Machine Learning-Based Optimization Technique for Forecasting the Solar Radiation

S Jayaprakash1*, S Soundara Bala2, G MadhusudhanaRao3, and R Murugesan4
1School of Electrical and Electronics Engineering, Sathyabama Institute of Science and Technology, Chennai, Tamil Nadu, India
2Department of Electrical and Electronics Engineering, Meenakshi Sundararajan Engineering College, Chennai, Tamil Nadu, India.
3Department of Electrical and Computer Engineering, Bule Hora University, Bule Hora, Ethiopia
4Department Electrical and Electronics Engineering, Annamacharya Institute of Technology and Science, Tirupati, Andhra Pradesh, India
Email: *jakash2109@gmail.com

Abstract. Solar radiation measurement determines how often electricity a given area absorbs from the sun. This light is the key source of energy for conversion into solar thermal and photovoltaic plants. The radiation incident is not stable and relies on the temperature records, contributing to intermittent activity and electricity supply changes. This justifies designing a method to forecast and estimate incident radiation to predict improvements in photovoltaic systems' performance. In this paper, the support vector machine (SVM) based machine learning is proposed to improve solar radiation prediction accuracy. The designed system results are compared with existing models that predicted the radiation and the global solar radiation is predicted accurately with efficient.

Keywords: Machine learning, an optimization technique, solar radiation, forecasting.

1. Introduction

An electricity user should always maintain an accurate correlation between power generation and usage. This, with traditional and manageable energy generation systems, especially with or without small interconnections, is often very difficult to manage. [2] The power grid in many countries already finds their power grid using green energy sources. This causes even more resource challenges [1]. It is not steady (solar radiation, wind, etc.). However, it is essential; particularly in cases of high energy integration that solar radiation can accurately predict effectively [3].

Different metrological patterns, seasonal fluctuations, local restrictions and intra-hr solar intensity are limited in solar systems. Figure 1 shows from January to December 2016 and monthly figures focused on the global horizontal solar radiation. Under the energy and climate lab (NREL) [4] with CMP-22 pyrometer as solar radiation sensors, Database has been modified from the Solar Radiation Test Laboratory (SRTL).

Solar radiation measurement determines how often electricity a given area absorbs from the sun[5]. This light is the key source of energy for conversion into solar thermal and photovoltaic plants. The radiation incident is not stable and relies on the temperature records, contributing to intermittent activity and electricity supply changes [7]. This justifies designing a method to forecast and estimate incident radiation, with a view to predicting improvements in photovoltaic systems' performance [9].
The effect of resources fluctuation and insecurity is reduced by solar forecasting targeting different time horizons. For real-time battery status tracking, very short-term forecasts are important. For decision-making, like unit contribution etc., short-term forecasting is important. Medium-term forecasting for service preparation and energy unit spinning is reliable. For the planning of network activity, long-term forecasts are useful [12]. Precise solar forecasts guarantee the consistent and safe function of a battery-powered sensor with enhanced battery backup technologies.

Integration in an electric grid by clean energies increases grid control uncertainty and the development balance's consistency because of its unpredictable and irregular existence. The split and the anti-solar output properties give rise to various other topics, including stress variations and local control. [8] The power output forecast photovoltaic cells are necessary to operate the power effectively grid or for the optimum energy source control the solar method. The assessment is also important reserves to schedule the power grid, control congestions, maximize storage resources stochastic power generation trading, and eventually reduce the prices of the energy sector development of power [15].

2. Methods

The large rise in solar energy production makes the forecast for solar performance more predictable and more essential. The prediction scale for energy management in an electrical network is shown in Figure 1. To prevent significant fluctuations in renewable energy output, the full device activity forecast with storage systems also must be included. [10] Different storage systems have been developed and are a feasible solution for the absorption and release in peak-consumption times (large amounts of power and energy), with very limited variations and continuity of these systems[6].

![Figure 1. Prediction scale for energy management in an electrical network](image)

3. Energy Management Systems

The energy management systems are used to accomplish a reduction in the consumption of energy. It can be done the control performance in a system to achieve the target without any deviations. [11] The EMS also performs the monitoring process, which focused on the information concerns energy consumption collection to accomplish the target variations based on clarification.

4. Machine Learning

Machine learning focuses on developing algorithms that allow computers to evolve empirical information-driven behaviors. The computer is trained in the machine. A person should use examples to imprison the important characteristics of his unfamiliar simple distribution of probabilities.

The machine learning is shown as an example of supervised learning the teacher's input and outputs, and the target a general principle that maps feedback inputs are to be studied. There are the following: "Expert" interference is required for methods. The learning data contains a collection of examples of preparation. Each pattern is controlled learning a pair which contains a desired final
output and an input object. The supervised learning is responsible for evaluating the data processing and implied feature generation. The flow diagram of machine learning is shown in figure 2.

Figure 2: Machine learning flow diagram

5. **Support Vector Machines algorithm**

The SVM support vector machines are based on a theory of inductive structural risk minimization (SRM) to reduce the top limit to the error generalizing the total amount of training errors and the trust level. It is the deviation from the commonly accepted ERM theory, which reduces just the training error. SVM usually performs more broadly than traditional neural networks which apply the ERM theory, based on this type of induction theory, to solve many machine learning problems.

Figure 3: Parameters of the SVM

The SVM parameters are shown in Figure 3. Compared to many other network programmings, which involves non-linear optimization and is at threat of staying in the local minima, the SVMs solution is often special and generally efficient. SVM relies on a subset of training points called supportive vectors to solve the issue. SVMs are highly robust frameworks for non-linear resolution issues and applications for regression in science and industry and the purposes of classification. As SVMs are ready to practice, only several data particles could be correct alternatives, no historical documented modelling of cases for study Data. Another SVM character is to solve the problem of the quadratic programming that linearly constrained. The same approach as all training data sets can be done using only help vectors. One drawback of the SVM is that preparation is between quadratic and cubic when it comes to the number of observations of learning. Therefore, it requires a large amount of time to solve serious challenges by using SVM.

6. **SVM Regression Estimate Characteristics**

Several characteristics of SVM are described below according to the theoretical statement of SVM. Firstly, SVM determines regression utilising a collection of linear functions specified in a broad
feature space, whilst inputs do not work in linear. The kernel functions are named. Second, SVM carried out the regression evaluation based on the concept of data mining, when using e-insensitive lower bound of Vapnik, depending on the risk evaluation. Ultimately, SVM uses the SRM principle, reducing the probability of an empirical mistake and confidence value.

7. Results
This removed anomalies from the data in the pre-processing layer. The knowledge is considered noise based on the intrinsic nature of the data collection, which influences interpretation by a variety of external aspects. The results of the SVM based load scheduling and the energy consumption is predicted. The obtained results are verified that shows the distribution of energy consumption based on the hour, as illustrated in the figure. 4. The figure 5 One-month energy consumption of Actual method versus SVM. The Actual versus SVM predicted results for one-year energy consumption is shown in the figure. 6.
8. Conclusion
In this paper, the load scheduling and energy consumption based SVM optimisation in a power system which integrated with the distributed energy generators and EMS system and control is accomplished using the machine learning-based SVM technique. The results are obtained and optimised for the power system based energy consumption and scheduling is achieved. SVM output by neural networks and genetic programming is higher than that of other relevant studies. SVM's solution is unique and suitable since SVM implies that quadratic programming is confined linearly. The proposed model reduces the energy cost by scheduling end-use-loads. The results are obtained and validated successfully. The findings show that SVM in predicting monthly landlord utility charges in the tropical area is feasible and applicable.

References
[1] Zhang, Pan, Chen, Han, Zhao and Zhang, “Short-term wind speed prediction model based on GA-ANN improved by VMD”, Renewable Energy, Vol.156, Pp. 1373-1388.
[2] Zhang, Gao, Han, and Ban, “Wind speed prediction research considering wind speed ramp and residual distribution”, IEEE Access, Vol.7, Pp. 131873-131887, 2019.
[3] Hu, Q., Zhang, R. and Zhou, Y., 2016. Transfer learning for short-term wind speed prediction with deep neural networks. Renewable Energy, Vol. 85, pp.83-95.
[4] https://link.springer.com/article/10.1007/s42835-019-00094-0.
[5] Gibbons MS, Gilbert CL, Deshpande MS, inventors; Lear Corp, assignee. The methodology of maximising charging power transfer for an electric vehicle when ac voltage sags. United States patent application US 15/801,772. 2019 May 2.
[6] Hafeez, Javaid, Iqbal and Khan, “Optimal residential load scheduling under utility and rooftop photovoltaic units. Energies, Vol.11, No. 3, Pp. 611, 2018.
[7] Sikorski, T., Jasiński, M., Ropuszyńska-Surma, E., Węglarz, M., Kaczkorowska, D., Kostyla, P., Leonowicz, Z., Lis, R., Rezmer, J., Rojewski, W. and Sobierański, M., 2020. A Case Study on Distributed Energy Resources and Energy-Storage Systems in a Virtual Power Plant Concept: Technical Aspects. Energies, Vol.13(12), p.3086.
[8] https://ideas.repec.org/a/eee/appene/v198y2017icp1-11.html
[9] Babu, K., & Pradip, C. (2019, February). Power Conditioner For Voltage Sag/Swell and Harmonic Mitigation. In 2019 IEEE International Conference on Electrical, Computer and Communication Technologies (ICECCT) (pp. 1-7). IEEE.
[10] Babu, K., & Pradip, C. (2019, February). Power Conditioner for Voltage Sag/Swell and Harmonic Mitigation. In 2019 IEEE International Conference on Electrical, Computer and Communication Technologies (ICECCT) pp. 1-7.

[11] Manie, N and Pattanaik, B., “Zeta DC-DC converter based on MPPT technique for BLDC application”, International Journal of MC Square Scientific Research, Vol.11, No. 2, Pp. 1-12.

[12] Anvari-Moghaddam, Guerrero, Vasquez, Monsef and Rahimi-Kian, “Efficient energy management for a grid-tied residential microgrid”, IET Generation, Transmission & Distribution, Vol.11, No.11, Pp. 2752-2761, 2017.

[13] Sangeetha, S. V., Ravi, S., Rajaram, U and Rammohan, S. R., “Node Location Analysis Using RSSI for Automatic Position Reporting System”, Journal of Theoretical & Applied Information Technology, Vol.70, No.3.

[14] https://www.semanticscholar.org/paper/Analysis-of-Various-Anti-Windup-Schemes-used-to-in-Murugananth-Vijayan/8959ed1cc02cab35eb67fb9487e848a7c393405

[15] Raj, M. G., Pradip, C and Saju, N. Particle swarm optimisation algorithm controlled chopper driven PMDC motor, JARDCS, Vol.12, No.7, Pp. 511-516.