Genes predisposing to syndromic and nonsyndromic infertility: a narrative review

Tajudeen O. Yahaya 1*, Usman U. Liman 2, Haliru Abdullahi 1, Yahuza S. Koko 1, Samuel S. Ribah 1, Zulkarnain Adamu 1 and Suleiman Abubakar 1

Abstract

Background: Advanced biological techniques have helped produce more insightful findings on the genetic etiology of infertility that may lead to better management of the condition. This review provides an update on genes predisposing to syndromic and nonsyndromic infertility.

Main body: The review identified 65 genes linked with infertility and infertility-related disorders. These genes regulate fertility. However, mutational loss of the functions of the genes predisposes to infertility. Twenty-three (23) genes representing 35% were linked with syndromic infertility, while 42 genes (65%) cause nonsyndromic infertility. Of the 42 nonsyndromic genes, 26 predispose to spermatogenic failure and sperm morphological abnormalities, 11 cause ovarian failures, and 5 cause sex reversal and puberty delay. Overall, 31 genes (48%) predispose to male infertility, 15 genes (23%) cause female infertility, and 19 genes (29%) predispose to both. The common feature of male infertility was spermatogenic failure and sperm morphology abnormalities, while ovarian failure has been the most frequently reported among infertile females. The mechanisms leading to these pathologies are gene-specific, which, if targeted in the affected, may lead to improved treatment.

Conclusions: Mutational loss of the functions of some genes involved in the development and maintenance of fertility may predispose to syndromic or nonsyndromic infertility via gene-specific mechanisms. A treatment procedure that targets the affected gene(s) in individuals expressing infertility may lead to improved treatment.

Keywords: Genes, Infertility, Mutation, Ovarian Failure, Syndrome

Background

Infertility is generally defined as the inability of an organism to reproduce naturally. In humans, it is complex and defined as the failure to conceive after a year of regular and unprotected sexual intercourse [1]. Infertility affects about 48.5 million couples, representing 15% of couples worldwide [2]. Males are responsible for 20–30% of infertility, while females account for 20–35%, and the remaining is shared by both [2, 3]. However, the prevalence of infertility varies worldwide, being highest in South East Asia and West Africa [4, 5].

Infertility causes psychological, economic, and health burdens, resulting in trauma and stress, particularly in societies that emphasize childbearing [6]. In some parts of the world such as Africa and Asia, infertile couples, particularly women, face stigmatization, discrimination, and divorce. A variety of pathologies are suspected in infertility, which includes endocrine dysfunction, genetic abnormalities, infection and diseases, and autoimmune disorders [7, 8]. These pathologies are triggered by environmental factors, including toxic substance exposure as well as lifestyles, such as delayed marriage, nutrition, obesity, stress, smoking, drug use, and alcohol consumption [9]. An in-depth understanding of these mentioned causes is necessary for the prevention and effective treatment of infertility [7]. The genetic causes, in particular, need more attention and understanding because it...
accounts for 15–30% of male infertility alone [10, 11]. Fortunately, in the last few decades, technological innovations in biological studies have made possible more insightful findings on the genetic etiology of infertility that may lead to better treatment. This review, therefore, provides an update on genetics and pathophysiology of syndromic and nonsyndromic infertility.

Main text

Database searching and search strategy

To identify relevant papers on the topic, academic databases such as PubMed, Google Scholar, Uniport, GeneCards, Genetics Home Reference (GHR), and National Center for Biotechnology Information (NCBI) were searched. Key search words used include ‘infertility’, ‘male infertility’, ‘female infertility’, ‘etiology of infertility’, and ‘causes of infertility’. Others are ‘genetic etiology of infertility’, ‘gene mutations predisposing to infertility’, ‘syndromic and nonsyndromic infertility’, and ‘gene mutations causing infertility’. Each database was searched independently, after which the articles retrieved were pooled together and double citations removed.

Inclusion and exclusion criteria

Articles were included if they are available in the English language, focused on infertility, genetic etiology of infertility, and pathophysiology of infertility. Studies published before the year 2000 were excluded, except sometimes in which the information was vital. This was done to ensure up-to-date information.

A total of 133 articles were identified from all the databases, of which 120 were retained after removing duplicates (Fig. 1). Of the 120 articles retained, 110 passed the relevance test for eligibility. From the eligibility test, 101 articles fit the study objectives and were reviewed and included in this study.

Genes predisposing to syndromic and nonsyndromic infertility

The searches identified several gene mutations linked with infertility and infertility-related disorders and syndromes. However, it is beyond this study to discuss all the genes. As such, 65 genes frequently encountered in our searches and with sufficient information were included in this study. The genes were classified into genes predisposing to syndromic infertility, genes predisposing to nonsyndromic spermatogenic failure and sperm morphology abnormalities, genes predisposing to nonsyndromic sex reversal and pubertal delay, and genes predisposing to nonsyndromic ovarian failure.

Genes predisposing to syndromic infertility

Twenty-three (23) genes, representing 35% of the total genes collected, were linked with syndromic infertility (Table 1). The most common syndromes associated with infertility identified by this study are polycystic ovary syndrome (PCOS), Swyer syndrome, and Sertoli cell-only syndrome, respectively. Others include the congenital bilateral absence of the vas deferens (CBAVD), Wilm’s tumour, fibroid, Kallmann syndrome, Frasier syndrome, Denys-Drash syndrome, and Bordet-Biedl syndrome. Most of the genes cause female infertility with features such as hypogonadotropic hypogonadism, ovarian failure, sex reversal, gonad underdevelopment, puberty delay, and menstrual disorders. Some genes also predispose to male infertility.
Table 1: Genes predisposing to syndromic infertility

Gene	Locus	Biological functions	Some mutations reported	Pathophysiology/disorders
CFTR (cystic fibrosis transmembrane conductance regulator)	7q31.2	CFTR transports chloride ions into and out of cells, controlling the movement of water in tissues, which is necessary for the production of mucus that lubricates and protects the lining of the airways, digestive system, reproductive system, and other organs and tissues [12].	A 3-bp deletion named F508del, 5 T single nucleotide polymorphism (SNP) within intron 8, 7 T SNP within intron 8, and missense mutation named R117H within exon 4 were reported [13]. Others are G542X, G551D, W1282X, and N1303K [13, 14].	It causes CBAVD, which causes a disconnection between the epididymis and the ejaculatory duct, leading to obstructive azoospermia [13]. Also causes cystic fibrosis (CF), which is associated with menstrual irregularities, including amenorrhea, irregular cycles, and anovulation [15].
NRS4A1 (nuclear receptor subfamily 5 group A member 1)	9q33.3	NRS4A1 produces a transcription factor called the steroidealogenic factor 1 (SF1), which helps control the activity of several genes related to the development of ovaries and testes, particularly the production of sex hormones and sexual differentiation [16].	A missense heterozygous mutation involving c. 3G → A transition and two heterozygous frameshift mutations named c. 666delC and c. 390delG were reported [17]. The following were also reported: p. Pro311Leu, p. Arg191Cys, p. Gly121Ser, p. Asp323Asn, and p. Gly123Ala/p. Pro129Leu [18], as well as a heterozygous mutation named c. 195G > A [19].	Predisposes to Swyer syndrome, which disrupts sexual differentiation and prevents affected 46, XY male from developing testes and causing them to develop a uterus and fallopian tubes [16]. Because of the lack of development of the gonads, Swyer syndrome is also called 46, XY complete gonadal dysgenesis. In females, mutations in the gene cause several ovarian anomalies, including 46, XX gonadal dysgenesis [16].
WT1 (Wilms' tumor 1)	11p13	The gene is a transcription factor that is expressed in the kidneys, ovaries, and testes [20] and functions in gonadogenesis. Particularly, it plays an active role in ovarian follicle development [21] and spermatogenesis [22].	A heterozygous point mutation in intron 7 named +2, T → G was reported [23]. R362Q and K386R missense mutations among Chinese population [22]. Moreover, stabra et al. [24] reported p. Pro130Leu and p.Cys350Arg missense mutations among Portuguese. Two heterozygous missense mutations named p. Pro126Ser in exon1 and p. Arg330His in exon 7 were also reported among the Chinese women [25]. A variant named IVS+4C>T has also been reported [20].	The +2, T → G mutation causes Wilms' tumor, characterized by congenital male genitourinary malformation [23]. R362Q and K386R missense mutations cause loss of function of the WT1 protein, resulting in non-obstructive azoospermia [22]. The p. Pro126Ser and p. Arg330His missense mutations cause premature ovarian follicles (POF) [25]. Some mutations also cause Frasier syndrome and Denys-Drash syndrome, both of which often affect the male kidney and genitalia development [20].
FMR1 (fragile X mental retardation 1)	Xq27.3	The FMR1 encodes a protein called FMRP, which is expressed in the brain, testes, and ovaries. FMR1 transmits nerve impulses in the brain. In the cell, it transports mRNA from the nucleus to the sites where proteins are assembled, some of which are necessary for the functioning of the nerves, testes, and ovaries [26].	A region of the gene contains a CGG trinucleotide repeat of less than 10 to about 40. However, the FMR1 mutation has been reported in which the CGG was abnormally repeated from 200 to more than 1000 times [26].	Abnormal CGG expansion causes instability in the region, deactivating the gene and making little or no protein, resulting in a condition called fragile X syndrome characterized mainly by mental retardation [26]. CGG elongation between 55 and 200 repeats causes POF [27] and fragile X-associated primary ovarian insufficiency (FXPOI) [26]. FXPOI is characterized by irregular menstrual cycles, early menopause, and elevated levels of follicle-stimulating hormone (FSH) [26].
GALT (galactose-1-phosphate uridylytransferase)	9p13.3	The gene synthesizes galactose-1-phosphate uridylytransferase, which converts galactose obtained from food into glucose, the main fuel for all cellular activities. This chemical reaction also produces an active form of galactose known as UDP-galactose, which is used to build galactose-containing proteins and fats, both of which are involved in energy production, chemical signaling, cell structure building, and molecule transport [28].	The SNP named Glu188Arg or Q188R is prevalent among white Europeans and North Americans [28]. Another SNP called Ser133Leu or S133L are found mostly among the African descent [28]. The SNP named Arg144Asp or N144D was also reported [28].	It represses or stops the activity of the galactose-1-phosphate uridylytransferase, preventing cells from converting galactose into glucose. Consequently, galactose-1-phosphate and related compounds build up to toxic levels in the body, damaging tissues and organs, and leading to a condition known as galactosemia [28]. Women with galactosemia express hypergonadotropic hypogonadism and secondary amenorrhea [29], as well as ovarian failure [30].
GDF9 (growth/differentiation factor 9)	5q31.1	This gene encodes a transforming growth factor-beta superfamily, which is necessary for ovarian folliculogenesis and somatic cell function [30, 31].	Several missense mutations reported [32].	It elevates the levels of serum gonadotropins and reduces estradiol, predisposing to premature ovarian failure 14 (POF14), an ovarian disorder defined as the cessation of ovarian function under the age of 40 years. The condition is characterized by oligomenorrhea or amenorrhea
Table 1: Genes predisposing to syndromic infertility (Continued)

Gene	Locus	Biological functions	Some mutations reported	Pathophysiology/disorders
MED12 (mediator complex subunit 12)	Xq13.1	The MED12 gene codes for a protein called mediator complex subunit 12, which regulates gene activity by linking transcription factors with an enzyme called RNA polymerase II. The MED12 protein is involved in several chemical signaling pathways that control many cellular activities, such as cell growth, cell movement, and cell differentiation	Several somatic mutations in the MED12 gene have been reported [34].	It causes uterine leiomyomas, which are noncancerous growths also known as uterine fibroids. Uterine leiomyomas are common among adult women and cause pelvic pain, abnormal bleeding, and, in some cases, infertility [34]. MED12 mutations produce nonfunctional protein, which disrupts normal cell signaling and impairs regulation of cell growth and other cell functions. As a result, certain cells divide uncontrollably, leading to the growth of a tumor [34].
ANOS1 (anosmin 1)/ KAL1	Xp22.31	The gene encodes a protein called anosmin-1, which is involved in embryonic development. Anosmin-1 is expressed in the brain and involved in the migration of neurons that produce gonadotropin-releasing hormone (GnRH), which controls the production of several hormones that direct sexual development before birth and during puberty, such as the ovaries and testes functions [35].	Mutations that delete a part or the entire gene, as well as SNPs that alter or change amino acids in anosmin-1, have been reported [35], among which is c.1267C>T [36].	Alters the synthesis or function of anosmin-1 during embryonic development, resulting in the loss of sense of smell and the production of sex hormone, respectively, and the latter interferes with normal sexual development causing absence or delay of puberty [35]. Mutations in the gene also predispose to Kallmann syndrome, a disorder characterized by hypogonadotropic hypogonadism [35]. Males expressing hypogonadotropic hypogonadism often have an unusually small penis (microgenitalis), undescended testes, and lack of secondary sexual characteristics, while females fail to menstruate and develop breast [35].
LEP (leptin)	7q32.1	The gene codes for leptin, which is a hormone that takes part in body weight regulation [37], metabolism, and puberty [38], as well as cell signaling that regulates sex development hormones [37].	Complete deletion of the gene has been reported in infertile humans and rats [38]. A SNP named rs10244329 was also reported [39].	Causes congenital leptin deficiency, a disorder that causes the absence of leptin, resulting in the loss of signaling that triggers feelings of satiety, leading to excessive hunger and weight gain, reduced production of hormones that direct sexual development, and ultimately ending in hypogonadotropic hypogonadism [37].
LEPR (leptin receptor)	1p31.3	The gene synthesizes a protein called leptin receptor, which is embedded in many tissues, including the hypothalamus, and helps regulate body weight by providing binding sites for leptin [40].	At least 18 LEPR gene mutations have been reported [40].	Results in less receptor protein reaching the cell surface, causing a condition called leptin receptor deficiency, which reduces LEPR protein binding and signaling activities as well as satiety, resulting in excessive hunger and weight and reduced sex hormones, culminating in hypogonadotropic hypogonadism [40].
NR0B1 (nuclear receptor subfamily 0 group B member 1)/ AHC (adrenal hypoplasia congenital)	Xp21.2	The NR0B1 gene codes for a transcription factor called DAX1, which is involved in the development and function of several hormone-producing (endocrine) tissues, including the adrenal glands, hypothalamus, pituitary gland, as well as the ovaries and testes [41].	Complete and partial deletions of the gene have been reported [41]. Abnormally short versions of the DAX1 protein as well as SNPs have also been reported [41].	Produces inactive DAX1 protein, disrupting normal development and function of hormone-producing tissues, particularly the adrenal glands, hypothalamus, pituitary, and gonads, resulting in a condition called X-linked adrenal hypoplasia congenital [41], characterized by male puberty delay [38]. Mutations in this gene also cause Swyer syndrome [41].
HESX1 (HESX homeobox 1)	3p14.3	The HESX1 gene encodes a transcription factor that regulates the early embryonic development of several body structures, particularly the pituitary	SNPs as well as insertion and deletion mutations have been reported in this gene [42].	Alters the function of the HESX1 protein and represses the activity of other genes, disrupting the formation and early development of the
Table 1 Genes predisposing to syndromic infertility (Continued)

Gene	Locus	Biological functions	Some mutations reported	Pathophysiology/disorders
LHB (luteinizing hormone beta-subunit)	19q13.33	It encodes the beta subunit of luteinizing hormone (LH), which is expressed in the pituitary gland and promotes spermatogenesis and ovulation by stimulating the testes and ovaries to synthesize steroids [43].	The SNP named G1052A has been reported [44]. Six other SNPs were also identified and are gC356090A, gC356113T, gA356701G, gG355869A, gG356330C, and gG356606T [45].	Causes defective LH, leading to low testosterone and gonadotropins, culminating in pubertal delay, bilaterally small descended testes, and infertility [38]. Also increases susceptibility to PCOS, characterized by pubertal delay [38].
LHCGR (luteinizing hormone/choriogonadotropin receptor)	2p16.3	The gene synthesizes the luteinizing hormone/chorionic gonadotropin receptor which is a receptor for luteinizing hormone and chorionic gonadotropin. In males, chorionic gonadotropin stimulates the development of Leydig cells in the testis, which are also stimulated by luteinizing hormone to produce androgens, such as testosterone that controls male sexual development and reproduction. In females, luteinizing hormone triggers ovulation, while chorionic gonadotropins ensure normal progression of pregnancy [46].	A SNP called G935A has been reported [44]. At least 17 other SNPs were reported [46].	Impairs the development of LHCGR protein, preventing chorionic gonadotropin binding, and resulting in the absence, or poorly developed Leydig cells, a condition called Leydig cell hypoplasia, characterized by low testosterone, which interferes with male sexual development before and after birth [46]. Extreme Leydig cell hypoplasia causes 46, XY male to develop female external genitalia and small undescended testes [46]. Mild Leydig cell hypoplasia results in an external genital that is not clearly male or female [46]. Mutations in the gene also cause polycystic ovary syndrome (POS) [46].
AR (androgen receptor)	Xq12	The AR gene produces an androgen receptor, which is expressed in many tissues, where it binds to androgen to form an androgen-receptor complex, which in turn binds to DNA and regulates the activity of certain genes involved in male sexual development [47].	Abnormal elongation of a DNA segment in the AR gene known as CAG, which is normally repeated between less than 10 and 36, has been reported [47]. Some SNPs, as well as deletions and insertions, were also reported [47].	Results in the receptors that are unable to bind androgens or DNA, causing androgen insensitivity syndrome (AIS), a condition that causes male sexual dysfunction before and at puberty. The condition also causes 46, XY male sex reversal also known as gonadal dysgenesis [47]. Mutations in the gene also cause polycystic ovary syndrome [47].
SRY (sex-determining region Y)	Yp1.1.2	The gene encodes a transcription factor called the sex-determining region Y protein, which is located on the Y chromosome and regulates genes involved in male sexual activities, directing a fetus to develop testes and preventing uterus and fallopian tube formation [48].	Absence and rearrangement that wrongly placed the gene on the X chromosome have been reported [48].	Prevents production of SRY protein or hampers it, resulting in Sryer syndrome, characterized by 46, XY male sex reversal [48]. Sometimes the mutation may misplace the gene on the X chromosome from the father, causing 46, XX female to develop both ovarian and testicular tissues, a condition called ovotesticular disorder [48].
VDR (vitamin D receptor)	12q13.11	The gene is expressed in male and female reproductive tissues [49] and synthesizes a protein called vitamin D receptor, which forms a complex with an active form of vitamin D, known as calcitriol, and another protein called retinoid X receptor, which then binds to particular regions of DNA, where it regulates the activity of some genes that control several processes, particularly calcium and phosphate absorption [50]. In mice, VDR signaling plays a role in folliculogenesis and fertility [51].	The SNP in exon 9 named rs731236 was reported by Bagheri et al. [52]. Szczepański et al. [53] also reported two SNPs named rs1544410 and rs22857.	Reduces follicle number, resulting in PCOS [51, 52] or endometriosis-associated infertility [53]. VDR knock-out in female mice disrupts VDR signaling and ovarian response to stimulation, causing defective folliculogenesis and infertility [51]. Male mice deficient of VDR showed gonadal insufficiency and decreased sperm count and motility as well as histological abnormalities of the testis [49].
FKBP4 (FKBP prolyl isomerase 4)	6p21.3	The gene encodes FKBP52, which plays an important role in potentiating	Deletions and two SNPs, known as rs2968909 and rs4409904, were reported	Causes azoospermia [54] as well as implantation failure and recurrent

Note: The above text is a continuation of Table 1 from the original document, providing additional information on genes and their functions, mutations, and associated pathophysiology or disorders.
infertility with phenotypic presentations, including hypogonadotropic hypogonadism, sex reversal, puberty delay or absence, gonad underdevelopment, and spermatogenic failure.

Genes predisposing to nonsyndromic spermatogenic failure and sperm morphology abnormalities

Twenty-six (26) genes, representing 40% of the total genes collected, predispose to nonsyndromic spermatogenic failure and sperm morphology abnormalities (Table 2). Most often, mutations in the genes cause meiotic arrest, resulting in acrosome malformation or absence, ultimately ending in sperm head abnormalities such as azoospermia, globozoospermia, oligospermia, and oligozoospermia. In some cases, the meiotic arrest may result in polyploidy spermatozoa, characterized by an enlarged sperm cell head called macrozoospermia. A meiotic arrest may also decrease sperm motility and hyperactivation needed to push spermatozoa through the uterus. Sometimes, mutations in the genes may cause chromatin damage or DNA fragmentation, disrupting spermatogenesis and causing sperm cell structural defects and loss.

Genes predisposing to nonsyndromic sex reversal and pubertal delay

Five (5) of the genes collected, representing 7.69% of the total genes, predispose to sex reversal and puberty delay or absence (Table 3). Most mutations in the genes cause reduced circulating levels of gonadotropins and testosterone, resulting in hypogonadotropic hypogonadism, characterized by the absence or incomplete sexual maturation. Mutations in the genes may also cause complete or partial gonadal dysgenesis, characterized by underdeveloped or presence of both gonads.

Genes predisposing to nonsyndromic ovarian failure

Eleven (11) of the genes collected, representing 16.92% of the total genes, predispose to nonsyndromic ovarian failure (Table 4). Some mutations in the genes may reduce the sensitivity of fully grown immature oocytes to progestin hormone, resulting in a reduced number of

Table 1 Genes predisposing to syndromic infertility (Continued)

Gene	Locus	Biological functions	Some mutations reported	Pathophysiology/disorders
DDX3Y (DEAD-box Y RNA helicase)/DDKXY (DEAD-box helicase 3 Y-linked)	Yq11.21	The gene resides in the AZFa region on the Y chromosome and encodes an enzyme called ubiquitin-specific peptidase 9, Y-linked, which is necessary for sperm production [58].	A deletion mutation was reported [57].	Causes severe testicular pathology known as Sertoli cell-only (SCO) syndrome, a condition that disrupts spermatogenesis [57].
USP9Y (ubiquitin specific peptidase 9 Y-linked)	Yq11.221	USP9Y resides in the azoospermia factor (AZFa) region of the Y chromosome and encodes an enzyme called ubiquitin-specific peptidase 9, Y-linked, which is necessary for sperm production [58].	A deletion in USP9Y has been reported [59].	Predisposes to Sertoli cell-only syndrome, characterized by the absence of germ cells in the seminiferous tubules, leading to azoospermia [59]. Also causes spermatogenic failure Y-linked 2 (SPGY2), resulting in azoospermia or oligozoospermia [59].
PLK4 (Polo-like kinase 4)	4q28.1	PLK4 protein resides in the centrioles and plays an active role in centriolar duplication that is necessary for normal cell division [60, 61].	A heterozygous mutation called p.Ile242Asn was observed in mice [62]. A heterozygous 13 bp deletion called c.201_213delGAAACATCCTTCTT was also reported [62].	Causes mitotic error in mice, resulting in patchy germ cell loss in the testes similar to the human Sertoli cell-only syndrome (SCOS) [62, 63].
BBS9 (Bardet-Biedl syndrome 9)	7p14	The specific role of the protein released by this gene has not been determined [64].	A haplotype named GAAAG as well as three SNPs named rs3884597, rs6944723, and rs17773504 were reported [65].	Causes Bardet-Biedl syndrome, characterized by many features, including POF [65].
FSHR (follicle-stimulating hormone receptor)	2p16.3	The gene secretes a receptor for the follicle-stimulating hormone, which functions in the ovary and testis development [66].	A SNP in exon 7 named C366T and involving Ala to Val substitution at residue 189 was reported by Altmann et al. [67].	Predisposes to ovarian dysgenesis 1 (ODG1), characterized by primary amenorrhea, poorly developed streak ovaries, and high serum levels of FSH and LH. May also cause ovarian hyperstimulation syndrome (OHSS), characterized by massive ovarian enlargement as well as multiple serous and hemorrhagic follicular cysts lined by luteinized cells [68].

Table 2 Genes predisposing to nonsyndromic ovarian failure

Gene	Locus	Biological functions	Some mutations reported	Pathophysiology/disorders
POF1 (parthenogenetic oocyte factor 1)	2q37	The gene is expressed in the oocyte and encodes an enzyme called parthenogenetic oocyte factor 1 (POF1), which is necessary for oocyte development.	A deletion mutation was reported [65].	Predisposes to ovarian dysgenesis 1 (ODG1), characterized by primary amenorrhea, poorly developed streak ovaries, and high serum levels of FSH and LH. May also cause ovarian hyperstimulation syndrome (OHSS), characterized by massive ovarian enlargement as well as multiple serous and hemorrhagic follicular cysts lined by luteinized cells [68].

Table 3 Genes predisposing to sex reversal and puberty delay

Gene	Locus	Biological functions	Some mutations reported	Pathophysiology/disorders
P450SRA (cytochrome P450, subfamily 7, polypeptide A)	Xq28	The gene encodes an enzyme involved in steroid metabolism, which is necessary for sex differentiation.	A SNP in the gene was reported [69].	Causes sex reversal and puberty delay [69].
SRY (sex-determining region Y)	19p13.3	The gene encodes a transcription factor involved in sex determination, which is necessary for sex differentiation.	A SNP in the gene was reported [69].	Causes sex reversal and puberty delay [69].
SOX9 (SRY-box 9)	11q13.3	The gene encodes a transcription factor involved in sex determination, which is necessary for sex differentiation.	A SNP in the gene was reported [69].	Causes sex reversal and puberty delay [69].

Table 4 Genes predisposing to nonsyndromic spermatogenic failure

Gene	Locus	Biological functions	Some mutations reported	Pathophysiology/disorders
PLK4 (Polo-like kinase 4)	4q28.1	PLK4 protein resides in the centrioles and plays an active role in centriolar duplication that is necessary for normal cell division [60, 61].	A deletion mutation was reported [57].	Causes severe testicular pathology known as Sertoli cell-only (SCO) syndrome, a condition that disrupts spermatogenesis [57].
USP9Y (ubiquitin specific peptidase 9 Y-linked)	Yq11.221	USP9Y resides in the azoospermia factor (AZFa) region of the Y chromosome and encodes an enzyme called ubiquitin-specific peptidase 9, Y-linked, which is necessary for sperm production [58].	A deletion in USP9Y has been reported [59].	Predisposes to Sertoli cell-only syndrome, characterized by the absence of germ cells in the seminiferous tubules, leading to azoospermia [59]. Also causes spermatogenic failure Y-linked 2 (SPGY2), resulting in azoospermia or oligozoospermia [59].
PLK4 (Polo-like kinase 4)	4q28.1	PLK4 protein resides in the centrioles and plays an active role in centriolar duplication that is necessary for normal cell division [60, 61].	A deletion mutation was reported [57].	Causes severe testicular pathology known as Sertoli cell-only (SCO) syndrome, a condition that disrupts spermatogenesis [57].
USP9Y (ubiquitin specific peptidase 9 Y-linked)	Yq11.221	USP9Y resides in the azoospermia factor (AZFa) region of the Y chromosome and encodes an enzyme called ubiquitin-specific peptidase 9, Y-linked, which is necessary for sperm production [58].	A deletion in USP9Y has been reported [59].	Predisposes to Sertoli cell-only syndrome, characterized by the absence of germ cells in the seminiferous tubules, leading to azoospermia [59]. Also causes spermatogenic failure Y-linked 2 (SPGY2), resulting in azoospermia or oligozoospermia [59].
Table 2: Genes predisposing to nonsyndromic spermatogenic failure and sperm morphological abnormalities

Gene Name	Chromosome	Description
SYCP3 (synaptonemal complex protein 3)	12q23.2	SYCP3 is embedded in the tests and encoded an essential structural component of the synaptonemal complex, which is involved in synopsis, recombination, and segregation of meiotic chromosomes [79].
CATSPER (cation channel sperm associated 1)	11q13.1	The CATSPER codes for a protein localized in the tail of sperm cells and transport calcium cations into the cells for normal sperm motility and a type of sperm cell motility called hyperactivation, which is a rigorous movement necessary to push the sperm cells through the cell membrane of the egg cell during fertilization [73].
MTHFR (methyleneheteroalphaferolate)	1p36.22	The MTHFR gene synthesizes an enzyme called methylenetetrahydrofolate reductase, which converts a form of folate called 5, 10- methylenetetrahydrofolate to another form called 5-methyltetrahydrofolate. The latter is the primary form of folate in the blood, where it helps convert the amino acid homocysteine to another amino acid called methionine. The body uses methionine to make proteins and other important compounds as well as vital in DNA methylation and spermatogenesis [75, 76].
SPATA16 (spermatogenesis-associated 16, also known as NYD-SP12)	3q26.32	The gene is expressed mainly in the Golgi apparatus of the cells of testis [69] and actively involved in the formation of sperm acrosome, which plays a role in spermatogenesis and fusion of sperms and eggs [70].
AURKC (aurora kinase C)	19q13.43	The AURKC codes for a protein called aurora kinase C, which helps dividing cells separate from each other and ensures the accurate distribution of genetic materials (chromosomes). Aurora kinase C is most abundant in male testes, where it regulates the division of sperm cells, ensuring that every new sperm cell divides accurately and contains one copy of each chromosome [72].

Causes acrosome malformation which can be absent in severe cases, resulting in sperm head abnormality characterized by round-headed sperms known as globozoospermia [71]. Also predisposes spermatogenic failure 6 (SPGF6), an infertility disorder caused by spermatogenesis defects [70].

A homozygous SNP in exon 4 named c.848G → A was reported [17].

A homozygous deletion called c.144delC and frequently found among North African descent was reported [72].

Two insertion mutations named c.539-540insT and c.948-949insATGGC, leading to frameshifts and premature stop codons known as p.Lys180LysfsX8 and p.Asp317MetfsX18, have been reported [74].

Loss of MTHFR decreases the activity of its enzyme, disrupting folic acid metabolism, resulting in DNA hypo-methylation, ultimately ending in the absence of germinal cells and spermatogenesis arrest [13, 75, 78].

Causes early meiotic arrest, disrupting the spermatogenic process in males [17], resulting in spermatogenic failure 4 (SPGF4), a disorder characterized by azoospermia. In females, early meiotic arrest
Table 2 Genes predisposing to nonsyndromic spermatogenic failure and sperm morphological abnormalities (Continued)

Gene	Chromosome	Function/Role	Causes
HSF2 (heat-shock transcription factor 2)	6q22.31	The gene ensures centromere pairing during meiosis in male germ cells, thus important for normal spermatogenesis [80].	Heterozygous missense mutations have been reported [82].
		HSF2 is expressed in the testis and encodes heat-shock transcription factor 2, which binds specifically to the heat-shock promoter element to activate heat-shock response genes under conditions of heat or other stresses [81].	HSF2-null male mice showed embryonic lethality, neuronal defects, and reduced spermatogenesis that relates to meiotic arrest, increased sperm apoptosis, and seminiferous tubule dysgenesis [83]. Male humans showed azoospermia [82].
SYCP2 (synaptosomal complex protein 2)	20q13.33	The gene codes for a major component of the synaptosomal complex, which is required for normal meiotic chromosome synopsis during oocyte and spermatocyte development and for normal male and female fertility [84].	Heterozygous frameshift mutation and deletion have been reported in the gene [85].
		A variant named repro9 involving a C to A transversion at nucleotide 893 of the MYBL1 mRNA was reported [87]. MYBL1−/−, showing meiotic arrest similar to repro9, has also been reported [87].	Alters synaptosomal complex, disrupting spermatogenesis and resulting in cryptozoospermia and azoospermia [85, 86].
A-MYB/MYBL1 (myeloblastosis oncogene-like 1)	8q13.1	MYBL1 protein is a male-specific master regulator of meiotic genes that are involved in multiple processes in spermatocytes, particularly processes involved in cell cycle progression through pachynema [87].	Causes meiotic arrest in spermatocytes, characterized by defects in autosome synopsis in pachynema, unsynapsed sex chromosomes, incomplete double-strand break repair on synapsed pachyneme chromosomes and a lack of crossing over [87].
		Frameshift mutations were observed, so also missense mutations, particularly a missense mutation tagged V748A was observed among transgenic mice [88].	Causes meiotic arrest in male mice, resulting in spermatogenic failure, X-linked, 2 (SPGF2X2), a disorder characterized by mixed testicular atrophy and azoospermia [89]. Among humans, meiotic arrest leads to non-obstructive azoospermia [88].
TEX11 (testis expressed 11)	Xq13.1	TEX11 protein is required for spermatogenesis; particularly certain levels of the protein are required for meiotic progression. The protein is also necessary for normal genome-wide meiotic recombination rates in both sexes [88].	Causes seminomas and testicular carcinoma [91].
		A SNP in which Asp-816 is replaced with a Val or His residue at exon 17 has been reported [91].	
KIT (v-kit Hardy-Zuckerman 4 feline sarcoma viral oncogene homolog)	4q12	The gene is embedded in the reproductive cells and encoded receptor tyrosine kinases, which is involved in signal transduction. The protein takes part in phosphorylation that activates a series of proteins in multiple signaling pathways, which are necessary for normal cell growth, proliferation, survival, and movement in the reproductive cells and certain other cell types [90].	
		A variant named repro9 involving a C to A transversion at nucleotide 893 of the MYBL1 mRNA was reported [87]. MYBL1−/−, showing meiotic arrest similar to repro9, has also been reported [87].	
ADGRG2 (adhesion G protein-coupled receptor G2)	Xp22.13	This gene encodes an epididymis-specific transmembrane protein, which is involved in a signal transduction pathway controlling epididymal function and male fertility. May particularly regulate fluid exchange within the epididymis [92].	Three protein-truncating hemizygous mutations, named c.1545dupT (p.Glu516Ter), c.2845delT (p.Cys949AlafsTer81), and c.2002_2006delinsAGA (p.Leu668ArgfsTer21), have been reported [93].
		Predisposes to congenital bilateral aplasia of the vas deferens, X-linked (CBAVDX), a disease characterized by bilateral absence of vas deferens and obstructive azoospermia [92].	
FKBP6 (FKBP prolyl isomerase 6)	7q11.23	Encodes a protein that functions in immunoregulation, homologous chromosome pairing in meiosis during spermatogenesis and cellular	Deletion in the exon 8 of the gene has been reported [95].
		Deletion in the exon 8 of the gene has been reported [95].	Causes spermatogenic failure, resulting in azoospermia or severe oligoazoospermia [96].
Table 2 Genes predisposing to nonsyndromic spermatogenic failure and sperm morphological abnormalities (Continued)

Gene	Chromosome	Description	SNP Description	Effect
PRM1 (protamine 1)	16p13.13	It encodes a protein called protamine 1, which replaces histone during developmental stages of elongating spermatids and compact sperm DNA into a highly condensed, stable, and inactive complex to ensure that quality spermatozoa are produced and as well protect spermatozoa from the degrading effects of free radicals [97].	A c.102G>T transversion that results in the SNP named p.Arg34Ser, a missense mutation named c.119G>A (p.Cys40Tyr), a heterozygous mutation named c.-107G>C, and a variant named c.*51G>C have been reported [98].	Increases sperm DNA fragmentation, resulting in oligozoospermia [98].
PRM2 (protamine 2)	16p13.13	PRM2 secretes protamine 2, which replaces histone during spermatid development, condensing chromatin, and compacting the DNA to ensure production of quality spermatozoa and prevent degradation by free radicals [97].	A SNP, known as -190C > A (rs2301365), was identified in both PRM1 and 2 [99].	Causes chromatin damage and DNA breaks, resulting in sperm structural defects, reduced motility, and defective spermatogenesis due to haploinsufficiency [100].
TNP1 (nuclear transition protein 1)	2q35	The gene encodes nuclear proteins, which replace nuclear histones and in turn substituted by protamine 1 and 2 during spermatogenesis [101].	A SNP named g.IVS1+75T>C was reported by Heidan et al [102]. A deletion of 15 nucleotides in the 5′-promoter region of the gene was also reported [101].	Disrupts the highly condensed structure of the sperm nuclear chromatin, resulting in abnormal spermatogenesis [102]. Also causes varicocele, due to the failure of ipsilateral testicular growth and development [102].
TNP2 (nuclear transition protein 2)	16p13.13	TNP2 participates in the removal of the nucleohistones and in the initial condensation of the spermatid nucleus, thus contributes to the dense packing of spermatid chromatin during spermatogenesis [103].	A variant named G1272C was reported [98].	TNP2−/− in mice affects sperm chromatin structure, causing sperm head abnormalities, acrosome abnormalities in which the acrosomes do not attach to the nuclear envelope, and reduced sperm motility, resulting in tetrazoospermia [103].
DAZ1 (deleted in azoospermia 1)	Yq11.223	The gene encodes azoospermia protein 1, which is necessary for spermatogenesis. It binds to the 3′-UTR of mRNAs, regulating their translation, and promoting germ cell progression to meiosis and the formation of haploid germ cells [104].	DAZ1 deletions were reported [105].	Causes Y chromosome infertility known as spermatogenic failure Y-linked 2 (SPGFY2), a disorder resulting in azoospermia or oligozoospermia [104]. Also causes sperm structural abnormalities and reduced motility [105].
XRCC2 (X-ray repair cross complementing 2)	7q36.1	XRCC2 protein was shown in mice to be required for genetic stability, embryonic neurogenesis and viability [107].	A SNP in the gene involving c.41T>C substitution was reported [108].	Causes meiotic arrest, resulting in azoospermia [108].
CCDC62 (coiled-coil domain containing 62)	12q24.31	Encodes a nuclear receptor co-activator that enhances estrogen receptor transactivation [109]. The gene is expressed in the acrosome of developing spermatids and mature sperms, showing that it is necessary for spermatogenesis [110].	A nonsense mutation in the exon 6, which results in the formation of a premature stop codon and a truncated protein, was reported by Li et al. [110].	Causes defective sperm morphology and reduced motility [110].
EFCAB9 (EF-hand calcium2 binding domain-containing protein 9)	5q35.1	Encodes sperm-specific EF-band domain protein, which is essential for activation of CATSPER channel that regulates sperm motility [111].	EFCAB9 deletions were reported [111].	Disrupts CATSPER channel signaling, which affects sperm motility [111].
oocytes undergoing meiotic maturation. Mutations in the genes may also cause ovarian dysgenesis, characterized by absence or puberty delay, primary amenorrhea, uterine hypoplasia, and hypogonadotropic hypogonadism. Some mutations prevent the formation of primordial follicles, resulting in reduced oocyte numbers after birth.

In summary, 23 genes, representing 35%, were linked with syndromic infertility, while 42 genes, accounting for 65% cause nonsyndromic infertility. Of the 42 nonsyndromic genes, 26 predispose to spermatogenic failure and sperm morphology abnormalities, 11 cause ovarian failures, and 5 cause sex reversal and puberty delay. Overall, 31 genes (48%) predispose to male infertility, 15 genes (23%) cause female infertility, and 19 genes (29%) predispose to both. The common features of male infertility were spermatogenic failure and sperm morphology abnormalities, while ovarian failure has been the most frequently reported among infertile females. This analysis infers that male genetic infertility was more prevalent than female, with spermatogenic failure and sperm morphology abnormalities being most prevalent.

Genetic testing for infertility disorders

Knowing the exact cause of infertility allows for better diagnostic decisions and enables enhanced counseling for parents with regard to risks to their children. For this reason, when there is a means, testing of embryos should be recommended for a family with a history of genetic infertility disorders discussed above. Moreover, every healthy-looking individual is a carrier of between 5 to 8 recessive genetic disorders; so the test should be
associated genes (approximately 5000 genes). The large panel of marker genes allows the identifications of a large number of target and non-target genes [157]. However, the technique has some limitations too, which is its inability to detect haploidies, polyploidies, and mosaicsms [157].

Conclusion

Several studies reviewed showed that certain genes embedded in the hypothalamus, pituitary gland, gonads, and gonadal outflow regulate fertility in both males and females. However, mutational inactivation of these genes may cause syndromic or nonsyndromic infertility. The common features of male infertility include spermatogenic failure, resulting in azoospermia, oligospermia, and chromosome structural abnormalities. Most females express ovarian failure, resulting in menstrual dysfunction extended to everyone who has the means [157]. It is specifically recommended for embryos of couples who are recessive for a gene infertility disorder.

The conventional method used in genetic testing of embryos is the whole sequence amplification. After fertilization, the embryo undergoes mitotic divisions for 5 to 7 days, ending with the development of the blastocyst stage. A biopsy of some blastocysts is done, after which a whole genome amplification of the cells is conducted, usually using polymerase chain reaction [157, 158]. This technique is laborious, time-consuming, and expensive, so recently, a new technique known as the next-generation sequencing is being used for testing genetic disorders in infertile couples and embryos [159].

The protocol is based on an enlarged panel of disease-associated genes (approximately 5000 genes). The large

| Table 3 Genes predisposing to nonsyndromic sex reversal and pubertal delay |
|------------------|------------------|------------------|
| **GNRHR** (gonadotropin-releasing hormone receptor) | 4q13.2 | This gene encodes the receptor for type 1 gonadotropin-releasing hormone, a receptor that is expressed on the surface of pituitary gonadotrope cells, lymphocytes, breast, ovary, and prostate. GNRHR becomes activated after binding with gonadotropin-releasing hormone, and the complex formed causes the release of gonadotropin-luteinizing hormones (LH) and follicle-stimulating hormones (FSH) [123]. |
| **PROP1** (PROP paired-like homeobox 1) | 5q35.3 | The gene produces a transcription factor embedded only in the pituitary gland and releases hormones for growth, reproduction, and cell differentiation in the pituitary gland [126]. |
| **DMRT1** (doublesex- and MAB3-related transcription factor 1) | 9p24.3 | The gene encodes a transcription factor expressed in the testis and involved in male sex determination and differentiation before and after birth by promoting male-specific genes and repressing female-specific genes. May also play a minor role in oogenesis [127]. |
| **SOX3** (SRY-box transcription factor 3) | Xq27.1 | The gene codes for a transcription factor embedded in the hypothalamus and pituitary gland where it regulates neuronal development and differentiation, and as well promote male sex development [128]. |
| **RSPO1** (R-spondin 1) | 1p34.3 | Produces a protein that is essential in ovary determination through regulation of Wnt signaling [129]. |
| **c.286+1G>A** | | Copy number variations including two duplications of about 123 kb and 85 kb, a 343 kb deletion immediately upstream of SOX3, and a large duplication of approximately 6 Mb that encompasses SOX3 have been reported [128]. |
| **G7167A; p. Arg139His** | | At least 19 different mutations have been identified, including heterozygous mutations named Gln106Arg/Arg262Gln and Arg262Gln/Tyr28Cys [17] as well as homozygous missense mutation named g. G7167A, p. Arg139His [124]. |
| **5q35.3** | | The gene produces a transcription factor embedded only in the pituitary gland and releases hormones for growth, reproduction, and cell differentiation in the pituitary gland [126]. |
| **9p24.3** | | Deletions in the gene had been reported [127]. |
| **Xq27.1** | | Deletions in the gene had been reported [127]. |
| **1p34.3** | | At least 25 mutations had been reported, the most common of which deletes two amino acids, written as 301-302delAG [126]. |
| **c.286+1G>A** | | At least 25 mutations had been reported, the most common of which deletes two amino acids, written as 301-302delAG [126]. |
| **G7167A; p. Arg139His** | | At least 19 different mutations have been identified, including heterozygous mutations named Gln106Arg/Arg262Gln and Arg262Gln/Tyr28Cys [17] as well as homozygous missense mutation named g. G7167A, p. Arg139His [124]. |
| **5q35.3** | | The gene produces a transcription factor embedded only in the pituitary gland and releases hormones for growth, reproduction, and cell differentiation in the pituitary gland [126]. |
| **9p24.3** | | Deletions in the gene had been reported [127]. |
| **Xq27.1** | | Deletions in the gene had been reported [127]. |
| **1p34.3** | | At least 25 mutations had been reported, the most common of which deletes two amino acids, written as 301-302delAG [126]. |
| **c.286+1G>A** | | At least 25 mutations had been reported, the most common of which deletes two amino acids, written as 301-302delAG [126]. |
| **G7167A; p. Arg139His** | | At least 19 different mutations have been identified, including heterozygous mutations named Gln106Arg/Arg262Gln and Arg262Gln/Tyr28Cys [17] as well as homozygous missense mutation named g. G7167A, p. Arg139His [124]. |
| **5q35.3** | | The gene produces a transcription factor embedded only in the pituitary gland and releases hormones for growth, reproduction, and cell differentiation in the pituitary gland [126]. |
| **9p24.3** | | Deletions in the gene had been reported [127]. |
| **Xq27.1** | | Deletions in the gene had been reported [127]. |
| **1p34.3** | | At least 25 mutations had been reported, the most common of which deletes two amino acids, written as 301-302delAG [126]. |
| **c.286+1G>A** | | At least 25 mutations had been reported, the most common of which deletes two amino acids, written as 301-302delAG [126]. |
| **G7167A; p. Arg139His** | | At least 19 different mutations have been identified, including heterozygous mutations named Gln106Arg/Arg262Gln and Arg262Gln/Tyr28Cys [17] as well as homozygous missense mutation named g. G7167A, p. Arg139His [124]. |
Table 4 Genes predisposing to nonsyndromic ovarian failure

Gene	Chromosome	Function and Conditions	Mutations/Conditions
BMP15 (bone morphogenetic protein 15/GDF9B)	Xp11.22	The gene encodes a member of transforming growth factor-beta superfamily, which plays a role in oocyte maturation and follicular development, through activation of granulosa cells [131].	Several missense mutations reported [131]. Causes ovarian dysgenesis 2 (ODG2), a disorder characterized by lack of spontaneous pubertal development, primary amenorrhea, uterine hypoplasia, and hypergonadotropic hypogonadism as a result of streak gonads [132]. May also cause premature ovarian failure 4 (POF4), a disorder in which the ovarian function stops before the age of 40 years and is characterized by oligomenorrhea or amenorrhea, in the presence of elevated levels of serum gonadotropins and low estradiol [131, 132].
FIGLA (factor in germline alpha)	2p13.3	FIGLA encodes a germ cell-specific basic helix-loop-helix transcription factor that regulates the expression of the zona pellucida- and oocyte-specific genes, particularly genes involved in folliculogenesis [30, 133].	Missense mutations and deletions that resulted in a frameshift had been reported [134]. FIGLA knockout in female mice prevents formation of primordial follicles, and oocyte numbers drop rapidly after birth [135]. May also cause haploinsufficiency, predisposing to premature ovarian failure 6 (POF6), an ovarian disorder defined as the cessation of ovarian function under the age of 40 years and is characterized by oligomenorrhea or amenorrhea, in the presence of elevated levels of serum gonadotropins and low estradiol [134, 136].
NOBOX (newborn ovary homeobox)	7q35	NOBOX encodes a transcriptional regulator with a homeobox motif and is important for early folliculogenesis [137].	Missense mutations in the homeobox domain were observed in infertile Caucasian or African descent [138]. Predisposes to POF [139].
SAL4 (SAL-like 4)	20q13.2	The gene is expressed in the testis and oocytes and secretes putative zinc finger transcription factor that plays a role in the pluripotency of oocytes and maintenance of undifferentiated spermatogonia [38, 140].	Deletions [140]. Predisposes to nonsyndromic POF [140, 141].
FSHβ (follicle-stimulating hormone subunit beta)	11p14.1	This gene encodes the beta subunit of the follicle-stimulating hormone which in association with luteinizing hormone induces egg and sperm production [38, 142].	Tyr76X, Cys51Gly, and Val56X were reported [38]. Causes low FSH and estradiol, and high LH among females, resulting in the absence or incomplete breast development and sterility [143]. Males produce low androgen, leading to low testosterone and azoospermia, but puberty may be normal or absent [38].
HCGβ (human chorionic gonadotrophin)	19q13.3	HCGβ encodes a hormone called HCG which is secreted mainly by the placenta and is important for normal progression of pregnancy by maintaining the production of steroid hormones and other growth factors in the corpus luteum [144].	SNPs named CGB5 p.Val56Leu (rs72556325) and CGB8 p.Pro73Arg (rs72556345) had been reported [145]. Causes low levels of HCG during the first trimester of pregnancy, resulting in miscarriage and ectopic pregnancy [146].
SOHLH1 (spermatogenesis and oogenesis-specific basic helix-loop-helix 1)	9q34.3	This gene encodes one of the testis-specific transcription factors which are essential for spermatogenesis, oogenesis, and folliculogenesis. The protein is necessary for spermatogonial proliferation and differentiation as well as regulates both male and female germ-line differentiation [147].	Alternatively spliced transcript variants encoding different isoforms have been found for this gene [147]. Causes ovarian dysgenesis 5 (ODG5), a disorder characterized by lack of spontaneous pubertal development, primary amenorrhea, uterine hypoplasia, and hypergonadotropic hypogonadism [147]. May also result in spermatogenetic failure 32 (SPGF32), a condition that is characterized by non-obstructive azoospermia [148].
Table 4 Genes predisposing to nonsyndromic ovarian failure (Continued)

Gene	Chromosome	Description
SOHLH2 (spermatogenesis and oogenesis specific basic helix-loop-helix 2)	13q13.3	The SOHLH2 is expressed specifically in spermatogonia and oocytes and is required for early spermatogonial and oocyte differentiation [149]. SOHLH2 is a transcription regulator of both male and female germline differentiation and together with SOHLH1 regulates oocyte growth and differentiation [150]. At least 11 mutant variants of SOHLH2 gene have been reported [151]. In particular, two variants, named rs6563386 and rs1328626, were reported by Song et al. [152]. SOHLH2 knockout causes defects in spermatogenesis and oogenesis similar to those in SOHLH1-null mice [149]. May also predispose to PO [151]. Some mutant variants may increase the risk of non-obstructive azoospermia [152], as well as the small testis and testicular atrophy [153].
PGRMC1 (progestosterone receptor membrane component 1)	Xq24	The gene codes for progestin receptor membrane component 1, which associates with and transports a wide range of molecules, including steroids, and the gene has been demonstrated in zebrafish to function in oocyte maturation and meiosis resumption [154]. Mutant alleles named eca4, D21, and sa37360 were reported in zebrafish (ZFIN) [154]. PGRMC1 knockout in zebrafish reduces both spawning frequency and the number of embryos produced by females. It also reduces the sensitivity of fully grown immature oocytes to progestin hormone, resulting in a reduced number of oocytes undergoing meiotic maturation [154].
ESR1 (estrogen receptor 1)	6q25.1-q25.2	Estrogen receptor alpha regulates estrogen action in all reproductive tissues. Estrogen signaling mediates leukemia inhibitory factor expression, which is a cytokine critical for blastocyst implantation [155]. A SNP named rs9340799 was reported [155]. Causes estrogen resistance, resulting in absence of pubertal growth and endometriosis-related infertility [155].
HES1 (Hes family bHLH transcription factor 1)	3q29	Hes is expressed in the ovary and encodes transcriptional factors necessary for oocyte survival and maturation [156]. Deletions were reported [156]. HES1 knockout reduces notch signaling and elevates apoptosis, decreasing the number, size, and maturation of oocytes [156].

and pregnancy loss. Males and females may also express sex reversal, pubertal delay or absence, and genital abnormalities such as micro-penis and absence of the breast. Male genetic infertility was more prevalent than female, with spermatogenic failure and sperm morphology abnormalities being most prevalent. The mechanisms leading to these pathologies are gene-specific, which, if targeted in the affected, may lead to improved treatment. Medical practitioners are advised to target these genes in the affected.

Abbreviations
AIS: Androgen insufficiency syndrome; BBS: Bardet-Biedl syndrome; CBAVD: Congenital bilateral absence of the vas deferens; CF: Cystic fibrosis; FSH: Follicle-stimulating hormone; FXPOI: Fragile X-associated primary ovarian insufficiency; GHR: Genetic home reference; HH: Hypogonadotropic hypogonadism; LH: Luteinizing hormone; NCBI: National Center for Biotechnology Information; OHSS: Ovarian hyperstimulation syndrome; ODG: Ovarian dysgenesis; PCOS: Polycystic ovary syndrome; POF: Premature ovarian failure; SCOS: Sertoli cell-only; SNP: Single nucleotide polymorphism; SPGF: Spermatogenic failure

Acknowledgments
Not applicable.

Authors’ contributions
TOY conceptualized and did literature searches, article writing, and correspondence. UUL, HA, YSK, SSR, ZA, and SA did literature searches, sorting, and referencing. All authors proofread and approved the final manuscript.

Availability of data and materials
Not applicable.

Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Author details
1Department of Biolog, Federal University Birnin-Kebbi, PMB 1157, Birnin-Kebbi, Nigeria. 2Department of Biochemistry and Molecular Biology, Federal University Birnin-Kebbi, Birnin-Kebbi, Nigeria.

Received: 12 June 2020 Accepted: 7 August 2020
Published online: 09 November 2020

References
1. Venkatesh T, Suresh PS, Tsutsumi R (2014) New insights into the genetic basis of infertility. Appl Clin Genet. 7:235–243. https://doi.org/10.2147/TACG.S40809
2. Agarwal A, Mulgund A, Hamada, A, et al. A unique view on male infertility around the globe. Reprod Biol Endocrinol. 2015; 13: 37 https://doi.org/10.1186/s12958-015-0032-1.
3. Chowdhury SH, Cozma AI, Chowdhury JH. Infertility. Essentials for the clinician. 3rd edition. Wolters Kluwer. Hong Kong. 2017.
4. Mascarenhas MN, Flaxman SR, Boerma T et al (2012) National, regional, and global trends in infertility prevalence since 1990: a systematic analysis of 277 health surveys. PLoS Med. 9:e1001356 https://dx.plos.org/10.1371/journal.pmed.1001356
5. Odunvubn W, Oziga D, Oyele L, Ojeogwu C (2018) Pattern of infertility among infertile couples in secondary health facility in Delta State, South South Nigeria. Trop J Obstet Gynaecol. 35:244-248. https://doi.org/10.4103/TJOG.TJOG_61_18
157. Cariati F, D’Argenio V, Tomaiuolo R (2019) The evolving role of genetic tests in reproductive medicine. J Transl Med. 17:267. https://doi.org/10.1186/s12967-019-2019-8

158. Devine K, Roth L. 2020. Genetic testing of embryos. Shady grove fertility. Available at https://www.shadygrovefertility.com/treatments-success/advanced-treatments/genetic-testing-embryos.

159. Treff NR, Fedick A, Tao X, Devkota B, Taylor D, Scott RT (2013) Evaluation of targeted next-generation sequencing-based preimplantation genetic diagnosis of monogenic disease. Fertil Steril. 99:1377–1384. https://doi.org/10.1016/j.fertnstert.2012.12.018

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.