Noble gases in aquitard provide insight into underlying subsurface stratigraphy and free gas formation

Alexandra Kathryn Lightfoot | Emiliano Stopelli | Michael Berg | Matthias Brennwald | Rolf Kipfer

1Dep. of Water Resources and Drinking Water, Eawag, Swiss Federal Institute of Aquatic Science and Technology, Dübendorf 8600, Switzerland
2International Services and Projects, Nagra, Wettingen 5430, Switzerland
3Dep. of Environmental System Sciences, Institute of Biogeochemistry and Pollutant Dynamics, ETH Zürich, Zürich 8092, Switzerland
4Dep. of Earth Sciences, Institute of Geochemistry and Petrology, ETH Zürich, Zürich 8092, Switzerland

Abstract
Biogeochemical gas production resulting in free gas phase formation can severely affect groundwater and solute transport in aquifers. Such gas–water interactions are important in aquifers affected by geogenic As, which are commonly associated with biogeochemical CH\(_4\) production. Additionally, the influence of aquitards on As concentrations in contaminated aquifers has recently been challenged. These observations prompted the analysis through a heterogeneous aquitard overlying a high CH\(_4\) gas-producing zone of an As-contaminated aquifer. A sediment core taken through the aquitard was analyzed for noble gases to assess how the aquitard physically contributes to the underlying gas production. Results reveal that the aquitard pore space is unsaturated in two separate layers resulting in hanging pore water constrained by an air-like gas phase. This interlayering of unsaturated and saturated zones identifies the aquitard’s stratigraphy as key in determining hydrostatic pressure—a main control of free gas formation (i.e., CH\(_4\)) in the underlying aquifer. The partly unsaturated conditions reduce the hydrostatic pressure by 30% compared with fully saturated conditions. To our knowledge, this is the first study applying noble gases to examine the influence of an aquitard’s physical state on gas production in an underlying aquifer. Further, such partly unsaturated sediment layers of low conductivity might provide preferential pathways for periodic water flow, fostering aquitard–aquifer solute transport. Groundwater samples additionally collected throughout the study site confirm more widespread degassing than previously reported. Up to 90% of the expected atmospheric noble gas concentrations is lost from groundwater immediately below the investigated sediment core.

1 | INTRODUCTION

Noble gases are increasingly being applied as reliable geochemical tracers in aquatic sediments to investigate the dynamics of fluids and gases in the sediment pore space. Such aquatic sediments include aquitards (Hendry et al., 2005; Sheldon et al., 2003), the quasi-saturated zone (Jones et al., 2014; Pérrotin et al., 2021), and lacustrine and oceanic sediments (Brennwald et al., 2005, 2013; Horstmann et al., 2021; Strassmann et al., 2005; Tomonaga et al., 2014; Tyroller et al., 2021). However, despite recent methodological advances...
simplifying the extraction and analysis of the noble gases from sediment pore water (Brennwald et al., 2003; Hendry et al., 2005; Tomonaga et al., 2011), there are a limited number of studies applying noble gases as tracers specifically in aquitards and the quasi-saturated zone.

The study of fluids, gases, and gas transport in aquitards is particularly relevant in cases where adjacent aquifers are highly contaminated. Arsenic is serious contaminant affecting many aquifers around the world that can be influenced by aquifer–aquitard exchange. Such exchange is increasingly being challenged as a contributing factor toward As mobilization in contaminated aquifers, with several studies either confirming or anticipating a significant input or exchange of solutes at the aquitard–aquifer interface (McMahon & Chapelle, 1991; McMahon, 2001; Mihajlov et al., 2020; Stopelli et al., 2020, 2021). This exchange further offers to be a contributing explanation toward the particularly high and heterogeneous As concentrations often observed in affected aquifers (e.g., Smedley & Kinniburgh, 2002; Van Geen et al., 2006; Wallis et al., 2020).

Simultaneously, As has been observed to be associated with the biogeochemical production of methane (CH$_4$) in aquifers under highly reducing conditions. The correlation between As and CH$_4$ in many contaminated aquifers is prominent (Dowling et al., 2002; Jessen et al., 2008; Postma et al., 2007; Stopelli et al., 2021), with promising explanations for the correlation identified recently in several studies (Glodowska, Stopelli, Schneider, Rathi, et al., 2020; Lightfoot et al., 2022; Pienkowska et al., 2021). Where the biogeochemical gas production of any gas species (e.g., CH$_4$, nitrogen [N$_2$], carbon dioxide [CO$_2$]) surpasses the hydrostatic pressure, a free gas phase (bubbles) in the pore space of the aquifer matrix may form (Amos & Mayer, 2006; Andrews et al., 1991; Blicher-Mathiesen et al., 1998; Fry et al., 1997; Revesz et al., 1995; Ryan et al., 2000). Such entrapped gas bubbles can have severe consequences for the hydrogeological dynamics of groundwater (Amos & Mayer, 2006; Baird & Waldron, 2003; Lightfoot et al., 2022; Reynolds et al., 1992; Yager & Fountain, 2001), significantly reducing the hydraulic conductivity in a variety of aquatic environments (Amos & Mayer, 2006; Fry et al., 1997; Heilweil et al., 2004; Ryan et al., 2000) and, more critically, causing partial hydraulic isolation of the gas-producing zone. Further, such in-aquifer biogeochemical gas production occurring near the water table has been observed to migrate into the quasi-saturated zone, proving to be an important pathway for carbon and CH$_4$ exchange and transport (Jones et al., 2014). The influence such gas (bubble) production has on the solute dynamics both in groundwater and in the quasi-saturated zone is therefore highly relevant in contaminated aquifers where groundwater transport and the mechanisms governing contaminant dynamics are critical to assess.

In this study we investigate the physical controls overlying a specific CH$_4$–producing zone in the studied aquifer where severe groundwater degassing is observed. Since the CH$_4$–producing zone is located directly below an aquitard–aquifer interface (Stopelli et al., 2021; van Geen et al., 2013), water and gas exchange through the overlying aquitard is key to analyze. Specifically, the main objective is to understand how the aquitard might physically contribute to the gas dynamics and CH$_4$ production in the underlying aquifer.

Assessment of the aquitard is accomplished by analyzing the noble gases in the aquitard pore space. The choice of noble gases as tracers is relevant here because they are naturally existing in the water cycle, are nonreactive, and are solely sensitive to physical processes (Aeschbach-Hertig & Solomon, 2013; Kipfer et al., 2002). To our knowledge, this is the first study that uses the unique properties of noble gases to examine the influence of the physical state of an aquitard on an underlying aquifer, which is highly impacted with As and concomitant CH$_4$ production. In addition, our analysis will provide a framework on which the biogeochemical exchange processes between the aquitard and aquifer can be developed.

Noble gases are additionally analyzed in the groundwater of the underlying aquifer both at the location selected for aquitard porewater analysis and for the wider study site area to clarify the extent of degassing at the field site.

1.1 Noble gases as tracers

Noble gases are applied as natural tracers in aquatic systems where it is necessary to differentiate between biogeochemical reactions and physical transport and exchange processes (e.g., Blicher-Mathiesen et al., 1998; Kipfer et al., 2002; Mächler et al., 2012; Popp et al., 2020; Stanley & Jenkins, 2013). However, to gain a relevant interpretation of what physical processes may have occurred, measured concentrations of a site-specific sample must be compared with the expected air saturated water (ASW) concentrations for that site. Since noble gases enter the water cycle through exchange at an air–water interface, ASW concentrations are generally derived from the last moment the water parcel was in

Core Idea

- Noble gases distinguish between saturated and unsaturated sediments in a heterogeneous aquitard.
- Unsaturated sediments reduce the hydrostatic pressure on an underlying aquifer.
- Free CH$_4$ gas formation in underlying aquifer is enhanced by the reduced hydrostatic pressure.
- Widespread degassing associated with high CH$_4$ concentrations are observed in groundwater.
contact with the atmosphere. Therefore, the ASW concentrations in groundwaters are controlled by the local prevailing environmental conditions: water temperature, salinity, and altitude (Supplemental Table S1) (Aeschbach-Hertig & Solomon, 2013; Kipfer et al., 2002).

Groundwater samples exhibiting deviations from ASW concentrations allow identification of which physical processes (i.e., excess air formation, degassing, or radiogenic accumulation (of the radiogenic noble gases) may have fractionated the gases in the local groundwater. Excess air is produced when pockets of air are trapped in the quasi-saturated zone, and, as the water table rises, an increased hydrostatic pressure forces the noble gases present in the trapped air pockets to dissolve into the groundwater (Aeschbach-Hertig et al., 2002, 2008; Kipfer et al., 2002). Excess air is thus often associated with aquifers subject to frequent fluctuations in the water table (Aeschbach-Hertig et al., 2002; Klump et al., 2007, 2008; Mächler et al., 2013). Degassing, contrarily, is associated with a characteristic depletion of noble gases in groundwater (e.g., Aeschbach-Hertig et al., 2008; Brennwald et al., 2005; Heilweil et al., 2004; Tyroller et al., 2021; Visser et al., 2007). This depletion occurs due to the repartitioning of the original noble gases dissolved in the water phase into a newly formed gas phase, which subsequently escapes the aquatic environment under study leaving behind noble gas depleted groundwater. Such newly formed free gas phases (or gas bubbles) below the water table are generally the result of biogeochemical reactions and are not to be confused with entrapped (excess) air bubbles in the quasi-saturated zone.

Accumulation of the radiogenic noble gases is most frequently observed in the helium (He) isotopes (3He, 4He) and can inform us about the residence times of groundwaters in aquifers and also in the porewaters of more consolidated sediments (Kipfer et al., 2002; Solomon et al., 1996; Strauch, 2014). Helium-4 (4He) accumulates as a consequence of the radioactive decay of uranium and thorium naturally abundant in the aquifer and aquitard matrices and is representative of longer groundwater and porewater residence times (range of 10^3–10^8 yr) (Solomon et al., 1996). Tritogenic 3He, produced via the radioactive decay of tritium (3H), enters a water body at the air–water interface as tritiated water and is applied in the case that shorter groundwater residence times (<70 yr) are anticipated (Gilmore et al., 2021; Kipfer et al., 2002; Schlosser et al., 1988). While both 3H and the tritogenic 3He concentrations are required for dating young groundwaters, some qualitative information can be inferred from the 3H concentrations alone. After the specific water parcel is no longer in exchange with the atmosphere, the 3H concentration in a water parcel will exponentially decrease over time. Higher relative 3H concentrations in groundwater of a specific field site thus indicates shorter groundwater residence times because less time has passed for 3H to decay into tritogenic 3He. Alternatively, 3H may also be understood in terms of a higher fraction of post-bomb water present in a particular groundwater parcel (e.g., Lamontagne et al., 2021).

2 | MATERIALS AND METHODS

2.1 | Geological setting and field site

Van Phuc is a small village situated inside a meander of the Red River (Figure 1) deltaic region around 15 km southeast of Hanoi City (Vietnam). Previously reported high and spatially heterogeneous As and oversaturated CH$_4$ concentrations in groundwater (Glodowska et al., 2021; Lightfoot et al., 2022; Stopelli et al., 2020, 2021), in conjunction with a heterogeneous aquitard capping the aquifer system, made the village ideally suited to study the influence of aquitard properties on the underlying aquifer. Such aquifer characteristics are also typical of many other As-contaminated field sites, making the Van Phuc aquifers appealing to study in the worldwide concern of As groundwater contamination particularly because the site is also easily accessible (e.g., Berg et al., 2008; Eiche et al., 2008, 2017; Glodowska, Stopelli, Schneider, Lightfoot, et al., 2020; Glodowska, Stopelli, Schneider, Rathi, 2020; Glodowska 2021; Kontry et al., 2021; Lightfoot et al., 2022; Nghiem et al., 2020; Stahl et al., 2016; Stopelli et al., 2020, 2021; van Geen et al., 2013).

Underlying the southeast of the village is a young (Holocene) aquifer associated with high As concentrations of up to 500 μg L$^{-1}$ (Stopelli et al., 2021). In the northwest of the village, an older (Pleistocene) aquifer is present (Eiche et al., 2008) with low or no As concentrations, <10 μg L$^{-1}$, as given by the World Health Organization as the safe limit for As in drinking water. Groundwater flows in the direction from the younger aquifer to the older aquifer (or, southeast to northwest along the transect in Figure 1), which is in reverse to the natural groundwater flow (Berg et al., 2008; Stahl et al., 2016; van Geen et al., 2013; Wallis et al., 2020). This flow reversal is a consequence of the large-scale abstraction of groundwater by the municipal waterworks in Hanoi and applies year-round (Stahl et al., 2016) in both dry (November–April) and wet (May–September) seasons. As a result of the enhanced groundwater extraction, water from the Red River began to infiltrate into the Holocene aquifer >50 yr ago (van Geen et al., 2013; Wallis et al., 2020).

Capping the studied aquifers, is a silt–clay aquitard that varies in thickness between 10 and 23 m (Figure 1) (Eiche et al., 2008, 2017). Previous drilling campaigns (Eiche et al., 2008, 2017) have established that the aquitard in the northwest of the village, that is, close to Well 15 in Figure 1, extends down to approximately 23 m in depth and contains a high proportion of silt–clay sediments of up to 75%. In contrast, the same aquitard in the southeast of Van Phuc, that is, around
FIGURE 1 Upper: Aerial schematic of Van Phuc village, around 15 km SE of Hanoi. The sediment core was taken near the local health clinic (20°55′04.1″ N, 105°53′54.3″ E; orange pentagon). Sampled wells are numbered circles showing groundwater with high (>50 μg L⁻¹; dark pink), intermediate (orange) and low (<10 μg L⁻¹; light blue) As concentrations. Wells with ‘#’ are those situated outside of the transect line. Lower: Subsurface profile along the transect line, whereby numbered sampling wells show approximate well screen depths (see Supplemental Table S3 for specific well screen depths and GPS co-ordinates). The location of the sediment core (rectangle) is highlighted. Dashed lines indicate uncertainty in how far layers extend through the aquitard and aquifer. A hydraulically connected gravel aquifer of Pleistocene age underlies both upper sandy aquifers. Adapted from Lightfoot et al. (2022).

200 m downstream of Well 3 in Figure 1, reaches a depth of approximately 10 m and has been identified to be highly heterogeneous (Eiche et al., 2008, 2017; Stopelli et al., 2020; Van Geen et al., 2013), whereby, at depths of 4 and 7 m, the sand content increases to 25 and 50%, respectively. Subsequently, between depths of 10 and 20 m, the sand content fluctuates up to a maximum of 80% (Supplemental Figure S2). In addition, the aquitard has been shown to contain interbedded layers rich in peat and organic matter (Eiche et al., 2017; Tanabe et al., 2003).

Given the sedimentological heterogeneity of the aquitard, previous studies have questioned whether substantial solute input may be a possible factor contributing to some of the highest As concentrations in the aquifer (385–500 μg L⁻¹) (Berg et al., 2008; Eiche et al., 2008; Stopelli et al., 2021). The speculation that a hydrological connection between aquitard and aquifer exists is additionally supported by stable isotope data from sampled groundwater wells (Stopelli et al., 2020). The stable isotopes reveal that groundwater samples lie at various points along a mixing line in which end members were Red River water and pond water, whereby such ponds are inlaid into the overlying aquitard. Results implied some hydraulic connection between these overlying ponds and the aquifer through preferential flow paths in the aquitard (Stopelli et al., 2020, 2021).

In our study, the aquitard situated below the health clinic of the village (20°55′04.1″ N, 105°53′54.3″ E) was the targeted location for pore analysis since the sediments in the upper aquitard were predicted to be highly heterogeneous (as anticipated from Eiche et al., 2008, 2017), while
underlying groundwater is observed to contain simultaneously high As and CH₄ concentrations (Glodowska et al., 2021; Stopelli et al., 2021).

2.2 Arsenic mobilization and retardation in Van Phuc

The general and commonly accepted mechanism controlling geogenic As release in aquifers, such as that underlying Van Phuc, is by microbial reduction of iron-oxyhydroxides (Anawar et al., 2006; Berg et al., 2007; McArthur et al., 2001; Nickson et al., 2000; Ravenscroft et al., 2011). Organic carbon is vital to facilitate the mobilizing reaction; however, its origin is not always clear. At our study site, the riverbed has been previously identified as a key contributor to the source of dissolved As since the groundwater flow was reversed (Wallis et al., 2020). The high spatial heterogeneity of As concentrations (which become particularly high in wells close to the aquifer–aquitard interface), however, has pointed to an additional mechanism responsible for mobilized As (Berg et al., 2008; Eiche et al., 2008; Stopelli et al., 2021). The overlying aquitard, being rich in organic matter, is therefore anticipated to be a potential carbon source for mobilizing As in wells close to the aquifer–aquitard interface.

Concerns for the potentially highly contaminated groundwater from the young aquifer to affect the pristine As-free groundwater of the older aquifer (Figure 1) have been lessened since the observation that As is retarded at the lithological fronts (Van Geen et al., 2013). This retardation is mainly as a result of As sorbing to the prevailing secondary iron minerals [i.e., micocrystalline iron-(oxyhydr) oxides] (Rathi et al., 2017). Until now, the retardation of As at this interface has remained relatively stable (Stopelli et al., 2020) although hydrogeochemical changes in the composition of groundwater in the Pleistocene aquifer have been reported.

2.3 Sampling and sample processing: Porewater from sediment core

A field campaign was undertaken in November 2018 during which a sediment core through the upper aquitard was acquired near the local health clinic (Figure 1). Coring was carried out via dry hammer drilling in combination with stainless steel liners. Each section of the liner containing the core was brought to the surface and cut into smaller sections of approximately 20 cm in length. The smaller sections (still contained by the steel liner) could then fit into a specially designed press for subsequent sediment transfer into copper tubes (Brennwald et al., 2003; Tomonaga et al., 2014). Sediment transfer into the copper tubes is managed immediately after core recovery to minimize air contamination. The press is designed such that the sediment sample in the smaller liner section can be pushed into a copper tube with the aid of a specifically made piston that perfectly fits the width of the steel liner (Supplemental Figure S1.1). A steel tube, which acts as a transfer port to deliver the freshly attained sediments from the liner into the copper tube, is pushed 5 cm deep into the sediment section to again minimize air contamination.

The sediment is then flushed (squeezed) continuously through a fixed copper tube of approximately 60 cm in length before the copper tube is clamped airtight at both ends and removed from the press ready for transportation. For our study, a sampling resolution of 0.5–1 m was achieved for depths between 6 and 15 m through the sediment core. Further details, specifically on the sampling procedure of sediments for noble gas analysis, can be found in Tomonaga et al. (2011, 2014) where the same squeezing method was applied as adapted from the original procedure outlined in Brennwald et al. (2003).

The 60-cm copper tubes containing fresh sediment samples for porewater analysis (Supplemental Figure S1.1) were shipped to our laboratory in Switzerland. Subsequently, these samples were clamped and cut into smaller aliquots of 10 cm for centrifugation. Centrifugation is a vital step in processing, as it separates the pore water from the sediment without atmospheric contamination (see Tomonaga et al., 2011). Once centrifuged, samples were again pinched off using clamps at the interface between the pore water and sediment. To know exactly where the sediment–porewater interface is, duplicate samples are routinely centrifuged and opened (for further details see Tomonaga et al., 2011). The prepared smaller water sample (approximately 0.5–1 g) is subsequently measured for noble gases using the same analytical protocol as for usual groundwater samples (45 g, see below; Beyerle et al., 2000).

2.4 Sampling: Groundwater

Groundwater samples were taken at both pre-existing and newly constructed wells throughout the field site (Figure 1). While the aim was to analyze noble gas concentrations in the groundwater immediately below the drilled core, samples were taken at all accessible well locations of the study site, including seven newly installed wells, for a complete understanding of the subsurface noble gas concentrations in groundwater. The new wells (2a–c, 3a–c, and 5), were sampled around 4 mo after installation. Installation took place at the same time as the sediment coring in November 2018. All other wells were sampled in November 2018.

In total, 28 groundwater wells were sampled for noble gas (He, Ne, Ar, Kr, and Xe) and tritium analysis. For each well, groundwater was pumped to the surface for 10 min using a submersible electric pump (to avoid degassing) before sampling. The pump was connected to one end of a copper tube
via transparent rubber tubing with tightly clamped connections to avoid atmospheric contamination. The copper tube was mounted on an aluminum rack for support with two fixed stainless steel Swagelok clamps situated at either end of the copper tube (1 m apart) and able to contain approximately 45 g of groundwater. After flushing the copper tube, the clamps were sealed airtight, and the sample was transported back to Switzerland to be measured for noble gases via the static mass spectrometer at the ETH noble gas laboratory in Zurich. The usual and well-accepted measuring protocol detailing the noble gas extraction, separation, measurement, and mass spectrometric analysis of noble gases and tritium (via in-growth of 3He) in water samples is described in Beyerle et al. (2000). To further elucidate that degassing upon sampling was not occurring, a comparison with a previous and robust data set obtained directly in the field (Lightfoot et al., 2022) by continuous in-situ gas measurements using a portable mass spectrometer (or miniRUEDI) (Brennwald et al., 2016) was made for gases Ar and Kr (Supplemental Figure S4). In addition, CH_4 concentrations were sampled during the same November 2018 field campaign and are reported in Stopelli et al. (2021).

We note that while the previously reported data set for Ar and Kr (Lightfoot et al., 2022) was highly reliable, groundwater analysis from this previous study did not include data from several of the more recently installed wells critical to our study’s conclusions, specifically Wells 3a and 3b, which are situated below the investigated sediment core. Further, at the time of the field campaign in 2018, Ne, Xe, and tritium could not be quantified with such on-site analysis as applied in Lightfoot et al. (2022).

3 | RESULTS AND DISCUSSION

3.1 | Aquitard pore space: Saturated vs. unsaturated conditions

Noble gas data from the pore space of the aquitard sediment core (i.e., as prepared from the small copper tube aliquots) is plotted in Figure 2, where total Ar and Ne amounts (Supplemental Table S2) have both been normalized to the total Kr amount for each sample. In the plot, two distinct clusters are observed. Notably, samples in the lower cluster, S (saturated water layer) have noble gas ratios close to ASW ratios, implying these samples are situated in parts of the aquitard where water-saturated conditions prevail. In contrast, samples in the upper cluster, U (unsaturated water layer) show noble gas ratios much closer to the ratio in air, suggesting that the pore space comprises of a gas phase with air-like noble gas ratios. Visual observations of gas bubbles in the sediment samples situated in the unsaturated cluster (Supplemental Figure S1.2) further support the interpretation of unsaturated conditions. Gas bubbles were not observed in sediment samples from the saturated cluster.

Notably, some elemental fractionation in Figure 2 is observed in samples from both saturated and unsaturated layers. The observed fractionation is likely the result of mixing between the two components, that is, ASW and air, in response to varying degrees of quasi-saturation through the sediment cores pore space. For the saturated cluster samples, this mixing trend is illustrated similar to an excess air component in groundwater.

For the unsaturated cluster samples, there is the additional possibility that such fractionation is the result of a pressure gradient induced by different biogeochemical reactions (e.g., methagenosis underlying CH_4 oxidation, see Jones et al., 2014). However, since analysis of the reactive gas species, such as CH_4 and CO_2, in the gas phase of the quasi-saturated zone was not feasible in this study, it cannot be concluded that such pressure gradients drive the observed fractionation pattern.

3.2 | Aquitard structure and spatial distribution of helium isotopes

Figure 3 shows the 3He/4He ratio plotted against depth through the aquitard in which a layering is also illustrated.
The lower unsaturated layer has several samples with an enriched $^3\text{He}/^4\text{He}$ ratio (10–15% higher than the air ratio). Thus, particularly in the lower part (from around a depth of 10 m onward) of the sediment core, the He isotopes, and therefore also the $^3\text{He}/^4\text{He}$ ratio of the aquitard's pore space, appears to be influenced by the aquitard's sedimentological layering. Whereby variations in the $^3\text{He}/^4\text{He}$ ratios are explained either by accumulation of radiogenic ^4He in the more confined (saturated) sediments or by transport of tritogenic ^3He from across the water table (Gilmore et al., 2021; Solomon & Cook, 2000) into the lower unsaturated sediments. Further, the sample at 11.75 m, close to the lower saturated–unsaturated interface, shows a $^3\text{He}/^4\text{He}$ ratio between that of the saturated and unsaturated layers, implying He exchange across the saturated–unsaturated boundary.

While the lower confined saturated layer implies that any significant solute input into the underlying aquifer is more likely controlled by laterally connected layers or lenses of higher conductivity in the overlying aquitard, the variations in the $^3\text{He}/^4\text{He}$ ratios, particularly across the lower saturated–unsaturated boundary, should perhaps not be neglected. Solute and gas transport (and exchange) from the more confining layer may be particularly relevant in the case that a hydrologically slowly zone underlies this part of the aquitard (as is expected from the gas bubble production of CH_4; see subsequent section). Further studies would be required however, to confirm if such transport and exchange processes might be majorly affecting solute input in the underlying aquifer.

Finally, we note that a duplicate sample was taken at 9.25 m (a, b) where the discrepancy in the $^3\text{He}/^4\text{He}$ ratio likely is due to a small offset in sampling depths. The discrepancy arises because each of the 60-cm copper tubes containing fresh sediment samples are subsequently split into three aliquots that are assumed to be at the same approximate depth (see Materials and Methods section). Two aliquots measured from the same 60-cm copper tubes sample can therefore give slightly varying results. Given the nature of the sample measurements, it is not possible to measure the same sample twice.

Given the above observations in the pore space of the sediments overlying the As-contaminated aquifer at Van Phuc, we conclude that the young aquifer likely exists in a semi-confined or semiunconfined state. From this point, the term semiconfined will be applied to indicate either a semiconfined or semiunconfined aquifer. The existence of a semiconfined aquifer supports previous observations on stable isotope data while also satisfying the lithological observations of the overlying heterogeneous aquitard (see Materials and Methods section). It would therefore seem most plausible that water seeps or percolates into the aquifer through preferential flow paths with higher conductivity originating either from overlying ponds, from the Red River itself, or directly from precipitation.
present in the groundwater, which can be explained by migration of a degassed water parcel away from a CH$_4$-producing zone.

The subsurface Ar distribution (Figure 4a) illustrates that groundwater migrating away from the Red River and toward Wells 3a–c becomes increasingly degassed—assuming a directly connected groundwater flow path. If such a flow path continued unhindered, only degassed groundwater downstream of Wells 3a–c should be present. However, Ar concentrations in groundwater downstream of Wells 3a–c show in excess of ASW concentrations (i.e., Wells 5, 6, 7b, 9, and 14b), confirming the presence of an additional nondegassed groundwater flow path intruding the transect either vertically (through preferential flow paths of the overlying sediments) or perpendicularly. This observation of a nondegassed groundwater flow path in the studied aquifer is highly relevant since prior investigations (van Geen et al., 2013; Wallis et al., 2020) have not taken into significant consideration the occurrence of how such interruptions along the transect might affect solute heterogeneity and transport at our study site. The general Ar concentrations surrounding and within Zone B further supports our previous interpretation (Lightfoot et al., 2022), that is, that groundwater by-passes Zone B as a consequence of CH$_4$ gas bubbles partially obstructing the aquifer pore space. A similar concept of groundwater bypassing the CH$_4$ producing hotspot at Zone A could therefore also be considered.

3.4 Influence of aquitard structure on CH$_4$ formation in the saturated zone

The significant level of degassing coupled with the presence of unsaturated sediments (Figure 2) overlying Well 3a provided motivation to better examine how the overlying stratigraphy influences underlying CH$_4$ formation in groundwater at the study site. Given the anticipated semiconfined state of the aquifer in conjunction with the observed overlying unsaturated sediments, we conclude that the hydrostatic pressure is lower than previous studies have estimated (Lightfoot et al., 2022; Stopelli et al., 2021). Contrarily, however, it seems unlikely that pressures as low as atmospheric reside at the water table (i.e., zero hydrostatic pressure) as might be assumed for a completely unconfined aquifer.

The following calculation thus redefines the maximum possible in situ saturation threshold of CH$_4$ at Zone A. The above-cited studies previously assumed a water column of ∼12 m above Well 3a in Zone A (as the difference between

FIGURE 4 (a) Section bathymetry showing the relative excess (blue) and degassing (white–red) of Ar in the groundwater from wells (numbered) situated along the transect (Figure 1). Depths are to the well screens (Supplemental Table S3). Zones A and B show the most strongly degassed groundwater, whereby Zone A coincides with groundwater below the analyzed sediment core (orange rectangle). For exact Ar concentrations and errors see Supplemental Table S3. Standard 1σ errors for gases analyzed in groundwater samples are <2% for Ne, Ar, Kr, and Xe. ‘Degassed’ and ‘Excess’ refer to groundwater degassed and in excess to the expected air saturated water concentrations for this study site (Supplemental Table S1). (b) Ar vs. CH$_4$ concentrations in groundwater at the study site. Circles show Ar data from wells as taken in copper tubes in our study with corresponding CH$_4$ data (Supplemental Table S3) from Stopelli et al. (2021). Triangles are data from Lightfoot et al. (2022). Errors are smaller than the data point where not shown. Numbers inside circles correspond to the same well numbers in (a). ASW, air saturated water.
an approximated water level at a depth of ~8 m [see Stopelli et al., 2021] and well screen at a depth of 20 m). However, given the 4 m of unsaturated pore space observed in our study (Figures 2 and 3), the overlying water column, and therefore also the hydrostatic pressure at a depth of 20 m, should be lowered by at least 30%.

At atmospheric pressure, CH$_4$ saturates in water at a concentration of 20 mg L$^{-1}$ (2.9 \times 10$^{-2}$ cm3 STP g$^{-1}$). The hydrostatic pressure applied assuming a redefined water column of 8 m above Well 3a is approximately 0.78 atm (Supplemental Information). Consequentially, the in-situ saturation concentration of CH$_4$ is ~37 mg L$^{-1}$ (5.2 \times 10$^{-2}$ cm3 STP g$^{-1}$) and is therefore a respective 15% lower than fully saturated conditions (Stopelli et al., 2021). Applying the same concept to Well 3b results in a 30% decrease in the in-situ saturation concentration of CH$_4$ compared with fully saturated conditions (e.g., Lightfoot et al., 2022).

Such evaluation, while seemingly trivial, is relevant because the significant extent to which groundwater is observed to be degassed in our study site, would be more consistent with a lower threshold for the in-situ saturation concentration of CH$_4$, which, in turn, is particularly sensitive to the anticipated hydrostatic pressure.

Because it was not possible to collect sediments below a depth of 14.25 m (as the increased sand content does not allow for effective sampling of the applied method), information on the depth to which the sediments remain unsaturated is unclear. Groundwater can, however, be sampled at a depth of 20 m. The lower unsaturated layer therefore likely extends down to the water table between 14.5 and 19.5 m. Given the severity of the noble gas depletion observed in Well 3a (Figure 4; Supplemental Table S3), it is tempting to anticipate that some part of the lower unanalyzed sediments between 14.5 and 19.5 m may also be unsaturated, thus reducing the in-situ CH$_4$ saturation concentration threshold further. The above redefined value on the in-situ saturation concentration of CH$_4$ (37 mg L$^{-1}$) therefore indicates an upper possible limit, whereas the lower limit (allowing for increased degassing) would be closer to that under atmospheric pressure only (20 mg L$^{-1}$). Additional details on this calculation can be found in the Supplemental Information.

3.5 | Stability of the CH$_4$-producing zones and CH$_4$ gas release in Van Phuc

Several physical environmental and anthropogenic factors influencing the stability of such high CH$_4$-producing zones in the study sites aquifer have already been outlined (e.g., Lightfoot et al., 2022). Such factors include seasonal fluctuations of the water table (Stahl et al., 2016), influences of local pumping (for irrigation), and the potential perforation of such CH$_4$-gas producing zones upon new well installation. Further, the observed regional abstraction of groundwater (Berg et al., 2008; Van Geen et al., 2013), in combination with smaller scale local pumping, can induce transport of porewater and solutes from the more permeable overlying sediments into the aquifer, potentially exacerbating methane producing zones by increasing the input of, for example, organic carbon into the aquifer.

Notably, the degassing in Zone A (Figure 4a) extends to a greater depth than in Zone B. The reason as to why the extent of degassing in Zone B does not reach the same depth as in Zone A could be a consequence of the intruding groundwater just prior to Zone B coupled with enhanced groundwater pumping in the upper aquifer in the direction of Hanoi (see Berg et al., 2008; Stahl et al., 2016; van Geen et al., 2013). In the absence of such a groundwater intrusion prior to Zone A, CH$_4$ formation in the upper aquifer (at Well 3a) likely additionally influences degassing in the mid-section of the aquifer (at Well 3b). Namely, degassing occurs at Well 3b as a consequence of a reduced hydrostatic pressure induced by the overlying CH$_4$ bubbles.

Finally, we note that it remains currently unclear as to what happens to the free CH$_4$ gas, which becomes enriched with both noble and other gases in the groundwater. One possibility is that emanation of CH$_4$-rich gas may periodically occur from individual wells, which has been anecdotally observed in a neighboring village (Lightfoot et al., 2022). The CH$_4$ gas may also encroach and accumulate in the quasi-saturated zone (e.g., Jones et al., 2014).

3.6 | Groundwater samples: Tritium analysis

Figure 5 illustrates tritium (3H) concentrations from all samples collected in the copper tubes from our study. In general, the younger aquifer is tritium active, while groundwater in the older aquifer is void of tritium, which is in line with previous observations (van Geen et al., 2013; Wallis et al., 2020). Thus, groundwater seems to have more recently recharged into the younger sections of the aquifer. The persistence of degassed groundwater throughout the field site meant that to determine groundwater residence times by tracer gases (e.g., He, 3H–3He dating) was outside the scope of this study given the highly sensitive and often challenging analysis required. Nevertheless, some conclusions can be drawn from the tritium content alone. The highest tritium concentrations in the younger aquifer are observed in Zones A and B (with the exception of Well 7b). We note that Well 12 in Zone B contains equally high tritium concentrations as Well 3a in Zone A (Supplemental Table S3).

Given that the higher tritium concentrations in Zones A and B coincident with particularly high CH$_4$, dissolved organic
carbon, and As concentrations in groundwater also specifically in these two zones (Stopelli et al., 2020, 2021), the interpretation that more recently recharged water percolating along preferential pathways through the heterogeneous upper aquitard and into Zones A and B appears plausible. While the prospect of a younger groundwater component being present is seemingly contradictory within a hydraulically slowed (CH$_4$–producing) zone, the manner in which we anticipate groundwater to infiltrate such zones, such as via seepage or slow percolation through preferential pathways in the overlying aquitard, would remain consistent with observations. Further, groundwater (or porewater) moving at a substantially reduced vertical velocity from overlying seepage is more reasonably able to infiltrate underlying gas-forming bubble zones compared with a faster horizontal advective flow. Infiltration of groundwater into the CH$_4$–producing zone in this manner would thus provide a solution as to from where the required solutes that sustain such high methanogenic producing zones (and thus As release) is derived.

In the alternate scenario, whereby groundwater in Zones A and B simply represents a higher fraction of post-bomb groundwater, the interpretation generally still supports the overall conceptual model in the higher CH$_4$–producing zones: that water renewal is buffered in the CH$_4$ producing zones, which contain higher residual tritium concentrations from a time when greater amounts of tritium were present in the atmosphere. Notably, however, given the low tritium concentrations and larger errors particularly for samples with between 0 and 1 TU, that is, Wells 4, 9, 8b, and 14b (see Figure 5 caption and Supplemental Table S3), one should be careful not to overinterpret the provided tritium data.

FIGURE 5 Section bathymetry illustrating tritium concentrations in the groundwater of Van Phuc as determined by the 3He ingrowth method (Clarke et al., 1976). In general, the Holocene groundwater (upstream) is tritium active, while the Pleistocene groundwater is void of tritium. Typical relative errors for 3H on the analyzed samples are $<15\%$ for 3H >1 TU and $<30\%$ for 3H <1 TU. Well 14b showed (exceptionally) an error of $\sim60\%$. Wells 8c and 15a–c were found to be tritium dead, that is, below the detection limit, and have concentrations <0.06 TU.

4 | CONCLUSIONS

Our analysis makes the case that to accurately assess the gas dynamics and groundwater transport in aquifers that are subject to high (biogeochemical) gas production, accurate examination, and knowledge of the stratigraphy of the overlying sediments is required. Specifically, we show that partially unsaturated conditions in an overlying heterogeneous aquitard, can (a) be determined through noble gas analysis of the sediment pore space and (b) are a contributing factor in the formation of a free gas phase in the underlying aquifer.

Despite a number of studies recognizing that hydrostatic pressure is a key factor to determine bubble formation in aquifers (Amos et al., 2005; Fortuin & Willemsen, 2005; Mastrocicco et al., 2019), to our knowledge, none have yet considered how such unsaturated pore space in overlying sediments may reduce hydrostatic pressure in semiconfined aquifers and, hence, contribute to in-aquifer gas formation. Such an issue is particularly important in As contaminated aquifers known to have high CH$_4$ production (Klump et al., 2006; Postma et al., 2012, 2016; Stute et al., 2007) and where contaminant transport and mobilization are necessary to evaluate.

Such unsaturated layers of increased sand content and conductivity may also act as preferential flow paths through which input of solutes may be periodically supplied to groundwater (Gerber et al., 2001; Harrington et al., 2007; Nilsson et al., 2001). Both the excess Ar pattern and tritium results in our study are not in conflict with the prospect that more recently recharged water may percolate along preferential pathways through the upper aquitard and enter the aquifer close to Zones A and B. However, further studies are required to more robustly verify the accumulating evidence implicating groundwater recharge through parts of the aquitard (see also Berg et al., 2008; Eiche et al., 2017; Stopelli et al., 2020, 2021). An increased solute input from the proposed hydraulic connection would, however, rationalize the particularly high As concentrations and continuous CH$_4$ production in both Zones A and B of the studied aquifer. In addition, 3He/4He and He/Ne ratios results (Figure 3; Supplemental Figure S3) hint that some gas exchange occurs at the saturated and unsaturated interfaces in the investigated sediment core, which could also account for solute input and exchange into the underlying aquifer. Quantification of the specific gas flux at these boundaries was, however, not able to be determined with results from our study.

Although noble gases have previously been applied as tracers through the vadose zone to assess, for example, carbon cycling (Jones et al., 2014) and soil respiration (Freundt et al., 2013), they have not before been applied to identify such hanging pore or groundwater conditions in heterogeneous aquitards. The unique link between noble gases and certain
changes in sedimentological structure of aquitards thus shows their potential to clearly distinguish between saturated and unsaturated layers in heterogeneous sediments.

ACKNOWLEDGMENTS
The Swiss National Science Foundation (SNSF) and the Deutsche Forschungsgemeinschaft (DFG) provided funding for this research, which was an integrated part of the AdvectAs project through DACH (grant # 200021e-167821). We also acknowledge the ETH doctoral scholarship program for providing extended financial support in the finalization of this work. All AdvectAs project participants (listed in the Supplemental Information) offered invaluable help and support both in the field and by providing an ideal environment for interdisciplinary conversations and project organization. In particular, V.T. Duyen’s active involvement with sampling and in-field support, which ensured that all logistics and communications in Vietnam went smoothly, is highly appreciated. We would additionally like to acknowledge R. Britt, Anh Lang T., and Thanh Nguyen V. for their assistance during fieldwork. Further, we would like to thank the two anonymous reviewers for their constructive comments on this work.

AUTHOR CONTRIBUTIONS
Alexandra Kathryn Lightfoot: Conceptualization; Data curation; Formal analysis; Funding acquisition; Investigation; Methodology; Resources; Software; Visualization; Writing – original draft; Writing – review & editing. Emiliano Stopelli: Conceptualization; Data curation; Formal analysis; Validation; Writing – review & editing. Michael Berg: Conceptualization; Formal analysis; Funding acquisition; Supervision; Visualization; Writing – review & editing. Matthias Brennwald: Conceptualization; Formal analysis; Supervision; Validation; Visualization; Writing – review & editing. Rolf Kipfer: Conceptualization; Formal analysis; Funding acquisition; Investigation; Methodology; Resources; Supervision; Validation; Visualization; Writing – review & editing.

CONFLICT OF INTEREST
The authors report no conflicts of interest.

ORCID
Alexandra Kathryn Lightfoot https://orcid.org/0000-0002-5417-4036
Michael Berg https://orcid.org/0000-0002-7342-4061

REFERENCES
Aeschbach-Hertig, W., Beyerle, U., Holocher, J., Peeters, F., & Kipfer, R. (2002). Excess air in groundwater as a potential indicator of past environmental changes. In Study of environmental change using isotope technique (pp. 174–183). International Atomic Energy Agency. https://kops.uni-konstanz.de/handle/123456789/24396

Aeschbach-Hertig, W., El-Gamal, H., Wieser, M., & Palcsu, L. (2008). Modelling excess air and degassing in groundwater by equilibrium partitioning with a gas phase. Water Resources Research, 44. https://doi.org/10.1029/2007WR006454

Aeschbach-Hertig, W., & Solomon, D. K. (2013). Noble gas thermometry in groundwater hydrology. In P. Burnard (Ed.), The noble gases as geochemical tracers. (pp. 81–122). Springer. https://doi.org/10.1007/978-3-642-28836-4_5

Amos, R. T., Mayer, K. U., Bekins, B. A., Delin, G. N., & Williams, R. L. (2005). Use of dissolved and vapor-phase gases to investigate methanogenic degradation of petroleum hydrocarbon contamination in the subsurface. Water Resources Research, 41. https://doi.org/10.1029/2004WR003433

Amos, R. T., & Ulrich Mayer, K. (2006). Investigating the role of gas bubble formation and entrapment in contaminated aquifers: Reactive transport modelling. Journal of Contaminant Hydrology, 87, 123–154. https://doi.org/10.1016/j.jconhyd.2006.04.008

Anawar, H. M., Akai, J., Yoshioka, T., Konohira, E., Lee, J. Y., Fukuhara, H., Tari Kul Alam, M., & Garcia-Sanchez, A. (2006). Mobilization of arsenic in groundwater of Bangladesh: Evidence from an incubation study. Environmental Geochemistry and Health, 28, 553–565. https://doi.org/10.1007/s10653-006-9054-0

Andrews, J. N., Drimmie, R. J., Loosli, H. H., & Hendry, M. J. (1991). Dissolved gases in the milk river aquifer, Alberta, Canada. Applied Geochemistry, 6, 393–403. https://doi.org/10.1016/0883-2927(91)90039-R

Baird, A. J., & Waldron, S. (2003). Shallow horizontal groundwater flow in peatlands is reduced by bacteriogenic gas production. Geophysical Research Letters, 30. https://doi.org/10.1029/2003GL018233

Berg, M., Stengel, C., Tran, P. T. K., Hung Viet, P., Sampson, M. L., Leng, M., Samreth, S., & Fredericks, D. (2007). Magnitude of arsenic pollution in the Mekong and Red River Deltas—Cambodia and Vietnam. Science of The Total Environment, 372, 413–425. https://doi.org/10.1016/j.scitotenv.2006.09.010

Berg, M., Tran, P. T. K., Stengel, C., Buschmann, J., Viet, P. H., Van Dan, N., Giger, W., & Stüben, D. (2008). Hydrological and sedimentary controls leading to arsenic contamination of groundwater in the Hanoi area, Vietnam: The impact of iron-arsenic ratios, peat, river bank deposits, and excessive groundwater abstraction. Chemical Geology, 249, 91–112. https://doi.org/10.1016/j.chemgeo.2007.12.007

Beyerle, U., Aeschbach-Hertig, W., Imboden, D. M., Baur, H., Graf, T., & Kipfer, R. (2000). A mass spectrometric system for the analysis of noble gases and tritium from water samples. Environmental Science & Technology, 34, 2042–2050. https://doi.org/10.1021/es990840h

Blicher-Mathiesen, G., McCarty, G. W., & Nielsen, L. P. (1998). Denitrification and degassing in groundwater estimated from dissolved dinitrogen and argon. Journal of Hydrology, 208, 16–24. https://doi.org/10.1016/S0022-1694(98)00142-5

Brennwald, M. S., Hofer, M., Peeters, F., Aeschbach-Hertig, W., Strassmann, K., Kipfer, R., & Imboden, D. M. (2003). Analysis of dissolved noble gases in the porewater of lacustrine sediments. Limnology and Oceanography: Methods, 1, 51–62. https://doi.org/10.4319/lom.2003.1.51

Brennwald, M. S., Kipfer, R., & Imboden, D. M. (2005). Release of gas bubbles from lake sediment traced by noble gas isotopes in the sediment pore water. Earth and Planetary Science Letters, 235, 31–44. https://doi.org/10.1016/j.epsl.2005.03.004
Brennwald, M. S., Schmidt, M., Oser, J., & Kipfer, R. (2016). A portable and autonomous mass spectrometric system for on-site environmental gas analysis. *Environmental Science & Technology*, 50, 13455–13463. https://doi.org/10.1021/acs.est.6b03669

Brennwald, M. S., Vogel, N., Scheidegger, Y., Tomonaga, Y., Livingstone, D. M., & Kipfer, R. (2013). Noble gases as environmental tracers in sediment porewaters and stalagmite fluid inclusions. In P. Burnard (Ed.), *The noble gases as geochemical tracers* (pp. 123–153). Springer. https://doi.org/10.1007/978-3-642-8836-4_6

Clarke, W. B., Jenkins, W. J., & Top, Z. (1976). Determination of tritium by mass spectrometric measurement of 3H. *The International Journal of Applied Radiation and Isotopes*, 27, 515–522. https://doi.org/10.1016/0020-708X(76)90082-X

Dowling, C. B., Poreda, R. J., Basu, A. R., Peters, S. L., & Aggarwal, P. K. (2002). Geochemical study of arsenic release mechanisms in the Bengal basin groundwater. *Water Resources Research*, 38, 2043. https://doi.org/10.1029/2001WR000968

Eiche, E., Berg, M., Höning, S.-M., Neumann, T., Lan, V. M., Pham, T. K. T., & Pham, H. V. (2017). Origin and availability of organic matter leading to arsenic mobilisation in aquifers of the Red River Delta, Vietnam. *Applied Geochemistry*, 77, 184–193. https://doi.org/10.1016/j.apgeochem.2016.01.006

Eiche, E., Neumann, T., Berg, M., Weinmann, B., van Geen, A., Norra, S., Berner, Z., Trang, P. T. K., Viet, P. H., & Stüben, D. (2008). Geochemical processes underlying a sharp contrast in groundwater arsenic concentrations in a village on the Red River Delta, Vietnam. *Applied Geochemistry*, 23, 3143–3154. https://doi.org/10.1016/j.apgeochem.2008.06.023

Fortuin, N. P. M., & Willemsen, A. (2005). Exsolution of nitrogen and argon by methanogenesis in Dutch ground water. *Journal of Hydrology*, 301, 1–13. https://doi.org/10.1016/j.jhydrol.2004.06.018

Freundt, F., Schneider, T., & Aeschbach-Hertig, W. (2013). Response of noble gas partial pressures in soil air to oxygen depletion. *Chemical Geology*, 339, 283–290. https://doi.org/10.1016/j.chemgeo.2012.07.026

Fry, V. A., Selker, J. S., & Gorelick, S. M. (1997). Experimental investigations for trapping oxygen gas in saturated porous media for in situ bioremediation. *Water Resources Research*, 33, 2687–2696. https://doi.org/10.1029/97WR02428

Gerber, R. E., Boyce, J. I., & Howard, K. W. (2001). Evaluation of heterogeneity and field-scale groundwater flow regime in a leaky till aquitard. *Hydrogeology Journal*, 9, 60–78. https://doi.org/10.1007/s10040000115

Gilmore, T., Cherry, M., Gastmans, D., Humphrey, E., & Solomon, D. K. (2021). The 3He/4He groundwater age-dating method and applications. *Derbyana*, 42. https://doi.org/10.14295/derb.v42.740

Głodowska, M., Schneider, M., Eiche, E., Kontryn, A., Neumann, T., Straub, D., Berg, M., Prommer, H., Bostick, B. C., Nghiem, A. A., Kleindienst, S., & Kipfer, A. (2021). Fermentation, methanotrophy and methanogenesis influence sedimentary Fe and As dynamics in As-affected aquifers in Vietnam. *Science of The Total Environment*, 779, 146501. https://doi.org/10.1016/j.scitotenv.2021.146501

Głodowska, M., Stopelli, E., Schneider, M., Lightfoot, A., Rathi, B., Straub, D., Patzner, M., Duyen, V. T., Berg, M., Kleindienst, S., & Kipfer, A. (2020). Role of in situ natural organic matter in mobilizing as during microbial reduction of FeIII-mineral-bearing aquifer sediments from Hanoi (Vietnam). *Environmental Science & Technology*, 54, 4149–4159. https://doi.org/10.1021/acs.est.9b07183

Głodowska, M., Stopelli, E., Schneider, M., Rathi, B., Straub, D., Lightfoot, A., Kipfer, R., Berg, M., Jetten, M., Kleindienst, S., & Kipfer, A. (2020). Arsenic mobilization by anaerobic iron-dependent methane oxidation. *Communications Earth & Environment*, 1, 42. https://doi.org/10.1038/s43247-020-00037-y

Harrington, G. A., Hendry, M. J., & Robinson, N. I. (2007). Impact of permeable conduits on solute transport in aquitards: Mathematical models and their application. *Water Resources Research*, 43, W05441. https://doi.org/10.1029/2005WR004144

Heilweil, V. M., Kip Solomon, D., Perkins, K. S., & Ellett, K. M. (2004). Gas-partitioning tracer test to quantify trapped gas during recharge. *Groundwater*, 42, 589–600. https://doi.org/10.1111/j.1745-6584.2004.tb02627.x

Hendry, M. J., Kotzer, T. G., & Solomon, D. K. (2005). Sources of radiogenic helium in a clay till aquifard and its use to evaluate the timing of geologic events. *Geochimica et Cosmochimica Acta*, 69, 475–483. https://doi.org/10.1016/j.gca.2004.07.001

Horstmann, E., Tomonaga, Y., Brennwald, M. S., Schmidt, M., Liebetrau, V., & Kipfer, R. (2021). Noble gases in sediment pore water yield insights into hydrothermal fluid transport in the northern Guayas basin. *Marine Geology*, 434, 106419. https://doi.org/10.1016/j.margeo.2021.106419

Jessen, S., Larsen, F., Postma, D., Viet, P. H., Ha, N. T., Nhan, P. Q., Nhan, D. D., Duc, M. T., Hue, N. T. M., Huy, T. D., Luu, T. T., Ha, D. H., & Jakobsen, R. (2008). Palaeo-hydrogeological control on groundwater as levels in Red River Delta, Vietnam. *Applied Geochemistry*, 23, 3116–3126. https://doi.org/10.1016/j.apgeochem.2008.06.015

Jones, K. L., Lindsay, M. B. J., Kipfer, R., & Mayer, K. U. (2014). Atmospheric noble gases as tracers of biogenic gas dynamics in a shallow unconfined aquifer. *Geochimica et Cosmochimica Acta*, 128, 144–157. https://doi.org/10.1016/j.gca.2013.12.008

Kipfer, R., Aeschbach-Hertig, W., Peeters, F., & Stute, M. (2002). Noble gases in lakes and ground waters. *Reviews in Mineralogy and Geochemistry*, 47, 615–700. https://doi.org/10.2138/rmg.2002.47.14

Klump, S., Cirpka, O. A., Surbeck, H., & Kipfer, R. (2008). Experimental and numerical studies on excess-air formation in quasi-saturated porous media. *Water Resources Research*, 44, W05402. https://doi.org/10.1029/2007WR006280

Klump, S., Kipfer, R., Cirpka, O. A., Harvey, C. F., Brennwald, M. S., Ashfaqe, K. N., Badruzaman, A. B. M., Hug, S. J., & Imboden, D. M. (2006). Groundwater dynamics and arsenic mobilization in Bangladesh assessed using noble gases and tritium. *Environmental Science & Technology*, 40, 243–250. https://doi.org/10.1021/es051284w

Klump, S., Tomonaga, Y., Kienzler, P., Kinzelbach, W., Baumann, T., Imboden, D. M., & Kipfer, R. (2007). Field experiments yield new insights into gas exchange and excess air formation in natural porous media. *Geochimica et Cosmochimica Acta*, 71, 1385–1397. https://doi.org/10.1016/j.gca.2006.12.006

Kotzer, T. G., Schneider, M., Eiche, E., Stopelli, E., Głowowska, M., Rathi, B., Götlicher, J., Byrne, J. M., Kipfer, A., Berg, M., Thi, D. V., Trang, P. T. K., Viet, P. H., & Neumann, T. (2021). Iron mineral transformations and their impact on As (im)mobilization at redox interfaces in As-contaminated aquifers. *Geochimica et Cosmochimica Acta*, 296, 189–209. https://doi.org/10.1016/j.gca.2020.12.029

Lamontagne, S., Suckow, A., Gerber, C., Deslandes, A., Wilcke, C., & Tickell, S. (2021). Groundwater sources for the Mataranka Springs (Northern Territory, Australia). *Scientific Reports*, 11, 24288. https://doi.org/10.1038/s41598-021-03701-1
Popp, A. L., Manning, C. C., Brennwald, M. S., & Kipfer, R. (2020). A new in situ method for tracing denitrification in riparian groundwater. *Environmental Science & Technology, 54*, 1562–1572. https://doi.org/10.1021/acs.est.9b05393

Postma, D., Larsen, F., Minh Hieu, N. T., Duc, M. T., Viet, P. H., Nhan, P. Q., & Jessen, S. (2007). Arsenic in groundwater of the Red River floodplain, Vietnam: Controlling geochemical processes and reactive transport modeling. *Geochimica et Cosmochimica Acta, 71*, 5054–5071. https://doi.org/10.1016/j.gca.2007.08.020

Postma, D., Larsen, F., Thai, N. T., Trang, P. T. K., Jakobsen, R., Nhan, P. Q., Long, T. V., Viet, P. H., & Murray, A. S. (2012). Groundwater arsenic concentrations in Vietnam controlled by sediment age. *Nature Geoscience, 5*, 656–661. https://doi.org/10.1038/ngeo1540

Postma, D., Pham, T. K. T., So, H. U., Hoang, V. H., Vi, M. L., Nguyen, T. T., Larsen, F., Pham, H. V., & Jakobsen, R. (2016). A model for the evolution in water chemistry of an arsenic contaminated aquifer over the last 6000 years, Red River floodplain, Vietnam. *Geochimica et Cosmochimica Acta, 195*, 277–292. https://doi.org/10.1016/j.gca.2016.09.014

Rathi, B., Neidhardt, H., Berg, M., Siade, A., & Prommer, H. (2017). Processes governing arsenic retardation on Pleistocene sediments: Adsorption experiments and model-based analysis. *Water Resources Research, 53*, 4344–4360. https://doi.org/10.1002/2017WR020551

Ravenscroft, P., Brummer, H., & Richards, K. (2011). Arsenic pollution: A global synthesis. John Wiley & Sons.

Revesz, K., Coplen, T. B., Baedecker, M. J., Glynn, P. D., & Hult, M. (1995). Methane production and consumption monitored by stable H and C isotope ratios at a crude oil spill site, Bemidji, Minnesota. *Applied Geochemistry, 10*, 505–516. https://doi.org/10.1016/0883-2977(95)00216-9

Reynolds, W. D., Brown, D. A., Mathur, S. P., & Overend, R. P. (1992). Effect of in-situ gas accumulation on the hydraulic conductivity of peat. *Soil Science, 153*, 397–408.

Ryan, M. C., MacQuarrie, K. T. B., Harman, J., & McLellan, J. (2000). Field and modelling evidence for a “stagnant flow” zone in the upper meter of sandy phreatic aquifers. *Journal of Hydrology, 233*, 223–240. https://doi.org/10.1016/S0022-1694(00)00236-5

Schlosser, P., Stute, M., Dörh, H., Sonntag, C., & Münnich, K. O. (1988). TritiumHe dating of shallow groundwater. *Earth and Planetary Science Letters, 89*, 353–362. https://doi.org/10.1016/0012-821X(88)90122-7

Sheldon, A., Solomon, D., Poreda, R., & Hunt, A. (2003). Radiogenic helium in shallow groundwater within a clay till, southwestern Ontario. *Water Resources Research, 39*, 1331. https://doi.org/10.1029/2002WR001797

Smedley, P. L., & Kinniburgh, D. G. (2002). A review of the source, behaviour and distribution of arsenic in natural waters. *Applied Geochemistry, 17*, 517–568. https://doi.org/10.1016/S0883-2972(02)00018-5

Solomon, D. K., & Cook, P. G. (2000). 3H and 3He. In P. G. Cook & A. L. Herczeg (Eds.), *Environmental tracers in subsurface hydrology* (pp. 397–424). Springer. https://doi.org/10.1007/978-1-4615-4557-6_13

Solomon, D. K., Hunt, A., & Poreda, R. J. (1996). Source of radiogenic helium 4 in shallow aquifers: Implications for dating young groundwater. *Water Resources Research, 32*, 1805–1813. https://doi.org/10.1029/96WR00600

Stahl, M. O., Harvey, C. F., van Geen, A., Sun, J., Thi Kim Trang, P., Mai Lan, V., Mai Phuong, T., Hung Viet, P., & Bostick, B. C. (2016). River

McArthur, J. M., Ravenscroft, P., Saffiula, S., & Thrillwall, M. F. (2001). Arsenic in groundwater: Testing pollution mechanisms for sedimentary aquifers in Bangladesh. *Water Resources Research, 37*, 109–117. https://doi.org/10.1029/2000WR900270

McMahon, P. (2001). Aquifer/aquitard interfaces: Mixing zones that enhance biogeochemical reactions. *Hydrogeology Journal, 9*, 34–43. https://doi.org/10.1007/s100400000109

McMahon, P. B., & Chapelle, F. H. (1991). Microbial production of organic acids in aquifer sediments and its role in aquifer geochemistry. *Nature, 349*, 233–235. https://doi.org/10.1038/349233a0

Mihajlov, I., Mozumder, M. R. H., Bostick, B. C., Stute, M., Mailloux, B. J., Knappett, P. S. K., Choudhury, I., Ahmed, K. M., Schlosser, P., & van Geen, A. (2020). Arsenic contamination of Bangladesh aquifers exacerbated by clay layers. *Nature Communications, 11*, 2244. https://doi.org/10.1038/s41467-020-16104-z

Nghiemy, A. A., Shen, Y., Stahl, M., Sun, J., Haque, E., DeYoung, B., Nguyen, K. N., Mai, T. T., Trang, P. T. K., Pham, H. V., Mailloux, B., Harvey, C. F., van Geen, A., & Bostick, B. C. (2020). Aquifer-scale observations of iron redox transformations in arsenic-impacted environments to predict future contamination. *Environmental Science & Technology Letters, 7*, 916–922. https://doi.org/10.1021/acs.estlett.0c00672

Nickson, R. T., McArthur, J. M., Ravenscroft, P., Burgess, W. G., & Ahmed, K. M. (2000). Mechanism of arsenic release to groundwater, Bangladesh and West Bengal. *Applied Geochemistry, 15*, 403–413. https://doi.org/10.1016/S0883-2927(99)00086-4

Nilsson, B., Sidle, R. C., Klint, K. E., Beggild, C. E., & Broholm, K. (2001). Mass transport and scale-dependent hydraulic tests in a heterogeneous glacial till–sandy aquifer system. *Journal of Hydrology, 243*, 162–179. https://doi.org/10.1016/S0022-1694(00)00416-9

Pérotin, L., de Montety, V., Ladouche, B., Bailly-Comte, V., Labasque, T., Vergnaud, V., Muller, R., Champillon, C., Tweed, S., & Seidel, J.-L. (2021). Transfer of dissolved gases through a thick karstic vadose zone – Implications for recharge characterisation and groundwater age dating in karstic aquifers. *Journal of Hydrology, 601*, 126576. https://doi.org/10.1016/j.jhydrol.2021.126576

Pienkowska, A., Głowodowska, M., Mansor, M., Buchner, D., Straub, D., Kleindienst, S., & Kappler, A. (2021). Isotopic labeling reveals microbial methane oxidation coupled to FeIII mineral reduction in sediments from an As-contaminated aquifer. *Environmental Science & Technology Letters, 8*, 832–837. https://doi.org/10.1021/acs.estlett.1c00553

Mächler, L., Peter, S., Brennwald, M. S., & Kipfer, R. (2013). Excess air formation as a mechanism for delivering oxygen to groundwater. *Water Resources Research, 49*, 6847–6856. https://doi.org/10.1002/wrcr.20547

Mastrocicco, M., Soana, E., Colombani, N., Vincenzi, F., Castaldi, S., & Castaldelli, G. (2019). Effect of ebullition and groundwater temperature on estimated dinitrogen excess in contrasting agricultural environments. *Science of The Total Environment, 693*, 133638. https://doi.org/10.1016/j.scitotenv.2019.133638

Mächler, L., Brennwald, M. S., & Kipfer, R. (2012). Membrane inlet mass spectrometer for the quasi-continuous on-site analysis of dissolved gases in groundwater. *Environmental Science & Technology, 46*, 8288–8296. https://doi.org/10.1021/es3004409

Lightfoot, A. K., Brennwald, M. S., Prommer, H., Stopelli, E., Berg, M., Głowodowska, M., Schneider, M., & Kipfer, R. (2022). Noble gas constraints on the fate of arsenic in groundwater. *Water Research, 214*, 118199. https://doi.org/10.1016/j.watres.2022.118199
bank geomorphology controls groundwater arsenic concentrations in aquifers adjacent to the Red River, Hanoi Vietnam. Water Resources Research, 52, 6321–6334. https://doi.org/10.1002/2016WR018891

Stanley, R. H. R., & Jenkins, W. J. (2013). Noble gases in seawater as tracers for physical and biogeochemical ocean processes. In P. Burnard (Ed.), The noble gases as geochemical tracers. (pp. 55–79). Springer. https://doi.org/10.1007/978-3-642-28836-4_4

Stopelli, E., Duyen, V. T., Mai, T. T., Trang, P. T. K., Viet, P. H., Lightfoot, A., Kipfer, R., Schneider, M., Eiche, E., Kontny, A., Neumann, T., Glodowska, M., Patzner, M., Kappler, A., Kleindienst, S., Rathi, B., Cirpka, O., Bostick, B., Prommer, H., … Berg, M. (2020). Spatial and temporal evolution of groundwater arsenic contamination in the Red River Delta, Vietnam: Interplay of mobilisation and retardation processes. Science of the Total Environment, 717, 137143. https://doi.org/10.1016/j.scitotenv.2020.137143

Stopelli, E., Duyen, V. T., Prommer, H., Glodowska, M., Kappeler, A., Schneider, M., Eiche, E., Lightfoot, A. K., Schubert, C. J., Trang, P. K. T., Viet, P. H., Kipfer, R., Winkel, L. H. E., & Berg, M. (2021). Carbon and methane cycling in arsenic-contaminated aquifers. Water Research, 200, 117300. https://doi.org/10.1016/j.watres.2021.117300

Strassmann, K. M., Brennwald, M. S., Peeters, F., & Kipfer, R. (2005). Dissolved noble gases in the porewater of lacustrine sediments as palaeolimnological proxies. Geochimica et Cosmochimica Acta, 69, 1665–1674. https://doi.org/10.1016/j.gca.2004.07.037

Strauch, G. (2014). Isotope methods for dating old groundwater. Isotopes in Environmental and Health Studies, 50, 566–568. https://doi.org/10.1080/10256016.2014.927359

Stute, M., Zheng, Y., Schlosser, P., Horneman, A., Dhar, R. K., Datta, S., Hoque, M. A., Seddique, A. A., Shamsudduha, M., Ahmed, K. M., & van Geen, A. (2007). Hydrological control of As concentrations in Bangladesh groundwater. Water Resources Research, 43, W09417. https://doi.org/10.1029/2006WR004499

Tanabe, S., Hori, K., Saito, Y., Haruyama, S., Vu, V. P., & Kitamura, A. (2003). Song Hong (Red River) delta evolution related to millennium-scale Holocene sea-level changes. Quaternary Science Reviews, 22, 2345–2361. https://doi.org/10.1016/S0277-3791(03)00138-0

Tonomaga, Y., Brennwald, M. S., & Kipfer, R. (2011). An improved method for the analysis of dissolved noble gases in the porewater of unconsolidated sediments. Limnology and Oceanography: Methods, 9, 42–49. https://doi.org/10.4319/lom.2011.9.42

Tonomaga, Y., Brennwald, M. S., Meydan, A. F., & Kipfer, R. (2014). Noble gases in the sediments of Lake Van – Solute transport and palaeoenvironmental reconstruction. Quaternary Science Reviews, 104, 117–126. https://doi.org/10.1016/j.quascirev.2014.09.005

Tyroller, L., Brennwald, M. S., Tonomaga, Y., Maden, C., & Kipfer, R. (2021). Noble gases as tracers for the gas dynamics in methane supersaturated lacustrine sediments. Chemical Geology, 568, 119905. https://doi.org/10.1016/j.chemgeo.2020.119905

van Geen, A., Bostick, B. C., Thi Kim Trang, P., Lan, V. M., Mai, N.-N., Manh, P. D., Viet, P. H., Radloff, K., Aziz, Z., Mey, J. L., Stahl, M. O., Harvey, C. F., Oates, P., Weinman, B., Stengl, C., Frei, F., Kipfer, R., & Berg, M. (2013). Retardation of arsenic transport through a Pleistocene aquifer. Nature, 501, 204–207. https://doi.org/10.1038/nature12444

van Geen, A., Zheng, Y., Cheng, Z., Aziz, Z., Horneman, A., Dhar, R. K., Mailloux, B., Stute, M., Weinman, B., Goodbred, S., Seddique, A. A., Hoque, M. A., & Ahmed, K. M. (2006). A transect of groundwater and sediment properties in Araihaizar, Bangladesh: Further evidence of decoupling between As and Fe mobilization. Chemical Geology, 228, 85–96. https://doi.org/10.1016/j.chemgeo.2005.11.024

Visser, A., Broers, H. P., & Bierkens, M. F. P. (2007). Dating degassed groundwater with 3He/4He. Water Resources Research, 43, W10434. https://doi.org/10.1029/2006WR005847

Wallis, I., Prommer, H., Berg, M., Siade, A. J., Sun, J., & Kipfer, R. (2020). The river–groundwater interface as a hotspot for arsenic release. Nature Geoscience, 13, 288–295. https://doi.org/10.1038/s41561-020-0557-6

Weiss, R. F. (1970). Helium isotope effect in solution in water and seawater. Science, 168, 247–248. https://doi.org/10.1126/science.168.3928.247

Yager, R. M., & Fountain, J. C. (2001). Effect of natural gas exsolution on specific storage in a confined aquifer undergoing water level decline. Groundwater, 39, 517–525. https://doi.org/10.1111/j.1745-6584.2001.tb02340.x

SUPPORTING INFORMATION

Additional supporting information can be found online in the Supporting Information section at the end of this article.

How to cite this article: Lightfoot, A. K., Stopelli, E., Berg, M., Brennwald, M., & Kipfer, R. (2023). Noble gases in aquitard provide insight into underlying subsurface stratigraphy and free gas formation. Vadose Zone Journal, 22, e20232. https://doi.org/10.1002/vzj2.20232