総 説

肥大型心筋症患者におけるⅠ度房室ブロックの予後指標としての臨床的意義

近年、12誘導心電図におけるⅠ度房室ブロックは、心房細動新規発症、心不全入院、また死亡率上昇などの、心血管イベント発生に影響しうる重要な所見として注目されている。本研究では、Ⅰ度房室ブロックが肥大型心筋症（HCM）患者の心血管イベント発生リスクとなりうることを検証した。対象は414人のHCM患者（平均年齢51±16歳、男性64.5%）。初回評価時に測定されたPR時間をもとにⅠ度房室ブロック（PR時間200ms以上）群（96人、23.2%）と非Ⅰ度房室ブロック群（318人、76.8%）に分類した。エンドポイントはHCM関連死とし、突然死または致死性不整脈イベント、心不全関連死、脳卒中関連死による複合エンドポイントを定義した。中央値8.8（4.9-12.9）年のフォローアップ中、計56人（13.5%）の患者でHCM関連死が発生し、なかでも47人（11.4%）は突然死または致死性不整脈イベントの複合エンドポイントであった。Ⅰ度房室ブロックとHCM関連死のリスク因子による多変量解析では、Ⅰ度房室ブロックはHCM関連死の独立した予後予測因子（adjusted hazard ratio（adjusted HR）：2.41、95% confidence interval（95% CI）：1.27-4.58、p=0.007）であることが示され、さらにこの傾向は突然死または致死性不整脈による複合エンドポイントのみでも維持された（adjusted HR：2.60、95% CI：1.28-5.27、p=0.008）。以上の結果より、Ⅰ度房室ブロックは、HCM患者における突然死または致死性不整脈による複合エンドポイントも含む、HCM関連死発生に関与している可能性が示唆された。

（心電図、2021:41:64-73）
み型除細動器（ICD）適応を考えるうえで極めて重要となる。これまで心臓突然死の確立されたリスク因子として、突然死の家族歴、非持続型心室頻拍、左心室最大壁厚30mm以上、失神既往の4因子が提唱されている1）～2）。しかし、突然死、蘇生例、またはICDの適切ショック作動を認めた約3割のHCM患者において、4因子のいずれも認められなかったとの報告もあり、いまだにリスク層別化に有効とされる臨床マーカーは少ないといえる3）。

これまで、12誘導心電図におけるPR時間の延長は、心血管イベントに影響することのない良性の初見と認識されてきた4）, 5）。しかし近年、この房室伝導障害は、心房細動新規発症、心不全入院、また死亡率上昇などの心血管イベント発生に影響しうる重要な所見として注目されている6）～9）。一方、HCM患者における心血管イベント発生に対する1度房室ブロックの意義についてまとめた報告は、われわれが知る限り存在しない。そこで本研究では、HCM患者における心電図上の1度房室ブロックの予後指標としての臨床的意義を評価した10）。

Ⅱ．対象および方法

2003年1月1日から2016年12月31日までに東京女子医科大学病院でフォローされたHCM患者414人（平均年齢51±16歳、男性64.5%）を後ろ向きに解析した。PR時間は初回評価時に12誘導心電図（25mm/s、10mm/mV）で行われ、2誘導、または必要に応じてその他の誘導で測定された4）, 5）。PR時間は心電図計による自動計算をもとに記録され、その後、臨床経過をプライドされた循環器医が、結果の矛盾の有無につき、すべてのデータを検証した。結果に矛盾がある場合には、デジタルキャリーバーを用いて、マニュアルでPR時間を測定した。1度房室ブロックは、PR時間200ms以上と定義した。

以下の3つの心血管イベントをHCM関連死と定義し、観察のエンドポイントとした。①突然死（イベント発生が予測されない安定した状態において、無症状、または症状発生から1時間以内に発生した予期せぬ死亡）、心停止後の蘇生成功（心室細動、または無脈性心室頻拍）、またはICDの適切ショック作動の複合エンドポイント。②心不全関連死（死亡1年以内に発生した非代償性心不全の進行でかつ肺水腫、または末期状態と判断される兆候を伴う場合、または治療抵抗性の進行性心不全による心臓移植を行った際にも、本研究では心不全関連死と定義した）、および③血栓塞栓症の結果もたらされた脳卒中関連死。これらのイベント発生時の評価は、循環器医と不整脈医により行われ、その結果を、本研究者がカルテの記録をもとに分類した。

Ⅲ．結果

1．PR時間の分布

HCM患者414人のPR時間の中央値は172（四分位範囲：154～196）msであった。中央値8.8（4.9～12.9）年の追跡期間中、計56人（13.5%）の患者でHCM関連死を認めた。このうち、突然死または致死性不整脈の複合エンドポイントは47人（11.4%）であり、17人（41%）は突然死、10人（24%）は心肺停止後蘇生成功（心室細動6人、無脈性心室頻拍4人）、20人（48%）はICDの適切ショック作動であった。残りの9人のHCM関連死のうち、2人（5%）の心臓移植を含む6人（14%）は心不全関連死、3人（7%）は脳卒中関連死であった。初回評価からHCM関連死までの期間の中央値は5.9（2.5-10.5）年でであった。

図1は、HCM関連死なし、HCM関連死ありと突然死または致死性不整脈の複合エンドポイントを認めた患者群におけるPR時間の分布を示している。HCM関連死を認めた群の平均PR時間（190±425）msであり、突然死または致死性不整脈の複合エンドポイントを認めた群の平均PR時間（192.4±436）msは、HCM関連死を認めてなかった群（172.3±26.6ms）に比して有意に長い傾向があった。

2．1度房室ブロックの有無による患者背景

初回評価時に、1度房室ブロック群は96人（23.2%）、非1度房室ブロック群は318人（76.2%）
認められた。2群間の患者背景を表1にまとめた。

Ⅰ度房室ブロック群は非Ⅰ度房室ブロック群に比し、流出路狭帯（p = 0.02）、発作性心房細動（p = 0.03）の罹患率が高く、左心房径が大きく（p = 0.009）、QRS時間が長い（p < 0.001）傾向にあった。一方、NYHA機能クラス、5年間の心室突然死発生のリスクスコア、薬物使用、また追跡期間の中央値は、2群間で差を認めなかった。

3. Ⅰ度房室ブロックによる臨床転帰への影響

追跡期間中、96人中の16人（16.6%）のⅠ度房室ブロック群、318人中の19人（6.0%）の非Ⅰ度房室ブロック群で新規心房細動発症を認めた（p = 0.002）（図2A）。心房細動に対するカテーテルアブレーションはⅠ度房室ブロック群96人中9人（9.4%）、非Ⅰ度房室ブロック群318人中21人（6.6%）に対して行われた（p = 0.359）。NYHA機能クラス3、4への心不全増悪による予期せぬ入院は、Ⅰ度房室ブロック群の22人（22.9%）、非Ⅰ度房室ブロック群の28人（8.8%）に認められた（p = 0.0002）（図2B）。また、新規致死的塞栓症はⅠ度房室ブロック群で5人（5.2%）、非Ⅰ度房室ブロック群で13人（41.1%）に認められた（p = 0.0637）（図2C）。

追跡期間中、Ⅰ度房室ブロック群96人中の24人（25.0%）でHCM関連死が発生した。このうち、8人（8.3%）の突然死、3人（3.1%）の心肺停止蘇生後、心室細動2人と無脈性心室顫拍1人、10人（10.4%）のICD適切ショック作動を含む21人（21.9%）は、突然死または致死性不整脈の複合エンドポイントであった。心不全関連死は3人に認められ（2人は心臓移植）、脳卒中関連死患者は認められなかった。一方、非Ⅰ度房室ブロック群318人の32人（10.1%）でHCM関連死が発生し、そのうち9人（28%）の突然死、7人（2.2%）の蘇生後（心室細動4人と無脈性心室顫拍3人）、そして10人（3.1%）のICD適切ショック作動を含む26人（8.2%）が突然死または致死性不整脈の複合エンドポイントであった。心不全関連死は3人（9.5%）、脳卒中関連死は3人（9.5%）に認められた。初回評価からHCM関連死発生までの期間の中央値は、Ⅰ度房室ブロック群で4.8（2.2-10.4）年、非Ⅰ度房室ブロック群で8.0（3.2-10.6）年であった。

カプランマイヤー法を用いた単変量解析では、Ⅰ度房室ブロック群は、非Ⅰ度房室ブロック群よりもHCM関連死の発生リスクが有意に高い傾向があり（log-rank p = 0.0003）（図3A）。突然死または致死性不整脈イベントの複合エンドポイントにおいても同様の傾向があった（log-rank p = 0.0003）（図3B）。さらには、HCM関連死に関連する EDTA-Ca2+を用いた多変量解析においても、Ⅰ度房室ブロック群は、
HCM関連死（ハザード比（HR）：2.41，95%信頼区間（95% CI）：1.27–4.58，p = 0.007）および，突然死または致死性不整脈の複合エンドポイント（HR：2.60，95% CI：1.28–5.27，p = 0.008）発生の独立した予測因子であった（表2）．なお，PR時間に影響しうる安静時心拍数，QRS時間，β遮断薬，カルシウムチャネル拮抗薬，アミオダロンなどの内服薬の因子で補正した後も，Ⅰ度房室ブロックはHCM関連死のリスクを増加させる可能性が示された（表1）．以下の表は，Ⅰ度房室ブロック群と非Ⅰ度房室ブロック群（p値）を比較したものである．

背景項目	Ⅰ度房室ブロック群 (N= 96)	非Ⅰ度房室ブロック群 (N= 318)	p値
初回評価時の年齢(歳)	51.2± 16.9	50.7± 16.1	0.78
男性 (%)	67 (69.8)	200 (62.9)	0.39
流出路狭帯 (%)	31 (32.3)	65 (20.4)	0.02
高血圧 (%)	41 (42.7)	127 (39.9)	0.63
糖尿病 (%)	19 (19.8)	47 (14.8)	0.24
虚血性心疾患 (%)	7 (7.3)	20 (6.3)	0.73
発作性心房細動の既往 (%)	21 (21.9)	41 (12.9)	0.03
突然死家族歴 (%)	12 (12.5)	44 (13.8)	0.74
非持続性心房頻拍 (%)	36 (37.5)	97 (30.5)	0.20
原因不明失神 (%)	15 (15.6)	52 (16.4)	0.87
New York Heart Association（NYHA）機能クラス			0.70
I (%)	47 (49.0)	171 (53.8)	
II (%)	45 (46.9)	134 (42.1)	
III (%)	4 (4.2)	13 (4.1)	
最大左室壁厚 (mm)	18.7± 4.7	19.5± 5.2	0.18
左室拡張末期径 (mm)	46.7± 7.5	45.9± 7.0	0.32
左室駆出率 (%)	53.4± 11.0	55.1± 9.8	0.25
左房径 (mm)	40.8± 9.2	38.0± 7.5	0.009
E/e'（中隔側僧帽弁）	15.8± 6.9	15.4± 7.5	0.68

5年間の心臓突然死発生のリスクスコア*

低リスク<4%(%) | 66 (68.8) | 242 (76.1) | 0.30 |
| 中等度リスク 4 to<6%(%) | 14 (14.6) | 40 (12.6) | 0.42 |
| 高リスク≧6%(%) | 16 (16.7) | 36 (11.3) | 0.33 |

安静時心拍数 (/分) 65.3± 10.6 67.7± 11.1 0.06
QRS時間 (ms) 112.3± 20.3 102.6± 18.6 < 0.001
完全左脚ブロック (%) 3 (3.1) 5 (1.6) 0.33
完全右脚ブロック (%) 9 (9.4) 25 (7.9) 0.64
SV1 (mm) 15.3± 10.5 15.8± 9.1 0.66
QRS軸(度) 28.0± 56.2 36.4± 46.5 0.18
治療薬
β遮断薬 (%) 71 (74.0) 215 (67.6) 0.24
カルシウムチャネル拮抗薬 (%) 16 (16.7) 45 (14.2) 0.54
アミオダロン (%) 14 (14.6) 32 (10.1) 0.22
中隔減量術 (%) 8 (8.3) 20 (6.3) 0.49
追跡期間 (年) 8.3 (4.0-13.2) 8.9 (5.2-12.8) 0.43

すべてのデータは平均±標準偏差，n (%)，もしくは中央値(四分位範囲)で示している．
* 2014 European Society of Cardiologyによるガイドラインに基づく．

[文献10より引用]
急死または致死性不整脈の複合エンドポイント発生の独立した予測因子であることが示された。表3に、HCM患者で既に确立された4つの突然死のリスク因子のそれぞれにおいて、発生した突然死または致死性不整脈の複合エンドポイント発生(HR:2.51;95% CI:1.39–4.53;p=0.002)の独立した予測因子であることが示された。
死または致死性不整脈の複合エンドポイントに対する I 度
房室ブロックの関連をみた単変量・多変量解析

	単変量		多変量	
	ハザード比	p 値	ハザード比	p 値
	(95%信頼区間)		(95%信頼区間)	
男性	0.59 (0.35-1.00)	0.050	0.70 (0.35-1.38)	0.300
5年間の心臓突然死発生のリスクスコア	1.09 (1.05-1.13)	< 0.001	1.06 (1.00-1.11)	0.034
発作性心房細動の既往	1.46 (0.75-2.82)	0.262		
左室駆出率	0.93 (0.91-0.96)	< 0.001	0.95 (0.92-0.98)	0.002
E/e'（中隔側側板）	1.05 (1.02-1.08)	0.001	1.03 (0.99-1.06)	0.150
NYHA機能クラス	1.66 (1.06-2.61)	0.028	0.87 (0.48-1.57)	0.642
QRS時間	1.01 (1.00-1.02)	0.066		
I 度房室ブロック	2.56 (1.51-4.36)	< 0.001	2.41 (1.27-4.58)	0.007

突然死、または致死性不整脈の複合エンドポイント

	単変量		多変量	
	ハザード比	p 值	ハザード比	p 値
	(95%信頼区間)		(95%信頼区間)	
男性	0.72 (0.41-1.28)	0.263		
5年間の心臓突然死発生のリスクスコア	1.10 (1.06-1.14)	< 0.001	1.07 (1.01-1.13)	0.013
発作性心房細動の既往	1.41 (0.68-2.93)	0.350		
左室駆出率	0.94 (0.91-0.97)	< 0.001	0.96 (0.93-1.00)	0.034
E/e'（中隔側側板）	1.05 (1.02-1.09)	0.001	1.03 (0.99-1.07)	0.104
NYHA機能クラス	1.73 (1.06-2.82)	0.029	1.05 (0.56-1.97)	0.874
QRS時間	1.01 (1.00-1.02)	0.024	1.00 (0.98-1.01)	0.708
I 度房室ブロック	2.76 (1.55-4.91)	0.001	2.60 (1.28-5.27)	0.008

NYHA: New York Heart Association.

死または致死性不整脈の複合エンドポイントの割合を示す。47人中17人（36.2%）の複合エンドポイント発生患者では、4つの突然死リスク因子のいずれも満たしていなかった。しかし、その17人のうち12人の患者においては、I度房室ブロック所見を認めており、4つの突然死リスク因子にI度房室ブロックの因子を新たに追加した場合、突然死または致死性不整脈の複合エンドポイントのリスク層別化の正確性が、36.2%から10.6%まで減少させることができた（リスク層別化正確性の差異：25.6%、p = 0.004）。

表2 肥大型心筋症関連死および、突然死、または致死性不整脈の複合エンドポイントに対するI度房室ブロックの関連をみた単変量・多変量解析

VI. 考察

12誘導心電図所見とHCM患者の突然死リスクファクターを報告はいくつか散見されるものの、I度房室ブロック所見を含めたHCM関連死の報告は、われわれの知る限り、存在しない。PatelらおよびHaghjooらはそれぞれの報告で、I度房室ブロックは
HCM患者の突然死リスクと関連がなかったと結論づけている。彼らの結果とわれわれの結果に差が生じた理由は明らかではないものの、フォローアップ期間の长短が影響している可能性はある。Patelらの平均フォローアップ期間は2.5年、Haghjooらは4.2年であるのに対し、われわれのフォローアップは

表3 肥大型心筋症において確立された4つの突然死リスク因子とⅠ度房室ブロックにおける突然死、または致死性不整脈の複合エンドポイント発生の有無

	エンドポイント有 (n=47)	エンドポイント無 (n=367)	p値
最大左室壁厚≧30mm (%)	5 (10.6)	18 (4.9)	0.106
突然死家族歴 (%)	13 (27.7)	43 (11.7)	0.003
原因不明失神 (%)	13 (27.7)	54 (14.7)	0.023
非持続性心室頻拍 (%)	21 (44.7)	112 (30.5)	0.050
突然死リスク因子の数 (%)			<0.001
0	17 (36.2)	190 (51.8)	
1	13 (27.7)	133 (36.2)	
2	12 (25.5)	38 (10.4)	
3	5 (10.6)	6 (1.6)	
Ⅰ度房室ブロック (%)	21 (44.7)	75 (20.4)	<0.001
いずれの突然死リスク因子を含まないⅠ度房室ブロック (%)	12 (25.5)	37 (10.1)	0.002

すべてのデータは、n (%)で示している。

図4 流出路狭帯群(A)と非流出路狭帯群(B)におけるⅠ度房室ブロックの有無によるHCM関連死のカプランマイヤー曲線

HCM患者の突然死リスクと関連がなかったと結論づけている。彼らの結果とわれわれの結果に差が生じた理由は明らかではないものの、フォローアップ期間の長短が影響している可能性はある。Patelらの平均フォローアップ期間は2.5年、Haghjooらは4.2年であるのに対し、われわれのフォローアップは

心電図 Vol. 41 No. 2 2021
8.8年であり、かつHCM関連死発生までの平均期間は5.9年であった。

HCM患者におけるⅠ度房室ブロックとHCM関連死リスクとの関連については、いくつかの可能性が考察される。本研究において、Ⅰ度房室ブロック群に有意な左心房径の拡大傾向が認められた。近年、左心房拡大はHCM患者における心臓突然死の重要な予測因子として注目されており、ESCから発表された心臓突然死のprediction risk modelにも含まれている2)15)16)。HCMの病態に代表される拡張障害、左室内通過障害、僧帽弁閉鎖不全症、左室内の充満末圧上昇、心房細動発症の影響のいずれもが、左心房のリモデリングの一因となるため、左心房径は病勢や突然死リスク評価における重要な指標となりうる。一方、これまでの報告で、Ⅰ度房室ブロックによるPR時間延長は、血行動態学的に左室内充満期間短縮、拡張期僧帽弁閉鎖不全症に関与することが示されている17)19)。PR時間延長により心房脱分極は、心房収縮直後に発生するため、左室充満時間は短縮する17)18)。併せて僧帽弁閉鎖も遅れるため、その結果、左心房への拡張期僧帽弁逆流が発生する18)19)。このような左心房への圧負荷、それに続く容量負荷が、さらなる左心房拡大に寄与する可能性がある。今回の検討で、Ⅰ度房室ブロック群は、非Ⅰ度房室ブロック群の二倍以上の新規心房細動発症や心不全入院を認めた。PR時間の延長による左心房内の容量圧負荷が、左心房内の不整脈器質を形成しやすくし、また血行動態を容易に破綻させた可能性が示唆される。

また、Ⅰ度房室ブロックは、すでに進行した心房リモデリングを反映している可能性も考えられる。一般に、PR時間には心房内の伝導時間も含まれるため、心房拡大という構造的リモデリングの影響、心房線維化という電気的リモデリングの影響のいずれもがPR時間延長にかかわっている可能性がある。さらに最近では、非虚血性心筋症に見られるPR時間の延長は、心室中隔領域の心筋線維化とも深いかわりがあることも示されており20)。Ⅰ度房室ブロックが心房のみならず心室領域の電気的リモデリングを示唆している可能性がある。

Ⅴ．結論

本研究において、Ⅰ度房室ブロックは、HCM患者の突然死または致死性不整脈の複合エンドポイントを含むHCM関連死のリスク増加と関連していた。このシンプルな心電図マーカーは、HCM患者における新たな予後指標として活用する可能性がある。

付記

本稿は、第25回日本不整脈心電学会学術奨励賞最優秀賞を受賞した論文をもとに、総説としてまとめたものである。なお、図表については、受賞論文より引用させていただいた。

受賞論文

Higuchi S, Minami Y, Shoda M, Shirotani S, Saito C, Haruki S, Gotou M, Yagishita D, Ejima K, Hagiwara N. Prognostic Implication of First-Degree Atrioventricular Block in Patients With Hypertrophic Cardiomyopathy. J Am Heart Assoc, 2020; 9: e015064. doi: 10.1161/JAHA.119.015064.

文献

1) Gersh BJ, Maron BJ, Bonow RO, et al.: American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines; American Association for Thoracic Surgery; American Society of Echocardiography; American Society of Nuclear Cardiology; Heart Failure Society of America; Heart

心電図 Vol. 41 No. 2 2021
Rhythm Society : Society for Cardiovascular Angiography and Interventions : Society of Thoracic Surgeons. 2011 ACCF/AHA guideline for the diagnosis and treatment of hypertrophic cardiomyopathy : a report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines. Circulation, 2011 ; 124 : e783-831

2) Elliott PM, Anastasakis A, Borger MA, et al. : 2014 ESC Guidelines on diagnosis and management of hypertrophic cardiomyopathy : the Task Force for the Diagnosis and Management of Hypertrophic Cardiomyopathy of the European Society of Cardiology (ESC). Eur Heart J, 2014 ; 35 : 2733-2779

3) Minami Y, Haruki S, Kanbayashi K, et al. : B-type natriuretic peptide and risk of sudden death in patients with hypertrophic cardiomyopathy. Heart Rhythm, 2018 ; 15 : 1484-1490

4) Mymin D, Mathewson FA, Tate RB, et al. : The natural history of primary first-degree atrioventricular heart block. N Engl J Med. 1986 ; 315 : 1183-1187.

5) Packard JM, Graettinger JS, Graybiel A. Analysis of the electrocardiograms obtained from 1000 young healthy aviators ; ten year follow-up. Circulation, 1954 ; 10 : 384-400

6) Cheng S, Keyes MJ, Larson MG, et al. : Long-term outcomes in individuals with prolonged PR interval or first-degree atrioventricular block. JAMA, 2009 ; 301 : 2571-2577

7) Kwok CS, Rashid M, Beynon R, et al. : Prolonged PR interval, first-degree heart block and adverse cardiovascular outcomes : a systematic review and meta-analysis. Heart, 2016 ; 102 : 672-680

8) Crisell RK, Farzaneh-Far R, Na B, et al. : First-degree atrioventricular block is associated with heart failure and death in persons with stable coronary artery disease : data from the Heart and Soul Study. Eur Heart J, 2011 ; 32 : 1875-1880

9) Schumacher K, Böttner P, Dagres N, et al. : Association between PR interval prolongation and electro-anatomical substrate in patients with atrial fibrillation. PLoS One. 2018 ; 13 : e0206933

10) Higuchi S, Minami Y, Shoda M, et al. : Prognostic Implication of First-Degree Atrioventricular Block in Patients With Hypertrophic Cardiomyopathy. J Am Heart Assoc, 2020 ; 9 : e015064. doi : 10.1161/JAHA.119.015064

11) Tsuda T, Hayashi K, Konno T, et al. : J Waves for Predicting Cardiac Events in Hypertrophic Cardiomyopathy. JACC Clin Electrophysiol. 2017 ; 3 : 1136-1142

12) Patel SI, Ackerman MJ, Shamoun FE, et al. : QT prolongation and sudden cardiac death risk in hypertrophic cardiomyopathy. Acta Cardiol, 2019 ; 74 : 53-58

13) Haghjoo M, Mohammadzadeh S, Taherpour M, et al. : ST-segment depression as a risk factor in hypertrophic cardiomyopathy. Europace, 2009 ; 11 : 643-649

14) Gray B, Ingle J, Medi C, et al. : Prolongation of the QTc interval predicts appropriate implantable cardioverter-defibrillator therapies in hypertrophic cardiomyopathy. JACC Heart Fail, 2013 ; 1 : 149-155

15) Nistri S, Olivotto I, Betocchi S, et al. : Prognostic significance of left atrial size in patients with hypertrophic cardiomyopathy (from the Italian Registry for Hypertrophic Cardiomyopathy). Am J Cardiol, 2006 ; 98 : 960-965

16) O'Mahony C, Jichi F, Pavlou M, et al. : Hypertrophic Cardiomyopathy Outcomes Investigators. A novel clinical risk prediction model for sudden cardiac death in hypertrophic cardiomyopathy (HCM risk-SCD). Eur Heart J, 2014 ; 35 : 2010-2020

17) Kruse I, Armman K, Conradson TB, et al. : A comparison of the acute and long-term hemodynamic effects of ventricular inhibited and atrial synchronous ventricular inhibited pacing. Circulation, 1982 ; 65 : 846-855

18) Schnittger I, Appleton CP, Hatle LK, et al. : Diastolic mitral and tricuspid regurgitation by Doppler echocardiography in patients with atrioventricular block : new insight into the mechanism of atrioventricular valve closure. J Am Coll Cardiol, 1988 ; 11 : 83-88

19) Okamoto M, Tsubokura T, Kajiyama G, et al. : Diastolic atrioventricular valve closure and regurgitation following atrial contraction : their relation to timing of atrial contraction. Clin Cardiol, 1989 ; 12 : 149-153

20) Oloriz T, Wellens HJ, Santagostino G, et al. : The value of the 12-lead electrocardiogram in localizing the scar in non-ischaemic cardiomyopathy. Europace, 2016 ; 18 : 1850-1859
Prognostic Implication of First-degree Atrioventricular Block in Patients with Hypertrophic Cardiomyopathy

Satoshi Higuchi, Yuichiro Minami, Morio Shoda, Nobuhsa Hagiwara
Department of Cardiology, Tokyo Women’s Medical University

The association between first-degree atrioventricular block (AVB) and life-threatening cardiac events in patients with hypertrophic cardiomyopathy (HCM) remains unclear. This study sought to investigate whether the presence of first-degree AVB was associated with HCM-related death in patients with HCM. We included 414 patients with HCM (mean age 51 ± 16 years, 64.5% men). The P-R interval was measured at the time of the initial evaluation and patients were classified into those with and without first-degree AVB, which was defined as a P-R interval ≥ 200 milliseconds. HCM-related death was defined as a combined endpoint of sudden death or potentially lethal arrhythmic events, heart failure-related death, and stroke-related death. First-degree AVB was noted in 96 patients (23.2%) at the time of enrollment. Over a median (IQR) follow-up period of 8.8 (4.9-12.9) years, a total of 56 patients (13.5%) experienced HCM-related deaths including 47 (11.4%) with a combined endpoint of sudden death or potentially lethal arrhythmic events. In a multivariable analysis that included first-degree AVB and risk factors for life-threatening events, first-degree AVB was independently associated with an HCM-related death (adjusted hazard ratio [HR] : 2.41 ; 95% confidence interval [CI] : 1.27-4.58 ; p = 0.007) and this trend also persisted for the combined endpoint of sudden death or potentially lethal arrhythmic events (adjusted HR : 2.60 ; 95% CI : 1.28-5.27 ; p = 0.008). In this cohort of patients with HCM, first-degree AVB may be associated with HCM-related death, including the combined endpoint of sudden death or potentially lethal arrhythmic events.

Keywords : First-degree atrioventricular block, Hypertrophic cardiomyopathy, Risk stratification, Sudden cardiac death