In the spotlight: the role of TGF\(\beta\) signalling in haematopoietic stem and progenitor cell emergence

Roshana Thambyrajah\(^1\) and \(\odot\) Rui Monteiro\(^2,3,4\)

\(^1\)Stem Cell and Cancer Group, IMIM, Barcelona, Spain; \(^2\)Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, U.K.; \(^3\)Birmingham Centre of Genome Biology, University of Birmingham, Birmingham, U.K.; \(^4\)Cancer Research UK Birmingham Centre, Birmingham, U.K.

Correspondence: Rui Monteiro (r.monteiro@bham.ac.uk)

Haematopoietic stem and progenitor cells (HSPCs) sustain haematopoiesis by generating precise numbers of mature blood cells throughout the lifetime of an individual. In vertebrates, HSPCs arise during embryonic development from a specialised endothelial cell population, the haemogenic endothelium (HE). Signalling by the Transforming Growth Factor \(\beta\) (TGF\(\beta\)) pathway is key to regulate haematopoiesis in the adult bone marrow, but evidence for a role in the formation of HSPCs has only recently started to emerge. In this review, we examine recent work in various model systems that demonstrate a key role for TGF\(\beta\) signalling in HSPC emergence from the HE. The current evidence underpins two seemingly contradictory views of TGF\(\beta\) function: as a negative regulator of HSPCs by limiting haematopoietic output from HE, and as a positive regulator, by programming the HE towards the haematopoietic fate. Understanding how to modulate the requirement for TGF\(\beta\) signalling in HSC emergence may have critical implications for the generation of these cells in vitro for therapeutic use.

Introduction

TGF\(\beta\) is a well-known regulator of adult haematopoietic stem cell (HSC) lineage determination, self-renewal and differentiation in development and in disease [1–4]. Its functions in adult haematopoiesis have been discussed in many excellent reviews [4–6] and will not be covered here. Here we will focus on the emerging role of TGF\(\beta\) signalling in the formation of nascent HSPCs during embryonic development, the current views regarding TGF\(\beta\) signal transduction and transcriptional responses in this context, and future research that can contribute to resolve the existing concerns and contradictions.

The fundamentals of TGF\(\beta\) signalling — canonical and non-canonical signalling

TGF\(\beta\) proteins are part of a large family of secreted growth factors with pleiotropic activities in diverse tissues ranging from proliferation, cell death and differentiation to lineage determination, organ morphogenesis and tissue homeostasis [5,7,8]. The family comprises over 30 members, including TGF\(\beta\)1–3, Activins, Bone Morphogenetic Proteins (BMPs) and Growth and Differentiation Factors (GDFs) [9,10]. The fundamental components of this pathway have been elucidated over the years by many research groups and have been excellently reviewed by many colleagues. Briefly, in canonical signalling, TGF\(\beta\) secreted factors bind to heteromeric tyrosine kinase type I and type II receptor complexes at the cell surface. Upon ligand binding, type II receptors phosphorylate type I receptors, which in turn phosphorylate intracellular mediators called Receptor-regulated Smad proteins (R-Smads). Subsequently, R-Smads then form a complex with the common Smad, Smad4, and translocate to the nucleus and bind to specific promoters and enhancers to regulate gene expression [9].

© 2022 The Author(s). This is an open access article published by Portland Press Limited on behalf of the Biochemical Society and distributed under the Creative Commons Attribution License 4.0 (CC BY).
There are seven type I receptors (ALK1–ALK7) and five type II receptors (TGFβRII, BMPRII, ActRII, ActRIIB and AMHRII) and different TGFβ ligands bind different combinations of type I and type II receptors [11]. TGFβ, Nodal and Activin generally induce phosphorylation of Smad2 and Smad3 via ALK4 or ALK5, whereas BMPs phosphorylate Smad1, Smad5 or Smad8 through ALK2, ALK3 or ALK6 [7] (Figure 1). In endothelial cells, however, TGFβ can bind receptor complexes containing either ALK5 (TβRI) or ALK1 (ACVRL1) activating Smad2 and Smad3 via ALK5, but also Smad1 and Smad5 via ALK1 [12–14]. In addition to the canonical Smad-mediated pathways, there are several non-smad mediators of TGFβ signalling, including the c-Jun amino terminal kinase (JNK), p38 MAPK, Akt and others, collectively known as non-canonical signalling mediators and are reviewed elsewhere [6,15].

HSPCs arise from haemogenic endothelium during embryonic development

HSPCs sustain the blood system throughout life. Although they reside in the bone marrow of the adult, their origin can be traced to a region where the aorta, gonads and the mesonephros (AGM) meet in vertebrate
Expression of TGFβ signalling pathway components during the formation of HSPCs

The expression of TGFβ superfamily members has been assessed in several in vivo and in vitro model systems for haematopoiesis. The TGFβ receptors TGFβRII, ALK1 and ALK5 are present in the endothelial cells and HE derived from Embryonic stem cells (ES) in vitro [41], zebrafish [42,43], mouse and chick embryos [41,44]. Endoglin, a type III co-receptor for both TGFβ and BMP9/BMP10 [13,45–47], is also expressed in endothelium [12,41,44]. Of the 3 TGFβ ligands, TGFβ1 (including tgfβ1a and tgfβ1b in zebrafish) is the most prominent one with high levels of expression in the mouse, chick, zebrafish and ESC-derived endothelium and HE [41,42,44,48]. Only very low levels of tgfβ2 have been detected in mouse endothelium, and tgfβ3 is hardly detectable in either the mouse or the chick endothelium [41,44]. However, both ligands are highly abundant in the sub-aortic mesenchyme and the notochord in chick [44] and in zebrafish [42]. In zebrafish, tgfβ3 was additionally detected in the endocardium, somites, floor plate and notochord [42].

The role of TGFβ signalling in the formation of HSCPs

Several labs have studied the involvement of TGFβ signalling in HE specification, EHT and IAHC formation and have come to seemingly contradictory conclusions. The signalling triggered by TGFβ ligands has been studied for its functional requirement during EHT in different models. Several studies have identified the expression of SMAD2/3 in the dorsal aorta and HE and provided evidence for activated SMAD2/3 (pSMAD2/3) in mouse HE/IAHC [49]. Both in mouse and chick embryos only a very discrete number of cells show pSMAD2/3 staining [44,49]. It is plausible that the snapshots provided by the IHC experiments do not represent the overall level of active SMAD2/3 induced by TGFβ ligands in HE since the trigger can be limited to a small window of time during HE specification and EHT.

Functional studies with morpholino mediated knock down of TgfβRII, Tgfβ1a or Tgfβ1b or using genetic tgfβ1b mutants during zebrafish haematopoiesis leads to impaired specification of the HE [42,48]. Knockdown of Tgfβ3 led to impaired EHT and decreased haematopoietic output from HSPCs [42]. In contrast, pharmacological inhibition of TGFβ signalling with the compound SB431542 increased haematopoietic output in a mouse embryonic stem cell (mESC) haematopoietic differentiation model [41]. This might seem contradictory at first, but a detailed study of the effects of SB431542 on pSMAD2/3 indicated that in cultures exceeding 24 h, the use of the inhibitor increases SMAD2/3 phosphorylation [49]. Indeed, overexpression of constitutively
active SMAD2/3 resulted in the same phenotype as adding the inhibitor. It is unclear how the compound can increase the levels of pSMAD2/3 [50]. It’s tempting to hypothesise that blocking the ALK5 receptor leads to over-activation of ALK4/7 that in turn phosphorylate SMAD2/3 as a fine balance is maintained between inputs from different ALKs in a cell [51]. A recent study using haematopoietic differentiation of human ES cells did not report an increased haematopoietic output when using the inhibitor in >24 h culture [52]. However, the authors used a lower concentration of the inhibitor compared with others and neither of these studies added the inhibitor at equivalent stages of *in vitro* differentiation (i.e. Bruveris et al. from the PDGFRe+ (mesodermal) stage, Thambyrajah et al. from the Flk1+ stage (mesodermal/haemangioblast) and finally Vargel et al. from the EHT stage (CD144+/CD41+) [41,49,52]. Beyond the issues with the mode of action of the inhibitor, these differences make direct comparisons to TGFβ function *in vivo* difficult. Vargel et al. also added the ligand TGFβ2 to Flk1+ cells sorted from embryoid body cultures which resulted in a decrease in VE-cad+/CD41+ haematopoietic progenitor cells (HPCs). They therefore postulated that TGFβ signalling blocked the formation of blood cells and thus negatively regulates haematopoiesis [41]. In contrast, using TGFβ1 in a similar ESC differentiation model led to increased number of CD41+/CD117+ HSPCs [48]. Here it is important to note that TGFβ1 is the main ligand in angiogenesis and haematopoiesis [42,53–55]; although TGFβ2 is a key inducer of endothelial to mesenchymal transition (EndoMT) in the heart [56], it is not expressed in the aortic endothelium or HE [41,42,44]. In addition, mouse mutants for Tgfb2 don’t show any obvious angiogenic or haematopoietic defects [57]. TGFβ2 knockdown had no effect on HE specification in zebrafish either [42].

Further experimental evidence for a crucial involvement of SMAD2/3 in EHT was reported in two very recent studies. Here, they identify SMAD2/3 interactions with the chromatin as vital for transcription factors to access their target sites during EHT. In fact, in both studies, SMAD2/3 is discovered as a pioneering factor for opening the chromatin for cell fate change, including for the key haematopoietic transcription factor Runx1 [58,59]. Accordingly, HE and IAHC that are positive for pSMAD2/3 have been reported in the mouse AGM [49]. A more complex function for SMAD2/3 in EHT can be anticipated from studies on EndoMT. In EndoMT, the Hippo pathway member YAP1 can compete with Smad3 for complex formation [60]. The study finds that YAP1/Smad3 complexes have a stronger DNA binding affinity and drive stable transcription of downstream targets [60]. It’s noteworthy that YAP1 induced by shear stress is required for HSPC/HSC maintenance in the zebrafish AGM [61]. It will be interesting to examine if YAP1 interacts with Smad3 to induce and maintain HSPC/HSC fate during AGM haematopoiesis. Finally, several TGFβ regulatory proteins such as Smad6, Smad7, Bmp4, Dach1, Cripto1 and Ptpn14, are expressed in ES Cell-derived HE and are targets of the histone deacetylases Hdac1 and/or Hdac2 [49]. Interestingly, ChIP assays demonstrated that Runx1 binds to the Smad6 -57 enhancer and drives its expression in aortic endothelial cells [62]. Here, we hypothesise that Smad6 expression may be silenced in EHT-primed HE through histone deacetylases Hdac1/Hdac2. Histone silencing complexes can be recruited by transcription factors, including Gfi1 and its homologue Gfi1b [63–65]. Therefore, Runx1-expressing cells that start to express Gfi1/1B would recruit histone deacetylases (or other histone modifiers) to repress the negative regulators of TGFβ and permit TGFβ activity. Since epigenetic modifiers can be recruited by various transcription factors, it is possible that several HE and later HSPC-specific transcription factors fine tune the overall output of TGFβ signalling in each cell, and that the output can be varied depending on the cell type.

Evidence for non-canonical TGFβ signalling in HSPC emergence

Zhang and colleagues showed that Tgfb1b regulated HSPC emergence by promoting gluconeogenesis, an effect mediated via the non-canonical JNK/c-jun pathway rather than canonical Smad2 phosphorylation [48]. They demonstrated that the expression of zebrafish JNK orthologues tak1, mapk8a, mapk9 and mapk10 was decreased in tgfβ1b mutant endothelial cells, suggesting a role for JNK downstream of TGFβ signalling. Accordingly, chemical inhibition of JNK signalling phenocopied the loss of HSPCs found in tgfβ1b mutants. They further identified that *c-jun* expression was decreased in the mutants [48]. Loss of *tgfb1b* or *c-jun* led to decreased g6pc3, an enzyme in the gluconeogenesis pathway that was specifically enriched in HSPCs. Addition of 1% glucose or re-expression of g6pc3 rescued expression of HSPC-specific markers *runx1* and *cmyb* [48]. They proposed that a Tgfβ1b/JNK/c-jun/g6pc3 axis is required to maintain sufficient levels of gluconeogenesis to enable HSPC emergence from HE. Together with our previous study in zebrafish [42], these experiments indicate that TGFβ signalling is an inducer of HE and is critical for the formation of HSPCs (Figure 2).
The role of BMP signalling in the formation of HSCs

More research has been conducted to understand the role of BMP-induced signalling through ALK2, ALK3 or ALK6 in the generation of HSPCs. While BMP4 expression surrounds the mesenchyme around the dorsal aorta, BMP activity traced with a Smad1/5-responsive reporter mouse line is detected in cells of the dorsal aorta and HSPCs, with all HSC activity residing in the BMP activated cell AGM population [66]. This stark distinction is lost in the later stages of HSCs maturation where HSC activity resides in both the BMP-activated and non-activated cell fraction, although BMP activated HSCs are more enriched for myeloid biased HSCs [66]. BMP is required to establish the haematopoietic programme in definitive haemangioblasts (the precursors of the dorsal aorta and HE in Xenopus embryos), but not thereafter [67]. These observations tie in with reports that identified expression of the BMP antagonists, Noggin2, gremlin1a and Bmper, at an increasing gradient towards the aorta in the mesenchyme below. At least noggin2 and gremlin1a are induced by FGF signalling from the somites during zebrafish haematopoiesis [68]. Overexpression of noggin from pre-mesoderm stages in Xenopus embryos abrogates HE specification and blood development from the dorsal aorta but has no effect on haematopoiesis if induced after the event [67]. This indicates a time-limited requirement for BMP signalling during HSPC emergence (Figure 2). Similarly, the expression of Bmper increases just after the specification of HE, between E9.5 and E11.5 in a ventrally polarised manner in the AGM. When comparing the localisation of BMPER and BMP-activated cells (indicated by nuclear pSMAD2/3) within the AGM region, they showed a negatively correlated distribution, further indicating that Bmper restricts BMP4 activation in emerging IAHC [69]. Nevertheless, Bmper mRNA can be occasionally detected in some intra-aortic cells, including the early cells in the IAHC. Within the IAHC, Noggin expression also shows an inverse correlation with nuclear pSMAD1/5/8 immunostaining [69]. Notably, the TGFβ receptor(s) driving this Smad 1/5/8 phosphorylation in the AGM was not identified in these studies. It remains a possibility that next to BMP4, TGFβ ligands contribute this Smad activation, since they can phosphorylate Smad1 and Smad5 via ALK1 [12–14]. One of the experimentally validated downstream targets of active BMP4 signalling during HE specification and EHT is Erk1/2 signalling [70], a tyrosine kinase receptor activated pathway that controls proliferation and

Figure 2. Schematic representation of the stepwise development from mesodermal cells to HSPC/HSCs in the vertebrate embryo and the requirement of TGFβ signalling in these transitions based on current studies.

Decreasing BMP4 levels are needed from the mesodermal to a HE stage, and as a gradually decreasing gradient from the sub-aortic mesenchyme toward the ventral wall of the dorsal aorta. Within the ventral wall of the dorsal aorta, HE/HSPC/HSCs cells are activated by TGFβ1/3 and show presence of pSMAD2/3 and low pSMAD1/5/8. BMP4 is antagonised by BMPER, GREMLIN1a and NOGGIN. In our hypothesis, based on the published data, we postulate that SMAD2/3 is needed to open the chromatin for Runx1 to drive EHT, in a process similar to that seen in EndoMT. Please note that the scheme does not include other known regulators of Runx1 expression such as Notch or VegfA signalling.
survival [71]. The balance between the Erk1/2/MAPK and the PI3K/AKT pathway determine the arterial versus venous specification [72] in angiogenesis. Zhang et al. [70] revealed that pSMAD1/5 accumulate at the promoter regions of erk1 and erk2 to repress gene expression through recruitment of epigenetic modifiers, including Hdac1. Here again, it is interesting that Erk activity is needed at early stages of HE/EHT. Altogether, these findings suggest an early need for BMP4 signalling prior to HE specification that becomes dispensable thereafter. In fact, pharmacological inhibition of Erk after this stage has the opposite effect, leading to the hypothesis that there is switch from a positive to negative requirement for Erk signalling during embryonic haematopoietic development [70].

Concluding remarks and future directions
This review highlights the pivotal roles played by the TGFβ family of signalling molecules during HE specification, EHT and HSPC/HSC emergence that have been characterised in the recent years. The evidence that has emerged from different model systems conclusively support a dynamic and carefully timed requirement for TGFβ signalling. Most reports clearly support a critical input from pSMAD2/3 and pSMAD1/5/8 for HSPC emergence and there is mounting evidence that non-canonical signalling may also play an important part in this process [48] (Figure 2). Remarkably, a novel interaction between Runx1 and SMAD2/3 has recently been discovered that highlights a key role for TGFβ signalling in promoting EHT by mediating chromatin accessibility of Runx1 target genes [58]. Transcription factor footprinting of haemogenic (E9.5) and non-haemogenic (E13.5) endothelium revealed higher enrichment of Smad2/3 binding motif next to the Runx1 motif at E9.5 [58]. Activation of Runx1 together with TGFβ3 was sufficient to induce HE activity in E13.5 endothelial cells, indicating that these cells progressively lose their plasticity as they mature. Accordingly, adult endothelium remained refractory to transient induction of combined Runx1 and TGFβ3 expression [58], indicating that other factors might play a role in maintaining that haemogenic plasticity observed at earlier developmental stages.

Because recent studies demonstrated the existence of combinatorial SMAD2/3 and Smad1/5-mediated signalling during EMT [14], we speculate that TGFβ-mediated Smad1/5 signalling may also contribute to HE specification and/or EHT. In this regard, in vitro differentiation of embryoid bodies from mouse ES cells towards blood showed increased numbers of CD45+ ALK1+/− cells compared with wild-type [44], suggesting a role for ALK1 in balancing the arterial versus haemogenic cell fate. This observation remains to be confirmed in vivo.

Overall, an abundant number of positive and negative TGFβ family regulators are expressed in the AGM region and therefore, further investigation is required to explain how the entire network is spatially, temporally and functionally coordinated during the stepwise development of HE to EHT and finally to HSPCs/HSCs. Linking data from the growing number of single cell transcriptional profiling studies in HE/HSPCs (e.g. [73–77]) with further studies on the exact composition of SMAD complexes will help address these questions. Chromatin binding data for the individual Smad proteins in HE or HSPC/HSCs would be desirable, but will remain a challenge to perform in low cell number samples until good antibodies and new alternatives to conventional ChIP such as Cut&Tag [78] are standardised. Moreover, Smad proteins only bind to DNA transiently and need transcription factors to stabilise these interactions that additionally increases the difficulty in identifying bona fide binding targets [60,79]. Finally, there is still a need to develop specific compounds to activate or inhibit specific TGFβ receptors and ligands since TGFβ signalling is aberrantly expressed in many diseases [80]. The first studies and clinical trial using the novel TGFβ1/3 inhibitor AVID200 in patients with advanced solid tumours show encouraging results [81,82]. The use of such compounds will help to broaden our understanding of TGFβ signalling in the development of HSPC from HE. In summary, we have identified and discussed mounting evidence for a central role for TGFβ signalling at the earliest stages of HSPC emergence. Which specific Smad complexes direct certain stages of HE specification, EHT and HSPC differentiation and which downstream targets are involved is yet to be fully unravelled.

Perspectives
- Signalling by the Transforming Growth Factor β family is crucial for the establishment of haematopoietic stem and progenitor cells (HSPCs) from haemogenic endothelium in the developing embryo.
While there are controversial observations suggesting opposing roles for TGFβ in the formation of HSPCs, the consensus is emerging that TGFβ signalling is required to programme the embryonic arterial endothelium towards the haematopoietic fate.

A better understanding of the activities of TGFβ signalling that enable HSPC emergence will help deliver on the promise of generating these cells *in vitro* for personalised medicine applications. New cutting-edge technologies such as single cell transcriptomics and epigenomics and better techniques to interrogate transcription factor binding in very low cell numbers will provide a solid platform to achieve that goal.

Competing Interests
The authors declare that there are no competing interests associated with the manuscript.

Funding
R.T. is a recipient of BP2016(00021) and BP/MSCA 2018(00034) fellowship programs from the Generalitat de Catalunya/Marie Skłodowska-Curie Actions. R.M. is funded by the University of Birmingham and supported by Cancer Research UK [C17422/A25154].

Open Access
Open access for this article was enabled by the participation of University of Birmingham in an all-inclusive Read & Publish agreement with Portland Press and the Biochemical Society under a transformative agreement with JISC.

Author Contributions
R.M. and R.T. conceived the outline, and RM and RT wrote the manuscript. Both authors participated in critical review and editing. Both authors have read and agreed to the published version of the manuscript.

Abbreviations
ActRII, Activin receptor type II; AGM, Aorta-Gonad-Mesonephros; AKT, Ak strain transforming; ALK, Activin-like kinase; AMHRII, Anti-Mullerian Hormone receptor type II; BMP, Bone Morphogenetic Protein; BMPRII, BMP receptor type II; ChIP, Chromatin Immunoprecipitation; EHT, Endothelial to Haematopoietic Transition; EMT, Epithelial to Mesenchymal Transition; EndoMT, Endothelial to Mesenchymal Transition (EndoMT); ERK, Extracellular Signal-Regulated Kinase.; GDF, Growth and Differentiation Factor; HE, Haemogenic endothelium; HSC, Haematopoietic Stem Cell; HSPC, Haematopoietic Stem and Progenitor Cell; IAHC, Intra-aortic Haematopoietic Cluster; JNK, c-Jun amino terminal kinase; MAPK, Mitogen-activated protein kinase; mESC, mouse embryonic stem cell; PI3K, Phosphatidyl inositol 3'-kinase; pSMAD1/5, phosphorylated SMAD1/5; pSMAD2/3, phosphorylated SMAD2/3; TGFβ, Transforming Growth Factor β; TGFBRII, TGFβ receptor type II.

References
1 Challen, G.A., Boles, N.C., Chambers, S.M. and Goodell, M.A. (2010) Distinct hematopoietic stem cell subtypes are differentially regulated by TGF-beta1. *Cell Stem Cell* 6, 265–278 https://doi.org/10.1016/j.stem.2010.02.002
2 Wang, X., Dong, F., Zhang, S., Yang, W., Yu, W., Wang, Z. et al. (2018) TGF-beta1 negatively regulates the number and function of hematopoietic stem cells. *Stem Cell Rep.* 11, 274–287 https://doi.org/10.1016/j.stemcr.2018.05.017
3 Yamazaki, S., Ema, H., Karlsson, G., Yamaguchi, T., Miyoshi, H., Shioda, S. et al. (2011) Nonmyelinating Schwann cells maintain hematopoietic stem cell hibernation in the bone marrow niche. *Cell* 147, 1146–1158 https://doi.org/10.1016/j.cell.2011.09.053
4 Blank, U. and Karlsson, S. (2015) TGF-beta signaling in the control of hematopoietic stem cells. *Blood* 125, 3542–3550 https://doi.org/10.1182/blood-2014-12-618090
5 Naka, K. and Hirao, A. (2017) Regulation of hematopoiesis and hematological disease by TGF-beta family signaling molecules. *Cold Spring Harb. Perspect. Biol.* 9, a027987 https://doi.org/10.1101/cshperspect.a027987
6 Hinge, A. and Filipp, M.D. (2016) Deconstructing the complexity of TG Beta signaling in hematopoietic stem cells: quiescence and beyond. *Curr. Stem Cell Rep.* 2, 388–397 https://doi.org/10.1007/s40778-016-0069-x
19 Zovein, A.C., Hofmann, J.J., Lynch, M., French, W.J., Turlo, K.A., Yang, Y. et al. (2008) Fate tracing reveals the endothelial origin of hematopoietic stem cells. *Cold Spring Harb. Perspect. Biol.* 8, a021873 https://doi.org/10.1101/cshperspect.a021873

20 Heldin, C.H. and Moustakas, A. (2016) Signaling receptors for TGF-beta family members. *Cold Spring Harb. Perspect. Biol.* 8, a022053 https://doi.org/10.1101/cshperspect.a022053

21 Dzierzak, E. and Bigas, A. (2018) Blood development: hematopoietic stem cell dependence and independence. *Cell Stem Cell* 22, 639–651 https://doi.org/10.1016/j.stem.2018.04.015

22 Kassa, K. and Herbomel, P. (2010) Blood stem cells emerge from aortic endothelium by a novel type of cell transition. *Nature* 464, 112–115 https://doi.org/10.1038/nature08761

23 Bertrand, J.Y., Chi, N.C., Santos, B., Teng, S., Stainier, D.Y. and Traver, D. (2010) Haematopoietic stem cells derive directly from aortic endothelium during development. *Nature* 464, 108–111 https://doi.org/10.1038/nature08738

24 Boissert, J.C., van Cappellen, W., Andrieu-Soler, C., Galjart, N., Dzierzak, E. and Robin, C. (2010) In vivo imaging of haematopoietic cells emerging from the mouse aortic endothelium. *Nature* 464, 116–120 https://doi.org/10.1038/nature08764

25 Zovein, A.C., Hofmann, J.J., Lynch, M., French, W.J., Turlo, K.A., Yang, Y. et al. (2008) Fate tracing reveals the endothelial origin of hematopoietic stem cells. *Cell Stem Cell* 3, 625–636 https://doi.org/10.1016/j.stem.2008.09.018

26 Lam, E.Y., Hall, C.J., Crosier, P.S., Crosier, K.E. and Flores, M.V. (2013) Live imaging of Runx1 expression in the dorsal aorta tracks the emergence of blood progenitors from endothelial cells. *Blood* 116, 903–914 https://doi.org/10.1182/blood-2010-12-305332

27 Dzierzak, E. and Bigas, A. (2018) Blood development: hematopoietic stem cell dependence and independence. *Cell Stem Cell* 22, 639–651 https://doi.org/10.1016/j.stem.2018.04.015

28 Pancrati, C., Sroczynska, P., Serrano, A.G., Gandillet, A., Ferreras, C., Kouskoff, V. et al. (2010) Blood cell generation from the hematoglooblast. *J. Mol. Med. (Berl.)* 88, 167–172 https://doi.org/10.1007/s00109-009-0554-0

29 Medvinsky, A. and Dzierzak, E. (1996) Definitive hematopoiesis is autonomously initiated by the AGM region. *Cell* 86, 897–906 https://doi.org/10.1016/S0092-8674(00)81015-8

30 Cumano, A., Ferraz, J.C., Klaine, M., Di Santo, J.P. and Godin, I. (2001) Intraembryonic, but not yolk sac hematopoietic precursors, isolated before circulation, provide long-term multilineage reconstitution. *Immunity* 15, 477–485 https://doi.org/10.1016/S1074-7613(01)00190-X

31 North, T.E., de Brujin, M.F., Stacy, T., Talebian, L., Lind, E., Robin, C. et al. (2002) Runx1 expression marks long-term repopulating hematopoietic stem cells in the migestation mouse embryo. *Immunity* 16, 661–672 https://doi.org/10.1016/S1074-7613(02)00296-0

32 Jaffredo, T., Gautier, R., Eichmann, A. and Dietrich-Lievre, F. (1998) Intraoctic hematopoietic cells are derived from endothelial cells during ontogeny. *Development* 125, 4575–4583 https://doi.org/10.1242/dev.125.22.4575

33 de Brujin, M.F., Speck, N.A., Peeters, M.C. and Dzierzak, E. (2000) Definitive hematopoietic stem cells first develop within the major arterial regions of the mouse embryo. *EMBO J.* 19, 2465–2474 https://doi.org/10.1093/emboj/19.11.2465

34 Ciau-Uitz, A., Monteiro, R., Kirmizitas, A. and Patient, R. (2014) Developmental hematopoiesis: ontogeny, genetic programming and conservation. *Exp. Hematol.* 42, 663–683 https://doi.org/10.1016/j.exphem.2014.06.001

35 Boissert, J.C., Capes, T., Klaus, A., Papaziogas, N., Onderwater, J., Mommaas-Kienhuis, M. et al. (2015) Progressive maturation toward hematopoietic stem cells in the mouse embryo aorta. *Blood* 125, 465–469 https://doi.org/10.1182/blood-2014-07-598954

36 Medvinsky, A., Rybtsou, S. and Taoudi, S. (2011) Embryonic origin of the adult hematopoietic system: advances and questions. *Development* 138, 1017–1031 https://doi.org/10.1242/dev.040998

37 Rybtsou, S., Sobiesiak, M., Taoudi, S., Soulihol, C., Senserich, J., Liahkovitskioa, A. et al. (2011) Hierarchical organization and early hematopoietic specification of the developing HSC lineage in the AGM region. *J. Exp. Med.* 208, 1305–1315 https://doi.org/10.1084/jem.20102419

38 Taoudi, S., Gonenne, C., Moore, K., Sheridian, J.M., Blackburn, C.C., Taylor, E. et al. (2008) Extensive hematopoietic stem cell generation in the AGM region via maturation of VE-cadherin+ CD45+ pre-definitive HSCs. *Cell Stem Cell* 3, 99–108 https://doi.org/10.1016/j.stem.2008.06.004

39 Taoudi, S. and Medvinsky, A. (2007) Functional identification of the hematopoietic stem cell niche in the ventral domain of the embryonic dorsal aorta. *Proc. Natl Acad. Sci. U.S.A.* 104, 9399–9403 https://doi.org/10.1073/pnas.070094104

40 Dittadi, A., Sturgeon, C.M. and Keller, G. (2017) A view of human hematopoietic development from the petri dish. *Nat. Rev. Mol. Cell Biol.* 18, 56–67 https://doi.org/10.1038/nrm.2016.127

41 Dittadi, A., Sturgeon, C.M., Tobier, J., Avong, G., Kennedy, M., Yzaguirre, A.D. et al. (2015) Human definitive haemogenic endothelium and arterial vascular endothelium represent distinct lineages. *Nat. Cell Biol.* 17, 580–591 https://doi.org/10.1038/ncb3161

42 Elcheva, I., Brisk-Volchanska, V., Kumar, A., Liu, P., Lee, J.H., Tong, L. et al. (2014) Direct induction of haematoendothelial programs in human pluripotent stem cells by transcriptional regulators. *Nat. Commun.* 5, 4372 https://doi.org/10.1038/ncomms5372

43 Borkhofer, F., Rispoli, R., Pinheiro, P., Kuecksmarkt, M., Schneider-Swales, J., Tsang, H.C. et al. (2019) Blood stem cell forming haemogenic endothelium in zebrafish derives from arterial endothelium. *Nat. Commun.* 10, 3577 https://doi.org/10.1038/s41467-019-11423-2

44 Uenishi, G.I., Jung, H.S., Kumar, A., Park, M.A., Hadland, B.K., McLeod, E. et al. (2018) NOTCH signaling specifies arterial-type definitive hemogenic endothelium from human pluripotent stem cells. *Nat. Commun.* 9, 1828 https://doi.org/10.1038/s41467-018-04134-7

45 Chen, I.I., Caprioli, A., Ohnuk, H., Kwak, H., Porcher, C. and Tosato, G. (2016) EphrinB2 regulates the emergence of a hemogenic endothelium from the aorta. *Sci. Rep.* 6, 27195 https://doi.org/10.1038/srep27195

© 2022 The Author(s). This is an open access article published by Portland Press Limited on behalf of the Biochemical Society and distributed under the Creative Commons Attribution License 4.0 (CC BY).
50 Slukvin, I.I. and Uenishi, G.I. (2019) Arterial identity of hemogenic endothelium: a key to unlock definitive hematopoietic commitment in human pluripotent stem cell cultures. *Exp. Hematol.* **71**, 3–12 https://doi.org/10.1016/j.exphem.2018.11.007

41 Varqel, O., Zhang, Y., Kosim, K., Ganter, K., Hofer, S., Mardenborough, Y. et al. (2016) Activation of the TGFbeta pathway impairs endothelial to haematopoietic transition. *Sci. Rep.* **6**, 21518 https://doi.org/10.1038/srep21518

42 Montiero, R., Pinheiro, P., Joseph, N., Peterkin, T., Koth, J., Pepapi, E. et al. (2016) Transforming growth factor beta drives hemogenic endothelium programming and the transition to hematopoietic stem cells. *Dev. Cell* **38**, 358–370 https://doi.org/10.1016/j.devcel.2016.06.024

43 Roman, B.L., Pham, V.N., Lawson, N.D., Kukul, M., Childs, S., Lekvast, A.C. et al. (2002) Disruption of avc1 increases endothelial cell number in zebralish cranial vessels. *Development* **129**, 3009–3019 https://doi.org/10.1242/dev.129.12.3009

44 Lempereur, A., Canto, E.Y., Richard, C., Martin, S., Thalgott, J., Raymond, K. et al. (2018) The TGFbeta pathway is a key player for the endothelial-to-hematopoietic transition in the embryonic aorta. *Dev. Biol.* **434**, 292–303 https://doi.org/10.1016/j.ydbio.2017.12.006

45 Lebrin, F., Gounou, M.J., Jonker, L., Carvalho, R.L., Valdimarsson, G., Thornay, M. et al. (2004) Endoglin promotes endothelial cell proliferation and TGF-beta/ALK1 signal transduction. *EMBO J.* **23**, 4018–4028 https://doi.org/10.1038/sj.emboj.7600386

46 Scharpfenecker, M., van Dinten, M., Liu, Z., van Bezooijen, R.L., Zhao, Q., Pukuc, L. et al. (2007) BMP-9 signals via ALK1 and inhibits bFGF-induced endothelial cell proliferation and VEGF-stimulated angiogenesis. *J. Cell Sci.* **120**, 964–972 https://doi.org/10.1242/jcs.002949

47 David, L., Mallet, C., Mazenbour, S., Feige, J.J. and Bally, S. (2017) Identification of BMP9 and BMP10 as functional activators of the orphan activin receptor-like kinase 1 (ALK1) in endothelial cells. *Blood* **109**, 1953–1961 https://doi.org/10.1182/blood-2006-07-304124

48 Zhang, C.Y., Yin, H.M., Wang, H., Su, D., Xia, Y., Yan, L.F. et al. (2018) Transforming growth factor-beta1 regulates the nascent hematopoietic stem cell niche by promoting gluconeogenesis. *Leukemia* **32**, 479–491 https://doi.org/10.1038/s41375-017-0198

49 Thambirajah, R., Fadulullah, M.Z.H., Prof, T., Augustin, F., Moniez, F. et al. (2018) HDAC1 and HDAC2 regulate TGF-beta signaling during endothelial-to-hematopoietic transition. *Stem Cell Rep.* **10**, 1369–1383 https://doi.org/10.1016/j.scr.2018.03.011

50 Ruiz, T., Pfisterer, U., Di Stefano, B., Asghor, J., Beniazza, M., Tian, Y.T. et al. (2017) Constitutively active SMAD2/3 are broad-spectrum potentiators of transcription-factor-mediated cellular reprogramming. *Cell Stem Cell* **21**, 791–805.e9 https://doi.org/10.1016/j.stem.2017.10.013

51 Lebrin, F., Deckers, M., Bertolino, P. and Ten Dijke, P. (2017) Identiﬁcation of BMP pathway components that control hematopoietic transition. *Nat. Commun.* **8**, 959–608 https://doi.org/10.1038/cd.calcd.2014.0.1038

52 Bruveris, F.F., Ng, E.S., Stanley, E.G. and Elefanty, A.G. (2021) VEGF, FGF2, and BMP4 regulate transitions of mesoderm to endothelium and blood cells in a human model of yolk sac hematopoiesis. *Exp. Hematol.* **103**, 30–39.e2 https://doi.org/10.1016/j.exphem.2021.08.006

53 Akhurst, R.J., Lehnert, S.A., Faissner, A. and Dufour, S. (2005) BMP signalling differentially regulates distinct BMP effects of transforming growth factor beta on endothelial-to-mesenchymal transition. *J. Cell Physiol.* **233**, 8418–8428 https://doi.org/10.1002/jcp.26801

54 Sanford, L.P., Ormsby, I., Gittenberger-de Groot, A.C., Sariola, H., Friedman, R., Boivin, G.P. et al. (1997) TGFbeta2 knockout mice have multiple developmental defects. *J. Cell Sci.* **120**, 696–712 https://doi.org/10.1242/jcs.002949

55 Saleque, S., Kim, J., Rooke, H.M. and Orkin, S.H. (2007) Epigenetic regulation of hematopoietic differentiation by G9a. *Mol. Cell. Biol.* **27**, 10351 https://doi.org/10.1128/MCB.27.23.10351-10353.2007

56 Lundin, V., Sugden, W.W., Theodore, L., Han, A., Chou, S. et al. (2020) YAP regulates hematopoietic stem cell formation in response to biomechanical forces of blood flow. *Dev. Cell* **52**, 446–460.e5 https://doi.org/10.1016/j.devcel.2020.01.006

57 Duan, Z., Zanebshi, A., Montoya-Durango, D., Grimes, H.L. and Horvitz, M. (2005) G9a coordinates epigenetic repression of p21Cip/WAF1 by recruitment of histone lysine methyltransferase G9a and histone deacetylase 1. *Mol. Cell. Biol.* **25**, 10338–10351 https://doi.org/10.1128/MCB.25.23.10338-10351.2005

58 McGarvey, A.C., Rybtsov, S., Souilhol, C., Tamagno, S., Rice, R., Hills, D. et al. (2017) A molecular roadmap of the AGM region reveals BMPER as a novel regulator of HSC maturation. *J. Exp. Med.* **214**, 3731–3751 https://doi.org/10.1084/jem.20162012
70 Zhang, C., Lv, J., He, Q., Wang, S., Gao, Y., Meng, A. et al. (2014) Inhibition of endothelial ERK signalling by Smad1/5 is essential for haematopoietic stem cell emergence. Nat. Commun. 5, 3431 https://doi.org/10.1038/ncomms4431

71 Meloche, S. and Pouyssegur, J. (2007) The ERK1/2 mitogen-activated protein kinase pathway as a master regulator of the G1- to S-phase transition. Oncogene 26, 3227–3239 https://doi.org/10.1038/sj.onc.1210414

72 Hong, C.C., Peterson, O.P., Hong, J.Y. and Peterson, R.T. (2006) Artery/vein specification is governed by opposing phosphatidylinositol-3 kinase and MAP kinase/ERK signaling. Curr. Biol. 16, 1366–1372 https://doi.org/10.1016/j.cub.2006.05.046

73 Hou, S., Li, Z., Zheng, X., Gao, Y., Dong, J., Ni, Y. et al. (2020) Embryonic endothelial evolution towards first hematopoietic stem cells revealed by single-cell transcriptomic and functional analyses. Cell Res. 30, 376–392 https://doi.org/10.1038/s41422-020-0300-2

74 Xia, J., Kang, Z., Xue, Y., Ding, Y., Gao, S., Zhang, Y. et al. (2021) A single-cell resolution developmental atlas of hematopoietic stem and progenitor cell expansion in zebrafish. Proc. Natl Acad. Sci. U.S.A. 118, e2015748118 https://doi.org/10.1073/pnas.2015748118

75 Dignum, T., Varnum-Finney, B., Srivatsan, S.R., Dozono, S., Waltner, O., Heck, A.M. et al. (2021) Multipotent progenitors and hematopoietic stem cells arise independently from hemogenic endothelium in the mouse embryo. Cell Rep. 36, 109675 https://doi.org/10.1016/j.celrep.2021.109675

76 Canu, G., Anthanasiadis, E., Grandy, R.A., Garcia-Bernardo, J., Strzelecka, P.M., Vallier, L. et al. (2020) Analysis of endothelial-to-haematopoietic transition at the single cell level identifies cell cycle regulation as a driver of differentiation. Genome Biol. 21, 157 https://doi.org/10.1186/s13059-020-02058-4

77 Ulloa, B.A., Habbsa, S.S., Potts, K.S., Levis, A., McKinstry, M., Payne, S.G. et al. (2021) Definitive hematopoietic stem cells minimally contribute to embryonic hematopoiesis. Cell Rep. 36, 109703 https://doi.org/10.1016/j.celrep.2021.109703

78 Kaya-Okur, H.S., Janssens, D.H., Henikoff, J.G., Ahmad, K. and Henikoff, S. (2020) Efficient low-cost chromatin profiling with CUT&Tag. Nat. Protoc. 15, 3264–3283 https://doi.org/10.1038/s41596-020-0373-x

79 Hill, C.S. (2016) Transcriptional control by the SMADs. Cold Spring Harb. Perspect. Biol. 8, a022079 https://doi.org/10.1101/cshperspect.a022079

80 Massague, J. (2012) TGF-beta signaling in development and disease. FEBS Lett. 586, 1833 https://doi.org/10.1016/j.febslet.2012.05.030

81 Varricchio, L., Iancu-Rubin, C., Upadhyaya, B., Zingariello, M., Martelli, F., Verachi, P. et al. (2021) TGF-beta1 protein trap AvD200 beneficially affects hematopoiesis and bone marrow fibrosis in myelofibrosis. JCI Insight 6, e145651 https://doi.org/10.1172/jci.insight.145651

82 Kim, B.G., Maték, E., Choi, S.H., Ignatz-Hoover, J.J. and Driscoll, J.J. (2021) Novel therapies emerging in oncology to target the TGF-beta pathway. J. Hematol. Oncol. 14, 55 https://doi.org/10.1186/s13045-021-01053-x