Inception of Self-Interacting Dark Matter with Dark Charge Conjugation Symmetry

Ernest Ma

Physics and Astronomy Department,
University of California, Riverside, California 92521, USA

Abstract

A new understanding of the stability of self-interacting dark matter is pointed out, based on the simplest spontaneously broken Abelian $U(1)$ gauge model with one complex scalar and one Dirac fermion. The key is the imposition of dark charge conjugation symmetry. It allows the possible existence of two stable particles: the Dirac fermion and the vector gauge boson which acts as a light mediator for the former’s self-interaction. Since this light mediator does not decay, it avoids the strong cosmological constraints recently obtained for all such models where the light mediator decays into standard-model particles.
Introduction: The Lagrangian of the simplest spontaneously broken Abelian $U(1)$ gauge model was written down by Peter Higgs over 50 years ago [1]. Its particle content consists of a vector gauge boson (call it Z_D) and a complex scalar (call it σ). By itself it has automatic charge conjugation invariance, i.e. $Z_D \rightarrow -Z_D$, $\sigma \rightarrow \sigma^*$, resulting in $g_D \rightarrow -g_D$. After spontaneous symmetry breaking, the above still holds, i.e. $Z_D \rightarrow -Z_D$, $\sigma_R \rightarrow \sigma_R$, and $\sigma_I \rightarrow -\sigma_I$ which becomes the longitudinal component of the now massive Z_D. This fact has been used [2, 3, 4, 5] to suggest that Z_D may be dark matter.

The existence of two $U(1)$ gauge factors allows for the gauge-invariant kinetic mixing [6] of the two associated gauge bosons, so Z_D may mix with the $U(1)_Y$ gauge boson of the standard model (SM), of which the photon is a component. This has led to many theoretical studies of a possible light dark photon, and the experiments which may be relevant in finding it [7]. However, this kinetic mixing term breaks the dark charge conjugation symmetry, so the former may be absolutely forbidden if the latter is chosen to be exact.

In the Higgs model, Z_D is the sole dark matter. Suppose a Dirac fermion (call it N) is added, transforming also under $U(1)_D$, then the Lagrangian is also invariant under dark charge conjugation, as well as the global $U(1)$ transformation operating on N, i.e. dark fermion number. Hence N is a dark-matter candidate. What about Z_D? If $m_{Z_D} > 2m_N$, then Z_D will decay into $N\bar{N}$ through the vector current $\bar{N}\gamma_\mu N$ which has charge conjugation $C = -1$, but if $m_{Z_D} < 2m_N$, then Z_D will be stable. Further, if Z_D is much lighter than N, then it may act as a stable light mediator for N self-interactions. Note that if Z_D is unstable and decays to SM particles, then very strong constraints exist [8] which basically rule out this scenario for explaining [9] the core-cusp anomaly observed in dwarf galaxies [10]. As for the dark Higgs boson $h_D = \sqrt{2}Re(\sigma)$, it may also be light, but it has an unavoidable mixing with the SM Higgs boson h, so it will not be stable. In the following, $m_{h_D} < m_{Z_D}$ will be assumed.
With $m_N \sim 100$ GeV and $m_{Z_D} \sim 10$ MeV, the $N\bar{N}$ annihilation to Z_DZ_D is assumed to have the right cross section for N to be the main component of dark matter. The subsequent Z_DZ_D annihilation to h_Dh_D is assumed to have a large enough cross section, so that the relic abundance of Z_D is small compared to that of N. In direct-search experiments, N does not interact with quarks, so there will be no signal. As for the small Z_D component, it interacts through $h_D - h$ mixing, but since Z_D is very light, current experiments are not sensitive to its presence. On the other hand, the $h_D - h$ mixing has to be large enough for it to decay away before big bang nucleosynthesis (BBN). Even so, h_D may be produced at late times through Z_DZ_D annihilation, and affects the cosmic microwave background (CMB) through its decay, as pointed out in Ref. [8]. However, there is no Sommerfeld enhancement [11] of this cross section, unlike the case of $N\bar{N}$ annihilation through a light mediator which decays. Hence the proposed model is a natural resolution of this conundrum, as detailed below.

Dark $U(1)_D$ model: This model assumes $U(1)_D$ gauge symmetry, implying thus a vector gauge boson Z_D. It is spontaneously broken by a complex scalar σ with charge g_D. A Dirac fermion N also exists with charge g_N. The complete Lagrangian before symmetry breaking is

\[
\mathcal{L} = -\frac{1}{4}(\partial^\mu Z_D^\nu - \partial^\nu Z_D^\mu)(\partial_\mu Z_{D\nu} - \partial_\nu Z_{D\mu}) + (\partial^\mu \sigma - ig_DZ_D^\mu\sigma)(\partial_\mu \sigma^* + ig_DZ_{D\mu}\sigma^*) \\
+ \mu_D^2\sigma^*\sigma - \frac{1}{2}\lambda_D(\sigma^*\sigma)^2 + i\bar{N}\gamma_\mu(\partial^\mu - ig_NZ_D^\mu)N - m_N\bar{N}N. \tag{1}
\]

In the above, if we replace g_D by $-g_D$, σ by σ^*, g_N by $-g_N$, and N by its dark charge conjugate, we have exactly the same physical theory. The spontaneous breaking of $U(1)_D$ with $\langle \sigma \rangle = v_D/\sqrt{2}$ changes the Lagrangian to

\[
\mathcal{L} = -\frac{1}{4}(\partial^\mu Z_D^\nu - \partial^\nu Z_D^\mu)(\partial_\mu Z_{D\nu} - \partial_\nu Z_{D\mu}) + \frac{1}{2}m_{Z_D}^2Z_D^\mu Z_{D\mu} + \frac{1}{2}(\partial^\mu h_D)(\partial_\mu h_D) - \frac{1}{2}m_{h_D}^2h_D^2 \\
+ \frac{m_{h_D}^2h_D^3}{2v_D} + \frac{m_{h_D}^2h_D}{8v_D^2} + g_D^2v_Dh_D(Z_D^\mu Z_{D\mu}) + \frac{1}{2}g_D^2h_D^2(Z_D^\mu Z_{D\mu}) \\
+ i\bar{N}\gamma_\mu(\partial^\mu - ig_NZ_D^\mu)N - m_N\bar{N}N + g_NZ_D^\mu\bar{N}\gamma_\mu N, \tag{2}
\]
where $v_D^2 = 2\mu_D^2/\lambda_D$, $m_{Z_D} = g_D v_D$, and $m_{h_D}^2 = \lambda_D v_D^2$. The crucial interaction terms are $g_N Z_D^\mu \bar{N} \gamma_\mu N$, $g_D^2 v_D h_D (Z_D^\mu Z_D^\mu)$, and $(1/2)g_D^2 h_D^2 (Z_D^\mu Z_D^\mu)$. We assume in the following $m_N \sim 100$ GeV, with $Z_D, h_D \sim 10$ MeV, with $m_{h_D} < m_{Z_D}$. Note that g_N is independent of g_D.

Three new particles: There are only three new particles beyond those of the standard model. Each serves a purpose and is an essential ingredient of this two-component dark-matter model. The dark fermion N is a Dirac particle with a conserved dark fermion number. It is the dominant component of the observed dark matter of the Universe. It has a dark gauge interaction mediated by Z_D which is light, thus realizing the requirement of a sufficiently large interaction to affect the core-cusp discrepancy of dwarf galaxies. The imposition of dark charge conjugation symmetry means that Z_D has $C = -1$. It couples to the vector current $\bar{N} \gamma_\mu N$ which also has $C = -1$, so it may decay into $N \bar{N}$, but if it is lighter than $2m_N$ as assumed, then it is itself stable. As such, it may be overproduced in the early Universe. However, it is also assumed that the dark Higgs boson h_D, which breaks the $U(1)_D$ gauge symmetry and provides Z_D with a mass through its vacuum expectation value v_D, is lighter than Z_D. Hence the $Z_D Z_D \rightarrow h_D h_D$ annihilation should be strong enough to make it a very small fraction of the observed dark matter of the Universe. As for h_D, which has $C = +1$, it must be unstable through its allowed mixing with the SM Higgs boson h, and decays away early without affecting the standard BBN.

Consider the extended scalar potential involving both σ and the SM Higgs doublet $\Phi = (\phi^+, \phi^0)$:

$$V = -\mu_D^2 \sigma^* \sigma + \frac{1}{2}\lambda_D (\sigma^* \sigma)^2 - \mu_h^2 \Phi^\dagger \Phi + \frac{1}{2}\lambda_h (\Phi^\dagger \Phi)^2 + \lambda_{hD} (\sigma^* \sigma) (\Phi^\dagger \Phi).$$

Using $\phi^0 = (v_h + h)/\sqrt{2}$, the 2×2 mass-squared matrix spanning (h_D, h) is given by

$$\mathcal{M}_{h_D, h}^2 = \begin{pmatrix} \lambda_D v_D^2 & \lambda_{hD} v_D v_H \\ \lambda_{hD} v_D v_H & \lambda_h^2 v_h^2 \end{pmatrix}.$$
Assuming $m_{h_D} << m_h = 125$ GeV, the $h_D - h$ mixing is then $\theta_{hD} = \lambda_{hD} v_D v_h / m_h^2$. For a light h_D of order 10 MeV, its dominant decay is to $e^- e^+$ with the decay rate

$$\Gamma(h_D \rightarrow e^- e^+) = \frac{m_{h_D} m_e^2 \theta_{hD}^2}{8\pi v_h^2},$$

(5)

where $v_h = 246$ GeV. Assuming that $\Gamma^{-1} < 1$ s, the constraint

$$\left(\frac{m_{h_D}}{10 \text{ MeV}}\right) \theta_{hD}^2 > 3.83 \times 10^{-10}$$

(6)

is obtained. The SM Higgs boson h also decays into $h_D h_D$ with coupling $\lambda_{hD} v_h$. Its decay rate is

$$\Gamma(h \rightarrow h_D h_D) = \frac{\lambda_{hD}^2 v_h^2}{16\pi m_h} = \lambda_{hD}(9.63 \text{ GeV}).$$

(7)

Assuming that this is no more than 10% of the Higgs boson width in the SM (4.12 MeV), this gives a bound of

$$\lambda_{hD} < 0.0066.$$

(8)

Comparing Eqs. (6) and (7), the constraint

$$\left(\frac{v_D}{\text{GeV}}\right) > 0.19 \sqrt{\frac{10 \text{ MeV}}{m_{h_D}}}$$

(9)

is obtained.

$Z_d Z_d$ annihilation: Consider first the process $Z_d Z_d \rightarrow h_D h_D$ at rest. There are four diagrams summing up to the amplitude

$$\mathcal{A} = \left[\frac{2g_D^2 (2 + r)}{2 - r} - \frac{6g_D^2 r}{4 - r}\right] (\vec{e}_1 \cdot \vec{e}_2) + \frac{8g_D^2}{m_{Z_d}^2 (2 - r)} (\vec{e}_1 \cdot \vec{k})(\vec{e}_2 \cdot \vec{k}),$$

(10)

where $r = m_{h_D}^2 / m_{Z_D}^2$ and the center-of-mass variables \vec{k} (momentum of h_D) and $\vec{e}_1, 2$ (polarizations of Z_D) have been used. The resulting cross section \times relative velocity is given by

$$\sigma(Z_D Z_D \rightarrow h_D h_D) \times v_{rel} = \frac{g_D^4 \sqrt{1 - r}}{64\pi m_{Z_D}^2} \left[\frac{4r^2 + 4(2 - r)^2}{(4 - r)^2} - \frac{24r(2 + r)}{9(2 - r)(4 - r)} + \frac{8(2 + r)^2}{9(2 - r)^2}\right].$$

(11)
Let $m_{Z_D} = 10$ MeV and $m_{h_D} = 8$ MeV, then $r = 0.64$. The coupling g_D is adjustable. Let $g_D = 0.005$ for example, then

$$
\sigma(Z_DZ_D \rightarrow h_Dh_D) \times v_{\text{rel}} = 1.1 \times 10^{-24} \text{ cm}^3/\text{s},
$$

which is 37 times the canonical $\sigma_0 \times v_{\text{rel}} = 3 \times 10^{-26} \text{ cm}^3/\text{s}$ for obtaining the correct dark-matter relic abundance of the Universe. This means that Z_D will be underproduced and forms only a small component of the observed dark matter, which will be mainly N as discussed in the next section. Note also that $g_D = 0.005$ and $m_{Z_D} = 10$ MeV imply that $v_D = 2$ GeV, which is perfectly consistent with Eq. (9).

$N\bar{N}$ annihilation: The annihilation $N\bar{N} \rightarrow Z_DZ_D$ is analogous to $e^-e^+ \rightarrow \gamma\gamma$. The cross section at rest \times relative velocity is given by

$$
\sigma(N\bar{N} \rightarrow Z_DZ_D) \times v_{\text{rel}} = \frac{g_N^4}{16\pi m_N^2}.
$$

For $m_N = 100$ GeV, this would be equal to $2\sigma_0 \times v_{\text{rel}} = 6 \times 10^{-26} \text{ cm}^3/\text{s}$ if $g_N = 0.225$. For the light mediator with $m_{Z_D} = 10$ MeV, Sommerfeld enhancement is expected. However, at the time of thermal freezeout, this effect is only $O(1)$ \[12, 13\]. The large enhancement will come at late times (because of the decreasing relative velocity of $N\bar{N}$ annihilation) and may be as large as a factor of 10^4. Whereas the fraction of $N\bar{N}$ which would annihilate is still negligible compared to the entire population, the production of an unstable mediator would allow its decay products (photons and electrons) to affect the CMB, thus ruling out (for s-wave annihilation) all models where the self-interactions are large enough to address the small-scale problems of structure formation, as pointed out recently \[8\].

Here the light mediator Z_D is stable, so it does not affect the CMB. As for h_D, it may also be produced at late times from Z_DZ_D annihilation, but this cross section has no Sommerfeld enhancement, so even though h_D decays to e^-e^+, its effect is small.
Thermal history: The dark fermion N is kept in thermal equilibrium with its light mediator Z_D which couples to the dark Higgs boson h_D. The bridge connecting the dark sector with the SM is the quartic scalar interaction term $\lambda_{hD} (\sigma^* \sigma)(\Phi^\dagger \Phi)$ of Eq. (3). Hence h_D is in thermal equilibrium with the SM Higgs boson h, and through the latter, all the SM particles. As the Universe cools below m_N, N freezes out with a relic abundance which accounts for most of the observed dark matter of the Universe. In structure formation, N has a large enough elastic cross section due to the exchange of its light mediator Z_D to explain the flatter density profiles of dwarf galaxies near their centers [9].

The light vector boson Z_D is stable and interacts with h_D to remain in thermal equilibrium until the Universe cools below m_{Z_D}. It then freezes out with a much smaller relic abundance than that of N. The dark Higgs boson h_D decays away quickly at early times through its mixing with the SM Higgs boson h. All these happen before the onset of BBN so that the standard predictions of all relevant cosmological parameters are unchanged. At late times, Z_D re-emerges from $N\bar{N}$ annihilation, but it is stable and will not disturb the CMB. The dark Higgs boson h_D also re-emerges from Z_DZ_D annihilation, but this cross section is not enhanced by the Sommerfeld effect, so even though h_D decays to e^-e^+, its effect on the CMB is harmless.

Phenomenological consequences: The model presented has a dark gauge $U(1)_D$ symmetry, with exact dark charge conjugation invariance. It has two stable particles, the dark fermion N with $m_N \sim 100$ GeV and a light vector mediator Z_D with $m_{Z_D} \sim 10$ MeV. As such, it explains the observed relic abundance of dark matter, as well as the cusp-core anomaly of dwarf galaxies. It avoids the strong constraints of decaying particles on the CMB [8]. The $U(1)_D$ symmetry is broken with $v_D \sim 2$ GeV as constrained by Eq. (9). The associated dark Higgs boson h_D is lighter than Z_D and mixes with the SM Higgs boson h.

In direct-search experiments, N is essentially invisible because it has only Z_D interactions.
which do not affect SM particles at tree level. As for Z_D, its relic abundance is suppressed and its mass is only about 10 MeV, so even though it interacts with SM particles through $h_D - h$ mixing, it is insensitive to present underground experiments. This would not be the case if $m_{Z_D} \sim 100$ GeV. In fact, it has been shown [13] that a light mediator would then be ruled out because the direct-detection bound excludes its decay before the onset of BBN. In indirect-search experiments, the $N\bar{N}$ annihilation is Sommerfeld-enhanced, but it only produces Z_D at tree level which cannot be detected. In one loop, SM particles may be produced, but the cross section is very small. Hence neither types of the conventional search for dark matter would have much promise in detecting such dark matter.

Since the light vector boson Z_D has no kinetic mixing with the photon because of the dark gauge conjugation symmetry, there is also no effect on experiments searching for it through this portal.

A possible way to discover h_D is from $h \rightarrow h_D h_D$ decay at an accelerator, and the subsequent decay $h_D \rightarrow e^- e^+$. The problem is that h_D has a lifetime of about 1 s, so the decay products are far downstream and not easily observed.

Remarks: The idea of self-interacting dark matter is faced with a conundrum [8]. If the interaction is strong enough to address the small-scale problems of structure formation, the production of the light mediator at late times would disrupt the cosmic microwave background because of the inherent Sommerfeld enhancement for s-wave annihilation and the apparently inescapable fact that the mediator must decay into electrons or photons. Its resolution in terms of a simple complete renormalizable model is the subject matter of this paper. Unfortunately, this model predicts null or negligible effects in all present attempts to discover the nature of dark matter. On the other hand, it may be the answer to the question of why dark matter has not been seen so far.
Acknowledgement: This work was supported in part by the U. S. Department of Energy Grant No. de-sc0008541.

References

[1] P. W. Higgs, Phys. Rev. Lett. 13, 508 (1964).
[2] Y. Farzan and A. Rezaei Akbarieh, JCAP 1210, 026 (2012).
[3] S. Baek, P. Ko, W.-I. Park, and E. Senaha, JHEP 1305, 036 (2013).
[4] A. DiFranzo, P. J. Fox, and T. M. P. Tait, JHEP 1604, 135 (2016).
[5] A. DiFranzo and G. Mohlabeng, JHEP 1701, 080 (2017).
[6] B. Holdom, Phys. Lett. 166B, 196 (1986).
[7] See for example J. Alexander et al., “Dark Sectors 2016 Workshop: Community Report,” arXiv:1608.08632 [hep-ph].
[8] T. Bringmann, F. Kahlhoefer, K. Schmidt-Hoberg, and P. Walia, Phys. Rev. Lett. 118, 141802 (2017).
[9] See for example J. L. Feng, M. Kaplinghat, H. Tu, and H.-B. Yu, JCAP 0907, 004 (2009).
[10] See for example F. Donato, G. Gentile, P. Salucci, C. Frigerio Martins, M. I. Wilkinson, G. Gilmore, E. K. Grebel, A. Koch, and R. Wyse, MNRAS 397, 1169 (2009).
[11] A. Sommerfeld, Ann. Phys. (Berlin) 403, 257 (1931).
[12] L. G. van den Aarssen, T. Bringmann, and C. Pfrommer, Phys. Rev. Lett. 109, 231301 (2012).
[13] S. Tulin, H.-B. Yu, and K. M. Zurek, Phys. Rev. D87, 115007 (2013).
[14] M. Kaplinghat, S. Tulin, and H.-B. Yu, Phys. Rev. D89, 035009 (2014).