Induction of Innate Immune Responses by SIV In Vivo and In Vitro: Differential Expression and Function of RIG-I and MDA5

Juliene G. Co,1 Kenneth W. Witwer,1 Lucio Gama,1 M. Christine Zink,1,3 and Janice E. Clements1,2,3,4

1Department of Molecular and Comparative Pathobiology, 2Department of Neurology, 3Department of Pathology, and 4Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, Maryland

Interferon-β induction occurs during acute simian immunodeficiency virus (SIV) infection in the brain. We have examined expression and function of cytosolic RNA sensors, retinoic acid inducible gene I (RIG-I), and melanoma differentiation-associated protein 5 (MDA5), in vivo in the brain of our consistent, accelerated SIV-macaque model and in vitro in SIV-infected macaque macrophages to identify the pathway of type I interferon (IFN) induction. MDA5 messenger RNA (mRNA) and protein were expressed at higher levels in the brain than RIG-I, with protein expression correlating with the severity of disease from 42 until 84 days post-inoculation. The siRNA experiments reveal that mRNA expression of IFN-inducible gene MxA is dependent on MDA5, but not RIG-I. Finally, we demonstrate that SIV infection leads to the production of double-stranded RNA in vivo, which may act as the MDA5 ligand. We have shown for the first time to our knowledge the functional role of MDA5 in the innate immune response to SIV infection.
and function to enhance the detection of virus infections [16–19]. The 5′-triphosphates, a signature product of viral polymerase, and dsRNA are both non-self ligands, and the presence of either molecule is an indicator of ongoing viral infection. RIG-I and MDA5 signal through a mitochondria-bound adapter protein, IFN-β promoter stimulator 1 (IPS-1), ultimately activating an IRF-3-dependent type I IFN expression [20]. IFN in turn induces the expression of increased levels of RIG-I and MDA5 in a positive feedback loop. Although both RIG-I and MDA5 are IFN-stimulated genes (ISGs), some viruses are known to employ unique mechanisms to antagonize innate immune cellular defenses [21]. The roles of RIG-I and MDA5 in the context of SIV infection have not yet been investigated using infection experiments in naturally permissive cells such as macrophages.

Using our SIV macaque model of AIDS and HIV encephalitis, we examined expression of RIG-I and MDA5 mRNAs and proteins and report for the first time the induction of RIG-I and MDA5 mRNA and protein with different expression patterns in the brains of SIV-infected macaques. Additionally, gene silencing experiments using siRNA in SIV-infected macrophages demonstrated that MDA5, but not RIG-I, contributed to the induction of IFN-β together with the endosomal TLR pathway.

MATERIALS AND METHODS

Animal Experiments and Viruses

Fifty-three pigtailed macaques (Macaca nemestrina) were intravenously inoculated with SIV/DeltaB670 (50AID50) and SIV/17E-Fr (10 000 AID50) and sacrificed at 4, 7, 10, 14, 21, 42, 56, and 84 days postinoculation as described elsewhere [12]. Procedural controls were sacrificed at 84 days post–mock inoculation. Many of these animals have been included in previous publications [10, 22]. All animal protocols in this study were approved by the Johns Hopkins University Institutional Animal Care and Use Committee in accordance with Animal Welfare Act regulations and the USPHS Policy on Humane Care and Use of Laboratory Animals.

Histopathology

Sections of CNS tissue were examined in a blinded fashion by microscope and the degree of encephalitis severity scored using a semiquantitative system as described elsewhere [11].

Antibodies

Antibodies to RIG-I (Alexis Biochemicals), MDA5 (Alexis Biochemicals), CD68 (DAKO), glial fibrillary acidic protein (GFAP) (DAKO), β3-tubulin (Promega), β-actin (Sigma), and SIV mac251 gp41 (NIH AIDS Research and Reference Reagent Program) were used. Double-stranded RNA-specific monoclonal antibody J2 (English & Scientific Consulting) recognizes the A-helix structure of dsRNA molecules at least 40bp long in a non–sequence-specific manner and do not crossreact with ssRNA, tRNA, rRNA, mRNA, or RNA-DNA hybrids [23].

Immunohistochemical Analysis

Paraffin-embedded tissue sections of macaque basal ganglia were processed, probed, photographed, and analyzed as described elsewhere [11]. For fluorescent images, iVision (BioVision Technologies) software was used.

Cell Culture

Blood from adult pigtailed macaques was processed using a Percoll gradient protocol, and PBMCs were maintained in RPMI 1640 (Invitrogen) supplemented with 20% (non-autologous) pigtail serum, 200ng/mL M-CSF (R&D Systems), 10 mmol/L HEPES (Invitrogen), 2 mmol/L L-glutamine (Invitrogen), and 0.5 mg/mL gentamicin (Invitrogen) (MDM20) for 7 days until differentiation into monocyte-derived macrophages (MDM). Thereafter, cells were maintained in RPMI with 10% pigtail serum (MDM10).

Gene Silencing of RIG-I and MDA5

Cells were treated with 100 nmol/L of RIG-I–specific (5′-CU-GAAUAUACGCACCUCUTT-3′), MDA5-specific (5′-UAU-CAUUCCGAUUGUUGUATT-3′), or a nonspecific siRNA control (5′-UUCUCCGAAGUGUCAGUTT-3′) (Integrated DNA Technologies) using Hiperfect Transfection Reagent (Qiagen) according to the manufacturer’s protocol. Cells were transfected 24 hours prior to infection. Uridines had 2′-O-methyl modifications to minimize induction of IFN and ISGs as a result of transfection [24].

Chloroquine Treatment

Primary macaque macrophages were pretreated with 50 umol/L of the endocytosis inhibitor chloroquine (Invivogen) 30 minutes before infection. Cells were maintained in the presence of chloroquine throughout the experiment until the indicated time points.

SIV Infection of Primary Macrophages

Mock- or siRNA-transfected primary macrophages were infected with SIV/17EFr [25] at a multiplicity of infection of 0.05 for 6 hours at 37°C. After infection, cells were washed 5 times with phosphate-buffered saline (PBS) and cultured in MDM10 until collection of samples at various time points.

RNA Extraction and qRT-PCR Analysis

Total RNA from basal ganglia tissue, as well as infected and/or transfected cells was extracted, purified, and run in quantitative reverse-transcriptase polymerase chain reaction (qRT-PCR) conditions as described elsewhere [10]. Specific primer and probe sets to RIG-I (Fwd:5′-GTGCAAAGCCTTGGCATGT-3′,
Rev:5'-TGGCTTGAGATGTGCTACTC-3', Probe:5'-AGAGGAATCTCATGTCG-3'), MDA5 (Fwd:5'-GTT
TGGCAGAAGAATGTGCT-3', Rev:5'-GCTCTTGCTGCCA-
CATTCCTC-3', Probe:5'-AACAGCAACATGGGCACTTGC
AG-3'), MxA (Fwd:5'-AGAGAGCTGCGCTTCCCAAGA-3',
Rev:5'-TCGTTCAACAGTTCTCACATTTCA-3', Probe:5'-
ACCCGGGCCTCCTGCTACCA-3', Rev:5'-GATCCAGGGGCTC
ACATAC-3'), Probe:5'-CGCCCGTGCTGCTACTACCGATTTG
-3'), and SIV RNA (Fwd:5'-GTCCTGCTATCTGCTGTGC
ATC-3', Rev:5'-CCTAGGGTTCCTGTGCTATTCTT-3',
Probe:5'-CTTCCTGCTGTGCTATTCTTCTGTG-3') were used. Fold-change calculations were performed using the ΔΔCt method, which involved an initial normalization against an internal gene (18S ribosomal RNA), and a second normalization against RIG-I/MDA5 expression in uninfected control animals [26].

Protein Isolation and Western Blot Analysis
Cells were lysed with ice-cold radioimmunoprecipitation assay buffer containing Protease Inhibitor Cocktail III (Calbiochem) as described elsewhere [27]. Forty micrograms of protein was resolved using a 10% polyacrylamide gel and probed with RIG-I, MDA5, and β-actin antibodies.

Statistical Analysis
Spearman’s rank correlation test was used to determine correlations of RIG-I and MDA5 mRNA and protein levels with the largely previously published levels of SIV RNA, IFN-β mRNA, and MxA mRNA as shown in Supplemental Figure 1 [10]. Mann–Whitney test was used to determine statistical differences between 2 different time points and 2 different severity groups in macaque brain samples. A 2-sample T test with equal variances was used to analyze significance between siRNA- or chloroquine-treated cells versus untreated samples in vitro.

RESULTS
RIG-I and MDA5 mRNA Are Induced in the Brain During SIV Infection
We examined the expression of RIG-I and MDA5 mRNA in the brains of SIV-infected macaques at different stages of infection by quantitative real time RT-PCR. Values were reported as fold-change in RNA. At 4 days postinfection, both RIG-I and MDA5 mRNA expression levels increased in the SIV-infected brain. RIG-I levels increased 4.2-fold, while MDA5 levels increased 20.7-fold (Figure 1A and B). MDA5 reached its highest level at 4 days postinfection, in contrast to RIG-I which peaked at 7 days postinfection, with a 5.4-fold increase versus control. At 7 days postinfection the increase in MDA5 was only 13.3-fold compared with the peak of 20.7-fold at 4 days postinfection. By 10 days postinfection, both RIG-I and MDA5 mRNA expression were dramatically reduced to levels comparable to those in uninfected control. During acute infection (4–21 days postinfection), both RIG-I and MDA5 expression negatively correlated with SIV RNA, and positively correlated with IFN-β and MxA mRNA (Table 1; Supplementary Table S1).

From 21 to 42 days postinfection, RIG-I and MDA5 continued to increase with the highest levels of expression of both RIG-I and MDA5 at 42 days postinfection. The level of expression of both reflected the severity of CNS disease, with macaques exhibiting moderate/severe disease having higher fold-change gene induction (median expression: RIG-I=12.5; MDA5=23.5) compared with macaques with none/mild disease (median expression: RIG-I=6.2; MDA5=7.1). A significant difference between the medians of both severity groups (moderate/severe vs. none/mild) was observed on 42 days postinfection for MDA5 but not RIG-I (P = .0476 and P = .3810, respectively). Levels for the moderate/severe animals stabilize from 42 to 84 days postinfection, while RIG-I and MDA5 mRNA expression in the none/mild group dramatically decrease to levels comparable to uninfected control animals at 56 days postinfection and maintains those levels until 84 days postinfection. During the late stage of infection (42–84 days postinfection), RIG-I and MDA5 correlated with brain SIV RNA, IFN-β mRNA, and MxA mRNA (Table 1; Supplementary Table S1). It should be noted that during the later stages of infection, IFN-β levels do not strongly parallel MxA levels (Supplementary Table S1). Specifically, IFN-β levels between none/mild versus moderate/severe groups become quite close (56 and 84 days postinfection dpi), while ISGs such as MxA, RIG-I, and MDA5 are 10-fold different between these 2 severity groups (Supplementary Table S1). This discrepancy is likely due to the brain switching to IFNα (instead of IFN-β) production during the later stages of infection [22].

RIG-I and MDA5 Protein Expression Are Differentially Regulated in the Brain of SIV-Infected Macaques
In order to examine the location and temporal pattern of RIG-I (Figure 1C, E, and G) and MDA5 expression (Figure 1D, F, and H), immunohistochemical analysis was performed and protein expression was quantitated in basal ganglia of uninfected control and SIV-infected macaques from 4 to 84 days postinfection. Increased expression of RIG-I and MDA5 proteins were found in white matter of infected macaques compared with uninfected controls (Figure 1D and H). However, the increases in RIG-I expression were much less significant compared with MDA5 (Figure 1G and H). In contrast, gray matter had higher basal levels of expression of both proteins, but there was little change in expression of either protein during SIV infection (Figure 1E and F). In the white matter, there was a modest 1.7-fold increase in RIG-I protein expression at 7 days postinfection compared with controls, and returned to uninfected levels at 10 and
Figure 1. Relative induction of retinoic acid inducible gene I (RIG-I) and melanoma differentiation-associated protein 5 (MDA5) mRNA and protein in brain of simian immunodeficiency virus (SIV)-infected macaques. A, RIG-I and B) MDA5 mRNA were measured by quantitative RT-PCR from basal ganglia sections of uninfected and SIV-infected macaques sacrificed at various time points (4, 7, 10, 14, 21, 42, 56, or 84 days post inoculation). The number of animals used for each time point are: 6 (4 days), 5 (7 days), 6 (10 days), 6 (14 days), 6 (21 days), 9 (42 days), 9 (56 days), 6 (84 days). The mRNA levels are represented as fold-change over the average of 3 uninfected brain RNAs, calculated using the ΔΔCt method. Medians (black bars) are indicated for each experimental group. Each circle represents one animal, color-coded according to severity of CNS disease (red, moderate/severe; black, none/mild). The
21 days postinfection (Figure 1C). In comparison, median MDA5 expression was up-regulated by 13.2-fold at 4 days postinfection, reaching a peak of 21-fold induction by 7 days postinfection, before adjusting to 9.5-fold by 10 days postinfection (Figure 1H). This pattern of MDA5 expression parallels the expression of IFN-β and MxA mRNA in the brain of these macaques peaking at 7 days postinfection, followed by decreased expression by 10 days postinfection [10]. SIV RNA expression in brain also increases from 4 to 7 days postinfection, followed by decline from 10 to 14 days postinfection [10]. The control of exponential viral replication at 10 and 14 days postinfection is in part due to the expression of IFN-β and ISGs in the brain during acute infection [10]. A negative correlation was observed between MDA5 (but not RIG-I) protein expression in the white matter during acute stages of infection (4–21 days postinfection) and SIV RNA (r = −0.4860; P = .0102).

A bifurcating pattern of expression for MDA5 at 42, 56, and 84 days postinfection was observed (Figure 1H). SIV-infected macaques with moderate to severe encephalitis had higher median levels of MDA5 protein compared with none to mild disease in macaque brain at 42, 56, and 84 days postinfection. There is a statistically significant difference between medians of both severity groups (moderate/severe vs none/mild) at 56 days postinfection (P = .0238). The bifurcating pattern is markedly less distinct for RIG-I protein expression, as is the overall induction of RIG-I (Figure 1G). MDA5 protein expression in the white matter strongly correlated with SIV RNA and MxA mRNA (r = 0.7426, P < .0001 and r = 0.7704, P < .0001, respectively), but not IFN-β (r = 0.1861, P = .384). There were no correlations between the expression of RIG-I protein with SIV RNA, IFN-β mRNA, or MxA mRNA.

RIG-I and MDA5 Protein Is Induced in Perivascular Macrophages and Astrocytes of SIV-Infected Macaques

In order to determine the specific cells in the brain that expressed RIG-I and MDA5 proteins, immunohistochemistry using fluorescent probes was done on uninfected and SIV-infected brain (basal ganglia) from 10 days postinfection. We demonstrated that in uninfected brain, protein expression for both RIG-I (Figure 2A) and MDA5 (Figure 2B) was undetectable in perivascular macrophages and astrocytes, while being constitutively expressed in neurons. In contrast, in SIV-infected brain, protein levels for both RIG-I (Figure 3A) and MDA5 (Figure 3B) were clearly induced in perivascular macrophages and astrocytes. Expression of both proteins was maintained in neurons of infected animals.

SIV Infection Induces MDA5-Dependent, but Not RIG-I–Dependent, Type I IFN Response in Macrophages

In order to determine whether RIG-I or MDA5 (or both) played a role in inducing the type I IFN response to SIV infection, primary pigtail macaque macrophages were used and RIG-I and MDA5 silenced using small interfering RNA (siRNA). Macrophages were transfected with either a scrambled siRNA control, or a gene-specific RIG-I- and MDA5-siRNA, in at least 3 independent experiments. The levels of both proteins were analyzed at 24 and 48 hours postinfection; and while protein levels decreased at 24 hours, there was no significant effect on function until 48 hours. The reduction of RIG-I protein was ~40% at 48 hours postinfection in this experiment (Figure 5A), but

Table 1. Correlation of RIG-I and MDA5 mRNA With SIV RNA, IFN-β, and MxA mRNA.

	RIG-I	MDA5
Acute stage		
SIV RNA	−0.3539	0.0597
IFN-β mRNA	0.444	0.0198
MxA mRNA	0.8131	<.0001
Terminal stage		
SIV RNA	0.6271	0.001
IFN-β mRNA	0.4063	0.0488
MxA mRNA	0.7145	<.0001

	r	p
SIV RNA	−.3539	.0061
IFN-β mRNA	.444	.017
MxA mRNA	.8131	<.0001

a Correlation coefficient.
b Significance.
Retinoic acid inducible gene I (RIG-I) and melanoma differentiation-associated protein 5 (MDA5) expression in specific brain cells in uninfected macaques. RIG-I (A) and MDA5 (B) protein expression were investigated in uninfected basal ganglia brain tissue sections by dual staining with specific brain markers for macrophages (CD68), astrocytes (glial fibrillary acidic protein [GFAP]), and neurons (β3-tubulin), as well as RIG-I and MDA5 specific antibodies. Fluorescent secondary antibodies were used and overlays analyzed using a fluorescent microscope. It is shown that RIG-I and MDA5 are both hardly expressed in perivascular macrophages and astrocytes, while being constitutively expressed in neurons.
knockdown ranged from ~40% to 70% in experimental replicates. On the other hand, MDA5 protein was reduced by ~74% at 48 hours post infection (Figure 5B). Type I IFN induction, which was measured using the induction of the ISG MxA mRNA, was significantly reduced by 14.7-fold in MDA5 siRNA-treated cells at 48 hours postinfection (P = .0035) compared with controls (Figure 5D). Despite the variable 40%–70% reduction in RIG-I, MxA levels never decreased in the experiments.

Figure 3. Retinoic acid inducible gene I (RIG-I) and melanoma differentiation-associated protein 5 (MDA5) expression in specific brain cells in SIV-infected macaques. RIG-I (A) and MDA5 (B) protein expression were investigated in infected basal ganglia brain tissue sections by dual staining with specific brain markers for macrophages (CD68), astrocytes (glial fibrillary acidic protein (GFAP)), and neurons (ß3-tubulin), as well as RIG-I and MDA5 specific antibodies. Fluorescent secondary antibodies were used and overlays analyzed using a fluorescent microscope as described in Materials and Methods. White arrowheads indicate colocalization of RIG-I and CD68, and RIG-I and GFAP in (A), and MDA5 and GFAP in (B). It is shown that RIG-I and MDA5 are both induced in perivascular macrophages and astrocytes upon infection, while being constitutively expressed in neurons.
but surprisingly increased (P = .0136) (Figure 5C). Thus, the intracellular signaling induced by SIV infection of macrophages that leads to type I IFN response and ISGs appears to be MDA5-dependent.

Induction of the Type I IFN Response in SIV-Infected Macrophages Is Not Exclusively Through Cytosolic Sensors

In order to determine whether type I IFN response also signaled through endocytosis-dependent pathways such as the TLR response, macrophages were pretreated with chloroquine 30 minutes before infection. MxA was downregulated in SIV-infected, chloroquine treated cells by 5.1-fold at 48 hours (P = .0077) compared with untreated, infected cells (Figure 5E). When cells were pretreated with both MDA5 siRNA and chloroquine, MxA expression was down-regulated by 12.4-fold (P = .0027), compared with controls (Figure 5F). These data suggest that intracellular signaling induced by SIV infection of macrophages that leads to the type I IFN response occurs through both MDA-5 and the endocytosis-dependent TLR pathway.

DISCUSSION

The innate immune response to SIV infection in the CNS is critical for controlling viral replication during acute infection and preserving the neurological function within the immune-privileged site of the brain. We have previously shown coordinated regulation of innate immune responses, including IFN-β and MxA, which function to control viral replication during the early stages of infection in SIV-infected macaque brains [10]. In this study, we examine the pathways in macaque brain and in primary macrophages that induce IFN-β. We demonstrate for the first time to our knowledge that both cytosolic RNA sensors RIG-I and MDA5 are significantly induced in the brains of SIV-infected macaques at the mRNA level. Although both RIG-I and MDA5 proteins increase upon SIV infection, only MDA5 upregulation was statistically significant. The increased expression of RIG-I and MDA5 protein was found in astrocytes and perivascular macrophages, while constitutive expression was observed in neurons. Additionally, SIV-infected macrophages induce the type I IFN response in an MDA5-, but not a RIG-I-dependent manner. Finally, we demonstrate that signaling in response to SIV is not exclusively through the cytosolic sensors, as treatment with chloroquine also decreased the levels of the ISG MxA, implicating a role for membrane-bound TLR sensors as well.

Unlike other RNA viruses that use viral polymerase to synthesize their genome in the cytosol, HIV and SIV exclusively use the cellular transcriptional machinery in the nucleus. Correspondingly, the newly synthesized viral genome is also subject to posttranscriptional modifications. This results in masking of the 5′-triphosphate, the ligand of RIG-I in the viral genome, by a methylated guanosine cap similar to cellular mRNA, resulting in the viral RNA appearing to be “self” RNA [29]. In addition to the absence of a 5′-triphosphate, retroviruses do not possess a dsRNA intermediate step in their replication cycles. However, the HIV genome does form complex secondary structures that result in long stretches of dsRNA, the ligand for MDA5 [30–35]. In fact, the architecture and extensive secondary structure of an entire HIV-1 RNA genome was demonstrated using high-throughput RNA analysis [36]. These secondary structures constitute previously unrecognized regulatory motifs and are an important and conserved part of the genetic code. In this respect, the HIV genome with its long stretches of dsRNA regions could trigger MDA5. We have found that SIV infection in brain leads to significant amounts of >40bp long dsRNA molecules, particularly in perivascular macrophages, the main site of SIV infection. In contrast, dsRNA was not detected in astrocytes, probably because SIV replication is restricted in these cells in vivo [37]. In vitro, MxA expression is reduced in SIV-infected macrophages that have significantly reduced expression of MDA5 protein. This effect is not seen when RIG-I expression is reduced. The lack of a 5′-triphosphate “viral signature” in retroviruses also suggests that the cytosolic sensor RIG-I is not used for antiretroviral IFN-β induction.

Introduction of RNA molecules to silence genes in in vitro experiments causes unwanted stimulation of the type I IFN response [38]. Optimization of gene silencing experiments was
hindered by IFN responses to siRNA treatment; thus, silencing of the cytosolic sensors resulted in upregulation of ISGs and was a challenge for our studies. To minimize this effect, siRNAs with uridine 2'-O-methyl modifications were used because these modifications enable binding of the siRNA to RIG-I–like receptors and TLR7/8, but do not trigger downstream signaling or interfere with silencing efficiency [24, 39].

The protective antiviral effects of type I IFN have been demonstrated during acute SIV infection [4, 5, 27], whereas IFN expression during the later stages of infection appears to contribute to the increase in inflammatory cytokines and CNS disease during chronic and late stages of HIV infection [40]. In this study, MDA5 protein expression negatively correlated with SIV RNA during the acute infection, suggesting that MDA5 expression negatively impacts SIV replication. Conversely, MDA5 protein positively correlated with SIV RNA and MxA mRNA during the terminal phase of infection, suggesting that during later stages of disease, MDA5 and MxA are associated with the inflammatory environment that underscores the uncontrolled innate immune responses in the brain.

It is interesting to speculate why RIG-I did not increase to the same extent as MDA5 in response to IFN-β in the brain, since both are considered ISGs and signal through the same adaptive molecule, IPS-1. However, there are important differences

Figure 5. Type I interferon (IFN) stimulated gene MxA is induced in a melanoma differentiation-associated protein 5 (MDA5)- and Toll-like receptor (TLR)-dependent manner. RIG-I (A) and MDA5 (B) were silenced with either a scrambled control sequence or gene-specific siRNA containing 2'-O-methyl uridine modifications in order to prevent immune stimulation during transfection of macaque monocyte-derived macrophages. Knockdown efficiency was evaluated at 48 hours post-infection using western blot by first normalizing protein levels against β-actin and then comparing against Hiperfect-only treated cells. MxA mRNA (C–F) was measured by quantitative RT-PCR from total RNA of monocyte-derived macrophages pretreated with (C) 100 nmol/L RIG-I siRNA, (D) 100 nmol/L MDA5 siRNA, (E) 50 umol/L of chloroquine, or (F) both MDA5 siRNA and chloroquine, before SIV infection. The mRNA levels are represented as fold-change over uninfected macrophage RNA and calculated using the \(\Delta\Delta^{Ct} \) method. Data are representative of at least 3 independent experiments. A 2-sample T test with equal variances was used to analyze significance between treatments.
between the 2 proteins. Recent studies suggest that RIG-I is a more versatile pattern recognition receptor, recognizing viral RNA as well as bacterial DNA [41, 42]. MDA5 appears to be specialized for viral dsRNA detection. Thus, MDA5 may be upregulated via pathways specific for viral infection. Furthermore, retroviral proteins could act to antagonize RIG-I in a direct or indirect manner, as seen in other virus-cell interactions [21].

TLR and cytosolic sensors may have a similar role in macrophages as they do in plasmacytoid dendritic cells (pDCs). In pDCs, TLR-dependent viral recognition and type I IFN feedback signaling masks the requirement of viral replication for IFN-α production; thus, cytosolic sensors are dispensable. However, if the positive feedback loop is disabled, then IFN-α production in pDCs becomes viral replication-dependent and signals through the RIG-I/MDA5-IPS1 pathway [43]. In a similar manner, HIV-infected macrophages probably signal through both TLR- and cytosolic-sensing paths, depending on the extent of infection as well as the strength of the primary IFN response. Since the IFN response in pDCs is significantly stronger than in macrophages, it is possible that cytosolic sensors play a greater role in these cells than their corresponding roles in pDCs. Unlike HIV infection of T cells that occurs exclusively through direct fusion of viral and cellular membranes, HIV infection in macrophages occurs through both endocytosis and fusion [44, 45]. These 2 routes of HIV infection in macrophages further support a dual method of viral detection: by the cytosolic sensor MDA5 and membrane-bound TLRs.

Supplementary Data

Supplementary Data are available at The Journal of Infectious Diseases online.

Funding

This work was supported by National Institutes of Health grants to J. E. C. [MH070306, NS047984, NS055648].

Acknowledgments

We thank medical editor Michael Linde for helping with the organization and editing of the manuscript, Brandon Bullock and Ming Li for technical assistance, Dr Patrick Tarwater for statistical advice, and Dr David Graham and the entire Retrovirus Laboratory at Johns Hopkins for insightful discussion.

References

1. Resnick L, diMarzo-Venorese F, Schupbach J, et al. Intra-blood-brain-barrier synthesis of HTLV-III-specific IgG in patients with neurologic symptoms associated with AIDS or AIDS-related complex. N Engl J Med 1985; 313:1498–504.
2. Chiiodi F, Albert J, Olausson E, et al. Isolation frequency of human immunodeficiency virus from cerebrospinal fluid and blood of patients with varying severity of HIV infection. AIDS Res Hum Retroviruses 1988; 4:351–8.
3. An SF, Groves M, Gray F, Scaravilli F. Early entry and widespread cellular involvement of HIV-1 DNA in brains of HIV-1 positive asymptomatic individuals. J Neuropathol Exp Neurol 1999; 58:1156–62.
4. Barber SA, Gama L, Dudaronek JM, Voelker T, Tarwater PM, Clements JE. Mechanism for the establishment of transcriptional HIV latency in the brain in a simian immunodeficiency virus-macaque model. J Infect Dis 2006; 193:963–70.
5. Barber SA, Herbst DS, Bullock BT, Gama L, Clements JE. Innate immune responses and control of acute simian immunodeficiency virus replication in the central nervous system. J Neurovirol 2004; 10(Suppl 1):15–20.
6. Hartshorn KL, Neumeyer D, Vogt MW, Schooley RT, Hirsch MS. Activity of interferons alpha, beta, and gamma against human immunodeficiency virus replication in vitro. AIDS Res Hum Retroviruses 1987; 3:125–33.
7. Minagawa T, Mizuno K, Hirano S, et al. Detection of high levels of immunoreactive human beta-1 interferon in sera from HIV-infected patients. Life Sci 1989; 45:iii–vii.
8. Michaelis B, Levy JA. HIV replication can be blocked by recombinant human interferon beta. AIDS 1989; 3:27–31.
9. Zink MC, Clements JE. A novel simian immunodeficiency virus model that provides insight into mechanisms of human immunodeficiency virus central nervous system disease. J Neurovirol 2002; 8(Suppl 2): 42–8.
10. Witwer KW, Gama L, Li M, et al. Coordinated regulation of SIV replication and immune responses in the CNS. PLoS One 2009; 4:e8129.
11. Zink MC, Coleman GD, Mankowski JL, et al. Increased macrophage chemoattractant protein-1 in cerebrospinal fluid precedes and predicts simian immunodeficiency virus encephalitis. J Infect Dis 2001; 184:1015–21.
12. Zink MC, Suryanarayana K, Mankowski JL, et al. High viral load in the cerebrospinal fluid and brain correlates with severity of simian immunodeficiency virus encephalitis. J Virol 1999; 73:10480–8.
13. Barber SA, Gama L, Li M, et al. Longitudinal analysis of simian immunodeficiency virus (SIV) replication in the lungs: compartmentalized regulation of SIV. J Infect Dis 2006; 194:931–8.
14. Clements JE, Babas T, Mankowski JL, et al. The central nervous system as a reservoir for simian immunodeficiency virus (SIV): steady-state levels of SIV DNA in brain from acute through asymptomatic infection. J Infect Dis 2002; 186:905–13.
15. Honda Y, Rogers L, Nakata K, et al. Type I interferon induces inhibitory 16-kD CCAAT/ enhancer binding protein (C/EBP)beta, repressing the HIV-1 long terminal repeat in macrophages: pulmonary tuberculosis alters C/EBP expression, enhancing HIV-1 replication. J Exp Med 1998; 188:1255–65.
16. Kawai T, Akira S. Innate immune recognition of viral infection. Nat Immunol 2006; 7:131–7.
17. Yoneyama M, Kikuchi M, Natsukawa T, et al. The RNA helicase RIG-I has an essential function in double-stranded RNA-induced innate antiviral responses. Nat Immunol 2004; 5:730–7.
18. Hornung V, Ellegast J, Kim S, et al. 5′-Triphosphate RNA is the ligand for RIG-I. Science 2006; 314:994–7.
19. Kato H, Takeuchi O, Mikamo-Satoh E, et al. Length-dependent recognition of double-stranded ribonucleic acids by retinoic acid-inducible gene-1 and melanoma differentiation-associated gene 5. J Exp Med 2006; 205:1601–10.
20. Kawai T, Takahashi K, Sato S, et al. IPS-1, an adaptor triggering RIG-I and Mda5-mediated type I interferon induction. Nat Immunol 2003; 4:981–8.
21. Bowie AG, Unterholzer L. Viral evasion and subversion of pattern-recognition receptor signalling. Nat Rev Immunol 2008; 8:911–22.
22. Alammar L, Gama L, Clements JE. Simian immunodeficiency virus infection in the brain and lung leads to differential type I IFN signaling during acute infection. J Immunol 2011; 186:4008–18.
23. Lukacs N. Detection of virus infection in plants and differentiation between coexisting viruses by monoclonal antibodies to double-stranded RNA. J Virol Methods 1994; 47:255–72.
24. Sioud M, Furst G, Cekaite L. Suppression of immunostimulatory siRNA-driven innate immune activation by 2'-modified RNAs. Biochem Biophys Res Commun 2007; 361:122–6.
25. Flaherty MT, Hauer DA, Mankowski JL, Zink MC, Clements JE. Molecular and biological characterization of a neuroviral molecular clone of simian immunodeficiency virus. J Virol 1997; 71:5790–8.
26. Scheie JH, Lehmann KE, Buchmann IR, Unger T, Funke-Kaiser H. Quantitative real-time RT-PCR data analysis: current concepts and the novel “gene expression’s CT difference” formula. J Mol Med 2006; 84:901–10.
27. Dudaronek JM, Barber SA, Clements JE. CUGBP1 is required for IFNbeta-mediated induction of dominant-negative CEBPbeta and suppression of SIV replication in macrophages. J Immunol 2007; 179: 7262–9.
28. Weber F, Wagner V, Rasmussen SB, Hartmann R, Paludan SR. Double-stranded RNA is produced by positive-strand RNA viruses and DNA viruses but not in detectable amounts by negative-strand RNA viruses. J Virol 2006; 80:5059–64.
29. Yoneyama M, Fujita T. Function of RIG-I-like receptors in antiviral innate immunity. J Biol Chem 2007; 282:15315–8.
30. Wodrich H, Krausslich HG. Nucleocytoplasmic RNA transport in retroviral replication. Results Probl Cell Differ 2001; 34:197–217.
31. Ooms M, Abbink TE, Pham C, Berkhout B. Circularization of the HIV-1 RNA genome. Nucleic Acids Res 2007; 35:5253–61.
32. Berkhout B. Structure and function of the human immunodeficiency virus leader RNA. Prog Nucleic Acid Res Mol Biol 1996; 54:1–34.
33. Baudin F, Marquet R, Isel C, Darlix JL, Ehresmann B, Ehresmann C. Functional sites in the 5’ region of human immunodeficiency virus type 1 RNA form defined structural domains. J Mol Biol 1993; 229: 382–97.
34. Harrison GP, Lever AM. The human immunodeficiency virus type 1 packaging signal and major splice donor region have a conserved stable secondary structure. J Virol 1992; 66:4144–53.
35. Huthoff H, Berkhout B. 2 alternating structures of the HIV-1 leader RNA. RNA 2001; 7:143–57.
36. Watts JM, Dang KK, Gorelick RJ, et al. Architecture and secondary structure of an entire HIV-1 RNA genome. Nature 2009; 460:711–6.
37. Overholser ED, Coleman GD, Bennett JL, et al. Expression of simian immunodeficiency virus (SIV) nef in astocytes during acute and terminal infection and requirement of nef for optimal replication of neuroviral SIV in vitro. J Virol 2003; 77:6855–66.
38. Judge AD, Sood V, Shaw JR, Fang D, McClintock K, MacLachlan I. Sequence-dependent stimulation of the mammalian innate immune response by synthetic siRNA. Nat Biotechnol 2005; 23:457–62.
39. Uzri D, Gehrke L. Nucleotide sequences and modifications that determine RIG-I/RNA binding and signaling activities. J Virol 2009; 83: 4174–84.
40. Chang JJ, Altfeld M. Innate immune activation in primary HIV-1 infection. J Infect Dis 2010; 202(Suppl 2):S297–301.
41. Chiu YH, Macmillan JB, Chen ZJ. RNA polymerase III detects cytosolic DNA and induces type I interferons through the RIG-I pathway. Cell 2009; 138:576–91.
42. Choi MK, Wang Z, Ban T, et al. A selective contribution of the RIG-I-like receptor pathway to type I interferon responses activated by cytosolic DNA. Proc Natl Acad Sci U S A 2009; 106:17870–5.
43. Kumagai Y, Kuma H, Koyama S, Kawai T, Takeuchi O, Akira S. Cutting Edge: TLR-Dependent viral recognition along with type I IFN positive feedback signaling masks the requirement of viral replication for IFN-[alpha] production in plasmacytoid dendritic cells. J Immunol 2009; 182:3960–4.
44. Fredericksen BL, Wei BL, Yao J, Loo T, Garcia JV. Inhibition of endosomal/lysosomal degradation increases the infectivity of human immunodeficiency virus. J Virol 2002; 76:11440–6.
45. Schaeffer E, Soros VB, Greene WC. Compensatory link between fusion and endocytosis of human immunodeficiency virus type 1 in human CD4 T lymphocytes. J Virol 2004; 78:1375–83.