Application effect analysis of fracture net fracturing technology in a certain block

Shuang Wang*
Geological Team of No.3 Oil Mine of No.10 Oil Production Plant of anniversary Oilfield Co., Ltd., 166405, China

*Corresponding author e-mail: Wangshuang@petrochina.com.cn

Abstract. During the development of a certain block in Chaoyanggou Oilfield, there are many contradictions, such as high water injection pressure and fast rising speed, difficult to establish effective displacement of oil and water wells, poor oil well efficiency, difficult to establish effective displacement by conventional fracturing and water injection development, low single well output after fracturing and poor effect of measures. In view of these problems, we conducted fracture network fracturing test in a certain block to explore effective measures to improve single well production in low permeability reservoirs, in order to provide reference for future measures to tap potential and increase efficiency.

Keywords: Low permeability reservoirs; Seam net fracturing: A certain block; Measures to tap potential.

1. Basic overview of a certain block
A block is located on the southeast wing of Fanshen village anticline structure in Chaoyanggou terrace, and the target layer is Fuyu oil layer with top elevation of -800 ~ -950 m. There are 25 faults developed in the block, with a fault distance of 10 ~ 50m, which are mainly faults in the north-south direction, and the reservoirs are mainly sand bodies deposited by distributary channels and crevasse fans. Sand bodies are distributed in a strip shape and lenticular shape, with three main oil layers FI51, FI121 and FI11 developed, and 4.2 layers developed in a single well, with an effective thickness of 9.9m, which gradually becomes thinner from northwest to southeast.

Table 1. Geological parameter table of a block

Development area (km²)	Geological reserves (10⁴t)	Porosity (%)	Permeability (mD)	Oil saturation(%)	Formation crude oil viscosity (mPa.s)	Saturation pressure (MPa)
13.69	549.68	15.2	3.9-8.6	50.3	40.8	4.8

A certain block was put into development one after another in 2010, and the development mode of advanced water injection was adopted. There are 219 oil wells and 90 water wells in the whole region.
By December 2018, the cumulative oil production was $63.45 \times 10^4 \text{t}$, the cumulative water injection was $263.95 \times 10^4 \text{m}^3$, the cumulative injection-production ratio was 2.4, and the formation pressure was 6.92MPa.

2. Main problems in the development of a certain block

2.1. The reservoir physical property is poor, and the output decreases rapidly after putting into production

In a certain block, the porosity is 15.2%, the permeability is only 3.9-8.6mD, the viscosity of formation crude oil is as high as 40.8mPa.s, and the reservoir physical properties are poor. The block was put into development in 2010. At the initial stage of production, the average single well oil production was 3.5t/d. By December 2018, the average single well oil production had dropped to 1.0t/d, with a decline rate of 71.4%, and the output declined rapidly.

Time	Initial stage of production	December, 2014	December, 2015	December, 2016	December, 2017	December, 2018
Average single well oil production(t/d)	3.5	1.7	1.6	1.4	1.1	1.0

2.2. Poor water absorption, many well points and poor oil well performance

The water injection wells in a certain block have experienced poor water absorption since 2013. With the continuous development, the number of wells with poor water absorption has increased year by year. There are 90 wells in the block, and as of December 2018, the number of wells with poor water absorption has increased to 31. The oil wells around wells with poor water absorption suffer from poor efficiency, and the output declines rapidly.

Time	2013	2014	2015	2016	2017	2018
Number of wells with poor water absorption	5	9	15	20	30	31

For wells with poor water absorption, acidizing, turning to fracturing and other injection enhancement measures are taken in time according to the situation of single wells, but the results are not very good. In recent 3 years, 19 wells have been acidized and 2 wells have been injected by fracturing. The average effective period of 21 wells is only 128 days, and the average injection enhancement of a single well is only 1225m3.

Age	Action type	Number of wells	Average single well injection increase (m3)
2016	Acidulate	2	1728
2017	Acidulate	11	1470
2018	Acidulate	6	941
	Fracture	2	761
Total		21	1225

2.3. Take timely measures to transform, but the transformation effect is not ideal

From 2016 to 2017, a total of 35 wells were taken, such as turning fracturing, hot gas acid plugging removal, hole repairing fracturing, water plugging fracturing and low-temperature self-generating gas, with an average effective period of 76 days, with an average oil increase of 142t per well. In 2017, 12
wells were turned to fracturing, with an average effective period of 91 days and an average oil increase of 231t per well, which did not achieve a good improvement effect.

Table 5. Statistical table of oil well measures in a block

Age	Action type	Number of wells	Term of validity(d)	Cumulative oil increase (t)
2016	Steering fracturing	4	83	419
	Water shutoff fracturing	3	16	17
	Hot gas acid plugging removal	8	96	196
2017	Steering fracturing	12	91	231
	Hole-repairing fracturing	1	60	14
	Hot gas acid plugging removal	4	128	79
	Low temperature autogenous gas	3	57	37
	Total	**35**	**76**	**142**

3. Carry out fracture test of seam net

In 2018, fracture network fracturing test was carried out in a certain block, which produced complex network fractures in the far well zone. At the same time, combined with the existing injection-production well network, the injection-production well spacing was shortened to establish effective displacement, and the single well productivity and recovery ratio were maximized. In 2018, 5 wells were fractured by fracture network, and 4 wells were fractured by fracture network in 2019.

3.1. Principle of fracture net fracturing technology

In the process of hydraulic fracturing, when the net pressure of fracture extension is greater than the sum of the difference between two horizontal principal stresses and the tensile strength of rock, it is easy to produce bifurcation cracks, and multiple bifurcation cracks will form a "fracture network" system. Among them, the main fracture is taken as the backbone of the "net-fracture" system, and the bifurcated fracture may recover to the original fracture orientation after extending for a certain length from the main fracture, and finally form a vertical and horizontal "net-fracture" system with the main fracture as the main trunk. This fracturing technology to achieve the effect of the "net-fracture" system is called "net-fracture" technology.

Through fracture-net fracturing, the complex network fractures are cracked, and the displacement between wells is changed into the displacement between wells and fracture-net, thus shortening the injection-production distance and realizing effective displacement. At the same time, in order to reduce the influence of mutual interference between fractures after fracturing, fracturing is carried out every well. On the plane, the existing well pattern is used, combined with large-scale fracturing technology, to optimize the fracture scale to produce fracture pattern, expand the oil drainage area and reduce the injection-production well spacing; In the longitudinal direction, non-main oil layers are considered, fracturing intervals are optimized according to stress and lithologic shielding conditions, and thin interbeds with small interlayer thickness are compressed to maximize the production degree of various reservoirs.

3.2. Implementation of fracture test of seam net

Starting from 2018, oil wells with high output, rapid decline in output, poor water absorption of connected wells but high cumulative injection amount will be selected in a certain block for fracture network fracturing. In 2018, 5 wells will be fractured by fracture network, and in 2019, 4 wells will be fractured. According to the actual situation of single well and single layer, the plan of construction parameters should be made, so that "each well has a plan, and each layer has a parameter". The construction process should be carried out in strict accordance with the design parameters.
Serial number	Oil well number	Thickness (m)	Production time	Design	Reality								
		Effective	Link	Interval (number)	Malmstone (m)	Effective (m)	Sand addition amount (m³)	Sand adding strength (m³/m)	Liquid consumption (m³)	Sand addition amount (m³)	Sand adding strength (m³/m)	Liquid consumption (m³)	
1	Well A	7.0	7.0	2013 07	The first paragraph	F12 1	1.0	0.6	30	30	4000	30	30
					The second paragraph	F15 1	1.6	1.4	40	25	40	25	
					The third paragraph	F21	2.6	2.2	40	15.4	40	15.4	
					Fourth paragraph	F22 1	3.4	2.8	45	13.2	45	13.2	
					Subtotal	8.6	7.0	155	18	155	18		
2	Well B	8.2	8.2	2013 07	The first paragraph	F21	8.0	6.6	50	6.3	3500	50	6.3
					The second paragraph	F22 1	2.0	1.6	50	25	40	20	
					Subtotal	10.0	8.2	100	10	90	9		
3	Well C	11.8	11.8	2011 10	The first paragraph	F15 1	4.4	3.6	50	11.4	3500	50	11.4
					The second paragraph	F21 - F22 1	10.6	8.2	40	3.8	50	4.7	
					Subtotal	15.0	11.8	90	6	100	6.7		
4	Well D	18.4	15.0	2011 07	The first paragraph	F15 1	5.0	3.6	45	9	5200	20	4
					The second paragraph	F16 2	3.2	3.0	40	12.5	19	5.9	
					The third paragraph	F21 1	2.8	2.4	40	14.3	40	14.3	
					Fourth paragraph	F22 1	4.0	3.2	45	11.3	79	5.3	
					Subtotal	15.0	12.2	170	11.3	79	5.3		
5	Well E	14.6	14.6	2013 10	The first paragraph	F15 2	3.2	2.4	45	14.1	5400	45	14.1
					The second paragraph	F17 1	4.2	3.8	45	10.7	45	10.7	
					The third paragraph	F21	5.2	4.2	45	8.7	45	8.7	
					Fourth paragraph	F22 1	4.6	4.2	45	9.8	45	9.8	
					Subtotal	17.2	14.6	180	10.5	180	10.5		
Total		12.0	11.3			13.2	10.8	139.0	11.2	4520	120.8	9.9	

In 2018, due to the pressure relief of Well D connected with Well F, the wellhead pressure was low, and the layer jumped during the construction, the designed fourth interval failed to be constructed according to the design. The total sand loading of wells was 91m³ less than planned, and the sand loading intensity was 6m³/m less than planned.
Table 7. Statistical table of construction parameters of seam net fracturing in 2019

Serial number	Oil well number	Thickness (m)	Productive time	Interval (number)	Design	Reality							
				Malmstone (m)	Efficve (m)	Sand additive amount (m³/m)	Sand adding strength (m³/m)	Liquid consumption (m³)	Sand adding strength (m³/m)	Liquid consumption (m³)			
1	Wel 1G	9.2	2013 07	The first paragraph	F2 21	3.0	2.8	50	30.0	50	16.7	3700	2954
		6.6		The second paragraph	F2 1	4.0	3.8	55	25.0	55	13.8		
		6.6		The third paragraph	F1 22	1.0	0.8	50	15.4	203	13.1		
				Subtotal		8.0	7.4	155	13.2	105	13.1		
2	Wel 1H	9.2	2013 07	The first paragraph	F2 21	5.4	4.6	60	18.0	60	11.1	4000	3917
		9.2		The second paragraph	F2 1	3.0	2.8	50	6.3	50	16.7		
		9.2		The third paragraph	F1 21	3.2	2.8	50	25.0	50	15.6		
				Subtotal		11.6	10.2	160	10.0	160	13.8		
3	Wel 1I	12.0	2013 12	The first paragraph	F2 21	5.0	4.0	50	11.4	60	12.0	4000	4071
		10.2		The second paragraph	F2 1	4.4	3.2	50	3.8	50	11.4		
		10.2		The third paragraph	F1 21	2.2	2.0	60	6.0	50	22.7		
				Subtotal		11.6	9.2	160	9.0	160	13.8		
4	Wel 1J	13.6	2013 12	The first paragraph	FI 22	4.6	3.8	60	12.5	60	13.0	5000	5023
		9.8		The second paragraph	FI 21	3.2	2.6	50	14.3	50	15.6		
		9.8		The third paragraph	FI 1	4.2	3.0	50	11.3	50	11.9		
				Fourth paragraph	FI5 21	2.6	2.2	50	11.3	50	19.2		
				Subtotal		14.6	11.6	210	14.1	210	14.4		
Total		11.0				11.5	9.6	171	11.6	4175	159	13.8	3991
In 2019, due to the failure of fracturing the third interval designed for Well G, the sand addition of the total well was 50m³ less than planned, and the fracturing fluid consumption was 746m³ less than planned.

3.3. Fracture effect of seam net

In September, 2018, five wells were fractured by fracture network in a certain block. The average daily oil production of each well was 1.0t before the measures and 6.5t at the initial stage after the measures. As of September 31, 2019, the average daily oil production of each well was 0.9t, the average single well was valid for 326 days, and the average cumulative oil increase of each well was 654t, of which the daily oil production of Well A was 2.4t and the cumulative oil increase was 1384t.

Table 8. Statistical table of fracture effect of seam net in 2018

Serial number	Oil well number	Before measures	Initial stage after measures	Now	Current oil increase (t/d)	Cumulative oil increase (t)	Term of validity (d)								
	Liquid production (t/d)	Produce oil (t/d)	Containing water (%)	Liquid production (t/d)	Produce oil (t/d)	Containing water (%)	Liquid production (t/d)	Produce oil (t/d)	Containing water (%)	Liquid production (t/d)	Produce oil (t/d)	Containing water (%)	Liquid production (t/d)	Produce oil (t/d)	Containing water (%)
1	Well A	1.7	0.8	51.0	19.8	6.1	69.2	8.2	3.2	61.0	2.4	1384	383		
2	Well B	1.4	1.2	16.0	18.1	8.6	52.6	7.6	2.3	70.0	1.1	827	375		
3	Well C	1.1	1.0	12.0	9.1	6.6	27.5	2.7	2.1	22.0	1.1	626	357		
4	Well D	1.1	0.9	16.0	7.8	5.4	30.2	1.2	0.9	20.0	0.0	188	355		
5	Well E	1.5	0.9	40.0	10.3	5.8	43.5	0.0	243	162					
	A total of 5 wells	6.8	4.8	29.4	65.1	32.5	50.1	19.7	8.5	56.9	4.6	3268	1632		
	Average	1.4	1.0	29.4	13.0	6.5	50.1	4.9	2.1	56.9	0.9	654	326		

3.3.1. The effect of fracture net fracturing is better than that of conventional steering fracturing. Compared with conventional steering fracturing in a block, because the scale of fracture-net fracturing is larger than that of conventional fracturing, the sand adding strength is increased from 3.9m³/m to 9.9 m³/m. After fracturing, the daily oil production of a single well is higher than that of conventional fracturing, and the high production time is longer and the fracturing effect is better.

Table 9. Comparison table of conventional fracturing and fracture network fracturing parameters in a block

Action type	Number of wells	Effective thickness (m)	Porosity (%)	Permeability (mD)	Oil saturation (%)	Crude oil viscosity (mpa•s)	Water cut before fracturing (%)	Recovery degree before fracturing (%)	Fracturing fluid consumption (m³)	Sand addition amount (m³)	Sand adding strength (m³/m)
Conventional frackting	20	11.0	15.2	4.8	50.3	10.3	26.9	12.80	260	48	3.9
Fracture net fracturing	5	12.6	15.8	5.9	52.9	10.4	26.2	12.85	4446	129	9.9

The average daily oil production of 20 steering fracturing wells is 0.9t before the measures, 3.8t at the initial stage after the steering fracturing, 1.0t before the measures of 5 fracture-net fracturing wells, and 6.5t at the initial stage after the fracture-net fracturing, which is obviously higher than that after the steering fracturing. After 12 months of measures, the average daily oil production of conventional
fracturing wells is 1.2t, and that of fracture network fracturing wells is 1.8t. The effect of fracture net
fracturing is better than that of conventional steering fracturing.

Figure 1. Comparison table of daily oil production between conventional fracturing and fracture-net
fracturing in a block

3.3.2. The water injection situation of water injection wells in fracture network fracturing well area has
been improved obviously. Ten wells are connected with five fracture-net fracturing wells. The average
oil pressure before fracture-net fracturing is 14.8MPa, with daily injection of 13m³. After fracturing, the
initial oil pressure is 13.3MPa, with daily injection of 18m³. At present, the oil pressure is 14.5MPa,
with daily injection of 15m³.

Table 10. Statistical table of changes of connected water wells in fracture network fracturing wells

Oil well number	Connected well	Injection allocation (m³)	Oil pressure (MPa)	Daily injection (m³)	Oil pressure (MPa)	Daily injection (m³)	Oil pressure (MPa)	Daily injection (m³)
	Well A							
	Well A	1 Well K	15	13.7	15	12.5	15	13.7
	Well B	2 Well K	15	13.7	15	12.5	15	13.7
	Well C	3 Well L	15	15.3	9	13.2	12	15.3
		4 Well M	35	14.9	35	13.6	33	14.3
		5 Well N	20	15.1	7	11.9	20	15.3
	Well D	6 Well Q	15	15.1	8	10.6	15	15.3
		7 Well P	25	13.8	25	13.7	25	13.3
		8 Well Q	15	15.2	7	14.8	15	15.5
		9 Well R	15	15.4	7	14.8	15	13.3
		10 Well S	20	15.4	5	15.3	16	15.5
	Total: 10 wells		190	14.8	13	13.3	18	14.5
	Average		19	14.8	13	13.3	18	14.5

Comparing the water absorption profile data of 5 wells, the water absorption layers and thickness of
the whole well have increased, in which the percentage of water absorption layers has increased from
58.3% to 66.7%, and the percentage of water absorption thickness has increased from 58.8% to 64.0%.

3.3.3. The water injection situation of connected wells has a certain influence on the fracturing effect
of fracture network. Compared with the water injection situation of 5 fracturing wells connected to water
injection wells in a block, among them, well E is connected to 3 water injection wells, all of which are
under-injected wells before fracturing, and the cumulative injection-production ratio is only 2.41, which
is lower than the average level of the block. The output of this well drops rapidly within one month after
fracturing, and the effect of increasing production does not reach the expectation.
Table 11. Comparison table of water injection status and oil increase status of fracture network fracturing wells in a block

Serial number	Oil well number	Thickness (m)	Connected injection well	Initial daily oil increase (t)	Cumulative injection-production ratio	Cumulative water injection(×10⁴m³)	Cumulative oil increase(t)	Cumulative oil increase(t)
1	Well A	7.0	7.0	2	3.41	3.4	5.3	651
2	Well B	8.2	8.2	3	3.34	3.16	7.4	467
3	Well C	18.4	15.0	2	5.21	2.89	5.6	280
4	Well D	14.6	14.6	3	2.44	2.41	4.5	173
5	Well E	15.0	11.8	2	4.1	3.32	4.9	147

Figure 2. Oil production curve of single well after fracture of well D and 4 wells in the same block

4. Summary
First, the fracture network fracturing technology provides a technical means for the effective use of difficult-to-produce reservoirs and achieves good results.

Second, the effective time of fracture-net fracturing measures is long, the cumulative oil increase is much, and the effect is obviously better than that of common steering fracturing.

Third, fracture-net fracturing can improve the water injection status of water injection wells in well areas.

Fourth, the water injection situation of connected wells has a certain influence on the fracture net fracturing effect. Before fracture net fracturing, the injection increase measures should be implemented for wells

References
[1] Zhao Yuanchao, Analysis of Application Effect of Fracture Network Fracturing Technology in Low Permeability Reservoirs, Inner Mongolia Petrochemical Industry, No.15, 2015.
[2] Yuan Chunjing, Research and Application of Fracture Network Fracturing Technology in Tight Fuyang Reservoir of Daqing Oilfield, Collection of Oil Production Engineering, September 2017.
[3] Chi Hongtao, Application of Fracture Network Fracturing Technology in Low Permeability Reservoir Development, Chemical Engineering and Equipment, No.7, 2019.