Summarizing the Solution Space in Tumor Phylogeny Inference by Multiple Consensus Trees

Nuraini Aguse*, Yuanyuan Qi* and Mohammed El-Kebir
University of Illinois at Urbana Champaign, Department of Computer Science

RECOMB-CCB 2019

*Joint first authorship
Accepted at ISMB/ECCB 2019
Additional Challenge in Cancer Phylogenetics

Phylogeny inference from mixtures of/incomplete measurements of leaves

Incorrect entries:	Missing entries:
0: false negative	?
1: false positive	

Bulk DNA sequencing

Single-cell DNA sequencing

S_1	S_2	S_3

n mutations
S_1
S_2
S_3

m samples
S_1
S_2
S_3

m cells

Additional Details:

- Incorrect entries: 0: false negative, 1: false positive
- Missing entries: ?
Additional Challenge in Cancer Phylogenetics

Phylogeny inference from mixtures of/incomplete measurements of leaves

Non-uniqueness of solutions: alternative solutions with varying leaf sets
Additional Challenge in Cancer Phylogenetics

Phylogeny inference from mixtures of/incomplete measurements of leaves

Bulk DNA sequencing

Single-cell DNA sequencing

Solution Space \(\mathcal{T} \)

Non-uniqueness of solutions: alternative solutions with varying leaf sets

Question: How to summarize solution space \(\mathcal{T} \) in order to remove inference errors and identify dependencies among mutations?
Outline

• Problem Statement
 • Previous work
 • Problem statement
 • Combinatorial characterization of solutions
 • Complexity

• Method & Results
 • Exact algorithm
 • Heuristic algorithm
 • Model selection
Phylogenetic Trees vs. Mutation Trees

Infinite sites assumption (ISA): each mutation is introduced once and never subsequently lost
Infinite sites assumption (ISA): each mutation is introduced once and never subsequently lost

Under ISA, a phylogenetic tree may be equivalently* represented by a mutation tree
Question: How to summarize solution space in order to remove inference errors and identify dependencies among mutations?
Parent-child Graph: Union of all Edges in \mathcal{T}
The parent-child graph does not capture patterns of mutual exclusivity
Parent-child Graph: Union of all Edges in \mathcal{T}

The parent-child graph does not capture patterns of mutual exclusivity

Question: Can we infer a single consensus tree?
Single Consensus Tree: Max Weight Spanning Tree

Oesper and colleagues. [ACM-BCB 2018]

	$v_4 \rightarrow v_5$	$v_8 \rightarrow v_5$
$v_1 \rightarrow v_{10}$	2	3 (d)
$v_4 \rightarrow v_{10}$	0	0
$v_1 \rightarrow v_7$	2 (b)	5 (e)
$v_4 \rightarrow v_7$	5 (e)	2
$v_8 \rightarrow v_7$	2	3
Single Consensus Tree: Max Weight Spanning Tree

Oesper and colleagues. [ACM-BCB 2018]

Question: How about inferring multiple consensus trees?

Inaccurate summary for diverse solution spaces
Multiple Consensus Trees Problem

Simultaneous clustering and consensus tree inference

Yuanyuan Qi
Nuraini Aguse
Multiple Consensus Trees Problem

Simultaneous clustering and consensus tree inference

Multiple Consensus Trees (MCT): [ISMB/ECCB 2019]

Given trees $\mathcal{T} = \{T_1, ..., T_n\}$ and $k > 0$, find surjective clustering $\sigma : [n] \rightarrow [k]$ and consensus trees $\mathcal{R} = \{R_1, ..., R_k\}$ s.t. $\sum_{i=1}^{n} d(T_i, R_{\sigma(i)})$ is minimum
Multiple Consensus Trees Problem

Simultaneous clustering and consensus tree inference

Multiple Consensus Trees (MCT): [ISMB/ECCB 2019]

Given trees $\mathcal{T} = \{T_1, ..., T_n\}$ and $k > 0$, find surjective clustering $\sigma : [n] \rightarrow [k]$ and consensus trees $\mathcal{R} = \{R_1, ..., R_k\}$ s.t. $\sum_{i=1}^{n} d(T_i, R_{\sigma(i)})$ is minimum.
Parent-child Distance Function

T_1

T_2
Parent-child Distance Function

$E(T_1) \cap E(T_2)$

$E(T_1) \setminus E(T_2)$

$E(T_2) \setminus E(T_1)$
Parent-child Distance Function

Parent-child distance $d(T_1, T_2)$ is the size of the symmetric difference of the edge sets

Here, $d(T_1, T_2) = |E(T_1)\setminus E(T_2)| + |E(T_2)\setminus E(T_1)| = 4$.
Combinatorial Characterization of Solutions to MCT

Single Consensus Trees (SCT): [Govek et al., ACM-BCB 2018]

Given $\mathcal{T} = \{T_1, \ldots, T_n\}$, find consensus tree R s.t.

$$\sum_{i=1}^{n} d(T_i, R) \text{ is minimum}$$
Combinatorial Characterization of Solutions to MCT

Single Consensus Trees (SCT): [Govek et al., ACM-BCB 2018]
Given $\mathcal{T} = \{T_1, \ldots, T_n\}$, find consensus tree R s.t.
\[
\sum_{i=1}^{n} d(T_i, R) \text{ is minimum}
\]

Theorem: [Govek et al., ACM-BCB 2018]
Max weight spanning arborescences of parent-child graph $G_\mathcal{T}$ are solutions to SCT

Solution Space \mathcal{T}
Consensus tree R
Parent-child graph $G_\mathcal{T}$

- 4 edges
- 3 edges
- 2 edges
- 1 edge
Combinatorial Characterization of Solutions to MCT

Single Consensus Trees (SCT): [Govek et al., ACM-BCB 2018]
Given $\mathcal{T} = \{T_1, \ldots, T_n\}$, find consensus tree R s.t.
$\sum_{i=1}^{n} d(T_i, R)$ is minimum.

Theorem: [Govek et al., ACM-BCB 2018]
Max weight spanning arborescences of parent-child graph $G_\mathcal{T}$ are solutions to SCT.

Multiple Consensus Trees (MCT): [Aguse et al., ISMB 2019]
Given $\mathcal{T} = \{T_1, \ldots, T_n\}$ and $k > 0$, find surjective clustering $\sigma : [n] \rightarrow [k]$ and consensus trees $\mathcal{R} = \{R_1, \ldots, R_k\}$ s.t. $\sum_{i=1}^{n} d(T_i, R_{\sigma(i)})$ is minimum.

Solution Space \mathcal{T}
Combinatorial Characterization of Solutions to MCT

Single Consensus Trees (SCT): [Govek et al., ACM-BCB 2018]
Given \(\mathcal{T} = \{T_1, ... , T_n\} \), find consensus tree \(R \) s.t.
\[\sum_{i=1}^{n} d(T_i, R) \] is minimum

Theorem: [Govek et al., ACM-BCB 2018]
Max weight spanning arborescences of parent-child graph \(G_{\mathcal{T}} \) are solutions to SCT

Multiple Consensus Trees (MCT): [Aguse et al., ISMB 2019]
Given \(\mathcal{T} = \{T_1, ... , T_n\} \) and \(k > 0 \), find surjective clustering \(\sigma : [n] \rightarrow [k] \) and consensus trees \(\mathcal{R} = \{R_1, ... , R_k\} \)
s.t. \[\sum_{i=1}^{n} d(T_i, R_{\sigma(i)}) \] is minimum

Proposition: [Aguse et al., ISMB 2019]
Given fixed clustering \(\sigma : [n] \rightarrow [k] \), MCT decomposes into \(k \) independent SCT instances
Combinatorial Characterization of Solutions to MCT

Single Consensus Trees (SCT): [Govek et al., ACM-BCB 2018]
Given $\mathcal{T} = \{T_1, ..., T_n\}$, find consensus tree R s.t. $\sum_{i=1}^{n} d(T_i, R)$ is minimum

Theorem: [Govek et al., ACM-BCB 2018]
Max weight spanning arborescences of parent-child graph $G_{\mathcal{T}}$ are solutions to SCT

Multiple Consensus Trees (MCT): [Aguse et al., ISMB 2019]
Given $\mathcal{T} = \{T_1, ..., T_n\}$ and $k > 0$, find surjective clustering $\sigma : [n] \rightarrow [k]$ and consensus trees $\mathcal{R} = \{R_1, ..., R_k\}$ s.t. $\sum_{i=1}^{n} d(T_i, R_{\sigma(i)})$ is minimum where $R_{\sigma(i)}$ is max weight spanning arborescence of $G_{\mathcal{T}_{\sigma(i)}}$

Proposition: [Aguse et al., ISMB 2019]
Given fixed clustering $\sigma : [n] \rightarrow [k]$, MCT decomposes into k independent SCT instances
Combinatorial Characterization of Solutions to MCT

Single Consensus Trees (SCT): [Govek et al., ACM-BCB 2018]
Given $\mathcal{T} = \{T_1, \ldots, T_n\}$, find consensus tree R s.t.
$\sum_{i=1}^{n} d(T_i, R)$ is minimum

Theorem: [Govek et al., ACM-BCB 2018]
Max weight spanning arborescences of parent-child graph $G_\mathcal{T}$ are solutions to SCT

Multiple Consensus Trees (MCT): [Aguse et al., ISMB 2019]
Given $\mathcal{T} = \{T_1, \ldots, T_n\}$ and $k > 0$, find surjective clustering
$\sigma : [n] \rightarrow [k]$ and consensus trees $\mathcal{R} = \{R_1, \ldots, R_k\}$
s.t. $\sum_{i=1}^{n} d(T_i, R_{\sigma(i)})$ is minimum
where $R_{\sigma(i)}$ is max weight spanning arborescence of $G_{\mathcal{T}\sigma(i)}$

Proposition: [Aguse et al., ISMB 2019]
Given fixed clustering $\sigma : [n] \rightarrow [k]$, MCT decomposes into
k independent SCT instances

Question: How to find σ^*?
Complexity

Multiple Consensus Trees (MCT):

Given $\mathcal{T} = \{T_1, ..., T_n\}$ and $k > 0$, find surjective clustering $\sigma : [n] \to [k]$ such that $\sum_{i=1}^{n} d(T_i, R_{\sigma(i)})$ is minimum where $R_{\sigma(i)}$ is the max weight spanning arborescence of $G_{\mathcal{T}_{\sigma(i)}}$.

Theorem: MCT is NP-hard for general k (by reduction from CLIQUE).
Outline

• Problem Statement
 • Previous work
 • Problem statement
 • Combinatorial characterization of solutions
 • Complexity

• Method & Results
 • Exact algorithm
 • Heuristic algorithm
 • Model selection
Theorem: MCT is NP-hard for general k (by reduction from CLIQUE).

\[
\begin{align*}
\min & \quad n(m - 1) - \sum_{i=1}^{n} \sum_{s=1}^{k} \sum_{p=1}^{m} \sum_{q=1}^{m} w_{i,s,p,q} \\
\text{s.t.} & \quad \sum_{s=1}^{k} x_{i,s} = 1 \quad \forall i \in [n] \\
& \quad \sum_{i=1}^{n} x_{i,s} \geq 1 \quad \forall s \in [k] \\
& \quad \sum_{p=1}^{m} z_{s,p} = 1 \quad \forall s \in [k] \\
& \quad \sum_{q=1}^{m} y_{s,p,q} = 1 - z_{s,p} \quad \forall s \in [k], p \in [m] \\
& \quad y_{s,p,q} \leq b_{p,q} \quad \forall s \in [k], p, q \in [m] \\
& \quad \sum_{(p,q) \in \delta^{-1}(U)} y_{s,p,q} + \sum_{p \in U} z_{s,p} \geq 1 \quad \forall s \in [k], U \subseteq [m] \\
& \quad w_{i,s,p,q} \leq a_{i,p,q} \quad \forall i \in [n], s \in [k], p, q \in [m] \\
& \quad w_{i,s,p,q} \leq x_{i,s} \quad \forall i \in [n], s \in [k], p, q \in [m] \\
& \quad w_{i,s,p,q} \leq y_{s,p,q} \quad \forall i \in [n], s \in [k], p, q \in [m] \\
& \quad w_{i,s,p,q} \geq 0 \quad \forall i \in [n], s \in [k], p, q \in [m] \\
& \quad y_{s,p,q} \leq \sum_{i=1}^{n} a_{i,p,q} x_{i,s} \quad \forall s \in [k], p, q \in [m] \\
& \quad y_{s,p,q} \geq \sum_{i=1}^{n} a_{i,p,q} x_{i,s} - \sum_{i=1}^{n} x_{i,s} + 1 \quad \forall s \in [k], p, q \in [m] \\
& \quad \sum_{i=1}^{n} x_{i,s} \geq \sum_{i=1}^{n} x_{i,s+1} + 1 \quad \forall s \in [k - 1] \\
& \quad x_{i,s} \in \{0, 1\} \quad \forall i \in [n], s \in [k] \\
& \quad y_{s,p,q} \geq 0 \quad \forall s \in [k], p, q \in [m] \\
& \quad z_{s,p} \geq 0 \quad \forall s \in [k], p \in [m]
\end{align*}
\]
Mixed Integer Linear Program

\[\begin{align*}
\text{Theorem: } \text{MCT is NP-hard for general } k \text{ (by reduction from CLIQUE).}
\end{align*} \]

\[\begin{align*}
x_{i,s} &\in \{0, 1\} \quad \text{Tree } T_i \text{ is assigned to cluster } s \\
y_{s,p,q} &\geq 0 \quad \text{Edge } (p, q) \text{ is present in consensus tree } R_s \\
z_{s,p} &\geq 0 \quad \text{Vertex } p \text{ is root of consensus tree } R_s
\end{align*} \]
MILP does not scale well with k and n
Coordinate Ascent (akin to k-means)

Proposition: [Aguse et al., ISMB 2019]
Given fixed clustering $\sigma : [n] \rightarrow [k]$, MCT decomposes into k independent SCT instances

1. Fix clustering σ at random

2. Compute consensus tree R_s for each cluster s

3. Reassign each input trees T_i to cluster s where $d(T_i, R_s)$ is minimum

4. Go to 2
Coordinate Ascent (akin to k-means)

Proposition: [Aguse et al., ISMB 2019]
Given fixed clustering $\sigma: [n] \to [k]$, MCT decomposes into k independent SCT instances

1. Fix clustering σ at random
2. Compute consensus tree R_s for each cluster s
3. Reassign each input trees T_i to cluster s where $d(T_i, R_s)$ is minimum
4. Go to 2

#clusters k	MILP (1 h)	BF (1 h)	CA (1 h)	CA (100 r.)
2	16	16	16	16
3	16	16	16	16
4	16	16	16	16
5	16	14	16	16
2	15	13	15	15
3	13	7	13	13
4	12	0	12	12
5	10	0	10	10
2	3	0	3	3
3	0	0	0	0
4	0	0	0	0
5	0	0	0	0
Bayesian Information Criterion

Jamal-Hanjani et al. (2017). *NEJM*.

Jamal-Hanjani et al. inferred 8 trees for patient CRUK0013
Bayesian Information Criterion

Jamal-Hanjani et al. (2017). *NEJM.*

Jamal-Hanjani et al. inferred 17 trees for patient CRUK0037
Conclusion

- Introduced the Multiple Consensus Tree (MCT) problem
- Characterized combinatorial structure of optimal solutions
- Showed that MCT is NP-hard
- Presented a mixed integer linear program
- Presented an efficient heuristic and showed that it finds optimal solutions
- Model selection for the number of clusters

Future directions

- Relax infinite sites assumption
- Use medoids rather than centroids