Characterizing Developer Use of Automatically Generated Patches

José Pablo Cambronero*, Jiasi Shen*, Jürgen Cito*, Elena Glassman2, and Martin Rinard1

1MIT, Cambridge, MA
2Harvard University, Cambridge, MA

Abstract—We present a study that characterizes the way developers use automatically generated patches when fixing software defects. Our study tasked two groups of developers with repairing defects in C programs. Both groups were provided with the defective line of code. One was also provided with five automatically generated and validated patches, all of which modified the defective line of code, and one of which was correct. Contrary to our initial expectations, the group with access to the generated patches did not produce more correct patches and did not produce patches in less time. We characterize the main behaviors observed in experimental subjects; a focus on understanding the defect and the relationship of the patches to the original source code. Based on this characterization, we highlight various potentially productive directions for future developer-centric automatic patch generation systems.

I. INTRODUCTION

Software defects have been a known problem ever since the inception of the field of software development. Recent research in automatic patch generation has produced systems that have been shown to be capable of generating correct patches for a significant fraction of the considered defects [22], [25], [27], [23]. Many successful automatic patch generation systems for real-world applications use a generate-and-validate approach — the system generates candidate patches that it then validates against a test suite containing sample inputs and outputs. While this approach has been shown to successfully generate correct patches, it has also been shown to generate many more so-called plausible patches that produce correct outputs for all inputs in the test suite, but incorrect outputs for at least some other input [32], [24]. For this reason, the generated patches should be examined by a developer before integration into the source code base. Despite the need for developer involvement, there has been little research characterizing the developer workflow and potential productivity improvements of automatic patch generation in comparison with other alternatives. For example, there is a long history of defect localization research [31], [11], [12], which aims to identify defective source code that the developer can then manually patch.

Automatic Patch User Study. We present a study that characterizes and compares the developer process in automatic patch generation and manual patch generation aided by defect localization. Specifically, we compare two populations of developers: one provided with the location of the defective line of code and asked to manually develop a patch, and one provided with five automatically generated patches, all of which validate against the test suite, all of which modify the defective line of code, but only one of which is correct. This experiment was designed to model a scenario, inherent in the use of generate-and-validate automatic patch generation, in which the developer is given patches that validate but may or may not be correct.

Our study provides a qualitative analysis of the recurring behaviors observed in the experimental population.

We found that subjects in the experimental group exhibit the following behaviors:

Code and Patch Inspection Times: On average, experimental group subjects spent only 21% (sd=15.8%) of the allocated time per bug inspecting the provided patches and 7.5% (sd=5.6%) of the allocated time per bug inspecting the occurrence of variables throughout the source code. The remainder of the time was spent investigating the buggy source code, tests, and supplementary information provided.

Patch Comparison: Experimental subjects compared patches in an ad-hoc manner, placing patch files side-by-side and navigating back and forth between different patches.

Small vs. Large Modifications: On average, experimental group subjects spent only 3.13% (sd=2.6%) of the allocated time per bug on patches that made larger modifications to existing source code, such as removing a branch entirely. This reluctance to spend time on patches with large modifications was counterproductive for one of the defects in the study — the correct patch made a large modification.

No Changes: 5 of 12 patches submitted by experimental subjects featured few or no additional manual changes.

Based on these observations, we formulate directions for future research that helps developers better understand the defect, the relationship of the candidate patch to the defect, and overall improve the development process when using patch generation systems. Examples of such directions include:

Variable Instrumentation: Our study participants spent a substantial amount of time investigating the role of variables in the generated patches to understand how they relate to the original defective code. Future systems could aid this
process by augmenting variables in the generated patches with information provided by program slicing [39] or dynamic information flow [33], [34].

Successful Patch Characteristics: Previous work has shown that machine learning can be used to successfully rank correct patches [25] by using code characteristics of the patch. Providing such information to developers as they inspect patches may help them more quickly distinguish correct patches from incorrect patches.

Trace and Influence Summaries: Information about how the patch affects program execution characteristics may make the potential impact of the patch clearer. This information would be collected during the runs of the original, unpatched program and during the validation runs for candidate patches [15].

Invariants: Previous systems have inferred invariants that characterize successful executions [13], [20]. Providing invariants that involve patch variables may help developers better understand the roles that these variables play in the overall computation.

We summarize our contributions in the following:

User Study: To the best of our knowledge, this paper presents the first study that 1) asks developers to produce correct patches for application logic defects and 2) provides the experimental group with multiple plausible automatically generated patches.

Experimental Results and Qualitative Analysis: We conducted a qualitative analysis on developer interactions with the patches and programs to identify challenges in the program repair process. We characterize the main behaviors observed and use this to derive implications for developer-centric patch generation systems.

Future Directions: Based on the results of our analysis, we formulate potential directions for future patch generation research.

II. Research Method

We now present the design choices for our user study.

A. Study Participants

We recruited a total of 12 developers who had at least one year of experience programming in C or C++ in the last five years, and at least four years of programming experience overall. These subjects had development experience in a combination of academic and industrial settings. The subject population was drawn from the doctoral Computer Science program at MIT, focused mainly on systems or machine learning research.

Table I shows a breakout of the experience levels for each subject, along with group and study allocations.

We asked participants to fill out a survey evaluating their understanding of 42 key concepts in C, which we based on the GNU C manual [26]. Each question could be answered, in increasing order of experience, as “Unfamiliar, would not understand if you see it in code”, “Somewhat unfamiliar, cannot write it but can read and understand it in code”, “Familiar, can write it if presented with similar code that uses it”, and “Expert, confident about writing it independently”.

We identified two types of participants: “expert” and “non-expert” based on the number of concepts they answered with “Expert, confident about writing it independently”. We set a threshold of 25/42 questions for “expert” status. 8 of the 12 participants were categorized as experts by our metric and the remaining 4 as non-experts. The answer threshold was set based on the participants’ response distribution.

Table II provides the number of expert answers given by each subject.

![Table I: Study participants had at least one year experience in C or C++, and most had 2 or more years. Our study tasks only required experience with basic C concepts.](image)

![Table II: We classified subjects with less than 25/42 expert answers on a C concept survey as “non-experts”. We balanced these individuals across both control and experimental groups.](image)
setting where time pressure was higher for participants. These time allotments are consistent with previous studies in active bug repair, which have allocated a maximum of two hours for five bugs [38]. We recruited the participants telling them the study “evaluates bug fixing tools.”

B. Treatment Groups

We randomly assigned participants to two groups: control and experimental. When doing so, we maintained a balance of non-expert subjects across treatment groups, based on the answers subjects provided to the C concept survey. Both control and experimental treatments each had two non-experts. Experimental: The experimental group received five validated patches for each of the bugs. One of the five patches was correct, and four were plausible but incorrect patches, but subjects were not told that any one patch was correct. They were given instructions and materials that emphasized the potentially incorrect nature of patches that pass the test suites, which may occur with current automatically generated patches. We provided patches that were generated offline to control for the possible effect of the tool’s interface.

Control: The control group did not receive any generated patches, but did receive the exact source line that contained the defect. By providing the exact location of the defect, we ensured that the experimental subjects and control subjects had the same defect localization information and that this matched the line modified by the ground truth developer patch. The sizes of control and experimental groups were balanced in both long and short studies.

Participants were informed of their time allotment for each bug. When carrying out the experiment, we divided time slots such that there was no overlap between study groups in the space we reserved. At any time, the participants in the room consisted entirely of experimental or control subjects. Additionally, we informed participants in the room that not everyone had been provided with the same experimental setup, so they wouldn’t feel pressured by other subjects’ actions (e.g. a subject leaving the room before them).

We provided each subject with a subject id number to avoid the use of their personal names in study materials. The subject id numbers start at 2, as we allotted subject id 1 for a pilot subject who tested the environment, tools, and provided feedback on the instructions.

C. Environment and Tooling

To simplify the environment setup and encourage reproducibility, we asked participants to work from a pre-configured virtual machine. We standardized the directory structure for each of the bugs, providing uniform access to relevant source code and tests to avoid confusion when progressing through the experiment. The buggy source file was linked to a top level file named patch.c to prevent subjects from spending time traversing the source directory tree. The bug information was placed in a top level file named BUG_INFO. Subjects were also provided with an IDE alternative (CLion) if they preferred using that tool over the command line. Subjects were not allowed to use additional debugging tools to control for levels of tooling experience.

D. Study Tasks: Repairing Application Logic Errors

We based the set of bugs available for our study on benchmarks used by the literature for automatic patch generation systems [25], [23], [40]. To provide participants with reasonable tasks, we focused on bugs that were exposed by an accompanying test suite, require application understanding (to the extent we could effectively explain in accompanying documentation), and did not require additional tooling (e.g. valgrind) which could result in skill-set differentials across study cohorts.

Given that our study investigates the potential positive impact of automatic patch generation, we focused on bugs where our patch generation system produced at least five validating patches and one of these validating patches correctly repaired the bug. By having multiple validating patches, and one correct patch among them, we sought to exercise the subjects’ ability to discern between correct and incorrect patches.

Our candidate tasks needed to produce validating patches that modified the same source line location, which in turn had to match the line modified by the correct developer patch. This allowed us to provide the control group with the same exact line location information that was provided to experimental subjects via patches.

This criteria yielded two bugs for the experiment: libtiff-d13be-ccadf, an error-checking bug in the popular TIFF library, and php-309892-309910, a bug in PHP’s standard library function substr_compare. The relevant portions of the source code for each bug, along with...
Fig. 2: libtiff-d13be-ccadf: The branch condition at line 589 of libtiff/tiff_dirread.c needs to tighten the first predicate from `td->td_nstrips > 1` to `td->td_nstrips > 2` to successfully repair the bug, which manifests itself as a custom error when `libtiff` tries to estimate the strip byte counts for images that don’t satisfy the correct condition.

the appropriate fix, are presented in Figure 2 and Figure 3, respectively. The developer patches for libtiff-d13be-ccadf and php-309892-309910 are available at [2] and [3], respectively.

1) Task 1: TIFF Image Layout Bug: To correctly repair libtiff-d13be-ccadf, subjects need to understand the basics of TIFF and its image layouts. They also need to be aware that the error correcting code executed as a consequence of the buggy branching condition may not be necessary for all images. We provided subjects with information in a file titled `BUG_INFO`, which they were instructed to read prior to starting the timer on each bug. The `BUG_INFO` file for this bug is available online [5], and contains an overview of TIFF, an outline of the main data structure relevant for the bug (the TIFFDirectory), along with various input examples that expose the bug and the expected behavior.

2) Task 2: PHP String Comparison Bug: To correctly repair php-309892-309910 subjects must understand the semantics of the string comparison function `substr_compare`. In particular, the subjects should understand how comparison works on different length strings. The `BUG_INFO` file for this bug is available online [5]. It contains various input and output examples for `substr_compare` calls, along with the function documentation found on the PHP website [4].

In the long study, we allocated 40 minutes for each of these bugs. In the short study, we allocated 25 minutes for libtiff-d13be-ccadf and 20 minutes for php-309892-309910.

E. Experimental Patches

Subjects in the experimental group were provided with five plausible patches per bug. These patches were generated using Prophet [25], an automatic patch generation tool. Other automatic patch generation systems such as GenProg [21], SPR [23], and Angelix [27], produce plausible (but incorrect) patches for these bugs or correct patches that are similar to those produced by Prophet [32], [1], [40].

The patches provided to subjects are available online [5]. One patch in each set of five was correct and included by design. The placement order of the correct patch among the five patches was randomized at design, and every experimental subject was exposed to the same ordering.

To model practical conditions, we reminded experimental subjects in both the instructions handout and the tutorial video that patches produced by the system would all pass the test suite but had no correctness guarantees.

Each patch provided to experimental subjects had a source code comment indicating the portion of the code that had been automatically generated. Table III provides details on the modifications made by each patch. All patches modified the branching conditions responsible for the bugs. Figure 4 and Figure 5 present the automatically generated patches that correctly repair libtiff-d13be-ccadf and php-309892-309910, respectively.

F. Study Instructions

All subjects received: a PDF document with detailed instructions, a file detailing relevant information for each bug (including defect line location, observable errors/reproduction, and API details), and a tutorial video walking them through
The virtual machines used to carry out the experiments were set up to record all on-screen activities using avconv [30]. This totaled nine hours of on-screen activity across the 12 subjects and two study tasks. These videos facilitated our qualitative analysis. In a first pass, two researchers independently collected notes on subject behavior and identified shared behaviors for use as emergent qualitative coding [36]. These behaviors consisted of: searching for a variable in the source code, reading the BUG_INFO background file, and navigating to or editing a source file (in which case, we associated the file name as the code). These notes and codes were used in a second pass to qualify frequency of behaviors.

The scripts used were also instrumented to collect time-stamped data in JSON logs. We used these to provide additional context for our qualitative analysis.

H. Study Reproducibility

We provide an extensive replication package to encourage reproducibility of our study and analysis. We have made available all the resources used in our study [8]. This includes: virtual machines for both long/short studies and the respective experimental/control groups [10]; source code for the bugs chosen and corresponding patches; study instructions for participants [7], as well as tutorial videos [9]; and de-identified results (including screen recordings) [6]. These materials can be used and modified to facilitate future experiment iterations.

III. FINDINGS

Subjects in the experimental group did not display a significant improvement relative to the control group. Both groups submitted roughly the same number of correct patches. The differences in time-to-first-submission across groups were negligible.

Table IV describes the experimental group’s submissions relative to the available patches. Experimental subjects in the long study submitted eight patches. Of these eight, four were a direct use of a provided patch, and four were custom patches. In the short study, subjects submitted four patches, of which three were a direct use of a provided patch, and one was a modification of a provided patch.

While most experimental subjects submitted one of the provided patches, few chose the correct one. We inspected the screen recordings and characterize behaviors that we believe drove these results and present key challenges for developer use of automatic patch generation systems.

1) **Understanding Code Context:** Experimental subjects on average spent 7.5% (sd=5.6%) of the allocated time per bug searching source code that contained variables used in the automatically generated patches. They searched for declarations, definitions, and uses of variables across the entire file and project, not simply in the area surrounding the defect location.

 Figure 6 shows a subject searching for instances of `ht` in the source file that contains the bug. `ht` is one of the variables used in a patch provided to the subject.

 Experimental subjects spent 21% (sd=15.8%) of the allocated time per bug inspecting the provided patches. The remainder of the time was divided between reading and modifying the original buggy source code, inspecting tests, and reading the supplemental bug information.

 We attribute both of these behaviors to experimental subjects attempting to understand both the overall code they were trying to repair and the interactions between the patch and the application. This highlights the difficulty of patching application-logic bugs, which require understanding the application semantics.

 We expected subjects to leverage the patches more heavily, given that the codebases for both bugs were unfamiliar to the subjects. The relatively small fraction of time spent inspecting patches may indicate that subjects prioritized understanding
Subject 9 searches for occurrences of variable \(ht \) in entire source file of \(\text{php-309892-309910} \)

\[
\begin{align*}
\text{if} & \ (\text{len} > \text{s1_len} - \text{offset}) \text{ && } (!((ht == 4))) \{
\text{len} & \ = \text{s1_len} - \text{offset}; \\
\text{cmp_len} & \ = \ (\text{uint}) \ (\text{len} \ ? \ \text{len} : \text{MAX}(\text{s2_len}, (\text{s1_len} - \text{offset})))
\}
\end{align*}
\]

(b) Patch provided for \(\text{php-309892-309910} \) that uses variable \(ht \)

Subjects spent less time inspecting patches that make changes that may be considered significant. Patch 1 in \(\text{libtiff-d13be-ccadf} \) and patch 3 in \(\text{php-309892-309910} \) (the correct patch), both of which remove a branch, were only inspected for 3.13% (sd=2.6%) of the allocated time per bug.

We repeatedly informed experimental subjects that the provided patches all passed the test suites (i.e. validated), but that they were not guaranteed to be correct, and that their task was to produce a correct repair. We also did not inform the experimental group that there was a correct patch amongst the five validated patches they received. However, in five of the 12 submissions from experimental subjects, subjects did not apply additional patches nor make any changes after selecting an initial patch that validated. The single submission that modified a validating patch did so by changing a comparison operation from \(!=\) to \(<\) and submitted the new variant. As a result of inspecting the patches for a relatively short period of time, avoiding patches that seemed “unlikely”, and not exploring the application of multiple patches, we believe the experimental subjects made relatively uninformed decisions for patch selection. This highlights the challenges in selecting from several plausible patches.

IV. IMPLICATIONS FOR DEVELOPER-CENTRIC PATCH GENERATION SYSTEMS

Our study illustrates that solely providing subjects with automatically generated patches may not be sufficient to see an effect in terms of patch integration productivity (measured by number of correct bug repairs or time to first patch). Subjects spent most of their time trying to understand the defect and the way the provided patches related to the original source code containing the defect.

Based on our qualitative analysis, we formulate concrete directions for future patch generation systems research. Particularly, providing mechanisms that help developers better understand defects, and the relationship of the candidate patch to the defects, can improve patch integration.

Variable Instrumentation. Our qualitative analysis indicates that developers often spend time investigating the roles that...
variables from the generated patches play in the original defective code. Future systems could provide enhanced information about variables that occur in the generated patches, for example by providing program slices containing the code that affects the values of these variables [39] or by providing dynamic information flow data that characterizes how these variables influence program outputs [33], [34].

Successful Patch Characteristics. Developers in our study had difficulty identifying correct patches in a set of plausible patches. Consequently, they spent a lot of time trying to find contextual information to assess the correctness of the given candidate patches. Machine learning has previously been successfully used to identify characteristics of correct patches and provide a probabilistic assessment of the viability of a patch [25]. Providing developers with this information can aid patch integration as they inspect candidates, helping them to more quickly distinguish correct from incorrect patches.

Trace and Influence Summaries. Providing the developer with information about how the patch affects program execution characteristics, such as the flow of control and data through the program and output values, may make the potential impact of the patch clearer. This information would be collected during the runs of the original unpatched program and during the validation runs for candidate patches.

Invariants. Previous systems have inferred invariants that characterize successful executions [13], [20]. Providing invariants within the patch integration process that involve variables occurring in the patch may help developers better understand the roles that these variables play in the overall computation.

V. Scope and Threats to Validity

This study models what we believe are a crucial set of circumstances that affect real-world use of a patch generation system. However, the scope of our conclusions is limited by various design choices.

Our study tasked subjects with repairing two application-logic bugs in unfamiliar codebases (which removed potential skill differentials based on code familiarity). This setting naturally raises the difficulty of patching bugs. A similar case of unfamiliar developers is common in industry, where new or lateral hires are tasked with working on a new codebase, or a new organization acquires a contract to maintain an existing codebase for a fixed period time. We believe our design models this important use case for automatic patch generation systems, but this also means our conclusions may not generalize to scenarios where the subjects have deep codebase knowledge and may be better prepared to identify correct patches.

Experimental subjects were not told that one of the patches was correct. Instead, they were reminded that there were no correctness guarantees. This may have influenced their behavior and limited the amount of patches they were willing to explore, despite our initial expectations that this would encourage subjects to try more patches.

Subjects were not allowed to use additional debugging tools to control for tooling experience. We chose bugs that we judged were reasonable to patch without additional tools (e.g. no memory-related bugs). However, the lack of access to external tools may have had an effect on the way subjects approached the bugs and reasoned about possible fixes.

Control subjects received the exact defect location for bugs. This models an ideal case of perfect error localization. We provided the exact location of the bug to match the line modified by the patches given to experimental subjects (and the ground truth developer patch) in order to reduce confounding factors. Existing error localization systems do not always produce the exact location of a defect [31], and so the generalizability of the control group performance could vary under different error localization tools.

VI. Related Work

We present key related work in the area of automatic patch generation research and developer-centric software systems.

Automatic Patch Generation. A significant body of work in the software engineering community has developed new techniques for automatically generating patches [25], [27], [23], [22]. However, a smaller subset of these studies have included meaningful evaluation of developer interaction with such patches through user studies. Our own work suggests that user studies can reveal new directions for automatic patch generation research to improve usability.

Fry et al. [14] explored the relationship between patch understandability and maintainability. In their study, subjects answered code comprehension and maintenance questions. Their results found that automatic patches were more maintainable. However, their study did not consider the correctness of patches [32].

Kim et al. [17] introduced PAR, an automatic patch generation system as their main result. As part of the system evaluation, the authors carried out a user study on the subjective ranking of patches based on acceptability. Subjects were asked to rank patches produced by humans and by two automatic patch generation systems: PAR and GenProg. They found a statistically significant ranking difference between PAR and GenProg, and no such difference for PAR patches with respect to the human-written patches. The authors did not consider the correctness of the patches as part of the study.

Tao et al. [38] present the only other study to evaluate the impact of automatically generated patches on the number of correct patches produced by developers. The study tasked subjects with manually repairing five Java bugs in two hours. Subjects in the study were provided with either: one automatically generated patch or method-level error localization information for the defect. The patches provided could be of two quality levels, based on rankings produced in prior work [17]. They found that automatically generated patches of high quality improved the number of correct patches produced by subjects. Our study differs from the Tao et al. study in various key dimensions:

- **Population Experts:** their study classified subjects as experts if they had programmed in Java for more years than the average subject (4.4 years). All of our participants had at least four years of programming experience. Our
study asked subjects to answer a 42 question C concepts survey. We classified as experts subjects with more than 25 expert responses, and designed the study groups to balance the four non-expert subjects.

- **Single Patch Provided**: subjects in their study were given a single automatically generated patch. Our study provided experimental subjects with five plausible patches.
- **Patch Correctness**: the single high quality patch provided to experimental subjects in their study correctly repaired the defect in three of the five bugs. In our study subjects had four incorrect (but plausible) patches, along with a single correct patch, for each bug.
- **Error Localization**: control subjects in their study were told the method that contained the defect. Our study provided control subjects with the exact source line that contained the defect. We provided exact defect location to compare the benefits of automatic patch generation over error localization.
- **Bug and Error Types**: subjects in their study were tasked with repairing five Java bugs: four Mozilla Rhino bugs and one Apache Commons Math bug. Three of the Rhino bugs produced NullPointerException, one Rhino bug produced an ArrayIndexOutOfBoundsException, and the Commons Math produced a custom ConvergenceException. Our study asked subjects to patch two C bugs from libtiff and PHP. Both bugs produced application-specific errors and required an understanding of the application semantics, rather than standard fixes.

Developer-Centric Software Systems. Research in the HCI community has developed frameworks to understand software errors from the perspective of the developer [18] and investigate developer behavior and tool usage [29]. Incorporating these insights into automatic patch repair can improve the successful adoption of this technology.

Ko et al [19] explore how developers debug in unfamiliar applications, a task inherent in modern software development where maintenance efforts can span much longer time frames than core development. The analysis presented is closely aligned to our study, which focused on unfamiliar applications and asked developers to produce a patch. Similar to our study, the authors note that a significant amount of time was spent reading code, and navigating between source files. Tooling that facilitates navigation of unfamiliar code, searching for potentially relevant cues, and relates semantic information such as dependences, could help developers during bug repair.

Suzuki et al [37] present a system that allows developers to quickly diagnose program errors by inspecting trace differences between originally buggy and corrected code. This trace visualization could be directly incorporated into automatic patch repair systems when presenting potential repairs to developers. Trace differences, summarizing variable values and incorporating value invariants, could help developers identify and eliminate patches that validate but are incorrect.

REFERENCES

1. Angelix icse’16 patches. http://angelix.io/patches.html. Accessed: 2018-04-24.
2. libtiff-d13be-ccadf developer patch. https://github.com/vadz/libtiff/commit/3ed9c80cd. Accessed: 2017-08-25.
3. php-309892-309910 developer patch. https://github.com/php/php-src/commit/5a8c917. Accessed: 2017-08-25.
4. Php documentation. https://secure.php.net/docs.php. Accessed: 2017-05-01.
5. Submission online bug materials. https://drive.google.com/open?id=0B9IiRWxNetPYOHi1h6l6vmNzn7g. Accessed: 2017-08-25.
6. Submission online data. https://drive.google.com/drive/folders/0B9IiRWxNetP4Y5jc1YThsRjdez28. Accessed: 2017-08-25.
7. Submission online instructions. https://drive.google.com/open?id=0B9IiRWxNetPYTnlyT0ZHv3dzT1U. Accessed: 2017-08-25.

VII. Conclusion

Automated patch generation systems have been designed to solve the long-lasting problem of software bugs. However, humans remain an important component in integrating the final patch to be applied. Thus a key area of research for automatic patch generation is developer usability and productivity. We provide an initial study to characterize the way developers use automatically generated patches. Based on this study we formulate possible research directions to improve developer adoption.

Acknowledgment

The authors would like to thank all of the participants in the user study for their time.

References

1. Angelix icse’16 patches. http://angelix.io/patches.html. Accessed: 2018-04-24.
2. libtiff-d13be-ccadf developer patch. https://github.com/vadz/libtiff/commit/3ed9c80cd. Accessed: 2017-08-25.
3. php-309892-309910 developer patch. https://github.com/php/php-src/commit/5a8c917. Accessed: 2017-08-25.
4. Php documentation. https://secure.php.net/docs.php. Accessed: 2017-05-01.
5. Submission online bug materials. https://drive.google.com/open?id=0B9IiRWxNetPYOHi1h6l6vmNzn7g. Accessed: 2017-08-25.
6. Submission online data. https://drive.google.com/drive/folders/0B9IiRWxNetP4Y5jc1YThsRjdez28. Accessed: 2017-08-25.
7. Submission online instructions. https://drive.google.com/open?id=0B9IiRWxNetPYTnlyT0ZHv3dzT1U. Accessed: 2017-08-25.
[8] Submission online materials. https://drive.google.com/drive/folders/0B9IR8VjNetPYNVkJkJ8tC0tRme. Accessed: 2017-08-25.

[9] Submission online virtual machines. https://drive.google.com/open?id=0B9IR8VjNetPYX1BDA5dxDkyLTQ. Accessed: 2017-08-25.

[10] Rui Abreu, Peter Zoetewej, Rob Golstein, and Arjan JC Van Gemund. A practical evaluation of spectrum-based fault localization. Journal of Systems and Software, 82(11):1780–1792, 2009.

[11] Shaimaa Ali, James H Andrews, Taruselvi Dhandapani, and Wiantao Wang. Evaluating the accuracy of fault localization techniques. In Proceedings of the 2009 IEEE/ACM international conference on automated software engineering, pages 76–87. IEEE Computer Society, 2009.

[12] Michael D Ernst, Jeff H Perkins, Philip J Guo, Stephen McCamant, Carlos Pacheco, Matthew S Tschantz, and Chen Xiao. The daikon system for dynamic detection of likely invariants. Science of Computer Programming, 69(1):35–45, 2007.

[13] Zachary P Fry, Bryan Landau, and Westley Weimer. A human study of patch maintainability. In Proceedings of the 2012 International Symposium on Software Testing and Analysis, pages 177–187. ACM, 2012.

[14] Andrew Head, Elena Glassman, Gustavo Soares, Ryo Suzuki, Lucas Figueiredo, Loris D’Antoni, and Björn Hartmann. Writing reusable code feedback at scale with mixed-initiative program synthesis. In Proceedings of the Fourth (2017) ACM Conference on Learning@ Scale, pages 89–98. ACM, 2017.

[15] Jane Hoffsweil, Arvind Satyanarayan, and Jeffrey Heer. Augmenting code with in situ visualizations to aid program understanding. In Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pages 532–542. ACM, 2018.

[16] Dongsun Kim, Jaechang Nam, Jaewoo Song, and Sunghun Kim. Automatic patch generation learned from human-written patches. In Proceedings of the 2013 International Conference on Software Engineering, pages 802–811. IEEE Press, 2013.

[17] Amy J Ko and Brad A Myers. A framework and methodology for studying the causes of software errors in programming systems. Journal of Visual Languages & Computing, 16(1-2):41–84, 2005.

[18] Amy J Ko, Brad A Myers, Michael J Cohenz, and Htet Htet Aung. An exploratory study of how developers seek, relate, and collect relevant information during software maintenance tasks. IEEE Transactions on software engineering, 32(12):971–986, 2006.

[19] Jens Kruger, Jens Schneider, and Rudiger Westerman. Clearview: An interactive context preserving hotspot visualization technique. IEEE Transactions on Visualization and Computer Graphics, 12(5), 2006.

[20] Claire Le Goues, ThanhVu Nguyen, Stephanie Forrest, and Westley Weimer. Genprog: A generic method for automatic software repair. IEEE Transactions on Software Engineering, 38(1):54–72, 2012.

[21] Fan Long, Peter Amidon, and Martin Rinard. Automatic inference of code transforms and search spaces for automatic patch generation systems. 2016.

[22] Fan Long and Martin Rinard. Staged program repair with condition synthesis. In Proceedings of the 2015 10th Joint Meeting on Foundations of Software Engineering, pages 166–178. ACM, 2015.

[23] Fan Long and Martin Rinard. An analysis of the search spaces for generate and validate patch generation systems. In Proceedings of the 38th International Conference on Software Engineering, pages 702–713. ACM, 2016.

[24] Fan Long and Martin Rinard. Automatic patch generation by learning correct code. In ACM SIGPLAN Notices, volume 51, pages 298–312. ACM, 2016.

[25] Sandra Loosemore, Richard M Stallman, Andrew Oram, and Roland McGrath. The gnu c library reference manual. 1993.

[26] Sergey Mechtaev, Jooyong Yi, and Abhik Roychoudhury. Angelix: Scalable multiline program patch synthesis via symbolic analysis. In Software Engineering (ICSE), 2016 IEEE/ACM 38th International Conference on, pages 691–701. IEEE, 2016.

[27] Hiroaki Mikami, Daisuke Sakamoto, and Takeo Igarashi. Microversioning tool to support experimentation in exploratory programming. In Proceedings of the 2017 CHI Conference on Human Factors in Computing Systems, pages 6208–6219. ACM, 2017.

[28] Brad A Myers, Amy J Ko, Thomas D LaToza, and YoungSeok Yoon. Programmers are users too: Human-centered methods for improving programming tools. Computer, 49(7):44–52, 2016.