Anthocyanins are glycosides of anthocyanidins, the latter being the true bearer of the biologic activity. Cyanidin is one of the most prevailing anthocyanidins and a major pigment in berries, grapes and purple-coloured vegetables (Wallace and Giusti 2015; Khoo et al., 2017). The studies on anthocyanins deal mainly with their chemoprotective action owed to the antioxidant capacity which is conferred by the anthocyanidin moiety (Tedesco et al., 2001; Heo and Lee 2005; Isaak et al., 2017) and it is widely believed that the toxicity of anthocyanins is very low (Wallace and Giusti 2015). Studies on the potential toxicity of anthocyanins/anthocyanidins are less represented, although some alarm has been triggered concerning their role in the so called 'antioxidative stress', which can be correlated with overconsumption of natural antioxidants, either in complex mixtures or as single isolated compounds (Poljsak and Milisav 2012; Kwee 2014; Cai et al., 2018; Casedas et al., 2019). Although it is considered that the ingestion of an isolated natural compound carries less risk comparing with a complex natural mixture, not many isolated polyphenols have been subjected to rigorous testing (Casedas et al., 2019). We therefore decided to investigate the potential toxicity of pure foods, nutraceuticals, or food supplements (Khoo et al., 2017). Anthocyanins are glycosides of anthocyanidins, the latter being the true bearer of the biologic activity. Cyanidin is one of the most prevailing anthocyanidins and a major pigment in berries, grapes and purple-coloured vegetables (Wallace and Giusti 2015; Khoo et al., 2017). The studies on anthocyanins deal mainly with their chemoprotective action owed to the antioxidant capacity which is conferred by the anthocyanidin moiety (Tedesco et al., 2001; Heo and Lee 2005; Isaak et al., 2017) and it is widely believed that the toxicity of anthocyanins is very low (Wallace and Giusti 2015). Studies on the potential toxicity of anthocyanins/anthocyanidins are less represented, although some alarm has been triggered concerning their role in the so called 'antioxidative stress', which can be correlated with overconsumption of natural antioxidants, either in complex mixtures or as single isolated compounds (Poljsak and Milisav 2012; Kwee 2014; Cai et al., 2018; Casedas et al., 2019). Although it is considered that the ingestion of an isolated natural compound carries less risk comparing with a complex natural mixture, not many isolated polyphenols have been subjected to rigorous testing (Casedas et al., 2019). We therefore decided to investigate the potential toxicity of pure foods, nutraceuticals, or food supplements (Khoo et al., 2017). Anthocyanins are glycosides of anthocyanidins, the latter being the true bearer of the biologic activity. Cyanidin is one of the most prevailing anthocyanidins and a major pigment in berries, grapes and purple-coloured vegetables (Wallace and Giusti 2015; Khoo et al., 2017). The studies on anthocyanins deal mainly with their chemoprotective action owed to the antioxidant capacity which is conferred by the anthocyanidin moiety (Tedesco et al., 2001; Heo and Lee 2005; Isaak et al., 2017) and it is widely believed that the toxicity of anthocyanins is very low (Wallace and Giusti 2015). Studies on the potential toxicity of anthocyanins/anthocyanidins are less represented, although some alarm has been triggered concerning their role in the so called 'antioxidative stress', which can be correlated with overconsumption of natural antioxidants, either in complex mixtures or as single isolated compounds (Poljsak and Milisav 2012; Kwee 2014; Cai et al., 2018; Casedas et al., 2019). Although it is considered that the ingestion of an isolated natural compound carries less risk comparing with a complex natural mixture, not many isolated polyphenols have been subjected to rigorous testing (Casedas et al., 2019). We therefore decided to investigate the potential toxicity of pure foods, nutraceuticals, or food supplements (Khoo et al., 2017). Anthocyanins are glycosides of anthocyanidins, the latter being the true bearer of the biologic activity. Cyanidin is one of the most prevailing anthocyanidins and a major pigment in berries, grapes and purple-coloured vegetables (Wallace and Giusti 2015; Khoo et al., 2017). The studies on anthocyanins deal mainly with their chemoprotective action owed to the antioxidant capacity which is conferred by the anthocyanidin moiety (Tedesco et al., 2001; Heo and Lee 2005; Isaak et al., 2017) and it is widely believed that the toxicity of anthocyanins is very low (Wallace and Giusti 2015). Studies on the potential toxicity of anthocyanins/anthocyanidins are less represented, although some alarm has been triggered concerning their role in the so called 'antioxidative stress', which can be correlated with overconsumption of natural antioxidants, either in complex mixtures or as single isolated compounds (Poljsak and Milisav 2012; Kwee 2014; Cai et al., 2018; Casedas et al., 2019). Although it is considered that the ingestion of an isolated natural compound carries less risk comparing with a complex natural mixture, not many isolated polyphenols have been subjected to rigorous testing (Casedas et al., 2019). We therefore decided to investigate the potential toxicity of pure foods, nutraceuticals, or food supplements (Khoo et al., 2017). Anthocyanins are glycosides of anthocyanidins, the latter being the true bearer of the biologic activity. Cyanidin is one of the most prevailing anthocyanidins and a major pigment in berries, grapes and purple-coloured vegetables (Wallace and Giusti 2015; Khoo et al., 2017). The studies on anthocyanins deal mainly with their chemoprotective action owed to the antioxidant capacity which is conferred by the anthocyanidin moiety (Tedesco et al., 2001; Heo and Lee 2005; Isaak et al., 2017) and it is widely believed that the toxicity of anthocyanins is very low (Wallace and Giusti 2015). Studies on the potential toxicity of anthocyanins/anthocyanidins are less represented, although some alarm has been triggered concerning their role in the so called 'antioxidative stress', which can be correlated with overconsumption of natural antioxidants, either in complex mixtures or as single isolated compounds (Poljsak and Milisav 2012; Kwee 2014; Cai et al., 2018; Casedas et al., 2019). Although it is considered that the ingestion of an isolated natural compound carries less risk comparing with a complex natural mixture, not many isolated polyphenols have been subjected to rigorous testing (Casedas et al., 2019). We therefore decided to investigate the potential toxicity of pure foods, nutraceuticals, or food supplements (Khoo et al., 2017). Anthocyanins are glycosides of anthocyanidins, the latter being the true bearer of the biologic activity. Cyanidin is one of the most prevailing anthocyanidins and a major pigment in berries, grapes and purple-coloured vegetables (Wallace and Giusti 2015; Khoo et al., 2017). The studies on anthocyanins deal mainly with their chemoprotective action owed to the antioxidant capacity which is conferred by the anthocyanidin moiety (Tedesco et al., 2001; Heo and Lee 2005; Isaak et al., 2017) and it is widely believed that the toxicity of anthocyanins is very low (Wallace and Giusti 2015). Studies on the potential toxicity of anthocyanins/anthocyanidins are less represented, although some alarm has been triggered concerning their role in the so called 'antioxidative stress', which can be correlated with overconsumption of natural antioxidants, either in complex mixtures or as single isolated compounds (Poljsak and Milisav 2012; Kwee 2014; Cai et al., 2018; Casedas et al., 2019). Although it is considered that the ingestion of an isolated natural compound carries less risk comparing with a complex natural mixture, not many isolated polyphenols have been subjected to rigorous testing (Casedas et al., 2019). We therefore decided to investigate the potential toxicity of pure foods, nutraceuticals, or food supplements (Khoo et al., 2017). Anthocyanins are glycosides of anthocyanidins, the latter being the true bearer of the biologic activity. Cyanidin is one of the most prevailing anthocyanidins and a major pigment in berries, grapes and purple-coloured vegetables (Wallace and Giusti 2015; Khoo et al., 2017). The studies on anthocyanins deal mainly with their chemoprotective action owed to the antioxidant capacity which is conferred by the anthocyanidin moiety (Tedesco et al., 2001; Heo and Lee 2005; Isaak et al., 2017) and it is widely believed that the toxicity of anthocyanins is very low (Wallace and Giusti 2015). Studies on the potential toxicity of anthocyanins/anthocyanidins are less represented, although some alarm has been triggered concerning their role in the so called 'antioxidative stress', which can be correlated with overconsumption of natural antioxidants, either in complex mixtures or as single isolated compounds (Poljsak and Milisav 2012; Kwee 2014; Cai et al., 2018; Casedas et al., 2019). Although it is considered that the ingestion of an isolated natural compound carries less risk comparing with a complex natural mixture, not many isolated polyphenols have been subjected to rigorous testing (Casedas et al., 2019). We therefore decided to investigate the potential toxicity of pure
cyanidin on Saccharomyces cerevisiae cells, and while no apparent toxicity was recorded on the wild type, it was noted that the cells devoid of the transcription factors Skn7 or Yap1 exhibited different sensitivity to cyanidin exposure.

S. cerevisiae represents a very good eukaryotic model for the investigation of the cellular response to various antioxidants (Eleutherio et al., 2018; Zimmermann et al., 2018; Lingua et al., 2019) as this microorganism responds to oxidative stress similarly to higher organisms, including humans (Jamieson 1998), at the same time allowing for simplification of the biological context by eliminating redundancies or by overcoming ethical and experimental constraints. Although not numerous, there are studies on *S. cerevisiae* highlighting conditions under which widely used antioxidants such as epigallocatechin-G-gallate (Maeta et al., 2007; Mitrica et al., 2012; Ruta et al., 2018) or resveratrol (Madrigal-Perez et al., 2016; Orlandi et al., 2017) are not entirely beneficial.

Yap1 and Skn7 are the main *S. cerevisiae* transcription factors which orchestrate the response to oxidative stress in yeast cells. While association of the two transcription factors has been demonstrated (Lee et al., 1999; Mulford and Fassler 2011), there is evidence that Yap1 and Skn7 also regulate their separate set of genes (Lee et al., 1999). In this study we found that cells lacking Yap1 or Skn7 showed different susceptibility to cyanidin and that the sensitivity of skn7Δ cells could be overcome by Yap1 activation upon high cyanidin exposure.

2. Materials and methods

2.1. Reagents and growth media

Unless otherwise specified, all reagents used were purchased from Merck (Darmstadt, Germany). Yeast strains were manipulated as described (Sherman 2002) using standard mediaYPD (1% w/v yeast extract, 2% w/v peptone, 2% w/v glucose) or synthetic complete SC (0.67 % w/v yeast nitrogen base with (NH4)2SO4, 2% w/v glucose, supplemented with the necessary amino acids). For solid media, 2% w/v agar was used. Cyanidin (Sigma-Aldrich) was used from a stock solution (10 mg/mL in 70% v/v ethanol) sterilized by filtration.

2.2. Yeast strains and storage

The *S. cerevisiae* strains used in this study had the wild-type (WT) background of BY4741 (MATa; his3Δ1; leu2Δ0; met15Δ0; ura3Δ0). The single-gene deletion strains used were Y02900 (BY4741, skn7::kanMX4, denoted skn7Δ) and Y00569 (BY4741, yap1::kanMX4, denoted yap1Δ). The strains were obtained from EUROSCARF (www.euroscarf.de) and stored at -85 °C as 50% glycerol stocks, until recovered for use. Double knock-out strain skn7Δ yap1Δ (BY4741, skn7::kanMX4; yap1::kanMX4) was obtained by crossing of strains Y02900 and Y10569 (MATa; his3Δ1; leu2Δ0; met15Δ0; ura3Δ0; yap1::kanMX4, EUROSCARF) followed by diploid sporulation and random spore analysis (Sprague, 1991).

2.3. Cell exposure to light

Cells to be exposed to light were treated as described (Farcasanu et al., 2013) with slight modifications. Exponentially growing cells were shifted to liquid SC and grown to 10^7 cells/mL. Viability was checked, and only cells from populations with viability > 99% were shifted to multi-well transparent plates (Nunc ThermoFisher Scientific, approximately 10^5 cells/well). Cells gently shaken (30-50 rpm) were illuminated from above with light emitting diodes (LEDs) of 100 lumens mounted on a copper ventilated radiator. Cells were illuminated for 2 h with blue monochromatic light (BL, λ = 455 nm), green monochromatic light (GL, λ = 527 nm), or continuous visible spectrum (WL, white light) with intensity on the target up to 105 Lx, determined with a digital Luxmeter LX-1102, Lutron (14.64 mW/cm²).

2.4. Growth assessment of the yeast strains

2.4.1. Growth in liquid media

Overnight pre-cultures were inoculated in fresh medium at density 2 × 10^5 cells/mL, then incubated for 2 h (the time required for cell adaptation to fresh medium) before cyanidin was added from a sterile stock. The cell density was monitored at by determining the turbidity of the COD suspension at 600 nm (OD600). Relative growth was calculated for each culture sample as the ratio between OD600 at a specified time and OD600 at time 0 (time when cyanidin was added to the medium). Cells in liquid cultures were incubated with shaking (30 °C, 200 rpm) on a multi-amplitude orbital shaking incubator (Thermo Max Q 4000, Thermo Fisher Scientific).

2.4.2. Cell viability

The cell viability, expressed as percentage of live cells within a whole population, was assessed by staining with methylene blue (Roth, Germany) (Kwolek-Mirek and Zadrag-Tecza 2014). Viability was examined microscopically (Olympus BX53, Japan) for at least 300 cells from one biological replicate. Viability was also tested by determining colony forming units (CFU): thoroughly suspended cell samples were suitably diluted with sterile deionized water and plated on YPD/agar. After 3–4 days of incubation at 28 °C, the colonies were counted and viability was expressed as percent of CFU relatively number of initial cells (Kwolek-Mirek and Zadrag-Tecza 2014). When compared, the two methods yielded similar results.

2.5. Plasmids and yeast transformation

The Yap1-GFP (Yap1 tagged at the N-terminus with green fluorescent protein, GFP) was expressed from a plasmid constructed on the pRSIII25 vector (Chee and Haase 2012). Plasmid pRSII25 (LEU2, high-copy) was a gift from Steven Haase (Addgene, plasmid #35467; http://n2t.net/ addgene/35467; RRID:Addgene:35467). YAPI coding sequence along with 520 bp upstream sequence was amplified using BY4741 genomic DNA as template. The primers used for amplification were: forward: 5'-taagct-gaG-cttCtgcTctGAAaACt-3' (introducing SalI site, underlined) and reverse: 5'-tacgtaattaGgGtctgtcatTTaAcGagAAGG-3' (introducing both EcoRI underlined sequence and HindIII (italic underlined sequence) sites). The HindIII site was situated upstream the STOP codon (bold) to allow for GFP fusion. The purified amplicon was restriction cut and introduced into the SalI-EcoRI sites of pRSII325, yielding pRSII325-YAP1. The GFP open reading frame lacking the START codon was amplified from plasmid pGREG600 (EUROSCARF) using forward primer 5'-taagct-gaG-cttCtgcTctGAAaACt-3' (introducing HindIII site, underlined sequence) and reverse primer 5'-tacgtaattaGgGtctgtcatTTaAcGagAAGG-3' (introducing HindIII site, underlined sequence, and STOP codon, bold). The GFP amplicon was introduced in the HindIII-Spel sites of pRSII325-Yap1 to yield pRSII325-Yap1-GFP. The plasmid p415-TEF-roGFP-Tsa2ΔCR (Morgan et al., 2016) was a gift from Tobias Dick (Addgene, plasmid #83239; http://n2t.net/ addgene/83239; RRID:Addgene:83239). Yeast transformation (Dohnen et al., 1991) was performed using S.c. EasyComp™ Transformation Kit (Invitrogen, Carlsbad, CA, USA) following manufacturer's indication.

2.6. Cyanidin assay

Cyanidin quantitation was done with Folin-Gioceleu reagent (Singleton et al., 1999) as described (Opres et al., 2014), with slight modifications. To determine cyanidin uptake, approximately 10^5 cells exposed to cyanidin (pre-washed 2 times) were suspended in 100 µL 10% triton-X100 in 10 mM 2-(N-morpholino)ethanesulfonic acid (MES)-Tris, pH 6, and heated for 2 min at 60 °C. The suspension was diluted 10 times with ethanol (70% final ethanol concentration) and vortexed thoroughly for cyanidin release. After centrifugation (10,000 rpm, 1 min), the
supernatant was used for cyanidin assay against a calibration curve. Accumulated cyanidin was normalized as ng/10^8 cells.

2.7. Fluorescence measurement of roGFP2-Tsa2ΔCR sensor oxidation

The redox-responsive peroxiredoxin-based probe roGFP2-Tsa2ΔCR was used to measure the relative cell oxidative state caused by H_2O_2 variation. This probe is sensitive enough to monitor the variations in intracellular H_2O_2 based on the fluorescence signal of the cells expressing roGFP2-Tsa2ΔCR (Morgan et al., 2016). Cells in late logarithmic growth phase transformed with p415-TEF-roGFP-Tsa2ΔCR were harvested, washed and re-suspended in 10 mM MES-Tris buffer, pH 6.0, to OD_{600} = 5. Subsequently, 200 μL suspensions (approx. 10^7 cells/sample) were transferred to flat-bottomed 96-well imaging plates (Nunc™ F96 MicroWell™ Black, Thermo Scientific) using a Thermo Scientific Varioskan Flash spectral scanning multimode reader. The fluorescence of the cells expressing roGFP-Tsa2ΔCR was recorded at 510 nm using 2 excitation wavelengths 405 nm and 488 nm (Morgan et al., 2016). To obtain the fully oxidized and fully reduced probes, cells were treated with 20 mM diamide (N,N,N',N'-tetramethylazodicarboxamide) or 100 mM DTT (dithiotreitol) for 30 min, respectively. These samples serve as fully oxidized and fully reduced sensor controls and allow the determination of the degree of sensor oxidation (OxD), calculated as described (Meyer and Dick 2010).

2.8. Yap1-GFP cellular localization

For the detection of Yap1-GFP fluorescence, the cells transformed with pRSII325-Yap1-GFP were grown overnight in SC-Leu, diluted 20 times in fresh SC-Leu and grown for 2 h before cyanidin was added from a sterile stock. Following 2–4 h of cyanidin exposure, live cells were examined with an Olympus fluorescent microscope system (Olympus BX53, Japan) equipped with a HBO-100 mercury lamp and an Olympus DP73 camera. To detect the GFP signals, a GFP filter set (excitation filter 460–480, dichromatic mirror 585, emission filter 495–540) was used. Nuclei were stained with 1 μg/mL 4',6-diamidino-2-phenylindole (DAPI) and observed using DAPI filter set (excitation filter 340–390, dichromatic mirror 410, emission filter 420). The microscopic photographs were processed by CellSens Dimension V1 imaging software (Olympus, Japan). For each strain, one representative image is shown.

2.9. Reproducibility of the results and statistics

All experiments were repeated at least three times. For each individual measurement values were expressed as the mean ± standard deviation (SD) of duplicate determinations on biological triplicates. The data were examined by analysis of variance with multiple comparisons (ANOVA) using the statistical software Prism version 6.05 for Windows (GraphPad Software, La Jolla, CA, USA). The differences were considered to be significant when p < 0.05.

3. Results and discussion

3.1. Yeast cells lacking Skn7 or Yap1 are sensitive to cyanidin

Starting from the idea that – like many other antioxidants – cyanidin may also act as a pro-oxidant (Eghbaliferiz and Iranshahi 2016), we used the eukaryote model microorganism S. cerevisiae to evaluate cyanidin toxicity, both on wild type (WT) but also on cells lacking either of the two transcription factors which orchestrate the cell response to oxidative stress, Skn7 and Yap1. It was noticed that while cyanidin showed no apparent toxicity towards WT, long exposure to...
cyanidin impaired the growth of skn7Δ or yap1Δ knock-out cells (Figure 1a), albeit in a different manner. It was seen that the proliferation of yap1Δ was stimulated by low concentrations of cyanidin (5–20 μg/mL), but when increasing the dose, cell growth was perturbed, and concentrations higher than 20 μg/mL diminished yap1Δ cell proliferation; yap1Δ growth was reduced to approximately half by exposure to 100 μg/mL cyanidin (Figure 1a, red line). In contrast, the proliferation of the skn7Δ was impaired by low cyanidin concentrations (2–10 μg/mL), a trait that was no longer apparent at higher concentrations. In fact, at cyanidin concentrations higher that 20 μg/mL the growth of skn7Δ improved, and at 80–100 μg/mL, the proliferation of skn7Δ cells was not significantly different from that of non-exposed cells (Figure 1a, blue line). Deleting the YAPI gene in skn7Δ background prevented the growth recovery associated with increasing cyanidin concentration; in fact the growth of the double mutant skn7Δ yap1Δ was impaired by cyanidin at both low and high concentration (Figure 1a, yellow line). It was noted that the strains' different behavior to cyanidin exposure was not the result of different cyanidin uptake, as the WT, skn7Δ and yap1Δ cells accumulated similar amounts of cyanidin, at both low (10 μg/mL) and high (100 μg/mL) concentrations (Figure 1b). The cyanidin uptake recorded for

Figure 2. Effect of light exposure on cyanidin toxicity. (a) Cell proliferation. Exponentially growing wild type (WT), skn7Δ, yap1Δ and double mutant skn7Δ yap1Δ cells were inoculated (5 × 10^5 cells/mL) in a transparent multiwell plate containing SC supplemented or not with 10 μg/mL cyanidin. To see the effect of illumination, plates were exposed to visible light for 2 h then incubated in the dark together with the control plates. Cell proliferation was determined spectrophotometrically at 600 nm (OD600), 16 h after ceasing illumination. Relative growth was determined as the ratio OD600–16 h/OD600–0 h for each strain. (b–e) Cell viability of cyanidin-treated cells exposed to light. Cells grown as in (a) were treated with the indicated concentrations of cyanidin then exposed to WL (white light, continuous spectrum), BL (blue light, λ = 455 nm) or GL (green light, λ = 527 nm) for 2 h as described in Materials and methods section. Cells were harvested and viability test was done by staining with methylene blue. Viability was examined for at least 300 cells from each of 3 biological repeats. Two-way ANOVA followed by Bonferroni’s test, *p < 0.05, **p < 0.01. Cy, cyanidin.
skn7Δ yap1Δ was slightly smaller, but this could be attributed to the poor growth of the double mutant under cyanidin exposure.

3.2. Visible light augments the sensitivity to cyanidin of cells lacking Skn7

While studying the effect of cyanidin on yeast growth it was accidentally noted that yeast cells spotted on cyanidin-containing agar plates proliferated slower if the plates were not taken to the dark incubator immediately after the spotting, but instead were kept under direct light for 1–2 h before being transferred to a dark environment (data not shown). It was previously shown that exposure to visible light is deleterious to both skn7Δ and yap1Δ cells, especially in the presence of photosensitizers, due to formation of singlet oxygen \(^1O_2 \) (Brombacher et al., 2006). To see if light alters the cyanidin toxicity, we inoculated yeast cells in SC medium containing 10 μg/mL cyanidin and placed them under visible light for 2 h before shifting the plates to a dark incubator. It was noted that the combination between cyanidin and white light was deleterious to skn7Δ cells, which grew slower than WT, and even than yap1Δ cells (Figure 2a). Double knock-out mutant skn7Δ yap1Δ was even more sensitive to a combination of low cyanidin and light exposure (Figure 2a). Raising the cyanidin concentration (80–100 μg/mL) non-discriminately killed the yeast cells under illumination, as seen by the viability test, which indicated less than 15% viability for all strains (data not shown).

Light exposure clearly inhibited cell proliferation of skn7Δ and skn7Δ yap1Δ cells incubated with cyanidin (Figure 2a); we therefore tested the viability of the cells exposed to both light and cyanidin. It was noted that low cyanidin concentrations (10 μg/mL) significantly augmented the viability of skn7Δ cells exposed to WL, BL, or GL (Figure 2b, dark purple bars). This observation suggested that at high concentration cyanidin exerted a pro-oxidant effect and cause Yap1 translocation to nucleus. To test this possibility, we used a GFP-tagged construct to monitor the cellular localization of Yap1 under cyanidin exposure. It was noted that under low cyanidin (10 μg/mL), Yap-GFP localized mainly in the cytosol, while under high cyanidin exposure (100 μg/mL), Yap-GFP concentrated in the nucleus, in both wild type and skn7Δ cells (Figure 3). This observation suggested that at high concentration cyanidin exerted a pro-oxidant effect, probably through generation of \(\text{H}_2\text{O}_2 \) (while at low concentrations cyanidin acts mainly as a photosensitizer). To detect whether exposure to high cyanidin generated \(\text{H}_2\text{O}_2 \), we used cells transformed with a construct encoding peroxiredoxin-based roGFP2-Tsa2ΔCR, a cytosolic redox sensor for \(\text{H}_2\text{O}_2 \) (Morgan et al., 2016). The peroxiredoxin-based \(\text{H}_2\text{O}_2 \) probes had been shown to be suitable for detecting variations in the cellular oxidative state as they are ~50% oxidized under ‘normal’ unstimulated conditions and are equally responsive to increases and decreases in \(\text{H}_2\text{O}_2 \) (Morgan et al., 2016). It was noted that the level of oxidation of the redox-sensitive roGFP2-Tsa2ΔCR (roGFP-Tsa2ΔCR/OxD) was not significantly different in skn7Δ or yap1Δ compared to WT cells under normal growth conditions (Figure 4a-c, grey lines). In contrast, the level of roGFP-Tsa2ΔCR/OxD was significantly higher in the double mutant skn7Δ yap1Δ even in the absence of cyanidin (Figure 4d, grey line), indicating that even under normal conditions, the level of ROS in skn7Δ yap1Δ cells was elevated. Exposure to low (10 μg/mL) cyanidin did not significantly alter the oxidative state of the cells in the first 30 min of exposure (Figure 4, light purple lines). In contrast, exposing yeast cells to high cyanidin (100 μg/mL) resulted in elevation of the roGFP-Tsa2ΔCR/OxD in both WT and skn7Δ or yap1Δ cells (Figure 4a-c, dark purple lines).

3.3. High cyanidin stimulates Yap1 translocation to the nucleus through generation of ROS

The different behavior of skn7Δ and yap1Δ cells indicated that the two transcription factors may have complementary roles under cyanidin stress. That is, Skn7 would be required for cell adaptation under low cyanidin, while Yap1 would be necessary for adaptation under high cyanidin. The observation that the skn7Δ growth was perturbed by low cyanidin, and that the skn7Δ cells gained tolerance when cyanidin concentration increased, suggested that cyanidin – when surpassing a threshold – may actually cause Yap1 activation for cell defense.

Yap1 is a key factor in regulating oxidative stress, such as exposure to \(\text{H}_2\text{O}_2 \); this is done primarily through Yap1 translocation from cytosol to nucleus, where it induces transcription of antioxidant genes (Delaunay et al., 2000). As some polyphenols were shown to induce Yap1 translocation to nucleus through generation of reactive oxygen species (ROS) (Maeta et al., 2007; Esco野 et al., 2012) we wondered if cyanidin may also exert a pro-oxidant effect and cause Yap1 translocation to nucleus. To test this possibility, we used a GFP-tagged construct to monitor the cellular localization of Yap1 under cyanidin exposure. It was noted that under low cyanidin (10 μg/mL), Yap-GFP localized mainly in the cytosol, while under high cyanidin exposure (100 μg/mL), Yap-GFP concentrated in the nucleus, in both wild type and skn7Δ cells (Figure 3). This observation suggested that at high concentration cyanidin exerted a pro-oxidant effect, probably through generation of \(\text{H}_2\text{O}_2 \) (while at low concentrations cyanidin acts mainly as a photosensitizer). To detect whether exposure to high cyanidin generated \(\text{H}_2\text{O}_2 \), we used cells transformed with a construct encoding peroxiredoxin-based roGFP2-Tsa2ΔCR, a cytosolic redox sensor for \(\text{H}_2\text{O}_2 \) (Morgan et al., 2016). The peroxiredoxin-based \(\text{H}_2\text{O}_2 \) probes had been shown to be suitable for detecting variations in the cellular oxidative state as they are ~50% oxidized under ‘normal’ unstressed conditions and are equally responsive to increases and decreases in \(\text{H}_2\text{O}_2 \) (Morgan et al., 2016). It was noted that the level of oxidation of the redox-sensitive roGFP2-Tsa2ΔCR (roGFP-Tsa2ΔCR/OxD) was not significantly different in skn7Δ or yap1Δ compared to WT cells under normal growth conditions (Figure 4a-c, grey lines). In contrast, the level of roGFP-Tsa2ΔCR/OxD was significantly higher in the double mutant skn7Δ yap1Δ even in the absence of cyanidin (Figure 4d, grey line), indicating that even under normal conditions, the level of ROS in skn7Δ yap1Δ cells was elevated. Exposure to low (10 μg/mL) cyanidin did not significantly alter the oxidative state of the cells in the first 30 min of exposure (Figure 4, light purple lines). In contrast, exposing yeast cells to high cyanidin (100 μg/mL) resulted in elevation of the roGFP-Tsa2ΔCR/OxD in both WT and skn7Δ or yap1Δ cells (Figure 4a-c, dark purple lines).

Figure 3. Effect of cyanidin on Yap1-GFP localization. Wild type (WT) and skn7Δ cells transformed with pRS425-Yap1-GFP were grown to exponentially-growing phase in SC-Leu before cyanidin was added to 10 μg/mL or 100 μg/mL (final concentration) and incubated for 2–4 h (30 °C, 200 rpm) before live cells were visualized by fluorescence microscopy using a GFP filter set, as described in Materials and methods section. Cy, cyanidin.
purple lines); the elevation of roGFP-Tsa2ΔCR/OxD was significantly higher in yap1Δ cells (Figure 4c, dark purple line), indicative of a higher amount of ROS (H2O2) within the cells. The increase of roGFP-Tsa2ΔCR caused by cyaniding in skn7Δ cells was not significant (Figure 4d), probably due to high level of sensor oxidation under basal conditions.

4. Conclusions

Cyanidin was found to be deleterious to S. cerevisiae cells lacking either of the two main transcription factors which regulate the yeast response to oxidative stress in yeast, Skn7 and Yap1. The susceptibility of skn7Δ or yap1Δ to cyanidin was different though, suggesting that the roles of Skn7 and Yap1 in adaptation to cyanidin exposure are complementary: Skn7 is required for adaptation under low concentrations, while Yap1 is necessary for adaptation under high cyanidin. This conclusion was supported by the sensitivity manifested by the double mutant skn7Δ yap1Δ to both low and high cyanidin. The sensitivity of skn7Δ to low concentrations of cyanidin was augmented by cell exposure to visible light, indicating that cyanidin may act as a photosensitizer (Brombacher et al., 2006; Hessling et al., 2017; Galappaththia et al., 2018), raising awareness on the possible unwanted effects of utilizing anthocyanidin-derived products associated with light exposure. At high concentrations, the cyanidin stress correlated with ROS generation, which in turn stimulated the cell response through Yap1 translocation to nucleus. Either way, it is clear that non-discriminatory consumption of supplements which are excessively enriched in anthocyanidin-derived products need to be re-considered, or at least regarded with caution.

Declarations

Author contribution statement

Lavinia Liliana Ruta: Conceived and designed the experiments; Performed the experiments; Analyzed and interpreted the data.
Eliza Oprea: Performed the experiments; Contributed reagents, materials, analysis tools or data.
Claudia Valentina Popa: Performed the experiments; Analyzed and interpreted the data.
Ileana Cornelia Farcasanu: Conceived and designed the experiments; Performed the experiments; Analyzed and interpreted the data; Contributed reagents, materials, analysis tools or data; Wrote the paper.

Funding statement

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Competing interest statement

The authors declare no conflict of interest.
Additional information

No additional information is available for this paper.

Acknowledgements

Special thanks to Sorin Comorosan for technical assistance during experiments involving cell exposure to light.

References

Ames, P.R.J., Buze, T., Mesabhi, M., Amaral, M., Arcaro, A., Gentile, F., Pournouz-Zadeh, J., Delgado-Aviles, J., 2018. Oxidative/nitrative stress in the pathogenesis of systemic sclerosis: are antioxidants beneficial? Free Radic. Res. 52, 1063–1082.

Bromacher, K., Fischer, B.B., Rüenacht, K., Egggen, R.L.L., 2006. The role of Yap1p and Skn7p-mediated oxidative stress response in the defence of Saccharomyces cerevisiae against singlet oxygen. Yeast 23, 741–750.

Cai, Z., Song, L., Qin, B., Xu, W., Ren, J., Jing, P., Oey, I., 2018. Understanding the effect of anthocyanin extracted from purple sweet potatoes on alcohol-induced liver injury in mice. Food Chem. 245, 463-470.

Cácedas, G., Bennett, A.C., Gonzalez-Burgos, E., Gomez-Serrallinos, M.P., Lopez, V., Smith, C., 2019. Polyphenol-associated oxidative stress and inflammation in a model of LPS-induced inflammation in glial cells: do we know enough for responsible responding? Inflammopharmacology 27, 189-197.

Chen, M.K., Haase, S.B., 2012. New and redesigned pRS plasmid shuttle vectors for genetic manipulation of Saccharomyces cerevisiae. G3 (Bethesda) 2, 515-526.

Delmelti, A., Isonard, A.D., Toledano, M.B., 2000. H2O2 sensing through oxidation of the Yap1p transcription factor. EMBO J. 19, 5127-5166.

Dohmen, R.J., Strasser, A.W.M., Honer, C.B., Hollenberg, C.P., 1991. An efficient transformation procedure enabling long-term storage of competent cells of various yeast genera. Yeast 7, 691-692.

Egli-Balint, S., Imanishi, M., 2016. Prooxidant activity of polyphenols, flavonoids, anthocyanins and carotenoids: updated review of mechanisms and catalyzing metals. Phytother Res. 30, 1279-1391.

Eleuthero, E., Brasi, A.A., Franca, M.B., de Almeida, D.S.G., Rona, G.B., Magalhaes, R.S.S., 2018. Oxidative stress and aging: learning from yeast lessons. Fungal Biol. 122, 514-525.

Escote, X., Miranda, M., Menoyo, S., Rodriguez-Porrata, B., Carmona-Gutiérrez, D., González-Castillejo, S., Rubi-González, J.C., Reynoso-Medina, J., 2018. Anthocyanin tissue bioavailability in animals: possible implications for cardiovascular disease. Nutrients 8, E32.

Heo, H.L., Lee, C., 2005. Strawberry and its anthocyanins reduce oxidative stress-induced apoptosis in pc12 cells. J. Agric. Food Chem. 53, 1848-1899.

Hessling, M., Spellerberg, B., Hoenes, K., 2017. Photoinactivation of bacteria by polyphenols on oxidative stress. J. Food Sci. Technol. 56, 4129-4138.

Kwee, J.K., 2014. A paradoxical chemoresistance and tumor suppressive role of antioxidant in solid cancer cells: a strange case of Dr. Jekyll and Mr. Hyde. BioMed Res. Int. 2014, 209845.

Kwok-Teck, R., 2014. Comparison of methods used for assessing the viability and vitality of yeast cells. FEMS Yeast Res. 14, 1068–1079.

Lee, C., Godon, C., Laglais, G., Spector, D., Garin, J., Labarre, J., Toledano, M.B., 1999. Yap1p and Skn7p control two specialized oxidative stress response regulons in yeast. J. Biol. Chem. 274, 16040–16046.

Lee, Y.M., Yoon, Y., Yoon, H., Park, M.H., Song, S., Yeum, K.J., 2017. Dietary anthocyanins against obesity and inflammation. Nutrients 9, E1089.

Maeta, K., Nomura, W., Takatsyme, Y., Izawa, S., Inoue, Y., 2007. Green tea polyphenols function as prooxidants to activate oxidative-stress-responsive transcription factors in yeast. Appl. Environ. Microbiol. 73, 572–580.

Manchester, B.N., Oprea, E., Miniuțel, M., Ruta, L.L., Farcașanu, I.C., 2019. Dietary anthocyanins and stroke: a review of pharmacokinetic and pharmacodynamic studies. Nutrients 11, 1479.

Meyer, A.J., Dick, T.P., 2010. Fluorescent protein-based redox probes. Antioxidants Redox Signal. 13, 623–650.

Mitríca, R., Dumitru, I., Ruta, L.L., Oprea, A.M., Farcașanu, I.C., 2012. The dual action of epigallocatechin gallate (EGCG): the main constituent of green tea, against the deleterious effects of visible light and singlet oxygen-generating conditions as seen in yeast cells. Molecules 17, 10355-10369.

Morgan, B., Van Laer, K., Ouwens, T.N., Ezerina, D., Pastor-Flores, D., Amonashvili, P.S., Tursch, A., Dick, T.P., 2016. Real-time monitoring of basal H2O2 Levels with peroxiredoxin-based probes. Nat. Chem. Biol. 12, 437–442.

Mulford, R.E., Fasler, J.S., 2011. Association of the Skn7 and Yap1 transcription factors in the Saccharomyces cerevisiae oxidative stress response. Eurycaryot. Cell 10, 761-769.

Oprea, E., Ruta, L.L., Nicolau, I., Popa, C.V., Negoe, A.D., Farcașanu, I.C., 2014. Vaccinium corymbosum L. (blueberry) extracts exhibit protective action against cadmium toxicity in Saccharomyces cerevisiae cells. Food Chem. 152, 516-521.

Orlandi, I., Stammara, G., Strippoli, M., Vai, M., 2017. During yeast chronological aging stressor supplementation results in a short-lived phenotype Sir2-dependent. Redox Biol. 12, 745-754.

Poljak, B., Miliava, I., 2012. The neglected significance of “antioxidative stress”. Oxid. Med. Cell Longev. 2012, 480895.

Ruta, L.L., Popa, C.V., Nicolau, I., Farcașanu, I.C., 2018. Epigallocatechin-3-O-gallate, the main green tea component, is toxic to Saccharomyces cerevisiae cells lacking the Fet3p/Ftr1. Food Chem. 266, 292-298.

Sandoval-Ramírez, B.A., Catalán, U., Fernández-Castillejo, S., Rubio, L., Maciá, A., Sola, R., 2018. Anthocyanin tissue bioavailability in animal: possible implications for human health. A systematic review. J. Agric. Food Chem. 66, 11531-11543.

Sherman, F., 2002. Getting started with yeast. Methods Enzymol. 350, 3–41.

Singleton, V.L., Orthofer, R., Lamuela-Raventos, R.M., 1999. Analysis of total phenols and other oxidation substrates and antioxidants by means of Folin-Ciocalteu reagent. Methods Enzymol. 350, 178–189.

Smeriglio, A., Barreca, D., Bellocchio, E., Trombetta, D., 2016. Chemistry, pharmacology and health benefits of anthocyanins. Phytother Res. 30, 1265–1266.

Sprague Jr., G.F., 1991. Assay of yeast mating reaction. Methods Enzymol. 194, 77–89.

Stern, A., Tsur, T., 2004. Oxidative stress responses of the yeast Saccharomyces cerevisiae. Yeast 14, 1511–1527.

Khoe, H.E., Azlan, A., Tang, S.T., Lim, S.M., 2017. Anthocyanidins and anthocyanins: colored pigments as food, pharmaceutical ingredients, and the potential health benefits. Food Nutr. Res. 61, 1261779.