Detection of IUPAC and IUPAC-like chemical names

Roman Klinger1,∗, Corinna Kolárík1,2, Juliane Fluck1, Martin Hofmann-Apitius1,2 and Christoph M. Friedrich1

1Fraunhofer Institute Algorithms and Scientific Computing (SCAI), Department of Bioinformatics, Schloß Bürlinghoven, 53574 Sankt Augustin and 2Bonn-Aachen International Center for Information Technology (B-IT), Department of Applied Life Science Informatics, Dahlmannstrasse 2, D-53113 Bonn, Germany

ABSTRACT

Motivation: Chemical compounds like small signal molecules or other biological active chemical substances are an important entity class in life science publications and patents. Several representations and nomenclatures for chemicals like SMILES, InChi, IUPAC or trivial names exist. Only SMILES and InChi names allow a direct structure search, but in biomedical texts trivial names and IUPAC like names are used more frequently. While trivial names can be found with a dictionary-based approach and in such a way mapped to their corresponding structures, it is not possible to enumerate all IUPAC names. In this work, we present a new machine learning approach based on conditional random fields (CRF) to find mentions of IUPAC and IUPAC-like names in scientific text as well as its evaluation and use of available name-to-structure tools.

Results: We present an IUPAC name recognizer with an F₁ measure of 86.6% on a MEDLINE corpus. The evaluation of different CRF orders and offset conjunction orders demonstrates the importance of these parameters. An evaluation of hand-selected patent sections containing large enumerations and terms with mixed nomenclature shows a good performance on these cases (F₁ measure 81.5%). Remaining recognition problems are to detect correct borders of the typically long terms, especially when occurring in parentheses or enumerations. We demonstrate the scalability of our implementation by providing results from a full MEDLINE run.

Availability: We plan to publish the corpora, annotation guideline as well as the conditional random field model as a UIMA component.

Contact: roman.klinger@scai.fraunhofer.de

1 INTRODUCTION AND RELATED WORK

Finding relevant information is one of the most important challenges in our time. In particular in life science and chemical research a huge amount of new publications, research reports and patents is produced every year. For users of huge text corpora like MEDLINE, document categorization, ranking and finding entity-related information is an important help in their daily research and work life. The automated identification of entities of interest in text in a domain and their mapping to database entries strongly improves information retrieval, information extraction and information aggregation. For such tasks tools have been successfully developed in the last decades especially for finding mentions of proteins and genes. Those provide basic methods to extract e.g. protein-protein relations. For that field of interest, the BioCreative competition (Hirschman et al., 2007) provides an evaluation of state-of-the-art techniques on publicly available data sources. Dictionary-based systems allow a direct mapping of the recognized entities to reference objects (e.g. EntrezGene identifiers for genes). An inherent drawback of such approaches, however, is the dependence on the quality and completeness of the dictionary and the methods of the underlying algorithm to recognize spelling variants and to resolve ambiguous names.

Dictionary independent methods (rule-based systems as well as machine learning-based system) are well suited to find names where no comprehensive dictionary is available. An example for a rule-based approach is to find mentions matching a given set of regular expressions. Machine learning approaches are based on an annotated training set from which statistical information can be obtained about the inherent dependencies in the data. This extracted information can then be applied on unseen data to classify word tokens, i.e. to label parts of text with different classes. The best approaches in the BioCreative sub task of gene mention recognition have an F₁ measure between 86% and 87% (Wilbur et al., 2007). From 21 submissions, 11 use conditional random fields (CRF), a machine learning method based on undirected graphical models (Bishop, 2006) which leads to competitive results, in our hands 86.33% F₁ measure (Klinger et al., 2007b).

Finding mentions of chemical compounds in text is of interest for several reasons. An annotation of the entities enables a search engine to return documents containing elements of this entity class (semantic search), e.g. together with a disease. This can be helpful to find relations e.g. to adverse reactions or diseases. Mapping the found entities to corresponding structures leads to the possibility to search for relations between different chemicals. This enables a chemist to search for similar structures or substructures and combine the knowledge in the text with knowledge from databases or to integrate other tools handling chemical information (e.g. solubility or mass calculation).

Chemical names can be distinguished into different classes: to deal with complex structures, different methods of nomenclature are used, e.g. mentions of the sum formula or names according to the Simplified Molecular Input Line Entry Specification (SMILES; Weininger, 1988) or the successor of SMILES, the IUPAC International Chemical Identifier (InChI). Because of a limited readability of such specifications for humans, trivial names and the nomenclature published by the International Union of Pure and Applied Chemistry (IUPAC; McNaught and Wilkinson, 1997) is commonly applied (Eller, 2006) in text. Also combinations of the different types of names as well as abbreviations, especially of often used substances, are in use.

Trivial names can be searched for with a dictionary-based approach and directly mapped to the corresponding structure

© 2008 The Author(s)
This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/2.0/uk/) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
They found 158 chemical names from which 22 were ambiguous. The absolute numbers of found patents for the top 25 drugs listed and classified into different classes and 13 chemical parts with two ambiguous ones. The F_1 measure for the first is 90.86% (93.15% precision, 86.08% recall). The latter has an F_1 measure of 91.67% (100% precision, 84.62% recall).

Similarly, (Kemp and Lynch, 1998) identify chemical names in patent texts with handcrafted rules using dictionaries with chemical name fragments. They claim to identify 97.4% from 14 855 specific chemical names in 70 patent descriptions taken from documents from the IPC class CO 7D. The false positive rate is reported to be 4.2%.

The concept described by Anstein et al. (2006) for which the preconditions are described by Reyde (2006) uses a grammar for the analysis of fully specified (e.g. 7-hydroxyheptan-2-one), trivial (e.g. benzene) and semi-systematic (e.g. benzene-1,3,5-triacetic acid) as well as underspecified (e.g. deoxysugar) compound names. The advantage of that approach is that the grammatical analysis can be used as a basis for a conversion to the chemical structure. A possible problem is the difficulty to recognize names not following the specification to a certain degree as well as the completeness and maintenance of a changing standard.

A molecular similarity search is used by (Rhodes et al., 2007) to enable a user to ‘search for related Intellectual Property’ in US patents based on a specified drawn molecule. They report to find 3 623 248 unique chemical structures from 4 375 036 US patents. The absolute numbers of found patents for the top 25 drugs listed by Humana (2005) are given.

The program developed by (Sun et al., 2007) focuses on finding sum formulas like $CH_2(C)OH$ in text using support vector machines (Scholkopf and Smola, 2002) and CRFs (Lafferty et al., 2001).

In the work of Corbett et al. (2007), first-order Hidden Markov Models (Rabiner, 1989) implemented in the toolkit LingPipe are combined with other methods for the identification of chemical entities. The program finds e.g. structural classes, atoms and elements, fragments, trivial names, SMILES and InChI as well as IUPAC names. They give an inter-annotator F_1 measure of 93% for chemical names on their annotated corpus. The performance is evaluated on different corpora, recall rates are between 69.1% and 80.8% and precision rates between 64.1% and 75.3% (Corbett and Murray-Rust, 2006). A separate evaluation of the included named entity recognition modules from the toolkit LingPipe results in an F_1 measure of 74% (Corbett et al., 2007). To our knowledge, their implementation—the open source program Oscard (Open Source Chemistry Analysis Routines: Corbett, 2007)—is the only software available to the academic community.

We prefer to have a method identifying IUPAC and IUPAC-like names only and to have additional approaches to recognize other chemical name classes (e.g. brand names or elements): IUPAC and IUPAC-like names can be recognized based on their morphological structure with higher performance than with methods based on dictionaries (Kolářik et al., 2008). We therefore introduce a system for the recognition of IUPAC and IUPAC-like names while trivial names are found with a dictionary approach not described here. These IUPAC-like terms do not only include correct IUPAC names but also names not following the nomenclature strictly. This enables a higher recall regarding mentioned chemicals, which is important for document retrieval purposes.

In addition to the correct recognition of IUPAC and IUPAC-like names, the aim is to transform these names using name-to-structure converters to allow the usage of chemical tools on the extracted data. Therefore enumerations have to be detected with all parts while modifying tokens (e.g. substitutes, analogs) have to be tagged separately (cf. Fig. 1). We use a CRF approach and present our development of a training corpus as well as our experiences regarding inter-annotator agreement in comparison to the work of Corbett et al. (2007). Next to the training corpus we describe test corpora especially on MEDLINE and on patents.

Additionally, to the presentation of the results an exhaustive analysis of the influences of different CRF orders and offset conjunctions is shown and the impact of the different feature sets on the results are evaluated and discussed.

METHODS

2.1 Overview

We apply a CRF to build a model for finding IUPAC and IUPAC-related MODIFIER entities. A training corpus has been annotated by two independent annotators and the inter-annotator agreement is discussed in Section 2.3. The model selection is performed by bootstrapping (Elton and Tishkarian, 1993) and evaluated on two independent test corpora, one consisting of sampled abstracts from MEDLINE, the other one on hand selected paragraphs from bio-chemical patents. We analyze the use of name-to-structure converters as a basis of a possible normalization, a mapping of the found entities to a unique structure.

2.2 Entity types

The entities in which we focus are IUPAC and MODIFIER mentions. As described, chemical entities in general are named following different nomenclatures which are also combined by the authors of biomedical texts. Only concentrating on correct IUPAC terms is not

1http://redpoll.pharmacy.ualberta.ca/drugbank/
2U.S. National Library of Medicine (2007), http://medlineplusdruginformation.html
3http://alias-i.com/lingpipe/
4http://oscard3.sourceforge.net
2.3 Corpus generation and inter-annotator agreement

There main corpora are generated for building the model and evaluating our approach following a developed annotation guideline. A training corpus consisting of MEDLINE abstracts (abbreviated as TrainA), a test corpus containing MEDLINE abstracts (TestA) and a test corpus made up of parts of patents (TestP).

The training corpus is built in two steps. First, a preliminary corpus (abbreviated as TrainP) is built in the same manner as described by Friedrich et al. (2006). For that, in the BioCreative training corpus (Hirschmehn et al., 2007), the gene and protein names are replaced by randomly selected correct synonyms. For building the conclusive training corpus both annotations are combined by an independent person. The F1 measure between the resulting training corpus (TrainA) and the first-annotated corpus is 94%.

2.4 Conditional random fields

CRFs (Lafferty et al., 2001; McDonald and Pereira, 2005) are a family of probabilistic, undirected graphical models for computing the probability $P(y|x)$ of a possible label sequence $y = \{y_1, \ldots, y_n\}$ given the input sequence $x = \{x_1, \ldots, x_n\}$. In the context of named entity recognition this observation sequence y corresponds to the tokenized text. This is the sequence of tokens which is defined by a process called tokenization—splitting the text at white spaces, punctuation marks and parentheses. A straightforward idea for the tokenization of IUPAC names is to keep the whole name together to use the sheet length for their identification. That is not possible because of leading and successive brackets and other symbols as well as often used white spaces (based on e.g. converted line breaks). So we use a very fine tokenization, also splitting at all number-letter changes in the text.

The label sequence is encoded in a label alphabet similar to $L = \{\text{I-IUPAC}, \text{B-IUPAC}, \text{O}, \text{B-MODIFIER}, \text{I-MODIFIER}\}$. As described in Section 2.2. An example for an observation sequence with a label sequence is depicted in Figure 2.

A CRF in general is an undirected probabilistic graphical model $P(y|x) = \frac{1}{Z(x)} \exp \left(\sum_{\text{all factors}} \Psi(y, x) \right)$

where Ψ are the different factors given through an independency graph like in Figure 3 (Kschischang et al., 2001). These factor functions combine
Table 1. Features used in the CRF

Name	Explanation
Static morphol. features	Reg.Ex.
All Caps	[A-Z]*
Real Number	[-0.9]*([-9,.*]+([-9,.*]+))
Is Quote	["""""""]
Is Slash	[\[/]
Autom. generated features	Automatic generation of a feature for every token: match that prefix or suffix (length 2)
Bag-Of-Words	Automatic generation of a feature for every token: match that token
Spaces	Space white space preceding token
Spaces_left	Space white space following token
Lists	Prefix/Suffix lists: Prefixes and suffixes (length 4) of intermediate or last words generated from IUPAC names
	Autom. Prefixes/Suffixes

Fig. 2. Example for observation and label sequence for the text snippet: ‘...of cyclohepta-1,3-diene...’ after tokenization.

Fig. 3. First-order linear-chain CRF.

Fig. 4. Second-order linear-chain CRF.

2.5 Conversion of IUPAC names to structures

To normalize the found names, one solution is to convert them to a structure representation. Several tools have been developed for that task.
The feature set of the system with the best performance consists of automatically added features based on
Autom. Prefixes/Suffixes
Prefix/Suffix lists
to of automatically added features based on
Train et al.

CRF is trained on the annotated training corpus based on MEDLINE
Eigner-Pitto et al.

than the program
Name=Struct
F
bootstrapping. The result is an
F
simple, considering the
difference in tagging the tweaked corpus
offset conjunction and the same parameter set as described in
precision, 97.76% recall) with a first-order CRF with first-order
parameters is given.

The results of some of the features for different orders of offset
corpora shows two main problems: On the one hand, only correct IUPAC names are included in
Train, but fragments occur frequently in real text. On the other hand, a big problem is missing negative examples in the tweaked training data representing what is not a IUPAC name: nearly all isolated numbers, single letters, expressions in or around brackets are found wrong.

Based on the experiences on the tweaked training corpus Train, a CRF is trained on the annotated training corpus based on MEDLINE

3 RESULTS

In a first step a CRF is trained on the preliminary, tweaked corpus Train mentioned in Section 2.3 and evaluated by 50-fold bootstrapping. The result is an
F
measure of 97.92% (98.08% precision, 97.76% recall) with a first-order CRF with first-order
offset conjunction and the same parameter set as described in Section 3.1. These results are comparable to those published by
Friedrich et al. (2006). Evaluating this model on the annotated MEDLINE training corpus Train shows a low
F
measure (with 19.5%) and 38.4% recall. The performance on the sampled MEDLINE test corpus Test is even worse with 1.1%
F
1 measure and a recall of 29.1%. These results show that there is a fundamental difference in tagging the tweaked corpus Train (which seems to be simple, considering the
F
measure) and real world texts (as Test).

The analysis of the different corpora shows two main problems: On the one hand, only correct IUPAC names are included in Train, but fragments occur frequently in real text. On the other hand, a big problem is missing negative examples in the tweaked training data representing what is not a IUPAC name: nearly all isolated numbers, single letters, expressions in or around brackets are found wrong.

Based on the experiences on the tweaked training corpus Train, a CRF is trained on the annotated training corpus based on MEDLINE

3.1 Parameter selection

For model selection, the impact of the following parameters of the CRF are evaluated by applying 50-fold bootstrapping on the training set Train:

• features representing the text like Bag-Of-Words or morphological features (cf. Table 1),
• the order of the CRF and
• the order of the offset conjunction.

The feature set of the system with the best performance consists of automatically added features based on Bag-Of-Words as well as Autom. Prefixes/Suffixes of length two. Additionally, the membership to Prefix/Suffix lists containing prefixes or suffixes of length four

http://www.eyesopen.com/products/toolkit/lexi_che.html
Version of October 11, 2006, http://oscar3-chem.sourceforge.net

Version 1.0.1 of June 26, 2007, cdk.sourceforge.net/
Detection of IUPAC-like chemical names

Fig. 5. Results on the training data Train\textsubscript{M} with 30-fold bootstrapping with different feature sets, different orders \(q \) of the CRF (given as CRF \(q \) above) and different orders \(p \) of the offset conjunction (given as OC \(p \)). The best results were obtained with the feature set presented in Table 1. For more details see Sections 2.4.1 and 3.1.

Fig. 6. Results on the training data Train\textsubscript{M} with some very small feature sets on different orders of the CRF and offset conjunctions. In contrast to Figure 5, where variations of a larger feature set are shown, the importance of features is presented in the context of very small feature sets. (Note the different scales between Figs 5 and 6.)

corpus Test\textsubscript{M}. In Figure 7 different orders of the CRF and the offset conjunction together with tagging and training durations are depicted. Similar to the results estimated with bootstrapping on the training corpus Train\textsubscript{M}, highest performance is obtained with the most context information included by a CRF order of 3 and an offset conjunction order of 2. The \(F_1 \) measure for IUPAC entities is 85.6\% with a precision of 86.5\% and a recall of 84.8\%. The MODIFIER entities are found with an \(F_1 \) measure of 84.6\% (91.7\% precision and 78.6\% recall). Higher orders have not been applied because of prohibitive training durations. However, it can be seen that our best result is obtained at the expense of a high training time and, what is more important, on a higher tagging time of 307\ s then other configurations of the CRF. For tagging a higher amount of data like the full MEDLINE database one could prefer to use a faster configuration like the one with order 2 and offset conjunction of 1 which only takes 215\ s for tagging the test corpus. The \(F_1 \) measure for IUPAC entities is lower with 77.7\%, but the recall is nearly on the same level with 82.1\% (MODIFIER: 55\% precision, 78.6\% recall). It can be concluded, that there is a trade-off between tagging time and performance, so it depends on the application which configuration should be preferred. The analysis of the errors show frequent problems in the recognition of short chemical names. On the one hand, chemical names are recognized by the system which are not specified as IUPAC-like. On the other hand, short names, similar to trivial names, specified as IUPAC-like by the annotators are most frequently unrecognized by the system. Nearly 50\% of the other false positive errors are boundary errors. In addition, names morphological similar to IUPAC names like enzymes (e.g. ‘2-phospho-D-glyceratehydro-lyase’ or ‘pyruvate O2-phosphotransferase’) are detected as false positive matches.

Applying the best system trained on the MEDLINE training corpus, Train\textsubscript{M}, for tagging the patent test corpus, Test\textsubscript{P}, shows a decrease in \(F_1 \) measure in comparison to the MEDLINE test corpus Test\textsubscript{M} due to the bias of hand selecting difficult paragraphs instead of sampling from a set of sentences or text snippets. We get an \(F_1 \) measure of 81.5\% with a precision of 77.2\% and a recall of 86.4\%.

3.3 Annotation of full MEDLINE

We performed a run of the best CRF model on the full MEDLINE with 16 848 632 MEDLINE article entries (version as of July 13, 2007). In these entries, we have 8 975 073 abstracts. We tag titles and
names, we sample 100,000 correct names from data provided by the normalization. To get an upper bound of convertible IUPAC information by Opsin MEDLINE are shown in Table 2, the top 5 of the converted structures N1 Grid Engine 6.

The system is Suse Linux Enterprise Server 9 (x86 64) with the Sun Opteron AMD double core processors with 2.6 GHz and 8 GB main memory on each machine in 76.65 h (3.19 days). The operating abstracts, altogether 2.2×10^9 tokens, in which there are 1,715,263 IUPAC entities in 875,102 MEDLINE database entries. The tagging is performed on a computer cluster using 48 machines with two Opteron AMD double core processors with 2.6 GHz and 8 GB main memory in each machine in 76.65 h (3.19 days). The operating system is Suse Linux Enterprise Server 9 (x86 64) with the Sun N1 Grid Engine 6.

From the found IUPAC entities, only 142,181 could be transformed to a structure (16.24%). The top 15 found terms from MEDLINE are shown in Table 2, the top 5 of the converted structures in Table 3 together with the most often used terms which lead to the normalization. To get an upper bound of convertible IUPAC names, we sample 100,000 correct names from data provided by NCBI (2007). From these, 50,028 (30%) are converted to structure information by Opsin.

4 SUMMARY AND DISCUSSION

In this article, we present our approach of finding IUPAC-like terms in text with CRF. We demonstrate that our IUPAC recognizer identifies entities with an F_1 measure of 86.5% on a sampled independent test corpus built from MEDLINE. This corpus gives an estimation for all available abstracts from that database. These results show that restricting the recognition to the special class of IUPAC-like terms instead of all mentions of chemical names as focused on in Oscar3 (Corbett et al., 2007) increases the performance.

Using a tweaked corpus with correct IUPAC names shows that incorporating only complete IUPAC names in the training corpus is not sufficient. Obviously, the challenge is to recognize fragments and parts of IUPAC names. An error analysis of the final system on MEDLINE shows that boundary problems and the recognition of shorter chemical names lead to the main performance loss. This may be founded in ambiguities in the training data regarding these names and should be considered in a further extension of the training corpus. Preliminary results on an extended annotation of short names show an increase of precision to 91.4% (Kolářík et al., 2008).

When the IUPAC recognizer is applied to a hand-sampled patent corpus containing long enumerations and mixtures of different chemical nomenclatures the drop in performance is unexpectedly low with an F_1 measure of 81.5%. Apparently, the loss of F_1 measure in comparison to the MEDLINE corpus is due to a loss of precision rather than recall. Typical problems are finding the right borders of the chemical names in enumerations. From these results we cannot generalize that it is harder to find IUPAC names in patents than in abstracts.

In the feature evaluation we show that automatically generated features like Bag-of-Words and Autom. Prefixes/Suffixes together with Space information are the most important features influencing the performance of the system. The usage of combinations of these features alone e.g. Space together with prefixes and suffixes result in an F_1 measure of 76.03%. In contrast, the static morphological features which are usually very important for a good generalization (together with other morphological features), in particular on the entity class of genes and proteins (Klinger et al., 2007b) do not have such a high impact here. Remarkably, the Prefix/Suffix lists (used for generalization purposes) appear to be of very low importance indicated by nearly no loss when left out. When used as the only feature, no positive result can be obtained. However, when combined with the feature Spaces, the results are surprisingly high (70.71% F_1 measure). Higher orders of the CRF in combination with high order offset conjunctions lead to the best results observed (F_1 measure 85.6%) on the MEDLINE test corpus with an CRF order 3 and an offset conjunction of 2. On this corpus also the direct dependency of training and labeling durations to the orders of CRF and offset conjunction is shown (cf. Fig. 7).

Despite of the analysis given here for IUPAC entities, the open question remains, in which cases a representation of context information on the labels should be preferred in comparison to a representation of context information in the text, in form of features, used here by incorporating offset conjunction. To our knowledge, no deeper analysis is published about that topic so far. Our own experiments with different orders of CRF and offset

Frequency	Name
16811	N-methyl-D-aspartate
15275	5-hydroxytryptamine
11690	5-fluouracil
9001	6-hydroxydopamine
7023	glucose-6-phosphate
6685	N-ethylmaleimide
5932	N-acetylcycteine
5178	12-O-tetradecanoylphorbol-13-acetate
5032	methyl
4742	N-acetylglucosamine
4311	benz(a)pyrene
4164	3-methylcholanthrene
3991	4-aminoypyridine
3931	2,3,7,8-tetrachlorodibenzo-p-dioxin
3979	5-hydroxyindoleacetic acid

Fig. 7. Results on the sampled MEDLINE corpus Test4q with different orders q of the CRF (given as order q) and orders p of the offset conjunction (given as OCP). The upper chart shows the F_1 measures for the different configurations, the lower one the tagging and training durations.
Table 3. Top 5 found converted structures (applying names only one can be converted (4-aminopyridine; cf. Table 3) with their frequency and the frequency of occurrences of the top 3 terms which lead to the SMILES string

Frequency	SMILES and example names	Termfreq
4099	NC1=CC=NC=C1	3991
	4-aminopyridine	60
	4-Aminopyridine	36
3770	OCCS	
	2-mercaptopethanol	3696
	2-Mercaptopethanol	47
2799	C1=NC2=NC=C(C2=N1)N8	2766
	6-Mercaptopurine	20
	6-mercaptopurine	7
2607	CNI(CCC)C=CC=C=CC=C=C2	2416
	1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine	170
	methyl-4-phenyl-1,2,3,6-tetrahydropyridine	10
2457	OC1=NC=CC=CC=[N+](=O)=[O-]	2383
	2,4-dinitrophenol	53
	(2,4-dinitrophenol)	11

Even from correct names provided by the NCBI in the database PubChem, only 30% can be converted. Unfortunately, it is not allowed to evaluate the conversion rate of the commercial tools for academic applications. Difficulties in the name to structure conversion are mixed nomenclatures and formally incorrect IUPAC and chemical names instead of correct nomenclature. We conclude that name-to-structure conversion in its current form seems to be a persistent scientific challenge.

In the future it is necessary to combine different existing tools and programs to be developed which find mentions of trivial names, formulas, IUPAC names, InChI, SMILES, group names, etc. and determine the intersection in their results and enable them also to find combined terms (e.g. in which part of the names follows the nomenclature of SMILES and another part follows IUPAC nomenclature). For that purpose, a representative, comprehensive test corpus including all these entities has to be developed.

Another goal is to combine the knowledge in drawn structures with the information in text, using the results provided by tools like chemOCR (Algorri et al., 2007; Zimmermann et al., 2005) which converts drawn structures into computer interpretable representations.

ACKNOWLEDGEMENTS

We thank all our co-workers, especially Erfan Younesi, Harsha Gurulingappa for annotation and Katrin Tomanek (University of Jena) and Theo Mevissen for fruitful discussions.

Funding: This work has been partially funded by the MPG-FhG Machine Learning Collaboration (http://lip.fml.tuebingen.mpg.de/).

Conflict of Interest: none declared.

REFERENCES

ACDLabs (2007) ACDName. Software. Available at http://www.acdlabs.com/products/name_lab/ (last accessed date December 18, 2007).

Algorri,M.-E. et al. (2007) Reconstruction of chemical molecules from images. In Proceedings of the 29th Annual International Conference of the IEEE Engineering in Medicine and Biology Society EMBC 2007 IEEE Engineering in Medicine and Biology Society (EMBS), Lyon, France, pp. 4609–4612.

Annen,S. et al. (2000) Identifying and classifying terms in the life sciences: the case of chemical terminology. In Calzolari,N. et al. (eds), Proceedings of the Fifth Language Resources and Evaluation Conference: ELRA-ELDA, Genoa, Italy, pp. 1095–1099.

Bishop,C.M. et al. (2006) Pattern Recognition and Machine Learning. Springer, Berlin.

CambridgeSoft (2007) Name=struct. Software. Available at http://www.cambridgesoft.com/databases/details/?db=16 (last accessed date December 18, 2007).

ChemAxon (2007) Marvin. Software. Available at http://www.chemaxon.com/marvin/ (last accessed on January 11, 2008).

Corbett,P. and Murray-Rust,P. (2006) High-throughput identification of chemistry in life science texts. In Berthold,M.R. et al. (eds) 2nd International Symposium on Computational Life Science (CompLife 2006, LNBI 4216), Springer-Verlag, Berlin, Heidelberg, pp. 107–118.

Corbett,P. et al. (2007) Annotation of chemical named entities. In BioNLP 2007: Biological, Translational, and Clinical Language Processing; Association for Computational Linguistics, Prague, pp. 57–64.

Corbett,P. (2007) Oscar3. Software. Available at http://oscar3-chem.sourceforge.net, (last accessed date December 13, 2007).

Eifon,B. and Tibshirani,R.I. (1993) An Introduction to the Bootstrap. Chapman & Hall/CRC, New York.

Eigner-Pitto,V. et al. (2007) Mining, storage, retrieval: the challenge of integrating chemoinformatics with chemical structure recognition in text and images. Talk on 5th Fraunhofer Symposium on Text Mining in the Life Sciences. Available at http://www.scai.fhg.de/tms07.html (last accessed date December 18, 2007).

conjunction in the field of gene and protein names showed that with higher orders the results tend to get worse, probably because of more needed training data when more complex dependencies are modeled (data not shown here).

In a final test, the full MEDLINE was labeled showing the scalability of the implementation. The highest frequency (without normalization) is almost 17 000 mentions of one term (Table 2). A conversion of the names to its corresponding structure show that only a minor part (below 20%) can be processed (without evaluating the correctness of the conversion). From the 15 most frequent chemical names only one can be converted (4-aminopyridine; cf. Table 3).
Ellen,G.A. (2006). Improving the quality of published chemical names with nomenclature software. Molecular, 14, 915–928.

Friedrich,C.M. et al. (2006) Biomedical and chemical named entity recognition with conditional random fields: the advantage of dictionary features. In Ananiadou,S. and Flack,J. (eds), Proceedings of the Second International Symposium on Semantic Mining in Biomedicine (SHMB 2006). Vol. 7, BMC Bioinformatics 2006. BioMed Central Ltd, London, UK, pp. 85–89.

Guzikowski,A.P. et al. (1997) Synthesis of racemic 6,7,8,9-tetrahydro-1H-1-benzazepine-2,5-diones as antagonists of n-methyl-d-aspartate (nmda) and amino-3-hydroxy-5-methylisoxazole-4-propionic acid (amp) receptors. J. Med. Chem. 40, 2424–2429.

Hamosh,A. et al. (2005) Phenomenology rule-based protein and gene entity recognition. BMC Bioinformatics, 6 (Suppl. 1), (S14).

Hirschm.L. et al. (2007) Proceedings of the Second BioCreative Challenge Evaluation Workshop. Centro Nacional de Investigaciones Oncologicas, CNIO, Madrid, Spain.

HumanL. (2005) Top 50 drugs brand-name prescriber. Available at http://apps humansa.com/preception/benefits_and_services/includes/Top50BrandDrugs.pdf (last accessed date December 14, 2007).

Kemp,N. and Lynch,M. (1998) The extraction of information from the text of chemical patents. 1. Identification of specific chemical names. J Chem Inf Comput Sci., 38, 544–551.

Klinger,R. and Tomasek,K. (2007) Classical Probabilistic Models and Conditional Random Fields. Technical Report TR07-2-013. Department of Computer Science, Dortmund University of Technology. ISSN 1864-4503.

Klinger,R. et al. (2007a) Identifying gene specific variants in biomedical text. J. Bioinform. Computat. Biol., 5, 1277–1296.

Klinger,R. et al. (2007b) Named entity recognition with combinations of conditional random fields. In Proceedings of the Second BioCreative Challenge Evaluation Workshop. Centro Nacional de Investigaciones Oncologicas, CNIO, Madrid, Spain. pp. 89–91.

Kolak,C. et al. (2007) Identification of new drug classification terms in textual resources. Bioinformatcs, 23, 1264–1272.

Kolak,C. et al. (2008) Chemical names: terminological resources and corpora annotation. In Workshop on Building and evaluating resources for biomedical text mining (6th edition of the Language Resources and Evaluation Conference).

Kochschmitz,F. et al. (2010) Factor graphs and the sum-product algorithm. IEEE T. Inform. Theory, 47, 498–519.

Lafferty,J.D. et al. (2001) Conditional random fields: probabilistic models for segmenting and labeling sequence data. In Proceedings of the Eighteenth International Conference on Machine Learning (ICML 2001). Morgan Kaufmann Publishers, San Francisco, CA, USA, pp. 282–289.

McCallum,A.K. (2002) Mallet: a machine learning for language toolkit. Available at http://mallet.cs.umass.edu (last accessed May 5, 2008).

McDonald,R.T. et al. (2004) An entity tagger for recognizing acquired genomic i. J. Bioinform. Computat. Biol., 6 (Suppl. 1) (S6).

McNaught,A.D. and Wilkinson,A. (1997) Compendium of Chemical Terminology – the Gold Book. Blackwell Science, Oxford, UK.

Murray-Rust,P. (1997) Chemical markup language: a simple introduction to structured documents. World Wide Web J., 2, 135–147.

Narayananwamy,M. et al. (2003) A biological named entity recognizer. In Proceedings of the Pacific Symposium on Biocomputing, pp. 427–438. NCBI (2007) Pubchem data. Online. Available at ftp://ftp.ncbi.nlm.nih.gov/pubchem/ Compound/CURRENT/PUBXML (last accessed date September 5, 2007).

NCBI (2007) Updating Quasi-Newton matrices with limited storage. Math. Comput., 35, 773–782.

OpenEye (2007) LexiChem. Software. Available at http://www.eyesopen.com/products/toolkit/lexichem.html (last accessed date December 18, 2007).

Rabiner,R. (1989) A tutorial on hidden Markov models and selected applications in speech recognition. Proc. IEEE, 77, 257–286.

Riedel,S. (2006) Understanding chemical terminology. Terminology, 12, 111–136.

Rider,J. et al. (2007) Mining patients issues molecular similarity search. In Proceedings of the Pacific Symposium on Biocomputing, Vol. 12, pp. 304–315.

Scholz,C.B. and Smola,A.J. (2002) Learning with Kernels: Support Vector Machines, Regularization, Optimization, and Beyond. Springer-Verlag, Berlin.

Schölkopf,B. and Smola,A.J. (2002) Learning with Kernels: Support Vector Machines, Regularization, Optimization, and Beyond: Support Vector Machines, Regularization, Optimization and Beyond (Adaptive Computation and Machine Learning). The MIT Press, Cambridge, MA.

Settles,B. (2005) ABNER: an open source tool for automatically tagging genes, proteins and other entity names in text. Bioinformatics, 21, 3191–3192.

Steinbeck,C. et al. (2003) The chemistry development kit (cdk): an open-source java library for chemoinformatics. J. Chem. Inf. Comput. Sci., 43, 493–500. Available at cdk.sourceforge.net (last accessed date December 18, 2007).

Sun,B. et al. (2007) Extraction and search of chemical formulae in text documents on the web. In Proceedings of the International World Wide Web Conference. Banff, Alberta, Canada, pp. 251–260.

Tomasek,K. et al. (2007) A reappraisal of sentence and token splitting for life science documents. In Proceedings of the 12th World Congress on Medical Informatics. Available at http://www.julielab.de/ (last accessed date December 16, 2007).

U.S. National Library of Medicine (2007) Medlineplus. Available at http://www.nlm.nih.gov/medlineplus/druginformation.html (last accessed date September 1, 2008).

Weininger,D. (1998) Smiles, a chemical language and information system. 1. introduction to methodology and encoding rules. J. Chem. Inf. Comput. Sci., 28, 31–36.

Wilbur,W.J. et al. (2007) BioVec: 2. gene mention task. In Proceedings of the Second BioCreative Challenge Evaluation Workshop. Centro Nacional de Investigaciones Oncologicas, CNIO, Madrid, Spain, pp. 7–9.

Wishart,D.S. et al. (2006) Drugbank: a comprehensive resource for in silico drug discovery and exploration. Nucleic Acids Res., 34, D608–D612. Available at http://dmpk.pharmacy.ualberta.ca/drugbank/ (last accessed date July 16, 2007).

Zimmermann,M. et al. (2005) Combating illiteracy in chemistry: towards computer-based chemical structure reconstruction. In Proceedings of the 1st German Conference on Chemoinformatics. Goiitz, Germany.