Convergent evolution of conserved mitochondrial pathways underlies repeated adaptation to extreme environments

Ryan Greenwaya,1, Nick Bartaa,1, Chathurika Henpitab,1, Anthony P. Brownc, Lenin Arias Rodriguezd, Carlos M. Rodriguez Peñae, Sabine Arndtf, Gigi Y. Laug, Michael P. Murphyh, Lei Wui, Dingbo Linh, Michael Toblera,2, Joanna L. Kelleyc,2, and Jennifer H. Shawb,2,3,4

aDivision of Biology, Kansas State University, Manhattan, KS 66506; bDepartment of Integrative Biology, Oklahoma State University, Stillwater, OK 74078; cSchool of Biological Sciences, Washington State University, Pullman, WA 99163; dDivisión Académica de Ciencias Biológicas, Universidad Juárez Autónoma de Tabasco, Villahermosa, Tabasco, 86150, Mexico; eInstituto de Investigaciones Botánicas y Zoológicas, Universidad Autónoma de Santo Domingo, Santo Domingo, 10105, Dominican Republic; fMedical Research Council - Mitochondrial Biology Unit, University of Cambridge, Cambridge, CB2 0XY, United Kingdom; gDepartment of Biosciences, University of Oslo, 0315 Oslo, Norway; and hDepartment of Nutritional Sciences, Oklahoma State University, Stillwater, OK 74078

Edited by David M. Hillis, The University of Texas at Austin, Austin, TX, and approved May 21, 2020 (received for review March 9, 2020)

Extreme environments test the limits of life; yet, some organisms thrive in harsh conditions. Extremophile lineages inspire questions about how organisms can tolerate physicochemical stressors and whether the repeated colonization of extreme environments is facilitated by predictable and repeatable evolutionary innovations. We identified the mechanistic basis underlying convergent evolution of tolerance to hydrogen sulfide (H\textsubscript{2}S)—a toxicant that impairs mitochondrial function—across evolutionarily independent lineages of a fish (\textit{Poecilia mexicana}, Poeciliidae) from H\textsubscript{2}S-rich springs. Using comparative biochemical and physiological analyses, we found that mitochondrial function is maintained in the presence of H\textsubscript{2}S in sulfide spring \textit{P. mexicana} but not ancestral lineages from nonsulfidic habitats due to convergent adaptations in the primary toxicity target and a major detoxification enzyme. Genome-wide local ancestry analyses indicated that convergent evolution of increased H\textsubscript{2}S tolerance in different populations is likely caused by a combination of selection on standing genetic variation and de novo mutations. On a macroevolutionary scale, H\textsubscript{2}S tolerance in 10 independent lineages of sulfide spring fishes across multiple genera of Poeciliidae is correlated with the convergent modification and expression changes in genes associated with H\textsubscript{2}S toxicity and detoxification. Our results demonstrate that the modification of highly conserved physiological pathways associated with essential mitochondrial processes mediates tolerance to physiochemical stress. In addition, the same pathways, genes, and—in some instances—codons are implicated in H\textsubscript{2}S adaptation in lineages that span 40 million years of evolution.

Significance

Some organisms can tolerate environments lethal for most others, but we often do not know what adaptations allow them to persist and whether the same mechanisms underly adaptation in different lineages exposed to the same stressors. Investigating fish inhabiting springs rich in toxic H\textsubscript{2}S, we show that tolerance is mediated by the modification of pathways that are inhibited by H\textsubscript{2}S and those that can detoxify it. Sulfide spring fishes across multiple genera have evolved similar modifications of toxicity targets and detoxification pathways, despite abundant lineage-specific variation. Our study highlights how constraints associated with the physiological consequences of a stressor limit the number of adaptive solutions and lead to repeatable evolutionary outcomes across organizational and evolutionary scales.

Author contributions: R.G., N.B., C.H., M.T., J.L.K., and J.H.S. designed research; R.G., N.B., C.H., L.A.R., C.M.R.P., S.A., G.Y.L., M.P.M., L.W., D.L., M.T., J.L.K., and J.H.S. performed research; R.G., C.M.R.P., S.A., G.Y.L., M.P.M., L.W., D.L., M.T., J.L.K., and J.H.S. contributed new reagents/analytic tools; R.G., N.B., C.H., A.P.B., M.T., J.L.K., and J.H.S. analyzed data; and R.G., N.B., M.T., and J.L.K. wrote the paper. The authors declare no competing interest.

This article is a PNAS Direct Submission.

This open access article is distributed under Creative Commons Attribution-NonCommercial-NoDerivatives License 4.0 (CC BY-NC-ND).

Data deposition: Data and code associated with biochemical and physiological analyses are available on GitHub (https://github.com/michtobler/convergent_h2s_evolution). All sequence data are available at National Center for Biotechnology Information (NCBI) BioProject (accession nos. PRJNA473350 and PRJNA608180).

R.G., N.B., and C.H. contributed equally to this work.

\(^{2} \)To whom correspondence may be addressed. Email: tobler@ksu.edu, joanna.l.kelley@wusu.edu, or jennifer.shaw@pcom.edu.

\(^{3} \)Present address: Department of Biomedical Sciences, PCOM South Georgia, Moultrie, GA 31787.

This article contains supporting information online at https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2004223117/-/DCSupplemental.

First published June 25, 2020.
variation in physiological and organismal function. Furthermore, it is not known whether exposure to similar selective regimes may cause convergent modifications of mitochondrial genomes and emergent biochemical and physiological functions in evolutionarily independent lineages.

Extreme environments that represent novel ecological niches are natural experiments to address questions about mechanisms underlying mitochondrial adaptations and illuminate the predictability of adaptive evolution of mitochondria. Among the most extreme freshwater ecosystems are springs with high levels of H$_2$S, a potent respiratory toxicant lethal to metazoans due to its inhibition of mitochondrial ATP production (9). Multiple lineages of livebearing fishes (Poeciliidae) have colonized H$_2$S-rich springs throughout the Americas and independently evolved tolerance to sustained H$_2$S concentrations orders of magnitude higher than those encountered by ancestral lineages in nonsulfidic habitats (10). Here, we identify the molecular basis of an evolutionary innovation that facilitated the independent colonization of extreme environments (increased H$_2$S tolerance) and ask if the underlying mechanisms have evolved in convergence in disparate lineages of livebearing fishes.

H$_2$S toxicity and detoxification are associated with highly conserved physiological pathways in mitochondria (Fig. 1A) (11, 12), providing a priori predictions about the potential molecular mechanisms underlying adaptation to this strong source of selection. Toxic effects of H$_2$S result from binding to and inhibition of COX (cytochrome c oxidase, complex IV) in the oxidative phosphorylation (OxPhos) pathway, which contains subunits encoded in both the nuclear and the mitochondrial genomes (13). Animal cells can also detoxify low concentrations of endogenously produced H$_2$S via the mitochondrial SQR (sulfide:quinone oxidoreductase) pathway, which is linked to OxPhos but entirely encoded in the nuclear genome (14). We have previously shown that genes associated with both pathways are under divergent selection and differentially expressed between fish populations in sulfidic and nonsulfidic habitats (10). These include nuclear and mitochondrial genes encoding subunits of the direct toxicity target (COX) and the nuclear gene encoding the enzyme mediating the first step of detoxification (SQR) (10). Tolerance to H$_2$S may, therefore, be mediated by resistance (modification of toxicity targets that reduce the negative impact of H$_2$S), regulation (modification of physiological pathways that maintain H$_2$S homeostasis), or both (9).

Based on these previous results, we hypothesized that the repeated modification of enzymes in the OxPhos and SQR pathways in P. mexicana populations from sulfidic habitats leads to an increased ability to maintain mitochondrial function in the presence of H$_2$S. In the present study, we used a series of in vivo and in vitro assays to identify the functional consequences of modifications to the OxPhos and SQR pathways in evolutionarily independent population pairs of P. mexicana from adjacent sulfidic and nonsulfidic habitats that are situated in different river drainages. In addition, we hypothesized that convergent molecular modifications in the same pathways underlie the convergent evolution of H$_2$S tolerance across different lineages of poeciliid fishes. Hence, we also used phylogenetic comparative analyses of gene expression and analyses of molecular evolution to detect patterns of molecular convergence in 10 lineages of sulfide spring poeciliids and ancestors from nonsulfidic habitats.

Results and Discussion

Sulfide Spring P. Mexicana Exhibit a Resistant Toxicity Target. If resistance is the primary mechanism of tolerance, we would predict that COX function is maintained in the presence of H$_2$S in fish from sulfidic populations but not those from nonsulfidic populations. Quantification of COX function indicated that enzyme activity generally declined with increasing H$_2$S concentrations, but this decline was reduced in populations from sulfidic habitats (Fig. 1B; habitat × H$_2$S: $P < 0.001$, SI Appendix, Table S3). Even though the drainage of origin was not retained as an explanatory variable in statistical models (SI Appendix, Table S2), COX activity in one H$_2$S-tolerant population [Tacotalpa (Tae)] declined just as in nonsulfidic populations (Fig. 1B). The other two P. mexicana populations from sulfidic habitats [Puyacatengo (Puy) and Pichucalco (Pich)] maintained significant COX activity even at the highest H$_2$S concentrations, which should reduce the negative impact of H$_2$S on cellular respiration. These results are consistent with previous analyses (15) and indicate that resistance may contribute to H$_2$S tolerance in some populations but cannot explain the repeated evolution of H$_2$S tolerance by itself.

Sulfide Spring P. Mexicana Can Regulate Mitochondrial H$_2$S through Increased Detoxification. We also tested whether tolerant and intolerant populations differ in their ability to detoxify H$_2$S by conducting enzyme activity assays of SQR. Activity of SQR was significantly higher in mitochondria from sulfidic populations at intermediate and high H$_2$S concentrations (Fig. 1C; habitat × H$_2$S: $P < 0.001$ in SI Appendix, Table S3), likely helping fish from sulfidic habitats to maintain H$_2$S homeostasis during environmental exposure. To test this prediction in vivo, we used a novel mitochondria-specific H$_2$S-probe (MitoA) that allows for the monitoring of relative H$_2$S levels inside the mitochondria of living organisms (16). We measured mitochondrial H$_2$S concentrations in this manner using laboratory-reared fish that were exposed to varying levels of environmental H$_2$S. Because laboratory-reared fish were not available for the population pair from Pich, only two population pairs were used for this analysis. Overall, mitochondrial H$_2$S concentrations increased with environmental exposure ($P = 0.001$) and was higher in fish from nonsulfidic habitats ($P < 0.001$ in SI Appendix, Table S7). H$_2$S concentrations in mitochondria isolated from livers (Fig. 1D) and other organs (SI Appendix, Fig. S2) of fish from nonsulfidic habitats increased above control levels at all exposure concentrations. In contrast, mitochondrial H$_2$S concentrations in isolates of fish from sulfidic populations did not usually exceed control levels and remained lower than levels in fish from nonsulfidic habitats. Together, these results indicate that populations of P. mexicana from sulfidic habitats can detoxify H$_2$S at higher rates and, thus, regulate mitochondrial H$_2$S upon environmental exposure.

Sulfide Spring P. Mexicana Can Maintain Mitochondrial Function in the Presence of H$_2$S. Modification of the OxPhos and SQR pathways in P. mexicana suggests that mitochondrial adaptations are key to the evolution of H$_2$S tolerance. Therefore, mitochondrial function of fish from sulfidic habitats should be maintained upon exposure to H$_2$S. We tested this hypothesis by quantifying different aspects of mitochondrial function (basal respiration, maximal respiration, and spare respiratory capacity) along a gradient of H$_2$S concentrations using an ex vivo coupling assay. As expected, all aspects of mitochondrial function generally declined with increasing H$_2$S (Fig. 1E and SI Appendix, Figs. S3–S5). Comparison of mitochondrial function between adjacent populations in sulfidic and nonsulfidic habitats indicated no differences in basal respiration (SI Appendix, Fig. S3). However, individuals from sulfidic populations were able to maintain maximal respiration and spare respiratory capacity at higher levels compared to individuals from nonsulfidic habitats of the same river drainage (Fig. 1E), even though the magnitude of difference and the shape of response curves varied (SI Appendix, significant drainage × habitat interactions in SI Appendix, Tables S10–S12 and Figs. S4 and S5). These findings indicate that mitochondria of H$_2$S-tolerant individuals continue to produce ATP in the presence of a potent inhibitor that reduces mitochondrial function in ancestral lineages.

Greenway et al.
Overall, our quantitative analyses indicate clear patterns of convergence in functional physiological traits associated with H2S tolerance. Nonetheless, further inspection of the results also reveals lineage-specific patterns (especially in H2S-dependent COX activity and mitochondrial respiration), indicating that evolutionary responses across lineages are similar but not necessarily identical. These idiosyncrasies are consistent with the results of previous comparative transcriptome analyses, which necessarily identify functional physiology evident in our data.

Convergence among P. Mexicana Populations Is Shaped by Selection on De Novo Mutations and Standing Genetic Variation. The convergent evolution of H2S tolerance in *P. mexicana* begs questions about the origin of adaptive alleles (20). On microevolutionary scales, convergence may be a consequence of the repeated assembly of related alleles into different genomic backgrounds either through selection on standing genetic variation or introgression (21, 22). However, the epiphenome of convergent evolution is, arguably, the independent origin of adaptive mutations at the same locus that lead to consistent functional outcomes (23). To identify convergence at a genomic level, we resequenced whole genomes of *P. mexicana* populations (with *Poecilia reticulata* as an outgroup) using 13,390,303 single nucleotide polymorphisms (SNPs) distributed across the genome confirmed three independent colonization events of sulfide springs and distinct evolutionary trajectories for sulfide spring populations in different drainages (Fig. 2), as inferred by previous studies (24). If adaptive alleles arose separately through de novo mutation in each sulfide spring population, we would expect that putative adaptive alleles mirror these relationships as previously documented for H2S-resistance alleles in mitochondrial COX subunits (15). However, patterns of divergence (SI Appendix, Fig. S6) and local ancestry were highly variable across the genome. Classifying local patterns of genetic similarity using a hidden Markov model and a self-organizing map allowed us to identify genomic regions in which ancestry patterns deviate from the genome-wide consensus, including multiple regions with a strong signal of clustering by ecotype (sulfidic vs. nonsulfidic populations). Such clustering by ecotype occurred in less than 1% of the genome (SI Appendix, Fig. S7) but included genomic regions encoding key genes associated with H2S detoxification (e.g., SQR and ETHE1, Fig. 2B and Dataset S2). Clustering by ecotype indicates a monophyletic origin of putatively adaptive alleles at these loci that are shared across independent lineages of sulfide spring *P. mexicana* as a consequence of selection on standing genetic variation or introgression (25), although the latter scenario is less likely.
considering the geographic barriers and strong survival selection against migrants from sulfidic to nonsulfidic habitats (26). Consequently, multiple mechanisms—not just selection on de novo mutations (19)—played a role in the convergent evolution of H$_2$S tolerance in _P. mexicana_.

Convergent Modifications of Toxicity Targets and Detoxification Pathways Are Evident on Macroevolutionary Scales

While selection on standing genetic variation and introgression can contribute to convergent evolution on microevolutionary scales, adaptive alleles are unlikely to be shared among lineages on macroevolutionary scales due to high phylogenetic and geographic distances separating gene pools (27). The absence of convergence in molecular mechanisms at broader phylogenetic scales might indicate the importance of contingency in evolution as asserted by Gould (3). In contrast, the presence of convergence would indicate that fundamental constraints limit the number of solutions for a functional problem (28).

We used phylogenetic comparative analyses of gene expression and analyses of molecular evolution to detect patterns of molecular convergence in 10 lineages of sulfide spring poecilids and ancestors in nonsulfidic habitats (SI Appendix, Fig. S1). This included members of five genera that span over 40 million years of divergence and occur in different biogeographic contexts (SI Appendix, Fig. S1). We found evidence for convergence in both gene expression and sequence evolution. Variation in overall gene expression was strongly influenced by phylogenetic relationships (Fig. 3A). However, 186 genes exhibited significant evidence for convergent expression shifts in sulfide spring fishes (Fig. 3B and Dataset S3), segregating lineages based on habitat type of origin, irrespective of phylogenetic relationships (Fig. 3C). The only outlier was _Limia sulphurophila_, which clustered with nonsulfidic lineages despite significant expression differences with its sister, _Limia perugiae_. Functional annotation indicated that genes with convergent expression shifts were enriched for biological processes associated with H$_2$S detoxification (SQR pathway, Fig. 3D), the processing of sulfur compounds, and H$_2$S toxicity targets in OxPhos (SI Appendix, Fig. S8 and Table S14).

We also identified 11 genes with elevated nonsynonymous to synonymous substitution rates across the phylogeny, including three mitochondrial genes that encode subunits of H$_2$S’s toxicity target (COX1 and COX3) and OxPhos complex III (CYTB; Dataset S4). Most amino acid substitutions in COX1 and COX3 occurred in a lineage-specific fashion, but convergent substitutions across clades occurred at six codons in COX1 and two codons in COX3 (Fig. 4). These findings suggest that modifications of H$_2$S toxicity targets and detoxification pathways are not only critical in the evolution of H$_2$S tolerance in _P. mexicana_, but also they have evolved in convergence in other lineages that were exposed to the same source of selection.

Conclusions

We capitalized on past evolutionary genetics studies that compared _P. mexicana_ populations from sulfidic and nonsulfidic environments (10) to test hypotheses about functional ramifications of genetic differences and their impact on organismal performance. As predicted, we found that the repeated evolution of H$_2$S tolerance in independent _P. mexicana_ populations is mediated both by modifications of a direct toxicity target (causing increased resistance to H$_2$S) and a pathway involved in detoxification (causing an increased ability to regulate mitochondrial H$_2$S). Similar modifications to COX and SQR have been hypothesized to mediate H$_2$S adaptation in other groups of organisms (29–31), but the evolutionary context and the consequences for mitochondrial function in these cases remain unknown.

Overall, our analyses indicated that closely related populations can exhibit substantial differences in what we assume to be highly conserved physiological pathways associated with the function of mitochondria. Modification of mitochondrial processes, consequently, can be critical in mediating adaptation to different environmental conditions on macroevolutionary scales, underscoring the long overlooked role of mitochondria in adaptive evolution (6).

Our comparative transcriptome analyses across a broader sampling of sulfide spring fishes further indicated that colonization of novel niches with extreme environmental conditions can arise through the convergent modification of conserved physiological pathways. The convergent evolution of high H$_2$S tolerance across species is the result of repeated and predicted modifications of the same physiological pathways, genes, and—in some instances—codons associated with mitochondrial function.

Fig. 2. (A) Phylogeny of different populations in the _P. mexicana_ species complex (with _P. reticulata_ as an outgroup) based on genome-wide SNPs. Colors indicate sulfidic (yellow) and nonsulfidic (blue) lineages. (B) Local ancestry patterns around genes encoding two enzymes involved in H$_2$S detoxification, SQR and ETHE1. Gray bars represent the local ancestry pattern (cactus) associated with each region. Unrooted trees represent local ancestry relationships with sulfidic lineages colored in yellow and nonsulfidic lineages colored in blue. Cacti 10 and 19 show clear clustering by ecotype. In cacti 1, 5, and 12, four of five sulfidic individuals cluster together.
This convergence at multiple levels of biological organization is likely a consequence of constraint because the explicit biochemical and physiological consequences of H₂S limit the ways organisms can cope with its toxicity (32, 33). Due to these constraints, molecular convergence is not only evident on microevolutionary scales where selection can repeatedly assemble related alleles into different genomic backgrounds, but also on macroevolutionary scales including lineages separated by over 40 million years of evolution.

That said, there is an inordinate amount of genetic and gene expression variation that seemingly varies idiosyncratically across different lineages. In comparative analyses of highly quantitative traits (such as H₂S tolerance), there is an inherent bias to emphasize the importance of shared modifications in adaptation, while we tend to dismiss lineage-specific patterns as noise. But how lineage-specific genetic and gene expression variation interacts with molecular mechanisms that have evolved in convergence remains largely unknown for most study systems. So, if we replayed the tape of life, the same characters may make an appearance in the same setting, but the overall plots may still unfold in very different ways when many characters are part of the story.

Methods

The following sections provide a synopsis of the procedures used in this study. Detailed materials and methods are provided in the SI Appendix.

Sampling. Samples of *P. mexicana* for comparative biochemical and physiological analyses were collected from three population pairs from the Tac, Puy, and Pich drainages in Mexico, each including evolutionarily independent H₂S-tolerant and ancestral, intolerant populations (SI Appendix, Table S1) (34). With the exception of measurements of mitochondrial H₂S levels, which were conducted with common-garden-reared individuals, all assays were conducted with specimens collected in the field. For macroevolutionary analyses of convergence, we collected specimens from multiple populations...
species that have independently colonized H$_2$S-rich springs in the United States, Mexico, and the island of Hispaniola, as well as from geographically and phylogenetically proximate lineages in nonsulfidic habitats. Our sampling included populations of P. latipinna and G. holbrooki in Florida; populations of the _P. mexicana_ species complex (including _P. mexicana_, _P. sulphuraria_, and _Poecilia limantouri_), the _G. sexradiata_ species complex (including _G. sexradiata_ and _G. eurystoma_), _P. bimaculatus_, and _X. hellerii_ in Mexico; as well as populations of the _Limia perugiae_ species complex (_L. perugiae_ and _L. sulphurophila_) in the Dominican Republic (SI Appendix, Table S1).

Measurements of Enzyme Activity. Measurements of COX and SQR activities were conducted using isolated mitochondria from three _P. mexicana_ population pairs and followed previously established methods. COX activity was quantified by measuring the reduction of decyl-ubiquinone (37) as predictor variables. Alternative models were assessed by using Akaike information criteria with finite sample correction (AIC$_C$) (38).

Measurements of Mitochondrial H$_2$S. H$_2$S exposure experiments and measurement of mitochondrial H$_2$S were conducted using common-garden-raised F$_2$ individuals from two population pairs (Tac and Puy). We used a mitochondria-specific H$_2$S probe (MitoA) that can be injected into living organisms, in which it accumulates within mitochondria due to its unique chemical structure (16). Inside mitochondria, MitoA reacts with H$_2$S and is converted to MitoN. The ratio of MitoN/MitoA can be quantified using liquid chromatography with tandem mass spectrometry and serve as a metric of mitochondrial H$_2$S. We used a MitoA protocol specifically validated for _P. mexicana_ (39). Fish injected with MitoA were exposed to different environmental H$_2$S concentrations for 5 h. Gill, liver, brain, and muscle tissues were sampled from fish and used for the quantification of MitoN/MitoA ratios. Standardized MitoN/MitoA ratios were analyzed using linear mixed-effects models with habitat type of origin, drainage, and ambient H$_2$S concentration as predictor variables. Alternative models were assessed by using AIC$_C$.

Measurements of Mitochondrial Function. Mitochondrial function was measured in mitochondria isolated from livers from three _P. mexicana_ population pairs. Mitochondrial function was assayed using a Seahorse XFe96 Extracellular Flux Analyzer (Agilent Technologies, Santa Clara, CA), which allows for the quantification of oxygen consumption rates (OCR) of isolated mitochondria in 96-well plates (40). Measuring mitochondrial OCR in the presence of different substrates and inhibitors allows for the quantification of a variety of mitochondrial functions (41), and we measured basal respiration, maximal respiration, and spare respiratory capacity as indicators of mitochondrial function across a range of H$_2$S concentrations between 0 and 90 µM. To compare responses in mitochondrial function to H$_2$S between sulfidic and nonsulfidic populations, we employed a drug response analysis where separate n-parameter logistic regressions were fit for each mitochondrial isolate with the metrics of mitochondrial function (basal respiration, maximal respiration, and spare capacity) as dependent variables and H$_2$S concentration as an independent variable (42). For each model, we quantified the area under the curve (AUC) based on Simpson's rule, and higher AUC values represent an increased ability to maintain mitochondrial function in the presence of H$_2$S. AUC values inferred for different mitochondrial isolates were then used as a dependent variable in linear models with habitat type of origin and drainage as predictor variables. Alternative models were assessed by using AIC$_C$.

Comparative Genomics and Local Ancestry Analysis. To test hypotheses about the origin of putatively adaptive alleles, we reanalyzed data from Brown et al. (25), which included whole-genome sequences from all sites known to harbor H$_2$S-tolerant populations of the _P. mexicana_ species complex (n = 5) as well as adjacent nonsulfidic habitats (n = 5; SI Appendix, Table S1). Raw reads were mapped to the _Xiphophorus maculatus_ reference genome (43), and we called SNPs using the Genome Analysis Toolkit (44). Local ancestry patterns were identified with Suguaro (45), which uses a combination of a hidden Markov model and a self-organizing map to build cacti (matrices of pairwise genetic distance between samples) that describe phylogenetic relationships among samples in specific genomic regions. Suguaro was executed for 29 iterations, which resulted in 30 cacti describing local ancestry patterns for segments of the genome.

Comparative Transcriptomics, Phylogenetic Comparative Analyses, and Molecular Evolution. For comparative transcriptomic analyses, we isolated RNA from gills for 5 to 6 individuals each from 10 sulfidic and 10 nonsulfidic lineages distributed across multiple genera in the family Poeciliidae. Raw reads from transcriptome sequencing were mapped to the _P. mexicana_ reference genome (46), and the number of RNA-sequencing reads mapped to each gene was determined for each individual using cufflinks (47). To analyze patterns of gene expression across lineages, we used a phylogenetic comparative approach for analyzing gene expression variation to explicitly account for the effects of evolutionary relationships. Specifically, we used individual-level expression data of the top 5,000 expressed genes as dependent variables in expression variance and evolution (EVE) models that identify genes exhibiting convergent shifts in expression upon the colonization of sulfidic habitats based on a phylogeny of focal taxa (48, 49). To identify genes with potential structural or functional changes in lineages from sulfidic habitats, we analyzed patterns of molecular evolution in protein coding genes included in the analysis of gene expression. For each gene, we generated a consensus sequence for all exons across individuals from the same populations and then used branch models implemented in the program codels from the PAML package to test for evidence of positive selection (50).

Data Availability. Data and code associated with biochemical and physiological analyses are available on GitHub (github.com/michitobler/convergent_h2s_evolution). All sequence data are available at the National Center for Biotechnology Information (NCBI) (https://www.ncbi.nlm.nih.gov under Bio-Project) (accession nos. PRJNA473350 and PRJNA608180).
ACKNOWLEDGMENTS. We thank the Centro de Investigación e Innovación para la Enseñanza y Aprendizaje (CIEEA), O. Cornejo, T. Morgan, D. Petrov, R. Rohils, and N. Rohner for their help. This work was supported by grants from the NSF (IOS-1463720, IOS-1557795, IOS-1557860, and IOS-1931657 to J.H.S., M.T., and M.T.), the US Army Research Office (W911NF-15-1-0175, W911NF-16-1-0225 to J.L.K., and M.T.), the Medical Research Council UK (MC_U10563142 to M.P.M.), and a Wellcome Trust Investigator Award (110159/Z/15/Z to M.P.M.).