Spin electron acoustic soliton: Separate spin evolution of electrons with exchange interaction

Pavel A. Andreev
Faculty of physics, Lomonosov Moscow State University, Moscow, Russian Federation.
(Dated: May 1, 2015)

Separate spin evolution quantum hydrodynamics developed in [P. A. Andreev, Phys. Rev. E 91, 033111 (2015)] is generalized to include the Coulomb exchange interaction. Two kinds of the Coulomb exchange interaction are considered: the interaction between the spin-down electrons being in the quantum states occupied by one electron and the interaction of the electron couples with the opposite spins being in the same quantum state. The generalized model is applied to study the non-linear spin-electron acoustic waves. Existence of the spin-electron acoustic soliton is demonstrated. Contributions of the concentration, spin polarization, and exchange interaction in the properties of the spin electron acoustic soliton are studied.

PACS numbers: 52.35.Mw, 52.30.Ex, 52.35.Dm, 67.10.Db
Keywords: quantum plasmas, quantum hydrodynamics, separate spin evolution, two fluid model of electrons, acoustic solitons

I. INTRODUCTION

Spin evolution in quantum plasmas has been considered for a long time. Fundamental equations of many-particle spin-1/2 quantum hydrodynamics were derived in 2001 [1,2]. They found many applications at the study of waves and instabilities in spin-1/2 quantum plasmas. Among them we find the appearance of the spin-plasma waves with frequencies near the cyclotron frequency [3,4,5,6]. Later it was demonstrated that the quantum Bohm potential existing in the magnetic moment evolution equation shifts the frequency of the spin-plasma waves [7,8]. This shift is proportional to the square of the wave vector. The annihilation interaction between electrons and positrons gives a shift of the spin-plasma wave frequency on a constant proportional to the magnetic moment density of the spin-1/2 quantum electron-positron plasmas [8]. Generation of waves in magnetized plasmas by neutron beams via the spin-spin and spin-current interactions of the neutron spins with the spins and electric currents of the electrons and ions of the plasmas was considered in Ref. [4]. Spin parts of the hydrodynamic vorticity and helicity of the spin-1/2 quantum plasmas were derived in Refs. [9,10]. Conservation of the full helicity at the charge-charge and spin-spin interactions was demonstrated there. Spin parts of the vorticity and helicity for spin-1/2 electron-positron plasmas were obtained in Ref. [11]. These phenomena appear along with the change of properties of well-known plasma phenomena (see for instance Refs. [11,12,13,14]).

Different methods of derivation [15,16] and generalization [17,18,19,20] of the spin-1/2 quantum hydrodynamics were presented in literature. Kinetic models for the spin-1/2 quantum plasmas were presented as well [17,21] (see also reviews [14,22]). All these models consider electrons as a single fluid. It corresponds to the multi-fluid plasmas, where each species is considered as a fluid. The Pauli equation allows to find different form for the spin-1/2 quantum hydrodynamics, where we have two fluids of electrons: the spin-up electrons and the spin-down electrons [23,24,25]. Early papers [23,24] did not show full picture of electron evolution and partially mistreat coefficients in the spin-spin interaction force. The separate spin evolution of the electrons, in accordance with the Pauli equation, was obtained in Ref. [25].

It was demonstrated in Ref. [25] that the Fermi pressures for the spin-up electrons and the spin-down electrons are different. It leads to existence of new phenomena. The spin-electron acoustic wave was found in Ref. [26] at wave propagation parallel to the external magnetic field. Oblique propagation of the longitudinal waves at the separate evolution of the spin-up electrons and the spin-down electrons was considered in Ref. [27]. Existence of two kinds of the spin-electron acoustic waves (SEAWs) was demonstrated in this regime. Properties of the SEAWs in two dimensional structures were studied in Ref. [27]. The SEAWs in the two-dimensional plane-like electron gas and the electron gas on the cylindrical surface were considered in Ref. [27]. Kinetic model of the SEAWs was considered in Ref. [28], where the Landau damping of the SEAWs was calculated. It was demonstrated that the Landau damping of the SEAWs is small. Therefore, the SEAWs are slowly damping waves.

Spins of electrons affect the plasma dynamics even if we do not consider spin evolution. It is enough to include distribution of electrons on different spin states to find a change in the equation of state. The distribution of electrons on spin states affects the Coulomb exchange interaction as well. The exchange interaction was considered at the first steps of the development of the many-particle spin-1/2 quantum hydrodynamics [2]. The exchange interaction attracts a lot of attention in recent research (see
for instance Refs. \[29\] - \[34\]). This research are grounded on the long experience of the Coulomb exchange interaction study \[33\] - \[41\], along with recent applications of the exchange interaction to different plasma phenomena (see for instance \[42\], \[43\]).

In effort to study the influence of the Coulomb exchange interaction on the properties of the spin-electron acoustic waves we develop generalization of the separate spin evolution quantum hydrodynamics (SSE-QHDs) \[25\] containing contribution of the exchange interaction. As in Ref. \[27\] we focus our attention on degenerate electron gas.

In this paper we consider two kinds of the Coulomb exchange interaction: the interaction between the spin-down electrons being in the quantum states occupied by one electron (it is considered in Ref. \[30\] in terms of single fluid model of electrons) and the interaction of the electron couples with the opposite spins being in the same quantum state. One of the features of this paper is the application of the exchange interaction obtained in Ref. \[34\] to two-fluid model of electrons \[25\]. Another feature of this paper is the demonstration of the force field of the Coulomb exchange interaction of the electron couples with the opposite spins being in the same quantum state. This effect can be considered in terms of the single fluid model of electrons as well.

We apply the developed model to the non-linear SEAWs, particularly to the soliton formation.

Non-linear waves related to the ion-acoustic waves are still under consideration \[44\], while this paper is dedicated to non-linear waves related to the recently found spin-electron acoustic waves \[25\].

This paper is organized as follows. In Sec. II we present the QHD model with separated spin-up electrons and spin-down electrons containing the Coulomb exchange interaction. In Sec. III we describe method of derivation of the spin-electron acoustic soliton from the developed in Sec. II model. In Sec. IV we present analysis of properties of the spin-electron acoustic soliton in quantum plasmas with no account of the exchange interaction. In Sec. V we describe the spin-electron acoustic soliton with the account of the exchange interaction. In Sec. VI brief summary of obtained results is presented.

II. MODEL

The Pauli equation is a set of two equations describing evolution of two wave functions, one is for spin-up state of electron and another one is for spin-down state of electron. Therefore, the evolution of system of electrons can be described in terms of two-fluid model of electrons with different spin projection. This is called the separate spin evolution quantum hydrodynamics \[25\]. Corresponding kinetic model is obtained as well \[28\]. However these models are derived in the self-consistent field approximation. In this paper we make the next step in the development of the SSE-QHD. We include the Coulomb exchange interaction in the SSE-QHD.

The time evolution of the concentrations of the spin-up electrons and the spin-down electrons obeys the continuity equations with nonzero right-hand side

\[
\partial_t n_\uparrow + \nabla (n_\uparrow \mathbf{v}_\uparrow) = \frac{\mu_e}{\hbar} (S_x B_y - S_y B_x),
\]

and

\[
\partial_t n_\downarrow + \nabla (n_\downarrow \mathbf{v}_\downarrow) = -\frac{\mu_e}{\hbar} (S_x B_y - S_y B_x),
\]

where \(n_\uparrow\) and \(n_\downarrow\) (\(\mathbf{v}_\uparrow\) and \(\mathbf{v}_\downarrow\)) are the particle concentrations (the velocity fields) of the spin-up electrons and the spin-down electrons, \(\mu_e = -g \frac{e^2}{2m_e}\) is the gyromagnetic ratio for electrons, and \(g = 1 + \alpha/(2\pi) = 1.00116\), where \(\alpha = 1/137\) is the fine structure constant, which gets into account the anomalous magnetic moment of electron, \(e\) (\(m_e\)) is the electron charge (mass), \(\hbar\) is the Planck constant, \(c\) is the speed of light, \(\mathbf{B} = \{B_x, B_y, B_z\}\) is the magnetic field. The particle concentrations appear as the quantum mechanical average of the corresponding wave functions, which are the elements of the Pauli spinor wave function, \(n_s = \langle \psi_s^\ast \psi_s \rangle\), with \(s = \uparrow\) or \(\downarrow\). These concentrations are related to the spin-up electrons and the spin-down electrons separately. It appears in the accordance with the spinor structure of the Pauli equation, which governs the evolution of the spinor wave function \(\psi = (\psi_\uparrow, \psi_\downarrow)^T\). Considering the evolution of the upper and lower elements separately we find the separate description of the spin-up electrons and the spin-down electrons. The velocity fields \(\mathbf{v}_\uparrow\) and \(\mathbf{v}_\downarrow\) appear at the averaging of the corresponding operators with \(\psi_\uparrow\) and \(\psi_\downarrow\): \(\mathbf{v}_s = (1/n_s)(\langle \psi_s^\ast \mathbf{p} \psi_s + c.c. \rangle/2m_e\), where c.c. stands for the complex conjugation. Equations (1) and (2) contain projections of the spin density \(S_x\) and \(S_y\). Each projection of the spin density is defined as a mixture of the spin-up and spin-down wave functions: \(S_x = \psi_\uparrow^\ast \sigma_x \psi_\downarrow + \psi_\downarrow^\ast \sigma_x \psi_\uparrow\), and \(S_y = \psi_\uparrow^\ast \sigma_y \psi_\downarrow - \psi_\downarrow^\ast \sigma_y \psi_\uparrow\). Therefore, these quantities do not related to different species of electrons having different spin direction. \(S_x\) and \(S_y\) describe simultaneous evolution of both species of electrons. Equations of evolution of \(S_x\) and \(S_y\) were derived in Ref. \[25\] as a part of the set of SSE-QHD equations. We do not study the spin evolution in this paper, so we do not describe equations for \(S_x\) and \(S_y\), which can be found in Refs. \[25\] and \[26\].

From the continuity equations (1) and (2) we see that the numbers of electrons in each subspecies can change due to the spin-spin interaction and the interaction of spins with the external magnetic field. However, the full number of electrons \(n_e = n_\uparrow + n_\downarrow\) conserves in this model.

In this model we have two Euler equations. We use the subindex \(s = \uparrow\) or \(\downarrow\) to present them as one equation

\[
\begin{align*}
 mn_s (\partial_t + \mathbf{v}_s \nabla) \mathbf{v}_s + \nabla p_s - \frac{\hbar^2}{4m} n_s \nabla \left(\frac{\Delta n_s}{n_s} - \frac{(\nabla n_s)^2}{2n_s^2} \right)
\end{align*}
\]
\[J = q_e n_s \left(\mathbf{E} + \frac{1}{c} [\mathbf{v}_s, \mathbf{B}] \right) + \mathbf{F}_{Ex,s} \]

\[\pm \mu_e n_s \nabla B_z + \frac{\mu_e}{2} \left(S_x \nabla B_x + S_y \nabla B_y \right) \]

\[\pm \frac{m \mu_e}{\hbar} (J_{(M)x} B_y - J_{(M)y} B_x) \mp \frac{\nu_e}{h} (S_x B_y - S_y B_x), \]

where in coefficients \(\pm \) and \(\mp \) we have the upper sign for the spin-up electrons and the lower one for the spin-down electrons. In formula [3] we use \(q_e = -e \) for the electron charge, \(p_s \) for the pressure of the spin-up and spin-down electrons. We also apply \(J_{(M)x} \) and \(J_{(M)y} \) for the elements of the spin current tensor \(J^{\alpha \beta} \). Vectors \(J_{(M)x} \) and \(J_{(M)y} \) have the following explicit forms

\[J_{(M)x} = \frac{1}{2} (\mathbf{v}_↑ + \mathbf{v}_↓) S_x - \frac{\hbar}{4m} \left(\frac{\nabla n_↑}{n_↑} - \frac{\nabla n_↓}{n_↓} \right) S_y, \]

and

\[J_{(M)y} = \frac{1}{2} (\mathbf{v}_↑ + \mathbf{v}_↓) S_y + \frac{\hbar}{4m} \left(\frac{\nabla n_↑}{n_↑} - \frac{\nabla n_↓}{n_↓} \right) S_x. \]

The Euler equations [3] describes the momentum evolution complicated by the unconservation of the numbers of the spin-up and spin-down electrons.

We describe now the physical meaning of different terms in the Euler equations [3]. The first term is the continual derivative of the velocity field \(\mathbf{v}_s \). The second term is the gradient of pressure. The explicit form of the pressure we present and discuss below. The third term is proportional to the square of the Planck constant. It is a combination of the spatial derivatives of the particle concentration \(n_s \) up to the third derivative \(\nabla^3 n_s \). This term is called the quantum Bohm potential. It is related to the wave nature of the electron.

On the right-hand side of the Euler equations [3] we present the force fields of different nature. The first term presents the Lorentz force describing the interaction of charges with the electromagnetic fields. The electric field contains two parts \(E = -\nabla \phi - \partial_t \mathbf{A}/c \), where \(\phi \) and \(\mathbf{A} \) are the scalar and vector potentials of the electromagnetic field. The first of them is the potential part giving contribution in the longitudinal waves, which we consider in this paper, and the second one is the vortical part. The second part of the Lorentz force describes the interaction of the moving charges with the magnetic field. The second term on the right-hand side of the Euler equations [3] is the exchange part of the Coulomb interaction. The contribution of the Coulomb exchange interaction in the separate spin evolution QHD is in the center of attention of this paper. We discuss its explicit form below.

The third and fourth terms are the parts of the spin-spin interaction force. The magnetic moments related to the spin of electrons create the magnetic field. This magnetic field acts on the magnetic moments of other electrons and leads to existence of this force in the Euler equation. In terms of the SSE-QHD this force field splits on two terms. The first (the second) of them describes the interaction of the z projection (the x- and y projections) of the magnetic moments with the nonuniform z projection (the x- and y projections) of the magnetic field. The last two terms on the right-hand side of the Euler equations [3] are related to the unconservation of the numbers of the spin-up and spin-down electrons. The first of them appears at the derivation of the Euler equation for the momentum density \(n_s \mathbf{v}_s \). The second of them arises at the application of the continuity equation during the extraction of \(\partial_t n_s \) from \(\partial_t (n_s \mathbf{v}_s) \). Hence, it is proportional to the right-hand side of the corresponding continuity equation.

Study of the Coulomb exchange interaction in the electron gas has a long history. Recently, it was shown that the exchange interaction force field strongly depends on the spin polarization of the electron gas [30]. Distribution of the partially spin polarized electrons is depicted in Fig. 1. This distribution splits the electrons on different groups, which demonstrate different exchange interactions. Fig. 1a shows two pairs of electrons. We see a spin-down electron being in a state with energy \(E \in \{ E_{Fe(up)}, E_{Fe(down)} \} \) interacting with two electrons having different spin direction and being in the same quantum state with energy \(E' \in [0, E_{Fe(up)}] \), where \(E_{Fe(up)} = (6\pi^2 n_0)^2/3 \hbar^2/2m \), \(E_{Fe(down)} = (6\pi^2 n_0)^2/3 \hbar^2/2m \). The strengths of these interactions are the same, but they have opposite signs. Hence, it gives zero contribution in the force field.

In Fig. 1b we have a similar situation, but a chosen spin-up electron is in a quantum state with energy \(E \in [0, E_{Fe(up)}] \). It gives zeroth contribution in the force field either. If we consider a spin-down electron in a quantum state with energy \(E \in [0, E_{Fe(up)}] \) we find the same result.

Figures 1c and 1d show regimes giving non zero contributions in the force field. The regime presented in Fig. 1c was considered in Ref. 30. Here, we have interaction of two spin-down electrons being in quantum states with energies \(E \in \{ E_{Fe(up)}, E_{Fe(down)} \} \). In this regime the spatial part of the wave function is antisymmetric relatively permutation of these two particles. We have same sign of interaction for all such pairs of electrons. It is important to underline that this regime involves the interaction of spin-down electrons only. Hence we should substitute this force field, found in Ref. 30, in the Euler equation for the spin-down electrons. This regime gives no contribution in the Euler equation for the spin-up electrons.

The regime of the electron interaction depicted in Fig. 1d is an essential part of this paper. In this regime we consider the Coulomb exchange interaction of the electrons having opposite spins and located in the same quantum state. In this case the spatial part of the wave function is symmetric relatively the permutation of two particles. Therefore, the sign of the interaction in this regime differs from the sign of interac-
tion in the regime depicted in Fig. (1c). This regime gives an interspecies exchange interaction for the spin-up and spin-down electrons. Hence, it gives contribution to both Euler equations. The force fields appearing in this regime can be presented via the self-consistent field electric field. The force field acting on the spin-up electrons appears as $F^\uparrow = q_en^\uparrow (1 + (1 - \eta)/2)E$. The force field acting on the spin-down electrons arises as $F_{E_{x,\downarrow}} = q_en^\downarrow (1 + (1 - \eta)^{2}/2(1 + \eta))E$.

The force of the exchange interaction of the spin-down electrons being in quantum states occupied by one electron was found in Ref. [30]. The result was presented in terms of the concentration of all electrons, while it involves the interaction of spin-down electrons only. To substitute this force in the Euler equation for the spin-down electrons it is necessary to rewrite the force field in terms of the spin-down electron concentration. In the equilibrium state we have the following relations between the spin polarization η, the spin-up electron concentration n^\uparrow, the spin-down electron concentration n^\downarrow, and the full concentration of electrons n_e: $n^\uparrow = (1 - \eta)n_e/2$, $n_e = (1 + \eta)n_e/2$. Applying these formulae we can make the required representation of the exchange interaction force:

$$F_{E_{x,\downarrow}} = \zeta_{3D}q_e^2 \sqrt{3} / (1 + \eta)^{4/3} \nabla n_e / \sqrt{n_e},$$

where

$$\zeta_{3D} = (1 + \eta)^{4/3} - (1 - \eta)^{4/3},$$

and

$$\chi = \zeta_{3D} \sqrt{3} / (1 + \eta)^{4/3} = 2^{4} \sqrt{\frac{3}{\pi}} \left(1 - \frac{(1 - \eta)^{4/3}}{(1 + \eta)^{4/3}}\right).$$

Finally we have the following Coulomb exchange interaction force fields for the spin-up and spin-down electrons $F_{E_{x,\uparrow}} = q_en^\uparrow (1 + (1 - \eta)/2)E$ and $F_{E_{x,\downarrow}} = q_en^\downarrow (1 + (1 - \eta)^{2}/2(1 + \eta))E + \chi q_e^2 \sqrt{n_e} \nabla n^\downarrow$.

The electromagnetic field presented in the hydrodynamic equations satisfy the Maxwell equations:

$$\nabla \times E = 4\pi (e\nabla n - e\nabla n^\uparrow - e\nabla n^\downarrow),$$

$$\nabla \times B = 0,$$

$$\nabla \times E = -\frac{1}{c} \partial_t B,$$

and

$$\nabla \times B = \frac{1}{c} \partial_t E$$

$$+ \frac{4\pi}{c} \sum_{a=\uparrow,\downarrow} (q_a n_a^\uparrow \nabla n^\uparrow + q_a n_a^\downarrow \nabla n^\downarrow) + 4\pi \sum_{a=\uparrow,\downarrow} \nabla \times M_a,$$

where $M_a = \{\mu_aS_{ax}, \mu_aS_{ay}, \mu_a(n_{a\uparrow} - n_{a\downarrow})\}$ is the magnetization of electrons in terms of hydrodynamic variables.

We consider the wave propagation parallel to the external magnetic field. Since we consider the longitudinal waves $k \parallel \delta B$ we find from equation (11) that the perturbation of the magnetic field is equal to zero $\delta B = 0$. Hence the set of SSE-QHD equations (11)-(14) simplifies to the following set of equations.

We consider interval of the equilibrium concentrations from $n_0 = 10^{21}$ cm$^{-3}$ to $n_0 = 10^{27}$ cm$^{-3}$. We drop the contribution of the quantum Bohm potential, which reveals itself at larger concentrations.

In this regime we have conservation of the electron number for both subspecies

$$\partial_t n^\uparrow + \nabla (n^\uparrow \nabla) = 0,$$

and

$$\partial_t n^\downarrow + \nabla (n^\downarrow \nabla) = 0.$$

The conservation follows from the zeroth value on the right-hand sides of the continuity equations (13) and (14).

Simplified Euler equations appear as follows

$$m n^\uparrow (\partial_t + \nabla \nabla) = \frac{q_e}{c} \nabla [\nabla + \nabla p^\uparrow],$$

and

$$m n^\downarrow (\partial_t + \nabla \nabla) = \frac{q_e}{c} \nabla [\nabla + \nabla p^\downarrow],$$

FIG. 1: (Color online) The figure shows the different combinations of pair of the spin-up and spin-down electrons in the degenerate electron gas giving different contributions in the collective effect of the Coulomb exchange interaction. In this figure we apply the Fermi energies of the spin-up and spin-down electrons: $\varepsilon_{F_{e_{\uparrow}}} = (6\pi^2 n_0)^{2/3} \hbar^2 / 2m$, $\varepsilon_{F_{e_{\downarrow}}} = (6\pi^2 n_0)^{2/3} \hbar^2 / 2m$.

We consider interval of the equilibrium concentrations from $n_0 = 10^{21}$ cm$^{-3}$ to $n_0 = 10^{27}$ cm$^{-3}$. We drop the contribution of the quantum Bohm potential, which reveals itself at larger concentrations.

In this regime we have conservation of the electron number for both subspecies

$$\partial_t n^\uparrow + \nabla (n^\uparrow \nabla) = 0,$$

and

$$\partial_t n^\downarrow + \nabla (n^\downarrow \nabla) = 0.$$

The conservation follows from the zeroth value on the right-hand sides of the continuity equations (13) and (14).

Simplified Euler equations appear as follows

$$m n^\uparrow (\partial_t + \nabla \nabla) = \frac{q_e}{c} \nabla [\nabla + \nabla p^\uparrow],$$

and

$$m n^\downarrow (\partial_t + \nabla \nabla) = \frac{q_e}{c} \nabla [\nabla + \nabla p^\downarrow],$$

where $M_a = \{\mu_aS_{ax}, \mu_aS_{ay}, \mu_a(n_{a\uparrow} - n_{a\downarrow})\}$ is the magnetization of electrons in terms of hydrodynamic variables.
where we present the explicit form of the Coulomb exchange interaction. The magnetic field B in equations 15 and 16 is the external magnetic field.

The electric field in simplified Euler equations 15 and 16 is the quasi-static electric field. Hence it obeys the Poisson equation

$$\nabla E = 4\pi (en_{0\uparrow} - en_{\uparrow} - en_{\downarrow})$$ \hspace{1cm} (17)

and the eddy-free condition

$$\nabla \times E = 0.$$ \hspace{1cm} (18)

In equilibrium state we have $n_{0\uparrow} = n_{0\downarrow} = n_0$. We introduce short notations for the coefficients in front of the electric field of the electric field in the Euler equations 15, 16

$$\gamma_\uparrow = 1 + \frac{1 - \eta}{2},$$ \hspace{1cm} (19)

and

$$\gamma_\downarrow = 1 + \frac{(1 - \eta)^2}{2(1 + \eta)}.$$ \hspace{1cm} (20)

We apply these notations below at description of the perturbations in the electron gas.

Considering quantum spin-1/2 plasmas researchers usually apply equation of state for unpolarized electrons

$$p_{unpol} = \frac{(3\pi^2)^{2/3} \hbar^2 n_{\uparrow}^{5/3}}{5m_e},$$ \hspace{1cm} (21)

see Ref. [45].

One can include the contribution of the spin polarization of the degenerate electron gas in the pressure in the single fluid model of the three dimensional electron gas [2, 30] we make transition to variables ξ and τ defined as follows

$$\xi = \varepsilon^{\frac{2}{3}} (z - Vt),$$ \hspace{1cm} (26)

and

$$\tau = \varepsilon^{\frac{2}{3}} t,$$ \hspace{1cm} (27)

where $\varepsilon \ll 1$ is a dimensionless parameter.

Following Ref. [46] we introduce an expansion of the hydrodynamic parameters on small parameter ε

$$n_s = n_{0s} + \varepsilon n_{1s} + \varepsilon^2 n_{2s},$$ \hspace{1cm} (28)

$$v_{sz} = 0 + \varepsilon v_{1sz} + \varepsilon^2 v_{2sz},$$ \hspace{1cm} (29)

and

$$\phi = 0 + \varepsilon \phi_1 + \varepsilon^2 \phi_2,$$ \hspace{1cm} (30)

where ϕ is the potential of the electric field $E = -\nabla \phi$.

We substitute formulae 25, 26, 27 in equations 15-16. In the leading order on the small parameter ε we find the following relations between the perturbations of the particle concentrations, the velocity fields, and the potential of the electric field

$$v_{1s} = \frac{V}{n_{0s}} n_{1s},$$ \hspace{1cm} (31)

for the spin-down electrons. Sum of $p_{c\uparrow}$ and $p_{c\downarrow}$ gives us p_c presented by formula 22 if we include the relation between concentrations $n_\uparrow = (1 - \eta)n_{c\uparrow}/2$ and $n_\downarrow = (1 + \eta)n_{c\downarrow}/2$.

Difference of the spin-up electron concentration and the spin-down electron concentration $\Delta n = n_{0\uparrow} - n_{0\downarrow}$ is caused by the external magnetic field. Since electrons are negatively charged their spins have preferable direction opposite to the external magnetic field $\Delta n = \tanh(\mu B_{Fe}/T_F)$, where $T_F = (3\pi^2 n_{0e})^{2/5}\hbar^2/2m$ is the Fermi temperature in units of energy, so we do not write the Boltzmann constant.
Let us mention that coefficient huge. We present and discuss them in Secs. IV and V. It is the KdV equation. Coefficients

\[n_{1\uparrow} = \frac{-\varepsilon \gamma_1 n_0 \phi_1}{m_e (V^2 - U_{1\uparrow}^2)}, \]

and

\[n_{1\downarrow} = \frac{-\varepsilon \gamma_\downarrow n_0 \phi_1}{m_e (V^2 - U_{1\downarrow}^2)}, \]

where we have applied the following notations

\[U_{1\uparrow}^2 = \frac{\hbar^2}{3m_e^2} (6\pi^2 n_{0\uparrow})^2, \]

and

\[U_{1\downarrow}^2 = \frac{\hbar^2}{3m_e^2} (6\pi^2 n_{0\downarrow})^2 - \frac{\lambda e^2}{m_e} \frac{1}{n_{0\downarrow}}. \]

Below, we find that \(V^2 - U_{1\uparrow}^2 \) and \(V^2 - U_{1\downarrow}^2 \) have different signs. Hence perturbations \(n_{1\uparrow} \) and \(n_{1\downarrow} \) have different signs either.

The Poisson equation in the leading order on \(\varepsilon \) appears as

\[n_{1\uparrow} + n_{1\downarrow} = 0. \]

Substituting formulæ (32) and (33) in equation (36) we find the velocity of the perturbation propagation introduced in formula (35).

\[V^2 = \frac{\gamma_\uparrow n_0 U_{1\uparrow}^2 + \gamma_\downarrow n_0 U_{1\downarrow}^2}{n_{0e}[1 + \frac{1}{2}(1 - \eta)^2]}. \]

In the self-consistent field approximation, then we drop the contribution of the exchange interaction, the expression for the perturbation velocity simplifies to

\[V_{SCF}^2 = \frac{1}{n_{0e}} (n_{0\uparrow} U_{1\uparrow}^2 + n_{0\downarrow} U_{1\downarrow}^2). \]

We need to find the explicit form of perturbations \(n_{1\uparrow} \), \(n_{1\downarrow} \), and \(\phi_1 \). To this end, we consider the hydrodynamic equations (13)–(17) in the next order on small parameter \(\varepsilon \). In this regime we find \(n_{2s} \), \(v_{2s} \) in terms of \(\phi_1 \). We substitute expressions for the second order perturbations of the particle concentration \(n_{2s} \) in the Poisson equation

\[\partial_\xi^2 \phi_1 = 4\pi e(n_{2\uparrow} + n_{2\downarrow}) \]

obtained from (17) in the second order on \(\varepsilon \).

Finally we find equation for the first order perturbation of the electric field potential

\[A \partial_\xi \phi_1 + \partial_\xi^2 \phi_1 - B \partial_\xi \phi_1^2 = 0. \]

It is the KdV equation. Coefficients \(A \) and \(B \) are rather huge. We present and discuss them in Secs. IV and V. Let us mention that coefficient \(A \) is positive \(A > 0 \).

Applying the substitution \(\zeta = \xi - U_0 \tau \) we find a soliton solution of KdV equation

\[\phi_1 = \frac{-3AU_0}{2B \cosh^2(\frac{1}{2}\sqrt{AU_0}\zeta)}. \]
Parameter U_0 is the velocity of the soliton propagation. From formula (11) we see that the amplitude of the soliton is proportional to the soliton velocity U_0, while the soliton width Δ is proportional to the inverse square root of the soliton velocity U_0.

We do not consider the ion contribution assuming ions as motionless. Therefore we have a limit on the perturbation velocity V: it should be larger than the sound velocity $v_s = \sqrt{\frac{m_e}{m}} v_{Fe}$, where $v_{Fe} = (3\pi^2 n_0)^{1/3} \hbar / m$ is the Fermi velocity. Fig. (3) shows that at large spin polarization $\eta \to 1$ the perturbation velocity becomes rather small $v_{Fe} \gg V$. In this regime the ion motion is essential. Therefore, we do not consider $\eta > 0.9$ at the soliton study.

To find the spin electron acoustic soliton we apply a small perturbation evolution method. Consequently we have condition for the soliton amplitudes $n_{1s} \ll n_{0s}$. this condition gives restrictions for the velocity of the soliton propagation. For instance, considering the spin-up electrons we obtain $n_{1s} \ll n_{0s} \Rightarrow U_0 \lesssim \frac{m_1 B (v_s^2 - U_0^2)}{A e \gamma}$.

IV. SPIN ELECTRON ACOUSTIC SOLITON
WITOUT EXCHANGE INTERACTION

In this section we present the analysis of the existence and properties of the spin-electron acoustic soliton. To make this analysis simpler we consider the self-consistent field approximation. That means we drop the exchange interaction till the next section.

If we do not consider the exchange interaction we should replace γ_s by 1, and we should drop the second term in the definition of U_2^s (see formula (35)).

It is useful to represent the velocity of perturbation V, given by formula (35), in terms of the Fermi velocity. Hence, in the self-consistent field approximation, we find $V^2 = \frac{1}{3} v_{Fe}^2 \cdot w^2$ where

$$w^2 = \frac{1}{2} (1 - \eta) \frac{2}{3} (1 + \eta) \frac{2}{3} [(1 - \eta) \frac{2}{3} + (1 + \eta) \frac{2}{3}]. \quad (42)$$

Coefficient w^2 describes the dependence of the perturbation velocity on the spin state of the electron gas.

Coefficients A and B in the KdV equation (10), in the self-consistent field approximation, appear as follows

$$A = \frac{\sqrt{3}}{v_{Fe} r_{De}} \sqrt{\left\{ \frac{1 - \eta}{[w^2 - (1 - \eta) \frac{2}{3}]^2} + \frac{1 + \eta}{[w^2 - (1 + \eta) \frac{2}{3}]^2} \right\}}$$

$$= \frac{\sqrt{3}}{v_{Fe} r_{De}} \left\{ \frac{1}{\left(1 - \eta \right)^{\frac{1}{3}} \left(\frac{1}{2} (1 + \eta)^{\frac{1}{3}} \left((1 - \eta)^{\frac{1}{3}} + (1 + \eta)^{\frac{1}{3}} \right) - 1 \right)^{\frac{1}{2}}} + \frac{1}{\left(1 + \eta \right)^{\frac{1}{3}} \left(\frac{1}{2} (1 - \eta)^{\frac{1}{3}} \left((1 - \eta)^{\frac{1}{3}} + (1 + \eta)^{\frac{1}{3}} \right) - 1 \right)^{\frac{1}{2}}} \right\}. \quad (43)$$

and

$$B = \frac{e}{m_e} \frac{3}{v_{Fe}^2 r_{De}} \left\{ \frac{1}{2} \frac{1 - \eta}{\left[w^2 - (1 - \eta)^\frac{2}{3} \right]^2} + \frac{1}{2} \frac{1 + \eta}{\left[w^2 - (1 + \eta)^\frac{2}{3} \right]^2} \right\}, \quad (44)$$

where $r_{De} = v_{Fe} / \sqrt{3} \omega_L \sim n_{0e}^{-1/6}$ is the Debye radius. Coefficients A and B can be written as $A = A_0 \cdot A(\eta)$ and $B = B_0 \cdot B(\eta)$, where $A_0 = \sqrt{3} v_{Fe}^2 r_{De}^{-2}$ and $B_0 = 3 v_{Fe}^2 r_{De}^{-2} e / m_e$.

We see that coefficient A does not depend on the equilibrium particle concentration.

The spin-electron acoustic soliton exists at the intermediate spin polarizations. It disappears at $\eta \to 0$ and $\eta \to 1$. Formally it corresponds to $A \to \infty$ at $\eta \to 0$ and $\eta \to 1$. Coefficient B becomes infinite $B \to \infty$ at $\eta \to 0$ and $\eta \to 1$ either.

At the numerical analysis we consider the spin-electron acoustic soliton as the perturbations of the particle concentrations of the spin-up electrons and the spin-down electrons substituting solution (31) in formulae (32) and (33).

The spin-electron acoustic soliton, for instance, for the spin-down electrons, arises as $n_{1d} = n_{0d} (A / B) (\sqrt{3} U_0 / v_{Fe}) [w^2 - (1 + \eta)^{2/3}]^{-1} \cosh^{-2}(\sigma / 2 \Delta)$, where $\Delta = \sqrt{v_{Fe} \sqrt{3} U_0 A r_{De}}$ is the soliton width.

Relative perturbations of the particle concentrations n_{1s} / n_{0s} are proportional to the velocity of the soliton propagation U_0 in units of the Fermi velocity v_{Fe}. Presenting soliton profiles in figures we apply the effective amplitude $\Xi_e = (n_{1s} / n_{0s}) / (\sqrt{3} U_0 / v_{Fe})$.

Fig. (2) (Fig. 3) shows that the particle concentration perturbation are negative (positive) for the spin-down (spin-up) electrons. Applying notations accepted in some areas of the condensed matter physics and optics we can call the negative (positive) solitonic perturbations as the dark (bright) soliton.

For the particle concentration $n_{0e} = 10^{23} \text{ cm}^{-3}$ we have $v_{Fe} / \sqrt{3} = 7.9 \times 10^7 \text{ cm/s}$. Choosing $U_0 = 10^{-8} v_{Fe}$ we obtain $n_{1s} = 0.5 (1 + \eta) 10^5 \Xi_s$, where Ξ_s is shown in Fig. 2 for the spin-down electrons and in Fig. (3) for the spin-up electrons. Factor $0.5 (1 + \eta)$ appears due to the application of n_{0e} in the definition of Ξ_s. Figs. (2) and (3) demonstrate that the soliton width Δ is of order of $10^3 r_{De} = 5 \times 10^{-5} \text{ cm}$. Increasing the soliton velocity U_0 we decrease the soliton width Δ. Since the soliton width Δ should be larger then the average interparticle distance $\Delta \gg n_{0e}^{-1/3}$ we obtain that $U_0 \ll 10^{-2} v_{Fe}$ and $n_{1s} \ll 10^{24} \text{ cm}^{-3}$.

Amplitude of the dark soliton in the subsystem of spin-down electrons increases with the decrease of the spin polarization (2). Amplitude of the bright soliton in the
We present analysis of the soliton characteristics in the self-consistent field approximation. In the next section we include the contribution of the Coulomb exchange interaction in the spin-electron acoustic soliton propagation.

V. CONTRIBUTION OF EXCHANGE INTERACTION IN SPIN ELECTRON ACOUSTIC SOLITON

The spin dependence of the Coulomb exchange interaction force field in the electron gas is calculated in Ref. 30. Significant role of the Coulomb exchange interaction at rather large spin polarization is demonstrated there.

To underline the fact that, in this section, we consider the Coulomb interaction beyond the self-consistent field approximation we present the explicit form of the perturbation velocity obtained in Sec. III

\[
V^2 = \frac{\gamma_{1}n_0U_\uparrow^2 + \gamma_{2}n_0U_\downarrow^2}{n_0e[1 + \frac{3}{2}(1 - \eta)^2]},
\]

where \(n_0 = n_{0\uparrow} + n_{0\downarrow}\), functions \(U_\uparrow^2\) and \(U_\downarrow^2\) are defined by formulae (34) and (35), correspondingly.

Coefficient \(A\) of the KdV equation (40) at the account of the Coulomb exchange interaction appears as

\[
A = 2V\left\{\frac{\omega_{L1}\gamma_\uparrow}{(V^2 - U_\uparrow^2)^2} + \frac{\omega_{L2}\gamma_\downarrow}{(V^2 - U_\downarrow^2)^2}\right\}.
\]

The contribution of the exchange interaction between electrons with different spins being in the same quantum state leads to factors \(\gamma_s\) in the numerators of each term. The exchange interaction between spin-down electrons being in states occupied by single electron modifies \(U_\downarrow^2\). The account of both kinds of the Coulomb exchange interaction does not change sign of \(A\), so we have \(A > 0\).

The contribution of the exchange interaction in coefficient

\[
B = \frac{e}{m_e}\left\{\frac{\omega_{L1}\gamma_\uparrow^2}{(V^2 - U_\uparrow^2)^2}\left[\frac{1}{2} + \frac{V^2 + \frac{3}{4}U_\uparrow^2}{V^2 - U_\uparrow^2}\right]\right.
\]

\[
+ \frac{\omega_{L2}\gamma_\downarrow^2}{(V^2 - U_\downarrow^2)^2}\left[\frac{1}{2} + \frac{V^2 + \frac{3}{4}U_\downarrow^2}{V^2 - U_\downarrow^2}\right]
\]

\[
+ \frac{\omega_{L1}\omega_{L2}}{(V^2 - U_\downarrow^2)^3}\frac{1}{6}m_e\right\},
\]

reveals in several ways. We find \(\gamma_s\) in the numerators. We also find modifications of \(U_\downarrow^2\) (see the second term in formula (35)) and \(V^2\) (compare formulae (37) and (38)).

Moreover, we find an extra term (the last term in formula (47)) in coefficient \(B\).

Coefficient \(B\) is positive in the self-consistent field approximation \(B_{SCF} > 0\). The dependence of the \(B_{SCF}\) on the electron concentration is located in \(B_0\). If we include the exchange interaction the behavior of the coefficient \(B\) becomes rather complicate. We find a dependence of \(B/B_0\) on the equilibrium electron concentration \(n_{0e}\).

This dependence reveals in properties of the soliton profile described below. We can track this dependence at an intermediate spin polarization \(\eta' = 0.5\). We see that coefficient \(B\) is positive \(B > 0\) in the regime of rather large concentrations \(n_{0e} \sim 10^{27}\) cm\(^{-3}\), which is simi-
lar to the self-consistent field approximation. At \(\tilde{n}_0 \approx 5.4 \times 10^{24} \text{ cm}^{-3} \) we find fast increase of \(B \) \((B \to +\infty) \). At point \(\tilde{n}_0 \) the coefficient \(B \) increases from minus infinity up to the zero value \(B = 0 \) at \(n_0^* = 0.94 \times 10^{23} \text{ cm}^{-3} \). At smaller concentrations the coefficient \(B \) is positive. We see that the coefficient \(B \) as a function of the electron concentration demonstrates the hyperbolic dependence. Since \(B \) is in the denominator of the soliton amplitude, the soliton amplitude tends to zero at \(\tilde{n}_0 \). Hence, the soliton does not exist near this concentration. At \(n_{0e} = n_0^* \) coefficient \(B \) vanishes. Consequently, the soliton amplitude approach infinity. Therefore, the perturbation method, we apply to find the spin-electron acoustic soliton, cannot give any information about soliton behavior near this point.

For the formation of the soliton we need to have waves with the stable linear spectrum. Hence, we need to have a positive square of the perturbation velocity given by formula (33), which is a combination of \(U_1^2 \) and \(U_2^2 \). In the self-consistent field approximation considered in the previous section the spectrum is stable for all values of parameters. If we include the exchange interaction situation changes. Parameter \(U_1^2 \) contains a negative term caused by the exchange interaction (see formula (35)). Therefore, \(V^2 \) can become negative. To find areas of positive \(V^2 \) we present Fig. 6. In the left-hand column

we depict \(V^2 \), \(U_1^2 \) and \(U_2^2 \) as the functions of the spin polarization \(\eta \) at the different equilibrium electron concentrations \(n_{0e} \). The lower row of pictures is obtained in the self-consistent field approximation to provide the comparison with the results of the previous section.

The results of the previous section show that sign of quantities \(V^2 - U_1^2 \) and \(V^2 - U_2^2 \) define profiles of the spin-electron acoustic solitons of the concentration of the spin-up and spin-down electrons. Therefore, we present these quantities in the right-hand column in Fig. 6.

Fig. 6 shows that at \(n_{0e} = 10^{27} \text{ cm}^{-3} \) results including the exchange interaction have small, but noticeable, difference with the results of the self-consistent field approximation. Hence, in this regime, we find the soliton profiles (see the lower row in Fig. 6) similar to the profiles found in the previous section (see Figs. 2 and 3). However, we see the increase of the soliton amplitude \(\Xi_s \), on 20 per cent, approximately, due to the account of the exchange interaction. Linear spectrum is stable in this regime \(V^2 > 0 \), and the parameters \(V^2 - U_1^2 \) and \(V^2 - U_2^2 \) have positive and negative signs correspondingly \((U_1^2 < V^2 < U_2^2) \). In this regime the coefficient \(B \) is positive \(B > 0 \). Consequently, we find the dark soliton in the spin-down electron concentration and the bright soliton in the spin-up electron concentration.

Decreasing the equilibrium concentration of electrons down to \(n_{0e} = 10^{24} \text{ cm}^{-3} \) we find that the spectrum is stable \((V^2 > 0) \) for all \(\eta \in [0, 1] \). However, relative values of \(V^2 \), \(U_1^2 \), \(U_2^2 \) are changed. Velocity \(U_1 \) becomes the smallest of them. So, we have \(U_2^2 < V^2 < U_1^2 \). Consequently the signs of parameters \(V^2 - U_1^2 \) and \(V^2 - U_2^2 \) are changed either. In this regime the coefficient \(B \) is negative \(B < 0 \). Therefore, we find the dark soliton in the spin-down electron concentration and the bright soliton in the spin-up electron concentration.

At \(n_{0e} = 10^{21} \text{ cm}^{-3} \) the linear spectrum becomes unstable in the wide range of the spin polarization. We find the stability interval at \(\eta \in (0.01, 0.06) \). In this regime the coefficient \(B \) is positive \(B > 0 \). Consequently, in the area of stability, we find the bright soliton in the spin-down electron concentration and the dark soliton in the spin-up electron concentration (see the upper row in Fig. 6).

VI. CONCLUSIONS

Existence of the spin-electron acoustic soliton has been discovered. Its existence closely related to the spin electron acoustic waves recently obtained in Ref. 25. The SEAW has linear spectrum, so it resembles similarity to the ion-acoustic wave, but the SEAW has larger frequencies. The balance between the dispersion and nonlinearity in the SEAWs of small amplitude allows to form a soliton solution obtained in this paper and called the spin-electron acoustic soliton.

To study the non-linear spin-electron acoustic waves
we have developed a generalization of the separate spin evolution quantum hydrodynamics. This generalization includes the Coulomb exchange interaction. The exchange interaction has two contributions. One appears from the interaction of the spin-down electrons being in the states occupied by one electron only. The second part arises from the interaction of pair of spin-up electron and spin-down being in the same quantum states. The consideration of the second mechanism of the Coulomb exchange interaction is among of the main results of this paper. The first mechanism was considered in the single fluid model of electrons. In this paper we have adopted it for the SSE-QHD.

We have considered the spin-electron acoustic soliton in two regimes. First of all we have considered it in, rather simple, regime of the self-consistent field approximation. We have found that the spin-electron acoustic soliton shows itself as the dark soliton of the spin-down electron concentration and the bright soliton of the spin-up electron concentration. The soliton shows similar behavior for all equilibrium concentrations of electrons.

The second regime of the spin-electron acoustic wave study includes the Coulomb exchange interaction. The exchange interaction significantly change properties of the spin-electron acoustic soliton. Strong dependence of the soliton properties reveals in this regime.

At equilibrium concentration \(n_{0e} = 10^{24} \text{ cm}^{-3} \) we have found, in opposite to the self-consistent field approximation, the bright soliton of the spin-down electron concentration and the dark soliton of the spin-up electron concentration, existing in the narrow interval at rather small spin polarizations \(\eta \in (0.01, 0.06) \).

The increase of the equilibrium electron concentration increases the area of the soliton existence. At \(n_{0e} = 10^{24} \text{ cm}^{-3} \) we have found the existence of the spin-electron acoustic soliton at \(\eta \in (0.01, 0.99) \). At \(n_{0e} \geq 10^{24} \text{ cm}^{-3} \) we have obtained the dark soliton of the spin-down electron concentration and the bright soliton of the spin-up electron concentration. It is in the agreement with the self-consistent field approximation. However, the parameters of the soliton at the account of the exchange interaction at \(n_{0e} \in [10^{24}, 10^{27}] \text{ cm}^{-3} \) differ from the results of the self-consistent field approximation.

Acknowledgments

The author thanks Professor L. S. Kuz’menkov for fruitful discussions. The author thanks the Dynasty foundation for financial support.

[1] L. S. Kuz’menkov, S. G. Maksimov, and V. V. Fedoseev, Theor. Math. Phys. 126, 110 (2001).
[2] L. S. Kuz’menkov, S. G. Maksimov, and V. V. Fedoseev, Theor. Math. Phys. 126, 212 (2001).
[3] P. A. Andreev, L. S. Kuz’menkov, Moscow University Physics Bulletin 62, 271 (2007).
[4] G. Brodin, M. Marklund, and G. Manfredi, Phys. Rev. Lett. 100, 175001 (2008).
[5] A. P. Misra, G. Brodin, M. Marklund and P. K. Shukla, J. Plasma Physics 76, 857 (2010).
[6] P. A. Andreev, L. S. Kuz’menkov, Int. J. Mod. Phys. B 26, 1250186 (2012).
[7] M. I. Trukhanova, Prog. Theor. Exp. Phys. 11101 (2013).
[8] P. A. Andreev, arXiv:1404.4899.
[9] S. M. Mahajan and F. A. Asenjo, Phys. Rev. Lett. 107, 195003 (2011).
[10] S. M. Mahajan, F. A. Asenjo, Phys. Lett. A 137, 1430 (2003).
[11] A. Mushtaq, S. V. Vladimirov, Phys. Plasmas 17, 102310 (2010).
[12] V. Bychkov, M. Modestov, and M. Marklund, Phys. Plasmas 17, 112107 (2010).
[13] Sheng-Chang Li, Jiu-Ning Han, Phys. Plasmas 21, 032105 (2014).
[14] P. K. Shukla, B. Eliasson, Rev. Mod. Phys. 83, 885 (2011).
[15] G. Brodin and M. Marklund, New J. Phys. 9, 277 (2007).
[16] T. Koide, Phys. Rev. C 87, 034902 (2013).
[17] P. A. Andreev, L. S. Kuz’menkov, Russian Phys. Jour. 50, 1251 (2007).
[18] D. V. Vagin, P. A. Polyakov, and N. E. Rusakova, Moscow University Physics Bulletin 64, 133 (2009).
[19] P. A. Andreev, L. S. Kuz’menkov, Int. J. Mod. Phys. B 29, 1550077 (2015).
[20] P. A. Andreev, L. S. Kuz’menkov, M. I. Trukhanova, Phys. Rev. B 84, 245401 (2011).
[21] P. A. Andreev, Physica A 432, 108 (2015).
[22] D. A. Uzdensky and S. Rightley, Reports on Progress in Physics 77, 036902 (2014).
[23] L. S. Kuz’menkov, D. E. Harabadze, Russian Physics Journal 47, No. 4, 437 (2004).
[24] G. Brodin, A. P. Misra, and M. Marklund, Phys. Rev. Lett. 105, 105004 (2010).
[25] P. A. Andreev, Phys. Rev. E 91, 033111 (2015).
[26] P. A. Andreev, L. S. Kuz’menkov, arXiv:1406.6252.
[27] P. A. Andreev, L. S. Kuz’menkov, arXiv:1408.3662.
[28] P. A. Andreev, arXiv:1409.7885.
[29] J. Zamanian, M. Marklund, G. Brodin, Phys. Rev. E 88, 063105 (2013).
[30] P. A. Andreev, Annals of Physics 350, 198 (2014).
[31] M. Akbari-Moghanjoughi, Phys. Plasmas 21, 033110 (2014).
[32] P. A. Andreev, A. Yu. Ivanov, arXiv:1503.08437.
[33] R. Ekmann, J. Zamanian, G. Brodin, arXiv:1504.05339.
[34] M. Iv. Trukhanova, P. A. Andreev, Phys. Plasmas 22, 022128 (2015).
[35] P. Nozieres, D. Pines, Phys. Rev. 111, 442 (1958).
[36] H. Kanazawa, S. Misawa, K. Fujita, Progr. Theoret. Phys. (Kyoto) 23, 426 (1960).
[37] D. F. DuBois, Ann. of Phys. 8, 24 (1959).
[38] L. Hedin, and B. I. Lundqvist, J. Phys. C: Solid St. Phys.,
4, 2064 (1971).

[39] Yu. L. Klimontovich, *Kinetic Theory of Nonideal Gases and Nonideal Plasmas*, Nauka, Moscow, 1975; Pergamon Press, 1982.

[40] S. Datta and R. L. Gunshor, J. Appl. Phys. **54**, 4453 (1983).

[41] W. Kohn, Rev. Mod. Phys. **71**, 1253 (1999).

[42] Young-Dae Jung and M. Akbari-Moghanjoughi, Phys. Plasmas **21**, 032108 (2014).

[43] Gyeong Won Lee and Young-Dae Jung, Phys. Plasmas **20**, 062108 (2013).

[44] M. Hanif, S. Ali, Q. Mukhtar, and Arshad M. Mirza, Phys. Plasmas **21**, 032705 (2014).

[45] L. Landau and E. M. Lifshitz, *Statistical Physics* (Pergamon, New York, 1980), p. 167.

[46] H. Washimi, T. Taniuti, Phys. Rev. Lett. **17**, 996 (1966).