One problem with load test quality, almost always overlooked, is the potential for the load generator’s user thread pool to sync up and dispatch queries in bunches rather than independently from each other like real users initiate their requests. A spiky launch pattern misrepresents workload flow as well as yields erroneous application response time statistics. This paper describes what a real user request timing pattern looks like, illustrates how to identify it in the load generation environment, and exercises a free downloadable tool which measures how well the load generator is mimicking the timing pattern of real web user requests.

1.0 Introduction

Most web application load testing professionals assume their load generator’s virtual user thread pool precisely mimics the request timing that a comparable set of real users produce. A traffic generator, however, is one computer initiating web requests with a large fixed set of user threads operating in closed loops while real users each have their own computing device and make queries independently from each other as a dynamically changing subset of a larger population. The simulator’s heavier workload, the think time method it uses, and the feedback produced by its fixed closed loops may cause the user thread pool to sync up and offer unrealistic surges of traffic to the system under test (SUT). Few practitioners think about user thread synchronization, and those that do find the problem difficult to quantify when it occurs. This paper describes the request pattern produced by real users and provides a measurement methodology for evaluating request pattern quality. The approach taken is illustrated with a free downloadable tool this author developed, the web-generator-toolkit.

The first step in this process, contained in Section 2, is to identify the request timing characteristics of real web users through a graphical illustration and simulation. With that foundation, Section 3 describes how a single load generator attempting to mimic the request pattern of many real users can have its user process threads sync up and launch queries in bunches. The Section 2 and Section 3 information is applied in Section 4 to an example load test using the web request timing evaluation features of the web-generator-toolkit. Data representing real user request timing are analyzed along with data that does not possess those properties. Section 5 wraps up the discussion with some conclusions and summary remarks. As a convenience, links are setup in this document for references, definitions, and section / figure locations. To return from internal links use the Alt + left arrow keys.

2.0 Real User Vs Virtual User Request Timing

The physical difference between real users and load tool based virtual users querying a web application is illustrated in Figure 1. The three real users on the left are shown as separate entities with their own computing device and communications connection to the server, while the three virtual users on the right are sharing one computing device and an associated communications connection. Each real user is encapsulated within its own box of activity independently querying the application without coordinating web page choice or request timing with each other. In contrast, the three virtual users share the same box of user activity so their web page choice may follow a pattern and the timing of their queries could become collectively synchronized. The box around the middle real user is dotted to indicate that he has just transitioned into the active user pool and is making his first web request. The other two real users are maintaining their current session but could just as easily be transitioning out of the active user pool. The virtual user thread pool on the right remains constant in size with each thread fixed in position and operating in a closed loop.
What does the query timing of the collective group of real users look like and can the load generator’s request timing be captured to evaluate how well it is matching that timing? The place to begin is the timing of the queries initiated by the members of the real user pool actively engaged with the application.

2.1 Request Timing Illustration

All three real web users in Figure 2 are engaged with the application but in a completely uncoordinated manner relative to each other. The top user is receiving a home page response, while the middle user is initiating a login, and the bottom user is thinking about what to request next. Note, the user’s access device timestamp is the one of interest, not a timestamp recorded on the target server when receiving the query.

So, what does the set of query start times look like on a time line for the combined pool of active users? Is the timing of queries an evenly spaced “assembly line” of events or some other pattern? It can be argued that the time line being analyzed has “no pattern at all” since individual queries are uncorrelated in time and therefore, “independent” from each other. Figure 3 is a fragment of such a time line where the red diamonds represent query start times over seven ten second time intervals. Queries five and six were initiated by a pair of users at the same exact time, a likely occurrence since the users are operating independently from each other.
Query independence doesn’t mean that request timing cannot be statistically profiled. In fact, under rather broad conditions this time series can be characterized by two probability distributions, one depicts the number of queries per constant length time interval and the other represents the time interval between queries. The green histogram in Figure 4a illustrates count per interval using the seven ten second periods in the Figure 3 time-line fragment. For example, there is one ten second interval with no red diamonds and three of them contain one red diamond.

2.2 Request Timing Simulation

With these basic ideas in mind, Figure 5 and Figure 6 represent a full measurement period simulation of these independent request ideas. Figure 5 is a one-thousand second timeline laid out in five two-hundred second intervals with two hundred queries occurring during the one-thousand seconds. These simulated queries are produced using a random number generator which has an equal chance of returning any value between zero and one-thousand. The two-hundred values selected are plotted as red diamonds sectioned off in ten second intervals, like they are in Figure 3. For further details regarding this simulation see [BRAD09].

The two graphs in Figure 6 below are comparable to Figure 4a and Figure 4b. with the vertical axis of Figure 6a expressed as a percent instead of the Figure 4a count. The time series of red diamond events in Figure 5 is statistically summarized as the Figure 6a requests per ten second interval histogram and the Figure 6b seconds between requests histogram.

An inspection of Figure 5 reveals how this mapping works. There are thirteen of the one-hundred ten second intervals with no red diamonds which is reflected in the Figure 6a “0” green column (13 / 100 = 13%). Also, there are only one-hundred and seventy-four red diamonds visible of the two hundred present because twenty-six of them occur at the same time and are, therefore, on top of each other. The Figure 6b blue “0” column graphically illustrates this information (26 / 200 = 13%).
The next section steps through three circumstances when a load generator comes up short as a substitute for real users where the CoV can help the analyst identify the problem when it occurs.
3.0 Load Generator Launch Time Distortions

Armed with the above guiding principle and the tools for its implementation, a look is taken at some of the ways launch time distortions can occur focusing on three of the most common situations where time interval between requests $\text{CoV} > 1.0$. The three listed in the introduction expanded upon here are;

1. heavy workload,
2. think time method used, and
3. closed loop feedback.

Although the equally bad opposite extreme, an “assembly line” of launched events with a $\text{CoV} < 1.0$ is possible, it is much less likely to occur than the bunching problem, so it will not be discussed.

3.1 Heavy Workload

A load generating computer is an inherently synchronous device attempting to produce asynchronous requests. Computers use queues and scheduling to manage workload flow and both tend to synchronize the processing of user requests. For example, the think times (Z) drawn using the load tool’s available timer options may represent a truly independent spacing of times between requests but, as Figure 7 illustrates, the load generator implements that request by suspending the user thread with a sleep system call. When time is up the user thread does not execute immediately but is put on the run queue at its assigned priority and waits (W) in that queue before executing (E). Once the thread executes, it is suspended while waiting for the response (R) from the system under test (SUT). When the response arrives, the thread is again put on the run queue at its assigned priority and waits (W) before it executes (E). During execution it writes out its response information, sets up for the next request, and goes back to sleep (Z).

![User Thread Launch Sequence](image)

Under heavy load there can be significant launch time bunching caused by the large volume of events in the (W) and (E) states. In general, the sharing of processing execution resources increases contention for CPU cycles, adds to operating system run list size, and magnifies process thread scheduling complexity.

This problem can be mitigated by lightly loading a traffic generator that is configured with a lot of processor cores and real memory. If multiple lightly loaded traffic generators are needed, the output files they produce can be merged to evaluate request timing quality when their clocks are synchronized using the Network Time Protocol (NTP).

3.2 Think Time Method Used

The think time method used can also be a source of launch time distortion. The choice that usually causes this problem is fixed think times because, under those conditions, user threads are more likely to queue up and cluster behind the long response time events. Drawing think times from a probability distribution reduces the severity of this “lining up behind the long latency tasks in the test suite” situation.

In fact, the desired independent request timing can be achieved using any probability distribution if the number of user threads is sufficiently large. This “Principle of Superposition”, [ALBI82] and [KARL75], is analogous to the “Central Limit Theorem” for sample averages where they become Normally distributed as sample size increases no matter what distribution the individual values possess.

A superposition example is in Section 4 where think times are drawn from a Uniform distribution as depicted in Figure 8. This figure illustrates that as the number of load tool threads, N, drawing think times independently from their individual Uniform distributions in Figure 8a on the left increase, the collection of them yields time intervals...
between requests that are **Negative-Exponentially** distributed as depicted in **Figure 8b** on the right.

![Figure 8a: N Uniformly Distributed Z Values](image1)

![Figure 8b: Neg-Exp Time Intervals Between Requests](image2)

The **Uniform** is used in the **Section 4** example for two reasons; it has a defined range of values to draw from and **JMeter**, the load tool selected, does not have a **Negative-Exponential** distribution option. **JMeter** likely lacks this option because that distribution is unbounded and, in **JMeter**, if a user thread draws a think time that is scheduled to expire after the test finishes, that thread remains alive for the fully scheduled time-period instead of being terminated when the test run timer expires.

3.3 Closed Loop Feedback

Another property of the load tool's user process threads that can cause request launch distortion is feedback resulting from the permanent closed loops. A lower percentage of think time in the closed loop's round-trip time \(RT = Z + R \) lessens the think time probability distribution's ability to maintain the desired asynchronous user thread pool with time interval between requests \(\text{CoV} \approx 1.0 \). This is because response times are primarily composed of time in the SUT which varies significantly across the set of web events being tested. Response times for simple web events tend to be small while those for complex queries are typically large. The example load test in **Section 4** reflects this diversity with response time coefficient of variation (\(\text{CoV} \) for \(R \) not \(D \)) values for all tests performed (\(\text{CoV}_R \)) significantly greater than 1.0.

The pie chart on the left side of **Figure 9**, **Figure 9a**, contains percentages of \(Z \) and \(R \) where \(Z \) drives the launch time pattern for the example load test in **Section 4**. The pie chart on the right side, **Figure 9b**, provides an indication of when web request launch timing is impacted by the response time portion of \(RT \) for the same example.

![Figure 9a: Think Time Driven RT](image3)

![Figure 9b: Response Time Impacting RT Timing](image4)

This response time impact can happen with real users too, but they are not hard wired and come in and out of the active user pool. As a population, real users can join the active user pool and overload the target system, causing it to crash. The load generator’s process thread pool is self-throttling and will eventually stop making requests when all threads are waiting for responses.

One way to alleviate this problem is to focus on traffic mix instead of virtual user count and increase the load tool
4.0 Example Load Test

The load test included with the web-generator-toolkit is used as the example for this paper. The toolkit documentation shows the practitioner how to set the load generator’s data collection options, what test run output reports contain, and which report provides the time interval between requests CoV information. The testing setup is intended to answer the question; “How many user threads does it take for the time intervals between requests to become statistically independent from each other, \(\text{CoV}_{\text{DRT}} \approx 1.0 \), when each thread is drawing its think times from a Uniform distribution?” As will be shown, the example also contains the situation where the \(\text{CoV}_{\text{DRT}} \) diverges, \(\text{CoV}_{\text{DRT}} > 1.0 \), as the user thread count increases.

4.1 Load Test Description and Results

The application being tested is a web site used by citizens to obtain state government statistics which is being reconfigured from standalone servers to a virtualized load sharing environment. The load tool is JMeter and the web-generator-toolkit is used to perform the analysis. Figure 10 contains the list of web events being tested specified by name and purpose.

GOV Web Site – Web Page GET / POST Events
Web Page Name
010_Home
012_Home_jpg
020_Department
022_Department_jpg
030_Demographics
040_Statistics

Figure 10: GOV Web Site Events Load Tested

Figure 11a is a topological view of the load testing environment showing load generator, network interfaces, F5 Load Balancer, and the virtualized Blade Server arrangement with GOV virtual servers “1” and “2” as the SUT.

Figure 11a: Load Testing Configuration

Figure 11b displays the JMeter load tool script being used to perform the tests. It indicates that web pages are selected in random order, multiple instances of some web events are used to adjust the traffic mix, and one Uniform Random Timer performs think time generation. Details regarding test objectives and performance results are contained in [BRAD12] and [BRAD16a] as well as the web-generator-toolkit documentation.
The CoV_DRT convergence to 1 testing setup and methodology is:
1. Two hundred (200) JMeter threads are used for all tests,
2. Load is increased from test to test by reducing the mean think time,
3. Seven 25-minute tests are performed:
 a. The first 2 and last 3 minutes of each test are excluded from the analysis.
 b. Lowest to highest traffic load test numbers – 1800, 1830, 1900, 1930, 2000, 2030, 2100.

Figure 12 is a summary of results table containing user thread count (N), transaction rate (Tps), think time (Z) and response time (R) mean and standard deviation as well as associated CoV_R from a load generator perspective for all seven tests performed. Tps rates range from 15.91 Trans/Sec for test run 1800 to a maximum of 159.16 Trans/Sec for test run 2100 and CoV_R values range from 2.11 to 3.08.

Figure 12: GOV Test – Traffic and Response Time Summary

Figure 12 only contains information about the offered load and response time but what about the launch time pattern of the web requests that is being discussed? The web-generator-toolkit provides that information in its Inter-arrival time statistics report. Figure 13 is the test run 1830 version of that report which contains the time between requests coefficient of variation, CoV_DRT, in the “cv” column. Note that not only is the “cv” for Total = 1 but the “cv” for each web event is also close to 1.

Figure 13: Inter-arrival time statistics for test 1830.

These “cv” results were obtained by applying the technique described in the “Real Web User Request Timing” box contained in Section 2.3 to the test run 1830 JMeter Aggregate Report output file. Figure 14 contains the first few records of this output file. The left column, “TimeStamp (ms)”, is the query launch time of the event in Unix time expressed in milliseconds. The time between requests “Inter-arrival” times are produced by sorting the file in timestamp order and calculating the differences between adjacent timestamp values. For example, the difference between the first two events listed in Figure 14 is 29 milliseconds (1331861523145 – 1331861523116 = 29). This calculation is repeated at the web event name level, e.g., 010_Home. The mean and standard deviation of these differences are computed along with their coefficient of variation and reported as shown in Figure 13.
The **web-generator-toolkit** documentation describes how the **JMeter** Aggregate Report Listener is configured to produce the output contained in **Figure 14**.

4.2 The Number of User Threads Required for $\text{CoV}_{\text{DRT}} \sim 1.0$

The use of a fixed user thread count ($N = 200$) and a systematic decrease in the **mean** think time (Z) to drive up the load may appear to be an unusual approach but it helps answer the question posed at the beginning of this section regarding how many user threads does it take for the time intervals between requests to become statistically independent from each other when each thread is drawing its think times from a Uniform distribution.

Since all seven tests are run with two hundred user threads ($N = 200$) the time interval between requests for any grouping of specific thread sets can be analyzed. The important fields in **Figure 14** for this discussion are the first column, “Timestamp (ms)”, and the sixth column, “User Thread”. The “Timestamp (ms)” values are the web request launch times and the “User Thread” labels indicate which thread is making the web request. For example, the “Timestamp (ms)” value for the first row of data is “1331861523116” and its corresponding “User Thread” is “Thread Group 1-97.”

Given the record layout, this author wrote a Perl script which extracts all the records of the desired “User Thread” grouping. The **web-generator-toolkit** analysis script is run against each grouping where it sorts the records in “Timestamp (ms)” order, calculates the differences in time between adjacent records, computes the **mean** and **standard deviation** of those differences, and produces the **standard deviation** to **mean** ratio, i.e., the CoV_{DRT}. The analysis is performed for one thread using “Thread Group 1-1” records, two threads by combining “Thread Group 1-1” and “Thread Group 1-2” records. The process is repeated for thread counts three through two hundred by adding one additional thread each time. **Figure 15** and **Figure 16** contain a selected set of these thread count analyses for the specific test runs indicated, e.g., 1830.

Figure 15 summarizes the results of this procedure for test run 1830. The table on the right of this figure contains thread count, transaction count and rate, the **standard deviation** the **mean** and of the time intervals (milliseconds) between requests, and their ratio, i.e., CoV_{DRT}. The graph on the left is a plot of the CoV_{DRT} as a function of thread group size. This graph indicates an independent request pattern starts at around 10 threads, settles in at approximately 50 of them and stays that way through the maximum of 200.
Coefficient Of Variation (CoV_{DRT})

Test Run 1830

\[
CoV_{DRT} = \frac{DRT_{sdev}}{DRT_{mean}}
\]

CoV For Time Interval Between Requests (DRT) As A Function Of Thread Group Size

![Graph](image)

Figure 15: Time Interval Between Requests CoV_{DRT} Vs Thread Group Size for Test Run 1830

The Figure 16 table and graph contain a summary of the CoV_{DRT} values for all seven tests. This table and graph show that for all test runs, except the last two, times between requests converge to and maintain a CoV_{DRT} \(~ 1.0\) for thread groups beginning around 10, settling in at about 50, and maintaining that value through the full 200. Test Run 2030 and Test Run 2100, however, diverge when their thread group is greater than 10 in size with Test Run 2100 reaching a CoV_{DRT} = 1.17 for 200 threads.

Coefficient Of Variation (CoV_{DRT}) For All Seven Test Runs

\[
CoV_{DRT} = \frac{DRT_{sdev}}{DRT_{mean}}
\]

CoV For Time Interval Between Requests (DRT) As A Function Of Thread Group Size

![Graph](image)

Figure 16: Time Interval Between Requests CoV_{DRT} Vs Thread Group Size for All Seven Test Runs

What caused the divergence from a CoV_{DRT} \(~ 1.0\) as thread group size increased beyond 10 for these two tests? The answer is associated with the closed loop feedback discussed in Section 3.3.
4.3 Closed Loop Feedback Issues and Nuances

The response time, R, portion of round trip time, RT, provides a clue why this divergence occurs. Figure 17 contains a histogram of the mean response time to mean round trip time ratio, $RoRT_{mean} = \frac{R_{mean}}{RT_{mean}}$, for all seven test runs. That ratio for the last two test runs, 2030 and 2100, is much larger than for the previous five with a 2100 value of $RoRT_{mean} = 20.23\%$ (Figure 9b). In contrast, test run 2000, the highest traffic level converging to a $CoV_{DRT} \sim 1.0$, has the $RoRT_{mean} = 2.91\%$ (Figure 9a). The high values of $RoRT_{mean}$ and CoV_R for test run 2030 and 2100 combine to cause their CoV_{DRT} numbers to diverge away from 1.0 as thread count increases.

![Response Time To Round Trip Time Ratio (RoRT_{mean}) For Seven Test Runs](image)

This situation highlights the importance of using a large enough thread group to maintain a small $RoRT_{mean}$ ratio, when the CoV_R is significantly greater than 1.0.

The last column of Figure 17 is interesting because it shows the number of user threads can be computed by multiplying the transaction rate by the mean round trip time ($N = Tps \times RT_{mean}$). This calculation can also be used to estimate number of real active users supported if the user’s web page rate is substituted for the load generator’s GET/POST transaction rate.

5.0 Summary

A load generator’s fixed user thread pool can sync up and produce spiky request traffic which results in a misrepresentation of workload flow and erroneous application response time statistics. There are many ways the load generator’s process thread pool can distort the request pattern. Three common ways for this to happen that the discussion in Section 3 details include, heavily loading the traffic generator, using think time algorithms which cause threads to cluster behind the long response time events, and creating closed loop feedback with the SUT. When present, any of these distortions can cause the load generator to launch queries in bunches rather than independently from each other like a population of real users.

The independent nature of real user requests was conceptually formalized many years ago and those concepts can be demonstrated with an illustration like the one provided in Section 2. That sampling exercise shows that
calculating the CoV_{DRT} is the most straightforward way to measure how well the load generator is representing the independence of real user behavior to the system under test, \text{SUT}. This simple calculation, based on differences between request launch times is all that is required.

The example load test in \text{Section 4}, taken from the \text{web-generator-toolkit}, illustrates how the CoV_{DRT} calculation is performed and used to evaluate when good web request timing is being achieved. This example illustrates both convergence to the desired $\text{CoV}_{\text{DRT}} \approx 1$ as well divergence away from that value.

The divergence case raises an important question. How robust is the pure virtual user model so many load testing professionals rely on when request independence is such an important factor in the real world? Unfortunately, few practitioners are aware of the CoV_{DRT} and how significant it is for determining the quality of traffic produced by the load generator. Reporting the CoV_{DRT} as a standard metric in load test results adds significant credibility to the effort and if the $\text{CoV}_{\text{DRT}} \approx 1.0$ the results are much more likely to match live application performance.

\textbf{References}

[ALBI82] S.L. Albin, “On Poisson Approximations for Superposition Arrival Processes in Queues”, Management Sciences, Vol. 28, No2, February 1982.

[BRAD09] J. F. Brady, “The Rosetta Stone of Traffic Concepts and Its Load Testing Implications,” CMG MeasureIT, (September 2009), \url{https://jamesbrady.academia.edu/research}

[BRAD12] J. F. Brady, “When Load Testing Large User Population Web Applications the Devil Is In the (Virtual) User Details,” CMG Proceedings 2012, \url{http://www.perfdynamics.com/Classes/Materials/Brady-CMG12.pdf}

[BRAD14] J. F. Brady, “It’s Time to Retire Our 1970’s User Demand Model for Transaction Computing and Adopt One That Reflects ModernWeb User Traffic Flow,” CMG Proceedings, 2014, \url{https://jamesbrady.academia.edu/research}

[BRAD16a] J. F. Brady and N. J. Gunther, “How to Emulate Web Traffic Using Standard Load Testing Tools,” CMG Proceedings, 2016, \url{https://arxiv.org/abs/1607.05356}

[BRAD16b] J. F. Brady and N. J. Gunther, “web-generator-toolkit”, \url{https://github.com/DrQz/web-generator-toolkit}

[KARL75] S. Karlin, H.M. Taylor, “A First Course in Stochastic Processes”, Academic Press Inc., New York, N.Y., (1975).

\textbf{Copyrights and Trademarks}

All brands and products referenced in this document are acknowledged to be the trademarks or registered trademarks of their respective holders.

\textbf{Glossary}

\textbf{CoV}: Coefficient of variation (Standard Deviation / Mean)
\textbf{CoV}_{\text{DRT}}: CoV of time interval between requests based on round trip time ($\text{DRT}_{\text{sdev}} / \text{DRT}_{\text{mean}}$)
\textbf{CoV}_{\text{R}}: CoV of response time ($\text{R}_{\text{sdev}} / \text{R}_{\text{mean}}$)
\textbf{D}: Time interval between requests
\textbf{DRT}: Time interval between requests based on round trip time ($\text{Z} + \text{R}$)
\textbf{DZ}: Time interval between requests based on think time (Z)
\textbf{Mean}: (average): \(\bar{x} = \frac{\sum_{i=1}^{n} x_i}{n} \), where \(x_i = i^{th}\) sample value and \(n = \) sample size.
\textbf{N}: Number of load tool process (user) threads
\textbf{R}: Response time
\textbf{RoRT}_{\text{mean}}: Mean response time divided by mean round trip time ($\text{R}_{\text{mean}} / \text{RT}_{\text{mean}}$)
RT: Round trip time \((Z + R)\)

Standard Deviation (sdev):
\[
\text{sdev} = \sqrt{\frac{\sum_{i=1}^{n} (x_i - \bar{x})^2}{n-1}}
\]
where \(\bar{x} = \frac{\sum_{i=1}^{n} x_i}{n}\), \(x_i = i^{th}\) sample value, and \(n = \text{sample size}\).

SUT: System Under Test

Tps: Transactions per second

Z: Think time