Sociodemographic factors influenced response to the 2015 National Nutrition Survey on Preschool Children: Results from linkage with the Comprehensive Survey of Living Conditions

Hitomi Okubo1*, Tetsuji Yokoyama1

1 Department of Health Promotion, National Institute of Public Health, Saitama, Japan

* Corresponding author: Dr Hitomi Okubo, Department of Health Promotion, National Institute of Public Health, 2-3-6 Minami, Wako-shi, Saitama 351-0197 Japan. Tel: +81-48-458-6236; Fax: +81-48-458-6714; Email: okubo.h.aa@niph.go.jp

Short Title (8 words): Sociodemographic factors influencing response to a national survey

Numbers of Tables, Figures, and Supplementary material: 4 Tables, 1 Figure, and 2 Supplementary materials.

Authorship: HO conducted the data linkage, statistical analysis, interpreted the data, and wrote the manuscript. TY formulated the research question, conducted the data linkage, and assisted in data interpretation and manuscript preparation. Both authors contributed to and approved the final manuscript.
ABSTRACT

Background: The National Nutrition Survey on Preschool Children, Japan (NNSPC) provide fundamental information for policy making for child nutrition. However, the response rate and background characteristics of subjects are unclear. Here, we examined response rate and sociodemographic factors related with response to the survey, and evaluated the magnitude of bias due to selective response in the survey estimates of the NNSPC.

Methods: This study was based on two national surveys conducted in 2015: the NNSPC and the Comprehensive Survey of Living Conditions (CSLC). Because potential survey participants of the NNSPC were children aged <6 years and their households that answered the CSLC, we examined response rates and respondent characteristics by linking the data of the NNSPC and CSLC. Multiple logistic regression analysis was used to identify sociodemographic factors associated with response. Potential bias caused by non-response in the survey estimates was examined after considering missingness through multiple imputation.

Results: Among the 5343 children who participated in the CSLC, 3426 children responded to the NNSPC (response rate = 64.1%). Variables associated with response were living in a smaller city, a large number of children, three-generation family structure, older maternal age, and a non-working mother. The prevalence of overweight was underestimated by 20%, but the bias for almost all variables examined was small.

Conclusions: Response to the survey varied by sociodemographic characteristics. Some bias, mostly small, was seen in survey estimates of the 2015 NNSPC. Further insight into the effect of selective response is important to assess associations between variables more precisely. (250 words)

Key words (3-5 words): response rates; sociodemographic factors; multiple imputation; national surveys; Japan
INTRODUCTION

It is now widely recognized that response rates in epidemiological studies have dramatically declined over the last few decades.1-3 Decreasing participation in survey research increases the risk of selection bias and errors in statistical inferences.4 Accumulating evidence of selection bias in health surveys has shown that participants differ from non-participants in several characteristics.5-16 In general, participants (respondents) are more likely to have a higher socioeconomic status (higher levels of education and income),5-12 a better health status,5,9 a healthier lifestyle,5,9-13 and a lower mortality rate for specific diseases than non-participants (non-respondents).14-16

The National Nutrition Survey on Preschool Children (NNSPC), a questionnaire survey conducted in Japan every 10 years since 1985, assesses the feeding practices, dietary intake, lifestyle, and health status of preschool children living in Japan, and provides valuable information for nutrition policy development.17 The survey findings have been used in the planning and promotion of breastfeeding and healthy diets for young Japanese children. However, the response rate and background characteristics of respondents, which are important indicators of representativeness, have not been published in any official reports. Survey participants of the NNSPC are drawn from among infants and preschool children (aged <4 years in 1985, 1995, and 2005, and aged <6 years in 2015)17 and their households who had answered another national survey, the Comprehensive Survey of Living Conditions (CSLC),18 conducted earlier in the same respective year. Linking data from the NNSPC and CSLC thus allows us to address response rates and the degree to which study participants differ from the total population. Understanding the background characteristics of respondents in the national survey is critically important for policy making and subsequent research. It might therefore be helpful to consider the possibility of selection bias and the external validity of the survey findings, and to establish survey strategies for subject sampling and data collection.

The aim of the present study was to examine the response rate and sociodemographic factors
related with response to the 2015 NNSPC by linking data with the CSLC. Additionally, we evaluated the magnitude of bias in the survey statistics obtained from the 2015 NNSPC due to selective response using a multiple imputation approach to account for missingness.19

METHODS

Data of two national surveys

This study was based on data from two national surveys conducted in 2015 by the Japanese Ministry of Health, Labour and Welfare (MHLW): the CSLC20 and the NNSPC.21 Data from the two surveys were used with permission from the MHLW. The CSLC has collected comprehensive information on the living conditions of people in Japan, such as socio-demographics, health, medical care, welfare, and income since 1986. The CSLC is conducted as a large-scale survey every three years and a small-scale survey in each interim year.18 The 2015 small-scale survey consisted of two surveys of household and income questionnaires.20 The household questionnaire covered 59425 households and household members who lived in 1106 districts randomly sampled from the National Census in 2010.22 The income questionnaire covered 9036 and household members in 500 districts randomly selected from these 1106 districts. The two questionnaires were distributed to potential eligible households in advance of each survey date (on June 4th for the household questionnaire and July 16th for the income questionnaire), and later collected by trained investigators during home visits.20 Of the 46651 households that answered the household questionnaire (response rate = 78.5%),20 data from 46634 households (115941 household members) for the household questionnaire and from 6706 households (17219 household members) for the income questionnaire were provided by the MHLW after excluding unclear answers.

The NNSPC has been conducted every 10 years since 1985 on the basis of the Statistics Act (General Statistical Surveys, Articles 19 to 23)23 to assess methods of feeding in infancy and the diet and lifestyle of preschool children living in Japan, and to obtain basic data required for the
planning and promotion of breastfeeding and a healthy diet in early childhood.17 Potential participants of the NNSPC were children aged \textless 6 years (born from 1st of June, 2009 to 31st of May, 2015) (approximately 5.5 thousand children) and their households (approximately 4.4 thousand children) in the 1106 districts set for the 2015 CSLC.21 Of these, three districts in Ibaraki prefecture were excluded from the survey in the aftermath of heavy rain which occurred in September 2015. Trained investigators visited each potential household a single time during September to distribute a self-administered questionnaire for each child to the mother or guardian, who was usually responsible for food preparation, and later collected information about breastfeeding, weaning, introduction of solid foods, food allergy, child’s health status and lifestyle, parental lifestyle, and basic characteristics of the family. Of the 2992 households (3936 children aged \textless 6 years) who answered the questionnaire,21 data from 2950 households (3871 children) were provided by the MHLW after excluding those with unclear answers about child’s age.

These surveys were conducted according to the guidelines of the Declaration of Helsinki, and verbal informed consent was obtained from all study participants or their guardian. The CSLC and NNSPC are both conducted by the MHLW, Japan, and have stringent protocols and procedures that ensure confidentiality and protect individual participants from being identified. Additionally, the present secondary analysis was based on a public-use dataset consisting solely of information that had already been anonymized. Accordingly, Institutional Review Board approval was not required.

\textbf{Data linkage}

As the potential study participants of the 2015 NNSPC were children aged \textless 6 years and their households that answered the 2015 CSLC,20 we examined the characteristics of participants in the NNSPC by linking its data with those of the CSLC. We initially linked the two databases at the household level using information on prefecture, area, unit block, and household number that was common to both surveys. Among the 2950 households of the 2015 NNSPC, 2876 households
(97.5%) were linked to the 2015 CSLC. However, the 2015 CSLC answers of 80 of these 2876 households revealed that they had no children aged <6 years, which meant that some data were linked incorrectly. In particular, 55.0% of these mislinked households were located in one prefecture. Careful review revealed that the household number assigned for the CSLC in this prefecture was not utilized in the NNSPC. To increase the accuracy of data linkage, we therefore refrained from linkage at the household level, and instead linked the two databases at the individual level.

Among the 115941 participants of the 2015 CSLC, we initially restricted to the 5343 children who were born from the 1st of June, 2009 to the 31st of May, 2015 (Figure 1). Information to identify each participant within the household was contained in the CSLC, but not in the NNSPC. We therefore linked the two databases at the individual level using the information on sex, and birth year and month, in addition to the variables described above. Because there were some cases of multiple births (47 twins and 1 triplet), we also used information to identify multiple births within the households, which was newly created for the present study in consideration of birth order. For the one prefecture that did not use the same household number in both surveys, we used information on other variables apart from household number as an exception, and later confirmed that 60 individuals were additionally linked. Among the 5788 children who answered either or both the CSLC and NNSPC, 1917 children had data for the CSLC only, 445 children had data for the NNSPC only and 3426 children had both. For the present study, we defined the 3426 children who had both data and the 1917 children who had data for the CSLC only as respondents and non-respondents to the NNSPC, respectively. Two authors independently conducted the data linkage, and confirmed the consistency of the results.

Assessment of sociodemographic and lifestyle characteristics

Information on sociodemographic and socioeconomic variables was explored from the 2015
From the household questionnaire, we obtained information on child’s sex (boy or girl), child’s age as of May 31, 2015 (0-1, 2-3, and 4-5 years), household structure (parents and unmarried children only, single parent and unmarried children only, three-generation family, and others), number of unmarried children aged <18 years (1, 2, and ≥3 persons), maternal and paternal educational attainment (junior high school or less; high school; technical or professional school/college; and university or higher), maternal and paternal labour force status (regular staff/employee; non-regular staff/employee; executive of company/organization; self-employed/family worker/industrial homework; others; and non-worker), and household expenditure in May. Equivalent household expenditure was calculated by dividing household expenditure in May by the square root of household size, and then categorizing the result into thirds (low, middle, and high). Maternal and paternal age categories were defined (<30, 30-39, and ≥40 years). Residential blocks were grouped into six regions (Hokkaido and Tohoku; Kanto; Hokuriku and Tokai; Kinki; Chugoku and Shikoku; and Kyushu). Residential areas were also grouped into four categories according to population size (metropolitan areas; city with population ≥150 thousand; city with population <150 thousand; and towns and villages; hereafter referred to as ‘size of residential area’). Information on total household annual income and self-assessed living conditions (very difficult, somewhat difficult, normal, somewhat comfortable, and very comfortable) was obtained from the income questionnaire. Equivalent household annual income was calculated by dividing total household annual income by the square root of household size, and then categorizing the result into thirds (low, middle, and high). Missing data for household expenditure, maternal and paternal age, educational attainment, and labour force status were categorized as missing.

Statistical analysis

Response rates by sociodemographic variables were calculated using the number of participants...
aged <6 years in the 2015 CSLC as the denominator. The chi-square test was used to confirm homogeneity. Multivariate logistic regression analysis was performed, and the odds ratios (ORs) and 95% confidence intervals (CIs) were calculated as measures of the strength of the association between the response and potential explanatory factor of interest. These analyses were controlled for potential confounders including child’s sex, child’s age, size of residential area, residential block, household structure, number of unmarried children aged <18 years, equivalent monthly household expenditure, maternal age, maternal educational attainment, maternal occupation, paternal age, paternal educational attainment, and paternal occupation. Of the 4111 households (5343 children) included in the analysis, 1117 households had at least two participating children. We therefore used robust standard errors to consider intraclass correlations among children in the same household. Some of the study participants answered the income questionnaire in the CSLC. We conducted a sub-analysis among subjects who answered the income questionnaire to examine the associations between economic characteristics (income level and self-assessed living conditions) and response to the NNSPC.

In the subsequent analysis, we examined the magnitude of potential bias in the survey estimates of the 2015 NNSPC due to missing data (non-response). There are two different sources of missing data in the NNSPC, the first attributable to respondents of the NNSPC who did not answer certain questions (item non-response) and the second to potential survey participants who did not respond to the 2015 NNSPC (survey non-response). We assumed that data were at least missing at random since the missing pattern was significantly determined by observed variables. We therefore used the multiple imputation procedure of the SAS statistical software (Proc MI, SAS Inst., Cary, NC) to impute missing data, and compared survey estimates of the NNSPC between data from respondents (n=3426) and those from potential survey participants (n=5343). Survey estimates selected here were child’s sex, child’s age as of May 31, 2015, birthweight and length, gestational age, current body weight and height, birth order, place of day care (e.g., nurseries, kindergarten,
certified centers for early childhood education and care, and so on), history of food allergy, bowel
movements per week, wake-up time on weekdays, bedtime on weekdays, maternal age, maternal
employment status, self-assessed economic condition, self-assessed time allowance, and
self-assessed overall living conditions. These were selected because they were common question
items observed in the 2015 NNSPC questionnaires for both 0-1-year-old and 2-5-year-old children.
To deal with item non-response among the respondents, the variables of the 2015 NNSPC
mentioned above were used for the imputation model. The imputation process was repeated to
create 5 imputed datasets using the fully conditional specification. For each of the 5 imputed
datasets, we further imputed data for the 1917 non-respondents to the NNSPC to deal with survey
non-response. The variables included in the imputation models were residential block, size of
residential area, and household structure as well as the variables mentioned above. In total, 25
imputed datasets were created and the results were then averaged over these datasets using the
MIANALYZE procedure of the SAS statistical software. To evaluate the magnitude of bias
parameters due to missingness, we calculated by dividing the difference in the survey estimates
between respondents and potential survey participants after imputation by the imputed survey
estimates in potential survey participants, and multiplying by 100. As the NNSPC data might be
used to examine not only for point estimates of population parameters but also associations between
variables, we need to know the magnitude of potential bias in associations between targeted
outcomes and certain sociodemographic variables that significantly influence the response to the
survey. We also examined odds ratio of overweight, as an example of targeted outcome, by
sociodemographic variables before and after imputation. Overweight was defined according to the
age- and sex-specific BMI cut-offs for Japanese children using the LSM method that are
corresponded to BMI of 25 kg/m² at 17.5 years of age.25

All reported P values are two-tailed, and $P <0.05$ was considered to be statistically significant.
All statistical analyses were performed using SAS statistical software version 9.4 (SAS Institute
RESULTS

Response rate

Of the 5343 children aged <6 years who answered the household questionnaire of the 2015 CSLC, 3426 children responded to the 2015 NNSPC. The overall response rate was 64.1%.

Table 1 shows the response rate according to sociodemographic characteristics. Differences in response rate were observed across categories of almost all sociodemographic characteristics except for child’s sex and age (all $P<0.05$).

Association between sociodemographic factors and response to the 2015 NNSPC

Table 1 also shows the multivariate odds ratios for response to the NNSPC. Potential sociodemographic predictors were size of residential area, residential block, household structure, number of children, maternal age, and maternal labour force status. Children who lived in a smaller city, especially in the Hokuriku, Tokai, and Kyushu areas, or lived in households with a large number of children were more likely to respond to the survey than the respective reference group. Three-generation households were more likely to respond to the survey than families of parents and unmarried children only. Among potential maternal characteristics, mothers who were older (≥40 years) and who were non-workers were more likely to respond to the survey. In contrast, no independent associations were observed for child’s sex, child’s age, equivalent household expenditure, maternal educational attainment, or any paternal variable examined in relation to response to the survey.

Results from a sub-analysis using income questionnaire

Of the 781 children who answered the income questionnaire of the 2015 CSLC, 532 children
(69.7%) responded to the 2015 NNSPC. Table 2 shows the potential socioeconomic predictors of response among these responding subjects. Self-assessed living condition was significantly associated with response to the survey. Compared with households that assessed their living conditions as ‘normal’, those who assessed them as ‘very difficult’ were less likely to respond. This association remained after adjustment for potential confounders. On the other hand, we found no clear association between equivalent household annual income and response to the survey.

Magnitude of bias due to selective response in survey estimates of the 2015 NNSPC

Table 3 shows the magnitude of bias in survey estimates of the 2015 NNSPC, taking account of missing data (i.e., item non-response and survey non-response) through multiple imputation. Survey estimates examined between respondents before and after imputation for item non-response (columns A and B, respectively) were not substantially different, which suggests that bias due to item non-response was quite small. When we compared survey estimates of respondents (B) and non-respondents (C) after imputation to examine the magnitude of bias attributable to survey non-response, prevalence of overweight was higher in non-respondents (20.4%) than in respondents (14.8%). This led to biased distribution in overweight, and prevalence of overweight among respondents (A) was underestimated by 20.3% in comparison with the imputed survey estimates among potential survey participants (D). In addition, the number of children receiving treatment for constipation was underestimated by 25.4% of respondents while the number with an irregular bedtime was overestimated by 15.0% of respondents. However, these absolute differences were negligible (-0.3% and 0.3%, respectively). For all other variables examined the bias was much smaller (<5%).

To examine the potential bias in associations between targeted outcomes and certain sociodemographic variables that significantly influence the response to the survey, we provisionally performed comparison of odds ratio of overweight, as an example of targeted outcome, by
sociodemographic variables before and after imputation (Table 4). The prevalence of overweight substantially changed in all categories of sociodemographic variables examined after imputation. The difference in odds ratio of overweight before and after imputation was broadly observed. This tendency was more marked in certain categories with low response rate such as larger size of residential areas, single parent household, and younger maternal age.

The statistics of the NNSPC published by the MHLW are generally estimated based on 3871 NNSPC participants regardless of the availability of the CSLC data. Thus, we conducted same analyses to examine the magnitude of bias in survey estimates among the NNSPC participants (n=3871) and total survey participants of the CSLC and NNSPC (n=5788). The bias in point estimates for almost all variables, except for prevalence of overweight, in the NNSPC were small (Appendix 1). Non-ignorable bias in odds ratio of overweight by sociodemographic variables was observed between before and after imputation (Appendix 2).

DISCUSSION

By linkage to national data of the CSLC, we found that overall response rate of the 2015 NNSPC was 64.1%, and that response to the survey varied according to several sociodemographic characteristics of households. Response rates were substantially lower in metropolitan areas as well as among families with a small number of children, households with difficulty in living conditions, and mothers who were younger and workers. Although some bias was seen in survey estimates of the NNSPC, the magnitude of biases due to this selective response was generally small.

To our knowledge, this is the first study to clarify the response rate and sociodemographic factors influencing the response to the NNSPC through linkage to the CSLC. Comparison with other studies is therefore limited to other national surveys that were sampled from the CSLC. For example, a few studies have examined response rates of the National Health and Nutrition Survey (NHNS), an annual nationwide survey which assesses the health status, food and nutrient intake,
and lifestyles of people living in Japan, by linkage to the CSLC.27,28 Response rates to the
questionnaire surveys of the NHNS from 2003 to 2007 were 59.4–66.6\% for the dietary survey and
59.2–67.9\% for the lifestyle questionnaire.27 A similar but slightly lower response rate (56.9\%) was
reported in the 2011 NHNS.28 Respondents of the NHNS were more likely to be women and
older.27,28 In addition, response rates were higher in households with a large number of family
members, three-generation families, and self-employed families, and lower in single-parent families
and employed families.27 In a comparison study with the Population Census in 2010, the NHNS
sample had a lower proportion of individuals living in a metropolitan area (Kanto).29 Although
direct comparison is hindered by differences in survey methods, target population, and survey year,
the response rate of the NNSPC (64.1\%) was comparable to those for the NHNS and the results of
this study are in accordance with the main tendencies of the findings of the NHNS: responses were
associated with smaller cities, more family members, particularly children, a three-generation
family structure, and women (mothers) with older age. These findings from the NNSPC and NHNS
suggest that residential area, number of household members, family structure, sex, and age are
common predictors of a response to national surveys in Japan.

Partially consistent with previous studies,5-12 we observed that response to the survey was
related with age and occupation. Of note, however, these relations were observed only in factors
derived from mothers, not fathers. Because the questionnaires were answered mainly by mothers
(95.7\%), response status might be more strongly affected by maternal factors. It is well-known that
maternal socioeconomic factors and their health behaviors are associated with child’s diet quality
and general health behaviors.30-32 The respondents of the NNSPC might be already biased according
to maternal characteristics. Although bias caused by selective response in odds ratio of overweight
in the NNSPC was observed, we still do not know the magnitude of bias in estimates of the other
targeted outcomes across categories of maternal socioeconomic status. Further investigations of
effects of bias by maternal and household sociodemographic characteristics is required to assess
associations between variables more precisely. Moreover, any interpretation of survey findings on
the relationships between maternal influence and child’s diet require the closest attention.

The relation of some sociodemographic characteristics and response rates might be related to
survey method. We speculated that a home-visit survey with a drop-off self-administered
questionnaire as used in the NNSPC may involve more difficulty in contacting potential participants
for survey invitation and/or data collection, particularly in areas with a large number of housing
complexes, households with a small number of family members, and employees with long
commutes, with consequent low response. Improving response rates therefore requires efforts to
increase rates of contact with potential participants, and will in turn reduce selection bias. An
increasing number of studies have investigated how to improve response rates in health surveys.33-36

Several studies examined possible reasons for non-participation in health surveys. Common
answers among non-respondents were lack of time, unsuitable timing, increased number of survey
requests, little personal benefit, and not considered relevant.33-35 A systematic review listed example
strategies that might increase response to postal and electronic questionnaires, including monetary
incentives, a more interesting questionnaire topic, pre-notification, follow-up contact, and shorter
questionnaires.36 Although the NNSPC uses a different survey method from the result of this
systematic review, at least some of them would also likely be effective in increasing response rates
in the NNSPC. Additional research on reasons for non-participation and ways to enhance
motivation to participate in future surveys in Japan are warranted.

Missing data due to selected survey participation is a serious challenge and a threat to the
validity of survey statistics. In the present study we used a multiple imputation approach, and
conducted comparison between respondents, non-respondents, and potential survey participants
after imputation to estimate magnitude of the bias in the survey estimates of the key variables.

Although the response rate varied according to sociodemographic characteristics, bias in population
estimates seemed quite small in most of the variables examined. In contrast, bias caused by
selective response in prevalence and odds ratio of overweight was observed. These results suggest that the odds ratio could be biased when the following two conditions are met simultaneously: 1) the prevalence of an outcome (e.g., overweight) is substantially different between respondents and non-respondents, and 2) the response rate is substantially different between categories of a factor (e.g., maternal age categories). An association analysis using data with low response rate should be carefully interpreted considering these conditions.

Among the strengths of our present study are its large nationwide sample of Japanese preschool children and their households from the general population. Further, linkage to the CSLC enabled us to extract a wide range of information on the sociodemographic and economic variables of households which we could then use to compare subject characteristics between respondents and non-respondents to the NNSPC. In addition, the use of the multiple imputation approach allowed us to maximize the available information through plausible replacement values for missing data and to evaluate the direction and magnitude of possible bias caused by selective response in survey estimates of the 2015 NNSPC.

Several limitations also need to be considered when interpreting the study findings. First, potential survey participants in the NNSPC, i.e. respondents of the CSLC who were randomly sampled from the National Census in 2010, might already be inconsistent with the general population, given that the response rate of the 2015 CSLC was 78.5%. Second, we were limited in our comparison of sociodemographic factors between respondents and non-respondents. Although many studies have reported relationships among health status, lifestyle, and mortality, 5,9-13 as well as of sociodemographic characteristics with response status, no such information was available in the CSLC we used, because it was conducted as a small-scale survey in 2015. Third, there were 445 children who answered the NNSPC but were not linked with the CSLC, which in theory at least should not happen, considering that the CSLC provides sampling frames for the NNSPC. A few of these children were newly invited to the NNSPC because they had moved into the survey area...
during the survey period, and at least 236 children could not be linked to the CSLC because of inconsistent or missing information for one of the key variables used to identify individuals between the two surveys (i.e., birth year, 50; birth month, 21; and sex, 165). We do not know the exact proportion of these cases because of a lack of information and the expiration of the retention period of the originally answered questionnaires in the MHLW. In addition, subjects who had data for the NNSPC only were excluded from the present analysis, which might have led to further bias. This was done because some of the sociodemographic variables examined here were not available in the NNSPC, which made it difficult to compare the background characteristics of subjects with and without the CSLC data. Nevertheless, survey estimates of the 2015 NNSPC were not substantially affected regardless of the inclusion of NNSPC-only cases in multiple imputation. Fourth, overweight was defined using BMI calculated from guardian-reported information, which might be biased. More importantly, BMI is based on only weight and height, both of which greatly change during growth and development. Fifth, the variables examined for the magnitude of bias were limited to common question items observed in questionnaires for 0-1-year-olds and 2-5-year-olds in the 2015 NNSPC. Therefore future studies aiming to more precisely assess diet-health relationships among young children should first confirm potential bias in estimates for other variables. Finally, although we controlled for a wide range of potential confounders in multivariate logistic regression analysis, we cannot rule out the possibility of unmeasured or residual confounding which is inherent to observational studies.

In conclusion, this study of a large sample of Japanese preschool children and their households showed that response to the survey varied according to sociodemographic characteristics, such as residential size and area, family structure, household economic status, and maternal age and labour force status. Allowing that certain subgroups are underrepresented, the general validity of survey estimates of the 2015 NNSPC, with the exception of prevalence of overweight, do not appear to be prejudiced by the bias produced by non-response. In addition to further improvement of response
rate to the NNSPC, more insight into the effects of selective response is required to assess
diet-health relationships among young children more precisely.

ACKNOWLEDGEMENTS

This study was funded by grants from the Japanese Ministry of Health, Labour and Welfare (H.O. &
T.Y., grant number H29-sukoyaka-ippan-003). The Japanese Ministry of Health, Labour and
Welfare had no role in the design, analysis, or writing of this article.

Conflicts of interest: The authors declare they have no conflict of interest with respect to this
research study and paper.
REFERENCES

1. Baruch Y, Holton BC. Survey response rate levels and trends in organizational research. Human Relations. 2009;61:1139-60.

2. Mindell JS, Giampaoli S, Goesswald A, Kamtsiuris P, Mann C, Männistö S, Morgan K, Shelton NJ, Verschuren WM, Tolonen H; HES Response Rate Group. Sample selection, recruitment and participation rates in health examination surveys in Europe--experience from seven national surveys. BMC Med Res Methodol. 2015;15:78.

3. NHANES Response Rates and Population Totals. https://wwwn.cdc.gov/nchs/nhanes/ResponseRates.aspx (Accessed October 8, 2018)

4. Meterko M, Restuccia JD, Stolzmann K, Mohr D, Brennan C, Glasgow J, Kaboli P. Response rates, nonresponse bias, and data quality. Public Opinion Quarterly. 2015;79:130-144.

5. Jackson R, Chambless LE, Yang K, Byrne T, Watson R, Folsom A, Shahar E, Kalsbeek W. Differences between respondents and nonrespondents in a multicenter community-based study vary by gender ethnicity. The Atherosclerosis Risk in Communities (ARIC) Study Investigators. J Clin Epidemiol. 1996;49:1441-1446.

6. Tolonen H, Laatikainen T, Helakorpi S, Talala K, Martelin T, Prättälä R. Marital status, educational level and household income explain part of the excess mortality of survey non-respondents. Eur J Epidemiol. 2010;25:69-76.

7. Demorest S, Van der Heyden J, Charafeddine R, Tafforeau J, Van Oyen H, Van Hal G. Socio-economic differences in participation of households in a Belgian national health survey. Eur J Public Health. 2012; doi:10.1093/eurpub/cks158.

8. Reinikainen J, Tolonen H, Borodulin K, Härkänen T, Jousilahti P, Karvanen J, Koskinen S, Kuulasmaa K, Männistö S, Rissanen H, Vartiainen E. Participation rates by educational level have diverged during 25 years in Finnish health examination surveys. Eur J Public Health. 2017. doi: 10.1093/eurpub/ckx151.

9. Hara M, Shimano Y, Otsuka Y, Nishida Y, Nanri H, Horita M, Yasutaka J, Miyoshi N, Yamada Y, Higaki Y, Tanaka K. Factors associated with non-participation in a face-to-face
second survey conducted 5 years after the baseline survey. Journal of Epidemiology. 2015;25:117-125.

10. Turrell G, Patterson C, Oldenburg B, Gould T, Roy MA. The socio-economic patterning of survey participation and non-response error in a multilevel study of food purchasing behaviour: area- and individual-level characteristics. Public Health Nutrition. 2003;6:181-189.

11. Strandhagen E, Berg C, Lissner L, Nunez L, Rosengren A, Torén K, Thelle DS. Selection bias in a population survey with register linkage: potential effect on socioeconomic gradient in cardiovascular risk. Eur J Epidemiol. 2010;25:163-172.

12. Iwasaki M, Otani T, Yamamoto S, Inoue M, Hanaoka T, Sobue T, Tsugane S; JPHC Study Group. Background characteristics of basic health examination participants: the JPHC Study Baseline Survey. J Epidemiol. 2003;13:216-225.

13. Hill A, Roberts J, Ewings P, Gunnell D. Non-response bias in a lifestyle survey. Journal of Public Health Medicine. 1997;19:203-207.

14. Une H, Miyazaki M, Momose Y. Comparison of mortality between respondents and non-respondents in a mail survey. J Epidemiol. 2000;10:136-139.

15. Hara M, Sasaki S, Sobue T, Yamamoto S, Tsugane S. Comparison of cause-specific mortality between respondents and non-respondents in a population-based prospective study: ten-year follow-up of JPHC Study Cohort I. Japan Public Health Center. J Clin Epidemiol. 2002;55:150-156.

16. Jousilahti P, Salomaa V, Kuulasmaa K, Niemela M, Vartiainen E. Total and cause specific mortality among participants and non-participants of population based health surveys: a comprehensive follow up of 54 372 Finnish men and women. J Epidemiol Community Health. 2005;59:310-315.

17. Ministry of Health, Labour and Welfare, Japan. The National Nutrition Survey on Preschool Children (in Japanese). http://www.mhlw.go.jp/toukei/list/83-1a.html#mokuteki (accessed April 2018).

18. Ministry of Health, Labour and Welfare, Japan. Comprehensive Survey of Living Conditions.
20. Ministry of Health, Labour and Welfare, Japan. Comprehensive Survey of Living Conditions, 2015. (in Japanese) http://www.mhlw.go.jp/toukei/saikin/hw/k-tyosa/k-tyosa15/dl/01.pdf (accessed April 2018).

21. Ministry of Health, Labour and Welfare, Japan. The National Nutrition Survey on Preschool Children, 2015. (in Japanese).
 http://www.mhlw.go.jp/file/06-Seisakujouhou-11900000-Koyoukintoujidoukateikyoku/0000134458.pdf (accessed April 2018).

22. Statistics Bureau, Ministry of Internal Affairs and Communications. Population and Households of Japan 2010: Overview of the Results of the 2010 Population Census. Tokyo: Statistics Bureau, Ministry of Internal Affairs and Communications, 2014.

23. Statistics Act. (Act No. 53 of May 23, 2007).
 http://www.soumu.go.jp/main_content/000463445.pdf (accessed April 2018).

24. Organisation for Economic Co-operation and Development. Growing Unequal? Income Distribution and Poverty in OECD Country. Paris: OECD, 2008.

25. Kato N, Takimoto H, Sudo N. The Cubic Functions for Spline Smoothed L, S and M Values for BMI Reference Data of Japanese Children. Clin Pediatr Endocrinol. 2011;20:47–9.

26. Ministry of Health, Labour and Welfare. National Health and Nutrition Survey.
 http://www.mhlw.go.jp/bunya/kenkou/kenkou_eiyou_chousa.html (accessed May 2018).

27. Nishi N, Nakade M, Sarukura N,Nozue M,Tsubota M. Factors associated with response rates in National Health and Nutrition Survey. J Health Welfare Stat. 2012;59:10–15. (in Japanese)

28. Ando Y, Aoyama S, Ozaki T, Miura H, Yanagizawa T, Ishihama N. An analysis of response rates in National Dental Disease Survey: Almost all subjects of National Dental Disease Survey in 2011 were the subjects of blood test in the National Health and Nutrition Survey.
29. Ikeda N, Takimoto H, Imai S, Miyachi M, Nishi N. Data Resource Profile: The Japan National Health and Nutrition Survey (NHNS). Int J Epidemiol. 2015;44:1842-1849.

30. Rogers I, Emmett P, ALSPAC Study Team. The effect of maternal smoking status, educational level and age on food and nutrient intakes in preschool children: results from the Avon Longitudinal Study of Parents and Children. Eur J Clin Nutr. 2003;57:854–864.

31. Robinson S, Marriott L, Poole J, Crozier S, Borland S, Lawrence W, Law C, Godfrey K, Cooper C, Inskip H; Southampton Women's Survey Study Group. Dietary patterns in infancy: the importance of maternal and family influences on feeding practice. Br J Nutr. 2007;98:1029-1037.

32. Okubo H, Miyake Y, Sasaki S, Tanaka K, Murakami K, Hirota Y; Osaka Maternal and Child Health Study Group. Dietary patterns in infancy and their associations with maternal socio-economic and lifestyle factors among 758 Japanese mother-child pairs: the Osaka Maternal and Child Health Study. Matern Child Nutr. 2014;10:213-225.

33. Chou P, Kuo HS, Chen CH, Lin HC. Characteristics of non-participants and reasons for non-participation in a population survey in Kin-Hu, Kinmen. Eur J Epidemiol. 1997;13:195-200.

34. Rönmark EP, Ekerljung L, Lötvall J, Torén K, Rönmark E, Lundbäck B. Large scale questionnaire survey on respiratory health in Sweden: effects of late- and non-response. Respir Med. 2009;103:1807-1815.

35. Tolonen H, Lundqvist A, Jääskeläinen T, Koskinen S, Koponen P. Reasons for non-participation and ways to enhance participation in health examination surveys-the Health 2011 Survey. Eur J Public Health. 2017;27:909-911.

36. Edwards PJ, Roberts I, Clarke MJ, Diguseppe C, Wentz R, Kwan I, Cooper R, Felix LM, Pratap S. Methods to increase response to postal and electronic questionnaires. Cochrane Database Syst Rev. 2009;(3):MR000008.
FIGURE LEGEND

Figure 1. Flow chart of respondents in the 2015 NNSPC. ^ One of 47 prefectures did not use the same household number in the CSLC and NNSPC. We therefore used information on other variables apart from household number for data linkage as an exception.
Table 1. Response rates and odds ratios for response to the 2015 National Nutrition Survey on Preschool Children, Japan, according to sociodemographic characteristics among children aged <6 years and their households.

	Total	Respondents	Response rate (%)	P value a	Multivariate b,c
	n				OR
No.	5343	3426	64.1		
Child's sex					
Boys	2731	1753	64.2	0.92	1.00 (Reference)
Girls	2612	1673	64.1		0.96 (0.88-1.05)
Child's age					
0-1 year	1691	1089	64.4	0.94	1.00 (Reference)
2-3 years	1811	1156	63.8		1.00 (0.92-1.10)
4-5 years	1841	1181	64.1		1.02 (0.91-1.13)
Size of residential area					
Metropolitan area	1537	877	57.1	<0.001	1.00 (Reference)
City with population ≥150000	1654	1079	65.2	1.40	(1.19-1.65)
City with population <150000	1741	1192	68.5	1.56	(1.31-1.85)
Towns and villages	411	278	67.6	1.47	(1.18-1.94)
Residential blocks					
Hokkaido and Tohoku	488	295	60.5	<0.001	1.00 (Reference)
Kanto	1940	1185	61.1	1.01	(0.80-1.27)
Hokuriku and Tokai	896	631	70.4	1.40	(1.08-1.82)
Kinki	757	468	61.8	1.04	(0.80-1.36)
Chugoku and Shikoku	522	346	66.3	1.20	(0.90-1.61)
Kyushu	741	501	67.6	1.39	(1.06-1.83)
Household structure					
Parents and unmarried children only	4326	2778	64.2	<0.001	1.00 (Reference)
Single parent and unmarried children only	168	70	41.7	0.64	(0.39-1.06)
Three-generation family	736	511	69.4	1.35	(1.08-1.69)
Others	113	67	59.3	1.02	(0.61-1.69)
No of unmarried children aged <18 years					
1 person	1659	984	59.3	<0.001	1.00 (Reference)
2 people	2429	1589	65.4	1.20	(1.04-1.40)
≥3 people	1255	853	68.0	1.24	(1.03-1.50)
Equivalent household expenditure					
Low (<100000 Japanese yen/month)	1632	1049	64.3	0.01	1.00 (Reference)
Middle (100000-139999 Japanese yen/month)	1840	1221	66.4	1.09	(0.92-1.29)
High (≥140000 Japanese yen/month)	1770	1101	62.2	0.97	(0.82-1.15)
Missing	101	55	54.5	0.69	(0.43-1.09)
Maternal age					
<30 years	1037	624	60.2	0.02	1.00 (Reference)
30-39 years	3365	2190	65.1	1.20	(0.96-1.47)
≥40 years	908	594	65.4	1.35	(1.03-1.77)
Missing/children without mother	33	18	54.5	1.50	(0.40-5.61)
Maternal educational attainment					
Junior high school or less	206	121	58.7	<0.001	1.00 (Reference)
High school	1636	1035	63.3	1.10	(0.77-1.56)
Technical school or college	1868	1280	68.5	1.30	(0.91-1.87)
University or beyond	1384	857	61.9	1.05	(0.72-1.53)
Missing/children without mother	249	133	53.4	1.08	(0.56-2.10)
Maternal labour force status

Category	N	Yes/No (%)	p-value	Odds Ratio (CI)
Regular staff/employee	2003	1199	59.9	<0.001 1.00 (Reference)
Non-regular staff/employee	368	224	60.9	1.05 (0.81-1.35)
Executives of companies/organizations	36	28	77.8	2.28 (0.84-6.21)
Self-employed/family worker/industrial	329	232	70.5	1.30 (0.95-1.77)
Others	38	25	65.8	1.10 (0.51-2.34)
Non-workers	2514	1693	67.3	1.47 (1.27-1.70)
Missing	55	25	45.5	0.70 (0.23-2.10)

Paternal age

Age Group	N	Yes/No (%)	p-value	Odds Ratio (CI)
<30 years	664	419	63.1	<0.001 1.00 (Reference)
30-39 years	2896	1889	65.2	0.95 (0.74-1.22)
≥40 years	1436	944	65.7	0.95 (0.71-1.26)
Missing/children without father	347	174	50.1	1.35 (0.42-4.31)

Paternal educational attainment

Education Level	N	Yes/No (%)	p-value	Odds Ratio (CI)
Junior high school or less	268	164	61.2	<0.001 1.00 (Reference)
High school	1585	1045	65.9	1.08 (0.79-1.48)
Technical school or college	808	535	66.2	1.15 (0.82-1.62)
University or more	2146	1408	65.6	1.25 (0.90-1.74)
Missing/children without father	536	274	51.1	0.77 (0.39-1.53)

Paternal labour force status

Category	N	Yes/No (%)	p-value	Odds Ratio (CI)
Regular staff/employee	4112	2665	64.8	<0.001 1.00 (Reference)
Non-regular staff/employee	73	44	60.3	0.94 (0.57-1.55)
Executives of companies/organizations	227	155	68.3	1.04 (0.73-1.48)
Self-employed/family worker/industrial	469	314	67.0	1.04 (0.80-1.34)
Others	37	29	78.4	1.49 (0.61-3.67)
Non-workers	65	40	61.5	0.90 (0.50-1.59)
Missing/children without father	360	179	49.7	0.79 (0.27-2.26)

OR, odds ratio; CI, confidence interval.

a The chi-square test was used to confirm homogeneity.
b Considered intraclass correlations among children in the same household.
c Adjusted for all of the variables listed in the Table.
Table 2. Response rates and odds ratios for response to the 2015 National Nutrition Survey on Preschool Children, Japan, according to economical characteristics among children aged <6 years and their households who answered an income questionnaire.

	Total	Respondents	Response rate (%)	P value a	Multivariate b,c
	781	544	69.7		
Equivalent household annual income					
Low (<2,370,000 Japanese yen)	260	173	66.5	0.38	1.00 (Reference)
Middle (2,370,000-3,560,000 Japanese yen)	261	188	72		1.00 (0.63-1.58)
High (>3,560,000 Japanese yen)	260	183	70.4		0.84 (0.51-1.37)
Self-assessed living conditions					
Very difficult	200	121	60.5	0.01	0.49 (0.30-0.79)
Somewhat difficult	276	196	71		0.82 (0.53-1.26)
Normal	269	200	74.3		1.00 (Reference)
Somewhat comfortable	33	24	72.7		
Very comfortable	3	3	100		1.02 (0.43-2.40)

OR, odds ratio; CI, confidence interval.

a The chi-square test was used to confirm homogeneity.
b Considered intraclass correlations among children in the same household.
c Adjusted for all of the variables listed in the Tables 1 and 2.
Table 3. Magnitude of bias in survey estimates among respondents of the 2015 National Nutrition Survey on Preschool Children, taking account of missingness through multiple imputation.a

Items obtained from the 2015 NNSPC	Respondents before imputation b (A)	Potential survey participants after imputation c	Non-respondents (C)	All (D)	Estimated bias (%) d
Child's sex, boy (%)	51.2	51.2	51.0	51.1	0.1
Child's age (%)					
0-1 year	31.8	31.8	31.4	31.7	0.4
2-3 years	33.7	33.7	34.2	33.9	-0.4
4-5 years	34.5	34.5	34.4	34.5	0.0
Birthweight (g)	2998	2998	2991	2996	0.1
Birth length (cm)	48.8	48.8	48.8	48.8	0.1
Gestational week (wk)	38.7	38.7	38.7	38.7	0.0
Body weight (kg)	13.9	13.7	13.8	13.8	1.1
Body height (cm)	93.4	92.4	92.9	92.6	0.8
BMI (kg/m2)	15.8	15.9	15.8	15.9	-0.1
Overweight (%) e	13.4	14.8	20.4	16.8	-20.3
Birth order, first (%)	45.6	45.6	45.9	45.7	-0.2
Place of day care					
Nurseries, yes (%)	34.8	34.8	34.5	34.7	0.4
Kindergarten, yes (%)	25.5	25.5	26.8	26.0	-1.8
ECEC, yes (%)	4.5	4.5	5.0	4.7	-3.8
Home, yes (%)	30.3	30.3	30.8	30.5	-0.6
History of food allergy (%)	15.0	15.0	15.2	15.1	-0.4
Bowel movements per week (%)					
Almost everyday	75.8	75.8	76.3	76.0	-0.3
4-5 times/wk	19.6	19.6	18.0	19.0	2.9
≤3 times/wk	3.7	3.7	3.7	3.7	-0.3
Under treatment	1.0	1.0	2.0	1.3	-25.4
Wake-up time on weekdays (%)					
Before 7:00	46.5	46.6	45.9	46.3	0.5
7:00-7:59	43.9	43.9	44.3	44.0	-0.3
After 8:00	8.2	8.2	8.6	8.4	-1.4
Irregular	1.4	1.4	1.3	1.3	2.3
Bedtime on weekdays (%)					
Before 21:00	28.3	28.3	29.4	28.7	-1.5
21:00-21:59	49.5	49.5	49.3	49.4	0.2
After 22:00	20.2	20.2	20.1	20.2	0.2
Irregularity	2.0	2.0	1.3	1.7	15.0
Maternal age (%)
<30 years 18.3 18.4 18.5 18.4 -0.5
30-39 years 64.2 64.2 62.7 63.6 0.9
≥40 years 17.5 17.5 18.8 17.9 -2.6
Maternal employment, yes (%) 49.7 49.9 47.3 49.0 1.5
Self-assessed economic condition (%)
Difficult 37.5 37.5 38.0 37.7 -0.5
Normal 32.9 32.9 31.7 32.5 1.3
Comfortable 29.6 29.7 30.2 29.9 -0.8
Self-assessed time allowance (%)
Difficult 47.2 47.2 46.8 47.0 0.3
Normal 21.6 21.7 20.9 21.4 1.3
Comfortable 31.2 31.2 32.3 31.6 -1.3
Self-assessed overall living conditions (%)
Difficult 20.8 20.8 23.5 21.7 -4.5
Normal 37.8 37.8 37.4 37.6 0.4
Comfortable 41.5 41.5 39.1 40.6 2.0

ECEC, certified centers for early childhood education and care; NNSPC, the National Nutrition Survey on Preschool Children, CSLC, the Comprehensive Survey of Living Conditions.
a Values are means for continuous variables and percentage for categorical variables.
b Among 3426 respondents to the NNSPC, data were missing for body weight (n=265), body height (n=378), BMI (n=384), birthweight (n=23), birth length (n=64), gestational week (n=60), place of day care (n=7), history of food allergy (n=21), bowel movements per week (n=14), wake-up time (n=12), bed time (n=17), maternal age (n=66), maternal employment (n=80), self-assessed economic condition (n=4), self-assessed time allowance (n=2), and self-assessed overall living conditions (n=2).
c Children aged <6 years and their households that answered the 2015 CSLC (= 3426 respondents + 1917 non-respondents) .
d Computed, before rounding, by dividing the difference in the survey estimates between the respondents (A) and potential survey participants after imputation (D) by the imputed survey estimates in potential survey participants (D) and multiplying by 100.
e Overweight was defined according to the age- and sex-specific BMI reference data for Japanese children using the LSM method that are corresponded to BMI of 25 kg/m2 at 17.5 years of age [Ref.25].
Table 4. Comparison of odds ratio of overweight by sociodemographic characteristics estimated from observed and multiple imputation data.

Characteristics	Observed data of the NNSPC respondents	Multiple imputation data				
	Prevalence (%)	OR	95% CI	Prevalence (%)	OR	95% CI
Size of residential area						
Metropolitan area	11.2	1.00	(Reference)	15.5	1.00	(Reference)
City with population \geq150000	14.2	1.31	(0.98, 1.75)	17.2	1.12	(0.85, 1.48)
City with population <150000	14.2	1.27	(0.95, 1.70)	17.6	1.17	(0.89, 1.52)
Towns and villages	13.7	1.22	(0.79, 1.89)	16.2	1.05	(0.71, 1.55)
Household structure						
Parents and unmarried children only	13.1	1.00	(Reference)	16.6	1.00	(Reference)
Single parent and unmarried children only	5.3	0.41	(0.12, 1.32)	13.3	0.93	(0.49, 1.77)
Three-generation family	15.6	1.20	(0.90, 1.61)	18.7	1.19	(0.93, 1.53)
Others	14.0	0.94	(0.42, 2.11)	17.8	1.00	(0.50, 1.97)
Maternal age						
<30 years	16.0	1.00	(Reference)	19.7	1.00	(Reference)
$30-39$ years	12.4	0.83	(0.63, 1.08)	13.8	0.65	(0.55, 0.78)
≥40 years	14.2	1.15	(0.81, 1.64)	14.9	0.90	(0.69, 1.18)
Maternal employment						
Yes	14.2	1.00	(Reference)	17.1	1.00	(Reference)
No	12.5	0.77	(0.62, 0.96)	16.5	0.82	(0.68, 0.99)

a Children aged <6 years and their households that answered both the 2015 CSLC and NNSPC (n=3426). Overweight was missing in 384 of the 3426 respondents to the NNSPC in the observed data.

b Children aged <6 years and their households that answered the 2015 CSLC (n=5343).

c Overweight was defined according to the age- and sex-specific BMI reference data for Japanese children using the LSM method that are corresponded to BMI of 25 kg/m² at 17.5 years of age [Ref. 25].

d Adjusted for residential blocks (Hokkaido and Tohoku; Kanto; Hokuriku and Tokai; Kinki; Chugoku and Shikoku; and Kyushu), child’s sex (boy or girl), child’s age (months), birthweight (g), birth length (cm), and gestational week (wk).
The 2015 National Nutrition Survey on Preschool Children (NNSPC)

Household questionnaire: n = 115,941 (46,634 households)
Income questionnaire: n = 17,219 (6,706 households)

Children born between June 1, 2009 and May 31, 2015

Household questionnaire: n = 5,343 (4,111 households)
Income questionnaire: n = 781 (594 households)

The 2015 Comprehensive Survey of Living Conditions (CSLC)

Household questionnaire: n = 115,941 (46,634 households)
Income questionnaire: n = 17,219 (6,706 households)

Questionnaire: n = 3,871 (2,950 households)

Linking by prefecture, area, unit block, household number, sex, birth year and month, and multiple birth identification number *

n = 5,788

Answered only CSLC (Non-respondents to the NNSPC)
Household questionnaire: n = 1,917
Income questionnaire: n = 249

Answered both CSLC and NNSPC (Respondents with the CSLC)
Household questionnaire: n = 3,426
Income questionnaire: n = 532

Answered only NNSPC (Respondents without the CSLC)
Questionnaire: n = 445