Clinical paper

Public attitudes towards bystander CPR and their association with social deprivation: Findings from a cross sectional study in North England

Karl Charltona,1,*, Jason Scottb,1, Laura Blaira, Stephanie Scottc, Graham McClelland a, Tom Davidsond, Emma Burrowa, Alex Masona

Abstract

Background: Bystander cardiopulmonary resuscitation (BCPR) is undertaken in only 40% of out of hospital cardiac arrests (OHCAs) in the UK. Lower rates of BCPR and public access defibrillator (PAD) use have been correlated with lower socio-economic status (SES). The aim of this study was to examine knowledge and attitudes towards BCPR and PAD’s using a study specific questionnaire, and to understand how these potentially interact with individual characteristics and SES.

Methods: Cross-sectional study between July-December 2021 across areas of varying SES in North England.

Results: Six hundred and one individuals completed the survey instrument (mean age = 51.9 years, 52.2 % female). Increased age was associated with being less willing to call 999 (p < 0.001) and follow call handler advice (p < 0.001). Female respondents were less comfortable performing BCPR than male respondents (p = 0.006). Individuals from least deprived areas were less likely to report comfort performing CPR (p = 0.016) and less likely to know what a PAD is for, (p = 0.025). Higher education level was associated with increased ability to recognise OHCA (p = 0.005) and understanding of what a PAD is for (p < 0.001). Individuals with higher income were more likely to state they would follow advice regarding BCPR (p = 0.017) and report comfort using a PAD (p = 0.029).

Conclusion: Individual characteristics such as age and ethnicity, rather than SES, are indicators of knowledge, willingness, and perceived competency to perform BCPR. Policy makers should avoid using SES alone to target interventions. Future research should examine how cultural identity and social cohesion intersect with these characteristics to influence willingness to perform BCPR.

Keywords: Cardio-pulmonary resuscitation, Bystander help, Defibrillator, Deprivation

Introduction

Background

Out of hospital cardiac arrest (OHCA) is a time-critical event. National Health Service (NHS) ambulance services treat approximately 30,000 OHCAs annually in the United Kingdom (UK), but survival rates remain low, around 7–8 % in the UK and 10 % in the United States (US). Bystander cardiopulmonary resuscitation (BCPR), CPR provided by witnesses to an OHCA not part of an organised emergency response system, is a critical link in the ‘Chain of Survival. BCPR is known to improve the rate of return of spontaneous circulation (ROSC) and more than doubles the chance of survival. For every 30 patients who receive BCPR, one additional life will be saved.

The proportion of members of the public trained to deliver BCPR, or use a public access defibrillator (PAD), remains poor; in the UK, BCPR is undertaken in only 40 % of OHCAs. In comparison, King County (Seattle, US) and Norway, report BCPR rates of 67 % and 73 % respectively, and there are clear opportunities for improvements in the UK. Community characteristics in which individuals live and work influence the likelihood they will suffer an OHCA, receive...
BCPR and survive.12 Neighbourhoods with lower rates of BCPR have been correlated with lower income, lower education level, and older or ethnically diverse populations.13–15 Across England significant variation exists in the proportion of patients receiving BCPR. North East and North Cumbria (NENC) is one of the most socially deprived regions in England, comprises large concentrations of high-risk neighbourhoods (high incidence of OHCA and low provision of BCPR), and is an outlier in BCPR rates compared to other English regions.5,17 A significant body of evidence exists supporting the effectiveness of BPCR, but initiatives aimed at improving the uptake of CPR training have yet to impact high-risk neighbourhoods.17,18 Factors preventing individuals in these neighbourhoods delivering BPCR or using a PAD, and the influence of markers of socio-economic status (SES), are unclear. These are important considerations when designing interventions to improve the uptake of BPCR, or when targeting initiatives at high-risk populations and neighbourhoods. The aim of this study was to examine knowledge and attitudes towards BPCR and PAD’s, and to understand how these potentially interact with individual characteristics and SES.

\textbf{Methods}

\textbf{Study design}
This cross-sectional survey was undertaken between July and December 2021.

\textbf{Setting}
The study was conducted in areas of varying SES across NENC, an area covered by two NHS ambulance services. North East Ambulance Service NHS Foundation Trust (NEAS) covers North East England, serving a population of 2.71 million people across urban and rural locations.19 North Cumbria is covered by North West Ambulance Service NHS Foundation Trust, serving a predominantly rural population of 496,200.20 NENC comprises the highest concentration of white British people in England and Wales.21

\textbf{Data sources}
Postcode areas of interest were identified by the number of OHCA’s attended by the ambulance service, the rate of BCPR as reported in the OHCA outcomes registry25 and the areas deprivation level identified using the Indices of Multiple Deprivation (IMD) (2019).23 Each lower layer super output area (LSOA) in NENC was obtained. The IMD ranks every LSOA by deprivation.

\textbf{Design and development of the survey instrument}
The survey instrument was based upon the Restart a Heart participant survey2019 and further developed to meet the specific study aims. The survey was paper-based and captured participant demographics, general health, knowledge and experience of, and willingness and competency to deliver, BPCR and use a PAD. The survey comprised a combination of categorical questions and 10-point Likert scales (1 = worst to 10 = best), chosen to maximise expression of feeling.22 Questions were dichotomised into four domains: 1) experience of CPR and PAD use, 2) knowledge of CPR and defibrillation, 3) willingness to perform CPR and use a PAD, and 4) competency, confidence and comfort of performing CPR and using a PAD (Supplementary file 1).

Categories of employment status were derived from the UK Household Longitudinal Study,25 categories of household income from the Government Statistical Service26 and occupation classifications from the Office of National Statistics (manager, professional, clerical etc.).27 Patient/public involvement helped develop relevant questions and piloted the survey instrument to ensure face validity, appropriateness and brevity. Feedback was incorporated into the final version of the survey instrument.

\textbf{Data collection and participants}
Research paramedics wearing ambulance uniform targeted busy commercial areas such as shopping centres and precincts, within LSOAs from least to most deprived. Consecutive members of the public were approached regarding study participation. Potential participants received a verbal explanation of the study and a participant information sheet comprising a unique study identification number to facilitate withdrawal. Willing participants then completed the paper-based survey. Eligible participants were aged \(\geq 18 \) years with mental capacity. Study participation was voluntary.

\textbf{Statistical analysis}
Participants with missing data were excluded from relevant analyses. Answers consisting of ‘not applicable’ or ‘prefer not to say’ were deemed to be missing data and ‘unsure’ answers were combined with ‘no’ where applicable to generate a dichotomous variable (‘yes’ or ‘no or unsure’). Office of National Statistics Standard Occupational Classification26 was used to group occupations into levels (‘yes’ or ‘no or unsure’). Office of National Statistics Standard Occupational Classification26 was used to group occupations into levels 1–4. The age variable met parametric assumptions whilst all other variables were considered to be non-parametric as they were either categorial or ordinal. We used an independent samples t-test when determining differences in dichotomous categorical data by age, with 95 \% confidence intervals. Spearman Rho correlations were used when examining associations between either ordinal independent variables or age, and the dependent ordinal variables. We used either Mann Whitney U with Monte Carlo Simulation or Kruskal-Wallis with Monte Carlo Simulation (Dunn’s pairwise test used for post-hoc analysis) when examining ordinal independent variables and categorical dependent variables. Fisher’s Exact Test with Monte Carlo Simulation was used when examining associations between categorical independent and dependent variables. Monte Carlo Simulations used a random seed and 99 \% confidence intervals. SPSS v26 was used for analyses with alpha level of 0.05. Statistical test results are reported following American Psychological Association 7th edition guidelines.28

\textbf{Ethics}
Health Research Authority approval was not required as participants were members of the public in non-healthcare settings (IRAS: 299065, 4th May 2021). The study received ethical approval from NEAS Research Ethics Committee on 1st July 2021 (NEAS/2021/299065). Willing participants provided verbal consent prior to completion of the survey instrument.

\textbf{Results}
A total of 603 individuals completed the survey instrument. Two participants later withdrew, resulting in 601 surveys for analysis. Results are reported in relation to participant characteristics and their relationship with the dependent variables, followed by SES
characteristics and their relationship with the dependent variables. Dependent variables are reported in Tables 1–4, each representing one of the four domains.

Participant characteristics

Age

600 (99.8 %) participants reported their age, with a mean age of 51.9 years (range = 18 to 95, standard deviation (SD) = 17.7). Age had a significant negative correlation with all five questions relating to participants’ willingness to help: increased age was associated with being less willing to call 999 ($r(597) = 0.153, p < 0.001$), follow advice ($r(597) = -0.167, p < 0.001$), help a family member ($r(598) = -0.159, p < 0.001$), help someone familiar ($r(598) = -0.183, p < 0.001$) and help a stranger ($r(598) = -0.119, p < 0.003$).

Age was not significantly associated with any other aspect of the four domains: experience of CPR, knowledge of CPR or competency, confidence and comfort of performing CPR (all $p > 0.05$).

Gender

Slightly more respondents ($n = 600, 99.8 %$) were female (52.2 %). There was a significant difference in being comfortable performing CPR ($U = 38835.5, p = 0.006$) with females ($n = 311, median = 5$) reporting less comfort than males ($n = 287, median = 7$). Gender was not associated with any aspect of experience or knowledge of CPR, or competency of performing CPR (all $p > 0.05$). There were no associations between gender and any other variable across the four domains (all $p > 0.05$).

Ethnicity

A total of 597 (99.3 %) participants reported their ethnicity, with the majority reporting white ethnicity ($n = 570, 95.5 %$). Ethnicity was significantly associated with knowledge of what CPR is for ($p < 0.001$); Asian/Asian British participants only constituted 2.3 % of the overall valid sample but constituted 12.2 % of respondents who reported not knowing what CPR is for. Ethnicity was also associated with knowledge of what a defibrillator is for ($p < 0.001$), where Asian/Asian British participants constituted 10.1 % of respondents who reported not knowing what a defibrillator is for. There were no associations between ethnicity and any other variable across the four domains (all $p > 0.05$).

General health

Participants ($n = 600, 99.8 %$) reported a median general health rating of 8 (range = 1 (very poor health) to 10 (excellent health), IQR = 3), with a statistically significant but very weak positive correlation with participants’ comfort using a defibrillator ($r(598) = 0.145, p < 0.001$). Those with higher general health were slightly more likely to be comfortable using a defibrillator. There were no associations between general health and any other variable across the four domains (all $p > 0.05$).

Socio-economic status characteristics

Indices of Multiple deprivation

Of participants that provided their postcode ($n = 586, 97.5 %$), the median IMD score was 4 ($n = 586$, range = 1–10, IQR = 5), with results slightly positively skewed with 134 (22.9 %) participants from postcodes representing most deprived areas (IMD score of 1), and 52 (8.9 %) participants from postcodes representing least deprived areas (IMD score of 10). IMD had a statistically significant but very weak negative correlation with comfort performing CPR ($r(582) = -0.091, p = 0.029$), with those from least deprived areas being slightly less likely to be comfortable performing CPR.

There was also a significant difference in IMD score between those who reported knowing what a PAD is for ($n = 483, median = 4$) versus those who didn’t ($n = 103, median = 3$; $U = 21349.5, p = 0.025$), those from more deprived areas were more likely to report knowing what a PAD is for. There were no associations between IMD and any other variable across the four domains (all $p > 0.05$).

Highest education level

Almost all participants ($n = 599, 99.7 %$) reported their highest education level, the most common of which was GCSE/GCE (General Certificate of Secondary Education/General Certificate of Education) ($n = 196, 32.6 %$). Highest education level (A level, undergraduate degree, postgraduate degree) was associated with participants feeling able to tell if someone was having a cardiac arrest ($p = 0.005$), compared to those with a lower educational level (none, GCSE). Highest education level was associated with knowing what a defibrillator is for ($p < 0.001$); of the respondents reporting this, 16.5 % had no education, whereas 33.0 % of respondents who did not know or were unsure, had no education. A total of 348 (58.1 %) participants said they would like more information about BCPR, with a greater proportion of those with A/AS level and postgraduate education reporting they would like more information ($p = 0.020$). There were no associations between highest education level and any other variable across the four domains (all $p > 0.05$).

Employment status

Nearly all participants ($n = 599, 99.7 %$) reported their employment status, with most being in paid employment ($n = 240, 39.9 %$). There were no associations between employment status and any variable across the four domains (all $p > 0.05$).

Occupation level

Only 490 (81.5 %) participants reported their occupation classification, the most common of which was retired ($n = 165, 27.5 %$). Occupation level significantly affected reported willingness to follow advice ($H(5) = 17.018, p = 0.005$). The post-hoc test identified strong evidence ($p = 0.032$) after adjusting for Bonferroni correction; a difference between those with level 2 occupations (mean rank = 263) and those retired (mean rank = 231); being retired was therefore associated with being less likely to be willing to follow advice than those in level 2 occupations (carer, clerical, plant and machine operatives, services and sales). There was no evidence of a difference between the other pairs. There were also no associations between occupation level and any other variable across the four domains (all $p > 0.05$).

Income

Only 478 (79.5 %) participants reported their income, with the largest number of participants ($n = 112, 23.4 %$) reporting an income of between £20,800 and £31,199. Median income was £31,200 to £41,599 (IQR = 3). Income was positively but very weakly significantly correlated with willingness to follow advice ($r(475) = 0.109, p = 0.017$), so individuals with a higher income were more willing to follow advice.

Income was positively but very weakly significantly correlated with being comfortable using a defibrillator ($r(476) = 0.097, p = 0.034$), meaning those with a higher income were more likely...
Table 1 – Experience of performing CPR and using a defibrillator

Variable	Have you ever performed CPR?	Have you ever used a defibrillator?						
	N	Yes	No or unsure	p value (MD, 95 % CI)	N	Yes	No or unsure	p value (MD, 95 % CI)
Age, N (mean, SD)	600	64 (50.7, 16.1)	536 (52.1, 17.9)	0.550 (−1.4, −3.2)	599	11 (50.1, 18.9)	588 (52.0, 17.7)	0.721 (−1.9, −12.5)
Gender, N (%)	600	63 (10.5)	537 (89.5)	0.971	600	11 (1.8)	589 (98.2)	0.873
Female N (%)	313	33 (52.4)	280 (52.1)		313	6 (54.5)	307 (52.1)	
Male N (%)	287	30 (47.6)	257 (47.9)		287	5 (45.5)	282 (47.9)	
Ethnicity, N (%)	597	64 (10.6)	533 (89.4)	0.819	597	11 (1.8)	586 (98.2)	0.177
White, N (%)	570	64 (100)	506 (94.9)		570	10 (90.9)	560 (95.6)	
Mixed/Multiple, N (%)	4	0	4		4	0	4	
Asian / Asian British, N (%)	14	1 (7.1)	13 (92.9)		14	2 (14.3)	12 (85.7)	
Black, African, or Black British, N (%)	4	0	4		4	0	4	
Other, N (%)	5 (0.8)	0 (0)	5 (0.9)		5 (0.8)	0 (0)	5 (0.9)	
General health, N (MR)	600	64 (286.5)	536 (302.2)	0.491	600	11 (356.1)	589 (299.5)	0.282
Indices of Multiple Deprivation score, N (MR)	586	525 (297.3)	0.110		585	10 (260.0)	575 (293.6)	0.531
Highest education level, N (%)	599	64 (10.7)	535 (89.3)	0.630	599	11 (1.8)	588 (98.2)	0.715
None, N (%)	117	10 (15.6)	107 (20.0)		117	1 (1.9)	116 (19.7)	
GCSE / GCE, N (%)	196	18 (28.1)	178 (33.3)		196	3 (27.3)	193 (32.8)	
AS / A level, N (%)	134	26 (20.0)	108 (80.0)		134	3 (27.3)	131 (22.3)	
Undergraduate, N (%)	86	15 (17.6)	71 (82.4)		86	3 (35.3)	83 (64.7)	
Postgraduate, N (%)	40	16 (40.0)	24 (60.0)		40	7 (17.5)	33 (82.5)	
Other, N (%)	26	4 (15.4)	22 (84.6)		26	3 (11.5)	23 (88.5)	
Employment, N (%)	599	64 (10.7)	535 (89.3)	0.665	599	11 (1.8)	588 (98.2)	0.431
Self-employed, N (%)	61	10 (16.4)	51 (83.6)		61	0 (0)	61 (100)	
Paid employment, N (%)	240	28 (11.7)	212 (88.3)		240	5 (2.1)	235 (97.9)	
Unemployed, N (%)	42	7 (16.7)	35 (83.3)		42	8 (19.0)	34 (81.0)	
Retired, N (%)	166	13 (13.2)	153 (86.8)		166	3 (4.8)	163 (95.2)	
Maternity leave, N (%)	4	0	4		4	0	4	
Looking after family, N (%)	44	37 (17.3)	77 (82.7)		44	2 (4.5)	42 (95.5)	
Full-time student, N (%)	8	1 (12.5)	7 (87.5)		8	1 (12.5)	7 (87.5)	
Long term sick / disabled, N (%)	37	35 (94.6)	2 (5.4)		37	3 (8.1)	34 (92.0)	
Something else, N (%)	4	0	4		4	0	4	
Occupation, N (%)	490	440 (89.8)	40 (10.2)	0.059	490	481 (98.2)	19 (1.8)	0.566
Level 1, N (%)	63	53 (84.9)	10 (15.1)		63	61 (97.5)	2 (2.5)	
Level 2, N (%)	146	130 (89.0)	16 (11.0)		146	144 (98.6)	2 (1.4)	
Level 3, N (%)	57	55 (96.5)	2 (3.5)		57	57 (100)	0 (0)	
Level 4, N (%)	49	40 (81.6)	9 (18.4)		49	47 (95.9)	2 (4.1)	
Retired, N (%)	165	153 (92.3)	12 (7.7)		165	162 (98.1)	3 (1.9)	
Other, N (%)	10	9 (90.0)	1 (10.0)		10	10 (100)	0 (0)	
Income, N (MR)	478	425 (88.8)	53 (11.2)	0.724	478	468 (97.4)	10 (2.6)	0.973

* significant at p < 0.05.

CI = confidence interval, CPR = cardiopulmonary resuscitation, MD = mean difference, MR = mean rank, SD = standard deviation.
Table 2 – Knowledge of cardiac arrest, CPR and defibrillator

Variable	Do you know how to tell if someone is having a cardiac arrest?	Do you know what CPR is for?	Know what a defibrillator is for?	Would you like more information on CPR?								
	N	Yes	No or p value (MD, CI)	N	Yes	No or p value (MD, CI)	N	Yes	No or p value (MD, CI)	N	Yes	No or p value (MD, CI)
Age, N (mean, SD)	600	144	(50.2, 16.2)	600	526	(51.9, 17.4)	600	491	(51.9, 17.4)	600	348	(48.9, 17.2)
	117	52.6	(22.3, −5.6 to 11.1)	74	52.6	(20.0, −5.1 to 3.6)	109	52.3	(4.4, −1.0 to 3.3)	<0.001		
Gender, N (%)	600	457	0.443	600	526	0.063	600	491	0.751	600	348	0.246
	117	45.7	(12.3)	196	74	(18.2)	128	41	(22.4)	79		
Ethnicity, N (%)	597	144	0.520	597	523	0.001*	586	488	0.020*	586	345	0.135
	117	45.7	(12.3)	570	508	(83.8)	570	476	(86.2)	570	323	(98.0)
White, N (%)	586	144	0.176	586	523	0.717	586	492	0.450	586	343	0.748
	117	45.7	(12.3)	600	526	(298)	600	492	(298)	600	349	(292)
General health, N (MR)	586	144	0.025*	586	523	0.020*	586	488	(291)	586	343	(291)
	117	45.7	(12.3)	570	508	(83.8)	570	476	(86.2)	570	323	(98.0)
Indices of Multiple deprivation score, N (MR)	597	144	0.520	597	523	0.001*	586	488	0.020*	586	345	0.135
	117	45.7	(12.3)	570	508	(83.8)	570	476	(86.2)	570	323	(98.0)
Highest education level, N (%)	599	143	0.005*	599	525	0.059	599	490	0.001*	599	348	0.013
	117	45.7	(12.3)	570	508	(83.8)	570	476	(86.2)	570	323	(98.0)
None, N (%)	117	23	(20.6)	117	95	(29.7)	117	81	(33.0)	117	59	(23.1)
GCSE / GCE, N (%)	586	144	0.025*	586	523	0.020*	586	488	(291)	586	343	(291)
	117	45.7	(12.3)	570	508	(83.8)	570	476	(86.2)	570	323	(98.0)
AS / A level, N (%)	599	143	0.005*	599	525	0.059	599	490	0.001*	599	348	0.013
	117	45.7	(12.3)	570	508	(83.8)	570	476	(86.2)	570	323	(98.0)
Undergraduate, N (%)	597	144	0.005*	597	523	0.059	597	491	0.001*	597	348	0.013
	117	45.7	(12.3)	570	508	(83.8)	570	476	(86.2)	570	323	(98.0)
Postgraduate, N (%)	586	144	0.025*	586	523	0.020*	586	488	(291)	586	343	(291)
	117	45.7	(12.3)	570	508	(83.8)	570	476	(86.2)	570	323	(98.0)
Other, N (%)	599	143	0.005*	599	525	0.059	599	490	0.001*	599	348	0.013
	117	45.7	(12.3)	570	508	(83.8)	570	476	(86.2)	570	323	(98.0)
Employment, N (%)	599	143	0.034	599	525	0.242	599	490	0.215	599	348	0.136
	117	45.7	(12.3)	570	508	(83.8)	570	476	(86.2)	570	323	(98.0)
Self-employed, N (%)	586	144	0.025*	586	523	0.020*	586	488	(291)	586	343	(291)
	117	45.7	(12.3)	570	508	(83.8)	570	476	(86.2)	570	323	(98.0)
Paid employment, N (%)	586	144	0.025*	586	523	0.020*	586	488	(291)	586	343	(291)
	117	45.7	(12.3)	570	508	(83.8)	570	476	(86.2)	570	323	(98.0)
Unemployed, N (%)	586	144	0.025*	586	523	0.020*	586	488	(291)	586	343	(291)
	117	45.7	(12.3)	570	508	(83.8)	570	476	(86.2)	570	323	(98.0)
Retired, N (%)	599	143	0.005*	599	525	0.059	599	490	0.001*	599	348	0.013
	117	45.7	(12.3)	570	508	(83.8)	570	476	(86.2)	570	323	(98.0)

(continued on next page)
This cross-sectional study aimed to examine knowledge and attitudes towards BCPR, and to understand how these potentially interact with individual characteristics and SES. We found individual characteristics and markers of SES were inconsistently associated with participants’ knowledge and attitudes towards BCPR, with weak evidence that individuals experiencing OHCA are less likely to receive BCPR in deprived areas.\(^{13-15}\) This gives rise to questions regarding the reliability of participants’ subjective responses as to how they may act, versus how they do act when faced with a real OHCA event. However, the findings support more recent evidence; a review of BCPR in deprived communities identified that willingness to perform or learn BCPR was not influenced by deprivation,\(^{29}\) rather a range of contextual and environmental factors determined administration of BCPR.\(^{30}\) Factors other than individual SES are likely to contribute to lower levels of BCPR in deprived communities, such as cultural identity and social cohesion. Social capital, of which social cohesion forms a part, is increasingly linked with health outcomes including being related to improved cardiovascular mortality\(^{31}\) and use of preventative services.\(^{32}\) This is particularly pertinent in deprived communities, such as cultural identity and social cohesion, where social capital, of which social cohesion forms a part, is increasingly linked with health outcomes including being related to improved cardiovascular mortality\(^{31}\) and use of preventative services.\(^{32}\)

Discussion

Table 2 (continued)

Variable	Do you know how to tell if someone is having a cardiac arrest?	Do you know what CPR is for?	Know what a defibrillator is for?	Would you like more information on CPR?
N (%)	Yes (95 % CI)	No or unsure (MD)	55 (11.3)	
Maternity leave, N (%)	4 (0.7)	1 (0.7)	3 (0.7)	4 (0.7)
Looking after family, N (%)	37 (6.2)	11 (2.2)	26 (3.3)	9 (1.0)
Full-time student, N (%)	2 (1.3)	2 (1.6)	1 (0.7)	2 (1.0)
Long term sick / disabled, N (%)	7 (4.9)	30 (6.6)	5 (1.0)	3 (0.6)
Occupation, N (%)	2 (4.9)	2 (4.9)	1 (0.6)	1 (0.9)
Level 1, N (%)	63 (12.9)	47 (12.7)	48 (12.8)	5 (1.3)
Level 2, N (%)	146 (29.8)	108 (29.8)	129 (30.0)	1 (1.3)
Level 3, N (%)	165 (33.3)	147 (33.7)	157 (35.5)	5 (1.0)
Level 4, N (%)	149 (12.0)	35 (15.0)	6 (5.5)	4 (0.8)
Retired, N (%)	165 (32.2)	133 (32.2)	146 (32.2)	8 (2.0)
Other, N (%)	10 (2.0)	4 (2.0)	10 (2.0)	5 (2.0)
Income, N (MR)	478 (284)	428 (244)	406 (191)	246 (123)

* significant at p < 0.05.

CI = confidence interval, MD = mean difference, MR = mean rank, SD = standard deviation.

Table 2 (continued)

- **Maternity leave, N (%)**: 4 (0.7) Yes; 1 (0.7) No or unsure (MD = £10,400 to £20,799).
- **Looking after family, N (%)**: 37 (6.2) Yes; 11 (2.2) No or unsure (MD = £20,800 to £31,199). Having a higher income than those saying no or unsure (n = 72, median=£10,400 to £20,799).
- **Full-time student, N (%)**: 2 (1.3) Yes; 2 (1.6) No or unsure (MD = £10,400 to £20,799).
- **Long term sick / disabled, N (%)**: 7 (4.9) Yes; 30 (6.6) No or unsure (MD = £10,400 to £20,799).
- **Occupation, N (%)**: 2 (4.9) Yes; 2 (4.9) No or unsure (MD = £10,400 to £20,799).
- **Level 1, N (%)**: 63 (12.9) Yes; 47 (12.7) No or unsure (MD = £10,400 to £20,799).
- **Level 2, N (%)**: 146 (29.8) Yes; 108 (29.8) No or unsure (MD = £10,400 to £20,799).
- **Level 3, N (%)**: 165 (33.3) Yes; 147 (33.7) No or unsure (MD = £10,400 to £20,799).
- **Level 4, N (%)**: 149 (12.0) Yes; 35 (15.0) No or unsure (MD = £10,400 to £20,799).
- **Retired, N (%)**: 165 (32.2) Yes; 133 (32.2) No or unsure (MD = £10,400 to £20,799).
- **Other, N (%)**: 10 (2.0) Yes; 4 (2.0) No or unsure (MD = £10,400 to £20,799).
- **Income, N (MR)**: 478 (284) Yes; 428 (244) No or unsure (MD = £10,400 to £20,799).

To be comfortable using a defibrillator. There was a significant difference in income based on whether people reported knowing what a defibrillator is (U = 11217, p = 0.001), with those saying yes (n = 406, median=£20,800 to £31,199) having a higher income than those saying no or unsure (n = 72, median=£10,400 to £20,799).
confidence of performing BCPR based on participant age. Younger age was associated with comfort performing BCPR and has been reported elsewhere. With regard to comfort performing BCPR, women were less comfortable than men. Women being less likely to receive BCPR is well-documented, but our study shows women are also less likely to be willing to deliver BCPR. There were no further gender disparities regarding understanding of what BCPR is and the importance of delivering it. Ethnicity was associated with poorer knowledge of BCPR. Whilst our study was limited with small numbers of individuals from ethnic minorities, the findings support other studies which have identified ethnic minorities encounter barriers accessing BCPR training, exacerbated by language difficulties. Participation in our study was generally reflective of regional ethnicity, but focused studies within the region with ethnic minority study populations would help to better explain these differences.

Regarding SES markers, participants from more deprived areas were more likely to have some personal, direct or indirect, language difficulties. Participation in our study was generally reflective of regional ethnicity, but focused studies within the region with ethnic minority study populations would help to better explain these differences.

Regarding SES markers, participants from more deprived areas were more likely to be comfortable performing CPR and were more likely to know what a defibrillator is for. This may be because OHCA is more likely to occur in deprived areas. Our findings contrast a previous study that reported those in deprived areas believe resuscitation should be carried out by those trained and who have the necessary skills. It is possible participants in deprived areas from our study were more likely to have some personal, direct or indirect,

Table 3 – Willingness to seek help, follow advice and help someone experiencing OHCA

Variable	Willingness to call 999	Willingness to follow advice	Willingness to help family	Willingness to help someone familiar	Willingness to help a stranger	
	N	p value N	p value N	p value N	p value N	
Age, N (CC)	599 (-1.53)	<0.001*599	<0.001*600 (-0.159)	0.001*600 (-0.183)	<0.001*600 (-0.119)	
Gender, N	599 0.178 599	0.238 600	0.146 600	0.888 600	0.664	
Female, N (MR)	313 (304)	313 (305)	313 (306)	313 (300)	313 (298)	
Male, N (MR)	286 (296)	286 (294)	287 (295)	287 (301)	287 (303)	
Ethnicity, N	596 0.570 596	0.590 597	0.150 597	0.278 597	0.501	
White, N (MR)	569 (299)	569 (298)	570 (299)	570 (299)	570 (301)	
Mixed/Multiple, N (MR)	4 (317)	4 (347)	4 (335)	4 (348)	4 (233)	
Asian / Asian British, N (MR)	14 (296)	14 (283)	14 (293)	14 (309)	14 (264)	
Black, African, or Black British, N (MR)	4 (244)	4 (347)	4 (186)	4 (199)	4 (229)	
Other, N (MR)	5 (317)	5 (347)	5 (335)	5 (348)	5 (320)	
General health, N (CC)	599 0.931 599	0.958 600	0.951 600	0.757 600	0.718	
Mean Indices of Multiple Deprivation score, N (CC)	585 (0.006)	0.109 585	0.515 586	0.212 586	0.986 586	0.612
Highest education level, N	599 0.250 599	0.435 599	0.608 599	0.333 599	0.604	
None, N (MR)	117 (287)	117 (285)	117 (290)	117 (282)	117 (286)	
GCSE / GCE, N (MR)	196 (304)	196 (307)	196 (299)	196 (302)	196 (304)	
AS / A level, N (MR)	134 (305)	134 (294)	134 (311)	134 (309)	134 (307)	
Undergraduate, N (MR)	86 (297)	86 (302)	86 (300)	86 (310)	86 (309)	
Postgraduate, N (MR)	40 (311)	40 (320)	40 (306)	40 (306)	40 (298)	
Other, N (MR)	26 (294)	26 (311)	26 (289)	26 (279)	26 (269)	
Employment, N	599 0.352 599	0.223 599	0.219 599	0.108 599	0.310	
Self-employed, N (MR)	61 (303)	61 (310)	61 (311)	61 (316)	61 (305)	
Paid employment, N (MR)	240 (303)	240 (305)	240 (305)	240 (306)	240 (306)	
Unemployed, N (MR)	42 (297)	42 (284)	42 (286)	42 (294)	42 (298)	
Retired, N (MR)	166 (289)	166 (283)	166 (287)	166 (282)	166 (286)	
Maternity leave, N (MR)	4 (318)	4 (349)	4 (336)	4 (270)	4 (283)	
Looking after family, N (MR)	37 (318)	37 (308)	37 (328)	37 (341)	37 (340)	
Full-time student, N (MR)	8 (282)	8 (315)	8 (261)	8 (274)	8 (240)	
Long term sick / disabled, N (MR)	37 (310)	37 (333)	37 (295)	37 (289)	37 (285)	
Something else, N (MR)	4 (318)	4 (269)	4 (336)	4 (349)	4 (377)	
Occupation, N	489 0.068 489	0.005*490	0.064 490	0.095 490	0.182	
Level 1, N (MR)	63 (238)	63 (240)	63 (248)	63 (245)	63 (242)	
Level 2, N (MR)	145 (256)	145 (263)	146 (256)	146 (252)	146 (255)	
Level 3, N (MR)	57 (240)	57 (234)	57 (231)	57 (243)	57 (235)	
Level 4, N (MR)	49 (251)	49 (267)	49 (265)	49 (273)	49 (269)	
Retired, N (MR)	165 (237)	165 (231)	165 (235)	165 (231)	165 (233)	
Other, N (MR)	10 (261)	10 (189)	10 (249)	10 (261)	10 (283)	
Income, N (CC)	477 (0.030)	0.507 477	0.017*478	0.425 478	0.110 478	0.384
N	(0.109)	(0.037)	(0.073)	(0.040)		

* significant at p < 0.05.
CC = correlation coefficient, MR = mean rank.
that links education and health, yet there is a need for research to explicitly examine this relationship in relation to OHCA and people’s willingness to perform BCPR.

Willingness to perform BCPR may be more likely to be under the influence of illicit drugs or alcohol in areas of higher deprivation and this may influence the physicality required for obtaining a PAD. Further research is needed regarding targeting CPR training to those not in work or self-employed.

That participants with higher levels of self-reported general health were more likely to be comfortable using a defibrillator could be explained by the physicality needed to acquire the PAD from community points and bring it to the patient prior to use. However, this interpretation may be placed in doubt as there was no such association identified between general health and comfort performing CPR, which may have been expected, as chest compressions require a better understanding of the consequences of not receiving BCPR, although this is not based upon having delivered BCPR, or having used a PAD, and is not dependent on SES. Health literacy is a mechanism that links education and health, yet there is a need for research to explicitly examine this relationship in relation to OHCA and people’s willingness to perform BCPR.

A study of 2084 UK adults established CPR training was most frequently delivered in the workplace and had a positive effect on an individuals’ self-reported willingness to act and use a PAD. In our study, 59.9 % of participants were absent from work for various reasons (retired, undertaking caring responsibilities, unemployed etc.) or were self-employed with limited access to CPR training. This, coupled with the fact CPR skills are known to decay over time, may explain some of our findings regarding willingness to act and use a PAD. Further research is needed regarding targeting CPR training to those not in work or self-employed.

There is almost certainly a much more complicated interaction between general health and the physicality required for obtaining CPR skills, which may be influenced by factors such as age, gender, and education level. These factors may contribute to the observed associations and provide valuable insights into the mechanisms underlying the relationship between education, health, and willingness to perform CPR.
PADs or performing chest compressions, which we are unable to explore in this study.

Limitations

This cross-sectional study has captured participants' responses at one time point and may not truly reflect whether an individual would act, or use a PAD, when faced with a real OHCA event. A limited number of participants in our study reported ethnicity other than white British, potentially reducing the generalisability of our findings. However, we believe this is reflective of regional ethnicity and has not unduly influenced our results. Some participants did not provide responses to all questions, particularly regarding occupation and income, so these data were missing from our analysis. Most participants did however respond regarding key questions for each domain, so we do not believe this has influenced our findings or conclusions. The study was conducted during the Coronavirus pandemic and may have influenced participants' attitudes towards BCPR and their responses.

We identified ceiling effects in many of the measures relating to knowledge of BCPR, willingness to help and competence of performing BCPR, which meant we were unable to develop multivariate models. This ceiling effect may have been influenced by social desirability bias where survey data were collected by uniformed paramedics, which may have influenced participants' responses to present their knowledge, willingness to help and competence as being higher. Future research should consider including a test of participants' knowledge of OHCA and BCPR. It may also be worthwhile testing whether different data collectors with or without uniforms would result in different results.

Conclusion

Markers of SES and deprivation are a poor indicator of knowledge of, and willingness and competency to perform, BCPR. Interventions to improve levels of BCPR should avoid using SES or deprivation to identify target populations but focus on individual characteristics such as age and ethnicity. Future research should examine the role of these characteristics in willingness to perform BCPR and how they intersect with cultural identity and social cohesion. Qualitative research may provide further understanding of how these factors influence behaviours of fragile societies.

Funding

The study was funded by the National Institute for Health Research (NIHR) Applied Research Collaboration (ARC) North East and North Cumbria (NENC). The ARC had no part in the design or delivery of the study, or in the preparation of this manuscript. The study sponsors had no involvement in any aspect of the design or delivery of the study, or in the preparation of this manuscript.

Declaration of Competing Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Appendix A. Supplementary material

Supplementary data to this article can be found online at https://doi.org/10.1016/j.resplu.2022.100330.

Author details

1. North East Ambulance Service NHS Foundation Trust, Bernicia House, Newburn Riverside, Newcastle upon Tyne NE15 8NY, UK
2. Northumbria University, Sutherland Building, Northumberland Road, Newcastle upon Tyne NE1 8ST, UK
3. Population Health Sciences Institute, Newcastle University, Newcastle upon Tyne NE1 4LP, UK
4. Centre of Excellence in Paramedic Practice, Institute of Health, University of Cumbria, Fusehill Street, Carlisle CA1 2HH, UK

References

1. Perkins GD, Brace-McDonnell SJ. The UK out of hospital cardiac arrest outcome (OHCAO) project. BMJ Open 2015;5(10):e008736.
2. Resuscitation Council (UK). Consensus Paper on Out-of-Hospital Cardiac Arrest in England. 2015. Available from https://www.resus.org.uk/sites/default/files/2020-05/OHCA_consensus_paper.pdf
3. Go AS, Mozaffarian D, Roger VL, et al. Heart disease and stroke statistics–2014 update: a report from the American Heart Association. Circulation 2014;129(3):e28–e292.
4. Perkins GD, Jacobs IG, Nadkarni VM, et al. Cardiac arrest and cardiopulmonary resuscitation outcome reports: update of the Utstein Resuscitation Registry Templates for Out of-Hospital Cardiac Arrest: a statement for healthcare professionals from a task force of the International Liaison Committee on Resuscitation (American Heart Association, European Resuscitation Council, Australian and New Zealand Council on Resuscitation, Heart and Stroke Foundation of Canada, InterAmerican Heart Foundation, Resuscitation Council of Southern Africa, Resuscitation Council of Asia); and the American Heart Association Emergency Cardiovascular Care Committee and the Council on Cardiopulmonary, Critical Care, Perioperative and Resuscitation [published correction appears in Circulation. 2015;132:e168–e169]. Circulation 2015;132:1286–300. https://doi.org/10.1161/CIR.0000000000001442
5. Brown TP, Booth S, Hawkes CA, et al. Characteristics of neighbourhoods with high incidence of out-of-hospital cardiac arrest and low bystander cardiopulmonary resuscitation rates in England. Eur Heart J Qual Care Clin Outcomes 2019;5(1):51–62.
6. Sasson C, Rogers MAM, Dahl J, Kellermann AL. Predictors of survival from out-of-hospital cardiac arrest: a systematic review and meta-analysis. Circulation 2010;123:63–81.
7. Axelsson AB, Herlitz J, Homberg S, Thoren AB. A nationwide survey of CPR training in Sweden: foreign born and unemployed are not reached by training programmes. Resuscitation 2006;70(90–7):5.
8. Donohoe RT, Haefeli K, Moore F. Public perceptions and experiences of myocardial infarction, cardiac arrest and CPR in London. Resuscitation 2006;71:70.
9. Hawkes C, Booth S, Ji C, Brace-McDonnell SJ, Whittington A, Mapstone J, et al. Epidemiology and outcomes from out-of-hospital cardiac arrests in England. Resuscitation 2017;110:133–40.
10. Meinhardt D, Fischer M, Meischke. CPR community survey in King Country. 2021. https://kingcounty.gov/depts/health/emergency-medical-services/vulnerable-populations/-/media/depts/health/emergency-medical-services/documents/vulnerable-populations/CPR-community-survey.ashx - Accessed 12/10/2022.
