A MASSIVE CLUSTER OF GALAXIES AT \(z = 0.996 \)

J.-M. DELTORN AND O. LE FÈVRE

DAEC, Observatoire de Paris-Meudon, 92195 Meudon Cedex, France

DAVID CRAMPTON

Dominion Astrophysical Observatory, National Research Council of Canada, R.R. 5 Victoria, B.C., V8X4M6, Canada

AND

M. DICKINSON

Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218

ABSTRACT

We report the identification of a cluster of galaxies around the high-redshift radio galaxy 3CR 184 at \(z = 0.996 \). The identification is supported by an excess of galaxies observed in projection in \(I \)-band images (both in ground-based and Hubble Space Telescope [HST] data), a peak in the redshift distribution comprising 11 galaxies (out of 56 with measured redshifts) in a \(\sim 2000 \) km s\(^{-1} \) velocity interval, and the observation on HST WFPC2 frames of a gravitational arc seen projected at \(42 h_{50}^{-1} \) kpc away from the central radio galaxy. We thus have strong evidence for the presence of a massive cluster at \(z \approx 1 \). The mass contained within the arc radius is in the range \((1.20 - 2.78) \times 10^{13} h_{50}^{-1} M_{\odot} \) for \(z_{\text{arc}} \) between 1.5 and 3; the corresponding mass-to-light ratio varies from \(56 h_{50} \) to \(140 h_{50} \). The velocity dispersion deduced from the galaxy cluster redshifts is \(634^{+154}_{-97} \) km s\(^{-1} \), leading to a virial mass \(M = 6.16^{+3.56}_{-2.66} \times 10^{14} h_{50}^{2} M_{\odot} \) and a mass-to-light ratio of \(200 h_{50} < (M/L_{\odot})_{100 h_{50}^{-1}} < 500 h_{50} \) within a radius of \(400 h_{50}^{1/2} \) kpc.

Subject headings: cosmology: observations — large-scale structure of universe — galaxies: clusters: general

1. INTRODUCTION

Understanding the formation and evolution of large-scale structures is of considerable importance to modern cosmology. While galaxy formation and evolution is receiving much warranted attention, the observational study of the formation and evolution of clusters of galaxies and other large-scale structures is only now developing.

To identify clusters at high redshifts is a challenging observational task. At low redshifts, one can rely on the projected two-dimensional galaxy density, as was done successfully for the earliest photographic material (e.g., Abell 1958; Zwicky 1961). However, at high redshifts, \(z \approx 0.5 \), it becomes increasingly difficult to identify the two-dimensional galaxy overdensity produced by a cluster because the projected foreground and background galaxies are so numerous that the density contrast is severely reduced and chance alignments of groups of galaxies can mimic the appearance of clusters (Frenk et al. 1990).

The existence of a distant cluster can be proven only if several lines of evidence are combined, which should include the measurement of a projected overdensity of galaxies in an area of a few square arcminutes on the sky, combined with a significant overdensity observed in the redshift distribution of galaxies on velocity scales \(\sim 2000 \) km s\(^{-1} \) in order to reduce contamination by foreground and background interloper galaxies. In addition, evidence for hot gas through the detection of X-ray emission and/or evidence for a peaked mass distribution, as indicated by weak or strong lensing of background galaxies, provide strong support for the identification of such overdensities as genuine clusters of galaxies. Although a number of candidates have been proposed, only a few clusters (or protoclusters) of galaxies have been unambiguously identified at \(z > 0.6 \) with the above criteria fulfilled (Dickinson 1996; Luppino & Kaiser 1997). It is of considerable importance for our knowledge of the evolution of large-scale structure to identify more high-redshift clusters in order to establish the evolution of their physical properties with redshift.

One possible search strategy is to look for clusters of galaxies around known powerful radio galaxies (Yee & Green 1984; Hill & Lilly 1991; Dickinson 1996; Le Fèvre et al. 1996). We present here the unambiguous identification of a cluster of galaxies around the radio galaxy 3CR 184 at a redshift \(z = 0.996 \).

\(H_{0} = 50 \) km s\(^{-1} \) Mpc\(^{-1} \) and \(\Omega_{0} = 0.5 \) are used throughout this Letter.

2. CFHT IMAGING AND SPECTROSCOPY

The field around 3CR 184 was imaged in 1994 January with the Multiobject Spectrograph (MOS) at the Canada-France-Hawaii Telescope (CFHT) (Le Fèvre et al. 1994) in imaging mode. An image was obtained in the \(R \) band from a 900 s exposure, and deep images were also obtained using a narrow-band filter centered on 7480 Å with a bandwidth of 200 Å (including the [O II] 3727 Å line redshifted to \(z \sim 1 \)) for a total integration time of 3600 s. Additional \(I \)-band images were obtained with the same instrumental setup on 1994 February 6 with a total integration time of 2400 s. An initial selection of spectroscopic targets was performed on the basis of excess emission in the narrow-band images. Spectroscopic follow-up was performed on 1994 February 6 with MOS in its multislit mode. A multislit mask with 37 slits, 2° in width and at least 10” in length each, was used to obtain three spectroscopic exposures of 4800 s each. The R300 grism provided a spectral
resolution of 23 Å and wavelength coverage from 5000 Å to 1 μm. Data reduction was performed with the MULTIPIRED software implemented under IRAF (Le Fèvre et al. 1995). Two galaxies were subsequently identified at a redshift within a few hundred km s\(^{-1}\) of the radio galaxy, indicating the possible presence of a cluster. Additional spectra were obtained during 1995 December 20–24 with the same instrumental setup as that described above. The object selection at that time was based purely on the I-band magnitudes and spatial location on the plane of the sky. Three additional multislit masks were used to obtain spectra for 122 objects. Integration times of 15,000, 14,400, and 15,000 s were obtained for masks 2, 3, and 4, respectively. The linear geometry of the slit positions on each mask resulted in a selective sampling of galaxies on the sky. All of the objects observed are in an east-west strip of \(8.5 \times 2.85\); the ratio of spectroscopically identified objects to the total number of sampled objects fainter than the radio galaxy 3CR 184 (\(I_{\text{RG}} = 19.65\) mag) and brighter than \(I < 22.2\) mag is 0.35 in this strip.

Data processing followed the procedure outlined in Le Fèvre et al. (1995). Of 122 objects observed, 56 were identified as galaxies, 26 turned out to be Galactic stars, 1 was identified as a quasar, and the remaining 39 were unidentified. A more detailed description of the observational data will be given elsewhere (Deltorn et al. 1997).

3. HST IMAGING

HST imaging was conducted with the Wide Field/Planetary Camera 2 (WFPC2) during HST cycle 5. A total exposure time of 11000 s was obtained with the F814W filter and one of 6600 s with the F606W filter. Exposures were shifted by integral pixel values to allow for cosmic rays and bad pixel cleaning. Standard HST pipeline data reduction was performed. Photometry of 878 objects in the field was obtained based on the HST photometric zero-point calibration, which was converted to Vega units using the color corrections of Holtzman et al. (1996). The completeness limit is \(I = 26\) mag, while objects can be detected down to \(I = 28\) mag. The image of a region \(24 \times 24\) arcsec\(^2\) around the radio galaxy is shown in Figure 1 (Plate 2). Numerous faint galaxies can be seen in the immediate surroundings of the radio galaxy. The radio galaxy and two galaxies with spectroscopically confirmed redshifts that indicate membership in the cluster were imaged in the WFPC2 field; their properties will be discussed elsewhere (Deltorn et al. 1997).

One of the most interesting features in the images is the faint arc-like structure located 4°9 to the northeast of the radio galaxy. The arc is \(\sim 3\)°long and is visible in both the F606W and the F814W images. Although it is possible that the arc is only a chance superposition of several faint galaxies, the center of curvature of the arc is coincident with the radio galaxy and the arc is unresolved in the radial dimension. The arc has a secure detection \(S/N = 2\) in the F814W image and \(S/N = 3\) in the F606W image. The magnitude of the arc is \(I = 25.0 \pm 0.4\) mag and \(V - I = 0.3 \pm 0.8\) mag. The presence of this gravitational arc close to the central radio galaxy indicates the proximity of a high concentration of mass.

4. EVIDENCE FOR CLUSTERING AROUND 3CR 184 AT \(z \sim 0.996\)

In order to quantify any projected excess number of galaxies in the vicinity of 3CR 184, we have computed density maps using the estimator \(D_{\text{proj}}\) defined in Dressler (1980). Cuts in magnitude were applied on the data in order to consider only objects that are fainter than the radio galaxy and brighter than \(I \leq 22.5\) mag for ground-based images and objects that are fainter than the radio galaxy and brighter than \(I \leq 26.5\) mag for HST data, the latter limiting magnitude corresponding to \(M_{I} = -17\) mag at rest for objects at the redshift of 3CR 184. Color selection was also introduced; since high-redshift early-type galaxies are, on average, redder than lower redshift ones, we retained only those galaxies with \(R - I \geq 0.2\) mag for ground-based data and with \(V - I \geq 1\) mag for the HST data. Those objects should predominantly lie at redshifts greater than 0.5, increasing the projected galaxy-density contrast of high-redshift structures.

The density maps constructed from the magnitude-limited and the color-limited samples for the HST data show a peak excess density around the radio galaxy corresponding to 5 \(\sigma_{bg}\) and 10 \(\sigma_{bg}\) excesses above the mean galaxy background, respectively, where \(\sigma_{bg}\) corresponds to the square root of the variance of \(D_{\text{proj}}\) measured outside a radius of 1′ centered on the radio galaxy. The density peak lies 6′ east of the radio galaxy. The ground-based images show lower excesses of 4 \(\sigma_{bg}\) and 7 \(\sigma_{bg}\) around 3CR 184 for the magnitude-limited and the color-limited samples, respectively. The central richness, \(N_{0.5} \) (Bahcall 1981), was computed after correction for the mean galaxy background, estimated using the deep galaxy counts of Abraham et al. (1996) in the Hubble Deep Field, which led to a central richness of \(N_{0.5} \approx 39 \pm 9\), the error being calculated assuming purely Poisson statistics. This excess is roughly that of an Abell richness class 2 cluster. The significance of the measured excess—far above the statistical “noise”—and the presence of redder objects around the radio galaxy (the excess increasing with the \(V - I\) cut), combine to give confidence in the reality of the projected two-dimensional overdensity. Figure 2 shows the redshift distribution of the galaxies in our sample. From a total of 56 securely identified objects, 11 galaxies, including the radio galaxy, have velocities within (+1198, −750) km s\(^{-1}\) of that of 3CR 184. The clear peak at \(z \approx 1\) apparent in Figure 2 demonstrates the presence of an overdensity in velocity space around 3CR 184. The list of

![Fig. 2.—Redshift distribution of 56 galaxies in the field of 3CR 184. The redshifts were obtained from MOS spectroscopy at CFHT. The bin width corresponds to 2000 km s\(^{-1}\) at the redshift of the radio galaxy (\(z = 0.996\)).](image-url)
galaxies within this peak is given in Table 1. The redshift distribution expected for a similar size of sample of field galaxies, as measured from deep redshift surveys (Crampton et al. 1995), indicates that 0.75 galaxies should be observed in a random sample of field galaxies in the same velocity bin down to \(I = 22 \) mag. It is therefore highly improbable that this excess is due to a random distribution.

The observation of an excess density both in the projected \((\alpha, \delta)\) space and in redshift space demonstrates unambiguously the reality of the clustering of galaxies around the bright radio galaxy 3C 184. This result, combined with the observation of a high concentration of mass, as demonstrated by presence of a gravitational arc, secures the identification of a cluster around 3C 184. Future deep X-ray observations of this field will provide useful complementary information about the hot gas emission of the cluster.

5. VIRIAL AND LENSING MASS ESTIMATES

The observation of a gravitational arc associated with a cluster of galaxies allows a direct determination of the mass within the perimeter defined by the arc. If a spherically symmetric projected mass distribution is assumed and the lensed galaxy is coincident with the center of the cluster center, we have \(M_{\text{proj}}(\theta_{\text{arc}}) = 0.25 c^2 G^{-1} D_{\text{arc}} D_{\text{d}} D_{\text{d}-\text{arc}} \theta_{\text{arc}}^2 \), where \(D_{\text{arc}}, D_{\text{d}}, \) and \(D_{\text{d}-\text{arc}} \) are the angular distances from the lensed object, from the cluster, and between the cluster and the lensed galaxy, respectively, and \(\theta_{\text{arc}} \approx r_{\text{arc}} / D_{\text{d}} \). We also assume \(r_{\text{arc}} \approx r_{\text{arc}} \), \(r_{\text{arc}} \) being the Einstein radius, and the center of mass is taken to be coincident with the radio galaxy. For \(z_{\text{arc}} \) in the range 1.5–3, the mass enclosed within 42 h\(_{70}^{-1}\) kpc from the radio galaxy varies from \(2.78 \times 10^{53} \) to \(1.20 \times 10^{53} \) h\(_{70}^{-1}\) M\(_{\odot}\), with an average value of \(1.68 \times 10^{53} \) h\(_{70}^{-1}\) M\(_{\odot}\). If a singular isothermal sphere model is adopted, we then have the following central velocity dispersion:

\[
\sigma_{\text{ens}} = \left(\frac{c^2}{4 \pi D_{\text{d}} D_{\text{d}-\text{arc}}} \right) \left(\frac{D_{\text{arc}}}{r_{\text{arc}}} \right)^{1/2},
\]

this expression gives \(\sigma_{\text{ens}} = 650–990 \) km s\(^{-1}\) for values of \(z_{\text{arc}} \) between 1.5 and 3 (the average value being 756 km s\(^{-1}\)), assuming the arc is centered on the radio galaxy. In the framework of the SIS approximation, this velocity dispersion is independent of the radius.

The measured redshifts of the cluster galaxies allow derivation of a velocity dispersion in the framework of the cluster. We obtain \(\sigma_{\text{arc}} = 634^{+206}_{-102} \) km s\(^{-1}\) for the sample of eleven galaxies that pass the exclusion criterion of Yahill & Vidal (1977). The errors are estimated from both the redshift uncertainties and the sampling errors due to the small number of galaxies (Danese, De Zotti, & di Tullio 1980). This result is in good agreement with the velocity dispersion as deduced from the lensing configuration.

Assuming isotropy of the galaxy velocities, the spherical symmetry of the mass distribution, and the dynamical equilibrium of the structure, we can derive an estimate of the deprojected virial mass. In the case of equal masses of the galaxies, we found \(M = 6.16^{+3.86}_{-2.40} \times 10^{14} \) h\(_{70}^{-1}\) M\(_{\odot}\), the errors being calculated from Danese et al. (1981).

The mass enclosed in a 1 h\(_{70}^{-1}\) Mpc radius can be estimated using the isothermal sphere approximation. Considering a distribution of galaxies with density profile \(\rho \propto r^{-3} \), we have

\[
M(<r) = \frac{\epsilon - 2\beta}{\epsilon - (\epsilon - 1)} \frac{v^2}{G} r^3,
\]

where \(\beta = 0 \) for isotropic orbits and \(\epsilon \approx 2.2 \) (Seldner & Peebles 1977). We find \(M(\sigma_c = 756 \) km s\(^{-1}\), \(r = 1 \) h\(_{70}^{-1}\) Mpc) \(\approx 2.97 \times 10^{14} \) h\(_{70}^{-1}\) M\(_{\odot}\). Taking the velocity dispersion deduced from the cluster-galaxy redshifts leads to a lower value of the mass, \(M(\sigma_c = 634 \) km s\(^{-1}\), \(r = 1 \) h\(_{70}^{-1}\) Mpc) \(\approx 2.06 \times 10^{14} \) h\(_{70}^{-1}\) M\(_{\odot}\).

The mass-to-light ratio can be calculated within the radius defined by the arc. The total light within 4\(^{\prime}\)9 from the radio galaxy was corrected for contamination due to field galaxies using the counts of Abraham et al. (1996), and the resulting \(I \) magnitude of the cluster population was then converted to \(M_{\text{B}}\).
using the fact that the I band at a redshift of ~ 1 roughly corresponds to the B band at rest and assuming a no-evolution scenario for the spectral energy distribution of the cluster galaxies. We found a field-subtracted luminosity of $1.16 \times 10^{12} h_{50}^{-2} L_{50}$, leading to $M/L_B \approx 56 h_{50}$ within $42 h_{50}^{-1}$ kpc. Using the isothermal sphere approximation, we found, after correction for the contamination due to field galaxies, a total luminosity within $400 h_{50}^{-2}$ kpc of $L_{400} h_{50}^{-1} \approx 2.30 \times 10^{12} h_{50}^{-3} L_{50}$, leading to $(M/L_B)_{400} h_{50}^{-1} \approx 200 h_{50}$. In addition, if all cluster galaxies are subjected to a luminosity evolution similar to the one measured by the Canada-France Redshift Survey for field galaxies in the redshift range $0.75 < z < 1$ (Lilly et al. 1995), the correction to the observed luminosity gives $M/L_B \approx 140 h_{50}$ within $42 h_{50}^{-1}$ kpc and $(M/L_B)_{400} h_{50}^{-1} \approx 500 h_{50}$. We then believe that $200 h_{50} < (M/L_B)_{400} h_{50}^{-1} < 500 h_{50}$. This range is comparable to the higher M/L_B found by Smail et al. (1997) for their distant cluster sample ($z = 0.17 - 0.56$).

6. DISCUSSION AND CONCLUSIONS

Our observations of the field around 3CR 184 unambiguously demonstrate the presence of a cluster of galaxies with an associated mass comparable to massive clusters observed locally. We stress that the identification is made possible by a combination of several diagnostics: excess in projected two-dimensional density maps, excess in redshift space, lensing geometry, and the mass estimate obtained from virial analysis of spectroscopically measured galaxies. The relative agreement between the two estimates of the velocity dispersion (from the redshifts and from the lensing analysis) converge in describing a quite massive cluster at the redshift of the radio galaxy. We find a lensing mass of $1.68 \times 10^{15} h_{50}^{-1} M_\odot$ within $24 h_{50}^{-1}$ kpc and derive a virial mass of $6.16 \pm 0.94 \times 10^{14} h_{50}^{-1} M_\odot$. The cluster around 3CR 184 is thus one of the very few massive structures that has been identified at redshifts larger than 0.9, at epochs when the universe was less than 40% of its present age.

While obtaining the velocity dispersion and mass estimate is relatively straightforward, the description of the dynamical state of the cluster is much more uncertain. While good agreement between virial and lensing masses has been demonstrated for some systems (e.g., PKS 0745-191, Allen, Fabian & Kneib 1996; MS 2137–23, Mellier, Fort, & Kneib 1993), most arc-cluster associations reveal a significant discrepancy, probably because of the hypothesis involving the mass/velocity dispersion definitions (Miralda-Escudé & Babul 1995; Wu & Fang 1996). This discrepancy indicates that these clusters may not be considered as totally relaxed systems. In the case of the cluster around 3CR 184, comparison between the lens and virial velocity dispersions is limited by the limited sample of cluster galaxies, the difficulty in estimating the true center of mass of the presumed cluster, and the simplistic assumptions necessary to derive either M or σ (assuming either an equilibrium state or a spherical symmetry). Given the current observational data set, it is thus premature to speculate on the similarity between σ_{cont} and σ_{v} to draw any conclusion regarding the dynamical state of the cluster around 3CR 184.

The number of high-redshift clusters seems to be steadily increasing as observational capabilities become more acute, and the observation of this massive structure at $z \approx 1$, combined with other observations of very high redshift clusters, may produce a severe conflict with various cosmological models. Recently, the secure identifications of massive bound structures at $z > 0.8$ through spectroscopic observation of cluster members (Dickinson 1996; Deltorn et al. 1997; Francis et al. 1996), weak gravitational lensing (Luppino & Kaiser 1997; Smail & Dickinson 1995), and X-ray observations (Luppino & Gioia 1995; Castander et al. 1994) has shown that those structures might not be as rare as predicted by some cosmological scenarios. In CDM and even CHDM models, the number of high-redshift massive clusters predicted from both N-body simulations and from the Press-Schechter formalism seems to be too low with respect to observations (Jing & Fang 1994). On the contrary, HDF models predict too many high-z, high-σ, structures (Lilje 1990). Alternatives and modifications to the standard CDM scenario have been advanced in order to account for the emerging data on large-scale structure and the amplitude of COBE fluctuations. Among these proposals, low Ω_c models (either flat or open) provide a significant number density of massive high-redshift clusters that may be compatible with recent observations (Eke, Cole, & Frenk 1996; Viana & Liddle 1996, and references therein). As the abundance of massive structures provides increasing discrimination with increasing redshift, the identification, without ambiguity, of clusters at $z \approx 1$ is now beginning to provide useful observational constraints on cosmological models.

We thank the CFHT director, P. Couturier, for the allocation of discretionary time to start this project and the CFHT staff for their support during the observations.

REFERENCES

Abell, R. G. 1958, ApJS, 3, 211
Abraham, R. G., Tanvir, N. R., Santiago, B. X., Ellis, R. S., Glazebrook, K., & van den Bergh, S. 1996, MNRAS, 279, L47
Allen, S. W., Fabian, A. C., & Kneib, J.-P. 1996, MNRAS, 279, 615
Bahcall, N. 1981, ApJ, 247, 787
Castander, F. J., Ellis, R. S., Frenk, C. S., Dressler, A., & Gunn, J. E. 1994, ApJ, 424, L79
Crampton, D., Le Fevre, O., Lilly, S. J., & Hammer, F. 1995, ApJ, 455, 96
Danese, L., De Zotti, G., & di Tullio, G. 1980, A&A, 82, 322
Danese, L., De Zotti, G., Giuricin, G., Mardirossian, F., Mezzetti, M., & Ramella, M. 1981, ApJ, 244, 777
Deltorn, J.-M., Le Fevre, O., Crampton, D., & Dickinson, M. 1997, in preparation
Dickinson, M. 1996, in HST and the High Redshift Universe, ed. N. Tanvir, A. Aragon-Salamanca, & J. V. Wall (Singapore: World Scientific), in press
Eke, V. R., Cole, S., & Frenk, C. S. 1996, MNRAS, 282, 263
Francis, P. J., etc. 1996, ApJ, 457, 490
Frenk, C. S., White, S. D. M., Efstathiou, G., & Davis, M. 1990, ApJ, 351, 10
Hill, G. J., & Lilly, S. J. 1991, ApJ, 367, 1
Holtzman, J. A., Burrows, C. J., Casertano, S., Hester, J. J., Trauger, J. T., Watson, A. M., & Worthey, G. 1996, PASP, 107, 1065
Jing, Y.-P., & Fang, L.-Z. 1994, ApJ, 432, 438
Le Fevre, O., Crampton, D., Felenbok, P., & Monnet, G. 1994, A&A, 282, 325
Le Fevre, O., Crampton, D., Lilly, S. J., Hammer, F., & Tresse, L. 1995, ApJ, 455, 60
Le Fevre, O., Deltorn, J.-M., Crampton, D., & Dickinson, M. 1996, ApJ, 471, L11
Lilje, P. B. 1990, ApJ, 351, 1
Lilly, S. J., Tresse, L., Hammer, F., Crampton, D., & Le Fevre, O. 1995, ApJ, 455, 108
Luppino, G. A., & Gioia, I. M. 1995, ApJ, 445, 77
Luppino, G. A., & Kaiser, N. 1997, ApJ, 475, 20
Mellier, Y., Fort, B., & Kneib, J.-P. 1993, ApJ, 407, 33
Miralda-Escudé, J., & Babul, A. 1995, ApJ, 449, 18
Seldner, M., & Peebles, P. J. E. 1977, ApJ, 215, 703
Smail, I., & Dickinson, M. 1995, ApJ, 455, L99
Smail, I., Ellis, R. S., Dressler, A., Couch, W. J., Oemler, A., Jr., Sharples, R. M., & Butcher, H. 1997, ApJ, 479, 70
Viana, P. T. P., & Liddle, A. R. 1996, MNRAS, 281, 323
Wu, X.-P., & Fang, L.-Z. 1996, ApJ, 467, L45
Yahill, A., & Vidal, N. 1977, ApJ, 214, 347
Yee, H., & Green, R. F. 1984, ApJ, 280, 79
Zwicky, F., Herzog, E., Wild, P., Karpowicz, M., & Kowal, C. T. 1961, Catalogue of Galaxies and Clusters of Galaxies (Pasadena: Caltech)
FIG. 1.—Sum of the HST F606W and F814W images of a 24 × 24 arcsec2 field around 3CR 184. The arc is located 4.9 northeast of the radio galaxy and extends 3.6.

Deltorn et al. (see 483, L22)