Lower Bound for the Discrete Norm of a Polynomial on the Circle

V. N. Dubinin

Keywords: discrete norm of a polynomial, uniform grid, uniform norm on a set, Schwartz lemma, conformal mapping, analytic continuation, maximum principle.

1. INTRODUCTION AND STATEMENT OF THE RESULT

For the approximation of functions, a uniform grid of values of the arguments is often chosen. In this connection, it is natural to pose the question of how the discrete norm on a given grid relates to the uniform norm of the corresponding function on a given set. In the comparatively recent paper [1], Sheil-Small showed that, for algebraic polynomials P of degree n and natural $N > n$, the following estimate holds:

$$\max_{\omega^{N}=1} |P(\omega)| \geq \sqrt{\frac{N - n}{n}} \max_{|z|=1} |P(z)|. \quad (1)$$

Earlier Rakhmanov and Shekhtman [2] proved the inequality

$$\max_{\omega^{N}=1} |P(\omega)| \geq \left(1 + C \log \frac{N}{N - n}\right)^{-1} \max_{|z|=1} |P(z)|, \quad (2)$$

where the absolute constant C can be estimated by the number 16 (see [2, p. 3, 5]). This result generalizes an estimate due to Marcinkiewicz [3], who obtained (2) for the case $N = n + 1$. Inequality (2) is better than inequality (1) for n/N close to 1, but worse than the Sheil-Small estimate for small values of n/N. In the present paper, we prove the following statement.

Theorem. Let P be a polynomial of degree n, and let N be a natural number, $N \geq 2n$. Then, for the discrete norm of the polynomial P, the following inequality holds:

$$\max_{\omega^{N}=1} |P(\omega)| \geq \cos \frac{\pi n}{2N} \max_{|z|=1} |P(z)|. \quad (3)$$

The equality in (3) is attained in the case $P(z) = (z \exp(i\pi/N))^n + 1$ and for any N which is a multiple of n.

Estimate (3) holds for all $N > n$. However, for $n < N < 2n$, it is worse than estimate (1). In the case $N = 2n$, estimates (1) and (3) coincide and, for $N > 2n$, inequality (3)
strengthens inequalities (1) and (2). Moreover, for numbers N which are multiples of n, inequality (3) is sharp, and we obtain the equality
\[\sup \left\{ \left(\max_{|z|=1} |P(z)| \right) / \left(\max_{\omega=1} |P(\omega)| \right) \right\} = \left(\cos \left(\frac{\pi n}{2N} \right) \right)^{-1}, \]
where N is a multiple of n, and the upper bound is taken over all polynomials P of degree n (see [2, Theorem 1]).

Note that, as far back as 1931, Bernstein [4] obtained inequalities for trigonometric sums close to inequalities (1)–(3) (see also [5, pp. 147, 149, 154]). In particular, the corollary on p. 154 of [5] implies inequality (3) in the case of even degrees n. Our proof is different from the proofs in [1]–[5]. It is based, essentially, only on the maximum principle of the modulus of the suitable analytic function. Following [6], we can strengthen inequality (3) by taking the constant term and the leading coefficient of the polynomial P into account.

2. AUXILIARY RESULT

We introduce the notation
\[m(P) = \min_{|z|=1} |P(z)|, \quad M(P) = \max_{|z|=1} |P(z)|. \]
We shall need the following analog of the Schwartz lemma in one its particular cases.

Lemma. Let P be a polynomial of degree n for which $P(0) \neq 0$ and $m(P) \neq M(P)$, and let the function $\zeta = \Phi(w)$ conformally and univalently map the exterior of the closed interval $\gamma = [m^2(P), M^2(P)]$ onto the disk $|\zeta| < 1$ so that $\Phi(\infty) = 0$ and $\Phi(m^2(P)) = -1$. Then the function
\[f(z) = \Phi \left(\frac{P(z)}{P(1/z)} \right) \]
is regular on the set
\[G = \left\{ z : |z| < 1, \, \frac{P(z)}{P(1/z)} \notin \gamma \right\}, \]
analytically continuable to the set
\[E = \left\{ z : |z| = 1, \, |P(z)| \neq m(P), \, |P(z)| \neq M(P) \right\}, \]
and, at the points of the set E, the following inequality holds:
\[|f'(z)| \leq n. \]
Proof. The smoothness of the function f on the sets G and E can easily be verified. Further, in a neighborhood of the origin, the following expansion is valid:

$$f(z) = \frac{M^2(P) - m^2(P)}{4\pi c_n}z^n + \ldots,$$

where c_0 is the constant term and c_n is the leading coefficient of the polynomial P. In addition, $f(z) \neq 0$ in $G \setminus \{0\}$. Therefore, the function $z^n/f(z)$ is regular on the open set G. At the points of the boundary of this set, the modulus of this function does not exceed 1. By the maximum principle for the modulus, we find that the inequality

$$|f(z)| \geq |z^n|$$

holds everywhere on the set G. Now, let z be an arbitrary fixed point of the set E. Taking inequality (5) into account, we obtain

$$|f'(z)| = \left| \frac{\partial |f(z)|}{\partial |z|} \right| = \lim_{r \to 1} \frac{|f(z)| - |f(rz)|}{1 - r} \leq \lim_{r \to 1} \frac{1 - r^n}{1 - r} = n.$$

The lemma is proved.

3. PROOF OF THE THEOREM

We can assume that $M(P) = 1$ and $P(0) \neq 0$. Under these conditions, $m(P) < M(P)$. Indeed, otherwise, the polynomial P maps the circle $|z| = 1$ into itself and, in view of the equality $P(\infty) = \infty$, the symmetry principle leads to a contradiction: $P(0) = 0$. Let us show that, for any point $z = e^{i\varphi}$ on the circle $|z| = 1$, the following inequality holds:

$$\left| \left| P(z) \right|^2 \varphi' \right| \leq n\sqrt{|P(z)|^2(1 - |P(z)|^2)}$$

(see [6, Theorem 2]). In view of the continuity, it suffices to verify this inequality for all points z such that π belongs to the set E from the lemma. Suppose that $z \in E$. Then, for the function f from the lemma, we have

$$|f'(z)| = \Phi' \left(\frac{P(\pi)P(\frac{1}{z})}{z} \right) \left| \frac{P'(\pi)P(\frac{1}{z})}{P(\pi)} - \frac{1}{z^2} \frac{P'(\pi)}{P(\frac{1}{z})} \right| =$$

$$= \Phi' \left(|P(\pi)|^2 \right) \left| \frac{P^2(\pi)}{P(\pi)} - \frac{1}{z^2} P'(\frac{1}{z}) \right| =$$

$$= \Phi' \left(|P(\pi)|^2 \right) \left| 2\text{Im} \frac{PP'(\pi)}{P(\pi)} \right| = \Phi' \left(|P(\pi)|^2 \right) \left| \left(|P(\pi)|^2 \right)' \varphi' \right|.$$
Before calculating the derivative Φ', note that the inverse function $\Phi^{-1}(\zeta)$ is of the form

$$
\Phi^{-1}(\zeta) = \frac{1}{4} \left(\zeta + \frac{1}{\zeta} \right) (M^2(P) - m^2(P)) + \frac{1}{2} (M^2(P) + m^2(P)).
$$

Hence

$$
|\Phi'(|P(\varpi)|^2)|^{-1} = \frac{1}{4} \left(1 - e^{-2i\theta} \right) (M^2(P) - m^2(P)) = \frac{1}{2} |\sin \theta|(M^2(P) - m^2(P)),
$$

where $\Phi^{-1}(e^{i\theta}) = |P(\varpi)|^2$ and, therefore,

$$
\cos \theta = \frac{2|P(\varpi)|^2 - (M^2(P) + m^2(P))}{M^2(P) - m^2(P)}.
$$

Finally,

$$
|f'(z)| = \frac{\left| \left(|P(\varpi)|^2 \right)' \right|}{\sqrt{|(|P(\varpi)|^2)'_\omega|}}.
$$

Using inequality (4), we obtain inequality (6) for ϖ.

Let us now pass to the proof of inequality (3). Let $z_0 = e^{i\varphi_0}$ denote one of the points at which the maximum $M(P) = |P(z_0)| = 1$ is attained, and let ω_k be the Nth root of 1 for which the arc of the circle

$$
\left\{ z : |z| = 1, \ |\arg z - \arg \omega_k| \leq \frac{\pi}{N} \right\}
$$

contains the point z_0. Suppose that, for some branch of the argument, the following inequality holds:

$$
\arg \omega_k - \frac{\pi}{N} \leq \varphi_0 \leq \arg \omega_k.
$$

Dividing both sides of inequality (6) by the quadratic root on the right and integrating the resulting relation on the interval $(\varphi_0, \arg \omega_k)$ with the replacement $|P(z)|^2 = u(\varphi)$, we obtain

$$
n(\arg \omega_k - \varphi_0) \geq \int_{\varphi_0}^{\arg \omega_k} \frac{-u'_\varphi d\varphi}{\sqrt{u(1-u)}} = -\int_1^u \frac{du}{\sqrt{u(1-u)}} =
$$

$$
= -2 \int_1^{u_k} \frac{dt}{\sqrt{1-t^2}} = -2 \arcsin u_k + \pi,
$$

where $u_k = u(\arg \omega_k)$. Hence

$$
2 \arcsin |P(\omega_k)| \geq \pi - n \frac{\pi}{N} > 0,
$$
and
\[|P(\omega_k)| \geq \sin \left(\frac{\pi}{2} - \frac{n\pi}{2N} \right) = \cos \frac{n\pi}{2N}. \]

Passing to the maximum, we obtain inequality (3). In the case \(\arg \omega_k \leq \varphi_0 \), similar arguments yield the same inequality.

If \(P(z) = (z \exp(i\pi/N))^n + 1 \) and \(N = nl \), where \(l \geq 2 \) is a natural number, then
\[
\max_{|z|=1} |P(z)| = 2.
\]

On the other hand, direct calculations yield
\[
\max_{\omega^n = 1} |P(\omega)| = \max_{0 \leq k \leq l-1} |P(\omega_k)| = \max_{0 \leq k \leq l-1} 2 \left| \cos \left(\frac{\pi}{l}k + \frac{\pi}{2l} \right) \right| = 2 \cos \frac{\pi}{2l}.
\]

Thus, for the given polynomial \(P \), we have the equality sign in (3). The theorem is proved.

REFERENCES

1. T. Sheil-Small, Bull. London Math. Soc. 40 (6), 956 (2008).

2. E. Rakhmanov and B. Shekhtman, J. Approx. Theory 139 (1-2), 2 (2006).

3. J. Marcinkiewicz, Acta Litt. Sci. Szeged 8, 131 (1937).

4. S. N. Bernstein, Izv. Akad. Nauk SSSR Omen 9, 1151 (1931).

5. S. N. Bernstein, Collected Works, Vol. 2: The Constructive Theory of Functions (Izdat. Akad. Nauk SSSR, Moscow, 1954) [in Russian].

6. V. N. Dubinin, Mat. Sb. 191 (12), 51 (2000) [Russian Acad. Sci. Sb.Math. 191 (12), 1797 (2000)].