Leaf Photosynthesis and Its Genetic Improvement from the Perspective of Energy Flow and CO₂ Diffusion

Yu Tanaka¹, Etsushi Kumagai², Youshi Tazoe³⁴, Shunsuke Adachi⁵⁶ and Koki Homma¹

¹Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan; ²NARO Tohoku Agricultural Research Center, Morioka 020-0198, Japan; ³Graduate School of Biostudies, Kyoto University, Kyoto 606-8501, Japan; ⁴Graduate School of Agricultural Science, Tohoku University, Sendai 981-8555, Japan; ⁵National Institute of Agrobiological Sciences, Tsukuba 305-8602, Japan; ⁶JST, PRESTO, Kawaguchi 332-0012, Japan

Abstract: Single-leaf photosynthesis is a fundamental process in plant biomass production, and is a major research topic in crop physiology. This paper reviews the recent achievements of research on the physiological determinants of the photosynthetic capacity from the perspective of energy flow and CO₂ diffusion. Measurement of chlorophyll fluorescence is a popular method to diagnose the function of photosystem II, and is useful to assess the susceptibility to photoinhibition and allocation of energy, which are keys to improving both stress resistance and photosynthetic productivity. Mesophyll conductance (gm) is the conductance to CO₂ diffusion from intercellular airspaces to the chloroplast, and was long thought to be determined by leaf anatomical properties. However, recent studies showed that environmental conditions affect gm. It is possible that gm is affected by the gating of the CO₂-permeable aquaporins (cooporins). Stomatal morphology is revealed to be an important factor affecting gas exchange both in crop plants and in Arabidopsis thaliana. The knowledge of the stomatal differentiation in Arabidopsis will be applicable to various crops. gm, stomatal conductance (gs) and leaf nitrogen content are the main factors to cause difference in leaf photosynthesis among rice lines, and recent activities are conducted to find genes to manipulate these factors. Although the association of leaf photosynthesis with crop productivity still has a large ‘missing link’, these achievements strongly suggest that the leaf photosynthetic capacity can be genetically improved in crop species.

Key words: Chlorophyll fluorescence, Cooporin, Leaf nitrogen content, Mesophyll conductance, Stomatal conductance, Stomatal density.

Single-leaf photosynthesis is a fundamental process in plant biomass production. The process of photosynthesis can be classified into three major steps: light harvesting and the subsequent conversion of light into chemical energy (NADPH and ATP) through photosystem II (PSII) and photosystem I (PSI) in the thylakoid membrane in chloroplasts; the biochemical process of the Calvin-Benson cycle in the stroma; and the supply of carbon dioxide from the atmosphere to the site of carboxylation. Thus, the net photosynthetic rate per unit leaf area (Pn) is determined through the combined action and interactions of these steps. Using a biochemical model, Farquhar et al. (1980) successfully described these processes, and this powerful model has been widely applied to study the mechanism of Pn determination in C₃ plants.

The impact of Pn on plant canopy photosynthesis was quantitatively predicted by Monsi and Saeki (1953), who indicated that canopy photosynthesis is determined by the
leaf area index, light extinction coefficient and \(P_n \). A higher \(P_n \) is suggested to be beneficial for crop production based on both field observations (Horie et al., 2006) and simulation modeling (Long et al., 2006). However, the actual link between \(P_n \) and biomass production has yet to be elucidated because the process of biomass production consists of a large number of interactions, including source-sink balances and the environmental responses of the plant. For instance, a negative relationship is occasionally observed between \(P_n \) and seed yield (Evans, 1993). Hence, the benefits of genetically improving \(P_n \) on biomass production and yield should be tested under field conditions. To develop plant materials showing an improved productivity, we need to understand the key traits involved in the underlying genetic variation and the environmental response of \(P_n \).

For decades, many technical advances have been greatly accelerating research on photosynthesis. Portable gas exchange systems, such as the LI-6400 system (Li-COR, USA), make it possible to measure instantaneous \(P_n \) even under field conditions. Using chlorophyll (Chl) fluorescence measurement systems with a pulse-amplitude-modulated (PAM) fluorometer, it is possible to quantify the degree of the stress of a leaf and estimate the electron transport rate of PSII (Maxwell and Johnson, 2000). Furthermore, to estimate the CO\(_2\) diffusion inside leaves during photosynthesis, the carbon isotope discrimination (\(\Delta \)) method has been developed (Farquhar et al., 1982). Simultaneous measurements of gas exchange and Chl fluorescence or \(\Delta \) can provide more detailed information, such as the alternative electron transport rate (Miyake and Yokota, 2000) and mesophyll conductance (\(g_m \)) to CO\(_2\) diffusion (Evans et al., 1986; Harley et al., 1992; Baker, 2008). A remarkable feature of this technology is that we can determine the internal condition of a single leaf through rapid and non-destructive measurements. The advantage of such high-throughput measurements of photosynthetic performance is maximized when combined with the use of various genetic materials and technologies. The identification of quantitative trait loci (QTLs) using advanced mapping populations, including chromosomal segment substitution lines (CSSLs), is expected to be a powerful approach for understanding the genetic factors underlying the natural variation of \(P_n \). Furthermore, progress in the field of molecular biology has made it easier to manipulate the function of targeted genes, not only in model plants but also in crop species.

A mini-symposium regarding the recent achievements of research on the physiological determinants of \(P_n \) in crops and other plant species was held at the 235th Conference of the Crop Science Society of Japan on 29th March, 2013. Special concern was paid to the energy flow and CO\(_2\) diffusion in the photosynthetic system. This review summarizes our concern based on the discussion at the mini-symposium. First, assessments of photosynthesis-related parameters in rice cultivars using Chl fluorescence-based techniques are described in reference to low-nitrogen (N) availability. Second, the significance and the environmental response of \(g_m \) to CO\(_2\) diffusion are discussed, along with the technical issues involved in the estimation of \(g_m \) using the \(\Delta \) method. Third, stomatal density is highlighted as an important factor affecting gas exchange in the leaf, and the physiological consequences of the genetic manipulation of stomatal density are reviewed. Lastly, physiological factors associated with the natural variation of \(P_n \) in rice varieties are discussed, and genetic enhancement of \(P_n \) is described based on QTL analysis of leaf photosynthesis. Herein, we present the various perspectives regarding research on photosynthesis and their future potential contributions to crop science.

1. **Assessment of susceptibility to photoinhibition and the allocation of absorbed light energy in PSII in rice leaves based on Chl fluorescence measurements**

Thus far, most crop scientists aiming at the genetic improvement of leaf photosynthesis in crop plants have mainly focused on \(P_n \) and the content and activity of ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco), which is the key enzyme involved in the Calvin-Benson cycle (e.g., Evans and Seemann, 1984; Hubbart et al., 2007). Recently, it has become possible to easily diagnose the function of PSII in the leaf using PAM fluorometers. The physiological factors responsible for the differences in the productivity of rice cultivars under low-N input conditions using PAM-Chl fluorescence measurements have been reported (Kumagai et al., 2007, 2009, 2010, 2012). This section describes the physiological factors associated with photoinhibition and related processes under low-N conditions and how modification of these processes may be a useful strategy for increasing leaf photosynthesis.

Although performing Chl fluorescence measurements is simple, the underlying theoretical aspects and interpretation of these data are complex. Some excellent reviews have discussed the theoretical background of these measurements and their analysis (e.g., Maxwell and Johnson, 2000). The light energy absorbed by the PSII antennae in the leaves of plants can either be utilized via photochemistry or dissipated via thermal processes and fluorescence. The fate of absorbed light energy and the degree of photoinhibition of PSII in the leaves can be assessed based on Chl fluorescence measurements. The degree of photoinhibition of PSII can be estimated from the ratio of variable Chl fluorescence to maximal fluorescence (\(F_v/F_m \)). Photoinhibition is defined as the light-induced loss of photosynthetic activity. Absorbed light energy may be defined as excessive when it exceeds the photosynthetic capacity to use it. It is believed that
excessive light energy produces reactive oxygen species (ROS; e.g., 1O$_2$, O$_2^-$, H$_2$O$_2$), which can cause photoinhibition of PSII (Foyer and Noctor, 1999). The extent of photoinhibition of PSII depends not only on the rate of D1 protein degradation but also on the rate of D1 protein synthesis within chloroplasts (Kyle et al., 1984). A number of hypotheses have been put forward to explain the molecular mechanism underlying the photoinhibition of PSII (Keren and Krieger-Liszkay, 2011). Quantifying the fate of light energy absorbed by PSII is significantly important for studying the responses of photosynthesis and photoinhibition to environmental stresses. The ‘puddle’ and ‘lake’ models of energy allocation were proposed by Demmig-Adams et al. (1996) and Hendrickson et al. (2004), respectively. In the puddle model, PSII centers are hypothesized to exist solely within the energy-processing systems. This model can be divided into three categories: PSII photochemistry, Dissipation and Excess. In the lake model, all PSII centers are instead hypothesized to be coupled with each other to exchange energy. This model can be used to categorize energy fluxes via linear PSII electron transport (J_{psII}), light-dependent thermal dissipation (J_{NPQ}) and fluorescence and light-independent basal thermal dissipation (J_{TD}). Moreover, simultaneous measurements of photosynthetic gas exchange and Chl fluorescence can be used to estimate the allocation of the total light energy absorbed by PSII to the various processes of J_{psII} (photosynthesis, J_c; photorespiration, J_o; alternative electron transport, J_a) (Miyake and Yokota, 2000).

The effects of N deficiency on photosynthesis, photoinhibition and the allocation of light energy absorbed by PSII in flag leaves using two rice cultivars, Shirobeniya and Akenohoshi have been studied (Kumagai et al., 2010). The grain yield and P_n in flag leaves in Akenohoshi were found to be superior to those in Shirobeniya under low-N conditions (Kumagai et al., 2009, 2012). Energy allocation was estimated based on the lake model and measured under high irradiance (1,500 μmol m$^{-2}$ s$^{-1}$ PPFD). In the low-N plants of the two cultivars, J_{NPQ} accounted for 46 – 49% of the total light absorbed by the PSII antenna, whereas in the standard-N plants, this percentage was 42% (Fig. 1). In contrast, there was no difference in the fraction of J_{TD} between the two N conditions, with a value of 21% being found for both. When grown under low-N conditions, the fractions of light absorbed by PSII and used for J_o, J_c and J_a were 17 – 18, 9 and 4 – 6%, respectively, whereas under standard-N condition, the fractions used for J_o, J_c and J_a were 21 – 23%, 13 – 14% and 2%, respectively. Most of J_o is thought to account for the electron flux to the water-water cycle. This result suggested that both xanthophyll cycle-dependent thermal dissipation and the water-water cycle were up-regulated under the low-N condition. The water-water cycle is unavoidably coupled with the generation of ROS (Asada, 1999), which potentially cause photooxidative damage to thylakoid membrane and stroma proteins. The limiting step of the water-water cycle is the photoreduction of O$_2$ to O$_2^-$, and both superoxide dismutase (SOD) and ascorbate peroxidase (APX) are key enzymes involved in the process of ROS scavenging (Endo and Asada, 2006). It was found that in the two cultivars, the increased J_o was accompanied by enhanced activity of SOD under the low-N condition. However, APX activity in Akenohoshi was constant, regardless of the N level, whereas the activity in Shirobeniya was decreased significantly under the low-N condition. Additionally, the low-N supply resulted in a more significant increase of susceptibility to photoinhibition (reduction of F_v/F_m after high irradiance), H$_2$O$_2$ accumulation and lipid peroxidation within leaves in Shirobeniya than in Akenohoshi. The higher H$_2$O$_2$ levels in the low-N Shirobeniya plants could be explained by lower APX activity. H$_2$O$_2$ inhibits the synthesis of the D1 protein.
(Takahashi and Murata, 2008). These results indicated that the increased susceptibility to photoinhibition observed in the low-N plants of the Shirobeniya cultivar was mainly due to oxidative damage to the chloroplasts, resulting from a decreased H_2O_2-scavenging capacity. It was therefore concluded that the H_2O_2-scavenging capacity could be an important factor in determining the difference between the cultivars regarding rice production under the low-N condition.

As described above, the combined use of Chl fluorescence and gas exchange measurements could be effective for evaluating the response of energy allocation and photoinhibition to environmental stresses; however, there are major problems that should be considered. When Chl fluorescence measurements are carried out using conventional PAM fluorometers, the observed Chl fluorescence represents a mixture of signals emitted from the mesophyll cell layers facing the detector because the measuring light cannot penetrate deeply within a leaf (Bornman et al., 1991; Oguchi et al., 2011). Because the degree of photoinhibition is light dependent, the intra-leaf light gradient creates a gradient of photoinhibition within a leaf (Schreiber et al., 1996). J_s is estimated by subtracting J_i and J_e (estimated using the gas exchange method) from J_{rsi} (estimated from Chl fluorescence), which could originate from different cell populations. Therefore, both F_0/F_m and J_e estimated by conventional techniques could be inaccurate. J_i involves several pathways other than the water-water cycle, such as the cyclic electron flow around PSII and PSI, the mitochondrial alternative oxidase pathway and the pathways for mineral nutrient assimilation (Miyake, 2010). Methodologies should be established to assess the extent of photoinhibition and electron transport rates in whole leaves.

The maximum photosynthetic potential is rarely observed even under favorable conditions (Murchie et al., 1999). There are many potential reasons, but photoinhibition may be a major source of photosynthetic losses (Horton, 2000). The increased susceptibility to photoinhibition observed in stress-sensitive rice cultivars compared with stress-tolerant ones has been reported to be associated with a lower ROS-scavenging activity under various stress conditions, such as salt stress (Vaidyanathan et al., 2003) and low temperature (Bonnecarrère et al., 2011), which is in good agreement with our results. Therefore, manipulation of ROS-scavenging capacities is highlighted as a target for the improvement of both photosynthetic productivity and stress resistance in crop plants. Several studies in rice have also suggested that japonica cultivars show more tolerance to photoinhibition than indica cultivars (Jiao and Ji, 2001; Jiao et al., 2003). More recently, Kasajima et al. (2011) reported that non-photochemical quenching (light-dependent thermal dissipation capacity) of japonica is higher than that of indica based on an analysis of a rice core collection. However, information about the genetic diversity in the susceptibility to photoinhibition and its physiological determinants remain limited. Chl fluorescence-imaging systems that can image related parameters in a large area have been recently developed (Baker and Rosenqvist, 2004). It is expected that this type of tool will promote the development of research on both the photosynthetic productivity and stress resistance of crop plants.

2. Effects of CO_2, irradiance and stomatal gating on mesophyll conductance

In C₃ leaves, the diffusion of CO_2 into the leaves is restricted by the stomata, and subsequent diffusion into chloroplasts is restricted by the intercellular airspaces and liquid phase (Fig. 2). The conductance to CO_2 diffusion from intercellular airspaces to the chloroplast is termed mesophyll conductance (g_m). g_m has long been thought to be determined by leaf anatomical properties, e.g., the thickness of the mesophyll cell wall and/or the chloroplast surface area adjacent to the intercellular airspaces. However, it was recently found that aquaporin 1 (AQP1), which is located in the plasma membrane and inner envelope of chloroplasts (Uehlein et al., 2008), is permeable to CO_2 (Uehlein et al., 2012). Thus, it is possible that g_m is affected by the gating of the CO_2-permeable aquaporins, which is called ‘cooporins’ to highlight CO_2-porins that are co-operating with other photosynthetic components such as carbonic anhydrase (Terashima et al., 2006). Here, to reconsider our understanding of g_m based on recent studies, we review the effects of CO_2, irradiance and stomatal conductance (g_s) on the values of g_m.

Developments in tunable-diode laser absorption spectroscopy (TDLAS) have improved our ability to perform rapid measurements of g_s using the carbon isotope discrimination (Δ) method (Evans et al., 1986). Tazoe et al. (2011) examined the effects of CO_2 and O_2
concentrations on g_s in tobacco ($Nicotiana~tabacum$), Arabidopsis ($Arabidopsis~thaliana$) and wheat ($Triticum~aestivum$) leaves by combining gas exchange with Δ measurements using TDLAS. At first, photosynthetic rate was measured for approximately 40 min at irradiance of 1500 μmol quanta m$^{-2}$ s$^{-1}$, inlet CO$_2$ of 400 ppm, and 21% O$_2$. Then, O$_2$ was changed to 2% O$_2$ to reduce the carbon isotope fractionation associated with photorespiration, and CO$_2$ concentration was changed to 200 ppm. After 30 min, when the CO$_2$ concentration was switched from 200 to 1000 ppm, P_s was observed to rapidly increase in tobacco. g_s gradually increased at 200 ppm CO$_2$, then gradually decreased following the shift to 1000 ppm. On the other hand, g_s rapidly decreased when CO$_2$ was increased from 200 to 1000 ppm in 2% O$_2$. The rapid change of CO$_2$ levels from 200 to 1000 ppm under 2% O$_2$ decreased g_s by 40% in tobacco, 26% in Arabidopsis and 36% in wheat. Thus, g_s decreased with increasing CO$_2$ in 2% O$_2$, similar to the response of g_s, whereas the response speed of g_s was faster than that of g_s. The variation in g_s may be caused by the gating of cooporins, but the effects of the CO$_2$ concentration on the cooporins are still unknown.

In tobacco and Arabidopsis, the response to CO$_2$ was also measured in 21% O$_2$ (Tazoe et al., 2011). At low CO$_2$ concentrations, P_s was found to be greater under 2% than 21% O$_2$, as expected due to the suppression of photorespiration in 2% O$_2$. Although g_s showed a similar increase with decreasing CO$_2$ in 21% O$_2$, g_s was independent of CO$_2$ levels and did not increase, even at 200 ppm. The difference in the CO$_2$ response of g_s between 2% and 21% O$_2$ can be partially explained by the effects of photorespiration because under low CO$_2$, g_s varies greatly in 21% O$_2$ depending on the fractionation values during photorespiration in the Δ model (Tazoe et al., 2011). Furthermore, the refixation of respired CO$_2$ would also affect the estimates of g_s. Busch et al. (2013) indicated that in rice ($Oryza~sativa$) and wheat leaves, chloroplasts and their extrusions cover nearly the whole mesophyll surface, and 24–38% of photosynthesized and respired CO$_2$ is refixed within the cells. This effect of CO$_2$ refixation on estimates of g_s has recently been reassessed (Tholen et al., 2012) but it is still under debate.

The response of g_s to irradiance has been studied using various methods (von Caemmerer and Evans, 1991; Flechas et al., 2007), but there is still controversy regarding whether the g_s observed at very low irradiance is a computation artifact. For example, under the ordinary Δ method, the magnitude of fractionation associated with photorespiration and day respiration can greatly affect the estimated g_s when P_s is small (Tazoe et al., 2009). To reduce the effects of respiration on these calculations, Tazoe et al. (2009) estimated the response of g_s to irradiance in wheat leaves using a dataset in which P_s was over 10 μmol CO$_2$ m$^{-2}$ s$^{-1}$ under 2% O$_2$. Consequently, between 200 and 1500 μmol quanta m$^{-2}$ s$^{-1}$, g_s was independent of irradiance (Tazoe et al., 2009). On the other hand, Douthe et al. (2012) reported that g_s in three $Eucalyptus$ species declined when irradiance decreased from 600 to 200 μmol quanta m$^{-2}$ s$^{-1}$. They recalculated g_s using various fractionation values during both day respiration and photorespiration in the Δ model, but the g_s estimated with several different values was still responsive to irradiance. If the observed response of g_s to irradiance is not an artifact due to uncertainties in parameters related to respiration, g_s may be regulated by the gating of aquaporins responding to irradiance as well as CO$_2$.

When the effect of various environmental factors on g_s is investigated, there is concern about the involvement of g_s. In earlier studies, g_s was shown to be positively correlated with g_s (Centritto et al., 2003; Warren, 2008a). To investigate the effect of g_s on g_s, Tazoe et al. (2011) measured the response of g_s to CO$_2$ concentration using an Arabidopsis mutant ($ost1:~open~stomata~1$) that is insensitive to abscisic acid and whose stomata do not close at high CO$_2$ and in the dark (Merlot et al., 2002; Mustilli et al., 2002). In the $ost1$ mutant, g_s was found to be higher than in wild type (WT) plants across all tested CO$_2$ concentrations, whereas g_s in $ost1$ was identical to that in WT plants (Tazoe et al., 2011). Thus, g_s can vary independently of g_s, but this independency would be observed only when g_s is sufficiently high. Tholen et al. (2012) showed computationally that g_s declined substantially when g_s dropped below 0.1 mol m$^{-2}$ s$^{-1}$ but was stable when g_s was greater than 0.1 mol m$^{-2}$ s$^{-1}$, assuming that chloroplast resistance accounted for more than 50% of mesophyll resistance and photosynthetic capacity did not vary with g_s. Thus, the decline of g_s could lower g_s in the calculation model, but it is difficult to demonstrate this experimentally using the Δ method because of difficulties in measuring Δ and estimating g_s since stomata are closing.

g_s has been considered to be a second limitation factor for CO$_2$ diffusion, following the stomata. The basic research on g_s is steadily advancing, and the presence of CO$_2$-permeable aquaporins was recently confirmed in Arabidopsis (Uehlein et al., 2012). In the near future, it will become clear how cooporins modulate g_s and whether the gating of the cooporins changes with irradiance and CO$_2$. Next, we have to consider how knowledge about g_s can be applied to crop science. In recent years, to develop more productive crop species, a worldwide project aimed at introducing CO$_2$-concentrating mechanisms (CCMs) found in C$_4$ plants or cyanobacteria into C$_3$ plants, e.g., the C$_4$ rice project (Kajala et al., 2011; Meyer and Griffiths, 2013; Price et al., 2013) has been undertaken. However, to operate CCMs efficiently, a certain type of barrier to CO$_2$ is necessary to reduce CO$_2$ leakage from the CCM. For example, C$_4$ leaves develop Kranz anatomy and suberized cell walls in the bundle sheath cells, which are thought to
block CO₂ leakage. Cyanobacteria develop a carboxysome assembly in which bicarbonate is converted to CO₂ and fixed by Rubisco, which contributes to reducing the leakage of CO₂. If gs can be manipulated, it will contribute to the reduction of CO₂ leakage and improvement of the efficiency of photosynthesis in the C₄ rice.

3. Perspectives on the control of photosynthesis through manipulating the stomatal density

\(P_n \) is determined by the supply of CO₂ into the chloroplasts in the leaf and the carboxylation activity itself (Farquhar and Sharkey, 1982). Gas exchange through stomata is one of the most important processes involved in leaf photosynthesis because it greatly affects the diffusion of CO₂. The value of \(g_s \) changes dramatically in response to environmental factors such as light intensity, humidity, the water status of the plant and CO₂ concentrations (Hall and Kaufmann, 1975; Asamaa and Sober, 2012). These general responses are well explained by the optimization of CO₂ acquisition with the cost of transpiration. Additionally, genetic differences associated with \(g_s \) under optimum conditions and their impacts on \(P_n \) have been reported in crop plants (Ohsumi et al., 2007a; Lu et al., 1998). However, it is relatively unclear how such genetic differences related to \(g_s \) occur. Here, we describe the significance of the anatomy of leaf epidermis, particular of stomatal density, on gas exchange, and the genetic improvement of \(g_s \) and \(P_n \) in the model plant Arabidopsis.

Gas diffusion through the stomata is a physical process and can be described by stomatal density, longitudinal size, aperture and depth of stomata (Parlange and Waggoner, 1970; Franks and Beerling, 2009). Briefly, a greater stomatal density and a larger size of the stomata are expected to increase \(g_s \). Ohsumi et al. (2007b) reported a wide range of stomatal densities among various rice genotypes. Similarly, Ciha and Brun (1975) observed genotypic differences in stomatal density in soybean cultivars. The linkage between these variations and \(g_s \) has yet to be elucidated. Tanaka et al. (2010) observed over 70 genotypes of soybeans and found that the stomatal density varied from 192 mm⁻² to 332 mm⁻² (Fig. 3). The genotypic differences related to stomatal density were stable in field experiments for 2 yr. This finding showed that stomatal density is strongly regulated by genetic factors. Moreover, the maximum \(g_s \) estimated based on anatomical observations was significantly correlated with the actual stomatal conductance measured in the field. Interestingly, soybeans developed in the United States (US) had a higher stomatal density, of 23% on the average, compared with those developed in Japan. Overall, stomatal density has been suggested to have a significant effect on \(P_{\text{av}} \), implying that US soybean cultivars display an advantage regarding the efficiency of gas exchange and a higher \(P_n \).

The reason for such a clear regional bias in stomatal density is not clear. One candidate explanation is that the greater stomatal density is related to greater biomass productivity through a higher \(P_n \) in US cultivars. The soybean production in the US accounts for one-third of the world production (ERS/USDA, 2010), which is largely supported by intense breeding for a high yield performance. Kawasaki et al. (2010) have examined the yields of representative Japanese and US cultivars. The US cultivars had a higher yield than the Japanese cultivars on average across 2 locational and 2 yr experiments. It is likely that the applied selection pressure aimed at higher productivity resulted in the concomitant selection of genotypes with a higher stomatal density. Thus, genetic manipulation of stomatal density is an attractive strategy for improving the photosynthetic capacity.

The model plant Arabidopsis thaliana (L.) provides an ideal tool for evaluating the impact of genetic manipulation of stomatal density because the mechanism of stomatal development is well understood in this species (Bergmann and Sack, 2007). Briefly, signal peptides known as epidermal patterning factors (EPFs) secreted from mature stomata bind to receptors on immature pavement cells (Hara et al., 2007, 2009). This binding blocks the differentiation of the immature cells into new stomata. In addition to this ‘negative feedback’ regulation, Sugano et al. (2010) described a novel signal peptide referred to as STOMAGEN. STOMAGEN is a small, cysteine-rich peptide secreted from mesophyll tissues that positively regulates stomatal density by working antagonistically against EPFs. Overexpression or knockdown of the STOMAGEN gene (At4g12970) resulted in a drastic increase or decrease of stomatal density in Arabidopsis, respectively. Tanaka et al. (2013) applied these materials as an ideal tool to evaluate the physiological
consequence of the genetic manipulation of stomatal density.

STOMAGEN overexpressing (ST-OX) and knockdown (ST-RNAi) plants were grown together with a WT control. The stomatal density in the topmost leaf of 9-wk-old plants varied from 92 mm\(^{-2}\) in ST-RNAi to 699 mm\(^{-2}\) in ST-OX plants, while that of WT plants was 167 mm\(^{-2}\). The approximately 4 times greater stomatal density found in ST-OX led to a 2 times greater \(g_s\) compared with WT. Moreover, ST-OX showed a 30% higher \(P_n\) than WT. The enhancement of \(P_n\) observed in ST-OX was clear at a photosynthetic photon flux density higher than 300 \(\mu\text{mol quanta m}^{-2}\text{s}^{-1}\). The \(P_n\)-\(C_i\) curve, which represents the relationship between \(P_n\) and the intracellular concentration of CO\(_2\), did not vary significantly among the tested plants. Taking all of these results together, it was concluded that the higher \(P_n\) observed in ST-OX plants was mainly achieved via efficient gas diffusion due to the larger number of stomata in Arabidopsis.

Enhancement of \(P_n\) by increasing the stomatal density may be achievable not only in Arabidopsis but also in crop plants because gas diffusion itself is a physical process. The remaining issues are how to develop crop plants with a genetically increased stomatal density and what happens to such crop plants under various field conditions. Regarding the first issue, applying forward genetics methods, such as QTL analysis, can be a good strategy because stomatal density is easier to measure in a large plant population compared with other photosynthetic traits. Laza et al. (2010) reported QTLs related to stomatal density and size in rice, but the additive effect of each QTL was limited. According to their results, the natural variation of stomatal density might be regulated by large numbers of QTLs with small effects. Reverse genetics, which is an approach for evaluating the function of specific genes directly by manipulating DNA sequences, has been proposed as another strategy for this purpose. Recently developed screening systems based on this strategy, such as TILLING (Till et al., 2003; Anai, 2012), make it possible to effectively obtain plant materials with a mutation in a targeted gene in crop plants. Interestingly, genes homologous to EPFs and STOMAGEN from Arabidopsis were found with a high similarity in crop plants such as rice and soybean. This suggests that the mechanism of stomatal development is conserved among these species. Plant materials with a stomatal density manipulated over the range of natural variation can be obtained by mutagenizing these candidate genes related to stomatal development in crop species.

An important issue is what happens in crop plants with a manipulated stomatal density under various field conditions. Yoo et al. (2010) reported that a decreased stomatal density in an Arabidopsis mutant resulted in superior drought resistance. ST-RNAi plants were found to survive longer than WT plants under drought (Tanaka et al., 2013). Taken together, decreasing the stomatal density in crop plants may be an attractive strategy for improving water use efficiency (WUE) and drought resistance. On the other hand, enhanced gas exchange concomitantly causes increased transpiration and a decreased WUE. Although there was no significant difference in WUE between ST-OX and WT Arabidopsis plants in the experiments, sensitivity to drought is a potential risk of the strategy of increasing stomatal density in crop plants grown under various field environments. Optimization of the stomatal density will be important to overcome this problem following careful evaluations of the performance of crops with an increased stomatal density. It will also be useful to combine enhanced gas exchange with the improvement of mesophyll activity, including \(g_s\) or Rubisco activity. Such a ‘pyramiding’ of the improvement of photosynthetic components is expected to maximize the impact of the manipulation of stomatal density.

4. **Physiological and genetic factors underlying the natural variation of photosynthesis in rice**

The improvement of photosynthesis in individual leaves within the canopy is expected to increase the yield potential of rice, which is one of the most important crops in Asia (Hubbart et al., 2007). Although wide variations in \(P_n\) among rice cultivars have been shown in a number of studies (e.g., Murata, 1961; Kanemura et al., 2007), breeding programs aimed at increasing rice photosynthesis by utilizing these genetic resources have yet to be implemented (Flood et al., 2011). The rate of photosynthesis is affected by a number of physiological factors, including Rubisco content and CO\(_2\) diffusion from the atmosphere to the chloroplasts, which might be regulated by many genes. Therefore, to use these resources for breeding, we should elucidate the physiological factors that determine the observed varietal differences in \(P_n\) and identify the QTLs that control them (Flood et al., 2011). This section presents the physiological and genetic bases underlying the variation in \(P_n\) found in some rice lines that have been examined by Adachi et al. (2011a, 2011b, 2011c, 2013) and Taylaran et al. (2011) and the prospects for future improvement of rice photosynthesis.

The high-yielding *indica* cultivar Takanari displays the highest rate of light-saturating photosynthesis at an atmospheric CO\(_2\) concentration among rice cultivars (Kanemura et al., 2007; Hirasawa et al., 2010). We compared the physiological factors responsible for the high \(P_n\) found in Takanari with those in Koshihikari, the most popular cultivar in Japan, which exhibits a lower \(P_n\) (Taylaran et al., 2011). It is well known that \(P_n\) is affected by the leaf N content (LNC) because large amounts of N are invested in Rubisco, the primary CO\(_2\) fixation enzyme (Cook and Evans, 1983; Makino et al., 1984). The LNC of Takanari was found to be significantly higher than that of
Koshihikari when both cultivars received the same fertilizer regime. This higher LNC is expected to be one reason for the high P_n found in Takanari. The high LNC of Takanari resulted not from the proportion of N distributed to the leaves, but from high plant N accumulation.

Because LNC affects not only Rubisco content but also many other photosynthesis regulators, including g_s, (Ishihara et al., 1979), it is important to examine P_n of different varieties with the same LNC. When the LNC of Koshihikari was raised to the same level as that of Takanari through the application of additional N, both the g_s and P_n of Takanari remained higher than those of Koshihikari, but there was no difference in the response of P_n to the intercellular CO$_2$ concentration between the two cultivars (Taylaran et al., 2011). These results indicate that the higher P_n of Takanari is due to the higher g_s even under the same LNC.

The response of leaf stomata to reduce leaf water potential in rice is much more sensitive compared to many other crops (Hirasawa, 1999). In fact, at a vapor pressure deficit of as small as 1.5 MPa, the value of g_s in Koshihikari decreased due to the reduction of the leaf water potential. In contrast, the higher g_s found in Takanari is supported by the maintenance of a higher leaf water potential through higher hydraulic conductance. This higher hydraulic conductance was due to the significantly greater root surface area. These results indicate that an increased root mass is important for increasing the g_s in rice. The accumulation of N in plants is affected not only by their N assimilation capacity but also by the transportation of N to shoots via the transpirational stream (Cernusak et al., 2009). Plants with larger root systems exhibit high transpirational uptake of water (Hirasawa et al., 1992). Based on these results, the greater root mass found in Takanari might contribute to the higher N accumulation observed. The enhancement of root mass may be important not only for increasing g_s but also for enhancing the accumulation of N in rice.

The diffusion of CO$_2$ from the atmosphere to the chloroplasts is regulated not only by g_s but also by g_m, affects diffusion from the intercellular airspace to the chloroplasts and has been recognized as an important regulator of P_n in recent years (Makino, 2011). Despite the wide variation of g_s among species (see Warren, 2008b; Flexas et al., 2012), studies comparing g_m among rice cultivars have not been reported. Among backcrossed inbreed lines derived from a cross between Koshihikari and Takanari, we found two high-photosynthesis lines, HP-a and HP-b, that showed a much higher P_n than Takanari, approaching to that in maize, a C$_4$ plant (Adachi et al., 2013). However, the differences in LNC and g_s between the HP lines and Takanari were small. Based on the results showing that the g_m was significantly higher in the HP lines than in Takanari and that the relationship between the P_n and CO$_2$ concentration in the chloroplasts in these lines was similar to that in Takanari when the LNC was similar, we concluded that the higher P_n found in the HP lines was due mainly to the higher g_m compared to Takanari. This conclusion indicates that the P_n of rice can be greatly increased to the same level as found in maize if the rice exhibits greater g_m than Takanari, in combination with high LNC and g_s as found in Takanari. Mesophyll conductance may be a key factor for further increasing rice photosynthesis, and the variations of g_m in rice cultivars and lines should therefore be examined well.

The size of g_m is proportional to the cumulative surface area of the chloroplasts exposed to the intercellular airspace divided by the leaf surface area (S_c/S) among plants in the same functional group (Terashima et al., 2011). The HP lines display thick layers of mesophyll, like Takanari, but smaller mesophyll cells with more developed lobes than Takanari. These characteristics enlarge the cumulative mesophyll surface area and, thus, increase S_c/S. The smaller, more lobate mesophyll cells seem to be inherited from Koshihikari. Chonan (1967) referred to rice mesophyll cells as ‘armed’ parenchyma cells, and he speculated that their shape might enhance CO$_2$ diffusion inside the leaf. Our results support his speculation, although the greater number of mesophyll cells per leaf area is more critical for the increased S_c/S observed in the HP lines. g_m is controlled by several traits, including cell wall thickness, carbonic anhydrase activity and aquaporin activity, as well as S_c/S (Hanba et al., 2004; Evans et al., 2009; Terashima et al., 2011). Further studies are necessary to clarify the factors that determine the differences in g_m among rice cultivars and lines.

As illustrated above, we found that the differences in P_n observed among rice lines can be explained by differences in LNC, g_s and g_m and we strongly suggest that simultaneously increasing these parameters has the potential to greatly improve rice photosynthesis (Fig. 4). An increased root mass and alteration of mesophyll anatomy are expected to be key factors for improving these.
parameters and, thus, improving P_n. Although the P_n found in Koshihikari is much lower than that of Takanari, the HP progeny showed a much higher P_n as a result of the cumulative effects of several key characteristics. This improvement suggests that photosynthesis can be significantly increased in rice through the use of already available genetic resources in appropriate combinations.

We have just begun QTL analysis using populations derived from a cross between Koshihikari and Takanari. Genetic analysis of populations derived from a cross between Koshihikari and the indica cultivar Habataki, which shows comparable P_n to Takanari, allowed the mapping four QTL regions associated with P_n on chromosomes 4, 5, 8 and 11 (Adachi et al., 2011a, 2011b). The Habataki segments of chromosome 5 and 11 were found to be responsible for increasing LNC, that of chromosome 8 for increasing g, and that of chromosome 4 for both traits. Pyramiding of the regions of chromosomes 4 and 8 in the Koshihikari genetic background increased P_n to the same level as found in Habataki (Adachi et al., 2011c). Therefore, the mapping and pyramiding of QTLs for leaf photosynthesis may be useful strategies to improve leaf photosynthesis in rice.

Several QTLs related to leaf photosynthesis in rice have been reported (Teng et al., 2004; Hu et al., 2009; Takai et al., 2010; Gu et al., 2011), but only one gene underlying these QTLs has been identified thus far (Takai et al., 2013). We are working to identify the genes underlying these QTLs and to clarify the molecular mechanisms involved in the increase of P_n by these genes. Genes associated with small and lobate mesophyll cell shape are targets to be identified in future research. Appropriate combinations of these genes are expected to increase P_n to an unprecedented level. It will also be important to find a variety of alleles from diverse rice accessions. For this purpose, we need to develop multiple sets of populations, including CSSLs, using diverse accessions as donors for QTL mapping (Fukuoka et al., 2010) and rapid, high-accuracy methods to measure P_n and traits related to photosynthesis (Flood et al., 2011). The close collaboration of crop breeders and crop scientists will promote breeding aimed at improving leaf photosynthesis in rice.

5. Conclusions and perspectives

In this review, we focused on the stability and capacity of single-leaf photosynthetic rate. It is possible to observe the flow of the energy or CO$_2$ in mesophyll tissues in detail by applying technical advances, including gas exchange measurement systems, Chl fluorescence measurement and carbon isotope discrimination. The progress in the field of molecular biology is making it easier to manipulate targeted traits involved in leaf photosynthesis. These achievements strongly suggest that the leaf photosynthetic capacity can be genetically improved in crop species based on the recent progress regarding physiology and genetics. Some traits that are outside of the scope of this paper, such as kinetics and activity of Rubisco, are also important for improving the leaf photosynthetic rate (Suzuki et al., 2009; Ishikawa et al., 2011; Whitney et al., 2011). With respect to methodology, techniques allowing the rapid visualization of photosynthesis, such as thermography (Maes and Steppe, 2012), imaging-PAM (Baker and Rosenqvist, 2004; Omasa et al., 2009) or the direct quantification of O$_2$ (Tschiersch et al., 2012), are also expected to accelerate photosynthesis research. However, the fact that real photosynthesis is highly heterogeneous over space and time should not be overlooked. For instance, the effects of the leaf position and nutrient availability make this matter complex. This complexity may be one reason for the ‘missing link’ between leaf photosynthesis and crop productivity. Moreover, the photosynthetic adaptation of crop plants to future climate changes, such as high CO$_2$ concentrations, rising temperatures, more frequent extreme temperature events, and precipitation changes, will represent a significant challenge for photosynthesis physiologists. Hence, the issue should not be ‘how to configure a leaf with improved photosynthetic performance’, but ‘how the configured leaf performs under various environments’. From this view point, the physiological study of leaf photosynthesis will be revalued in crop science.

Acknowledgements

We appreciate the Working Group for Fostering Young Scientists and the Symposium Organizing Committee in the Crop Science Society Japan for giving us the opportunity of the review. We thank Emeritus Prof. F. Kubota, Prof. O. Ueno and Dr. T. Araki for helpful advice on data analysis of Chl fluorescence, Prof. J. R. Evans and Prof. S. von Caemmerer for measurements of g, Prof. L. C. Purcell, Prof R. Nelson for providing the soybean germplasms and Dr. T. Yamamoto, Dr. T. Takai, Dr. T. Ebitani and Dr. K. Murata for providing the rice lines for genetic analysis.

References

Aasamaa, K. and Sober, A. 2012. Responses of stomatal conductance to simultaneous changes in two environmental factors. *Tree Physiol.* 31: 855-864.

Adachi, S., Nito, N., Kondo, M., Yamamoto, T., Araishi, Y., Ando, T., Ookawa, T., Yano, M. and Hirasawa, T. 2011a. Identification of chromosomal regions controlling the leaf photosynthetic rate in rice by using a progeny from *japonica* and high-yielding *indica* varieties. *Plant Prod. Sci.* 14: 118-127.

Adachi, S., Tsuru, Y., Nito, N., Murata, K., Yamamoto, T., Ebitani, T., Ookawa, T. and Hirasawa, T. 2011b. Identification and characterization of genomic regions on chromosomes 4 and 8 that control the rate of photosynthesis in rice leaves. *J. Exp. Bot.* 62: 1927-1938.

Adachi, S., Tsuru, Y., Murata, K., Yamamoto, T., Ebitani, T., Ookawa,
T. and Hirasawa, T. 2011c. Pyramiding of QTLs identified on chromosomes 4 and 8 for the rate of leaf photosynthesis in rice. *Proc. 7th Asian Crop Science Association Conference, Bogor*. 56.

Adachi, S., Nakae, T., Uchida, M., Soda, K., Takai, T., Oi, T., Yamamoto, T., Ookawa, T., Miyake, H., Yano, M. and Hirasawa, T. 2013. The mesophyll anatomy enhancing CO$_2$ diffusion is a key trait for improving rice photosynthesis. *J. Exp. Bot.* 64: 1061-1072.

Anai, T. 2012. Potential of a mutant-based reverse genetic approach for functional genomics and molecular breeding in soybean. *Biol. Sci.* 61: 462-467.

Asada, K. 1999. The water-water cycle in chloroplasts: scavenging of reactive oxygen species and nitrogen. *Plant Physiol.* 119: 697-706.

Baker, N.R. 2008. Chlorophyll fluorescence: a probe of photosynthesis in vivo. *Ann. Rev. Plant Biol.* 59: 89-113.

Bergmann, D.C. and Sack, D.F. 2007. Stomatal development. *Annu. Rev. Plant Biol.* 58: 163-181.

Bonnecarrère, V., Borsani, O., Díaz, P., Capdevielle, F., Blanco, P. and Monza, J. 2011. Response to photooxidative stress induced by cold in * japonica* rice is genotype dependent. *Plant Sci.* 180: 726-732.

Bornman, J.F., Vogelmann, T.C. and Martin G. 1991. Measurement of chlorophyll fluorescence within leaves using a fiber optic microprobe. *Plant Cell Environ.* 14: 719-725.

Busch, F.A., Sage, T.L., Cousins, A.B. and Sage, R.F. 2013. C$_3$ plants enhance rates of photosynthesis by reasimilating photorespired and respired CO$_2$. *Plant Cell Environ.* 36:200-212.

Centritto, M., Loreto, F. and Chartzoulakis, K. 2003. The use of low CO$_2$ to estimate diffusional and non-diffusional limitations of photosynthetic capacity of salt-stressed olive saplings. *Plant, Cell Environ.* 26:585-594.

Cernusak, L.A., Winter, K. and Turner, B.L. 2009. Plant δ15N correlates with the transpiration efficiency of nitrogen acquisition in tropical trees. *Plant Physiol.* 151: 1667-1676.

Chonan, N. 1967. Studies on the photosynthetic tissues in the leaves of cereal crops. III. The mesophyll structure of rice leaves inserted at different levels of the shoot. *Proc. Crop Sci. Soc. Jpn.* 56: 291-296.

Ciba, A.J. and Brun, W.A. 1975. Stomatal size and frequency in soybeans. *Crop Sci.* 15: 309-313.

Cook, M.G. and Evans, L.T. 1983. Nutrient responses of seedlings of wild and cultivated *Oryza* species. *Field Crops Res.* 6: 205-218.

Demming-Adams, B., Adams III, W.W., Baker, D.H., Logan, B.A., Bowling D.A. and Verhoeven, A.S. 1996. Using chlorophyll fluorescence to assess the fraction of absorbed light allocated to thermal dissipation of excess excitation. *Physiol. Planta.* 98: 253-264.

Douthie, C., Dreyer, E., Brendel, O. and Warren, C.R. 2012. Is mesophyll conductance to CO$_2$ in leaves of three *Eucalyptus* species sensitive to short-term changes of irradiance under ambient as well as low O$_2$? *Functional Plant Biol.* 39: 435-448.

Endo, T. and Asada, K. 2006. Photosystem I and photoprotection: Cyclic electron flow and water-water cycle. In B. Demming-Adams, W.W. Adams III and A. Mattoo, eds., *Photoprotection, Photosynthesis Inhibition, Gene Regulation, and Environment*. Springer, Dordrecht. 205-217.

ERS/USDA. 2010. Economic Research Service. [Online]. Available at http://www.ers.usda.gov/Briefing/SoybeansOilCrops/ (accessed 4th Apr. 2013; verified 6th Dec. 2013)

Evans, J.R. and Seemann, J.R. 1984. Difference between wheat genotypes in specific activity of ribulose-1,5-bisphosphate carboxylase and the relationship to photosynthesis. *Plant Physiol.* 74: 739-765.

Evans, J.R., Sharkey, T.D., Berry, J.A. and Farquhar, G.D. 1986. Carbon isotope discrimination measured concurrently with gas exchange to investigate CO$_2$ diffusion in leaves of higher plants. *Aust. J. Plant Physiol.* 13: 281-292.

Evans, L.T. 1993. *Crop Evolution, Adaptation And Yield*. Cambridge University Press, Cambridge. 1-500.

Evans, J.R., Kaldenhoff, R., Genty, B. and Terashima, I. 2009. Resistances along the CO$_2$ diffusion pathway inside leaves. *J. Exp. Bot.* 60: 2235-2248.

Farquhar, G.D., von Caemmerer, S. and Berry, J.A. 1980. A biochemical model of photosynthetic CO$_2$ assimilation in leaves of C, species. *Planta* 149: 7890.

Farquhar, G.D. and Sharkey, T.D. 1982. Stomatal conductance and photosynthesis. *Annual Rev. Plant Physiol.* 33: 317-345.

Farquhar, G.D., O’Leary, M.H. and Berry J.A. 1982. On the relationship between carbon isotope discrimination and the intercellular carbon dioxide concentration in leaves. *Aust. J. Plant Physiol.* 9: 121-137.

Flexas, J., Díaz-Espejo, A., Galmes, J., Kaldenhoff, R., Medrano, H. and Ribas-Carbo, M. 2007. Rapid variations of mesophyll conductance in response to changes in CO$_2$ concentration around leaves. *Plant Cell Environ.* 30: 1284-1298.

Flexas, J., Barbour, M.M., Brendel, O., Cabrera, H.M., Carriqué, M., Díaz-Espejo, A., Douthie, C., Dreyer, E., Ferrio, J.P., Gago, J., Gallé, A., Galméis, J., Kodama, N., Medrano, H., Niinemets, Ü., Peguero-Pina, J.J., Pou, A., Ribas-Carbó, M., Tomàs, M., Tosens, T. and Warren, C.R. 2012. Mesophyll diffusion conductance to CO$_2$: an unappreciated central player in photosynthesis. *Plant Sci.* 193/194: 70-84.

Flood, P.J., Habinson, J. and Aarts, M.G.M. 2011. Natural genetic variation in plant photosynthesis. *Trends Plant Sci.* 16: 327-335.

Foye, C.H. and Noctor, G. 1999. Leaves in the dark see the light. *Science* 284: 599-601.

Franks, P.J. and Beerling, D.J. 2009. CO$_2$-forced evolution of plant gas exchange capacity and water use efficiency over the Phanerozoic. *Geobiol.* 7: 227-236.

Fukuoka, S., Nonoue, Y. and Yano, M. 2010. Germplasm enhancement by developing advanced plant materials from diverse rice accessions. *Breed. Sci.* 60: 509-517.

Gu, J., Yin, X., Struik, P.C., Stomph, T.J. and Wang, H. 2011. Using chromosome introgression lines to map quantitative trait loci for photosynthesis parameters in rice (*Oryza sativa* L.) leaves under drought and well-watered field conditions. *J. Exp. Bot.* 63: 455-469.

Hall, A.E. and Kaufmann, M.R. 1975 Stomatal response to *Sesamum indicum* L. *Plant Physiol.* 55: 455-459.

Hanba, Y.T., Shibasaka, M., Hayashi, Y., Hayakawa, T., Kasamo, K., Han, M., Hirasawa, T. 2011c. Pyramiding of QTLs identified on chromosomes 4 and 8 for the rate of leaf photosynthesis in rice. *Proc. 7th Asian Crop Science Association Conference, Bogor*. 56.

Hanba, Y.T., Shibasaka, M., Hayashi, Y., Hayakawa, T., Kasamo, K., Han, M., Hirasawa, T. 2011c. Pyramiding of QTLs identified on chromosomes 4 and 8 for the rate of leaf photosynthesis in rice. *Proc. 7th Asian Crop Science Association Conference, Bogor*. 56.

Hanba, Y.T., Shibasaka, M., Hayashi, Y., Hayakawa, T., Kasamo, K., Han, M., Hirasawa, T. 2011c. Pyramiding of QTLs identified on chromosomes 4 and 8 for the rate of leaf photosynthesis in rice. *Proc. 7th Asian Crop Science Association Conference, Bogor*. 56.

Hanba, Y.T., Shibasaka, M., Hayashi, Y., Hayakawa, T., Kasamo, K., Han, M., Hirasawa, T. 2011c. Pyramiding of QTLs identified on chromosomes 4 and 8 for the rate of leaf photosynthesis in rice. *Proc. 7th Asian Crop Science Association Conference, Bogor*. 56.
Harley, P.C., Loreto, F., Di Marco, G. and Sharkey, T.D. 1992. Theoretical considerations when estimating the mesophyll conductance to CO₂ flux by analysis of the response of photosynthesis to CO₂. Plant Physiol. 98: 1429-1436.

Hendrickson, L., Furbank, R.T. and Chow, W.S. 2004. A simple alternative approach to assessing the fate of absorbed light energy using chlorophyll fluorescence. Photosynth. Res. 82: 73-81.

Hirasawa, T., Tsuchida, M. and Ishihara, K. 1992. Relationship between resistance to water transport and exudation rate and the effect of the resistance on the midday depression of stomatal aperture in rice plants. Jpn. J. Crop Sci. 61: 145-152.

Hirasawa, T. 1999. Physiological characterization of the rice plant for tolerance of water deficit. In O. Ito, J. O’Toole and B. Hardy eds., Genetic Improvement of Rice for Water-Limited Environments. IRRI, Los Baños, The Philippines. 89-98.

Hirasawa, T., Ozawa, S., Taylaran, R.D. and Ookawa, T. 2010. Varietal differences in photosynthetic rates in rice plants, with special reference to the nitrogen content of leaves. Plant Prod. Sci. 13: 55-57.

Horie, T., Matsuura, S., Takai, T., Kuwasaki, K., Ohsumi, A. and Shiraiwa, T. 2006. Genotypic difference in canopy diffusive conductance measured by a new remote-sensing method and its association with the difference in rice yield potential. Plant Cell Environ. 29: 653-660.

Horton, P. 2000. Prospects for crop improvement through the genetic manipulation of photosynthesis: morphological and biochemical aspects of light capture. J. Exp. Bot. 51: 475-485.

Hu, S.P., Zhou, Y., Zhang, L., Zhu, X.D., Li, L., Luo, L.J., Liu, G.L. and Zhou, Q.M. 2009. Correlation and quantitative trait loci analyses of total chlorophyll content and photosynthetic rate of rice (Oryza sativa) under water stress and well-watered conditions. J. Integr. Plant Biol. 51: 879-888.

Hubbart, S., Peng, S., Horton, P., Chen, Y. and Murchie, E.H. 2007. Trends in leaf photosynthesis in historical rice varieties developed in the Philippines since 1966. J. Exp. Bot. 58: 3429-3438.

Ishihara, K., Iida, O., Hirasawa, T. and Ogura, T. 1979. Relationship between nitrogen content in leaf blades and photosynthetic rate of rice plants with reference to stomatal aperture and conductance. Jpn. J. Crop Sci. 48: 543-550.

Ishikawa, C., Hatanaka, T., Misoo, S., Miyake, C., and Fukayama, H. 2011. Functional incorporation of sorghum small subunit nitrogenase into rice and wheat. Plant Physiol. 156: 1603-1611.

Jiao, D. and Ji, B. 2001. Photo-inhibition in indica and japonica subspecies of rice (Oryza sativa L.) and their reciprocal F1 hybrids. Aust. J. Plant Physiol. 28: 299-306.

Jiao, D., Ji, B. and Li, X. 2003. Characteristics of chlorophyll fluorescence and membrane-lipid peroxidation during senescence of flag leaf in different cultivars of rice. Photosynthetica 41: 33-41.

Kajala, K., Covshoff, S., Karki, S., Woodfield, H., Tolley, B.J., Dionora, M.J.A., Mogul, R.T., Mabilangan, A.E., Danila, F.R., Hibberd, J.M. and Quick WP 2011. Strategies for engineering a two-celled C₄ photosynthetic pathway into rice. J. Exp. Bot. 62:3001-3010.

Kanemura, T., Homma, K., Ohsumi, A., Shiraiwa, T. and Horie, T. 2007. Evaluation of genotypic variation in leaf photosynthetic rate and its associated factors by using rice diversity research set of germplasm. Photosynth. Res. 94: 23-30.

Kasajima, I., Ebana, K., Yamamoto, T., Takahara, K., Yano, M., Kawai-Yamada, M. and Uchiyama, H. 2011. Molecular distinction in genetic regulation of nonphotochemical quenching in rice. Proc. Natl. Acad. Sci. USA. 108: 13835-13840.

Kawasaki, Y., Tanaka, Y., Katsura, K., Purcell, L.C., Homma, K., Tanaka, T.K. and Shiraiwa, T. 2010. Yield and Dry Matter Productivity of Japanese and US Soybean Cultivars –A Comparison in the warm regions. Jpn. J. Crop Sci. 79 (Extra issue 2) : 102-103**.

Keren, N. and Krieger-Liszkay, A. 2011. Photoinhibition: molecular mechanisms and physiological significance. Physiol. Planta. 142: 1-5.

Kumagai, E., Araki, T. and Kubota, F. 2007. Effects of nitrogen supply restriction on gas exchange and photosystem 2 function in flag leaves of a traditional low-yield cultivar and a recently improved high-yield cultivar of rice (Oryza sativa L.). Photosynthetica 45 : 489-495.

Kumagai, E., Araki, T. and Kubota, F. 2009. Characteristics of gas exchange and chlorophyll fluorescence during senescence of flag leaf in different rice (Oryza sativa L.) cultivars grown under nitrogen-deficient condition. Plant Prod. Sci. 12 : 285-292.

Kumagai, E., Araki, T. and Ueno, O. 2010. Comparison of susceptibility to photoinhibition and energy partitioning of absorbed light in photosystem II in flag leaves of two rice (Oryza sativa L.) cultivars that differ in their responses to nitrogen-deficiency. Plant Prod. Sci. 13: 11-20.

Kumagai, E., Araki, T., Kubota, F. and Ueno, O. 2012. Effects of nitrogen deficiency on dry matter and grain productions of six rice (Oryza sativa L.) cultivars. J. Fac. Agric. Kyushu Univ. 57: 35-39.

Kyle, D.J., Ohad, I. and Guy, R. 1984. Selective thylakoid protein damage and repair during photoinhibition. In C. Sybesma ed., Advanced Photosynthesis Research. Vol. III. Kluwer Academic Publishers, Norwell. 67-70.

Laza, M.R.C., Kondo, M., Ideta, O., Barlaan, E. and Imbe, T. 2010. Quantitative trait loci for stomatal density and size in lowland rice. Euphytica. 172: 149-158.

Long, S.P., Zhu, X.G., Naidu, S.L. and Ort, D.R. 2006. Can photosynthetic pathway into rice and wheat. Plant Physiol. 142: 1-5.

Lu, Z., Percy, R.G., Qualset, C.O. and Zeiger, E. 1998. Stomatal conductance predicts yields in irrigated Pima cotton and bread wheat grown at high temperatures. J. Exp. Bot. 49: 453-460.

Maes, W.H. and Steppe K. 2012. Estimating evapotranspiration and stomatal conductance to CO₂ flux by analysis of the response of photosynthesis to CO₂. Plant Physiol. 98: 1429-1436.

Makino, A., Mac, T. and Ohira, K. 1984. Changes in photosynthetic capacity in rice leaves from emergence through senescence. Analysis from ribulose-1,5-bisphosphate carboxylase and leaf conductance. Plant Cell Physiol. 25: 511-521.

Makino, A. 2011. Photosynthesis, grain yield, and nitrogen utilization in rice and wheat. Plant Physiol. 155: 125-129.
Johnson, J.E., Burtner, C., Odden, A.R., Young, K., Taylor, N.E., Henikoff, J.G., Comai, L. and Henikoff, S. 2003. Large-scale discovery of induced point mutations with high-throughput TILLING. *Genome Res.* 13: 524-530.

Tschiersch, H., Liebsch, G., Borisjuk, L., Stangelmayer, A. and Rolletschek, H. 2012. An imaging method for oxygen distribution, respiration and photosynthesis at a microscopic level of resolution. *New Phytol.* 196: 926-936.

Uehlein, N., Otto, B., Hanson, D.T., Fischer, M., McDowell, N. and Kaldenhoff, R. 2008. Function of *Nicotiana tabacum* aquaporins as chloroplast gas pores challenges the concept of membrane CO₂ permeability. *Plant Cell* 20: 648-657.

Uehlein, N., Sperling, H., Heckwolf, M. and Kaldenhoff, R. 2012. The Arabidopsis aquaporin PIP1;2 rules cellular CO₂ uptake. *Plant Cell Environ.* 35:1077-1083.

Vaidyanathan, H., Sivakumar, P., Chakrabarty, R. and Thomas, G. 2003. Scavenging of reactive oxygen species in NaCl-stressed rice (*Oryza sativa* L.)—differential response in salt-tolerant and sensitive varieties. *Plant Sci.* 165: 1411-1418.

von Caemmerer, S. and Evans, J.R. 1991. Determination of the average partial pressure of CO₂ in chloroplasts from leaves of several C₃ plants. *Aust. J. Plant Physiol.* 18: 287-305.

Warren, C.R. 2008a. Soil water deficits decrease the internal conductance to CO₂ transfer but atmospheric water deficits do not. *J. Exp. Bot.* 59:327-334.

Warren, C.R. 2008b. Stand aside stomata, another actor deserves centre stage: the forgotten role of the internal conductance to CO₂ transfer. *J. Exp. Bot.* 59: 1475-1487.

Whitney, S.M., Sharwood, R.E., Orr, D., White, S.J., Alonso, H. and Galmes, J. 2011. Isoleucine 309 acts as a C₄ catalytic switch that increases ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) carboxylation rate in *Flaveria*. *Proc. Natl. Acad. Sci. USA* 108: 14688-14693.

Yoo, C.Y., Pence, H.E., Jin, J.B., Miura, K., Gosney, M.J., Hasegawa, P.M. and Mickelbart, M.V. 2010. The Arabidopsis *GTL1* transcription factor regulates water use efficiency and drought tolerance by modulating stomatal density via transrepression of *SDD1*. *Plant Cell* 22: 4128-4141.

* In Japanese with English summary.

** In Japanese.

*** In German.