2-ABSORBING AND STRONGLY 2-ABSORBING SECONDARY SUBMODULES OF MODULES

H. ANSARI-TOROGHY AND F. FARSHADIFAR

Abstract. In this paper, we will introduce the concept of 2-absorbing (resp. strongly 2-absorbing) secondary submodules of modules over a commutative ring as a generalization of secondary modules and investigate some basic properties of these classes of modules.

1. Introduction

Throughout this paper, R will denote a commutative ring with identity and \mathbb{Z} will denote the ring of integers.

Let M be an R-module. A proper submodule P of M is said to be prime if for any $r \in R$ and $m \in M$ with $rm \in P$, we have $m \in P$ or $r \in (P :_RM)$ \cite{13}. Let N be a proper submodule of M. Then the M-radical of N, denoted by M-rad(N), is defined to be the intersection of all prime submodules of M containing N. If M has no prime submodule containing N, then the M-radical of N is defined to be M \cite{16}. A non-zero submodule S of M is said to be second if for each $a \in R$, the homomorphism $S \rightarrow S$ is either surjective or zero \cite{20}. In this case Ann$_R(S)$ is a prime ideal of R.

The notion of 2-absorbing ideals as a generalization of prime ideals was introduced and studied in \cite{8}. A proper ideal I of R is a 2-absorbing ideal of R if whenever $a, b, c \in R$ and $abc \in I$, then $ab \in I$ or $ac \in I$ or $bc \in I$. It has been proved that I is a 2-absorbing ideal of R if and only if whenever $I_1, I_2,$ and I_3 are ideals of R with $I_1I_2I_3 \subseteq I$, then $I_1I_2 \subseteq I$ or $I_1I_3 \subseteq I$ or $I_2I_3 \subseteq I$ \cite{8}. In \cite{9}, the authors introduced the concept of 2-absorbing primary ideal which is a generalization of primary ideal. A proper ideal I of R is called a 2-absorbing primary ideal of R if whenever $a, b, c \in R$ and $abc \in I$, then $ab \in I$ or $ac \in \sqrt{I}$ or $bc \in \sqrt{I}$.

The notion of 2-absorbing ideals was extended to 2-absorbing submodules in \cite{12}. A proper submodule N of M is called a 2-absorbing submodule of M if whenever $abm \in N$ for some $a, b \in R$ and $m \in M$, then $am \in N$ or $bm \in N$ or $ab \in (N :_RM)$.

In \cite{5}, the present authors introduced the dual notion of 2-absorbing submodules (that is, 2-absorbing (resp. strongly 2-absorbing) second submodules) of M and investigated some properties of these classes of modules. A non-zero submodule N of M is said to be a 2-absorbing second submodule of M if whenever $a, b \in R$, L is a completely irreducible submodule of M, and $abN \subseteq L$, then $aN \subseteq L$ or $bN \subseteq L$ or $ab \in Ann_R(N)$. A non-zero submodule N of M is said to be a strongly 2-absorbing second submodule of M if whenever $a, b \in R$, L is a completely irreducible submodule of M, and $abN \subseteq L$, then $aN \subseteq L$ or $bN \subseteq L$ or $ab \in Ann_R(N)$.

This research was in part supported by a grant from IPM (No. 94130048)

2000 Mathematics Subject Classification. 13C13, 13C99.

Key words and phrases. Secondary, 2-absorbing secondary, strongly 2-absorbing secondary, and second radical.

This article was accepted for publication in Le Matematiche.
2-absorbing second submodule of M if whenever $a, b \in R$, K is a submodule of M, and $abN \subseteq K$, then $aN \subseteq K$ or $bN \subseteq K$ or $ab \in \text{Ann}_R(N)$.

In [18], the authors introduced the notion of 2-absorbing primary submodules as a generalization of 2-absorbing primary ideals of rings and studied some properties of this class of modules. A proper submodule N of M is said to be a 2-absorbing primary submodule of M if whenever $a, b \in R$, $m \in M$, and $abm \in N$, then $am \in M \text{-rad}(N)$ or $bm \in M \text{-rad}(N)$ or $ab \in (N :_R M)$.

The purpose of this paper is to introduce the concepts of 2-absorbing and strongly 2-absorbing secondary submodules of an R-module M as dual notion of 2-absorbing primary submodules and obtain some related results.

2. Main results

Let M be an R-module. For a submodule N of M the the second radical (or second socle) of N is defined as the sum of all second submodules of M contained in N and it is denoted by $\text{sec}(N)$ (or $\text{soc}(N)$). In case N does not contain any second submodule, the second radical of N is defined to be (0). $N \neq (0)$ is said to be a second radical submodule of M if $\text{sec}(N) = N$ (see [11] and [2]).

A proper submodule N of M is said to be completely irreducible if $N = \bigcap_{i \in I} N_i$, where $\{N_i\}_{i \in I}$ is a family of submodules of M, implies that $N = N_i$ for some $i \in I$. It is easy to see that every submodule of M is an intersection of completely irreducible submodules of M [11].

We frequently use the following basic fact without further comment.

Remark 2.1. Let N and K be two submodules of an R-module M. To prove $N \subseteq K$, it is enough to show that if L is a completely irreducible submodule of M such that $K \subseteq L$, then $N \subseteq L$.

Definition 2.2. We say that a non-zero submodule N of an R-module M is a 2-absorbing secondary submodule of M if whenever $a, b \in R$, L is a completely irreducible submodule of M and $abN \subseteq L$, then $a(\text{sec}(N)) \subseteq L$ or $b(\text{sec}(N)) \subseteq L$ or $ab \in \text{Ann}_R(N)$. By a 2-absorbing secondary module, we mean a module which is a 2-absorbing secondary submodule of itself.

Example 2.3. Clearly, every submodule of the \mathbb{Z}-module \mathbb{Z} is not secondary. But as $\text{sec}(\mathbb{Z}) = 0$, every submodule of the \mathbb{Z}-module \mathbb{Z} is 2-absorbing secondary.

Lemma 2.4. Let I be an ideal of R and N be a 2-absorbing secondary submodule of M. If $a \in R$, L is a completely irreducible submodule of M, and $IaN \subseteq L$, then $a(\text{sec}(N)) \subseteq L$ if $I(\text{sec}(N)) \subseteq L$ or $Ia \in \text{Ann}_R(N)$.

Proof. Let $a(\text{sec}(N)) \not\subseteq L$ and $Ia \not\in \text{Ann}_R(N)$. Then there exists $b \in I$ such that $abN \neq 0$. Now as N is a 2-absorbing secondary submodule of M, $baN \subseteq L$ implies that $b(\text{sec}(N)) \subseteq L$. We show that $I(\text{sec}(N)) \subseteq L$. To see this, let c be an arbitrary element of I. Then $(b + c)aN \subseteq L$. Hence, either $(b + c)(\text{sec}(N)) \subseteq L$ or $(b + c)a \in \text{Ann}_R(N)$. If $(b + c)(\text{sec}(N)) \subseteq L$, then since $b(\text{sec}(N)) \subseteq L$ we have $c(\text{sec}(N)) \subseteq L$. If $(b + c)a \in \text{Ann}_R(N)$, then $ca \not\in \text{Ann}_R(N)$. Thus $caN \subseteq L$ implies that $c(\text{sec}(N)) \subseteq L$. Hence, we conclude that $I(\text{sec}(N)) \subseteq L$.

Theorem 2.5. Let I and J be two ideals of R and N be a 2-absorbing secondary submodule of an R-module M. If L is a completely irreducible submodule of M and $IJN \subseteq L$, then $I(\text{sec}(N)) \subseteq L$ or $J(\text{sec}(N)) \subseteq L$ or $IJ \not\subseteq \text{Ann}_R(N)$.

Proof. Let $I(\text{sec}(N)) \not\subseteq L$ and $J(\text{sec}(N)) \not\subseteq L$. We show that $IJ \subseteq \text{Ann}_R(N)$. Assume that $c \in I$ and $d \in J$. By assumption, there exists $a \in I$ such that $a(\text{sec}(N)) \not\subseteq L$ and $aJN \subseteq L$. Now Lemma 2.3 shows that $aJ \subseteq \text{Ann}_R(N)$ and so $(I \setminus (L :_R \text{sec}(N)))J \subseteq \text{Ann}_R(N)$. Similarly, there exists $b \in (J \setminus (L :_R \text{sec}(N)))$ such that $Ib \subseteq \text{Ann}_R(N)$ and also $I(J \setminus (L :_R \text{sec}(N))) \subseteq \text{Ann}_R(N)$. Thus we have $ab \in \text{Ann}_R(N)$, $ad \in \text{Ann}_R(N)$, and $cd \in \text{Ann}_R(N)$. As $a + c \in I$ and $b + d \in J$, we have $(a + c)(b + d)N \subseteq L$. Therefore, $(a + c)(\text{sec}(N)) \subseteq L$ or $(b + d)(\text{sec}(N)) \subseteq L$. Hence $c \in I \setminus (L :_R \text{sec}(N))$ which implies that $cd \in \text{Ann}_R(N)$. Similarly, if $(b + d)(\text{sec}(N)) \subseteq L$, we can deduce that $cd \in \text{Ann}_R(N)$. Finally if $(a + c)(b + d) \in \text{Ann}_R(N)$, then $ab + ad + cd \in \text{Ann}_R(N)$ so that $cd \in \text{Ann}_R(N)$. Therefore, $IJ \subseteq \text{Ann}_R(N)$.

Theorem 2.6. Let N be a non-zero submodule of an R-module M. The following statements are equivalent:

(a) If $abN \subseteq L_1 \cap L_2$ for some $a, b \in R$ and completely irreducible submodules L_1, L_2 of M, then $a(\text{sec}(N)) \subseteq L_1 \cap L_2$ or $b(\text{sec}(N)) \subseteq L_1 \cap L_2$ or $ab \in \text{Ann}_R(N)$;

(b) If $IJN \subseteq K$ for some ideals I, J of R and a submodule K of M, then $I(\text{sec}(N)) \subseteq K$ or $J(\text{sec}(N)) \subseteq K$ or $IJ \in \text{Ann}_R(N)$;

(c) For each $a, b \in R$, we have $a(\text{sec}(N)) \subseteq abN$ or $b(\text{sec}(N)) \subseteq abN$ or $abN = 0$.

Proof. $(a) \Rightarrow (b)$. Assume that $IJN \subseteq K$ for some ideals I, J of R, a submodule K of M, and $IJ \not\subseteq \text{Ann}_R(N)$. Then by Theorem 2.5 for all completely irreducible submodules L of M with $K \subseteq L$ either $I(\text{sec}(N)) \subseteq L$ or $J(\text{sec}(N)) \subseteq L$. If $I(\text{sec}(N)) \subseteq L$ (resp. $J(\text{sec}(N)) \subseteq L$) for all completely irreducible submodules L of M with $K \subseteq L$, we are done. Now suppose that L_1 and L_2 are two completely irreducible submodules of M with $K \subseteq L_1$, $K \subseteq L_2$, $I(\text{sec}(N)) \not\subseteq L_1$, and $J(\text{sec}(N)) \not\subseteq L_2$. Then $I(\text{sec}(N)) \subseteq L_2$ and $J(\text{sec}(N)) \subseteq L_1$. Since $IJN \subseteq L_1 \cap L_2$, we have either $I(\text{sec}(N)) \subseteq L_1 \cap L_2$ or $J(\text{sec}(N)) \subseteq L_1 \cap L_2$. If $I(\text{sec}(N)) \subseteq L_1 \cap L_2$, then $I(\text{sec}(N)) \subseteq L_1$ which is a contradiction. Similarly from $J(\text{sec}(N)) \subseteq L_1 \cap L_2$ we get a contradiction.

$(b) \Rightarrow (a)$. This is clear.

$(a) \Rightarrow (c)$. By part (a), $N \neq 0$. Let $a, b \in R$. Then $abN \subseteq abN$ implies that $a(\text{sec}(N)) \subseteq abN$ or $b(\text{sec}(N)) \subseteq abN$ or $abN = 0$.

$(c) \Rightarrow (a)$. This is clear.

Definition 2.7. We say that a non-zero submodule N of an R-module M is a strongly 2-absorbing secondary submodule of M if satisfies the equivalent conditions of Theorem 2.6. By a strongly 2-absorbing secondary module, we mean a module which is a strongly 2-absorbing secondary submodule of itself.

Let N be a submodule of an R-module M. Then part (d) of Theorem 2.6 shows that N is a strongly 2-absorbing secondary submodule of M if and only if N is a strongly 2-absorbing secondary module.

Example 2.8. Clearly every strongly 2-absorbing secondary submodule is a 2-absorbing secondary submodule. But the converse is not true in general. For example, consider $M = \mathbb{Z}_6 \oplus \mathbb{Q}$ as a \mathbb{Z}-module. Then M is a 2-absorbing secondary
module. But since \(0 \neq 6M \subseteq 0 \oplus \mathbb{Q}\), \(sec(M) = M\), \(2M \nsubseteq 0 \oplus \mathbb{Q}\), and \(3M \nsubseteq 0 \oplus \mathbb{Q}\), \(M\) is not a strongly 2-absorbing secondary module.

Proposition 2.9. Let \(N\) be a 2-absorbing second submodule of an \(R\)-module \(M\). Then \(N\) is a strongly 2-absorbing secondary submodule of \(M\).

Proof. Let \(a, b \in R\) and \(K\) be a submodule of \(M\) such that \(aN \subseteq K\). Then \(aN \subseteq K\) or \(bN \subseteq K\) or \(abN = 0\) by assumption. Thus \(a(sec(N)) \subseteq aN \subseteq K\) or \(b(sec(N)) \subseteq aN \subseteq K\) or \(abN = 0\), as required.

The following example shows that the converse of the Proposition 2.9 is not true in general.

Example 2.10. Let \(M\) be the \(\mathbb{Z}\)-module \(\mathbb{Z}_{p^\infty}\). Then as \(p^2 \langle 1/p^3 + \mathbb{Z} \rangle \subseteq \langle 1/p + \mathbb{Z} \rangle\), \(p\langle 1/p^3 + \mathbb{Z} \rangle \nsubseteq \langle 1/p + \mathbb{Z} \rangle\), and \(p^2 \langle 1/p^3 + \mathbb{Z} \rangle \neq 0\), we have the submodule \(\langle 1/p^3 + \mathbb{Z} \rangle\) of \(\mathbb{Z}_{p^\infty}\) is not 2-absorbing second submodule. But \(sec(\langle 1/p^3 + \mathbb{Z} \rangle) = \langle 1/p + \mathbb{Z} \rangle\) implies that \(\langle 1/p^3 + \mathbb{Z} \rangle\) is a strongly 2-absorbing secondary submodule of \(M\).

An \(R\)-module \(M\) is said to be a **comultiplication module** if for every submodule \(N\) of \(M\) there exists an ideal \(I\) of \(R\) such that \(N = (0 :_M I)\), equivalently, for each submodule \(N\) of \(M\), we have \(N = (0 :_M Ann_R(N))\) \([1]\).

Theorem 2.11. Let \(M\) be a finitely generated comultiplication \(R\)-module. If \(N\) is a strongly 2-absorbing secondary submodule of \(M\), then \(Ann_R(N)\) is a 2-absorbing primary ideal of \(R\).

Proof. Let \(a, b, c \in R\) be such that \(abc \in Ann_R(N)\), \(ac \notin \sqrt{Ann_R(N)}\), and \(bc \notin \sqrt{Ann_R(N)}\). Since by \([1]\ 2.12]\), \(Ann_R(sec(N)) = \sqrt{Ann_R(N)}\), there exist completely irreducible submodules \(L_1\) and \(L_2\) of \(M\) such that \(ac(sec(N)) \nsubseteq L_1\) and \(bc(sec(N)) \nsubseteq L_2\). But \(abcN = 0 \subseteq L_1 \cap L_2\) implies that \(abN \subseteq (L_1 \cap L_2 :_M c)\). Now as \(N\) is a strongly 2-absorbing secondary submodule of \(M\), we have \(a(sec(N)) \subseteq (L_1 \cap L_2 :_M c)\) or \(b(sec(N)) \subseteq (L_1 \cap L_2 :_M c)\) or \(abN = 0\). If \(a(sec(N)) \subseteq (L_1 \cap L_2 :_M c)\) (resp. \(b(sec(N)) \subseteq (L_1 \cap L_2 :_M c)\)), then \(ac(sec(N)) \subseteq L_1\) (resp. \(bc(sec(N)) \subseteq L_2\)) contradicted. Hence \(abN = 0\), as needed.

Theorem 2.12. Let \(N\) be a submodule of a comultiplication \(R\)-module \(M\). If \(Ann_R(N)\) is a 2-absorbing primary ideal of \(R\), then \(N\) is a strongly 2-absorbing secondary submodule of \(M\).

Proof. Let \(abN \subseteq K\) for some \(a, b \in R\) and some submodule \(K\) of \(M\). As \(M\) is a comultiplication module, there exists an ideal \(I\) of \(R\) such that \(K = (0 :_M I)\). Hence \(Iab \subseteq Ann_R(N)\) which implies that either \(Ia \subseteq \sqrt{Ann_R(N)}\) or \(Ib \subseteq \sqrt{Ann_R(N)}\) or \(ab \in Ann_R(N)\). If \(ab \in Ann_R(N)\), we are done. If \(Ia \subseteq \sqrt{Ann_R(N)}\), as \(\sqrt{Ann_R(N)} \subseteq Ann_R(sec(N))\), we have \(Ia(sec(N)) = 0\). This implies that \(a(sec(N)) \subseteq K\) because \(M\) is a comultiplication module. Similarly, if \(Ib \subseteq \sqrt{Ann_R(N)}\), we get \(b(sec(N)) \subseteq K\). This completes the proof.

The following example shows that Theorem 2.12 is not satisfied in general.

Example 2.13. Consider the \(\mathbb{Z}\)-module \(M = \mathbb{Z}_p \oplus \mathbb{Z}_q \oplus \mathbb{Q}\), where \(p \neq q\) are two prime numbers. Then \(M\) is not a comultiplication \(\mathbb{Z}\)-module and \(Ann_{\mathbb{Z}}(M) = 0\) is a 2-absorbing primary ideal of \(R\). But since \(0 \neq pqM \subseteq 0 \oplus 0 \oplus \mathbb{Q}\), \(sec(M) = M\), \(pM \nsubseteq 0 \oplus 0 \oplus \mathbb{Q}\), and \(qM \nsubseteq 0 \oplus 0 \oplus \mathbb{Q}\), \(M\) is not a strongly 2-absorbing secondary module.
In [13, 2.6], it is shown that, if M is a finitely generated multiplication R-module and N is a 2-absorbing primary submodule of M, then $M\text{-rad}(N)$ is a 2-absorbing submodule of M. In the following lemma, we see that some of this conditions are redundant.

Lemma 2.14. Let N be a 2-absorbing primary submodule of an R-module M. Then $M\text{-rad}(N)$ is a 2-absorbing submodule of M.

Proof. This follows from the fact that $M\text{-rad}(M\text{-rad}(N)) = M\text{-rad}(N)$ by Proposition 2. □

Proposition 2.15. Let M be an R-module. Then we have the following.

(a) If N is a 2-absorbing (resp. strongly 2-absorbing) secondary submodule of an R-module M, then $\text{sec}(N)$ is a 2-absorbing (resp. strongly 2-absorbing) second submodule of M.

(b) If N is a second radical submodule of M, then N is a 2-absorbing (resp. strongly 2-absorbing) second submodule if and only if N is a 2-absorbing (resp. strongly 2-absorbing) secondary submodule.

Proof. (a) This follows from the fact that $\text{sec}(\text{sec}(N)) = \text{sec}(N)$ by [4, 2.1]. □

(b) This follows from part (a) □

Let N and K be two submodules of an R-module M. The **coproduct** of N and K is defined by $(0:_M \text{Ann}_R(N)\text{Ann}_R(K))$ and denoted by $C(NK)$ [6].

Theorem 2.16. Let N be a submodule of an R-module M such that $\text{sec}(N)$ is a second submodule of M. Then we have the following.

(a) N is a strongly 2-absorbing secondary submodule of M.

(b) If M is a comultiplication R-module, then $C(N^t)$ is a strongly 2-absorbing secondary submodule of M for every positive integer $t \geq 1$, where $C(N^t)$ means the coproduct of N, t times.

Proof. (a) Let $a, b \in R$, K be a submodule of M such that $abN \subseteq K$, and $b(\text{sec}(N)) \nsubseteq K$. Then as $\text{sec}(N)$ is a second submodule and $a(\text{sec}(N)) \subseteq aN \subseteq (K:_M b)$, we have $a(\text{sec}(N)) = 0$ by [3, 2.10]. Thus $a(\text{sec}(N)) \subseteq K$, as needed.

(b) Let M be a comultiplication R-module. Then there exists an ideal I of R such that $N = (0:_M I)$. Thus by [4, 2.1],

$$\text{sec}(c(N^t)) = \text{sec}((0:_M I^t)) = \text{sec}((0:_M I)) = \text{sec}(N).$$

Now the results follows from to the proof of part (a). □

Theorem 2.17. Let M be a comultiplication R-module. Then we have the following.

(a) If $N_1, N_2, ..., N_n$ are strongly 2-absorbing secondary submodules of M with the same second radical, then $N = \sum_{i=1}^{n} N_i$ is a strongly 2-absorbing secondary submodule of M.

(b) If $N_1, N_2, ..., N_n$ are 2-absorbing secondary submodules of M with the same second radical, then $N = \sum_{i=1}^{n} N_i$ is a 2-absorbing secondary submodule of M.

(c) If N_1 and N_2 are two secondary submodules of M, then $N_1 + N_2$ is a strongly 2-absorbing secondary submodule of M.
(d) If \(M \) is finitely generated, \(N \) is a submodule of \(M \) which possess a secondary representation, and \(sec(N) = K_1 + K_2 \), where \(K_1 \) and \(K_2 \) are two minimal submodules of \(M \), then \(N \) is a strongly 2-absorbing secondary submodule of \(M \).

Proof. (a) Let \(a, b \in R \) and \(K \) be a submodule of \(M \) such that \(abN \subseteq K \). Thus for each \(i = 1, 2, \ldots, n \), \(abN_i \subseteq K \). If there exists \(1 \leq j \leq n \) such that \(a(sec(N_j)) \subseteq K \) or \(b(sec(N_j)) \subseteq K \), then \(a(sec(N)) \subseteq K \) or \(b(sec(N)) \subseteq K \) (note that \(sec(N) = sec(\sum_{i=1}^n N_i) = \sum_{i=1}^n sec(N_i) = sec(N) \) by [11 2.6]). Otherwise, \(abN_i = 0 \) for each \(i = 1, 2, \ldots, n \). Hence \(abN = 0 \), as desired.

(b) The proof is similar to the part (a).

(c) As \(N_1 \) and \(N_2 \) are secondary submodules of \(M \), \(Ann_R(N_1) \) and \(Ann_R(N_2) \) are primary ideals of \(R \). Hence \(Ann_R(N_1 + N_2) = Ann_R(N_1) \cap Ann_R(N_2) \) is a 2-absorbing primary ideal of \(R \) by [9 2.4]. Thus by Theorem 2.12, \(N_1 + N_2 \) is a strongly 2-absorbing secondary submodule of \(M \).

(d) Let \(N = \sum_{i=1}^n N_i \) be a secondary representation. By [4 2.6], \(sec(N) = \sum_{i=1}^n sec(N_i) \). Since \(sec(N_i)'s \) are secondary submodules of \(M \) by [4 2.13], we have
\[
\{ sec(N_1), sec(N_2), \ldots, sec(N_n) \} = \{ K_1, K_2 \}.
\]
Without loss of generality, we may assume that for some \(1 \leq t < n \), \(\{ sec(N_1), \ldots, sec(N_t) \} = \{ K_1 \} \) and \(\{ sec(N_{t+1}), \ldots, sec(N_n) \} = \{ K_2 \} \). Set \(H_1 := N_1 + \ldots + N_t \) and \(H_2 := N_{t+1} + \ldots + N_n \). By [11 2.12], \(H_1 \) and \(H_2 \) are secondary submodules of \(M \). Therefore, by part (c), \(N = H_1 + H_2 \) is a strongly 2-absorbing secondary submodule of \(M \). \(\square \)

The following example shows that the direct sum of two strongly 2-absorbing secondary \(R \)-modules is not a strongly 2-absorbing secondary \(R \)-module in general.

Example 2.18. Clearly, the \(\mathbb{Z} \)-modules \(\mathbb{Z}_6 \) and \(\mathbb{Z}_{10} \) are strongly 2-absorbing secondary \(\mathbb{Z} \)-modules. Let \(M = \mathbb{Z}_6 \oplus \mathbb{Z}_{10} \). Then \(M \) is not a strongly 2-absorbing secondary \(\mathbb{Z} \)-module. By [3 2.1], \(sec(M) = M \). Thus \(M \) is not a strongly 2-absorbing secondary \(\mathbb{Z} \)-module by Proposition 2.15.

Lemma 2.19. Let \(f : M \rightarrow \hat{M} \) be a monomorphism of \(R \)-modules. Then we have the following.

(a) If \(N \) is a submodule of \(M \), then \(sec(f(N)) = f(sec(N)) \).

(b) If \(\hat{N} \) is a submodule of \(\hat{M} \) such that \(\hat{N} \subseteq f(M) \), then \(sec(f^{-1}(\hat{N})) = f^{-1}(sec(\hat{N})) \).

Proof. (a) Let \(\hat{S} \) be a second submodule of \(f(N) \). Then one can see that \(f^{-1}(\hat{S}) \) is a secondary submodule of \(N \). Thus \(f(f^{-1}(\hat{S})) \subseteq f(sec(N)) \). Therefore, \(sec(f(N)) \subseteq f(sec(N)) \). The reverse inclusion is clear.

(b) Let \(S \) be a secondary submodule of \(f^{-1}(\hat{N}) \). Then one can see that \(f(S) \) is a secondary submodule of \(\hat{N} \). Thus \(f^{-1}(S) \subseteq f^{-1}(sec(\hat{N})) \). Therefore, \(sec(f^{-1}(\hat{N})) \subseteq f^{-1}(sec(\hat{N})) \). To see the reverse inclusion, let \(\hat{S} \) be a secondary submodule of \(\hat{N} \). Then \(f^{-1}(\hat{S}) \) is a second submodule of \(f^{-1}(\hat{N}) \). This implies that \(f^{-1}(sec(\hat{N})) \subseteq sec(f^{-1}(\hat{N})) \). \(\square \)

Theorem 2.20. Let \(f : M \rightarrow \hat{M} \) be a monomorphism of \(R \)-modules. Then we have the following.

(a) If \(N \) is a strongly 2-absorbing secondary submodule of \(M \), then \(f(N) \) is a strongly 2-absorbing secondary submodule of \(\hat{M} \).
Lemma 2.23. Let \(\hat{N} \) be a strongly 2-absorbing secondary submodule of \(\hat{M} \) and \(\hat{N} \subseteq f(M) \), then \(f^{-1}(\hat{N}) \) is a strongly 2-absorbing secondary submodule of \(M \).

Proof. (a) Since \(N \neq 0 \) and \(f \) is a monomorphism, we have \(f(N) \neq 0 \). Let \(a, b \in R \), \(K \) be a submodule of \(\hat{M} \), and \(abf(N) \subseteq K \). Then \(abN \subseteq f^{-1}(K) \). As \(N \) is strongly 2-absorbing secondary submodule, \(a(\text{sec}(N)) \subseteq f^{-1}(K) \) or \(b(\text{sec}(N)) \subseteq f^{-1}(K) \) or \(abN = 0 \). Therefore, by Lemma 2.19 (a),

\[
a(\text{sec}(f(N))) = a(f(\text{sec}(N))) \subseteq f(f^{-1}(K)) = f(M) \cap \hat{K} \subseteq \hat{K}
\]
or\[
b(\text{sec}(f(N))) = b(f(\text{sec}(N))) \subseteq f(f^{-1}(K)) = f(M) \cap \hat{K} \subseteq \hat{K}
\]
or \(abf(N) = 0 \), as needed.

(b) If \(f^{-1}(\hat{N}) = 0 \), then \(f(M) \cap \hat{N} = f(f^{-1}(\hat{N})) = f(0) = 0 \). Thus \(\hat{N} = 0 \), a contradiction. Therefore, \(f^{-1}(\hat{N}) \neq 0 \). Now let \(a, b \in R \), \(K \) be a submodule of \(M \), and \(abf^{-1}(\hat{N}) \subseteq K \). Then

\[
ab\hat{N} = abf(M) \cap \hat{N} = abf^{-1}(\hat{N}) \subseteq f(K).
\]

As \(\hat{N} \) is strongly 2-absorbing secondary submodule, \(a(\text{sec}(\hat{N})) \subseteq f(K) \) or \(b(\text{sec}(\hat{N})) \subseteq f(K) \) or \(ab\hat{N} = 0 \). Hence by Lemma 2.19 (b),

\[
a(\text{sec}(f(N))) = a(f(\text{sec}(N))) \subseteq f^{-1}(f(K)) = K \text{ or } b(\text{sec}(f(N))) = b(f(\text{sec}(N))) \subseteq f^{-1}(f(K)) = K \text{ or } abf^{-1}(\hat{N}) = 0,
\]
as desired. \(\square \)

Corollary 2.21. Let \(M \) be an \(R \)-module and let \(N \subseteq K \) be two submodules of \(M \). Then \(N \) is a strongly 2-absorbing secondary submodule of \(K \) if and only if \(N \) is a strongly 2-absorbing secondary submodule of \(M \).

Proof. This follows from Theorem 2.20 by using the natural monomorphism \(K \rightarrow M \). \(\square \)

Proposition 2.22. Let \(M \) be a cocyclic \(R \)-module with minimal submodule \(K \) and \(N \) be a submodule of \(M \) such that \(rN \neq K \) for each \(r \in R \). If \(N/K \) is a strongly 2-absorbing secondary submodule of \(M/K \), then \(N \) is a strongly 2-absorbing secondary submodule of \(M \).

Proof. Let \(a, b \in R \) and \(H \) be a submodule of \(M \) such that \(abN \subseteq H \). Then \(ab(N/K) \subseteq H/K \) implies that \(a(\text{sec}(N/K)) \subseteq H/K \) or \(b(\text{sec}(N/K)) \subseteq H/K \) or \(ab(N/K) = 0 \). If \(ab(N/K) = 0 \), then \(abN = 0 \) because \(rN \neq K \) for each \(r \in R \). Otherwise, since \(a(\text{sec}(N))/K \subseteq \text{sec}(N/K) \), we have \(a(\text{sec}(N)) \subseteq H \) or \(b(\text{sec}(N)) \subseteq H \) as required. \(\square \)

Let \(R_i \) be a commutative ring with identity and \(M_i \) be an \(R_i \)-module, for \(i = 1, 2 \). Let \(R = R_1 \times R_2 \). Then \(M = M_1 \times M_2 \) is an \(R \)-module and each submodule of \(M \) is in the form of \(N = N_1 \times N_2 \) for some submodules \(N_1 \) of \(M_1 \) and \(N_2 \) of \(M_2 \). In addition, \(M_i \) is a comultiplication \(R_i \)-module, for \(i = 1, 2 \) if and only if \(M \) is a comultiplication \(R \)-module by \([19], 2.1\). \(\square \)

Lemma 2.23. Let \(R = R_1 \times R_2 \) and \(M = M_1 \times M_2 \), where \(M_1 \) is an \(R_1 \)-module and \(M_2 \) is an \(R_2 \)-module. If \(N = N_1 \times N_2 \) is a submodule of \(M \), then we have the following.

(a) \(N \) is a second submodule of \(M \) if and only if \(N = S_1 \times 0 \) or \(N = S_2 \times 0 \), where \(S_1 \) is a second submodule of \(N_1 \) and \(S_2 \) is a second submodule of \(M_2 \).
Lemma 2.25. \(\square \)

Theorem 2.24. Let \(R = R_1 \times R_2 \) and \(M = M_1 \times M_2 \), where \(M_1 \) is a comultiplication \(R_1 \)-module and \(M_2 \) is a comultiplication \(R_2 \)-module. Then we have the following.

(a) If \(M_1 \) be a finitely generated \(R_1 \)-module, then a non-zero submodule \(K_1 \) of \(M_1 \) is a strongly 2-absorbing secondary submodule if and only if \(N = K_1 \times 0 \) is a strongly 2-absorbing secondary submodule of \(M \).

(b) If \(M_2 \) be a finitely generated \(R_2 \)-module, then a non-zero submodule \(K_2 \) of \(M_2 \) is a strongly 2-absorbing secondary submodule if and only if \(N = 0 \times K_2 \) is a strongly 2-absorbing secondary submodule of \(M \).

(c) If \(K_1 \) is a secondary submodule of \(M_1 \) and \(K_2 \) is a secondary submodule of \(M_2 \), then \(N = K_1 \times K_2 \) is a strongly 2-absorbing secondary submodule of \(M \).

\[\begin{align*}
\text{Proof.} & \quad \text{(a) Let } K_1 \text{ be a strongly 2-absorbing secondary submodule of } M_1. \text{ Then } \text{Ann}_{R_1}(K_1) \text{ is a 2-absorbing primary ideal of } R_1 \text{ by Theorem 2.11.} \text{ Now since } \\
& \quad \quad \text{Ann}_R(N) = \text{Ann}_{R_1}(K_1) \times R_2, \text{ we have } \text{Ann}_R(N) \text{ is a 2-absorbing primary ideal of } R \text{ by [9] 2.23.} \text{ Thus the result follows from Theorem 2.12.} \text{ Conversely, let } N = K_1 \times 0 \text{ be a strongly 2-absorbing secondary submodule of } M. \text{ Then } \\
& \quad \quad \text{Ann}_R(N) = \text{Ann}_{R_1}(K_1) \times R_2 \text{ is a primary ideal of } R \text{ by Theorem 2.11.} \text{ Thus } \text{Ann}_{R_1}(K_1) \text{ is a primary ideal of } R_1 \text{ by [9] 2.23.} \text{ Thus by Theorem 2.12, } K_1 \text{ be a strongly 2-absorbing secondary submodule of } M_1. \\
& \quad \quad \text{(b) We have similar arguments as in part (a).} \\
& \quad \quad \text{(c) Let } K_1 \text{ be a secondary submodule of } M_1 \text{ and } K_2 \text{ be a secondary submodule of } M_2. \text{ Then } \text{Ann}_{R_1}(K_1) \text{ and } \text{Ann}_{R_2}(K_2) \text{ are primary ideals of } R_1 \text{ and } R_2, \text{ respectively. Now since } \\
& \quad \quad \text{Ann}_R(N) = \text{Ann}_{R_1}(K_1) \times \text{Ann}_{R_2}(K_2), \text{ we have } \text{Ann}_R(N) \text{ is a 2-absorbing primary ideal of } R \text{ by [9] 2.23.} \text{ Thus the result follows from Theorem 2.12.} \quad \square
\end{align*} \]

Lemma 2.25. Let \(N \) be a submodule of a comultiplication \(R \)-module \(M \). Then \(N \) is a secondary submodule if and only if \(\text{Ann}_R(N) \) be a primary ideal of \(R \).

\[\begin{align*}
\text{Proof.} & \quad \text{The necessity is clear. For converse, let } r \in R. \text{ As } M \text{ is a comultiplication module, } rN = (0 :_M I) \text{ for some ideal } I \text{ of } R. \text{ Now } rI \subseteq \text{Ann}_R(N) \text{ implies that } \\
& \quad \quad I \subseteq \text{Ann}_R(N) \text{ or } r^t \in \text{Ann}_R(N) \text{ for some positive integer } t. \text{ Thus as } M \text{ is a comultiplication } R \text{-module, } N = rN \text{ or } r^tN = 0 \text{ for some positive integer } t. \quad \square
\end{align*} \]

Theorem 2.26. Let \(R = R_1 \times R_2 \) be a decomposable ring and \(M = M_1 \times M_2 \) be a finitely generated comultiplication \(R \)-module, where \(M_1 \) is an \(R_1 \)-module and \(M_2 \) is an \(R_2 \)-module. Suppose that \(N = N_1 \times N_2 \) is a non-zero submodule of \(M \). Then the following conditions are equivalent:

(a) \(N \) is a strongly 2-absorbing secondary submodule of \(M \);

(b) Either \(N_1 = 0 \) and \(N_2 \) is a strongly 2-absorbing secondary submodule of \(M_2 \) or \(N_2 = 0 \) and \(N_1 \) is a strongly 2-absorbing secondary submodule of \(M_1 \) or \(N_1, N_2 \) are secondary submodules of \(M_1, M_2 \), respectively.

\[\begin{align*}
\text{Proof.} & \quad (a) \Rightarrow (b). \text{ Let } N = N_1 \times N_2 \text{ be a strongly 2-absorbing secondary submodule of } M. \text{ Then } \text{Ann}_R(N) = \text{Ann}_{R_1}(N_1) \times \text{Ann}_{R_2}(N_2) \text{ is a 2-absorbing primary ideal}
\end{align*} \]
of \(R \) by Theorem 2.11. By [9, 2.23], we have \(\text{Ann}_{R_1}(N_1) = R_1 \) and \(\text{Ann}_{R_2}(N_2) \) is a 2-absorbing primary ideal of \(R_2 \) or \(\text{Ann}_{R_1}(N_2) = R_2 \) and \(\text{Ann}_{R_1}(N_1) \) is a 2-absorbing primary ideal of \(R_1 \) and \(\text{Ann}_{R_2}(N_2) \) are primary ideals of \(R_1 \) and \(R_2 \), respectively. Suppose that \(\text{Ann}_{R_1}(N_1) = R_1 \) and \(\text{Ann}_{R_2}(N_2) \) is a 2-absorbing primary ideal of \(R_2 \). Then \(N_1 = 0 \) and \(N_2 \) is a strongly 2-absorbing secondary submodule of \(M_2 \) by Theorem 2.12. Similarly, if \(\text{Ann}_{R_2}(N_2) = R_2 \) and \(\text{Ann}_{R_1}(N_1) \) is a 2-absorbing primary ideal of \(R_1 \), then \(N_2 = 0 \) and \(N_1 \) is a strongly 2-absorbing secondary submodule of \(M_1 \). If the last case hold, then as \(M_1 \) (resp. \(M_2 \)) is a comultiplication \(R_1 \) (resp. \(R_2 \)) module, \(N_1 \) (resp. \(N_2 \)) is a secondary submodule of \(M_1 \) (resp. \(M_2 \)) by Lemma 2.25.

\((b) \Rightarrow (a)\). This follows from Theorem 2.25. □

References

1. H. Ansari-Toroghy and F. Farshadifar, The dual notion of multiplication modules, Taiwanese J. Math. 11 (4) (2007), 1189–1201.
2. , On the dual notion of prime submodules, Algebra Colloq. 19 (Spec 1) (2012), 1109-1116.
3. , On the dual notion of prime submodules (II), Mediterr. J. Math., 9 (2) (2012), 329-338.
4. , On the dual notion of prime radicals of submodules, Asian Eur. J. Math. 6 (2) (2013), 1350024 (11 pages).
5. , Some generalizations of second submodules, submitted.
6. , Product and dual product of submodules, Far East J. Math. Sci. 25 (3) (2007), 447-455.
7. H. Ansari-Toroghy, F. Farshadifar, S.S. Pourmortazavi, and F. Khaliphe On secondary mod-
8. , On 2-absorbing ideals of commutative rings, Bull. Austral. Math. Soc. 75 (2007), 417-429.
9. A. Badawi, On 2-absorbing primary ideals in commutative rings, Bull. Korean Math. Soc., 51 (4) (2014), 1163-1173.
10. A. Barnard, Multiplication modules, J. Algebra 71 (1981), 174-178.
11. , The dual notion of the prime radical of a module, J. Algebra 392 (2013), 265-275.
12. A. Y. Darani, and F. Soheilnia, 2-absorbing and weakly 2-absorbing submodules, Thai J. Math. 9(3) (2011), 577584.
13. J. Dauns, Prime submodules, J. Reine Angew. Math. 298 (1978), 156–181.
14. L. Fuchs, W. Heinzer, and B. Olberding, Commutative ideal theory without finiteness conditions: Irreducibility in the quotient field, in: Abelian Groups, Rings, Modules, and Homological Algebra, Lect. Notes Pure Appl. Math. 249 (2006), 121–145.
15. C.P. Lu, M-radicals of submodules in modules, Math. Japonica, 34 (2) (1989), 211-219.
16. R.L. McCasland and M.E. Moore, On radicals of submodules of finitely generated modules, Canad. Math. Bull. 29 (1) (1986), 37-39.
17. H. Mostafanasab, U. Tekir, and K.H. Oral, Classical 2-absorbing submodules of modules over commutative rings,
18. H. Mostafanasab, E. Yetkin, U. Tekir and A. Yousefian Darani, On 2-absorbing primary submodules of modules over commutative rings, An. St. Univ. Ovidius Constanța, (in press).
19. A. Nikseresht and H.Sharif, On comultiplication and R-multiplication modules, Journal of algebraic systems 2 (1) (2014), 1-19.
20. S. Yassemi, The dual notion of prime submodules, Arch. Math. (Brno) 37 (2001), 273-278.
21. , The dual notion of the cyclic modules, Kobe. J. Math. 15 (1998), 41–46.
DEPARTMENT OF PURE MATHEMATICS, FACULTY OF MATHEMATICAL SCIENCES, UNIVERSITY OF
GUilan, P. O. Box 41335-19141, Rasht, Iran.
E-mail address: ansari@guilan.ac.ir

UNIVERSITY OF FARIHANGIAN, P. O. BOX 19396-14464, TEHRAN, IRAN.
E-mail address: f.farshadifar@gmail.com

SCHOOL OF MATHEMATICS, INSTITUTE FOR RESEARCH IN FUNDAMENTAL SCIENCES (IPM), P.O.
BOX: 19395-5746, TEHRAN, IRAN.