Single carrier trapping and de-trapping in scaled silicon complementary metal-oxide-semiconductor field-effect transistors at low temperatures

Zuo Li¹, Muhammad Khaled Husain¹, Hiroyuki Yoshimoto², Kazuki Tani², Yoshitaka Sasago³, Digh Hisamoto², Jonathan David Fletcher³, Masaya Kataoka³, Yoshishige Tsuchiya¹ and Shinichi Saito¹

¹ Nanoelectronics and nanoresearch group, Department of Electronics and Computer Science, Faculty of Physical Science and Engineering, University of Southampton, High field Campus, SO17 1BJ, United Kingdom
² Research & Development Group, Hitachi, Ltd., 1-280 Higashikoigakubo, Kokubunji, Tokyo 185-8601, Japan
³ National Physical Laboratory, Hampton Road, Teddington, Middlesex TW11 0LW, United Kingdom

E-mail: S.Saito@soton.ac.uk

Received 9 January 2017, revised 15 March 2017
Accepted for publication 24 March 2017
Published 25 May 2017

Abstract

The scaling of Silicon (Si) technology is approaching the physical limit, where various quantum effects such as direct tunnelling and quantum confinement are observed, even at room temperatures. We have measured standard complementary metal-oxide-semiconductor field-effect-transistors (CMOSFETs) with wide and short channels at low temperatures to observe single electron/hole characteristics due to local structural disturbances such as roughness and defects. In fact, we observed Coulomb blockades in sub-threshold regimes of both p-type and n-type Si CMOSFETs, showing the presence of quantum dots in the channels. The stability diagrams for the Coulomb blockade were explained by the potential minima due to poly-Si grains. We have also observed sharp current peaks at narrow bias windows at the edges of the Coulomb diamonds, showing resonant tunnelling of single carriers through charge traps.

Keywords: scaled CMOSFETs, single carrier trapping and de-trapping, quantum dots

1. Introduction

The Silicon (Si) industry is seeking a new disruptive application in quantum technologies by using the platform of the existing infrastructure to fabricate scaled complementary-metal-oxide-semiconductor field-effect-transistors (CMOSFETs). According to the International Technology Roadmap for Semiconductors 2.0 (ITRS 2.0) [1, 2], which was issued in 2015 to replace the previous ITRS, the single electron transistor (SET) is considered to be a strong candidate for RF-mixers [1, 3, 4], which is an important part of the RF front end. SETs are based on sequential single electron tunnelling [5] through two tunnelling barriers and a quantum dot with a small self-capacitor [6, 7]. By changing the bias condition, the single electron sequential tunnelling is either unblocked or blocked, and SETs are controlled between on and off states, accordingly [8].

In the early stage of the research, scientists used metal [6, 9] or a III-V semiconductor [10, 11] as materials to study the characteristics of SETs and single electron phenomena. From the manufacturing point of view, Silicon (Si) SETs have some advantages due to their compatibility with CMOS fabrication technology [12]. Si-based SETs have already been...
demonstrated [13–15]. However, we must design complicated device structures with quantum confinement using dedicated processes, such as nanowire-defined dots [16], top gates [17], and side gates [18], which increases the complexity of fabrication. Besides complicated structures, the feature size must be comparable to or smaller than the thermal de Broglie length of single electrons to maintain a larger charging energy than thermal energy [19]. For standard CMOSFETs, the fabrication processes are well established, and the minimum feature size of CMOSFETs were as small as 14 nm [20] in 2014, which is already smaller than the thermal de Broglie length of 17 nm for electrons in Si at 300 K. Therefore, we should observe various quantum mechanical effects in conventional CMOSFETS. For example, random telegraph noise based on single electron trapping is a serious issue to secure reliabilities [21–24]. The purpose of this work is to investigate and establish the relationship between scaled Si CMOSFETs and Si SETs. Previously, the SET characteristics of Si nanowire FinFETs on SOI were observed at room temperatures [25, 26], and low temperatures [27–29]. But, the single electron phenomena in conventional CMOSFETs based on bulk Si at low temperatures has not been fully investigated.

2. Experiments

The MOSFETs were fabricated by using a standard 65 nm technology node. The wide channel width of 10 μm was chosen to increase the chances of observing single carrier trapping and de-trapping phenomena. The channel length was 55 nm/75 nm for pMOSFET/nMOSFET, respectively. The gate electrode was made of doped poly-crystalline silicon (poly-Si). The gate dielectric material was SiON with the Equivalent Oxide Thickness (EOT), t_{ox}, of 2.4 nm. The value of the current at each bias was obtained by averaging over 10^5 data points each with a duration of 2 μs.

3. Results

The drain current (I_d) on the gate bias (V_g) characteristics of the two MOSFETs were measured at 300 K and 5 K respectively, as shown in figure 1, at the drain bias (V_d) of ±50 mV.

The threshold voltages were −0.45 V/0.47 V at 300 K and −0.60 V/0.62 V at 5 K, for pMOSFET/nMOSFET, respectively (figure 1). The on-currents were larger for both pMOSFET and nMOSFET at 5K, because of the increase in mobility [30] and the increase of the saturation velocity [31]. The sub-threshold slopes were 14.9 mV/decade for pMOSFET and 5.7 mV/decade for nMOSFET at 5 K, while they were 82.4 mV/decade for pMOSFET and 80.3 mV/decade for nMOSFET at 300 K. The off-current was below our detection limit (~1pA) at 5 K. In the sub-threshold regime at 5 K, the channel resistance of both pMOSFET and nMOSFET were larger than 25.8 kΩ, which was a necessary condition of observing single-electron effects in SETs.

In fact, we observed typical SET characteristics at 5 K, as shown in figure 2.

The dependences of the $I_d − V_g$ characteristics upon changing the V_g implies the presence of a quantum dot in the channel of both devices. In figure 2(a), at V_g of −0.528 V, I_d of the pMOSFET was blocked in the V_d range between −2.5 mV and 2.5 mV, while I_d was not blocked at V_g of −0.515 V. The similar Coulomb blockade behaviour was also observed in nMOSFET (figure 2(b)).

We measured I_d in more detail by changing both V_g and V_d to check the single carrier trapping and de-trapping characteristics, as shown in the two-dimensional (2D) contour plot of I_d (figure 3). Several Coulomb diamonds were found in pMOSFET while only one Coulomb diamond was found in nMOSFET. Different Coulomb diamonds, which corresponded to different hole/electron states in a quantum dot, are marked as H0, H1, H2, H3 in figure 3(a) and E0, E1 in figure 3(b). In figure 3(a), the size of Coulomb diamond shrinks as $|V_d|$ was increased. It means that the coupling capacitance of quantum dot was changed as we changed V_g.

![Figure 1](image1.png)

Figure 1. Subthreshold characteristics for (a) pMOSFET and (b) nMOSFET at the temperatures 300 K and 5 K. The threshold voltages were shifted when the devices were cooled down.

![Figure 2](image2.png)

Figure 2. Coulomb blockade in (a) pMOSFET and (b) nMOSFET at 5 K. The gate was biased at −0.528 V (OFF state) and −0.515 V (ON state) for pMOSFET, and was biased at 0.473 V (ON state) and 0.49 V (OFF state) for nMOSFET.
This is a marked difference from the standard characteristics predicted by the conventional mesoscopic model of metallic tunnelling junction [32], in which all coupling capacitance in equivalent circuit are fixed. In figure 3, only one diamond was observed in the current map of nMOSFET. nMOSFET showed similar behaviour to p-MOSFET. The Coulomb diamond was observed when \(V_g \) is between 0.47 V and 0.51 V. Above 0.51 V where the coupling resistance becomes smaller than quantum resistance, no diamond was observed.

When \(V_g \) was larger than 0.47 V, the Coulomb diamond started to be observed. The diamond was not observed at 0.51 V where the coupling resistance becomes smaller than quantum resistance. When \(V_g \) was larger than 0.47 V, the Coulomb diamond started to be observed. The diamond was not observed at 0.51 V where the coupling resistance becomes smaller than quantum resistance.

By comparing pMOSFET with nMOSFET (figure 2), we found that \(L_d \) in nMOSFET was almost three times larger than that in pMOSFET. This may be explained by the mobility difference between the electrons and holes. The single electron/hole tunnelling event was only observable in corresponding sub-threshold region in the figure 1.

4. Discussion

The standard mesoscopic model was used to estimate parameters for SETs [33], as shown in figure 4(a). The carrier concentration was around \(10^{10} \sim 10^{12} \text{ cm}^{-2} \) in Si two-dimensional electron gas [34], which corresponds to \(10 \sim 100 \text{ nm} \) electron–electron distance. This is on the same magnitude as the thermal de Broglie length of electron in Si at 5 K, 133 nm, and much larger than the Bohr radius in Si, 5.2 nm. Under this condition, the electrons trapped in the quantum dot can be treated as non-interactive electrons [35].

At the sub-threshold regime, the channel current is dominated by a single hole/electron transistor current. Therefore, the carrier concentration can be approximately estimated:

\[
N_{\text{channel}} = \frac{1}{WL} = 1.8 \times 10^8 \text{ cm}^{-2}.
\]

In this weakly inverted condition, the impact of poly-Si depletion layer is negligible.

However, the inversion layer thickness caused by quantum confinement near the SiON/Si interface cannot be neglected. The inversion layer thickness, \(t_{\text{inv}} \), is \(~2\) nm [34, 36, 37]. Therefore, the total capacitive effective
The inversion layer capacitance in Table 1 was extracted by assuming the diameter of the quantum dot in pMOSFET was 38.5 nm.

The charging energy in H0 was 7.5 meV for pMOSFET, much smaller than the value reported in single dopant transistor [26, 28, 40], which is roughly 30 meV. Therefore, it is unlikely that the quantum dots were made of impurities in the channel due to the large size of the quantum dot. It implies that the quantum dots in both pMOSFET and nMOSFET come from physical structures defined by the surface roughness or poly-Si grains [41]. Grain boundaries of poly-Si cause remote surface roughness at poly-Si/SiON interface, as shown in Figure 4(b). The remote surface roughness at poly-Si/SiON interface results in local variations of equivalent oxide thickness [42, 43]. This forms a dip of surface potential near the interface of grain boundary area, and single carriers would be confined near the peak region. The dimension of poly-Si grains can be around 50 nm [44], which is comparable with the size of the quantum dot that we estimated from pMOSFET. If poly-Si grains were responsible for this Coulomb blockade phenomenon, we should only be able to observe SET characteristics if the channel length is comparable with the size of poly-Si grains. Otherwise, the currents are superpositions of various channels through multiple connections of SETs.

The increase of drain and source coupling capacitance upon increasing $|V_g|$ (Table 1) can be explained by the changes of tunnelling barrier height and the forming of an inversion layer. The barrier height was continuously reduced when we increased $|V_g|$, and the capacitive coupling between source and drain also became stronger [45]. As a result, the Coulomb diamond shrinks significantly. The formation of inversion layer also contributed to the shrink of the Coulomb diamond. When $|V_g|$ was large enough to invert the channel, the inversion layer was initially formed around the source region [39]. When $|V_g|$ was increased and the channel was inverted further, inversion layer started to expand from source to drain.

Next, we discuss the current peaks observed at the edges of the Coulomb diamond region. In order to analyse the current peak in detail, we plotted the $I_d - V_g$ characteristics and the current map near the noise region in Figure 5.

The current peak was only observable at a very narrow window in bias condition. In Figure 5(a), at V_g of -0.561 V, a current peak is clearly observed if V_d was at -4 mV. When V_d was at -0.559 V and -0.574 V, the peak was not observed. The fact that current peaks were found at the edge of the Coulomb diamonds implies that the current peaks were related to charge traps. The window of bias condition to observe this current peak is much narrower than the bias condition to observe Coulomb diamonds. This sharp current peak implies that the energy level broadening must be small in the charge trap, and resonant tunnelling was responsible for this phenomena. We were able to observe similar phenomena in Figure 5(b), showing similar characteristics in the nMOSFET.

Table 2. Coupling capacitance using mesoscopic model for nMOSFET.

Diamond	E1
Gate Capacitance (aF)	4.2
Drain Capacitance (aF)	11.6
Source Capacitance (aF)	23.5
Charging Energy (meV)	4.1

thickness is
\[t_{\text{eff}} = t_{\text{ox}} + \frac{\varepsilon_{\text{ox}} t_{\text{inv}}}{\varepsilon_{\text{Si}}} = 3.1 \text{ nm}, \]

where \(\varepsilon_{\text{ox}} \) is the dielectric constant of SiO2 and \(\varepsilon_{\text{Si}} \) is the dielectric constant of Si.

The charging energy in H0 was 7.5 meV for pMOSFET, much smaller than the value reported in single dopant transistor [26, 28, 40], which is roughly 30 meV. Therefore, it is unlikely that the quantum dots were made of impurities in the channel due to the large size of the quantum dot. It implies that the quantum dots in both pMOSFET and nMOSFET come from physical structures defined by the surface roughness or poly-Si grains [41]. Grain boundaries of poly-Si cause remote surface roughness at poly-Si/SiON interface, as shown in Figure 4(b). The remote surface roughness at poly-Si/SiON interface results in local variations of equivalent oxide thickness [42, 43]. This forms a dip of surface potential near the interface of grain boundary area, and single carriers would be confined near the peak region. The dimension of poly-Si grains can be around 50 nm [44], which is comparable with the size of the quantum dot that we estimated from pMOSFET. If poly-Si grains were responsible for this Coulomb blockade phenomenon, we should only be able to observe SET characteristics if the channel length is comparable with the size of poly-Si grains. Otherwise, the currents are superpositions of various channels through multiple connections of SETs.

The increase of drain and source coupling capacitance upon increasing $|V_g|$ (Table 1) can be explained by the changes of tunnelling barrier height and the forming of an inversion layer. The barrier height was continuously reduced when we increased $|V_g|$, and the capacitive coupling between source and drain also became stronger [45]. As a result, the Coulomb diamond shrinks significantly. The formation of inversion layer also contributed to the shrink of the Coulomb diamond. When $|V_g|$ was large enough to invert the channel, the inversion layer was initially formed around the source region [39]. When $|V_g|$ was increased and the channel was inverted further, inversion layer started to expand from source to drain.

Next, we discuss the current peaks observed at the edges of the Coulomb diamond region. In order to analyse the current peak in detail, we plotted the $I_d - V_g$ characteristics and the current map near the noise region in Figure 5.

The current peak was only observable at a very narrow window in bias condition. In Figure 5(a), at V_g of -0.561 V, a current peak is clearly observed if V_d was at -4 mV. When V_d was at -0.559 V and -0.574 V, the peak was not observed. The fact that current peaks were found at the edge of the Coulomb diamonds implies that the current peaks were related to charge traps. The window of bias condition to observe this current peak is much narrower than the bias condition to observe Coulomb diamonds. This sharp current peak implies that the energy level broadening must be small in the charge trap, and resonant tunnelling was responsible for this phenomena. We were able to observe similar phenomena in Figure 5(b), showing similar characteristics in the nMOSFET.
More investigation is needed to identify the nature of these current peaks.

5. Conclusion

We observed single carrier trapping and de-trapping phenomena by measuring standard short-channel MOSFETs at low temperatures. We observed single hole/electron tunneling phenomena at sub-threshold regions in both standard p-type and n-type short-channel MOSFETs. The size of the Coulomb diamond was shrinking with decreasing gate bias in p-MOSFET. The quantum dot corresponding to the Coulomb diamond was considered to have originated from the potential minimum created by the poly-Si grains. We also observed current peaks at the edge of Coulomb diamond at certain bias conditions. The current peaks were considered to have originated from the charge traps, which will potentially link reliability issues in advanced MOSFETs. Therefore, the low temperature measurements will be useful to investigate the single carrier trapping and de-trapping process in MOSFETs, which will help in understanding the quantum effects and pave the way to establish the relationship between scaled Si CMOSFETs and Si SETs.

Acknowledgments

The authors would like to thank Irisis, the supercomputing facility at the University of Southampton, for the supporting of servers to run simulation software. This work is supported by EPSRC Manufacturing Fellowship (EP/M008975/1), EU FP7 Marie-Curie Carrier-Integration-Grant (PCIG13-GA-2013-618116), and the University of Southampton. This work is also supported by the EMPIR programme co-financed by the Participating States and from the European Unions Horizon 2020 research and innovation programme. The data from the paper can be obtained from the University of Southampton ePrint research repository: http://doi.org/10.5258/SOTON/403188.

References

[1] SI Association et al 2015 International technology roadmap for semiconductors 2.0 Semiconductor Industry Association Tech. Rep. http://www.itrs2.net/
[2] Carballo J A, Chan W J, Gargini P A, Kahng A B and Nath S 2014 ITRS 2.0: toward a re-framing of the semiconductor technology roadmap 2014 IEEE 32nd Int. Conf. on Computer Design (ICCD) pp 139–46
[3] Pierantoni L and Coccetti F 2010 Radio-frequency nanoelectronics: a new paradigm in electronic systems design 2010 Asia-Pacific Microwave Conf. Proc. (IEEE) pp 1007–14
[4] Knobel R, Yung C S and Cleland A N 2002 Single-electron transistor as a radio-frequency mixer Appl. Phys. Lett. 81 532–4
[5] Kastner M A 1992 The single-electron transistor Rev. Mod. Phys. 64 849
[6] Averin D V and Likharev K K 1986 Coulomb blockade of single-electron tunneling, and coherent oscillations in small tunnel junctions J. Low Temp. Phys. 62 345–73
[7] Meir Y, Wingreen N S and Lee P A 1993 Low-temperature transport through a quantum dot: the anderson model out of equilibrium Phys. Rev. Lett. 70 2601
[8] Chen R, Korotkov A N and Likharev K K 1996 Single-electron transistor logic Appl. Phys. Lett. 68 1954–6
[9] Schoelkopf R J, Wahlgren P, Kozhevnikov A A, Delsing P and Prober D E 1998 The radio-frequency single-electron transistor (rf-set): a fast and ultrasensitive electrometer Science 280 1238–42
[10] Nakazato K, Thornton T J, White J and Ahmed H 1992 Single-electron effects in a point contact using side-gating in delta-doped layers Appl. Phys. Lett. 61 3145–7

Figure 5. Sharp current peaks observed at the edges of Coulomb diamond. The current peaks are shown in both current map and I_d − V_d characteristics. (a) indicates the influence of a single charge trap in pMOSFET with different gate bias; (b) shows the influence of a single charge trap in nMOSFET with different gate bias.
[11] Shilton J M, Talyanski V I, Pepper M, Ritchie D A, Frost J E F, Ford C J B, Smith C G and Jones G A C 1996 High-frequency single-electron transport in a quasi-one-dimensional gas channel induced by surface acoustic waves J. Phys.: Condens. Matter 8 L531

[12] Takahashi Y, Ono Y, Fujiwara A and Inokawa H 2002 Silicon single-electron devices J. Phys.: Condens. Mat 14 R995

[13] Dutta A, Oda S, Fu Y and Willander M 2000 Electron transport in nanocrystalline si based single electron transistors Jpn. J. Appl. Phys. 39 4647

[14] Fujiwara A, Inokawa H, Yamazaki K, Namatsu H, Takahashi Y, Zimmerman N M and Martin S B 2006 Single electron tunneling transistor with tunable barriers using silicon nanowire metal-oxide-semiconductor field-effect transistor Appl. Phys. Lett. 88 053121

[15] Takahashi N, Ishikuro H and Hiramoto T 2000 Control of coulomb blockade oscillations in silicon single electron transistors using silicon nanocrystal floating gates Appl. Phys. Lett. 76 209–11

[16] Zhuang L, Guo L and Chou S 1998 Silicon single-electron quantum-dot transistor switch operating at room temperature Appl. Phys. Lett. 72 1205–7

[17] Matsuoka H and Kimura S 1995 Transport properties of a silicon-single-electron transistor at 4.2 k Appl. Phys. Lett. 66 613–5

[18] Tan Y T, Kamiya T, Durrani Z A K and Ahmed H 2003 Room temperature nanocrystalline silicon single-electron transistors J. Appl. Phys. 94 633–7

[19] Landau L D, Bell J S, Kearsey M J, Pitaevskii L P, Lifshitz E M and Sykes J B 2013 Electrodynamics of Continuous Media vol 8 (Oxford, UK: Pergamon)

[20] Natarajan S et al 2014 A 14 logic technology featuring 2nd-generation FinFET, air-gapped interconnects, self-aligned double patterning and a 0.0588 µm2 SRAM cell size 2014 IEEE Int. Electron Devices Meeting pp 3–7

[21] Uren M J, Day D J and Kirton M 1985 1/f and random telegraph noise in silicon metal-oxide-semiconductor field-effect transistors Appl. Phys. Lett. 47 1195–7

[22] Hung K K, Ko P K, Hu C and Cheng Y C 1990 Random telegraph noise of deep-submicrometer mosfets IEEE Trans. Electron Dev. 37 90–2

[23] Teg N, Miki H, Yamaoka M, Kume H, Mine T, Ishida T, Morii Y, Yamada R and Torii K 2008 Impact of threshold voltage fluctuation due to random telegraph noise on scaled-down SRAM IEEE Int. Reliab. Phys. Symp., IRPS 2008 (27 April–1 May 2008) pp 541–6

[24] Luo M, Wang R, Guo S, Wang J, Zou J and Huang R 2015 Impacts of random telegraph noise (rtn) on digital circuits IEEE Trans. Electron Dev. 62 1725–32

[25] Lavieville R, Barraud S, Corna A, Jehl X, Saquer M and Vinet M 2015 350 k operating silicon nanowire single electron/hole transistors scaled down to 3.4 nm diameter and 10 nm gate length 2015 Joint Int. EUROSOI Workshop and Int. Conf. on Ultimate Integration on Silicon (EUROSOI-ULIS) (26–28 Jan 2015) (IEEE) pp 9–12

[26] Lavieville R, Triozon F, Barraud S, Corna A, Jehl X, Saquer M, Li J, Abisset A, Duchemin I and Niquet Y M 2015 Quantum dot made in metal oxide silicon-nanowire field-effect transistor working at room temperature Nano Lett. 15 2958–64

[27] Lansbergen G P, Rahman R, Wellard C J, Woo I, Caro J, Collaert N, Biesmans S, Klimeck G, Hollenberg L C L and Rogge S 2008 Gate-induced quantum-confinement transition of a single dopant atom in a silicon FinFET Nature Phys. 4 656–61

[28] Pierre M, Waquiez R, Jehl X, Sanquer M, Vinet M and Caeto O 2010 Single-donor ionization energies in a nanoscale cmos channel Nat. Nanotechnol 5 133–7

[29] Wang C, Jones M E and Durrani Z A K 2015 Single-electron and quantum confinement limits in length-scaled silicon nanowires Nanotechnology 26 305203

[30] Klaassen D B M 1992 A unified mobility model for device simulation–ii. Temperature dependence of carrier mobility and lifetime Solid State Electron. 35 961–7

[31] Quay R, Moglescute C, Palankovski V and Selberherr S 2000 A temperature dependent model for the saturation velocity in semiconductor materials Mater Sci Semiconductor Process 3 149–55

[32] Mahapatra S, Vaish V, Wasshuber C, Banerjee K and Ionescu A M 2004 Analytical modeling of single electron transistor for hybrid cmos-set analog ic design IEEE Trans. Electron Devices 51 1772–82

[33] Pekola J P, Saira O P, Maisi V F, Kemppinen A, Möttönen M, Pashkin Y A and Averin D V 2013 Single-electron current sources: toward a refined definition of the amperes Rev. Mod. Phys. 85 1421

[34] Ando T, Fowler A B and Stern F 1982 Electronic properties of two-dimensional systems Rev. Mod. Phys. 54 437

[35] Mahan G D 2013 Many-particle Physics (New York, USA: Springer Science & Business Media)

[36] Hartstein A and Albert N F 1988 Determination of the inversion-layer thickness from capacitance measurements of metal-oxide-semiconductor field-effect transistors with ultrathin oxide layers Phys. Rev. B 38 1235

[37] Saito S, Torii K, Hiratani M and Onai T 2002 Analytical quantum mechanical model for accumulation capacitance of mos structures IEEE Electron Device Lett. 23 348–50

[38] Liang M S, Choi J Y, Ko P K and Hu C 1986 Inversion-layer capacitance and mobility of very thin gate-oxide MOSFETs IEEE Trans. Electron Dev. 33 409–13

[39] Sze S M 2008 Semiconductor Devices: Physics and Technology (NJ, USA: John Wiley & Sons)

[40] Sellier H, Lansbergen G P, Caro J, Rogge S, Collaert N, Ferain I, Jurczak M and Biesmans S 2006 Transport spectroscopy of a single dopant in a gated silicon nanowire Phys. Rev. Lett. 97 206805

[41] Jackson W B, Johnson N M and Biegelsen D K 1983 Density of gap states of silicon grain boundaries determined by optical absorption Appl. Phys. Lett. 43 195–7

[42] Saito et al 2004 Effects of remote-surface-roughness scattering on carrier mobility in field-effect-transistors with ultrathin gate dielectrics Appl. Phys. Lett. 84 1395–7

[43] Li J and Ma T P 1987 Scattering of silicon inversion layer electrons by metal/oxide interface roughness J. Appl. Phys. 62 4312–5

[44] Yamauchi N, Hajjar J and Reif R 1991 Polysilicon thin-film transistors with channel length and width comparable to or smaller than the grain size of the thin film IEEE Trans. Electron Dev. 38 55–60

[45] Taur Y and Ning T H 2013 Fundamentals of Modern VLSI Devices (Cambridge, UK: Cambridge University Press)