Sonocystografia mikcyjna 2D/3D/4D w diagnozie i monitorowaniu leczenia odpływów pęcherzowo-moczowodowych u dzieci – czy może zastąpić rentgenowską cystouretrografię mikcyjną?

2D/3D/4D contrast-enhanced voiding urosonography in the diagnosis and monitoring of treatment of vesicoureteral reflux in children – can it replace voiding cystourethrography?

Magdalena Maria Woźniak¹, Agata Pawelec¹, Andrzej Paweł Wieczorek¹, Maria Małgorzata Zajączkowska², Halina Borzęcka², Paweł Nachulewicz³

¹ Zakład Radiologii Dziecięcej, Uniwersytet Medyczny w Lublinie, Lublin, Polska
² Klinika Nefrologii Dziecięcej II Katedry Pediatrii, Uniwersytet Medyczny w Lublinie, Lublin, Polska
³ Katedra i Klinika Chirurgii i Traumatologii Dziecięcej, Uniwersytet Medyczny w Lublinie, Lublin, Polska

Correspondence: Magdalena Maria Woźniak, Zakład Radiologii Dziecięcej, Uniwersytet Medyczny, Al. Racławickie 1, 20-059 Lublin, tel./faks: +48 81 741 84 47, e-mail: mwozniak@hoga.pl

Streszczenie

Wstęp: Odpływy pęcherzowo-moczowodowe występują u 20–50% dzieci z nawracającymi zakażeniami układu moczowego. Najczęściej wykorzystywaną metodą w diagnozie tego schorzenia jest cystouretrografia mikcyjna, od której nowoczesna radiologia pediatryczna stara się odchodzić, z powodu narażenia na promieniowanie rentgenowskie. Cel pracy: Celem pracy była ocena przydatności sonocystografii mikcyjnej w diagnozie i monitorowaniu leczenia odpływów pęcherzowo-moczowych u dzieci i możliwości zastąpienia omawianą metodą dotychczas stosowanej cystouretrografii mikcyjnej.

Materiał i metoda: U 80 dzieci wykonano cystouretrografię mikcyjną oraz sonocystografię mikcyjną w celu określenia czułości, swoistości, wartości predykcyjnej dodatniej i ujemnej sonocystografii mikcyjnej oraz ilości wykrywanych odpływów pęcherzowo-moczowych przez każdą z metod. W drugim etapie u 58 dzieci wykonano sonocystografię mikcyjną w rozszerzonym protokole w celu określania przydatności badania trójwymiarowego (3D/4D) w ocenie odpływów pęcherzowo-moczowych oraz możliwości oceny cewki moczowej. Wyniki: Zgodność obu metod wynosiła 86,95%. Czułość sonocystografii mikcyjnej wynosiła 84,51%, swoistość 90,99%, wartość predykcyjna dodatnia 85,71%, ujemna 90,17%. Ocena 3D/4D pęcherza moczowego oraz ocena morfologiczna 2D cewki moczowej z dostępu przekroczowego możliwa była u wszystkich pacjentów (100%). Ocena cewki moczowej w trakcie mikcji techniką 2D/3D/4D możliwa była u wszystkich pacjentów, u których uzyskano mikcję (95,83%), a ocena 3D/4D OPM – u wszystkich pacjentów z odpływem (100%). Zastosowanie technik 3D/4D pozwoliło na precyzyjne określenie stopnia odpływów we wszystkich przypadkach (100%), jednakże szczególnie...
Key words
contrast-enhanced voiding urosonography, vesicoureteral reflux, SonoVue®, urethra, 3D/4D ultrasound

Abstract

Introduction: Vesicoureteral reflux appears in 20–50% of pediatric patients with recurrent urinary tract infections. The most common method of diagnosing this disease is voiding cystourethrography. However, contemporary pediatric radiology does not favor this method due to exposure to X-radiation. Aim: The aim of this study was to assess the usefulness of 2D/3D/4D contrast-enhanced voiding urosonography in the diagnosis and treatment monitoring of vesicoureteral reflux in children and the possibility of using contrast-enhanced voiding urosonography to replace voiding cystourethrography. Material and methods: Voiding cystourethrography and contrast-enhanced voiding urosonography were conducted in 80 pediatric patients in order to assess sensitivity, specificity, positive and negative predictive values as well as the number of vesicoureteral refluxes detected by each of the two methods. The second stage of the study involved performing voiding urosonography in an extended protocol in 58 children in order to determine the usefulness of three-dimensional (3D/4D) examinations in the assessment of vesicoureteral reflux and the ability to assess the urethra. Results: The concordance between the two methods was 86.95%. The sensitivity of voiding urosonography was 84.51%, specificity – 90.99%, positive predictive value – 85.71% and negative predictive value – 90.17%. A 3D/4D assessment of the urinary bladder and transperineal 2D morphological assessment of the urethra were possible in all patients (100%). Assessment of the urethra during micturition with the use of 2D/3D/4D techniques was possible in all patients in whom voiding was elicited (95.83%), and 3D/4D assessment of vesicoureteral reflux was possible in all patients with reflux (100%). Although the application of 3D/4D techniques allowed accurate specification of the grade of reflux in all cases (100%), it appeared particularly useful in differentiating between grades II and III (70.97%). Conclusions: Contrast-enhanced voiding urosonography allows the diagnosis and monitoring of treatment of vesicoureteral reflux in pediatric patients as well as assessment of the urethra in both girls and boys. The method is characterized by high sensitivity and specificity. Moreover, it is safe, relatively inexpensive and can replace voiding cystourethrography.

Wstęp

Odpływy pęcherzowo-moczowodowe (OPM) dotyczą około 1% populacji pediatrycznej Stanów Zjednoczonych i Europy. Występują u około 20–50% dzieci z nawracającymi zakaźniami układu moczowego, stanowiąc niezwykle złożony problem diagnostyczno-terapeutyczny w pediatrii[1,2]. W chwili obecnej w diagnostyce OPM u dzieci wykorzystywane są trzy metody obrazowe: rentgenowska cystouretrografia mikcyjna, cystografia izotopowa oraz sonocystografia mikcyjna. Najbardziej rozpowszechnioną metodą jest metodą opartą na promieniowaniu joniżnym, od której nowoczesna radiologia pediatryczna stara się odchodzić, z uwagi na duże narażenie pacjenta. Diagnostyka i monitorowanie leczenia OPM wymagają zazwyczaj powtarzania badania rentgenowskiego, często wielokrotnie. Niestety, w trakcie badania gonady zawsze objęte są polem naświetlania, a są one jednymi z najbardziej promieniotwórczych narzędzi w ciele człowieka. Innymi ograniczeniami metody rentgenowskiej są: statyczność metody, uzyskiwanie obrazu dwuwymiarowego (“płaskiego”), narażenie na potencjalne działania niepożądane jadowych środków kontrastujących i często podnoszony przez rodziców i starsze dzieci brak intymności w trakcie badania. Sonocystografia mikcyjna przydatna okazało się w różnicowaniu pomiędzy stopniem II a III (70.97%). Wnioski: Sonocystografia mikcyjna jest metodą umożliwiającą diagnostykę i monitorowanie leczenia odpływów pęcherzowo-moczowodowych u dzieci oraz ocenę cewki moczowej u dziewcząt i chłopców. Metodą charakteryzuje wysoka czułość i swoistość – jest bezpieczna, stosunkowo niedroga i może zastąpić cystouretrografię mikcyjną.

Introduction

Vesicoureter reflux (VUR) occurs in approximately 1% of the pediatric population in the United States and Europe. It appears in 20–50% of pediatric patients with recurrent urinary tract infections, thus constituting an extremely complex diagnostic and therapeutic problem in pediatrics[1,2]. Currently, three imaging modalities are used in the diagnostic process of VUR: X-ray based voiding cystourethrography (VCUG), isotope cystography and contrast-enhanced voiding urosonography (ce-VUS). The most common method VCUG is based on ionizing radiation, but this is no longer favored by contemporary pediatric radiology due to the considerable radiation exposure involved. VUR diagnosis and monitoring of treatment usually require multiple X-ray examinations. Unfortunately, the gonads are always exposed to radiation during the examination, which is of concern given that they are one of the most radiosensitive organs in the human organism. Other limitations of VCUG are: the static character of the examination, the two-dimensional (“flat”) image, exposure to potential adverse reactions to iodine contrast agents, and the lack of intimacy during the examination, as frequently mentioned by parents and older children.
stanowi alternatywę dla klasycznej rentgenowskiej cystourektrografii mikcyjnej, jednakże dotychczas najczęściej wymienianym ograniczeniem metody był brak możliwości oceny cewki moczowej, zwłaszcza u chłopców. Jednakże ostatnio publikowane prace wskazują, iż sonocystografia mikcyjna z zastosowaniem środka kontrastującego SonoVue® jest wysoce czułą i specyficzną metodą w diagnostyce oraz monitorowaniu leczenia OPM, umożliwiającą także ocenę cewki moczowej u dziewcząt i chłopców(3–6).

Cel pracy

Celem pracy była ocena przydatności sonocystografii mikcyjnej w diagnostyce i monitorowaniu leczenia OPM u dzieci w kontekście możliwości zastąpienia omawianą metodą dotychczas rutynowo stosowanej cystourektrografii mikcyjnej.

Projekt wykonano dwuetapowo. W pierwszym etapie, uwzględniając główny cel pracy, starano się określić:

1. Czułość, swoistość, wartość predykyjną dodatnią *(positive predictive value, PPV)* i wartość predykyjną ujemną *(negative predictive value, NPV)* sonocystografii mikcyjnej w porównaniu z cystografią rentgenowską jako metodą referencyjną.

2. Ilość wykrywanych OPM przez każdą z metod.

W drugim etapie rozszerzono protokół badania sonocystografii mikcyjnej o funkcje trójwymiarowe *(3D/4D)* oraz badanie cewki moczowej, starając się określić:

3. Przydatność badania trójwymiarowego *(3D/4D)* w ocenie OPM.

4. Możliwość oceny cewki moczowej w badaniu sonocystografii mikcyjnej w badaniu przekroczowym *(2D/3D/4D)* przed mikcją oraz w trakcie mikcji.

Material i metoda

Badania wykonano w ramach projektu Narodowego Centrum Nauki nr NN403456137. Projekt uzyskał akceptację Komisji Bioetycznej Uniwersytetu Medycznego w Lublinie. Rodzice wszystkich pacjentów zostali poinformowani o celu badania, zaletach i wadach metody oraz o braku rejestracji stosowanego środka kontrastującego *(SonoVue®, Bracco, Mediolan, Włochy)* u pacjentów poniżej 18. roku życia i wyrażili pisemną zgodę na wykonanie badań u ich dzieci. Projekt przeprowadzono dwuetapowo w dwóch podgrupach pacjentów. Grupa badana liczyła łącznie 138 dzieci *(277 jednostek moczowodowych (JM)) – 106 dziewczynek i 32 chłopców, w wieku od 3 miesięcy do 17 lat i 3 miesięcy, średnia 4 lata i 1 miesiąc, badanych od grudnia 2010 do października 2013 roku.

Etap I

W pierwszym etapie (podgrupa 1) w celu określenia czułości, swoistości, wartości PPV i NPV oraz ilości ce-VUS is an alternative to VCU. However, to date, the most frequently mentioned limitation of this method is the inability to assess the urethra, especially in boys. Nevertheless, recent reports indicate that ce-VUS with the use of SonoVue® is a highly sensitive and specific method in the diagnosis and treatment monitoring of VUR, which, in addition, enables assessment of the urethra in both girls and boys(3–6).

Aim of the study

The aim of this study was to assess the usefulness of ce-VUS in the diagnosis and treatment monitoring of VUR in children and to determine whether this method could replace the currently used VCU.

The study consisted of two stages. Bearing in mind the main aim of the study, in the first stage, the authors attempted to determine:

1. The sensitivity, specificity, positive predictive value (PPV) and negative predictive value (NPV) of ce-VUS compared with X-ray VCU as a reference method.

2. The number of VURs detected by each of these methods.

In the second stage, the protocol of ce-VUS was extended to include three-dimensional options *(3D/4D)* and urethra examination. Attempts were made to determine the following:

3. Usefulness of three-dimensional *(3D/4D)* examination in VUR assessment.

4. Ability to examine the urethra in transperineal *(2D/3D/4D)* ce-VUS before and during micturition.

Material and methods

The examinations were carried out as part of the Polish National Science Centre Project No. NN403456137. The study was approved by the Ethics Committee at the Medical University in Lublin. The parents of all patients were informed about the aim of the study, the advantages and disadvantages of the method, and the off-label use of the contrast agent *(SonoVue®, Bracco, Milan, Italy)* in patients below 18 years of age. They gave written consent for such examinations in their children. The study was conducted in two stages in two subgroups. The study group comprised 138 pediatric patients *(277 ureteral units (UUs)) including 106 girls and 32 boys aged from 3 months to 17 years and 3 months: the mean age was 4 years and 1 month. The patients were examined from December 2010 to October 2013.

Stage I

In the first stage (subgroup 1), all patients underwent VCUG as a reference method and ce-VUS with the use
wykrywanych OPM przez każdą z metod u wszystkich dzieci wykonano rentgenowską cystouretrografię mikcyjną jako metodę referencyjną oraz sonocystografię mikcyjną z zastosowaniem ultrasonograficznego środka kontrastującego SonoVue®, w odstępie nie dłuższym niż 3 miesiące pomiędzy obydwoma badaniami.

Podgrupę I stanowiło 80 dzieci (161 UUs, 62 dziewczynki i 18 chłopców) w wieku od 3 miesięcy do 17 lat i 3 miesięcy, średnia 4 lata i 8 miesięcy, badanych od grudnia 2010 do grudnia 2012 roku. Wśród badanych dzieci 45 dzieci (91 JM) stanowiły dzieci w trakcie leczenia OPM skierowane na badanie w celu monitorowania efektów terapii, natomiast 35 dzieci (70 JM) stanowili pacjenci z nawracającymi zakażeniami układu mocowego, u których podejrzewano istnienie OPM. Zakażenia układu mocowego zdiagnozowano na podstawie obrazu klinicznego (brak apetytu, brak przyrostu masy ciała, bóle brzucha, gorączka, ból, pieczenie przy oddawaniu moczów, częstomocz, zatrzymanie moczu itp.), zmian w analizie moczu i dodatniego wyniku posiewu moczu w mianie powyżej 10⁵/ml. Wśród stwierdzanych patogenów wyróżniono Escherichia coli, Proteus species, Pseudomonas aeruginosa, Staphylococcus species, Klebsiella pneumoniae. Badania wykonywano po upływie minimum 2 tygodni od zakończenia leczenia ostatniej infekcji dróg moczowych(7).

Sonocystografia mikcyjna

Badania wykonano aparatem Phillips IU22 głowicą convex (2–5 MHz) lub Volusion 730 Expert z użyciem głowicy convex (2–5 MHz). Protokół badania obejmował:

1. ocenę nerek i pęcherza mocowego w opcji B-mode, kolorowego Dopplera oraz z zastosowaniem obrazowania harmonicznego (tissue harmonic imaging, THI) techniką przezbrzuszną;
2. zacewnikiowanie pacjenta (6F lub 8F);
3. powolne podanie roztworu ogrzanej soli fizjologicznej z ultrasonograficznym środkiem kontrastującym SonoVue®[8] [ocena objętości pęcherza wg wzoru: objętość (ml) = (wiek + 2) × 30] pod kontrolą USG z naprzemiennym badaniem obu nerek w trakcie podawania roztworu aż do wypełnienia pęcherza mocowego (u dzieci młodszych pod kontrolą objętości pęcherza w badaniu ultrasonograficznym, u dzieci starszych do momentu silnego parcia na mocz);
4. usunięcie cewnika;
5. w trakcie mikcji naprzemiennie badanie obu nerek z dostępem przezbrzusznego techniku 2D;
6. badanie układu mocowego (nerek, pęcherza mocowego) po mikcji z dostępem przezbrzusznego z oceną zalegania moczu (po mikcji i po opróżnieniu układów kielichowo-miedniczkowych).

Poszczególne etapy badania rejestrowano w formie plików obrazowych (JPG, 2D/3D/4D DICOM) oraz w formie plików filmowych (AVI). Do oceny stopnia odpływu w badaniu sonocystografii stosowano klasyfikację pięciostopniową wg Dargego i Troegera(9).

Contrast-enhanced voiding urosonography (ce-VUS)

The examinations were performed using a Phillips IU22 ultrasound system with a convex probe (2–5 MHz) or GE Voluson 730 Expert with a convex probe (2–5 MHz). The protocol included:

1. transabdominal assessment of the kidneys and urinary bladder in B-mode, color Doppler and tissue harmonic imaging (THI);
2. catheterization of the patient (6F or 8F);
3. ultrasound-guided slow administration of the solution of heated saline with ultrasound contrast agent SonoVue®[8] [assessing the volume of the bladder according to the formula: volume (ml) = (age + 2) × 30] with alternate assessment of both kidneys during the administration of the solution until the urinary bladder was full (in younger children – under ultrasound monitoring of the bladder volume; in older children – until strong urinary urgency);
4. removal of the catheter;
5. during micturition, alternate transabdominal examination of both kidneys using 2D technique;
6. transabdominal urinary tract examination (kidneys, urinary bladder) after voiding with residual urine assessment (after micturition and voiding of the pelviccalyceal systems).

The subsequent stages of the examination were recorded as image files (JPG, 2D/3D/4D DICOM) and films (AVI). The five-grade classification of Darge and Troeger[9] was used to assess the grade of reflux in ce-VUS.
Cystourethrogramia mikcyjna

Cystourethrogramię mikcyjną wykonano metodą wlewu kroplowego z zastosowaniem roztworu ogrzanej soli fizjologicznej z nieionowym środkiem kontrastującym Omipaque 300 (GE Healthcare) lub Iomeron 300 (Braaco, Włochy). Metodyka badania i klasyfikacja stosowana do oceny stopnia OPM były zgodne z międzynarodowym systemem radiograficznej oceny stopnia OPM\(^{10}\).

Etap II

W drugim etapie (podgrupa II) w celu określenia przydatności badania trójwymiarowego (3D/4D) w ocenie OPM oraz możliwości oceny cewki moczowej w badaniu sonocystografii mikcyjnej w badaniu przezkruczowym 2D/3D/4D u wszystkich dzieci wykonano sonocystografię mikcyjną z zastosowaniem ultrasonograficznego środka kontrastującego Sonovue\(^{6}\) w rozszerzonym protokole w porównaniu z podgrupą I. W podgrupie II sonocystografia mikcyjna była jedyną metodą diagnostyczną stosowaną u pacjentów do diagnostyki OPM.

Podgrupę II stanowiło 58 dzieci (116 JU, 44 dziewczynki i 14 chłopców) w wieku od 4 miesięcy do 10 lat i 2 miesięcy, średnia 2 lata i 8 miesięcy, badanych od stycznia do października 2013 roku. Wszystkie dzieci zostały skierowane na badanie w związku z nawracającymi zakażeniami układu moczowego w celu potwierdzenia lub wykluczenia OPM. Zakażenia układu moczowego zdiagnozowano na podstawie obrazu klinicznego, zmian w analizie moczu i dodatniego wyniku posiewu moczu w mianie powyżej 10\(^5\)/ml. Wśród stwierdzanych patogenów wyróżniono Escherichia coli, Proteus species, Pseudomonas aeruginosa, Staphylococcus species, Citrobacter freundii i Kluyvera ascorbata. Badania wykonywano po upływie minimum 2 tygodni od zakończenia leczenia ostatniej infekcji dróg moczowych.

Sonocystografia mikcyjna

Badania wykonano aparatem Voluson 730 Expert z użyciem głowicy convex (2–5 MHz) oraz głowicy pediatrycznej 4D micro-convex (RNA 5–9 MHz). Protokół badania obejmował:

1. ocenę nerek i pęcherza moczowego w opcji B-mode, kolorowego dopplera oraz THI techniką przezbrzuszną;
2. ocenę pęcherza moczowego w badaniu trójwymiarowym w opcji statycznej (3D) oraz w czasie rzeczywistym (4D) – tzw. wirtualnej cystoskopii z dostępu przezbrzusznego;
3. morphologiczną ocenę cewki moczowej z dostępu przez kroczec techniką 2D;
4. zacewnianie pacjenta (6F lub 8F);
5. powolne podanie roztworu ogrzanej soli fizjologicznej z ultrasonograficznym środkiem kontrastującym Sonovue\(^{6}\);
6. usunięcie cewnika;

Voiding cystourethrogramy (VCUG)

VCUG was performed by drip infusion of the heated saline with a non-ionic contrast agent Omipaque 300 (GE Healthcare) or Iomeron 300 (Braaco, Italy). The methodology of the study and classification used to grade VUR were consistent with the international system of VUR radiographic grading\(^{10}\).

Stage II

The second stage of the study (subgroup 2) involved performing ce-VUS with Sonovue\(^{6}\) in an extended protocol in all patients. The aim was to determine the usefulness of three-dimensional (3D/4D) examinations in the assessment of VUR and the ability to assess the urethra in transperineal 2D/3D/4D ce-VUS. In subgroup 2, ce-VUS was the only diagnostic method used for the identification of VUR.

Subgroup 2 consisted of 58 patients (116 UUs; 44 girls and 14 boys) aged from 4 months to 10 years and 2 months; the mean age was 2 years and 8 months. The patients were examined from January to October 2013. All children were referred to the examination due to recurrent urinary tract infections in order to confirm or rule out VUR. Urinary tract infections were diagnosed based on clinical picture, changes in urinalysis and positive urine culture test (indicated by a count of above 10\(^5\)/ml). The detected pathogens included: Escherichia coli, Proteus species, Pseudomonas aeruginosa, Staphylococcus species, Citrobacter freundii and Kluyvera ascorbata. The examinations were performed no sooner than 2 weeks after the last urinary tract infection had been treated.

Contrast-enhanced voiding urosonography (ce-VUS)

The examinations were performed with the use of a GE Voluson 730 Expert ultrasound system with a convex probe (2–5 MHz) and a pediatric micro-convex 4D transducer (RNA 5–9 MHz). The protocol included:

1. transabdominal assessment of the kidneys and urinary bladder in B-mode, color Doppler and tissue harmonic imaging (THI);
2. transabdominal static three-dimensional urinary bladder assessment (3D) and real time assessment (4D) – so-called virtual cystoscopy;
3. a 2D transperineal morphological assessment of the urethra;
4. catheterization of the patient (6F or 8F);
5. slow administration of heated saline with ultrasound contrast agent Sonovue\(^{6}\); removal of the catheter;
6. during micturition, transperineal examination of the urethra and alternate transabdominal assessment of both kidneys using 2D, 3D and 4D techniques;
7. w trakcie mikcji badanie cewki moczowej z dostępu przez kroczę oraz naprzemiennie obu nerek z dostępu przezbrzusznego technikami 2D, 3D oraz 4D;
8. badanie układu mocowego (nerek, pęcherza moczowego) po mikcji z dostępu przezbrzusznego z oceną zalegania moczuz (po mikcji i po opróżnieniu układów kielichowo-miedniczkowych);
9. badanie cewki moczowej po mikcji z dostępu przezkroczowego.

Analogicznie do podgrupy I poszczególne etapy badania rejestrowano w formie plików obrazowych (JPG, 2D/3D/4D DICOM) oraz w formie plików filmowych (AVI). Do oceny stopnia odporności w badaniu sonocystografii stosowano klasyfikację pięciostopniową wg Dargego i Troegera(9).

Wyniki

Etap I

Analizie poddano wyniki badań przeprowadzonych u 80 pacjentów (161 JM, 100%). U jednego pacjenta zdiagnozowano całkowite jednostronne zdwojenie układu kielichowo-miedniczkowego i moczowodów. Zgodność obu metod, tj. cystoureterografii mikcyjnej i sonocystografii mikcyjnej, oceniono na 86,95%. Traktując metodę cystoureterografii mikcyjnej jako referencyjną, czułość sonocystografii mikcyjnej oceniono na 84,51%, swoistość – 90,99%, wartość PPN – 85,71%, natomiast wartość NPV – na 90,17%.

Badanie cystoureterografii mikcyjnej uwidoczniło obecność OPM w 60 na 161 JM (37,26%), natomiast badanie sonocystografii mikcyjnej pozwoliło na uwidocznienie OPM w 59 na 161 JM (36,64%). W 49 na 60 JM (81,67%) obecność OPM wykryto za pomocą obu metod, tj. zarówno cystoureterografii mikcyjnej, jak i sonocystografii mikcyjnej (ryc. 1). W 11 na 60 JM (18,33%) OPM został wykryty jedynie przy pomocy cystoureterografii mikcyjnej (5 w stopniu I, 4 w stopniu II i 2 w stopniu III). Natomiast w 10 na 59 JM (16,94%) obecność OPM stwierdzono jedynie w badaniu sonocystografii mikcyjnej (1 w stopniu I, 6 w stopniu II, 2 w stopniu III i 1 w stopniu IV) (ryc. 2).

Etap II

Spośród 58 (100%) badanych dzieci u 35 pacjentów (60,34%) (70 JM) na podstawie wykonanego badania sonocystografii mikcyjnej nie wykazano obecności OPM. U 23 dzieci (39,65%) zdiagnozowano obecność OPM, z tego u 8 obustronnego, a u 15 jednostronnym (łącznie 31 jednostek moczowodowych). Wśród 31 (100%) uwidoczczonych OPM 11 (35,48%) oceniono jako stopień II, 11 (35,48%) – jako stopień III, 8 (25,80%) – jako stopień IV, 1 (3,22%) – jako stopień V.

Przeprowadzenie oceny pęcherza moczowego w badaniu trójwymiarowym w opcji statycznej (3D) oraz w czasie rzeczywistym (4D), tzw. wirtualnej cystoskopii, z dostępu

8. transabdominal urinary tract examination (kidneys, urinary bladder) after voiding with residual urine assessment (after micturition and voiding of the pelvicycal systems).
9. transperineal examination of the urethra following micturition.

As in the procedure followed in subgroup 1, the subsequent stages of the examination were recorded as image files (JPG, 2D/3D/4D DICOM) and films (AVI). The five-grade classification of Darge and Troeger(9) was used to assess the grade of reflux in ce-VUS.

Results

Stage I

Data were obtained from 80 patients (161 UUs, 100%). Unilateral complete ureteral and pelvicycalcal duplication was detected in one patient. The concordance between the two methods, i.e. VCUG and ce-VUS, was 86.95%. With VCUG as a reference method, the sensitivity of ce-VUS was 84.51%, specificity – 90.99%, PPV – 85.71% and NPV – 90.17%.

VCUG demonstrated the presence of VUR in 60 out of 161 UUs (37.26%) and ce-VUS detected it in 59 out of 161 UUs (36.64%). VUR was detected in 49 of the 60 UUs (81.67%) by both methods, i.e. VCUG and ce-VUS (fig. 1). In 11 out of 60 UUs (18.33%), VUR was detected only with the help of VCUG (five cases – grade I, four – grade II and two – grade III). However, in 10 out of 59 UUs (16.94%), VUR was detected only with the help of ce-VUS (one case – grade I, six – grade II, two – grade III and one – grade IV) (fig. 2).

Stage II

Out of the 58 (100%) examined patients, the presence of VUR was ruled out in 35 cases (60.34%, 70 UUs) and diagnosed in 23 children (39.65%), including eight bilateral cases and 15 unilateral cases (in total – 31 ureteral units). Of the 31 (100%) visualized cases of VUR, 11 (35.48%) were assessed as grade II, 11 (35.48%) as grade III, eight (25.80%) as grade IV and one (3.22%) as grade V.

Transabdominal static three-dimensional urinary bladder assessment (3D) and real time (4D) assessment, known as virtual cystoscopy, was possible in all patients (n = 58, 100%). In one case (1.72%), virtual cystoscopy visualized the atypical localization of the ureteral orifice beyond the triaione of the bladder, which had not been seen in a previous 2D B-mode examination. In the remaining 57 patients (98.28%), the image of the urinary bladder was normal (fig. 3).

Transperineal morphological assessment of the urethra using the 2D method was possible in all cases (n = 58, 100%).

J Ultrason 2013; 13: 394–407
Magdalena Maria Woźniak, Agata Pawelec, Andrzej Paweł Wieczorek, Maria Małgorzata Zajączkowska, Halina Borzęcka, Paweł Nachulewicz

do przebrzuszego było możliwe u wszystkich badanych pacjentów \((n = 58, 100\%)\). Wśród badanych pacjentów u 1 dziecka \((1,72\%)\) badanie wirtualnej cystoskopii pozwoliło na uwidocznienie nieprawidłowo położonego ujścia moczowodu poza trójkątem pęcherzowym, które nie zostało uwidocznione w wykonanym uprzednio badaniu 2D w opcji B-mode. U pozostałych 57 \((98,28\%)\) pacjentów obraz pęcherza moczowego był prawidłowy (ryc. 3).

Ocena morfologiczna cewki moczowej z dostępu przez krocze metodą 2D była możliwa u wszystkich badanych pacjentów \((n = 58, 100\%)\). U dziewąćcecy oceny dokonywane z dostępu przez przednień pochwy, uwidaczniając cewkę moczową na całym jej przebiegu od szyi pęcherza do ujścia zewnętrz- nego z jednego przełożenia głowy (ryc. 4). U chłopców ocenę szyi pęcherza i proksymalnego odcinka cewki moczowej przeprowadzono z dostępu nadłoniowego i/lub przez krocze/mosznię, natomiast ocenę dystalnego odcinka cewki

In girls, the examination was conducted via the vaginal orifice, which allowed the entire course of the urethra from the neck of the urinary bladder to its external opening to be visualized with one application of the transducer (fig. 4). In boys, assessment of the bladder neck and the proximal fragment of the urethra was conducted via the suprapubic access and via the perineum/scrotum. Assessment of the distal part of the urethra was con-ducted by placing the probe in order to visualize the entire urethra. In all subjects, the morphology of the urethra in a 2D examination was judged to be normal.

The 2D, 3D and 4D assessment of the urethra during micturition was possible in all patients in whom voiding
moczowej – z przyłożenia głowicy bezpośrednio do dystalnej części prącia (ryc. 5). U niemowląt płci męskiej możliwe było uwidocznienie całej cewki moczowej z jednego przyłożenia głowicy, u chłopców starszych dokonywano oceny, przesuwając głowicę w celu uwidocznienia cewki na całej długości. U wszystkich badanych pacjentów morfologia cewki moczowej w badaniu 2D została oceniona jako prawidłowa.

Ocena cewki moczowej w trakcie mikcji techniką 2D, 3D oraz 4D była możliwa u wszystkich pacjentów, u których w trakcie badania uzyskano mikcję, tj. u 55 (95,83%) spośród 58 badanych. U 3 pacjentek (5,17%) nie uzyskano mikcji z uwagi na brak współpracy z nimi. Technika 2D umożliwiła ocenę szyi pęcherza i światła cewki moczowej, natomiast techniki trójwymiarowe (3D/4D) dodatkowo pozwoliły na ocenę przestrzenną badanych struktur anatomicznych (ryc. 6). U wszystkich 55 pacjentów (100%) badanie cewki moczowej w trakcie mikcji technikami 2D, 3D oraz 4D nie uwidoczniło obecności zmian patologicznych.

Ocena OPM z zastosowaniem technik 3D/4D była możliwa u wszystkich pacjentów, u których zdiagnozowano obecność OPM, tj. u 23 dzieci (31 JM) (100%). Zastosowanie technik trójwymiarowych (3D/4D) pozwoliło na precyzyjne określenie stopnia OPM we wszystkich jednostkach moczowodowych (31 JM, 100%) (rcy. 7), jednakże szczególnie przydatne było w różnicowaniu pomiędzy stopniem II a III (łącznie 22 JM, 70,97%), gdzie badanie trójwymiarowe istotnie ułatwiło ocenę poszerzenia kielichów nerkowych w uwidocznionym OPM.

Omówienie

W 1997 roku Amerykańskie Towarzystwo Urologiczne (American Urological Association, AUA) ogłosiło, że istnieje konieczność poszukiwania „mniej traumatycznych” metody diagnostycznych pozwalających na ustalenie istnienia OPM, jak również technik cystourethrografi mikcyjnej was elicited during the examination, i.e. in 55 out of 58 (95.83%) patients. Micturition was not elicited in three patients (5.17%) due to the lack of cooperation. The 2D technique enabled assessment of the bladder neck and the lumen of the urethra. The three-dimensional techniques (3D and 4D), however, allowed for an additional spatial assessment of the studied anatomical structures (fig. 6). These 2D, 3D and 4D examinations of the urethra during micturition did not demonstrate any pathological changes in any of the 55 patients.

The 3D and 4D assessment of VUR was possible in all patients in whom VUR was diagnosed, i.e. in 23 children (31 UUs) (100%). The application of the three-dimensional (3D/4D) techniques enabled accurate specification of a VUR grade in all ureteral units (31 UUs, 100%) (fig. 7). Nevertheless, they proved the most useful in differentiating between grade II and III (in total 22 UUs, 70.97%). In this case, a three-dimensional examination facilitated the assessment of the renal calyces in visualized VUR to a considerable extent.

Discussion

In 1997, the American Urological Association (AUA) reported the need to search for “less traumatic” diagnostic methods that would allow the detection of VUR as well as techniques of VCUG that would reduce exposure to ionizing radiation[13]. Ce-VUS, which meets both these criteria, appears to be one of the most promising methods. It has been used in the diagnosis and treatment monitoring of VUR in children for approximately 15 years. As early as in 2001, certain publications proved that the application of ce-VUS would reduce by over a half the number of pediatric patients exposed to ionizing radiation during the diagnosis and treatment of VUR[12]. Initially, the examinations were performed with the use of the second-generation ultrasound contrast
pozwalających na zmniejszenie narażenia na promieniowanie jonizujące(11). Jedną z najbardziej obiecujących metod, która spełniałaby oba wymienione powyżej kryteria, wydaje się sonocystografia mikcyjna, która zaczęła być stosowana w diagnostyce i monitorowaniu leczenia OPM u dzieci prawie 15 lat temu. Już w roku 2001 opublikowano prace, które dowodziły, że zastosowanie sonocystografii mikcyjnej pozwoliło na zmnieszenie o ponad połowę liczby dzieci poddawanych promieniowaniu jonizującemu w trakcie diagnostyki i leczenia OPM(12). Początkowo badania wykonywano z zastosowaniem ultrasonograficznego środka kontrastującego II generacji o nazwie Levovist (Schering, Berlin, Germany). Ce-VUS with Levovist was used successfully from 1999 in numerous European countries and in Australia. It was proven that when administered intravesically, Levovist, being a solution of galactose-based, palmitic acid microbubbles, enables the visualization of the urinary tract in children and possibly also the identification of VUR (sensitivity 57–100%, specificity 85–100%, positive predictive value 58–100%, negative predictive value 87–100%, diagnostic accuracy 78–96%)13–15. In 2001, a third-generation ultrasound contrast agent – SonoVue® – was introduced. In vitro comparative studies of Levovist

Ryc. 6. Badanie w trakcie mikcji w opcji kontrastowej. Uwidocznienie techniki dwuwymiarowej 2D cewki moczowej żeńskiej (A) oraz męskiej (B). Uwidocznienie techniki trójwymiarowej 3D/4D cewki moczowej żeńskiej (C) i męskiej w odcinku proksymalnym (D).

Fig. 6. Contrast-enhanced examination during voiding. 2D examination of the female (A) and male (B) urethra. Three-dimensional (3D/4D) imaging of the female urethra (C) and male urethra on its proximal aspect (D).

Ryc. 7. Uwidocznienie obecności OPM II stopnia (A), III stopnia (B, C), IV stopnia (D) oraz V stopnia (E) z zastosowaniem techniki trójwymiarowej (A, B, D, E) oraz trójwymiarowej w czasie rzeczywistym, tzw. 4D (C).

Fig. 7. Visualization of VUR grade II (A), grade III (B, C), grade IV (D) and grade V (E) using the three-dimensional technique (A, B, D, E) and real-time three-dimensional examination, so-called 4D (C).
Niemcy). Badania sonocystografii mikcyjnej z Levovistem stosowano z powodzeniem od 1999 roku w wielu krajach europejskich oraz w Australii. Dodatkowo, iż Levovist, będący roztworem mikropęcherzyków kwasu palmitowego opaślanych galaktozą, podany dopochewowo umożliwia uwidocznienie układu mocowego u dzieci oraz ewentualnego istnienia OPM (czaszość metody 57–100%, specyficzność 85–100%, pozytywna wartość predykcyjna 58–100%, negatywna wartość predykcyjna 87–100%, dokładność diagnozowa 78–96%)[13–15]. W roku 2001 na rynek wprowadzono ultrasonograficzny środek III generacji SonoVue®. W badaniach in vitro porównujących Levovist (5% objętości) z SonoVue® wykazano, iż wzmożenie obserwowane po SonoVue® trwało siedmiokrotnie dłużej przy zastosowaniu dawki o 80% niższej od dawki Levovistu(16). Jako środek nowocześniejszy od swojego poprzednika, niewymagający technik dopplerowskich w trakcie badania, pasiadający fazę miąższową wzmożoną oraz umożliwiający znacznie dłuższy czas wzmożenia, SonoVue® zaczął stopniowo zastępować Levovist, który wkrótce potem został wycofany z rynku. Obecnie SonoVue®, stanowiący zawiesinę mikropęcherzyków sześciofluorku siarki o średnicy mniejszej niż kapilary, jest środkiem uznawanym na świecie i w naszym kraju, z powodzeniem stosowanym w diagnostyce i monitorowaniu leczenia zmian w licznych narządach, najszerszej w diagnostyce zmian ogniskowych w wątrobie(17,18).

Niestety, do dziś metoda sonocystografii mikcyjnej nie została wprowadzona do rutynowego postępowania w algorytmie diagnostycznym w Polsce. Dlatego autorzy niniejszej pracy podjęli próbę oceny przydatności sonocystografii mikcyjnej w diagnostyce i monitorowaniu leczenia OPM u dzieci w kontekście możliwości zastąpienia omawianą metodą dotychczas rutynowo stosowanej cystografii mikcyjnej.

Jednym z najważniejszych ograniczeń utrudniających rozprosowanię metody jest fakt, iż do dziś środek SonoVue® nie posiada rejestracji do stosowania u pacjentów poniżej 18 roku życia. Mimo to w licznych ośrodkach w Europie i Stanach Zjednoczonych znalazł powszechne zastosowanie w diagnostyce OPM u dzieci, co zostało potwierdzone przeprowadzonym w 2011 roku sondażem dowodzącym, iż środek ten w Europie zastosowano dopochewowo u dzieci w ponad 4000 badaniach(19–20). Niedopuszczenie do stosowania u dzieci związane z brakiem odpowiednich badań klinicznych na wystarczająco dużej grupie odnosi się jednak do stosowania dożynnego, produkcyjnie nie podnosi w ogóle kwestii stosowania do jam ciała, mimo że metoda ta powszechnie uznawana jest za bardzo bezpieczną, niewywołującą działań niepożądanych. Zarówno Europejskie Towarzystwo Radiologii Pediatricznej (European Society of Paediatric Radiology, ESPR), jak i Robocza Grupa Pediatryczna Europejskiego Towarzystwa Radiologii Układu Moczowo-Płciowego (European Society of Urogenital Radiology, ESUR – Paediatric Working Group) stwierdzają, że z medycznego i naukowego punktu widzenia należy propagować i propagować stosowanie ultrasonograficznych środków kontrastujących u dzieci, jednocześnie powinny zostać przezprowadzone badania umożliwiające oficjalne zalegalizowanie i rejestrację tych środków do stosowania w pediatrii(19). Wyższe wymienione towarzystwa zalecają w algorytmach diagnoistycznych stosowanie sonocystografii mikcyjnej jako metodę (5% volume) i SonoVue® demonstrated that enhancement observed with SonoVue® lasted seven times longer when an 80% lower dose, compared to Levovist, was used(19). SonoVue®, more modern than its predecessor, does not require the usage of Doppler techniques, has a parenchymal enhancement phase and enables considerably longer enhancement, started to gradually replace Levovist, which soon after was withdrawn from the market. Currently, SonoVue®, which is a suspension of sulfur hexafluoride microbubbles with a diameter smaller than that of capillaries, is a recognized agent both in Poland and abroad. It is used with success in the diagnosis and monitoring of focal lesions in numerous organs, most frequently in the diagnosis of hepatic focal lesions(17,18).

Unfortunately, to date, ce-VUS has not been introduced as a routine procedure in the diagnostic algorithm in Poland. Therefore, we attempted to assess the relevance of ce-VUS in the diagnosis and treatment monitoring of VUR in children and the possibility of replacing the currently used VCUG.

One of the most important limitations to popularizing the method is the fact that to date, SonoVue® has not been registered for use in patients below the age of 18. Even so, it is commonly used for VUR diagnosis in children both in Europe and the United States. This was confirmed in a survey conducted in 2011 which indicated that in European children, this agent had been used intravesically in over 4000 examinations(19,20). However, the lack of registration for use in pediatric patients associated with the lack of clinical trials conducted among a sufficiently large population refers to its intravenous use. The manufacturer makes no mention of the issue of its use in the cavities despite the common belief that such use is safe and does not cause adverse reactions in children. Both the European Society of Paediatric Radiology (ESPR) and the European Society of Urogenital Radiology (ESUR) – Paediatric Working Group claim that from medical and scientific points of view, the use of ultrasound contrast agents in children should be promoted and propagated. At the same time, appropriate trials allowing for the official legalization and registration of such agents in pediatrics should be conducted(19). In their diagnostic algorithms, the aforementioned Societies recommend ce-VUS as the method of choice for diagnosing VUR in girls with recurrent urinary tract infections and for monitoring the treatment of VUR in girls and boys. Moreover, this method is recommended in girls with prenatally diagnosed hydronephrosis, in girls and boys with the suspicion of obstruction uropathy, for diagnosing congenital defects of the region of urogenital hiatus, in cases of undifferentiated sex, in abscess drainage as well as for fistula diagnosis and others(19).

Despite the fact that this agent is not registered for use in patients below the age of 18, there are numerous reports worldwide describing ce-VUS in pediatric patients with the intravesical administration of SonoVue®. In 2009, Papadopoulos et al. published a paper in which, based

J Ultrasound 2013; 13: 394–407
Mimo braku rejestracji środka do stosowania u pacjentów poniżej 18. roku życia w piśmiennictwie światowym można znaleźć liczne doniesienia o wykonywaniu badań sonocystografii mikcyjnych u pacjentów pediatrycznych po dopóottie

z wyboru do diagnostyki OPM u dzieci. Znakowym wynikiem, zarówno u pacjentów jako i u chłopców, jest wiodący w rzucie klinicznym podaną SonoVue®. W 2009 roku Papadopoulou i wsp. opublikowali pracę, w której – na podstawie badań z SonoVue® u 228 dzieci z OPM – dowodzą, iż sonocystografia mikcyjna przewyższa czułością metodę rentgenowską cystouretrografii mikcyjnej, umożliwiając uwidocznienie odpływu u 37% pacjentów – więcej niż metoda klasyczna(22). Podobne wyniki uzyskali w 2012 roku Ključevšek i wsp., poddawszy analizę badania wykonane w grupie 132 dzieci. Wyniki pracy dowodzą, iż metoda rentgenowska pozwoliła na uwidocznienie odpływów u 12% pacjentów, podczas gdy metoda ultrasonograficzna – u 32% pacjentów z tej grupy(22). W 2011 roku Otukesh i wsp. opublikowali wyniki badań, w których w porównaniu z metodą cystografii izotopowej jako referencyjną czułość metody sonocystografii mikcyjnej pozostawała na poziomie 88%, a specyficzność – na poziomie 94%(23). Liczne publikacje wskazują, iż sonocystografia mikcyjna z zastosowaniem środka kontrastującego III generacji SonoVue® jest doskonałą metodą w diagnostyce i monitorowaniu leczenia OPM, mogącą w wielu przypadkach zastąpić rentgenowską cystouretrografii mikcyjną(24). Wyższa sonocystografia mikcyjna nad metodą rentgenowską potwierdzają także prace, w których podnoszone są zarówno większa liczba wykrytych odpływów w sonocystografii z uwagi na dynamiczny i długotrwały charakter badania, jak i możliwość wykrycia dodatkowych wad anatomicznych w badaniu z dostępu przez krocie(22,25). Wyniki uzyskane w niniejszej pracy są zgodne z rezultatami powyżej przytoczonych publikacji. Autorzy wykazali wysoką zgodność pomiędzy cystouretrografii mikcyjną i sonocystografią mikcyjną (86,95%), jak również wysoką czułość, swoistość, wartość predykcynę dodatnią i ujemną sonocystografii mikcyjnej (odpowiednio 84,51%, 90,99%, 85,71% i 90,17%). U części pacjentów jedynie jedna z metod ujawnia OPM, jednakże w przypadku OPM zdiagnozowanych wyłącznie za pomocą cystouretrografii mikcyjnej dotyczyło to w przeważającej większości (9 na 11 JM, 81,81%) odpływów niskiego stopnia, tj. I i II, natomiast w przypadku OPM zdiagnozowanych wyłącznie za pomocą sonocystografii mikcyjnej były to w większości odpływy w stopniu II i wyższym (9 na 10 JM, 90%). Autorzy wykazali również, iż w badaniu sonocystografii mikcyjnej możliwa jest mierodajna ocena cewki moczowej, zarówno u dziewcząt, jak i chłopców, choć niewątpliwie konieczne są dalsze badania na większej grupie pacjentów oraz z zastosowaniem metody referencyjnej.

Nienarażanie pacjenta pediatricznego na promieniowanie jonizujące, obok niebędącego już dziś wątpliwości jednakowej on studies conducted with SonoVue® among 228 pediatric patients with VUR, they indicate that ce-VUS is superior to VCUG in terms of sensitivity and that it enabled the visualization of refluxes in 37% of patients more than the conventional method(21). In 2012, Ključevšek et al. obtained similar results following the analysis of 132 children. They showed that the X-ray-based method visualized refluxes in 12% of patients whereas the ultrasound-based method visualized the pathology in 32% of patients(22). In 2011, Otukesh et al. published the outcomes of their studies in which the sensitivity of ce-VUS was 88% and specificity was 94% when isotope cystography was used as the reference method(23). Numerous publications indicate that ce-VUS with the use of the third-generation contrast agent SonoVue®, is ideal for diagnosing and monitoring the course of treatment of VUR and that in many cases, it may replace X-ray-based VCUG(8,24). The superiority of ce-VUS compared to VCUG, has also been confirmed in other publications that attribute the larger number of refluxes detected in ce-VUS to the more dynamic and longer examination as well as the ability to detect additional anatomical defects thanks to the transperineal access(3,25). The results obtained in this paper are consistent with the outcomes of the aforementioned publications. The authors demonstrated high concordance between VCUG and ce-VUS (86,95%) as well as the high sensitivity, specificity, positive and negative predictive values of ce-VUS (84,51%, 90,99%, 85,71% and 90,17% respectively). In certain patients, VUR was visualized by only one of the methods. In the case of VUR diagnosed solely by means of VCUG, the great majority of such instances (9 of 11 UUs, 81,81%) were low-grade refluxes, i.e. grade I and II. However, in the case of VUR diagnosed by means of ce-VUS only, these were mainly refluxes assessed as grade II or higher (9 of 10 UUs, 90%). The authors also demonstrated that in ce-VUS, a reliable assessment of the urethra is possible in both girls and boys. Undoubtedly, however, further studies of a larger group of patients and with the use of a reference method need to be conducted.

Besides the fact that the sensitivity and specificity of this method are non-inferior to those of VCUG, the lack of exposure to ionizing radiation is one of the most essential arguments attesting to the superiority of ce-VUS with respect to VCUG. This is particularly important in pediatric patients whose organs and tissues are more radiosensitive than tissues of adults and thus, more susceptible to the negative effects of ionizing radiation, both threshold and stochastic ones. One should bear in mind that during conventional VCUG, the gonads are exposed to radiation, which is a particular concern given that they are the most radiosensitive organs of the human body. Moreover, repeated exposure increases the risk of carcinogenesis and of genetic anomalies in the offspring(26).

Another advantage of ce-VUS is its dynamic character, unlike VCUG, in which four X-ray pictures capture selected, millisecond stages of voiding. Therefore, it is possible that the precise moment that would enable
lub wyższej czułości i specyficzności metody w porównaniu z rentgenowską cystoureterografią mikcyjną, jest jednym z najważniejszych argumentów stanowiących o przewadze sonocystografii mikcyjnej nad rentgenowską cystoureterografią mikcyjną. Jest to szczególnie istotne w dzieciach, których organy i tkanki są bardziej promienioczułe niż tkanki osób dorosłych i bardziej narażone na negatywne skutki promieniowania jonizującego, zarówno progowe, jak i stocha-
styczne. Należy przy tym pamiętać, iż w trakcie klasycznej rentgenowskiej cystoureterografii mikcyjnej w polu naświetlania znajdują się gonady, które należą do najbardziej promienioczułych narządów człowieka, a wielokrotna ekspozycja zwiększa zarówno ryzyko karcynogenezy, jak i anomalii genetycznych u potomstwa(26).

Kolejną zaletą sonocystografii mikcyjnej jest jej dynamiczny charakter, w przeciwieństwie do statycznej cystoureterografii mikcyjnej. W metodzie klasycznej na 4 zdjęciach rentgenow-
skich są uchwycone wybrane milisekundowe etapy procesu mikcyji. Dlatego też możliwe jest, że nie zostanie uchwy-
cony moment, który pozwoliłby na zdiagnozowanie stanu faktycznego. Jest to szczególnie istotne przy odpływnych, które mogą ujawniać się jedynie w momencie rozpoczęcia mikcyji, gdy ciśnienie w pęcherzu moczowym jest największe. Sonocystografia mikcyjna, jako badanie dynamiczne, umożliwia obserwowanie całego procesu mikcyji oraz zare-
jestrowanie filmów i obrazów w celu ich dokładnej oceny po badaniu(21,22).

Ponadto badanie cystoureterografii rentgenowskiej jest wykonywane przy zastosowaniu jodowych preparatów jako kontrastujących, które znacznie częściej wywołują reakcje niepo-
żądane niż ultrasonograficzne środki kontrastujące, nale-
żące do grupy najlepszych kontrastów dostępnych w diagnostyce obrazowej, szczególnie podczas do podaniu dopęché-
rzowym. W ciągu ostatnich 15 lat wykonano tysiące badań sonocystografii mikcyjnych u dzieci, nie odnotowując przypadków poważnych działań niepożądanych(19).

Metoda cystoureterografii rentgenowskiej umożliwia uzy-
skanie obrazów płaskich w płaszczyźnie przednio-tylnej, gdzie otrzymane obraz stanowi sumę obrazów nakładają-
ących się na siebie licznych struktur, zarówno nerek, jak i organów położonych przed- i zaanekowo. Nierzadko wyni-
kiem tego są liczne artefakty z gazów jelitowych i innych organów wewnętrznych, znacznie utrudniające lub wręcz uniemożliwiające właściwą interpretację wyników badania oraz stwarzające ryzyko popełnienia potencjalnej pomyłki diagnostycznej. Dodatkowo uzykany płaski obraz odpływu do układu kielichowo-miedniczkowego, zwłaszcza w przypadku nerek o nieprowadzającej rotacji lub położonych ekto-
powo, może zostać mylnie zinterpretowany w kwestii stopni odpływu. W niniejszej pracy wykazano dużą przydatność zastosowania technik trójwymiarowych 3D/4D zarówno do bardziej precyzyjnej oceny stopni odpływu, co szczególnie istotne w różnicowaniu stopni II i III, jak i do oceny szyi pęcherza i cewki mocowej.

Podsumowując, wśród zalet sonocystografii mikcyjnej wykonywanej w opcji dwuwymiarowej (2D) należy wymie-
nić: a) brak narażenia na promieniowanie jonizujące, a diagnosis might not be captured by the latter method. This is particularly significant in refluxes, which may be visible solely at the start of voiding when the pressure in the urinary bladder is the greatest. Voiding urosonogra-
phy, as a dynamic examination, enables the observation of the entire voiding process and the recording of films and images for their thorough assessment following the examination(21,22).

Furthermore, VCUG is performed with the use of iodine contrast agents, which induce adverse reactions more fre-
quently than ultrasound contrast agents, the latter being the safest contrast media available in medical imaging, particularly when administered intravesically. Over the last 15 years, thousands of voiding urosonography exami-
nations have been conducted in children and no serious adverse reactions have been noted(19).

In VCUG, we obtain anteroposterior flat images in which the image comprises numerous structures over-
laid on one another, i.e. both the kidneys and the organs located on their anterior or posterior sides. This fre-
quently results in various artefacts caused by intestinal gas and other internal organs. Such artefacts hinder or prevent the correct interpretation of the results and carry the risk of making a potential diagnostic error. In addition, the obtained flat image of reflux to the pel-
valcysteal system, particularly in the case of anomalous kidney rotation or ectopic kidneys, may be erroneously interpreted in terms of the reflux grade. The present study demonstrates the usefulness of three-dimensional techniques (3D/4D) both for more precise reflux grading, particularly in the differentiation between grade II and III, as well as for the assessment of the bladder neck and urethra.

To conclude, the advantages of two-dimensional (2D) voiding urosonography include: a) the lack of exposure to ionizing radiation; b) the dynamic character of the examina-
tion; c) the lack of risk associated with the administration of ionizing contrast agents; d) greater intimacy compared to voiding cystourethrography and e) the ability to store the examination in its dynamic form (films), which facilitates retrospective analysis, enables consultations with other specialists and may be used for didactic purposes. If the protocol of the exami-
nation is extended to include three-dimensional static or real-time (3D/4D) examinations, additional advantages arise, such as: accurate assessment of the interior of the urinary bladder (so-called virtual cystoscopy), more pre-
cise reflux grading, a more thorough assessment of the bladder and urethra in multiple planes that is impossible to obtain in 2D examinations, the possibility of postpro-
cessing, the option to compare 3D ultrasound findings with the results of magnetic resonance imaging and computed tomography, and the creation of an excellent didactic tool that allows repeated “virtual” examination of the patient.

The limitations of ce-VUS include: a) lack of registration of the contrast agent in pediatrics; b) the longer duration of

J Ultrason 2013; 13: 394-407
405
Wnioski

Sonocystografia mikcyjna jest metodą umożliwiającą diagnozę i monitorowanie leczenia OPM u dzieci oraz ocenę cewki moczowej zarówno u dziewcząt, jak i chłopców. Metoda ta charakteryzuje się wysoką czułością i swoistością, jest bezpieczna, stosunkowo niedroga i powinna być stosowana rutynowo. Ponadto sonocystografia mikcyjna jest badaniem o wyższej czułości w porównaniu z cystografią mikcyjną z uwagi na fizykę mikropęcherzyków, dynamicznym charakter badania, brak narażenia na promieniowanie i jedowe środki kontrastujące oraz możliwość oceny trójwymiarowej. Technika ta może zastąpić dotychczas stosowaną rentgenowską cystouretragrafię mikcyjną.

Konflikt interesów

Badania zrealizowano w ramach projektu badawczego Narodowego Centrum Nauki nr NN403456137. Autorzy nie zgłaszają żadnych innych finansowych ani osobistych powiązań z innymi osobami lub organizacjami, które mogłyby negatywnie wpływać na treść publikacji oraz rościć sobie prawo do tej publikacji.

Piśmiennictwo:

1. Galloy MA, Mandy D, Pecastaings M, Mainard-Simard L, Claudon M: [Sonocystography: a new method for the diagnosis and follow-up of vesico-ureteric reflux in children]. J Radiol 2003; 84: 2055–2061.

2. Routh JC, Bogaert GA, Kaefer M, Manzoni G, Park JM, Retik AB et al.: Vesicoureteral reflux: current trends in diagnosis, screening, and treatment. Eur Urol 2012; 61: 773–782.

3. Duran C, del Riego J, Riera L.: [Voiding urosonography: a safe technique for the study of the entire urinary tract in children]. Radiologia 2013; 55: 160–166.

4. Deng J, Zhou L, Zeng S, Zhang C, Zeng G, Wang J et al.: [Voiding urosonography with SonoVue and fluoroscopic voiding cystourethrography in evaluation of vesicoureteral reflux: a comparative study]. Nan Fang Yi Ke Da Xue Xue Bao 2013; 33: 1467–1470.

b) dynamiczny charakter badania, c) brak ryzyka związanego z podaniem jodowych środków kontrastujących, d) większa intymność w porównaniu z cystouretragrąfiią mikcyjną oraz e) możliwość zapisu badania w sekwencji dynamicznej (w postaci filmów), co ułatwia ocenę retrospektywną, kon- sultacje z innymi specjalistami i może stanowić narzędzie dydaktyczne. Jeżeli protokół badania zostanie rozszerzony także o badanie trójwymiarowe statyczne lub w czasie rzeczywistym (3D/4D), to dodatkowe zalety stanowią precyzyjną ocena wnętrz pęcherza moczowego (tzw. wirtualna cystoskopia), dokładniejsza ocena stopnia odpływu, szyi pęcherza i cewki moczowej w wielu płaszczyznach, niemożliwych do uzyskania w badaniu 2D, możliwość obróbki (post-processing) po badaniu, możliwość porównywania danych USG 3D z wynikami rezonansu magnetycznego i tomografii komputerowej oraz doskonałe narzędzie edukacyjne, umoż- liwiające ponowne „wirtualne” badanie pacjenta.

Wśród ograniczeń sonocystografii mikcyjnej należy wymie- nić: a) brak rejestracji środka kontrastującego w pediatrii, b) dłuższy czas badania w porównaniu z cystouretragrąfiią mikcyjną, c) konieczność bezpośredniego zaangażowania lekarza radiologa do badania, d) trudną ocenę odpływu I stopnia, e) zależność od doświadczenia badającego oraz f) większy koszt środka kontrastującego w porównaniu z jodowymi środkami kontrastującymi.

Conclusions

Ce-VUS enables diagnosis and treatment monitoring of VUR in children and allows assessment of the urethra in both girls and boys. This method is characterized by high sensitivity and specificity. Moreover, it is safe, relatively inexpensive and should be conducted on a routine basis. Moreover, ce-VUS is more sensitive than VCUG due to the properties of the microbubbles, the dynamic character of the examination, the lack of exposure to radiation and iodine contrast agents as well as the potential for three-dimensional assessment. This technique may replace VCUG, the most commonly used method to date.

Conflict of interest

This study was funded by a research grant from the National Science Center, No. NN403456137. The authors do not report any financial or personal links with other persons or organizations that might negatively affect the content of this publication and claim author- ship rights to this publication.
5. Duran C, del Riego J, Riera L, Martin C, Serrano C, Palaña P: Voiding urosonography including urethrosography: high-quality examinations with an optimised procedure using a second-generation US contrast agent. Pediatr Radiol 2012; 42: 660–667.

6. Duran C, Valera A, Alguesuerai A, Ballesteros E, Riera L, Martin C et al.: Voiding urosonography: the study of the urethra is no longer a limitation of the technique. Pediatr Radiol 2009; 39: 124–131.

7. Doganis D, Mavrikou M, Delis D, Stamoyannou L, Siafas K, Sinaniotis K: Timing of voiding cystourethrography in infants with first time urinary infection. Pediatr Nephrol 2009; 24: 319–322.

8. Riccabona M, Avni FE, Blickman JG, Dacher JN, Darge K, Lobo ML et al.: Imaging recommendations in paediatric uroradiology: minutes of the ESPR workgroup session on urinary tract infection, lethal hydronephrosis, urinary tract ultrasonography and voiding cystourethrography. Barcelona, Spain, June 2007. Pediatr Radiol 2008; 38: 138–145.

9. Darge K, Troeger J: Vesicoureteral reflux grading in contrast-enhanced voiding urosonography. Eur J Radiol 2002; 43: 122–128.

10. Lebowitz RL, Olbing H, Parkkulainen KV, Smellie JM, Tamminen-Moobius TE: International system of radiographic grading of vesicoureteric reflux. International Reflux Study in Children. Pediatr Radiol 1985; 15: 105–109.

11. Elder JS, Peters CA, Arant BS Jr., Ewalt DH, Hawtrey CE, Hurwitz RS et al.: Pediatric Vesicoureteral Reflux Guidelines Panel summary report on the management of primary vesicoureteral reflux in children. J Urol 1997; 157: 1846–1851.

12. Darge K, Ghods S, Zieger B, Rohrschneider W, Troeger J: Reduction in voiding cystourethrographies after the introduction of contrast-enhanced sonographic reflux diagnosis. Pediatr Radiol 2001; 31: 790–795.

13. Darge K, Moeller RT, Trusen A, Butter F, Jordyani N, Riedmiller H: Diagnosis of vesicoureteric reflux with low-dose contrast-enhanced harmonic ultrasound imaging. Pediatr Radiol 2005; 35: 73–78.

14. Darge K: Voiding urosonography with US contrast agents for the diagnosis of vesicoureteric reflux in children. I. Comparison with radiological examinations. Pediatr Radiol 2008; 38: 54–63; quiz 126–127.

15. Darge K: Voiding urosonography with ultrasound contrast agents for the diagnosis of vesicoureteric reflux in children. I. Procedure. Pediatr Radiol 2008; 38: 40–53.

16. Robrecht J, Darge K: In-vitro comparison of a 1st and a 2nd generation US contrast agent for reflux diagnosis. RöFo 2007; 179: 818–825.

17. Claudon M, Dietrich CF, Choi B, Cosgrove DO, Kudo M, Nolaeo CP et al.: Guidelines and good clinical practice recommendations for Contrast Enhanced Ultrasonography (CEUS) in the liver – update 2012: a WFUMB-EFSUMB initiative in cooperation with representatives of AFSUMB, AIUM, ASUM, FLAUS and ICUS. Ultrasound Med Biol 2013; 39: 187–210.

18. Piscaglia F, Nolaeo C, Dietrich CF, Cosgrove DO, Gilja OH, Bachmann Nielsen M et al.: The EFSUMB Guidelines and Recommendations on the Clinical Practice of Contrast Enhanced Ultrasonography (CEUS): update 2011 on non-hepatic applications. Ultraschall Med 2012; 33: 33–59.

19. Riccabona M, Avni FE, Damasio MB, Ording-Müller LS, Blickman JG, Darge K et al.: ESPR Uroradiology Task Force and ESUR Paediatric Working Group – Imaging recommendations in paediatric uroradiology, part V: childhood cystic kidney disease, childhood renal transplantation and contrast-enhanced ultrasonography in children. Pediatr Radiol 2012; 42: 1275–1283.

20. Riccabona M: Application of a second-generation US contrast agent in infants and children – a European questionnaire-based survey. Pediatr Radiol 2012; 42:1471–1480.

21. Papadopoulou F, Anthopoulou A, Siomou E, Efremidis S, Tsamboulas C, Darge K: Harmonic voiding urosonography with a second-generation contrast agent for the diagnosis of vesicoureteral reflux. Pediatr Radiol 2009; 39: 239–244.

22. Kljucvešek D, Battelino N, Tomazić M, Kersnik Levart T: A comparison of echo-enhanced voiding urosonography with X-ray voiding cystourethrography in the first year of life. Acta Paediatr 2012; 101: e235–e239.

23. Otukesh H, Hoseini R, Behzadi AH, Mehran M, Tabbaroki A, Khamesian B et al.: Accuracy of cystosonography in the diagnosis of vesicourethral reflux in children. Saudi J Kidney Dis Transpl 2011; 22: 488–491.

24. Kis E, Nyitrai A, Várkonyi I, Máttyus I, Cseprekál O, Reusz G et al.: The EFSUMB Guidelines and Recommendations on Contrast Enhanced Ultrasound (CEUS) in children – can it replace voiding cystourethrography? Eur Radiol 2006; 16: 846–851.