Efficient Schmidt number scaling in dissipative particle dynamics

Ryan C. Krafnick, Angel E. Garcíá

Department of Physics, Applied Physics, and Astronomy and The Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180, USA.

(Dated: 21 October 2019)

Dissipative particle dynamics is a widely used mesoscale technique for the simulation of hydrodynamics (as well as immersed particles) utilizing coarse-grained molecular dynamics. While the method is capable of describing any fluid, the typical choice of the friction coefficient γ and dissipative force cutoff r_c, yields an unacceptably low Schmidt number Sc for the simulation of liquid water at standard temperature and pressure. There are a variety of ways to raise Sc, such as increasing γ and r_c, but the relative cost of modifying each parameter (and the concomitant impact on numerical accuracy) has heretofore remained undetermined. We perform a detailed search over the parameter space, identifying the optimal strategy for the efficient and accuracy-preserving scaling of Sc, using both numerical simulations and theoretical predictions. The composite results recommend a parameter choice that leads to a speed improvement of a factor of three versus previously utilized strategies.

PACS numbers: 02.70.Ns, 83.10.Rs, 47.11.Mn

I. INTRODUCTION

Dissipative particle dynamics (DPD) is a coarse-grained, mesoscale molecular dynamics technique that simulates a fluid as a set of particles, with each particle representing some number of molecules. This coarse-graining leads to a larger time step, which allows one to probe length and time scales that are not feasible for simulations with atomistic detail. However, the underlying thermostat of DPD can be applied to any system, including atomistic simulations, where it has the advantage of preserving hydrodynamic interactions, which are not correctly reproduced when using, e.g., a Langevin thermostat. DPD has been applied to many problems, including electrolyte solutions, red blood cell suspensions, cell membrane proteins, nanoparticle-membrane binding, DNA flow in a microchannel, active matter, and colloidal mixtures. It remains an actively developed and utilized technique, as detailed in a recent review.

In order to gain a proper description of angular momentum and torque, one must extend the standard DPD thermostat (which considers only central forces) with perpendicular components. This extension does not particularly impact the computational complexity, and has the added benefit of enhancing the single-particle hydrodynamics in DPD. Particles have a position \mathbf{r}_i, velocity \mathbf{v}_i, angular velocity Ω_i, and mass m. Particle pairs have a relative position $\mathbf{r}_{ij} = \mathbf{r}_i - \mathbf{r}_j$, and relative velocity $\mathbf{v}_{ij} = \mathbf{v}_i - \mathbf{v}_j$.

Particle i experiences a force and torque given by

$$F_i = \sum_j F_{ij},$$
$$T_i = -\sum_j \frac{r_{ij}}{2} \times F_{ij},$$

with the pairwise force on particle i due to particle j defined by

$$F_{ij} = F_{ij}^C + F_{ij}^T + F_{ij}^R + \tilde{F}_{ij}.$$ (2)

The associated components are the conservative, translational damping, rotational damping, and random forces, respectively. The conservative force is given by

$$F_{ij}^C = a(1 - r_{ij}/R)\mathbf{e}_{ij} \quad (r_{ij} \leq R),$$
$$= 0 \quad (r_{ij} > R),$$ (3)

where a determines the strength of the repulsion, R is the range of the conservative force, $r_{ij} = |\mathbf{r}_{ij}|$, and $\mathbf{e}_{ij} = \mathbf{r}_{ij}/|\mathbf{r}_{ij}|$. The parameter a effectively determines the compressibility of the simulated fluid. The translational damping force is the sum of a central and shear component,

$$F_{ij}^T = -C_{ij}^C f^2 (r_{ij}) (\mathbf{v}_{ij} \cdot \mathbf{e}_{ij}) \mathbf{e}_{ij} - C_{ij}^S f^2 (r_{ij}) [\mathbf{v}_{ij} - (\mathbf{v}_{ij} \cdot \mathbf{e}_{ij}) \mathbf{e}_{ij}],$$ (4)

where C_{ij}^C and C_{ij}^S are the friction coefficients (C and S indicate central and shear parameters, respectively) and $f(r_{ij})$ is a dimensionless weighting function defined by

$$f(r_{ij}) = \begin{cases} (1 - r_{ij}/r_c)^s & (r_{ij} \leq r_c), \\ 0 & (r_{ij} > r_c). \\ \end{cases}$$ (5)

The parameter r_c is the cutoff radius for dissipative and fluctuating forces, and the exponent s determines the...
structure of the weighting function (i.e. how quickly it transitions from 1 to 0 with \(r_{ij} \)). We note that this definition of \(s \) is equivalent to \(s/2 \) as defined by Groot and Warren\(^2\). The rotational damping force is

\[
F_R^{ij} = -\gamma^S_{ij} f^S(r_{ij}) \left(\frac{r_{ij}}{2} \times (\Omega_i + \Omega_j) \right).
\]

(6)

Lastly, the fluctuating random force is given by

\[
\tilde{F}_{ij} = f(r_{ij}) \left[\frac{1}{\sqrt{3}} \sigma^C_{ij} \text{tr}(W_{ij}) I + \sqrt{2} \sigma^S_{ij} W_{ij} \right] \cdot e_{ij},
\]

(7)

where \(\sigma^C_{ij} = \sqrt{2k_B T} \sigma^{C,S}_{ij}/\Delta t \), \(\Delta t \) is the time step, and \(W_{ij} \) is a \(d \times d \) matrix of gaussian distributed random numbers with zero mean and unit variance for \(d \) spacial dimensions. The temperature is determined by \(k_B T \), where \(k_B \) is the Boltzmann constant. The matrix \(W^A_{ij} = \frac{1}{2}(W^{\mu\nu}_{ij} - W^{\nu\mu}_{ij}) \) is the antisymmetric matrix corresponding to \(W_{ij} \). Traditional DPD is recovered by setting \(\gamma^C = \gamma^S = 0 \). Hereafter we take \(\gamma^C = \gamma^S = \gamma \).

The parameters of a DPD fluid, namely \(\gamma \), \(\alpha \), \(r_c \), and \(s \), must be modified to produce the proper hydrodynamic numbers and properties for a given system. It has been determined\(^2,10\) that the Schmidt number \(Sc \) of a DPD simulation must be \(O(10^3) \) (as in water) in order to give expected results, with the typically chosen parameters yielding \(Sc \sim O(1) \). Since \(Sc = \nu/D \), where \(\nu \) is the (kinematic) viscosity and \(D \) is the diffusion, parameter changes that increase \(\nu \) and decrease \(D \) are sought. This can be accomplished by increasing either \(\gamma \) or \(r_c \), with \(Sc \propto \gamma^2 r_c^2 \). Additionally, reducing the weighting function exponent \(s \) also leads to an increase of \(Sc \).\(^2\) Despite the necessity to reach adequate values of \(Sc \), and the multiple parameters that can be manipulated, a detailed study of an optimal strategy for parameter selection has not been performed, to our knowledge. We present a detailed exploration of DPD parameter space, determining \(Sc \) for various values of \(\{\gamma, r_c, s\} \) and examining the associated computational cost for each parameter selection, as well as considering the associated theoretical predictions. We find that the conventional strategy\(^2\) of modifying \(r_c \) is actually less efficient than modifying \(\gamma \) alone, when all aspects of the simulation (e.g. time step, accuracy temperature representation, and neighbor searching) are considered. The impact of the parameter \(s \) on the efficiency was determined to be insignificant.

II. PROCEDURE

The equations of motion are integrated using a standard leapfrog algorithm, with the addition of a predicted velocity for force calculation (since the forces depend on velocity). Thus the position and velocity of particle \(i \) are updated along time \(t \) as follows:

\[
\begin{align*}
F_i(t + \Delta t/2) & = F_i(r(t + \Delta t/2), \tilde{v}(t + \Delta t/2)), \\
\mathbf{v}_i(t + \Delta t) & = \mathbf{v}_i(t) + F_i(t + \Delta t/2) \Delta t/m, \\
\tilde{\mathbf{v}}_i(t + 3\Delta t/2) & = \mathbf{v}_i(t + \Delta t) + \lambda F_i(t + \Delta t/2) \Delta t/m, \\
\mathbf{r}_i(t + 3\Delta t/2) & = \mathbf{r}_i(t + \Delta t/2) + \mathbf{v}_i(t + \Delta t) \Delta t, \\
\mathbf{T}_i(t + \Delta t/2) & = \mathbf{T}_i(\Omega(t + \Delta t/2)), \\
\Omega_i(t + \Delta t) & = \Omega_i(t) + \mathbf{T}_i(t + \Delta t/2) \Delta t/I, \\
\tilde{\Omega}_i(t + 3\Delta t/2) & = \Omega_i(t + \Delta t) + \lambda \mathbf{T}_i(t + \Delta t/2) \Delta t/I,
\end{align*}
\]

where \(\tilde{\mathbf{v}} \) is the predicted velocity, \(\tilde{\mathbf{\Omega}} \) is the predicted angular velocity, and the moment of inertia is \(I = 2mr^2/5 \), with particle radius \(r = 0.27R \).\(^{14} \) The value of \(\lambda \) can be tuned to improve the accuracy of the integration scheme with respect to temperature reproduction\(^2\) and has been set to \(\lambda = 1/2 \) for all simulations in this paper.

For the duration of this paper, reduced units will be used: the DPD particle mass \(m = 1 \), the temperature \(k_B T = 1 \), and the conservative force range \(R = 1 \). Each simulation takes place in a periodic cubic box of side length \(L = 10 \), at a density of \(\rho = 3 \), and in \(d = 3 \) spatial dimensions. The parameter \(a = 25 \) is set to satisfy the proper compressibility of water (\(a = 75 k_B T/\rho \)) at the given density.\(^2\) The default values of the other parameters (which will be varied) are \(\gamma = \gamma_0 = 4.5 \), \(r_c = R = 1 \), and \(s = 1/4 \), the latter of which yields better accuracy than the typical value of \(s = 1/8 \). In order to definitively determine the cost of a given \(\{\gamma, r_c, s\} \) choice, the time step \(\Delta t \) is not fixed, but independently determined for each position of parameter space. As the viscosity \(\nu \) in-
creases, the time step required to keep the same level of numerical accuracy decreases. This can be seen as the result of more numerous \(r_e\) or stronger \((\gamma, s)\) fluctuations and greater friction \((\gamma, r_e, s)\). The measured temperature in DPD will differ from the input value due to a finite time step in the integration scheme. If the time step allows for excess temperatures of 3% or more, clear departures from the Maxwell-Boltzmann distribution begin to appear. It was found that a departure of 2% or less is satisfactory to maintain numerical accuracy, and this standard has been used to select the time step for each parameter set. One additional input parameter exists for the implementation of DPD, namely the neighbor cutoff \(r_N\). Neighbor searching reduces the amount of particle pairs that must be examined at each step in order to determine the forces (i.e. which pairs are within the cutoff distance \(r_e\)). The value of \(r_N\) was also optimized for each \(\{\gamma, r_e, s\}\) choice, since the diffusion \(D\) changes the number of different neighbors a particle can interact with on a given time scale. This involves taking the minimum value of \(r_N\) that does not cause a deviation from the result for \(r_N = \infty\). The effect this has on the simulation cost will be examined below.

To determine the Schmidt number \(S_c\), the viscosity and diffusion must be measured. The diffusion is given by

\[
D = \lim_{t \to \infty} \frac{\langle (r(t_0 + t) - r(t_0))^2 \rangle}{2dt},
\]

where the angle brackets indicate an average over time and over all particles. This value was calculated for each set \(\{\gamma, r_c, s\}\) from a simulation of length \(10^3\) (ranging from \(3.8 \times 10^2\) to \(1.5 \times 10^7\) steps), using a limiting value of \(t = 100\) (yielding a convergence of \(D\) with respect to time). The viscosity was determined using the periodic Poiseuille flow method with a simulation length of \(1.5 \times 10^4\), after which time there was no significant change to the measured values.

III. RESULTS

All the raw data presented in this article is tabulated in the supplemental material. We initially restrict ourselves to the \(\{\gamma, r_c, s\}\) plane for the sake of clarity and will return to the \(s\) parameter later on. A total of 72 pairs \(\{\gamma, r_c\}\) were analyzed in the range \(1.0 \leq r_c \leq 1.7\) (where the range of \(\gamma\) was varied in order to look at the relevant values of \(S_c\)). We can estimate the cost \(\chi\) of a simulation (with units of laboratory seconds/system time) due to the necessary time step using the inverse viscosity, since this represents the time scale that must be resolved by the integrator. The theoretical estimate for the viscosity is \(\nu \propto \gamma^{2.5} r_e^{-5}\), so we expect the optimized time step to be \(\Delta t \propto \gamma^{-1} r_e^{-5}\). This relationship is confirmed in Fig. 1 where \(\Delta t_0\) is the value of \(\Delta t\) at \(\{\gamma_0, R, \frac{1}{4}\}\). This cost must be multiplied by the number of interacting pairs in DPD (i.e. \(r_e^3\)) in order to get the full cost, yielding \(\chi \propto \gamma r_e^8\).

![FIG. 2. (color online). Simulation cost (red points) compared with the expected value (blue dashed line). \(\chi_0\) is a parameter of the linear regression. While the results match relatively well to the expectation, a more accurate fit yields \(\chi \propto \gamma^{0.9} r_e^{-4}\). This is because increasing \(\gamma\) and \(r_e\) leads to reduced diffusion, which in turn leads to a shorter neighbor searching cutoff. Fewer neighbors means fewer distance calculations in each time step, which reduces \(\chi\) more for points further to the right in the figure.](image-url)

![FIG. 3. (color online). Measured Schmidt number (red points) compared with theoretical value (blue dashed line). \(\chi_0\) is a parameter of the linear regression. While the expected trend is well represented, the measured values are spread out due to the mismatch between ideal and actual diffusion, as discussed in the text. \(S_{c0}\) is a parameter of the linear regression.](image-url)

The data given in Fig. 2 agrees quite well with this relationship, although the data is not exactly linear (here \(\chi_0\) is a parameter of the fit). In reality, the effect of neighbor searching reduces the powers of \(\gamma\) and \(r_e\) due to the reduced diffusion of DPD particles: a lower diffusion means a smaller neighbor cutoff \(r_N\) may be used, which reduces the number of distances computed in each step. A proper fit yields \(\chi \propto \gamma^{0.9} r_e^{-4}\). We note that the previously re-
that points along the line follow increasing values of γ. At every value of Sc, the greatest efficiency is obtained by using the shortest value of r_c. Thus, it is best to keep $r_c = R$ and vary γ when adjusting Sc for a run. The window around $Sc = 10^4$, a typical value needed for simulations of liquid water, is fully characterized.

Ported results of $\chi \propto r_c^{2.4}$ shows this same effect, but neglects the factor of r_c^2 coming from time step optimization. Finally, we compare the measured values of Sc to the theoretical prediction of $Sc \propto \gamma^2 r_c^8$ in Fig. 5 showing good agreement (here Sc_0 is a parameter of the fit). The spread of the points around the anticipated value is primarily due to the diffusion D, which deviates from the ideal case. While we expect $D \propto \gamma^{-1} r_c^{-3}$, the measured value has an extra reduction owing to r_c. This is because the formula assumes an ideal gas (i.e. constant) radial distribution function. As the cutoff radius increases, the relative velocity force from Eq. 4 leads to further departures from the theoretical value of the diffusion, making the error in the assumption more prominent.

Comparing the Schmidt number Sc to the cost χ, we can define a Schmidt number efficiency $\eta_{Sc} = Sc/\chi$, where a larger η_{Sc} at a given value of Sc indicates greater computational efficiency. We plot this efficiency as a function of Sc in Fig. 4 for cutoff radii from 1.0 to 1.7. Each line represents a different value of r_c, where the points along the line follow increasing values of γ (from lower-left to upper-right). Evidently, at a given value of Sc, the highest efficiency is obtained by taking the lowest value of r_c. Additionally, for a constant r_c, increasing γ further increases the efficiency. This naturally follows from the fits obtained previously, i.e.

$$\eta_{Sc} = Sc/\chi \propto \gamma^2 r_c^8/\gamma^{0.9} r_c^{7.4} \propto \gamma^{1.1} r_c^{0.6}. \quad (10)$$

To see the scaling for a given Sc, we hold Sc constant (so that $\gamma \sim r_c^{-4}$) and obtain

$$\eta_{Sc}(Sc = \text{const}) \propto r_c^{-3.4} \propto \gamma^{0.95}. \quad (11)$$

The spread of the points around the anticipated value is quite good, and obtain

$$\eta_{Sc}(Sc = \text{const}) \propto r_c^{-3.4} \propto \gamma^{0.95}. \quad (11)$$

FIG. 4. (color online). Schmidt number efficiency $\eta_{Sc} = Sc/\chi$ as a function of Sc for all data points on the $\{\gamma, r_c, \frac{1}{16}\}$ plane. Each line is a different value of r_c, as indicated. Points along a line from left to right follow increasing values of γ. As the cutoff radius increases, the measured value has an extra reduction owing to r_c. This is because the formula assumes an ideal gas (i.e. constant) radial distribution function. As the cutoff radius increases, the relative velocity force from Eq. 4 leads to further departures from the theoretical value of the diffusion, making the error in the assumption more prominent.

While this prediction yields the correct trends, it does not perfectly match the data. This is because, while the data given in Fig. 5 seems to match quite well, the ideal diffusion $D \propto \gamma^{-1} r_c^{-3}$ deviates with respect to its r_c dependence, as described above. For instance, the point $\{7\gamma_0, 1.0, \frac{1}{16}\}$ has $Sc = 886$ and $\chi = 103$ and the point $\{\gamma_1, 1.5, \frac{1}{16}\}$ has $Sc = 855$ and $\chi = 330$, yielding an efficiency ratio of 3.3 despite the prediction of $1.5^{3.4} \approx 4.0$. Nevertheless, there is clear evidence that modifying γ and not r_c is the more practical way to reach $Sc = O(10^4)$ in DPD.

Four values of $s (\frac{1}{3}, \frac{1}{4}, \frac{1}{2}, \text{ and } 1)$ were additionally examined, in order to determine what effect the weighting function exponent has on the value of η_{Sc}. These analyses were restricted to the $\{\gamma, R, s\}$ plane since the previous results indicated only negative effects from increasing r_c. Surprisingly, varying the value of s (while keeping Sc constant) does not significantly affect the efficiency, as seen in Fig. 5. While χ and η do not have the simple power law scaling with s that they do with γ and r_c, we can nevertheless obtain some insight from theory. The viscosity and diffusion (considering only relevant factors) are given by

$$\nu \propto \gamma[(2s + 1)(2s + 2)(2s + 3)(2s + 4)(2s + 5)]^{-1},$$

$$D \propto \gamma^{-1}[(2s + 1)(2s + 2)(2s + 3)], \quad (12)$$

yielding a Schmidt number of

$$Sc = \nu/D \propto \frac{\gamma^2}{[(2s + 1)(2s + 2)(2s + 3)(2s + 4)(2s + 5)]} \quad (13)$$

If we decrease s from 1 to $\frac{1}{3}$, Sc increases by a factor of 35.5. To examine the constant-Sc efficiency, we must
reduce γ by a factor of 6. Since χ is proportional to ν, we can determine the efficiency change by comparing the viscosity with $\gamma/6$ and $s = \frac{1}{3}$ to the value with γ and $s = 1$. This yields a 30% theoretical increase in χ, which is small compared to the effects of changing γ alone. This is also offset by the same reduction in neighbor cutoff examined above, resulting in the reduced impact of s on ηSc.

IV. CONCLUSIONS

While there has been some discussion as to whether or not the Schmidt number is a relevant physical quantity in DPD past analyses nonetheless indicate large values are necessary to achieve physically accurate results. Thus, we have examined the scaling and efficiency of the Schmidt number as a function of the DPD parameters γ, r_c, and s, across three orders of magnitude of Sc, considering both theoretical predictions and the results from numerical simulations. In both cases, we see (for constant Sc) that the efficiency ηSc increases with γ, decreases with r_c, and remains relatively constant for alternate values of s. Therefore, despite the apparent, preferable scaling of $Sc \propto r^3_c$, it is more beneficial to leave $r_c = R$ and increase γ alone in order to reach a Schmidt number consistent with liquid water. This is the result of maintaining equivalent temperature reproduction and numerical accuracy for every set of input parameters (which results in a modification of the time step and neighbor searching cutoff). The values of ηSc indicate a factor of 3 to 4 speed improvement when manipulating γ instead of increasing r_c for $Sc = O(10^3)$. While the single-particle hydrodynamics extension of Karniadakis was used for the simulations, the theoretical predictions apply equally well to standard DPD.

ACKNOWLEDGMENTS

This work was funded by the National Institutes of Health grant GM086801 and the National Science Foundation grant MCB-1050966. Many computations were performed on the Extreme Science and Engineering Discovery Environment (XSEDE).

1P. J. Hoogerbrugge and J. M. V. A. Koelman, “Simulating microscopic hydrodynamic phenomena with dissipative particle dynamics,” Europhys. Lett., 19, 155 (1992).

2R. D. Groot and P. B. Warren, “Dissipative particle dynamics: Bridging the gap between atomistic and mesoscopic simulation,” J. Chem. Phys., 107, 4423 (1997).

3T. Soddemann, B. Dünweg, and K. Kremer, “Dissipative particle dynamics: A useful thermostat for equilibrium and nonequilibrium molecular dynamics simulations,“ Phys. Rev. E, 68, 046702 (2003).

4F. Schneider and E. Stoll, “Molecular-dynamics study of a three-dimensional one-component model for distortive phase transitions,” Phys. Rev. B, 17, 1302 (1978).

5S. Medina, J. Zhou, Z.-G. Wang, and F. Schmid, “An efficient dissipative particle dynamics-based algorithm for simulating electrolyte solutions,” J. Chem. Phys., 142, 024103 (2015).

6H. Lei and G. E. Karniadakis, “Quantifying the rheological and hemodynamic characteristics of sickle cell anemia,” Biophys. J., 102, 185 (2012).

7G. Guigas and M. Weiss, “Membrane protein mobility depends on the length of extra-membrane domains and on the protein concentration,” Soft Matter, 11, 33 (2015).

8Z. Li and A. A. Gorfe, “Receptor-mediated membrane adhesion of lipid-polymer hybrid (lpb) nanoparticles studied by dissipative particle dynamics simulations,” Nanoscale, 7, 814 (2015).

9X. Fan, N. Phan-Thien, S. Chen, X. Wu, and T. Y. Ng, “Simulating flow of dna suspension using dissipative particle dynamics,” Phys. Fluids, 18, 063102 (2006).

10Z. Wang, H.-Y. Chen, Y.-J. Sheng, and H.-K. Tsao, “Diffusion, sedimentation equilibrium, and harmonic trapping of run-and-tumble nanoswimmers,” Soft Matter, 10, 3209 (2014).

11S. Xiao, H.-Y. Chen, Y.-J. Sheng, and H.-K. Tsao, “Induced polar order in sedimentation equilibrium of rod-like nanoswimmers,” Soft Matter, (2015).

12W. Pan, B. Caswell, and G. E. Karniadakis, “Rheology, microstructure and migration in brownian colloidal suspensions,” Langmuir, 26, 133 (2010).

13M. B. Liu, G. R. Liu, L. W. Zhou, and J. Z. Chang, “Dissipative particle dynamics (dpd): An overview and recent developments,” Arch. Comp. Methods Eng., 1 (2014).

14W. Pan, I. V. Pivkin, and G. E. Karniadakis, “Single-particle hydrodynamics in dpd: A new formulation,” Europhys. Lett., 84, 10012 (2008).

15C. Junghans, M. Praprotnik, and K. Kremer, “Transport properties controlled by a thermostat: An extended dissipative particle dynamics thermostat,” Soft Matter, 4, 156 (2008).

16V. Symeonidis, G. E. Karniadakis, and B. Caswell, “Schmidt number effects in dissipative particle dynamics simulation of polymers,” J. Chem. Phys., 125, 184902 (2006).

17J. A. Backer, C. P. Lowe, H. C. J. Hoefsloot, and P. D. Iedema, “Poiseuille flow to measure the viscosity of particle model fluids,” J. Chem. Phys., 122, 154503 (2005).

18See supplemental material [] for the full tabulated data set.

19C. A. Marsh, G. Backx, and M. H. Ernst, “Static and dynamic properties of dissipative particle dynamics,” Phys. Rev. E, 56, 1676 (1997).

20E. A. J. F. Peters, “Elimination of time step effects in dpd,” Europhys. Lett., 66, 311 (2004).
Efficient Schmidt number scaling in dissipative particle dynamics - Supplemental Material

Ryan C. Krahnck\(^1\)\(^2\) and Angel E. García\(^3\)

Department of Physics, Applied Physics, and Astronomy and The Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180, USA.

(Dated: 21 October 2019)

I. TABULATED DATA

The following table contains all of the raw data that is presented in the main article.

\(s\)	\(\gamma\)	\(\tau_c\)	\(\tau_N\)	\(\Delta t\)	\(\chi\)	\(\nu\)	\(D\)
4.5	1.0	1.0	1.21	0.001350	29	1.83	0.0357
9.0	1.0	1.18	0.007080	53	3.53	0.0184	
13.5	1.0	1.35	0.003490	77	5.23	0.0124	
18.0	1.0	1.14	0.003440	102	6.93	0.00931	
22.5	1.0	1.15	0.003270	128	8.54	0.00745	
27.0	1.0	1.13	0.003225	151	10.18	0.00618	
31.5	1.0	1.14	0.001915	174	11.79	0.00536	
36.0	1.0	1.13	0.001720	196	13.42	0.00469	
40.5	1.0	1.10	0.001550	211	14.98	0.00418	
45.0	1.0	1.10	0.001370	241	16.57	0.00375	
45.0	1.0	1.26	0.002632	18	1.23	0.00523	
9.0	1.0	1.21	0.001122	34	2.27	0.00282	
13.5	1.0	1.07	0.006727	49	3.33	0.00191	
18.0	1.0	1.09	0.005550	63	4.35	0.00144	
22.5	1.0	1.07	0.004650	76	5.44	0.00115	
27.0	1.0	1.14	0.003838	87	6.48	0.000975	
31.5	1.0	1.15	0.003032	103	7.52	0.000848	
36.0	1.0	1.17	0.002828	119	8.59	0.000725	
40.5	1.0	1.14	0.002250	131	9.68	0.000645	
45.0	1.0	1.16	0.002225	147	10.69	0.000634	
45.0	1.1	1.32	0.000142	36	1.90	0.00349	
9.0	1.1	1.29	0.000276	66	3.71	0.00184	
13.5	1.1	1.27	0.000475	96	5.45	0.00123	
18.0	1.1	1.28	0.000365	128	7.24	0.000906	
22.5	1.1	1.26	0.000268	157	9.02	0.000729	
27.0	1.1	1.24	0.000250	188	10.85	0.000605	
31.5	1.1	1.24	0.000202	215	12.56	0.000528	
36.0	1.1	1.19	0.000175	237	14.24	0.000461	
40.5	1.1	1.25	0.000158	274	16.05	0.000405	
45.0	1.1	1.20	0.000143	293	17.78	0.000370	
45.0	1.2	1.41	0.0000845	64	2.99	0.000254	
9.0	1.2	1.30	0.0000747	123	5.88	0.000129	
13.5	1.2	1.33	0.0000332	175	8.18	0.0000866	
18.0	1.2	1.35	0.0000233	224	11.65	0.0000654	
22.5	1.2	1.33	0.0000191	288	14.59	0.0000519	
27.0	1.2	1.31	0.00001555	348	17.40	0.0000434	
31.5	1.2	1.29	0.0000133	411	20.38	0.0000377	
36.0	1.2	1.30	0.0000115	466	22.96	0.0000327	

\(s\), \(\gamma\), \(\tau_c\), \(\tau_N\), \(\Delta t\), \(\chi\), \(\nu\), and \(D\) are parameters in the main text. The values are obtained from simulations and experiments.

\(a\) Electronic mail: krahnck@rpi.edu

\(b\) Electronic mail: agarcia@lanl.gov
s	γ	r_c	r_N	Δt	χ	ν	D
54	1.0	1.15	0.00044	74	5.56	0.0111	
63	1.0	1.15	0.00037	87	6.41	0.00955	
72	1.0	1.14	0.000325	98	7.53	0.00826	
81	1.0	1.13	0.000285	112	8.17	0.00742	
90	1.0	1.12	0.00026	120	9.07	0.00671	
36	1.0	1.20	0.0025	16	1.01	0.00603	
72	1.0	1.22	0.0012	30	1.79	0.0338	
108	1.0	1.17	0.0083	40	2.54	0.0235	
144	1.0	1.15	0.0063	51	3.26	0.0181	
180	1.0	1.16	0.0048	66	4.00	0.0147	
216	1.0	1.17	0.0004	79	4.68	0.0125	
252	1.0	1.14	0.0035	88	5.36	0.0106	
288	1.0	1.13	0.0003	101	6.01	0.00927	

| 324 | 1.0 | 1.16 | 0.00265 | 118 | 6.65 | 0.00842 |
| 360 | 1.0 | 1.13 | 0.00245 | 123 | 7.24 | 0.00757 |

ACKNOWLEDGMENTS

This work was funded by the National Institutes of Health grant GM086801 and the National Science Foundation grant MCB-1050966. Many computations were performed on the Extreme Science and Engineering Discovery Environment (XSEDE).