Review Article

Fullerenols as a New Therapeutic Approach in Nanomedicine

Jacek Grebowski, Paulina Kazmierska, and Anita Krokosz

1 Department of Molecular Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, ul. Pomorska 141/143, 90-236 Lodz, Poland
2 Department of Neurobiology, Faculty of Biology and Environmental Protection, University of Lodz, ul. Pomorska 141/143, 90-236 Lodz, Poland

Correspondence should be addressed to Jacek Grebowski; jacek.grebowski@gmail.com and Anita Krokosz; krokosz@biol.uni.lodz.pl

Received 27 July 2013; Accepted 18 September 2013

Academic Editor: Antoni Camins

Copyright © 2013 Jacek Grebowski et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Recently, much attention has been paid to the bioactive properties of water-soluble fullerene derivatives: fullerenols, with emphasis on their pro- and antioxidant properties. Due to their hydrophilic properties and the ability to scavenge free radicals, fullerenols may, in the future, provide a serious alternative to the currently used pharmacological methods in chemotherapy, treatment of neurodegenerative diseases, and radiobiology. Some of the most widely used drugs in chemotherapy are anthracycline antibiotics. Anthracycline therapy, in spite of its effective antitumor activity, induces systemic oxidative stress, which interferes with the effectiveness of the treatment and results in serious side effects. Fullerenols may counteract the harmful effects of anthracyclines by scavenging free radicals and thereby improve the effects of chemotherapy. Additionally, due to the hollow spherical shape, fullerenols may be used as drug carriers. Moreover, because of the existence of the currently ineffective ways for neurodegenerative diseases treatment, alternative compounds, which could prevent the negative effects of oxidative stress in the brain, are still sought. In the search of alternative methods of treatment and diagnosis, today’s science is increasingly reaching for tools in the field of nanomedicine, for example, fullerenes and their water-soluble derivatives, which is addressed in the present paper.

1. Introduction

In recent years, much attention has been paid to research on the bioactive characteristics of newly discovered water-soluble fullerene derivatives. Greater emphasis has been placed on their pro- and antioxidant properties [1–4] which result from the presence of delocalized double π bonds in the fullerene cage. The poor solubility of fullerenes in polar liquids has been a major hindrance in terms of their potential biomedical applications. Therefore, the possibility of attaching polar functional groups to the carbon fullerene cage, in an effort to increase their solubility in polar solvents (especially in water), was explored. Fullerene derivatives with hydrophilic properties were obtained by adding hydroxyl groups to C60, resulting in a polyhydroxylated C60 fullerene (fullerenol; fullerol, C60(OH)n) [5–8]. The general structure of fullerol is shown in Figure 1. The fullerol molecule can be excited and transformed into the triplet state with visible or ultraviolet light creating a reactive molecule that easily interacts with oxygen or biomolecules and has applications in photosensitization [2, 9].

One of the first reports on the potential antioxidative properties of fullerenol is from the 1995 study, where Chiang et al. [10] showed that fullerenol acted as an effective scavenger of superoxide anions (O2−) generated by the xanthine-xanthine oxidase system. The antioxidant properties of fullerenols have also been extensively described by Nielsen et al. [11] and Markovic and Trajkovic [1] in their comprehensive review papers. In addition to the ability for scavenging reactive oxygen species (ROS), fullerenols also inhibit the reaction of reactive nitrogen species by reacting directly with nitric oxide (NO) [12].

The dualistic nature of fullerenols may lead to the practical application of these compounds as cytotoxic agents against tumor cells or as protective agents in normal cells [1]. Additionally, due to their hollow spherical shape, fullerenols
addition of the following reaction: C₆₀OH₂ₓ, x = 22–24) also protected rat hepatocytes against damage induced by carbon tetrachloride (CCl₄) by improving their antioxidant capacity. Treatment with C₆₀(OH)ₓ led to normalized serum levels of liver injury (ALT, AST) and renal function markers (BUN, CREA) and exerted a beneficial effect on the level of reduced glutathione in the liver [20].

The antioxidant properties of fullerene (C₆₀(OH)₂₂) were compared to those of fullerene with two residues of malonic acid attached (C₆₀(COOH)₂) and metallofulleren with gadolinium (Gd@C₆₀(OH)₂₂) in their ability to protect human lung (A549) and rat brain cells (rBCEC) from oxidative damage. Spin-trapping provided direct evidence that fullerene derivatives can scavenge radicals formed under physiological conditions (O₂•−, •OH and •NO), and as the stable DPPH radical, preventing peroxidation of lipids [21]. The attachment of malonic acid residues or hydroxyl groups to the fullerene cage results in an electron-deficient area which facilitates the binding of free radicals to the fullerene molecule [21]. Gadolinium attachment (Gd@C₆₀) results in a more potent antioxidant than C₆₀ and may be due to the higher electron affinity of Gd@C₆₀ (3.14 eV) compared to C₆₀ (2.7 eV).

In recent years it has been observed that, besides scavenging ROS, fullerene may also directly scavenge nitric oxide (NO) [12] synthesized by the family of nitric oxide synthase (NOS) enzymes. Nitric oxide is an important signaling molecule involved in many physiological processes, such as the regulation of vascular tone or neuromodulation, but at high concentrations exerts a cytotoxic effect [22]. Mirkovic et al. [12] suggested that C₆₀(OH)₂₄ has the ability to scavenge NO in vivo and treatment with fullerene C₆₀(OH)₂₄ 30 min before the addition of sodium nitroprusside (SNP), a potent NO donor, to adult rat testicular interstitial cells prevented a reduction in antioxidant enzyme activity.

A review of the recent literature indicates a growing interest in highly hydroxylated fullerenes for their antioxidant properties. Xiao et al. [3] showed that highly hydroxylated fullerene C₆₀(OH)ₓ · 8H₂O protected cells from oxidative stress induced by H₂O₂. Fullerenol also showed a protective effect in the β-carotene bleaching assay [23]. The authors suggested that C₆₀(OH)ₓ · 8H₂O scavenges the •OH radicals produced from the dehydrogenation of C₆₀(OH)ₓ · 8H₂O and simultaneously oxidizes them to a stable radical species (potentially the dehydrogenated fullerene radical C₆₀O•). The existence of such a radical has been confirmed by Djordjevic et al. [17] through the use of the EPR method.

Due to their properties, fullerenols can be used in radiopharmacology, chemotherapy, or in the treatment of neurodegenerative diseases. These issues and information on the toxicity of fullerenols in various biological systems are presented in the following sections of this paper.
3. Potential Application of Fullereneols in Radiobiology

When determining the extent of damage in biological systems exposed to low LET (linear energy transfer) radiation, it is believed that the radiation injuries arise due to the indirect action of radiation on the cell. The high water content of living cells (an average cell contains about 70% of H$_2$O) makes the water molecules more susceptible to radiolysis than the other molecules, where the effects involve the transfer of radiation energy to water molecules, which in turn results in excitation and decay. [24, 25]. As a result of the radiolysis of water, a number of reactive species are formed, most of which are radicals capable of reacting with biological molecules and influencing their functions. The most reactive oxidant is the hydroxyl radical, having a very high redox potential which allows it to react with virtually every molecule found in the cell [26, 27].

In studies concerning the possible use of fullerenes for radioprotection, their water-soluble derivatives (fullerenols) are particularly interesting. Fullereneols meet all the conditions for a good radioprotectant: the presence of double bonds (C=C), high electron affinity, ease of radical binding, and reactivity towards nucleophilic substituents [28]. The radioprotective properties of fullerenol have been confirmed by in vitro studies conducted on the human acute myeloid leukemia cell line K562. Cells were preincubated with 10 mM C$_{60}$(OH)$_{24}$ and then irradiated with X-ray at 24 Gy. It was found that fullerenol exhibited a protective effect on the cells, their morphology, and their ability to form colonies [29]. Fullerenol also inhibited the radiation-induced inactivation of antioxidative enzymes such as superoxide dismutase and glutathione peroxidase [30].

The next step was to demonstrate the radioprotective properties of fullerenol in vivo. Mice were administered fullerenol at 10 mg/kg and 100 mg/kg 30 min prior to irradiation with X-ray at the dose of 6 to 8 Gy. Fullerenol at 100 mg/kg was protective against high doses of radiation in comparison to the control group, while the concentration of 10 mg/kg was not significantly protective [31]. The radioprotective effects of fullerenol were also observed in Wistar rats [32] where it was compared with amifostine, a compound protecting healthy tissue from damage induced by radio- or chemotheraphy. Amifostine (WR 2721) is an inorganic thiophosphate activated by dephosphorylation, resulting in free active thiol production (WR 1065). The dephosphorylation process is catalyzed by alkaline phosphatase, whose activity, indues oxidative stress, which interferes with the effectiveness of the treatment and results in serious side effects such as cardiotoxicity. Heart muscle tissue has

weeks and irradiated with a lethal radiation dose of 8 Gy, and the 30-day survival rate was determined. The survival rate for animals treated with fullerenol before irradiation was 73%, while in the control group (no fullerenol) survival was 0%. Mitochondrial dysfunction, oxidative damage (e.g., levels of MDA, GSH, and SOD activity), and the amount of carbonyl groups in liver cells were also analyzed. It has been shown that fullerenol protected superoxide dismutase (SOD), prevented the oxidation of glutathione (GSH), and decreased hepatic lipid peroxidation (the level of MDA), which were attributed to the ability of C$_{60}$(OH)$_{24}$ to scavenge lipid radicals and ROS. Moreover, fullerenol protected mitochondrial proteins against oxidation, supported the maintenance of the mitochondrial membrane potential, and inhibited apoptosis induced by ionizing radiation. These data indicate that fullerenol possesses radioprotective properties; however, it should be noted that the protective nature of fullerenol may be concentration dependent. Zhao et al. [38] observed that fullerenol C$_{60}$(OH)$_n$ ($n = 18–22$) used at 0.25 mg/mL in Stylonychia mytilus bacteria induced a radiosensitizing effect manifested as a decrease in superoxide dismutase and catalase activity as well as increased levels of lipid peroxidation. Fullerenol used in concentrations below 0.06–0.1 mg/mL has been shown to act as a radioprotectant against gamma radiation from 60Co at doses up to 1500 Gy. This phenomenon illustrates the “concentration effect” and could be exploited when designing an experimental protocol, where, depending on the dose used, radioprotective or radiosensitizing effects may dominate.

Recent research, investigating the role of fullerenol C$_{60}$(OH)$_{24}$ in modulation of the response of K562 leukemic cells to irradiation, indicated that fullerenol improved survival of the irradiated cells and produced significant overexpression of antiapoptotic Bcl-2 and Bcl-XL proteins as well as cytoprotective GSTA4, MnSOD, NOS, CAT, and HO-1 genes [39].

4. Fullerenol and Chemotherapy

Chemotherapy (in addition to radiation therapy) is one of the most common treatments for cancer and may be used in a combination with surgery and/or radiation therapy. Some of the most widely used drugs in anticancer therapy are anthracycline antibiotics. Anthracyclines are well-known DNA intercalating agents and their primary mechanism of action is ascribed to interference with the function of DNA topoisomerase II. The effect of anthracyclines on cancer cells is also based on the modification of DNA structure by reactive oxygen species. The reactive species could induce DNA damage and lipid peroxidation with formation of malondialdehyde (MDA) which reacts at the exocyclic amino groups of deoxynuganosine, deoxyadenosine, and deoxycytidine to form alkylated products. The redox cycle of anthracyclines is seen in Figure 2 [40, 41].

Anthracycline therapy, in spite of its effective antitumor activity, induces systemic oxidative stress, which interferes with the effectiveness of the treatment and results in serious side effects such as cardiotoxicity. Heart muscle tissue has
Figure 2: One-electron redox cycle of anthracyclines. One-electron addition to the quinone moiety in the ring of carbon atoms of DOX and other anthracyclines result in the formation of a semiquinone that quickly regenerates its parent quinone by reducing oxygen to reactive oxygen species (ROS) like $O_2^{\cdot-}$ and H_2O_2. ROS generated in redox cycle of anthracyclines induce oxidative DNA damage.

A low activity of antioxidant enzymes, which in turn leads to increased myocardial susceptibility to oxidative stress [42]. The cardioprotective effects of fullerene $C_{60}(OH)_{24}$ have been shown in vivo on Wistar rats [43, 44]. The latency period for the appearance of reflex bradycardia on the ECG of the doxorubicin-treated group of animals was significantly longer than latency for the control group and groups pretreated with fullerene at 30 mg/kg and 100 mg/kg. Significantly increased levels of LDH, ALAT, ASPAT, CK, and alfa-HBDH were detected in the animals treated only with doxorubicin (DOX), indicating acute myocardial membrane damage, while animals pretreated with 100 mg/kg of fullerene showed physiological levels/activities of these enzymes. Fullerene did not modulate any enzyme activity when given alone.

Histopathological examination of the heart with light microscopy showed that the extent of damage to heart tissue was significantly lower in animals pretreated with fullerene compared to animals treated only with DOX. However, when fullerene (100 mg/kg) was given alone, it caused mild vascular changes which, most likely, were reversible [44]. Considering that the DOX toxicity is based on free radical production, it can be concluded that the protective role of fullerene relies on its high antioxidative potential, acting as a free radical scavenger and/or by removing free iron ions through the formation of the fullereno-iron complex and preventing the Fenton/Haber-Weiss reaction [44]. The antioxidant properties of fullerene $C_{60}(OH)_{24}$ preventing oxidative stress induced by doxorubicin in kidneys, testes, and lungs of rats were confirmed by Srdjenovic et al. [45]. Pretreatment of rats with fullerene at 50 mg/kg or 100 mg/kg significantly lowered the level of lipid peroxidation induced by DOX and restored SOD, CAT, GSH-Px, GST, and GR to control levels. However, fullerene-pretreated rats had higher values of lipid peroxidation compared to the control groups but lower than animals treated with DOX alone.

Beneficial effect of fullerene $C_{60}(OH)_{24}$ on the activity of antioxidant enzymes was confirmed in erythrocytes after a single dose administration of doxorubicin in rats pretreated with $C_{60}(OH)_{24}$ [46] as well as in hepatocytes from rats with colorectal cancer [43] and mammary carcinomas [47].

Another example of the protection of cells by the fullerene is seen in the action of antitumor drugs and $C_{60}(OH)_{24}$ against breast cancer cells. Human breast cancer cell lines MCF-7 and MDA-MB-231 were treated with fullerene $C_{60}(OH)_{24}$ at concentrations from 0.9 to 3.9 mg/L, alone or simultaneously with other antitumor drugs (doxorubicin, cisplatin, taxol, and tiazofurin). The fullerene alone mildly inhibited the growth of both cell lines, while simultaneous treatment with fullerene and antitumor drugs suppressed antitumor drug-induced cytotoxicity. The level of cytotoxicity inhibition depended on fullerene concentration, type of antitumor drug, and cell line. Protection against doxorubicin and cisplatin was more pronounced than that against taxol and tiazofurin. Fullerene was not found to be genotoxic to either cell line [48].

The cancer treatment potential for fullerene is based on its use as a carrier for the transport of anthracyclines. Chaudhuri et al. [49] conjugated fullerene $C_{60}(OH)_{16-24}$ and doxorubicin (Ful-DOX) which was found to be relatively stable in phosphate buffer saline but temporally released active drug when incubated with tumor cell lysate. The fullerene-doxorubicin conjugate suppressed the proliferation of cancer cell lines (mouse melanoma cell line (B16-F10), mouse lung carcinoma (LLC1), and metastatic human breast cancer cell line (MDA-MB-231)) in vitro by blocking G2-M progression, resulting in apoptosis. However, the conjugate was less efficacious against human MDA-MB-231 cells than against...
murine cell lines. This difference was connected with different susceptibility of MDA-MB-231 and the B16-F10 cells to the internalization of the drug-nanostructure conjugates into the cells and into the lysosomes. In an in vivo murine tumor model, fullereno-doxorubicin had comparable antitumor efficacy to free doxorubicin without the systemic toxicity of free doxorubicin.

Interesting results were obtained by Yin et al. [50]. They observed that Gd@C_{82}(OH)_{22} could interact with collagen by regulating the assembly of collagen fibrils and changing the biophysical properties of this protein. The fibrous layers, built of collagen and surrounding the tumor surface, became thicker and softer after the treatment with Gd@C_{82}(OH)_{22}, and the metastasis of tumor was largely suppressed.

The many hydroxyl groups present on the surface of fullereno enable not only attachment of various compounds (including drug molecules), but also the creation of multiple hydrogen bonds with various components of biological systems (such as protein domains of the plasma membrane or hydrophilic lipid heads) [51]. Our experiments have shown that fullereno can be adsorbed to erythrocyte cytoskeletal proteins [13] and this interaction can be used as a drug transport mechanism (Figure 3). Prolonging the residence time of a substance (drug) in the circulation is possible by attaching it to residues in the erythrocyte membrane such as band 3 protein or glycophorin. This method has been described by Krantz [52] and is based on the use of “anchors”—molecules with functional groups with strong affinity for erythrocyte cytoskeletal proteins. As fullereno is covered with polar OH groups, it is well suited to function as an “anchor” [13].

Since fullereno could protect human cancer cells in vitro against irradiation as it was shown in the papers of Icević et al. [29] and Stankov et al. [39]; it is suggested that the stratagem for fullereno use in cancer should be based more on their ability to produce phototoxic [53] or photothermal [54] effects and to attach various compounds, including drug molecules, to hydroxyl groups of fullereno.

However, fullereno C_{60}(OH)_{20} exhibited antitumor and antimetastatic activities in vivo in EMT-6 breast cancer metastasis model and no direct toxic effects on the growth of MCF-7 tumor cells in vitro. Modulation of oxidative stress in tumor tissues, inhibition of the formation of angiogenesis factors, and subsequent reduction in tumor vessel density and the nutrient supply to tumor cells could be important mechanisms by which fullereno inhibits tumor growth and suppresses carcinoma metastasis in vivo [55]. The antineoplastic efficiency of the [Gd@C_{82}(OH)_{22}]_{n} particles in H22 hepatoma-implanted mice was even much higher than that of cyclophosphamide and cisplatin [47].

5. Neuroprotective Properties of Fullerenols

Biological oxidation is common in brain tissue and is accompanied by free radical formation and compounded by relatively low efficiency antioxidant defense mechanisms [56–58]. Nerve cells are lipid rich, have predominantly aerobic metabolism (consuming 20% of the oxygen taken up by the body), and have a low activity of reactive oxygen species (ROS) eliminating enzymes, which make them a major target for free radical reactions [59]. Oxidative stress may mediate excitotoxic neuronal damage, resulting in an excessive stimulation of, for example, glutamate receptors [60] as well as the apoptotic death of neurons [61]. While apoptosis is part of the natural process of neurogenesis, it can also contribute to the loss of neurons in pathological conditions such as cerebral ischemia, Huntington’s disease (HD), or Alzheimer’s disease (AD) [62, 63]. Some nerve cells, particularly astrocytes and oligodendrocytes (in basal ganglia or the hippocampus), are susceptible to oxidative stress as they may accumulate iron ions as part of protein complexes [64]. The toxicity of iron ions is due to their ability to initiate the process of...
lipid peroxidation, which involves decomposition of lipid peroxides leading to the formation of free radical species [65,66]. Increased levels of iron are observed in the substantia nigra of patients affected by Parkinson's disease (PD) [67].

As there are no effective treatments for neurodegenerative diseases, alternative compounds which could prevent the negative effects of oxidative stress on the brain are still in demand. These compounds could include fullerolens, which are currently being evaluated as antioxidants for preventing the formation of amyloid plaques in AD [68–72] and as protective compounds for other neurodegenerative diseases whose cause may be associated with an oxidative imbalance within cells.

Water-soluble derivatives of fullerenes (fullerenols and malonic acid derivatives) scavenge ROS more efficiently than conventional antioxidants [32,73–76]. Therefore, hydrophilic fullerene derivatives are promising candidates for use as neuroprotective and antioxidant agents, as confirmed in electrophysiological studies indicating that two fullerene derivatives (C_{60}(OH)_{12} and C_{60}(OH)_{18–20}O_{3–7}) showed excellent antioxidant properties (confirmed by electron paramagnetic resonance). These fullerene derivatives decreased excitotoxicity-induced neuronal death of mouse neocortical neurons up to 80% and were antiapoptotic [74]. Similar results were obtained by Jin et al. [77], who demonstrated that fullerolens exerted a neuroprotective effect on neuronal cultures in vitro by blocking glutamate receptors and reducing the concentration of intracellular calcium.

It is interesting to note that the carboxyl derivative of C_{60} effectively protected dopaminergic neurons against the harmful effects of oxidative stress caused by neurotoxins [75]. The impairment of dopaminergic neurotransmission is essential in the pathogenesis of Parkinson's disease [78], as one of the causes of substantia nigra neuronal death in the course of PD may be the oxidation of dopamine. This may occur as a result of monoamine oxidase type B (MAO_{b}) or autooxidation of dopamine, leading to the formation of hydrogen peroxide (H_{2}O_{2}) which in the presence of Fe^{2+} generates highly toxic ·OH radicals through the Fenton reaction. The loss of dopaminergic cells in PD only affects cells containing neuromelanin, which can bind iron ions [79–81]. Interestingly, fullerol turned out to be an effective neuroprotector in a cellular model of Parkinson's disease. Cai et al. [76] induced oxidative stress in human neuroblastoma cells using 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MTPT), a neurotoxin precursor to 1-methyl-4-phenylpyridinium (MPP+), which is oxidized to MPP by glial monoamine oxidase in astrocytes. Symptoms of Parkinson's disease are caused by MPP+, which destroys dopaminergic neurons in the substantia nigra of the brain. MPP+ gets into dopaminergic neurons via specific transporters, leading to the inhibition of mitochondrial respiration and a reduction in the level of ATP which leads to the production of superoxide radicals and neuronal death. The authors reported that fullerol C_{60}(OH)_{24} effectively scavenged free radicals, suggesting that it may be a potential neuroprotective agent against mitochondrial dysfunction induced by MPP+. Other authors confirmed that fullerolens might accumulate in the mitochondria [82,83].

Studies concerning the functions of particular structures of the brain are largely based on an analysis of their electroencephalographic (EEG) pattern. Electrophysiological studies conducted on hippocampal slices revealed that poly-hydroxylated fullerene prevented the amplitude reduction of cell discharges caused by cumene peroxide and hydrogen peroxide [84].

In addition to its antioxidant properties, fullerolens were demonstrated to inhibit the modulation of the inhibition of acetylcholinesterase activity caused by certain toxic compounds in vitro [85] and were protective towards NMDA, AMPA, GABA, and KA receptors under conditions of increased oxidative stress [60,74,77]. Recent studies by Zha et al. [86] suggested that fullerol protects hippocampal neurons from damage but may also induce cell death in certain doses, indicating a concentration-/dose-dependent effect.

Despite the convincing evidence concerning the neuroprotective properties of water-soluble fullerene derivatives, little is known about their mechanism of action and possible side effects occurring in the neural tissue. Therefore, the potential therapeutic properties of fullerolens in the treatment of neurologic diseases require further investigation.

6. Conclusion

The interest in hydroxylated fullerenes and their applications continues, as every year there are new reports on the impact of fullerolens on various systems. Despite convincing evidence of the potential applications of fullerolens in biomedicine, there is still insufficient knowledge about the mechanism of action of these molecules and their possible side effects.

Conflict of Interests

The authors declare that there is no conflict of interests regarding the publication of this paper.

Acknowledgments

The project was funded by the National Science Centre, Poland. Funds were awarded on the basis of the Agreement no. 2011/03/N/ST4/01281.

References

[1] Z. Markovic and V. Trajkovic, “Biomedical potential of the reactive oxygen species generation and quenching by fullerenes (C_{60}),” Biomaterials, vol. 29, no. 26, pp. 3561–3573, 2008.

[2] B. Vileno, A. Sienkiewicz, M. Lekka, A. J. Kulik, and L. Forró, “In vitro assay of singlet oxygen generation in the presence of water-soluble derivatives of C_{60},” Carbon, vol. 42, no. 5–6, pp. 1195–1198, 2004.

[3] L. Xiao, H. Aoshima, Y. Saitoh, and N. Miwa, “Highly hydroxylated fullerene localizes at the cytoskeleton and inhibits oxidative stress in adipocytes and a subcutaneous adipose-tissue equivalent,” Free Radical Biology and Medicine, vol. 51, no. 7, pp. 1376–1389, 2011.

[4] L. Xiao, H. Takada, K. Maeda, M. Haramoto, and N. Miwa, “Antioxidant effects of water-soluble fullerene derivatives
against ultraviolet ray or peroxylipid through their action of scavenging the reactive oxygen species in human skin keratinocytes,” *Biomedicine & Pharmacotherapy*, vol. 59, no. 7, pp. 351–358, 2005.

[5] Z. Chen, K. Ma, G. Wang, X. Zhao, and A. Tang, "Structures and stabilities of C_{60}(OH)_{14} and C_{60}(OH)_{18}fullerenols,” *Journal of Molecular Structure*, vol. 498, no. 1, pp. 227–232, 2000.

[6] L. Y. Chiang, J. B. Bhonsle, L. Wang, S. F. Shu, T. M. Chang, and J. R. Hwu, "Efficient one-flask synthesis of water-soluble [60]fullerenols,” *Tetrahedron*, vol. 52, no. 14, pp. 4963–4972, 1996.

[7] K. Kokubo, K. Matsubayashi, H. Tategaki, H. Takada, and T. Oshima, "Facile synthesis of highly water-soluble fullerenes more than half-covered by hydroxyl groups," *ACS Nano*, vol. 2, no. 2, pp. 327–333, 2008.

[8] G. Zhang, Y. Liu, D. Liang, L. Gan, and Y. Li, "Facile synthesis of isomerically pure fullerenols and formation of spherical aggregates from C_{60}(OH)_{6},” *Angewandte Chemie*, vol. 49, no. 31, pp. 5293–5295, 2010.

[9] K. D. Pickering and M. R. Wiesner, "Fullerol-sensitized production of reactive oxygen species in aqueous solution,” *Environmental Science & Technology*, vol. 39, no. 5, pp. 1359–1365, 2005.

[10] L. Y. Chiang, F. J. Lu, and J. T. Lin, "Free radical scavenging activity of water-soluble fullerenols,” *Journal of the Chemical Society, Chemical Communications*, no. 12, pp. 1283–1284, 1995.

[11] G. D. Nielsen, M. Roursgaard, K. A. Jensen, S. S. Poulsen, and S. T. Larsen, "In vivo biology and toxicology of fullerenes and their derivatives,” *Basic and Clinical Pharmacology & Toxicology*, vol. 103, no. 3, pp. 197–208, 2008.

[12] S. M. Mirkov, A. N. Djordjevic, N. L. Andric et al., "Nitric oxide-scavenging activity of polyhydroxylated fullerenol, C_{60}(OH)_{14},” *Nitric Oxide*, vol. 11, no. 2, pp. 201–207, 2004.

[13] J. Grebowski, A. Krokosz, and M. Puchala, "Fullerenol C_{60}(OH)_{36} could associate to band 3 protein of human erythrocyte membranes,” *Biochimica et Biophysica Acta*, vol. 1828, no. 9, pp. 2007–2014, 2013.

[14] P. J. Krusic, E. Wasserman, P. N. Keizer, J. R. Morton, and K. F. Preston, "Radical reactions of C_{60},” *Science*, vol. 254, no. 5035, pp. 1183–1185, 1991.

[15] L. Xiao, H. Takada, X. H. Gan, and N. Miwa, "The water-soluble fullerene derivative " Radical Sponge " exerts cytoprotective action against UVA irradiation but not visible-light-catalyzed cytotoxicity in human skin keratinocytes,” *Bioorganic & Medicinal Chemistry Letters*, vol. 16, no. 6, pp. 1590–1595, 2006.

[16] A. Krokosz, "Fullerenes in biology,” *Postepy Biochemii*, vol. 53, no. 1, pp. 91–96, 2007.

[17] A. Djordjevic, J. M. Canadanovic-Brunet, M. Vojinovic-Miloradov, and G. Bogdanović, "Antioxidant properties and hypothetic radical mechanism of fullerenol C_{60}(OH)_{14},” *Oxidation Communications*, vol. 27, no. 4, pp. 806–812, 2004.

[18] H.-S. Lai, Y. Chen, W.-J. Chen, K.-J. Chang, and L.-Y. Chiang, "Free radical scavenging activity of fullerenol on grafts after small bowel transplantation in dogs,” *Transplantation Proceedings*, vol. 32, no. 6, pp. 1272–1274, 2000.

[19] H.-S. Lai, W.-J. Chen, and L.-Y. Chiang, "Free radical scavenging activity of fullerenol on the ischemia-reperfusion intestine in dogs,” *World Journal of Surgery*, vol. 24, no. 4, pp. 450–454, 2000.

[20] J.-Y. Xu, Y.-Y. Su, J.-S. Cheng et al., "Protective effects of fullerenol on carbon tetrachloride-induced acute hepatotoxicity and nephrotoxicity in rats,” *Carbon*, vol. 48, no. 5, pp. 1388–1396, 2010.

[21] J.-J. Yin, F. Lao, P. P. Fu et al., "The scavenging of reactive oxygen species and the potential for cell protection by functionalized fullerene materials,” *Biomaterials*, vol. 30, no. 4, pp. 611–621, 2009.

[22] P. Pacher, J. S. Beckman, and L. Liaudet, "Nitric oxide and peroxynitrite in health and disease,” *Physiological Reviews*, vol. 87, no. 1, pp. 315–424, 2007.

[23] S. Kato, H. Aoshima, Y. Saitoh, and N. Miwa, "Highly hydroxylated or γ-cyclodextrin-bicapped water-soluble derivative of fullerene: The antioxidant ability assessed by electron spin resonance method and β-carotene bleaching assay,” *Bioorganic & Medicinal Chemistry Letters*, vol. 19, no. 18, pp. 5293–5296, 2009.

[24] A. Krokosz and Z. Szewda-Lewandowska, "Changes in the activity of acetylcholinesterase and Na,K-ATPase in human erythrocytes irradiated with X-rays,” *Cellular and Molecular Biology Letters*, vol. 10, no. 3, pp. 471–478, 2005.

[25] A. Krokosz, R. Koziczak, M. Gonciarz, and Z. Szewda-Lewandowska, "Study of the effect of dose-rate on radiation-induced damage to human erythrocytes,” *Radiation Physics and Chemistry*, vol. 75, no. 1, pp. 98–105, 2006.

[26] M. Komorowska, A. Krokosz, and Z. Szewda-Lewandowska, "Radiation damage to human erythrocytes: influence of the composition of medium,” *Radiation Physics and Chemistry*, vol. 76, no. 10, pp. 1587–1593, 2007.

[27] Z. Szewda-Lewandowska, A. Krokosz, M. Gonciarz, W. Zajeczkowska, and M. Puchala, "Damage to human erythrocytes by radiation-generated HO• radicals: molecular changes in erythrocyte membranes,” *Free Radical Research*, vol. 37, no. 10, pp. 1137–1143, 2003.

[28] J. Grębowski and A. Krokosz, "Fullerenes in radiobiology,” *Postepy Biochemii*, vol. 56, no. 4, pp. 456–462, 2010.

[29] I. Iveci, V. Bogdanovic, D. Zikic, S. Solajic, G. Bogdanovic, and A. Djordjevic, "The influence of fullerenol on cell number, cell area, and colony forming unit ability in irradiated human eritroleukemic cell line,” *Hemiska Industrija*, vol. 61, no. 3, pp. 167–169, 2007.

[30] V. Bogdanovic, K. Stankov, I. Iveci et al., "Fullerenol C_{60}(OH)_{24} effects on antioxidative enzymes activity in irradiated human erythroleukemia cell line,” *Journal of Radiation Research*, vol. 49, no. 3, pp. 321–327, 2008.

[31] S. Trajkovic, S. Dobric, A. Djordjevic, V. Dragojevic-Simic, and Z. Milovanovic, "Radioprotective efficiency of fullerolen in irradiated mice,” *Materials Science Forum*, vol. 494, pp. 549–554, 2005.

[32] S. Trajkovic, S. Dobric, V. Jačević, V. Dragojević-Simić, Z. Milovanović, and A. Đorđević, "Tissue-protective effects of fullerolen C_{60}(OH)_{24} and amifostine in irradiated rats,” *Colloids and Surfaces B*, vol. 58, no. 1, pp. 39–43, 2007.

[33] C. Bourgier, A. Levy, M. C. Vozenin, and E. Deutsch, "Pharmacological strategies to spare normal tissues from radiation damage: useless or overlooked therapeutics?” *Cancer and Metastasis Reviews*, no. 3–4, pp. 699–712, 2012.

[34] D. Citrin, A. P. Cotrim, F. Hyodo, B. J. Baum, M. C. Krishna, and J. B. Mitchell, "Radioprotectors and mitigators of radiation-induced normal tissue injury,” *The Oncologist*, vol. 15, no. 4, pp. 360–371, 2010.

[35] F. Marzatico, C. Porta, M. Moroni et al., "In vitro antioxidant properties of amifostine (WR-2721, ethyl),” *Cancer Chemotherapy and Pharmacology*, vol. 45, no. 2, pp. 172–176, 2000.
V.M.Torres, B.Srdjenovic, V.Jacevic, V.D.Simic, A.Djordjevic, V. D. Milic, K. Stankov, R. Injac et al., “Activity of antioxidative enzymes in erythrocytes after a single dose administration of doxorubicin in rats pretreated with fullerenol C_{60}(OH)_{24},” *Toxicology and Applied Pharmacology*, vol. 243, no. 1, pp. 27–34, 2010.

Q. Zhao, Y. Li, J. Xu, R. Liu, and W. Li, “Radioprotection by fullerenols of *Stylochronia mytilus* exposed to γ-rays,” *International Journal of Radiation Biology*, vol. 81, no. 2, pp. 169–175, 2005.

K. Stankov, I. Borisev, V. Kojic, L. Rutonjski, G. Bogdanovic, and A. Djordjevic, “Modification of antioxidative and antiapoptotic genes expression in irradiated K562 cells upon fullerenol C_{60}(OH)_{24} nanoparticle treatment,” *Journal of Nanoscience and Nanotechnology*, vol. 13, no. 1, pp. 105–113, 2013.

G. L. Beretta and F. Zunino, “Molecular mechanisms of anthracline activity,” *Topics in Current Chemistry*, vol. 283, pp. 1–19, 2008.

G. Minotti, P. Menna, E. Salvatorelli, G. Cairo, and L. Gianni, “Anthracyclines: molecular advances and pharmacological developments in antitumor activity and cardiotoxicity,” *Pharmacological Reviews*, vol. 56, no. 2, pp. 185–229, 2004.

P. Menna, O. Gonzalez Paz, M. Chello, E. Covino, E. Salvatorelli, and G. Minotti, “Anthracycline cardiotoxicity,” *Expert Opinion on Drug Safety*, vol. 11, no. 1, pp. S21–S36, 2012.

R. Injac, M. Perse, M. Cerne et al., “Protective effects of fullerenol C_{60}(OH)_{24} against doxorubicin-induced cardiotoxicity and hepatotoxicity in rats with colorectal cancer,” *Biomaterials*, vol. 30, no. 6, pp. 1184–1196, 2009.

V. M. Torres, B. Srdjenovic, V. Jacevic, V. D. Simic, A. Djordjevic, and A. L. Simplicio, “Fullerenol C_{60}(OH)_{24} prevents doxorubicin-induced acute cardiotoxicity in rats,” *Pharmacological Reports*, vol. 62, no. 4, pp. 707–718, 2010.

B. Srdjenovic, V. Milic-Torres, N. Grujic, K. Stankov, A. Djordjevic, and V. Vasovic, “Antioxidant properties of fullerenol C_{60}(OH)_{24} in rat kidneys, testes, and lungs treated with doxorubicin,” *Toxicology Mechanisms and Methods*, vol. 20, no. 6, pp. 298–305, 2010.

V. D. Milic, K. Stankov, R. Injac et al., “Activity of antioxidative enzymes in erythrocytes after a single dose administration of doxorubicin in rats pretreated with fullerenol C_{60}(OH)_{24},” *Toxicology Mechanisms and Methods*, vol. 19, no. 1, pp. 24–28, 2009.

C. Chen, G. Xing, J. Wang et al., “Multihydroxylated [Gd@C82(OH)22]n nanoparticles: antineoplastic activity of high efficiency and low toxicity,” *Nanoscale*, vol. 5, no. 10, pp. 2050–2057, 2005.

V. Kocić, D. Jakimov, G. Bogdanovic, and A. Đorđević, “Effects of fullerenol C_{60}(OH)_{24} on cytotoxicity induced by antitumor drugs on human breast carcinoma cell lines,” *Materials Science Forum*, vol. 494, pp. 543–548, 2005.

P. Chaudhuri, A. Paraskar, S. Soni, R. A. Mashelkar, and S. Sen-gupta, “Fullerolen-cytotoxic conjugates for cancer chemotherapy,” *ACS Nano*, vol. 3, no. 9, pp. 2505–2514, 2009.

X. Yin, L. Zhao, S. G. Kang et al., “Impacts of fullerenic derivatives on regulating the structure and assembly of collagen molecules,” *Nanoscale*, vol. 5, no. 16, pp. 7341–7348, 2013.

J. Grebowski, A. Krokosz, and M. Puchala, “Membrane fluidity and activity of membrane ATPases in human erythrocytes under the influence of polyhydroxylated fullerene,” *Biochimica et Biophysica Acta*, vol. 1828, no. 2, pp. 241–248, 2013.

A. Kranitz, “Red cell-mediated therapy: opportunities and challenges,” *Blood Cells, Molecules and Diseases*, vol. 23, no. 1, pp. 58–68, 1997.

J. E. Roberts, A. R. Wielgus, W. K. Boyes, U. Andley, and C. F. Chignell, “Phototoxicity and cytotoxicity of fullerol in human lens epithelial cells,” *Toxicology and Applied Pharmacology*, vol. 228, no. 1, pp. 49–58, 2008.

S. R. Grobmyer and V. Krishna, “Minimally invasive cancer therapy using polyhydroxy fullerenes,” *European Journal of Radiology*, vol. 81, supplement 1, pp. S51–S53, 2012.

F. Jiao, Y. Liu, Y. Qu et al., “Studies on anti-tumor and antimetastatic activities of fullerol in a mouse breast cancer model,” *Carbon*, vol. 48, no. 8, pp. 2231–2243, 2010.

M. Balu, P. Sangeetha, D. Haripriya, and C. Panneerselvam, “Rejuvenation of antioxidant system in central nervous system of aged rats by grape seed extract,” *Neuroscience Letters*, vol. 383, no. 3, pp. 295–300, 2005.

R. J. Reiter, “Oxidative processes and antioxidative defense mechanisms in the aging brain,” *FASEB Journal*, vol. 9, no. 7, pp. 526–533, 1995.

A. Zajdel, A. Wilczok, J. Slowski, J. Orzech, and U. Mazurek, “Aldehydic lipid peroxidation products in human brain astrocytomas,” *Journal of Neuro-Oncology*, vol. 84, no. 2, pp. 167–173, 2007.

G. Buonocore, S. Perrone, and R. Bracci, “Free radicals and brain damage in the newborn,” *Biology of the Neonate*, vol. 79, no. 3–4, pp. 180–186, 2001.

L. L. Dugan, V. M. G. Bruno, S. M. Amaguas, and R. G. Giffard, “Glia modulate the response of murine cortical neurons to excitotoxicity: glia exacerbate AMPA neurotoxicity,” *Journal of Neuroscience*, vol. 15, no. 6, pp. 4545–4555, 1995.

L. J. S. Greenlund, T. L. Deckwerth, and E. M. Johnson Jr., “Superoxide dismutase delays neuronal apoptosis: a role for reactive oxygen species in programmed neuronal death,” *Neuron*, vol. 14, no. 2, pp. 303–315, 1995.

M. Dragunow, R. L. M. Faulll, P. Lawlor et al., “In situ evidence for DNA fragmentation in Huntington’s disease striatum and Alzheimer’s disease temporal lobes,” *NeuroReport*, vol. 6, no. 7, pp. 1053–1057, 1995.

P. Calissano, C. Matrone, and G. Amadaro, “Apoptosis and in vitro Alzheimer disease neuronal models,” *Communicative and Integrative Biology*, vol. 2, no. 2, pp. 163–169, 2009.

R. Dringen, G. M. Bishop, M. Koepp, T. N. Dang, and S. R. Robinson, “The pivotal role of astrocytes in the metabolism of iron in the brain,” *Neurochemical Research*, vol. 32, no. 11, pp. 1884–1890, 2007.

G. Bartosz, “Drugatwarztlenu,”*Wydawnictwo Naukowe PWN, Warszawa, 2004.*

B. Halliwell and J. M. C. Gutteridge, *Free Radicals in Biology and Medicine*, Oxford University Press, London, UK, 3rd edition, 1999.

S. Fahn and G. Cohen, “The oxidant stress hypothesis in Parkinson’s disease: evidence supporting it,” *Annals of Neurology*, vol. 32, no. 6, pp. 804–812, 1992.

H.-M. Huang, H.-C. Ou, S.-J. Hsieh, and L.-Y. Chiang, “Blockage of amyloid β peptide-induced cytotoxic free calcium by fullerenol-1, carboxylate C_{60} in PC12 cells,” *Life Sciences*, vol. 66, no. 16, pp. 1525–1533, 2000.
[69] J. E. Kim and M. Lee, “Fullerene inhibits β-amyloid peptide aggregation,” *Biochemical and Biophysical Research Communications*, vol. 303, no. 2, pp. 576–579, 2003.

[70] C.-M. Lee, S.-T. Huang, S.-H. Huang et al., “C₆₀ fullerene-pentoxifylline dyad nanoparticles enhance autophagy to avoid cytotoxic effects caused by the β-amyloid peptide,” *Nanomedicine*, vol. 7, no. 1, pp. 107–114, 2011.

[71] I. Y. Podolski, Z. A. Podlubnaya, and O. V. Godukhin, “Fullerenes C₆₀, antiamyloid action, the brain, and cognitive processes,” *Biofizika*, vol. 55, no. 1, pp. 71–76, 2010.

[72] I. Y. Podolski, Z. A. Podlubnaya, E. A. Kosenko et al., “Effects of hydrated forms of C₆₀ fullerene on amyloid β-peptide fibrillization in vitro and performance of the cognitive task,” *Journal of Nanoscience and Nanotechnology*, vol. 7, no. 4-5, pp. 1479–1485, 2007.

[73] S. S. Ali, J. I. Hardt, and L. L. Dugan, “SOD Activity of carboxyfullerenes predicts their neuroprotective efficacy: a structure-activity study,” *Nanomedicine*, vol. 4, no. 4, pp. 283–294, 2008.

[74] L. L. Dugan, J. K. Gabrielsen, S. P. Yu, T.-S. Lin, and D. W. Choi, “Buckminsterfullerenol free radical scavengers reduce excitotoxic and apoptotic death of cultured cortical neurons,” *Neurobiology of Disease*, vol. 3, no. 2, pp. 129–135, 1996.

[75] J. Lotharius, L. L. Dugan, and K. L. O’Malley, “Distinct mechanisms underlie neurotoxin-mediated cell death in cultured dopaminergic neurons,” *Journal of Neuroscience*, vol. 19, no. 4, pp. 1284–1293, 1999.

[76] X. Cai, H. Jia, Z. Liu et al., “Polyhydroxylated fullerene derivative C₆₀(OH)₂₄ prevents mitochondrial dysfunction and oxidative damage in an MPP+-induced cellular model of Parkinson’s disease,” *Journal of Neuroscience Research*, vol. 86, no. 16, pp. 3622–3634, 2008.

[77] H. Jin, W. Q. Chen, X. W. Tang et al., “Polyhydroxylated C₆₀, fullerolens, as glutamate receptor antagonists and neuroprotective agents,” *Journal of Neuroscience Research*, vol. 62, pp. 600–607, 2000.

[78] C. A. Davie, “A review of Parkinson’s disease,” *British Medical Bulletin*, vol. 86, no. 1, pp. 109–127, 2008.

[79] D. Ben-Shachar, P. Riederer, and M. B. H. Youdim, “Iron-melanin interaction and lipid peroxidation: implications for Parkinson’s disease,” *Journal of Neurochemistry*, vol. 57, no. 5, pp. 1609–1614, 1991.

[80] S. J. Chinta and J. K. Andersen, “Redox imbalance in Parkinson’s disease,” *Biochimica et Biophysica Acta*, vol. 1780, no. 11, pp. 1362–1367, 2008.

[81] W. Dauer and S. Przedborski, “Parkinson’s disease: mechanisms and models,” *Neuron*, vol. 39, no. 6, pp. 889–909, 2003.

[82] F. Chirico, C. Fumelli, A. Marconi et al., “Carboxyfullerenes localize within mitochondria and prevent the UVB-induced intrinsic apoptotic pathway,” *Experimental Dermatology*, vol. 16, no. 5, pp. 429–436, 2007.

[83] S. Foley, C. Crowley, M. Smaih et al., “Cellular localisation of a water-soluble fullerene derivative,” *Biochemical and Biophysical Research Communications*, vol. 294, no. 1, pp. 116–119, 2002.

[84] M.-C. Tsai, Y. H. Chen, and L. Y. Chiang, “Polyhydroxylated C₆₀, fullerol, a novel free-radical trap for prevented hydrogen peroxide- and cumene hydroperoxide-elicited changes in rat hippocampus in-vitro,” *Journal of Pharmacy and Pharmacology*, vol. 49, no. 4, pp. 438–445, 1997.

[85] M. Ehrich, R. van Tassell, Y. Li, Z. Zhou, and C. L. Kepley, “Fullerene antioxidants decrease organophosphate-induced acetylcholinesterase inhibition in vitro,” *Toxicology in Vitro*, vol. 25, no. 1, pp. 301–307, 2011.

[86] Y. Y. Zha, B. Yang, M. L. Tang et al., “Concentration-dependent effects of fullerol on cultured hippocampal neuron viability,” *International Journal of Nanomedicine*, vol. 7, pp. 3099–3109, 2012.