Data Article

Data on graphical representation (CGR and FCGR) of bacterial and archaeal species from two Soda Lakes

Bhagwan N. Rekadwad*, Chandrahasya N. Khobragade

School of Life Sciences, Swami Ramanand Teerth Marathwada University, Nanded 431606, MS, India

ARTICLE INFO

Article history:
Received 19 February 2017
Accepted 7 March 2017
Available online 16 March 2017

Keywords:
Chilka Lake
ENDMEMO
Halophiles
Sambhar Lake
16S rRNA

ABSTRACT

In this paper, we presented the datasets generated using Chose Game representation (CGR) and Choase Game Representation of Frequencies (FCGR) of bacterial and archaeal 16S rRNA sequences. The data in the form of graphical representations was yielded with the help of ENDMEMO tool. The computational representation of these data datasets is useful for studies and interpretation of microbial sequences. Based on a technique from chaotic dynamics, the method produces a picture of any gene (DNA and RNA) sequence which displays both local and global patterns. Eukaryotes and prokaryotes can be identified merely based on their generated visual representation/DNA structures.

© 2017 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

Specifications Table

Subject area	Biology
More specific subject area	Microbiology; Bioinformatics
Type of data	Table, figure
How data was acquired	Bioinformatics tools
Data format	Raw, analyzed
Experimental factors	Standard and default

*Corresponding author.
E-mail address: rekadwad@gmail.com (B.N. Rekadwad).
Value of the data

- Data generated in this study permits the representation and investigation of patterns in any type of sequences which visually revealed previously unknown pattern.
- The generated graphical data by means of sequences using a new tool derived from the "chaotic dynamical systems" which allowed the depiction of frequencies of oligonucleotides in the form of images.
- Data on CGR and FCGR are the main factors explaining the variability observed among sequences. The distance between images helpful for measurement of phylogenetic proximity.

1. Data

This paper describes data on 16S rRNA sequence of bacterial and archaeal species isolated from Soda Lakes such as Sambhar Lake and Chilka Lake (India). The data generated in the form of graphical representations contains information on their oligonucleotides distribution and numbers.

2. Experimental design, materials and methods

115 bacterial and archaeal 16S rRNA sequences (both short and long) were obtained in FASTA format from NCBI repository (Table 1). These sequences of bacteria and archaea were used for graphical representations. The generated graphical representations in the form of Chaose Game Representations (Fig. 1) and Chose Game Representations of Frequencies (Fig. 2) obtained in the form of visual images [1,2]. Graphical representations of oligonucleotides in the form of CGR and FCGR pictorial representations were created using ENDMEMO tool [3,4] for studies on primary sequence organization and representation of oligonucleotides frequency in the given sequence.

Table 1
Bacterial and archaeal species isolated from Soda Lakes.

Accession number	Species/Strain
AF472595	Sambhar Salt Lake archaeon HA1
AF472596	Sambhar Salt Lake archaeon HA6
AJ889020	Marichromatium chilicum
EU669822	Haloalkaliphilic bacterium EMB4
FJ984520	Marinobacter alkaliphilus strain NBSL05
FJ984521	Marinobacter alkaliphilus strain NBSL06
FJ984522	Marinobacter hydrocarbonoclasticus strain NBSL04
FJ984523	Halomonas sp. NBSL08
FJ984524	Marinobacter alkaliphilus strain NBSL03
FJ984525	Halomonas sp. NBSL10
FJ984526	Halomonas sp. NBSL14
FJ984527	Tsukamurella sp. NBSL21
FJ984528	Ochrobactrum haemophilum strain NBSL23
FJ984529	Bacillus horikoshii strain NBSL26
FJ984530	Bacillus horikoshii strain NBSL27
FJ984531	Micrococcus luteus strain NBSL29
Accession number	Species/Strain
------------------	---------------
FJ984532	*Halomonas* sp. NBSL09
FJ984533	*Microroccus luteus* strain NBSL28
GQ227415	*Methylobacterium radiotolerans* strain NBCS1
GQ281064	*Hyphomicrobium facilis* strain NBCS26
GQ281065	*Methylobacterium zatmanii* strain NBCS25
GQ281066	*Hyphomicrobium facilis* strain NBCS23
GQ281070	*Mycobacterium brisbanense* strain NBCS10
GQ281073	*Pseudomonas* sp. NBCS06
GQ281075	*Hyphomicrobium facilis* strain NBCS7
GQ354269	*Methylobacterium radiotolerans* strain NBCS3
GQ411500	*Methylobacterium extorquens* strain NBCS16
GQ411502	*Methylobacterium radiotolerans* strain NBCS19
GQ411505	*Methylobacterium radiotolerans* strain NBCS21
GQ411539	Uncultured *Streptosporangium* sp. clone 62
GQ411540	Uncultured *Streptosporangium* sp. clone 61
GQ411541	Uncultured *Streptosporangium* sp. clone 64
GQ411542	Uncultured *Streptosporangium* sp. clone 63
JF343124	*Acinetobacter johnsonii* strain IARI-CS-2
JF343125	*Acinetobacter venetianus* strain IARI-CS-13
JF343126	*Acinetobacter venetianus* strain IARI-CS-15
JF343127	*Acinetobacter* sp. IARI-CS-17
JF343128	*Micrococcus luteus* strain IARI-CS-18
JF343130	*Agromyces* sp. IARI-CS-28
JF343132	*Micrococcus indicus* strain IARI-CS-31
JF343133	*Staphylococcus haemolyticus* strain IARI-CS-32
JF343139	*Bacillus mycoides* strain IARI-CS-41
JF343140	*Bacillus altitudinis* strain IARI-CS-43
JF343144	*Acinetobacter venetianus* strain IARI-CS-50
JF343145	*Acinetobacter venetianus* strain IARI-CS-51
JF343152	*Staphylococcus arlettae* strain IARI-CS-60
JF343153	*Pseudomonas stutzeri* strain IARI-CS-62
JF343157	*Exiguobacterium* sp. IARI-CS-68
JF343158	*Exiguobacterium indicum* strain IARI-CS-69
JF343162	*Micrococcus yunnanensis* strain IARI-CS-16
JF343163	*Sphingomonas melonis* strain IARI-CW-25
JF343165	*Stenotrophomonas* sp. IARI-CW-51
JF343167	*Staphylococcus equorum* strain IARI-CW-11
JF343170	*Pseudomonas aeruginosa* strain IARI-CW-30
JN411473	*Stenotrophomonas* sp. IARI-CW-52
JN411475	*Stenotrophomonas* sp. IARI-CW-55
JQ28188	*Natronococcus* sp. SLA-60
JQ28189	*Natronococcus* occultus strain SLA-2
JQ28193	*Natronococcus* sp. SLA-3
JX288952	*Halobacillus* sp. IARI-ABCL-1
JX288953	*Nesterenkonia halophila* strain IARI-ABCL-4
JX288954	*Halococcus* sp. IARI-ABCL-7
JX288955	*Brachybacterium* sp. IARI-ABCL-8
JX288956	*Pontibacillus* sp. IARI-ABCL-9
JX288957	*Virgibacillus halodenitrificans* strain IARI-ABK-2
JX288958	*Marinococcus halophilus* strain IARI-ABK-3
JX288959	*Haladaptatus paucihalophilus* strain IARI-ABK-4
KC434452	*Halomonas* sp. SSL5
KC434453	*Halomonas venusta* strain SSL6
KC434454	*Oceanobacillus* sp. SSL7
KC434455	*Natronococcus xinjiangense* strain SLA61
KC434456	*Halomonas pantellieriensis* strain SSL8
KC434457	*Natronorubrum thiioxidans* strain SLA62
KC440854	*Bacillus* sp. SSL1
KC440855	*Bacillus cereus* strain SSL2
Acknowledgments

BNR is thankful to University Grants Commission, New Delhi (India) for the financial support in the form postdoctoral fellowship for this research (Grant no. PDFSS-2013-14-ST-MAH-4350).

Transparency document. Supplementary material

Transparency data associated with this article can be found in the online version at http://dx.doi.org/10.1016/j.dib.2017.03.017.

Appendix A. Supplementary material

Supplementary data associated with this article can be found in the online version at http://dx.doi.org/10.1016/j.dib.2017.03.017.

Table 1 (continued)

Accession number	Species/Strain
KC696560	Natronococcus occultus strain SLA64
KC696561	Natronococcus sp. SSL9
KC820814	Natronococcus jeotgali strain SLA63
KC924847	Euhalothecus sp. SLVH01
KC934935	Nesterenkonia sp. SSL10
KC934936	Halomonas sp. SSL11
KC934937	Oceanabacillus iheyensis strain SSL12
KC934938	Halomonas alkali philia strain SSL13
KC934939	Halomonas sp. SSL14
KC934940	Halomonas pantelleriensis strain SSL15
KC934941	Staphylococcus sp. SSL16
KF288960	Halomonas sp. SSL3
KF288961	Halomonas pantelleriensis strain SSL4
KU179507	Microbacterium sp. ANSKLab01
KU518891	Paenibacillus dendritiformis strain ANSKLAB02
KU529483	Bacillus tequilensis strain ANSKLAB04
LT161878	Paenibacillus sp. SMB1
LT161879	Halomonas sp. SMB2
LT161880	Halomonas sp. SMB3
LT161881	Bacillus sp. SMB4
LT161882	Bacillus sp. SMB5
LT161883	Bacillus sp. SMB6
LT161884	Halomonas sp. SMB7
LT222351	Halomonas sp. SMB8
LT599833	Exiguobacterium sp. SMB10
NZ_MASN01000022	Natrialba sp. SSL1 ctg29
NZ_MASN01000031	Natrialba sp. SSL1 ctg37
NZ_MASN01000032	Natrialba sp. SSL1 ctg38
NZ_MASN01000033	Natrialba sp. SSL1 ctg39
NZ_MASN01000042	Natrialba sp. SSL1 ctg47
NZ_MASN01000044	Natrialba sp. SSL1 ctg49
NZ_MASN01000045	Natrialba sp. SSL1 ctg5
NZ_MASN01000046	Natrialba sp. SSL1 ctg50
NZ_MASN01000047	Natrialba sp. SSL1 ctg51
NZ_MASN01000049	Natrialba sp. SSL1 ctg53
NZ_MASN01000053	Natrialba sp. SSL1 ctg57
NZ_MASN01000054	Natrialba sp. SSL1 ctg58
NZ_MASN01000055	Natrialba sp. SSL1 ctg59
NZ_MASN01000057	Natrialba sp. SSL1 ctg60
NZ_MASN01000058	Natrialba sp. SSL1 ctg61
References

[1] H.J. Jeffrey, Chaos game representation of gene structure, Nucleic Acids Res. 18 (1990) 2163–2170.

[2] P.J. Deschavanne, A. Giron, J. Vilain, G. Fagot, B. Fertil, Genomic signature: characterization and classification of species assessed by chaos game representation of sequences, Mol. Biol. Evol. 16 (1999) 1391–1399.

[3] B.N. Rekadwad, J.M. Gonzalez, C.N. Khobragade, Genomic analysis of a marine bacterium: bioinformatics for comparison, evaluation, and interpretation of DNA sequences (Article ID 7215379), Biomed. Res. Int. (2016) 7.

[4] B.N. Rekadwad, C.N. Khobragade, Digital data for Quick Response (QR) codes of thermophiles to identify and compare the bacterial species isolated from Unkeshwar hot springs (India), Data Brief 6 (2015) 53–67.