Reference Evapotranspiration in the State of Paraíba, Brazil: Climatic Trends and Influencing Factors

Robson de Sousa Nascimento¹, José Ivaldo Barbosa de Brito², Valéria Peixoto Borges³, Péricles de Farias Borges⁴, Lázaro de Souto Araújo⁵

¹ Professor Associado, Departamento de Solos e Engenharia Rural, Centro de Ciências Agrárias, Universidade Federal da Paraíba, Rodovia PB 079, Km 12, Bairro Universitário, Areia, Paraíba, 58397-000. (83) 3362-1715. masascimento@cca.ufpb.br (autor correspondente). ² Professor Titular, Unidade Acadêmica de Ciências Atmosféricas, Universidade Federal de Campina Grande, Av. Aprigio Veloso; 882, Bodocongô, Campina Grande, Paraíba, 58428-830. (83) 2101-1202. jivaldbrito@gmail.com. ³ Professora Associada, Departamento de Solos e Engenharia Rural, Centro de Ciências Agrárias, Universidade Federal da Paraíba, Rodovia PB 079, Km 12, Bairro Universitário, Areia, Paraíba, 58397-000. (83) 3362-1715. valeria@cca.ufpb.br. ⁴ Professor Associado, Departamento de Ciências Fundamentais e Sociais, Centro de Ciências Agrárias, Universidade Federal da Paraíba, Rodovia PB 079, Km 12, Bairro Universitário, Areia, Paraíba, 58397-000. (83) 3362-1725. pericles@cca.ufpb.br. ⁵ Professor Associado, Departamento de Ciências Fundamentais e Sociais, Centro de Ciências Agrárias, Universidade Federal da Paraíba, Rodovia PB 079, Km 12, Bairro Universitário, Areia, Paraíba, 58397-000. (83) 3362-1725. lazaro.souto@hotmail.com.

Artigo recebido em 05/12/2019 e aceite em 01/04/2020.

ABSTRACT

Reference evapotranspiration (ET₀) plays an important role in the planning of irrigation and the water demand of crops, as well as in the planning of water uses in watersheds. The identification of trends in ET₀ under climate changes is important to understand its effects on agriculture, water balance and water resources planning. The goal of this work was verify whether there was or there was not an increasing/decreasing trend on ET₀ in dry and rainy periods, as well as in annual period, identifying the influencing climate variables on ET₀ in the state of Paraíba, Brazil. In order to determine the ET₀ trend in the series the Mann-Kendall nonparametric test was used, whereas the series slope was determined by applying Sen’s estimator. To identify the most influencing climatic variable it was performed a multiple regression of normalized data. The data were obtained of six stations with monthly data from January 1961 to December 2015, a total period of 55 years. Results showed increasing on ET₀ in almost all stations during the study period, except for a single of them in which there was a decreasing. The most dominant variables influencing the trend on ET₀ was air temperature during annual time scale, while during the rainy and dry seasons there was an alternation between the most influencing variables (air temperature and sunshine duration).

Keywords: climate variables, Mann-Kendall test, climate change

Introduction

There is an urgent global necessity for elaborating policies to a rational use of hydric resources, inasmuch as there are 4 billion people in the world who face shortage of water at least a month per year (Mekonnen and Hoekstra, 2016) and projections indicate an increase in dry areas due to climate changes (Huang et al., 2016).

It is well known that climate changes have altered not only the magnitude of rainfall but also its seasonal distribution (Kang and Eltahir, 2019) and its interannual variability, thus affecting water availability and having direct impacts on agriculture and vegetation (Elouissi et al., 2017).

Evapotranspiration (ET) is the most important variable used to show both climate change and the space-time patterns of variables influencing ecohydrological processes which control the evolution of surface ecosystems (Hao et al., 2018). Therefore, investigating the effects of climate changes on ET may be effective in order to determine strategies to mitigate the probable damages caused by such effects, because projections indicate an increase in ET in all scenarios studied (Gharbia et al., 2018). Furthermore, reference evapotranspiration (ET₀) plays an important role in the planning of irrigation (Feder et al., 2016) and in that of future hydric demands (Fisher et al., 2017).

ET₀ represents the evapotranspiration ability of a hypothetical reference crop with a specific height, surface resistance and albedo and without water stress, which is important to quantify agriculture water demand. To estimate ET₀, the Penman-Monteith method considering a radiative term and aerodynamic term is used as a standard
method in many studies (Fan et al., 2016; Wang et al., 2017).

The identification of climate factors contributing to increases or decreases in ET₀ during a historical time series is important because it identifies which variable has contributed for such increases or decreases. Researches show that climate variables such as wind speed, amount of solar radiation, relative humidity, and maximum and minimum temperatures have been the ones contributing more to the trends in ET₀ (Li et al., 2017a; Wang et al. 2019).

The investigation to verify whether there have been changes in climate variables during a time series is carried out by analyzing the significance of trends in hydroclimatic time series with the use of tests classified as either parametric or nonparametric. Parametric tests are more potent, nevertheless, they require that data be more independent and have a normal distribution. In nonparametric tests, on their turn, data must also be independent, but outliers are more tolerated, and those tests are insensitive to the type of data distribution (Jinlin et al., 2018). In that sense, the Mann-Kendall (MK) test is an example of such nonparametric tests, and it is applied to detect trends in rainfall (Wu et al., 2016), in temperature (Martínez-Austria et al., 2016) as well as in other climate variables (Geng et al., 2016).

Evapotranspiration is very sensitive to changes in climatic variables that are decisive for its calculation. As the air temperature increased, verified in practically the whole globe, including in the northeast region of Brazil, ET₀ certainly presented changes. However, the questions arise: did all stations present changes in evapotranspiration or part of them? Was the air temperature only presented changes or others climate variables caused changes? And what are the climatic variables that most contributed to these changes?

There are few studies on climate trends in the state of Paraíba, Brazil, and they only assess the rainfall trends as well as maximum and minimum temperatures (Nóbrega et al., 2014; Dantas et al., 2015). Due its semi-arid climate, the State of Paraíba has been affected by droughts and El Niño, increasing the hydric crisis. In view of that, this work aims at: (1) verifying occurrences of increasing or decreasing trends in ET₀ in dry and rainy periods, as well as in annual ones, in six localities in the state of Paraíba, by using the MK test, (2) identifying, too, which climate variable has contributed to increase or decrease in ET₀.

Data and Methodology

This study comprises six cities in the state of Paraíba, in Northeast Brazil, and the data used to calculate ET₀ have been obtained through the database of the National Institute of Meteorology (INMET). The data series range from January 1961 to December 2015, and the information about stations and climate are shown in Table 1.

Station	Latitude (º)	Longitude (º)	Elevation (m)	Climate	Rainy	Dry
João Pessoa	-7.16	-34.81	34	As	APR–JUL	SEP–DEC
Areia	-6.97	-35.72	573	As	APR–JUL	SEP–DEC
Campina Grande	-7.22	-35.90	546	BSh	APR–JUL	SEP–DEC
Monteiro	-7.89	-37.12	606	BSh	FEB–MAY	AUG–NOV
Patos	-7.08	-37.27	264	BSh	JAN–APR	AUG–NOV
São Gonçalo	-6.83	-38.31	237	As	JAN–APR	AUG–NOV

The FAO-56 equation proposed by Allen et al. (1998) was used to calculate ET₀. For the months missing data, the evapotranspiration was calculated through the Thornthwaite (1948) model, since the only input variable required is the temperature.

In order to detect significant (Z) trends in the series of ET₀ the MK test was used (Mann, 1945, Kendall, 1975). The MK test detects linear and nonlinear trends, and in that test the null hypothesis (H₀) and the alternative one (H₁) are respectively equivalent to nonexistence and existence of a trend in the observational data series.

Sen’s method (Sen, 1968), was also used to estimate the slope magnitude (β) in the trend series. The advantage of using that method is that it limits the influence of outliers on the slope.

The nonparametric test developed by Pettitt (1979) was another method used in this study. It detects a significant changing point in the mean value of a time series when such a precise point is unknown. The test uses a version of the Mann–Whitney statistic $U_{0,N}$, which verifies...
whether or not two samples sets \(x_i, \ldots, x_i \) and \(x_{i+1}, \ldots, x_N \) come from the same population. Such statistical test counts the number of times a member of the first sample exceeds another in the second sample. The null hypothesis of Pettitt test is the absence of a changing point and the test was applied only on the annual trend.

The tests were carried out at a level of significance of 5%, and they analyzed whether or not a trend occurred during rainy or dry periods, as well as in annual period.

It is important to verify whether the trends observed in the annual \(ET_0 \) have the same configuration in all seasons or if there are differences between them, as well as to check whether localities that do not show any trends in annual \(ET_0 \) present some trend during seasonal variations.

In Paraíba, because of its proximity to the equator, the seasons of the year (summer, fall, winter, and spring) are not well marked. As a result, only two are effectively noticed: a rainy period and a dry, which are appropriately referred to as rainy and dry months for each locality. Thus, rainy and dry months for each station were not effectively noticed: a rainy period and a dry, which are appropriately referred to as rainy and dry periods, respectively. That is why trends of \(ET_0 \) for the rainy and dry periods are analyzed in this work. Rainy and dry periods were defined as the average of four consecutive rainiest and driest months, respectively, in the time series of precipitation. Thus, rainy and dry months for each location are shown in Table 1. It is important to mention that the stations are located in different climatic regions, for this they present particular characteristics of the region which belong.

The methodology proposed by Zang et al. (2011) and Ye et al. (2014), in which multiple linear regression is used to determine the relative contribution of each independent variable to explaining its dependent, was used in this work so as to determine the percentage of contribution of such variables as air temperature, relative humidity, and wind speed to \(ET_0 \). Before applying the method, however, it is necessary to normalize the original data concerning \(ET_0 \) and input variables. Such normalization is done accordingly to Equation 1:

\[
X_{in} = \frac{x_i - x_{i\text{min}}}{x_{i\text{max}} - x_{i\text{min}}}
\]

in which, \(X_{in} \) is the normalized variable, \(x_i \), \(x_{i\text{max}} \) and \(x_{i\text{min}} \) are sequences of values observed in the historical series (current value, maximum value and minimum value, respectively).

Based on the coefficients of regression, the relative rate (\(\eta \text{%} \)) of contribution of each variable \((X_{in}) \) to explaining the values of \(ET_0 \) \((Y_i) \) may be estimated from Equation 2.

\[
\eta_{1,2,3,…n} = \left(\frac{|a_{1,2,3,…n}| + |b_{1,2,3,…n}| + |c_{1,2,3,…n}|}{|a_{1,2,3,…n}| + |b_{1,2,3,…n}| + |c_{1,2,3,…n}|} \right) \times 100
\]

Thus, concerning their percentage of contribution to the increase or decrease of \(ET_0 \), the variables analyzed were temperature (Temp), relative humidity (RH), sunshine duration (SD) and wind speed (W).

Results and Discussion

Annual Trend and Their Influencing Factors: - the annual trend of \(ET_0 \) was statistically significant for the stations located at João Pessoa, Monteiro and Patos, however, in Areia, Campina Grande and São Gonçalo were not statistically significant. Only João Pessoa and Patos localities showed an annual increase in the \(ET_0 \), whereas Monteiro showed a decrease of it, as show the Tab. 2.

Table 2 Annual trend of reference evapotranspiration (\(ET_0 \)) and weather data for six locations in the state of Paraíba, Brazil. Z: trend, \(\beta \): Sen’s estimator, Temp: air temperature, RH: relative humidity, SD: sunshine duration, W: wind speed at 2 m height

Station	Z	\(\beta \)								
João Pessoa	0.596*	8.3	0.692*	0.03	0.256*	-0.04	-0.062ns	-	-0.107ns	-
Areia	-0.055ns	-	0.362*	0.03	0.029ns	-	-0.036ns	-	-0.113ns	-
Campina Grande	-0.044ns	-	0.618*	0.04	0.391*	-0.15	0.211*	0.31	0.182ns	-
Monteiro	-0.414*	-10.24	-0.359*	-0.05	0.126ns	-	0.037ns	-	0.435*	0.02
Patos	0.453*	1.07	0.527*	0.04	0.14ns	-	0.356*	0.71	-0.286*	-0.01
São Gonçalo	-0.033ns	-	0.146ns	-	0.052ns	-	0.215*	0.34	0.017ns	-

ns – no significant, * significant at 5%
The Sen’s estimator showed a very sharp increase on the ET$_0$ in João Pessoa with a rate of increase of 8.3 mm year$^{-1}$. The decrease of air relative humidity implies that there was an increasing deficit of saturation due to the increment of air temperature, which caused a rise of ET$_0$. Tests showed that the variable which had more influence on ET$_0$ was the temperature showing 65% of influence followed by the relative humidity with 20% of influence on the ET$_0$. Sunshine duration and wind showed less influence on ET$_0$ as shown in Figure 1(a). The urban sprawl of João Pessoa according to Sobreira et al. (2011) has contributed to an increase of air temperature, it has been a pattern in cities of Brazil as Recife - PE (Mendes et al., 2019), Santarém – PA (Oliveira et al., 2018) and Cuiabá-Várzea Grande – MT (Silva and Tarifa, 2017). The Pettitt’s test showed that the first changing point in the series on ET$_0$ was in 1992, as from which a sharp increase of ET$_0$ is observed in Fig. 1(a). It is shown that from 1992 to 2015 the ET$_0$ values are oscillating around of 1750 mm, not varying in higher and lower values of ET$_0$ as occurred before of 1992. The lower value occurred in 1968 (1030 mm) and it was due a weak La Niña event. On the other hand, the higher value occurred in 1998 (1882 mm) and it was due a strong El Niño event. In El Niño event occurred decreasing in precipitation leading to higher values of evapotranspiration.

Patos presented a rate of increase of 1.07 mm year$^{-1}$ on the ET$_0$. In Patos there was an increase of temperature and sunshine duration, as well as a decrease of wind speed, whereas relative humidity showed no trends. The first changing point on ET$_0$ in that time series, according to Pettitt’s test was in 1980. The increase of air temperature and sunshine duration as well as the decrease of wind speed was due a local urban sprawl (Moreira et al., 2017).

![Figure 1. Annual trend of ET$_0$ from localities significant statistically and contributing of the variables](image-url)
However, the increase of ET\textsubscript{0} occurred mainly by air temperature that contributed with 99\% of influence on the ET\textsubscript{0} (Fig. 1(b)). It is shown in Figure 1(b) that lower value occurred in 1976 (1454 mm) and it was due a moderate La Niña event. On the other hand, the higher value occurred in 1998 (2491 mm) and it was due a strong El Niño event.

Monteiro presented a more sharp decrease on the ET\textsubscript{0}, in that the rate of decrease is of 10.2 mm year-1, as show the Figure 1(c). It was the one locality in which occurred decrease in the ET\textsubscript{0}. The decrease of temperature as well as the increase of wind speed at the Monteiro meteorological station are probably associated with the substitution of the caatinga natural vegetation to pastures and agricultural fields. Changes in land cover types have had a substantial influence on evapotranspiration, especially when it comes to changing from natural vegetation to field crops (Li et al. 2017b), which facilitated the advection of colder and dry air from the Southeast into the area. However, the decrease of ET\textsubscript{0} occurred mainly by air temperature. The Pettitt’s test showed that the first changing point in that series happened in 1987, but differently than occurred in the localities of João Pessoa and Patos, in Monteiro the higher and lower values occurred in neutral events of El Niño and La Niña.

It has been observed in Figure 1 that air temperature is the most dominant variable influencing ET\textsubscript{0} in annual time scale.

It was observed increasing in ET\textsubscript{0} due an increasing of air temperature, probably in decorrence to a local urban sprawl in the local studied. What reinforces the more local and detailed analysis, because according to previous studies, other climatic variables can produce the same effect.

Kundu et al. (2016) observed similar behavior in India, where the increase of ET\textsubscript{0} was associated with air temperature always accordingly to the following pattern: the higher the temperature, the higher the ET\textsubscript{0}, the lower the temperature, the lower the ET\textsubscript{0}. However, Pandey and Khere (2018) founded only increasing on ET\textsubscript{0} over Narmada river basin (India). The differences occurred because the studies were carried out in different areas. Liu et al. (2019) observed in North China Pain that the influence of precipitation on ET\textsubscript{0} produced positive trend, while the effects of air temperature, minimum temperature, relative humidity exhibited downward trends, with ET\textsubscript{0} being most sensitive to relative humidity, followed by air temperature. In a work carried out by Gao et al. (2017) and Li et al. (2018) to different basins in China, they observed a decrease on ET\textsubscript{0} in annual time scale, but Gao et al. (2017) founded the solar radiation to be the most dominant variable influencing ET\textsubscript{0}. On the other hand, Li et al. (2018) founded the wind speed to be the most dominant variable.

Trends in the Rainy and Dry Seasons and Their Factors Influencing - the localities with statistically significant trends of ET\textsubscript{0} during the rainy period are João Pessoa, Campina Grande, Monteiro, and Patos. No statistically significant trends were noticed in Areia and São Gonçalo, as show Table 3.

Table 3 Trends of reference evapotranspiration (ET\textsubscript{0}) and of climate variables for rainy season in the towns under study in the state of Paraíba, Brazil. Z: trend, \(\beta \): Sen’s estimator, Temp: air temperature, RH: relative humidity, SD: sunshine duration, W: wind speed at 2 m height

Station	ET\textsubscript{0}	Temp	RU	SD	W					
João Pessoa	0.574*	3.2	0.621*	0.03	0.138*	-0.037*	-0.017*			
Areia	-0.080*	-2.42	-0.400*	0.03	0.099*	-0.050*	-0.028*			
Campina Grande	0.405*	0.31	0.678*	0.04	0.412*	-0.15	0.297*	0.68	0.248*	0.01
Monteiro	-0.333*	-2.42	-0.319*	-0.03	0.149*	-0.012*	-0.398*	0.03		
Patos	0.414*	0.63	0.448*	0.03	0.084*	0.33*	0.87	-0.159*		
São Gonçalo	0.099*	-	0.129*	-	0.141*	0.353*	0.66	-0.031*		

\(\text{ns} \) – no significant, * significant at 5%

 João Pessoa shows trend for the rainy season only on ET\textsubscript{0} and air temperature, as show the Table 3, in that occurred an increase of 32 mm per decade in the ET\textsubscript{0} and 0.3 \degree C per decade in the air temperature. Figure 2(a) shows that the air temperature has influenced 66 \% on ET\textsubscript{0} followed of sunshine duration with 17\%. Basically the values of the contribution of the air temperature for

Nascimento, R. S., Brito, J. I. B., Borges, V. P., Farias, P. B., Araújo, L. S.

1028
the annual period and rainy season were the same, with a change in the second variable that most

Figure 2. ET$_0$ trend rainy season from localities significant statistically
contributed, where in the rainy season it was the sunshine duration, while in the annual period it was the relative humidity. The lowest and highest values of ET$_0$ occurred in neutral events of El Niño South Oscillation (ENSO). The changing point in the trend occurred in 1990.

In Campina Grande, ET$_0$ increased 3.1 mm per decade in rainy seasons, as show Tabel 3, due duration, on its turn, showed an increase of 6.8 h per decade. The changing point in the trend occurred in 1976. However, the most influencing variables to ET$_0$ were sunshine duration (37%) and wind (37%), as show the Figure 2. The increase in ET$_0$ in Campina Grande influenced by the insolation indicates less cloud cover for this period, and as shown in Table 3, there was an increase in the sunshine duration. The increase in ET$_0$ during the rainy season can bring changes in the water balance, with less storage for the dry season.

The Monteiro station, on its turn, showed a decrease of 24.2 mm per decade in ET$_0$, as show Table 3, accompanied by decrease of air temperature which was of 0.3 °C decade$^{-1}$ in rainy season, Table 3, due an increase of 0.3 m s$^{-1}$ per decade. Changes in the natural vegetation contributed to increase wind speed and decrease air temperature causing a reduction in the ET$_0$. Then, air temperature influenced 62% in the reduction of ET$_0$, followed by sunshine duration that contributed with 32% to reduce ET$_0$ (Figure 2(c)). The changing point in the trend occurred in 1985.

In Patos, ET$_0$ increased 6.3 mm per decade in rainy season, Table 3, due an increase of temperature of 0.3 °C decade$^{-1}$ and sunshine duration of 8.7 h per decade in rainy season. The increase of sunshine duration in this study may be an increase of temperature and sunshine duration and decreasing in the relative humidity, moreover, there was an increase of wind speed. The increase of air temperature was higher than registered by others stations, that was of 0.4 °C per decade, and relative humidity during rainy season was also significant only in this city, occurring a decreasement equal to 1.5% per decade. Sunshine associated with the decrease or poor regularity of rainfall during the period analyzed influencing changes in relative humidity. Thus, air temperature (74%) and relative humidity (16%) were the most influencing variables on ET$_0$.

In Areia and São Gonçalo, no statistically significant trends on ET$_0$ were observed in either rainy or dry seasons, although in Areia the air temperature had showed an increasing trend in both seasons (rainy and dry), whereas in São Gonçalo variables no showed any statistically significant trends, only sunshine duration.

Li et al. (2018) showed a significant decreasing trend on ET$_0$ in the upper-middle Huai River Basin and Yi-Shu-Si River Basin, especially in growing season and summer, while a generally increasing trend in ET$_0$ was detected in the lower Huai River Basin, and the significance only showed in spring. The dominant factor of the decreasing ET$_0$ was wind speed in spring, autumn, and winter in most sub-regions, except the lower Huai River Basin, which then shifted to solar radiation in the growing season and summer.

Trends in dry season to ET$_0$ and climatic variables are showed in Table 4, and the localities that presented statistically significant trends on ET$_0$ were João Pessoa, Monteiro and Patos.

Station	ET$_0$	Temp	RU	SD	W				
	Z	β	Z	β	Z	β			
João Pessoa	0.349*	1.44	0.607*	0.03	0.304*	-0.07	-0.094*	-	-0.172*
Areia	0.017*	-	0.316*	0.02	0.063*	-	-0.049*	-	-0.200*
Campina Grande	-0.162*	-	0.545*	0.04	0.340*	-0.17	0.258*	0.55	-0.022*
Monteiro	-0.459*	-5.58	-0.342*	-0.06	0.288*	-0.14	0.029*	-	0.492*
Patos	0.380*	1.40	0.448*	0.04	0.125*	-	0.314*	0.68	-0.26*
São Gonçalo	-0.075*	-	0.14*	-	0.067*	-	0.447*	0.64	-0.023*

ns – no significant, * significant at 5%
João Pessoa presented an increase of 14.4 mm per decade in ET₀, and the variables that more contributed to an increasing on ET₀ were sunshine duration, with 60%, and the temperature with 19%, Figure 3(a). During dry period the air temperature presented increasement, while the relative humidity presented decreasement in the trend. The urban sprawl of João Pessoa according to Sobreira et al. (2011) has contributed to an increase of air temperature. In the present work, however, it was noticed that not only the temperature was affected but there was also a decrease of relative humidity in that city. The trends observed in these two variables caused an increase of ET₀ in João Pessoa.

Monteiro, according to Figure 3(b), showed a considerably sharp decreasement of ET₀ during dry periods (about 56 mm per decade), which, according to Table 4, also showed a decrease of 0.6 °C decade⁻¹ in air temperature. Sunshine duration, on its turn, was not statistically significant, whereas wind speed showed an increase, but a decreasing in relative humidity during the period. Although others climatic variables had influenced ET₀, they were insufficient to revert the sign of the ET₀ trend imposed by air temperature (72%) and sunshine duration (18%). Such as presented during rainy season, air temperature and sunshine duration were more influencing on ET₀. The Brazilian Annual Land Use and Land Cover Mapping Project (Projeto MapBiomas, 2018) shows that in Monteiro, on its turn, near its meteorological station, old-growth stepps vegetation were turned

Figure 3. ET₀ trend dry season from localities significant statistically
into field crops or pastures from 1985 to 2015, which may explain this result.

In the station located in Patos occurred a increase of 14 mm decade\(^{-1}\) in the ET\(_0\) during dry season, Table 4, which increased 0.4 °C per decade in his air temperature, an increase of 6.8 h per decade in the sunshine duration and a decrease of 0.1 m s\(^{-1}\) per decade in wind speed. Air temperature (65%) and relative humidity (21%) were the more influencing variables on ET\(_0\), as show Fig. 3(c). In Patos there was a spread of the urban area toward the local station.

In Areia and São Gonçalo, few alterations in land cover were verified near their respective stations. In Campina Grande, on its turn, the meteorological station is located at a very urbanized area, and the city as a whole sprawled into neighboring regions between 1985 and 2015, nevertheless, according to results obtained in this research, such an alteration has probably had a climatic effect only during rainy season.

Gao et al. (2017) observed that in seasonal time scale, average air temperature, maximum air temperature, relative humidity were the most dominant factors in spring, summer and winter, and autumn, respectively. Wind speed was the second most significant factor in all seasons. She et al. (2017) observed middle reaches of Yellow River basin of China that annual ET\(_0\) increases from the northwest to the southeast in space. Yet, in further analysis showed that solar radiation and wind speed are the two major contributing factors that control the change of ET\(_0\) at most stations and during most subperiods.

Thus, it is observed in the papers cited that climatic factors have contributed differently and according to each region, not following a pattern for identifying the most influential variables on ET\(_0\).

The air temperature was relevant in all stations where ET\(_0\) showed a positive trend, corroborating the statements of the increase in air temperature in the last ten years. Therefore, it would be possible to model ET\(_0\) in the temperature rise scenarios, to assess its impact on the water balance and to subsidize the analysis of use and allocation of water resources in Paraíba.

Conclusions

1) The stations in João Pessoa and Patos show increasing and Monteiro present decreasing trend on ET\(_0\) during annual, rainy and dry periods. In all of them, the air temperature is the variable which more is influencing with increase or decrease of ET\(_0\) during annual period. But during rainy and dry periods was not followed this pattern. Specially in Campina Grande and João Pessoa in that sunshine duration were the climatic variables most influencing on ET\(_0\) during rainy and dry seasons.

2) We also have verify that the changes of land use of natural to pasture or buildings affect ET\(_0\) values.

References

Allen, R.G., Pereira, L.S., Raes, D., Smith, M., 1998. Crop evapotranspiration: guidelines for computing crop water requirements, Irrigation and Drainage Paper, 56, FAO, Rome.

Dantas, L.G., Santos, C.A.C., Olinda, R.A., 2015. Trends in Annual and Seasonal Temperature and Precipitation Extremes in Campina Grande – PB, Revista Brasileira de Meteorologia 30, 423-434. https://doi.org/10.1590/0102-778620130088

Elouissi, A., Habi, M., Benaricha, B., Boualem, S. A., 2017. Climate change impact on rainfall spatio-temporal variability (Macta watershed case, Algeria). Arabian Journal Geoscience 10, 496. https://doi.org/10.1007/s12517-017-3264-x

Fan, J., Wu, L., Zhang, F., Xiang, Y., Zheng, J., 2016. Climate change effects on reference crop evapotranspiration across different climatic zones of China during 1956–2015. Journal of Hydrology 542, 923–937. https://doi.org/10.1016/j.jhydrol.2016.09.060

Fisher, J.B., Melton, F., Middleton, E. et al., 2017. The future of evapotranspiration: Global requirements for ecosystem functioning, carbon and climate feedbacks, agricultural management, and water resources. Water Resource Research 53, 2618–2626. https://doi.org/10.1002/2016WR020175

Gao, Z., He, J., Dong, K., Li, X., 2017. Trends in reference evapotranspiration and their causative factors inthe West Liao River basin, China. Agricultural and Forest Meteorology 232, 106–117.
http://dx.doi.org/10.1016/j.agrformet.2016.08.006

Geng, Q., Wu, P., Zhao, X., 2016. Spatial and temporal trends in climatic variables in arid areas of northwest China. International Journal of Climatology 36, 4118-4129.
https://doi.org/10.1002/joc.4621

Gharbia, S.S, Smullen, T., Gill, L., Johnston, P., Pilla, F., 2018. Spatially distributed potential evapotranspiration modeling and climate projections. Science of The Total Environment 633, 571-592. https://doi.org/10.1016/j.scitotenv.2018.03.208

Nascimento, R. S., Brito, J. I. B., Borges, V. P., Farias, P. B., Araújo, L. S.
Hao, L., Huang, X., Qin, M., Liu, Y., Li, W., Sun, G., 2018. Ecohydrological Processes Explain Urban Dry Island Effects in a Wet Region, Southern China. Water Resource Research 54, 6757-71. https://doi.org/10.1029/2018WR023002

Huang, J., Yu, H., Guan, X., Wang, G., Guo, R., 2016. Accelerated dryland expansion under climate change. Nature Climate Change 6, 166–171. https://doi.org/10.1038/nclimate2837

Jinlin, Z., Zhiqiang, G., Zhihuan, S., Furonig, G., 2018. Review and big data perspectives on robust data mining approaches for industrial process modeling with outliers and missing data. Annual Reviews in Control 46, 107-133. https://doi.org/10.1016/j.arcontrol.2018.09.003

Kang, S., Im, E., Eltahir, E.A.B., 2019. Future climate change enhances rainfall seasonality in a regional model of western Maritime Continent. Climate Dynamics 52, 747–764. https://doi.org/10.1007/s00382-018-4164-9

Kendall, M.G., 1975. Rank correlation methods, 4 ed. Griffin, London.

Kundu, S., Khare, D., Mondal, A., 2017. Interrelationship of rainfall, temperature and reference evapotranspiration trends and their net response to the climate change in Central India. Theoretical and Applied Climatology 130, 879-900. https://doi.org/10.1007/s00704-016-1924-5

Li, C., Wu, P. T., Li, X. L., Zhou, T. W., Sun, S. K., Wang, Y. B., Lu, X. B., Yu, X., 2017a. Spatial and temporal evolution of climatic factors and its impacts on potential evapotranspiration in Loess Plateau of Northern Shaanxi, China. Science of the Total Environment 589, 165–172. http://dx.doi.org/10.1016/j.scitotenv.2017.02.122

Li, G., Zhang, F., Jing, Y., Liu, Y., Sun, G., 2017b. Response of evapotranspiration to changes in land use and land cover and climate in China during 2001–2013. Science of The Total Environment 596–597, 256-265. https://doi.org/10.1016/j.scitotenv.2017.04.080

Li, M., Chu, R., Shen, S., Islam, A. R., 2018. Quantifying Climatic Impact on Reference Evapotranspiration Trends in the Huai River Basin of Eastern China. Water 10, 144. https://doi.org/10.3390/w1002144

Liu, Y. J., Chen, J., Pan, T., 2019. Analysis of Changes in Reference Evapotranspiration, Pan Evaporation, and Actual Evapotranspiration and Their Influencing Factors in the North China Plain During 1998–2005. Earth and Space Science 6, 1366–1377. https://doi.org/10.1029/2019EA000626

Mann, H.B., 1945. Nonparametric tests against trend. Econometrica 13, 245–259. https://doi.org/10.2307/1907187

Mekonnen, M.M., Hoekstra, A.Y., 2016. Four billion people facing severe water scarcity. Science Advances 2, e1500323. https://doi.org/10.1126/sciadv.1500323

Mendes, T.G.L., Anjos, R.S., Santos, T.N., Moreira, A.B., Nóbrega, R.S., 2019. Abordagem científica sobre ilhas de calor em Recife-PE. Journal of Environmental Analysis and Progress 4, 1-13. https://doi.org/10.24221/jeap.4.1.2019.2058.00-1013

Moreira, E.B.M., Nóbrega, R.S., Silva, B.B., Ribeiro, E.P., 2017. O Modelo Sebal para Estudos de Clima Intraurbano: Aplicação em Recife, Pernambuco. Ra’e Ga 39, 247-265. https://doi.org/10.5380/raega

Nóbrega, J.N., Santos, C.A.C., Gomes, O.M., Bezerra, B.G., Brito, J.I.B., 2014. Extreme precipitation events in the mesoregions of Paraíba and its relationship with the tropical oceans SST. Revista Brasileira de Meteorologia 29, 197-208. https://doi.org/10.1590/S0102-77862014000200005

Oliveira, L.L., Sousa, C., Costa Barreto, N.J., Santos, G.P., Almeida, R.M., 2018. Ilha de calor urbana: diagnóstico como ferramenta de gestão ambiental urbana para a cidade de Santarém (PA). Revista Ibero-Americana de Ciências Ambientais 9, 427-443. https://doi.org/10.6008/CBPC2179-6858.2018.006.0038

Pandey, K., Khare, D., 2018. Identification of trend in long term precipitation and reference evapotranspiration over Narmada river basin (India). Global and Planetary Change 161, 172-182. https://doi.org/10.1016/j.gloplacha.2017.12.017

Pettitt, A., 1979. A nonparametric approach to the change-point problem. Applied Statistics 28, 126–135. https://doi.org/10.2307/2346729

PROJETO MAPBIOMAS. Projeto de Mapeamento Anual da Cobertura e Uso do Solo do Brasil. MapBiomas v.3.0. Available: http://mapbiomas.org/map#coverage. Access in 09/12/2018

SEN, P.K., 1968. Estimates of the regression coefficient based on Kendall’s tau. Journal of American Statistical Association 63, 1379–1389. https://doi.org/10.1080/01621459.1968.10480934

Nascimento, R. S., Brito, J. I. B., Borges, V. P., Farias, P. B., Araújo, L. S.
She, D., Xia, J., Zhang, Y., 2017. Changes in reference evapotranspiration and its driving factors in the middle reaches of Yellow River Basin, China. Science of the Total Environment 607–608, 1151–1162. http://dx.doi.org/10.1016/j.scitotenv.2017.07.007

Silva, M. P., Tarifa, J. R., 2017. Ritmo da Temperatura no Clima Local da Cidade de Cuiabá-Várzea Grande (Mt): Uma Análise Secular (1912 A 2012). Biodiversidade 16, 2-20.

Sobreira, L.C., Leder, S.M., Silva, F.A.G., Rosa, P.R.O., 2011. Expansão urbana e variações mesoclimáticas em João Pessoa, PB. Ambiente Construído 11, 125-138. https://doi.org/10.1590/S1678-86212011000200009

Thornthwaite, C.W., 1948. An approach toward a rational classification of climate. Geographical Review 38, 55-94. https://doi.org/10.2307/210739

Wang, Z., Xie, P., Lai, C., Chen, X., Wu, X., Zeng, Z., Li, J., 2017. Spatiotemporal variability of reference evapotranspiration and contributing climatic factors in China during 1961–2013. Journal of Hydrology 544, 97–108. https://doi.org/10.1016/j.jhydrol.2016.11.021.

Wu, F., Wang, X., Cai, Y., Li, C., 2016. Spatiotemporal analysis of precipitation trends under climate change in the upper reach of Mekong River basin. Quaternary International 392, 137-146. https://doi.org/10.1016/j.quaint.2013.05.049