Assessing cloud manufacturing applications using an optimally rectified FAHP approach

Tin-Chih Toly Chen¹ · Chi-Wei Lin²

Received: 14 February 2020 / Accepted: 8 April 2022 / Published online: 4 May 2022
© The Author(s) 2022

Abstract
Cloud Manufacturing (CMfg) is a new manufacturing paradigm that promises to reduce costs, improve data analysis, increase efficiency and flexibility, and provide manufacturers with closer partnerships. However, most past CMfg research has focused on either the information technology infrastructure or the planning and scheduling of a hypothetical CMfg system. In addition, the cost effectiveness of a CMfg application has rarely been assessed. As a result, a manufacturer is not sure whether to adopt a CMfg application or not. To address this issue, an optimally rectified fuzzy analytical hierarchy process (OR-FAHP) approach is proposed in this study to assess a CMfg application. The OR-FAHP approach solves the inconsistency problem of the conventional FAHP method, a well-known technology assessment technique, to make the analysis results more trustable. The OR-FAHP approach has been applied to assess and compare 10 CMfg applications.

Keywords
Cloud manufacturing · Rectification · Fuzzy analytic hierarchy process · Inconsistency

Abbreviations

Abbreviation	Description
3D	Three dimensional
CF	Critical factor
CI	Consistency index
CMfg	Cloud manufacturing
COG	Center-of-gravity
CR	Consistency ratio
DM	Decision maker
FAHP	Fuzzy analytical hierarchy process
FGM	Fuzzy geometric mean
FNLP	Fuzzy nonlinear programming
FWA	Fuzzy weighted average
IT	Information technology
KKT	Karush–Kuhn–Tucker
NLP	Nonlinear programming
OR	Optimally rectified
PP	Polynomial programming
RI	Random consistency index
TFN	Triangular fuzzy number

Introduction
Cloud manufacturing (CMfg) is a manufacturing model for enabling ubiquitous, convenient, and real-time access to a shared pool of configurable manufacturing resources through the Internet [1]. CMfg aims to provision and release manufacturing resources rapidly with minimal management efforts or service provider interaction [2]. In the view of Fisher et al. [3], CMfg is able to show the most sustainable and robust manufacturing route, which highlights the importance of cross-organizational collaboration to CMfg. According to Chen [4], the benefits of CMfg reside in the following respects: cost savings, efficiency, additional data analysis capabilities, flexibility, and closer partner relationships.

Tao et al. [5] classified CMfg technologies into eight categories: underlying support, resource access, resource perception and processing, resource virtualization, resource servitization, service management, demand management, transaction management, user business management, and
Various CMfg models have been proposed and applied to different stages of the manufacturing life cycle [6]. For example, a CMfg model was proposed by Laili et al. [7] for the product design stage, so that product designs and design knowledge could be easily shared online. In the production planning stage, Chen and Lin [8] established a CMfg system for distributing production simulation tasks among several cloud-based simulation services. To facilitate the mass production of a product, sensors and adapters were adopted to convert manufacturing resources into cloud resources [5], so that manufacturing resources could be shared to support factories without enough capacities. Among manufacturing resources, three-dimensional (3D) printers are especially easy to be put on clouds. Chen and Lin [9] used this feature to establish an agile and ubiquitous additive manufacturing system that distributed an order among several 3D printing facilities and arranged the transportation plan to pick up the printed pieces, which was the application of CMfg to both mass production and logistics.

The scheduling of jobs in a CMfg system is a challenging task, because jobs are usually distributed in multiple facilities [7]. Laili et al. [7] proposed an energy-adaptive immune genetic algorithm to schedule jobs in a CMfg system for facilitating collaborative product design. Liu et al. [10] considered a multi-task scheduling problem under a CMfg environment, which was a very challenging topic since multiple tasks were to be sequenced across multiple factories. The computational complexity was doubled. To address this topic, they applied production simulation to create promising schedules instead of formulating an optimization model to find out the best schedule. Chen and Wang [11] proposed a branch-and-bound algorithm to minimize the cycle time for delivering a job in a 3D-printing-based CMfg system. A recent literature review on CMfg refers to Ghomi et al. [12].

Although CMfg has been a hot research topic since its emergence, it still faces the following difficulties before being widely applied in practice:

1. Most existing CMfg studies were of experimental natures or only the illustration of conceptual ideas. The information technology (IT) infrastructure and the planning or scheduling of a hypothetical CMfg system are the focuses of most past CMfg studies.

2. The cost effectiveness of a CMfg system has rarely been assessed.

3. Compared to the manufacturing (or managerial) aspect, the IT aspect of CMfg was much more emphasized. However, many problems in a factory involve managerial issues that cannot be addressed by merely adopting new IT technologies.

For these reasons, a systematic procedure for evaluating a CMfg application is needed so that factory managers can choose from several alternatives for investment. However, this issue has not been fully explored in the past. In contrast, only a few references considered the selection of machines or resources for specific CMfg applications [13, 14]. The motivation of this research is to fill this gap.

An optimally rectified fuzzy analytical hierarchy process (FAHP) (OR-FAHP) approach is proposed in this study. In the proposed methodology, FAHP [15, 16] is applied to rank the priorities of criteria for assessing the performance of a CMfg application. However, to address the inconsistency of the pairwise comparisons made by a decision maker (DM), the proposed methodology rectifies the fuzzy judgment matrix of the DM, thereby enhancing the reliability of the assessment results.

The OR-FAHP approach has been applied to assess 10 CMfg applications to illustrate its applicability. An existing method was also applied to assess these CMfg applications to make a comparison. The differences between the proposed methodology and some existing methods are summarized in Table 1.

The contribution of this study lies in the following aspects:

1. A systematic procedure has been established to evaluate and compare CMfg applications, and the results can better guide the investment of a factory on CMfg applications.

2. A new mechanism is established to rectify a fuzzy judgment matrix to improve its consistency.

The remainder of this paper is organized as follows. Section Proposed methodology introduces the OR-FAHP approach. Ten CMfg applications were assessed using the proposed methodology to illustrate its applicability, as

Method	CMfg stages	Cost-effectiveness	Results optimized?
Laili et al. [7]	Product design	Not evaluated	Yes
Tao et al. [5]	All	Not evaluated	No
Chen and Lin [8]	Mass production	Not evaluated	Yes
Liu et al. [17]	Mass production	Not evaluated	Yes
The proposed methodology	All	Evaluated	Yes
detailed in Sect. Assessing ten CMfg applications. Finally, Sect. Conclusions concludes this paper and provides some directions for future research.

Proposed methodology

Procedure

The OR-FAHP approach is composed of the following steps (see Fig. 1):

1. Compare the relative priority of each criterion for assessing a CMfg application over that of another.
2. Evaluate the fuzzy consistency of the pairwise comparison results.
3. If the fuzzy consistency is high enough, proceed to Step 7; otherwise, go to Step 4.
4. Formulate the fuzzy nonlinear programming (FNLP) model for optimizing the fuzzy consistency.
5. Convert the FNLP model into an equivalent PP problem to be solved.
6. Modify the fuzzy judgment matrix.
7. Derive the fuzzy priority of each criterion using alpha-cut operations.
8. Apply the fuzzy weighted average (FWA) method to assess each CMfg application.
9. Choose the most preferable CMfg application.

In rectifying a fuzzy judgment matrix, the proposed methodology is different from some existing methods, as compared in Table 2.

FNLP model for rectifying a fuzzy judgment matrix

In FAHP, a fuzzy judgment matrix is constructed by a DM as:

\[
\hat{A}_{n \times n} = [\hat{a}_{ij}]
\]

(1)

where

\[
\hat{a}_{ij} = \begin{cases}
1 & \text{if } i = j \\
\frac{1}{\hat{a}_{ji}} & \text{otherwise}
\end{cases}
\]

(2)

\(\hat{a}_{ij}\) is the pairwise comparison result representing the relative priority of criterion \(i\) over criterion \(j\), \(1 \leq i, j \leq n\). Basically, \(0 \leq \hat{a}_{ij} \leq 9\). \(\hat{a}_{ij}\) is a positive comparison if \(\hat{a}_{ij} \geq 1\), and can be represented by linguistic terms such as “as important as,” “weakly more important than,” “strongly more important than,” “very strongly more important than,” and “absolutely more important than.” These linguistic terms can be mapped to the following triangular fuzzy numbers (TFNs) \([22–24]\):

- \(L_1\): “As important as” = (1, 1, 3).
- \(L_2\): “Weakly more important than” = (1, 3, 5).

![Fig. 1 Procedure of the OR-FAHP approach](image-url)
Table 2 Differences between the proposed methodology and some existing methods in rectifying a fuzzy judgment matrix

Method	Way to enhance consistency	Subjective or objective	Method type	Optimality of the solution
Saaty [18]	Modify the pairwise comparison results	Subjective	Subjective modification	Non-optimal
Girsang et al. [19]	Rectifying the judgment matrix	Objective	Ant colony optimization	Maybe non-optimal
Abadi and Widyarto [20]	Excluding inconsistent results	Subjective	Subjective judgment	Non-optimal
Girsang et al. [21]	Rectifying the judgment matrix	Objective	Ant colony optimization	Maybe non-optimal
The proposed methodology	Rectifying the judgment matrix	Objective	Polynomial programming	Optimal

\[\tilde{L}_3: \text{“Strongly more important than”} = (3, 5, 7). \]
\[\tilde{L}_4: \text{“Very strongly more important than”} = (5, 7, 9). \]
\[\tilde{L}_5: \text{“Absolutely more important than”} = (7, 9, 9). \]

If the relative priority is between two successive linguistic terms, TFNs such as \((1, 2, 4), (2, 4, 6), (4, 6, 8), \) and \((6, 8, 9)\) are applicable. Obviously,

\[a_{ij1} = \max(a_{ij2} - 2, 1) \quad (3) \]
\[a_{ij3} = \min(a_{ij2} + 2, 9) \quad (4) \]

The fuzzy eigenvalue and eigenvector of \(\tilde{A} \), indicated respectively with \(\tilde{\lambda} \) and \(\tilde{x} \), satisfy

\[\det(\tilde{A}(-\tilde{\lambda})I) = 0 \quad (5) \]

and

\[(\tilde{A}(-\tilde{\lambda})I) \times \tilde{x} = 0 \quad (6) \]

where \((-)\) and \((\times)\) denote fuzzy subtraction and multiplication, respectively. The fuzzy maximal eigenvalue and the fuzzy priority of each criterion are derived respectively as

\[\hat{\lambda}_{\max} = \max_i \hat{\lambda}_i \quad (7) \]
\[\hat{w}_i = \frac{\hat{x}_i}{\sum_{j=1}^{n} \hat{x}_j} \quad (8) \]

Based on \(\hat{\lambda}_{\max} \), the fuzzy consistency of the pairwise comparison results is evaluated as:

\[\text{Fuzzy consistency index} \]
\[\tilde{C}I = \frac{\hat{\lambda}_{\max} - n}{n - 1} \quad (9) \]

\[\text{Fuzzy consistency ratio} \]
\[\tilde{C}R = \frac{\tilde{C}I}{RI} \quad (10) \]

where \(RI \) is the random consistency index (Satty, 1980). The pairwise comparison results are inconsistent if \(\tilde{C}I > 0.1 \sim 0.3 \) or \(\tilde{C}R > 0.1 \sim 0.3 \), depending on the matrix size [25–27].

The results of a FAHP analysis are trustable only when the fuzzy consistency of the pairwise comparison results is sufficiently high. Otherwise, an optimally rectifying mechanism is proposed in this study to modify the pairwise comparison results on behalf of the DM, so as to enhance the trustability of the FAHP analysis. The optimally rectifying mechanism makes a minor adjustment to the fuzzy judgment matrix as

\[\hat{\tilde{A}}' = \tilde{A} + \Delta \tilde{A} \]

namely,

\[\hat{a}_{ij}' = \hat{a}_{ij} + \Delta \hat{a}_{ij} \forall \hat{a}_{ij} \geq 1; \ i, j \in [1, n]; i \neq j \quad (12) \]

so that the \(\tilde{C}R \) is improved:

\[\tilde{C}R(\hat{\tilde{A}}') \leq \tilde{C}R(\hat{\tilde{A}}) \quad (13) \]

\(\hat{\tilde{A}}' \) still meets the basic requirements for a fuzzy judgment matrix:

\[1 \leq \hat{a}_{ij}' \leq 9\hat{a}_{ij} \geq 1; \ i, j \in [1, n]; i \neq j \quad (14) \]

\(\copyright \) Springer
\[\tilde{a}_{ij} = 1; \ i \in [1, \ n] \]
(15)

\[\tilde{a}_{ij} = \frac{1}{\tilde{d}_{ji}} \forall \tilde{a}_{ij} \leq 1; \ i, \ j \in [1, \ n]; \ i \neq j \]
(16)

In addition, \(\tilde{C}R(\tilde{A}') \) is to be optimized by the optimally rectifying mechanism,

Min \(\tilde{Z}_1 = \tilde{C}I(\tilde{A}') \)
(17)

To assure that the adjustment is minor,

\[\Delta \tilde{a}_{ij} \sim N(0, \ \sigma^2)\forall \tilde{a}_{ij} \geq 1; \ i, \ j \in [1, \ n]; \ i \neq j \]
(18)

Theoretically, \(3\sigma \) is the possibly maximal adjustment. Therefore, it is suggested to assign a value of less than \(1/3 \) to \(\sigma \).

Finally, the following FNLP model is formulated to rectify the fuzzy judgment matrix, so as to optimize the fuzzy consistency:

(Model FNLP)

Min \(\tilde{Z}_1 = \tilde{C}R(\tilde{A}') \)
(19)

subject to

\[\tilde{C}R(\tilde{A}') \leq \tilde{C}R(\tilde{A}) \]
(20)

\[1 \leq \tilde{a}_{ij}' \leq 9\forall \tilde{a}_{ij} \geq 1; \ i, \ j \in [1, \ n]; \ i \neq j \]
(21)

\[\tilde{a}_{ij}' = \tilde{a}_{ij} (+) \Delta \tilde{a}_{ij} \forall \tilde{a}_{ij} \geq 1; \ i, \ j \in [1, \ n]; \ i \neq j \]
(22)

\[\tilde{a}_{ij}' = 1; \ i \in [1, \ n] \]
(23)

\[\tilde{a}_{ij}' = \frac{1}{\tilde{d}_{ji}} \forall \tilde{a}_{ij} \geq 1; \ i, \ j \in [1, \ n]; \ i \neq j \]
(24)

\[\Delta \tilde{a}_{ij} \sim N(0, \ \sigma^2)\forall \tilde{a}_{ij} \geq 1; \ i, \ j \in [1, \ n]; \ i \neq j \]
(25)

Model FNLP needs to be converted into a more tractable form to be easily solved.

PP model

First, according to Eqs. (1) and (2), \(a_{ij}' \) and \(a_{ij}'' \) can be derived from \(a_{ij}''' \). Therefore, only the value of \(a_{ij}''' \) needs to be determined, turning the problem into a crisp nonlinear programming (NLP) one:

(Model NLP)

Min \(Z_2 = CR(A') \)
(26)

subject to

\[CR(A') \leq CR(A) \]
(27)

\[1 \leq a_{ij}' \leq 9\forall a_{ij} \geq 1; \ i, \ j \in [1, \ n]; \ i \neq j \]
(28)

\[a_{ij}' = a_{ij} + \Delta a_{ij} \forall a_{ij} \geq 1; \ i, \ j \in [1, \ n]; \ i \neq j \]
(29)

\[a_{ij}' = 1; \ i \in [1, \ n] \]
(30)

\[a_{ij}' = \frac{1}{a_{ij}'} \forall a_{ij} \geq 1; \ i, \ j \in [1, \ n]; \ i \neq j \]
(31)

\[\Delta a_{ij} \sim N(0, \ \sigma^2)\forall a_{ij} \geq 1; \ i, \ j \in [1, \ n]; \ i \neq j \]
(32)

Subsequently, \(CR(A') \) can be approximated as

\[CR(A') = \frac{1}{n} \sum_{i=1}^{n} \frac{\sum_{j=1}^{n} (a_{ij}' w_{ij}'^2)}{w_{ij}'} - n \]
(33)

where

\[w_{ij}' = \frac{\sqrt{\prod_{j=1}^{n} a_{ij}''}}{\sum_{i=1}^{n} \sqrt[2]{\prod_{j=1}^{n} a_{ij}''}} \]
(34)

according to the geometric mean method [22]. Introducing a new variable \(u_i \) into (33) as

\[u_i = \frac{\sum_{j=1}^{n} (a_{ij}'' w_{ij}'^2)}{w_{ij}'} \]
(35)

or

\[u_i w_{ij}'^2 = \sum_{j=1}^{n} (a_{ij}'' w_{ij}'^2) \]
(36)

Equation (33) becomes

\[CR(A') = \frac{1}{n} \sum_{i=1}^{n} u_i - n \]
(37)

Subsequently, introducing a new variable \(v_i \) into (34) as

\[v_i = \sqrt[n]{\prod_{j=1}^{n} a_{ij}''} \]
(38)

or

\[v_i^n = \prod_{j=1}^{n} a_{ij}'' \]
(39)
Equation (34) becomes

\[w'_{i2} = \frac{v_i}{\sum_{i=1}^{n} v_i} \]

(40)

or

\[w'_{i2} \sum_{i=1}^{n} v_i = v_i \]

(41)

To approximate the distribution in Eq. (32), the mean value and range of the distribution are specified as

\[E(\Delta a_{ij2}) = 0 \]

(42)

\[-3\sigma \leq \Delta a_{ij2} \leq 3\sigma \]

(43)

Equation (42) is equivalent to the following equation:

\[\frac{\sum_{a_{ij2} \geq 1} \Delta a_{ij2}}{\sum_{a_{ij2} \geq 1} 1} = 0 \]

(44)

which is slightly relaxed to allow for greater flexibility:

\[-\xi \leq \frac{\sum_{a_{ij2} \geq 1} \Delta a_{ij2}}{\sum_{a_{ij2} \geq 1} 1} \leq \xi \]

(45)

Finally, the following PP problem is to be solved instead:

\(\text{(Model PP)} \)

Min \(Z_3 \)

s.t.

\[Z_3 = \frac{1}{n} \sum_{i=1}^{n} u_i - n \]

(46)

\[Z_3 \leq CR(A) \]

(47)

\[u_i w'_{i2} = \sum_{j=1}^{n} (a'_{i j2} w'_{j2}); \ i = 1 \sim n \]

(48)

\[w'_{i2} \sum_{i=1}^{n} v_i = v_i; \ i = 1 \sim n \]

(49)

\[v'_i = \prod_{j=1}^{n} a'_{i j2}; \ i = 1 \sim n \]

(50)

\[a'_{i j2} = a_{i j2} + \Delta a_{ij2} \bar{a}_{ij2} \geq 1; \ i, j = 1, n; \ i \neq j \]

(51)

The Karush–Kuhn–Tucker (KKT) conditions of Model PP are polynomials that can be easily solved using existing optimization packages [28]. In addition, if \(\Delta a_{ij} \) takes on integer values (i.e., \(-2, -1, 0, 1, \) and \(2\)), the feasible solutions to Model PP become enumerable. The number of feasible solutions is \(5^n \).

After obtaining the optimal solution to the PP model,

\[a'_{i j1} = \max(a'_{i j2} - 2, 1) \]

(52)

\[a'_{i j3} = \min(a'_{i j2} + 2, 9) \]

(53)

Finally, FWA was applied to assess each CMfg application by considering all the criteria:

\[\tilde{s}_k = \frac{\sum_{i=1}^{n} \tilde{u}_i(x) \tilde{s}_{ki}}{\sum_{i=1}^{n} \tilde{u}_i} \]

(54)

where \(\tilde{s}_{ki} \) is the performance of the \(k \)-th CMfg application by considering the \(i \)-th criterion. Since the divisor of Eq. (61) is the same for all CMfg applications, it can be ignored.

Assessing ten CMfg applications

The proposed methodology was applied to assess 10 CMfg applications. According to the survey by Oliveira et al. [29], the relative advantage (CF1), technology readiness (CF2), firm size (CF3), and cost savings (CF4) are factors critical to the adoption of CMfg technologies. For this reason, the priorities of the four critical factors were to be determined. After a series of pairwise comparisons, the following fuzzy
judgment matrix was constructed:

\[
\begin{bmatrix}
1 & 1/(1, 2, 4) & 1/(1, 3, 5) & 1/(3, 5, 7) \\
(1, 2, 4) & 1 & (1, 3, 5) & 1/(5, 7, 9) \\
(1, 3, 5) & 1/(1, 3, 5) & 1 & 1/(3, 5) \\
(3, 5, 7) & 5, 7, 9 & 1/(3, 5) & 1
\end{bmatrix}
\]

The consistency of the pairwise comparisons was evaluated as

\[
\tilde{C}(\tilde{\mathbf{A}}) = (0, 0.162, 6.079)
\]

\[
\tilde{C}(\tilde{\mathbf{A}}) = (0, 0.180, 6.754)
\]

which showed some inconsistency. As a result, the judgment matrix needed to be rectified. Lingo was adopted to build and optimize the Model PP of this problem on a PC with i7-7700 CPU 3.6 GHz and 8 GB RAM, as shown Fig. 2. \(\xi\) and \(\sigma\) were set to 0.2 and 1/3, respectively. A branch-and-bound algorithm was applied to solve the PP problem. The execution time was less than 1 s. The optimal solution was

\[
\mathbf{A}' = \begin{bmatrix}
1 & 1/2 & 1/2 & 1/6 \\
2 & 1 & 2 & 1/6 \\
2 & 1/2 & 1 & 1/4 \\
6 & 6 & 4 & 1
\end{bmatrix}
\]

or

\[
\tilde{\mathbf{A}}' = \begin{bmatrix}
1 & 1/(1, 2, 4) & 1/(1, 2, 4) & 1/(4, 6, 8) \\
(1, 2, 4) & 1 & (1, 2, 4) & 1/(4, 6, 8) \\
(1, 2, 4) & 1/(1, 2, 4) & 1 & 1/(2, 4, 6) \\
(4, 6, 8) & (4, 6, 8) & (2, 4, 6) & 1
\end{bmatrix}
\]

giving \(Z^* = CR(\mathbf{A}') = 0.053\). The consistency of the fuzzy judgment matrix has been significantly enhanced after rectification. In addition, the pairwise comparison results were inconsistent before rectification, but became consistent after rectification. The cores of the fuzzy priorities of criteria determined using the proposed methodology were 0.080, 0.165, 0.127, and 0.628, respectively.

Subsequently, the value of \(\sigma\) was changed to 1/6. In this way, the rectified judgment matrix would be closer to the original one. The optimization result was

\[
\mathbf{A}' = \begin{bmatrix}
1 & 1/2.3 & 1/2.5 & 1/5.5 \\
2.3 & 1 & 2.5 & 1/6.5 \\
2.5 & 1/2.5 & 1 & 1/3.5 \\
5.5 & 6.5 & 3.5 & 1
\end{bmatrix}
\]

giving \(Z^* = CR(\mathbf{A}') = 0.109\). The consistency was still considerably better than that of the original fuzzy judgment matrix, which revealed that even a very minor adjustment was helpful to the improvement of consistency.

A parametric analysis was also conducted to analyze the effect of \(\xi\) on the consistency that could be achieved. When the value of \(\xi\) increased, the rectifying flexibility became higher. Five values of \(\xi\), from 0.1 to 0.5, have been tried. The results are summarized in Fig. 3. As expected, the CR that could be achieved improved with the increase in the value of
ξ, and converged to about 0.048, which implied the limit of the proposed methodology.

The optimally rectified fuzzy judgment matrix was constructed according to Eqs. (59) and (60) as

$$
\tilde{A}' = \begin{bmatrix}
1 & 1/(1, 2, 4) & 1/(1, 2, 4) & 1/(4, 6, 8) \\
1/(1, 2, 4) & 1 & 1/(1, 2, 4) & 1/(4, 6, 8) \\
(4, 6, 8) & (4, 6, 8) & (2, 4, 6) & 1
\end{bmatrix}
$$

The fuzzy maximal eigenvalue and the fuzzy priorities of the critical factors were derived using alpha-cut operations, and then were approximated with TFNs as.

$$
\tilde{\lambda}^*_{\text{max}} = (4.010, 4.143, 5.150),
\tilde{w}_1^* = (0.043, 0.080, 0.151),
\tilde{w}_2^* = (0.095, 0.165, 0.288),
\tilde{w}_3^* = (0.066, 0.127, 0.257),
\tilde{w}_4^* = (0.461, 0.628, 0.708).
$$

Ten CMfg applications were evaluated. The contents of the CMfg applications are shown in Table 3. The most recent (after 2017) and most widely cited (according to Google Scholar) references are provided to support each CMfg application. The performances of the CMfg applications by considering the critical factors have been evaluated according to the rules depicted in Table 4 [29, 30].

The evaluation results are summarized in Table 5.

FWA was applied to derive the overall performance of each CMfg application by considering all the critical factors. The results are shown in Table 6.

The overall performance of each CMfg application was defuzzified using the center-of-gravity (COG) method. The results are summarized in Table 7.

The most preferable CMfg was “migrating management information systems to cloud-based services”, followed by “3D-printing-based ubiquitous manufacturing” and “capacity sharing via business-to-business electronic commerce system”. In contrast, the least preferable CMfg application was “cloud-based environment for customer-oriented product design”. It was noted that such results were dependent on the DM’s subjective judgment.

For comparison, the existing rectifying fuzzy geometric mean (FGM)-FWA method was also applied to the collected data, which rectified the fuzzy judgment matrix by adjusting the most influential element [53, 54]. As a result, the fuzzy judgment matrix changed to

$$
\tilde{A}' = \begin{bmatrix}
1 & 1/(1, 2, 4) & 1/(1, 2, 4) & 1/(3, 5, 7) \\
(1, 2, 4) & 1 & 1/(1, 2, 4) & 1/(5, 7, 9) \\
(1, 3, 5) & (1, 2, 4) & 1 & 1/(1, 3, 5) \\
(3, 5, 7) & (5, 7, 9) & (1, 3, 5) & 1
\end{bmatrix}
$$

giving $CR(\tilde{A}') = (0, 0.119, 0.6108)$, which was less consistent than that rectified using the proposed methodology.

The fuzzy priorities of critical factors were derived as.

$$
\tilde{w}_1^* = (0.040, 0.080, 0.201),
\tilde{w}_2^* = (0.082, 0.163, 0.329),
\tilde{w}_3^* = (0.070, 0.158, 0.345),
\tilde{w}_4^* = (0.354, 0.600, 0.759).
$$

The overall performance of each CMfg application was evaluated using FWA, and then defuzzified using COG. The results are summarized in Table 8. The most suitable CMfg
Table 4 Rules for evaluating the performances of a CMfg application

Critical factor	Evaluation rule
Relative advantage	\(\hat{x}_{k_1}(x_{k_1}) = \begin{cases}
(0, 0, 1.6) & 0 \leq x_{k_1} \leq 1/7 \\	
(0, 0, 1.6) & 1/7 \leq x_{k_1} \leq 2/7 \\	
(0, 1.6, 3.3) & 2/7 \leq x_{k_1} \leq 3/7 \\	
(1.6, 3.3, 5) & 3/7 \leq x_{k_1} \leq 4/7 \\	
(3.3, 5, 6.7) & 4/7 \leq x_{k_1} \leq 5/7 \\	
(5, 6.7, 8.4) & 5/7 \leq x_{k_1} \leq 6/7 \\	
(8.4, 10, 10) & 6/7 \leq x_{k_1} \leq 1 \\	
\end{cases} \)	
	where \(x_{k_1} = 1/5 \) (the percentage of business operation management improvement + the percentage of operation quality improvement + the percentage of specific task efficiency improvement + the percentage of increased business + the percentage of productivity improvement)
Technology readiness	\(\hat{x}_{k_2}(x_{k_2}) = \begin{cases}
(0, 0, 1.6) & 0 \leq x_{k_2} \leq 1/7 \\	
(0, 0, 1.6) & 1/7 \leq x_{k_2} \leq 2/7 \\	
(0, 1.6, 3.3) & 2/7 \leq x_{k_2} \leq 3/7 \\	
(1.6, 3.3, 5) & 3/7 \leq x_{k_2} \leq 4/7 \\	
(3.3, 5, 6.7) & 4/7 \leq x_{k_2} \leq 5/7 \\	
(5, 6.7, 8.4) & 5/7 \leq x_{k_2} \leq 6/7 \\	
(8.4, 10, 10) & 6/7 \leq x_{k_2} \leq 1 \\	
\end{cases} \)	
	where \(x_{k_2} = 1/3 \) (the percentage of employees who have Internet access + the percentage of employees who can apply ITs related to the CMfg application + the percentage of employees who are familiar with the CMfg application)
Firm size	\(\hat{x}_{k_3}(x_{k_3}) = \begin{cases}
(0, 0, 1.6) & 0 \leq x_{k_3} \leq 1/7 \\	
(0, 0, 1.6) & 1/7 \leq x_{k_3} \leq 2/7 \\	
(0, 1.6, 3.3) & 2/7 \leq x_{k_3} \leq 3/7 \\	
(1.6, 3.3, 5) & 3/7 \leq x_{k_3} \leq 4/7 \\	
(3.3, 5, 6.7) & 4/7 \leq x_{k_3} \leq 5/7 \\	
(5, 6.7, 8.4) & 5/7 \leq x_{k_3} \leq 6/7 \\	
(8.4, 10, 10) & 6/7 \leq x_{k_3} \leq 1 \\	
\end{cases} \)	
	where \(x_{k_3} = 1/2 \) (the percentage of employees supported by the CMfg application + the percentage of business operations supported by the CMfg application)

Table 4 (continued)

Critical factor	Evaluation rule
Cost savings	\(\hat{x}_{k_4}(x_{k_4}) = \begin{cases}
(0, 0, 1.6) & 0 \leq x_{k_4} \leq 1/7 \\	
(0, 0, 1.6) & 1/7 \leq x_{k_4} \leq 2/7 \\	
(0, 1.6, 3.3) & 2/7 \leq x_{k_4} \leq 3/7 \\	
(1.6, 3.3, 5) & 3/7 \leq x_{k_4} \leq 4/7 \\	
(3.3, 5, 6.7) & 4/7 \leq x_{k_4} \leq 5/7 \\	
(5, 6.7, 8.4) & 5/7 \leq x_{k_4} \leq 6/7 \\	
(8.4, 10, 10) & 6/7 \leq x_{k_4} \leq 1 \\	
\end{cases} \)	
	where \(x_{k_4} = 1/3 \) (the possibility that the benefits of the CMfg application are greater than the costs + the percentage of energy and environmental cost reduction + the maintenance cost of the CMfg application as a percentage of the investment)

Table 5 Performances of the CMfg applications by considering the critical factors

CMfg application no.	CF1	CF2	CF3	CF4
1	Low	Very high	Medium	Medium
2	High	Low	High	High
3	Medium	High	Medium	High
4	Medium	High	Low	Medium
5	High	Low	Low	Very high
6	Medium	Low	Low	Medium
7	Medium	High	High	High
8	Medium	High	Medium	Low
9	Low	Low	Medium	Medium
10	High	Medium	Low	Low

Table 6 Overall performances of the CMfg applications

CMfg application no.	Overall performance
1	(2.376, 5.289, 9.844)
2	(2.850, 5.859, 10.325)
3	(3.140, 6.348, 11.100)
4	(2.138, 4.849, 9.023)
5	(3.304, 6.278, 10.147)
6	(1.663, 4.007, 7.554)
7	(3.252, 6.564, 11.537)
8	(0.835, 3.145, 7.489)
9	(1.739, 4.167, 7.914)
10	(0.529, 2.569, 6.383)
Table 7 Defuzzification results

CMfg application no.	Defuzzified overall performance	Rank
1	5.836	5
2	6.344	4
3	6.863	2
4	5.337	6
5	6.576	3
6	4.408	8
7	7.118	1
8	3.823	9
9	4.607	7
10	3.160	10

Table 8 Evaluation results using the rectifying FGM-FWA method

CMfg application no.	Defuzzified overall performance	Rank
1	6.192	5
2	6.744	3
3	7.210	2
4	5.593	6
5	6.718	4
6	4.621	8
7	7.534	1
8	4.311	9
9	4.905	7
10	3.522	10

application, “migrating management information systems to cloud-based services”, did not change. However, the ranking result was different from that generated using the proposed methodology [55–88].

Conclusions

As a new paradigm of manufacturing, CMfg is expected to bring several benefits to a manufacturer. However, most existing CMfg studies were of experimental natures or only the illustration of conceptual ideas. In addition, the cost effectiveness of a CMfg system has rarely been evaluated. As a result, a manufacturer is not sure whether or how to adopt a CMfg application. To address this issue, the OR-FAHP approach was proposed in this study to assess and compare CMfg applications. The OR-FAHP approach was an extension of the conventional FAHP method by resolving the inconsistency problem. In the proposed methodology, a FNLP model was first formulated to optimize the consistency by rectifying the fuzzy judgment matrix. Compared with existing methods for the same purpose, the OR-FAHP approach was able to ensure the optimality of the solution, which guaranteed the correctness of the decision.

The OR-FAHP approach has been applied to assess and compare 10 CMfg applications. According to the experimental results,

1. The consistency of the pairwise comparison results was considerably enhanced by rectifying the fuzzy judgment matrix.
2. “Migrating management information systems to cloud-based services” and “cloud-based environment for customer-oriented product design” were assessed as the most and least preferable CMfg applications, respectively.

Obviously, the objective of this study, comparing CMfg applications systematically, has been achieved. In addition, the OR-FAHP approach proposed in this study also successfully improved the consistency of the fuzzy judgment matrix by 39% without drastically changing the fuzzy judgment matrix.

Subsequently, the proposed methodology can be extended to deal with cases involving multiple DMs. In addition, the participants of a supply, design, or demand chain should choose CMfg applications that are compatible with those chosen by others. Further, a tailored algorithm can be designed to help solve the PP problem to improve the computational efficiency. These constitute some directions for future research.

Declarations

Conflict of interest The authors declare that they have no conflict of interest.

Ethical statement This article does not contain any studies with human participants or animals performed by any of the authors.

Informed consent Not required.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
References

1. Xu X (2012) From cloud computing to cloud manufacturing. Robot Comput Integr Manufact 28(1):75–86
2. Mell P, Grance T (2009) Perspectives on cloud computing and standards. Information Technology Laboratory, National Institute of Standards and Technology (NIST).
3. Fisher O, Watson N, Porcu L, Bacon D, Rigley M, Gomes RL (2018) Cloud manufacturing as a sustainable process manufacturing route. J Manuf Syst 47:53–68
4. Chen T (2014) Strengthening the competitiveness and sustainability of a semiconductor manufacturer with cloud manufacturing. Sustainability 6:251–268
5. Yao F, Cheng Y, Da Xu L, Zhang L, Li BH (2014) CCIoT-CMfg: cloud computing and internet of things-based cloud manufacturing service system. IEEE Trans Ind Inf 10(2):1435–1442
6. Drislane B (2015) The product manufacturing lifecycle overview. https://blog.dragoninnovation.com/blog/2015/10/08/product-manufacturing-lifecycle-overview
7. Laili Y, Zhang L, Tao F (2011) Energy adaptive immune genetic algorithm for collaborative design task scheduling in cloud manufacturing system. In: 2011 IEEE International Conference on Industrial Engineering and Engineering Management, pp. 1912–1916.
8. Chen T, Wang YC (2016) Estimating simulation workload in cloud manufacturing using a classifying artificial neural network ensemble approach. Robot Comput Integr Manufact 38:42–51
9. Chen TCT, Lin YC (2019) A three-dimensional-printing-based agile and ubiquitous additive manufacturing system. Robot Comput Integr Manufact 55:88–95
10. Liu Y, Xu X, Zhang L, Wang L, Zhong Y (2017) Workload-based multi-task scheduling in cloud manufacturing. Robot Comput Integr Manufact 45:3–20
11. Chen T, Wang YC (2019) An advanced IoT system for assisting ubiquitous manufacturing with 3D printing. Int J Adv Manuf Technol: 1–13
12. Ghoor E, Rahmani AM, Qader NN (2019) Cloud manufacturing: challenges, recent advances, open research issues, and future trends. Int J Adv Manuf Technol 102(9–12):3613–3639
13. Wang SL, Guo L, Kang L, Li CS, Li XY, Stephane YM (2014) Research on selection strategy of machining equipment in cloud manufacturing. Int J Adv Manuf Technol 71(9):1549–1563
14. Li X, Yu S, Chu J (2018) Optimal selection of manufacturing services in cloud manufacturing: a novel hybrid MCDM approach based on rough ANP and rough TOPSIS. Int J Fuzzy Syst 34(6):4041–4056
15. Ho W, Ma X (2018) The state-of-the-art integrations and applications of the analytic hierarchy process. Eur J Oper Res 267(2):399–414
16. Lin CW, Chen T (2019) 3D printing technologies for enhancing the sustainability of an aircraft manufacturing or MRO company—a multi-expert partial consensus-FAHP analysis. Int J Adv Manuf Technol 1–10.
17. Chou YC, Yen HY, Dang VT, Sun CC (2019) Assessing the human resource in science and technology for Asian countries: application of fuzzy AHP and fuzzy TOPSIS. Symmetry 11(2):251
18. Saaty TL (2003) Decision-making with the AHP: why is the principal eigenvector necessary. Eur J Oper Res 145(1):85–91
19. Girsang AS, Tsai CW, Yang CS (2015) Ant algorithm for modifying an inconsistent pairwise weighting matrix in an analytic hierarchy process. Neural Comput Appl 26(2):313–327
20. Abadi S, Widyarto S (2016) The model of determining quality of management private higher education using FAHP (fuzzy analytic hierarchy process) method. Int Conf Eng Appl Sci 1:166–172
21. Girsang AS, Tsai CW, Yang CS (2016) Rectifying the inconsistent fuzzy preference matrix in AHP using a multi-objective bicriterion approach. Complex & Intelligent Systems 14(4):519–538
22. Zheng G, Zhu N, Tian Z, Chen Y, Sun B (2012) Application of a trapezoidal fuzzy AHP method for work safety evaluation and early warning rating of hot and humid environments. Saf Sci 50(2):228–239
23. Broumi S, Nagarajan D, Bakali A, Talea M, Smarandache F, Lathamakeswari M (2019) The shortest path problem in interval valued trapezoidal and triangular neutrosophic environment. Complex Intell Syst 5(4):391–402
24. Kumar E, Edalatpanah SA, Jha S, Singh R (2019) A Pythagorean fuzzy approach to the transportation problem. Complex Intell Syst 5(2):255–263
25. Saaty TL (1980) The analytic hierarchy process. McGraw-Hill, New York
26. Wedley WC (1993) Consistency prediction for incomplete AHP matrices. Math Comput Model 17(4–5):151–161
27. Business Performance Management Singapore (2013). AHP – high consistency ratio. https://bpmsg.com/ahp-high-consistency-ratio/
28. Du A (2015) Mixed integer polynomial programming. Comput Chem Eng 72(2):387–394
29. Oliveira T, Thomas M, Espadanal M (2014) Assessing the determinants of cloud computing adoption: an analysis of the manufacturing and services sectors. Inform Manag 51(5):497–510
30. Wang SY, Chang SL, Wang RC (2009) Assessment of supplier performance based on product-development strategy by applying multi-granularity linguistic term sets. Omega 37(1):215–226
31. Konya J, Banyai T (2017) Sensor networks for smart manufacturing processes. Solid State Phenom 261:456–462
32. Li X, Zhuang P, Yin C (2019) A metadata based manufacturing resource ontology modeling in cloud manufacturing systems. J Ambient Intell Hum Comput 10(3):1039–1047
33. Adams D, Krulicky T (2021) Artificial intelligence-driven big data analytics, real-time sensor networks, and product decision-making information systems in sustainable manufacturing Internet of things. Econ Manag Finan Mark 16(3):81–93
34. Taylor SJ, Kiss T, Anagnostou A, Terstianszky G, Kacsup P, Costes J, Fantini N (2018) The CloudSME simulation platform and its applications: a generic multi-cloud platform for developing and executing commercial cloud-based simulations. Fut Gen Comput Syst 88:524–539
35. Sicu G, Nucula L, Isuro R, Usevelu T, Ceaparu M (2019) IoT and cloud-based energy monitoring and simulation platform. In: 11th International Symposium on Advanced Topics in Electrical Engineering, pp. 1–4.
36. Wang YC, Chen T, Lin YC (2019) A collaborative and ubiquitous system for fabricating dental parts using 3D printing technologies. Healthcare 7(3):103
37. Vatankhah Barenji A, Li Z, Wang WM, Huang GQ, Guerra-Zubiaga DA (2020) Blockchain-based ubiquitous manufacturing: a secure and reliable cyber-physical system. Int J Prod Res 58(7):2200–2221
38. Molka-Danielsen J, Engelseth P, Wang H (2018) Large scale integration of wireless sensor network technologies for air quality monitoring at a logistics shipping base. J Ind Inf Integr 10:20–28
39. Jiang J, Wang H, Mu X, Guan S (2020) Logistics industry monitoring system based on wireless sensor network platform. Comput Commun 155:58–65
40. Goher SZ, Bloodsworth P, Rasool RU, McClatchey R (2018) Cloud provider capacity augmentation through automated resource brokering. Fut Gen Comput Syst 81:203–218
41. Moghaddam M, Nof SY (2018) Collaborative component integration in cloud manufacturing. Int J Prod Res 56(1–2):677–691
42. Kanawaday A, Sane A (2017) Machine learning for predictive maintenance of industrial machines using IoT sensor data. In: 8th
IEEE International Conference on Software Engineering and Service Science, pp. 87–90.

43. Vlasov AL, Grigoriev PV, Krivoshein AL, Shakhnov VA, Filin SS, Migalin VS (2018) Smart management of technologies: predictive maintenance of industrial equipment using wireless sensor networks. Entrepreneur Sustain Issues 6(2):489–502.

44. Namuduri S, Narayanan BN, Davuluri VSP, Burton L, Bhansali S (2020) Deep learning methods for sensor based predictive maintenance and future perspectives for electrochemical sensors. J Electrochem Soc 167(3):037552.

45. Raj JS, Smys S (2019) Virtual structure for sustainable wireless networks in cloud services and enterprise information system. J ISMAC 1(03):188–205.

46. Shaarbi M, Samad A, Alam S, Siddiqui ST (2019) Why adopting cloud is still a challenge?—a review on issues and challenges for cloud migration in organizations. Ambient Commun Comput Syst: 387–399.

47. Mourtizis D, Siatras V, Angelopoulos J, Panopoulos N (2020) An augmented reality collaborative product design cloud-based platform in the context of learning factory. Proc Manuf 45:546–551.

48. Lou S, Feng Y, Li Z, Zheng H, Tan J (2020) An integrated decision-making method for product design scheme evaluation based on cloud model and EEG data. Adv Eng Inform 43:101028.

49. Aransyah D, Rosa F, Colombo G (2020) Smart maintenance: a wearable augmented reality application integrated with CMMS to minimize unscheduled downtime. Comput Aid Design Appl 17(4):740–751.

50. Özyekan J, Chen Y, Turner C, Twari A (2021) Applying a fusion of wearable sensors and a cognitive inspired architecture to real-time ergonomics analysis of manual assembly tasks. J Manuf Syst 61:391–405.

51. Wu K, Bian P, Guo Y, Yang X (2019) Personalized product design and service system for cloud manufacturing. IOP Conf Ser Mater Sci Eng 573(1):012103.

52. Liu Y, Soroka A, Han L, Jian J, Tang M (2020) Cloud-based big data analytics for customer insight-driven design innovation in SMEs. Int J Inf Manage 51:102034.

53. Leung LC, Cao D (2000) On consistency and ranking of alternatives in fuzzy AHP. Eur J Oper Res 124(1):102–113.

54. Lyu HM, Sun WJ, Shen SL, Zhou AN (2020) Risk assessment using a new consulting process in fuzzy AHP. J Constr Eng Manag 146(3):04019112.

55. Abdullah L, Zulkifli N (2015) Integration of fuzzy AHP and interval type-2 fuzzy DEMATEL: an application to human resource management. Expert Syst Appl 42(9):4397–4409.

56. Awasthi A, Govindan K, Gold S (2018) Multi-tier sustainable global supplier selection using a fuzzy AHP-VIKOR based approach. Int J Prod Econ 195:106–117.

57. Buckley JJ (1985) Fuzzy hierarchical analysis. Fuzzy Sets Syst 17(3):233–247.

58. Camci A, Temur GT, Beskese A (2018) CNC router selection for SMEs in woodwork manufacturing using hesitant fuzzy AHP method. J Enterp Inf Manag 31(4):529–549.

59. Chang DY (1996) Applications of the extent analysis method for fuzzy AHP. Eur J Oper Res 95(3):649–655.

60. Chen T, Wang YC, Lin Z (2017) Predictive distant operation and virtual control of computer numerical control machines. J Intell Manuf 28(5):1061–1077.

61. Chen TCT (2019) Guaranteed-consensus posterior-aggregation fuzzy analytic hierarchy process method. Neural Comput Appl: 1–12.

62. Cheng CH, Mon DL (1994) Evaluating weapon system by analytical hierarchy process based on fuzzy data. Fuzzy Sets Syst 63(1):1–10.

63. Dong Y, Zhang G, Hong WC, Xu Y (2010) Consensus models for AHP group decision making under row geometric mean prioritization method. Decis Support Syst 49(3):281–289.

64. Franke J, Kresta A (2014) Judgment scales and consistency measure in AHP. Proc Econ Fin 12:164–173.

65. Gnanavelbabu A, Arunagiri P (2018) Ranking of MUDA using AHP and Fuzzy AHP algorithm. Mater Today Proc 5(2–3):13406–13412.

66. Guo L, Qiu J (2018) Combination of cloud manufacturing and 3D printing: research progress and prospect. Int J Adv Manuf Technol 96(5–8):1929–1942.

67. Guo L, Qiu J (2018) Optimization technology in cloud manufacturing. Int J Adv Manuf Technol 97(1–4):1181–1193.

68. Güran A, Uysal M, Ekinci Y, Güran CB (2017) An additive FAHP based sentence score function for text summarization. Inform Technol Control 46(1):53–69.

69. Höfer T, Sunak Y, Siddique H, Madlener R (2016) Wind farm siting using a spatial analytic hierarchy process approach: a case study of the städteregion aachen. Appl Energy 163:222–243.

70. Ilbahar E, Karas蒽an A, Cebi S, Kahraman C (2018) A novel approach to risk assessment for occupational health and safety using Pythagorean fuzzy AHP & fuzzy inference system. Saf Sci 103:124–136.

71. Junior FRL, Osiro L, Carpinetti LCR (2014) A comparison between Fuzzy AHP and Fuzzy TOPSIS methods to supplier selection. Appl Soft Comput 21:194–209.

72. Kwiesielewicz M, Van Uden E (2004) Inconsistent and contradictory judgements in pairwise comparison method in the AHP. Oper Res Oper Sci 31(5):713–719.

73. Lin YC, Chen T (2019) An advanced fuzzy collaborative intelligence approach for fitting the uncertain unit cost learning process. Complex Intell Syst 5(3):303–313.

74. Oztaysi B (2015) A group decision making approach using interval type-2 fuzzy AHP for enterprise information systems project selection. J Multiple Valued Log Soft Comput 24(5):475–500.

75. Qu T, Lei SP, Wang ZZ, Nie DX, Chen X, Huang GQ (2016) IoT-based real-time production logistics synchronization system under smart cloud manufacturing. Int J Adv Manuf Technol 84(1–4):147–164.

76. Rahmati O, Samani AN, Mahdavi M, Pourghasemi HR, Zeinivand H (2015) Groundwater potential mapping at Kurdistan region of Iran using analytic hierarchy process and GIS. Arab J Geosci 8(9):7059–7071.

77. Saaty TL (1996) Decision making with dependence and feedback: the analytic network process. RWS Publications, Pittsburgh.

78. Shang X, Liu X, Xiong G, Cheng C, Ma Y, Nyberg TR (2013) Social manufacturing cloud service platform for the mass customization in apparel industry. In: Proceedings of 2013 IEEE International Conference on Service Operations and Logistics, and Informatics, pp. 220–224.

79. Singh A, Prasher A (2019) Measuring healthcare service quality from patients’ perspective: using Fuzzy AHP application. Total Qual Manag Bus Excell 30(3–4):284–300.

80. Sirisawat P, Kiatcharoenpol T (2018) Fuzzy AHP-TOPSIS approaches to prioritizing solutions for reverse logistics barriers. Comput Ind Eng 117:303–318.

81. Tao F, Zuo Y, Xu LD, Zhang L (2014) IoT-based intelligent perception and access of manufacturing resource toward cloud manufacturing. IEEE Trans Ind Inf 10(2):1547–1557.

82. Tavana M, Zareinejad M, Di Caprio D, Kaviani MA (2016) An interactive and service system for cloud manufacturing. IOP Conf Ser Mater Sci Eng 61:391–405.

83. Wang L (2013) Machine availability monitoring and machining process planning towards Cloud manufacturing, CIRP J Manuf Sci Technol 6(4):263–273.
84. Wang L, Guo S, Li X, Du B, Xu W (2018) Distributed manufacturing resource selection strategy in cloud manufacturing. Int J Adv Manufact Technol 94(9–12):3375–3388
85. Wang YC, Chen T, Yeh YL (2018) Advanced 3D printing technologies for the aircraft industry: a fuzzy systematic approach for assessing the critical factors. Int J Adv Manufact Technol:1–11.
86. Yurdakul M, Iç YT (2019) Comparison of fuzzy and crisp versions of an AHP and TOPSIS model for nontraditional manufacturing process ranking decision. J Adv Manuf Syst 18(02):167–192
87. Zhong RY, Lan S, Xu C, Dai Q, Huang GQ (2016) Visualization of RFID-enabled shopfloor logistics big data in cloud manufacturing. Int J Adv Manuf Technol 84(1–4):5–16
88. Zyoud SH, Kaufmann LG, Shaheen H, Samhan S, Fuchs-Hanusch D (2016) A framework for water loss management in developing countries under fuzzy environment: integration of fuzzy AHP with fuzzy TOPSIS. Expert Syst Appl 61:86–105

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.