Relations between Electromagnetic Form Factors of Baryons

A. J. Buchmanna * †

aInstitute for Theoretical Physics, University of Tübingen, Auf der Morgenstelle 14
D-72076 Tübingen, Germany

The inclusion of two-body exchange currents in the constituent quark model leads to new relations between the electromagnetic properties of octet and decuplet baryons. In particular, the $N \rightarrow \Delta$ quadrupole transition form factor can be expressed in terms of the neutron charge form factor.

1. Neutron and Δ charge form factors

In Ref. [1] we have shown that the Sachs charge form factor $G_E^n(q^2)$ and charge radius $r_n^2 = -6(d/dq^2)G_E^n(q^2) \big|_{q^2=0}$ of the neutron are dominated by quark-antiquark pair exchange currents shown in Fig.1(b-c). The latter describe the gluon and pion degrees of freedom, while the one-body currents in Fig.1(a) describe the valence quark degrees of freedom in the nucleon. The two-body exchange charge operator contains a spin-dependence of the schematic form \[\rho_{[2]} \propto \boldsymbol{\sigma}_i \cdot \boldsymbol{\sigma}_j Y^0(q) - \frac{\sqrt{6}}{2} \left[[\boldsymbol{\sigma}_i \times \boldsymbol{\sigma}_j]^2 \times Y^2(q) \right]^0. \] This gives different matrix elements for quark pairs in spin 0 and spin 1 states. Because a down-down pair in the neutron is always in a spin 1 state, while an up-down pair can be in spin 0 or spin 1 states, an asymmetry in the charge distribution of up and down quarks arises. Consequently, a nonvanishing neutron charge form factor (see Fig.2) and radius is obtained [1]:

\[r_n^2 = -\frac{b^2}{3m_q} \left(\delta_g(b) + \delta_\pi(b) \right) = -b^2 \frac{M_\Delta - M_N}{M_N}. \]

Here, b is the quark core (matter) radius of the nucleon, m_q is the constituent quark mass, and the functions $\delta_g(b)$ and $\delta_\pi(b)$ are the gluon and pion contributions to the $N-\Delta$ mass splitting, which satisfy $M_\Delta - M_N = \delta_g(b) + \delta_\pi(b)$.

The spin-spin term in the charge operator is also responsible for the following relation between the charge form factors of the nucleon and Δ:

\[G_E^n(q^2) - G_E^\Delta^+(q^2) = G_E^n(q^2), \quad r_p^2 - r_\Delta^+ = r_n^2, \]

where r_Δ^+ is the charge radius of the Δ^+ and q is the three-momentum transfer of the photon. An analogous result holds for the difference of neutron and Δ^0 form factors. The charge form factor of the Δ^0 and the corresponding charge radius are zero in the present

* email:alfons.buchmann@uni-tuebingen.de

† Talk given at Intern. Symposium on Physics of Hadrons and Nuclei, Tokyo, Japan, 14-17 Dec.., 1998, published in Nucl. Phys. A670 (2000) 174c-177c.
model as it should be on general grounds \[3\]. From its derivation \[4\] it is evident that the charge radius relation is independent of whether gluon or pion exchange is the dominating residual interaction between constituent quarks. Using a general parametrization method, Dillon and Morpurgo \[5\] have recently shown that, if three-quark currents and strange quark loops are neglected, \(r^2_p - r^2_{\Delta^+} = r^2_n \) is a consequence of the symmetries and dynamics of QCD that is model-independently valid. They have also shown that three-body currents slightly modify, but do not invalidate the general relation between the proton, neutron, and \(\Delta \) charge radii.

We repeat that Eq. (2) is a consequence of the spin-spin \(\sigma_i \cdot \sigma_j / (m_i m_j) \) term in \(\rho^{[2]} \), which leads to a \(\Delta \) charge radius that is larger than the proton charge radius. This effect is of the same generality as, and closely connected with the \(N - \Delta \) mass splitting due to the spin-spin interaction in the Hamiltonian. The latter is repulsive in quark pairs with spin 1 and makes the \(\Delta \) heavier than the nucleon.\[6\]

2. Electromagnetic \(N \rightarrow \Delta \) transition form factors

In the constituent quark model with exchange currents a connection between the neutron charge form factor \(G^m_N(q^2) \) \[1\] and the \(N \rightarrow \Delta \) quadrupole transition form factor \(F^{p\rightarrow\Delta^+}_Q(q^2) \) \[2,4\] emerges:

\[
F^{p\rightarrow\Delta^+}_Q(q^2) = \frac{3\sqrt{2}}{q^2} G^m_N(q^2), \quad Q_{p\rightarrow\Delta} = \frac{r^2_n}{\sqrt{2}}, \quad r^2_{Q,p\rightarrow\Delta^+} = \frac{11}{20} b^2 + r^2_{\gamma q}. \tag{3}
\]

The \(N \rightarrow \Delta \) quadrupole transition form factor is a measure of the intrinsic deformation of the nucleon and the \(\Delta \). The above results for the \(N \rightarrow \Delta \) transition quadrupole moment, \(Q_{p\rightarrow\Delta^+} \), and the transition quadrupole radius\[4\], \(r^2_{Q,p\rightarrow\Delta^+} \), were derived before\[2,4\]. They are seen here to be the 0th and 1st moment of the more general relation between \(G^m_N \) and

\[3\] Combining Eq. (1) and Eq. (2) yields \(r^2_{\Delta^+} - r^2_p = [b^2/(3m_q)](M_{\Delta^+} - M_p) \), i.e., a relation between the mass difference between \(\Delta^+ \) and proton and a corresponding charge radius difference.

\[4\] The term \(1/10 b^2 \) in Eq. (53) of Ref. [2] should be replaced by \(11/20 b^2 \).
Figure 2. Neutron charge form factor $G_E^n(Q^2)$ and the quadrupole transition form factor $F_Q^{p\rightarrow\Delta^+}(Q^2)$ as a function of four-momentum transfer $Q^2 = -q^2$. The crosses, triangles, circles are the recent data \[6\]. The upper curve is a quark model calculation with exchange currents \[1,2\]. The gluon and pion contributions to $G_E^n(Q^2)$ are shown separately. The lower curve is $F_Q^{p\rightarrow\Delta^+}(Q^2) = -3\sqrt{2} G_E^n(Q^2)/Q^2$.

$F_Q^{p\rightarrow\Delta^+}$, plotted as the lower curve in Fig.\[4\]. The quark model with exchange currents explains $Q_{p\rightarrow\Delta^+}$ as a double spin flip of two quarks, with all valence quarks remaining in the dominant, spherically symmetric $L = 0$ state. The double spin-flip comes from the tensor term in ρ_2. The latter is closely related to the tensor term in the Hamiltonian. The quark core (D waves in the nucleon) also contributes to $Q_{p\rightarrow\Delta^+}$. This valence quark contribution amounts to about 20% (due to the smallness of the D wave amplitudes) of the double spin flip amplitude \[4\]. We conclude that the collective gluon and pion degrees of freedom are mainly responsible for the deformation of the N and Δ.

Due to the first relation in Eq.(\[3\]), the quadrupole transition radius can also be expressed as the 2nd moment of $G_E^n(q^2)$, namely, $r_{Q,p\rightarrow\Delta^+}^2 = (18/r_n^2) (d/dq^2)G_E^n(q^2)|_{q^2=0}$. Because the quark core radius b is fixed by Eq.(\[1\]), one could extract the charge radius of the light constituent quarks, $r_{\gamma q}^2$, from both the $G_E^n(q^2)$ data, and from the slope of $F_Q^{p\rightarrow\Delta^+}(q^2)$ at $q^2 = 0$. Both determinations of $r_{\gamma q}^2$ should agree.

It is interesting that the additive quark model relation between the magnetic $N \rightarrow \Delta$ transition and the neutron magnetic moments $\mu_{p\rightarrow\Delta^+} = -\sqrt{2}\mu_n$ remains unchanged after including the gauge-invariant two-body exchange currents of Fig.(\[b-d\]); and that it continues to hold even at finite momentum transfers

$$F_{M}^{p\rightarrow\Delta^+}(q^2) = -\sqrt{2} G_M^n(q^2), \quad \mu_{p\rightarrow\Delta^+} = -\sqrt{2} \mu_n, \quad r_{M,p\rightarrow\Delta^+}^2 = -\sqrt{2} \frac{\mu_n}{\mu_{p\rightarrow\Delta^+}} r_{M,n}^2, (4)$$
where \(r_{M,p\rightarrow\Delta^+}^2 \) is the magnetic \(N \rightarrow \Delta \) transition radius, and \(r_{M,n}^2 \) the magnetic radius of the neutron. The transition magnetic moment predicted by Eq. (4) underestimates the empirical value by 30%. This discrepancy between theory and experiment can presumably be explained by including spatial three-body currents in the theoretical description [4].

Combining Eq. (3) and Eq. (4) we find that the ratio of the charge quadrupole and magnetic dipole \(N \rightarrow \Delta \) transition form factors can be expressed in terms of the experimentally better known elastic neutron form factors

\[
\frac{F_Q^{p\rightarrow\Delta^+}(q^2)}{F_M^{p\rightarrow\Delta^+}(q^2)} = \frac{3}{q^2} \frac{G_E^n(q^2)}{G_M^n(q^2)}, \quad \frac{C2}{M1} = \frac{M_N\omega_{cm} G_E^n(q^2)}{2q^2 G_M^n(q^2)}. \tag{5}
\]

where \(\omega_{cm} = 258 \text{ MeV} \) is the center of mass energy of the photon-nucleon system at the \(\Delta \) resonance. For example, this yields \(F_Q^{p\rightarrow\Delta^+}(q^2=0) = 1.04 \frac{r_n^2}{(2\mu_n)} = -0.030 \) and \(F_M^{p\rightarrow\Delta^+}(q^2=4.2 \text{ fm}^{-2}) = -0.042 \). Sign and magnitude of these theoretical predictions are in agreement with recent experimental data \(C2/M1(q^2=4.2 \text{ fm}^{-2})_{exp} = -0.046(8) \) [8].

3. Relations between octet and decuplet hyperon charge radii

Using the general parametrization method of Refs. [6,7], we find the following relations between octet and decuplet charge radii for strange hyperons:

\[
r_{\Sigma^-}^2 - r_{\Sigma^+}^2 = r_{\Xi^-}^2 - r_{\Xi^+}^2 = r_n^2 \left(x + x^2 \right), \quad r_{\Sigma^+}^2 - r_{\Sigma^0}^2 = r_{\Xi^0}^2 - r_{\Xi^+}^2 = r_n^2 \left(2x - x^2 \right), \tag{6}
\]

where \(x = m_u/m_s \) is the ratio of nonstrange to strange quark masses. Again, it is the \(\sigma_i \cdot \sigma_j/(m_i m_j) \) term in the charge operator that leads to Eq. (6).

In summary, by including two-body currents in the constituent quark model we have found hitherto unknown relations between the electromagnetic form factors of octet and decuplet baryons. In particular, the \(C2/M1 \) ratio in the electromagnetic \(N \rightarrow \Delta \) transition can be expressed in terms of the elastic form factors of the neutron.

REFERENCES

1. A. Buchmann, E. Hernández, and K. Yazaki, Phys. Lett. B269, 35 (1991); Nucl. Phys. A569 (1994) 661.
2. A. J. Buchmann, Z. Naturforsch. 52a, 877 (1997).
3. S. Coleman, Aspects of Symmetry, Cambridge University Press, 1985.
4. A. J. Buchmann, E. Hernández, and A. Faessler, Phys. Rev. C55 (1997) 448.
5. G. Dillon and G. Morpurgo, Phys. Lett. B448 (1999) 107.
6. C. Herberg et al., Eur. Phys. J. A5 (1999) 131; J. Becker et al., ibid.; M. Ostrick et al., Phys. Rev. Lett. 83 (1999) 276; I. Passchier et al., Phys. Rev. Lett. 82 (1999) 4988; for refs. to the other data see Ref. [6].
7. G. Morpurgo, Phys. Rev. D40 (1989) 2997.
8. P. Bartsch et al., Proceedings of Baryons’ 98, Bonn, Germany, World Scientific, 1999, eds. D. W. Menze and B. Metsch, pg. 757; M. O. Distler, ibid., pg. 753; R. Gothe, ibid. pg. 394.