CLINICAL STUDY

SOX17 Loss-of-Function Mutation Underlying Familial Pulmonary Arterial Hypertension

Tian-Ming Wang, 1,* MSc, Shan-Shan Wang, 1,* MD, Ying-Jia Xu, 2,* MD, Cui-Mei Zhao, 3 MD, Xiao-Hui Qiao, 4 MD, Chen-Xi Yang, 2 MD, Xing-Yuan Liu, 1 MD and Yi-Qing Yang, 2,3,6 MD

Summary

Pulmonary arterial hypertension (PAH) refers to a rare, progressive disorder that is characterized by occlusive pulmonary vascular remodeling, resulting in increased pulmonary arterial pressure, right-sided heart failure, and eventual death. Emerging evidence from genetic investigations of pediatric-onset PAH highlights the strong genetic basis underlying PAH, and deleterious variants in multiple genes have been found to cause PAH. Nevertheless, PAH is of substantial genetic heterogeneity, and the genetic defects underlying PAH in the overwhelming majority of cases remain elusive. In this investigation, a consanguineous family suffering from PAH transmitted as an autosomal-dominant trait was identified. Through whole-exome sequencing and bioinformatic analyses as well as Sanger sequencing analyses of the PAH family, a novel heterozygous SOX17 mutation, NM_022454.4: c.379C>T; p.(Gln127*), was found to co-segregate with the disease in the family, with complete penetrance. The nonsense mutation was neither observed in 612 unrelated healthy volunteers nor retrieved in the population genetic databases encompassing the Genome Aggregation Database, the Exome Aggregation Consortium database, and the Single Nucleotide Polymorphism database. Biological analyses using a dual-luciferase reporter assay system revealed that the Gln127*-mutant SOX17 protein lost the ability to transcriptionally activate its target gene NOTCH1. Moreover, the Gln127*-mutant SOX17 protein exhibited no inhibitory effect on the function of CTNNB1-encode β-catenin, which is a key player in vascular morphogenesis. This research firstly links SOX17 loss-of-function mutation to familial PAH, which provides novel insight into the molecular pathogenesis of PAH, suggesting potential implications for genetic and prognostic risk evaluation as well as personalized prophylaxis of the family members affected with PAH.

Key words: Congenital heart disease, Vascular morphogenesis, Medical genetics, Transcriptional regulation, Reporter gene assay

Pulmonary arterial hypertension (PAH), which is characterized by progressive occlusive remodeling of arterioles in the lung that leads to a significant increase in pulmonary vascular resistance and marked elevation in pulmonary artery pressure, refers to an uncommon but often fatal vascular disease, with an estimated annual incidence of one to two patients per million individuals. The prevalence of PAH is approximately 4.8 to 8.1 patients per million persons for pediatric-onset disease and 15 to 50 patients per million persons for adult-onset disease worldwide. In adult-onset PAH cases, there exists woman predominance, with a three- to four-fold higher disease prevalence in females compared with males, which is not observed in pediatric-onset PAH cases. Severe PAH may result in right ventricular hypertrophy, function failure, and, eventually, premature death. It is reported by PAH registries that the mortality rates of PAH cases at 1 and 3 years are 7%-32% and 23%-61%, respectively. During the past two decades, therapeutic approaches for PAH have made a pronounced progress, and currently, four types of drugs can be used for the treatment of PAH, including the prostacyclin analogs and receptor agonists.

From the Department of Pediatrics, Tongji University School of Medicine, Shanghai, China, Department of Cardiology, Shanghai Fifth People’s Hospital, Fudan University, Shanghai, China, Department of Cardiology, Tongji Hospital, Tongji University School of Medicine, Shanghai, China, Department of Pediatric Internal Medicine, Ningbo Women & Children’s Hospital, Ningbo, China, Cardiovascular Research Laboratory, Shanghai Fifth People’s Hospital, Fudan University, Shanghai, China and Central Laboratory, Shanghai Fifth People’s Hospital, Fudan University, Shanghai, China.

*These authors contributed equally to this work.

This research was supported by the Natural Science Foundation of Shanghai, China (16ZR1432500), the Natural Science Foundation of Ningbo, Zhejiang Province, China (2018A610388), the Program of Outstanding Young Scientists of Tongji Hospital, Tongji University, Shanghai, China (HBRC1803), the Clinical Research Project of Tongji Hospital, Tongji University, Shanghai, China (ITJ(QN)1803), and the Key Project of Shanghai Fifth People’s Hospital, Fudan University, Shanghai, China (2018WYZD05).

Address for correspondence: Xin-Yuan Liu, MD, Department of Pediatrics, Tongji Hospital, Tongji University School of Medicine, 389 Xincun Road, Shanghai 200065, China. E-mail: luxingyuan402@hotmail.com or Yi-Qing Yang, MD, Cardiovascular Research Laboratory, Shanghai Fifth People’s Hospital, Fudan University, 801 Heqing Road, Shanghai 200240, China. E-mail: yangyiqing@5thhospital.com

Received for publication October 27, 2020. Revised and accepted March 15, 2021. Released in advance online on J-STAGE May 1, 2021.

doi: 10.1536/ijh.20-711

All rights reserved by the International Heart Journal Association.
endothelin receptor antagonists, phosphodiesterase 5 inhibitors, and cysolic guanosine monophosphate activators. Despite the limited beneficial impacts on hemodynamics-related quality of life, disease progression, and survival, the currently available pharmaceutical therapies do not cure PAH, and the median survival rate remains less than 3 years from diagnosis, highlighting the urgent need for extensive researches to reveal the molecular mechanisms underlying PAH.

The pathogenesis of PAH is highly complex, and both environmental and genetic pathogenic factors can impair pulmonary vascular structure and function, thus leading to PAH. The well-established environmental risk factors encompass congenital heart disease (CHD), valvular heart disease, virus infection, connective tissue disease, chronic thromboembolism, chronic obstructive pulmonary disease, pulmonary tumor thrombotic microangiopathy, intake of chemical drugs or toxins, and long-term exposure to hypoxia. However, emerging evidence has demonstrated that genetic defects play a pivotal role in the pathogenesis of idiopathic PAH, especially for familial PAH, and deleterious mutations in multiple genes, including BMPR2, encoding a receptor of the transforming growth factor-β superfamily, TBX4, encoding a transcription factor, and KCNK3, as well as ABCB8 encoding potassium channels, have been found to cause PAH. In addition, genome-wide association studies have revealed that common genetic variations are associated with an enhanced susceptibility to PAH. Nevertheless, due to substantial genetic heterogeneity of PAH, the genetic determinants underpinning PAH in the overwhelming majority of patients remain to be identified.

Methods

Study subjects: In the current investigation, a three-generation consanguineous pedigree was identified, where idiopathic PAH was transmitted in an autosomal-dominant mode with complete penetrance. Available family members and 612 totally unrelated healthy volunteers used as controls were included in the study. All the study individuals were recruited from the Chinese Han population in the same geographic area. For each study participant, a comprehensive clinical evaluation was conducted, which included reviews of medical and familial histories, thorough physical examination, transthoracic echocardiography with color Doppler, chest X-ray radiography, standard 12-lead electrocardiography, and routine laboratory tests. In the affected family members, cardiac catheterization measurement was performed, as well as pulmonary angiography when strongly indicated. The diagnosis of PAH was made according to a revised criterion established by the World Health Organization: the concomitant presence of mean pulmonary arterial pressure (mPAP) > 20 mmHg (measured by right-heart catheterization at rest in the supine position), pulmonary arterial wedge pressure (PAWP) ≤ 15 mmHg, and pulmonary vascular resistance (PVR) ≥ 3 Wood units. This study project was fulfilled in conformity to the ethical principles of the Declaration of Helsinki. The study protocol was reviewed and approved by the healthcare ethics committee of Tongji Hospital, Tongji University School of Medicine, Shanghai, China. Prior to the commencement of the present investigation, written informed consent was obtained from the study individuals or from their legal guardians.

Whole-exome sequencing analysis: Peripheral venous whole blood samples were collected from all available family members and control individuals. Genomic DNA was isolated from whole blood leukocytes using the MagMAX™ DNA Multi-Sample Ultra 2.0 Kit (Thermo Fisher Scientific, Waltham, MA, USA) according to the manufacturer’s protocols. Whole-exome sequencing (WES) was performed as previously described. Briefly, each exome library was constructed using 3 μg of genomic DNA and captured using the SureSelect™ Human All Exon V6 Kit (Agilent Technologies, Santa Clara, CA, USA) according to the manufacturer’s protocol. The constructed exome libraries were enriched and sequenced on the Illumina HiSeq 2000 Genome Analyzer (Illumina, San Diego, CA, USA) using the HiSeq Sequencing Kit (Illumina) according to the manufacturer’s analysis of the WES data was conducted as described elsewhere. The minor allele frequency for each genetic variant was calculated according to such population genetic databases as the NHLBI Exome Sequencing Project database (https://evs.gs.washington.edu/evs/), the Single Nucleotide Polymorphism database (https://www.ncbi.nlm.nih.gov/snp/), and the Genome Aggregation Database (https://gnomad.broadinstitute.org/). The disease-causing potential of a novel genetic variation was predicted using PolyPhen-2 (http://genetics.bwh.harvard.edu/pph2), MutationTaster (http://www.mutationtaster.org), SIFT (http://sift.jcvi.org/www/SIFT_enst_submit.html), and PROVEAN (http://provean.jcvi.org/index.php). The candidate PAH-causative variants identified via WES were further filtered out or validated by Sanger sequencing and segregation analysis in the PAH pedigree. For the pathogenic genetic variant verified in the PAH family, 612 unrelated healthy persons were screened via Sanger sequencing analysis of the gene harboring the pathogenic variant.

Construction of expression plasmids and site-targeted mutagenesis: Extraction of total RNA from donated human heart tissue that otherwise would be discarded after the cardiac surgery and preparation of cDNA via reverse transcription-polymerase chain reaction (RT-PCR) were described previously. The wild-type cDNA of the human SOX17 gene (accession no. NM_022454.4) was generated via PCR using the PfuUltra high-fidelity DNA polymerase (Stratagene, Santa Clara, CA, USA) and a specific pair of primers (forward primer: 5'-CTGGCTAGCC GTCCGCGGGAGGTGTTGAG-3' and reverse primer: 5'-CT GCTCGAGCACTGTTCTGGCCTGAG-3'). For the construction of the eukaryotic expression plasmid SOX17-pcDNA3.1, the amplified cDNA of SOX17 was doubly digested with restriction enzymes NheI and XhoI (NEB, Hitchin, Herts, UK), purified using the QIAquick Gel Extraction Kit (Qiagen, Hilden, Germany), and inserted at the NheI-XhoI sites into the pcDNA3.1 plasmid (Invitrogen, Carlsbad, CA, USA). The Gln127*-mutant SOX17-pcDNA3.1 was yielded by site-directed mutagenesis using the QuikChange II XL Site-Directed Mutagenesis Kit (Stratagene, La Jolla, CA, USA) with a complementary...
pair of primers (forward primer: 5’-GAGCGGCTGCGGCTGAGTCATGCAGAGCCTGTTCC-3’; reverse primer: 5’-GGTGCTAGCGTTCCTTCGCGCTCGCGG-3’), double cut with KpnI and NheI (NEB), and subcloned into the pGL3-Basic vector (Promega, Madison, WI, USA). The reporter plasmid TCF-luc, which expresses Firefly luciferase, a 1021-bp promoter region of the TCF gene (nucleotides from −941 to +80, with initial transcription nucleotide numbered +1; accession No. NC_000009.12) was amplified via PCR using a specific pair of primers (forward primer: 5’-GTGAGCTCTGCCAGAGCCTGTTCC-3’; reverse primer: 5’-GGTGCTAGCGTTCCTTCGCGCTCGCGG-3’), double cut with KpnI and NheI (NEB), and subcloned into the pGL3-Basic vector (Promega, Madison, WI, USA). The reporter plasmid TCF-luc, which expresses Firefly luciferase, was constructed as described previously.\(^5,^{35}\)

Cell transfection and dual-luciferase assay: COS-7 and 293T cells were cultivated and transiently transfected with various plasmids using the Lipofectamine 3000 reagent (Invitrogen) as described previously.\(^5,^{35}\) The pGL4.75 plasmid (Promega), which expresses the Renilla luciferase, and the pGL4.75 plasmid (Promega), which expresses the Firefly luciferase, a 1021-bp promoter region of the TCF gene (nucleotides from −941 to +80, with initial transcription nucleotide numbered +1; accession No. NC_000009.12) was amplified via PCR using a specific pair of primers (forward primer: 5’-GTGAGCTCTGCCAGAGCCTGTTCC-3’; reverse primer: 5’-GGTGCTAGCGTTCCTTCGCGCTCGCGG-3’), double cut with KpnI and NheI (NEB), and subcloned into the pGL3-Basic vector (Promega, Madison, WI, USA). The reporter plasmid TCF-luc, which expresses Firefly luciferase, was constructed as described previously.\(^5,^{35}\)

Identification of a SOX17 mutation causative of PAH: WES was fulfilled in the proband (III-2) and her affected father (II-3), sister (III-5), and aunt (II-8) as well as her unaffected mother (II-4) and uncle (II-7). A mean of 24-Gb bases of sequence for an individual sample was generated via paired-end sequencing. An average of 18,192 exonic variants (range 11,200—220×. A mean percentage of 99% bases was mapped to the reference genome. A mean percentage of 99% bases was mapped to the reference genome. A mean percentage of 99% bases was mapped to the reference genome. A mean percentage of 99% bases was mapped to the reference genome. A mean percentage of 99% bases was mapped to the reference genome. A mean percentage of 99% bases was mapped to the reference genome. A mean percentage of 99% bases was mapped to the reference genome. A mean percentage of 99% bases was mapped to the reference genome. A mean percentage of 99% bases was mapped to the reference genome. A mean percentage of 99% bases was mapped to the reference genome. A mean percentage of 99% bases was mapped to the reference genome. A mean percentage of 99% bases was mapped to the reference genome. A mean percentage of 99% bases was mapped to the reference genome. A mean percentage of 99% bases was mapped to the reference genome. A mean percentage of 99% bases was mapped to the reference genome. A mean percentage of 99% bases was mapped to the reference genome. A mean percentage of 99% bases was mapped to the reference genome. A mean percentage of 99% bases was mapped to the reference genome. A mean percentage of 99% bases was mapped to the reference genome. A mean percentage of 99% bases was mapped to the reference genome. A mean percentage of 99% bases was mapped to the reference genome. A mean percentage of 99% bases was mapped to the reference genome. A mean percentage of 99% bases was mapped to the reference genome. A mean percentage of 99% bases was mapped to the reference genome. A mean percentage of 99% bases was mapped to the reference genome. A mean percentage of 99% bases was mapped to the reference genome. A mean percentage of 99% bases was mapped to the reference genome. A mean percentage of 99% bases was mapped to the reference genome. A mean percentage of 99% bases was mapped to the reference genome. A mean percentage of 99% bases was mapped to the reference genome.
of the SOX17 gene was conducted on 612 unrelated control persons with the primers presented in Table III. Moreover, no potentially damaging variants were found. Besides, the truncating variation was absent from such population genetic databases as the Genome Aggregation Database, the Exome Aggregation Consortium database, and the Single Nucleotide Polymorphism database, which was retrieved again on September 26, 2020.

No transactivation function of the mutant SOX17 protein: As presented in Figure 2, 400 ng of wild-type SOX17-pcDNA3.1 expression plasmid and the same amount of Gln127*-mutant SOX17-pcDNA3.1 expression plasmid transcriptionally activated the NOTCH1 promoter by ~15-fold and ~1-fold, respectively (wild-type SOX17 versus Gln127*-mutant SOX17: t = 10.3412, \(\Delta P = 0.00049 \)). When 200 ng of wild-type SOX17-pcDNA3.1 expression plasmid was used in combination with the same amount of Gln127*-mutant SOX17-pcDNA3.1 expression plasmid,
the induced transcriptional activity was ~7-fold (wild-type SOX17 + empty pcDNA3.1 versus wild-type SOX17 + Gln127*-mutant SOX17: t = 5.39528, P = 0.00153).

Diminished inhibitory effect of mutant SOX17 on CTNNB1: As presented in Figure 3, CTNNB1 alone transcriptionally activated the TCF promoter by ~8-fold. In the presence of CTNNB1, the same amount of wild-type SOX17 and Gln127*-mutant SOX17 transcriptionally activated the TCF promoter by ~2-fold and ~8-fold, respectively (wild-type SOX17 versus Gln127*-mutant SOX17: t = 7.69876, P = 0.00153)

Discussion

In the current genetic study, a novel heterozygous SOX17 variant, NM_022454.4: c.379C>T; p.(Gln127*), was identified via WES in a family affected with idiopathic PAH. The variation, which co-segregated with the disease in the pedigree, was neither detected in the 424 reference chromosomes nor retrieved in such population genetic databases as the Genome Aggregation Database, the Exome Aggregation Consortium database, and the Sin犯al Residues database. Functional measurement revealed that Gln127*-mutant SOX17 lost the ability to transactivate the NOTCH1 promoter. Moreover, the Gln127*-mutant SOX17 protein demonstrated a diminished inhibitory effect on CTNNB1 (also termed β-catenin). Hence, it is very likely that the genetically compromised SOX17 gene contributes to PAH in this family.

The human SOX17 gene was mapped to chromosome 8q11.23, which codes for SRY-box transcription factor 17 (SOX17) with 414 amino acids, a member of the con-

Table I. Phenotypic Features of the Living Family Members Affected with Idiopathic Pulmonary Arterial Hypertension

Individual	Gender	Age (years)	Symptom	Electrocardiogram	Right heart catheterization					
					mPAP (mmHg)	PAWP (mmHg)	PVR (WU)			
II-1	M	35	Exertional dyspnea and lightheadedness	Right deviation	96	RVH, RBBB	Enlarged pulmonary artery segment, RA and RV	68	12	15
II-3	M	33	Exertional dyspnea and fatigue	Right deviation	85	RVH, IRBBB	Enlarged pulmonary artery segment, RA and RV	52	10	11
II-8	F	28	Exertional dyspnea and fatigue	Right deviation	80	RVH, ASD	Enlarged pulmonary artery segment, RA and RV	44	8	10
III-2	F	7	Chest discomfort and fatigue	Normal	92	RVH	Enlarged pulmonary artery segment and RV	32	5	7
III-5	F	3	No symptom	Right deviation	118	RVH, ASD	Enlarged pulmonary artery segment and RV	37	6	9

M indicates male; F, female; HR, heart rate; RVH, right ventricular hypertrophy; RBBB, right bundle branch block; IRBBB, incomplete right bundle branch block; ASD, atrial septal defect; RA, right atrium; RV, right ventricle; mPAP, mean pulmonary artery pressure; PAWP, pulmonary arterial wedge pressure; PVR, pulmonary vascular resistance, and WU, Wood units.

Table II. A List of Nonsynonymous Mutations in the Candidate Genes for Pulmonary Arterial Hypertension Identified via Whole-Exome Sequencing and Bioinformatic Analyses

Chr	Position	Ref	Alt	Gene	Variant
1	233,787,830	G	A	DISP1	NM_032890.5: c.3091G > A; p.(Gly1031Ser)
2	234,750,188	C	T	HJURP	NM_018410.5: c.1238C > T; p.(Pro413Leu)
4	120,169,961	G	C	USP53	NM_001371395.1: c.296G > C; p.(Arg99Thr)
6	2,679,632	A	T	MYLK4	NM_001012418.5: c.769A > T; p.(Asp257fs)
8	55,371,689	C	T	SOX17	NM_022454.4: c.379C > T; p.(Gln127*)
14	74,447,073	G	T	TGF3B	NM_002339.5: c.164G > T; p.(Ser55Ile)
15	102,190,236	T	C	TM2D3	NM_078474.3: c.1298T > C; p.(Arg99Thr)
19	4,101,085	T	A	MAP2K2	NM_030662.4: c.637T > A; p.(Phe213Ile)
22	44,322,946	C	G	PNPLA3	NM_025225.3: c.319C > G; p.(His107Thr)

Chr indicates chromosome; Ref, reference; and Alt, alteration.
served SOX (SRY-related HMG-box) family of transcription factors. SOX17 is widely expressed during embryonic development and involved in Wnt/β-catenin and Notch signaling during development, playing a crucial role in cardiovascular morphogenesis and postnatal structural remodelling.66-68 In the embryonic vasculature, SOX17 is specifically expressed in arterial endothelial cells.69-72 Early investigations revealed that Sox17-deleterious mice did not exhibit obvious abnormalities in embryonic vasculature, which was explained at least partially by functional redundancy and compensatory roles of SOX17 and SOX18.73-75 Subsequent genetic researches revealed that gene compensation and phenotypic impacts depended on murine strain backgrounds.76 Moreover, recent studies revealed that the endothelial cell-specific knockout of Sox17 in murine embryo or postnatal retina led to impaired arterial specification and embryonic death or arteriovenous deformities, respectively.77 Additionally, in humans, several genome-wide association studies have associated SOX17 variants with intracranial aneurysms,78-80 and in an angiostenin II infusion mouse model, the endothelial cell-specific inactivation of Sox17 resulted in intracranial aneurysm pathology.79 Notably, the conditional disruption of Sox17 in mesenchymal progenitor cells revealed that Sox17 was essential for normal pulmonary vascular morphogenesis in utero and that Sox17 deficiency contributed to cardiovascular defects.81 Taken collectively, these results together with the current findings indicate that SOX17 haploinsufficiency is an alternative molecular mechanism underpinning PAH in a subset of patients.

The association between SOX17 variants and enhanced susceptibility to PAH has been revealed previously. Zhu and colleagues82 conducted WES analysis on 256 PAH-CHD patients and subsequently screened a separate cohort of 413 PAH patients without CHD for rare deleterious variants in the top association gene SOX17. As a result, rare deleterious variants of SOX17 were identified in approximately 3.2% of PAH-CHD cases and about 0.7% of PAH cases without CHD. Gräß and coworkers83 performed whole-genome sequencing in 1038 index cases with PAH and 6385 PAH-negative control persons. Case-control analyses revealed that rare pathogenic variants in SOX17 were significantly overrepresented in the PAH patients, with SOX17 variants identified in 9 of 1,038 PAH probands. Hiraihara and partners84 conducted WES in 12 Japanese patients with PAH and 12 asymptomatic family members in 6 families, as well as in 128 Japanese index cases with idiopathic PAH. Moreover, they identified four patients with PAH (of whom one had ASD and two had patent foramen ovale) and one asymptomatic family member with rare deleterious SOX17 variants. These data strongly identified SOX17 as a new causative gene responsible for PAH-CHD and PAH, although the functional effect of these identified PAH-associated variants remains unclear.

Cardiac morphogenesis during embryonic development is a complex biological process, necessitating precise temporal and spatial control of gene expression by such master transcription factors as GATA4, NKX2-5, TBX5, and MEF2C.85 Also, several signaling pathways, including WNT/β-catenin and NOTCH signaling cascades, have been demonstrated to induce cardiovascular development and differentiation.86-88 As a direct transcriptional target of GATA4, SOX17 co-localizes with GATA4 in the primitive endoderm and contributes to SOX17-positive endoderm from embryonic stem cells.89,90 Through direct protein interaction with β-catenin, SOX17 exerts a strong inhibitory effect on WNT/β-catenin signaling.91-93 Considering that β-catenin plays a key role in tissue development and remodeling and that inhibition of β-catenin signaling is beneficial in promoting vascular development, reducing abnormal vascular remodeling and preventing PAH,94 the diminished inhibitory effect on β-catenin by mutated SOX17 promotes the occurrence of PAH. In addition,
CONFlicts of interest:

Notch1 has recently been substantiated to be a direct transcriptional target of Sox17 during arterial development. Given that Notch1 has been implicated in vascular repairmainly by promoting the proliferation of lung vascular endothelial cells and recruitment of pulmonary arterial smooth muscle cells during vascular morphogenesis and remodeling, genetically defective Sox17 predisposes to PAH probably by reducing the capability of Notch1 to maintain normal vascular structure and function, though the exact role of Notch1 (pathogenic or beneficial) in the development of PAH remains elusive. Taken collectively, these studies support that the impaired functional interactions between Sox17 and these molecules give rise to CHD and PAH.

In conclusion, this study firstly reports that Sox17 loss-of-function variation contributes to PAH, which offers novel insight into the molecular mechanism of PAH, providing potential implications for genetic counseling, prognostic risk evaluation, and individualized management of patients suffering from PAH.

Disclosure

Conflicts of interest: None.

References

1. Southgate L, Machado RD, Gräf S, Morrell NW. Molecular genetic framework underlying pulmonary arterial hypertension. Nat Rev Cardiol 2020; 17: 85-95.
2. Horiose Y, Takasaki K, Miyata M, et al. Analysis of biphasic right ventricular outflow doppler waveform in patients with pulmonary hypertension. Int Heart J 2019; 60: 108-14.
3. Sawada N, Kawata T, Daimon M, et al. Detection of pulmonary hypertension with systolic pressure estimated by Doppler echocardiography. Int Heart J 2019; 60: 836-44.
4. Welch CL, Chung WK. Genetics and other omics in pediatric pulmonary arterial hypertension. Chest 2020; 157: 1287-95.
5. Mandras SA, Mehta HS, Vaidya A. Pulmonary hypertension: a brief guide for clinicians. Mayo Clin Proc 2020; 95: 1978-88.
6. Rosenkranz S, Howard LS, Gomberg-Maitland M. Hoepfer MM. Systemic consequences of pulmonary hypertension and right-sided heart failure. Circulation 2020; 141: 678-93.
7. Maki H, Hara T, Tsuji M, et al. The clinical efficacy of endothelin receptor antagonists in patients with pulmonary arterial hypertension. Int Heart J 2020; 61: 799-805.
8. Bissierier M, Pradhan N, Hadi L. Current and emerging therapeutic approaches to pulmonary hypertension. Rev Cardiovasc Med 2020; 21: 163-79.
9. Ma L, Chung WK. The genetic basis of pulmonary arterial hypertension. Hum Genet 2014; 133: 471-9.
10. Favoccia C, Constantine AH, Wort SJ, Dimopoulos K. Eisenmenger syndrome and other types of pulmonary arterial hypertension related to adult congenital heart disease. Expert Rev Cardiovasc Ther 2019; 17: 449-59.
11. Chida-Nagai A, Sagawa K, Tsujioka T, et al. Pulmonary vasodilators can lead to various complications in pulmonary “arterial” hypertension associated with congenital heart disease. Heart Vessels 2020; 35: 1307-15.
12. Ranard LS, Mallah WE, Awerbach JD, et al. Impact of pulmonary hypertension on survival following device closure of atrial septal defects. Am J Cardiol 2019; 124: 1460-4.
13. Lammers AE, Bauer L, Diller GP, et al. Pulmonary hypertension after shunt closure in patients with simple congenital heart defects. Int J Cardiol 2020; 308: 28-32.
14. Tichellbicker T, Dumitrescu D, Gerhardt F, et al. Pulmonary hypertension and valvular heart disease. Herz 2019; 44: 491-501.
15. Martinez C, Tsugu T, Sugimoto T, Lancellotti P. Pulmonary hypertension with valvular heart disease: when to treat the valve disease and when to treat the pulmonary hypertension. Curr Cardiol Rep 2019; 21: 151.
16. Batrous G. Human immunodeficiency virus-associated pulmonary arterial hypertension: considerations for pulmonary vascular diseases in the developing world. Circulation 2015; 131: 1361-70.
17. Akagi S, Miki T, Sand Y, et al. Chemotherapy improved pulmonary arterial hypertension in a patient with chronic-active Epstein-Barr virus infection. Int Heart J 2020; 61: 191-4.
18. Maki H, Kubota K, Hatanowo M, et al. Characteristics of pulmonary arterial hypertension in patients with systemic sclerosis and antecedent antinuclear autoantibodies. Int Heart J 2020; 61: 413-8.
19. Miyanaga S, Kubota K, Iwatani N, et al. Predictors of exercise-induced pulmonary hypertension in patients with connective tissue disease. Heart Vessels 2019; 34: 1509-18.
20. Fayed H, Coghlan JG. Pulmonary hypertension associated with connective tissue disease. Semin Respir Crit Care Med 2019; 40: 173-83.
21. Minatsu S, Hatanowo M, Haki H, Takimoto E, Morita H, Komuro I. Analysis of oxygenation in chronic thromboembolic pulmonary hypertension using dead space ratio and intrapulmonary shunt ratio. Int Heart J 2019; 60: 1137-41.
22. Wang M, Gu S, Liu Y, et al. miRNA-PDGFRB/HIF1A-lncRNA CTEPH1Al network plays important roles in the mechanism of chronic thromboembolic pulmonary hypertension. Int Heart J 2019; 60: 924-37.
23. Garges C, Garges M, Frewald R, et al. Microvascular disease in chronic thromboembolic pulmonary hypertension: hemodynamic phenotyping and histomorphometric assessment. Circulation 2020; 141: 376-86.
24. Naito A, Sakao S, Terada I, et al. Nocturnal hypoxemia and high circulating TNF-α levels in chronic thromboembolic pulmonary hypertension. Intern Med 2020; 59: 1819-26.
25. Hao Y, Zhu Y, Yao M, et al. Efficacy and safety of Sildenafil treatment in pulmonary hypertension caused by chronic obstructive pulmonary disease: a meta-analysis. Life Sci 2020; 257: 118001.
26. Buser M, Felizeter-Kessler M, Lenggenhager D, Maeder MT. Rapidly progressive pulmonary hypertension in a patient with pulmonary tumor thrombotic microangiopathy. Am J Respir Crit Care Med 2015; 191: 711-2.
27. Yoshikawa S, Hara T, Suzuki M, Fujioka M, Taniguchi Y, Hirata KI. Imatinib dramatically improved pulmonary hypertension caused by pulmonary tumor thrombotic microangiopathy (PTTM) associated with metastatic breast cancer. Int Heart J 2020; 61: 624-8.
28. Alzghoul BN, Abualsaud A, Alqam B, et al. Cocaine use and pulmonary hypertension. Am J Cardiol 2020; 125: 282-8.
29. Misumi K, Ogo T, Ueda J, et al. Development of pulmonary arterial hypertension in a patient treated with Qing-Dai (Chinese herbal medicine). Intern Med 2019; 58: 395-9.
30. Zhang H, Lin Y, Ma Y, Zhang J, Wang C, Zhang H. Protective effect of hydrogen sulfide on monocrotaline-induced pulmonary arterial hypertension via inhibition of the endothelial mesenchymal transition. Int J Mol Med 2019; 44: 2091-102.
31. Sun J, Cheng J, Ding X, Chi J, Yang J, Li W. β3 adrenergic receptor antagonist SR59230A exerts beneficial effects on right ventricular performance in monocrotaline-induced pulmonary arterial hypertension. Exp Thoer Med 2020; 19: 489-98.
32. Zhao TF, Wang SY, Zou XZ, Hao HD. MiR-393-5p promotes the development of hypoxia-induced pulmonary hypertension via targeting PLK1. Eur Rev Med Pharmacol Sci 2019; 23: 3495-502.
33. Di R, Yang Z, Xu P, Xu Y. Silencing PDK1 limits hypoxia-induced pulmonary arterial hypertension in mice via the Akt/p70S6K signaling pathway. Exp Ther Med 2019; 18: 699-704.
34. Nagata A, Tagashira H, Kita S, et al. Genetic knockout and pharmacologic inhibition of NCC1 attenuate hypoxia-induced pulmonary arterial hypertension. Biochem Biophys Res Commun 2020; 529: 793-8.

35. Hu HH, Zhang RF, Dong LL, Chen EG, Ying KJ. Overexpression of ACE2 prevents hypoxia-induced pulmonary hypertension in rats by inhibiting proliferation and immigration of PASMCs. Eur Rev Med Pharmacol Sci 2020; 24: 3968-80.

36. Eyries M, Montani D, Nadaud S, et al. Widening the landscape of heritable pulmonary hypertension mutations in paediatric and adult cases. Eur Respir J 2019; 53: 1801371.

37. Wang XJ, Lian TY, Jiang X, et al. Germline BMP9 mutation causes idiopathic pulmonary arterial hypertension. Eur Respir J 2019; 53: 1801609.

38. Mauzac A, Lardenois É, Eyries M, et al. T-box protein 4 mutation causing pulmonary arterial hypertension and lung disease. Eur Respir J 2019; 54: 1900388.

39. Egom EE. Pulmonary arterial hypertension due to NPR-C mutation: a novel paradigm for normal and pathologic remodeling? Int J Mol Sci 2020; 20: 3063.

40. Abou Hassan OK, Haidar W, Arabi M, et al. Novel EIF2AK4 mutations in histologically proven pulmonary capillary heman-giomatosis and hereditary pulmonary arterial hypertension. BMC Med Genet 2019; 20: 176.

41. Potus F, Panahilo MW, Cook EK, et al. Novel mutations and decreased expression of the epigenetic regulator TET2 in pulmonary arterial hypertension. Circulation 2020; 141: 1986-2000.

42. Wang XJ, Xu XQ, Sun K, et al. Association of rare PTGIS variants with susceptibility and pulmonary vascular response in patients with idiopathic pulmonary arterial hypertension. JAMA Cardiol 2020; 5: 677-84.

43. Yokokawa T, Sugimoto K, Kimishima Y, et al. Pulmonary hypertension and gender-specific hemorrhagic telangiectasia related to an ACVR1L mutation. Intern Med 2020; 59: 221-7.

44. Hodgson J, Swietlik EM, Salmon RM, et al. Characterization of GDF2 mutations and levels of BMP9 and BMP10 in pulmonary arterial hypertension. Am J Respir Crit Care Med 2020; 201: 575-85.

45. Wang M, Zhuang D, Mei M, et al. Frequent mutation of hypoxia-related genes in persistent pulmonary hypertension of the newborn. Respir Res 2020; 21: 53.

46. Lago-Docampo M, Tenorio J, Hernández-González I, et al. Characterization of rare ABCB8 variants identified in Spanish pulmonary arterial hypertension patients. Sci Rep 2020; 10: 15135.

47. Almodovar S, Wade BE, Porter KM, et al. HIV X4 variants increase arachidonate 5-lipoxygenase in the pulmonary microenvironment and are associated with pulmonary arterial hypertension. Sci Rep 2020; 10: 11696.

48. Rhodes CJ, Bleda M, et al. Genetic determinants of risk in pulmonary arterial hypertension: international genome-wide association studies and meta-analysis. Lancet Respir Med 2019; 7: 227-38.

49. Simonneau G, Montani D, Celermajer DS, et al. Haemodynamic definitions and updated clinical classification of pulmonary hypertension. Eur Respir J 2019; 53: 1801913.

50. Wu SH, Wang XH, Xu YI, et al. ISL1 loss-of-function variation causes familial atrial fibrillation. Eur J Med Genet 2020; 63: 104029.

51. Di RM, Yang CX, Zhao CM, et al. Identification and functional characterization of KLF5 as a novel disease gene responsible for familial dilated cardiomyopathy. Eur J Med Genet 2020; 63: 103827.

52. Xu YJ, Wang ZS, Yang CX, et al. Identification and functional characterization of an ISL1 mutation predisposing to dilated cardiomyopathy. J Cardiovasc Transl Res 2019; 12: 257-67.

53. Wang J, Abhinav P, Xu YJ, et al. NR2F2 loss-of-function mutation is responsible for congenital bicuspid aortic valve. Int J Mol Med 2019; 43: 1839-46.

54. Gimelli S, Caridi G, Beri S, et al. Mutations in SOX17 are associated with congenital anomalies of the kidney and the urinary tract. Hum Mutat 2010; 31: 1352-9.

55. Korinek V, Barker N, Morin PJ, et al. Constitutive transcriptional activation by a beta-catenin-Tcf complex in APC-/- colon carcinoma. Science 1997; 275: 1784-7.

56. Wang Z, Song HM, Wang F, et al. A new ISL1 loss-of-function mutation predisposes to congenital double outlet right ventricle. Int Heart J 2019; 60: 1113-22.

57. Zhang Y, Sun YM, Xu YJ, et al. A new TBX5 loss-of-function mutation contributes to congenital heart defect and atrioven-tricular block. Int Heart J 2020; 61: 761-8.

58. Francois M, Koopman P, Beltrame C. SoxF genes: key players in the development of the cardiovascular system. Int J Biochem Cell Biol 2010; 42: 445-8.

59. Zhu N, Welch CL, Wang J, et al. Rare variants in SOX17 are associated with pulmonary arterial hypertension with congenital heart disease. Genome Med 2018; 10: 56.

60. Liao WP, Uetzmann L, Bartscher I, Lickert H. Generation of a mouse line expressing Sox17-driven Cre recombinase with spe-cific activity in arteries. Genesis 2009; 47: 476-83.

61. Corada M, Orsengo F, Morini MF, et al. SOX17 is indispensable for acquisition and maintenance of arterial identity. Nat Commun 2013; 4: 2609.

62. Sacilotto N, Montorio R, Fritzsche M, et al. Analysis of Dil4 regulation reveals a combinatorial role for sox and notch in arterial development. Proc Natl Acad Sci U S A 2013; 110: 11893-8.

63. Kanai-Azuma M, Kanai Y, Gad JM, et al. Depletion of definitive gut endoderm in Sox17-null mutant mice. Development 2002; 129: 2367-79.

64. Matsu T, Kanai-Azuma M, Hara K, et al. Redundant roles of Sox17 and Sox18 in postnatal angiogenesis in mice. J Cell Sci 2006; 119: 3513-26.

65. Sakamoto Y, Hara K, Kanai-Azuma M, et al. Redundant roles of Sox17 and Sox18 in early cardiovascular development of mouse embryos. Biochem Biophys Res Commun 2007; 360: 539-44.

66. Hosking B, Francois M, Wilhelm D, et al. SOX17 and Sox18 are strain-specific modifiers of the lymphangiogenic defects caused by Sox18 dysfunction in mice. Development 2009; 136: 2385-91.

67. Bilguvar K, Yasuno K, Niemela M, et al. Susceptibility loci for intracranial aneurysm in European and Japanese populations. Nat Genet 2008; 40: 1472-7.

68. Yasuno K, Bilguvar K, Bijlenga P, et al. Genome-wide association study of intracranial aneurysm identifies three new risk loci. Nat Genet 2010; 42: 420-5.

69. Foroud T, Koller DL, Lai D, et al. Genome-wide association study of intracranial aneurysms confirms role of Anril and SOX17 in disease risk. Stroke 2012; 43: 2846-52.

70. Lee S, Kim IK, Ahn JS, et al. Deficiency of endothelium-specific transcription factor Sox17 induces intracranial aneurysm. Circulation 2015; 131: 995-1005.

71. Lange AW, Haithch HM, LeCras TD, et al. Sox17 is required for normal pulmonary vascular morphogenesis. Dev Biol 2014; 387: 109-20.

72. Graf S, Hainel M, Bleda M, et al. Identification of novel rare sequence variation underlying heritable pulmonary arterial hypertension. Nat Commun 2018; 9: 4146.

73. Hiraide T, Kataoka M, Suzuki H, et al. SOX17 mutations in Japanese patients with pulmonary arterial hypertension. Am J Respir Crit Care Med 2018; 198: 1231-3.

74. McCulley DJ, Black BL. Transcription factor pathways and congenital heart disease. Curr Top Dev Biol 2012; 100: 253-77.

75. Klaus A, Muller M, Schulz H, Saga Y, Martin JF, Birchmeier W. Wnt/beta-catenin and Bmp signals control distinct sets of transcrip-tion factors in cardiac progenitor cells. Proc Natl Acad Sci U S A 2012; 109: 10921-6.

76. Gillers BS, Chiplunkar A, Aly H, et al. Canonical wnt signaling regulates atrioventricular junction programming and electro-physiological properties. Circ Res 2015; 116: 398-406.
77. Luxan G, D’Amato G, MacGrogan D, de la Pompa JL. Endocardial notch signaling in cardiac development and disease. Circ Res 2016; 118: e1-18.
78. Artus J, Piliszek A, Hadjantonakis AK. The primitive endoderm lineage of the mouse blastocyst: sequential transcription factor activation and regulation of differentiation by Sox17. Dev Biol 2011; 350: 393-404.
79. Holtzinger A, Rosenfeld GE, Evans T. Gata4 directs development of cardiac-inducing endoderm from ES cells. Dev Biol 2010; 337: 63-73.
80. Zorn AM, Barish GD, Williams BO, Lavender P, Klymkowsky MW, Varmus HE. Regulation of Wnt signaling by Sox proteins: XSox17 alpha/beta and XSox3 physically interact with beta-catenin. Mol Cell 1999; 4: 487-98.
81. Morrison G, Scognamiglio R, Trumpp A, Smith A. Convergence of cMyc and beta-catenin on Tcf7l1 enables endoderm specification. EMBO J 2016; 35: 356-68.
82. Alapati D, Rong M, Chen S, Hehre D, Hummler SC, Wu S. Inhibition of beta-catenin signaling improves alveolarization and reduces pulmonary hypertension in experimental bronchopulmonary dysplasia. Am J Respir Cell Mol Biol 2014; 51: 104-13.
83. Chiang IK, Fritzschke M, Pichol-Thievend C, et al. SoxF factors induce Notch1 expression via direct transcriptional regulation during early arterial development. Development 2017; 144: 2629-39.
84. Babicheva A, Yuan JX. Endothelial Notch1 in pulmonary hypertension. Circ Res 2019; 124: 176-9.