Genetically modified animals for use in bio-pharmacology: from research to production

Alexey V. Deykin¹, Olesya V. Shcheblykina¹, Elena E. Poverka¹, Polina A. Golubinskaya¹, Vladimir M. Pokrovsky¹, Liliya V. Korokina¹, Olesya A. Vanchenko¹, Elena V. Kuzubova¹, Konstantin S. Trunov¹, Viktor V. Vasyutkin¹, Alexandra I. Radchenko¹, Anton P. Danilenko¹, Julia V. Stepenko¹, Indira S. Kochkarova¹, Veronika S. Belyaeva¹, Vladimir I. Yakushev¹

¹ Belgorod State National Research University, 85 Pobedy St., Belgorod 308015 Russia

Corresponding author: Alexey V. Deykin (alexei@deikin.ru)

Academic editor: Oleg Gudyrev

Received 18 June 2021 Accepted 11 October 2021 Published 29 October 2021

Citation: Deykin AV, Shcheblykina OV, Poverka EE, Golubinskaya PA, Pokrovsky VM, Korokina LV, Vanchenko OA, Kuzubova EV, Trunov KS, Vasyutkin VV, Radchenko AI, Danilenko AP, Stepenko JV, Kochkarova IS, Belyaeva VS, Yakushev VI (2021) Genetically modified animals for use in bio-pharmacology: from research to production. Research Results in Pharmacology 7(4): 11–27. https://doi.org/10.3897/rrpharmacology.7.76685

Abstract

Introduction: In this review, the analysis of technologies for obtaining biologically active proteins from various sources is carried out, and the comparative analysis of technologies for creating producers of biologically active proteins is presented. Special attention is paid to genetically modified animals as bioreactors for the pharmaceutical industry of a new type. The necessity of improving the technology of development transgenic rabbit producers and creating a platform solution for the production of biological products is substantiated.

The advantages of using TrB for the production of recombinant proteins: The main advantages of using TrB are the low cost of obtaining valuable complex therapeutic human proteins in readily accessible fluids, their greater safety relative to proteins isolated directly from human blood, and the greater safety of the activity of the native protein.

The advantages of the mammary gland as a system for the expression of recombinant proteins: The mammary gland is the organ of choice for the expression of valuable recombinant proteins because milk is easy to collect in large volumes.

Methods for obtaining transgenic animals: The modern understanding of the regulation of gene expression and the discovery of new tools for gene editing can increase the efficiency of creating bioreactors for animals and help to obtain high concentrations of the target protein.

The advantages of using rabbits as bioreactors producing recombinant proteins in milk: The rabbit is a relatively small animal with a short duration of gestation, puberty and optimal size, capable of producing up to 5 liters of milk per year per female, receiving up to 300 grams of the target protein.

Keywords

genetically modified animals, recombinant protein, bio-pharmacology.
Introduction

Research by Hammer et al. (1985) led to the creation of the first transgenic farm animals as producers of recombinant proteins (sheep, rabbits and pigs) (Hammer et al. 1985). Since then, a large number of transgenic animals have been obtained for the production of recombinant proteins for scientific purposes. Transgenic animals are bioreactors (TrB), which have been around for decades and used to produce therapeutic proteins. Currently, some of the proteins produced in these systems are in clinical trials now, and some of them have been already approved for sale. A good example is human factor IX (Atryn), which is used now to treat hemophilia B (Lubon and Palmer 2000) and C1-inhibitor (Ruconest) to prevent Quincke’s edema.

This review considers the advantages of using transgenic animals for the production of recombinant proteins, explains the advantages of the mammary gland over other tissues (for the expression of recombinant proteins), describes the technologies for obtaining transgenic animals with an emphasis on animals producing recombinant proteins in milk, includes an experimental analysis of the already used promoters for the expression of recombinant proteins in milk and briefly outlines the current prospects of using transgenic rabbits as bioreactors for the production of recombinant proteins.

The advantages of using TrB for the production of recombinant proteins

Compared to some other systems for the production of recombinant proteins, TrB is the most attractive model because they are powerful tools to meet the growing demand for therapeutic recombinant proteins. The main advantage of using TrB is a low cost of obtaining valuable complex human therapeutic proteins in easily accessible fluids. Using the constructions of tissue-specific expression, large quantities of human recombinant proteins can be expressed and produced in the extracellular space, urine, seminal plasma, milk, and blood of large transgenic animals.

Proteins derived from TrB have a number of advantages compared to proteins from some other sources. First of all, the use of TrB for protein production can reduce the level of contamination of food with such contaminants as: HIV and viral hepatitis, compared to the level of contamination of proteins isolated directly from human blood. It would avoid such tragedies as the infection of hemophilia patients in Europe and Japan with HIV through the drugs based on donated blood.

The second important advantage of obtaining recombinant proteins using transgenic animals is the high safety of the activity of the native protein. The ability of transgenic animals to produce complex biologically active proteins in an efficient and economical way surpasses such capabilities in bacteria, mammalian cells, transgenic plants, and insects (Houdebine 2009). As we know, bacteria are limited in their ability to perform post-translational modifications that are required for many proteins (Balbas 2001; Swartz 2001). It is due to bacteria, because they cannot add carbohydrates to polypeptide chains and cannot generate the required proteins in their mature native structure. TrB mammary glands perform post-translational modifications of protein, such as: carboxylation, glycosylation, and amidation, which are useful for the full biological activity of many proteins (Houdebine 1995; Houdebine 2000). The use of eukaryotic cells (the cultured cells of mammals) in some cases helps overcome these problems. However, the cultivation of animal cells on an industrial scale is a very expensive technology. when compared with chemical synthesis, the production of therapeutically active peptides in the milk of transgenic animals also have a large number of advantages. The scales in which peptides can be chemically synthesized are limited by the considerations of a reactor size, the reagentizing and recycling of reagents, and costs of cleaning. Despite all the costs, TrB demonstrates the financial advantage over cell cultures and some other systems (Table 1, Table 2).

The advantages of the mammary gland as a system for the expression of recombinant proteins

The choice of an expression method of recombinant protein depends on its characteristics and the intended application of recombinant protein (Brondyk 2009). Milk is currently the most developed system for the creation of recombinant proteins from transgenic animal species. Other theoretically possible fluids and tissues, such as blood, egg white, seminal plasma, silk gland, and urine have fundamental disadvantages (Table 3).

The mammary gland is the organ of the choice for the expression of valuable recombinant proteins because milk is easy to collect in large volumes. It is reported that foreign proteins are produced in transgenic milk in amounts of several grams per liter. Based on average daily milk expression levels and purification efficiencies, 5,400 cows would be required to produce 100,000 kg of human serum albumin needed worldwide annually; the production of 5,000 kg of α-antitrypsin (α-AT) would require 4,500 sheep; the production of 100 kg of monoclonal antibodies (mAbs) – 100 goats; the production of 75 kg of antithrombin III – 75 goats; and two pigs would be needed for the production of 2 kg of human clotting factor IX (Bösze and Hiripi 2012). In this way, milk is currently the best available bioreactor for the production of valuable recombinant proteins.

Methods for obtaining transgenic animals

A transgenic animal is an animal, whose genome contains an exogenous gene. Although modern methods of mole-
Table 1. Comparison of the different systems used to produce recombinant pharmaceutical proteins.

Indicator	Bacteria	Mammalian cells	Transgenic animals
Production level	++	+	+++
Investment cost	+++++	+	+++
Production cost	+++	+	+++
Scaling-up ability	+++	+	+++
Collection	+++	+++	+++
Purification	+	+++	+++
Postranslational modifications	+	+++	+++
Glycosylation	+	+++	+++
Stability of product	+++	+++	+++
Contaminant pathogens	+++	+++	+++
Products on the market	+++	+++	+++

Note: Table adapted from (Houdebine 2009).

Table 2. Comparative estimated production cost between cell culture and transgenics.

Production scale (Kg/year)	System	Cost (dollars/gram product)
50	Cell culture	14
	Transgenics	20
100	Cell culture	48
	Transgenics	6

Note: Table adapted from (Margawati 2003).

Table 3. Comparison of the different transgenic animal species used to produce recombinant pharmaceutical proteins.

Points to consider	Milk	Blood	Egg white	Seminal fluid	Urine	Silk cocoon	Others
Production level	+++	+++++	+++	+	++	+++	++
Investment cost	+++	+++	+++	+	+	+++	+
Production cost	+++	+++	+++	+	+	+++	+++
Scaling-up	+++	+++	+++	+	+	+++	+++
Collection	+++	+++	+++	+	+++	+++	+++
Purification	+++	++	++	+	+	+++	+
Effect on organism	+++	+	+++	+++	+++	+++	++
Postranslational modifications	+++	+++	+++	+++	+++	+++	+++
Glycosylation	+++	+++	+++	+++	+++	+++	+++
Contaminant pathogens	+++	++	+++	++	+++	+++	+++
Products on the market	+++	+	++	+	+	+++	+++

Note: Table adapted from (Houdebine 2009).

cular biology make it possible to humanize animal proteins; currently, a gene transfer approach is used to create animal producers.

Method and procedure for obtaining foreign genes

The preparation of the transgene is the first step in the technology of transferring foreign genes. It is carried out by using the conventional DNA techniques, by cutting and ligating the DNA fragments, which results in the recombinant DNA (Huldiner 1996; Blanchard and Kelly 2005; Chrenek et al. 2010).

Typical transgenes contain the nucleotide sequences of the gene of interest with all the components that are necessary for efficient expression, including a promoter, artificial introns, and 3 ‘non-coding regions (Acquaah 2004). The transgene can be expressed in many tissues of a transgenic animal not only by using a promoter from a constitutively expressed gene, but also in certain tissue by tissue-specific promoters, such as: a P2 adipocyte promoter (fat cells), a myosin light-chain promoter (muscle), an amylase promoter (acinar-pancreas), and an insulin promoter (islet beta cells) (Huldiner 1996).

The main method for obtaining a foreign gene of interest is a recombinant DNA technology, which includes three stages: 1) isolating the gene of interest; 2) cloning the target gene; 3) inserting the cloned gene into the host cell, most often, as a coding sequence (Bihon and Ayalew 2019).

Cloning is the process of introducing a foreign gene (called an insert) into vector (called plasmid). The ligated ends of the vector and target DNA must be produced by the same enzyme – restriction endonuclease, in order to complement the insertions of the cut DNA into the vector and to be ligated by the DNA ligase enzyme that covalently connects the sugar-phosphate backbone of the bases (Wilmut et al. 1997; Eghbalsaied et al. 2013). The vector containing the cloned gene is imbedded into the bacterial host cell for preparative plasmid production. The host cell containing the vector is called transformed cell (Blanchard and Kelly 2005). The transformation of bacteria with DNA plasmid of is carried out in several
ways: a) heat stroke (heating a solution containing cold calcium chloride with plasmids and normal bacteria at 42°C for 2-5 minutes, which increases the permeability of bacterial membranes for plasmids (Wilmut et al. 1997);

b) electroporation (the use of a high voltage pulse temporarily destroys the host cell membrane, which allows the vector to enter the cell (Acquaah 2004). Later, the cloned transgenic cassette can be used as part of a plasmid (for insertion by homologous recombination or homologous repair) or in a linearized form (without a bacterial component for random insertion).

The insertion of a cloned gene into an animal cell can be carried out using different types of techniques:

- by using viruses (the ability of viruses to infect a susceptible cell and replicate made it possible to incorporate the desired DNA sequence into target cells (McKee et al. 1998);
- by using a gene gun (embedding foreign DNA segments into the host cell by firing gold particles coated with these DNA segments (Whitelaw and Sang 2005));
- by using microinjection (embedding a foreign DNA directly into the core of the host cell using a thin needle under a microscope (Houdebine 2002));
- by using liposomes (a small a membrane-bound vesicle (liposome) can contain vectors and transfer foreign DNA when fusing with a cell or nuclear membrane of the host cell (Whitelaw and Sang 2005)).

Tissue-specific promoters for the expression of recombinant proteins in milk

The key determinant providing the tissue specificity of the expression of a transgene is promoter (Shepelev et al. 2008). For the production of recombinant proteins in the mammary gland, a number of promoters of genes encoding milk proteins have been successfully used.

Promoters that make it possible to obtain the target protein in milk at a high level (up to dozens of grams per liter of milk) are the promoters of the following genes: goat β-casein, cow β-casein, cow αS1-casein, rabbit whey acidic protein (WAP), human α-lactalbumin and sheep β-lactoglobulin.

The examples of the promoters used for obtaining recombinant proteins in milk are shown in Table 4.

Vectors used in the creation of transgenic animals

The expression of recombinant proteins in the milk of transgenic animals is controlled by the promoter regions of genes involved in the generation of specific milk proteins, such as: caseins (α, β, γ and κ), β-lactoglobulin, and α-lactalbumin.

The promoter region, located at the 5'-UTR (untranslated region) of the gene of interest, including tissue-specific enhancers for the mammary gland and the first non-coding exons and introns, has different sizes depending on the promoter used. Thus, the bovine α-lactalbumin and β-lactoglobulin promoters are used with a gene length of approximately 2.0 kbp and 2.8 kbp, respectively, and the casein promoters (αS1, αS2 and β) are typically used for genes of 3.1 kbp-14.2 kbp long (Bleck et al. 1998; Hyttinen et al. 1998).

To guarantee a high level and position-independent expression of the transgene, other regulatory elements (such as insulators) are inserted into the vector construct above the 5'-UTR. One of the examples of this is commercial vector pBC1, which includes insulators of the chicken β-globulin gene cluster (Invitrogen - Thermo Fisher Scientific).

The first noncoding exons and introns in the 3'-region of the 5'-UTR are different as they position mRNA in ribosomes for the start of translation and/or contain regulatory elements that can enhance the transcription of the gene (Rijinkels et al. 1998; Naruse et al. 2006). As a rule, these noncoding exons and introns are derived not only from milk protein genes, but can also be synthesized from the structural gene used in the transgene construct.

Most frequently, the gene of interest is inserted into the vector below the 5'-UTR as a cDNA sequence, either as a complete gene sequence (containing exons and introns), or as a mini-gene containing only a part of the introns or even artificial introns. For recombinant proteins that are secreted with milk, it is necessary to include a signal peptide sequence, which, as a rule, is derived from the used transgene (in case the secreted protein is produced).

The pBC1 vector is universal and accumulated for various proteins in high concentrations in milk (see Table 5). It is necessary to take into consideration that there is no signal peptide in its sequence and it must be cloned within the transgene. This vector can be used for production of recombinant proteins in milk, which not secreted naturally secreted.

The 3'-UTR is inserted downstream of the transgene and can be synthesized not only from the milk gene used in the 5'-UTR, but also from the structural gene used in the transgene, or from another gene. This region provides the effective termination of transcription and the formation of stable mRNA encoding the target protein. In certain cases, the length of this region can reach 7.1 kbp, as in the vector pBC1 (Invitrogen), which includes introns, exons and the polyadenylation signal from goat β-casein. 3'-UTR may contain regulatory elements that improve transcription. The polyadenylation signal from bovine growth hormone, which is about 1 kbp, is 3'-UTR, which is usually inserted into expression vectors (Naruse et al. 2006).

To obtain transgenic farm animals, three classes of vectors are mainly used: bacterial artificial chromosomes (BAC), plasmids, and lentiviruses. The choice of a vector depends on the length of transgene. BAC vectors, which can contain DNA sequences up to 300 kbp in length are the main vectors. They are used when it is necessary to insert long sequences into the host genome, such as: com-
Table 4. Recombinant proteins produced from transgenic animals.

Protein	Promoter	Species	Other elements	Creation method	Level of production	Reference
Growth hormone	CMV promoter	mice	AdEasy adenoviral vector system	adenovirus infusion	up to 301 mg/kg/ml	Sánchez et al. 2004
Human α-glucosidase	bovine α1-casein	rabbits	N-acetyl-β-glucosaminyl	8 g/L	Biyvoet et al. 1999	
Alpha-lactoprotein	beta-casein	goats			Park et al. 2006	
Antithrombin	goat beta-casein	goats				Li et al. 2013
Antitrypsin receptor antibody -	beta-casein promoter	mice		p/m	0.8 g/L	Niavarani et al. 2005
RNase fusion protein						
Bovine Follicle-Stimulating	bovine alpha-s1	rabbits	cDNA	p/m	5,354 mg/ml	Coulibaly et al. 2002
Hormone	casein					
Coagulation factor IX	beta-casein	goats	cDNA, pB21 (Invitrogen)	nuclear transfer using		Amiri et al. 2013
Endogenous whey acidic protein	rabbit WAP	rabbits		p/m	too low	Aguirre et al. 1998
(WAP) gene	promoter					
Erythropoietin	mouse WAP	pigs	Human EPO genomic DNA was cloned using the mouse WAP promoter as a regulatory	p/m	877.9±92.8 IU/1 ml	Park 2007
	promoter		controller, and the SV40 T antigen poly-A as a poly-adenylation signal			
Erythropoietin	rabbit WAP	rabbits	rabbit WAP promoter and 3' flanking sequences	p/m	too low	Whitelaw and Sang 2005
	promoter					
Erythropoietin	rabbit WAP	rabbits	cDNA under the 5' and 3' regulatory sequences of the rabbit whey acidic protein	p/m	0.01 mg/L	Aguirre et al. 1998
	promoter		gene			
hGH	CMV promoter	goats	genomic DNA	p/m	0.311 mg/ml	Heyman et al. 1998
Human alpha antitrypsin	ovine beta-	sheep		p/m	63 grams/L	Carver et al. 1992
	lactoglobulin					
Human beta-	ovine beta-	mice		p/m	7 g/L	Archibald et al. 1990
lactoglobulin	lactoglobulin					
Human butyryl-	goat beta-casein	goat		p/m	5 g/L	Baldassarre et al. 2008; Baldassarre et al. 2008; Huang et al. 2008; Huldiner 1996
cholinesterase	promoter					
Human butyryl-	goat beta-casein	mouse		p/m	1.4 g/L	Huang et al. 2008
cholinesterase	promoter					
Human calcitonin	ovine beta-	mice	cDNA	p/m		Niemann et al. 2012
	lactoglobulin					

Note: All data are from research papers as indicated in the references column.
Protein	Promoter	Species	Other elements	Creation method	Level of production	Reference
Human factor IX	b-casein promoter	mice	cDNA, pBR31 (Linvirogen, Carlsbad, CA, USA)	p/m	3% total soluble protein	Levins and Rogers 1997
Human factor VIII	murine whey acidic protein promoter (mNAP)	rabbits	cDNA	p/m	0.599 IU/ml	Chrenek et al. 2007; Hofmann et al. 2004
Human growth hormone	CMV promoter	goats	AdEasy adenoviral vector system	Adenovirus infusion	Up to 0.3 mg/ml	Sanchez et al. 2004
Human lactoferrin	CMV promoter	rabbits	cDNA	adenovirus infusion	2.3 mg/ml	Schmidhauser et al. 1990
Human lactoferrin	bovine alphaS1 casein	mice	hLF cDNA	p/m	1.7 mg/ml	Jorgan et al. 2007; Ramos et al. 2011
Human lactoferrin	bovine alphaS1 casein	mice	genomic hLF	p/m	3.8 mg/ml	Jorgan et al. 2007; Ramos et al. 2011
Human lactoferrin	including 90-kb and 30-kb flanking regions	cattle	hLF genomic	fibroblasts cells microinjection	2.56-0.2 g/L and 3.46-0.4 g/L	Yu et al. 2012
Human lactoferrin	beta-casein promoter	mice	cDNA	p/m	0.2 mg/ml	Koebes et al. 2004
Human lactoferrin	goat beta-casein promoter	goats	cDNA, pBR31 (Linvirogen, Carlsbad, CA, USA)	p/m	0.765 mg/ml	Chrenek et al. 2002
Human serum albumin	goat beta-casein promoter	mice	cDNA, SV40 polyadenylation signals	p/m	0.4 mg/ml	Yang et al. 2012
Human β-lactalbumin	cows	genomic	nuclear transfer	1.55 g/L	Wang et al. 2013	
Spider silk	WAP	goats	5',3' WAP	p/m	Baldausser et al. 2003	
Growth hormone	rat WAP promoter	rabbits	Recombinant replication-defective adenovirus	adenovirus infusion	196.8 mg/L	Ika wa et al. 1995
Nerve growth factor beta	CMV	goats	glucocorticoid	250 mg/ml	Verkleeren et al. 1998	
Growth hormone	WAP promoter	mice	7.2 kb genomic mWAP gene	p/m	4.7 mg/ml	Toldeo et al. 2000; White et al. 2000
Factor IX	bovine β-lactoglobulin	mice	cDNA	p/m	120 mg/ml	Zhang et al. 2008
Factor IX	bovine β-lactoglobulin	sheep	cDNA	p/m	1 mg/ml	Zhang et al. 2008
Factor VIII made with von Willebrand factor	WAP (whey acidic protein promoter)	mice	ahead of the 1.7 kb of mouse WAP 3' UTR containing the coding of the polyadenylation signal	p/m	200 mg/ml	Platenburg et al. 1994
Anti-HAV antibody	goat beta-casein promoter	mice	phC1, H chain (HC) and L chain (LC) genes of a human IgG1 mAb against HAV were amplified by PCR from plasmids pHAVH3 and pHAVL3	p/m	32.2 mg/ml	Kim et al. 1997
Erythropoietin	CMV	goats	cDNA	adenovirus infusion	2 g/L	Turrishano et al. 2014
Interferon alpha 2B	cow beta-casein	mice	IFNa-2b, Jersey Cow beta-casein 5' regulation fragment and 3' regulation fragments were designed and synthesized with sequences from Genbank (Accession No.: AV255838.1 and JNS59864)	p/m	29.71 mg/kg	Limonta et al. 1995
Lactoferrin	bovine αs1-casein	cows	microinjection	1.5-2.0 g/L	Beerkel et al. 2002	
	bovine αs1-casein	goats	SCNT	Not available	An et al. 2012	
	goat b-casein (pbc1)	goats	SCNT	30 g/L, hLF	Yull et al. 1995	
	goat b-casein (pbc1)	goats	SCNT	10 g/L, hLF	Gordoni et al. 1996	
Lysozyme	bovine b-casein	cows	SCNT	0.0259 g/L	Yang et al. 2008	
	bovine b-casein	goats	SCNT	0.270 g/L	Margalwitz 2003	
Human C1 inhibitor	rabbits	Marine WAP	SCNT	3 g/L	Lipinski et al. 2003	
Human extracellular SOD	Marine WAP	mice	3 g/L		Kumar et al. 2001	
Human IL-2	rabbit ß-casein	rabbits	0.0005 g/L	Wright et al. 1991		
Human insulin-like growth factor	bovine αs1-casein	rabbits	1 g/L	Wright et al. 1991		
	bovine αs1-casein	rabbits	0.3 g/L	Kim et al. 1997		
	bovine αs1-casein	rabbits	0.678 g/L	Coulthab et al. 1999		
Human IFα	bovine αs1-casein	rabbits	0.000005 g/L	Brem et al. 1993		
Bovine chymosin	bovine αs1-casein	rabbits	1.5 g/L	Coulthab et al. 2002		
Equine chorionic gonadotropin	rabbit WAP	rabbits	0.022 g/L	McKee et al. 1998		
Human interferon beta	rabbits	2.2-7.2 g/L	Yang et al. 2011			

Notes: FSH: follicle stimulating hormone; IL-2: interleukin-2; NA: not available; SOD: superoxide dismutase; TNAP: tissue-non-specific alkaline phosphatase; pPA: tissue plasminogen activator; WAP: whey acidic protein.
plete genes and/or long 5' and 3' UTRs. Using this class of vectors, transgenic cattle have been obtained (Yang et al. 2008).

Most of the plasmid vectors are from 3 kbp to 5 kbp in length. Plasmids allow inserting a sequence of DNA up to 20 kbp in length, and have been used to obtain transgenic animals (Kaushik et al. 2014). The commercial vector pBC1 with a DNA of 21.6 kbp long has been also used to obtain transgenic cattle (Yang et al. 2011).

The lentiviral vectors have a limited ability to insert DNA. The ideal size of the genetic material for being packaged in lentiviral elements is approximately 10 kbp in length. It is possible to produce lentiviruses with a proviral length of more than 18 kbp, but with an increase in the vector length, the virus titer significantly decreases. The decrease in titer appears at the level of viral encapsulation and/or because of the nuclear export restrictions of proviral RNA, but not at the level of packaging into lentiviral elements (Kumar et al. 2001). When creating lentiviral vectors, it is very important to limit the length of a vector. Virus titer can be increased by using cDNA or incomplete sequences of genes, including a shorter mammary specific promoter region and a polyadenylation signal, such as an α-lactalbumin promoter (Bleck et al. 1998) and a poly-A signal (Naruse et al. 2006) of bovine growth hormone. These modifications can increase the viral titer obtained from lentiviral vectors. The main viral elements that are the part of the lentiviral vector are the following: LTR, packaging signal, central DNA fragment and WPRE (Woodchuck Posttranscriptional Regulatory Element of woodchuck hepatitis virus). They have the size of approximately of 1.5 kbp; therefore, the total length of the transgene 5' and 3' UTR should not exceed 8.5 kbp (Hofmann et al. 2004).

Lentiviral vectors have been successfully used in transgenic mice for the expression of recombinant proteins in milk (Ramos et al. 2011), and for the expression of green fluorescent protein (GFP) in cows (Hofmann et al. 2004). In contrast to plasmid vectors, there are no commercial lentiviral vectors for the expression of recombinant proteins in milk. Although some of the authors have modified the commercial lentiviral vectors for this purpose (Ramos et al. 2011; Monzani et al. 2013; Monzani et al. 2015) (Fig. 1). Currently, there is success in the creation of transgenic cattle for the production of recombinant proteins in milk using lentiviral vectors (Monzani et al. 2013). It is expected that lentiviral vectors have the advantages over the other vectors because of a high percentage of transgene expression. Such a high expression of the transgene is conditioned by the integration of the lentivirus primarily into active transcriptional units in the host genome (Park 2007).

The use of plasmid vectors based on the transposon system has become an attractive alternative for the production of transgenic animals. Sleeping Beauty, piggy-back and Tol2 transposons have been developed as gene transfer methods for vertebrates; the commercial vectors are available (Addgene). The gene of interest is cloned between the inverted terminal transposon repeats (ITRs), which carry the binding sites for the transposase enzyme. The insertion of the gene is carried out by the addition of the transposase enzyme from the second expression plasmid or a synthetic mRNA transposase. This system is capable to transpose transgenes up to 18 kbp in length, but the effectiveness of transposition is significantly reduced.
with an increase in the size of the DNA strand, which probably depends on the type of cells used (Turchiano et al. 2014). Also the transposon plasmids for the production of transgenic pigs and rabbits have been developed (Ivics et al. 2010; Chrenek et al. 2014).

The evaluation of the constructed vectors

Before the generation of transgenic animals as bioreactors, it is important to evaluate the construction of the transgene product, its ability to respond to hormonal induction, and its ability to express the recombinant protein of interest. The production of the recombinant protein in the milk of transgenic cattle requires a long period of time from birth of an animal to the first cycle of lactation. Therefore, it is important to evaluate the efficiency of the vector in the production of the recombinant protein. The cost of producing transgenic cattle can amount from $300,000 to $500,000 per animal, using the pronucleus microinjection method, or tens of thousands of dollars when using lentiviral gene transfer into the perivitelline space of bovine oocytes (Hofmann et al. 2004). It is necessary to optimize the use of time and resources when creating transgenic cattle. The initial and important step in this process is the evaluation of the expression of the vector.

The production of transgenic mice has been successfully carried out using various methods. These animals are used as the main model of animal transgenesis because of their high reproductive potential and a short period of time required to reach sexual maturity, mating and lactation. The first transgenic mice were obtained in 1980 by microinjection of recombinant DNA into the pronuclei fertilized eggs (Gordon et al. 1980). To obtain the first expression of the recombinant protein in mouse milk, the β-lactoglobulin gene of sheep was microinjected into fertilized oocytes (Simons et al. 1987). In 1990, transgenic mice were chosen as a model to study the expression of a recombinant protein in milk (Aguirre et al. 1990). Though transgenic mice are the best model for evaluating recombinant protein in milk, their creation depends on the qualification of the technical attendants for microinjection and embryo transplantation, as well as on the level of biosafety of the vivarium.

The biology of the mammary gland can also be reproduced using primary mammary epithelial cells (MECs), separated from the extracellular matrix, which form the monolayer cell cultures. In addition to cell-cell and cell-substrate interaction, MEC cultures synthesize and eliminate a large amount of milk proteins. The stages of growth and differentiation are controlled by various proteins and steroid hormones (Schmidhauser et al. 1990). These characteristics make MEC cultures an attractive system for replicating mammary gland biology. In 1998, Ilan et al. (1998) suggested that MEC cultures could be an alternative to transgenic mice models to assess the potential gene constructs for expression in the mammary gland of transgenic farm animals. Some other studies have used MEC cultures to assess the expression of the established vectors (Monzani et al. 2011; Monzani et al. 2013; Kausik et al. 2014; Monzani et al. 2015). Although, transgenic mice can be the best model for transgenic farm animals, MEC culture is a strategy that is easier to implement than the creation of transgenic mice. The MEC culture demonstrates certain advantages, such as lower cost and no necessity for a vivarium to create and maintain transgenic mice.

Strategies for creating transgenic animals. The methods of transgenesis

Effective methods of introducing foreign DNA must exclude chemical or physical mutagenesis, because of the foreign gene that must be in a relatively stable form. The methods of transgenesis can be gene transfer via gonads, microinjection, and the use of stem cells, sperm vectors, somatic cells, and retroviruses (Miao 2012).

Sperm-mediated gene transfer method, based on the inherent ability of sperm to bind and internalize exogenous DNA molecules and transfer them to the oocyte during fertilization, is used as an alternative to microinjection (Rutovitz and Mayer 2002; Houdebine 2002; Miao 2012). Some of the advantages over other methods are higher efficiency, lower cost and the simplicity of use, no need for either embryo manipulation or expensive equipment. However, this method leads to extremely variable results in different animal species (Chrenek et al. 2010).

Using the sperm-mediated gene transfer (SMGT), transgenic pigs were produced (firstly, sperm was incubated with plasmid DNA) (Lavitrano et al. 2002). However, this method showed the limited integration of exogenous DNA into the host genome. The improved modifications of the sperm transformation method were developed, including the use of lentiviruses (Zhang et al. 2012). It was initially reported that using bovine sperm to produce blastocysts in vitro SMGT is ineffective (Eghbal saeid et al. 2013). The modification of this method by using spermatogonial stem cells offers a new method for obtaining transgenic animals.

Transgenesis via gonad is carried out using transfection of spermatogonia in situ by introducing transgenes into the seminiferous tubules or by in vitro transfection of germ cell progenitors followed by transplantation into the testis of the host. The cells produced from the testes, transplanted into the testis of infertile males, colonize the testes of the host, generate sperm and start the production of offspring (Chrenek et al. 2010). The obtained transgenic spermatozoid can be used in in vitro fertilization methods (IVF) or in intracytoplasmic sperm injections (ICSI). This method was successfully used in mice (Kanatsu-Shinohara 2008), but it has not been developed
for the conditions of in vitro cultivation of large animals (Niemann et al. 2012).

Transgenesis through fertilized eggs or embryos can be carried out by the microinjection of DNA and the transfer gene using retroviruses (adenoviruses) or stem cells.

DNA microinjection is a microsurgical procedure performed on a single cell to introduce a foreign DNA into the cytoplasm or nucleus. In this procedure, the injection is carried out into the male pronucleus of the embryos because of their large size (Houdebine 2002; Chrenek et al. 2010). Until recently, it was the only successful method of obtaining genetically modified livestock. However, this method is not effective because only 3-5% of the injected embryos received the transgene (Markkula and Huhtaniemi 1996; Whitelaw and Sang 2005; Miao 2012). Moreover, it is necessary to transfer a large number of microinjected embryos for the production of several transgenic offspring. One embryo can be injected with 200 to 500 copies of the gene construct (Chrenek et al. 2010). In such a strategy, the DNA fragment that contains the transgene is randomly inserted into the genome of the recipient organism during the natural processes of formation by genomic DNA breaks and their reparation. Linear DNA fragments containing the transgene, both intact and those that have undergone nonspecific cleavage in the cell, can be inserted into different parts of the genome. Also, the number of transgene copies in the insertion site varies widely. Moreover, the integration process can occur at different stages of embryonic development, which leads to mosaicism of primary transgenic animals, that is to the presence of the transgene not in all cells of the body. The presence of the transgene in the genome of germ cells and the transfer of genomic DNA is necessary to obtain a line of animals carrying the transgene (Markkula and Huhtaniemi 1996; Rutovitz and Mayer 2002; Blanchard and Kelly 2005; Shepelev et al. 2008). The obtained embryos containing the transgene must be cultured in vitro within 24 hours and be implanted in a "pseudopregnant" surrogate mother (Chrenek et al. 2010). The use of transgenic technologies in livestock is limited. That is related to the long gestation period, high maintenance costs, mainly due to non-transgenic pregnancies and transgenic animals that expresses recombinant protein (Niemann et al. 2012). Despite all these difficulties, the pronuclear DNA microinjection has been successfully used to produce transgenic cattle (Berkel et al. 2002).

The use of embryonic stem cells (ESCs) and embryonic germ cells (EGCs) is a promising method for the generation of transgenic animals. The meaning of this method is in injecting the desired gene into pluripotent stem cells, followed by their embedding into the blastocyst cavity (Robertson 1991; Miao 2012), as a result of which chimeric animals are born (Gordon 1996; Markkula and Huhtaniemi 1996; Miao 2012). This method requires an adult transgenic animal to check for the presence of the desired transgene, thus, making the testing at the cell stage impossible (Evans and Kaufman 1981; Margawati 2003). As an alternative, modified ESCs were used in sandwich aggregation with unviable diplokaryotic morulae to obtain transgenic mice completely derived from ESCs (Hadjantonakis et al. 2002). These techniques have been used for cattle and chimeric animals have been created (Iwasaki et al. 2000; Furusawa et al. 2013).

However, the effort of creation of pluripotent ESCs from bovine embryos has failed. Obtaining the transgenic bovine chimeric offspring is only possible by using the nuclear transfer method, when transgenic embryonic stem cells were obtained from modified fetal bovine fibroblasts (Cibelli et al. 1998). Transgenic porcine chimeras were generated using colonies obtained from primordial germ cells (PGCs) (Piedrahita et al. 1998). PGCs can become ESCs by the differentiation in vitro or in vivo (Piedrahita 1998). Induced pluripotent stem cells (iPSCs) are stem cells that can be obtained by reprogramming cells using gene transduction or the treatment of somatic cells with recombinant proteins. Studies have shown that PGCs obtained by in vitro differentiation of iPSCs produce functional gametes as well as healthy offspring (Imamura et al. 2014). This is a promising approach, because modified somatic cells can be used to obtain iPSCs using a methodology that does not integrate the OCT4, SOX2, c-MYC and KLF4 genes into the genome of previously modified somatic cells. The iPSCs carrying the transgene of interest can be used to generate PGCs that can be differentiated into gametes by in vivo or in vitro methods and then injected into the blastocoeel of the blastocyst to generate chimeras.

Another method of transgenesis is the transfer of the nucleus of a somatic cell. This method includes the transfer of the nucleus of a somatic cell into the cytoplasm of an enucleated ovum to reprogram its cytoplasmic factors with the formation of a zygote (Wilmut and Whitelaw 1994; Campbell et al. 1996; McKee et al. 1998, Ball and Peters 2004). Subsequently, the zygote must be artificially placed in the uterus of the surrogate mother (Heyman et al. 1998; Denning et al. 2001). This method is successfully used for the transgenesis of various animal species, except humans (Heyman et al. 1998; McCreach et al. 2000; Kuroiwa et al. 2002).

Virus-mediated gene transfer is another promising methodology for obtaining transgenic animals. Retroviruses (adenoviruses) are the RNA viruses with a reverse transcriptase enzyme that produces DNA from RNA (Blanchard and Kelly 2005). Viral transduction is carried out by injection of viral elements into the perivitelline space of oocytes or zygotes, or by removing the zona pellucida and culturing in a medium containing the virus. Viruses are capable to integrate into DNAs of the host and copy their own proteins (Rutovitz and Mayer 2002; Whitelaw and Sang 2005; Chrenek 2010). It leads to the formation of chimeras because not all cells can receive the transgene (Blanchard and Kelly 2005; Miao 2012). Final homozygous transgenic animals can be obtained only after 5 generations as a result of inbreeding (Chrenek et al. 2010). Lentiviral gene transfer into oocytes using the
commercial FUGW vector has been successfully used to obtain transgenic farm animals (Hofmann et al. 2004). This methodology was established more than twenty years ago. Although it seems to be perspective for obtaining transgenic farm animals, until now it has not been used for the efficient production of biopharmaceuticals in milk. The main disadvantages of this method are the limitation on the size of the injected DNA, the inability to replicate in early embryonic cells, the lower efficiency when compared to other methods that is combined with the risk of the formation of new pathogens (Rutovitz and Mayer 2002).

Transgenic markers and transgenesis screening

To check the incorporation of the transgene into cells, it is possible to include markers of visual, positive or negative selection. It increases the efficiency of transgenesis by identifying true transgenes (Blanchard and Kelly 2005).

β-galactosidase, firefly luciferase, secreted placent alkaline phosphatase and green fluorescent protein (GFP) are the currently available transgenic markers. Even before embryo implantation, GFP is an ideal marker for the selection of transgenic embryos after gene transfer (Ikawa et al. 1995).

Enzymes that inactivate aminoglycoside antibiotics, such as neomycin or kanamycin, are widely common positive selection markers used to select transgenic cells, which is especially important in molecular biology (when integrating the construction into the culture of genomic cells according to the mechanism of homologous recombination), when the efficiency of transfer of gene constructs is low and a pool of many cells is required for transfection (Howard et al. 2001).

A PCR analysis is not always effective in relation to the primary transgenic animals, especially in the case of a high degree of mosaicism. In this case, it is necessary to analyze the offspring or the methods needed to enhance the signal without increasing the risk of nonspecific reactions (Bihon and Ayalew 2019).

Southern blotting is the most widely used method of testing for a transgene in host animals. It includes segregation of DNAs by means of restriction enzymes and an analysis by agarose gel electrophoresis. The DNA is then denatured with a strong base or acid and applied to a membrane, followed by hybridization with a DNA probe to the gene of interest. If the gene of interest (or its fragment) is present, the blotted membrane captures the probe and illuminates the gene (Blanchard and Kelly 2005).

Western blotting is used to find a transgenic protein produced by animals. SDS-polyacrylamide gel is used for electrophoresis. If the protein is small, it moves to the positive pole and is applied to the nitrocellulose membrane. It is then incubated with the primary antibody, which adheres to the transgenic protein to form a protein-antibody complex. Visualization is carried out by hybridization with a secondary antibody that produces a color. The presence of transgenic protein forms a dark band on the film (Khalsa et al. 2000; Bihon and Ayalew 2019).

Another example for determining the presence of transgenic proteins is enzyme immunoassay by determining the amount of proteins in serum, blood and urine. If the sample contains a transgenic protein, it reacts with the antigen and gets stained (Blanchard and Kelly 2005). DNA hybridization and PCR are also capable to detect transgenes.

Application of CRISPR-Cas systems in animal transgenesis

The revolutionary changes have occurred in the field of modification over the last decade, due to the possibility of highly efficient directed genome editing and a significant simplification of this technology after the discovery of the CRISPR/Cas9 system (Shepelev 2008). Protein Cas9 is a DNA-dependent DNA endonuclease, a unique enzyme that introduces double-stranded breaks in DNA, which is in a complex with a protein and programmed by the molecule of RNA (Barrangou and van der Oost 2013).

Using the CRISPR/Cas9 technology, it is possible to create transgenic animals with the integration of a transgene into a given place of the genome, which, with the use of homologous repair, determines the controlled number of copies of the transgene. In particular, one of the most promising approaches to the creation of animals producing recombinant proteins in milk is the targeted integration of a transgene using the CRISPR/Cas9 system into the region of genes coding milk proteins such as β-lactoglobulin, β-lactalbumin, α-lactalbumin and secretory component. This way, the expression of the transgene is controlled by the endogenous regulatory sequences of the recipient animal. The use of such technologies will simplify and standardize technologies for obtaining transgenic animal producers of recombinant proteins. It will make the transgenesis process more efficient and reduce the cost of obtaining economically valuable transgenic animals (Shepelev 2008).

The advantages of using rabbits as bioreactors for producing recombinant proteins in milk

The mammary glands of transgenic animals are the best available bioreactors because they can express many interesting recombinant proteins with high efficiency and full biological activity. Currently, it has led to the popularity of this technology and its successful use in various animals. Transgenic mice can only be used as a predictive model for utility assessment of expression constructs and studying the properties of expressed proteins. However, they currently cannot accommodate commercial needs,
because they are unfit as bioreactors for the production of large quantities of recombinant proteins.

The criteria for selecting the best suitable producer animal species are based on the quantity of proteins required per year, in addition to the other factors, such as the prelactation period of animals, their maintenance and the amount of milk produced. The features of milk secretion in farm animals are given in Table 5.

When compared to some other kinds of large farm animals, the rabbit is a relatively small animal with a short gestation period, puberty period and an optimal size. Rabbits produce the desired protein only 8 months after starting the injection of transgene (Table 5).

Rabbit breeding can be carried out under the certain barrier conditions that are free from pathogens. There are no identified prion diseases of rabbits, unlike cattle (Lotus and Rogers 1997). Therefore, the transgenic rabbit system is safe for the production of therapeutic proteins.

Another selection criteria is the quality composition of rabbit milk. The protein concentration in rabbit milk is 14% compared to 5% in cow milk. A lactating female rabbit can produce 170-220 g of milk per day and give up to 10 kg of milk per year in semi-automatic hygienic milking conditions (Bosze et al. 2003). The expression levels of transgenic protein can run to 20 grams per liter. The rabbit system is ideal for the production of up to 50 kg of protein per year for small and medium-sized facilities. Thus, the transgenic rabbit system is a cheaper alternative to livestock, because rabbits are smaller and cheaper to keep.

In rabbits, caseins are the main proteins that make up milk. The concentration of caseins in rabbit milk is more than 60 mg/ml, while the concentration of whey acidic proteins (WAP) in milk is 15 mg/ml. Therefore, the \(\alpha _{S1} \)- and b-casein promoters and the WAP promoter, along with the b-lactoglobulin promoter, are widely used to drive tissue-specific expression of recombinant proteins in transgenic rabbits. Recombinant human proteins produced by transgenic rabbits include the human a1-antitrypsin, interleukin-2, tPA, erythropoietin, insulin-like growth factor-1, extracellular superoxide dismutase, growth hormone, aglucosidase, miacalcin, chorionic gonadotropin, protein C, and chymosin (Table 5).

It should be noted that transgenic rabbits or the recombinant proteins that they produce are not always functional or practical because of their low expression levels. However, these findings have laid the foundations for possible technological developments that will allow large quantities of human therapeutic proteins to be produced and used in future.

The production of transgenic rabbits is an advantageous technique for the production of recombinant proteins. In this connection, there have been developed the models in which rabbits are used as fast bioreactors for the production of therapeutic proteins used in biomedical studies (Fan and Watanabe 2003).

Thus, considering both economical and hygienical aspects, rabbits are advantageous for the expression of recombinant proteins in the mammary gland. Currently, there is a positive trend of using transgenic rabbits as producers of recombinant proteins by researchers and pharmaceutical companies.

Conclusion

After 30 years of research and development, the first medicines based on biologically active proteins from the milk of transgenic animals have appeared on the pharmaceutical market. The modern understanding of the regulation of gene expression and the discovery of new tools for gene editing can significantly increase the efficiency of creating animal bioreactors and obtain high concentrations of the target protein.

Special attention should be paid to the creation of full cycle solutions in order to minimize the time from the idea or order for the production of the target protein to obtaining an end-product.

The most promising is the embedding of transgenic cassettes in the region of the alphaS1-casein gene, while the cassette may contain its own highly effective milk promoter.

Rabbits are a unique tool that combines the ability to produce up to 5 liters of milk per year per female, which allows you to get up to 300 grams of the target protein. Thus, the milk of one bioreactor rabbit can replace up to 150,000 liters of donated blood.

Conflict of interests

The authors declare no conflict of interests.

Funding

With the support of the State Task of the Laboratory of Genetic Technologies and Gene Editing for Veterinary Medicine and Biomedicine.

Table 5. Comparison of transgenic milk expression systems in different species.

Species	Gestation (months)	Maturation (months)	Milk yield per lactation (L)	Elapsed months from microinjection to milk
Mouse	0.75	1	0.0015	3–6
Rabbit	1	5-6	200–400	7-8
Pig	4	7-8	200–400	15-16
Sheep	5	6–8	200–400	16–18
Goat	5	6–8	600–800	16–18
Cow	9	15	6000–8000	30–33

Note: Table adapted from (Wang et al. 2013).
References

- Acquaah G (2004) Understanding Biotechnology: An Integrated and Cyber-based Approach. Prentice Prentice Hall, New Jersey, 432 pp.
- Aguirre A, Castro-Palomino N, De la Fuente J, Ovidio Castro FO (1998) Expression of human erythropoietin transgenes and of the endogenous WAP gene in the mammary gland of transgenic rabbits during gestation and lactation. Transgenic Research 7(4): 311–317. https://doi.org/10.1023/a:1008882312133 [PubMed]
- Amiri Yekta A, Dalman A, Eftekhari-Yazdi P, Sanati MH, Shahverdi AH, Fakheri R, Vazirinasab H, Daneshzadeh MT, Vojani M, Zomorodipour A, Fatemi N, Vahabi Z, Mirshahvaladi S, Ateez F, Bahrminejad E, Masoudi N, Rezazadeh Valojerdi M, Gourabi H (2013) Production of transgenic goats expressing human coagulation factor IX in the mammary glands after nuclear transfer using transfected fetal fibroblast cells. Transgenic Research 22(1): 131–142. https://doi.org/10.1007/s11248-012-9634-y [PubMed]
- An LY, Yuan YG, Yu BL, Yang TJ, Cheng Y (2012) Generation of human lactoferrin transgenic cloned goats using donor cells with dual markers and a modified selection procedure. Theriogenology 78: 1303–1311. https://doi.org/10.1016/j.theriogenology.2012.05.027 [PubMed]
- Archibald AL, McLennan M, Hormey S, Simons JP, Clark AJ (1990) High-level expression of biologically active human alpha 1-antitrypsin in the milk of transgenic mice. Proceedings of the National Academy of Sciences of the United States of America 87(13): 5178–5182. https://doi.org/10.1073/pnas.87.13.5178 [PubMed] [PMC]
- Balkas P (2001) The understanding of art of producing protein and nonprotein molecules in Escherichia coli. Molecular Biotechnology 19(3): 251–267. https://doi.org/10.1385/MB:19:3:251 [PubMed]
- Baldassarre H, Hockley DK, Doré M, Brochu E, Hakier B, Zhao X, Bordignon V (2008) Lactation performance of transgenic goats expressing recombinant human butyryl-cholinesterase in the milk. Transgenic Research 17(1): 73–84. https://doi.org/10.1007/s11248-007-9137-4 [PubMed]
- Baldassarre H, Hockley DK, Olaniyi B, Brochu E, Zhao X, Mustafa A, Bordignon V (2008) Milk composition studies in transgenic goats expressing recombinant human butyrylcholinesterase in the mammary gland. Transgenic Research 17(5): 863–872. https://doi.org/10.1007/s11248-008-9184-5 [PubMed]
- Baldassarre H, Wang B, Kafidi N, Gauthier M, Neveu N, Lapointe J, Sneek L, Leduc M, Duguay F, Zhou JF, Lazaris A, Karatzas CN (2003) Production of transgenic goats by pronuclear microinjection of in vitro produced zygotes derived from oocytes recovered by laparoscopy. Theriogenology 59(3–4): 831–839. https://doi.org/10.1016/s0093-691x(02)01128-7 [PubMed]
- Ball JH, Peters AR (2004) Reproduction in cattle: Reproductive Biotechnologies 3: 191–214. https://doi.org/10.1007/97804707501091. ch13
- Barrangou R, van der Oost J (2013) CRISPR-Cas Systems: RNA-mediated Adaptive Immunity in Bacteria and Archaea. Springer Berlin Heidelberg, Springer Verlag, 299 pp. https://doi.org/10.1007/978-3-642-34657-6
- Berkell PH, Welling MM, Geerts M, van Veen HA, Ravensbergen B, Salaheddine M, Pauwels EK, Pieper F, Nuijens JH, Nibbering PH (2002) Large scale production of recombinant human lactoferrin in the milk of transgenic cows. Nature Biotechnology 20: 484–487. https://doi.org/10.1038/nbt0502-484 [PubMed]
- Bijvoet AG, Van Hirtum H, Kroos MA, Van de Kamp EH, Schonveld O, Visser P, Braenkhoff JP, Weggeman M, van Corven EJ, Van der Ploeg AT, Reusser AJ (1999) Human acid alpha-glucosidase from rabbit milk has therapeutic effect in mice with glycogen storage disease type II. Human Molecular Genetics 8(12): 2145–2153. https://doi.org/10.1093/hmg/8.12.2145 [PubMed]
- Blanchard A, Kelly MO (2005) Transgenic animals: An interactive qualifying project report, submitted to the faculty of worcester polytechnic institute in partial fulfillment of the requirements for the degree of bachelor of science. Approved by Prof. David and Adams (PhD). WPI Project Advisor IQP-43-DSA-1967.
- Bleck GT, Write BR, Miller DJ, Wheeler MB (1998) Production of bovine α-lactalbumin in the milk of transgenic pigs. Journal of Animal Science 76(12): 3072–3078. https://doi.org/10.2527/1998.76123072x [PubMed]
- Bösze Z, Hiripi L (2012) Recombinant protein expression in milk of livestock species. Methods in Molecular Biology 824: 629–641. https://doi.org/10.1007/978-1-61779-433-9_34 [PubMed]
- Bosze Z, Hiripi L, Carnwath JW, Niemann H (2003) The transgenic rabbit as model for human diseases and as a source of biologically active recombinant proteins. Transgenic Research 12(5): 541–553. https://doi.org/10.1023/a:1025818609372 [PubMed]
- Brem G, Besenfelder U, Zinovieva N, Seregi J, Solti L, Hartl P (1995) Mammary gland specific expression of chymosin constructs in transgenic rabbits. Theriogenology 43(1): 175.
- Brem G, Hartl P, Besenfelder U, Wolf E, Zinovieva N, Pfäffer R (1994) Expression of synthetic cDNA sequences encoding human insulin-like growth factor-I (IGF-1) in the mammary gland of transgenic rabbits. Gene 149(2): 351–355. https://doi.org/10.1016/0378-1194(94)00175-9 [PubMed]
- Brondyk WH (2009) Selecting an appropriate method for expressing a recombinant protein. Methods in Enzymology 463: 131–147. https://doi.org/10.1016/s0076-6879(09)63011-1 [PubMed]
- Campbell KH, McWhir J, Ritchie WA, Wilmut I (1996) Sheep cloned by nuclear transfer from a cultured cell line. Nature 380(6573): 64–66. https://doi.org/10.1038/380064a0 [PubMed]
- Carver A, Wright G, Cottom D, Cooper J, Dalrymple M, Temperley S, Udell M, Reeves D, Percy J, Scott A (1992) Expression of human alpha 1 antitrypsin in transgenic sheep. Cytotechnology 9(1–3): 77–84. https://doi.org/10.1023/a:1025217374 [PubMed]
- Chrennek P, Ryban L, Vetr H, Makarevich AV, Uhrin P, Paleyanda RK, Binder BR (2007) Expression of recombinant human factor VIII in milk of several generations of transgenic rabbits. Transgenic Research 16(3): 353–361. https://doi.org/10.1007/s11248-007-9070-6 [PubMed]
- Chrennek P, Vašíček D, Makarevich A, Uhrin P, Petrovícová I, Lubon H (2002) Integration and expression of the WAP-hPC gene in the mammary gland of transgenic rabbits. Theriogenology 51(8): 191–214. https://doi.org/10.1016/s0076-6879(09)63011-1 [PubMed]-
Coulibaly S, Besenfelder U, Fleischmann M, Zinovieva N, Grossmann A, Wozny M, Bartke I, Tögel M, Müller M, Brem G (1999) Human nerve growth factor beta (hNGF-beta): mammary gland specific expression and production in transgenic rabbits. FEBS Letters 444(1): 111–116. [PubMed]

Coulibaly S, Besenfelder U, Miller I, Zinovieva N, Lassnig C, Kotler T, Jameson JL, Gemeiner M, Müller M, Brem G (2002) Expression and characterization of functional recombinant bovine follicle-stimulating hormone (boFSHalpha/beta) in the milk produced in the transgenic rabbits. Molecular Reproduction and Development 63(3): 300–308. [PubMed]

Denning C, Buri S, Ainslie A (2001) Deletion of the α(1,3) galactosyltransferase (GGTA1) gene and the prion protein (PrP) gene in sheep. Nature Biotechnology 19(6): 559–562. https://doi.org/10.1038/39213 [PubMed]

Dyck MK, Lacroix D, Pothier F, Sirard MA (2003) Making recombinant proteins in animals – different systems, different applications. Trends in Biotechnology 21(9): 394–409. https://doi.org/10.1016/S0167-7799(03)00190-2 [PubMed]

Eghbalsaied S, Ghadei K, Laible G, Hosseini SM, Forouzanfar M, Hajian M, Oback F, Nasr-Esfahani MH, Obach B (2013) Exposure to DNA is insufficient for in vitro transgenesis of live bovine sperm and embryos. Reproduction 145(1): 97–108. https://doi.org/10.1530/REP-12-0340 [PubMed]

Evans MJ, Kaufman MH (1981) Establishment in culture of pluripotent cells from mouse embryos. Nature 292(5819): 154–156. https://doi.org/10.1038/292154a0 [PubMed]

Fan J, Watanabe T (2003) Transgenic rabbits as therapeutic protein bioreactors and human disease models. Pharmacology and Therapeutics 99(3): 261–282. https://doi.org/10.1016/s0163-7258(03)00069-9 [PubMed]

Furusawa T, Ohkoshi K, Kimura K, Matsuyama S, Akagi S, Kaneda M, Ikeda M, Hosoe M, Kizaki K, Tokunaga T (2013) Characteristics of bovine inner cell mass-derived cell lines and their fate in chimeric conceptuses. Biology of Reproduction 89(28): 1–12. https://doi.org/10.1095/biolreprod.112.106641 [PubMed]

Goldman IL, Georgieva SG, Gurskly YG, Krasnov AN, Deykin AW, Popov AN, Ermolkevich TG, Budzhev AI, Chernousov AD, Sachikhoava ER (2012) Production of human lactoferrin in animal milk. Biochemistry and Cell Biology 90: 513–519. https://doi.org/10.1139/o11-088 [PubMed]

Gordon I (1996) Controlled reproduction in cattle and buffalo. Acridia, SA, Spain, 428 pp.

Gordon JW, Scangos GA, Plotkin DJ, Barbosa JA, Ruddle FH (1980) Genetic transformation mouse embryos by microinjection of purified DNA. Proceedings of the National Academy of Sciences of the United States of America 77(12): 7380–7384. https://doi.org/10.1073/pnas.77.12.7380 [PubMed] [PMC]

Hadjantonakis AK, Macmaster S, Nagy A (2002) Embryonic stem cells and mice expressing different GFP variants for multiple non-invasive reporter usage within a single animal. BMC Biotechnology 2: 11. https://doi.org/10.1186/1472-6750-2-11 [PubMed] [PMC]

Hammer RE, Pursel VG, Rexroad CE Jr, Wall RJ, Bolt DJ, Ebert KM, Palmiter RD, Brinster RL (1985) Production of transgenic rabbits, sheep and pigs by microinjection. Nature 315(6021): 680–683. https://doi.org/10.1038/315680a0 [PubMed]

Han Z, Wu S, Li Q, Li J, Gao D, Li K, Liu ZW, Hao H (2009) Efficient human growth hormone gene expression in the milk of non-transgenic goats. Folia Biologica (Praha) 55(1): 17–22. [PubMed]

Heyman V, Ygonin X, Chesn P, Bourhis JL, Marchal J, Renard J (1998) Cloning in cattle: From embryo splitting to somatic nuclear transfer. Reproduction Nutrition Development, EDP Sciences 38(6): 595–603. https://doi.org/10.1051/rnd:19980602 [PubMed]

Hiripi L, Makovesic F, Halter R, Baranyi M, Paul D, Carnwath JW, Bösze Z, Niemann H (2003) Expression of active human blood clotting factor VIII in mammary gland of transgenic rabbits. DNA and Cell Biology 22(1): 41–45. https://doi.org/10.1089/104454903321112488 [PubMed]

Hofmann A, Zakhartchenko V, Weppert M, Sebald H, Wenigerkind H, Brem G, Wolf E, Pfeifer A (2004) Generation of transgenic cattle by lentiviral gene transfer into oocytes. Biology of Reproduction 71(2): 405–409. https://doi.org/10.1095/biobreprod.104.028472 [PubMed]

Houdebine LM (1995) The production of pharmaceutical proteins from the milk of transgenic animals. Reproduction, Nutrition, Development 35(6): 609–617. https://doi.org/10.1530/19950601 [PubMed]

Houdebine LM (2000) Transgenic animal bioreactors. Transgenic Research 9: 305–320. https://doi.org/10.1023/a:1008934912555 [PubMed] [PMC]

Houdebine LM (2009) Production of pharmaceutical proteins by transgenic animals. Comparative Immunology, Microbiology & Infectious Diseases 32(2): 107–121. https://doi.org/10.1016/j.cimid.2007.11.005 [PubMed] [PMC]

Houdebine LM (2002) The methods to generate transgenic animals and to control transgene expression. Journal of Biotechnology 98(2–3): 145–160. https://doi.org/10.1016/s0168-1656(02)00129-3 [PubMed]

Howard TH, Homan EJ, Bremel RD (2001) Transgenic livestock: Regulation and science in a changing environment. Journal of Animal Science 79: E1–E11. https://doi.org/10.2527/ajas2001.79E-SupplE1x

Huang YJ, Huang Y, Baldassarre H, Wang B, Lazaris A, Ledac M, Bilodeau AS, Bellemare A, Côté M, Herskovits P, Touati M, Turcotte C, Valeau L, Lemée N, Wilgus H, Bégin I, Bhattacharyya D, Raco K, Neave N, Brochu E, Pierson J, Hockley DK, Cerasoli DM, Lenz DE, Karatzas CN, Langermann S (2007) Recombinant human butyrylcholinesterase from milk of transgenic animals to protect against organophosphate poisoning. Proceedings of the National Academy of Sciences of the United States of America 104(34): 13603–13608. https://doi.org/10.1073/pnas.0702756104 [PubMed] [PMC]

Huang YJ, Lundy PM, Lazaris A, Huang Y, Baldassarre H, Wang B, Turcotte C, Côté M, Bellemare A, Bilodeau AS, Boutrill S, Touati M, Herskovits P, Bégin I, Neave N, Brochu E, Pierson J, Hockley DK, Cerasoli DM, Lenz DE, Karatzas CN, Langermann S (2008) Substantially improved pharmacokinetics of recombinant human butyrylcholinesterase from milk of transgenic animals to protect against organophosphate poisoning. Proceedings of the National Academy of Sciences of the United States of America 105(24): 9623–9628. https://doi.org/10.1073/pnas.0803144105 [PubMed] [PMC]

Huldiner RA (1996) Molecular medicine: Transgenic animals. The New England Journal of Medicine 334(10). https://doi.org/10.1056/NEJM19960307334109
transgenic mice. Journal of Biotechnology 61(3): 191–198. https://doi.org/10.1016/s0168-1656(98)00032-7 [PubMed]

Xiao B, Li Q, Feng B, Han Z, Gao D, Zhao R, Li J, Li K, Zhi X, Yang H, Liu Z (2009) Expression of recombinant human nerve growth factor beta in milk of goats by recombinant replication-defective adenovirus. Applied Biochemistry and Biotechnology 157(3): 357–366. https://doi.org/10.1007/s12010-008-8346-5 [PubMed]

Ikawa M, Kominami K, Yoshimura Y, Tanaka K, Nishimune Y, Okabe M (1995) Green fluorescent protein as a marker in transgenic mice. Development Growth Differentiation 37: 455–459. https://doi.org/10.1111/j.1440-1695.1995.tb01417.x [PubMed]

Loftus B, Rogers M (1997) Characterization of a prion protein (PrP) gene from rabbit. A species with apparent resistance to infection by prions. Gene 184(2): 215–219. https://doi.org/10.1016/s0378-1119(96)00598-7 [PubMed]

Kuroiwa Y, Kasinathan P, Choi YJ, Naeem R, Tomizuka K, Sullivan EJ, Robl JM (2002) Transduced chronic somatosensory calves producing human immunoglobulin. Nature Biotechnology 20(9): 889–894. https://doi.org/10.1038/nbt727

Levy JH, Weissinger A, Ziosek CA, Echelard Y (2001) Recombinant antithrombin: production and role in cardiovascular disorder. Seminars in Thrombosis and Hemostasis 27(4): 405–416. https://doi.org/10.1055/s-2001-16893 [PubMed]

Li H, Liu Q, Cui K, Liu J, Ren Y, Shi D (2013) Expression of biologically active human interferon alpha 2b in the milk of transgenic mice. Transgenic Research 22(1): 169–178. https://doi.org/10.1007/s11248-012-9623-1 [PubMed]

Limonova JM, Castro FO, Martínez R, Puentes P, Ramos B, Aguilar A, Lleonart RL, de la Fuente J (1995) Transgenic rabbits as bioreactors for the production of growth hormone. Journal of Biotechnology 40(1): 49–58. https://doi.org/10.1016/0166-1656(95)00026-m [PubMed]

Lipiński D, Jura J, Kalak R, Plawska A, Kala M, Szalata M, Jarmuz M, Korcz A, Smorag Z, Pienkowski M, Słomski R (2003) Transgenic rabbit producing human growth hormone in milk. Journal of Applied Genetics 44(2): 165–174. [PubMed]

Lipiński D, Zeyland J, Szalata M, Plawska A, Jarmuz M, Jura J, Korcz A, Smorag Z, Pienkowski M, Słomski R (2012) Expression of human growth hormone in the milk of transgenic rabbits with transgene mapped to the telomere region of chromosome 7q. Journal of Applied Genetics 53(4): 435–442. https://doi.org/10.1007/s13353-012-0110-4 [PubMed] [PMC]

Lubon H, Palmer (2000) C Transgenic animal bioreactors – where we are. Transgenic Research 9(4-5): 301–304. https://doi.org/10.1023/a:1008986199242 [PubMed]

Maga EA, Cullor JS, Smith W, Anderson GB, Murray JD (2006) Human lysozyme expressed in the mammary gland of transgenic rabbits. Glycobiology 14(1): 51–64. https://doi.org/10.1093/glycob/cwl010 [PubMed]
dairy goats can inhibit the growth of bacteria that cause mastitis and the cold-spoilage of milk. Foodborne Pathogens and Disease 3(4): 384–392. https://doi.org/10.1089/fpd.2006.3.384 [PubMed]

Margawati ET (2003) Transgenic animals: Their benefits to human welfare. Action Bioscience, USA, 1–6.

Markkula M, Huhtaniemi I (1996) Transgenic animals and gonadotrophins. Journals of Reproduction and Fertility 112(2): 97–106. https://doi.org/10.1089/jrfr.1996.112.97 [PubMed]

McCreath KJ, Howcroft J, Campbell KH, Colman A, Schnieke AE, Kind AJ (2000) Production of gene-targeted sheep by nuclear transfer from cultured somatic cells. Nature 405(6790): 1066–1069. https://doi.org/10.1038/35016604 [PubMed]

McKee C, Gibson A, Dalrymple M, Emnio L, Garner I, Cottingham K, Gibson A, Dalrymple M, Emslie L, Garner I, Cottingham (2000) Production of biologically active salmon calcitonin in the milk of transgenic rabbits. Nature Biotechnology 16 (7): 647–651. https://doi.org/10.1038/nbt0798-647 [PubMed]

Miao X (2012) Recent Advances and Applications of Transgenic Animal Technology. Polymerase Chain Reaction. InTech: 255-282. https://doi.org/10.5772/38040

Monzani PS, Bressan FF, Mesquita LG, Sangalli JR, Meirelles FV (2011) β-casein gene expression by in vitro cultured bovine mammary epithelial cells derived from developing mammary glands. Genetics and Molecular Research 10(2): 604–614. https://doi.org/10.4238/ vol10i2mr1034 [PubMed]

Monzani PS, Sangalli JR, De Bem THC, Bressan FF, Fantinato-Neto P, Pimentel JRV, Birgel-Junior EH, Fontes AM, Covas DT, Meirelles FV (2013) Breeding of transgenic cattle for human coagulation factor IX by a combination of lentiviral system and cloning. Genetics and Molecular Research 12(3): 3675–3688. https://doi.org/10.4238/2013 [PubMed]

Monzani PS, Guemra S, Adona PR, Ohashi OM, Meirelles FV, Wheeler MB (2015) MAC-T cells as a tool to evaluate lentiviral vector construction targeting recombinant protein expression in milk. Animal Biotechnology 26(2): 136–142. https://doi.org/10.1080/10495398.2014.941468 [PubMed]

Naruse K, Yoo SK, Kim SM, Choi YJ, Lee HM, Jin DJ (2006) Analysis of tissue-specific expression of human type II collagen cDNA driven by different sizes of the upstream region of the β-casein promoter. Bioscience, Biotechnology, and Biochemistry 70(1): 93–98. https://doi.org/10.1271/bbb.70.93 [PubMed]

Newton DL, Pollock D, DiTullio P, Echelard Y, Harvey M, Wilburn B, Williams J, Hoogenboom HR, Raus JC, Meade HM, Rybak SM (1999) Antitumor transferrin receptor antibody-RNase fusion protein expressed in the mammary gland of transgenic mice. Journal of Immunological Methods 231(1–2): 159–167. https://doi.org/10.1016/s0022-1759(99)00154-4 [PubMed]

Niavarani A, Dehghanzadeh S, Zaiiali S, Karimi M, Magliano M, Rassoulzadegan M (2005) Development of transgenic mice expressing calcitonin as a beta-lactoglobulin fusion protein in mammary gland. Transgenic Research 14(5): 719–727. https://doi.org/10.1007/s11248-005-7217-x [PubMed]

Niemann H, Kind A, Schiencke A (2012) Production of biopharmaceuticals in transgenic animals. In: Kayser O, Warzecha H (Eds), Pharmaceutical Biotechnology – Drug discovery and Clinical Applications, Wiley-Blackwell, Weinheim, Germany, 71-111.

Nuijens JH, van Berkel PH, Geerts ME, Hartevelt PP, de Boer HA, van Veen HA, Pieper FR (1997) Characterization of recombinant human lactoferrin secreted in milk of transgenic mice. Journal of Biological Chemistry 272(13): 8802–8807. https://doi.org/10.1074/jbc.272.13.8802 [PubMed]

Jongen SP, Gerwig GJ, Leeflang BR, Koles K, Mannesse ML, van Berkel PH, Pieper FR, Kroos MA, Reuser AJ, Zhou Q, Jin X, Zhang K, Edmunds T, Kamerling JP (2007) N-glycans of recombinant human acid alpha-glucosidase expressed in the milk of transgenic rabbits. Glycobiology 17(6): 600–619. https://doi.org/10.1093/glycob/cwm015 [PubMed]

Park JK, Lee YK, Lee P, Chung HJ, Kim S, Lee HG, Seo MK, Han JH, Park CG, Kim HT, Kim YK, Min KS, Kim JH, Lee HT, Chang WK (2006) Recombinant human erythropoietin produced in milk of transgenic pigs. Journal of Biotechnology 122(3): 362–371. https://doi.org/10.1016/j.jbiotec.2005.11.021 [PubMed]

Park F (2007) Lentivirus vector: are they the future of animal transgenesis? Physiological Genomics 31(2): 159–173. https://doi.org/10.1152/physiogenomics.00069.2007 [PubMed]

Parker MH, Biek-Wilson E, Allard G, Masiello N, Day M, Murphy KP, Paragas V, Silver S, Moody MD (2004) Purification and characterization of a recombinant version of human alpha-fetoprotein expressed in the milk of transgenic goats. Protein Expression and Purification 38(2): 177–183. https://doi.org/10.1016/j.pep.2004.07.007 [PubMed]

Pseidratha JA, Moore K, Oetama B, Lee CK, Scales N, Ramsoondar J, Bazer FW, Ott T (1998) Generation of transgenic porcine chimeras using primordial germ cell-derived colonies. Biology of Reproduction 58(5): 1321–1329. https://doi.org/10.1095/biolreprod58.5.1321 [PubMed]

Pipe SW, Miao H, Butler SP, Calacettar J, Velande WH (2011) Functional factor VIII made with von Willebrand factor at high levels in transgenic milk. Journal of Thrombosis and Haemostasis 9(11): 2235–2242. https://doi.org/10.1111/j.1538-7836.2011.04505.x [PubMed] [PMC]

Platenburg GJ, Kootwijk EP, Kooiman PM, Woloshuk SL, Nuijens JH, Kriplenfort PJ, Pieper FR, de Boer HA, Strijker R (1994) Expression of human lactoferrin in milk of transgenic mice. Transgenic Research 3(2): 99–108. https://doi.org/10.1007/BF01974087 [PubMed]

Ramos OS, Carratalá YP, Puerta SG, Pereira NCP, Amarlan LS, Chaves SPJ, Alonso JRT (2011) Dual promoter lentiviral vector generates transgenic mice expressing E2-CSFV glycoprotein in their milk, but impairs early identification of transgenic embryos. Theriogenology 75(7): 1280–1289. https://doi.org/10.1016/j.theriogenology.2010.11.042 [PubMed]

Rijnkels M, Kooiman PM, Platenburg GJ, van Dixhoorn M, Nuijens JH, de Boer HA, Pieper FR (1998) High-level expression of bovine αS1-casein in milk of transgenic mice. Transgenic Research 7: 5–14. https://doi.org/10.1023/a:1008892720466

Robertson E J (1991) Using embryonic stem cells to introduce mutations into the mouse germ line. Biology of Reproduction 44(2): 238–245. https://doi.org/10.1093/biolreprod44.2.238 [PubMed]

Rodriguez A, Castro FO, Aguilar A, Ramos B, Del Barco DG, Lleonart R, De la Fuente J (1995) Expression of active human erythropoietin in the mammary gland of lactating transgenic mice and rabbits. Biological Research 28(2): 141–153. [PubMed]

Rutovitz J, Mayer S (2002) Genetically modified and cloned animals. All in a good cause. GeneWatch, UK, 94 pp.

Sánchez O, Toledo JR, Rodríguez MP, Castro FO (2004) Adenoviral vector mediates high expression levels of human growth hormone
in the milk of mice and goats. Journal of Biotechnology 114(1–2): 89–97. https://doi.org/10.1016/j.jbiotec.2004.06.009 [PubMed]

Schmidhauser C, Bissel MJ, Myers CA, Caspersion GF (1990) Extracellular matrix and hormones transcriptionally regulate bovine beta-casein 5’ sequences in stably transfected mouse mammary cells. Proceedings of the National Academy of Sciences of the United States of America 87(23): 9118–9122. https://doi.org/10.1073/pnas.87.23.9118 [PubMed] [PMC]

Shepelev MV, Kalinichenko SV, Deykin AV, Korobko IV (2008) Production of recombinant proteins in the milk of transgenic animals: current state and prospects. Acta Naturae 3(38): 40–47. [PubMed] [PMC]

Simons JP, McClennaghan M, Clark AJ (1987) Alteration of the quality of milk by expression of sheep β-lactoglobulin in transgenic mice. Nature 328(6130): 530–532. https://doi.org/10.1038/328530a0 [PubMed]

Bihon AA, Ayalew A Animal transgenesis technology: A review. CoGent Food & Agriculture 5.1 (2019): 1686802. https://doi.org/10.1080/23311932.2019.1686802

Swartz JR (2001) Advances in Escherichia coli production of therapeutic proteins. Current Opinion in Biotechnology 12(2): 195–201. https://doi.org/10.1016/S0958-1669(00)00199-3 [PubMed]

Toledo JR, Sánchez O, Seguí RM, García G, Montañez M, Zamora PA, Rodríguez MP, Cremata JA (2006) High expression level of recombinant human erythropoietin in the non-milk of transgenic goats. Journal of Biotechnology 123(2): 225–235. https://doi.org/10.1016/j. jbiotec.2005.10.019 [PubMed]

Turchiano G, Latella MC, Gogol-Döring A, Cattoglio C, Mavilio F, Izsák Z, Ivics Z, Recchia A (2014) Genomic analysis of Sleeping Beauty Transposon integration in human somatic cells. PLoS ONE 9(11): e12712. https://doi.org/10.1371/journal.pone.0112712 [PubMed] [PMC]

Wang J, Yang P, Tang B, Sun X, Zhang R, Guo C, Gong G, Liu Y, Li R, Zhang L, Dai Y, Li N (2008) Expression and characterization of bioactive recombinant human alpha-lactalbumin in the milk of transgenic cows. Journal of Dairy Science 91(12): 4466–4476. https://doi.org/10.3168/jds.2008-1189 [PubMed]

Wang Y, Zhao S, Bai L, Fan J, Liu E (2013) Expression systems and species used for transgenic animal bioreactors. BioMed Research International 2013: 580463 https://doi.org/10.1155/2013/580463 [PubMed] [PMC]

Wen J, Kawamata Y, Toho J, Tanaka S, Tachi C (1995) Expression of whey acidic protein (WAP) genes in tissues other than the mammary gland in normal and transgenic mice expressing mWAP/hGH fusion gene. Molecular Reproduction and Development 41(4): 399–406. https://doi.org/10.1002/mrd.1080410402 [PubMed]

Whitehead CB, Sang HM (2005) Disease-resistant genetically modified animals. Revue Scientifique et Technique 24(1): 275-283. [PubMed]

Wilmut I, Schnieke AE, McWhir J, Kind AJ, Campbell KH (1997) Viable offspring derived from fetal and adult mammalian cells. Nature 385(6619): 810–813. https://doi.org/10.1038/385810a0 [PubMed]

Wilmut I, Whitehead CB (1994) Strategies for production of pharmaceutical proteins in milk. Reproduction, Fertility, and Development 6(5): 625–630. https://doi.org/10.1071/rd9940625 [PubMed]

Wolf E, Jehle PM, Weber MM, Sauerwein H, Daxenberger A, Breier BH, Besenfelder U, Frenlyo L, Brem G (1997) Human insulin-like growth factor I (IGF-I) produced in the mammary glands of transgenic rabbits: yield, receptor binding, mitogenic activity, and effects on IGF-binding proteins. Endocrinology 138(1): 307–313. https://doi.org/10.1210/endo.138.1.4877 [PubMed]

Wright G, Carver A, Cotton D, Reeves D, Scott A, Simons P, Wilmut I, Garner I, Colman A (1991) High level expression of active human alpha-1-antitrypsin in the milk of transgenic sheep. Nature Biotechnology 9(9): 830–834. https://doi.org/10.1038/385810a0 [PubMed]

Yang H, Li QW, Han ZS, Hu JH (2012) High level expression of recombinant human antithrombin in the mammary gland of rabbits by adenoviral vectors infection. Animal Biotechnology 23(2): 89–100. https://doi.org/10.1080/10495398.2011.644647 [PubMed]

Yang B, Wang J, Tang B, Liu Y, Guo C, Yang P, Yu T, Li R, Zhao J, Zhang L, Dai Y, Li N (2011) Characterization of bioactive recombinant human lysozyme expressed in milk of cloned transgenic cattle. PLoS One 16(3): e17593. https://doi.org/10.1371/journal. pone.0017593 [PubMed] [PMC]

Yang P, Wang J, Gong G, Sun X, Zhang R, Du Z, Liu Y, Li R, Ding F, Tang B, Dai Y, Li N (2008) Cattle mammary bioreactor generated by a novel procedure of transgenic cloning for large-scale production of functional lactoferrin. PLoS One 3(10): e3453. https://doi. org/10.1371/journal.pone.0003453 [PubMed] [PMC]

Yu H, Chen J, Sun W, Liu S, Zhang A, Xu X, Wang X, He Z, Liu G, Cheng G (2012) The dominant expression of functional human lactoferrin in transgenic cloned goats using a hybrid lactoferrin expression construct. Journal of Biotechnology 161(3): 198–205. https://doi.org/10.1016/j.jbiotec.2012.06.035 [PubMed]

Yull F, Harold G, Wallace R, Cowper A, Percy J, Cottingham I, Clark AJ (1995) Fixing human factor IX (FIX): correction of a cryptic RNA splice enables the production of biologically active FIX in the mammary gland of transgenic mice. Proceedings of the National Academy of Sciences of the United States of America 92(24): 10899–10903. https://doi.org/10.1073/pnas.92.24.10899 [PubMed] [PMC]

Zhang J, Li L, Cai Y, Xu X, Chen J, Wu Y, Yu H, Yu G, Liu S, Zhang A, Chen J, Cheng G (2008) Expression of active recombinant human lactoferrin in the milk of transgenic goats. Protein Expression and Purification 57(2): 127–135. https://doi.org/10.1016/j.pep.2007.10.015 [PubMed]

Zhang R, Rao M, Li C, Cao J, Meng Q, Zheng M, Wang M, Dai Y, Liang M, Li N (2009) Functional recombinant human anti-HAV antibody expressed in milk of transgenic mice. Transgenic Research 18(3): 445–453. https://doi.org/10.1007/s12248-008-9241-0 [PubMed] [PMC]

Zhang Y, Xi Q, Ding J, Cai W, Meng F, Zhou J, Li H, Jiang Q, Shu G, Wang S, Zhu X, Gao P, Wu Z (2012) Production of transgenic pigs mediated by pseudotyped lentivirus and sperm. PLoS One 7(4): e35335. https://doi.org/10.1371/journal.pone.0035335 [PubMed] [PMC]

Zinovieva N, Lassnig C, Schams D, Besenfelder U, Wolf E, Müller S, Frenlyo L, Seregi J, Müller M, Brem G (1998) Stable production of human insulin-like growth factor I (IGF-1) in the milk of hemi- and homozygous transgenic rabbits over several generations. Transgenic Research 7(6): 437–447. https://doi.org/10.1023/a:1008831028620 [PubMed]
Author contributions

- **Alexey V. Deykin**, PhD in Biological Sciences, Director of the Joint Center for Genetic Technologies of Belgorod State National Research University, e-mail: alexei@deikin.ru; ORCID ID http://orcid.org/0000-0001-9960-0863. The author set research objectives, critical analysis of intellectual content, and gave the final approval of the version of the article.

- **Olesya V. Shcheblykina**, postgraduate student, Department of Pharmacology and Clinical Pharmacology, Belgorod State National Research University, e-mail: sheolvi31@gmail.com; ORCID ID https://orcid.org/0000-0003-0346-9835. The author was engaged in literature analysis and paper writing.

- **Elena E. Povetka**, medical student, Belgorod State National Research University, e-mail: povetkae@bk.ru, ORCID ID https://orcid.org/0000-0003-0346-9835. The author was engaged in structuring the article and arranging the references.

- **Polina A. Golubinskaya**, postgraduate student, Department of Pharmacology and Clinical Pharmacology, Belgorod State National Research University, e-mail: polinapigeon@gmail.com, ORCID ID http://orcid.org/0000-0002-1765-9042. The author collected information and paper writing.

- **Vladimir M. Pokrovskiy**, medical student, Belgorod State National Research University, e-mail: vmpokrovsky@yandex.ru, ORCID ID http://orcid.org/0000-0003-3138-2075. The author made a contribution to collection, analysis and interpretation of the data for the paper.

- **Liliya V. Korokina**, PhD in Medical Sciences, Associate Professor of the Department of Pharmacology and Clinical Pharmacology, Belgorod State National Research University, ORCID ID http://orcid.org/0000-0002-4115-1564; e-mail: korokina@bsu.edu.ru. The author was engaged in developing the concept and conducting the literature analysis.

- **Olesya A. Vanchenko**, medical student, Belgorod State National Research University, e-mail: 1189889@bsu.edu.ru. The author was engaged in collection, analysis and interpretation of the data for the paper.

- **Elena V. Kuzubova**, postgraduate student, Department of Pharmacology and Clinical Pharmacology, Belgorod State National Research University, ORCID ID http://orcid.org/0000-0003-2425-5027; e-mail: 1015artek1015@mail.ru. The author was engaged in collecting the material for the article.

- **Konstantin S. Trunov**, medical student, Belgorod State National Research University, e-mail: 190540789@bsu.edu.ru. The author analyzing the literature.

- **Viktor V. Vasyutkin**, postgraduate student, Department of Pharmacology and Clinical Pharmacology, Belgorod State National Research University, e-mail: vvasyutkin@yandex.ru. The author was engaged in collecting the material for the article.

- **Alexandra I. Radchenko**, postgraduate student, Department of Pharmacology and Clinical Pharmacology, Belgorod State National Research University, ORCID ID http://orcid.org/0000-0002-4554-2116; e-mail: sandrinkaradchenko@gmail.com. The author analyzing the literature.

- **Anton P. Danilenko**, medical student, Belgorod State National Research University, e-mail: 190540@bsu.edu.ru. The author analyzing the literature.

- **Julia V. Stepenko**, postgraduate student, Department of Pharmacology and Clinical Pharmacology, Belgorod State National Research University, ORCID ID http://orcid.org/0000-0002-7414-7326; e-mail: aspirj16@gmail.com. The author analyzing the literature.

- **Indira S. Kochkarova**, postgraduate student, Research Institute of Pharmacology of Living Systems, Belgorod State National Research University, e-mail: kochkarova@bsu.edu.ru. The author was engaged in collection, analysis and interpretation of the data for the paper.

- **Veronika S. Belyaeva**, postgraduate student, Department of Pharmacology and Clinical Pharmacology, Belgorod State National Research University, ORCID ID https://orcid.org/0000-0003-2941-0241; e-mail: nika.beliaeva@yandex.ru. The author was engaged in collection, analysis and interpretation of the data for the paper.

- **Vladimir I. Yakushev**, PhD in Medicine, Associate Professor, Department of Pharmacology and Clinical Pharmacology, Belgorod State National Research University, e-mail: vladiyakush@yandex.ru. The author analyzing the literature.