Elsevier has created a Monkeypox Information Center in response to the declared public health emergency of international concern, with free information in English on the monkeypox virus. The Monkeypox Information Center is hosted on Elsevier Connect, the company's public news and information website.

Elsevier hereby grants permission to make all its monkeypox related research that is available on the Monkeypox Information Center - including this research content - immediately available in publicly funded repositories, with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the Monkeypox Information Center remains active.
Protection of mice against the highly pathogenic VV_{HJD-J} by DNA and fowlpox recombinant vaccines, administered by electroporation and intranasal routes, correlates with serum neutralizing activity

Massimiliano Bissa a,1, Elena Quaglinob,2, Carlo Zanottoc, Elena Illianoa, Valeria Rolihb, Sole Pacchioni a, Federica Cavallob, Carlo De Giuli Morghenc, d, Antonia Radaelli a, e,*

a Department of Pharmacological and Biomolecular Sciences, University of Milan, Via Balzaretti, 9, 20133 Milano, Italy
b Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Turin, Via Nizza 52, 10126 Torino, Italy
c Department of Medical Biotechnologies and Translational Medicine, University of Milan, Via Vanvitelli, 32, 20129 Milano, Italy
d Catholic University “Our Lady of Good Counsel”, Rr. Dritan Hoxha, Tirana, Albania
e Cellular and Molecular Pharmacology Section, National Research Council (CNR), Institute of Neurosciences, University of Milan, Via Vanvitelli, 32, 20129 Milano, Italy

ABSTRACT

The control of smallpox was achieved using live vaccinia virus (VV) vaccine, which successfully eradicated the disease worldwide. As the variola virus no longer exists as a natural infection agent, mass vaccination was discontinued after 1980. However, emergence of smallpox outbreaks caused by accidental or deliberate release of variola virus has stimulated new research for second-generation vaccine development based on attenuated VV strains. Considering the closely related animal poxviruses that also arise as zoonoses, and the increasing number of unvaccinated or immunocompromised people, a safer and more effective vaccine is still required. With this aim, new vectors based on avian poxviruses that cannot replicate in mammals should improve the safety of conventional vaccines, and protect from zoonotic orthopoxvirus diseases, such as cowpox and monkeypox. In this study, DNA and fowlpox (FP) recombinants that expressed the VV L1R, A27L, A33R, and B5R genes were generated (4DNAmix, 4FPmix, respectively) and tested in mice using novel administration routes. Mice were primed with 4DNAmix by electroporation, and boosted with 4FPmix applied intranasally. The lethal VV_{HJD-J} strain was then administered by intranasal challenge. All of the mice receiving 4DNAmix followed by 4FPmix, and 20% of the mice immunized only with 4FPmix, were protected. The induction of specific humoral and cellular immune responses directly correlated with this protection. In particular, higher anti-A27 antibodies and IFNγ-producing T lymphocytes were measured in the blood and spleen of the protected mice, as compared to controls. VV_{HJD-J} neutralizing antibodies in sera from the protected mice suggest that the prime/boost vaccination regimen with 4DNAmix plus 4FPmix may be an effective and safe mode to induce protection against smallpox and poxvirus zoonotic infections. The electroporation/intranasal administration routes contributed to effective immune responses and mouse survival.

© 2016 Elsevier B.V. All rights reserved.
1. Introduction

New infectious diseases are continuously emerging, and the lack of efficient immune prevention requires development of novel vaccines and vaccination strategies. Due to successful eradication of smallpox worldwide, the use of the vaccinia virus (VV) vaccine that was administered by scarification was discontinued or was replaced by VV-derived cultured immunogens (Weltzin et al., 2003). However, serious side effects can result from the traditional vaccine (Ferrier-Rembert et al., 2008), especially in immunocompromised people (Jacobson et al., 2008; Lane and Goldstein, 2003) and in patients with skin diseases (Schulze et al., 2007). Thus, a new generation of attenuated vaccines has been developed to decrease undesired effects, and to face the potential re-emergence in the human population through accidental or deliberate release of orthopoxviruses (OPXVs) (Megid et al., 2012; Vogel et al., 2012; Whitley, 2003). In this regard, although not as lethal as the variola virus, the monkeypox virus (MPXV) also represents a threat to public health, as it causes mortality in underdeveloped countries (Reed et al., 2004) and can become a potential bioweapon if adapted to grow and spread in humans (Lewis-Jones, 2004).

Previous studies have demonstrated that, after the conventional vaccination, neutralizing antibodies were mainly raised against the cellular surface proteins of both the VV extracellular virions (e.g., A33, B5) and the intracellular mature virions released after cell lysis (e.g., L1, A27) (Moss, 2011; Roberts and Smith, 2008; Smith et al., 2002). Therefore, subunit vaccines have been designed based on plasmids that express the VV L1R, A27L, A33R, and B5R genes. These have been shown to be protective in mice after intranasal (i.n.) VVhD-J challenge, and in monkeys after intravenous MPXV inoculation (Buchman et al., 2010; Fogg et al., 2007; Hirao et al., 2011).

Attenuated avipoxviruses, and in particular canarypox and fowlpox (FP) viruses, have also been developed as novel vectors for the construction of recombinant vaccines against several human infectious diseases (Radaelli et al., 1994; Zanotto et al., 2010). These vectors are naturally restricted to avian species for their replication, and they are thus not cross-reactive with VV, avipoxviruses can also escape neutralization in vivo and in-vitro electroporation (e.p.) followed by i.n. administration of FP recombinants. After determination of the optimal schedules for these e.p. and i.n. immunizations, the mice were primed with a mix of four different DNA plasmids that carried the VV L1R, A27L, A33R, and B5R genes (4DNAmix) (Pacchioni et al., 2013), and then boosted with FP recombinants that carried the same VV genes (4FPmix). All of the mice primed with 4DNAmix and boosted with 4FPmix were protected after a challenge with the highly pathogenic VVhD-J, which correlated with a neutralizing titer against the VV A27 envelope protein.

2. Materials and methods

2.1. Cells

Primary fibroblasts were prepared from specific-pathogen-free chick embryos (Charles River Laboratories, Wilmington, MA, USA) and grown in Dulbecco's modified Eagle's medium (DMEM) supplemented with 5% heat-inactivated calf serum (Gibco Life Technologies, Grand Island, NY, USA), 5% Trypsone Phosphate Broth (Difco Laboratories, Detroit, MI, USA), 100 U/ml penicillin and 100 mg/ml streptomycin. Green monkey kidney (Vero) cells (American Type Culture Collection, Rockville, MD, USA) were grown in DMEM supplemented with 10% heat-inactivated calf serum, 100 U/ml penicillin and 100 mg/ml streptomycin. Splenocytes from BALB/c mice were grown in RPMI with glutamine, 10% heat-inactivated calf serum, 100 U/ml penicillin and 100 mg/ml streptomycin (complete medium) and frozen in 90% foetal calf serum and 10% dimethylsulphoxide.

2.2. Viruses

The highly pathogenic IHD-J strain of VV (VVhD-J) was supplied by S. Dales (University of Western Ontario, London, Canada) (Wilton et al., 1986), and it was used as the challenging virus (1 × 10^6 PFU/mouse, i.e., 5-fold the LD50), with i.n. administration. VVhD-J was grown in Vero cells, then amplified, purified on discontinuous sucrose density gradient, and titrated, as described previously (Pacchioni et al., 2013). The 4FP recombinants, FP:L1R, FP:A27L, FP:A33R, and FP:B5R, that expressed the VV L1, A27, A33, and B5 proteins, respectively, were generated in our laboratory by in-vivo homologous recombinations (Pozzi et al., 2009). They were then amplified in chick embryos (fibrillarin and purified on discontinuous sucrose gradients, as described previously) (Soprana et al., 2011). Gene expression was performed downstream of the VV H6 early/late promoter (Rosel et al., 1986), inside the 3-β-hydroxysteroid dehydrogenase 5-delta 4 isomerase gene, which was
interrupted by a multiple cloning site.

2.3. Plasmids

The expression plasmids pcDNA3.1a27l, pcDNA3.1b3R, pcDNA3.1a33R, and pcDNA3.1b3R were constructed by insertion of the same genes used for the generation of the 4FP recombinants, as described previously (Bissa et al., 2013). These were used to excise the genes to be inserted into the pVAX expression plasmid (Invitrogen Corp., San Diego, CA, USA) that contained the kanamycin resistance gene, and the pVAXa27l, pVAXb3R, pVAXa33R, and pVAXb3R, respectively, before their amplification. Here, pcDNA3.1a33R, pcDNA3.1a33R, and pcDNA3.1b3R were cut with HindIII/XhoI, whereas pcDNA3.1a27l was cut with HindIII/NotI, with all inserted into the same sites of the previously cut pVAX. Transformation was performed using DH5α competent bacteria. Bacterial selection was performed using the forward LIR V186 (5’ GGG GGC ACC TTA TTT GAC TAA T in vitro transcript, as we determined the TTA TTT GAC TAA TAA AAT ATG GCC GCA GCA C3') and reverse V211 (5’ GGC GCT CCT GGA GAG AAA AAC GAG ATT TTC AGT TTT GCA T3') primers, the forward A33R V186 (5’ GGG AAG CTT TAT CAT GAT ACC AGC ACA AAA CAA GCA C3'), and reverse V212 (5’ GGG GTC GAC AAC ATT ATT GCA TCA TTG TTT TAA CAC AAA A3') primers; the forward B5R V206 (5’ GGG GCT GGA CCA CTT TGT AGC ATC TTC C3') and reverse V207 (5’ GGG GCA CAA ATT ACC AGG ATG TTT GGA TTA TTT GAC TAT GCA ACA G3') primers, and the forward A27L V208 (5’ GGG GAG GAC TCA TTT AGT AGT ATT ACC ATC TCC 3') and reverse A27V (5’ GGG GAA GCT TAG AAA AAG GAG ATA TTT ACC TTC AAT TGC TAT CAA TTA TAA TAA GAC CAC ACT CTT 3’) primers. Amplifications were performed as described previously (Zanotto et al., 2011), using 2.5 mM MgCl₂ and 2 mM MgSO₄, with annealing at 57 °C for 30 s (for A33R, B5R) or 61 °C for 30 s (for LIR, A27L), and extension at 72 °C for 45 s (for LIR, A33R, A27L) or 1 min (for B5R). The mixture of equal concentrations of the four recombinants was then prepared (4DNAmix). PcDNA3aggpol was used as an irrelevant negative control, and is called DNAaggpol (Zanotto et al., 2010). Both pcDNA3 and pVAX contain the human CMV promoter, but only pVAX has been approved for use in humans.

2.4. Immunization protocols

Five groups of 8-week-old BALB/c female mice were used (Charles River Laboratories, Wilmington, MA, USA), as seven mice/group. Before each immunization, the mice were anesthetized by i.m. injection of 30 μl of a mixture of 3.5 μl Rompun (stock, 20 mg/ml; Bayer SpA, Milan, Italy) plus 5.7 μl Zoletil 100 (Virbac Srl, Milan, Italy) and 35.7 μl phosphate-buffered saline without Ca²⁺ and Mg²⁺ (PBS). The vaccination course consisted of priming with two e.p. administrations of the plasmid recombinants (i.m. injections followed by electroporation), and the boost with two i.m. administrations of the FP recombinants. Briefly, for the e.p., two 25-ms transcutaneous low-voltage electric pulses were administered (amplitude, 150 V; interval, 300 ms) at the injection site via a multiple-needle electrode connected to the e.p. apparatus (Clini- porator™ ×m; IGEA Srl, Carpi, Italy). Each immunization was performed at two-week intervals. Two weeks after the last immunization, the mice were i.n. challenged with a lethal dose of VVBD-J.

Five different immunization protocols were followed (Fig. 1) using: (i) DNAaggpol plasmid (40 μg/mouse), followed by FPaggpol recombinant (4 x 10⁶ PFU/mouse; G1); (ii) DNAaggpol plasmid (40 μg/mouse), followed by 4FPmix recombinants (1 x 10⁶ PFU of each recombinant/mouse; G2); (iii) 4DNAmix (10 μg of each recombinant/mouse), followed by FPaggpol recombinant (4 x 10⁶ PFU/mouse; G3); (iv) 4DNAmix (10 μg of each recombinant/mouse), followed by 4FPmix recombinants (1 x 10⁶ PFU of each recombinant/mouse; G4); (v) 4FPmix recombinants (1 x 10⁶ PFU of each recombinant/mouse), with no DNA priming; G5). Bleeding was performed from the retro-orbital eye plexus before the first immunization (Fig. 1, T₀), before each of the first and second FP boosts (Fig. 1, T₁, T₂), and just before the challenge (Fig. 1, T₃). The plasma fraction was aliquoted and frozen at −80 °C.

All of the mice were maintained according to the Italian National Guidelines and the EU Directive 2010/63/EU for animal experiments. They were observed for signs of disease, weighed daily, and provided with food and water ad libitum. Every effort was made to minimize their suffering, and based on the predetermined criterion of loss of >30% body weight, they were euthanized. Approval for this study was granted by the Ethical Committee of the University of Milan.

2.5. ELISA

The mouse plasma samples were tested for antibodies against the VV-specific L1, A27, A33, and B5 proteins. Mixtures of these L1, A27, A33, and B5 proteins (NIH Biodefense and Emerging Infections Research Resources Repository, NIAID), or alternatively, the individual proteins, were plated as 100 ng of each protein/well in 96-well microtiter plates (MaxiSorp; Nunc, Naperville, IL, USA) in 0.05 M carbonate-bicarbonate buffer, pH 9.6, and incubated overnight at 4 °C. ELISAs were performed in triplicate, essentially as described previously (Radaelli et al., 2010), using the pooled sera of each group of mice from T₀, T₁, T₂, and T₃ (see Fig. 1). For the protein mixtures, the sera were diluted 1:500; for the single L1, A33, and B5 proteins, the sera dilutions were 1:100; for the A27 protein, the sera dilutions were 1:500.

The reactions were revealed using a 1:2000 dilution of goat anti-mouse horseradish-peroxidase-conjugated serum (DakoCytomation, Glostrup, Denmark) and tetramethylbenzidine substrate (Sigma). The pre-immunization mouse sera (Fig. 1, T₀) were used as negative controls. The absorbance of each well was read at 450 nm using a Microplate Reader 550 (Bio-Rad, Hercules, CA, USA).

2.6. Splenocyte preparation

Two out of the seven mice per group were sacrificed by neck dislocation two weeks after the last vaccination and their spleen was removed; an exception was for G3, where only one mouse was used, as two in this group died before the challenge for nonexperimental reasons. Briefly, the spleen was laid on a 40-μm nylon cell strainer (Corning Incorporated, NY, USA) and mechanically disrupted for 2 min with a flat plastic piston. The cells were passed through the filter using 6 ml RPMI complete medium. After centrifugation at 400 x g for 10 min at 4 °C, the supernatant was removed, and the pelleted cells were aliquoted at 2 x 10⁶/vial for the interferon-γ (IFNγ) ELISPOT assay.

2.7. ELISPOT assay

Splenocytes from the immunized mice (1 x 10⁶) were plated in triplicate into nitrocellulose 96-well plates (HTS IP; Millipore, Bedford, MA, USA) that had been pre-coated with 5 μg/ml rat anti-mouse IFNγ antibody (clone R4-8A2; BD Biosciences Pharmingen, San Diego, CA, USA). The cells were stimulated for 48 h at 37 °C in RPMI complete medium containing 10 μg/ml of each of the A27, A33, B5, and L1 proteins individually. Unstimulated cells were used as the negative control, and 2 μg/ml concanavalin A (Sigma-Aldrich) as the positive control. The plates were developed according to the manufacturer instructions (BD™ ELISPOT; BD Biosciences). The specific spots were enumerated using a reader
2.8. Determination of VV\textsubscript{HID-J} LD\textsubscript{50} for mice i.n. challenge

Preliminary tests were performed with female BALB/c mice to evaluate the VV\textsubscript{HID-J} LD\textsubscript{50} after administration of different concentrations of the DNA\textsubscript{gagpol} and FP\textsubscript{gagpol} recombinants, carrying the irrelevant gagpol gene of HIV-1 (Table 1, LD\textsubscript{50} tests 1–4). The immunization protocols were followed by challenges with different amounts of VV\textsubscript{HID-J}, to evaluate the lowest dose that killed 50% of the mice (i.e., LD\textsubscript{50}). The VV\textsubscript{HID-J} challenge virus was administered i.n. at 1 × 107 PFU/mouse (i.e., 5-fold the LD\textsubscript{50} determined for FP\textsubscript{gagpol}). Mice were bled before the first immunization (T\textsubscript{0}), before the first and second FP boosts (T\textsubscript{1}, T\textsubscript{2}) and just before the VV\textsubscript{HID-J} challenge (T\textsubscript{3}).

![Fig. 1. Immunization protocols.](image-url)

animal group	e.p. prime	i.n. boost	i.n. challenge
G1	DNA\textsubscript{gagpol}	FP\textsubscript{gagpol}	VV\textsubscript{HID-J} weeks
G2	DNA\textsubscript{gagpol}	4FP\textsubscript{mix}	VV\textsubscript{HID-J} weeks
G3	4DNAmix	4DNAmix	VV\textsubscript{HID-J} weeks
G4	4DNAmix	4FP\textsubscript{mix}	VV\textsubscript{HID-J} weeks
G5	(7 animals)	4FP\textsubscript{mix}	VV\textsubscript{HID-J} weeks

2.9. Virus neutralization assays

The neutralizing activities of the mice sera obtained before the challenge were determined by measuring the extent of in-vitro inhibition of VV\textsubscript{HID-J} infectivity. The assays were performed by pre-
incubation of an equal volume of VV_{HIDJ} with heat-inactivated mouse serum, used at different dilutions in 48-well plates, for 1 h at 37 °C. The viral titer was adjusted to provide approximately 4 × 10^2 PFU VV_{HIDJ}/ml in the assays. The infection was performed in duplicate on Vero cells, and was allowed to proceed for 1 h at 37 °C. The same amount of virus incubated with DMEM was used as the control. Three days later, 1.5% neutral red was added, and the plaques were counted the next day, as described previously (Pacchioni et al., 2013). In the preliminary assays, sera from the T3 bleeding were pooled to perform the neutralization tests for each group. For the sera from G2 and G4, in which some or all of the mice were protected, these were also tested individually. Neutralization was expressed as the percentage of inhibition of infectivity compared to the control, where the virus was incubated with DMEM only.

2.10. Statistical analysis

Statistical analysis was performed using one-way ANOVA parametric tests and Bonferroni analysis of variance, with the GraphPad Prism software, version 2.0. The statistical significance was set as p < 0.05 (*), p < 0.01 (**), and p < 0.001 (***)

3. Results

3.1. Specific humoral and cellular immunity is elicited in mice primed with 4DNAmix and boosted with 4FPmix

With the aim to develop a protective vaccination strategy against OPXV infections, five different immunization protocols were compared for their ability to induce antibodies against the VV L1, A27, A33, and B5 proteins expressed by DNA or FP recombinants administered alone or in combination. The specific humoral responses were measured by ELISA, using pooled sera from immunized mice and either a mix of all of these proteins (Fig. 2A) or the individual proteins (Fig. 2B) as the plate-bound antigens. As expected, the control mice of G1 did not show any specific antibody response against any of the proteins tested (Fig. 2A). In contrast, the mice vaccinated with 4DNAmix plus 4FPmix (G4) showed significantly higher antibody titers against the pooled VV proteins, as compared to the other experimental groups at all of the bleeding times (p < 0.001). Interestingly, a significant increase in antibody titers was observed after the FP boost (i.e., T2 and T3 vs. T1; p < 0.001). The single antigens were then plated to test the specificity of the antibodies for each protein that were induced by these vaccinations (Fig. 2B). None of the groups showed humoral responses against L1. In contrast, both G3 and G4 showed humoral responses against A27, which was significantly greater for G4 (G4 vs. G3; p < 0.001), where a further significant increase was also observed after the FP boosts (i.e., T2 and T3 vs. T1; p < 0.001). For A33, with G2 and G4, humoral responses were measurable only at T3, which were significantly greater for G2 than the other groups (p < 0.001), although it never reached the level attained with A27. Against B5, there was a significantly greater response only at T3 after the second FP boost for G2, G4, and G5 (p < 0.001).

To determine the vaccine-induced cell-mediated immunity, the secretion of IFNγ by splenocytes from mice that were immunized following the different immunization regimens was assessed using the IFNγ-ELISPOT assay. Following the stimulation with A27, the immunized mice from G2, G3, G4, and G5 showed significantly greater numbers of SFCs (Fig. 3), as compared to those observed using splenocytes from the control mice (G1). Interestingly, the number of SFCs was significantly greater in the mice immunized with 4DNAmix + 4FPmix (G4 vs. G2; p < 0.05). Conversely, stimulation with A33, B5, and L1 did not result in any significant increase in the numbers of SFCs in any of these experimental groups (data not shown).

3.2. The VV_{HIDJ} challenge shows higher LD_{50} when the FP vaccination is performed i.n

As previous data from our laboratory were obtained from BALB/c mice immunized i.m. and subcutaneously, preliminary challenge tests were performed to determine the VV_{HIDJ} LD_{50} when administered i.n. To determine whether the DNA e.p. and the FP i.n. administration routes affect the LD_{50} of VV_{HIDJ}, two groups of BALB/c mice were vaccinated twice with the irrelevant DNA gagpol or FP gagpol (e.p., i.n., respectively) and challenged with increasing VV_{HIDJ} doses. Here, the LD_{50} remained unvaried at 2 × 10^5 VV_{HIDJ} PFU/mouse when using either the previously determined i.m. immunization with 100 μg of each recombinant DNA (Bissa et al., 2013) or the e.p. immunization with 40 μg of the DNA gagpol recombinant (Table 1, LD_{50} test 2). Conversely, in mice immunized i.n. with FP gagpol (1 × 10^6 PFU), the LD_{50} increased to 5 × 10^6 PFU/mouse (Table 1, LD_{50} test 3). 25-fold greater compared to the LD_{50} observed by immunization with the same FP recombinants given i.m. (Bissa et al., 2013). To reduce the amount of the VV_{HIDJ} challenge, other tests were performed by reducing the titer of the FP gagpol immunogen from 1 × 10^6 PFU to 4 × 10^5 PFU (Table 1, LD_{50} test 4). Using this FP gagpol dose, the LD_{50} was reduced from 5 × 10^6 PFU/mouse to 2 × 10^6 PFU/mouse. The challenge for the different immunization protocols was then performed using 5-fold the LD_{50} determined for FP (i.e., 1 × 10^5 VV_{HIDJ} PFU/mouse).

3.3. Priming with 4DNAmix and boosting with 4FPmix protects all of the mice from the challenge

To determine the protective efficacy of the vaccine-induced immune responses, the mice of G1 to G5 that were not sacrificed for spleen removal were taken beyond T3 to the challenge with VV_{HIDJ}, after which they were monitored for weight loss and survival. Soon after the experimental challenge, all of the mice progressively lost 25%–30% of their weight, up to days 4–5 post challenge (p.c.) (Fig. 4A). This weight loss progressed with no relevant differences among G1, G3, and G5, and all of the mice of these three groups died between day 4 p.c. and day 14 p.c. Conversely, 100% of the mice in G4, and 20% of those in G2, regained weight after day 3 p.c. and day 5 p.c., respectively, and thus

LD_{50} test	Immunogen	Route of administration	Concentration	VV_{HIDJ} i.n. challenge (PFU/mouse)	Survival %
1	Prime 4DNAmix*	e.p.	40 μg	1 × 10^6	100
2	Boost 4FPmix*	i.n.	4 × 10^5 PFU/mouse		
3	DNA gagpol	e.p.	40 μg	2 × 10^5	50
4	FP gagpol	i.n.	1 × 10^6 PFU/mouse	5 × 10^6	50

* Mix comprising equal amounts of each of the four components (VV L1R, A27L, A33R, B5R).
survived the i.n. challenge with a 5-fold increase in the LD₅₀ (Fig. 4B). These data demonstrate that DNA priming and FP boosting is the most effective way to induce effective for these mice against VV_{HID-J}.

3.4. Pre-challenge neutralizing activity against VV_{HID-J} correlates with post-challenge mouse survival

To determine the putative pre-challenge immune correlates of this protection against VV_{HID-J}, viral neutralization assays were performed using the sera from T₀ and T₃ (Fig. 5). This included both pooled sera from the mice of each experimental group and the sera from each mouse of the G2 and G4 protocols, where protection was obtained for 20% and 100% of the mice, respectively.

For the pooled sera, inhibition of viral infectivity was generally higher in the pre-immune serum (T₀) than after the third immunization (T₃), except for G4, where the mice were all seen to be protected. The sera from these G4 mice showed low, although significant, inhibition of infectivity at T₃ at 1:40 dilution (T₃ vs. T₀; p < 0.05) (Fig. 5A). As one of the five challenged mice from G2 was also protected, the sera from both G2 and G4 were separately analyzed at T₀ and T₃ for each of the five challenged mice of these groups, to define any correlation between the pre-challenge viral neutralizing activity and the p.c. mice survival (Fig. 5B). The pre-immune sera of all of the mice of G2 showed higher neutralizing activity at T₀ than T₃, except for mouse no. 1, which was the only one that survived the challenge, and showed significantly higher viral inhibition at 1:50 dilution (T₃ vs. T₀, p < 0.001). Conversely, most of the challenged mice of G4 showed higher inhibition of infectivity at T₃ than T₀ with the exception of mouse no. 5 (Fig. 5B).

4. Discussion

The lack of preventive vaccines against some infectious diseases and the emergence of new pathogens underlines the need for new and more effective immunogens. In particular, safer vaccines against OPXV infection of animals and humans are still an important issue, as a result of the reduction in the 'herd immunity' following discontinuation of the smallpox vaccination campaign. At present, the development of safer vaccines against OPXV (Artenstein, 2008; Poland, 2005; Wiser et al., 2007) has also been encouraged by increased human MPXV zoonotic infections (Hutin et al., 2012) or by problems that might arise if there is a deliberate release of variola virus for terrorist purposes.

It has already been shown that different viral vectors and their combinations can significantly influence vaccine efficacy (Ranasinghe et al., 2011) and enhance immune responses, depending on inoculation site and recruitment of antigen-presenting cells (Hervouet et al., 2014; Trivedi et al., 2014). Local administration of vaccines to mucosal tissues can indeed elicit IgAs and cytotoxic T lymphocytes, which can have pivotal roles in neutralizing viruses at their natural port of entry (Brandtzaeg, 2007), and in elimination of infected cells.

In the present study, the four DNA and four FP recombinants all

Fig. 2. Analysis of specific humoral responses by ELISA. The sera of the mice of the different groups were examined at different times post immunization as the pooled sera diluted 1:500 for the protein mixture (A) and the sera diluted 1:100 for the individual L1, A33, and B5 proteins and 1:500 for the individual A27 protein (B). (A) Anti-L1, -A27, -A33 and -B5 antibody levels were determined using a mixture of all of the proteins (L1 + A27 + A33 + B5) as plate-bound antigens. Data are means of the animal sera for each group. G4 mice showed significant increases in specific antibody titers from T₁ (B) The individual proteins were used as plate-bound antigens. None of the groups showed humoral responses against L1. For A27, the humoral response was significantly greater for G4 (G4 vs. G2; p < 0.001) and significantly increased over time (G4; T₃ vs. T₀; p < 0.001). For A33, the humoral response was significantly greater for G2 than the other groups (p < 0.001). For B5, the humoral response was significantly greater only at T₃ for G2, G4, and G5 (G2, G4, G5 vs. G3; p < 0.001). Statistical differences are shown (one-way ANOVA parametric tests, Bonferroni analysis of variance): ***, p < 0.001.

The analysis of variance (ANOVA) was performed using the sera from T₀ and T₃ for each of the groups, to determine any correlation between the pre-challenge viral neutralizing activity and the p.c. mice survival. The pooled sera were then tested for viral infectivity at 1:50 dilution (T₃ vs. T₀, p < 0.001). Conversely, most of the challenged mice of G4 showed higher inhibition of infectivity at T₃ than T₀ with the exception of mouse no. 5 (Fig. 5B).

4. Discussion

The lack of preventive vaccines against some infectious diseases and the emergence of new pathogens underlines the need for new and more effective immunogens. In particular, safer vaccines against OPXV infection of animals and humans are still an important issue, as a result of the reduction in the 'herd immunity' following discontinuation of the smallpox vaccination campaign. At present, the development of safer vaccines against OPXV (Artenstein, 2008; Poland, 2005; Wiser et al., 2007) has also been encouraged by increased human MPXV zoonotic infections (Hutin et al., 2012) or by problems that might arise if there is a deliberate release of variola virus for terrorist purposes.

It has already been shown that different viral vectors and their combinations can significantly influence vaccine efficacy (Ranasinghe et al., 2011) and enhance immune responses, depending on inoculation site and recruitment of antigen-presenting cells (Hervouet et al., 2014; Trivedi et al., 2014). Local administration of vaccines to mucosal tissues can indeed elicit IgAs and cytotoxic T lymphocytes, which can have pivotal roles in neutralizing viruses at their natural port of entry (Brandtzaeg, 2007), and in elimination of infected cells.

In the present study, the four DNA and four FP recombinants all
contained the VV L1R, A27L, A33R, and B5R genes and were administered following e.p. (for DNA) and i.n. (for FP recombinants) routes and heterologous prime/boost immunization regimens. Our aim was to compare different vaccination protocols and to evaluate the humoral and cell-mediated responses, as well as protection for mice challenged with the highly pathogenic VV$_{BD-J}$. Here, we have demonstrated that: (i) the specific humoral response correlates with protection; (ii) only protected mice show specific VV$_{BD-J}$
neutralizing antibodies; (iii) after i.n. FP vaccination, mice are protected against higher VVIHD-J challenges; (iv) the putative protective role of the cellular immune response appears to be ascribed to only the A27 protein; and (v) all of the mice were protected when primed with 4DNAmix and boosted with 4FPmix.

Although still controversial, the critical role of the antigen-specific humoral response against OPXV has already been described (Edghill-Smith et al., 2005; Panchanathan et al., 2006), and passive transfer of VV-specific sera was shown to confer protection in both mice and monkeys (Golden et al., 2011). In the present study, although the magnitude of the humoral response was highly variable, a correlation with mice survival was shown soon after the first immunization. In particular, the A27 antigen was the most immunogenic, as also demonstrated previously for the MPXV A29 ortholog of VV A27 (Heraud et al., 2006), whereas no response was elicited by L1 for all of the protocols used here.

The protective efficacy of genetic immunization was demonstrated previously both in mice and nonhuman primates (Hooper et al., 2003, 2007). However, in the present study, 4DNAmix of G3 and 4FPmix of G5 elicited antibodies against A33 and B5, although they did not protect the mice. Surprisingly, irrelevant DNA in G2 increased the 4FPmix antibody response against A33, which was not shown in G5, when only 4FPmix was used.

Neutralization of infectivity generally correlates with the level of antibodies against the viral surface antigens, and is usually a direct indication of vaccine efficacy and protection. In the present study, natural in-vitro virus-neutralizing antibodies were present before immunization, and these might be a characteristic of this animal species. However, although we cannot provide a reason for this neutralizing activity by pre-immune sera, only the protected mice showed increased neutralization titers before the challenge.

When 10 μg DNA of each antigen was administered e.p., this appeared to be as efficient as 100 μg DNA administered i.m. (Bissa et al., 2013), as the VVIHD-J challenge dose remained unaltered. In contrast, an increase in the dose of the VVIHD-J challenge was necessary after i.n. immunization with FP recombinants, which also provided an advantageous reduction in the amount of immunogen. Indeed, although the 2 × 10⁶ PFU VVIHD-J challenge was previously found to be lethal after i.m. immunization with all of the FP recombinants, i.n. administration of the same immunogens raised the LD₅₀ here by 25-fold, which indicates that the efficacy of FP vaccines can increase remarkably when administered by this route. This might be due to the same i.n. administration used for both the vaccine and the challenge virus, which would indicate that this i.n. vaccine can induce prominent mucosal immunity that is effective against the incoming VVIHD-J. It has already been shown that, compared to modified vaccinia Ankara and VV, FP recombinants can better promote recruitment of dendritic cells and induce CD8⁺ T-cell–mediated immunity. Their i.n. delivery can recruit unique antigen-presenting cells to the lung mucosa, when compared to other recombinant poxvirus vectors (Trivedi et al., 2014), by eventually conferring a different T-cell functionality (Furuhashi et al., 2012). Similarly, canarypox recombinants can elicit qualitatively distinct cytokine and chemokine profiles compared to attenuated VV vectors in rhesus macaques (Teigler et al., 2014). Moreover, viral interference and competition for penetration cannot be excluded, as FP-based recombinants might bind to the same poxvirus receptors and hamper VVIHD-J penetration through the airway mucosa (Laliberte and Moss, 2014).

The protective role of the cytotoxic T-lymphocyte response after OPXV infection is still debated (Buchman et al., 2010), although vaccines that target T-cell epitopes also appear to be protective (Goulding et al., 2013; Moise et al., 2011; Snyder et al., 2004). Moreover, vaccination with VV was also effective when there was dysfunction in the humoral response, although not in patients with T-cell–related immunodeficiencies (Golden and Hooper, 2013). Our data also confirm the efficacy of both DNA and FP recombinants for stimulation of CD8⁺IFNγ cell-mediated immunity, with high specific response induced by the A27 antigen. In particular, cellular immunity induced by recombinant genetic and viral vaccines administered alone was lower than that observed when these vaccines were administered in combination, and the cellular immune responses against A27 shown here for G2, G3, and G5 were not significantly different from that of G1. In contrast, significantly greater numbers of IFNγ-producing SFCs were measured for the G4 mice, which were all protected. This survival was also found to be inversely correlated with the weight decrease, which was initially similar in all of the groups after the VVIHD-J challenge, but all of the G4 mice recovered their weight, as also for the only protected mouse of G2.

Overall, this protection appears to have been mainly determined by the humoral response, which was endowed with a specific virus-neutralizing activity. This was the case for all of the mice immunized with 4DNAmix followed by 4FPmix, thus showing the efficiency of this prime/boost vaccination regimen, and the fundamental contribution of 4FPmix. As our antibody determination was performed on peripheral blood, it could not have discriminated among the different IgG, IgM, and IgA isotypes to estimate the contribution of the mucosal IgAs. This isotype is mainly present at the i.n. inoculation site, and it might have been the main effector of this protection, considering that both the 4FPmix boost and the VVIHD-J challenge were performed using the same administration route.

This combined use of the L1 and A27 envelope proteins of the intracellular mature virions and the A33 and B5 proteins of the extracellular virions has already been shown to protect mice better than the same proteins administered alone (Hooper et al., 2003). However, in the present study, the humoral, neutralizing, and cellular responses were mainly raised against the A27 surface protein, and thus it would be interesting to determine whether protection can also be obtained by administration of only DNA⁺A27 followed by FP⁺A₂₇, using this prime/boost immunization protocol.

Conflict of interest statement

The authors declare that they have no competing interests, and that the manuscript has been approved by all authors for publication in its present form.

Authors’ contributions

MB performed the construction and purification of poxvirus recombinants, neutralization assays, mice immunization and challenge; EQ performed mice immunizations by EP, ELISPOT assays; splenocyte preparation; CZ performed molecular cloning, prepared the primary cell cultures, performed statistical analyses and revised the figures; EI helped in virus preparation, ELISA, and immunofluorescence; VR helped in mice immunization and ELISPOT assays; SP performed Western blotting, immunofluorescence, ELISA; CDGM, FC, AR conceptualized, designed, and supervised the whole study, and prepared the article. All of the authors have read and approved the manuscript.

Acknowledgements

This work was partially founded by the University of Milano Transition Grant, code no. 18498, CUP G4214001030001 and by grants to FC from Fondazione Ricerca Molinette Onlus and Fondazione CRT, Torino, Italy, grant no. 2015–2518. The following reagents were obtained through the NIH Biodefense and Emerging
Infections Research Resources Repository, (NIAID, NIH): vaccinia virus (WR) L1R protein with C-terminal histidine tag, recombinant from baculovirus, NR-2625; vaccinia virus (WR) A33R protein with C-terminal histidine tag, recombinant from baculovirus, NR-545; vaccinia virus (WR) BSR protein with N-terminal histidine tag, recombinant from baculovirus, NR-546. The authors also thank Dr. Christopher P. Berrie for editorial assistance with the manuscript.

References

Artewen, A.W., 2008. New generation smallpox vaccines: a review of preclinical and clinical data. Rev. Med. Virol. 18, 217–231.

Baxby, D., Paoliatti, E., 1992. Potential use of nonreplicating vectors as recombinant vaccines. Vaccine 10, 8–9.

Belyakov, I.M., Kuznetsov, V.A., Kelsall, B., Klinman, D., Moniuszko, M., Lemon, M., Markham, P.D., Pal, R., Clements, J.D., Lewis, M.G., Strober, W., Franchini, G., Berzofsky, J.A., 2006. Impact of vaccine-induced mucosal-high avidity CD8 CTLs in delay of AIDS viral dissemination from mucosa. Blood 102, 3258–3264.

Bisa, M., Pacchioni, S., Zanotto, C., De Giuli Morghen, C., Illiano, E., Granucci, F., Zanoni, I., Broggi, A., Radaelli, A., 2013. Systemically administered DNA and fowlpox recombinant expressing four vaccinia virus genes although immunogenic do not protect mice against the highly pathogenic H5N1 avian influenza virus. Virus Res. 178, 374–382.

Brandtzaeg, P., 2007. Induction of secretory immunity and memory at mucosal surfaces. Vaccine 25, 14683–14689.

Brandtzaeg, P., 2010. Induction of secretory immunity and memory at mucosal surfaces. Vaccine 28, 6627–6636.

Edghill-Smith, Y., Golding, H., Manischewitz, J., King, L.R., Scott, D., Bray, M., Nakajima, S., Whitehouse, C.A., Schmitz, J.E., Franchini, G., 2005. Smallpox vaccine-induced antibodies are necessary and sufficient for protection against monkeypox virus. Nat. Med. 11, 740–747.

Fernandez-Rembert, A., Arrillaga, E., Tourinoux, J.N., Garin, D., Crance, J.M., 2008. Short- and long-term immunogenicity and protection induced by non-replicating smallpox vaccine candidates in mice and comparison with the traditional 1st generation vaccine. Vaccine 26, 1794–1804.

Fogg, C., Americo, J.L., Lustig, S., Huggins, J.W., Smith, S.K., Damon, I.K., Resch, W., Hutin, Y.J., Williams, J.W., Custer, D.M., Thompson, E., 2003. Four-gene-combination DNA vaccine technology protect in murine models of orthopoxvirus disease. Virus Res. 94, 35–54.

Fujisawa, T., Nakamura, Y., Inui, N., Shibata, K., Nakamura, H., Chida, K., 2012. Protective immunity against secondary smallpox vaccine infection. Vaccine 30, 6712–6717.

Hirao, L.A., Draghia-Akli, R., Paoletti, E., 1992. Potential use of nonreplicating vectors as recombinant vaccines. Vaccine 10, 3258–3264.

Huang, H., Jia, T., Yu, J., Xu, Y., Cao, G., et al., 2014. Antigen-bearing dendritic cells from the sublingual mucosa are essential for recovery from a respiratory vaccinia virus infection. J. Immunol. 192, 3464–3471.

Jackson, L.G., Smith, T.C., Smith, B., Wells, T.S., Ryan, M.A., 2008. US military service members vaccinated against smallpox in 2003 and 2004 experience a slightly higher risk of hospitalization postvaccination. Vaccine 26, 4048–4056.

Lahibe, C., Moss, B., 2014. Role of poxvirus superinfection exclusion that prevents fusion of the lipid bilayers of viral and cellular membranes. J. Virol. 88, 9751–9768.

Lane, J.M., Goldstein, J., 2003. Adverse events occurring after smallpox vaccination. Semin. Pediatr. Infect. Dis. 14, 193–199.

Lewis-Jones, S., 2004. Zoonotic poxvirus infections in humans. Curr. Opin. Infect. Dis. 17, 81–89.

Lu, S., 2009. Heterologous prime-boost vaccine. Curr. Opin. Immunol. 21, 342–351.

Lycke, L., 2012. Recent progress in mucosal vaccine development: potential and limitations. Nat. Immunol. 12, 592–605.

Mantua, J., Bissa, M., Zanotto, C., De Giuli Morghen, C., Illiano, E., Granucci, F., Zanoni, I., Broggi, A., Radaelli, A., 2013. Systemically administered DNA and fowlpox recombinants expressing four vaccinia virus genes although immunogenic do not protect mice against the highly pathogenic H5N1 avian influenza virus. Vaccine Res. 178, 374–382.

Markham, P.D., Pal, R., Clements, J.D., Lewis, M.G., Strober, W., Franchini, G., 2003. Prime-boost immuni-

Vaccines 10, 9–15.

Moss, B., 2011. Smallpox vaccines: targets of protective immunity. Immunol. Rev. 245, 362–363.

Neutra, M.R., Kozlowski, P.A., 2006. Mucosal vaccines: the promise and the chal-

enge. Nat. Rev. Immunol. 6, 148–158.

Panchanathan, V., Chaudhri, G., 2013. Systemically administered DNA and fowlpox recombinants as putative novel orthopoxvirus vaccines. J. Transl. Med. 11, 95.

Poggi, A., Esposito, M.L., Ammendola, V., Napolitano, F., Grazioli, F., Abbate, A., Del Sorbo, M., Siani, L., D’Alise, A., Taglini, A., Perretta, G., Soccaci, A., Soprana, E., Panigadha, M., Thom, M., Scarsielli, E., Folgorgo, A., Colloca, S., Taylor, G., Cortese, R., Nicossia, A., Capone, S., Vetelli, A., 2015. Mucosal delivery of a vectored RSV vaccine is safe and elicits protective immunity in rodents and nonhuman primates. Mol. Ther. Methods Clin. Dev. 2, 15018.

Poland, G.A., 2005. Smallpox vaccines: from first to second to third generation. Vaccine 23, 362–363.

Pozi, E., Basavacchia, V., Zanotto, C., Pacchioni, S., De Giuli Morghen, C., Radaelli, A., 2009. Construction and characterization of recombinant flavipox viruses expressing human papilloma virus E6 and E7 oncogenes. J. Virol. Methods 158, 184–185.

Radaelli, A., Bonduelle, O., Beggio, P., Mahe, B., Pozi, E., Elli, V., Paganini, M., Zanotto, C., De Giuli Morghen, C., Combadiere, B., 2007. Prime-boost immuni-

Zanoni, I., Broggi, A., Radaelli, A., Gimelli, M., Cremonesi, C., Scarpini, C., De Giuli Morghen, C., 1994. Humoral and cell mediated immunity in rabbits immunized with live non replicating avipox recombinants expressing the HIV-1sf2 env gene. Vaccine 12, 1110–1117.

Radaelli, A., Nacca, J., Tsai, W.P., Edghill-Smith, Y., Zanotto, C., Elli, V., Venzon, D., Tavares, E., Markham, P., Mazzara, G.P., Panicali, D.L., De Giuli Morghen, C., Franchini, G., 2003. Prior DNA immunization enhances immune response to dominant and subdominant viral epitopes induced by a fowlpox-based SVImac vaccine in long-term slow-progresor macaques infected with SIVmac251. Virology 312, 181–195.

Radevski, A., Pozi, E., Pacchioni, S., Zanotto, C., De Giuli Morghen, C., 2010. Fowlpox virus recombinants expressing HIV-16 E6 and E7 oncogenes for the therapy of cervical carcinoma elicits humoral and cell-mediated responses in rabbits. J. Transl. Med. 8, 40.

Rashid, S., 2014. Interferon-gamma-producing T cells are elicited by mucosal vaccines that induce protective immunity. Expert Rev. Vaccines 13, 281–291.

Rasmussen, P., Cottrell, E., Roy, A., Perfetti, A., Sweeney, J., 2011. DNA vaccines based on the hTERT promoter elicit effective CD8+ T cell immunity. J. Transl. Med. 9, 4.

Rasch, S., 2014. Intranasal formulations: mucosal/systemic T cell immunity and c mucosal/systemic T cell immunity and
