Crustal Models Assessment in Western Part of Romania Employing Active Seismic and Seismologic Methods

Andrei Bala¹, Dragos Toma-Danila¹, Dragos Tataru¹, Bogdan Grecu¹

¹ National Institute for Earth Physics, 12 Calugareni str., Magurele, Ilfov, Romania
andbala@yahoo.com

Abstract. In the years 1999 - 2000 two regional seismic refraction lines were performed within a close cooperation with German partners from University of Karlsruhe. One of these lines is Vrancea 2001, with 420 km in length, almost half of them recorded in Transylvanian Basin. The structure of the crust along the seismic line revealed a very complicated crustal structure beginning with Eastern Carpathians and continuing in the Transylvanian Basin until Medias. As a result of the development of the National Seismic Network in the last ten years, more than 100 permanent broadband stations are now continuously operating in Romania. Complementary to this national dataset, maintained and developed in the National Institute for Earth Physics, new data emerged from the temporary seismologic networks established during the joint projects with European partners in the last decades. The data gathered so far is valuable both for seismology purposes and crustal structure studies, especially for the western part of the country, where this kind of data were sparse until now. Between 2009 and 2011, a new reference model for the Earth’s crust and mantle of the European Plate was defined through the NERIES project from existing data and models. The database gathered from different kind of measurements in Transylvanian Basin and eastern Pannonian Basin were included in this NERIES model and an improved and upgraded model of the Earth crust emerged for western part of Romania. Although the dataset has its origins in several periods over the last 50 years, the results are homogeneous and they improve and strengthen our image about the depth of the principal boundaries in the crust. In the last chapter two maps regarding these boundaries are constructed, one for mid-crustal boundary and one for Moho. They were build considering all the punctual information available from different sources in active seismic and seismology which are introduced in the general maps from the NERIES project for Romania. The depths maps in the study region are presented with all their regional peculiarities as they appear, projected on the local tectonic structure for the area under examination.

1. Introduction

Tectonic of Romania includes both pre-alpine platforms and Alpine orogenic structures. The pre-alpine platforms are: Eastern European Platform, with its western margin in Romania - Moldavian platform; Scythian platform; Moesian platform. The Alpine Orogeny includes Carpathian Orogen and North Dobrogean Orogen, plus foredeep area in front of the Carpathians, as well as the Transylvanian Basin and Pannonian Basin [1].

Western Carpathians – Apuseni Mountains are part of the Carpathian Orogen and they consist of a canvas of basement thrusts and nappes, formed during the compressional stages, which started in Cretaceous and was completed in Pleistocene. Contact between some of the thrusts units proved to be seismogenic. In addition to the localized subcrustal seismicity in the Vrancea Seismic Zone, Carpathian
Orogen hosts crustal seismicity in Baia Mare, the crustal Vrancea zone, Fagaras-Sinaia and the Danubian zone - the bend of the Southern Carpathians.

Eastern Pannonian Basin is a depression in Romania's western margin. Neogene filling covers a block system with an uneven basement of Carpathian origin in the east and Pannonian origin in the west. Neotectonic activity manifested on the eastern edge of the basin is materialized by crustal seismicity in Banat and Crisana zones.

Transylvanian Basin is a back-arc basin with a Paleogene - Neogene cover with different degrees of deformation. The basement of the basin is of Carpathian type and comprises a series of uneven blocks separated by faults, some with crustal character. The general orientation of these faults is NNW- SSE. The area is more subsided in Târnave Depression where sediment thickness reaches 10 km. Compared to other tectonic units Romanian, Transylvanian Depression has weaker seismogenic potential, with some events in the west and south-west.

2. Crustal structure assessments in western part of Romania
2.1. Deep seismic sounding on a fan shooting in north-western part

The first attempts towards the crustal structure assessments were made in 1966 by the Applied Geophysics Institute in a cross-border cooperation with scientists from Hungary and reported in [2]. Seismic waves were generated in Hungary, near the north-western part of Romania, on an alignment parallel to the border, by explosions in boreholes with loads up to 1500 kg. Four recording devices geophones of 10 Hz were employed, providing a total length of 1180 m recording device, for seismic surveys in the area Jibou - Baia Mare. The result was a large fan shooting in which the Moho depth was located at half the distance between the explosion point (in Hungary) and the recording array in north-western Romania [2].

To calculate the Moho depth on the base of reflected waves, the classic formula used in the equation hodograph for these waves was employed, where horizontal reflecting limit covered by a homogeneous medium was used, characterized by seismic speed V_m. In a second attempt, assuming that the recorded waves are actually refracted frontal waves, formed on the surface of the Moho, the depth was computed as resulting from the hodograph of a refracted wave on a horizontal surface [2].

2.2. Deep seismic sounding on a profile in northern part of Apuseni Mountains Cluj Napoca – Oradea

In the years 1973 – 1974, seismic researches were carried out on a profile Cluj-Napoca - Huedin - Oradea (GTXI in figure 1) by a group of the Applied Geophysics Institute. Seismic Refraction method was applied along Cris Valley on a Cris - N Bors profile (65 km). For the rest of the region the information was obtained from a series of punctual seismic surveys, with circular recording devices, which has the advantage of determining the spatial elements of the reflecting limit. Filling out the profile in the western part of the seismic profile was done using an explosive charge at Nagyrábé (Hungary), located about 35 km from the border.

The structure of the crust obtained by continue seismic surveys and punctual seismic recording summarizes the results from the northern part of the Apuseni Mountains, in fact the north-west part of the regional crustal profile XI in Romania [3].

It should be stressed that comparing the data with crustal thickness determined in other areas belonging to Carpathian Orogen [4], the Apuseni Mountains shows unusually reduced crustal depths. This bring up the hypothesis according to which these mountains represent in the Carpathian geosyncline zone, an area with an independent tectonic crustal structure with low crustal depths, compared to other areas belonging to Carpathian Orogeny.

Both set of results are added to the database of the Moho depth in western part of Romania.

2.3 Moho depths from the regional seismic refraction profile VRANCIA 2001

In order to study the lithospheric structure in Romania, a 450 km long WNW – ESE trending seismic refraction profile was carried out in August/September 2001; it runs from the Transylvanian Basin across the East Carpathian Orogen and the Vrancea seismic region to the foreland areas with the very deep
Neogene Focsani Basin and the North Dobrogea Orogen on the Black Sea. From Aiud town in Transylvania to Tulcea, in northern Dobrogea (figure 1).

A total of ten shots with charge sizes of 300 - 1500 kg were recorded by over 700 geophones. The data quality of the experiment was variable, depending primarily on charge size but also on local geological conditions. The data interpretation indicates a multi-layered structure with variable thicknesses and velocities. The sedimentary stack comprises up to 7 layers with seismic velocities of 2.0 - 5.9 km/s. It reaches a maximum thickness of about 22 km within the Focsani Basin area. The sedimentary succession is composed of (1) the Carpathian nappe pile, (2) the post-collisional Neogene Transylvanian Basin, which covers the local Late Cretaceous to Paleogene Tarnava Basin, (3) the Neogene Focsani Basin in the foredeep area, which covers autochthonous Mesozoic and Palaeozoic sedimentary rocks as well as a probably Permo-Triassic graben structure of the Moesian Platform, and (4) the Palaeozoic and Mesozoic rocks of the North Dobrogea Orogen.

Figure 1. Topographic map showing the VRANCEA2001 seismic line (thick line O - Z), as well as older parallel or transecting refraction and reflection lines (thin and dashed lines, e.g GT XI = geo-traverse XI, after [5])

The underlying crystalline crust shows considerable thickness variations in total as well as in its individual subdivisions, which correlate well with the Tisza-Dacia, Moesian and North Dobrogea crustal
blocks. The lateral velocity structure of these blocks along the seismic line remains constant with about 6.0 km/s along the basement top and 7.0 km/s above the Moho. The Tisza-Dacia block is about 33 to 37 km thick and shows low velocity zones in its uppermost 15 km, which are presumably due to basement thrusts imbricated with sedimentary successions related to the Carpathian Orogen. The crystalline crust of Moesia does not exceed 25 km and is covered by up to 22 km of sedimentary rocks. The North Dobrogea crust reaches a thickness of about 44 km and is probably composed of thick Eastern European crust over thrusted by a thin 1 - 2 km thick wedge of the North Dobrogea Orogen.

A crustal model based on P-wave arrivals is performed and then interpreted in structural terms in figure 2, after [5].

![Crustal model](image)

Figure 2. Interpreted geological cross-section (top: 4.5×vertical exaggeration, bottom: without vertical exaggeration) from the 2D seismic model along the main VRANCEA2001 seismic refraction line between the Transylvanian Basin and the Black Sea after [5]. The upper crustal geological structures of the Tisza-Dacia and the Moesian crustal blocks are transverse to the section. For location of the section and for location of the major geological structures compare with figure 1.
2.4. Models of crustal structure at the principal seismic stations located in western part of Romania

At the basis of the seismic stations’ crust models presented below were the available data: the Vrancea 2001 seismic refraction profiles, the data provided by the European model EuCRUST 07 [6], seismic reflection profiles in the vicinity of sites, geological sections and maps, maps at the crystalline basement, data on the distribution of seismic velocities derived from active seismic data, borehole seismic recordings, etc.

The models consist of successive strata having longitudinal (Vp) and transverse (Vs) seismic wave velocities on the interfaces separating them. The velocities can be constant within the layer, or rising in the depth. With the exception of sites located along or adjacent to seismic profiles, the seismic velocity data is retrieved by extrapolation from areas close to measurements, or established by assigning similar values for similar formats at comparable depths.

In Table 1, besides the Moho depths determined from the data and maps, the next column presents the depths at Moho* calculated by the receiver function method at the same station (location). From the comparison of the 2 columns, the values show differences in the range of 1 - 2 km, which is under the magnitude of the errors of determination in both methods. In this way, the results from the two columns support each other and we can give a high degree of confidence to the depth values determined by the receiver function method. The exception is the Gura Zlata station with 41 km Moho depth determined by the interpretation of the classical methods and 36 km Moho* depth, determined by the receiver function method. It is possible that, due to local tectonics, the receptor function method provides lower values in Carpathian Orogen [7].

Table 1. Broadband stations and accelerometer stations in Transylvania and western part of Romania. Moho* depth – computed from receptor functions method at the same location.

Seismic station	Lat. (°N)	Long. (°E)	h (m)	Midcrust boundary (km)	Moho depth (km)	Moho* depth (km)	Locality
BANR	45.3825	21.1355	80	21	28.5		BANLOC
BMR	47.67	23.49	227	20	31	30	BAIA MARE
BZS	45.6167	21.6167	260	22	31	29	BUZIAŞ
DEV	45.88	22.89	249	24	34	33	DEVA
DOP	45.9674	26.3887	526	20	36		DOPCA
DRG	46.7917	22.7111	923	23	31	32.5	DRĂGANUL
GZR	45.3933	22.7767	850	27	41	36	GURA ZLATA
MED	46.1497	24.3765	428	26	38		MEDIAŞ
OZUR	46.0957	25.7864	674	28	33.5		OZUNCA
SIBR	45.81	24.17	463	26	38		SIBIU
TIM	45.7367	21.2208	134	21	29		TIMIŞOARA
SIRR	46.2653	21.6555	495	21	29	28	ŞIRIA
3. Modern methods used to assess the Moho depths - Joint inversion of dispersion curves and receiver functions

A joint inversion method of receiver function and Rayleigh wave dispersion was employed in order to derive the 1D seismic velocity models for several seismic station locations in western part of Romania. The study uses new data emerged from permanent network of broadband stations in Romania, as well as data from temporary networks established during the joint projects with European partners in the last decades. Such a joint project between University of Leeds, UK and National Institute for Earth Physics (NIEP), Romania (South Carpathian Project- SCP), deployed 33 broadband seismic stations autonomously operated in an area covering the western part of the country and which continuously provided data for two years (2009 - 2011).

The first results of the crustal structure obtained employing this method were presented by [8] and [9], show a thin crust for stations located in the eastern part of Pannonian Basin (28-30 km). In the Apuseni Mountains, the Moho discontinuity can be found between 31 - 33 km depth. The stations within the Southern Carpathians are characterized by deeper crustal depths of about 32-36 km. 2D models of the variation of the seismic velocity in depth are presented by [8] and [9] along 3 lines crossing the western part of Romania. The Moho boundary coincide generally with the isoline of seismic transverse velocity of about 3.80 km/s.

The blue dots in figure 1 are the locations with computed Moho depths and they represent the first attempts of deciphering the crustal structure in the NW Romania, by geophysical methods. Although the methods are really classic, we consider that the results are validated by the two methods used in [2]. The yellow dots are described in chapter 2.2, and they represent the Moho depth from the seismic profile Cluj Napoca – Oradea, from the Transylvanian Basin to the west, near the border, crossing the northern part of Apuseni Mountains [3] (figure 3).

Figure 3. Punctual depth to Moho according to first deep seismic surveys in XX century: the blue dots compiled from [2]; the yellow dots are the representation of the profile Cluj Napoca-Oradea [3]. The triangles are seismic station (NIEP) and the rhombs are the temporary seismic network (SCP) at which the depth to Moho is computed with the new method of joint inversion of dispersion curves and receiver functions in [8] and [9]. The values near triangles or dots is the computed Moho depth.
4. New reference model for the Earth’s crust of the European Plate
A new reference model for the earth’s crust and mantle of the European Plate was defined through the NERIES project from existing data and models [10], [11], [12]. Even if plenty of models had been already published in the scientific literature, they differed significantly. Even if the reason for the existence of such diversity of models is easy to be understood - having in mind the different data sets used, degree of details as well as various modelling and imaging techniques - it makes difficult choosing a model as input for other studies or just as a comparison.

The model covers the whole European Plate from North Africa to the North Pole (20°N–90°N) and from the Mid-Atlantic Ridge to the Urals (40°W–70°E). The chosen parameters represent the crust in three layers (sediments, upper crust and lower crust), and describes the 3-D geometry of the interfaces and seismic relevant parameters—isotropic P- and S-wave velocity, plus density—with a resolution of 0.5° × 0.5° on a geographical latitude–longitude grid [12].

The crustal model (EPcrust) derives from a compilation of existing information: large-scale overlapping with high-resolution local models, receiver functions point determination, active seismic profiles. The approach was of combining a priori information, collecting and amalgamating reliable, although scattered, information about the crust attempting to retain the best from each constituent and render it with a uniform representation.

P-wave speed is obtained from merging the different existing V_p models and S-wave speed and density are derived from scaling relations with respect to V_p derived from a Nafe-Drake curve regression [13]. In the upper and lower crust, most of the original information about V_p derives from CRUST2.0 [14], EuCRUST-07 [6]. To include point determinations, such as Moho depth from receiver functions, a surface with a grid resolution of 0.1° × 0.1° was created covering all the data available, and interpolates values between data points. The distribution format is based on the TomoJSON data exchange format described by [15].

4.1. Improved models of crustal structure
The database gathered from different kind of seismic and seismological measurements in Transylvanian Basin and eastern Pannonian Basin, presented in the paper, were included in this NERIES model and an improved and upgraded model of the Earth crust emerged for western part of Romania. Figures 4 and 5 present maps obtained based on our completed dataset for both interfaces – mid-crustal and Moho.

Maps were generated through kriging interpolation (ordinary method, spherical semi-variogram model and 12 points search radius - default settings within ArcGIS, providing stable results). The points that were used for interpolation belong to two different datasets: the one presented in this paper, and the grid points from the NERIES reference model [12], in which we removed points within a 10 km radius of the previous mentioned dataset. The method was chosen in order to be as close as possible to the original procedure in [12].

Although the dataset has its origins in several periods over the last 50 years, the results are homogeneous and they improve and strengthen our image about the depth of the principal boundaries in the crust.

The mid-crustal interface is not changed much from [12] due to the fact that only few new points were added from sources that we have mentioned to the figure 4.

Some improvements of the Moho depth can be seen especially under Apuseni Mts., as well as in the western Pannonian basin (figure 5).

5. Conclusions
Deep seismic surveys using classic methods were performed in the last part of XX century in the north-western part of Romania, as well as a seismic refraction regional line (XI) which crosses the entire Transylvanian Basin from Eastern Carpathians to the Hungarian border (figure 1).
Figure 4. Mid-crustal interface depth in western part of Romania, base grid after [12].

Figure 5. Moho depth in western part of Romania, base grid after [12].
All the data from these surveys were georeferenced and added to a database with Moho depth in Romania. Models of crustal structure compiled based on geophysical methods at the principal seismic stations located in western part of Romania were also added to this database [9].

The models of the crustal structure obtained by joint inversion of dispersion curves and receiver functions are presented and described in [8]. They are represented by 1D models dispersed on the map of seismic stations from one seismic network (NIEP) and one temporary seismic network (SCP). They are added to the database, being the new contribution to the crustal structure obtained in different national projects in the last years.

For Romania, last general model of the crustal structure is presented in chapter 4 and it is relying on all the available data existing at that moment. Basically, it is a compilation of data from old and new seismic refraction data, deep seismic reflection data and seismology data recorded by the broadband stations belonging to the Romanian seismic network. It also takes into account the previous compiled Moho maps sketched for the south-eastern half of Romania using also previous crustal data and data provided by the Vrancea 2001 seismic refraction experiment [5] (figure 2).

This available model, which was available in digital form after [13] and [14], constitute the general grid on which the new points, included in the database, were added in order to obtain an improved and upgrade image of the crustal structure for the western part of Romania. The obtained crustal models are presented in figure 4 for midcrustal interface and in figure 5 for Moho discontinuity. The midcrustal interface is not changed by the introduction of new rather few points, because they were almost the same values as in the original map.

As for the Moho discontinuity, some inflexion on the isolines of the depth can be seen in the Pannonian Basin (near the border) and also on the Apuseni Mts., but there is no circle of maximum depth here. The image of the Moho depth in Transylvania have the same features as the map presented in [6], which is not a surprise because both of them have the same kind of sources. There are however some differences noted especially in the Pannonian Basin (Romanian sector).

Deep seismic survey data in Pannonian basin made on both sides of the Romanian-Hungarian border shows a thinning crust to the west. Structural map at Moho boundary shows decreasing thickness of the crust from ~35 km south of Timisoara, to ~30 km in Arad area and ~27.5 km near Oradea. The upper crustal layer has normal thickness of about 17-19 km and the lower crust is about 5-8 km thick. Active fault systems of differential motion occur between the different blocks, which eventually became grabens and horsts.

However, the new data obtained by receiver functions show that depths to Moho of 26- 28 km might exist in the north-western corner of Pannonian Basin. They are consistent with the Moho depth map obtained by [16] in northeastern Hungary and based on the CELEBRATION 2000 seismic data.

Acknowledgements
This paper was carried out within NUCLEU Program, supported by ANCSI, project no. 16.35.01.03 and partly in the framework of the project no. 90/2014 supported by UEFISCDI, Program Partnership 2014.

References
[1] M. Sandulescu, “Geotectonics of Romania”, Technical Publishing House, Bucharest, 336 pp (In Romanian), 1984.
[2] D. Enescu, I. Cornea, and P. Constantinescu, “The first attempts to assess the thickness of the crust in Romania by punctual seismic surveys. Considerations on the upper mantle structure”, (in Romanian), Stud. Cercet. De Geol. Geofiz. Geogr., Seria Geofizica, no. 2/tome 5, pp.185-197, 1967.
[3] D. Radulescu, I. Cornea, M. Sandulescu, P. Constantinescu, F. Radulescu, and A. Pompilian, “Structure de la croute terrestre en Roumanie, Essai d’interpretation des etudes sismiques profondes”, Rev. Roum. Geophys., vol. 20, pp. 5-32, 1976.
[4] D. Enescu, D. Danchiv, and A. Bala, “Lithosphere structure in Romania.II. Thickness of Earth’s crust. Depth-dependent propagation velocity curves for the P and S waves”, St. Cerc. Geol. Geof. Geogr., Ser. Geofiz., vol.30, pp. 3-19, 1992.
[5] F. Hauser, V. Raileanu, W. Fielitz, C. Dinu, M. Landes, A. Bala, and C. Prodehl, „Seismic crustal structure between Transylvanian Basin and the Black Sea, Romania”, Tectonophysics, vol. 430, pp. 1-25, 2007.
[6] M. Tesauro, M. K. Kaban, and S.A. Cloetingh, „EuCRUST-07: A new reference model for the European crust”, Geophys. Res. Let., vol.35, 2008, doi:10.1029/2007GL032244.
[7] Y. Ren, B. Grecu, G. Stuart, G. Houseman, and E. Hegedus, and South Carpathian Project Working Group, “Crustal structure of the Carpathian–Pannonian region from ambient noise tomography”, Geophys. J. Int., vol. 195, pp. 1351–1369, 2013.
[8] A. Bala, D. Tataru, B. Grecu, and D. Toma-Danila, “Crustal structure models in western part of ROMANIA using cross correlation of seismic noise and receiver functions”, SGEM 2016 Conference Proceedings, 1, vol.3, pp. 443 -450, 2016.
[9] A. Bala, D. Toma-Danila, D. Tataru, and Grecu B., “Crustal models in western part of Romania and geodynamics behavior”, SGEM 2017 Conference Proceedings, vol. 17, issue 14, 41-48. 2017.
[10] European Reference Earth Model maps: http://www.bo.ingv.it/eurorem
[11] A. Morelli - NERIES JRA1 Report - “Developing a European seismological reference model”.
[12] I. Molinari, and A. Morelli, “EPcrust: a reference crustal model for the European Plate”, Geophysical Journal International, vol. 185(1), pp. 352-364, 2011.
[13] T.M. Brocher, “Empirical relations between elastic wavespeeds and density in the Earth’s crust”, Bull. Seism. Soc. Am., vol. 95(6), pp. 2081–2092, 2005.
[14] C. Bassin, G. Laske, and G. Masters, “The current limits of resolution for surfacewave tomography in North America”, EOS, Trans. Am. geophys. Un., vol. 81, pp. 48, 2000.
[15] L. Postpischl, P. Danecek, A. Morelli, and S. Pondrelli, “Standardization of seismic tomographic models and earthquake focal mechanisms data sets based on web technologies, visualization with keyhole markup language”, Computers & Geosciences, vol. 37(1), pp. 47-56, 2011.
[16] T. Janik, M. Grad, A. Guterch, J. Vozár, M. Bielik, A. Vozárova, E. Hegedus, C. Attila Kovács, I. Kovács, and G. Randy Keller, CELEBRATION 2000 Working Group, “Crustal structure of the Western Carpathians and Pannonian Basin: Seismic models from CELEBRATION 2000 data and geological implications”, Journal of Geodynamics, vol.52, pp. 97–113, 2011.