Computational Sequence Analysis of Mammalian Reovirus Proteins

MARTIN BISAILLON & GUY LEMAY*

Département de Microbiologie et Immunologie, Université de Montréal, P.O. Box 6128, Station Centre-ville, Montréal, Québec, H3C 3J7, Canada

*Corresponding author. Mailing address: Département de Microbiologie et Immunologie, Université de Montréal, P.O. Box 6128, Station Centre-Ville, Montréal, Québec, Canada, H3C 3J7. Email: guy.lemay@umontreal.ca

Received March 25, 1998; Accepted July 22, 1998

Abstract. In the present study, computer-assisted searches for sequence similarities were performed with amino acid sequences from mammalian reovirus proteins. These analysis revealed that many proteins of reovirus are partially similar to known viral or cellular proteins. Consensus sequences have been identified that are in accordance with already suspected functions of reovirus proteins. The analysis has also revealed unexpected similarities of some reovirus proteins with specific classes of proteins which sequences are present in the databases. This could suggest yet unidentified activities for some of the reovirus proteins.

Key words: reovirus, computer analysis

Introduction

Mammalian reoviruses are members of the Reoviridae family and infect a variety of mammalian species but have not yet been clearly associated with any serious human disease (1). Despite this low pathogenicity in humans, reoviruses have been extensively used as model system and have provided numerous insights in the study of transcription, translation and virus-cell interactions. These nonenveloped viruses contain 10 segments of genomic double-stranded RNA (dsRNA) enclosed in two concentric icosahedral capsids made of eight viral proteins (1). The reovirus inner capsid consists of three major proteins (λ1, λ2, and σ2) and two minor proteins (λ3 and μ2) while the outer capsid is composed primarily of three proteins (σ1, σ3, and μ1C). Recent structural studies have demonstrated that most of λ2 resides within the outer capsid and suggest that λ2 can also be considered as an outer capsid protein bound to the inner capsid (2–4). A schematic representation of the position of the various proteins in both outer and inner capsid is shown in Fig. 1. The reovirus genome also encodes three nonstructural proteins (σNS, μNS, and σ1S) that are not incorporated into mature virions but likely mediate various functions during viral multiplication (1).

Three serotypes of mammalian reoviruses have been identified by seroneutralization and hemagglutination-inhibition assays (1). All of the genes from prototype strain Dearing (serotype 3; T3D) and many of the genes from prototype strains Lang (serotype 1; T1L) and Jones (serotype 2; T2J) have now been sequenced either from cDNAs or directly from genomic RNA (1). Homologous gene segments from the three prototypes are similar in size and nucleotide sequence, although the S1 genes exhibit greater variability than the other 9 genes (5). This divergence in S1 sequence is in accordance with the observation that the σ1 protein, encoded by the S1 gene, is the principal antigen against which type-specific neutralizing antibodies are directed (6,7).

Due to the segmented nature of their genome, reoviruses have been extensively studied by genetic analysis (reviewed in 8). Analysis of gene reassortants generated upon co-infection with two different viral strains has thus allowed the assignment of certain functions to specific viral proteins. In the past few years, rapid accumulation of nucleic acids and deduced amino acids sequences in databases has led
to important progress in structure-function studies of proteins from various sources. Although the nucleotide sequence of all ten reovirus genes has been determined, this information has only been partly exploited to increase our understanding of the structural and functional properties of reovirus proteins. In the present study, computer-assisted searches for sequence similarities were performed on all eleven proteins from mammalian reoviruses. These searches were performed using several programs to identify global or local regions of significant similarity between reovirus proteins and other amino acid sequences. These analysis revealed that many proteins of reoviruses are partially similar to known viral or cellular proteins. The results obtained with 7 of the 11 reovirus proteins are systematically presented, compared with known or suspected functions of these proteins, and significance of these results is briefly discussed in the context of reovirus multiplication.

Methods

Amino acid sequences were obtained from the SWISS-PROT and Genbank databases that are combined in the nonredundant sequence database at the National Center for Biotechnology Information (NCBI). A list of sequences used in this study, and their identification number, is presented in Table 1. Database searches for sequence similarity were performed using the BLASTP program and the BLOSUM62 matrix for comparisons of amino acids residues (9,10). The BLASTP program seeks local, as opposed to global alignments, to detect relationships among sequences which share only isolated regions of similarity. The BLOSUM62 matrix was constructed by Henikoff et al. (10) and is based on substitution patterns within ungapped local alignments of short regions of related sequences.

Multiple alignments of amino acids sequences were generated using the Clustal V algorithm (11). The probability that matches occurred due to chance (e.g., \(P = 0.05 \) signifies that there is a 5% chance that the same match could occur between random sequences of the same size) is also included for some of the generated alignments. Finally, the ProDom protein domain database (Release 34.1) was also used to search for homologous domains in the SWISS-PROT database using the DOMAINER algorithm (12,13).

\(\sigma 3 \)

The \(\sigma 3 \) protein, in association with \(\mu 1C \), is the main component of reovirus outer capsid. It has been shown

Fig. 1. Schematic representation of the position of the various mammalian reovirus proteins in the outer and inner capsid. Proteins are not drawn to scale.
Designation	Protein	Origin	ID Number
Sigma 3 T3D	Sigma 3	Reovirus type 3 strain Dearing	VSI3_REOVD
Sigma 3 T2J	Sigma 3	Reovirus type 2 strain Jones	VSI3_REOVOJ
Sigma 3 T1L	Sigma 3	Reovirus type 1 strain Lang	VSI3_REOVL
2A Cox B1	Protease 2A	Coxackievirus B1	POLG_COXB1
2A Bov entero	Protease 2A	Bovine enterovirus strain VG-5-27	POLG_BOEV
2A Cox A9	Protease 2A	Coxackievirus A9 strain Griggs	POLG_CXA9
2A Cox B3	Protease 2A	Coxackievirus B3	POLG_COXB3
2A Cox B4	Protease 2A	Coxackievirus B4	POLG_COXB4
2A Cox B5	Protease 2A	Coxackievirus B5	POLG_COXB5
2A Swine Ves H	Protease 2A	Swine vesicular disease virus strain H/376	POLG_SVDVH
2A Swine Ves U	Protease 2A	Swine vesicular disease virus strain UK27/72	POLG_SVDVU
2A Entero 70	Protease 2A	Human enterovirus 70	POLG_HUEV7
2A Cox A21	Protease 2A	Coxackievirus A21	POLG_CXA21
2A Cox A24	Protease 2A	Coxackievirus A24	POLG_CXA24
2A Polio 1 M	Protease 2A	Poliovirus type 1 strain Mahoney	POLG_POL1M
2A Polio 1 S	Protease 2A	Poliovirus type 1 strain Sabin	POLG_POL1S
2A Polio 2 L	Protease 2A	Poliovirus type 2 strain Lansing	POLG_POL2L
2A Polio 2 W	Protease 2A	Poliovirus type 2 strain W-2	POLG_POL2W
2A Polio 3	Protease 2A	Poliovirus type 3 strain Z3127	POLG_POL32
2A Polio 5 L	Protease 2A	Poliovirus type 3 strain P3/Leon/37	POLG_POL3L
2A Rhino 14	Protease 2A	Human rhinovirus 14	POLG_HRV14
2A Rhino 1B	Protease 2A	Human rhinovirus 1B	POLG_HRV1B
2A Rhino 2	Protease 2A	Human rhinovirus 2	POLG_HRV2
2A Rhino 89	Protease 2A	Human rhinovirus 89	POLG_HRV89
2A Echo 11	Protease 2A	Echo virus 11 strain Gregory	POLG_EC11G
RIP C Phy am	Antiviral protein C	Phytolacca americana	RIPC_PHYAM
RIP S Phy am	Antiviral protein S	Phytolacca americana	RIPS_PHYAM
RIP A Phy am	Antiviral protein alpha	Phytolacca americana	RIPA_PHYAM
RIP 6 Sapof	Ribosome inactivating protein saporin-6	Saponaria officinalis	RIP6_SAPOF
RIP 2 Sapof	Ribosome inactivating protein saporin-2	Saponaria officinalis	RIP2_SAPOF
RIP 0 Diaca	Antiviral protein DAP-30	Dianthus caryophyllus	RIP0_DIACA
RIP 2 Mombha	Ribosome inactivating protein momordin II	Momordica balsamina	RIP2_MOMBA
RIP A Lufcy	Ribosome inactivating protein luffin-alpha	Luffa cylindrica	RIPA_LUFCY
RIP T Triki	Ribosome inactivating protein alpha-trichosanthin	Trichosanthes kirilowii	RIPT_TRIKI
RIP S Triki	Ribosome inactivating protein karasurin	Trichosanthes kirilowii	RIPS_TRIKI
RIP B Lufcy	Ribosome inactivating protein luffin-B	Luffa cylindrica	RIPA_LUFCY
RIP 1 Momch	Ribosome inactivating protein momordin I	Momordica balsamina	RIP1_MOMCH
RICI Ricco	Ricin	Ricinus communis	RICI_RICCO
AGGL Ricco	Agglutinin	Ricinus communis	AGGL_RICCO
ABRC Abpr	Abrin-C	Abrus precatorius	ABRC_ABRPR
ABRA Abpr	Abrin-A	Abrus precatorius	ABRA_ABRPR
Sigma 1 T3D	Sigma 1	Reovirus type 3 strain Dearing	VSI3_REOVD
Lysozyme SF6	Lysozyme	Bacteriophage SF6	LY_BPSF6
Sigma 1 T2J	Sigma 1	Reovirus type 2 strain Jones	VSI2_REOVJ
Sigma 1 T1L	Sigma 1	Reovirus type 1 strain Lang	VSI1_REOVL
Mu NS T3D	Mu NS	Reovirus type 3 strain Dearing	VM3_REOVD
Designation	Protein	Origin	ID Number
----------------------	--	---------------------------------	-------------------------
Beta myosin human	Myosin Heavy chain, cardiac muscle beta-isoform	Homo sapiens (Human)	MYSB_HUMAN
Embryo myosin human	Myosin Heavy chain, fast skeletal muscle embryonic	Homo sapiens (Human)	MYSE_HUMAN
Alpha myosin human	Myosin Heavy chain, cardiac muscle alpha-isoform	Homo sapiens (Human)	MYSA_HUMAN
Embryo myosin rat	Myosin Heavy chain, fast skeletal muscle embryonic	Rattus norvegicus (Rat)	MYSE_RAT
Alpha myosin rat	Myosin Heavy chain, cardiac muscle alpha-isoform	Rattus norvegicus (Rat)	MYSA_RAT
Beta myosin rat	Myosin Heavy chain, cardiac muscle beta-isoform	Rattus norvegicus (Rat)	MYSB_RAT
Myosin chick	Myosin Heavy chain, fast skeletal muscle embryonic	Gallus gallus (Chicken)	MYSE_CHICK
Cytokeratin I human	Cytokeratin I	Homo sapiens (Human)	K2C1_HUMAN
Cytokeratin 6D human	Cytokeratin 6D	Homo sapiens (Human)	K2CD_HUMAN
Cytokeratin I mouse	Cytokeratin I	Mus musculus (Mouse)	K2C1_MOUSE
Cytokeratin 8 bovine	Cytokeratin 8	Bos taurus	K2C8_BOVIN
Keratin IX. laevis	Cytokeratin I	Xenopus laevis	K2C1_XENLA
Keratin IX. laevis	Cytokeratin II	Xenopus laevis	K2C2_XENLA
Lambda 3 T3D	Lambda 3	Reovirus type 3 strain Dearing	VL3_REOV3D
Lambda 3 T2J	Lambda 3	Reovirus type 2 strain Jones	VL3_REOV2D
Lambda 3 T1L	Lambda 3	Reovirus type 1 strain Lang	VL3_REOV1L
Bovine rotavirus	RNA-directed RNA polymerase	Simian rotavirus SA11	RRO_ROT51
Bluetongue	RNA-directed RNA polymerase	Bluetongue virus serotype 10	RRPL_BTV10
S. cerevisiae LA virus	RNA polymerase	S. cerevisiae virus L-A	Genbank 557596
Yellow fever virus	Polypeptide	Yellow fever virus strain Pasteur 17D-204	POLG_YEFV1
West Nile virus	Polypeptide	West Nile virus	POLG_WNV
Dengue fever 2	Polypeptide	Dengue fever virus type 2	POLG_DEN2J
Dengue fever 2	Polypeptide	Dengue fever virus strain Jamaica	POLG_JAEVJ
Japanese encephalitis	Polypeptide	Japanese encephalitis virus strain JaOArS982	POLG_JAEVJ
Poliovirus 1M	Polypeptide	Poliovirus type 1 strain Mahoney	POLG_POL1M
EMC virus	Polypeptide	Encephalomyocarditis virus strain EMC-D	POLG_EMVD
Rhinovirus 14	Polypeptide	Human rhinovirus 14	POLG_HRV14
Foot and mouth	Polypeptide	Foot and mouth disease virus A	POLG_FMDV1
Coxackievirus B1	Polypeptide	Coxackievirus B1	POLG_COXB1
Hepatitis A	Polypeptide	Hepatitis A virus strain 18F	POLG_HPAV8
Tobacco mosaic	RNA-directed RNA polymerase	Tobacco mosaic virus	RRPO_TMV
Alfalfa mosaic	90 kDa protein	Alfalfa mosaic virus	V90K_AMVLE
Brome mosaic	Protein 2A	Brome mosaic virus	V2A_BMV
Cucumber mosaic	Protein 2A	Cucumber mosaic virus strain INY	V2A_CMVFN
Sindbis virus	Polypeptide	Sindbis virus	POLN_SINDV
Semliki Forest	Nonstructural polyprotein	Semliki Forest virus	POLN_SFV
Ross River virus	Polypeptide	Ross River virus	POLN_RRVV
Lambda 1 T3D	Lambda 1	Reovirus type 3 strain Dearing	VL1_REOV3D
Human elf-4A	Eukaryotic initiation factor 4A	Homo sapiens (Human)	IF41_HUMAN
NDH II bovine	ATP-dependent RNA helicase	Homo sapiens (Human)	RNHA_BOVIN
NDH II Human	ATP-dependent RNA helicase	Homo sapiens (Human)	RNHA_HUMAN
Vaccinia 18R	Helicase	Vaccinia virus strain WR	V108_VACCV
Fowlpox 18R	Helicase	Fowlpox virus	POLG_FOWL
Human p68	p68	Homo sapiens (Human)	P68_HUMAN
Dengue fever 4	Polypeptide	Dengue fever virus type 4	POLG_DEN4
Designation	Protein	Origin	ID Number
------------------------	--------------------------------	----------------------	-------------------
RAD3 S. cerevisiae	Yeast DNA repair helicase	Saccharomyces cerevisiae	RAD3_YEAST
Vaccinia	mRNA capping enzyme	Vaccinia virus	MCEL_VACCV
Rabbit fibroma	mRNA capping enzyme	Rabbit fibroma virus	MCEL_SFVKA
Variola major	mRNA capping enzyme	Variola major virus	MCEL_VARV
African Swine	mRNA capping enzyme	African Swine fever virus	MCE_ASFV7
CET1	mRNA capping enzyme	Saccharomyces cerevisiae (β subunit)	CET1_YEAST
Mu 2 T3D	Mu 2	Reovirus type 3 strain Dearing	VM1_REOVD
Human ADA	Adenosine deaminase	Homo sapiens (Human)	ADA_HUMAN
Mouse ADA	Adenosine deaminase	Mus musculus (Mouse)	ADA_MOUSE
E. coli ADA	Adenosine deaminase	Escherichia coli	ADD_ECOLI
E. coli ADEC	Adenine deaminase	Escherichia coli	ADEC_ECOLI
B. subtilis ADEC	Adenine deaminase	Bacillus subtilis	ADEC_BSUBTIL
Rat DRADA	Double-stranded RNA	Rattus norvegicus (Rat)	DSRA_RAT
Human DRADA	Double-stranded RNA	Homo sapiens (Human)	DSRA_HUMAN
Rat RED1	Double-stranded RNA	Rattus norvegicus (Rat)	RED1_RAT
Lambda 2 T3D	Lambda 2	Reovirus type 3 strain Dearing	MCE_REOVD
Bluetongue 11	VP4 core protein	Bluetongue virus serotype 11	VP4_BT11
Bluetongue 13	VP4 core protein	Bluetongue virus serotype 13	VP4_BT13
Bluetongue 10	VP4 core protein	Bluetongue virus serotype 10	VP4_BT10
Bluetongue 17	VP4 core protein	Bluetongue virus serotype 17	Genbank 387917
Simian rotavirus	VP3 core protein	Simian rotavirus strain SA11	VP3_ROT11
Porcine rotavirus	VP3 core protein	Porcine rotavirus C strain Cowden	VP3_ROT1C
Human rotavirus	Guanylyltransferase	Human rotavirus C	NA
Bovine rotavirus	VP3 core protein	Bovine rotavirus group C	Genbank 135254
S. cerevisiae	Yeast ABD1 protein	Saccharomyces cerevisiae	ABD1_YEAST
Dengue fever 2P	Polyprotein	Dengue fever virus type 2 strain PR159/S1	POLG_DEN2P
Dengue fever 1	Polyprotein	Dengue fever virus type 1 strain Singapore S275/90	POLG_DEN1S
Dengue fever 3	Polyprotein	Dengue fever virus type 3	POLG_DEN3
Parainfluenza 3 HW	Hemagglutinin-neuraminidase	Parainfluenza virus type 3 strain 64179	HEMA_PI3HW
Parainfluenza 3 HV	Hemagglutinin-neuraminidase	Parainfluenza virus type 3 strain Tex/12677/83	HEMA_PI3HV
Parainfluenza 3 HT	Hemagglutinin-neuraminidase	Parainfluenza virus type 3 strain Tex 545/80	HEMA_PI3HT
Parainfluenza 3 HX	Hemagglutinin-neuraminidase	Parainfluenza virus type 3 strain Wash/1511/73	HEMA_PI3HX
Parainfluenza 3 HA	Hemagglutinin-neuraminidase	Parainfluenza virus type 3 strain Tex 9305/82	HEMA_PI3HA
Parainfluenza 3 H4	Hemagglutinin-neuraminidase	Parainfluenza virus type 3 strain Aus/12485/474	HEMA_PI3H4
Parainfluenza 3 B	Hemagglutinin-neuraminidase	Bovine parainfluenza virus type 3	HEMA_PI3B
Sendai virus H	Hemagglutinin-neuraminidase	Sendai virus strain Harris	HEMA_SENDH
Sendai virus F	Hemagglutinin-neuraminidase	Sendai virus strain Fushimi	HEMA_SENDF
Sendai virus J	Hemagglutinin-neuraminidase	Sendai virus strain HVJ	HEMA_SENDJ
Sendai virus Z	Hemagglutinin-neuraminidase	Sendai virus strain Z	HEMA_SENDZ
Sendai virus 5	Hemagglutinin-neuraminidase	Sendai virus strain Z host mutant	HEMA_SEND5
Parainfluenza 1 HW	Hemagglutinin-neuraminidase	Parainfluenza virus type 1	HEMA_PI1HW
that assembly of the outer capsid requires the cleavage of the primary translation product μ_1 to generate μ_{1C} (2). Proteolytic processing is a common mechanism used by numerous viruses for the generation of functional viral proteins. Such cleavage can be mediated by cellular enzymes but viral-encoded proteases are most often involved (14). Studies have demonstrated that the σ_3 protein is required for μ_{1C} cleavage and that no other viral product appears to be necessary for this cleavage to occur (15). It has previously been noted that the amino-terminal domain of σ_3 from all three reovirus serotypes possesses a short amino acid sequence similar to a conserved region of picornaviral proteases (16). Computer-assisted sequence analysis revealed that the reovirus σ_3 amino acid sequence is similar to the corresponding region of picornaviral proteases revealed the presence of bulky aliphatic residues (I, L, V, M) near the CGGxUxCxH sequence in all these proteins. The presence of a conserved glycine residue, 2–3 amino acids following the CGGxUxCxH consensus sequence, was also revealed by this alignment (Fig. 2). The reovirus σ_3 protein thus shares between 24 and 28% amino acid identity with the protease 2A of picornaviruses over a 25-amino acid domain and a 44–48% similarity over the same domain (residues belonging to the following groups were considered similar: [I, L, V, M]; [R, K]; [D, E]; [S, T]; [Y, F]). Despite this strong similarity with picornaviral proteases, cotransfection experiments clearly demonstrated that the proteolytic consensus sequence in σ_3 is not directly responsible for μ_{1C} cleavage (20); however, it still needs to be determined if σ_3 can exert a proteolytic activity on another yet unidentified substrate.

Alignment of σ_3 amino acid sequence with the corresponding region of picornaviral proteases revealed the presence of bulky aliphatic residues (I, L, V, M) near the CGGxUxCxH sequence in all these proteins. The presence of a conserved glycine residue, 2–3 amino acids following the CGGxUxCxH consensus sequence, was also revealed by this alignment (Fig. 2). The reovirus σ_3 protein thus shares between 24 and 28% amino acid identity with the protease 2A of picornaviruses over a 25-amino acid domain and a 44–48% similarity over the same domain (residues belonging to the following groups were considered similar: [I, L, V, M]; [R, K]; [D, E]; [S, T]; [Y, F]). Despite this strong similarity with picornaviral proteases, cotransfection experiments clearly demonstrated that the proteolytic consensus sequence in σ_3 is not directly responsible for μ_{1C} cleavage (20); however, it still needs to be determined if σ_3 can exert a proteolytic activity on another yet unidentified substrate.

In addition to its structural role, it has been suggested that σ_3 exerts a role in the modulation of
inhibition of host-cell protein synthesis consequent to reovirus infection; differences in the extent of inhibition observed upon infection by different viral strains map to the S4 gene, which encodes the σ3 protein (21). The mechanism of inhibition remains largely unknown but several studies indicated that σ3 can downregulate the dsRNA-activated protein kinase (PKR) probably by sequestering dsRNA (22–24). A role for free σ3, rather than σ3 complexed with μ1/μ1C, has been proposed for this downregulation (15,22,23,25). Activation of PKR normally results in phosphorylation of eIF-2α and inhibition of translation initiation (26). However, a proteolytic degradation of translational initiation factors could also be responsible for the inhibition of host-cell protein synthesis as observed during the multiplication of other viruses (27). A similar mechanism has been previously suggested for reovirus, although experimental evidence is lacking. The cleavage of some component of the cellular transcriptional machinery by σ3 thus remains an attractive possibility.

In addition to the sequence analogy with picornaviral proteases, computer-assisted analysis of the T3D σ3 protein sequence further revealed four regions similar to the ribosome-inactivating protein of Phytolacca americana, the common pokeberry (Fig. 3a). Over these regions that span 61 amino acids, 38% of the residues are identical and 16% are scored as identical or similar amino acids residues between σ3 and the picornaviral proteases are shown in bold; residues belonging to the following groups were considered similar: [I, L, V, M]; [D, E]; [S, T]. The consensus pattern is shown below the alignment which was performed as described under Methods. Positions of amino acid residues corresponding to the reovirus T3D σ3 protein are also indicated. Abbreviations: U, bulky aliphatic residues; x, any amino acid residue.
Fig. 3. Sequence similarity between mammalian reoviruses σ3 protein and ribosome-inactivating protein of plants. (a) Alignment of the amino acid sequences of the σ3 protein from reovirus T1L, T2J, and T3D with segments of the ribosome-inactivating protein of *Phytolacca americana*. Identical or similar amino acids residues are shown in bold; residues belonging to the following groups were considered similar: [I, L, V, M]; [D, E]; [K, R]; [S, T]. Conserved segments are identified above the alignment and the consensus pattern is shown below the alignment, which was performed as described under Methods. Positions of amino acid residues corresponding to the reovirus T3D σ3 protein are also indicated. Abbreviations: U, bulky aliphatic residues; x, any amino acid residue. (b) Diagram representing the conserved segments between the σ3 protein from reovirus T1L, T2J, T3D and the ribosome-inactivating protein of *Phytolacca americana*. The sizes of the conserved segments and the distance between them are drawn to scale. The length of the respective proteins is also indicated. (c) Alignment of the amino acid sequences of the σ3 protein from reovirus T1L, T2J, and T3D with segments of the ribosome-inactivating protein of various plants.
similar by the BLOSUM62 matrix for a total similarity of 54%. These regions encompassed a large portion of the ribosome-inactivating protein and are arranged in the same order in the C-terminal half of σ3 (Fig. 3b). Analysis of the σ3 protein from reovirus T1L and T2J revealed the conservation of the first three regions while the last region, located at the extreme C-terminal end, is more divergent (Fig. 3a). The ribosome-inactivating protein of Phytolacca americana possesses an rRNA N-glycosidase activity which catalyzes the hydrolysis of the N-glycosidic bond at a specific adenosine residue of the 28S rRNA (28). In vitro experiments have also shown that the protein can inhibit protein synthesis (29). A closely related group of plant proteins that can also cleave the rRNA component of ribosomes was also identified (Fig. 3c). All these proteins share similarities with the σ3 protein of mammalian reoviruses (27–38%); the second and third regions exhibit the most similarities with the reovirus σ3 protein while the fourth region is absent from these related plant proteins. The exact significance of σ3 resemblance to this whole class of proteins able to cleave rRNA is unknown but could be interpreted as a further indication that σ3 plays an important role in translational regulation via an interaction with the cellular machinery.

Finally, a region of similarity between the reovirus σ3 protein and the 65-kDa regulatory subunit of protein phosphatase 2A (PP2A) has been previously reported (30). Upon binding of the catalytic subunit, PP2A is activated and involved in dephosphorylation of eukaryotic initiation factor eIF-2α, leading to an increase of protein synthesis (31). By directly binding to the catalytic subunit of PP2A, it was suggested that σ3 might modulate the enzymatic activity of PP2A (30). This is yet another evidence that the σ3 protein is involved in the regulation of translation during the later stages of reovirus infection (32). However, such similarity between σ3 and PP2A was not detected using the BLASTP program in the present study. Further work will be needed to establish if such a short sequence similarity has any significance.

σ1

The σ1 protein is responsible for the attachment of the virus at the surface of susceptible cells via interaction with the cellular receptor (1). The σ1 protein is a minor component of the outer capsid and can assume an extended conformation in which it appears as a long fiber projecting from the particle surface at the 12 vertices of the icosahedral capsid (1). Thin-section electron micrographs of cells soon after reovirus infection revealed particles associated with clathrin-coated pits or vesicles near the plasma membrane, suggesting that uptake from the cell surface consecutive to receptor binding occurs by receptor-mediated endocytosis (33,34). As with other non-enveloped viruses, the mechanism by which reoviruses cross the endosomal membrane barrier during entry into cells is still poorly understood. It has been suggested that a direct effect of viral components can result in local disruption of the membrane bilayer to allow the entry in the cytoplasm; alternatively, a more specific porelike structure might be formed by viral proteins within the membrane (33,35–37). During the natural course of gastro-intestinal reovirus infection, intermediate subviral particles (ISVPs) are apparently formed by the action of intestinal proteolytic enzymes (38). These particles differ notably from the virions in protein composition and conformation since most of the outer capsid is removed (1). It has been noted that when similar particles are generated in vitro, virions can directly penetrate through the plasma membrane, given they have been treated with chymotrypsin, thus bypassing endocytosis (33,35). The δ protein, a cleavage product of outer capsid protein μ1C, seems to be implicated in mediating interactions with membranes: a strain difference in the capacity of ISVPs to mediate 51Cr release from L cells via cell lysis or permeabilization was mapped to the M2 gene, which encodes μ1 and therefore μ1C and δ (39).

Database searches for sequence similarity revealed that the N-terminal region of the reovirus T3D σ1 protein harbors a striking degree of identity (98.7%) to the lysozyme protein of the double-stranded DNA bacteriophage SF6 (Fig. 4). This 316 amino acids bacteriophage protein is identical, except for four amino acids residues, to the N-terminal region of reovirus T3D σ1 protein. Such high levels of identity between two proteins of unrelated viruses is very unusual but very significant at the P = 6.2 × 10−198 level. The SF6 lysozyme is able to hydrolyze the 1,4-β-linkages between N-acetyl-D-glucosamine and N-acetylmuramic acid in peptidoglycan heteropolymers of the bacterial cell wall, although the role of this enzyme in penetration and/or lysis of susceptible bacterial cells has not been clearly established (40). The σ1 proteins from reovirus T1L and T2J harbor
divergent forms of the protein, since σ1 is the principal antigen against which the serotype-specific humoral response is directed (6,7), and thus possess reduced but still significant identity with the SF6 lysozyme. The σ1 protein from reovirus T1L showed a 25.3% identity and a total similarity of 42.1% while the σ1 protein from reovirus T2J harbors a 25.6% identity and a total similarity of 41.5% (Fig. 5a). These results revealed a statistically significant amino acid match between the σ1 protein from serotypes T1L and T2J and the lysozyme protein of bacteriophage SF6 at the P = 8.7 × 10^{-12} and 1.3 × 10^{-9} levels, respectively. Despite this divergence between serotypes, all σ1 proteins share conserved regions that are similar to the C-terminal half of the bacteriophage SF6 lysozyme (Fig. 5b). The effect of lysozymes on mammalian cells has not been thoroughly examined but it has been reported that lysozymes can decrease DNA replication of cultured cells (41), as also observed during reovirus infection (42). It might be significant that this effect of reovirus was mapped to the S1 gene, which encodes the σ1 protein (43). Inhibition of DNA synthesis during reovirus infection occurs through a membrane-linked signalling pathway, suggesting that interaction at the membrane surface is required (44).

Recent experiments revealed that recombinant σ1 protein, expressed in Pichia pastoris yeast cells, possesses a glycosyl hydrolase activity against various glycoside substrates of lysozyme such as β-N-acetyl-D-glucosamine (Bisaillon and Lemay, unpublished results). Although reovirus virions appear to be devoid of such hydrolytic activity, infectious subviral particles (ISVPs), generated in

Fig. 4. Amino acid sequence alignment of reovirus T3D σ1 protein and the lysozyme protein of bacteriophage SF6. Asterisks (*) show nonidentical amino acid residues. The positions of the aligned amino acid sequences are also indicated. The alignment was performed as described under Methods.
Fig. 5. Sequence similarity between the mammalian reovirus σ1 protein and the lysozyme protein of bacteriophage SF6. (a) Alignment of the amino acid sequences of σ1 protein from reovirus T1L and T2J with the lysozyme protein of bacteriophage SF6. Identical or similar amino acids residues between σ1 and the lysozyme protein are shown in bold. Residues belonging to the following groups were considered similar: [I, L, V, M]; [R, K]; [D, E]; [S, T], [Y, F]. The positions of the aligned amino acid sequences are also indicated. The alignment was performed as described under Methods. (b) Diagram representing the conserved segments between the σ1 protein from reovirus T1L, T2J, T3D and the lysozyme protein of bacteriophage SF6. The sizes of the conserved segments and the distance between them are drawn to scale. The length of the respective proteins is also indicated.
vitro by partial uncoating using chymotrypsin digestion of purified virions, are able to hydrolyze the glycoside substrates (Bisaillon and Lemay, unpublished results). The conformational changes induced in σ1 upon removal of the outer capsid (45) are probably required to expose the helical amino-terminal portion of the protein that is buried deeper in the virion and that harbors most similarity to lysozyme. Activation of such a lysozyme-like activity upon partial uncoating by intestinal enzymes could be involved in degradation of sugar moieties in mucins covering epithelial cells, thus facilitating viral infection. Interestingly, it has been recently shown that mucin covering epithelial cells can inhibit adenovirus and rotavirus infection (46, 47); evolution of a mechanism for degradation of mucin layers could thus present a selective advantage to the virus. In fact, such a mucin-degrading enzyme has been demonstrated both in vitro and in vivo for baculovirus; in vivo degradation of mucin was correlated with the enhancement of baculovirus infection in insects (48).

μNS

The μNS protein is one of the three reovirus nonstructural proteins that are synthesized during viral multiplication but apparently never incorporated into mature virions (1). Experimental studies have shown that μNS is associated with elements of the cytoskeleton and that a specific monoclonal antibody can react not only with μNS but also with elements of the cytoskeleton (49). Early microscopic studies also suggested that reoviruses might use the cytoskeleton to facilitate genome replication or maturation since viral particles were observed in close proximity to microtubules and intermediate filaments (50). The full significance of the interactions of μNS with the cytoskeleton is not clear but suggests that μNS might serve to anchor the structures involved in viral genome synthesis and assembly to the cell matrix (49). In addition, reovirus mRNAs bind to μNS shortly after synthesis, even before these RNAs associate with other viral proteins (51). The formation of these initial RNA-protein complexes could be among the first steps on the pathway of reovirus morphogenesis which may proceed in association with the cytoskeleton.

It has been previously noted that the deduced amino acid sequence of μNS from T3D possesses a high potential of adopting α-helical secondary structure and similarity with myosin (52). As expected, computer-assisted protein database screening did reveal similarities with myosins from human, rat, and chick embryo (Fig. 6). It was found that the amino acid sequence of μNS shares between 20 and 24% identity and 34% similarity with these myosins from different organisms over a 41-amino acid domain. The same region of μNS also shares some common region with human, mouse, bovine, and Xenopus laevis cytoskeleton keratin protein (Fig. 6). However, these similarities with keratin proteins are not as high (15–20% identity and 27–32% similarity) than those observed with the various myosins. Altogether, these observations suggest that the μNS protein harbors structural similarities with many cytoskeletal proteins and could represent a potential support during reovirus genome replication or assembly of virions.

μ2

The μ2 protein is a minor component of the inner capsid (1). The role of μ2 during reovirus infection remains unknown but it has been reported that
thermosensitive μ2 mutants fail to synthesize dsRNA at nonpermissive temperature (52,53). Furthermore, temperature optimum of transcription maps to the M1 gene encoding the μ2 protein further suggesting a role for this protein in synthesis of viral nucleic acids (53). Sequence analysis of μ2 reveals that the central portion of the protein shares some similarities with enzymes involved in nucleic acids metabolism, namely adenosine deaminases from E. coli, mouse and human (Fig. 7a). This 25-amino acid domain harbors a 44% similarity with the human and mouse adenosine deaminases while the E. coli enzyme displays a little less similarity with the reovirus μ2 protein (40% similarity). Another region of the μ2 protein harbors similarities with an adenine deaminase from Bacillus subtilis and with a probable adenine deaminase from E. coli (Fig. 7b). It was observed that the primary sequence of μ2 shares 39% amino acid identity with the putative E. coli deaminase and a 48% similarity over a region of 44 amino acids. This last region also shares some common residues with the recently isolated dsRNA adenosine deaminase (DRADA) protein from human and rat and with dsRNA-specific editase (RED1) protein from rat. Analysis of the resulting alignment revealed that μ2 shares two other similar regions with the human DRADA (Fig. 7b). Over these three domains encompassing 95 amino acids, 25 of the residues (26%) were identical with the human DRADA protein and 9 (10%) were scored as similar by the BLOSUM62 matrix for a total similarity of 36%. The rat RED1 protein also shares 29% identity and 33% similarity over these two regions. These last two cellular enzymes (human DRADA and rat RED1) are involved in conversion of adenosine to inosine in double-stranded secondary structures present on mRNA molecules (54,55). This mechanism is responsible for RNA editing, a biochemical process involving the modification of mRNAs, since inosine residues are “read” as guanosine during translation (56).

Interestingly, RNA editing is thought to be involved in biased hypermutation of vesicular stomatitis virus (57). A similar phenomenon was also described in measles virus isolated from patients with subacute sclerosing panencephalitis (58). Adenosine to guanosine hypermutations were also found in two escape mutants of another paramyxovirus, the human respiratory syncitial virus, and in the U3 region of an avian lymphomatous retrovirus (59,60). Hepatitis deltavirus (HDV) nucleotide 1012 is also edited from uridine to cytidine in 10–40% of the RNA genomes during replication (61). Although reoviruses commonly cause lytic infections, they can also produce nonlytic, persistent infections in a variety of cultured cells (62–64). However, the
detailed mechanisms responsible for the establishment and maintenance of persistent infections are poorly understood but clearly involve mutations in the virus leading to a decrease in cellular injury that commonly accompanies lytic infections. It is possible to speculate a role of high mutation rate in viral persistence as in measles virus-induced subacute sclerosing panencephalitis (57,58). Current evidence is that mutations in specific viral genes have also a primary effect in the establishment of persistence (65–68). Obviously, if reovirus encodes a protein with adenosine deaminase activity, this could contribute to a more rapid modification of the information encoded by viral mRNAs and accumulation of mutations. The presence of an actual editing mechanism in reovirus, and its putative role in viral persistence, certainly deserves to be investigated.

3.2

The reovirus λ2 protein forms the spikes projecting from the inner capsid, and observations of viral particles by cryoelectron microscopy have confirmed that a significant portion of λ2 is exposed at the surface of virions (2,3,69). Reovirus inner capsids incubated with \([\alpha-32P]GTP\) were shown to form covalent λ2-GMP complexes, consistent with the
activity of λ2 as a guanylyltransferase (70,71). Guanylyltransferase activity is responsible for the formation of mRNA cap structure via the transfer of a GMP moiety, derived from GTP, to diphosphorylated mRNA molecules resulting from the action of RNA 5′-triphosphatase on nascent mRNA molecules (72,73). The λ2 protein, expressed using a vaccinia virus vector, was actually shown to mediate the transfer of GMP to appropriate acceptor molecules (72,74).

Determination of the primary structure of various guanylyltransferases from many viruses has allowed a better knowledge of the active site and catalytic mechanism of these enzymes. A lysine-containing motif, KxDG, is conserved among guanylyltransferases from many viruses (vaccinia virus, Shope fibroma virus, African swine fever virus) and the yeasts S. cerevisiae and Schizosaccharomyces pombe (75,76). This motif is also conserved at the active site of polynucleotide ligases which, like guanylyltransferases, catalyze their reaction via the formation of a covalent Lys-nucleoside monophosphate intermediate (77). In addition to the active guanylyltransferase site (KxDG), other conserved sequence elements were identified in guanylyltransferases from DNA viruses and yeasts (76). These elements were shown to be essential for capping enzyme function in vivo (76). Although the reovirus λ2 protein covalently binds GTP, it lacks these conserved motifs. A similar situation is observed in rotavirus VP3 and bluetongue virus VP4 proteins, all viral guanylyltransferases from viruses of the Reoviridae family. These capping enzymes apparently evolved differently from other viral and cellular guanylyltransferases, despite their identical enzymatic functions. The Lys(226) residue of the reovirus λ2 protein KPTNG sequence has been identified as the GMP attachment site (71); this sequence differs from the consensus signature of DNA viruses (KxDG) but is related to the murine rotavirus SA-11 VP3 protein sequence and bluetongue virus VP4 (KxT(x)G) (Fig. 8a). The presence of bulky aliphatic residues (I, L, V, M) following the G-loop, except for the last amino acid residue, is found in the G-loop (72) as a guanylyltransferase (70,71). This sequence differs from the consensus signature of DNA viruses (KxDG) but is related to the murine rotavirus SA-11 VP3 protein sequence and bluetongue virus VP4 (KxT(x)G) (Fig. 8a). The presence of bulky aliphatic residues (I, L, V, M) following the KxT(x)G consensus sequence was also revealed by this alignment (Fig. 8a). Furthermore, another motif (YxR) is conserved between the reovirus λ2 protein (YVRKN), the VP3 protein of the murine rotavirus SA-11 (YYRYN) and the bluetongue virus VP4 protein (YKRKM). Mutagenesis of these residues might eventually reveal important amino acids involved in guanylate binding or GMP transfer from the enzyme to the acceptor mRNA molecules. This alignment also showed that the reovirus λ2 protein shares a higher degree of similarity with the guanylyltransferase of bluetongue virus (41% similarity) than with guanylyltransferase from human and simian rotavirus (22 and 34% similarity, respectively) over these two domains of 32 amino acids.

In addition to guanylyltransferase activity, a role has been previously suggested for the λ2 protein as a methyltransferase to produce the classical methylated 5′ cap structure (m7GpppαGpC) found at the 5′ end of reovirus mRNAs. This is supported by the observation that λ2 is the only reovirus protein labeled by 8-azido-S-adenosyl[35S]methionine, an analog of the methyl donor S-adenosylmethionine (78). However, isolated λ2 failed to methylate the cap of reovirus mRNA; interaction with other proteins in the virus core may be required for the protein to exert its activity (74). A limited sequence similarity was previously found between the central region of λ2 and other methyltransferases from viral and cellular sources (79). The amino acid sequences of different viral and cellular methyltransferases are widely variable but a conserved sequence element, the G-loop U[DD/E]UoxG can be identified; where U designates a bulky aliphatic amino acid residue, o represents a small residue (G, A, or S), and x is any amino acid (80). The importance of the G-loop in binding of the methyl donor has been suggested by mutational analysis of a DNA methyltransferase, an unrelated enzyme that nevertheless uses S-adenosylmethionine as a methyl donor for its transfer to DNA (81). Analysis of the reovirus λ2 protein revealed that a sequence very similar to the G-loop, except for the last amino acid residue, is found in the C-terminal portion of the λ2 protein of reovirus (Fig. 8b). This sequence harbors a 36% identity and a 50% similarity with the yeast ABD1 methyltransferase over a 22-amino acid domain. This domain is also similar to other methyltransferases of viral origins (27–41% similarity, Fig. 8b). Interestingly, our analysis of λ2 sequence showed that it also harbors amino acids similar with 3 additional conserved motifs (UxY, UxxTxxxxD/ExxxxU, ExGxxU) shared by the methyltransferases of DNA viruses (vaccinia, Shope fibroma virus and African swine fever virus) and S. cerevisiae (82) (Fig. 8c). The λ2 protein displays 33% and 46% similarity with the S. cerevisiae and African Swine fever virus methyltransferases over these four domains encompassing 61
Fig. 8. Sequence similarity between the l_2 protein of mammalian reovirus and various viral and yeast proteins. (a) Alignment of the amino acid sequence of l_2 protein from reovirus T3D with viral guanylyltransferase proteins. Identical or similar amino acids residues are shown in bold; residues belonging to the following groups were considered similar: [I, L, V]; [D, E]; [S, T]; [K, R]. The consensus pattern is shown below the alignment which was performed as described under Methods. Positions of amino acid residues corresponding to the reovirus T3D l_2 protein are also indicated. Abbreviations: U, bulky aliphatic residues; x, any amino acid residue. (B) Alignment of the amino acid sequence of l_2 protein from reovirus T3D with viral and yeast methyltransferase proteins. The conserved segment is shown above the alignment and corresponds to motif I. (C) Alignment of the amino acid sequence of l_2 protein from reovirus T3D with selected viral and yeast methyltransferase proteins. Additional conserved motifs are indicated above the alignment.
amino acids. Mutational analysis of the vaccinia virus enzyme has previously revealed that the His-Tyr dipeptide in motif II is likely a component of the active site since a double amino acid substitution in this motif abolishes the methyltransferase activity (83). Furthermore, a single substitution of the tyrosine

Lambda 2 T3D	Motif III	1132 AQLDFTIAGTDVDITVNFP	1149
S. cerevisiae	Vaccinia	GHPGPTFSDFITFKLN	
Rabbit fibroma	African Swine	GKVLTMDGKLKSLTD	GMWYFTMLGQVLLELH
Consensus		UxxTxkxkDxxxxxU	E

Motif IV	1237 EWAKEGQHTICILNSQ	1253
	RSLADYGELVQMPF	
	VRFNEYGVLVDVDF	
	TKIFSEYPFELIDCQVF	IKFKEHFLQVQROWF

(c) Fig. 8. (Continued)

| Lambda 2 T3D | Parainfluenza 3 HN | Parainfluenza 3 HV | Parainfluenza 3 HT | Parainfluenza 3 HK | Parainfluenza 3 HU | Parainfluenza 3 HA | Parainfluenza 3 H4 | Sendai virus H | Sendai virus F | Sendai virus J | Sendai virus Z | Sendai virus 5 | Parainfluenza 1 HN | NDV J | NDV L | NDV H4 | NDV TG | NDV B | NDV U | NDV Q | NDV D | NDV M | NDV I | NDV H3 | NDV C | NDV A | Parainfluenza 4 HA | Simian virus 5 |
|-------------|--------------------------|---------------------------|
| | SHTFINDRKSCEFALLNTDVQLCSTPKVDERSDYAG-SGIISEDVLD |
| | SYGDLSVTLYG-LSSLATNGYQAL-RISPRQLTNRWSLSSTVSQIMSD |

| Consensus | UxxTxkxkDxxxxxU | E |

| Figure 8. (Continued) |

Alignement of the amino acid sequence of 7,2 protein from reovirus T3D with segments of viral hemagglutinin-neuraminidase proteins. Identical or similar amino acids residues between 7,2 and the hemagglutinin-neuraminidase proteins are shown in bold; residues belonging to the following groups were considered similar: [L, I, V, M]; [S, T]; [K, R]. The consensus pattern is shown below the alignment which was performed as described under Methods. Positions of amino acid residues corresponding to the reovirus T3D 7,2 protein are also indicated. Abbreviations: U, bulky aliphatic residues; x, any amino acid residue.
residue of motif IV to an alanine causes a dramatic reduction of the methyltransferase activity (83). The significance of these methyltransferase consensus motifs still needs to be established but their presence certainly makes the λ2 protein a very good candidate to exert the methyltransferase activity required for reovirus mRNA cap synthesis. Interestingly, a recent study showed that a truncated λ2 protein, encompassing the first 3 methyltransferase motifs, retains all activities required to add the methylated cap structure found on reovirus mRNA molecules (84). The methyltransferase domain, being located carboxy-terminal to the guanylyltransferase motif, is also consistent with the known orientation of that protein where the carboxy terminal portion is located at the outside of the virion (84).

Analysis of the λ2 sequence from reovirus serotype 3 also unexpectedly revealed a similarity with a region known to be important for the hemagglutination process in viral hemagglutinins (Fig. 9). This was noted with viral hemagglutinin (HA) or hemagglutinin-neuraminidase (HN) proteins from many serotypes of Sendai virus, Newcastle disease virus, and parainfluenza viruses. Analysis of influenza A and mumps virus HA protein also revealed some similarities with λ2 but to a lesser extent. Mammalian reoviruses can actually bind erythrocytes and cause hemagglutination (1). Differences in the ability of the three reovirus serotypes to agglutinate bovine and human erythrocytes was mapped to their S1 genes, encoding the σ1 protein (85,86). Purified σ1 was actually shown to cause hemagglutination of erythrocytes (87,88). However, in contrast with λ2, comparison of the primary structure of σ1 with various viral hemagglutinin (HA) proteins reveals no significant sequence similarities. Previous analysis of a Sendai virus thermosensitive mutant (ts271) provided opportunity to localize a region involved in hemagglutinating activity of the paramyxovirus HN protein (89). The HN glycoprotein of this mutant is able to agglutinate erythrocytes and infect host cells at 30°C but not at 38°C while its neuraminidase activity is unaffected by the increase in temperature (89). Sequence analysis of the HN gene of ts271 revealed two closely located amino acid substitutions at position 262 and 264 (89). This finding suggests that the erythrocyte binding site in the sequence of the HN protein is located at, or close to, amino acid 260–270; this is actually the region of the protein that harbors most resemblance with the reovirus λ2 C-terminal 1238–1250 region and with other viral hemagglutinin (Fig. 9). Over this region of 45 amino acids, the reovirus λ2 protein harbors a 29% identity and 36% similarity with the HN protein of parainfluenza viruses. A 22% identity and 31% similarity to the HN protein of Sendai viruses was also observed with this alignment. Overall, it is tempting to speculate that λ2 could serve as a second viral attachment protein on the surface of erythrocytes under certain conditions.

Such a phenomenon was observed in coronaviruses: studies have demonstrated that binding of the coronavirus E3 glycoprotein to 9-O-acetylated neuraminic acid on erythrocytes results in hemagglutination while coronaviruses that lack this hemagglutinin (E3) can still attach on the surface of the host cell via their large E2 spike protein (90–92). The localization of the putative hemagglutination domain of λ2, at the carboxy-terminal end close to the tip of the molecule and to the σ1 protein, is also consistent with its interaction with cell surfaces.

λ3

The λ3 protein is a minor component of the inner capsid and has been shown to interact with the λ1 and λ2 proteins (93). Genetic studies have indicated that λ3 may be the viral transcriptase since differences in optimal pH values for transcription among different serotypes were assigned to the L1 gene encoding λ3 (94,95). More recently, biochemical evidence has shown that the purified protein possesses poly(C)-dependent poly(G) polymerase activity (93). These findings strongly suggest that λ3 harbors the catalytic site of the reovirus RNA-dependent RNA polymerase although the protein appears to be unable by itself to transcribe its natural dsRNA substrate (93).

Many primary structures of viral RNA polymerases have been deduced from sequencing of viral genomes. One conserved region (GDD motif) was found in various RNA polymerases from single-stranded RNA (ssRNA) and double-stranded RNA (dsRNA) viruses (96–98). This remarkable sequence conservation between ssRNA and dsRNA viruses may reflect evolution from a common ancestor or convergent evolution to a highly favored structure. The λ3 protein from all three reovirus serotypes harbors this conserved GDD sequence (Fig. 10). Analysis of the primary structure of viral RNA polymerases also showed that two bulky aliphatic
amino acid residues (I, L, V, M) are conserved following the consensus GDD sequence (Fig. 10). Other conserved regions have also been reported in viral RNA polymerases from many viruses and include an acidic motif in the N-terminal region of the polymerases with two strongly conserved aspartate residues (motif I) and a third characteristic serine-glycine motif (motif II) located near the GDD consensus sequence considered as motif III (94). Secondary structure predictions for motif II indicated a turn at the serine-glycine both preceded and followed by a beta sheet structure (99). Inspection of the resulting alignment revealed that these additional motifs (motifs I and II) are present as well in reovirus l3 protein. However, the significance of these l3 sequences has not yet been studied. It can be seen from this alignment that the reovirus l3 protein shares many identical and similar residues with these RNA virus polymerases and particularly with members of the Picornaviridae family (25–33% identity and 42–50% similarity) over these three domains that span 36 amino acid residues.

Motif I Motif II Motif III

Lambda 3 T3D	ISACDAITW--FFFLS	MTTFPSGSTA	YVCQGGDGLLMII
Lambda 3 T2J	ISACDAITW--FFFLS	MTTFPSGSTA	YVCQGGDGLLMII
Lambda 3 T1L	ISACDAITW--FFFLS	MTTFPSGSTA	YVCQGGDGLLMII
Bovine rotavirus	VLYTDVS--GW--DSSQH	QYGAVASGKQ	IRVDGDNNYAVL
Bluetongue	KTPDARYI--R--DSSER	LIDTHLQENS	EQVDGDNTLYFT
S. cerevisiae LA virus	NMMDGASSFCPDYDPP	LGQTLSSGWR	SYHGDVNYLSL
Yellow fever virus	FYADTA--GW--DTRIT	RRQGGSQVQV	MAVSGDCVVRP
West Nile virus	FYADTA--GW--DTRIT	RRQGGSQVQV	MAVSGDCVVRP
Dengue fever 2	NYADTA--GW--DTRIT	RRQGGSQVQV	MAVSGDCVVRP
Japanese encephalitis	NYADTA--GW--DTRIT	RRQGGSQVQV	MAVSGDCVVRP
Poliovirus type 1	LPAFDY--GW--DASLS	VKGSMPSGCSG	MAIRGDVIVAS
EMC virus	YVDVDS--NS--DSTS	ITGDFSCNCA	VLSYGDLLVLAT
Rhinovirus 14	LMAFDY--NS--DASLS	VEGGMPSGCSG	ILAYGDLLILSV
Foot and mouth	VWDVDS--AF--DANHC	VEGGMPSGCSA	MISYGDLLIVAS
Coxsackievirus B1	LVAFY--GS--DASLS	GRGMSPSGCSG	MIAIRGDVIVAS
Hepatitis A	GLLDFS--AF--DASLS	VCGGMSPSGCS	ILCYGDLLIVLY
Tobacco mosaic	VLLDH--KY--DKSQN	TVQYRDSQDVT	GAPCDCDLLYFL
Alfalfa mosaic	PKIEIFDS-KF--DKSDL	VDFQPRTGDL	VASGDDLSIIGT
Brome mosaic	PLEADLF-KF--DKSQG	VSFQRTGDAP	AIFSGDLSLIS
Cucumber mosaic	CLEIFDLS-KF--DKSQG	ISFQRTGDAP	LLSIFSGDLSIF
SinCbis virus	VLETDIA--SF--DKSQD	FGMAMSSMPL	AAFSGGDNPHG
Semliki Forest	VLETDIA--SF--DKSQD	FGMAMSSMPL	AAFSGGDNPHG
Ross River Virus	VLETDIA--SF--DKSQD	FGMAMSSMPL	AAFSGGDNPHG

Consensus

| UxxxxDxS-xK--DxxUG | UxxxxGS | UxxGDDxUU |

Fig. 10. Alignment of the amino acid sequences of l3 protein from reovirus T3D, T2J, and T1L with segments of viral polymerase proteins. Identical or similar amino acids residues between l3 and the viral polymerase proteins are shown in bold; residues belonging to the following groups were considered similar: [I, L, V, M]; [S, T]; [F, Y]. Conserved segments are identified above the alignment and the consensus pattern is shown below the alignment which was performed as described under Methods. Positions of amino acid residues corresponding to the reovirus T3D l3 protein are also indicated. Abbreviations: U, bulky aliphatic residues; x, any amino acid residue.

The l1 protein, a major component of the reovirus inner capsid, has been shown to exhibit an affinity for double-stranded and single-stranded nucleic acids (100,101). Recent gene reassortment analysis and biochemical studies have shown that l1 is responsible for the nucleoside triphosphate phosphohydrolase (NTPase) activity present in reovirus inner capsid (102,103). It was also demonstrated that l1 can unwind double-stranded nucleic acids molecules, a reaction which requires the presence of nucleoside triphosphates (NTPs) or deoxynucleoside triphosphates (dNTPs) (102). These findings strongly support
the idea that λ1 participates as an helicase during transcription of the viral genome. Nucleic acid helicases unwind double-stranded DNA and/or RNA, a process energetically coupled to the hydrolysis of NTPs or dNTPs, and play a key role in nucleic acids replication, transcription, splicing, translocation, recombination and repair (104–107). Helicases of prokaryotic, eukaryotic and viral origin have been isolated and classified into defined superfamilies (108–113). These proteins are characterized by conserved motifs designated I–VI and numerous mutational studies have demonstrated that these motifs are required for helicase activity (114–119). Motifs I and II are very well conserved and correspond to the A and B consensus sequences of a nucleotide-binding domain (120). Superfamily II includes an expanding group of DNA and RNA helicases which harbor a DEAD/H sequence in motif

Motif I		Motif II		Motif III	
1	16	95	108	150	162
Lambda 1 T3D	NKRPRKSGKSSGK	HMEEAKEDEATKX	MSTRIAEATSAIV		
eIF-4A Human	VIAAQSGGTTATFA	KMVDLEEDEEKLRS	TVVILSALTQPSD		
RNA Helicase I HeLa	VIIRAGGGTQVQ	SVIVDEHIDRSD	KTVFPSSATIDPS		
NDV II Vaccinia	VIIIRAGGGTQVQ	SHVIVDEHIDRSD	VTVLMSATIDPS		
18R Vaccinia	VVITGSGTGQGTVQ	GGLIDEVHIDQI	VTVLMSATIDPS		
18R Poxvirus	MIVTVSTGQGTVQ	NLLIDEVHIDRDI	NIVLMSATIDED		
p68 Human	MIVTVSTGQGTVQ	NLLIDEVHIDRDI	NIVLMSATIDED		
Yellow fever	TTVLDFHGPAGKTRPFL	ETVIMDEAHPLDPA	SATLMTMAPTPTG		
West Nile	TVVLDHGPAGKTRKIL	NLIFMDAHEPTDPA	AATAFMATAPPGT		
Dengue fever 2	TMDLHGPAGKTRKLYL	NLIDMDAHEPTDPA	AATAFMATAPPGS		
Dengue fever 4	TMDLHGPAGKTRKIL	NLIDMDAHEPTDPA	AATAFMATAPPGS		
Japanese encephalitis	TVVLDHGPAGKTRKIL	NLIDMDAHEPTDPA	AATAFMATAPPGS		
RAD3 S. cerevisiae	SILEMPSGTQTVSLLL	SIVFDEAHNIDNV	SIVVTIDSTISPL		

Consensus

GKS		DEA	
T		U	

Fig. 11. Sequence similarity between the λ1 protein of reovirus T3D and various human, viral and yeast proteins. (a) Alignment of the amino acid sequence of λ1 protein from reovirus T3D with helicase proteins. Identical or similar amino acids residues are shown in bold; residues belonging to the following groups were considered similar: [I, L, V, M]; [S, T]; [K, R]; [D, E]. Conserved segments are identified above the alignment and the consensus pattern is shown below the alignment which was performed as described under Methods. Positions of amino acid residues corresponding to the reovirus T3D λ1 protein are also indicated. Abbreviations: U, bulky aliphatic residues; x, any amino acid residue. (b) Alignment of the amino acid sequence of λ1 protein from reovirus T3D with viral RNA 5’-triphosphatase proteins. Conserved segments are also identified above the alignment.
II (121). The sequences present in motifs III, IV and V are less strictly conserved and their roles are not clearly defined while motif VI is supposed to be involved in the binding of nucleic acids given its high content in positively charged amino acids (121).

Sequence comparisons revealed that \(\lambda_1 \) possesses two nucleotide binding motifs normally present in NTPase: a GKS/T sequence at the extreme N-terminal region and a DEAD motif. Furthermore, although the \(\lambda_1 \) protein does not share any significant overall similarities to other proteins, it possesses the characteristic motifs found in the DEAD subfamily of the DNA/RNA helicase superfamily II (Fig. 11a). All these motifs are located in the amino-terminal third of \(\lambda_1 \), a region previously assigned to the affinity of the protein for nucleic acids (100,101). The \(\lambda_1 \) protein shares many similar amino acid residues with helicases from human (30–38% similarity), poxviruses (33–36% similarity), flaviviruses (29–32% similarity), and \(S. \) cerevisiae (28% similarity) over these six domains encompassing 69 amino acids.

It was recently demonstrated that, in addition to being an NTPase/helicase, the reovirus \(\lambda_1 \) protein possesses an RNA 5’-triphosphatase activity (122); this activity is likely responsible for the first step in the formation of the cap structure at the 5’-end of reovirus early mRNAs. Few primary structures of proteins possessing an RNA 5’-triphosphatase activity are actually known. Studies have shown that both the NS3 protein of the West Nile virus and the D1 subunit of the vaccinia virus capping enzyme possess such an activity (123,124). It has been noted that the LRPR amino acid sequence found in the West Nile Virus protein is related to the vaccinia virus D1 subunit sequence LKPR (123). Since no actual structure-function studies have been performed, the importance of this motif (LK/RxR) remains purely speculative although a similar motif (LRIR) is also present in the reovirus \(\lambda_1 \) protein (Fig. 11b). Furthermore, another somewhat degenerate motif (RxxTxL) is present on the vaccinia virus capping enzyme D1 subunit (RPNTSL), West Nile virus NS3 (RTNTIL) and reovirus \(\lambda_1 \) protein (RDETGL) (Fig. 11b). These two motifs are also found on various putative RNA 5’-triphosphatases of other flaviviruses and DNA viruses for which no activity has been actually demonstrated.

Interestingly, a substitution of the glutamate residue in this latter motif of the vaccinia virus capping enzyme inactivates the triphosphatase but does not affect the guanylyltransferase activity present on the same polypeptide chain (125). This supports the idea that these consensus motifs have a functional significance, although further studies will be needed to firmly establish their exact nature and importance.

The primary structure of the RNA 5’-triphosphatase from \(S. \) cerevisiae has been recently determined (126). Interestingly, sequence analysis revealed that the central region of the yeast protein CET1 (305 amino acids) shares 36% similarity with the reovirus \(\lambda_1 \) protein (Fig. 12a). Furthermore, the yeast protein also harbors a 52% similarity with a 21 amino acids region of the \(\lambda_1 \) protein, identified as the putative nucleotide binding site, that could be involved in the RNA 5’-triphosphatase activity.
Fig. 12. Sequence similarity between the \(\lambda 1\) protein of reovirus T3D and the \(S.\) cerevisiae RNA 5'-triphosphatase. (a) Alignment of the amino acid sequence of \(\lambda 1\) protein from reovirus T3D with the yeast CET1 protein. Identical or similar amino acids residues are shown in bold; residues belonging to the following groups were considered similar: \([I, L, V]\); \([D, E]\); \([S, T]\); \([K, R]\). The alignment was performed as described under Methods. Positions of amino acid residues corresponding to the reovirus T3D \(\lambda 1\) and the yeast CET1 proteins are also indicated. Abbreviations: U, bulky aliphatic residues; x, any amino acid residue. (b) Alignment of the putative nucleotide-binding site of the \(\lambda 1\) protein from reovirus T3D with the yeast CET1 protein. (c) Diagram representing the conserved segments between the \(\lambda 1\) protein from reovirus T3D and the RNA 5'-triphosphatase (CET1) protein of \(S.\) cerevisiae. The sizes of the conserved segments and the distance between them are drawn to scale. The length of the respective proteins is also indicated.
(102,127) (Fig. 12b). However, the importance of these regions still needs to be investigated.

Conclusions

Computer-assisted comparisons of reovirus proteins with available databases has revealed various amino acids motifs. Among these motifs, consensus sequences have been identified that are in accordance with already suspected functions of reovirus proteins: RNA polymerase, guanylyltransferase, RNA triphosphatase, and helicase activity. There is little doubt that future functional studies will take advantage of the identification of these consensus sequences that represent putative targets for site-directed mutagenesis experiments. This analysis has also revealed unexpected similarities of some reovirus proteins with specific classes of proteins present in the databases. This suggests yet unidentified activities for some of the reovirus proteins. Among most potentially significant findings are the strong similarities noted between σ1 and SF6 lysozyme and the similarity of a short region of λ2 with viral hemagglutinins. Further work is obviously needed to determine if these sequence similarities actually reflects functions of reovirus proteins. However, the similarities between reovirus proteins whose functions are known and proteins exhibiting similar properties, does support the idea that sequence similarities, although not necessarily extensive, could reflect actual function of reovirus proteins. Exponential increase in the number of sequences found in databases and the development of increasingly powerful tools for their analysis should certainly further contribute to our knowledge of reovirus proteins functions.

Acknowledgments

We thank Dr. Pierre Belhumeur for critical review of the manuscript. The work performed in the authors’ laboratory was supported by a grant to G.L. from the Medical Research Council of Canada. G.L. is also the recipient of a “Chercheur-Boursier” award from the “Fonds de la Recherche en Santé du Québec”.

References

1. Nibert M.L., Schiff L.A., and Fields B.N., in Fields, B.N., Knipe, D.M. and Howley, P.M. (eds), *Fundamental Virology*. Lippincott-Raven, Philadelphia, 691–730, 1996.
2. Dryden K.A., Wang G., Yeager M., Nibert M.L., Coombs K.M., Furlong D.B., Fields B.N., and Baker T.S., J Cell Biol 122, 1023–1041, 1993.
3. White C.K. and Zweerink H.J., Virology 70, 171–180, 1976.
4. Xu P., Miller S.E., and Joklik W.K., Virology 197, 726–731, 1993.
5. Dermody T.S., Nibert M.L., Bassel-Duby R., and Fields B.N., J Virol 64, 4842–4850, 1990.
6. Virgin H.W., Mann M.A., Fields B.N., and Tyler K.L., J Virol 65, 5721–5731, 1991.
7. Weiner H.L. and Fields B.N., J Exp Med 146, 1305–1310, 1977.
8. Ramig R. and Fields B.N., in: Joklik, W. (ed), *The Reoviridae*. Plenum Press, New York, 197–228, 1983.
9. Altschul S.F., Gish W., Miller W., Myers E.V., and Lipman D.J., J Mol Biol 215, 403–410, 1990.
10. Henikoff S. and Henikoff J., Proc Natl Acad Sci USA 89, 10915–10919, 1992.
11. Higgins D.G., Bleasby A.I., and Fuchs R., Comp Appl Biosciences 8, 189–191, 1992.
12. Bairoch A. and Boeckmann B., Nucleic Acids Res 19, 2247–2249, 1991.
97. Koonin E.V., Gorbalenya E.E., and Chumakov K.M., FEBS Lett 252, 42–80, 1989.
98. Morozov S.Y., Nucleic Acids Res 17, 5394, 1989.
99. Poch O., Sauvaget I., Delarue M., and Tordo N., EMBO J 8, 3867–3874, 1989.
100. Lemay G. and Danis C., J Gen Virol 75, 3261–3266, 1994.
101. Bisaillon M. and Lemay G., Virus Res 51, 231–237, 1997.
102. Bisaillon M., Bergeron J., and Lemay G., J Biol Chem 272, 18298–18303, 1997.
103. Noble S. and Nibert M.L., J Virol 71, 2182–2191, 1997.
104. Gorbalenya A.E., Koonin E.V., Donchenko A.P., and Blinov V.M., Nucleic Acids Res 17, 4713–4730, 1989.
105. Yang L., Mohr I., Fouts E., Lim D.A., Nehaile M., and Botchan M., Proc Natl Acad Sci USA 90, 5086–5090, 1993.
106. Fanning E. and Knippers R., Annu Rev Biochem 61, 55–85, 1992.
107. Jindal H.K., Yong C.B., Wilson G.M., Tam P., and Astell C.R., J Biol Chem 269, 3283–3289, 1994.
108. Lohman T.M., Mol Microbiol 6, 5–14, 1992.
109. Lohman T.M., J Biol Chem 268, 2269–2272, 1993.
110. Matson S.W., Prog Nucleic Acid Res Mol Biol 40, 289–326, 1991.
111. Li J-P. and Baltimore D., J Virol 62, 4016–4021, 1988.
112. Gorbalenya A.E. and Koonin E.V., Curr Opin Struct Biol 3, 419–429, 1989.
113. Hodgman T.C., Nature 333, 22–23, 1988.
114. Gorbalenya A.E., Koonin E.V., Donchenko A.P., and Blinov V.M., Nature 333, 22, 1988.
115. Rozen F., Pelletier J., Trachsel H., and Sonenberg N., Mol Cell Biol 9, 4061–4063.
116. Gross C.H. and Shuman S., J Virol 69, 4727–4736, 1995.
117. Brosh R.M. and Matson S.W., J Biol Chem 271, 25360–25368, 1996.
118. Heilek G.M. and Peterson M.G., J Virol 71, 6264–6266.
119. Kim D.W., Kim J., Gwack Y., Han J.H., and Choe J., J Virol 71, 9400–9409.
120. Walker J.E., Saraste M., Runswick M.J., and Gay N.J., EMBO J 11, 945–951, 1992.
121. Schmid S.R. and Linder P., Mol Microbiol 6, 283–292, 1992.
122. Bisaillon M. and Lemay G., J Biol Chem 272, 29954–29957, 1997.
123. Wengler G. and Wengler G., Virology 197, 265–273, 1993.
124. Venkatesan S., Gershowitz A., and Moss B., J Biol Chem 255, 903–908, 1980.
125. Yu L. and Shuman S., J Virol 70, 6162–6168, 1996.
126. Tsukamoto T., Shibagaki Y., Imajoh-Ohmi S., Murakoshi T., Suzuki M., Nakamura A., Gotoh H., and Mizumoto K., Biochem Biophys Res Commun 239, 116–122, 1997.
127. Bartlett J.A. and Joklik W.K., Virology 167, 31–37, 1988.