Algorithm for SIS and MultiSIS problems

Igor Semaev
Department of Informatics, University of Bergen, igor@ii.uib.no

August 18, 2020

Abstract

SIS problem has numerous applications in cryptography. Known algorithms for solving that problem are exponential in complexity. A new algorithm is suggested in this note, its complexity is sub-exponential for a range of parameters.

1 Introduction

Let A be any integer $m \times n$ matrix, where $m > n$ and q be a prime. Assume A is of rank n modulo q. Let $c = (c_1, \ldots, c_m)$ be an integer vector of length m and $|c| = (c_1^2 + \ldots + c_m^2)^{1/2}$ denote its norm (Euclidean length) and ν be a positive real. The SIS (Short Integer Solution) problem is to construct a non-zero integer row vector c of length m and norm at most ν such that $cA \equiv 0 \mod q$. The problem of constructing several such short vectors is called MultiSIS problem.

The inhomogeneous SIS problem asks for a short vector c such that $cA \equiv a \mod q$ for a non-zero row vector a of length n. The inhomogeneous SIS problem may be reduced to a homogeneous SIS problem. Let $A_1 = \begin{pmatrix} A \\ a \end{pmatrix}$ be a concatenation of the matrix A and the vector a. Assume one constructs a number of short solutions c_1 to $c_1A_1 \equiv 0 \mod q$ with non-zero last entry. One of them may likely be $c_1 = (c, 1)$ and that gives a solution to $cA \equiv a \mod q$, or such a vector may be found as a combination of the solutions to the SIS problem.

Typical SIS problem parameters are $\nu \geq \sqrt{\frac{n \log_2 q}{2}}$ and $m > n \log_2 q$, where q is bounded by a polynomial in n. The problem may be reduced to constructing short vectors in general lattices, which is considered hard, see [1]. The SIS problem has a number of applications in cryptography, see [6]. For instance, the hash function $x \rightarrow xA$ was suggested in [1].

Integer vectors c such that $cA \equiv 0 \mod q$ is a lattice of dimension m and volume q^m. So all vectors of norm $\leq \nu$ may be computed with a lattice enumeration in time $m^{O(m)}$, see [3]. Alternatively, one may apply a lattice reduction algorithm. The reduction cost is $2^{O(m)}$ operations according to [3]. The so-called combinatorial algorithms to solve the
SIS problem and its inhomogeneous variant, where the entries of \(c \) are 0 or 1, are surveyed in [2]. They have complexity \(2^{O(m)} \) operations. All above methods are thus exponential in complexity. In this note a new algorithm for solving SIS and MultiSIS problems is introduced. The complexity of the algorithm is sub-exponential for a range of parameters.

2 MultiSIS Problem

How to construct \(N \) different non-zero vectors \(c \) of norm at most \(\nu \) such that \(cA \equiv 0 \mod q \)? The vectors generated by the rows of the matrix \(qI_m \), where \(I_m \) denotes a unity matrix of size \(m \times m \), are trivial solutions and not counted. We call this MultiSIS problem. Obviously, a solution to the MultiSIS problem implies a solution to the homogeneous SIS problem. That may also imply a solution to a relevant inhomogeneous problem as it is explained earlier.

The MultiSIS problem may be solved by lattice enumeration. Alternatively, one perturbs the initial basis of the lattice \(N \) times and apply a lattice reduction algorithm after each perturbation. So the overall complexity is \(N2^{O(m)} \), though we do not know if that really solves the problem as the vectors in the reduced bases may repeat.

If \(m = o(\nu^2) \), then the number of integer vectors \(c \) of norm at most \(\nu \) is approximately the volume of a ball of radius \(\nu \) centred at the origin. With probability \(1/q^n \) the vector \(c \) satisfies \(cA \equiv 0 \). Therefore the number of such relations is around

\[
\frac{\pi^{m/2} \nu^m}{\Gamma(m/2 + 1)} q^n \approx \frac{(2\pi e)^{m/2}}{\sqrt{\pi m}} \left(\frac{\nu}{\sqrt{m}} \right)^m \frac{1}{q^n}
\]

and should be at least \(N \) to make the problem solvable. That fits the so-called Gaussian heuristic, see [4].

According to [5], if \(\nu = O(\sqrt{m}) \) the Gaussian heuristic does not generally hold. We will use a different argument still heuristic. Let \(\nu < \sqrt{m} \) and \(d = \lfloor \nu^2 \rfloor \). For each subset \(A_{i_1}, \ldots, A_{i_r} \) of \(r \leq d \) rows of \(A \) there are \(2^r \) linear combinations \(c_1A_{i_1} + \ldots + c_rA_{i_r} \), where \(c_i = \pm 1 \) and so \(c = (c_1, \ldots, c_r) \) is of norm \(\leq \nu \). We do not distinguish between \(c \) and \(-c \). So the expected number of such zero combinations is \(2^{r-1}/q^n \). For the whole matrix the expected number of different \(c \) of norm at most \(\nu \) such that \(cA \equiv 0 \) is at least

\[
\sum_{r=1}^{d} \binom{m}{r} 2^{r-1}/q^n.
\]

Therefore, \(N \) such relations do exist if

\[
\sum_{r=1}^{d} \binom{m}{r} 2^{r-1}/q^n \geq N,
\]

minding that the inequality is approximate.

2.1 MultiSIS Algorithm

Let \(\delta = m/n \ln q \) and \(\eta = \nu^2/n \ln q \). In this section we present the algorithm to construct vectors \(c \) of norm at most \(\nu \) such that \(cA \equiv 0 \mod q \). In Section 2.2 we will show that if at least one of \(\delta \) or \(\eta \) tends to infinity, then one may construct \(q^{\frac{\nu^2}{(1+o(1))}} \) such vectors with the complexity \(q^{t(1+o(1))} \) operations, where \(t = \lfloor \log_2 \sqrt{\eta \ln \delta} \rfloor (1 + o(1)) \). The latter tends to infinity, so the complexity is sub-exponential. If both \(\delta \) and \(\eta \) are bounded, then
the complexity is represented by the same expression for some bounded t and therefore exponential. The analysis is heuristic.

Let $d \geq 2, k < m, N$ be integer parameters such that $\nu = d\sqrt{k}$. We may assume that $d = 2^t$ for an integer $t = \log_2 d$ and $n = st$ for an integer s. Otherwise, the algorithm below is easy to adjust. Let $m(k)$ be the number of integer vectors of length m and of norm $\leq \sqrt{k}$ up to a multiplier -1. It is easy to see that $m(k) \geq \sum_{i=1}^{k} \binom{m}{i}2^{t-1}$.

1. Put $\mathfrak{A}_0 = C_0A$, where C_0 be a matrix of size $m(k) \times m$ and each row of C_0 is an integer vector of norm at most \sqrt{k}.

2. Let N_i for i in $0, \ldots, t - 1$ be integers such that $N_i = q^{s(1+o(1))}$, where $N_0 \leq m$ and $N_t = N$.

3. For $i = 0, \ldots, t - 1$ do the following. Represent $\mathfrak{A}_i = \mathfrak{A}_{i1}|\mathfrak{A}_{i2}$ as a concatenation of two matrices, where \mathfrak{A}_{i1} is of size $N_i \times s$ and \mathfrak{A}_{i2} is of size $N_i \times s(t - i - 1)$. As $N_i = q^{s(1+o(1))}$ there are $N_{i+1} = q^{s(1+o(1))}$ relations $c\mathfrak{A}_{i1} \equiv 0$, where c is a vector of length N_i and it has at most two non-zero entries which are ± 1. Let C_{i+1} be a matrix of size $N_{i+1} \times N_i$ with such rows. Equivalently, there are $q^{t(1+o(1))}$ pairs of rows in \mathfrak{A}_{i1}, where one row differs from another by a multiplier ± 1, and zero rows in \mathfrak{A}_{i1}. Such pairs of rows and zero rows in \mathfrak{A}_{i1} may be computed in $N_i^{1+o(1)}$ operations by sorting. Put $\mathfrak{A}_{i+1} = C_{i+1}\mathfrak{A}_{i2}$ and repeat the step.

4. The matrix $C = C_t \ldots C_1C_0$ is of size $N \times m$ and it satisfies $CA \equiv 0$. Each row of C has norm $\leq \nu = d\sqrt{k}$.

The rows of C_0 are different and non-zero. At each step of the algorithm one may choose C_i such that the rows of $C_i \ldots C_1C_0$ are different. As the rows of C_{i+1} have at most two non-zero entries which are ± 1, the rows of $C_{i+1}C_i \ldots C_0$ are all non-zero. Though we can not guarantee theoretically that all constructed vectors are different, the algorithm works well in practice.

2.2 Analysis of the Algorithm

The algorithm constructs $q^n^{k(1+o(1))}$ integer vectors c of norm at most ν such that $cA \equiv 0 \pmod{q}$ and its complexity is $q^{t(1+o(1))}$ operations. We will define an optimal $t = \log_2 d$. For any input parameters n, q, m, ν one may find t by solving numerically the system $m(k) \geq q^t$ and $\nu = 2^t \sqrt{k}$.

Let $\delta = m/n \ln q$ and $\eta = \nu^2/n \ln q$ and at least one of them is an increasing function in n. We will represent t as a function of δ, η. First, we find k such that $m(k) \geq q^\tilde{\eta}$ for large n. One may solve a stronger inequality $\binom{m}{k}2^{k-1} \geq q^\tilde{\eta}$ instead. With the Stirling approximation to the factorial function, it is easy to see that one may take $k = \frac{\alpha n}{\delta} (1 + o(1))$, where

$$\alpha = \frac{\ln q}{\ln m - \ln \ln q^\tilde{\eta}} = \frac{\ln q}{\ln(\delta t)}.$$
So $k = \frac{n \ln q}{t \ln(\delta t)} (1 + o(1))$ and the equation $\nu = d \sqrt{k}$ is equivalent to

$$\eta = \frac{4t}{t \ln(\delta t)} (1 + o(1)).$$

(1)

The solution to (1) is

$$t = \log_2 \sqrt{\eta \ln \delta} \cdot (1 + o(1)).$$

Experimentally, $t > \log_2 \sqrt{\eta \ln \delta}$ and they converges for very large parameters. The complexity of the algorithm is $q^{\frac{n \ln q}{t \ln(\delta t)} (1 + o(1))}$.

References

[1] M. Ajtai, *Generating hard instances of lattice problems*. Proceedings of the twenty-eighth annual ACM symposium on Theory of computing. ACM, 1996.

[2] S. Bai, S. Galbraith, L. Li, D. Sheffield, *Improved Combinatorial Algorithms for the Inhomogeneous Short Integer Solution Problem*, J Cryptol 32, pp. 35–83 (2019)

[3] G. Hanrot, X. Pujol and D. Stehlé, *Algorithms for the Shortest and Closest Lattice Vector Problems*, in IWCC 2011. LNCS 6639, Springer, Berlin, Heidelberg, pp. 159–190.

[4] P.Q. Nguyen and B. Vallée(eds), *The LLL Algorithm. Survey and Applications*, Springer-Verlag, Berlin, Heidelberg, 2010.

[5] Mazo, J.E., Odlyzko, A.M. *Lattice points in high-dimensional spheres*. Monatshefte für Mathematik 110 (1990), pp. 47–61.

[6] C. Peikert, *A decade of lattice cryptography*. Cryptology ePrint Archive, Report 2015/939, 2015.