A Euclidean Ramsey result in the plane

Sergei Tsaturian

4 April 2017

Abstract

An old question in Euclidean Ramsey theory asks, if the points in the plane are red-blue coloured, does there always exist a red pair of points at unit distance or five blue points in line separated by unit distances? An elementary proof answers this question in the affirmative.

1 Introduction

Many problems in Euclidean Ramsey theory ask, for some \(d \in \mathbb{Z}^+ \), if \(E^d \) is coloured with \(r \geq 2 \) colours, does there exist a colour class containing some desired geometric structure? Research in Euclidean Ramsey theory was surveyed in [2–4] by Erdős, Graham, Montgomery, Rothschild, Spencer, and Straus; for a more recent survey, see Graham [5].

Say that two geometric configurations are congruent iff there exists an isometry (distance preserving bijection) between them. For \(d \in \mathbb{Z}^+ \) and geometric configurations \(F_1, F_2 \), let the notation \(E^d \to (F_1, F_2) \) mean that for any red-blue coloring of \(E^d \), either the red points contain a congruent copy of \(F_1 \), or the blue points contain a congruent copy of \(F_2 \). For a positive integer \(i \), denote by \(\ell_i \) the configuration of \(i \) collinear points with distance 1 between consecutive points. One of the results in [3] states that

\[
E^2 \to (\ell_2, \ell_4).
\] (1)

In the same paper, it was asked if \(E^2 \to (\ell_2, \ell_5) \), or perhaps a weaker result holds: \(E^3 \to (\ell_2, \ell_5) \).

The result (1) was generalised by Juhász [7], who proved that if \(T_4 \) is any configuration of 4 points, then \(E^2 \to (\ell_2, T_4) \). Juhász (personal communication, 10 February 2017) informed the author that Iván’s thesis [6] contains a proof that for any configuration \(T_5 \) of 5 points, \(E^3 \to (\ell_2, T_5) \) (which implies that \(E^3 \to (\ell_2, \ell_5) \)). Arman and Tsaturian [1] proved that \(E^3 \to (\ell_2, \ell_6) \).

In this paper, it is proved that \(E^2 \to (\ell_2, \ell_5) \):

Theorem 1.1. Let the Euclidean space \(\mathbb{E}^2 \) be coloured in red and blue so that there are no two red points distance 1 apart. Then there exist five blue points that form an \(\ell_5 \).

*University of Manitoba, tsaturis@myumanitoba.ca
2 Proof of Theorem 1.1

The proof is by contradiction; it is assumed that there are no five blue points forming an ℓ_5. The following lemmas are needed.

Lemma 2.1. Let \mathbb{E}^2 be coloured in red and blue so that there is no red ℓ_2. If there is no blue ℓ_5, then there are no three blue points forming an equilateral triangle with side length 3 and with a red centre.

Proof. Suppose that \mathbb{E}^2 is coloured in red and blue so that there is no red ℓ_2 and no blue ℓ_5. Suppose that blue points A, B and C form an equilateral triangle with side length 3 and with red centre O. Consider the part of the unit triangular lattice shown in Figure 1(a). The points D, E, F, G are blue, since they are distance 1 apart from O. The point X is red; otherwise $XADEB$ is a red ℓ_5. Similarly, Y is red (to prevent red $YAFGC$). Then X and Y are two red points distance 1 apart, which contradicts the assumption. □

![Figure 1](image1)

Figure 1: Red points are denoted by diamonds, blue points are denoted by discs.

Lemma 2.2. Let \mathbb{E}^2 be coloured in red and blue so that there is no red ℓ_2. If there is no blue ℓ_5, then there are no three red points forming an equilateral triangle with side length $\sqrt{3}$ and with a red centre.

Proof. Suppose that \mathbb{E}^2 is coloured in red and blue so that there is no red ℓ_2 and no blue ℓ_5. Suppose that blue points A, B and C form an equilateral triangle with side length 3 and with red centre O. Let A', B', C' be the images of A, B and C, respectively, under a rotation about O so that $AA' = BB' = CC' = 1$ (see Figure 1(b)). Then A', B', C' are blue and form an equilateral triangle with side length $\sqrt{3}$ and red centre O, which contradicts the result of Lemma 2.1. □
Define \mathcal{T}_3, \mathcal{T}_4, \mathcal{T}_5, \mathcal{T}_6, \mathcal{T}_7 to be the configurations of three, four, five, six and seven points (respectively), depicted in Figure 2 (all the smallest distances between the points are equal to $\sqrt{3}$).

Lemma 2.3. Let \mathbb{E}^2 be coloured in red and blue so that there is no red ℓ_2. If there is no blue ℓ_5, then there are no seven red points forming a \mathcal{T}_7.

Proof. Suppose that \mathbb{E}^2 is coloured in red and blue so that there is no red ℓ_2 and no blue ℓ_5. Suppose that A, B, C, D, E, F and G are red points forming a \mathcal{T}_7 (as in Figure 3). Let X be the reflection of F in BC. Let X', A', F' be the images of X, A, F, respectively, under the clockwise rotation about B such that $XX' = AA' = FF' = 1$. Since A and F are red, A' and F' are blue. If X' is blue, then $X'A'F'$ is a blue equilateral triangle with side length 3 and red center B, which contradicts the result of Lemma 2.1. Therefore, X' is red. Let X'', D'', F'' be the images of X, D, F, respectively, under the clockwise rotation about C such that $XX'' = DD'' = FF'' = 1$. Since D and F are red, D'' and F'' are blue. If X'' is blue, then $X''D''F''$ is a blue equilateral triangle with side length 3 and red center C, which contradicts the result of Lemma 2.1. Therefore, X'' is red. Since X' can be obtained from X'' by the clockwise rotation through 60° about X, $XX'X''$ is a unit equilateral triangle, hence $X'X''$ is a red ℓ_2, which contradicts the assumption of the lemma. \square
Lemma 2.4. Let \mathbb{E}^2 be coloured in red and blue so that there is no red ℓ_2. Let A, B, C be three red points forming a Σ_3. If there is no blue ℓ_5, then there exists a red Σ_6 that contains $\{A, B, C\}$ as a subset.

Proof. Suppose that \mathbb{E}^2 is coloured in red and blue so that there is no red ℓ_2 and no blue ℓ_5. Let A, B, C be three red points forming a Σ_3. Consider the unit triangular lattice depicted in Figure 4.

Suppose that there is no red point D such that A, B, C, D form a Σ_4. Then points X, Y, Z are blue. Points E, F, G, H, I, J are blue, since each of them is distance 1 apart from a red point. If the point K is red, then the points L and M are blue and $LMGYH$ is a blue ℓ_5. Therefore, K is blue. Then N is red (otherwise $KJIZN$ is a blue ℓ_5), hence P and Q are blue, which leads to a blue ℓ_5 $PQFEX$. A contradiction is obtained, therefore there exists a red point D such that A, B, C, D form a Σ_4.

Figure 3

![Figure 3](image3.png)

Figure 4

![Figure 4](image4.png)
Let A, B, C, D form a red T_4. Consider the part of the unit triangular lattice depicted in Figure 5. Suppose that there is no red point E such that A, B, C, D, E form a T_5. Then the points X, F and G are blue. Points H, I, K, L, M, N are blue, since each of them is distance 1 apart from a red point. Point P is red (otherwise $FHIGP$ is a blue $ℓ_5$), therefore Q and R are red. Then X, N, M, Q, R form a blue $ℓ_5$, which gives a contradiction. Hence, there exists a red point E such that A, B, C, D, E form a T_5.

Let A, B, C, D, E form a T_5 (Figure 6). Suppose that F is blue. By Lemma 2.2, points X and Y are blue (otherwise X, E, C (Y, A, D) form a red triangle with side length 3 and red center B). Points G, H, I, J, K, L, M, N are blue, since each one of them is at distance 1 from a red point. If point P is blue, then Q is red (otherwise $QPKLF$ is a blue $ℓ_5$), U and T are blue and form a blue $ℓ_5$ with points G, H and X. Therefore, P is red. Similarly, R is red (otherwise S is red and $VWJIY$ is a blue $ℓ_5$). Then A, B, C, D, E, P and R form a red T_7, which is not possible by Lemma 2.3. Therefore, F is red and A, B, C, D, E, F form a red T_6.

Figure 5

Figure 6
Lemma 2.5. Let \mathbb{E}^2 be coloured in red and blue so that there is no red ℓ_2 and no blue ℓ_5. Let \mathcal{L} be a unit triangular lattice that contains three red points forming a \mathfrak{T}_3. If there is no blue ℓ_5, then the colouring of \mathcal{L} is unique (up to translation or rotation by a multiple of 60°), and is depicted in Figure 7.

Proof. Suppose that \mathbb{E}^2 is coloured in red and blue so that there is no red ℓ_2 and no blue ℓ_5. Suppose there exist three red points of \mathcal{L} that form a \mathfrak{T}_3. By Lemma 2.4, it may be assumed that there is a red \mathfrak{T}_6. Denote its points by A, B, C, D, E, F (see Figure 8). It will be proved that the translate $A'B'C'D'E'F'$ of $ABCDEF$ by the vector of length 5 collinear to \overrightarrow{AB} is red.

Consider the points shown in Figure 8. Since A, D and F are red, by Lemma 2.2, I is blue. Since C, F and D are red, by Lemma 2.2, J is blue. Points K, L, M, N are blue, since each one is distance 1 apart from a red point. If R is red, then both P and Q are blue and form a blue ℓ_5 with K, L and I. Therefore R is blue. Then the point A' is red (otherwise $A'JNMR$ is a red ℓ_5).

Since S_1, S_2, S_3, S_4 are blue (as distance 1 apart from red points D and A'), B' is red. Similarly, F' is red. Points V and W are blue as they are distance 1 apart from C. Points U is blue by Lemma 2.2 (since A, D and B are red). If X is red, then X_1 and X_2 are blue and a blue $\ell_5 UVWX_1X_2$ is formed. Therefore, X is blue. Similarly, Y is blue. By Lemma 2.4, $A'B'C'D'E'F'$ must be contained in a red \mathfrak{T}_6, and since X and Y are blue, the only possible such \mathfrak{T}_6 is $A'B'C'D'E'F'$. Hence, A', B', C', D', E', F' are blue.

Similarly, the translates of $ABCDEF$ by vectors of length 5 collinear to \overrightarrow{EB}.
and \overline{CF} are red. By repeatedly applying the same argument to the new red translates, it can be seen that all the translates of $ABCDEF$ by a multiple of 5 in \mathcal{L} are red. All the other points are blue, as each one is distance 1 apart from a red point. Hence, the colouring as in Figure 7 is obtained.

\[\square \]

Figure 8

Lemma 2.6. Let \mathbb{E}^2 be coloured in red and blue so that there is no red ℓ_2. Let \mathcal{L} be a unit triangular lattice that does not contain three red points forming a T_3. If there is no blue ℓ_5, then the colouring of \mathcal{L} is unique (up to translation or rotation by a multiple of 60°), and is depicted in Figure 9.

Figure 9
Proof. Suppose that \mathbb{E}^2 is coloured in red and blue so that there is no red ℓ_3 and no blue ℓ_5. If \mathcal{L} does not contain a red point, then any ℓ_5 is blue, therefore \mathcal{L} contains a red point A. By Lemma 2.1 one of the points of \mathcal{L} at distance $\sqrt{3}$ to A is red (otherwise the three such points form a blue triangle with side length 3 and red centre A). Denote this point by B (Figure 10). Since \mathcal{L} does not contain a red ℓ_3, the points D and G are blue. Points E, F, I, H, K, J are blue, since they are distance 1 apart from B. Then the point B' is red (otherwise blue ℓ_5 $DEFGB'$ is formed). Point N is 1 apart from B', hence blue. Then C and A' are red (otherwise a blue ℓ_5 is formed).

By repeating the same argument for points B and C, B and A (instead of A and B), and so on, it can be shown that any node of \mathcal{L} on the line AB is red. Similarly, since A' and B' are both red, any node of \mathcal{L} on the line $A'B'$ is red. By the same argument, A'', B'' and any node on the line containing them is red; A''', B''' and any node on the line containing them is red, and so on. By colouring all point distance 1 apart form red points blue, the colouring in Figure 9 is obtained.

Figure 10

Proof of Theorem 1.1. Let the Euclidean space \mathbb{E}^2 be coloured in red and blue so that there are no two red points distance 1 apart. Suppose that there are no five blue points that form an ℓ_5. Then there is a red point A. Consider two points B and C, both distance 5 apart from A, such that $|BC| = 1$. At least one of the points B and C (say, B) is blue. Consider the unit triangular lattice \mathcal{L} that contains A and B. By Lemma 2.1 and Lemma 2.6 \mathcal{L} is coloured either as in Figure 7 or as in Figure 9. But neither one of the colourings contains two points of different colour distance 5 apart, which gives a contradiction. Therefore, there exist five blue points that form an ℓ_5.

\[\square \]
3 Acknowledgements

The author would like to thank Ron Graham and Rozália Juhász for providing information about the current state of the problem, and David Gunderson for valuable comments.

References

[1] A. Arman and S. Tsaturian, A result in asymmetric Euclidean Ramsey theory (2017). https://arxiv.org/pdf/1702.04799.pdf, accessed 27 March 2017.

[2] P. Erdős, R. L. Graham, P. Montgomery, B. L. Rothschild, J. Spencer, and E. G. Straus, Euclidean Ramsey theorems. I, J. Combin. Theory Ser. A 14 (1973), 341–363.

[3] P. Erdős, R. L. Graham, P. Montgomery, B. L. Rothschild, J. Spencer, and E. G. Straus, Euclidean Ramsey theorems. II, Infinite and finite sets (Colloq., Keszthely, 1973; dedicated to P. Erdős on his 60th birthday), Vol. I, North-Holland, Amsterdam, 1975, pp. 529–557. Colloq. Math. Soc. János Bolyai, Vol. 10.

[4] P. Erdős, R. L. Graham, P. Montgomery, B. L. Rothschild, J. Spencer, and E. G. Straus, Euclidean Ramsey theorems. III, Infinite and finite sets (Colloq., Keszthely, 1973; dedicated to P. Erdős on his 60th birthday), Vol. I, North-Holland, Amsterdam, 1975, pp. 559–583. Colloq. Math. Soc. János Bolyai, Vol. 10.

[5] R. L. Graham, Euclidean Ramsey theory, in Handbook of discrete and computational geometry (J. E. Goodman and J. O’Rourke, Eds.), 2nd ed., Chapman & Hall/CRC, Boca Raton, FL, 2004.

[6] L. Iván, Monochromatic point sets in the plane and in the space. 1979. Masters Thesis, University of Szeged, Bolyai Institute (in Hungarian).

[7] R. Juhász, Ramsey type theorems in the plane, J. Combin. Theory Ser. A 27 (1979), 152–160.