EXTENSIONS OF QUASI-MORPHISMS TO THE SYMPLECTOMORPHISM GROUP OF THE DISK

SHUHEI MARUYAMA

Abstract. On the group $\text{Symp}(D, \partial D)$ of symplectomorphisms of the disk which are the identity near the boundary, there are homogeneous quasi-morphisms called the Ruelle invariant and Gambaudo-Ghys quasi-morphisms. In this paper, we show that the above homogeneous quasi-morphisms extend to homogeneous quasi-morphisms on the whole group $\text{Symp}(D)$ of symplectomorphisms of the disk. As a corollary, we show that the second bounded cohomology $H^2_b(\text{Symp}(D))$ is infinite-dimensional.

1. Introduction

Let G be a group. A function $\phi : G \to \mathbb{R}$ is called a quasi-morphism if there exists a constant C such that the condition $|\phi(gh) - \phi(g) - \phi(h)| \leq C$ holds for any $g, h \in G$. A quasi-morphism ϕ is homogeneous if, for any integer $n \in \mathbb{Z}$ and any $g \in G$, the condition $\phi(g^n) = n\phi(g)$ holds. Let $Q(G)$ denote the vector space of all homogeneous quasi-morphisms on G. The homogenization $\overline{\phi}$ of a quasi-morphism ϕ is defined by $\overline{\phi}(g) = \lim_{n \to \infty} \phi(g^n)/n$. This homogenization $\overline{\phi}$ is a homogeneous quasi-morphism.

Let K be a subgroup of G. It is natural to ask whether given homogeneous quasi-morphism $\psi : K \to \mathbb{R}$ can be extended to a homogeneous quasi-morphism on G. This extension problem of quasi-morphisms is studied in some papers ([11], [7], [8]). In this paper, we consider the extension problem of the Ruelle invariant and Gambaudo-Ghys quasi-morphisms on $\text{Symp}(D, \partial D)$ to the group $\text{Symp}(D)$.

Let $D = \{(x, y) \in \mathbb{R}^2 \mid x^2 + y^2 \leq 1\}$ be a unit disk and $\omega = dx \wedge dy$ a standard symplectic form. Let $\text{Symp}(D)$ denote the symplectomorphism group of the disk D and $\text{Symp}(D, \partial D)$ the subgroup of $\text{Symp}(D)$ consisting of symplectomorphisms which are the identity near the boundary ∂D. There are many quasi-morphisms on $\text{Symp}(D, \partial D)$. For example, in [10], Ruelle constructed a homogeneous quasi-morphism on $\text{Symp}(D, \partial D)$, which is called the Ruelle invariant. In [11] and [5], it was shown that the vector space $Q(\text{Symp}(D, \partial D))$ of homogeneous quasi-morphisms on $\text{Symp}(D, \partial D)$ is infinite-dimensional. In [5], Gambaudo and Ghys constructed countably many quasi-morphisms on $\text{Symp}(D, \partial D)$ by integrating on the disk the signature quasi-morphism on pure braid group P_n on n-strands. Brandenbursky [3] generalized this idea to any quasi-morphisms on P_n and defined the linear map $\Gamma_n : Q(P_n) \to Q(\text{Symp}(D, \partial D))$. We call a homogeneous quasi-morphism in $\Gamma_n(Q(P_n))$ a Gambaudo-Ghys quasi-morphism.
The well-definedness of the Ruelle invariant and Gambaudo-Ghys quasi-morphisms comes from the fact that the group $\text{Symp}(D, \partial D)$ is contractible. Since the group $\text{Symp}(D)$ is not contractible, both constructions cannot be applied to the group $\text{Symp}(D)$. However, we show that the following theorem holds.

Theorem 1.1. The Ruelle invariant and Gambaudo-Ghys quasi-morphisms on the group $\text{Symp}(D, \partial D)$ extend to homogeneous quasi-morphisms on the group $\text{Symp}(D)$. In particular, the vector space $Q(\text{Symp}(D))$ is infinite-dimensional.

Let B_n denote the braid group on n-strands. Ishida\[6\] showed that the restriction $\Gamma_n|_{Q(B_n)} : Q(B_n) \to Q(\text{Symp}(D, \partial D))$ and the induced map $EH^2_b(B_n) \to EH^2_b(\text{Symp}(D, \partial D))$ are injective. Here the symbol $EH^2_b(\cdot)$ denotes the second exact bounded cohomology defined in section 2. Together with this Ishida’s theorem and the fact that $EH^2_b(B_n)$ is infinite-dimensional\[1\], we obtain the following corollary.

Corollary 1.2. The exact bounded cohomology $EH^2_b(\text{Symp}(D))$ and therefore the second bounded cohomology $H^2_b(\text{Symp}(D))$ are infinite-dimensional.

This paper is organized as follows. In section 2, we recall the bounded cohomology. In section 3, we consider the Ruelle’s construction and Gambaudo-Ghys’s construction on the universal covering of the group $\text{Symp}(D)$. In section 4, we show the main theorem. In section 5, we deal with the extension problem of homomorphisms, which relate to the Calabi invariant.

Acknowledgements. The author thanks to Morimichi Kawasaki and Masakazu Tsuda for useful discussions.

2. Bounded cohomology

Let G be a group. Let $C^p(G)$ denote the set of maps from p-fold product G^p to \mathbb{R} for $p > 0$ and let $C^0(G) = \mathbb{R}$. The coboundary operator $\delta : C^p(G) \to C^{p+1}(G)$ is defined by

$$\delta c(g_1, \ldots, g_{p+1}) = c(g_2, \ldots, g_{p+1}) + \sum_{i=1}^{p} (-1)^i c(g_1, \ldots, g_i g_{i+1}, \ldots, g_{p+1})$$

and the cohomology of $(C^*(G), \delta)$ is called the **group cohomology of G** and denoted by $H^*(G)$. Note that, by definition, the first cohomology $H^1(G)$ is equal to the vector space $\text{Hom}(G, \mathbb{R})$ of homomorphisms from G to \mathbb{R}.

Let $(C^*_b(G), \delta)$ denote the subcomplex of $(C^*(G), \delta)$ consisting of all bounded functions. Its cohomology is called the **bounded cohomology of G** and denoted by $H^*_b(G)$. The inclusion $C^*_b(G) \hookrightarrow C^*(G)$ induces the map $H^*_b(G) \to H^*(G)$ called the **comparison map**. The kernel of the comparison map is called the **exact bounded cohomology of G** and denoted by $EH^*_b(G)$. Then there is an exact sequence

$$0 \to H^1(G) \to Q(G) \to EH^2_b(G) \to 0,$$

where the map $Q(G) \to EH^2_b(G)$ is given by $\phi \mapsto [\delta \phi]$. In other words, the second exact bounded cohomology is isomorphic to the quotient $Q(G)/H^1(G)$.

3. Homogeneous quasi-morphisms on $\widehat{\text{Symp}}(D)$

On the group $\text{Symp}(D, \partial D)$, many homogeneous quasi-morphisms are constructed [4, 3]. In this section, we apply to the universal covering $\widehat{\text{Symp}}(D)$ the methods explained in [5] to obtain homogeneous quasi-morphisms.

3.1. Ruelle invariant. For $x \in D$ and a path $\{g_t\}_{t \in [0,1]}$ in $\text{Symp}(D)$ with $g_0 = \text{id}$, let $u_t(x) \in \mathbb{R}^2 \setminus (0,0)$ denote the first column of $dg_t(x) \in SL(2, \mathbb{R})$. Then the variation of the angle of $u_t(x)$ depends on x and the homotopy class of the path $\{g_t\}_{t \in [0,1]}$ relatively to fixed ends. Thus, for $\alpha \in \widehat{\text{Symp}}(D)$ represented by the path $\{g_t\}_{t \in [0,1]}$, we denote the variation of the angle of $u_t(x)$ by $\text{Ang}_\alpha(x)$. For $\alpha, \beta \in \widehat{\text{Symp}}(D)$ and a path $\{h_t\}_{t \in [0,1]}$ which represents β, the inequality

\[|\text{Ang}_{\alpha \beta}(x) - \text{Ang}_\beta(x) - \text{Ang}_\alpha(h_1(x))| < 1/2 \]

holds for any $x \in D$, where we consider S^1 as \mathbb{R}/\mathbb{Z}. By the above inequality (3.1), the function $r : \text{Symp}(D) \to \mathbb{R}$ defined by

\[r(\alpha) = \int_D \text{Ang}_\alpha \cdot \omega \]

is a quasi-morphism on $\widehat{\text{Symp}}(D)$. Let τ denote the homogenization of r. By construction, the restriction of τ to $\text{Symp}(D, \partial D) = \widehat{\text{Symp}}(D, \partial D)$ coincides with the classical Ruelle invariant on the disk. Since the Ruelle invariant is non-trivial homogeneous quasi-morphism on $\text{Symp}(D, \partial D)$, so is $\tau : \text{Symp}(D) \to \mathbb{R}$.

3.2. Gambaudo–Ghys construction. Let X_n denote the n-fold configuration space of D. For $\alpha \in \text{Symp}(D)$ and for almost all $x = (x_1, \ldots, x_n) \in X_n$, a pure braid $\gamma(\alpha; x) \in P_n$ is defined as follows. Let us fix a base point $z = (z_1, \ldots, z_n) \in X_n$. Take a path $\{g_t\}_{t \in [0,1]}$ which represents $\alpha \in \widehat{\text{Symp}}(D)$. Then we obtain a loop $l(\alpha; x)$ in X_n by

\[l(\alpha; x) = \begin{cases} (1 - 3t)z + 3tx & (0 \leq t \leq 1/3) \\ g_t(x) & (1/3 \leq t \leq 2/3) \\ (3 - 3t)g_1(x) + (3t - 2)z & (2/3 \leq t \leq 1), \end{cases} \]

where $g_t(x) = (g_t(x_1), \ldots, g_t(x_n)) \in X_n$. This loop is well-defined for almost all $x \in X_n$ and its homotopy class is independent of the choice of representatives of α. Thus we define $\gamma(\alpha; x) \in P_n$ as the braid represented by the loop $l(\alpha; x)$.

For a (homogeneous) quasi-morphism ϕ on the pure braid group P_n, we define a function $\hat{\Gamma}_n(\phi) : \text{Symp}(D) \to \mathbb{R}$ by

\[\hat{\Gamma}_n(\phi)(\alpha) = \int_{X_n} \phi(\gamma(\alpha; x)) dx, \]
where dx is the volume form on X_n induced from the volume form ω^n on D^n. The proof of the integrability of the function $\phi(\gamma(\alpha; x))$ and the fact that $\hat{\Gamma}_n(\phi)$ is a quasi-morphism is the same as in [3 Lemma 4.1]. Let $\hat{\Gamma}_n(\phi)$ denote the homogenization of $\Gamma_n(\phi)$, then we have a linear map $\hat{\Gamma}_n : Q(B_n) \to Q(\text{Symp}(D))$.

Let $\iota : \text{Symp}(D, \partial D) = \text{Symp}(D, \partial D) \hookrightarrow \text{Symp}(D)$ be the inclusion. Then, by construction, the composition $\iota^* \circ \hat{\Gamma}_n : Q(B_n) \to Q(\text{Symp}(D, \partial D))$ coincides with the original Gambaudo-Ghys construction on $\text{Symp}(D, \partial D)$. Put $\Gamma_n = \iota^* \circ \hat{\Gamma}_n$. Ishida [6] showed that the restriction

$$\Gamma_n|_{Q(B_n)} : Q(B_n) \to Q(\text{Symp}(D, \partial D))$$

is injective. Thus the linear map $\tilde{\Gamma}_n|_{Q(B_n)} : Q(B_n) \to Q(\text{Symp}(D))$ is also injective. Since the vector space $Q(B_n)$ is infinite-dimensional [4], the following proposition holds.

Proposition 3.1. The vector space $Q(\text{Symp}(D))$ is infinite-dimensional.

Ishida showed in [6] that the linear map $\Gamma_n|_{Q(B_n)} : Q(B_n) \to Q(\text{Symp}(D, \partial D))$ induces the injective map $\hat{\Gamma}_n^* : EH^2_b(B_n) \to EH^2_b(\text{Symp}(D, \partial D))$. Thus we have the injection $\tilde{\Gamma}_n^* : EH^2_b(B_n) \to EH^2_b(\text{Symp}(D))$. Since the $EH^2_b(B_n)$ is infinite-dimensional for $n > 2$ (see [4]), the following theorem holds.

Theorem 3.2. The second exact bounded cohomology $EH^2_b(\text{Symp}(D))$ and therefore the bounded cohomology $H^2_b(\text{Symp}(D))$ are infinite-dimensional.

4. Homogeneous Quasi-Morphisms on $\text{Symp}(D)$

In this section, we show that the Ruelle invariant and the Gambaudo-Ghys quasi-morphisms on $\text{Symp}(D, \partial D)$ extend to homogeneous quasi-morphisms on $\text{Symp}(D)$.

Let $\phi \in Q(\text{Symp}(D))$ be either the Ruelle invariant or a Gambaudo-Ghys quasi-morphism. Let us consider the short exact sequence

$$0 \to \mathbb{Z} = \pi_1(\text{Symp}(D)) \to \tilde{\text{Symp}}(D) \xrightarrow{\rho} \text{Symp}(D) \to 1.$$

Since all homogeneous quasi-morphisms on abelian groups are homomorphism, the restriction $\phi|_{\pi_1(\text{Symp}(D))}$ is a homomorphism. Put $a_\phi(1) \in \mathbb{R}$ where $1 \in \pi_1(\text{Symp}(D))$ is the full rotation of the disk D. Let $\hat{\text{Diff}}_+(S^1)$ be the universal covering of $\text{Diff}_+(S^1)$ the orientation preserving diffeomorphisms of the circle and $\rho : \text{Symp}(D) \to \hat{\text{Diff}}_+(S^1)$ the restriction to the boundary. On the group $\hat{\text{Diff}}_+(S^1)$, there is a quasi-morphism $\text{rot} : \hat{\text{Diff}}_+(S^1) \to \mathbb{R}$ called the rotation number. Note that the $\rho(1) \in \pi_1(\hat{\text{Diff}}_+(S^1)) = \mathbb{Z}$ is the full rotation of the circle S^1 and thus $\rho(1) = \text{rot}(\rho(1)) = 1.$

Remark 4.1. In general, a_ϕ is non-zero value. For example, let ϕ be the Ruelle invariant τ defined in subsection 3.1 then a_ϕ is equal to the symplectic area of the disk D.

Lemma 4.2. The homogeneous quasi-morphism $\phi - a_\phi \cdot \rho^* \text{rot}$ on $\widetilde{\text{Symp}}(D)$ descends to a homogeneous quasi-morphism on $\text{Symp}(D)$, that is, there exists a homogeneous quasi-morphism ψ on $\text{Symp}(D)$ satisfying $p^*\psi = \phi - a_\phi \cdot \rho^* \text{rot}$.

Proof. By definition of a_ϕ, the homogeneous quasi-morphism $\phi - a_\phi \cdot \rho^* \text{rot}$ is equal to 0 on $\pi_1(\text{Symp}(D))$. Thus, by the following Shtern’s theorem, the lemma follows. □

Theorem 4.3. Let $1 \to K \to G \xrightarrow{p} H \to 1$ be a short exact sequence and ϕ a homogeneous quasi-morphism on G. If $\phi|_K = 0$, then there is a homogeneous quasi-morphism ψ on H such that $\phi = p^*\psi$.

Theorem 4.4. The Ruelle invariant and the Gambaudo-Ghys quasi-morphisms on $\text{Symp}(D,\partial D)$ extend to homogeneous quasi-morphisms on $\text{Symp}(D)$. In particular, the vector space $Q(\text{Symp}(D))$ of homogeneous quasi-morphisms is infinite-dimensional.

Proof. By definition of ϕ, we have to prove that the restriction $\phi|_{\text{Symp}(D,\partial D)}$ extends to a homogeneous quasi-morphism on $\text{Symp}(D)$. By Lemma 4.2 take the homogeneous quasi-morphism ψ on $\text{Symp}(D)$ satisfying $p^*\psi = \phi - a_\phi \cdot \rho^* \text{rot}$. The composition of $p : \widetilde{\text{Symp}}(D) \to \text{Symp}(D)$ and the inclusion $\iota : \text{Symp}(D,\partial D) \to \widetilde{\text{Symp}}(D)$ is equal to the inclusion $\iota : \text{Symp}(D,\partial D) \to \text{Symp}(D)$ and the composition $\rho : \text{Symp}(D) \to \text{Diff}_+(S^1)$ and ι is equal to 0. Then we have $\phi|_{\text{Symp}(D,\partial D)} = \iota^*(p^*\psi - a_\phi \cdot \rho^* \text{rot}) = \psi|_{\text{Symp}(D,\partial D)}$ and this implies that the homogeneous quasi-morphism ψ is an extension of $\phi|_{\text{Symp}(D,\partial D)}$. □

The above theorem implies that the image $i^*(Q(\text{Symp}(D)))$ contains the image $\Gamma_n(Q(B_n))$ of the Gambaudo-Ghys construction. Thus the image $i^*(EH^2_b(\text{Symp}(D)))$ also contains $\Gamma_n(EH^2_b(B_n))$. Since $\Gamma_n(EH^2_b(B_n))$ is infinite-dimensional, the following holds.

Corollary 4.5. The exact bounded cohomology $EH^2_b(\text{Symp}(D))$ and therefore $H^2_b(\text{Symp}(D))$ are infinite-dimensional.

Remark 4.6. In $Q(B_n)$, there is the abelianization homomorphism $a : B_n \to \mathbb{Z}$. It is known that $\Gamma_n(a)$ is equal to the Calabi invariant up to constant multiple. Thus, by the above argument, we can show that the Calabi invariant extend to a homogeneous quasi-morphism on $\text{Symp}(D)$. This extendability of the Calabi invariant is shown in [9].

5. HOMOMORPHISMS ON SYMP(D)

In this section, we deal with homomorphisms from $\text{Symp}(D)$ to \mathbb{R}, which relate to the Calabi invariant. It is known that the restriction map $\text{Symp}(D) \to \text{Diff}_+(S^1)$ is surjective (see [13]). Put $\text{Symp}(D)_{\text{rel}} = \text{Ker}(\text{Symp}(D) \to \text{Diff}_+(S^1))$. Let us consider the short exact sequence

$$1 \to \text{Symp}(D)_{\text{rel}} \to \text{Symp}(D) \to \text{Diff}_+(S^1) \to 1.$$
On the group $\text{Symp}(D)_{\text{rel}}$, there is a surjective homomorphism $\text{Cal} : \text{Symp}(D)_{\text{rel}} \to \mathbb{R}$ called the Calabi invariant. Let us consider a part of five-term exact sequence

\begin{equation}
H^1(\text{Symp}(D); \mathbb{R}) \to H^1(\text{Symp}(D)_{\text{rel}}; \mathbb{R}) \xrightarrow{\delta} H^2(\text{Diff}_+ (S^1); \mathbb{R}),
\end{equation}

where $H^1(\text{Symp}(D)_{\text{rel}}; \mathbb{R})$ is $\text{Symp}(D)$-invariant homomorphisms on $\text{Symp}(D)_{\text{rel}}$. Then it is shown in [2] that the element $\delta(\text{Cal})$ is equal to the real Euler class $e_\mathbb{R}$ of $\text{Diff}_+ (S^1)$ up to non-zero constant multiple. Thus, by the exactness of (5.1), the Calabi invariant cannot extend to a homomorphism on $\text{Symp}(D)$. Let us normalize the Calabi invariant as $\delta(\text{Cal}) = e_\mathbb{R}$. Let $f : \mathbb{R} \to \mathbb{R}$ be a discontinuous homomorphism satisfying $f(q) = 0$ for any $q \in \mathbb{Q}$. Since the Calabi invariant is surjective to \mathbb{R}, the composition $f \circ \text{Cal}$ is non-trivial if $f \neq 0$.

Theorem 5.1. The composition $f \circ \text{Cal}$ extends to a homomorphism on $\text{Symp}(D)$. In particular, the cohomology $H^1(\text{Symp}(D))$ is infinite-dimensional.

Proof. By the exactness of (5.1), we have to show that the image $\delta(f \circ \text{Cal})$ is equal to 0 in $H^2(\text{Diff}_+ (S^1); \mathbb{R})$. For any group Γ, let $f_* : H^*(\Gamma; \mathbb{R}) \to H^*(\Gamma; \mathbb{R})$ denote the coefficients change by f. Since the five-term exact sequence is natural with respect to coefficients changes, we obtain

$$
\delta(f \circ \text{Cal}) = \delta(f_*(\text{Cal})) = f_* e_\mathbb{R}.
$$

Let $\iota : \mathbb{Z} \to \mathbb{R}$ be the inclusion and $e_\mathbb{Z} \in H^2(\text{Diff}_+ (S^1); \mathbb{Z})$ the integral Euler class of $\text{Diff}_+ (S^1)$. Since the real Euler class $e_\mathbb{R}$ is equal to $\iota_*(e_\mathbb{Z})$, we have

$$
f_* e_\mathbb{R} = (f\iota)_* e_\mathbb{Z} = (0)_* e_\mathbb{Z} = 0
$$

and the theorem follows. \[\square\]

References

1. Mladen Bestvina and Koji Fujiwara, *Bounded cohomology of subgroups of mapping class groups*, Geom. Topol. 6 (2002), 69–89. MR 1914565
2. Jonathan Bowden, *Flat structures on surface bundles*, Algebr. Geom. Topol. 11 (2011), no. 4, 2207–2235. MR 2826937
3. Michael Brandenbursky, *On quasi-morphisms from knot and braid invariants*, J. Knot Theory Ramifications 20 (2011), no. 10, 1397–1417. MR 2851716
4. Michael Entov and Leonid Polterovich, *Calabi quasi-morphism and quantum homology*, Int. Math. Res. Not. (2003), no. 30, 1635–1676. MR 1979584
5. Jean-Marc Gambaudo and Étienne Ghys, *Commotors and diffeomorphisms of surfaces*, Ergodic Theory Dynam. Systems 24 (2004), no. 5, 1591–1617. MR 2104597
6. Tomohiko Ishida, *Quasi-morphisms on the group of area-preserving diffeomorphisms of the 2-disk via braid groups*, Proc. Amer. Math. Soc. Ser. B 1 (2014), 43–51. MR 3181631
7. Morimichi Kawasaki, *Extension problem of subset-controlled quasimorphisms*, Proc. Amer. Math. Soc. Ser. B 5 (2018), 1–5. MR 3748593
8. Morimichi Kawasaki and Mitsuaki Kimura, *G-invariant quasimorphisms and symplectic geometry of surfaces*, 2019.
9. Shuhei Maruyama, *The bounded euler class and quasi-morphisms on groups of symplectomorphisms of the disk*, 2019.
10. David Ruelle, *Rotation numbers for diffeomorphisms and flows*, Ann. Inst. H. Poincaré Phys. Théor. 42 (1985), no. 1, 109–115. MR 794367
11. A. I. Shtern, *Extension of pseudocharacters from normal subgroups*, Proc. Jangjeon Math. Soc. **18** (2015), no. 4, 427–433. MR 3444730

12. Alexander I. Shtern, *Quasisymmetry. I*, Russian J. Math. Phys. **2** (1994), no. 3, 353–382. MR 1330874

13. Takashi Tsuboi, *The Calabi invariant and the Euler class*, Trans. Amer. Math. Soc. **352** (2000), no. 2, 515–524. MR 1487633

Graduate School of Mathematics, Nagoya University, Japan
E-mail address: m17037h@math.nagoya-u.ac.jp