Global entanglement and quantum phase transitions in the transverse XY Heisenberg chain

Roya Radgohar and Afshin Montakhab
Department of Physics, College of Sciences, Shiraz University, Shiraz 71946-84795, Iran
(Dated: March 9, 2024)

We provide a study of various quantum phase transitions occurring in the XY Heisenberg chain in a transverse magnetic field using the Meyer-Wallach measure of (global) entanglement. We obtain an analytic expression of the measure for finite-size systems, and show that it can be used to obtain critical exponents via finite-size scaling with great accuracy for the Ising universality class. We also calculate an analytic expression for the isotropic (XX) model and show that global entanglement can precisely identify the level-crossing points. The critical exponent for the isotropic transition is obtained exactly from an analytic expression for global entanglement in the thermodynamic limit. Next, the general behavior of the measure is calculated in the thermodynamic limit considering the important role of symmetries for this limit. The so-called oscillatory transition in the ferromagnetic regime can only be characterized by the thermodynamic limit where global entanglement is shown to be zero on the transition curve. Finally, the anisotropic transition is explored where it is shown that global entanglement exhibits an interesting behavior in the finite size limit. In the thermodynamic limit, we show that global entanglement shows a cusp-singularity across the Ising and anisotropic transition, while showing non-analytic behavior at the XX multi-critical point. It is concluded that global entanglement can be used to identify all the rich structure of the ground state Heisenberg chain.

PACS numbers: 03.67.Mn, 03.65.Ud, 64.70.Tg, 05.50.+q

I. INTRODUCTION

Quantum phase transition (QPT) occurs as a result of a sudden change in the ground state as a system’s parameter (e.g. external field) is slowly changed [1]. Quantum fluctuations, instead of thermal fluctuations, drive such transitions, i.e. \(T \approx 0 \). This sudden change is accompanied with novel behavior on the macroscopic level. QPT has attracted intense attention in the field of condensed matter physics. The prominent examples are quantum Hall systems [2], superconductor-insulator transitions [3] and heavy-fermion compounds [4]. It is not unexpected that such interesting quantum systems should be able to be characterized using tools of quantum information theory [5]. Consequently, it has been shown that quantum information measures such as concurrence [6], entanglement density [7], fidelity [8], geometric phases [9], quantum discord [10] and quantum macroscopicity [11] provide valuable insight into the nature of QPT. It has been shown that such measures can signal the ensuing QPT (i.e. critical point) as well as providing scaling behavior which leads to evaluation of critical exponents. Furthermore, since entanglement can be used as a resource for quantum technology, QPT can provide a fertile playground as criticality implies highly correlated systems which implies maximal entanglement.

Therefore, entanglement as a function of control parameter, as well as its scaling behavior, are key issues when studying quantum critical phenomena. While early studies focused on bi-partite measures of entanglement [6][12][13][14], it has recently been argued that a better characterization is provided by multi-partite measures of entanglement [15][15]. This is particularly important since criticality is achieved by long-range correlations in short-range interacting systems. Such long-range correlations are much better characterized by global measures. We therefore propose to study the archetypical XY Heisenberg chain of spin-1/2 model using the Meyer-Wallach [10] measure of global entanglement. The XY chain in the presence of transverse field plays a central role in condensed matter theory (e.g. quantum Hall effect [17]), as well as being a good candidate to connect small quantum processors in quantum computers [18] and to transmit information between long distance sites in quantum communication protocols [19][20].

While being relatively simple, the model exhibits a rich phase diagram, including a quantum Ising critical transition line, an anisotropic transition line, and the intersection of these two lines which provides a unique (XX) critical point. The model also exhibits a (classical) transition in the ferromagnetic regime known as the oscillating transition. Most studies have focused on the Ising critical line which belongs to Ising universality class. Here, taking advantage of analytic solutions of the model, we provide expressions for global entanglement. We study all the above transitions using finite size as well as infinite size (thermodynamic) limit. We show that global entanglement is capable of providing important characterizations for each transition considered, including scaling behavior, level-crossing, and critical exponents. Our results provide further evidence that a multi-partite measure of entanglement could act as a thermodynamic parameter in quantum many-body systems.

The paper is organized as follows: In the next section, we discuss the XY model and its phase diagram. We also provide a brief introduction to global entanglement measure which we use throughout our study. In section...
III, we first provide an analytical expression of global entanglement for the XY model and extract the correlation length exponent by applying finite-size scaling for the Ising transition. We then calculate the measure for the XX model, determining the level-crossing points as well as obtaining the critical exponent. Next, global entanglement behavior in the thermodynamic limit and the (classical) oscillating line are considered in section IV. In section V, we consider the behavior of global entanglement near the anisotropic phase transition line. We close by summarizing our results and providing some commentary.

II. MODEL AND MEASURE

The system under consideration is a family of models consisting of N spin-$1/2$ (qubits) arranged in a chain interacting through nearest-neighbor coupling and transverse external field in the z-direction. The Hamiltonian of the system is given by:

$$
H = \sum_{i=0}^{N-1} -J \left(\frac{1+r}{2} \sigma_i^x \sigma_{i+1}^x + \frac{1-r}{2} \sigma_i^y \sigma_{i+1}^y \right) - h \sigma_i^z \tag{1}
$$

where $\sigma_i^\mu (\mu = x, y, z)$ are the Pauli matrices, J is the exchange coupling ($J=1$ in this paper), h is the strength of magnetic field and r measures anisotropy degree of spin-spin interactions in the $x-y$ plane which typically varies from 0 (isotropic model) to 1 (Ising model). Moreover, we impose periodic boundary conditions (PBC); $\sigma_N^x = \sigma_0^x$ and $\sigma_N^y = \sigma_0^y$. The zero-temperature phase diagram of the model is schematically shown in Fig. [1]. In free-field XY chain ($h=0$), the system exhibits ferromagnetic order with non-zero magnetization originating from the exchange coupling between nearest-neighbor spins. Adding the external field tends to align the spins in the z-direction such that the system undergoes a ferromagnet to paramagnet transition at $h=1$. The green solid line $h=1$ represents the (Ising) critical points separating the regimes of ferromagnetic and paramagnetic phase. The other critical green solid line $r=0$ (isotropic model) is the boundary between the ferromagnetic phases in x-phase (upper half-plane) and y-phase (lower half-plane). The intersection of these two lines ($r=0$ and $h=1$) is the XX critical point with a different universality class from that of Ising universality. The ferromagnetic phase is divided into two parts by the dashed blue circle: outside the circle the correlation functions decay exponentially, while they have oscillatory tails inside [21]. The ground state on the dashed blue circle (called classical line) has a simple direct product form of single qubit states implying zero two-point functions and extremely short correlation length [22].

Quite generally, correlations are expected to reach a maximum as long-range correlations dominate system’s behavior at the critical point. QPT occurs when small variation in the parameters of Hamiltonian fundamentally changes the symmetry of the ground state, resulting in the actual level-crossing or the limiting case of avoided level crossing between the ground and excited state [1]. At the critical point, the length scale characterizing the exponential decay or the crossover of correlation functions diverges as $\xi \sim |h-h_c|^{-\nu}$. On the other hand, entanglement, as a purely quantum mechanical property, has a close relation with quantum correlations and can be exploited as an indicator of quantum phase transition [7-15]. However, bi-partite measures of entanglement between individual qubits typically decay fast as a function of distance even near the critical point [6,12-14]. It is therefore expected that a more global (multi-partite) measure of entanglement would provide a more appropriate measure to study criticality in QPT.

In this paper, we use global entanglement measure introduced by Meyer and Wallach [16]. The measure is a function of N-qubit pure states of $|\psi \rangle \in (\mathbb{C}^2)^\otimes N$ as [23]:

$$
E_g(|\psi \rangle) = \frac{4}{N} \sum_{k=1}^{N} D(|\tilde{u}^k\rangle, |\tilde{v}^k\rangle) \tag{2}
$$

where the non-normalized vectors $|\tilde{u}^k\rangle$ and $|\tilde{v}^k\rangle$ are the projections of the state $|\psi \rangle$ onto the k^{th} qubit subspaces:

$$
|\psi \rangle = |0\rangle \otimes |\tilde{u}^k\rangle + |1\rangle \otimes |\tilde{v}^k\rangle \tag{3}
$$

and D is the norm-squared of the wedge product of two vectors $|\tilde{u}^k\rangle$ and $|\tilde{v}^k\rangle$ as

$$
D(|\tilde{u}^k\rangle, |\tilde{v}^k\rangle) = \sum_{i<j} |\tilde{u}_i^k \tilde{v}_j^k - \tilde{u}_j^k \tilde{v}_i^k|^2 \tag{4}
$$

Meyer and Wallach [16] proved that this measure is entanglement monotone in the sense that it is non-increasing function under local operations and classical communications (LOCC). Using the invariance under local operations, $|\psi \rangle$ can be written in the Schmidt basis.
over bipartite divisions of the k^{th} qubit and other qubits that simplifies Eq. (2) as [23]:

$$E_g = 2 \left(1 - \frac{1}{N} \sum_{k=0}^{N-1} tr(\rho_k^2)\right)$$ \hspace{1cm} (5)

where ρ_k is the reduced density matrix for the k^{th} qubit obtained by tracing over other qubits. Global entanglement (E_g) has been used to detect quantum critical points [24], and its scaling properties for the Ising model in various dimensions has been studied in [15]. It has also been used to study decoherence effects in finite qubit systems [25].

Since the MW measure was unable to distinguish global and sub-global entanglements (e.g. globally entangled 4-qubit state and product of two 2-qubit entangled states [26]), Scott [27] generalized the MW measure to multi-qubit state and product of two 2-qubit entangled states. [25].

Thus, the Hamiltonian takes the diagonal form

$$H = \sum_k \omega_k (b_k^\dagger b_k - 1)$$ \hspace{1cm} (11)

where we may neglect the boundary terms for large systems. We want to obtain an analytical expression for global entanglement of the XY chain in presence of transverse magnetic field. To this end, we expand the reduced density matrix ρ_k as [29]:

$$\rho_k = \frac{1}{2} \left(q_0 I + \sum_{\mu=x,y,z} q_{\mu} \sigma_{\mu}^k \right)$$ \hspace{1cm} (12)

where I is the identity matrix and $\sigma_{\mu}^k (\mu = x,y,z)$ are the Pauli matrices at i^{th} qubit. The reality of the Hamiltonian (Eq. [11]) and its global phase-flip symmetry ($[\prod_{i=0}^{N-1} \sigma_z^i, H] = 0$) implies $q_x = q_y = 0$. In addition, the reduced density matrix is unit-trace; so $q_0 = 1$ and the single particle density matrix can be written as [29,30]:

$$\rho_k = \frac{1}{2} \left(I + \langle \sigma_z^k \rangle \sigma_z^k \right)$$ \hspace{1cm} (13)

and we consider odd number of qubits. Since we use PBC, the single particle density matrix is the same for all the qubits of chain and using Eq. (5) we get [15]:

$$E_g = 2 \left(1 - tr \rho_k^2 \right)$$ \hspace{1cm} (15)

and the global entanglement in this case can be obtained as

$$E_g = 1 - \langle \sigma_z^k \rangle^2$$ \hspace{1cm} (16)

We begin our analysis by considering E_g as a function of $\lambda = \frac{h}{h}$ for various system sizes N, and fixed value of $r = 0.5$. The results are shown in Fig. (2). E_g increases from zero at $\lambda = 0$ ($h \to \infty$), where the ground state of the system is a product state of spins aligned in the z-direction and reaches its maximal value $E_g = 1$ with a sharp rise at (the finite-size) transition point, λ_m. A better picture arises when one looks at the derivative of such function which displays a divergence at the critical point in the thermodynamic limit. Fig. (3) displays such information. As the system size grows the peak of the derivative approaches the critical point as it diverges in its value. As indicated in the inset the divergence is logarithmic indicating a slow divergence. However, the convergence to the critical point is fast as λ_m approaches the critical point $\lambda_c = 1$ with $|\lambda_m - \lambda_c| \sim N^{-\alpha}$ with relatively large “finite-size exponent” of $\alpha = 3.34$. As indicated in the inset, the maximum value of the derivative $dE_g/d\lambda$ obeys:

$$\frac{dE_g}{d\lambda} \big|_{\lambda_m} \approx \kappa_1 \ln N.$$ \hspace{1cm} (17)
with $\kappa_1 = 0.9783$.

We next calculate the all-important critical exponent ν using finite size scaling of the derivative of E_g. The scaling relation we use is $\frac{dE_g}{d\lambda} \sim Q(N^{1/\nu}(\lambda - \lambda_m))$ with $Q(x) \sim \ln(x)$ [31]. As can be seen in Fig. 4, all the curves of $F = 1 - \exp\left[\frac{dE_g}{d\lambda}\right]_{\lambda=\lambda_m}$ as a function of $N^{1/\nu}(\lambda - \lambda_m)$ collapse nicely on a single curve for $\nu = 1$, in agreement with the well known result for the Ising universality class [28,32]. We finally note that our results was obtained for $r = 0.5$, however, similar results hold for $0 < r \leq 1$.

B. XX Model

XX model is the isotropic case of XY Heisenberg model which belongs to a different universality class from that of the Ising. In this model, as the magnetic field is varied, the energy gap between the ground and the first excited state vanishes and the intersections exhibit a sequence of level-crossing points for the finite-size chains. Since the global entanglement directly depends on the ground state of the system, we expect to see sudden jumps in E_g at the level-crossing points. To this end, we are interested in the global entanglement behavior for finite-size chains where the boundary effect terms of the Hamiltonian cannot be neglected. These terms break the periodicity of the Jordan-Wigner operators

$$ c_i^\dagger = (\Pi_{j<i}\sigma_j)\sigma_i^\dagger = e^{i\pi n_i}\sigma_i^\dagger $$

as

$$ c_0^\dagger = \sigma_0^\dagger \quad c_N^\dagger = e^{i\pi n_N}\sigma_N^\dagger = e^{i\pi n_N}\sigma_0^\dagger, $$

in which n_{ij} is the operator counting the total number of spin-down in the chain. In this case, the Hamiltonian can be diagonalized by the Jordan-Wigner transformation and the following deformed Fourier transformation [33,34]:

$$ c_j = \frac{1}{\sqrt{N}} e^{\frac{2\pi i\alpha_j}{N}} \sum_k e^{-ikj} c_k $$

where α_j is a local gauge. The ground state of this model was obtained in [33] as

$$ |\psi_n \rangle = \frac{1}{\sqrt{N}} \sum \{ \lambda_{j_1,j_2,\ldots,j_n} (-1)^{n_j} (-1)^{j_j-j_2} \ldots (-1)^{j_{n-2}-j_{n-1}} \} \ket{\downarrow_{0\ldots\downarrow_j} \uparrow_j \ldots \uparrow_{j_{n-1}}} \ket{j_{n-1}}. $$

FIG. 2: Global entanglement for a transverse XY chain ($r = 0.5$) as a function of Hamiltonian parameter $\lambda = J/h$ for various system sizes.

FIG. 3: The derivative of global entanglement for a transverse XY chain ($r = 0.5$) as a function of parameter λ for various system sizes. The left inset shows that the maximal value λ_c approaching the critical point $\lambda_c = 1$ as $|\lambda_m - \lambda_c| \sim N^{-3.34}$. The right inset shows the logarithmic divergence of the peak as a function of N, $\frac{dE_g}{d\lambda} |_{\lambda=\lambda_m} \approx \kappa_1 \ln N$ where $\kappa_1 = 0.9783$. The system sizes are the same as Fig. 2.

FIG. 4: Finite-size scaling data collapse of derivative of global entanglement for transverse XY chain ($r = 0.5$). The best collapse of $\frac{dE_g}{d\lambda} \sim Q(N^{1/\nu}(\lambda - \lambda_m))$ occurs at $\nu = 1$. The system sizes are the same as Fig. 2.
while \(\lambda_{j_1,j_2,\ldots,j_n} \) is given by

\[
\lambda_{j_1,j_2,\ldots,j_n} = \sum_p (-1)^p \exp \left(\frac{2\pi i}{N}(k_1j_{p1}+k_2j_{p2}+\ldots+k_nj_{pn}) \right)
\]

(22)

and \(1 \leq n \leq [N/2] \) depends on the magnetic field \(h \) such that

\[
\sin\left(\frac{(n+1)\pi}{N}\right) < h \leq \frac{\sin\left(\frac{\pi}{N}\right) - \sin\left(\frac{(n-1)\pi}{N}\right)}{\sin(\pi/N)}.
\]

(23)

Moreover, the sum (in Eq. (22)) extends over the permutation group. Therefore, the \(z \) magnetization is \(\langle \sigma_z^2 \rangle = 1 - \frac{2n}{N} \). This allows us to calculate global entanglement in an analytic fashion for finite size system, which leads to:

\[
E_g = \frac{4n(N-n)}{N^2}
\]

(24)

Interestingly, this indicates a step-like behavior for the \(E_g \) as a function of \(h \). In fact, the points \(h_s = \frac{\sin\left(\frac{\pi}{N}\right) - \sin\left(\frac{(n-1)\pi}{N}\right)}{\sin(\pi/N)} \) are exactly the same as the level-crossing points obtained by the exact solution of XX model, see [33-34]. Fig. (5) shows the global entanglement for a XX chain of \(N = 15 \) qubits obtained from Eq.(24) in terms of \(h \). The stepwise behavior of global entanglement determines the position and number of level-crossings in the system. Note that the number of steps is \([N/2]\).

\[\text{FIG. 5: Global entanglement (Eq. 24) as a function of magnetic field for XX Heisenberg (}r = 0\text{) chain of } N = 15 \text{ qubits. The level-crossings coincide with jumps in } E_g. \text{ The inset shows the } N \to \infty \text{ limit.}\]

It might be interesting to look into the behavior of \(E_g \) in the thermodynamic limit for the XX model to see what happens to the step like structure, as well as the behavior near the critical point. In the thermodynamics limit, we can neglect the boundary effects and use Eq.(14) at \(r = 0 \) and write the global entanglement for XX model

\[
E_g = 1 - \left\{ \frac{1}{\pi} \int_0^\pi \frac{h - \cos(\phi)}{|h - \cos(\phi)|} \right\}^2 = 1 - \frac{1}{\pi^2} (2\phi_c - \pi)^2
\]

(25)

where \(\phi_c = \cos^{-1}(h) \) is the pole of the denominator. The behavior is shown as an inset in Fig. (5). The effect of finite number of steps naturally disappear and \(E_g \) behaves much as an order parameter for this transition. One can also use this expression to obtain scaling of the derivative of entanglement in order to obtain correlation length exponent [79]. Hence, we get

\[
\frac{dE_g}{dh}|_{h=1} \approx \frac{4\sqrt{2}}{\pi^2} \sqrt{1-h}.
\]

(26)

This allows us to obtain the exponent \(\nu \), which governs the divergence of the correlation length as \(\frac{dE_g}{dh} \sim |h-1|^{-\nu} \) with \(\nu = 1/2 \), consistent with previous reports [31,32].

IV. THERMODYNAMIC LIMIT AND THE CLASSICAL LINE

In the previous section, we used the finite-size behavior of \(E_g \) in order to characterize the behavior of QPT at \(h = 1 \), as well as characterizing the XX model. We also obtained a closed form expression for \(E_g \) in the thermodynamics limit which allowed us to calculate the critical exponent for this universality class. We now propose to calculate \(E_g \) in the thermodynamic limit for the entire parameter regime and extract more information in this limit of the system, paying particular attention to the so-called classical transition. Let us start by explaining the simplest model of XY Heisenberg family, the Ising model \((r = 1)\). In the absence of external field \((h = 0)\), the spins are either all pointed in the positive or negative \(x \) direction and the corresponding ground state is doubly degenerate. Turning on a small \(h \) may be regarded as a perturbation changing the orientation of a small fraction of spins to the opposite direction. In the case of finite size system, such a field induces quantum tunneling between the degenerate ordered states and leaves the system in a superposition state satisfying phase-flip symmetry. As we go to the thermodynamic limit, this energy barrier becomes infinitely high such that it does not allow tunneling events for any finite \(h \) and therefore keeps the system in the degenerate ground state [35]. Therefore, this breaking of phase-flip symmetry requires us to take into account the coefficient \(q_x \) in Eq.(12) and rewrite Eq.(13) as [29,36]:

\[
\rho_i = \frac{1}{2} \left(I + \langle \sigma_i^+ \rangle \sigma_i^+ + \langle \sigma_i^- \rangle \sigma_i^- \right)
\]

(27)

where

\[
\langle \sigma^2 \rangle = \frac{1}{\pi} \int_0^{\pi} \frac{h - \cos(\phi)}{\sqrt{r^2 \sin^2(\phi) + (h - \cos(\phi))^2}} \, d\phi,
\]

(28)

and

\[
\langle \sigma_x \rangle = \begin{cases} 2[2(1+r)]^{-1/4}r^{1/4}(1-h^2)^{1/8} & \text{if } h \leq 1 \\ 0 & \text{otherwise} \end{cases}
\]

(29)
Given the above and considering Eq. (15), global entanglement can now be obtained for the entire parameter regime in the thermodynamic limit. Fig. (6) shows an example for E_g as a function of λ for $r = 0.5$.

In the weak exchange regime ($\lambda < 1$), the XY Hamiltonian term may be regarded as a perturbation that is unable to break the phase-flip symmetry and therefore leaves the system in non-degenerate ground state, so E_g in this case is the same as the one for finite-size chains (see Fig. (2)). At the critical point, $\langle \sigma^+ \rangle$ begins to rise, breaking the phase-flip symmetry, leading to a sudden decline in entanglement and exhibiting absolute maximal value for entanglement at the critical point. This by the way is consistent with the general expectation of highly correlated system at the critical point. However, entanglement quickly decreases and vanishes at $\lambda = 1.15$ ($h = 0.87$) where the ground state is unentangled (product states) since it lies exactly on the classical line $r^2 + h^2 = 1$. In order to obtain a better understanding of the behavior of E_g, we plot it in terms of h and r in Fig. (7). For all the non-zero anisotropic parameter, E_g is maximum on the Ising transition line separating paramagnetic and ferromagnetic phases. In the case of $r = 0$ (isotropic model), the global entanglement exhibits a different behavior indicating a different universality class. For a better understanding, a corresponding contour plot is provided in Fig. (8). Here, we can more clearly see the behavior on the classical line. The solid black line separates the oscillation part of ferromagnetic phase in the diagram phase where the ground state is a product state and E_g is exactly zero along this transition. Therefore, E_g is also able to indicate the transition to the oscillating phase in the ferromagnetic case as it becomes zero across such transition. We note that this value of zero, and therefore indicator of the classical transition, is only valid in the thermodynamic limit and does not occur for the finite size systems. Note also that in the thermodynamic limit entanglement is maximal at the critical point as expected, but only exhibits a sharp (well-behaved) rise for the finite N even if N is taken to be very large. This provides a good indication that E_g can behave similar to the usual thermodynamic functions, as they only exhibit non-analytic behavior (at criticality) in the thermodynamic limit, compare Fig. (2) with Fig. (6). Moreover, the inset in Fig. (6) shows that the derivative of global entanglement $dE_g/d\lambda$ for an infinite chain diverges as:

$$\frac{dE_g}{d\lambda} \approx \kappa_2 \ln | \lambda - 1 |. \quad (30)$$

where $\kappa_2 = -0.9789$. Based on the scaling ansatz for logarithmic divergence 31, the ratio of $| \kappa_1/\kappa_2 |$ is the correlation length exponent, ν. In our case, this ratio is given by $| \kappa_1/\kappa_2 | = 0.994$ which is very close to the exact result $\nu = 1$ as well as our result in Sec. IIIA. We also note similar results are obtained using concurrence in 29 and geometric phase in 9.

FIG. 6: Global entanglement as a function of λ for $r = 0.5$ in the thermodynamic limit. The inset displays the logarithmic divergence behavior of $dE_g/d\lambda$ as it approaches the critical point. The slope gives $\kappa_2 = -0.9789$.

FIG. 7: 3D plot of global entanglement as a function of r and h in the thermodynamic limit.

FIG. 8: Contour plot of global entanglement versus the external field and anisotropic parameter.
V. ANISOTROPIC QUANTUM PHASE TRANSITION

Another quantum phase transition occurs over the line $r = 0$ for $0 < h < 1$, the anisotropic transition, which has received less attention in the literature. The anisotropic phase transition separates two ferromagnetic phases with orderings in the x ($r > 0$) and y ($r < 0$) directions and belongs to a different universality class than the Ising class. Fig. (9) shows global entanglement as one crosses such a transition for the fixed value of $h = 0.5$. As can be seen in this figure, there is a distinct change in the global entanglement around $r = 0$, which is the local extremum. However, it may be minimum or maximum, depending on the system size. We have observed that when one is close but below (above) the level crossing point, E_g is convex (concave), slowly changing shape as one crosses a given step for a fixed N. Therefore, the picture that emerges is that for a finite chain, the first derivative of E_g is zero at the anisotropic transition indicating a local maximum or a minimum depending on whether the given values of h and N places us near the left or right edge of the step. This pattern continues to hold across the anisotropic transition until one gets to the multi-critical point ($h = 1, r = 0$), where E_g displays a local minimum approaching zero in the thermodynamic limit, see for example Fig. (10). This type of behavior continues to hold for $h > 1$. Note that E_g does not approach zero with increasing N as one crosses the anisotropic transition. Therefore, one can conclude that the finite size behavior of E_g distinguishes the critical anisotropic transition. However, one would like to know if E_g exhibits any non-analytic behavior associated with (critical) quantum phase transitions. To investigate this we need to calculate global entanglement across the anisotropic transition in the thermodynamic limit.

In order to calculate global entanglement for $r < 0$ in the thermodynamic limit we need to make the following observations. In the regime of positive anisotropic parameter, magnetization in y direction is zero and E_g is a function of σ_x and σ_z as shown in Sec. IV, i.e. Eqs. (15), (28), (29). Therefore, E_g is given by Eq. (15). It is evident from the Hamiltonian that transformation $r \rightarrow -r$ interchanges σ_x with σ_y, which leads to the zero value of $\langle \sigma_x \rangle$ for $r < 0$ [28]. Therefore, since the y-component of magnetization does not contribute to E_g, due to the reality of Hamiltonian, single-particle density matrix is given by $\rho_i = \frac{1}{2}(I + \langle \sigma_z \rangle \sigma_x)$, and E_g is given by Eq. (16) in this regime. Therefore, the picture that emerges is that for $h > 1$ where one is in the paramagnetic phase and no phase transition occurs at $r = 0$, E_g is symmetric about this minimum point for a given value of h. However, one expects that the broken symmetry due to $\langle \sigma_x \rangle$ at $r = 0$ and $h < 1$ leads to a broken symmetry of E_g about the transition point. This is indeed the case as can be seen from Fig. (10) which show E_g for $h = 0.5$ across the anisotropic transition. Clearly one can see the non-analytic behavior similar to thermodynamic quantities at a critical point. We conclude that E_g can distinguish the critical anisotropic transition in the XY model.

FIG. 9: Global entanglement versus r for the fixed magnetic field ($h = 0.5$) and different system sizes. As N changes, the step structure of the finite XX model changes leading to the behavior observed.

VI. CONCLUSIONS

In this paper, we have used global entanglement in order to study various quantum phase transitions occurring in the transverse XY Heisenberg chain. We have been able to calculate global entanglement both in the finite size limit as well as the thermodynamic limit analytically. The finite size study was shown to be very useful for extracting the critical exponents for the Ising transition, via the derivative of entanglement. In the thermodynamic limit, E_g was shown to exhibit non-analytic behavior at the Ising transition, while having maximal value. The thermodynamic limit of global entanglement was also used to extract critical exponent for the multi-
critical point of the XX model. For the finite size system, the step structure of level-crossings was exactly reproduced by global entanglement. Also, while the finite size measure of global entanglement did not show any particular behavior across the classical oscillating transition, the thermodynamic limit of the measure was able to signal such a transition as it took on vanishing value across this classical transition. Furthermore, we studied the anisotropic transition where global entanglement was shown to exhibit a non-analytic behavior across such a transition in the thermodynamic limit, while showing an interesting, \(N \) dependent behavior for the finite size case. The cusp-singularity at both quantum transitions, non-analyticity at the multi-critical point and vanishing value on the classical curve is the general behavior of global entanglement in the thermodynamic limit. We therefore conclude that global entanglement, despite its simplicity, can produce much of the rich behavior of the XY model in various parameter regimes, identifying all the transition points. Such a multi-partite measure of entanglement seems to be a good candidate for studying the thermodynamic behavior of many-body quantum systems.

We end by making the following observation. We have seen that while finite size study of entanglement can produce interesting behavior including scaling properties, it was the thermodynamic limit of entanglement which was able to fully bring to light the various transitions in the XY model. In particular, the thermodynamic limit exhibits properties which one would never see even for very large values of \(N \). This is particularly relevant as many studies of entanglement and quantum phase transitions are limited by finite size studies with the belief that numerically exact finite size solutions can be extrapolated to find the thermodynamic limit.

1. S. Sachdev, *Quantum Phase Transitions*, Cambridge Univ. Press, Cambridge (2013).
2. S. L. Sondhi, S. M. Girvin, J. P. Carini, and D. Shahar, Rev. Mod. Phys. **69**, 315 (1997).
3. D. B. Haviland, Y. Liu, and A. M. Goldman, Phys. Rev. Lett. **62**, 2180 (1989).
4. P. Coleman, Physica B, **259**, 353 (1999).
5. M. A. Nielsen and I. L. Chuang, *Quantum Information and Quantum Computation*, Cambridge University Press, Cambridge (2000).
6. A. Osterloh, L. Amico, G. Falci, and R. Fazio, Nature **416**, 608-610 (2005).
7. T. C. Wei, D. Das, S. Mukhopadyay, S. Vishveshwara, and P. M. Goldbart, Phys. Rev. A **71**, 060305 (2005).
8. S. Chen, L. Wang, Y. Hao, and Y. Wang, Phys. Rev. A **77**, 032111 (2008).
9. S. L. Zhu, Phys. Rev. Lett. **96**, 077206 (2006).
10. R. Dillenschneider, Phys. Rev. B **78**, 224413 (2008).
11. T. Abad and V. Karimipour, Phys. Rev. B **93**, 195127 (2016).
12. S. Gu, G. Tian, and H. Lin, Chin. Phys. Lett. **24**, 2737 (2007).
13. S. Gu, H. Lin, and Y. Li, Phys. Rev. A **68**, 042330 (2003).
14. J. Vidal, G. Palacios, and R. Mosseri, Phys. Rev. A **69**, 022107 (2004).
15. A. Montakhab, A. Asadian, Phys. Rev. A **82**, 062313 (2010).
16. D. A. Meyer and N. R. Wallach, Journal of Mathematical Physics **43**, 4273 (2002).
17. U. Schollwöck, J. Richter, D. Farnell, and R. Bishop, Quantum Magnetism, Springer-Verlag, Berlin (2004).
18. S. B. Zheng, G. C. Guo, Phys. Rev. Lett. **85**, 2392 (2000).
19. G. Vidal, J. I. Latorre, E. Rico, and A. Kitaev, Phys. Rev. Lett. **90**, 227902 (2003).
20. S. Bose, Phys. Rev. Lett. **91**, 207901 (2003).
21. E. Barouch, B. M. McCoy, and M. Dresden, Phys. Rev. A, **2**, 10751092 (1970).
22. A. Dutta and D. Sen, Phys. Rev. B **67**, 094435 (2003); I. Peschel and V. J. Emery, Z. Phys. B **43**, 241 (1981); J. Kurmann, H. Thomas, and G. Müller, Physica A **112**, 235 (1982); G. Müller and R. E. Shrock, Phys. Rev. B **32**, 5845 (1985).
23. G. K. Brennen, Quant. Inf. Comput. **3**, 616 (2003).
24. T. R. de Oliveira, G. Rigolin, M. C. de Oliveira, and E. Miranda, Phys. Rev. Lett. **97**, 170401 (2006).
25. A. Montakhab and A. Asadian Phys. Rev. A **77**, 062322 (2008).
26. P. J. Love, A. M. Brink, A. Y. Smirnov et al. Quant. Inf. Process. **6**, 187 (2007).
27. A. J. Scott Phys. Rev. A **69**, 052330 (2004).
28. E. Lieb, T. Schultz, and D. Mattis, Ann. Physics **16**, 407 (1961).
29. T. J. Osborne and M. Nielsen, Phy. Rev. A **66**, 032110 (2002).
30. E. Barouch, and B. M. McCoy, Phys. Rev. A **3**, 786804 (1971).
31. M.N. Barber, *Phase Transitions and Critical Phenomena*, Academic, London, Vol. 8, 146-259 (1983).
32. B. M. McCoy, Phys. Rev. A **3**, 786804 (1971).
33. A. D. Pasquale, G. Costantini, P. Facchi, G. Florio, S. Pascazio, K. Yuasa, Eur. Phys. J. Spec. Top. **160**, 127 (2008).
34. A. D. Pasquale and P. Facchi Phys. Rev. A **80**, 032102 (2009).
35. J. Larson and E. K. Irish, J. Phys. A: Math. Theor. **50**, 17 (2017).
36. P. Pleuty, Ann. Physics **57**, 79 (1970).
37. M. M. Rams and B. Damski Phys. Rev. A **84**, 032324 (2011).
38. R. W. Cherng and L. S. Levitov Phys. Rev. A **73**, 043614 (2006).
39. M. Zhong and P. Tong, J. Phys. A: Math. Theor. **43**, 505302 (2010).