Constraints on the Northwestern Atlantic Deep Water Circulation From $^{231}\text{Pa}/^{230}\text{Th}$ During the Last 30,000 Years

Finn Süfke1, Frerk Pöppelmeier1, Tyler Jay Goepfert2, Marcel Regelous3, Andreas Koutsodendris1, Patrick Blaser1, Marcus Gutjahr2, and Jörg Lippold1

1Institute of Earth Sciences, Heidelberg University, Heidelberg, Germany, 2GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, Germany, 3GeoZentrum Nordbayern, FAU Erlangen-Nürnberg, Erlangen, Germany

Abstract: Global climatic changes during the last glacial and deglacial have been related to variations of the Atlantic Meridional Overturning Circulation (AMOC). Here, we present new and refined $^{231}\text{Pa}/^{230}\text{Th}$ down-core profiles extending back to 30 ka BP from the northwestern Atlantic along the Atlantic Deep Western Boundary Current, which is the main component of the southward deep backflow of the AMOC. Besides the well-known Bermuda Rise records, available high-resolution $^{231}\text{Pa}/^{230}\text{Th}$ data in the northwestern Atlantic are still sparse. Our new records along with reconstructions of deep water provenance from Nd isotopes constrain the timing and magnitude of past changes in AMOC from an additional northwestern Atlantic region forming a depth transect between 3,000- and 4,760-m water depth. Our extended and improved data set confirms the weakening of the AMOC during deglacial cold spells such as Heinrich Event 1 and the Younger Dryas interrupted by a reinvigoration during the Belling-Allerød interstadial as seen in the prominent $^{231}\text{Pa}/^{230}\text{Th}$ records from the Bermuda Rise. However, in contrast to the Bermuda Rise records, we find a clearly reduced circulation strength during the Last Glacial Maximum in the deep Atlantic.

1. Introduction

Deep water formation in and around the North Atlantic represents an important feature of Earth’s climate system, since it redistributes water masses between the surface and the deep ocean as well as between the Northern Hemisphere and the Southern Hemisphere. Accordingly, reconstructions of the Atlantic Meridional Overturning Circulation (AMOC) by means of various proxies and methods have been carried out extensively in the last decades in order to determine its behavior under very different past climatic boundary conditions (e.g., Curry & Oppo, 2005; Lynch-Stieglitz, 2017; McManus et al., 2004). Today, the majority of the deep western Atlantic basin is occupied by North Atlantic Deep Water (NADW), which is transported southward primarily by the Atlantic Deep Western Boundary Current (DWBC) (Figure 1; Johnson, 2008; Rhein et al., 2015). NADW is underlain by southern-sourced water (SSW), which reaches into the deep North Atlantic up to 40°N (Johnson, 2008). The modern distribution of these water masses is clearly reflected by nutrient concentrations such as phosphate (García et al., 2014) or physical properties such as salinity and potential temperature (Broecker et al., 1985; Locarnini et al., 2013; Zweng et al., 2013). The distribution of these water masses changed on millennial scales and has been reconstructed with nutrient-based proxies such as $\delta^{13}\text{C}$ and Cd/Ca (e.g., Curry & Oppo, 2005; Keigwin, 2004; Oppo et al., 2018). An alternative approach for the identification of different water masses is the radiogenic neodymium isotope proxy (denoted as eNd). Neodymium isotopes are extracted from the authigenic phases of bulk sediments, foraminifera, or fish teeth on which ideally the water mass Nd isotopic signature has been imprinted (e.g., Blaser et al., 2016; Gutjahr et al., 2008; Howe et al., 2016; Piotrowski et al., 2005). Different reconstructions showed that during the Last Glacial Maximum (LGM) as well as during short northern hemispheric cold spells such as Heinrich Stadials 1 and 2 (HS1 and HS2) and the deglacial Younger Dryas (YD), the balance of these water masses shifted toward a predominance of SSW filling most of the deep western Atlantic reaching north as far as 50–60°N (Curry & Oppo, 2005; Gutjahr & Lippold, 2011; Marchitto & Broecker, 2006; Roberts et al., 2010). However, recent studies suggested the presence of a deep northern-sourced water mass in the northwestern Atlantic also during the LGM as derived from stable carbon isotopes (Keigwin & Swift, 2017) and eNd data (Howe et al., 2016; Pöppelmeier et al., 2018).

©2019. The Authors. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
Alongside reconstructions of past water masses distribution, the knowledge of the past overturning strength from sensitive locations and different water depths is of equal importance. Reconstructions of bottom water circulation at the Blake-Bahama Outer Ridge (BBOR; Figure 1) using sortable silt suggested a reduced circulation during the LGM below 3,000-m water depth but with a strong shallow circulation cell above (Evans & Hall, 2008). These authors further suggest stronger circulation in the abyssal (>4,000 m) northwestern Atlantic, which they interpret as intensified SSW flow. Sortable silt is a valuable proxy for reconstructing local bottom currents (McCave et al., 1995; McCave et al., 2017) but provides less information about the large-scale AMOC. For such large-scale AMOC reconstructions, the kinematic circulation strength proxy 231Pa/230Thexcess is widely applied in the Atlantic (Lippold et al., 2012; McManus et al., 2004; Ng et al., 2018; Yu et al., 1996). Both 231Pa and 230Th, are daughter isotopes from the radioactive decay of the uranium isotopes 235U and 234U, respectively. Uranium (and its isotopic composition) is homogeneously dissolved in the world ocean due to the long residence time in the order of 400 ka (Henderson & Anderson, 2003). Accordingly, the production of both daughter isotopes is of a constant activity ratio (0.093, hereafter “production ratio”). In contrast to uranium, protactinium and thorium are highly particle reactive, leading to short oceanic residence times of 100–200 and 10–40 years, respectively (Henderson & Anderson, 2003). Due to the slightly longer residence time of protactinium (roughly the time it takes for NADW to reach the Southern Ocean; Yu et al., 1996), 231Pa and 230Th are daughter isotopes of the radioactive decay of the uranium isotopes 235U and 234U, respectively. Uranium (and its isotopic composition) is homogeneously dissolved in the world ocean due to the long residence time in the order of 400 ka (Henderson & Anderson, 2003). Accordingly, the production of both daughter isotopes is of a constant activity ratio (0.093, hereafter “production ratio”). In contrast to uranium, protactinium and thorium are highly particle reactive, leading to short oceanic residence times of 100–200 and 10–40 years, respectively (Henderson & Anderson, 2003). Due to the slightly longer residence time of protactinium (roughly the time it takes for NADW to reach the Southern Ocean; Yu et al., 1996), 231Pa and 230Th are fractionated in dependence of the circulation strength (i.e., changes in AMOC intensity). Hence, low sedimentary 231Pa/230Th values today in the deep Atlantic reflect strong NADW advection (meridional 231Pa export to the Southern Ocean), while higher values are consistent with a weaker AMOC state (Luo et al., 2010; McManus et al., 2004).

In the Southern Ocean, 231Pa is preferentially scavenged from the water column into sediments due to its high affinity to particles consisting of biogenic opal (Chase et al., 2003). From this observation, a critical view on the usage of 231Pa/230Th as a circulation proxy arose, since 231Pa/230Th might be strongly linked to particle fluxes and their compositions (Chase et al., 2003). For regions with high particle fluxes and characteristic particle compositions (e.g., the Southern Ocean) or weak ocean circulation (e.g., the Pacific), this effect seems to control sedimentary 231Pa/230Th ratios (Anderson et al., 1983; Chase et al., 2003; Costa et al., 2017; Hayes et al., 2013). In contrast, in the western Atlantic, with its relatively moderate particle fluxes and a pronounced AMOC, 231Pa is effectively exported from the North to South Atlantic by advection as derived from a 231Pa deficit of at least 26% (Deng et al., 2018) (a former study by Yu et al. (1996) mentioned up to 50%) supporting the applicability of 231Pa/230Th as a circulation proxy in the Atlantic.

Previous studies using the 231Pa/230Th proxy have concluded that a strong circulation of the North Atlantic prevailed during the Holocene (Hoffmann et al., 2018) and pronounced weakenings of AMOC strengths occurred during past cold phases (Bradtmiller et al., 2014; Gherardi et al., 2009; Lippold et al., 2016;
McManus et al., 2004; Ng et al., 2018). Nevertheless, a clear picture of the vertical structure of the deglacial circulation and the evolution of AMOC is still lacking, in particular due to insufficient spatial and temporal proxy coverage.

Here we present four new high-resolution 231Pa/230Th down-core profiles forming a depth transect at the BBOR (3,000 to 4,760 m; Figure 1) spanning the last 30 ka. The BBOR is a well-studied location (e.g., Evans & Hall, 2008; Keigwin, 2004) in the direct flow path of the DWBC that allows for the investigation of advection rates depending on the water depth. Additionally, we provide three updated and improved records from a prior study (Lippold et al., 2016). With these new records from the deep BBOR, we are able to reconstruct the evolution and changes in AMOC strength in greater detail.

2. Materials and Methods

2.1. Setting and Age Model

We analyzed 231Pa/230Th from ODP Leg 172 Sites 1059, 1060, 1061, and 1062 back to 30 ka. Sites 1059, 1060, and 1061 are located on the crest of the Blake Outer Ridge, which is formed by drift sediments (Keigwin & Jones, 1994), while Site 1062 is located further south on the Bahama Outer Ridge (Figure 1). The four sites form a depth transect from 3,000- to 4,760-m water depth. In addition, we improved the 231Pa/230Th records (partly reanalyzed and recalibrated, see Table S5 in the supporting information) of KNR140 12JPC (hereafter 12JPC) on the BBOR and cores GeoB1515-1 and GeoB1523-1 from the Ceara Rise in the equatorial western Atlantic (Lippold et al., 2016). Age models for Sites 1059 to 1062 are provided by Pöppelmeier et al. (2019) and are based on the correlation of carbonate concentration for Sites 1059 and 1062 (Grützner et al., 2002) to neighboring cores KNR140 GCC39 (Keigwin & Schlegel, 2002) and KNR31-GPC9 (Keigwin & Jones, 1994), respectively. Additionally, the age model consists of 12 14C dates on Site 1060, two dates on Site 1062, and four recalibrated 14C dates on Site 1059 (Hagen & Keigwin, 2002; Pöppelmeier et al., 2019). We further present new age models for GeoB1515-1 and GeoB1523-1 from the Ceara Rise, which have been improved by recalibrated 14C dates and one new 14C date for GeoB1515-1. This new 14C date was measured at the LARA laboratory at the University of Bern, Switzerland (Gottschalk et al., 2018). We used the CALIB 7.1 online tool tied to the Marine13 curve (Reimer et al., 2013) for calibration of all 14C dates with the standard 400-year reservoir age correction.

2.2. Analytical Procedure for Pa, Th, and U Isotope Measurements

Sediment samples were analyzed for the radioisotopes 230Th, 231Pa, 232Th, 234U, and 238U. Purification and separation of the elements followed the protocol described in Süfke et al. (2018). Before chemical treatment samples were spiked with 233Pa, 229Th, and 236U. The short-lived 233Pa isotope ($t_{1/2} = 27$ d) was milked from a 237Np solution using the procedure described by Regelous et al. (2004). The 233Pa spike was calibrated against the reference material UREM-11 (Süfke et al., 2018) and an internal pitchblende standard (Fietzke et al., 1999). Protactinium isotopes were measured using an Element 2 HR-ICP-MS in the Institute of Earth Sciences at Heidelberg University and a Neptune Plus MC-ICP-MS in the GeoZentrum Nordbayern at the Friedrich-Alexander University in Erlangen equipped with a retarding potential quadrupole filter. Uranium and thorium isotopes were measured with two Neptune Plus MC-ICP-MS at GEOMAR Helmholtz Centre for Ocean Research in Kiel and at the GeoZentrum Nordbayern in Erlangen.

A detrital correction (234U/232Th) of 0.55, in agreement to overall minima of bulk 238U/232Th, was applied to the measured activities of 231Pa and 230Th in accordance with the typical lithogenic activity ratio for 238U/232Th of 0.5 to 0.6 (Henderson & Anderson, 2003) in the western Atlantic. The lithogenic 238U/232Th, and hence the detrital correction on the calculation of 231Pa/230Th, may vary with time (Missiaen et al., 2018) in particular during times of high detrital and/or authigenic contributions. One control parameter for a potentially changing detrital factor is given by the 230Thexod/232Th ratios (Missiaen et al., 2018). Throughout the glacial to deglacial parts of the records, the 230Thexod/232Th activity ratios are relatively constant, pointing to a stable detrital phase, but show strong increases with the onset of the Holocene (Figure S1). However, the Holocene sections of our 231Pa/230Th records are insensitive to changes in the detrital correction (Figure S2). Furthermore, X-ray fluorescence (XRF) data (cf. sections 2.3. and 3.2.) support a uniform detrital sediment composition throughout the complete records (Figure S4). Hence, we used a constant detrital correction of 0.55 that has also previously been used for Site 12JPC (Lippold et al., 2016). The
ingrowth of ^{231}Pa and ^{230}Th from authigenic uranium was calculated and corrected as described by Henderson and Anderson (2003). Finally, ^{231}Pa and ^{230}Th excess concentrations were decay corrected to the time of deposition. All individual isotope concentrations are provided in the supplement (Tables S1–S6).

2.3. Biogenic Opal and Major Elements

As well as the measurements of $^{231}\text{Pa}/^{230}\text{Th}$, we analyzed the content of biogenic opal in the sediments. High fluxes of biogenic opal may increase $^{231}\text{Pa}/^{230}\text{Th}$ ratios independently of the circulation strength, due to the high affinity of ^{231}Pa to it (e.g., Chase et al., 2002, 2003; Rutgers van der Loeff et al., 2016). Opal concentrations were analyzed by automated leaching following the procedure described by Müller and Schneider (1993). Furthermore, we measured the bulk sediment content of Al, Si, Ti, Fe, and K of discrete samples (Table S7) with a fourth-generation Avaatech XRF core scanner at the Institute of Earth Sciences at Heidelberg University, using a 10-kV Rh anode X-ray tube without a filter, a 1,000-mA current (500 mA for Site 1060), and a counting time of 30 s.

2.4. Selection Criteria for Compilation of Existing $^{231}\text{Pa}/^{230}\text{Th}$ Profiles From the West Atlantic for Comparison

In order to provide a comprehensive $^{231}\text{Pa}/^{230}\text{Th}$-based picture of the deep AMOC evolution in the western Atlantic sector, we compiled new and existing records from this basin. We only used sites from the western basin of the Atlantic since records from the eastern basin show noticeably different features and deglacial evolution due to different circulation regimes in both basins (Bradtmiller et al., 2007; Gherardi et al., 2009; Howe et al., 2017; Lippold et al., 2012; Ng et al., 2018). For this compilation we excluded sites that are located on or near the Mid-Atlantic Ridge (MAR) in order to avoid potential effects of hydrothermal activity on regional $^{231}\text{Pa}/^{230}\text{Th}$ (Hayes et al., 2015; Lund et al., 2019; Pavia et al., 2018), which are not yet satisfactorily resolved (Bradtmiller et al., 2007; Gherardi et al., 2009; Lippold et al., 2016). We further excluded sites where records are not continuous from the LGM to the Holocene or from which the original authors consider specific time intervals as questionable (Gherardi et al., 2009; Lippold et al., 2011). Overall, we thus compiled two cores from the Bermuda Rise (Lippold et al., 2009; McManus et al., 2004), five from the BBOR (this study, Lippold et al., 2016), and five from the central/equatorial western basin (Bradtmiller et al., 2007; Lippold et al., 2016; Ng et al., 2018), which fulfill our criteria (Figure 1). In the further interpretation, we combined the two cores from the Bermuda Rise (Lippold et al., 2009; McManus et al., 2004), five from the BBOR (this study, Lippold et al., 2016), and five from the central/equatorial western basin (Bradtmiller et al., 2007; Lippold et al., 2016; Ng et al., 2018) to a single record since both sites are situated at the same water depth and nearly the same location.

3. Results

3.1. $^{231}\text{Pa}/^{230}\text{Th}$

All new records show a similar millennial-scale variability closely following the prominent Bermuda Rise record (McManus et al., 2004; Lippold et al., 2009; Figure 2). Youngest $^{231}\text{Pa}/^{230}\text{Th}$ values are consistently low (between 0.053 and 0.060) indicative of strong ^{231}Pa export that was established during the early Holocene (<10 ka) (Figures 2 and 3). Pronounced variability during the deglaciation including the prominent climatic episodes YD, Bolling-Allerød (B/A), and HS1 is present in all new records, except for the reevaluated Site 12JPC, which shows less variability during the YD and B/A events.
The $^{231}\text{Pa}/^{230}\text{Th}$ ratios from all deep cores follow a general temporal evolution from high glacial values toward low values during the early Holocene, only disrupted by a prominent short and rapid decrease during the B/A (almost reaching Holocene values) and again glacial-like values during the short period of the YD. The decrease in $^{231}\text{Pa}/^{230}\text{Th}$ during the B/A of the shallowest Site 1059 (2,984 m) is less pronounced and/or exhibits a different timing. During HS1 all records show generally high $^{231}\text{Pa}/^{230}\text{Th}$ values (but below the production ratio) ranging from 0.072 to 0.086 (average = 0.081 ± 3.6%), in agreement with abyssal $^{231}\text{Pa}/^{230}\text{Th}$ records of the northwestern Atlantic (Lippold et al., 2009; McManus et al., 2004; Ng et al., 2018).

The new $^{231}\text{Pa}/^{230}\text{Th}$ values from the LGM are slightly lower (average = 0.073 ± 4.2%) than those during HS1. This subtle difference is in contrast to the prominent Bermuda Rise record that features significantly lower LGM values (Figure 2; McManus et al., 2004). At the BBOR, the lowest LGM values were recorded in the shallowest Site 1059, whereas LGM values from Sites 1060 and 1061 are nearly indistinguishable from values observed during HS1.

While $^{231}\text{Pa}/^{230}\text{Th}$ ratios of Site 1059 exhibit no distinct peak during HS2, the deeper BBOR cores display generally higher variability during this period and values as high as during HS1, including few values exceeding the production ratio of 0.093. In particular, Site 1060 shows a double peak feature similar to the record at ODP Site 1063 (Lippold et al., 2009).

3.2. Opal and Major Elemental Abundances

Low preserved opal concentrations below 4% were measured in all presented BBOR cores (Figure 2). Further, a higher opal content should be detectable by increased Si/Al ratios (McManus et al., 2004) but is not present in the new XRF records from the BBOR (Figure S4). In addition to the Si/Al ratio, we used other elemental ratios obtained by XRF for analyzing the provenance and major composition of the sedimentary phase. Ratios of Ti/Al, K/Al, K/Ti, and Ti/Fe show little variation throughout the entire records (Figure S4), pointing to an invariable detrital phase (Rothwell & Croudace, 2015), which in turn supports the selection of a constant detrital correction as outlined in section 2.2.

4. Discussion

4.1. Potential Primary Particle Influences on $^{231}\text{Pa}/^{230}\text{Th}$

As seen from its high $^{231}\text{Pa}/^{230}\text{Th}$, ^{231}Pa exported southward via NADW ends in the sediments of the Southern Ocean (Rutgers van der Loeff et al., 2016) due to the opal-dominated particle flux in this region (Anderson et al., 2009; Chase et al., 2003; Walter et al., 1997). Therefore, the role of particle flux and particle composition on controlling sedimentary $^{231}\text{Pa}/^{230}\text{Th}$ besides ocean circulation is emphasized (Chase et al., 2002; Geibert & Usbeck, 2004). While biogenic opal has not been found to be a significant scavenging phase in the modern North Atlantic (Hayes et al., 2015), we also exclude opal as a major driver of $^{231}\text{Pa}/^{230}\text{Th}$ at the BBOR for the past. Preserved opal concentrations are constantly low at all BBOR sites during the last 30 ka (even in the presence of high $^{231}\text{Pa}/^{230}\text{Th}$ variability). Comparing $^{231}\text{Pa}/^{230}\text{Th}$ and opal concentrations from all sites used for this study (Bradtmiller et al., 2007; Lippold et al., 2009, 2016; McManus et al., 2004; Ng et al., 2018), no persuasive correlation is present, and opal concentrations are always below 5% (Figure S3).

Besides opal, authigenic Fe and/or Mn hydroxides are potential strong scavengers of ^{231}Pa and ^{230}Th (Hayes, Anderson, Fleisher, Vivancos, et al., 2015). Indeed, along the GA03 GEOTRACES North Atlantic Transect (Hayes, Anderson, Fleisher, Huang, et al., 2015), K_d values of MnO$_2$ and Fe (OH)$_3$ have been estimated at magnitudes higher than for lithogenic particles or CaCO$_3$ (Hayes, Anderson, Fleisher, Vivancos, et al., 2015). This effect was observed emanating from hydrothermal plumes of the MAR (Hayes, Anderson, Fleisher, Vivancos, et al., 2015). However, due to the large distance between the MAR and the BBOR, scavenging by Mn/Fe phases originating from the MAR can be considered as negligible. Furthermore, increased scavenging of ^{231}Pa and ^{230}Th by MnO$_2$ has been reported in bottom water particles off the
Mauritanian margin (Hayes, Anderson, Fleisher, Vivancos, et al., 2015). In contrast to the BBOR, the Mauritanian margin is a region of high upwelling intensity. There, 231Pa can be scavenged by MnO$_2$ coatings formed from redox cycling from the respiration of high contents of organic matter (Hayes, Anderson, Fleisher, Vivancos, et al., 2015), but such conditions have not been observed at the BBOR. Although the mobility of Fe and Mn may have been quite different between glacial and interglacial conditions due to lower oxygenation, effects of increased 231Pa and/or 230Th scavenging are rather expected under very sluggish circulation regimes such as the Pacific (Korff et al., 2016).

Alongside particle composition the sheer amount of particles may also increase 231Pa/230Th, in particular at ocean margins (so-called boundary scavenging; Anderson et al., 1983; Hayes, Anderson, Fleisher, Huang, et al., 2015). Increased 231Pa/230Th have been found from the high accumulating and organic-rich sediments off the coast of West Africa (Christl et al., 2010; Hayes, Anderson, Fleisher, Huang, et al., 2015; Lippold, Mulitza, et al., 2012; Scholten et al., 2008), however still overprinted by an AMOC signal in their temporal evolution (Lippold, Mulitza, et al., 2012). The effects of boundary scavenging and increased particle fluxes at the high-productivity upwelling regions off West Africa are not comparable with the BBOR as discussed before.

On the other hand, the effect of bottom scavenging due to the occurrences of nepheloid layers (Hayes, Anderson, Fleisher, Huang, et al., 2015) may represent an additional sink for 231Pa and 230Th at the seafloor. A first simple representation of bottom scavenging in a 231Pa/230Th-enabled model (Rempfer et al., 2017) did not yield a disturbed relationship between overturning strength and 231Pa/230Th on the larger spatial and temporal scales in the Atlantic. The implementation of bottom scavenging in the model, however, was global. Nepheloid layers were assumed to appear in all bottom grid cells with the thickest layers in the deepest water depths. Accordingly, the model is able of capturing a basin-wide relation rather than a local influence. Temporally variable occurrences of local and regional nepheloid layers may be able to influence a 231Pa/230Th profile to a certain extent possibly increasing sedimentary 231Pa/230Th ratios (Deng et al., 2014). Today, parts of the northwestern Atlantic have been found to be covered by nepheloid layers (Gardner et al., 2018; Stahr & Sanford, 1999). Effects of nepheloid layers on Nd isotopes have been reported from the BBOR, for example, by offsets found between core tops and seawater Nd isotopic compositions and by the manifestation of unradiogenic anomalies in Nd isotopic signatures attenuating as a function of distance to the presence of strong benthic nepheloid layers (Pöppelmeier et al., 2019).

As of yet, there is little handle on reconstructing the extent and intensity of past nepheloid layers and, thus, how to assess the influence of past nepheloid layers on radionuclide scavenging. Based on analyzing changes in sediment focusing, Gutjahr et al. (2008) suggested reduced focusing at BBOR intermediate depth sites indicating reduced shelf-derived sediment redistribution before the Holocene. Nepheloid layers are mostly produced by upper ocean dynamics of surface eddy kinetic energy propagating downward stirring up bottom sediments (Gardner et al., 2018). During glacial periods the sea level was lower and the shelf contact area reduced. As a consequence, energy from shallow tidal mixing on the shelves was nearly absent, and the tidal energy increasingly dissipated in the deep ocean (Egbert et al., 2004; Wilmes et al., 2019). Bringing this tidal energy into the deep Atlantic would increase the mixing and turbulence there. As a consequence nepheloid layers during the LGM could have been greater and denser in the northwestern Atlantic. The greater suspended particle concentration could have increased the bottom scavenging of 231Pa and 230Th during the LGM (c.f. Deng et al., 2014; Hayes, Anderson, Fleisher, Huang, et al., 2015).

Based on these observations and as anticipation of the discussion on differences in 231Pa/230Th between the BBOR and the Bermuda Rise, we can deduce that nepheloid layers may not have had first-order control on the down-core evolution of the new 231Pa/230Th records during the Holocene. Bottom scavenging by nepheloid layers was presumably more intense before the Holocene. Significantly and constantly higher 231Pa/230Th values at the BBOR in the glacial and deglacial parts could then be explained by the occurrence of nepheloid layers. However, assuming that the distribution of nepheloid layers during the LGM is similar to todays, it would be expected that bottom scavenging at the Bermuda Rise was more intense than at the BBOR. During the LGM lower 231Pa/230Th values at the Bermuda Rise are observed compared to the BBOR rendering a primary control of bottom scavenging on the 231Pa/230Th as unlikely. Since our knowledge about the distribution and size of nepheloid layers during the LGM is limited and relies on assumptions only, we cannot clearly exclude the effect of nepheloid layers on 231Pa/230Th but suggest that it was not
dominant based on above observations. Moreover, increased bottom scavenging by nepheloid layers during the LGM is also pending to be confirmed.

4.2. Stable Holocene Circulation

Today, the northwestern Atlantic basin is dominated by the southward export of NADW as main part of the AMOC. In contrast to this, in the northeastern Atlantic, NADW flows partly northward as it enters the basin as far south as the equator (Rhein et al., 2015). Concentrations of dissolved 230Th and 231Pa in the eastern part of the North Atlantic show a depth-dependent increase as a result of weaker export (Hayes, Anderson, Fleisher, Huang, et al., 2015). In contrast, the western basin exhibits a moderate increase in dissolved 231Pa concentrations with water depth due to the southward advection of 231Pa by the strong overturning circulation (Deng et al., 2018). We therefore aim for considering 231Pa/230Th-based AMOC reconstructions from regionally constrained data of the northwestern Atlantic (Lippold et al., 2011; Lippold, Mulitza, et al., 2012; Ng et al., 2018) instead of integrating 231Pa/230Th data from across the Atlantic (Bradtmiller et al., 2014; Lippold et al., 2016; Lippold, Luo, et al., 2012; Yu et al., 1996).

The notion of an active and strong Holocene AMOC (Keigwin & Boyle, 2000; Oppo et al., 2003) as indicated by low and relatively constant 231Pa/230Th at the Bermuda Rise is supported by low Holocene 231Pa/230Th values at the BBOR (average = 0.056 ± 3.2%; Figure 3). The strong overturning circulation is in accordance with strong NADW production as indicated by ε_{Nd} indicating the prevalence of NSW in the northwestern Atlantic (Pöppelmeier et al., 2019). The absolute values of around 0.056 are well in agreement with previous 231Pa/230Th data compilations (Bradtmiller et al., 2014; Lippold, Luo, et al., 2012) for deep sites. An early Holocene AMOC strength overshoot as suggested by combined 231Pa/230Th and ε_{Nd} records of lower time resolution (Lippold et al., 2016) cannot be confirmed from the new data set.

4.3. Weaker Circulation During the LGM

All new down-core profiles display 231Pa/230Th values clearly higher during the LGM than during the Holocene (Figures 4 and 5) but on different absolute levels depending on the water depth. The shallowest Site 1059 (2,984 m) features the overall lowest LGM values of all BBOR records. Following the finding that sedimentary 231Pa/230Th is largely a signal integrated from the 1000-m water column above the seafloor (Luo et al., 2010; Thomas et al., 2006), it seems likely that Site 1059 at least partially recorded the influence from a shallow Glacial North Atlantic Intermediate Water (GNAIW) overturning cell above the core location. The existence of such a shallow overturning cell has been suggested by several nutrient-proxy-based studies (e.g., Boyle & Keigwin, 1987; Curry & Oppo, 2005; Duplessy et al., 1988; Keigwin, 2004; Oppo & Lehman, 1993) as well as observations from sortable silt data from the BBOR (Evans & Hall, 2008). Highest LGM values are found at the depth interval from 3,500 to 4,000 m (Site 1060/1061; Figure 4a) suggesting either the influence of bottom scavenging or weaker water transport at these depths. The interpretation of a weaker water transport seems more plausible since the effect of bottom scavenging at the BBOR is subordinate to the large-scale Pa export from the North to the South Atlantic (cf. section 4.1). A slight decrease in 231Pa/230Th during the LGM is observed in the cores below 4,000 m (12JPC and Site 1062), indicative of a more active circulation in the abyssal northwestern Atlantic (Figures 2 and 3). Such a circulation depth structure has
also been reported from BBOR sortable silt reconstructions (Evans & Hall, 2008). Stable carbon isotope data (δ13C) from a depth transect along the BBOR show lighter δ13C values with increasing water depth interpreted as propagating SSW during the LGM (Evans & Hall, 2008; Keigwin, 2004). However, in the light of recent findings of past water mass distributions in the western Atlantic basin from a δ13C and Nd isotope perspective, an extensive advance of SSW into the North Atlantic may need to be seen more critically (Gebbie, 2014; Howe et al., 2016; Oppo et al., 2018; Spooner et al., 2018). The study by Spooner et al. (2018) gives an estimation on the depth where the boundary between GNAIW and SSW was located at 30° S in the South Atlantic. Their data support a strong southward directed circulation at least in depths shallower than 2,600 m. Furthermore, they found faster flow speeds below ~4,000 m water depth interpreted as northward propagated SSW. Spooner et al. (2018) therefore suggested that the boundary between GNAIW and SSW at 30° S was situated somewhere between 2,600 and ~4,000 m water depth possibly in deeper than in shallow depths. This boundary is rather expected to descend toward 30° N instead of being stable on such a long distance due to the increasing dominance of NSW with shorter distance to the NADW formation areas (Gebbie, 2014; Howe et al., 2016; Oppo et al., 2018). Accordingly, a strong inflow of SSW in the deep northwestern Atlantic basin during the LGM appears unlikely. A more recent study based on Nd isotopes argues that the northwestern Atlantic was filled mainly with NSW rather than SSW during the LGM (Howe et al., 2016; Oppo et al., 2018; Spooner et al., 2018). The study by Spooner et al. (2018) gives an estimation on the depth where the boundary between GNAIW and SSW was located at 30° S in the South Atlantic. Their data support a strong southward directed circulation at least in depths shallower than 2,600 m. Furthermore, they found faster flow speeds below ~4,000 m water depth interpreted as northward propagated SSW. Spooner et al. (2018) therefore suggested that the boundary between GNAIW and SSW at 30° S was situated somewhere between 2,600 and ~4,000 m water depth possibly in deeper than in shallow depths. This boundary is rather expected to descend toward 30° N instead of being stable on such a long distance due to the increasing dominance of NSW with shorter distance to the NADW formation areas (Gebbie, 2014; Howe et al., 2016; Oppo et al., 2018). Accordingly, a strong inflow of SSW in the deep northwestern Atlantic basin during the LGM appears unlikely. A more recent study based on Nd isotopes argues that the northwestern Atlantic was filled mainly with NSW rather than SSW during the LGM (Howe et al., 2016), which is supported by proxy-model comparisons concluding that the volume seized by NSW was not much different in the LGM than in the Holocene (Gebbie, 2014). The clearly more radiogenic Nd isotopic signatures before the deglacial are not necessarily an unequivocal evidence for the presence of SSW as interpreted in earlier studies (Gutjahr et al., 2008; Lippold et al., 2016; Roberts et al., 2010), since the cNd end-members for both SSW and NSW potentially have changed toward more radiogenic values (Gutjahr et al., 2008; Howe et al., 2016; Skinner et al., 2013). From these findings it is difficult to maintain the notion of SSW predominantly bathing the BBOR and the Bermuda Rise during the LGM. Analyses from all these sites provide very similar Nd isotope signatures indicating that the complete depth transect at the BBOR was bathed in the same water mass during the LGM (Gutjahr et al., 2008; Gutjahr & Lippold, 2011; Pöppelmeier et al., 2019; Roberts et al., 2010). In contrast to the uniform picture in Nd isotope signatures, 231Pa/230Th ratios at the Bermuda Rise (~4,500-m water depth; McManus et al., 2004; Lippold et al., 2009) were significantly lower than at the BBOR during the LGM nearly reaching Holocene levels (Figures 3 and 4a; note the different color at ~4,500 m between ~20 and ~24 ka compared to the predominant color of the water column above and below in Figure 3).

Figure 5. (A, B) Δ231Pa/230Th (differences of 231Pa/230Th between LGM and Holocene (blue) and between HS1 and LGM (brown)) from the northwestern Atlantic (A) and the equatorial Atlantic (B). Horizontal bars indicate errors. Please note that all data in panels (A) and (B) plot at positive Δ231Pa/230Th values indicative of AMOC strengths in the order: Holocene > LGM > HS1. Divergence of individual points of one core site (sites are indicated with the numbers in brackets) indicates the strength of AMOC during the LGM. (C) Depth transect for all sites presented in panels (A) and (B) from the equatorial Atlantic (solid line) and the northwestern Atlantic (dashed line; cf. Figure 3). Depth transects are presented for time slices of the Holocene, LGM, and HS1.
New glacial water mass reconstructions from the northwestern Atlantic do argue not only for a shallow GNAIW overturning cell but also for an abyssal northern water mass that potentially was formed by brine rejection (Howe et al., 2016; Keigwin & Swift, 2017; Pöppelmeier et al., 2018). Such an abyssal southward directed water mass advection could explain the low 231Pa/230Th observed at the Bermuda Rise, which might be corroborated by slightly lower peak LGM 231Pa/230Th values at the deepest BBOR Site 1062 compared to Sites 1060/1061 (Figure 4a).

Accordingly, when considering the depth structure of 231Pa/230Th (Figure 3), our new records are in line with the hypothesis of the northwestern Atlantic basin predominantly bathed by NSW rather than SSW during the LGM as inferred from Nd isotope records (Howe et al., 2016; Pöppelmeier et al., 2019).

4.4. Confirming Deglacial AMOC Variability

The 231Pa/230Th record of Site 12JPC (4,250 m) differs from the most proximal cores in the depth transect, namely, Site 1061 (4,036 m) and Site 1062 (4,760 m), during the deglaciation (11 to 19 ka). While the latter records display deglacial millennial-scale features, these are missing in the 12JPC record exhibiting a small plateau during the B/A only. Similarly, the Nd isotope record of 12JPC also shows only a gradual glacial-interglacial shift (Pöppelmeier et al., 2019). Sedimentary depositional processes (e.g., winnowing or sediment redistribution; Gutjahr et al., 2008; Pöppelmeier et al., 2019) may have played a role in smoothing out the original oceanographic signal at this site. Sediment focusing during the YD is smaller at 12JPC compared with Sites 1061 and 1062 (Figure S5). On this basis, we exclude the deglacial part of 12JPC from the following discussion as was done by Pöppelmeier et al. (2019).

Substantial freshwater input into the North Atlantic has been associated with a reduced (Bradtmiller et al., 2014) or almost collapsed (McManus et al., 2004) AMOC during HS1. Our results confirm a homogeneously reduced deep circulation regime during HS1 for all considered water depths, with average 231Pa/230Th of 0.081 (Figures 2 and 3; below 0.093), pointing to a widely weakened but still active overturning (Bradtmiller et al., 2014). Increases in 231Pa/230Th from LGM to HS1 are less pronounced for the water depth interval from 3,500 to 4,200 m (Sites 1060, 1061, and 12JPC; Figures 3 and 5) featuring the highest LGM values of the northwestern Atlantic depth transect and thus calling for a weaker change in circulation strength between LGM and HS1. In contrast, the deepest Site 1062 features a more pronounced increase in 231Pa/230Th from the LGM to HS1, potentially due to an abyssal component of northern-sourced glacial water mass during the LGM (Howe et al., 2016; Keigwin & Swift, 2017; Pöppelmeier et al., 2018). Accordingly, increases in 231Pa/230Th from the LGM to HS1 below 4,200 m indicate a weakening of glacial abyssal NSW water mass admixture. Thus, the new data set further strengthens the notion of a sluggish AMOC during HS1 in the northwestern Atlantic for a wide range of water depths (Lund et al., 2015; Robinson et al., 2005; Bradtmiller et al., 2014; Figure 3).

Following HS1, the onset of the B/A warm period is marked by an abrupt decrease in 231Pa/230Th in the BBOR cores reflecting the invigoration of the AMOC very similar to the Bermuda Rise record (McManus et al., 2004; Figure 3). It has been proposed that the B/A was potentially marked not only by an AMOC reinvigoration but by an AMOC overshoot transiently producing more NADW than during the Holocene (e.g., Barker et al., 2010; Cheng et al., 2014). Such a B/A overshoot is not apparent from the new records, even if taken into account that there is a certain response time of sedimentary 231Pa/230Th to AMOC changes as well as a potential smoothing of the signal by bioturbation. If such a B/A overshoot was shorter than 200–500 years, it may not have been fully recorded in its whole character in the sediment due to an interplay of sedimentation rate and processes like bioturbation smearing sedimentary signals (Marchal et al., 2000; Rempfer et al., 2017; Yu et al., 1996). However, the high sedimentation rates at the BBOR (10–40 cm/ka) and in particular the duration of the B/A (~2 ka) are expected to allow any 231Pa/230Th minima to be fully resolved. Thus, our new data from the BBOR (Figures 2 and 3) confirm the relatively abrupt onset of deep circulation but do not favor an extraordinarily strong long-lived AMOC strength overshoot during the B/A.

For all cores, low 231Pa/230Th during the B/A are terminated by a sharp increase toward almost LGM-like values during the YD for the whole depth transect (Figure 3). During this last cold spell preceding the Holocene, the water mass distribution and circulation regime in the northwestern Atlantic basin below 3,000-m water depth was again similar to these during the LGM and HS1 (Pöppelmeier et al., 2019). During the YD, 231Pa/230Th averages to around 0.073 for all investigated water depths and thus indicates...
a weakened circulation but not as weak as the situation during HS1. After the YD, all records evolved steadily toward low 231Pa/230Th values reflecting a prolonged and continuous establishment of the deep Holocene AMOC.

4.5. Heinrich Stadial 2
At the BBOR, the highest 231Pa/230Th values are observed during HS2 (Figures 2 and 3). In addition, this time period is characterized by a remarkably high variability in 231Pa/230Th. These features are less pronounced at the shallowest Site 1059, which records 231Pa/230Th values similar to the LGM. The deeper cores with characteristic peaks and relatively high inner-HS2 variability are reminiscent of the record from the Bermuda Rise (Site 1063; Lippold et al., 2009). At the Bermuda Rise, AMOC reductions along with high diatom counts have been made responsible for high HS2 231Pa/230Th (Lippold et al., 2009). However, even during peaks of high diatom abundances, the absolute opal bulk concentrations of the sediments do not exceed 6% (Böhm et al., 2015). Since Bermuda Rise and BBOR cores feature very high sedimentation rates, a fairly good preservation of opal can be expected leading to the assumption that the buried opal is representative of the past opal flux. On a basin-wide scale, there is no significant correlation of opal concentration with 231Pa/230Th (Bradtmiller et al., 2014; Lippold, Luo, et al., 2012) for opal concentrations below 10%. For all BBOR cores, opal contents are very low (<4%; cf. section 3.2.), and opal fluxes are thus unlikely to be a predominant factor controlling 231Pa/230Th for this region. Since the biogenic opal flux is an unlikely main factor controlling 231Pa/230Th during Heinrich Stadials, the density distribution (Figure 4b) from Sites 1060/1061 and the Bermuda Rise was on average not very different between HS2 and HS1 in terms of absolute 231Pa/230Th values. We suggest that both might have been similar in terms of circulation strength as well.

4.6. Comparison to 231Pa/230Th Records From the Equatorial Atlantic
For a more comprehensive investigation of glacial-interglacial changes of the West Atlantic DWBC, we compare available 231Pa/230Th down-core profiles from the north and equatorial western Atlantic to our new data set. This comprises four 231Pa/230Th records from the Ceara Rise (GeoB1515-1; GeoB1523-1; EW9209 1JPC; and EW9209 3JPC; Lippold et al., 2016; Ng et al., 2018) and one from slightly north of the equator (RC 16-66; Bradtmiller et al., 2007) spanning water depths from 3,100 to 4,400 m (Figures 1 and S6; see section 2.4.). The 231Pa/230Th records of GeoB1515-1 and GeoB1523-1 have been improved by additional 231Pa/230Th data and age control points shifting the highest values of the records ~2 ka toward older ages (Lippold et al., 2016) in line with the timing of HS1 (Table S6). Most of these records exhibit clearly lower time resolution than the new BBOR records. For this reason, we only compare the time slices of the Holocene, LGM, and HS1 with our findings (Figure 5). The equatorial records show the common feature of low Holocene 231Pa/230Th and higher deglacial and glacial 231Pa/230Th levels and a more or less well resolved peak around HS1. These characteristics are in good agreement with the new higher-resolution BBOR records calling for a large-scale oceanographic feature on this timescale for the range of water depths. While the absolute 231Pa/230Th values of the shallower cores (GeoB1515-1; GeoB1523-1; EW9209 3JPC; 3,100 to 3,300 m) are in good agreement to the new BBOR records, 231Pa/230Th values from the deeper equatorial sites (EW9209 1JPC; RC 16-66; 4,000 to 4,500 m) are considerably lower (Figure 5). One would expect the 231Pa/230Th ratio to increase with a longer traveling time of NADW (greater distance to the deep water formation zone). While 230Th is quickly scavenged from the water column advected, 231Pa can be supplied to sites further south from upstream (north), and the concentration is further increased by the continuous ingrowth from the decay of dissolved 235U. However, the relationship between water mass aging and increasing 231Pa/230Th is still unclear (Deng et al., 2018). Lower 231Pa/230Th at greater depth further downstream of NADW (equatorial Atlantic) can rather be explained by the effect of building up a 231Pa deficit relative to 230Th within one individual overturning cell (Burckel et al., 2016; Luo et al., 2010). Alternatively, the lower equatorial 231Pa/230Th values observed may also reflect the effect of bathymetry and the narrowing of the DWBC flow path in the region, leading to increased flow speeds at greater depths. Taken together, all sites from below ~3,000-m water depth and within the area influenced by the DWBC display very similar patterns in the 231Pa/230Th down-core profiles confirming the general notion of the relative AMOC strengths being most vigorous during the Holocene and clearly weaker during the LGM with the weakest overturning during HS1.
5. Conclusions

We present four new high-resolution \(^{231}\)Pa/\(^{230}\)Th records from the deep northwestern Atlantic covering the time period from Heinrich Stadial 2 until today and resolve AMOC variability during climatic key intervals like the HS2, LGM, HS1, B/A, YD, and the Holocene. These new time series confirm the timing and magnitude of the millennial-scale climate variability previously established by the Bermuda Rise \(^{231}\)Pa/\(^{230}\)Th records (such as gradual AMOC increase from the YD into the Holocene, no B/A AMOC overshoot, similar levels of HS1 and HS2 values but with higher variability of the latter) but with one exception. Whereas a strong LGM circulation was suggested by the Bermuda Rise record, the depth transect presented here shows a more complex circulation pattern. The BBOR records from 3,500 to 4,700 m suggest significantly reduced circulation strength during most of the LGM. In the water depth from 3,500 to 4,000 m, LGM \(^{231}\)Pa/\(^{230}\)Th values are nearly indistinguishable from Heinrich Stadial 1 when the AMOC was weakened across the entire Atlantic. The shallowest location of our depth transect, Site 1059 at 3,000-m water depth, again features lower \(^{231}\)Pa/\(^{230}\)Th values during the LGM on a level similar to the Bermuda Rise in accordance with a shallow GNAIW overturning cell above. Further, comparison to existing equatorial West Atlantic \(^{231}\)Pa/\(^{230}\)Th records yields a uniform basin-wide picture confirming a strong Holocene circulation regime, a weaker LGM overturning configuration, and a mostly reduced circulation during Heinrich Stadials 1 and 2.

Acknowledgments
Stefan Rheinberger is thanked for technical support during ICP-MS measurements. Further, we acknowledge Sönke Sizadat for the new ^13C date for GeoB1515-1 and Benny Anitz for preliminary work on the ODP cores. We thank the IODP core repository in Bremen for providing the samples. The comments of two anonymous reviewers as well as David J.R. Thornalley considerably improved the manuscript. This study has been funded by the Emmy Noether Programme of the German Research Foundation (DFG) Grant Li1815/4. Data can be found in the supporting information and on Pangaea (https://doi.pangaea.de/10.1594/PANGAEA.908156).

References
Anderson, R. F., Ali, S., Bradtmiller, L. I., Nielsen, S. H. H., Fleisher, M. Q., Anderson, B. E., & Burckle, L. H. (2009). Wind-driven upwelling in the Southern Ocean and the deglacial rise in atmospheric CO2. Science, 328(5987), 1443–1448. https://doi.org/10.1126/science.1167441
Anderson, R. F., Bacon, M. P., & Brewer, P. G. (1983). Removal of ^230Th and ^231Pa at ocean margins. Earth and Planetary Science Letters, 66(1-2), 73–90. https://doi.org/10.1016/0012-821X(83)90127-9
Barker, S., Knorr, G., Vautravers, M. J., Liz, P., & Skinner, L. C. (2010). Extreme deepening of the Atlantic overturning circulation during deglaciation. Nature Geoscience, 3(8), 567–571. https://doi.org/10.1038/nej0921
Blaser, P., Lippold, J., Gutjahr, M., Frank, N., Link, J. M., & Frank, M. (2016). Extracting foraminiferal seawater Nd isotope signatures from bulk deep sea sediment by chemical leaching. Chemical Geology, 439, 189–204. https://doi.org/10.1016/j.chemgeo.2016.06.024
Böhm, E., Lippold, J., Gutjahr, M., Frank, M., Blaser, P., Antz, B., et al. (2015). Strong and deep Atlantic meridional overturning circulation during the last glacial cycle. Nature, 519(7532), 73–76. https://doi.org/10.1038/nature14059
Boyle, E. A., & Keigwin, L. (1987). North Atlantic thermohaline circulation during the past 20,000 years linked to high-latitude surface temperature. Nature, 330, 35–40. https://doi.org/10.1038/330035a0
Bradtmiller, L. I., Anderson, R. F., Fleisher, M. Q., & Burckle, L. H. (2007). Opal burial in the equatorial Atlantic Ocean over the last 30 ka: Implications for glacial-interglacial changes in the ocean silicon cycle. Paleoceanography, 22, PA4216. https://doi.org/10.1029/2007PA001443
Bradtmiller, L. I., McManus, J. F., & Robinson, L. F. (2014). ^231Pa/^230Th evidence for a weakened but persistent Atlantic meridional overturning circulation during Heinrich Stadial 1. Nature Communications, 5, 8187. https://doi.org/10.1038/ncomms8187
Broecker, W. S., Takahashi, T., & Takahashi, T. (1985). Sources and flow patterns of deep-ocean waters as deduced from potential temperature, salinity, and initial phosphate concentration. Journal of Geophysical Research, 90, 6925–6939. https://doi.org/10.1029/JC090iC04p06925
Burckel, P., Waelbroeck, C., Luo, Y., Roche, D. M., Pichat, S., Jaccard, S. L., et al. (2016). Changes in the geometry and strength of the Atlantic meridional overturning circulation during the last glacial (20–50 ka). Climate of the Past, 12, 2061–2075. https://doi.org/10.5194/cp-12-2061-2016
Chase, Z., Anderson, R. F., Fleisher, M. Q., & Kubik, P. W. (2002). The influence of particle composition and particle flux on scavenging of Th, Pa and Be in the ocean. Earth and Planetary Science Letters, 204, 215–229. https://doi.org/10.1016/S0012-821X(02)00984-6
Chase, Z., Anderson, R. F., Fleisher, M. Q., & Kubik, P. W. (2003). Scavenging of ^230Th, ^231Pa and ^10Be in the Southern Ocean (SW Pacific sector): The importance of particle flux, particle composition and advection. Deep-Sea Research Part II, 50, 739–768. https://doi.org/10.1016/S0967-0637(02)00573-3
Cheng, J., Liu, Z., He, F., Otto-Bliesner, B., Brady, E., & Lynch-Stieglitz, J. (2014). Model-proxy comparison for overshoot phenomenon of Atlantic thermohaline circulation at Bolling-Allerød. Chinese Science Bulletin, 59(33), 4510–4515. https://doi.org/10.1007/s11434-014-0586-x
Christl, M., Lippold, J., Hofmann, A., Wacker, L., Lahaye, Y., & Synol, H. A. (2010). 231Pa/230Th: A proxy for upwelling off the coast of West Africa. Nuclear Instruments and Methods in Physics Research, Section B: Beam Interactions with Materials and Atoms, 267(8–10), 1159–1162. https://doi.org/10.1016/j.nimb.2009.10.123
Costa, M. C., Jacobel, A. W., McManus, I. F., Anderson, R. F., Winckler, G., & Thiagarajan, N. (2017). Productivity patterns in the equatorial Pacific over the last 30,000 years. Global Biogeochemical Cycles, 31, 850–865. https://doi.org/10.1002/2016gb005579
Curry, W. B., & Oppo, D. W. (2005). Glacial water mass geometry and the distribution of ^813C of CO2 in the western Atlantic Ocean. Paleoceanography, 20, PA1017. https://doi.org/10.1029/2004PA001021
Deng, F., Henderson, G. M., Castrillejo, M., & Perez, F. F. (2018). Evolution of ^231Pa and ^230Th in overflow waters of the North Atlantic. Biogeosciences, 15, 7299–7313. https://doi.org/10.5194/bg-2018-191
Deng, F., Thomas, A. L., Rijkenberg, M. J. A., & Henderson, G. M. (2014). Controls on seawater ^231Pa, ^230Th and ^232Th concentrations along the flow paths of deep waters in the Southwest Atlantic. Earth and Planetary Science Letters, 390, 93–102. https://doi.org/10.1016/j.epsl.2013.12.038
Duplessy, J. C., Shackleton, N. J., Fairbanks, R. G., Labeyrie, L., Oppo, D., & Kallel, N. (1988). Deepwater source variations during the last climatic cycle and their impact on the global deepwater circulation. Paleoceanography, 3(3), 343–360. https://doi.org/10.1029/PA03603p00343

Egbert, G. D., Ray, R. D., & Bills, B. G. (2004). Numerical modeling of the global semidiurnal tide in the present day and in the last glacial maximum. Journal of Geophysical Research, 109, C03003. https://doi.org/10.1029/2003JC001973

Evans, H. K., & Hall, I. R. (2008). Deepwater circulation on Blake Outer Ridge (western North Atlantic) during the Holocene, Younger Dryas, and Last Glacial Maximum. Geochemistry, Geophysics, Geosystems, 9, Q03023. https://doi.org/10.1029/2007GC001771

Fietzke, J., Bollhöfer, A., Frank, M., & Mangini, A. (1999). Protactinium determination in manganese crust VA13/2 by thermal ionization mass spectrometry (TIMS). Nuclear Instruments and Methods in Physics Research, 149, 353–360. https://doi.org/10.1016/S0168-583X(98)00912-4

Garcia, H. E., Locarnini, R. A., Boyer, T. P., Antonov, J. I., Zweng, M. M., et al. (2014). World Ocean Atlas 2013, Volume 4: Dissolved inorganic nutrients (phosphate, nitrate, silicate). S. Levitus, Ed., A. Mishonov Technical Ed.; NOAA Atlas NESDIS 76, 25 pp.

Gardiner, W. D., Richardson, M. J., & Mishonov, A. V. (2018). Global assessment of benthic nepheloid layers and linkage with upper ocean dynamics. Earth and Planetary Science Letters, 482, 126–134. https://doi.org/10.1016/j.epsl.2017.11.008

Gebbie, G. (2014). How much did glacial North Atlantic water shoal? Paleoceanography, 29, 190–209. https://doi.org/10.1002/2013PA002557

Geibert, W., & Usbeck, R. (2004). Adsorption of thorium and protactinium onto different particle types: Experimental findings. Geochimica et Cosmochimica Acta, 68, 1489–1501. https://doi.org/10.1016/j.gca.2003.10.011

Gherardi, I. M., Labeyrie, L., Nave, S., Francois, R., McManus, J. F., & Cortijo, E. (2009). Glacial-interglacial circulation changes inferred from 231Pa/230Th sedimentary record in the North Atlantic region. Paleoceanography, 24, PA2204. https://doi.org/10.1029/2008PA001696

Gottschalk, J., Szidat, S., Michel, E., Mazaud, A., Salazar, G., Battaglia, M., et al. (2018). Radiocarbon measurements of small-size foraminiferal samples with the mini carbon dating system (MICADAS) at the University of Bern: Implications for paleoclimate reconstructions. Radiocarbon, 60, 469–491. https://doi.org/10.1017/RDC.2018.3

Grützner, J., Giosan, L., Franz, S. O., Tiedemann, R., Cortijo, E., Chaisson, W. P., et al. (2002). Astronomical age models for Pleistocene drift sediments from the western North Atlantic (ODP Sites 1055–1063). Marine Geology, 189, 5–23. https://doi.org/10.1016/S0025-3227(02)00320-1

Gutjahr, M., Frank, M., Stirling, C. H., Keigwin, L. D., & Halliday, A. N. (2008). Tracing the Nd isotope evolution of North Atlantic deep and intermediate waters in the western North Atlantic since the Last Glacial Maximum from Blake Ridge sediments. Earth and Planetary Science Letters, 266, 61–77. https://doi.org/10.1016/j.epsl.2007.10.037

Gutjahr, M., & Lippold, J. (2011). Early arrival of southern source water in the deep North Atlantic prior to Heinrich event 2. Paleoceanography, 26, PA2101. https://doi.org/10.1029/2011PA002114

Hagen, S., & Keigwin, L. D. (2002). Sea-surface temperature variability and deep water reorganisation in the subtropical North Atlantic during isotope stage 2-4. Marine Geology, 189, 145–162. https://doi.org/10.1016/S0025-3203(01)00327-4

Hayes, C. T., Anderson, R. F., Fleisher, M. Q., Huang, K. F., Robinson, L. F., Lu, Y., et al. (2015). 231Pa and 230Th on GEOTRACES GA03, the U.S. GEOTRACES North Atlantic transect, and implications for modern and paleoceanographic chemical fluxes. Deep Sea Research Part II, 116, 29–41. https://doi.org/10.1016/j.dsr2.2014.07.007

Hayes, C. T., Anderson, R. F., Fleisher, M. Q., Vivancos, S. M., Lam, P. J., Ohnemus, D. C., et al. (2015). Intensity of Th and Pa scavenging partitioned by particle chemistry in the North Atlantic Ocean. Marine Chemistry, 170, 49–60. https://doi.org/10.1016/j.marchem.2015.01.006

Hayes, C. T., Anderson, R. F., Jaccard, S. L., Francois, R., Fleisher, M. Q., Soon, M., & Gersonde, R. (2013). A new perspective on boundary scavenging in the North Pacific Ocean. Earth and Planetary Science Letters, 369–370, 86–97. https://doi.org/10.1016/j.epsl.2013.03.008

Henderson, G. M., & Anderson, R. F. (2003). The U-series toolbox for paleoceanography. Reviews in Mineralogy and Geochemistry, 52, 493–531. https://doi.org/10.2113/0525493

Hoffmann, S. S., McManus, J. F., & Swank, E. (2018). Evidence for stable Holocene basin-scale overturning circulation despite variable currents along the deep western boundary of the North Atlantic Ocean. Geophysical Research Letters, 45, 13,427–13,436. https://doi.org/10.1029/2018GL080187

Howe, J. N. W., Piotrowski, A. M., Hu, R., & Bory, A. (2017). Reconstruction of east-west deep water exchange in the low latitude Atlantic Ocean over the past 25,000 years. Earth and Planetary Science Letters, 458, 327–336. https://doi.org/10.1016/j.epsl.2016.10.048

Howe, J. N. W., Piotrowski, A. M., Noble, T. L., Mulitza, S., Chiossi, C. M., & Bayon, G. (2016). North Atlantic deep-water production during the Last Glacial Maximum. Nature Communications, 7(1), 1–8. https://doi.org/10.1038/ncomms11765

Johnson, G. C. (2008). Quantifying Antarctic bottom water and North Atlantic deep water volumes. Journal of Geophysical Research, 113, C05027. https://doi.org/10.1029/2007JC004477

Keigwin, L. D. (2004). Radiocarbon and stable isotope constraints on Last Glacial Maximum and Younger Dryas ventilations in the western North Atlantic. Paleoceanography, 19, PA4012. https://doi.org/10.1029/2004PA001029

Keigwin, L. D., & Boyle, E. A. (2000). Detecting Holocene changes in thermohaline circulation. Proceedings of the National Academy of Sciences, 97(4), 1343–1346. https://doi.org/10.1073/pnas.97.4.1343

Keigwin, L. D., & Jones, G. A. (1994). Western North Atlantic evidence for millennial-scale changes in ocean circulation and climate. Journal of Geophysical Research, 99, 12,397–12,410. https://doi.org/10.1029/94JC05025

Keigwin, L. D., & Schlegel, M. (2002). Ocean ventilation and sedimentation since the glacial maximum at 3 km in the western North Atlantic. Geochemistry, Geophysics, Geosystems, 3(6), 1034. https://doi.org/10.1029/2001GC000283

Keigwin, L. D., & Swift, S. A. (2017). Carbon isotope evidence for a northern source of deep water in the glacial western North Atlantic. Proceedings of the National Academy of Sciences, 114, 2833–2838. https://doi.org/10.1073/pnas.1609546114

Korff, L., von Dobeneck, T., Frederichs, T., Kasten, S., Kuhn, G., Gersonde, R., & Dickmann, B. (2016). Cyclic magnetite dissolution in Pleistocene sediments of the abyssal northwest Pacific Ocean: Evidence for glacial oxygen depletion and carbon trapping. Paleoceanography, 31, 600–624. https://doi.org/10.1002/2015PA002882

Lippold, J., Gherardi, J. M., & Luo, Y. (2011). Testing the 231Pa/230Th paleocirculation proxy: A data versus 2D model comparison. Geophysical Research Letters, 38, L20603. https://doi.org/10.1029/2011GL049282
Skinner, L. C., Scrivner, A. E., Vance, D., Barker, S., Fallon, S., & Waelbroeck, C. (2013). North Atlantic versus southern ocean contributions to a deglacial surge in deep ocean ventilation. *Geology, 41*(6), 667–670. https://doi.org/10.1130/G34133.1

Spooner, P. T., Thornalley, D. J. R., & Ellis, P. (2018). Grain size constraints on glacial circulation in the Southwest Atlantic. *Paleoceanography and Paleoclimatology, 33*, 21–30. https://doi.org/10.1002/2017PA00232

Stahr, F. R., & Sanford, T. B. (1999). Transport and bottom boundary layer observations of the North Atlantic Deep Western Boundary Current at the Blake Outer Ridge. *Deep-Sea Research Part II: Topical Studies in Oceanography, 46*(1–2), 205–243. https://doi.org/10.1016/S0967-0645(98)00101-5

Süfke, F., Lippold, J., & Happel, S. (2018). Improved separation of Pa from Th and U in marine sediments with TK400 resin. *Analytical Chemistry, 90*(2), 1395–1401. https://doi.org/10.1021/acs.analchem.8b04723

Thomas, A. L., Henderson, G. M., & Robinson, L. F. (2006). Interpretation of the 231Pa/230Th paleocirculation proxy: New water-column measurements from the southwest Indian Ocean. *Earth and Planetary Science Letters, 241*, 493–504. https://doi.org/10.1016/j.epsl.2005.11.031

Thornalley, D. J. R., Barker, S., Becker, J., Hall, I. R., & Knorr, G. (2013). Abrupt changes in deep Atlantic circulation during the transition to full glacial conditions. *Paleoceanography, 28*, 253–262. https://doi.org/10.1002/palo.20025

van der Rutgers Loeff, M., Venchiarutti, C., Stimac, I., van Ooijen, J., Huhn, O., Rohardt, G., & Strass, V. (2016). Meridional circulation across the Antarctic Circumpolar Current serves as a double 231Pa and 230Th trap. *Earth and Planetary Science Letters, 455*, 73–84. https://doi.org/10.1016/j.epsl.2016.07.027

Walter, H. J., Rutgers van der Loeff, M., & Hoeltzen, H. (1997). Enhanced scavenging of 231Pa relative to 230Th in the South Atlantic south of the polar front: Implications for the use of the 231Pa/230Th ratio as a paleoproductivity proxy. *Earth and Planetary Science Letters, 149*, 85–100. https://doi.org/10.1016/S0012-821X(97)00066-X

Wilmes, S.-B., Schmittner, A., & Green, J. A. M. (2019). Glacial ice sheet extent effects on modeled tidal mixing and the global overturning circulation. *Paleoceanography and Paleoclimatology, 34*, 1437–1454. https://doi.org/10.1029/2019PA003644

Yu, E.-F., Francois, R., & Bacon, M. P. (1996). Similar rates of modern and last-glacial ocean thermohaline circulation inferred from radiochemical data. *Nature, 379*, 689–694. https://doi.org/10.1038/379689a0

Zweng, M. M., Reagan, J. R., Antonov, J. I., Locarnini, R.A., Mishonov, A. V., Boyer, T. P., et al., 2013. World Ocean Atlas 2013, Volume 2: Salinity. S. Levitus, Ed., A. Mishonov Technical Ed.; NOAA Atlas NESDIS 74, 39 pp.