Melatonin protects liver from intestine ischemia reperfusion injury in rats

Jian-Yi Li, Hong-Zhuan Yin, Xi Gu, Yong Zhou, Wen-Hai Zhang, Yi-Min Qin

Abstract

AIM: To investigate the protective effect of melatonin on liver after intestinal ischemia-reperfusion injury in rats.

METHODS: One hundred and fifty male Wistar rats, weighing 190-210 g, aged 7 wk, were randomly divided into melatonin exposure group, alcohol solvent control group and normal saline control group. Rats in the melatonin exposure group received intraperitoneal (IP) melatonin (20 mg/kg) 30 min before intestinal ischemia-reperfusion (IR), rats in the alcohol solvent control group received the same concentration and volume of alcohol, and rats in the normal saline control group received the same volume of normal saline. Serum samples were collected from each group 0.5, 1, 6, 12, and 24 h after intestinal IR. Levels of serum alanine aminotransferase (ALT) and aspartate aminotransferase (AST) were measured with an auto-biochemical analyzer. Serum TNF-α was tested by enzyme-linked immunosorbent assay (ELISA). Malondialdehyde (MDA) in liver was detected by colorimetric assay. Pathological changes in liver and immunohistochemical staining of ICAM-1 were observed under an optical microscope.

RESULTS: The levels of ALT measured at various time points after intestinal IR in the melatonin exposure group were significantly lower than those in the other two control groups (P < 0.05). The serum AST levels 12 and 24 h after intestinal IR and the ICAM-1 levels (%) 6, 12 and 24 h after intestinal IR in the melatonin exposure group were also significantly lower than those in the other two control groups (P < 0.05).

CONCLUSION: Exotic melatonin can inhibit the activity of ALT, AST and TNF-α, decrease the accumulation of MDA, and depress the expression of ICAM-1 in liver after intestinal IR injury, thus improving the liver function.

© 2008 The WJG Press. All rights reserved.

Key words: Melatonin; Intestinal ischemia-reperfusion injury; Liver; TNF-α

INTRODUCTION

Bowel transplantation is still the only definite therapy for bowel dysfunction although it is more difficult than other organ transplantations at the final stage of bowel dysfunction. Small intestine with high immunogenicity has the highest reject reaction rate in all organ transplantations. Although more and more powerful nonspecific immunosuppressive agents have been used in recent years, the rate of graft rejecting reaction is still higher than 50% in intestine. Current clinical data show that combined liver and small intestine transplantation decreases both acute and chronic rejection compared with simple small intestine transplantation. Small intestine transplantation, the best therapy for bowel dysfunction at present, cannot replace total parenteral nutrition (TPN) due to its severe rejecting reaction. Long term...
TPN therapy may induce liver injury and some patients with intestinal dysfunction can accompany hepatic diseases. Since combined liver and intestine transplantation can prevent further liver injuries\(^4\), systematic research should be done to identify the mechanism of hepatic injury caused by intestinal ischemia-reperfusion (IR) and detect the possible intervention which can lessen the injury. Melatonin can protect liver from intestinal IR injury due to its powerful ability to clear free radicals\(^5\).

The objective of this study was to determine the possible protective effect and mechanisms of melatonin in intestinal IR models and provide evidence for its clinical application in spare-part surgery.

MATERIALS AND METHODS

Materials

One hundred and fifty healthy male Wistar rats, weighing 190 to 210 g, aged 6-7 wk, were randomly allocated into melatonin disposure group, alcohol solvent control group and normal saline (NS) control group. All rats were raised for at least 1 wk before operation in a 12 h dark and 12 h light cycle, with free access to food and water. One gram of melatonin (Sigma Company, USA) was dissolved in alcohol solvent (40%) and kept at a sub-ambient temperature. Rats in the melatonin exposure group received 20 mg/kg intra-peritoneal melatonin diluted by NS to 1/10 of the incipient concentration 30 min before intestinal IR. Rats in the alcohol solvent control group received the same concentration of alcohol and NS. Thiopental sodium (40 mg/kg) was injected into biceps femoris of rats 45 min before the intestinal IR model was established. A model of pan-small intestinal IR injury was established by occlusion of the superior mesenteric artery (SMA) for 30 min. Serum samples were collected from rats in each group after reperfusion for 0.5, 1, 6, 12 and 24 h. A paraformaldehyde (PFA, 40 g/L) phosphate buffer (0.1 mol/L, pH = 7.3) was provided by Laboratory of Shengjing Hospital, China Medical University (Shenyang, China). Correlated biochemical agents were bought from Boehringer Mannheim Company in Germany. MDA kits were purchased from Nanjing Jiancheng Biological Engineering Research Center. TNF-\(\alpha\) kit was bought from Shenzhen Jingmei Biological Engineering Limited Company (China). ICAM-1 kit was purchased from Serotech Company in UK. OLYMPUS-BX60 optical microscope and photograph system, HITACHI-7600A automatic biochemistry analyzer and SAKURA paraffin section cutter, were provided by Laboratory of China Medical University (Shenyang, China).

Methods

Blood was obtained by trans-diaphragmatic cardiac puncture, each sample was centrifuged for 5 min at 3000 r/min with the clear supernatant remained. ALT and AST were detected with an automatic biochemistry analyzer. Serum TNF-\(\alpha\) was determined by ELISA. MDA in liver tissue homogenate obtained from the central part of medial lobes was assayed by colorimetry. ICAM-1 in liver cells was tested by immunohistochemistry and observed under an optical microscope. Cells (including endothelialocytes in liver sinusoid and hepatocytes) with fine yellow particles in cytoplasm were defined as positive. The number of ICAM-1 positive cells per one high power field was calculated, the mean value was expressed as mean ± SD. All parameters were analyzed by variance analysis and SNK test using SPSS 13.0.

RESULTS

Serum ALT

After reperfusion for 12 and 24 h, the levels of ALT in the exposure group at each time point were significantly lower than those in the alcohol solvent and NS control groups \((P < 0.05)\), while there was no obvious difference between alcohol solvent and NS control groups (Table 1).

Serum AST

After reperfusion for 12 and 24 h, the levels of AST in the melatonin exposure group were significantly lower than those in the alcohol solvent and NS control groups \((P < 0.05)\), while there was no obvious difference between the alcohol solvent and NS control groups (Table 1).

Serum TNF-\(\alpha\)

After reperfusion for 12 and 24 h, the levels of TNF-\(\alpha\) in the melatonin exposure group were significantly lower than those in the alcohol solvent and NS control groups \((P < 0.05)\), while there was no obvious difference between the alcohol solvent and NS control groups (Table 1).

MDA in liver tissue homogenate

After reperfusion for 6, 12 and 24 h, MDA in the melatonin exposure group was significantly lower than that in the alcohol solvent and NS control groups \((P < 0.05)\), while there was no obvious difference between the alcohol solvent and NS control groups (Table 1).

ICAM-1 stained cells in liver tissue

After reperfusion for 6, 12 and 24 h, the positive rate of ICAM-1-stained cells in the melatonin exposure group was significantly lower than that in the alcohol solvent and NS control groups \((P < 0.05)\), while there was no obvious difference between the alcohol solvent and NS control groups (Table 1).

DISCUSSION

Serum ALT and AST levels are generally accepted as the most sensitive indexes of acute hepatic injury and AST appears at the later phase\(^7\). After reperfusion, the ALT levels in the three groups gradually decreased with the time and were lower in the melatonin exposure group than in the other two control groups \((P < 0.05)\),
Table 1 ALT, AST, TNF-α, MDA and ICAM-1 in rats with ischemia-reperfusion injury (mean ± SD)

Group	Time (h)	Serum ALT (μkat/L)	Serum AST (μkat/L)	Serum TNF-α (pg/mL)	MDA in liver (nmol/g)	ICAM-1 in liver (%)
Melatonin	0.5	1.8 ± 0.6*	1.8 ± 0.6*	8.2 ± 2.9	23.7 ± 4.3	2.9 ± 1.2
	1	1.6 ± 0.5*	1.6 ± 0.5*	10.9 ± 3.0	28.3 ± 5.1	3.0 ± 0.9
	6	1.5 ± 0.5*	1.5 ± 0.5*	14.8 ± 3.8*	42.0 ± 5.2*	4.0 ± 1.4*
	12	1.4 ± 0.4*	1.4 ± 0.4*	18.0 ± 3.3*	55.2 ± 5.4*	11.8 ± 3.3*
	24	1.3 ± 0.4*	1.3 ± 0.4*	15.7 ± 3.3	82.7 ± 6.1	6.9 ± 2.7
Alcohol	0.5	3.1 ± 0.3	3.1 ± 0.3	8.8 ± 2.5	27.7 ± 5.9	2.4 ± 1.3
	1	3.0 ± 0.6	3.0 ± 0.6	11.8 ± 3.7	33.2 ± 6.3	2.5 ± 0.7
	6	2.5 ± 0.4	2.5 ± 0.4	20.9 ± 4.3	54.3 ± 6.5	7.0 ± 2.3
	12	2.4 ± 0.4	2.4 ± 0.4	23.5 ± 4.3	79.1 ± 6.2	22.4 ± 4.3
	24	2.1 ± 0.5	2.1 ± 0.5	17.7 ± 3.9	106.2 ± 7.1	16.0 ± 3.2
NS	0.5	3.3 ± 0.4	3.3 ± 0.4	9.4 ± 2.8	29.5 ± 6.3	2.8 ± 0.8
	1	2.9 ± 0.5	2.9 ± 0.5	11.6 ± 3.3	34.1 ± 5.4	2.6 ± 1.3
	6	2.6 ± 0.4	2.6 ± 0.4	21.4 ± 5.0	53.8 ± 6.1	6.8 ± 2.2
	12	2.5 ± 0.4	2.5 ± 0.4	24.4 ± 4.9	83.3 ± 5.2	21.4 ± 5.4
	24	2.2 ± 0.4	2.2 ± 0.4	16.3 ± 3.6	108.5 ± 9.8	14.3 ± 2.8

*P < 0.05 vs alcohol solvent and NS control groups.

Figure 1 Positive cells are mainly hepatic parenchymal cells located near the sinus hepaticus and sinusoid endothelial cells of liver in melatonin exposure group (A, D), alcohol solvent control group (B, E), NS control group (C, F). The positive cell rate of two control groups increased gradually and reached its peak 12 h after reperfusion, then decreased. This condition also occurred in melatonin exposure group, but the extent was much lower than that in the control groups.

www.wjgnet.com
while AST level gradually increased with the time and maintained at its original level in the melatonin exposure group ($P < 0.05$, Table 1). Hepatic injury occurred at the early stage of pan-intestinal IR SMA was blocked for 30 min. The possible reason is that indirect clipping SMA reduced the portal blood flow. The accrecesence of ALT indicates the hepatic injury, but the ischemic time is too short to lead to prominent AST changes. After the block of SMA was released, the hepatic injury due to reduced blood flow was ameliorated, but a great amount of active substances, such as free radicals, TNF-α, ICAM-1, etc. entered hepatic tissues via superior mesenteric and portal veins leading to secondary hepatic injuries, which can explain the variable curves of ALT and AST in the other two control groups. Compared with the other two control groups, exogenous melatonin could ameliorate the hepatic function after intestinal IR injury at the early or late phase. Recent studies about the protective effect of melatonin on IR injury in various organs showed that melatonin can eliminate free radicals, inhibit release of inflammatory media and apoptosis ($P < 0.05$). On the other hand, many factors can result in IR injury, such as free radicals ($P < 0.05$), overload of calcium, inflammation of white blood cells and vascular endothelial cells and apoptosis, etc. Therefore, we detected serum TNF-α, MDA and ICAM-1-stained cells in liver tissues in this study. TNF-α gradually increased during the first 12 h after reperfusion and then decreased when it reached its peak between 12 and 24 h in the three groups. However, the TNF-α level was lower in the melatonin exposure group than in the other two control groups 6, 12 and 24 h after reperfusion, indicating that melatonin can relieve the hepatic injury after intestinal IR injury by eliminating the production of free radicals, reducing the concentration of TNF-α in systemic circulation, and suppressing the expression of ICAM-1 in liver, etc. It has been recently shown that liver is the final metabolic place of melatonin and melatonin protects liver from intestinal IR injury. Studies have shown that melatonin has no side effect when a large dose is used. Intestine can absorb nutrients and has immune functions, and its vascular anatomy is specifically related with liver, the biggest digestive gland in human body. Since the blood in intestinal vein goes through the portal vein to the liver, intestinal IR inevitably affects the normal physical function of liver. During IR, a great amount of xanthic dehydrogenase in intestinal mucosa would change into xanthic oxidase, and xanthic oxidase can induce the production of free radicals which enhance the expression of adherence factors such as ICAM-1. These adherence factors are the main etiological agents of the secondary hepatic injury. Up to now, rejecting reaction, graft-versus-host disease (GVHD) and infection are the restrained factors for intestine transplantation.

In conclusion, IR is the key mechanism underlying liver injuries at the early stage of organ transplantation.

ACKNOWLEDGMENTS

The authors thank Dr. Wei-Guo Zhang for his helpful discussion and proof reading.

COMMENTS

Background

Common intestinal ischemic diseases, intestinal resection caused by various etiologies, intestinal transplantation due to short bowel syndrome and long-term intravenous nutrition induce various hepatic injuries. On the other hand, combined liver and intestine transplantation has some immune dominance compared with simple intestinal transplantation, and acute or chronic rejecting reaction occurred in combined liver and intestine transplantation obviously decreases. Thus, it is necessary to study the mechanism of hepatic injury caused by intestine ischemia-reperfusion (IR) and discuss the injury relieving therapies.

Research frontiers

Melatonin is an effective free radical scavenger in liver, kidney, pancreas, digestive tract, etc. It is generally accepted that melatonin plays a role in protecting liver from intestinal IR injury by eliminating free radicals in cytoplasm. Thus, melatonin secreted by conarium is an endocrine hormone and has a very complicated mechanism of action and its receptors are distributed in almost all human organs. At present, researchers are paying their attention to the modulating function of melatonin in various inflammatory media. It has been recently shown that liver is the final metabolic place of melatonin and melatonin protects liver from intestinal IR injury. Studies have shown that melatonin has no side effect when a large dose is used. Intestine can absorb nutrients and has immune functions, and its vascular anatomy is specifically related with liver, the biggest digestive gland in human body. Since the blood in intestinal vein goes through the portal vein to the liver, intestinal IR inevitably affects the normal physical function of liver. During IR, a great amount of xanthic dehydrogenase in intestinal mucosa would change into xanthic oxidase, and xanthic oxidase can induce the production of free radicals which enhance the expression of adherence factors such as ICAM-1. These adherence factors are the main etiological agents of the secondary hepatic injury. Up to now, rejecting reaction, graft-versus-host disease (GVHD) and infection are the restrained factors for intestine transplantation.

Innovations and breakthroughs

Melatonin interferes with hepatic injury after intestinal reperfusion. The possible protective mechanism of melatonin by producing and releasing inflammatory agents was discussed. Melatonin was found to be able to reduce the concentration of serum TNF-α and inhibit the expression of ICAM-1.

Applications

Exogenous melatonin can protect liver from intestinal IR injury after intestinal
ischemic-reperfusion by eliminating free radicals, reducing the production and release of inflammatory media, etc. As an effective and safe clinical medicine, it can be extensively used in surgery.

Terminology

Melatonin is an endocrine hormone secreted by conarium. Endogenous melatonin plays an important role in organic biorythm, developing cycle, internal environmental stabilization and anti-caducity. TNF-α is an important inflammatory mediator and participates in almost all inflammatory reactions. ICAM-1 is a member of the adhesive molecule family and is closely related to adhesion of neutrophile granulocytes and vascular endothelial cells in inflammatory reaction.

Peer review

This is a well written and interesting manuscript. The authors demonstrated that melatonin can protect liver from intestinal IR injury by abating the concentration of serum TNF-α and inhibiting the expression of ICAM-1 in liver cells.

REFERENCES

1. DeLegge M, Alsolaian MM, Barbour E, Bassas S, Siddiqi MF, Moore NM. Short bowel syndrome: parenteral nutrition versus intestinal transplantation. Where are we today? Dig Dis Sci 2007; 52: 876-892
2. Harada E, Ito H, Murakami M, Li TS, Enoki T, Noshima S, Hamano K. Small bowel transplantation tolerance achieved by costimulatory blockade leading to mixed chimerism. Front Biosci 2007; 12: 3017-3023
3. O'Keefe SJ, Emerling M, Koritsky D, Martin D, Stamos J, Kandil H, Matarese L, Bond G, Abu-Elmagd K. Nutrition and quality of life following small intestinal transplantation. Am J Gastroenterol 2007; 102: 1093-1100
4. Buchman AL, Iyer K, Fryer J. Parenteral nutrition-associated liver disease and the role for isolated intestine/liver transplantation. Hepatology 2006; 43: 9-19
5. Troxell ML, Higgins JP, Kambham N. Evaluation of C4d staining in liver and small intestine allografts. Arch Pathol Lab Med 2006; 130: 1489-1496
6. Cay A, Imamoglu M, Ulaş MA, Aydin S, Alver A, Akyol A, Sarihan H. Does anti-oxidant prophylaxis with melatonin prevent adverse outcomes related to increased oxidative stress caused by laparoscopy in experimental rat model? J Surg Res 2006; 135: 2-8
7. Zhang WH, Li JY, Zhou Y. Melatonin abates liver ischemia/reperfusion injury by improving the balance between nitric oxide and endothelin. Hepatobiliary Pancreat Dis Int 2006; 5: 574-579
8. Wang WZ, Song XH, Stephenson LL, Khialani KT, Zamboni WA. Melatonin reduces ischemia/reperfusion-induced superoxide generation in arterial wall and cell death in skeletal muscle. J Pinell Res 2006; 41: 255-260
9. Duan Q, Wang Z, Lu T, Chen J, Wang X. Comparison of 6-hydroxy-L-melatonin or melatonin in protecting neurons against ischemia/reperfusion-mediated injury. J Pinell Res 2006; 41: 351-357
10. Munoz-Casares FC, Padillo FJ, Briceno J, Collado JA, Munoz-Castaneda JR, Ortega R, Cruz A, Tunez I, Montilla P, Vera C, Muntane J. Melatonin reduces apoptosis and necrosis induced by ischemia/reperfusion injury of the pancreas. J Pinell Res 2006; 40: 195-203
11. He SQ, Zhang YH, Venugopal SK, Dicus CW, Perez RV, Ramsamooi R, Nantz MH, Zern MA, Wu J. Delivery of antioxidative enzyme genes protects against ischemia/reperfusion-induced liver injury in mice. Liver Transp 2006; 12: 1869-1879
12. Li SZ, Wu F, Wang B, Wei GZ, Jin ZX, Zang YM, Zhou J, Wong TM. Role of reverse mode Na+/Ca2+ exchanger in the cardioprotection of metabolic inhibition preconditioning in rat ventricular myocytes. Eur J Pharmacol 2007; 561: 14-22
13. Hsieh YH, Huang SS, Wei FC, Hung LM. Resveratrol attenuates ischemia - reperfusion-induced leukocyte - endothelial cell adhesion interactions and prolongs allograft survival across the MHC barrier. Circ J 2007; 71: 423-428
14. Kovacevic M, Simic O, Jonic N, Stifter S. Apoptosis and cardiopulmonary bypass. J Card Surg 2007; 22: 129-134
15. Rodriguez-Reynoso S, Leal C, Portilla E, Olivares N, Muniz J. Effect of exogenous melatonin on hepatic energetic status during ischemia/reperfusion: possible role of tumor necrosis factor-alpha and nitric oxide. J Surg Res 2001; 100: 141-149
16. Gitto E, Romeo C, Reiter RJ, Impellizzeri P, Pesce S, Basile M, Antenuccio P, Trimarchi G, Gentile C, Barberi I, Zuccarello B. Melatonin reduces oxidative stress in surgical neonates. J Pediatr Surg 2004; 39: 184-189; discussion 184-189
17. Gitto E, Reiter RJ, Cordaro SP, La Rosa M, Chiurazzi P, Trimarchi G, Gitto P, Calabro MP, Barberi I. Oxidative and inflammatory parameters in respiratory distress syndrome of preterm newborns: beneficial effects of melatonin. Am J Perinatol 2004; 21: 209-216
18. Lopez-Neblina F, Toledo-Fereyra LH. Anti-ischemic effect of selectin blocker through modulation of tumor necrosis factor-alpha and interleukin-10. J Surg Res 2007; 138: 275-283
19. Cavrini G, Domingos HV, Oliveira-Filho RM, Sudoh-Hayashi LS, Vargafik BB, de Lima WT. Lymphatic thoracic duct ligatation modulates the serum levels of IL-1beta and IL-10 after intestinal ischemia/reperfusion in rats with involvement of tumor necrosis factor alpha and nitric oxide. Shock 2007; 27: 209-213
20. Bolca C, Yildirim V, Doganci S, Sargin M, Aydin A, Eken A, Ozal E, Kuralay E, Demirkilic U, Tatar H. Protective effects of antioxidative medications on limb ischemia reperfusion injury. J Surg Res 2007; 139: 274-279
21. Ozacmak VH, Sayhan Y, Igdem AA, Cetin A, Ozacmak ID. Attenuation of contractile dysfunction by atorvastatin after intestinal ischemia/reperfusion injury in rats. Eur J Pharmacol 2007; 562: 138-147
22. Kiarostami V, Samini L, Ghazi-Khansari M. Protective effect of melatonin against multistress condition induced lipid peroxidation via measurement of gastric mucosal lesion and plasma malondialdehyde levels in rats. World J Gastroenterol 2006; 12: 7527-7531
23. Monson KM, Dowlatshahi S, Crockett ET. CX3C-chemokine regulation and neutrophil trafficking in hepatic ischemia-reperfusion injury in P-selectin/ICAM-1 deficient mice. J Inflamm (Lond) 2007; 4: 11
24. Chegave K, Lazzarotto L, Rolando B, Marini E, Tosco P, Cena C, Fruttero R, Bertolini F, Reist M, Carrupt PA, Lucini V, Fraschini F, Gasco A. NO-donor melatonin derivatives: synthesis and in vitro pharmacological characterization. J Pineal Res 2007; 42: 371-385
25. Sutken E, Aral E, Ozdemir F, Usluglu S, Alatas O, Colak O. Protective role of melatonin and coenzyme Q10 in ochronosis A toxicity in rat liver and kidney. Int J Toxicol 2007; 26: 81-87
26. Xu J, Sun S, Wei W, Ju F, Qi W, Manchester LC, Tan DX, Reiter RJ. Melatonin reduces mortality and oxidatively mediated hepatic and renal damage due to diquat treatment. J Pineal Res 2007; 44: 166-171
27. Cheung RT, Tiptoe GL, Tam S, Ma ES, Zou LY, Chan PS. Preclinical evaluation of pharmacokinetics and safety of melatonin in propylene glycol for intravenous administration. J Pineal Res 2006; 41: 337-343
28. Pignone AM, Rosso AD, Fiori G, Matucci-Cerinic M, Becucci A, Tempestini A, Livi R, Generini S, Gramigna L, Benvenuti C, Carosso AM, Conforti ML, Perfetto F. Melatonin is a safe and effective treatment for chronic pulmonary and extrapulmonary sarcoidosis. J Pineal Res 2006; 41: 95-100
29. Xiaoqiao Z, Rong M, Zhigang Y, Yong D, Xihong F, Jingzhong S. Protective effect of ulinastatin against ischemia-reperfusion injury in rat small bowel transplantation. Transplant Proc 2004; 36: 1564-1566
30. Ruiz P, Kato T, Tzakis A. Current status of transplantation of the small intestine. Transplantation 2007; 83: 1-6

S-Editor Zhu WL L-Editor Wang XL E-Editor Yin DH

www.wjgnet.com