ISING MODEL ON TANGLED CHAIN – I:
FREE ENERGY AND ENTROPY

R. Mejdani

MIRAMARE-TRIESTE
International Atomic Energy Agency
and
United Nations Educational Scientific and Cultural Organization

INTERNATIONAL CENTRE FOR THEORETICAL PHYSICS

ISING MODEL ON TANGLED CHAIN - I:
FREE ENERGY AND ENTROPY

R. Mejdani *
International Centre for Theoretical Physics, Trieste, Italy.

ABSTRACT

In this paper we have considered an Ising model defined on tangled chain, in which more bonds have been added to those of pure Ising chain. To understand their competition, particularly between ferromagnetic and antiferromagnetic bonds, we have studied, using the transfer matrix method, some simple analytical calculations and an iterative algorithm, the behaviour of the free energy and entropy, particularly in the zero-field and zero temperature limit, for different configurations of the ferromagnetic tangled chain and different types of additional interaction (ferromagnetic or antiferromagnetic). We found that the condition $J = J'$ between the ferromagnetic interaction J along the chain and the antiferromagnetic interaction J' across the chain is somewhat as a "transition-region" condition for this behaviour. Our results indicate also the existence of non-zero entropy at zero temperature.

MIRAMARE TRIESTE
April 1993

Classification numbers: 05.50.+q,05.50.+m.75.10.Bk.75.10.Nr

* Permanent address: Department of Physics, University of Tirana, Tirana, Albania.

1 Introduction

In [1], we have used a model of a lattice gas defined on a tangled chain to study the initial reaction-rate for the enzyme kinetics by a modified transfer matrix method, while in [2]-[4], for Ising models on tangled chains or crumpled surfaces, it is studied the problem of metastable/unstable states, reflected in the equilibrium Gibbs average in terms of uneven effective local temperature. In general, the existence of metastable states is responsible for some properties of spin glasses (see [4]-[6] and references cited therein) or random field magnets (see [7] and references cited therein). This is studied also for the very simple models, namely for the random-nearest neighbour interaction Ising chain [8] or the random-field Ising chain [9], where always, an interplay between thermal and frustration effects is present. The frustration, as an important determining factor in the behaviour of interacting systems, since Toulouse first introduced the concept [10], refers to competition between different terms in Hamiltonian so that no spin configuration simultaneously minimizes each term. Some of the interactions of a considered spin with other ones could be positive, favoring parallel alignment, some negative, favoring antiparallel alignment, thus no spin alignment can be found that is satisfactory to all interactions to random bonds [11, [11]] or random fields [11, [12]].

To study a different kind of this competition, particularly between ferromagnetic and antiferromagnetic bonds, in our paper, as in [2]-[3], we have considered an Ising model defined on a tangled chain, in which more bonds have been added to those of pure Ising chain (these bonds provide additional links between spins for additional correlations). Where the chain touches itself (knots), two otherwise distant parts of the original lattice are brought into proximity and coupled by a bond across the chain. The spins placed on the original lattice now have some additional bonds across the chain. In this paper (I) we shall study, using some simple analytical calculations and an iterative algorithm, the behaviour of the free energy and entropy, particularly in the zero-field and zero temperature limit, for different configurations of the ferromagnetic tangled chain and different types of additional interactions (ferromagnetic or antiferromagnetic). In the same way, using the same model and a similar iterative algorithm, we shall study in the next paper (II) the behaviour of the magnetization and susceptibility.

Similarly we can follow the same procedure to study the case of an antiferromagnetic tangled chain with ferromagnetic and antiferromagnetic additional interactions.

2 The model and the transfer matrix method

Consider ferromagnetic Ising spins placed on a tangled chain with a coupling constant $-J(J > 0)$ between the nearest neighbours along the chain and with a coupling constant $-J'(J' > 0, J' = 0$ or $J' < 0$) across the chain. As far as the competition effects between different bonds are concerned, the only relevant information that enters into the Hamiltonian is how spins are coupled. Thus we stretch the tangled chain while allowing those bonds across the chain also to stretch as shown in figure 1, where is represented a "box" (consisted of a tangled part and an untangled one) of the stretched chain. The bonds J' represent these stretched "long range" bonds. We suppose that there are n_J of them uniformly distributed along the chain. Between the two opposite ends of each long range bond, there are n_J spins. There are n_J spins between one end of a long range bond and the
beginning of the next long range bond. These parameters of chain configuration are then related to the total number of spins by $N = n_1(n_1 + n_2 + 2)$, where the number 2 is to count those spins coupled by the long range bonds.

For the present model the Hamiltonian of the system is ([3]):

$$H(S) = H_0(S) + H'(S)$$

(1)

where

$$H_0(S) = -J \sum_{i=1}^{N} S_i S_{i+1} - B \sum_{i=1}^{N} S_i,$$

$$H'(S) = -J' \sum_{i=1}^{N} S_i S_{i+1}.$$

(2)

B is the magnetic field and $S, = \pm 1$. The pure system Hamiltonian $H_0(S)$ represents the coupling of all spins with their nearest neighbours (nn) along the chain and the "perturbation" term $H'(S)$ considers additional bonds between selected pairs of distant neighbours (dn). Not all spins have such a "long range" bond, and therefore this model, which has a kind of bond disorder, is different from the other one-dimensional models which have true long range bonds.

Following ([3], [1]) it is helpful to consider the chain as consisting of many small segments which are tied together at "knots", to take a segment and to treat it in terms of an effective coupling and an effective field only for the two spins remaining at the opposite ends of this segment. So, for a segment of $(n+2)$ spins, the traced middle part over $S_1, S_2, \ldots, S_{n+1}$ leaves for two spins S_1, S_{n+2} on the opposite ends of the segment, a temperature dependent constant $c[n]$, an effective field $y[n]$ and an effective coupling $x[n]$, generated from $c[0], y[0], x[0]$ (i.e., from a two-spin segment which has no middle part) by the recurrence relations:

$$c[n] = 2(c[0]y[n-1] + c[0]x[n-1])$$

$$y[n] = 2(y[0]x[n-1] + c[0]y[n-1])$$

$$x[n] = 2(x[0]y[n-1] + y[0]y[n-1])$$

(3)

with:

$$c[0] = 0.5[kch(f/t) + k^{-1}]$$

$$y[0] = 0.5ksh(f/t)$$

$$x[0] = 0.5[kch(f/t) - k^{-1}]$$

(4)

where $t = (k_B T/J)/k_B$ the Boltzmann constant and T the absolute temperature and $f = (H/J)$ the reduced temperature and the reduced field, respectively, and $k = \exp(1/t)$.

The transfer matrix T:

$$T(n_1, n_2) = \begin{pmatrix} T_{++} & T_{+-} \\ T_{-+} & T_{--} \end{pmatrix}$$

(5)

where the first matrix TP on the right represents the tangled part and the second matrix UP the untangled part. Their elements are, respectively:

$$a(n_1, k, k', f) = a[n_1] = k'[c[n_1] + 2y[n_1] + x[n_1]] e^{k'd},$$

$$b(n_1, k, k', f) = b[n_1] = k''[c[n_1] - x[n_1]] e^{k'd},$$

$$d(n_1, k, k', f) = d[n_1] = k'[c[n_1] - 2y[n_1] + x[n_1]] e^{k'd},$$

(6)

where $k' = \exp(J'/k_BT) = \exp(c/e)$ with $c = J'/J$, and

$$a(n_2, k, 0, f) = a[n_2] = c[n_2] + 2y[n_2] + x[n_2] e^{a_f},$$

$$b(n_2, k, 0, f) = b[n_2] = c[n_2] - x[n_2] e^{a_f},$$

$$d(n_2, k, 0, f) = d[n_2] = c[n_2] - 2y[n_2] + x[n_2] e^{a_f}.$$

(7)

From (5)-(7) we obtain:

$$T_{++} = A = a[n_1]a[n_2] + b[n_1]b[n_2] = k'a_o a_o + k''^{-1} b_o b_o,$$

$$T_{+-} = B = a[n_1]b[n_2] + b[n_1]a[n_2] = k'a_o b_o + k''^{-1} b_o a_o,$$

$$T_{-+} = C = b[n_1]a[n_2] + a[n_1]b[n_2] = k''^{-1} b_o a_o + k'd o b_o,$$

$$T_{--} = D = b[n_1]b[n_2] + d[n_1]d[n_2] = k''^{-1} b_o b_o + k'd o b_o.$$

For the larger eigenvalue of the transfer matrix we have:

$$\lambda_{max} \equiv \lambda_0 = 0.5[(A + D) + \sqrt{(A - D)^2 + 4BC}]$$

(9)

Since the maximum eigenvalue λ_{max} is equal to the grand partition function per box (or $n_1 + n_2 + 2$ sites), in the thermodynamic limit, the thermodynamic potential or the free energy per site is derived as:

$$\frac{F}{N} = -k_BT \ln \left[N^{-1} \ln(\lambda)^{N(n_1 + n_2 + 2)}\right] = -\frac{k_BT}{(n_1 + n_2 + 2)} \ln \lambda_{max}.$$

(10)

Now we shall study using the main line of this analytical procedure and an iterative algorithm based on that, the behaviour of the free energy and entropy, particularly in the zero-field and zero-temperature limit, for different configurations of the ferromagnetic tangled chain and different types of additional interactions. A lot of work is done in study this behaviour in different models, even very recently ([11], [13]).
3 The free energy

3.1 The simple case ($n_1 = n_2 = 1$)

In the section 2 we have given only the main lines of the general procedure to calculate the free energy. In this simple case from (3)-(4) we obtain:

$$c[1] = 0.5[k^2ch(2f/t) + 2ch(f/t) + k^{-2}]$$
$$y[1] = 0.5[k^2sh(2f/t)]$$
$$z[1] = 0.5[k^2ch(2f/t) - 2ch(f/t) + k^{-2}]$$

while from (6)-(7) and (11) we have:

$$a_e = a_z = k^2exp(2f/t) + k^{-2}$$
$$b_e = b_z = 2ch(f/t)$$
$$d_e = d_z = k^2exp(-2f/t) + k^{-2}$$

Substituting these expressions to (8), the elements of the transfer matrix in this simple case will be:

$$A = k^2[k^2exp(2f/t) + k^{-2}]^2 + k^{-4}[2ch(f/t)]^2$$
$$B = 2ch(f/t)[k^2exp(2f/t) + k^{-2}] + k^{-2}[k^2exp(-2f/t) + k^{-2}]$$
$$C = 2ch(f/t)[k^{-2}exp(2f/t) + k^{-2}] + k^2[k^2exp(2f/t) + k^{-2}]$$
$$D = k^{-2}[2ch(2f/t)]^2 + k^2[k^2exp(-2f/t) + k^{-2}]^2$$

From (13), using (9) we may study the variation of the free energy per site (10) versus the reduced temperature t. To have an idea, one of this diagram (F-t) for the "transition" value $e = -1$ is represented in figure 3.

In the zero-temperature limit ($t \to 0$) we have:

$$k = exp(1/t) \to \infty, k^{-4} = exp(-1/t) \to 0 (J > 0)$$

Considering the highest power term in the expression of the zero-field free energy when ($t \to 0$) we obtain:

$$F = \frac{F_N}{2J} \approx -(4 + e)/4, (e > -1)$$

$$F \approx -(1/4)(3 + th3) \approx 0.75, (e = -1)$$

$$F \approx -(1/4)(2 - e) + th2 \approx -(2 - e)/4, (e < -1)$$

So, the reduced zero-temperature internal energy per spin for the "transition" value $e = -1$ is $U(0) = -0.75$ (see [16]). In figure 3 are represented, as illustration, the numerical variations of the free energy versus the temperature t in the zero-field limit. For $e = -0.08$ (the lowest temperature accessible in this case) the value of F is -0.77 (while the value of the term ν is -0.02).

3.2 The general case ($n_1 \neq n_2$)

The simplicity of our model has allowed us to carry out some analytical calculations for the simple configurations (as $n_1 = n_2 = 1$, $n_1 = n_2 = 2$, etc.) which are very instructive. However, even for such a simple model it is very complicated to push analytic calculations very far, particularly in the case of a nonzero magnetic field. Numerical calculations have also been done to supplement the analytic work.

So, using an iterative algorithm based on the main lines of the general procedure given in the section 2, it is possible and very suitable to study the variation of F versus t for different chain configurations for different values of n_1 and n_2, for different values of interaction ratio e and different values of field f.

For illustration, one of (F-t) diagram in the zero-field limit ($f=0$) is represented in figure 4.

Also, some of the approximative estimations of the zero-field and the zero-temperature internal energy, limited in accuracy by the value of the lowest temperature accessible numerically for the "transition" interaction parameter $e = -1$, are as follows:

$$n_1 = 2, n_2 = 2, -0.83, n_1 = 3, n_2 = 2, -0.86$$
$$n_1 = 3, n_2 = 3, -0.86, n_1 = 3, n_2 = 2, -0.89$$
$$n_1 = 4, n_2 = 1, -0.89, n_1 = 4, n_2 = 2, -0.91$$
$$n_1 = 5, n_2 = 1, -0.91, n_1 = 5, n_2 = 2, -0.93$$

It is clearly visible that an important feature is the total number of bonds per box. Also, the highest value of the internal energy ($f=0$ and $t=0$) is suitable to study the Ising model with alternate interactions $J_1 = J_4$, $J_2 = J_3$, $J_1 = J_4$ and $J_2 = J_3$. Thus, the number of bonds per box is $n_1 \neq n_2, n_2 \neq 0$, for the configuration $n_1 = n_2 = 2$, we have the most powerful competition effect between ferromagnetic and antiferromagnetic bonds.
4 The entropy

4.1 The simple case \(n_1 = n_2 = 1 \)

From the usual thermodynamic relation the reduced entropy per spin is given by:

\[
S = \frac{S_N}{N_J} = \frac{1}{t(n_1 + n_2 + 2)[n_1 + n_2 + 2]}
\]

which in the case \(\epsilon = 0 (J = 0) \) is reduced to the expression of the entropy for a 1-D Ising model with nearest neighbour interactions. From (16) and the concrete expression of the first derivative of \(\lambda_{\text{max}} \), we may study the variation of the entropy against the temperature for different cases. One of this (S-t) diagram is represented in the figure 5. In the figure 6 are represented these variations in the zero-field limit.

Considering the "highest power" term in the expression of the zero-field entropy, when \(t \rightarrow 0 \), we find that:

\[
S \rightarrow 0 \quad (e > -1)
\]

\[
S \rightarrow (ln3)/4 \sim 0.271 \quad (e = -1)
\]

\[
S \rightarrow (ln2)/4 \sim 0.17 \quad (e < -1)
\]

These results (for \(e \leq -1 \)) indicate the existence of non-zero entropy at zero temperature. In figure 7 we have illustrated the case \(e = -1 \), using numerical calculations. Because of the restrictions on the lowest temperature that can be reached, only temperatures \(T \geq 0.9 \) are accessible. (In the region \(0.075 \leq T \leq 0.9 \) the fluctuations are considerable, the small diagram in figure 7) and the values below 0.075 are not accessible). A zero-temperature entropy, different from zero, is obtained many years ago from Puma and Fernandez [17] for the random field Ising model, but also very recently for the frustrated quantum spin \(1/2 \) chain [11].

4.2 The general case \(n_1 \neq n_2 \)

To obtain numerically the variation of the entropy versus the temperature, for different chain configurations and different values of \(e \) and \(f \), we have to complete the iterative algorithm used for the free energy, by the first derivatives (denoted with \(' \)) related to the temperature \(t \) of the following groups of quantities:

\[
\begin{align*}
c'[0] &= -0.5t[f] \left[k(ef/f) + fsh(f/f) \right] - k^{-1} \\
y'[0] &= -0.5t[f] \left[k(ef/f) + fsh(f/f) \right] \\
x'[0] &= -0.5t[f] \left[k(ef/f) + fsh(f/f) \right] + k^{-1} \\
c'[n] &= 2y'[0]y[n - 1] + y[0]y'[n - 1] + c(0)c'[n - 1] + c(0)c'[n - 1] \\
y'[n] &= 2y'[0]y[n - 1] + y[0]y'[n - 1] + c(0)y'[n - 1] + c(0)y[n - 1] \\
x'[n] &= 2x'[0]x[n - 1] + x[0]x'[n - 1] + y[0]y'[n - 1] + y[0]y'[n - 1] \\
a'[n] &= c'[n2] + 2y'[n2] + x'[n2]
\end{align*}
\]

\[
\begin{align*}
b'_n &= c'[n2] - z'[n2] \\
d'_n &= c'[n1] + 2y'[n1] + x'[n1] \\
b'_n &= c'[n1] - x'[n1] \\
d'_n &= c'[n1] - 2y'[n1] + x'[n1]
\end{align*}
\]

\[
\begin{align*}
A' &= \exp(e/t) (a_d' + d'a_d) + \exp(-e/t) (b_d' + b_d') - (c/t^2) \left[\exp(e/t) a_d - \exp(-e/t) b_d \right] \\
B' &= \exp(e/t) (a_b' + b_a') + \exp(-e/t) (b_b' + b_b') - (c/t^2) \left[\exp(e/t) a_b - \exp(-e/t) b_b \right] \\
C' &= \exp(-e/t) (b_a' + b_a') + \exp(e/t) (d_a' + d_a') - (c/t^2) \left[\exp(e/t) m_a - \exp(-e/t) d_a \right] \\
D' &= \exp(-e/t) (b_b' + b_b') + \exp(e/t) (d_b' + d_b') - (c/t^2) \left[\exp(e/t) m_b - \exp(-e/t) d_b \right]
\end{align*}
\]

And also:

\[
\lambda_{\text{max}} = 0.5[A' + D' + [(A - D)(A' - D') + 2(B'C + BC')]/\sqrt{(A - D)^2 + 4BC}]
\]

Using an iterative algorithm based on these recurrence relations we can study the variations of entropy \(S \) against temperature \(t \) for different combinations of \(n_1, n_2, e \) and \(f \). In figure 8 is represented one of these (S-t) diagram for the case \(e = -1, f = 0 \) and some combinations of \((n_1, n_2) \). Also, it is possible to estimate numerically the values of the zero-temperature entropy for \(e = -1 \) and different chain configurations, with an accuracy limited by the lowest accessible temperature. Some of these \(S(0) \) values, in the zero-field condition, are:

\[
\begin{align*}
n_1 &= 2 \quad n_2 = 1 \quad \approx 0.277 \\
n_1 &= 3 \quad n_2 = 1 \quad \approx 0.268 \\
n_1 &= 4 \quad n_2 = 1 \quad \approx 0.256 \\
n_1 &= 2 \quad n_2 = 2 \quad \approx 0.271 \\
n_1 &= 3 \quad n_2 = 2 \quad \approx 0.253 \\
n_1 &= 4 \quad n_2 = 2 \quad \approx 0.224
\end{align*}
\]

5 Conclusions

In this paper we have considered an Ising model on a tangled chain to understand the competition between ferromagnetic bonds of the usual chain and additional bonds of ferromagnetic or antiferromagnetic types, manifested in the behaviour of the free energy and entropy. Using a modified matrix transfer method, some simple analytical calculations and an iterative algorithm, we have studied in detail this behaviour, particularly in the zero-field and zero-temperature limits, for different configurations of composed parts (boxes) in the ferromagnetic tangled chain and different types of additional interactions. We have found that this behaviour is different in different regions of the interaction ratio (additional interaction \(J' \) (usual n.n interaction \(J \)) and the condition \(J = -J' \), between the ferromagnetic interaction \(J \) along the chain and the antiferromagnetic interaction \(J' \) across the chain, plays a role of a "transition region" condition for this behaviour. Our results indicate also the existence of non-zero entropy at zero temperature. This fact "speaks" clearly
for presence of a type of frustration in the tangled chain model, which has a kind of bond disorder. It is rather difficult to interpret these results in terms of uneven effective local temperatures, considering that a perturbation in local interaction may be regarded as a perturbation in local temperatures.

In the same way we can study also the case of an antiferromagnetic tangled chain with ferromagnetic or antiferromagnetic additional interactions.

A very important feature is also the behaviour of the magnetization and susceptibility, particularly in the above mentioned limits. Our results about this behaviour, by using a similar iterative algorithm, will be represented in the next paper (II).

Acknowledgements
The author is very grateful to Prof. R. B. Stinchcombe (Oxford) for his stimulating interest and very helpful orientation at the beginning of this work. He would like also to thank Prof. Abdus Salam, the International Atomic Energy Agency and UNESCO for the hospitality at the International Centre for Theoretical Physics, Trieste.

References
[1] Mejdan R 1993 A lattice gas model on tangled chain IC/93/67 (ICTP, Trieste, Italy)
[2] Lee J C 1989 Physica A 160 503
[3] Lee J C, Stephens J M, Mead L R and Joyce R F 1990 Physica A 167 749
[4] Binder K and Young A P 1986 Rev. Mod. Phys. 58 801
[5] Mézard M, Parisi G and Virasoro M A 1987 Spin glass theory and beyond, Lectures Notes in Physics, Vol. 29 (Singapore: World Scientific)
[6] Fisher K H and Herta A 1991 Spin Glasses (Cambridge: Cambridge University Press)
[7] Cowley R A, Birgeneau R J and Shirane G 1986 Physica A 140 285
[8] Chen H H and Ma S 1982 J. Stat. Phys. 29 717
[9] Masui S, Jacobs A E, Wicentowich C and Southern B W 1993 J. Phys. A: Math. Gen. 26 25
[10] Toulouse G 1977 Commun. Phys. 2 115
[11] Reed P 1992 J. Phys. A: Math. Gen. 25 5861
[12] Fisher D S 1984 Phys. Rev. B 31 7233
[13] Yi L, Buttner G, Unadel K D and Yao K L 1993 Phys. Rev. B 47 254
[14] Toda M, Kubo R and Saito N 1992 Statistical Physics I, ch. 1 (Berlin: Springer-Verlag)
[15] Thompson C J 1979 Mathematical Statistical Mechanics, ch. 5 (Princeton: Princeton University Press)
[16] Parisi G 1980 J. Phys. A: Math. Gen. 13 L115
[17] Puma M and Fernandez J F 1978 Phys. Rev. B 18 1391
Figure Captions

Fig. 1 Schematic presentation of a "box" or a segment of the chain, consisted of a tangled and an untangled part.

Fig. 2 Free energy F as a function of reduced temperature t ($f=1$ and $\epsilon = 0.5, 0, -0.5, -1, -1.5$).

Fig. 3 F as a function of t ($f=0$ and $\epsilon = -0.5, -1, -1.5$).

Fig. 4 (Flow diagram for the configuration $n_1 = 2, n_2 = 1$ ($f=0$ and $\epsilon = -0.5, -1, -1.5$).

Fig. 5 Entropy S against reduced temperature t ($f=1$ and $\epsilon = 0.5, 0, -0.5, -1, -1.5$).

Fig. 6 Entropy S as a function of reduced temperature t in the zero-field limit ($f=0$ and $\epsilon = 0.5, 0, -0.5, -1, -1.5$).

Fig. 7 Entropy S against the reduced temperature for very small values of t ($f=0$ and $\epsilon = -0.9, -1, -1.1$). The value of the zero-field entropy is finite for $\epsilon \leq 1$ when $t \rightarrow 0$.

Fig. 8 Entropy S as a function of temperature t for different combinations of (n_1, n_2) ($f=0$ and $\epsilon = -1$). The ends of curves on vertical columns are placed following this order of configurations: $(n_1 = 2, n_2 = 1)$; $(n_1 = 1, n_2 = 2)$; $(n_1 = 2, n_2 = 2)$; $(n_1 = 3, n_2 = 1)$; $(n_1 = 1, n_2 = 4)$.

Figure 1

Figure 2
