SUPPLEMENTARY MATERIAL

Two new simple iridoids from the ant-plant *Myrmecodia tuberosa* and their antimicrobial effects

Nguyen Phuong Hanh, Nguyen Huu Toan Phan, Nguyen Thi Dieu Thuan, Tran Thi Hong Hanh, Le Thi Vien, Nguyen Phuong Thao, Nguyen Van Thanh, Nguyen Xuan Cuong, Nguyen Quoc Binh, Nguyen Hoai Nam, Phan Van Kiem, Young Ho Kim and Chau Van Minh

*Institute of Ecology and Biological Resources, Vietnam Academy of Science and Technology (VAST), 18 Hoang Quoc Viet, Cau Giay, Hanoi, Vietnam; Tay Nguyen Institute for Scientific Research, VAST, 116 Xo Viet Nghe Tinh street, Dalat, Vietnam; Institute of Marine Biochemistry, VAST, 18 Hoang Quoc Viet, Cau Giay, Hanoi, Vietnam; Vietnam National Museum of Nature, VAST, 18 Hoang Quoc Viet, Cau Giay, Hanoi, Vietnam; College of Pharmacy, Chungnam National University, Daejeon 305-764, Republic of Korea.

*Corresponding author. Email: cvminh@vast.vn

Six iridoid derivatives (1–6), including two new compounds myrmecoides A and B (1 and 2), were isolated from the ant-plant *Myrmecodia tuberosa*. Their structures were determined on the basis of spectroscopic data (1H and 13C NMR, HSQC, HMBC, 1H-1H COSY, NOESY, and HR-ESI-MS) and by comparison with the literature values. Among isolates, 3 and 4 exhibit weak antibacterial effect against *Staphylococcus aureus* subsp. *aureus* with MIC value of 100.0 µg/mL.

Keywords: *Myrmecodia tuberosa*; Rubiaceae; ant-plant; iridoid; antimicrobial activity
CONTENTS

Antimicrobial assays

Figure	Description	Pages
S1.	1H NMR spectrum (CD$_3$OD, 500 MHz) of myrmecodoide A (1)	S3
S2.	13C NMR spectrum (CD$_3$OD, 125 MHz) of myrmecodoide A (1)	S5
S3.	HSQC spectrum (CD$_3$OD, 500 MHz) of myrmecodoide A (1)	S5
S4.	COSY spectrum (CD$_3$OD, 500 MHz) of myrmecodoide A (1)	S6
S5.	HMBC spectrum (CD$_3$OD, 500 MHz) of myrmecodoide A (1)	S6
S6.	NOESY spectrum (CD$_3$OD, 500 MHz) of myrmecodoide A (1)	S7
S7.	1H NMR spectrum (CD$_3$OD, 500 MHz) of myrmecodoide B (2)	S8
S8.	13C NMR spectrum (CD$_3$OD, 125 MHz) of myrmecodoide B (2)	S8
S9.	HSQC spectrum (CD$_3$OD, 500 MHz) of myrmecodoide B (2)	S9
S10.	COSY spectrum (CD$_3$OD, 500 MHz) of myrmecodoide B (2)	S9
S11.	HMBC spectrum (CD$_3$OD, 500 MHz) of myrmecodoide B (2)	S10
S12.	NOESY spectrum (CD$_3$OD, 500 MHz) of myrmecodoide B (2)	S10
S13.	Key NOESY correlations of compounds 1 and 2	S11
S1.	1H (CD$_3$OD, 500 MHz) and 13C NMR (CD$_3$OD, 125 MHz) spectroscopic data of compounds 1 and 2.	S12

References

S12
Antibacterial assay

The antibacterial activity of the pure compounds was tested using the micro-dilution method on 96-well microtiter plate according to the method of Vanden Berghe and Vlietinck (1991) and McKane and Kandel (1996).

Briefly:

Test microorganism strains:

+ Gram(−) bacteria: *Escherichia coli* (ATCC 25922)
 Pseudomonas aeruginosa (ATCC 25923)
+ Gram(+) bacteria: *Bacillus subtilis* (ATCC 11774)
 Staphylococcus aureus subsp. *aureus* (ATCC 11632)
+ Fungi: *Aspergillus niger* (439)
 Fusarium oxysporum (M42)
+ Yeast: *Candida albicans* (ATCC 7754)
 Saccharomyces cerevisiae (SH 20)

Positive controls:

+ Streptomycin for Gr(+) bacteria
+ Tetracycline for Gr(−) bacteria
+ Nystatin or Amphotericin B for fungi and yeast.

Antibiotic agents was dissolved in DMSO 100% with suitable concentrations.

Negative control:

Microorganisms without mixture of antibiotic agents and tested compounds.

Culture media:

+ Media for maintain of strains: Sabouraud Dextrose Broth (SDB-Sigma) for fungi and yeast. Trypticase Soy Broth (TSB-Sigma) for bacteria.
+ Tested media: Eugon Broth (Difco, USA) for bacteria, Mycophil (Difco, USA) for fungi and yeast.

Experiment:

+ The strains were activated and diluted according to McFarland 0.5 standard for experiment.
+ The tested plates were incubated at 37°C for 24hrs with bacteria and at 30°C for 48hrs with fungi and yeast.
Calculation of the results:

Minimum inhibitory concentration (MIC) of tested samples: The samples were diluted with decrease of concentrations to reach minimum inhibitory concentration (MIC), the lowest concentration of each sample showing no growth.

The crude samples with MIC ≤ 200 µg/ml and pure compounds with MIC ≤ 100 µg/ml were considered to be active.
Figure S1. 1H NMR spectrum (CD$_3$OD, 500 MHz) of myrmecodoide A (1)

Figure S2. 13C NMR spectrum (CD$_3$OD, 125 MHz) of myrmecodoide A (1)
Figure S3. HSQC spectrum (CD$_3$OD, 500 MHz) of myrmecodoide A (1)

Figure S4. COSY spectrum (CD$_3$OD, 500 MHz) of myrmecodoide A (1)
Figure S5. HMBC spectrum (CD$_3$OD, 500 MHz) of myrmecodoide A (1)

Figure S6. NOESY spectrum (CD$_3$OD, 500 MHz) of myrmecodoide A (1)
Figure S7. 1H NMR spectrum (CD$_3$OD, 500 MHz) of myrmecoide B (2)

Figure S8. 13C NMR spectrum (CD$_3$OD, 125 MHz) of myrmecoide B (2)
Figure S9. HSQC spectrum (CD$_3$OD, 500 MHz) of myrmecodoide B (2)

Figure S10. COSY spectrum (CD$_3$OD, 500 MHz) of myrmecodoide B (2)
Figure S11. HMBC spectrum (CD$_3$OD, 500 MHz) of myrmecodoide B (2)

Figure S12. NOESY spectrum (CD$_3$OD, 500 MHz) of myrmecodoide B (2)
Figure S13. Key NOESY correlations of compounds 1 and 2
Table S1. 1H (CD$_3$OD, 500 MHz) and 13C NMR (CD$_3$OD, 125 MHz) spectroscopic data of compounds 1 and 2.

Pos.	$\delta^c_{\text{a,b}}$	$\delta^a_{\text{H,c}}$	mult. (J in Hz)	1H-1H COSY	HMBC (H \rightarrow C)	$\delta^c_{\text{a,b}}$	$\delta^a_{\text{H,c}}$	mult. (J in Hz)	1H-1H COSY	HMBC (H \rightarrow C)
1	70.3	4.07 dd (11.0, 11.5)	4.34 dd (6.5, 11.5)	9	3, 5, 8	176.5	-		1	4, 5, 11
3	179.1	-	72.1	4.71 dd (1.0, 12.0)	4.87 br d (12.0)	143.5	-		1	4, 5, 11
4	39.0	2.68 dq (11.0, 7.0)	5.7	3, 5, 6, 11	143.5	-	37.7	1.62 m/2.51 m	5	4, 5, 7, 8, 9
5	51.0	1.84 ddd (7.0, 10.5, 11.0)	1, 4, 11, 6, 9	39.0	3.21 m	1	4	1.4	1	4, 5, 7, 8, 9
6	80.0	3.99 ddd (6.0, 10.5, 11.0)	5	4	1	4	1.4	1	4, 5, 7, 8, 9	
7	45.4	1.42 ddd (9.5, 11.0, 12.0)	6, 8	6, 8, 10	1	4	1.4	1	4, 5, 7, 8, 9	
8	34.7	1.73 m	7, 9, 10	1	10	1	4	1.4	1	4, 5, 7, 8, 9
9	45.6	2.21 m	1, 5, 8	1	10	1	4	1.4	1	4, 5, 7, 8, 9
10	19.5	1.09 d (7.0)	8	7, 8, 9	1	4	1.4	1	4, 5, 7, 8, 9	
11	14.2	1.28 d (7.0)	4	3, 4, 5	114.1	1	4	1.4	1	4, 5, 7, 8, 9
1'	102.9	4.34 d (8.0)	2	102.9	4.34 d (8.0)	2	10	1	4, 5, 7, 8, 9	
2'	75.1	3.19 dd (8.0, 9.0)	1	3	3	3	1	3'	1', 3'	
3'	81.3	3.67 t (9.0)	2	4	3	3	1	3'	1', 3'	
4'	71.7	3.30 t (9.0)	3	4	3	3	1	3'	1', 3'	
5'	78.5	3.28 m	3	5	3	3	1	3'	1', 3'	
6'	62.8	3.70 dd (5.0, 12.0)	4	5	3	3	1	3'	1', 3'	

Note: All assignments were done by HSQC, COSY, HMBC, and NOESY experiments

References

McKane L, Kandel J. 1996. Microbiology. New York: McGraw-Hill.

Vanden Berghe DA, Vlietinck AJ. 1991. Screening methods for antibacterial and antiviral agents from higher plants. In: Methods in Plant Biochemistry. London: Academic Press. p. 47-69.