Genetic Approaches-Investigating Psychiatry

Mansoor Ahmad Dar1, Rayees ahmad Wani1, Yasir Hassan Rather1, Mashoog Ahmad Dar2, Arshad Hussain1, Irfan Ahmad Shah1, Mushtaq Ahmad Margoo5, Rajesh Kumar Chandel1, Majid Shafi Shah1, Mohd Muzzaffar Jan1 and Altaf Ahmad Malla1

1Department of Psychiatry, Government Medical College, Srinagar, Jammu and Kashmir, India
2Department of Clinical biochemistry, University of Kashmir, Srinagar, Jammu and Kashmir, India
3Department of Neurology, Shere Kashmir Institute of Medical Sciences, Srinagar, Jammu and Kashmir, India

Abstract

Rational and logical answers have been the basis of all the sciences. Many questions in the understanding of psychiatric psychopathology and symptoms are rationally understood and a lot more are revealing due to the development of modern investigative techniques. Genetic factors are under active and extensive research for better understanding of psychiatric illnesses. And these approaches have undergone a paradigm shift in the recent times. From basic molecular genetics to the pharmacogenetics, a lot many tools are in the kitty of the investigators. The study of these genetic factors, development of genetic techniques, vis-a-vis the interaction with other factors is an active area of interest.

Keywords: Psychiatry; Genetics; Molecular; Investigation

Introduction

Although the study of phenomenology forms the basis of understanding the psychopathology, the advent of genetic techniques has been complimentary to this newly growing branch of science. With the field of psychiatric genetics experiencing a paradigm shift, the established genetic basis ranges from 70% to 85% in the major psychiatric disorders [1-3]. Research has consistently shown that genetic factors are important in the aetiology of psychiatric disorders and variation in "continuously distributed" psychological traits (such as personality and IQ) but the pattern is not simple [4] this implies that psychiatric disorders are probably caused by the interaction of genetic and environmental factors. Linkage analyses continue to be largely disappointing-even though some loci can be confirmed; positional cloning is considered an unlikely route to identify genes involved in most psychiatric disorders. Co-morbidity and diagnostic uncertainties continue to plague the field. The realization that many susceptibility alleles will be common variants rather than rare mutations makes necessary new approaches to the design, analysis and interpretation of psychiatric genetic studies [5]. The human genome is diploid and consists of 50,000-100,000 genes arranged on 23 pairs of chromosomes carrying specific mutation within the defective gene, which is responsible for or its development or outcome [6]. The ultimate aim is to pinpoint the specific mutation within the defective gene, which is responsible for or has an influence on the disease.

Molecular Genetics/Biology

The advent of recombinant DNA technology allows scientists to study DNA directly. DNA markers are abundant and present throughout the human genome. In recent years, there has been a rapid increase in the number of molecular genetic investigations of major psychiatric disorders. Molecular genetics is concerned with the search for the mutations, which are responsible for a disorder or which influence its development or outcome [6]. The ultimate aim is to pinpoint the specific mutation within the defective gene, which is responsible for or has an influence on the disease.

The Candidate Gene Approach

A candidate gene is a gene for which there is a prior reason to suggest its involvement in the pathophysiology of the disorder. One current strategy is to identify plausible candidate genes for study. Once a gene has been identified as a candidate gene, it is systematically assessed to determine if, and to what extent, the candidate gene contributes to disease liability. In the case of major psychoses, there are many genes that fall into this category [7]. One of the examples is serotonin transporter gene. Since its discovery in 1996, a serotonin transporter promoter polymorphism (5-HTTLPR) has been cited in more than 100 publications searching for association with traits ranging from compulsive buying through depression to alcoholism and PTSD. Low levels of serotonin degradation products in the cerebrospinal fluid of aggressive and/or suicidal men or monkeys is among the most replicated physiological findings in psychiatry which was latter replicated at human level [8]. Many recent investigations have suggested that the 5HTTLPR polymorphism has a role to play in human depression [9]. Novel techniques such as single nucleotide polymorphisms (SNPs) scored on DNA chips are likely to revolutionize association studies by allowing for simultaneous testing of possibly thousands of candidate genes.

Linkage Analysis

Linkage is said to occur when two genetic traits are co-inherited rather than independently inherited as predicted by Mendel's second law. If the two genetic traits are caused by genes that exist close together on the same chromosome, then recombination between them will occur very rarely during meiosis [6]. The two genetic traits will be
passed on to subsequent offspring en masse. Linkage analysis and the role of linkage genes have been researched widely in disorders ranging from mood disorders to psychosis to childhood psychiatric disorders [10-13].

Association Study

An alternative method to linkage analysis is association study. This method looks for an association between one allele of a genetic polymorphism and the disease. If a mutation contributes to a disease then, clearly, it will occur more frequently in patients than in controls. Genetic polymorphisms very close to the mutation that contributes to disease are unlikely to be separated because the chance of a recombination event occurring between them is very low. Thus certain alleles at that polymorphism will also occur more frequently in patients than in controls. This phenomenon is often detected between DNA markers from the same location, and is known as linkage disequilibrium. This method has been used successfully in HLA associated diseases [6].

Epistatic Interaction of Genes and Multigenic Inheritance

In addition to heterogeneity, it is anticipated that to increase risk for many complex disorders, multiple deleterious genetic variants are required in combination. This is called multiplicative, epistatic, oligo- or multigenic inheritance [14-16]. Such inheritance is indicated when the risk to very close relatives of those affected is high, but decreases rapidly in more distant relatives, as is observed in both schizophrenia and bipolar disorder [15,17]. To date, autism provides the best evidence for this type of multigenic inheritance [18].

Endophenotypes or Trait Markers

The basic idea of endophenotypes, or trait markers, is to find a trait that is more common in affected individuals than in the general population, but also displayed often by unaffected relatives, marking these individuals as carriers of one of the predisposing alleles. Such a trait should be heritable, frequent in ‘high-risk’ subjects (parents, siblings or offspring), stable over one’s lifetime, and unaffected by medication use [19]. Several potential traits have recently been identified. A low response to alcohol is common in offspring of alcoholics and is irreplaceable. The advent of biological and genetic markers will try to give the one to one association in this field but will not and should not surpass the need of emotional and human touch by the professionals in the field of psychiatry. The advent of newer techniques and the role of environment in genetic modulation will further help in marking the genetics of psychiatric illness.

Acknowledgement

none

Competing Interests

The authors declare that they have no competing interest.

References

1. McGuffin P, Farmer AE, Gottesman II, Murray RM, Revely AM (1984) Twin concordance for operationally defined schizophrenia: confirmation of familiarity and heritability. Arch Gen Psychiatry 41: 541-545.
2. Farmer AE, McGuffin P, Gottesman II (1987) Twin concordance for DSM-III schizophrenia: scrutinizing the validity of the definition. Arch Gen Psychiatry 44: 634-641.
3. Kendler KS, Pedersen NL, Neale MC, Mathé AA (1995) A pilot Swedish twin study of affective illness including hospital- and population-ascertained subsamples: results of model fitting. Behav Genet 25: 217-232.
4. Kathryn E, Hood TC, Gary G, Richard M (2010) Handbook of Developmental Science, Behavior, and Genetics Blackwell Publishing 557-625.
5. Scott F, Margit B (2009) Recent progress in psychiatric genetics-some hope but no hype; Human Molecular Genetics 9: 927-935.
6. McGuffin P, Murray R (2013) The new genetics of mental illness. Oxford: Butterworth-Heinemann.
7. Beutler E, Kuhl W, Sacks P (1983) Sodium-Potassium-ATPase Activity Is Influenced by Ethnic Origin and Not by Obesity. New England Journal of Medicine 309: 756-760.
8. GeiGnert J, Kranzler H, Coccoro EF, Siever LJ, New AS (2014) Serotonin transporter gene polymorphism and personality measures in African American and European American subjects.
9. Surtees PG, Wainright NW, Willis Olsen SA, Luben R, et al. (2006) Social diversity, the serotonin transporter (5HTTLPR) polymorphism and major depressive disorder. Biol Psychiatry 59: 224-9.
10. Tanzi RE (1999) A genetic dichotomy model for the inheritance of Alzheimer’s disease and common age-related disorders. J Clin Invest 104: 1175-1179.
11. Berrettini W (1998) Progress and pitfalls: bipolar molecular linkage studies. J Affect Disord 50: 287-297.
12. Gershon ES, Badner JA, Goldin LR, Sanders AR, Cravlich A (1998) Closing in on genes for manic-depressive illness and schizophrenia. Neuropsychopharmacology 18: 233-242.
13. Kennedy JL, Basile VS, Macciardi FM (1999) Chromosome 4 Workshop Summary: Sixth World Congress on Psychiatric Genetics, Bonn, Germany 6-10 October 1998. Am J Med Genet 88: 224-228.
14. Lander ES, Schork NJ (1994) Genetic dissection of complex traits. Science 265: 2037-2048.
15. Suk G, Hechter E, Sunyaev SR, Lander ES (2012) The mystery of missing heritability: Genetic interactions create phantom heritability. Proceedings of the National Academy of Sciences 109: 1153-1158.
16. Gershon ES (2000) Bipolar illness and schizophrenia as oligogenic diseases: implications for the future. Biol Psychiatry 47: 240-244.
17. Craddock N, Jones I (1999) Genetics of bipolar disorder. J Med Genet 36: 585-594.
18. Lamb JA, Moore J, Bailey A, Monaco AP (2000) Autism: recent molecular genetic advances. Hum Mol Genet 9: 861-868.
19. Freedman R, Adler LE, Leonard S (1999) Alternative phenotypes for the complex genetics of schizophrenia. Biol Psychiatry 45: 551-558.
20. Schuckit MA (1998) Biological, psychological and environmental predictors of the alcoholism risk: a longitudinal study. J Stud Alcohol 59: 485-494.

21. Evans WE, Relling MV (1999) Pharmacogenomics: translating functional genomics into rational therapeutics. Science 286: 487-491.

22. Zanardi R, Benedetti F, Di Bella D, Catalano M, Smeraldi E (2000) Efficacy of paroxetine in depression is influenced by a functional polymorphism within the promoter of the serotonin transporter gene. J Clin Psychopharmacol 20: 105-107.