Inference under Information Constraints II: Communication Constraints and Shared Randomness

Jayadev Acharya* Clément L. Canonne† Himanshu Tyagi‡

Abstract

A central server needs to perform statistical inference based on samples that are distributed over multiple users who can each send a message of limited length to the center. We study problems of distribution learning and identity testing in this distributed inference setting and examine the role of shared randomness as a resource. We propose a general-purpose simulate-and-infer strategy that uses only private-coin communication protocols and is sample-optimal for distribution learning. This general strategy turns out to be sample-optimal even for distribution testing among private-coin protocols. Interestingly, we propose a public-coin protocol that outperforms simulate-and-infer for distribution testing and is, in fact, sample-optimal. Underlying our public-coin protocol is a random hash that when applied to the samples minimally contracts the chi-squared distance of their distribution to the uniform distribution.

* Cornell University. Email: acharya@cornell.edu. Supported in part by NSF-CCF-1846300 (CAREER).
† Stanford University. Email: ccanonne@cs.stanford.edu. Supported by a Motwani Postdoctoral Fellowship.
‡ Indian Institute of Science. Email: htyagi@iisc.ac.in. Supported in part by the Bosch Research and Technology Centre, Bangalore, India under the Project E-Sense

An abridged version of this work will appear in the 2019 International Conference on Machine Learning (ICML).
CONTENTS

I Introduction
- I-A Main results ... 3
- I-B Proof techniques ... 5
- I-C Related prior work ... 6
- I-D Relation to chi-square contraction lower bounds 7
- I-E Organization ... 8

II Notation and preliminaries .. 8

III The setup: Communication, simulation, and inference protocols ...
- III-A Communication protocols ... 9
- III-B Distributed simulation protocols 10
- III-C Distributed inference protocols 11

IV Distributed simulation ... 14
- IV-A Impossibility of perfect simulation when $\ell < \log k$ 14
- IV-B An α-simulation protocol using rejection sampling 16

V Simulate-and-Infer .. 21
- V-A Private-coin ℓ-bit distributed inference via distributed simulation ...
- V-B Application: private-coin protocols from distributed simulation
- V-C Optimality of our distributed simulation protocol

VI Public-coin identity testing .. 24

Appendix ..
- A Impossibility of perfect simulation in the interior of the probability simplex ..
- B Proof of Theorem VI.2 ..
- C A randomness-efficient variant of Theorem VI.1
- D From uniformity to parameterized identity testing

References .. 46
I. INTRODUCTION

Sample-optimal statistical inference has taken center stage in modern data analytics, where the sample size can be comparable to the dimensionality of the data. In many emerging applications, especially those arising in sensor networks and the Internet of Things (IoT), we are not only constrained in the number of samples but, also, are given access to only limited communication about the samples. We consider such a distributed inference setting and seek sample-optimal algorithms for inference under communication constraints.

In our setting, there are n players, each of which gets an independent draw from an unknown k-ary distribution and can send only ℓ bits about their observed sample to a central referee using a simultaneous message passing (SMP) protocol for communication. The referee uses communication from the players to accomplish an inference task \mathcal{P}.

What is the minimum number of players n required by an SMP protocol that successfully accomplishes \mathcal{P}, as a function of k, ℓ, and the relevant parameters of \mathcal{P}?

Our first contribution is a general simulate-and-infer strategy for inference under communication constraints where we use the communication to simulate samples from the unknown distribution at the referee. To describe this strategy, we introduce a natural notion of distributed simulation: n players each observing an independent sample from an unknown k-ary distribution p can send ℓ bits each to a referee. A distributed simulation protocol consists of an SMP protocol and a randomized decision map that enables the referee to generate a sample from p using the communication from the players. Clearly, when $\ell \geq \log k$ such a sample can be obtained by getting the sample of any one player. But what can be done in the communication-starved regime of $\ell < \log k$?

We first show that perfect simulation is impossible using any finite number of players in the communication-starved regime. But perfect simulation is not even required for our application. When we allow a small probability of declaring failure, namely admit Las Vegas simulation schemes, we obtain a distributed simulation scheme that requires an optimal $O(k/2^\ell)$ players to simulate k-ary distributions using ℓ bits of communication per player. Thus, our proposed simulate-and-infer strategy can accomplish \mathcal{P} with a factor $O(k/2^\ell)$ blow-up in sample complexity.

The specific inference tasks we focus on are those of distribution learning, where we seek to estimate the unknown k-ary distribution to an accuracy of ε in total variation distance, and identity testing where we seek to know if the unknown distribution is a pre-specified reference distribution q or at total variation

1We assume throughout that \log is in base 2, and for ease of discussion assume in this introduction that $\log k$ is an integer.
distance at least ϵ from it. For distribution learning, the simulate-and-infer strategy matches the lower bound from [32] and is therefore sample-optimal. For identity testing, the plot thickens.

Recently, a lower bound for the sample complexity of identity testing using only private-coin protocols was established [3]. The simulate-and-infer protocol is indeed a private-coin protocol, and we show that it achieves this lower bound. When public coins (shared randomness) are available, [3] derived a different, more relaxed lower bound. The performance of simulate-and-infer is far from this lower bound. Our second contribution is a public-coin protocol for identity testing that not only outperforms simulate-and-infer but matches the lower bound in [3] and is sample-optimal.

We provide a concrete description of our results in the next section, followed by an overview of our proof techniques in the subsequent section. To put our results in context, we provide a brief overview of the literature as well.

A. Main results

We begin by summarizing our distributed simulation results.2

Theorem I.1. For every $k, \ell \geq 1$, there exists a private-coin protocol with ℓ bits of communication per player for distributed simulation over $[k]$ and expected number of players $O((k/2^\ell) \lor 1)$. Moreover, this expected number is optimal, up to constant factors, even when public-coin and interactive communication protocols are allowed.

The proposed protocol only provides a relaxed guarantee, as its number of players is only bounded in expectation. In fact, we can show that distributed simulation is impossible, unless we allow for such relaxation.

Theorem I.2. For $k \geq 1$, $\ell < \lceil \log k \rceil$, and any $N \in \mathbb{N}$, there exist no SMP protocol with N players and ℓ bits of communication per player for distributed simulation over $[k]$. Furthermore, the result continues to hold even for public-coin and interactive communication protocols.

The proof is given in Section IV-A.

2For simplicity of exposition, we describe the next result in terms of Las Vegas algorithms, which produce a sample from the unknown distribution when it terminates, yet may never terminate. Equivalently, one may enforce a strict number of players but allow the protocol to abort with a special symbol with small constant probability, which is how our results will be stated in Section IV-B.
Since the distributed simulation protocol in Theorem I.1 is a private-coin protocol, we can use it to generate the desired number of samples from the unknown distribution at the center to obtain the following result.

Theorem I.3 (Informal). For any inference task \mathcal{P} over k-ary distributions with sample complexity s in the non-distributed model, there exists a private-coin protocol for \mathcal{P} using ℓ bits of communication per player and requiring $n = O(s \cdot (k/2^\ell \lor 1))$ players.

Instantiating this general statement for distribution learning and identity testing leads to the following results.

Corollary I.4. For every $k, \ell \geq 1$, simulate-and-infer can accomplish distribution learning over $[k]$, with ℓ bits of communication per player and $n = O\left(\frac{k^2}{(2^{\ell/2}k)^2}\right)$ players.

Corollary I.5. For every $k, \ell \geq 1$, simulate-and-infer can accomplish identity testing over $[k]$ using ℓ bits of communication per player and $n = O\left(\frac{k^{3/2}}{2^{\ell/2}k^{3/2}}\right)$ players.

By the lower bound for sample complexity of distribution learning in [32] (see, also, [3]), we note that simulate-and-infer is sample-optimal for distribution learning even when public-coin protocols are allowed. In fact, the sample complexity of simulate-and-infer for identity testing matches the lower bound for private-coin protocols in [3], rendering it sample-optimal.

Perhaps our most striking result is the next one, which shows that public-coin protocols can outperform the sample complexity of private-coin protocols for identity testing by a factor of $\sqrt{k/2^\ell}$.

Theorem I.6. For every $k, \ell \geq 1$, there exists a public-coin protocol for identity testing over $[k]$ using ℓ bits of communication per player and $n = O\left(\frac{k}{(2^{\ell/2}k)^2}\right)$ players.

We further note that our protocol is quite simple to describe and implement: We generate a random partition of $[k]$ into 2^ℓ equisized parts and report which part each sample lies in. Although, as stated, our protocol seems to require $\Omega(\ell \cdot k)$ bits of shared randomness, inspection of the proof shows that 4-wise independent shared randomness suffice, drastically reducing the number of random bits required. See Remark VI.7 for a discussion.

Our results are summarized in the table below.
TABLE I
SUMMARY OF THE SAMPLE COMPLEXITY OF DISTRIBUTED LEARNING AND TESTING, UNDER PRIVATE AND PUBLIC RANDOMNESS. ALL RESULTS ARE ORDER-OPTIMAL.

Distribution Learning	Identity Testing		
Public-Coin	Private-Coin	Public-Coin	Private-Coin
$\frac{k}{\ell^2} \cdot \frac{h}{\ell^2}$	$\frac{\sqrt{\ell}}{\ell^2} \cdot \frac{h}{\ell^2}$	$\frac{\sqrt{\ell}}{\ell^2} \cdot \frac{h}{\ell^2}$	

B. Proof techniques

We now provide a high-level description of the proofs of our main results.

a) Distributed simulation: The upper bound of Theorem 1.3 uses a rejection-sampling-based approach; see Section IV-B for details. The lower bound follows by relating distributed simulation to communication-constrained distribution learning and using the lower bound for sample complexity of the latter from [32], [3].

b) Distributed identity testing: For the ease of exposition, we hereafter focus on uniformity testing, as it contains most of the ideas. To test whether an unknown distribution p is uniform using at most ℓ bits to describe each sample, a natural idea is to randomly partition the alphabet into $L := 2^\ell$ parts, and send to the referee independent samples from the L-ary distribution p' induced by p on this partition. For a random balanced partition (i.e., where every part has cardinality k/L), clearly the uniform distribution \mathbf{u}_k is mapped to the uniform distribution \mathbf{u}_L. Thus, one can hope to reduce the problem of testing uniformity of p (over $[k]$) to that of testing uniformity of p' (over $[L]$). The latter task would be easy to perform, as every player can simulate one sample from p' and communicate it fully to the referee with $\log L = \ell$ bits of communication. Hence, the key issue is to argue that this random “flattening” of p would somehow preserve the distance to uniformity. Namely, that if p is ε-far from \mathbf{u}_k, then (with a constant probability over the choice of the random partition) p' will remain ε'-far from \mathbf{u}_L, for some ε' depending on ε, L, and k. If true, then it is easy to see that this would imply a very simple protocol with $O(\sqrt{L/\varepsilon'^2})$ players, where all agree on a random partition and send the induced samples to the referee, who then runs a centralized uniformity test. Therefore, in order to apply the aforementioned natural recipe, it suffices to derive a “random flattening” structural result for $\varepsilon' \asymp \sqrt{(L/k)\varepsilon}$.

An issue with this approach, unfortunately, is that the total variation distance (that is, the ℓ_1 distance) does not behave as desired under these random flattenings, and the validity of our desired result remains unclear. Interestingly, an analogous statement with respect to the ℓ_2 distance turns out to be much more manageable and suffices for our purposes. Specifically, we show that a random flattening of p does
preserve, with constant probability, the ℓ_2 distance to uniformity. In our case, by the Cauchy–Schwarz inequality the original ℓ_2 distance will be at least $\gamma \asymp \varepsilon / \sqrt{k}$, which implies using known ℓ_2 testing results that one can test uniformity of the “randomly flattened” p' with $O(1/(\sqrt{L}\gamma^2)) = O(k/(2^{L/2}\varepsilon^2))$ samples. This yields the desired guarantees on the protocol.

C. Related prior work

The distribution learning problem is a finite-dimensional parametric learning problem, and the identity testing problem is a specific goodness-of-fit problem. Both these problems have a long history in statistics. However, the sample-optimal setting of interest to us has received a lot of attention in the past decade, especially in the computer science literature; see [40], [16], [8] for surveys. Most pertinent to our work is uniformity testing [28], [39], [20], the prototypical distribution testing problem for which the sample complexity was established to be $\Theta(\sqrt{k}/\varepsilon^2)$ in [39], [43]; as well as identity testing, shown to have order-wise similar sample complexity [10], [4], [43], [22], [27].

Distributed hypothesis testing and estimation problems were first studied in information theory, although in a different setting than what we consider [6], [29], [30]. The focus in that line of work has been to characterize the trade-off between asymptotic error exponent and communication rate per sample.

Closer to our work is distributed parameter estimation and functional estimation that has gained significant attention in recent years (see e.g., [23], [25], [14], [45]). In these works, much like our setting, independent samples are distributed across players, which deviates from the information theory setting described above where each player observes a fixed dimension of each independent sample. However, the communication model in these results differs from ours, and the communication-starved regime we consider has not been studied in these works.

The problem of distributed density estimation, too, has gathered recent interest in various statistical settings [13], [9], [48], [41], [21], [32], [47], [5]. Among these, our work is closest to the results in [32], [31] and [21]. In particular, [21] considers both ℓ_1 (total variation) and ℓ_2 losses, although in a different setting than ours. They study an interactive model where the players do not have any individual communication constraint, but instead the goal is to bound the total number of bits communicated over the course of the protocol. This difference in the model leads to incomparable results and techniques (for instance, the lower bound for learning k-ary distributions in our model is higher than the upper bound in theirs).

Our current work further deviates from this prior literature, since we consider distribution testing as well and examine the role of public-coin for SMP protocols. Additionally, a central theme here is the connection to distribution simulation and its limitation in enabling distributed testing. In contrast, the
prior work on distribution estimation, in essence, establishes the optimality of simple protocols that rely on distributed simulation for inference. We note that although recent work of [12] considers both communication complexity and distribution testing, their goal and results are very different – indeed, they explain how to leverage on negative results in the standard SMP model of communication complexity to obtain sample complexity lower bounds in collocated distribution testing.

Problems related to joint simulation of probability distributions have been the object of focus in the information theory and computer science literature. Starting with the works of Gács and Körner [24] and Wyner [46] where the problem of generating shared randomness from correlated randomness and vice-versa, respectively, were considered, several important variants have been studied such as correlated sampling [15], [37], [33], [11] and non-interactive simulation [35], [26], [19]. Yet, our problem of exact simulation of a single (unknown) distribution with communication constraints from multiple parties has not been studied previously to the best of our knowledge.

D. Relation to chi-square contraction lower bounds

This work is the second of a series of papers, the first of which ([3]) presented a general technique for establishing lower bounds for inference under information constraints. When information constraints are imposed, the statistical distances shrink due to the data processing inequality. At a high-level, the lower bound in [3] was based on quantifying the contraction in chi-square distance in a neighborhood of the uniform distribution due to information constraints. Note that in view of the reduction in Appendix D, the neighborhood of any distribution is roughly isometric to the neighborhood of the uniform distribution (though the isometry can depend on the reference distribution). Thus, our lower bound aptly captures the bottleneck imposed by information constraints for a broad class of inference problems, and not just uniformity testing.

The current article, and our upcoming article [1],3 seeks to find schemes that match the lower bounds established in [3]. An interesting feature of our lower bounds is that they quantitatively differentiate the chi-square contraction caused by private- and public-coin protocols. Our schemes in this paper draw on the principles established by our lower bounds and use a minimally contracting hash for inference under information constraints. Specifically, our private-coin simulate-and-infer scheme and public-coin scheme are based on identifying a private-coin and public-coin communication protocol, respectively, that minimally contract the chi-square distances in the neighborhood of the uniform distribution. We term this principle of designing inference schemes under information constraints the minimally contracting

3See the preprint [1] for a preliminary version.
hashing (MCH) principle. At this point, it is just a heuristic where we seek mappings that attain the minmax and maxmin chi-square contractions that appear in our lower bounds in [3], and propose them as a good candidate for selecting channels for inference under information constraints in our setting. We believe, however, that a formal version of the MCH principle can be established and applied gainfully in this setting.

The MCH principle seems to remain valid even for local privacy constraints, as considered in [1]. Moreover, in addition to the papers in this series, our preliminary calculations suggest that our treatment and the MCH principle extend to testing problems concerning high-dimensional distributions as well. Finally, while in this paper we have quantified the reduction in sample complexity due to availability of public randomness for a fixed amount of communication per sample, quantifying the complete sample-randomness tradeoff for distributed identity testing under communication constraints is work in progress.

E. Organization

We begin by formally introducing our distributed model in Section III. Next, Section IV introduces the question of distributed simulation and contains our protocols and impossibility results for this problem. In Section V, we consider the relation between distributed simulation and private-coin distribution inference. The subsequent section, Section VI, focuses on the problem of identity testing and contains the proof of Theorem I.6.

II. Notation and Preliminaries

Throughout this paper, we denote by \(\log \) the logarithm to the base 2. We use standard asymptotic notation \(O(\cdot), \Omega(\cdot), \) and \(\Theta(\cdot) \) for complexity orders, and will sometimes write \(a_n \lesssim b_n \) to indicate that there exists an absolute constant \(c > 0 \) such that \(a_n \leq c \cdot b_n \) for all \(n \). Finally, we will denote by \(a \wedge b \) and \(a \vee b \) the minimum and maximum of two numbers \(a \) and \(b \), respectively.

Let \([k] = \{1, 2, \ldots, k\}\). Given a fixed (and known) discrete domain \(\mathcal{X} \) of cardinality \(|\mathcal{X}| = k \), we write \(\Delta_k \) for the set of probability distributions over \(\mathcal{X} \), i.e.,

\[
\Delta_k = \{ p : [k] \to [0, 1] : \|p\|_1 = 1 \}.
\]

For a discrete set \(\mathcal{X} \), we denote by \(\mathbf{u}_\mathcal{X} \) the uniform distribution on \(\mathcal{X} \) and will omit the subscript when the domain is clear from context.

The total variation distance between two probability distributions \(p, q \in \Delta_k \) is defined as

\[
d_{TV}(p, q) := \sup_{S \subseteq \mathcal{X}} (p(S) - q(S)) = \frac{1}{2} \sum_{x \in \mathcal{X}} |p(x) - q(x)|,
\]
namely, $d_{TV}(p, q)$ is equal to half of the ℓ_1 distance of p and q. In addition to total variation distance, we will extensively use the ℓ_2 distance between distributions $p, q \in \Delta_k$, denoted $\|p - q\|_2$.

III. THE SETUP: COMMUNICATION, SIMULATION, AND INFERENCE PROTOCOLS

A. Communication protocols

We restrict ourselves to simultaneous message passing (SMP) protocols of communication, wherein the messages from all players are transmitted simultaneously to the central server, and no other communication is allowed. We allow randomized SMP protocols and distinguish between two forms of randomness: private-coin protocols, where each player can only use their own independent private randomness that is not available to the referee and public-coin protocols, where the players and the referee have access to shared randomness. SMP rules out any other interaction between the players except the agreement on the protocol and coordination using shared randomness for public-coin SMP protocols. In particular, this setting precludes interactive communication models. Nonetheless, this setting is natural for a variety of use-cases where players represent users connected to a central server or sensors connected to a fusion center. It can even be used for the case where each sample is seen by the same machine, but at different times, and the machine does not maintain any memory to store the previous samples. For instance, this machine can be an analog-to-digital converter that quantizes each input to ℓ bits.

Definition III.1 (Private-coin SMP Protocols). Let U_1, \ldots, U_n denote independent random variables, which are also independent jointly of (X_1, \ldots, X_n), and represent the private randomness of the players. An ℓ-bit private-coin SMP protocol π consists of the following two steps: (a) Player i selects their channel $W_i \in \mathcal{W}_\ell$ as a function of U_i, (b) and sends their message $M_i \in \{0, 1\}^\ell$, which is obtained by passing X_i through W_i, to the referee. The referee receives the messages $M = (M_1, M_2, \ldots, M_n)$, but does not have access to the private randomness (U_1, \ldots, U_n) of the players.

We assume that the protocol is decided ahead of time, namely the distribution of U_is is known to the referee, but not the instantiation. Note that in a private-coin SMP communication protocol, the communication M_i from player i is a randomized function of (X_i, U_i). Moreover, since both (X_1, \ldots, X_n) and (U_1, \ldots, U_n) are generated from a product distribution, so is (M_1, \ldots, M_n).

Definition III.2 (Public-coin SMP Protocols). Let U be a random variable independent of (X_1, \ldots, X_n), available to all players and the referee. An ℓ-bit private-coin SMP protocol π consists of the following two steps: (a) Players select their channels $W_1, \ldots, W_n \in \mathcal{W}_\ell$ as a function of U, and (b) send their
messages $M_1, \ldots, M_n \in \{0, 1\}^\ell$, by passing X_i through W_i, to the referee. The referee receives the messages $M = (M_1, \ldots, M_n)$ and is given access to U as well.

In contrast to private-coin protocols, in a public-coin SMP communication protocol, the communication M_i from player i is a (randomized) function of (X_i, U) and therefore the M_is are not independent. They are, however, independent conditioned on the shared randomness U.

We denote the communication protocols that are used at the players to generate the messages by π. For public-coin protocols, to make explicit the role of the randomness in the choice of the channels, we sometimes write $\pi(x^n, u)$ to denote the output of the protocol (messages) when the input of the players is $x^n = (x_1, \ldots, x_n)$ and the public-coin realization is $U = u$. Also, we write $\pi_i(x^n, u)$ for the message sent by player i using protocol π. See Fig. 1 for a depiction of the communication setting.

Fig. 1. The communication-constrained distributed model, where each $M_i \in \{0, 1\}^\ell$. In the private-coin setting the channels M_1, \ldots, M_n are independent, while in the public-coin setting they are jointly randomized.

B. Distributed simulation protocols

The distributed simulation problem we propose is rather natural, yet, to the best of our knowledge, has not been studied in prior literature. In this section, we will define the simulation problem, and in the next section exhibit its use as a natural tool to solve any communication-limited inference problem. Recall that our goal is to enable the referee to generate samples from the unknown distribution using communication from the players. Note that players only know the alphabet $[k]$ from which samples are
generated, but have no other knowledge of the distribution. We allow the players to use an SMP protocol, private-coin or public-coin, to facilitate simulation of samples by the referee.

We now state the question of simulation formally. An ℓ-bit simulation protocol $S = (\pi, T)$ of k-ary distributions using n players consists of an ℓ-bit SMP protocol π and a decision mapping T. The output of π is an element in M_n^ℓ, where $M = \{0, 1\}^\ell$. The decision mapping $T: M_n^\ell \to X \cup \{\perp\}$ is a randomized function that takes as input the messages from the players and outputs an element in $X \cup \{\perp\}$. Upon receiving messages $m^n = (m_1, \ldots, m_n) \in M_n^\ell$, the referee outputs an $x \in X$ with probability $T(x | m^n)$ and the symbol \perp with probability $T(\perp | m^n) = 1 - \sum_{x \in X} T(x | m^n)$. The protocol is private-coin if π is a private-coin communication protocol, and it is public-coin if π is public-coin. For public-coin protocols, the decision mapping $T = T_U$ can be chosen as a function of U, the public randomness. We want the distribution of the random output of the decision mapping to coincide with the unknown underlying distribution p. This objective is made precise next.

Definition III.3 (α-Simulation). A protocol $S = (\pi, T)$ is an α-simulation protocol if for every $p \in \Delta_k$ that generates the input samples X_1, \ldots, X_n for the SMP protocol π, the output $\hat{X} = T(\pi(X_1, \ldots, X_n)) \in X \cup \{\perp\}$ of the simulation protocol T satisfies

$$\Pr_{X^n \sim p^n}[\hat{X} = x | \hat{X} \neq \perp] = p_x, \quad \forall x \in X,$$

and the probability of abort satisfies

$$\Pr_{X^n \sim p^n}[\hat{X} = \perp] \leq \alpha.$$

A 0-simulation, namely a simulation with probability of abort zero, is termed perfect simulation.

C. Distributed inference protocols

We give a general, decision-theoretic description of distributed inference protocols that is applicable beyond the use-cases considered in this work. For the most part, we will restrict to learning and identity testing of discrete distributions, but our results for distributed inference are valid for general settings.

We start with a description of inference tasks. An inference problem P is a tuple $(\mathcal{C}, X, \mathcal{E}, l)$, where \mathcal{C} is a collection of distributions over X, \mathcal{E} is a class of allowed actions or decisions that can be taken upon observing samples generated from $p \in \mathcal{C}$, and $l: \mathcal{C} \times \mathcal{E} \to \mathbb{R}_+^q$ is a loss function used to evaluate the performance. A (randomized) decision rule is a map $e: X^n \to \mathcal{E}$, and for samples X^n generated from $p \in \mathcal{C}$, the loss of the decision rule is measured by the vector $l(p, e(X^n))$ in \mathbb{R}_+^q. Our benchmark for performance will be the the expected loss vector

$$L(p, e) := \mathbb{E}_{X^n \sim p}[l(p, e(X^n))]. \quad (1)$$
Note that the expected loss vector, too, is a q-dimensional vector.

An ℓ-bit distributed inference protocol $I = (\pi, e)$ for the inference problem $(C, \mathcal{X}, \mathcal{E}, l)$ consists of an ℓ-bit SMP protocol π and an estimator e available to the referee who, upon observing the messages $M = (M_1, \ldots, M_n)$, and follows a (randomized) decision rule $e: \mathcal{M}^n \rightarrow \mathcal{E}$. For private-coin inference protocols, π is a private-coin SMP protocol, and for public-coin inference protocols, both the communication protocol π and the decision rule e are allowed to depend on the public randomness U, available to everyone.

We now state a measure of performance of inference protocols.

Definition III.4 ($\vec{\gamma}$-Inference protocol). For $\vec{\gamma} \in \mathbb{R}^q_+$, a protocol (π, e) is a $\vec{\gamma}$-inference protocol if, for every $p \in C$,

$$L_i(p, e) \leq \gamma_i, \quad \forall 1 \leq i \leq q,$$

where $L_i(p, e)$ denotes the ith coordinate of $L(p, e)$.

We instantiate the abstract definitions above with two illustrative examples that we study in this paper.

- **a) Distribution Learning:** In the (k, ε)-distribution learning problem, we seek to estimate a distribution p in Δ_k to within ε in total variation distance. Formally, a (randomized) mapping $e: \mathcal{X}^n \rightarrow \Delta_k$ constitutes an (n, ε, δ)-estimator for Δ_k if the estimate $\hat{p} = e(X^n)$ satisfies

$$\sup_{p \in \Delta_k} \mathbb{P}_{X^n \sim p} [d_{TV} (\hat{p}, p) > \varepsilon] < \delta,$$

where $d_{TV}(p, q)$ denotes the total variation distance between p and q. Namely, \hat{p} estimates the input distribution p to within distance ε with probability at least $1 - \delta$.

The sample complexity of (k, ε, δ)-distribution learning is the minimum n such that there exists an (n, ε, δ)-estimator for Δ_k. It is well-known that the sample complexity of distribution learning is $\Theta(k/\varepsilon^2)$ and the empirical distribution attains it.

This problem can be cast in our general framework by setting $\mathcal{X} = [k]$, $C = \mathcal{E} = \Delta_k$, $q = 1$, and $L(p, \hat{p})$ is given by

$$l(p, \hat{p}) := \mathbb{1}_{d_{TV}(p, \hat{p}) > \varepsilon}.$$

For this setting of distribution learning, we term the δ-inference protocol an ℓ-bit (k, ε, δ)-learning protocol for n players.

- **b) Identity Testing:** Let $q \in \Delta_k$ be a known reference distribution. In the (k, ε, δ)-identity testing problem, we seek to use samples from unknown $p \in \Delta_k$ to test if p equals q or if it is ε-far from q in
total variation distance. Specifically, an \((n, \varepsilon, \delta)\)-test is given by a (randomized) mapping \(T: \mathcal{X}^n \rightarrow \{0, 1\}\) such that

\[
\Pr_{X^n \sim p^n}[T(X^n) = 1] > 1 - \delta, \text{ if } p = q,
\]

\[
\Pr_{X^n \sim p^n}[T(X^n) = 0] > 1 - \delta, \text{ if } d_{TV}(p, q) > \varepsilon.
\]

Namely, upon observing independent samples \(X^n\), the algorithm should “accept” with high constant probability if the samples come from the reference distribution \(q\) and “reject” with high constant probability if they come from a distribution significantly far from \(q\).

The sample complexity of \((k, \varepsilon, \delta)\)-identity testing is the minimum \(n\) for which an \((n, \varepsilon, \delta)\)-test exists for \(q\). While this quantity can depend on the reference distribution \(q\), it is customary to consider sample complexity over the worst-case \(q\).\(^4\) In this worst-case setting, while it has been known for some time that the most stringent sample requirement arises for \(q\) set to the uniform distribution, a recent result of [27] provides a formal reduction of arbitrary \(q\) to the uniform distribution case. It is therefore enough to consider \(q = u_k\), the uniform distribution over \([k]\); identity testing for \(u_k\) is termed the \((k, \varepsilon, \delta)\)-uniformity testing problem. For constant \(\delta\), the sample complexity of \((k, \varepsilon)\)-uniformity testing was shown to be \(\Theta(\sqrt{k/\varepsilon^2})\) in [39], [44], and the exact dependence on \(\delta\) was later identified in [34], [20].

Uniformity testing, too, can be obtained as a special case of our general formulation by setting \(\mathcal{X} = [k]\), \(\mathcal{C} = \{u_k\} \cup \{p \in \Delta_k : d_{TV}(p, u_k) > \varepsilon\}\), \(\mathcal{E} = \{0, 1\}\), and the 2-dimensional loss function \(l: \mathcal{C} \times \mathcal{E} \rightarrow \mathbb{R}^2\) to be

\[
l_1(p, b) = b \cdot 1_{\{p = u_k\}},
\]

\[
l_2(p, b) = (1 - b) \cdot 1_{\{p \neq u_k\}},
\]

for \(b \in \{0, 1\}\). For simplicity, we consider the error parameter \(\vec{\gamma} = (\delta, \delta)\).\(^5\) For this case, we term the \(\delta\)-inference protocol an \(\ell\)-bit \((k, \varepsilon, \delta)\)-uniformity testing protocol for \(n\) players. We provide \((k, \varepsilon, \delta)\)-uniformity testing protocols for arbitrary \(\delta\), but we establish lower bounds only for \(\delta = 1/12\). This choice of probability of error is to remain consistent with [3], since we borrow the general lower bounds from there. For simplicity we will refer to \((k, \varepsilon, 1/12)\)-uniformity testing protocols simply as \((k, \varepsilon)\)-uniformity testing protocols.

\(^4\)The sample complexity for a fixed \(q\) has been studied under the “instance-optimal” setting (see [43], [12]); while the question is not fully resolved, nearly-tight upper and lower bounds are known.

\(^5\)We observe that by this formulation allows, more generally, to study the dependence of sample complexity Type-I and Type-II error probabilities \(\delta_1\) and \(\delta_2\) by considering \(\vec{\gamma} = (\delta_1, \delta_2)\).
Note that distributed variants of several other inference problems such as that of estimating functionals of distributions and parametric estimation problems can be included as instantiations of the distributed inference problem described above.

IV. DISTRIBUTED SIMULATION

In this section, we consider the distributed simulation problem described in Section III-B. We start by considering the more ambitious problem of perfect simulation, where using a finite number of players \(n \), the referee must simulate a sample from the unknown \(p \) using the \(\ell \)-bit messages from the players. We then consider the relaxed problem of \(\alpha \)-simulation for a constant \(\alpha \in (0,1) \) (see Definition III.3). We prove the following results for these problems.

1) In Section IV-A, we show that for any \(\ell < \lceil \log k \rceil \) and finite \(n \), perfect simulation is impossible using \(n \) players.

2) In Section IV-B, for a constant \(\alpha \in (0,1) \), we exhibit an \(\ell \)-bit private-coin \(\alpha \)-simulation protocol for \(k \)-ary distributions using \(O(k/2^\ell) \) players.

3) Finally, in Section V-C, drawing on the lower bounds for distribution learning, we will prove the sample-optimality of our distributed simulation algorithm above up to constant factors. In fact, even with public coins the number of players cannot be reduced by more than a constant factor.

We have defined the distributed simulation problem as one where the output distribution conditioned on not outputting \(\bot \) is identical to \(p \). One may wonder about another natural relaxation to perfect simulation, where the goal is to generate a sample according to a distribution that is \(\alpha \)-close to \(p \) (say, in total variation distance). A primary reason for considering the former is that the ability to generate samples from \(p \) will allow us to compose it with a centralized algorithm for any inference task, as we show in Section V.

A. Impossibility of perfect simulation when \(\ell < \log k \)

We show that any simulation that works for all points in the interior of the \((k-1) \)-dimensional probability simplex must fail for a distribution on the boundary. Our main result of this section is the following:

Theorem IV.1. For any \(n \geq 1 \), there exists no \(\ell \)-bit perfect simulation for \(k \)-ary distributions using \(n \) players unless \(\ell \geq \lceil \log k \rceil \).

Proof. Suppose that for \(\ell < \lceil \log k \rceil \) there exists an \(\ell \)-bit (public-coin) perfect simulation \(S = (\pi, T) \) for \(k \)-ary distributions using \(n \) players. Fix a realization \(U = u \) of the public randomness. Since \(\ell < \lceil \log k \rceil \),
by the pigeonhole principle for each player at least two symbols in \([k]\) map to the same message. Therefore, we can find a message vector \((m_1, \ldots, m_n)\) and distinct elements \(x_i, x'_i \in [k]\) for each \(i \in [n]\) such that

\[
\pi_i(x_i, u) = \pi_i(x'_i, u) = m_i, \tag{2}
\]

that is for \(U = u\), the SMP protocol sends the same message vector \(m\) when the observation of players is \((x_1, \ldots, x_n)\) or \((x'_1, \ldots, x'_n)\). For a perfect simulation, the referee is not allowed to output \(\bot\), and it must output a symbol in \([k]\).

Next, consider a message \(m\) and a symbol \(x \in [k]\) such that \(T_u(x | m) > 0\), namely the referee outputs \(x\) with a nonzero probability when the public randomness is \(U = u\) and the message received is \(m\). The key observation in our proof is that since \(x_i \neq x'_i\) in view of (2), for each \(i\) either \(x_i \neq x\) or \(x'_i \neq x\). Without loss of generality, we assume that \(x_i \neq x\) for each \(1 \leq i \leq n\).

Finally, consider a distribution \(p\) such that \(p_x = 0\) and \(p_{x'} > 0\) for all \(x' \neq x\). For perfect simulation, under this distribution, the referee must never declare \(x\). However, conditioned on the public-coin realization being \(U = u\), the probability of observing the message \((m_1, \ldots, m_n)\) above is

\[
\Pr[M = (m_1, \ldots, m_n) | U = u] = \sum_{\tilde{x}} \prod_{i=1}^{n} T_u(m_i | \tilde{x}_i)p(\tilde{x}_i) \geq \prod_{i=1}^{n} T_u(m_i | x_i)p_x > 0,
\]

thus showing that the referee has a nonzero probability of outputting \(x\), even though \(p_x = 0\). This contradictions the assumption that \(\mathcal{S}\) is a perfect simulation. \(\Box\)

Note that the proof above shows that any perfect simulation of a distribution \(p\) in the interior of the \((k - 1)\)-dimensional probability simplex must fail for at least one distribution on the boundary of the simplex. In fact, a much stronger impossibility result holds. For the smallest non-trivial parameter values of \(k = 3\) and \(\ell = 1\), no perfect simulation protocol exists that simulates all distributions in any open neighborhood in the interior of the probability simplex.

Theorem IV.2. For any \(n \geq 1\), there does not exist any \(\ell\)-bit perfect simulation of ternary distributions \((k = 3)\) unless \(\ell \geq 2\), even under when the input distribution is known to comes from an open set in the interior of the probability simplex.

We defer the proof of this theorem to Appendix A. Roughly speaking, the argument proceeds by establishing that we can, without loss of generality, restrict to deterministic protocols. We then show that any deterministic simulation protocol must output \(\bot\) with a nonzero probability – contradicting the assumption of perfect simulation. Together, the two incomparable impossibility results of Theorems IV.1 and IV.2 (one for general \(1 \leq \ell < \lceil \log k \rceil\) but at the boundary of the probability simplex; the other for
\(\ell = 2 \) and \(k \geq 3 \), but in the interior) rule out perfect simulation in a strong sense in the case of SMP protocols.

We close this section by extending our impossibility result to beyond SMP protocols, to the setting where the players are allowed to communicate interactively.\(^6\) In an interactive communication protocol, players 1 to \(n \) communicate sequentially in rounds, with player \(i \) communicating in round \(i \). The communication is in a broadcast mode where, along with the referee, the players too receive communication from each other. The communication of player \(i \) can depend on their local observation and the communication received in the previous \(i - 1 \) rounds from the other players.

Our next result shows that perfect simulation is impossible, even when players use an interactive communication protocol. The proof uses a standard method for simulating sequential protocols with SMP protocols, by increasing the number of players (see, for instance, reduction of round complexity in [38]).

Lemma IV.3. For every \(n \geq 1 \), if there exists an interactive public-coin \(\ell \)-bit perfect simulation of \(k \)-ary distributions with \(n \) players, then there exists a public-coin \(\ell \)-bit perfect simulation of \(k \)-ary distributions with \(2^{\ell n + 1} \) players that uses only SMP.

Proof. Consider an interactive communication protocol \(\pi \) for distributed simulation with \(n \) players and \(\ell \) bits of communication per player. We can view the overall protocol as a \(2^{\ell} \)-ary tree of depth \(n \) where each node is assigned to a player. An execution of the protocol is a path from the root to the leaf of the tree, namely along any such path each player appears once. This protocol can be simulated non-interactively using at most \((2^{\ell n} - 1)/(2^{\ell} - 1) < 2^{\ell n + 1}\) players, where players \((2^{j-1} + 1) \) to \(2^j \) send all messages correspond to nodes at depth \(j \) in the tree. Then, the referee receiving all the messages can output the index of the leaf node by following the path from root to the leaf. \(\square \)

Corollary IV.4. Theorems IV.1 and IV.2 hold even when the players are allowed to use interactive communication protocols for simulation.

B. An \(\alpha \)-simulation protocol using rejection sampling

In this section we present our construction of a simulation protocol for \(k \)-ary distributions using \(n = O(k/2^\ell) \) players, establishing the following theorem:

\(\text{6Public-coin protocols do allow the players to coordinate using shared randomness. But they do not interact in any other way.} \)
Theorem IV.5. For every \(\alpha \in (0, 1] \) and \(\ell \geq 1 \), there exists an \(\ell \)-bit \(\alpha \)-simulation of \(k \)-ary distributions using
\[
40 \left\lfloor \log \frac{1}{\alpha} \right\rfloor \cdot \frac{k}{2^\ell - 1}
\]
players. Moreover, the protocol is deterministic for the players, and only requires private randomness at the referee.

At a high level, our algorithm divides players into batches and constructs a \(3/4 \)-simulation using each batch. The overall simulation declares the output symbol of the first batch that does not declare an abort. By using \(O(\lceil \log \frac{1}{\alpha} \rceil) \) batches, we can boost the probability of abort from \(3/4 \) to \(\alpha \).

To simplify the presentation, we first present the protocol for \(\ell = 1 \) and analyze its performance. Even for this case, we build our protocol in steps, starting with the basic version given in Algorithm 1 below, which requires \(n = 2k \) players. The next result characterizes the performance of this simulation protocol.

Algorithm 1

Distributed simulation protocol using \(\ell = 1 \): The basic version

Require: \(n = 2k \) players observing one independent sample each from an unknown \(p \)

1. For \(1 \leq i \leq n \), players \((2i - 1)\) and \(2i\) send one bit to indicate whether their observation is \(i \).
2. The referee receives these \(n = 2k \) bits \(M_1, \ldots, M_n \).
3. **if** exactly one of the bits \(M_1, M_3, \ldots, M_{2k-1} \) is equal to one, say the bit \(M_{2i-1} \), and the corresponding bit \(M_{2i} \) is zero, **then** the referee outputs \(\hat{X} = i \);
4. **else** the referee outputs \(\bot \) (abort).

Theorem IV.6. The protocol in Algorithm 1 uses \(2k \) players and is a \(3/4 \)-simulation for \(p \in \Delta_k \) such that \(\|p\|_\infty \leq 1/2 \).

Proof. From the description of the protocol, it is easy to verify that the output \(\hat{X} \) of the protocol takes the value \(i \) with probability
\[
\Pr[\hat{X} = i] = p_i \cdot \prod_{j \neq i} (1 - p_j) \cdot (1 - p_i) = p_i \cdot \prod_{j=1}^k (1 - p_j),
\]
where the first term in the product corresponds to \(M_{2i-1} \) being 1, the second term to all the other messages from odd-numbered players being 0, and the final term for \(M_{2i} \) to be 0. Note that this probability is proportional to \(p_i \), showing that conditioned on the event \(\{\hat{X} \in [k]\} \), the output is indeed distributed according to \(p \).
Next, we bound the probability of abort for this protocol. By summing (3) over all \(i \) in \([k]\), we obtain that the probability \(\rho_p := \Pr[R \text{ does not output } \perp] \) is given by

\[
\rho_p = \prod_{j=1}^{k} (1 - p_j).
\]

Observe that while (as discussed above), conditioned on success, the output is from \(p \), the probability of abort can depend on \(p \). In particular, if there is one symbol with large probability (close to one), the success probability can be arbitrarily close to zero. This is where we use our assumption \(\|p\|_\infty \leq 1/2 \) to establish that

\[
\rho_p = \prod_{j=1}^{k} (1 - p_j) \geq \frac{1}{4}.
\]

Indeed, the claimed bound follows from observing that \(1 - x \geq 1/4^x \) for all \(x \in [0, 1/2] \). Therefore, the probability of aborting is bounded above by \(3/4 \), completing the proof.

To handle the case when \(\|p\|_\infty \) may exceed \(1/2 \), we consider the distribution \(q \) on \([2k]\) defined by

\[
q_i = q_{k+i} = \frac{1}{2} \cdot p_i, \quad i \in [k].
\]

This distribution satisfies the condition \(\|q\|_\infty \leq 1/2 \), and therefore, the previous protocol yields a 3/4-simulation for it using \(4k \) players observing independent samples from \(q \). The problem now reduces to obtaining samples from \(q \) using samples from \(p \), and then obtaining back a sample from \(p \) given a sample from \(q \) generated by the referee. Towards that, we note that although the players do not know \(p \), given a sample from \(p \), it is easy to convert it into a sample from \(q \) as follows. Player \(j \) upon receiving \(X_j \sim p \), maps it to \(X_j \) or \(X_j + k \) with equal probability. We can use this process to convert samples from \(4k \) players to sample from \(q \) and apply Algorithm 1 to simulate a sample \(\tilde{X} \) from \(q \) at the referee. Finally, we can convert the sample \(\tilde{X} \) from \(q \) to that from \(p \) by declaring \(\hat{X} = (\tilde{X} \mod k) + 1 \). Our enhancement of Algorithm 1 described next does exactly this, with a slight modification to avoid the use of additional randomness at the players (but instead using randomness at the referee only). This protocol achieves our desired performance for the case \(\ell = 1 \).

Theorem IV.7. The protocol in Algorithm 2 uses \(4k \) players and is a 3/4-simulation for \(p \in \Delta_k \). Moreover, the communication protocol used by the players is a deterministic protocol.

Proof. We first establish the following claim.

Claim IV.8. The distribution of flipped bits obtained after Line 2 coincides with that for message bits when we execute Algorithm 1 using samples from \(q \).
Algorithm 2 Distributed simulation protocol using $\ell=1$: The enhanced version

Require: $n = 4k$ players observing one independent sample each from an unknown p

1. Players divide themselves in two sets of $2k$ players each, and each set executes a copy of Algorithm 1.
2. The referee receives message bits (M_1, \ldots, M_{4k}) from all the players, and independently flips each message bit that is 1 to 0 with probability $1/2$ to obtain $(\overline{M}_1, \ldots, \overline{M}_{4k})$.
3. If exactly one of the message bits $\overline{M}_1, \overline{M}_3, \ldots, \overline{M}_{4k-1}$ is 1, say the message \overline{M}_{2i-1}, and the corresponding message sequence \overline{M}_{2i} is 0, then
 4. If $i > k$, then the referee updates $i \leftarrow i - k$;
 5. End if
 6. The referee outputs $\hat{X} = i$;
 7. Else the referee outputs \bot.
8. End if

To see this, note that, for $i \in [k]$, players i and $i + k$ send the message 1 with probability p_i each. Therefore, the flipped bits of these players will equal 1 with probabilities $q_i = p_i / 2$ each. But this is exactly the probability with which these messages would be 1 if the samples of the players were generated from q and we were executing Algorithm 1.

Next, note that the operation of the referee from here on can be described alternatively as obtaining \hat{X} by executing Algorithm 1 for $2 \cdot 2k = 4k$ samples from q and declaring $\hat{X} = \hat{X} \mod k$ if $\hat{X} \neq \bot$. Thus, the overall protocol behaves as if the players and the referee executed Algorithm 1 for samples from q and then the referee declared the output $\mod k + 1$, if it was not a \bot. As we saw above, this protocol constitutes a $3/4$-simulation for p. □

Moving now to the more general setting of arbitrary $\ell \in \{1, \ldots, \lceil \log k \rceil \}$, we simply modify Algorithm 2 to use the extra bits of communication. For simplicity, we assume that $2^\ell - 1$ divides k and set $m := k / (2^\ell - 1)$. We partition the domain $[k]$ into m equal contiguous parts S_1, \ldots, S_m, with $|S_i| = 2^\ell - 1$. Our proposed modification to Algorithm 2 to extend it for $\ell \geq 1$ is given in Algorithm 3.

The previous protocol can be developed incrementally in the same manner as the protocol for $\ell = 1$. First, we obtain a protocol under some additional assumption on p using $2 \left\lceil \frac{k}{2^\ell - 1} \right\rceil$ players and then circumvent the requirement for that assumption by converting samples from p into samples for q by doubling the number of players. The form above is obtained in the same manner as that of Algorithm 2, by relegating the requirement for randomization at the players to the referee.

The performance of this protocol is characterized in the theorem below.
Algorithm 3 Distributed simulation protocol using $\ell \geq 1$: Basic block

Require: $n = 4m$ players observing one independent sample each from an unknown p

1: Players $2j - 1, 2j, 2(j + m) - 1, 2(j + m), 1 \leq j \leq m$, send the following communication depending on their observed sample x:

2: if $x \notin S_j$, then send the all zero sequence 0 of length ℓ.

3: else indicate the precise value of $x \in S_j$ using the remaining $2^\ell - 1$ binary sequences of length ℓ.

We denote the sequence sent for $i \in S_j$ by $s_i \in \{0, 1\}^\ell \setminus \{0\}$.

4: end if

5: The referee independently changes the message M_j from player j that is not 0 to 0 with probability $1/2$, to obtain the flipped message \overline{M}_j.

6: if exactly one of the message sequences $\overline{M}_1, \overline{M}_3, \ldots, \overline{M}_{2m-1}$ is nonzero, say the message \overline{M}_{2j-1}, and the corresponding message sequence \overline{M}_j is 0, then

7: if $j > m$, then the referee updates $j \leftarrow j - m$;

8: end if

9: if $\overline{M}_{2j-1} = s_i$, the referee outputs $\hat{X} = i \in S_j$;

10: else the referee outputs $\hat{X} = \perp$.

11: end if

Theorem IV.9. For any $\ell \geq 1$, Algorithm 3 uses $4 \left\lceil \frac{k}{2^{\ell-1}} \right\rceil$ players and is a $3/4$-simulation for $p \in \Delta_k$. Moreover, the communication protocol used by the players is a deterministic protocol.

Proof. The proof is similar to that of Theorem IV.7, with appropriate extensions to handle $\ell > 1$. Note that the players in the set $P_j := \{2j - 1, 2j, 2(j + m) - 1, 2(j + m)\}$, $j \in [m]$, use the same mapping to determine the message to send. Let $i \in S_j$. Then, for all players in the set P_j, the flipped message equals s_i (the sequence representing message i) with probability $p_i/2$. It follows that the flipped message is 0 for any of these players with probability $(1 - p(S_j)/2)$. Denoting j_i the $j \in [m]$ such that $i \in S_j$, note that only players in P_{j_i} can declare s_i with positive probability. Therefore, by combining the previous observations with the fact that the messages of all players are independent, we get

$$\Pr[\hat{X} = i] = 2 \cdot \frac{p_i}{2} \cdot \prod_{j \neq j_i} \left(1 - \frac{p(S_j)}{2}\right) \cdot \left(1 - \frac{p(S_{j_i})}{2}\right),$$

where the first factor of 2 represents two cases where $\overline{M}_{2j_i-1} = s_i$ or $\overline{M}_{2(j_i+m)-1} = s_i$, $\prod_{j \neq j_i} (1 - p(S_j)/2)$ is the probability that each of the flipped messages \overline{M}_{2t-1} is 0 for $t \neq j_i$ or $t \neq j_i + m$, and the final factor $(1 - p(S_{j_i}/2))$ is the probability that $M_{2t} = 0$ for $t = j$ or $t = j_i + m$. As a consequence,
we get that
\[
\Pr[\hat{X} = \perp] = \prod_{j \in [m]} \left(1 - \frac{p(S_j)}{2}\right) \geq \frac{1}{4},
\]
where in the final bound we used once again the fact that \(1 - x \geq 1/4^x\) for \(0 \leq x \leq 1/2\). This completes the proof.

Finally, we boost the probability of successful simulation from 1/4 to 1 by using multiple blocks.

Algorithm 4: Distributed simulation protocol using \(\ell \geq 1\): Complete protocol

Require: \(n = 40 \left\lceil \log \frac{1}{\alpha} \right\rceil \cdot \left\lceil \frac{k}{2^{\ell} - 1} \right\rceil\) players observing one independent sample each from an unknown \(p\)

1: Divide players into \(10 \left\lceil \log \frac{1}{\alpha} \right\rceil\) disjoint groups of \(4 \left\lceil \frac{k}{2^{\ell} - 1} \right\rceil\) players each.
2: Execute Algorithm 3 to each block successively, one block at a time.
3: if all blocks do not declare \(\perp\) as the output, then output \(\hat{X} = i\) where \(i \in [k]\) is the output of the first block that does not output \(\perp\);
4: else output \(\hat{X} = \perp\) and terminate.
5: end if

We conclude with proof establishing that Algorithm 4 attains the performance claimed in Theorem IV.5.

Proof of Theorem IV.5. Each group in Algorithm 4 executes the 3/4-simulation protocol given in Algorithm 3, and the overall protocol outputs the symbol in \([k]\) that the first group to succeed outputs, if such a group exists. This is a simple rejection sampling procedure, and clearly, conditioned on no abort, the distribution of output is \(p\). Furthermore, the algorithm declares \(\perp\) if all the groups declare \(\perp\), which happens with probability at most \((3/4)^{10 \lceil \log \frac{1}{\alpha} \rceil} < \alpha\).

V. SIMULATE-AND-INFER

We now show how to use distributed simulation results to design private-coin distributed inference protocols. The approach is natural: Simulate enough independent samples at the referee \(\mathcal{R}\) to solve the centralized problem. We first describe the implications of the results from Section IV for any distributed inference task, and then instantiate them to our two flagship applications: distribution learning and identity testing.

A. Private-coin \(\ell\)-bit distributed inference via distributed simulation

Using the distributed simulation protocols of the previous section, we can simulate one sample from \(p\) at the referee using about \((k/2^\ell)\) players. Then, to solve an inference task in the distributed setting,
the referee can simulate the number of samples needed to solve the task in the centralized setting. The resulting protocol will require a number of players roughly equal to the sample complexity of the inference problem when the samples are centralized times \((k/2^\ell)\), the number of players required to simulate each independent sample at the referee. We refer to protocols that first simulate samples from the underlying distribution and then use a centralized inference algorithm at the referee as simulate-and-infer protocols. For concreteness, we provide a formal description in Algorithm 5. For \(\vec{\gamma} \in \mathbb{R}^q_+\), let \(\psi_P(\vec{\gamma})\) denote the sample complexity for \(\vec{\gamma}\)-inference protocol to solve \(P\) in the centralized setting. That is, \(\psi_P(\vec{\gamma})\) denotes the least \(n\) for which there exists an estimator \(e\) such that for every \(p \in C\) and \(n\) independent samples from \(p\), we have

\[
L_i(p, e) \leq \gamma_i, \quad \forall 1 \leq i \leq q,
\]

where \(L \in \mathbb{R}^q_+\) is defined in (1). The next result evaluates the performance of Algorithm 5.

Theorem V.1. Let \(P = (C, \mathcal{X}, \mathcal{E}, l)\) be an inference problem with bounded loss \(l: C \times \mathcal{E} \to \mathbb{R}^q\); i.e., \(\|l\|_{\infty} \leq 1\). For \(0 < \delta, 1 \leq \ell \leq \lceil \log k \rceil\), and \(\vec{\gamma} \in \mathbb{R}^q_+\), upon setting \(N = \psi_P(\vec{\gamma})\) and \(C = 2 + (1/\psi_P(\vec{\gamma})) \log (1/\delta)\), the simulate-and-infer protocol given in Algorithm 5 requires \(O((\psi_P(\vec{\gamma}) \lor \log 1/\delta) \cdot \frac{1}{2^\ell})\) players and constitutes an \(\ell\)-bit deterministic \((\vec{\gamma} + \delta 1_q)\)-inference protocol for \(P\).

Proof. We denote the resulting distributed inference protocol by \((\pi, e')\), and proceed to show it is a \((\vec{\gamma} + \delta 1_q)\)-inference protocol for \(P\). From Theorem IV.9, each block produces independently a sample with probability at least 1/4 (and \(\perp\) otherwise). Thus, by Hoeffding’s inequality, the number of samples simulated is larger than \(N = \psi_P(\vec{\gamma})\) with probability at least \(1 - \delta\) as long as \((5C - 1)^2/10C \geq \)
1/ψ_\mathcal{P}(\vec{\gamma}) \log(1/\delta)$, which is satisfied for $C \geq 2 + (1/\psi_\mathcal{P}(\vec{\gamma})) \log(1/\delta)$. Denoting by \mathcal{E} the event that the referee can simulate at least $\psi_\mathcal{P}(\vec{\gamma})$ samples, the expected loss satisfies

$$L_i(p, e') \leq (1 - \delta) \mathbb{E}[l_i(p, \hat{e}) \mid E] + \delta \mathbb{E}[l_i(p, \hat{e}) \mid \bar{E}]$$

$$\leq \mathbb{E}[l_i(p, \hat{e}) \mid E] + \delta \|l_i\|_\infty$$

$$\leq L_i(p, e) + \delta$$

$$\leq \gamma_i + \delta,$$

for every $1 \leq i \leq q$, concluding the proof.

The theorem above is quite general and only requires that the loss function be bounded.\(^7\) Further, it is worth noting that the dependence on δ is very mild and can even be ignored, for instance, it settings when $\vec{\gamma} = \gamma 1_q$ with $\gamma \asymp \delta$ and $\psi_\mathcal{P}(\vec{\gamma}) \gtrsim \log(1/\delta)$ (as the next two examples will illustrate).

B. Application: private-coin protocols from distributed simulation

As corollaries of Theorem V.1, we obtain distributed inference protocols for distribution learning and identity testing.

Using the well-known result\(^8\) that $\Theta\left((k + \log(1/\delta))/\varepsilon^2\right)$ samples are sufficient to learn a distribution over $[k]$ to within a total variation distance ε with probability $1 - \delta$, we obtain the following.

Corollary V.2. For $\ell \in \{1, \ldots, \lceil \log k \rceil\}$, simulate-and-infer constitutes an ℓ-bit deterministic (k, ε, δ)-learning protocol with $O\left(\frac{k}{\varepsilon^2}(k + \log(1/\delta))\right)$ players. In particular, for any constant δ, $O(k^2/2^\ell \varepsilon^2)$ players suffice.

For identity testing, it is known that the sample complexity is $O((\sqrt{k \log(1/\delta)} + \log(1/\delta))/\varepsilon^2)$ samples (c.f. [34], [20]). Thus, we get the following corollary to Theorem V.1.

Corollary V.3. For $\ell \in \{1, \ldots, \lceil \log k \rceil\}$, simulate-and-infer constitutes an ℓ-bit deterministic (k, ε, δ)-identity testing protocol with $O\left(\frac{k}{\varepsilon^2}(\sqrt{k \log(1/\delta)} + \log(1/\delta))\right)$ players. In particular, for any constant δ, $O(k^{3/2}/2^\ell \varepsilon^2)$ players suffice.

Remark V.4. We highlight that for constant δ, the two corollaries above are known to be optimal among all private-coin protocols. Indeed, up to constant factors they achieve the sample complexity lower bounds

\(^7\)In particular, it is immediate to extend it to the more general bounded case $\|l\|_\infty < \infty$, instead of $\|l\|_\infty \leq 1$.

\(^8\)This can be shown, for instance, by considering the empirical distribution \hat{p} and using McDiarmid’s inequality to bound the probability of error event $\{d_{TV}(p, \hat{p}) > \varepsilon\}$. DRAFT
established in [3] for private-coin learning and uniformity testing protocols, respectively. In particular, we remark that Corollary V.3 shows that simulate-and-infer attains the sample complexity \(\Theta(k^{3/2}/(2^\ell \varepsilon^2)) \) of identity testing using private-coin protocols.

C. Optimality of our distributed simulation protocol

Interestingly, a byproduct of our performance bound for simulate-and-infer protocols (more precisely, that of Corollary V.2) is that the \(\alpha \)-simulation protocol from Theorem IV.9 has optimal number of players, up to constants.

Corollary V.5. For \(\ell \in \{1, \ldots, \lceil \log k \rceil \} \) and \(\alpha \in (0,1) \), any \(\ell \)-bit public-coin (possibly interactive) \(\alpha \)-simulation protocol for \(k \)-ary distributions must have \(n = \Omega(k/2^\ell) \) players.

Proof. Let \(\pi \) be any \(\ell \)-bit \(\alpha \)-simulation protocol with \(n \) players. Proceeding analogously to proofs of Theorem V.1 and Corollary V.2, we get that \(\pi \) can be used to get an \(\ell \)-bit \((k, \varepsilon, 1/3)\)-learning protocol for \(n' = O(n \cdot k/\varepsilon^2) \) players. (Moreover, the resulting protocol is adaptive, private- or public-coin, respectively, whenever \(\pi \) is.) However, as shown in [32] (see, also, [3]), any \(\ell \)-bit public-coin (possibly interactive) \((k, \varepsilon, 1/3)\)-learning protocol must have \(\Omega(k^2/(2^\ell \varepsilon^2)) \) players. It follows that \(n \) must satisfy \(n \gtrsim k/2^\ell \), as claimed. \(\square \)

VI. PUBLIC-COIN IDENTITY TESTING

In this section, we consider public-coin protocols for \((k, \varepsilon)\)-identity testing and establish the following upper bound for the number of players required.

Theorem VI.1. For \(1 \leq \ell \leq \lceil \log k \rceil \), there exists an \(\ell \)-bit public-coin \((k, \varepsilon)\)-identity testing protocol for \(n = O(k^{3/2}/2^\ell \varepsilon^2) \) players.

In view of Remark V.4, public-coin protocols require a factor \(\sqrt{k/2^\ell} \) fewer samples than private-coin protocols for identity testing. This work is one of the first instances of a natural distributed inference problem where the availability of public coins changes the sample complexity. In fact, it follows from [3] that the sample requirement of \(O(k^{3/2}/2^\ell \varepsilon^2) \) in Theorem VI.1 is optimal for public-coin protocols. Thus, our work provides sample optimal private- and public-coin protocols for identity testing.

We now present the public-coin protocol for distributed identity testing that attains the results above. The basic idea driving our scheme is simple: We find an \(\ell \)-bit random mapping that preserves pairwise distances between distributions of its inputs up to a fixed multiplicative factor and apply an appropriate
identity test to its output. We first identify these random mappings in the technical result below, which maybe of independent interest.

Let \((S_1, \ldots, S_L)\) be a random partition of the set \([k]\) with each part of equal cardinality, that is \((S_1, \ldots, S_L)\) is distributed uniformly over the set of all partitions of \([k]\) into \(k/L\) parts of equal cardinality. For a distribution \(\mathbf{p} \in \Delta_{[k]}\), define random variables \(Z_1(\mathbf{p}), \ldots, Z_L(\mathbf{p})\) as follows:

\[
Z_r(\mathbf{p}) := \mathbf{p}(S_r), \quad r \in [L].
\]

Note that each \(Z_r(\mathbf{p})\) is nonnegative and \(\sum_r Z_r(\mathbf{p}) = 1\). Thus, \(Z_1(\mathbf{p}), \ldots, Z_L(\mathbf{p})\) is a random distribution over \([L]\). For two distributions \(\mathbf{p}\) and \(\mathbf{q}\), if \(\mathbf{p} = \mathbf{q}\), clearly the induced distributions \((Z_1(\mathbf{p}), \ldots, Z_L(\mathbf{p}))\) and \((Z_1(\mathbf{q}), \ldots, Z_L(\mathbf{q}))\) are identical. The next result shows that if \(\mathbf{p}\) and \(\mathbf{q}\) are far (in total variation distance), then the induced distributions, too, are far (in \(\ell_2\) distance).

Theorem VI.2. Fix any \(k\)-ary distributions \(\mathbf{p}, \mathbf{q}\). For the (random) distributions \(\overline{\mathbf{p}} = (Z_1(\mathbf{p}), \ldots, Z_L(\mathbf{p}))\), \(\overline{\mathbf{q}} = (Z_1(\mathbf{q}), \ldots, Z_L(\mathbf{q}))\) over \([L]\) defined in Eq. (4) above, the following holds: (i) if \(\mathbf{p} = \mathbf{q}\), then \(\overline{\mathbf{p}} = \overline{\mathbf{q}}\) with probability one; and (ii) if \(d_{TV}(\mathbf{p}, \mathbf{q}) > \epsilon\), then

\[
\Pr \left[\|\overline{\mathbf{p}} - \overline{\mathbf{q}}\|_2^2 > \frac{\epsilon^2}{2k} \right] \geq c.
\]

for some absolute constant \(c > 0\).

The proof of this result involves proving the anticoncentration of \(\sum_{r \in [L]} \left(\sum_{j \in [k]} (\mathbf{p}_j - \mathbf{q}_j) \mathbf{1}_{\{j \in S_r\}} \right)^2\). Since the random variables \(\mathbf{1}_{\{j \in S_r\}}\) are dependent, the analysis becomes technical, and requires analyzing the higher moments of the summation above, and applying the Paley–Zygmund inequality. The complete proof is deferred to Appendix B.

Our proposed test uses public randomness to sample the random partition \((S_1, \ldots, S_L)\). In our application, we set \(L = 2^\ell\) whereby each player can describe the part in which its sample lies using \(\ell\). For convenience, we represent the partition \((S_1, \ldots, S_L)\) using length-\(k\) vector \((Y_1, \ldots, Y_k)\), where for \(j = 1, \ldots, k\), we have \(Y_j \in [L] := \{1, \ldots, L\}\). Each of the \(Y_j\) can be indicated using \(\ell\) bits. A player observing sample \(i\) can send \(Y_i\) represented by \(\ell\) bits to the referee. When each player applies this strategy, the referee accumulates \(n\) samples from \((Z_1(\mathbf{p}), \ldots, Z_L(\mathbf{p}))\), and it can apply a centralized test to it.

Before describing the general scheme formally, we illustrate it for the case of \(\ell = 1\) and for uniformity testing. For this case, \((Z_1(\mathbf{p}), Z_2(\mathbf{p})) = (1/2, 1/2)\) when \(\mathbf{p} = \mathbf{q}\) and, by Theorem VI.2, a binary distribution with bias roughly \(\epsilon/\sqrt{k}\) when \(d_{TV}(\mathbf{p}, \mathbf{q}) > \epsilon\). Thus, the referee can simply test if the bits received are unbiased or have bias greater than \(\epsilon/\sqrt{k}\). As is well-known, it can do this using roughly \((k/\epsilon^2)\) samples, and so \((k/\epsilon^2)\) players suffice.
For testing uniformity with $\ell > 1$, when $p = u_k$, the referee sees a uniform random variable with values in $[2^\ell]$. However, when $d_{TV}(p, q) > \varepsilon$, we only know that the observed (2^ℓ)-ary random variable has distribution that is away from uniform in ℓ_2 distance (with constant probability), and not d_{TV} as above. Such a test appeared in, for instance, [18, Proposition 3.1] or [17, Theorem 2.10]. In particular, we have a centralized test for testing if an L-ary distribution is uniform or (γ/\sqrt{L})-far from uniform in ℓ_2 using $O\left(\sqrt{L}/\gamma^2\right)$ samples.

For the general case when the reference distribution q can be different from uniform, our approach first involves reducing identity testing for q to uniformity testing. To do this, we rely on the following result of Goldreich [27], which we state here for completeness.

Lemma VI.3. For any $q \in \Delta_k$, there exists a randomized mapping $F_q : \Delta_k \to \Delta_{5k}$ satisfying the following properties: (i) $F_q(q) = u_{5k}$; (ii) for every $p \in \Delta_k$ such that $d_{TV}(p, q) \geq \varepsilon$, it holds that $d_{TV}(F_q(p), u_{5k}) \geq 16\varepsilon/25$; and (iii) there is an efficient algorithm for generating a sample from $F_q(p)$ given one sample from p.

Remark VI.4. The mapping F_q and the algorithm mentioned in property (iii) above require the knowledge of q.

With this result at our disposal, each player can simply simulate samples from $F_q(p)$ when they observe samples from p. Thereafter we can simply apply the distributed uniformity test we outlined earlier, however for a slightly inflated domain of cardinality $5k$.

The scheme we have outlined yields a test which under $p = q$ accepts q with a constant probability and when p is far from q, rejects it with a constant probability. It remains to “amplify” these constant probabilities to our desired probability of $\frac{11}{12}$. In fact, the amplification technique we present, considered folklore in the computational learning community, allows us to amplify easily the probabilities to any arbitrary δ. We summarize this simple amplification in the next result.

Lemma VI.5. For $\theta_1 > 1 - \theta_2$, consider N independent samples generated from $\text{Bern}(p)$ with either $p \geq \theta_1$ or $p \leq 1 - \theta_2$. Then, for $N = \Omega\left(\frac{1}{(\theta_1 + \theta_2 - 1)^2 \log 1/\delta}\right)$, we can find a test that accepts $p \geq \theta_1$ with probability greater than $1 - \delta$ in the first case and rejects it with probability greater than $1 - \delta$ in the second case.

The test is simply the empirical average with an appropriate threshold and the proof follows from a standard Chernoff bound. We omit the details.

As a corollary of Lemma VI.5 and Theorem VI.1, we obtain the following result.
Corollary VI.6. For $1 \leq \ell \leq \lceil \log k \rceil$, there exists an ℓ-bit public-coin (k, ε, δ)-identity testing protocol for $n = O\left(\frac{k}{2^{\ell/2} \varepsilon^2} \log \frac{1}{\delta} \right)$ players.

Proof. Recall that by our definition of (k, ε)-identity testing and Theorem VI.1, we are given a test with probability of correctness greater than $11/12$. Thus, when $p = q$, the referee’s output bit takes value 1 with probability exceeding $11/12$ and when $d_{\text{TV}}(p, q) \geq \varepsilon$, the output bit takes value 0 with probability exceeding $11/12$. Therefore, the claimed test in the statement of the corollary is obtained by applying the test of Theorem VI.1 to $O\left(\log \frac{1}{\delta} \right)$ blocks of $O\left(\frac{k}{2^{\ell/2} \varepsilon^2} \right)$ players and applying the test in Lemma VI.5 to the binary outputs of these tests.

We summarize our overall distributed identity test in Algorithm 6 below.

Algorithm 6 An ℓ-bit public-coin protocol for distributed identity testing for reference distribution q.

Require: Parameters $\gamma \in (0, 1)$, N, n players observing one sample each from an unknown p

1. Players use the algorithm in Lemma VI.3 to convert their samples from p to independent samples $\tilde{X}_1, \ldots, \tilde{X}_n$ from $F_q(p) \in \Delta_{5k}$. \triangleright This step uses only private randomness.
2. Partition the players into N blocks of size $m := n/N$.
3. Players in each block use independent public coins to sample a random partition (S_1, \ldots, S_L) with equal-sized parts. We represent this partition by (Y_1, \ldots, Y_{5k}) with $Y_r \in [L]$ as mentioned above.
4. Upon observing the sample $\tilde{X}_j = i$ in Line 1, player j sends Y_i (corresponding to its respective block) represented by ℓ bits.
5. For each block, the referee obtains n/N independent samples from $(Z_1(p), \ldots, Z_L(p))$ and tests if the underlying distribution is u_L or (γ/\sqrt{L})-far from uniform in ℓ_2, with failure probability $\delta' := c/2(1 - c)$. \triangleright This uses the aforementioned test from [18], [17]; $c > 0$ is as in Theorem VI.2.
6. The referee applies the test from Lemma VI.5 to the N outputs of the independent tests (one for each block) and declares the output.

We now show that with appropriate choice of parameters, Algorithm 6 attains the performance promised in Theorem VI.1.

Proof of Theorem VI.1. Our proof rests on two technical results pointed above: Theorem VI.2 and Lemma VI.3. Consider the distributed identity test given in Algorithm 6. First, by Lemma VI.3, for any reference distribution q the samples obtained by the players in Line 1 are independent samples from u_{5k} when $p = q$ and from a distribution that is $(16\varepsilon/25)$-far from u_{5k} in total variation distance when $d_{\text{TV}}(p, q) > \varepsilon$.

The samples $(\tilde{X}_1, \ldots, \tilde{X}_n)$ are then “quantized” to ℓ bits in each block. For each block of $m = k/N$ players, we can consider the samples seen by the referee as m independent samples from an
unknown distribution on $[L]$. By the previous observation and Theorem VI.2, the common distribution of independent samples at the referee in each block is either u_L with probability 1 when $p = q$, or $(\varepsilon/10k)$-far\(^9\) from u_L in ℓ_2 distance with probability greater than c.

We set $\gamma := \varepsilon \sqrt{L}/\sqrt{10k}$ and apply the test from [18] or [17]. The test will succeed if the event in Theorem VI.2 occurs and the centralized uniformity test succeeds. By [18, Proposition 3.1] or [17, Theorem 2.10], this happens with probability greater than $(1 - \delta')c$ if the number of samples m in each block exceeds

$$\frac{\sqrt{L}}{\gamma^2} = \frac{10k \sqrt{L}}{L \varepsilon^2} = \frac{10k}{\sqrt{L} \varepsilon^2}.$$ \hspace{1cm} (5)

We set the number of players in each block as $m := \lceil 10k/(2^{\ell/2} \varepsilon^2) \rceil$. Note that the parameter δ' here is the chosen probability of failure of the centralized test. For our purpose, we shall see that it suffices to set it to $\delta' := c/2(1 + c)$.

Each block now provides a uniformity test which succeeds with probability exceeding $1 - \delta' = (1 + c/2)/(1 + c)$. Finally, we amplify the probability of success by choosing the number of blocks N to be appropriately large. We do this using the general amplification given in Lemma VI.5. Specifically, when $p = q$, the test for each of the block outputs 1 with probability greater than $1 - \delta' = (1 + c/2)/(1 + c)$. On the other hand, when p is ε-far from q, the test for each block outputs 0 with probability greater than $(1 - \delta')c = (c + c^2/2)/(1 + c)$. Therefore, the claim follows upon applying Lemma VI.5 with $\theta_1 := (1 + c/2)/(1 + c)$ and $\theta_2 := (c + c^2/2)(1 + c)$, which satisfy $\theta_1 > 1 - \theta_2$.

Note that the protocol in Algorithm 6 is remarkably simple, and, moreover, is “smooth,” in the sense that no player’s output depends too much on any particular symbol from $[k]$. (Indeed, each player’s output is the indicator of a set of $k/2^\ell$ elements, which for constant values of ℓ is $\Omega(k)$.) This “smoothness” can be a desirable feature when applying such protocols on a distribution whose domain originates from a quantization of a larger or even continuous domain, where the output of the test should not be too sensitive to the particular choice of quantization. Moreover, it is worth noting that the knowledge of the shared randomness by the referee is not used in Algorithm 6.

Remark VI.7 (Amount of shared randomness). It is easy to see that Algorithm 6 uses no more than $O(\ell k)$ bits of shared randomness. Indeed, $N = \Theta(1)$ independent partitions of $[k]$ into $L := 2^\ell$ equal-sized parts are chosen and each such partition can be specified using $O(\log(L^k)) = O(k \cdot \ell)$ bits. As mentioned in the preceding discussion, the proof of Theorem VI.1 hinges on Theorem VI.2, whose proof relies in turn on an anticoncentration argument only involving moments of order four or less of suitable random numbers.

\(^9\)The extra factor of 5 is from Lemma VI.3.
variables. As such, one could hope that using 4-wise independence (or a related notion) to sample the random equipartition of $[k]$ may lead to drastic savings in the number of shared random bits required to implement the protocol.

This is indeed the case, with a caveat: namely, a straightforward way to implement Theorem VI.2 would be to require a 4-wise independent family of permutations of $[k]$ (see, e.g., [36], [7]). Unfortunately, no non-trivial t-wise independent family of permutations is known to exist for $t > 3$ (although their existence is not ruled out). A way to circumvent this issue and obtain a time- and randomness-efficient protocol using $O(\log k)$ shared random bits, is instead to observe that Theorem VI.2 still holds for a uniformly random partition (instead of equipartition) of $[k]$ in L pieces. This is because its proof invokes Theorem A.6, which only requires suitable 4-symmetric random variables. An efficient implementation then can rely on a family of k 4-wise independent random bits, for which explicit constructions with a seed length $O(\log k)$ are known. However, this approach hits another stumbling block, as when $p = q$ the resulting distribution $(Z_1(q), \ldots, Z_L(q))$ on $[L]$ need not be uniform (as the partition is no longer in equal-sized parts), and thus the sample complexity from (5) (which holds for uniformity testing in ℓ_2 distance) does not follow. We explain in Appendix C how to circumvent this difficulty and obtain a variant of Theorem VI.1 using only $O(\log k)$ shared random bits.

Remark VI.8 (Instance-optimal testing). It may be of independent interest to consider instance-optimal identity testing in the sense of Valiant and Valiant [43], namely to examine how the number of players needed depend on q instead of the worst-case parameter k. Towards that, we describe an extension of Goldreich’s reduction in Appendix D which makes it amenable to the instance-optimal setting, and we believe will find further applications.

ACKNOWLEDGMENTS

The authors would like to thank the organizers of the 2018 Information Theory and Applications Workshop (ITA), where the collaboration leading to this work started.

APPENDIX

A. Impossibility of perfect simulation in the interior of the probability simplex

In this appendix, we establish Theorem IV.2, restated below:

10Specifically, given such a family \mathcal{F}, one can obtain an equipartition of $[k]$ in L pieces meeting our requirements by first fixing any equipartition Π of $[k]$ in L pieces, then drawing a permutation $\sigma \in \mathcal{F}$ uniformly at random, with $\log |\mathcal{F}|$ independent uniformly random bits, and applying σ to Π.

DRAFT
Theorem A.1. For any $n \geq 1$, there does not exist any ℓ-bit perfect simulation of ternary distributions ($k = 3$) unless $\ell \geq 2$, even under when the input distribution is known to comes from an open set in the interior of the probability simplex.

Before we prove the theorem, we show that there is no loss of generality in restricting to deterministic protocols, namely protocols where each player uses a deterministic function of their observation to communicate. The high-level argument is relatively simple: By replacing player j by two players j_1, j_2, each with a suitable deterministic strategy, the two 1-bit messages received by the referee will allow it to simulate player j's original randomized mapping. A similar derandomization was implicit in Algorithm 2.

Lemma A.2. For $X = \{0, 1, 2\}$, suppose there exists a 1-bit perfect simulation $S' = (\pi', \delta')$ with n players. Then, we can find a 1-bit perfect deterministic simulation $S = (\pi, \delta)$ with $2n$ players such that, for each $j \in [2n]$, the communication π_j sent by player j is a deterministic function of the sample x_j seen by player j, i.e.,

$$\pi_j(x, u) = \pi_j(x), \quad x \in X.$$

Proof. Consider the mapping $f: \{0, 1, 2\} \times \{0, 1\}^* \rightarrow \{0, 1\}$. We will show that we can find mappings $g_1: \{0, 1, 2\} \rightarrow \{0, 1\}$, $g_2: \{0, 1, 2\} \rightarrow \{0, 1\}$, and $h: \{0, 1\} \times \{0, 1\} \times \{0, 1\}^* \rightarrow \{0, 1\}$ such that for every u

$$\Pr[f(X, u) = 1] = \Pr[h(g_1(X_1), g_2(X_2), u) = 1], \quad (6)$$

where random variables X_1, X_2 take values in $\{0, 1, 2\}$ and are independent and identically distributed, with same distribution as X. We can then use this construction to get our claimed simulation S Using $2n$ players as follows: Replace the communication $\pi_j'(x, u)$ from player j with communication $\pi_{2j-1}(x_{2j-1})$ and $\pi_{2j}(x_{2j})$, respectively, from two players $2j-1$ and $2j$, where π_{2j-1} and π_{2j} correspond to mappings g_1 and g_2 above for $f = \pi_j'$. The referee can then emulate the original protocol using the corresponding mapping h and using $h(\pi_{2j-1}(x_{2j-1}), \pi_{2j}(x_{2j}), u)$ in place of communication from player j in the original protocol. Then, since the probability distribution of the communication does not change, we retain the performance of S', but using only deterministic communication now.

Therefore, it suffices to establish (6). For convenience, denote $\alpha_u := 1_{\{f(0,u)=1\}}$, $\beta_u := 1_{\{f(1,u)=1\}}$, and $\gamma_u := 1_{\{f(2,u)=1\}}$. Consider the case when at most one of $\alpha_u, \beta_u, \gamma_u$ is 1. In this case, we can assume without loss of generality that $\alpha_u \leq \beta_u + \gamma_u$ and $(\beta_u + \gamma_u - \alpha_u) \in \{0, 1\}$. Let $g_i(x) = 1_{\{x=i\}}$ for $i \in \{1, 2\}$. Consider the mapping h given by

$$h(0,0,u) = \alpha_u, \quad h(1,0,u) = \beta_u, \quad h(0,1,u) = \gamma_u, \quad h(1,1,u) = (\beta_u + \gamma_u - \alpha_u).$$
Then, for every u,

$$
\Pr[h(g_1(X_1), g_2(X_2), u) = 1] = \alpha_u(1 - p_1)(1 - p_2) + \beta_u(1 - p_1)p_2 + \gamma_u p_1(1 - p_2) + (\beta_u + \gamma_u - \alpha_u)p_1p_2
$$

which completes the proof for this case. For the other case, we can simply consider $(1 - \alpha_u), (1 - \beta_u)$, and $(1 - \gamma_u)$ and proceed as in the case above to conserve $\Pr[h(g_1(X_1), g_2(X_2), u) = 0]$. \hfill \Box

We now prove Theorem IV.2, but in view of our previous observation, we only need to consider deterministic communication.

Proof of Theorem IV.2. Suppose by contradiction that there exists such a 1-bit deterministic perfect simulation protocol $S = (\pi, \delta)$ for n players on $\mathcal{X} = \{0, 1, 2\}$ such that $\pi_j(x, u) = \pi_j(x)$ for all x. Assume that this protocol is correct for all distributions p in the neighborhood of some p^* in the interior of the simplex. Consider a partition the players into three sets S_0, S_1, S_2, with

$$
S_i := \{ j \in [n] : \pi_j(i) = 1 \}, \quad i \in \{0, 1, 2\}.
$$

Note that for deterministic communication the message M is independent of public randomness U. Then, by the definition of perfect simulation, it must be the case that

$$
p_x = \mathbb{E}_U \sum_{m \in \{0, 1\}^n} \delta_x(m, U) \Pr[M = m \mid U] = \mathbb{E}_U \sum_m \delta_x(m, U) \Pr[M = m]
$$

for every $x \in \mathcal{X}$, which with our notation of S_0, S_1, S_2 can be re-expressed as

$$
p_x = \sum_{m \in \{0, 1\}^n} \mathbb{E}_U[\delta_x(m, U)] \prod_{i=0}^{2} \prod_{j \in S_i} (m_j p_i + (1 - m_j)(1 - p_i))
$$

for every $x \in \mathcal{X}$. But since the right-side above is a polynomial in (p_0, p_1, p_2), it can only be zero in an open set in the interior if it is identically zero. In particular, the constant term must be zero:

$$
0 = \sum_{m \in \{0, 1\}^n} \mathbb{E}_U[\delta_x(m, U)] \prod_{i=0}^{2} \prod_{j \in S_i} (1 - m_j) = \sum_{m \in \{0, 1\}^n} \mathbb{E}_U[\delta_x(m, U)] \prod_{j=1}^{n}(1 - m_j).
$$

Noting that every summand is non-negative, this implies that for all $x \in \mathcal{X}$ and $m \in \{0, 1\}^n$,

$$
\mathbb{E}_U[\delta_x(m, U)] \prod_{j=1}^{n}(1 - m_j) = 0.
$$
In particular, for the all-zero message 0^n, we get $E_U[\delta_x(0^n, U)] = 0$ for all $x \in \mathcal{X}$, so that again by non-negativity we must have $\delta_x(0^n, u) = 0$ for all $x \in \mathcal{X}$ and randomness u. But the message 0^n will happen with probability $\Pr[M = 0^n] = \prod_{i=0}^{2} \prod_{j \in S_i} (1 - p_i)^{|S_0|} (1 - p_1)^{|S_1|} (1 - p_2)^{|S_2|} > 0,$ where the inequality holds since p lies in the interior of the simplex. Therefore, for the output \hat{X} of the referee we have
\[
\Pr[\hat{X} \neq \perp] = \sum_m \sum_{x \in \mathcal{X}} E_U[\delta_x(m, U)] \cdot \Pr[M = m] = \sum_{m \neq 0^n} \Pr[M = m] \sum_{x \in \mathcal{X}} E_U[\delta_x(m, U)] \\
\leq \sum_{m \neq 0^n} \Pr[M = 0^n] = 1 - \Pr[M = 0^n] < 1,
\]
contradicting the fact that π is a perfect simulation protocol.

Remark A.3. It is unclear how to extend the proof of Theorem IV.2 to arbitrary k, ℓ. In particular, the proof of Lemma A.2 does not extend to the general case. A plausible proof-strategy is a black-box application of the $k = 3, \ell = 1$ result to obtain the general result using a direct-sum-type argument.

B. Proof of Theorem VI.2

In this appendix, we prove Theorem VI.2, stating that taking a random balanced partition of the domain in $L \geq 2$ parts preserves the ℓ_2 distance between distributions with constant probability. Note that the special case of $L = 2$ was proven in the extended abstract [2], in a similar fashion.

We begin by recalling the Paley–Zigmund inequality, a key tool we shall rely upon.

Theorem A.4 (Paley–Zigmund). Suppose U is a non-negative random variable with finite variance. Then, for every $\theta \in [0, 1]$,
\[
\Pr[U > \theta \mathbb{E}[U]] \geq (1 - \theta)^2 \frac{\mathbb{E}[U]^2}{\mathbb{E}[U^2]}.
\]

We will prove a more general version of Theorem VI.2, showing that the ℓ_2 distance to any fixed distribution $q \in \Delta[k]$ is preserved with a constant probability\(^{11}\) with only mild assumptions on Y_1, \ldots, Y_k; recall that we represent the partition (S_1, \ldots, S_L) using a k-length vector (Y_1, \ldots, Y_k) with each $Y_i \in [L]$ such that $Y_i = j \in [L]$ if $i \in S_j$. Namely, we only require that they be 4-symmetric:

Definition A.5. Fix any $t \in \mathbb{N}$. The random variables Y_1, \ldots, Y_k over Ω are said to be t-symmetric if, for every $i_1, i_2, \ldots, i_t \in [k]$, every $s \in \mathbb{N}$, and $f_1, \ldots, f_s : \Omega^t \to \mathbb{R}$, the expectation $E\left[\prod_{j=1}^{s} f_j(Y_{i_1}, \ldots, Y_{i_t})\right]$ is θ-symmetric:

\[^{11}\text{For this application, one should read the theorem statement with } \delta := p - q.\]
may only depend on the multiset \(\{i_1, i_2, \ldots, i_t\} \) via its multiplicities. That is, for every permutation \(\pi: [k] \to [k] \),

\[
E \left[\prod_{j=1}^{\delta} f_j(Y_{i_1}, \ldots, Y_{i_\delta}) \right] = E \left[\prod_{j=1}^{\delta} f_j(Y_{\pi(i_1)}, \ldots, Y_{\pi(i_\delta)}) \right].
\]

Before stating the general statement we shall establish, we observe that random variables \(Y_1, \ldots, Y_k \) as in Theorem VI.2 are indeed \(t \)-symmetric for any \(t \in [k] \). Another prominent example of \(t \)-symmetric random variables is that of independent, or indeed \(t \)-wise independent, identically distributed r.v.’s (and indeed, it is easy to see that \(t \)-symmetry for \(t \geq 2 \) require that the random variables be identically distributed). Moreover, for intuition, one can note that for \(\Omega = \{0, 1\} \), the definition amounts to asking that the expectation \(E[\prod_{s=1}^{t} Y_{i_s}] \) depends only on the multiplicities of the multiset \(\{i_1, i_2, \ldots, i_t\} \).

Theorem A.6 (Probability Perturbation Hashing). Suppose \(2 \leq L < k \) is an integer dividing \(k \), and fix any vector \(\delta \in \mathbb{R}^k \) such that \(\sum_{i \in [k]} \delta_i = 0 \). Let random variables \(Y_1, \ldots, Y_k \) be \(4 \)-symmetric r.v.’s. Define \(Z = (Z_1, \ldots, Z_L) \in \mathbb{R}^L \) as

\[
Z_r := \sum_{i=1}^{k} \delta_i \mathbbm{1}_{\{Y_i = r\}}, \quad r \in [L].
\]

Then, for every \(\alpha \in [0, 1/2) \),

\[
\Pr \left[\Pr[Y_1 \neq Y_2] - 4\sqrt{2\alpha} \leq \frac{\|Z\|_2^2}{\|\delta\|_2^2} \leq \frac{1}{1 - 2\alpha} \Pr[Y_1 \neq Y_2] \right] \geq \alpha.
\]

Proof of Theorem A.6. The gist of the proof is to consider a suitable non-negative random variable (namely, \(\|Z\|_2^2 \)) and bound its expectation and second moment in order to apply the Paley–Zygmund inequality to argue about anticoncentration around the mean. The difficulty, however, lies in the fact that bounding the moments of \(\|Z\|_2 \) involves handling the products of correlated \(L \)-valued random variables \(Y_i \)'s, which is technical even for the case \(L = 2 \) considered in [2]. For ease of presentation, we have divided the argument into smaller results.

In what follows, let random variables \(Y_1, \ldots, Y_k \) be as in the statement. Since they are \(4 \)-symmetric, expectations of the form \(E[f(Y_a, Y_b, Y_c, Y_d)g(Y_a, Y_b, Y_c, Y_d)] \) depend only on the number of times each distinct element appears in the multiset \(\{a, b, c, d\} \). For ease of notation, we introduce the quantities
below, for \(r_1, r_2, r_3 \in [L] \) (not necessarily distinct):\(^{12}\)

\[
\begin{align*}
m_r & := \Pr[Y_1 = r], \\
m_{r_1, r_2} & := \Pr[Y_1 = r_1, Y_2 = r_2], \\
m_{r_1, r_2, r_3} & := \Pr[Y_1 = r_1, Y_2 = r_2, Y_3 = r_3], \\
m_{r_1, r_2, r_3, r_4} & := \Pr[Y_1 = r_1, Y_2 = r_2, Y_3 = r_3, Y_4 = r_4].
\end{align*}
\]

With this notation at our disposal, we are ready to proceed with the proof.

Lemma A.7 (Each part has the right expectation). For every \(r \in [L] \),

\[
\mathbb{E}[Z_r] = 0.
\]

Proof. By linearity of expectation, for every \(r \), \(\mathbb{E}[Z_r] = \sum_{i=1}^{k} \delta_i \mathbb{E}[\mathbbm{1}_{\{Y_i = r\}}] = m_r \cdot \sum_{i=1}^{k} \delta_i = 0. \)

Lemma A.8 (The \(\ell_2^2 \) distance has the right expectation). For every \(r \in [L] \),

\[
\text{Var } Z_r = \mathbb{E}[Z_r^2] = (m_r - m_{r,r}) \| \delta \|_2^2.
\]

In particular, the expected squared \(\ell_2 \) norm of \(Z \) is

\[
\mathbb{E}\left[\| Z \|_2^2\right] = \mathbb{E}\left[\sum_{r=1}^{L} Z_r^2\right] = \left(1 - \sum_{r=1}^{L} m_{r,r}\right) \| \delta \|_2^2 = \Pr[Y_1 \neq Y_2] \cdot \| \delta \|_2^2.
\]

Proof. For a fixed \(r \in [L] \), using the definition of \(Z \), the fact that \(\sum_{i=1}^{k} \mathbbm{1}_{\{Y_i = r\}} = \frac{k}{L} \), and Lemma A.7, we get that

\[
\text{Var } Z_r = \mathbb{E}[Z_r^2] = \mathbb{E}\left[\left(\sum_{i=1}^{k} \delta_i \mathbbm{1}_{\{Y_i = r\}}\right)^2\right] = \sum_{1 \leq i, j \leq k} \delta_i \delta_j \mathbb{E}[\mathbbm{1}_{\{Y_i = r\}} \mathbbm{1}_{\{Y_j = r\}}]
\]

\[
= \sum_{i=1}^{k} \delta_i^2 \mathbb{E}[\mathbbm{1}_{\{Y_i = r\}}] + 2 \sum_{1 \leq i < j \leq k} \delta_i \delta_j \mathbb{E}[\mathbbm{1}_{\{Y_i = r\}} \mathbbm{1}_{\{Y_j = r\}}]
\]

\[
= m_r \sum_{i=1}^{k} \delta_i^2 + m_{r,r} \cdot 2 \sum_{1 \leq i < j \leq k} \delta_i \delta_j
\]

\[
= m_r \sum_{i=1}^{k} \delta_i^2 + m_{r,r} \left(\sum_{i=1}^{k} \delta_i \right)^2 - m_{r,r} \sum_{i=1}^{k} \delta_i^2
\]

\[
= (m_r - m_{r,r}) \| \delta \|_2^2.
\]

The conclusion follows noting that \(\sum_{r=1}^{L} m_r = 1, \sum_{r=1}^{L} m_{r,r} = \Pr[Y_1 = Y_2]. \)

\(^{12}\)We assume throughout that \(k \geq 4 \). This is without loss of generality, as all results in this paper hold trivially for constant \(k \).
It follows from Markov’s inequality that
\[
\Pr \left[\|Z\|_2^2 \leq \frac{1}{1 - 2\alpha} \Pr[Y_1 \neq Y_2] \cdot \|\delta\|_2^2 \right] \geq 2\alpha. \tag{8}
\]
For the lower tail bound, we will derive a bound for \(E[Z^4] \) and invoke as discussed above the Paley–Zygmund inequality. Note that the lower bound trivially holds whenever \(\alpha > \frac{1}{32} \Pr[Y_1 \neq Y_2]^2 \); thus, we hereafter assume \(0 \leq \alpha \leq \frac{1}{32} \Pr[Y_1 \neq Y_2]^2 \). We have:

Lemma A.9 (The \(\ell_2^2 \) distance has the required second moment). *There exists an absolute constant \(C > 0 \) such that*
\[
E\left[\|Z\|_2^4\right] \leq C\|\delta\|_2^4.
\]
Moreover, one can take \(C = 16 \).

Proof of Lemma A.9. Expanding the square, we have
\[
E\left[\|Z\|_2^4\right] = E\left[\left(\sum_{r=1}^{L} Z_r^2\right)^2\right] = \sum_{r=1}^{L} E[Z_r^4] + 2 \sum_{r < r'} E[Z_r^2 Z_{r'}^2] \tag{9}
\]
We will bound both terms separately. For the first term, we have the next bound, analogous to [2, Equation (21)].

Claim A.10. *For every \(r \in [L] \),
\[
E[Z_r^4] \leq 12m_r\|\delta\|_2^4,
\]
and therefore
\[
\sum_{r=1}^{L} E[Z_r^4] \leq 12\|\delta\|_2^4.
\]

Proof. We will mimic the proof of Lemma A.8. We first rewrite
\[
E[Z_r^4] = E\left[\left(\sum_{i=1}^{k} \delta_i \mathbb{1}_{\{Y_i = r\}}\right)^4\right] = \sum_{1 \leq a, b, c, d \leq k} \delta_a \delta_b \delta_c \delta_d E\left[\mathbb{1}_{\{Y_a = r\}} \mathbb{1}_{\{Y_b = r\}} \mathbb{1}_{\{Y_c = r\}} \mathbb{1}_{\{Y_d = r\}}\right].
\]
Using symmetry once again, since every term \(E\left[\mathbb{1}_{\{Y_a = r\}} \mathbb{1}_{\{Y_b = r\}} \mathbb{1}_{\{Y_c = r\}} \mathbb{1}_{\{Y_d = r\}}\right] \) depends only on the number of distinct elements in the multiset \(\{a, b, c, d\} \), it will be equal to one of \(m_r, m_{r,r}, m_{r,r,r}, \) or \(m_{r,r,r,r} \), and it suffices to keep track of the contribution of each of these four types of terms. From this, letting \(\Sigma_s := \sum_{\{a, b, c, d\} = \{s\}} \delta_a \delta_b \delta_c \delta_d \) for \(s \in [4] \), we get that
\[
E[Z_r^4] = m_r \Sigma_1 + m_{r,r} \Sigma_2 + m_{r,r,r} \Sigma_3 + m_{r,r,r,r} \Sigma_4. \tag{10}
\]
We will rely on the following technical result.
Fact A.11. For $\Sigma_1, \Sigma_2, \Sigma_3, \text{and} \Sigma_4$ defined as above, we have

$$
\begin{align*}
\Sigma_1 &= \|\delta\|_4^4 \\
\Sigma_2 &= 3\|\delta\|_2^2 - 7\|\delta\|_4^4 \\
\Sigma_3 &= 12\|\delta\|_4^4 - 6\|\delta\|_2^2 \\
\Sigma_4 &= -(\Sigma_1 + \Sigma_2 + \Sigma_3) = 3\|\delta\|_2^2 - 6\|\delta\|_4^4.
\end{align*}
$$

Proof of Fact A.11. We start by showing the last equality: “hiding zero,” we get

$$0 = \left(\sum_{i=1}^{k} \delta_i^4 \right)^4 = \sum_{1\leq a,b,c,d \leq k} \delta_a\delta_b\delta_c\delta_d = \Sigma_1 + \Sigma_2 + \Sigma_3 + \Sigma_4.$$

thus it is enough to establish the stated expressions for $\Sigma_1, \Sigma_2, \Sigma_3$. The first equality is a direct consequence of the definition $\Sigma_1 = \sum_{i=1}^{k} \delta_i^4 = \|\delta\|_4^4$; as for the second, we can derive it from

$$\begin{align*}
\Sigma_2 &= \sum_{1\leq a,b,c,d \leq k} \delta_a\delta_b\delta_c\delta_d = 6\sum_{i<j} \delta_i^2\delta_j^2 + 4\sum_{i<j} (\delta_i\delta_j^3 + \delta_i^3\delta_j) \\
&= 3 \left(\left(\sum_{i=1}^{k} \delta_i^2 \right)^2 - \sum_{i=1}^{k} \delta_i^4 \right) + 4\sum_{i<j} (\delta_i\delta_j^3 + \delta_i^3\delta_j) \\
&= 3\|\delta\|_2^4 - 3\|\delta\|_4^4 + 4\sum_{i<j} (\delta_i\delta_j^3 + \delta_i^3\delta_j) = 3\|\delta\|_2^4 - 7\|\delta\|_4^4,
\end{align*}$$

where the last equality was obtained by “hiding zero” once more:

$$0 = \sum_{i=1}^{k} \delta_i \sum_{i=1}^{k} \delta_i^3 = \sum_{1\leq i,j \leq k} \delta_i\delta_j^3 = \sum_{i=1}^{k} \delta_i^4 + \sum_{i<j} (\delta_i\delta_j^3 + \delta_i^3\delta_j).$$

Finally, to handle Σ_3, we expand

$$\Sigma_3 = \sum_{1\leq a,b,c,d \leq k} \delta_a\delta_b\delta_c\delta_d = 12 \sum_{a<b<c} (\delta_a^2\delta_b\delta_c + \delta_a\delta_b^2\delta_c + \delta_a\delta_b\delta_c^2)$$

and, once more hiding zero, we leverage the fact that

$$0 = \left(\sum_{i=1}^{k} \delta_i \right)^2 \sum_{i=1}^{k} \delta_i^2 = \sum_{i=1}^{k} \delta_i^4 + 2\sum_{i<j} \delta_i^2\delta_j^2 + 2\sum_{i<j} (\delta_i\delta_j^3 + \delta_i^3\delta_j) + 2\sum_{a<b<c} (\delta_a^2\delta_b\delta_c + \delta_a\delta_b^2\delta_c + \delta_a\delta_b\delta_c^2)$$

i.e.,

$$2 \sum_{a<b<c} (\delta_a^2\delta_b\delta_c + \delta_a\delta_b^2\delta_c + \delta_a\delta_b\delta_c^2) = -\left(\|\delta\|_4^4 + \left(\|\delta\|_2^4 - \|\delta\|_4^4 \right) - 2\|\delta\|_4^4 \right) = 2\|\delta\|_4^4 - \|\delta\|_2^4.$$

This leads to $\Sigma_3 = 12\|\delta\|_4^4 - 6\|\delta\|_2^4$. \qed
Combining (10) with the above fact, we get
\[
\mathbb{E}[Z_r^4] = (m_r - 7m_{r,r} + 12m_{r,r,r} + 6m_{r,r,r,r})\|\delta\|^4_4 + 3(m_{r,r} - 2m_{r,r} + m_{r,r,r,r})\|\delta\|^4_2
\leq (m_r + 5m_{r,r} + 6m_{r,r,r})\|\delta\|^4_4 + 3(m_{r,r} - m_{r,r,r})\|\delta\|^4_2
\leq (m_r + 3m_{r,r} + 2m_{r,r} + 6m_{r,r,r})\|\delta\|^4_2
\leq 12m_r\|\delta\|^4_2.
\]
leveraging the inequalities \(\|\delta\|_2 \leq \|\delta\|_4\) and \(m_{r,r,r} \leq m_{r,r} \leq m_{r,r} \leq m_r\).

However, we need additional work to handle the second term comprising roughly \(L^2\) summands. In particular, to complete the proof we show that each summand in the second term is less than a constant factor times \(m_{r,r'}\|\delta\|_2\).

Claim A.12. We have
\[
\sum_{r<r'} \mathbb{E}[Z_r^2Z_{r'}^2] \leq 2 \Pr[Y_1 \neq Y_2] \cdot \|\delta\|^4_2.
\]

Proof. Fix any \(r \neq r'\). As before, we expand
\[
\mathbb{E}[Z_r^2Z_{r'}^2] = \mathbb{E}\left[\left(\sum_{i=1}^k \delta_i \mathbbm{1}_{\{Y_i=r\}}\right)^2 \left(\sum_{i=1}^k \delta_i \mathbbm{1}_{\{Y_i=r'\}}\right)^2\right]
= \sum_{1 \leq a,b,c,d \leq k} \delta_a \delta_b \delta_c \delta_d \mathbb{E}\left[\mathbbm{1}_{\{Y_a=r\}} \mathbbm{1}_{\{Y_b=r\}} \mathbbm{1}_{\{Y_c=r'\}} \mathbbm{1}_{\{Y_d=r'\}}\right].
\]
We will use 4-symmetry once again to handle the terms \(\mathbb{E}[\mathbbm{1}_{\{Y_a=r\}} \mathbbm{1}_{\{Y_b=r\}} \mathbbm{1}_{\{Y_c=r'\}} \mathbbm{1}_{\{Y_d=r'\}}]\). The key observation here is that if \(\{a, b\} \cap \{c, d\} \neq \emptyset\), then \(\mathbbm{1}_{\{Y_a=r\}} \mathbbm{1}_{\{Y_b=r\}} \mathbbm{1}_{\{Y_c=r'\}} \mathbbm{1}_{\{Y_d=r'\}} = 0\). This will be crucial as it implies that the expected value can only be non-zero if \(|\{a, b, c, d\}| \geq 2\), yielding an \(m_{r,r'}\) dependence for the leading term in place of \(m_r\).

\[
\mathbb{E}[Z_r^2Z_{r'}^2] = \sum_{|\{a,b,c,d\}|=2} \delta_a \delta_b \delta_c \delta_d \mathbb{E}\left[\mathbbm{1}_{\{Y_a=r\}} \mathbbm{1}_{\{Y_b=r\}}\right] + \sum_{|\{a,b,c,d\}|=3} \delta_a \delta_b \delta_c \mathbb{E}\left[\mathbbm{1}_{\{Y_a=r\}} \mathbbm{1}_{\{Y_b=r\}} \mathbbm{1}_{\{Y_c=r'\}}\right] + \sum_{|\{a,b,c,d\}|=3} \delta_a \delta_b \delta_c \mathbb{E}\left[\mathbbm{1}_{\{Y_a=r\}} \mathbbm{1}_{\{Y_b=r\}} \mathbbm{1}_{\{Y_c=r'\}}\right] + \sum_{|\{a,b,c,d\}|=4} \delta_a \delta_b \delta_c \mathbb{E}\left[\mathbbm{1}_{\{Y_a=r\}} \mathbbm{1}_{\{Y_b=r\}} \mathbbm{1}_{\{Y_c=r'\}} \mathbbm{1}_{\{Y_d=r'\}}\right]. \quad (11)
\]

The first term, which we will show dominates, can be expressed as
\[
\sum_{|\{a,b,c,d\}|=2} \delta_a \delta_b \delta_c \delta_d \mathbb{E}\left[\mathbbm{1}_{\{Y_a=r\}} \mathbbm{1}_{\{Y_b=r\}}\right] = m_{r,r'}\|\delta\|^4_2.
\]
For the second and the third terms, noting that
\[
\sum_{\{a,b,c,d\}=3} \delta_a^2 \delta_b \delta_c = \sum_{1 \leq a,b,c \leq k} \delta_a^2 \delta_b \delta_c - \sum_{a \neq b} \delta_a^2 \delta_b - 2 \sum_{a \neq b} \delta_a^2 \delta_b
\]
with \(\sum_{1 \leq a,b,c \leq k} \delta_a^2 \delta_b \delta_c = \left(\sum_{a=1}^k \delta_a^2 \right) \left(\sum_{a=1}^k \delta_a \right)^2 = 0\), \(\sum_{a \neq b} \delta_a^2 \delta_b \delta_c \leq \sum_{1 \leq a,b \leq k} \delta_a^2 \delta_b^2 = \|\delta\|_2^4\), and \(\sum_{a \neq b} \delta_a^3 \delta_b \leq \sum_{1 \leq a \leq k} \delta_a^3 \|\delta\|_3 \leq \|\delta\|_2^4\), we get
\[
-m_{r,r',r'} \|\delta\|_2^4 \leq \sum_{\{a,b,c,d\}=3} \delta_a^2 \delta_b \delta_c \mathbb{E} \left[\mathbb{I}_{\{Y_1=r\}} \mathbb{I}_{\{Y_2=r'\}} \mathbb{I}_{\{Y_3=r'\}} \right] \leq m_{r,r',r'} \|\delta\|_2^4.
\]
Finally, similar manipulations yield
\[
-m_{r,r',r'} \|\delta\|_2^4 \leq \sum_{\{a,b,c,d\}=4} \delta_a \delta_b \delta_c \delta_d \mathbb{E} \left[\mathbb{I}_{\{Y_1=r\}} \mathbb{I}_{\{Y_2=r\}} \mathbb{I}_{\{Y_3=r'\}} \mathbb{I}_{\{Y_4=r'\}} \right] \leq m_{r,r',r',r'} \|\delta\|_2^4.
\]
Gathering all this in (11), we get that there exists some absolute constant \(C' > 0\) such that
\[
\sum_{r < r'} \mathbb{E} \left[Z_r^2 Z_{r'}^2 \right] \leq \|\delta\|_2^4 \cdot \sum_{r < r'} \left(m_{r,r'} + m_{r,r',r'} + m_{r,r',r'} + m_{r,r',r',r'} \right)
\]
\[
\leq 2 \|\delta\|_2^4 \cdot 2 \sum_{r < r'} m_{r,r'} = 2 \|\delta\|_2^4 \cdot \left(\sum_{r < r'} m_{r,r'} - \sum_r m_{r,r} \right)
\]
\[
= 2 \|\delta\|_2^4 \cdot (1 - \Pr[Y_1 = Y_2]) = 2 \Pr[Y_1 \neq Y_2] \cdot \|\delta\|_2^4,
\]
where we recalled the definition of \(m_{r,r'} = \Pr[Y_1 = r, Y_2 = r']\) to re-express the sums.

The lemma follows by combining Claims A.10 and A.12.

We are now ready to establish Theorem A.6. By Lemmas A.8 to A.9, we have \(\mathbb{E} \left[\|Z\|_2^2 \right] = \Pr[Y_1 \neq Y_2] \|\delta\|_2^4\)
and \(\mathbb{E} \left[\|Z\|_2^4 \right] \leq 16 \|\delta\|_2^4\). Therefore, by the Payley–Zygmund inequality (Theorem A.4) applied to \(\|Z\|_2^4\),
for every \(\theta \in [0, 1]\),
\[
\Pr \left[\|Z\|_2^2 > \theta \Pr[Y_1 \neq Y_2] \|\delta\|_2^2 \right] \geq (1 - \theta)^2 \frac{\mathbb{E} \left[\|Z\|_2^4 \right]^2}{\mathbb{E} \|Z\|_2^4} \geq (1 - \theta)^2 \frac{\Pr[Y_1 \neq Y_2]^2}{16}.
\]
Choosing
\[
\theta = 1 - \frac{4 \sqrt{2} \alpha}{\Pr[Y_1 \neq Y_2]},
\]
so that the RHS is \(2\alpha\), concludes the proof for the lower tail. The overall theorem follows by a union bound over the upper and lower tail events.

We conclude this appendix by showing how Theorem VI.2 readily follows from Theorem A.6.

Proof of Theorem VI.2. Since the first item is immediate, it suffices to prove the second, which we do now. Recall that the random variables \(Y_1, \ldots, Y_k\) from the statement of Theorem VI.2 are such that each
Y_i is marginally uniform on $[L]$, and $\sum_{i=1}^k \mathbb{1}_{\{Y_i = r\}} = \frac{k}{L}$ for every $r \in [L]$. In particular, Y_1, \ldots, Y_k are 4-symmetric random variables, as we see below:

$$
\Pr[Y_1 \neq Y_2] = 1 - \sum_{r=1}^L \mathbb{E}[\mathbb{1}_{\{Y_1 = r\}} \mathbb{1}_{\{Y_2 = r\}}] = 1 - \frac{1}{L^2} \cdot \frac{k - L}{k - 1} \geq 1 - \frac{1}{L^2} \geq \frac{3}{4}.
$$

Further, a simple computation yields

$$
\mathbb{E}[\mathbb{1}_{\{Y_1 = r\}} \mathbb{1}_{\{Y_2 = r\}}] = \mathbb{E}[\mathbb{E}[\mathbb{1}_{\{Y_1 = r\}} \mathbb{1}_{\{Y_2 = r\}} | \mathbb{1}_{\{Y_2 = r\}}]] = \frac{1}{L} \Pr[Y_1 = r | Y_2 = r]
$$

where the final identity uses symmetry, along with the observation that

$$
\sum_{i=1}^{k-1} \mathbb{E} \left[\mathbb{1}_{\{Y_i = r\}} \mathbb{1}_{\{\sum_{j=1}^{k-1} \mathbb{1}_{\{Y_j = r\}} = \frac{k}{L} - 1\}} \right] = \frac{k}{L} - 1.
$$

Therefore, applying Theorem A.6 for $\alpha := \frac{1}{312} < \frac{\Pr[Y_1 \neq Y_2]^2}{32}$, with $\delta := p - q$, we obtain

$$
\Pr\left[\|\mathbf{p} - \mathbf{q}\|^2_2 \geq \frac{1}{2} \|\mathbf{p} - \mathbf{q}\|^2_2 \right] \geq \alpha,
$$

which yields the desired statement, since by the Cauchy–Schwarz inequality we have $\|\mathbf{p} - \mathbf{q}\|^2_2 > \frac{\delta^2}{k}$ whenever $\ell_1(p, q) > \varepsilon$.

\[\square \]

C. A randomness-efficient variant of Theorem VI.1

In this appendix, we describe how the protocol underlying Theorem VI.1, Algorithm 6, can be modified to reduce the number of shared bits from the $O(k\ell)$ required by Algorithm 6 to only $O(\log k)$.

Theorem A.13. For $1 \leq \ell \lceil \log k \rceil$, there exists an ℓ-bit public-coin (k, ε)-identity testing protocol for $n = O\left(\frac{k}{2^t \varepsilon^2}\right)$ players, using $O(\log k)$ public coins.

Proof. The corresponding protocol is provided in Algorithm 7, and it follows the same structure as Algorithm 6. As discussed in Remark VI.7, the two main differences are in Lines 3 and 5. In the former, we use a random 4-wise independent partition of $[k]$ in L parts, no longer necessarily equal-sized. This allows us to bring down the number of public coins to the stated bound, as guaranteed by the next fact applied with $t = 4$:

Fact A.14. For any $t \geq 2$, $k, \ell \in \mathbb{N}$, there exists a t-wise independent probability space $\Omega \subseteq [2^\ell]^k$ with uniform marginals, and size $|\Omega| = 2^{\ell(t + \lceil \log k \rceil)}$. Moreover, one can efficiently sample from Ω given t, k, ℓ.

Proof. The proof relies on a standard construction of t-wise independent $(1/2^\ell)$-biased random bits via polynomials over an appropriate finite field. Namely, fixing a field \mathbb{F} of size $2^{\ell + \lceil \log k \rceil}$ and an equipartition.
Algorithm 7 A modified, randomness-efficient ℓ-bit public-coin protocol for distributed identity testing for reference distribution \mathbf{q}.

Require: Parameters $\gamma \in (0, 1)$, N, n players observing one sample each from an unknown \mathbf{p}

1. Players use the algorithm in Lemma VI.3 to convert their samples from \mathbf{p} to independent samples $\tilde{X}_1, \ldots, \tilde{X}_n$ from $F_\mathbf{q}(\mathbf{p}) \in \Delta_{5k}$. \triangleright This step uses only private randomness.
2. Partition the players into N blocks of size $m := n/N$.
3. Players in each block use $4(\lceil \log(5k) \rceil + \ell)$ independent public coins to generate (using Fact A.14) k 4-wise independent uniform r.v.’s $Y_1, \ldots, Y_{5k} \in [L]$, which they interpret as a random partition (S_1, \ldots, S_L) of $[k]$ in L parts.
4. Upon observing the sample $\tilde{X}_j = i$ in Line 1, player j sends Y_i (corresponding to its respective block) represented by ℓ bits.
5. **for all** block **do**
 6. The referee obtains n/N independent samples from $(Z_1(\mathbf{p}), \ldots, Z_L(\mathbf{p}))$
 7. Knowing the realization of the public coins, it computes the distribution $\mathbf{q} \in \Delta_L$ corresponding to $(Z_1(\mathbf{q}), \ldots, Z_L(\mathbf{q}))$.
 8. **if** $\|\mathbf{q}\|_2 \leq 2/\sqrt{L}$ **then** it tests if the underlying distribution is \mathbf{q} or (γ/\sqrt{L})-far from \mathbf{q} in ℓ_2, with failure probability $\delta' \leftarrow c/(2 + c)$ where c is as in Theorem VI.2. \triangleright This uses the test from [18], stated in Theorem A.15.
 9. **else** it draws a random $\text{Bern}(1/2)$ and records it as “output of the test” for this block.
10. **end if**
11. **end for**
12. The referee applies the test from Lemma VI.5 to the N outputs of the independent tests (one for each block) and declares the output.

In doing so, a new issue arises when applying the identity tester (in ℓ_2 distance) of Chan et al. [18] in Line 5. Note that we can no longer rely on a centralized uniformity testing algorithm (in ℓ_2 distance), as we did in . This is because the resulting reference distribution defined by $(Z_1(\mathbf{q}), \ldots, Z_L(\mathbf{q}))$ is no longer, in general, the uniform distribution \mathbf{u}_L, but some distribution \mathbf{q} on $[L]$. Observe that this
distribution \(\bar{q} \) is still fully known by the referee, who is aware of both \(q \) and the realization of the shared randomness\(^{13}\) (and therefore of \(Y_1, \ldots, Y_{5k} \)).

To handle this issue, we observe that the testing algorithm in \(\ell_2 \) distance of Chan et al. does provide a guarantee beyond uniformity testing, for the general question of identity testing in \(\ell_2 \) distance. It is, however, a guarantee which degrades with the \(\ell_2 \) norm of the reference distribution (in our case, \(\bar{q} \)).

Theorem A.15 ([18, Proposition 3.1], with the improvement of [22, Lemma II.3]). There exists an algorithm which, given distance parameter \(\varepsilon > 0 \), \(k \in \mathbb{N} \), and \(\beta > 0 \), satisfies the following. Given \(n \) samples from each of two unknown distributions \(q, q' \in \Delta_k \) such that \(\beta \geq \min(\|q\|_2, \|q'\|_2) \), the algorithm distinguishes between the cases that \(q = q' \) and \(\|q - q'\|_2 > \varepsilon \) with probability at least 2/3, as long as \(n \gtrsim \beta/\gamma^2 \).

We note that the contribution from [22, Lemma II.3] is to explain how to replace the condition \(\beta \geq \max(\|q\|_2, \|q'\|_2) \) from [18] by the weaker \(\beta \geq \min(\|q\|_2, \|q'\|_2) \). Further, one can as before amplify the probability of success from 2/3 to any chosen constant, at the price of a constant factor in the sample complexity. We would like to apply this lemma to testing identity to the \(L \)-ary distribution \(\bar{q} \), with distance parameter \(\gamma/\sqrt{L} \) and parameter \(\beta := \|\bar{q}\|_2 \). The desired sample complexity would follow if we had \(\|\bar{q}\|_2 \lesssim 1/\sqrt{L} \), since then we would get

\[
\frac{||\bar{q}||_2}{(\gamma/\sqrt{L})^2} \lesssim \frac{\sqrt{L}}{\gamma^2}.
\]

Of course, we cannot argue that \(||\bar{q}||_2 \lesssim 1/\sqrt{L} \) with probability one over the choice of the random partition. However, since \(F_{\bar{q}}(q) = u_{5k} \), it is a simple exercise to check that, over this choice,

\[
\mathbb{E}[||\bar{q}||_2^2] = 1/(5k) + (5k - 1)/(5kL) \leq 2/L.
\]

Therefore, letting \(c \in (0,1] \) be the constant from Theorem VI.2, we get by Markov’s inequality that \(||\bar{q}||_2 \leq 2/(\sqrt{cL}) \) with probability at least \(1 - c/2 \).

Since we ran, in Line 8, the identity test with probability of failure \(\delta' := c/(2 + c) \), we have the following. When \(p = q \), each block outputs 1 with probability at least

\[
\theta_1 := \frac{1}{2} \cdot \frac{c}{2} + (1 - \delta')(1 - \frac{c}{2}) = 1 - \frac{c}{4} - (1 - \frac{c}{2})\delta' = \frac{c^2 - 2c + 8}{4(c + 2)}
\]

while, when \(p \) is \(\varepsilon \)-far from \(q \), the test for each block outputs 0 with probability greater than

\[
\theta_2 := (1 - \delta')c = \frac{2c}{c + 2}
\]

\(^{13}\)Recall that, in contrast to here, the knowledge of shared randomness by the referee was not used in Algorithm 6.
so that we have indeed \(\theta_1 > 1 - \theta_2 \). We then conclude the proof as that of Theorem VI.1, amplifying the probabilities of success by invoking Lemma VI.5 and choosing a suitable \(N = \Theta(1) \). The total number of public coins used is then at most \(N \cdot 4(\lceil \log(5k) \rceil + \ell) = O(\log k) \), as claimed. \hfill \Box

D. From uniformity to parameterized identity testing

In this appendix, we explain how the existence of a distributed protocol for uniformity testing implies the existence of one for identity testing with roughly the same parameters, and further even implies one for identity testing in the massively parameterized sense\(^{14} \) (“instance-optimal” in the vocabulary of Valiant and Valiant, who introduced it \([43]\)). These two results will be seen as a straightforward consequence of \([27]\), which establishes the former reduction in the standard non-distributed setting; and of \([12]\), which implies that massively parameterized identity testing reduces to “worst-case” identity testing. Specifically, we show the following:

Proposition A.16. Suppose that there exists an \(\ell \)-bit \((k, \varepsilon, \delta) \)-uniformity testing protocol \(\pi \) for \(n(k, \ell, \varepsilon, \delta) \) players. Then there exists an \(\ell \)-bit \((k, \varepsilon, \delta) \)-identity testing protocol \(\pi' \) against any fixed distribution \(q \) (known to all players), for \(n(5k, \ell, \frac{16}{25} \varepsilon, \delta) \) players.

Furthermore, this reduction preserves the setting of randomness (i.e., private-coin protocols are mapped to private-coin protocols).

Proof. We rely on the result of Goldreich \([27]\), which describes a mapping \(F_q : \Delta_{[k]} \to \Delta_{[5k]} \) such that \(F_q(q) = u_{[5k]} \) and \(d_{TV}(F_q(p), u_{[5k]}) > \frac{16}{25} \varepsilon \) for any \(p \in \Delta_{[k]} \) \(\varepsilon \)-far from \(q \).\(^{15} \) In more detail, this mapping proceeds in two stages: the first allows one to assume, at essentially no cost, that the reference distribution \(q \) is “grained,” i.e., such that all probabilities \(q(i) \) are a multiple of \(1/m \) for some \(m \lesssim k \). Then, the second mapping transforms a given \(m \)-grained distribution to the uniform distribution on an alphabet of slightly larger cardinality. The resulting \(F_q \) is the composition of these two mappings.

Moreover, a crucial property of \(F_q \) is that, given the knowledge of \(q \), a sample from \(F_q(p) \) can be efficiently simulated from a sample from \(p \); this implies the proposition. \hfill \Box

\(^{14} \)Massively parameterized setting, a terminology borrowed from property testing, refers here to the fact that the sample complexity depends not only on a single parameter \(k \) but a \(k \)-ary distribution \(q \).

\(^{15} \)In \([27]\), Goldreich exhibits a randomized mapping that converts the problem from testing identity over domain of size \(k \) with proximity parameter \(\varepsilon \) to testing uniformity over a domain of size \(k' := k/\alpha^2 \) with proximity parameter \(\varepsilon' := (1 - \alpha)^2 \varepsilon \), for every fixed choice of \(\alpha \in (0, 1) \). This mapping further preserves the success probability of the tester. Since the resulting uniformity testing problem has sample complexity \(\Theta \left(\sqrt{k'}/\varepsilon'/2 \right) \), the blowup factor \(1/(\alpha(1 - \alpha)^4) \) is minimized by \(\alpha = 1/5 \).
Remark A.17. The result above crucially assumes that every player has explicit knowledge of the reference distribution \(q \) to be tested against, as this knowledge is necessary for them to simulate a sample from \(E_q(p) \) given their sample from the unknown \(p \). If only the referee \(R \) is assumed to know \(q \), then the above reduction does not go through.

The previous reduction enables a distributed test for any identity testing problem using at most, roughly, as many players as that required for distributed uniformity testing. However, we can expect to use fewer players for specific distributions. Indeed, in the standard, non-distributed setting, Valiant and Valiant in [43] study a refined analysis termed the instance-optimal setting and showed that the sample complexity of testing identity to \(q \) is captured roughly by the \(\frac{2}{3} \)-quasinorm of a sub-function of \(q \) obtained as follows: Assuming without loss of generality \(q_1 \geq q_2 \geq \cdots \geq q_k \geq 0 \), let \(t \in [k] \) be the largest integer that \(\sum_{i=t+1}^k q_i \geq \varepsilon \), and let \(q_\varepsilon = (q_2, \ldots, q_t) \) (i.e., removing the largest element and the “tail” of \(q \)).

The main result in [43] shows that the sample complexity of testing identity to \(q \) is upper and lower bounded (up to constants) by \(\max\{\|q_\varepsilon/16\|_{2/3}/\varepsilon^2, 1/\varepsilon\} \) and \(\max\{\|q_\varepsilon\|_{2/3}/\varepsilon^2, 1/\varepsilon\} \), respectively.

However, it is not clear if the aforementioned reduction of Goldreich between identity and uniformity testing preserves this parameterization of sample complexity for identity testing. In particular, the \(\frac{2}{3} \)-quasinorm characterization does not seem to be amenable to the same type of analysis as that underlying Proposition A.16. Interestingly, a different instance-optimal characterization due to Blais, Canonne, and Gur [12] admits such a reduction, enabling us to obtain the analogue of Proposition A.16 for this massively parameterized setting.

To state the result as parameterized by \(q \) (instead of \(k \)), we will need the definition of a new functional, \(\Phi(q, \gamma) \); see [12, Section 6] for a discussion on basic properties of \(\Phi \) and how it relates to notions such as the sparsity of \(p \) and the functional \(\|p_\gamma^{\max}\|_{2/3} \) defined in [43]. For \(a \in \ell_2(\mathbb{N}) \) and \(t \in (0, \infty) \), let

\[
\kappa_a(t) := \inf_{a' + a'' = a} \left(\|a'\|_1 + t \|a''\|_2 \right)
\]

and, for \(q \in \Delta_N \) and any \(\gamma \in (0, 1) \), let

\[
\Phi(q, \gamma) := 2\kappa_q^{-1}(1 - \gamma)^2.
\]

It was observed in [12] that if \(q \) is supported on at most \(k \) elements, \(\Phi(q, \gamma) \leq 2k \) for all \(\gamma \in (0, 1) \). Moreover, the sample complexity of testing identity to \(q \) was shown there to be upper and lower bounded (again up to constants) by \(\max\{\Phi(q, \varepsilon/9)/\varepsilon^2, 1/\varepsilon\} \) and \(\Phi(q, 2\varepsilon)/\varepsilon \), respectively. We are now in a position to state our general reduction.
Proposition A.18. Suppose that there exists an ℓ-bit (k, ε, δ)-uniformity testing protocol π for $n(k, \ell, \varepsilon, \delta)$ players. Then there exists an ℓ-bit (k, ε, δ)-identity testing protocol π' for any fixed reference distribution q (known to all players), for $n(5\Phi(q, \varepsilon/9) + 1, \ell, \varepsilon/3, \delta)$ players.

Further, this reduction preserves the setting of randomness (i.e., private-coin protocols are mapped to private-coin protocols).

Proof. This strengthening of Proposition A.16 stems from the algorithm for identity testing given in [12], which at a high-level reduces testing identity to q of an (unknown) distribution p to testing identity of $p|_{S_q(\varepsilon)}$ of $q|_{S_q(\varepsilon)}$, where $S_q(\varepsilon)$ is the $(\varepsilon/3)$-effective support16 of q; along with checking that p also only puts probability mass roughly $\varepsilon/3$ outside of $S_q(\varepsilon)$. The key result of [12] relates this effective support to the functional Φ defined above. They show (see [12, Section 7.2]) that for all $q \in \Delta_k$ and $\varepsilon \in (0, 1]$,

$$|S_q(\varepsilon)| \leq \Phi\left(q, \frac{\varepsilon}{9}\right).$$

(12)

See Fig. 2 for an illustration.

Fig. 2. The reference distribution q (in blue; assumed non-increasing without loss of generality) and the unknown distribution p (in red). By the reduction above, testing equality of p to q is tantamount to (i) determining $S_q(\varepsilon)$, which depends only on q; (ii) testing identity for the conditional distributions of p and q given $S_q(\varepsilon)$, and (iii) testing that p assigns at most $O(\varepsilon)$ probability mass to the complement of $S_q(\varepsilon)$.

The protocol π' then works as follows:

16Recall the ε-effective support of a distribution q is a minimal set of elements accounting for at least $1 - \varepsilon$ probability mass of q.

DRAFT
1) Given their knowledge of \(q \) and \(\varepsilon \), all players (and the referee) compute \(S := S_q(\varepsilon) \). Consider the following mapping \(G_q : \Delta[k] \to \Delta_{S \cup \{\perp\}} \). For any \(p' \in \Delta[k] \),

\[
G_q(p')(x) = \begin{cases}
p'(x), & \text{if } x \in S, \\
p'([k] \setminus [S]), & \text{if } x = \perp.
\end{cases}
\]

Note that all players have full knowledge of \(\tilde{q} := G_q(q) \). Further, each player, given their sample from the (unknown) \(p \), can straightforwardly obtain a sample from \(\tilde{p} := G_q(p) \).

2) All players (and the referee) compute \(k' := 5(|S| + 1) \), and the mapping \(F_q : \Delta_{S \cup \{\perp\}} \to \Delta_{k'} \) (as in the proof of Proposition A.16). From properties of \(F_q \) described in the proof of Proposition A.16, \(F_q(\tilde{q}) = u_{k'} \).

3) Each player converts their sample from the (unknown) distribution \(\tilde{p} \) into a sample from the (unknown) distribution \(F_q(\tilde{p}) \). (Recall that this is possible given the knowledge of \(\tilde{q} \), as stated in the proof of Proposition A.16.)

4) The players and the referee execute the purported \(\ell\)-bit uniformity testing protocol \(\pi \) on their samples from \(F_q(\tilde{p}) \), with parameters \((k', \varepsilon/3, \delta)\). The output of \(\pi' \) is then that of \(\pi \).

If \(p = q \), then \(\tilde{p} = \tilde{q} \) and thus \(F_q(\tilde{p}) = F_q(\tilde{q}) = u_{k'} \), so that the protocol \(\pi \) returns 1 with probability at least \(1 - \delta \). On the other hand, if \(d_{TV}(p, q) > \varepsilon \), then

\[
2d_{TV}(\tilde{p}, \tilde{q}) = \sum_{x \in S} |p(x) - q(x)| + |p(\bar{S}) - q(\bar{S})| = 2d_{TV}(p, q) - \sum_{x \in S} |p(x) - q(x)| + |p(\bar{S}) - q(\bar{S})|
\]

\[
\geq 2d_{TV}(p, q) - (p(\bar{S}) + q(\bar{S})) + |p(\bar{S}) - q(\bar{S})| = 2d_{TV}(p, q) - 2 \min(p(\bar{S}), q(\bar{S}))
\]

\[
> 2 \varepsilon - 2 \cdot \frac{\varepsilon}{3} = \frac{4}{3} \varepsilon
\]

i.e., \(d_{TV}(\tilde{p}, \tilde{q}) > 2\varepsilon/3 \). Recalling the guarantee of Goldreich’s reduction (as described in the proof of Proposition A.16), this in turns implies that \(d_{TV}(F_q(\tilde{p}), u_{k'}) \geq (16/25) \cdot 2\varepsilon/3 > \varepsilon/3 \), and therefore the protocol \(\pi \) must return 0 with probability at least \(1 - \delta \).

To conclude, in view of (12), the number of players required by \(\pi' \) is

\[
n(k', \ell, \varepsilon/3, \delta) = n(5(|S_q(\varepsilon)| + 1), \ell, \varepsilon/3, \delta) \leq n(5(\Phi(q, \varepsilon/9) + 1), \ell, \varepsilon/3, \delta),
\]

as claimed.

\(\square \)
REFERENCES

[1] J. Acharya, C. L. Canonne, C. Freitag, and H. Tyagi, “Inference under information constraints III: Local privacy constraints,” 2019, in preparation. Preprint available at arXiv:abs/1808.02174. I-D, 3

[2] ——, “Test without trust: Optimal locally private distribution testing,” in Proceedings of the 22nd International Conference on Artificial Intelligence and Statistics (AISTATS’19), 2019, to appear. Full version available on arXiv (abs/1808.02174).

[3] J. Acharya, C. L. Canonne, and H. Tyagi, “Inference under information constraints I: Lower bounds from chi-square contraction,” 2018, in submission. Preprint available at arXiv:abs/1812.11476. I, I-A, I-B0a, I-D, III-C0b, V.4, V-C, VI

[4] J. Acharya, C. Daskalakis, and G. C. Kamath, “Optimal Testing for Properties of Distributions,” in Advances in Neural Information Processing Systems 28, C. Cortes, N. Lawrence, D. Lee, M. Sugiyama, R. Garnett, and R. Garnett, Eds. Curran Associates, Inc., 2015, pp. 3577–3598. I-C

[5] J. Acharya, Z. Sun, and H. Zhang, “Hadamard response: Estimating distributions privately, efficiently, and with little communication,” ArXiV, vol. abs/1802.04705, 2018. I-C

[6] R. Ahlswede and I. Csiszár, “Hypothesis testing with communication constraints,” IEEE Transactions on Information Theory, vol. 32, no. 4, pp. 533–542, July 1986. I-C

[7] N. Alon and S. Lovett, “Almost k-wise vs. k-wise independent permutations, and uniformity for general group actions,” Theory of Computing, vol. 9, pp. 559–577, 2013. VI.7

[8] S. Balakrishnan and L. Wasserman, “Hypothesis testing for high-dimensional multinomials: A selective review,” The Annals of Applied Statistics, vol. 12, no. 2, pp. 727–749, 2018. [Online]. Available: https://doi.org/10.1214/18-AOAS1155SF I-C

[9] M. Balcan, A. Blum, S. Fine, and Y. Mansour, “Distributed learning, communication complexity and privacy,” in Proceedings of the 25th Conference on Learning Theory, COLT 2012, ser. JMLR Proceedings, vol. 23. JMLR.org, 2012, pp. 26.1–26.22. I-C

[10] T. Batu, E. Fischer, L. Fortnow, R. Kumar, R. Rubinfeld, and P. White, “Testing random variables for independence and identity,” in 42nd Annual Symposium on Foundations of Computer Science, FOCS 2001, 2001, pp. 442–451. I-C

[11] M. Bavarian, B. Ghazi, E. Haramaty, P. Kamath, R. L. Rivest, and M. Sudan, “The optimality of correlated sampling,” ArXiV, vol. abs/1612.01041, 2016. I-C

[12] E. Blais, C. L. Canonne, and T. Gur, “Distribution testing lower bounds via reductions from communication complexity,” in Computational Complexity Conference, ser. LIPIcs, vol. 79. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 2017, pp. 28:1–28:40. I-C, 4, D, D, D, D

[13] S. P. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein, “Distributed optimization and statistical learning via the alternating direction method of multipliers,” Foundations and Trends in Machine Learning, vol. 3, no. 1, pp. 1–122, 2011. I-C

[14] M. Braverman, A. Garg, T. Ma, H. L. Nguyen, and D. P. Woodruff, “Communication lower bounds for statistical estimation problems via a distributed data processing inequality,” in Symposium on Theory of Computing Conference, STOC’16. ACM, 2016, pp. 1011–1020. I-C

[15] A. Z. Broder, “On the resemblance and containment of documents,” in Compression and Complexity of Sequences 1997. Proceedings. IEEE, 1997, pp. 21–29. I-C

[16] C. L. Canonne, “A Survey on Distribution Testing: your data is Big. But is it Blue?” Electronic Colloquium on Computational Complexity (ECCC), vol. 22, p. 63, Apr. 2015. I-C
[17] C. L. Canonne, I. Diakonikolas, T. Gouleakis, and R. Rubinfeld, “Testing shape restrictions of discrete distributions,” Theory of Computing Systems, pp. 1–59, 2017. [Online]. Available: http://dx.doi.org/10.1007/s00224-017-9785-6 VI, 5, VI

[18] S. Chan, I. Diakonikolas, G. Valiant, and P. Valiant, “Optimal algorithms for testing closeness of discrete distributions,” in Proceedings of SODA, 2014, pp. 1193–1203. VI, 5, VI, 8, C, A.15, C

[19] A. De, E. Mossel, and J. Neeman, “Non interactive simulation of correlated distributions is decidable,” in Proceedings of SODA. SIAM, 2018, pp. 2728–2746. I-C

[20] I. Diakonikolas, T. Gouleakis, J. Peebles, and E. Price, “Sample-optimal identity testing with high probability,” Electronic Colloquium on Computational Complexity (ECCC), vol. 24, p. 133, 2017. I-C, III-C0b, V-B

[21] I. Diakonikolas, E. Grigorescu, J. Li, A. Natarajan, K. Onak, and L. Schmidt, “Communication-efficient distributed learning of discrete distributions,” in Advances in Neural Information Processing Systems 30, 2017, pp. 6394–6404. I-C

[22] I. Diakonikolas and D. M. Kane, “A new approach for testing properties of discrete distributions,” in 57th Annual IEEE Symposium on Foundations of Computer Science, FOCS 2016. IEEE Computer Society, 2016. I-C, A.15, C

[23] J. C. Duchi, M. I. Jordan, and M. J. Wainwright, “Local privacy and statistical minimax rates,” in 54th Annual IEEE Symposium on Foundations of Computer Science, FOCS 2013. IEEE Computer Society, 2013, pp. 429–438. I-C

[24] P. Gács and J. Körner, “Common information is far less than mutual information,” Problems of Control and Information Theory, vol. 2, no. 2, pp. 149–162, 1973. I-C

[25] A. Garg, T. Ma, and H. L. Nguyen, “On communication cost of distributed statistical estimation and dimensionality,” in Advances in Neural Information Processing Systems 27, 2014, pp. 2726–2734. I-C

[26] O. Goldreich and D. Ron, “On testing expansion in bounded-degree graphs,” Electronic Colloquium on Computational Complexity (ECCC), Tech. Rep. TR00-020, 2000. I-C

[27] T. S. Han, “Hypothesis testing with multiterminal data compression,” IEEE Transactions on Information Theory, vol. 33, no. 6, pp. 759–772, November 1987. I-C

[28] T. S. Han and S.-I. Amari, “Statistical inference under multiterminal data compression,” IEEE Transactions on Information Theory, vol. 44, no. 6, pp. 2300–2324, October 1998. I-C

[29] T. Holenstein, “Parallel repetition: simplifications and the no-signaling case,” in Proceedings of the thirty-ninth annual ACM symposium on Theory of computing. ACM, 2007, pp. 411–419. I-C

[30] D. Huang and S. Meyn, “Generalized error exponents for small sample universal hypothesis testing,” IEEE Transactions on Information Theory, vol. 59, no. 12, pp. 8157–8181, 2013. III-C0b, V-B

[31] S. Kamath and V. Anantharam, “Non-interactive simulation of joint distributions: The Hirschfeld-Gebelein-Rényi maximal
correlation and the hypercontractivity ribbon,” in *Communication, Control, and Computing (Allerton), 2012 50th Annual Allerton Conference on*. IEEE, 2012, pp. 1057–1064. I-C

[36] E. Kaplan, M. Naor, and O. Reingold, “Derandomized constructions of k-wise (almost) independent permutations,” *Algorithmica*, vol. 55, no. 1, pp. 113–133, 2009. VI.7

[37] J. Kleinberg and E. Tardos, “Approximation algorithms for classification problems with pairwise relationships: Metric labeling and Markov random fields,” *Journal of the ACM (JACM)*, vol. 49, no. 5, pp. 616–639, 2002. I-C

[38] E. Kushilevitz and N. Nisan, *Communication Complexity*. New York, NY, USA: Cambridge University Press, 1997. IV-A

[39] L. Paninski, “A coincidence-based test for uniformity given very sparsely sampled discrete data,” *IEEE Transactions on Information Theory*, vol. 54, no. 10, pp. 4750–4755, 2008. I-C, III-C0b

[40] R. Rubinfeld, “Taming big probability distributions,” *XRDS: Crossroads, The ACM Magazine for Students*, vol. 19, no. 1, p. 24, sep 2012. [Online]. Available: http://dx.doi.org/10.1145/2331042.2331052 I-C

[41] O. Shamir, “Fundamental limits of online and distributed algorithms for statistical learning and estimation,” in *Advances in Neural Information Processing Systems 27*, 2014, pp. 163–171. I-C

[42] G. Valiant and P. Valiant, “An automatic inequality prover and instance optimal identity testing,” in *55th Annual IEEE Symposium on Foundations of Computer Science, FOCS 2014*, 2014. 44

[43] ———, “An automatic inequality prover and instance optimal identity testing,” *SIAM Journal on Computing*, vol. 46, no. 1, pp. 429–455, 2017. I-C, 4, VI.8, D, D

[44] ———, “An automatic inequality prover and instance optimal identity testing,” *SIAM Journal on Computing*, vol. 46, no. 1, pp. 429–455, 2017, journal version of [42]. III-C0b

[45] T. Watson, “Communication complexity of statistical distance,” *TOCT*, vol. 10, no. 1, pp. 2:1–2:11, 2018. I-C

[46] A. Wyner, “The common information of two dependent random variables,” *IEEE Transactions on Information Theory*, vol. 21, no. 2, pp. 163–179, 1975. I-C

[47] A. Xu and M. Raginsky, “Information-theoretic lower bounds on Bayes risk in decentralized estimation,” *IEEE Transactions on Information Theory*, vol. 63, no. 3, pp. 1580–1600, 2017. I-C

[48] Y. Zhang, J. Duchi, M. I. Jordan, and M. J. Wainwright, “Information-theoretic lower bounds for distributed statistical estimation with communication constraints,” in *Advances in Neural Information Processing Systems 26*, 2013, pp. 2328–2336. I-C