ON THE $H^1 – L^1$ BOUNDEDNESS OF OPERATORS

STEFANO MEDA, PETER SJÖGREN, AND MARIA VALLARINO

(Communicated by Andreas Seeger)

Abstract. We prove that if q is in $(1, \infty)$, Y is a Banach space, and T is a linear operator defined on the space of finite linear combinations of $(1, q)$-atoms in \mathbb{R}^n with the property that

$$\sup \{ \| Ta \|_Y : a \text{ is a (1, q)-atom} \} < \infty,$$

then T admits a (unique) continuous extension to a bounded linear operator from $H^1(\mathbb{R}^n)$ to Y. We show that the same is true if we replace (1, q)-atoms by continuous $(1, \infty)$-atoms. This is known to be false for (1, ∞)-atoms.

1. Introduction

In a recent paper, M. Bownik [3] showed that there exists a linear functional F defined on finite linear combinations of $(1, \infty)$-atoms in \mathbb{R}^n with the property that

$$\sup \{ | F(a) | : a \text{ is a (1, \infty)-atom} \} < \infty,$$

but which does not admit a continuous extension to $H^1(\mathbb{R}^n)$. If v is a fixed function in $L^1(\mathbb{R}^n) \setminus \{0\}$, then the operator B, defined on finite linear combinations of $(1, \infty)$-atoms by $Bf = F(f) v$, satisfies

$$\sup \{ \| Ba \|_{L^1(\mathbb{R}^n)} : a \text{ is a (1, \infty)-atom} \} < \infty$$

but does not admit an extension to a bounded operator from $H^1(\mathbb{R}^n)$ to $L^1(\mathbb{R}^n)$. This shows that the argument “the operator T maps $(1, \infty)$-atoms uniformly into $L^1(\mathbb{R}^n)$, and hence it extends to a bounded operator from $H^1(\mathbb{R}^n)$ to $L^1(\mathbb{R}^n)$” is fallacious.

Fortunately, if T is a Calderón–Zygmund operator, then the uniform boundedness of T on $(1, \infty)$-atoms implies the boundedness from $H^1(\mathbb{R}^n)$ to $L^1(\mathbb{R}^n)$ (see, for instance, [11] Ch. 7.3, Lemma 1, [2] Ch. 1.9, [7] Ch. III.7 and [8] Thm 6.7.1).

The purpose of this paper is to show that the operator B constructed above is, to a certain extent, pathological. Indeed, we prove that if q is in $(1, \infty)$, Y is a Banach space, and T is a linear operator defined on finite linear combinations of $(1, q)$-atoms in \mathbb{R}^n with the property that

$$\sup \{ \| Ta \|_Y : a \text{ is a (1, q)-atom} \} < \infty,$$

then T admits a unique continuous extension to a bounded linear operator from $H^1(\mathbb{R}^n)$ to Y. The same conclusion holds if we assume that T is a linear operator...
on finite linear combinations of continuous \((1, \infty)\)-atoms in \(\mathbb{R}^n\) with the property that

\[
\sup \{\|Ta\|_Y : a \text{ is a continuous } (1, \infty)\text{-atom}\} < \infty.
\]

Note that this does not contradict Bownik’s example. Indeed, the restriction of the operator \(B\) to continuous \((1, \infty)\)-atoms extends to a bounded operator \(\tilde{B}\) from \(H^1(\mathbb{R}^n)\) to \(L^1(\mathbb{R}^n)\). However, \(B\) and \(\tilde{B}\) will agree on continuous \((1, \infty)\)-atoms but not on all \((1, \infty)\)-atoms.

To explain the idea of the proofs of these results, we need more notation. Suppose that \(q\) is in \((1, \infty]\), and denote by \(H^1_{\text{fin}}(\mathbb{R}^n)\) the vector space of all finite linear combinations of \((1,q)\)-atoms. Notice that \(H^1_{\text{fin}}(\mathbb{R}^n)\) consists of all \(L^q(\mathbb{R}^n)\) functions with compact support and integral 0. Clearly, \(H^1_{\text{fin}}(\mathbb{R}^n)\) is a dense subspace of \(H^1(\mathbb{R}^n)\). We may define a norm on \(H^1_{\text{fin}}(\mathbb{R}^n)\) as follows:

\[
\|f\|_{H^1_{\text{fin}}(\mathbb{R}^n)} = \inf \left\{ \sum_{j=1}^N |\lambda_j| : f = \sum_{j=1}^N \lambda_j a_j, \ a_j \text{ is a } (1,q)\text{-atom, } N \in \mathbb{N} \right\}.
\]

Obviously \(\|f\|_{H^1(\mathbb{R}^n)} \leq \|f\|_{H^1_{\text{fin}}(\mathbb{R}^n)}\) for every \(f\) in \(H^1_{\text{fin}}(\mathbb{R}^n)\). An example due to Y. Meyer (see [12] p. 513, Bownik’s paper [3] or [7] p. 370) shows that \(\cdot\|_{H^1(\mathbb{R}^n)}\) and \(\cdot\|_{H^1_{\text{fin}}(\mathbb{R}^n)}\) are inequivalent norms on \(H^1_{\text{fin}}(\mathbb{R}^n)\). This is the starting point of Bownik’s construction.

We prove that Meyer’s example itself is somewhat exceptional. Indeed, by using the maximal characterisation of \(H^1(\mathbb{R}^n)\), we show that if \(q < \infty\), then \(\cdot\|_{H^1(\mathbb{R}^n)}\) and \(\cdot\|_{H^1_{\text{fin}}(\mathbb{R}^n)}\) are equivalent norms on \(H^1_{\text{fin}}(\mathbb{R}^n)\) (see Section 3). Similarly, we prove that \(\cdot\|_{H^1_{\text{fin}}(\mathbb{R}^n)}\) and \(\cdot\|_{H^1_{\text{fin}}(\mathbb{R}^n) \cap C(\mathbb{R}^n)}\) are equivalent norms on \(H^1_{\text{fin}}(\mathbb{R}^n) \cap C(\mathbb{R}^n)\).

This immediately implies that operators defined on \(H^1_{\text{fin}}(\mathbb{R}^n)\) which have either property (1.1) or property (1.2) automatically extend to bounded operators from \(H^1(\mathbb{R}^n)\) to \(L^1(\mathbb{R}^n)\).

As discussed briefly in Section 3, this equivalence of norms remains true for \(H^p(\mathbb{R}^n)\) with \(0 < p < 1\) and \((p,q)\)-atoms.

The extension property for operators was also proved, by different methods, for \(0 < p \leq 1\) and \((p,2)\)-atoms and operators taking values in quasi-Banach spaces, by D. Yang and Y. Zhou [17].

A theory of Hardy spaces has been developed in spaces of homogeneous type; see R.R. Coifman and G. Weiss [4]. It is, however, not evident whether our results extend to this case in general. Nevertheless, let \(M\) be such a space. By a simple functional analysis argument, we show that if \(q\) is in \((1, \infty)\) and \(T\) is an operator defined on \(H^1_{\text{fin}}(M)\) satisfying the analogue of (1.1), then \(T\) automatically extends to a bounded operator from \(H^1(M)\) to \(L^1(M)\) (see Section 4). It may be worth noticing that the proof of this result also applies to certain metric measured spaces \((M, \rho, \mu)\) where \(\mu\) is only “locally doubling” [10], [4], and [6].

For so-called RD-spaces, which are spaces of homogeneous type having “dimension \(n\)” in a certain sense, our complete results were recently extended in the paper [9] by L. Grafakos, L. Liu and Yang. These authors consider \(n/(n+1) < p \leq 1\) and quasi-Banach-valued operators.

The authors wish to thank N. Th. Varopoulos for useful conversations on the subject of this paper.
2. Notation and terminology

Suppose that \((M, \rho, \mu)\) is a space of homogeneous type in the sense of Coifman and Weiss [5] and that \(\mu\) is a \(\sigma\)-finite measure. For the sake of simplicity, we shall assume that \(\mu(M)\) is infinite.

Suppose that \(q\) is in \((1, \infty]\). For each closed ball \(B\) in \(M\), we denote by \(L^q_0(B)\) the space of all functions in \(L^q(M)\) which are supported in \(B\) and have integral 0. Clearly \(L^q_0(B)\) is a closed subspace of \(L^q(M)\). The union of all spaces \(L^q_0(B)\) as \(B\) varies over all balls coincides with the space \(L^q_{c,0}(M)\) of all functions in \(L^q(M)\) with compact support and integral 0. Fix a reference point \(o\) in \(M\) and for each positive integer \(k\) denote by \(B_k\) the ball centred at \(o\) with radius \(k\). A convenient way of topologising \(L^q_{c,0}(M)\) is to interpret \(L^q_{c,0}(B_k)\) as the strict inductive limit of the spaces \(L^q_{c,0}(B_k)\) (see [II, p. 33] for the definition of the strict inductive limit topology). We denote by \(X^q\) the space \(L^q_{c,0}(M)\) with this topology, and write \(X^q_k\) for \(L^q_{c,0}(B_k)\).

We recall the basic definitions and results concerning the atomic Hardy space \(H^1(M)\). The reader is referred to [5] and the references therein for this and more on Hardy spaces defined on spaces of homogeneous type. Suppose that \(q\) is in \((1, \infty]\). A \((1, q)\)-atom is a function \(a\) in \(L^q(M)\) supported in a ball \(B\), with mean value 0 and such that

\[
\left(\frac{1}{\mu(B)} \int_B |a|^q \, d\mu \right)^{1/q} \leq \mu(B)^{-1}
\]

if \(q\) is finite, and \(\|a\|_\infty \leq \mu(B)^{-1}\) if \(q = \infty\). We denote by \(H^{1,q}(M)\) the space of all functions \(g\) in \(L^1(M)\) which admit a decomposition of the form \(g = \sum_j \lambda_j a_j\), where the \(a_j\) are \((1, q)\)-atoms and the \(\lambda_j\) are complex numbers such that \(\sum_j |\lambda_j| < \infty\). The norm \(\|g\|_{H^{1,q}}\) of \(g\) in \(H^{1,q}(M)\) is the infimum of \(\sum_j |\lambda_j|\) over all such decompositions. It is well known that all the spaces \(H^{1,q}(M)\) with \(q \in (1, \infty)\) coincide with \(H^{1,\infty}(M)\), and we denote them all by \(H^1(M)\).

Clearly, the vector space \(H^1_{\text{fin}}(M)\) of all finite linear combinations of \((1, q)\)-atoms is dense in \(H^1(M)\) with respect to the norm of \(H^1(M)\), for \(q\) in \((1, \infty]\). Observe also that \(H^1_{\text{fin}}(M)\) and \(L^q_{c,0}(M)\) agree as vector spaces, and so do the space of finite linear combinations of continuous \((1, \infty)\)-atoms and \(H^1_{\text{fin}}(M) \cap C(\mathbb{R}^n)\).

For each ball \(B\) and each locally integrable function \(f\), we denote by \(f_B\) the average of \(f\) on \(B\). Recall that \(BMO\) is the Banach space of all locally integrable functions \(f\), defined modulo constants, such that

\[
\|f\|_{BMO} = \sup_B \frac{1}{\mu(B)} \int_B |f - f_B| \, d\mu < \infty.
\]

The dual of \(H^1(M)\) may be identified with \(BMO\).

There are several characterisations of the space \(H^1(\mathbb{R}^n)\). We shall make use of the so-called maximal characterisation, which we briefly recall. Suppose that \(m\) is an integer with \(m > n\), and denote by \(\mathcal{A}_m\) the set of all functions \(\varphi\) in the Schwartz space \(S(\mathbb{R}^n)\) such that

\[
\sup_{|\beta| \leq m} \sup_{x \in \mathbb{R}^n} (1 + |x|)^m |D^\beta \varphi(x)| \leq 1,
\]

where \(|\beta|\) denotes the length of the multi-index \(\beta\). For \(\varphi\) in \(S(\mathbb{R}^n)\) denote by \(\varphi_t\) the function \(t^{-n} \varphi(\cdot/t)\). Given \(f\) in \(L^1(\mathbb{R}^n)\), define the “grand maximal function”
Suppose that f is in $L^1(\mathbb{R}^n)$. The following are equivalent:

(i) f is in $H^1(\mathbb{R}^n)$;

(ii) the grand maximal function $M_m f$ is in $L^1(\mathbb{R}^n)$.

Furthermore, $f \mapsto \|M_m f\|_{L^1(\mathbb{R}^n)}$ is an equivalent norm on $H^1(\mathbb{R}^n)$.

The letter C will denote a positive constant, which need not be the same at different occurrences. Given two positive quantities A and B, we shall mean by $A \sim B$ that there exists a constant C such that $1/C \leq A/B \leq C$.

3. The Euclidean case

In this section we work in the classical setting of \mathbb{R}^n.

Theorem 3.1. The following hold:

(i) if $q < \infty$, then $\|f\|_{H^{1,q}_\text{fin}(\mathbb{R}^n)}$ and $\|f\|_{H^1(\mathbb{R}^n)}$ are equivalent norms on $H^{1,q}_\text{fin}(\mathbb{R}^n)$;

(ii) the two norms $\|f\|_{H^{1,\infty}_\text{fin}(\mathbb{R}^n)}$ and $\|f\|_{H^1(\mathbb{R}^n)}$ are equivalent on $H^{1,\infty}_\text{fin}(\mathbb{R}^n) \cap C(\mathbb{R}^n)$.

Proof. Clearly, $\|f\|_{H^1(\mathbb{R}^n)} \leq \|f\|_{H^{1,q}_\text{fin}(\mathbb{R}^n)}$ for f in $H^{1,q}_\text{fin}(\mathbb{R}^n)$ and for q in $(1,\infty]$. Thus, we have to show that for every q in $(1,\infty)$ there exists a constant C such that

$$\|f\|_{H^{1,q}_\text{fin}(\mathbb{R}^n)} \leq C \|f\|_{H^1(\mathbb{R}^n)} \quad \forall f \in H^{1,q}_\text{fin}(\mathbb{R}^n),$$

and that a similar estimate holds for $q = \infty$ and all f in $H^{1,\infty}_\text{fin}(\mathbb{R}^n) \cap C(\mathbb{R}^n)$.

Suppose that q is in $(1,\infty]$ and that f is in $H^{1,q}_\text{fin}(\mathbb{R}^n)$ with $\|f\|_{H^1(\mathbb{R}^n)} = 1$. By the translation invariance of Lebesgue measure, we may assume that the support of f is contained in the closed ball $B = B(0,R)$ centred at 0 with radius R. For each k in \mathbb{Z}, denote by Ω_k the level set $\{x \in \mathbb{R}^n : M_m f(x) > 2^k\}$ of the grand maximal function $M_m f$ of f. We choose Whitney cubes Q^i_k, $i \in \mathbb{N}$, with disjoint interiors satisfying $\Omega_k = \bigcup_i Q^i_k$ and

$$\text{diam}(Q^i_k) \leq \eta \text{dist}(Q^i_k, \Omega_k) \leq 4 \text{diam}(Q^i_k),$$

where η is a suitable constant in $(0,1)$. Except for the factor η, this is Theorem VI.1 of [14] p. 167. The only modification needed in the proof of [14] concerns the choice of the constant denoted by c.

By following closely the proof of [15] Theorem III.2, p. 107] or [13] Theorem 3.5, pp. 12-18, we produce an atomic decomposition of f of the form

$$f = \sum_{i,k} \lambda^i_k a^k_i,$$

such that the following hold:

(a) $|\lambda^i_k a^k_i| \leq C 2^k$ for every k in \mathbb{Z};

(b) for each k in \mathbb{Z}, the atoms a^k_i are supported in balls B^k_i concentric with the Q^i_k and contained in Ω_k. By choosing the constant η in (3.1) small enough, depending on the dimension, we can also ensure that the family $\{B^k_i\}_i$ has the bounded overlap property, uniformly with respect to k.

(c) there exists a constant C independent of f such that
\[
\sum_{i,k} |\lambda_i^k| \leq C \|f\|_{H^1(\mathbb{R}^n)} = C.
\]

We write $2B$ for the closed ball concentric with B whose radius is twice as large. For φ in A_m and x in $\mathbb{R}^n \setminus (2B)$ one then has
\[
|\varphi_t \ast f(x)| \leq t^{-n} \sup_{y \in B} \varphi(y/t) \|f\|_{L^1(\mathbb{R}^n)}
\leq t^{-n} (1 + R/t)^{-m} \|f\|_{L^1(\mathbb{R}^n)} \quad \forall t \in \mathbb{R}^+,
\]
so that
\[
\mathcal{M}_m f(x) = \sup_{\varphi \in A_m} \sup_{t > R} |\varphi_t \ast f(x)| \leq R^{-n},
\]
since $m > n$. Now, if x is in $\Omega_k \setminus (2B)$, the above inequality and the definition of Ω_k force $2k < R^{-n}$; denote by k' the largest integer k such that $2k < R^{-n}$. Then Ω_k is contained in $2B$ for $k > k'$.

Next we define the functions h and ℓ by
\[
(3.3) \quad h = \sum_{k \leq k'} \sum_i \lambda_i^k a_i^k \quad \text{and} \quad \ell = \sum_{k > k'} \sum_i \lambda_i^k a_i^k.
\]

Observe that both these series converge in $L^1(\mathbb{R}^n)$, simply because $\sum_{i,k} |\lambda_i^k| < \infty$, so that h and ℓ have integral 0. Clearly, $f = h + \ell$. Furthermore, the support of ℓ is contained in $2B$, because it is contained in Ω_k by (b) above, and Ω_k is contained in $2B$ for all $k > k'$. Therefore $h = f = 0$ in $(2B)^c$.

To estimate the size of h in $2B$, we use (a) above and the bounded overlap property of (b), getting
\[
|h| \leq C \sum_{k \leq k'} 2^k \leq C 2^{k'} \leq C |2B|^{-1}.
\]
This proves that h/C is a $(1, \infty)$-atom, where C is independent of f.

Now we assume that $q < \infty$ and conclude the proof of (i). Observe that ℓ is in $L^q(\mathbb{R}^n)$, because $\ell = f - h$, and both f and h are in $L^q(\mathbb{R}^n)$.

We claim that the series $\sum_{k > k'} \sum_i \lambda_i^k a_i^k$ converges to ℓ in $L^q(\mathbb{R}^n)$.

Fixing s in \mathbb{Z}, we shall estimate $\sum_{k > k'} \sum_i |\lambda_i^k a_i^k|$ in $\Omega_s \setminus \Omega_{s+1}$. First observe that all terms with $k > s$ vanish outside Ω_{s+1}. Then apply (a) and (b) to get the pointwise bound
\[
\sum_{k > k'} \sum_i |\lambda_i^k a_i^k| \leq C \sum_{k \leq s} 2^k \leq C 2^s \leq C \mathcal{M}_m f.
\]
The constants C above are independent of f and s, so that
\[
\sum_{k > k'} \sum_i |\lambda_i^k a_i^k| \leq C \mathcal{M}_m f
\]
in all of \mathbb{R}^n, with C independent of f. Note that $\mathcal{M}_m f$ is in $L^q(\mathbb{R}^n)$, since f is. This implies that the series defining ℓ converges almost everywhere and the limit must coincide with the L^1 limit ℓ. The Lebesgue dominated convergence theorem now implies that $\sum_{k > k'} \sum_i \lambda_i^k a_i^k$ converges to ℓ in $L^q(\mathbb{R}^n)$, and the claim is proved.

Finally, for each positive integer N we denote by F_N the finite set of all pairs of integers (i,k) such that $k > k'$ and $|i| + |k| \leq N$, and by ℓ_N the function $\sum_{(i,k) \in F_N} \lambda_i^k a_i^k$. The function ℓ_N is in $H^1_{\text{fin}}(\mathbb{R}^n)$, and $f = h + \ell_N + (\ell - \ell_N)$.
Observe that \(\ell - \ell_N \) will be a small multiple of a \((1,q)\)-atom for large \(N\). Indeed, by taking \(N\) large enough, we can make the corresponding coefficient less than any given \(\varepsilon\) in \(\mathbb{R}^+\). Then

\[
\|f\|_{H_{\text{fin}}^{1,q}(\mathbb{R}^n)} \leq C + \sum_{(i,k) \in F_N} |\lambda_i^k| + \varepsilon,
\]

so that

\[
\|f\|_{H_{\text{fin}}^{1,q}(\mathbb{R}^n)} \leq C + \sum_{(i,k) \in F_N} |\lambda_i^k| \leq C,
\]

by property (c) above, as required to conclude the proof of (i).

Now we finish the proof of (ii). Assume that \(f\) is a continuous function in \(H_{\text{fin}}^{1,\infty}(\mathbb{R}^n)\). A careful examination of the proof of [15] Theorem III.2, pp. 107-8 or [13] Theorem 3.5, pp. 12-18 shows that the atoms \(a_i^k\) that appear in the decomposition (3.3) are then continuous. Furthermore, we see that for each \(k\) and \(i\) the function \(\lambda_i^k a_i^k\) depends only on the restriction of \(f\) to a ball \(\hat{B}_i^k\) which is a concentric enlargement of the ball \(B_i^k\) from (b) above, by a fixed scaling factor. It is straightforward to check that if \(f\) is constant in \(\hat{B}_i^k\), then \(\lambda_i^k a_i^k = 0\) and that there exists an absolute constant \(C\) such that if \(|f| < \varepsilon\) in \(\hat{B}_i^k\), then \(|\lambda_i^k a_i^k| < C \varepsilon\).

Since trivially \(M_{\text{fin}} f \leq C_n \|f\|_{\infty}\), where the constant \(C_n\) depends only on \(n\), the level set \(\Omega_k\) is empty for all \(k\) such that \(2^k \geq C_n \|f\|_{\infty}\). We denote by \(k''\) the largest integer for which the last inequality does not hold. Then the index \(k\) in the sum defining \(\ell\) in (3.3) will run only over \(k' < k \leq k''\).

Let \(\varepsilon\) be positive. Since \(f\) is uniformly continuous, there exists a positive \(\delta\) such that \(|x - y| < \delta\) implies

\[
|f(x) - f(y)| < \varepsilon.
\]

Write \(\ell = \ell_1^* + \ell_2^*\) with

\[
\ell_1^* = \sum_{(i,k) \in F_1} \lambda_i^k a_i^k \quad \text{and} \quad \ell_2^* = \sum_{(i,k) \in F_2} \lambda_i^k a_i^k,
\]

where \(F_1 = \{(i,k) : \text{diam}(\hat{B}_i^k) \geq \delta, k' < k \leq k''\}\) and \(F_2 = \{(i,k) : \text{diam}(\hat{B}_i^k) < \delta, \ k < k \leq k''\}\). Since \(F_1\) is a finite set, \(\ell_1^*\) is continuous.

To estimate \(\ell_2^*\), we denote by \(x_i^k\) the centre of the ball \(B_i^k\) and write for \((i,k)\) in \(F_2\)

\[
f(x) = f(x_i^k) + f(x) - f(x_i^k).
\]

Then \(|\lambda_i^k a_i^k| < C \varepsilon\), because \(|f(x) - f(x_i^k)| < \varepsilon\) for \(x\) in \(\hat{B}_i^k\). For fixed \(k\) the balls \(\{B_i^k\}\) have uniformly bounded overlap, so there exists an absolute constant \(C\) such that

\[
|\ell_2^*| \leq C \sum_{k' < k \leq k''} \varepsilon \leq C (k'' - k') \varepsilon.
\]

Since \(\varepsilon\) is arbitrary, we can thus split \(\ell\) into a continuous part and a part that is uniformly arbitrarily small. It follows that \(\ell\) is continuous. But then \(h = f - \ell\) is also continuous, so that \(h\) is a continuous \((1,\infty)\)-atom, multiplied by a factor \(C\).

To find a finite atomic decomposition of \(\ell\), we again use the splitting \(\ell = \ell_1^* + \ell_2^*\). Clearly \(\ell_1^*\) is for each \(\varepsilon\) a finite linear combination of continuous \((1,\infty)\)-atoms, and the \(\ell^1\) norm of the coefficients is controlled by \(\|f\|_{H^1}\), in view of (c). Observe that \(\ell_2^* = \ell - \ell_1^*\) is continuous. Further, \(\ell_2^*\) is supported in \(2B\), has integral 0 and satisfies \(|\ell_2^*| \leq C (k'' - k') \varepsilon\). Choosing \(\varepsilon\), we can thus make \(\ell_2^*\) into an arbitrarily small multiple of a continuous \((1,\infty)\)-atom.
To sum up, \(f = h + \ell_1^j + \ell_2^j \) gives the desired finite atomic decomposition of \(f \), with coefficients controlled by \(\|f\|_{H^1} \).

We have completed the proof of (ii) and that of the theorem. □

Remark 3.2. Theorem 3.1 (ii) implies that any function \(f \) in \(H_{\text{fin}}^1(\mathbb{R}^n) \cap C(\mathbb{R}^n) \) admits a finite decomposition in \((1, \infty)\)-atoms such that the sum of the corresponding coefficients is \(\leq C \|f\|_{H^1(\mathbb{R}^n)} \). Actually, the proof of Theorem 3.1 (ii) shows that we can construct this finite decomposition in such a way that it involves only continuous \((1, \infty)\)-atoms.

Remark 3.3. Theorem 3.1 extends to \(H^p(\mathbb{R}^n) \) with \(0 < p < 1 \) and \((p, q)\)-atoms, where one can now have \(1 \leq q \leq \infty \). The proof is rather similar to the one given above, so we only briefly describe the modifications needed for part (i). Thus let \(f \in H^p_{\text{fin}}(\mathbb{R}^n) \) supported in a ball \(B_R \), the first step is the inequality \(M_{m}f \leq CR^{-n/p}\|f\|_{H^p(\mathbb{R}^n)} \), valid outside a larger ball \(B_{CR} \). One proves this by comparing the values of \(M_m f \) at different points and using the fact that \(\|M_m f\|_{L^p(\mathbb{R}^n)} \sim \|f\|_{H^p(\mathbb{R}^n)} \). Then the \(\Omega_k \) and the decompositions \(f = \sum \lambda_i a_i = h + \ell \) are introduced as above. The sum \(\ell \) now converges in \(S' \) and is dominated by \(M_m f \). If \(q > 1 \), we have \(\mathcal{M}_m f \in L^q(\mathbb{R}^n) \) and conclude as before that \(\ell \) converges in \(L^q(\mathbb{R}^n) \). For \(q = 1 \), the tail sum \(S_\kappa = \sum_{k \geq \kappa} \sum_j \lambda_i a_i \) tends to 0 in \(L^1(\mathbb{R}^n) \) as \(\kappa \to +\infty \), because \(S_\kappa \) is nonzero only in \(\Omega_\kappa \) and not larger than \(|f| + C2^n \) there, and \(|\Omega_\kappa| = o(2^{-\kappa}) \) as \(\kappa \to +\infty \). The rest of the proof proceeds as before. See also [9] Theorem 5.6.

Corollary 3.4. Suppose that \(Y \) is a Banach space and that one of the following holds:

(i) \(q \) is in \((1, \infty)\) and \(T : H_{\text{fin}}^{1,q}(\mathbb{R}^n) \to Y \) is a linear operator such that
\[
A := \sup \{ \| Ta \|_Y : a \text{ is a } (1, q)\text{-atom} \} < \infty;
\]

(ii) \(T \) is a \(Y \)-valued linear operator defined on continuous \((1, \infty)\)-atoms such that
\[
A := \sup \{ \| Ta \|_Y : a \text{ is a continuous } (1, \infty)\text{-atom} \} < \infty.
\]

Then there exists a unique bounded linear operator \(\tilde{T} \) from \(H^1(\mathbb{R}^n) \) to \(Y \) which extends \(T \).

Proof. We consider the case (i). Suppose that \(f \) is in \(H_{\text{fin}}^{1,q}(\mathbb{R}^n) \), \(f = \sum_{j=1}^{N} \lambda_j a_j \) say, where \(a_j \) are \((1, q)\)-atoms. Then the assumption and the triangle inequality give
\[
\|Tf\|_Y \leq A \sum_{j=1}^{N} |\lambda_j|.
\]

By taking the infimum of the right-hand side with respect to all decompositions of \(f \) as a finite sum of \((1, q)\)-atoms, we obtain
\[
\|Tf\|_Y \leq A \|f\|_{H_{\text{fin}}^{1,q}(\mathbb{R}^n)}.
\]

Now, Theorem 3.1 (i) implies that the right-hand side is dominated by \(CA \|f\|_{H^1(\mathbb{R}^n)} \), where \(C \) does not depend on \(f \), and a density argument completes the proof of the corollary.

The case (ii) is similar. □
we assume that μ also that Corollary 3.4 applies to linear functionals.

Theorem 4.1. Suppose that T is a linear operator defined on $H^1_{\nu}(M)$ with the property that

$$A := \sup\{\|Ta\|_{L^1(M)} : a \text{ is a } (1,q)\text{-atom}\} < \infty.$$

Then there exists a unique bounded linear operator \tilde{T} from $H^1(M)$ to $L^1(M)$ which extends T.

Proof. We prove the result in the case where $q = 2$. The proof in the other cases is similar.

Suppose that B is a ball. For each f in $L^2_0(B)$ such that $\|f\|_{L^2(M)} = 1$, the function $\mu(B)^{-1/2} f$ is a $(1,2)$-atom, so that

$$\|Tf\|_{L^1(M)} \leq A \mu(B)^{1/2} \quad \forall f \in L^2_0(B)$$

by the assumption. In particular, the restriction of T to X^2_k is bounded from X^2_k to $L^1(M)$ for each k. Thus, T is bounded from X^2 to $L^1(M)$. It follows that T^* is bounded from $L^\infty(M)$ to the dual of X^2. But the dual of X^2 is the quotient space $L^2_{\text{loc}}(M)/\mathbb{C}$, since that of $L^2_0(B_k)$ is $L^2(B_k)/\mathbb{C}$. Now, for every f in $L^\infty(M)$ and for every $(1,2)$-atom a,

$$\langle Ta, f \rangle = \langle a, T^* f \rangle = \int_M a T^* f \, d\mu,$$

so that

$$\left| \int_M a T^* f \, d\mu \right| = |\langle Ta, f \rangle| \leq A \|f\|_\infty.$$

A standard argument then shows that $T^* f$ belongs to $BMO(M)$ and that

$$\|T^* f\|_{BMO(M)} \leq 2A \|f\|_\infty \quad \forall f \in L^\infty(M).$$

We give the details for the reader’s convenience. Suppose that B is a ball and observe that

$$\left[\int_B |T^* f - (T^* f)_B|^2 \, d\mu \right]^{1/2} = \sup_{\|\varphi\|_{L^2(B)}=1} \left| \int_B \varphi \, (T^* f - (T^* f)_B) \, d\mu \right|.$$

But

$$\int_B \varphi \, (T^* f - (T^* f)_B) \, d\mu = \int_B (\varphi - \varphi_B) \, (T^* f - (T^* f)_B) \, d\mu = \int_B (\varphi - \varphi_B) \, T^* f \, d\mu,$$

and since $\|\varphi\|_{L^2(B)} = 1$,

$$|\varphi_B| \leq \left[\frac{1}{\mu(B)} \int_B |\varphi|^2 \, d\mu \right]^{1/2} \leq \mu(B)^{-1/2}.$$
Write ψ instead of $\varphi - \varphi_B$. Then
\[\|\psi\|_{L^2(B)} \leq \|\varphi\|_{L^2(B)} + |\varphi_B| \mu(B)^{1/2} \leq 2, \]
so that $\psi/(2 \mu(B)^{1/2})$ is a $(1,2)$-atom. Therefore
\[\left| \int_B \psi \, T^* f \, d\mu \right| \leq 2A \mu(B)^{1/2} \|f\|_\infty. \]
Combining the above, we conclude that for every ball B
\[\left[\frac{1}{\mu(B)} \int_B |T^* f - (T^* f)_B|^2 \, d\mu \right]^{1/2} \leq 2A \|f\|_\infty, \]
and (4.1) follows.

Now we show that T extends to a bounded operator from $H^1(M)$ to $L^1(M)$ with norm at most $2A$. Observe that X^2 and $H^1_{\text{fin}}(M)$ coincide as vector spaces. For every g in $H^1_{\text{fin}}(M)$ and for every f in $L^\infty(M)$
\[|\langle Tg, f \rangle| = |\langle g, T^* f \rangle| \leq \|g\|_{H^1(M)} \|T^* f\|_{\text{BMO}(M)} \leq 2A \|g\|_{H^1(M)} \|f\|_{L^\infty(M)}. \]
By taking the supremum of both sides over all functions f in $L^\infty(M)$ with $\|f\|_{L^\infty(M)} = 1$, we obtain that
\[\|Tg\|_{L^1(M)} \leq 2A \|g\|_{H^1(M)} \quad \forall g \in H^1_{\text{fin}}(M). \]
Finally we observe that $H^1_{\text{fin}}(M)$ is dense in $H^1(M)$ (with respect to the norm of $H^1(M)$), and the required conclusion follows by a density argument.

Quite often one encounters the following situation. Suppose that T is a bounded linear operator on $L^2(M)$. Then T is automatically defined on $H^1_{\text{fin}}(M)$. Assume that
\[A := \sup\{\|Ta\|_{L^1(M)} : a \text{ is a } (1,2)\text{-atom}\} < \infty. \]
By the previous result, the restriction of T to $H^1_{\text{fin}}(M)$ has a unique extension to a bounded linear operator \widetilde{T} from $H^1(M)$ to $L^1(M)$. The question is whether the operators T and \widetilde{T} are consistent, i.e., whether they coincide on the intersection $H^1(M) \cap L^2(M)$ of their domains. The answer to this question is in the affirmative, as the following proposition shows.

Proposition 4.2. Suppose that T is bounded on $L^2(M)$ and that
\[A := \sup\{\|Ta\|_{L^1(M)} : a \text{ is a } (1,2)\text{-atom}\} < \infty. \]
Denote by \widetilde{T} the unique continuous linear extension of the restriction of T to $H^1_{\text{fin}}(M)$ to an operator from $H^1(M)$ to $L^1(M)$. Then the operators T and \widetilde{T} agree on $H^1(M) \cap L^2(M)$.

Proof. Suppose that f is in $L^2(M) \cap L^\infty(M)$ and that g is in $L^2_{c,0}(M)$. Denote by T^* the transpose operator of T (as an operator on $L^2(M)$). Then
\[(4.2) \int_M g \, T^* f \, d\mu = \int_M T g \, f \, d\mu. \]
Since \(g \) is in \(H_{lin}^{1,2}(M) \) and the operators \(T \) and \(\widetilde{T} \) agree on \(H_{lin}^{1,2}(M) \), we see that

\[
\int_M T g f \, d\mu = \int_M \widetilde{T} g f \, d\mu = \langle g, (\widetilde{T})^* f \rangle,
\]

where \((\tilde{T})^* \) denotes the transpose of the operator \(\tilde{T} \) from \(H^1(M) \) to \(L^1(M) \). Note that \((\tilde{T})^* f \) is in \(BMO(M) \) and \(g \) is a multiple of an atom. Thus the above scalar product \(\langle g, (\tilde{T})^* f \rangle \) (with respect to the duality between \(H^1(M) \) and \(BMO(M) \)) may be written as \(\int_M g (\tilde{T})^* f \, d\mu \). Therefore, (4.2) and (4.3) imply that

\[
\int_M g \left[T^* f - (\tilde{T})^* f \right] \, d\mu = 0 \quad \forall g \in L^2_c(M),
\]

i.e., for all \(g \) in \(X^2 \). Therefore \(T^* f - (\tilde{T})^* f = 0 \) in the dual space of \(X^2 \), i.e., in \(L^2_{loc}(M)/\mathbb{C} \). This implies that \(T^* f - (\tilde{T})^* f \) is constant.

Now, suppose that \(g \) is in \(H^1(M) \cap L^2(M) \) and that \(f \) is in \(L^2(M) \cap L^\infty(M) \). Then

\[
\int_M T g f \, d\mu = \int_M g T^* f \, d\mu = \int_M g (\tilde{T})^* f \, d\mu = \int_M \tilde{T} g f \, d\mu.
\]

Since \(f \) is an arbitrary function in \(L^2(M) \cap L^\infty(M) \), \(Tg - \tilde{T}g = 0 \) almost everywhere, as required. \(\Box \)

References

1. N. Bourbaki, *Topological Vector Spaces. Chapters 1-5*, Elements of Mathematics, Springer-Verlag, Berlin, Heidelberg, New York, 1987. MR910295 (88g:46002)
2. M. Bownik, *Anisotropic Hardy spaces and wavelets*, Mem. Amer. Math. Soc. 164 (2003), vi+122 pp. MR1982689 (2004e:42023)
3. M. Bownik, *Boundedness of operators on Hardy spaces via atomic decompositions*, Proc. Amer. Math. Soc. 133 (2005), 3535–3542. MR2163588 (2006d:42028)
4. A. Carbonaro, G. Mauceri, S. Meda, *H^1, BMO and singular integrals for certain measured metric spaces*, submitted.
5. R. R. Coifman, G. Weiss, *Extensions of Hardy spaces and their use in analysis*, Bull. Amer. Math. Soc. 83 (1977), 569–645. MR0447954 (56:6264)
6. G. B. Folland, E. M. Stein, *Hardy spaces on homogeneous groups*, Princeton University Press, 1982. MR657581 (84h:43027)
7. J. García-Cuerva, J. L. Rubio de Francia, *Weighted norm inequalities and related topics*, North-Holland, 1985. MR807149 (87d:42023)
8. L. Grafakos, *Classical and Modern Fourier Analysis*, Pearson, 2004.
9. L. Grafakos, L. Liu, D. Yang, *Maximal function characterizations of Hardy spaces on RD-spaces and their applications*, submitted.
10. G. Mauceri, S. Meda, *BMO and H^1 for the Ornstein–Uhlenbeck operator*, J. Funct. Anal. 252 (2007), 278–313. MR2357558
11. Y. Meyer, R. R. Coifman, *Wavelets. Calderón-Zygmund and multilinear operators*, Cambridge University Press, Cambridge, 1997. MR1456993 (98e:42001)
12. Y. Meyer, M. H. Taibleson, G. Weiss, *Some functional analytic properties of the spaces B_q generated by blocks*, Indiana Univ. Math. J. 34 (1985), 493–515. MR794574 (87e:46036)
13. P. Sjögren, *Lectures on atomic H^p spaces theory in \mathbb{R}^n*, Lecture Notes, University of Umeå, n. 5, 1981. See also www.chalmers.se/math/SV/kontakt/personal/larare-och-forskare/sjogren-peter.

14. E. M. Stein, *Singular integrals and differentiability properties of functions*, Princeton University Press, 1970. MR0290095 (44:7280)

15. E. M. Stein, *Harmonic analysis. Real variable methods, orthogonality and oscillatory integrals*, Princeton Math. Series, No. 43, Princeton, NJ, 1993. MR1232192 (95c:42002)

16. M. Vallarino, *Spaces H^1 and BMO on $ax + b$-groups*, submitted.

17. D. Yang, Y. Zhou, *A boundedness criterion via atoms for linear operators in Hardy spaces*, to appear in Constr. Approx.

Dipartimento di Matematica e Applicazioni, Università degli Studi di Milano–Bicocca, Via Cozzi, 53, 20125 Milano, Italy

E-mail address: stefano.meda@unimib.it

Department of Mathematical Sciences, University of Gothenburg, SE-412 96 Göteborg, Sweden; and Department of Mathematical Sciences, Chalmers University of Technology, SE-412 96 Göteborg, Sweden

E-mail address: peters@math.chalmers.se

Laboratoire MAPMO UMR 6628, Fédération Denis Poisson, Université d’Orléans, UFR Sciences, Bâtiment de mathématiques – Route de Chartres, B.P. 6759 – 45067 Orléans cedex 2, France

E-mail address: maria.vallarino@unimib.it