High Precision determination of the π, K, D and D_s decay constants from lattice QCD

E. Follana,1 C. T. H. Davies,1 G. P. Lepage,2 and J. Shigemitsu3

(HPQCD and UKQCD collaborations)

1Department of Physics and Astronomy, University of Glasgow, Glasgow, G12 8QQ, UK
2Laboratory of Elementary-Particle Physics, Cornell University, Ithaca, New York 14853, USA
3Department of Physics, The Ohio State University, Columbus, Ohio 43210, USA

(Dated: March 28, 2008)

We determine D and D_s decay constants from lattice QCD with 2\% errors, 4 times better than experiment and previous theory: $f_D = 241(3)$ MeV, $f_{D_s} = 207(4)$ MeV and $f_{D_s}/f_D = 1.16(11)$. We also obtain $f_K/f_s = 1.189(7)$ and $(f_{D_s}/f_D)/(f_K/f_s) = 0.979(11)$. Combining with experiment gives $V_{us}=0.2262(14)$ and V_{cd}/V_{ud} of 4.43(41). We use a highly improved quark discretisation on MILC gluon fields that include realistic sea quarks, fixing the u/d, s and c masses from the π, K, and η meson masses. This allows a stringent test against experiment for D and D_s masses for the first time (to within 7 MeV).

The annihilation to a W boson of the D_s, D, π or K meson is a ‘gold-plated’ process with leptonic width (for meson P of quark content $q\bar{q}$) given up, to a calculated electromagnetic correction factor $\Gamma(P \rightarrow l\nu_l(\gamma)) = \frac{G_F^2|V_{ab}|^2}{8\pi} f_P m_P^2 m_P \left(1 - \frac{m_l^2}{m_P^2}\right)^2.$ (1)

V_{ab} is from the Cabibbo-Kobayashi-Maskawa (CKM) matrix and f_P, the decay constant, parameterizes the amplitude for W annihilation. If V_{ab} is known from elsewhere an experimental value for Γ gives f_P, to be compared to theory. If not, an accurate theoretical value for f_P, combined with experiment, can yield a value for V_{ab}.

f_P is defined from $\langle 0|\bar{\pi}\gamma_\mu(\gamma_5)b|P(p)\rangle \equiv f_P P_{\mu}$ calculable in lattice QCD to handle quark confinement, and with QED effects omitted. The experimental leptonic decay rates for K and π are known very accurately and D and D_s less so, but with expected errors shortly of a few percent. Accurate predictions from lattice QCD can be made now, ahead of these results and comparison will then be a severe test of lattice QCD (and QCD itself).

This has impact on the confidence we have in similar matrix elements being calculated in lattice QCD for B mesons that provide key unitarity triangle constraints.

A major error in lattice QCD until recently was missing sea quarks from the gluon field configurations on which calculations were done, because of numerical expense. This has now been overcome. The MILC collaboration3 has made ensembles at several different values of the lattice spacing, a, that include sea u and d (taken to have the same mass) and s quarks with the u/d quark mass taking a range of values down to $m_s/10$. The sea quarks are implemented in the improved staggered (asqtad) formalism by use of the fourth root of the quark determinant. This procedure, although deemed ‘ugly’, appears to be a valid discretisation of QCD4.

For f_{D_s} a large error can arise from the inaccuracy of discretisations of QCD for c quarks. Discretisation errors are set by powers of the mass in lattice units, m_a, and this is not negligible at typical values of a. However, m_a is not so large that it can easily be removed from the problem using nonrelativistic methods as is done for b quarks, for example5. The key then to obtaining small errors for c quarks is a highly improved relativistic action on reasonably fine lattices (where $m_c a \approx 1/2$).

The FNAL and MILC collaborations previously obtained a prediction for f_D of 201(17) MeV and for f_{D_s} of 249(16) MeV6 using the ‘clover’ action for c quarks. The 6\%-8\% error comes largely from discretization errors in the clover action. Our action is improved to a higher order in the lattice spacing and this means that

\begin{table}[h]
\centering
\begin{tabular}{ |c|c|c|c|c| }
\hline
Lattice/sea & valence & $m_{u, d, s, c, 1+\epsilon}$ & r_1/a \\
\hline
sea & u_{am}, u_{am} & $0.0194, 0.0484$, $0.0264, 0.066, 0.85, 0.66$ & $2.129(11)$ \hline
valence & u_{am}, u_{am} & $0.0132, 0.066, 0.85, 0.66$ & $2.133(11)$ \hline
$20^3 \times 64$ & $0.02, 0.05$ & $0.0278, 0.0525, 0.648, 0.79$ & $2.650(8)$ \hline
$24^3 \times 64$ & $0.01, 0.05$ & $0.01365, 0.0546, 0.66, 0.79$ & $2.610(12)$ \hline
$28^3 \times 96$ & $0.005, 0.05$ & $0.0067, 0.0537, 0.65, 0.79$ & $2.632(13)$ \hline
$32^3 \times 96$ & $0.0124, 0.031$ & $0.01635, 0.03635, 0.427, 0.885$ & $3.711(13)$ \hline
$32^3 \times 96$ & $0.0062, 0.031$ & $0.00705, 0.0366, 0.43, 0.885$ & $3.684(12)$ \hline
\end{tabular}
\end{table}

\textbf{Table I:} MILC configurations and mass parameters used for this analysis. The $16^3 \times 48$ lattices are ‘very coarse’, the $20^3 \times 64$ and $24^3 \times 64$, ‘coarse’ and the $28^3 \times 96$, ‘fine’. The sea asqtad quark masses ($l = u/d$) are given in the MILC convention with u the plaquette tadpole parameter. Note that the s quark mass on fine and coarse lattices are above the subsequently determined physical value3. We make a small correction (with 50\% uncertainty) to our results for f_{s,K,D,D_s} to allow for this, based on our studies of their sea quark mass dependence and MILC results in3. It has negligible effect on our final numbers and errors. The lattice spacing values in units of r_1 after ‘smoothing’ are in the rightmost column3. The central column gives the HISQ valence u/d, s and c masses along with the coefficient of the Naik term, $1 + \epsilon$, used for c quarks4.

\[\text{arXiv:0706.1726v2 [hep-lat] 28 Mar 2008}\]
our results are both more accurate for the D and D_s and more accurate for charmonium, allowing additional predictive power. In addition, our formalism has a partially conserved current so we do not have to renormalise the lattice f_{D_s} to give a result for the continuous real world of experiment. We can then reduce the error on f_{D_s} to 2% and the ratio of decay constants even further.

We use the Highly Improved Staggered Quark (HISQ) action, developed from the asqtad action by reducing by a factor of 3 the ‘taste-changing’ discretisation errors. Other discretisation errors are also small since, in common with asqtad, HISQ includes a ‘Naik’ term to cancel standard tree-level a^2 errors in the discretisation of the Dirac derivative. For c quarks the largest remaining discretisation error comes from radiative and tree-level corrections to the Naik term and we remove these by tuning the coefficient of the Naik term to obtain a ‘speed of light’ of 1 in the meson dispersion relation. The hadron mass is then given accurately by its energy at zero momentum, unlike the case for the clover action.

In we tested the HISQ action extensively in the charmonium sector, fixing m_c so that the mass of the ‘goldstone’ η_c meson agreed with experiment. We showed that remaining discretisation errors are very small, being suppressed by powers of the velocity of the c quark beyond the formal expectation of $\alpha_s(m_c a)^2$ and $(m_c a)^4$. The charm quark masses and Naik coefficients used for different ‘very coarse’, ‘coarse’ and ‘fine’ MILC ensembles are given in Table I. For the s and u/d valence quarks we also use the HISQ action with masses in Table II.

We calculate local two-point goldstone pseudoscalar correlators at zero momentum from a precessing random wall source and fit the average to:

$$C(t) = \sum_{i,ip} a_i e^{-M_{ip} t} + (-1)^i a_{ip} e^{-M_{ip} t} + (t \to T - t).$$

T is the time length of the lattice and t runs from 0 to T. i denotes ‘ordinary’ exponential terms and ip, ‘oscillating’ terms from opposite parity states. Oscillating terms are significant for D_q states because $m_c - m_q$ is relatively large, but not for π or K. We use a number of exponentials, i and ip, in the range 2-6 and loosely constrain higher order exponentials by the use of Bayesian priors. Constraining the D and D_s radial excitation energies to be similar improves the errors on the D. In lattice units, $M_P = M_0$ and f_P is related to a_0 through the partially conserved axial current relation, which gives $f_P = (m_u + m_d) \sqrt{2 a_0 / M_0^2}$. The resulting fitting error for all states is less than 0.1% on M_0 in lattice units and less than 0.5% on decay constants. Full details will be given in a longer paper.

To convert the results to physical units we use the scale determined by the MILC collaboration (Table I, II) in terms of the heavy quark potential parameter, r_1. r_1/a is determined with an error of less than 0.5% and allows results to be tracked accurately as a function of sea u/d quark mass and lattice spacing. At the end, however, there is a larger uncertainty from the physical value of r_1. This is obtained from the T spectrum using the non-relativistic QCD action for b quarks on the same MILC ensembles, giving $r_1 = 0.321(5)$ fm, $r_1^{-1} = 0.615(10)$ GeV.

Our results are obtained from u/d masses larger than approximately three times the average $m_{u/d}$ of the physical u and d quark masses. We obtain physical answers by extrapolating our results to the correct $m_{u/d}$ using chiral perturbation theory. In addition we have systematic errors from the finite lattice spacing values used. Since our results are so accurate we can also fit them as a function of a to extrapolate to the physical $a = 0$ limit. These two extrapolations are connected through the discretisation errors in the light quark action and one way to treat those is by modifying chiral perturbation theory to handle them explicitly. A more general approach, that allows us to handle light and heavy quark discretisation errors together, is to perform a simultaneous fit for both chiral and continuum extrapolations allowing for expected functional forms in both with a Bayesian analysis to constrain the coefficients. We tested this method by using it to analyze hundreds of different fake datasets, generated using formulas from staggered chiral perturbation theory with random couplings. As expected, we found that roughly 70% of the time the

![Fig. 1](image-url)
extrapolated results were within one standard deviation (computed using a Gaussian approximation to χ^2 of the exact result from the formula, verifying the validity of our approach and of our error estimates.

We fit our results to the standard continuum chiral expansions through first order [13], augmented by second and third-order polynomial terms in $x_a \equiv B_0 m_q/(8\pi f_a)^2$, where $B_0 \equiv m^2_a/(m_u + m_d)$ to leading order in chiral perturbation theory. The polynomial corrections are required by the precision of our data [28]. We include $D^* - D$ mass difference terms in the D/D_s chiral expansion and take the $DD^*\pi$ coupling to have the value inferred at leading order from the experimental D^* width, allowing for a 30% error from higher order effects. We correct for the finite volume of our lattice from chiral perturbation theory, although only f_K has corrections larger than 0.5%. Our corrections agree within 30% with those in Ref. [16] and we take a 50% uncertainty in the correction. We fit the couplings in the chiral expansions simultaneously to our π and K masses and decay constants. We do the same for the masses and decay constants of the D and D_s. Given the couplings, we tune $m_{u/d}$ and m_s so that our formulas give the experimental values for m_K and m_K^\star after correcting for the u/d mass difference and electromagnetic effects [8, 17].

We find that finite a errors are 2–3.5 times smaller with the HISQ quark action than with the asqtad action, but still visible in our results. We combine the extrapolation to $a = 0$ with the quark-mass extrapolation by adding a^2 dependence to our chiral formulas. We expect leading discretization errors of various types: $\alpha_s a^2$ and a^4 errors from conventional sources; and $\alpha_s^3 a^2$ and $\alpha_s^2 a^2 \log(x_{u,d})$ and $\alpha_s^3 a^2 x_{u,d}$ from residual taste-changing interactions among the valence and sea light quarks. We do not have sufficient data to distinguish between these different functional forms, but we include all of them (with appropriate priors for their coefficients) in our fits so that uncertainties in the functional dependence on a^2 are correctly reflected in our final error analysis. The a^2 extrapolations are sufficiently small with HISQ (1% or less for π and K from fine results to the continuum: 2% for D and D_s) that the associated uncertainties in our final results are typically less than 0.5%. The combined chiral and continuum Bayesian fits have 45 parameters for D/D_s and 48 for π/K with 28 data points for each fit [27].

Fig. 1 shows the masses of the D and D_s as a function of u/d quark mass. To reduce uncertainties from the scale and from c quark mass tuning, the meson masses were obtained from $m_{D_s} - m_{\eta_c}/2 + m_{\eta_c,expt}/2$. The lines show our simultaneous chiral fits at each value of the lattice spacing and the dashed line the consequent extrapolation to $a = 0$. The shaded bands give our final results: $m_{D_s} = 1.962(6)$ GeV, $m_{D} = 1.868(7)$ GeV. Experimental results are 1.968 GeV and 1.869 GeV respectively. We also obtain $(2m_{D_s} - m_{\eta_c})/(2m_{D} - m_{\eta_c}) = 1.251(15)$, in excellent agreement with experiment, 1.260(2) [2]. This last quantity is a non-trivial test of lattice QCD, since we are accurately reproducing the difference in binding energies between a heavy-heavy state (the η_c used to determine m_{η_c}) and a heavy-light state (the D and D_s). Table II gives our complete error budget for this quantity.

Fig. 2 similarly shows our results for decay constants on each ensemble with complete error budgets in Table II. f_K and f_{π} show very small discretisation effects and good agreement with experiment when V_{ud} is taken from nuclear β decay and V_{us} from K_{l3} decays [2]. We obtain $f_{\pi} = 132(2)$ MeV and $f_K = 157(2)$ MeV. Alternatively our result for $f_K/f_{\pi}(1.189(7))$ can be used, with experimental leptonic branching fractions [8, 18] to give V_{us}. Using the recent KLOE result for the K_{l3} we obtain $V_{us} = 0.2262(13)(4)$ where the first error is theoretical and the second experimental. This agrees with, but improves on, the K_{l3} result. Then $1 - V_{ud}^2 - V_{us}^2 - V_{ub}^2 = 0.0006(8)$, a precise test of CKM matrix first-row unitarity.

f_D and f_{D_s} show larger discretisation effects but a more benign chiral extrapolation. Our final results are: $f_D = 241(3)$ MeV, $f_{D_s} = 207(4)$ MeV and $f_D/f_{D_s} = 1.164(11)$. These results are 4–5 times more accurate than previous full lattice QCD results [4] and existing experimental determinations. An interesting quantity is the double ratio $(f_D/f_{D_s})/(f_K/f_{\pi})$. It is estimated to be close to 1 from low order chiral perturbation theory [21]. We are able to make a strong quantitative statement with a value of 0.979(11). Equivalently $(\Phi_D/\Phi_{D_s})/(f_K/f_{\pi}) = 1.005(10)$, where $\Phi = f \sqrt{M}$. We also obtain $(f_D/f_{D_s})/(f_{B_s}/f_{B_s}) = 1.03(3)$ using our previous result for the B ratio [22]. The B ratio dominates the error but improvement of this is underway.

The results for f_D and f_{D_s} obtained from the experimental leptonic branching rates coupled with CKM ma-

r_1 uncertainty	a^2 extrap.	finite vol.	$m_{u/d}$ extrap.	stat. errors	m_s evoln.	$m_{d, QED}$ etc
0.3	0.2	0.4	0.2	0.4	0.1	0.0
1.1	0.2	0.5	0.3	0.5	0.3	0.0
1.4	0.4	0.6	0.3	0.6	0.3	0.5
1.0	1.0	0.5	0.3	0.0	0.1	0.5
1.4	0.7					
$\Delta s/\Delta u$						
0.6	1.3	1.7	0.9	1.3	1.8	1.2

TABLE II: Error budget (in %) for our decay constants and mass ratio, where $\Delta s = 2 m_{D_s} - m_{\eta_c}$. The errors are defined so that it is easy to see how improvement will reduce them, e.g. the statistical uncertainty is the outcome of our fit, so that quadrupling statistics will halve it. The a^2 and $m_{u/d}$ extrapolation errors are the pieces of the Bayesian error that depend upon the prior widths in those extrapolations. ’m_s evolution’ refers to the error in running the quark masses to the same scale from different values for the chiral extrapolation. The r_1 uncertainty comes from the error in the physical value of r_1 and the finite volume uncertainty allows for a 50% error in our finite volume adjustments described in the text.
The chiral fits are performed simultaneously with those of the corresponding meson masses, and the resulting continuum extrapolation curve is given by the dashed line. For π, K we have $\chi^2/\text{dof} = 0.2$ and for D, D_s, $\chi^2/\text{dof} = 0.6$, each for 28 pieces of data. The shaded band gives our final result. At the left are experimental results from CLEO-c [25] and 283(23) MeV from BaBar [24].

Using our results for f_D, we have updated the result quoted by the PDG to 0.96(9) given by the PDG [2].

Acknowledgements We are grateful to MILC for their configurations and to Quentin Mason and Doug Toussaint for useful discussions. The computing was done on Scotgrid and the QCDOCX cluster. This work was supported by PPARC, the Royal Society, NSF and DoE. JS is grateful to Glasgow University and SUPA for hospitality while this work was completed.