Space-time directional Lyapunov exponents

for cellular automata

by

M. Courbage ¹ and B. Kamiński²

Abstract. Space-time directional Lyapunov exponents are introduced. They describe the maximal velocity of propagation to the right or to the left of fronts of perturbations in a frame moving with a given velocity. The continuity of these exponents as function of the velocity and an inequality relating them to the directional entropy is proved.

KEY WORDS: space-time directional Lyapunov exponents, directional entropy, cellular automata

1. Introduction

In the theory of smooth dynamical systems Lyapunov exponents describe local instability of orbits. For spatially extended systems, the local instability of patterns is caused by the evolution of localised perturbations. In one dimensional extended systems, the localised perturbations may propagate to the left or to the right not only as travelling waves, but also as various structures. Moreover, other phenomena, called convective instability, have been observed in a fluid flow in a pipe, where it has been found that the system propagates a variety of isolated and localised structures (or patches of turbulence) moving down the pipe along the stream with some velocity. Convective instability has been studied by many authors in various fields (see for example ref. 2). We introduce a Lyapunov exponents describing the maximal velocity of propagation to the right or to the left of fronts of perturbations in a frame moving with a given velocity. We consider this problem in the framework of one dimensional cellular automata.

Cellular automata, first introduced by von Neumann have been recently used as mathematical models of natural phenomena (¹,¹¹). Lyapunov exponents in cellular automata have been introduced first by Wolfram (¹¹). The idea was to find a characteristic quantity of the instability of the dynamics of cellular automata analogous to the Lyapunov exponents which measure the instability of the orbits of differentiable dynamical systems under perturbations of initial conditions.

¹Laboratoire Matière et Systèmes Complexes (MSC) UMR 7057 CNRS et Université Paris 7- Denis Diderot Case 7020, Tour 24-14, 5ème étage, 75251 Paris Cedex 05, France, e-mail: courbage@ccr.jussieu.fr
²Faculty of Mathematics and Computer Science, Nicolaus Copernicus University, Chopina 12/18, 87-100 Toruń, e-mail: bkam@mat.uni.torun.pl
The first rigorous mathematical definition of these exponents has been given by Shereshevsky (10) in the framework of ergodic theory.

For a given shift-invariant probability measure \(\mu \) on the configuration space \(X \) that is also invariant under a cellular automaton map \(f \) he defined left (resp. right) Lyapunov exponents \(\lambda^+(x) \), \(\lambda^-(x) \) as time asymptotic averages of the speed of the propagation to the left (resp. right) of a front of right (resp. left) perturbations of a given configuration \(x \in X \). He also gave the following relation between the entropy and the Lyapunov exponents:

\[
 h_\mu(f) \leq \int_X h_\mu(\sigma, x) \cdot (\lambda^+(x) + \lambda^-(x)) \mu(dx)
\]

where \(h_\mu(\sigma, x) \) denotes the local entropy of the shift \(\sigma \) in \(x \).

In ref. 6, another slightly different Lyapunov exponents have been defined for cellular automata.

But cellular automata have the richest physical and mathematical structure if we consider them as dynamical systems commuting with \(\sigma \). In physical terms this reflects the local nature and the invariance under spatial translations of the interactions between cells, that is a common property of large extended systems in many natural applications.

In order to account of the space-time complexity of cellular automata, Milnor introduced in ref. 8 a generalization of the dynamical entropy which he called the directional entropy. This concept has been later enlarged (3,7) to \(\mathbb{Z}^2 \)-actions on arbitrary Lebesgue spaces.

Here we introduce the notion of space-time directional Lyapunov exponents which are generalizations of the notions considered by Shereshevsky. We define them as the averages along a given space-time direction \(\mathbf{v} \in \mathbb{R} \times \mathbb{R}^+ \) of the speed of propagation to the left (resp. right) of a front of right (resp. left) perturbations of a given configuration \(x \in X \). We compare these exponents with the the directional entropy of the action generated by \(\sigma \) and \(f \) (see in ref. 3, 7 and 8 for the definition and basic properties) and we show, among other things, their continuity. As a corollary to our main result we obtain the estimation of the directional entropy given in ref.5.

2. Definitions and auxiliary results

Let \(X = S^2 \), \(S = \{0, 1, \ldots, p - 1\} \), \(p \geq 2 \) and let \(\mathcal{B} \) be the \(\sigma \)-algebra generated by cylindric sets. We denote by \(\sigma \) the left shift transformation of \(X \) and by \(f \) the automaton transformation generated by an automaton rule \(F \), i.e.

\[
 (\sigma x)_i = x_{i+1}, \quad (fx)_i = F(x_{i+l}, \ldots, x_{i+r}), \quad i \in \mathbb{Z},
\]

\[
 F : S^{r-l+1} \rightarrow S, \quad l, r \in \mathbb{Z}, \quad l \leq r.
\]

Let \(\mu \) be a probability measure invariant w.r. to \(\sigma \) and \(f \). Following Shereshevsky (10) we put

\[
 W^+_s(x) = \{ y \in X; y_i = x_i, i \geq s \},
\]
\[W_s^-(x) = \{ y \in X; y_i = x_i, i \leq -s \}, \]

\(x \in X, s \in \mathbb{Z}. \)

It is easy to see that

(1) The sequences \((W_s^\pm(x), s \in \mathbb{Z})\) are increasing, \(x \in X.\)

(2) For any \(a, b, c \in \mathbb{Z}, x \in X\) it holds

\[\sigma^a W_c^\pm (\sigma^b x) = W_c^{\pm (\sigma^{a+b} x)}. \]

Lemma 1. For any \(n \in \mathbb{N}\) we have

\[f^n (W_0^+(x)) \subset W_{-nl}^+ (f^n x), \]

\[f^n (W_0^-(x)) \subset W_{nr}^- (f^n x). \]

Proof. It is enough to show the first inclusion. Let \(n = 1\) and let \(y \in W_0^+(x).\) Hence

\[F(y_i+l, \ldots, y_i+r) = F(x_i+l, \ldots, x_i+r) \]

for all \(i \geq -l,\) i.e.

\[[f(y)]_i = [f(x)]_i, \quad i \geq -l, \]

which means that \(f(y) \in W_{-l}^+(f(x)).\)

Suppose now that

\[f^n (W_0^+(x)) \subset W_{-nl}^+ (f^n x) \]

for some \(n \in \mathbb{N}.\) Using (2) one obtains

\[f^{n+1} (W_0^+(x)) \subset f (W_{-nl}^+ (f^n x)) \]

\[= f (\sigma^{nl} W_0^+ (\sigma^{-nl} f^n x)) \]

\[= \sigma^{nl} W_{-l}^+ (f (\sigma^{-nl} f^n x)) \]

\[= \sigma^{nl} W_{-l}^+ (\sigma^{-nl} f^{n+1} x) \]

\[= W_0^+ (\sigma^{-nl} f^{n+1} x) \]

\[= W_{-l}^+ (f^{n+1} x) \]

and so the desired inequality is satisfied for any \(n \in \mathbb{N}.\)

\[\square \]

Lemma 1 and (1) imply at once the following

Corollary. For any \(n \in \mathbb{N}\) there exists \(s \in \mathbb{N}\) such that

\[f^n (W_0^+(x)) \subset W_s^\pm (f^n x). \]

Indeed, applying (1) it is enough to take \(s = \max(0, -nl)\) in the case of \(W_0^+(x)\) and \(s = \max(0, nr)\) in the case of \(W_0^-(x).\)

Let (cf. ref.10)

\[\tilde{\Lambda}_n^\pm (x) = \inf \{ s \geq 0; f^n (W_0^\pm (x)) \subset W_s^\pm (f^n x) \} \]
\[\Lambda_n^\pm (x) = \sup_{j \in \mathbb{Z}} \tilde{\Lambda}_n^\pm (\sigma^j x), \]

\[x \in X, \ n \in \mathbb{N}. \]

Obviously we have

\[0 \leq \Lambda_n^+ (x) \leq \max(0, -nl), \ 0 \leq \Lambda_n^- (x) \leq \max(0, nr). \]

It is shown in ref. 10, in the case \(l = -r, \ r \geq 0 \) that the limits

\[\lambda^\pm (x) = \lambda^\pm (f; x) = \lim_{n \to \infty} \frac{1}{n} \Lambda_n^\pm (x) \]

exist a.e. and they are \(f \) (and of course \(\sigma \)) - invariant and integrable.

The proof given in ref. 10 also works for arbitrary \(l, r \in \mathbb{Z}, \ l \leq r \).
The limit \(\lambda^+ \) (resp. \(\lambda^- \)) is called the right (left) Lyapunov exponent of \(f \).

It follows at once from (3) that

\[0 \leq \lambda^+ (x) \leq \max(0, -l), \ 0 \leq \lambda^- (x) \leq \max(0, r). \]

3. Directional Lyapunov exponents

Let now \(\vec{v} = (a, b) \in \mathbb{R} \times \mathbb{R}^+ \). We put

\[\alpha(t) = [at], \ \beta(t) = [bt], \ t \in \mathbb{N} \]

where \([x] \) denotes the integer part of \(x, \ x \in \mathbb{R} \).

It is clear that

\[\alpha(t_1 + t_2) \geq \alpha(t_1) + \alpha(t_2), \ \beta(t_1 + t_2) \geq \beta(t_1) + \beta(t_2), \ t_1, t_2 \in \mathbb{N} \]

and

\[\lim_{t \to \infty} \frac{\beta(t)}{\alpha(t)} = \frac{b}{a}, \ a \neq 0. \]

We put

\[z_l = a + bl, \ z_r = a + br. \]

Proposition 1. For any \(t \in \mathbb{N} \) we have

\[\sigma^{\alpha(t)} f^{\beta(t)} W^+_0 (x) \subset W^+_{-\alpha(t)-\beta(t)-l} \left(\sigma^{\alpha(t)} f^{\beta(t)} x \right), \]

\[\sigma^{\alpha(t)} f^{\beta(t)} W^-_0 (x) \subset W^-_{\alpha(t)+\beta(t)+r} \left(\sigma^{\alpha(t)} f^{\beta(t)} x \right). \]

Proof. It follows from Lemma 1 that

\[f^{\beta(t)} W^+_0 (x) \subset W^+_{-\beta(t)-l} \left(f^{\beta(t)} x \right). \]
Applying (2) we get

\[\sigma^{\alpha(t)} f^{\beta(t)} W_0^+ (x) \subset \sigma^{\alpha(t)} W_{-\beta(t) t}^+ (f^{\beta(t)} x) = W_{-\alpha(t)-\beta(t) t}^+ (\sigma^{\alpha(t)} f^{\beta(t)} x). \]

Similarly one obtains the second inclusion.

Corollary. For any \(t \in \mathbb{N} \) there exists \(s \in \mathbb{N} \) such that

\[\sigma^{\alpha(t)} f^{\beta(t)} W_0^\pm (x) \subset W_s^\pm (\sigma^{\alpha(t)} f^{\beta(t)} x). \]

In view of (1) it is enough to take

\[s = \max(0, -\alpha(t) - \beta(t) \cdot l) \]

in the case of \(W_0^+ (x) \) and

\[s = \max(0, \alpha(t) + \beta(t) \cdot r) \]

in the case of \(W_0^- (x) \).

We put

\[\tilde{\Lambda}^\pm_{\vec{v},t} (x) = \inf \{ s \geq 0; \sigma^{\alpha(t)} f^{\beta(t)} W_0^\pm (x) \subset W_s^\pm (\sigma^{\alpha(t)} f^{\beta(t)} x) \} \]

and

\[\Lambda^\pm_{\vec{v},t} (x) = \sup_{j \in \mathbb{Z}} \tilde{\Lambda}^\pm_{\vec{v},t} (\sigma^j x) . \]

It is clear that

\[0 \leq \Lambda^+_{\vec{v},t} (x) \leq \max(-\alpha(t) - \beta(t) \cdot l, 0), \]

\[0 \leq \Lambda^-_{\vec{v},t} (x) \leq \max(\alpha(t) + \beta(t) \cdot r, 0). \]

Definition. The function \(\lambda^+_\vec{v} \) (resp. \(\lambda^-_\vec{v} \)) defined by the formula

\[\lambda^\pm_\vec{v} (x) = \lim_{t \to \infty} \frac{1}{t} \Lambda^\pm_{\vec{v},t} (x), \quad x \in X \]

is said to be the right (resp. left) space-time directional Lyapunov exponent of \(f \).

We show in the sequel that in fact the limit \(\lim_{t \to \infty} \frac{1}{t} \Lambda^\pm_{\vec{v},t} (x) \) exists a.e.

It follows at once from (5) that

\[0 \leq \lambda^+_\vec{v} (x) \leq \max(-z_l, 0), \quad 0 \leq \lambda^-_\vec{v} (x) \leq \max(z_r, 0). \]

Example. We now consider permutative automata. Recall that an automaton map \(f \) defined by the rule \(F : S^m \to S \) is right permutative if for any \((\bar{x}_1, \ldots, \bar{x}_{m-l}) \) the mapping:

\[x_m \mapsto f(\bar{x}_1, \ldots, \bar{x}_{r-l}, x_m) \]

is one-to-one. A left permutative mapping is defined similarly. The map \(f \) is said to be bipermutative if it is right and left permutative.

Let \(\mu \) be the uniform Bernoulli measure on \(X \). It is well known that, due to the permutativity of \(f \) (right or left), it is \(f \)-invariant. It is also \(\sigma \)-invariant. Since the functions \(\Lambda^\pm_{\vec{v},t} \) are \(\sigma \)-invariant, the ergodicity of \(\mu \) implies they are constant a.e.
First we consider f being left permutative. It follows straightforwardly from the definitions that
\[
\Lambda_{\vec{v},t}^+ = \max(-\alpha(t) - \beta(t) \cdot l, 0)
\]
and so
\[
\lambda_{\vec{v}}^+ = \max(-a - b \cdot l, 0) = \max(-z_l, 0).
\]
Now if \vec{v} is such that $z_r = a + br < 0$ we get
\[
\lambda_{\vec{v}}^- = 0.
\]
Indeed, in this case $\alpha(t) + \beta(t) \cdot r < 0$ for sufficiently large t, say $t \geq t_0$ and therefore
\[
\Lambda_{\vec{v},t}^- = 0, t \geq t_0.
\]
Applying the continuity of the mapping $\vec{v} \mapsto \lambda_{\vec{v}}^-$ (Proposition 3) we have $\lambda_{\vec{v}}^- = 0$ for \vec{v} such that $z_r = a + br \leq 0$. Similarly one checks that for f being right permutative we have
\[
\lambda_{\vec{v}}^- = \max(z_r, 0)
\]
and
\[
\lambda_{\vec{v}}^+ = 0
\]
for $\vec{v} = (a, b)$ such that $z_l = a + bl \geq 0$. Thus if f is bipermutative we have:
\[
\lambda_{\vec{v}}^+ = \max(-z_l, 0), \lambda_{\vec{v}}^- = \max(z_r, 0)
\]
for any $\vec{v} \in \mathbb{R} \times \mathbb{R}^+$.

Lemma 2. The function $\vec{v} \mapsto \Lambda_{\vec{v}}^\pm$ is positively homogeneous, i.e. for any $c \in \mathbb{R}^+$ we have
\[
\lambda_{c\vec{v}}^\pm = c \lambda_{\vec{v}}^\pm.
\]

Proof. Let $(\alpha_c(t))$ and $(\beta_c(t))$ be the sequences associated with $c\vec{v}$, $\vec{v} = (a, b)$, i.e. $\alpha_c(t) = [cat] = \alpha(ct)$, $\beta_c(t) = [c\beta t] = \beta(ct)$. It is clear that
\[
\Lambda_{c\vec{v},t}^\pm(x) = \Lambda_{\vec{v},ct}^\pm(x), \quad x \in X
\]
which implies at once the desired equality.

Lemma 3. For any $\vec{v} \in \mathbb{R} \times \mathbb{R}^+$, $s, t \in \mathbb{N}$ and $x \in X$ we have
\[
\Lambda_{\vec{v},s+t}^\pm(x) \leq \Lambda_{\vec{v},s}^\pm(x) + \Lambda_{\vec{v},t}^\pm(f^{\beta(s)}x) + 2|l|.
\]
Proof. We shall consider only the case of $\Lambda_{\vec{v},s+t}^+$; the proof for $\Lambda_{\vec{v},s+t}^-$ is similar, $s, t \geq 0$.

We put
\[
\tilde{s} = \Lambda_{\vec{v},s}^+(x), \quad \tilde{t} = \Lambda_{\vec{v},t}^+(f^{\beta(s)}x).
\]

By the definition and the σ-invariance of $\Lambda_{\vec{v},t}^+$ we have
\[
\sigma^{\alpha(s)+\alpha(t)}f^{\beta(s)+\beta(t)}W_0^+(x) \subset \sigma^{\alpha(t)}f^{\beta(t)}W_{\tilde{s}}^+(x) \sigma^{\alpha(s)}f^{\beta(s)}x
\]
\[
= \sigma^{\alpha(t)}f^{\beta(t)}W_{\tilde{s}}^+(x) (\sigma^{\alpha(s)}f^{\beta(s)}x)
\]
\[
\subset \sigma^{-\tilde{s}}W_{\tilde{s}+\tilde{t}}^+(x) (\sigma^{\alpha(s)}f^{\beta(s)}x)
\]
\[
\subset \sigma^{-\tilde{s}}W_{\tilde{s}+\tilde{t}}^+(x) \sigma^{\alpha(s)+\alpha(t)}f^{\beta(s)+\beta(t)}x
\]
\[
= \sigma^{-\tilde{s}}W_{\tilde{s}+\tilde{t}}^+(x) \sigma^{\alpha(s)+\alpha(t)}f^{\beta(s)+\beta(t)}x.
\]

We put
\[
\delta_\alpha = \alpha(s+t) - (\alpha(s) + \alpha(t)), \quad \delta_\beta = \beta(s+t) - (\beta(s) + \beta(t)),
\]
$s, t \geq 0$.

Acting on the both sides of (7) by $\sigma^{\delta_\alpha}f^{\delta_\beta}$ we obtain by Lemma 1
\[
\sigma^{\alpha(s+t)}f^{\beta(s+t)}W_0^+(x) \subset \sigma^{\delta_\alpha}f^{\delta_\beta}W_{\tilde{s}+\tilde{t}}^+(x) \sigma^{\alpha(s)+\alpha(t)}f^{\beta(s)+\beta(t)}x
\]
\[
= f^{\delta_\beta}W_{\tilde{s}+\tilde{t}-\delta_\alpha}^+(x) \sigma^{\alpha(s)+\alpha(t)}f^{\beta(s)+\beta(t)}x
\]
\[
\subset W_{\tilde{s}+\tilde{t}-\delta_\alpha-\delta_\beta,l}^+(x) \sigma^{\alpha(s)+\alpha(t)}f^{\beta(s)+\beta(t)}x.
\]

Since $0 \leq \delta_\alpha, \delta_\beta \leq 2$ we get from (8)
\[
\tilde{\Lambda}_{\vec{v},s+t}^+(x) \leq \max(\tilde{s} + \tilde{t} - \delta_\alpha - \delta_\beta l, 0)
\]
\[
\leq \tilde{s} + \tilde{t} + 2|l|
\]
\[
= \Lambda_{\vec{v},s}^+(x) + \Lambda_{\vec{v},t}^+(f^{\beta(s)}x) + 2|l|
\]
which implies at once the desired inequality.

\[
\square
\]

Proposition 2. For any $\vec{v} \in \mathbb{R} \times \mathbb{R}^+$ and almost all $x \in X$ there exists the limit
\[
\lim_{t \to \infty} \frac{1}{t} \Lambda_{\vec{v},t}^\pm(x) = \lambda_{\vec{v}}^\pm(x).
\]

Proof. It is enough to consider the case of $\Lambda_{\vec{v},t}^+$, $t \geq 0$.

First we consider the case $\vec{v} = (a, 1)$, i.e.
\[
\alpha(t) = [at], \quad \beta(t) = t, \quad t > 0.
\]
In this case Lemma 3 has the form

\[\Lambda_{\vec{v}, t}^\pm(x) = \Lambda_{\vec{v}, t}^\pm(x) + \Lambda_{\vec{v}, t}^\pm(f^tx) + 2|l|, \]

\[s, t \geq 0. \]

It is easy to see that this inequality permits to apply the Kingman subadditive ergodic theorem, which implies the existence a.e. of the limit

\[\lim_{t \to \infty} \frac{1}{t} \Lambda_{\vec{v}, t}^\pm(x) = \lambda_{\vec{v}}^\pm(x). \]

The case of arbitrary \(\vec{v} \) easily reduces to the above by Lemma 2.

\[\square \]

Proposition 3. The space-time directional Lyapunov exponents \(\lambda_{\vec{v}}^\pm \), are continuous as functions of \(\vec{v} \) for \(\vec{v} \in \mathbb{R} \times (\mathbb{R}^+ \setminus \{0\}) \).

Proof. The result will easily follow from the inequality

\[(9) \quad b \cdot \lambda_{\vec{v}'}^\pm(x) \leq \max \left(b' \lambda_{\vec{v}}^\pm(x) - (a' - ab'), 0 \right) \]

where \(\vec{v} = (a, b), \vec{v}' = (a', b'), b, b' > 0. \)

In order to show (9) we first consider the case \(b' = b = 1 \). In this case \(\beta(t) = \beta'(t) = t, t > 0. \) We put \(p(t) = \alpha'(t) - \alpha(t), t > 0. \)

We have

\[\sigma^{\alpha'(t)} f^{\beta'(t)} W^+_{0, t}(x) = \sigma^{\alpha(t) + p(t)} \sigma^{\beta(t)} W^+_{0, t}(x) = \sigma^{p(t)} \sigma^{\alpha(t)} f^{\beta(t)} W^+_{0, t}(x) \]

\[\subset \sigma^{p(t)} W^+_{\lambda_{\vec{v}, t}^+, \alpha(t)} \left(\sigma^{\alpha(t)} f^{\beta(t)} W^+_{0, t}(x) \right) \]

\[= \left. W^+_{\lambda_{\vec{v}, t}^+, \alpha(t) - p(t)} \left(\sigma^{p(t)} \sigma^{\alpha(t)} f^{\beta(t)} W^+_{0, t}(x) \right) \right|_{x = f^{\beta'(t)} \sigma^{\alpha'(t)}(x)} \]

\[= \left. W^+_{\lambda_{\vec{v}, t}^+, \alpha(t) - p(t)} \left(\sigma^{\alpha'(t)} f^{\beta'(t)} W^+_{0, t}(x) \right) \right|_{x = f^{\beta'(t)} \sigma^{\alpha'(t)}(x)} \]

\[\subset \left. W^+_{\lambda_{\vec{v}, t}^+, \alpha(t) - p(t)} \left(\sigma^{\alpha'(t)} f^{\beta'(t)} W^+_{0, t}(x) \right) \right|_{x = f^{\beta'(t)} \sigma^{\alpha'(t)}(x)} \]

and so

\[\tilde{\Lambda}_{\vec{v}, t}^\pm(x) \leq \max \left(\Lambda_{\vec{v}, t}^\pm(x) - p(t), 0 \right) \]

which implies

\[\lambda_{\vec{v}'}^\pm(x) \leq \max \left(\lambda_{\vec{v}}^\pm(x) - (a' - a), 0 \right), \]

i.e (9) is satisfied for \(b = b' = 1. \)

Let now \(\vec{v}, \vec{v}' \) be arbitrary, \(b', b > 0. \) We have

\[\vec{v} = b \cdot \vec{v}_0, \quad \vec{v}' = b' \cdot \vec{v}_0 \]
where
\[\bar{v}_0 = \left(\frac{a}{b}, 1 \right), \quad \bar{v}'_0 = \left(\frac{a'}{b'}, 1 \right). \]

It follows from (10) that
\[\lambda^+_{\bar{v}'_0}(x) \leq \max \left(\lambda^+_{\bar{v}_0}(x) - \left(\frac{a'}{b'} - \frac{a}{b} \right), 0 \right) \]
and therefore, by the use of the homogeneity of \(\lambda^+_v \), we obtain
\[\frac{1}{b'} \lambda^+_v(x) \leq \max \left(\frac{1}{b} \lambda^+_v(x) - \left(\frac{a'}{b'} - \frac{a}{b} \right), 0 \right) \]
which gives (9) for arbitrary \(\bar{v}, \bar{v}', b, b' > 0 \).

Let now \(\bar{v} = (a, b), \ b > 0 \) be fixed and let \(\bar{v}'_n = (a'_n, b'_n) \) be such that \(\bar{v}'_n \to \bar{v} \) as \(n \to \infty \).

It follows from (9) and (10), respectively, that
\[\lim_{n \to \infty} \lambda^+_{\bar{v}'_n}(x) \leq \max \left(\lim_{n \to \infty} \lambda^+_{\bar{v}_n}(x), 0 \right) = \lambda^+_{\bar{v}}(x), \]
i.e.
\[\lambda^+_{\bar{v}}(x) \leq \max \left(\lim_{n \to \infty} \lambda^+_{\bar{v}_n}(x), 0 \right) = \lim_{n \to \infty} \lambda^+_{\bar{v}_n}(x) \]
which gives the desired result.

Let now \(\Phi \) be the action generated by \(\sigma \) and \(f \) and let \(h_{\bar{v}}^\mu(\Phi) \) denote the directional entropy of \(\Phi \) in the direction \(\bar{v} \).

Theorem. For any \(\bar{v} = (a, b), \ a \in \mathbb{R}, \ b \geq 0 \) and any \(\Phi \)-invariant measure \(\mu \) we have
\[h_{\bar{v}}^\mu(\Phi) \leq \int_X h_\mu(\sigma, x) (\lambda^+_{\bar{v}}(x) + \lambda^-_{\bar{v}}(x)) \mu(dx) \]
where \(h_\mu(\sigma, x) \) is the local entropy of \(\sigma \) at the point \(x \). In particular, if \(\mu \) is ergodic with respect to \(\sigma \), then \(\lambda^+_v \) are constant a.e. and
\[h_{\bar{v}}^\mu(\Phi) \leq h_\mu(\sigma) \left(\lambda^+_{\bar{v}} + \lambda^-_{\bar{v}} \right). \]

Proof. First we consider the case \(\bar{v} = (p, q) \in \mathbb{Z} \times \mathbb{N} \). In this case it is easy to show that
\[h_{\bar{v}}^\mu(\Phi) = h_\mu(\sigma^p f^q), \quad \lambda^+_{\bar{v}}(x) = \lambda^+(\sigma^p f^q; x). \]
Since \(\sigma^p f^q \) is an automaton map Theorem of ref. 10 implies
\[h_{\bar{v}}^\mu(\Phi) = h_\mu(\sigma^p f^q) = \int_X h_\mu(\sigma, x) (\lambda^+ \left(\sigma^p f^q; x \right) + \lambda^- \left(\sigma^p f^q; x \right)) \mu(dx) \\
= \int_X h_\mu(\sigma, x) (\lambda^+_{\bar{v}}(x) + \lambda^-_{\bar{v}}(x)) \mu(dx). \]
The homogeneity of the mappings
\[\vec{v} \rightarrow h_{\vec{v}}^\mu (\Phi), \ \vec{v} \rightarrow \lambda_{\vec{v}}^+ \]
and (11) imply that the inequality
\[(12) \quad h_{\vec{v}}^\mu (\Phi) \leq \int_X h_\mu (\sigma, x) \left(\lambda_{\vec{v}}^+ (x) + \lambda_{\vec{v}}^- (x) \right) \mu(dx) \]
is valid for every \(\vec{v} \in \mathbb{Q} \times \mathbb{Q}^+ \).

Let now \(\vec{v} = (a, b) \in \mathbb{R} \times \mathbb{R}^+ \). If \(b = 0 \) then the desired inequality is satisfied because for \(\vec{v} = (1, 0) \) we have \(h_{\vec{v}}(\Phi) = h_\mu (\sigma), \lambda_{\vec{v}}^+ (x) = 0, \lambda_{\vec{v}}^- (x) = 1, \ x \in X \). Thus let us suppose \(b > 0 \) and let \(\vec{v}_n = (a_n, b_n) \rightarrow \vec{v} \). Hence and from the inequalities
\[0 \leq \lambda_{\vec{v}_n}^+ (x) \leq \max(0, -z_{l(n)}), \ 0 \leq \lambda_{\vec{v}_n}^- (x) \leq \max(0, z_{r(n)}) \]
where \(z_{l(n)} = a_n + b_n l, \ z_{r(n)} = a_n + b_n r, \ n \geq 1 \) it follows that the sequence \(\left(\lambda_{\vec{v}_n}^+ (x) + \lambda_{\vec{v}_n}^- (x) \right) \) is jointly bounded. By Proposition 3
\[\lambda_{\vec{v}_n}^+ (x) \rightarrow \lambda_{\vec{v}}^+ (x) \ \text{a.e.} \]

It follows from ref.9 that the mapping \(\vec{v} \rightarrow h_{\vec{v}}^\mu (\Phi) \) is continuous. It is well known (cf. ref. 4) that the function \(x \rightarrow h_\mu (\sigma, x) \) is integrable.

Therefore applying the Lebesgue dominated convergence theorem we get from (12) the desired inequality for all \(\vec{v} \in \mathbb{R} \times \mathbb{R}^+ \). The inequality in the ergodic case follows at once from the Brin-Katok formula:
\[\int_X h_\mu (\sigma, x) \mu(dx) = h_\mu (\sigma) \]
\[\square \]

It follows at once from the above theorem

Corollary 1. For any \(\vec{v} \in \mathbb{R} \times \mathbb{R}^+ \) and for any \(\Phi \)-invariant measure \(\mu \) we have
\[h_{\vec{v}}^\mu (\Phi) \leq h_\mu (\sigma) \left(\max(0, -z_l) + \max(0, z_r) \right). \]

It is interesting to see that our computation of the Lyapounov exponents in the example of section 3 and the results of ref.5 (Theorems 1 and 2) imply the following:

Remark. The inequality given in the above theorem (and Corollary 1) becomes the equality in the following cases:

i) \(f \) left permutative and \(z_r \leq 0 \),

ii) \(f \) right permutative and \(z_l \geq 0 \),

iii) \(f \) left permutative and \(z_l \leq 0, \ z_l \geq 0 \).

From Corollary 1 one easily obtains the following estimation for \(h_{\vec{v}}^\mu (\Phi) \) proved by us in ref.5.
Corollary 2. For any $\vec{v} \in \mathbb{R} \times \mathbb{R}^+$ and for any Φ-invariant measure μ we have

$$h^\mu_{\vec{v}}(\Phi) \leq \max (|z_l|, |z_r|) \log p \quad if \quad z_l \cdot z_r \geq 0$$

and

$$h^\mu_{\vec{v}}(\Phi) \leq |z_r - z_l| \log p \quad if \quad z_l \cdot z_r \leq 0.$$

References

1. J.P. Allouche, M. Courbage, J.P.S. Kung, G. Skordev, Cellular automata, Encyclopedia of Physical Science and Technology, Third Edition, vol. 2, 2002, 555-567, Academic Press.
2. T. Bohr, D.A. Rand, A mechanism for localised turbulence, Physica D, 52 (1991), 532-543
3. M. Boyle, D. Lind, Expansive subdynamics, Trans. Amer. Math. Soc. 349 (1997), 55-102.
4. M. Brin, A. Katok, On local entropy, Lecture Notes in Math. 470, Springer Verlag, New York, 30-38.
5. M. Courbage, B. Kamiński, On the directional entropy of \mathbb{Z}^2-actions generated by cellular automata, Studia Math. 153 (2002), 285-295.
6. P. Tisseur Cellular automata and Lyapunov exponents, Nonlinearity 13 (2000), 1547-1560.
7. B. Kamiński, K.K. Park, On the directional entropy of \mathbb{Z}^2-action on a Lebesque space, Studia Math. 133 (1999), 39-51.
8. J. Milnor, On the entropy geometry of cellular automata, Complex Systems 2 (1988), 357-386.
9. K.K. Park, On directional entropy functions, Israel J. Math. 113 (1999), 243-267.
10. M.A. Shereshevsky, Lyapunov exponents for one-dimensional automata, J. Nonlinear Sci. 2 (1992), 1-8.
11. S. Wolfram, Cellular automata and complexity, Addison-Wesley Publishing Company 1994.