ENERGY EXTRACTION FROM A ROTATING BLACK HOLE BY MAGNETIC RECONNECTION IN THE ERGOSPHERE

SHINJI KOIDE AND KENZO ARAI
Department of Physics, Kumamoto University, 2-39-1, Kurokami, Kumamoto 860-8555, Japan; koidesin@sci.kumamoto-u.ac.jp
Received 2007 November 19; accepted 2008 April 16

ABSTRACT

We investigate mechanisms of energy extraction from a rotating black hole in terms of negative energy at infinity. In addition to the Penrose process through particle fission, the Blandford-Znajek mechanism by magnetic tension, and the magnetohydrodynamic Penrose process, we examine energy extraction from a black hole caused by magnetic reconnection in the ergosphere. The reconnection redistributes the angular momentum efficiently to yield the negative energy at infinity. We derive a condition for the process to operate in a simple situation, where the plasma is incompressible and the magnetic energy is converted completely to the plasma kinetic energy locally. Astrophysical situations of magnetic reconnection around the black holes are also discussed.

Subject headings: black hole physics — MHD — relativity — methods: analytical — galaxies: nuclei — gamma rays: bursts — plasmas

1. INTRODUCTION

Energy extraction from a rotating black hole interests us not only as engines of relativistic jets from active galactic nuclei (AGNs), microquasars (μQSOs), and gamma-ray bursts (GRBs; Meier et al. 2001), but also as fundamentals of black hole physics. The horizon of the black hole is defined as the surface where no matter, energy, and information pass through outwardly. On the other hand, reducible energy from the rotating black hole is given by

\[E_{\text{rot}} = \left(1 - \sqrt{\frac{1}{2} \left(1 + \sqrt{1 - a^2}\right)}\right) Mc^2, \tag{1} \]

where \(M \) is the mass, \(a \) is the rotation parameter of the black hole, and \(c \) is the speed of light (Misner et al. 1970). It corresponds to the rotational energy that can be extracted principally.

Several kinds of distinct mechanisms have been proposed for the extraction of the rotational energy: Penrose process, superradiant scattering, Blandford-Znajek mechanism, magnetohydrodynamic (MHD) Penrose process, and modified Hawking process (Penrose 1969; Press & Teukolsky 1972; Ruffini & Wilson 1975; Blandford & Znajek 1977; Hirotani et al. 1992; van Putten 2000). Here we mention three kinds of mechanism of the black hole energy extraction among them: the Penrose process, the Blandford-Znajek mechanism, and the MHD Penrose process, while the superradiant scattering and the modified Hawking process may be related with high-energy phenomena such as origins of gamma-ray bursts and ultra–high-energy cosmic rays (van Putten 1999, 2000; Pierre Auger collaboration 2007). The Penrose process involves production of particles with negative energy at infinity via strong fission or particle interaction in the ergosphere (Penrose 1969). It needs drastic redistribution of angular momentum to produce the negative energy at infinity. Although this process clearly shows a possibility of energy extraction from the black hole, it is improbable as an engine of astrophysical jets, because of poor collimation of particles and poor event rate. That is, the Penrose process accelerates the particles toward the equatorial plane, not toward the axis direction, and needs the azimuthal relativistic fission at a not so wide region in the ergosphere. Blandford & Znajek (1977) proposed a mechanism of energy extraction from a rotating black hole through force-free magnetic field. Their analytic steady state solutions show the direct energy radiation from the horizon, which looks contradictory to the definition of the black hole horizon (Punsly & Coroniti 1990). As we discuss in § 2, this mechanism also utilizes the negative energy at infinity. In this case, however, the negative energy at infinity is sustained not by the particle or matter, but by the electromagnetic field. Angular momentum of the electromagnetic field is redistributed by the magnetic tension through almost massless plasma to produce the negative energy at infinity of the field. The magnetic tension may also redistribute the angular momentum of the plasma to yield the negative energy at infinity of the plasma, when the plasma has nonzero mass density (Hirotani et al. 1992). It is called the MHD Penrose process. This energy extraction was confirmed by the numerical simulations based on the general relativistic magnetohydrodynamics (GRMHD; Koide et al. 2002; Koide 2003).

It is noted that magnetic reconnection also redistributes angular momentum of the plasma to form the negative energy at infinity because it produces a pair of fast outflows with the opposite directions from the reconnection region. Then the rotational energy of the black hole can be extracted through the induced negative energy at infinity of the plasma. In the present paper, we derive a condition for the process to operate in a simple situation for the incompressible plasma, where all the magnetic energy is converted to the plasma kinetic energy.

In § 2, we review the mechanisms of energy extraction from the rotating black hole in terms of the negative energy at infinity. In § 3, we examine the operation condition of the energy extraction from the black hole induced by magnetic reconnection in the ergosphere using a simple model. In § 4, we discuss astrophysical situations where the magnetic reconnection happens in the ergosphere.

2. PENROSE PROCESS, BLANDFORD-ZNAJEK MECHANISM, AND MHD PENROSE PROCESS

We use the Boyer-Lindquist coordinates \((ct, r, \theta, \phi)\) to describe the spacetime around a rotating black hole. The line element...
of the axisymmetric, stationary spacetime around the black hole is written by

$$ds^2 = -\alpha^2(c \, dt)^2 + \sum_{i=1}^{3} h_i^2 (dx^i - \omega_i \, dt)^2$$

$$= -\alpha^2(c \, dt)^2 + \sum_{i=1}^{3} (h_i \, dx^i - co \beta_i \, dt)^2,$$

(2)

where h_i is the scale factor of the coordinate x^i, ω_i is the angular velocity describing a frame-dragging effect, α is the lapse function, and $\beta = h_i \omega_i / (c \alpha)$ is the shift vector. For the Kerr metric (Misner et al. 1970) we have

$$\alpha = \sqrt{\Delta \Sigma / A}, \quad h_1 = \sqrt{\Sigma / \Delta}, \quad h_2 = \sqrt{\Sigma}, \quad h_3 = \sqrt{A / \Sigma} \sin \theta,$$

$$\omega_1 = \omega_2 = 0, \quad \omega_3 = \frac{2cr^2 \ar}{A},$$

(3)

where $\Delta = r^2 - 2\,r \,r + (a_r \,r)^2, \Sigma = r^2 + (a_r \,r)^2 \cos^2 \theta, A = r^2 + (a_r \,r)^2 \sin^2 \theta$, and $r_\beta = GM/c^2$ is the gravitational radius of the black hole.

This metric has translational symmetry with respect to t and ϕ, so that we obtain the conservation law

$$\frac{1}{\sqrt{-g}} \frac{\partial}{\partial \xi^0} \left(\sqrt{-g} \, T^{\mu \nu} \xi^\nu \right) = 0,$$

(4)

where $g = \det (g_{\mu \nu}) = - (\alpha h_1 h_2 h_3)^2$ is the determinant of the metric tensor, $T^{\mu \nu}$ is the energy-momentum tensor, and ξ^ν is the Killing vector.

When we adopt one component approximation of the plasma, we have

$$T^{\mu \nu} = p g^{\mu \nu} + h(U^{\mu} U^{\nu} + F_{\mu \nu} F^{\mu \nu}) - \frac{1}{4} g^{\mu \nu} F^{\rho \sigma} F_{\rho \sigma},$$

(5)

where p is the proper pressure, $h = \rho_m + p$ is the enthalpy density, U^μ is the four-velocity, and $F_{\mu \nu}$ is the electromagnetic field strength tensor (Koide et al. 1999). The thermal energy density is given by $\rho_m = \rho (\Gamma - 1) + \rho c^2$ for adiabatic plasma, where Γ is the adiabatic index and ρ is the proper mass density.

When we consider the Killing vectors $\xi^\nu = (-1, 0, 0, 0)$ and $(0, 0, 0, 1)$, we get the energy and angular momentum conservation laws,

$$\frac{\partial e^x}{\partial t} = -\frac{1}{h_1 h_2 h_3} \sum_{i=1}^{3} \frac{\partial}{\partial x^i} (h_i h_2 h_3 S^i),$$

$$\frac{\partial l}{\partial t} = -\frac{1}{h_1 h_2 h_3} \sum_{i=1}^{3} \frac{\partial}{\partial x^i} (h_i h_2 h_3 M^i),$$

(6)

(7)

where $e^x = -\alpha g_{\nu 0} T^{\nu 0}$ is called "energy-at-infinity" density, which corresponds to the total energy density of the plasma and field, $S^i = -\alpha g_{\nu 0} T^{\nu i}$ is the energy flux density, $l = \alpha g_{\nu 3} T^{\nu 3}$ is the angular momentum density, and $M^i = \alpha h_i T^{0 i}$ is the angular momentum flux density.

When we introduce the local frame called the "zero angular momentum observer" (ZAMO) frame, we have $d\tilde{t} = \alpha d\,t$ and $d\tilde{x}^i = h_i(d\tilde{x}^i - \omega_i \, dt)$. Because this is the local Minkowski spacetime, $d\tilde{s}^2 = - (c \, d\tilde{t})^2 + \sum_{i=1}^{3} (d\tilde{x}^i)^2 = \rho_{\mu \nu} d\tilde{x}^\mu d\tilde{x}^\nu$, the variables observed in the frame are intuitive. For example, the velocity v^i, the Lorentz factor $\gamma = \tilde{U}^0 = [1 - \sum_{i=1}^{3} (\tilde{v}^i/c)^2]^{-1/2}$, and the four-velocity $\tilde{U}^i = h_i U^i - co \beta^i U^0 (i = 1, 2, 3)$ have the relation, $\tilde{U}^i = \gamma \tilde{v}^i$.

Hereafter we denote the variables observed in the ZAMO frame with the hat. From equation (5), we obtain

$$e^x = \alpha e + \sum_i \omega_i h_i \tilde{p}^i = \alpha e + \omega_3 l,$$

$$l = h_3 \tilde{p}^3,$$

(8)

(9)

where $e = \hbar \gamma^2 - p + (\tilde{E}^2 + \tilde{B}^2 / c^2) / 2$ is the total energy density and $\tilde{p}^i = [\tilde{B}^2 \gamma^2 + (\tilde{E} \times \tilde{B})^2] / c^2$ is the ith component of the momentum density, where $\tilde{B}^i = e^{\mu \nu} F_{\mu \nu} / 2$ and $\tilde{E}^i = e^{\mu \nu} F_{\mu 0} / c = F_{0 i}$ ($i = 1, 2, 3$) are the magnetic flux density and the electric field, respectively ($e^{\mu \nu}$ is the Levi-Civita tensor). We normalize the field strength tensor $F_{\mu \nu}$ so that $|\tilde{B}|^2 / 2$ and $|\tilde{E}|^2 / (2c^2)$ give the magnetic and electric energy densities, respectively. For example, the magnetic field measured in the SI unit divided by the square root of the magnetic permeability μ_0 is \tilde{B} and the electric field measured in the SI unit times the square root of permittivity ϵ_0 is \tilde{E}. Equations (8) and (9) can be separated into the hydrodynamic and electromagnetic components: $e^x = e^x_{\text{hyd}} + e^x_{\text{EM}}$, and $l = l_{\text{hyd}} + l_{\text{EM}}$, where

$$e^x_{\text{hyd}} = \alpha \tilde{e}_{\text{hyd}} + \sum_i \omega_i h_i \frac{\hbar}{c} \gamma^2 \tilde{v}^i = \alpha \tilde{e}_{\text{hyd}} + \omega_3 l_{\text{hyd}},$$

$$e^x_{\text{EM}} = \alpha \tilde{e}_{\text{EM}} + \sum_i \omega_i h_i \frac{1}{c} (\tilde{E} \times \tilde{B}) = \alpha \tilde{e}_{\text{EM}} + \omega_3 l_{\text{EM}},$$

$$l_{\text{hyd}} = h_3 \frac{\hbar}{c^2} \tilde{v}^3,$$

(10)

(11)

(12)

(13)

where $\tilde{e}_{\text{hyd}} = \hbar \gamma^2 - p$ and $\tilde{e}_{\text{EM}} = (\tilde{B}^2 + \tilde{E}^2 / c^2)$ are the hydrodynamic and electromagnetic energy densities observed by the ZAMO frame, respectively.

2.1. Penrose Process

When we consider a particle with rest mass m at $r_p(t)$ in the absence of electromagnetic field, i.e., $\rho = (m/c^2) \delta[r - r_p(t)], p = 0$, and $\tilde{B} = \tilde{E} = 0$, then the energy at infinity and the angular momentum of the particle are given from equations (8) and (9) as,

$$E^\infty = \int_{\Omega} e^x \, dV = \alpha \gamma m c^2 + \omega_3 L,$$

(14)

$$L = \int_{\Omega} l \, dV = h_3 m \gamma \tilde{v}^3,$$

(15)

where Ω is the whole volume of the space. Both the energy at infinity and angular momentum of the particle conserve when it travels alone.

Equations (14) and (15) yield the energy at infinity of the particle as

$$E^\infty = \alpha \gamma m c^2 \left(1 + \beta_3 \frac{\tilde{v}^3}{c}\right).$$

(16)

If $\beta_3 \tilde{v}^3 / c < -1$, the energy at infinity of the particle becomes negative. This condition can be satisfied only in the ergosphere ($\beta_3 > 1$). Using the relation $\alpha [1 - \sum_i (\beta_i)^2] = - g_{00}$, we have the well-known definition of the ergosphere: $g_{00} \geq 0$.
When we consider the particle fission in the ergosphere, A → B + C, the conservation laws of the energy at infinity and the angular momentum are

\[E^\infty_A = E^\infty_B + E^\infty_C, \quad (17) \]
\[L_A = L_B + L_C, \quad (18) \]
\[E^\infty_I = \alpha \gamma \dot{m}_e c^2 + \omega_3 L_I, \quad (19) \]

where \(I = A, B, C \). If the fission is so strong that it satisfies

\[L_B = h_3 \dot{m}_B \dot{r} B^2 < -c \dot{h}_3 \dot{m}_B [(\beta_3)^2 - 1]^{1/2}, \]

then we get the negative energy at infinity \(E^\infty_B < 0 \) and \(E^\infty_A < E^\infty_C \). Particle C escapes to infinity and particle B is swallowed by the black hole to reduce the black hole mass. Eventually, the rotational energy of the black hole is extracted.

2.2. Blandford-Znajek Mechanism

In the Blandford-Znajek mechanism, the energy propagates outwardly from the black hole horizon when the angular velocity of the black hole horizon \(\Omega_H \) is larger than that of the magnetic field lines \(\Omega_F : \Omega_H > \Omega_F \). Although this statement looks inconsistent with the definition of the horizon, where any energy, matter, and information never transform outwardly (Punsly & Coroniti 1990), it can be understood as the transportation of the negative electromagnetic energy at infinity of magnetic fields into the black hole (Koide 2003). Here we show the electromagnetic energy at infinity becomes negative when \(\Omega_H > \Omega_F \).

From equations (11) and (13) and the definition of \(\hat{e}_E \) and \(\hat{P}^i \), the electromagnetic energy at infinity \(E^\infty_E \) is written as

\[E^\infty_E = \frac{\alpha}{2} \left(\hat{B}^2 + \frac{\hat{E}^2}{c^2} \right) + \alpha \beta \cdot (\hat{E} \times \hat{B}). \quad (20) \]

When we assume steady state of the electromagnetic field in the force-free condition, the electric field observed by the ZAMO frame is given by

\[\hat{E} = -\frac{h_3}{\alpha} (\Omega_F - \omega_3) \hat{e}_\phi \times \hat{B}^p, \quad (21) \]

where \(\hat{e}_\phi \) is the unit vector parallel to the azimuthal coordinate, \(\hat{B}^p = \hat{B} - \hat{B}_{\phi} \hat{e}_\phi \) is the poloidal magnetic field, and \(\Omega_F \) is a constant along the magnetic flux tube. If we use the velocity of the magnetic flux tubes observed in the ZAMO frame, \(\tilde{v}_F = (h_1/\alpha_f) (\Omega_F - \omega_3) \hat{e}_\phi \), equation (21) can be written as an intuitive equation, \(\hat{E} = -\tilde{v}_F \times \hat{B}^p \). Inserting equation (21) into equation (20), we have the electromagnetic energy at infinity,

\[E^\infty_E = \alpha \left(\frac{\hat{B}^p}{c} \right)^2 \frac{h_3}{\alpha f} \left(\frac{\hat{B}_\phi}{c} \right)^2 \quad \times \left\{ \Omega_F^2 (\omega_3)^2 \left[1 - \frac{1}{(\beta_3)^2} \left(\frac{\hat{B}_\phi}{\beta_3 \hat{B}^p} \right)^2 \right] \right\}. \quad (22) \]

We consider the electromagnetic energy at infinity very near the horizon. We adopt the boundary condition of the electromagnetic field at the horizon,

\[\frac{\hat{B}_\phi}{\hat{B}^p} = \frac{\hat{v}_F(r \to r_H)}{c}, \quad (23) \]

where \(r_H \) is the radius of the horizon. Condition (23) is intuitive when we assume the Alfvén velocity is the light speed \(c \) in the force-free magnetic field. It is also identical to the condition used by Blandford & Znajek (1977), while the original expression is rather complex. After some manipulations with equations (22) and (23), we obtain at the horizon

\[\alpha \frac{\dot{E}^\infty_E}{\hat{B}^p} = \left(\frac{h_3}{\alpha f} \right)^2 \hat{B}_\phi^2 \Omega_F (\Omega_F - \omega_3). \quad (24) \]

Here we have used \(\alpha \to 0 \) very near the horizon. The electromagnetic energy at infinity is negative only when \(\theta < \Omega_F < \omega_3 \), which is identical to the switch-on condition of the Blandford-Znajek mechanism. The coincidence indicates that the Blandford-Znajek mechanism utilizes the negative electromagnetic energy at infinity. This conclusion is generally applicable to the force-free field of any spinning black hole as far as equation (23) is valid, while the original analytical model of Blandford & Znajek (1977) is restricted to a slowly spinning black hole. In the force-free condition, the Alfvén velocity becomes the speed of light, and then the Alfvén surface is located at the horizon. Then the region of the negative energy at infinity can be connected with the region outside of the ergosphere through the magnetic field causally.

2.3. MHD Penrose Process

The MHD Penrose process is the mechanism of energy extraction from a black hole through the negative energy at infinity of plasma induced by the magnetic tension (Hirotani et al. 1992). It has been confirmed by Koide et al. (2002) and Koide (2003) using GRMHD numerical simulations. It is defined as the energy extraction mechanism with the negative energy at infinity of plasma, which is induced by the magnetic tension, while in the Blandford-Znajek mechanism, the negative electromagnetic energy at infinity plays an important role. For a rapidly rotating black hole \((\alpha = 0.99995) \), the magnetic flux tubes of the strong magnetic field which cross the ergosphere are twisted due to the frame-dragging effect. The angular momentum of plasma in the ergosphere is opposite to that of the rotating black hole and its magnitude is large to make \(\dot{E}_{\text{hyd}} \) negative in equation (10). The twist of the magnetic flux tubes propagates outwardly. The Poynting flux indicates that the electromagnetic energy is radiated from the ergosphere (see Fig. 4 of Koide 2003). At the footpoint of the energy radiation from the ergosphere, the hydrodynamic energy at infinity \(\dot{E}_{\text{hyd}} = \alpha \dot{\gamma} \dot{E}_{\text{hyd}} + \omega_3 \dot{\gamma} \dot{L}_{\text{hyd}} \) decreases rapidly and becomes negative quickly. The negative energy at infinity is mainly composed of that of the plasma. To realize the negative energy at infinity of the plasma, redistribution of the angular momentum of the plasma, \(\dot{L}_{\text{hyd}} = h_3 \dot{h}_3 \dot{r}_H^2 \dot{v}_F \), is demanded. The angular momentum of the plasma is mainly redistributed by the magnetic tension.

3. MAGNETIC RECONNECTION IN ERGOSPHERE

We investigate energy extraction through negative energy at infinity induced by magnetic reconnection in an ergosphere around a Kerr black hole. For simplicity, we consider the magnetic reconnection in the bulk plasma rotating around the black hole circularly at the equatorial plane (Fig. 1). To sustain the circular orbit, the plasma rotates with the Kepler velocity \(\dot{v}_K \) or it is supported by external force, like magnetic force. Here the Kepler velocity is given by

\[\dot{v}_K = \frac{c A}{\sqrt{\Delta (r^3 - r_H^3 a^2)}} - c \beta^3. \quad (25) \]
The plus (minus) sign corresponds to the corotating (counterrotating) circular Kepler velocity. We assume the initial antiparallel magnetic field directs to the azimuthal direction in the bulk plasma, and the pair plasma outflows moving toward the opposite directions each other caused by the magnetic reconnection are ejected in the azimuthal direction. It is also assumed that the plasma acceleration through the magnetic reconnection is localized in the very small region compared to the size of the black hole ergosphere, and the magnetic field outside of the plasma acceleration region is so weak that the plasma flow accelerated by the magnetic reconnection is not influenced by the large-scale magnetic field around the black hole. If one of the pair plasma flows in the opposite direction of the black hole rotation has the energy of the plasma particles which are initially at rest, the magnetic reconnection, v_0 is the typical magnetic field strength and 2δ is the thickness of the current layer (see Fig. 2). The electric resistivity is assumed to be zero except for the narrow reconnection region. We assume the system is symmetric with respect to the x^2-direction, and resistivity is given by

$$\eta = \eta_0 f(x^1, x^3),$$

where η_0 is a positive constant and $f(x^1, x^3)$ is the profile of the resistivity, which is finite around $x^1 = 0, x^3 = 0$ but zero outside the reconnection region. The magnetic flux tubes reconnected at the resistive region accelerate the plasma through the magnetic tension, and the magnetic energy in the flux tubes is converted to the kinetic energy of the plasma. As shown in Figure 3, the magnetic flux tube and the plasma run away and fresh tubes and the plasma are supplied to the reconnection region from outside of the current layer successively.

The initial condition is set to that of the Harris model where the antiparallel magnetic field and the plasma are in equilibrium:

$$B^3 = B_0 \tanh \left(\frac{x^1}{\delta}\right), \quad B^1 = B^{2*} = 0,$$

$$p = \frac{B_0^2}{2 \cosh^2(x^1/\delta)} + p_0,$$

$$\rho = \rho_0,$$

$$v^1 = 0, \quad v^{2*} = 0, \quad v^3 = 0,$$

where B_0 is the typical magnetic field strength and 2δ is the thickness of the current layer (see Fig. 2). The electric resistivity is assumed to be zero except for the narrow reconnection region. We assume the system is symmetric with respect to the x^2-direction, and resistivity is given by

$$\eta = \eta_0 f(x^1, x^3),$$

where η_0 is a positive constant and $f(x^1, x^3)$ is the profile of the resistivity, which is finite around $x^1 = 0, x^3 = 0$ but zero outside the reconnection region. The magnetic flux tubes reconnected at the resistive region accelerate the plasma through the magnetic tension, and the magnetic energy in the flux tubes is converted to the kinetic energy of the plasma. As shown in Figure 3, the magnetic flux tube and the plasma run away and fresh tubes and the plasma are supplied to the reconnection region from outside of the current layer successively.

The outflow velocity of the accelerated plasma through the magnetic reconnection, v'_out, is estimated by the velocity v'_max, where whole magnetic energy is converted to the kinetic energy. If the magnetic energy is completely converted to the kinetic energy of the plasma particles which are initially at rest, the magnetic energy per plasma particle is $B_0^2/(2n_0)$, where n_0 is the plasma particle number density. Using the approximation that the plasma element is treated as incompressible gas covered by very thin, light, adiabatic skin with the thermal energy U and the enthalpy H, using equation (A5) in Appendix A, we can write the energy conservation equation with respect to the particle as,

$$\gamma'_\text{max} H - \left(\Gamma - 1\right)U = \frac{B_0^2}{2n_0} + H - \left(\Gamma - 1\right)U,$$
where γ'_{max} is the Lorentz factor of the plasma particle after complete release of the magnetic field energy observed in the bulk plasma rest frame. We get the maximum Lorentz factor γ'_{max} from equation (31) as,

$$\gamma'_{\text{max}} = \frac{1}{4} \left[u_A^2 + 2(1 - \varpi) + \sqrt{4D} \right],$$

(32)

where $u_A^2 = B_0^2/h_0$, $\varpi = p_0/h_0$, $4D = [u_A^2 + 4(1 - \varpi)]^2 + 16 \varpi$, $p_0 = (\Gamma - 1)U n_0$ is the pressure, and $h_0 = n_0 h$ is the enthalpy density of the plasma. Obviously, the terminal velocity of the plasma outflow through the magnetic reconnection is smaller than the maximum velocity u'_{out} since all the magnetic energy is not always converted to the kinetic energy because of the Joule heating in the reconnection region and finite length acceleration. Figure 4 shows the four-velocity $u'_{\text{out}} = \gamma'_{\text{out}} u'_{\text{out}}$ of the plasma outflow caused by the magnetic reconnection against the plasma beta $\beta_p = 2p_0/B_0^2$ in the case of $\Gamma = 4/3$ and $B_0^2 = \rho_0 c^2$. The solid line denotes the predicted values from equation (32),

$$u'_{\text{max}} = \gamma'_{\text{max}} \frac{v'_{\text{max}}}{c} = \frac{1}{2} \left[\left(1 + \frac{u_A^2}{2} - \varpi \right)^2 + 2(\varpi - 1) \left(1 + \frac{u_A^2}{2} - \varpi \right) \sqrt{D} \right],$$

(33)

where

$$u_A = \left[\frac{\rho_0 c^2}{B_0^2} + \frac{\Gamma}{2(\Gamma - 1)} \beta_p \right]^{-1/2},$$

$$\varpi = \frac{\beta_p}{2} \left[\frac{\rho_0 c^2}{B_0^2} + \frac{\Gamma}{2(\Gamma - 1)} \beta_p \right]^{-1}.$$

(34)

The full squares are from the numerical calculations (Watanabe & Yokoyama 2006). It is found that our values of u'_{max} are in good agreement with the result of numerical simulations. In the high plasma beta region, the values of u'_{out} from equation (33) are slightly smaller than those of the numerical result. This discrepancy, i.e., $u'_{\text{max}} < u'_{\text{out}}$, should come from the release of the thermal energy to the plasma kinetic energy. Therefore, we take the maximum velocity v'_{out} as the plasma outflow velocity induced by the magnetic reconnection hereafter.

Now we return to consider the conditions of the negative energy at infinity formation and escaping to infinity of the pair outflows caused by the magnetic reconnection. From equations (A6), the hydrodynamic energy at infinity per enthalpy of the plasma ejected through the magnetic reconnection into the $\pm e^3$ (azimuthal) direction with the Lorentz factor γ'_{max} is given by

$$e^\infty\left(u_A, \beta_0, \varpi, \alpha, \beta_3 \right) \equiv \frac{e^\infty_{\text{hyd}}}{h_0} = \frac{E^\infty}{H} = \alpha \gamma'_{\text{max}} \left[(1 + \beta_3 \beta_0 \gamma'_{\text{max}}) \gamma'_{\text{max}} \pm (\beta_3 \beta_0 \gamma'_{\text{max}}) \gamma'_{\text{max}} \sqrt{\gamma'^2_{\text{max}} - 1} \right] \frac{\gamma'^2_{\text{max}} + \beta_0^2 \gamma'^2_{\text{max}}}{\gamma'^2_{\text{max}} + \beta_0^2 \gamma'^2_{\text{max}} \varpi},$$

(35)

where γ'_{max} is given by equation (32). The plus and minus signs of the subscript in e^∞_{hyd} express the cases with the plasma velocity $v^3 = v'_{\text{max}}$ and $v^3 = -v'_{\text{max}}$, respectively. If $e^\infty < 0$, the energy at infinity of the plasma becomes negative. Here we neglect the contribution from the electromagnetic field, because when the plasma velocity becomes v'_{max}, most of the magnetic energy is converted to the plasma kinetic energy so that the electromagnetic energy at infinity becomes negligible. Then the total energy at infinity of the plasma and the electromagnetic field becomes negative. Here e^∞ decreases monotonically when u_A increases, and it is positive when $u_A = 0$ and negative when u_A is large enough in the ergosphere. Then, we can define the one-valued function $U_A(\beta_0, \varpi, \alpha, \beta_3)$ which satisfies $e^\infty(U_A, \beta_0, \varpi, \alpha, \beta_3) = 0$. The condition for the formation of the negative energy at infinity through the magnetic reconnection is given by $u_A > U_A$.

Fig. 3.—Energy convergence from the magnetic energy to the kinetic energy through the magnetic reconnection in the rest frame of the bulk plasma.
The condition of escaping to infinity of the plasma particle accelerated by the magnetic reconnection is given by

$$\Delta \epsilon^\infty_+ = \epsilon^\infty_+ - \left(1 - \frac{\Gamma}{\Gamma - 1} \varpi\right) > 0. \quad (36)$$

Here we assume that the magnetic field is so weak far from the reconnection region that we can neglect the interaction between the large-scale magnetic field and the outflow from the reconnection region. The monotonic function $\Delta \epsilon^\infty_+$ with respect to ϵ^∞_+ is negative when $\epsilon^\infty_+ = 0$ and positive when $\epsilon^\infty_+ > 0$. Then we can also define the one-valued critical function $U_A^\infty(\beta_0, \varpi, \alpha, \beta)$ such that $\Delta \epsilon^\infty_+(U_A^\infty, \beta_0, \varpi, \alpha, \beta) = 0$, the condition of the escape to infinity of the plasma flow is written by $\epsilon^\infty_+ > U_A^\infty$.

We apply the conditions $U_A > U_A^\infty$ and $\epsilon^\infty_+ > U_A^\infty$ to the plasma with the rotation bulk velocity $\hat{r}_B = c/\beta_0 = \hat{r}_K$. Figure 5 shows U_A^∞ and U_A against r/r_S ($r_S = 2r_g$) for the fixed black hole rotation parameter $a = 0.995$ and the pressure parameter $\varpi = 0.2$, 0.5. The lines of the critical values of Alfven four-velocities U_A^∞ and U_A are drawn as the contours of $\epsilon^\infty_+ = 0$ and $\Delta \epsilon^\infty_+ = 0$, respectively. The vertical thin dashed line indicates the inner most stable orbit radius of a single particle. The vertical thin dot-dashed line shows the point of $\hat{r}_K = c$. Then, the Kepler motion is unstable between the dot-dashed line and the dashed line. In the left region of the dot-dashed line, there is no circular orbit anymore. The vertical thin solid line indicates the horizon of the black hole. The upper regions of the thick lines $\epsilon^\infty_+ = 0$ show the condition of the formation of the negative energy at infinity through the magnetic reconnection, $u_A = B_0/h_0^{1/2} > U_A^\infty$. The different styles of lines indicate the different pressure cases (solid line, $\varpi = 0$; dashed line, $\varpi = 0.2$; dot-dashed line, $\varpi = 0.5$). The regions above the thick lines $\Delta \epsilon^\infty_+ = 0$ show the condition of escaping to infinity of the plasma accelerated by the magnetic reconnection, $u_A = B_0/h_0^{1/2} > U_A^\infty$. The difference of the line styles denotes the same as that of the upper lines. It is shown that the condition of the energy extraction from the black hole through the magnetic reconnection is determined from the condition of the formation of the negative energy at infinity, $u_A > U_A^\infty$ in the case of the rotating plasma with the black hole. In the zero pressure case ($\varpi = 0$), the easiest condition is found at $r = 0.61r_S$, $\epsilon^\infty_+ > U_A^\infty = 0.86$. This means the relativistic reconnection is required for the energy extraction from the black hole. In the finite pressure case ($\varpi = 0.2$), the condition is relatively relaxed around the outer region of the ergosphere, while the condition around the inner ergosphere is severer. However, the difference is small between these cases. This case also requires the relativistic magnetic reconnection to extract the black hole energy. The condition of the case $\varpi = 0.5$ is almost similar to the tendency of the previous two cases ($\varpi = 0$ and 0.2).

Figure 6 shows the critical Alfven four-velocity U_A^∞ of the energy extraction from the black hole with the rotation parameter $a = 0.9$. In this case, the condition of the energy extraction from the black hole becomes severer compared to the cases with the larger rotation parameters $a = 0.995$.

It is noted that in the case of the black hole rotation parameter $a < 1/\sqrt{2}$, there is no circular orbit inside of the ergosphere. In such a case, we cannot consider the energy extraction through the magnetic reconnection in the circularly rotating plasma around the black hole except for the case with support by a magnetic field.

When we consider the slower rotating plasma case $c/\beta_0 < \hat{r}_K$, which may be an artificial assumption, the conditions of the negative energy at infinity and the escape plasma become comparable and relaxed as a whole. Figure 7 shows the critical Alfven four-velocity of the case $c/\beta_0 = 0.6\hat{r}_K, a = 0.995$. At $r = 0.6r_S$, $U_A^\infty \simeq U_A^\infty \simeq 0.5$ for both the $\varpi = 0$ and 0.2 cases. This means the...
subrelativistic magnetic reconnection can extract the black hole energy.

4. DISCUSSION

In §3, we showed the possibility of the energy extraction from the black hole through the magnetic reconnection in the ergosphere. In this mechanism, the magnetic tension plays a significant role to cause the plasma flow with the negative energy at infinity, like the MHD Penrose process. If we consider quick magnetic reconnection, the mechanism by the magnetic reconnection is more effective than the MHD Penrose process, because the fast plasma flow can be induced, so that all magnetic energy can be converted to the kinetic energy of the plasma flow through the magnetic reconnection.

As the magnetic reconnection mechanism, we utilized a rather simple model with an artificial resistivity at the reconnection region and the local approximation around the rotating black hole. We further assumed that the outflow caused by the magnetic reconnection is parallel to the azimuthal direction. In general, the outflow is oblique to the azimuthal direction. In the oblique case with the angle χ between the outflow and azimuthal directions, the condition of the energy extraction through the magnetic reconnection is given by $u_A > U^- (u_A, \alpha, \beta_1 \cos \chi)$ and $u_A > U^+ (u_A, \alpha, \beta_1 \cos \chi)$, where β_1 of equation (35) is replaced by $\beta_3 \cos \chi$. This is a severer condition compared to the parallel case.

Let us briefly estimate the critical magnetic field required for the energy extraction from the black hole through the magnetic reconnection with respect to the AGNs, μQSOs, and GRBs. Here the critical magnetic field in the SI unit, B_{crit}, is given by $B_{\text{crit}} = (\mu_0 h_0)^{1/2} \sim (\mu_0 \rho_0)^{1/2} c$, where h_0 and ρ_0 are the typical enthalpy and mass density around the objects, respectively. Here, we assume the pressure is not larger than $\rho_0 c^2$ and neglect it to get rough estimation. To estimate the typical mass density ρ_0 of the plasma around the central black hole of these objects, we use

$$\rho_0 \approx 5 \times 10^4 \left(\frac{\dot{M}}{M_\odot \, \text{yr}^{-1}} \right) \left(\frac{M}{M_\odot} \right)^{-2} \left(\frac{2 \pi}{r_S} \right)^{-3/2} \text{g/cm}^3, \quad (37)$$

where \dot{M} is the accretion rate and M is the black hole mass (Rees 1984). For the AGN in the large elliptical galaxy M87, when we assume $\dot{M} = 10^{-2} M_\odot \, \text{yr}^{-1}$, $r = r_S$, and $M = 3 \times 10^9 M_\odot$ (Reynolds et al. 1996; Ho 1999), equation (37) yields $\rho_0 \approx 2 \times 10^{-17} \text{g/cm}^3$. Then, we get $B_{\text{crit}} \approx 500 \text{G}$.

In a collapsar model with $M = 0.1 M_\odot$ yr$^{-1}$ and $M = 3 M_\odot$ (MacFadyen & Woosley 1999) when we apply equation (37), we get $\rho_0 \approx 6 \times 10^9 \text{g/cm}^3$ at $r = r_S$ as mass density around a black hole in a GRB progenitor. The critical magnetic field is then $B_{\text{crit}} \approx 8 \times 10^{15} \text{G}$. The magnetic field of the progenitors is estimated to be $10^{15}-10^{17} \text{G}$ (van Putten 1999) and then extraction of the black hole energy through the magnetic reconnection is marginally probable in a core of a collapsar.

With respect to μQSO, GRS 1915+105 has a mass accretion rate of $\dot{M} = 7 \times 10^{-7} M_\odot \, \text{yr}^{-1}$ (Mirabel & Rodriguez 1994; Fender & Belloni 2004) with a mass of $M = 14 M_\odot$ (Greiner et al. 2004).
2001). Then equation (37) yields $\rho_0 \simeq 6 \times 10^{-5}$ g cm$^{-3}$. The critical magnetic field is estimated as $B_{\text{crit}} \simeq 8 \times 10^8$ G. This magnetic field is too strong as the field around a black hole in μQSOs. Thus, the energy extraction from a black hole in μQSO through the magnetic reconnection may not be prospective.

We discuss the possibility of formation of antiparallel magnetic field with a current sheet where strong magnetic reconnection in the ergosphere is caused. First, let us consider uniform magnetic field around a rotating black hole as the initial condition. In this magnetic configuration, one may think that the magnetic reconnection scarcely happens. However, this is caused naturally by the gravitation and the frame-dragging effect of the rapidly rotating black hole. Under this situation, GRMHD simulations were carried out with zero electric resistivity (Koide et al. 2002; Koide 2003; Komissarov 2004). The numerical simulations showed that the magnetic flux tubes across the ergosphere are twisted by the frame-dragging effect of the rotating black hole, and the plasma falling into the black hole makes the magnetic field radial around the ergosphere. Here it is noted that the magnetic field line twisted by the frame-dragging effect makes the angular momentum of the plasma around the equatorial plane parallel open magnetic field is formed almost along the azimuthal direction (Fig. 8a). In this way, the magnetic reconnection happens and the energy of the rotating black hole is extracted through the magnetic reconnection, even in the case of the initially uniform magnetic field. When the magnetic reconnection happens around the antiparallel magnetic field, the outward flow from the reconnection region will be ejected toward infinity along the open magnetic field lines. This outflow will be bent and pinched by the magnetic field and may become a jet.

Next, as the initial condition, we assume closed magnetic flux tubes which are believed to be formed in the accretion disks around the black holes (van Putten 1999; Koide et al. 2006; McKinney 2006; see Fig. 8b). When a single closed magnetic flux tube is tied to an edge of a rotating quasi-stationary disk and a bulk part of the disk, the plasma at the edge loses the angular momentum and falls into the black hole, while the bulk plasma tied to the magnetic flux tube increases the angular momentum and shifts outwardly. The plasma at the disk edge falls spirally due to the frame-dragging effect, and the magnetic flux tubes dragged by the plasma are elongated spirally. If the twist of the magnetic flux tube is strong enough, an antiparallel closed magnetic field is formed almost along the azimuthal direction. In this magnetic configuration, energy may be extracted from the black hole through the magnetic reconnection in the ergosphere. The outflow from the reconnection region will elongate the closed magnetic field lines, while this decelerates the outflow. If the magnetic reconnection is caused in the elongated magnetic field lines, the plasmoid is formed and is ejected to infinity.

As shown in the above two cases of the open and closed magnetic field, the large-scale dynamics of the outflow through the magnetic reconnection depends on the large-scale magnetic field configuration. Here we note that closed magnetic flux tubes across an accretion disk and an ergosphere around a rapidly rotating black hole is unstable and expands vertically to form open magnetic field (Koide et al. 2006; McKinney 2006). Then, around a rapidly rotating black hole, an open magnetic field may be probable compared to a closed field. Anyway, these phenomena should be investigated by numerical simulations of the full GRMHD with nonzero electric resistivity (resistive GRMHD).

To be more exact, in both cases of the open and closed topologies of the magnetic field, the outflow caused by the magnetic reconnection is influenced by the large-scale magnetic field, and it is not determined only from the local approximation which we used here. In both cases, it is noted that the plasma with the negative energy at infinity is farther from the horizon than the plasma accelerated by the magnetic reconnection. If we assume the azimuthal symmetry of the initial condition, interchange instability should be caused so that the plasma with negative energy at infinity falls into the black hole and the plasma with additional energy at infinity runs away to infinity. With respect to the interchange instability, we consider essentially hydrodynamic mode where initially super-Keplerian inner part of the disk supports sub-Keplerian outer part against the black hole gravity. The closed magnetic flux tube is formed across the plasma with additional energy at infinity. The plasma at the inner edge of the magnetic loop falls into the black hole because of the deceleration by the magnetic tension, while the plasma at the outer edge of the magnetic loop is accelerated and escapes to infinity. Then the magnetic flux tube is elongated between the escaping and falling plasmas. In such magnetic flux tube, the antiparallel magnetic field with strong current sheet may be formed and the magnetic reconnection may be caused once again. On the other hand, the plasma with the negative energy at infinity through the magnetic reconnection falls into the black hole and the magnetic flux tube tied to the plasma is also elongated by the frame-dragging effect. The antiparallel magnetic field in the magnetic flux tube will also form, and the magnetic reconnection is caused repeatedly. The discussion shows that the magnetic reconnection can be caused intermittently in the ergosphere. To investigate these phenomena, numerical simulations of resistive GRMHD are also demanded.

The resistive GRMHD should solve the problems with respect to the energy extraction through the magnetic reconnection. For example, using resistive GRMHD simulations, we can take into account the situation that the initial plasma falls into the black hole with sub-Keplerian velocity of the plasma rotation, which is neglected in this paper. Unfortunately, no simulation with resistive GRMHD has been performed until now, while recently ideal GRMHD numerical simulations where the electric resistivity is zero have been widespread (Koide et al. 1998, 1999, 2000, 2002, 2006; Koide 2003, 2004; McKinney 2006; Punsly 2006; Komissarov & McKinney 2007, and references therein). They confirmed important, interesting magnetic phenomena around the rotating black holes, such as magnetically induced energy extraction from the rotating black hole (Koide et al. 2002; Koide 2003; Komissarov 2004) and formation of magnetically driven relativistic jets (McKinney 2006). To confirm that the plasma with additional energy by the magnetic reconnection escapes to infinity and the plasma with the negative energy at infinity falls into the black hole, we may also use the ideal GRMHD simulations. In such calculations, we can trace the plasma trajectories after the magnetic reconnection stops. The magnetic configuration of the post stage of the magnetic reconnection is used as an initial condition.

On the other hand, in spite of the restriction of the ideal GRMHD, many magnetic islands are seen in the last stages of long-term calculations (McKinney & Gammie 2004; Koide et al. 2006; McKinney 2006). These magnetic islands, of course, are artificial appearance. However, these numerical results indicate that the magnetic configuration where the magnetic reconnection
occurs is relatively easily formed around the black hole. Recent X-ray observations of the solar corona confirmed that the magnetic reconnection takes places frequently in the active region of the corona and causes drastic phenomena, like solar flares. The observations and the recent theories of solar and stellar flares indicate that the magnetic reconnection is common in the astrophysical plasmas around the Sun, stars, and the compact objects including black holes (Masuda et al. 1994; Shibata 1997). The energy extraction from the black hole through the magnetic reconnection is relatively easily formed around the black hole. Re-

APPENDIX A

RELATIVISTIC ADIABATIC INCOMPRESSIBLE BALL APPROACH

To take account of inertia effect of pressure into plasma, we use an approximation of incompressible fluid, which is consisted of small, separated, constant volume elements. The element is covered by thin, light, adiabatic, closed skin and its volume is constant, like a ball used for soft tennis. We call this method “relativistic adiabatic incompressible ball (RAIB) approach”. Here we assumed that gas pressure does not work to the plasma and influences the plasma dynamics only through an inertia effect. Let us consider the fluid in one ball with the mass m. When the ball is located at $r = r(t)$, the mass density of the gas is

$$\rho(r, t) = \frac{m}{\gamma(t)} \delta^3[r - r(t)], \quad (A1)$$

where $\gamma(t)$ is the Lorentz factor of the ball at time t and $\delta^3(r)$ is the Dirac’s δ-function in three-dimensional space. Because the gas in the ball is assumed to be incompressible and adiabatic and then its temperature is constant, the pressure should be proportional to the mass density, $p(r, t) \propto \rho(r, t)$. On the other hand, the thermal energy in the ball

$$U = \int_{\Omega} \frac{p(r, t)}{\Gamma - 1} \gamma(t) dV \quad (A2)$$

should be constant. Then we found

$$p(r, t) = \frac{(\Gamma - 1)U}{\gamma(t)} \delta^3[r - r(t)]. \quad (A3)$$

Using equations (10), (A1), and (A3), we found the energy at infinity of the gas in the ball as,

$$E^\infty = \int_{\Omega} \left(c_{\text{hyd}} + \sum_i c_{\beta_i} \frac{\hbar}{c^2} \tilde{\gamma}^2 \tilde{v}^i \right) dV
= \int_{\Omega} \alpha \left[\left(\rho c^2 + \frac{\Gamma - 1}{\Gamma - 1} p \right) \tilde{\gamma}^2 (1 + \beta_3 \tilde{\beta}^3) - p \right] dV
= \alpha \left[(\tilde{\gamma} + \beta_3 \tilde{U}^3)H - \frac{\Gamma - 1}{\tilde{\gamma}} U \right]. \quad (A4)$$

where $\tilde{\beta}^3 = \tilde{v}^3/c$ and $H = mc^2 + \Gamma U$. In the special relativistic case, equation (A4) yields the total energy of the ball as,

$$E_{\text{tot}} = \gamma H - \frac{\Gamma - 1}{\gamma} U. \quad (A5)$$

Next we derive the energy at infinity of the incompressible ball rotating circularly around the black hole. We assume that the bulk plasma rotates circularly with the velocity $\tilde{v}^3 = c \tilde{\beta}_0$, and then the relative three-velocity between the rest frame of the bulk plasma and the ZAMO frame is $\tilde{v}^3 = c \tilde{\beta}_0$, $\tilde{v}^1 = \tilde{v}^2 = 0$. The line elements of the ZAMO frame ($c t', x'^1, x'^2, x'^3$) and the bulk plasma rest frame (ct', x^1, x^2, x^3) are related by the Lorentz transformation. Using equations (A4) and the Lorentz transformation, the energy at infinity of the incompressible ball with four-velocity observed by the bulk plasma rest frame ($\gamma', U'^1, U'^2, U'^3$) is given by

$$E^\infty = \alpha H \gamma_0 \left[(1 + \beta_3 \tilde{\beta}_0) \gamma' + (\tilde{\beta}_0 + \beta_3) U'^3 - \frac{\gamma' - \beta_0 U'^3}{\gamma'^2 + \beta_0^2 \tilde{\beta}_0^3} \right]. \quad (A6)$$

It is noted that the four-velocity of the plasma is related with the Lorentz factor by $U'^3 = \pm (\gamma'^2 - 1)^{1/2}$ in the case of $U'^3 = U'^2 = 0$. This formula of the energy at infinity of the incompressible ball (A6) is applicable to that of one particle of the plasma effectively.

We thank Mika Koide, Takahiro Kudoh, Kazunari Shibata, and Masaaki Takahashi for their help for this study. We also thank Naoyuki Watanabe and Takaaki Yokoyama for their permission of the use of data in their paper (Watanabe & Yokoyama 2006). This work was supported in part by the Scientific Research Fund of the Japanese Ministry of Education, Culture, Sports, Science and Technology.
REFERENCES

Blandford, R. D., & Znajek, R. 1977, MNRAS, 179, 433
Fender, R., & Belloni, T. 2004, ARA&A, 42, 317
Greiner, J., Cuby, J. G., & McCaughrean, M. J. 2001, Nature, 414, 522
Hirota, K., Takahashi, M., Nitta, S.-Y., & Tomimatsu, A. 1992, ApJ, 386, 455
Ho, L. C. 1999, ApJ, 516, 672
Koide, S. 2003, Phys. Rev. D, 67, 104010
Koide, S. 2004, ApJ, 606, L45
Koide, S., Meier, D. L., Shibata, K., & Kudoh, T. 2000, ApJ, 536, 668
Koide, S., Shibata, K., & Kudoh, T. 1998, ApJ, 495, L63
———. 1999, ApJ, 522, 727
———. 2006, Phys. Rev. D, 74, 044005
Koide, S., Shibata, K., Kudoh, T., & Meier, D. L. 2002, Science, 295, 1688
Komissarov, S. S. 2004, MNRAS, 350, 1431
Komissarov, S. S., & McKinney, J. C 2007, MNRAS, 377, L49
MacFadyen, A. I., & Woosley, S. E. 1999, ApJ, 524, 262
Masuda, S., et al. 1994, Nature, 371, 495
McKinney, J. C. 2006, MNRAS, 368, 1561
McKinney, J. C., & Gammie, C. F. 2004, ApJ, 611, 977
Meier, D. L., Koide, S., & Uchida, Y. 2001, Science, 291, 84
Mirabel, I. F., & Rodriguez, L. F. 1994, Nature, 371, 46
Misner, C. W., Thorne, K. S., & Wheeler, J. A. 1970, Gravitation (San Francisco: Freeman)
Penrose, R. 1969, Nuovo Cimento, 1, 252
Pierre Auger collaboration. 2007, Science, 318, 938
Press, W., & Teukolsky, S. A. 1972, Nature, 238, 211
Punsly, B. 2006, MNRAS, 366, 29
Punsly, B., & Coroniti, F. V. 1990, ApJ, 354, 583
Rees, M. J. 1984, ARA&A, 22, 471
Reynolds, C. S., di Matteo, T., Fabian, A. C., Hwang, U., & Canizares, C. R. 1996, MNRAS, 283, L111
Ruffini, R., & Wilson, J. R. 1975, Phys. Rev. D, 12, 2959
Shibata, K. 1997, in Proc. Fifth SOHO Workshop (ESA SP-404: Noordwijk: ESA), 103
Watanabe, N., & Yokoyama, T. 2006, ApJ, 647, L123
van Putten, M. H. P. M. 1999, Science, 284, 115
———. 2000, Phys. Rev. Lett., 84, 3752