A review on giant piezoelectric coefficient, materials and applications

Singampalli Ramesh1, Dachepalli Ravinder2, Kadiyala Chandra Babu Naidu1, *, Nagasamudram Suresh Kumar3, Kurapati Srinivas3, D. Baba Basha4, B. Chandra Sekhar5

1Department of Physics, GITAM Deemed to be University, Bangalore-562163, India
2Department of Physics, Osmania University, Hyderabad, 500007, Telangana, India
3Department of Physics, JNTUA, Anantapuram-515002, A.P, India
4College of Computer and Information Sciences, Majmaah University, AlMajmaah, K.S.A.-11952.
5Vignan’s Institute of Engineering for Women, Visakhapatnam, India

*corresponding author e-mail address: chandraba954@gmail.com

ABSTRACT

The current work deals with the review of various piezoelectric materials and their piezoelectric coefficient (d33) for probable piezoelectric device applications. In addition, the comprehensive analysis of the data of d33 obtained for distinct compounds is also made. Furthermore, the best suited material compositions are highlighted.

Keywords: Electroceramics; Sensors, Piezoelectrics; PZT; Ferroelectrics.

1. INTRODUCTION

It has been a well known fact that the piezoelectric materials play a major role in electronic devices such as sensors, accelerators, ultrasonic motors, transducers, actuators, filters and resonators, and micro electromechanical systems (MEMS). Piezoelectric ceramics were used for scientific interest (industrial applications) around 1950 [1]. Among all the electroceramics, the piezoelectric ceramics were special due to their characteristics. These materials are actively used because of their environmental friendly substances.

Piezoelectricity is in general the accumulation of charges on the surface of solid material when the material is subjected to the mechanical stress1. Herein, the solid materials such as crystalline solids, ceramic materials, parts of the organic matter viz., bones, DNA, proteins etc., can be considered into the account of piezoelectric materials1. The piezoelectric materials exhibit several potential applications towards the progress of scientific community. In view of this, different applications were noticed in distinct industries like computer, automotive, medical, military, consumer etc [2]. Specifically, these are of high performance multilayer piezoelectric actuators (MPAs), ultrasonic transducers, communication circuit components, sensors, accelerators, filters, resonators, ultrasonic motors, energy harvesters, micro-electromechanical systems (MEMSs) etc [2-5]. These applications are mainly dependent on various piezoelectric characteristics such as electromechanical communication (Kp), relative dielectric permeability (εr/ε0), specific volume electric resistance (ρv), density (ρ), water absorption (W), piezo-modules in a dynamic mode (d31, d33), piezo-modules in a static mode (d31), young’s modulus (Y’), speed of sound (v), good mechanical quality (Qm), relative frequency deviation in the range of working temperatures from the frequency measured at the adjustment temperature (δfδf), corner of dielectric loss tangent in weak electric fields (tg δ), electrical durability (Ei), Curie temperature (Tc), mechanical durability limit with static compression (σcompress.), mechanical durability limit with static bending (σb), mechanical durability limit with static stretching (σs) [6]. As a result of these characteristics, the piezoelectric materials showed the above stated applications. However, it was an observed fact that several scientists put forth on the synthesis of the giant piezoelectric materials containing giant d31 coefficient [7-9]. In this context, the authors intended to review the giant piezoelectric specimen and further to elucidate the piezoelectric parameters of the corresponding samples.

1.1 Theory.

It is a well known fact that the piezoelectric effect can be normally obtained as a result of the interaction between mechanical deformation and the applied input electric field. However, the piezoelectric coefficient is a significant parameter in order to study the piezoelectric properties as well. Let the mechanical stress and the electric charge density be designated by Tjk& D respectively. In case of piezoelectricity, the linear relationship can be found between Tjk& D. This can be referred as direct piezoelectric effect and is mathematically given by Djk = djk · Tjk [10], wherein Tjk refers to the stress tensor of 2nd rank, and djk is called as piezoelectric coefficient (C/N) of 3rd rank. Moreover, the converse of piezoelectric effect also becomes true. According to this converse effect (mechanical deformation of piezoelectric crystal under the external electric field), the mathematical expression can be given by: xjk = djkT · E, where the xjk refers to the strain of 2nd rank, E is associated to the input electric field, and djk is assigned to the parameter of converse piezoelectric coefficient (m/V). In addition, the superscript T indicates the transposition of the matrix. However, as per the thermo-dynamical illustrations [10], the piezoelectric coefficients in direct and converse reactions become identical. It is also indicated that the strain and stress are the symmetrical tensors and therefore the relationship between the two types of piezoelectric coefficients is given by djk=djk. In

Page | 4205
matrix form, the direct and converse piezoelectric effects can be given by

\[
\begin{pmatrix}
D_1 \\
D_2 \\
D_3
\end{pmatrix} =
\begin{pmatrix}
0 & 0 & d_{15} \\
d_{31} & d_{32} & d_{33} \\
0 & 0 & 0
\end{pmatrix}
\begin{pmatrix}
S_1 \\
S_2 \\
S_3
\end{pmatrix}
\]

Experimentally, the piezoelectric coefficient can be measured and the method is as follows: The desired sample is kept in the sample holder. Further, the direct current voltage is applied with the help of an electrode. Later on, the deformation takes place and meanwhile, it should be measured in the similar direction of the deformation. In next step, one can measure the longitudinal piezoelectric coefficient which is designated by \(d_{zz}\). Herein, the two subscripts sequentially reveal the direction of deformation as well as the applied input electric field. The \(d_{zz}\) parameter can be represented in the tetragonal symmetry group \((0.4\ \text{cm})\) as follows \([10-11]\): \(d_{zz} = (d_{31} + d_{15}) \sin^2 \theta \cos \theta + d_{33} \cos^2 \theta\), where \(\theta\) is the angle between \((001)\) piezoelectric crystal axis & measurement direction. But, in the present mentioned experiment, the direction of \((001)\) crystal axis is perpendicular to the sample. That is, \(\theta\) becomes equal to zero. Hence, the \(d_{zz}\) and \(d_{33}\) become equal.

In general, the trend of produced strain versus the electric field plot shows a butterfly loop model (Fig.1a & b). Herein, the deformation of crystal takes place in linear direction to the applied field. In addition, the formed butterfly shape is also acquired owing to the three effects. These are (i) converse piezoelectric effect, (ii) switching of domain walls, and (iii) movement of domain walls. If the input field tends to zero, the strain also becomes zero as shown in Fig.1a (at point a). Further, the electric field is increased (a-c); the deformation in crystal also increases linearly. As the input field is decreased (c-d), the polarization is altered by 180° at the coercive field (at d). Once the switching is over, the polarization becomes in the parallel direction of the electric field. Therefore, the strain approaches to positive value as shown at e. As a result, further the strain follows a linear manner against the input field. As a whole, it shows a loop. Furthermore, the piezoelectric coefficient can be calculated using the slope of the linear portion of the loop.

1.2 Experimental set up to find piezoelectric coefficient \((d_{33})\).

It is an established fact that the \(d_{33}\) value is a dependent parameter of relative permittivity and remanent polarization \((P)\). According to Landau-Ginsburg-Devonshire (LGD), it is mathematically given by: \(d_{33} = 2Q_{11} \varepsilon_o \varepsilon_{33} P\), herein \(Q_{11}\) shows the electrostrictive constant of the paraelectric phase. Commonly, this value changes from 0.05 - 0.1 \(\text{m}^4/\text{C}^2\) for various samples. The \(\varepsilon_{33}\) & \(\varepsilon_o\) are the permittivity of free space & permittivity of samples respectively and \(P\) reveals the remanent polarization \([2]\). However, the \(d_{33}\) value can be enhanced by optimizing the \(\varepsilon_{33}\& P\). This can be achieved by means of doping element and further controlling the microstructure. In fact, the microstructure as well as transport properties can be well controlled by means of grain orientation even in the case of absence of doping element. This will not affect the phase transition temperatures \((T_c)\) \([3, 4]\).
Specifically, this implies the charge per unit force in the direction of polarization. Usually, this is said to be Berlincourt method. The advantage of this system is to get the d_{33} value with low input frequency and quick in time. At present, this is the easiest system in order to obtain d_{33} value. Besides, many advanced methods provide excellent resolution, consistency etc., to any kind of sample. The schematic representation of various front & back components in the piezometer is shown in Fig.3. Similarly, the schematic experimental set up is shown in Fig.4. It includes the bottom and top probes which contain a gap. In the gap the desired sample is inserted to find d_{33}. The adjustment provision is also accommodated.

2REVIEW ON d_{33} COEFFICIENT AND PIEZOELECTRIC MATERIALS

2.1 Barium Titanate Based Materials (BTX).

It was a reported fact that the piezoelectric materials like barium titanate and its based materials (ceramics & thin films) exhibited extensive applications as actuators, sensors, transducers etc.\[^1\] In general, sensors will have the capacity to obtain mechanical energy from I/P energy. This I/P energy can be either in the form of electrical, electrostatic or thermal energy. In addition, the piezoelectric actuators need the efficiency of piezoelectric parameters such as the maximum strain output, strain, maximum resonance speed, electric charge distribution and the maximum displacement control accuracy [12]. Due to the huge electromechanical response of piezoelectric specimen, they acquired good attention in highly sophisticated equipments like atomic force microscopy and scanning tunneling microscopy. As a whole, it was noticed that the larger is the electromechanical response, the higher is the performance of piezoelectric actuators. This kind of behavior can be attributed to the high numerical values of longitudinal electromechanical coupling factor (k_{33}) and longitudinal piezoelectric coefficient (d_{33}) [12, 13].

Based on these two parameters, one can justify whether the piezoelectric specimen is well suited for the high performance actuator device applications or not [14]. In view of this, many researchers performed extensive investigations on distinct piezoelectric materials. However, in the present review work, we highlighted the piezoelectric materials according to the parent and its based materials. The major role of d_{33} parameter in ensuring the piezoelectric efficiency was done at length and different values were reported in Table.1.

From Table.1, it can be noted that the piezoelectric constant (d_{33}) was varying from 4 to 620 pC/N for barium titanate (BT) and BT based materials. These values were achieved as a result of various synthesis approaches to prepare the materials. Besides, the transition temperature (T_c) of BT was observed to be changing from 120 to 130°C depending upon the synthesis method. It was also evident from Table.1 that the huge d_{33} value ~ 416 pC/N was found for BT material (prepared through spark plasma sintering) with 100 nm domain size. In the same fashion, the spark plasma sintered (SPS) BT of domain size 500 nm revealed d_{33} ~ 216 pC/N. Likewise, interestingly, the BT sample with domain size of 100 nm which was prepared by hydrothermal synthesis and normal sintering (NS) showed a d_{33} value about 193 pC/N. This established a fact that the kind of sintering process can independently alter the piezoelectric efficiency of samples. During the SPS process the BT attained the tetragonal phases (JCPDS: 05-0626) while the NS method reinforced to obtain the cubic BT phases. This confirmed us that the presence of tetragonal phases in BT allowed getting high d_{33} value. On the other hand, the domain size factor influenced in achieving the high/low d_{33} value. Shao et al.\[^{18}\] and Sharma et al.\[^{13}\] reported that the nano-domain size is the dominant factor in order to enhance the piezoelectric properties of materials. That is, for small sized domains, one can expect high d_{33}, while the small value of d_{33} can be observed for the materials possessing large domain size. Using the conventional solid state reaction (SSR) method almost identical d_{33} values were noted around 190-200 pC/N [13, 18]. But the BT single crystal (grown using Bridgeman technique) exhibited d_{33} ~ 86 pC/N which is very small in magnitude when compared with d_{33} of BT prepared by NS & SPS methods. This manifested that the polycrystalline BT material expressed some what high d_{33} while single crystal BT showed moderate value of d_{33}. Due to the high d_{33} value of BT, it showed many applications as charge stored capacitors, piezoelectric transducers, and actuators [13, 18].

Further, the BT based ceramics, alloys and composites (as shown in Table.1) [19-35] also expressed the d_{33} value changing from 4 to 620 pC/N. Among these materials, Ba($Zr_{0.2}$-$Ti_{0.8}$)O$_3$-50(Ba$_0$-$Ca_{0.3}$)TiO$_3$ (620 pC/N), BT-x(CT-BS) (570 pC/N) and Ba($Ti_{0.7}$-$Sn_{0.3}$)O$_3$-30(Ba$_0$-$Ca_{0.3}$)TiO$_3$ (530 pC/N) showed the highest value of d_{33} reported till now using BT based materials. In particular, the Ba($Zr_{0.2}$-$Ti_{0.8}$)O$_3$-50(Ba$_0$-$Ca_{0.3}$)TiO$_3$ revealed the highest d_{33} value of 620 pC/N. It was understood that the BT material when mixed with the elements like Zr & Ca performed high piezoelectric coefficient. The reason was due to the presence of three phase structure as reported in the literature\[^7\]. Herein, the three phase structure is related to the rhombohedral-orthorhombic-tetragonal (R-T-O). As a whole, this R-T-O phase structure is responsible for high d_{33}. This was occurred in the case of BT-
2.2 Lead Titanate Based Materials (PTX).

The PbTiO$_3$ (PT) prepared via different synthesis methods acquired the d_{33} value ranging from 56 to 79 pC/N [36-38]. This was five times smaller than the d_{33} of BT material. The presence of tetragonal phases may be responsible for this. However, the PT also shows the tetragonal structure. The grain size and synthesis method can also become a reason for this kind of difference. Therefore, several dopants and substitutions were made to the PT material in order to achieve high d_{33}. The different d_{33} values of different PT based materials were reported in Table 2.

It was noticed that the PT based materials in the form of composites, thin films etc., attained the d_{33} values altering from 10 to 3500 pC/N [36-61]. The sol-gel processed PZT thin film showed a small piezoelectric coefficient about 10 pC/N. Specifically, the single crystal PT based materials attributed to the high d_{33} value. This was obtained owing to the existed high strains achieved for $<001>$ oriented rhombohedral crystals [45]. In view of this, the highest value of $d_{33} \sim 3500$ pC/N for (1-x)[Pb(Mg$_{1/3}$Bi$_{2/3}$)$_{0.5}$]O$_3$-x[PbTiO$_3$] (PMN-PT) prepared via Bridgeman technique. In addition, some single crystals were found with high piezoelectric response like Pb(Mg$_{1/3}$Bi$_{2/3}$)$_{0.5}$O$_3$-x[PbFe$_{0.5}$Co$_{0.5}$]O$_3$-PbZrO$_3$-PbTiO$_3$ (PMN–PZT)-S-Crystal, PZN-8%PT crystal orientation $<001>$ [Pb(Zn$_{1/3}$Nb$_{2/3}$)$_{0.5}$]O$_3$-PbTiO$_3$Pb(Zn$_{1/3}$Nb$_{2/3}$)$_{0.5}$O$_3$-PbTiO$_3$], PZN, crystal orientation $<001>$ etc. Therefore, it was confirmed that the crystal orientation plays a vital role in acquiring the high d_{33} value. The corresponding transition temperatures were also noted in Table 2. Thus, these materials were extensively used for variety of applications such as data memory, storage, energy harvesting, solar energy conversion, and high power transducers. The T_c values of various samples were also noted in Table 2.

BT based materials	d_{33} (pC/N)	T_c (°C)	Synthesis Method	Applications	Ref.
BaTiO$_3$	200	120	conventional method (SSR)	capacitors, piezoelectric transducers	[19]
BaTiO$_3$ (BT-100-SPS)	416	120	Spark plasma sintering (SPS)	capacitors, piezoelectric transducers	[20]
BaTiO$_3$ (BT-100-NS)	193	120	hydrothermal synthesis	capacitors, piezoelectric transducers	[20]
BaTiO$_3$ (BT-500-SPS)	216	120	spark plasma sintering (SPS)	capacitors, piezoelectric transducers	[20]
BaTiO$_3$	191	130	conventional method (SSR)	Actuator	[21]
BaTiO$_3$, single crystal	86	130	Bridgeman Technique	Actuator	[21]
Barium Titanate and nano-akermanite, (BT/nAK) BT90/nAK10	4	130	freeze-casting technique		[22]
0.95BaTiO$_3$-0.05CaTiO$_3$-Co	150	105			[23]
0.9BaTiO$_3$.0(1-x)CaTiO$_3$.xBaSnO$_3$ [BCT-xBS]	469 - 1335		SSR	electromechanical actuator applications	[24]
Ba(Ti$_{0.8}$Sn$_{0.2}$)$_3$O$_3$-30(Ba$_{0.5}$Ca$_{0.5}$)$_3$TiO$_3$	530		SSR	electromechanical actuator applications	[25]
Ba(Zr$_{0.7}$Ti$_{0.3}$)O$_3$-50(Ba$_{0.5}$Ca$_{0.5}$)$_3$TiO$_3$	620		SSR	electromechanical actuator applications	[25]
(Ba$_{0.98}$Ca$_{0.02}$)$_3$(Ti$_{0.96}$Sn$_{0.04}$)O$_3$	510		SSR	electromechanical actuator applications	[25]
(Ba$_{0.97}$Ca$_{0.03}$)$_3$(Ti$_{0.94}$Sn$_{0.06}$)O$_3$	440		SSR	electromechanical actuator applications	[25]
BT-x (CT-BS)	570		conventional method (SSR)	electromechanical actuator applications	[25]
(Ba$_{0.93}$Ca$_{0.07}$)$_3$(Ba$_{0.5}$Sn$_{0.5}$)O$_3$	387	108	SSR		[26]
(Ba$_{0.5}$,Ca$_{0.5}$)$_3$(Ti$_{0.86}$Zr$_{0.14}$)$_3$O$_3$	375	115	SSR		[27]
χ(Na$_{0.8}$Bi$_{0.2}$)$_3$TiO$_{3-y}$ -$(K_x Bi_{1-x})$TiO$_3$	145	302			[23]
Ba$_{2}$TiO$_3$ (x y = z; 1; y:z = 2:1)	281				
BCS (Ba$_{0.6}$Sr$_{0.4}$Zr$_{0.6}$Ti$_{0.4}$O$_3$-CoFe$_2$O$_4$)					
0.94Na$_{0.5}$Bi$_{0.5}$TiO$_3$-0.06BaTiO$_3$	102.6		sol-gel method		[29]
Ba$_{0.8}$Ca$_{0.2}$TiO$_3$	290		SSR	sensors, actuators, fuel injectors & transducers	[30]
(Ba$_{0.85}$Ca$_{0.15}$)$_3$(Zr$_{0.8}$Ti$_{0.2}$)O$_3$(BCZT)	486	90	SSR	actuators, ultrasonic transducers,	[31]

Table 1. Data on BT and its based materials.
A review on giant piezoelectric coefficient, materials and applications

Table 2. Data on PT and its based materials.

PT based materials	d33 (pC/N)	Tc (°C)	Synthesis Method	Applications	Ref.
PbTiO3	56	475	tartrate precursor method	energy harvesters, smart sensors	[36]
PbTiO3 (at 750°C calcined temp)	79		tartrate precursor method		[37]
(1-x)[Pb(Mg1/3Nb2/3)O3]-x[PbTiO3] (PMN-PT)	~3500		Bridgman technique		[39]
1-x)[Pb(Mg1/3Nb2/3)O3]-x[PbTiO3] (PMN-38PT)	300-1200		high temperature flux technique	solid state actuators	[45]
PZT thin films	10		sol-gel processing		[41]
Cellulose paper derived ceramics (CPDC)	50				[42]
PZT60/40 films, Pb(Mg1/3Nb2/3)O3–PbZrO3–PbTiO3 (PMN–PZT)-R – Ceramic	100				[43]
Pb(Mg1/3Nb2/3)O3–PbZrO3–PbTiO3 (PMN–PZT)-T–Ceramic	230				[44]
Pbn0.5–Y0.5TiO3	1500		Bridgman technique		[44]
PZN-8% PT crystal orientation <001>	2500		high temperature flux technique		[45]
Pbn0.5–Y0.5TiO3	1100		Bridgman technique		[44]
PZN, crystal orientation <001>	1530		high temperature flux technique		[45]
PZN, crystal orientation <111>	1100		high temperature flux technique		[45]
PZN-8% PT, crystal orientation <111>	83		high temperature flux technique		[45]
PZT	750		high temperature flux technique		[45]
Pb1/3B1/3O2-PT	1500		high temperature flux technique		[45]
PZN-PT	1600		high temperature flux technique		[45]
PZN direction <111>	83		high temperature flux technique		[45]
PZN-8% PT	84		high temperature flux technique		[45]
PZN along <001>	1100		high temperature flux technique		[45]
PZN-8% PT along <001>	2500		high temperature flux technique		[45]
0.955Pb(Zn1/3Nb2/3)O3–0.045PbTiO3 along <001>	2280		grown using the high temperature flux technique		[46]
0.955Pb(Zn1/3Nb2/3)O3–0.045PbTiO3 <111>	92				[46]
PZT ceramics	219.4		Bridgman technique		[47]
Lead zirconatetitanate (PZT) thinfilms	12		sol-gel technique		[48]
PZT Fe	230		SSR		[49]
PZT Nb	470		SSR		[49]
PZT6	290	330			[50]
PZT7	425	350			[50]
PZT5A4	460	360			[50]
PZT507	820	165			[50]
PLZT	108				[51]
PZT-5A	3.74				[52]
PZT-5H	5.93				[52]
PZT-7A	1.53				[52]
0.67Pb(Mg1/3Nb2/3)O3–0.33PbTiO3>1900					[53]
PZT-4D	246				[54]
PZT-5H	677				[54]
PZT(52/48)	135		tartrate precursor method		[36]
0.3 PZT	87				[36]
PZT(57/43)	200				[36]
2.3. Bismuth Titanate Based Materials (BITX).

It was also observed that the rhombohedral bismuth titanate and its based materials revealed the considerable piezoelectric response. Besides, the undoped BIT expressed the ferroelectric transition temperature at 670 °C [62]. In connection with d33, it showed value of 40 pC/N. Comparatively, this was smaller than the d33 of BT & PT which suggested moderate piezoelectric efficiency. Therefore, it was expected for ferroelectric and piezoelectric devices application [63]. For further increase of d33 value, several additives were mixed to the BIT. As a result, few elements such as Sr, Na, Nd, K etc., were doped to BIT. The obtained d33 data were listed in Table.3 [62-71]. It was clear from Table.3 that the d33 of BIT based samples was observed to be changing from 17 to 650 pC/N. In this case also, the maximum value of d33 of 650 pC/N was achieved for BNBT-5.5 single crystal [64]. For BT, and PT based materials also the similar observations were noted. Moreover, it was noticed that the single crystal piezoelectric materials depending upon the type of dopant/substituent, the piezoelectric coefficient was much improved. The Tc values of various samples were also noted in Table.3.

2.4. Sodium Niobate Based Materials (NNX).

The sodium niobate (NaNbO3 (NN)) and its based materials revealed the piezoelectric coefficient ranging from 28 to 410 pC/N. It was observed that the undoped NN showed d33 ~ 28 pC/N. It is of small value in comparison with the BT, PT, & BIT. However, the potassium elements improved three times its d33 value. Latter, the different combinations were prepared using the solid state reaction method. The d33 values of those materials were listed in Table.4. It was found that the d33 was changing from 80 to 410 pC/N [72-78]. These materials showed data memory and storage, energy harvesting, solar energy conversion applications. The Tc values of various samples were also noted in Table.4.

Table 3. Data on BIT and its based materials.
BIT based materials

(Bi27Ti3O51)3, BIT
SrBi2Ta2O9 films
Table 4. Data on NN and its based materials.

NN based materials	d_{33} (pC/N)	T_r (°C)	Synthesis Method	Applications	Ref.
NaNbO$_3$	28		Molen salt method	Storage memories, energy harvesting, solar energy	[72]
(K$_{0.465}$Na$_{0.465}$Li$_{0.07}$)NbO$_3$	80	420			[73]
(K$_{0.46}$Na$_{0.54}$Li$_{0.06}$)NbO$_3$	240	460			[73]
(K$_{0.46}$Na$_{0.54}$Li$_{0.06}$)Nb$_{0.78}$Ta$_{0.22}$Sb$_{0.06}$O	410	253			[73]
0.95(K$_{0.95}$Na$_{0.05}$)NbO$_3$+0.05SrTiO$_3$	200	277			[73]
0.95(K$_{0.95}$Na$_{0.05}$)NbO$_3$+0.05SrTiO$_3$	200	430			[73]
0.94(K$_{0.95}$Na$_{0.05}$)NbO$_3$+0.06LiNbO$_3$	235	460			[73]
0.95(K$_{0.95}$Na$_{0.05}$)NbO$_3$+0.05SrTiO$_3$	283	392			[73]
0.7Bi$_2$Na$_3$TiO$_7$-0.2Bi$_2$K$_{2.5}$TiO$_4$-0.1Bi$_2$Li$_4$Ti$_2$O$_9$	216	350			[73]
0.5Na$_2$Bi$_2$Ti$_3$O$_7$-0.5K$_{2.5}$Bi$_2$Ti$_3$O$_7$	150	320			[73]
(Li$_{0.95}$Na$_{0.05}$)Ti$_2$O$_3$-xCeO$_3$	272		SSR		[74]
0.963(K$_{0.48}$Na$_{0.52}$)(Nb$_{0.95}$Sb$_{0.05}$)O$_3$-0.037(Bi$_{0.86}$Na$_{0.14}$)HIO$_3$	512	238	ultrasonic transducers, actuators, & sensors	[75]	
(K$_{0.42}$Na$_{0.58}$Li$_{0.00}$)Nb$_{0.87}$Ta$_{0.13}$Sb$_{0.06}$O$_3$	255		SSR	[76]	
Li$_{0.95}$Na$_{0.05}$K$_{0.05}$Li$_{0.05}$Ta$_{0.05}$Sb$_{0.03}$	306		SSR	[77]	
Na$_{0.32}$K$_{0.4}$Li$_{0.28}$La$_{0.06}$Nb$_{0.95}$Ti$_{1.65}$O$_{10}$ (KNN:LNT-La)	215	420	SSR	[78]	

2.5. Polymer Based Materials (POLX). In general, the piezoelectric polymers will exhibit the piezoelectric nature owing to the molecular structure of the polymers [79]. The d_{33} data of various polymer materials were shown in Table 5. The results were noted to be of order 1-2000 pC/N. From the Table 5, it was clear that the pure organic polymers revealed the moderate piezoelectric coefficient. On the other hand, the same polymers were doped with inorganic piezoelectric elements such as Pb, Na, K, Nb etc., and the obtained d_{33} values were of greater than 1000 pC/N [79]. For instance, the PMN–0.29PT/epoxy (1–3) composite, and PMN0.29PT expressed the huge piezoelectric response by providing the high d_{33} [79]. Therefore, these were used as electromechanical applications.

2.6. Multiferroic Materials (MUFX). In general, the multiferroic materials can exhibit the electrical, piezoelectric, ferroelectric and magnetic behavior. The multiferroic materials as shown in Table 6 showed inverse piezoelectric coefficient ranging from 36 to 400 pm/V [80, 81]. This confirmed us the range of produced strain of different materials for the applied electric field. In the literature, the highest value of inverse d_{33} about 400 pm/V was noted for (0.67-x)BiFeO$_3$-0.33BaTiO$_3$SrZrO$_3$ material [81]. It was achieved owing to the presence of tetragonal peaks. Hence, these materials were used for actuators, sensors, information storage and some micro motor systems.

2.7. Glass based materials (GLX).
The Sr-fresnoite \((\text{Sr}_2\text{Ti}_2\text{Si}_2\text{O}_{8})\) + added \(\text{SiO}_2\) which is a glass based piezoelectric materials revealed the \(d_{33}\) of 10 pC/N \([82]\) (Table.7). This implied that the weak piezoelectric nature was observed in the case of present glass material. This kind of manner may be acquired as a result of the existed less intense polycrystalline phases although it is mixed with silicon dioxide. However, it was suited for high temperature applications.

Fig.5 shows the overall, review analysis of giant \(d_{33}\) values of piezoelectric materials. It was also noted that the Pb-based single crystal: \((1-x)[\text{Pb}(\text{Mg}_{1/3}\text{Nb}_{2/3})\text{O}_3]-x[\text{PbTiO}_3]\) (PMN-PT) showed the highest value of \(d_{33}\) \(\sim 3500\) pC/N. The polymer composite: PMN0.29PT revealed the maximum value of \(d_{33}\) \(\sim 2000\) pC/N. In case of BIT based materials, the existed high strains achieved for \(<001>\) oriented rhombohedral BNBT-5.5 single crystal exhibited the maximum value of \(d_{33}\) of 650 pC/N. The BT based composite material: \(\text{Ba}(\text{Zr}_{0.2}\text{Ti}_{0.8})\text{TO}_3-50(\text{Ba}_{0.7}\text{Ca}_{0.3})\text{TiO}_3\) performed the high piezoelectric coefficient of 620 pC/N. The rest of the materials performed considerable \(d_{33}\) values useful for various sensors, transducers, actuators and storage applications.

Table 5. Data on various polymer based materials.

Polymer materials	\(d_{33}\) (pC/N)	\(T_c\) (°C)	Synthesis Method	Applications	Ref.
PVDF	13-28				[79]
PVDF-TrFE	24-38				[79]
ParyleneC	2.0				[79]
PI (α-CN)	5.3-16.5				[79]
APB/ODPA	16.5				[79]
Polymide P150 (β-CN)	5.3				[79]
PMN–0.29PT/epoxy (1–3) composite	1200				[79]
Cellular polypropylene	200				[79]
Fluorinated and Post treated cellular PP	270				[79]
COC based cellular electrets	13				[79]
Cellular Polyethylene enaphthalate (PEN)	45				[79]
PTFE/FEP multilayer VCP	225				[79]
FEP multilayer	1000				[79]
Cellular PDMS	1148				[79]
Micromachined integrated cellular Parylene	1200				[79]
PMN0.29PT	500				[79]

Table 6. Data on multiferroic materials.

Multiferroic materials	\(\text{Inverse } d_{33}\) (pm/V)	\(T_c\) (°C)	Synthesis Method	Applications	Ref.
\(\text{Li}_{0.55}\text{Bi}_{0.55}\text{Fe}_{0.55}\text{O}_3\) film	107.5		sol-gel methods	actuators and sensors	[80]
3. CONCLUSIONS

A review of piezoelectric materials with their d_{33} values was performed. As a result of this review, it was concluded that (i) the Pb-based single crystal: (1-x)[Pb(Mg_{1/3}Nb_{2/3})O_x]-x[PtTiO_3] (PMN-PT) showed the highest value of $d_{33} \approx 3500$ pC/N. (ii) The polymer composite: PMN0.29PT revealed the maximum value of $d_{33} \sim 2000$ pC/N. (iii) In case of BIT based materials, the highest high strains achieved for <001> oriented rhombohedral BNBT-5.5 single crystal exhibited the maximum value of d_{33} of 650 pC/N. (iv) The BT based composite material: Ba(Zr_0.2Ti_0.8)O_3-50(Ba_0.7Ca_0.3)TiO_3 performed the high piezoelectric coefficient of 620 pC/N. (v) The sodium niobate based material: (K_0.44Na_0.56)L_0.06(Nb_0.84Ta_0.16)(SiO_2) expressed the huge value of $d_{33} \sim 410$ pC/N. Further the high inverse d_{33} of multiferroic materials was observed for Li_0.06Bi_0.95Nb_0.05Fe_2O_5 film and (0.67-x) BiFeO_3-0.33BaTiO_3-SrZrO_3. In addition, the d_{33} value of glass material was found and noted to be very small in magnitude (Sr-fresnoite (Sr_2Ti_3O_7) + added SiO_2) (10 pC/N).

4. REFERENCES

1. Holler, F.J.; Skoog, D.A.; Crouch, S.R. Principles of Instrumental Analysis, 5th ed.; Cengage Learning: 2007; pp. 9.
2. Kaufmann, P.; Rohring, S.; Supancic, P.; DeLuca, M. Influence of ferroelectric domain texture on the performance of multilayer piezoelectric actuators. J Eur Ceram Soc. 2017, 37, 2039-2046. https://doi.org/10.1016/j.jeurceramsoc.2016.12.029
3. Bobić, J.D.; Ivanov, M.; Ilić, N.; Dzumuzović, A.S.; VijatovićPejović, M.M.; Banys, J.; Ribić, A.; Despotovic, Z.; Stojanovic, B.D. PZT nickel ferrite and PZT-cobalt ferrite comparative study: structural, dielectric, ferroelectric and magnetic properties of composite ceramics. Ceramics International 2018. https://doi.org/10.1016/j.ceramint.2018.01.057
4. Manotham, S.; Butnoi, P.; Jaita, P.; Kumar, N.; Chokethawai, K.; Rujijangul, S.; Kann, D.P. Large electric field-induced strain and large improvement in energy density of bismuth sodium potassium tantalate-based piezoelectric ceramics. Journal of Alloys and Compounds. 2018, 739, https://doi.org/10.1016/j.jallcom.2017.12.175
5. Ehterami, A.; Kazemi, M.; Nazari, B.; Saraeian, P.; Azami, M. Fabrication and characterization of highly porous barium titanate based scaffold coated by Gel/HA nanocomposite with high piezoelectric coefficient for Bone Tissue Engineering Applications. Journal of the Mechanical Behavior of Biomedical Materials. 2017, 79, https://doi.org/10.1016/j.jmbbm.2017.12.034
6. Sharapov, V. Piezoceramic Sensors, Microtechnology and MEMS, © Springer-Verlag Berlin Heidelberg 2011; https://doi.org/10.1007/978-3-642-15311-2
7. Safari, A.; Ackdogan, E.K. Piezoelectric and Acoustic Materials for Transducer Applications; Springer: New York, 2008.
8. Messing, G.L.; Troler-McKinstry, S.; Sabolsky, E.M.; Duran, C.; Kwon, S.; Brahmaroutu, B.; Park, P.; Yilmaz, H.; Rehig, P.W.; Etel, K.B.; Suvaci, E.; Seabaugh, M.; Oh, K.S. Templated Grain Growth of Textured Piezoelectric ceramics. Crit. Rev. Solid State Mater. Sci. 2004, 29, https://doi.org/10.1080/10408430490490905.
9. Wang, K.; Li, J.F. Domain Engineering of Lead-Free Lithium Niobate-Based Multiferroic Materials with Enhanced Piezoelectricity. J Ceram Soc Jpn. 2017, 125, 1102-1108. https://doi.org/10.1143/JCSJ.12540839
10. Wang, K.; Li, J.F. Novel Approach to Enhance the Piezoelectricity of Lead-Free Lithium Niobate-Based Multiferroic Materials. J Ceram Soc Jpn. 2017, 125, 1300-1306. https://doi.org/10.1143/JCSJ.12540841
11. Wang, K.; Li, J.F. Domain Engineering of Lead-Free Lithium Niobate-Based Multiferroic Materials with Enhanced Piezoelectricity. J Ceram Soc Jpn. 2017, 125, 1300-1306. https://doi.org/10.1143/JCSJ.12540841
12. Wang, K.; Li, J.F. Novel Approach to Enhance the Piezoelectricity of Lead-Free Lithium Niobate-Based Multiferroic Materials. J Ceram Soc Jpn. 2017, 125, 1300-1306. https://doi.org/10.1143/JCSJ.12540841
13. Wang, K.; Li, J.F. Novel Approach to Enhance the Piezoelectricity of Lead-Free Lithium Niobate-Based Multiferroic Materials. J Ceram Soc Jpn. 2017, 125, 1300-1306. https://doi.org/10.1143/JCSJ.12540841
14. Wang, K.; Li, J.F. Novel Approach to Enhance the Piezoelectricity of Lead-Free Lithium Niobate-Based Multiferroic Materials. J Ceram Soc Jpn. 2017, 125, 1300-1306. https://doi.org/10.1143/JCSJ.12540841
15. Wang, K.; Li, J.F. Novel Approach to Enhance the Piezoelectricity of Lead-Free Lithium Niobate-Based Multiferroic Materials. J Ceram Soc Jpn. 2017, 125, 1300-1306. https://doi.org/10.1143/JCSJ.12540841
16. Wang, K.; Li, J.F. Novel Approach to Enhance the Piezoelectricity of Lead-Free Lithium Niobate-Based Multiferroic Materials. J Ceram Soc Jpn. 2017, 125, 1300-1306. https://doi.org/10.1143/JCSJ.12540841
17. Wang, K.; Li, J.F. Novel Approach to Enhance the Piezoelectricity of Lead-Free Lithium Niobate-Based Multiferroic Materials. J Ceram Soc Jpn. 2017, 125, 1300-1306. https://doi.org/10.1143/JCSJ.12540841
18. Wang, K.; Li, J.F. Novel Approach to Enhance the Piezoelectricity of Lead-Free Lithium Niobate-Based Multiferroic Materials. J Ceram Soc Jpn. 2017, 125, 1300-1306. https://doi.org/10.1143/JCSJ.12540841
19. Wang, K.; Li, J.F. Novel Approach to Enhance the Piezoelectricity of Lead-Free Lithium Niobate-Based Multiferroic Materials. J Ceram Soc Jpn. 2017, 125, 1300-1306. https://doi.org/10.1143/JCSJ.12540841
20. Wang, K.; Li, J.F. Novel Approach to Enhance the Piezoelectricity of Lead-Free Lithium Niobate-Based Multiferroic Materials. J Ceram Soc Jpn. 2017, 125, 1300-1306. https://doi.org/10.1143/JCSJ.12540841
21. Wang, K.; Li, J.F. Novel Approach to Enhance the Piezoelectricity of Lead-Free Lithium Niobate-Based Multiferroic Materials. J Ceram Soc Jpn. 2017, 125, 1300-1306. https://doi.org/10.1143/JCSJ.12540841
22. Wang, K.; Li, J.F. Novel Approach to Enhance the Piezoelectricity of Lead-Free Lithium Niobate-Based Multiferroic Materials. J Ceram Soc Jpn. 2017, 125, 1300-1306. https://doi.org/10.1143/JCSJ.12540841
of European Ceramic Society 2018, 38, 4395-4403, https://doi.org/10.1016/j.eurcera.2018.05.022.
32. Yap, E.W.; Glauum, J.; Oddershede, J.; Daniels, J.E. Effect of porosity on the ferroelectric and piezoelectric properties of (Ba0.85Ca0.15)(Zr0.15Ti0.85)O3 piezoelectric ceramics.ScriptaMaterialia 2008, 145, 122–125, https://doi.org/10.1016/j.scriptamat.2017.10.022.
33. Zhou, M.; Liang, R.; Zhou, Z.; Xu, C.; Nie, X.; Dong, X. Enhanced Curie temperature and piezoelectric properties of (Ba0.85Ca0.15)(Zr0.15Ti0.85)O3 lead-free ceramics after the addition of LiTaO3. Materials Research Bulletin 2018, 106,213-219, https://doi.org/10.1016/j.materresbull.2018.05.036.
34. Sharma, S.; Tomar, M.; Puri, N.K.; Gupta, V. Ultraviolet radiation detection by barium titanate thin films grown bysol–gel hydrothermal method. Sensors and Actuators A 2015, 230, 175–181. https://doi.org/10.1016/j.sna.2014.11.375.
35. Jung, C.H.; Woo, S.I.; Kim, Y.S.; No, K.S. Reproducible resistance switching for BaTiO3 thin films fabricated by RF-magnetron sputtering. Thin Solid Films 2011, 519, 3291–3294, https://doi.org/10.1016/j.tsf.2010.12.149.
36. Tawfik, A.; Hemeda, O.M.; Henaish, A.M.A.; Dorgham, A.M. High piezoelectric properties of modified nanoled titanatezirconate ceramics. Materials Chemistry and Physics 2018, 211, https://doi.org/10.1016/j.matchemphys.2018.01.073.
37. Zhang, S.; Li, H.; Li,M. Size-dependent piezoelectric coefficient d33 of PbTiO3 nanoparticles. Materials Letters 2008, 62,2434-2440, https://doi.org/10.1016/j.matlet.2007.12.015.
38. Liao, J.H.; Cheng, S.Y.; Wang, H.C.; Wang, C.M. Microstructure and properties of modified PbTiO3 ceramics. Ferroelectrics 2011, 127, 101–106, https://doi.org/10.1080/00150199208223354.
39. Sahul, R. Effect of Manganese Doping On Pin-Pnn-Pt Single Crystals For High Power Applications, PhD thesis 2014.
40. Xu, Z.J.; Chu, R.Q.; Li, G.R.; Zeng, H.R.; Yu, H.F.; Yin, Q.R. Strain anisotropy and piezoelectric response along 〈011〉 and 〈110〉 directions in PMN–38PT single crystal. Materials Letters 2005, 59,1653–1655, https://doi.org/10.1016/j.matlet.2005.01.035.
41. Xu,F.;Chu,F.;Trollier-McKinstry,S.Longitudinal piezoelectric coefficient measurement for bulk ceramics and thin films using pneumatic pressure rig J. Appl. Phys. 1999, 86,588; https://doi.org/10.1063/1.370771.
42. Eichhorn, F.; Stenzel, A.; Weisenseel, B.; Travitzky, N.; Nakamoto, K.I.; Greil, P.; Fey, T. Porous piezoelectric ceramics with 3-3-connectivity fabricated by impregnation of cellulose paper structures. Materials letters 2017, 206,158-161, https://doi.org/10.1016/j.matlet.2017.07.007.
43. Taylor, D.V.; Damjanovic, D. Piezoelectric properties of rhombohedral Pb(Zr,Ti)O3 Pb(Zr,Ti)O3 thin films with 100, (111), and “random” crystallographic orientation. Applied Physics Letters 2000, 76, 1615, https://doi.org/10.1063/1.126113.
44. Buurma, A.J.C.;Blake,G.R.;Palstra, T.T.M.; Adem, U.M. Multiferroic Materials: Physics and Properties. Reference Module in Materials Science and Materials Engineering 2016, 1,109–130, https://doi.org/10.1016/B978-0-12-382518-8.09245-6.
45. Park, S.E.; Shrout, T.R. Ultrahigh strain and piezoelectric behavior in relaxor based ferroelectric single crystals. J. Appl. Phys. 1997, 82,1804, https://doi.org/10.1063/1.365983.
A review on giant piezoelectric coefficient, materials and applications

46. Liu, S.F.; Park, S.E.; Shroots, T.R.; Cross, L.E. Electric field dependence of piezoelectric properties for rhombohedral 0.955Pb(Zn1/3Nb2/3)O3-0.045PbTiO3 single crystals. Journal of Applied Physics 1999, 85, 2810. https://doi.org/10.1063/1.369599.

47. Li, S.; Bhalla, A.S.; Newnham, R.E. Cross, L.E. Quantitative evaluation of extrinsic contribution to piezoelectric coefficient d33 in ferroelectric PZT ceramics. Materials Letters 1993, 17, 21-26. https://doi.org/10.1016/0167-577X(93)90141-J.

48. Lefki, K.; Dornans, G.J.M. Measurement of piezoelectric coefficients of ferroelectric thin films. J. Appl. Phys. 1994, 76, 101. https://doi.org/10.1063/1.357693.

49. Kuseer, D.; Rojac, T.; Belavič, D.; Zarnik, M.S.; Bradeško, A.; Kos, T.; Milič, B.; Boerirger, M.; Martin, D.M.; Facchin, M. Integrated piezoelectric vibration system for fouling mitigation in ceramic filtration membranes. Journal of Membrane Science 2017, 540, 277-284. https://doi.org/10.1016/j.memsci.2017.06.054.

50. Khalij, J.; Deutz, D.B.; Frescas, J.A.C.; Vollenberg, P.; Hoeks, T.; der Zwaag, S.; Groen, P. Effect of the piezoelectric ceramic filler dielectric constant on the piezoelectric properties of PZT-epoxy composites. Ceramic International 2017, 43, 2774-2779. https://doi.org/10.1016/j.ceramint.2016.11.108.

51. Huang, C.; Xu, J.; Fang, Z.; Ai, D.; Zhou, W.; Zhao, L.; Sun, Wang, J.Q. Effect of preparation process on properties of PLZT (96/5/35) transparent ceramics. Journal of Alloys and Compounds 2017, 723, 602-610. https://doi.org/10.1016/j.jallcom.2016.07.031.

52. Guo, Q.; Cao, G.Z.; Shen, I.Y. Measurements of Piezoelectric Coefficient d33 of Lead ZirconateTitanate Thin Films Using a Mini Force Hammer. Journal of Vibration and Acoustics 2013, 135, 11003. https://doi.org/10.1115/1.4006881.

53. Damjanovic, D.; Budimir, D.; Davis, M.; Setter, N. Monodomain versus polydomain piezoelectric response of 0.67Pb(Mg1/3Nb2/3)O3-0.33PbTiO3 single crystals along nonpolar directions. Applied Physics Letters 2003, 83, 527-529. https://doi.org/10.1063/1.1592880.

54. Alguero, M.; Cheng, B.L.; Guo, F.; Reeces, M.J.; Poole, M.; Alford,N. Degradation of the d33 piezoelectric coefficient for PZT ceramics under static and cyclic compressive loading. Journal of the European Ceramic Society 2001, 21, 1437-1440. https://doi.org/10.1016/S0955-2219(01)00036-X.

55. Xue, P.; Wu, H.; Lu, Y.; Zhu, X. Recent progress in molten salt synthesis of low-dimensional perovskite oxide nanostructures, structural characterization, properties, and functional applications: A review. Journal of Material Science and Technology 2018, 34, 914-930. https://doi.org/10.1016/j.jmatste.2017.10.005.

56. Huo, X.; Zhang, S.; Liu, G.; Zhang, R.; Luo, J. Complete set of elastic, dielectric, and piezoelectric constants of [011]C polycrystalline PZT ceramics. Journal of the American Ceramic Society 2018, 101, 3577-3580. https://doi.org/10.1111/jace.16236.

57. Yamashita, Y.; Hosono, Y. High Curie temperature piezoelectric single crystals of the Pb(0.78,0.22)O3-Pb(Mg0.25Nb0.75)O3-PbTiO3 ternary materials system. Handbook of Advanced Dielectric, Piezoelectric and Ferroelectric Materials 2008, https://doi.org/10.1533/9781845694005.1.205.

58. Kalem, V.; Shih, W.Y.; Shih, W.H. Dielectric and piezoelectric properties of PMN-PT ceramics doped with strontium. Ceramic International 2018, 44, 2835-2842. https://doi.org/10.1016/j.ceramint.2017.11.029.

59. Luo, X.; Zeng, J.; Shi, X.; Zheng, L.; Zhao, K.; Man, Z.; Li, G. Dielectric, ferroelectric and piezoelectric properties of MnO2-doped Pb(Y1/2, Nb1/2)O3-Pb(Zr, Ti)O3 ceramics. Ceramic International 2018, 44, 8456-8460. https://doi.org/10.1016/j.ceramint.2017.02.042.

60. Yan, Y.; Liu, Z.; Li, Z.; Zhang, M.; Zhang, D.; Feng, Y. Improving piezoelectric properties of Pb(Ni, Nb)O3-Pb(Hf, Ti)O3 ceramics by LiF addition. Ceramic International 2018, 44, 5790-5793. https://doi.org/10.1016/j.ceramint.2017.11.088.

61. Zhu, R.; Fang, B.; Zhao, X.; Zhang, S.; Chen, Z.; Ding, J.; Luo, H. Enhancing piezoelectric properties of high-Curie temperature PMN-PT piezoelectric ceramics by citrate method. Journal of Alloys and Compounds 2018, 735, 496-509. https://doi.org/10.1016/j.jallcom.2017.12.115.

62. Simoes, A.Z.; Cruz, M.P.; Ries, A.; Longo, E.; Varella, J.A.; Ramesh, R. Ferroelectric and piezoelectric properties of bismuth titanate thin films grown on different bottom electrodes by soft chemical solution and microwave annealing. Materials Research Bulletin 2007, 42, 975-981. https://doi.org/10.1016/j.materresbull.2006.08.006.

63. Manotham, S.; Buttnoi, P.; Jaita, P.; Kumar, N.; Chokethawai, K.; Ruijjanagul, G.; Cann, D.P. Large electric field-induced strain and large improvement in energy density of bismuth sodium potassium titanate-based piezoelectric ceramics. Journal of Alloys and Compounds 2018, 739, 457-467. https://doi.org/10.1016/j.jallcom.2017.12.175.

64. Velev, J.P.; Jaswal, S.S.; Tsynbal, E.Y. Multi-ferroic and magnetoelectric materials and interfaces. Philosophical Transactions: Mathematical, Physical and Engineering Sciences 2011, 369, 3069-3097. https://doi.org/10.1098/rsta.2010.0344.

65. Guo, K.; Mirshekarloo, M.S.; Lin, M.; Yao, K.; Chen, S.; Tay, F.E.H. Microstructure and piezoelectric properties of thermal sprayed Bi0.5(Nb0.5)O3-0.20Li2.1753O3 ceramic coatings. Ceramics International 2018, 44, 5747-576. https://doi.org/10.1016/j.ceramint.2018.11.016.

66. Yan, S.; Zhao, M.; Wang, C.; Yu, D.; Wang, Y.; Wang, L.; Wang, C. Dielectric and piezoelectric properties of Bi0.925Ti0.075O3, Bi0.94Bi0.06Ti0.03 polar composite ceramics. Journal of Alloys and Compounds 2019, 774, 471-476. https://doi.org/10.1016/j.jallcom.2018.10.054.

67. Bai, W.; Wang, L.; Zheng, P.; Wen, F.; Li, lili, Ji, Z.; & Zhai, J. Enhanced thermal stability, hardening of piezoelectric property, and mediated electromechanical response in Bi0.95(Na0.53Ti0.47)O3-based piezoceramics via composite approach. Ceramics International 2018, 44, 17022-17032. https://doi.org/10.1016/j.ceramint.2018.06.145.

68. Chen, Y.; Zhang, C.C.; Qin, L.; Jiang, C.B.; Liu, K.H.; Ma, C.; Wu, Z.T.; Pan, R.K.; Cao, W.Q.; Ye, C.; Li, Z. Enhanced dielectric and piezoelectric properties in Na0.94Bi0.04Ti0.95O3 ceramics with Pr-doping. Ceramics International 2018, 44, https://doi.org/10.1016/j.ceramint.2018.07.037.

69. Han, W.H.; Koh, J.H. Shrinkage mechanism and enhanced piezoelectric properties of Ta doped 0.94Bi0.5Na0.5TiO3-0.06BaTiO3, lead free ceramics. Ceramic International 2018, 44, 5532-5535. https://doi.org/10.1016/j.ceramint.2017.12.155.

70. Pattipaka, S.; James, A.R.; Dobbidi, P. Enhanced dielectric and piezoelectric properties of BNT-KNGN piezoelectric ceramics. Journal of Alloys and Compounds 2018, 765, 1195-1208. https://doi.org/10.1016/j.jallcom.2018.06.138.

71. Zhang, H.; Zhou, J.; Shen, J.; Yang, X.; Wu, C.; Han, K.; Zhao, Z.; Chen, W. Enhanced piezoelectric property and
promoted depolarization temperature in Fe doped Bi$_{1/2}$(Na$_{0.8}$K$_{0.2}$)$_{1/2}$TiO$_4$ lead-free ceramics. Ceramics International 2017, 43, 16395–16402. https://doi.org/10.1016/j.ceramint.2017.09.015.

72. Xue, P.; Wu, H.; Lu, Y.; Zhu, X. Recent progress in molten salt synthesis of low-dimensional perovskite oxide nanostructures, structural characterization, properties, and functional applications: A review. Journal of Material Science and Technology 2018, 34, 914-930, https://doi.org/10.1016/j.jmst.2017.10.005.

73. Marquis, B.T.; Vetelino, J.F. A semiconducting metal oxide sensor array for the detection of NO$_x$ and NH$_3$. Sens. Act. B 2001, 77, 100-110

74. Huang, R.; Zhao, Y.; Yan, D. The enhanced piezoelectric property of (Li,K,Na)(Nb,Ta)O$_3$ lead-free ceramics induced by rare earth oxide doping. Journal of Alloys and Compounds 2018, 750, 124-129, https://doi.org/10.1016/j.jallcom.2018.03.370.

75. Liu, D.; Zhang, X.; Su, W.; Wang, X.; Yao, W.; Zhou, C.; Zhang, J. Outstanding piezoelectric properties, phase transitions and domain configurations of Na$_{0.48}$Li$_{0.52}$NbO$_3$ ceramics. Journal of Alloys and Compounds 2018, 779, https://doi.org/10.1016/j.jallcom.2018.11.183.

76. Dong, Z.J.; Pu, Y.P.; Liu, Y.W. Influence of Bi$_2$Ti$_2$O$_{12}$ doping on structural and piezoelectric properties of K$_{0.4425}$Na$_{0.52}$Li$_{0.0375}$(Nb$_{0.87}$Ta$_{0.06}$Sb$_{0.07}$)O$_3$ lead-free ceramics. Ceramics International 2017, 43, 55-58, https://doi.org/10.1016/j.ceramint.2017.05.210.

5. ACKNOWLEDGEMENTS

The authors express thankful to N. Suresh Kumar for providing the literature on the present work and sharing the ideas with us. Dr. D. Baba Basha is also thankful to Majmaah University Al'Majmaah, K.S.A, for their encouragement towards research work.

© 2019 by the authors. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).