A uniform reconstruction formula in integral geometry

V P Palamodov
School of Mathematical Sciences, Tel Aviv University, Israel
E-mail: palamodo@post.tau.ac.il

Received 1 December 2011, in final form 23 April 2012
Published 16 May 2012
Online at stacks.iop.org/IP/28/065014

Abstract
A new method for analytic inversion of Radon-type integral transforms is proposed.

1. Introduction
We present a uniform reconstruction method for a class of geometric integral transforms for submanifolds of co-dimension 1. The reconstruction does not include summation of an infinite series and looks like a standard inversion of the Radon transform. We specify this method for classical and new acquisition geometries. The condition of regularity is necessary for an inversion operator to be bounded in a Sobolev space scale, but it is not sufficient. The existence of an exact reconstruction formula depends on vanishing of some singular integrals of rational forms on a sphere. In section 8, we discuss reconstruction for families of spheres. This subject has been in the focus of recent research; see surveys of related results in [13, 12, 15].

2. Geometry and integrals
Let X and Σ be smooth n-dimensional manifolds where $n > 1$, Z be a smooth closed hypersurface in $X \times \Sigma$ and $p : Z \rightarrow X$, $\pi : Z \rightarrow \Sigma$ be natural projections. We suppose that there exists a real smooth function Φ_1 in $X \times \Sigma$ (called the generating function) such that $Z = \{(x, \sigma) ; \Phi_1(x, \sigma) = 0\}$ and $d_x \Phi \neq 0$ on Z. Suppose that

(i) The map π has rank n and the mapping $P : N^*(Z) \rightarrow T^*(X)$ is a local diffeomorphism.
Here, $N^*(Z)$ denotes the co-normal bundle of Z and $P(x, \sigma; v_x, v_\sigma) = (x, v_x) \in T^*(X)$. It follows that the set $Z(\sigma) = \pi^{-1}(\sigma) = \{x; \Phi(x, \sigma) = 0\}$ is for any $\sigma \in \Sigma$ a smooth hypersurface in X, and for any point $x \in X$ and for any tangent hyperplane $h \subset T_x(X)$, there is a locally unique hypersurface $Z(\sigma)$ through x tangent to h.

Proposition 2.1. For an arbitrary generating function Φ property (i) is equivalent to the condition $\det(d_x \Phi, d_\sigma \Phi, \Psi) \neq 0$, where $\Psi(x, t; \sigma, \tau) = t \tau \Phi(x, \sigma)$, $t, \tau \in \mathbb{R}$, $t \tau > 0$, for any local coordinate system x_1, \ldots, x_n in X and any local coordinate system $\sigma_1, \ldots, \sigma_m$ in Σ.

0266-5611/12/065014+15$33.00 © 2012 IOP Publishing Ltd Printed in the UK & the USA
For a proof, see [18], proposition 1.1.

Definition. We call a generating function \(\Phi \) regular if it satisfies conditions (i) and (ii) there are no conjugate points, that is, the equations \(\Phi (x, \sigma) = \Phi (y, \sigma) = 0 \) and \(d_x \Phi (x, \sigma) = d_y \Phi (y, \sigma) \) are fulfilled for no \(x \neq y \in X, \sigma \in \Sigma \).

We assume further that \(X \) is an open set in a Euclidean space \(E^n \); let \(dV \) be the volume form and \(dS \) be a hypersurface element in \(E^n \). Consider the integral

\[
M_{\Phi} f (\sigma) = \int \delta (\Phi (x, \sigma)) f dV = c = \int f q
\]

for an arbitrary continuous function \(f \) compactly supported in \(X \). The quotient \(q = dV/d\Phi \) denotes an arbitrary \(n - 1 \) form \(q \) such that \(d\Phi \wedge q = dV \). It is defined up to a term \(h d\Phi \) where \(h \) is a continuous function. An orientation of a hypersurface \(Z (\sigma) \) is defined by means of the form \(d\Phi \) and the integral of the form \(f q \) over \(Z (\sigma) \) is uniquely defined. We call the operator \(M_{\Phi} \) Funk–Radon transform generated by \(\Phi \). This transform can be written in terms of Euclidean integrals as follows:

\[
M_{\Phi} f (\sigma) = \int_{Z(\sigma)} \frac{f dS}{|\nabla_{\sigma} \Phi (x, \sigma)|}, \quad (1)
\]

where \(\nabla a \) is the gradient of a function \(a \) in \(E^n \). The function \(|\nabla_{\sigma} \Phi| \) does not vanish because of (i). Suppose that the gradient factorizes through \(X \) and \(\Sigma \), that is, \(|\nabla_{\sigma} \Phi (x, \sigma)| = m(x) \mu (\sigma) \) for some positive continuous functions \(m \) in \(X \) and \(\mu \) in \(\Sigma \). Then data of the Funk transform are equivalent to data of Euclidean hypersurface integrals

\[
R f (\sigma) = \int_{Z(\sigma)} f dS, \quad \sigma \in \Sigma
\]

since \(R f (\sigma) = \mu (\sigma) M_{\Phi} (mf) (\sigma) \). The reconstruction problem of a function \(f \) from integrals \(R f \) is then reduced to inversion of the operator \(M_{\Phi} \).

We say that a generating function \(\Phi \) is resolved if \(\Sigma = \mathbb{R} \times S^{n-1} \), and \(\Phi (x; \lambda, \omega) = \theta (x, \omega) - \lambda, \lambda \in \mathbb{R}, \omega \in S^{n-1} \) for a smooth function \(\theta \) on \(X \times S^{n-1} \), where \(S^{n-1} \) denotes the unit sphere in \(E^n \). (Here and later we replace the notation \(\sigma \) by \((\lambda, \omega) \).) Note that the map \(p : Z \to X \) is always proper for a resolved generating function. This property guarantees that the functions \(M_{\Phi} f \) and \(R f \) have compact support in \(\Sigma \). The operator \(M_{\Phi} \) fulfills the range conditions similar to that of the Radon transform.

Proposition 2.2. Let \(\Phi = \theta - \lambda \) be a resolved regular generating function and \(\theta (x, \omega) \) be a polynomial function of \(\omega \) of order \(m \). Then for an arbitrary integrable function \(f \) in \(X \) with compact support and for an arbitrary polynomial \(p (\lambda) \) of order \(k \), the integral

\[
\int p (\lambda) M_{\Phi} f (\lambda, \omega) d\lambda
\]

is a polynomial of \(\omega \) of order \(\leq mk \).

Proof. We have

\[
\int p (\lambda) M_{\Phi} f (\lambda, \omega) d\lambda = \int p (\lambda) \int_{\theta = \lambda} \frac{f dV}{d\theta} d\lambda = \int_{X} p (\theta (x, \omega)) f (x) dV,
\]

where \(p (\theta (x, \omega)) \) is a polynomial of \(\omega \) of order \(\leq mk \). \(\Box \)
3. Main theorem

For a real smooth function \(f \) in a manifold \(X \) and a natural \(n \), we consider singular integrals
\[
I_{n \pm} (\rho) = \int_X \frac{\rho}{(f \pm i \epsilon)^n},
\]
for a smooth density \(\rho \) with compact support. If \(df \neq 0 \) on the zero set of \(f \), then the limits exist and the functionals \(I_{n \pm} \) are generalized functions in \(X \). The functional
\[
(P) \int_X \frac{\rho}{f^n} = \text{Re} I_{n+} (\rho) = \text{Re} I_{n-} (\hat{\rho})
\]
is called a principal value integral. For a resolved regular generating function \(\Phi = \theta - \lambda \), we define the function on \(X \times X \setminus \{ \text{diag} \} \)
\[
\Theta_n (x, y) = \int_{S^{n-1}} \frac{d\omega}{\theta(x, \omega) - \theta(y, \omega)},
\]
where \(d\omega \) is the Euclidean volume form on \(S^{n-1} \). The singular integral converges since by (ii) the \(d\omega (\theta(x, \omega) - \theta(y, \omega)) \neq 0 \) as \(\theta(x, \omega) - \theta(y, \omega) = 0 \).

Theorem 3.1. Let \(\Phi = \theta - \lambda \) be a regular resolved generating function in \(X \times \Sigma \) and \(f \in L_2(X) \) be an arbitrary function with compact support. If \(n \) is even and \(\text{Re} \Theta_n (x, y) = 0 \) for any \(x \neq y \in X \), a reconstruction from data of \(M_\Phi f \) is given by the formula:
\[
f(x) = \frac{1}{(2\pi i)^n} D_n (x) \int_{\Sigma} M_\Phi f(\lambda, \omega) \frac{d\lambda d\omega}{\theta(x, \omega) - \lambda}.
\]
(2)

If \(n \) is odd and \(\text{Im} \Theta_n (x, y) = 0 \) for \(x \neq y \), the function can be reconstructed by
\[
f(x) = \frac{1}{2(2\pi i)^{n-1} D_n (x)} \int_{\Sigma} \left[\frac{\partial^{n-1}}{\partial \lambda^{n-1}} M_\Phi f(\lambda, \omega) \right]_{\lambda = \theta(x, \omega)} d\omega
\]
(3)

where
\[
D_n (x) = \frac{1}{|S^{n-1}|} \int_{S^{n-1}} \frac{d\omega}{||\nabla \theta(x, \omega)||^n}, \quad \nabla = \nabla_x.
\]

Integrals (2) and (3) converge in mean on any compact set in \(X \).

Remark 1. A more invariant form of (2) or (3) is the reconstruction of the form \(f \) \(dV \):
\[
f \ dV = \frac{1}{(2\pi i)^n} D_n \int \ldots d\omega.
\]
The quotient \(dV/D_n \) is invariant under scale transformations in \(E^n \).

Remark 2. Beylkin studied ‘the generalized Radon transform’ \([8]\), which coincides with the operator \(M_\Phi \) in the Euclidean space. He constructed a Fourier integral operator parametrix for this operator and reduced inversion of this operator to solution of a Fredholm equation.

Lemma 3.2. The integral transform
\[
I_n f(x) = (P) \int_{S^{n-1}} \int_\Sigma M_\Phi f(\lambda, \omega) \frac{d\lambda d\omega}{\Phi^n(\lambda; x, \omega)}
\]
for even \(n \)
\[
= \frac{1}{(2\pi i)^{n-1} D_n (x)} \int_{S^{n-1}} \left[\frac{\partial}{\partial \lambda} \right]^{n-1} M_\Phi f(\lambda, \omega) \bigg|_{\lambda = \theta(x, \omega)} d\omega,
\]
for odd \(n \)
is a continuous operator \(L_2(X)_{\text{comp}} \to L_2(X)_{\text{loc}}. \)
Proof of lemma. We can write for even \(n \)

\[
I_n f(x) = - \int_{\Phi(x)} M_\phi f(\lambda, \omega) \frac{d\mu}{d\lambda} \frac{d\omega}{d\lambda} (P) \int_R (\mu - \lambda)^{-n} M_\phi f(\lambda, \omega) \ d\lambda
\]

since \(d_\mu \Phi(x; \mu, \omega) = -d_\mu \Phi(x; \mu, \omega) = 0 \) implies \(\mu - \lambda = \Phi(x; \lambda, \omega) \). It follows that

\[I_n = M_\phi^* \Lambda_n M_\phi \]

where \(\Lambda_n \) is a convolution operator in \(R \) with the principal value kernel \(\lambda^{-n} \) and \(M_\phi^* \) is the back-projection operator as in \([18]\) with \(d\Sigma = d\lambda \ d\omega \). The map \(p : Z \to X \) is proper since \(\Phi \) is a resolved generating function. Therefore by \([18]\), corollary 3.3, the operator \(M_\phi \) is bounded in the spaces \(H^n(X) \to H^{(n-1)/2}(\Sigma) \), where \(K \) is an arbitrary compact set in \(X \) and \(\Lambda = \pi^{-1}(p(K)) \) is a compact in \(\Sigma \). The operator \(\Lambda_n \) is a PDO of order \(n - 1 \) and generates a bounded operator \(H^{(n-1)/2}(\Sigma) \to H^{(n-1)/2}(\Sigma) \). By \([18]\), proposition 3.1, the operator \(M_\phi^* \) is continuous in the spaces \(H^{(n-1)/2}(\Sigma) \to H^{0}_{\text{loc}}(X) \). Finally, \(I_n \) is continuous as an operator \(H^0_{\text{loc}}(X) \to H^0_{\text{comp}}(X) \).

In the case of odd \(n \), a similar factorization holds for \(I_n \) with \(\Lambda_n = (\partial/\partial \lambda)^{n-1} \) which leads to the same conclusion. \(\square \)

Proof of theorem. For even \(n \) and an arbitrary \(x \in X \) and a function \(f \) that vanishes in a neighborhood of \(x \), we calculate

\[
I_n f(x) = (P) \int_{\Sigma} M_\phi f(\lambda, \omega) \ d\lambda \ d\omega = \int_{\Lambda_n} d\omega (P) \int_{\Phi(x; \lambda)} f(y) q(\theta(x, \omega) - \lambda) \frac{d\lambda}{d\theta(x, \omega)}
\]

Here, the relation \(d\lambda = d\theta \) holds in \(Z \) and the equation \(d\theta \land q = dV \) is fulfilled in \(X \) by definition. Thus the function \(\Theta_n \) is the off-diagonal kernel of the operator \(I_n \). It vanishes by the assumption. Therefore \(\Theta_n(x, y) \) is supported in the diagonal and according to lemma 3.2, we have \(\Theta_n(x, y) = a_n(x) \delta_n(y) \) for a locally bounded function \(a_n \) in \(X \).

If \(n \) is odd, then we have

\[
I_n f(x) = \int_{\Lambda_n} d\omega \int_R f(y) \frac{dV}{(\theta(x, \omega) - \lambda)^{n-1}}
\]

that is, \(\pi^{-1}(n-1)! \int \Theta_n(x, y) f(y) dV \)

Next we calculate the function \(a_n \). Choose a smooth function \(e_0 \) of one variable with support in \([-1, 1]\) such that \(e_0(0) = 1 \) and set \(e_\varepsilon(x) = e_0(|x|^2/\varepsilon^2) \) for \(x \in R^n \) and any \(\varepsilon > 0 \).

Take a point \(x_0 \in X \) and show that

\[
\text{Re} \int_X dV \int_{\Lambda_n} f(y) \frac{dV}{(\theta(x, \omega) - \lambda(x_0))^{n-1}} \rightarrow a_n(x_0)
\]
for n even and

$$
\frac{(n-1)!}{\pi} \text{Im} \int_X dV \int_{S^{n-1}} e_\epsilon (x-x_0) \, d\omega \frac{\epsilon}{(\theta (x, \omega) - \theta (x_0, \omega) - i0)^n} \to a_n (x_0)
$$

for n odd as $\epsilon \to 0$. We can change order of integrals and integrate first over X.

Lemma 3.3. If n is even, we have for any $x_0 \in X$, arbitrary $\omega \in S^{n-1}$ and small ϵ

$$
a_n (x_0, \omega) \equiv \text{Re} \int_X e_\epsilon (x-x_0) \, dV \int_{S^{n-1}} e_\epsilon (x-x_0) \, d\omega \frac{(-1)^{n/2-1} \pi^{(n+1)/2}}{\Gamma ((n+1)/2)} \frac{1}{|\nabla \theta (x_0, \omega)|^{n+\epsilon}} + o (1),
$$

where $|o(1)| \leq C \epsilon^{1/2} \log 1/\epsilon$ where C does not depend on ω. For odd n, we have

$$
a_n (x_0, \omega) \equiv \frac{(n-1)!}{\pi} \text{Im} \int_X (\theta (x, \omega) - \theta (x_0, \omega) - i0)^n d\omega
\int_{S^{n-1}} \frac{d\omega}{|\nabla \theta (x_0, \omega)|^n} = \frac{(-1)^{(n-1)/2} (2\pi i)^n}{(n-1)!} D_n (x_0) + o (\epsilon).
$$

Taking the limit and integrating (4) over S^{n-1} yields for even n the equation

$$
a_n (x_0) = \lim_{\epsilon \to 0} \int_X a_n (x_0, \omega) \, d\omega = (-1)^{n/2-1} \pi^{(n+1)/2} \int \frac{d\omega}{|\nabla \theta (x_0, \omega)|^n} \int_{S^{n-1}} \frac{d\omega}{|\nabla \theta (x_0, \omega)|^n}
$$

which implies (2). For odd n, we obtain

$$
a_n (x_0) = \lim_{\epsilon \to 0} \int_X a_n (x_0, \omega) \, d\omega = 2 (2\pi i)^{n-1} \frac{1}{|S^{n-1}|} \int \frac{d\omega}{|\nabla \theta (x_0, \omega)|^n} = 2 (2\pi i)^{n-1} D_n (x_0),
$$

which yields (3). This completes the proof of theorem 3.1.

Proof of lemma. We show first that the θ can be replaced by a linear function. Choose a Euclidean coordinate system x_1, \ldots, x_n in E such that $\partial \theta (x_0, \omega) / \partial x_1 = |\nabla \theta|, \partial \theta (x_0, \omega) / \partial x_2 = \ldots = \partial \theta (x_0, \omega) / \partial x_n = 0$; we have then $dV = dx \equiv dx_1, \ldots, dx_n$. If n is even, we integrate by parts n times with respect to x_1:

$$
\text{Re} \int \frac{e_\epsilon (x-x_0) \, dV}{(\theta (x, \omega) - \theta (x_0, \omega) - i0)^n} = \frac{1}{(n-1)!} \text{Re} \int \frac{d_1 (x) \, dx}{(\theta (x, \omega) - \theta (x_0, \omega) - i0)^{n-1}}
$$

$$
\cdots = \frac{1}{(n-1)!} \int \log |\theta (x, \omega) - \theta (x_0, \omega)| d_n (x) \, dx
$$

$$
d_1 = \frac{\partial}{\partial x_1} \frac{e_\epsilon (x-x_0)}{|\nabla \theta (x_1)|} = \frac{\partial e_\epsilon}{\partial x_1} \frac{1}{|\nabla \theta (x_1)|} - \frac{\partial}{\partial x_1} \frac{|\nabla \theta (x_1)|}{|\nabla \theta (x_1)|} \frac{e_\epsilon}{|\nabla \theta (x_1)|^2}
$$

$$
\cdots
$$

$$
d_n = \frac{\partial}{\partial x_1} d_{n-1} (x) = \frac{\partial}{\partial x_1} \frac{1}{|\nabla \theta (x_1)|} \frac{e_\epsilon}{|\nabla \theta (x_1)|} + \cdots,
$$

where omitted terms only include derivatives of e_ϵ of order n. Changing the variables $x = \epsilon y$, we obtain

$$
d_n (y) = \epsilon^{-n} \frac{\partial^n e_\epsilon}{\partial y^n} \frac{1}{|\nabla \theta (\epsilon y)|^n} + o (\epsilon^{1-n}), \quad dx = \epsilon^n dy.
$$

By Lagrange’s theorem we can write

$$
\theta (\epsilon y, \omega) - \theta (0, \omega) = \epsilon \rho_\epsilon (y), \quad \rho_\epsilon (y) = \int_0^1 (y, \nabla \theta (\epsilon y)) \, dt.
$$

$$
\theta (\epsilon y, \omega) - \theta (0, \omega) = \epsilon \rho_\epsilon (y), \quad \rho_\epsilon (y) = \int_0^1 (y, \nabla \theta (\epsilon y)) \, dt.
$$
This yields
\[
\int \log |\theta (x, \omega) - \theta (x_0, \omega)| d_{\nu}(x) \, dx = \int \left(\log \varepsilon \right) d_{\nu}(x) \, dx + \int \log |\rho_\varepsilon(y)| |d_{\nu}(x)\, dx.
\]
The first integral vanishes since \(d_{\nu}\) is equal to \(x_1\)-derivatives of a function with compact support. It follows that the left-hand side of (5) equals
\[
\frac{1}{(n-1)!} \int \log |\rho_\varepsilon(y)| |d_{\nu}(x)\, dx = \int \log |\rho_\varepsilon(y)| \frac{1}{|\nabla \theta (x_0, \omega)|^n} \frac{\partial^n e}{\partial y^n} \, dy + O(\varepsilon)
\]
since the logarithmic factor is absolutely integrable. By (7) we have \(C^1\)-convergence \(\rho_\varepsilon \to \langle y, \nabla \theta (0) \rangle\) as \(\varepsilon \to 0\) in a neighborhood of the origin. This implies the inequality
\[
-\int_{|y| \leq 1, |\rho_\varepsilon(y)| \leq \varepsilon} \log |y| \, dy + \int_{|y| \leq 1, |\rho_\varepsilon(y)| \leq \varepsilon} \log |\rho_\varepsilon(y)| \, dy \leq C \varepsilon \log |\delta|,
\]
where \(\delta, 0 < \delta \leq 1\), is arbitrary and \(C\) does not depend on \(\varepsilon\) and \(\delta\). On the other hand, \(\log |\rho_\varepsilon(y)| \to \log |y|\) everywhere as \(\varepsilon \to 0\). Therefore,
\[
\int \log |\rho_\varepsilon(y)| \frac{\partial^n e}{\partial y^n} \, dy \to \int \log |y| \frac{\partial^n e}{\partial y^n} \, dy
\]
and
\[
\text{Re} \int \frac{e_\varepsilon (x - x_0) \, dV}{(\theta (x, \omega) - \theta (x_0, \omega) - i0)^n} \to \frac{1}{(n-1)!} \frac{1}{|\nabla \theta (x_0, \omega)|^n} \int \log |y| \frac{\partial^n e}{\partial y^n} \, dy.
\]
More detailed arguments show that the difference is equal to \(O(e^{1/2} \log \varepsilon)\). The same is true for the linear function \(\theta (x, \omega) = x_1\), that is,
\[
\int_X \frac{e_\varepsilon (x - x_0) \, dV}{(\theta (x, \omega) - \theta (x_0, \omega) - i0)^n} \to \frac{1}{(n-1)!} \frac{1}{|\nabla \theta (x_0, \omega)|^n} \int \text{Re} \, e(y) \, dy, \quad \varepsilon \to 0.
\]
Calculate the integral on the right-hand side by partial integration:
\[
\text{Re} \int_{\mathbb{R}^n} \frac{e \, dy}{(y_1 - i0)^n} = \frac{1}{n-1} \text{Re} \int_{\mathbb{R}^n} \frac{dy}{(y_1 - i0)^{n-1}} \frac{\partial e}{\partial y_1}
\]
\[
= \frac{1}{n-1} \text{Re} \int_{\mathbb{S}^{n-1}} (\cos \omega_1 - i0)^{2-n} \, d\omega \int_0^\infty \frac{\partial e_0}{\partial r^2} \, dr^2
\]
\[
= -\frac{1}{n-1} \text{Re} \int_{\mathbb{S}^{n-1}} (\cos \omega_1 - i0)^{2-n} \, d\omega
\]
\[
= \frac{|\mathbb{S}^{n-2}|}{n-1} \text{Re} \int_0^{\pi} \sin^{n-2} \omega_1 (\cos \omega_1 - i0)^{2-n} \, d\omega_1,
\]
where \(y = r \cos \omega_1\) since \(\frac{\partial e}{\partial y_1} = 2y_1\frac{\partial e}{\partial r} \quad y_1 - i0 = (\cos \omega_1 - i0) \, r, \quad \int_0^\infty \partial e_0/\partial r^2 \, dr^2 = -e(0) = -1.
\]
By substituting \(s = \cos^2 \omega_1\), we obtain
\[
\text{Re} \int_0^{\pi} \left(\frac{\sin \omega_1}{\cos \omega_1 + i0} \right)^{2-n}\, d\omega_1 = \frac{1}{2} B \left(\frac{n-1}{2}, \frac{3-n}{2} \right) = (-1)^{n/2} \frac{\pi}{2}.
\]
We use the formula for the Beta-function extended for all complex (non-negative integer) values of arguments. The exponent \(\lambda = 1/2 - n/2\) is a regular point, and we can use a classical formula. The right-hand side of (8) equals
\[
(-1)^{n/2-1} \frac{\pi|\mathbb{S}^{n-2}|}{2(n-1)} = (-1)^{n/2-1} \frac{\pi^{(n+1)/2}}{\Gamma((n+1)/2)},
\]
which yields (6).
In the case of odd \(n \), we integrate by parts as in the previous case and obtain

\[
\text{Im} \int \frac{e_\varepsilon (x - x_0)}{(\theta (x, \omega) - \theta (x_0, \omega) - i 0)^n} \, dV = \frac{\pi}{(n - 1)!} \int_{\theta(x_0, \omega) > \theta(x, \omega)} d_n(x) \, dx.
\]

Taking into account (6) and convergence \(\rho_\varepsilon \to \gamma_1 \), the limit of the right-hand side is

\[
\frac{\pi}{(n - 1)! |\nabla \theta (x_0, \omega)|^n} \int_{y_1 > 0} \left| \frac{\partial^n e}{\partial y_1^n} \right| dy.
\]

Integrating by parts backward gives the equation

\[
\int y_1 > 0 \frac{\partial^n e}{\partial y_1^n} dy = - \int y_1 = 0 \frac{\partial^{n-1} e}{\partial y_1^{n-1}} dy^{-} = -2^{m-1} (n - 2)!! |S^{n-2}| \int_0^\infty \frac{\partial^m e_0 (s)}{\partial s^m} s^{m-1} ds,
\]

where \(y' = (y_2, \ldots, y_m) \), \(m = (n - 1)/2 \), \(s = r^2 \). Here, we apply the formula

\[
\left. \frac{\partial^{n-1} e(y)}{\partial y_1^{n-1}} \right|_{y_1 = 0} = 2^m (n - 2)!! \frac{\partial^m e_0 (s)}{\partial s^m}.
\]

Integrating by parts \(m - 1 \) times in the interior integral, we obtain the quantity

\[
\int_0^1 \frac{\partial^m e_0 (s)}{\partial s^m} s^{m-1} ds = (-1)^{m-1} (m - 1)! \int_0^1 \frac{\partial e_0}{\partial s} ds = (-1)^m (m - 1)!!.
\]

This implies that (9) equals

\[
(-1)^m 2^{m-1} \pi (m - 1)! (n - 2)!! |S^{n-2}| \frac{1}{(n - 1)! |\nabla \theta (x_0, \omega)|^n} = 2 (2\pi i)^{m-1} \frac{1}{(n - 1)! |S^{n-2}| |\nabla \theta (x_0, \omega)|^n}.
\]

For odd \(n \) we have

\[
a_n (x_0, \omega) = \frac{(n - 1)!}{\pi} \lim_{\varepsilon \to 0} \int_{|X|} \frac{e_\varepsilon (x - x_0)}{(\theta (x, \omega) - \theta (x_0, \omega) - i 0)^n} \, dx = \frac{2 (2\pi i)^{n-1}}{|S^{n-1}| |\nabla \theta (x_0, \omega)|^n}.
\]

Integrating over \(S^{n-1} \) we obtain

\[
a_n (x_0) = \int a_n (x_0, \omega) \, d\omega = \frac{2 (2\pi i)^{n-1}}{|S^{n-1}|} \int \frac{d\omega}{|\nabla \theta (x_0, \omega)|^n}
\]

and (3) follows.

\[
\square
\]

4. Integrals of rational trigonometric functions

We focus now on the conditions of theorem 3.1 and show that the condition (ii) can be weakened in the case \(n = 2k \). A function of the form

\[
t(\varphi) = \sum_{j=0}^k a_j \cos j\varphi + b_j \sin j\varphi
\]

is called the trigonometric polynomial of degree \(k \) if \(a_j \neq 0 \) or \(b_k \neq 0 \). Any trigonometric polynomial is \(2\pi \)-periodic, is well defined and holomorphic on the cylinder \(\mathbb{C}/2\pi \mathbb{Z} \). It always has \(2k \) zeros in the cylinder. If the polynomial is real, then the number of real zeros is even.

Lemma 4.1. Let \(t(\varphi) \) and \(s(\varphi) \) be real trigonometric polynomials such that \(\deg s < \deg t \) and all the roots of \(t \) are real. Then for \(r = s/t \) and arbitrary natural \(n \),

\[
(P) \int_0^{2\pi} r^n (\varphi) \, d\varphi = \frac{1}{2} \int_0^{2\pi} (r (\varphi) + i 0)^n \, d\varphi + \frac{1}{2} \int_0^{2\pi} (r (\varphi) - i 0)^n \, d\varphi = 0.
\]

(10)
Proof. Suppose first that all roots of \(t \) are simple. Let \(\alpha_1 < \alpha_2 < \ldots < \alpha_m \) be all roots of \(\partial t / \partial \psi \) on the circle \(\mathbb{R} / 2 \pi \mathbb{Z} \). Let \(\varepsilon_k = \text{sgn} \partial t / \partial \psi \) on the interval \((\alpha_k, \alpha_k + 1) \) for \(k = 1, \ldots, m \), where \(\alpha_{m+1} = \alpha_1 \). The function \(r(\xi) \) is meromorphic for \(\xi = \psi + i \tau \in \mathbb{C} / 2 \pi \mathbb{Z} \) and has no poles in the half-cylinder \(\{ \tau > 0 \} \) because of the assumption. We have for \(k = 1, \ldots, m \),

\[
\int_{a_k}^{a_{k+1}} (r(\psi) + \varepsilon_k i 0)^n \, d\psi = \int_{a_k}^{a_{k+1}} r^n (\psi + i 0) \, d\psi.
\]

After summation we obtain

\[
\sum_k \int_{a_k}^{a_{k+1}} (r(\psi) + \varepsilon_k i 0)^n \, d\psi = \sum_k \int_{a_k}^{a_{k+1}} r^n (\psi + i 0) \, d\psi = \int_0^{2\pi} r^n (\psi + i 0) \, d\psi
\]

(11)

The mean of the left-hand sides is equal to the left-hand side of (10). Show that the right-hand sides of (11) vanish. Replace the form \(r^n (\psi + i 0) \, d\psi \) by \(r^n (\xi) \, d\xi \) for \(\xi = \psi \pm i \eta \) for an arbitrary \(\eta > 0 \) without changing the integrals on the right-hand side. We have \(|r(\xi)| \to 0 \) as \(\eta \to \infty \), hence the right-hand side of (11) vanishes. In the general case, we can approximate the polynomial \(r \) with real roots by polynomials \(\tilde{r} \) with real simple roots. Equation (10) holds for \(\tilde{r} = s/\lambda \); hence, it is true for \(r = s/\lambda \).

Corollary 4.2. Suppose that \(\dim X = 2 \) and \(\Phi = \theta - \lambda \) is a generating function in \(X \times \Sigma \) satisfying conditions (i) and (iii); \(\theta(x, \omega) - \theta(y, \omega) \) is for any \(x, y \in X, x \neq y \), a trigonometric polynomial in \(\omega \) of positive degree with only real zeros (occasionally multiple). Then equation (2) holds for an arbitrary \(f \in L_2(X) \) with compact support.

Proof. By lemma 4.1 we have \(\text{Re} \Theta_2 (x, y) = 0 \) and the arguments of theorem 3.1 can be applied to this generating function.

Proposition 4.3. Let \(v \in \mathbb{R}^2 \) and \(a \in \mathbb{R} \) be such that \(|a| < |v| \). Then for arbitrary even \(n \geq 2 \),

\[
\text{Re} \int_{S^{n-1}} \frac{d\omega}{(|\omega, v| - a - i 0)^n} = 0
\]

and for arbitrary odd \(n \geq 3 \),

\[
\text{Im} \int_{S^{n-1}} \frac{d\omega}{(|\omega, v| - a - i 0)^n} = 0.
\]

Proof. We may assume that \(|v| = 1 \). For even \(n \), we have

\[
\text{Re} \int \frac{d\omega}{(|\omega, v| - a - i 0)^n} = \text{Re} \int \frac{d\omega}{(\cos \varphi - a - i 0)^n},
\]

where \(\varphi \) is the spherical distance between \(\omega \) and \(v \). We have \(d\omega = \sin^{n-2} \varphi \, d\varphi \, d\omega' \) where \(d\omega' \) is the area of a unit sphere \(S^{n-2} \). Integrating over \(n - 2 \)-spheres \(\varphi = \text{const} \), we obtain

\[
\text{Re} \int \frac{d\omega}{(\cos \varphi - a - i 0)^n} = \frac{|S^{n-2}|}{2} \int_0^{2\pi} \sin^{n-2} \varphi \, d\varphi
\]

since the integrand is \(\pi \)-periodic. The right-hand side vanishes by lemma 4.1.
For odd \(n \), we have

\[
\text{Im} \int \frac{d\omega}{(\cos \varphi - a - i0)^n} = \frac{|S^{n-2}|}{2i(n-1)!} \left[\int_0^\pi \frac{\sin^{n-2} \varphi d\varphi}{(\cos \varphi - a - i0)^n} - \frac{\sin^{n-2} \varphi d\varphi}{(\cos \varphi - a + i0)^n} \right]
\]

\[
= \frac{|S^{n-2}|}{2i(n-1)!} \int_{|\varphi - a| = \varepsilon} \frac{\sin^{n-2} \varphi d\varphi}{(\cos \varphi - a)^n} = \frac{\pi |S^{n-2}|}{(n-1)!} \text{res}_a (\sin^{n-2} \varphi d\varphi),
\]

where \(\alpha = \arccos a \in [0, \pi] \). Changing variable \(\xi = \cos \varphi \) and omitting the constant coefficient, we obtain the quantity

\[
\text{res}_a \left(1 - \xi^2 \right)^m d\xi,
\]

where \(m = (n-3)/2 \). The residue is equal to zero since the numerator has order \(2m = n-3 \). \qed

Corollary 4.4. For any regular resolved generating function \(\Phi = \theta - \lambda \), such that for any pair of points \(x \neq y \) in an open set \(\Omega \subset X \), we have \(\theta(x, \omega) - \theta(y, \omega) = \langle v, \omega \rangle + \alpha, |\alpha| < |v| \), formulas (2) and (3) hold for any function \(f \in L_2(X) \) with support in \(\Omega \).

5. Reconstruction in spaces of constant curvature

We apply the above results to recover a few known and unknown inversion formulas for geodesic integral transforms in spaces of curvature \(\kappa = 0, 1, -1 \).

Euclidean space. Take the generating function \(\Phi(x; \lambda, \omega) = \langle \omega, x \rangle - \lambda \in \mathbb{R}^n \times \Sigma, \Sigma = \mathbb{R} \times S^{n-1} \). We have \(|\nabla \theta| = D_\omega(x) = 1 \). Then (2) and (3) coincide with the classical John’s reconstruction in Euclidean space from data of hyperplane integrals.

Elliptic space. Funk [2] inspired by the seminal paper of Minkowski [1] found a reconstruction formula of an even function \(f \) on the unit sphere \(S^2 \) from its integrals over big circles. A generalization of Funk’s formula for odd \(n \) is due to Helgason [6] and for even \(n \) to Semyanistyi [4].

In both cases we can apply theorem 3.1 to a generating function \(\Phi(x; \lambda, \omega) = \langle \omega, y \rangle - \lambda \) defined in \(X \times \Sigma \), where \(X = \{ (x_0, x) \in E^{n+1}, x_0^2 + |x|^2 = 1, x_0 > 0 \}, y = x_0^{-1}x \in E^n \) and the metric in \(X \) is induced from the Euclidean metric in \(E^{n+1} \). Omitting some simple calculations, we arrive at the following.

Theorem 5.1. If \(n \) is even then any function \(f \in L_2(X) \) can be reconstructed from its integrals \(Rf(\sigma) \) over big spheres \(S(\sigma) = \{ x \in X, \langle \sigma, x \rangle = 0 \}, \sigma \in S^n_+ \) by

\[
f(x) = -\frac{(n-1)!}{(2\pi i)^n} (P) \int_{S^n_+} \frac{Rf(\sigma) d\sigma}{\langle \sigma, x \rangle^n},
\]

where \(S^n_+ = \{ \sigma \in \mathbb{R}^{n+1}, |\sigma| = 1, \sigma_0 \geq 0 \} \) is a hemisphere. If \(n \) is odd we have

\[
f(x) = \frac{1}{2} \frac{(n-1)!}{(2\pi i)^{n-1}} \int_{S^{n-1}_+} \delta^{(n-1)}(\langle \sigma, x \rangle) Rf(\sigma) d\sigma.
\]

Reconstructions (12) and (13) are different from that of Helgason [7] and of Rubin [10]. They are apparently not much known as the classical formulas (14) and (15) for the hyperbolic case, see below.

Hyperbolic space. Take the generating function \(\Phi(x; \lambda, \omega) = \theta - \lambda, \theta = -2(|x|^2 + 1)^{-1} \langle \omega, x \rangle, -1 < \lambda < 1 \) in the unit ball \(X \subset \mathbb{R}^n \). The hypersurfaces \(Z(\lambda, \omega) \) are fully geodesics for the hyperbolic metric \(d_s = 2(1 - |x|^2)^{-1} ds \). By similar calculations, we obtain

\[
f(x) = -\frac{(n-1)!}{(2\pi i)^n} (P) \int_{Q^n_+} \frac{Rf(\sigma) d\sigma}{\langle \sigma, x \rangle^n}
\]
for even \(n \) and
\[f(x) = \frac{1}{2} (2\pi i)^{n-1} \int_{Q_n} \delta^{(n-1)}((\sigma, \lambda)) \, Rf(\sigma) \, d\sigma \]
(15)
for odd \(n \), where \(Q_n = \{ \sigma = (\sigma_0, \sigma') \in \mathbb{R}^{n+1}; \sigma_0^2 - |\sigma'|^2 = -1, \sigma_0 \geq 0 \} \) is the dual one sheet hyperboloid.

A reconstruction in Funk’s form was done first by Radon [3] for \(n = 2 \) and Helgason [6, 7] for \(n > 2 \); formulas (14) and (15) are due to Gelfand–Graev–Vilenkin [5].

6. Equidistant spheres and horospheres in hyperbolic space

Equidistant spheres. Let \(X \) be again a unit \(n \)-dimensional ball, \(n \geq 2 \) and
\[\Phi(x; \lambda, \omega) = \theta - \lambda, \quad \theta(x, \omega) = \frac{p - \langle \omega, x \rangle}{1 - |x|^2}, \quad \omega \in S^{n-1} \]
be a generating function where \(0 \leq p < 1 \). For a fixed \(\omega \) and an arbitrary \(\lambda \neq 0 \) the hypersurface \(Z(\lambda, \omega) = \{ x; \, \Phi(x; \lambda, \omega) = 0 \} \) is the intersection of \(X \) and of an \(n - 1 \) sphere \(S(\lambda) \), whereas \(S(0) = \{ \langle \omega, x \rangle = p = 0 \} \) is a hyperplane; all the spheres \(S(\lambda) \) contain \(n - 2 \) sphere \(S(0) \cap dX \).

For arbitrary real \(\lambda \) and \(\mu \) the hypersurfaces \(S(\lambda) \cap X, S(\mu) \cap X \) are equidistant with respect to the hyperbolic metric. Check that \(\Phi \) fulfils the conditions of corollary 4.4 for arbitrary \(p, 0 \leq p \leq 1 \). A proof of regularity is a routine. Further we have
\[\theta(x, \omega) - \theta(x, \omega) = -\left(\omega, \frac{x}{1 - |x|^2} - \frac{y}{1 - |y|^2} \right) + p(\frac{1}{1 - |x|^2} - \frac{1}{1 - |y|^2}) \]
and we need to prove that
\[\left| \frac{x}{1 - |x|^2} - \frac{y}{1 - |y|^2} \right| > \left| \frac{1}{1 - |x|^2} - \frac{1}{1 - |y|^2} \right| \]
(16)
for arbitrary \(x \neq y \in X \). Squaring both sides, we reduce (16) to the obvious inequality \(2(1 - xy) > 2 - |x|^2 - |y|^2 \). The proof is complete and reconstructions (2) and (3) follow. The geodesic integral transform is
\[Hf(\sigma) = \int_{Z(\sigma)} f d\sigma S, \quad \sigma = (\lambda, \omega), \]
where \(d\sigma S \) is the hyperbolic hypersurface element. The operator \(M_\sigma \) can be written in terms of the Euclidean integral transform \(Rf(\sigma) = \int_{Z(\sigma)} f dS \) since of the factorization \(|\nabla \theta(x, \omega)| = (1 - |x|^2)^{-1/2} \sqrt{4\lambda^2 - 4p\lambda + 1} \) (see (1)). On the other hand,
\[d\sigma S = \left(\frac{2}{1 - |x|^2} \right)^{n-1} dS \]
which yields
\[Mf(\lambda, \omega) = \frac{Rf_1(\lambda, \omega)}{\sqrt{\lambda^2 - p\lambda + 1/4}} = \frac{Hf_2(\lambda, \omega)}{\sqrt{\lambda^2 - p\lambda + 1/4}} \]
where
\[f_1(x) = \frac{(1 - |x|^2)}{2} f(x), \quad f_2(x) = \left(\frac{1 - |x|^2}{2} \right)^n f(x). \]

Corollary 6.1. For any function \(f \) with compact support in the unit ball, a reconstruction is given for even \(n \) by
\[f(x) = -\frac{1}{(4\pi i)^n} \int_{S^{n-1}} \int_{\mathbb{R}} \frac{Hf(\lambda, \omega) d\lambda}{\sqrt{\lambda^2 - p\lambda + 1/4}} \frac{d\omega}{\langle \omega, x \rangle - \lambda(1 - |x|^2)} \]
(17)
and for odd n by
\[
 f(x) = \frac{1}{2(4\pi i)^n} \frac{(1 - |x|^2)^{2n}}{D_n(x)} \int_{S^{n-1}} \frac{\partial^{n-1} H f(\lambda, \omega)}{\partial \lambda^{n-1}} \sqrt{\lambda^2 - p^2 + 1/4} \bigg|_{\lambda = \theta(x, \omega)} \, d\omega.
\]

Another reconstruction for the case $n = 2$ and $p = 0$ was obtained in [19].

Horospheres. Taking $p = 1$ in the above formulas, we obtain the function
\[
 \theta(x, \omega) = \frac{1 - \langle \omega, x \rangle}{1 - |x|^2}
\]
which defines the family of horospheres $\theta(x, \omega) = \lambda$, $1/2 < \lambda < \infty$. Formulas (17) and (18) hold for horospheres if we substitute $\sqrt{4\lambda^2 - 4\lambda + 1} = 2\lambda - 1$ and integrate in (17) over the ray $(1/2, \infty)$ in the interior integral.

Reconstruction formulas (of a different form) for the horospherical transform are contained in Gelfand–Graev–Vilenkin [5].

7. Isofocal hyperboloids

The equation $\lambda = |x| + \varepsilon x_1$, $\varepsilon > 1$ defines a sheet of the rotation hyperboloid H
\[
 \left(\alpha x_1 - \varepsilon \lambda \right)^2 - x_2^2 - \cdots - x_n^2 = \frac{\lambda^2}{\alpha^2}, \quad \alpha = \sqrt{\varepsilon^2 - 1},
\]
with a focus at the origin. The function $\Phi(x; \lambda, \omega) = \theta(x, \omega) - \lambda$, $\theta(x, \varphi) = |x| + \varepsilon \langle x, \omega \rangle$ generates the family of all rotations of H in $\mathbb{R}^n \setminus \{0\}$ about the origin. The function
\[
 \theta(x, \omega) - \theta(y, \omega) = \varepsilon \langle \omega, x - y \rangle + |x| - |y|, \quad \omega \in S^{n-1}
\]
satisfies the conditions of proposition 4.3 since $||x| - |y|| < \varepsilon |x - y|$ for any $x, y \in \mathbb{R}^n$, $x \neq y$.

Therefore, theorem 3.1 holds for this family. We have
\[
 |\nabla \theta(x, \omega)|^2 = 1 + \varepsilon^2 + 2\varepsilon |x|^{-1} \langle \omega, x \rangle
\]
and
\[
 D_n = \int_{S^{n-1}} \frac{d\omega}{(1 + \varepsilon^2 + 2\varepsilon |x|^{-1} \langle \omega, x \rangle)^{n/2}} = |S^{n-2}| \int_0^\pi \sin^{n-2} \varphi \, d\varphi/(1 + \varepsilon^2 - 2\varepsilon \cos \varphi)^{n/2},
\]
where φ is the angle between ω and $|x|^{-1}x$. This integral does not depend on x.

Corollary 7.1. For any smooth function f with compact support in \mathbb{R}^n and even n, the following equation holds
\[
 f(x) = -\frac{1}{(2\pi i)^n D_n} \int_{S^{n-1}} \int_{\mathbb{R}^n} \frac{M_\Phi f(\lambda, \omega) \, d\lambda \, d\omega}{(|x| + \varepsilon \langle \omega, x \rangle - \lambda)^n}, \quad n \text{ even}
\]
\[
 f(x) = \frac{1}{2(2\pi i)^n D_n} \int_{S^{n-1}} \frac{\partial^{n-1} M_\Phi f(\lambda, \omega)}{\partial \lambda^{n-1}} \bigg|_{\lambda = |x| + \varepsilon \langle \xi(x, \omega) \rangle} \, d\omega, \quad n \text{ odd}.
\]

8. Photoacoustic geometries

Consider a resolved generating function
\[
 \Phi(x; \lambda, \omega) = |x - \xi(\omega)|^2 - \lambda, \quad \omega \in S^{n-1},
\]
where \(\xi : S^{n-1} \to \mathbb{R}^n \) is a smooth map. We call the image \(\text{C} \) of \(\xi \) central set. Any hypersurface \(Z(\lambda, \omega) = \{ \Phi(\cdot; \lambda, \omega) = 0 \} \) is a sphere of radius \(\sqrt{\lambda} \) with the center \(\xi(\omega) \in \text{C} \) and by (1)

\[
M_{\Phi} f(\lambda, \omega) = \frac{R f(\lambda, \omega)}{2\sqrt{\lambda}},
\]

where \(R f(\lambda, \omega) \) is the Euclidean integral over this sphere. Inversion of the operator \(M_{\Phi} \) implies inversion of the spherical integral transform \(R \) for the given central surface \(\text{C} \) (and vice versa). This subject is of special interest in view of application to the photoacoustic (thermoacoustic) tomography. Inversion formulas for a function supported in a half-space with the hyperplane central set was found by Fawcett [9]. In [17] a reconstruction was done by reduction to the Radon transform. For a spherical central surface Finch with coauthors [11, 13] found a reconstruction formula of types (20)–(21) in the physical domain for arbitrary dimension. Another reconstruction formula was proposed by Kunyanski [14]; it is similar to (20) and (21) after a simplification. An inversion for the spherical mean and for cylinder mean operators in three-dimensional space was constructed by Xu and Wang [12]. Kunyanski [15] constructed inversion for polyhedral center sets with special symmetries.

Ellipsoids. We show that for an arbitrary ellipsoid or elliptical cylinder \(\text{C} \) in \(\mathbb{R}^n \) as a central set a simple reconstruction follows from theorem 3.1. Independently Natterer [16] found an explicit inversion for the case \(n = 3 \). It looks different from (21).

Set \(\xi(\omega) = (a_1 \omega_1, \ldots, a_n \omega_n) \) where \(a_1, \ldots, a_n \) are positive constants. The central hypersurface \(\{ x = \xi(\omega), \omega \in S^{n-1} \} \) is the boundary of an ellipsoid \(E_\omega \) with half-axes \(a_1, \ldots, a_n \). Then

\[
\theta(x, \omega) - \theta(y, \omega) = 2\langle \xi(\omega), y - x \rangle + |x|^2 - |y|^2 = 2\langle \omega, z \rangle + |x|^2 - |y|^2,
\]

where \(z = (a_1(y_1 - x_1), \ldots, a_n(y_n - x_n)) \). The following inequality holds

\[
||x|^2 - |y|^2| \leq \sum (y_i - x_i)(y_i + x_i) \leq \sum |a_i(y_i - x_i)| \sum |a_i^{-1}(y_i + x_i)| \leq \|z\| \|w\|,
\]

where \(w = (a_1^{-1}(y_1 + x_1), \ldots, a_n^{-1}(y_n + x_n)) \). Suppose that \(x, y \in E_\omega \) and \(x \neq y \); then the point \((x + y)/2\) belongs to the interior of \(E_\omega \) which implies \(\|w\| < 2 \). It follows that the right-hand side is strictly bounded by \(2\|z\| \). By proposition 4.3, theorem 3.1 holds for any \(n \geq 2 \). It follows that any function \(f \) supported in the closed ellipsoid \(E_\omega \) can be reconstructed by the formula

\[
f(x) = \frac{1}{(2\pi i)^n D_n(x)} \int_{S^{n-1}} (P) \int_\mathbb{R} \frac{R f(\rho^2, \omega)}{|x - \xi(\omega)|^2 - \rho^2} \, d\rho \, d\omega,
\]

for even \(n \) where we did the substitution \(\lambda = \rho^2 \), and by

\[
f(x) = \frac{1}{4(2\pi i)^{n+1} D_n(x)} \int_{S^{n-1}} \left(\frac{\partial}{\partial \rho^2} \right)^{n-1} \left(\frac{|x - \xi(\omega)|^2 - \rho^2}{\rho} \right)^{n-1} d\omega,
\]

for odd \(n \), where

\[
D_n(x) = \frac{1}{2^n|S^{n-1}|} \int \frac{d\omega}{|x - \xi(\omega)|^n}.
\]

Elliptic cylinders. If a central set \(\text{C} \) is unbounded we cannot apply the same method since it cannot be regularly parametrized. However, we can write a reconstruction formula for any closed cylinder \(\text{E} \) with an elliptic base. Indeed, \(\text{E} \) is a union of the family of ellipsoids \(E_\omega \) as several half-axes, say \(a_1, \ldots, a_p \), tend to infinity, with \(a_{p+1}, \ldots, a_n \) being fixed. One can come to limits in (20) and in (21). We omit details.
Algebraic plane curves. In the case $n = 2$, there are more geometries which allow exact reconstruction formulas. We call a curve $C \subset \mathbb{R}^2$ trigonometric of degree k if it is given by a parametric equation

$$x_1 = \xi_1(\varphi), \quad x_2 = \xi_2(\varphi), \quad \varphi \in S^1,$$

where ξ_1 and ξ_2 are real trigonometric polynomials of degree k. A trigonometric curve is always a component of a real algebraic curve. A point $x \in \mathbb{R}^2$ is called hyperbolic with respect to a trigonometric curve C if any straight line L through x meets the curve at $2k$ different points. It is easy to see that the set H of all hyperbolic points is always open and convex. We call a curve C hyperbolic if the set H of hyperbolic points is not empty. Introduce a Euclidean structure in \mathbb{R}^2 and consider a function

$$\theta(x, \varphi) = |x - \xi(\varphi)|^2, \quad \xi(\varphi) = (\xi_1(\varphi), \xi_2(\varphi)), \quad 0 \leq \varphi < 2\pi, \quad x = (x_1, x_2).$$

Proposition 8.1. Let H be the set of hyperbolic points with respect to a trigonometric curve C of degree k. For arbitrary points $x, y \in H$, $x \neq y$, all roots of the polynomial $\theta(x, \varphi) - \theta(y, \varphi)$ (of order k) are real.

Proof. We have

$$\theta(x, \varphi) - \theta(y, \varphi) = |x - \xi(\varphi)|^2 - |y - \xi(\varphi)|^2 = |x|^2 - |y|^2 - 2 \langle x - y, \xi(\varphi) \rangle = 2 \langle x - y, \xi(\varphi) - s \rangle,$$

where $s = (x + y)/2$. This point is contained in H since H is convex. Therefore, the line $L = \{z = s + rv, r \in \mathbb{R}\}$ has $2k$ common points $\xi(\varphi_1), \ldots, \xi(\varphi_{2k})$ with C for arbitrary vector $v \neq 0$. If v is orthogonal to $x - y$, then the right-hand side of (23) vanishes. The corresponding angles $\varphi_1, \ldots, \varphi_{2k}$ are real roots of the polynomial $\theta(x, \varphi) - \theta(y, \varphi)$. \qed

The family of circles centered at the curve C is generated by the function $\Phi(x; \lambda, \varphi) = \theta(x, \varphi) - \lambda$. Applying lemma 4.1 we get
Corollary 8.2. Let C be a hyperbolic trigonometric curve. Reconstruction (2) holds for the family of circles centered at C, arbitrary function f supported in the set H of hyperbolic points.

There is a large variety of trigonometric curves C with non-empty hyperbolic sets.

Example 1. Let $\xi_1(\phi) = 2\cos 2\phi - \cos \phi$, $\xi_2(\phi) = 2\sin 2\phi + \sin \phi$. The curve C is shown in figure 1.

The hyperbolic set H is the triangle in the middle, $k = 2$.

Example 2. A hyperbolic ‘square’ set is defined by the trigonometric curve $\xi_1(\phi) = 2\cos 3\phi + \cos \phi$, $\xi_2(\phi) = 2\sin 3\phi - \sin \phi$, $k = 3$; see figure 2.
Example 3. A ‘pentagon’ is the hyperbolic set of the curve \(\xi_1(\varphi) = 5 \cos 4\varphi + 4 \cos \varphi \), \(\xi_2(\varphi) = 5 \sin 4\varphi - 4 \sin \varphi \), \(k = 4 \), see figure 3, and so on.

References

[1] Minkowski H 1911 Über die Körper konstanter Breite Collected Works II (Leipzig: Teubner) pp 277–279
[2] Funk P 1916 Über eine geometrische Anwendung der Abelsschen Integralgleichung Math. Ann. 77 129–135
[3] Radon J 1917 Über die Bestimmung von Funktionen durch ihre Integralwerte längst gewisser Mannigfaltigkeiten Ber. Verh. Sachs. Akad. Wiss. Leipzig. Math.-Nat. Kl. 69 262–77
[4] Semenisty V I 1961 Homogeneous functions and some problems of integral geometry in spaces of constant curvature Sov. Math.—Dokl. 2 59–62
[5] Gelfand I M, Graev M I and Vilenkin N 1966 Generalized Functions: Integral Geometry and Representation Theory vol 5 (New York: Academic)
[6] Helgason S 1959 Differential operators on homogeneous spaces Acta Math. 102 239–99
[7] Helgason S 2011 Integral Geometry and Radon Transforms (New York: Springer)
[8] Beylkin G 1984 The inversion problem and applications of the generalized Radon transform Commun. Pure Appl. Math. 37 579–99
[9] Fawcett J A 1985 Inversion of n-dimensional spherical averages SIAM J. Appl. Math. 45 336–41
[10] Rubin B 1998 Inversion of fractional integrals related to the spherical Radon transform J. Funct. Anal. 157 470–87
[11] Finch D, Patch S and Rakesh 2004 Determining a function from its mean values over a family of spheres SIAM J. Math. Anal. 35 1213–40
[12] Xu M and Wang L V 2005 Universal back-projection algorithm for photoacoustic computed tomography Phys. Rev. E 71 016706
[13] Finch D, Haltmeier M and Rakesh 2007 Inversion of spherical means and the wave equation in even dimensions SIAM J. Appl. Math. 68 392–412
[14] Kunyansky L 2007 Explicit inversion formulae for the spherical mean Radon transform Inverse Problems 23 373–83
[15] Kunyansky L 2011 Reconstruction of a function from its spherical (circular) means with the centers lying on the surface of certain polygons and polyhedra Inverse Problems 27 025012
[16] Natterer F 2012 Photoacoustic inversion in convex domains Inverse Problems Imaging at press
[17] Palamodov V 2004 Reconstructive Integral Geometry (Basel: Birkhäuser)
[18] Palamodov V 2010 Remarks on the general Funk transform and thermoacoustic tomography Inverse Problems Imaging 4 693–702
[19] Palamodov V 2011 An analytic reconstruction for Compton scattering tomography in a plane Inverse Problems 27 125004