Myosin-binding Protein C Compound Heterozygous Variant Effect on the Phenotypic Expression of Hypertrophic Cardiomyopathy

Juliany Freitas Rafael,1 Fernando Eugênio dos Santos Cruz Filho,1 Antônio Carlos Campos de Carvalho,1 Ilan Gottlieb,1,2 José Guilherme Cazelli,2 Ana Paula Siciliano,1 Glauber Monteiro Dias1

Instituto Nacional de Cardiologia;1 Casa de Saúde São José,2 Rio de Janeiro, RJ – Brazil

Abstract

Hypertrophic cardiomyopathy (HCM) is an autosomal dominant genetic disease caused by mutations in genes encoding sarcomere proteins. It is the major cause of sudden cardiac death in young high-level athletes. Studies have demonstrated a poorer prognosis when associated with specific mutations. The association between HCM genotype and phenotype has been the subject of several studies since the discovery of the genetic nature of the disease.

This study shows the effect of a MYBPC3 compound variant on the phenotypic HCM expression.

A family in which a young man had a clinical diagnosis of HCM underwent clinical and genetic investigations. The coding regions of the MYH7, MYBPC3 and TNNT2 genes were sequenced and analyzed.

The proband presents a malignant manifestation of the disease. He is the only one to express HCM in his family. The genetic analysis through direct sequencing of the three main genes related to this disease identified a compound heterozygous variant (p.E542Q and p.D610H) in MYBPC3. A family analysis indicated that the p.E542Q and p.D610H alleles have paternal and maternal origin, respectively. No family member carried one of the variant alleles manifested clinical signs of HCM.

We suggest that the MYBPC3-biallelic heterozygous expression of p.E542Q and p.D610H may cause the severe disease phenotype seen in the proband.

Introduction

Hypertrophic cardiomyopathy (HCM) is a genetic myocardial disorder characterized by ventricular hypertrophy (VH), which is frequently asymmetrical in the interventricular septum and can lead to a dynamic obstruction of the left ventricle (LV) outflow tract.1 It is the main cause of sudden cardiac death (SCD) in young people, with a 2-4% annual mortality rate in adults and 6% in adolescents and children.2 A benign outcome of HCM may also occur, such as late onset, mild hypertrophy, and a history of non-malignant events.3 Modifier genes, environmental influences, genetic variant diversity and the effect of multiple variants could explain the great clinical heterogeneity between individuals of the same family or from different families.4

HCM is a relatively common (0.2%) Mendelian disorder, caused mainly by mutations in sarcomere protein genes, most commonly those encoding β-myosin heavy chain (MYH7), myosin-binding protein C (MYBPC3) and troponin T (TNNT2).5 Recent studies suggest that this prevalence is even higher, around 1:200, in the general population,6 and around 5% of those who have HCM carry more than one disease-causing gene variant.7,8 The hypothesis of gene dosage effects in patients with multiple variants is supported by some authors who have reported a more severe clinical feature, with greater risk of SCD, major LV hypertrophy, and earlier onset of HCM.9,10

In this context, we present a case herein in which a compound heterozygous variant led to a HCM manifestation with disease phenotype magnification.

Methods

Subjects

The proband with clinical HCM diagnosis was referred to genetic analysis at the National Cardiology Institute (Instituto Nacional de Cardiologia - INC) in Rio de Janeiro. A genealogical tree, including the highest possible number of generations, was built based on his family history. Family members were submitted to clinical assessments and genetic investigations. The local ethics committee approved this study. Written informed consent was obtained for every analyzed family member.

Clinical assessment

The proband underwent clinical and cardiovascular examination, including a 12-lead electrocardiogram (ECG), transthoracic echocardiography (TTE) and 24-hour Holter monitoring. Diagnosis of HCM was based on TTE: major echo diagnostic criteria were defined by a maximal LV end-diastolic wall thickness ≥ 15 mm. The same clinical examination was performed for the phenotypic analyses of all family members, and cardiac magnetic resonance imaging (CMR) was requested as a complementary exam.

A risk score proposed by the European Cardiac Society (ESC) was used to predict the risk for SCD in five years for patients with HCM.11

Keywords

Hypertrophic cardiomyopathy, sarcomere genes, compound variant, MYBPC3 gene

Mailing Address: Glauber Monteiro Dias •
Rua das Laranjeiras, 374, 5º andar. Postal Code 22240-006, Laranjeiras, RJ – Brazil
E-mail: glauber.dias@gmail.com
Manuscript received July 21, 2016, revised manuscript November 29, 2016, accepted December 20, 2016.

DOI: 10.5935/abc.20170045
Genetic analysis

Sanger sequencing

The genetic analysis of the proband was performed through direct sequencing of the three sarcomere genes: MYH7, MYBPC3 and TNNT2. Genomic DNA obtained from leukocytes according to Miller et al. was submitted to a polymerase chain reaction (PCR) of all coding exons, using previously described primers and others designed by us (Tables 1, 2 and 3), and the same amplification program. PCR products were cleaned-up with EXOSAP-IT (Affymetrix, Santa Clara, CA), subjected to the sequencing reaction using the BigDye® Terminator v3.1 reagent (Thermo Fisher Scientific, Waltham, MA) and subsequently analyzed on an ABI 3500xl genetic analyzer (Thermo Fisher Scientific, Waltham, MA). Sequence analyses were performed using the Geneious® v.6.1.6 software package (Biomatters, Auckland, NZ). The family was submitted to a mutation-specific screening according to the HRS/EHRA expert consensus statement.13

Variant pathogenicity prediction

Effects of missense mutations were predicted by using the PolyPhen-2 (http://genetics.bwh.harvard.edu/pph2/), SIFT/PROVEAN (http://sift.jcvi.org/) and PredictProtein (http://predictprotein.org/home) tools. A5YM48 and Q14896 were used as MYBPC3 reference sequences (UniProtKB).

Results

A seventeen-year-old (y) male proband presenting with a clinical manifestation of HCM and syncope history was submitted to a cardioverter-defibrillator implantation for syncope primary prevention. The diagnosis was based on TTE and showed a reverse curve asymmetric septal hypertrophy, with 39-mm thickness with preserved LV systolic function and normal LV ejection fraction (Figure 1). Additionally, diastolic type II dysfunction, maximum gradient LV/Aorta of 25 mmHg, systolic anterior motion of the mitral valve, obstruction of the LV outflow tract, and enlarged left atrium (46 mm) were also present. The ECG showed LV and LA overload and 24-hour Holter monitoring failed to document the presence of ventricular tachycardia. The risk of SCD was considered high, at 7.69%.

The genetic analysis identified a compound heterozygous missense variant, c.1624G>C (p.E542Q) and c.1828G>C (p.D610H) in MYBPC3 (Figure 2). The variant p.E542Q (rs121909374) has been associated with HCM in ClinVar and in the Human Gene Mutation Database (HGMD). The in silico analysis performed by PolyPhen-2 predicts this variant as possibly harmful, while SIFT/PROVEAN and PredictProtein classify this mutation as tolerable. On the other hand, p.D610H (rs371564200) is classified as a variant of uncertain significance (VUS), although pathogenicity prediction tools rank p.D610H as probably deleterious/harmful. Both variants affect conserved residues in the polypeptide chain (Figure 2).

The proband is the only member that manifests the HCM phenotype in his family. His father was adopted, so only maternal ascendants are known. The constructed heredogram revealed 30 relatives, over five generations, in which only one unexplained death of a 30-year-old female with no HCM diagnosis was detected (Figure 2).14

Genotyping of maternal family members - grandmother (59y), aunt (29y), uncle (35y) and mother (39y) - detected the p.D610H variant. All family members were asymptomatic, with normal TTE and ECG, with no evidence of VH. On the other hand, the allele p.E542Q was detected in the father (40y) and a paternal sibling (8y), both with normal clinical assessment results (Table 4). CMR was performed in the mother, aunt, and father, and resulted in normal findings, specifically normal LV wall thickness and no signs of fibrosis (Figure 1).

Discussion

The present study reports on a young individual with severe HCM who carries a compound trans-heterozygous variant in the MYBPC3 gene, with one allele - p.D610H - inherited from the mother and the other - p.E542Q - inherited from the father.

Individuals with a single variant did not show any HCM phenotype. The p.E542Q variant, found in the paternal relatives, is associated to HCM, with good prognosis and moderate wall hypertrophy, although only a few studies mentioning this mutation are available16-17. Pathogenicity prediction of p.E542Q is in agreement with literature data10-11.

Moreover, the p.D610H variant, identified in the maternal relatives, also did not manifest any HCM phenotype, even in the oldest investigated familiar member (59y). The association between p.D610H and HCM remains uncertain, despite the fact that pathogenicity predicting tools classified this as probably pathogenic. Only a single study in the literature has identified this mutation, although it did not correlate it with the disease22.

In general, a single HCM-heterozygous mutation is sufficient to affect myocardial function and lead to hypertrophy; however, early studies have associated variants in the MYBPC3 gene with incomplete penetrance, mild VH, low SCD risk and benign clinical evolution23-25.

In conclusion, it is suggested that, individually, the p.E542Q and p.D610H variants generate mild changes in protein structure/ function, insufficient to cause a strong phenotype. However, the expression of these variants in trans may be responsible for early disease onset, a more severe clinical phenotype and increased risk of malignant events in the proband. In other words, double or compound variants by themselves are not decisive for a poorer HCM prognosis, but the allelic composition of these variants may be determinant in this regard.

Study limitations

The present study investigated the three major HCM-genes that account for approximately 60-70% of HCM cases.14 However, several other genes have already been associated to this disease, which are yet to be investigated.

Author contributions

Conception and design of the research: Cruz Filho FES, Dias GM; Acquisition of data: Rafael JF, Gottlieb I, Cazelli JG, Siciliano AP, Dias GM; Analysis and interpretation of the data: Rafael JF, Cruz Filho FES, Gottlieb I, Dias GM; Obtaining funding: Dias GM; Writing of the manuscript: Rafael JF, Dias GM; Critical revision of the manuscript for intellectual content: Cruz Filho FES, Carvalho ACC, Dias GM.
Table 1 – Primers for MYH7 sequencing

Exon	Forward Primer 5'-3'	Reverse Primer 5'-3'	Amplicon	A.T.
3	TCTTGACTCTTGGACGATGCTTA	TCTGTCACCCGAGGTGACAGTG	381 bp	62ºC
4	AGGAAAGGAGGAAGGACCAAGCTGCTG	TCTGGACATCCTAATGCTGTA	380 bp	62ºC
5	ATCTTTTCTCACTCCCAAAATCA	ACTCACTGAGACTGAGGACTG	398 bp	60ºC
6	TTGTACCACTCACTTACATTACATG	GAGGCTGAGTCATGCTAGCTGGGG	394 bp	62ºC
7	CTTGCTGGTCTCAGTGATGTATTGT	CCTGCGGATAGAGGACCTTGGAGGG	196 bp	62ºC
8	GCCCTCCAAGGTCCCTGACCGCAG	GTCCAGTCCAAGGCAAGGCTGCA	200 bp	62ºC
9	GACAATCCCTCTCCCTGCTCGT	AACAAGGGAGGGAGGGAGAG	281 bp	62ºC
10	CTTTTTCTTGTCACATTATATCGA	CCCAAACAGGAGGAGGACCAAGC	252 bp	60ºC
11	CTGCTTCTCAAGGCTCATGCTG	ACCAATGCGGAGGCTGATGTTT	284 bp	62ºC
12	CACAGGGTATAGAGGACAGGTTT	TTAAGCTCCTGCCCCAAAATCA	273 bp	58ºC
13	AGTCACTCTTTTCAAGCTTACGAA	ATTATCTGCTAAGAGGACACACTC	186 bp	62ºC
14	CAAAGCTGAGCGGACCAACCTTCTC	ATGTTGAGGACCTGATGATTGTT	258 bp	62ºC
15	ACTCCTACCACTCTCTGACTGCTC	GAATTCCAGTGGGAGAGGCGAAG	247 bp	62ºC
16	ATAACTGTAGTACAGCTGACATCAGCTTA	TCCATCCCAGTGCTGTAACCTC	578 bp	62ºC
17	GCAAATGCGGAGGAGAGGTAAGAAG	AGAGGAGGGAGGAGGTGAAAG	359 bp	58ºC
18	CATCTTCGATGACCTCTGATACCC	CACTGTGATGATGAGAGGAT	300 bp	60ºC
19	ACAAGCCAGGAGGAGGACCAACAGC	GCACAGATGCACGTTGCA	323 bp	62ºC
20	TGATACTGACGAGGAGGAGGAGGAGG	GCTACAGAGGGTCATGACAGGAAG	330 bp	62ºC
21	TAGCTGTTACAACTGAGGCGTTA	GCTCTGAGGCTGACTGAGT	374 bp	62ºC
22	GGACCTAGGTAGAGAGGAGGAGG	TGTGACAGAGGACTGACGAGTGT	390 bp	62ºC
23	TTCATTTGAGTGATGATGCTCTC	ATGTTGAGGAGAGGCTGAGAC	390 bp	62ºC
24	AGATGCCAGCAAGCTGCTGACCTT	TCTGGGACACAGATGACGT	290 bp	62ºC
25	GCAACTACAGCTGACCTTAAACAAA	TTTTTTCAGGAGGACCATCAA	508 bp	60ºC
26	AACTCTTACCTGTATACATTACCAT	GCCACTGAGGACATGTTTACGAT	306 bp	60ºC
27a*	AGCCGACAGAATAGAGGAGCC	GCCGCCCGAGACATCTGGA	274 bp	64ºC
27b*	TCCAGAGATGCGCCGGGAC	AGGGAGGGAGGAGGAGGAGG	266 bp	64ºC
28	TCCACCTTCTCTCTGCTGCT	CAGCACTCCTCTCTCTCCACCT	438 bp	56ºC
29	GGTTGGGATAGGAGGAGGAGGAGG	TGGTGACAGGATTGCTGCTG	315 bp	64ºC
30	GAAGAGGGCAAGGTGGGAGG	CCTGAGAGGAGGAGGAGGAGG	422 bp	58ºC
31	TGTGCCCATCATCACCATCTCAA	GCTTCAACAGTGACCTCATACT	469 bp	56ºC
32	GTGAGGATGAGGATGCTTCCC	TGGTGGTGGAGAAGCCACAGC	396 bp	56ºC
33	ATGATGAGGATGCTGCACTGGA	GGGGAGGAGAAGCCTGCA	500 bp	60ºC
34	CTGCCCTGCTGCCCCTGACTG	CCCGCTGACTGCTCCCCTTACT	500 bp	64ºC
35	GTGAGGGAAGGCAAGGCTG	GTGGGCAAGGAGGAGGAGGCA	364 bp	62ºC
36	TGGCTGGCAAGGACGCTTGA	GTCTCAAGCAGCTGCTGCCA	497 bp	60ºC
37	TGGGGCACAGGAGGTGTTG	GTGTTGAGCTGCTGACTG	391 bp	62ºC
38 / 39	ACCCTGTTGAGTCTGCTCATTGCT	TGTGAGGAGGCTGCTGCTG	464 bp	62ºC
40	ATGCCCTTCCCTCCTGCGC	TTTCCACCTCCTCTGATTGCCAGAC	268 bp	60ºC

(*) Necessary more than one primer pair to cover the exon; (†) Size of the amplified fragment; (‡) Annealing temperature.
Table 2 – Primers for MYBPC3 sequencing

Exon	Forward Primer 5'-3'	Reverse Primer 5'-3'	Amplicon	A.T.
2	GACCTCAAGCTCTGGAATTCACT	GCTCAGAGGCCACGTCTGTAAG	311 bp	62°C
3	GTGCAAGCTCCTCAACACG	CAGCAGGAGGCAAGAAAGTGT	429 bp	65°C
4	CTGAGGAGGGAGGAAGATG	GCTTTTGAGACCTGCCTGGAGC	385 bp	62°C
5	GGCCACCTGGGTCCAGACT	AGCCGGCTGGAAGGATGAGC	378 bp	62°C
6	CTACCCCTGAGCCTGCAGCACG	TGCCCTCCAGATTCCACACC	449 bp	62°C
7	CTGAGGAGCTCTGTCTTATG	GAGCGCCGTACACAGGATTG	528 bp	62°C
8	GCTTCTCAACGGCCCCCTG	AGCTCCGCGCCGAAATCCAC	213 bp	62°C
9	GGCTGGAGATGATTG	GAGGAGAAGGAGGACACT	226 bp	63°C
10	AATCTGGATGGTCTCTTTTCC	AGCCCTTTAATCTCTCCACACT	322 bp	62°C
11	TCGGCCAAGTCTGACT	CCCATGCGGCTTTTACT	389 bp	58°C
12	CGCCTCCACGGGACAG	CCCAGCGGAGCAGGACT	405 bp	67°C
13	TCCCAAGCCGCTTCCA	GGCAGACTCGCTTTTT	515 bp	62°C
14	GGCAGCAGCAGGGGAGT	ACCGGAGGAGAAAGGAGT	402 bp	62°C
15	ATCCGGCTACGGTGGAAT	CAGTGCCGCCCCGTGATAAC	375 bp	65°C
16	AACACTCAACGGGGCCTTGT	GGCCTCTCTCCTGATACACT	451 bp	62°C
17	CGAAGGAGCGAGCTTACAGT	GTCAGCTCCACGGGTCCCTCA	366 bp	62°C
18	GGAGGAGGAGGGCCGAAATC	GTCAAAGGGCAGGTTACAGAG	400 bp	62°C
19	ACAGCCACAGGTGTTTTAC	CAGTCCTACGTGCTGCATC	345 bp	61°C
20	AGAAATTACACAGGAGCAGAAG	GCGGGAAGTGGACAGAC	402 bp	62°C
21	TGCTTTTGGCCCGTGCTACTT	GCCCCAGGCCCCACTTTTGGAT	187 bp	62°C
22	TCCTGCTGGTCCTCGTTTCTTCT	GGCCTCTCTGCTGCTTTCTTCT	379 bp	62°C
23	GCTCTCTGCTGTCTACTTCC	ATGCCCCATGCACTACCTCC	310 bp	62°C
24	TCGTGCCACAGAGATGATTGG	GGCAGCCCTCTGCTGTTTCCA	367 bp	62°C
25	CTCGTGGGCGTGGATTTG	CACGGAGTGGCTTCTCTTCTG	350 bp	62°C
26	CCGAGGAGATGCTGTGTTG	TCTGTGAAAATGCGGCTGATATCC	404 bp	62°C
27	GAGAGGTGGCCCCCTTATGT	TCGAGCTGCTCAAGAGAAG	457 bp	62°C
28	TCAGAGGAGTGGGGAGGAGT	CTGGGGTCTGCAATGCGGGGCTT	292 bp	62°C
29	GGTGCGAGATTGCTGTGTG	GGCTGCCCTCTCTTGTGTC	467 bp	62°C
30	GGCCCGGGCCCTTGAGG	TGGAAAATGGAAGCTGTTGAGTGG	356 bp	62°C
31	GCATTGCGAGCTACCTAAGGTGAC	CACGGTGAGCAAGTGAAGGTGAG	527 bp	60°C
32	GGCAGCAGAGCTCCCTCAC	GGCCCTCTCTCCTGTGCC	392 bp	65°C
33	GCTCTCTGCTGACAGTCTGCTG	CAACGCTGGGGGCTGGAGG	232 bp	65°C
34	GCAGGAGCAGTGACTGACTTGTG	CGCCCGCTCTCTCCTCTC	402 bp	62°C
35	CACAGGACTGATGCGCCTCTCTCT	GCCCCCCATCAGCTCCTCCACTT	159 bp	62°C

(*) Size of the amplified fragment; (†) Annealing temperature.

Potential Conflict of Interest

No potential conflict of interest relevant to this article was reported.

Sources of Funding

This study was funded by Instituto Nacional de Cardiologia and Fundação Pró Coração (Fundacor).

Study Association

This article is part of the thesis of Master submitted by Jullyanny Freitas Rafael, from Instituto Nacional de Cardiologia.
Table 3 – Primers for TNNT2 sequencing

Exon	Forward Primer 5’-3’	Reverse Primer 5’-3’	Amplicon	A.T. †
2	ACAGCTCATGAGGGGTGGAACTA	GTGCCCTGCTGGGGATCTACA	376 bp	65°C
3 / 4	ATGAGAAGCGGACGCGCAGCTGAGT	GGTGGCCCTCAAGACCCGAGCAACC	506 bp	65°C
5	GTGGGCGGAGTGGAGCCGACAGT	TGGGCAATCTGGTTGAAATCTTA	403 bp	65°C
6	TGGACCCAGGGGCTTCTTTTGCTGT	ACTGGGTCACCCATGCACTTCC	449 bp	65°C
7	CAGTGGGCGGAGGGACTCAG	CAGGCCGTGTCCTACCTGAACTAC	262 bp	65°C
8	GTGAGCTACCTACCCTCTCAGA	TCCCTGCTCTTTTCTCTGTCT	538 bp	62°C
9	GCCAGGCCCTGAGCTGAGTCCT	CCCCCGGAGGCGCTGAAACAG	494 bp	70°C
10	AGTGGCGGTCAGCTGTGTTGAGAAGT	CCCCCCATATTGTGCTCTTGACT	373 bp	62°C
11	TGAGGAGCCCTTCTCTTACTGAG	CACAGCAGCTGGGAATCTCT	369 bp	60°C
12	GAAACCCGGCTGACTCAG	AGCCAGCCAACTCTCTCAG	258 bp	62°C
13	CAGGGGTCTGGAGGACTAG	GTGGGACCTGCTAGTTCT	402 bp	60°C
14	GGAGGGCCCTTCTCTACCTGAG	CCGAGGCCATGTGACCCGAGGAG	207 bp	68°C
15	GCCCTTCTGAGCCCTTCTATCC	CGAGAGGACGAGAGAAAAGAC	353 bp	62°C
16	GGGGTGAAATGTGGGGCGAGGA	GTGGGGGAGCCAGCAGTGAGTGG	383 bp	62°C

(*) Size of the amplified fragment; (†) Annealing temperature.

Figure 1 – TTE of the proband and CMR of the family. A) TTE image of the four heart chambers and aorta revealing the reverse curve septal hypertrophy. B) Parasternal short-axis view showing the septal hypertrophy. C) Parasternal long-axis view displaying the LV and septal hypertrophy and the enlarged left atrium. The white arrow shows the systolic anterior motion of the mitral valve. D) TTE image showing the obstruction and the turbulence in the outflow tract of the left ventricle (white arrow). Mild mitral regurgitation in the left atrium is visible. CMR of the proband’s father (E), aunt (F) and mother (G), showing no hypertrophy or fibrosis signs. CMR in the inversion-recovery sequence (delayed enhancement) in 4CH axes (E1, F1, G1), LVSV (E2, F2, G2) and 2CH (E3, F3, G3). RA: right atrium; RV: right ventricle; LA: left atrium; LV: left ventricle; Ao: aorta.
Figure 2 – A) Pedigree showing five generations of the maternal family. The proband is the only HCM-affected member. The family variant allele carriers are indicated by E542Q+ and D610H+. B) Electropherograms of the compound missense variant regions of the MYBPC3 gene of the proband. C) Multiple species alignment of the myosin-binding protein C amino acid sequence for residues 538 to 546 and 606 to 614. The conserved residues, glutamic acid and aspartic acid, are indicated by a rectangle.

Table 4 – Clinical assessment data of the individuals

| ID | Age | Sex | HCM | Variant | LAO | LVO | ABN T wave | LVH + | LVH type | Form | Max LVWT (mm) | LVVOG mmHg | LVSD | LVDD | SAM | LA size (mm) |
|-----|-----|-----|-----|---------|-----|-----|------------|-------|----------|------|--------------|------------|------|-----|-----|-----|-------------|
| III.8 | 59 | F | No | D610H | No | No | No | No | - | - | 10 | No | No | No | No | 28 |
| IV.2 | 40 | M | No | E542Q | No | No | No | No | - | - | 9 | No | No | No | No | 35 |
| IV.3 | 39 | F | No | D610H | No | No | No | No | - | - | 9 | No | No | No | No | 37 |
| IV.6 | 29 | F | No | D610H | No | No | No | No | - | - | 8 | No | No | No | No | 32 |
| IV.7 | 35 | M | No | D610H | No | No | No | No | - | - | 8 | No | No | No | No | 36 |
| V.1 | 8 | M | No | E542Q | No | No | No | No | - | - | 7 | No | No | No | No | 37 |
| V.2 | 17 | M | Yes| D610H | Yes| Yes| Yes| Yes| Septal Reverse Curve | 39 | 25 | No | Type I | No | 46 |

The identification numbering (ID) of individuals follows the standard adopted in the pedigree charts (Figure 2); ECG: electrocardiography; TTE: Transthoracic echocardiography; (Y): years; HCM: Hypertrophic cardiomyopathy; LAO: left atrial overload; LVO: left ventricular overload; ABN T wave: abnormal T wave; LVH +: left ventricular hypertrophy showed by echo; LVH type: type of the left ventricular hypertrophy; Max LVWT: maximal thickness of the left ventricular wall; LVVOG: left ventricular outflow gradient; LVSD: left ventricular systolic dysfunction; LVDD: left ventricular diastolic dysfunction; SAM: systolic anterior motion; LA size: left atrial size.
Brief Communication

References

1. Arola A, Jokinen E, Raukkanen O, Saraste M, Pesonen E, Kuusela AL, et al. Epidemiology of idiopathic cardiomyopathies in children and adolescents. A nationwide study in Finland. Am J Epidemiol. 1997;146(5):385-93.

2. Maron BJ, Olivoto I, Spirito P, Casey SA, Bellone P, Gohman TE, et al. Epidemiology of hypertrophic cardiomyopathy-related death: revisited in a large non-referral-based patient population. Circulation. 2000;102(8):858-64.

3. Niimura H, Patton KK, McKenna WJ, Soults J, Maron BJ, Seidman JG, et al. Sarcomere protein gene mutations in hypertrophic cardiomyopathy of the elderly. Circulation. 2002;105(4):446-51.

4. Richard P, Charron P, Carrier L, Ledeuil C, Cheav T, Pichereau C, et al; EUROGENE Heart Failure Project. Hypertrophic cardiomyopathy: distribution of disease genes, spectrum of mutations, and implications for a molecular diagnosis strategy. Circulation. 2003;107(17):2227-32. Erratum in: Circulation. 2004;109(25):3258.

5. Maron BJ, Ommen SR, Semsarian C, Spirito P, Olivoto I, Maron MS. Hypertrophic cardiomyopathy: present and future, with translation into contemporary cardiovascular medicine. J Am Coll Cardiol. 2014;64(1):83-99. Erratum in: J Am Coll Cardiol. 2014;64(11):1188

6. Semsarian C, Ingles J, Maron MS, Maron BJ. New perspectives on the prevalence of hypertrophic cardiomyopathy. J Am Coll Cardiol. 2015;65(12):1249-54.

7. Kelly M, Semsarian C. Multiple mutations in genetic cardiovascular disease: a marker of disease severity? Circ Cardiovasc Genet. 2009;2(2):182-90.

8. Van Driest SL, Vasile VC, Ommen SR, Will ML, Tajik AJ, Gersh BJ, et al. Myosin binding protein C mutations and compound heterozygosity in hypertrophic cardiomyopathy. J Am Coll Cardiol. 2004;44(9):1903-10.

9. Ingles J, Doolan A, Chiu C, Seidman J, Seidman C, Semsarian C. Compound and double mutations in patients with hypertrophic cardiomyopathy: implications for genetic testing and counselling. J Med Genet. 2005;42(10):e59.

10. Wang J, Wang Y, Zou Y, Sun K, Wang Z, Ding H, et al. Malignant effects of multiple rare variants in sarcomere genes on the prognosis of patients with hypertrophic cardiomyopathy. Eur J Heart Fail. 2014;16(9):950-7.

11. O’Maloney C, Jichi F, Pavlo M, Monserrat L, Anastasakis A, Rapezzi C, et al; Hypertrophic Cardiomyopathy Outcomes Investigators. A novel clinical risk prediction model for sudden cardiac death in hypertrophic cardiomyopathy (CMH risk-SCD). Eur Heart J. 2014;35(30):2010-20.

12. Miller SA, Dykes DD, Polesky HF. A simple salting out procedure for extracting DNA from human nucleated cells. Nucleic Acids Res. 1988;16(3):1215.

13. Ackerman MJ, Priori SG, Willems S, Berul C, Brugada R, Calkins H, et al; Heart Rhythm Society (HRS); European Heart Rhythm Association (EHRA). HRS/EHRA expert consensus statement on the state of genetic testing for the channelopathies and cardiomyopathies: this document was developed as a partnership between the Heart Rhythm Society (HRS) and the European Heart Rhythm Association (EHRA). Europace. 2011;13(8):1077-109. Erratum in: Europace. 2012;14(2):277.

14. Mattos BP, Scolari FL, Torres MA, Simon L, Freitas VC, Giugliani R, et al. Prevalence and phenotypic expression of mutations in the MYH7, MYBPC3 and TNNT2 genes in families with hypertrophic cardiomyopathy in the south of Brazil: a cross-sectional study. Arq Bras Cardiol. 2016;107(3):257-65.

15. Marsiglia JD, Credidio FL, de Oliveira TG, Reis RF, Antunes Mde O, de Araujo AQ, et al. Screening of MYH7, MYBPC3, and TNNT2 genes in Brazilian patients with hypertrophic cardiomyopathy. Am Heart J. 2013;166(4):775-82.

16. Fokstuen S, Munoz A, Melacini P, Iliceto S, Perrot A, Ozcelik C, et al. Rapid detection of genetic variants in hypertrophic cardiomyopathy by custom DNA resequencing arrays in clinical practice. J Med Genet. 2011;48(8):572-6.

17. Rodríguez-García MI, Monserrat L, Ortiz M, Fernández X, Cazón L, Núñez L, et al. Screening mutations in myosin binding protein C3 gene in a cohort of patients with Hypertrophic Cardiomyopathy. BMC Med Genet. 2010;11:67.

18. Adzhubei IA, Schmidt S, Peshkin L, Ramensky VE, Gerassimova A, Bork P, et al. A method and server for predicting damaging missense mutations. Nat Methods. 2010;7(4):248-9.

19. Ng PC, Henikoff S. Predicting deleterious amino acid substitutions. Genome Res. 2001;11(5):863-74.

20. Ng PC, Henikoff S. Accounting for human polymorphisms predicted to affect protein function. Genome Res. 2002;12(3):436-46.

21. Choi Y, Sims GE, Murphy S, Miller JR, Chan AP. Predicting the functional effect of amino acid substitutions and indels. PLoS One. 2012;7(10):e46688.

22. Olivoto I, Girolami E, Sciagrà R, Ackerman MJ, Sotgia B, Bos JM, et al. Microvascular function is selectively impaired in patients with hypertrophic cardiomyopathy and sarcomere myofilament gene mutations. J Am Coll Cardiol. 2011;58(12):1249-54.

23. Niimura H, Bachinski LL, Sangwatanaroj S, Watkins H, Chudley AE, McKenna W, et al. Mutations in the gene for cardiac myosin-binding protein C and late-onset familial hypertrophic cardiomyopathy. N Engl J Med. 1998;338(18):1248-57.

24. Fokstuen S, Munoz A, Melacini P, Iliceto S, Perrot A, Ozcelik C, et al. Rapid detection of genetic variants in hypertrophic cardiomyopathy by custom DNA resequencing array in clinical practice. J Med Genet. 2011;48(8):572-6.

25. Charron P, Dubourg O, Desnos M, Isnard R, Hagege A, Millaire A, et al. Diagnosis of valve morphology by echocardiography and echoangiography for familial hypertrophic cardiomyopathy in a genotyped adult population. Circulation. 1997;96(1):214-9.