Isolated Intramedullary Lumbar Spine Neurocysticercosis: A Rare Occurrence and Review of Literature

Anil Dhar, MCh1 Sanjeev Dua, MCh1 Hershdeep Singh, MCh1

1 Department of Neurosurgery, Max Super Speciality Hospital, New Delhi, India

Surg J (NY) 2021;7:e327–e336.

Address for correspondence Hershdeep Singh, MCh, Department of Neurosurgery, Max Super Speciality Hospital, Max Patparganj, New Delhi, India (e-mail: Singh.hershey@gmail.com).

Introduction

Neurocysticercosis (NCC) is the most common parasitic infection of the central nervous system (CNS), caused by the larval form of Taenia solium. Pigs are the intermediate hosts, and humans are the definitive/intermediate hosts. Common risk factors are poor personal hygiene and unsanitary pig raising practices. Spinal cysticercosis is a rather rare clinical occurrence. Intramedullary (IM) spinal NCC is rarer still. Furthermore, cases of IM-NCC at lumbar levels are few and far between. We present a case of a 35-year-old male patient who was diagnosed to have IM-NCC at L2-3 level and was managed surgically with no recurrence at 2 years of follow-up. A systematic literature review (1992–2020) highlights it to be only the third case reported with exclusive lumbar involvement.

Case Report

A 35-year-old man presented with the complaints of low back ache for 12 years, radiating to right leg for 4 months and numbness extending to lateral side of the sole of right foot. On examination, there was a 30% sensory loss in right S1 dermatome as compared with contralateral limb, with no bladder bowel involvement. Patient had no motor deficit. Magnetic resonance imaging (MRI) of the lumbosacral spine was suggestive of IM cystic lesion at L2-3 hypointense on T1-weighted images and hyperintense on T2-weighted images. MRI brain did not reveal any abnormality. Lumbar puncture and serologic studies were not performed.

With the differential diagnosis of neoplastic lesion, the patient was taken up for posterior laminectomy. L2-3 laminectomy was done. A dural bulge was identified. On durotomy, the cord was found to be enlarged. Under microscopic guidance, posterior longitudinal myelotomy was done, the cysts were approached, and subtotal resection of cysts was done. Intraoperatively, three grayish white cysts were identified. Cysts were found to be adherent to the nerve roots causing their inflammation. As a result, one of the cysts could not be excised and was only decompressed. The remaining two cysts were completely excised. Histopathology revealed it to be NCC.

The patient improved postoperatively. Back pain was relieved, and there was significant reduction in radiating pain. He was started on albendazole (15 mg/kg body weight)
for 4 weeks and steroids for 2 weeks. The patient was discharged on the 4th post-operative day. He was followed-up biweekly for the first month. Thereafter, monthly follow-up was done for the next 2 months. MRI done at 6 months confirmed resolution of the cystic lesion. Thereafter, 6 monthly follow-up was done. Patient is symptom free and not on any medication at 2 years of follow-up.

Discussion

Spinal NCC was originally reported by Rockitansky. Its infrequent incidence (0.7–5.85%), is attributed to the sieve effect provided by subarachnoid layer which filters cysticerci, thus preventing them to pass. IM involvement occurs in less than one-fifth of the cases with intradural pathology. The cysticerci migrate via hematogenous and ventriculoependymal pathways, thus afflicting mainly the dorsal segment of spinal cord primarily as a consequence of high-blood flow.

In 2017, the Infectious Diseases Society of America (IDSA) and American Society of Tropical Medicine and Hygiene (ASTMH) recommended clinical practice guidelines for the diagnosis and treatment of NCC. The said guidelines strongly advice prescription of corticosteroids in cases of spinal NCC with spinal cord dysfunction and also as an adjunct to antiparasitic treatment. As evidence to recommend one modality of

![Diagram](image-url)
treatment (medical or surgical) over the other is lacking, authors suggested treatment be planned on case basis and surgical expertise available.

Review of Literature and Results

The authors searched the PubMed database using keywords “Spinal neurocysticercosis” and “spinal cord neurocysticercosis.” A total of 213 results were obtained which included articles pertaining to both IM and extramedullary (EM) spinal cord NCC lesions.

Research papers reporting exclusive extra spinal involvement, no MRI assessment, published in non-English vernacular, and conducted in nonhuman subjects were excluded from this review (Fig. 1). In the final analysis, 77 articles were shortlisted, encompassing both EM and IM involvement of spinal cord NCC (Table 1). The cumulative number of cases was 147. These include 100 (EM), 46 (IM), and 1 (EM + IM).8

The literature review done by authors revealed only 33 articles (case reports and series) pertaining to the IM-NCC, the earliest being published in 1996. It translates to three articles being published from 1996–2000, followed by nine articles being in print from 2001–2010, and finally 21 articles from 2011–2020. Evidently, there has been increased scientific interest in spinal NCC. Increase in data availability will help to make more evidence-based treatment guidelines possible.

The review brings forth the fact that such cases were found not only in countries of Asia, Mexico but also in countries of the developed world. Eighteen such publications originate from India, followed by eight in the United States, three in Brazil, and one each in China, Guatemala and Spain. A 30-year long (1980–2010) combined research study was undertaken by clinicians from Mexico and India. In most instances, the patients in the developed nations have a history of travel to the endemic region or a history of immigration.10–12 It not only highlights the significance of cultural and environmental impact in this parasitic disease but also the need to consider this rare entity as a differential in such patients by clinicians in the developed world.

The patients with IM-NCC ranged in age from 5 to 70 years with an average of 31.06 years. Among the 46 patients of IM-NCC, 30 were male and 15 were female. In one of the study, this information was not provided.9

Spinal NCC has been reported to occur most commonly in the dorsal spine. The authors found majority (n = 32) of the IM-NCC has been reported to be located in dorsal or dorso-lumbar levels, including two cases occurring at D11-L1 and D12-L1.13,14 It is followed by cervical and cervicodorsal region (n = 12). Highly sporadic occurrence has been reported in the lumbar region. Two of 46 cases of IM-NCC occur purely in the lumbar region.9,15 Our patient is only the third reported case with pure lumbar involvement. With such an unusual occurrence, the diagnosis of the NCC was overlooked, and intraoperative findings were contrasting to our preoperative assessment, compelling us to share our experience.
S.no	Authors	Country	Year	Age (yr)	Gender	Compartment	S.C level	Symptoms	Investigations	Mx	Remarks
12	Yacoub et al \(^8\)	USA	2017	49	M	EM	C4-D4, D6-D9	M, S	M, S	M	P.O albendazole
13	Muralidharan et al \(^1\)	India	2017	56	M	EM	CMJ-C4	M, S, B	M, EITB	S	P.O Albendazole
14	Pal et al \(^5\)	India	2017	44	M	EM	D1-2, D3, D1-9	M, P, S	M	S	Operated twice. P.O Albendazole given, mimics arachnoid cyst
15	Yadav et al \(^6\)	India	2017	8	M	IM	C5–6	M, P	M	M	M
16	Sharma \(^7\)	India	2017	48	F	EM	L2-S2	P	M, Eo	S	P.O albendazole
17	Bansal et al \(^6\)	India	2017	40	M	EM	L5-S1	P	M	S	P.O Albendazole
18	Ranga \(^8\)	India	2017	6	M	IM	C4-6	P	M, S, ELISA	M	P.O Albendazole
19	Hansberry et al \(^8\)	USA	2016	49	M	EM	Post fossa to C2	M, S	M, WBA	S	Cranial +
20	Pant et al \(^9\)	India	2016	60	M	IM	D11	M, R, B	M	S	P.O albendazole
21	Torous et al \(^10\)	USA	2016	40	M	EM	L4-S1	P, M, S, B	M	S	
22	Valsangkar \(^11\)	India	2015	40	M	EM	D10-12	P, M, B	M	S	P.O Albendazole
23	Salazar Noguer \(^12\)	Guatemala	2015	43	M	IM	C7-D1	M, S	M	S	M
24	Hackius \(^13\)	Switzerland	2015	46	F	EM	C1-C2, L4-5	H, N, D	M, Eo, E	M	M
25	Cárdenas \(^9\)	Mexico, India	2015	64	M	EM	CMJ	M	S		30 year study, 19 Mexican, 8 Indian
26	57	M	EM	CMJ	M	C					
58	60	F	EM	D1-D7	M, B	C					
59	64	M	EM	D1-2-3	M, B, R	C					
60	65	F	EM	C3-4	M, B	C					
61	66	F	EM	C7-D2	M, B, R	C					
62	67	F	EM	D5-7	S	C					
63	21	M	EM	D5-7	S	C					
64	50	M	EM	L4-5	M, B, R	C					
65	48	M	EM	L3-4	M	C			VP diversion		
66	49	M	EM	L3-5	S, B	S					
67	52	M	EM	L3-5	S, B	S					
68	45	F	EM	C1-5, C5-D8	M, B, R	S					
69	64	F	EM	D1-2	S	S					
70	32	M	EM	C2-3	S, Z	M					
71	38	F	EM	L2-4	M	M					
72	49	F	EM	CMC-C2	M	C					
73	33	F	EM	C3-4, L2-4	S	S					
Table 1 (Continued)

S.no	Authors	Country	Year	Age (yr)	Gender	Compartment	S.C level	Symptoms	Investigations	Mx	Remarks
62	F	EM	D5-8	M	M	L4	M	M	M, E (CSF, serum)	M	Brown–Sequard Syndrome
50	F	EM	L4	M	C			M			
16	F	IM	D11	M	S			M			
35	F	EM	D12-L1	M	C			M			
45	M	IM	CMJ	M	S			M			
NA	NA	IM	D2	M	S			M			
16	M	IM	L1	M, B	S			M			
39	M	IM	D12	M	S			M			
28	M	IM	D1–2	M	S			M			

26 Chaurasia et al21, 2015, India

M, E

Brown–Sequard Syndrome

27 Wang et al44, 2015, USA

45 M

EM

CMJ

H, P

M, serum antibody +

S

P.O albendazole

28 Ganesan45, 2015, India

32 M

EM

L2-S1

P, B, S

M

S

29 Han et al46, 2014, South Korea

59 M

EM

L1-5

P, S, M

M

S

Cranial +

P.O Albendazole

30 Vecchio et al47, 2014, Italy

23 M

EM

L3-4

H, D

M, E

M

31 Amelot et al48, 2014, France

48 M

EM

CVJ

M, H, PS

M

C (VP shunt) Case series of 3 cases, 2 had spinal involvement

25 F

EM

L4-S2

H, P, AMS

M

EVD, S

32 Kim et al49, 2014, South Korea

64 M

EM

D12-L1, L3-4

H, M, B

M

S (VP shunt + laminectomy) Hydrocephalus +, P.O albendazole

33 Qazi4, 2014, India

19 M

EM

D11-L1

M, B

M

S

34 Yoo et al50, 2014, South Korea

42 M

EM

D11-S1

P

M, S.E

S

P.O albendazole

35 Lacoangeli51, 2013, Italy

44 F

EM

L4-5

P, M, S, B

M

S

P.O Albendazole

36 Chandramohan15, 2013, India

15 M

IM

L1

M, B, R

M, Western blot

M

37 Rice et al52, 2012, USA

42 M

IM

D10-D11

M, S

M

S

Brown–Sequard Syndrome

38 De Deo et al52, 2012, Italy

49 M

EM

D6-8, D10-11

H, M

M

S

Cranial +, P.O Albendazole

39 Callacondo et al53, 2012, Peru

NA

NA

All 18 EM

LS M.C

Out of 55 patients with cranial NCC (intraparenchymal + basal cisterns) 18 pt had spinal involvement all EM

40 Jain et al16, 2012, India

20 M

IM

C2

Z, M, B

M, IgG

M

Lost to follow up, Cranial+

41 Shin et al54, 2012, South Korea

48 M

EM

D12-S1

M, B

M

S

P.O Albendazole

42 Agale10, 2012, India

38 M

IM

D11-11

M

M

S

P.O Albendazole

43 Kapu et al55, 2012, India

38 F

EM

D12-L1

P, M, S

M

S

P.O Albendazole, Cysticercal abscess (Continued)
S.no	Authors	Country	Year	Age (yr)	Gender	Compartment	S.C level	Symptoms	Investigations	Mx	Remarks
44	Bin & al.	China	2011	40	F	IM	D4-5	M, B, R	S		P.O anticysticercal agents
45	Seo et al.	South Korea	2011	59	M	EM	D12-L1, L4-5	H, V	M, Eo		P.O albendazole, ocular symptoms, Visual defects persisted
46	Jongwutives et al.	USA	2011	59	F	EM	L1-4	M, S, B	M, S.E		
47	Park et al.	South Korea	2011	72	M	EM	L5-S1	P, M	M		Cranial + HCP +
48	Lambertucci et al.	Brazil	2011	23	M	IM	C3-5	P, M	M		P.O albendazole
49	Azfar et al.	India	2011	10	F	IM	D2	M, S, B, R	CSF E	M	
50	Vij et al.	India	2011	20	M	IM	D10-11	P, M, S, B	M	S	Coexisting IM Schwannoma
51	Jang et al.	South Korea	2010	50	F	EM	L5-S1	P	M	S	Reoperated, P.O Albendazole
52	Boulos et al.	Canada	2010	35	F	EM	CMJ	H, S	M	S	P.O albendazole, Cranial leptomeningeal enhancement +
53	Lim et al.	South Korea	2010	42	M	EM	C2-L2	P	M	S	(D3-5, L1-3) H/O HCP +, P.O Albendazole
54	Choi et al.	South Korea	2010	43	F	EM	L5-S1	P, M, S	M	S	PIVD L5-S1, P.O Albendazole
55	Gonçalves et al.	USA	2010	62	M	IM	D11	P, M, S, B	M	S	
56	Chibber et al.	India	2009	38	F	IM	D5-S6	P, M, B	M, E	M	
57	Shin et al.	South Korea	2009	45	M	EM	C1-L1	M, B	M, CSF ELISA	S	Cranial + HCP +, P.O albendazole
58	Kasliwal et al.	India	2008	34	M	EM	C1-C2	P, M, H	M	S	P.O albendazole
59	Izc et al.	USA	2008	70	M	IM	D11-L1	M, B, R	M	S	P.O albendazole
60	Paterakis et al.	Greece	2007	60	M	EM	L3, L5-S1	P, M, B	M	S	P.O Albendazole
61	Ahmad et al.	India	2007	8	F	IM	D1-2	P, M, B	M	S	P.O albendazole
62	Guedes-Correa et al	Brazil	2006	53	F	IM	D12-L1	P	M	S	
63	Delobel et al.	France	2004	45	M	EM	L3-4	P, M, B	M, E (CSF, serum)	S	HIV + cranial +, Brown Sequard syndrome, P.O Albendazole
64	Torabi et al.	USA	2004	35	M	IM	C4, D4-9	H, P, M, B	M	M	Cranial + HCP +, Multilevel
65	Alsina et al.	USA	2002	38	M	EM	L2-3	M, B	M	S	Cranial +
				14	F	EM	C5-D1	M	M	S	
				36	M	EM	C5	M	M	S	Cranial+
				40	M	EM	FM	H	M	C	
				28	F	IM	C1	M	M	M	Cranial +
				80	M	EM	D4-S, D7-9	P	M	S	
66	Colli et al.	Brazil	2002	15	F	EM	D9	M	M	S	HCP +
				23	F	EM	D2-L1	P, M	M	S	HCP +
				24	F	EM	L2-S	P, S	M	S	
				36	F	EM	D11-L5	M, B, R	M	O	HCP +
				40	F	EM	C5-6	M, B	M	S	HCP +
S.no	Authors	Country	Year	Age (yr)	Gender	Compartment	S.C level	Symptoms	Investigations	Mx	Remarks
------	---------	---------	------	----------	---------	--------------	-----------	----------	---------------	----	---------
43	F	EM				L3-5	P, M	M	S	HCP+	
46	F	EM		D1-2	P, M, S	M	M	S	HCP+		
46	F	EM		D9-L1	P, M, B, R	M	S	HCP+			
22	M	EM		D1	P	M	O		HCP+		
24	M	EM		D8-L2	P	M	S				
24	M	EM		L3-451	P, S, M	M	S	HCP+			
51	M	EM		C3-7	M	S					
67	Sheehan	USA	2002	16	F	IM	C1-2	S	M	S	P.O praziquantel
68	Homans	USA	2001	5	F	IM	D1-1-12	P, B	M, EITB	S	Cranial + operated twice
69	Mathuriya et al	India	2001	28	M	IM	D1	P, M, S, B	M	S	
55	M	IM		D1-2	P, M, S, B	M	S				
50	M	IM		D11	P, M, S, B	M	S				
70	Gaur et al	India	2000	22	F	IM	D8	M, S, B	CSF ELISA	M	
27	F	IM		D3-6	M, S, B, R	CSF ELISA	M				
71	Ciftçi et al	USA	1999	30	F	EM	C2-4	H, P	M	NA	HCP+
72	Garg et al	India	1998	11	M	IM	D9	M, S, B	CSF, ELISA	M	
10	M	IM		D8	M, S, B	M	M				
73	Lau et al	Hong Kong	1998	35	M	EM	D1-1-51	M, S, H, L	M	S	Cranial+
74	Davies	Australia	1996	40	M	EM	C3-6	M, H, P	M	S	Cranial + CSF diversion done multiple times, P.O Praziquantel
75	Corral	Spain	1996	20	F	IM	C	Z, S, M	M	E	Cranial +
76	Isidro-Llorens	Spain	1993	30	F	EM + IM	C7-L2, IM at D	M		Operated twice, P.O Praziquantel	
77	Bandres et al	USA	1992	34	M	EM	C2, S1-L3	P	M	M	A case series of 5 patients, ventricular dilation +

Abbreviations: CSF, cerebrospinal fluid; CMJ, cervicomedullary junction; CVJ, craniovertebral junction; EM, extramedullary; EITB, enzyme-linked immunoelectrotransfer blot; ELISA, enzyme-linked immunosorbent assay; IgG, immunoglobulin G; IM, intramedullary; VP, ventriculoperitoneal.
Isolated spinal NCC is not a common occurrence. Concomitant cranial lesions are usually present. Of the 147 cases thus reported, 39 patients were known to have a concurrent or a history of cranial involvement. Six of the patients with IM-NCC had such a finding.\(^5,16–20\)

Eighteen of patients with spinal NCC were reported to have hydrocephalus. Only one of these patients had IM-NCC,\(^17\) who also had an evidence of cranial NCC.

The most common symptoms in patients with IM-NCC were those of motor involvement (40), followed by bladder involvement (26), back pain (21), sensory involvement (17), and bowel involvement (6). Two patients had complaints of seizures while headache was seen in one patient. These patients had cervical spine and brain lesions. Two patients had complaints of bladder and bowel involvement (6). Two patients had complaints of sensory and bowel involvement (26), back pain (21), sensory involvement (17), and bowel involvement (6). Two patients had complaints of seizures while headache was seen in one patient. These patients had cervical spine and brain lesions. Two patients (dorsal level IM-NCC) presented with Brown–Séquard syndrome (dorsal lesion).\(^21,22\) One of the patients was found to have a coexisting schwannoma at D10–11 lesion.\(^23\) Patients with pure lumbar involvement had motor symptoms and bladder bowel involvement.\(^9,15\)

MRI is the investigation of choice for spinal NCC. Research papers with no MRI assessment were excluded from this review. MRI is the most essential to make diagnosis of spinal pathology, its level, and compartment involved. Other investigations may not always be helpful. In only 12 of the cases of IM-NCC, antibodies were detected by various techniques, including enzyme-linked immunosorbent assay (ELISA), Western blot, and enzyme-linked immunoelectrotransfer blot (EITB).\(^4,24,25\)

In the review, it was concluded that surgery was the main modality of treatment \((n=29)\), while 16 patients were managed medically with anticysticercal agents (albendazole, praziquantel). One of the patients refused any treatment. Postop medical treatment was given to 12 patients. Redo surgery was required in two cases, both were in dorsal region.\(^4,26\) There is no conclusive evidence pointing to advantage of one modality over the other. Case-based decisions are made, and patients are treated, according to clinical expertise available.

Conclusion

IM spinal NCC is a rare occurrence, even scarcer in the lumbar regions. To the author's knowledge, this case study is only the third to be reported in global data, thus adding up to the current literature.

Given its rarity, it is highly likely that such a diagnosis be ignored at the outset. It is prudent to consider this differential, especially in relation to patient history, travel history, personal history, and cultural background, to avoid any surprise. Advocated by clinical judgement, although medical treatment has been followed by similar results, surgical intervention remains the mainstay of treatment of spinal NCC. Although clinicians do prescribe steroids and antiparasitic agents in postop period, strong evidence-based guidelines are needed, necessitating more high-quality research. Steady follow-up is crucial to detect recurrence.

Sources of Support

Nil.

Note

The authors declare in consensus that the information provided is true to the best of their knowledge and currently this manuscript is not under submission in any other journal.

Conflict of Interest

None declared.

References

1. Flisser A, Sarti E, Lightowlers M, Schantz P. Neurocysticercosis: regional status, epidemiology, impact and control measures in the Americas. Acta Trop 2003;87(01):43–51
2. Maste PS, Lokanath YK, Mahantshetti SS, Soumya S. isolated intramedullary spinal cysticercosis: a case report with review of literature of a rare presentation. Asian J Neurosurg 2018;13(01):154–156
3. Muralidharan V, Nair BR, Patel B, Rajeshkhar V. Primary intradural extramedullary cervical spinal cysticercosis. World Neurosurg 2017;105:1052.e5–1052.e11
4. Homans J, Khoo L, Chen T, Commins DL, Ahmed J, Kovacs A. Spinal intramedullary cysticercosis in a five-year-old child: case report and review of the literature. Pediatr Infect Dis J 2001;20(09):904–908
5. Mohandy A, Das S, Kolluri VR, Das BS. Spinal extradural cysticercosis: a case report. Spinal Cord 1998;36(04):285–287
6. Bansal S, Suri A, Sharma MC, Kakkar A. Isolated lumbar intradural extra medullary spinal cysticercosis simulating tarlov cyst. Asian J Neurosurg 2017;12(02):279–282
7. White C, et al. Diagnosis and Treatment of Neurocysticercosis: 2017 Clinical Practice Guidelines by the Infectious Diseases Society of America (IDSA) and the American Society of Tropical Medicine and Hygiene (ASTMH). Clin Infect Dis 2018;66(08):49–75
8. Yacoub HA, Goldstein I, El-Ghamem M, Sharer L, Souayah N. Spinal racemose cysticercosis: case report and review. Hosp Pract (1995) 2017;45(03):99–103
9. Cárdenas G, Guevara-Silva E, Romero F, et al. Spinal Taenia solium cysticercosis in Mexican and Indian patients: a comparison of 30-year experience in two neurological referral centers and review of literature. Eur Spine J 2016;25(04):1073–1081
10. Agale SV, Bhavsar S, Choudhury B, Manohar V. Isolated intramedullary spinal cord cysticercosis. Asian J Neurosurg 2012;7(02):90–92
11. Ahmad FU, Sharma BS. Treatment of intramedullary spinal cysticercosis: report of 2 cases and review of literature. Surg Neurol 2007;67(01):74–77, discussion 77
12. Izcı Y, Moftakhar R, Salamat MS, Baskaya MK. Spinal intramedullary cysticercosis of the conus medullaris. WMJ 2008;107(01):37–39
13. Guedes–Corrêa JF, Macedo RC, Vaitsman RP, Mattos JG, Agra JM. Intramedullary spinal cysticercosis simulating a conus medullaris tumor: case report. Arq Neuropsiquiatr 2006;64(01):149–152
14. Qazi Z, Ojha BK, Chandra A, Singh SK, Srivastava C, Patil TB. Isolated intramedullary spinal cord cysticercosis. J Neurosci Rural Pract 2014;5(1, Suppl 1):S66–S68
15. Chandramohan R, Kadhiranav T, Swaminathan RP. Cysticercosis of the spinal cord. QJM 2013;106(03):279–280
16. Jain N, Gutch M, Agrawal A, Khanna A. Quadriparalytic disseminated neurocysticercosis. BMJ Case Rep 2012;2012:bcr0820114613
17. Torabi AM, Quiceno M, Mendelsohn DB, Powell CM. Multilevel intramedullary spinal neurocysticercosis with eosinophilic meningitis. Arch Neurol 2004;61(05):770–772
Isolated Intramedullary Lumbar Spine Neurocysticercosis Dhar et al. e335

18 Alsina GA, Johnson JP, McBride DQ, Rhoten PR, Mehringer CM, Stokes JK. Spinal neurocysticercosis. Neurosurg Focus 2002;12 (06):e8
19 Garg K, Vij V, Garg A, Singh M, Chandra PS. “Malignant” cranio-spinal neurocysticercosis: a rare case. World Neurosurg 2021; 146:95–102
20 Corral I, Quereda C, Moreno A, et al. Intramedullary cysticercosis cured with drug treatment. A case report. Spine 1996;21(19): 2284–2287
21 Chaurasia RN, Mishra VN, Jaiswal S. Spinal cysticercosis: an unusual presentation. BMJ Case Rep 2015;2015:bcr2014207966
22 Rice B, Perera P. Intramedullary spinal neurocysticercosis presenting as brown-sequard syndrome. West J Emerg Med 2012;13 (05):434–436
23 Vij M, Jaiswal S, Jaiswal AK, Behari S. Coexisting intramedullary schwannoma with intramedullary cysticercus: report of an unusual coexistence. Indian J Pathol Microbiol 2011;54(04):866–867
24 Gaur V, Gupta RK, Dev R, Kathuria MK, Husain M. MR imaging of intramedullary spinal cysticercosis: A report of two cases. Clin Radiol 2000;55(04):311–314
25 Ranjan R, Tulika , Chand S, Agnihotri A. Solitary intramedullary cervical cysticercosis without neurological deficit: a rare case report. J Pediatr Neurosci 2017;12(01):99–101
26 Datta SGS, Mehta R, Macha S, Tripathi S. Primary spinal intramedullary neurocysticercosis: a report of 3 cases. World Neurosurg 2017;105:1037.e1–1037.e7
27 Barrie U, Badejo O, Aoun SG, et al. Systematic review and meta-analysis of management strategies and outcomes in adult spinal neurocysticercosis. World Neurosurg 2020;138:504–511.e8
28 Jobanputra K, Raj K, Yu F, Agarwal A. Intramedullary neurocysticercosis mimicking cord tumor. J Clin Imaging Sci 2020;10:7
29 Torres-Corzo JC, Islas-Aguilar MA, Cervantes DS, Chalita-Williams JC. The role of flexible neuroendoscopy in spinal cysticercosis: technical note and report of 3 cases. World Neurosurg 2019; 139:77–83
30 Lopez S, Santillan F, Diaz JJ, Mogrovejo P. Spinal cord compression by multiple cysticercus. Surg Neurol Int 2019;10:94
31 Li H, Sun J, Nan G. Nonspecific dizziness as an unusual presentation of neurocysticercosis: A case report. Medicine (Baltimore) 2019;98(30):e16647
32 Shashidhar A, Saverdekar AR, Mandalami RC, et al. Chronic eosinophilic meningitis as a manifestation of isolated spinal neurocysticercosis: a rare case and a review of literature. Neurol India 2018;66(02):561–564
33 Almeida C Jr, de Almeida GC, Penteado JAM Jr, Konichi Dias R. Teaching NeuroImages: Spinal intramedullary cysticercosis: the pseudotumoral form. Neurology 2018;91(12):e1202–e1203
34 Zhang S, Hu Y, Li Z, Zhao L, Wang Z. Lumbar spinal intradural neurocysticercosis: A case report. Exp Ther Med 2017;13(06): 3591–3593
35 Pal A, Biswas C, Ghosh TR, Deb P. A rare case of recurrence of primary spinal neurocysticercosis mimicking an arachnoid cyst. Asian J Neurosurg 2017;12(02):250–252
36 Yadav K, Garg D, Kaushik JS, Vaswani ND, Dubey R, Agarwal S. Intramedullary neurocysticercosis successfully treated with medical therapy. Indian J Pediatr 2017;84(09):725–726
37 Sharma R, Garg K, Agarwal D, et al. Isolated primary intradural extramedullary spinal cysticercosis. Neurol India 2017;65(04): 882–884
38 Hansberry DR, Agarwal N, Sharer LR, Goldstein IM. Minimally manipulative extraction of polycystic cervical neurocysticercosis. Eur Spine J 2017;26(Suppl 1):63–68
39 Pant I, Chaturvedi S, Singh G, Gupta S, Kumari R. Spinal cysticercosis: a report of two cases with review of literature. J Cranio-vertebr Junction Spine 2016;7(04):285–288
40 Torous VF, Darras N. A lumbar canal cystic mass lesion in a man with a history of chronic lower back pain. Neuropathology 2016; 36(01):103–106
41 Valsangkar SA, Kharosekar HU, Palande DA, Velho V. Isolated conus-epiconus neurocysticercosis. Neurol India 2015;63(01): 119–120
42 Salazar Nogueira EM, Pineda Sic R, Escoto Solis F. Intramedullary spinal cord neurocysticercosis presenting as Brown-Séquard syndrome. BMC Neuro 2015;15:1
43 Hackius M, Pangalu A, Semmler A. Neurological picture. Isolated spinal neurocysticercosis. J Neurol Neurosurg Psychiatry 2015;86 (02):234–235
44 Wang DD, Huang MC. Cervicomedullary neurocysticercosis causing obstructive hydrocephalus. J Clin Neurosci 2015;22(09): 1525–1528
45 Ganesan S, Acharya S, Kalra KL, Chahal R. Intradural Neurocysticercosis of Lumbar Spine: A Case Report. Global Spine J 2015;5(04):e1–e4
46 Han SB, Kwon HJ, Choi SW, et al. Lumbar intradural neurocysticercosis: a case report. Korean J Spine 2014;11(03):205–208
47 Vecchio RF, Pinzone MR, Nunnari C, Cacopardo B. Neurocysticercosis in a 23-year-old Chinese man. Am J Case Rep 2014;15:31–34
48 Amelot A, Failloit T. Hydrocephalus and neurocysticercosis: cases illustrative of three distinct mechanisms. J Clin Neuro 2014;10 (04):363–366
49 Kim SW, Wang HS, Ju CI, Kim DM. Acute hydrocephalus caused by intraspinal neurocysticercosis: case report. BMC Res Notes 2014; 7:2
50 Yoo M, Lee CH, Kim KJ, Kim HJ. A case of intradural-extradural form of primary spinal cysticercosis misdiagnosed as an arachnoid cyst. J Korean Neurosurg Soc 2014;55(04):226–229
51 Jongwutivess U, Yanagida T, Ito A, Kline SE. Isolated intradural-extradural spinal cysticercosis: a case report. J Travel Med 2011;18(04):284–287
52 De Feo D, Colombo B, Dalla Libera D, Martinelli V, Comi G. Subarachnoid neurocysticercosis with spinal involvement presented with headache. Neurol Sci 2013;34(08):1467–1469
53 Callacondo D, Garcia HH, Gonzales I, Escalante D, Nash T. Cysticercosis Working Group in Peru. High frequency of spinal involvement in patients with basal subarachnoid neurocysticercosis. Neurology 2012;78(18):1394–1400
54 Shin DA, Shin HC. A case of extensive spinal cysticercosis involving the whole spinal canal in a patient with a history of cerebral cysticercosis. Yonsei Med J 2009;50(04):582–584
55 Kapu R, Singh MK, Pande A, Vasudevan MC, Ramamurthi R. Intradural extramedullary cysticercal abscess of spine. Trop Parasitol 2012;2(02):131–134
56 Qi B, Ge P, Yang H, Bi C, Li Y. Spinal intramedullary cysticercosis: a case report and literature review. Int J Med Sci 2011;8(05): 420–423
57 See JH, Seo HJ, Kim SW, Shin H. Isolated spinal neurocysticercosis: unusual ocular presentation mimicking pseudotumor cerebri. J Korean Neurosurg Soc 2011;49(05):296–298
58 Iacoangeli M, Moriconi E, Gladi M, Scerrati M. Isolated cysticercosis of the cauda equina. J Neurosci Rural Pract 2013;4(1): Suppl 1:S117–S119
59 Lambertucci JR, Vale TC, Pereira ACG, et al. Teaching NeuroImages: isolated cervical spinal cord cysticercosis. Neurology 2011;77(23):e138
60 Park YS, Lee JK, Kim KH, Park KC. Cysticercosis of lumbar spine, mimicking spinal subarachnoid tumor. Spine J 2011;11(04):e1–e5
61 Azfar SF, Kirmani S, Badar F, Ahmad I. Isolated intramedullary spinal cysticercosis in a 10-year-old female showing dramatic response with albendazole. J Pediatr Neurosci 2011;6(01):52–54
62 Jang JW, Lee JK, Lee JH, Seo BR, Kim SH. Recurrent primary spinal subarachnoid neurocysticercosis. Spine 2010;35(05):E172–E175
63 Boulou MI, Aviv RI, Lee L. Spinal neurocysticercosis manifesting as recurrent aseptic meningitis. Can J Neurol Sci 2010;37(06): 878–880
64 Lim BC, Lee RS, Lim JS, Cho KY. A case of neurocysticercosis in entire spinal level. J Korean Neurosurg Soc 2010;48(04):371–374
65 Choi KB, Hwang BW, Choi WG, Lee SH. Herniated lumbar disc combined with spinal intradural extramedullary cysticercosis. J Korean Neurosurg Soc 2010;48(06):547–550
66 Gonçalves FG, Neves PO, Jovem CL, Caetano C, Maia LB. Chronic myelopathy associated to intramedullary cysticercosis. Spine (Phila Pa 1976) 2010;35:E159–62
67 Chhiber SS, Singh B, Bansal P, Pandita KK, Razdan S, Singh J. Intramedullary spinal cysticercosis cured with medical therapy: case report and review of literature. Surg Neurol 2009;72(06):765–768, discussion 768–769
68 Shin SH, Hwang BW, Lee SJ, Lee SH. Primary extensive spinal subarachnoid cysticercosis. Spine 2012;37(19):E1221–E1224
69 Kasliwal MK, Gupta DK, Suri V, Sharma BS, Garg A. Isolated spinal neurocysticercosis with clinical pleomorphism. Turk Neurosurg 2008;18(03):294–297
70 Paterakis KN, Kapsalaki E, Hadjigeorgiou GM, Barbanis S, Fezoulidis I, Kouropoulos H. Primary spinal intradural extramedullary cysticercosis. Surg Neurol 2007;68(03):309–311, discussion 312
71 Delobel P, Signate A, El Guedj M, et al. Unusual form of neurocysticercosis associated with HIV infection. Eur J Neurol 2004;11(01):55–58
72 Colli BO, Valenca MM, Carlotti CG Jr, Machado HR, Assirati JA Jr. Spinal cord cysticercosis: Neurological aspects. Neurosurg Focus 2002;12:9
73 Sheehan JP, Sheehan JM, Lopes MB, Jane JA. Intramedullary cervical spine cysticercosis. Acta Neurochir (Wien) 2002;144(10):1061–1063
74 Mathuriya SN, Khosla VK, Vasishhta RK, Tewari MK, Pathak A, Prabhakar S. Intramedullary cysticercosis: MRI diagnosis. Neurol India 2001;49(01):71–74
75 Ciftçi E, Diaz-Marchan PJ, Hayman LA. Intradural-extramedullary spinal cysticercosis: MR imaging findings. Comput Med Imaging Graph 1999;23(03):161–164
76 Garg RK, Nag D. Intramedullary spinal cysticercosis: response to albendazole: case reports and review of literature. Spinal Cord 1998;36(01):67–70
77 Lau KY, Roebuck DJ, Mok V, et al. MRI demonstration of subarachnoid neurocysticercosis simulating metastatic disease. Neuroradiology 1998;40(11):724–726
78 Davies MA, Turner J, Bentivoglio P. Spinal and basilar extraparenchymal neurocysticercosis. J Clin Neurosci 1996;3(02):174–177
79 Isidro-Llorens A, Dachs F, Vidal J, Sarrias M. Spinal cysticercosis. Case report and review. Paraplegia 1993;31(02):128–130
80 Bandres JC, White AC Jr, Samo T, Murphy EC, Harris RL. Extraparenchymal neurocysticercosis: report of five cases and review of management. Clin Infect Dis 1992;15(05):799–811