Ag nanoparticles effect on BaTiO$_3$-Graphite-AC/Aluminum foil symmetric supercapacitor

S E I Suryani1, I Ristanti1, M Diantoro1,2,*, H Wisodo1, A Taufiq1,2, and N Mufti1,2

1Department of Physics, Faculty of Mathematics and Natural Sciences, Universitas Negeri Malang, Jl. Semarang 5 Malang 65145, Indonesia

2Center of Advanced Materials for Renewable Energy (CAMRY), Universitas Negeri Malang, Jl. Semarang 5 Malang 65145, Indonesia

*Corresponding author: markus.diantoro.fmipa@um.ac.id

Abstract. Many supercapacitor studies focus on materials that are inflexible and have low specific capacitance. The addition of low dimension metals such as silver nanoparticles (AgNP) into the BaTiO$_3$-Graphite-Activated Carbon (AC)/Aluminum foil showed a change in structure and morphology. The AC and graphite are generally used as necessary materials for supercapacitors. Adding AgNP is expected to increase the general mobility and specific capacitance of BaTiO$_3$-Graphite-AC/Aluminum foil. In this study, we report the effect of AgNP into Graphite-AC-BaTiO$_3$/Al foil symmetric supercapacitors. In the first step, we prepared nanocomposite comprises (x)AgNP-graphite-AC-BaTiO$_3$. The dense solution then deposited on to clean aluminum foil as an electrode. The symmetric supercapacitors were sandwiched using two electrodes separated by a separator and electrolyte. It is shown that the crystal structure and morphology change with the addition of AgNP. The Optimum capacitance of Ag-BaTiO$_3$-Graphite-AC/Aluminum foil supercapacitor obtained from LCR meter of 1.9×10^{-5} F/g and dielectric constant of 1.03×10^6. The cyclic voltammetry test for three-electrode systems produces a specific capacitance of 8.95 F/g and 0.83 F/g for testing two electrode systems. We obtained that the increase of AgNP increases the specific capacitance of the electrode and supercapacitor to the optimum at 0.06 g Ag.

1. Introduction

Recently, the rapid growth of the human population requires fossil fuels as a sustainable source of energy is very inefficient [1]. Therefore, meeting energy needs with environmentally friendly and high efficiency is now significant and necessary [2]. Energy storage technology systems are needed [3], which are as crucial as generators and harvesting energy. At present, batteries and supercapacitors have been developed as energy storage devices [4,5]. Supercapacitors receive more attention because of their high power density, upper operational age, and charging speed [6,7]. Supercapacitors have experienced significant development in recent years [8]. Recalling the emergence and development of portable electronic devices has become very widespread in everyday life [8]. In general, supercapacitors are divided into three categories: symmetric, asymmetric, and hybrid SC [9].

So far, symmetric supercapacitor research has been carried out by composites metal oxides with conductive carbon and polymers [10–13]. Researchers have produced AC-based supercapacitors [14], graphene [15], CNT [8], and graphite [16]. The carbon material is used because it shows excellent chemical / physical stability of high electrical and thermal conductivity, cheap, and environmentally friendly [17]. Graphene with maximum porosity has large capacitance values of 135 and 99 F/g [8]. But
Graphene is relatively expensive, so alternative materials such as graphite are needed. Graphite is an electrode candidate with superior chemical stability in electrical properties, mechanical properties, and large surface area [18].

Barium titanate (BaTiO$_3$) is a porous ceramic formed by ionic or covalent bonds [19]. BaTiO$_3$ is a good dielectric material [20]. Because of these beneficial properties, BaTiO$_3$ is widely applied in various fields such as semiconductors, capacitors, solar cells, microphones, electrodes, etc. [19,21]. To optimize the performance of BaTiO$_3$ as a dielectric material, it is necessary to compose with material which has superior properties such as graphite and carbon. Research has been carried out that the addition of AgNP material to activated carbon increases the porosity and capacitance of Ag@Carbon active film [14]. This is because Ag is an electroactive porous material suitable for electrolyte ions with high capacitance. Because it is difficult to find in the study literature on Ag-BaTiO$_3$-Graphite-AC electrode-based supercapacitors, this research needs to be done. The addition of AgNP with mass variations is needed to determine the optimum capacitance value. Whereas the flexibility requirements can be obtained from the use of aluminum foil substrate which is conductive, inexpensive, and is often used to improve the performance of supercapacitor electrodes [22]. This research is focused on making Ag-BaTiO$_3$-Graphite-AC/Aluminum foil material by increasing the capacitance of the material and forming a flexible supercapacitor device.

2. Methods

2.1. Synthesis Ag nanoparticles
Ag nanoparticles are synthesized using chemical reduction methods. The raw material used in this work were silver nitrate (AgNO$_3$ 99.9%), Sodium Borohydride (NaBH$_4$ 99.9%), and mercaptosuccinic acid (MSA 99.9%). Initially, 0.03 M MSA was dissolved in 400 mL of methanol and then stir at a speed of 700 rpm in an ice bath at a temperature of 5-10 °C. We add 0.3 M AgNO$_3$ in the mixed solution. Furthermore, we added 0.2 M NaBH$_4$ drop-by-drop using a burette for 2 hours into the solution. After completed, the solution was further stirred for 30 minutes at a speed of 700 rpm at 5-10 °C. The yielded solution was then washed three times using 200 mL methanol. Then, Ag nanoparticle powders were filtered using Whatman paper and subsequently dried at 50 °C.

2.2. Fabrication of Ag-BaTiO$_3$-Graphite-AC/Aluminum foil electrode
The working electrode was fabricated by mixing 75 wt% of the active material Ag-BaTiO$_3$-AC, 15 wt% of a conductive agent (graphite), and 10 wt% of the binder (PVDF). The materials were purchased from Sigma-Aldrich and Merck. Powder crushed for 1 hour using a pestle and mortar. Then, the homogenous powder was dissolved in NMP solvent with a speed of 500 rpm at 80 °C for 3 hours until a homogeneous slurry was achieved. The coating process on Aluminum foil (1 x 2 cm2 working area) using a doctor blade method. After that, the film was dried on a hotplate at 80 °C for 3 hours. The process was repeated with the same steps for variations of 0, 0.02, 0.04, 0.06, 0.08, and 0.1 g AgNP mass.

2.3. Assembly of symmetric supercapacitor
Ag-BaTiO$_3$-Graphite-AC/Aluminum foil electrode was selected as active materials for the positive and negative electrode. The electrolyte solution was made by mixing H$_3$PO$_4$ with DI water at a magnetic stirrer at a speed of 800 rpm at 80 °C, and the separator was polyethylene paper. The schematic illustration arrangement of a symmetric supercapacitor, as illustrated in Figure 1.

The structure and phase of the electrode were identified using the X-Ray Diffractometer instrument with Cu-Kα radiation (λ = 1.5418 Å). The electrode morphology was characterized by SEM. The capacitance under the influence of frequency was recorded using LCR AC Keithley merk. The electrochemical studies of the electrodes and supercapacitors were carried out from instrument Cyclic voltammetry (CV) using Gamry Instrument Interface 6000 in a standard two and three-electrode cell system.
Figure 1. Schematic illustration of symmetric supercapacitor

3. Results and Discussion

3.1. Structural analysis

3.1.1. Ag nanoparticles

The silver nanoparticles (AgNP) have been successfully synthesized using a chemical reduction method with a crystal size of 43.1678 nm using the Debye Scherrer equation. AgNP has five diffraction peaks at 2θ of 38.05°, 44.21°, 64.35°, 77.33°, and 81.49° associated to the Bragg’s planes of (111), (200), (220), (311) and (222) respectively. This result is suitable with the reported work of Singh et al., where the main peak of AgNP is at an angle of 2θ = 38.08°, 44.26°, 64.37°, 77.30°, and 81.44°[23]. Further analyses of the crystal parameters were fitted using a model of AMCSD no. 001135. The crystal lattice parameters of the AgNP model are $a = b = c = 4.08620 \text{ Å} = 4.0905 \text{ Å} = 4.0905 \text{ Å}$, ($\alpha = \beta = \gamma = 90^\circ$), the crystal lattice volume was 68.23 Å3 under Fm-3m cubic space group. The result of the refinement using GSAS software is shown in Figure 2. The lattice parameter $a = b = c = 4.0905 \text{ Å}$, ($\alpha = \beta = \gamma = 90^\circ$), and the crystal lattice volume is 68.447 Å3. The results obtained are not much different between AgNP synthesis and model data.

![Figure 2. The diffraction pattern of AgNP refinement by GSAS software](image)

3.1.2. Ag-BaTiO$_3$-Graphite-AC/Aluminum foil electrode

Positive and negative electrodes of symmetric supercapacitors were made of Ag-BaTiO$_3$-Graphite-AC materials. The diffraction pattern of Ag-BaTiO$_3$-Graphite-AC/Aluminum foil with mass variations 0.02 – 0.1 Ag is shown in Figure 3. Composite films were successfully synthesized by the presence of Ag, BaTiO$_3$, AC phase as an active material, and graphite as a conductive agent.
Figure 3. The diffraction pattern of Ag-BaTiO₃-Graphite-AC/Aluminum foil electrodes

The most definite diffraction peaks of Ag nanoparticles appeared at an angle of 2θ = 38.03°, 44.17°, 64.37°, 77.33°, and 81.43° which were specific to Ag nanoparticles. AgNP mass increases from 0.02-0.1 g. The peak intensity of Ag is increase as the mass of AgNP in the film is increasing. This result will further be discussed by comparing it with the results of EDX. The diffraction pattern of BaTiO₃ on the nanocomposite film showed 2θ = 21.86°, 31.32°, 38.60°, 45.24°, 50.52°, 56.04°, and 74.44° with cubic phase and space group Pm-3m. This diffraction pattern is not much different from previous studies by Singh et al. namely, at 2θ peaks at 22.208°, 32.17°, 38.898°, 45.590°, 50.812°, 56.127°, and 74.788° correspond to the (100), (110), (110), (111), (200), (210), (211), (310) planes of BaTiO₃ (COD no. 4124442) [19]. Furthermore, the diffraction pattern of graphite at 2θ = 26.58° with tetragonal phase and space group Fm-3m which is accordance with Devrim et al research that is the highest diffraction peak at 2θ = 26.5° in the (002) plane (AMCSD no. 0000049) [24]. Besides that, visible diffraction peaks of aluminum foil as an electrode substrate due to its conductive nature and film thickness are also one of the factors. Manikanda et al, have shown that the strong diffraction 20 peaks at 38.52°, 44.76°, 65.14°, 78.26°, and 99.11° which appropriate with planes of (111), (200), (220), (311), (400) respectively. It indicates the pure aluminum phase [25]. The results of crystal structure analysis of Ag-BaTiO₃-Graphite-AC composite films using the GSAS software to determine the lattice parameters, atomic position, and crystal size are shown in Table 1.

Table 1. Crystal structure parameters of AgNP	0.02	0.04	0.06	0.08	0.1
Parameter					
Crystal system	Cubic	Cubic	Cubic	Cubic	Cubic
Space group	Fm-3m	Fm-3m	Fm-3m	Fm-3m	Fm-3m
a = b = c (Å)	4.1002	4.0944	4.0997	4.1002	4.0994
Atomic position of Ag	0; 0; 0	0; 0; 0	0; 0; 0	0; 0; 0	0; 0; 0
χ²	2.626	2.453	1.893	1.812	1.756
Rwp	0.3215	0.3185	0.2794	0.2702	0.2639
Rp	0.2361	0.2346	0.2039	0.1983	1.962
The particle sizes of Ag, BaTiO$_3$, and graphite on Ag-BaTiO$_3$-Graphite-AC/Aluminum foil composite films were obtained from a calculation using the Scherrer equation. Particle size of AgNP with the addition of Ag mass 0.02, 0.04, 0.06, 0.08, and 0.1 g respectively produced AgNP sizes of 41.70, 32.75, 26.11, 39.9, and 40.01 nm. The particle size of BaTiO$_3$ has changed along with the addition of AgNP mass, namely 42.67, 38.24, 32.37, 39.50, and 39.74 nm. Besides, the particle size of graphite also changed, namely 49.87, 43.96, 36.25, 48.06, and 48.35 nm. The addition of AgNP mass resulted in an optimum decrease of particle size at 0.06 g which can be seen in Figure 4. From the Figure, it can be seen that the addition of AgNP mass has a specific limit. This limit is estimated to be a competition between the amount of AgNP and the interaction between AgNP and other compounds. This interaction is believed to be a surface interaction with hydrogen bonds or van der Waals which allows the modification of some Ag into Ag ions. The pattern of particle size change due to the addition of AgNP mass is believed to affect other physical properties.

![Figure 4. AgNP particle size as a function of adding Ag mass](image)

3.2. Morphology Analysis of AG-BaTiO$_3$-Graphite-AC/Aluminum foil electrodes

The morphology of the Ag-BaTiO$_3$-Graphite-AC/Aluminum foil electrode film with the mass variation of AgNP particle mass is shown in Figure 5. Figure 5a shows AgNP powders forming granules that spread and have very wide pores. Ag-BaTiO$_3$-Graphite-AC/Aluminum foil composite electrode film with AgNP mass variation from 0-0.1 g can be seen in Figure 5 (b-g). The more AgNP in the composites shows that the distribution of grains in the film also enhanced. Agglomerated particles of AgNP and BaTiO$_3$ spread on the surface of the graphite sample in the form of plates/layers [16] and fill the cavities of activated carbon. This phenomenon is originated by activated carbon material, which pore size tends to the larger, rough, and irregular surface [25]. Figure 5h is a diagram of the percentage of elemental content (Ag, C, Ba, Ti, O) on the nanocomposite film, which is the result of EDX. EDX analysis is to confirm the elemental composition of the samples. The existence of the C element is indicating the presence of activated carbon and graphite [24]. The Ba, Ti, O are elements building of BaTiO$_3$ [26]. While the Ag is an element showing AgNP, which was intentionally added into the composites [27]. Increasing variations in the mass of AgNP causes the value of percent atomic AgNP to be even higher. The mass of AgNP from EDX results is 5.73, 10.39, 12.21, 15.62, and 18.1%.
Dielectric properties of the symmetric supercapacitor

Dielectricity is obtained from the calculation of capacitance supercapacitor (C), which has been measured using LCR AC with the application of a frequency of 100 Hz - 200 kHz. Before composite with AgNP, the value of the film capacitance is 1.5×10^{-5} F/g. This proves that the addition of AgNP mass can increase the capacitance of BaTiO$_3$-Graphite-AC/Aluminum foil films. Capacitance is affected by the frequency charged. In this discussion, frequency is the time taken by supercapacitors to reach half of the low dielectric relaxation time to determine the capacitance value [28]. It can be seen that the greater the frequency given; the resulting capacitance value of the film decreases. The increase of frequency provides the transmitted waves to increase every second. Before the polarization is fully formed, a vacuum occurs due to the direction of the electric current reversing so that the capacitance is reduced [29]. Figure 6a shows the capacitance as a function of frequency variation. We found that, as the frequency increases, the capacitance decreases. Maximum capacitance at 0.06 g AgNP mass at 100Hz gram frequency is 1.9×10^{-5} F/g and decreases when adding Ag mass 0.08 g to 0.1 g. Similar studies have been carried out that the addition of AgNP increases the value of capacitance [30]. This pattern is influenced by the additional mass of AgNP, which will cause the supercapacitor film to decrease [31]. On the other hand, capacitance is also affected by the grain size of the film electrode. The smaller AgNP size causes the capacitance to increase because AgNP plays a role in facilitating ion transfer at the electrodes [32].

The dielectric constant of the Ag-BaTiO$_3$-Graphite-AC/Al foil supercapacitor is calculated using Equation 1.

$$\varepsilon_r = \frac{Cd}{\varepsilon_o A}$$

(1)
The greater the capacitance may increase linearly the dielectric constant. Figure 6b the dielectric constant decreases with increasing frequency. Large dielectric constants at low frequencies can be associated with lower electrostatic binding forces, which arise due to the polarization of the space charge near the grain boundary interface [33]. The greater addition of AgNP increases the capacitance and dielectric constant because of the higher the mass of the polarized part [11], [13]. But in this study, the optimum addition of AgNP to produce the best dielectric constant is at the mass of AgNP 0.06 g and then begins to decrease at a higher mass of AgNP 0.08 to 0.1 g. This relates to the specific capacitance, which is influenced by grain size. The smallest grain size is at the addition of 0.06 g AgNP mass, which is 26.11 nm. The maximum capacitance value is 1.9×10^{-5} F/g to produce a dielectricity of 1.03×10^6.

Figure 6. The capacitance of (a) supercapacitor Ag-BaTiO$_3$-Graphite-AC/Aluminum foil and (b) dielectricity at different frequencies

3.4. Electrochemical Studies

3.4.1. Three electrode cell assembly

The electrochemical performance of the supercapacitor electrode is represented from the voltammetric cyclic curve area of the three-electrode system using a 0.5 M H$_3$PO$_4$ electrolyte solution. Figure 7 is a voltammetric cyclic curve from Ag-BaTiO$_3$-Graphite-AC/Aluminum foil electrode measurements with variations in the addition of AgNP at a scan rate of 20 mV/s. The rectangular shape of the CV curve shows the ideal pseudocapacitive behavior of all electrodes [34] and shows that the electrodes have excellent capacitance performance [35]. The specific capacitance value can be calculated from the voltammetric cyclic curve using Equation 2.

$$C_s = \frac{1}{2 \times v \times \Delta m \times \Delta V} \int I(V) dV \tag{2}$$

The graph of adding AgNP on the specific capacitance of the electrode is shown in Figure 7a. The addition of AgNP affects the capacitance of the electrode. The specific capacitance of AgNP variations of 0, 0.02, 0.04, 0.06, 0.08, and 0.1 g are 4.50, 6.81, 7.73, 8.95, 6.99, and 4.66 F/g at the scan rate of 5 mV/s, respectively. BaTiO$_3$-Graphite-AC/Aluminum foil electrodes show a specific influence on specific capacitance as AgNP increase. According to previous studies that the addition of AgNP increases specific capacitance due to increased contact between electrolyte ions and the surface of the electrode [35]. The optimum specific capacitance is at the addition of 0.06 g AgNP mass of 8.95 F/g and then decreases. This decrease in capacitance is influenced by the excess of AgNP in the composite so that AgNP is oxidized to Ag(1) [36]. Besides, the decrease in capacitance is influenced by the particle size of AgNP.
Figure 7. The CV curves of (a) electrode supercapacitor (x)Ag-BaTiO$_3$-Graphite-AC/Aluminum foil and (b) specific capacitance

3.4.2. Two electrode cell assembly
Symmetric supercapacitor capacitance performance can be obtained through the voltammetric cyclic curve area of the two electrode system tests. Figure 8a is a voltammetric cyclic curve from Ag-BaTiO$_3$-Graphite-AC/Aluminum foil symmetric supercapacitor measurements with variations in the addition of AgNP at a scan rate of 20 mV/s. The rectangular shape of the CV curve shows the ideal pseudocapacitive behavior of all electrodes [34] and shows that the electrodes have excellent capacitance performance [35]. The specific capacitance of the supercapacitor on the addition of Ag 0, 0.02, 0.04, 0.06, 0.08, and 0.1 g are respectively of 0.37, 0.49, 0.6, 0.83, 0.76, and 0.49 F/g as shown in Figure 8b.

Figure 8. The CV curves of (a) symmetric supercapacitor (x)Ag-BaTiO$_3$-AC/Aluminum foil and (b) specific capacitance

Supercapacitors with the addition of AgNP have greater capacitance than BaTiO$_3$-Graphite-AC/Aluminum foil supercapacitors. In accordance with previous studies that the addition of AgNP increases the specific capacitance of the supercapacitor due to increased contact between the electrolyte ion and the surface of the electrode [35]. The optimum specific capacitance of the supercapacitor is at the mass variation of AgNP 0.06 g as in the electrode capacitance. Furthermore, the capacitance value can determine the value of the supercapacitor energy density by Equation 3.

$$ED = \frac{1}{2}C_{\text{b}}(\Delta V)^2 = \frac{1}{2}m(\Delta V)^2$$

Equation 3

The energy densities of supercapacitor are 0.03, 0.04, 0.05, 0.07, 0.06 and 0.04 Wh/kg at a scan rate of 20 mV/s associated to the increase of AgNP of 0, 0.02, 0.04, 0.06, 0.08, and 0.1 g respectively. This
supercapacitor energy density is just lower than the supercapacitor's energy density, which is 1-10Wh/kg. This is because the scan rate charged for testing two electrodes is higher than the three-electrode testing systems, resulting in low specific capacitance, which then affects the energy density value. The energy density of the electrodes at the 5 mV/s scan rate is 0.20, 0.31, 0.35, 0.40, 0.31 and 0.21 Wh/kg with the addition of AgNP mass 0, 0.02, 0.04, 0.06, 0.08 and 0.1 g.

Furthermore, the optimum capacitance i.e., the addition of Ag 0.06 g, is measured by the variation of the scan rate on the electrode and the supercapacitor device to determine the capacitance performance as shown in Figure 9. The specific capacitance decreases with increasing scan rate. This is related to the mechanism of ion exchange. At a low scan rate, the time needed for ions or molecules to enter into and interact with the active electrode is more, while at a high scan rate the time required is less so that the ions only interact with the electrode surface, which results in reduced specific capacitance [37].

![Figure 9](image)

Figure 9. The CV curves of (a) electrode and (b) symmetric supercapacitor at various scan rates

At the same scan rate of 20 mV/s, the specific capacitance of the three-electrode system is greater than that of the two electrode system because in the three-electrode system the only electrode is tested so that it gets the capacitance of electrode only. As for the two electrode system (supercapacitor device) will get the actual capacitance value of the material. Another factor is that the current in the two-electrode system will be half of the current in the three-electrode system [38]. The two different systems will produce different specific capacitance values.

4. Conclusion

The greater the mass of AgNP in BaTiO$_3$-Graphite-AC/Aluminum foil reduces the AgNP size to the optimum value at 0.06 g and rises for a larger AgNP mass. The symmetric supercapacitor shows the performance of the dielectric constant to the optimum value at 0.06 g and falls for a larger Ag mass for all frequency ranges. The application of frequencies from 100 Hz-200 kHz causes the capacitance to decrease exponentially. Fabricated electrode film systems have shown values far above conventional capacitors and are at the lower limit of the supercapacitor system. The greater the mass of AgNP added to the Ag-BaTiO$_3$-Graphite-AC/Aluminum foil film increases the specific capacitance and energy density to the optimum value at 0.06 g and decreases for greater Ag mass. The pattern of changes in AgNP mass variation to specific capacitance is also shown by the symmetric supercapacitor system.

References

[1] Xu X, Liu J, Ouyang X, Cui L, Hong J and Meng X 2019 In-situ temperature regulation of flexible supercapacitors by designing intelligent electrode with microencapsulated phase change materials *Electrochimica Acta* 135551

[2] Bao Q, Wu J, Fan L, Ge J, Dong J, Jia J, Zeng J and Lin J 2017 Electrodeposited NiSe2on carbon
fiber cloth as a flexible electrode for high-performance supercapacitors. *J. Energy Chem.*

[3] Miller J R and Simon P 2008 MATERIALS SCIENCE: Electrochemical Capacitors for Energy Management. *Science* 321 651–2

[4] Mastragostino M, Soavi F and Arbizzani C 2002 Electrochemical Supercapacitors. *Advances in Lithium-Ion Batteries* ed W A van Schalkwijk and B Scrosati (Boston, MA: Springer US) pp 481–505

[5] Bavio M A, Acosta G G and Kessler T 2015 Energy storage in symmetric and asymmetric supercapacitors based in carbon cloth/polyaniline-carbon black nanocomposites: Energy storage in supercapacitors of carbon cloth/PANI-carbon black. *Int. J. Energy Res.* 39 2053–61

[6] Parveen S, Kavyashree and Pandey S N 2020 Embedded coral reef sponge like structured Al(OH)3/FeOOH composite for flexible solid-state symmetric supercapacitor. *J. Power Sources* 445 227304

[7] Mazen Yassine and Drazen Fabris 2017 Performance of Commercially Available Supercapacitors. *Energies* 10 1340

[8] Deng L, Gu Y, Gao Y, Ma Z and Fan G 2017 Carbon nanotubes/holey graphene hybrid film as binder-free electrode for supercapacitors. *J. Colloid Interface Sci.* 494 355–62

[9] Conte M 2010 Super capacitors Technical Requirements for New Applications. *Fuel Cells* 10 806–18

[10] Diantoro M, Mustikasari A A, Wijayanti N, Yogihati C and Taufiq A 2017 Microstructure and dielectric properties of cellulose acetate-ZnO/ITO composite films based on water hyacinth. *J. Phys. Conf. Ser.* 853 012047

[11] Suryani S E I, Sa’adah U, Amini W N L, Suprayogi T, Mustikasari A A, Taufiq A, Sunaryono, Diantoro M and Nur H 2018 Effect of ZnO and Annealing on the Hydrophobic Performance of x(ZnO)-CA-PLA. *J. Phys. Conf. Ser.* 1093 012003

[12] Mustikasari A A, Diantoro M, Mufti N and Suryana R 2018 The Effect of Nano ZnO Morphology on Structure, Dielectric Constant, and Dissipation Factor OF CA-Nano ZnO/ITO Films. *J. Neutrino* 10 65

[13] Diantoro M, Suryanti L, Uliyahanun Zuhri F, Elya Intan Suryani S and Chuenchom L 2019 Manganese Oxide and Temperature Induced on Microstructure and Electrical Properties of Graphene-(Mn3O4)x-ZnO/Ni Foam. *IOP Conf. Ser. Mater. Sci. Eng.* 515 012097

[14] Rodrigues A C, Da Silva E L, Quirino S F, Cuña A, Marcuzzo J S, Matsushima J T, Gonçalves E S and Baldan M R 2018 Ag@activated carbon felt composite as electrode for supercapacitors and a study of three different aqueous electrolytes. *Mater. Res. Res.* 22 1–9

[15] Haneef M, Saleem H and Habib A 2017 Use of graphene nanosheets and barium titanate as fillers in PMMA for dielectric applications. *Synth. Met.* 223 101–6

[16] Aval L F, Ghoranneviss M and Pour G B 2018 High-performance supercapacitors based on the carbon nanotubes, graphene and graphite nanoparticles electrodes. *Heliyon* 4 e00862

[17] Guo H, Liu Z, Li H, Wu H, Zhang C, Yang J and Chen X 2017 Active carbon electrode fabricated via large-scale coating-transfer process for high-performance supercapacitor. *Appl. Phys. Mater. Sci. Process.* 123

[18] Kim K S and Park S J 2012 Bridge effect of silver nanoparticles on electrochemical performance of graphite nanofiber/polyaniline for supercapacitor. *Synth. Met.* 162 2107–11

[19] Singh M, Yadav B C, Ranjan A, Kaur M and Gupta S K 2017 Synthesis and characterization of perovskite barium titanate thin film and its application as LPG sensor. *Sens. Actuators B Chem.* 241 1170–8

[20] Mahbub R, Fakhrul T and Islam M F 2013 Enhanced dielectric properties of Tantalum Oxide doped Barium Titante based ceramic materials. *Procedia Eng.* 56 760–5

[21] Singh S, Dey S S, Singh S and Kumar N 2017 Preparation and Characterization of Barium Titante Composite Film. *Mater. Today Proc.* 4 3300–7

[22] Stawski T M, Veldhuis S A, Göbel O F, Ten Elshof J E and Blank D H A 2010 Effects of Reaction Medium on the Phase Synthesis and Particle Size Evolution of BaTiO3: Effects of Reaction
Medium on Particle Size of BaTiO3

[23] Singh A, Gaud B and SandeshJaybhaye 2019 Optimization of Synthesis Parameters of Silver Nanoparticles and Its Antimicrobial Activity Mater. Sci. Energy Technol.

[24] Devrim Y and Albostan A 2016 Graphene-Supported Platinum Catalyst-Based Membrane Electrode Assembly for PEM Fuel Cell J. Electron. Mater. 45 3900–7

[25] Pandey B K, Khan S H and Chattree A 2016 Preparation and Characterization of Activated Carbon Derived From Rice Husk by NaOH Activation Int. J. Math. Phys. Sci. Res. 3 158–64

[26] Lara J P H, Labra M P, Hernández F R B, Serrano J A R, Dávila E O Á, Thangarasu P and Ramirez A H 2017 Structural evolution and electrical properties of BaTiO3 doped with Gd3 Mater. Res. 20 538–42

[27] Balavijayalakshmi J and Ramalakshmi V 2017 Carica papaya peel mediated synthesis of silver nanoparticles and its antibacterial activity against human pathogens J. Appl. Res. Technol.

[28] Jiao C, Xu J L, Chen X Y and Zhang Z J 2019 Design and synthesis of phosphomolybdic acid/silver dual-modified microporous carbon composite for high performance supercapacitors J. Alloys Compd. 791 1005–14

[29] Azizah Fi 2008 Kajian Sifat Listrik Membran Selulosa Asetat yang Direndam Larutan Asam Klorida dan Kalium Hidroksida (Bogor: IPB)

[30] Kalambate P K, Dar R A, Karna S P and Srivastava A K 2015 High performance supercapacitor based on graphene-silver nanoparticles-polypyrrole nanocomposite coated on glassy carbon electrode J. Power Sources 276 262–70

[31] Liu P, Liu J, Cheng S, Cai W, Yu F, Zhang Y, Wu P and Liu M 2017 A high-performance electrode for supercapacitors: Silver nanoparticles grown on a porous perovskite-type material La 0.7 Sr 0.3 CoO 3−Δ substrate Chem. Eng. J. 328 1–10

[32] Wee G, Mak W F, Phonthammachai N, Kiebele A, Reddy M V., Chowdari B V R, Gruner G, Srinivasan M and Mhaisalkar S G 2010 Particle size effect of silver nanoparticles decorated single walled carbon nanotube electrode for supercapacitors J. Electrochem. Soc. 157

[33] Suresh T, Rajkumar G, Singh S P, Reddy P Y, Islam A, Han L and Chandrasekharam M 2013 Novel ruthenium sensitizer with multiple butadiene equivalent thienyls as conjugation on ancillary ligand for dye-sensitized solar cells Org. Electron. 14 2243–2248

[34] Faridi M, Nari A, Kalhor H and Dadjoo M H 2017 A comparative study on Ag-doped and surfactant assisted MnO2 prepared by direct and pulse current electrodeposition on surgical grade stainless steel as high-performance supercapacitor J. Braz. Chem. Soc. 28 168–78

[35] Guan X, Cao L, Huang Q, Kong D, Zhang P, Lin H, Li W, Lin Z and Youn H 2019 Direct Writing Supercapacitors Using a Carbon Polymers 11

[36] Gan J K, Lim Y S, Huang N M and Lim H N 2015 Hybrid silver nanoparticle/nanocluster-decorated polypyrrole for high-performance supercapacitors RSC Adv. 5 75442–50

[37] Nagamuthu S and Ryu K-S 2019 Synthesis of Silver Hollandite Nanorectangular Cuboids as Negative Electrode Material for High-Performance Asymmetric Supercapacitors and Lithium-Ion Capacitors Batter. Supercaps 2 91–103

[38] Suroshe J S and Garje S S 2015 Capacitive behaviour of functionalized carbon nanotube/ZnO composites coated on a glassy carbon electrode J. Mater. Chem. A 3 15650–60

Acknowledgment
This research was supported by the Ministry of Research and Higher Education through the master grant 2019 [19.3.33/UN32.14.1/LT/2019].