**Intro**

Calcificações de partes moles são achados extremamente comuns e inespecíficos nos exames de imagem e, por isso, frequentemente são fonte de confusão por parte dos radiologistas, desencadeando, por vezes, intervenções desnecessárias. Além disso, a nomenclatura atribuída é muito confusa. Classicamente, dividem-se as calcificações de partes moles, conforme seu mecanismo de formação, em calcificações distróficas, iatrogênicas, metastáticas e idiopáticas, dependendo de correlação clinicolaboratorial, porém, também é possível uma classificação compartimental das calcificações, que pode ser muito útil na propedêutica radiológica. Neste trabalho, ilustramos didaticamente as principais causas de calcificações de partes moles organizando-as de acordo com aspectos anatômicos e fisiopatológicos, estreitando os diagnósticos diferenciais.

Unitermos: Calcinose/diagnóstico por imagem; Radiografia; Diagnóstico diferencial.

Abstract

Soft-tissue calcifications are extremely common. Because the imaging findings are nonspecific, soft-tissue calcifications are often problematic for radiologists, sometimes prompting unnecessary interventions. In addition, the nomenclature is quite confusing. Classically, soft-tissue calcifications are divided into four categories, by mechanism of formation—dystrophic, iatrogenic, metastatic, and idiopathic—depending on the clinical and biochemical correlation. However, it is also possible to classify such calcifications by compartment, and that classification can be quite useful in the radiological diagnostic assessment. In this article, we illustrate the main causes of soft-tissue calcifications, organizing them according to their anatomical and pathophysiological aspects, thus narrowing the differential diagnosis.

Keywords: Calcinose/diagnostic imaging; Radiography; Diagnosis, differential.

**INTRODUÇÃO**

Calcificações de partes moles são achados tão frequentes quanto inespecíficos nos exames de imagem, representando desde uma resposta local inespecífica a um insulto traumático até uma manifestação de doença sistêmica¹,². Além da falta de especificidade e da extensa lista de diagnósticos diferenciais, a nomenclatura é confusa e pouco intuitiva³⁴. Classicamente, dividem-se em calcificações distróficas, metastáticas, iatrogênicas e idiopáticas, dependendo do mecanismo de formação e correlação clinicolaboratorial⁵, mas também é possível uma classificação compartimental (subcutânea, neurovascular, fascial, muscular e periarticular), muito útil na propedêutica radiológica¹².

Neste trabalho buscamos ilustrar de maneira prática as principais causas de calcificações de partes moles, organizando-as de forma didática e estreitando os diagnósticos diferenciais.

**CALCIFICAÇÕES DISTRÓFICAS E IATROGÊNICAS**

São resultado da calcificação de tecidos danificados ou degenerados, representando a maior causa de calcificação de partes moles (95–98%)¹². A correlação com mani-
tecido conjuntivo, granulomas de injeção e paniculite ossificante (uma forma de ossificação heterotópica envolvendo o subcutâneo, geralmente decorrente de trauma local)\(^1\).

**Fasciais**

Calcificações do compartimento fascial são associadas a dermatomiosite/polimiosite, doenças caracterizadas por inflamação muscular, com ou sem acometimento cutâneo/subcutâneo, o que as diferencia clinicamente. Na fase crônica dessas doenças, após episódios de miosite, as calcificações se desenvolvem em áreas de necrose nos planos fasciais. São tipicamente longas e lineares (como folhas), acompanhando os contornos dos compartimentos fasciais\(^1\) (Figura 3).

**Musculares**

São decorrentes de insulto infeccioso, traumático ou doenças congênitas\(^1\). Entre as causas infecciosas, destacam-se as infecções granulomatosas e parasitárias (principalmente a cisticercose) (Figura 4). Entre as causas traumáticas, destaca-se a miosite ossificante (Figura 5), um tipo de ossificação heterotópica que ocorre após trauma...
(queimaduras são uma causa clássica) e aparece na radiografia após cerca de duas a seis semanas, inicialmente como tênues calcificações\textsuperscript{(6)}. Apesar do termo miosite, não se observa processo inflamatório\textsuperscript{(1,6)}. Outras causas traumáticas incluem os hematomas musculares calcificados (Figura 6) e a mionecrose calcificada\textsuperscript{(4)}. Dentre as causas congênitas, está a fibrodisplasia ossificante progressiva, uma doença genética rara, autossômica dominante e extremamente incapacitante, caracterizada por ossificação heterotópica progressiva e difusa, culminando em limitação crescente de mobilidade\textsuperscript{(7)} (Figura 7).
Periarticulares

São calcificações em componentes intra-articulares ou extra-articulares previamente acometidos por processos inflamatórios/degenerativos.

As calcificações extra-articulares representam acometimento de tendões, bursas e ligamentos mais comumente por depósito de cristais de hidroxiapatita ou pós-cirurgia ou trauma (Figura 8).

As tendinopatias e bursites calcárias (depósito de hidroxiapatita em tendões e bursas degenerados) são bastante comuns na população, têm pico de acometimento na quinta década de vida e mais comumente ocorrem no ombro (tendão do músculo supraespinhal)(2,8) (Figura 9). Além do depósito tendíneo de hidroxiapatita, pode haver o desenvolvimento de artropatia por cristais, com sinovite e destruição articular, o que ocorre mais comumente no ombro e é chamado de “ombro de Milwaukee”(1) (Figura 10).

As calcificações intra-articulares referem-se principalmente às calcificações das cartilagens articulares (condrocalcinose), cuja principal causa é a artropatia por depósito de pirolfosfato de cálcio di-hidratado (calcium pyrophosphate dihydrate – CPPD), acometendo cartilagem hialina e fi brocartilagens, como meniscos, labrum acetabular e discos intervertebrais(3,6) (Figura 11). O termo condrocalcinose refere-se à presença radiológica ou histológica de calcificações nas cartilagens e pode ocorrer em calcificações metastáticas, não devendo ser usado como sinônimo da doença por depósito de CPPD. Outro termo erroneamente empregado é pseudogota, que se refere à síndrome clínica gota-like e não ao aspecto radiológico(3). A origem da artropatia por depósito de CPPD é provavelmente degenerativa, decorrente de uma anormalidade no metabolismo local do líquido sinovial e da cartilagem articular(2), sendo muito comum em idosos e geralmente assintomática(3).

A forma e distribuição das calcificações auxiliam no diagnóstico diferencial. As calcificações decorrentes de depósito de hidroxiapatita (tendinopatias e bursites calcárias) são classicamente nodulares ou algodonosas e acometem principalmente tecidos extra-articulares(8), enquanto as decorrentes de depósito de CPPD tendem a ser mais tênues e lineares, com aspecto estratificado(2).
Outra causa de calcificação intra-articular é a osteocondromatose sinovial, uma entidade rara causada por metaplasia condroide do tecido sinovial com proliferação de corpos intrassinoviais osteocartilaginosos. Esses corpos tipicamente têm padrão de mineralização condroide, apresentando-se completamente calcificados ou com halo calcificado típico\(^{(1,4,9)}\) (Figura 12).

Além dessas causas, diversos tumores benignos e malignos, ósseos e de partes moles produzem calcificações periarticulares (intra-articulares e extra-articulares), incluindo um amplo diagnóstico diferencial, cuja revisão está além do escopo deste artigo\(^{(1,6)}\).

CALCIFICAÇÕES METASTÁTICAS (METABÓLICAS)

Comumente são calcificações generalizadas e ocorrem em tecidos normais, geralmente por deposição de sais de cálcio decorrente de algum distúrbio metabólico sistêmico com elevação do produto cálcio/fosfato acima de 60–70\(^{(2,4)}\).

A causa mais comum de calcificações metastáticas é a doença renal crônica terminal, que também representa a principal causa de calcificações periarticulares maciças. Neste caso, o distúrbio metabólico resulta da
disfunção renal, havendo correlação com a duração da doença e podendo ocorrer mesmo na ausência de hiperparatireoidismo\(^4,9\). Consistem de massas calcificadas periarticulares lobuladas, geralmente multicísticas e com nível líquido/cálcio (sinal da sedimentação)\(^1,4,10\) (Figura 13). As demais causas de calcificações metastáticas com distúrbios do metabolismo do cálcio e fosfato incluem o hiperparatireoidismo primário, a síndrome milk-alkali e a hipervitaminose D.

Distúrbios de outros íons, secundários a algum mecanismo como desmineralização do esqueleto, destruição óssea maciça, aumento da absorção intestinal, entre outros, também são causas de calcificações metastáticas, destacando-se a gota, decorrente de hiperuricemia. Quando as calcificações estão presentes na gota, geralmente estão associadas aos tofos e há também outros achados ósseos como erosões\(^2,4,6\) (Figura 14).

**CALCIFICAÇÕES IDIOPÁTICAS**

As calcificações idiopáticas ocorrem na calcinose tumoral, uma doença familiar rara, causada por regulação anormal do metabolismo do fosfato. Esta doença é caracterizada pelo aparecimento, por volta da segunda década de vida, de massas calcificadas periarticulares indistinguíveis por imagem das calcificações metastáticas por distúrbio do metabolismo do cálcio e fósforo, com distribuição típica nas faces extensoras de grandes articulações (superfícies bursais) (Figura 15). São frequentemente assintomáticas, podendo crescer lentamente. Duas formas de calcinose tumoral idiopática foram identificadas, causadas por mutações genéticas específicas, uma com aumento dos níveis
de fosfato (geralmente familiar) e outra com níveis normais de fosfato (geralmente esporádica)\(^{(2,4)}\).

Muitas vezes as calcificações metastáticas são chamadas “calcinose tumoral secundária”, porém, este termo deve ser evitado, reservando-se o termo “calcinose tumoral” para referir-se à doença familiar\(^{(4)}\).

CALCINOSES CIRCUMSCRIPTA E UNIVERSALIS

Os termos calcinose circumscripta e calcinose universalis são denominações consagradas, usadas para se referir a calcificações cutâneas e subcutâneas, sem distúrbio metabólico de base e geralmente associadas a doenças do tecido conjuntivo.

Na calcinose circumscripta o depósito de cálcio ocorre de modo localizado, sob forma de nódulos densamente calcificados e homogêneos ao redor das pontas dos dedos, principalmente nos polegares e indicadores\(^{(2)}\). O paciente apresenta pápulas, placas e nódulos subcutâneos que podem ulcerar, com eliminação de material esbranquiçado\(^{(1,4)}\). Está associada principalmente à esclerodermia\(^{(5)}\) (Figura 16).

Na calcinose universalis surgem bandas ou lâminas de calcificação subcutânea, muscular e fascial, difusas e de distribuição simétrica. Geralmente ocorre nas doenças do tecido conjuntivo, principalmente na dermatomiosite e polimiosite\(^{(4)}\) (Figura 17).

CONCLUSÃO

Calcificações de partes moles são achados extremamente comuns nos exames de imagem e frequentemente

Figura 15. Calcinose tumoral. Radiografia do quadril em incidência frontal com massa periarticular calcificada de contornos lobulados e aspecto multicístico, localizada na região da bursa trocantérica, observando-se nível cálcico inferior nos cistos (sinal da sedimentação).

Figura 16. Calcinose circumscripta na esclerodermia. Radiografia das mãos demonstrando calcificações nodulares densas e bem definidas, focais no tecido subcutâneo dos polegares. Notar a distribuição bilateral e simétrica, com preferência pelo acometimento dos polegares e indicadores.

Figura 17. Calcinose universalis na dermatopolimiosite. Radiografia em incidência frontal do ombro e braço com calcificações difusas da pele, tecido subcutâneo, fásicas e músculos. Notar o aspecto em folhas da distribuição das calcificações.
são fonte de confusão por parte dos radiologistas, às vezes desencadeando intervenções desnecessárias. Uma avaliação cuidadosa e sistematizada dessas lesões, em conjunto com dados clínicos e laboratoriais, permite estreitar os diagnósticos diferenciais.

REFERÊNCIAS
1. Banks KP, Bui-Mansfield LT, Chew FS, et al. A compartmental approach to the radiographic evaluation of soft-tissue calcifications. Semin Roentgenol. 2005;40:391–407.
2. Freire V, Moser TP, Lepage-Saucier M. Radiological identification and analysis of soft tissue musculoskeletal calcifications. Insights Imaging. 2018;9:477–92.
3. Steinbach LS. Calcium pyrophosphate dihydrate and calcium hydroxyapatite crystal deposition diseases: imaging perspectives. Radiol Clin North Am. 2004;42:185–205.
4. Olsen KM, Chew FS. Tumoral calcinosis: pearls, polemics, and alternative possibilities. Radiographics. 2006;26:871–85.
5. Balin SJ, Wetter DA, Andersen LK, et al. Calcinosis cutis occurring in association with autoimmune connective tissue disease: the Mayo Clinic experience with 78 patients, 1996-2009. Arch Dermatol. 2012;148:455–62.
6. Hwang ZA, Suh KJ, Chen D, et al. Imaging features of soft-tissue calcifications and related diseases: a systematic approach. Korean J Radiol. 2018;19:1147–60.
7. Reinig JW, Hill SC, Fang M, et al. Fibrodysplasya ossificans progressiva: CT appearance. Radiology. 1986;159:153–7.
8. Resnick D, Kransdorf MJ. Calcium hydroxyapatite crystal deposition disease. In: Resnick D, Kransdorf MJ, editors. Bone and joint imaging. 3rd ed. Philadelphia, PA: Elsevier Saunders; 2012. p. 474–85.
9. Murphey MD, Vidal JA, Fanburg-Smith JC, et al. Imaging of synovial chondromatosis with radiologic-pathologic correlation. Radiographics. 2007;27:1465–88.
10. Murphey MD, Sartoris D, Quale JL, et al. Musculoskeletal manifestations of chronic renal insufficiency. Radiographics. 1993;13:357–79.