Динамика подводного вала песчаного берега под воздействием штормового волнения по данным мониторинговых наблюдений

Д. В. Корзинин*, М. Н. Штремель

Институт океанологии им. П. П. Ширшова РАН, Москва, Россия

*E-mail: korzinin2000@mail.ru

Поступила 13.01.2020 г., после доработки – 25.02.2020 г.

Цель. Морфодинамическая система аккумулятивного песчаного берега может включать один или несколько подводных валов. Положение и форма подводного вала могут отражать как сезонные изменения берегового профиля, так и однородные смещения вала к берегу и от берега. Определение характера смещения подводного вала под воздействием тех или иных волн позволит выявить закономерности разнонаправленного переноса прибрежно-морских осадков вдоль берегового профиля.

Методы и результаты. Проанализированы результаты натурных наблюдений за морфодинамикой участка песчаного берега Балтийской косы протяженностью 600 м. В период с мая по ноябрь 2019 г. проведена серия измерений рельефа береговой зоны. Полученные данные анализировались в совокупности с параметрами волнового режима (использовались данные реанализа ERA5). Береговой профиль исследуемого участка осложнен внешним подводным валом с положением гребня на глубине 2,65 м и внутренним валом, имеющим в плане серповидную форму.

Выводы. Анализ смещения внешнего подводного вала за указанный период показал, что данная форма имеет двумерный характер морфодинамики, т. е. одинаковые морфометрические характеристики вдоль берега. Выявлено, что гребень подводного вала располагается на глубинах, близких к глубине обрушения волн последнего относительно сильного и продолжительного по времени волнения. На основе этого положения и имеющихся литературных данных о связи между высотой волны и динамикой гребня подводных валов описано смещение внешнего подводного вала в сторону берега, зафиксированное за период наблюдений. С помощью натурных данных показано, что на морфодинамику подводного вала влияет продолжительность отдельных волнений и разница между волновыми параметрами следующих один за другим штормов.

Ключевые слова: песчаный берег, береговой профиль, волновой режим, подводный вал, стадии шторма.

Благодарности: исследование выполнено в рамках государственного задания Института океанологии им. П. П. Ширшова РАН (тема № 0149-2019-0005) и при финансовой поддержке РФФИ (проект № 18-05-00741 и проект № 18-55-45026).

Для цитирования: Корзинин Д. В., Штремель М. Н. Динамика подводного вала песчаного берега под воздействием штормового волнения по данным мониторинговых наблюдений // Морской гидрофизический журнал. 2020. Т. 36, № 4. С. 424–436. doi:10.22449/0233-7584-2020-4-424-436

Dynamics of Underwater Bar of Sandy Coast under the Influence of Wave Action According to the Monitoring Observations

D. V. Korzinin*, M. N. Shtremel

Shirshov Institute of Oceanology, Russian Academy of Science, Moscow, Russia

*e-mail: korzinin2000@mail.ru

Purpose. Morphodynamic system of the accumulative sandy coast can include one or more underwater bars. Position and shape of the underwater bar can reflect both seasonal changes of the coastal profile and its unidirectional movements landward and seaward. Determination of the character of the underwater bar movement under the influence of various wave conditions permits to reveal common factors of the coastal deposit multidirectional transport along the coast profile.

Methods and Results. The results of field observations of morphodynamics of a section of the Baltic Spit sandy coast (600 m length) were analyzed. From May to November 2019, a series of measurements of the coastal zone relief were conducted. The obtained data were analyzed along with the wave regime parameters (reanalysis ERA5 data was used). The coastal profile of the area under study is complicated by the external underwater bar with its crest located at the depth 2.65 m, and by the internal one of a crescent shape.

Conclusions. Analysis of displacement of the external underwater bar from May to November showed that this form was of a morphodynamics two-dimensional character, i.e. it possessed the same morphometric characteristics along the coast. It was revealed that the underwater bar crest was located at the depths close to those of wave breaking during the most recent relatively strong and sustainable storm. Based on this concept as well as on the available literature data on the relationship between a wave height and dynamics of an underwater bar crest, described is the landward displacement (recorded during the observation period) of the external underwater bar. Due to the field data, it was shown that the underwater bar morphodynamics was effected both by duration of individual waves and by difference between the wave parameters of a sequence of storm events.

Keywords: sandy coast, coastal profile, wave regime, underwater bar, stages of storm.

Acknowledgements: The investigation was carried out within the framework of the state task of the Shirshov Institute of Oceanology, RAS (theme No. 0149-2019-0005) and financial support of RFBR (project No. 18-05-00741 and project No. 18-55-45026).

For citation: Korzinin, D.V. and Shtremel, M.N., 2020. Dynamics of Underwater Bar of Sandy Coast under the Influence of Wave Action According to the Monitoring Observations. Physical Oceanography, [e-journal] 27(4), pp. 390-401. doi:10.22449/1573-160X-2020-4-390-401

Введение

Морфодинамическая система аккумулятивного песчаного берега может включать один или несколько подводных валов. Количество валов и характер их эволюции связаны с бюджетом прибрежно-морских наносов, исходными уклонами дна и интенсивностью волнового воздействия. В работах [1, 2] приведены основные типы неприливных валов открытых морских побережий, к которым относятся двумерный вдольбереговой вал (параллельный берегу), трехмерный вал (с шагом изменчивости вдоль берега 10^2–10^3 м) и вал, прымывающий к берегу через относительно равные расстояния (серповидный вал). Подводные валы разных типов могут сосуществовать в пределах одной морфодинамической системы. Примером такой системы является сочетание внешнего крупного подводного вала и внутренних валов меньшего размера.

В данной системе как внешние, так и внутренние валы могут иметь серповидную форму и прымкать к берегу через равные расстояния. Комплексные исследования поведения береговых систем с двумя подводными валами, основанные на натурных данных и математическом моделировании
лировании [3], показали, что связь между подводными валами разного порядка возрастает при более высокой неоднородности внешнего вала по глубине. В этом случае при относительно слабых штормах перемещение наносов к берегу уменьшается, что связано с усилением роли горизонтальной циркуляции. Более спрямленный вдоль берега вал сильнее подвержен отступанию в сторону моря и деградации в результате усиления влияния противотечения. Исследования на берегу Лионского залива Средиземного моря [4, 5] показали, что внешние береговые валы при снижении интенсивности волнения могут деградировать под влиянием волновых переносов осадков к берегу и при определенных условиях могут быть закононсервированными, т. е. не ощущать на себе воздействия волн.

Определение закономерностей волновой морфодинамики подводных валов является актуальной задачей береговой науки. Положение и форма подводного вала могут являться показателем сезонных изменений берегового профиля [6–8] и таким образом определять возможные деформации, связанные с сезонными волновыми циклами. В то же время определение закономерностей смещения подводного вала под воздействием тех или иных волн позволит точнее описать процессы разнонаправленного переноса прибрежно-морских осадков вдоль берегового профиля.

Для решения поставленных задач особую ценность представляют результаты наблюдений за природными системами подводных валов, эволюционирующими под воздействием штормов различной интенсивности и структуры. В настоящей работе в качестве исходных материалов используются данные натурных наблюдений за системой подводных валов, осуществленных на специальном исследовательском полигоне.

Район исследования и исходные данные

Исследовательский полигон «Балтийск-2019» расположен на открытом морском побережье Балтийской косы, на расстоянии 3500 м от пролива, соединяющего Калининградский залив с Балтийским морем (рис. 1). Полигон включает в себя надводную часть берегоевой зоны до поверхности, примыкающей к береговому уступу, и подводный береговой склон до глубин 7–8 м.

Рис. 1. Расположение исследовательского полигона на Балтийской косе (Юго-Восточная Балтика)
Fig. 1. Location of the research polygon at the Baltic Spit (the southeastern part of the Baltic Sea)
Рельеф береговой зоны в пределах полигона представлен песчаным пляжем шириной 30–35 м с береговым уступом в тыловой части пляжа. Соединение пляжа и берегового уступа перекрыто золовой подушкой (рис. 2, a). Уступ пологий, выше золовой подушки задернованный, и на отдельных участках имеет два яруса, разделенных слабонаклонной террасовидной поверхностью. Вершина бровки уступа имеет округлую форму и выражена неявно. Поверхность, примыкающая к бровке уступа, скреплена древесной и кустарниковой растительностью.

Рис. 2. Рельеф надводной части береговой зоны на исследовательском полигоне «Балтийск-2019» — a и основные морфометрические элементы берегового профиля — b
Fig. 2. Relief of the coastal zone above-water part at the research polygon “Baltiisk-2019” – a and basic morphometric elements of the coastal profile – b

Пляж с внешней стороны расчленен крупными фестонами с шагом между их вершинами 180–200 м. В нижней части подводного берегового склона располагается крупный подводный вал. Внутренний склон вала крутоий (уклон 0,06), внешний склон вала более пологий (уклон 0,027). Вершина вала находится на глубине около 1,6 м, глубина с внутренней стороны вала составляет 4,5 м (рис. 2, b; морфометрические показатели приведены по данным промера глубин в мае 2019 г.).

На полигоне проводились измерения рельефа пляжа и прибойной зоны с помощью наземного GPS-комплекса, промеры глубин – с маломерного судна. В 2019 г. было выполнено четыре серии измерений (табл. 1).

Источником данных о волнении в нашем исследовании является реанализ ERA5 (https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-single-levels?tab=form) Европейского центра среднесрочных прогнозов (European Centre for Medium-Range Weather Forecasts – ECMWF). Реанализ ERA5 пришел на смену ERA-Interim в 2019 г. Преимущество новой версии реанализа заключается в более высоком пространственном и временном разрешении (0,5° по пространству и 1 ч по времени по сравнению с 1° и 6 ч для ERA-Interim). Данные о волнении в ERA5 получены с помощью спектральной волновой модели WAM, описанной в [9]. Хотя та же волновая модель использовалась и в ERA-Interim, точность расчета ветра, применяемого для модели в качестве исходных данных, выше в ERA5 по сравнению с ERA-Interim на 20% [10], что показано путем сравнения значимой высоты волны, рассчитанной в двух версиях модели, с натурными данными [11].
Таблица 1
Основные этапы измерений рельефа береговой зоны в рамках работ на полигоне «Балтийск-2019»
Basic stages of measurements of the coastal zone relief within the framework of studies at the polygon “Baltiisk-2019”

Номер этапа / Stage number	Дата / Date	Вид работ / Type of work	Гидродинамические условия (оценка параметров волнения выполнена визуально в момент измерений) / Hydrodynamic conditions (during measurements wave parameters were assessed visually)
1	21–23 мая 2019 г. / May 21–23, 2019	Топосъемка рельефа надводной части береговой зоны. Измерение глубин подводного берегового склона / Topographic survey of relief of the above-water coastal zone. Measurements of the underwater coastal slope depths	Штиль / Calm
2	8–10 июля 2019 г. / July 8–10, 2019	Топосъемка рельефа надводной части береговой зоны / Topographic survey of relief of the above-water coastal zone	Средняя высота ветровых волн 0.5–0.8 m / Average height of wind waves 0.5–0.8 m
3	30 июля 2019 г. / July 30, 2019	Измерение глубин подводного берегового склона / Measurements of the underwater coastal slope depths	Высота волн зыби 0.3–0.4 m / Swell wave heights 0.3–0.4 m
4	8–9 ноября 2019 г. / November 8–9, 2019	Топосъемка рельефа надводной части береговой зоны. Измерение глубин подводного берегового склона / Topographic survey of relief of the above-water coastal zone. Measurements of the underwater coastal slope depths	Штиль / Calm

Координаты ближайшей к полигону точки 55° с. ш., 19,5° в. д. (50 км к северо-западу от исследовательского полигон «Балтийск-2019», глубина в расчетной точке около 80 м, кратчайшее расстояние до берега 28 км).

Методы

В исследовании принимается положение о том, что вершина подводного вала соответствует глубине обрушения волн. Данное положение впервые было отмечено в работе [12] на основе серии наблюдений за волновым режимом и береговым профилем. С помощью данного допущения волновой режим,
предшествующий измерениям рельефа дна, можно связать с положением гребня подводного вала.

Глубина обрушения волн \(d_{cr} \) может быть определена с помощью коэффициента \(\gamma_{cr} \):

\[
\gamma_{cr} = H_{cr} / d_{cr},
\]

где \(H_{cr} \) – высота обрушающихся волн. Коэффициент \(\gamma_{cr} \) имеет разные значения в зависимости от уклонов дна и крутизны волн. В работе [13] предложена следующая зависимость:

\[
\gamma_{cr} = 1,14 \xi^{0,21},
\]

где \(\xi \) – число Иррибарена, определяемое соотношением

\[
\xi = \frac{s}{H_{\infty}/L_{\infty}},
\]

здесь \(H_{\infty} \) и \(L_{\infty} \) – высота и длина волн на глубокой воде; \(s \) – уклон дна (0,033 – для исследуемого участка берега). Длина волн определяется соотношением для глубокой воды

\[
L_{\infty} = \frac{g Tm^2}{2 \pi},
\]

где \(Tm \) – средний период волн на глубокой воде. Высоту волны в точке обрушения можно получить с помощью соотношения из работы [13]:

\[
\frac{H_{cr}}{H_{\infty}} = 0,53 \left(\frac{H_{\infty}}{L_{\infty}} \right)^{-0,24}.
\]

Исследование реакции вала на волновое воздействие на оз. Гурон [14] показало, что вал смещается к берегу с понижением гребня при выполнении условия

\[
\frac{H_{rms}}{h_c} < 0,3,
\]

где \(H_{rms} \) – среднеквадратическая высота волны; \(h_c \) – глубина над гребнем вала. Значение \(H_{rms} \) связано с высотой волны \((H_s) \) в соответствии с распределением Рэлея [15] выражением

\[
H_{rms} = H_s / \sqrt{2}.
\]

Таким образом, выражение (6) с учетом зависимости (7) приобретает следующий вид:

\[
\frac{H_s}{h_c} < 0,42.
\]
При обработке результатов наблюдений за рельефом дна и данных о волновых режимах используются зависимости (1) – (5) для определения глубины обрушения волн при тех или иных штормовых волнениях и сопоставления полученных значений с измеренным положением гребня внешнего подводного вала. На основе зависимости (8) делается предположение о тенденциях смещения подводного вала в сторону берега при снижении интенсивности штормового волнения.

Результаты

По результатам сравнения трех съемок рельефа подводного берегового склона (табл. 1) выявлено смещение аккумулятивных выступов фестонов в юго-западном направлении на 88 м за период май – ноябрь. Исследование динамики рельефа осуществлялось на двух профилях, каждый из которых соответствует положению выступа отдельного фестона в мае и ноябре (рис. 3). Морфодинамика подводного вала анализировалась по положениям вершины вала и расположенной ближе к берегу межваловой ложбины. Результаты анализа приведены на рис. 4 и в табл. 2.

Рис. 3. Рельеф береговой зоны от глубин 7–8 м до тыловой части пляжа, измеренный в ноябре 2019 г. Утолщеными линиями показано положение уреза в ноябре (сплошная) и в мае (штриховая) 2019 г.

Fig. 3. Coastal zone relief from the 7–8 m depth to the beach rear measured in November, 2019. Bold lines show the water edge location in November (solid line) and in May (dotted line), 2019.
Рис. 4. Анализ морфодинамики внешнего подводного вала по исследуемым профилям
Fig. 4. Analysis of the external underwater bar morphodynamics using the profiles under consideration

Таблица 2
Table 2

Количественные характеристики смещения внешнего подводного вала на исследуемых профилях
Quantitative characteristics of the external underwater bar displacement on the profiles under consideration

Номер профиля / Profile number	Элемент вала / Bar element	Расстояние, м (направление – к берегу) / Distance, m (landward direction)	Изменение глубины, м / Depth change, m	Расстояние, м (направление – к берегу) / Distance, m (landward direction)	Изменение глубины, м / Depth change, m
1	вершина вала / bar crest	26	−0,7	13	0,7
	межваловая ложбина / bar trough	17	−0,24	4	−0,1
2	вершина вала / bar crest	14	−0,3	10	0,2
	межваловая ложбина / bar trough	18	−0,35	10	−0,1

П р и м е ч а н и е. Жирным шрифтом выделено значение с направлением от берега.
N o t e. The value implying seaward direction is marked out by thick print.
Выявлено, что за первый исследуемый период (май – июль) произошло заметное смещение подводного вала в сторону берега. За второй период (июль – ноябрь) положение вала изменилось незначительно, причем на профиле 1 в этот период зафиксировано смещение вершины вала в сторону моря, на профиле 2 – в сторону суши. Межваловая ложбина в течение всего периода измерений смещалась в сторону берега.

В целом зафиксирована следующая тенденция. В первый исследуемый период подводный вал смещается в сторону берега с увеличением глубины над валом и ложбиной. Во второй период гребень вала относительно стабилен, но его высота увеличивается. Разнонаправленные смещения гребня вала незначительны, это показывает, что для исследуемого периода вал имеет двумерный характер морфодинамики, т. е. без заметных изменений плановых очертаний.

Во время шторма 12–16 мая 2019 г. (рис. 5) высота волны достигала 1,9 м, в последующей стадии затухания ее среднее значение составляло 1,4 м. Согласно выполненным расчетам (табл. 3), глубина обрушения волн в максимальную фазу составила 3,39 м, в фазу затухания шторма – 2,47 м. Таким образом, подводный вал накануне первой серии промерных работ располагался на глубинах, близких к глубине обрушения волн предшествующего штормового события.

Согласно данным о волнении, за период май – июль произошел один сильный шторм, при котором значительная высота волны (Hs) достигала 4 м (см. рис. 5, период 20 июня – 10 июля). Затухание данного шторма происходило постепенно и содержало три последовательных пика со значениями Hs, равными 2,9; 2 и 1,7 м.

Рис. 5. Волновые параметры (реанализ ERA5) в мае – июле 2019 г.
Fig. 5. Wave parameters (reanalysis ERA5) in May – July, 2019
Промежуточные переменные и результаты расчета глубины обрушения волн \((d_{cr})\) в период шторма 11–16 мая, предшествующего измерению рельефа во время этапа \(I\) (см. табл. 1 и рис. 5)

Intermediate variables and results of calculating the wave breaking depths \((d_{cr})\) during the storm in May, 11–16 preceding measurements of relief in course of stage \(I\) (see Table 1 and Fig. 5)

Стадия шторма / Storm stage	\(H_s, \text{м} / H_s, \text{m}\)	\(T_m, \text{с}\)	\(L_{\infty}, \text{м} / L_{\infty}, \text{m}\)	\(H_{cr}, \text{м} / H_{cr}, \text{m}\)	\(\xi\)	\(\gamma_{cr}\)	\(d_{cr}\)
максимальная фаза / maximum phase	1,9	5,5	47,21	2,18	0,065	0,642	3,39
затухание / attenuation	1,4	4,5	31,60	1,57	0,062	0,635	2,47

Расчет глубины обрушения волн с указанными параметрами показал (табл. 4), что вал мог смещаться на глубины до 7 м в максимальную fazu и в дальнейшем – смещаться к берегу до глубины 3 м. Такое предположение должно быть подтверждено натурными данными или модельными расчетами, так как в настоящий момент нет четких представлений о том, насколько быстро подводный вал перестраивается под волновые условия и смещается на соответствующую глубину.

Промежуточные переменные и результаты расчета глубины обрушения волн \((d_{cr})\) в период шторма 13–16 июля и последующих штормов, предшествующих промерным работам во время этапа \(3\) (см. табл. 1 и рис. 5)

Intermediate variables and results of calculating the wave breaking depths \((d_{cr})\) during the storm in July, 13–16 and the subsequent ones preceding soundings in course of stage \(3\) (see Table 1 and Fig. 5)

Даты штормов / Storm dates	\(H_s, \text{м} / H_s, \text{m}\)	\(T_m, \text{с}\)	\(L_{\infty}, \text{м} / L_{\infty}, \text{m}\)	\(H_{cr}, \text{м} / H_{cr}, \text{m}\)	\(\xi\)	\(\gamma_{cr}\)	\(d_{cr}\)
шторм 20 июня – 10 июля / Storm from June, 20 to July, 10	4,0	7,6	90,14	4,48	0,062	0,635	7,05
2,9	6,7	70,05	3,30	0,064	0,640	5,16	
2,0	5,6	48,94	2,28	0,064	0,641	3,56	
1,7	5,4	45,50	1,98	0,067	0,647	3,07	
отдельные штормы в период 10–28 июля / individual storms from 10 to 28, July	1,0	4,6	33,02	1,23	0,075	0,661	1,86
1,3	5,0	39,01	1,56	0,071	0,655	2,38	
1,7	5,5	47,21	2,00	0,069	0,649	3,08	

После прохождения данного шторма и до съемки рельефа в конце июля отмечалось еще три шторма малой силы. Самый продолжительный из них, 13–16 июля, характеризовался высотой волны 1 м. Если предполагать смещение...
ние подводного вала на глубину 3 м после прохождения шторма в период 20 июня–10 июля, то, согласно выражению (8), вал при этом волнении будет смещаться в сторону суши с понижением гребня \(H_s / h_c = 1/3,08 = 0,32 \). Последующие волнения (19–21 и 27–28 июля) имеют несколько большие значения \(H_s \), однако они менее продолжительны по времени, т. е. могут иметь меньший морфодинамический эффект.

Аналогичным образом может быть рассмотрена морфодинамика берегового профиля перед съемкой рельефа в начале ноября. Второй исследуемый период (июль – август) характеризуется большим количеством сильных штормов. В частности, отмечено четыре шторма, при которых значение \(H_s \) превышало 3 м (рис. 6). О том, с какой интенсивностью смещался подводный вал в сторону моря во время наиболее сильных волнений, сложно строить предположения без промежуточных данных о рельфе дна. Имеющиеся данные позволяют оценить морфодинамику подводного вала во время штормов, предшествующих промерным работам. В период 2–7 ноября наблюдался шторм средней силы, который можно условно разделить на три этапа (табл. 5). Здесь так же, как и при рассмотрении штормов второй половины июля, можно предполагать, что происходило смещение подводного вала на глубины до 3 м с последующим движением к берегу под воздействием волнений меньшей силы. Об этом можно судить по значениям глубины обрушения волн в первые два этапа данного периода – 3,24 и 3,04 м (табл. 5). Последующее волнение меньшей силы могло вызывать смещение бара к берегу, так как выполняется условие согласно выражению (8):

\[
H_s / h_c = 1,1 / 3,04 = 0,36.
\]

Итоговое положение бара на момент проведения промерных работ 8 ноября не соответствует глубине обрушения волн предшествующего волнения, что может быть связано с краткосрочностью данного шторма и с большой разницей между значительными высотами волн во время первых двух этапов и третьего этапа (1,7 и 1,1 м соответственно).

Рис. 6. Волновые параметры (реанализ ERA5) в июле – августе 2019 г.

Fig. 6. Wave parameters (reanalysis ERA5) in July – August, 2019
Промежуточные переменные и результаты расчета глубины обрушения волн (d_{cr}) в период шторма 2–7 ноября, предшествующего промерным работам во время этапа 4 (см. табл. 1 и рис. 6)

Intermediate variables and results of calculating the wave breaking depths (d_{cr}) during the storm in November, 2–7 preceding soundings in course of stage 4 (see Table 1 and Fig. 6)

H_s, м/м	T_m, с	L_{cr}, м/м	H_{cr}, м/м	ζ	γ_{cr}	d_{cr}
1,7	6,6	67,98	2,18	0,082	0,675	3,24
1,7	5,2	42,20	1,95	0,065	0,642	3,04
1,1	4,0	24,97	1,23	0,062	0,636	1,94

Выводы

1. Анализ подводного рельефа показал, что для исследуемого периода внешний подводный вал можно охарактеризовать как однородный по глубине с двумерным характером морфодинамики, т. е. со слабой изменчивостью вдоль берега. Согласно комплексным исследованиям поведения береговых систем с двумя подводными валами, спрямленный вдоль берега бар сильнее подвержен отступанию в сторону моря и деградации в связи с усилием влияния противотечения.

2. Выявлено, что гребень подводного вала располагается на глубинах, близких к глубине обрушения волн последнего относительно сильного и продолжительного по времени волнения.

3. Смещение подводного вала в сторону берега в период май – июль могло произойти под воздействием серии штормовых событий, включающих экстремальный шторм ($H_s = 4$ м в стадию максимального развития) с его поэтапным затуханием, а также несколько штормов малой силы ($H_s \approx 1–1,5$ м). Данный вывод сделан исходя из положения, что глубина гребня подводного вала соответствует глубине обрушения преобладающего волнения, а также исходя из литературных данных о связи между высотой волны, глубиной гребня подводного вала и его морфодинамикой.

4. Оценка параметров штормового волнения и морфодинамики берегоового профиля позволила выявить, что не всегда положение подводного вала соответствует глубине обрушения предшествующего волнения. Это может быть связано с продолжительностью отдельного волнения накануне промерных работ и с большой разницей между волновыми параметрами следующих один за другим штормов.

СПИСОК ЛИТЕРАТУРЫ

1. Леонтьев И. О. Подводные валы на песчаных берегах // Океанология. 2011. Т. 51, № 1. С. 146–152.

2. Леонтьев И. О. Прибрежная динамика: волны, течения, потоки наносов. М.: ГЕОС, 2001. 272 с.
3. Price T. D., Ruessink B. G., Castelle B. Morphological coupling in multiple sandbar systems – a review // Earth Surface Dynamics. 2014. Vol. 2. P. 309–321. https://doi.org/10.5194/esurf-2-309-2014

4. Net offshore bar migration variability at a regional scale: Inter-site comparison (Languedoc-Roussillon, France) / N. Aleman [et al.] // 2013. Journal of Coastal Research. 2013. Vol. 65, sp. iss. 2. P. 1715–1720. https://doi.org/10.2112/0165-290.1

5. Gervais M., Balouin Y., Belon R. Morphological response and coastal dynamics associated with major storm events along the Gulf of Lions Coastline, France // Geomorphology. 2012. Vol. 143–144. P. 69–80. https://doi.org/10.1016/j.geomorph.2011.07.035

6. Inman D. L., Elwany M. H. S., Jenkins S. A. Shorerise and bar-bern profiles on ocean beaches // Journal of Geophysical Research: Oceans. 1993. Vol. 98, iss. C10. P. 18181–18199. https://doi.org/10.1029/93JC00996

7. Bernabeu A. M., Medina R., Vidal C. A morphological model of the beach profile integrating wave and tidal influences // Marine Geology. 2003. Vol. 197, iss. 1. P. 95–116. https://doi.org/10.1016/S0025-3227(03)00087-2

8. Overview of seasonal sand level changes on Southern California beaches / M. L. Yates [et al.] // Shore & Beach. 2009. Vol. 77, iss. 1. P. 39–46. URL: https://pdfs.semanticscholar.org/817c/a0971803876b2723cc81fd03a4eb06495312.pdf (date of access: 09.07.2020).

9. The WAM Model – A Third Generation Ocean Wave Prediction Model / The Wamdi Groupe // Journal of Physical Oceanography. 1988. Vol. 18, iss. 12. P. 1775–1810. https://doi.org/10.1175/1520-0485(1988)018<1775:TWMTGO>2.0.CO;2

10. Rivas M. B., Stoffelen A. Characterizing ERA-Interim and ERA5 surface wind biases using ASCAT // Ocean Science. 2019. Vol. 15, iss. 3. P. 831–852. https://doi.org/10.5194/os-15-831-2019

11. Performance Assessment of ERA5 Wave Data in a Swell Dominated Region / M. F. Bruno [et al.] // Journal of Marine Science and Engineering. 2020. Vol. 8, iss. 3. P. 214. http://dx.doi.org/10.3390/jmse8030214

12. Shepard F. P. Longshore-bars and longshore-troughs. [Washington] : U.S. Beach Erosion Board, 1950. 32 p. URL: https://babel.hathitrust.org/cgi/pt?id=mdp.39015095245075&view=1up&seq=1 (date of access: 10.07.2020).

13. Larson M., Kraus N. C. SBEACH: numerical model for simulating storm-induced beach change. 1989. Technical Report CERC-89-9. US Army Engineering Waterways Experimental Station. 267 p.

14. Houser C., Greenwood B. Profile response of a lacustrine multiple barred nearshore to a sequence of storm events // Geomorphology. 2005. Vol. 69, iss. 1–4. P. 118–137. doi:10.1016/j.geomorph.2004.12.005

15. Леонтьев И. О. Морфодинамические процессы в береговой зоне моря. Saarbrücken : Lap Lambert Academic Publishing, 2014. 251 с.

About authors:

Корзинин Дмитрий Викторович, старший научный сотрудник, лаборатория шельфа и морских берегов им. В. П. Зенковича, Институт океанологии им. П. П. Ширшова РАН (117997, Россия, г. Москва, Нахимовский проспект, д. 36), кандидат географических наук, Scopus Author ID: 56829564800, ORCID ID: 0000-0002-7365-8386, korzinin2000@mail.ru

Штремель Маргарита Николаевна, младший научный сотрудник, лаборатория шельфа и морских берегов им. В. П. Зенковича, Институт океанологии им. П. П. Ширшова РАН (117997, Россия, г. Москва, Нахимовский проспект, д. 36), Scopus Author ID: 55844240900, ORCID ID: 0000-0003-0045-0282, mnshtremel@gmail.com