SUPPLEMENTAL MATERIAL

Williams et al., http://www.jem.org/cgi/content/full/jem.20131768/DC1

Table S1. Chemical details of the LDHs used in this study

Layered double hydroxide formula	Abbreviation\(^a\)	Particle size
\([\text{LiAl}(\text{OH})_2]\)\(\text{Cl}\)\(_y\)\(\text{H}_2\)\(\text{O}\)	LiAl\(_2\)-Cl	TEM: Particles from <100 nm to several micrometers. DLS: Polydisperse, particles from 250 to 300 nm to several micrometers.
\([\text{LiAl}(\text{OH})_2]\)(\text{CO}_3)^{0.5}\)\(_y\)\(\text{H}_2\)\(\text{O}\)	LiAl\(_2\)-CO\(_3\)	TEM: 50–100 nm, plus larger aggregates 100 nm to 1μm. DLS: Polydisperse aggregates 300 nm to 2 μm.
\([\text{LiAl}(\text{OH})_2]\)\(\text{NO}_3\)^{y}\(\text{H}_2\)\(\text{O}\)	LiAl\(_2\)-NO\(_3\)^{b}	Estimated from XRD to be approximately the same as LiAl\(_2\)-Cl.
\([\text{Ca}_2\text{Al}(\text{OH})_3]\)\(\text{Cl}\)\(_y\)\(\text{H}_2\)\(\text{O}\)	Ca\(_2\)Al-Cl	Estimated from XRD to be approximately the same as Ca\(_2\)Al-NO\(_3\).
# \([\text{Ca}_2\text{Al}(\text{OH})_3]\)\(\text{NO}_3\)^{y}\(\text{H}_2\)\(\text{O}\)	Ca\(_2\)Al-NO\(_3\)	TEM: Aggregates below 100 nm, also larger aggregates. DLS: Polydisperse aggregates.
\([\text{Mg}_2\text{Al}(\text{OH})_3]\)\(\text{Cl}\)\(_y\)\(\text{H}_2\)\(\text{O}\)	Mg\(_2\)Al-Cl\(^b\)	XRD: ~185 nm.
\([\text{Mg}_2\text{Al}(\text{OH})_3]\)(\text{CO}_3)^{0.5}\)\(_y\)\(\text{H}_2\)\(\text{O}\)	Mg\(_2\)Al-CO\(_3\)	TEM: 100–200 nm. DLS: 120 nm plus larger aggregates.
\([\text{Mg}_2\text{Al}(\text{OH})_3]\)\(\text{NO}_3\)^{y}\(\text{H}_2\)\(\text{O}\)	Mg\(_2\)Al-NO\(_3\)	TEM: 30–200 nm. DLS: ~100 nm.
\([\text{Mg}_2\text{Fe}(\text{OH})_3]\)\(\text{Cl}\)\(_y\)\(\text{H}_2\)\(\text{O}\)	Mg\(_2\)Fe-Cl	TEM: Particles 50–100 nm, aggregates of 200–500 nm. DLS: ~145 nm plus larger aggregates.
\([\text{Mg}_2\text{Fe}(\text{OH})_3]\)(\text{CO}_3)^{0.5}\)\(_y\)\(\text{H}_2\)\(\text{O}\)	Mg\(_2\)Fe-CO\(_3\)	XRD: ~180 nm.
\([\text{Mg}_2\text{Fe}(\text{OH})_3]\)\(\text{NO}_3\)^{y}\(\text{H}_2\)\(\text{O}\)	Mg\(_2\)Fe-NO\(_3\)	XRD: ~100 nm.

\(^a\) Indicates that the \([\text{Ca}_2\text{Al}(\text{OH})_3]\)(\text{CO}_3)^{0.5}\)\(_y\)\(\text{H}_2\)\(\text{O}\) LDH could not be synthesized in phase-pure form and therefore could not be included in this study. DLS, dynamic light scattering; TEM, transmission electron micrographs; XRD, X-ray diffraction.

\(^b\) For clarity, stoichiometric indices are not subscripted in figures.

\(^c\) LDHs synthesized for de novo predictions of immunological activities.
Table S2. Responses of human monocyte-derived DCs to LDHs and alums (tabulation of values presented in Fig. 2)

Compound	IL-1β Response	IL-1β In response	IL-1β SE	IL-1β In SE	IL-6 Response	IL-6 In response	IL-6 SE	IL-6 In SE	TNF-α Response	TNF-α In response	TNF-α SE	TNF-α In SE
Cells alone	4.92	1.91	1.51	0.42	38.84	10.11	3.62	0.27	24.69	7.55	3.16	0.32
LiAl₂-CO₃	174.17	67.72	5.07	0.42	2716.17	706.94	7.87	0.27	3802.80	1162.79	8.19	0.32
LiAl₂-Cl	26.88	10.45	3.21	0.42	199.00	51.79	5.26	0.27	491.75	150.36	6.15	0.32
Ca₂Al-Cl	5.96	2.61	1.67	0.49	99.36	25.86	4.56	0.27	248.96	79.76	5.46	0.34
Ca₂Al-NO₃	7.85	3.05	1.97	0.42	52.23	13.59	3.92	0.27	123.34	37.72	4.76	0.32
Mg₂Al-NO₃	17.71	6.91	2.79	0.43	126.99	33.05	4.81	0.27	298.59	91.30	5.65	0.32
Mg₂Al-CO₃	12.97	5.06	2.48	0.43	86.04	22.39	4.42	0.27	173.18	52.95	5.10	0.32
Mg₂Fe-CO₃	14.55	6.38	2.56	0.49	305.44	79.50	5.69	0.27	412.45	132.14	5.97	0.34
Mg₂Fe-Cl	9.67	3.76	2.18	0.42	94.10	24.49	4.51	0.27	140.16	42.86	4.89	0.32
Mg₂Fe-NO₃	3.83	1.68	1.23	0.49	103.63	26.97	4.61	0.27	166.62	53.38	5.06	0.34
Imject	18.82	7.32	2.85	0.42	85.42	22.23	4.41	0.27	333.82	102.07	5.76	0.32
Alhydrogel	25.60	9.95	3.16	0.42	150.54	39.18	4.98	0.27	246.47	75.36	5.46	0.32

Table S2 (continued)

Compound	IL-12p70 Response	IL-12p70 In response	IL-12p70 SE	IL-12p70 In SE	IL-15 Response	IL-15 In response	IL-15 SE	IL-15 In SE	IFN-α2 Response	IFN-α2 In response	IFN-α2 SE	IFN-α2 In SE
Cells alone	2.34	0.52	0.82	0.23	1.06	0.24	0.03	0.23	2.51	0.59	0.89	0.24
LiAl₂-CO₃	20.98	4.28	3.02	0.21	2.35	0.52	0.83	0.23	6.36	1.41	1.83	0.23
LiAl₂-Cl	4.24	0.93	1.42	0.22	1.62	0.36	0.46	0.23	4.61	1.03	1.50	0.23
Ca₂Al-Cl	5.04	1.89	1.54	0.41	1.92	0.57	0.61	0.31	3.40	0.90	1.19	0.27
Ca₂Al-NO₃	4.48	1.00	1.47	0.23	1.20	0.27	0.15	0.23	3.18	0.72	1.13	0.23
Mg₂Al-NO₃	3.78	0.86	1.30	0.23	1.60	0.36	0.44	0.23	3.52	0.78	1.23	0.23
Mg₂Al-CO₃	4.80	1.07	1.54	0.23	1.58	0.35	0.43	0.23	3.46	0.76	1.22	0.22
Mg₂Fe-CO₃	4.99	1.87	1.53	0.41	1.70	0.44	0.50	0.27	4.44	1.10	1.46	0.26
Mg₂Fe-Cl	4.97	1.71	1.36	0.37	1.36	0.30	0.28	0.23	3.60	0.81	1.25	0.23
Compound	IL-8 Response	IL-8 SE	MCP-1 Response	MCP-1 SE	MIP-1β Response	MIP-1β SE						
--------------	---------------	---------	----------------	----------	----------------	----------						
Mg₂Fe-NO₃	6.68	2.80	1.80	0.46	0.34	0.31						
Imject	5.51	1.23	1.68	0.23	0.32	0.23						
Alhydrogel	1.61	0.36	0.45	0.23	0.23	0.23						

Table S2 (continued)

Compound	CD40 Response	CD40 SE	CD86 Response	CD86 SE	CD274 Response	CD274 SE
Cells alone	1197.40	479.20	505.51	122.72	1048.34	297.41
LiAl₂-CO₃	1963.50	785.90	1575.45	382.48	3114.77	884.52
LiAl₂-Cl	1658.04	663.64	794.68	192.88	1154.54	327.54

Table S2 (continued)
Responses with standard errors (SE) for cytokine and chemokine secretion are in pg/ml, and values for CD40, CD86, and CD274 are shown as mean channel fluorescence intensities. Natural logarithms of response values (ln response) are shown in the columns highlighted in gray, along with the respective SE.

Table S3. Significance data for human DC responses to LDHs (presented in Fig. 2)

Compound	IL-1β (n = 10)	IL-6 (n = 18)	TNF-α (n = 22)						
	DC alone	Imject AH	DC alone	Imject AH	DC alone	Imject AH			
LiAl₂-CO₃	0.000	0.000	0.000	0.000	0.000	0.000			
LiAl₂-Cl	0.000	0.192 0.858	0.027 0.302 0.167	0.000 0.000 0.000					
Ca₂Al-Cl	0.658 0.002 0.000	0.385 0.809 0.666	0.000 0.319 0.053						
Ca₂Al-NO₃	0.088 0.002 0.000	0.399 0.044 0.099	0.000 0.116 0.733						
Mg₂Al-NO₃	0.000 0.824 0.181	0.005 0.100 0.047	0.000 0.443 0.010						
Mg₂Al-CO₃	0.001 0.177 0.014	0.002 0.063 0.028	0.000 0.004 0.000						
Mg₂Fe-CO₃	0.004 0.440 0.109	0.000 0.000 0.000	0.000 0.008 0.000						
Mg₂Fe-Cl	0.014 0.015 0.000	0.314 0.864 0.854	0.002 0.010 0.555						
Mg₂Fe-NO₃	0.449 0.000 0.000	0.309 0.697 0.563	0.012 0.742 0.532						
Imject	0.000 NA 0.260	0.238 NA 0.723	0.000 NA 0.062						
Compound	IL-12p70 (n = 8)	IL-15 (n = 8)	IFN-α2 (n = 7)						
---------------	------------------	---------------	----------------						
	DC alone	Imject	AH	DC alone	Imject	AH	DC alone	Imject	AH
LiAl₂-CO₃	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.262	0.000
LiAl₂-Cl	0.015	0.287	0.000	0.001	0.283	0.081	0.004	0.583	0.007
Ca₂Al-Cl	0.086	0.760	0.010	0.020	0.246	0.131	0.262	0.088	0.332
Ca₂Al-NO₃	0.009	0.405	0.000	0.341	0.192	0.530	0.268	0.016	0.358
Mg₂Al-NO₃	0.057	0.135	0.001	0.002	0.349	0.107	0.104	0.052	0.149
Mg₂Al-CO₃	0.004	0.568	0.000	0.002	0.378	0.120	0.118	0.041	0.167
Mg₂Fe-CO₃	0.084	0.755	0.009	0.013	0.341	0.156	0.019	0.507	0.028
Mg₂Fe-Cl	0.031	0.198	0.000	0.051	0.762	0.707	0.093	0.073	0.132
Mg₂Fe-NO₃	0.034	0.744	0.004	0.220	0.956	0.683	0.144	0.149	0.189
Imject	0.001	NA	0.000	0.025	NA	0.497	0.001	NA	0.001
Alhydrogel	0.133	0.000	NA	0.115	0.497	NA	0.841	0.001	NA

Table S3 (continued)

Compound	IL-8 (n = 7)	MCP-1 (n = 8)	MIP-1β (n = 8)						
	DC alone	Imject	AH	DC alone	Imject	AH	DC alone	Imject	AH
LiAl₂-CO₃	0.000	0.018	0.000	0.000	0.034	0.000	0.000	0.001	0.000
LiAl₂-Cl	0.000	0.700	0.000	0.000	0.121	0.003	0.000	0.025	0.000
Ca₂Al-Cl	0.000	0.562	0.000	0.000	0.174	0.011	0.000	0.032	0.006
Compound	CD40 (n = 8)	CD86 (n = 16)	CD274 (n = 6)						
-------------------	--------------	---------------	---------------						
	DC alone	Imject	AH	DC alone	Imject	AH	DC alone	Imject	AH
Ca$_2$Al-NO$_3$	0.000 0.019 0.000	0.000 0.130 0.996	0.000 0.005 0.001						
Mg$_2$Al-NO$_3$	0.000 0.072 0.000	0.000 0.338 0.577	0.000 0.000 0.049						
Mg$_2$Al-CO$_3$	0.000 0.024 0.000	0.017 0.000 0.003	0.000 0.000 0.865						
Mg$_2$Fe-CO$_3$	0.000 0.109 0.000	0.000 0.255 0.935	0.000 0.230 0.000						
Mg$_2$Fe-Cl	0.000 0.000 0.006	0.002 0.000 0.021	0.000 0.000 0.999						
Mg$_2$Fe-NO$_3$	0.000 0.558 0.000	0.003 0.010 0.176	0.001 0.000 0.812						
Imject	0.000 NA 0.000	0.000 NA 0.133	0.000 NA 0.000						
Alhydrogel	0.008 0.000 NA	0.000 0.133 NA	0.000 0.000 NA						

The p-values for the respective DC responses generated by LDHs with respect to cells alone, Imject, and Alhydrogel (denoted AH) are shown. The number (n) of biological replicates (donor DCs) evaluated for each response is indicated. Numbers of experiments are as follows. Cytokines and chemokines: IFN-α2, 7; IL-1β, 10; 5

Table S3 (continued)
IL-6, 18; IL-8, 7; IL-12p70, 8; IL-15, 8; MCP-1, 8; MIP-1β, 8; and TNF-α, 22. Membrane molecules: CD40, 8; CD86, 18; and CD274, 6. Numbers in bold are where P < 0.05, and those highlighted in gray are where P < 0.01.

Table S4. Selected physicochemical properties of the LDHs used in this study

Property	LiAl₂CO₃	LiAl₂Cl	Ca₂Al-Cl	Ca₂Al-NO₃	Mg₂Al-NO₃	Mg₂Al-CO₃	Mg₂Fe-CO₃	Mg₂Fe-Cl	Mg₂Fe-NO₃	LiAl₂-NO₃	Mg₂Al-Cl
Ionic radius (M⁺ or M²⁺) (Å)	0.760	0.760	1.000	1.000	0.720	0.720	0.720	0.720	0.720	0.760	0.720
Ionic radius (M³⁺) (Å)	0.540	0.540	0.540	0.540	0.540	0.540	0.550	0.550	0.550	0.540	0.540
Electronegativity (M⁺ or M²⁺)	0.980	0.980	1.000	1.000	1.310	1.310	1.310	1.310	1.310	0.980	1.310
Electronegativity (M³⁺)	1.610	1.610	1.610	1.610	1.610	1.610	1.830	1.830	1.830	1.610	1.610
Standard electrode potential (M⁺ or M²⁺) (V)	-3.040	-3.040	-2.870	-2.870	-2.370	-2.370	-2.370	-2.370	-2.370	-3.040	-2.370
Standard electrode potential (M³⁺) (V)	-1.660	-1.660	-1.660	-1.660	-1.840	-0.040	-0.040	-0.040	-1.660	-1.660	
a-parameter (Å)	5.100	5.100	5.740	5.740	3.050	3.050	3.100	3.100	3.100	5.100	3.050
Interlayer spacing (Å)	7.65	7.65	7.50	8.60	8.00	7.60	7.75	8.00	7.85	8.85	7.75
pH of 10 μg/ml suspension in PBS	6.820	6.020	11.360	11.410	7.920	8.890	9.350	8.960	7.840	5.630	7.840
Zeta potential (mV)	-19.093	-12.037	14.850	17.628	-14.274	-14.556	-13.483	-15.008	-11.400	-15.255	-13.348

Shannon-Prewitt definitions are used for the ionic radii of the metal cations (M⁺ or M²⁺ and M³⁺). Electronegativity is given in the Pauling convention. Standard electrode potentials refer to the process Mⁿ⁺ + ne⁻ → M(0). These parameters were taken from the literature (Lide, 2000). The a-parameter defines the unit cell of the LDH perpendicular to the layer stacking, and the interlayer spacing is the distance between the LDH layers (see Fig. 1). These parameters were calculated from the positions of the non-basal (a-parameter) and 00l (interlayer spacing) reflections in x-ray diffraction patterns. The zeta potential is a measure of the electrical potential difference between the surface of the LDH particles and the PBS medium in which they were suspended; LDH suspensions at 10 mg/ml in PBS (initial pH 7.2) were prepared at least in triplicate for determination of pH and zeta potentials, and the data are given as mean values (standard deviations for zeta potential measurements are typically 0.500–1.00 mV).
b. Standardized properties

Property	LiAl₂-CO₃	LiAl₂-Cl	Ca₂Al-Cl	Ca₂Al-NO₃	Mg₂Al-NO₃	Mg₂Al-CO₃	Mg₂Fe-CO₃	Mg₂Fe-Cl	Mg₂Fe-NO₃	LiAl₂-NO₃	Mg₂Al-Cl
Ionic radius (M⁺ or M²⁺) (Å)	-0.200	-0.200	1.995	1.995	-0.565	-0.565	-0.565	-0.565	-0.565	-0.200	-0.565
Ionic radius (M³⁺) (Å)	-0.584	-0.584	-0.584	-0.584	-0.584	-0.584	1.557	1.557	1.557	-0.584	-0.584
Electronegativity (M⁺ or M²⁺)	-1.091	-1.091	-0.972	-0.972	0.870	0.870	0.870	0.870	0.870	-1.091	0.870
Electronegativity (M³⁺)	-0.584	-0.584	-0.584	-0.584	-0.584	-0.584	1.557	1.557	1.557	-0.584	-0.584
Standard electrode potential (M⁺ or M²⁺) (V)	-1.239	-1.239	-0.708	-0.708	0.856	0.856	0.856	0.856	0.856	-1.239	0.856
Standard electrode potential (M³⁺) (V)	-0.584	-0.584	-0.584	-0.584	-0.584	-0.584	1.557	1.557	1.557	-0.584	-0.584
a-parameter (Å)	0.816	0.816	1.344	1.344	-0.876	-0.876	-0.835	-0.835	-0.835	0.816	-0.876
Interlayer spacing (Å)	-0.649	-0.649	-1.000	1.574	0.170	-0.766	-0.415	0.170	-0.181	2.159	-0.415
pH of 10 µg/mL suspension in PBS	-0.816	-1.238	1.578	1.605	-0.236	0.276	0.518	0.313	-0.278	-1.444	-0.278
Zeta potential (mV)	-0.828	-0.265	1.883	2.105	-0.443	-0.466	-0.380	-0.502	-0.214	-0.522	-0.369

The properties in Table S4 a were standardized to have mean 0 and unit variance in order to facilitate development of models linking physicochemical properties and immunological responses; from these, Eq. 1 (see Results and discussion) was derived, and predictions were made.

Table S5. Coefficients for DC responses

Response	A	B	C for standardized properties		
	Ionic radius (M⁺ or M²⁺)	Interlayer spacing	Zeta potential		
IL-1β	2.790	2.941	0.911	0.087	-1.054
IL-6	-3.244	1.899	0.883	0.053	-1.050
TNF-α	-1.602	2.262	1.008	0.036	-1.122
IL-12p70	1.747	1.223	1.033	0.060	-1.122
IL-15	0.442	0.442	1.064	-0.116	-1.107
IFN-α2	1.375	0.390	0.626	-0.150	-0.812
Responses of human DC to LDHs in vitro can be expressed by Eq. 1. Values for the constants A and B and the coefficients C_i are shown for each respective DC response measured. Use of the values above in Eq. 1 with the appropriate standardized properties in Table S4b generates calculated values for the ln responses. Note that for TNF-α and IL-6 the formula calculates ln (response/ng ml$^{-1}$), for other cytokines and chemokines, it gives ln (response/pg ml$^{-1}$), and for the membrane molecules ln (response/MFI). For any given response, the relative magnitudes of C_i for the three standardized properties are proportional to the influence that the respective properties have in controlling that response.

Table S6. Actual versus predicted responses to two newly-synthesised LDHs

Response	LiAl$_2$-NO$_3$	Mg$_2$Al-Cl										
	Actual	Predicted	Lower PI	Upper PI	Residual	%CV	Actual	Predicted	Lower PI	Upper PI	Residual	%CV
IL-1β	4.86	4.80	3.70	5.90	0.06	1.23	2.66	2.10	1.19	3.01	0.56	21.05
IL-6	-2.02	-2.74	-3.98	-1.50	0.73	35.98	-3.48	-3.50	-4.67	-2.32	0.02	0.50
TNF-α	-0.10	-1.26	-2.32	-0.20	1.16	1159.84	-1.72	-2.04	-3.08	-1.00	0.32	18.60
IL-12p70	2.53	2.35	1.36	3.33	0.18	7.11	1.54	1.46	0.58	2.34	0.08	5.19
IL-15	0.58	0.29	0.10	0.48	0.29	50.00	0.25	0.40	0.22	0.59	-0.15	60.00
IFN-α2	1.3	1.59	1.28	1.89	-0.29	22.31	1.76	1.29	1.01	1.57	0.47	26.70
IL-8	7.94	7.22	6.16	8.28	0.72	9.07	7.77	7.64	6.71	8.57	0.13	1.67
MCP-1	8.33	7.29	6.56	8.02	1.04	12.48	7.46	7.08	6.33	7.83	0.38	5.09
MIP-1β	7.77	7.43	6.25	8.61	0.34	4.38	6.15	6.04	4.97	7.10	0.11	1.79
CD40	7.43	7.34	7.12	7.56	0.09	1.21	7.29	7.29	7.07	7.51	0.00	0.00
CD86	7.17	7.24	6.81	7.66	-0.07	0.98	6.61	6.50	6.15	6.86	0.11	1.66
CD274	7.23	7.51	7.00	8.01	-0.28	3.87	7.23	7.13	6.65	7.60	0.10	1.38
Actual (measured) DC ln responses to LiAl₂-NO₃ and Mg₂Al-Cl and predicted values from Eq. 1 using the respective property values in Table S4 b (for standardized properties) and coefficients in Table S5; residual = actual value − predicted value, and % coefficient of variation (CV) = 100 × (|residual|/actual). Upper and lower 95% CIs have been calculated for the predictions and are included above as lower and upper predictive intervals (PI). Note that for TNF-α and IL-6 the formula calculates ln (response/ng ml⁻¹), for other cytokines and chemokines it gives ln (response/pg ml⁻¹), and for the membrane molecules ln (response/MFI).

Table S7. Mouse OVA-specific antibody isotype responses to LDHs and alums (presented in Fig. 4)

a. After prime-boost

Treatment	IgE OD450	IgE ln OD450	IgE ln SE	IgG1 OD450	IgG1 ln OD450	IgG1 ln SE	IgG2c OD450	IgG2c ln OD450	IgG2c ln SE
Saline	0.04	-3.46	0.70	0.07	-2.83	0.57	0.05	-3.14	0.54
OVA alone	0.07	-2.85	0.67	0.05	-3.06	0.53	0.07	-2.85	0.52
LiAl₂-CO₃	0.46	-0.98	0.69	1.62	0.34	0.55	0.18	-1.87	0.53
LiAl₂-Cl	0.49	-0.93	0.69	1.34	0.15	0.55	0.32	-1.28	0.53
Ca₂Al-NO₃	0.31	-1.38	0.69	3.21	1.02	0.55	0.49	-0.86	0.53
Mg₂Al-NO₃	0.13	-2.22	0.69	0.19	-1.81	0.55	0.10	-2.43	0.53
Mg₂Al-CO₃	0.48	-0.95	0.69	1.97	0.53	0.55	0.26	-1.47	0.53
Mg₂Fe-CO₃	0.34	-1.34	0.76	2.77	0.83	0.65	0.44	-0.99	0.58
Mg₂Fe-Cl	0.05	-3.24	0.69	0.07	-2.85	0.56	0.14	-2.07	0.53
Imject	0.24	-1.63	0.67	2.21	0.66	0.53	0.32	-1.27	0.52
Alhydrogel	0.26	-1.58	0.69	1.87	0.48	0.55	0.17	-1.90	0.53

b. After challenge

Treatment	IgE OD450	IgE ln OD450	IgE ln SE	IgG1 OD450	IgG1 ln OD450	IgG1 ln SE	IgG2c OD450	IgG2c ln OD450	IgG2c ln SE
Saline	0.06	-2.85	0.50	0.05	-3.24	0.65	0.07	-2.86	0.68
OVA alone	0.04	-3.23	0.48	0.05	-3.10	0.63	0.07	-2.90	0.66
LiAl₂-CO₃	0.41	-1.01	0.49	1.86	0.43	0.65	0.17	-1.98	0.67
LiAl₂-Cl	0.32	-1.25	0.49	1.42	0.16	0.65	0.20	-1.81	0.67
Responses with standard errors (SE) are shown, with ln response (and ln SE) values in columns highlighted in gray, after prime-boost alone (a) and after a final challenge (b). Data are from two replicate experiments, each with at least five mice per experimental group. All responses are shown as OD450 units from ELISA assays.

Table S8. Significance data for mouse antibody isotype responses (tabulation of P-values presented in Fig. 4)

Treatment	OVA-specific IgE OVA alone	Imject	AH	OVA-specific IgG1 OVA alone	Imject	AH	OVA-specific IgG2c OVA alone	Imject	AH
Saline alone	0.126	**0.000**	0.000	0.533	**0.000**	0.000	0.337	**0.000**	0.000
LiAl2-CO3	**0.000**	0.093	0.156	**0.000**	0.356	0.714	**0.001**	**0.044**	0.925
LiAl2-Cl	**0.000**	0.069	0.122	**0.000**	0.138	0.376	**0.000**	0.973	0.057
Ca2Al-NO3	**0.000**	0.516	0.637	**0.000**	0.296	0.152	**0.000**	0.158	**0.002**
Mg2Al-NO3	0.103	0.122	0.124	**0.000**	**0.000**	**0.000**	0.157	**0.000**	0.102
Mg2Al-CO3	**0.000**	0.078	0.135	**0.000**	0.710	0.889	**0.000**	0.504	0.182
Mg2Fe-CO3	**0.003**	0.558	0.644	**0.000**	0.731	0.492	**0.000**	0.457	**0.024**
Mg2Fe-Cl	0.313	**0.000**	**0.000**	0.553	**0.000**	**0.000**	**0.010**	**0.008**	0.591
Imject	**0.001**	NA	0.893	**0.000**	NA	0.601	**0.000**	NA	0.035
Alhydrogel	**0.001**	0.893	NA	**0.000**	0.601	NA	**0.002**	**0.035**	NA
b. After challenge

Treatment	OVA-specific IgE	OVA-specific IgG1	OVA-specific IgG2c						
	OVA alone	Imject	AH	OVA alone	Imject	AH	OVA alone	Imject	AH
Saline alone	0.182	0.000	0.000	0.724	0.000	0.000	0.892	0.000	0.000
LiAl$_2$-CO$_3$	0.000	0.248	0.107	0.000	0.889	0.597	0.003	0.003	0.053
LiAl$_2$-Cl	0.000	0.427	0.000	0.000	0.359	0.238	0.000	0.015	0.155
Ca$_3$Al-NO$_3$	0.000	0.019	0.000	0.000	0.819	0.542	0.000	0.099	0.021
Mg$_3$Al-NO$_3$	0.009	0.000	0.001	0.005	0.000	0.000	0.148	0.000	0.001
Mg$_2$Al-CO$_3$	0.000	0.051	0.000	0.000	0.017	0.819	0.000	0.755	0.592
Mg$_2$Fe-CO$_3$	0.000	0.083	0.000	0.000	0.737	0.980	0.000	0.000	0.000
Mg$_2$Fe-Cl	0.075	0.000	0.000	0.004	0.000	0.000	0.109	0.000	0.000
Imject	0.000	NA	0.539	0.000	NA	0.662	0.000	NA	0.370
Alhydrogel	0.000	0.539	NA	0.000	0.662	NA	0.000	0.370	NA

The p-values for the respective OVA-specific, antibody isotype responses induced by LDHs with respect to OVA alone, Imject, and Alhydrogel (denoted AH) are shown. Values in bold are where $P < 0.05$ and those highlighted in gray where $P < 0.01$. Data are from two replicate experiments, each with at least five mice per experimental group. Note that data for total IgG2c induced after prime-boost and for total IgG1 and IgG2c induced after challenge also reached significance, with responses conforming to Eq. 1; these data are omitted for simplicity.

Table S9. Coefficients for antibody responses

OVA-specific isotype	A	B	C_i for standardized properties		
			Ionic radius (M$^+$ or M$^{2+}$)	Interlayer spacing	Zeta potential
Prime-boost					
IgE	-1.570	-1.965	-0.428	0.945	-0.344
IgG1	-0.196	-3.245	-0.286	0.889	-0.562
IgG2c	-1.526	-1.271	0.235	0.779	-1.053
Challenge					
Mouse antibody responses to LDHs in vivo can be expressed by Eq. 1. Values for the constants \(A \) and \(B \) and the coefficient \(C_i \) are shown for each respective antigen-specific antibody response measured. Use of the values above, with the appropriate standardized properties in Table S4.b, in Eq. 1 generates calculated values for the \(\ln \) responses given in Table S6.

Table S10. Inflammatory cytokine secretion by human macrophages stimulated by LDHs in vitro

a. Responses with standard errors (SE), with \(\ln \) responses (with \(\ln \) SE) in columns highlighted in gray, for cytokine secretion in pg/ml

Compound	Macrophages, IL-6 Response	Macrophages, IL-6 \(\ln \) response	Dermal macrophages, IL-6 Response	Dermal macrophages, IL-6 \(\ln \) response
	SE	\(\ln \) SE	SE	\(\ln \) SE
Cells alone	26.34	10.22	3.19	0.42
LiAl\(_2\)-CO\(_3\)	247.70	99.61	5.42	0.44
LiAl\(_2\)-Cl	38.47	14.92	3.56	0.42
Ca\(_2\)Al-NO\(_3\)	28.08	10.89	3.25	0.42
Mg\(_2\)Al-NO\(_3\)	27.02	10.65	3.21	0.43
Mg\(_2\)Al-CO\(_3\)	112.38	43.60	4.64	0.42
Mg\(_2\)Fe-Cl	34.79	13.50	3.46	0.42
Imject	18.73	7.26	2.84	0.42
Alhydrogel	33.50	13.00	3.43	0.42

Table S10 a (Continued)

Compound	Macrophages, TNF-\(\alpha \) Response	Macrophages, TNF-\(\alpha \) \(\ln \) response	Dermal macrophages, TNF-\(\alpha \) Response	Dermal macrophages, TNF-\(\alpha \) \(\ln \) response
	SE	\(\ln \) SE	SE	\(\ln \) SE
Cells alone	19.27	10.07	2.78	0.62
LiAl\(_2\)-CO\(_3\)	1240.42	648.22	6.95	0.62
Human macrophages or dermal macrophages derived from monocytes were cultured without or with the indicated LDH or commercial adjuvant preparation for a period of 24 hours, and cytokine secretion determined by ELISA.

b. Significance data for human macrophage responses to LDHs

Compound	Macrophages, IL-6 (n=4)	Dermal macrophages, IL-6 (n=3)	Macrophages, IL-6 (n=4)	Dermal macrophages, IL-6 (n=3)
LiAl₂-Cl	0.000 0.000 0.000	0.000 0.000 0.000	0.000 0.000 0.000	0.000 0.000 0.000
LiAl₂-NO₃	0.261 0.034 0.680	0.237 0.089 0.010	0.000 0.000 0.000	0.005 0.204 0.000
Ca₂Al-NO₃	0.849 0.229 0.599	0.132 0.045 0.005	0.001 0.157 0.037	0.012 0.389 0.001
Mg₂Al-NO₃	0.949 0.295 0.528	0.348 0.144 0.020	0.003 0.347 0.109	0.469 0.333 0.097
Mg₂Al-CO₃	0.000 0.000 0.001	0.001 0.000 0.000	0.000 0.000 0.000	0.004 0.180 0.000
Mg₂Fe-Cl	0.408 0.068 0.910	0.007 0.001 0.000	0.002 0.270 0.078	0.707 0.186 0.190
Imject	0.311 NA 0.086	0.584 NA 0.353	0.034 NA 0.488	0.089 NA 0.008
Alhydrogel	0.474 0.086 NA	0.142 0.353 NA	0.147 0.488 NA	0.353 0.008 NA

The number (n) of biological replicates (donor macrophages or dermal macrophages) evaluated for each response is indicated. Values given in the table are p-values; values in bold are where P < 0.05 and those highlighted in gray are where P < 0.01.

c. Coefficients for macrophage responses

Macrophage	A	B	Cᵢ for standardized properties
	Ionic radius, (M⁺ or M²⁺)	Interlayer spacing	Zeta potential

13 | Page
IL-6

	Macrophages				
Dermal macrophages	-2.019	1.032	1.429	-0.005	-1.486

TNF-α

	Macrophages				
Dermal macrophages	-1.654	-1.473	-1.436	0.334	1.120

Responses of human macrophages to LDHs in vitro can be expressed by Eq. 1. Values for the constants A and B and the coefficient C_i are shown for each macrophage response measured. Use of the values above in Eq. 1, with the appropriate standardized properties in Table S4 b, generates calculated values for the In responses. Note that the formula calculates ln (response/ng ml$^{-1}$).

Reference

Lide, D.R., editor. 2000. CRC Handbook of Chemistry and Physics. 81st edition. CRC Press, Boca Raton, FL. 2556 pp.