Supplementary Online Content

Supplemental file 1. Deviations from protocol

Supplemental file 2. Search strategy Ovid MEDLINE

Supplemental file 3. Search strategies for trial registries

Supplemental file 4. Interventions of interest

Supplemental file 5. GRADE framework

Supplemental file 6. Calculation of effect sizes for pain intensity

Supplemental file 7. Calculation of effect sizes for disability

Supplemental file 8. Characteristics of included studies

Supplemental file 9. Risk of bias assessments

Supplemental file 10. Narrative description of trials not included in meta-analysis for pain intensity (≤ 2 weeks)

Supplemental file 11. Forest plot pain intensity 3-13 weeks

Supplemental file 12. Forest plot disability ≤ 2 weeks

Supplemental file 13. Forest plot disability 3-13 weeks

Supplemental file 14. Forest plot acceptability

Supplemental file 15. Forest plot adverse events

Supplemental file 16. Forest plot serious adverse events

Supplemental file 17. Forest plot tolerability

Supplemental file 18. Forest plot dose subgroup analysis

Supplemental file 19. Funnel plots for all meta-analyses with ≥2 trials

Supplemental file 20. Sensitivity analyses for non-benzodiazepine antispasmodic medicines in acute LBP
Supplemental file 1. Deviations from protocol

We deviated from our pre-registered protocol (accessed from https://osf.io/mu2f5/) to improve both the clinical interpretability and comparability of the review findings.

The deviations are as follows:

- We redefined the follow-up timepoints in relation to 'post-randomisation' as opposed to 'post-treatment' to ensure comparable follow-up between trials. The follow-up timepoints are now immediate (≤ 2 weeks) and short-term (3-13 weeks).

- We redefined how the muscle relaxant medicines were grouped to better reflect clinical utility from (antispasmodic or antispastic) to (non-benzodiazepine antispasmodic, antispastic, benzodiazepine and miscellaneous).

- We conducted additional ad hoc sensitivity analyses investigating the effect of removing trials at high risk of bias, trials primarily reported as trial registry records, trials without a placebo comparison, and trials investigating the muscle relaxant medicine carisoprodol.

- We did not report the extended funnel plot following reviewer recommendations.
Supplemental file 2. Search strategy Ovid MEDLINE

Search Strategy for Ovid MEDLINE:

Part A: Generic search for randomized controlled trials
1. randomized controlled trial.pt.
2. controlled clinical trial.pt.
3. comparative study.pt.
4. clinical trial.pt.
5. random*.ab,ti.
6. placebo.ab,ti.
7. drug therapy.fs.
8. trial.ab,ti.
9. groups.ab,ti.
10. or/1-9
11. (animals not (humans and animals)).sh.
12. (adolescent* or teen* or youth? or puberty or childhood or children* or p?ediatri* or preschool or pre-school or nursery or kindergarten or infant? or newborn? or neonat* or prematurity or fetal or foetal).mp.
13. 11 or 12
14. 10 not 13

Part B: Specific search for low back, sacrum and coccyx problems
15. dorsalgia.ti,ab.
16. exp Back Pain/
17. backache.ti,ab.
18. (lumbar adj pain).ti,ab.
19. coccydynia.ti,ab.
20. sciatica.ti,ab.
21. spondylosis.ti,ab.
22. lumbago.ti,ab.
23. back disorder$.ti,ab
24. or/15-23

Part C: Specific search for other spinal disorders
25. Coccyx.sh
26. Lumbar Vertebrae.sh
27. Intervertebral disc.sh
28. Sacrum.sh
29. Intervertebral disc degeneration.sh
30. (disc adj degeneration).ti,ab.
31. (disc adj prolapse).ti,ab.
32. (disc adj herniation).ti,ab.
33. spinal fusion.sh.
34. (facet adj joints).ti,ab.
35. Intervertebral Disc Displacement.sh.
36. or/25-35

Part D: Specific search for interventions of interest
37. suxamethonium.mp. or Succinylcholine/
38. exp Botulinum Toxins/
39. pancuronium/
40. Vecuronium Bromide/
41. Atracurium/
42. Rocuronium/
43. mivacurium bromide.mp.
44. cisatracurium.mp.
45. Carisoprodol/
46. Methocarbamol/
47. Chlorzoxazone/
48. Orphenadrine/
49. Baclofen/
50. tizanidine.mp.
51. Tolperisone/
52. thiocolchicoside.mp.
53. cyclobenzaprine.mp.
54. Dantrolene/
55. Clonazepam/
56. exp Diazepam/
57. Chlordiazepoxide/
58. Oxazepam/
59. Lorazepam/
60. Bromazepam/
61. Clobazam/
62. Alprazolam/
63. clotiazepam.mp.
64. Flurazepam/
65. Nitrazepam/
66. Flunitrazepam/
67. Estazolam/
68. Triazolam/
69. lormetazepam.mp.
70. Temazepam/
71. Midazolam/
72. quazepam.mp.
73. Zolpidem/
74. zaleplon.mp.
75. Eszopiclone/
76. metaxalone.mp.
77. or/37-76 (all interventions of interest)

Results
78. 24 or 36 (all back pain)
79. 77 and 78 (all back pain and all interventions of interest)
80. 14 and 79 (all RCTs of interventions of interest in back pain)
Supplemental file 3. Search strategies for trial registries

WHO ICTRP: Advanced search	Muscle Relaxant Medicines
Title:	–
Condition:	‘back pain’
Intervention:	1-40
Recruitment status:	ALL
Phases are:	ALL

ClinicalTrials.gov: Advanced search	Muscle Relaxant Medicines
Study Type:	Interventional Studies
Study Results:	All studies
Recruitment:	All studies
Age:	Adult and Senior
Gender:	All studies
Conditions:	‘back pain’
Interventions:	1-40
Titles:	–
Outcome Measures:	–
Sponsor/Collaborators:	–
Sponsor (Lead):	–
Study IDs:	–
Locations:	–
Phase:	–
Funder Type:	–
First Received:	–
Last Updated:	–
EU Clinical Trials Register: Advanced search	Muscle Relaxant Medicines
--	--------------------------
Search Term:	back pain AND 'intervention' (1-40)
Country:	–
Age Range:	Adult and Elderly
Trial Status:	–
Trial Phase:	–
Gender:	Both
Date Range:	–
Results Status:	–
Supplemental file 4. Interventions of interest

Number	Drug name	ATC code	ARTG	FDA	EMA	
1	suxamethonium	M03AB01	yes	-	yes	
2	botulinum toxin	M03AX01	yes	yes	yes	
3	pancuronium	M03AC01	yes	yes	-	
4	vecuronium	M03AC03	yes	yes	yes	
5	atracurium	M03AC04	-	yes	-	
6	rocuronium bromide	M03AC09	-	-	yes	
7	mivacurium bromide	M03AC10	yes	-	yes	
8	cisatracurium	M03AC11	yes	yes	yes	
9	carisoprodol	M03BA02	-	yes	-	
10	methocarbamol	M03BA03	-	yes	-	
11	chlorzoxazone	M03BB03	-	yes	-	
12	orphenadrine citrate	M03BC01	yes	yes	-	
13	baclofen	M03BX01	yes	yes	yes	
14	tizanidine	M03BX02	-	yes	yes	
15	tolperisone	M03BX04	-	-	yes	
16	thiocholchicoside	M03BX05	-	-	yes	
17	cyclobenzaprine	M03BX08	-	yes	-	
18	dantrolene	M03CA01	yes	yes	yes	
19	clonazepam	N03AE01	yes	yes	yes	
20	diazepam	N05BA01	yes	yes	-	
21	chlordiazepoxide	N05BA02	-	yes	-	
22	oxazepam	N05BA04	yes	yes	-	
23	lorazepam	N05BA06	yes	yes	yes	
24	bromazepam	N05BA08	yes	-	yes	
25	cllobazam	N05BA09	yes	yes	-	
26	alprazolam	N05BA12	yes	yes	yes	
27	clotiazepam	N05BA21	-	-	yes	
28	flurazepam	N05CD01	-	yes	-	
29	nitrazepam	N05CD02	yes	-	yes	
30	flunitrazepam	N05CD03	yes	-	yes	
31	estazolam	N05CD04	-	yes	-	
32	triazolam	N05CD05	yes	yes	yes	
33	lormetazepam	N05CD06	-	-	yes	
34	temazepam	N05CD07	yes	yes	-	
35	midazolam	N05CD08	yes	yes	yes	
36	quazepam	N05CD10	-	yes	-	
37	zolpidem	N05CF02	yes	yes	-	
38	zaleplon	N05CF03	yes	yes	-	
Number	Drug name	ATC code	ARTG	FDA	EMA	
--------	-------------	----------	------	-----	-----	
39	eszopiclone	N05CF04	yes	yes	-	
40	metaxalone	-	-	-	yes	-
Supplemental file 5. GRADE framework

Certainty in the evidence was assessed using the Grading of Recommendations Assessment, Development and Evaluation (GRADE) working group methodology. The certainty of evidence was initially classified as ‘high’ (very certain that the true effect lies close to that of the estimate of the effect) and possibly downgraded to ‘moderate’ (moderately certain in the effect estimate: The true effect is likely to be close to the estimate of the effect, but there is a possibility that it is substantially different), ‘low’ (certainty in the effect estimate is limited: The true effect may be substantially different from the estimate of the effect), or ‘very low’ (very little certainty in the effect estimate: The true effect is likely to be substantially different from the estimate of effect).

We graded the evidence in the following recommended domains in the following manner:

- Risk of bias: we downgraded by one level if > 25% but < 50% of the participants in our analysis came from trials assessed as ‘high’ risk of bias, and we downgraded by two levels if > 50% of the patients came from trials assessed as ‘high’ risk of bias.
- Inconsistency: we downgraded by one level if we identified important heterogeneity. We assessed heterogeneity using the between-study variance parameter (τ^2) and the proportion of study variance not due to sampling error (I^2).
- Indirectness: we did not consider this domain because the eligibility criteria ensures patients, interventions, and comparators were similar across studies.
- Imprecision: we downgraded by one level if the width of the confidence intervals (for continuous variables as pain intensity and disability) by crossing either the null or the threshold for a clinically meaningful effect (10 points on a 0 to 100 scale) and two levels if the interval spanned both. For dichotomous variables (like harms) we downgraded by one level if the interval spanned the null.
- Publication bias: we downgraded by only one level if we strongly detected publication bias. We assessed publication bias by visually assessing funnel plot and sensitivity analysis.

References

1. Balshem H, Helfand M, Schunemann HJ, et al. GRADE guidelines: 3. Rating the quality of evidence. J Clin Epidemiol. 2011;64(4):401-406
2. Guyatt GH, Oxman AD, Vist G, et al. GRADE guidelines: 4. Rating the quality of evidence - study limitations (risk of bias). J Clin Epidemiol. 2011;64(4):407-415.
3. Guyatt GH, Oxman AD, Kunz R, et al. GRADE guidelines: 7. Rating the quality of evidence - inconsistency. J Clin Epidemiol. 2011;64(12):1294-1302.
4. Guyatt GH, Oxman AD, Kunz R, et al. GRADE guidelines: 8. Rating the quality of evidence - indirectness. J Clin Epidemiol. 2011;64(12):1303-1310.
5. Guyatt GH, Oxman AD, Kunz R, et al. GRADE guidelines 6. Rating the quality of evidence - imprecision. J Clin Epidemiol. 2011;64(12):1283-1293.
6. Guyatt GH, Oxman AD, Montori V, et al. GRADE guidelines: 5. Rating the quality of evidence - publication bias. J Clin Epidemiol. 2011;64(12):1277-1282
Supplementary file 6. Calculation of effect sizes for pain intensity

Author, year	Muscle relaxant medicine	Outcome scale	Type of data extracted	Type of measure	Point estimate (variability) extracted	Mean (SD), converteda	Number of participants
Immediate term (≤ 2 weeks)							
Acute LBP							
Aparna 2018	Thiocolchicoside	0-10 VAS	Mean	FV	0.7	6.7 (30)b	79
Baratta 1982	Cyclobenzaprine	0-10 VAS	Mean (p-value)	CS	-5.5	-55 (48.9)c	58
Friedman 2015	Cyclobenzaprine	0-10 VAS	Mean (95% CI)	FV	3.6	36 (35.8)e	103
Friedman 2017	Diazepam	VRS-4	Mean (SD)	FV	1 (1)	31.7 (31.7)	57
Friedman 2018	Orphenadrine	VRS-4	Mean (SD)	FV	1.1 (1)	38 (33)	78
Friedman 2018	Methocarbamol	VRS-4	Mean (SD)	FV	1.3 (1)	43 (32.7)	80
Friedman 2019	Baclofen	VRS-4	Mean (SD)	FV	1.1 (1)	37.7 (32)	79
Friedman 2019	Metaxalone	VRS-4	Mean (SD)	FV	1.3 (1)	42 (33)	76
Friedman 2019	Tizanidine	VRS-4	Mean (SD)	FV	1.2 (1)	38.7 (31.7)	76
Hindle 1972	Carisoprodol	0-100 VAS	Mean	FV	15.5	15.5 (30)b	14
Lepisto 1979	Tizanidine	VRS-4	Mean	CS	-1.5	-51 (30)b	15
Pareek 2009	Tizanidine	0-10 VAS	Mean (SD)	CS	-5.9 (2.1)	-58.8 (21.4)	94
Ralph 2008	Carisoprodol	VRS-4	Mean (SE)	CS	-1.9 (0.2)	-47 (19.5)d	269
Serfer 2010	Carisoprodol A	VRS-5	Mean (SE)	CS	-1.8 (0.1)	-44.5 (48.4)d	260
Serfer 2010	Carisoprodol B	VRS-5	Mean (SE)	CS	-1.8 (0.1)	-44.5 (47.5)d	251
NCT00671879	Carisoprodol A	0-100 VAS	Mean (SE)	CS	-15.5 (1.3)	-15.5 (22.1)d	271
NCT00671879	Carisoprodol B	0-100 VAS	Mean (SE)	CS	-16.4 (1.3)	-16.4 (21.4)d	270
NCT00671502	Carisoprodol A	0-100 VAS	Mean	CS	-27.5	-27.5 (30)b	280
NCT00671502	Carisoprodol B	0-100 VAS	Mean	CS	-28	-28 (30)b	281
Mixed LBP							
Akhter 2017	Thiocolchicoside	0-10 VAS	Mean (SE)	FV	0.94 (0.1)	9.4 (11.5)d	144

Cashin et al. 2021
Short term (3-13 weeks)

Acute LBP	0-10 VAS	Mean (95% CI) FV	0.6 (1)	0.7 (1.1)	19.3 (31.7)	24.3 (35.3)	108	107	
Friedman 2015	Cyclobenzaprine	VRS-4	Mean (SD) FV	0.3 (0.7)	0.4 (0.8)	11.3 (23)	12.3 (25.7)	50	53
Friedman 2017	Diazepam	VRS-4	Mean (SD) FV	0.6 (0.9)	0.7 (1)	21.3 (29)	22.7 (34.7)	70	34f
Friedman 2018	Orphenadrine	VRS-4	Mean (SD) FV	0.7 (1)	0.7 (1)	24.7 (32)	22.7 (34.7)	70	34f
Friedman 2018	Methocarbamol	VRS-4	Mean (SD) FV	0.6 (0.9)	0.4 (0.7)	18.3 (31)	14.3 (23)	76	23g
Friedman 2019	Baclofen	VRS-4	Mean (SD) FV	0.6 (0.9)	0.4 (0.7)	20 (31)	14.3 (23)	72	23g
Friedman 2019	Metaxalone	VRS-4	Mean (SD) FV	0.6 (0.9)	0.4 (0.7)	19.7 (29.3)	14.3 (23)	70	24f
Friedman 2019	Tizanidine	VRS-4	Mean (SD) FV	0.6 (0.9)	0.4 (0.7)	19.7 (29.3)	14.3 (23)	70	24f

Sub-acute LBP	0-10 VAS	Mean (p-value) CS	-2.2	-0.3	-22 (29.8)c	-3 (32.1)c	13	15	
Herskowitz 2004	Botulinum toxin A	VRS-4	Mean (p-value) CS	-2.2	-0.3	-22 (29.8)c	-3 (32.1)c	13	15

SD, standard deviation; MD, mean difference; 95% CI, 95% confidence interval; FV, Final Value; CS, Change Score; VAS, Visual Analogue Scale; VRS-4, Verbal Rating Scale 4 levels; VRS-5, Verbal Rating Scale 5 levels.

*Mean and variability measures divided by the top number of scale and multiplied by 100, e.g. 0-10 VAS score divided by 10 and multiplied by 100.

bSD imputed as variability measures not available

cSD estimated from p-value

dSD estimated from standard error

eSD estimated from 95% Confidence Interval

fSample size in the placebo group was divided by the number of groups to avoid double-counting
Supplementary file 7. Calculation of effect sizes for disability

Author, year	Muscle relaxant medicine	Outcome scale (range)	Type of data extracted	Type of measure	Point estimate (variability) extracted	Mean (SD), converted	Number of participants		
Immediate term (≤ 2 weeks)									
Acute LBP									
Friedman 2015	Cyclobenzaprine	0-24 RMDQ	Mean (95% CI)	FV	8.2	8.9	34.2 (35)\(^b\)	108	107
Friedman 2017	Diazepam	0-24 RMDQ	Mean (95% CI)	CS	-11	-11	-45.8 (31.4)\(^a\)	57	55
Friedman 2018	Orphenadrine	0-24 RMDQ	Mean (95% CI)	CS	-9.4	-10.9	-39.2 (37.9)\(^a\)	78	38\(^a\)
Friedman 2018	Methocarbamol	0-24 RMDQ	Mean (95% CI)	CS	-10.6	-11.1	-42.1 (39.2)\(^a\)	79	24\(^a\)
Friedman 2019	Baclofen	0-24 RMDQ	Mean (95% CI)	CS	-10.1	-11.1	-42.1 (39.2)\(^a\)	76	25\(^a\)
Friedman 2019	Metaxalone	0-24 RMDQ	Mean (95% CI)	CS	-11.2	-11.1	-46.7 (36.5)\(^b\)	76	26\(^a\)
Hindle 1972	Carisoprodol	VRS-4	Mean FV	1.8	3.4	45 (30)\(^c\)	14	14	
NCT00671879 2012	Carisoprodol A	0-24 RMDQ	Mean (SE)	CS	-5 (0.6)	-4.3 (0.7)	-20.8 (31.7)\(^d\)	141	71\(^g\)
NCT00671879 2012	Carisoprodol B	0-24 RMDQ	Mean (SE)	CS	-4.2 (0.6)	-4.3 (0.7)	-17.5 (31)\(^d\)	135	71\(^g\)
Ralph 2008	Carisoprodol	0-24 RMDQ	Mean (p-value)	FV	4.1	6.2	17.1 (36.6)\(^e\)	269	278
Serfer 2010	Carisoprodol A	0-24 RMDQ	Mean (SE)	CS	-5.7 (0.3)	-4.4 (0.3)	-23.8 (21.2)\(^a\)	269	133\(^a\)
Serfer 2010	Carisoprodol B	0-24 RMDQ	Mean (SE)	CS	-5.4 (0.3)	-4.4 (0.3)	-22.5 (21.5)\(^d\)	259	132\(^a\)
Mixed LBP									
Aksoy 2002	Thiocolchicoside	0-24 RMDQ	Mean (SD)	FV	7.2 (8.8)	11.8 (10)	30 (36.7)	174	155
Short term (3-13 weeks)									
Acute LBP									
Friedman 2015	Cyclobenzaprine	0-24 RMDQ	Mean (95% CI)	FV	4.5	3.8	18.8 (31.7)\(^b\)	108	107
Study Year	Drug	Time Period	Measure	Median (IQR)	FV	CS (95% CI)	Sample Size		
------------	------------	-------------	---------	--------------	------	---------------	-------------		
Friedman 2017	Diazepam	0-24 RMDQ	Median (IQR)	0 (0-1)	0 (0-6)	1.4 (3.2)	8.3 (19.1)	50	53
Friedman 2018	Orphenadrine	0-24 RMDQ	Mean (SD)	5.6 (8)	3.8 (6.7)	23.3 (33.4)	16 (27.7)	69	34ª
Friedman 2018	Methocarbamol	0-24 RMDQ	Mean (SD)	4.9 (7.6)	3.8 (6.7)	20.6 (31.5)	16 (27.7)	70	34ª
Goforth 2015	Eszopiclone	0-24 RMDQ	Mean (SD)	6.6 (5.5)	7.9 (7)	27.5 (22.9)	33.1 (29.1)	32	20
Zaringhalam 2010	Baclofen A	0-24 RMDQ	Mean (SD)	8.8 (3.8)	9.8 (3.9)	36.7 (15.8)	40.8 (16.3)	20	20
Zaringhalam 2010	Baclofen B	0-24 RMDQ	Mean (SD)	5.7 (1.4)	6.4 (2.9)	23.8 (5.8)	26.7 (12.1)	20	20

SD, standard deviation; MD, mean difference; 95% CI, 95% confidence interval; FV, Final Value; CS, Change Score; RMDQ, Roland Morris Disability Questionnaire; VRS-4, Verbal Rating Scale 4 levels.

ªMean and variability measures divided by the top number of scale and multiplied by 100, e.g. 0-24 RMDQ score divided by 24 and multiplied by 100.

ªªSD estimated from 95% Confidence Interval
ªªªSD imputed as variability measures not available
ªªªªSD estimated from standard error
ªªªªªSD estimated from p-value
ªªªªªªSD estimated from median and IQR
ªªªªªªªSample size in the placebo group was divided by the number of groups to avoid double-counting.
Supplemental file 8. Characteristics of included studies

Study, Year (Reference)	Study sample	Setting	Number of relevant trial arms	Test intervention, n	Comparison intervention, n	Duration of treatment	Outcome measure (Pain, Disability)	Overall risk of Bias	Source of data	
Akhter 2017¹	288 participants with mixed acute and subacute LBP	India	2	Oral thiocolchicoside 150mg/day + diclofenac sodium, 144	Oral diclofenac sodium, 144	7 days	10cm VAS, NA	High	Published	
Aksoy 2002²	329 participants with mixed acute and subacute LBP	Turkey	2	Oral thiocolchicoside 16mg/day + standard treatment (NSAID or another analgesic), 174	Standard treatment (oral NSAID or another analgesic), 155	5-7 days	100mm VAS, RMDQ	High	Published	
Aparna 2016³	200 participants with acute LBP	India	2	Oral thiocolchicoside 8mg/day + aceclofenac, 100	Oral aceclofenac, 100	7 days	10cm VAS, NA	High	Published	
Baratta 1982³	120 participants with acute LBP	USA	2	Oral cyclobenzaprine 30mg/day, 60	Oral placebo, 60	10 days	10cm VAS, NA	High	Published	
Berry (a) 1988⁴	105 participants with acute LBP	UK	2	Oral tizanidine 12mg/day + ibuprofen, 51	Oral placebo + ibuprofen, 54	7 days	100mm VAS, NA	High	Published	
Berry (b) 1988⁵	112 participants with acute LBP	UK	2	Oral tizanidine 12mg/day, 59	Oral placebo, 53	7 days	100mm VAS, NA	High	Published	
Borenstein 1990⁶	40 participants with acute LBP	USA	2	Oral cyclobenzaprine 30mg/day + naproxen, 20	Oral naproxen, 20	14 days	NR, VRS-4 b	High	Published	
Study	Participants	Age and Sex	Intervention	Comparator	Duration	Outcomes	Rating	Status		
---------------------	--------------	-------------	--------------	------------	----------	----------	--------	---------		
Casale 1988*	20 participants with acute LBP	Italy	Oral dantrolene 25mg/day, 10	Oral placebo, 10	4 days	NR, NR	Moderate	Published		
Cogné 2017* (crossover)	19 participants with chronic LBP	France	IM botulin toxin A 200 units, 9	IM placebo, 10	Single dose	100mm VAS*, QBPDS*	High	Published		
Dapas 1985**	200 participants with acute LBP	USA	Oral baclofen range 30-80mg/day, 100	Oral placebo, 100	14 days	VRS-5*, NA	High	Published		
Emrich 2015*	202 participants with acute LBP	Germany	Oral methocarbamol 4500mg/day, 98	Oral placebo, 104	8 days	100mm VAS, NR	High	Published		
Fathie 1964*	200 participants with acute LBP	USA	Oral metamizol 3200mg/day, 101	Oral placebo, 99	7 days	VRS-4*, NA	High	Published		
Foster 2001*	31 participants with chronic LBP	USA	IM botulin toxin A 200 units	IM placebo	Single dose	10cm VAS*, ODI*	Low	Published		
Friedman 2015*	323 participants with acute LBP	USA	Oral cyclobenzaprine range 5-30mg/day + naproxen, 108	Oral placebo +naproxen, 107	10 days	10cm VAS, RMDQ	Low	Published		
Study Year	Participants	Country	Treatment	Comparator	Duration	Measure	Grade			
--------------	--------------	---------	-----------	------------	----------	---------	-------			
Friedman 2017	114	USA	Oral diazepam range 5-20mg/day + naproxen, 57	Oral placebo + naproxen	7 days	VRS-4, RMDQ	Low			
Friedman 2018	240	USA	Oral orphenadrine 200mg/day + naproxen, 80	Oral placebo + naproxen, 79	7 days	VRS-4, RMDQ	Low			
Friedman 2019	320	USA	Oral tizanidine range 2-16mg/day + ibuprofen, 80	Oral placebo + ibuprofen, 80	7 days	VRS-4, RMDQ	Low			
Goforth 2014	58	USA	Oral eszopiclone 3mg/day + naproxen, 33	Oral placebo + naproxen, 25	28 days	100mm VAS, RMDQ	Low			
Gold 1978	60	USA	Oral orphenadrine 200mg/day, 20	Oral placebo, 20	7 days	NR, NA	High			
Herskowitz 2004	28	USA	IM botulinum toxin A 400 units, 13	IM placebo, 15	Single dose	10cm VAS, NA	High			
Hindle 1972	48	USA	Oral carisoprodol 1400mg/day, 16	Oral placebo, 16	4 days	100mm VAS, VRS-4	High			
Study	Participants	Country	Intervention	Comparator	Duration	Pain Score	Follow-up	Study Quality		
------------------------------	---	---------	---	-----------------------------	----------	------------	-----------	---------------		
Cashin et al. 2021 (/carisoprodol group 37 yrs a, butabarbital group 34.6 yrs a, placebo group 43.5 yrs a)	Entire sample 44% female									
Hingorani 1966 (50 participants with acute LBP)	UK	2	IM diazepam 40mg + oral diazepam 8mg/day, 25	IM placebo + oral placebo, 25	6 days	NR, NA		High	Published	
Jazayeri 2011 (50 participants with chronic LBP)	Iran	2	IM botulinum toxin A 200 units, 25	IM placebo 25	Single dose	10cm VAS b, ODI b	High	Published		
Ketenci 2005 (97 participants with acute LBP)	Turkey	3	Oral thiocholchicoside 16mg/day, 38	Oral placebo, 27	7 days	10cm VAS, NA		High	Published	
Klinger 1988 (80 participants with acute LBP)	USA	2	IV orphenadrine 60mg, 40	IV placebo, 40	Single dose	VRS-4 b, NA		Low	Published	
Lepisto 1979 (30 participants with acute LBP)	Finland	2	Oral tizanidine 6mg/day, 15	Oral placebo, 15	7 days	VRS-4, NA		Moderate	Published	
Machado 2016 (43 participants with chronic LBP)	USA	2	IM botulinum toxin A range 500-1000 units, 21	IM placebo, 22	Single injection	10cm VAS b, ODI b	Moderate	Published		
Moll 1973 (68 participants with acute LBP)	Germany	2	IM diazepam 4ml + oral diazepam 40-60mg/day, 33	IM placebo + oral placebo, 35	5-10 days	NR, NA		High	Published	
Study	Participants	Intervention	Comparator	Duration	Outcomes	Quality	Status			
-------	--------------	--------------	------------	----------	----------	---------	--------			
Diazepam group	45.8 (13.9) yrs, 39% female; placebo group 45.4 (13.3) yrs, 49% female									
Pareek 2009¹⁵	197 participants with acute LBP	tizanidine group 43.3 (12.7) yrs, 39% female; comparator group 43.5 (10.9) yrs, 40% female	India	2	Oral tizanidine 4mg/day + aceclofenac, 101	7 days	10cm VAS, NA	High		
Ralph 2008¹⁶	562 participants with acute LBP	carisoprodol group 39.3 (11.8) yrs, 47% female; comparator group 41.5 (11.7) yrs, 54% female	USA	2	Oral carisoprodol 1000mg/day, 277	7 days	VRS-5, RMDQ	High		
Salvinii 1986¹⁷	30 participants with LBP		Italy	2	Oral dantrolene 1200mg/day + ibuprofen, 15	8 days	VRS-4th, NA	High		
Schliessbach 2017¹⁸ (crossover)	98 participants with chronic LBP		Switzerland	2	Oral cllobazam 20mg, 49	2 hours	11pt NRS, NA	Low		
Serfer 2010¹⁹	828 participants with acute LBP	carisoprodol (350mg) group 40.5 (12.4) yrs, 54% female; carisoprodol (250mg) group 40.9 (11.7) yrs, 51% female; placebo group 40.7 (13.1) yrs, 59% female	USA	3	Oral carisoprodol (350mg) 1400mg/day, 281	7 days	VRS-5, RMDQ	High		
Tervo 1976²⁰	50 participants with acute LBP		Finland	2	IM orphenadrine 60mg + oral orphenadrine 210mg/day & paracetamol, 25	7-10 days	NR, NR	High		
Thompson 1983²¹	76 participants with acute LBP		UK	2	Oral tizanidine 6mg/day	10 days	100mm VAS³, NA	High		
Tüzün 2003²²	149 participants with acute LBP		Turkey	2	IM thiocholchicoside 8mg/day, 77	5 days	100mm VAS, NA	High		
Study	Participants	Location	Age and Sex	Intervention	Comparator	Duration	Outcome Measures	Status	Registry ID	Notes
-------	--------------	----------	-------------	--------------	------------	----------	----------------	--------	-------------	-------
Zaringhalam 2010²⁷	84 participants with chronic LBP	Iran	4	Oral baclofen 30mg/day, 21 Oral baclofen 30mg/day + acupuncture, 21	No treatment, 21 Acupuncture, 21	35 days	100mm VAS, RMDQ	High	Published	
ACTRN12616000017426³⁸	Participants with acute LBP	Australia	2	Oral zopiclone 7.5mg/day	Oral placebo	14 days	NA	NA	Clinical trial registry	
EUCTR2017-004530-29³⁹	134 participants with acute LBP	Greece	2	IM thiocolchicoside 4mg + diclofenac IM diclofenac	Single injection	NA	NA	Clinical trial registry		
EUCTR2019-001885-14⁴⁰	Participants with acute LBP and/or sciatica	Hungry	2	Oral tolperisone	Oral placebo	14 days	NA	NA	Clinical trial registry	
IRCT20111109008035N4⁴¹	46 participants with LBP	Iran	2	Oral zolpidem 5mg/day	Oral placebo	28 days	NA	NA	Clinical trial registry	
NCT00671879⁴²	840 participants with acute LBP	USA	3	Oral carisoprodol (500mg) 1000mg/day, 279 Oral carisoprodol (700mg) 1400mg/day, 281	Oral placebo, 280	14 days	100mm VAS, RMDQ	High	Clinical trial registry	
NCT00671502⁴³	840 participants with acute LBP	USA	3	Oral carisoprodol (500mg) 1000mg/day, 280	Oral placebo, 279	14 days	100mm VAS, RMDQ⁴	High	Clinical trial registry	
Trial ID	Participants	Treatment Details	Duration	Comparator	Route	Status	Clinical Trial Registry			
---------	--------------	------------------	----------	------------	-------	--------	------------------------			
NCT00817986[^4]	161 participants with acute LBP	Age and sex not reported	USA	Oral arbaclofen placarbil (20mg) 40mg/day Oral arbaclofen placarbil (30mg) 60mg/day Oral arbaclofen placarbil (40mg) 80mg/day	Oral placebo	14 days	NA	NA	Clinical trial registry	
NCT00404417[^5]	Participants with chronic LBP	(crossover, status: active not recruiting)	USA	IM botulinum toxin A	IM placebo	Single dose	NA	NA	Clinical trial registry	
NCT00384579[^4]	Participants with acute LBP	(status: terminated)	USA	IM botulinum toxin B	IM placebo	Single dose	NA	NA	Clinical trial registry	
NCT00384371[^4]	Participants with subacute LBP	(status: terminated)	USA	IM botulinum toxin A	IM placebo	Single dose	NA	NA	Clinical trial registry	
NCT02887534[^4]	Participants with acute LBP	(status: withdrawn)	Not reported	Oral tizanidine Oral SPARC1401-low dose Oral SPARC1401-mid dose Oral SPARC1401-high dose	Oral placebo	Not reported	NA	NA	Clinical trial registry	
NCT01587508[^4]	Participants with acute LBP	Brazil	Oral cyclobenzaprine 20mg/day Oral meloxicam & cyclobenzaprine	Oral placebo	7 days	NA	NA	NA	Clinical trial registry	
Standard deviation not reported. Data not available. Abbreviations: LBP, Low Back Pain; SD, Standard Deviation; IM, Intramuscular; IV, Intravenous; NA, Not Applicable; NR Not Reported; NRS, Numerical Rating Scale; VAS, Visual Rating Scale; VRS-4, Verbal Rating Scale 4 levels; VRS-5, Verbal Rating Scale 5 levels; RMDQ, Roland Morris Disability Questionnaire; QBPDS, Quebec Back Pain Disability Scale

References:

1. Akhter N, Siddiq MZ. Comparative efficacy of diclofenac sodium alone and in combination with thiocolchicoside in patients with low back pain. Med Forum. 2017;28(11):93-96.
2. Aksoy C, Karan A, Diraçoğlu D. Low back pain: Results of an open clinical trial comparing the standard treatment alone to the combination of standard treatment and thiocolchicoside. J Orthop Traumatol. 2002;3(2):103-108. doi:10.1007/s101950200036
3. Aparna P, Geetha P, Shanmugasundaram P. Comparison of aceclofenac and combination (Aceclofenac + thiocolchicoside) therapy in acute low back pain patients. Res J Pharm Technol. 2016;9(11):1927-1929. doi:10.5958/0974-360X.2016.00394.2
4. Baratta RR. A double-blind study of cyclobenzaprine and placebo in the treatment of acute musculoskeletal conditions of the low back. Curr Ther Res. 1982;32(5):646-652.
5. Berry H, Hutchinson DR. A Multicentre Placebo-Controlled Study in General Practice to Evaluate the Efficacy and Safety of Tizanidine in Acute Low-Back Pain. J Int Med Res. 1988;16(2):75-82. doi:10.1177/030006058801600201
6. Berry H, Hutchinson DR. Tizanidine and Ibuprofen in Acute Low-Back Pain: Results of a Double-Blind Multicentre Study in General Practice. J Int Med Res. 1988;16(2):83-91. doi:10.1177/030006058801600202
7. Borenstein DG, Lacks S, Wiesel SW. Cyclobenzaprine and naproxen versus naproxen alone in the treatment of acute low back pain and muscle spasm. Clin Ther. 1990;12(2):125-131.
8. Casale R. Acute low back pain: Symptomatic treatment with a muscle relaxant drug. Clin J Pain. 1988;4:81-88.
9. Cogné M, Petit H, Creuzé A, Liguoro D, de Seze M. Are paraspinous intramuscular injections of botulinum toxin a (BoNT-A) efficient in the treatment of chronic low-back pain? A randomised, double-blinded crossover trial. BMC Musculoskelet Disord. 2017;18(1):454. doi:10.1186/s12891-017-1816-6
10. Dapas F, Hartman SF, Martinez L, et al. Baclofen for the treatment of acute low-back syndrome: A double-blind comparison with placebo. Spine (Phila Pa 1976). 1985;10(4):345-349. doi:10.1097/00007632-198505000-00010
11. Emrich OMD, Milachowski KA, Strohmeier M. Methocarbamil bei akuten Rückenschmerzen: Eine randomisierte, doppelblinde, placebokontrollierte Studie. MWW-Fortschritte der Medizin. 2015;157:9-16. doi:10.1007/s15006-015-3307-x
12. Fathie K. A second look at skeletal muscle relaxant: a double-blind study with metaxalone. Curr Ther Res. 1964;6(11):677-683.
13. Foster L, Clapp L, Erickson M, Jabbari B. Botulinum toxin A and chronic low back pain a randomized, double-blind study. Neurology. 2001;56(10):1290-1293. doi:10.1212/WNL.56.10.1290
14. Friedman BW, Dym AA, Davitt M, et al. Naproxen with cyclobenzaprine, oxycodone/acetaminophen, or placebo for treating acute low
back pain: A randomized clinical trial. *JAMA - J Am Med Assoc.* 2015;314(15):1572-1580. doi:10.1001/jama.2015.13043

15. Friedman BW, Irizarry E, Solorzano C, et al. Diazepam Is No Better Than Placebo When Added to Naproxen for Acute Low Back Pain. *Ann Emerg Med.* 2017;70(2):169-176.e1. doi:10.1016/j.annemergmed.2016.10.002

16. Friedman BW, Cisewski D, Irizarry E, et al. A Randomized, Double-Blind, Placebo-Controlled Trial of Naproxen With or Without Orphenadrine or Methocarbamol for Acute Low Back Pain. *Ann Emerg Med.* 2018;71(3):348-356.e5. doi:10.1016/j.annemergmed.2017.09.031

17. Friedman BW, Irizarry E, Solorzano C, et al. A Randomized, Placebo-Controlled Trial of Ibuprofen Plus Metaxalone, Tizanidine, or Baclofen for Acute Low Back Pain. *Ann Emerg Med.* 2019;74(4):512-520. doi:10.1016/j.annemergmed.2019.02.017

18. Goforth HW, Preud'homme XA, Krystal AD. A Randomized, Double-Blind, Placebo-Controlled Trial of Eszopiclone for the Treatment of Insomnia in Patients with Chronic Low Back Pain. *Sleep.* 2014;37(6):1053-1060. doi:10.5665/sleep.3760

19. Gold RH. Orphenadrine citrate: sedative or muscle relaxant? *Clin Ther.* 1978;1(6):451-453.

20. Herskowitz A. BOTOX (Botulinum Toxin Type A) treatment of patients with sub-acute low back pain: A randomized, double blind, placebo-controlled study. *J Pain.* 2004;5(3):S62. doi:10.1016/j.jpain.2004.02.214

21. Hindle T, Palma L. Comparison of carisoprodol, butabarbital, and placebo in treatment of low back syndrome. *Calif Med.* 1972;117:7-11.

22. Hingorani K. Diazepam in backache: A double-blind controlled trial. *Ann Phys Med.* 1966;8(8):303-306.

23. Jazayeri SM, Ashraf A, Fini HM, Karimian H, Nasab M V. Efficacy of Botulinum Toxin Type A for Treating Chronic Low Back Pain. *Anesthesiol Pain Med.* 2011;1(2):77-80. doi:10.5812/kowsar.22287523.1845

24. Ketenci A, Ozcan E, Karamursel S. Assessment of efficacy and psychomotor performances of thiocolchicoside and tizanidine in patients with acute low back pain. *Int J Clin Pract.* 2005;59(7):764-770. doi:10.1111/j.1742-1241.2004.00454.x

25. Klinger N., Wilson R., Kanniainen C., Wagenknecht K., Re O., Gold R. Intravenous orphenadrine for the treatment of lumbar paravertebral muscle strain. *Curr Ther Res.* 1988;43(2):247-254.

26. Lepisto P. A Comparative Trial of DS 103-282 and Placebo in the Treatment of Acute Skeletal Muscle Spasms Due to Disorders of the Back. *Curr Ther Res.* 1979;26(4):454-459.

27. Machado D, Kumar A, Jabbari B. Abobotulinum toxin A in the treatment of chronic low back pain. *Toxins (Basel).* 2016;8(12). doi:10.3390/toxins8120374

28. Moll W. Therapy of acute lumbovertebral syndromes through optimal muscle relaxation using diazepam. Results of a double-blind study on 68 cases. *Med Welt.* 1973:24(45):1747-1751. http://www.ncbi.nlm.nih.gov/pubmed/4272092

29. Pareek A, Chandurkar N, Chananwale AS, Ambade R, Gupta A, Bartakke G. Aceclofenac-tizanidine in the treatment of acute low back pain: A double-blind, double-dummy, randomized, multicentric, comparative study against aceclofenac alone. *Eur Spine J.* 2009;18(12):1836-1842. doi:10.1007/s00586-009-1019-4

30. Ralph L, Look M, Wheeler W, Sacks H. Double-blind, placebo-controlled trial of carisoprodol 250-mg tablets in the treatment of acute lower-back spasm. *Curr Med Res Opin.* 2008;24(2):551-558. doi:10.1185/030079908X261014

31. Salvini S, Antonelli S, De Micheli G, Marchetti M. Dantrolene sodium in low back pain and cervico brachialgia treatment: a controlled study. *Curr Ther Res.* 1986;39(2):172-177.

32. Schliessbach J, Vuilleumier PH, Siegenthaler A, et al. Analgesic effect of clobazam in chronic low-back pain but not in experimentally
induced pain. Eur J Pain (United Kingdom). 2017;21(8):1336-1345. doi:10.1002/ejp.1032
33. Serfer GT, Wheeler WJ, Sacks HJ. Randomized, double-blind trial of carisoprodol 250 mg compared with placebo and carisoprodol 350 mg for the treatment of low back spasm. Curr Med Res Opin. 2010;26(1):91-99. doi:10.1185/03007990903382428
34. Tervo T, Petaja L, Lepisto P. A controlled clinical trial of a muscle relaxant analgesic combination in the treatment of acute lumbago. Br J Clin Pract. 1976;30(3):62-64.
35. Thompson M, Kennedy G. Treatment of acute low back pain: comparative trial of two muscle relaxants, tizanidine and chlorzemanone with placebo. In: Scandinavian Journal of Rheumatology. Vol 12.; 1983:4-40. doi:10.3109/03009748309118006
36. Tüzün F, Ünalan H, Öner N, et al. Multicenter, randomized, double-blinded, placebo-controlled trial of thiocolchicoside in acute low back pain. Jt Bone Spine. 2003;70(5):356-361. doi:10.1016/S1297-319X(03)00075-7
37. Zaringhalam J, Manaheji H, Rastqar A, Zaringhalam M. Reduction of chronic non-specific low back pain: A randomised controlled clinical trial on acupuncture and baclofen. Chin Med. 2010;5:1-7. doi:10.1186/1749-8546-5-15
38. ACTRN12616000017426. A randomised controlled feasibility study of managing sleep with Zopiclone in participants with acute low back pain and sleep disturbances. Australian New Zealand Clinical Trials Registry.
39. EUCTR2017-004530-29. No Title. Clinicaltrialsregister.eu. Published 2017. https://www.clinicaltrialsregister.eu/ctr-search/trial/2017-004530-29/HU
40. EUCTR2019-001885-14. No Title. Clinicaltrialsregister.eu. Published 2019. https://www.clinicaltrialsregister.eu/ctr-search/trial/2019-001885-14/HU
41. IRCT20111109008035N4. The study of efficacy of melatonin, and zolpidem on the sleep quality, and severity of pain in the patients with chronic non-specific low back pain. ISRCTN.
42. NCT00671879. Study to Evaluate Two Formulations of Carisoprodol in Subjects With Musculoskeletal Spasm of the Lower Back. ClinicalTrials.gov. Published 2008. https://clinicaltrials.gov/ct2/show/NCT00671879
43. NCT00671502. A Study to Evaluate Two Formulations of Carisoprodol in Subjects With Musculoskeletal Spasm of the Lower Back. ClinicalTrials.gov.
44. NCT00817986. A Study to Evaluate the Safety and Tolerability of Arbaclofen Placarbil (XP19986) in Subjects With Acute Back Spasms. ClinicalTrials.gov.
45. NCT00404417. Botulinum Toxin A for the Treatment of Chronic Lumbar Back Pain. ClinicalTrials.gov.
46. NCT00384579. Pilot Study to Assess the Efficacy of Botulinum Toxin B on Pain and Disability in Subjects With Acute Low Back Pain. ClinicalTrials.gov.
47. NCT00384371. Pilot Study to Assess the Efficacy of Botulinum Toxin A Treatments on Pain and Disability in Sub-Acute Low Back Pain. ClinicalTrials.gov.
48. NCT02887534. Evaluation of Efficacy and Safety of SPARC1401 in Acute Low Back Pain. ClinicalTrials.gov.
49. NCT01587508. Study Comparing A New Drug Containing The Combination Meloxicam And Cyclobenzaprine In The Treatment Of Acute Lumbago. ClinicalTrials.gov.
Supplemental file 9. Risk of bias assessments

Study	Year	Random sequence generation	Allocation concealment	Blinding (Patients)	Blinding (Care-providers)	Blinding (Outcome assessors)	Drop Outs	Intention-to-treat analysis?	Selective outcome reporting	Similarity at baseline	Co-interventions	Compliance	Timing of assessment	Other bias	Overall Risk of Bias				
Fathie	1964	Low risk	Unclear	Low risk	Low risk	Low risk	High risk	Low risk	Unclear	Unclear	Unclear	Low risk	Unclear	High					
Hingorani	1966	Unclear	Unclear	Low risk	Low risk	Low risk	Low risk	Unclear	High risk	Unclear	Unclear	Low risk	Unclear	High					
Hindle	1972	Low risk	Unclear	Low risk	Low risk	Low risk	Low risk	High risk	Low risk	Low risk	Unclear	Low risk	Unclear	High					
Moll	1973	Unclear	Unclear	Low risk	Low risk	Low risk	Low risk	Unclear	High risk	High risk	High risk	Low risk	Unclear	High					
Tervo	1976	Unclear	Low risk	Low risk	Low risk	Low risk	Unclear	High risk	Unclear	Low risk	Unclear	Low risk	Unclear	High					
Gold	1978	Unclear	Low risk	Low risk	Low risk	Low risk	Unclear	Low risk	Unclear	Unclear	Unclear	Low risk	Unclear	High					
Lepisto	1979	Unclear	Low risk	Low risk	Low risk	Low risk	Low risk	Low risk	Low risk	Low risk	Unclear	Low risk	Unclear	Moderate					
Baratta	1982	Low risk	Unclear	Low risk	Low risk	Low risk	High risk	Low risk	Unclear	Low risk	Unclear	Low risk	Unclear	High					
Thompson	1983	Unclear	Low risk	Low risk	Low risk	Low risk	Unclear	Low risk	Unclear	Unclear	Unclear	Low risk	Unclear	High					
Dapas	1985	Unclear	Low risk	Low risk	High risk	High risk	Low risk	Unclear	Low risk	Unclear	Unclear	Low risk	Unclear	High					
Salvini	1986	Unclear	High risk	High risk	High risk	High risk	Low risk	Unclear	Low risk	Unclear	Unclear	Low risk	Unclear	High					
Berry (a)	1988	Unclear	Low risk	Low risk	Low risk	Unclear	Low risk	Unclear	Low risk	Unclear	Unclear	Low risk	Unclear	High					
Berry (b)	1988	Unclear	Low risk	Low risk	Low risk	Unclear	Low risk	Unclear	Low risk	Unclear	Unclear	Low risk	Unclear	High					
Name	Year	1988	1990	2001	2002	2003	2004	2005	2008	2009	2010	2011	2012	2014	2015	2016			
------------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------			
Casale	1988	Clear	Clear	Low	Clear	Moderate													
Klinger	1988	Clear	Clear	Low	Clear	Low													
Borenstein	1990	Clear	Clear	High	High	High	High	Low	Clear	High									
Foster	2001	Low	Clear	Low															
Aksoy	2002	Low	Clear	High	High	High	High	Unclear	Unclear	Low	Low	Unclear	Low	Low	Low	Clear	High		
Tuzun	2003	Clear	Clear	Low	Unclear	Low	Unclear	Clear	High										
Herskowitz	2004	Clear	Clear	Low	Low	Low	Low	Low	Unclear	Unclear	Unclear	Low	Low	Low	Low	Clear	High		
Ketenci	2005	Clear	Clear	Low	High	Clear	Low	Low	Clear	High									
Ralph	2008	Clear	Clear	Low	Clear	High													
Pareek	2009	Clear	Clear	Low	Low	Low	Low	Low	Unclear	Unclear	Unclear	Low	Low	Low	Low	Clear	High		
Serfer	2010	Low	Clear	Low	High	Clear	Low	Low	Clear	High									
Zaringhalam	2010	Low	High	Low	Unclear	Low	Low	Low	Clear	High									
Jazayeri	2011	Clear	Clear	Low	High	High	High	Low	Low	Low	Low	Low	Unclear	Low	Low	Low	Clear	High	
NCT00671502	2011	Clear	Clear	Low	Low	Low	Low	Low	Unclear	High	Clear	Unclear	Clear	Clear	Clear	Clear	Clear	High	
NCT00671879	2012	Clear	Clear	Low	Low	Low	Low	Low	Unclear	Unclear	Unclear	Low	Unclear	Low	Unclear	Clear	Clear	High	
Goforth	2014	Low	Clear	Unclear	Low	Unclear	Clear	Low											
Emrich	2015	Clear	Clear	Low	Low	Low	Low	High	Unclear	Clear	Low	Low	Low	Clear	Clear	Clear	Clear	High	
Friedman	2015	Low	Clear	Low	Low	Low	Low	Unclear	Low	Low	Low	Clear	Clear	Clear	Clear	Clear	Low		
Aparna	2016	Clear	Clear	High	High	High	High	Unclear	Unclear	Unclear	Unclear	Unclear	Low	Low	Low	Low	High		
Study	Year	Unclear	Low risk	Unclear	Low risk	Unclear	Unclear	Low risk	Unclear	Unclear	Low risk	Low risk	Low risk	Moderate					
---------------	------	---------	----------	----------	----------	----------	----------	---------	----------	---------	---------	----------	---------	---------	----------	----------	----------	----------	
Machado	2016	Unclear	Low risk	Low risk	Low risk	Low risk	Unclear	Low risk	Unclear	Low risk	Unclear	Unclear	Low risk	Unclear	Unclear	Low risk	Low risk	Low risk	Moderate
Akhter	2017	Unclear	Low risk	Low risk	Low risk	Low risk	Unclear	Low risk	Unclear	Low risk	Unclear	Unclear	Low risk	Unclear	Unclear	Low risk	Low risk	Low risk	High
Cogne	2017	Low risk	Unclear	Low risk	High														
Friedman	2017	Low risk	Unclear	Low risk	Low risk	Low risk	Unclear	Low risk	Unclear	Low risk	Unclear	Unclear	Low risk	Unclear	Unclear	Low risk	Low risk	Low risk	Low
Schliessbach	2017	Low risk	Unclear	Low risk	Unclear	Low risk	Unclear	Low risk	Low										
Friedman	2018	Low risk	Unclear	Low risk	Low risk	Low risk	Unclear	Low risk	Low										
Friedman	2019	Low risk	Unclear	Low risk	Low risk	Low risk	Unclear	Low risk	Low risk	Low risk	Unclear	Low risk	Low						
Supplemental file 10. Narrative description of trials not included in meta-analysis for pain intensity (≤ 2 weeks)

Study, Year (Reference)	Outcome (Pain intensity)
Borenstein 1990¹	“The total pain scores, as determined by the patients daily and physicians during scheduled visits, were not significantly different.”
Casale 1988²	“VAS [visual analogue scale] pain measurements during the maximal voluntary movements showed a decrease in pain rating clearly in favor of dantrolene, with a percentage variation of 50% for the drug and 8.6% for placebo. Statistical comparison between the two treatments showed dantrolene to have a higher effectiveness (p<0.001).”
Cogné 2017³ (crossover)	First phase crossover data was not available. The study found “no significant difference between the groups’ [botulinum toxin A vs placebo] average LBP [low back pain] during the last 8 days at Day 30 (p = 0.97)”
Dapas 1985⁴	Patients were categorised into subgroups based on low back symptom severity, moderate initial pain and severe or extremely severe initial pain. “When the severity of symptoms at visits 2 and 3 [day 4 and 10] was compared with baseline values at visit 1 [day 1] within the placebo and the baclofen treatment groups, all efficacy variables [including local pain in lumbar area] showed a statistically significant (P<0.05) improvement for the severe- and moderate-pain groups.”
Emrich 2015⁵	“The proportion of patients treated with methocarbamol who achieved a pain-free state rose more rapidly to over 80% and accordingly the proportion of patients who were not yet pain-free after 8 days is below 20% - in contrast to ~ 60% in the placebo group”
Fathie 1964⁶	“A medically significant response was observed in 69.6% of the 46 metaxalone-treated patients who complete the course of therapy and returned for re-examination”. Compared to “17.4% of the placebo-treatment patients who completed the course of therapy [and] showed a medically significant improvement”.
Foster 2001⁷	“At 3 weeks, 11 of 15 patients who received botulinum toxin (73.3%) had >50% pain relief vs four of 16 (25%) in the saline group (p < 0.012). At 8 weeks, nine of 15 (60%) in the botulinum toxin group and two of 16 (12.5%) in the saline group had relief (p < 0.009).”
Gold 1978⁸	At the 48-hour evaluation, 7/20 patients treated with orphenadrine improved compared to 0/20 in the placebo group.
Reference	Summary
--------------------	--
Hingorani 1966⁹	“Of the 25 patients in the placebo group, 18 showed improvement, 5 showed no change, and 2 were worse. Of the 25 patients in the diazepam group, 19 showed improvement, 5 showed no change, and 1 was worse. The difference would therefore seem to be marginal, patients in the treated group having almost no better results than those in the placebo group.”
Jazayeri 2011¹⁰	“After 4 weeks, 76% of patients in the BoNT-A [botulinum toxin A] group reported pain relief compared to 20% in the saline group (P < 0.005). Additionally, greater pain relief was experienced by patients in the BoNT-A group at 8 weeks (64% vs. 12%; P < 0.001).”
Klinger 1988¹¹	“Based on both the physicians’ evaluations of signs and symptoms and the patients’ assessments of pain, intravenous orphenadrine was highly effective compared with placebo in reducing these patients’ lumbar paravertebral muscle pain and spasm.”
Machado 2016¹²	“The primary outcome of this study was the proportion of responders with a visual analogue scale (VAS) of <4 at 6 weeks. At 6 weeks, 5 subjects in the [abobotulinum toxin A] toxin group and 3 subjects in the placebo group (28% and 16%) met this criterion (p = 0.4470).”
Moll 1973¹³	There was a larger overall therapeutic effect of diazepam vs placebo. Therapeutic effect was determined based on the patient’s subjective rating of improvement in pain intensity, and alterations in clinical status as determined by the examiner.
Salvini 1986¹⁴	There was no significant difference between the groups dantrolene and ibuprofen vs ibuprofen for pain on movement and pain at rest at 4 and 8 days of treatment.
Schliessbach 2017¹⁵	First phase crossover data was not available. The study found “pain intensity in the supine position was significantly reduced by clobazam compared to active placebo (60 min: 2.9 vs. 3.5, p = 0.008; 90 min: 2.7 vs. 3.3, p = 0.024; 120 min: 2.4 vs. 3.1, p = 0.005). Pain intensity in the sitting position was not significantly different between groups.”
Tervo 1976¹⁶	No statistically significant difference was observed for symptom relief from low back for orphenadrine vs saline immediately after the injection or at 7-10 days follow-up.
Thompson 1983¹⁷	Tizanidine was “generally better than placebo and significantly so in respect of VAS [visual analogue scale pain intensity]”
ACTRN12616000017426¹⁸	Trial terminated
EUCTR2017-004530-29	No data available
---------------------	-------------------
EUCTR2019-001885-14	Trial ongoing
NCT00817986	No data available
NCT00404417	Trial active but not recruiting
NCT00384579	Trial terminated
NCT02887534	Trial withdrawn
NCT01587508	Trial withdrawn

References:

1. Borenstein DG, Lacks S, Wiesel SW. Cyclobenzaprine and naproxen versus naproxen alone in the treatment of acute low back pain and muscle spasm. *Clin Ther* 1990; 12: 125–31.
2. Casale R. Acute low back pain: Symptomatic treatment with a muscle relaxant drug. *Clin J Pain* 1988; 4: 81–8.
3. Cogné M, Petit H, Creuzé A, Liguoro D, de Seze M. Are paraspinous intramuscular injections of botulinum toxin a (BoNT-A) efficient in the treatment of chronic low-back pain? A randomised, double-blinded crossover trial. *BMC Musculoskelet Disord* 2017; 18: 454.
4. Dapas F, Hartman SF, Martinez L, et al. Baclofen for the treatment of acute low-back syndrome: A double-blind comparison with placebo. *Spine* 1985; 10: 345–9.
5. Emrich OMD, Milachowski KA, Strohmeier M. Methocarbamol bei akuten Rückenschmerzen: Eine randomisierte, doppelblinde, placebokontrollierte Studie. *MMW-Fortschritte der Medizin* 2015; 157: 9–16.
6. Fathie K. A second look at skeletal muscle relaxant: a double-blind study with metaxalone. *Curr Ther Res* 1964; 6: 677–83.
7. Foster L, Clapp L, Erickson M, Jabbari B. Botulinum toxin A and chronic low back pain a randomized, double-blind study. *Neurology* 2001; 56: 1290–3.
8. Gold RH. Orphenadrine citrate: sedative or muscle relaxant? *Clin Ther* 1978; 1: 451–3.
9. Hingorani K. Diazepam in backache: A double-blind controlled trial. *Ann Phys Med* 1966; 8: 303–6.
10. Jazayeri SM, Ashraf A, Fini HM, Karimian H, Nasab M V. Efficacy of Botulinum Toxin Type A for Treating Chronic Low Back Pain. *Anesthesiol Pain Med* 2011; 1: 77–80.
11. Klinger N., Wilson R., Kanniainen C., Wagenknecht K., Re O., Gold R. Intravenous orphenadrine for the treatment of lumbar paravertebral muscle strain. *Curr Ther Res* 1988; 43: 247–54.
12 Machado D, Kumar A, Jabbari B. Abobotulinum toxin A in the treatment of chronic low back pain. *Toxins (Basel)* 2016; 8. DOI:10.3390/toxins8120374.
13 Moll W. Therapy of acute lumbovertebral syndromes through optimal muscle relaxation using diazepam. Results of a double-blind study on 68 cases. *Med Welt* 1973; 24: 1747–51.
14 Salvini S, Antonelli S, De Micheli G, Marchetti M. Dantrolene sodium in low back pain and cervico brachialgia treatment: a controlled study. *Curr Ther Res* 1986; 39: 172–7.
15 Schliessbach J, Vuilleumier PH, Siegenthaler A, et al. Analgesic effect of clobazam in chronic low-back pain but not in experimentally induced pain. *Eur J Pain (United Kingdom)* 2017; 21: 1336–45.
16 Tervo T, Petaja L, Lepisto P. A controlled clinical trial of a muscle relaxant analgesic combination in the treatment of acute lumbago. *Br J Clin Pract* 1976; 30: 62–4.
17 Thompson M, Kennedy G. Treatment of acute low back pain: comparative trial of two muscle relaxants, tizanidine and chloromezanone with placebo. In: Scandinavian Journal of Rheumatology. 1983: 4–40.
18 ACTRN12616000017426. A randomised controlled feasibility study of managing sleep with Zopiclone in participants with acute low back pain and sleep disturbances. Aust. New Zeal. Clin. Trials Regist. 2016.
19 EUCTR2017-004530-29. No Title. Clinicaltrialsregister.eu. 2017. https://www.clinicaltrialsregister.eu/ctr-search/trial/2017-004530-29/HU.
20 EUCTR2019-001885-14. No Title. Clinicaltrialsregister.eu. 2019. https://www.clinicaltrialsregister.eu/ctr-search/trial/2019-001885-14/HU.
21 NCT00817986. A Study to Evaluate the Safety and Tolerability of Arbaclofen Placarbil (XP19986) in Subjects With Acute Back Spasms. ClinicalTrials.gov. 2009.
22 NCT00404417. Botulinum Toxin A for the Treatment of Chronic Lumbar Back Pain. ClinicalTrials.gov. 2006.
23 NCT00384579. Pilot Study to Assess the Efficacy of Botulinum Toxin B on Pain and Disability in Subjects With Acute Low Back Pain. ClinicalTrials.gov. 2006.
24 NCT02887534. Evaluation of Efficacy and Safety of SPARC1401 in Acute Low Back Pain. ClinicalTrials.gov. 2016.
25 NCT01587508. Study Comparing A New Drug Containing The Combination Meloxicam And Cyclobenzaprine In The Treatment Of Acute Lumbago. ClinicalTrials.gov. 2012.
Supplemental file 11. Forest plot pain intensity 3-13 weeks

Acute LBP – Non-benzodiazepine antispasmodic

Author, Year, Medicine	Medicine N Mean SD	Control N Mean SD	MD 95% CI Weight
Friedman 2015 cyclobenzaprine 108	19.3 31.7 107	24.3 35.3	-5.0 [-14.0; 4.0] 32.8%
Friedman 2018 orphenadrine 70	21.3 29.0 34	22.7 34.7	-1.4 [-14.9; 12.1] 14.5%
Friedman 2018 methocarbamol 70	24.7 32.0 34	22.7 34.7	2.0 [-11.9; 15.9] 13.7%
Friedman 2019 meloxaline 72	20.0 31.0 23	14.3 23.0	5.7 [-6.1; 17.5] 18.9%
Friedman 2019 tizanidine 70	19.7 29.3 24	14.3 23.0	5.4 [-6.1; 16.9] 20.0%
Overall effect	.	.	0.6 [-4.5; 5.7] 100.0%

Heterogeneity: $I^2 = 0\%$; $Q^2 = 0, p = 0.56$

Acute LBP – Antispastic

Author, Year, Medicine	Medicine N Mean SD	Control N Mean SD	MD 95%-CI
Friedman 2019 baclofen 76	18.3 31.0 23	14.3 23.0	4.0 [-7.7; 15.7]

Acute LBP – Benzodiazepine

Author, Year, Medicine	Medicine N Mean SD	Control N Mean SD	MD 95%-CI
Friedman 2017 diazepam 50	11.3 23.0 53	12.3 25.7	-1.0 [-10.4; 8.4]

Subacute LBP – Miscellaneous

Author, Year, Medicine	Medicine N Mean SD	Control N Mean SD	MD 95%-CI
Herskowitz 2004 botulinum toxin A 13	-22.0 29.8 15	-3.0 32.1	-19.0 [-41.9; 3.9]

Chronic LBP – Antispastic

Author, Year, Medicine	Medicine N Mean SD	Control N Mean SD	MD 95% CI Weight
Zarirghalam 2010 baclofen 20	61.9 22.3 20	64.3 23.8	-2.4 [-16.7; 11.9] 33.7%
Zarirghalam 2010 baclofen 20	40.1 13.3 20	47.0 19.1	-6.9 [-17.1; 3.3] 66.3%
Overall effect	.	.	-5.4 [-13.7; 2.9] 100.0%

Heterogeneity: $I^2 = 0\%$; $Q^2 = 0, p = 0.62$
Chronic LBP – Miscellaneous

Author, Year, Medicine	Medicine N	Mean	SD	Control N	Mean	SD	MD	95%-CI
Goforth 2014 eszopicone	32	31.7	17.9	20	51.6	22.4	-19.9	[-31.5; -8.3]

Mixed LBP – Non-benzodiazepine antispasmodic

Author, Year, Medicine	Medicine N	Mean	SD	Control N	Mean	SD	MD	95%-CI
Aksoy 2002 thiocolchicoside	174	15.8	31.2	155	21.6	41.4	-5.8	[-13.8; 2.2]

Supplemental file 12. Forest plot disability ≤ 2 weeks

Acute LBP – Non-benzodiazepine antispasmodic

Author, Year, Medicine	Medicine N	Mean	SD	Control N	Mean	SD	MD	95% CI	Weight
Hindle 1972 carisoprodol	14	45.0	30.0	14	85.0	30.0	-40.0[-62.2; -17.8]	2.8%	
Ralph 2008 carisoprodol	269	17.1	36.6	278	25.8	37.2	-8.7[-14.9; -2.5]	14.0%	
Serfer 2010 carisoprodol	269	-23.8	21.2	133	-18.3	21.7	-5.5[-10.0; -1.0]	16.6%	
Serfer 2010 carisoprodol	259	-22.5	21.5	132	-18.3	21.7	-4.2[-8.7; 0.3]	16.5%	
NCT00671879 2012 carisoprodol	141	-20.8	31.7	71	-17.9	32.3	-2.9[-12.1; 6.3]	10.0%	
NCT00671879 2012 carisoprodol	135	-17.5	31.0	71	-17.9	32.3	0.4[-8.8; 9.6]	10.0%	
Friedman 2015 cyclobenzaprine	108	34.2	34.9	107	37.1	34.8	-2.9[-12.2; 6.4]	9.9%	
Friedman 2018 orphenadrine	78	-39.2	37.9	38	-45.4	36.5	6.2[-8.1; 20.5]	5.7%	
Friedman 2018 methocarbamol	80	-33.8	37.4	38	-45.4	36.5	11.8[-2.6; 25.8]	5.8%	
Friedman 2019 metaxalone	76	-42.1	39.2	26	-46.2	38.7	4.1[-13.4; 21.6]	4.2%	
Friedman 2019 tizanidine	76	-46.7	36.5	26	-46.2	38.7	-0.5[-17.5; 16.5]	4.4%	

Overall effect: . . . -3.3[-7.3; 0.7] 100.0% Prediction interval: [-14.5; 7.9]

Heterogeneity: $I^2 = 53\% [7\%; 76\%]$, $r^2 = 20.2375$, $p = 0.02$

Acute LBP – Antispastic

Author, Year, Medicine	Medicine N	Mean	SD	Control N	Mean	SD	MD	95% CI
Friedman 2019 baclofen	79	-44.2	38.1	24	-46.2	38.7	2.0[-15.6; 19.6]	

Acute LBP – Benzodiazepine

Author, Year, Medicine	Medicine N	Mean	SD	Control N	Mean	SD	MD	95% CI
Friedman 2017 diazepam	57	-45.8	31.4	55	-45.8	39.3	0.0[-13.2; 13.2]	

Mixed LBP – Non-benzodiazepine antispasmodic

Author, Year, Medicine	Medicine N	Mean	SD	Control N	Mean	SD	MD	95% CI
Aksoy 2002 thiocolchicoside	174	30.0	38.7	156	49.2	41.7	-19.2[-27.7; -10.7]	

Cashin et al. 2021
Supplemental file 13. Forest plot disability 3-13 weeks

Acute LBP – Non-benzodiazepine antispasmodic

Author, Year, Medicine	Medicine	Control	MD	95% CI	Weight
Friedman 2015 cyclobenzaprine	108 18.8 31.7 107 15.8 27.2	3.0 [-4.9; 10.9]	53.8%		
Friedman 2018 orphenadrine	69 23.3 33.4 34 16.0 27.7	7.3 [-4.9; 19.5]	22.5%		
Friedman 2018 methocarbamol	70 20.6 31.5 34 16.0 27.7	4.6 [-7.3; 16.5]	23.7%		

Overall effect

Heterogeneity: $I^2 = 0\% \; [0\%; 39\%]$, $r^2 = 0$, $p = 0.84$

Acute LBP – Benzodiazepine

Author, Year, Medicine	Medicine	Control	MD	95%-CI
Friedman 2017 diazepam	50 1.4 3.5 53 8.3 19.1	-6.9 [-12.1; -1.7]		

Chronic LBP – Antispastic

Author, Year, Medicine	Medicine	Control	MD	95% CI	Weight
Zaringhalm 2010 baclofen	20 36.7 15.8 20 40.8 16.2	-4.1 [-14.0; 5.8]	26.0%		
Zaringhalm 2010 baclofen	20 23.8 5.8 20 26.7 12.1	-2.9 [-8.8; 3.0]	74.0%		

Overall effect

Heterogeneity: $I^2 = 0\%$, $r^2 = 0$, $p = 0.84$

Chronic LBP – Miscellaneous

Author, Year, Medicine	Medicine	Control	MD	95%-CI
Goforth 2014 eszopiclone	32 27.5 22.9 20 33.1 29.1	-5.6 [-20.6; 9.4]		
Supplemental file 14. Forest plot acceptability

Acute LBP – Non-benzodiazepine antispasmodic

Author, Year, Medicine	Medicine Withdrawal N	Control Withdrawal N	RR	95% CI	Weight
Fathie 1964 metaxalone	5.0 51	3.0 49	1.6	[0.4; 6.3]	3.3%
Fathie 1964 metaxalone	5.0 50	7.0 50	0.7	[0.2; 2.1]	4.9%
Hindle 1972 carisoprodol	2.0 16	2.0 16	1.0	[0.2; 6.3]	2.0%
Lepesto 1979 tizanidine	0.5 15	2.5 15	0.2	[0.0; 3.8]	0.8%
Baratta 1982 cyclobenzaprine	2.0 60	1.0 60	2.0	[0.2; 21.5]	1.3%
Berry (a) 1988 tizanidine	7.0 51	4.0 54	1.9	[0.6; 6.0]	4.4%
Berry (b) 1988 tizanidine	8.0 59	9.0 53	0.8	[0.3; 19]	6.5%
Tuzun 2003 thiocholchicoside	4.0 77	8.0 72	0.5	[0.1; 1.5]	4.4%
Ketenc 2005 thiocholchicoside	1.0 38	1.0 14	0.4	[0.0; 5.5]	1.0%
Ketenc 2005 tizanidine	1.0 32	1.0 13	0.4	[0.0; 6.0]	1.0%
Ralph 2008 carisoprodol	31.0 277	43.0 288	0.7	[0.5; 1.1]	13.0%
Pareek 2009 tizanidine	7.0 101	5.0 96	1.3	[0.4; 4.1]	4.7%
Serfer 2010 carisoprodol	42.0 281	24.0 138	0.9	[0.5; 1.4]	12.4%
Serfer 2010 carisoprodol	26.0 271	24.0 138	0.6	[0.3; 0.9]	11.4%
Emrich 2015 methocarbamil	62.0 98	70.0 104	0.9	[0.6; 1.2]	17.1%
Apama 2016 thiocholchicoside	21.0 100	28.0 100	0.8	[0.5; 1.3]	11.6%

Overall effect: 0.8 [0.6; 1.1] 100.0%
Prediction interval: [0.4; 1.8]
Heterogeneity: $I^2 = 0\%$ [0\%; 32\%], $Q^2 = 0.1068, p = 0.79$

Chronic LBP – Antispastic

Author, Year, Medicine	Medicine Withdrawal N	Control Withdrawal N	RR	95% CI	Weight
Zaringhaim 2010 baclofen	1.5 21	0.5 21	3.0	[0.1; 69.5]	42.8%
Zaringhaim 2010 baclofen	1.0 21	1.0 21	1.0	[0.1; 15.0]	57.2%

Overall effect: 1.6 [0.2; 12.9] 100.0%
Heterogeneity: $I^2 = 0\%$, $Q^2 = 0.0717, p = 0.60$

Chronic LBP – Miscellaneous

Author, Year, Medicine	Medicine Withdrawal N	Control Withdrawal N	RR	95% CI	Weight
Goforth 2014 eszopiclone	4 33	8 25	0.4	[0.1; 1.1]	60.7%
Machado 2016 botulinum toxin A	3 21	3 22	1.0	[0.2; 4.6]	39.3%

Overall effect: 0.6 [0.2; 1.7] 100.0%
Heterogeneity: $I^2 = 15\%$, $Q^2 = 0.1918, p = 0.28$
Supplemental file 15. Forest plot adverse events

Acute LBP – Non-benzodiazepine antispasmodic

Author, Year, Medicine	Medicine	Control	Adverse Event	Adverse Event	RR	95% CI	Weight
Tervo 1976 orphenadrine	2	25	1	25	2.0	[0.2; 20.7]	1.0%
Gold 1978 orphenadrine	5	20	1	20	5.0	[0.6; 39.1]	1.2%
Lepisto 1979 tizanidine	5	15	6	15	0.8	[0.3; 2.1]	4.2%
Baratta 1982 cyclobenzaprine	25	58	17	59	1.5	[0.9; 2.5]	7.9%
Berry (a) 1986 tizanidine	23	51	17	54	1.4	[0.9; 2.4]	7.9%
Berry (b) 1988 tizanidine	24	57	11	47	1.8	[1.0; 3.3]	6.8%
Klinge 1989 orphenadrine	8	40	3	40	2.7	[0.8; 9.3]	2.8%
Borenstein 1990 cyclobenzaprine	12	20	4	20	3.0	[1.2; 7.7]	4.2%
Tuzun 2003 thiocolchicoside	4	77	4	72	0.9	[0.2; 3.6]	2.5%
Pareek 2009 tizanidine	12	101	12	98	1.0	[0.4; 2.0]	5.5%
NCT00671502 2011 carisoprodol	65	280	19	138	1.7	[1.1; 2.7]	8.2%
NCT00671502 2011 carisoprodol	78	278	18	137	2.1	[1.3; 3.4]	8.2%
NCT00671879 2012 carisoprodol	94	275	25	137	1.9	[1.3; 2.8]	9.1%
NCT00671879 2012 carisoprodol	98	281	24	137	2.0	[1.3; 3.0]	9.0%
Emrich 2015 methocarbamol	5	98	1	104	5.3	[1.6; 44.6]	1.1%
Friedman 2015 cyclobenzaprine	36	108	22	107	1.6	[1.0; 2.6]	8.3%
Friedman 2016 orphenadrine	7	74	6	37	0.6	[0.2; 1.6]	3.8%
Friedman 2018 methocarbamol	14	75	7	38	1.0	[0.4; 2.3]	5.0%
Friedman 2018 metaxalone	6	70	2	22	0.9	[0.2; 4.3]	2.0%
Friedman 2019 tizanidine	6	73	1	23	1.9	[0.2; 14.8]	1.2%

Overall effect

Prediction interval	1.6 [1.2; 2.0] 100.0%

Heterogeneity: $I^2 = 0\%$, $t^2 = 0.1259$, $p = 0.52$

Acute LBP – Antispastic

Author, Year, Medicine	Medicine	Control	Adverse Event	Adverse Event	RR	95% CI	Weight
Dapas 1985 baclofen	67	98	29	97	2.3	[1.6; 3.2]	84.3%
Friedman 2019 baclofen	7	73	2	22	1.1	[0.2; 4.7]	15.7%

Overall effect

Prediction interval	2.0 [1.1; 3.8] 100.0%

Heterogeneity: $I^2 = 0\%$, $t^2 = 0.0983$, $p = 0.32$

Acute LBP – Benzodiazepine

Author, Year, Medicine	Medicine	Control	Adverse Event	Adverse Event	RR	95% CI	Weight
Hingorani 1986 diazepam	10	25	4	25	2.5	[0.9; 6.9]	41.0%
Friedman 2017 diazepam	12	57	8	52	1.4	[0.6; 3.1]	59.0%

Overall effect

Prediction interval	1.8 [0.9; 3.6] 100.0%

Heterogeneity: $I^2 = 0\%$, $t^2 = 0.0529$, $p = 0.36$

Chronic LBP – Miscellaneous

Author, Year, Medicine	Medicine	Control	Adverse Event	Adverse Event	RR	95% CI	Weight
Godforth 2014 eszopiclone	2	32	1	20	1.2	[0.1; 12.9]	34.3%
Machado 2016 botulinum toxin A	3	21	2	22	1.6	[0.3; 8.5]	65.7%

Overall effect

Prediction interval	1.5 [0.4; 5.7] 100.0%

Heterogeneity: $I^2 = 0\%$, $t^2 = 0.0003$, $p = 0.88$
Mixed LBP – Non-benzodiazepine antispasmodic

Author, Year, Medicine	Medicine	Adverse Event N	Adverse Event N	RR 95%-CI
Aksoy 2002 thiocolchicoside	11 174	6 155	1.6 [0.6; 4.3]	

0.5 1 2
Supplemental file 16. Forest plot serious adverse events

Acute LBP – Non-benzodiazepine antispasmodic

Author, Year, Medicine	Medicine	Control	RR	95% CI	Weight
NCT00671502 2011 carisoprodol	1.5 280	0.5 138	1.5 [0.1; 36.1]	46.2%	
NCT00671879 2012 carisoprodol	3.5 275	0.5 137	3.5 [0.2; 67.0]	53.8%	

Overall effect

Heterogeneity: $I^2 = 0\%$, $t^2 = 0.0256$, $p = 0.70$

Overall effect: $2.3 [0.3; 20.8] 100.0\%$
Supplemental file 17. Forest plot tolerability

Acute LBP – Non-benzodiazepine antispasmodic

Author, Year, Medicine	Medicine Discontinued	Medicine N	Control Discontinued	Control N	RR	95% CI	Weight
Berry (a) 1988 tizanidine	5.0 51	1.0 54			5.3	[0.6; 43.8]	12.1%
Berry (b) 1988 tizanidine	5.0 57	1.0 47			4.1	[0.5; 34.1]	12.1%
Ketco 2005 tizanidine	1.5 32	0.5 13			1.2	[0.1; 28.0]	6.6%
Ralph 2008 carisoprodol	8.0 277	5.0 284			1.6	[0.5; 5.0]	24.0%
Serfer 2010 carisoprodol	15.0 279	5.0 138			1.3	[0.6; 4.0]	23.8%
Serfer 2010 carisoprodol	3.0 271	5.0 138			0.3	[0.1; 1.3]	19.4%

Overall effect: 1.5 [0.6; 3.5] 100.0%

Heterogeneity: $I^2 = 29\%$ [0%; 71%], $Q^2 = 0.5399$, $p = 0.22$

Acute LBP – Antispastic

Author, Year, Medicine	Medicine Discontinued	Medicine N	Control Discontinued	Control N	RR	95%-CI
Dapas 1985 baclofen	17.5 98	0.5 97			34.6	[2.1; 568]

Supplemental file 18. Forest plot dose subgroup analysis

Population: Acute low back pain

Medicine: Non-benzodiazepine antispasmodic

Outcome: Pain intensity

Follow-up: Immediate (≤ 2 weeks)

Standard dose

Author, Year, Medicine	Medicine N	Mean	SD	Control N	Mean	SD	MD	95% CI	Weight
Hindle 1972 carisoprodol	14	15.5	30.0	14	64.0	30.0	-48.5	[-70.7, -26.3]	3.2%
Lepisto 1979 tizanidine	15	-51.0	30.0	15	-52.7	30.0	-1.7	[-19.8, 23.2]	3.4%
Tuzun 2003 thiocolchicoside	73	25.1	20.9	66	47.4	19.8	-22.3	[-29.0, -15.6]	7.1%
Ketenci 2005 thiocolchicoside	38	6.3	11.7	14	43.7	27.9	-37.4	[-52.5, -22.3]	4.8%
Ketenci 2005 tizanidine	32	18.6	16.6	13	43.7	27.9	-25.1	[-41.3, -8.9]	4.5%
Ralph 2008 carisoprodol	269	-47.0	77.9	278	-30.0	66.7	-17.0	[-29.2, -4.8]	5.6%
Pareek 2009 tizanidine	94	-58.8	21.4	91	-43.5	20.6	-15.3	[-21.4, -9.2]	7.2%
Serfer 2010 carisoprodol	260	-44.5	48.4	128	-34.2	44.0	-10.3	[-19.9, -0.7]	6.3%
Serfer 2010 carisoprodol	251	-44.5	47.5	128	-34.2	44.0	-10.3	[-19.9, -0.7]	6.3%
NCT00671502 2011 carisoprodol	280	27.5	30.0	140	-28.6	30.0	1.1	[-5.0, 7.2]	7.2%
NCT00671502 2011 carisoprodol	281	28.0	30.0	139	-28.6	30.0	0.6	[-5.5, 6.7]	7.2%
NCT00671879 2012 carisoprodol	271	-15.5	22.1	132	-15.2	21.4	-0.3	[-4.8, 4.2]	7.6%
NCT00671879 2012 carisoprodol	270	-16.4	21.4	132	-15.2	21.4	-1.2	[-6.7, 3.3]	7.6%
Friedman 2015 cyclobenzaprine	103	36.0	35.8	104	39.0	30.9	-3.0	[-12.1, 6.1]	6.4%
Friedman 2018 orphenadrine	78	38.0	33.0	38	39.0	32.0	-1.0	[-13.5, 11.5]	5.5%
Friedman 2019 metaxalone	76	42.0	33.3	24	38.3	29.3	3.7	[-10.2, 17.6]	5.1%
Friedman 2019 tizanidine	76	38.7	31.7	25	38.3	29.3	0.4	[-13.1, 13.9]	5.2%

Overall effect: -9.4 [-14.5; -4.2] 100.0%

Prediction interval: [-30.0; 11.3]

Heterogeneity: $I^2 = 84\%$ [75%; 89%], $t^2 = 86.8485$, $p < 0.01$

Above dose

Author, Year, Medicine	Medicine N	Mean	SD	Control N	Mean	SD	MD	95% CI	Weight
Baratta 1982 cyclobenzaprine	58	-55.0	48.5	59	-40.0	48.9	-15.0	[-32.6, 2.6]	21.7%
Berry (a) 1988 tizanidine	46	-29.0	43.3	52	-33.0	32.9	4.0	[-14.1, 19.4]	26.8%
Berry (b) 1988 tizanidine	51	19.0	23.2	45	19.0	22.9	6.0	[-9.2, 9.2]	51.4%

Overall effect: -2.2 [-11.4; 7.0] 100.0%

Heterogeneity: $I^2 = 30\%$ [0%; 93%], $r^2 = 20.7645$, $p = 0.24$

Below dose

Author, Year, Medicine	Medicine N	Mean	SD	Control N	Mean	SD	MD	95% CI	Weight
Aparna 2016 thiocolchicoside	79	6.7	30.0	74	11.5	30.0	-4.8	[-14.3, 4.7]	60.8%
Friedman 2018 methocarbamol	80	43.0	32.7	38	39.0	32.0	4.0	[-8.4, 16.4]	39.2%

Overall effect: -1.4 [-9.8; 7.1] 100.0%

Heterogeneity: $I^2 = 18\%$, $r^2 = 6.7860$, $p = 0.27$
Supplemental file 19. Funnel plots for all meta-analyses with ≥2 trials

Results for Egger’s regression test for funnel plot asymmetry are reported alongside funnel plots which included comparisons with 10 or more trials.

Acute LBP Non-benzodiazepine antispasmodics, Pain intensity ≤2 weeks

![Funnel plot for Acute LBP Non-benzodiazepine antispasmodics, Pain intensity ≤2 weeks](image)

Intercept	Confidence Interval	t-value	p-value
-1.6	-3.7 to 0.4	-1.5	0.1

Acute LBP Non-benzodiazepine antispasmodics, Pain intensity 3-13 weeks

![Funnel plot for Acute LBP Non-benzodiazepine antispasmodics, Pain intensity 3-13 weeks](image)

Cashin et al. 2021
Mixed LBP Non-benzodiazepine antispasmodics, Pain intensity ≤2 weeks

Acute LBP Non-benzodiazepine antispasmodics, Disability ≤2 weeks

	Intercept	Confidence Interval	t-value	p-value
Egger’s test	0.5	-1.3 to 2.4	0.6	0.6
Acute LBP Non-benzodiazepine antispasmodics, Disability 3-13 weeks

![Graph showing standard error vs mean difference]

Acute LBP Non-benzodiazepine antispasmodics, Acceptability

![Graph showing standard error vs risk ratio]

	Intercept	Confidence Interval	t-value	p-value
Egger’s test	-0.2	-0.8 to 0.4	-0.6	0.5
Chronic LBP Miscellaneous, Acceptability

Acute LBP Non-benzodiazepine antispasmodics, Adverse events

	Intercept	Confidence Interval	t-value	p-value
Egger's test	-0.3	-1.2 to 0.7	-0.6	0.6
Acute LBP Antispastics, Adverse events

Acute LBP Benzodiazepines, Adverse events
References

1. Sterne JAC, Sutton AJ, Ioannidis JPA, et al. Recommendations for Examining and Interpreting Funnel Plot Asymmetry in Meta-Analyses of Randomised Controlled Trials. *BMJ*. 2011;343. doi:10.1136/bmj.d4002
Supplemental file 20. Sensitivity analyses for non-benzodiazepine antispasmodic medicines in acute LBP

Outcome	Overall	Removed trials with an unclear definition for non-specific LBP	Removed trials measuring pain with a VRS	Removed trials where measures of variance were imputed	Removed trials for carisoprodol	Removed trials for thiocolchicoside	Removed trials at high risk of bias	Removed trials with data from trial registry record	Removed trials without a placebo comparator
Pain intensity (≤ 2 weeks)	(MD/RR [95% CI]; Tau; n)								
Pain intensity (≤ 2 weeks)	-7.7 (-12.1 to -3.3), 76.2, n=4546	-8.1 (-12.7 to -3.6), 79.3, n=4450	-9.7 (-15.4 to -3.9), 92.6, n=2767	-8.2 (-13.2 to -3.2), 77.6, n=3495	-8 (-14.3 to -1.7), 103.9, n=1559	-5.3 (-9.2 to -1.4), 43.8, n=4200	0.2 (-4.9 to 5.4), 0, n=672	-10.2 (-15.6 to -4.7), 96.4, n=2901	-11 (-17 to -5.1), 95.9, n=3488
Change in overall effect size (%)	Increased by -0.4 (5.2%)	Increased by -2 (26%)	Increased by -0.5 (6.5%)	Increased by -0.3 (3.9%)	Increased by -0.2 (13.4%)	Increased by -0.2 (10.2%)	Increased by -2.5 (42.9%)	Increased by -3.3 (29.5%)	
Change in Tau² (%)	Tau² increased by 3.1 (4.1%)	Tau² increased by 16.4 (21.8%)	Tau² increased by 14.4 (1.8%)	Tau² increased by 27.2 (36.4%)	Tau² increased by 32.4 (42.5%)	Tau² reduced by 76.2 (100%)	Tau² increased by 20.2 (26.5%)	Tau² increased by 19.7 (25.9%)	
Acceptability	0.8 (0.6 to 1.1), 0.1, n=2834	0.8 (0.6 to 1.1), 0, n=2520			0.9 (0.6 to 1.3), 0.2, n=1412	0.9 (0.6 to 1.2), 0.1, n=2433	0.2 (0 to 3.8), NA, n=30		0.8 (0.6 to 1), 0.1, n=2332
Change in overall effect size (%)	No change in acceptability				Reduced by 0.1 (12.5%)	Reduced by 0.1 (12.5%)	Increased by 0.6 (75%)	No change in acceptability	No change in acceptability
Change in Tau² (%)	Tau² reduced by 0.1 (100%)				Tau² increased by 0.1 (100%)	No change in Tau²			
Disability (≤2 weeks)	-3.3 (-7.3 to 0.7), 20.2, n=2438				2.3 (-3.6 to 8.3), 0, n=652	2.3 (-3.6 to 8.3), 0, n=652	-3.7 (-8.6 to 1.2), 26.7, n=2020	-5.9 (-10.5 to -1.3), 17.5, n=1786	
Change in overall effect size (%)	No change in disability					No change in disability			
Change in Tau² (%)						Tau² reduced by 16.2 (80.2%)			
Adverse events	1.6 (1.2 to 2), 0.1, n=3404	-	-	-	1.4 (1 to 2), 0.2, n=1741	1.6 (1.3 to 2), 0.1, n=3255	1.2 (0.8 to 1.9), 0.1, n=737	1.4 (1 to 2), 0.2, n=1741	1.8 (1.3 to 2.4), 0.1, n=2385
----------------	-----------------------------	---	---	---	----------------------------	----------------------------	-----------------------------	----------------------------	-----------------------------
Change in overall effect size (%)	-	-	-	Reduced by 0.2 (12.5%)	No change in adverse events	Reduced by 0.4 (25%)	No change in adverse events	Reduced by 0.2 (12.5%)	Increased by 0.2 (12.5%)
Change in Tau² (%)	-	-	-	Tau² increased by 0.1 (100%)	No change in Tau²	No change in Tau²	Tau² increased by 0.1 (100%)	No change inTau²	

Tolerability	1.5 (0.6 to 3.5), 0.5, n=1641	-	-	-	3.6 (0.9 to 14.7), 0.1, n=254	-	-	-	1.2 (0.5 to 3), 0.4, n=1536
Change in overall effect size (%)	-	-	-	Increased by 2.1 (140%)	Tau² reduced by 0.4 (80%)	-	-	-	Reduced by 0.3 (20%)
Change in Tau² (%)	-	-	-	Tau² reduced by 0.1 (20%)					

LBP, Low Back Pain; MD, Mean Difference; RR, Risk Ratio; CI, Confidence Interval; VRS, Verbal Rating Scale; NA, Not Applicable