Supplement of

Xylem water in riparian willow trees (Salix alba) reveals shallow sources of root water uptake by in situ monitoring of stable water isotopes

Jessica Landgraf et al.

Correspondence to: Jessica Landgraf (jessica.landgraf@igb-berlin.de)

The copyright of individual parts of the supplement might differ from the article licence.
Supplementary Material

Figure S1: *In situ* time series of daily δ^{18}O in: Precipitation (a), Pit A and Pit B (b), and Northern and Southern Willow (c).
Figure S2: Box plots showing in situ and bulk soil sampling results at certain depths. For comparison bulk soil sampling results were estimated via mean of the depths above (for example 10 – 20 cm and 20 – 40 cm samples to calculate the result for 40 cm).
Figure S3: Monthly bulk soil sampling isotopic results from two locations of the site. “Canopy covered” (a – c) is closer to Northern Willow and Pit A and “Open space” (d – f) is closer to Pit B and Southern Willow. On top of the plots is antecedent precipitation as 7d sum before sampling and the daily mean temperature.
Figure S4: Box plots showing daily means of \textit{in situ} soil and xylem water isotopic composition as well as the monthly cryogenic vacuum extracted twig water isotopic composition of the two willow trees.
Figure S5: Box plots showing daily means of *in situ* soil and xylem water isotopic composition as well as the monthly cryogenic vacuum extracted twig water isotopic composition of the two willow trees. Cryogenic vacuum extracted water results of δ^2H is corrected by 8.1‰ after Chen et al. (2020).
Figure S6: Box plot of mean absolute error for each isotope and week for (a) the Northern Willow, and (b) the Southern Willow.