Effect of donepezil on sleep and activity in Alzheimer’s disease: actigraphic and polysomnographic assessment

Junya TSUKADA 1, Soichi MIZUNO 2, Tetsuya KAWAMUKAI 3, Yoshiaki KYOHARA 1, Michihiko MATSUSHITA 1, Koji OGORO 1, Yasushi INAMI 4, Ryoji NISHIMURA 1, Jun HORIZUCHI 3

1) Department of Psychiatry, Fukuoka University School of Medicine, Fukuoka University
2) Department of Psychiatry, Mihara Hospital
3) Department of Psychiatry, Shimane University School of Medicine
4) Ehime Rosai Hospital

Abstract

Objective: To examine the effect of donepezil on sleep and activity in patients with Alzheimer’s Type Dementia (ATD) using polysomnography and actigraphy.

Methods: Ten patients with mild to moderate ATD (mean Clinical Dementia Rating score: 1.5 ± 0.5, mean age 76 ± 6.2 years) were studied. Alzheimer’s Disease Assessment Scale-cognitive component-Japanese version (ADAS-Jcog), polysomnography, and 7-day recording of actigraphy data were performed at baseline. Following baseline assessment, 5 mg of donepezil was administered in the morning for 6 weeks. Following this treatment period, the same examinations were performed in all patients.

Results: After 6 weeks treatment with donepezil, daytime activity increased significantly after 6 weeks. Similarly, rapid eye movement (REM) sleep (p < 0.01) and sleep efficiency (p < 0.05) increased significantly compared with baseline. Although the ADAS-Jcog score did not decrease significantly, there is significant positive correlation between the decrease in the ADAS-Jcog score and the increase in daily activity.

Conclusion: Donepezil treatment enhances daytime activity, sleep efficiency and REM sleep. In addition, there is significant positive correlation between the decrease in the ADAS-Jcog score and the increase in daily activity. These results suggest that donepezil activates central cholinergic systems and reduces daytime sleepiness. Moreover, reduction of daytime sleepiness may causes increase of attention and improve cognitive abilities.

Key words: Donepezil, Sleep, Mortor activity, Alzheimer’s type dementia
要旨：今回は、コリンエステラーゼ阻害薬である塩酸ドネベジルがアルツハイマー型認知症患者の睡眠と認知機能、目中および夜間の活動量に及ぼす効果について検討を行なった。10名の軽度から中等度のアルツハイマー型認知症患者に対して、ドネベジル5mg/日毎朝食後投与を6週間行い、その後で低夜間睡眠を用い、ADAS-Jcog検査、アクチュオッチによる活動量の記録を行なった。結果として、投与後において目中の活動量、REM睡眠、睡眠回復が統計学的に有意に増加した。また、日中活動量の増加度とADAS-Jcog得点の改善度ごとに有意な相関を認めた。ドネベジルが中枢神経系のアセチルコリン神経系を活性化しアルツハイマー型認知症患者の目中の傾斜動向を改善した結果、目中の活動量が増加し、注意力、集中力の増加と認知機能の改善がもたらされたと考えられた。

キーワード：塩酸ドネベジル、アルツハイマー型認知症、睡眠、活動量

はじめに

アルツハイマー型認知症は認知症疾患の中でも大きな割合を占めており、進行性の認知機能の低下を特徴とする疾患である。高齢者の増加に伴い、認知症疾患に関する知識の重要性が高まり、それにに関する研究が増加している。アルツハイマー型認知症の病因については明らかではないが、神経病理学的および生化学的研究において、アセチルコリン作動性神経の起始核である前脳基底部のMeynert基底核の神経細胞数の減少や、アセチルコリンの合成酵素であるコリンアセチルトランスフェラーゼが大脳皮質や海馬などで減少していることが報告されている。こうしたアセチルコリン作動性神経の障害がアルツハイマー型認知症における認知機能障害に関与していると考えられている。

また、アルツハイマー型認知症では認知機能の低下のみではなく、人格変化や幻覚、妄想、また行動面での障害など多彩な症状が発現することが指摘されている。これららの症状のうち睡眠障害については多くの先行研究が報告されており、睡眠障害と認知機能の低下などについても検討されている。

一般的に高齢者では加齢に伴い睡眠特性が変化するが、アルツハイマー型認知症患者においてはその傾向はより顕著となり、中夜覚醒の時相と回数の増加や徐波睡眠とREM睡眠の割合およびREM睡眠の密度の減少、あるいは目中の居眠りなどを含む睡眠覚醒サイクルの障害などを高率に認める。一方、睡眠と記憶との関連については多くの報告がされている。例えば記憶の固定や定着においてREM睡眠が重要な役割を果たしていることが報告されており、アルツハイマー型認知症の睡眠障害と認知機能との関係に関しては研究されている。一般的に介護の必要な患者の睡眠障害は介護者にとっても肉体的・精神的に大規模な負担となる。患者の入院障害が中夜覚醒等のためのケアが必要であり介護者の睡眠が障害され、それらの結果として在宅ケアが破綻し、施設ケアに頼らざるを得なくなる場合もある。すなわちアルツハイマー型認知症の患者の睡眠障害は、認知機能との関連だけでなく患者と介護者の生活の質にも大きく影響する問題である。

ところでアルツハイマー型認知症の治療においては、アセチルコリンエステラーゼ阻害薬が用いられる機会が増加している。このアセチルコリンエステラーゼ阻害薬の一つである塩酸ドネベジルは、アセチルコリンエステラーゼの作用を阻害してコリン作動性神経系を活性化し認知機能の改善を目指すことを主な使用目的とする薬物である。このドネベジルは健康成人に投与したところ、REM睡眠が増加したといった報告や、REM睡眠の異常である悪夢が出現したとの報告などがあるが、ドネベジルが睡眠にどのような影響を与えるのかについては、いまだ定説は得られていない。

そこで今回著者らは、アルツハイマー型認知症患者に対するドネベジルの投与が患者の睡眠と認知機能、および目中、夜間の活動量に及ぼす影響を評価検討することを目的に以下の研究を実施し、興味ある結果が得られたので報告する。

対象と方法

1. 対象

島根大学医学部附属病院精神科・神経科で加療中の患者のうち、以下の条件を満たす軽度から中等度のアルツハイマー型認知症患者10名を対象とした。

2) NINCDS-ADRSAの診断基準の「ほぼ確実」の基準を満たす
3) Clinical Dementia Rating（CDR）において、1 または2
4) 頭部MRI検査において、アルツハイマー型認知症が疑われる以外の明らかな器質性疾患が存在しない
5) 睡眠に影響を及ぼす精神疾患、身体疾患および薬
物の使用がない
(1) 精神および睡眠関連疾患：うつ病, 統合失調症, 睡眠時無呼吸症候群, 周期性四肢運動障害, 睡眠時行動異常など
(2) 身体疾患：呼吸器系疾患, 疼痛性疾患など
(3) 薬物：向精神薬, 抗アセチルコリン薬, 降圧薬, 抗ヒスタミン薬, ステロイド製剤など

なお本研究は島根大学医学部倫理委員会の承認を受け, また研究に先立って全ての対象者及びその家族に対して生じ得る危険について説明し, 文書で参加の同意を得た。

2. 方法

1) 活動量と認知機能および睡眠の測定方法
全ての対象者に対し, baseline 時の検査としてアクチオッッチによる 1 週間の活動量測定と日本語版 Alzheimer’s Disease Assessment Scale Cognitive Subscale (ADAS-Jcog) および終夜睡眠ポリグラフ (polysomnography, PSG) の測定を行なった。また, Mini-Mental State Examination (MMSE) もこの時点で施行した。以下にアクチオッッチと ADAS-Jcog 検査および PSG を用いた評価の方法や意義などについて簡単に記載する。

(1) アクチオッッチによる活動量の測定
アクチオッッチは, Mini Mitter 社製のリスト型の携帯型アクチグラフであり, 0.1G に反応し 1 アクティビティをカウントする。睡眠覚醒の判定などに広く用いられている [7]。本研究では対象者の非習慣に装着してもらい入浴時以降は 24 時間装着を続けた。エポック時間は 1 分間とし, 1 分ごとに測定されたカウント数を活動量として計測した。なお 6 時から 21 時を日中, 21 時から翌 6 時までを夜間と定義した。

(2) ADAS-Jcog 検査による認知機能の評価
ADAS-Jcog 検査はアルツハイマー型認知症に対するアセチルコリンエステラーゼ阻害薬使用による認知機能の変化を評価することを主な目的とする尺度である。質問は大きく 11 項目に分かれており, 認知機能を「記憶」「言語」「行為」の 3 つの領域から評価する。得点は 0-70 点で高得点であるほど認知機能障害が高度であることを示す。時間帯によるバイアスを避けるために, 本研究では PSG 記録日 15 時に統一して施行した。

(3) PSG 検査による睡眠変数の評価
PSG は検査日の 21 時から翌日の 7 時 30 分までの間に抜けて, C3-A2, O1-A2 の脳波, 眼球運動, 心拍数を記録した。同時に, 腹脈および胸脈の呼吸運動, 眼拍および鼻腔気流記録, 動脈血酸素飽和度を測定し, 睡眠時無呼吸症候群の除外を行なった。

得られたデータは標準の手法 [10] に基づき解析を行ない, 中途覚醒や睡眠断続, ステージ 1 からステージ 4 の各 REM 睡眠段階の割合, REM 睡眠の割合, REM 睡眠断続を計測した。

2) ドネベジェル投与前後の測定結果の比較方法
ドネベジェルの経口投与については, まず朝食後 3mg/ 日を一週間連続して投与し, その後は朝食後 5mg/ 日に增量し 6 週間連続して投与した。

(1) アクチオッッチによる活動量の測定
ドネベジェルの投与前後の連続 7 日間アクチオッッチを装着し, この 7 日間のうちの第 2 日から第 6 日間の活動量を投与前活動量とし, ドネベジェル投与後は投与開始 6 週間目第 2 日から第 6 日間の活動量を投与前活動量として, 投与前活動量の測定結果と比較検討した。

(2) ADAS-Jcog 検査による認知機能の評価
ドネベジェル投与前後に ADAS-Jcog 検査を施行し, 投与前の認知機能評価とし, ドネベジェル投与開始後 6 週間後の検査結果を投与後の評価として, 両者の結果を比較検討した。

(3) PSG 検査による睡眠変数の評価
ドネベジェル投与前と投与後 6 週間に PSG を測定し, 両者の睡眠変数の変化を比較検討した。

なお, 統計解析については活動量の変化と ADAS-Jcog 得点の変化および睡眠変数の変化は, 対応のある t 検定を用いて統計処理した。また, 活動量の変化と ADAS-Jcog 得点の変化との相関, および REM 睡眠と ADAS-Jcog 得点の変化との相関については, Spearman の相関係数を用いて評価した。

結果

1. 臨床的背景
プロトコールを完了した 10 名のbaseline 時の臨床的背景を表 1 に示す。この 10 名中 1 名ではアクチオッッチのデータのみが記録不良であったため, 統計解析から除外した。
表1 アルツハイマー型認知症患者10名のベースライン検査時
の臨床背景

年齢（歳）	76.0±6.2
性別	女性:男性 8:2
MMSE得点	平均±標準偏差 22.8±4.9
CDR得点 (score1:score2)	5:5

MMSE, Mini mental state examination; CDR, Clinical Dementia Rating.

2. アクチウオッチによる活動量の変化

表2に、日中及び夜間におけるドネピビル投与前後での
活動量の変化を示す。日中の活動量は、ドネピビル投与
後に統計学的に有意な増加を示した（P<0.05）。一方、夜
間の活動量は投与前後で統計学的に有意な変化を示さなかった。

3. ADAS-Jcog得点の変化

図1に、ADAS-Jcog得点の変化を示す。ドネピビル投
与前後において、得点は減少する傾向を認めたが、統計
学的に有意な差は示さなかった（P=0.054）。

図1 ドネピビル投与前後におけるADAS-Jcog得点の変化

投与前得点 18.5±6.8, 投与後得点 15.9±7.3

P<0.1 対応のあるt検定による

4. PSGにおける睡眠変数

表3に、PSGにおける、baseline時とドネピビル投与
後6週間後の睡眠変数の変化を示す。総睡眠時間に対
するREM睡眠の割合が、ドネピビル投与前後で統計学的に
有意に増加した（P<0.01）。また、睡眠時数についても、
ドネピビル投与前後での有意な増加を認めた（P<0.05）。
その他の睡眠変数に有意な変化は認めなかった。

表2 ドネピビル投与前後における日中および夜間の活動量の変化

活動量	ベースライン	6週間後
日中*	276.2±89.2	326.1±98.6
夜間	74.4±33.7	74.2±34.3

平均±標準偏差, *p<0.05 対応のあるt検定による

表3 ドネピビル投与前後における睡眠変数の変化

睡眠変数	ベースライン	6週間後
総睡眠時間（分）	428.0±113.6	435.0±57.3
睡眠時数（分）	482.0±83.6	492.4±44.9
睡眠潜時（分）	65.6±82.8	33.6±40.1
睡眠効率（%）	76.2±16.3	82.8±10.6
中途覚醒時間（分）%SPT	15.7±10.0	11.7±7.7
Stage 1, %TST	22.4±13.6, 17.5±6.0	
Stage 2, %TST	63.6±12.4, 63.8±7.7	
Stage 3, %TST	2.4±3.0, 1.3±1.1	
Stage 4, %TST	0.3±0.7, 0.1±0.3	
Stage REM %TST	11.3±4.1, 17.1±4.4	
REM潜時（分）	103.7±55.9, 70.4±28.5	

平均±標準偏差 †p<0.1; *p<0.05; **p<0.01 対応のあるt検定による

TST:total sleep time, 総睡眠時間; SPT:sleep period time, 睡眠時数
REM:rapid eye movement
5. ADAS-Jcog. REM 睡眠と活動量の関連

図2 に、ADAS-Jcog 点数の低下度と目中的活動量の増加度の関係を示す。両者の間に有意な相関が認められた (r=-0.7917, p=0.0138)。REM 睡眠と ADAS-Jcog 点数の変化との間には相関関係は認められなかった (r=-0.2137, p=0.4809)。

考察

今回の検討から、アルツハイマー型認知症患者に対するドネベジルの投与は REM 睡眠の割合を増加させ、また目中の活動量も増加させることができ明らかとなった。さらに認知機能の改善と目中の活動量の増加との間に正の相関が認められた。

さて、アルツハイマー型認知症患者ではアセチルコリン作動性神経系が障害されており、このアセチルコリン神経系は覚醒中にその活性が高くなることが示されている。一方、アルツハイマー型認知症患者では日の傾眠傾向が指摘されている。今回のアルツハイマー型認知症患者に対するドネベジルの朝食後投与は、脳のアセチルコリン神経系の活性を賦活し、目の傾眠傾向を改善し、その結果として目の活動量の増加をもたらしたと考えられる。

また睡眠変数数においては、睡眠効率と REM 睡眠の割合の増加を認める。REM 睡眠の発現に重要な役割を果たす中脳、橋接領域にはアセチルコリン神経系が存在し、これらの核から視床皮質領域に神経投射が行われている。Kayama らのラットを用いた研究では、REM 睡眠が発現している間、コリンニューロンの活動が上昇していると報告されている。また、覚醒時に上昇するノルアドレナリンニューロンとセロトニニューロンの活動は REM 睡眠中には低下していることも示されている。
習効果が減少したという報告や29)。健常高齢者のREM睡眠と記憶との関係を認めるとする報告29)などがなされている。このように、REM睡眠と記憶を含めた認知機能には密接な関係があることが示されている。アルツハイマー型認知症は、健常高齢者と比較して、REM睡眠の割合が少ないことが報告されており29)、先に述べたように、REM睡眠の発現にはアセチルコリン神経系が大きな役割を果たしている。今回の結果におけるREM睡眠と認知機能の関係については、ドネピルの投与後にはREM睡眠の割合が統計学的に有意に増加したが、このREM睡眠の増加とADAS-Cogを用いて評価した認知機能障害の改善との間に相関は認められなかった。すなわちドネピルの投与によるREM睡眠の増加は、認知機能の改善の指標となるほどには増加しないと考えられる。この点は臨床的にもまた重要なテーマであり、症例数を増やして検討することが今後の課題としたい。

結論として、アルツハイマー型認知症患者に対するドネピル5mgの朝投薬の投与は、患者の日中の傾眠傾向を減少させることで日中の活動量を増加させ、この日中の活動量の増加によって患者は注意、集中力が高まり、ひいては理解力や判断力を増す認知機能が改善するものと考えられた。さらにまた、この日中の活動量の増加は夜間の睡眠を安定化させ、その表れとして睡眠効率の増加と中途覚醒時間の短縮傾向が認められたものと考えられた。しかし、ドネピル投与によるコリン能動性神経系の活性化によるREM睡眠の増加は認められるものの、この増加と認知機能の改善との直接の関連はみられず、臨床的には日中の活動量の増加によって間接的に認知機能が改善するものと考えられた。今後も症例数を重ね、また臨床経過を継続して観察し、ドネピルの長期的な効果について検討する予定である。

文献
1) Bullock, R, Hammond, G. Realistic expectations: the management of severe Alzheimer disease. Alzheimer Dis Assoc Disord 2003; 17 Suppl 3: S80-5.
2) Whitehouse, PJ, Price, DL, Struble, RG, Clark, AW, Coyle, JT, Delon, MR. Alzheimer's disease and senile dementia: loss of neurons in the basal forebrain. Science 1982; 215(4537):1237-9.
3) Perry, EK, Gibson, PH, Blessed, G, Perry, RH, Tomlinson, BE. Neurotransmitter enzyme abnormalities in senile dementia. Choline acetyltransferase and glutamic acid decarboxylase activities in necropsy brain tissue. J Neurol Sci 1977; 34(2): 247-65.
4) Piccinnini, M, Di Carlo, A, Baldereschi, M, Zaccara, G, Inzitari, D. Behavioral and psychological symptoms in Alzheimer's disease: frequency and relationship with duration and severity of the disease. Dement Geriatr Cogn Disord 2005; 19 (5-6): 276-81.
5) Bliwise, DL, Tinklenberg, JR, Yesavage, JA. Timing of sleep and wakefulness in Alzheimer's disease patients residing at home. Biol Psychiatry 1992; 31 (11): 1163-5.
6) Prinz, PN, Peskind, ER, Vitaliano, PP, Raskind, MA, Eisdorfer, C, Zemcuznikov, N, Gerber, CJ. Changes in the sleep and waking EEGs of nondemented and demented elderly subjects. J Am Geriatr Soc 1982; 30 (2): 86-93.
7) Wagner, U, Gais, S, Born, J. Emotional memory formation is enhanced across sleep intervals with high amounts of rapid eye movement sleep. Learn Mem 2001; 8 (2): 112-9.
8) Gruffydd, E, Randle, J. Alzheimer's disease and the psychosocial burden for caregivers. Community Pract 2006; 79 (1): 15-8.
9) Pollak, CP, Perlick, D. Sleep problems and institutionalization of the elderly. J Geriatr Psychiatry Neurol 1991; 4 (4): 204-10.
10) Takeda, A, Loveman, E, Clegg, A, Kirby, J, Picot, J, Payne, E, Green, C. A systematic review of the clinical effectiveness of donepezil, rivastigmine and galantamine on cognition, quality of life and adverse events in Alzheimer's disease. Int J Geriatr Psychiatry 2006; 21 (1): 17-28.
11) Nissen, C, Nofzinger, EA, Feige, B, Waldheim, B, Radosa, MP, Riemann, D, Berger, M. Differential Effects of the Muscarinic M1 Receptor Agonist RS-86 and the Acetylcholine-Esterase Inhibitor Donepezil on REM Sleep Regulation in Healthy Volunteers. Neuropsychopharmacology 2005.
12) Ross, JS, Shaia-Haim, JR. Aricept-induced nightmares in Alzheimer's disease: 2 case reports. J Am Geriatr Soc 1998; 46 (1): 119-20.
13) McKhann G, Drachman D, Folstein M, et al. Clinical diagnosis of Alzheimer's disease. Report of the NINCDS-ADRDA Work Group under auspices of Department of Health and Human Services Task Force on Alzheimer's Disease. Neurology 34: 939-944; 1984.
14) Hughes CP, Berg L, Danziger WL, et al. A new clinical scale for the staging of dementia. Br J Psychiatry 140: 566-572; 1982.
15) A Homma, K Hukuzawa, Y Tsukada, et al. Development of a Japanese version of Alzheimer's disease assessment scale (ADAS). Japanese J Geriatr...
Psychiatry 3: 647-655; 1992.
16) Folstein, MF, Folstein, SE, McHugh, PR. "Mini-mental state". A practical method for grading the cognitive state of patients for the clinician. J Psychiatr Res 1975; 12 (3): 189-98.
17) Ancoli-Israel, S, Cole, R, Alessi, C, Chambers, M, Moorcroft, W, Pollak, CP. The role of actigraphy in the study of sleep and circadian rhythms. Sleep 2003; 26 (3): 342-92.
18) Rechtsaffen A, Kales A. A manual of standardized terminology, techniques, and scoring system for sleep states of human subjects. USPHS Publication No. 204. Washington, DC: U.S. Government Printing Office, 1968.
19) Jones, BE. Activity, modulation and role of basal forebrain cholinergic neurons innervating the cerebral cortex. Prog Brain Res 2004; 145: 157-69.
20) Vitiello, MV, Borson, S. Sleep disturbances in patients with Alzheimer’s disease: epidemiology, pathophysiology and treatment. CNS Drugs 2001; 15 (10): 777-96.
21) Kayama, Y, Koyama, Y. Control of sleep and wakefulness by brainstem monoaminergic and cholinergic neurons. Acta Neurochir Suppl 2003; 87: 3-6.
22) Pace-Schott, EF, Hobson, JA. The neurobiology of sleep: genetics, cellular physiology and subcortical networks. Nat Rev Neurosci 2002; 3 (8): 591-605.
23) Kanbayashi, T, Sugiyama, T, Aizawa, R, Saito, Y, Ogawa, Y, Kitajima, T, Kaneko, Y, Abe, M, Shimizu, T. Effects of donepezil (Aricept) on the rapid eye movement sleep of normal subjects. Psychiatry Clin Neurosci 2002; 56 (3): 307-8.
24) Burns, A, Rossor, M, Hecker, J, Gauthier, S, Petit, H, Moller, HJ, Rogers, SL, Friedhoff, LT. The effects of donepezil in Alzheimer's disease - results from a multinational trial. Dement Geriatr Cogn Disord 1999; 10 (3): 237-44.
25) Moraes, Wdos S, Poyares, DR, Guilleminault, C, Ramos, LR, Bertolucci, PH, Tufik, S. The effect of donepezil on sleep and REM sleep EEG in patients with Alzheimer disease: a double-blind placebo-controlled study. Sleep 2006; 29 (2): 199-205.
26) Bonanni, E, Maestri, M, Tognoni, G, Fabbrini, M, Nucciarone, B, Manca, ML, Gori, S, Iudice, A, Murri, L. Daytime sleepiness in mild and moderate Alzheimer’s disease and its relationship with cognitive impairment. J Sleep Res 2005; 14 (3): 311-7.
27) Ancelin, ML, Artero, S, Portet, F, Dupuy, AM, Touchon, J, Ritchie, K. Non-degenerative mild cognitive impairment in elderly people and use of anticholinergic drugs: longitudinal cohort study. BMJ 2006; 332 (7539): 455-9.
28) Karni, A, Tanne, D, Rubenstein, BS, Askenasy, JJ, Sagi, D. Dependence on REM sleep of overnight improvement of a perceptual skill. Science 1994; 265 (5172): 679-82.
29) Smith, C, Rose, GM. Evidence for a paradoxical sleep window for place learning in the Morris water maze. Physiol Behav 1996; 59 (1): 93-7.
30) Schredl, M, Weber, B, Leins, ML, Heuser, I. Donepezil-induced REM sleep augmentation enhances memory performance in elderly, healthy persons. Exp Gerontol 2001; 36 (2): 353-61.

(平成 24. 12. 10 受付，平成 25. 4. 1 受理)