CybORG: An Autonomous Cyber Operations Research Gym

Callum Baillie1, Maxwell Standen2, Jonathon Schwartz3, Michael Docking2, David Bowman2, and Junae Kim2

1Department of Defence
callum.baillie@defence.gov.au
2Defence Science and Technology
max.standen, david.bowman, michael.docking, junae.kim@dst.defence.gov.au
3Australian National University
jonathon.schwartz@anu.edu.au

Abstract

Autonomous Cyber Operations (ACO) involves the consideration of blue team (defender) and red team (attacker) decision-making models in adversarial scenarios. To support the application of machine learning algorithms to solve this problem, and to encourage such practitioners to attend to problems in the ACO setting, a suitable gym (toolkit for experiments) is necessary. We introduce CybORG, a work-in-progress gym for ACO research. Driven by the need to efficiently support reinforcement learning to train adversarial decision-making models through simulation and emulation, our design differs from prior related work. Our early evaluation provides some evidence that CybORG is appropriate for our purpose and may provide a basis for advancing ACO research towards practical applications.

1 Introduction

1.1 Autonomous Cyber Operations

Autonomous Cyber Operations (ACO) is concerned with hardening and defending computer systems and networks through autonomous decision-making and action. We are motivated by the need to protect systems that may be isolated or operate in contested environments where skilled human operators may not be present nor have remote access, and to unlock the potential for rapid and wide scale cyber operations.

This setting has characteristic properties. ACO is adversarial and evolving: behaviour is appropriate when it best achieves objectives in the face of evolving adversary behaviour (tactics, techniques and procedures, or TTPs). Thus the setting incorporates blue team and red teams and terrain (i.e., hosts and networks). Addressing these together requires that ACO research should be concerned with both red and blue team decision making models that may co-evolve.

Further, ACO is dynamic, the terrain may change in uncontrolled or unpredictable ways or as the deliberate results of red and blue activity. Importantly it is also varied; whilst it might be interesting to solve for decision making models that are optimal for a given single scenario or configuration, computer security problems are varying and diverse. Consider by way of metaphor that we wish to solve Chess960 (random starting positions each game) rather than standard Chess. By generalising over diverse and dynamic scenarios, decision-making models might become resilient to variations in the environment, rendering them more adaptable and reliable.

Finally, ACO environments have high complexity and dimensionality, with very many interdependent and related components and large state (information...
relevant to decision-making and goals) and action
(choices) spaces. Given that decision-making may
be considered a mapping from state to action, this is
generally a harder problem for larger state and action
spaces.

1.2 Learning ACO

These characteristics (adversarial, evolving, dynamic,
varied, high complexity and dimensionality) suggest
a learning approach for developing decision-making
models that are trained and evaluated across a wide
range of adversary behaviours and scenarios.

One possible approach is supervised learning,
where a dataset provides examples of optimal deci-
sions at each state of a game which may be used
for training, validating and evaluating models. How-
ever, due to the aforementioned characteristics, col-
clecting relevant datasets and adapting to evolving
adversaries could prove problematic for supervised
learning.

An alternative approach is reinforcement learning,
in which an agent learns by interacting with an en-
vironment in a trial-and-error manner guided by re-
wards for achieving desirable results. In this way, the
algorithm learns optimal solutions by trying to max-
imize its reward. Reinforcement learning can be
very effective in high complexity, high-dimensional
environments. Following this direction requires an
appropriate gym or environment for training.

However, a typical problem in reinforcement learn-
ing is the requirement for a high number of sam-
pies and in many applications the resource cost and
time taken to train in real world environments is pro-
hibitive or impractical. Often algorithms can
take considerable time and resources just to begin
converging on a merely adequate solution, with an
optimal one still being some distance away.

The adversarial and varied setting of ACO exacer-
bates the problems RL has with complexity. Training
col-evolving red and blue team models and training
across dynamic and varied scenarios compound these
challenges.

A common strategy for overcoming this problem is
to use simulations of a problem with lower fidelity
and lower cost as a training ground and to then
transfer the models to a higher fidelity environment.
However, while simulations are often useful, they come
with their own set of challenges, not the least of which
is that it can be difficult to build a sufficiently accurate
model to have any hope of real world application.
Thus, the need for real world or high-fidelity, high accuracy
environments remains.

Another concern when applying machine learning
is overfitting. A model may produce solutions that
work well for one specific problem and environment,
but perform poorly when applied to similar problems
or environments. There are numerous strategies to
combat this problem including sampling multiple
environments and varying evaluation conditions, but
these depend on the ability to modify and vary an
environment. This further motivates the need for an
ACO gym where the environments can be varied and
dynamic.

1.3 A Gym for ACO

This work is focused on a suitable environment for
intensive reinforcement learning towards ACO. We are
inspired by such toolkits such as OpenAI Gym (hence
our adoption of gym) which provide a basis for
learning experiments and a set of benchmarks with
which to measure progress and evaluate competing
approaches. We here propose a number of require-
ments appropriate for a gym for ACO research.

Firstly, we favour both simulation and emulation
devices for playing through ACO scenarios. Simu-
lation presents the most efficient means to achieve
millions of episodes for reinforcement learning nec-
essary for agents to train, whilst emulation presents
the most realistic environment within which to expe-
rience and learn such that the derived models might
behave appropriately in the real world. For inten-
sive reinforcement learning, it may be appropriate
to train a model in simulation (most efficient), and
later optimise the model in emulation (most realis-
tic), which confers an added benefit that that the
simulation need not be highly accurate. Therefore
we require the ability to play the same scenario in
both simulation and emulation modes, with the same APIs presented to decision-making models and learning systems.

Given that we envisage intensive reinforcement learning over millions of scenarios, it is advantageous to leverage cloud computing resources for elastic, parallel and large scale experiments. This requires an ACO gym that may operate with and on commonly used cloud infrastructure. Given the potential need to play millions of games to train decision-making models, the toolkit should be as efficient and low cost as possible.

Informed by the OpenAI Gym [4] and Atari [2] environments, it is desirable for a library of scenarios or games to be available that provides a series of increasingly challenging and diverse settings and tasks as challenges and benchmarks. Necessarily for ACO, it is an important feature that each be controllable to incorporate variability and dynamics. We also require the scenarios to be adversarial, with red and blue teams competing to achieve their objectives and disrupt their opposition.

We envisage that such a gym would be appropriate for learning ACO decision-making models, but may also find other uses for operator training, human-machine teaming (performing with or against an ACO system), or discovering or evaluating tactics and capabilities. Therefore it is important that the gym and its API and interfaces are easy to use and understand.

The following section presents relevant work in cyber ranges, simulation and emulation environments that have been developed for purposes including research and training operators. The design and work-in-progress implementation of CybORG are described in Sections 3 and 4, with Section 5 providing an early evaluation considering the results of initial learning experiments. We conclude this paper with our conclusions and plans for future work.

2 Related Work

There are a growing number of cyber security environments designed for experimentation, many of these have been considered but the requirements for both a high and low fidelity modes, the interface facilitating reinforcement learning for adversarial cyber operations and the environment being efficient flexible and scalable means that no current environment is suitable. A summary of various environments with our requirements can be found in Table 1.

DETERlab [15], is a specialised cyber security experimentation environment based on EMUlab [12]. It supports cyber security experimentation through the emulation of hosts and networks. DETERlab has limited maximum network size because it uses a local setup of physical hardware which prevents scaling the emulation to the size of a large enterprise-like network. DETERlab is not designed to be reset quickly and can take a significant amount of time to set up a network. This is impractical for machine learning because of the number of episodes that are often required to train an agent.

There have been several other environments inspired by DETERlab that have overcome such scalability limitations. VINE [8], SmallWorld [10] and BRAWL [7] leverage scalable infrastructure such as cloud-based Infrastructure as a Service (IaaS) and efficient virtualisation frameworks such as OpenStack to emulate larger enterprise-like networks. These tools can simulate users acting on a host which are designed to generate human-like activity for the purpose of experimentation with different tools. These agents are not capable of learning and are often scripted with no ability to utilise reinforcement learning to improve their performance. BRAWL can make use of CALDERA [3,14] as an red team agent to produce a more realistic experimentation testbed. It is limited to the emulation of Windows hosts only.

GALAXY [19] is an emulated cyber security environment which has been used to train red agents using an evolutionary algorithm to learn how to blend in reconnaissance traffic with that produced by a normal user. It has limited scalability because it currently uses a hypervisor that restricts the scenario to a single VM per physical machine. It utilises the snapshot feature to perform fast resets of VMs in an environment.

Insight [11] is a network simulation for experiments. It is shown to be scalable and can simulate hundreds of hosts on a single computer. Insight is
Simulation Emulation Scalable Flexible Efficient Adversarial CO Designed for RL
DETERlab [15] No Yes Low Yes Low No No
VINE [8] No Yes Med Yes Med No No
SmallWorld [10] No Yes Med Yes Med No No
BRAWL [7] No Yes Med Windows Med No Limited
Galaxy [19] No Yes Low Debian-based High Limited Yes
Insight [11] Yes No High Yes Med No No
Pen testing Simulations [17, 20] Yes No High Yes Med Limited Yes
CyAMS [5] Yes Yes High Yes High No No
CybORG Yes Yes High Yes High Yes Yes

Table 1: Existing Environments and CybORG Design vs ACO Research Requirements

only realistic from an attacker’s standpoint thus only capable of facilitating red agents. This prevents the simulation from being used to perform adversarial cyber operations. Insight does not feature a reinforcement learning interface.

CANDLES [18] leverages a high speed network security simulation to coevolve adversarial blue and red agents using an evolutionary algorithm. The red agent learns the best tactics to attack a network, however it is capable of taking unrealistic actions such as discovering an exploit which may work in the simulation but practically would take a cyber operations team a significant amount of time and resources to discover during an operation. The blue agent learns how to preconfigure the network to make it more secure, however the amount of actions blue can take is limited during the operations phase by the amount of noise made by the red agent.

Pen testing simulations [17, 20] have been used to train red agents using reinforcement learning. These simulations use a realistic action space to enable agents to learn how to attack a network. The simulations can feature blue and grey agents to simulate defenders and neutral users. Blue agents act as a predefined impediment to red. Grey agents may hinder or help red by taking actions that change the state of the environment.

CyAMS [5] uses a combined emulation and simulation environment. CyAMS simulates a cyber security environment using a Finite State Machine (FSM). CyAMS also features an emulation and compares the simulation with the emulation using a malware propagation scenario to demonstrate the fidelity of the simulation. The aim of CyAMS is to use emulation and simulation in conjunction where a portion of the environment is emulated when higher fidelity is required otherwise simulation can be used to provide massive scalability with up to billions of clients.

CybORG aims to provide a scalable, efficient and flexible training environment that uses a high fidelity emulation and lower fidelity simulation to facilitate reinforcement learning for the coevolution of red and blue agents capable of executing cyber operations.

3 Design

This section presents the overall design for CybORG (see Figure 1) incorporating simulation and emulation with a common API to support reinforcement learning for autonomous and adversarial cyber operations.

3.1 Low-Fidelity Simulation

CybORG’s simulated environment is designed to be fast and lightweight, able to run thousands of interactions per second on a single host. This is achieved using a finite state machine design that can model networks, hosts and actions informed loosely by the real world behaviour of these components. The simulator can model the stochastic nature of some actions, but is not required to accurately capture or model real world behaviour since the emulation is available for refinement of decision-making models, maximising simulation efficiency and reducing development
effort. By keeping the simulation design lightweight, it is relatively cheap to scale.

3.2 High-Fidelity Emulation

To provide an accurate environment in which to perform reinforcement learning, CybORG’s design incorporates a high-fidelity emulation environment. By employing Virtual Machines (VMs) deployed and organized into realistic networks, with actual cyber-related software tools in real-time, it can provide real inputs, outputs and behaviour. The emulator design allows for rapid deployment, configuration and management of numerous permutations of scenarios with varying complexity and supports cloud deployments for elastic scalability, limited only by budget.

3.3 Common API and Interface

CybORG’s design supports reinforcement learning of a single decision-making model in both environments: a low-fidelity, efficient simulation and a high-fidelity, realistic emulation. Switching between the two environments is smoothly enabled by a common API and user interface for controlling experiments and accessing game state and action space.

3.3.1 Deployment

The deployment interface provides a lightweight means of describing the desired scenario (using configuration files) that works seamlessly across both the simulation and emulation environments. In simulation, the environment is simulated entirely in soft-
ware, in the emulation, the environment is deployed in AWS based on the information provided by the configuration files. By using AWS, the emulation is able to deploy multiple isolated instances of environments simultaneously.

3.3.2 Cyber Operations Interface

CybORG provides an interface to enumerate the action and state space of a given environment and to execute actions. For the purposes of discovering optimal solutions, it isn’t necessary for algorithms to have any notion of how an action is performed. CybORG wraps the environment and presents only the information and degrees of freedom that an algorithm needs to train. This interface is common for both the simulation and emulation environments (see Figure 2).

![Figure 2: The CybORG Common Interface](image)

CybORG enables host interaction through the use of SSH connections to one or more hosts in the environment which act as entry points for the red, blue or white teams. From these access points, CybORG interacts with the terminal and performs actions much the same as any human operator would: by entering commands and parsing the results. This control scheme allows for multiple adversarial agents to act asynchronously and simultaneously in the environment.

4 Implementation

CybORG is in active development and new features are being implemented regularly. The details of how various components of CybORG have been implemented follow.

4.1 Deployment

Deploying a particular scenario involves specifying whether it will be simulated or emulated (a flag) and providing a scenario description file (YAML). The scenario file includes details for configuring the environment including hosts, networking and subnet information, and the set of actions available to red and blue agents. The scenario files are deliberately simple, requiring a minimum of information and employing many default behaviours to reduce the burden on users when creating files.

The supported host configurations and actions are specified in separate 'Images' and 'Actions' YAML files, respectively. Parameters for hosts include "Name", "OS", "Services", "Credentials" and an ID for an image of a deployable image in AWS (for the emulation).

Action parameters describe the set of possible red and blue team actions, constituting the action space. By combining different network architectures with selections from the available images and actions it becomes possible for users to generate and permute a wide variety of different scenarios.

A network diagram of an example scenario that is included with CybORG and that can be deployed in
both the Simulation and Emulation components of CybORG is shown in Figure 3.

![Figure 3: A CybORG Scenario](image)

4.2 Emulation

The emulation currently uses Amazon Web Services (AWS) with virtual machines to create a high fidelity cyber security environment, though it is intended that CybORG support a wide range of cloud/IaaS options.

4.2.1 Deployment-Emulation

The emulation uses the description of the scenario from the YAML scenario files to deploy and configure a virtual network in Amazon Web Services (AWS). It does this by using SSH to access a virtual gateway server in a private AWS cloud and then deploying and configuring environments using AWS’s Command Line Interface (CLI) on that virtual (master) host using the following functions:

- Automatically creating and deleting IPv4 subnets based on the number of IP addresses required in each subnet according to the scenario
- Automatically configuring routing between subnets according to the scenario
- Automatically creating and deleting instances of static host images and assigning them to subnets according to the scenario

Using these high-level functions, CybORG is capable of rapidly and concurrently deploying independent clusters of hosts and subnets, allowing multiple scenarios, or ‘games’ to be played in parallel. By using IaaS it also has the advantages those offerings provide in that it is scalable, efficient and low cost. This is especially important when conducting reinforcement learning experiments where flexible and rapid deployment of multiple parallel games is necessary to reduce overall training time.

4.2.2 Cyber Operations

The emulation provides an interface for red and blue agents to conduct cyber operations. CybORG implements actuators for cyber security actions and sensors for information gathering from the environment.

Though functional cyber-attack ‘games’ are already playable, the emulation’s cyber operations functions are nascent. New actions and state information continue to be added and the depth and breadth of the cyber operations interface is improving rapidly. The environment’s state properties include global properties such as known credentials, information about the network layout and subnet structure and local properties for each host including operating system information and discovered services. The environment’s action space includes the ability to perform reconnaissance by using scans such as an ICMP (‘ping’) scan or a TCP SYN scan using Nmap or it can attack a host and obtain credentials using brute-forcing tools such as THC-Hydra. ‘Blue’ actions are being developed and will mirror those available in the simulation.

4.3 Simulation

The simulation environment of CybORG provides a lightweight and efficient model for ACO research. It is implemented as a script employing a FSM that uses classes for hosts and subnets to simply model a computing environment with security tools.

4.3.1 Deployment-Simulation

The simulation generates an environment from the same YAML scenario file as the emulation. The simulation models the cyber environment as a set of subnets, hosts and actions which are abstract objects
used to model the real world. A host represents a single machine in the network and is defined by a number of attributes and actions. Attributes of a host include its name, network address, operating system, the services it is running, credentials that it accepts and its value to an attacker. Each subnet is defined by an address range, hosts within each subnet, routing information between itself and other subnets.

The simulator generates a single local model for each scenario instance, regardless of its size or complexity. This has the advantage that there is no network overhead during simulation for efficiency. The implementation is intended to maximise the number of concurrent simulations.

4.3.2 Cyber Operations

Simulated actions are defined by their preconditions, effects, cost and success probability. Each action is 'executed' from a host and certain actions such as a scan may target a different object such as a subnet or another host. The preconditions of an action are the state conditions that must be satisfied if the action is to be available. The effects define how the action will change the state of the environment if the action is successful. The cost is used to model the abstract cost of taking an action as part of the reinforcement learning and action selection process. This can be used to represent any metric of action performance such as time to complete or negative impact on the environment. The success probability is used to model the sometimes stochastic nature of actions in a computing and networking environment, and defines the probability an action will succeed given all its preconditions are met. The actions available in the simulation correspond to those available in the emulation, though the simulation currently has more actions available for the blue team. As new actions are added, they will be added concurrently to the simulation.

The simulation maintains a hidden fully observed state of the environment and only returns the relevant information to each (red or blue) agent after each action. In this way the simulation reflects the partial observability of the real world where a lot of information is hidden from each agent until revealed through its actions.

5 Evaluation

In this section, we demonstrate the development and testing of reinforcement learning based-agents to perform cyber operations in the simulation. The current state of CybORG allows for red team actions to be taken so we have used CybORG to train a red team to solve Capture the Flag (CTF) scenarios. To accomplish this we have created CTF scenarios that feature a network of vulnerable hosts connected in different subnets. The nature of the game is representative of a simple penetration test where a red team must exploit machines, gather intelligence and pivot through a network.

We have used Double Deep Q Networks (DDQN) [23] to create agents and perform cyber operations on CybORG. DDQN extends Deep Q Networks (DQN) [16] which are a deep reinforcement learning method which approximates the Q function (the expected future reward function given state and action) using deep neural networks. Unlike DQNs, DDQNs estimate Q values separately for selection and evaluation of an actions, preventing over-optimistic value estimation.

The experiment was run using a simple scenario consisting of 3 subnets with 3 hosts each as illustrated in Fig 3. One of hosts in the secure subnet has the flag which is the target of an attacking agent, a red team. The goal of the red agent is to capture the flag by obtaining privileged access to the target machine. Each machine has multiple avenues for attack, some with lower probability and some dead ends. The scenario has multiple paths/tactics leading to success for red.

A maximum reward of 1 could be obtained per episode by the agent. An episode ended when either 1000 steps had been taken or when the flag in the scenario had been captured. There were 10 independent runs with a maximum of 1000 steps per episode and 1000 episodes per run.

Fig. 4 illustrates the total reward and the number of steps, averaged over 25 runs, to determine the performance of the agent. The rewards are initially high.
Figure 4: Results from training a DDQN agent on the scenario with 9 hosts due to random exploration of the state space resulting in the successful capture of the flag. The graph indicates that an agent can be trained to consistently capture all flags in the scenario.

6 Conclusion

This paper introduced CybORG, a work-in-progress gym for Autonomous Cyber Operations research.

Whilst there have been ongoing development towards simulation and emulation environments for cyber training and/or experiments, the requirements of ACO motivate an integrated design comprising emulation and simulation modes to support large scale reinforcement learning across diverse scenarios.

We have made progress towards implementing this design, with the ability to spawn and play games either in simulation or emulation modes with cloud infrastructure, and we have performed reinforcement learning experiments with it.

CybORG or gyms like it could assist the reinforcement learning research community to apply their techniques to solve cyber operations problems, by providing an easy to use toolkit and a set of benchmark problems for guiding and measuring progress.

The primary limitation of CybORG as currently constituted is its relative immaturity. More work is required to develop libraries of scenarios and benchmarks and to provide an easy to use interface.

7 Future Work

Our next step is to perform reinforcement learning with emulation mode to confirm that it functions as expected with the same interface and APIs as the simulation mode.

We then intend to perform mixed learning to train a single model under both simulation and emulation to confirm that this approach achieves efficient and effective learning with CybORG.

With just a single and simple scenario/game currently available, we intend to significantly expand the library of scenarios/games available, which once done will lead to the first public release of CybORG to the security and AI research communities.

Availability

Limited access to CybORG will be available for reviewers, with a public release planned once the scenario library is expanded.

References

[1] P. Abbeel et al. Using inaccurate models in reinforcement learning. In Proceedings of the 23rd international conference on Machine learning, pages 1–8. ACM, 2006.

[2] M. G. Bellemare and. The arcade learning environment: An evaluation platform for general agents. Journal of Artificial Intelligence Research, 47:253–279, jun 2013.

[3] A. Applebaum et al. Intelligent, automated red team emulation. In Proceedings of the 32Nd Annual Conference on Computer Security Applications, ACSAC ’16, pages 363–373, New York, NY, USA, 2016. ACM.

[4] G. Brockman et al. OpenAI gym. arXiv:1606.01540, 2016.
[5] S. Brown et al. Validation of network simulation model and scalability tests using example malware. In MILCOM 2016 - 2016 IEEE Military Communications Conference, pages 491–496, Nov 2016.

[6] K. Cobbe et al. Quantifying generalization in reinforcement learning. arXiv:1812.02341, 2018.

[7] The MITRE Corporation. BRAWL. https://github.com/mitre/brawl-public-game-001.

[8] T. Eskridge et al. VINE: A cyber emulation environment for mtd experimentation. In Proceedings of the Second ACM Workshop on Moving Target Defense, MTD '15, pages 43–47, New York, NY, USA, 2015. ACM.

[9] J. Farebrother et al. Generalization and regularization in DQN. arXiv:1810.00123, 2018.

[10] A. Furfaro et al. A cloud-based platform for the emulation of complex cybersecurity scenarios. Future Generation Computer Systems, 89:791 – 803, 2018.

[11] A. Futoransky et al. Simulating cyber-attacks for fun and profit. In SimuTools, 2009.

[12] M. Hibler et al. Large-scale virtualization in the Emulab network testbed. In USENIX 2008 Annual Technical Conference, ATC’08, pages 113–128, Berkeley, CA, USA, 2008. USENIX Association.

[13] A. Marco et al. Virtual vs. real: Trading off simulations and physical experiments in reinforcement learning with bayesian optimization. In 2017 IEEE International Conference on Robotics and Automation (ICRA), pages 1557–1563. IEEE.

[14] D. Miller et al. Automated adversary emulation: A case for planning and acting with unknowns. https://www.mitre.org/publications/technical-papers/automated-adversary-emulation-a-case-for-planning-and-acting-with, 2018.

[15] J. Mirkovic et al. The DETER project: Advancing the science of cyber security experimentation and test. In 2010 IEEE International Conference on Technologies for Homeland Security (HST), pages 1–7, Nov 2010.

[16] V. Mnih et al. Human-level control through deep reinforcement learning. Nature, 518:529 EP –, Feb 2015.

[17] S. Niculae. Reinforcement learning vs genetic algorithms in game-theoretic cyber-security, Oct 2018.

[18] G. Rush et al. Coevolutionary agent-based network defense lightweight event system (CANDLES). In Proceedings of the Companion Publication of the 2015 Annual Conference on Genetic and Evolutionary Computation, GECCO Companion ’15, pages 859–866, New York, NY, USA, 2015. ACM.

[19] K. Schoonover et al. Galaxy: A network emulation framework for cybersecurity. In 11th USENIX Workshop on Cyber Security Experimentation and Test (CSET 18), Baltimore, MD, 2018. USENIX Association.

[20] J. Schwartz and H. Kurniawati. Autonomous Penetration Testing using Reinforcement Learning. arXiv:1905.05965, 2019.

[21] V. Suryan et al. Multi-fidelity reinforcement learning with gaussian processes. 2017.

[22] R. Sutton and A. Barto. Reinforcement learning: An introduction. 2011.

[23] H. van Hasselt et al. Deep reinforcement learning with double Q-learning. Thirtieth AAAI Conference on Artificial Intelligence, March 2016.

[24] S. Whiteson et al. Protecting against evaluation overfitting in empirical reinforcement learning. In 2011 IEEE Symposium on Adaptive Dynamic Programming and Reinforcement Learning (ADPRL), pages 120–127. IEEE.