An Updated Phytopharmacological Review on Medicinal Plant of Arab Region: *Apium graveolens* Linn

Abdulrahman Khazim Al-Asmari, Md. Tanwir Athar, Saeed G. Kadasah

Departments of Research Center and Psychiatry, Prince Sultan Military Medical City, Riyadh 11159, Kingdom of Saudi Arabia

ABSTRACT

Apium graveolens Linn. (Karafs) is used in traditional medicine for the treatment of the various ailments. There is a need to explore and authenticate the pharmacological profile and medicinal importance of the Karafs. In this paper, the literature and the published work on Apium were collected using online resources “Google scholar,” “Web of science,” “Scopus” and “PubMed.” Each of the pharmacological activity was searched individually using the keywords “Apium/Karafs/Apium graveolens + individual pharmacological activity.” We documented the most cited and most recent literatures. The current findings illuminate the importance Karafs in the traditional medicine and their impact in treating various diseases. This review strongly supports the fact that the Apium has emerged as a good source of medicine in treating various diseases. There is also a need to isolate the bioactive phytochemicals present in this plant.

Key words: Apium graveolens, Arab Medicine, Karafs, Traditional Arab and Islamic Medicine

INTRODUCTION

Since the ancient times, the human being is facing with the disease and discomfort and is struggling to antagonize it with different approaches. Among all the treatments, herbs are continuously used for the treatment of all the ailments.

Nowadays, the herbal drug is not in the list of the mainline therapies; however, due to the unwanted toxicity and side effects, the tilt toward the herbal therapy is again gaining momentum. Herbal medicine is now an accepted medicine as complementary and alternative therapy in combination with the main line therapies. Herbal medicine is now recognized in Europe and America. The sales of herb as dietary products was increased in America by around 7% in 2014. The estimated cost of the current herbal market is more than $6.4 billion. The growth is increasing continuously since the last 11 years in a row.[1,2] In Europe, an estimated 18.8% of the population who has been surveyed is using at least one plant supplements.[3] Because of the popularity of the herbal medicine in global market, it is logical to focus on the herbs which are used for the medicinal purpose. Due to this fact, *Apium graveolens*, a commonly used plant of Arab traditional medicine, has been reviewed.

A. graveolens is a biennial plant locally known as "Karafs", belonging to family Apiaceae. Various parts of *A. graveolens* are used in hepatic and spleen disorders, brain disorders, body pain, and sleep disturbances.

Previously published data show that *A. graveolens* have antifungal, antihypertensive, hypolipidemic, hepatoprotective, diuretic, and anticancer properties.[4-6]

BOTANICAL CLASSIFICATION

Kingdom – Plantae
Subkingdom – Tracheobionta
Superdivision – Spermatophyta
Division – Magnoliopsida
Subclass – Rosidae
Order – Apiales
Family – Apiaceae
Genus – *Apium*
Species – *A. graveolens* Linn.

NOMENCLATURE IN DIFFERENT LANGUAGE

Arabic - Karafs; Chinese - Qin cai; English - Celery; Greek - Udasaliyon; Hindi - Ajmud; Persian - Karafs; Roman - Baatrakhiyun; Urdu - Ajmod.[7]

GEOGRAPHICAL INDICATION

Celery was first cultivated as a food plant in Europe, mainly in Italy and France. From here, the plant spreads to Sweden, Algeria, Egypt, and Ethiopia and then to Kingdom of Saudi Arabia (KSA). Central
Region (Najd) is said to be the main geographical region of this plant in the KSA.\(^{[8,9]}\)

PLANT DESCRIPTION

Macroscopy

The root of the *A. graveolens* is shallow and thickened in the middle. The stem is branched, furrowed, succulent, and rigid. The leaves are pinnate and ovate in shape. The size of flower is small and it is white/greenish-white. The inflorescence is a compound dumbbell. Calyx is obsolete; petals are roundish entire; disk is depressed. Fruits are schizocarp with two mericarps, suborbicular to ellipsoid in shape, and slightly bitter in taste.\(^{[4,10]}\)

Part used

The dried ripe fruit (sometimes called as seed) is mainly used for the medicinal purposes and commercially available in the market. The celery fruits are separated mericarp, each cremocarp is roundish ovoid, laterally compressed, and about 1.0–1.5 mm long, 1.5 mm wide, and 1.5 mm thick. The seeds are orthosperrous. The odor and taste of the seed are aromatic.\(^{[7]}\)

The transverse section of the plant showed a wavy outline. Each mericarp is composed of five ridges and 6–9 vittae. The epicarp of the fruit is divided into exocarp, mesocarp, and endocarp. Exocarp is made up of parenchymatous cells that are single-layered, thin-walled, and rectangular in shape. The outer part of the exocarp is coated with cuticle. Mesocarp also consists of polygonal- to oval-shaped parenchymatous cells. Endocarp also contains large parenchymatous cells. Testa is made up of single-layered elongated cells. Endosperm contains aleurone grains and calcium oxalate crystals.\(^{[81]}\)

THE USE OF APIUM IN TRADITIONAL ARAB AND ISLAMIC MEDICINE

The plant is mentioned in the Traditional Arab and Islamic Medicine with the name “Karafs.” According to old literature, it was also called as Udasalixon in the Greece. Arab and Islamic literature mentioned five different types of Karafs, which are known as Bustani, Maiee, Sakhuri, Nabi, and Jabli. As the name suggests, the Bustani is a locally cultivated plant while Jabli grows on mountains, Sakhuri grows in stony areas, Nabi grows in sheltered area, and the Maiee is the one which grows near water and ponds.\(^{[12]}\)

The plant is also mentioned by the famous Arab scholars in their literature. Al-Biruni stated that the Karafs is called as Sumbul by the people from Tirmidh, Khatl, and Bukhara. Avicenna also documented the five types of Karafs.\(^{[13,14]}\) According to Al-Rhazes, the plant Maiee variety is bigger in size as compared to Bustani while Jabli and Sakhuri are Roman in origin and pungent in taste.\(^{[23]}\)

Imam Ibn-al-Qayyim, who wrote a famous book on the prophetic medicine, describes that wet celery leaves help to cool the stomach & liver and also acts as diuretic and helps in menstrual problem and kidney stones.\(^{[16]}\)

Celery also stimulates semen production and relieves offensive breath. Al-Raihi said that one should avoid eating celery if he/she fears that he/she might suffer a scorpion sting.

PHYTOCHEMICAL CONSTITUENTS

The constituents of the celery include glycosides, steroids, and different types of phenolic including furanocoumarins, flavones, and trace elements (sodium, potassium, calcium and iron).\(^{[7,14]}\) There is variability of the constituents in the different parts of the plants. The main chemical constituents present in each part of the plant are as follows:

Roots

The roots contains falcarinol, falcariindiol, panaxidol, and polyacetylene 8-O-methylfalcariindiol.\(^{[19]}\)

Stems

The stem contains pectic polysaccharide (apiuman) containing d-galacturonic acid, 1-rhamnose, 1-arabinose, and d-galactose.\(^{[20]}\)

Leaves

Twenty-eight components are obtained from gas chromatography-mass spectrometry study of the volatile oil obtained from the leaf. The important compounds are 1-dodecanol, 9-ocdecen-12-ynoic acid, methyl ester, and tetradecence-1-ol acetate.\(^{[21]}\)

Fruits/seed

Caffeic acid, chlorogenic acid, apiin, apigenin, rutatetin, ocimene, bergapten, and isopimpinellin are reported to be found in celery seed. The other substances such as seslin, isoimperatorin, ostenhol, and gravebioside A and B were also found in the seeds.\(^{[22]}\) Literature also showed that seslin, isoimperatorin, ostenhol, gravebioside A and B, umbelliferone are present in the seeds of the plants. The seed oil is composed of palmitic acid, stearic acid, oleic acid, linoleic acid, petroselinic acid, d-limonene, selinene, terpinole, and santolol. The aroma of the oil is due to the presence of sedanonic anhydride and sedanolide in the seed oil.\(^{[23,24]}\) The maximum concentration of the oil was found in 5-week-old fruits.\(^{[25]}\)

The different group of chemical constituents found in the *A. graveolens* is enlisted in Table 1.

PHARMACOLOGICAL ACTIVITY

Hepatoprotective activity

The methanolic extract of *A. graveolens* seed was found to have significant activity against paracetamol-induced liver damage. *A. graveolens* extract dose-dependently attenuated the rise in various hepatotoxicity markers including aspartate transaminase, alanine transaminase, alkaline phosphatase, albumin, and total protein when compared with silymarin. Histopathological studies also showed the reversal of paracetamol-induced structural changes of liver tissues.

In another study, dietary intake of celery along with alcoholic and baryte attenuates the elevated serum liver enzymes, total cholesterol, triglycerides and improves lipid profile in cholesterol-fed diets.\(^{[47]}\)

Antioxidant activity

A. graveolens is a big source phenolic compounds, which provides a good source of antioxidants.\(^{[86]}\) The antioxidant activity of Karafs leaf was
investigated (by scavenging of the 1,1-diphenyl-2-picrylhydrazyl [DPPH] radical activity) and found to be a strong natural antioxidant by inhibiting oxidant process. It may be attributed to its antioxidant constituents including L-tryptophan and derivatives of methoxy-phenyl chromenone.

In another experiment, the organic and inorganic extracts of celery were tested and both of the extracts were found to a good scavenger of OH and DPPH radicals. In vivo experiments with CCl₄-induced toxicity also showed the significant protective effects.

Larvicidal and mosquito repellent activity

The seed of the celery has a strong larvicidal, adulticidal, and repellent activity against the *Aedes aegypti* larva, the vector of dengue hemorrhage fever. In another study, the mosquito repellent activity of celery oil (with 5% vanillin) was found better repellent activity than a number of commercially used repellent.

Anticancer activity

Nonpolar extract of root and bulbs of *A. graveolens* was tested against the lymphoblastic leukemia cell lines CEM-C7H2 cell lines. The extract showed the significant cytotoxicity.

Antidiabetic activity

The antidiabetic effect of the aqueous extract of the celery seed was tested on the diabetic rat. It was that intraperitoneal administration of the extract leads to changes in the lipid profile.

Anti-inflammatory activity

The anti-inflammatory activity of celery was studied in croton oil-induced ear test model in mice. Results showed that the potency of the anti-inflammatory was seven times lower than the indomethacin. The mechanism involved in the anti-inflammatory activity may be due to the inhibitory activity of its active constituents apiin against inducible nitric oxide synthase (iNOS) and nitrite oxide (NO) production. Apiuman, a pectic polysaccharide found in the celery, has also been found to decrease the interleukin-10 and increased interleukin-10 production and diminish the neutrophils migra, which may also be the cause of its anti-inflammatory activity. The stems of the celery plant also possessed significant anti-inflammatory activity due to the presence of polar constituents in the aqueous extract.

Antimicrobial activity

A. graveolens has been found to exhibit antibacterial activity against *Escherichia coli*. The activity was more in the ethanolic extracts as compared to the aqueous and hexane extract.

Analgesic activity

The ethanolic extract of the seed of celery possessed significant analgesic activity when tested against acetic acid-induced writhing and hot plate method. The analgesic effect of celery is attributed to the involvement of celery in the cytochrome P450, which was found to be decreased in the liver homogenate.

Antitumor activity

The ethanol extract of celery seed significantly protects the indomethacin and cycloheximide-induced cytotoxicity. The results were assessed by biochemical and histopathological analysis of the control and treated samples. Extract significantly protects the iNOS and nitric oxide production. Apiuman, a pectic polysaccharide found in the celery, has also been found to decrease the interleukin-10 and increased interleukin-10 production and diminish the neutrophils migra, which may also be the cause of its anti-inflammatory activity.

Anti-spasmylocytic activity

Ethanolic extract of the *A. graveolens* showed a significant anti-spasmylocytic activity. It inhibited the ileum concentration in a

Table 1: The chemical constituent of the *Apium graveolens* Linn.

Group of chemicals	Chemical constituents	Reported activity	References
Glycosides	Apigenin	Neurogenesis stimulator (used in the Alzheimer disease), antitumor, antioxidant, antiviral	[26-28]
Organic acid	Caffeic acid	Antioxidant, antitumor	[29,30]
Organic acid ester	Chlorogenic acid	Anticancer, antioxidants, anti-inflammatory, analgesic	[31-34]
Furano coumarins	Bergapten	Anti-psoriatic, anticancer	[35,36]
	Isopimpinellin	Anticancer	[37]
	8-hydroxy-5-methoxypsoralen	Antispastic, CYP450 inhibitor	[38]
	Osthenol	Antifungal, antibacterial	[39]
7-hydroxycoumarins	Umbelliferone	Anti-inflammatory, analgesic, antioxidant, neuroprotective	[40,41]
Fatty acids	Myristic acid	Bioavailability enhancer	[42,43]
	Octadecanoic acid	Antimicrobital, immunomodulatory	[44,45]
	Palmitic acid	Antioxidant, anti-cholesterol	[46,47]
	Oleic acid	Increase fatty acid oxidation (by inducing cAMP/PKA and SIRT1 Ser-434 phosphorylation)	[48,49]
Essential oil	Linoleic acid	Anti-CHF, anticancer	[50,51]
	Stearic acid	Antitumor, anti-cholesterol	[52,53]
	d-limonene	Aromatherapy, anticancer, acaridical, spasmylocytic	[54,55]
	d-selene	Antimicrobital	[56,57]
	Sedanolide	Antioxidant, anticancer, antimicrobial	[58,59]
	Terpineol	Anticonvulsant, antioxidant, antimicrobial	[60,61]
	Santalol	Antitumor	[62]
	Selinene	Antimicrobital, antioxidant	[63]
	Nerolidol	Antileschmanial, antimicrobial	[64]
	β-pinene	Antibacterial, antifungal, antioxidant	[65]
	d-carvone	Acaridical, spasmylocytic, antifungal	[66]
	β-myrcene	Antioxidant, antitumor, anticancer, neuroprotective	[67]

CYP450 = Cytochrome P450, CHF = Congestive heart failure, cAMP = Cyclic adenosine monophosphate, PKA = Protein kinase A
dose-dependent manner. The activity may be attributed due to the presence of a flavonoid, apigenin.\cite{101}

Anti-infertility activity
The celery extracts were found to have a protective effect against the sodium valproate-induced testicular toxicity in rats. The histopathological analysis supported the results. Apigenin found as a major constituent in the extract may be responsible for the activity.\cite{102} Protective study of the *Apium* was also studied against the chemically induced rat testis damage. It was found that celery has positive effect in the recovery of testis and sexual.\cite{102, 103}

Antiplatelet activity
A. graveolens has been found to have a potent antiplatelet activity. The effect is due to the presence of apigenin found in the extract. Apigenin inhibits the collagen, adenosine diphosphate (ADP), and arachidonic acid induced aggregation of platelet. In addition, apigenin also inhibited collagen-ADP-induced aggregation in blood.\cite{105}

Hypocholesterolemic activity
The hydroalcoholic extract of celery (*A. graveolens*) has been investigated for its effect on lipid profile of rats fed a high-fat diet. The result showed that celery significantly decreased the cholesterol, triglycerides, and low-density lipoprotein in the treated group as compared to the control group.\cite{106, 107}

The mechanism of hypocholesterolemic activity is attributed to its effect on bile acid secretion as well as the presence of polar compounds with sugar/amino acid moiety in the extract.\cite{108}

Cardiotonic activity
It was found that apigenin isolated from the celery inhibited the contraction of aortic ring caused by cumulative concentration of calcium in high potassium medium. This relaxation of thoracic aorta may be attributed the Ca$^{2+}$ ion suppressing effect of celery through both voltage and receptor operated calcium channels.\cite{109}

In another study, derivative of 3-butylopathalide isolated from the celery showed significance cardiotonic activity. It acts by inhibiting the calcium dependent and independent release of glutamate from synaptosomes. It also decreases the nitric oxide (NO) content and NOS activity in the global cerebral ischemia-reperfusion model in rats. In addition, it also significantly inhibits the expression of the inducible NOS protein.\cite{110}

The celery juice has also been tested on the doxorubicin-induced cardiotoxicity in rats. The content of reduced glutathione, activity of catalase, xanthine oxidase, glutathione peroxidase, and lipid peroxidation intensity in the liver homogenate and blood hemolysate was measured. The results showed the cardioprotective activity as compared to toxic group.\cite{111}

TOXICITY AND SAFETY
The plant is generally safe for the common use. Although it causes the allergy in the central European population. The most important allergen are PR-10 (Api g 1), nonspecific lipid transfer protein – LTP 1 (Api g 2), profilin (Api g 4), and flavoprotein (Api g 5). Api g 2 and Api g 4 are potentially dangerous for allergic individuals because these allergens may induce an anaphylactic reaction.\cite{112}

The plant is also reported to be infected with the fungus *Sclerotinia sclerotiorum* that causes dermatitis in sensitive people. This is common in Caucasians. Some people are allergic to the cress and it may cause anaphylaxis. The consumption should be avoided in case of pregnancy as it has uterine stimulant activity.\cite{117}

CONCLUSION
The ancient literature and the practice among the local population clearly indicate that herbal medicine is being practiced in the Arab region since long back.

In this review, we documented the medicinal importance of the *A. graveolens* (Karafs) that is being used as anthelmintic, antispasmodic, carminative, diuretic, laxative, sedative stimulants in the Arab traditional medicine. The description of the plants and its medicinal importance as per the old Arab literature has been summarized. In addition, the phytochemical investigation the pharmacological activity which has been carried out so far has been summarized.

There is a need to preserve the pharmacological profile and the medicinal importance of the Karafs. There is also need to isolate the bioactive phytochemicals that are present in the plants. Karafs needs effective utilization to make a hallmark to treat the various diseases and to be available for ordinary population.

Financial support and sponsorship
Nil.

Conflicts of interest
There are no conflicts of interest.

REFERENCES
1. Smith T, Lynch ME, Johnson J, Kawa K, Bauman H, Blumenthal M. Herbal and dietary supplement sales in the US increase 6%/8% in 2014. Herbal Gram 2015;107:52-9.
2. Izzo AA, Hoon-Kim S, Radhakrishnan R, Williamson EM. A critical approach to evaluating clinical efficacy, adverse events and drug interactions of herbal remedies. Phytother Res 2016;30:691-700.
3. Garcia-Alvarez A, Egan B, de Klein S, Dima L, Maggi FM, Isoniemi M, et al. Usage of plant food supplements across six European countries: findings from the PlantLIBRA consumer survey. PLoS One 2014;9:e82265.
4. Fazal SS, Singla RK. Review on the pharmacognostical and pharmacological characterization of *Apium graveolens* Linn. Indo Glob J Pharm Sci 2012;2:36-42.
5. Singh A, Handa SS. Hepatoprotective activity of *Apium graveolens* and *Hygrophila auriculata* against paracetamol and thioacetamide intoxication in rats. J Ethnopharmacol 1995;49:119-26.
6. Mansi K, Abushofa AM, Dosi A, Abuurji T. Hypolipidemic effects of seed extract of celery (*Apium graveolens*) in rats. Pharmacogn Mag 2009;5:301.
7. Gauri M, Ali SJ, Khan MS. A review of *Apium graveolens* (Karafs) with special reference to Unani medicine. Int Arch Integr Med 2015;2:131-6.
8. Migahid AM. Flora of Saudi Arabia. Riyadh: Riyadh University Publication; 1978.
9. Al-Arsmi AK, Al-Elawi MI, Ahtar MT, Tariq M, Al Eid A, Al-Asmary SM. A review of hepatoprotective plants used in Saudi traditional medicine. Evid Based Complementary Altern Med 2014;2014:1-23.
10. Rastogi RP, Mehrotra B. Compendium of Indian Medicinal Plants. New Delhi: Central Drug Research Institute; Publications & Information Directorate; 1990.
11. Khory RN, Katnak NN. Materia Medica of India and Their Therapeutics. Maharasthra: Komal Prakashan; 1999.
12. Hussain M. Makhzan al Advia (The assets of medicine). Lucknow: Munshi Naval Kishore Press; 1844.
13. Baitar I. The compendium of Single drug and Food products. Urdu translation by CCRUM). Vol. 4. New Delhi: Dept. of AYUSH, Ministry of Health and Family Welfare, Govt. of India; 2003. p. 58-60.
14. Sina I. Canon of medicine. Lucknow, India: Mataba Munshi Naval Kishore; 2007.
15. Khan M, Garamful (clove). In: Khan MA, editor. Moheet‑e‑Azam. Vol. III. Kanpur, India: Matbaa Nizami; 1893.
16. Treating Kidney Stones with Tâb-e-Nabawi. 2016. Available from: http://www.tibbenabawi.org/index.php?option=com_content&view=article&id=352%26Itemid=394. [Last accessed on 2016 Mar 29].
17. Tyagi S, Dhruv M, Ishita M, Gupta AK, Usman MR, Nimbival B, et al. Medical benefits of *Apium graveolens* (celery herb). J Drug Discov Ther 2013;1:36-8.
18. Hussain MT, Ahmed G, Jahan N, Adiba M. Unani description of Tukhirne Karafs (seeds of Apium graveolens Linn) and its scientific reports. Int Res J Biol Sci 2013;2:89-93.

19. Zidorn C, Jöhrer K, Ganaza M, Schubert B, Sigmund EM, Mader J, et al. Polyacetylenes from the Apiaceae vegetables carrot, celery, fennel, parsley, and parsnip and their cytotoxic activities. J Agric Food Chem 2005;53:2518-23.

20. Vodová RG, Golovchenko VW, Popov SV, Popova GV, Paderin NM, Shashkov AG, et al. Chemical composition and anti-inflammatory activity of pectic polysaccharide isolated from celery stalks. Food Chem 2009;114:610-6.

21. Nagela P, Ahmad A, Kim SJ, Chung IM. Chemical composition, antioxidant activity and larvicidal effects of essential oil from leaves of Apium graveolens. ImmunoPharmacol 2012;34:205-9.

22. Sastri B. The Wealth of India. A Dictionary of Indian Raw Materials and Industrial Products. Raw Materials. The Wealth of India. A Dictionary of Indian Raw Materials and Industrial Products. Raw Materials; 1956. p. 4.

23. Sastri B. The Wealth of India Raw Material. New Delhi: Council of Scientific & Industrial Research; 2003. p. 64-5.

24. Pan H, Kenney D. Quantitative determination of fatty acid constituents of celery seeds by gas-liquid partition chromatography. In Proceedings of the Florida State Horticultural Society; 1960. p. 219-23.

25. Bhattachar JK, Handa SS. Thin layer chromatographic studies of volatile oils from common umbelliferous fruits during growth. Res Bull Punjab Univ 1964;8:331-4.

26. Birt D, Mitchell D, Gold B, Pour P, Pinch H. Inhibition of ultraviolet light induced skin carcinogenesis in SKH-1 mice by apigenin, a plant flavonoid. Anticancer Res 1998;18:75-91.

27. Khole S, Panat NA, Suryavanshi P, Chatterjee S, Devasagayam T, Ghaskadbi S. Comprehensive Assessment of Antioxidative Activity of Apigenin Isomers: Vitisin and Isovitisin. Free Radicals & Antioxidants. 2016;6:155-66.

28. Ying C, Wang D. Quantitative determination of total and individual flavonoids in stems and leaves of Buddleja davidii and Buddleja albiflora. Pharmacogn Mag 2012;8:273.

29. Chen JH, Ho CT. Antioxidant activities of caffeic acid and its related hydroxyconiferic acid compounds. J Agric Food Chem 1997;45:2237-48.

30. Grunberger D, Banerjee R, Eisinger K, Oltz EM, Efros L, Caldwell M, et al. Pro-apoptotic effects of 12-O-tetradecanoylphorbol-13-acetate. Cancer Res 1988;48:5941-6.

31. Sumiyoshi M, Sakanaka M, Taniguchi M, Baba K, Kimura Y. Anti-tumor effects of various furocoumarins isolated from the roots, seeds and fruits of Angelica and Cnidium species. Jpn J Pharmacol 1988;44:230-2.

32. Ramesh B, Pugaliendi KV. Antioxidant role of umbelliferone in STZ-diabetic rats. Life Sci 2006;79:306-10.

33. Hu FQ, Liu L, YZ, Yuan H. Synthesis and anti-tumor activity of doxorubicin conjugated stearamido-γ-chitosan oligosaccharide polymeic micelles. Biomaterials 2009;30:6955-63.

34. de Sousa DP, Mesquita RF, de Araújo Ribeiro LA, de Lima JT. Spasmolytic activity of carvone against human tumor cell lines. Eur J Med Chem 2014;79:110-6.

35. Vandresen F, Falziori H, Almeida Batista SA, da Silva-Giardini AP, de Oliveira DN, Catharino RR, et al. Antimicrobial activity and GC-MS analysis of (R)-(+)‑limonene fragrance, a natural compound found in foods and plants. Pharmacol Biochem Behav 2013;103:450-4.

36. Hu FQ, Liu L, Yuan H. Synthesis and antitumor activity of doxorubicin conjugated stearamido-γ-chitosan oligosaccharide polymeic micelles. Biomaterials 2009;30:6955-63.

37. Lima NG, De Sousa DR Pimenta FC, Alves MF, De Sousa FS, Macedo RO, et al. Anti-inflammatory activity and GC-MS analysis of (R)-(+)‑limonene fragrance, a natural compound found in foods and plants. Pharmacol Biochem Behav 2013;103:450-4.
ABDURAHMAN KHAZIM AL-ASMARI, et al.: Medicinal Plants of Arab Region: Apium graveolens Linn

68. Buuris M, Bucar F. Antioxidant activity of Aligella savius essential oil. Phytother Res 2000;14:523-8.
69. Zhou H, Tao N, Jia L. Antifungal activity of citral, octanal and α-terpinol against Geotrichum citrini-auranti. Food Control 2014;37:273-87.
70. Saraswati S, Kanaoujiq S, Agrawal S. OPQ3 α-santalol demonstrates antimutant and antiangiogenic activities in models of hepatocellular carcinoma in vitro and in vivo. Dig Liver Dis 2012;45:5249-50.
71. Saraswati S, Kumar S, Alhaider AA. α-santalol inhibits the angiogenesis and growth of human prostate tumor growth by targeting vascular endothelial growth factor receptor 2-mediated AKT/AMP/RESC signaling pathway. Mol Cancer Ther 2013;12:147.
72. Juteau F, Masotti V, Bessièrre JM, Dherbomez M, Viano J. Antibacterial and antioxidant activities of Artemisia annua essential oil. Fitoterapia 2002;73:53-6.
73. Arruda DC, D'Alessandro FL, Katzin AM, Ulana SR. Antileishmanial activity of the terpene nerolidol. Antimicrob Agents Chemother 2005;49:1679-87.
74. Braca A, Siciliano T, Di Grego M, Germanò MP. Chemical composition and antimicrobial activity of Momordica charantia seed essential oil. Fitoterapia 2008;79:123-6.
75. da Silva AG, Lopes PM, de Azevedo MM, Costa DC, Alviano CS, Alviano DS. Biological activities of apinene and β-piene enantiomers. Molecules 2012;17:6305-16.
76. Tepe B, Defterera D, Sokmen A, Sokmen M, Polissiou M. Antimicrobial and antioxidant activities of the essential oil and various extracts of Salvia clementosa Miller (Lamiaceae). Food Chem 2006;93:3203-10.
77. Sela F, Karasavizou M, Stepfik G, Cvetković I, Kulevanova S. Chemical composition and antimicrobial activity of essential oils of Juniperus excelsa Bieb. (Cupressaceae) grown in R. Macedonia. Pharmacognosy Res 2015;7:74-80.
78. Lee J-H, Lee K, Shin SY, Yong Y, Lee HY. Anti-inflammatory effect of β-myrcene, a component of the essential oil from Pinus kairesis cones, in metastatic MDA-MB-231 human breast cancer cells. J Korean Soc Appl Biol Chem 2016;58:569-73.
79. Ciftçi O, Ozdemir I, Tanyıldız S, Yıldız S, Öpuztürk H. Antioxidative effects of curcumin, β-myrcene, and 1,8-cineole against 2,3,7,8-tetrachlorodibenzo-p-dioxin-induced oxidative stress in rats liver. Toxicol Ind Health 2011;27:447-53.
80. Bonarini F, Morais TM, Dos Santos RC, Kushima H, Feia FM, Silva MA, et al. The effect of a minor constituent of essential oil from Citrus aurantium. The role of α-myrcene in preventing peptic ulcer disease. Chem Biol Interact 2014;212:11-9.
81. Ciftçi O, Öztanır MN, Cinet A. Neuroprotective effects of β-myrcene following global cerebral ischemia/reperfusion-mediated oxidative and neuronal damage in a C57BL/6j mouse. Neurochem Res 2014;39:1717-23.
82. Lanz CA. Ethnomedicines used in Trinidad and Tobago for urinary problems and diabetes mellitus. J Ethnobiol Ethnomed 2006;2:45.
83. Karishchi P, Nasiri S, Amin T, Tabibian M. The effects of Apium graveolens extract on sperm parameters and HG hormonal axis in mice. In Proceedings of the 20th Iranian Congress of Physiology and Pharmacology, 2011.
84. Hamza AA, Amin A. Apium graveolens modulates sodium valproate-induced reproductive toxicity in rats. J Exp Zool A Ecol Genet Physiol 2007;307:199-206.
85. Hardani A, Afraalzadeh MR, Amirzargar A, Mansouri E, Mirzam A. Effects of aqueous extract of Apium graveolens L. leaves on spermagenesis in healthy male rats. Avicenna J Phytomed 2015;5:113-9.
86. Ahmed B, Alam T, Varshney M, Khan SA. Hepatoprotective activity of two plants belonging to the Apiaceae and the Euphorbiaceae families. J Ethnopharmacol 2002;79:313-6.
87. Abd El-Mageed NM. Hepatoprotective effect of feeding celery leaves mixed with chlorella leaves and barley grains to hypercholesterolemic rats. Pharmacog Mag 2011;7:151-6.
88. Jung W, Chung I, Kim S, Kim M, Ahmad A, Praveen N. In vitro antioxidant activity, total phenolics and flavonoids from celery (Apium graveolens) leaves. J Med Plant Res 2011;5:7023-30.
89. Momin RA, Nair MG. Antioxidant, cyclooxygenase and topoisomerase inhibitory compounds from Apium graveolens Linn. seeds. Phytomedicine 2002;9:312-8.
90. Popovic M, Kauzinovic B, Drivc S, Mirica-Dukić N, Bursa. Effect of celery (Apium graveolens) extracts on some biochemical parameters of oxidative stress with increased levels of carbon tetrachloride. Phytother Res 2006;20:531-7.
91. Kumar S, Mishra M, Wahab N, Waniko R. Larvicidal, repellent, and irritant potential of the seed-derived essential oil of Apium graveolens against dengue vector, Aedes aegypti L. (Diptera: Culicidae). Front Public Health 2014;2:147.
92. Chocchote W, Tuuetn B, Kanjanapothi D, Rattananchanwich E, Chatilong U, Chaippong P, et al. Potential of crude seed extract of celery, Apium graveolens L. against the mosquito Aedes aegypti L. (Diptera: Culicidae). J Vector Ecol 2004;29:340-6.
93. Tuuetn B, Chocchote W, Kanjanapothi D, Rattananchanwich E, Chatilong U, Chaippong P, et al. Repellent properties of celery, Apium graveolens L. compared with commercial repellents, against mosquitoes under laboratory and field conditions. Trop Med Int Health 2005;10:1190-8.
94. Roghani M, Baluchnejadmoghad M, Amin A, Amirtou R. The effect of administration of Apium graveolens aqueous extract on the serum levels of glucose and lipids of diabetic rats. Iran J Endocrinol Metab 2007;9:177-81.
95. Mencherini T, Cau A, Bianco G, Loggia AR, Aquino R. An extract of Apium graveolens var. dulce leaves: Structure of the major constituent, apin and its anti-inflammatory properties. J Pharm Pharmacol 2007;59:891-7.
96. Lewis DA, Tharib SM, Vetch G. The anti-inflammatory activity of celery Apium graveolens L.(Fam. Umbelliferae). Int J Crude Drug Res 1985;23:27-32.
97. Naema NF, Dawood B, Hassan S. A study of some Iraqi medicinal plants for their spasmylocitic and; antibacterial activities. J Basrah Res (Sci) 2010;36:67-9.
98. Atta AH, Alkofahi A. Anti-nociceptive and anti-inflammatory effects of some Jordanian medicinal plant extracts. J Ethnopharmacol 1998;60:117-24.
99. Jakovljevic V, Raskovic A, Popovic M, Sabo J. The effect of celery and parsley juices on pharmacodynamic activity of drugs involving cytochrome P450 in their metabolism. Eur J Drug Metab Pharmacokinet 2002;27:153-6.
100. Al-Hovini T, Alsheikh A, Alqasoumi S, Al-Yahya M, Elthahir K, Rafatullah S. Gastric antilucider, antioxidants and cytoprotective properties of celery (Apium graveolens) in rats. Pharm Biol 2010;48:786-93.
101. Gharb Nasri MK, Plethvaran AA, Shamansouri N. Investigating the spasmylocytic activity of celery (Apium graveolens) leaf hydroalcoholic extract on rat’s ileum. Kaums 2007;11:1-7.
102. Kooti W, Mansouri E, Ghaseimboroon M, Harizi M, Amizargar A. Protective effects of celery (Apium graveolens) on testis and cauda epididymal spermatozoa in rat. Iran J Reprod Med 2014;12:365-6.
103. Madkour NK. Beneficial role of celery oil in lowering the di(2-ethylhexyl) phthalate-induced testicular damage. Toxicol Ind Health 2014;30:861-72.
104. Kooti W, Ghaseimboroon M, Asadi-Samani M, Ahangarpoor A, Zamani M, Amizargar A, et al. The effect of halocholic extract of celery leaves on the delivery rate (fertilization and stillbirths), the number, weight and sex ratio of rat off spring. Adv Environ Biol 2014;1:824-31.
105. Teng C, Lee L, Ko F, Huang T. Inhibition of platelet-aggregation by apigenin from apium-graveolens. Asia Pac J Pharmaco 1988;3:85-9.
106. Kooti VH, Ghaseimboroon M, Asadi-Samani M, Ahangarpoor A, Zamani M, Amizargar A, et al. The effects of hydro-alcoholic extract of celery on lipid profile of rats fed a high fat diet. Adv Environ Biol 2014;8:325-31.
107. Tsi D, Das NR, Tan BK. Effects of aqueous celery (Apium graveolens) extract on lipid parameters of rats fed a high fat diet. Panta Med 1995;61:18-21.
108. Tsi D, Tan BK. The mechanism underlying the hypolipidemiaactive activity of aquatic celery extract, its butanol and aqueous fractions in genetically hypercholesterolaemic RICO rats. Life Sci 2000;66:755-67.