SUPPORTING INFORMATION

The strength of reproductive isolating barriers in seed plants: insights from studies quantifying premating and postmating reproductive barriers over the past 15 years. Christie, K., L.S. Fraser, and D.B. Lowry. *Evolution* (2022).

Description of Isolating Barriers

Ecogeographic isolation: Ecogeographic isolation refers to allopatry or spatial segregation enforced by adaptation (Sobel et al. 2010; Schemske 2010). For example, if two lineages are adapted to different soil types and precipitation regimes, they may rarely co-occur because neither can survive in the other’s habitat. We included estimates of ecogeographic isolation at a broad scale (e.g., predicted range overlap as determined from climatic niche models) as well as habitat segregation at a fine scale (e.g., estimates of microhabitat isolation within areas of sympatry). We provide summary statistics for both sub-categories, as well as overall summary statistics for Ecogeographic Isolation in Table 1. Many authors used herbarium records or other databases of spatial occurrence data to determine the frequency of sympatric and allopatric occurrences. It is debatable whether simple occurrence data accurately reflect ecogeographic isolation or other forms of allopatry arising due to chance (Rincón-Barrado et al. 2021); yet, for the purposes of this study we included all such estimates of spatial segregation here. We used Equations RI4C (Sobel and Chen 2014) based on shared and unshared occurrences or regions of spatial overlap to calculate barrier strengths associated with ecogeographic isolation.

Immigrant inviability: Individuals migrating into foreign habitats they are not adapted to may suffer reduced survival or reduced reproductive output compared to local residents (Nosil et al. 2005). Reduced survival of migrants in foreign habitats may strengthen spatial segregation among maladapted migrants and locally adapted residents, reducing potential gene exchange. Here, we utilize a “local” vs. “foreign” definition of local adaptation (Kawecki and Ebert 2004) to quantify the strength of immigrant inviability as a reproductive barrier (Richards and Ortiz-Barrientos 2016). Specifically, we use Equation RI4A (Sobel and Chen 2014), substituting the heterospecific (H) and conspecific (C) parameters for F and L, respectively, where F represents the fitness of a foreign migrant, and L represents the fitness of a local resident. In contrast to ecogeographic isolation, in which authors typically quantified RI using observational or correlative methods, here authors quantified RI associated with immigrant inviability using reciprocal transplant experiments.
Phenology: Phenology refers to flowering time differences, specifically the temporal extent to which two taxa may be able to exchange genes through pollen transfer. Authors quantified RI arising from phenological differences both in the field and in common gardens, often providing a count of shared and unshared flowering days, or phenological distribution curves for both taxa. For many studies we extracted the shared and unshared portions of these phenological distributions using *ImageJ*. We used Equations RI\textsubscript{IC} (Sobel and Chen 2014) based on shared and unshared flowering times to calculate barrier strengths associated with phenological isolation.

Mating system differences: Self-fertilization can act as a reproductive barrier by shielding selfing taxa from heterospecific pollen (Brys et al. 2014). To calculate RI associated with mating system, we use Equation RI\textsubscript{IA}, where the heterospecific (H) parameter represents outcrossed offspring, and the conspecific (C) parameter represents selfed offspring. In most cases, authors obtained RI data by genotyping or phenotyping offspring; in a few cases, RI was inferred through differences in pollen transfer rates. Alternatively, authors sometimes quantified *Differential Pollen Production* as a proxy for mating system differences. When authors quantified multiple facets of mating system RI (e.g., observed selfing/outcrossing rates, as well as differences in pollen production between putative selfers and outcrossers), we took the average of these different components to represent overall RI associated with mating system.

Floral isolation: Floral isolation refers to compositional, behavioral, or mechanical mechanisms imposed by pollinators that reduce pollen transfer between plant taxa (Grant 1994; Mitchell 1994). Pollinator differences, differences in the preference or constancy of shared pollinators, and mechanical isolation can all contribute to floral isolation. Within this broad category, researchers used a variety of methods to gather RI data, including documenting differences in the richness or abundances of pollinator communities, differences in visitation rates or pollinator constancy, and by directly quantifying patterns of conspecific and heterospecific pollen transfer. Depending upon the data provided by primary authors, we used both Equations RI\textsubscript{IC} and RI\textsubscript{IA} (Sobel and Chen 2014) to calculate barrier strengths associated with floral isolation. Specifically, when primary authors provided data based on the number of floral visits from shared and unshared pollinators, we used Equation RI\textsubscript{IC} to calculate barrier strengths; when authors provided data for the number of heterospecific and conspecific pollinator transitions, or measures of conspecific and heterospecific pollen depositions, we used we used Equation RI\textsubscript{IA} to calculate barrier strengths associated with floral isolation.
Pollen-pistil interactions: Our estimate of RI associated with pollen-pistil interactions represents a variety of postmating prezygotic barriers. A competitive situation arises when a flower is simultaneously pollinated with both hetero- and conspecific pollen. Conspecific pollen precedence refers to instances in which conspecific pollen outcompetes heterospecific pollen and thus, successfully fertilizes ovules at a relatively higher rate (Broz and Bedinger 2021). Such gametic selection was typically assessed using mixed pollen crosses. Some authors also assessed postmating prezygotic RI in non-competitive (i.e., single donor crosses) by comparing pollen dynamics in conspecific compared to heterospecific crosses and quantifying pollen adhesion, pollen germination, pollen tube growth rates, or the likelihood of pollen tubes reaching the ovule. In all cases we used Equation RI_{4A} (Sobel and Chen 2014) based on conspecific and heterospecific fitness to calculate barrier strengths associated with pollen-pistil interactions.

Fruit production: Unsuccessful fruit set following heterospecific pollen transfer might reflect pollen-pistil interactions (i.e., unsuccessful fertilization), or early seed and fruit abortion resulting from developmental problems in hybrid crosses (i.e., intrinsic postzygotic isolation). Authors typically scored fruit production or fruit development in experimental crosses. We used Equation RI_{4A} (Sobel and Chen 2014) based on conspecific and heterospecific fitness to calculate barrier strengths associated with fruit production.

Seed production: Authors commonly quantified the probability of successful seed production (i.e., seed set), seed number, and seed weight resulting from experimental crosses. These metrics reflect intrinsic postzygotic RI associated with seed development in hybrid crosses. Sometimes authors only scored the production of viable seeds here. We used Equation RI_{4A} (Sobel and Chen 2014) based on conspecific and heterospecific fitness to calculate barrier strengths associated with seed production.

F1 germination: To assess the viability of F1 seeds, authors germinated seeds from F1s and intraspecific crosses and calculated the relative successful germination fraction of the F1s. We used Equation RI_{4A} (Sobel and Chen 2014) based on parental and hybrid fitness to calculate barrier strengths associated with F1 germination.

F1 viability: To assess the viability of F1s compared to intraspecific progeny, authors grew F1s in laboratory or greenhouse conditions and quantified survival, survival to flowering, growth rates or biomass production, and flower number. We used Equation RI_{4A} (Sobel and Chen 2014) based on parental and hybrid fitness to calculate barrier strengths associated with F1 viability.
F1 sterility: F1 sterility included measures of both male sterility (*F1 Pollen Sterility*) and female fertility (*F1 Ovule Fertility*). Pollen viability/sterility was ubiquitously assessed via staining methodologies (Kearns and Inouye 1993) aimed at differentiating viable from non-viable pollen. Authors largely assessed female fertility in F1s through backcrosses in which the F1 received parental pollen. When measures of both male and female sterility were provided, we took the average to calculate overall RI associated with F1 sterility. We used Equation RI_{AA} (Sobel and Chen 2014) based on parental and hybrid fitness to calculate barrier strengths for F1 sterility.

Extrinsic postzygotic isolation: Authors quantified the magnitude of extrinsic postzygotic isolation (i.e., environmentally dependent selection against hybrids) by comparing the fitness (survival, reproductive output, or multiplicative fitness metric) of parental species growing in their native habitats in relation to hybrids occurring in these same habitats (e.g., Melo et al. 2014). F1 hybrids could occupy parental habitats either through heterospecific pollen reaching resident maternal plants and subsequent localized seed dispersal, resulting in hybrids derived from resident ovule mothers and migrant pollen fathers. Alternatively, although seemingly less likely, hybrids could also occur in parental habitats as a result of seed dispersal, in which a hybrid seed produced by a foreign mother and local pollen was transported into back into the native habitat of the pollen donor. In cases when authors assessed the fitness of hybrids resulting from both directions of the cross, we took the average of both values. We calculated barrier strengths associated with extrinsic postzygotic RI using a formulation of Equation RI_{AA} (Sobel and Chen 2014), where the conspecific (C) parameter represented conspecific or parental fitness at its home site, and the heterospecific (H) parameter represented F1 hybrid fitness at the same site. In the few cases in which authors also assessed this barrier in F2 hybrids, we calculated an average barrier strength associated with both F1s and F2s.
Supplementary figures

Figure S1: Pairwise comparison of the strengths of 12 reproductive isolating barriers. Black points indicate mean barrier strengths (estimated marginal means), gray bars represent 95% confidence intervals for barrier strength, and blue arrows represent comparisons among barriers. Barriers without overlapping blue arrows are significantly different ($p < 0.05$; Tukey’s HSD correction for multiple comparisons). Barrier strengths reflect the absolute strength of each barrier independent of the sequential action of multiple barriers or potential correlations or non-independence among barriers.
Figure S2: Pairwise p-values for 12 reproductive barriers indicating which individual isolating barriers are significantly different from one another. P-value thresholds are arranged along the x-axis by decreasing statistical support; isolating barriers are ordered along the y-axis by mean barrier strength. Pairs of isolating barriers are connected by blue vertical lines; pairwise comparisons with p-values < 0.05 have significantly different barrier strengths after correcting for multiple comparisons (Tukey’s HSD).
Figure S3: Density plots of barrier strengths for 12 reproductive isolating barriers as assessed in 89 flowering plant taxa. Barrier strengths are estimated using Sobel and Chen RI metrics and range from negative 1 (complete disassortative mating or heterosis) to 1 (complete RI). For each isolating barrier, an individual panel summarizes barrier strength by taxa type; cytotypes, ecotypes, and species depicted in different colors. Subspecies (n = 2 pairs) are grouped with ecotypes as both represent groupings of populations within species.
Description of supplementary tables

Table S1: *TableS1_raw_RI_data_FINAL.xlsx*. Metadata for the 89 taxa pairs from 70 publications used in this analysis. Numerical values for isolating barriers provide the raw data used in calculations of RI barrier strengths. Raw data for shared and unshared reproductive opportunities, and conspecific and heterospecific mating attempts, are provided for premating barriers. Conspecific and heterospecific fitness or crossing success are provided for postmating barriers. Values highlighted in green reflect Sobel and Chen RI values, as calculated and presented by primary authors. The “Notes” column provides details for how data were extracted, and if necessary, how RI values were calculated.

Table S2: *TableS2_SC_RI_data_FINAL.xlsx*. RI data for the 89 taxa pairs from 70 publications used in this analysis. Numerical values reflect the strength of individual isolating barriers, as calculated using Sobel and Chen (2014) RI metrics. These data were used for all analyses in the manuscript.
Supplementary References – references not cited in the main manuscript

Brys, R., A. V. Broeck, J. Mergeay, and H. Jacquemyn. 2014. The contribution of mating system variation to reproductive isolation in two closely related Centaurium species (Gentianaceae) with a generalized flower morphology. Evolution 68:1281–1293.

Kawecki, T. J., and D. Ebert. 2004. Conceptual issues in local adaptation. Ecol. Lett. 7:1225–1241.

Kearns, C. A., and D. W. Inouye. 1993. Techniques for pollination biologists. University press of Colorado.

Mitchell, R. J. 1994. Effects of floral traits, pollinator visitation, and plant size on Ipomopsis aggregata fruit production. Am. Nat. 143:870–889. University of Chicago Press.

Rincón-Barrado, M., S. Olsson, T. Villaverde, B. Moncalvillo, L. Pokorný, A. Forrest, R. Riina, and I. Sanmartín. 2021. Ecological and geological processes impacting speciation modes drive the formation of wide-range disjunctions within tribe Putorieae (Rubiaceae). J. Syst. Evol.
Supplementary References – data from these publications used in analyses

Arida, B. L., G. Scopece, R. M. Machado, A. P. Moraes, E. Forni-Martins, and F. Pinheiro. 2021. Reproductive barriers and fertility of two neotropical orchid species and their natural hybrid. Evol. Ecol. 35:41–64. Springer.

Borchsenius, F., T. Lozada, and J. T. Knudsen. 2016. Reproductive isolation of sympatric forms of the understorey palm Geonoma macrostachys in western Amazonia. Bot. J. Linn. Soc. 182:398–410. Oxford University Press.

Briscoe Runquist, R. D., E. Chu, J. L. Iverson, J. C. Kopp, and D. A. Moeller. 2014. Rapid evolution of reproductive isolation between incipient outcrossing and selfing Clarkia species. Evolution 68:2885–2900. Wiley Online Library.

Brys, R., A. V. Broeck, J. Mergeay, and H. Jacquemyn. 2014. The contribution of mating system variation to reproductive isolation in two closely related Centaurium species (Gentianaceae) with a generalized flower morphology. Evolution 68:1281–1293. Wiley Online Library.

Brys, R., J. Van Cauwenberghe, and H. Jacquemyn. 2016. The importance of autonomous selfing in preventing hybridization in three closely related plant species. J. Ecol. 104:601–610. Wiley Online Library.

Burge, D. O., R. Hopkins, Y.-H. E. Tsai, and P. S. Manos. 2013. Limited hybridization across an edaphic disjunction between the gabbro-endemic shrub Ceanothus roderickii (Rhamnaceae) and the soil-generalist Ceanothus cuneatus. Am. J. Bot. 100:1883–1895. Wiley Online Library.

Cahenzli, F., C. Bonetti, and A. Erhardt. 2018. Divergent strategies in pre-and postzygotic reproductive isolation between two closely related Dianthus species. Evolution 72:1851–1862. Wiley Online Library.
Cai, Z., L. Zhou, N.-N. Ren, X. Xu, R. Liu, L. Huang, X.-M. Zheng, Q.-L. Meng, Y.-S. Du, and M.-X. Wang. 2019. Parallel speciation of wild rice associated with habitat shifts. Mol. Biol. Evol. 36:875–889. Oxford University Press.

Campbell, D. R., and N. M. Waser. 2001. Genotype-by-environment interaction and the fitness of plant hybrids in the wild. Evolution 55:669–676. Wiley Online Library.

Carrió, E., and J. Güemes. 2014. The effectiveness of pre-and post-zygotic barriers in avoiding hybridization between two snapdragons (Antirrhinum L.: Plantaginaceae). Bot. J. Linn. Soc. 176:159–172. Oxford University Press.

Castro, M., J. Loureiro, B. C. Husband, and S. Castro. 2020. The role of multiple reproductive barriers: strong post-pollination interactions govern cytotype isolation in a tetraploid–octoploid contact zone. Ann. Bot. 126:991–1003. Oxford University Press US.

Chari, J., and P. Wilson. 2001. Factors limiting hybridization between Penstemon spectabilis and Penstemon centranthifolius. Can. J. Bot. 79:1439–1448. NRC Research Press Ottawa, Canada.

Chen, G. F. 2013. Sexual isolation in two bee-pollinated Costus (Costaceae). Plant Reprod. 26:3–16. Springer.

Christie, K., and S. Y. Strauss. 2019. Reproductive isolation and the maintenance of species boundaries in two serpentine endemic Jewelflowers. Evolution 73:1375–1391. Wiley Online Library.

Coetzee, A., C. N. Spottiswoode, and C. L. Seymour. 2020. Post-pollination barriers enable coexistence of pollinator-sharing ornithophilous Erica species. J. Plant Res. 133:873–881. Springer.

Costa, C. B. N., S. M. Lambert, E. L. Borba, and L. P. De Queiroz. 2007. Post-zygotic reproductive isolation between sympatric taxa in the Chamaecrista desvauxii complex (Leguminosae–Caesalpinioideae). Ann. Bot. 99:625–635. Oxford University Press.
Cuevas, E., J. Espino, and I. Marques. 2018. Reproductive isolation between Salvia elegans and S. fulgens, two hummingbird-pollinated sympatric sages. Plant Biol. 20:1075–1082. Wiley Online Library.

Dell’Olivo, A., M. E. Hoballah, T. Gübitz, and C. Kuhlemeier. 2011. Isolation barriers between Petunia axillaris and Petunia integrifolia (Solanaceae). Evol. Int. J. Org. Evol. 65:1979–1991. Wiley Online Library.

Emms, S. K., and M. L. Arnold. 1997. The effect of habitat on parental and hybrid fitness: transplant experiments with Louisiana irises. Evolution 51:1112–1119. Wiley Online Library.

Fachardo, A. L. S., and M. R. Sigrist. 2020. Pre-zygotic reproductive isolation between two synchronopatric Opuntia (Cactaceae) species in the Brazilian Chaco. Plant Biol. 22:487–493. Wiley Online Library.

Gervasi, D. D., M.-A. Selosse, M. Sauve, W. Francke, N. J. Vereecken, S. Cozzolino, and F. P. Schiestl. 2017. Floral scent and species divergence in a pair of sexually deceptive orchids. Ecol. Evol. 7:6023–6034. Wiley Online Library.

Hersch-Green, E. I. 2012. Polyploidy in Indian paintbrush (Castilleja; Orobanchaceae) species shapes but does not prevent gene flow across species boundaries. Am. J. Bot. 99:1680–1690. Wiley Online Library.

Hipperson, H., L. T. Dunning, W. J. Baker, R. K. Butlin, I. Hutton, A. S. T. Papadopulos, C. M. Smadja, T. C. Wilson, C. Devaux, and V. Savolainen. 2016. Ecological speciation in sympatric palms: 2. Pre-and post-zygotic isolation. J. Evol. Biol. 29:2143–2156. Wiley Online Library.

Ishizaki, S., T. Abe, and M. Ohara. 2013. Mechanisms of reproductive isolation of interspecific hybridization between Trillium camschatcense and T. tschonoskii (Melanthiaceae). Plant Species Biol. 28:204–214. Wiley Online Library.
Jacquemyn, H., H. D. Kort, A. V. Broeck, and R. Brys. 2018. Immigrant and extrinsic hybrid seed inviability contribute to reproductive isolation between forest and dune ecotypes of Epipactis helleborine (Orchidaceae). Oikos 127:73–84. Wiley Online Library.

Johnson, M. A., D. K. Price, J. P. Price, and E. A. Stacy. 2015. Postzygotic barriers isolate sympatric species of Cyrtandra (Gesneriaceae) in Hawaiian montane forest understories. Am. J. Bot. 102:1870–1882. Wiley Online Library.

Karrenberg, S., X. Liu, E. Hallander, A. Favre, J. Herforth-Rahmé, and A. Widmer. 2019. Ecological divergence plays an important role in strong but complex reproductive isolation in campions (Silene). Evolution 73:245–261. Wiley Online Library.

Kay, K. M. 2006. Reproductive isolation between two closely related hummingbird pollinated neotropical gingers. Evolution 60:538–552. Wiley Online Library.

Keller, B., J. M. de Vos, A. N. Schmidt-Lebuhn, J. D. Thomson, and E. Conti. 2016. Both morph-and species-dependent asymmetries affect reproductive barriers between heterostyloous species. Ecol. Evol. 6:6223–6244. Wiley Online Library.

Keller, B., R. Ganz, E. Mora-Carrera, M. D. Nowak, S. Theodoridis, K. Koutroumpa, and E. Conti. 2021. Asymmetries of reproductive isolation are reflected in directionalities of hybridization: integrative evidence on the complexity of species boundaries. New Phytol. 229:1795–1809. Wiley Online Library.

Koelling, V. A., and R. Mauricio. 2010. Genetic factors associated with mating system cause a partial reproductive barrier between two parapatric species of Leavenworthia (Brassicaceae). Am. J. Bot. 97:412–422. Wiley Online Library.

Liang, H., Z.-X. Ren, Z.-B. Tao, Y.-H. Zhao, P. Bernhardt, D.-Z. Li, and H. Wang. 2018. Impact of pre-and post-pollination barriers on pollen transfer and reproductive isolation among three sympatric Pedicularis (Orobanchaceae) species. Plant Biol. 20:662–673. Wiley Online Library.
Liao, W.-J., B.-R. Zhu, Y.-F. Li, X.-M. Li, Y.-F. Zeng, and D.-Y. Zhang. 2019. A comparison of reproductive isolation between two closely related oak species in zones of recent and ancient secondary contact. BMC Evol. Biol. 19:1–10. BioMed Central.

Lowe, A. J., and R. J. Abbott. 2004. Reproductive isolation of a new hybrid species, Senecio eboracensis Abbott & Lowe (Asteraceae). Heredity 92:386–395. Nature Publishing Group.

Lowry, D. B., R. C. Rockwood, and J. H. Willis. 2008. Ecological reproductive isolation of coast and inland races of Mimulus guttatus. Evol. Int. J. Org. Evol. 62:2196–2214. Wiley Online Library.

Ma, Y., W. Xie, X. Tian, W. Sun, Z. Wu, and R. Milne. 2014. Unidirectional hybridization and reproductive barriers between two heterostylos primrose species in north-west Yunnan, China. Ann. Bot. 113:763–775. Oxford University Press.

Ma, Y.-P., W.-J. Xie, W.-B. Sun, and T. Marczewski. 2016. Strong reproductive isolation despite occasional hybridization between a widely distributed and a narrow endemic Rhododendron species. Sci. Rep. 6:1–11. Nature Publishing Group.

Marques, I., A. Rosselló-Graell, D. Draper, and J. M. Iriondo. 2007. Pollination patterns limit hybridization between two sympatric species of Narcissus (Amaryllidaceae). Am. J. Bot. 94:1352–1359. Wiley Online Library.

Martin, N. H., and J. H. Willis. 2007. Ecological divergence associated with mating system causes nearly complete reproductive isolation between sympatric Mimulus species. Evolution 61:68–82. Wiley Online Library.

Melo, M. C., A. Grealy, B. Brittain, G. M. Walter, and D. Ortiz-Barrientos. 2014. Strong extrinsic reproductive isolation between parapatric populations of an Australian groundsel. New Phytol. 203:323–334. Wiley Online Library.

Miglia, K. J., E. D. Mcarthur, W. S. Moore, H. Wang, J. H. Graham, and D. C. Freeman. 2005. Nine-year reciprocal transplant experiment in the gardens of the basin and mountain big sagebrush
(Artemisia tridentata: Asteraceae) hybrid zone of Salt Creek Canyon: the importance of multiple-year tracking of fitness. Biol. J. Linn. Soc. 86:213–225. Oxford University Press.

Misiewicz, T. M., T. S. Simmons, and P. V. Fine. 2020. The contribution of multiple barriers to reproduction between edaphically divergent lineages in the Amazonian tree Protium subserratum (Burseraceae). Ecol. Evol. 10:6646–6663. Wiley Online Library.

Munguía-Rosas, M. A., and M. E. Jácome-Flores. 2020. Reproductive isolation between wild and domesticated chaya (Cnidoscolus aconitifolius) in sympatry. Plant Biol. 22:932–938. Wiley Online Library.

Murúa, M., A. Espíndola, A. González, and R. Medel. 2017. Pollinators and crossability as reproductive isolation barriers in two sympatric oil-rewarding Calceolaria (Calceolariaceae) species. Evol. Ecol. 31:421–434. Springer.

Ostevik, K. L., R. L. Andrew, S. P. Otto, and L. H. Rieseberg. 2016. Multiple reproductive barriers separate recently diverged sunflower ecotypes. Evolution 70:2322–2335. Wiley Online Library.

Paudel, B. R., M. Burd, M. Shrestha, A. G. Dyer, and Q.-J. Li. 2018. Reproductive isolation in alpine gingers: How do coexisting Roscoea (R. purpurea and R. tumjensis) conserve species integrity? Evolution 72:1840–1850. Wiley Online Library.

Pegoraro, L., D. Cafasso, R. Rinaldi, S. Cozzolino, and G. Scopece. 2016. Habitat preference and flowering-time variation contribute to reproductive isolation between diploid and autotetraploid Anacamptis pyramidalis. J. Evol. Biol. 29:2070–2082. Wiley Online Library.

Pellegrino, G., F. Bellusci, and A. Musacchio. 2010. Strong post-pollination pre-zygotic isolation between sympatric, food-deceptive Mediterranean orchids. Sex. Plant Reprod. 23:281–289. Springer.

Ramírez-Aguirre, E., S. Martén-Rodríguez, G. Quesada-Avila, M. Quesada, Y. Martínez-Díaz, K. Oyama, and F. J. Espinosa-García. 2019. Reproductive isolation among three sympatric
Achimenes species: pre-and post-pollination components. Am. J. Bot. 106:1021–1031. Wiley Online Library.

Ramsey, J., H. D. Bradshaw Jr, and D. W. Schemske. 2003. Components of reproductive isolation between the monkeyflowers Mimulus lewisii and M. cardinalis (Phrymaceae). Evolution 57:1520–1534. Wiley Online Library.

Richards, T. J., and D. Ortiz-Barrientos. 2016. Immigrant inviability produces a strong barrier to gene flow between parapatric ecotypes of Senecio lautus. Evolution 70:1239–1248. Wiley Online Library.

Roccaforte, K., S. E. Russo, and D. Pilson. 2015. Hybridization and reproductive isolation between diploid Erythronium mesochoreum and its tetraploid congener E. albidum (Liliaceae). Evolution 69:1375–1389. Wiley Online Library.

Sambatti, J. B., J. L. Strasburg, D. Ortiz-Barrientos, E. J. Baack, and L. H. Rieseberg. 2012. Reconciling extremely strong barriers with high levels of gene exchange in annual sunflowers. Evol. Int. J. Org. Evol. 66:1459–1473. Wiley Online Library.

Sedeek, K. E., G. Scopece, Y. M. Staedler, J. Schönenerberger, S. Cozzolino, F. P. Schiestl, and P. M. Schlüter. 2014. Genic rather than genome-wide differences between sexually deceptive Ophrys orchids with different pollinators. Mol. Ecol. 23:6192–6205. Wiley Online Library.

Sobel, J. M., and M. A. Streisfeld. 2015. Strong premating reproductive isolation drives incipient speciation in Mimulus aurantiacus. Evolution 69:447–461. Wiley Online Library.

Stanton, K., C. M. Valentin, M. E. Wijnen, S. Stutstman, J. J. Palacios, and A. M. Cooley. 2016. Absence of postmating barriers between a selfing vs. outcrossing Chilean Mimulus species pair. Am. J. Bot. 103:1030–1040. Wiley Online Library.

Sun, M., P. M. Schlüter, K. Gross, and F. P. Schiestl. 2015. Floral isolation is the major reproductive barrier between a pair of rewarding orchid sister species. J. Evol. Biol. 28:117–129. Wiley Online Library.
Tao, Z.-B., Z.-X. Ren, P. Bernhardt, H. Liang, H.-D. Li, Y.-H. Zhao, H. Wang, and D.-Z. Li. 2018. Does reproductive isolation reflect the segregation of color forms in Spiranthes sinensis (Pers.) Ames complex (Orchidaceae) in the Chinese Himalayas? Ecol. Evol. 8:5455–5469. Wiley Online Library.

Tong, Z.-Y., and S.-Q. Huang. 2016. Pre-and post-pollination interaction between six co-flowering Pedicularis species via heterospecific pollen transfer. New Phytol. 211:1452–1461. Wiley Online Library.

Volis, S., Y.-H. Zhang, T. Deng, M. Dorman, M. Blecher, and R. J. Abbott. 2019. Divergence and reproductive isolation between two closely related allopatric Iris species. Biol. J. Linn. Soc. 127:377–389. Oxford University Press UK.

Wang, H., E. D. McArthur, S. C. Sanderson, J. H. Graham, and D. C. Freeman. 1997. Narrow hybrid zone between two subspecies of big sagebrush (Artemisia tridentata: Asteraceae). IV. Reciprocal transplant experiments. Evolution 51:95–102. Wiley Online Library.

Wang, L.-L., C. Zhang, B. Tian, X.-D. Sun, W. Guo, T.-F. Zhang, Y.-P. Yang, and Y.-W. Duan. 2015. Reproductive isolation is mediated by pollen incompatibility in sympatric populations of two Arnebia species. Ecol. Evol. 5:5838–5846. Wiley Online Library.

Whitehead, M. R., and R. Peakall. 2014. Pollinator specificity drives strong prepollination reproductive isolation in sympatric sexually deceptive orchids. Evolution 68:1561–1575. Wiley Online Library.

Xie, Y., X. Zhu, Y. Ma, J. Zhao, L. Li, and Q. Li. 2017. Natural hybridization and reproductive isolation between two Primula species. J. Integr. Plant Biol. 59:526–530. Wiley Online Library.

Xu, S., P. M. Schlüter, G. Scopece, H. Breitkopf, K. Gross, S. Cozzolino, and F. P. Schiestl. 2011. Floral isolation is the main reproductive barrier among closely related sexually deceptive orchids. Evol. Int. J. Org. Evol. 65:2606–2620. Wiley Online Library.
Yang, C.-F., R. W. Gituru, and Y.-H. Guo. 2007. Reproductive isolation of two sympatric louseworts, Pedicularis rhinanthoides and Pedicularis longiflora (Orobanchaceae): how does the same pollinator type avoid interspecific pollen transfer? Biol. J. Linn. Soc. 90:37–48. Oxford University Press.

Young, N. D. 1996. An analysis of the causes of genetic isolation in two Pacific Coast iris hybrid zones. Can. J. Bot. 74:2006–2013. NRC Research Press Ottawa, Canada.

Zhang, J.-J., B. R. Montgomery, and S.-Q. Huang. 2016. Evidence for asymmetrical hybridization despite pre-and post-pollination reproductive barriers between two Silene species. AoB Plants 8. Oxford Academic.

Zhang, W., and J. Gao. 2017. Multiple factors contribute to reproductive isolation between two co-existing Habenaria species (Orchidaceae). PLoS One 12:e0188594. Public Library of Science San Francisco, CA USA.

Zhao, W., J. Meng, B. Wang, L. Zhang, Y. Xu, Q.-Y. Zeng, Y. Li, J.-F. Mao, and X.-R. Wang. 2014. Weak crossability barrier but strong juvenile selection supports ecological speciation of the hybrid pine Pinus densata on the Tibetan plateau. Evolution 68:3120–3133. Wiley Online Library.