Aplicações clínicas do balão farmacológico: o que aprendemos e aonde vamos?

Clinical applications of drug-coated balloon: what have we learned and where are we going?

Debabrata Dash, Rohit Mody, Naveed Ahmed, Sreenivas Reddy, Shahid A Merchant

DOI: 10.31160/JOTCI202028A202012

RESUMO – Desde a introdução dos stents coronarianos, a reestenose intra-stent tem sido um dos principais obstáculos para sua aplicação na doença arterial coronária. Os stents farmacológicos efetivamente a reduziram e se tornaram a principal opção da terapia intervencionista na coronariopatia. No entanto, preocupações com trombose tardia do stent, dependência de terapia antiplaquetária dupla prolongada e reestenose recorrente levaram a uma busca por novas modalidades de tratamento, que pudessem abordar as taxas de reestenose sem as desvantagens relacionadas aos stents farmacológicos. O balão farmacológico surgiu como ferramenta adicional no arsenal da cardiologia intervencionista. Em geral, é um balão semicomplacente, revestido com agentes antiproliferativos encapsulados em uma matriz polimérica, que é liberada na parede após insuflação e em contato com a íntima, sem deixar implante. Esta revisão justifica o uso do balão farmacológico, sua efetividade em diferentes cenários clínicos e tipos de lesão, além das perspectivas para seu uso.

Descritores: Balão farmacológico; Intervenção coronária percutânea; Reestenose intra-stent; Doença em vasos de pequeno calibre; Doença arterial periférica

ABSTRACT – Since the introduction of coronary stents, in-stent restenosis has been one of the main stumbling blocks for its application in coronary artery disease. The drug-eluting stents have effectively reduced and become the mainstay of the interventional therapy of coronary artery disease. However, concerns of delayed stent thrombosis, dependency on prolonged dual antiplatelet therapy, and recurrent restenosis led to a quest for new treatment modalities that could address restenosis rates without drug-eluting-stent-related drawbacks. The drug-coated balloon has emerged as an additional tool in the armamentarium of interventional cardiology. It is usually a semicompliant balloon coated with antiproliferative agents encapsulated in a polymer matrix, which is released into the wall after inflation and contact with the intima, leaving no implant behind. This review highlights the rationale for drug-coated balloon use, its effectiveness in different clinical and lesion settings, and the future perspective.

Keywords: Drug-coated balloon; Percutaneous coronary intervention; In-stent coronary restenosis; Small vessel disease; Peripheral artery disease

INTRODUÇÃO

A antiga angioplastia transluminal coronária percutânea por balão (ATC) revolucionou a revascularização coronariana. No entanto, o reconhecimento das limitações da ATC, incluindo a disseccção de vaso, o recoil elástico, o remodelamento negativo e a hiperplasia intimal, levou ao desenvolvimento de stents coronários. Embora os stents metálicos tenham abordado com sucesso as complicações agudas de disseccção de vaso, bem como os problemas de recoil elástico e remodelamento negativo, eles não tiveram impacto na hiperplasia intimal e geraram um novo problema clínico – reestenose intra-stent (RIS). Os stents farmacológicos (SP) melhoraram drasticamente os resultados clínicos dos pacientes submetidos à intervenção coronária percutânea (ICP), ao reduzirem o risco de RIS e de nova revascularização. No entanto, a trombose tardia do
PLATAFORMAS DE BALÃO FARMACOLÓGICO

O revestimento do balão deve idealmente exibir robustez para reter fármacos na superfície e durante o trajeto do dispositivo, enquanto fornece transferência eficiente e homogênea de fármaco para as paredes dos vasos. Vários excipientes foram testados para carregar o agente antiproliferativo ao local da lesão. Paclitaxel é carregado no balão com pulverização, imersão, nanopartículas ou impressão do fármaco na superfície áspera do dispositivo. De maneira geral, a maioria dos BF disponíveis (Tabela 1) libera o fármaco nas primeiras horas/dias após o procedimento. Para superar a baixa lipofilia e retenção de drogas, novos carreadores de fármacos foram desenvolvidos recentemente, incluindo nanopartículas que encapsulam os fármacos da família limus, controlando sua liberação no local da lesão.9

APLICACIÓN DOS BALÕES FARMACOLÓGICOS EM DOENÇA ARTERIAL CORONÁRIA

Embara a eficácia e a segurança de BF tenham sido provadas tanto para RIS quanto para doença de vasos nativos de pequeno calibre, há outras indicações emergentes (por exemplo: lesão de bifurcação, doença de grandes vasos, doença difusa, alto risco de sangramento e síndrome coronariana aguda). Esse dispositivo não apenas atende às necessidades específicas da vascularização coronariana, mas também existe um grande potencial para seu uso em outros territórios e estruturas vasculares não coronarianas, incluindo o tratamento de doenças valvares, cardíacas congêntitas e que demandam procedimentos neurointervencionistas.

MECANISMO DE AÇÃO DOS BALÕES FARMACOLÓGICOS

A extensa pesquisa inicial para desenvolver a entrega local de fármacos na parede do vaso encontrou resultados clínicos insatisfatórios, devido à variabilidade de absorção e ao rápido washout das drogas estudadas. O interesse por um sistema de liberação local de fármacos não baseado em stent foi reativado com o surgimento de sirolimus e paclitaxel, ambos fármacos lipofílicos absorvidos rapidamente pelo tecido arterial. Os principais elementos dos BF são a plataforma do balão, o medicamento, o excipiente e o processo de revestimento do balão. Uma vez que o balão é inflado, ocorre transferência aguda da droga quase imediatamente da superfície do balão para a parede arterial, na qual a maior parte se liga aos locais de ligação hidrofóbica, com menor quantidade sendo transportada por difusão e convecção.3-6 Os fatores que impactam a eficiência de transferência incluem as propriedades físico-químicas inerentes ao fármaco, o processo de fabricação e revestimento e a presença de excipientes. Os excipientes aumentam a capacidade de transferência do fármaco, neutralizam sua capacidade hidrofóbica e, assim, permanecem na superfície do balão. O fármaco antiproliferativo aplicado ao BF tem sido tradicionalmente o paclitaxel, embora desenvolvimentos recentes nos BF tendem a usar fármacos da “família limus”, devido à citotoxicidade do paclitaxel.

O paclitaxel continua sendo a droga de escolha, com dose típica entre 2ug/mm² e 3,5ug/mm² na superfície do balão. A formulação de revestimento e a técnica do procedimento de revestimento permitem transferência exitosa do fármaco, resultando em diferentes perfis farmacocinéticos.7 Desse modo, a interação entre doses, formulações, cinética de liberação e lesões parece ser crucial para a resposta vascular após o tratamento com BF. É importante notar que não há evidências de um “efeito de classe” entre as diferentes plataformas.8
Tabela 1. Dispositivos de balão farmacológico disponíveis para intervenção coronária percutânea

Dispositivo	Empresa	Fármaco	Dose	Excipiente
Agent	Boston Scientific	Paclitaxel	2ug/mm²	Éster de citrato
AngioSculptX	Spectranetics	Paclitaxel	3ug/mm²	Ácido nordidroguaiarético
BioStream	Biosensors International Group	Paclitaxel	3ug/mm²	Shellac
Chocolate Touch	QT Vascular	Paclitaxel	3ug/mm²	Não informado
DIOR I	Eurocor	Paclitaxel	3ug/mm²	Shellac
DIOR II	Eurocor	Paclitaxel	3ug/mm²	Shellac
Danubio	Minvasys	Paclitaxel	2,5ug/mm²	Butiril tri-hexil citrato
Elutex	Aachen Resonance, Aachen, Alemanha	Paclitaxel	2,2ug/mm²	Dextrano
Essential	iVascular S.I. U.	Paclitaxel	3ug/mm²	Éster orgânico
GENIE	Acrostak Corporation Winterthur	Nanoporoso	10umol/L	Nenhum
Falcon IN.PACT	Medtronic, Santa Rosa	Paclitaxel	3ug/mm²	Urea
MagicTouch Xtreme	Concept Medica	Sirolimus +nanocarreadores	1,27μg/mm²	Fosfolípide
Touch™ DCB				
Pantera Lux	Biotronik	Paclitaxel	3ug/mm²	Butiril tri-hexil citrato
Protégé & Protégé NC	Blue Medical	Paclitaxel	3ug/mm²	Butiril tri-hexil citrato
PACCOCATH	Bayer, Bavaria Medicin Technologie	Paclitaxel	3ug/mm²	Iopromida
RESTORE*	Cardionovum	Paclitaxel	3ug/mm²	Safepax
SELUTION	M.A. Med Alliance	Sirolimus nanopartículas	1ug/mm²	Tecnologia de adesão celular
SeQuent® Please	B. Braun Melsung AG	Paclitaxel	3ug/mm²	Iopromida
SeQuent® Please SCB	B. Braun Melsung AG	Sirolimus	4ug/mm²	Sirolimus cristalino
Virtue	Caliber Therapeutics	Sirolimus nanopartículas	3mg	Balão poroso

Tabela 2. Resumo dos principais estudos clínicos randomizados de balões farmacológicos em reestenose intra-stent em stent não farmacológico

Estudo (ano)	Comparadores para BRP	n	Duração do seguimento	Seguimento angiográfico (valor de p)	ECAM % (valor de p)	RLA % (valor de p)
PACCOCATH ISR I e II 11, 12 (2006 e 2012)	ATPB	108	6 meses (angiográfico) 12 meses (clínico)	Perda luminal tardia 0,03mm±0,48 versus 0,74±0,86mm (0,0002)	4 versus 31 (0,01)	0 versus 23 (0,02)
PEPCAD II 13 (2009)	SEP	131	6 meses (angiográfico) 12 meses (clínico)	Perda luminal tardia 0,17mm±0,42 versus 0,38mm±0,61 (0,03)	9 versus 22 (0,08)	6 versus 15 (0,15)
RIBS V 14 (2016)	SEE	189	6-9 meses (angiográfico) 12 meses (clínico) 3 anos (clínico)	Perda luminal tardia 0,14mm±0,5 versus 0,04mm±0,5 (0,14) Reestenose binária 9,5% versus 4,7% (0,22)	8 versus 6 (0,60)	6 versus 1 (0,001)
SEDUCE 15 (2014)	SEE	50	9 meses (angiográfico) 12 meses (clínico)	Perda luminal tardia 0,28mm versus 0,07mm (0,1) Proporção de hastes não recobertas (OCT) 1,4% versus 3,1% (0,025)	4,2 versus 8 (0,576)	
TIS 16 (2016)	SEE	136	12 meses	Perda luminal tardia 0,02mm versus 0,19mm (0,0004)	10,3 versus 19,1 (0,213)	7,4 versus 16,2 (RVA) (0,110)
BIOLUX 17 (2018)	SES	229	6 meses (angiográfico) 12 meses (clínico)	Perda luminal tardia 0,03mm±0,40 versus 0,20mm±0,70 (0,40)	16,9 versus 14,2 (FLA) (0,65)	12,5 versus 10,1 (0,82)
DARE 18 (2018)	SEE	278	6 meses (angiográfico) 12 meses (clínico)	DLM 1,71mm±0,51 versus 1,74mm±0,61 (<0,0001, não inferioridade)	10,9 versus 9,2 (0,66)	7,1 versus 8,8 (RVA) 7,1 versus 8,8 (RVA)

BRP: balão revestido com paclitaxel; ECAM: eventos cardiovasculares adversos maiores; RLA: revascularização da lesão-alvo; ATPB: angioplastia transluminal percutânea com balão; SEP: stent eluído em paclitaxel; SEE: stent eluído de everolimus; OCT: tomografia de coerência óptica; DLM: diâmetro luminal médio; FLA: falência da lesão-alvo; RVA: revascularização do vaso-alvo.
levantes emergindo do stent com RIS e nos que podem se beneficiar de uma terapia antiplaquetária dupla (TAD) mais beneficiosa. As diretrizes da European Society of Cardiology (ESC) recomendam o uso de BF para o tratamento de RIS por SF ou SNF (classe I, nível A). O uso de imagem intravascular é altamente recomendado para detectar causas “mecânicas” da RIS e corrigi-las, conforme necessário. Entretanto, deve-se evitar o uso de BF em obstruções em que não seja possível dilatação por meios convencionais. A aterectomia rotacional (AR), a litotripsia intravascular (LIV) e o cutting ou scoring balloons podem ser auxiliares úteis para melhorar a expansão do stent e o ganho luminal, além de evitar o deslizamento dos balões de pré-dilatação.

Lesões coronarianas de novo

Apesar de estudos extensos, os resultados de eficácia e segurança de BF nas lesões coronárias de novo são conflitantes. Todos esses estudos adotaram duas abordagens principais. Na estratégia combinada, um SNF ou SF foi implantado após a angioplastia inicial com BF, enquanto na estratégia “leave nothing behind”, a angioplastia com BF foi realizada, e um stent foi implantado apenas como solução de resgate para o resultado subótimo após o BF. Apesar de um tratamento híbrido com BF e SF ter sido defendido em pacientes com alto risco de reestenose, como os diabéticos, faltam dados clinicos nesse grupo.

Doença em vasos de pequeno calibre

O tratamento intervencionista de doença de novo em vasos de pequeno calibre, geralmente definida como lesões em vasos <2,75 ou <3,0mm, continua desafiador devido ao aumento do risco de resultados clínicos adversos, incluindo taxas mais altas de reestenose e trombose. Isso pode ser devido à capacidade limitada do vaso de se adaptar à formação da neoíntima, que pode se desenvolver após a colocação do stent. O BF pode ter uma vantagem potencial nesse cenário, por conta da menor inflamação do vaso na ausência de camadas de stent metálico, reduzindo o fluxo anormal e permitindo a remodelação positiva do vaso. A viabilidade clínica do tratamento de doença de pequenos vasos com BF foi inicialmente demonstrada em vários estudos e registros não randomizados. Posteriormente, muitos estudos clínicos randomizados foram conduzidos, comparando BF com ATPB, SF e SNF (Tabela 4). Em alguns deles, a ausência de eficácia de BF versus ATPB isoladamente foi atribuída a uma taxa de eventos muito baixa, enquanto na comparação de BF versus SF deu-se ao tipo de BF usado, em particular o excipiente e a taxa de transferência do fármaco, bem como implante inadequado e a perda angiográfica da lesão. No entanto, estudos maiores e com desenho adequado mostraram resultados semelhantes para BF em relação aos stents.

Tabela 3. Resumo dos principais estudos clínicos randomizados de balões farmacológicos em reestenose intra-stent em stent farmacológico

Estudo (ano)	Comparadores para BRP	n	Duração do seguimento	Seguimento angiográfico (valor de p)	ECAM % (valor de p)	RLA % (valor de p)
PEPCAD-DES (2012)	ATPB	110	6 meses (angiográfico e clínico) 3 anos (clínico)	Perda luminal tardia 0,43mm±0,61 versus 1,03mm±0,77 (<0,001), reestenose 17,2% versus 58,1% (0,001)	16,7 versus 50,0 (<0,001)	15,3 versus 36,8 (0,005)
PEPCAD China-ISR (2014)	SEP	220	9 meses (angiográfico) 12 meses (clínico) 2 anos (clínico)	Perda luminal tardia 0,46mm±0,51 versus 0,55mm±0,61 (0,0005, não inferioridade)	16,5 versus 16 FLA (0,92)	15,6 versus 12,3 (0,48)
ISAR-DESIRE-3 (2013)	SEP versus ATPB	402	6-8 meses (angiográfico) 12 meses (clínico) 3 anos (clínico)	Diâmetro da estenose 38% versus 37,4% (0,007, não inferioridade)	23,5 versus 19,3 versus 46,2 (0,5 BRP versus PES)	22,1 versus 13,5 versus 43,5 (0,09 BRP versus PES)
ISAR DESIRE 4 (2017)	Scoring balloon e BRP	252	6-8 meses (angiográfico) 12 meses (clínico)	Perda luminal tardia 0,31mm±59 versus 0,41mm±74 (0,27)	18,4 versus 23,3 (0,35)	16,2 versus 21,8 (0,26)
RIBS IV (2015)	SEE	309	6-9 meses (angiográfico) 12 meses (clínico)	Reestenose binária 19% versus 11% (0,06)	18 versus 10 (0,04)	16 versus 8 (0,035)
RESTORE (2018)	SEE	172	9 meses (angiográfico) 12 meses (clínico)	Perda luminal tardia 0,15mm±49 versus 0,19mm±41 (0,54)	7,0 versus 4,7 (0,51)	5,8 versus 1,2 (0,10)
FIM LIMUS DCB (2019)	BRS	50	6 meses (angiográfico)	Perda luminal tardia 0,21mm±54 versus 0,17mm±55 (0,79)	16 versus 12 (>0,99)	16 versus 12 (>0,99)

BF: balão revestido com paclitaxel; ECAM: eventos cardiovasculares adversos maiores; RLA: revascularização da lesão-alvo; ATPB: angioplastia transluminal percutânea com balão; SEP: stent eluído em paclitaxel; SEE: stent eluidor de everolimus; BRS: balão revestido com sirolimus.
Tabela 4. Estudos clínicos randomizados de balão farmacológico isoladamente para tratamento de doença de novo da artéria coronária em vaso de pequeno calibre

Estudo	Desenho	n	Duração do seguimento	Seguimento angiográfico (valor de p)	ECAM % (valor de p)	RLA % (valor de p)
PICCOLETO II	Dior PCB versus TAXUS Liberté® SEP	57	6 meses (angiografia) 9 meses (clínico)	DLM 1,11mm±0,65 versus 1,94mm±0,72 (0,0002)	35,7 versus 13,8 (0,054)	32,1 versus 10,3 (0,15)
BELLO630,51	IN,PACT Falcon PCB versus TAXUS Liberté® SEP	182	6 meses (angiografia) 12 meses (clínico) 3 anos (clínico)	Perda luminal tardia 0,08mm±0,38 versus 0,29mm±0,44 (0,001)	10 versus 16,3 (0,21)	4,4 versus 7,6 (0,37)
RESTORE SVD48	RESTORE® PCB versus Resolute Integrity SEZ	230	9-12 meses (angiografia) 12 meses (clínico)	Perda luminal tardia 0,26mm±0,42 versus 0,30mm±0,35 (0,41) diâmetro da estenose 29,6%±2,0 versus 24,1%±2,0 (<0,001)	9,6 versus 9,6 (1,0)	4,4 versus 2,6 (0,72)
BASKET-SMALL 256	Sequent Please PCB versus TAXUS Element SEP and Xience SEE	758	6 meses (angiografia) 12 meses (clínico)	Perda luminal tardia 0,13mm (-0,14mm a 0,57mm) versus 0,10mm (-0,16mm a 0,34mm) (0,72)	8 versus 8 (0,918)	3,4 versus 4,5 (0,438)

ECAM: eventos cardiovasculares adversos maiores; RLA: revascularização da lesão-alvo; DLM: diâmetro luminal médio.

Stents in Small Vessel Interventions

O uso de BF em bifurcações permite que o BF seja preferível ao ATPB no RL. O estudo PEPCAD V (Paclitaxel Eluting PTCA Balloon in Coronary Artery Disease) empregou um SNF no RP, em combinação com um BF, no tratamento no RL, e demonstrou baixa perda luminal tardia no RL quando tratado sozinho com um BF. Poucos estudos observacionais focando amplamente em um SF no RP, combinado com um BF no RL, demonstraram bons resultados no RL. As ICPs apenas com BF em lesões de bifurcação com RL ≥2mm exibiram taxas de eventos adversos menores com SF do que com SF (14% versus 30%).

Lesões de bifurcações

Lesões de bifurcação coronariana ainda são um desafio para ICP por conta dos desfechos clínicos pouco satisfatórios, principalmente no ramo lateral (RL). Mesmo com SF, o risco de reestenose do RL ainda permanece alto, especialmente quando técnicas mais complexas são utilizadas. Existem atualmente duas estratégias de BF para o tratamento de lesões de bifurcação: BF em RL e SF no ramo principal (RP) e BF em ambos RP e RL. As diretrizes da ESC recomendam o implante de stent no RP com stent provisional no RL como estratégia padrão. Nesse cenário, o BF pode ser preferível ao ATPB no RL. O estudo PEPCAD V (Paclitaxel Eluting PTCA Balloon in Coronary Artery Disease) empregou um SF no RP, em combinação com um BF, no tratamento no RL, e demonstrou baixa perda luminal tardia no RL quando tratado sozinho com um BF. Poucos estudos observacionais focando amplamente em um SF no RP, combinado com um BF no RL, demonstraram bons resultados no RL. As ICPs apenas com BF em lesões de bifurcação com RL ≥2mm exibiram taxas de eventos adversos menores com BF do que com SF (14% versus 30%).

Doença de vasos de grande calibre

O uso de BF isoladamente é seguro e eficaz no tratamento de lesões de novo em grandes (3,0mm) artérias coronárias e apresenta taxas baixas de risco de eventos clínicos e obstrução aguda de vaso, o que provavelmente se deve à falta de material sintético e à sua trombogenicidade inerente. Porém são necessários mais estudos controlados randomizados (ECR) comparando BF com SF de última geração nesse cenário.
Síndrome coronariana aguda
A entrega local do fármaco pelo BF é bastante atraente em pacientes com infarto agudo do miocárdio com supradesnívelamento do segmento ST (IAMCST) quando se opta por ICP primária, pois tem vantagem potencial de preservar a função endotelial, reduzindo o risco de trombose devido à menor taxa de má aposição e à administração homogênea do fármaco. Cabe ressaltar que BF deve ser evitado no cenário de alta carga de trombo, o que pode inibir a chegada do fármaco à parede do vaso. O estadiamento para ICP após a restauração do fluxo Thrombolysis in Myocardial Infarction (TIMI) 3 também é possível e pode ser especialmente atraente para uma estratégia de BF.61 Existem apenas dados limitados para ICP com BF na síndrome coronariana aguda.65-66 O estudo REVELATION (REVascularization With PaclitaxEL-Coated Balloon Angioplasty Versus Drug-Eluting Stenting in Acute Myocardial Infarction) comparou a angioplastia com BF com o balão Pantera Lux (Biotronik AG, Bülach, Suíça) com sirolimus ou SF com everolimus e não mostrou diferença significativa em perda luminal tardia e ECAM em 9 meses de seguimento.66 Esse estudo apoiou a hipótese de que a ICP com BF pode ter um lugar no IAMCST, no qual as lesões são usualmente curtas e menos calcificadas, e os pacientes, em geral, mais jovens, para os quais evitar o implante de stent pode ser uma boa ideia. Somente a estratégia de BF também não é inferior ao tratamento com stent em infarto agudo do miocárdio sem supradesnívelamento do segmento ST (IAMSST).62

Lesão longa e difusa
A abordagem híbrida de combinar BF com SF foi avaliada em lesões de novo longas e doença arterial coronária difusa. Essa abordagem emprega um implante de SF na lesão proximal e BF na lesão distal. Isso garante a redução geral do desflatamento do segmento ST (IAMCST) quando se opta por ICP primária, pois tem vantagem potencial de preservar a função endotelial, reduzindo o risco de trombose devido à menor taxa de má aposição e à administração homogênea do fármaco. Cabe ressaltar que BF deve ser evitado no cenário de alta carga de trombo, o que pode inibir a chegada do fármaco à parede do vaso. O estadiamento para ICP após a restauração do fluxo Thrombolysis in Myocardial Infarction (TIMI) 3 também é possível e pode ser especialmente atraente para uma estratégia de BF.61 Existem apenas dados limitados para ICP com BF na síndrome coronariana aguda.65-66 O estudo REVELATION (REVascularization With PaclitaxEL-Coated Balloon Angioplasty Versus Drug-Eluting Stenting in Acute Myocardial Infarction) comparou a angioplastia com BF com o balão Pantera Lux (Biotronik AG, Bülach, Suíça) com sirolimus ou SF com everolimus e não mostrou diferença significativa em perda luminal tardia e ECAM em 9 meses de seguimento.66 Esse estudo apoiou a hipótese de que a ICP com BF pode ter um lugar no IAMCST, no qual as lesões são usualmente curtas e menos calcificadas, e os pacientes, em geral, mais jovens, para os quais evitar o implante de stent pode ser uma boa ideia. Somente a estratégia de BF também não é inferior ao tratamento com stent em infarto agudo do miocárdio sem supradesnívelamento do segmento ST (IAMSST).62

Alto risco de sangramento
O balão farmacológico pode ser indicado em pacientes com alto risco de sangramento, em pacientes em uso de anticoagulantes ou submetidos à cirurgia recente e naqueles com fibrilação atrial. Embora a duração da TAD após a ICP com SF tenha sido mais curta, os agentes antitrombóticos podem ser interrompidos mais precocemente após BF do que após SF em caso de sangramento com risco de vida. A duração recomendada de TAD é de 4 semanas após o uso de BF isoladamente em vasos do novo, com resultados favoráveis em estudos clínicos recentes para pacientes em condição estável.22,62 Existe um estudo preliminar de que a ICP com BF pode ser realizada usando apenas um antiplaquetário em caso de risco excepcionalmente alto de sangramento.65 A incidência relatada de risco de trombose aguda de vasos é de apenas zero a 0,2% após ICP com SF isoladamente em comparação com o implante de stent.40 Considerando isso, a duração de TAD após ICP com BF pode ser encurtada ainda mais em pacientes com alto risco de sangramento, e a antiagregação oral pode ser combinada com um único agente antiplaquetário em pacientes individuais.

DOENÇA ARTERIAL PERIFÉRICA
A doença arterial periférica está associada à morbidade e a mortalidades significativas. Vários ECR já demonstraram que BF e SF resultam em permeabilidade superior e menor taxa de falha na lesão-alvo, quando comparados com balões convencionais, não farmacológicos (angioplastia transluminal percutânea) e SNF para o tratamento de doença arterial periférica.69-72 O resultado de BF para doença abaixo do joelho em caso de risco excepcionalmente alto de sangramento.68 com BF pode ser realizada usando apenas um antiplaquetário em pacientes individuais.

OUTROS DESENVOLVIMENTOS NOVOS: AONDE VAMOS?
No futuro, é provável que essa tecnologia encontre um lugar no tratamento de doenças congênitas, neurovasculares, valvares e pediátricas. A capacidade de realizar dilatação terapêutica seguida de entrega local de fármacos para prevenir reestenose gerou interesse na valvuloplastia aórtica e no tratamento da artéria basilar, veia subclávia e estenose de fistula arteriovenosa para hemodiálise. O conceito de valvuloplastia farmacológica também poderia ser teorizado para estenose da válvula mitral e veia pulmonar (Tabela 5).71

Tabela 5. Aplicações futuras sugeridas para o balão farmacológico

Doença da artéria coronária
Infarto agudo do miocárdio com supradesnívelamento do segmento ST
Bifurcação
Doença difusa longa
Doença cardíaca valvar
Estenose aórtica (candidato desfavorável para substituição cirúrgica ou percutânea de válvula aórtica)
Estenose mitral
Intervenções pediátricas
Estenose de veia pulmonar
Estenose/reestenose de artéria pulmonar
Intervenções neurovasculares
Estenose da artéria vertebral
Estenose da artéria basilar
Reestenose intra-stent de carótida
Outras intervenções vasculares
Estenose de veia central
Estenose de fistula arteriovenosa e enxertos
Estenose da artéria interna pudenda
A tecnologia BF continua a evoluir com melhorias na tecnologia de excipientes e introdução do sirolimus. Mais ECR são necessários para demonstrar se o BF com fármacos da família limus é mais seguro e mais efetivo em comparação com o SF liberador de fármaco da família limus. A ICP com BF isoladamente supera os efeitos negativos de remodelamento de ATPB (redução do tamanho de vasos) e de stent (hiperplasia neointimal). Por ser de natureza hidrofílica, o paclitaxel permanece na parede arterial por períodos prolongados e inibe a proliferação de células da musculatura lisa e, na ausência de um implante metálico, o BF leva a um remodelamento positivo da parede arterial. Embora os ensaios clínicos com BF falhem em demonstrar os efeitos do remodelamento positivo, os estudos prospectivos de ultrassom intravascular (IVUS) e tomografia de coerência óptica (OCT) mostraram uma tendência de remodelamento positivo, sem formação de aneurisma com o uso de BF. Isso exige que os estudos de acompanhamento de longo prazo identifiquem claramente esse possível benefício do BF. A aplicação de uma droga antiproliferativa em cutting ou scoring balloon combinaria o benefício da aterectomia com balão e as propriedades antiproliferativas de BF. Um novo scoring balloon revestido com paclitaxel foi desenvolvido e usado com sucesso em um primeiro estudo clínico randomizado em humanos. Os dados preliminares do primeiro estudo em humanos demonstram que o Chocolate Heart DCB (TriReme Medical, Pleasanton, California, USA) incorporando a estrutura de restrição de nitinol (projetada para fornecer deflação rápida e re-envelopamento uniforme) é viável e seguro para uso.

A aplicação de BF deve ser examinada mais detalhadamente em vasos de pequeno calibre ou em vasos médios e distais, nos quais os stents distais podem ser uma desvantagem para a futura cirurgia de revascularização do miocárdio. Esses estudos devem ser randomizados 1:1 para os SF de última geração, com o desfecho primário de falência do dano do miocárdio. Diabéticos frequentemente apresentam RLA, mesmo com os SF de última geração, e podem ser outro subgrupo de pacientes. Os pacientes incluídos devem ser acompanhados por pelo menos 5 anos e receber tratamento clínico ótimo durante o seguimento. As etapas (Figura 1) devem incluir uma preparação adequada da lesão com balão semi- ou não complacente (cutting ou scoring balloon, AR ou LIV para lesões calcificadas) com relação da artéria-balão de 1:1; diâmetro de BF de 0,8 vez a uma vez o tamanho nominal do vaso, para evitar as complicações mecânicas da ATPB; implante de stent de resgate em casos de reserva de fluxo fracionada ≤0,80, estenose residual ≥30% ou dissecções coronárias tipo C e uma avaliação completa do recoil elástico realizando outra angiografia, 10 a 15 minutos após a angioplastia inicial. Se houver qualquer redução significativa no diâmetro da luz, deve-se considerar o implante guiado por IVUS ou OCT de SF de última geração.

CONCLUSÃO

O balão farmacológico representa uma nova revolução como ferramenta importante no campo da intervenção coronária percutânea. O entusiasmo inicial com essa tecnologia foi prejudicado no início de sua introdução por vários vieses, devido a relatos de casos não publicados, pequenos estudos não randomizados e falta de testes pré-clínicos. Atualmente, é uma opção viável, segura e efetiva, que tem sido validada em vários estudos, além de outros em andamento. A eficácia dos balões farmacológicos está agora comprovada, especialmente para reestenose intra-stent e doença de vasos de pequeno calibre, com um bom perfil de segurança. O tratamento de lesões de bifurcações de novo, lesões difusas, síndrome coronariana aguda, intervenções pediátricas e doenças valvares constitui indicação promissora, mas ainda precisa ser comprovado em grandes ensaios clínicos randomizados. Ainda há muito a aprender sobre os mecanismos e os resultados do uso dessa nova tecnologia. No entanto, em um curto período de tempo, os balões farmacológicos demonstraram capacidade de ter um impacto significativo na prática da intervenção cardiovascular percutânea.

FONTE DE FINANCIAMENTO

Não há.

DECLARAÇÃO DE CONFLITOS DE INTERESSE

Os autores declaram não haver conflitos de interesse.
CONTRIBUIÇÃO DOS AUTORES

Concepção e desenho do estudo: DD, RM, SR, NA e SAM; coleta dos dados: RR e RM; interpretação dos dados: DD e NA; composição do texto: DD e SR; aprovação da versão final a ser publicada: DD e SAM.

REFERÊNCIAS

1. Kirtane AJ, Gupta A, Iyengar S, Moses JW, Leon MB, Applegate R, et al. Safety and efficacy of drug-eluting and bare metal stents: comprehensive meta-analysis of randomized trials and observational studies. Circulation. 2009;119(25):3198-206. https://doi.org/10.1161/CIRCULATIONAHA.108.826479

2. Yerasi C, Case BC, Forrestal BJ, Torguson R, Weintroub WS, Garcia-Garcia HM, et al. Drug-coated balloon for de novo coronary artery disease. J Am Coll Cardiol. 2020;75(9):1061-73. https://doi.org/10.1016/j.jacc.2019.12.046

3. Cremers B, Speck U, Kauflens N, Mahnkopf D, Kühler M, Böhm M, et al. Drug-eluting balloon: very short-term exposure and overlapping. Thromb Haemost. 2009;101(1):201-6.

4. Creel CJ, Lovich MA, Edelman ER. Arterial paclitaxel distribution and deposition. Circ Res. 2000;86(8):879-84. https://doi.org/10.1161/01.res.86.8.879

5. Lovich MA, Creel C, Hong K, Hwang CW, Edelman ER. Carrier proteins determine local pharmacokinetics and arterial distribution of paclitaxel. J Pharm Sci. 2001;90(9):1324-35. https://doi.org/10.1002/jps.10815

6. Scheller B, Gray WA. Drug-coated balloons. In: Topol EJ, Terstein PS, eds. Textbook of interventional cardiology. Philadelphia: Saunders; 2012. p. 197-202.

7. Speck U, Cremers B, Kelsch B, Biedermann M, Clever YP, Schaffner S, et al. Do pharmacokinetics explain persistent restenosis inhibition by a single dose of paclitaxel? Circ Cardiovasc Interv. 2012;5(3):392-400. https://doi.org/10.1161/CIRCINTERVENTIONS.111.967794

8. Neumann FJ, Sousa-Uva M, Ahlsson A, Alfonso F, Banning AP, Benedetto U, et al. 2018 ESC/EACTS Guidelines on myocardial revascularization. Eur Heart J. 2019;40(2):167-216. https://doi.org/10.1093/eurheartj/ehz494

9. Ang H, Lin J, Huang YY, Chong TT, Cassese S, Joner M, et al. Drug-coated balloons: technologies and clinical applications. Curr Pharm Des. 2018;24(4):381-96. https://doi.org/10.2174/1381612824666171227221305

10. Byrne RA, Joner M, Kastrati A. Stent thrombosis and restenosis: what have we learned and where are we going? The Andreas Gruntzig Lecture ESC 2014. Eur Heart J 2015;36(47):3320-31. https://doi.org/10.1093/eurheartj/ehv511

11. Scheller B, Hehrlein C, Bocksch W, Rutsch W, Haghli D, Dietz U, et al. Treatment of coronary in-stent restenosis with a paclitaxel-coated balloon catheter. N Engl J Med. 2006; 355(20):2113-24. https://doi.org/10.1056/NEJMoa061254

12. Scheller B, Clever YP, Kelsch B, Hehrlein C, Bocksch W, Rutsch W, et al. Longterm followup after treatment of coronary instant restenosis with a paclitaxelcoated balloon catheter. JACC Cardiovasc Interv. 2012;5(3):323-30. https://doi.org/10.1016/j.jcin.2012.01.008

13. Unverdorben M, Vallbracht C, Cremers B, Heuer H, Hengstenberg C, Maikowski C, et al. Paclitaxel-coated balloon catheter versus paclitaxel-coated stent for the treatment of coronary in-stent restenosis. Circulation. 2009;119(23):2986-94. https://doi.org/10.1161/CIRCULATIONAHA.108.839282

14. Alfonso F, Perez-Vizcayno MJ, Cardenas A, Garcia Del Blanco B, Seidelberger B, Itigues A, et al. A randomized comparison of drug eluting balloon versus everolimus-eluting stent in patients with bare metal stent-in-stent restenosis: the RIBS V clinical trial (restenosis intra-stent of bare metal stents: paclitaxel-eluting balloon vs. everolimus-eluting stent). J Am Coll Cardiol. 2014;63(14):1378-86. https://doi.org/10.1016/j.jacc.2013.12.006

15. Adriaenssens T, Denis J, Ughi G, Bennett J, Dubois C, Sinnaeve P, et al. Optical coherence tomography study of healing characteristics of paclitaxel-eluting balloons vs. everolimus-eluting stents for instant restenosis: the SEDUCE (Safety and Efficacy of a Drug elUting balloon in Coronary artery rEstenosis) randomised clinical trial. EuroIntervention. 2014;10(4):439-48. https://doi.org/10.4244/EIJV10I4A77

16. Pleva L, Kukla P, Kusnerova P, Zapletalova J, Hlinomaz O. Comparison of the efficacy of paclitaxel-eluting balloon catheters and everolimus-eluting stents in the treatment of coronary in-stent restenosis: the treatment of in-stent restenosis study. Circ Cardiovasc Interv. 2016;9(4):e003316. https://doi.org/10.1161/CIRCINTERVENTIONS.115.003316

17. Jensen CJ, Richardt G, Tolg R, Erglis A, Skurk C, Jung W, et al. Angiographic and clinical performance of a paclitaxel-coated balloon compared to a second-generation sirolimus-eluting stent in patients with in-stent restenosis: the BIOLUX randomised controlled trial. EuroIntervention. 2018;14(10):1096-103. https://doi.org/10.4244/EIJ-D-17-01079

18. Baan J Jr, Claessen BE, Dijk KB, Vendrik J, van der Schaaf RJ, Meuwissen M, et al. A randomized comparison of paclitaxel-eluting balloon versus rverolimus-eluting stent for the treatment of any in-stent restenosis: the DARE Trial. JACC Cardiovasc Interv. 2018;11(3):275-83. https://doi.org/10.1016/j.jcin.2017.10.024

19. Rüttger H, Brachmann J, Sinha AM, Waliszewski M, Ohlom W, Brugger A, et al. A randomized, multicenter, single-blinded trial comparing paclitaxel-coated balloon angioplasty with plain balloon angioplasty in drug-eluting stent restenosis: The PEPFAC-DES study. J Am Coll Cardiol. 2012;59(15):1377-82. https://doi.org/10.1016/j.jacc.2012.01.015

20. Xu B, Gao R, Wang J, Yang Y, Chen S, Liu B, et al.; PEPFAC China ISR Trial Investigators. A prospective, multicenter, randomized trial of paclitaxel-coated balloon versus paclitaxel-eluting stent for the treatment of drug-eluting stent in-stent restenosis: results from the PEPFAC China ISR trial. JACC Cardiovasc Interv. 2014;7(2):204-11. https://doi.org/10.1016/j.jcin.2013.08.011

21. Byrne RA, Neumann FJ, Mehulli J, Wolff B, Tiroch K, Schulz S, et al. Paclitaxel-eluting balloons, paclitaxel-eluting stents, and balloon angioplasty in patients with restenosis after implantation of a drugeluting stent (ISAR-DESIRE 3): a randomised, open-label trial. Lancet. 2013;381(9865):461-7. https://doi.org/10.1016/S0140-6736(12)61964-3

22. Kufner S, Joner M, Schneider S, Tolg R, Zrenner B, Repp J, et al.; ISAR-DESIRE 4 Investigators. Neointimal modification with scoring balloon and efficacy of drug-coated balloon therapy in patients with restenosis in drug-eluting coronary stents: a randomized controlled trial. JACC Cardiovasc Interv. 2017;10(13):1332-40. https://doi.org/10.1016/j.jcin.2017.04.024

23. Alfonso F, Pérez-Vizcayno MJ, Cardenas A, Garcia Del Blanco B, García-Touchard A, López-Mínguez JR, et al.; RIBS IV Study Investigators (under auspices of Interventional Cardiology Working Group of Spanish Society of Cardiology). A prospective randomized trial of drug-eluting balloons versus everolimus-eluting stents in patients with in-stent restenosis of drug-eluting stents: the RIBS IV randomized clinical trial. J Am Coll Cardiol. 2015;66(1):23-33. https://doi.org/10.1016/j.jacc.2015.04.063
Aplicações clínicas do balão farmacológico

24. Wong YTA, Kang DY, Lee JB, Rha SW, Hong YJ, Shin ES, et al. Comparison of drug-eluting stents and drug-coated balloon for the treatment of drug-eluting coronary artery restenosis: a randomized RESTORE trial. Am Heart J. 2018;197:35-42. https://doi.org/10.1016/j.ahj.2017.11.008

25. Ali RM, Abdul Kader MASK, Wan Ahmad WA, Ong TK, Liew HB, Omar AF, et al. Treatment of coronary drug-eluting stent restenosis by a sirolimus- or paclitaxel-coated balloon. JACC Cardiovasc Interv. 2019;12(6):558-66. https://doi.org/10.1016/j.jcin.2018.11.040

26. Byrne RA, Cassese S, Windschisch T, King LA, Joner M, Tada T, et al. Differential relative efficacy between drug-eluting stents in patients with bare metal and drug-eluting stent restenosis; evidence in support of drug resistance; insights from the ISAR-DESIRE and ISAR-DESIRE 2 trials. EuroIntervention. 2013;9(7):797-802. https://doi.org/10.1093/eurheartj/ehv511

27. Wohrle J, Zadura M, Möbius-Winkler S, Leschke M, Opitz C, Ahmed W, et al. SeQuentPlease World Wide Registry: clinical results of SeQuent Please paclitaxel-coated balloon angioplasty in a large-scale, prospective registry study. J Am Coll Cardiol. 2012;60(18):1733-8. https://doi.org/10.1016/j.jacc.2012.07.040

28. Siontis G, Stefanini GG, Mavridis D, Siontis KC, Alfonso F, Pérez-Vizcayno MJ, et al. Percutaneous coronary interventional strategies for treatment of in-stent restenosis: a network meta-analysis. Lancet. 2015;386(9994):655-64. https://doi.org/10.1016/S0140-6736(15)60657-2

29. Giacoppo D, Alfonso F, Xu B, Claessen BE, Adriaenssens T, Jensen C, et al. Paclitaxel-coated balloon angioplasty vs. drug-eluting stenting for the treatment of coronary in-stent restenosis: a comprehensive, collaborative, individual patient data meta-analysis of 10 randomized clinical trials (DAEALDUS study). Eur Heart J. 2019;ehz594. https://doi.org/10.1002/ehj2.594

30. Alfonso F, Byrne RA, Rivero F, Kastrati A. Current treatment of in-stent restenosis. J Am Coll Cardiol. 2014;63(24):2659-73. https://doi.org/10.1016/j.jacc.2014.02.545

31. Alfonso F, Sandovol J, Nolte C. Calcified in-stent restenosis: a rare cause of dilation failure requiring rotational atherectomy. Circ Cardiovasc Interv. 2012;5:e1-2. https://doi.org/10.1161/CIRCINTERVENTIONS.111.96606

32. Alfonso F, Bastante T, Antuña P, de la Cuenda F, Cuesta J, García-Guimaraes M, et al. Coronary lithoplasty for the treatment of undilatable calcified de novo and in-stent restenosis lesions. J Am Coll Cardiol Intv. 2019;12(5):497-9. https://doi.org/10.1016/j.jcin.2018.12.025

33. Alfonso F, Pérez-Vizcayno MJ, GómezRecio M, Insa L, Calvo I, Hernandez J, et al. Implications of the “watermelon seeding” phenomenon during coronary interventions for in-stent restenosis. Catheter Cardiovasc Interv. 2005;66(4):521-7. https://doi.org/10.1002/cdi.20524

34. Alibiero R, Silber S, Di Mario C, Cernigliaro C, Battaglia S, Reimers B, et al.; RESCUT Investigators. Cutting balloon versus conventional balloon angioplasty for the treatment of in-stent restenosis: results of the restenosis cutting balloon evaluation trial (RESCUT). J Am Coll Cardiol. 2004;43(6):943-9. https://doi.org/10.1016/j.jacc.2003.09.054

35. Puymirat E, Barbato E. Percutaneous revascularization strategies in small-vessel disease. Ann Cardiol Angeiol (Paris). 2014;63(1):28-31. https://doi.org/10.1016/j.jancard.2013.07.001

36. Caputo R, Leon M, Serruys P, Neumann FFJ, Yeung A, Windeker S, et al. Performance of the resolute zotarolimus-eluting stent in small vessels. Catheter Cardiovasc Interv. 2014;84(1):17-23. https://doi.org/10.1002/cdi.25485

37. Unverdorben M, Kleber FX, Heuer H, Figulla HR, Vallbracht C, Leschke M, et al. Treatment of small coronary arteries with a paclitaxel-coated balloon catheter. Clin Res Cardiol. 2010;99(3):165-74. https://doi.org/10.1007/s00392-009-0101-6

38. Waksman R, Serra A, Loh JP, Malik FT, Torguson R, Stahnke S, et al. Drug-coated balloons for de novo coronary lesions: results from the Valentines II trial. EuroIntervention 2013;9(5):613-9. https://doi.org/10.4244/EIJV9I5A98

39. Vaquerizo B, Miranda-Guardiola F, Fernández E, Rumoroso JR, Gómez-Hospital JA, Bossa F, et al. Treatment of small vessel disease with the paclitaxel drug-eluting balloon: 6-month angiographic and 1-year clinical outcomes of the Spanish Multicenter Registry. J Interv Cardiol. 2015;28(5):430-8. https://doi.org/10.1111/jict.12227

40. Venetianos D, Lawesson SS, Panayi G, Venetianos D, Lawesson SS, Panayi G, et al. Long-term efficacy of drug coated balloons compared with new generation drug-eluting stents for the treatment of de novo coronary artery lesions. Catheter Cardiovasc Interv. 2018;92(5):E317-26. https://doi.org/10.1002/ccd.27548

41. Rosenberg M, Waliszewski M, Chin K, Was WA, Caramanno G, Milazzo D, et al. Prospective, large-scale multicenter trial for the use of drug-coated balloons in coronary lesions: the DCB-Only All-Comers Registry. Catheter Cardiovasc Interv. 2019;93(2):181-8. https://doi.org/10.1002/ccd.27724

42. Sim HW, Ananthakrishna R, Chan SP, Law AF, Lee CH, Chan MY, et al. Treatment of very small de novo coronary artery disease with 2.0 mm drug-coated balloons showed 1-year clinical outcome comparable with 2.0 mm drug-eluting stents. J Invasive Cardiol. 2018;30(7):256-61. PMID: 29656281.

43. Funatsu A, Nakamura S, Inoue N, Nanto S, Nakamura M, Ishiwuchi M, et al. A multicenter randomized comparison of paclitaxel-coated balloon with plain balloon angioplasty in patients with small vessel disease. Clin Res Cardiol. 2017;106(10):824-32. https://doi.org/10.1007/s00392-017-1126-x

44. Rissman TT, Uskela S, Eränen J, Mantyla P, Olli A, Rompanen H, et al. Drug coated balloon for treatment of de-noo coronary artery lesions in patients with high bleeding risk (DEBUT): a single-blind, randomised, noninferiority trial. Lancet. 2019;394(10194):230-9. https://doi.org/10.1016/S0140-6736(19)31126-2

45. Cortese B, Michelì A, Pichici A, Coppolaro A, Bandinelli L, Severi S, et al. Paclitaxel-coated balloon versus drug-eluting stent during PCI of small coronary vessels, a prospective randomised clinical trial. The PICCOLETO study. Heart. 2010;96(16):1291-6. https://doi.org/10.1136/hrt.2010.195057

46. Latib A, Colombo A, Castrioni F, Micari A, Cremonesi A, De Felice F, et al. Randomized multicenter study comparing a paclitaxel drug-eluting balloon with a paclitaxel eluting stent in small coronary vessels: the BELLO (Balloon Elution and Late Loss Optimization) study. J Am Coll Cardiol. 2012;60(24):2473-80. https://doi.org/10.1016/j.jacc.2012.09.020

47. Jeger RV, Farah A, Oliow MA, Mangner N, Mobius-Winkler S, Leibundgut G, et al., for the BASKET-SMALL 2 Investigators. Drug-coated balloons for small coronary artery disease (BASKETSMALL 2): an open-label randomised noninferiority trial. Lancet. 2018;392(10150):849-56. https://doi.org/10.1016/S0140-6736(18)31719-7

48. Tang Y, Qiao S, Xu X, Chen Y, Jin Z, Chen H, et al. for the RESTORE SVD China Investigators. Drug-coated balloon versus drug-eluting stent for small-vessel coronary disease: the RESTORE SVD China randomized trial. JACC Cardiovasc Interv. 2018;11(23):2381-92. https://doi.org/10.1016/j.jcin.2018.09.009

49. Cortese B. The PICCOLETO study and beyond. EuroIntervention [Internet]. 2011[cited 2020 Oct 5];7:K53-6. Available from: https://eurointervention.pcronline.com/article/the-piccoleto-study-and-beyond
50. Nagamura T, Latib A, Spuglia GA, Menozzi A, Castriota F, Micari A, et al. A 2-year follow-up of a randomized multicenter study comparing a paclitaxel drug-eluting balloon with a paclitaxel-eluting stent in small coronary vessels the BELLO study. Int J Cardiol. 2015;184:17-21. https://doi.org/10.1016/j.ijcard.2015.01.080

51. Latib A, Ruparelia N, Menozzi A, Castriota F, Micari A, Cremonesi A, et al. 3-Year follow-up of the Balloon Elution and Late Loss Optimization Study (BELLO). JACC Cardiovasc Interv. 2015;8(8):1132-4. https://doi.org/10.1016/j.jcinterv.2015.04.008

52. Mathey DG, Wendi J, Boxburger M, Bonaventura K, Kleber FX. Treatment of bifurcation lesions with a drug-eluting balloon: The PEPCAD V (Paclitaxel eluting PTCA balloon in coronary artery disease) trial. EuroIntervention. 2011;7 Suppl K:K61-K65. https://doi.org/10.4244/EIJV7SKA11

53. Worthley S, Hendriks M, Worthley M, Whelan A, Walters DL, Whitbourn R, et al. Paclitaxel-eluting balloon and everolimus eluting stent for provisional stenting of coronary bifurcations: 12-month results of the multicenter BIOLUX-I study. Cardiovasc Revasc Med. 2015;16(7):413-7. https://doi.org/10.1016/j.carrev.2015.07.009

54. Berland J, Lefevre T, Brenot P, Fajadet J, Motreff P, Guerin P, et al. DANUBIO - a new drug-eluting balloon for the treatment of side branches in bifurcation lesions: six-month angiographic follow-up results of the DEBSIDE trial. EuroIntervention. 2015;11(8):686-76. https://doi.org/10.4244/EIJV11I8A177

55. Schulz A, Hauschild K, Kleber FX. Treatment of coronary de novo bifurcation lesions with DCB only strategy. Clin Res Cardiol. 2014;103:451-6. https://doi.org/10.1007/s00392-014-0671-9

56. Bruch L, Zadura M, Waliszewski M, Platonic Z, Eranen J, Scheller B, et al. Results from the International Drug Coated Balloon Registry for the Treatment of Bifurcations. Can a bifurcation be treated without stents? J Interv Cardiol. 2016;29(4):348-356. https://doi.org/10.1111/jioc.12301

57. Kleber FX, Rittger H, Ludwig J, Schulz A, Mathey DG, Boxburger M, et al. Drug eluting balloons as stand alone procedure for coronary bifurcational lesions: results of the randomized multicenter PEPCAD-BIF trial. Clin Res Cardiol. 2016;105(7):613-21. https://doi.org/10.1007/s00392-015-0957-6

58. Lassen JF, Burzotta F, Banning AP, Lefèvre T, Darremont O, Hilldick-Smith D, et al. Percutaneous coronary intervention for the left main stem and other bifurcation lesions: 12th consensus document from the European Bifurcation Club. EuroIntervention. 2018;13(13):1540-53. https://doi.org/10.4244/EIJ-D-17-00622

59. Her AY, Ann SH, Singh GB, Kim YH, Okamura T, Garg S, et al. Serial morphological changes of side-branch ostium after paclitaxel-coated balloon treatment of de novo coronary lesions of main vessels. Yonsei Med J. 2016;57(3):606-13. https://doi.org/10.3349/ymj.2016.57.3.606

60. Jeger RV, Eccleshall S, Wan Ahmad WA, Ge J, Poerner TC, Shin ES, et al.; International DCB Consensus Group. Drug-Coated Balloons for Coronary Artery Disease: Third Report of the International DCB Consensus Group. JACC Cardiovasc Interv. 2020;13(12):1391-402. https://doi.org/10.1016/j.jcin.2020.02.043

61. Carrick D, Oldroyd KG, McEntegart M, Haig C, Petrie MC, Etheiba H, et al. A randomized trial of deferred stenting versus immediate stenting to prevent no- or slow-reflow in acute ST-segment elevation myocardial infarction (DEFER-STEMI). J Am Coll Cardiol. 2014;63(20):2088-98. https://doi.org/10.1016/j.jacc.2014.02.530

62. Scheller B, Ohlows MA, Ewen S, Kische S, Rudolph TK, Clever YP, et al. Bare metal or drug-eluting stent versus drug-coated balloon in non-ST-elevation myocardial infarction: the randomised PEPCAD NSTEMI trial. EuroIntervention. 2020;20(15):1527-33. https://doi.org/10.4244/EIJ-D-19-00723

63. Vos NS, Dirksen MT, Vink MA, van Nooijen FC, Amoroso G, Hermman JP, et al. Safety and feasibility of a Paclitaxel-eluting balloon angioplasty in Primary Percutaneous coronary intervention in Amsterdam (PAPPRA: one-year clinical outcome of a pilot study. EuroIntervention. 2014;10(5):584-90. https://doi.org/10.4244/EIJV10SA010

64. Ho HH, Tan J, Ooi YW, Loh KK, Aung TH, Yin NT, et al. Preliminary experience with drug-coated balloon angioplasty in primary percutaneous coronary intervention. World J Cardiol. 2015;7(6):311-4. https://doi.org/10.4330/wjc.v7.i6.311

65. Nijhof F, Agostoni P, Belkacemi A, Nathoe HM, Voskuil M, Samim M, et al. Primary percutaneous coronary intervention by drug-eluting balloon angioplasty: the nonrandomized fourth arm of the DEB-AMI (drug-eluting balloon in ST-segment elevation myocardial infarction) trial. Catheter Cardiovasc Interv. 2015;86 Suppl 1:S34-44. https://doi.org/10.1002/ccd.26606

66. Vos NS, Fagel ND, Amoroso G, Hermman JP, Patterson MS, Piers LH, et al. Paclitaxel-Coated Balloon Angioplasty Versus Drug-Eluting Stent in Acute Myocardial Infarction: The REVELATION Randomized Trial. JACC Cardiovasc Interv. 2019;12(17):1691-9. https://doi.org/10.1016/j.jcin.2019.04.016

67. Costopoulou C, Latib A, Nagamura T, Sticchi A, Figini F, Basavarajiah S, et al. The role of drug-eluting balloons alone or in combination with drug-eluting stents in the treatment of de novo diffuse coronary disease. JACC Cardiovasc Interv. 2015;8(11):1153-9. https://doi.org/10.1016/j.jcin.2013.07.005

68. Uskela S, Karkkainen JM, Erann J, Siljander A, Mantyla P, Mustonen J, et al. Percutaneous coronary intervention with drug-coated balloon-only strategy in stable coronary artery disease and in acute coronary syndromes: An all-comers registry study. Catheter Cardiovasc Interv. 2019;93(5):893-900. https://doi.org/10.1002/ccd.27950

69. Dake MD, Ansel GM, Jaff MR, Okhi T, Saxxon RR, Smouse HB, et al. Durable clinical effectiveness with paclitaxel-eluting stents in the femoropopliteal artery: 5-year results of the Zilver FTX Randomized Trial. Circulation. 2016;133(15):1472-83. https://doi.org/10.1161/CIRCULATIONAHA.115.016900

70. Dake MD, Ansel GM, Jaff MR, Okhi T, Saxxon RR, Smouse HB, et al. Paclitaxel-eluting stents show superiority to balloon angioplasty and bare metal stents in femoropopliteal disease: twelve-month Zilver FTX randomized study results. Circ Cardiovasc Interv. 2011;4(5):495-504. https://doi.org/10.1161/CIRCINTERVENTIONS.111.962324

71. Tepe G, Laird J, Schneider P, Krishnan N, Micari A, Metzger C, et al. Drug-coated balloon versus standard percutaneous transluminal angioplasty for the treatment of superficial femoral and popliteal peripheral artery disease: 12-month results from the IN.PACT SFA randomized trial. Circulation. 2015;131(15):1472-83. https://doi.org/10.1161/CIRCULATIONAHA.114.011004

72. Tepe G, Schnorr B, Albrecht T, Brechtel K, Clausen CD, Scheller B, et al. Angioplasty of femoropopliteal arteries with drug-coated balloons: 5-year follow-up of the THUNDER trial. JACC Cardiovasc Interv. 2015;8(1 Pt A):102-8. https://doi.org/10.1016/j.jcin.2014.07.023

73. Choo GH. Drug-eluting balloons: future potential indications and applications. EuroIntervention. 2011;7:K112-K118. https://doi.org/10.4244/EIJV7SKA19

74. Poerner TC, Duderstadt C, Goebel B, Kretzschmar D, Figulla HR, Otto S. Fractional flow reserve-guided coronary angioplasty using paclitaxel-coated balloons without stent implantation: feasibility, safety and 6-month results by angiography and optical coherence tomography. Clin Res Cardiol. 2017;106(1):18-27. https://doi.org/10.1007/s00392-016-1019-4

75. Ann SH, Balbir Singh G, Lim KH, Koo BK, Shin ES. Anatomical and physiological changes after paclitaxel-coated
Aplicações clínicas do balão farmacológico

balloon for atherosclerotic de novo coronary lesions: serial IVUS-VH and FFR study. PLoS One. 2016;11(1):e0147057. https://doi.org/10.1371/journal.pone.0147057

76. Scheller B, Fontaine T, Mangner N, Hoffmann S, Bonaventura K, Clever YP, et al. A novel drug-coated scoring balloon for the treatment of coronary in-stent restenosis: Results from the multi-center randomized controlled PATENT-C first in human trial. Catheter Cardiovasc Interv. 2016;88(1):51-9. https://doi.org/10.1002/ccd.26216

77. Garcia-Lithgow C, Tirziu D, Zhou S, Bouras G, Shah T, Grubman, et al. First-in-human study of paclitaxel drug-coated chocolate coronary percutaneous transluminal coronary angioplasty balloon catheter in de novo coronary artery lesions. JACC Cardiovasc Interv. 2019;12(24):2568-70. https://doi.org/10.1016/j.jcin.2019.08.044