LEARNING FROM INCOMPLETE DATA BY SIMULTANEOUS TRAINING OF NEURAL NETWORKS AND SPARSE CODING

Cesar F. Caiafa
Instituto Argentino de Radioastronomía
CONICET-CCT La Plata / CIC-PBA / UNLP
V. Elisa, ARGENTINA
Tensor Learning Team
Center for Advanced Intelligence Project, RIKEN
Tokyo, JAPAN
ccaiafa@fi.uba.ar

Ziyao Wang
School of Automation
Southeast University, Nanjing, CHINA
Tensor Learning Team
Center for Advanced Intelligence Project, RIKEN
Tokyo, JAPAN
zy_wang@seu.edu.cn

Jordi Solé-Casals
Data and Signal Processing Research Group
University of Vic - Central University of Catalonia
Vic, Catalonia, SPAIN
jordi.sole@uvic.cat

Qibin Zhao
Tensor Learning Team
Center for Advanced Intelligence Project, RIKEN
Tokyo, JAPAN
qibin.zhao@riken.jp

December 1, 2020

ABSTRACT

Handling correctly incomplete datasets in machine learning is a fundamental and classical challenge. In this paper, the problem of training a classifier on a dataset with missing features, and its application to a complete or incomplete test dataset, is addressed. A supervised learning method is developed to train a general classifier, such as a logistic regression or a deep neural network, using only a limited number of features per sample, while assuming sparse representations of data vectors on an unknown dictionary. The pattern of missing features is allowed to be different for each input data instance and can be either random or structured. The proposed method simultaneously learns the classifier, the dictionary and the corresponding sparse representation of each input data sample. A theoretical analysis is provided, comparing this method with the standard imputation approach, which consists of performing data completion followed by training the classifier with those reconstructions. Sufficient conditions are identified such that, if it is possible to train a classifier on incomplete observations so that their reconstructions are well separated by a hyperplane, then the same classifier also correctly separates the original (unobserved) data samples. Extensive simulation results on synthetic and well-known reference datasets are presented that validate our theoretical findings and demonstrate the effectiveness of the proposed method compared to traditional data imputation approaches and one state of the art algorithm.

1 Introduction

In many machine learning applications sometimes the measurements are incomplete, noisy or affected by artifacts, resulting in missing features. Examples of this situation include: a self-driving vehicle or robot where objects in the view field can be partially occluded; recommendation systems built upon the information gathered by different users where not all the users have fully completed their forms; or medical datasets where typically not all tests can be performed on every patient.

Handling correctly the incomplete-data problem is a classical challenge in machine learning. Skipping missing features by setting them to zero values damages the classification accuracy [1]. Supervised learning with missing features is
often circumvented via imputation, i.e. by completing the data as a preprocessing step, followed by standard training (referred here as the sequential method). Practical statistical imputation, such as computing the “mean”, “regression” and “multiple” imputation techniques are common practice \[2\]. More elaborated completion methods were also explored, such as \(K\)-nearest neighbor estimators, multilayer or recurrent Neural Networks (NNs) and others, see \[3\] and references therein.

However, sequential methods do not fully exploit label information. Data labels can provide valuable information about missing features that could potentially improve the classifier learning process. Recent advances on probabilistic generative models have allowed for a formulation of supervised learning with missing features as a statistical inference problem arriving at algorithms that significantly outperformed sequential methods. In the seminal work \[4\], a framework for maximum likelihood density estimation based on mixtures models was proposed and successfully applied to small missing-data problems. In particular, a Gaussian Mixture Model (GMM) was fitted to incomplete-data through an Expectation-Maximization (EM) algorithm. Building upon this generative model strategy, some approaches have considered integrating out the missing values based on a simple logistic regression function \[5\] \[6\]. Other versions of this approach proposed an explicit simultaneous learning of the model and the decision function \[7\] \[8\]. While the probabilistic generative models provided a nice and elegant approach to the incomplete-data problem showing good results on small datasets, they are not suitable for many modern machine learning applications because: (1) despite some acceleration techniques were explored, e.g. \[9\] \[10\], those algorithms are computationally expensive becoming prohibitive for moderate to large datasets; (2) GMM is impractical for modeling high-dimensional datasets because the number of parameters to achieve good approximations becomes unmanageable; and (3) they do not consider complex classification functions as the ones provided by deep NN architectures.

Recently, some approaches based on the low-rank property of the features data matrix were investigated and algorithms for data completion were proposed incorporating the label information \[11\] \[12\] \[13\]. Since the rank estimation of a matrix is a computationally expensive task, usually based on the Singular Value Decomposition (SVD), the obtained algorithms are prohibitive to solve modern machine learning problems with large datasets. Additionally, as in the case of the probabilistic generative models, none of these methods considered complex classifications functions. To overcome this drawback, more recently, a framework based on different NN architectures such as autoencoders, multilayer perceptrons and Radial Basis Function Networks (RBFNs) was proposed for handling missing input data by setting a probabilistic model, e.g. a GMM, for every missing value, which is trained together with the NN weights \[14\]. This method combined the great capability of NNs to approximate complex decision functions with the nice formulation of the GMM to model missing data. However, it inherited the drawbacks of GMMs, e.g. they are not well suited to higher-dimensional datasets.

On the other hand, during the last few years in the signal processing community, there has been a rapid development of theory and algorithms for sparse coding approximations which, by exploiting the redundancy of natural signals, are able to provide simple and accurate models of complex data distributions, see \[15\] \[16\] \[17\] \[18\] \[19\] and references therein. Sparse coding is nearly ubiquitous in Nature, for example, it is found in the way that neurons encode sensory information \[20\] \[21\]. Sparse representations of data showed to be useful also in classification problems. In \[22\], a Linear Discriminant Analysis (LDA) classifier was trained on corrupted data providing a robust classification method. In \[23\], algorithms for learning discriminative sparse models, instead of purely reconstructive ones, were proposed based on simple linear and bilinear classifiers. Similar methods were also studied by either using class-specific dictionaries \[24\] \[25\] or using a single one for all classes \[26\]. However, these proposed methods neither were applied to the missing data problem nor considered deep NN classifiers.

In this work, we combine the approximation power and simplicity of sparse coding with the extraordinary ability of NNs to model complex decision functions (classifiers) with the goal to successfully train a classifier based on incomplete data samples. We analyze the limitations of the sequential approach, i.e. imputation followed by training, and introduce the simultaneous classification and coding approach. Our method consists of incorporating a sparse data representation model into a cost function that is optimized for training the classifier and, at the same time, finding the best representation of the observed data (section \[2\]). A learning algorithm is presented to train a classifier on incomplete data and sufficient conditions under which such a classifier performs as good as the ideal classifier, i.e. the one that can be obtained from complete observations, is identified (section \[2.2\]). Extensive experimental results are presented in section \[3\] using synthetic and well known benchmark datasets that validate our theoretical findings and illustrate the effectiveness of the proposed method.

1.1 Preliminary definitions and problem formulation

We assume a supervised learning scenario with vector samples and labels \(\{x_i, y_i\}, i = 1, 2, \ldots, I, x_i \in \mathbb{R}^N\) and \(y_i \in \{0, 1, \ldots, C − 1\} (C \text{ classes})\). However, we are constrained to observe only subsets of features: \(\{x_i^o, y_i\}, x_i^o \in \mathbb{R}^{M_i}\) with \(M_i < N\). Unobserved (missing) features are denoted by \(x_i^m \in \mathbb{R}^{N−M_i}\). We consider arbitrary
patterns of missing features, which are allowed to be different for each data instance \(i\). The set of indices of missing features at sample \(i\) is denoted by \(M_i\), i.e. \(x^o_i = x_i(M_i)\) and \(x^m_i = x_i(\overline{M_i})\). We define the set of all \(K\)-sparse vectors \(\Sigma_K^n = \{s \in \mathbb{R}^P \text{ s.t. } ||s||_0 \leq K\} \) (containing at most \(K\) non-zero entries) and assume that data vectors \(x_i\) admit \(K\)-sparse representations over an unknown dictionary \(D \in \mathbb{R}^{N \times P} (P \geq N)\):

\[
x_i = D s_i, \text{ with } s_i \in \Sigma_K^n.
\]

(1)

The columns of a dictionary are called “atoms” because every data vector can be written as a linear combination of at most \(K\) elementary components. Sometimes dictionaries are orthogonal such as the ones derived from the Discrete Cosine or Wavelet \([13]\) transforms. However, overcomplete \((P \geq N)\) nonorthogonal dictionaries have demonstrated to play an important role in image processing tasks such as denoising, inpainting, etc \([16, 27]\).

By partitioning \(D\) according to the pattern of missing features at sample \(i\), we obtain \(D_i^o = D(M_i,:) \in \mathbb{R}^{M \times P}\) and \(D_i^m = D(\overline{M_i},:) \in \mathbb{R}^{(N-M_i)\times P}\), which according to equation (1) implies:

\[
x_i^o = D_i^o s_i, \text{ and } x_i^m = D_i^m s_i.
\]

(2)

Let us assume that a perfect classifier that assigns probability \(p_\Theta(y|x)\) to predicted label \(\hat{y}\) given data \(x\), e.g. a logistic regression or deep NN, can be trained on the complete dataset \(\{x_i, y_i\}\), such that, in a two-classes scenario \((C = 2)\),

\[
p_\Theta(\hat{y} \neq y_i | x_i), \forall i = 1, 2, \ldots, I, \text{ where } \Theta \text{ is the set of trained parameters. Our goal is to develop a method to obtain an estimate } \Theta \text{ of parameters using only the incomplete dataset } \{x_i^o, y_i\}. \]

The problem of training after imputation: If the \(K\)-sparse representations of the observations \(x_i^o\) were unique, then \(x_i\) can be perfectly reconstructed from the incomplete observations and the classifier can be successfully trained using these reconstructions. In the particular case where the dictionary is known in advance, there exist conditions on the sampling patterns based on the coherence, spark or RIP (Restricted Isometry Property) of matrix \(D_o\) that can guarantee uniqueness \([19]\). However, these conditions are difficult to meet in practice and determining RIP/Spark properties are NP-hard in general \([28]\). Moreover, in the general case where the dictionary \(D\) is unknown and needs to be learned from data, it is even more difficult to obtain well separated reconstructions which certainly leads to suboptimal or wrong classifiers. Next, we provide some intuition about the limitation of the sequential approach through a toy example. Let us consider the classification of hand-written digit images belonging to two classes: “3s” and “8s” and assume that they admit 2-sparse representations over a dictionary. Fig. (a-b) shows the representations of two example vectors \(x_i\) and \(x_j\) belonging to classes “3” and “8”, respectively. If only the right halves of the images are observed and no label information is provided, we are clearly faced with a problem because our observed samples from two different classes are identical, i.e. \(x_o = x^o_i\). It is obvious that at least two possible 2-sparse representations for the observed data exist as illustrated in Fig. (c). When the sparse solution is not unique, we may be not able to correctly reconstruct the original data vectors based only (see Fig. (d-e)). In general, sequential methods using only the information of available features are prone to fail because the non-uniqueness of solutions can make the training of a good classifier an impossible task. It is interesting to note that we could solve this problem by incorporating the labelling information from the very beginning.

2 The proposed method: simultaneous learning and coding

We propose to train the classifier and find the proper representation, not only as sparse as possible but also providing the best separation of classes. In other words, we should simultaneously learn the classifier and the sparse coding of observations. We combine the training of the classifier together with the learning of a dictionary and optimal sparse representations such that the reconstructed data vectors are compatible with observations and well separated. To do that we propose to minimize the following global cost function:

\[
J(\Theta, D, s_i) = \frac{1}{I} \sum_{i=1}^{I} \left(\frac{1}{F(\Theta, D, s_i)} \sum_{j=1}^{J} \lambda_1 J_1(D, s_i) + \frac{1}{G(s_i)} \sum_{j=1}^{J} \lambda_2 J_2(s_i) \right),
\]

(3)

where \(\Theta\) are the classifier parameters, i.e. the vector of coefficients and bias for a logistic regression model, or the vector of weights in a deep NN classifier architecture; \(D \in \mathbb{R}^{N \times P} (P \geq N)\) is a dictionary and \(s_i \in \Sigma_K^n\) are the representation coefficients such that the reconstructed data vectors are \(x_i = D s_i\). \(J_0(\Theta, \hat{x}_i, y_i)\) is a measure of the classification error for reconstructed sample vector \(\hat{x}_i\). Typically, we use the crossentropy measure, i.e. \(J_0(\Theta, \hat{x}_i, y_i) = -\log[p_\Theta(y_i|\hat{x}_i)]\), where \(p_\Theta(y_i|\hat{x}_i)\) is the probability assigned by the classifier to sample \(\hat{x}_i\) as belonging to class \(y_i\). \(J_1(D, s_i)\) is a measure of the error associated with the sparse representation when it is restricted to observed features, which is
When was extensively studied in the literature \[30, 31\]. In this sub-problem, the objective function is written as the sum of

\[\ell \]

To minimize the cost function in equation (3), we propose to alternate between the optimization over \(\{x_i\}_{i=1}^n \) and standard first order (stochastic sub-gradient based) search of minima with back-propagation. We take the strategy importantly, the computation of its second derivatives (Hessian) becomes prohibitive. Therefore, we choose a simpler setting makes it not suitable for the CGD approach: first, our function \(F \) solvers, namely the Coordinate Gradient Descent (CGD), already exists. However, the following key differences in our

\[F \]

\[\text{logistic regression:} \]

2.2 Theoretical analysis

Figure 1: Toy example: (a) 4 out \(P \) dictionary elements \(d_i \) (atoms). (b) Digits “3” and “8” can be represented by combining only two atoms in the dictionary (2-sparse representations). (c) A left-half occluded digit “3” or “8” admits more than one 2-sparse representation (sum of \(d_1^3 \) and \(d_2^3 \), or \(d_1^8 \) and \(d_2^8 \)). (d) Linearly separable samples from two classes (A and B) having two features: \(x = [x_1, x_2] \in \mathbb{R}^2 \) where incomplete observations are taken by observing only one feature. Note that \(x_A \) and \(x_B \) belong to different classes but their observations are identical. (e) Without using label information, the sequential method could lead to wrong reconstructions of data vectors, i.e. \(\hat{x}_A \neq x_A \) and \(\hat{x}_B \neq x_B \) making the set of reconstructed vectors not linearly separable.

defined as follows: \(J_1(D, s_i) = \frac{M}{N} \| m_i \odot (x_i - Ds_i) \|_2^2 \), where \(\odot \) stands for the entry-wise product, \(m_i \in \mathbb{R}^N \) is the observation mask for sample \(i, i.e. m_i(n) = 0 \) (1) if data entry \(x_i(n) \) is missing (available); and \(J_2(s_i) = \frac{1}{N} \| s_i \|_1 \) is the \(\ell_1 \)-norm whose minimization promotes the sparsity of the representation since \(\ell_0 \)-norm is a convenient proxy for \(\ell_0 \)-norm \[29\]. Finally, the hyper-parameters \(\lambda_1 \) and \(\lambda_2 \) allow us to give more or less importance to the representation accuracy and its sparsity, with respect to the classification error. Intuitively, minimizing equation (4) favors solutions that not only have sparse representations compatible with observed features, but also provides reconstructions that are best separated in the given classes.

2.1 A sparsity-promoting sub-gradient optimization algorithm

To minimize the cost function in equation (3) we propose to alternate between the optimization over \(\{\Theta, D\} \) and \(s_i \) (\(i = 1, 2, \ldots, I \)).

For fixed \(\{\Theta, D\} \), the optimization with respect to \(s_i \) is a non-smooth separable minimization sub-problem, which was extensively studied in the literature \[30, 31\]. In this sub-problem, the objective function is written as the sum of \(F(\Theta, D, s_i) \) and a non-smooth separable function \(G(s_i) \), for which highly specialized, efficient and provable convergent solvers, namely the Coordinate Gradient Descent (CGD), already exists. However, the following key differences in our setting makes it not suitable for the CGD approach: first, our function \(F(\Theta, D, s_i) \) involves evaluation of a multi-layer NN classifier, which can be non-smooth due to involved activation functions like ReLU or others; second, and more importantly, the computation of its second derivatives (Hessian) becomes prohibitive. Therefore, we choose a simpler and standard first order (stochastic sub-gradient based) search of minima with back-propagation. We take the strategy used in \[32\]. To update \(s_i \) we need to subtract \(\sigma \frac{\partial J_2}{\partial s_i}(j) \) from each coordinate \(j \) provided we do not cross zero in the process in order to avoid scaping from a region where \(G(s_i) \) is differentiable. In such case, we let the new value of \(s_i(j) \) be exactly zero. More specifically, we define \(\Delta_i(j) = -\sigma \frac{\partial J_2}{\partial s_i}(j) \) and, if \(s_i(j) \| s_i(j) + \Delta_i(j) \| < 0 \) (zero crossing condition), we re-define \(\Delta_i(j) = -s_i(j) \); finally we update \(s_i \leftarrow s_i + \Delta_i \). It is noted that, once a coefficient \(s_i(j) \) reaches zero at a coordinate \(j \), it becomes fixed, in other words, sparsity of solution \(s_i \) is monotonically increasing with iterations.

When \(s_i \) is fixed, our problem is reduced to minimize \(F(\Theta, D, s_i) \) with respect to \(\Theta \) and \(D \), which is easily done by standard first order (stochastic gradient based) search of minima. The full-algorithm is presented as Algorithm [1]

In addition, if the test dataset is incomplete, we need to find the sparsest representation for the given observations, compute the reconstructions \(\hat{x}_i = Ds_i \) and apply the classifier to them as presented in Appendix A, Algorithm [2]

2.2 Theoretical analysis

Logistic regression: Let us first consider a logistic regression classifier \[33\] where the set of parameters \(\Theta = \{w, b\} \) are a vector \(w \in \mathbb{R}^N \) and a scalar (bias) \(b \in \mathbb{R} \). A perfect classifier exists if there is a hyperplane that separates both
classes, i.e., for each data vector \(x_i \): \(f(x_i) = \langle w, x_i \rangle + b > 0 \) if \(y_i = 1 \), and \(f(x_i) \leq 0 \) if \(y_i = 0 \). We consider data samples admitting a \(K \)-sparse representations \(x_i = Ds_i \) with dictionary \(D \in \mathbb{R}^{N \times P} \) having unit-norm columns and an arbitrary pattern of missing features \(M_i \), such that, data samples and dictionary are partitioned as \(\{ x_i^m, x_i^o \} \) and \(\{ D_i^m, D_i^o \} \), respectively. The following proposition identifies a sufficient condition under which, if we are able to train a classifier on incomplete observations such that the reconstructed data are well separated by a hyperplane, then the same classifier correctly separates the original (unobserved) data vectors.

Proposition 2.1. Suppose that we have obtained an alternative dictionary \(D' \in \mathbb{R}^{N \times P} \) such that, for the incomplete observations \(x_i^m \in \mathbb{R}^M \), the \(K \)-sparse representation solutions are non-unique, i.e., \(\exists s_i, s'_i \in \Sigma_F^K \) such that \(x_i = D_i s_i = D_i'^s_i \), where \(s_i \in \mathbb{R}^P \) are the vectors of coefficients of the true data and \(s'_i \) provides plausible reconstructions through \(x_i = D_i s'_i \). If a perfect classifier \(\{ w, b \} \) of the reconstructions \(x_i \) exists s.t. \(f(x_i) > \epsilon_i > 0 \) and

\[
\|w_i^m, e_i^m\|_2 > \epsilon_i > 0
\]

with \(e_i^m = x_i^m - \hat{x}_i^m \), then the full data vectors \(x_i \) are also perfectly separated with this classifier, in other words: \(f(x_i) = \langle w_i, x_i \rangle + b > 0 \) if \(y_i = 1 \) and \(y_i = 0 \).

Proof. By using the missing/observed partitions we can write: \(f(x) = \langle w, x \rangle + b = \langle w^o, x^o \rangle + \langle w^m, x^m \rangle + b \), where the sample index \(i \) is omitted. If we add and subtract the term \(\langle w^m, \hat{x}^m \rangle \) on the right hand left, arrange terms and use the fact that \(\hat{x}^o = D^o s_i = x^o \), we get:

\[
f(x) = f(\hat{x}) + \langle w^m, e^m \rangle.
\]

Since we assumed that \(f(\hat{x}) > \epsilon > 0 \) (for \(y_i = 1 \)) and \(\|\langle w^m, e^m \rangle\|_2 < \epsilon \), it implies that \(f(x) > 0 \).

Basically, condition (4) means requiring that reconstruction vector \(\hat{x} \) has a distance \(\epsilon \) to the separating hyperplane larger than the absolute correlation between \(w \) and the reconstruction error \(e = x - \hat{x} \), which of course is true when the reconstruction is accurate, i.e. \(x \approx \hat{x} \), however, we may be interested in situations where approximations are not accurate while the condition of the proposition still holds. For example, by considering the fact that \(\|\langle w^m, e^m \rangle\|_2 = \|\langle w^m, x^m - \hat{x}^m \rangle\|_2 \leq \|\langle w^m, x^m \rangle\|_2 + \|\langle w^m, \hat{x}^m \rangle\|_2 \), we can consider the following sufficient condition, which will be enough to guarantee a proper classifier trained on incomplete data:

\[
\epsilon > \|\langle w^m, x^m \rangle\|_2 + \|\langle w^m, \hat{x}^m \rangle\|_2.
\]

We highlight that, in our experiments, we were able to verify that this sufficient condition (6) is met in practice (see section 3, Fig. 3). Additionally, using equation (6), in Section 2.2.1 we derive a sufficient condition based on properties of the dictionary \(D \) and sparsity level \(K \).

Multilayer-perceptron: Proposition 2.1 can be straightforwardly generalized to multilayer-perceptron NNs where, if a softmax function is used at the output of the last layer then, as before, the prediction is based on the sign of the linear function:

\[
f(x) = \langle w, x^{(L)} \rangle + b + x^{(l)} h \left(\mathbf{W}_l^T x^{(l-1)} + \mathbf{B}_l \right) \text{ and } l = 1, 2, \ldots, L,
\]

where \(L + 1 \) is the total number of layers, \(N_l \) is the number of neurons in layer \(l \), \(w \in \mathbb{R}^{N_{l+1}} \) contains the weights in the last layer, \(h(\cdot) \) is an activation function, e.g. ReLU, \(\mathbf{W}_l \in \mathbb{R}^{N_{l+1} \times N_{l}} \) and \(\mathbf{B}_l \in \mathbb{R}^{N_{l}} \) contain the weights and biases associated to neurons at layer \(l \); and \(x^{(l)} = x \) is the input data vector. In this case, the first layer matrix \(\mathbf{W}_1 \in \mathbb{R}^{N \times N_1} \) can be partitioned into submatrices \(\mathbf{W}_{1l} \in \mathbb{R}^{M \times N_1} \) and \(\mathbf{W}_{1l} \in \mathbb{R}^{(N-M) \times N_1} \), according to the observed and missing input features, respectively.

Proposition 2.2 (proof provided in Appendix B). **Under the same conditions of Proposition 2.1** if a NN-classifier \(\{ \mathbf{W}_l, B_l (l = 1, 2, \ldots, L), w, b, h = ReLU \} \) of the reconstructions \(x_i \) exists such that

\[
\epsilon_i > A \max_j \|\langle \mathbf{W}_{1j}, e_i^m \rangle\|_2,
\]

where \(A = \|w\| \prod_{l=2}^{L} \|\mathbf{W}_l\|_2 \) and \(e_i^m = x_i^m - \hat{x}_i^m \), then the full data vector \(x_i \) is also perfectly separated with this classifier, in other words: \(f(x_i) > 0 \) if \(y_i = 1 \) and \(y_i = 0 \).

2.2.1 A sufficient condition based on RIP and sparsity

The Restricted Isometry Property (RIP): It is important to note that a sufficient (not necessary) condition for sparse solution uniqueness and/or recoverability by an \(\ell_1 \)-minimization model is based on the RIP of an overcomplete dictionary \(D \), which is defined as follows: \(D \) satisfies the RIP of order \(K \) if there exists \(\delta_K \in (0, 1) \) s.t.

\[
(1 - \delta_K)\|s\|_2^2 \leq \|Ds\|_2^2 \leq (1 + \delta_K)\|s\|_2^2,
\]

where \(s \) is a vector of length \(N \).
holds for all \(s \in \Sigma_K^P \). RIP was introduced in \cite{candes2008}. and characterizes matrices which are nearly orthonormal when operating on sparse vectors.

In the following theorem, we show that, by imposing conditions on the sparsity level of the representation and the RIP constant of a sub-matrix of the dictionary, we can guarantee to meet the sufficient condition of the sufficient condition \cite{lustig2007}.

Theorem 2.1. Given a dataset \(\{x_i, y_i\}, i = 1, 2, \ldots, I \) with normalized data vectors (\(\|x_i\| \leq 1 \)) admitting a \(K \)-sparse representation over a dictionary \(D \in \mathbb{R}^{N \times P} \) with unit-norm columns, whose sub-matrices \(D^m_i \) satisfy the RIP of order \(K \) with constant \(\delta_K \), and suppose that, we have obtained an alternative dictionary \(D' \in \mathbb{R}^{N \times P} \), whose sub-matrices \(D'^m_i \) also satisfy the RIP of order \(K \) with constant \(\delta_K \) such that, for the incomplete observation \(x_i^0 \in \mathbb{R}^M \), the \(K \)-sparse representation solution is non-unique, i.e. \(\exists s_i, s_i' \in \Sigma_K^P \) such that \(x_i^0 = D^m_s_i = D'^m_s_i' \), where \(s_i \in \mathbb{R}^P \) is the vector of coefficients of the true data, i.e. \(x_i = D s_i \), and \(s_i' \) provides a plausible reconstruction through \(x_i = D' s_i' \) with \(\|x_i\| \leq 1 \). If a perfect classifier \(\{w, b\} \) of the reconstruction \(\hat{x}_i \) exists such that \(|f(\hat{x})| = |\langle w, \hat{x} \rangle + b | > \epsilon_i > 0 \) and

\[
\epsilon_i > 2\|w^m_{i}^{m}\|_1 \sqrt{\frac{K}{1 - \delta_K}},
\]

then the full data vector \(x_i \) is also perfectly separated with this classifier, in other words: \(f(x_i) = \langle w_i, x_i \rangle + b > 0 \) \((\leq 0 \) if \(y_i = 1 \) \((y_i = 0 \).

Proof. Let us prove that the sufficient condition \cite{lustig2007} is met under the hypothesis of Theorem 2.1. Taking into account that \(x_i^m = D^m_i s_i \), we can write

\[
|\langle w^m_{i}, D^m_i s_i \rangle| = \left| \sum_{j=1}^{N-M_i} w^m_{i}(j) \sum_{n=1}^{N} D^m_i(j,n) s_i(n) \right|
\leq \sum_{j=1}^{N-M_i} |w^m_{i}(j)| \sum_{n=1}^{N} |D^m_i(j,n)||s_i(n)|.
\]

Since we assumed normalized vectors \(\|x_i\| \leq 1 \), by applying the left-hand side of the RIP we obtain: \(\|s_i\| \leq 1/\sqrt{1 - \delta_K} \), and, taking into account that \(\|s_i\|_1 \leq \sqrt{K}\|s_i\| \) and \(|D^m_i(j,n)| \leq 1 \) (columns of \(D \) are unit-norm), we obtain:

\[
|\langle w^m_{i}, D^m_i s_i \rangle| \leq \sqrt{\frac{K}{1 - \delta_K}} \sum_{j=1}^{N-M_i} |w^m_{i}(j)| = \sqrt{\frac{K}{1 - \delta_K}} \|w^m_{i}\|_1.
\]

Similarly, using \(\hat{x}_i^m = D^m_i s_i' \), we can obtain that

\[
|\langle w^m_{i}, D^m_i s_i' \rangle| \leq \sqrt{\frac{K}{1 - \delta_K}} \|w^m_{i}\|_1.
\]

Putting equations \cite{lustig2007} and \cite{lustig2007} together with equation \cite{lustig2007} complete the proof of the sufficient condition \cite{lustig2007}.

\[
3 \text{ Experimental results}
\]

We implemented all the algorithms in Pytorch 1.0.0 on a single GPU. Implementation details are described in Appendix C.

Synthetic datasets: We synthetically generated \(I = 11,000 \) \((10,000 \text{ training } + 1,000 \text{ test}) \) \(K \)-sparse data vectors \(x_i \in \mathbb{R}^{100} \) using a dictionary \(D \in \mathbb{R}^{100 \times 200} \) obtained from a Gaussian distribution with normalized atoms, i.e. \(\|D(:,j)\| = 1, \forall j \). A random hyperplane \(\{w, b\} \) with \(w \in \mathbb{R}^{100} \), \(b \in \mathbb{R} \) was randomly chosen dividing data vectors into two classes according to the sign of the expression \(\langle w, x_i \rangle + b \), which defined the label \(y_i \). We also controlled the degree of separation between classes by discarding all data vectors with distances to the hyperplane lower than a pre-specified threshold, i.e. \(|\langle w, x_i \rangle + b | < d \). We used \(n = 10 \) repetitions of each experiment with different masks and input data in order to compute statistics.

We applied our simultaneous method (Simult.) with hyperparameters \(\lambda_1 \) and \(\lambda_2 \) in the cost function \cite{lustig2007} tuned via cross-validation, to train a logistic regression classifier on incomplete datasets with randomly distributed missing

\[
\text{https://github.com/ccaiafa/SimultCodClass}
\]
features. Then, we computed the classification accuracy on the complete test dataset and compared the results against the following standard sequential methods:

Seq. Sparse: reconstructions are obtained by finding the sparsest representation compatible with the observations solving a LASSO problem;

Zero Fill (ZF): missing features are filled with zeros, which is equivalent to ignore unknown values;

Mean Unsupervised (MU): missing features are filled with the mean computed on the available values;

Mean Supervised (MS): as in the previous case but the mean is computed on the samples of the same class vectors only;

K-Nearest Neighbor (KNN): as in the previous case but the mean is computed on the K-nearest neighbors of the same class only.

To compare the performance of classifiers, we computed the mean accuracy ± standard error of the mean (s.e.m.), with \(n = 10 \), on complete datasets using all the methods for two levels of separation between classes \((d = 0.0, 0.2) \), two levels of sparsity \((K = 4, 32) \) and missing features in the training dataset ranging from 25% to 95% as shown in Fig. 2. Our results show that the simultaneous algorithm clearly outperforms all the sequential methods. A t-test was performed to evaluate the statistical significance with \(p < 0.05 \) of the difference between our algorithm and MS. It is interesting to note that, when classes have some degree of separation \((d = 0.2) \), using the simple MS method, can give good results but not better than our algorithm.

Algorithm 1: Simultaneous classification and coding (training on incomplete data)

Require	\(\{x_i^n, y_i\}, i = 1, 2, \ldots, I \) hyper-parameters \(\lambda_1 \) and \(\lambda_2 \), \(N_{iter} \) and update rates \(\sigma_\Theta, \sigma_D \) and \(\sigma_s \)
Ensure	Weights \(\Theta \) and reconstructions \(\hat{x}_i = Ds_i, \forall i \)
1	Randomly initialize \(\Theta, D, s_i, \forall i \)
2	for \(n \leq N_{iter} \) do
3	Fix \(s_i \), update \(\Theta \) and \(D \):
4	\(\Theta = \Theta - \sigma_\Theta \frac{\partial J}{\partial \Theta} \)
5	\(D = D - \sigma_D \frac{\partial J}{\partial D} \)
6	Normalize columns of matrix \(D \)
7	Fix \(\Theta \) and \(D \), update \(s_i, \forall i \):
8	\(\Delta_i = -\sigma_s \frac{\partial J}{\partial s_i} \), \(\forall i \)
9	if \(s_i(j)[s_i(j) + \Delta_i(j)] < 0 \) then
10	\(\Delta_i(j) = -s_i(j), \forall(i, j) \);
11	end if
12	\(s_i = s_i + \Delta_i, \forall i \)
13	end for
14	return \(\Theta, D, s_i, \hat{x}_i = Ds_i, \forall i \)

![Figure 2](image.png)

Figure 2: Experimental results on synthetic dataset with random masks using our algorithm (red) and compared to various sequential methods. Test accuracy (mean ± s.e.m with \(n = 10 \)) is shown as a function of the percentage of missing features for separation of classes \(d = 0.0, 0.2 \) and levels of sparsity \(K = 4, 32 \). Statistical significance for the difference between Simult. and MS is shown \((p < 0.05) \).

In the second experiment, we generated \(I = 10,000 \) \(K \)-sparse data vectors \(x_i \in \mathbb{R}^{100} \) using \(D \in \mathbb{R}^{100 \times 100} \) and we evaluated the sufficient condition of equation (6) on \(n = 10 \) realizations with 95% missing features and separation \(d = 0.0 \). Fig. 3 clearly shows that the sufficient condition is mostly met in practice, especially for highly sparse representations of input data (small \(K \)). This means that in practice it is not necessary to accurately reconstruct the...
input vectors, it is enough to capture the intrinsic characteristics of the classes such that the distances of reconstructions to the separating hyperplane satisfy the sufficient condition (3).

![Diagram](image)

Figure 3: Verification of the sufficient condition [6] for various levels of sparsity K: 2D-histogram of ϵ versus $g = |\langle w^m, x^m \rangle| + |\langle w^n, x^n \rangle|$. Mean ± s.e.m. ($n = 10$) percentage of correctly classified data samples are shown for $\epsilon > g$ and $\epsilon < g$.

Benchmark datasets: We also considered three popular computer vision datasets: MNIST [34] and Fashion [35] consisting of 70,000 images (60,000 train + 10,000 test) each; and CIFAR10 [36] having 60,000 images (50,000 train + 10,000 test). MNIST/Fashion datasets contain 28 × 28 gray scale images while CIFAR10 dataset is built upon 32 × 32 × 3 color images of different objects. The corresponding data sample size is $N = 28 \times 28 = 784$ for MNIST/Fashion and $N = 32 \times 32 \times 3 = 3,072$ for CIFAR10. We considered a dictionary of size 784 × 784 (MNIST/Fashion) and 1,024 × 1,024 (CIFAR10) and applied our simultaneous algorithm to learn the classifier on incomplete data using uniform random missing masks with several levels of missing data (25%, 50% and 75%) and 50% for random partial occlusions with MNIST/Fashion.

We used a logistic regression classifier (single layer NN) and a 4-layer convolutional neural network [32] (CNN4) for the MNIST/Fashion dataset using batch normalization (BN) [38] in the Fashion dataset. For CIFAR10 dataset, an 18-layer residual neural network, Resnet-18 [39] was implemented. We did not use any data augmentation strategy. The hyper-parameters λ_1 and λ_2 in cost function (3) were adjusted by cross-validation through a grid-search, as shown in Appendix C (Table 4 and Fig. 5). We compared our proposed algorithm with the following standard sequential methods: ZF, MS, KNN-10, KNN-20, KNN-50 and KNN-100; and against the recently proposed method from [14], referred here as NN-GMM, which uses the same NN classifier as in our method and models missing features through GMM. We trained the classifiers on incomplete data with random masks and tested them on complete data for MNIST and CIFAR10 datasets. The obtained mean Test Accuracy ± s.e.m. ($n = 10$) are reported in Table 1. It is noted that NN-GMM provided good results with MNIST dataset compared to sequential methods, however, our simultaneous method outperformed all the methods. Interestingly, NN-GMM performed worst than any other method with CIFAR10 dataset. It seems that NN-GMM is not robust to large amount of missing data because, when we reduced the missing entries to 10%, the test accuracy sensibly increased to 52.57%. Additionally, our method showed to have little variability (small s.e.m.) compared to the second best method (NN-GMM for MNIST and ZF for CIFAR10).

Miss.	ZF	MS	KNN10	KNN20	KNN50	KNN100	NN-GMM	Simult.
75%	84.86 ± 0.02	83.79 ± 0.01	88.16 ± 0.01	87.94 ± 0.01	87.03 ± 0.002	86.52 ± 0.01	96.36 ± 0.12	98.09 ± 0.04
50%	90.13 ± 0.06	88.65 ± 0.01	91.36 ± 0.02	91.11 ± 0.02	90.87 ± 0.01	90.82 ± 0.01	97.67 ± 0.37	98.23 ± 0.10
CIFAR10 (Resnet18)								
Miss.	ZF	MS	KNN10	KNN20	KNN50	KNN100	NN-GMM	Simult.
75%	32.22 ± 2.09	21.30 ± 0.40	22.84 ± 0.87	25.67 ± 0.80	26.52 ± 0.70	26.01 ± 0.52	12.10 ± 0.61	54.81 ± 0.47
50%	46.37 ± 1.93	17.90 ± 0.94	30.94 ± 0.54	29.68 ± 0.46	30.01 ± 0.51	26.23 ± 1.01	14.02 ± 0.75	62.50 ± 0.95

In Table[2] test accuracies obtained when the learned model is applied to incomplete and complete test data, are shown. The right-most column shows the baseline results obtained by training the model on complete datasets using a CNN4 [37] and a Resnet-18 [39], whose implementations can be found at[2] and[3]. It is interesting to note that for the logistic regression classifier, we obtained better results when training with incomplete data rather than using complete data. Also, it is highlighted that training on incomplete data with 50% or fewer random missing features, provides similar test accuracy as training on complete data for MNIST dataset. This could be explained by noting two facts: (1) random

1. https://github.com/islruski/Processing-of-missing-data-by-neural-networks
2. https://github.com/pytorch/examples/tree/master/mnist
3. https://github.com/lstruski/Processing-of-missing-data-by-neural-networks
4. https://github.com/kuangliu/pytorch-cifar

Table 1: Test accuracy (mean ± s.e.m with $n = 10$) of various methods on MNIST and CIFAR10 datasets.
missing features is similar to applying dropout, with the exception that missing data do not change during training; and (2) our model has more parameters (Dictionary + sparse coefficients + Linear layer) compared to the baseline logistic regression classifier. To provide a deeper understanding of this effect, we ran the baseline with Dropout at the input and we obtained: 91.95%, 91.97% and 92.01% for $p = 0.0, 0.1$ and 0.25, respectively, which shows that the improvement we obtained with our method is not solely caused by a dropout alike behavior.

Table 2: Test Accuracies obtained with our method on MNIST, Fashion and CIFAR10 datasets training with incomplete data and testing on incomplete/complete data. Baseline results obtained by training the models on complete data are shown for reference in the right-most column.

Dataset	Classifier	Random missing features	Occlusion	Baseline
		% Train / % Test	% Train / % Test	% Train / % Test
		75/75 50/50 25/25 75/050/0 25/0	50/50 50/0	0/0
MNIST	Log. Reg.	90.45 93.68 94.14 91.94 93.44 94.43	- - -	91.95
	CNN4	94.62 98.34 98.94 98.09 98.23 98.95	88.55 91.37	98.95
Fashion	CNN4+BN	83.71 86.09 86.38 86.39 87.11 87.04	81.73 82.47	90.76
CIFAR10	Resnet18	53.82 61.08 63.73 54.81 62.50 63.87	- - -	-

In Fig. 4, we present some randomly selected visual examples comparing the original images in the MNIST/Fashion test dataset, their observations using random masks and partial occlusions, and the reconstructions obtained with the dictionary learned from the incomplete training data. It is clear that, despite the reconstructions may be not very similar to the original images, they clearly own the properties of the class to which they belong to. Additional examples are provided in Appendix C (Figs. 6 and 7).

![Random mask (75% missing entries) and Occlusion (50% missing entries)](image)

Figure 4: Original (top), observed (middle) and reconstructed (bottom) MNIST and Fashion test images.

4 Discussion

It is well known that sparse coding has the ability to accurately model complex distributions of data, such as natural signals (images, audio, EEG, etc). In this work, we demonstrated that assuming a sparse representation for input data allows for the successful training of a general NN when incomplete data is given outperforming traditional sequential approaches. It is highlighted that our method can be used with potentially any deep NN architecture, thus relying on their extraordinary capability to accommodate complex decision boundaries as usually needed in modern machine learning.

Our method overcomes well known issues of previous approaches to the incomplete data problem: (1) compared to imputation methods, our algorithm successfully incorporates the labelling information into the modeling of missing values; (2) sparse coding allows for a simple way to train dictionaries through linear methods such as stochastic gradient descent with back-propagation compared to the very expensive EM estimators for GMM used in probabilistic generative models, or SVD based algorithms for matrix rank minimization in matrix completion; (3) sparse coding can be more accurate modeling missing values in natural signals compared to GMM, especially for high dimensional data where GMM may require a huge number of parameters making it computationally prohibitive.

We analyzed the limitations of the classical imputation approach and demonstrated through experiments with synthetic and real-world datasets that our simultaneous algorithm always outperforms them for various cases such as LASSO, zero-filling, supervised/unsupervised mean and KNN based methods as well as the state of the art method based on NNs and GGM recently proposed in [14]. Nevertheless, our experimental results on synthetic and real-world dataset showed that, even though we only constrained dictionaries to have unit-norm columns but not enforcing any other kind of constraint like maximum coherence, the obtained results seem to be satisfactory enough. However, further analysis on the required properties of dictionaries could provide deeper insights and alternative ways to improve the algorithm, which we aim to address in a future work.
While current simple sub-gradient based optimization approach provided satisfactory results in terms of performance, it is remarked that observed convergence is slow requiring a thousand of iterations sometimes. We believe, it could be improved by trying to incorporate some second-order derivatives information for computing the updates. Although, full Hessian computation becomes prohibitive with multi-layer NNs a diagonal approximation approach could be explored. Also, a rigorous convergence analysis in the line of the analysis in [30, 31] and taking special properties of multi-layer NN classifier functions can be conducted in a future work.

Finally, we provided theoretical insights of the problem by providing sufficient conditions under which, if it is possible to train a classifier on incomplete observations so that its reconstructions are well separated by a hyperplane, then the same classifier also correctly separates the original (unobserved) data samples.

Acknowledgments

We are thankful for the RAIDEN computing system and its support team at the RIKEN Center for Advanced Intelligence Project which we used extensively for our experiments.

References

[1] Gal Chechik, Geremy Heitz, Gal Elidan, Pieter Abbeel, and Daphne Koller. Max-margin Classification of Data with Absent Features. Journal of Machine Learning Research (JMLR), 9:1–21, 2008.
[2] Roderick J A Little and Donald B Rubin. Statistical Analysis with Missing Data. John Wiley & Sons, August 2014.
[3] Pedro J García-Laencina, José-Luis Sancho-Gómez, and Aníbal R Figueiras-Vidal. Pattern classification with missing data: a review. Neural Computing and Applications, 19(2):263–282, 2009.
[4] Zoubin Ghahramani and Michael I Jordan. Supervised learning from incomplete data via an EM approach. In NIPS, 1993.
[5] David Williams, Xuejun Liao, Ya Xue, and Lawrence Carin. Incomplete-data classification using logistic regression. ICML, 2005.
[6] Chiranjib Bhattacharyya, Pannagadatta K Shivaswamy, and Alexander J Smola. A Second Order Cone programming Formulation for Classifying Missing Data. In NIPS, 2004.
[7] Xuejun Liao, Hui Li, and Lawrence Carin. Quadratically gated mixture of experts for incomplete data classification. In ICML, 2007.
[8] Uwe Dick, Peter Haider, and Tobias Scheffer. Learning from incomplete data with infinite imputations. In ICML, 2008.
[9] Tsung I Lin, Jack C Lee, and Hsiu J Ho. On fast supervised learning for normal mixture models with missing information. Pattern Recognition, 39(6):1177–1187, 2006.
[10] Olivier Delalleau, Aaron C Courville, and Yoshua Bengio. Efficient EM Training of Gaussian Mixtures with Missing Data. arXiv, cs.LG:1209.0521, 2012.
[11] Andrew B Goldberg, Xiaojin Zhu, Ben Recht, Jun-Ming Xu, and Robert D Nowak. Transduction with Matrix Completion - Three Birds with One Stone. In NIPS, 2010.
[12] Elad Hazan, Roi Livni, and Yishay Mansour. Classification with Low Rank and Missing Data. In ICML, 2015.
[13] Sheng-Jun Huang, Xiao Xie, Masashi Sugiyama, Gang Niu, and Songcan Chen. Active Feature Acquisition with Supervised Matrix Completion. arXiv, cs.LG:1802.05380, 2018.
[14] Marek Smieja, Lukasz Struski, Jacek Tabor, Bartosz Zielinski, and Przemyslaw Spurek. Processing of missing data by neural networks. In NeurIPS, 2018.
[15] Honglak Lee, Alexis Battle, Rajat Raina, and Andrew Y Ng. Efficient sparse coding algorithms. In NIPS, 2006.
[16] Julien Mairal, Francis R Bach, Jean Ponce, and Guillermo Sapiro. Online dictionary learning for sparse coding. In ICML, 2009.
[17] Karol Gregor and Yann LeCun. Learning Fast Approximations of Sparse Coding. In ICML, 2010.
[18] SG Mallat. A Wavelet Tour of Signal Processing. The Sparse Way. Academic Press, 2009.
[19] M Davenport, Marco F Duarte, Yonina C Eldar, and G Kutyniok. Introduction to compressed sensing. Theory and Applications. Cambridge University Press, Cambridge, 2012.
[20] B A Olshausen and D J Field. Emergence of simple-cell receptive field properties by learning a sparse code for natural images. Nature, 381(6583):607–609, 1996.
[21] BA Olshausen and DJ Field. Sparse coding with an overcomplete basis set: A strategy employed by V1? Vision research, 37(23):3311–3325, 1997.
[22] Ke Huang and Selin Aviyente. Sparse Representation for Signal Classification. In NIPS, 2006.
[23] J Mairal, J Ponce, G Sapiro, A Zisserman Advances in neural, and 2009. Supervised dictionary learning. In NIPS, 2008.
Appendix A: Additional algorithms

Here, the pseudocode of the algorithms discussed in the paper are presented. In Algorithm 1, the simultaneous classification and coding algorithm is described. It consists of the iterative alternation between the update of the classifier’s parameters together with the dictionary, and the update of the sparse coefficients for the representation of data observations. Once the classifier is trained, we are able to apply it to incomplete test data by using Algorithm 2, where for fixed \(\Theta \) and \(D \), we need to find the corresponding sparse coefficients \(s_i \), compute the full data vector estimations and, finally, apply the classifier.

The standard sparsity-based sequential method is presented in Algorithm 3 (sequential approach), which consists of learning first the optimal dictionary \(D \) and sparse coefficients \(s_i \) compatible with the incomplete observations (dictionary learning and coding phase), followed by the training phase, where the classifier weights are tuned in order to minimize the classification error of the reconstructed input data vectors \(x_i = D s_i \).

Appendix B: Proof of proposition 2.2

In the proof of Proposition 2.2, we were interested in finding a bound of the output error when the input \(x \) of a classifier is perturbed, i.e. we found conditions such that \(|f(x) - f(x + \delta)| < \epsilon \). By generalizing the classifier to the case of a multilayer perceptron we can derive the proof as follows:

Proof. Given a perturbation \(\delta^{(l-1)} \in \mathbb{R}^{N_l} \) at the input of layer \(l - 1 \), i.e. \(\hat{x}^{(l-1)} = x^{(l-1)} + \delta^{(l-1)} \), it is propagated to the output of layer \(l \). By writing the error at the output we obtain:

\[
\delta^{(l)} = h \left(W_l^T x^{(l-1)} + B_l + W_l^T \delta^{(l-1)} \right) - h \left(W_l^T x^{(l-1)} + B_l \right),
\]

and, by using the sub-additivity of ReLU function \(h(\cdot) \), i.e. \(h(a + b) \leq h(a) + h(b) \), we derive the following entry-wise inequality:

\[
\delta^{(l)} \leq h \left(W_l^T \delta^{(l-1)} \right),
\]
We implemented all the algorithms in Pytorch 1.0.0 on a single GPU. The code available at [https://github.com/ccaiafa/]:

Algorithm 2: Testing on incomplete data

Require: Incomplete data vectors \(\{x_i^o\}, i = 1, 2, \ldots, I \), classifier parameters \(\Theta \), dictionary \(D \), hyper-parameters \(\lambda_1 \) and \(\lambda_2 \), number of iterations \(N_{iter} \) and update rate \(\sigma_a \)

Ensure: \(\hat{y}_i \) and reconstructions \(\hat{x}_i = Ds_i, \forall i \)

1: Sparse coding stage: for fixed dictionary \(D \) find sparse representations of observations \(x_i^o \)
2: Initialize \(s_i \), \(\forall i \)
3: for \(n \leq N_{iter} \) do
4: \(\Delta_i = -\sigma_a [\lambda_1 \frac{\partial J}{\partial x_i} + \lambda_2 \frac{\partial J}{\partial s_i}] , \forall i \)
5: if \(s_i(j)[s_i(j) + \Delta_i(j)] < 0 \) then
6: \(\Delta_i(j) = -s_i(j); \) avoid zero crossing
7: end if
8: \(s_i = s_i + \Delta_i, \forall i \)
9: end for
10: \(x_i = Ds_i, \forall i; \) Compute reconstructions
11: Classification stage: apply classifier to reconstructions \(\hat{x}_i \)
12: \(\hat{y}_i = \arg \max_{y\in\{1,2,\ldots,I\}} (p^y_i(x_i)) \)
13: return \(\Theta, \hat{y}_i, s_i, \hat{x}_i, \forall i \)

Algorithm 3: Sequential approach (imputation method)

Require: Incomplete data vectors and their labels \(\{x_i^o, y_i\}, i = 1, 2, \ldots, I \), hyper-parameters \(\lambda_1 \) and \(\lambda_2 \), number of iterations \(N_{iter} \) and update rate \(\sigma_o, \sigma_D \) and \(\sigma_a \)

Ensure: Classifier weights \(\Theta \) and reconstructions \(\hat{x}_i = Ds_i, \forall i \)

1: Randomly initialize \(D, s_i, \forall i \)
2: Imputation stage: learning of \(D \) and \(s_i \)
3: for \(n \leq N_{iter} \) do
4: \(D = D - \sigma_D \frac{\partial J}{\partial x_i} \)
5: Normalize columns of matrix \(D \)
6: \(\Delta_i = -\sigma_a [\lambda_1 \frac{\partial J}{\partial s_i} + \lambda_2 \frac{\partial J}{\partial s_i}], \forall i \)
7: if \(s_i(j)[s_i(j) + \Delta_i(j)] < 0 \) then
8: \(\Delta_i(j) = -s_i(j); \) avoid zero crossing
9: end if
10: \(s_i = s_i + \Delta_i, \forall i \)
11: end for
12: \(\hat{x}_i = Ds_i, \forall i; \) Compute reconstructions
13: Training stage: update \(\Theta \)
14: for \(n \leq N \) do
15: \(\Theta = \Theta - \sigma_o \frac{\partial J}{\partial \Theta} \)
16: end for
17: return \(\Theta, D, s_i, \hat{x}_i = Ds_i, \forall i \)

and, by considering the property of ReLU activation function \(\|h(x)\| \leq \|x\| \), it turns out:

\[
\|\delta^{(l)}\| \leq \|W_T^l \delta^{(l-1)}\| , \tag{16}
\]

Since the last layer of the NN is a linear classifier as in the case of Proposition 2.1 we can ask that \(\langle w, \delta^{(L)} \rangle < \epsilon \). Thus, by recursively using equation (16) we write

\[
\langle w, \delta^{(L)} \rangle \leq \|w\| \|\delta^{(L)}\| \leq \|w\| \|\|W_L\|_2\|W_{L-1}\|_2 \cdots \|W_2\|_2\|\delta^{(1)}\| . \tag{17}
\]

By defining \(A = \|w\| \prod_{l=2}^{L} \|W_l\|_2 \), evaluating equation (16) with \(l = 1 \) and taking into account that perturbation at the input of first layer is \(\delta^{(0)} = e \) with \(e^\gamma = 0 \), we arrive at:

\[
\langle w, \delta^{(L)} \rangle \leq A \|W_1^m \|_2 \|e^m\| \leq A \max_j |\langle W_1^m(:,j), e^m \rangle| < \epsilon , \tag{18}
\]

which completes the proof.

\[\square\]

Appendix C: Experimental results details

Implementation

We implemented all the algorithms in Pytorch 1.0.0 on a single GPU. The code available at [https://github.com/ccaiafa/SimultCodClass]
Table 3: Experimental settings for MNIST and CIFAR10 datasets: Number of iterations N_{iter}, batch size bs, learning rate σ_θ, momentum m, update rate σ (training and test)

Dataset	Classifier	N_{iter}	bs	σ_θ	m	σ (train)	σ (test)
MNIST	Log. Reg.	3000	250	0.1	0.5	1.0	5.0
CNN4		2500	250	0.5	0.5	0.4	0.5
CIFAR10	Resnet18	1000	64	0.01	0.5	1.0	2.5

Table 4: Hyper-parameter tuning: crossvalidated hyperparameters λ_1 and λ_2 obtained for MNIST and CIFAR10 datasets with the classifiers used in our experiments.

Dataset	Classifier	Random missing entries	Occlusion				
		75%	50%	25%	50%		
MNIST	Log. Reg.	λ_1	λ_2	λ_1	λ_2	λ_1	λ_2
	CNN4	0.28	1.28	0.64	1.28	0.64	1.28
CIFAR10	Resnet18	0.024	0.008	0.032	0.004	0.032	0.01

Initializations of dictionary D and coefficients s_i were made at random. However, we think some improvements in convergence could be achieved by using some dedicated dictionaries such as the case of Wavelet or Cosine Transform matrices. To update NN weights (Θ), we used standard Stochastic Gradient Descent (SGD) with learning rate σ_θ and momentum m, while for updating dictionary D and vector coefficients s_i, we used fixed update rate $\sigma = \sigma_D = \sigma_s$. It is noted that we used different update rates for training and testing stages.

Hyperparameter tuning

In Table 4, we present the results of the grid search for hyper-parameter tuning on MNIST and CIFAR10 datasets. We fit our model to the training dataset for a range of values of parameters λ_1 and λ_2 and apply it to a validation data set. Figure 5 shows the validation accuracy obtained with different classifiers and levels of missing entries for MNIST dataset.

4.1 Additional visual results

To visually evaluate our results, additional randomly selected examples of original (complete) images of the test dataset in MNIST and Fashion, together with their given incomplete observations and obtained reconstructions, are shown in Figure 6 and Figure 7.
Figure 5: Test accuracy in the grid search for hyper-parameter tuning in MNIST dataset: λ_1 and λ_2 were tuned by cross-validation for various levels of missing entries: 25%, 50% and 75%.
Figure 6: Reconstructions of incomplete test MNIST dataset images by applying our simultaneous classification and coding algorithm with the CNN4 architecture.
Figure 7: Reconstructions of incomplete test Fashion dataset images by applying our simultaneous classification and coding algorithm with the CNN4 architecture with Batch Normalization (BN).