Infinite square-free self-shuffling words

Mike Müller, Svetlana Puzynina, and Michaël Rao

1 Institut für Informatik, Christian-Albrechts-Universität zu Kiel, Germany
mimu@informatik.uni-kiel.de

2 University of Turku, Finland, and Sobolev Institute of Mathematics, Russia
svepuz@utu.fi

3 LIP, CNRS, ENS de Lyon, UCBL, Université de Lyon, France
michael.rao@ens-lyon.fr

Abstract. An infinite word w is called self-shuffling, if $w = \prod_{i=0}^{\infty} U_i V_i = \prod_{i=0}^{\infty} U_i = \prod_{i=0}^{\infty} V_i$ for some finite words U_i, V_i. Harju [4] recently asked whether square-free self-shuffling words exist. We answer this question affirmatively.

1 Introduction

A self-shuffling word, a notion which was recently introduced by Charlier et al. [2], is an infinite word that can be reproduced by shuffling it with itself. More formally, an infinite word $w \in \Sigma^\omega$, defined over a finite alphabet Σ, is self-shuffling if w admits factorizations: $w = \prod_{i=0}^{\infty} U_i V_i = \prod_{i=0}^{\infty} U_i = \prod_{i=0}^{\infty} V_i$ with $U_i, V_i \in \Sigma^+$. Various well-known words, e.g. the Thue-Morse word or the Fibonacci word, were shown to be self-shuffling.

Harju [4] studied shuffles of both finite and infinite square-free words, i.e. words that have no factor of the form uu. More results on square-free shuffles were obtained independently by Harju and Müller [5], and Currie and Saari [3]. However, the question about the existence of an infinite square-free self-shuffling word, posed in [4], remained open. We give a positive answer to this question in this note.

Apart from the usual concepts in combinatorics on words, which can be found for instance in the book of Lothaire [6], we make use of the following notations: For every $k \geq 1$, we denote the alphabet $\{0,1,\ldots,k-1\}$ by Σ_k. For a word $w = uvz$ we say that u is a prefix of w, v is a factor of w, and z is a suffix of w. We denote these prefix- and suffixrelations by $u \preceq_p w$ and $v \preceq_s w$, respectively.

A prefix code is a set of words with the property that none of its elements is a prefix of another element. Similarly, a suffix code is a set of words where no element is a suffix of another one. A bifix code is a set that is both a prefix code and a suffix code.

A word w is square-free, if it has no factor of the form uu, where u is a non-empty finite word. A morphism h is square-free if for all square-free words w, the image $h(w)$ is square-free.

* Supported in part by the Academy of Finland under grant 251371 and the DFG under grant 582014
2 A square-free self-shuffling word on 4 letters

Let $h : \Sigma_4^* \rightarrow \Sigma_4^*$ be the morphism defined as follows:

$$
\begin{align*}
 h(0) &= 0121, \\
 h(1) &= 032, \\
 h(2) &= 013, \\
 h(3) &= 0302.
\end{align*}
$$

We will show that the fixpoint $w = h^ω(0)$ is square-free and self-shuffling in the following. Note that h is not a square-free morphism, that is it does not preserve square-freeness, as $h(23) = 0130302$ contains the square 3030.

Lemma 1. The word $w = h^ω(0)$ contains no factor of the form $3u1u3$ for some $u \in \Sigma_4^*$.

Proof. We assume that there exists a factor of the form $3u1u3$ in w, for some word $u \in \Sigma_4^*$. From the definition of h, we observe that u cannot be empty. Furthermore, we see that every 3 in w is preceded by either 0 or 1. If $1 \leq s u$, then we had an occurrence of the factor 11 in w, which is not possible by the definition of h, hence $0 \leq s u$. Now, every 3 is followed by either 0 or 2 in w and 01 is followed by either 2 or 3. Since both 3u and 01u are factors of w, we must have $2 \leq p u$. This means that the factor 012 appears at the center of $u1u$, which can only be followed by 1 in w, thus $21 \leq p u$. However, this results in the factor 321 as a prefix of 3u1u3, which does not appear in w, as seen from the definition of h. □

Lemma 2. The word $w = h^ω(0)$ is square-free.

Proof. We first observe that $\{h(0), h(1), h(2), h(3)\}$ is a bifix code. Furthermore, we can verify that there are no squares uu with $|u| \leq 3$ in w. Let us assume now, that the square uu appears in w and that u is the shortest word with this property. If $u = 02u'$, then $u' = u''03$ must hold, since 02 appears only as a factor of $h(3)$, and thus uu is a suffix of the factor $h(3)u''h(3)u''$ in w. As $w = h(w)$, also the shorter square $3h^{-1}(u'')3h^{-1}(u'')$ appears in w, a contradiction. The same desubstitution principle also leads to occurrences of shorter squares in w if $u = xu'$ and $x \in \{01, 03, 10, 12, 13, 21, 30, 32\}$.

If $u = 2u'$ then either $03 \leq s u$ or $030 \leq s u$ or $01 \leq s u$, by the definition of h. In the last case, that is when $01 \leq s u$, we must have $21 \leq p u$, which is covered by the previous paragraph. If $u' = u''030$, then uu is followed by 2 in w and we can desubstitute to obtain the shorter square $h^{-1}(u'')3h^{-1}(u'')3$ in w. If $u = 2u'$ and $u' = u''03$, and uu is preceded by 03 or followed by 2 in w, we can desubstitute to $1h^{-1}(u'')1h^{-1}(u'')$ or $h^{-1}(u'')1h^{-1}(u'')1$, respectively. Therefore, assume that $u = 2u''03$ and uu is preceded by 030 and followed by 02 in w. This however means that we can desubstitute to get an occurrence of the factor $3h^{-1}(u'')1h^{-1}(u'')3$ in w, a contradiction to Lemma 1. □
We now show that \(w = h^{\omega}(0) \) can be written as \(w = \prod_{i=0}^{\infty} U_i V_i = \prod_{i=0}^{\infty} U_i \) with \(U_i, V_i \in \Sigma_3^+ \).

Lemma 3. The word \(w = h^{\omega}(0) \) is self-shuffling.

Proof. In what follows we use the notation \(x = v^{-1}u \) meaning that \(u = vx \) for finite words \(x, u, v \). We are going to show that the self-shuffle is given by the following:

\[
U_0 = h^2(0), \quad U_1 = 0, \quad \ldots, \quad U_{6i+2} = h^i(0^{-1}h(0)0), \quad U_{6i+3} = h^i(0^{-1}h(3)0),
\]
\[
U_{6i+4} = h^i(0^{-1}h(201)0), \quad U_{6i+5} = h^i(30),
\]
\[
U_{6i+6} = h^i(2h(03)), \quad U_{6i+7} = h^{i+1}(20),
\]
\[
V_0 = h(0)03, V_1 = 2h(2)0, \ldots, V_{6i+2} = h^i(0^{-1}h(1)0), \quad V_{6i+3} = h^i(0^{-1}h(03)0),
\]
\[
V_{6i+4} = h^i(1), \quad V_{6i+5} = h^i(3),
\]
\[
V_{6i+6} = h^{i+1}(0), \quad V_{6i+7} = h^{i+1}(0^{-1}h(2)0).
\]

Now we verify that \(w = \prod_{i=0}^{\infty} U_i V_i = \prod_{i=0}^{\infty} U_i = \prod_{i=0}^{\infty} V_i \), from which it follows that \(w \) is self-shuffling. It suffices to show that each of the above products is fixed by \(h \). Indeed, straightforward computations show that

\[
\prod_{i=0}^{\infty} U_i = h^2(0)h^2(121)h^3(121)\ldots
\]

which is fixed by \(h \):

\[
h(\prod_{i=0}^{\infty} U_i) = h[h^2(0)h^2(121)h^3(121)\ldots] = h^3(0)h^3(121)h^4(121)\ldots = \prod_{i=0}^{\infty} U_i,
\]

hence \(\prod_{i=0}^{\infty} U_i \) is fixed by \(h \) and thus \(w = \prod_{i=0}^{\infty} U_i \). In a similar way we show that \(w = \prod_{i=0}^{\infty} V_i = \prod_{i=0}^{\infty} U_i V_i \).

\(\square \)

3 Square-free self-shuffling words on 3 letters

We remark that we can immediately produce a square-free self-shuffling word over \(\Sigma_3 \) from \(h^{\omega}(0) \): Charlier et al. \[2\] noticed that the property of being self-
shuffling is preserved by the application of a morphism. Furthermore, Brandenburg [1] showed that the morphism \(f : \Sigma^* \rightarrow \Sigma^* \), defined by

\[
\begin{align*}
 f(0) &= 01020120210210212, \\
 f(1) &= 010201202102010212, \\
 f(2) &= 010201202120121012, \\
 f(3) &= 010201210201021012,
\end{align*}
\]

is square-free. Therefore, the word \(f(h^\omega(0)) \) is a ternary square-free self-shuffling word, from which we can produce a multitude of others by applying square-free morphisms from \(\Sigma^*_3 \) to \(\Sigma^*_3 \).

References

1. F.-J. Brandenburg. Uniformly growing \(k \)th power-free homomorphisms. *Theoret. Comput. Sci.*, 23(1):69–82, 1983.
2. E. Charlier, T. Kamae, S. Puzynina, and L. Q. Zamboni. Self-shuffling words. In F. V. Fomin, R. Freivalds, M. Z. Kwiatkowska, and D. Peleg, editors, *ICALP (2)*, volume 7966 of *Lecture Notes in Computer Science*, pages 113–124. Springer, 2013.
3. J. D. Currie and K. Saari. Square-free words with square-free self-shuffles. *The Electronic Journal of Combinatorics*, 21(1):1–9, 2014.
4. T. Harju. A note on square-free shuffles of words. In J. Karhumäki, A. Lepistö, and L. Q. Zamboni, editors, *WORDS*, volume 8079 of *Lecture Notes in Computer Science*, pages 154–160. Springer, 2013.
5. T. Harju and M. Müller. Square-free shuffles of words. *CoRR*, abs/1309.2137, 2013.
6. M. Lothaire. *Combinatorics on words*. Cambridge Mathematical Library. Cambridge University Press, Cambridge, 1997.