INTRODUCTION

The increasing global prevalence of obesity has important health and economic consequences [1]. Obesity is a known risk factor for cardiovascular disease, ischemic heart disease, stroke and type 2 diabetes [2-4]. Because of insufficient physical exercise caused by economic expansions, fast-food diet and sedentary lifestyle, the prevalence of obesity has rapidly increased in Korea. According to KNHNES (Korea National Health & Nutrition Examination Survey) in 2007, people aged 20 or over are faced with a prevalence of obesity, defined as Body Mass Index (BMI) ≥ 25 kg/m2, of 31.8% (men 35.2%, women 28.3%). There has been an increase of around 1.2% compared with 2001 (30.6%: men 32.4% and women 29.4%) [5].

Recently, abdominal obesity has been acknowledged as more important than obesity generally. Both have been reported to be highly correlated with alcohol intake [6]. but there are some studies which show that regular alcohol intake is not involved in the development of abdominal obesity [7].

OBJECTIVES: Although abdominal obesity has been reported to be highly related with alcohol intake, the results are still inconclusive. Therefore, this study was conducted to explore the association between alcohol and abdominal obesity among the Korean population.

METHODS: This study included 8,603 participants (men: 5,195, women: 3,408) aged 30 to 87 who visited the health promotion centers in Seoul for routine health examinations from April, 2006 to June, 2007. Abdominal obesity was defined as WC ≥ 90 cm for men and ≥ 85 cm for women in accordance with the Korean Society for the Study of Obesity. For ever drinkers, total alcohol consumption in grams was classified into four groups (group 1, non-drinkers; group 2, 1-10 g of alcohol per day; group 3, 11-20 g of alcohol per day; and group 4, over 20 g of alcohol per day).

RESULTS: The mean age of the study population was 45.4 yr old (men) and 45.3 yr (women). The average waist circumference was 85.3 cm in men and 75.3 cm in women. A high alcohol intake was associated with high waist circumference in both genders. In multivariate analysis, the group of men and women drinkers consuming >20 g in a day had a large waist circumference compared with men and women non-drinkers.

CONCLUSION: This study showed that a high alcohol intake was related to high waist circumference. Such association remained independently even after adjustment for smoking, which is strongly related to abdominal obesity.

KEY WORDS: Alcohol intake, Abdominal obesity
Several cross-sectional studies have evaluated the association between alcohol and abdominal obesity, but the results are still inconclusive [8]. Some found a positive association [9-11], whereas others found a negative or no association between alcohol intake and abdominal adiposity in both men and women [12-14]. Therefore, this study was conducted to explore the association between alcohol and abdominal obesity among the Korean population.

METHODS

Study population
This study included 9,995 Koreans (men: 5,824, women: 4,171) aged 30 to 87 who visited the health promotion centers in Seoul for routine health examinations from April, 2006 to June, 2007. Of the 9,995 participants, we excluded 223 who were younger than 30 and 1,105 with missing information on alcohol consumption and metabolic syndrome components. In addition, 64 participants were excluded because they had a past history of cardiovascular disease. Therefore, a total of 8,603 participants (men: 5,195, women: 3,408) were included in this study. Recruitment of volunteers only took place after written informed consent had been obtained. The Institutional Review Board of Human Research of Yonsei University approved this study.

Anthropometric measurements and blood testing
Waist circumference (WC) was measured midway between the lower rib and iliac crest with a measuring tape. In cases of difficulty, WC was measured 3 cm above the navel. The participants wore underwear and exposed their waists while WC was measured by well-trained employees. Participants' weight and height were also measured while they were wearing light clothing. BMI was calculated as weight (kg) divided by the square of height (m²). Both systolic and diastolic blood pressure were measured after a fifteen minute rest. For the clinical chemistry assay, serum was separated from peripheral venous blood samples that were obtained from each participant after twelve hours of fasting, and was then stored at -80°C. Metabolic syndrome components, such as fasting blood glucose, total cholesterol, triglyceride, and high density lipoprotein cholesterol (HDL-C) were measured with a Hitachi-7600 analyzer (Hitachi Ltd., Tokyo, Japan).

Self-questionnaire
Each participant was interviewed using a structured questionnaire to collect smoking habits, alcohol consumption and physical activity as well as other demographic characteristics such as age, gender, income and marriage status. Income (<3,000,000 or ≥3,000,000 KRW), marital status (single or married), and physical activity (yes or no) were divided into two groups. Cigarette smoking was classified as never smoker, ex-smoker and current smoker. Alcohol consumption was divided into two groups—non-drinker and always drinker. For the latter, we calculated alcohol consumption using the following formula: alcohol consumption (gram per day)=((No. of alcohol intake per week)×13 gram (amount of alcohol in gram per cup) / 7 days

Definition of abdominal obesity
Abdominal obesity was defined as WC ≥90 cm for men and ≥85 cm for women in accordance with Korean Society for the Study of Obesity criteria [15]. Obesity was defined as BMI ≥25 kg/m² according to the WHO definition [16].

Statistical analysis
For evaluation of the general characteristics among the study population, means and standard deviations (SD) were calculated and frequency of smoking and alcohol consumption was

Table 1. General characteristics of study population

	Total (n=8,603)	Men (n=5,195)	Women (n=3,408)
Age (yr)	45.4 ± 9.2	46.4 ± 8.9	45.3 ± 9.7
BMI (kg/m²)	23.8 ± 3.0	24.6 ± 2.7	22.7 ± 2.9
Waist circumference (cm)	81.3 ± 9.2	85.3 ± 7.5	75.3 ± 8.2
SBP (mmHg)	119.9 ± 14.4	123.0 ± 13.5	115.2 ± 14.3
DBP (mmHg)	76.2 ± 11.4	78.9 ± 11.0	72.0 ± 10.7
Fasting serum glucose (mg/dL)	93.6 ± 18.0	96.1 ± 19.2	89.8 ± 15.3
Total cholesterol (mg/dL)	189.3 ± 33.2	191.4 ± 32.4	186.0 ± 34.3
Triglyceride (mg/dL)	127.4 ± 88.9	147.5 ± 98.6	96.9 ± 59.8
HDL cholesterol (mg/dL)	52.9 ± 12.7	49.4 ± 11.2	58.3 ± 13.1
AST (U/L)	23.0 ± 15.4	24.8 ± 17.9	20.2 ± 10.4
ALT (U/L)	24.6 ± 30.4	29.3 ± 35.6	17.4 ± 17.9
GGT (U/L)	35.2 ± 42.5	45.8 ± 47.3	19.0 ± 26.5
Alcohol amount (g/day)	10.8 ± 21.9	16.3 ± 25.9	2.5 ± 8.3
Number (%)			

Alcohol consumption	Yes	6,125 (71.2)	4,609 (88.7)	1,516 (44.5)
Smoking				
Non smoker		4,458 (51.8)	1,216 (23.4)	3,242 (95.1)
Ex smoker		1,941 (22.6)	1,873 (36.1)	68 (2.0)
Current smoker		2,204 (25.6)	2,106 (40.5)	98 (2.9)

SD, Standard deviation; BMI, Body Mass Index; SBP, Systolic blood pressure; DBP, Diastolic blood pressure; HDL-cholesterol, High density lipoprotein cholesterol; AST, Aspartate aminotransferase; ALT, Alanine aminotransferase; GGT, Gamma glutamyltransferase.
determined. Total alcohol consumption in grams was classified into four groups (group 1, non-drinkers; group 2, 1-10 g of alcohol per day; group 3, 11-20 g of alcohol per day; and group 4, over 20 g of alcohol per day). Logistic regression analysis was performed to determine the association between total alcohol consumption and WC after adjustment for age, smoking habits, physical activity, education levels, income, and marriage status. All analyses were conducted with SAS statistical software, version 9.1 (SAS Institute Inc, Cary, NC, USA). Statistical significance was assumed to be p<0.05 when required.

RESULTS

The prevalence of obesity was found to be 27.7% (men: 27.2%, women: 28.4%) by NCEP-ATP III whereas it was 21.7% (men: 27.2%, women: 13.3%) according to the definition of obesity for Koreans [15].

Table 1 shows general characteristics of the study population. The mean age of the study population was 45.4 yr for men and 45.3 yr for women. The average WC was 85.3 cm in men and 75.3 cm in women. The mean body mass index among men was 24.6 kg/m², whereas it was 22.7 kg/m² among women. About 88.7% of men were drinkers who drank 16.3 g in a day, whereas 44.5% of women were drinkers who drank 2.5 g in a day.

Table 2 displays changes in general characteristics of men according to the amount of alcohol consumed in a day. Compared with non-drinkers, current drinkers had significantly increased diastolic blood pressure (DBP), fasting serum glucose (FSG), total cholesterol (TC) and gamma glutamyltransferase (GGT) with increasing consumption of alcohol use. About 47.4% of men drinkers consuming >20 g in a day were aged between 40 and 49.

Table 3 displays changes in general characteristics of women according to the amount of alcohol consumed in a day. Compared with non-drinkers, current drinkers had significantly increased diastolic blood pressure (DBP), fasting serum glucose (FSG), total cholesterol (TC) and gamma glutamyltransferase (GGT) with increasing consumption of alcohol use. About 34.3% of women drinkers consuming >20 g in a day were aged between 40 and 49.

Table 2. Baseline characteristics of study population according to alcohol amount in men (n=5,195)

Alcohol amount (g/day)					p value
Age (yr)					
30-39	214 (22.0)	628 (27.7)	203 (29.8)	370 (29.0)	
40-49	367 (37.6)	1,049 (46.4)	303 (44.4)	604 (47.4)	
50-59	229 (23.5)	444 (19.6)	142 (20.8)	234 (18.4)	
60-69	165 (16.9)	142 (6.3)	34 (5.0)	67 (5.3)	
Smoking					
Non smoker	366 (37.5)	555 (24.5)	122 (17.9)	173 (13.6)	
Ex smoker	336 (34.5)	820 (36.2)	247 (36.2)	470 (36.8)	
Current smoker	273 (28.0)	888 (39.3)	313 (45.9)	632 (49.6)	
Exercise					
Yes	512 (62.0)	1,070 (64.7)	334 (58.3)	576 (56.3)	

SD, Standard deviation; BMI, Body Mass Index; SBP, Systolic blood pressure; DBP, Diastolic blood pressure; HDL-cholesterol, High density lipoprotein cholesterol; AST, Aspartate aminotransferase; ALT, Alanine aminotransferase; GGT, Gamma glutamyltransferase.
according to the amount of alcohol consumed in a day. Compared with non-drinkers, current drinkers had significantly increased levels of FSG, high density lipoprotein cholesterol (HDL-C) and GGT with increasing amount of alcohol use. About 45.5% of women drinkers consuming > 20 g in a day were aged between 30 and 39.

In the correlation between obesity-related variables and alcohol intake for both genders, after adjustment for age, WC, SBP, DBP and FSG were significantly positively correlated with alcohol intake. In particular, men had positive correlations with additional obesity-related variables such as BMI, triglyceride and TC. Additionally, a high alcohol intake was associated with high waist circumference in men (data not shown). After adjustment for age, smoking status, physical activity, income and marriage status, compared with non-drinkers, the group of current drinkers consuming > 20 g in a day had significant associations with central obesity for men and women (Table 4).

DISCUSSION

Waist circumference may have certain advantages over other measurements of adiposity in predicting risk of obesity-related diseases [17]. For example, the specificity and sensitivity of waist circumference is higher in terms of predicting hypertension, dyslipidemia and diabetes compared with body mass index, and waist circumference was consistently more accurate [18].

In this study, waist circumference was measured among 8,603 Korean adults (men: 5,195, women: 3,408) to assess the relationship with alcohol intake. After adjustment for age, smoking, physical activity, income and marriage status, men and women with a high alcohol intake were positively correlated with high waist circumference.

In previous studies on the relationship between alcohol and high waist circumference, some found a positive association [9, 10, 19-21], whereas others found a negative or no associa-

Table 3. Baseline characteristics of study population according to alcohol amount in women (n=3,408)
Alcohol amount (g/day)
Non-drinker (n=2,410)
Age (yr)
BMI (kg/m²)
Waist circumference (cm)
SBP (mmHg)
DBP (mmHg)
Fasting serum glucose (mg/dL)
Total cholesterol (mg/dL)
Triglyceride (mg/dL)
HDL-cholesterol (mg/dL)
AST (U/L)
ALT (U/L)
GGT (U/L)
Alcohol amount (g/day)

| Number (%) |
| Age (yr) |
30-39	665 (27.6)	365 (45.6)	53 (49.1)	41 (45.5)
40-49	888 (36.9)	297 (37.1)	37 (34.3)	35 (38.9)
50-59	540 (22.4)	102 (12.8)	13 (12.0)	7 (7.8)
≥ 60	317 (13.1)	36 (4.5)	5 (4.6)	7 (7.8)

| Smoking |
Non smoker	2,345 (97.3)	741 (92.6)	92 (85.2)	64 (71.1)
Ex smoker	34 (1.4)	22 (2.8)	7 (6.5)	5 (5.6)
Current smoker	31 (1.3)	37 (4.6)	9 (8.3)	21 (23.3)

| Exercise |
| Yes | 1,012 (50.6) | 309 (55.5) | 47 (49.5) | 28 (41.8) |

SD, Standard deviation; BMI, Body Mass Index; SBP, Systolic blood pressure; DBP, Diastolic blood pressure; HDL-cholesterol, High density lipoprotein cholesterol; AST, Aspartate aminotransferase; ALT, Alanine aminotransferase; GGT, Gamma glutamyltransferase.
tion in both men and women [12-14]. A Korean study in 2006 revealed an increase in the risk of obesity with increasing a-
mount of alcohol consumption in both genders [22]. This pre-
sent study determined a positive association between alcohol and high waist circumference in both genders. A study of Ital-
ian women, however, showed that risk of obesity increased with increasing amount of alcohol consumption [23]. Addi-
itionally, alcohol was not associated with increasing waist cir-
cumference among 16,587 men participating in the Health Professors Follow-up Study [24]. A Danish study also re-
ported an inverse association of waist circumference (mea-
sured ten years after the baseline) with total drinks of wine consumed per week in both genders. Those who consumed
one to seven drinks per week had smallest waist circumference [25]. In contrast to these studies, two other studies, a
Finnish study of more than 12,000 adults and a British study
of 7,608 men have found that heavy alcohol drinking is asso-
ciated with increased risk of obesity [26-28].

Probable mechanisms have been suggested in previous stu-
dies. Alcoholic beverages are energy dense and may not be
substituting for food but rather add to the total daily energy
intake [29]. Inhibition of fat oxidation might occur as a con-
sequence of the antilipolytic properties of metabolites from
alcohol degradation [30]. These features could potentially
promote fat storage and hence promote an increased risk of
developing obesity [31].

The strength of our study was that it is a large population-
based study consisting of 8,600 Korean men and women. It
does, however, have several limitations. The major limitation
lies in its cross-sectional nature which precludes causality. A
selection bias may exist, as most participants included in this
study would be health conscious. Therefore, this finding can-
not be applied to the general population. Another limitation
may be that waist circumference was measured only once.
Finally, the most significant factors, such as dietary habits,
affecting abdominal obesity were not adjusted in this study.

In conclusion, this large population-based study showed
that a high alcohol intake was related to high waist circum-
ference. Such association remained independently even after
adjustment for smoking, which is highly related to abdominal
obesity. Improvement of alcohol intake may help in treating
abdominal obesity. Therefore, further studies should be per-
formed to confirm the association between alcohol intake and
abdominal obesity.

ACKNOWLEDGEMENT

This study was supported by a grant from the Seoul R&BD
Program, Republic of Korea (10526).

CONFLICT OF INTEREST

The authors have no conflict of interest to declare on this
study.

REFERENCES

1. Flegal KM, Carroll MD, Kuczmarski RJ, Johnson CL. Overweight
and obesity in the United States: prevalence and trends, 1960-1994.
Int J Obes Relat Metab Disord 1998;22:39-47.
2. Pascot A, Després JP, Lernieux I, Bergeron J, Nadeau A, Prud’homme
D, et al. Contribution of visceral obesity to the deterioration of
the metabolic risk profile in men with impaired glucose tolerance.
Diabetologia 2000;43:1126-1135.
3. Després JP. Health consequences of visceral obesity. Ann Med 2001;

Table 4. Odds ratios (95% CI) of central obesity according to levels of alcohol consumption

Alcohol amount (g/day)	n	Crude OR 95% CI	Model 1 OR 95% CI	Model 2 OR 95% CI
Men (n=5,195)				
Non-drinker	975	1.0	1.0	1.0
1-10	2,263	1.13 (0.95-1.34)	1.20 (1.00-1.43)	1.20 (0.98-1.47)
11-20	682	1.04 (0.83-1.30)	1.11 (0.89-1.40)	1.11 (0.85-1.44)
>20	1,275	1.39 (1.15-1.68)	1.50 (1.24-1.81)	1.35 (1.08-1.70)
Women (n=3,408)				
Non-drinker	2,410	1.0	1.0	1.0
1-10	800	0.78 (0.61-0.99)	1.15 (0.88-1.49)	1.27 (0.91-1.76)
11-20	108	0.85 (0.47-1.54)	1.21 (0.65-2.24)	0.71 (0.28-1.83)
>20	90	1.45 (0.84-2.49)	2.10 (1.19-3.70)	2.58 (1.30-5.10)

Model 1, adjusted age; Model 2, adjusted age, smoking status, exercise, income, marriage.
Central obesity: men (90=<waist), women (85=<waist).
1. Dobbelsteyn CJ, Joffres MR, MacLean DR, Després JP, et al. Contribution of abdominal obesity and hypertriglyceridemia to impaired fasting glucose and coronary artery disease. Am J Cardiol 2002;90:15-18.

2. Korea National Statistical Office. Death and causes of death in 2007. Daejeon: Korea National Statistical Office; 2008. (Korean)

3. Schröder H, Morales-Molina JA, Bermejo S, Barral D, Mándoli ES, Grau M, et al. Relationship of abdominal obesity with alcohol consumption at population scale. Eur J Nutr 2007;46:369-376.

4. Vadstrup ES, Petersen L, Sørensen TI, Grønbaek M. Waist circumference in relation to history of amount and type of alcohol: results from the Copenhagen City Heart Study. Int J Obes Relat Metab Disord 2003;27:238-246.

5. King DE, Terry RB, Barrett-Connor E. Behavioral covariates of waist-to-hip ratio in Rancho Bernardo. Am J Public Health 1990;80:1358-1362.

6. Han TS, Bijnen FC, Lean ME, Seidell JC. Separate associations of waist and hip circumference with lifestyle factors. Int J Epidemiol 1998;27:422-430.

7. Koh-Banerjee P, Chu NF, Spiegelman D, Rosner B, Colditz G, Willett W, et al. Prospective study of the association of changes in dietary intake, physical activity, alcohol consumption, and smoking with 9-y gain in waist circumference among 16,587 US men. Am J Clin Nutr 2003;78:719-727.

8. Marti B, Tuomilehto J, Salomaa V, Karttunen I, Korhonen HJ, Pietinen P. Body fat distribution in the Finnish population: environmental determinants and predictive power for cardiovascular risk factor levels. J Epidemiol Community Health 1991;45:131-137.

9. Cigolini M, Targher G, Bergamo Andreis IA, Tonoli M, Filippi F, Muggeo M, et al. Moderate alcohol consumption and its relation to visceral fat and plasma androgens on healthy women. Int J Obes Relat Metab Disord 1996;20:206-212.

10. Kim DH. Relation of body mass index, waist and visceral fat area with alcohol consumption habits in Korea. [dissertation]. Seoul: Korea University; 2007. (Korean)

11. Korea National Statistical Office. Death and causes of death in 2007. Daejeon: Korea National Statistical Office; 2008. (Korean)

12. Haffner SM, Stern MP, Hazuda HP, Pugh J, Patterson JK, Malina R. Upper body and centralized adiposity in Mexican Americans and non-Hispanic whites: relationship to body mass index and other behavioral and demographic variables. Int J Obes 1986;10:493-502.

13. Kaye SA, Folsom AR, Primas RJ, Potter JD, Gapstur SM. The association of body fat distribution with lifestyle and reproductive factors in a population study of postmenopausal women. Int J Obes 1990;14:583-591.

14. Keenan NL, Strogatz DS, James SA, Ammerman AS, Rice BL. Distribution and correlates of waist-to-hip ratio in black adults: the Pitt County Study. Am J Epidemiol 1992;135:678-684.

15. Lee S, Park HS, Kim SM, Kwon HS, Kim DY, Kim DJ, et al. Cutoff points of waist circumference for defining abdominal obesity in the Korean population. Korean J Obes 2006;15:1-9. (Korean)

16. WHO. Report of a WHO consultation on obesity: prevention and managing the global epidemic. Geneva: WHO; 1999.

17. VanItallie TB. Waist circumference: a useful index in clinical care and health promotion. Nutr Rev 1998;56:300-302.

18. Dobbelsteyn CJ, Joffres MR, MacLean DR, Flowerdew G. A comparative evaluation of waist circumference, waist-to-hip ratio and body mass index as indicators of cardiovascular risk factors. The Canadian Heart Health Surveys. Int J Obes Relat Metab Disord 2001;25:652-661.

19. Crouse JR, Gerson CD, DeCarli LM, Lieber CS. Role of acetate in the reduction of plasma free fatty acids produced by ethanol in man. J Lipid Res 1968;9:509-512.

20. Vadstrup ES, Petersen L, Sørensen TI, Grønbaek M. Waist circumference in relation to history of amount and type of alcohol: results from the Copenhagen City Heart Study. Int J Obes Relat Metab Disord 2003;27:238-246.

21. Marti B, Tuomilehto J, Salomaa V, Karttunen L, Korhonen HJ, Pietinen P. Body fat distribution in the Finnish population: environmental determinants and predictive power for cardiovascular risk factor levels. J Epidemiol Community Health 1991;45:131-137.

22. Cigolini M, Targher G, Bergamo Andreis IA, Tonoli M, Filippi F, Muggeo M, et al. Moderate alcohol consumption and its relation to visceral fat and plasma androgens on healthy women. Int J Obes Relat Metab Disord 1996;20:206-212.

23. Kaye SA, Folsom AR, Primas RJ, Potter JD, Gapstur SM. The association of body fat distribution with lifestyle and reproductive factors in a population study of postmenopausal women. Int J Obes 1990;14:583-591.

24. Keenan NL, Strogatz DS, James SA, Ammerman AS, Rice BL. Distribution and correlates of waist-to-hip ratio in black adults: the Pitt County Study. Am J Epidemiol 1992;135:678-684.

25. Lee S, Park HS, Kim SM, Kwon HS, Kim DY, Kim DJ, et al. Cutoff points of waist circumference for defining abdominal obesity in the Korean population. Korean J Obes 2006;15:1-9. (Korean)

26. WHO. Report of a WHO consultation on obesity: prevention and managing the global epidemic. Geneva: WHO; 1999.

27. VanItallie TB. Waist circumference: a useful index in clinical care and health promotion. Nutr Rev 1998;56:300-302.

28. Dobbelsteyn CJ, Joffres MR, MacLean DR, Flowerdew G. A comparative evaluation of waist circumference, waist-to-hip ratio and body mass index as indicators of cardiovascular risk factors. The Canadian Heart Health Surveys. Int J Obes Relat Metab Disord 2001;25:652-661.

29. Marti B, Tuomilehto J, Salomaa V, Karttunen L, Korhonen HJ, Pietinen P. Body fat distribution in the Finnish population: environmental determinants and predictive power for cardiovascular risk factor levels. J Epidemiol Community Health 1991;45:131-137.

30. Crouse JR, Gerson CD, DeCarli LM, Lieber CS. Role of acetate in the reduction of plasma free fatty acids produced by ethanol in man. J Lipid Res 1968;9:509-512.