High genomic diversity and candidate genes under selection associated with range expansion in eastern coyote (Canis latrans) populations

Elizabeth Heppenheimer1 | Kristin E. Brzeski4,2 | Joseph W. Hinton3 | Brent R. Patterson4,5 | Linda Y. Rutledge1,5 | Alexandra L. DeCandia1 | Tyler Wheeldon4,5 | Steven R. Fain6 | Paul A. Hohenlohe7 | Roland Kays9,9 | Bradley N. White5 | Michael J. Chamberlain3 | Bridgett M. vonHoldt1

1Department of Ecology & Evolutionary Biology, Princeton University, Princeton, New Jersey
2School of Forest Resources and Environmental Science, Michigan Technological University, Houghton, Michigan
3Warnell School of Forestry and Natural Resources, University of Georgia, Athens, Georgia
4Ontario Ministry of Natural Resources and Forestry, Peterborough, Ontario, Canada
5Trent University, Peterborough, Ontario
6USFWS National Forensics Laboratory, Ashland, Oregon
7Department of Biological Sciences, Institute for Bioinformatics and Evolutionary Studies, University of Idaho, Moscow, Idaho
8Department of Forestry and Environmental Resources, North Carolina State University, Raleigh, North Carolina
9North Carolina Museum of Natural Sciences, Raleigh, North Carolina

Correspondence
Elizabeth Heppenheimer, Department of Ecology & Evolutionary Biology, Princeton University, Princeton, NJ. Email: eh7@princeton.edu

Funding information
National Science Foundation, Grant/Award Number: 1523859

Abstract
Range expansion is a widespread biological process, with well-described theoretical expectations associated with the colonization of novel ranges. However, comparatively few empirical studies address the genomic outcomes accompanying the genome-wide consequences associated with the range expansion process, particularly in recent or ongoing expansions. Here, we assess two recent and distinct eastward expansion fronts of a highly mobile carnivore, the coyote (Canis latrans), to investigate patterns of genomic diversity and identify variants that may have been under selection during range expansion. Using a restriction-associated DNA sequencing (RADseq), we genotyped 394 coyotes at 22,935 SNPs and found that overall population structure corresponded to their 19th century historical range and two distinct populations that expanded during the 20th century. Counter to theoretical expectations for populations to bottleneck during range expansions, we observed minimal evidence for decreased genomic diversity across coyotes sampled along either expansion front, which is likely due to hybridization with other Canis species. Furthermore, we identified 12 SNPs, located either within genes or putative regulatory regions, that were consistently associated with range expansion. Of these 12 genes, three (CACNA1C, ALK, and EPHA6) have putative functions related to dispersal, including habituation to novel environments and spatial learning, consistent with the expectations for traits under selection during range expansion. Although coyote colonization of eastern North America is well-publicized, this study provides novel insights by identifying genes associated with dispersal capabilities in coyotes on the two eastern expansion fronts.

Keywords
colonization, dispersal behavior, outlier SNPs, RADseq, range expansion
1 | INTRODUCTION

Range expansions are a ubiquitous aspect of natural history (Excoffier, Foll, & Petit, 2009). Recent or ongoing range expansions have been documented in a variety of diverse taxa, including butterflies (Braschler & Hill, 2007; Hill et al., 2001; Pateman, Hill, Roy, Fox, & Thomas, 2012), mammals (Balestrieri et al., 2010; Taulman & Robbins, 1996), and birds (Lively, 2009; Swaegers et al., 2015), as well as numerous plant species (Ariani, Mier, & y Teran, J., & Gepts, P., 2017; Colautti & Barrett, 2013; Voss, Eckstein, & Durka, 2012).

Yet, despite the widespread prevalence of substantial range expansions, comparatively few empirical studies have explored the genetic or genomic consequences of recent or ongoing expansions, with some exceptions (Hagen, Kopatz, Aspi, Kojola, & Eiken, 2015; Norén et al., 2015; Heppenheimer et al., 2018).

Broadly, range expansion is expected to result in reduced genome-wide diversity relative to the core range as a consequence of small population sizes and serial founder events (Mayr, 1954; Nei, Maruyama, & Chakraborty, 1975). Strong population structure is also expected along the expansion axis, with recently expanded populations often representing differentiated genetic clusters from those in the core range (Ibrahim and Nichols, 1996). Though demographic factors, such as fecundity and population density, influence population structure and genome-wide diversity of recently expanded populations (Hagen et al., 2015), natural selection of traits (i.e., reproduction, dispersal) associated with range expansions may also play an important role. Theoretically, traits facilitating range expansion should experience differential selection pressures along the axis of expansion (Travis & Dytham, 2002; Phillips et al., 2008; Burton, Phillips, & Travis, 2010). For instance, genes associated with exploratory behavior and dispersal abilities are predicted to be beneficial at the front of the expansion axis given such traits directly facilitate movement into and subsequent colonization of a new habitat (Burton et al., 2010; Hughes, Dytham, & Hill, 2007; Phillips, Brown, Travis, & Shine, 2008; Travis & Dytham, 2002). Reproductive traits are also predicted to be under selection, as reduced competition and smaller population sizes at the front of the expansion may favor increased reproductive effort (Burton et al., 2010).

Although predictions for adaptive evolution during range expansion are well described in theory, it is a challenge in practice to identify loci under selection at the range periphery for several reasons. First, a stochastic phenomenon known as “allele surfing”; a consequence of serial founder events and drift at the expansion front, may drive even deleterious alleles to high frequencies along the expansion axis. This process has a strong theoretical basis (Edmonds, Lillie, & Cavalli-Sforza, 2004; Klopstein, Currat, & Excoffier, 2006) and has been suggested in empirical studies for a range of taxa (Hofer, Ray, Wegmann, & Excoffier, 2009; Gralka et al., 2016; Streicher et al., 2016). Therefore, identifying genomic variants with substantial changes in frequency along the expansion axis alone is not a sufficient evidence of recent selection. Additionally, variation in allele frequency may be driven by environmental factors (e.g., novel habitats and food resources) that occur in the expanding range but are independent of traits (e.g., dispersal and reproductive capabilities) that directly facilitate range expansion.

While the effects of allele surfing and environmental factors cannot be completely accounted for when studying range expansion, replicate expansion fronts across distinct environments can help disentangle the relative impact of these forces (Swaegers et al., 2015; White, Perkins, Heckel, & Searle, 2013). As allele surfing is a stochastic process, it is less likely that the same genomic variant would undergo a frequency shift in the same direction relative to the historical range along multiple independent expansion axes. Similarly, when species traverse distinct environments, increases or decreases in frequency at the same loci are less likely to be driven by local adaptation. Therefore, genomic variants that undergo similar frequency shifts across multiple independent axes of expansion are reasonable candidates for range expansion genes.

Coyotes (Canis latrans) provide a tractable system to address questions related to range expansion genomics. Confined to the western and central regions of North America prior to 1900 (Nowak, 1979, 2002; Young & Jackson, 1951), hereafter referred to as the coyote historical range, coyotes have substantially expanded their geographic range over the last century to occupy every continental US state and Canadian province (Hody & Kays, 2018). Here, we focus on the eastward expansion across the midwestern US and southeastern Canada, culminating along the eastern seaboard. This expansion began in the early 20th century and followed two broad expansion routes across distinct environments. In the northeast, coyotes expanded across the Great Lakes region of the United States and Canada into New England, New York, and Pennsylvania. The southeastern expansion occurred at a slower rate and followed an approximate trajectory through Louisiana, Alabama, and Georgia, with initial reports of coyotes in the Carolinas as recently as the 1980s (DeBow, Webster, & Sumner, 1998). Though fine-scale variation in expansion routes has been documented for the northeast (Kays, Curtis, & Kirchman, 2010; Wheeldon et al., 2010), a recent genetic survey (Heppenheimer et al., 2018) supports two genetically distinct eastern coyote populations across the eastern seaboard that correspond to these broadly described northeastern and southeastern expansion routes, suggesting that fine-scale expansion routes have likely converged.

In addition to geographic isolation, each expansion front represents distinct ecoregions in North America. For example, the northeastern expansion front is primarily northern forests and eastern temperate forests, which is further divided primarily into mixed wood shield, Atlantic Highlands, and mixed wood plains (Omernik & Griffith, 2014). In contrast, the southeastern expansion front is almost entirely eastern temperate forests, but transitions to tropical wet forest and great plains designations along the Gulf of Mexico (Omernik & Griffith, 2014). Furthermore, each expansion front also differs in the presence and abundance of closely related Canis species. Generally, under a range expansion scenario, hybridization between closely related and previously isolated species may occur as a result of low population density of the expanding species along the
range periphery (Seehausen, 2004). As such, coyote hybridization with remnant populations of eastern (C. lycaon) and/or gray wolves (C. lupus) has been documented along the northeastern expansion route (Kays et al., 2010; Rutledge, Garroway, Loveless, & Patterson, 2010; vonHoldt et al., 2011; vonHoldt, Kays, Pollinger, & Wayne, 2016), as well as with red wolves (C. rufus) in the southeastern expansion front (Nowak, 2002). In particular, red wolves are believed to be extirpated outside of the North Carolina recovery area, but hybridization between red wolves and coyotes is well documented within that area (Bohling et al., 2016; Hinton, Gittleman, Manen, & Chamberlain, 2018). Further, several previous studies have also shown that eastern coyote populations have interbred with domestic dogs (Adams, Leonard, & Waits, 2003; Wilson, Rutledge, Wheeldon, Patterson, & White, 2012; Wheeldon, Rutledge, Patterson, White, & Wilson, 2013; Monzön, Kays, & Dykhuisen, 2014). While there is evidence that these hybridization events have been adaptive (vonHoldt et al., 2016), it is important to note that the full genome-wide consequences and the geographic extent of interspecies hybridization have not been documented throughout the entire eastern range. Overall, our objectives were to quantify genomic structure and diversity across the historical coyote range and the two recently expanded eastern coyote populations. We then identify outlier loci that may have been under selection in both populations as a result of range expansion. We predict that population structure will correspond to the known demographic history of North American coyotes, that is, a historical range population and two distinct recently expanded groups. In accordance with theoretical assumptions, we expect reduced genomic diversity in the two recently expanded eastern populations relative to the historical range. However, hybridization with other Canis species may result in deviations from this expectation. Finally, we expect genomic variants that underwent frequency shifts in the same direction in both groups to have putative functions related to range expansion, such as dispersal and reproduction.

2 | METHODS

2.1 | Sample collection

We obtained coyote blood and tissue (e.g., liver, kidney, tongue) from state management programs (Princeton IACUC #1961A-13), government organization archives (e.g., Florida Fish and Wildlife, US Department of Agriculture, Ontario Ministry of Natural Resources and Forestry), or museum archives (New York State Museum, Oklahoma Museum of Natural History). In all cases, state or province of origin was documented (Figure 1), and in many cases, sex, approximate age, and fine-scale geographic data were also known. Samples were collected between 1998 and 2017, with the majority collected within the last 10 years (2008–2017). Samples with unknown collection dates were either known or assumed to fall within the approximate time period (Supporting information Table S1).

For downstream analyses, we considered samples collected from AZ, CA, ID, MN, MO, NE, NM, NV, OK, SK, TX, WA, and WY, to be part of the historical range (i.e., pre-1900; Figure 1) as described by Hody and Kays (2018). Additionally, samples collected from ME, NB, NJ, ON, and PA were considered part of the northeast expansion, and samples collected from AL, FL, GA, KY, LA, NC, SC, TN, and VA were considered part of the southeastern expansion.

2.2 | Sampling and DNA extraction

High molecular weight genomic DNA was extracted from all samples with either the Qiagen DNeasy Blood and Tissue Kit or the BioSprint 96 DNA Blood Kit in conjunction with a Thermo Scientific KingFisher Flex Purification platform, in both cases following instructions provided by the manufacturer. We quantified DNA concentration with either PicoGreen or Qubit 2.0 fluorometry and standardized samples to 5 ng/μl. Only high-quality DNA samples, as determined by the presence of a high molecular weight band on a 1% agarose gel, were retained for sequencing.

2.3 | RADsequencing and bioinformatics processing

We prepared genomic libraries following a modified restriction-associated DNA sequencing (RADseq) protocol described by Ali et al. (2016). Briefly, samples were digested with sbfI and a unique 8 bp barcoded biotinylated adapter was ligated to the resulting fragments. Samples were then pooled (96–153 samples/pool) and randomly sheared to 400 bp in a Covaris LE220. Following shearing, we used a Dynabeads M-280 streptavidin bead binding assay to enrich for adapter- ligated fragments. Final sequencing libraries were then prepared using either the NEBNext Ultra DNA Library Prep Kit or the NEBNext Ultratrill DNA Library Prep Kit. Size selection was made for 300–400 bp insert with Agencourt AMPure XP magnetic beads, which were also used for library purification. Libraries were standardized to 10 nM and sequenced (2X150nt) on two lanes on the Illumina HiSeq 2500.

As this RADseq protocol is unique in that the barcode may be on either the forward or reverse read, data processing was required prior to variant calling. Accordingly, forward and reverse raw sequencing reads were processed such that any read containing the remnant sbfI cut site and one of the possible barcodes were aligned in a single file, while the matching read pairs that lacked the cut site were aligned in a separate file, and all remaining reads were discarded. This was accomplished using a custom Perl script (flip_trim_sbfI_170601.pl, see Supporting information).

Additional data processing was then conducted in STACKS v 1.42 (Catchen, Hohenlohe, Bassham, Amores, & Cresko, 2013). First, reads were demultiplexed using process_radtags, allowing a 2 bp mismatch for barcode rescue and discarding reads with either uncalled bases or a low-quality score (<10) within a sliding window of 0.15. Next, PCR duplicates were removed with the paired-end sequencing filtering option in clone_filter. We...
excluded all samples with low read count (<500,000) after removal of PCR duplicates from further analysis. Remaining samples were then mapped to the dog genome CanFam3.1 assembly (Lindblad-Toh et al., 2005) in Stampy v 1.0.21 (Lunter & Goodson, 2011). To reduces biases associated with incorrectly mapped loci (e.g., paralogs), we additionally filtered mapped reads for a minimum MAPQ of 96 and converted to bam format in Samtools v 0.1.18 (Li et al., 2009).

We completed SNP calling in STACKS following the recommended pipeline for reference mapped data (i.e., pstacks → cstacks → sstacks → populations; Catchen et al., 2013). In pstacks, we required a minimum depth of coverage of three to report a stack (min 3). Cstacks and sstacks were run as recommended by Catchen et al. (2013). The populations module was run twice to optimize final sample selection to reduce both missing data and biases resulting from uneven sampling across locations. First, we allowed only the first SNP per locus (--write_single_snps) to be reported but did not apply any missing data thresholds. We then evaluated the per-individual genotyping success, as measured by missingness per individual in Plink v 1.90b3i (Purcell et al., 2007), and removed individuals with a high level of missing data (>80% missing). We also removed samples from locations where $n = 1$. In our second run of populations, we included only this reduced set of samples, required that reported loci be genotyped in 90% of individuals ($r = 0.9$), and again restricted analysis to only the first SNP per locus. Only this latter dataset was used for subsequent analyses. Following SNP calling, we filtered for statistical linkage disequilibrium in Plink with the argument --indep-pairwise 50 5 0.5.

All SNPs were annotated as genic (intr_on or exon), within a promoter (i.e., within 2 Kb of transcription start site following von-Holdt, Heppenheimer, Petrenko, Cronquist, and Rutledge (2017)), or intergenic using an in-house python script (chr_site.py; See supporting information). All intergenic SNPs were compiled in a second genotype dataset and filtered for Hardy–Weinberg Equilibrium (HWE) in Plink with the argument--hwe 0.001. These intergenic, HWE-filtered genotypes were presumed neutral in downstream analyses (hereafter, putatively neutral loci). Additionally, we compiled a third dataset of putatively functional loci consisting of all SNPs annotated as genic or within 2 Kb of a transcription start site (hereafter, genic loci).

2.4 Population structure analysis

To visualize clustering in our data and identify strong outliers, we conducted a Principal Component Analysis using our full SNP dataset with flashPCA (Abraham & Inouye, 2014). We identified one strong outlier originating from Ontario, which may be a misidentified eastern or gray wolf (Canis lycaon or Canis lupus). This individual was removed from further analyses.
Following the removal of strong outliers (e.g., putatively mis-identified wolves), we determined the most likely number of genomic clusters represented by the data, by conducting an analysis of population structure in ADMIXTURE v1.3 (Alexander, Novembre, & Lange, 2009) with the cross-validation flag. We evaluated K = 1-10, with the K value with the lowest cross-validation (cv) score indicative of the best fit K. ADMIXTURE is similar in principle to the classic Bayesian software STRUCTURE (Pritchard, Stephens, & Donnelly, 2000), but uses a maximum likelihood framework and is more computationally efficient for SNP data.

2.5 Genomic diversity

Standard metrics of genomic diversity for each sampling location, including private allele counts as well as observed \(H_o \) and expected \(H_e \) heterozygosity, were calculated in STACKS across all loci. To determine whether trends of heterozygosity differed based on which part of the genome was surveyed, we recalculated both \(H_o \) and \(H_e \) across putatively neutral loci and genic loci. Allelic richness \(A_r \) and private allelic richness \(A_p \) were calculated using a rarefaction approach implemented in ADZE v 1.0 (Szpiech, Jakobsson, & Rosenberg, 2008), where the maximum standardized sample size was set to the smallest n for the samples considered (i.e., 176 when comparing the historical range, northeast expansion, and southeast expansion).

Pairwise \(F_{ST} \) values between all sampling locations over all loci were calculated in STACKS and we tested for isolation by distance (IBD) within the coyote historical range, as well as within each recently expanded eastern population with a series of Mantel tests implemented in ade4 v1.7-11 (Dray & Dufour, 2007) in R v3.3 (R Core Team, 2013). Pairwise \(F_{ST} \) were linearized following Rousset (1997), geographic distances were calculated as the shortest straight-line distance between sampling locations, and significance was assessed from 9,999 permutations.

2.6 Identification of loci associated with range expansion

To identify loci as candidates for selection during range expansion, we restricted analyses to individuals with high cluster assignments as identified in the ADMIXTURE analysis (Q ≥ 0.8). Additionally, to prevent biases resulting from long-distance dispersers, we removed three individuals that had high cluster assignments to different populations from which they were sampled (e.g., sampled from Louisiana but clustered with the northeast group). Though restricting the analyses to individuals with high cluster assignments may inflate the genetic distinction between the historical range and the recently expanded coyote populations, we believe the inferred historical range population to be the best available representation of pre-range expansion allele frequencies, as there is likely ongoing contemporary gene flow between coyotes in the historical range and both recently expanded populations.

As \(F_{ST} \) outlier-type approaches to identify loci under selection are prone to high rates of false positives, especially among populations with complex demographic histories, we used two distinct approaches to identify loci putatively under selection. First, a Bayesian framework to detect outlier loci was implemented in BAYENV2 (Coop, Witonsky, Rienzo, & Pritchard, 2010; Günther & Coop, 2013). This method accounts for evolutionary nonindependence between populations by first calculating covariance in allele frequencies at a set of putatively neutral loci. Candidate functional SNPs are then evaluated one at a time under a model that assumes a linear relationship between an environmental variable and allele frequency compared to a model given by the neutral covariance matrix and a corresponding Bayes factor is calculated. This method has been suggested to outperform other \(F_{ST} \) outlier-like methods (e.g., FDIST2, BayeScan) in the case of range expansion (Lotterhos & Whitlock, 2014). In the BAYENV2 analysis, the environmental variable of interest was the linear distance from the coyote historical range (e.g., White et al., 2013). To avoid biases induced by allele frequencies at any one sampling location within the historical range, all states or provinces within the historical coyote range were treated as a single sampling location. Distances for sampling locations outside of the historical range were calculated as the shortest straight-line distance from the approximate midpoint of the sampled regions within the historical range. The northern and southern expansion fronts were analyzed separately. In both cases, the putatively neutral loci used to generate the control covariance matrix were intergenic SNPs in HWE, filtered further to remove any monomorphic loci between the populations compared. Similarly, the candidate SNPs were all SNPs annotated as genic (intron or exon) or within 2 Kb of a transcription start site, again filtered to remove monomorphic loci between populations. Genotype files for both SNP datasets were converted to BAYENV2 format in PGDSPider v 2.1.13 (Lischer & Excoffier, 2012). For each expansion front (historical to northeast & historical to southeast), loci were ranked by Bayes factor and the top 3% of SNPs were retained for further analysis. Loci were considered candidate genes under selection during range expansion if the same SNP occurred on both lists.

Second, we used a principal component-based approach implemented with the R package PCadapt (Luu, Bazin, & Blum, 2017). This method first performs a centered, scaled principal component analysis on genome-wide SNPs and then identifies significant outliers with respect to population structure given by the first K principal components. Specifically, PCadapt identifies outliers based on the Mahalanobis distance, which describes multidimensional distance of a point from the mean. Simulations indicate that PCadapt is less prone to type II error than alternative methods (e.g., BayeScan) and PCadapt is expected to perform well under a variety of complex demographic scenarios, including range expansion (Luu et al., 2017). In the PCadapt analysis, the northeastern and southeastern expansion fronts were analyzed separately. In both cases, we identified outliers with respect to underlying population structure given by PC1. We chose to retain only PC1, rather than selecting the optimal number of PCs based on conventional methods (e.g., scree plot), as PC1 primarily captured the major axis of range expansion.

For each expansion front (historical to northeast & historical to southeast), loci were ranked by Bayes factor and the top 3% of SNPs were retained for further analysis. Loci were considered candidate genes under selection during range expansion if the same SNP occurred on both lists.

Second, we used a principal component-based approach implemented with the R package PCadapt (Luu, Bazin, & Blum, 2017). This method first performs a centered, scaled principal component analysis on genome-wide SNPs and then identifies significant outliers with respect to population structure given by the first K principal components. Specifically, PCadapt identifies outliers based on the Mahalanobis distance, which describes multidimensional distance of a point from the mean. Simulations indicate that PCadapt is less prone to type II error than alternative methods (e.g., BayeScan) and PCadapt is expected to perform well under a variety of complex demographic scenarios, including range expansion (Luu et al., 2017).

In the PCadapt analysis, the northeastern and southeastern expansion fronts were analyzed separately. In both cases, we identified outliers with respect to underlying population structure given by PC1. We chose to retain only PC1, rather than selecting the optimal number of PCs based on conventional methods (e.g., scree plot), as PC1 primarily captured the major axis of range expansion.
and therefore corresponded to the level of population structure relevant for this study (See Figure 2). To evaluate significance, p-values for each SNP were transformed into q-values and SNPs with q-values < 0.05 were retained, therefore controlling for a false discovery rate (FDR) of 5%. This was implemented in the R package qvalue v2.6 (Bass, Dabney, & Robinson, 2018). Again, we only considered SNPs that were significant in both historical and northeast and historical and southeast comparisons as candidates for loci under selection during range expansion.

Gene functions and gene ontology biological process annotations of all outlier SNPs identified by both the analyses methods were inferred using Ensembl (release 91; Zerbino et al., 2017) and AmiGO 2 accessed in February 2018 (Carbon et al., 2009). We conducted a gene ontology (GO) biological process overrepresentation enrichment analysis on outlier sites located in functional genomic regions (i.e., intron, exon, or promoter) using WebGestalt (Zhang, Kirov, & Snoddy, 2005; Wang et al., 2013). We used our genic SNP dataset as the reference set for the enrichment analysis, and significance was evaluated using an FDR threshold of 5%. Additionally, we used the Ensembl Variant Effect Predictor (McLaren et al., 2016) to predict the functional effect of all outlier SNPs.

3 | RESULTS

3.1 | Genotyping

Among the final samples retained for analyses, raw sequencing read counts per sample ranged between 770,960 and 13,299,663, with an average of 2,466,167 reads. Filtering for PCR duplicates prior to SNP calling removed between 5.32% and 56.15% (average: 21.48%; Supporting information Table S2) of reads, leaving between 582,946 and 10,786,513 (average: 1,908,634; Supporting information Table S2) reads assigned to each unique barcode. Mappability to the dog genome following the removal of reads with low MAPQ scores ranged from 63.77% to 79.20% (average: 74.04%).

We sequenced a total of 3,597,305 restriction-associated sites (RADtags), 24,139 of which contained at least one variable site in 394 coyotes. Following LD filtering, our full dataset consisted of 22,935 biallelic SNP loci, with a total genotyping rate of 93.3% (Supporting information Figure S1). Average per-individual missingness was highest in the northeast (mean missing = 10.5%) and slightly lower in both the southeast (6.0%) and the historical range (5.4%; Supporting information Figure S2). Average depth of coverage across all individuals was 11.33 with a standard deviation of 6.62 and was similar among the three regions surveyed (historical range: 11.420, stdev = 5.647; northeast: 11.634, stdev = 9.991; southeast: 11.096, stdev = 4.988; Supporting information Figure S3). Furthermore, overall allele balance for all heterozygotes (i.e., minor allele coverage relative to total site coverage) was 0.496 (stdev = 0.113) and again similar across all three regions (historical range: 0.496, stdev = 0.113; northeast: 0.493, stdev = 0.114; southeast: 0.497, stdev = 0.112).

Overall, we primarily captured rare variation, with an average global minor allele frequency of 1.73%. Further, within each of the three regions sampled, minor allele frequencies were typically ≤ 5% (Supporting information Figure S4). Approximately, half of the sites were intergenic (n_intergenic = 12,676), with 14,108 SNPs found within genes (n_intron = 12,024; n_exon = 1,532; n_promoter = 552). These annotations sum to >22,935 as SNPs may have multiple annotations (e.g., promoter and intron). Additionally, our putatively neutral dataset, which consisted of intergenic SNPs in HWE, retained 11,518 SNPs. Our genomic data included 10,259 SNPs within introns, exons, and promoters.

3.2 | Population structure corresponds to expansion axis

Our PCA divided sampling locations as predicted, with PC1 (1.11% variance explained) separating samples originating from the historical coyote range from either recently expanded eastern population (Figure 2a). Accordingly, PC1 was significantly correlated with the longitude of sampling location (state or province; Pearson’s r = 0.91; p < 2.2 × 10−16, Figure 2b). PC2 (0.86% variance explained) primarily separated northeastern sampling
FIGURE 3 Percent ancestry assignments (Q) at K = 2 (a) and K = 3 (b) in the admixture analysis

locations from southeastern sampling locations. Furthermore, samples from the Mid-Atlantic contact zone between these two fronts of expansion (North Carolina, Virginia) tended to have intermediate spatial placement on PC2 (Figure 2a).

Our ADMIXTURE analysis indicated that three distinct genetic clusters were best represented by the data (cv = 0.107; Figure 3; Supporting information Figure S3). Generally, these clusters were concordant with sampling location, with one cluster corresponding to the historical coyote range, a second cluster corresponding to the southeastern expansion front, and a third cluster corresponding to the northeastern expansion front (Figure 3b), that is, samples collected from the historical coyote range showed high assignments to the historical range cluster (Average \(Q_{\text{Historical}} = 0.868 \); Supporting information Table S3), and similarly, samples obtained from either the northeastern or southeastern expansion front were strongly assigned to each respective cluster, average \(Q_{\text{Northeast}} = 0.943 \), and southeast average \(Q_{\text{Southeast}} = 0.933 \) (Supporting information Table S3). We observed moderately high frequencies of intermediate ancestry assignments to both recently expanded eastern population in the Mid-Atlantic region (e.g., NC, KY, VA, PA; Figure 3b; Supporting information Table S3), consistent with this region as the location of recent secondary contact between the two expansion fronts (Heppenheimer et al., 2018). Despite the clean separation of clusters based on known expansion routes, one sample originating from Louisiana strongly clustered with the northeastern group. Additionally, some sampling locations within the historical range (e.g., MO, OK, NE, MN) exhibited intermediate assignments to the southeastern cluster. Furthermore, clustering at K = 2 was consistent with one historical range cluster and one recently expanded group (Figure 3a).

3.3 | High genomic diversity in recently expanded populations

Genome-wide heterozygosity was approximately equivalent across the historical range (Average \(H_E = 0.0264 \)) and northeastern expansion front (Average \(H_E = 0.0268 \)) and slightly elevated in the southeastern expansion front (Average \(H_E = 0.0300 \)). These relative trends were similar when analysis was restricted to either putatively neutral loci (Average \(H_E \); Historical = 0.0208; Average \(H_E \); Northeast = 0.0195; Average \(H_E \); Southeast = 0.0235; Supporting information Table S4) or genic SNPs (Average \(H_E \); Historical = 0.0256; Average \(H_E \); Northeast = 0.0267; Average \(H_E \); Southeast = 0.0297; Supporting information Table S4). Furthermore, allelic richness was highest in the historical range and (historical \(A_r = 1.489 \), stderr = 0.003; Figure 4a) lower in both expansion fronts (southeast \(A_r = 1.467 \), stderr = 0.003; northeast \(A_r = 1.425 \), stderr = 0.003; Figure 4a). Private allele counts (Table 1) and private allelic richness (Figure 4b), exhibited a similar trend, with the highest values observed for the historical range (historical \(A_{pr} = 0.189 \), stderr = 0.002; count = 5,799) and lower values observed in the southeastern front (southeast \(A_{pr} = 0.117 \), stderr = 0.002; count = 3,578) and northeastern expansion front (northeast \(A_{pr} = 0.138 \), stderr = 0.002; count = 3,018).

We found no evidence of isolation by distance in the historical coyote range (Mantel R = 0.154, p = 0.152), or in either recently expanded eastern population (northeast Mantel R = −0.288, 0.715; southeast Mantel R = 0.846, p = 0.327).

3.4 | Outlier loci associated with range expansion

With the BAYENV2 approach, the Bayes factors for the top 3% of ranked SNPs ranged 20.80–53,564 (mean = 3,558.25) for the
frequency relative to the historical range was in the same direction for both recently expanded eastern populations (Figures 5b and 6). For nine of these outlier loci, the less common allele overall (i.e., the global minor allele), decreased in the recently expanded populations, and for the remaining three loci, the minor allele increased in frequency (Figures 5b and 6). In one case, WDR17, the minor allele was lost in both of the recently expanded eastern populations (Figure 6). For three additional outlier loci (PAX5, EPFA6 and CARMIL1), the minor allele was lost in one of the recently expanded populations and substantially reduced in frequency in the other (Figure 5b). Furthermore, there was only one locus (ZDHHC16) where the minor allele was absent from the historical range, but present at appreciable frequencies, in both recently expanded populations ($q_{\text{Northeast}} = 12.12\%$; $q_{\text{Southeast}} = 24.09\%$; Figure 6).

In our GO enrichment analysis, these outlier SNPs were not significantly enriched for any biological process (Supporting information Table S6) after applying an FDR threshold of 5%. Furthermore, all sites were annotated as "modifiers" in the VEP analysis, which are defined as variants with no predictable functional effects on coding regions (i.e., noncoding variants).

4 | DISCUSSION

Recently expanded coyote populations in eastern North America provide a unique opportunity to explore how range expansion shapes genomic diversity at neutral and putatively adaptive loci. Here, we identified three genetic groups of coyotes, which largely correspond to the historical range and two distinct expansion fronts. Instances of discordance between sampling location and cluster assignments were relatively rare, and likely due to recent shared ancestry as well as ongoing gene flow. In particular, coyotes from OK, NE, and MN exhibited intermediate assignments to the southeastern cluster, and coyotes from MO exhibited intermediate assignments to both the southeastern and northeastern clusters. With the exception of MN, this midwestern region has previously been suggested to represent the source population for the southeastern expansion (Nowak, 1979; vonHoldt et al., 2011). Additionally, as coyotes are highly mobile, there is likely ongoing gene flow among the recently expanded populations and those in the historical range, particularly along the eastern extreme. To directly address the relative impacts of shared ancestry and ongoing gene flow in the eastern historical range, a more extensive sampling scheme throughout this region is needed and pre-range expansion samples from prior to 1900 should also be included.

As in Heppenheimer et al. (2018), we observed comparatively high levels of diversity in both the northeastern and southeastern coyote populations, which is inconsistent with the theoretical (Excoffier et al., 2009) and empirical expectations for recently expanded populations. For example, recent studies reported decreased heterozygosity for populations of bank voles (Myodes glareolus) and damselflies (Coenagrion scitulum) in expansion fronts...
relative to their source populations (White et al., 2013; Swaegers et al., 2015). In contrast, we observed approximately equivalent heterozygosity between coyote populations in the historical and recently established northeastern ranges, and more intriguingly, we observed that coyotes in the southeastern US had slightly greater heterozygosity than those in the historical range. As this trend is consistent across various subsections of the genome (i.e., genic and putatively neutral regions), it is not immediately clear from this study what is driving this lack of reduction in genomic diversity in the recently established eastern populations. However, the observed trends for private allele counts and private allelic richness in coyotes are consistent with a bottleneck scenario, as the historical range was observed to have the highest number of private alleles and the highest private allelic richness. As the loss of rare alleles will have a greater impact on allelic richness than heterozygosity, (Greenbaum et al., 2014), allelic richness has been suggested to be a better indicator of a bottleneck, particularly following range expansion.

Sampling locations	n	Private alleles	H_o	H_e
Historical Range				
Arizona (AZ)	12	470	0.0254	0.0278
California (CA)	29	895	0.0225	0.0276
Idaho (ID)	10	167	0.0208	0.0237
Minnesota (MN)	12	311	0.0326	0.0324
Missouri (MO)	6	105	0.0199	0.0227
Nebraska (NE)	20	583	0.0250	0.0278
New Mexico (NM)	11	401	0.0276	0.0288
Nevada (NV)	13	406	0.0244	0.0272
Oklahoma (OK)	5	162	0.0296	0.0289
Saskatchewan (SK)	4	132	0.024	0.0244
Texas (TX)	2	146	0.0281	0.0225
Washington (WA)	14	227	0.0260	0.0278
Wyoming (WY)	4	115	0.0214	0.0220
Overall historical range	142	5,799a	0.0252	0.0264
Northeast expansion				
Maine (ME)	14	499	0.0231	0.0292
New Brunswick (NB)	4	107	0.0207	0.0228
New Jersey (NJ)	3	47	0.0259	0.0233
New York (NY)	4	65	0.0257	0.0222
Ontario (ON)	26	464	0.0305	0.0324
Pennsylvania (PA)	37	1,511	0.0233	0.0307
Overall Northeast Expansion	88	3,018a	0.0249	0.0268
Southeast expansion				
Alabama (AL)	16	136	0.0319	0.0326
Florida (FL)	28	843	0.0262	0.0311
Georgia (GA)	23	151	0.0300	0.0318
Kentucky (KY)	26	280	0.0298	0.0318
Louisiana (LA)	4	125	0.0268	0.0284
North Carolina (NC)	27	406	0.0296	0.0321
South Carolina (SC)	13	100	0.0325	0.0324
Tennessee (TN)	2	32	0.0295	0.0228
Virginia (VA)	25	305	0.0221	0.0270
Overall Southeast Expansion	164	3,578a	0.0287	0.0300

Note. n, sample size; H_o, observed heterozygosity; H_e, expected heterozygosity.

Private allele counts per state/province are not expected to sum to the overall private allele count per region, as alleles may be private to a region without being private to any individual state or province.
TABLE 2 Outlier SNPs putatively associated with range expansion identified in both the outlier detection analyses

Chr	Position	Gene	Gene description	Gene Region	BF Northeast	BF Southeast	p Northeast	p Southeast
2	43,210,227	5S_rRNA	5S ribosomal RNA	Prom	53,564	5,477,400	1.3 × 10⁻⁵	9.7 × 10⁻⁷
10	15,795,366	KCNC2	Potassium voltage‐gated channel subfamily C member 2	Intron	389.1	130,670,000	1.5 × 10⁻⁵	1.6 × 10⁻⁷
11	53,204,490	PAX5	Paired box 5	Intron	253.3	20.9	2.3 × 10⁻³	1.8 × 10⁻⁵
16	53,466,645	WDR17	WD repeat domain 17	Intron	27.5	5,244	3.5 × 10⁻³	2.6 × 10⁻⁶
17	23,407,156	ALK	ALK receptor tyrosine kinase	Intron	49.9	1,050,300	1.1 × 10⁻⁴	1.5 × 10⁻¹³
20	3,062,963	EFCC1	EF‐hand and coiled-coil domain containing 1	Intron	26,286	64,928	6.5 × 10⁻⁶	7.2 × 10⁻⁵
20	40,628,561	ATRIP	ATR interacting protein	Intron	122.2	474.3	6.6 × 10⁻⁷	1.8 × 10⁻⁴
27	44,159,565	CACNA1C	Calcium voltage‐gated channel subunit alpha C	Prom	205.4	15	3.4 × 10⁻³	1.2 × 10⁻⁴
28	10,746,279	ZDHHC16	Zinc finger DHHC-type containing 16	Intron	178.5	6,046,600	1.8 × 10⁻³	4.9 × 10⁻⁵
33	4,379,522	EPHA6	EPH receptor A6	Intron	707.3	137.8	1.3 × 10⁻³	4.1 × 10⁻⁸
34	11,841,558	AHRR	Aryl‐hydrocarbon receptor repressor	Intron	65.3	155,940	3.3 × 10⁻⁴	5.2 × 10⁻⁸
35	23,379,157	CARMIL1	Capping protein regulator and myosin 1 linker 1	Intron	232.5	231.6	1.1 × 10⁻⁴	5.9 × 10⁻⁷

Notes. Chr, Chromosome; BF, Bayes Factor; Prom, promoter. Full Biological Process GO annotations for each outlier are given in Supporting information Table S6.
to spatial learning (Delgado, Penteriani, Nams, & Campioni, 2009; Saastamoinen et al., 2017).

While these finds are intriguing, the implications for how mutations in these outlier loci impact dispersal capabilities in coyotes should be interpreted with extreme caution. None of these outlier SNPs were found within an exon, and it is unclear from this data whether the genotyped variants directly impact gene expression, or whether these variants are in linkage disequilibrium with one or more nonsynonymous mutations in coding regions. Further, evidence for a dispersal-related function of these genes is entirely based on mouse studies, and it is unknown if these functions are conserved across mammals. We also did not incorporate any behavioral data for coyotes in this study, and it is unclear if eastern coyotes exhibit differences in exploratory behavior relative to coyotes from the historical range, much less if this behavior is correlated with genotype. Future studies should target the coding sequence of these genes in coyotes to further elucidate how these outlier loci may influence phenotypic traits in expanding coyote populations.

It is additionally possible that our outlier detection approach identified loci that are systematically different between both expansion fronts and the historical range as a result of parallel adaptations to similar environments rather than the range expansion process. While the northern and southern expansion fronts are distinct ecoregions (Omernik & Griffith, 2014), environmental similarities between the regions do exist, most notably in the high abundance of deer. However, diet studies reveal that deer consumption varies widely among eastern coyote populations (Kligo, Ray, Ruth, & Miller, 2010; Mastro, 2011; Robinson, Diefenbach, Fuller, Hurst, & Rosenberry, 2014) and that deer consumption is also reasonably common throughout the historical range (Ballard, Lutz, Keegan, Carpenter, & deVos Jr, 2001; Carrera et al., 2008; Gese & Grothe, 1995). As such, selection associated with the range expansion process is perhaps more likely than adaptation to deer rich environments, though the possibility remains that outlier SNP frequencies are driven by selection associated with unmeasured environmental variables rather than by range expansion.

One additional outlier locus, ZDHHC16, which has putative functions related to eye development, cellular response to DNA damage, heart development, and protein palmitoylation, was monomorphic in the historical population yet polymorphic in both recently expanded populations. There are three general explanations for the origin of this variant in the recently expanded eastern coyote populations: (a) The mutation was present in the historical range, but at an extremely low frequency that was not captured by our sampling, (b) a de novo mutation occurred, either convergently along both expansions fronts, or along one front and then was transferred via intraspecific gene flow, or (c) this allele introgressed from a closely related Canis species following a hybridization event and was subsequently transferred via gene flow. As discussed above, interspecies hybridization occurs among Canis species, and there is evidence that this has been adaptive in the context of coyote range expansion (Thornton & Murray, 2014; vonHoldt et al., 2016). It is therefore conceivable that ZDHHC16 represents an additional case of adaptive introgression. However, the data presented here are not sufficient to address questions related to the origin of genomic variants, though this remains an interesting question for future studies regarding the role of hybridization in facilitating range expansion.

Taken together, we present a comprehensive genome-wide survey of coyote populations across much of the contiguous US as well as southeastern Canada. Despite pronounced geographic structuring among the historical and two recently expanded eastern coyote populations, we did not observe a strong decline in genomic diversity that is characteristic of a range expansion bottleneck, suggesting that coyote range expansion dynamics are more complex than those described in theoretical (Excoffier et al., 2009) and other empirical studies (e.g., White et al., 2013; Swaegers et al., 2015), and is likely attributable to interspecies hybridization. Further, we identify several genomic variants that are candidates for gene regions under selection during range expansion, which
provides a critical first step in understanding how functional genomic variation may have facilitated coyote range expansion.

ACKNOWLEDGEMENTS

We thank A. Scotten, A. Sonnek, B. Conant, C. Wilson, D. Fryda, D. Hansen, D. Caudill, J. Bennet, J. Kittsick, J.C. Davies, J.E. Sherman, K. Quevieux, K. McGrath, L. Palmer, L. Peebles, M. Earthman, M. Dummold, M. Anderson, M. McNight, P. Flicek, T. Quinn, T. Sullivan, K. Van Why, R. K. Wayne, as well as many hunters and trappers, for sample donation. We are also grateful to Oklahoma Museum of Natural History, who provided samples under loan agreement.

CONFLICT OF INTEREST

The authors declare no conflict of interest.
EHI, KEB, and BMV designed the study. EHI, KEB, ALD, and LYR performed DNA extractions and prepared libraries for sequencing. EH performed analyses and drafted the manuscript. PAH provided technical guidance on laboratory work and bioinformatics. KEB, JWH, BRP, TW, SRF, RK, BNW, and MJC donated samples. All authors contributed to and approved the final manuscript.

DATA ACCESSIBILITY
RADseq clone-filtered demultiplexed fastq files and CanFam3.1 mapped bam files have been deposited in the NCBI Sequence Read Archive at accession PRJNA497119 (SAMN10248298-SAMN10248691). Genotype calls for 394 coyotes at 22,935 SNPs performed analyses and drafted the manuscript. PAH provided technical guidance on laboratory work and bioinformatics. KEB, JWH, BRP, TW, SRF, RK, BNW, and MJC donated samples. All authors contributed to and approved the final manuscript.

REFERENCES
Abraham, G., & Inouye, M. (2014). Fast principal component analysis of large-scale genome-wide data. PLoS One, 9(4), 1–5. https://doi.org/10.1371/journal.pone.0093766.

Adams, J. R., Leonard, J. A., & Waits, L. P. (2003). Widespread occurrence of a domestic dog mitochondrial DNA haplotype in southeastern US coyotes. Molecular Ecology, 12(2), 541–546. https://doi.org/10.1046/j.1365-294X.2003.01708.x.

Alexander, D. H., Novembre, J., & Lange, K. (2009). Fast model-based estimation of ancestry in unrelated individuals. Genome Research, 19, 1655–1664. https://doi.org/10.1101/gr.094052.109.

Ali, O. A., O’Rourke, S. M., Amish, S. J., Meek, M. H., Luikart, G., Jeffres, C., & Miller, M. R. (2016). Radiocap capture (radcap): Flexible and efficient sequence-based genotyping. Genetics, 202(2), 389–400. https://doi.org/10.1534/genetics.115.183665.

Ariani, A., Bern Mier y Teran, J. C., & Gepts, P. (2017). Spatial and temporal scales of range expansion in wild Phaseolus vulgaris. Molecular Biology and Evolution, 35(1), 119–131. https://doi.org/10.1093/molbev/msx273.

Balestrieri, A., Remonti, L., Ruiz-González, A., Gómez-Moliner, B. J., Vergara, M., & Prigioni, C. (2010). Range expansion of the pine marten (Martes martes) in an agricultural landscape matrix (NW Italy). Mammalian Biology, 75(5), 412–419. https://doi.org/10.1016/j.mambio.2009.05.003.

Ballard, W. B., Lutz, D., Keegan, T. W., Carpenter, L. H., & deVos, J. C. (2001). Deer-preyador relationships: A review of recent North American studies with emphasis on mule and black-tailed deer. Wildlife Society Bulletin, 29, 99–115.

Bass, A. J., Dabney, A., & Robinson, D. (2018). qvalue: Q-value estimation for false discovery rate control. R package version 2.14.0. Retrieved from http://github.com/jdstorey/qvalue

Bilsland, J. G., Wheeldon, A., Mead, A., Znamenskiy, P., Almond, S., Waters, K. A., ... Munoz-Sanjuan, I. (2008). Behavioral and neurochemical alterations in mice deficient in anaplastic lymphoma kinase suggest therapeutic potential for psychiatric indications. Neuropsychopharmacology, 33(3), 685–700. https://doi.org/10.1038/sj.npp.1301446.

Bohling, J. H., Dellingier, J., McVey, J. M., Cobb, D. T., Moorman, C. E., & Waits, L. P. (2016). Describing a developing hybrid zone between red wolves and coyotes in eastern North Carolina, USA. Evolutionary Applications, 9(6), 791–804. https://doi.org/10.1111/evo.12388.

Braschler, B., & Hill, J. K. (2007). Role of larval host plants in the climate-driven range expansion of the butterfly Polygonia c-album. Journal of Animal Ecology, 76(3), 415–423. https://doi.org/10.1111/j.1365-2656.2007.01217.x.

Burton, O. J., Phillips, B. L., & Travis, J. M. J. (2010). Trade-offs and the evolution of life-histories during range expansion. Ecology Letters, 13(10), 1210–1220. https://doi.org/10.1111/j.1461-0248.2010.01505.x.

Carbon, S., Ireland, A., Mungall, C. J., Shu, S. Q., Marshall, B., & Lewis, S. (2009). AmiGO: Online access to ontology and annotation data. Bioinformatics, 25(2), 288–289. https://doi.org/10.1093/bioinformatics/btn615.

Carrera, R., Ballard, W., Gipson, P., Kelly, B. T., Krausman, P. R., Wallace, M. C., ... Webster, D. B. (2008). Comparison of Mexican wolf and coyote diets in Arizona and New Mexico. Journal of Wildlife Management, 72(2), 376–381.

Catchen, J., Hohenlohe, P. A., Bassham, S., Amores, A., & Cresko, W. A. (2013). Stacks: An analysis tool set for population genomics. Molecular Ecology, 22(11), 3124–3140. https://doi.org/10.1111/mec.12354.

Colautti, R. I., & Barrett, S. C. H. (2013). Rapid adaptation to climate facilitates range expansion of an invasive plant. Science, 342(6156), 364–366. https://doi.org/10.1126/science.1242121.

Coop, G., Witonsky, D., Rienzo, A. D., & Pritchard, J. K. (2010). Using environmental correlations to identify loci underlying local adaptation. Genetics, 185(4), 1411–1423. https://doi.org/10.1534/genetics.110.114819.

R Core Team (2013). R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing. https://www.R-project.org/.

DeBow, T., Webster, W., & Sumner, P. (1998). Range expansion of the coyote, Canis latrans (Carnivora: Canidae), into North Carolina; with comments on some management implications. The Journal of the Elisha Mitchell Scientific Society, 114(3), 113–118.

Delgado, M. M., Penentiani, V., Nams, V. O., & Campioni, L. (2009). Changes of movement patterns from early dispersal to settlement. Behavioral Ecology and Sociobiology, 64(1), 35–43. https://doi.org/10.1007/s00265-009-0815-5.

Dray, S., & Dufour, A. B. (2007). The ade4 Package: Implementing the duality diagram for ecologists. Journal of Statistical Software, 22(4), 1–20. https://doi.org/10.18637/jss.v022.i04.

Edmonds, C. A., Lilie, A. S., & Cavali-Sforza, L. L. (2004). Mutations arising in the wave front of an expanding population. Proceedings of the National Academy of Sciences, 101(4), 975–979. https://doi.org/10.1073/pnas.0308064100.

Excoffier, L., Foll, M., & Petit, R. J. (2009). Genetic consequences of range expansions. Annual Review of Ecology, Evolution, and Systematics, 40(1), 481–501. https://doi.org/10.1146/annurev.ecolsys.39.110707.173414.

Gese, E. M., & Grothe, S. (1995). Analysis of coyote predation on deer and elk during winter in Yellowstone National Park, Wyoming. American Midland Naturalist, 133, 36–43.

Gralka, M., Stiewe, F., Farrell, F., Möbius, W., Waclaw, B., & Hallatschek, O. (2016). Allele surfing promotes microbial adaptation from standing variation. Ecology Letters, 19, 889–898. https://doi.org/10.1111/ele.12625.

Greenbaum, G., Templeton, A. R., Zarmi, Y., & Bar-David, S. (2014). Allelic richness following population founding events - A stochastic approach. Molecular Biology and Evolution, 31(4), 970–980. https://doi.org/10.1093/molbev/msu370.

Gralka, M., Stiewe, F., Farrell, F., Möbius, W., Waclaw, B., & Hallatschek, O. (2016). Allele surfing promotes microbial adaptation from standing variation. Ecology Letters, 19, 889–898. https://doi.org/10.1111/ele.12625.

Greenbaum, G., Templeton, A. R., Zarmi, Y., & Bar-David, S. (2014). Allelic richness following population founding events - A stochastic approach. Molecular Biology and Evolution, 31(4), 970–980. https://doi.org/10.1093/molbev/msu370.

Gralka, M., Stiewe, F., Farrell, F., Möbius, W., Waclaw, B., & Hallatschek, O. (2016). Allele surfing promotes microbial adaptation from standing variation. Ecology Letters, 19, 889–898. https://doi.org/10.1111/ele.12625.
white-tailed deer? The Journal of Wildlife Management, 78(4), 571–579. https://doi.org/10.1002/jwmg.693

Rousset, F. (1997). Genetic differentiation and estimation of gene flow from F-Statistics under isolation by distance. Genetics, 145, 1219–1228. https://doi.org/10.1002/jmge.30221.

Rutledge, L. Y., Garroway, C. J., Loveless, K. M., & Patterson, B. R. (2010). Genetic differentiation of eastern wolves in Algonquin Park despite bridging gene flow between coyotes and grey wolves. Heredity, 105(6), 520–531. https://doi.org/10.1038/hdy.2010.6.

Saastamoinen, M., Bocedi, G., Cote, J., Legrand, D., Guillaume, F., Wheat, C. W., … del Mar Delgado, M. (2017). Genetics of dispersal. Biological Reviews, 358, 574–599. https://doi.org/10.1111/brv.12356.

Seehausen, O. (2004). Hybridization and adaptive radiation. Trends in Ecology and Evolution, 19(4), 198–207.

Streicher, J. W., McIntee, J. P., Drzich, L. C., Card, D. C., Schield, D. R., Smart, U., … Castoe, T. A. (2016). Genetic surfing, not allopatric divergence, explains spatial sorting of mitochondrial haplotypes in venomous coralsnakes. Evolution, 70(7), 1435–1449. https://doi.org/10.1111/evo.12967.

Swaegers, J., Mergeay, J., Geystelen, A. V. A. N., & Therry, L. (2015). Neutral and adaptive genomic signatures of rapid poleward range expansion. Molecular Ecology, 24(24), 6163–6176. https://doi.org/10.1111/mec.13462.

Szpiech, Z. A., Jakobsson, M., & Rosenberg, N. A. (2008). ADZE: A rarefaction approach for counting alleles private to combinations of populations. Bioinformatics, 24(21), 2498–2504. https://doi.org/10.1093/bioinformatics/btn478.

Taulman, J. F., & Robbins, L. W. (1996). Recent range expansion and distributional limits of the nine-banded armadillo (Dasypus novemcinctus) in the United States. Journal of Biogeography, 23(5), 635–648. https://doi.org/10.1111/j.1365-2699.1996.tb00024.x.

Thornton, D. H., & Murray, D. L. (2014). Influence of hybridization on niche shifts in expanding coyote populations. Diversity and Distributions, 20(11), 1355–1364. https://doi.org/10.1111/ddi.12253.

Travis, J. M. J., & Dytham, C. (2002). Dispersal evolution during invasions. Evolutionary Ecology Research, 4(8), 1119–1129.

vonHoldt, B. M., Heppenheimer, E., Petrenko, V., Cronquist, P., & Rutledge, L. Y. (2017). Ancestry-specific methylation patterns in admixed offspring from an experimental coyote and gray Wolf cross. Journal of Heredity, 108(4), 341–348. https://doi.org/10.1093/jhered/ess004.

vonHoldt, B. M., Kays, R., Pollinger, J. P., & Wayne, R. K. (2016). Admixture mapping identifies introgressed genomic regions in North American canids. Molecular Ecology, 25(11), 2443–2453. https://doi.org/10.1111/mec.13667.

vonHoldt, B. M., Pollinger, J. P., Earl, D. A., Knowles, J. C., Boyko, A. R., Parker, H., … Wayne, R. K. (2011). A genome-wide perspective on the evolutionary history of enigmatic wolf-like canids. Genome Research, 21(8), 1294–1305. https://doi.org/10.1101/gr.116301.110.

Voss, N., Eckstein, R. L., & Durka, W. (2012). Range expansion of a selfing polyploid plant despite widespread genetic uniformity. Annals of Botany, 110(3), 585–593. https://doi.org/10.1093/aob/mcs117.

Wang, J., Duncan, D., Shi, Z., & Zhang, B. (2013). WEB-based GEnetic SeT Analysis Toolkit (WebGestalt): Update 2013. Nucleic Acids Research, 41, 77–83. https://doi.org/10.1093/nar/gkt439.

Wheeldon, T., Patterson, B., & White, B. (2010). Colonization history and ancestry of northeastern coyotes. Biology Letters, 6(2), 246–247; author reply 248–249. https://doi.org/10.1098/rsbl.2009.0822.

Wheeldon, T. J., Rutledge, L. Y., Patterson, B. R., White, B. N., & Wilson, P. J. (2013). Y-chromosome evidence supports asymmetric dog introgression into eastern coyotes. Ecology and Evolution, 3(9), 3005–3020. https://doi.org/10.1002/ece3.693.

White, T. A., Perkins, S. E., Heckel, G., & Searle, J. B. (2013). Adaptive evolution during an ongoing range expansion: The invasive bank vole (Myodes glareolus) in Ireland. Molecular Ecology, 22(11), 2971–2985. https://doi.org/10.1111/mec.12343.

Wilson, P. J., Rutledge, L. Y., Wheeldon, T. J., Patterson, B. R., & White, B. N. (2012). Y-chromosome evidence supports widespread signatures of three-species canine hybridization in eastern North America. Ecology and Evolution, 2(9), 2325–2332. https://doi.org/10.1002/ece3.301.

Young, S. P., & Jackson, H. H. T. (1951). The clever coyote. Harrisburg, PA: The Stackpole Company.

Zerbino, D. R., Achuthan, P., Akanni, W., Amode, M. R., Barrell, D., Bhai, J., … Flicek, P. (2017). Ensembl 2018. Nucleic Acids Research, 46, 754–761. https://doi.org/10.1093/nar/gkx1098.

Zhang, B., Kirov, S., & Snoddy, J. (2005). WebGestalt: An integrated system for exploring gene sets in various biological contexts. Nucleic Acids Research, 33, 741–748. https://doi.org/10.1093/nar/gki475.

SUPPORTING INFORMATION

Additional supporting information may be found in the Supporting Information section at the end of the article.

How to cite this article: Heppenheimer E, Brzeski KE, Hinton JW, et al. High genomic diversity and candidate genes under selection associated with range expansion in eastern coyote (Canis latrans) populations. Ecol Evol. 2018;8:12641–12655. https://doi.org/10.1002/ece3.4688