Investigation to Understand the Co Ions Inclusion in Ba$_3$SnO Antiperovskite Structure

Naveed Jafar1, G. Murtaza1*, Ghazanfar Nazir2*, Adeela Rehman3

1Centre for Advanced Studies in Physics, GC University, Lahore
2Department of Nanotechnology and Advanced Materials Engineering, Sejong University, Seoul 05006, Republic of Korea
3Department of Chemistry, Inha University, 100 Inharo, Incheon 22212, South Korea

ARTICLE INFO

Article History:
Received: September 14, 2021
Revised: November 12, 2021
Accepted: December 29, 2021
Available Online: December 31, 2021

Keywords:
Ba$_3$SnO
Antiperovskites structure
SRIM
XRD
FTIR
SEM
EDX

The current research focuses on the fabrication and characterization of barium tin oxide antiperovskite oxide Ba$_3$SnO. BaO and Sn$_2$O were used as precursors to synthesise the Ba$_3$SnO by using solid state ceramic method. Co ion has been implanted using Pelletron Accelerator with different doses 10^{13}, 5×10^{13}, 10^{14} ions/cm2. The study includes the investigations of penetration depth range of Co ions in the target material, structural, surface morphology, verification of elemental composition, and band gap energy by using the characterization techniques SRIM, XRD, SEM, EDX, FTIR, and UV-Vis spectroscopy respectively. Phase identification of desired material assures by XRD. SEM results showed that the rough and sharp rod shape varies into a very smooth and fine granular shape by ion implantation. EDX plots confirm the existence of basic elements like Ba, Sn, Co and O. The FTIR identify the unknown material and components which confirmed the formation of B$_3$SnO and incorporation of Co ions. UV-Vis spectroscopy results revealed that increasing the implanted ion dose causes a slight increase in band gap energy from 2.61 to 2.88 of this material. The obtained results allow us to conclude that the prepared sample contains a fine structure with no impurity. Therefore, we can say that this process is ideal for obtaining fine structured Ba$_3$SnO.

© 2021 The Authors, Published by iRASD. This is an Open Access article under the Creative Common Attribution Non-Commercial 4.0

*Corresponding Authors’ Email: gmrai@gcu.edu.pk, gnazir@sejong.ac.kr

1. Introduction

Generally, the perovskites are symbolized by the formula ABX$_3$. If the position of A and X are exchanged, then the new resultant class of material is formed which is called antiperovskite which exhibits cubic or pseudo-cubic structure (Oudah et al., 2016). Then the general formula for antiperovskite is X$_3$BA, where ‘B’ and ‘A’ are two anions of different sizes and ‘X’ is a cation. In antiperovskite oxide the atom ‘B’ may be Si, Ge, Sn and Pb, ‘A’ is oxygen and ‘X’ may be an element of group IIA such as Ba, Sr, and Ca. Such as perovskite oxides, the antiperovskite oxides also have many physical properties such as superconductivity, electrolytic, electrostriction, piezoelectric, thermoelectric properties, magnetic and optical properties. Antiperovskite oxides have many technological uses like quantum computing, flat panel display, biosensors spintronic devices as well as magneto-resistive devices (Arakawa, Kurachi, & Shiokawa, 1985; Bokov & Ye, 2006; Israel, Calderón, & Mathur, 2007; Kim, Qi, Dahlberg, & Li, 2010; Mathur et al., 1997). Both materials of perovskite oxides and anti-perovskite oxides may be alleviated in other structures such as hexagonal orthorhombic structures. In previous study, scientists have extensively explored the innovative characteristics of anti-perovskites. The anti-perovskites have attained vast desirability to be investigated for the numerous industrial utilities due to
their vide band gap range. The anti-perovskites which have small band gap are potential applicants for numerous optical devices. The anti-perovskites can be appear as non-metals, semiconductors, metals as well as superconductors therefore they have interesting material behaviors (Bilal, Jalali-Asadabadi, Ahmad, & Ahmad, 2015).

Antiperovskite oxides changed their properties by varying the temperature and pressure. In 2010, Hichour et.al (Hichour et al., 2010) explored the ANSr₃ (A= As, Sb and Bi) antiperovskite pressure-dependent properties and perceived narrow direct bandgap proposed appropriate optical applications. Some experiments revealed that, Sr³PbO, Ca³PbO as well as Ba³PbO are strong nominees for topological crystalline insulators (Hsieh, Liu, & Fu, 2014; Samal, Nakamura, & Takagi, 2016) and thermoelectric applications (Okamoto, Sakamaki, & Takenaka, 2016). The significant values of this atom configuration were that the 'B' atom in X³BA antiperovskite attains a negative charge state (e.g., B⁴⁻), the also strong overlap of ‘p’ states of ‘B’ and ‘d’ states of ‘X’ atoms (Batool, Alay-e-Abbas, & Amin, 2017). It is reported that the lattice constant of the cubic structure increases as cation changes from Ca to Ba and it may be increased by increasing the concentration of doped ions (Hassan, Arshad, & Mahmood, 2017). The crystal structure of antiperovskite Ba₃SnO is described as ‘Ba’ is a cation and ‘Sn’ as well as ‘O’ are the anions. In the cubic structure of antiperovskite, ‘O’ atoms are placed at the corner of the cube, whereas ‘Sn’ occupied octahedral site and the ‘Ba’ are placed on the faces of the cube. This study is an exploration of the properties of novel antiperovskite material i.e. Ba₃SnO. Synthesize and characterization of antiperovskite oxide Ba₃SnO and understanding the inclusion of Co ions in barium tin oxide was the main purpose of this research work. We also analyzed the effect of Co ions implantation in Ba₃SnO. The Synthesis of Ba₃SnO had to be approached from an adequate route as it has not been synthesized before.

2. Experimental Procedure

The materials were selected on the basis of properties, cost and their suitability. BaO and SnO₂ with desired molecular weight by stoichiometric calculations were used for the preparation of Ba₃SnO. The solid state method was used in this work to prepare Ba₃SnO; as at room temperature the solid materials do not recombine and react. Therefore, initially materials are heated at higher temperatures to complete the reaction properly (Callister Jr & Rethwisch, 2020). Both precursors BaO and SnO₂ were ground for 2 hours in a mortar pestle and then calcinated the mixture at 900°C for 6 hours in the furnace. After calcination, the sample was again ground for 30 min. By using a hydraulic press machine, the desired pellets were formed of 1.5 g at 3000 psi. The whole synthesis process was done under consideration of a given equation:

\[3\text{BaO} + \text{SnO}_2 \rightarrow \text{Ba}_3\text{SnO} + 4\text{O}
\] (1)

Fine Ba₃SnO was obtained after sintering the pellets at 600 °C for 2 hours in the furnace. Finally, the Co ions are implanted on the host material Ba₃SnO by Pelletron Accelerator with different doses 10^{13}, 5×10^{13}, 10^{14} ions/cm². Phase identification was done by using an X-ray diffractometer (XRD).

3. Results and Discussions

3.1. SRIM Analysis

The concept of effective charge was used for establishing the charge state of an ion inside a target material. When sample is exposed to ion a damage occurred inside the material which is observed by SRIM. In this project, the penetration of cobalt is observed on the target sample of Ba₃SnO, which is irradiated with various implantation fluence. Figure 1 shows the penetration shape of Co with an energy of 500 keV inside the prepared materials. The penetration depth range of Co is about 1 µm.
3.2. Structural Analysis

X-ray diffraction (XRD) patterns of all the samples are shown in figure 2. XRD result of Ba$_3$SnO in figure 2(a), the pure untreated sample that represents the existence of an higher intensive peak at angle 31.6° with plane of (111). This is matched with the reported XRD card (JCPDS card no 01-083-1868). The XRD patterns represents the crystalline phase formation of Ba$_3$SnO and there is no extra peak either due to SnO$_2$ or any other contamination. The diffraction peaks appear at angles (2θ) of 25.29°, 45.08°, 47.68°, 55.52°, 64.83°, 69.04° and 72.60°, which assigned planes of the crystal lattice of hkl 110, 200, 220, 311, 321, 320 and 411, respectively. The sample is exposed to Co ions having the dose of 1×1013 ions/cm2 (see figure 2(b)). It is noted that the maximum peak at 31.6° becomes sharper that showing an increase in intensity. It confirms that the crystallinity and quality of the material can enhanced with ion implantation at low influence. The peak appears at angle of 44° denotes Co ions with the plane 111*. The crystallite size is equal to 37 nm and lattice constant is equal to 4.91Å. Volume of the cell is equal to 118.38 Å3 (see table 1). Enhancement in crystallinity may be due to the electronic excitations or ionization energy (electronic energy loss). When fast moving ion enter inside a solid it loss some of their energy during an elastic collisions between ion and atom of the solid (Agarwal et al., 2006). Table 1 shows that the crystallite size varies from 29 to 37 nm which verify the results that the crystallinity of the material improves after Co ion implantation.

Similarly, in figure 2(c) because of high dose ions of value 5×1013 some additional peaks are also appeared. The peak appears at angle of 44° may be due to Co ions, which is evidence for the implanted Co ions. The lattice constant increases from 4.88 to 5.15 Å due to Co ions. The peak appears at angle of 24.6° shows the secondary phase due to BaO that is matched with the Card (JCPDS # 00-001-0746). The increase of lattice constant may be due to the lattice distortion caused by Co ions while the secondary phase caused due to the short time of calcination. The volume of the unit cell is 143.82 Å3 that is changed from the base sample. At higher dose of 5×1013 ions/cm2 the crystallite size of is found to be 31.5 nm (see table 1) that is smaller than the crystallite size of dose in order of 1013 ions/cm2. It
signifies that the crystallinity decreases, and density of grains increases (Li & Bergman, 2009; Varadhaseshan, Meenakshi Sundar, & Prema, 2014). Table 1 ensures the presence of Co ions because the lattice increases from 4.88 to 5.15 Å.

![XRD graphs of the pure and doped samples](image)

Figure 3 (a, b, c, d): XRD graphs of the pure and doped samples

Similarly, in figure 2(c) because of high dose ions of value 5×10^{13} some additional peaks are also appeared. The peak appears at angle of 44° may be due to Co ions, which is evidence for the implanted Co ions. The lattice constant increases from 4.88 to 5.15 Å due to Co ions. The peak appears at angle of 24.6° shows the secondary phase due to BaO that is matched with the Card (JCPDS # 00-001-0746). The increase of lattice constant may be due to the lattice distortion caused by Co ions while the secondary phase caused due to the short time of calcination. The volume of the unit cell is 143.82 Å³ that is changed from the base sample. At higher dose of 5×10^{13} ions/cm² the crystallite size of is found to be 31.5 nm (see table 1) that is smaller than the crystallite size of dose in order of 10^{13} ions/cm². It signifies that the crystallinity decreases, and density of grains increases (Li & Bergman, 2009; Varadhaseshan et al., 2014). Table 1 ensures the presence of Co ions because the lattice increases from 4.88 to 5.15 Å.

Similarly, in figure 2(d) the intensity of the main crystalline peak at (111) is decreased reduction ensured by an increment in FWHM which implies that the crystallite size reduces. The crystallite size for 5×10^{13} ions/cm² dose is 31.5 nm but for the dose of 1×10^{14} ions/cm² crystallite size is 30 nm. The lattice constant increases from 4.88 Å to 5.23 Å (Agarwal et al., 2006).

Table 1

Samples	Lattice constants (Å)	Cell volume (Å³)	Crystallite size (nm)
Pure	4.88	116.50	29
10^{13}	4.9	118.38	37
5×10^{13}	5.15	143.82	31.5
10^{14}	5.23	136.27	30
3.3. Surface Analysis

SEM micrographs analysis in figure 3(a, b, c, d) displays the surface morphology of pure as well as doped Ba$_3$SnO samples. Since, melting point of magnetic ceramic material is very high, therefore for various materials at higher temperature O loss occurs before melting. A polycrystalline structure is formed by sintering. The prepared sample is calcined at temperature of 900°C for 8 hours. Polycrystalline is formed from the bonded of tiny crystals together. Figure 3(a) for the pure sample of Ba$_3$SnO displays rod formation as well as a sharp and raw surface. The stout bright spots are also observed in figure 3(a, b, c, d) which shows pores inside the material (Mujahid, Sarfraz, & Amin, 2015).

![SEM micrographs of untreated and treated samples (a) untreated (b) 1×1013 (c) 5×1013 (d) 1×1014]

Figure 3(b) displays that the gain growth occurs for Co ion implanted of the dose 1013 ions/cm2. The calculated average grain size is 1.3 µm increases from 0.76 µm of pure sample and these results match with the XRD results. The morphology of the Ba$_3$SnO changes from rough surface to a smaller dense surface. This is due to the energetic cobalt ions, when bombarded on material then it transfer their energy to Ba$_3$SnO which lead to the formation required material (Murtaza et al., 2011).

Similarly, both dopants with the dose of 5×1013 ions/cm2 as well as 1014 ions/cm2 ions reduces the grain size to produce microstructures. In figure 3(c) shows grain size is 0.8 µm for dose of 5×1013 ions/cm2 while figure 3(d) shows grain size is 0.7 µm for the dose of 1014 ions/cm2. Since density of dopant (Co) increases, which caused an increase of the grain boundaries. The increase of grain boundaries caused the decrease in grain size (Park, Jung, Kim, & Park, 2008).

3.4. EDX Analysis

EDX studies were performed to confirm an elemental composition of the material. As the basic elements are Ba, Sn and O. Figure 4(a, b, c, d) shows EDX spectra which indicate the peaks which ensure the existence of Ba, O and Sn in Ba$_3$SnO sample. There is an extra peak of S which may be due to contamination or come from the sample holder. In figure 4(b, c, d) there is slight difference in peak’s intensity of Co ion because ion dose increase from the value of 1×1013, 5×1013 and 1×1014 ions/cm2 (Tabari, Tavakkoli, Zargaran, & Beiknejad, 2012).
Figure 4(a, b, c, d): EDX graphs of pure and doped $\text{Ba}_3\text{SnO}_{3.5}$.

3.5. FTIR Analysis

It has been shown that FTIR spectroscopy is proper and suitable device for understanding the functional group of any compound. FTIR analysis confirmed the bond formation of barium tin oxide and the incorporation of ‘Co’ ions in the crystal lattice. Figure 5 show the FTIR spectra of the calcined material at temperature of 900°C for 8 hours. The broad peak observed at wavenumber of 1429 cm$^{-1}$, is due to stretching vibration of Ba-O bond (Kumari, Suresh, & Rao, 2013; Lu & Schmidt, 2007; Murtaza et al., 2011). The peak is at wavenumber of 3311.77 cm$^{-1}$ is is due to the stretching vibration of O-H bond. The peaks at wavenumber of 850.62 cm$^{-1}$ is due to absorption of CO_2 and stretching vibration of CO_3^{2-} (Durán, Gutierrez, Tartaj, Bañares, & Moure, 2002; Lu & Schmidt, 2008). Similarly, the peaks at wavenumbers of 640.36 cm$^{-1}$ and the 1721.36 cm$^{-1}$ are due to the stretching vibration of Sn-O and Co-O, respectively (Bazeera & Amrin, 2017; Varadhaseshan et al., 2014). All observed peaks are agreed with the reported data in the literature.

![FTIR spectra for pure and doped Ba_3SnO](image)
3.6. Bandgap Analysis

The optical characterization of pure and cobalt doped material was studied by UV-Vis spectroscopy. It offers beneficial information about the bandgap study of semiconductor pure barium tin oxide and the effect of Co ions implantation doping on the bandgap of the host material. A semiconductor is characterized by its electronic band structure. The energy difference between the highest occupied molecular orbital (HOMO) and the lowest unoccupied molecular orbital (LUMO) is termed as bandgap energy (E_g). The optical absorption study of the irradiated and pristine was carried out and the bandgap of the films have been calculated using Tauc’s plot by plotting (αhν)^2 versus hν and extrapolating the linear portion of the absorption edge to find the intercept with energy axis. The energy of on photon is calculated by the relation E = hν / λ. In the high energy absorption region dependence on photon energy is expressed by Tauc’s equation. On the basis of Tauc relation, the absorption coefficient “α” for direct bandgap material is given by:

\[\alpha(h\nu) = B(h\nu - E_g)^m \] (2)

From figure 6 of Tauc’s plots, it is clear that the bandgap of Ba_3SnO slightly varied from 2.61 to 2.88. The presence of Co ions causes the change in the bandgap of barium tin oxide. Tauc plots reveal that absorption is in the range of 200 to 800 nm. The reason for the increase in the energy bandgap in the visible region of exposed materials is because of the interstitial location formed by Co ions. Since, Co is metal, which provides extra electrons so the existence of Co ions at the interstitial location causes the charge transition between the narrow band of the localized Co state and conduction state of the host which cause in increase in band gap (Deepa et al., 2011). The increase of bandgap may because of dopant concentration, surface effects, lattice strain and quantum confinement effects (Chen, Lou, Samia, & Burda, 2003; Nandan, Venugopal, Amirthapandian, Panigrahi, & Thangadurai, 2013; Smith, Mohs, & Nie, 2009).

Figure 6: Tauc plots results for pure Ba_3SnO and doped Ba_3SnO
Figure 7: Reflectance graphs for pure Ba₃SnO and doped Ba₃SnO

Reflectance spectrum as shown in figure 7 for pure sample indicates the maximum reflectance of light heavily at 535 nm a green emission and has energy 2.32 eV. Similarly, the figure for doped samples shows when the material is irradiated by Co ions 10¹³ ions/cm² a blue emission takes place at 464 nm and has an energy of 2.67. Similarly, it is noted that decreasing values of wavelengths causes the increase in values of energy from 2.73 to 2.88 eV by variance in a dose of implanted Co ions 5×10¹³ ions/cm² and 1×10¹⁴ ions/cm² correspondingly causes the violet emission which indicated that the sample corresponds the visible region. It is clear from the graph that there is no significant variation in band edge after the irradiation, but the absorption lies in the visible region. This implies that the basic crystal structure is not changed.

4. Conclusion

In this work, antiperovskite oxide Ba₃SnO was successfully synthesized using solid state method and subsequently, Co ions with different ions fluence were embedded into Ba₃SnO structure using the ion implantation route. XRD results confirm the cubic structure of barium tin oxide. Results also reveal that the lattice parameters increase from 4.88 Å to 5.2 Å after Co ion implantation that becomes more prominent at the highest dose 10¹⁴ ions/cm². The crystallinity of material is enhanced for low values 10¹³ ions/cm² and decreases by increasing the fluence up to dose 10¹⁴ ions/cm². The rods shape formation of the undoped sample changes into a fine granular shape by increasing the fluence from 10¹³ to 10¹⁴ ions/cm² of Co ions, which has been confirmed by FE-SEM. Surface morphology also shows the grain size reduces from 1.33 to 0.7 µm by increasing the higher dose 10¹⁴ ions/cm² match with the XRD results. FTIR study confirms the formation of barium tin oxide by showing that the functional groups are present in all the samples and ensures the presence of Co ions. UV-vis spectrometer was used to analyse the energy band gap of Ba₃SnO. The results exhibit the increases of energy bandgap from 2.61 to 2.88 eV by
increasing the fluence of ions from 10^{13} to 10^{14} ions/cm2. From all the investigations, the conclusion drawn that the inclusion of Co is fruitful to alter the optical properties of Ba$_3$SnO.

References

Agarwal, D. C., Kumar, A., Khan, S. A., Kabiraj, D., Singh, F., Tripathi, A., . . . Avasthi, D. K. (2006). SHI induced modification of ZnO thin film: Optical and structural studies. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 244(1), 136-140. doi:https://doi.org/10.1016/j.nimb.2005.11.077

Arakawa, T., Kurachi, H., & Shiokawa, J. (1985). Physicochemical properties of rare earth perovskite oxides used as gas sensor material. Journal of materials science, 20(4), 1207-1210. doi:10.1007/BF01026315

Batool, J., Aley-e-Abbas, S. M., & Amin, N. (2017). Thermodynamic, electronic, and magnetic properties of intrinsic vacancy defects in antiperovskite Ca$_3$SnO. Journal of Applied Physics, 123(16), 161516. doi:10.1063/1.4994998

Bazeera, A. Z., & Amrin, M. I. (2017). Synthesis and characterization of barium oxide nanoparticles. IOSR J. Appl. Phys, 1, 76-80.

Bilal, M., Jalali-Asadabadi, S., Ahmad, R., & Ahmad, I. (2015). Electronic Properties of Antiperovskite Materials from State-of-the-Art Density Functional Theory. Journal of Chemistry, 2015, 495131. doi:10.1155/2015/495131

Bokov, A., & Ye, Z. (2006). 2006JMatS. 41.31 B. vol. 41. J. Mater. Sci

Callister Jr, W. D., & Rethwisch, D. G. (2020). Callister's materials science and engineering: John Wiley & Sons.

Chen, X., Lou, Y., Samia, A. C., & Burda, C. (2003). Coherency Strain Effects on the Optical Response of Core/Shell Heteronanostructures. Nano Letters, 3(6), 799-803. doi:10.1021/nl034243b

Deepa, A. S., Vidya, S., Manu, P. C., Solomon, S., John, A., & Thomas, J. K. (2011). Structural and optical characterization of BaSnO nanopowder synthesized through a novel combustion technique. Journal of Alloys and Compounds, 509(5), 1830-1835. doi:https://doi.org/10.1016/j.jallcom.2010.10.056

Durán, P., Gutierrez, D., Tartaj, J., Bañares, M. A., & Moure, C. (2002). On the formation of an oxycarbonate intermediate phase in the synthesis of BaTiO3 from (Ba,Ti)-polymeric organic precursors. Journal of the European Ceramic Society, 22(6), 797-807. doi:https://doi.org/10.1016/S0955-2219(01)00392-2

Hassan, M., Arshad, I., & Mahmood, Q. (2017). Computational study of electronic, optical and thermoelectric properties of X3PbO (X = Ca, Sr, Ba) anti-perovskites. Semiconductor Science and Technology, 32(11), 115002. doi:10.1088/1361-6641/aa8afe

Hichou, M., Khenata, R., Rached, D., Hachemaoui, M., Bouhemadou, A., Reshak, A. H., & Semari, F. (2010). FP-APW+lo study of the elastic, electronic and optical properties for the cubic antiperovskite ANS$_3$ (A=As, Sb and Bi) under pressure effect. Physica B: Condensed Matter, 405(7), 1894-1900. doi:https://doi.org/10.1016/j.physb.2010.01.069

Hsieh, T. H., Liu, J., & Fu, L. (2014). Topological crystalline insulators and Dirac octets in antiperovskites. Physical Review B, 90(8), 081112. doi:10.1103/PhysRevB.90.081112

Israel, C., Calderón, M. J., & Mathur, N. D. (2007). The current spin on manganites. Materials Today, 10(10), 24-32. doi: https://doi.org/10.1016/S1369-7021(07)70242-0

Kim, C. H., Qi, G., Dahlberg, K., & Li, W. (2010). Strontium-doped perovskites rival platinum catalysts for treating NO x in simulated diesel exhaust. Science, 327(5973), 1624-1627.

Kumari, U. S., Suresh, P., & Rao, A. P. (2013). Solid-state metathetic synthesis of phase pure Ba$_3$SnO$_3$ and BaZrO$_3$. International Research Journal of Pure and Applied Chemistry, 3(4), 347.

Li, S., & Bergman, B. (2009). Doping effect on secondary phases, microstructure and electrical conductivities of LaGaO3 based perovskites. Journal of the European Ceramic Society, 29(6), 1139-1146. doi:https://doi.org/10.1016/j.jeurceramsoc.2008.08.017
Lu, W., & Schmidt, H. (2007). Synthesis of nanosized BaSnO3 powders from metal isopropoxides. *Journal of Sol-Gel Science and Technology, 42*(1), 55-64. doi:10.1007/s10971-006-1508-4

Lu, W., & Schmidt, H. (2008). Lyothermal synthesis of nanocrystalline BaSnO3 powders. *Ceramics International, 34*(3), 645-649. doi:https://doi.org/10.1016/j.ceramint.2007.01.002

Mathur, N. D., Burnell, G., Isaac, S., Jackson, T., Teo, B.-S., MacManus-Driscoll, J., . . . Blamire, M. (1997). Large low-field magnetoresistance in La0.7Ca0.3MnO3 induced by artificial grain boundaries. *Nature, 387*(6630), 266-268.

Mujahid, M., Sarfraz, S., & Amin, S. (2015). On the formation of hydroxyapatite nano crystals prepared using cationic surfactant. *Materials Research, 18*, 468-472.

Murtaza, G., Hussain, S. S., Rehman, N. U., Naseer, S., Shafiq, M., & Zakaullah, M. (2011). Carburizing of zirconium using a low energy Mather type plasma focus. *Surface and Coatings Technology, 205*(8), 3012-3019. doi:https://doi.org/10.1016/j.surfcoat.2010.11.015

Nandan, B., Venugopal, B., Amirthapandian, S., Panigrahi, B. K., & Thangadurai, P. (2013). Effect of Pd ion doping in the band gap of SnO2 nanoparticles: structural and optical studies. *Journal of nanoparticle research, 15*(10), 1999. doi:10.1007/s11051-013-1999-1

Okamoto, Y., Sakamaki, A., & Takenaka, K. (2016). Thermoelectric properties of antiperovskite calcium oxides Ca3PbO and Ca3SnO. *Journal of Applied Physics, 119*(20), 205106.

Oudah, M., Ikeda, A., Hausmann, J. N., Yonezawa, S., Fukumoto, T., Kobayashi, S., . . . Maeno, Y. (2016). Superconductivity in the antiperovskite Dirac-metal oxide Sr3-xSnO. *Nature Communications, 7*(1), 13617. doi:10.1038/ncomms13617

Park, J. H., Jung, C. H., Kim, D. J., & Park, J. Y. (2008). Effect of H2 dilution gas on the growth of ZrC during low pressure chemical vapor deposition in the ZrCl4–CH4–Ar system. *Surface and Coatings Technology, 203*(1), 87-90. doi:https://doi.org/10.1016/j.surfcoat.2008.08.004

Samal, D., Nakamura, H., & Takagi, H. (2016). Molecular beam epitaxy of three-dimensional Dirac material Sr3PbO. *APL Materials, 4*(7), 076101.

Smith, A. M., Mohs, A. M., & Nie, S. (2009). Tuning the optical and electronic properties of colloidal nanocrystals by lattice strain. *Nature Nanotechnology, 4*(1), 56-63. doi:10.1038/nnano.2008.360

Tabari, T., Tavakkoli, H., Zargaran, P., & Beiknejad, D. (2012). Fabrication of perovskite-type oxide BaPbO3 nanoparticles and their efficiency in photodegradation of methylene blue: research article. *South African Journal of Chemistry, 65*(1), 239-244. doi:10.10520/EJC127433

Varadhaseshan, R., Meenakshi Sundar, S., & Prema, C. (2014). On the preparation, structural and magnetic properties of ZnO:Co nanoparticles. *The European Physical Journal - Applied Physics, 66*(1), 10602. doi:10.1051/epjap/2014130316