Disilanes with Pentacoordinate Si Atoms by Carbon Dioxide Insertion into Aminodisilanes: Syntheses, Molecular Structures, and Dynamic Behavior

Christopher Ryll, Konstantin Kraushaar, Jörg Wagler, Erica Brendler, and Edwin Kroke*

ABSTRACT: The insertion of carbon dioxide into the Si−N bonds of aminodisilanes ((RR′N)nMe₃−nSi)₂ affords carbamoyloxydisilanes ((RR′NC(O)O)nMe₃−nSi)₂. Some of the obtained insertion products feature pentacoordinate silicon atoms in the solid state and in solution, with two carbamoyloxy moieties bridging the Si−Si bond. The aminodisilanes and their insertion products were extensively analyzed, including single-crystal X-ray structure analyses. The temperature dependence of the higher coordination was investigated using variable temperature NMR experiments.

INTRODUCTION

Silicon hypercoordination, i.e., the capability of silicon to extend its coordination number beyond 4, has gathered researchers’ interest for numerous decades, and new challenges and aspects of research still evolve in this field. As electronegative substituents (such as halides) foster silicon hypercoordination, and higher coordination numbers provoke weakening, activation, and even cleavage of various Si−X bonds, hypercoordination of methyloligosilanes with the retention of Si−Si bonds exerts particular appeal. The literature offers some examples of crystallographically confirmed oligosilanes (with highly electronegative substituents) with one or more hexacoordinate Si atoms, such as I, II, III, and IV (Chart 1). Bridging ligands between adjacent hexacoordinate Si atoms (as in III and IV) may contribute to the retention of the Si−Si bond. Formation of compound V from disilane MeCl₂Si−SiMe(Pn(N(CH₂)₂NPh) demonstrates the ease at which a disilane’s Si−Si bond may undergo scission upon one Si atom’s hexacoordination, whereas an analogous compound with pentacoordinate Si atom (VI) is feasible. Oligosilanes with more than one pentacoordinate Si atom, e.g., VII and VIII, have been reported by El-Sayed et al. and Kano et al., respectively. In the latter case, the ligand (carboxylate) buttresses the Si−Si bond, and the formation of O−Si−O axes may foster silicon pentacoordination. In the case of compound VIII, silicon pentacoordination was also achieved by subtle ligand tuning, i.e., a sterically demanding carboxylate was required, whereas the use of benzoate would result in an analogous compound with tetracoordinate Si atoms. Further examples of oligosilanes with isolated and neighboring hypercoordinate Si atoms have been reported but will not be discussed here because bridging ligands and analogues of carboxylates will determine the focus of this paper. Carbamates may exhibit enhanced donor qualities, as their O atoms’ electron density may be enhanced through conjugation with the amide N lone pair. In previous studies, we have shown that silicon carbamates (i.e., carbamoyloxysilanes) can be accessed in a convenient manner by the insertion of CO₂ into Si−N bonds of aminosilanes. In the following, we have applied this strategy to aminodisilanes to provide convenient access to carbamoyloxy-substituted disilanes.

RESULTS AND DISCUSSION

Syntheses. The aminodisilanes were obtained from chlorodisilanes upon reaction with the respective amines, as shown in Scheme 1. An overview of the starting materials used and compounds aimed at is given in Table 1. Excess amine had to be used as it served as both a substituent and a sacrificial base. For the dichlorotetramethyl- and the tetrachlorodimethylsilanes used, complete substitution of all chlorine atoms by amino groups proceeded in a clean manner along this amine-supported route for all three amines used (i.e., n-
propylamine, pyrrolidine, and piperidine) with exception of 1h. In the case of hexachlorodisilane, complete substitution was successful for n-propylamine and, with rather poor yield, pyrrolidine. The product of the latter reaction, 1f, afforded crystals suitable for single-crystal X-ray diffraction analysis. The results are contained in the Supporting Information. The steric demand of piperidine hampered full substitution under these conditions, and a disilane with one remaining Si–Cl bond was obtained instead.

The products (2) obtained through the reaction of the aminodisilanes (1) and carbon dioxide are shown in bold style in Table 1. CO₂ insertion (as shown for the pyrrolidine-1-ylsilanes 1d and 1e as representative examples; Scheme 2) proceeded in a straightforward fashion for all di- and tetraaminodisilanes under investigation. Whereas CO₂ insertion worked as well for hexaaminodisilane 1c, the sterically more encumbered Si–N bonds of 1f resisted CO₂ insertion even at a CO₂ pressure of 8 bar. Whereas the aminodisilanes are liquids at room temperature (except 1f), the carbamoyloxysilanes obtained are solids, which allowed for their ²⁹Si NMR spectroscopic investigation in the solid state and single-crystal X-ray structure analysis of most of them.

Molecular Structures. The carbamoyloxysilanes 2d and 2g, which feature tetramethylsilane cores, and 2b, 2e, and 2h, which feature dimethylsilane cores, formed crystals suitable for X-ray diffraction analysis (Figures 1 and 2 and Tables SI 1 and SI 4). Interestingly, the Si atoms in 2d are essentially tetracoordinate, whereas 2g exhibits silicon pentacoordination in an almost trigonal–bipyramidal fashion with the O–Si–O axis and equatorial Si–Si and Si–C bonds. This configuration is achieved by the bridging coordination mode adopted by the carbamoyloxy groups. The coordination mode in 2d is related to the tetracoordinate Si atoms in a carboxylate (2,6-Me₂C₆H₃-COO)-substituted tetramethylsilane reported by Kano et al.,⁹ i.e., an approaching of the carbamoyloxy group toward a bridging coordination mode. To the best of our knowledge, compound 2g represents the first crystallographically confirmed tetraalkyldisilane with two pentacoordinate Si atoms.¹³ Comparison of 2d and 2g allows for the conclusion that upon silicon pentacoordination by bridging carbamoyloxy groups the equatorial Si–C bonds get activated more pronounced (bond lengthening by 0.022 Å) than the Si–Si bonds (lengthening by 0.013 Å), which is speaking for the Si–Si bond-stabilizing effect of the bridging ligands.

Concluding from the coordination mode encountered with 2g, carbamoyloxyl groups may serve as better lone pair donors toward silicon than common carboxylates, and subtle differences between pyrrolidine and piperidine backbone appear to make a final cut. In general, the enhanced donor strength of carbamoyloxy groups can be explained by the π-electron donation from the amine N atom, thus supporting a zwitterionic resonance form with enhanced anionic features (enhanced basicity) of the O donor atoms (Scheme 3). This π-donation from the N atom should become more favorable, the closer the N atom can adopt idealized sp² hybridization, i.e.,

R	Pr	Pyrr	Pip
Cl₂Me₂Si₂	1a/2a	1d/2d	1g/2g
Cl₃Me₂Si₂	1b/2b	1e/2e	1h/2h
Cl₂Si₂	1c/2c	1f/2f	1i/2i

“Crystallographically characterized compounds are underlined. The syntheses of the products in parentheses were unsuccessful via the route used here.”

Scheme 1. Generic Route from Chlorodisilanes toward Carbamoyloxysilanes

```
(C₂H₅N)₂Si₂H₂Cl₂

4n RRNH

2n RRNH·HCl

(RR N)₄Me₂Si₂

2n CO₂

(RR N)₂Me₂Si₂

aminodisilanes (1)

carbamoyloxysilanes (2)
```

Table 1. Overview of the Aminodisilanes (1) and Their CO₂ Insertion Products (2) Discussed within This Work⁹

Chart 1. Examples of Crystallographically Confirmed Oligoisilanes with One or More Higher Coordinate Silicon Atoms(s)

Scheme 2. Examples of Formation of Carbamoyloxysilanes through CO₂ Insertion into Aminodisilanes

Table 1. Overview of the Aminodisilanes (1) and Their CO₂ Insertion Products (2) Discussed within This Work⁹

Figure 1. Molecular structures of 2d (top) and 2g (bottom) in their crystal structures. Ellipsoids are shown at the 50% probability level, selected atoms are labeled, and hydrogen atoms are omitted for clarity. The molecule of 2g is located on a crystallographically imposed center of inversion. Symmetry equivalent atomic labels are asterisked. Selected bond lengths and interatomic separations [Å] and angles [deg] for 2d: Si1–Si2 2.3337(5), Si1–O1 1.7066(11), Si1–C1 1.8579(16), Si1–C2 1.8558(18), Si1–O2 2.8574(12), Si1–O4 3.2367(12), Si2–O3 1.7051(11), Si2–C8 1.8569(16), Si2–C9 1.8577(18), Si2···O2 3.3072(14), Si2···O4 2.8334(11), O1···C3 1.3493(18), O2···C3 1.2218(19), N1···C3 1.330(2), O3···C10 1.3455(16), O4···C10 1.2296(17), N2···C10 1.3306(18), C1···Si1–C2 109.42(8), C8···Si2–C9 110.18(8); for 2g: Si1···Si1* 2.3464(6), Si1···O1 1.9380(9), Si1···O2* 1.9435(9), Si1···C7 1.8796(12), Si1···C8 1.8781(12), O1···C1 1.2824(13), O2···C1 1.2788(13), N1···Si1–C13 134.51(14), O1···Si1–O2* 177.02(3), Si1···Si1*–C7 122.59(4), Si1···Si1···C8 123.98(4), C7···Si1···C8 113.43(5).

In the crystal structures of compounds 2b–THF, 2e–2CHCl3, 2h–2CHCl3, the Si atoms are pentacoordinate in a highly distorted trigonal–pyramidal fashion with the O–Si–O-axis and equatorial Si–Si, Si–O, and Si–C bonds (Figure 2). Whereas the axial O–Si–O bond is almost linear (wider than 175°), the equatorial angles exhibit pronounced deviations from 120°, with very narrow O–Si–C angle (ca. 105°) and rather wide Si–Si–C angle (up to 134°). This distortion is caused by the capping of the face trans-disposed to the equatorial Si–O bond (thus widening the Si–Si–C angle) by the dangling carbonyl O atom of the adjacent Si atom’s equatorial carbamoyloxy group, i.e., [5 + 1] coordination. The O–Si–interatomic separations range between 3.10 and 3.38 Å. In this regard, the molecules shown in Figure 2 are conformationally related to the disilane VIII9 which exhibits the same deformation of the trigonal–pyramidal Si coordination sphere by [5 + 1] coordination (remote coordination with an O–Si interatomic separation of 3.18 Å).

Tetra- and Pentacoordination, Solid-State, and Solution 29Si NMR Spectroscopic Studies. As proven by X-ray crystallography, carbamoyloxydisilanes 2g, 2b, 2e, and 2h exhibit pentacoordinate silicon atoms in the solid state. For the compounds 2g (pentacoordinate Si) and the related compounds 2a and 2d (tetracoordinate Si), all of which feature the Me3SiMe2 core, an upfield shift of the 29Si NMR signal of 2g by ca. 60 ppm clearly underlines the enhanced Si coordination number in 2g. (Table 2 gives an overview of the 29Si NMR shifts of the compounds under investigation in this paper.) Furthermore, the switch from tetra- to pentacoordination is accompanied by the noticeable widening of the span Ω of the chemical shift anisotropy (CSA), as shown in Figure 3 for the magic angle spinning (MAS) spectra of 2d and 2g, which visualize the CSA by the different spectral widths, in which the spinning side bands appear. Detailed
Solid (Average Isotropic Shift and δ_{iso} − 1) between the Insertion Products and Their Respective Aminodisilanes, and the Shift Di
notation,14 are summarized in the Supporting Information in Figure 4.

Table 2. 29Si NMR Shifts δ of Aminodisilanes 1a–h and Carbamoyloxydisilanes 2a–h in Solution (Solvent CDCl$_3$) and as a Solid (Average Isotropic Shift δ_{iso} in the Case of Multiple Crystallographically Independent Si Sites), the Shift Difference $\Delta \delta(2 – 1)$ between the Insertion Products and Their Respective Aminodisilanes, and the Shift Differences $\Delta \delta(\text{Solid} – \text{soln})$ between the Carbamoyloxydisilanes in Solution and in the Solid State

	$\delta(1)$	$\delta(2)$ (soln)	$\delta_{\text{iso}}(2)$ (solid)	$\Delta \delta(2)$ (solid – soln)	$\Delta \delta(2 – 1)$	
1a	-8.9	$2a$	13.1	7.2	-5.9	21.1
1b	-18.2	$2b$	-39.7	-74.7	-35.2	-21.5
1c	-32.1	$2c$	-115.2	13.5	1.2	19.9
1d	-7.6	$2d$	12.3	13.8	13.2	12.6
1e	-17.5	$2e$	-29.4	-74.4	-46.0	-11.9
1f	-34.7	$2f$	51.8	-64.4	18.5	
1g	-5.9	$2g$	12.6	-51.8	-13.8	
1h	-12.0	$2h$	-25.8	-51.8	-13.8	

Figure 3. 29Si MAS NMR spectra of 2d (bottom, $\delta_{\text{iso}} = 13.2$ and 13.8 for the two crystallographically independent Si sites) and 2g (top, $\delta_{\text{iso}} = -51.8$) at MAS frequencies of 1.1 and 2.0 kHz, respectively.

The phenomenon of a rather wide span of the 29Si CSA tensor of pentacoordinate Si compounds has already been reported in the literature, and the negative skew for various Si compounds with almost trigonal–bipyramidal coordination spheres and axial positioning of the highly electronegative donor atoms has been attributed to two principal directions of pronounced shielding in the equatorial plane (δ_{32} and δ_{33}), whereas δ_{11} points along the axis of the coordination polyhedron, which is significantly less shielded.15

In solution, the higher coordination at the silicon atom (if present in the solid state) is retained in part only, and the coordination equilibrium (as shown in Scheme 4 for 2e as a representative example) depends heavily on the amine residue used. Disilanes with related substituent patterns should produce 29Si signals at similar chemical shifts. In fact, for compounds 1, the 29Si chemical shifts of groups of silanes with C$_3$N$_2$SiNC$_2$ (1a, 1d, 1g), CN$_2$SiSiN$_3$C (1b, 1e, 1h), and N$_2$SiSiN$_3$ patterns (1c, 1f) cover rather narrow ranges. The same is true for the solid-state 29Si NMR isotropic shifts of compounds 2 with related substitution patterns, i.e., C$_2$OSiSiOC$_2$ with tetracoordinate Si (2a, 2d) and CO$_3$SiSiOC$_2$ with pentacoordinate Si (2b, 2e). In the CDCl$_3$ solution, however, only the carbamoyloxydisilanes with Me$_2$SiSiMe$_2$ core (2a, 2d, 2g) exhibit 29Si NMR signals in a very narrow range, which is very similar to the 29Si NMR shift observed for the tetracoordinate silicon compound 2d in the solid state and for the carboxylate [(2,6-Me$_2$C$_6$H$_3$-COO)-Me$_2$Si]$_2$ ($\delta_{^{29}Si}$ in CDCl$_3$ solution: 13.4 ppm3). The 29Si NMR shifts of CDCl$_3$ solutions of the carbamoyloxydisilanes with Me$_2$SiSiMe core (2b, 2e, 2h), however, span a range of ca. 14 ppm, and they are located in between the chemical shifts observed for the solids (ca. −74 ppm) and for carboxylates.

Figure 4. 29Si MAS NMR spectrum of 2e at a MAS frequency of 2.0 kHz.
with MeSiSiMe core (e.g., $\delta^{29}\text{Si}$ of compound VIII in CDCl$_3$ solution: −20.7 ppm). As the polar C–H bond of chloroform has solvating effects on Lewis bases (e.g., on chloride ions16 or N atoms of oxinato ligands17) and may thus compete with the Lewis acidic Si site and thus obstruct coordination of the Lewis base to Si, chloroform is likely to hinder carbamate coordination at Si. Hence, solvents devoid of C–H donation should support silicon hypercoordination. For compound 2e, this was probed with tetrahydrofuran (THF)−d$_8$ as an NMR solvent, and indeed a clear upfield shift of the ^{29}Si signal (at 25 °C −29.4 ppm in CDCl$_3$ solution, −48.1 ppm in THF−d$_8$, Figure SI 33) confirms this hypothesis.

Variable Temperature NMR Studies. In addition to solvent dependence, the coordination equilibrium shown in Scheme 4 is highly temperature-dependent and was thus explored using variable temperature ^{29}Si NMR spectroscopy (for compound 2e in THF−d$_8$ in a temperature range from −40 to 50 °C). As shown in Figure 5, the ^{29}Si NMR signal is shifted upfield (thus reflecting enhanced silicon higher coordination) with decreasing temperature. In detail, in the investigated temperature range, the ^{29}Si NMR signal of 2e shifts from −38.4 ppm at 50 °C to −70.2 ppm at −40 °C. Within this temperature range (limited by the experimental setup and the boiling point of the solvent used), the ^{29}Si NMR shift change $\Delta\delta$ did not approach a plateau. For the upper temperature range (associated with silicon tetracoordination), we would expect approaching a ^{29}Si NMR shift around −20 ppm, characteristic of tetracarboxylatodimethyldisilanes, and for the lower temperatures, we would expect approaching a chemical shift close to the shift encountered in the NMR spectra of the solid (around −75 ppm). Therefore, for assessing the temperature-dependent equilibrium fractions of tetra- and pentacoordinate Si (to derive the thermodynamic characteristics of this equilibrium), the chemical shifts of −20 and −74.4 ppm (the latter taken from solid-state measurements) for tetra- and pentacoordinate Si, respectively, were used as starting values, and the former was altered (to −18 ppm) to achieve a better linear fit of the van’t Hoff plot ($\ln(K)$ vs 1/T) (see Figure SI 57), resulting in $R^2 = 0.9996$. This analysis indicates a reaction enthalpy of $\Delta H = −21$ kJ mol$^{-1}$ and a decrease in entropy of $\Delta S = −70$ J mol$^{-1}$ K$^{-1}$ associated with the transition from silicon tetra- to pentacoordination in this system. In this regard, the coordination equilibrium of this carbamoyloxydisilane system exhibits thermodynamic features similar to those of oxinato silicon complexes,17 for two of which ΔH, ΔS sets of −23.5 kJ mol$^{-1}$, −85.8 J mol$^{-1}$ K$^{-1}$ and of −9.0 kJ mol$^{-1}$, −55.7 J mol$^{-1}$ K$^{-1}$ had been determined. Interestingly, these equilibria exhibit some common structural features: for achieving silicon pentacoordination, a five-membered ring is formed, and the initially dangling ligand arm experiences loss of two rotational degrees of freedom (about the Si−O and O−C bonds in both these disilanes and the oxinato silanes). Loss of a greater number of rotational degrees of freedom upon silicon higher coordination would be associated with greater loss in entropy, as shown for an enamine-imine system (loss of rotational degrees of freedom about the Si−O, C−C−C bond and, in part, about a C≡N bond, ΔS = −116.7 J mol$^{-1}$ K$^{-1}$).$^{18}

CONCLUSIONS

Aminodisilanes were shown to undergo CO$_2$ insertion into the Si−N bonds, steric permitting. Thus, hexa(pyrrrolidine-1-yl)disilane failed to react with CO$_2$ even upon pressurizing to 8 bar. Successful CO$_2$ insertion (with the formation of carbamoyloxydisilanes) gave, in most cases, access to compounds with pentacoordinate silicon atoms in the solid state. Solvent- and temperature-dependent NMR studies reveal that this silicon hypercoordination is, in part, retained in solution within a dynamic equilibrium. Furthermore, carbamoyloxy groups were shown to foster this kind of disilane hypercoordination with respect to simple carboxylates and allowed for the first crystallographic characterization of a tetraalkylsilane with two pentacoordinate Si atoms. The bracing effect of the bridging carbamoyloxy ligands stabilizes the Si−Si bond as the latter exhibited a surprisingly low response to the increase of silicon coordination number.

EXPERIMENTAL SECTION

General Methods and Instrumentation. All syntheses and manipulations were performed in Schlenk-type glassware. All solvents were purified and dried according to general procedures. Commercially available chemicals were used in p.a. quality as obtained from the suppliers. Raman spectra were recorded in the range 100−3500 cm$^{-1}$ at room temperature using an RFS 100/S instrument (Bruker Optik) with a Nd:YAG-laser and a nitrogen-cooled NIR germanium detector. Standard 1H, ^{13}C, and ^{29}Si NMR spectra were recorded on a Nanobay 400 or an AVIII 500 spectrometer (Bruker Biospin GmbH, Rheinstetten/Karlsruhe) at 293 K. Chemical shifts are reported relative to tetramethylsilane (0 ppm for 1H, ^{13}C, ^{29}Si), and spectra were referenced to tetramethylsilane in most cases. For 1H and/or ^{13}C spectra with signals of disilane Si–Me groups in very close proximity to the SiMe$_4$ signal, solvent signals (1H: residual CHCl$_3$, ^{13}C: CDCl$_3$) were engaged for referencing. ^{29}Si solid-state NMR measurements were carried out at 79.51 MHz on a Bruker AVANCE HD 400 MHz WB spectrometer using 7 mm ZrO$_2$ rotors and a DVT CP/MAS probe. A contact time of 3 ms was applied for CP/MAS measurements, and experiment recycle delays were 5−30 s depending on the substituents at silicon. Tppm15 decoupling was applied. The chemical shift was referenced using the high-field signal of the Q$^+$-groups in Q$_8$M$_8$ (octakis-trimethyloxysil)silsesquioxane: −109 ppm with respect to TMS = 0 ppm). Principal components of the CSA tensor were extracted using the DMFIT program (version 20200306)19 or the SOLA module in Topspin. Atmospheric pressure chemical
ionization mass spectroscopy (under a stream of dry nitrogen) was performed using an Advion expression CMS L. Determination of boiling points was performed with an apparatus reported by Herbig and Kroke. C/H/N elemental analyses were carried out using a Heraeus CHN Rapid analyzer. For single-crystal X-ray structure determination, a crystal of the appropriate size was selected under inert oil and mounted on a glass capillary, which was coated with silicone grease. Data sets were collected on an IPDS-2(T) diffractometer (STOE, Darmstadt, Germany) using graphite-monochromatized Mo Kα radiation (λ = 0.71073 Å). Intensities were measured by ω scans using the diffractometer software X-AREA. Numerical absorption corrections were applied by modeling the crystal surfaces based upon the intensities of symmetry equivalent reflections (X-Shape as implemented in X-AREA). The structures were solved using SHELXLX or SHELXTL, and all non-hydrogen atoms were anisotropically refined against F² in full-matrix least-squares cycles (SHELXL 2014/7). C-bound hydrogen atoms were (isotropically included in the refinement in geometrically idealized positions (riding model). N-bound H atoms were located as residual electron density peaks and were refined isotopically without restraints. Further details of the structure determinations are given in the Supporting Information. The CCDC 2112133 (1b-THF), 2112134 (1f, modification 1), 2112135 (1f, modification 2), 2112136 (2e-2CHCl₃), 2112137 (2d), 2112138 (2h-2CHCl₃), and 2112139 (2g) contain the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif.

General Procedure A. With stirring and under cooling with a water bath, the respective amine was added dropwise to a solution of the respective chlorodisilane in n-hexane. Stirring at room temperature for 1 day gave the respective solid amine hydrochloride as a precipitate. Removal of the hydrochloride at room temperature for 1 day gave the respective solid amine. Further manipulations were carried out as described previously.

General Procedure B. Gaseous carbon dioxide (purity 99.9%) was recrystallized from chloroform. Data sets were collected on a glass capillary, which was coated with silicone grease. Data sets were collected on an IPDS-2(T) diffractometer (STOE, Darmstadt, Germany) using graphite-monochromatized Mo Kα radiation (λ = 0.71073 Å). Intensities were measured by ω scans using the diffractometer software X-AREA. Numerical absorption corrections were applied by modeling the crystal surfaces based upon the intensities of symmetry equivalent reflections (X-Shape as implemented in X-AREA). The structures were solved using SHELXLX or SHELXTL, and all non-hydrogen atoms were anisotropically refined against F² in full-matrix least-squares cycles (SHELXL 2014/7). C-bound hydrogen atoms were (isotropically included in the refinement in geometrically idealized positions (riding model). N-bound H atoms were located as residual electron density peaks and were refined isotopically without restraints. Further details of the structure determinations are given in the Supporting Information. The CCDC 2112133 (2b-THF), 2112134 (1f, modification 1), 2112135 (1f, modification 2), 2112136 (2e-2CHCl₃), 2112137 (2d), 2112138 (2h-2CHCl₃), and 2112139 (2g) contain the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif.

Preparation of Tetra(n-propylamino)dimethylsilane, Me(NHCH₂)₂Si₂(NHCH₂)₂Me (1b). General procedure A using 6.15 g (27.0 mmol) of 1,1,2,2-tetrachlorodimethylsilane and n-propylamine (15.45 g, 261 mmol) gave 1b (7.15 g, 22.4 mmol, 83%) as a colorless liquid. The solution was stirred overnight at ambient temperature and a carbon dioxide pressure of 8 bar. Removal of the solvent under reduced pressure yielded the carbamoyloxydisilanes as solids of sufficient purity.

Preparation of Hexa(n-propylamino)disilane, Me(NHCH₂)₂Si₂(NHCH₂)₃Me (1c). General procedure A using 5.31 g (19.8 mmol) of hexachlorodisilane and n-propylamine (18.98 g, 321 mmol) in 400 mL of n-hexane gave 1c (6.51 g, 16.1 mmol, 81%) as a colorless liquid. The solution was stirred overnight at ambient temperature and a carbon dioxide pressure of 8 bar. Removal of the solvent under reduced pressure yielded the carbamoyloxydisilanes as solids of sufficient purity.

Synthesis of Aminodisilanes 1a—h. Preparation of Dimethyl(tetramethyldisilane, Me₂(NHCH₂)₂Si₂(NHCH₂)₂Me (1a). General procedure A using 5.10 g (27.2 mmol) of 1,2-dichlorotetramethyldisilane and 7.10 g (120 mmol) of n-propylamine in n-hexane (400 mL) gave 1a (5.56 g, 23.9 mmol, 88%) as a colorless liquid: bp 228 °C. C/H/N elemental analysis for C₁₂H₂₈N₂Si₂ (256.54): calc. C 56.2%; H 11.0%; N 10.9%; found C 56.6%; H 11.0%; N 11.0%. APCI-MS: m/z 253.086 (M⁺).

Preparation of Tetra(n-propylamino)dimethylsilane, Me(NHCH₂)₂Si₂(NHCH₂)₂Me (1e). General procedure A using 4.9 g (26.3 mmol) of 1,2-dichlorotetramethyldisilane and pyrrolidine (8.83 g, 124 mmol) in 400 mL of n-hexane gave 1e (5.84 g, 22.8 mmol, 87%) as a colorless liquid: bp 266 °C. C/H/N elemental analysis for C₁₀H₂₈N₂Si₂ (232.52): calc. C 51.7%; H 11.2%; found C 51.7%; H 11.1%; N 11.9%. APCI-MS: m/z 253.086 (M⁺).

Preparation of Di(pyrrolidin-1-yl)tetramethyldisilane, Me₂(NHCH₂)₂Si₂(NHCH₂)₂Me (1d). General procedure A using 4.92 g (26.3 mmol) of 1,2-dichlorotetramethyldisilane and pyrrolidine (8.83 g, 124 mmol) in 400 mL of n-hexane gave 1d (5.84 g, 22.8 mmol, 87%) as a colorless liquid: bp 266 °C. C/H/N elemental analysis for C₁₂H₂₈N₂Si₂ (256.54): calc. C 56.2%; H 11.0%; N 10.9%; found C 56.6%; H 11.0%; N 11.0%. APCI-MS: m/z 257.086 (M⁺).
Preparation of Hexa(pyrrolidin-1-yl)disilane, (NC₄H₈)₃Si[N(C₄H₈)₂](1f). General procedure A using 5.12 g (19.0 mmol) of hexachlorodisilane and pyrrolidine (17.45 g, 245 mmol) in 400 mL of n-hexane gave a colorless high viscous liquid. The liquid was diluted with 3 mL of CHCl₃ and afforded, after storage for 2 weeks at room temperature, colorless crystals of If (1.02 g, 2.1 mmol, 12%) in a red residual solution: mp > 300 °C.²⁹Si NMR (99 MHz, CDCl₃): δ = -34.7 ppm. ¹³C NMR (126 MHz, CDCl₃): δ = 46.3 (N-(CH₃)₂), 26.9 (N-(CH₃)₂) ppm. ²⁹Si NMR (500 MHz, CDCl₃): δ = 2.98 (32H, N-(CH₃)₂), 1.65 (32H, N-(CH₃)₂) ppm. Raman (298 K, glass capillary): ν = 2955, 2904, 2866, 2809 (s, ν CH₂); 2681 (vw); 2627 (vw); 2569 (vw); 1486, 1456, 1444 (vw, ν Si–C); 1344 (vw); 1318 (vw); 1236 (vw); 1073 (vw); 1006 (vw); 706 (vw); 277 (w); 203 (w) cm⁻¹. Elemental analysis for C₂₃H₴₈N₄Si₂ (366.70): calc. C 59.1%; H 10.5%; found C 56.2%; H 10.0%; N 16.0%. APIC-MS: m/z 367.195 (M⁺).

Preparation of Di(piperidin-1-yl)tetramethylsilane, Me₂(NC₄H₈)₂Si[NC₄H₈]₂(Me)₂ (1g). General procedure A using 5.04 g (26.9 mmol) of 1,2-dichlorotetramethyldisilane and piperidine (9.99 g, 117 mmol) in 400 mL of n-hexane gave 1g (5.89 g, 20.7 mmol, 77%) as a colorless liquid: bp 30 °C.²⁹Si NMR (100 MHz, CDCl₃): δ = -5.9 ppm. ¹³C NMR (126 MHz, CDCl₃): δ = 47.7 (N-(CH₃)₂), 28.2 (N-(CH₃)₂) ppm. ¹³C NMR (500 MHz, CDCl₃): δ = 2.80 (8H, N-(CH₃)₂), 1.54 (4H, N-(CH₃)₂) ppm. Raman (298 K, glass capillary): ν = 2954, 2893, 2824 (s, ν CH₂); 2688 (vw); 2668 (w); 1486 (w); 1447 (w, ν Si–C); 1403 (w); 1241 (vw); 1068 (w); 1004 (vw); 757 (w); 661 (w); 385 (w); 186 (w) cm⁻¹. Elemental analysis for C₂₄H₄₈N₄Si₂ (476.86): calc. C 60.5%; H 10.2%; found C 59.2%; H 10.5%; N 16.8%. APIC-MS: m/z 477.223 (M⁺).

Preparation of Tetra(piperidin-1-yl)dimethylsilane, Me₂(NC₄H₈)₂Si[NC₄H₈]₂Me (1h). General procedure A using 4.00 g (17.5 mmol) of 1,1,2,2-tetrachlorodimethylsilane and piperidine (7.94 g, 93.2 mmol) gave chlorotri(piperidin-1-yl)dimethylsilane. Piperidine lithium salt, prepared from 0.91 g (10.7 mmol) of piperidine and n-butyllithium (0.70 g, 10.8 mmol; as a solution in cyclohexane, ω = 20%), was then added to the chlorotri(piperidin-1-yl)dimethylsilane to give 1h (2.37 g, 5.6 mmol, 32%) as a colorless liquid. NMR spectroscopy confirmed the identity of 1h. This crude product (purity > 90%; Figures SI 44–46) was used for insertion reaction with CO₂ without further purification.²⁹Si NMR (100 MHz, CDCl₃): δ = -12.0 ppm. ¹³C NMR (126 MHz, CDCl₃): δ = 47.0 (N-(CH₃)₂), 28.2 (N-(CH₃)₂) ppm. ¹³C NMR (500 MHz, CDCl₃): δ = 2.53 (16H, N-(CH₃)₂), 1.52 (8H, N-(CH₃)₂) ppm. ¹³C NMR (100 MHz, CDCl₃): δ = 155.1 (C=O), 46.0 (N-
orcid.org/0000-0002-7934-6439; orcid.org/0000-0001-5968-2331

mL THF gave

General procedure C using 5.87 g (16.0 mmol) of

H3

m) 0.27 (12H, Si-C

(C

dimethyldisilane Me(OCONC 4H8)2Si2(OCONC4H8)2Me (2e). General procedure C using 5.87 g (16.0 mmol) of 1e in 50 mL THF gave 2e (7.29 g, 13.4 mmol, 84%) as a colorless solid.

29Si NMR (79 MHz, CDCl3): δ = −29.4 ppm. 13C NMR (100 MHz, CDCl3): δ = 154.7 (C=O), 46.0 (N-(CH2)2), 25.4 (N-(CH2)2-(CH2)=O), −0.4 (Si-CH3) ppm. 1H NMR (400 MHz, CDCl3): δ = 3.34 (8H, N-(CH2)2), 1.84 (16H, N-(CH2)2-(CH2)=O), 0.58 (6H, Si-CH3) ppm. Raman (298 K, glass capillary): ν = 2972, 2934, 2898 (ν, ν C–H); 2794 (vw); 2672 (vw); 2616 (vw); 1647 (ν ν C=O); 1495, 1452 (ν ν Si-C); 1342 (vw); 1249 (vw); 1226 (vw); 1104 (vw); 1029 (vw); 970 (vw); 915 (w); 865 (w); 819 (wv); 774 (vw); 750 (vw); 679 (w); 522 (w); 439 (vw); 263 (vw); 276 (vw); 253 (w); 218 (vw); 196 (w); 124,(vw) cm−1.

Elemental analysis for C14H28N2O4Si2 (344.56): calc. C 48.8%; H 8.2%; N 8.1%; found C 48.8%; H 8.7%; N 8.2%.

Preparation of Tetra(pyrrolidin-1-ylcarboxylato)tetramethyldisilane, Me(OCONC5H10)2Si2(OCONC5H10)2Me (2g). General procedure C using 4.03 g (14.2 mmol) of 4.24 g, 11.4 mmol, (80%) as a colorless solid.

29Si NMR (79 MHz, CDCl3): δ = −2.9 ppm. 13C NMR (100 MHz, CDCl3): δ = 155.6 (C=O), 45.0 (N-(CH2)2), 25.8 (N-(CH2)2-(CH2)=O), 24.4 (N-(CH2)2-(CH2)=O), −1.5 (Si-CH3) ppm. 1H NMR (400 MHz, CDCl3): δ = 3.31 (8H, N-(CH2)2), 1.51−1.42 (12H, N-(CH2)2-(CH2)=CH2), 0.27 (12H, Si-CH3) ppm. Raman (298 K, glass capillary): ν = 3030, 3000, 2959, 2926, 2908, 2864 (vs, ν C–H); 2680 (vw); 1567 (ν, ν C=O), 1450, 1433 (w, ν Si−C); 1356 (vw); 1282 (vw); 1263 (vw); 1244 (vw); 1166 (vw); 1101 (w); 1028 (vw); 992 (w); 847 (w); 814 (w); 773 (w); 687 (w); 657 (w); 538 (vw); 417 (w); 194 (w); 101 (w) cm−1.

Elemental analysis for C22H33N2O4Si2 (542.74): calc. C 48.7%; H 7.1%; N 10.3%; found C 48.2%; H 7.0%; N 11.0%.

Preparation of Di(piperidin-1-ylcarboxylato)tetramethyldisilane, Me2O(OCONC5H10)2Si2(OCONC5H10)2Me (2h). General procedure C: a solution of 2e in an autoclave with a CO2 pressure of 8 bar to a h in an autoclave with a CO2 pressure of 8 bar to afford, upon workup, a yellowish-colored resin. This was dissolved in CHCl3 (ca. 4 mL) and stored at room temperature. After 2 weeks of storage at room temperature, some crystalline needles of 2h had formed (ca. 100 mg).

29Si NMR (99 MHz, CDCl3): δ = −25.5 ppm. 13C NMR (126 MHz, CDCl3): δ = 155.1 (C=O), 45.1 (N-(CH2)2), −25.8 (N-(CH2)2-(CH2)2), 24.5 (N-(CH2)2-(CH2)=CH2), −0.6 (Si-CH3) ppm. 1H NMR (500 MHz, CDCl3): δ = 3.39 (16H, N-(CH2)2), 1.55−1.49 (24H, N-(CH2)2-(CH2)=CH2), 0.55 (6H, Si-CH3) ppm.

ASSOCIATED CONTENT

Supporting Information

The Supporting Information is available free of charge at https://dx.doi.org/10.1021/acsomega.1c06868.

1H, 13C, 28Si solution NMR, and 29Si MAS NMR spectra; APCi mass spectra; selected data of the single-crystal X-ray diffraction analyses; and a van’t Hoff plot (In(K) vs 1/T) derived from the VT NMR analysis of compound 2e (PDF).

Crystallographic data (CIF)

AUTHOR INFORMATION

Corresponding Author

Edwin Kroke – Institut für Anorganische Chemie, Technische Universität Bergakademie Freiberg, 09599 Freiberg, Germany; orcid.org/0000-0002-7934-6439

Email: kroke@tu-freiberg.de

Authors

Christopher Ryll – Institut für Anorganische Chemie, Technische Universität Bergakademie Freiberg, 09599 Freiberg, Germany

Konstantin Kraushaar – Institut für Anorganische Chemie, Technische Universität Bergakademie Freiberg, 09599 Freiberg, Germany

Jörg Wagler – Institut für Anorganische Chemie, Technische Universität Bergakademie Freiberg, 09599 Freiberg, Germany

Erica Brendler – Institut für Anorganische Chemie, Technische Universität Bergakademie Freiberg, 09599 Freiberg, Germany; orcid.org/0000-0003-0818-5524

Complete contact information is available at: https://pubs.acs.org/10.1021/acsomega.1c06868

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

The authors thank Dipl. Ing. Regina Moßig (TU Bergakademie Freiberg, Institute for Inorganic Chemistry) for performing Raman spectroscopic measurements and M. Sc. Franziska Gründler for performing the elemental analyses. Part of this work was performed within the research group, Chemical utilization of carbon dioxide with aminosilanes (CO2-Sil), that was financially supported by the European Union (European regional development fund), the Ministry of Science and Art of Saxony (SMWK), and the Sächsische Aufbaubank (SAB), Project number 100310482. Open Access Funding was provided by the Publication Fund of the TU Bergakademie Freiberg.

REFERENCES

(1) (a) Chuit, C.; Corriu, R. J. P.; Reye, C.; Young, J. C. Reactivity of Penta- and Hexacoordinate Silicon Compounds and Their Role as Reaction Intermediates. Chem. Rev. 1993, 93, 1371–1448. (b) Korlyukov, A. A. Coordination compounds of tetravalent silicon, germanium and tin: the structure, chemical bonding and intermolecular interactions in them. Russ. Chem. Rev. 2015, 84, 422–440. (c) Wagler, J.; Böhme, U.; Kroke, E. Higher Coordinated Molecular Silicons Compounds. In Structure and Bonding; Springer, 2014; Vol. 155, pp 29–105. (d) Lemiere, G.; Millanvois, A.; Ollivier, C.; Fensterbank, L. A Parisian Vision of the Chemistry of Hyper-coordinated Silicon Derivatives. Chem. Rev. 2021, 21, 1119–1129.
(2) Tillmann, J.; Meyer-Wegner, F.; Nadj, A.; Becker-Baldus, J.; Sinke, T.; Bolte, M.; Holthausen, M. C.; Wagner, M.; Lerner, H.-W. Unexpected Disproportionation of Tetrachloroethylene-diamine-Supported Perchlorodisilane Cl₂Si₃Cl₃. *Inorg. Chem.* 2012, 51, 8599–8606.

(3) Kummer, D.; Chaudhry, S.; Depmeier, W.; Matter, G. Preparation, Properties, Crystal and Molecular Structure of Dichloro-(l,l0-phenanthroline)bis(trichlorosilyl)silicon, ([SiCl₃]₂SiCl₂phen. Chem. Ber. 1990, 123, 2241–2245.

(4) Wagner, J.; Brendler, E.; Langer, T.; Pöttgen, R.; Heine, T.; Zhechkov, L. Ylenes in the M₃→Si₃ (M=Si, Ge, Sn) Coordination Mode. *Chem. - Eur. J.* 2010, 16, 13429–13434.

(5) Wagner, J.; Brendler, E.; Heine, T.; Zhechkov, L. Disilicon Complexes with Two Hexacoordinate Si Atoms: Paddlewheel-Shaped Isomers with [Cl(Si₃)₃Si(SiCl₃)] and [Cl(Si₃)₃Si(S₂N₂Cl)₃]. *Chem. - Eur. J.* 2013, 19, 14296–14103.

(6) Wagner, J.; Böhme, U.; Roewer, G. Activation of Si-Si Bond by Hypercoordination – Cleavage of a Disilane and Formation of a Si-C Bond. *Organometallics* 2004, 23, 6066–6069.

(7) Wagner, J. A Disilane with a Hypercoordinate Silicon Atom: Coordination of an Imine Ligand versus Si-Si Bond Splitting. *Organometallics* 2007, 26, 155–159.

(8) (a) El-Sayed, I.; Hatanaka, Y.; Muguruma, C.; Shimada, S.; Tanaka, M.; Koga, N.; Mikami, M. Synthesis, X-ray Structure, and Electronic Properties of Oligosilanes Containing Pentacoordinate Silicon Moieties at Internal Positions. *J. Am. Chem. Soc.* 1999, 121, 5095–5096. (b) El-Sayed, I.; Hatanaka, Y.; Onozawa, S.; Tanaka, M. Unusual Locking of Silicon Chains into all-transoid Conformation by Pentacoordinate Silicium Atoms. *J. Am. Chem. Soc.* 2001, 123, 3597–3600.

(9) Kano, N.; Nakagawa, N.; Shinzoyaki, Y.; Kawashima, T.; Sato, Y.; Naruse, Y.; Inagaki, S. Disilanes Containing Two High-Coordinate Silicon Atoms Bridged by Carboxylic Ligands: Synthesis, Structure, and Dynamic Behavior. *Organometallics* 2005, 24, 2823–2826.

(10) (a) Kostenko, A.; Driess, M. Geometrically Compelled Disilene with l⁴-Coordinate Si₃ Atoms. *J. Am. Chem. Soc.* 2010, 136, 19462–19666. (b) Tillmann, J.; Meyer, L.; Schweizer, J. I.; Bolte, M.; Lerner, H.; Wagner, M.; Holthausen, M. C. Chloride-Induced Aufbau of Pentacoordinated Silicon Analogues with Five-Coordinate Silicon Atoms in Both Ring Systems. *Organometallics* 2010, 29, 3930–3935.

(11) (a) Kostenko, A.; Driess, M. Geometrically Compelled Disilene with l⁴-Coordinate Si₃ Atoms. *J. Am. Chem. Soc.* 2010, 136, 19462–19666. (b) Tillmann, J.; Meyer, L.; Schweizer, J. I.; Bolte, M.; Lerner, H.; Wagner, M.; Holthausen, M. C. Chloride-Induced Aufbau of Pentacoordinated Silicon Analogues with Five-Coordinate Silicon Atoms in Both Ring Systems. *Organometallics* 2010, 29, 3930–3935.

(12) (a) Krausa, A.; Wiltzsch, C.; Wagner, J.; Böhme, U.; Schwarze, A.; Roewer, G.; Kroke, E. From CO₂ to Polysiloxanes: Di(carbamoyl)silanes Me₂Si(OCO)NR₃ as Precursors for PDMs. *Organometallics* 2012, 31, 4779–4875. (b) Krausa, A.; Schmidt, D.; Schwarze, A.; Kroke, E. Reactions of CO₂ and CO₂ Analogs (CXY with X, Y=O, S, NR) with Reagents Containing Si-H and Si-N Units. Adv. *Inorg. Chem.* 2014, 66, 117–162. (c) Herbig, M.; Böhme, U.; Kroke, E. Insertion of CO₂ and related heteroallenes into Si-N bond of methyl(N-morpholino)silanes. *Inorg. Chem. Acta* 2018, 473, 20–28. (d) Herbig, M.; Gevorgyan, L.; Pflug, M.; Wagner, J.; Schwarze, S.; Kroke, E. CO₂ Capture with Silylated Ethanolamines and Piperazines. *ChemistryOpen* 2020, 9, 893.

(13) This refers to a search in the Cambridge Structure Database using ConQuest version 2020.3.0.

(14) (a) Hensfeld, J.; Berger, A. E. Sideband intensities in NMR spectra of samples spinning at the magic angles. *J. Chem. Phys.* 1980, 73, 6021. (b) Mason, J. Conventions for the reporting of nuclear magnetic shielding (or shift) tensors suggest by participants in the NATO AEW in NMR Shielding Constants at the University of Maryland, College Park, July 1992. *Solid State Nucl. Magn. Reson.* 1993, 2, 285–288.

(15) (a) Bitto, F.; Krausa, A.; Böhme, U.; Brendler, E.; Wagner, J.; Kroke, E. Chlorosilanes and 3,5-Dimethylpyrazole: Multinuclear Complexes, Acetonitrile Insertion and ²⁹Si NMR Chemical-Shift Anisotropy Studies. *Eur. J. Inorg. Chem.* 2013, 2013, 2954–2962.

(16) (a) Kalikhaman, I.; Krivonos, S.; Lameyer, L.; Stalke, D.; Kost, D. Pentacoordinate Si₄Y Cations Stabilized by Coordination with Oxygen Donor: G: Crystal Structure, Charge Distribution, and Stereodynamics. *Organometallics* 2001, 20, 1053–1055. (b) Wagner, J.; Böhme, U.; Brendler, E.; Roewer, G. First X-Ray Structure of a Cationic Silicon Complex with 5a-Si and 6b-Si Nucleophilic Substitution and its Influence on its ³¹Si Solid State NMR Properties. Z. *Anorg. Allg. Chem.* 2009, 635, 1300–1305.

(17) (a) Kalikhaman, I.; Krivonos, S.; Lameyer, L.; Stalke, D.; Kost, D. Pentacoordinate Si₄Y Cations Stabilized by Coordination with Oxygen Donor: G: Crystal Structure, Charge Distribution, and Stereodynamics. *Organometallics* 2001, 20, 1053–1055. (b) Wagner, J.; Böhme, U.; Brendler, E.; Roewer, G. First X-Ray Structure of a Cationic Silicon Complex with 5a-Si and 6b-Si Nucleophilic Substitution and its Influence on its ³¹Si Solid State NMR Properties. Z. *Anorg. Allg. Chem.* 2009, 635, 1300–1305.
one- and two-dimensional Solid State NMR spectra. Magn. Reson. Chem. 2002, 40, 70–76.

(20) Herbig, M.; Kroke, E. Low cost apparatus for rapid boiling point determination of small air sensitive samples under inert atmosphere. Thermochim. Acta 2017, 654, 81–84.

(21) X-Area, Version 1.75; Stoe & Cie GmbH: Darmstadt, Germany, 2015.

(22) (a) Sheldrick, G. M. A short history of SHELX. Acta Crystallogr., Sect. A: Found. Adv. 2008, 64, 112–122. (b) Sheldrick, G. M. Crystal structure refinement with SHELXL. Acta Crystallogr., Sect. C: Struct. Chem. 2015, 71, 3–8.