REFLEXIVE ABELIAN GROUPS AND MEASURABLE CARDINALS AND FULL MAD FAMILIES

SAHARON SHELAH

Dedicated to Walter Taylor

Abstract. Answering problem (DG) of [1], [2], we show that there is a reflexive group of cardinality which equals to the first measurable cardinal.

Anotated Contents

§0 Introduction

§1 A reflexive group above the first measurable

[We construct the abelian group G_A for every $A \subseteq \mathcal{P}(\lambda)$ and find sufficient conditions for the existence of reflexive groups of cardinality at least λ among them. From this we succeed to deduce the existence of reflexive abelian groups of size the first measurable cardinal, answering a question from Eklof-Mekler book's.]

§2 Arbitrarily large reflexive groups

[We show that it is “very hard”, not to have reflexive groups of arbitrarily large cardinality. E.g. after any set forcing making the continuum above \aleph_ω not collapsing \aleph_ω, there are arbitrarily large reflexive groups.]

0. INTRODUCTION

Definition 0.1. Let G be an abelian group.

(a) The dual of G is the abelian group $\text{Hom}(G, \mathbb{Z})$, which we denote by G^*;

(b) the double dual of G is the abelian group $\text{Hom}(G^*, \mathbb{Z})$, which we denote by G^{**}.

There is the canonical homomorphism from G into G^{**}, that is $a \in G$ is mapped to $F_a \in \text{Hom}(G^*, \mathbb{Z})$ defined by $F_a(f) = f(a)$. The best case, from
our point of view, is when the canonical homomorphism is an isomorphism. There is a nice name for that phenomenon:

Definition 0.2. Let G be an abelian group. We say that G is reflexive, if G is canonically isomorphic to G^{**}.

Basic results about reflexive groups appear in Eklof and Mekler (see [1] and [2] for a revised edition). They present a fundamental theorem of L"os, generalized by Eda. L"os's theorem says that λ is smaller than the first ω-measurable cardinal if and only if the dual of the direct products of λ copies of \mathbb{Z} is the direct sum of λ copies of \mathbb{Z}. The inverse is always true. It says that for all λ, the dual of the direct sum of λ copies of \mathbb{Z} is the direct product of λ copies of \mathbb{Z}. For λ at least the first ω-measurable, L"os's theorem just says the abelian group \mathbb{Z}^{λ} is not reflexive, Eda's theorem describes $\text{Hom}(\mathbb{Z}^{\lambda}, \mathbb{Z})$ in this case. A direct consequence of L"os theorem is the existence of a lot of reflexive groups, but still there is a cardinality limitation. Let us describe the problem. We use the terminology of Eklof and Mekler.

Definition 0.3. Let μ be an infinite cardinal.

(a) μ is measurable if there exists a non-principal μ-complete ultrafilter on μ and μ is uncountable

(b) μ is ω-measurable if there exists a non-principal \aleph_1-complete ultrafilter on μ.

We would like to clarify one important point. Let μ be the first ω-measurable cardinal, and let D be a non-principal \aleph_1-complete ultrafilter on μ. It is well known that D is also μ-complete. So the first ω-measurable cardinal is, in fact, the first measurable cardinal. It is easy to extend any non-principal \aleph_1-complete ultrafilter on μ to an \aleph_1-complete ultrafilter on λ. So λ is ω-measurable for every $\lambda \geq \mu$.

Let us summarize:

Observation 0.4. Let $\mu = \mu_{\text{first}}$ be the first measurable cardinal.

(a) for every $\theta < \mu$, θ is not ω-measurable

(b) for every $\lambda \geq \mu$, λ is ω-measurable.

This terminology enables us to formulate the result that we need. Recall that $\mathbb{Z}^\theta = \prod_{\theta} \mathbb{Z}$ and $\mathbb{Z}^{(\theta)} = \bigoplus_{i<\theta} \mathbb{Z}$. The L"os theorem deals with the existence of \aleph_1-complete ultrafilters. We will refer to the following corollary also known as L"os theorem:

Corollary 0.5. Let $\mu = \mu_{\text{first}}$ be the first measurable cardinal.

(a) for any $\theta < \mu$, $\mathbb{Z}^{(\theta)}$ is reflexive (its dual being \mathbb{Z}^θ).

(b) for every $\lambda \geq \mu$, $\mathbb{Z}^{(\lambda)}$ is not reflexive. \[\Box_{0.5} \]

\[^1 \text{(set theorists call it the first measurable).} \]
The proof of 0.5(a) is based on the fact that every \aleph_1-complete ultrafilter is principal. So it does not work above μ_{first}. Naturally, we can ask - does there exist a reflexive group of large cardinality, i.e., of cardinality $\geq \mu_{\text{first}}$? This is problem (DG) of Eklof-Mekler [1], [2]. We can further ask

Conjecture 0.6. There are reflexive abelian groups of arbitrarily large cardinalities.

We thank Shimoni Garti, Daniel Herden and the referee for helpful comments and corrections.

1. **A reflexive group above the first measurable cardinal**

We answer question (DG) of Eklof-Mekler [1]. There are reflexive groups of cardinality not smaller than the first measurable. Do we have it for arbitrarily large λ, i.e., 0.6?

This is very likely, in fact it follows (in ZFC) from $2^{\aleph_0} > \aleph_\omega$ if some pcf conjecture holds. See the next section.

Theorem 1.1. If $\mu = \mu_{\text{first}}$, the first measurable cardinal, then there is a reflexive $G \subseteq \mu \mathbb{Z}$ of cardinality μ.

Proof. By 1.8(1) below (recall that μ is measurable, so it is strong limit with cofinality greater than \aleph_0) there are $A_1, A_2 \subseteq [\mu]^{\aleph_0}$ such that $A_1 \subseteq A_2^+$ and $\kappa^+(A_1^+) + \kappa^+(A_2^+) \leq \mu$, see Definition 1.3 below. By claim 1.7 below there is a G as required. \hfill \blacksquare

Convention 1.2. $\lambda \geq \aleph_0$ is fixed in this section (we need to fix λ so that A^+ is well defined).

Definition 1.3.

(1) For $A \subseteq \mathcal{P}(\lambda)$, let

(a) $\text{id}(A) = \text{id}_A$ be the ideal of subsets of λ generated by $A \cup [\lambda]^{< \aleph_0}$;

(b) $A^+ = \{ u \subseteq \lambda : u \cap v \text{ finite for every } v \in A \}$;

(c) $\text{el}(A) = \{ u \subseteq \lambda : \text{every infinite } v \subseteq u \text{ contains some member of } \text{sb}(A) \}$;

(d) $\text{sb}(A) = \{ u \subseteq \lambda : u \text{ is infinite and is included in some member of } A \}$.

(2) For $A \subseteq \mathcal{P}(\lambda)$ let

(a) G_A be the subgroup of \mathbb{Z}^{λ} consisting of $\{ f \in \mathbb{Z}^{\lambda} : \text{supp}(f) \in \text{id}(A) \}$ where $\text{supp}(f) = \{ \alpha < \lambda : f(\alpha) \neq 0_{\mathbb{Z}} \}$;

(b) j_A is the function from $G_A^* := \text{Hom}(G_A, \mathbb{Z})$ into \mathbb{Z}^λ defined by:

$$j_A(g)(\alpha) = g(\text{ch}_{\{\alpha\}})$$

where for $u \subseteq \lambda$, $\text{ch}_u = \text{ch}_{\lambda \setminus u}$ is the function with domain λ mapping α to 1 if $\alpha \in u$ and to 0 if $\alpha \in \lambda \setminus u$.

Definition 1.4.
(a) \(\kappa^+(\mathcal{A}) = \bigcup \{|u|^+ : u \in \mathcal{A}\} \),
(b) \(\kappa(\mathcal{A}) = \bigcup \{|u| : u \in \mathcal{A}\} \).

Claim 1.5. Let \(\mathcal{A} \subseteq \mathcal{P}(\lambda) \).
(1) (a) \(\mathcal{A} \subseteq \text{cl}(\mathcal{A}) = \text{cl}(\text{cl}(\mathcal{A})) \)
(b) \(\mathcal{A}^\perp = \{u \subseteq \lambda : [u]^{\aleph_0} \cap \text{sb}(\mathcal{A}) = \emptyset, \text{ e.g. } u \text{ is finite}\} \)
(c) \(\mathcal{A} \subseteq \text{sb}(\mathcal{A}) \cup [\lambda]^{<\aleph_0} \)
(d) \(\mathcal{A} \subseteq \text{id}(\mathcal{A}) \)
(2) (a) \(\mathcal{A}^\perp = \text{id}(\mathcal{A}^\perp) \)
(b) \((\mathcal{A}^\perp)^\perp = \text{cl}(\mathcal{A}) \); note that both include \([\lambda]^{<\aleph_0} \)
(c) \(\mathcal{A}^\perp = \text{cl}(\mathcal{A}^\perp) \); note that both include \([\lambda]^{<\aleph_0} \)
(d) \(\mathcal{A}^\perp = (\text{cl}(\mathcal{A}))^\perp \)
(3) If \(\mathcal{A} \subseteq \mathcal{B} \subseteq \mathcal{P}(\lambda) \), then \(\mathcal{B}^\perp \subseteq \mathcal{A}^\perp \) and \(\kappa^+(\mathcal{A}) \leq \kappa^+(\mathcal{B}) \) and \(\kappa^+(\mathcal{A}) + \aleph_0 = \kappa^+(\text{id}(\mathcal{A})) \).

Proof. 1), 3) Obvious.
2) **Clause (a):** Clearly \(\mathcal{A}^\perp \subseteq \text{id}(\mathcal{A}^\perp) \) by the definition of \(\text{id} \). For the other inclusion, as \(\mathcal{A}^\perp \) includes all finite subsets of \(\lambda \) assume \(u \in \text{id}(\mathcal{A}^\perp) \) is infinite hence for some \(n < \omega \) and infinite \(u_0, \ldots, u_{n-1} \in \mathcal{A}^\perp \) we have:
\[
v \in \mathcal{A} \Rightarrow (\forall \ell < n)(v \cap u_\ell \text{ is finite } \Rightarrow (v \cap \bigcup \{u_\ell : \ell < n\} \text{ is finite }) \Rightarrow (v \cap u \text{ is finite })
\]
hence \(u \in \mathcal{A}^\perp \).

Clause (b): Assume \(u \in \text{cl}(\mathcal{A}) \) and \(v \in \mathcal{A}^\perp \). If \(u \cap v \) is infinite then by "\(u \in \text{cl}(\mathcal{A}) \)" we know that \(u \cap v \) includes some member of \(\text{sb}(\mathcal{A}) \), but by "\(v \in \mathcal{A}^\perp \)" we know that \(u \cap v \) includes no member of \(\text{sb}(\mathcal{A}) \), contradiction. So \(u \cap v \) is finite.

Fixing \(u \in \text{cl}(\mathcal{A}) \) and varying \(v \in \mathcal{A}^\perp \) this tells us that \(u \in ((\mathcal{A}^\perp)^\perp) \). So we have shown \(\text{cl}(\mathcal{A}) \subseteq (\mathcal{A}^\perp)^\perp \).

Next if \(u \subseteq \lambda, u \notin \text{cl}(\mathcal{A}) \) hence \(u \) is infinite then there is an infinite \(v \subseteq u \) such that \([v]^{\aleph_0} \cap \text{sb}(\mathcal{A}) = \emptyset \) hence \(v \) is in \(\mathcal{A}^\perp \), so \(u \) includes an infinite member of \(\mathcal{A}^\perp \) hence \(u \) is not in \((\mathcal{A}^\perp)^\perp \). This shows \(u \notin \text{cl}(\mathcal{A}) \Rightarrow u \notin (\mathcal{A}^\perp)^\perp \). So we get the desired equality.

Clause (c): Similar to the proof of clause (b).

Clause (d): Similar to the proof of clause (b).

Claim 1.6. Let \(\mathcal{A} \subseteq \mathcal{P}(\lambda) \).

(1) If \(\kappa^+(\mathcal{A}) \leq \mu_{\text{first}} := \text{first measurable cardinal} \), then \(j_\mathcal{A} \) is an embedding of \(G^*_\mathcal{A} \) into \(\mathbb{Z}^\lambda \) with its image being \(G^*_\mathcal{B} \) where \(\mathcal{B} = \mathcal{A}^\perp \).

\(^2\text{recalling } [\lambda]^{<\aleph_0} \subseteq (\mathcal{A}^\perp)^\perp \text{ is obvious!} \)
(2) \(G_A \) is reflexive iff \(\text{id}(A) = \ell(A) \) and \(\kappa^+(A) + \kappa^+(A^\perp) \leq \mu_{\text{first}} \).

(3) \(|G_A| = \Sigma \{ 2^{|u|} : u \in \text{id}(A) \} \in [\lambda, 2^\lambda] \).

(4) If \(\kappa^+(A) \leq \mu \) then \(\lambda \leq |G_A| = \lambda^{<\mu} \).

Proof. 1) Clearly \(j_A \) from Definition \([\text{1.3}(2)(b)] \) is a function from \(G^*_A \) into \(\mathbb{Z}^\lambda \) and it is linear. If \(g \in G^*_A \) and \(u \in A \) then by Loš theorem (as \(|u| < \) first measurable) necessarily \(\{ \alpha \in u : g(\text{ch}_{\{\alpha\}}) \neq 0 \} \) is finite. So \(\text{supp}(j_A(g)) \in \mathcal{A}^\perp \). Together \(j_A \) is a homomorphism from \(G^*_A \) into \(G_B \). Also if \(j_A(g_1) = j_A(g_2) \) but \(g_1 \neq g_2 \) then for some \(f \in G_A \) we have \(g_1(f) \neq g_2(f) \) and we can apply Loš theorem for \(\text{supp}(f) \mathbb{Z} \) to get a contradiction, hence \(g_1 = g_2 \) so we have deduced \(j_A \) is one-to-one”. It is also easy to see that it is onto \(G_B \), so we are done.

2) First assume \(\text{id}(A) = \ell(A) \). By \([\text{1.5}(2)(c)] \) we have \(A^\perp = \ell(A^\perp) \). Applying part (1) to \(A \) and to \(A^\perp \) clearly if \(\kappa^+(A) + \kappa^+(A^\perp) \leq \mu_{\text{first}} \) we get \(G_A \) is canonically isomorphic to \((G^*_A)^* \). Now \(j_A \) is an isomorphism from \(G_A \) onto \(G_B = G_A^\perp \) and \(j_B \) is an isomorphism from \(G_B \) onto \(G_B^\perp \), but by \([\text{1.5}(2)(c)] \) by our assumption \(B^\perp = (A^\perp)^\perp = \ell(A) = \text{id}(A) \). So we have proved the “if” implications.

If \(\kappa^+(A) > \mu_{\text{first}} \), then there is \(u \in A \) of cardinality \(\geq \mu_{\text{first}} \), hence by Los theorem we get \(G_A \) is not canonically isomorphic to \(G^*_A \).

Lastly if \(\text{id}(A) \neq \ell(A) \) necessarily there is \(u \in \ell(A) \setminus \text{id}(A) \) and let \(f = \text{ch}_u \) so \(u \in (A^\perp)^\perp \) and \(f \) defines a member of \((G^*_A)^* \) not “coming from \(G_A \)”.

3) Easy. \(\Box \)

Claim 1.7. A sufficient condition for the existence of a reflexive group \(G \) of cardinality \(\geq \lambda \), in fact \(\subseteq \mathbb{Z}^\lambda \) but \(\supseteq \mathbb{Z}^{\langle \lambda \rangle} \) such that \(|G| + |G^*| \leq \lambda^{<\mu_{\text{first}}} \), is \(\oplus_{\lambda, \mu} \), when we define (for cardinals \(\lambda \geq \mu \)):

\[
\oplus_{\lambda, \mu} \text{ there are } A_1, A_2 \subseteq [\lambda]^\aleph_0 \text{ such that }
\]

(a) \(A_1 \subseteq A_2 \), i.e.

\(u_1 \in A_1 \cap u_2 \in A_2 \implies u_1 \cap u_2 \) is finite,

(b) \(\kappa^+(A_1^\perp) + \kappa^+(A_2^\perp) \leq \mu \).

Proof. Let \(A = \ell(A_1) \) and \(B = \ell(A^\perp) \). By \([\text{1.5}(2)(c)] \) we have \(A^\perp = B \), and by \([\text{1.5}(2)(b)] \), we have \(B^\perp = \ell(A^\perp) \) and lastly by \([\text{1.3}(1)(a)] \) we have \(A_1 \subseteq A \) and by \(\oplus_{\lambda, \mu} \) we have \(A_2 \subseteq A_1 \) but \(A_1^\perp = (\ell(A))^\perp = A^\perp = \ell(A^\perp) = B \) by the definitions of \(A \), by \([\text{1.5}(2)(d)] \), hence by \([\text{1.5}(2)(c)] \) and by the definition of \(B \); together we have \(A_2 \subseteq B \).

Now \(A_1 \subseteq A \) hence \(A_1^\perp \subseteq A_1^\perp \) so \(\kappa^+(A_1^\perp) \leq \kappa^+(A_1^\perp) \leq \mu_{\text{first}} \), also \(A_2 \subseteq B \) hence \(B^\perp \subseteq A_2 \) hence \(\kappa^+(B^\perp) \leq \kappa^+(A_2^\perp) \leq \mu_{\text{first}} \). But \(A^\perp = B \) and \(B^\perp = A \) and we have shown \(\kappa^+(A), \kappa^+(B) \leq \mu_{\text{first}} \). So by \([\text{1.6}(1),(2)] \) \(G_A, G_B \) are reflexive and by \([\text{1.6}(4)] \) the cardinality inequalities hold. \(\Box \)
Claim 1.8.

1. If $\lambda > \aleph_0$ has uncountable cofinality, then there are $A_1, A_2 \subseteq [\lambda]^{\aleph_0}$ such that $A_1 \subseteq A_2^+$ and $\kappa^+(A_1^+) + \kappa^+(A_2^+) \leq \lambda$.

2. Assume $\lambda > \mu > \aleph_0$ and $S_1 \subseteq S_{\aleph_0}^\lambda = \{ \delta < \lambda : \operatorname{cf}(\delta) = \aleph_0 \}$, $S_2 = S_{\aleph_0}^\lambda \setminus S_1$ are such that for every ordinal $\delta < \lambda$ of cofinality $\geq \mu$, the set $\delta \cap S_\ell$ is stationary in δ for $\ell = 1, 2$. Then for some $A_1, A_2 \subseteq [\lambda]^{\aleph_0}$, we have $\kappa^+(A_\ell^+) \leq \mu$ for $\ell = 1, 2$ and $A_1 \subseteq A_2^+$.

3. If $V = L$ (or, e.g. just $\neg \exists 0^+$), then for every $\lambda > \aleph_0 = \mu$ the assumption of (2) holds.

Proof. 1) For each $\delta \in S_{\aleph_0}^\lambda = \{ \delta < \lambda : \delta$ limit of cofinality $\aleph_0 \}$, let $P_\delta = \{ u \subseteq \delta : \operatorname{otp}(u) = \omega$ and $\sup(u) = \delta \}$. Let $S_1, S_2 \subseteq S_{\aleph_0}^\lambda$ be stationary disjoint subsets of λ and let $A_\ell = \bigcup\{ P_\delta : \delta \in S_\ell \}$ for $\ell = 1, 2$. Now check.

2) The same proof as the proof of part (1).

3) Well known. \square

Remark 1.9. Also it is well known that we can force an example as in 1.8(2) for $\lambda = \mu_{\text{first}}, \mu = \aleph_1$.

Without loss of generality $V \models \text{GCH}$ and let $\theta = \operatorname{cf}(\theta) \leq \mu_{\text{first}}, \theta > \aleph_0$. Let $\langle (P_\alpha, Q_\alpha) : \alpha \in \text{Ord} \rangle$ be a full support iteration, Q_α is defined as follows: it is $\{ f : \text{for some } \gamma < \aleph_\alpha, f \in \gamma \{ 1, 2 \}, \text{and for no increasing continuous sequence } (\alpha_\varepsilon : \varepsilon < \theta) \text{ of ordinals } < \gamma \text{ and } \ell \in \{ 1, 2 \} \text{ do we have } \varepsilon < \theta \Rightarrow f(\alpha_\varepsilon) = \ell \}$ if \aleph_α is regular, uncountable, Q_α is trivial, $\{ \emptyset \}$, otherwise.

Claim 1.10. Assume $V = L$ or much less: for every singular μ above 2^{\aleph_0} with countable cofinality, we have $\mu^{\aleph_0} = \mu^+$ and \square_μ.

Then for every λ there is a pair (A_1, A_2) as in $\exists \lambda, \aleph_1$ from 1.7.

Proof. See Goldstern-Judah-Shelah \cite{GJSh}.

Remark 1.11.

1. The assumption of Claim 1.10 holds in models with many measurable cardinals.

2. Note that if $\mu_1 \leq \mu_2$ then clearly $\oplus_{\lambda, \mu_1} \Rightarrow \oplus_{\lambda, \mu_2}$.

2. Arbitrarily large reflexive groups

In this section we shall show that it is “hard” to fail the assumptions needed in the previous section in order to prove that there are reflexive groups of arbitrarily large cardinality. A typical result is Conclusion 2.1. Its
proof uses parameters x (see Definition 2.7). It is closed to an application in [7] to the Cantor discontinuum partition problem but as the needed lemma 2.8 is only close to [7], we give a complete proof in the appendix (the next section).

A characteristic conclusion is

Conclusion 2.1. There is a reflexive subgroup G of $^{\lambda}\mathbb{Z}$ if $(\ast)_{\mu}$ below holds, moreover G, G^* has cardinality $\in [\lambda, \lambda^{\mu}]$, when

$$(\ast)_{\mu} \quad \kappa \text{ is strong limit singular } < \mu \text{ first of cofinality } \aleph_0 \text{ and for no } \chi \geq 2^{\kappa} \text{ is there a subfamily } A \subseteq [\chi]^{\kappa^*} \text{ of cardinality } > \chi \text{ the intersection of any two members is of cardinality } < \kappa.$$

Remark 2.2. Alternatively, assume $\kappa = \aleph_0 < \kappa^* < 2^{\aleph_0}$, $a = 2^{\aleph_0}$.

Definition 2.3.

(1) We say that the triple (κ, κ^*, μ) is admissible when $\mu = \mu^\kappa$ (here usually $\mu = 2^\kappa$), $\kappa \leq \kappa^* < \mu$ and the triple is λ-admissible for every $\lambda \geq \mu$, see below.

(2) The triple (κ, κ^*, μ) is λ-admissible when there is θ witnessing it which means:

(a) $\mu = \mu^\kappa, \kappa \leq \kappa^* < \mu \leq \lambda,$
(b) $\kappa^* \leq \theta < \mu,$
(c) there is no family of more than λ members of $[\lambda]^{\geq \theta}$ such that the intersection of any two has cardinality (strictly) less than κ^*.

(3) The triple (κ, κ^*, μ) is weakly λ-admissible when:

(a) as above, i.e. $\mu = \mu^\kappa, \kappa \leq \kappa^* < \mu \leq \lambda,$
(b) there is no family of more than λ members of $[\lambda]^\mu$ with any two of intersection of cardinality (strictly) less than κ^*.

Remark 2.4.

(1) We may allow (κ, κ^*) to be ordinals.
(2) In the proof of [7] 3.8, “θ witness (κ, κ^*, μ) is λ-admissible” was written $\otimes^\theta\lambda$.

Claim 2.5. The triple (κ, κ^*, μ) is admissible when at least one of the following occurs:

$$(\ast)_1 \quad \mu = 2^{\aleph_0} \geq \aleph_0 > \kappa^* \geq \kappa = \aleph_0, \delta \text{ a limit ordinal}$$
(b) for every $\lambda > \mu = 2^{\aleph_0}$ we have\footnote{recall $pp_J(\theta) = \sup(\{\text{pcf}_J(\theta) : \theta = \langle \theta_\xi : \xi \in S, \theta_\xi = \text{cf}(\theta_\xi) \in (|S|, \theta) \text{ and } \theta = \lim_J(\theta_\xi : \xi < \aleph_0)\})$ where $S = \text{Dom}(J)$}
\[\delta > \sup\{\alpha < \delta : \text{for some } \theta \in (\mu, \lambda), \text{cf}(\theta) = \aleph_\alpha \text{ and } \text{pp}_J(\theta) > \lambda \text{ for some } \aleph_\alpha \text{-complete ideal } J \text{ on } \aleph_\alpha \} \]

\[(\star)_2 \kappa > \text{cf}(\kappa) = \aleph_0 \text{ is strong limit, } \delta \text{ a limit ordinal and we have:} \]

(a) \(\mu = \mu^\kappa \geq \kappa^+ > \kappa^* \geq \kappa, \)

(b) for every \(\lambda > \mu \) we have

\[\delta > \sup\{\alpha < \delta : \text{for some } \theta \in (\mu, \lambda), \text{cf}(\theta) = (\kappa^*)^{+\alpha} \text{ and } \text{pp}_J(\theta) > \lambda \text{ for some } (\kappa^*)^{+\alpha} \text{-complete ideal on } (\kappa^*)^{+\alpha} \}. \]

Remark 2.6. In 2.5, clause (b) of \((\star)_2 \) we can ask less because in clause (c) of 2.3(2) the intersection has cardinality \(\kappa^* \) not just \(\theta \).

Proof. Should be clear. \(\square \)

Definition 2.7. 1) The quintuple \(x = (X, c\ell, \kappa, \kappa^*, \mu) \) is a parameter when:

(a) \(c\ell : \mathcal{P}(X) \to \mathcal{P}(X) \),

(b) \(\kappa \leq \kappa^* \leq \mu = \mu^\kappa \).

2) The quintuple \(x \) is an admissible parameter when in addition:

(c) the triple \((\kappa, \kappa^*, \mu) \) is an admissible triple (see Definition 2.3(1) above).

3) We define \(\mathcal{P}^*_x := \{ A \subseteq X : |A| = \mu \text{ and for every } B \subseteq A \text{ satisfying } |B| = \kappa^* \text{ there is } B' \subseteq B, |B'| = \kappa \text{ such that } c\ell(B') \subseteq A, \text{ and } |c\ell(B')| = \mu \} \)

and

\[\mathcal{Q}^*_x = \{ B : B \subseteq X, |B| = \kappa \text{ and } |c\ell(B)| = \mu \} \]

and for \(A \in \mathcal{P}^*_x \) we define \(\mathcal{Q}^*_{x,A} = \{ B \in \mathcal{Q}^*_x : c\ell(B) \subseteq A \} \).

4) We say \(x \) is a strongly solvable parameter when:

(a),(b) as in part (1)

(c) if \(h = \langle h^1_B, h^2_B : B \in \mathcal{Q}^*_x \rangle \) and for every \(B \in \mathcal{Q}^*_x \) we have \(h^\ell_B : c\ell(B) \to \mu \) for \(\ell = 1,2 \) and \((\forall \alpha < \mu)(\exists \beta \in c\ell(B))(h^2_B(\beta) = \alpha) \), then there is a function \(h : X \to \mu \) such that:

(\(\circ \)) if \(A \in \mathcal{P}^*_x \), so \(|A| = \mu \) then for some \(B \in \mathcal{Q}^*_{x,A} \) for every \(\beta < \mu \) the set \(\{ x \in c\ell(B) : h^1_B(x) = \beta, h(x) = h^2_B(x) \} \) has cardinality \(\mu \).

5) \(x \) is called solvable if above we restrict to the case \(h^1_B = h^2_B \).
Lemma 2.8. If \(x = (X, \ell, \kappa, \kappa^*, \mu) \) is an admissible parameter, then \(x \) is strongly solvable.

Proof. The proof is similar to [7, 3.8(2)], see a full proof in the next section. □ 2.8

We need the following for stating the main result:

Definition 2.9. 1) We say \(\mathcal{A} \subseteq \mathcal{P}(\lambda) \) is \((\sigma, \kappa^*, \mu)\)-full in \(\lambda \) when \(\mathcal{A} \subseteq [\lambda]^{\sigma} \) and for every \(A \in [\lambda]^{\kappa^*} \) we have: \(|A \cap B| \geq \sigma \) for at least \(\mu \) members \(B \) of \(\mathcal{A} \) or \(\sigma = \kappa^* \) and \(\{ B \in \mathcal{A} : |B \cap A| \geq \sigma \} \) has cardinality \(< \kappa^* \).

2) We say \(\mathcal{A} \subseteq [\lambda]^{\sigma} \) is \((\sigma, \theta)\)-MAD or \(\theta\)-MAD in \(\lambda \) when \(|A| \geq \sigma \) and \(B_1 \neq B_2 \in \mathcal{A} \Rightarrow |B_1 \cap B_2| < \theta \) and \(B \in [\lambda]^{\sigma} \Rightarrow (\exists A \in \mathcal{A})(|A \cap B| \geq \theta) \).

2A) If \(\theta = \sigma \) we may omit \(\theta \) writing “MAD”. We may omit “in \(\lambda \)” and we may replace “in \(\lambda \)” by “in \(\mathcal{A} \)”.

3) For \(\theta \leq \sigma \leq \chi \) let \(a_{\chi, \sigma, \theta} = \text{Min}\{ |A| : \mathcal{A} \subseteq [\lambda]^{\sigma} \text{ is } \theta\text{-MAD} \} \) and let \(a_{\chi, \sigma} = a_{\chi, \sigma, \theta} \).

Claim 2.10. 1) Assume \(\mathcal{A} \subseteq [\lambda]^{\sigma} \) is MAD, i.e. \(|A| \geq \sigma, A \neq B \in \mathcal{A} \Rightarrow |A \cap B| < \sigma \) and there is no \(A \in [\lambda]^{\sigma} \) such that \(B \in \mathcal{A} \Rightarrow |B \cap A| < \sigma \). Then the family \(\mathcal{A} \) is \((\sigma, \kappa^*, \mu)\)-full (in \(\lambda \)) when

\[a_{\sigma, \kappa^*, \mu} \leq \kappa^* < \mu \text{ and } a_{\kappa^*, \sigma} \geq \mu. \]

2) The statement \(a_{\sigma, \kappa^*, \mu} \) holds when at least one of the following occurs:

\[(\ast)_1 \sigma = \aleph_0 \leq \kappa^* < \mu = 2^{\aleph_0} \text{ and } a = 2^{\aleph_0} \text{ (or just } a_{\kappa^*, \aleph_0} = 2^{\aleph_0} \),
\]

\[(\ast)_2 \sigma \text{ is regular and for some strong limit singular cardinal } \chi > \sigma \text{ of cofinality } \sigma \text{ we have } \chi \leq \kappa^* < \mu = 2^\chi. \]

Proof. 1) Let \(A \in [\lambda]^{\kappa^*} \), so if \(\kappa^* > \kappa \) then by “\(A \) is MAD” necessary \((\exists \kappa^* B \in \mathcal{A})(B \cap A \text{ has cardinality } \geq \sigma)\), hence \((\exists \kappa^* B \in \mathcal{A})(B \cap A \text{ has cardinality } \geq \sigma)\). Now \(\mathcal{A}' := \{ u \cap A : u \in \mathcal{A} \} \) and \(u \cap A \text{ has cardinality } \geq \sigma \) is a MAD family of subsets of \(A \) hence \(|\mathcal{A}'| \geq a_{\kappa^*, \sigma} \geq \mu \) as required. Note that \(a_{\kappa^*, \sigma} \geq a_{\sigma, \sigma} \).

2) Case 1: \((\ast)_1\) holds.

Obvious.

Case 2: We have \((\ast)_2\) so \(\sigma, \chi, \kappa^*, \mu \) are as there. Verifying \(a_{\sigma, \kappa^*, \mu} \) the first demand “\(\sigma \leq \kappa^* < \mu \)” is obvious - just check \((\ast)_2\), but have to prove \(a_{\kappa^*, \sigma} \geq \mu; \) see Definition 2.9(3). So assume \(\mathcal{A} \subseteq [\kappa^*]^{\sigma} \) is \(\sigma\)-MAD in \(\kappa^* \) and we should prove that \(|\mathcal{A}| \geq \mu \).

Let \(A \in [\kappa^*]^{\chi} \) and \(A' := \{ u \cap A : u \in \mathcal{A} \} \) has cardinality \(\geq \kappa^* \); clearly \(A \) is a MAD subfamily of \([\lambda]^{\sigma} \). But:

\[\circ_1 \text{ there is a MAD family } \mathcal{A}_0 \subseteq [\lambda]^{\sigma} \text{ of cardinality } \chi^\sigma = 2^\chi, \]

\[\circ_2 \text{ if } u \in \mathcal{A}' \text{ and even } u \in [\lambda]^{\sigma} \text{ then } |\{ v \in \mathcal{A}_0 : |v \cap u| \geq \sigma \}| \leq 2^\kappa. \]

Hence necessarily \(|\mathcal{A}'| = 2^\chi = \mu \), hence \(\{ B \in \mathcal{A} : A \cap B \text{ of cardinality } \sigma \} \) has cardinality \(\mu \) as required. □ 2.10
We shall use the following definition for \(\sigma = \aleph_0 \) in the proof of the main result in this section:

Definition 2.11. Assume \(\lambda \) is an infinite cardinal, \(\mathcal{A} \subseteq [\lambda]^{\sigma} \) a MAD family, \(|\mathcal{A}| = \lambda^\sigma \) and \(\bar{u}^* = \langle u^*_\alpha : \alpha < \lambda^\sigma \rangle \) enumerates \(\mathcal{A} \) with no repetitions. For every \(A \subseteq \lambda^\sigma \) we define \(\text{set}(A) = \text{set}(A, \bar{u}^*) \) as

\[
\bigcup \{ u^*_\alpha : \text{the set } u^*_\alpha \cap \left(\bigcup \{ u^*_\beta : \beta \in A \} \right) \text{ is an infinite set} \} \cup (\lambda \cap A).
\]

Claim 2.12.

1) There is a reflexive group \(G \subseteq \lambda^\mathbb{Z} \) of cardinality \(\in [\lambda, \lambda^\mu] \) when:

 (a) \((\kappa, \kappa^*, \mu)\) is an admissible triple, \(\mu < \mu_{\text{first}} \)

 (b) at least one of the following holds

 \(\alpha\) a \(= 2^{\aleph_0} = \mu \) and \(\kappa = \aleph_0 \)

 \(\beta\) \(\kappa\) is strong limit singular of cofinality \(\aleph_0 \) and \(\mu = 2^\kappa \)

 \(\gamma\) there is a MAD family \(\mathcal{A} \subseteq [\mu]^\aleph_0 \) which is \((\aleph_0, \kappa^*, \mu)\)-full, i.e.

 such that: if \(A \in [\mu]^{\kappa^*} \) then

 \[
 |\{ u \in A : u \cap B \text{ is infinite} \}| = \mu.
 \]

2) Given \(\mu \), for every \(\lambda \geq \mu \) there are \(A_1, A_2 \) as in \(\supseteq \lambda, \mu \) of 1.7 provided that there are an admissible triple, \((\kappa, \kappa^*, \mu)\) and a \((\aleph_0, \kappa^*, \mu)\)-full MAD family \(\mathcal{A} \subseteq [\lambda]^{\aleph_0} \).

Remark 2.13.

1) Concerning 2.12(2) if \(\kappa < \mu_{\text{first}} \) then trivially 1.7 apply.

2) Actually [8, §3] deals essentially with equiconsistency results for such properties.

Proof.

1) First there is a MAD family \(\mathcal{A} \subseteq [\lambda]^{\aleph_0} \). It is \((\kappa, \kappa^*, \mu)\)-full. Why?

if assumption (b)(\(\alpha\)) then by 2.10 using (\(*\)) in part (2) there; if (b)(\(\beta\)) then by 2.10 using (\(*\)) of part (2) there with \(\kappa \) here standing for \(\chi \) there; of course also (b)(\(\gamma\)) implies this. Second, the result follows from part (2) and 1.7.

2) Without loss of generality \(\lambda > \mu \), as otherwise the conclusion is trivial. We use the Lemma 2.8.

To apply it we shall choose \(X, c, \ell \) and let \(\textbf{x} = (X, c, \ell, \kappa, \kappa^*, \mu) \) and show that the demands there hold. Let \(\mathcal{A} \subseteq [\lambda]^{\aleph_0} \) be a MAD family of cardinality \(\lambda^{\aleph_0} \) which is \((\kappa, \kappa^*, \mu)\)-full and without loss of generality \(\mathcal{A} \cap \lambda = \emptyset \), i.e. no \(u \in \mathcal{A} \) is a countable ordinal and let \(\bar{u}^* = (u^*_\alpha : \alpha < \lambda^{\aleph_0}) \) list \(\mathcal{A} \) with no repetitions.

Recall, that by the claim’s assumption \(\mu = 2^\kappa \) and let \(X = \lambda \cup \mathcal{A} \), i.e. if \(\alpha \) is an ordinal of cardinality \(\aleph_0 \) then \(\alpha \notin \mathcal{A} \). We define a function

\[
c, \ell : \mathcal{P}(\lambda \cup \mathcal{A}) \to \mathcal{P}(\lambda \cup \mathcal{A}) \text{ by:}
\]

\[
c, \ell(A) := \{ B \in \mathcal{A} : B \cap \text{set}(A, \bar{u}^*) \text{ is infinite} \}
\]

where \(\text{set}(A, \bar{u}^*) \) is defined in Definition 2.11 with \(\aleph_0 \) here standing for \(\sigma \).
there.

We shall prove

\otimes the quintuple $x = (X, \ell, \kappa, \kappa^*, \mu)$ is an admissible parameter.

We should check the demands of Definition 2.7(1)(2),

Clause (a) there, i.e. $\ell : \mathcal{P}(X) \to \mathcal{P}(X)$ is trivial by our choices of X, ℓ

Clause (b) there says $\kappa \leq \kappa^* \leq \mu = \mu\kappa$, which is trivial.

Clause (c): It says that (κ, κ^*, μ) is admissible triple which holds by our assumption (a) of 2.12.

So we can apply Lemma 2.8 hence

\oplus x is strongly solvable, see Definition 2.7(3).

To apply it we should choose $\bar{h} = \langle h_1^1, h_2^2 : u \in Q^*_X \rangle$.

Given $u \in Q^*_X$, hence $u \in [X]^\kappa$ we let $h_2^2 : \ell(u) \to \mu$ be such that

$$(\forall \alpha < \mu)(\exists \beta \in \ell(u))[h_2^2(\beta) = \alpha].$$

Let $h_1^1(x)$ be $h_2^2(x)$.

So by clause (c) of Definition 2.7(4) there is a function $h : X \to \mu$ satisfying \otimes from Definition 2.7(4). We define $A_\ell := \{A \in A : h(A) = \ell\} \subseteq A$

for $\ell = 1, 2$ and it suffices to check that (A_1, A_2) are as required in ⊗ of Claim 1.7.

First, as $A_1, A_2 \subseteq A$ and A is $\subseteq |\lambda|^{\aleph_0}$ clearly $A_1, A_2 \subseteq |\lambda|^{\aleph_0}$.

Second, Clause (a) there says “$u_1 \in A_1 \land u_2 \in A_2 \Rightarrow u_1 \cap u_2$ finite” and it holds as A_1, A_2 are disjoint subsets of A which is a MAD subset of $|\lambda|^{\aleph_0}$.

Third and lastly, clause (b) from \otimes of Definition 1.7 says that $\kappa^+(A_\ell^\perp) \leq \mu$. So towards a contradiction assume $A \subseteq \lambda, |A| = \mu$ and $A \in A_\ell^\perp$, i.e.

“$u \in A_\ell \Rightarrow A \cap u$ finite”

Let

$A' := \{u^*_\alpha \in A : A \cap u^*_\alpha$ is infinite$\}.$

Now if $A \in \mathcal{P}^*_X$ then by the definition of “$A \in \mathcal{P}^*_X$” in 2.7(3) there is $B \subseteq A$ which belongs to Q^*_X, λ hence $|B| = \kappa$ and recall $\kappa < \mu$. Clearly $\ell(B) \setminus \lambda \subseteq A' \subseteq A$ and by the choice of h for some such B there is $u^*_\alpha \in cl(B)$ satisfying $h(u^*_\alpha) = \ell$. Also as

$u^*_\alpha \in cl(B) \cap A \subseteq cl(A) \cap A, $

clearly $h(u^*_\alpha) = \ell$ and $u^*_\alpha \in A_\ell$, contradiction to “$A \in A_\ell^\perp$”. So we are left with proving

\oplus $A \in \mathcal{P}^*_X$.

This follows from the choice of $A \subseteq |\lambda|^{\aleph_0}$ as MAD (κ, κ^*, μ)-full.

□ 2.12

Note that it is very hard to fail $\forall \lambda)(\oplus_{\lambda, \text{first}})$, e.g. easily
Claim 2.14. 1) If \(\chi \) is strong limit (uncountable), \(\mathbb{P} \) is a (set) forcing and,
\[
\|\mathbb{P} \| > \chi \text{ and } \chi \text{ is still a limit cardinal}
\]
where \(\mathbb{P} \) has cardinality \(\leq \chi \) or at least satisfies the \(\chi^+ \)-c.c., then in \(\mathcal{V}^\mathbb{P} \) the triple \((\mathbb{N}_0, \chi, 2^{\mathbb{N}_0}) \) is admissible.

1A) If \(\mathbb{P} \) is a (set) forcing, \(\kappa < \chi \) are strong limit cardinals and \(\|\mathbb{P} \| \) is \(\chi \text{ is a limit cardinal } \kappa \text{ and is strong limit cardinal of cofinality } \mathbb{N}_0 \) and \(\chi < \kappa \), and \(\mathbb{P} \) satisfies the \(\chi \text{-c.c.} \), then the tuple \((\kappa, \chi, \mathbb{N}_0) \) is admissible.

2) If \(\diamondsuit \) holds, \(\mu = \mu_{\text{first}} \) or just \(\mu \) is regular and \(\mathbb{P} \) is a forcing notion of cardinality \(< \mu \), then we have \(\diamondsuit \) in \(\mathcal{V}^\mathbb{P} \) also.

Proof. 1) Without loss of generality there is \(\delta \), a limit ordinal such that \(\|\mathbb{P} \| \) is \(\mathcal{V}^\mathbb{P} \) for every \(\lambda > \chi \) for some \(\theta = \theta_\lambda < \mu \) we have \(\text{cov}(\lambda, < \chi, < \chi, \theta_\lambda) = \lambda \).

This continues to hold in \(\mathcal{V}^\mathbb{P} \) if we use \(\theta_1^\lambda = \theta_\lambda + (\text{cf}(\chi))^+ \) if \(\chi \) is singular, \(\theta'_\lambda = \theta_\lambda \) if \(\chi \) is regular.

This is more than required in clauses (b),(c) of Definition 2.3.

1A), 2) Easy. \(\square \)

Remark 2.15. 1) The holding of “\(\theta \) witness \((\kappa, \kappa^*, \mu)\) is \(\lambda \)-admissible” is characterized in \([6, \S 6] \).

2) On earlier results concerning such problems and earlier history see Hajnal-Juhasz-Shelah \([4]\).

3. APPENDIX: THE PROOF OF 2.8

We are assuming \(\mathbf{x} = (X, c\ell, \kappa, \kappa^*, \mu) \) is an admissible parameter and we shall prove that it is strongly solvable. In Definition 2.7(4) clauses (a),(b) hold trivially so it suffices to prove clause (c). So let \(\mathbf{h} = \langle h^1_B, h^2_B : B \in \mathcal{Q}_X^\mathbf{x}\rangle \) as there be given.

We prove by induction on \(\lambda \in [\mu, |X|] \) that:

\[(*)_\lambda \text{ if } Z, Y \text{ are disjoint subsets of } X \text{ such that } |Y| \leq \lambda, \text{ then there are } h, Y^+ \text{ such that}
\]
(a) \(Y \subseteq Y^+ \subseteq X \setminus Z \)
(b) \(|Y^+| \leq \lambda \)
(c) \(h \) is a function from \(Y^+ \) to \(\mu \)
(d) if \(A \in \mathcal{P}_X^\kappa, \kappa^* \leq \theta < \mu \), the cardinal \(\theta \) is a witness to \((\kappa, \kappa^*, \mu)\) being \(\lambda \)-admissible, \(|A \cap Y^+| \geq \theta, |A \cap Z| < \mu \) and \(\beta < \mu \) then
\[
|\{x : h^1_B(x) = \beta \text{ and } h(x) = h^1_B(x)\}| = \mu \text{ for some } B \in \mathcal{Q}_A^\lambda.
\]
CASE A: \(\lambda = \mu, \) so \(|Y| \leq \mu.\)

As \(|Y| \leq \mu = \mu^\kappa,\) there is a set \(Y^+\) of cardinality \(\leq \mu\) such that \(Y \subseteq Y^+ \subseteq X \setminus Z\) and

\[\circ_1 \text{ if } B \subseteq Y^+ \text{ and } |B| \leq \kappa \text{ and } |\text{cl}(B)| = \mu \text{ then } \text{cl}(B) \setminus Z \subseteq Y^+. \]

Let

\[\mathcal{P} = \{ B \subseteq Y^+ : |B| \leq \kappa \text{ and } (h_B^2)^{-1}(\{\beta\}) \setminus Z \text{ has cardinality } \mu \text{ for every } \beta < \mu \}. \]

Clearly \(|\mathcal{P}| \leq \{|B : B \subseteq Y^+ \text{ and } |B| \leq \kappa\}| \leq |Y^+|^\kappa = \mu^\kappa = \mu\) and for every \(B \in \mathcal{P}\) and \(\beta < \mu\) the set \((h_B^2)^{-1}(\{\beta\}) \setminus Z\) is included in \(Y^+\) and has cardinality \(\mu.\) So \(\langle (h_B^2)^{-1}(\{\beta\}) \setminus Z : B \in \mathcal{P} \text{ and } \beta < \mu \rangle\) is a sequence of \(\mu\) subsets of \(Y^+\) each of cardinality \(\mu.\) Hence there is a sequence \(\langle C_{B,\beta} : B \in \mathcal{P}, \beta < \mu \rangle\) of pairwise disjoint sets such that \(C_{B,\beta} \subseteq (h_B^2)^{-1}(\{\beta\})\) and \(|C_{B,\beta}| = \mu.\)

Define a function \(h\) from \(Y^+\) to \(\mu\) such that \(h \upharpoonright C_{B,\beta} \subseteq h_B^1\) for \(B \in \mathcal{P}, \beta < \mu\) and

\[h \upharpoonright (Y^+ \cup \{C_{B,\beta} : B \in \mathcal{P} \text{ and } \beta < \mu\}) \text{ is constantly zero.} \]

Clearly clauses (a),(b),(c) of (\(\ast\))\(\lambda\) holds. For clause (d) assume \(A \in \mathcal{P}_\chi^*\) and \(|A \cap Z| < \mu, \theta \in [\kappa^*, \mu)\) witness that the tuple \((\kappa, \kappa^*, \mu)\) is \(\mu\)-admissible, and \(|A \cap Y^+| \geq \theta.\) Then by (2.7)(3) there is a set \(B \in \mathcal{Q}_\chi^*\) such that \(B \subseteq A, |B| \leq \kappa\) and \(|\text{cl}(B)| = \mu.\) Clearly \(B \in \mathcal{P}\) and so clause (d) holds by the choice of \(h.\) So the function \(h\) is as required.

CASE B: \(\lambda > \mu. \)

Let \(\chi = (2^\lambda)^+\) and choose \(\langle N_i : i \leq \lambda \rangle\) an increasing continuous sequence of elementary submodels of \((\mathcal{H}(\chi), \in, <^*_\chi)\) such that \(X, \text{cl}, Y, Z, \lambda, \kappa, \kappa^*, \mu\) belong to the set \(N_0, \mu + 1\) is included in \(N_0,\) the sequence \(\langle N_i : i \leq j \rangle\) belongs to \(N_{j+1}\) (when \(j < \lambda\)) and \(|N_i| = \mu + |i|\).

Choose \(\theta \in [\kappa^*, \mu)\) which witness that the triple \((\kappa, \kappa^*, \mu)\) is \(\lambda\)-admissible. We define by induction on \(i < \lambda,\) a set \(Y_i^+\) and a function \(h_i\) as follows:

\[(\ast) \text{ (}Y_i^+, h_i\text{) is the }<^*_\chi\text{-first pair } (Y^*, h^*) \text{ such that:} \]

\[(a) \ Y^* \subseteq X \setminus (Z \cup \bigcup_{j<i} Y_j^+) \]

\[(b) \ Y \cap N_i \cap \bigcup_{j<i} Y_j^+ \setminus Z \subseteq X \cap N_i \cap \bigcup_{j<i} Y_j^+ \setminus Z \subseteq Y^* \]

\[(c) \ |Y^*| \leq \mu + |i| \]

\[(d) \ h^* : Y^* \to \mu \]

\[(e) \ h^* \upharpoonright ((h_B^2)^{-1}(\{\beta\}) \cap Y^*) \text{ coincides with } h_B^1 \text{ on a set of cardinality } \mu \text{ for some } B \in \mathcal{Q}_{\chi,A}^* \text{ and every } \beta < \mu, \text{ when for some } \theta': \]

\[(\alpha) \ A \in \mathcal{P}_\chi^*; \]
\[(\beta) \kappa^* \leq \theta' < \mu, \text{ moreover } \theta' \text{ is a witness for the triple } (\kappa, \kappa^*, \mu) \text{ being } (\mu + |i|)-admissible,\]

\[(\gamma) |A \cap Y^*| \geq \theta',\]

\[(\delta) |A \cap (Z \cup \bigcup_{j<i} Y^+_j)| < \mu.\]

Note: \((Y^+_i, h_i)\) exists by the induction hypothesis applied to the cardinal \(\lambda' := \mu + |i|\) and the sets \(Z' := Z \cup \bigcup_{j<i} Y^+_j\) and \(Y' := X \cap N_i \setminus \bigcup_{j<i} Y^+_j\) so we can carry out the induction. Also it is easy to prove by induction on \(i\) that

\[\oplus \quad \text{(a)} \quad \langle (Y^+_j, h_j) : j \leq i \rangle \in N_{i+1}\]

\[\text{(b)} \quad Y^+_j \subseteq N_{j+1}\]

[Why? First we show \(\langle (Y^+_j, h_j) : j < i \rangle \in N_{i+1}\) as the induction can be carried inside \(N_{i+1}\). Now \(Y^+_i, h_i \in N_{i+1}\) as we always have chosen “the \(<x^*\)-first”, so clause (a) above holds. As for \(Y^+_i \subseteq N_{i+1}\); i.e. clause (b) note that \(|Y^+_j| = \mu + |i|\) and \((\mu + 1) \subseteq N_{i+1}, j + 1 \subseteq N_{j+1}\) by the choice of \(\langle N_i : i < \lambda \rangle\).

Let \(Y^+ = \bigcup_{i<\lambda} Y^+_i\) and \(h = \bigcup_{i<\lambda} h_i\). Clearly \(Y \subseteq N_\lambda = \bigcup_{i<\lambda} N_i\) as \(Y \in N_0, i < \lambda \Rightarrow i \in N_i \subseteq N\) and \(|Y| = \lambda\) so \(\lambda \in N_0\) and \(\lambda \subseteq N_\lambda\), hence by requirement (b) of \(\oplus\) clearly \(Y \subseteq Y^+\), (and even \(X \cap N_\lambda \setminus Z \subseteq Y^+\)); by requirements (c) (and (a)) of \(\oplus\) clearly \(|Y^+| \leq \lambda\), by requirement (a) of \(\oplus\) clearly \(Y^+ \subseteq X \setminus Z\) and by requirement (b) of \(\oplus\), even \(Y^+ = X \cap N_\lambda \setminus Z\).

By requirements (a) + (d) of \(\oplus\), clearly \(h\) is a function from \(Y^+\) to \(\mu\). So in (a) for \(Y, Z\) demands (a),(b),(c) on \(Y^+, h\) are satisfied so it suffice to prove demand (d) there. So suppose \(A \in \mathcal{P}_{x^*}^*, \kappa^* \leq \theta < \mu\) and moreover, \(\theta\) witness that the triple \((\kappa, \kappa^*, \mu)\) is \(\lambda\)-admissible, \(|A \cap Y^+| \geq \theta\) and \(|A \cap Z| < \mu\) and \(\beta < \mu\); we should prove “for every \(\beta < \mu, h \upharpoonright (h_B^{\beta})^{-1}(|\beta|) \cap Y^+\) coincides with \(h_B^1\) on a set of cardinality \(\mu\) for some \(B \in \mathcal{Q}_{x, A}^*\)”. So \(|A \cap N_\lambda| \geq \theta\).

Choose a pair \((\delta^*, \theta^*)\) such that:

\[\otimes \quad \text{(i)} \quad \delta^* \leq \lambda,\]

\[\text{(ii)} \quad \theta^* \text{ witnesses that } (\kappa, \kappa^*, \mu) \text{ is } (\mu + |\delta^*|)-admissible hence } \kappa^* \leq \theta^* < \mu,\]

\[\text{(iii)} \quad |A \cap N_\beta| \geq \mu \text{ or } \delta^* = \lambda,\]

\[\text{(iv)} \quad \text{under (i) + (ii) + (iii), } \delta^* \text{ is minimal.}\]

This pair is well defined as \((\lambda, \theta)\) satisfies requirement (i) + (ii) + (iii).

Subcase B1: \(\delta^*\) is zero.

So \(|Y_0^+ \cap A| \geq \theta^* \geq \kappa^*\) hence by the choice of \(h_0\), i.e. clause (e) of \(\oplus\), recalling \(A \in \mathcal{P}^*_x\) we are done.

Subcase B2: \(\delta^* = i + 1\).
So \(\delta^* < \lambda \); clearly the pair \((i, \theta^*)\) standing for \((\delta^*, \theta^*)\) satisfies clauses (i)+(ii) of \(\otimes \) so it cannot satisfies clause (iii) there as then \((\delta^*, \theta)\) fail clause (iv). This means that \(|A \cap N_i| < \mu \), but \(\bigcup \{ Y^+_j : j < i \} \subseteq N_i \) hence \(|A \cap \bigcup_{j<i} Y^+_j| < \mu \), but also \(|A \cap Z| < \mu \) hence \(|A \cap (Z \cup \bigcup_{j<i} Y^+_j)| < \mu \). Clearly \(\theta^* \) witness \((\kappa, \kappa^*, \mu)\) is \((\mu + |i|) \) admissible holds (as \(\mu + |i| = \mu + |i + 1| = \mu + |\delta^*| \)), so if \(|A \cap Y^+_i| \geq \theta^* \) we are done by the choice of \(h_i \), i.e. by clause (e) of \(\otimes \); if not, then \(|A \cap (Z \cup \bigcup_{j<i} Y^+_j)| < \mu \) and so necessarily

\[
A \cap Y^+_{i+1} \supseteq A \cap N_{i+1} \setminus \{ Y^+_j : j < i + 1 \} = A \cap N_{\delta^+} \setminus \{ Y^+_j : j < i + 1 \}
\]

has cardinality \(\geq \theta^* \) (and "\(\theta^* \) witness \((\kappa, \kappa^*, \mu)\) is \(\mu + |i + 1| = |Y^+_{i+1}|\) -admissible" holds) so we are done by the choice of \(h_{i+1} \).

Subcase B3: \(\delta^* \) is a limit ordinal below \(\lambda \).

So for some \(i < \delta^* \), \(|A \cap N_i| \geq \theta^* \). [Why? As \(\theta^* < \mu \leq |A \cap N_{\delta^+}| \).] Now in \(N_{i+1} \) there is a maximal family \(Q \subseteq [X \cap N_i]^{\theta^*} \) satisfying \(|B_1 \neq B_2 \in Q \Rightarrow |B_1 \cap B_2| < \kappa^*| \) hence by clause (ii) of \(\otimes \) and clause (c) of Definition 2.3(2) we have \(|Q| \leq \mu + |\delta^*| \). Choosing the \(\langle \rangle^* \)-first such \(Q \), clearly \(Q \in N_{i+1} \) so recalling \(Q \in N_{i+1} \subseteq N_{\delta^*} \) we have \(Q \subseteq N_{\delta^*} \). By the choice of \(Q \), necessarily there is \(B \in Q \) such that \(|B \cap A| \geq \kappa^* \) (if \(A \notin Q \) by the maximality of \(Q \) and if \(A \in Q \) one can choose \(B = A \)), but as \(B \in Q \) clearly \(B \in N_{\delta^*} \), and \(|B| = \theta^* < \mu = \kappa^* \) hence \(B' \in [B \cap A]^{\kappa^*} \Rightarrow B \cap A \in N_{\delta^*} \). As \(A \in P_{\kappa^*}^X \) and \(|B \cap A| \geq \kappa^* \) there is \(B' \in [B \cap A]^{\kappa^*} \) satisfying \(|\cl(B')| \subseteq A \), \(|\cl(B')| = \mu \). Clearly \(|\cl(B')| \subseteq N_{\delta^*} \) hence for some \(j \in (i, \delta^*) \), \(|\cl(B')| \subseteq N_j \) hence \(|\cl(B')| \subseteq X \cap N_j \). So \(|A \cap N_j| \geq \mu \). By assumption for some \(\theta' \in [\kappa^*, \mu) \) the triple \((\kappa, \kappa^*, \mu)\) is \((\mu + |\theta'|)\)-admissible, see Definition 2.3 so the pair \((j, \theta')\) contradicts the choice of \((\delta^*, \theta^*)\).

Subcase B4: \(\delta^* = \lambda \).

As \(\lambda \in N_0 \), there is a maximal family \(Q \subseteq [\lambda]^{\theta^*} \) satisfying

\[
|B_1 \neq B_2 \in Q \Rightarrow |B_1 \cap B_2| < \kappa^*|
\]

which belongs to \(N_0 \). By the assumption \(\otimes(ii) \) on \(\theta^* \) and clause (c) of Definition 2.3(2) we know that \(|Q| \leq \lambda \), but \(\lambda + 1 \subseteq N_\lambda \) hence \(Q \subseteq N_\lambda \) hence \((\forall B \in Q) (\exists i < \lambda |B \cap N_i| \leq \mu) \). We define by induction on \(j \leq \lambda \), a one-to-one function \(g_j \) from \(N_j \cap X \setminus Z \) onto an initial segment of \(\lambda \) increasing continuously with \(j \), \(g_j \) the \(\langle \rangle^*_j \)-first such function. So clearly \(g_j \in N_{j+1} \) and let \(\mathcal{Q}' = \{ g_1^{-1}(B) : B \in Q \}, \) (i.e. \(\{ (g_1^{-1}(x) : x \in B) : B \in Q \} \)). Clearly for any \(B \in Q \), there is \(i < \lambda \) such that \(B \in N_i \cap Q \), let \(i(B) \) be the first such \(i \), so \(B \subseteq \text{Dom}(g_{i(B)}) \) and so \(g_{i(B)}^{-1} \in N_{i+1} \) and \(g_\lambda \) is necessarily a one-to-one function from \(N_\lambda \cap X \setminus Z \) onto \(\lambda \). Recall that \(A \cap Y^+ = A \cap (X \cap N_\lambda) \setminus Z \) has cardinality \(\geq \theta^* \). Hence for some \(B \in \mathcal{Q} ', |B \cap A| \geq \kappa^* \), so as in subcase B3, for some \(B' \in N_\lambda \), \(B' \subseteq B \cap A \), \(|B'| = \kappa, \ cl(B') \subseteq A, |\cl(B')| = \mu. \) Clearly \(B \in N_{i(B)+1} \) hence \(|B| \leq \kappa \in N_{i(B)+1} \) but its cardinality is \(\leq \mu \) hence \(|B| \leq \kappa \subseteq N_{i(B)+1} \), so \(B' \in N_{i(B)+1} \) and so \(\cl(B') \subseteq N_{i(B)+1} \). But \(|A \cap Z| < \mu \)
so by the last two sentences \(|A \cap Y^+_{i(B)}| = \mu\) and by assumption \(\otimes (ii)\), some \(\theta\) is a witness to \((\kappa, \kappa^*, \mu)\) being \((\mu^+, |i|)\)-admissible (stipulating \(i = i(B) + 1\)), contradicting the choice of \((\delta^*, \theta^*)\) (i.e. minimality of \(\delta^*\)).

\[2.8\]

Discussion 3.1. 1) If we would like to include the case \(\mu = 2^{\aleph_0} = \aleph_2\), \(\kappa = \aleph_0\), \(\kappa^* = \aleph_1\) we should consider a revised framework. We have a family \(I\) of ideals on cardinals \(\theta\) from \([\kappa^*, \mu]\) which are \(\kappa\)-based (i.e. if \(A \in I^+\), \(I \in I\) (similar to [4]) then \(\exists B \in [A]^\kappa (B \in I^+)\)) and in Definition 2.7(3) hence in the proof of 2.8 replace \(P^*_X\) by

\[P^* = P^*_3 =: \{A \subseteq X : |A| = \mu \text{ and for every pairwise distinct } x_\alpha \in A \text{ for } \alpha < \theta \text{ the set } \{u \subseteq \theta : |c\ell \{x_\alpha : \alpha \in u\}| < \mu\} \text{ is included in some } I \in I\}.

and in Definition 2.3(1),(2) we replace the triple \((\kappa, \kappa^*, \mu)\) by the quadruple \((\kappa, \kappa^*, \mu, I)\) and clause (c) of 2.3(2) by

\((c)' \lambda \geq \mu \text{ and: } |\mathcal{F}| \leq \lambda \text{ whenever} \)

\[
\mathcal{F} \subseteq \{(\theta, I, f) : I \in \mathcal{I}, \theta = \text{Dom}(I), f : \theta \rightarrow \lambda \text{ is one to one}, \text{ and if } (\theta_\ell, I_\ell, f_\ell) \in \mathcal{F} \text{ for } \ell = 1, 2 \text{ are distinct then} \}
\]

\[
\{\alpha < \theta_2 : f_2(\alpha) \in \text{Rang}(f_1)\} \in I_2.
\]

Note that the present \(P^*\) fits for repeating the proof of 2.8.

2) Discussion of the Consistency of NO:

There are some restrictions on such theorems. Suppose

\((*)\) GCH and there is a stationary \(S \subseteq \{\delta < \aleph_{\omega+1} : \text{cf}(\delta) = \aleph_1\}\) and \(\langle A_\delta : \delta \in S\rangle\) such that:

- \(A_\delta \subseteq \delta = \text{sup } A_\delta\),
- \(\text{otp}(A_\delta) = \omega_1\) and
- \(\delta_1 \neq \delta_2 \Rightarrow |A_{\delta_1} \cap A_{\delta_2}| < \aleph_0\).

(This statement is consistent by [4] 4.6,p.384 which continues [5] see more in [8].)

Now on \(\aleph_{\omega+1}\) we define a closure operation:

\(\alpha \in c\ell(u) \iff (\exists \delta \in S)[\alpha \in A_\delta \text{ and } (u \cap A_\delta) \geq \aleph_0].\)

This certainly satisfies the demands in Definition 2.7 with \(\kappa = \kappa^* = \aleph_0, \mu = \aleph_1\) except the pcf assumptions, i.e. clause (c) of Definition 2.3(2). However, this is not a case of our theorem.

3) We may consider in the proof of 2.8 strengthening clause (e) of \(\otimes\) by weakening clause (e)(\(\delta\)) of \(\otimes\) by fixing the ordinal \(\beta\) and demanding only
\((A \setminus \bigcup_{j<i} Y^+_j \setminus Z) \cap (h^*_i)^{-1}(\{\beta\})\) has cardinality \(\mu\). But we do not seem to gain anything.

References

[1] Paul C. Eklof and Alan Mekler. *Almost free modules: Set theoretic methods*, volume 46 of *North–Holland Mathematical Library*. North–Holland Publishing Co., Amsterdam, 1990.

[2] Paul C. Eklof and Alan Mekler. *Almost free modules: Set theoretic methods*, volume 65 of *North–Holland Mathematical Library*. North–Holland Publishing Co., Amsterdam, 2002. Revised Edition.

[3] Martin Goldstern, Haim Judah, and Saharon Shelah. Saturated families. *Proceedings of the American Mathematical Society*, 111:1095–1104, 1991.

[4] Andras Hajnal, Istvan Juhasz, and Saharon Shelah. Splitting strongly almost disjoint families. *Transactions of the American Mathematical Society*, 295:369–387, 1986.

[5] Saharon Shelah. On successors of singular cardinals. In *Logic Colloquium ’78 (Mons, 1978)*, volume 97 of *Stud. Logic Foundations Math*, pages 357–380. North-Holland, Amsterdam-New York, 1979.

[6] Saharon Shelah. More on Cardinal Arithmetic. *Archive for Mathematical Logic*, 32:399–428, 1993. [math.LO/0406550](http://arxiv.org/abs/math.LO/0406550).

[7] Saharon Shelah. The Generalized Continuum Hypothesis revisited. *Israel Journal of Mathematics*, 116:285–321, 2000. [math.LO/9809200](http://arxiv.org/abs/math.LO/9809200).

[8] Saharon Shelah. Anti-homogeneous Partitions of a Topological Space. *Scientiae Mathematicae Japonicae*, 59, No. 2; (special issue9, 449–501):203–255, 2004. [math.LO/9906025](http://arxiv.org/abs/math.LO/9906025).

[9] Saharon Shelah. More on the Revised GCH and the Black Box. *Annals of Pure and Applied Logic*, 140:133–160, 2006. [math.LO/0406482](http://arxiv.org/abs/math.LO/0406482).

EINSTEIN INSTITUTE OF MATHEMATICS, EDMOND J. SAFRA CAMPUS, GIVAT RAM, THE HEBREW UNIVERSITY OF JERUSALEM, JERUSALEM, 91904, ISRAEL, AND, DEPARTMENT OF MATHEMATICS, HILL CENTER - BUSCH CAMPUS, RUTGERS, THE STATE UNIVERSITY OF NEW JERSEY, 110 FREELINGHUYSEN ROAD, PISCATAWAY, NJ 08854-8019 USA

E-mail address: shelah@math.huji.ac.il

URL: http://shelah.logic.at