Unified Bernoulli-Euler polynomials of Apostol type

Hacène Belbachir · Yahia Djemmada · Slimane Hadj-Brahim

Received: 12 September 2020 / Accepted: 2 February 2022 / Published online: 9 March 2022
© The Indian National Science Academy 2022

Abstract The object of this paper is to introduce and study the properties of unified Apostol-Bernoulli and Apostol-Euler polynomials noted by \(\{V_n(x; \lambda; \mu)\}_{n \geq 0} \). We study some arithmetic properties of \(\{V_n(x; \lambda; \mu)\}_{n \geq 0} \) as their connection to Apostol-Euler polynomials and Apostol-Bernoulli polynomials. Also, we give derivation and integration representations of \(\{V_n(x; \lambda; \mu)\}_{n \geq 0} \). Finally, we use the umbral calculus approach to deduce symmetric identities.

Keywords Euler polynomials · Bernoulli polynomials · Apostol-Bernoulli and Apostol-Euler polynomials · generating function

Mathematics Subject Classification 11B68 · 11B83 · 11C08 · 11C20

1 Introduction

The Bernoulli \(\{B_n(x)\}_{n \geq 0} \) and the Euler \(\{E_n(x)\}_{n \geq 0} \) polynomials respectively are generated by the following power series (see [4,6]):

\[
\frac{t}{e^t - 1} e^{xt} = \sum_{n=0}^{\infty} B_n(x) \frac{t^n}{n!} \quad (|t| < 2\pi)
\]

and

\[
\frac{2}{e^t + 1} e^{xt} = \sum_{n=0}^{\infty} E_n(x) \frac{t^n}{n!} \quad (|t| < \pi).
\]

As a particular case, for \(x = 0 \), we denote \(B_n := B_n(0) \) and \(E_n := E_n(0) \), which are called the Bernoulli and the Euler numbers, respectively. They have numerous important applications in various fields of mathematics, like number theory, analysis and combinatorics.

Communicated by B. Sury.
Apostol [1] introduced and investigated the extended form of the classical Bernoulli polynomials and numbers, known as the Apostol-Bernoulli polynomials and numbers. The Apostol-Euler and the Apostol-Genocchi polynomials were introduced by Srivastava [12]. Belbachir et al. [2, 3] proposed a new family of polynomials called Euler-Genocchi polynomials and studied their properties like linear recurrences and difference equations using a determinantal approach and generating function.

2 Determinantal representation of the Bernoulli-Euler polynomials of Apostol type

According to [9], the Apostol-Bernoulli polynomials \{\mathcal{B}_n(x; \lambda)\}_{n\geq 0} and the Apostol-Euler polynomials \{\mathcal{E}_n(x; \lambda)\}_{n\geq 0} are generated by the following power series:

\[
\frac{t}{\lambda e^t - 1} e^{xt} = \sum_{n=0}^{\infty} \mathcal{B}_n(x; \lambda) \frac{t^n}{n!} \quad (|t + \ln \lambda| < 2\pi, \quad \lambda \in \mathbb{R}^*_+)
\]

and

\[
\frac{2}{\lambda e^t + 1} e^{xt} = \sum_{n=0}^{\infty} \mathcal{E}_n(x; \lambda) \frac{t^n}{n!} \quad (|t + \ln \lambda| < \pi, \quad \lambda \in \mathbb{R}^*_+).
\]

The Apostol-Bernoulli numbers \(\mathcal{B}_n(\lambda)\) and the Apostol-Euler numbers \(\mathcal{E}_n(\lambda)\) are given by \(\mathcal{B}_n(\lambda) = \mathcal{B}_n(0; \lambda)\) and \(\mathcal{E}_n(\lambda) = \mathcal{E}_n(0; \lambda)\).

Letting

\[
T(x, \lambda, t) = \frac{2}{\lambda e^t + 1} e^{xt} - \frac{t}{\lambda e^t - 1} e^{xt} = -\frac{2t}{\lambda^2 e^{2t} - 1} e^{2xt}.
\]

Taking into account the right hand side of (1) and (2), a direct computation gives

\[
\lambda^2 T(x + 1, \lambda, t) - T(x, \lambda, t) = \sum_{n=0}^{\infty} \left\{ \sum_{k=0}^{n} \binom{n}{k} \left[\lambda^2 \mathcal{B}_{n-k}(x, \lambda) \mathcal{E}_k(x, \lambda) - \mathcal{B}_{n-k}(x, \lambda) \mathcal{E}_k(x, \lambda) \right] \right\} \frac{t^n}{n!}.
\]

On the other hand, we have

\[
\lambda^2 T(x + 1, \lambda, t) - T(x, \lambda, t) = \lambda^2 \frac{2t}{\lambda^2 e^{2t} - 1} e^{2xt} - \frac{2t}{\lambda^2 e^{2t} - 1} e^{2xt} = 2t e^{2xt} = \sum_{n=0}^{\infty} n 2^n \frac{x^n t^n}{n!}.
\]

Comparing the two expansions of \(\lambda^2 T(x + 1, \lambda, t) - T(x, \lambda, t)\), we formulate the next result.

Theorem 1 Let \(x\) be a real number and \(n\) an integer. Then

\[
x^n = \sum_{k=0}^{n+1} \Lambda_{n,k} \times \Delta_{n+1-k,k}(x, \lambda),
\]

where \(\Lambda_{n,k} = \frac{1}{2^{n+1}(n+1)} \binom{n+1}{k}\) and \(\Delta_{n,k}(x, \lambda) = \begin{vmatrix} \lambda \mathcal{B}_n(x+1, \lambda) & \mathcal{E}_k(x, \lambda) \\ \mathcal{B}_n(x, \lambda) & \lambda \mathcal{E}_k(x+1, \lambda) \end{vmatrix}\).

In particular, taking \(\lambda = 1\) in (3), we get the following result in terms of the Bernoulli and the Euler polynomials.

Corollary 1 [3] Let \(x\) be a real number and an integer \(n \geq 0\), we have

\[
x^n = \frac{1}{2^{n+1}(n+1)} \sum_{k=0}^{n+1} \binom{n+1}{k} \begin{vmatrix} B_{n-(k-1)}(x+1) & E_k(x) \\ B_{n-(k-1)}(x) & E_k(x+1) \end{vmatrix}.
\]
3 Unified Bernoulli-Euler polynomials of Apostol type

In this section, we define the unified Bernoulli-Euler polynomials of Apostol type and study their properties using power series.

Definition 1 Let \(\lambda \in \mathbb{R}_+ \) and \(\mu \in \mathbb{R}_+ - \{1\} \), we define the unified Bernoulli-Euler polynomials of Apostol type \(V_n(x; \lambda; \mu) \) by the following power series:

\[
\frac{2 - \mu + \frac{\mu t}{2}}{\lambda e^t + (1 - \mu)} e^{xt} = \sum_{n \geq 0} V_n(x; \lambda; \mu) \frac{t^n}{n!},
\]

(5)

where

\[
\begin{align*}
&\left\{ \ln \left(\frac{\lambda}{1 - \mu} \right) + t \right\} < 2\pi, \text{ for } 0 \leq \mu < 1; \\
&\left\{ \ln \left(\frac{\lambda}{\mu - 1} \right) + t \right\} < \pi, \text{ otherwise.}
\end{align*}
\]

Furthermore, the unified Bernoulli-Euler numbers of Apostol type, denoted \(\mathcal{V}_n(\lambda; \mu) \), are given by

\[
\mathcal{V}_n(\lambda; \mu) := V_n(0; \lambda; \mu).
\]

(6)

We summarize in the following table some special polynomials related to this extension.

Parameters	Generating functions	Polynomials		
\(\mu = 0, \lambda = 1 \)	\(\frac{2}{e^t + 1} e^{xt} = \sum_{n \geq 0} E_n(x) \frac{t^n}{n!}, \	t	< \pi \)	Euler polynomials
\(\mu = 2, \lambda = 1 \)	\(\frac{t}{e^t - 1} e^{xt} = \sum_{n \geq 0} B_n(x) \frac{t^n}{n!}, \	t	< 2\pi \)	Bernoulli polynomials
\(\mu = 2 \)	\(\frac{t}{\lambda e^t - 1} e^{xt} = \sum_{n \geq 0} \mathcal{V}_n(x; \lambda) \frac{t^n}{n!}, \	t + \ln \lambda	< 2\pi \)	Apostol-Bernoulli polynomials
\(\mu = 0 \)	\(\frac{2}{\lambda e^t + 1} e^{xt} = \sum_{n \geq 0} \mathcal{E}_n(x; \lambda) \frac{t^n}{n!}, \	t + \ln \lambda	< \pi \)	Apostol-Euler polynomials

We list some properties of the unified Bernoulli-Euler polynomials of Apostol type using generating function approach.

Theorem 2 Let \(n \) be a nonnegative integer, we have

\[
\mathcal{V}_n(x + y; \lambda; \mu) = \sum_{k=0}^{n} \binom{n}{k} \mathcal{V}_k(x; \lambda; \mu) y^{n-k}.
\]

(7)

In particular, for \(x := 0 \) and \(y := x \), the above relation becomes

\[
\mathcal{V}_n(x; \lambda; \mu) = \sum_{k=0}^{n} \binom{n}{k} \mathcal{V}_k(\lambda; \mu) x^{n-k}.
\]

(8)

Proof We establish the power series defined in (5) for \(\mathcal{V}_n(x + y; \lambda; \mu) \), we have

\[
\sum_{n \geq 0} \mathcal{V}_n(x + y; \lambda; \mu) \frac{t^n}{n!} = \left(\frac{2 - \mu + \frac{\mu t}{2}}{\lambda e^t + (1 - \mu)} \right) e^{(x+y)t} = \sum_{n \geq 0} \sum_{k \geq 0} \mathcal{V}_n(x; \lambda; \mu) y^k \frac{t^{n+k}}{n! k!}.
\]

Applying the product series and then comparing the coefficients of \(t^n \) on both sides, we obtain Identity (7). \(\square \)
Remark 1 Expression (7) allows us to obtain $\mathcal{V}_n(\lambda; \mu)$ the unified Bernoulli-Euler numbers of Apostol type in terms of the unified Bernoulli-Euler polynomials of Apostol type. Indeed, it suffices to replace y by $-x$ in Formula (7), we get the following expression:

$$
\mathcal{V}_n(\lambda; \mu) = \sum_{k=0}^{n} \binom{n}{k} (-1)^{n-k} \mathcal{V}_k(x; \lambda; \mu)x^{n-k}.
$$

As a first consequence of Theorem 1, we show that the unified Bernoulli-Euler polynomials of Apostol type, $\{\mathcal{V}_n(x, \lambda; \mu)\}_{n \geq 0}$ given by the power series in (5), can be expressed in terms of the Apostol-Bernoulli and the Apostol-Euler polynomials. That is, by a straightforward calculation, the substitution of x^n given by (3) in Expression (8) allows us to obtain the following formula:

Proposition 1 Let n, k and j be three integers, it holds that

$$
\mathcal{V}_n(x; \lambda; \mu) = \sum_{k=0}^{n} \binom{n}{k} \mathcal{V}_{n-k}(\lambda; \mu) \sum_{j=0}^{k+1} \Delta_{k,j} \times \Delta_{k+1-j, j}(x, \lambda).
$$

4 Generalized Raabe’s Theorem

In this section, we give an extension of Raabe’s Theorem for the unified Bernoulli-Euler polynomials of Apostol type.

Theorem 3 Let r and m be a nonnegative integers with m odd, for $\lambda = 1 - \mu$ and $\mu \neq 1$, we have

$$
\sum_{k=0}^{m-1} (-1)^k \mathcal{V}_n \left(\frac{x + k}{m}; 1 - \mu; \mu \right) = \frac{1 - m}{m!^{n+1}} \left(\frac{\mu - 2}{2(\mu - 1)} \right) E_n(x) + \frac{1}{m^{n+1}} \mathcal{V}_n(x; 1 - \mu; \mu).
$$

Proof It follows from (5) that

$$
\sum_{n=0}^{\infty} \sum_{k=0}^{n-1} (-1)^k \mathcal{V}_n \left(\frac{x + k}{m}; 1 - \mu; \mu \right) \frac{t^n}{n!} = \frac{1 - m}{m!^{n+1}} \left(\frac{\mu - 2}{2(\mu - 1)} \right) E_n(x) + \frac{1}{m^{n+1}} \mathcal{V}_n(x; 1 - \mu; \mu).
$$

We get the result by simple manipulations and equating the coefficients of t^n on both sides. \qed
As a consequence of Theorem 3, for $\mu = 2$ and $\mu = 0$ respectively, we have a multiplication Theorem for Euler and Bernoulli polynomials proved by Raabe in [10], as specified by Kargin and Kurt [8]. They are given as follows:

$$\sum_{k=0}^{m-1} B_n \left(\frac{x + k}{m} \right) = \frac{1}{m^{n-1}} B_n(x)$$

and

$$\sum_{k=0}^{m-1} (-1)^k E_n \left(\frac{x + k}{m} \right) = \frac{1}{m^n} E_n(x).$$

5 Some explicit formulas

In this section, we give some explicit formulas of the unified Bernoulli-Euler polynomials of Apostol type.

Theorem 4 For $\lambda \in \mathbb{R}^+ \setminus \{ 0 \}$ and $\mu \in \mathbb{R}^+ - \{ 1 \}$, it holds that

$$\mathfrak{B}_n(x; \lambda; \mu) = \frac{1}{2(\mu - 1)} \left[(\mu - 2) \mathfrak{B}_n(x; \frac{\lambda}{1 - \mu}) - \frac{\mu n}{2} \mathfrak{D}_{n-1}(x; \frac{\lambda}{1 - \mu}) \right] \quad (n \in \mathbb{N}).$$

Proof We can reformulate (5) as follows

$$\sum_{n=0}^{\infty} \mathfrak{B}_n(x; \lambda; \mu) \frac{t^n}{n!} = \left(\frac{1}{2(\mu - 1)} \right) (\mu - 2) - \frac{\mu n}{2} \frac{t^n}{n!} e^{\lambda t} \left(\frac{1}{1 + \frac{1}{\mu} e^t} \right) e^{\lambda t}$$

$$= \frac{1}{2(\mu - 1)} \sum_{n=0}^{\infty} \mathfrak{B}_n(x; \lambda; \mu) \frac{t^n}{n!} - \frac{\mu n}{2} \sum_{n=1}^{\infty} \mathfrak{D}_{n-1}(x; \lambda; \mu) \frac{t^{n+1}}{n!}$$

Equating the coefficients of $\frac{t^n}{n!}$ on both sides, we obtain Identity (9). \qed

Here, we give an explicit formula as a dual convex combination of classical Bernoulli and Euler polynomials of Apostol type.

Theorem 5 Let n be a nonnegative integer and a real number $\mu \neq 1$, we have

$$\mathfrak{B}_n(x; \lambda; \mu) = \frac{1}{1 - \mu} \left[\left(1 - \frac{\mu}{2} \right) \mathfrak{B}_n\left(x; \frac{\lambda}{1 - \mu} \right) - \frac{\mu n}{2} \mathfrak{D}_n\left(x; \frac{\lambda}{\mu - 1} \right) \right].$$

Proof From (5), we have

$$\sum_{n=0}^{\infty} \mathfrak{B}_n(x; \lambda; \mu) \frac{t^n}{n!} = \left(2 - \mu + \frac{\mu}{2} t \right) \frac{t^n}{\lambda e^t + (1 - \mu) e^t} e^{\lambda t} = \left(2 - \mu + \frac{\mu}{2} t \right) \frac{2 - \mu + \frac{\mu}{2} t}{2(\mu - 1)} \frac{2}{\lambda e^t + 1} \frac{t^n}{e^t} + \left(2 - \mu + \frac{\mu}{2} t \right) \frac{2}{\lambda e^t + 1} \frac{t^n}{e^t}.$$

Using (1) and (2) leads to get (10). \qed

Theorem 6 For $\mu \neq 1$ and $n \geq 1$, the following formula holds:

$$(\mu - 1) \sum_{k=1}^{n} \binom{n}{k} \mathfrak{Y}_{n,k,0} \left(\frac{x}{2}, \lambda, \mu \right) + \left(\frac{\mu}{2} - 1 \right) \Delta_{n,0,0} \left(\frac{x}{2}, \frac{\lambda}{1 - \mu} \right) = n(\mu - 2)x^{n-1} - n(n - 1)\mu x^{n-2},$$

where $\mathfrak{Y}_{n,k}(x, \lambda, \mu) = \left| \frac{1}{1 - \mu} \mathfrak{B}_k(x + 1; \lambda) \mathfrak{B}_k(x; \lambda; \mu) - \frac{1}{1 - \mu} \mathfrak{B}_k(x; \lambda; \mu) \right|$.

\textcopyright Springer
Proof From Theorem 4, we have
\[
\sum_{k=1}^{n} \binom{n}{k} T_{n-k,k}(x, \lambda, \mu) = \frac{1}{2(\mu-1)} \left((\mu-2) \sum_{k=1}^{n} \binom{n}{k} \Delta_{n-k,k}(x, \frac{\lambda}{1-\mu}) - \mu \sum_{k=1}^{n} \binom{n}{k} \Delta_{n-k,k-1}(x, \frac{\lambda}{1-\mu}) \right).
\]
Apply Theorem 1 and a straightforward computation, we obtain
\[
\sum_{k=1}^{n} \binom{n}{k} T_{n-k,k}(x, \lambda, \mu) = \frac{1}{\mu-1} \left\{ n(\mu-2)(2x)^{n-1} - n(n-1)\mu(2x)^{n-2} \right\} - \frac{\mu-2}{2(\mu-1)} \Delta_{n,0}(x, \frac{\lambda}{1-\mu}).
\]
We get the desired identity by multiplying both sides by ($\mu - 1$).

6 Derivation and integration representations of unified Bernoulli-Euler polynomials of Apostol type

In this section, we present derivation and integration representations for the unified Bernoulli-Euler polynomials of Apostol type.

Theorem 7 Let l, n be two nonnegative integers. Then
\[
\frac{d^l}{dx^l} \mathcal{V}_n(x; \lambda; \mu) = (n)! \mathcal{V}_{n-l}(x; \lambda; \mu),
\]
\[
\int_{x}^{y} \mathcal{V}_n(z; \lambda; \mu) dz = \frac{1}{(n+1)} \left(\mathcal{V}_{n+1}(y; \lambda; \mu) - \mathcal{V}_{n+1}(x; \lambda; \mu) \right),
\]
where $(x)_n := x(x-1) \cdots (x-n+1)$ with $(x)_0 = 1$.

Proof The assertion (11) follows from (5) by successive differentiation with respect to x and then uses the induction principle on l. Furthermore, taking $l = 1$ in (11) and integrating both sides of the resulting equation with respect to z over the interval $[x, y]$, $(y > x)$, we obtain the Integral Formula (12).

Remark 2 Setting $\lambda = 1, \mu = 2$ in (11) and (12), we obtain known results due to Luo et al. [9].

Corollary 2 Let n be a nonnegative integer. Then
\[
\int_{x}^{x+y} \mathcal{V}_n(z; \lambda; \mu) dz = \frac{1}{(n+1)} \sum_{k=0}^{n} \binom{n}{k} \mathcal{V}_k(x; \lambda; \mu) y^{n-(k-1)}.
\]

Proof Replacing y by $x + y$ in the Integral Formula (12) and using Formula (7), by successive calculations, we obtain the Integral Formula (13).

Theorem 8 For $\mu \in \mathbb{R}_+^\ast \setminus \{1, 2\}$ and n nonnegative integer, the following formula holds:
\[
\mathcal{V}_{n+1}(x; \lambda; \mu) - x \mathcal{V}_{n}(x; \lambda; \mu) = \frac{1}{2-\mu} \sum_{i=0}^{n} \binom{n}{i} (n-i)! \
\times \left(\frac{\mu}{2(\mu-2)} \right)^{n-i} \left[\frac{\mu}{2} \mathcal{V}_i(x; \lambda; \mu) - \lambda \sum_{k=0}^{i} \binom{i}{k} \mathcal{V}_k(\lambda; \mu) \mathcal{V}_{i-k}(x+1; \lambda; \mu) \right].
\]
Proof Differentiating both sides of (5) with respect to \(t \), we express the factors \(\left(1 + \frac{\mu}{2(\mu-1)} t \right)^{-1} \) in series form for \(|t| < \frac{2}{\mu} |2 - \mu| \), and using Formulas (5) and (6), we obtain

\[
\sum_{n=0}^{\infty} \mathcal{V}_n(x; \lambda; \mu) \frac{t^n}{n!} = x \sum_{n=0}^{\infty} \mathcal{V}_n(x; \lambda; \mu) \frac{t^n}{n!} + \frac{1}{(2 - \mu)} \left(\sum_{n=0}^{\infty} \frac{\mu^n}{n!} \right) \left(\sum_{n=0}^{\infty} \frac{2^n (\mu - 2)^n}{n!} \right)
\]

Then taking into account the series product in (15) and equating the coefficients of \(t \), we get Identity (14). \(\Box \)

7 Identities inspired via umbral calculus

The umbral calculus approach is a useful tool to get and guess arithmetic and combinatorial identities, see for instance Gessel [7] on some applications of the classical umbral calculus, Di Crescenzo et al. [5] on umbral calculus. See also classical references as those of Roman and Rota [11].

Let \(B^n(\lambda; \mu) \) be the umbra defined by \(B^n(\lambda; \mu) := \mathcal{V}_n(\lambda; \mu) \) and \((\mathcal{V}_n(x; \lambda; \mu))_{n \geq 0} \) defined by

\[
\sum_{n \geq 0} \mathcal{V}_n(x; \lambda; \mu) \frac{t^n}{n!} = F(t) e^{xt} = \exp ((B(\lambda; \mu) + x) t),
\]

where \(F(t) := \sum_{n \geq 0} \mathcal{V}_n(\lambda; \mu) \frac{t^n}{n!} = \exp (B(\lambda; \mu) t) \). So, \(\mathcal{V}_n(x; \lambda; \mu) \) admits the umbral representation

\[
\mathcal{V}_n(x; \lambda; \mu) = (B(\lambda; \mu) + x)^n.
\]

Theorem 9 Let \(n \) be a nonnegative integer. Then

\[
\mathcal{V}_n(x + 1; \lambda; \mu) = \sum_{k=0}^{n} \binom{n}{k} \mathcal{V}_k(x; \lambda; \mu).
\]

Proof By the umbral representation \(\mathcal{V}_n(x; \lambda; \mu) = (B(\lambda; \mu) + x)^n \), we have

\[
\mathcal{V}_n(x + 1; \lambda; \mu) = (B(\lambda; \mu) + (x + 1))^n = \sum_{k=0}^{n} \binom{n}{k} (B(\lambda; \mu) + x)^k = \sum_{k=0}^{n} \binom{n}{k} \mathcal{V}_k(x; \lambda; \mu).
\]

\(\Box \)

Theorem 10 Let \(n, m \) be a nonnegative integers. Then

\[
\sum_{k=0}^{m} \binom{n}{k} y^{m-k} \mathcal{V}_{m+k}(x; \lambda; \mu) = \sum_{k=0}^{m} \binom{m}{k} (-y)^{m-k} \mathcal{V}_{n+k}(x+y; \lambda; \mu).
\]

Proof By the umbral representation \(\mathcal{V}_n(x; \lambda; \mu) = (B(\lambda; \mu) + x)^n \), on the one hand, we have

\[
(B(\lambda; \mu) + (x + y))^n (B(\lambda; \mu) + x)^m = (B(\lambda; \mu) + (x + y))^n (B(\lambda; \mu) + (x + y) - y)^m
\]

\[
= \sum_{k=0}^{m} \binom{m}{k} (-y)^{m-k} (B(\lambda; \mu) + (x + y))^n
\]

\[
= \sum_{k=0}^{m} \binom{m}{k} (-y)^{m-k} \mathcal{V}_{n+k}(x+y; \lambda; \mu),
\]

and on the other hand, we have

\[
(B(\lambda; \mu) + (x + y))^n (B(\lambda; \mu) + x)^m = \sum_{k=0}^{n} \binom{n}{k} y^{n-k} (B(\lambda; \mu) + x)^{n+k}
\]

\[
= \sum_{k=0}^{n} \binom{n}{k} y^{n-k} \mathcal{V}_{m+k}(x; \lambda; \mu).
\]

Hence, the two expressions give the desired identity. \(\Box \)
Acknowledgements

We would like to thank the anonymous referees for their suggestions and comments which improved the quality of the present paper. The paper was partially supported by the DGRSDT grant CO656701.

References

1. Apostol, T. M., et al. On the lerch zeta function. Pacific Journal of Mathematics 1, 2 (1951), 161–167.
2. Belbachir, H., and Hadj-Brahim, S. Some explicit formulas for euler-genocchi polynomials. Integers 19 (2019), A28.
3. Belbachir, H., Hadj-Brahim, S., and Rachidi, M. On another approach for a family of appell polynomials. Filomat 32, 12 (2018), 4155–4164.
4. Bernoulli, J. Ars conjectandi. Impensis Thurnisiorum, fratrum, 1713.
5. Di Crescenzo, A., and Rota, G.-C. Sul calcolo umbrale. Ricerche di Matematica 43 (1994), 129–162.
6. Euler, L. Methodus generalis summandi progressiones. Commentarii academiae scientiarum Petropolitanae (1738), 68–97.
7. Gessel, I. M. Applications of the classical umbral calculus. Algebra Universalis 49, 4 (2003), 397–434.
8. Kargin, L., and Kurt, V. On the generalization of the euler polynomials with the real parameters. Applied Mathematics and Computation 218, 3 (2011), 856–859.
9. Luo, Q.-M., and Srivastava, H. Some generalizations of the apostol–bernoulli and apostol–euler polynomials. Journal of Mathematical Analysis and Applications 308, 1 (2005), 290–302.
10. Raabe, J. L. Zurückführung einiger summen und bestimmten integrale auf die jacob-bernoullische function. Journal für die reine und angewandte Mathematik 1851, 42 (1851), 348–367.
11. Roman, S. M., and Rota, G.-C. The umbral calculus. Advances in Mathematics 27, 2 (1978), 95–188.
12. Srivastava, H. M. Some generalizations and basic (or q-) extensions of the bernoulli, euler and genocchi polynomials. Appl. Math. Inform. Sci 5, 3 (2011), 390–444.