A large family of Dscam genes with tandemly arrayed 5’ cassettes in Chelicerata

Yuan Yue1,*, Yijun Meng2,*, Hongru Ma1,*, Shouqing Hou1, Guozheng Cao1, Weiling Hong1, Yang Shi1, Pengjuan Guo1, Baoping Liu1, Feng Shi1, Yun Yang1 & Yongfeng Jin1

Drosophila Dscam1 (Down Syndrome Cell Adhesion Molecules) and vertebrate clustered protocadherins (Pcdhs) are two classic examples of the extraordinary isoform diversity from a single genomic locus. Dscam1 encodes 38,016 distinct isoforms via mutually exclusive splicing in D. melanogaster, while the vertebrate clustered Pcdhs utilize alternative promoters to generate isoform diversity. Here we reveal a shortened Dscam gene family with tandemly arrayed 5’ cassettes in Chelicerata. These cassette repeats generally comprise two or four exons, corresponding to variable Immunoglobulin 7 (Ig7) or Ig7–8 domains of Drosophila Dscam1. Furthermore, extraordinary isoform diversity has been generated through a combination of alternating promoter and alternative splicing. These sDscams have a high sequence similarity with Drosophila Dscam1, and share striking organizational resemblance to the 5’ variable regions of vertebrate clustered Pcdhs. Hence, our findings have important implications for understanding the functional similarities between Drosophila Dscam1 and vertebrate Pcdhs, and may provide further mechanistic insights into the regulation of isoform diversity.
Alternative transcription and alternative splicing are two major means to expand the transcriptomic and proteomic repertoire from a single gene. Drosophila Dscam1 (Down Syndrome Cell Adhesion Molecules) and vertebrate clustered protocadherins (Pcdhs) are two classic examples of the extraordinary protein isoform diversity that can arise from a single complex genomic locus in two phyla. Dscam1 gene encodes 38,016 distinct isoforms via mutually exclusive alternative splicing of 4 arrays of tandem duplicated exons in D. melanogaster. These Dscam1 isoforms are expressed stochastically and combinatorially, and exhibit isoform-specific homophilic binding. These properties provide the molecular basis of Drosophila Dscam1 as a key molecule for self-avoidance, and genetic studies have indicated that thousands of Dscam1 isoforms are required for neuronal wiring and self-avoidance. In contrast to insect Dscam1, vertebrate Dscam genes do not generate extraordinary protein diversity.

However, another set of genes, the clustered Pcdhs, might perform the analogous function in vertebrates. Pcdhs are the largest subgroup of the cadherin superfamily of cell adhesion proteins and are abundantly expressed in the central nervous system. In the human, 52 Pcdh proteins are encoded by 3 tightly linked gene clusters named Pedha, Pedhh and Pedhv, which are organized in a tandem array and on a single chromosome. In these genes, each variable exon is preceded by a promoter, and Pcdh diversity is produced via differential promoter choice and cis-alternative splicing. The Pcdh gene cluster encodes a large repertoire of cell surface recognition proteins, which can engage promoter and splicing activities. Thus, they expand the isoform diversity via a combination of alternative splicing cassettes. The encoded proteins had a striking similarity to Drosophila Dscam1 in the M. martensii genome were analysed. These Ig-coding exons were tandemly arrayed and the clustered Dscam1 genes, similar to Drosophila Dscam1, may also mediate neurite self-avoidance by specifying single-cell identity. Conversely, such vertebrate clustered Pcdh genes have not been identified in Drosophila.

Given the striking molecular parallels between and complementary phylogenetic distribution of Dscam diversity in Drosophila and the clustered Pcdh diversity in vertebrates, it is attractive to speculate that they may have similar roles. These two phyla appear to have evolved a common molecular strategy for self-avoidance by recruiting different molecules. Nevertheless, since there is a big evolutionary gap between insects and vertebrates, who shared a common ancestor more than 500 million years ago, how the evolutionary transitions and complementarities occurred remains unclear. Moreover, Drosophila Dscam1 generally generates tens of thousands of isoforms, while only 58 isoforms exist for clustered Pcdh genes. This discrepancy in isoform diversity by at least 2 orders of magnitude is unlikely to be explained by the much higher splicing complexity across variable 5 promoters or in Purkinje cells. This observation suggests that the tandemly arrayed Pcdhs isoforms are required for neuronal wiring and self-avoidance.

In Drosophila Dscam1, 5 alternative splicing found in vertebrates. Thus, our findings have important implications to aid in our understanding of the functional similarities between two structurally unrelated families of Drosophila Dscam and vertebrate Pcdhs, and may provide further insights into the regulatory mechanisms governing the selection of tandemly arrayed 5' variable regions.

Results

A novel shortened Dscam gene family in Mesobuthus martensii.

To trace the origins of duplicated exons of the Dscam genes in Arthropoda, the exons encoding the Ig7 orthologues of Drosophila Dscam1 in the M. martensii genome were analysed. These Ig-coding exons were tandemly arrayed across the gene body, similar to Drosophila Dscam1. Nevertheless, RNA-seq analyses and sequencing of 5' RACE (rapid-amplification of cDNA ends) products indicated that these transcripts shared no common upstream exons, and therefore, they might initiate immediately upstream of each variable exon. Importantly, we believe this was located close to the transcription start sites for each variable exon, because a stop codon was generally located in the frame immediately upstream from the ATG initiation codon in each variable cassette (Supplementary Fig. 1). Last, computer-assisted and RNA-seq analyses revealed seven novel Dscam genes in M. martensii, which were characterized by tandemly arrayed 5' cassettes (Fig. 1a). Their encoding isoforms were similar to each other and to previously characterized Drosophila Dscam1, but all lacked the canonical Ig1–6,10 and FNIII 3–4, 6 domains present in classical DSCAM. We therefore designated these novel shortened Dscam genes as sDscam. Based on different units of tandemly arrayed 5' cassettes, these sDscams could be subdivided into two closely related subfamilies, sDscamx and sDscamf (Fig. 1a,b). The former (sDscamx) contained tandemly arrayed 5' cassettes with 2 exons. This tandem cassette encoded a single Ig domain, which corresponded to the Ig7 of Drosophila Dscam1 (Fig. 1a). Genome-wide analyses revealed the presence of only one member of the sDscamx subfamily, which contained at least 40 tandem copies at the 5' variable regions.

The tandemly arrayed 5' cassette of another gene cluster subfamily (sDscamf) generally contained 4 exons (Fig. 1b). These tandem cassette encoded 2 Ig repeats, which corresponded to the Ig7–8 domains of Drosophila Dscam1. This is similar to Ig7–8 arrays in Ixodes scapularis Dscam, albeit without the annotation of the first exons. We identified up to 6 members (sDscamf1–sDscamf6) of the sDscamf subfamily, which contained 13, 8, 13, 9, 10 and 2 tandem arrayed cassettes, respectively. In some cases, tandem cassettes could be made by the combination of different duplication units. Taken together, this unusual organization of the sDscam family potentiates the capacity to expand the transcript isoforms.

sDscam 5' clustered organization is conserved in Chelicera.

We examined whether this clustered organization of sDscam found in M. martensii was conserved at the 5' variable regions throughout Arthropoda. This analysis was expanded to include the Araneae Stegodyphus mimosarum, 2 Ixodoidean species (Ixodes scapularis and Tetanychus urticae) and Merostomatan Limulus polyphemus. Together, these organisms comprise some of the major taxonomic groups of the Chelicera subphylum that last shared a common ancestor ~420 million years ago. We identified the clustered organization at the 5' regions of sDscam in all species of the Arachnida class investigated, although the members of the tandemly arrayed 5' cassettes differed among species (Supplementary Fig. 2). This led us to believe that the 5' clustered organization of the sDscam family was evolutionarily
conserved in Arachnida. Moreover, the sequence comparison revealed the 5′ clustered organization of the sDscamx and sDscamβ subfamilies in Merostomatan L. polyphemus (Supplementary Fig. 2). However, a similar 5′ clustered organization was not identified in any of the Dscam genes from the Mandibulata species of insect, Crustacea or Myriapoda classes, suggesting that it arose after radiation of Mandibulata and Chelicerata during the evolution of Arthropoda. Thus, we concluded that the 5′ clustered organization of sDscam was Chelicerata-specific and conserved throughout Chelicerata evolution.

Origin and lineage-specific expansion of 5′ clustered sDscam. How the 5′ clustered organization of the sDscam gene arose was investigated next. Following a comprehensive comparative analysis of Dscam sequences from arthropod species (Supplementary Fig. 3), it was speculated that the sDscam gene might have originated from the sequential shortening and expansion of the Ig and FNIII domains of canonical Dscam (Fig. 2, Supplementary Fig. 4a). First, the ancestral Dscam gene underwent the loss of FNIII3–4 and Ig10 domains before the divergence of Arachnida and Merostomata. This is supported by...
the fact that Dscam genes lacking the FNIII3–4 and Ig10 domains are present in all Chelicerata species investigated (Supplementary Fig. 3). The further loss of the FNIII domain proximal to the transmembrane domain was followed later by the loss of the coding region encoding the N-terminal Ig1–6 domains (Fig. 2; Supplementary Fig. 4a). Eventually, a shortened Dscam evolved in the ancestral gene. Second, this shortening was followed later by 5′ segmental duplication to create two or multiple tandemly arrayed cassettes. The duplication unit may include both exons 1–2 encoding an Ig domain or exons 1–4 encoding two Ig domains and their promoters (green or blue dashed boxes). Thus, various isoforms with diverse Ig1 (sDscam2) and Ig1–2 (sDscamβ) were generated by combining alternative promoters with alternative splicing.

Expression patterns of sDscam variable cassettes. To determine the expression profiles of the variable cassettes in M. martensiisDscams, paired-end sequencing of poly(A)-tailed transcripts was performed on five dissected adult tissue samples, including the cephalothorax, abdomen, muscles, haemocytes and poison glands. RNA-seq reads were mapped to the genome sequence of sDscams as described above. Based on the RNA-seq data of constitutive exons, the sDscamz and sDscamβ1–6 transcripts were differentially expressed (Fig. 3a). The sDscamz and sDscamβ1–6 transcripts were expressed at much higher levels in the cephalothorax than in the abdomen, muscles and haemocytes (Fig. 3a; Supplementary Fig. 7a). This is largely consistent with previous studies in which Dscams were highly expressed in neural tissues13,27. Notably, sDscamβ3, sDscamβ5 and sDscamβ6 transcripts were expressed at maximum levels in the poison glands. It would be of interest to know whether the sDscam isoform diversity contributes to immune protection, as previously reported for Dscam1 isoforms in insects27. Transcriptional signals were detected for almost all of the 5′ variable exons of sDscamz and the six sDscamβ genes in at least one of the tissues of M. martensiis (Fig. 3b,c; Supplementary Fig. 7b,c). For each Dscam gene, the relative abundance of isoforms differed markedly among the variable exons. For example, the most abundant 10 sDscamz isoforms accounted for 54.7% and 52.5% of all reads from the cephalothorax and abdomen, respectively (Fig. 3b,c). Interestingly, the variable cassettes most distal to the constitutive exons tended to occur less frequently in all tissues for all sDscams, except for sDscamβ4. In sDscamβ2–3 and sDscamβ5–6, the inclusion frequency of a variable exon largely correlated with its proximity to the first constitutive exon (Supplementary Fig. 8a–d).

Several significant differences existed in the expression profiles of various sDscam variable cassettes in different tissues. The 5′ variable exon usage in sDscamβ1–5 showed moderate to dramatic changes in different tissues, whereas differences in the sDscamz cassettes were relatively modest (Fig. 3b,c). Most of the 5′ variable

![Figure 2](image-url)
exons of sDscam were expressed in the cephalothorax, abdomen, haemocytes and poison glands. Nonetheless, only a subset was lowly expressed in the muscles (Fig. 3b). Similarly, most of the 5' variable exons of sDscam1–6 could be detected in the cephalothorax, abdomen and poison glands, while only a subset was expressed in the haemocytes and muscles. Variable cassette 4 of sDscamβ1 was abundantly expressed in the cephalothorax, but was barely detectable in the abdomen (Fig. 3c; Supplementary Fig. 7c,d). sDscamβ3 variable cassette 11 was abundantly expressed in the poison gland, but was barely detectable in other tissues (Fig. 3c; Supplementary Fig. 7c,d). These data indicate that the selection of 5' variable exons of sDscamα and sDscamβ is differentially regulated in different tissues.

Variable cassettes are preceded by promoters. To clarify the mechanisms by which isoforms were generated and regulated from a single sDscam gene locus, it was ascertained whether the sDscam genes applied a similar strategy to that in vertebrate Pcdhs, with the alternative use of a separate promoter upstream of each first exon of a variable region. In Pcdhs, each first exon is preceded by a promoter and produces a transcript in which the first exon is spliced to common exons. To determine whether each sDscam variable cassette has its own promoter, sequences immediately upstream of the transcription start site of each variable region in sDscamα and six sDscamβ genes were examined. A rich array of potential promoter elements (PPEs) was predicted to be located upstream of the 5' end of each variable region (Fig. 4a; Supplementary Fig. 9). Therefore our data suggest that each variable cassette is generally preceded by a given promoter.

Next, we firstly validated the promoter activity of sDscamβ6, which contains only two tandemly arrayed variable cassettes.
To this end, a ~1.0–2 kb DNA fragment preceding the variable V1 and V2 cassettes was fused to luciferase in an expression vector. As shown in Fig. 4b, both constructs displayed significant promoter activity in transient transfection reporter assays in Drosophila S2 cells. This indicates that these predictable promoter sequences are sufficient to direct the reporter expression of heterologous cells. To determine the minimal DNA sequence requirements for promoter activity, a series of deletion constructs was tested. Promoter function was not significantly diminished by truncations to ~300 bp (Fig. 4b). Moreover, promoter activity was only partially reduced by disruption of a given PPE, suggesting that it resulted from the combinatorial interaction of multiple PPEs, including those beyond the prediction capabilities of the program, which was based on distantly related species. Together, these results indicate that the transcription of individual variable cassettes is under the control of a distinct promoter upstream of each variable exon.

High splicing complexity across the 5′ variable regions. Inconsistent with the presence of a large first exon in the clustered Pcdh gene, a cassette repeat composed of two or four exons was identified in the clustered sDscam gene. This raised the question of how these variable exons were combined into distinct mRNA isoforms, particularly because the exclusion or multiple inclusions of exons 2, 3 or 4 variants would not result in a frameshift. To explore this, we defined exon junctions based on a total of 0.7 billion RNA-seq reads from different tissues. At least 264 distinct exon junctions were detected, 249 of which were joined neighbouring junctions in single tandem cassettes. This suggests that most isoforms could be made through joining neighbouring junctions in variable cassette regions. Moreover, we detected a small fraction of isoforms from the same cassette with either exon 2, 3 and/or 4 skipped. In these cases, the variable exon skipping resulted in an incomplete Ig domain (that is, the sDscamβ6 variable exon 3.1) (Fig. 5a). This abnormal splicing is analogous

![Diagram](image-url)

Figure 4 | Each variable cassette preceded by a promoter in sDscam. (a) A schematic diagram of the expression of variable cassettes in M. martensii sDscamβ6. Symbols used are the same as in Fig. 1. Potential promoter elements (PPE) are shown as green circles. (b) Analysis of sDscam variable cassette promoter in the reporter assays. A portion of the sequence immediately preceding a given variable cassette was cloned into a luciferase reporter construct and subsequently transfected into Drosophila S2 cells. The luciferase vector containing the Drosophila Dscam2 promoter or intronic sequence of sDscamβ6 served as positive and negative controls, respectively. Schematic diagrams of mutants with the indicated sizes are depicted on the left. The deleted PPEs are shown as dashed circles. Data are expressed as a percentage of the mean ± s.d. from three independent experiments. *P<0.05, **P<0.01 and ***P<0.001 (Student’s t-test, two-tailed); NS, not significant.
Figure 5 | Highly complex combinations of sDscam 5’ variable exons. (a) Schematic diagram for splicing patterns of the 5’ variable exons. Symbols used are the same as in Fig. 1. Canonical splicing isoforms were joined in neighbouring junctions in variable cassettes, according to the previous ‘cap-proximal splicing’ model. Non-canonical splicing isoforms included: (I) splicing isoforms from the same cassette with either exon 2, 3 or 4 skipped; (II) splicing isoforms that contained variable exons from tandem cassettes; as well as (III) the isoforms that contained within-cassette introns. (b) Quantification of the canonical and non-canonical splicing isoforms. (c) Schematic diagram of the splicing patterns of the 5’ variable exons in M. martensi sDscam1. Splice isoforms within a single tandem cassette are shown as a black line above the gene structure diagram, while splice isoforms from different tandem cassettes are represented below by coloured lines. (d) Alternative splicing junctions from different cassettes were validated using reverse transcription–PCR (RT–PCR). Due to the low expression of sDscam variable exons, nested PCR was necessary to amplify the products; only the primers used in the second PCR are depicted and same in panels below. The RT–PCR products were confirmed by cloning and sequencing. These experiments revealed the splicing of multiple cassette variants from different tandem cassettes. (e) Splicing patterns of the 5’ variable exons in sDscam3. (f) RT–PCR was used to detect alternative splice isoforms in sDscam3. (g) A summary of several types of isoforms with distinct Ig numbers generated by alternative splicing.
to the skipping of Dscam exon 4 variants, which results in a partial Ig2 domain and is likely to be biologically relevant. In addition, we detected other non-canonical splicing isoforms that contained variable exons from different tandem cassettes, as well as the isoforms containing within-cassette introns. On the exon junctions from the RNA-seq data, we estimated that ~10–40% of isoforms resulted from non-canonical splicing in most Dscam genes, which showed differential expression in various tissues. Taken together, these data indicate that Dscams have potentially complex splicing patterns at the 5’ variable regions.

Given the low expression of a considerable number of Dscam variable exons, we systematically examined the possible exon combinations derived from different tandem cassettes using a nested reverse transcription–PCR (RT–PCR) approach. Several unexpected types of splice isoforms were detected. One type of isoform was produced by combining exons from different tandem cassettes, which encoded 2 Ig domains identical to the canonical isoform from a single cassette. For example, Dscam exon 2.1 could be spliced with the downstream variable exon 3.2, while variable exon 3.13 could be spliced with the upstream variable exon 2.10 (Fig. 5c,d). Surprisingly, Dscam exon 3.13 could be spliced with the upstream variable exons 4.5 and 4.6, and the resulting variable region of the mRNA isoform encoded 3 Ig repeats (Fig. 5c,d). Moreover, Dscam exon 4.10 could be spliced with the downstream variable exon 2.11, and the resulting variable region of the mRNA isoform encoded 4 Ig repeats. Furthermore, other distinct types of variable 3’ isoforms were detected (Fig. 5e,f). Similar results were obtained for other Dscam and Dscams genes (Supplementary Fig. 11). Together, these results show that the multi-exon repeat architecture of Dscams can increase not only Ig sequence diversity but also Ig number plasticity (Fig. 5g).

Cap-proximal and downstream exons splice to a constant exon. Finally, we examined how variable exons were spliced after transcription by alternative promoters. Although previous studies suggested that only the cap-proximal variable exon was joined to the first constant exon in vertebrate Pcdhs14,19,20, this hypothesis had not been validated experimentally due to the large size.
The number of copies is shown in parentheses. sDscam hypothesized that if the downstream variable cassette 6 (V6) exons 1.5 and 4.6 to validate the findings above (Fig. 6a). It was also the downstream variable exons spliced to the constant exon. Taken together, we propose that not only the cap-proximal, but also the downstream variable cassette to the constant exon (type II; Fig. 6a). The splicing of the variable exons immediately downstream of the occurrence of this unusual intronic retention might be a result of different tissues (Fig. 6b; Supplementary Fig. 10b). The frequent Fig. 6a,b). Interestingly, the extent of this retention differed in within introns were exclusively spliced out (that is, sDscamβ1 V5, Fig. 6a,b). Interestingly, the extent of this retention differed in different tissues (Fig. 6b; Supplementary Fig. 10b). The frequent occurrence of this unusual intronic retention might be a result of the splicing of the variable exons immediately downstream of the cap-proximal cassette to the constant exon (type II; Fig. 6a). Taken together, we propose that not only the cap-proximal, but also the downstream variable exons spliced to the constant exon.

Next, a more sensitive assay was designed that used primers in exons 1.5 and 4.6 to validate the findings above (Fig. 6a). It was hypothesized that if the downstream variable cassette 6 (V6) could be spliced into the constant when sDscamβ1 was transcribed under the control of the V5 promoter, then one mRNA isoform should be produced containing the two neighbouring variable cassettes (V5 and V6) without a within-cassette intron, but with the between-cassette sequence (type II, Fig. 6a). The presence of this mRNA isoform was confirmed by RT–PCR and sequencing (Fig. 6c). A similar mRNA isoform was detected in sDscamβ2, although the partial interval sequences between the two neighbouring variable cassettes had been spliced out (Fig. 6d,e). Similar mRNA isoforms were observed in other sDscamβ genes (Fig. 5e; Supplementary Fig. 11c–h). Taken together, these observations strongly support our hypothesis that not only the cap-proximal, but also the downstream variable cassettes could splice to the constant exon. This also suggests that the expression of V5 variable cassettes is not only associated with specific promoter activity, but also with post-transcriptional alternative splicing.

Discussion

This study identified a novel shortened Dscam gene family with tandemly arrayed 5’ cassettes in Chelicerata. These sDscams had a high sequence similarity to the 3’ region of Drosophila Dscam1, but shared striking organizational resemblance to the 5’ variable region of vertebrate clustered Pcdhs. Moreover, sDscam gene family members tended to be arranged in tandem clusters, much like the vertebrate clustered Pcdh genes. Finally, sDscams generally contained separate promoters upstream of each first exon of the variable cassette, as occurs in vertebrate Pcdhs. Hence, our findings have important implications for understanding the functional similarities between Drosophila Dscam1 and vertebrate Pcdhs.

Compared with the large exons in clustered Pcdh genes, Chelicerata sDscam genes were composed of two to four exons. This tandem multi-exon organization not only expanded the diversity of amino acid sequences, but also enabled Ig structural plasticity. In Chelicerata sDscams, additional alternative splicing methods might be employed to expand isoform diversity (Fig. 5). For example, additional isoform diversity could be generated...
through mutually exclusive splicing of within-cassette duplicated exons (that is, sDscamβ1 V7; Fig. 5c). Notably, additional sequence and structural diversity could potentially be generated through combining exons from different tandem cassettes. Thus, clustered sDscams could potentially achieve much more isoform diversity than the clustered Pdhs gene. It is very likely that this more complex organization provides a genetic mechanism for generating higher numbers and additional types of isoforms required for the diverse functions and adaptations in Chelicerata.

Phylogenetic analysis of Arthropoda Dscam genes revealed that Chelicerata sDscam and Drosophila Dscam1 were classified into different clades (Supplementary Fig. 3), suggesting that they may have converged on the common protein domain diversity from independent origins. Notably, duplication of the Ig7-encoding exon 9 or its orthologues occurred internally or 5' terminally in all Arthropoda species investigated. This suggests that the diversity of Dscam1 Ig7 or its orthologues conferred intrinsic structural and regulatory benefits during Arthropoda evolution. Recent studies indicated that Ig7 domain diversity was crucial for the proper function of Dscam1 (refs 6,8,10,12–14). Dscam1 generates functionally distinct isoforms through mutually exclusive splicing of internal exons in Drosophila (Fig. 7). However, no Chelicerata Dscam genes appeared to have a similar arrangement, although a random array of only two alternatives for the Dscam1 exon 9 orthologue are often observed in Chelicerata (that is, sDscamβ1 V7). In contrast, sDscam genes have evolved other mechanisms that serve this function in Chelicerata, through a combination of alternative promoter use and alternative splicing (Fig. 7). In this scenario, Drosophila Dscam1 and Chelicerata sDscam represent examples of convergent evolution for isoform diversity.

It is noteworthy that, compared with Drosophila Dscam1 and other Dscam proteins from metazoans containing 10 Ig and 6 FNIII extracellular repeats, a single transmembrane segment and a cytoplasmic tail15, the Chelicerata sDscams reported in this study lacked the N-terminal Ig1–6,10 domains and FNIII13–4, 6 domains present in classical DSCAM. In fact, the Ig domains differed markedly across the immunoglobulin superfamily (IgSF) proteins, ranging from 2 to 10, but with mostly 4 to 5 repeats29. Hence, we speculate that such shortened isoforms have important functions. Because Chelicerata sDscams share a striking similarity with Drosophila Dscam1, and there was a remarkable organizational resemblance to the vertebrate clustered Pdhs, with the latter two proteins both able to mediate self-recognition and self-avoidance, it is reasonable to speculate that Chelicerata sDscams have analogous roles in the nervous system.

Our results indicated that not only the cap-proximal but also the downstream variable cassettes spliced to the constant exon. Based on this evidence, we propose a mechanistic framework for the selection of tandemly arrayed 5' variable exons (Fig. 8). This extends and revises a previously proposed model for the mechanism governing the selection of tandemly arrayed 5' variable regions4,19,20. Interestingly, intron sequences downstream of the variable region exons of Pdhs were frequently contained in complementary DNA (cDNA) in independently derived cDNA libraries, which were presumed to be truncated mRNA isoforms or correspond to trans-splicing precursors4. Considering the similarity of the 5' gene structure of Chelicerata sDscams and vertebrate Pdhs, we speculate that these unusual intron-containing cDNAs might be a consequence of the variable exons downstream of the cap-proximal exons spliced to the constant exon in vertebrate Pdhs genes. Therefore, our mechanistic framework might be broadly applicable to tandemly arrayed 5' variable exons in invertebrates and vertebrates.

The selection of tandemly arrayed 5' cassettes was highly regulated by a variety of mechanisms at both the transcriptional and post-transcriptional levels. Previous studies indicated that expression of the corresponding Pdhs mRNA might correlate with specific promoter activity19,20. Because sDscam was under the control of a distinct promoter upstream of each variable cassette, Chelicerata sDscams should be regulated by a similar mechanism. Second, the 5' splice site strength might have an effect on the selection of the variable exon. In general, the variant inclusion largely correlated with the strength of the 5' splice site, but decreased with distance from the 3' splice site of the first constitutive exon30. Based on the correlation of the inclusion frequency of a variable exon with its proximity to the first constitutive exon in sDscamβ2–3 and sDscamβ5–6, it seems that distance had some effect on the inclusion, at least for some genes. This was possibly due to higher levels of pre-mRNA for the proximal exons of the first constitutive exon present after transcription under multiple promoters. Finally, the selection of variable cassettes could easily be overridden in a developmental- or tissue-specific manner by the expression of specific activator- and repressor-binding proteins. Thus, the outcome of the variable exon results from multiple mechanisms acting in an overlapping manner.

Methods

Annotation and identification of Dscams. The sequences of the Dscam genes from the Scorpione M. martensi, the Araneae S. mimosarum, the Isidioidean I. scapularis and T. urticae, and the Merostomatan L. polyphemus have been annotated through BLAST searches, using the annotated Dscam sequence of the most closely related organism and confirmed by available genome annotation and phylogenetic analysis (http://blast.ncbi.nlm.nih.gov/Blast.cgi; http://flybase.org/blast/; Supplementary Table 1). Gaps in the Dscam sequences for M. martensi were closed by PCR and sequencing. Genomic DNA was isolated from M. martensi (a gift from Zhijian Cao) using a QIAamp DNA Kit (Qiagen, Hilden, Germany). PCR was performed using primers designed against genomic sequences. Amplification products were cloned into the pGEM-T Easy Vector (Promega, Madison, WI, USA) for sequencing. Primer sequences are available on request. All Dscam homologues were analysed by classifying into families and predicting domains with InterPro31 (http://www.ebi.ac.uk/interpro/).

Figure 8 | Model of sDscamβ isoform expression. Symbols used are the same as in Fig. 1. Each variable cassette was preceded by a promoter. The expression of the specific combination of sDscam isoforms was achieved by alternative promoter activation, followed by alternative splicing. When sDscamβ was transcribed by a given promoter preceding a variable cassette (V1), both V1 and the downstream variable cassettes (V2, V3) could be spliced into the constant exon 5.
RNA-seq. Five tissues (cephalothorax, abdomen, poison gland, haemocyte and muscle) from an *M. martensi* adult and the whole body of a *L. polyphemus* adult were collected for RNA preparation. RNA library construction and paired-end RNA-seq were performed by LC Sciences (Houston, TX, USA). Briefly, total RNA was extracted using TRIzol reagent (Invitrogen, Carlsbad, CA, USA) according to the manufacturer’s instructions. The total RNA quantity and purity were analysed using a Bioanalyser 2100 and RNA 6000 Nano LabChip Kit (Agilent, Santa Clara, CA, USA) with RNA Quantity number >7.0. For the RNA-seq experiment, ~10 μg of total RNA was subjected to enrichment of the poly(A)-tailed mRNAs with poly(T) oligo-attached magnetic beads (Thermo Fisher Scientific, Waltham, MA, USA). After purification, the mRNA was fragmented into small pieces using divalent cations under elevated temperature. Then the cleaved RNA fragments were reverse transcribed to produce the final cDNA library according to the instructions in the mRNA-seq sample preparation kit (Illumina, San Diego, CA, USA). The pair-end RNA-seq was performed on the Illumina Hiseq 2500 platform (Illumina) following the vendor’s recommended protocols.

Analysis of RNA-seq data. The RNA-seq reads were de novo assembled to obtain transcripts of *M. martensi* and *L. polyphemus* using Trinity32 (https://github.com/trinityrnaseq/trinityrnaseq/wiki) with the default parameters. Transcripts sharing high sequence similarity were assigned to a cluster based on the default parameter settings of Trinity. For a cluster, the longest transcript was designated as the unigene of the cluster. The unigenes were functionally annotated based on sequence similarity at the protein level. Specifically, by using BLASTX (E-value < 0.00001), protein sequences were translated from the unigenes searched against the protein databases, including the NCBI non-redundant protein database, SwissProt, Kyoto Encyclopedia of Genes and Genomes (KEGG) and Clusters of Orthologous Groups (COG) of proteins. The ends most 5’ of the *Dscam* unigenes were analysed for their potential transcription start sites, some of which were further verified by 5’ RACE. ToPhat33 (http://ccb.jhu.edu/software/tohat/index.shtml) was used for RNA-seq mapping, the results of which were visualized using integrative genomics viewer (IGV)34,35 (http://www.broadinstitute.org/igv/). Considering the similarity among exon duplicates, the RNA-seq reads were split into 25- and 50-nucleotide (nt) fragments which were mapped to calculate expression levels of variable exons. Furthermore, to eliminate influences on calculations of the expression levels from identical sequence regions among exon duplicates, the 25- and 50-nt fragments with multiple loci were correctly allocated by referring to the mapping results of the full-length RNA-seq data sets. The correlation coefficient was calculated between the 25- and 50-nt mapping results. Similarly, to analyse the intron retention rate, both the 25- and 50-nt mapping results were compared. The correlation coefficient was calculated between the 25- and 50-nt mapping results. The same results were obtained from the unigenes that were annotated using BLASTX.

Promoter activity analysis. The promoter distribution was predicted using the Berkeley Drosophila Neural Network Promoter program (http://www.fruitfly.org/seq_tools/promoter.html). To assay the promoter activity for *M. martensi*, the corresponding DNA sequences immediately preceding the translational start site of *sDcam* and *sDcam* were cloned into a pGL4.20-Fluc reporter vector (Promega). For *sDcam* and *sDcam*, a plasmid was cloned as a control. All constructs were confirmed by sequencing. Drosophila S2 cells were co-transfected with the pGL4.20-Fluc reporter plasmid and the tubulin promoter-Rluc reporter plasmid (a gift from Wanzhong Ge) with Lipofectin (Invitrogen) according to the manufacturer’s instructions. Cells were lysed 48 h post transfection to measure the activity of firefly and Renilla luciferase according to the Dual-Luciferase Reporter Assay System (Promega). The mean and s.d. values were determined for each construct based on three independent transfections. The error bars were calculated from the average of three independent experiments in this study. The significance of differences was determined by a two-tailed Student’s t-test and *P<0.05*, **P<0.01** and ***P<0.001*** were taken to indicate statistical significance.

References

1. Nielsen, T. W. & Graveley, B. R. Expansion of the eukaryotic proteome by alternative splicing. Nature 463, 457–463 (2010).
2. Patel, S. et al. Alternative transcription exceeds alternative splicing in generating the transcriptome diversity of Drosophila embryo. Genome Res. 21, 1250–1272 (2011).
3. Schmucker, D. et al. Drosophila Dscam is an axon guidance receptor exhibiting extraordinary molecular diversity. Cell 101, 671–684 (2000).
4. Wu, Q. & Maniatis, T. A striking organization of a large family of human neural cadherin-like cell adhesion genes. Genes 97, 779–790 (1999).
5. Neves, G. & Chess, A. Dscam-mediated self- versus non-self-recognition by individual neurons. Cold Spring Harb. Symp. Quant. Biol. 69, 485–488 (2004).
6. Zhan, X. L. et al. Analysis of Dscam diversity in regulating axon guidance in Drosophila mushroom bodies. Neuron 43, 673–686 (2004).
7. Wojtowicz, W. M., Flanagan, J. J., Millard, S. Z., Zipursky, S. L. & Clemens, J. C. Alternative splicing of Drosophila Dscam generates axon guidance receptors that exhibit isoform-specific homophilic binding. Cell 118, 619–633 (2004).
8. Wojtowicz, W. M. et al. A vast repertoire of Dscam binding specificities arises from modular interactions of variable ig domains. Cell 130, 1134–1145 (2007).
9. Chen, B. E. et al. The molecular diversity of Dscam is functionally required for neuronal wiring specificity in Drosophila. Cell 125, 1061–1072 (2006).
10. Hattori, D. et al. Robust discrimination between self and non-self neurites requires thousands of Dscam1 isoforms. Nature 461, 644–648 (2009).
11. Soba, P. et al. Drosophila sensory neurons require Dscam for dendritic self-avoidance and proper dendritic field organization. Neuron 45, 403–416 (2004).
12. Miura, S. K., Martins, A., Zhang, K. X., Graveley, B. R. & Zipursky, S. L. Probabilistic splicing of Dscam establishes identity at the level of single neurons. Cell 115, 1166–1171 (2003).
13. Sun, W. et al. Ultra-deep profiling of alternatively spliced Drosophila Dscam isoforms by circularization-assisted multi-segment sequencing. EMBO J. 32, 2029–2038 (2013).
14. He, H. et al. Cell-intrinsic requirement of Dscam1 isoform diversity for axon collateral formation. Science 344, 1182–1186 (2014).
15. Schmucker, D. & Chen, B. Dscam and DSCAM: complex genes in simple animals, complex animals yet simple genes. Genes Dev. 23, 147–156 (2009).
16. Zipursky, S. L. & Sanes, J. R. Chemoaffinity revisited: dscams, protocadherins, and neural circuit assembly. Cell 143, 343–353 (2010).
17. Chen, W. V. & Maniatis, T. Clustered protocadherins. Development 140, 3297–3302 (2013).
18. Zipursky, S. L. & Grueber, W. B. The molecular basis of self-avoidance. Annu. Rev. Neurosci. 36, 547–568 (2013).
19. Tasic, B. et al. Promoter choice determines splice site selection in protocadherin alpha and -gamma pre-mRNA splicing. Mol. Cell 10, 21–33 (2002).
20. Wu, Z. et al. Molecular mechanisms governing Pcdh-gamma gene expression: Evidence for a multiple promoter and cis- versus alternative splicing model. Genes Dev. 16, 1890–1905 (2002).
21. Thu, C. A. et al. Single-cell identity generated by combinatorial homophilic interactions between alpha, beta, and gamma protocadherins. Cell 158, 1045–1059 (2014).
22. Lefebvre, J. L., Kostadinov, D., Chen, W. V., Maniatis, T. & Sanes, J. R. Protocadherins mediate dendritic self-avoidance in the mammalian nervous system. Nature 488, 517–521 (2012).
23. Kaneko, R. et al. Allelic gene regulation of Pcdh-alpha and Pcdh-gamma clusters involving both mononucleic and biallelic expression in single Purkinje cells. *J. Biol. Chem.* **281**, 30551–30560 (2006).

24. Schreiner, D. & Weiner, J. A. Combinatorial homophilic interaction between gamma-protocadherin multimers greatly expands the molecular diversity of cell adhesion. *Proc. Natl Acad. Sci. USA* **107**, 14893–14898 (2010).

25. Brites, D., Brena, C., Ebert, D. & Du Pasquier, L. More than one way to produce protein diversity: duplication and limited alternative splicing of an adhesion molecule gene in basal arthropods. *Evolution* **67**, 2999–3011 (2013).

26. Regier, J. C. et al. Arthropod relationships revealed by phylogenomic analysis of nuclear protein-coding sequences. *Nature* **463**, 1079–1083 (2010).

27. Watson, F. L. et al. Extensive diversity of Ig-superfamily proteins in the immune system of insects. *Science* **309**, 1874–1878 (2005).

28. Kreahling, J. M. & Graveley, B. R. The iStem, a long-range RNA secondary structure element required for efficient exon inclusion in the Drosophila Dscam Pre-mRNA. *Mol. Cell. Biol.* **25**, 10251–10260 (2005).

29. Vogel, C., Teichmann, S. A. & Chothia, C. The immunoglobulin superfamily in Drosophila melanogaster and Caenorhabditis elegans and the evolution of complexity. *Development* **130**, 6317–6328 (2003).

30. Roca, X., Krainer, A. R. & Eperon, I. C. Pick one, but be quick: 5’ splice sites and the problems of too many choices. *Genes Dev.* **27**, 129–144 (2013).

31. Mitchell, A. et al. The InterPro protein families database: the classification resource after 15 years. *Nucl. Acids Res.* **43**, D213–D221 (2015).

32. Grabherr, M. G. et al. Full-length transcriptome assembly from RNA-Seq data without a reference genome. *Nat. Biotechnol.* **29**, 644–652 (2011).

33. Robinson, J. T. et al. Integrative genomics viewer. *Nat. Biotechnol.* **29**, 24–26 (2011).

34. Tamura, K., Stecher, G., Peterson, D., Filipski, A. & Kumar, S. MEGA6: molecular evolutionary genetics analysis version 6.0. *Mol. Biol. Evol.* **30**, 2725–2729 (2013).

35. Brites, D. et al. The Dscam homologue of the crustacean Daphnia is diversified by alternative splicing like in insects. *Mol. Biol. Evol.* **25**, 1429–1439 (2008).

Acknowledgements

This work was partly supported by research grants from the National Natural Science Foundation of China (31430050, 31125011, 3127084), the National Science and Technology Project (2012ZX09102301-009), the 973 Program (2014CB541700) and the Doctoral Foundation of Ministry of Education (201101130012).

Author contributions

Y Yue, Y.M., S.H. and Y.S. collected, cloned and analysed the nucleotide sequences; S.H. conducted the phylogenetic analysis; H.M., Y.Yue and P.G. conducted the splicing analyses; Y.M. conducted the expression analysis; Y.M. and Y.S. analysed the exon junction; Y.Yue, G.C. and W.H. analysed the promoter activity. Y.J. conceived this project, designed the experiments, analysed the data and wrote the manuscript; Y.Yue, Y.Yang, B.L. and F.S. analysed the data; all authors discussed the results and commented on the manuscript.

Additional information

Accession codes: The RNA-seq data were deposited into NCBI SRA (Sequence Read Archive; http://www.ncbi.nlm.nih.gov/sra/) (accession numbers: SRX1319503, SRX1319674, SRX1319813, SRX1319876, SRX1319877, and SRX1323743). The Dscam gene sequences were deposited into GenBank with accession numbers KT932388-KT932417; KU378204-KU378205.

Supplementary Information accompanies this paper at http://www.nature.com/naturecommunications

Competing financial interests: The authors declare no competing financial interests.

Reprints and permission information is available online at http://npg.nature.com/reprintsandpermissions/

How to cite this article: Yue, Y. et al. A large family of Dscam genes with tandemly arrayed 5’ cassettes in Chelicerata. *Nat. Commun.* 7:11252 doi: 10.1038/ncomms11252 (2016).

This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/