On the quasisymmetrical classification of infinitely renormalizable maps

II. REMARKS ON MAPS WITH A BOUNDED TYPE TOPOLOGY

by Yunping Jiang

June, 1991

§0 Introduction

This note is a remark to the paper [1]. The aim is to show that the techniques in [1] can also be used to understand the quasisymmetrical classification of infinitely renormalizable maps of bounded type. We will use the same terms and notations as those in [1] without further notices. The result we will prove is the following theorem.

THEOREM 1. Suppose f and g in \mathcal{U} are two infinitely renormalizable maps of bounded type and topologically conjugate. Moreover, suppose H is the homeomorphism between f and g. Then H is quasisymmetric.

Since the techniques as well as ideas of the proof are similar to those in [1], we outline the proof in the next section. The reader may refer to [1] and [2] for more details.

§1 The outline of the proof of Theorem 1

We outline the proof of Theorem 1 by several lemmas.

Suppose $f = h \circ Q_t$, for some $t > 1$, in \mathcal{U} is an infinitely renormalizable map of bounded type. We note that $Q_t(x) = -|x|^t$. Let $f_0 = f$. And inductively, let $f_k = \alpha_k \circ f_{k-1}^n \circ \alpha_k^{-1}$ be the renormalization $\mathcal{R}(f_{k-1})$ of f_{k-1} where α_k is the linear rescale from J_k to $[-1, 1]$ and n_k is the return time for any integer $k \geq 1$ (see [1]). We call J_k a restricted interval.

Let I_0 be the interval $[-1, 1]$ and I_k be the preimage of $[-1, 1]$ under $\alpha_1 \circ \cdots \circ \alpha_k$ for $k \geq 1$. We note that the set $\{I_k\}^\infty_{k=0}$ forms a sequence of nested intervals. Moreover, one of the endpoints of I_k, say p_k, is a periodic point of period $m_k = n_1 \cdots n_k$ of f and the orbit $O(p_k)$ of p_k under f stays outside of the interior of I_k (see Figure 1).
Suppose L_k is the image of I_k under $f^{\circ m_k}$ and T_k is the interval bounded by the points p_k and p_{k+1}. Let M_k be the complement of T_k in L_k. Then M_k is the interval bounded by p_{k+1} and c_{m_k}, where $c_{m_k} = f^{\circ m_k}(0)$ (See Figure 2).

Lemma 1. There is a constant $C_1 = C_1(f) > 0$ such that

$$C_1^{-1} \leq |M_k|/|I_k| \leq C_1.$$

for all the integers $k \geq 0$.

Proof. This lemma is actually proved in [3] by using the techniques such as the smallest interval and shuffle permutation on the intervals.

Lemma 2. There is a constant $C_2 = C_2(f) > 0$ such that

$$C_2^{-1} \leq |I_k|/|I_{k-1}| \leq C_2$$

for all the integers $k \geq 0$.

We first prove a more general result, as that in [1], as follows. Let $K = K(t, N, K)$, for fixed numbers $t > 1$, $N \geq 2$ and $K > 0$, be the subspace of renormalizable maps $f = h \circ Q_t$ in U such that $|f(N(h))(x)| \leq K$ for all x in $[-1, 0]$ and all the return times n_k of $\mathcal{R}^{\circ k}(f)$ are less than or equal to N.

Lemma 3. There is a constant $C_3 = C_3(t, N, K) > 0$ such that

$$C_3^{-1} \leq f(0) = c_1(f) \leq C_3$$

for all f in K.

2
Proof. The proof of this lemma is similar to the proof of Lemma 3 in [1] but needs little more work to solve a little more complicated equation.

Remember that f_k is the k^{th}-renormalization of $f = f_0$. Let $f_k = h_k \circ Q_i$. We note that the graph of f_k is the rescale of the graph of the restriction of $f^{\circ m_k}$ to I_k.

Lemma 4. There is a constant $C_4 = C_4(f) > 0$ such that

$$\| (N(h_k))(x) \| \leq C_4$$

for all x in $[-1, 0]$ and all the integer $k \geq 0$.

Proof. It is the a priori bound proved in [3].

Proof of Lemma 2. It is now a direct corollary of Lemma 1, Lemma 3 and Lemma 4 for $K = C_4$ and $N = \max_{0 \leq k < \infty}\{n_k\}$.

The set of the nested intervals $\{I_0, I_1, \cdots, I_k, \cdots\}$ gives a partition of $[-1, 1]$ as follows. Let p_k be one of the endpoints of I_k and $O_{k,f}(p_k)$ be the intersection of I_{k-1} and the orbit $O_{k,f}(p_k)$ of p_k under f for $k \geq 1$. Suppose $M_{k-1,1}, \cdots, M_{k-1,n_k+1}$ are the connected components of $I_{k-1} \setminus (O_{k,f}(p_k) \cup I_k)$ for $k \geq 1$. Then the set $\eta_0 = \{M_{k,i}\}$ for $i = 1, \cdots, n_k + 1$ and $k = 1, 2, \cdots$ forms a partition of $[-1, 1]$ (see Figure 3).

![Figure 3](image)

Now we are going to define a Markov map F induced by f. Let F be a function of $[-1, 1]$ defined by

$$F(x) = \begin{cases}
 f(x), & x \in M_{1,1} \cup M_{1,2} \cup \cdots \cup M_{1,n_1+1}, \\
 f^{\circ m_1}(x), & x \in M_{2,1} \cup \cdots \cup M_{2,n_2+1}, \\
 \vdots & \\
 f^{\circ m_{n_2} \cdots n_k}(x), & x \in M_{k,1} \cup \cdots \cup M_{k,n_k+1}, \\
 \vdots &
\end{cases}$$

It is clearly that F is a Markov map in the sense that the image of every $M_{k,i}$ under F is the union of some intervals in η_0 (Figure 4).

Let $g_{k,i} = (F|M_{k,i})^{-1}$ for $k = 1, \cdots$, and $i = 1, \cdots, n_k + 1$ be the inverse branches of F with respect to the Markov partition η_0. Suppose $w = i_0 i_1 \cdots i_{l-1}$ is a finite sequence of the set $\mathcal{I} = \{(k,i), k = 1, \cdots \text{ and } i = 1, \cdots, n_k + 1\}$. We say it is admissible if the range M_{i_s} of g_{i_s} is contained in the domain $F_{i_s-1}(J_{i_{s-1}})$ of $g_{i_{s-1}}$ for $s = 1, \cdots, l - 1$. For an admissible
sequence \(w = i_0i_1 \cdots i_{l-1} \), we can define \(g_w = g_{i_0} \circ g_{i_1} \circ \cdots \circ g_{i_{l-1}} \). We use \(D(g_w) \) to denote the domain of \(g_w \) and use \(|D(g_w)| \) to denote the length of the interval \(D(g_w) \).

![Figure 4](image)

Definition 1. We say the induced Markov map \(F \) has bounded distortion property if there is a constant \(C_5 = C_5(f) > 0 \) such that

(a) \(C_5^{-1} \leq |M_{k,i}|/|M_{k,i+1}| \leq C_5 \) for \(k = 1, 2, \ldots \) and \(i = 1, \ldots, n_k \),

(b) \(C_5^{-1} \leq |M_{k,i}|/|I_k| \leq C_5 \) for \(k = 1, 2, \ldots \) and \(i = 1, \ldots, n_k + 1 \), and

(b) \(|(N(g_w))(x)| \leq C_5/|D(g_w)| \) for all \(x \) in \(D(g_w) \) and all admissible \(w \).

The reason we give this definition is the following lemma as that in [1].

Lemma 5. Suppose \(f \) and \(g \) in \(U \) are two infinitely renormalizable maps of bounded type and \(H \) is the conjugacy between \(f \) and \(g \). If both of the induced Markov maps \(F \) and \(G \) have the bounded distortion property, then \(H \) is quasisymmetric.

Proof. It can be proved by almost the same arguments as that we used in the paper [2]. For more details of the proof, the reader may refer to [4].

Now the proof of Theorem 1 concentrates on the next lemma.

Lemma 6. Suppose \(f = h \circ Q_t \), for some \(t > 1 \), in \(U \) is an infinitely renormalizable map of bounded type and \(F \) is the Markov map induced by \(f \). Then \(F \) has the bounded distortion
property.

Proof. Let \(I_{k,j} = \left(f^{\circ m_{k-1}} I_{k-1} \right)^{o_j} (I_k) \) for \(j = 0, 1, \cdots, n_k \) and \(\{G_{k,i}\} \) are all the connected components of \(I_k \cup \bigcup_{j=0}^{n_k} I_{k,j} \) (Figure 5).

Each \(M_{k,j} \) is either a single \(G_{k,i} \) or \(I_{k,j} \cup G_{k,i} \) for some \(j \) and some \(i \). By the bounded geometry [3] of \(\{I_{k,j}\} \) and \(\{G_{k,i}\} \), there is a constant \(C_0 > 1 \) such that all the ratios \(|I_{k,j}|/|I_{k,j'}| \), \(|G_{k,i}|/|G_{k,i'}| \) and \(|G_{k,i}|/|I_{k,j}| \) are in the interval \([C_0^{-1}, C_0]\). We note that \(C_6 \) does not depend on \(k \) as well as \(i, i', j \) and \(j' \). This fact and Lemma 3 imply the condition (a) in Definition 1.

\[\begin{array}{c}
\text{Figure 5} \\
\end{array} \]

The condition (b) in Definition 1 is assured by Lemma 2 and the condition (a). The proof of the condition (c) in Definition 1 is similar to that in [1].

The arguments in Lemma 1 to Lemma 6 give the proof of Theorem 1.

References

[1] Y. Jiang, On quasisymmetrical classification of infinitely renormalizable maps – Maps with Feigenbaum’s topology, preprint in this issue, IMS at SUNY at Stony Brook.

[2] Y. Jiang, Dynamics of certain smooth one-dimensional mappings – II. Geometrically finite one-dimensional mappings, preprint 1991/1, IMS, SUNY at Stony Brook.

[3] D. Sullivan, Bounds, quadratic differentials, and renormalization conjectures, preprint, 1991 and American Mathematical Society Centennial Publications, Volume 2: Mathematics into the Twenty-first Century, to appear.

Yunping Jiang
Institute for Mathematical Sciences
SUNY at Stony Brook
Stony Brook, NY 11794
e-mail: jiang@math.sunysb.edu