Proximate Body Composition Analysis of Two Commercially Important Members of Cyprinidae Family (*Catla catla* and *Hypophthalmichthys molitrix*) From Southern Punjab, Pakistan

Muhammad Khalid¹, Muhammad Farooq²*, Ahmed Ali², Abid Mahmood Alvi³, Sheikh Muhammad Azam⁴, Shaikh Muhammad Abdullah⁵, Shoaib Hassan⁶, Maimoona Ambreen⁶, Ali Zafar Khakwani⁷ and Muhammad Imran Tauseef⁸

¹Department of Zoology, Emerson University Multan, Pakistan
²Department of Zoology, Ghazi University Dera Ghazi Khan, Pakistan
³Department of Plant protection, Ghazi University Dera Ghazi Khan, Pakistan
⁴Department of Zoology: Division of Science and Technology, University of Education Lahore, Punjab, Pakistan
⁵Department of Statistics, National College of Business Administration & Economics Multan, Punjab, Pakistan
⁶Institute of Pure & Applied Biology, Bahaudin Zakariya University Multan, Punjab, Pakistan
⁷Faculty of Veterinary and animals sciences, MNS-university of agriculture Multan, Pakistan.
⁸Department of Chemistry Division of Science and Technology, University of Education Lahore, Punjab, Pakistan

Corresponding email: mfarooq@gudgk.edu.pk

Abstract

The present Study proposed to evaluate the body composition of *Catla catla* and *Hypophthalmichthys molitrix* collected from southern Punjab, Pakistan. Collected fishes samples werebrought to fisheries lab for further analysis. The mean value for water, fat, protein and ash as water is 75.1%; Ash in wet and dry weight 4.07 and 16.4; Fat in wet and dry weight 5.2 and 20.8; Protein content in wet and dry weight 15.62 and 62.66 respectively in *C. catla*. The value for mean and ranges for water, fat, protein and ash as water is 77.27%; Ash in wet and dry weight 4.20 and 5.21; Fat in wet and dry weight 1.55 and 6.10; Protein content in wet and dry weight 3.22 and 5.27 respectively in *H. molitrix*. Percent water showed highly significant correlation with all the body constituents except percent fat dry weight whichshowed non-significant correlation. All of the values showed a negative correlation with percent water except with percent ash wet and dry weight whichshowed positive correlation in *C. catla*. Body weight showed highly significant positive correlation with all body constituents except the relationship with percent water, percent ash dry and wet weight in *C. catla*. A non-significant correlation with percent protein dry weight, a significant positive correlation with percent protein and fat wet; a least significant correlation with percent fat and ash dry weight while highly significant correlation with percent water in *H. molitrix*. Total length showed a highly significant negative correlation with log water, fat and protein content except ash whichshowed non-significant negative correlation in *C. catla* while highly significant negative correlation with log water, ash, fat and protein content in *H. molitrix*.

Keywords: Fish, Proximate composition, Protein, Fat, Water.

1. Introduction

Fish is widely accepted because of its delicious taste and reduced cholesterol content. It contains a variety of critical nutrients that humans require. Fish is both the most affordable and the most expensive form of animal protein at the same time. One of the most important metrics used to assess fish ecology is proximate composition, body functioning and feeding habits (Ali *et al.*, 2008). The nutritional composition of the fish is significant not only for the fisherman and consumer but also for scientists and manufacturers (Murray & Burt, 2001). In general, commercially important fish are thought to be higher in nutrients than low-value fish, which is why people are more likely to eat them (Chakrabarty *et al.*, 2003). As a result, the proximate composition of the fish is vital, as people must be aware of the nutritional values of the fish and be able to identify them more easily (Naser *et al.*, 2007). Fish is the best source to provide...
the best and excessive-quality of protein, however, manufacturing of fish oil, protein, vitamin and meal, arrangements from the fish ended up more and more critical (Naeem et al., 2012).

The amount of water in a fish's body is an excellent indicator of protein content and relative fat. It has an inverse relationship with relative fat, protein, and different contents because as the percentage of water in fish decreases, the percent of lipid and protein increases, resulting in a higher strength content material in fish (Khan et al., 2017). The present study is important to analyze proximate Body composition analysis of Cyprinidae Family (Catla Catla and Hypophthalmichthys Molitrix) from Southern Punjab, Pakistan.

2. Material and Methods

Sampling Site

Sample were collected from Govt. fisheries complex Muzaffargarh. 40 fish samples of each type Catla catla and Hypophthalmichthys molitrix were collected for further analysis of body composition. The dried specimen was examined for the water, fat, ash and protein content by covering it with aluminum foil. Samples were measured until they became dry.

Analysis and Estimation of Water Content

The oven-drying method was used to determine the amount of water. All samples were wrapped in aluminum foil and dried in a calibrated oven at 70-80°C until the weight and dry mass of the samples remained consistent. The difference between the oven-dried fish sample and the wet bodyweight of each sample was used to calculate the total water.

$$\text{Water} \, (\%) = \frac{\text{WeightLoss during Oven Drying}}{\text{Original Wet BodyWeight of Sample Taken}} \times 100$$

Each fish specimen's dry matter was gently mashed in a pestle and mortar before being homogenized in an electronic grinding machine. Dry powder samples were stored in tiny plastic airtight jars with suitable labeling for later analysis.

Analysis and Estimation of Ash Content

The overall ash content of the fish was evaluated by burning a dry powder sample of 1 gram in a muffle furnace for 24 hours at 550°C. After cooling in the desiccator, the burned samples were weighed for ash determination. The following calculations were used to calculate the amount of ash in Catla catla body:

$$\text{Ash} \, (\%) = \frac{\text{Incinerated Sample Weight}}{\text{Sample Weight}} \times 100$$

Analysis and Estimation of Fat Content

In this technique, the fat content was extracted using a chloroform and methanol mixture (ratio 1:2 v/v). One gram fish sample's weighted powder was placed in a test tube, combined with a 10 ml solution of the above-mentioned solvents, stirred, and then covered with aluminum foil and stored overnight. After adequate washing and drying, the clear supernatant was carefully moved into pre-weighed little glass bottles. The bottles were placed in an oven for evaporation for 2-3 days to ensure that the solvent was dry, and therefore lipid fractions were left. By deducting the weight of the residue left in the glass bottle from the original weight of the fat sample obtained for analysis, the total fat content was computed. The proportions of fat content in the samples' wet and dry weights were computed using the formula below:
Fat (%) = \(\frac{\text{Weight of Residue in Bottle}}{\text{Sample Weight}} \times 100 \)

Estimation of Protein and Organic Content

The weight of other leading constituents, such as water, ash, and fat, was subtracted from the protein content of the fish samples to determine the protein concentration. Protein content percentages in the wet and dry weight of the samples were also calculated.

Statistical Analysis

Regression analyses was performed on data with the help of MS excel data analysis program. T-test was carried out the standard of assessment by the assistance of computer program MS excel data analysis tool.

3. **Results**

40 specimens of *Catla catla* and *Hypophthalmichthys molitrix* fish were taken as the sample size for body composition analysis. The value for mean and ranges for water, fat, protein and ash as water is 75.1%; Ash in wet and dry weight 4.07 and 16.4; Fat in wet and dry weight 5.2 and 20.8; Protein content in wet and dry weight 15.62 and 62.66 respectively in *C. catla*. The mean value for water, fat, protein and ash as water is 77.27%; Ash in wet and dry weight 4.20 and 5.21; Fat in wet and dry weight 1.55 and 6.10; Protein content in wet and dry weight 3.22 and 5.27 respectively in *Hypophthalmichthys molitrix*.

Percent water showed a highly significant correlation with all the body constituents except percent fat dry weight which showed non-significant correlation. All of the values showed a negative correlation with percent water except with percent ash wet and dry weight which showed positive correlation in *C. catla*. Analysis confirmed that opposite correlations exist between percent water and all the other percent body constituents except percent ash wet and dry weight (Table 1).

Table 1: Water content versus body constituents of *C. catla*

Relationships	\(R \)	\(A \)	\(b \)	S. E. (\(b \))	\(t \) value when \(b=0 \)
%Water (x)	0.605***	-24.151	0.375841	0.080164	0.375841
%Ash wet weight (y)					
% Water (x)	0.736***	-148.11	2.191283	0.326158	2.191283
%Ash dry weight (y)					
% Water (x)	0.536***	27.72166	-0.2998	0.076488	-0.2998
%Fat wet weight (y)					
% Water (x)	0.165n.s	45.31124	-0.32509	0.314186	-0.32509
%Fat dry weight (y)					
% Water (x)	0.981***	96.42937	-1.07604	0.034475	-1.07604
%Protein wet weight (y)					
% Water (x)	0.907***	202.7991	-1.86619	0.139815	-1.86619
%Protein dry weight (y)					

***= P<0.001; ** = P < 0.01; n.s> 0.05

Percent water showed non-significant correlation with percent ash wet weight, fat dry weight and protein dry weight. A least significant relation with ash dry weight while a highly significant correlation. All of the values showed a negative correlation with percent water except with percent ash dry weight.
which showed a positive correlation in *Hypophthalmichthys molitrix*. Analysis confirmed that opposite correlations exist between percent water and all the other percent body constituents except percent ash dry weight (Table 2).

Table 2: Water content versus body constituents of *H. molitrix* (n=40)

Relationships	R	A	b	S. E. (b)	t value when b=0
%Water (x)	0.213	7.976529	-0.04878	0.036145	-1.34956
%Ash wet weight (y)					
% Water (x)	0.368	-17.4714	0.474108	0.194161	2.441829
%Ash dry weight (y)					
% Water (x)	0.612	21.04311	-0.2347	0.049182	-4.77207
%Fat wet weight (y)					
% Water (x)	0.302	47.79868	-0.45578	0.232866	-1.95726
%Fat dry weight (y)					
% Water (x)	0.846	67.43915	-0.67392	0.068736	-9.80447
%Protein wet weight (y)					
% Water (x)	0.014	69.6727	-0.01833	0.210947	-0.08689
%Protein dry weight (y)					

***= P<0.001; ** = P < 0.01; * = > 0.05

Correlation of body weight with various body constituents by regression analysis showed highly significant correlation with all body constituents in *C. catla*. All showed a positive correlation except the relationship of body weight with percent water, percent ash dry and wet weight (Table 3).

Table 3: Body weight versus weight specific body constituents of *C. catla*

Relationships	R	A	B	S. E. (b)	t value when b=0
Body weight, g (x)	0.821	81.50892	-0.00714	0.000804	-8.8806
% Water (y)					
Body weight, g (x)	0.905	8.465221	-0.00489	0.000371	-13.1806
% Ash wet wt (y)					
Body weight, g (x)	0.948	38.47894	-0.02453	0.001326	-18.4992
% Ash dry wt (y)					
Body weight, g (x)	0.805	1.691049	0.003915	0.000467	8.383298
% Fat wet wt (y)					
Body weight, g (x)	0.568	12.17249	0.009711	0.002278	4.26295
% Fat dry wt (y)					
Body weight, g (x)	0.851	8.334812	0.008117	0.000812	9.996305
% Protein wet wt (y)					
Body weight, g (x)	0.829	49.34857	0.014819	0.00162	9.147531
% Protein dry wt (y)					

***= P<0.001; ** = P < 0.01; * = > 0.05

Correlation of body weight with various body constituents by regression analysis showed non-significant correlation with percent protein dry weight, significant positive correlation with percent protein and fat.
wet; least significant correlation with percent fat and ash dry weight while highly significant correlation with percent water in Hypophthalmichthys molitrix. All showed a positive correlation except the relationship of body weight with percent fat dry weight, fat and protein wet weight (Table 4).

Table 4: Body weight versus weight specific body constituents of *H. molitrix* (n=40)

Relationships	R	A	B	S. E. (b)	t value when b=0
Body weight, g (x) % Water (y)	0.579***	75.03641	0.02538	0.005794	4.380394
Body weight, g (x) % Ash wet wt (y)	0.057n.s	4.156352	0.000574	0.001618	0.354759
Body weight, g (x) % Ash dry wt (y)	0.373*	17.30553	0.021084	0.008487	2.48427
Body weight, g (x) % Fat wet wt (y)	0.457**	3.583531	-0.00768	0.002424	-3.16832
Body weight, g (x) % Fat dry wt (y)	0.344*	14.58186	-0.02272	0.010051	-2.26047
Body weight, g (x) % Protein wet wt (y)	0.450**	16.74655	-0.0157	0.005052	-3.10768
Body weight, g (x) % Protein dry wt (y)	0.0286n.s	68.11261	0.001632	0.00924	0.176623

***= P<0.001; ** = P < 0.01; n.s > 0.05

Correlation of total length with various body constituents by regression analysis showed a highly significant correlation with all body constituents in *C. catla*. All showed a positive correlation except the relationship of body weight with percent water, percent ash dry and wet weight (Table 5).

Table 5: Total length versus weight specific body constituents of *C. catla*

Relationships	R	A	B	S. E. (b)	t value when b=0
Total length, cm (x) % Water (y)	0.772***	95.05986	-0.49437	0.065895	-7.50239
Total length, cm (x) % Ash wet wt (y)	0.921***	18.85773	-0.36606	0.02503	-14.6249
Total length, cm (x) % Ash dry wt (y)	0.956***	89.95543	-1.82009	0.090036	-20.2151
Total length, cm (x) % Fat wet wt (y)	0.832***	-6.80925	0.297532	0.032154	9.253343
Total length, cm (x) % Fat dry wt (y)	0.622***	-10.7102	0.782528	0.15949	4.906439
Total length, cm (x) % Protein wet wt (y)	0.802***	-7.10835	0.562891	0.067992	8.278783
Total length, cm (x) % Protein dry wt (y)	0.788***	20.75482	1.03756	0.131126	7.912695

***= P<0.001; ** = P < 0.01; n.s > 0.05
Correlation of total length with various body constituents by regression analysis showed non-significant correlation with percent ash wet weight, ash and protein dry weight, least significant correlation with percent fat dry weight while highly significant correlation with percent water, percent fat and protein dry weight in Hypophthalmichthys molitrix. All showed a positive correlation except the relationship of body weight with percent fat dry weight, fat, ash and protein wet weight (Table 6).

Table 6: Total length versus weight specific body constituents of H. molitrix (n=40)

Relationships	R	A	b	S. E. (b)	t value when b=0
Total length, cm (x) % Water (y)	0.735***	70.58477	0.394501	0.059002	6.686231
Total length, cm (x) % Ash wet wt (y)	0.102n.s	4.420749	-0.0126	0.019748	-0.63804
Total length, cm (x) % Ash dry wt (y)	0.291n.s	15.75342	0.201189	0.1072	1.876763
Total length, cm (x) % Fat wet wt (y)	0.546***	4.813345	-0.11245	0.027947	-4.02369
Total length, cm (x) % Fat dry wt (y)	0.377*	17.75586	-0.30531	0.121382	-2.51528
Total length, cm (x) % Protein wet wt (y)	0.514***	19.08778	-0.21972	0.059422	-3.69762
Total length, cm (x) % Protein dry wt (y)	0.149n.s	66.49072	0.104117	0.111933	0.930173

***= P<0.001; ** = P < 0.01; *= P> 0.05

Correlation of log bodyweight with various body constituents by regression analysis showed a highly significant negative correlation with log water, ash, fat and protein content except ash which showed non-significant negative correlation in C. catla. Correlation of log body weight with various body constituents by regression analysis showed a highly significant negative correlation with log water, ash, fat and protein content in Hypophthalmichthys molitrix. Correlation of log total length with various body constituents by regression analysis showed a highly significant negative correlation with log water, fat and protein content except for ash that showed non-significant negative correlation in C. catla. Correlation of log total length with various body constituents by regression analysis showed a highly significant negative correlation with log water, ash, fat and protein content in Hypophthalmichthys molitrix.

Each constituent of the body like, lipid, water, ash and protein may also be converted into its log value. The logs of those contents were plotted towards log of total water weight and log of the entire length. It gave direct courting.

\[\log Y = a + b \log X \]

4. Discussion

In the present study parameter of body composition were examined. To determine the growth pattern in animals, one of the basic prime movers is by measuring the volume or size of the animal and the various parts which are constituted by the animals. As far as the other features such as growth, nutritional status
and the bulk quantities of toxins are concerned, these should also be measured by exercising on the morphometric characteristics of animals (Rahman, 1999). Parameters of body composition were ash, fat, water and protein content. Exceptions in this fish can take many forms. Several detectives have performed advanced calculations relating to the amount of water with the amount of fat and the amount of water with the amount of protein material, and have concluded that the composition of a body can be determined using regression formulas based on the volume of water (Salam and Davies, 1994). This observation reveals that the fish used had no excess fat and that the nutritional conditions were extremely poor. It resulted in decreased muscle protein synthesis in the quantity of water material. Changes in fish nutrition were the cause of a higher fat or protein ratio in the fish (Love et al., 1970). Proximate body composition of fish is influenced by the dietary protein level in various fishes (Khan and Maqbool, 2017). The quality of these relationships in different species of fish propose a biochemical or physiological cause (Breck, 2014). So different factor are responsible for variation in various indices of body composition. As it is different in our analysis of proximate composition in C. catla and H. molitrix. Differences in the body's components were not linked to the body's size relationship. As a result, regression analysis was used to analyze the dimensions that were affected by the percentages of water, ash, fat, and protein in the material (percent of moist, dry weigh). The percentages of water, protein, fat, and ash in the body are all affected by the body's weight. The percentages of water, protein, lipids, and ash are all affected by the total length. All body component criteria, such as protein, fats, ash, and water, were plotted and log in opposition to log the wet weight of the body and log the total length of the body. It provides substantial correlations in the form of linear connections. This analysis reveals that fish growth leads to an increase in lipids and protein, but a decrease in water and skeleton (Salam and Davies, 1994). Moisture content in Catla catla agreed with observation of Hasan et al. (2015). The value of Water content in O. mykiss by Naeem et al. (2016) and A. nobilis by Naeem et al. (2013) found 70 to 88.85 and 73.86 to 84.54 respectively. These values are found very close to our result and found in general agreement. Hasan et al. (2015) have reported a high protein content (19.54%), moreover, Guy et al. (2018) Have found 72.4%, 9.9%, 8.7% and 15.4% moisture, ash, fat and protein contents, respectively, in Ictio busniger. Value of fat content in O. mykiss by Naeem et al. (2016) and A. nobilis by Naeem et al. (2013) found 10 to 36.99 and 1 to 25 respectively. These values are found higher than our result. While Protein contents in O. mykiss by Naeem et al. (2016) and A. nobilis by Naeem et al. (2013) found in general agreement, as these values are 53.82 to 74.59 and 59.88 to 72.44 respectively.

5. Conclusion

Our study concluded the relationship of body composition in Catla catla and Hypophthalmichthys molitrix. Percent water showed highly significant correlation with all the body constituents except percent fat dry weight, whichshowed a non-significant correlation. In Catla catla values of different body constituents showed negative correlation with percent water except with percent ash wet and dry weight whichshowed a positive correlation. Body weight showed highly significant positive correlation with all body constituents except the relationship with percent water, percent ash dry and wet weight in C. catla. A non-significant correlation with percent protein dry weight, a significant positive correlation with percent protein and fat wet; a least significant correlation with percent fat and ash dry weight while highly significant correlation with percent water in H. molitrix. Total length showed highly significant negative correlation with log water, fat and protein content except ash that showed non-significant negative correlation in C. catla while highly significant negative correlation with log water, ash, fat and protein content in H. molitrix. Finally it is concluded that the parameters showed variability in these factor that
Khalid et al. analyzed the impact of feed consumption and estimation of various contents as more protein content in \textit{C. catla} than \textit{H. molitrix}.

6. References

Ali, A., Al-Ogaily, S. M., Al-Asgah, N. A., Goddard, J. S., & Ahmed, S. I. (2008). Effect of feeding different protein to energy (P/E) ratios on the growth performance and body composition of \textit{Oreochromis niloticus} fingerlings. \textit{Journal of Applied Ichthyology}, 24:31–37.

Breck, J. E. (2014). Body Composition in Fishes: Body Size Matters, \textit{Aquaculture}, 433: 40-49.

Guy, E.L., Li, M.H., & Allen, P.J. (2018). Effects of dietary protein levels on growth and body composition of juvenile (age-1) Black Buffalo \textit{Ictiobus niger}. \textit{Aquaculture}, 492: 67–72.

Hasan, G. M. M. A., Hossain, M.S., & Begum, M. (2015). Biochemical Composition of Rui (\textit{Labeo rohita}), Catala (\textit{Catla catla}), Tilapia (\textit{Oreochromis mossambicus}) of Cultured Ponds and Different Markets of Bangladesh. \textit{Inter. J. Res. Appl. Sci. Eng. Tech.}, 3(1): 222-226.

Khan, A., Benthin, C., & Zeno, B. (2017). A pilot clinical trial of recombinant human angiotensin-converting enzyme 2 in acute respiratory distress syndrome. \textit{Crit Care}, 21, 234 (2017).

Khan, I.A., & Maqbool, A. (2017). Effects of Dietary Protein Levels on the Growth, Feed Utilization and Haemato-Biochemical Parameters of Freshwater Fish, \textit{Cyprinus Carpio Var. Specularis}. \textit{Fish. Aqua. J.}, 8: 187. doi:10.4172/2150-3508.1000187.

Love, R. M. (1970). The chemical biology of fishes. Academic Press, I, London, UK.

Murray, J., & Burt, J. R. (2001). \textit{The Composition of Fish}, Torry Advisory Note No. 38, Ministry of Technology. Torry Research Station, U.K., 14.

Naeem M., Salam, A., & Zuberi, A. (2016). Proximate Composition Of Freshwater Rainbow Trout (\textit{Oncorhynchus Mykiss}) In Relation To Body Size And Condition Factor From Pakistan. \textit{Pakistan Jornal Agriculture Science}, 53(2), 468-472.

Naeem, M., Aslam, M.A., Narejo, N.T., & Tahir, A. A. 2013. Body composition of Edible portion of wild Bighead carp \textit{Aristichthys nobilis} in relation to body size and condition factor from Indus River, Pakistan. \textit{Sindh University Research Journal (Sci. Ser.)}, 45(2):353–356.

Naeem, M., Zuberi, A., Khan, N.A., Rasool, S.A., Ismail, H.F., & Qamar, A. (2012). Some morphometric relationship traits of Labeo bata (Hamilton, 1822) from Head Panjnad, Pakistan. \textit{African Jornal of Biotechnology}, 11(88): 15465-15468.

Naser, M. N., Chowdhury, G. W., Begum, M. M. & Haque, W. (2007). Proximate composition of prawn, Macro \textit{Brachiumrosen bergii} and shrimp, Penaeus monodon. Dhaka. \textit{University Journal of Biological Science},16(1): 61-66.

Rahman, M.M. (1999). Effects of species combination on pond ecology and growth of fish in carp-SIS polyculture systems. M.S. thesis, Department of Fisheries Management, Bangladesh AgriculturalUniversity, Mymensingh. 92.

Salam, A., & Davies, P. M. C., (1994). Body composition of Northern Pike (\textit{Esox lucius L.}) in relation to body size and condition factor. \textit{Journal Fish Research}, 19, 193-204.