Redesigning transcription factor Cre1 for alleviating carbon catabolite repression in *Trichoderma reesei*

Lijuan Han\(^{a,1}\), Kuimei Liu\(^{a,b,1}\), Wei Ma\(^{a}\), Yi Jiang\(^{a}\), Shaoli Hou\(^{c}\), Yinshuang Tan\(^{a}\), Quanquan Yuan\(^{a}\), Kangle Niu\(^{a}\), Xu Fang\(^{a,c,*}\)

\(^{a}\) State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, China
\(^{b}\) Rongcheng Campus, Harbin University of Science and Technology, Weihai, 264300, China
\(^{c}\) Shandong Henglu Biological Technology Co., Ltd, Jinan, 250000, China

ARTICLE INFO

Keywords:
Carbon catabolite repression
Chimera
Cre1
cel7a
Trichoderma reesei

ABSTRACT

Carbon catabolite repression (CCR), which is mainly mediated by Cre1 and triggered by glucose, leads to a decrease in cellulase production in *Trichoderma reesei*. Many studies have focused on modifying Cre1 for alleviating CCR. Based on the homologous alignment of CreA from wild-type *Penicillium oxal incarnatum* 114–2 (Po-0) and cellulase hyperproducer JUA10-1(Po-1), we constructed a C-terminus substitution strain—Po-2—with decreased transcriptional levels of cellulase and enhanced CCR. Results revealed that the C-terminal domain of CreAPo

\(^{-}\) plays an important role in alleviating CCR. Furthermore, we replaced the C-terminus of Cre1 with that of CreA

\(^{-}\) in *T. reesei* (Tr-0) and generated Tr-1. As a control, the C-terminus of Cre1 was truncated and Tr-2 was generated. The transcriptional profiles of these transformants revealed that the C-terminal chimera greatly improves cellulase transcription in the presence of glucose and thus upregulates cellulase in the presence of glucose and weakens CCR, consistent with truncating the C-terminus of Cre1 in Tr-0. Therefore, we propose constructing a C-terminal chimera as a new strategy to improve cellulase production and alleviate CCR in the presence of glucose.

1. Introduction

The abundant natural material lignocellulose, which is converted into fermentable sugars or other chemicals through enzymatic hydrolysis, is considerably under-utilized [1,2]. The biotransformation of lignocellulose is significantly hindered by the high cost and the low yield of cellulase [3]. filamentous fungi, especially *Trichoderma reesei*, have been widely used to produce cellulolytic and xylanolytic enzymes [4,5,6].

In *T. reesei*, carbon catabolite repression (CCR), which is present in nearly all heterotrophic hosts [7,8], is triggered to downregulate cellulolytic enzyme production in the presence of glucose. The protein Cre1 (encoded by *cre1*) in *T. reesei*, based on the sequence homology to CreA from *Aspergillos species* [9] and *Penicillium oxal incarnatum* [10], has been described as a transcriptional repressor of cellulase; in contrast to activators Xyr1/XlnR, Clr1, Clr2, etc., Cre1, a C\(_{2}H_{2}\) zinc finger protein, binds to a 5′-SYGGRG-3′ motif within upstream regulatory regions of cellulase-encoding genes [11].

Many studies have focused on the modification of Cre1, such as *cre1* knockout or disruption, for alleviating CCR and improving cellulase production [12–15]. Recently, it was shown that replacement of the natural transcription factor Cre1 with an artificial minimal transcriptional activator such as Cre1-96 or other Cre1 mutants leads to attenuation of CCR, and thus to improvement in cellulase production in *T. reesei* [14–16]. Nakari-Setälä et al. [11] reported that deletion of cre1 increased the quantity of cellulases produced by the wild-type *T. reesei* QM6a strain. Utilization of fusion transcription factors in *T. reesei* has been described in recent reports. A fusion protein of Cre1 and Xyr1 resulted in enhanced cellulase production in the presence of glucose and alleviated CCR in Rut-C30 [17]. Therefore, the substantial role of Cre1 in the regulation of cellulolytic enzyme production and carbon metabolism has been reported [18,19]. However, modification of Cre1 to improve cellulase production has not yet achieved favorable results, and further research is warranted.

Peer review under responsibility of KeAi Communications Co., Ltd.

Corresponding author. State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237 China, Shandong Henglu Biological Technology Co., Ltd, Jinan, 250000, China

E-mail address: fangxu@sdu.edu.cn (X. Fang).

\(^{1}\) These authors have contributed equally.

https://doi.org/10.1016/j.synbio.2020.07.002

Received 5 April 2020; Received in revised form 17 June 2020; Accepted 4 July 2020

2045-805X/ © 2020 The Author(s). Production and hosting by Elsevier B.V. on behalf of KeAi Communications Co., Ltd. This is an open access article under the CC BY license (http://creativecommons.org/licenses/BY/4.0/).
In the present study, a C-terminal chimera of Cre1 in T. reesei was rationally designed and the transformants were generated. The transcriptional profiles of the transformants were analyzed. The result suggested that the Cre1/CreA chimera alleviates CCR and improves the expression level of cel7a in the presence of glucose. Furthermore, multi site-directed mutagenesis at the C-terminus of Cre1 from T. reesei was performed for mimicking the dephosphorylated state and then it was proved that subcellular localization of mutant with modified Cre1 differed greatly from that with origin Cre1. Thus, we speculated that subcellular localization of Cre1 has an important effect on CCR and we proposed the rational design of transcription factor for mimicking the dephosphorylation is a novel strategy to improve cellulase production and alleviate CCR in the presence of glucose.

2. Material and methods

2.1. Strains and reagents

The T. reesei M2015804 strain was deposited at the China Center for Type Culture Collection (CCTCC). The origin strain P. oxalicum 114–2 was isolated from soil 30 years ago [20], and the cellulase hyperproducer strain JUA10-1, obtained after many rounds of mutagenesis, has been utilized in industrial processes for years [21]. The other strains used in this study are listed in Table 1.

All polymerase chain reaction (PCR) amplifications and fusion PCR were performed using DNA polymerase (Vazyme Biotech, Nanjing, China). Fungal RNA extraction and quantitative reverse transcription (qRT)–PCR experiments were performed using the PrimeScript® RT reagent Kit with gDNA Eraser (Perfect Real Time) (Takara Bio Inc., Shiga, Japan) and FastStart Essential DNA Green Master (Roche, Basel, Switzerland). All other chemicals and materials were purchased from Sinopharm Chemical Reagent Co., Ltd. (Shanghai, China). The KOD-Plus-Mutagenesis Kit was purchased from Toyobo (Osaka, Japan). Primers were synthesized by Personal Bio Biotech Co., Ltd. (Shanghai, China).

Table 1

Strain	Description	Species	Reference
Po-0	creA	P. oxalicum 114-2	[20]
Po-1	creA frameshift mutation	P. oxalicum JUA10-1	[21]
Po-2	Po-1; replace the C-terminus of CreA with that of Po-0	P. oxalicum	This study
Tr-0	cre1	T. reesei	This study
Tr-1	Tr-0; replace the C-terminus of CreA from Po-1	T. reesei	This study
Tr-2	Tr-1; cre1 C-terminus truncated	T. reesei	This study
Tr.Cre1TM	Tr0; cre1;538F/V538V/T389V/T390V/S392V	T. reesei	This study
Tr.Cre1-GFP	Tr0; cre1 + gfp	T. reesei	This study
Tr.Cre1TM-GFP	Tr0; cre1;538F/V538V/T389V/T390V/S392V + gfp	T. reesei	This study

Notes.

C-terminus of CreA in Po-0, S6TNNVAGNDLADR (Seq1).
C-terminus of CreA in Po-1, S6QPIWPRAMWPIAFKKSRLSRLILARGLSGLTVHHTLMFSAHRYETI (Seq2).
C-terminus of Cre1 in Tr-0, RRSTTGLAGGDLMDRM (Seq3).
C-terminus of CreA in Tr-2, none.

2.2. Construction of mutants

All CreA/Cre1 mutation replacement cassettes were constructed based on PCR and fusion PCR, which was mediated using the KOD-Plus-Mutagenesis Kit and DNA polymerase. The primers used for the construction of the cassettes are listed in Supplementary Table S1. All the plasmids and linearized expression cassettes in this study were listed in Supplementary Table S2. The transformation of the plasmids and cassettes into P. oxalicum or T. reesei was performed using protoplast transformation based on a protocol published previously [22]. The transformants were selected on plates containing minimal medium (MM) supplemented with 2% glucose and 200 μg/mL hygromycin or 0.3 μg/mL pyrithiamine. As shown in Supplementary Figs. S1–S4, the transformants were verified using PCR and DNA sequencing (not shown) based on our previous methods [22].

2.3. Analysis of growth phenotype and transcriptional profile

The method used for culturing fungi for growth phenotype, transcript analysis, and RT-qPCR assays was already described previously [22]. The primers used for qRT–PCR are listed in Supplementary Table S1.

2.4. In silico prediction of protein domains and homologous sequence alignment

The nuclear export sequence (NES) was analyzed using the NetNES 1.1 Server ([23]; cbs.dtu.dk/services/NetNES). The nuclear localization sequence (NLS) was analyzed using the Mapper program ([24]; nls-mapper.iab.keio.ac.jp). Serine-rich region (SRR) and Zn(II)Cys6 binuclear cluster DNA-binding domain were also identified. The partial in silico domain prediction of Cre1 (T. reesei NCBI accession number: AAB01677.1) was performed as described previously [15]. Cre1 (P. oxalicum Po-0, NCBI accession number: EP528222.1) and its homologs in P. oxalicum Po-1 (NCBI Gene ID: EU239661.1) and T. reesei (NCBI accession number: AAB01677.1) were analyzed using ClustalX2.

2.5. Microscopic observation of hyphal morphology

Microscopic observation of hyphal morphology was performed based on a previously described method [22]. Approximately, 1 × 10^3 spores were inoculated on slides with solidified medium containing PDA, or MM with 2% glucose at 30 °C for 48 h. Microscopic images of hyphae were observed using an optical microscope (Nikon Eclipse E100, Japan) at 400x magnification.

Furthermore, the conidia were inoculated to MM salts supplemented with 2% (w/v) glucose and cultivated for 12 h at 26 °C. The mycelia were stained with Hoechst 33258 (Solarbio, China) with a final
concentration of 10 μg/mL for 20 min, washed and resuspended in 2% (w/v) glucose medium. The preparations were imaged on an inverted fluorescence microscope (Nikon Ti-E, Nikon Corporation, Melville NY).

3. Results

3.1. Investigation of the C-terminus of CreA from P. oxalicum

The amino acid (aa) sequences of CreA between Po-0 and Po-1 were compared using ClustalX2 and then the sequences at the C-terminus of CreAPo−1 greatly differed from those of the original CreAPo−0 (Fig. 1a). It was obvious that a frameshift mutation at site 1205 of nucleotide sequence of CreAPo−0 resulted in the amino acid sequences at the C-terminus. To investigate the effect of this frameshift mutation on the regulation of cellulase expression, the C-terminal sequence SCPQIIP-WRAMIPFWAPKKLSRIRSLRLARGSLGTVLHVTLMSPAFHYETI of CreAPo−1 extending from aa 401 to aa 453 were substituted with the C-terminal sequence SSTNNSVAGNDLADRF of CreAPo−0 extending from aa 401 to aa 417, thereby generating a new chimera transcription factor named CreAPo−2. CreAPo−2 was recombined into Po-1, generating the transformant Po-2. Cel7a is a major cellulose-encoding gene, and xlnR is the gene encoding transactivator in P. oxalicum. Subsequently, the expression levels of cel7a and xlnR in the parent and transformant strains were determined using glucose or avicel as the sole carbon source (Fig. 2). No significant changes in the transcriptional levels of xlnR were observed between the transformants and the parent strain grown in either glucose or avicel. In contrast, the transcriptional level of cel7a in Po-2 was sharply decreased using glucose as the sole carbon source, but it was unchanged using avicel as the sole carbon source. It was therefore suggested that the C-terminal frameshift mutation of CreA in Po-1 alleviated CCR, resulting in cellulase hyperproduction.

3.2. Rational design of Cre1 in T. reesei

Given the importance of the C-terminus of CreA in alleviating CCR in P. oxalicum, we redesigned the transcription factor Cre1 in T. reesei.

First, the aa sequences of CreA/Cre1 from Po-0 to Po-1 and as well as Tr-0 were compared using ClustalX2 (Fig. 1a). We found that the transactivation domain (TAD), NLS, NES, or repression domain in CreA/Cre1 have been reported previously (Fig. 1b). However, to date, no report exists on the function of the C-terminus of CreA/Cre1 from Po-0 or Tr-0 (Fig. 1b). A motif (SSSTTNS) from aa 387 to aa 392 at the C-terminus of Cre1 in T. reesei was found to be similar to a motif (SSSTNNS) of CreA in wild-type Po-0 (Fig. 1a). In addition, the motif at the C-terminus of Cre1Tr−0 (RSSTTGSLAGGDLMDRM) from aa 386 to aa 402 was replaced with that (SCPQIIPWRAMIWPIAFKKKSLRLSRLLARGLSGSTLVHTLMSFAFHARYETI) of CreAPo−1, thus generating a new transcription factor—Cre1Tr−1. Subsequently, the C-terminal motif of

Fig. 1. Amino acid sequence alignments and in silico domain prediction of Cre1/CreA. (a) Amino acid sequence alignments of Cre1/CreA from Penicillium oxalicum Po-0, P. oxalicum Po-1, and Trichoderma reesei Tr-0. The C-terminus of Cre1/CreA is marked with a red box. (b) In silico domain prediction of Cre1. Numbers indicate the amino acid (aa) positions, and colored boxes indicate identified C2H2 zinc finger domains (gray); pink, nuclear localization signal (NLS); light blue, transactivation domain (TAD); yellow, Q (glutamine); dark blue aspartic (D) and glutamic acid (E); green, Q-X7-Q-X7-Q; violet, nuclear export signal (NES); orange, repression domain; and blank, the C-terminus of Cre1/CreA. The putative domains of Cre1 were predicted by a number of in silico prediction tools and alignment algorithms as described in the Materials and Methods, section 2.5. (For interpretation of the references to color in this figure legend, the reader is referred to the Web version of this article.)
Cre1Tr-0 (RSLTTLGGDLMDRM) from aa 386 to aa 402 was deleted as a control, resulting in Cre1Tr-2. Cre1Tr-1 and Cre1Tr-2 were then introduced into Tr-0 to replace Cre1Tr-0, generating the transformants Tr-1 and Tr-2. We found that the transcriptional level of cel7a in Tr-1 was significantly increased by 20-fold than that in Tr-0, which was consistent with that observed in Tr-2; however, the transcriptional level of xyr1 remained unchanged compared with that of the parent strain grown with glucose as the sole carbon source (Fig. 3a). The transcriptional levels of cel7a and xyr1 in Tr-1 presented no significant changes compared with those in Tr-0 grown using avicel as the sole carbon source (Fig. 3b). These results provide strong evidence that modification of the C-terminus by constructing the chimera successfully alleviated CCR and then improved the transcriptional levels of cellulose-degrading enzymes.

3.3. Analysis and modification of phosphorylation sites at the C-terminus of Cre1

Nguyen et al. proved the phosphorylation of the motif (SSTTGLAGGDLMDRM) at the C-terminus of Cre1 from T. reesei (Tr-Cre1) with LC-MS/MS [25]. This motif includes five potential phosphorylation target sites including S387, S388, T389, T390, and S392 based on the prediction by the NetPhos 3.1 Server (http://www.cbs.dtu.dk/services/NetPhos/) and KinasePhos (http://kinasephos.mbc.nctu.edu.tw/index.php). Herein, S387, S388, T389, T390 and S392 were simultaneously mutated to valine to mimic their multiple dephosphorylation, generating the transformants named Tr-Cre15M. Phenotypic analysis and microscopic observation of Tr-Cre15M were performed after 6 days at 30 °C. No obvious morphological change was observed among Tr-Cre15M and parent strain (Fig. 4a and b).

Subsequently, the transcription levels of xyr1 and cel7a in the parent and transformant strains were compared using glucose or avicel as a sole carbon source. The xyr1 and cel7a encoded Xyr1 that is a positive transcription factor and CBHI that is a major cellulolytic enzyme, respectively. The transcription level of cel7a in Tr-Cre15M was great higher than that of parent strain with glucose as a sole carbon source. On the contrary, no significant changes in xyr1 and cel7a expression were observed at the transcriptional levels among Tr-Cre15M and the parent strain when avicel was used as a sole carbon source (Fig. 4c). Furthermore, we found that FPase and pNPCase activities, as well as soluble protein from Tr-Cre15M were significantly increased by 1.69-, 1.5-, and 1.62-fold, respectively, compared with the parent strain grown in the media using glucose as a sole carbon source after 6 days culture (Fig. 4d). When avicel was used as a sole carbon source, the only little changes on FPase and pNPCase activities were observed. Our findings proved that five mimicking dephosphorylation sites at the C-terminus of Cre1 result in an improvement of cellulase production in the presence of glucose.

Plasmid pUG-Cre1S5M-GFP and pUG-Cre1-GFP were introduced into the parent strain, generating the transformants named Tr-Cre1-GFP and Tr-Cre1S5M-GFP. Then, these strains were cultured in the medium containing glucose as carbon source and their mycelium were observed with inverted fluorescence microscope for investigating the influence of phosphorylation at the C-terminus of Cre1 on subcellular localization. We found that the local of fluorescence signal of Tr-Cre1S5M-GFP greatly differed from that of Tr-Cre1-GFP (Fig. 5). The fluorescence signals were distributed in the whole mycelium in Tr-Cre1S5M-GFP, on the contrary, fluorescence signal was focused on the center of nuclei of Tr-Cre1-GFP. Thus, this result suggested that phosphorylations at the C-terminus of Cre1 have an important effect on subcellular localization of Cre1 in T. reesei.

4. Discussion

The CCR effect facilitates the preferential assimilation of energy-efficient and readily available carbon sources such as glucose or xylose by inhibiting the expression of enzymes involved in the catabolism of other carbon sources [26,27]. Therefore, many attempts have been made to suppress CCR and/or its effect to improve the expression of cellulase. Nakari-Setälä et al. [11] reported that the deletion of cre1 increased the quantity of cellulases produced by the wild-type T. reesei.

Fig. 2. Comparison of the transcriptional levels among transformant Po-2 and parent strains Po-1 in P. oxalicum. Relative gene expression of cbh1 and xlnR between Po-1 (blank) and its complemented strain Po-2 (dark gray) grown on culture using (a) glucose or (b) avicel as the sole carbon source. Gene expression levels were normalized (logarithm-2ΔΔCt analysis) to that of the reference sample Po-1 using the reference gene β-actin. Mean values are presented; error bars indicate standard deviation from three independently grown cultures.

Fig. 3. Transcript levels of cel7a and xyr1 in the transformant strains Tr-1 and Tr-2. The transcriptional levels of cel7a and xyr1between Tr-0 (blank) and its mutated strains Tr-1 (gray), Tr-2 (dark gray) grown in culture using (a) glucose or (b) avicel as the sole carbon source. Gene expression levels were normalized (2-ΔΔCt analysis) to that of β-actin gene. Mean values are presented; error bars indicate standard deviation from three independently grown cultures.
QM6a strain. However, it was also reported that deletion of cre1 did not result in increased total cellulase production in *T. reesei* because of the remarkably slower growth rate and biomass reduction [28]. These results indicate that Cre1 is necessary during cellulase production.

Heinzelman et al. [29] applied SCHEMA (a structure-guided protein recombination route) on three fungal cellobiohydrolase II (CBH-II) enzymes and engineered a series of highly thermostable CBH-II variants. Herein, based on the homologous alignment of CreA from wild-type Po-0 and cellulase hyperproducer Po-1, we substituted the C-terminus of Po-1 with that of Po-0. The transcription level of *cel7a* growing in glucose showed that the C-terminus replacement efficiently alleviated CCR (Fig. 2a). Our results revealed that the C-terminus of CreA in the hyperproducer Po-1 plays an important role in alleviating CCR. Furthermore, according to structure analysis (Fig. 1b), the C-terminus of CreA^{Po-1} did not exist in the functional area of CreA. Therefore, we speculate that the regulation of CreA is relatively complex and may be affected by non-functional domains.

Herein, CreA from Po-0 and Po-1 and Cre1 from Tr-0 were compared based on homologous alignment. The C-terminus of Cre1 in Tr-0 was replaced by the C-terminus of CreA from Po-1, generating Tr-1. As a control, the C-terminus of Cre1 was removed, generating Tr-2. The CCR effect of Tr-1 was successfully alleviated, as detected by the transcription level of *cel7a* growing on glucose, similar to that of Tr-2 (Fig. 3a). These data revealed that the C-terminal chimera Cre1^{Tr-Cre1^{Po-1}} greatly improves cellulase transcription in the presence of glucose and alleviates CCR in a similar manner, similar to that observed by truncating the C-terminus of Cre1. Thus, we thought that the C-terminus of Cre1/A plays an important role on CCR and cellulase transcription in the presence of glucose.

Nguyen et al. [25] reported that the phosphorylation of this peptide (SSTTGSLAGGDLMDRM) of Cre1 was identified using liquid chromatography-mass spectrometry [25]. Therefore, five potential phosphorylation target sites including S387, S388, T389, T390, and S392 were

Fig. 4. Analysis of phenotypic characterization, transcriptional levels and cellulase activities. (a) Morphologies of the parent strain and transformants on plates containing different carbon sources. For growth assays, transformants and parent strain were grown on plates with 2% (w/v) potato dextrose agar (PDA), avicel, glucose, or glycerol as a sole carbon source. Plates were incubated at 30 °C and pictures were taken after 144 h. (b) Microscopic observation of hyphae of parent strain and transformants. Approximately, 1 × 10⁵ spores were inoculated on slides with solidified medium containing PDA, or MM with 2% glucose at 30 °C for 48 h. (c) Transcriptional levels of *cel7a* and *xyl1* in Tr^{Cre1^{Po-1}} (gray) and parent strain (blank) grown in presence of glucose (left) and avicel (right) as carbon source. Gene expression levels were normalized (2^{ΔΔCT} analysis) to that of actin. Mean values are shown; error bars indicate the standard deviation of three independently grown cultures. (d) *T. reesei* transformants and the parent strain were cultivated in liquid medium supplemented with 2% (w/v) glucose (left) or avicel (right) as carbon source. Activity of *p*-nitrophenyl-β-D-celllobioside (pNPCase), filter paperase (FPase) activity and soluble protein were measured in biological and technical duplicates. Enzymatic activities are given as mean values, with error bars indicating the standard deviation. Symbols: blank, parent strain; dark gray, Tr^{Cre1^{Po-1}}.

Fig. 5. Fluorescence microscopy analysis of Cre1-GFP and Cre1^{SMI}-GFP. The nuclei were stained with Hoechst 33258. Scale bar = 20 μm.
simultaneously mutated to valine for eliminating the phosphorylation site. Moreover, it was proved that dephosphorylations at the C-terminus of Cre1 changed subcellular localization of Cre1 in *T. reesei* and then improved the transcription levels of cellulolytic enzyme activities in the presence of glucose (Fig. 5). This result is consistent with previous study that phosphorylation of Cre1 affects its nuclear import and export [30] and plays an important role in cellulase production in *T. reesei* [31]. Thus, we suggested that phosphorylation of the C-terminal of Cre1 plays an important role on its subcellular localization and has a direct relationship with CCR.

6. Conclusions

Based on the findings of the present study, we suggest that phosphorylation of the C-terminus of CreA/Cre1 is one of the reasons driving CCR. We demonstrated that constructing a C-terminal chimera of Cre1 in *T. reesei* improved the transcription levels of cellulase and alleviated CCR in the presence of glucose. Notably, we proved that phosphorylation of the C-terminus of Cre1 plays an important role on its subcellular localization and has a direct relationship with CCR. Taken together, these results demonstrate a new perspectives or strategies for designing Cre1 for alleviating CCR and providing a basis for Cre1 phosphorylation-based research involved in CCR.

Declaration of competing interest

Author Shaoli Hou was employed by the company Shandong Henglu Biological Technology Co. Ltd. The remaining authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Acknowledgments

This work was supported by National Key R&D Program of China (No. 2018YFA0901700), National Natural Science Foundation of China (No. 31870785 and 31570040), the 111 Project (No. B16030), and the State Key Laboratory of Microbial Technology Open Projects Fund. They would also like to thank Sen Wang from State Key Laboratory of Microbial Technology of Shandong University for help and guidance in fluorescence imaging.

Appendix A. Supplementary data

Supplementary data to this article can be found online at https://doi.org/10.1016/j.synbio.2020.07.002.

References

[1] Jönsson LJ, A likeson B, Nilvebrant NO. Bioconversion of lignocellulose: inhibitors and detoxification. Biotechnol Biofuels 2013;6:616. https://doi.org/10.1186/1754-6834-6-16.

[2] Malherbe S, Cloete TE. Lignocellulose biodegradation: fundamentals and applications[J]. Rev Environ Sci Biotechnol 2002;1:105–14. https://doi.org/10.1023/A:1020858910646.

[3] Li LJ, Xia WJ, Ma GP, Chen YL, Ma YY. A study on the enzymatic properties and genomic screening. Microb Cell Factories 2019;18:81.https://doi.org/10.1186/s12934-019-0926-7.

[4] Heinzel P, Snow CD, Wu I, Nguyen C, Villalobos A, Govindarajan S, Minshull J, BCJ20180082. PMID: 30045875.

[5] Adnan M, Zheng W, Islam W, Arif M, Abubakar YS, Wang Z, Lu G. Carbon catalyse repression in filamentous fungi. Int J Mol Sci 2017;19:48. https://doi.org/10.3390/ijms19010048.

[6] Ortiz-Urquiza A, Keyhani NO. Stress response signaling and virulence: insights from entomopathogenic fungi.Curr Genet 2015;61:239–49. https://doi.org/10.1007/s00294-014-0439-9.

[7] Li P, Lin A, Zhang G, Zhang J, Chen Y, Shen T, Zhao J, Wei D, Wang W. Enhancement of cellulase production in *Trichoderma reesei* RUT-C30 by comparative genomic screening. Microb Cell Factories 2019;18:41. https://doi.org/10.1186/s12934-019-1131-z.

[8] Liu X, Lin W, Shi X, Dang RG, Wagstaff KM, Tao T, Jans DA. FKA-site phosphorylation of importin3 regulates its subcellular localization and nuclear transport function. Biochem J 2018;475(16):2699–712. https://doi.org/10.1042/BCJ20180082. PMID: 30045875.

[9] Hinterdobler W, Schuster A, Toch D, et al. The role of FKA1 in gene regulation and trichodermin production in *Trichoderma reesei*. Fungal Biol Biofuels 2019;6:12. https://doi.org/10.1186/s40694-019-0075-8.