Limits on the Majorana neutrino mass in the 0.1 eV range

L. Baudis, A. Dietz, H. Heusser, H.V. Klapdor–Kleingrothaus, I.V. Krivosheina, St. Kolb, B. Majorovits, V.F. Melnikov *, H. Päs, F. Schwamm and H. Strecker

Max–Planck–Institut für Kernphysik,
P.O.Box 10 39 80, D–69029 Heidelberg, Germany

V. Alexeev, A. Balysh, A. Bakalyarov, S.T. Belyaev, V.I. Lebedev and S. Zhukov

Russian Science Centre Kurchatov Institute,
123 182 Moscow, Russia

The Heidelberg–Moscow experiment gives the most stringent limit on the Majorana neutrino mass. After 24 kg yr of data with pulse shape measurements, we set a lower limit on the half-life of the \(0\bar{\nu}\bar{\beta}\)-decay in \(^{76}\text{Ge}\) of \(T^{0\bar{\nu}\bar{\beta}}_{1/2} \geq 5.7 \times 10^{25}\) yr at 90% C.L., thus excluding an effective Majorana neutrino mass greater than 0.2 eV. This allows to set strong constraints on degenerate neutrino mass models.

Neutrinoless double beta (\(0\bar{\nu}\bar{\beta}\)) decay is an extremely sensitive tool to probe theories beyond the standard model (see \([1]\)). While the standard model exactly conserves B-L, \(0\bar{\nu}\bar{\beta}\)-decay violates lepton number, and B-L, by two units. The simplest mechanism which can induce \(0\bar{\nu}\bar{\beta}\)-decay is the exchange of a Majorana neutrino between the decaying neutrons. Alternatively, any theory that contains lepton number violating interactions can lead to the process. Independently of the underlying mechanism, an observation of the \(0\bar{\nu}\bar{\beta}\)-decay would be an evidence for a nonzero Majorana neutrino mass \([2]\). There are several indications for nonzero neutrino masses, the most stringent ones come from solar and atmospheric neutrino experiments. In particular, the confirmation by Super Kamiokande of a nonzero Majorana neutrino mass \([3]\) provides strong evidence for neutrino oscillations, although also other solutions are possible \([4]\). If a neutrino as a hot dark matter (HDM) component is taken into account, then fitting the atmospheric, solar and HDM scales with three neutrinos is only possible in the degenerate mass scenario, where all neutrinos have nearly the same mass, in the order of \(\mathcal{O}(\text{eV})\) \([5]\). This would lead to an amplitude for \(0\bar{\nu}\bar{\beta}\)-decay mediated by the neutrino mass which is accessible by the present sensitivity of the Heidelberg–Moscow experiment.

The Heidelberg–Moscow experiment operates five p–type HPGe detectors in the Gran Sasso Underground Laboratory. The Ge crystals were grown out of 19.2 kg of 86% enriched \(^{76}\text{Ge}\) material. The total active mass of the detectors is 10.96 kg, corresponding to 125.5 mol of \(^{76}\text{Ge}\), the presently largest source strength of all double beta experiments. Four detectors are placed in a common 30 cm thick lead shielding in a radon free nitrogen atmosphere, surrounded by 10 cm of boron-loaded polyethylene and with two layers of 1 cm thick scintillators on top. The remaining detector is situated in a separate box with 27 cm electrolytical copper and 20 cm lead shielding, flushed with gaseous nitrogen and with 10 cm of boron-loaded polyethylene below the box. A detailed description of the experiment and its background is given in \([6]\). For a further reduction of the already very low background of the experiment, a pulse shape analysis (PSA) method was developed \([7]\). The analysis distinguishes between multiple scattered interaction in the Ge crystal, so called multiple site events (MSE) and pointlike interactions, i.e. single site events (SSE). Since double beta decay events belong to the SSE category, the method allows to effectively reduce the background of multiple Compton scattered photons. The probability of correct detection for a SSE is 75%, and 74% for a MSE \([8]\).

Figure \([9]\) shows the total spectrum of the five enriched detectors of the Heidelberg–Moscow experiment, with a statistical significance of 41.55 kg yr. Due to the good energy resolution of the detectors, the \(\gamma\)-activities can be easily identified via their specific lines. The neutron background can be estimated from measurements with and without the neutron shielding, while the effect of muons can be deduced from the scintillator measurements in coincidence with Ge detectors. In the region of interest for the \(0\bar{\nu}\bar{\beta}\)-decay in \(^{76}\text{Ge}\) (Q-value = 2038.56 \pm 0.32 keV \([9]\)) the dominant background originates from the Compton continuum of the \(^{208}\text{Tl}\) line (2614 keV), the summed \(^{60}\text{Co}\) line (2505 keV) and some \(^{214}\text{Bi}\) lines (2118.5 keV, 2204 keV, 2246 keV) (all together about 60% of the total background), from neutron-induced (about 30%) and muon-induced (about 10%) events.

For the evaluation of the \(0\bar{\nu}\bar{\beta}\)-decay we consider both data sets, with and without pulse shape analysis. We see in none of them an indication for a peak at the Q-value of the \(0\bar{\nu}\bar{\beta}\)-decay. The total spectrum of the five detectors with a statistical significance of 41.55 kg yr contains all the data with exception of the first 200 d of measurement of each detector. The interpolated energy resolution at the energy of the hypothetical \(0\bar{\nu}\bar{\beta}\)-peak is (3.85\pm0.16) keV. To estimate the expected background in the \(0\bar{\nu}\bar{\beta}\) region, we take the energy interval from 2000 to 2080 keV. The number of expected events in the peak region is (78\pm3) events, the number of measured events in the 3\(\sigma\) peak interval

*On leave from the Radiophysical Research Institute (NIRFI), Nishnij Novgorod, Russia
centered at 2038.56 keV is 68. This number is below the expectation and might be due to peaks in the background interval, which are however too weak to be identified. To extract a half-life limit for the $0\nu\beta\beta$-decay we make the assumption, as recommended by [9], that the number of measured events equals the background expectation. With the achieved energy resolution, the number of excluded events in the 3σ peak region is 15.9 (9.52) with 90% C.L. (68% C.L.), resulting in a half-life limit of (for the $0^+ \rightarrow 0^+$ transition):

$$T_{1/2}^{0\nu} \geq 1.3 \times 10^{25} \text{ yr} \quad 90\% \text{ C.L.}$$

$$T_{1/2}^{0\nu} \geq 2.1 \times 10^{25} \text{ yr} \quad 68\% \text{ C.L.}$$

We consider now the data with pulse shape measurements, with a statistical significance of 24.16 kg yr and an energy resolution at 2038.56 keV of (4.2±0.17) keV. The expected number of events from the background left and right of the peak is (13±1) events, the measured number of events in the 3σ peak region is 7. Considering again the number of expected events instead of the number of measured ones [9], we can exclude 7.17 (4.17) events with 90% C.L. (68 % C.L.). The limit on the half-life is:

$$T_{1/2}^{0\nu} \geq 1.6 \times 10^{25} \text{ yr} \quad 90\% \text{ C.L.}$$

$$T_{1/2}^{0\nu} \geq 2.8 \times 10^{25} \text{ yr} \quad 68\% \text{ C.L.}$$

Obviously the pulse shape data are now not only competitive with the complete data set, but they deliver more stringent lower limits on the half-life of the $0\nu\beta\beta$-decay. The pulse shape analysis reduces the background in the interesting energy region by a factor of 3 [background index without PSA: (0.18±0.02) events/(kg yr keV), with PSA: (0.06±0.02) events/(kg yr keV)]. This reduction factor is due to the large fraction of multiple Compton scattered events in the $0\nu\beta\beta$-decay region.

Figure 2 shows the combined spectrum of the five detectors after 41.55 kg yr and the SSE spectrum, corrected for the detection efficiency, after 24.16 kg yr. The solid lines represent the exclusion limits for the two spectra at the 90% C.L.

In addition we report the limits obtained by evaluating the SSE data with the new method proposed by the Particle Data Group 98 [10]. The number of excluded events for an observation of 7 events and a background expectation of

![41.55 kg yr spectrum](image)
The sensitivity of the experiment, as defined in [11], is again obtained by setting the measured number of events equal to the expected background. With 7.51 (4.71) excluded events at 90% C.L (68% C.L.), the half-life limit is:

\[T_{1/2}^{0\nu} \geq 1.6 \times 10^{25} \text{ yr} \quad 90\% \text{ C.L.} \]

\[T_{1/2}^{0\nu} \geq 2.5 \times 10^{26} \text{ yr} \quad 68\% \text{ C.L.} \]

The limit on the effective Majorana neutrino mass given by the Heidelberg–Moscow experiment is about an order of magnitude lower than for other double beta experiments. This is the result of the high source strength, good energy resolution, high material purities combined with the efficiency of the pulse shape analysis and last, but not least, of the excellent long-term stability of the experiment.
After about another five years of measurement, assuming no other improvement in the present background index, the Heidelberg–Moscow experiment will be able to explore the half-life of the $0\nu\beta\beta$-decay up to some 10^{26} yr in the best case. For a significant improvement of the experimental sensitivity, a much lower background counting rate and a higher source strength are required.

A major step forward in this field would bring the new project proposed by our group, GENIUS (GErmanium in liquid NItrogen Underground Setup) [1,25], which would operate enriched Ge crystals directly in liquid nitrogen. The goal is to reduce the background by about three orders of magnitude by removing essentially all materials from the vicinity of the measurement crystals. It was shown that Ge detectors work reliably in liquid nitrogen [25,26], also detailed Monte Carlo simulations of the various expected background components [26] confirm the possibility to obtain a counting rate of 0.3 events/(t yr keV) in the $0\nu\beta\beta$-region. GENIUS is conceived to test the neutrino mass down to the level of 0.01 eV and lower.

In conclusion, already in the present stage, the Heidelberg–Moscow experiment is setting the most stringent limit on the Majorana neutrino mass, allowing to test the predictions of degenerate neutrino mass models. For example, in models which try to accommodate the solar- and atmospheric neutrino problems while considering the neutrino as a hot dark matter candidate with a mass of a few eV, the small angle MSW solution is practically ruled out [27]. For the large angle MSW solution, an effective Majorana neutrino mass smaller than 0.2 eV would need an unnatural fine tuning to account for a relevant neutrino mass in a mixed hot and cold dark matter cosmology [28].

This, as well as other implications for physics beyond the standard model, like left-right symmetric models, supersymmetry, leptoquarks and compositeness will be discussed in detail elsewhere.

ACKNOWLEDGMENTS

The Heidelberg–Moscow experiment was supported by the Bundesministerium für Forschung und Technologie der Bundesrepublik Deutschland, the State Committee of Atomic Energy of Russia and the Istituto Nazionale di Fisica Nucleare of Italy. L.B. was supported by the Graduiertenkolleg of the University of Heidelberg.
| Isotope | $T_{1/2}^{0
u}$ [yr] | C.L. [%] | (m) [eV] |
|--------|-----------------|--------|------------|
| 48Ca | $\geq 9.5 \times 10^{24}$ | 76 [13] | ≤ 0.20 [12], 0.56 [21], 0.52 [22], 0.19 [23], 0.4 eV [24] |
| 76Ge limit | $\geq 5.7 \times 10^{25}$ | 90 | ≤ 0.38 [12], 1.07 [21], 0.93 [22], 0.36 [23], 0.77 [24] |
| 76Ge sensitivity | $\geq 1.6 \times 10^{25}$ | 90 | ≤ 0.29 [12], 0.20 [21], 0.10 [22], 0.68 [23], 0.30 [24] |
| 82Se | $\geq 9.5 \times 10^{21}$ | 90 [14] | ≤ 1.8 [12], 1.22 [22], 1.32 [23], 1.22 [24] |
| 100Mo | $\geq 5.2 \times 10^{22}$ | 68 [14] | ≤ 4.7 [12], 9.4 [21], 14.4 [22], 4.75 [23], 1.24 [24] |
| 116Cd | $\geq 3.2 \times 10^{22}$ | 90 [14] | ≤ 2.2 [12], 5.2 [21], 2.7 [22], 1.8 [23], 1.2 [24] |
| 130Te | $\geq 5.6 \times 10^{22}$ | 90 [14] | ≤ 2.9 [12], 3.43 [21], 3.1 [22], 2.88 [23], 1.2 [24] |
| 136Xe | $\geq 4.4 \times 10^{23}$ | 90 [14] | ≤ 2.2 [12], 5.2 [21], 2.7 [22], 1.8 [23], 1.2 [24] |
| 150Nd | $\geq 1.22 \times 10^{21}$ | 90 [24] | ≤ 5.2 [12] |

[1] H.V. Klapdor-Kleingrothaus, Int. Journal of Mod. Physics A 13, 3953-3992 (1998), H.V. Klapdor–Kleingrothaus in Proceedings of Beyond the Desert 97, First International Conference on Particle Physics Beyond the Standard Model, Castle Ringberg, Germany, 8–14 June 1997, edited by H.V. Klapdor–Kleingrothaus and H. Pias, IOP Bristol, 485–531, (1998), H.V. Klapdor–Kleingrothaus, Invited talk at Neutrino98, Takayama, Japan, June 1998, World Scientific 1999.
[2] J. Schechter, J.W.F. Valle, Phys. Rev. D 25, 2951 (1982).
[3] The Super-Kamiokande Collaboration, Y. Fukuda et al, Phys. Rev. Lett. 81, 1562-1567, (1998).
[4] M.C. Gonzalez-Garcia et al, hep-ph/9809531.
[5] D.O. Caldwell, R.N. Mohapatra, Phys. Rev. D 48 3259 (1993), R.N. Mohapatra, Proceedings of the 17th International Conference on Neutrino Physics and Astrophysics, Neutrino96, Helsinki, June 13-19, 1996, World Scientific 1997, A. Yu. Smirnov, Proceedings of the 28th International Conference on High Energy Physics, Warsaw, July 25 - 31, 1996.
[6] Heidelberg–Moscow Collaboration, M. Günther et al., Phys. Rev. D 55, 54 (1997).
[7] Heidelberg–Moscow Collaboration, L. Baudis et al., Phys. Lett. B 407, 219 (1997).
[8] J.G. Hykawy et al., Phys. Rev. Lett 67, 1708 (1991).
[9] R.M. Barnett et al. (PDG 96), Physical Review D54, 1 (1996).
[10] C. Caso et al. (PDG 98), European Physical Journal, C3, 1 (1998).
[11] G.J. Feldman, R.D. Cousins, Physical Review D57, 3873 (1998).
[12] A. Staudt, K. Muto, H.V. Klapdor-Kleingrothaus, Europhys. Lett. 13, 31 (1990).
[13] Y. Ke et al., Phys. Lett. B 265, 53 (1991).
[14] R. Arnold et al., R. Arnold et al., Nucl. Phys. A 636, 209-233 (1998).
[15] S.R. Elliott et al., Phys. Rev. C 46, 1535 (1992).
[16] N. Kudomi et al., Nucl. Phys. A 629, 527c-530c (1998).
[17] F.A. Danevich et al., Nucl. Phys. B (Proc. Suppl.) 70, 246-248 (1999).
[18] A. Alessadrello et al., Phys. Lett. B 433, 156-162 (1998).
[19] R. Luescher et al., Nucl. Phys. B (Proc. Suppl.) 66, 195-198 (1998).
[20] A. De Silva et al., Phys. Rev. C 56, 2451-2467 (1997).
[21] E. Caurier et al., Phys. Rev. Lett. 77, 1954-1957 (1996).
[22] J. Engel et al., Phys. Rev. C 37, 731-746 (1988).
[23] T. Tomoda, Rep. Prog. Phys. 54, 53 (1991).
[24] F. Simkovic et al., Phys. Lett. B 393, 267-273 (1997).
[25] H.V. Klapdor-Kleingrothaus, J. Hellmig, M. Hirsch, J. Phys. G 24, (1998) 483.
[26] L. Baudis, G. Heusser, B. Majorovits, Y. Ramachers, H. Streeker and H. V. Klapdor–Kleingrothaus, accepted for publication in NIM A (1998) [hep-ex/9811040].
[27] H. Minakata and O. Yasuda, Phys. Rev. D 56, 1692 (1997), R. Adhikari and G. Rajasekaran, hep-ph/9812336.
[28] H. Minakata and O. Yasuda, Nucl. Phys. B 523, 597-610 (1998), R.N. Mohapatra, hep-ph/9808284.