Novel Modeling Approach to Analyze Threshold Voltage Variability in Short Gate-Length (15–22 nm) Nanowire FETs with Various Channel Diameters

Seunghwan Lee 1, Jun-Sik Yoon 1, Junjong Lee 2, Jinsu Jeong 1, Hyeok Yun 1, Jaewan Lim 1, Sanguk Lee 1 and Rock-Hyun Baek * 2

The Department of Electrical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Gyeongbuk, Korea; sh5233@postech.ac.kr (S.L.); junsikyoon@postech.ac.kr (J.-S.Y.); lee1539@postech.ac.kr (J.L.); js.jeong@postech.ac.kr (J.J.); myska315@postech.ac.kr (H.Y.); jaewan94@postech.ac.kr (J.L.); sanguk96@postech.ac.kr (S.L.)

* Correspondence: rh.baek@postech.ac.kr; Tel.: +82-54-279-2220

Abstract: In this study, threshold voltage (V_{th}) variability was investigated in silicon nanowire field-effect transistors (SNWFETs) with short gate-lengths of 15–22 nm and various channel diameters (D_{NW}) of 7, 9, and 12 nm. Linear slope and nonzero y-intercept were observed in a Pelgrom plot of the standard deviation of V_{th} (σV_{th}), which originated from random and process variations. Interestingly, the slope and y-intercept differed for each D_{NW}, and σV_{th} was the smallest at a median D_{NW} of 9 nm. To analyze the observed D_{NW} tendency of σV_{th}, a novel modeling approach based on the error propagation law was proposed. The contribution of gate-metal work function, channel dopant concentration (N_{ch}), and D_{NW} variations (WFV, ΔN_{ch}, and ΔD_{NW}) to σV_{th} were evaluated by directly fitting the developed model to measured σV_{th}. As a result, WFV induced by metal gate granularity increased as channel area increases, and the slope of WFV in Pelgrom plot is similar to that of σV_{th}. As D_{NW} decreased, SNWFETs became robust to ΔN_{ch} but vulnerable to ΔD_{NW}. Consequently, the contribution of ΔD_{NW}, WFV, and ΔN_{ch} is dominant at D_{NW} of 7 nm, 9 nm, and 12, respectively. The proposed model enables the quantifying of the contribution of various variation sources of V_{th} variation, and it is applicable to all SNWFETs with various L_G and D_{NW}.

Keywords: variability modeling; threshold voltage; SNWFET; ultrashort gate-length; Pelgrom’s law; nanowire diameter; metal gate granularity; dopant diffusion

1. Introduction

Gate-all-around (GAA) silicon nanowire field-effect transistors (SNWFETs) are considered as a viable option for future device architecture due to their adequate gate-controllability with GAA structures [1–3]. However, ultrascaled SNWFETs suffer from severe threshold voltage (V_{th}) variation because the device-to-device variation increases with the decrease in the effective channel width (W_{eff}) and gate-length (L_G) [4,5]. According to previous studies, random variations such as metal gate granularity (MGG), line edge roughness (LER), and random dopant fluctuation (RDF) cause V_{th} variation in ultrascaled GAA transistors [6–10]. Additionally, the V_{th} variation is also induced by the process variations such as junction gradient and channel thickness variation [11–17].

Therefore, several simulations and models have been recommended to analyze the contribution of multiple sources to V_{th} variation. First, technology computer-aided design (TCAD) simulations are suitable for analyzing the influence of variation sources, but it is difficult to predict the cause of variation inversely from measured V_{th} variation [6–10]. Second, simulation program with integrated circuit emphasis (SPICE)-based models can be applied to analyze the variation sources of measured V_{th} variation, but it consumes time and makes an error because all devices should be calibrated [15]. Last, models based on
the error propagation law have been proposed [16,17]. These modeling approaches enable extraction of the contribution of each variation source to the standard deviation of V_{th} ($\sigma_{V_{\text{th}}}$) fast and accurately because they directly model $\sigma_{V_{\text{th}}}$. However, the error propagation law-based model to analyze the V_{th} variability of SNWFET has not been suggested.

Previously, V_{th} variability in SNWFETs was investigated considering various L_G using a SPICE-based model [15]. However, the study did not consider the effect of channel dopant concentration (N_{ch}) variation and nanowire diameter (D_{NW}) change. Furthermore, although D_{NW} influences W_{eff}, electrostatics, and quantum effect [18], the D_{NW} tendency of V_{th} variability in SNWFET with short L_G has not been thoroughly investigated.

Therefore, in this study, we quantitatively analyzed the sources of V_{th} variation in SNWFETs with short L_G (15–22 nm) and multiple D_{NW} (7, 9, 12 nm). A novel modeling approach based on the error propagation law is proposed to estimate the contribution of multiple variation sources to the V_{th} variability. The dominant variation source of V_{th} variation is analyzed for each D_{NW} by using the proposed model. Additionally, the standard deviation of N_{ch} ($\sigma_{N_{\text{ch}}}$) and D_{NW} ($\sigma_{D_{\text{NW}}}$) according to L_G is presented.

2. Device Structure and Modeling Methods
2.1. Structure and Possible V_{th} Variation Sources of SNWFETs

Figure 1 depicts the schematic and V_{th} variation sources of SNWFETs, fabricated using the same process flow reported in [19,20]. The SNWFETs adopted Mid-gap TiN metal gate, gate oxide thickness (t_{ox}) of 3.4 nm, and (110) channel direction. The gate and nanowire trimming process was used to obtain L_G varying from 15 to 22 nm and D_{NW} of 7, 9, and 12 nm. In this process, D_{NW} variation (ΔD_{NW}) was caused by LER occurred at the nanowire (NW) edges and under- or over-etching of the NW [21]. MGG occurred in the TiN metal gate and generated the metal work function variation (WFV) [22]. The transmission electron microscope (TEM) image shows many grain boundaries exist in the TiN metal gate, gate oxide thickness (t_{ox}) of 3.4 nm, and (110) channel direction. The gate and nanowire trimming process was used to obtain L_G varying from 15 to 22 nm and D_{NW} of 7, 9, and 12 nm. In this process, D_{NW} variation (ΔD_{NW}) was caused by LER occurred at the nanowire (NW) edges and under- or over-etching of the NW [21]. MGG occurred in the TiN metal gate and generated the metal work function variation (WFV) [22]. The transmission electron microscope (TEM) image shows many grain boundaries exist in the TiN metal gate, gate oxide thickness (t_{ox}) of 3.4 nm, and (110) channel direction. The gate and nanowire trimming process was used to obtain L_G varying from 15 to 22 nm and D_{NW} of 7, 9, and 12 nm. In this process, D_{NW} variation (ΔD_{NW}) was caused by LER occurred at the nanowire (NW) edges and under- or over-etching of the NW [21]. MGG occurred in the TiN metal gate and generated the metal work function variation (WFV) [22].

![Figure 1. Schematic of the silicon nanowire field-effect transistor (SNWFET) and possible V_{th} variation sources.](image)

Figure 2a depicts the I_D–V_G characteristics of SNWFETs with L_G = 15 nm and D_{NW} = 7 nm at a drain bias of 0.05 V. About 50 samples were measured per device condition. Here, V_{th} was extracted at $I_D = 10^{-7} \times \pi D_{\text{NW}}/L_G$ using the constant current method. The fluctuation of extracted V_{th} shows the process and random variation affect the physical characteristics
of SNWFETs. Figure 2b illustrates a quantile plot of V_{th} for each D_{NW} in SNWFETs with an L_{G} of 15 nm, which shows the distribution of V_{th}. The distribution of V_{th} predominantly follows the theoretical normal distribution for all device conditions, which indicates that sufficient V_{th} values were obtained to analyze σV_{th}.

Figure 3 is the Pelgrom plot of σV_{th} in SNWFETs for each D_{NW}, showing the trend of σV_{th} as channel area changes. The slope of the Pelgrom plot, defined as the Pelgrom coefficient (A_{vt}), represents the effect of random variation [4]. The y-intercept of the Pelgrom plot is also observed, indicating the effect of the process variation and short channel effect [12,24]. Remarkably, the values of A_{vt} and y-intercepts differed for each D_{NW}, and the σV_{th} is smallest in median D_{NW} of 9 nm. We anticipated that this result implies a trade-off relationship between the various variation sources. Hence, a novel modeling approach is proposed to analyze the contribution of each variation source to σV_{th}.

![Graphs showing V_{th} fluctuation and Pelgrom plot](image_url)

Figure 2. (a) V_{th} fluctuation in $I_D - V_G$ of silicon nanowire field-effect transistors (SNWFETs) with $L_{\text{G}} = 15$ nm and $D_{\text{NW}} = 7$ nm. V_{th} is directly extracted using the constant current method at $I_D = 10^{-7} \pi D_{\text{NW}}/L_{\text{G}}$. (b) Quantile plot of V_{th} of the SNWFET with $L_{\text{G}} = 15$ nm.

![Pelgrom plot](image_url)

Figure 3. Pelgrom plot for V_{th} variation of the silicon nanowire field-effect transistors (SNWFETs).
2.2. Proposed σV_{th} Model of SNWFETs

Figure 4 shows the proposed modeling flow to analyze the contribution of WFV, ΔN_{ch}, and ΔD_{NW} to σV_{th}. To model σV_{th}, we started from a physical model for V_{th} of SNWFET, as follows [25,26]:

$$V_{th} = \Phi_M - \Phi_S - qN\cdot ch\left(\frac{\pi r_{nw}^2}{C_{ox}} + \frac{r_{nw}^2}{4\epsilon_{si}}\right) + \frac{h^2}{4\pi m^* q r_{nw}^2},$$

(1)

where Φ_M denotes the work function of the TiN gate metal; Φ_S represents the work function of silicon channel calculated as $X_{si} - E_g/2 + kT/q \cdot \ln(N_{ch}/n_i)$, where X_{si} is the electron affinity and E_g is the band gap of silicon; r_{nw} indicates the radius of NW; ϵ_{si} and ϵ_{ox} represent the dielectric constant of silicon and oxide, respectively; h denotes the Planck constant; and m^* indicates the effective mass of an electron. C_{ox} represents the oxide capacitance calculated as $2\pi\epsilon_{ox}/\ln(1+t_{ox}/r_{nw})$. The possible V_{th} variation sources in Equation (1) are Φ_M, N_{ch}, D_{NW}, and t_{ox} variations. Among them, t_{ox} is not considered because its variation and effect are very small and negligible [11,12,27]. Although the variation of effective channel length (L_{eff}) is not considered directly, N_{ch} variation partially represents L_{eff} variation because S/D dopant diffusion and L_G variation change N_{ch} and L_{eff} simultaneously.

Hence, considering three identical variation sources of WFV, ΔN_{ch}, and ΔD_{NW}, σV_{th} can be expressed based on the error propagation law as

$$\sigma V_{th}^2 = \sigma \Phi_M^2 + \left(\frac{\partial V_{th}}{\partial N_{ch}} \sigma N_{ch}\right)^2 + \left(\frac{\partial V_{th}}{\partial D_{NW}} \sigma D_{NW}\right)^2.$$

(2)

To analyze σV_{th} using Equation (2), the sensitivity of V_{th} against variation sources and their standard deviation should be extracted. First, the standard deviation of metal work function ($\sigma \Phi_M$) can be estimated by the existing WFV model for SNWFETs, as follows [22]:

$$\sigma \Phi_M = RGG \times SL = \frac{G_{size}}{L_G(D_{NW} + 2t_{ox})\pi} \times SL,$$

(3)

where RGG is the ratio of average grain size to the gate area, SL is the sensitivity of σV_{th} against RGG, and G_{size} is the grain size of the metal gate. Here, G_{size} can be estimated from

Figure 4. Flowchart of the proposed σV_{th} modeling process.
a TEM image of the TiN metal gate of SNWFETs. SL of SNWFETs can be obtained from previous research based on TCAD simulation [22].

Second, the sensitivity of V_{th} against ΔN_{ch} and ΔD_{NW} can be obtained by calculating the partial differentiation of Equation (1), as follows:

$$
\frac{\partial V_{th}}{\partial N_{ch}} = \frac{kT}{q N_{ch}} - q r_{nw}^2 \left(\frac{\ln(1 + t_{ox}/r_{nw})}{2 \varepsilon_{ox}} + \frac{1}{4 \varepsilon_{si}} \right),
$$

(4)

$$
\frac{\partial V_{th}}{\partial D_{NW}} = -\frac{q N_{ch} r_{nw}}{2} \left(\frac{1}{\varepsilon_{ox}} \left(2 \ln \left(1 + \frac{t_{ox}}{r_{nw}} \right) - \frac{t_{ox}}{t_{ox} + r_{nw}} \right) + \frac{1}{\varepsilon_{si}} \right) - \frac{h^2}{2 \pi m^* q r_{nw}^3},
$$

(5)

where k denotes the Boltzmann constant. Here, N_{ch} can be extracted where Equation (1) best fits to measured V_{th}. Finally, σN_{ch} and σD_{NW} are extracted when Equation (2) best fits the square of the measured σV_{th}.

The proposed model obtains the V_{th} sensitivity against ΔN_{ch} and ΔD_{NW} through simple calculation and extracts the standard deviation of each variation source by fitting the model to the measured σV_{th}. Therefore, the contribution of multiple variation sources to σV_{th} can be directly and quickly modeled and analyzed using the proposed model without any TCAD or SPICE simulation. Furthermore, the proposed V_{th} modeling flow is expected to be applied to analyze σV_{th} in most multigate devices with various L_G and channel thicknesses.

3. Results and Discussion

3.1. V_{th} Modeling Results of SNWFETs

N_{ch} is extracted where Equation (1) fitted V_{th} versus D_{NW} with high accuracy in SNWFET with L_G of 15 nm, as shown in Figure 5a. Figure 5b shows N_{ch} increases as L_G decreases because more dopant diffused to the center of the channel from S/D even with the same S/D junction gradient. The sensitivity of V_{th} against ΔN_{ch} and ΔD_{NW} was calculated by substituting N_{ch} and other parameters in Equations (4) and (5).

![Figure 5](image-url)

(a) Measured (black dots) and modeled (blue line) values of V_{th} as a function of D_{NW}. (b) Extracted N_{ch} as a function of L_G.

3.2. V_{th} Standard Deviation Modeling Results of SNWFETs

3.2.1. Extraction of G_{size} and WFV of SNWFETs

G_{size} should be determined from the TEM image of the TiN metal gate of the SNWFET to analyze WFV. Figure 6a shows a schematic of the grain boundaries based on TiN metal gate TEM image [19]. G_{size} was measured as the average of values obtained by dividing the length of TiN metal in the TEM image (L_{TEM}) by the number of intersections between grain boundaries and horizontal lines (N_{int}), as follow [28]:

$$G_{size} = \frac{\sum_{i=1}^{N_{line}} L_{TEM} / (N_{int} + 1)}{N_{line}}$$

where N_{line} is the number of horizontal lines. The distance between the lines was set to 5 nm, as shown in Figure 6a. Consequently, G_{size} measured using Equation (6) was 11.8 nm in SNWFETs. According to previous research, the value of SL is 105 V/nm in SNWFETs [22]. $\sigma\Phi_m$ was calculated by putting obtained G_{size} and SL into Equation (3), and Figure 6b shows $\sigma\Phi_m$ as a function of the square root of the channel area. Interestingly, the trend and value of the slope in Figure 6b (A_{WFV}) are very similar to A_{vt} for each D_{NW}. It means WFV induced by MGG is the dominant random variation component of V_{th} variation in the SNWFETs.

![Figure 6](image-url)

(a) Grain boundaries estimated from [19] and red horizontal lines to estimate G_{size} of TiN metal gate of SNWFETs. (b) Pelgrom’s plot only considering work function variation (WFV) by metal gate granularity (MGG).

3.2.2. The Contribution of Variation Sources to σV_{th} for Each D_{NW}

Figure 7 shows that Equation (2) accurately fitted the measured σV_{th} with the relative root mean square error of 0.3% where $\sigma N_{ch} = 1.11 \times 10^{18}$ cm and $\sigma D_{NW} = 0.743$ nm. WFV and D_{NW} are slightly correlated because D_{NW} is included in Equation (3), which can affect the modeling accuracy. However, assuming the occurrence of ΔD_{NW} of 0.743 nm, the possible WFV fluctuation is only by 2.4% of total σV_{th}, and does not change the D_{NW} tendency of σV_{th} induced by each variation source. The D_{NW} tendency of σV_{th} can be explained by the different contributions of the three variation sources, which are represented using pink (WFV), red (ΔN_{ch}), and green (ΔD_{NW}) lines in Figure 7. The modeling results are shown considering $L_C = 15$ nm; however, the model was also applied to SNWFET with other L_C, and the modeling accuracy and trend of each variation sources are very similar. Although A_{MGG} decreases when D_{NW} decreases, the contribution of WFV increases owing to the decrease in the channel area. As D_{NW} decreases, SNWFETs become robust to
\(\Delta N_{ch}\)-induced \(V_{th}\) variation. This is because the influence of depletion charge and surface potential is reduced proportional to \(r_{nw}^2\) because of the improvement in gate-controllability, as shown in Equation (4). Conversely, SNWFETs become vulnerable to \(\Delta D_{NW}\)-induced \(V_{th}\) variation because the sensitivity of \(V_{th}\) to quantum effect is proportional to \(1/r_{nw}^2\), as indicated in Equation (5). Consequently, the contribution of \(\Delta D_{NW}\), WFV, and \(\Delta N_{ch}\) is dominant when at \(D_{NW}\) of 7 nm, 9 nm, and 12, respectively.

\[\text{Figure 7. Model fitting results (blue line) considering WFV (pink line), } \Delta N_{ch} (\text{red line}), \text{ and } \Delta D_{NW} (\text{green line}) \text{ for the measured value of squared } \sigma V_{th} (\text{black dots}). \text{ The model fits were extrapolated for } D_{NW} \text{ of 6 and 15 nm (dashed line).} \]

3.2.3. The Tendency of \(\sigma N_{ch}\) and \(\sigma D_{NW}\) as \(L_G\) Changes

Figure 8 shows both \(\sigma N_{ch}\) and \(\sigma D_{NW}\) increases as \(L_G\) decreases. This result means that RDF and LER occur because their influence increases as the device dimension decreases. However, the degree of \(\sigma N_{ch}\) and \(\sigma D_{NW}\) increase is small, about 5%, as \(L_G\) decreases from 22 to 15 nm. In addition, we already verified WFV by MGG is the dominant random variation component of \(V_{th}\) variation in Section 3.2.1. Hence, most \(\Delta N_{ch}\) and \(\Delta D_{NW}\) originated from process variation sources, which causes non-zero y-intercept in Figure 3.

\[\text{Figure 8. Extracted } \sigma N_{ch} \text{ (black line) and } \sigma D_{NW} \text{ (blue line) as function of } L_G. \]
4. Conclusions

The contribution of WFV, ΔN_{ch}, and ΔD_{NW} in V_{th} variation of SNWFET was quantitatively analyzed for each D_{NW} using the novel modeling approach. The sensitivity of WFV against the channel area is similar to that of σV_{th}. As D_{NW} decreases, SNWFETs became robust to ΔN_{ch} but vulnerable to ΔD_{NW}. The dominant variation sources differed for each D_{NW}. Hence, the strategy to improve the variability of SNWFETs should be different for each D_{NW}. Furthermore, with slight modifications, the proposed modeling approach and results are expected to be used in most multigate devices, including FinFET and nanosheet FET.

Author Contributions: Conceptualization, S.L. (Seunghwan Lee) and J.-S.Y.; methodology, S.L. (Seunghwan Lee), J.-S.Y. and H.Y.; formal analysis, S.L. (Seunghwan Lee); investigation, S.L. (Seunghwan Lee), J.L. (Junjong Lee) and J.L. (Jaewan Lim); writing—original draft preparation, S.L. (Seunghwan Lee); writing—review and editing, J.-S.Y., J.J., J.L. (Jaewan Lim) and S.L. (Sanguk Lee); supervision, J.J. and R.-H.B.; project administration, R.-H.B.; funding acquisition, R.-H.B. All authors have read and agreed to the published version of the manuscript.

Funding: This work was supported in part by POSTECH-Samsung Electronics Industry-Academia Cooperative Research Center; National Research Foundation of Korea (NRF) grant funded by the Korea Government (MSIT) (No. NRF-2022R1C1C1004925 and NRF-2020M3F3A202082436); and BK21 FOUR Program.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: The authors would like to thank the Samsung Electronics Company Ltd., Hwaseong-si 18448, Gyeonggi-do, Korea for device fabrication.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Bardon, M.G.; Sherazi, Y.; Schuddinck, P.; Jang, D.; Yakimets, D.; Debacker, P.; Baert, R.; Mertens, H.; Badaroglu, M.; Mocuta, A.; et al. Extreme scaling enabled by 5 tracks cells: Holistic design-device co-optimization for FinFETs and lateral nanowires. In Proceedings of the IEEE International Electron Devices Meeting (IEDM), San Francisco, CA, USA, 3–7 December 2016; pp. 28.2.1–28.2.4. [CrossRef]

2. Li, J.; Li, Y.; Zhou, N.; Xiong, W.; Wang, G.; Zhang, Q.; Du, A.; Gao, J.; Kong, Z.; Lin, H.; et al. Study of Silicon Nitride Inner Spacer Formation in Process of Gate-all-around Nano-Transistors. Nanomaterials 2020, 10, 793. [CrossRef] [PubMed]

3. Cheng, X.; Li, Y.; Zhao, F.; Chen, A.; Liu, H.; Li, C.; Zhang, Q.; Yin, H.; Luo, J.; Wang, W. 4-Levels Vertically Stacked SiGe Channel Nanowires Gate-All-Around Transistor with Novel Channel Releasing and Source and Drain Silicide Process. Nanomaterials 2022, 12, 889. [CrossRef] [PubMed]

4. Pelgrom, M.J.M.; Duinmaijer, A.C.J.; Welbers, A.P.G. Matching properties of MOS transistors. J. Solid-State Circuits 1989, 24, 1433–1439. [CrossRef]

5. Suk, S.D.; Yeoh, Y.Y.; Li, M.; Yeo, K.H.; Kim, S.H.; Kim, D.W.; Park, D.; Lee, W.-S. TSNWFET for SRAM cell application: Performance variation and process dependency. In Proceedings of the IEEE Symposium on VLSI Technology (VLSI), Honolulu, HI, USA, 18–20 June 2008; pp. 38–39. [CrossRef]

6. Seoane, N.; Fernandez, J.G.; Kalna, K.; Comesaña, E.; García-Loureiro, A. Simulations of statistical variability in n-type FinFET, nanowire, and nanosheet FETs. IEEE Electron Device Lett. 2021, 42, 1416–1419. [CrossRef]

7. Espiñeira, G.; Nagy, D.; Indalecio, G.; García-Loureiro, A.J.; Kalna, K.; Seoane, N. Impact of gate edge roughness variability on FinFET and gate-all-around nanowire FET. IEEE Electron Device Lett. 2019, 40, 510–513. [CrossRef]

8. Spinelli, A.S.; Compagnoni, C.M.; Lacaia, A.L. Variability effects in nanowire and macaroni MOSFETs—Part I: Random dopant fluctuations. IEEE Trans. Electron Devices 2020, 67, 1485–1491. [CrossRef]

9. Yoon, J.S.; Rim, T.; Kim, J.; Kim, K.; Baek, C.K.; Jeong, Y.H. Statistical variability study of random dopant fluctuation on gate-all-around inversion-mode silicon nanowire field-effect transistors. Appl. Phys. Lett. 2015, 106, 103507. [CrossRef]

10. Bansal, A.K.; Gupta, C.; Gupta, A.; Singh, R.; Hook, T.B.; Dixit, A. 3-D LER and RDF matching performance of nanowire FETs in inversion, accumulation, and junctionless modes. IEEE Trans. Electron Devices 2018, 65, 1246–1252. [CrossRef]

11. Li, Y.; Chang, H.T.; Lai, C.N.; Chao, P.I.; Chen, C.Y. Process variation effect, metal-gate work-function fluctuation and random dopant fluctuation of 10-nm gate-all-around silicon nanowire MOSFET devices. In Proceedings of the IEEE International Electron Devices Meeting (IEDM), Washington, DC, USA, 7–9 December 2015; pp. 34.4.1–34.4.4.
12. Paul, A.; Bryant, A.; Hook, T.B.; Yeh, C.C.; Kamineni, V.; Johnson, J.B.; Tripathi, N.; Yamashita, T.; Tsutsui, G.; Basker, V.; et al. Comprehensive study of effective current variability and MOSFET parameter correlations in 14nm multi-fin SOI FINFETs. In Proceedings of the IEEE International Electron Devices Meeting (IEDM), Washington, DC, USA, 9–11 December 2013; pp. 13.5.1–13.5.4. [CrossRef]

13. Sugii, N.; Tsuchiya, R.; Ishigaki, T.; Morita, Y.; Yoshimoto, H.; Torii, K.; Kimura, S.I. Comprehensive study on Vth variability in silicon on thick BOX (SOTB) CMOS with small random-dopant fluctuation: Finding a way to further reduce variation. In Proceedings of the IEEE International Electron Devices Meeting (IEDM), San Francisco, CA, USA, 15–17 December 2008; pp. 1–4. [CrossRef]

14. Hook, T.B.; Vinet, M.; Murphy, R.; Ponoth, S.; Grenouillet, L. Transistor matching and silicon thickness variation in ETSOI technology. In Proceedings of the IEEE International Electron Devices Meeting (IEDM), Washington, DC, USA, 5–7 December 2011; pp. 5.7.1–5.7.4. [CrossRef]

15. Wang, R.; Zhu, J.; Huang, R.; Yu, T.; Zou, J.; Kim, D.W.; Park, D.; Wang, Y. Investigation on variability in metal-gate Si nanowire MOSFETs: Analysis of variation sources and experimental characterization. IEEE Trans. Electron Devices 2011, 58, 2317–2325. [CrossRef]

16. Endo, K.; O’uchi, S.I.; Ishikawa, Y.; Liu, Y.; Matsukawa, T.; Sakamoto, K.; Tsukada, J.; Yamauchi, H.; Masahara, M. Variability Analysis of TiN Metal-Gate FinFETs. IEEE Electron Device Lett. 2010, 31, 546–548. [CrossRef]

17. Bhoir, M.S.; Chiarella, T.; Ragnarsson, L.Å.; Mitard, J.; Horiguchi, N.; Mohapatra, N.R. Variability sources in nanoscale bulk FinFETs and TiTaN—a promising low variability WFM for 7/5 nm CMOS nodes. In Proceedings of the International Electron Devices Meeting (IEDM), San Francisco, CA, USA, 7–11 December 2019; pp. 36.2.1–36.2.4.

18. Lee, S.; Yoon, J.S.; Jeong, J.; Lee, J.; Baek, R.H. Observation of mobility and velocity behaviors in ultra-scaled L_G = 15 nm silicon nanowire field-effect transistors with different channel diameters. Solid-State Electron. 2020, 164, 107740. [CrossRef]

19. Li, M.; Yeo, K.H.; Suk, S.D.; Yeoh, Y.Y.; Kim, D.W.; Chung, T.Y.; Oh, K.S.; Lee, W.S. Sub-10 nm gate-all-around CMOS nanowire transistors on bulk Si substrate. In Proceedings of the IEEE Symposium on VLSI Technology (VLSI), Kyoto, Japan, 15–17 June 2009; pp. 94–95.

20. Kim, D.W.; Yeo, K.; Suk, S.D.; Li, M.; Yeoh, Y.Y.; Sohn, D.K.; Chung, C. Fabrication and electrical characteristics of self-aligned (SA) gate-all-around (GAA) Si nanowire MOSFETs (SNWFET). In Proceedings of the IEEE International Conference on Integrated Circuit Design and Technology, Grenoble, France, 2–4 June 2010; pp. 63–66. [CrossRef]

21. Akbari-Saatlu, M.; Procek, M.; Mattsson, C.; Thunström, G.; Nilsson, H.-E.; Xiong, W.; Xu, B.; Li, Y.; Radamson, H.H. Silicon Nanowires for Gas Sensing: A Review. Nanomaterials 2020, 10, 2215. [CrossRef] [PubMed]

22. Nambu, H.; Lee, Y.; Park, J.D.; Shin, C. Study of Work-Function Variation in High-k Metal-Gate Gate-All-Around Nanowire MOSFET. IEEE Trans. Electron Devices 2016, 63, 3338–3341. [CrossRef]

23. Yoon, J.S.; Lee, S.; Yun, H.; Baek, R.H. Digital/Analog performance optimization of vertical nanowire FETs using machine learning. IEEE Access 2021, 9, 29071–29077. [CrossRef]

24. Kuhn, K.J.; Giles, M.D.; Becher, D.; Kolar, P.; Kornfeld, A.; Kotlyar, R.; Ma, S.T.; Maheshwari, A.; Mudanai, S. Process technology variation. IEEE Trans. Electron Devices 2011, 58, 2197–2208. [CrossRef]

25. Trevisoli, R.D.; Doria, R.T.; Pavanello, M.A. Analytical model for the threshold voltage in junctionless nanowire transistors of different geometries. ECS Trans. 2011, 39, 147–154. [CrossRef]

26. Trevisoli, R.D.; Doria, R.T.; de Souza, M.; Pavanello, M.A. Threshold voltage in junctionless nanowire transistors. Semicond. Sci. Technol. 2011, 26, 105009. [CrossRef]

27. Matsukawa, T.; Liu, Y.; O’uchi, S.I.; Endo, K.; Tsukada, J.; Yamauchi, H.; Ishikawa, Y.; Ota, H.; Migita, S.; Morita, Y.; et al. Comprehensive analysis of I_on variation in metal gate FinFETs for 20 nm and beyond. In Proceedings of the IEEE International Electron Devices Meeting (IEDM), Washington, DC, USA, 5–7 December 2011; pp. 23.5.1–23.5.4. [CrossRef]

28. Rawat, A.; Sharan, N.; Jang, D.; Chiarella, T.; Bufler, F.M.; Catthoor, F.; Parvais, B.; Ganguly, U. Experimental validation of process-induced variability aware SPICE simulation platform for sub-20 nm FinFET technologies. IEEE Trans. Electron Devices 2021, 68, 976–980. [CrossRef]