COMORBID AFFECTIVE SYMPTOMATOLOGY AND NEUROCOGNITIVE PERFORMANCE IN COLLEGE ATHLETES

A Thesis in
Psychology

by
Garrett A. Thomas

© 2021 Garrett A. Thomas

Submitted in Partial Fulfillment of the Requirements for the Degree of
Master of Science

May 2021
The thesis of Garrett A. Thomas was reviewed and approved by the following:

Peter A. Arnett
Professor of Psychology, Director of Neuropsychology of Sports Concussion &
MS Programs
Thesis Advisor

Frank Hillary
Associate Department Head, Professor of Psychology

Nancy Dennis
Associate Professor of Psychology

Kristin Buss
Professor of Psychology and Human Development and Family Studies
Head of the Department of Psychology
ABSTRACT

Objective: The current study aims to examine the prevalence rates and the relationship of symptoms of depression, anxiety, and comorbid depression/anxiety with neurocognitive performance in college athletes at baseline. We hypothesized a priori that the mood disturbance groups would perform worse than healthy controls, with the comorbid group performing worst overall.

Method: 831 (M=620, F=211) collegiate athletes completed a comprehensive neuropsychological test battery at baseline which included self-report measures of anxiety and depression. Athletes were separated into 4 groups (Healthy Control (HC) \((n=578)\), Depressive Symptoms Only \((n=137)\), Anxiety Symptoms Only \((n=54)\), and Comorbid Depressive/Anxiety Symptoms \((n=62)\)) based on their anxiety and depression scores. Athletes’ neurocognitive functioning was analyzed via z-score composites of Attention/Processing Speed and Memory.

Results: One-way ANOVAs revealed that, compared to athletes in the HC group, the comorbid group performed significantly worse on measures of Attention/Processing Speed but not Memory. However, those in the depressive symptoms only and anxiety symptoms only groups were not significantly different from one another or the HC group on neurocognitive outcomes. Chi-Square analyses revealed that a significantly greater proportion of athletes in all three affective groups were neurocognitively impaired compared to the HC group.

Conclusions: These results demonstrate that collegiate athletes tested at baseline who have comorbid depressive and anxiety symptoms should be identified, as their poorer cognitive performance at baseline could complicate post-concussion interpretation. Further, given the negative health outcomes associated with affective symptomatology, especially comorbidities, it is important to provide care as appropriate.
TABLE OF CONTENTS

LIST OF FIGURES .. v

LIST OF TABLES ... vi

ACKNOWLEDGEMENTS ... vii

Chapter 1 Introduction .. 1

 Neuropsychological Performance and Depression .. 2
 Neuropsychological Performance and Anxiety ... 2
 Neuropsychological Performance and Comorbid Mood Symptoms 3
 Current Study ... 4

Chapter 2 Methods ... 6

 Participants ... 6
 Procedures ... 7
 Calculation of Z-Scores ... 9
 Calculation of Composite Scores ... 10

Chapter 3 Results ... 11

 Prevalence Rates ... 11
 Neurocognitive Performance ... 12
 Comorbid Group versus HC Group ... 13
 Depressive Symptoms Only Group versus HC Group .. 13
 Anxiety Symptoms Only Group versus HC Group ... 13
 Proportion of Neurocognitively Impaired vs. Not Impaired Athletes 14
 Global Impairment Based on Algorithm .. 15
 Impairments Based on Algorithm Applied to Separate Composites 16

Chapter 4 Discussion .. 19

REFERENCES .. 22
LIST OF FIGURES

Figure 3-1: Percentage of neurocognitively impaired athletes at baseline as determined by the global algorithm. The specific percentages are found in Table 3-3. 15

Figure 3-2: Percentage of neurocognitively impaired athletes at baseline as determined by the separate composite algorithms. Specific percentages can be found in Table 3-3. ... 17
LIST OF TABLES

Table 2-1: Definition of Experimental Groups Determined by Clinical Measures................. 9
Table 3-1: Prevalence Rates of Affective Symptoms.. 11
Table 3-2: Group Performance on Cognitive Indices (z-scores).. 14
Table 3-3: Proportion of Neurocognitively Impaired Athletes Per Group............................ 18
ACKNOWLEDGEMENTS

This work would not have been possible without the help and support of all members of Dr. Peter Arnett’s research lab, Penn State Sports Medicine, and all of the athletes who have participated in our Concussion Program over the past two decades. I am especially grateful for the mentorship and support of Dr. Peter Arnett – he has continued to be a source of encouragement, kindness, and motivation throughout all stages of this project. I also want to recognize the members of my committee, Drs. Peter Arnett, Frank Hillary and Nancy Dennis. I greatly appreciate your continued support, valuable feedback, and your investment of time and energy into this project. I also want to express my gratitude for my lab mates, Liora Greenberg, Erin Guty, and Kaitlin Riegler, who never hesitated to lend a helping hand or offer support when needed.

I am thankful for my network of friends and extended family – both at Penn State and beyond. I am also especially thankful for my parents, Brent and Becky Thomas, who have been a tremendous source of support throughout my academic journey - words cannot describe all they have done for me. I am deeply grateful for all of the sacrifices they have made and the examples they have set. I am also grateful that they have always believed in me and always pushed me to follow through with my goals. I also want to recognize my brother, Cody, who has unknowingly provided immeasurable motivation for me and my academic pursuits. Lastly, I want to thank my partner, Olivia, for her continued support and encouragement, and always reminding me to trust the process and keep the larger pursuit in mind.
Chapter 1

Introduction

Sports-related concussions (SRCs) are a common occurrence, with some research estimating between 1.6 to 3.8 million concussions related to sport and recreation occurring annually (Langlois et al., 2006). These numbers are far from static, however, as the NCAA Injury Surveillance Program reported a 7% annual increase in SRCs from 1988 through 2004, resulting in a 105% increase in concussions over this 15-year period (Daneshvar et al., 2011). It is also important to recognize individual factors that may impact a person’s neurocognitive performance to more accurately assess for concussion. To that end, the use of baseline data in concussion management is often beneficial as it allows for intra-individual comparisons that are thought to be more sensitive to recognition of injury and symptomatology. For example, the use of baseline data provides further clinical utility in that it accounts for individual factors that may influence neurocognitive performance, such as history of previous head injury, diagnosis of Attention Deficit Hyperactivity Disorder (ADHD), Learning Disability (LD), cultural and language differences, and pre-morbid intelligence (Barr, 2003; Elbin et al., 2013; Guskiewicz et al., 2003; McCrory et al., 2013; Merritt et al., 2017; Moser et al., 2007). However, the use of baseline data typically does not account for the potential effects of affective symptomatology, particularly those that are comorbid, which may be due, at least in part, to a lack of clarity on how affective symptoms are related to neurocognitive performance.
Neuropsychological Performance and Depression

Literature regarding neuropsychological performance and depression is plentiful, with research showing that depression is associated with impaired performance across several domains, including executive functioning, information processing speed, psychomotor speed, verbal and visual memory recognition and recall, and working memory (Bailey et al., 2010; Basso et al., 2013; Burt et al., 1995; Christensen et al., 1997; Hammar & Årdal, 2009; McDermott & Ebmeier, 2009; Mohn & Rund, 2016). Multiple studies have also directly studied the neuropsychological effects of depression following concussion, demonstrating that depression typically leads to worse performance. Thus, it is evident that the relationship of depressive symptomatology with cognitive dysfunction is well-established, though the research does present mixed findings regarding which neurocognitive domains, such as processing speed (Bailey et al., 2010; Christensen et al., 1997; McDermott & Ebmeier, 2009), executive function (Hammar & Årdal, 2009; McDermott & Ebmeier, 2009; Mohn & Rund, 2016), and memory (Burt et al., 1995; Christensen et al., 1997; McDermott & Ebmeier, 2009; Mohn & Rund, 2016), have the greatest associations. As such, the current study aims to further explore and replicate these findings.

Neuropsychological Performance and Anxiety

In contrast to depression, literature regarding anxiety disorders and neuropsychological test performance is sparse, with the available research presenting mixed results. Some findings suggest that anxiety is correlated with impaired performance on memory tasks, especially pertaining to the recollection of emotionally threatening stimuli, executive functioning tasks, attention, processing speed, and inhibition/switching tasks (Airaksinen et al., 2005; Clarke & Macleod, 2013; Dorenkamp & Vik, 2018). However, many of these studies also present
conflicting results, with some suggesting that anxiety either has no effect or may even improve performance on certain neuropsychological tests (Clarke & Macleod, 2013; Dorenkamp & Vik, 2018; Dotson et al., 2014). For example, some authors suggest that moderate levels of anxiety improve performance on easy tasks, and may improve performance on attention and processing speed tasks due to anxiety’s tendency to increase effort while suppressing the processing of task-irrelevant information (Clarke & Macleod, 2013; Easterbrook, 1959; Eysenck et al., 2007). Some findings also suggest moderate levels of anxiety may improve memory performance on tasks involving emotionally- or anxiety-evocative stimuli given anxious individuals’ bias toward negative emotional processing (Clarke & Macleod, 2013). Thus, given these mixed findings, it is important to further assess associations of anxiety with neuropsychological performance, especially within a college athlete population.

Neuropsychological Performance and Comorbid Mood Symptoms

Given that research on anxiety and neuropsychological performance is sparse, it is not surprising that studies assessing associations of comorbid anxiety and depression with neurocognitive functioning are also limited. A 2002 study assessing the neuropsychological test performance of depression, anxiety, and comorbid anxiety and depression in a general sample found that individuals presenting with comorbid anxiety and depression showed an impaired ability to retrieve newly learned information in addition to impaired immediate recall and acquisition, something that was also seen in the depression only group (Kizilbash et al., 2002). Another study found that those with depression only and individuals with comorbid depression and anxiety showed worse memory function than healthy controls. However, impairments in executive function and psychomotor slowing were seen only in participants with comorbid depression and anxiety. Additionally, the comorbid depression and anxiety group also had more
impaired scores than either the depression only group or the control group (Basso et al., 2013). Based on these limited findings, it is evident that the presentation of comorbid anxiety and depression elicits a more complicated neuropsychological profile than either depression or anxiety alone. Thus, additional research regarding comorbidity is warranted to better understand how this presentation may impact athletes and their neurocognitive performance. Furthermore, in addition to the negative outcomes associated with depression alone and anxiety alone, individuals with comorbid anxiety and depression are also susceptible to an elevated risk of mortality, higher risk of suicide, higher risk of substance use/abuse, greater utilization of healthcare resources, more severe symptoms and complaints, greater overall impairment, and poorer overall outcomes (Castonguay & Oltmanns, 2013; Dahm, Wong, & Ponsford, 2013; Emmanuel, Simmonds, & Tyrer, 1998; Hirschfeld, 2001; R. C. Kessler, Stang, Wittchen, Stein, & Walters, 1999; Ronald C. Kessler, Dupont, Berglund, & Wittchen, 1999; Pratt, Druss, Manderscheid, & Walker, 2016)

Therefore, it is imperative that those at risk for comorbidity be identified and provided proper treatment.

Current Study

To summarize, the current study aims to fill gaps in the neuropsychology and SRC literature regarding affective symptomatology, particularly comorbidity, and its association with baseline neurocognitive testing in college athletes. While the motivation for this study and potential implication are widespread and certainly extend beyond college athletes, this population offers a unique opportunity in that they routinely undergo baseline neuropsychological testing as part of their continued care. Thus, this population offers access to baseline testing that may otherwise be unfeasible in a general population. The relationship between affective symptomatology and neurocognitive performance is important because, if athletes experience
mood symptoms at baseline, this may skew their performance and complicate interpretation of future/post-concussion testing. Further, considering the negative health outcomes associated with affective disorders, particularly those that are comorbid in nature, it is important to recognize individuals at risk and provide proper treatment. To that end, the aims of the current study are to:

1) assess prevalence of depression, anxiety, and comorbid depression and anxiety in a baseline collegiate athlete sample; and 2) examine neuropsychological performance associated with depression, anxiety, and comorbid depression and anxiety in this sample. Regarding aim 2, we hypothesize the following: a) individuals with only depression or only anxiety will perform significantly worse on neuropsychological tests, indicating greater impairment, than individuals without these psychological symptoms; and b) individuals with comorbid anxiety and depression will perform significantly worse on neuropsychological tests compared to individuals with no psychological symptoms, only depression, or only anxiety at baseline.
Chapter 2

Methods

Participants

This was an archival study that included 831 (M = 620, F = 211) college athletes who were involved in a concussion management program at our Division I University. The mean age of participants was 18.50 years (SD = 1.04) with a range from 17-24. All participants were referred for baseline testing by their athletic trainer or team physician. This neuropsychological testing included a hybrid neuropsychological test battery, psychosocial questionnaires, and information about relevant concussion history. Concussion was defined according to the following criteria: an injury to the head resulting from a trauma or biomechanical force wherein brain function is disrupted, as evidenced by any alteration in mental status and/or post-concussion signs or symptoms at the time of injury, posttraumatic amnesia lasting less than 24 hours, and/or loss of consciousness lasting 30 minutes or less (Kayd et al., 1993; Ruff, Iverson, Barth, Bush, & Broshek, 2009). Athletes from the following sports underwent baseline testing: football, men’s and women’s soccer, wrestling, men’s and women’s lacrosse, men’s and women’s ice hockey, men’s and women’s basketball, baseball, softball, crew, volleyball, and rugby. These athletes were selected from a larger group of athletes (N = 1050) receiving baseline testing between 2002 and 2019. Athletes were included in the baseline sample if they completed neuropsychological testing, the Beck Depression Inventory-Fast Screen (BDI-FS) (Beck, Steer, & Brown, 2000), and the NEO-Five Factor Inventory (NEO-FFI) (McCrae & Costa, 2004) at baseline. All data were collected prior to the COVID-19 pandemic.
Procedures

Baseline testing was completed as part of the Sports-Concussion Program at this NCAA Division I University. All participants completed a 2.5-hour comprehensive neuropsychological test battery at baseline. The neuropsychological test battery was administered by undergraduate research assistants or graduate students who were supervised by a Ph.D.-level clinical neuropsychologist.

The hybrid neuropsychological battery consisted of both paper-and-pencil and computerized neuropsychological and neurobehavioral measures. The paper-and-pencil neuropsychological tests were: the Brief-Visuospatial Memory Test-Revised (BVMT-R) (Benedict, 1997), the Comprehensive Trail-Making Test (CTMT) (Reynolds, 2002), a modified version of the Digit Span Test (Weschler, 1997), the Hopkins Verbal Learning Test-Revised (HVLT-R) (Brandt & Benedict, 2001), the Penn State University Cancellation Test (Echemendia & Julian, 2001), the Stroop Color-Word Test (SCWT) (Trenerry, Crosson, DeBoe, & Leber, 1989), and the Symbol-Digit Modalities Test (SDMT) (Smith, 1991). The computerized tests were the ImPACT (Lovell, Collins, Podell, Powell, & Maroon, 2000) and the Vigil/W Continuous Performance Test (Cegalis & Cegalis, 1994).

The BDI-FS was used to measure depressive symptoms in this study. The BDI-FS is well-validated for use in medical populations and may be a particularly useful tool for measuring depressive symptoms in concussed populations because of its ability to discriminate between depression symptoms and symptoms of a concussion (Riegler et al., 2019a).

A modified subscale of the NEO-FFI was used to measure anxiety. The decision to utilize a subscale of the NEO-FFI was predicated upon research suggesting that neuroticism, as described in the NEO-FFI, is clinically associated with anxiety (Widiger, 2011; Kotov, Gamez, Schmidt, & Watson, 2010; Paulus, Vanwoerden, Norton, & Sharp, 2016). One specific study
examining the structural relations between NEO-FFI facets and clinical diagnoses via latent regression found that neuroticism had a significant positive association with Generalized Anxiety Disorder ($\gamma = .64$) (Rosellini & Brown, 2011). Moreover, higher levels of anxiety and neuroticism have been linked to risk of re-injury, which make it especially pertinent for the current study (Ford et al., 2017). As such, the NEO-FFI Anxiety Subscale was created using the four anxiety-items found in the neuroticism facet of the NEO-FFI. This subscale was created in order to obtain a purer anxiety measure, as the neuroticism facet, as a whole, encompasses both depression and anxiety. The four items included in the anxiety subscale were as follows: “I am not a worrier”, “When I’m under a great deal of stress, sometimes I feel like I’m going to pieces,” “I often feel tense and jittery,” and “I rarely feel fearful or anxious.” In order to validate the content of this subscale, we compared it to the Anxiety Symptom Index (ASI) in a separate database containing a similar college-age population which can be considered a reasonably equivalent sample. In this sample, the NEO-FFI Anxiety Subscale was significantly correlated with the Anxiety Sensitivity Index (ASI: Reiss, Peterson, Gursky, & McNally, 1986) ($r = .35, p = .014$), which is similar to the ASI’s correlation with other trait anxiety measures in previous research ($r = 0.42, r = 0.43, r = 0.46$) (McNally & Lorenz, 1987; Reiss et al., 1986; Sandin et al., 2001). Thus, the NEO-FFI Anxiety Subscale appears to be an acceptable measure of anxiety for the current study.

Given that there is not a validated cutoff for the NEO-FFI Anxiety subscale, the current study used a score of one standard deviation above the sample mean ($M = 6.58, SD = 2.78$) to indicate clinical significance. As such, NEO-FFI Anxiety subscale scores were dichotomized into two groups based on the presence of clinically meaningful anxiety symptomatology (≥ 10) or absence of clinically meaningful anxiety symptomatology (< 10). While the distribution of NEO-FFI Anxiety subscale scores was normally distributed, the distribution of the BDI-FS scores was not normal and showed positive skewness and kurtosis in this sample. Further, a large percentage of individuals scored 0 on the BDI-FS. Given these considerations, and in order to maintain
consistency with the cutoffs for the NEO-FFI subscale, the BDI-FS cutoffs were derived based on scores one standard deviation greater than the sample mean ($M = 1.08$, $SD = 1.77$). As such, BDI-FS scores were dichotomized into two groups based on the presence of clinically meaningful depressive symptomatology (≥ 3) or absence of clinically meaningful depressive symptomatology (< 3). The control, depression only, anxiety only, and comorbid depression and anxiety groups are defined in Table 2-1.

All participants provided written informed consent and the study was approved by the Behavioral Committee of the Institutional Review Board at our university.

| Table 2-1: Definition of Experimental Groups Determined by Clinical Measures |
|-----------------------------|-----------------------------|
| | BDI-FS | NEO-FFI Anxiety Subscale |
| Healthy Control | < 3 | < 10 |
| Depression Only | ≥ 3 | < 10 |
| Anxiety Only | < 3 | ≥ 10 |
| Comorbid Depression and Anxiety | ≥ 3 | ≥ 10 |

Calculation of Z-Scores

Scores on all neuropsychological test indices were standardized to z-scores using published baseline norms from a large sample of college athletes from a Division I university (Merritt et al., 2017; Riegler et al., 2019b). Merritt et al. (2017) provided normative data for males ($N = 577$) and females ($N = 217$) separately on all measures of interest except for the ImPACT test, while Riegler et al. (2019b) provided normative data for males ($N = 893$) and females ($N = 377$) on the ImPACT test.
Calculation of Composite Scores

Principal Components Analyses (PCA) were conducted to identify and create composite scores for conceptually related test indices (attention/processing speed tests and memory tests). The PCA for the attention/processing speed composite included the following indices: ImPACT Reaction Time Composite, ImPACT Visual Motor Speed Composite, Vigil Omissions, Vigil Commissions, Vigil Average Delay, SDMT Total, Stroop 1 and 2 Time, PSU Cancellation, CTMT “Simple,” CTMT “Executive,” Digits Forward, and Digits Backward. Of the 13 tests entered into the analysis, 10 of the variables loaded above .40 and were thus retained for the final Attention/Processing Speed Composite. The indices eliminated included: ImPACT Reaction Time Composite, Vigil Omissions, and Vigil Commissions. A comparable PCA was conducted with the following memory indices: ImPACT Verbal Memory Composite, ImPACT Visual Memory Composite, BVMT-R Total Immediate and Delayed Recall, and HVLT-R Total Immediate and Delayed Recall. All of the variables loaded above .55 and were retained for the final Memory Composite.

Following the PCA, the final composites were calculated by first standardizing the individual indices comprising the composites to z-scores, and then calculating a mean z-score value for each composite. Thus, we ended up with an Attention/Processing Speed composite (10 indices), and Memory composite (6 indices).
Chapter 3

Results

Prevalence Rates

Overall, approximately 69.5% of our sample population did not experience significant affective symptomatology, whereas 30.5% of athletes met criteria for at least one significant affective disturbance at baseline. Specifically, 16.5% of the population experienced depressive symptoms without anxiety symptoms, 6.5% of the population experienced anxiety symptoms without depressive symptoms, and 7.5% of the population experienced both depressive and anxiety symptoms (see Table 3-1).

Table 3-1: Prevalence Rates of Affective Symptoms

Sex	Male	Female	N	% of Sample Population
Baseline	620	211	831	
Healthy Control	452	126	578	69.5
Depression Only	103	34	137	16.5
Anxiety Only	29	25	54	6.5
Comorbid Depression and Anxiety	36	26	62	7.5

1 These groups are all independent, meaning that athletes captured in the Depression Only or Anxiety Only groups are not counted toward the Comorbid Group. In doing so, we attempted to make the groups as diagnostically pure as possible. For example, the n of the Anxiety Only group is smaller than the Comorbid group because many of the athletes experiencing symptoms of anxiety also experience symptoms of depression, thus falling into the Comorbid group and not the Anxiety Only group.
Neurocognitive Performance

To examine the impact of affective symptomatology, broadly speaking, we first conducted a regression with *a priori* planned orthogonal contrast coding to examine differences in baseline performance between groups on the Attention/Processing Speed and Memory Composites. The decision to use orthogonal contrast coding in the first regression, as opposed to an analysis of variance and post hoc test approach, was in order to maximize statistical power and allow for meaningful combining of the groups (e.g., combining the three affective groups to compare to HCs).

Overall, results revealed a marginally significant effect of Group (as determined by affective symptomatology) on Attention/Processing Speed, $F(3,827) = 2.58, p = .053$, but not on Memory, $F(3,827) = 0.69, p = .56$. We found that the Attention/Processing Speed Composite was significantly lower across the combined means of the affective groups ($M = -0.10$) compared with the HC group ($M = 0.01$), $t(827) = 2.66, p = .01, d = .19$. However, there was no significant difference between affective groups ($M = -0.03$) and the HC group ($M = 0.01$) on the Memory Composite, $t(827) = 1.06, p = .29, d = .06$. We also found that, while the comorbid group tended to score lower on measures of Attention/Processing Speed and Memory compared to the Depressive Symptoms and Anxiety Symptoms groups, the mean differences were not statistically significant. Further, the Depressive Symptoms Only Group and Anxiety Symptoms Only Group performed similarly across both indexes. Therefore, the affective groups were not significantly different from each other at baseline.

To further examine differences between groups, we replicated the previous regression using dummy coding instead of complex contrast coding, which also allowed us to maximize statistical power while allowing for meaningful comparisons. For example, this approach allowed
us to directly compare each of the affective groups to the HC group, rather than evaluating the combined group means. These comparisons were planned *a priori*.

Comorbid Group versus HC Group

The Attention/Processing Speed Composite was significantly lower in the comorbid group \((M = -0.16)\) compared with the HC group \((M = 0.01)\), \(t(827) = -2.28, p = .02, d = .29\). However, there was no significant difference between the comorbid group and the HC group on the Memory Composite, \(t(827) = -1.43, p = .15, d = .19\).

Depressive Symptoms Only Group versus HC Group

While the depressive symptoms only group tended to score worse than the HC group on measures of Attention/Processing Speed and Memory, the mean differences were not significantly different for any of the composite scores (see Table 3-2).

Anxiety Symptoms Only Group versus HC Group

Similar to the depressive symptoms only group, while the anxiety symptoms only group tended to score worse than the HC group on measures of Attention/Processing Speed and Memory, the mean differences were not significantly different for any of the composite scores (see Table 3-2).
Table 3-2: Group Performance on Cognitive Indices (z-scores)

Composite	n	Mean	SD	t a	p-value a	(d) a,b
Attention/Processing Speed						
Healthy Control (HC)	578	0.01	0.55	---	---	---
Depression	137	-0.07	0.61	-1.59	0.11	0.14
Anxiety	54	-0.09	0.65	-1.28	0.20	0.17
Comorbid	62	-0.16	0.63	-2.28	0.02*	0.29
Combined Groups c	253	-0.10	0.62	2.66	0.01*	0.19
Memory						
Healthy Control (HC)	578	0.01	0.67	---	---	---
Depression	137	0.001	0.65	-0.17	0.87	0.01
Anxiety	54	-0.02	0.62	-0.34	0.74	0.05
Comorbid	62	-0.12	0.69	-1.43	0.15	0.19
Combined Groups c	253	-0.03	0.66	1.06	0.29	0.06

*Compared to Healthy Control group

b Cohen’s effect sizes: small (0.2), medium (0.5), large (0.8) (Cohen, 2013)

c Combined Groups include the Depression only, Anxiety only and Comorbid groups

* significant at the .05 level

In sum, while the combined mean performance of all affective groups was significantly lower than the HC group on measures of Attention/Processing Speed at baseline, only the comorbid group was significantly different from the HC group when compared individually. However, the comorbid group was not significantly different from the other affective groups.

Proportion of Neurocognitively Impaired vs. Not Impaired Athletes

We also conducted Chi-Square analyses to explore the proportion of neurocognitively impaired athletes within each group determined by two separate criteria.
Global Impairment Based on Algorithm

Athletes were considered neurocognitively impaired based on criteria outlined in Arnett et al. (2016). Based on this algorithm involving 17 test indices, athletes were considered ‘neurocognitively impaired’ if they scored 1.5 standard deviations or more below the mean on 5+ indices for males and 3+ indices for females, or if they scored 2 standard deviations or more below the mean on 3+ indices for males and 2+ indices for females (Arnett et al., 2016). Athletes who were classified as impaired by both criteria were only counted once. We found that, compared to the HC group, the comorbid group had significantly more athletes classified as neurocognitively impaired, $\chi^2 (1, N = 640) = 10.12, p = .001, \phi^2 = .13$, as did the depressive symptoms only group, $\chi^2 (1, N = 715) = 4.61, p = .03, \phi = .08$, and the anxiety symptoms only group, $\chi^2 (1, N = 632) = 5.57, p = .02, \phi = .09$. See Figure 3-1 and Table 3-3.

![Figure 3-1: Percentage of neurocognitively impaired athletes at baseline as determined by the global algorithm. The specific percentages are found in Table 3-3.](image)

1 The indices included in this algorithm are the same as the indices included in the previous analyses for this paper; however, the algorithm also includes the ImPACT Reaction Time composite. This measure was not included in our initial analyses because it loaded below the 0.4 cutoff for the PCA, but we included it here to be more analogous with the published algorithm.

2 Phi effect size for Chi-Square: small (0.1), medium (0.3), large (0.5) (Cohen, 2013; Kim, 2017)
Impairments Based on Algorithm Applied to Separate Composites

In order to further explore the previous findings regarding algorithm-derived impairments based on all 17 test indices, we created new decision rules for the Attention/Processing Speed Composite and Memory Composites separately. These new decision rules emulated the original algorithm described in Arnett et al. (2016) in that ‘impaired’ scores were defined as performing 2 SDs or more below the sample mean, and ‘borderline’ scores were defined as performing 1.5 SDs or more below the sample mean. Contrary to the original algorithm, there were no sex differences in terms of base rate of impairment, so males and females were included within the same decision rules. The overall sample used to determine these cutoffs included 919 college athletes (M = 685, F = 234). Overall, fewer than 10% of athletes had 3 or more borderline scores on the Attention/Processing Speed Composite, and fewer than 10% of athletes had 3 or more borderline scores on the Memory Composite. Additionally, fewer than 10% of athletes had 2 or more impaired scores on the Attention/Processing Speed Composite, and fewer than 10% of athletes had 2 or more impaired scores on the Memory Composite. As such, these cutoffs were used to define athletes as either Neurocognitively Impaired or Not Impaired. The Neurocognitively Impaired Group were those who either showed 3+ borderline indices or 2+ impaired indices. Athletes meeting both criteria were only counted once. Conversely, those in the Not Impaired Group were athletes who showed less than 3 borderline indices and less than 2 impaired indices.

For Chi-Square analyses, athletes were separated into two groups based on the criteria described above. We found that, compared to the HC group, the comorbid group had significantly more athletes classified as neurocognitively impaired on the Attention/Processing Speed composite, $\chi^2 (1, N = 640) = 11.81, p = .001, \varphi = .14$, but not on the Memory composite, $\chi^2 (1, N = 640) = 0.64, p = .42, \varphi = .03$. Similarly, the anxiety symptoms only group had significantly
more athletes classified as neurocognitively impaired than the HC group on the
Attention/Processing Speed composite, $\chi^2 (1, N = 632) = 4.98, p = .03, \varphi = .09$, but not on the
Memory composite, $\chi^2 (1, N = 632) = 0.15, p = .70, \varphi = .02$. The proportion of neurocognitively
impaired athletes in the depressive symptoms only group did not differ from that of the HC group
on either of the composites. See Figure 3-2 and Table 3-3.

![Percentage of Neurocognitively Impaired Athletes by Composite](image)

Figure 3-2: Percentage of neurocognitively impaired athletes at baseline as determined by the
separate composite algorithms. Specific percentages can be found in Table 3-3.
Table 3-3: Proportion of Neurocognitively Impaired Athletes Per Group

Group	Impaired	Not Impaired	χ^2	p	ϕ c
Algorithm Derived a					
Healthy Control (HC)	43 (7.4%)	535	---	---	
Depression vs. HC	18 (13.1%)	119	4.61	.03*	.08
Anxiety vs. HC	9 (16.7%)	45	5.57	.02*	.09
Comorbid vs. HC	12 (19.4%)	50	10.12	.001*	.13
Algorithm Derived by Composite b					
Attention/Processing Speed					
Healthy Control (HC)	45 (7.8%)	533	---	---	
Depression vs. HC	13 (9.5%)	124	0.43	.51	.03
Anxiety vs. HC	9 (16.7%)	45	4.98	.03*	.09
Comorbid vs. HC	13 (21.0%)	49	11.81	.001*	.14
Memory					
Healthy Control (HC)	42 (6.9%)	536	---	---	
Depression vs. HC	11 (7.3%)	126	0.02	.88	.01
Anxiety vs. HC	4 (5.6%)	50	0.15	.70	.02
Comorbid vs. HC	6 (9.7%)	56	0.64	.42	.03

a Athletes were considered ‘neurocognitively impaired’ if they scored 1.5 standard deviations or more below the mean on 5+ indices for males and 3+ indices for females, or if they scored 2 standard deviations or more below the mean on 3+ indices for males and 2+ indices for females.

b Athletes were considered ‘neurocognitively impaired’ if they scored 1.5 standard deviations or more below the mean on 3+ indices or if they scored 2 standard deviations or more below the mean on 2+ for each of the composites.

c Phi effect size for Chi-Square: small (0.1), medium (0.3), large (0.5) (Cohen, 2013; Kim, 2017)

* significant at the .05 level
Chapter 4

Discussion

Overall, these findings indicate that approximately 30% of the sample population reports experiencing at least one significant affective disturbance (e.g. depressive, anxious, or comorbid symptomatology) at baseline. This percentage is slightly lower, but consistent, with recent research surrounding the prevalence of affective disorders in college students (Beiter et al., 2015; Duffy et al., 2019). Additionally, the results indicate that comorbid depression and anxiety are associated with poorer neurocognitive performance in areas of Attention/Processing Speed. Our first hypothesis was thus partially supported. Both the Depressive Symptoms Only and Anxiety Symptoms Only groups had a significantly greater proportion of neurocognitively impaired athletes compared with the HC group when applying the algorithm for global impairment. Moreover, when classifying impairment based on the algorithm for the Attention/Processing Speed and Memory composites separately, the Anxiety Symptoms Only group showed a significantly greater proportion of impaired athletes compared to HCs. However, despite these findings, the Depressive Symptoms Only and Anxiety Symptoms Only groups did not show mean values that were significantly lower than HCs on measures of Attention/Processing Speed or Memory. Our second hypothesis was also partially supported in that the Comorbid Depression and Anxiety group performed significantly worse than Healthy Controls on measures of Attention/Processing Speed. The comorbid group also had nearly three times as many neurocognitively impaired athletes compared to the HC group when applying the algorithm for global impairment. Additionally, compared with the HC group, the comorbid group had nearly three times as many athletes who were impaired on the Attention/Processing Speed composite. Interestingly, the comorbid group did not perform significantly worse than the healthy controls on
measures of Memory, nor did the comorbid group differ from the HC group in the proportion of athletes classified as impaired on the Memory composite. These findings were unexpected given previous research regarding affective symptomatology and its association with memory functioning (Riegler et al., 2019b). Further, the comorbid group did not perform significantly worse than the Depressive Symptoms Only and Anxiety Symptoms Only groups on measures of Attention/Processing Speed or Memory. This could be due, in part, to the separate effects of depressive symptoms and anxiety symptoms being relatively similar, but not as potent, as the cumulative effects found with comorbidity.

One possible limitation of the current study is the use of the anxiety subscale, which was derived from the neuroticism facet of the NEO-PI, rather than a stand-alone anxiety measure. While this anxiety subscale did correlate with the ASI at a level comparable to other anxiety measures (e.g. the STAI), the scale we derived has not been subject to rigorous validation and may be a limitation. Another possible limitation that is related lies within the clinical utility of these findings. Because we created the affective groups based on cutoff scores derived from the sample mean and standard deviation, rather than clinical cutoffs, we are capturing those who are experiencing affective symptomatology rather than true clinical disorders. Still, we believe that these cutoffs are clinically meaningful because they are derived from base rates within our sample, and also because of some athletes’ tendency to underreport symptoms (McCrea et al., 2004; Meier et al., 2015). Future studies could use more robust cutoffs, especially in regard to anxiety symptomatology, to more fully assess the impact of affective symptoms and disorders on neurocognitive performance.

In sum, our results show that significant affective symptomatology is common in collegiate athletes at baseline. Our data also highlight the negative impact of affective symptomatology, particularly comorbidity, on neurocognitive performance at baseline in collegiate athletes. As such, baseline testing might be more critical for athletes who have mood
symptoms in order to capture a more complete understanding of their cognitive profile. For example, if an athlete meets criteria for psychiatric comorbidity at baseline, but not post-concussion, this could give a skewed representation of their functioning and may result in returning athletes prior to cognitive recovery. With this in mind, neuropsychologists are in a unique position to capture a truly individualistic understanding of an athlete’s presentation through baseline testing and psychological interviewing. The sole reliance upon self-report to identify psychological distress may not be sufficient considering some athletes may underreport symptoms, including psychological symptoms, due to motivation to return to play (Echemendia & Cantu, 2003; McCrea, Hammeke, Olsen, Leo, & Guskiewicz, 2004; Meier et al., 2015; Riegler, Guty, & Arnett, 2019b). One study found that athletes reported significantly more psychological symptoms, including symptoms of anxiety and depression, in a confidential psychological interview than they reported to athletic trainers via self-report on the ImPACT (Meier et al., 2015). As such, introducing a brief screener, like the NEO-FFI Anxiety Subscale, BDI-FS, and/or the Affective Scale from the PCSS (Riegler et al., 2019a) may be a good way to identify athletes who might be at risk for affective symptomatology who can then be referred for a more thorough assessment.

Given the above considerations, athletes should be routinely screened for mood disorders, and those who show affective symptomatology could receive baseline testing even if it is not standard procedure. This is important because post-concussion assessments are more meaningful if they can be compared to a valid baseline. If an individual’s possible psychopathology is not accounted for, these affective symptoms may skew baseline performance, so that comparison with assessments at future timepoints may not be accurate.
REFERENCES

Airaksinen, E., Larsson, M., & Forsell, Y. (2005). Neuropsychological functions in anxiety disorders in population-based samples: Evidence of episodic memory dysfunction. *Journal of Psychiatric Research, 39*(2), 207–214. https://doi.org/10.1016/j.jpsychires.2004.06.001

Arnett, P., Meyer, J., Merritt, V., & Guty, E. (2016). Neuropsychological Testing in Mild Traumatic Brain Injury: What to Do When Baseline Testing Is Not Available. *Sports Medicine and Arthroscopy Review, 24*(3), 116–122. https://doi.org/10.1097/JSA.0000000000000123

Bailey, C. M., Samples, H. L., Broshek, D. K., Freeman, J. R., & Barth, J. T. (2010). The relationship between psychological distress and baseline sports-related concussion testing. *Clinical Journal of Sport Medicine: Official Journal of the Canadian Academy of Sport Medicine, 20*(4), 272–277. https://doi.org/10.1097/JSM.0b013e3181e8f8d8

Barr, W. B. (2003). Neuropsychological testing of high school athletes Preliminary norms and test–retest indices. *Archives of Clinical Neuropsychology, 18*(1), 91–101. https://doi.org/10.1093/arclin/18.1.91

Basso, M. R., Miller, A., Estevis, E., & Combs, D. (2013). Neuropsychological deficits in major depressive disorder: Correlates and conundrums. In *Secondary influences on neuropsychological test performance: Research findings and practical applications* (pp. 39–66). Oxford University Press.
Beiter, R., Nash, R., McCrady, M., Rhoades, D., Linscomb, M., Clarahan, M., & Sammut, S. (2015). The prevalence and correlates of depression, anxiety, and stress in a sample of college students. *Journal of Affective Disorders, 173*, 90–96. https://doi.org/10.1016/j.jad.2014.10.054

Burt, D. B., Zembar, M. J., & Niederehe, G. (1995). Depression and memory impairment: A meta-analysis of the association, its pattern, and specificity. *Psychological Bulletin, 117*(2), 285–305. https://doi.org/10.1037/0033-2909.117.2.285

Castonguay, L. G., & Oltmanns, T. F. (Eds.). (2013). *Psychopathology: From science to clinical practice*. The Guilford Press.

Christensen, H., Griffiths, K., Mackinnon, A., & Jacomb, P. (1997). A quantitative review of cognitive deficits in depression and Alzheimer-type dementia. *Journal of the International Neuropsychological Society: JINS, 3*(6), 631–651.

Clarke, P., & Macleod, C. (2013). The Impact of Anxiety on Cognitive Task Performance. *Secondary Influences on Neuropsychological Test Performance*, 93–116.

Cohen, J. (2013). *Statistical Power Analysis for the Behavioral Sciences*. Academic Press.

Dahm, J., Wong, D., & Ponsford, J. (2013). Validity of the Depression Anxiety Stress Scales in assessing depression and anxiety following traumatic brain injury. *Journal of Affective Disorders, 151*(1), 392–396. https://doi.org/10.1016/j.jad.2013.06.011
Daneshvar, D. H., Nowinski, C. J., McKee, A., & Cantu, R. C. (2011). The Epidemiology of Sport-Related Concussion. *Clinics in Sports Medicine, 30*(1), 1–17. https://doi.org/10.1016/j.csm.2010.08.006

Dorenkamp, M. A., & Vik, P. (2018). Neuropsychological assessment anxiety: A systematic review. *Practice Innovations, 3*(3), 192–211. http://dx.doi.org.ezaccess.libraries.psu.edu/10.1037/pri0000073

Dotson, V. M., Szymkowicz, S. M., Kirton, J. W., McLaren, M. E., Green, M. L., & Rohani, J. Y. (2014). Unique and interactive effect of anxiety and depressive symptoms on cognitive and brain function in young and older adults. *Journal of Depression & Anxiety, Suppl 1*. https://doi.org/10.4172/2167-1044.S1-003

Duffy, M. E., Twenge, J. M., & Joiner, T. E. (2019). Trends in Mood and Anxiety Symptoms and Suicide-Related Outcomes Among U.S. Undergraduates, 2007–2018: Evidence From Two National Surveys. *Journal of Adolescent Health, 65*(5), 590–598. https://doi.org/10.1016/j.jadohealth.2019.04.033

Easterbrook, J. A. (1959). The effect of emotion on cue utilization and the organization of behavior. *Psychological Review, 66*(3), 183–201. https://doi.org/10.1037/h0047707

Echemendia, R. J., & Cantu, R. C. (2003). Return to play following sports-related mild traumatic brain injury: The role for neuropsychology. *Applied Neuropsychology, 10*(1), 48–55. https://doi.org/10.1207/S15324826AN1001_7

Elbin, R. J., Kontos, A. P., Kegel, N., Johnson, E., Burkhart, S., & Schatz, P. (2013). Individual and Combined Effects of LD and ADHD on Computerized Neurocognitive Concussion Test Performance: Evidence for Separate Norms.
Emmanuel, J., Simmonds, S., & Tyrer, P. (1998). Systematic review of the outcome of anxiety and depressive disorders. *The British Journal of Psychiatry, 173*(S34), 35–41. https://doi.org/10.1192/S0007125000293501

Eysenck, M. W., Derakshan, N., Santos, R., & Calvo, M. G. (2007). Anxiety and cognitive performance: Attentional control theory. *Emotion (Washington, D.C.), 7*(2), 336–353. https://doi.org/10.1037/1528-3542.7.2.336

Ford, J. L., Ildefonso, K., Jones, M. L., & Arvinen-Barrow, M. (2017). Sport-related anxiety: Current insights. *Open Access Journal of Sports Medicine, 8*, 205–212. https://doi.org/10.2147/OAJSM.S125845

Guskiewicz, K. M., McCrea, M., Marshall, S. W., Cantu, R. C., Randolph, C., Barr, W., Onate, J. A., & Kelly, J. P. (2003). Cumulative Effects Associated With Recurrent Concussion in Collegiate Football Players: The NCAA Concussion Study. *JAMA, 290*(19), 2549–2555. https://doi.org/10.1001/jama.290.19.2549

Hammar, Å., & Årdal, G. (2009). Cognitive Functioning in Major Depression – A Summary. *Frontiers in Human Neuroscience, 3*. https://doi.org/10.3389/neuro.09.026.2009

Hirschfeld, R. M. A. (2001). The Comorbidity of Major Depression and Anxiety Disorders: Recognition and Management in Primary Care. *Primary Care Companion to The Journal of Clinical Psychiatry, 3*(6), 244–254.

Kessler, R. C., Stang, P., Wittchen, H. U., Stein, M., & Walters, E. E. (1999). Lifetime co-morbidities between social phobia and mood disorders in the US National
Comorbidity Survey. *Psychological Medicine*, 29(3), 555–567. https://doi.org/10.1017/s0033291799008375

Kessler, Ronald C., Dupont, R. L., Berglund, P., & Wittchen, H. U. (1999). Impairment in pure and comorbid generalized anxiety disorder and major depression at 12 months in two national surveys. *The American Journal of Psychiatry*, 156(12), 1915–1923. https://doi.org/10.1176/ajp.156.12.1915

Kim, H.-Y. (2017). Statistical notes for clinical researchers: Chi-squared test and Fisher’s exact test. *Restorative Dentistry & Endodontics*, 42(2), 152–155. https://doi.org/10.5395/rde.2017.42.2.152

Kizilbash, A. H., Vanderploeg, R. D., & Curtiss, G. (2002). The effects of depression and anxiety on memory performance. *Archives of Clinical Neuropsychology*, 17(1), 57–67. https://doi.org/10.1093/arclin/17.1.57

Kotov, R., Gamez, W., Schmidt, F., & Watson, D. (2010). Linking “big” personality traits to anxiety, depressive, and substance use disorders: A meta-analysis. *Psychological Bulletin*, 136(5), 768–821. http://dx.doi.org.ezaccess.libraries.psu.edu/10.1037/a0020327

Langlois, J. A., Rutland-Brown, W., & Wald, M. M. (2006). The epidemiology and impact of traumatic brain injury: A brief overview. *The Journal of Head Trauma Rehabilitation*, 21(5), 375–378.

McCrae, R. R., & Costa, P. T. (2004). A contemplated revision of the NEO Five-Factor Inventory. * Personality and Individual Differences*, 36(3), 587–596. https://doi.org/10.1016/S0191-8869(03)00118-1
McCrea, M., Hammeke, T., Olsen, G., Leo, P., & Guskiewicz, K. (2004). Unreported concussion in high school football players: Implications for prevention. *Clinical Journal of Sport Medicine: Official Journal of the Canadian Academy of Sport Medicine, 14*(1), 13–17.

McCrory, P., Meeuwisse, W. H., Aubry, M., Cantu, R. C., Dvořák, J., Echemendia, R. J., Engebretsen, L., Johnston, K. M., Kutcher, J. S., Raftery, M., Sills, A., Benson, B. W., Davis, G. A., Ellenbogen, R., Guskiewicz, K. M., Herring, S. A., Iverson, G. L., Jordan, B. D., Kissick, J., … Turner, M. (2013). Consensus Statement on Concussion in Sport—The 4th International Conference on Concussion in Sport Held in Zurich, November 2012. *PM&R, 5*(4), 255–279. https://doi.org/10.1016/j.pmrj.2013.02.012

McDermott, L. M., & Ebmeier, K. P. (2009). A meta-analysis of depression severity and cognitive function. *Journal of Affective Disorders, 119*(1–3), 1–8. https://doi.org/10.1016/j.jad.2009.04.022

McNally, R. J., & Lorenz, M. (1987). Anxiety sensitivity in agoraphobics. *Journal of Behavior Therapy and Experimental Psychiatry, 18*(1), 3–11. https://doi.org/10.1016/0005-7916(87)90065-6

Meier, T. B., Brummel, B. J., Singh, R., Nerio, C. J., Polanski, D. W., & Bellgowan, P. S. F. (2015). The underreporting of self-reported symptoms following sports-related concussion. *Journal of Science and Medicine in Sport, 18*(5), 507–511. https://doi.org/10.1016/j.jsams.2014.07.008

Merritt, V. C., Meyer, J. E., Cadden, M. H., Roman, C. A. F., Ukueberuwa, D. M., Shapiro, M. D., & Arnett, P. A. (2017). Normative Data for a Comprehensive
Neuropsychological Test Battery used in the Assessment of Sports-Related Concussion. *Archives of Clinical Neuropsychology: The Official Journal of the National Academy of Neuropsychologists*, 32(2), 168–183.

https://doi.org/10.1093/arclin/acw090

Mohn, C., & Rund, B. R. (2016). Neurocognitive profile in major depressive disorders: Relationship to symptom level and subjective memory complaints. *BMC Psychiatry*, 16. https://doi.org/10.1186/s12888-016-0815-8

Moser, R. S., Iverson, G. L., Echemendia, R. J., Lovell, M. R., Schatz, P., Webbe, F. M., Ruff, R. M., & Barth, J. T. (2007). Neuropsychological evaluation in the diagnosis and management of sports-related concussion. *Archives of Clinical Neuropsychology*, 22(8), 909–916. https://doi.org/10.1016/j.acn.2007.09.004

Paulus, D. J., Vanwoerden, S., Norton, P. J., & Sharp, C. (2016). From neuroticism to anxiety: Examining unique contributions of three transdiagnostic vulnerability factors. *Personality and Individual Differences*, 94, 38–43.

https://doi.org/10.1016/j.paid.2016.01.012

Pratt, L. A., Druss, B. G., Manderscheid, R. W., & Walker, E. R. (2016). Excess mortality due to depression and anxiety in the United States: Results from a nationally representative survey. *General Hospital Psychiatry*, 39, 39–45.

https://doi.org/10.1016/j.genhospsych.2015.12.003

Reiss, S., Peterson, R. A., Gursky, D. M., & McNally, R. J. (1986). Anxiety sensitivity, anxiety frequency and the prediction of fearfulness. *Behaviour Research and Therapy*, 24(1), 1–8. https://doi.org/10.1016/0005-7967(86)90143-9
Riegler, K. E., Guty, E. T., & Arnett, P. A. (2019a). Validity of the ImPACT Post-Concussion Symptom Scale (PCSS) Affective Symptom Cluster as a Screener for Depression in Collegiate Athletes. *Archives of Clinical Neuropsychology: The Official Journal of the National Academy of Neuropsychologists, 34*(4), 563–574. https://doi.org/10.1093/arclin/acy081

Riegler, K. E., Guty, E. T., & Arnett, P. A. (2019b). Neuropsychological test performance in depressed and nondepressed collegiate athletes following concussion. *Neuropsychology*. https://doi.org/10.1037/neu0000582

Rosellini, A. J., & Brown, T. A. (2011). The NEO Five-Factor Inventory: Latent Structure and Relationships With Dimensions of Anxiety and Depressive Disorders in a Large Clinical Sample. *Assessment, 18*(1), 27–38. https://doi.org/10.1177/1073191110382848

Ruff, R. M., Iverson, G. L., Barth, J. T., Bush, S. S., & Broshek, D. K. (2009). Recommendations for Diagnosing a Mild Traumatic Brain Injury: A National Academy of Neuropsychology Education Paper. *Archives of Clinical Neuropsychology, 24*(1), 3–10. https://doi.org/10.1093/arclin/ACP006

Sandin, B., Chorot, P., & McNally, R. J. (2001). Anxiety Sensitivity Index: Normative data and its differentiation from trait anxiety. *Behaviour Research and Therapy, 39*(2), 213–219. https://doi.org/10.1016/S0005-7967(00)00009-7

Widiger, T. A. (2011). Personality and psychopathology. *World Psychiatry, 10*(2), 103–106.