This is a repository copy of *Dysbiosis in the Oral Microbiomes of anti-CCP Positive Individuals at Risk of Developing Rheumatoid Arthritis*.

White Rose Research Online URL for this paper:
http://eprints.whiterose.ac.uk/164826/

Version: Accepted Version

Article:
Cheng, Z, Do, TD orcid.org/0000-0002-5668-2181, Mankia, K et al. (7 more authors) (2020) *Dysbiosis in the Oral Microbiomes of anti-CCP Positive Individuals at Risk of Developing Rheumatoid Arthritis*. Annals of the Rheumatic Diseases. ISSN 0003-4967

https://doi.org/10.1136/annrheumdis-2020-216972

© Author(s) (or their employer(s)) 2020. This manuscript version is made available under the CC BY-NC 4.0 license https://creativecommons.org/licenses/by-nc/4.0/

Reuse
This article is distributed under the terms of the Creative Commons Attribution-NonCommercial (CC BY-NC) licence. This licence allows you to remix, tweak, and build upon this work non-commercially, and any new works must also acknowledge the authors and be non-commercial. You don't have to license any derivative works on the same terms. More information and the full terms of the licence here:
https://creativecommons.org/licenses/

Takedown
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.
Dysbiosis in the Oral Microbiomes of anti-CCP Positive Individuals at Risk of Developing Rheumatoid Arthritis

Zijian Cheng,1,2,3 Thuy Do,1 Kulveer Mankia,4,5 Josephine Meade,1 Laura Hunt,4,5 Val Clerehugh,6 Alastair Speirs,7 Aradhna Tugnait,6 Paul Emery,4,5 Deirdre Ann Devine1*(corresponding)

1. Division of Oral Biology, School of Dentistry, University of Leeds, UK
2. The Affiliated Stomatology Hospital, Zhejiang University School of Medicine, China
3. Key Laboratory of Oral Biomedical Research of Zhejiang Province, China
4. Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds, UK
5. NIHR Leeds Biomedical Research Centre, Leeds Teaching Hospitals NHS Trust, Leeds, UK
6. Department of Restorative Dentistry, School of Dentistry, University of Leeds, UK
7. Leeds Dental Institute, Leeds Teaching Hospitals NHS Trust, Leeds, UK

*Corresponding author: Deirdre Ann Devine
E-mail address: d.a.devine@leeds.ac.uk

Wellcome Trust Brenner Building, St. James’ University Hospital, Leeds, UK
ABSTRACT

Objectives

An increased prevalence of periodontitis and perturbation of the oral microbiome has been identified in rheumatoid arthritis (RA) patients. The periodontal pathogen Porphyromonas gingivalis may cause local citrullination of proteins, potentially triggering anti-citrullinated protein antibody production. However, it is not known if oral dysbiosis precedes the onset of clinical arthritis. This study comprehensively characterised the oral microbiome in anti-cyclic citrullinated peptide (anti-CCP) positive at-risk individuals without clinical synovitis (CCP+ at-risk).

Methods

Subgingival plaque was collected from periodontally healthy and diseased sites in 48 CCP+ at-risk, 26 early RA and 32 asymptomatic healthy control (HC) individuals. DNA libraries were sequenced on the Illumina Hiseq 3000 platform. Taxonomic profile and functional capability of the subgingival microbiome were compared between groups.

Results

At periodontally healthy sites, CCP+ at-risk individuals had significantly lower microbial richness compared with HC and early RA groups (P=0.004 and 0.021). Microbial community alterations were found at phylum, genus and species levels. A large proportion of the community differed significantly in membership (523 species; 35.6%) and structure (575 species; 39.1%) comparing CCP+ at-risk and HC groups. Certain core species, including P. gingivalis, had higher relative abundance in the CCP+ at-risk group. Seventeen COG functional units were significantly over-represented in the CCP+ at-risk group compared with HC (adjusted P value <0.05).

Conclusions

Anti-CCP positive at-risk individuals have dysbiotic subgingival microbiomes and increased abundance of P. gingivalis compared with controls. This supports the hypothesis that the oral microbiome and specifically P. gingivalis are important in RA initiation.

(246 words)

Keywords

Rheumatoid arthritis; oral microbiome; dysbiosis, periodontitis; Porphyromonas gingivalis
INTRODUCTION

Individuals at-risk of rheumatoid arthritis (RA) often have anti-citrullinated protein antibodies (ACPA) well before the development of joint inflammation.[1, 2] Where the initiation of RA-autoimmunity occurs is a critical question with significant implications for future preventative strategies. Recent data have implicated mucosal sites and the local microbiome and there has been considerable focus on the role of the oral mucosa and periodontium.[3, 4]

There is an increased prevalence of periodontitis in patients with both early and established RA.[5] The subgingival microbiota in periodontitis, in particular the periodontal pathogens Porphyromonas gingivalis and Aggregatibacter actinomycetemcomitans, may play a critical role in RA pathogenesis; P. gingivalis by contributing to ACPA production through citrullination of proteins via its peptidylarginine deiminase enzyme (PAD), and A. actinomycetemcomitans by inducing leukotoxic hypercitrullination.[6-8]. We recently reported increased prevalence of periodontal inflammation and P. gingivalis in anti-cyclic citrullinated peptide (anti-CCP) positive at-risk individuals without arthritis (CCP+ at-risk), supporting the concept that periodontal inflammation and P. gingivalis precede joint inflammation, as important risk factors in RA initiation.[9] A. actinomycetemcomitans did not emerge as similarly significantly associated with at risk individuals; A. actinomycetemcomitans is particularly important in severe generalised periodontitis,[10] which we did not see in our cohort.

Periodontitis is a complex disease, mediated by consortia of co-operating bacteria and the host responses to them. While P. gingivalis is a keystone pathogen that increases the risk of periodontitis, it depends upon the activities of other members of the subgingival microbiome to establish within the community and express full virulence. Thus, to fully understand the role of periodontitis in RA pathogenesis, it is important to study the entire bacterial community. Although certain taxa, and compositional and functional alterations were identified in RA-associated oral microbiomes,[11-13] it is difficult to clarify the cause and effect of these findings once clinical arthritis has developed. Furthermore, RA treatment is also likely to influence the oral microbiome.[12]

We therefore sought to comprehensively characterise the oral microbiome in CCP+ at-risk individuals without clinical arthritis; we aimed to report differences in the metagenomes, characterised by a shotgun metagenomic approach, sampled from periodontally healthy and diseased subgingival sites of CCP+ at-risk individuals, early RA patients and healthy controls.

MATERIALS AND METHODS
Healthy controls (HC), CCP+ at-risk individuals with musculoskeletal symptoms but no clinical synovitis and anti-CCP positive early RA patients (within the first 3 months of disease-modifying anti-rheumatic drug, DMARD, therapy) were recruited. The three groups were balanced for age, sex, and smoking status (Table S1). Periodontal assessments and subgingival plaque sampling were performed by three experienced dentists. According to the latest Classification of Periodontal Diseases and Conditions, periodontally healthy sites were defined as sites with ≤3 mm probing depth and no bleeding on probing. Diseased sites were those with ≥ 4 mm probing depth and ≥ 2 mm clinical attachment loss (CAL). Subgingival plaque samples from a maximum of three healthy and three diseased sites were analysed for each participant using shotgun metagenomics sequencing (Illumina Hiseq-3000). Microbial diversity and community composition were compared between three groups. Periodontitis is a dysbiotic disease, with significant differences comparing microbiomes from healthy and diseased subgingival sites. The term dysbiosis is also used here to describe microbiomes from healthy sites that are distinct in composition from those of healthy sites from the HC group. Further details are given in the online supplementary material.

RESULTS

Microbial diversity

Within periodontally healthy sites, the CCP+ at-risk group showed a significantly lower Abundance Coverage Estimator (ACE) value compared with the HC group (P=0.004) and the early RA group (P=0.021), indicating decreased estimated microbial richness of the subgingival microbiome (Figure 1).

Bacterial community composition

Overall, 28 bacterial phyla, 593 genera and 1472 species were identified. Significantly altered community composition was found in the CCP+ at-risk group at different taxonomic levels. In periodontally healthy sites, phylum Synergistetes was found with significantly higher relative abundance in the CCP+ at-risk group compared with other groups (online supplementary Figure S1a).

Among the top 20 most predominant genera in periodontally healthy sites (Figure 2a), Bifidobacterium and Porphyromonas were present with significantly increased relative abundance in the CCP+ at-risk group (P = 0.027, 0.033). In pairwise comparison, 523 species (35.6% of the community) differed significantly in membership and 575 species (39.1%) differed significantly in structure, comparing the CCP+ at-risk and HC groups. Less difference was found in the community membership (62 species, 4.2%) and structure (42 species, 2.9%) comparing the early RA and HC groups (Figure 3a). Certain significant differences were also found between groups in periodontally diseased sites, e.g. the abundance of phylum Chlorobi was increased in the HC group compared with other groups (online...
supplementary Figure 1b) (corrected $P < 0.05$). The genus *Porphyromonas* was significantly higher in the CCP+ at-risk group compared with other groups ($P = 0.015$), and *Capnocytophaga*, *Cardiobacterium*, *Neisseria* and *Streptococcus* were significantly more abundant in the early RA group ($P = 0.009, 0.003, 0.024, 0.003$) (Figure 2b). At species level, only 1.4% and 5.7% of the microbial community differed significantly in membership and structure between the CCP+ at-risk and HC groups (Figure 3b).

Core microbiome

The core microbiome, of which the species were present in at least 80% of the samples in each group, was used to compare stable associations between groups. Within periodontally healthy sites (Figure 4a), 81 species were identified in the core microbiome of all study participants. The core microbiome from the CCP+ at-risk group was much less diverse than that of the HC or early RA group. There was no core species exclusively belonging to the CCP+ group, unlike the HC and early RA groups which had 35 and 79 exclusive core species, respectively. In the periodontally diseased sites (Figure 4b), 42 species were found in the core microbiome of all groups. Importantly, 6, 2 and 190 species were identified as uniquely belonging to the HC, CCP+ at-risk and early RA core microbiomes, respectively (online supplementary Table S2-S3). Certain species were significantly more abundant in each group compared with the other groups within periodontally healthy or diseased sites (online supplementary Table S4). In particular, within both periodontally healthy and diseased sites, *Arthrobacter chlorophenolicus* and *P. gingivalis* were significantly more abundant in CCP+ at-risk individuals.

Bacterial co-occurrence networks in subgingival microbiomes

In periodontally healthy sites, Spearman’s correlation analysis identified 347, 83 and 1024 edges as strong ($q < -0.7$ or > 0.7) and significant (corrected $P < 0.01$) pairwise correlations between nodes (species) in each the HC, CCP+ at-risk and early RA groups, respectively (online supplementary Figure S2). In periodontally diseased sites, there were 49, 139 and 365 edges identified in HC, CCP+ at-risk and early RA groups, respectively (online supplementary Figure S3). The edge/node ratio (density) of the network represents the number of co-occurrence instances in a microbial community; in the early RA group this was higher than that of other groups in both periodontally healthy and diseased sites, reflecting a dysbiosis of the subgingival microbiome in early RA patients (online supplementary Table S5).

To gain deeper insights into the differences between groups, the hubs in each network were identified by ranking the top 20 nodes with the MCC algorithm. In the periodontally healthy sites (Figure 5a), the cluster of *Neisseria* spp. by which the network of HC group was dominated, was not found in the hubs of other groups. Species including *Filifactor alocis*, *Campylobacter rectus*, *Porphyromonas*
Endodontalis and Treponema vincentii formed the network hubs for both HC and CCP + at-risk groups, while the early RA group showed entirely different network hubs. Within the periodontally diseased sites (Figure 5b), Actinomyces viscosus and Actinomyces urogenitalis were identified in the network hubs of all groups indicating an implication in the development of periodontal disease irrespective of RA status. Intriguingly, the periodontal pathogen A. actinomycetemcomitans, which may also initiate protein citrullination in RA, was one of the hubs of the early RA group.

Functional capabilities of subgingival plaque microbiomes

Abundances of 3034 clusters of orthologous genes (COGs) functional units were normalized and compared between groups. Within periodontally healthy sites, 17 functional units were significantly over-represented in the CCP+ at-risk group compared with the HC group and 5 functional units were significantly over-represented in the early RA group compared with the HC group (online supplementary Table S6) (corrected $P < 0.05$). In periodontally diseased sites, significant differences were found comparing the early RA group with the HC and CCP+ at-risk groups (online supplementary Table S7). The functional unit of “PAD and related enzymes” were detected in 65.6%, 68.8% and 69.2% of samples in the HC, CCP+ at-risk and early RA groups from periodontally healthy sites and in 55.6%, 69.2% and 56.3% of each group from diseased sites. No significant difference was found in the normalized counts between groups either in periodontally healthy or diseased sites (Figure 6).

DISCUSSION

Although intensively studied, the mechanisms of disease initiation and development of autoimmunity in RA are still unclear.[16] ACPA are highly specific for RA and can be detected years before joint inflammation, suggesting a preclinical phase of RA, which could be a window of opportunity for disease prevention.[17] We previously showed that periodontitis and P. gingivalis were increased before clinical or subclinical joint inflammation in individuals at risk of RA.[9]. Other studies have identified increased periodontitis in the first-degree relatives of RA patients.[18, 19] Compared with healthy controls, the alterations in the subgingival microbial community of RA patients has been reported in different studies,[11-13] suggesting a potential role of oral microbial dysbiosis in RA development. However, it is unknown if subgingival microbial dysbiosis precedes the onset of RA. The present study, to our knowledge, is the first comprehensive characterisation of the subgingival microbiome from both periodontally healthy and diseased sites in at-risk individuals. To preclude the effect of established periodontitis on the subgingival microbiome, analysis was performed on the samples from shallow gingival sulci (3 mm depth or less) with no bleeding on probing. This study comprised a relatively small sample size but participant groups were well balanced for age, sex and smoking status. Other variables currently being investigated for possible associations with periodontal disease (e.g. BMI, race, alcohol, education level) may also influence the subgingival...
microbiome. Larger samples size will be needed to more completely define the role of the subgingival microbiome in the development and progression of RA.

In CCP+ at-risk individuals, significant alterations were found in the composition of the periodontally healthy subgingival microbiome at different levels, which distinguished this group from matched controls and early RA patients. In agreement with present study, compositional change of salivary microbiota and decreased microbial diversity were found in individuals at high-risk for RA in a recent study.[20]

Most previous studies utilized 16S rRNA gene sequencing to analyse the oral microbiome of RA patients.[11, 13, 20] However, a major limitation of this method is that only a single region of the bacterial genome can be sequenced and it is difficult to distinguish the species when their 16S rRNA gene sequences display high similarities.[21] The present study utilized shotgun metagenomics, which has several advantages including more confident identification of bacterial species, increased detection of diversity and prediction of genes.[22]

P. gingivalis may contribute to RA aetiology via the citrullination of local antigens by its PAD.[7, 23] While some previous studies have examined the association between *P. gingivalis*, and established RA, few have looked at *P. gingivalis* in individuals at risk of RA. Studies determining levels of antibodies against *P. gingivalis*, or its virulence determinants, in HC, at-risk or established RA groups have been equivocal, possibly due to methodological and sampling differences.[7, 24-28] A recent study demonstrated decreased levels of *P. gingivalis* in the saliva of high-risk individuals compared with healthy controls using 16S rRNA gene sequencing.[20] Analysis of the microbiome of saliva and supra-gingival dental plaque using shotgun sequencing revealed *P. gingivalis* to be enriched in healthy controls rather than RA patients.[12] In another study, periodontitis, but not the subgingival presence of *P. gingivalis*, was more prevalent in patients who later progressed to classifiable RA.[29] De Smit *et al* concluded that, while there was evidence that periodontitis may precede symptomatic RA, there was insufficient evidence to confirm a role specifically for *P. gingivalis* in disease progression.[30] Thus, while the link between periodontitis and RA is established, the specific roles of *P. gingivalis* or its PAD have been less clear. Our data indicate anti-CCP positive at-risk individuals have increased abundance of *P. gingivalis* compared with healthy controls.

A lower abundance of *P. gingivalis* as well as alterations in microbial composition and functional capability were found in the early RA group, which may be related to the inflammatory burden of RA. Lopez-Oliva *et al*. proposed RA may act as a condition shaping the subgingival microbiome, particularly promoting the growth of certain organisms.[13] Moreover, these patients were receiving DMARDs, although for less than three months. It is likely that RA therapy, particularly drugs with additional antibacterial properties,[31, 32] can influence the subgingival microbiome. RA regimes
with immunomodulatory effects may influence both the development of the subgingival microbiome and progression of periodontitis. A recent shotgun sequencing study identified alterations in the oral microbiome in RA patients, which were partially restored by DMARD treatment.

The presence and abundance of PAD and related enzymes (the COG functional unit representing a family of orthologous protein-coding genes) were similar between groups. This is interesting given the differences that were observed between the groups in \textit{P. gingivalis} abundance. Although \textit{P. gingivalis} was once considered unique among prokaryotes in producing a PAD, PAD homologues were recently found in other \textit{Porphyromonas} species. Thus, the PAD in the subgingival microbiomes may arise from a range of species, not all of which may express PAD at the levels and with similar activity to the \textit{P. gingivalis} PAD. A recent study also reported variations in the active site of PAD detected in clinical isolates of \textit{P. gingivalis}, one of which was associated with increased in vitro activity. Our data cannot reveal differences in the expression or activity of PADs, or \textit{P. gingivalis} PAD specifically. Detailed comparison of the active \textit{P. gingivalis} PAD site and potential enzyme activity in different groups related to RA status would be an important area for future work.

Other periodontal pathogens may also contribute to protein citrullination via routes different from \textit{P. gingivalis}. The leukotoxin-A (LtxA) produced by \textit{A. actinomycetemcomitans} has been implicated in inducing leukotoxic hypercitrullination, and exposure to \textit{A. actinomycetemcomitans} was associated with ACPA. This species was not dominant in the present study; considerable variations in isolation rates of \textit{A. actinomycetemcomitans} have been reported in the literature, which may be the consequence of geographical differences in prevalence and methodological differences. \textit{P. intermedia} was recently reported to be associated with antibody responses to a novel citrullinated peptide related to RA, but abundance of this organism did not emerge in our analyses as different in the groups sampled. It is clear that the microbiome of these patients was highly perturbed compared with both healthy controls and CCP+ at-risk individuals and the influence of DMARDs and duration of therapy requires further consideration. Intriguingly, there were some species that have not previously been reported as abundant in the subgingival plaque of early RA patients, e.g \textit{Neisseria gonorrhoeae} (online supplementary Table S4). This pathogen of the urogenital tract can adapt to display asymptomatic survival in the human nasopharynx and oropharynx, providing a potential reservoir for their further spread. There is evidence of widespread horizontal gene transfer in the genus \textit{Neisseria} and of commensal species sharing many gene sequences with closely related pathogenic species and this may have impacted on our findings regarding the relative abundance of individual \textit{Neisseria} species. In vitro culture and more in-depth analysis are necessary to clarify the presence of \textit{N. gonorrhoeae} and its potential contribution to oral microbial dysbiosis.
Several species were identified as hubs of the co-occurrence networks; these in the CCP + at-risk group may be indirectly involved in the pathogenesis of RA via the interplay with *P. gingivalis* and possibly by supporting communities that promote citrullination by multiple routes. Among these hub species, *Streptococcus* spp. are considered the principle early colonizers in dental plaque, and their colonisation influences the composition of maturing plaque.[39] *F. nucleatum*, which was demonstrated to accelerate collagen induced arthritis in mice, functions in a bridging complex between early and late colonizers such as *P. gingivalis*.[40] A strong synergy was also observed between *T. denticola* and *P. gingivalis* in biofilm formation.[41] Therefore, it is logical to consider the overall capacity of the microbial community in future work.

In conclusion, this study has demonstrated dysbiosis in the subgingival microbiome alongside the specific increase of *P. gingivalis* in individuals at-risk of RA. We propose these may play an important role in the initiation of RA and that periodontitis and the observed oral dysbiosis may be attractive targets for future preventative interventions, such as periodontal therapy, in individuals at risk of RA.

Key messages: (up to 5 bullet points)

What is already known about this subject?

- Rheumatoid arthritis (RA) patients have increased periodontal disease and a perturbed oral microbiome. The periodontal pathogen *P. gingivalis* is able to citrullinate proteins via its peptidylarginine deiminase enzyme (PAD) and can generate citrullinated antigens that may drive the autoimmune response in RA.

- Periodontitis and *P. gingivalis* were increased before joint inflammation in individuals at risk of RA, supporting the concept of periodontal inflammation and *P. gingivalis* as important risk factors in RA initiation.

What does this study add?

- This is the first study to demonstrate dysbiosis, including an increase of *P. gingivalis*, in the periodontally healthy microbiome (and altered diseased subgingival microbiomes) of individuals at risk of developing RA compared with healthy controls.

How might this impact on clinical practice or future developments?

- Our results indicate that dysbiosis in the subgingival microbiome precedes the onset of joint inflammation in at-risk individuals. This dysbiosis, together with the increase of *P. gingivalis*, may
play an important role in the initiation of RA.

- Taken together with our previous findings, periodontal disease and the observed oral dysbiosis could be targets for future preventive interventions in individuals at risk of RA.

Investigation of the overall metabolic capability of the subgingival microbiome may provide novel insights into the pathogenesis of RA.

Acknowledgments

Diane Corscadden, Katie Mbara and Shabnum Rashid for laboratory support; Ashna Chavda for nursing support; Jenny Boards, Ian Weatherill, Chris Brooks, Jiawen Dou and Philip Luxford for administrative support.

Competing interests

Dr. Cheng reports scholarship from the China Scholarship Council during the conduct of the study.

Dr. Do reports grants from Colgate Palmolive, outside the submitted work. Dr. Meade reports grants from Colgate Palmolive, outside the submitted work. Dr. Mankia reports grants from the National Institute for Health Research (NIHR) Leeds Biomedical Research Unit and grants from Leeds Biomedical Research Centre during the conduct of the study. Dr. Devine reports grants from NIHR, grants from Wellcome Trust, during the conduct of the study; grants from Colgate Palmolive, outside the submitted work. Dr. Emery reports grants and personal fees from Pfizer, Merck Sharp & Dohme, AbbVie, Bristol-Myers Squibb, Roche, Samsung, Sandoz, and Eli Lilly and Company; and personal fees from Novartis and UCB outside the submitted work. No other disclosures were reported.

Funding

This research was supported by the NIHR infrastructure at Leeds. ZC was supported by a scholarship from the China Scholarship Council. Support was also provided by the Leeds Dental Clinical and Translational Research Unit.

Author contribution

ZC: Conceptualisation, methodology, validation, formal analysis, investigation, data curation, writing, visualisation

TD: Conceptualisation, methodology, validation, formal analysis, data curation, writing, supervision

KM: Conceptualisation, methodology, validation, data curation, writing

JM: Conceptualisation, methodology, validation, writing, supervision

LH: Conceptualisation, methodology, investigation, writing

VC: Conceptualisation, methodology, investigation, writing

AS: Conceptualisation, methodology, investigation, writing
Reference

1 Nielen MMJ, van Schaardenburg D, Reesink HW, et al. Specific autoantibodies precede the symptoms of rheumatoid arthritis: A study of serial measurements in blood donors. *Arthritis Rheumatol.* 2004; 50:380-6.

2 van de Sande MGH, de Hair MJH, van der Leij C, et al. Different stages of rheumatoid arthritis: Features of the synovium in the preclinical phase. *Ann Rheum Dis.* 2011; 70:772.

3 Barra L, Scinocca M, Saunders S, et al. Anti-citrullinated protein antibodies in unaffected first-degree relatives of rheumatoid arthritis patients. *Arthritis Rheumatol.* 2013; 65:1439-47.

4 Mankia K, Emery P. Is localized autoimmunity the trigger for rheumatoid arthritis? Unravelling new targets for prevention. *Discof Med.* 2015; 20:129-35.

5 Fuggle NR, Smith TO, Kaul A, et al. Hand to mouth: A systematic review and meta-analysis of the association between rheumatoid arthritis and periodontitis. *Front Immunol.* 2016; 7:80.

6 Konig MF, Abusleme L, Reinholdt J, et al. *Aggregatibacter actinomycetemcomitans*-induced hypercitrullination links periodontal infection to autoimmunity in rheumatoid arthritis. *Sci Transl Med.* 2016; 8:369ra176.

7 Cheng Z, Meade J, Mankia K, et al. Periodontal disease and periodontal bacteria as triggers for rheumatoid arthritis. *Best Pract Res Clin Rheumatol.* 2017; 31:19-30.

8 Wegner N, Wait R, Sroka A, et al. Peptidylarginine deiminase from *porphyromonas gingivalis* citrullinates human fibrinogen and α-enolase: Implications for autoimmunity in rheumatoid arthritis. *Arthritis Rheumatol.* 2010; 62:2662-72.

9 Mankia K, Cheng Z, Do T, et al. Prevalence of periodontal disease and periodontopathic bacteria in anti–cyclic citrullinated protein antibody–positive at-risk adults without arthritis. *JAMA Network Open.* 2019; 2:e195394-e.

10 Shaddox LM, Huang H, Lin T, et al. Microbiological characterization in children with aggressive periodontitis. *J Dent Res.* 2012; 91:927-33.

11 Scher JU, Ubeda C, Equinda M, et al. Periodontal disease and the oral microbiota in new-onset rheumatoid arthritis. *Arthritis Rheumatol.* 2012; 64:3083-94.

12 Zhang X, Zhang D, Jia H, et al. The oral and gut microbiomes are perturbed in rheumatoid arthritis and partly normalized after treatment. *Nat Med.* 2015; 21:895.

13 Lopez-Oliva I, Paropkari AD, Saraswat S, et al. Dysbiotic subgingival microbial communities in periodontally healthy patients with rheumatoid arthritis. *Arthritis Rheumatol.* 2018; 70:1008-13.

14 Chapple ILC, Mealey BL, Van Dyke TE, et al. Periodontal health and gingival diseases and conditions on an intact and a reduced periodontium: Consensus report of workgroup 1 of the 2017 world workshop on the classification of periodontal and peri-implant diseases and conditions. *J Periodontol.* 2018; 89:S74-S84.

15 Papapanou PN, Sanz M, Buduneli N, et al. Periodontitis: Consensus report of workgroup 2 of the 2017 world workshop on the classification of periodontal and peri-implant diseases and conditions. *J Periodontol.* 2018; 89:S173-S82.

16 Catrina AI, Svensson CI, Malmström V, et al. Mechanisms leading from systemic autoimmunity to joint-specific disease in rheumatoid arthritis. *Nat Rev Rheumatol.* 2016; 13:79.
17 Brink M, Hansson M, Mathsson L, et al. Multiplex analyses of antibodies against citrullinated peptides in individuals prior to development of rheumatoid arthritis. *Arthritis Rheumatol*. 2013; 65:899-910.

18 Loutan L, Alpizar-Rodriguez D, Courvoisier DS, et al. Periodontal status correlates with anti-citrullinated protein antibodies in first-degree relatives of individuals with rheumatoid arthritis. *J Clin Periodontol*. 2019; 46:690-8.

19 Bello-Gualterio JM, Lafaurie GI, Hoyos LX, et al. Periodontal disease in individuals with a genetic risk of developing arthritis and early rheumatoid arthritis: A cross-sectional study. *J Periodontal*. 2016; 87:346-56.

20 Tong Y, Zheng L, Qing P, et al. Oral microbiota perturbations are linked to high risk for rheumatoid arthritis. *Front Cell Infect Microbiol*. 2020; 9:475-.

21 Větrovský T, Baldrian P. The variability of the 16s rrna gene in bacterial genomes and its consequences for bacterial community analyses. *PLoS One*. 2013; 8:e57923.

22 Ranjan R, Rani A, Metwally A, et al. Analysis of the microbiome: Advantages of whole genome shotgun versus 16s amplicon sequencing. *Biochem Biophys Res Commun*. 2016; 469:967-77.

23 McGraw WT, Potempa J, Farley D, et al. Purification, characterization, and sequence analysis of a potential virulence factor from *Porphyromonas gingivalis*, peptidylarginine deiminase. *Infect Immun*. 1999; 67:3248-56.

24 Mikuls TR, Thiele GM, Deane KD, et al. *Porphyromonas gingivalis* and disease-related autoantibodies in individuals at increased risk of rheumatoid arthritis. *Arthritis Rheumatol*. 2012; 64:3522-30.

25 Johansson L, Sherina N, Kharlamova N, et al. Concentration of antibodies against *Porphyromonas gingivalis* is increased before the onset of symptoms of rheumatoid arthritis. *Arthritis Res Ther*. 2016; 18:201.

26 Fisher BA, Cartwright AJ, Quirke AM, et al. Smoking, *Porphyromonas gingivalis* and the immune response to citrullinated autoantigens before the clinical onset of rheumatoid arthritis in a southern european nested case–control study. *BMC Musculoskelet Disord*. 2015; 16:331.

27 Hitchon CA, Chandad F, Ferucci ED, et al. Antibodies to *Porphyromonas gingivalis* are associated with anticitrullinated protein antibodies in patients with rheumatoid arthritis and their relatives. *J Rheumatol*. 2010; 37:1105-12.

28 de Smit M, Westra J, Vissink A, et al. Periodontitis in established rheumatoid arthritis patients: A cross-sectional clinical, microbiological and serological study. *Arthritis Res Ther*. 2012; 14:R222.

29 Hashimoto M, Yamazaki T, Hamaguchi M, et al. Periodontitis and *Porphyromonas gingivalis* in preclinical stage of arthritis patients. *PLoS One*. 2015; 10:e0122121.

30 de Smit MJ, Westra J, Brouwer E, et al. Periodontitis and rheumatoid arthritis: What do we know? *J Periodontal*. 2015; 86:1013-9.

31 Greenstein RJ, Su L, Haroutunian V, et al. On the action of methotrexate and 6-mercaptopurine on *M. Avium* subspecies paratuberculosis. *PLoS One*. 2007; 2:e161.

32 Rolain JM, Colson P, Raoult D. Recycling of chloroquine and its hydroxyl analogue to face bacterial, fungal and viral infections in the 21st century. *Int J Antimicrob Agents*. 2007; 30:297-308.

33 Heredia PA, Lafaurie GI, Bautista-Molano W, et al. Predictive factors related to the progression of periodontal disease in patients with early rheumatoid arthritis: A cohort study. *BMC Oral Health*. 2019; 19:240.

34 Romero-Sanchez C, Rodriguez C, Santos-Moreno P, et al. Is the treatment with biological or non-biological dmards a modifier of periodontal condition in patients with rheumatoid arthritis? *Curr Rheumatol Rev*. 2017; 13:139-51.

35 Gabarrini G, Chlebowicz MA, Vega Quiroz ME, et al. Conserved citrullinating exoenzymes in *Porphyromonas* species. *J Dent Res*. 2018; 97:556-62.

36 Bereta G, Goulas T, Madej M, et al. Structure, function, and inhibition of a genomic/clinical variant of *Porphyromonas gingivalis* peptidylarginine deiminase. *Protein Sci*. 2019; 28:478-86.
37 Könönen E, Müller H-P. Microbiology of aggressive periodontitis. Periodontol 2000. 2014; 65:46-78.

38 Schwenzer A, Quirke AM, Marzeda AM, et al. Association of distinct fine specificities of anti-citrullinated peptide antibodies with elevated immune responses to prevotella intermedia in a subgroup of patients with rheumatoid arthritis and periodontitis. Arthritis Rheumatol. 2017; 69:2303-13.

39 Kolenbrander PE. Oral microbial communities: Biofilms, interactions, and genetic systems. Annu Rev Microbiol. 2000; 54:413-37.

40 Ebbers M, Lübcke PM, Volzke J, et al. Interplay between p. Gingivalis, f. Nucleatum and α. Actinomyctetemcomitans in murine alveolar bone loss, arthritis onset and progression. Sci Rep. 2018; 8:15129.

41 Zhu Y, Dashper SG, Chen YY, et al. Porphyromonas gingivalis and treponema denticola synergistic polymicrobial biofilm development. PLoS One. 2013; 8:e71727.

Figure 1. Comparison of α-diversity in healthy control (HC), CCP+ at-risk and early RA groups using samples from periodontally healthy sites and diseased sites. Abundance Coverage Estimator (ACE)
index was significantly decreased in the CCP+ at-risk group compared with the HC group in periodontally healthy sites (Kruskal-Wallis test).

Figure 2. Taxonomic profiles for the 20 most abundant genera in subgingival plaque from periodontally healthy and diseased sites in healthy control (HC), CCP+ at-risk and early RA groups. Relative abundance of the 20 most abundant genera within (a) periodontally healthy sites and (b) diseased sites was plotted for each group. The permutation test (one-sided signassoc function, indicspecies R-package) was used to find the genera with significantly different relative abundances between groups. *: corrected $P < 0.05$ (Sidak’s correction).

Figure 3. Phylogenetic tree representing normalized mean relative abundance of species (stacked bar chart) in the subgingival microbiome of (a) periodontally healthy and (b) periodontally diseased sites (phylogenetic tree constructed using the webserver iTOL.embl.de).

Figure 4. Overlap analysis of the group specific and shared core species. Core species in each group of periodontally healthy and diseased site samples were identified, respectively (> 80% prevalence). Number of group-specific and shared core species were visualized for (a) healthy sites and (b) diseased sites.

Figure 5. Identification in plaque from periodontally healthy and diseased sites of hubs in the
networks of healthy control (HC), CCP + at-risk and early RA groups. The top 20 nodes (species) ranked by Maximal Clique Centrality were displayed in circular layout for each group from (a) periodontally healthy and (b) diseased site samples. Nodes are coloured based on rank; dark colour denotes high ranks. Green dashed line: HC, orange: CCP+ at risk, blue: early RA.

Figure 6. Normalized count of peptidylarginine deiminase enzyme (PAD) and related enzymes in healthy control (HC), CCP+ at-risk and early RA groups using samples from periodontally healthy sites and diseased sites. Abundance of PAD and related enzymes was normalized by sequencing depth and compared between groups using the Waldtest in DESeq2 R package. No significant difference was found between groups either in (a) periodontally healthy or (b) diseased sites (corrected $P > 0.05$).