The complete chloroplast genome and phylogenetic analysis of *Artocarpus champeden*

Ying-Feng Niu and Jin Liu

Yunnan Institute of Tropical Crops, Xishuangbanna, China

ABSTRACT

Artocarpus champeden Spreng. is a popular fruit tree, grown in tropical and subtropical regions. Besides food, *A. champeden* is also a medicinal plant with various medicinal properties. In this study, *A. champeden* chloroplast genome was sequenced, assembled, and annotated due to its rich information on species evolution and inter-species genetic relationships. The quadripartite structure of *A. champeden* complete chloroplast genome is 158,568 bp in length and comprises a large single-copy region (LSC) of 88,076 bp, a small single-copy region (SSC) of 19,028 bp, and two inverted repeat regions (IRa and IRb) of 25,732 bp. A total of 131 genes were annotated, including 85 protein-coding genes, 37 tRNA genes, eight rRNA genes, and one pseudogene. Phylogenetic analysis revealed a close relationship between *A. champeden* and *A. heterophyllus*. In addition, the study provides abundant genomic information for future phylogenetic studies of *A. champeden* and the Moraceae family.

ARTICLE HISTORY

Received 14 May 2021
Accepted 27 September 2021

KEYWORDS

Chloroplast genome; phylogenetic analysis; *Artocarpus champeden*

CONTACT Jin Liu liujin06@126.com Yunnan Institute of Tropical Crops, Xishuangbanna, China

© 2021 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Chloroplast genome sequences of 22 species (Figure 1) of Moraceae family were downloaded from GenBank and used to study the phylogeny of *A. champeden*. Multiple sequence alignment was performed using MAFFT (Katoh and Standley 2013), the jModelTest 2.1.7 (David 2008) software was employed to analyze nucleotide substitutions model under the Akaike Information Criterion (AIC), the GTR $+$ G $+$ I model was selected for nucleotide and the maximum-likelihood analysis was conducted with RAxML8.2.4 (Stamatakis 2014). *Eriobotrya malipoensis*, which belongs to the Rosaceae family, was the out-group, and the node support was estimated from the results of 1000 bootstrap replicates. The phylogenetic analysis revealed a close relationship between *A. champeden* and *A. heterophyllus* (Figure 1). This study provides abundant genomic information for future phylogenetic studies of the Moraceae family.

Disclosure statement

No potential competing interest was reported by the authors.

Funding

This work was supported by [The Sci-Tech Innovation System Construction for Tropical Crops Grant of Yunnan Province] under Grant [No. RF2021]; and [The Technology Innovation Talents Project of Yunnan Province] under Grant [2018HB086].

Data availability statement

The genome sequence data that support the findings of this study are openly available in GenBank of NCBI at (https://www.ncbi.nlm.nih.gov/) under the accession no. MT900597. The associated BioProject, SRA, and Bio-Sample numbers are PRJNA703082, SRR13781753, and SAMN18011290 respectively.

References

Achmad SA, Hakim EH, Juliawaty LD, Makmur L, Suyatno 1996. A new prenylated flavone from *Artocarpus champeden*. J Nat Prod. 59(9): 878–879.

Boonlaksiri C, Oonanant W, Kongsaeree P, Kittakoop P, Tanticharoen M, Thebtaranonth Y. 2000. An antimalarial stilbene from *Artocarpus integer*. Phytochemistry. 54(4): 415–417.

David P. 2008. jModelTest: phylogenetic model averaging. Mol Biol Evol. 25(7): 1253–1256.

Hakim EH, Fahriyati A, Kau MS, Achmad SA, Makmur L, Ghisalberti EL, Nomura T. 1999. Artiodonesiamins A and B, two new prenylated flavones from the root of *Artocarpus champeden*. J Nat Prod. 62(4): 613–615.

Katoh K, Standley DM. 2013. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol. 30(4): 722–730.

Lim LBL, Chieng HI, Wimmer FL. 2011. Nutrient composition of *Artocarpus champeden* and its hybrid (Nanchem) in Negara Brunei Darussalam. AJSTD. 28(2): 122–138.

Lim SB, Chua CT, Hashim OH. 1997. Isolation of a mannose-binding and IgE- and IgM-reactive lectin from the seeds of *Artocarpus integer*. J Immunol Methods. 209(2): 177–186.

Lopes MMDA, Souza KOD, Silva EDO. 2018. Cempedak—*Artocarpus champeden*. Exotic Fruits. 121–127. https://doi.org/10.1016/B978-0-12-803138-4.000017-4

Figure 1. Maximum-likelihood tree based on the complete chloroplast genome sequences of *A. champeden* and 21 other species of the Moraceae family. *Eriobotrya malipoensis*, which belongs to the Rosaceae family is the out-group.
Shi LC, Chen HM, Jiang M, Wang LQ, Wu X, Huang LF, Liu C. 2019. CPGAVAS2, an integrated plastome sequence annotator and analyzer. Nucleic Acids Res. 47(W1):W65–W73.

Stamatakis A. 2014. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics. 30(9):1312–1313.

Syah YM, Juliawaty LD, Achmad SA, Hakim EH, Ghisalberti EL. 2006. Cytotoxic prenylated flavones from Artocarpus champeden. J Nat Med. 60(4):308–312.

Widyawaruyanti A, Subehan Kalauni SK, Awale S, Nindatu M, Zaini NC, Syafruddin D, Asih PBS, Tezuka Y, Kadota S. 2007. New prenylated flavones from Artocarpus champeden, and their antimalarial activity in vitro. J Nat Med. 61(4):410–413.

Zabidi MA, Aitz NAA. 2009. In vitro starch hydrolysis and estimated glycemic index of bread substituted with different percentages of champedak (Artocarpus integer) seed flour. Food Chem. 117(1):64–68.