Biomechanical evaluation and finite element analysis of axial-loading simulated experiment of wrist fracture

CURRENT STATUS: POSTED

Yuan-Wei Zhang
Jiangxi Provincial People's Hospital Affiliated to Nanchang University

Liang-Yu Xiong
Zhangshu Municipal People's Hospital

Zu-Tai Huang
Jiangxi Provincial People's Hospital Affiliated to Nanchang University

Xin Xiao
Medical college of Nanchang University

Su-Li Zhang
Wujin Hospital Affiliated to Jiangsu University

Wen-Yan Ni
Wujin Hospital Affiliated to Jiangsu University

Liang Deng
Jiangxi Provincial People's Hospital Affiliated to Nanchang University

dengliang001137@163.com Corresponding Author
ORCID: https://orcid.org/0000-0002-7221-9146

DOI: 10.21203/rs.2.24404/v1

SUBJECT AREAS
Orthopedic Surgery

KEYWORDS
wrist fracture, biomechanical assessment, finite element analysis, wrist protector
Abstract

Objectives
This study combined mechanical experiments and finite element analysis (FEA), and verified each other, to assess the biomechanical analysis and effect of wrist fracture, providing theoretical basis for the simulation experiments of wrist fracture and optimal design of wrist protector.

Methods and Materials
Six cadaveric wrists were included to create experimental specimens. After grouping, the wrist models were axially loaded under physiological load of 600 N, the stress magnitude and distribution of experimental group and control group were obtained. Moreover, a three-dimensional (3D) wrist finite element model (FEM) of a healthy volunteer was developed to verify the rationality and effectiveness of wrist models.

Results
Within the range of physiological load, the stress of radioulnar palmar unit was high and in shape of pressure, while the stress of radioulnar dorsal unit was relatively lower and in shape of tension. The stresses of radial distal palmar, ulnar distal palmar, radial distal dorsal, ulnar distal dorsal, radial proximal palmar and ulnar proximal palmar units in experimental group were less than those in control group. However, the stresses of radial proximal dorsal and ulnar proximal dorsal units were higher than those in control group.

Conclusions
Under physiological load, wearing wrist protector can apparently reduce the stress on radioulnar distal palmar, radioulnar proximal palmar and radioulnar distal dorsal units, while has no obvious effect on radioulnar proximal dorsal units. During the process of designing and improving the wrist protector, it is reasonable to place the stress center on radioulnar distal palmar and dorsal units.

Background
The incidence of wrist fracture is widespread currently, accounting for 6.7% – 11% of the total body fracture, which inevitably results in high medical costs [1, 2]. The wrist joint is mainly composed of a bony structure and other small joints, which is a composite joint between the forearm and palm [3, 4].
Moreover, not only the bony structure and other small joints have a clear division of labor in structure, but also correspond to each other in function [5, 6]. As the most complicated joint of human body [7], the mechanical mechanism of wrist joint is more complicated. Once the wrist joint is injured, it is likely to cause secondary damage to other wrist structures [8], affecting the function of relevant parts of the upper limbs. Thus, a thorough and detailed study of wrist joint has significance clinical significance.

Currently, researches on preventing wrist fractures are still limited on drugs in the treatment of osteoporosis, osteoporosis fracture predicted by the Quantitative computed tomography (QCT) [9-12]. However, from the perspective of biomechanics and FEA, it is of great practical significance to explore the prevention and treatment of wrist fractures. Based on this, this study combined mechanical experiment of cadaveric wrist models with finite element (FE) wrist simulation analysis, and verified each other, which contributes to assessing the biomechanical analysis and effect evaluation of wrist protector. Moreover, it also provided the theoretical basis for the simulation experiment of wrist fracture and the optimal design of wrist protector.

Methods And Materials

Models and materials

Six wrist samples were collected from cadavers in individuals with an age at mortality of 20-50 years at the Department of Human Anatomy of Basic Medicine, Nanchang University (Nanchang, Jiangxi, China). Prior to storage at -20℃, in order to exclude the skeletal defects, dislocations, lesions and tumors, the X-ray examination and bone mineral density (BMD) of wrists were performed. An unsealed cuboid container (stainless steel materials) with the specification of 80 mm×80 mm×100 mm was designed to display the wrists. PALACOS bone cements with low viscosity, 40 g×20 boxes (Heraus, Germany) were used to implant the wrists vertically into the cuboid container according to the filling technology of bone cement [13], and the bone cements were embedded and fixed until the wrists were completely firm without any slight movement. Moreover, the wrists were equipped with a stress sensing system device (Taizhou, Zhejiang, China), a microelectronic universal testing machine (Jinan, Shandong, China) and four static strain test units (Jinan, Shandong, China), which were
connected by wires. Four static strain test units were respectively marked as A, B, C and D units, of which unit A represented the stress of radioulnar distal palmar unit; unit B represented the stress of radioulnar distal dorsal unit; unit C represented the stress of radioulnar proximal palmar unit; unit D represented the stress of radioulnar proximal dorsal unit. Ethical approval was obtained from Institutional Review Board of Jiangxi Provincial People's Hospital Affiliated to Nanchang University. The computed tomography (CT) data was obtained from a 30-year-old healthy Chinese volunteer, whose age and forearm size strictly met the requirements of above cadaver specimens. In order to ensure the normal anatomy of wrist, the X-ray of his wrist was also performed to exclude the fracture, lesions and other conditions. The experimental devices in this current study included a dual-source CT (Siemens, Berlin, Germany), a computer (Dell, Landrock, USA), Mimics 19.0 software (Materialise, Leuven, Belgium), Geomagic Studio 12.0 software (Raindrop, North Carolina, USA) and Abaqus 6.51 (Dassault Simulia, Providence, USA).

Biomechanical testing methods

The biomechanical experiment in this study belonged to the impact test of static loading within the yield strength. The specimens wearing wrist protectors were divided into experimental group, and the naked wrist specimens were divided into control group. In experimental group, the wrist protectors were made of 20 mm thick soft sponge materials and 2 mm thick polypropylene hard materials. Then, the mechanical axial compression mode was selected, the strain sensing system on wrist models was installed and the static resistance strain gauges were connected. With the palm facing upward, the wrist models were fixed according to the above method, 90 degrees perpendicular to the ground, and the pressure hammer was aimed at the center of the navicular and lunar bone. The initial loading speed was set at 2 mm/min, and the loading range was 0-600 N (Fig. 1). The strain values of all target units were recorded for every 20 N load, and each specimen was tested three times under the same conditions.

Construction of 3D FEMs

The volunteer was scanned transversely by CT, ranging from proximal forearm to fingertip. During scanning, the volunteer referred to the direction of axial-loading and the posture maintained when...
the wrist models were tested. It was determined that the established wrist model was set to 75 degrees of dorsiflexed and 10 degrees of pronated, the scanned data was saved in the Digital Imaging and Communications in Medicine (DICOM) format. Then, the data was input into the Mimics19.0 software to initially establish the 3D geometric model of wrist. The contours of forearm cortex, loose tissue and surrounding soft tissue were extracted by the tools of Thresholding and Manual drawing, and the STereoLithography (STL) format data were obtained. Then, input the data into the Geomagic Studio 12.0 software, and conducted with deeper level of hole filling and smoothing for each part of model to prevent the occurrence of poor grids. Finally, the data of generated solid 3D model was imported into Abaqus 6.51 software for statistical analysis.

Statistical analysis

The data obtained above were statistically analyzed by SPSS 22.0 software (SPSS, Chicago, USA), and was assessed by the paired t-test. $P < 0.05$ was regarded as the difference with statistical significance.

Results

The experimental results of control group

In axial-loading simulated experiment of control group, the stress magnitude and properties of the wrist model were different. Among them, the stresses of palmar units were apparently higher than the stresses of dorsal units, and the stresses of palmar units were mainly in the shape of pressure. The initial stage of the dorsal units was in the shape of pressure, but the whole process was dominated by tension. The equivalent stresses of the radial distal and proximal palmar units under 600 N load were 36.6 MPa and 58.5 MPa. Under the same loading conditions, the equivalent stresses of the ulnar distal and proximal palmar units were close to those on the radial distal and proximal palmar units, which were 37.9 MPa and 37.4 MPa, respectively. In all groups of units, the stresses of the dorsal units were all less than those of the palmar units. Moreover, the stresses of ulnar distal and proximal dorsal units and radioulnar proximal dorsal units were in the shape of pressure at the initial stage of the experiment, while transformed into tension at the middle and late stages. The maximum stresses of the radioulnar distal dorsal units were 9.3 MPa and 13.4 MPa, while the maximum stresses of the
radioulnar proximal dorsal units were 10.5 MPa and 15.6 MPa, respectively.

The experimental results of experimental group

In axial-loading simulated experiment of experimental group, the stress magnitude and properties of the wrist model were also different. The stresses of palmar units were apparently higher than the stresses of dorsal units, and every unit was mainly dominated by pressure. The initial stage of the radial proximal dorsal unit was in the shape of pressure, while transformed into tension at the middle and late stages. In addition, tension was the main manifestation of the radioulnar distal and dorsal units and ulnar proximal dorsal unit. Under the same loading conditions, the stresses of radioulnar proximal palmar units were all higher than those of radioulnar distal palmar units. The equivalent stresses of the radioulnar proximal palmar units under 600 N load were 36.6 MPa and 58.5 MPa, while the equivalent stresses of the radioulnar distal palmar units were 20.2 MPa and 24.2 MPa, respectively. In all groups of units, the stresses of the dorsal units were all less than those of the palmar units. The maximum stresses on the radioulnar distal dorsal units were 5.6 MPa and 4.7 MPa, while the maximum stresses on radioulnar proximal dorsal units were 10.2 MPa and 13.2 MPa, respectively (Fig. 2).

The comparison of results between control group and experimental group

The comparison of stress peak and decline between two groups was derived as (Table 1). In all 8 groups, besides the radioulnar proximal and dorsal units, there was no significant stress difference between the control group and experimental group at the late stage of experiment. However, the stresses of remaining 6 units in experimental group were decreased by 44% compared with control group on average (Fig. 3).

The constitution of 3D FEM

Based on the extension, flexion, retraction and rotation of normal human wrist, the 3D FEM of wrist was composed of 136897 units of bone, 9166 units of cartilage and 228,893 units of soft tissue, totaling 374,956 units (Table 2).

The stress distribution in the models of control group and experimental group.

At late stage of experiments, the stress distribution in the models of control group and experimental
group was shown in (Fig. 4). The results of FEA well confirmed the conclusions of the biomechanical experiments above. That is, besides the radioulnar proximal and dorsal units, there was no significant stress color difference between the control group and experimental group at the end of experiments. However, the stress color of the remaining 6 units in experimental group were lighter than those in control group, indicating the stresses of the experiment group were less than those of control group. This result further verified the rationality and effectiveness of the biomechanical experiments above.

Discussion

As the aging process of population continues to evolve, the increase in proportion of the elderly has led to a surge in patients with wrist fractures to a certain extent [14–16]. Especially in middle-aged and elderly women, due to the menopause and estrogen loss, the physical function and ability to deal with emergencies has declined inevitably, which brings about the high incidence of wrist fractures [13, 17–19]. In addition, wrist fractures are also common in young and middle-aged people during daily exercise and work [20, 21]. In order to improve the prevention ability of wrist fracture in different ages and update the wrist protectors with poor effectiveness in the current state, this study combined the mechanical experiment of cadaveric wrists with FE wrist simulation analysis to evaluate the effect of the wrist external forces from multiple angles.

During axial-loading experiments, it is found that despite the complex anatomical structure of wrist joint, the external forces were mainly transmitted from navicular and lunar bone down to the radioulnar joints, and then continued to the proximal end of the forearm. In this process, the radioulnar joint was regarded as a composite joint, and the compressive deformation occurred on the radioulnar palmar units, presenting as the compressive stress. The tensile deformation occurred on the radioulnar dorsal units, presenting as tensile stress. In addition, under the normal circumstances, during the deformation of the radioulnar joint under external forces, the palmar and dorsal units with the same axis distance had the same bending moments [22]. However, in this experiment, the axial center was biased to the dorsal units under the impact, and all units had larger palmar bending moments and smaller dorsal bending moments, which explains that the absolute values of the palmar units were greater than those of the stress of dorsal units.
Secondly, according to the comparison of two groups, it is found that wearing wrist protector can effectively reduce the stress on radioulnar distal palmar, radioulnar proximal palmar and radioulnar distal dorsal units, while has no obvious influence on radioulnar proximal dorsal units. In experimental group, the stresses of radioulnar distal palmar and dorsal units were apparently reduced by 44% compared with the control group on average, which was related to the absorption and shunting of the impact load on the wrist protector. Hence, when designing and improving the wrist protector, it is reasonable to place the stress center on the radioulnar distal palmar and dorsal units. Similar to the findings of this experiment, Sun et al. [23] have designed a hip protector and screened 3 volunteers to perform a certain intensity of simulated human side fall test. The results indicated that average peak impact force could reach (1738.88 ± 215.66) N in the group without hip pad, while the average peak impact force in the group with hip pad increased apparently to (1907.44 ± 441.42) N. This result reflected that wearing a hip protector can increase the peak impact force of hip, which could prevent the occurrence of hip fracture to a certain extent.

In addition, certain limitations in this study should be recognized and pointed out. Firstly, the cadaveric specimens lack the natural soft tissue tension and stress protection mechanism of normal human body, which is unable to accurately reflect the true stress and strain of normal human wrist [24–26]. Subsequently, the experimental sample size was only six, which was relatively small. Thirdly, the force mechanism of wrist fracture caused by external force impact is complex. However, this study was limited to the vertical axial-loading of wrist joint, which simplified the actual force of human body. Ultimately, the FEA method also has certain limitations. The FE simulation can only be approximated to the real situation, and the authenticity and validity of results need to be mutually verified with experiments, which leads to the deviation of experimental results to a certain extent [27].

Conclusion
It can be concluded in this study that the stresses of radioulnar palmar units were high and in shape of pressure; while the stress of radioulnar dorsal units were relatively lower and in shape of tension. Under the physiological load, wearing the wrist protector can apparently reduce the stress on
radioulnar distal palmar, radioulnar proximal palmar and radioulnar distal dorsal units, while has no obvious influence on the radioulnar proximal dorsal units. During process of designing and improving wrist protector, it is reasonable to place the stress center on the radioulnar distal palmar and dorsal units.

Abbreviations

FEA
Finite element analysis

3D
Three-dimensional;

FEM
Finite element model;

QCT
Quantitative computed tomography;

FE
Finite element;

BMD
Bone mineral density;

CT
Computed tomography;

DICOM
Digital imaging and communications in medicine;

STL
STereoLithography.

Declarations

Acknowledgements

Not applicable.

Authors’ contributions

YZ, LX, ZH, XX, SZ and LD participated in the experimental design, data analysis and interpretation. YZ, ZH and LD contributed to conduct the specific experimental procedures. YZ and LD wrote and edited the manuscript. LX, WN and LD contributed to the critical revision of the manuscript. All authors read and approved the final manuscript.
Funding
This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Availability of data and materials
The datasets used and/or analyzed during the current study are available from the corresponding author on reasonable request.

Ethics approval and consent to participate
The Ethics Committee of Jiangxi Provincial People’s Hospital Affiliated to Nanchang University approved this study.

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Contributor Information
Yuan-Wei Zhang, E-mail: zyw812726327@163.com
Liang-Yu Xiong, E-mail: xly1983@163.com
Zu-Tai Huang, E-mail: 846539738@qq.com
Xin Xiao, E-mail: gonganling@gmail.com
Su-Li Zhang, E-mail: suliyillian@163.com
Wen-Yan Ni, E-mail: 2045352049@qq.com
Liang Deng, E-mail: dengliang001137@163.com

References
1. de Putter CE, Selles RW, Polinder S, Hartholt KA, Looman CW, Panneman MJ, Verhaar JA, Hovius SE, van Beeck EF: Epidemiology and health-care utilisation of wrist fractures in older adults in The Netherlands, 1997-2009. Injury 2013, 44(4):421-426.
2. Gregson CL, Carson C, Amuzu A, Ebrahim S: The association between graded
physical activity in postmenopausal British women, and the prevalence and
ingincidence of hip and wrist fractures. *Age and ageing* 2010, 39(5):565-574.

3. Jung HY, Chang M, Kim KM, Yoo W, Jeon BJ, Hwang GC: **Effect of Wrist Joint**
Restriction on Forearm and Shoulder Movement during Upper Extremity
Functional Activities. *Journal of physical therapy science* 2013, 25(11):1411-1414.

4. Park K, Chang PH, Kang SH: **In Vivo Estimation of Human Forearm and Wrist**
Dynamic Properties. *IEEE transactions on neural systems and rehabilitation*
engineering : a publication of the IEEE Engineering in Medicine and Biology Society
2017, 25(5):436-446.

5. Erhart S, Lutz M, Arora R, Schmoelz W: **Measurement of intraarticular wrist joint**
biomechanics with a force controlled system. *Medical engineering & physics*
2012, 34(7):900-905.

6. Schreck MJ, Kelly M, Canham CD, Elfar JC: **Techniques of Force and Pressure**
Measurement in the Small Joints of the Wrist. *Hand (New York, NY)* 2018,
13(1):23-32.

7. Kramer A, Allon R, Wolf A, Kalaiman T, Lavi I, Wollstein R: **Anatomical Wrist**
Patterns on Plain Radiographs. *Current rheumatology reviews* 2017.

8. Crandall CJ, Hovey KM, Cauley JA, Andrews CA, Curtis JR, Wactawski-Wende J, Wright
NC, Li W, LeBoff MS: **Wrist Fracture and Risk of Subsequent Fracture: Findings**
from the Women's Health Initiative Study. *Journal of bone and mineral research :*
the official journal of the American Society for Bone and Mineral Research 2015,
30(11):2086-2095.

9. Gallagher JC: **Advances in osteoporosis from 1970 to 2018.** *Menopause (New
York, NY)* 2018, 25(12):1403-1417.

10. Gong H, Zhang M, Fan Y, Kwok WL, Leung PC: **Relationships between femoral**
strength evaluated by nonlinear finite element analysis and BMD, material distribution and geometric morphology. *Annals of biomedical engineering* 2012, 40(7):1575-1585.

11. Palacios S, de Villiers TJ, Nardone Fde C, Levine AB, Williams R, Hines T, Mirkin S, Chines AA: *Assessment of the safety of long-term bazedoxifene treatment on the reproductive tract in postmenopausal women with osteoporosis: results of a 7-year, randomized, placebo-controlled, phase 3 study*. *Maturitas* 2013, 76(1):81-87.

12. Palacios S, Silverman SL, de Villiers TJ, Levine AB, Goemaere S, Brown JP, De Cicco Nardone F, Williams R, Hines TL, Mirkin S et al: *A 7-year randomized, placebo-controlled trial assessing the long-term efficacy and safety of bazedoxifene in postmenopausal women with osteoporosis: effects on bone density and fracture*. *Menopause (New York, NY)* 2015, 22(8):806-813.

13. Belaid D, Vendeuvre T, Bouchoucha A, Bremand F, Breque C, Rigoard P, Germaneau A: *Utility of cement injection to stabilize split-depression tibial plateau fracture by minimally invasive methods: A finite element analysis*. *Clinical biomechanics (Bristol, Avon)* 2018, 56:27-35.

14. Antoniadou E, Kouzelis A, Diamantakis G, Bavelou A, Panagiotopoulos E: *Characteristics and diagnostic workup of the patient at risk to sustain fragility fracture*. *Injury* 2017, 48 Suppl 7:S17-s23.

15. Frontera WR: *Physiologic Changes of the Musculoskeletal System with Aging: A Brief Review*. *Physical medicine and rehabilitation clinics of North America* 2017, 28(4):705-711.

16. Walters S, Khan T, Ong T, Sahota O: *Fracture liaison services: improving outcomes for patients with osteoporosis*. *Clinical interventions in aging* 2017,
17. Gallagher JC, Palacios S, Ryan KA, Yu CR, Pan K, Kendler DL, Mirkin S, Komm BS:

Effect of conjugated estrogens/bazedoxifene on postmenopausal bone loss: pooled analysis of two randomized trials. *Menopause (New York, NY)* 2016, **23**(10):1083-1091.

18. Khan A, Fortier M: **Osteoporosis in menopause.** *Journal of obstetrics and gynaecology Canada : JOGC = Journal d'obstetrique et gynecologie du Canada : JOGC* 2014, **36**(9):839-840.

19. Stagraczynski M, Kulczyk T, Leszczynski P, Meczekalski B: **[Number of teeth and hormonal profile of postmenopausal women with osteoporosis, osteopenia and normal bone mineral density--a preliminary study].** *Polski merkuriusz lekarski : organ Polskiego Towarzystwa Lekarskiego* 2015, **39**(232):214-218.

20. Beerekamp MSH, de Muinck Keizer RJO, Schep NWL, Ubbink DT, Panneman MJM, Goslings JC: **Epidemiology of extremity fractures in the Netherlands.** *Injury* 2017, **48**(7):1355-1362.

21. Clement ND, Duckworth AD, Wickramasinghe NR, Court-Brown CM, McQueen MM:

Does socioeconomic status influence the epidemiology and outcome of distal radial fractures in adults? *European journal of orthopaedic surgery & traumatology : orthopedie traumatologie* 2017, **27**(8):1075-1082.

22. Sherman KM, Miller GJ, Wronski TJ, Colahan PT, Brown M, Wilson W: **The effect of training on equine metacarpal bone breaking strength.** *Equine veterinary journal* 1995, **27**(2):135-139.

23. PD S: **Experimental and finite element analysis of the influence of lateral fall height and hip protector on hip impact.** *Southern Medical University* 2012(In Chinese).
24. Hogel F, Mair S, Eberle S, Weninger P, von Oldenburg G, Augat P: Distal radius fracture fixation with volar locking plates and additional bone augmentation in osteoporotic bone: a biomechanical study in a cadaveric model. Archives of orthopaedic and trauma surgery 2013, 133(1):51-57.

25. Kang L, Dy CJ, Wei MT, Hearns KA, Carlson MG: Cadaveric Testing of a Novel Scapholunate Ligament Reconstruction. Journal of wrist surgery 2018, 7(2):141-147.

26. Mirarchi AJ, Hoyen HA, Knutson J, Lewis S: Cadaveric biomechanical analysis of the distal radioulnar joint: influence of wrist isolation on accurate measurement and the effect of ulnar styloid fracture on stability. The Journal of hand surgery 2008, 33(5):683-690.

27. Sannino G, Barlattani A: Mechanical evaluation of an implant-abutment self-locking taper connection: finite element analysis and experimental tests. The International journal of oral & maxillofacial implants 2013, 28(1):e17-26.

Tables

Table 1 The comparison of stress peak and decline between two groups

Unit	The peak of control group/MPa	The peak of experimental group,
Radial distal palmar unit	36.6	20.2
Ulnar distal palmar unit	37.9	24.3
Radial distal dorsal unit	9.4	5.7
Ulnar distal dorsal unit	13.4	4.8
Radial proximal palmar unit	58.5	30.1
Ulnar proximal palmar unit	37.4	24.9
Radial proximal dorsal unit	10.5	10.3
Ulnar proximal dorsal unit	15.3	13.8
Table 2 The number of nodes, unit types and numbers of the FEM

	Bone	Cancellous bone	Soft tissue	Rigid ground	Sc
Unit number	136897	9166	228893	2500	12
Nodes	228808	20499	356621	2603	4
Unit Type	C3D10M	C3D10M	C3D10M	S4R	C3

Figures

(A) The axial-loading experiment on wrist specimens; (B) The establishment of four static strain test units
The comparison of load and stress of each unit in experimental group and control group

The load and stress curves of each unit between the experimental group and control group
Figure 4

The stress distribution in the FEMs of control group and experimental group. (A) Without buffer of wrist protector, the stress color of control group was apparently deeper than the experimental group in radioulnar distal palmar, radioulnar proximal palmar and radioulnar distal dorsal units. (B) Under the protection of wrist protector, the overall stress color of the experimental group was light