Correction: The Biogeochemical Role of Baleen Whales and Krill in Southern Ocean Nutrient Cycling

Lavenia Ratnarajah, Andrew R. Bowie, Delphine Lannuzel, Klaus M. Meiners, Stephen Nicol

There is an error in Table 2. The numbers in the “Zn” column for “Average among krill” should be 255.5 ± 141.6. Please see the corrected Table 2 here.

There is a reference missing from Table 3. Please see the corrected Table 3 here.
Table 2. Carbon, phosphate and trace element concentrations (mean ± standard deviation) in Antarctic krill and whales (mg kg⁻¹ dry weight).

Species	Sample type	n	Fe (µg kg⁻¹) ± 1SD	Cd (µg kg⁻¹) ± 1SD	Co (µg kg⁻¹) ± 1SD	C (x 10⁴) ± 1SD	P (x 10⁴) ± 1SD	Cu (µg kg⁻¹) ± 1SD	Zn (µg kg⁻¹) ± 1SD	Mn (µg kg⁻¹) ± 1SD
Pygmy blue, Baleoptera musculus brevicauda	Faeces	7	63.34 ± 17	7.1 ± 2.2	0.5 ± 0.2	17.6 ± 2.5	8.7 ± 2.5	312.2 ± 98.6	607.2 ± 66.0	16.2 ± 9.0
Blue, Baleoptera musculus	Faeces	15	161.8 ± 106.5	29.7 ± 8.6	1 ± 0.8	18.5 ± 3.2	9.8 ± 1.9	239.5 ± 68.6	460.8 ± 187.2	33.4 ± 10.6
Blue, Baleoptera physalus	Muscle	1	58.3 ± 17.5	0.02	0.006 ± 0.005	5.1	0.03 ± 0.007	1.5 ± 0.2	41.6 ± 4.1	0.3
Fin, Baleoptera physalus	Faeces	2	237.4 ± 45.3	42.1 ± 13.1	2.1 ± 1.3	22.1 ± 0.7	12.1 ± 0.4	290.7 ± 11.4	407.1 ± 52.8	30.5 ± 6.9
Humpback, Megaptera novaengliae	Faeces	2	118.6 ± 30.1	4.2 ± 3.5	0.9 ± 0.8	-	2.9 ± 2.1	74.1 ± 5.2	1099.0 ± 553.0	18.2 ± 10.7
Sperm whale, Physeter macrocephalus	Faeces	1	756.7	575	2.2	348.2	6.9	1635.4	2663.6	96
Average among whales	Faeces	14	145.9 ± 135.4	34.7 ± 88.9	0.9 ± 0.87	19.2 ± 4.5	8.9 ± 3.1	292.4 ± 238.1	621.5 ± 432.9	27.7 ± 16.5
Antarctic krill, Euphausia superba	Whole	5	174.3 ± 0.5	4 ± 0.1	0.1	54.2	3.13 ± 0.04	98.0 ± 0.6	275.7 ± 0.5	17.7 ± 0.1
Krill, Nyctiphanes australis	Whole	5	91.4 ± 1.1	2.8	0.1	35.9	6.6 ± 0.01	40.7 ± 0.2	444.8 ± 2.6	8.0 ± 0.1
Krill, Euphausia pacifica	Whole	5	62.1 ± 0.6	2.3	0.1	45.2	1.4 ± 0.009	15.6 ± 0.2	293.6 ± 2.3	9.2 ± 0.1
Krill, Meganyctiphanes norvegica	Whole	10	11.3 ± 8.9	2.2 ± 0.5	0.04 ± 0.02	43.2 ± 2	1.0 ± 0.6	44.6 ± 11.0	90.5 ± 40.8	2.0 ± 0.8
Average among krill	Whole	25	76.6 ± 64.1	2.7 ± 0.8	0.08 ± 0.03	44.3 ± 6.6	2.8 ± 2.3	49.1 ± 30.5	255.5 ± 141.6	8.4 ± 6.1

Carbon data for humpback whales are not available.
Krill samples were homogenates of 5 animals of each species.
Iron data for all species have been discussed in Nicol [16].

doi:10.1371/journal.pone.0125134.t001
Table 3. Summary of dissolved and particulate trace element concentrations in surface waters from the literature (nmol L⁻¹).

Sampling location	Depth (m)	Size partitioning	Fe	Cd	Co	P	Cu	Zn	Mn	C	Reference
Marguerite Bay, WAP	0-100	Dissolved	0.34-0.86	0.43-3.3	2.2-8.2	0.33-1.2					Hendry [63]
Ross Sea	0.5-375	Dissolved	0.04-0.73	1.23-2.16	0.24-5.17						Corami [45]
Ross Sea	0-380	Dissolved		0.5-11.6	0.01-6.6						Fitzwater [64]
Weddell Sea	50	Dissolved	2.01		0.34						Grotti [65]
Atlantic sector 40	40	Dissolved	0.155-0.905								Löschler [67]
Atlantic sector 40-100		Dissolved		0.95-6.66	1.7-10.8						Löschler [68]
Indian-Pacific sector 40	40	Dissolved	0.25-0.27	1.2-1.4	2.3-2.4						Frew [69]
Indian-Pacific sector 40		Dissolved	0.1								Bowie [44]
Southern Ocean 0-20		Dissolved	0.03	0.34	0.02	1.78	1.01	0.08			Cullen [32]
Ross Sea 0-100		Particulate	0.011-0.097			0.05-0.733	0.2-1.2	19-198			Corami [45]
Ross Sea 0.5-100		Particulate					0.01-0.17	Fitzwater [64]			
Ross Sea 0-380		Particulate	0.04-1.36		0.01-3.1				Grotti [65]		
Weddell Sea 50		Particulate	2.18		0.022			Westerlund and Öhman [66]			
Atlantic sector 40	40	Particulate	0.02-0.14					Löschler [67]			
Atlantic sector 40-100		Particulate			0.026-0.222			Löschler [68]			
East Antarctica 0-1		Particulate	0.001-0.018			0.017-0.070	0.020-0.805	0.007-0.141	1170	Lannuzel [70]	
Amundsen Sea 8-50		Particulate	0.071-0.66	16.6-44.5	8.81-39.4				Planquette [46]		
Southern Ocean 0-20		Particulate	0.26	0.34	0.04	0.38	2.91	0.44		Cullen [32]	
Overall ranges		Dissolved	0.03-2.01	0.04-0.9	0.02	0.43-6.6	0.24-10.8	0.01-6.6			
		Particulate	2.18	0.01-0.14	0.04	16.6-44.5	0.017-1.36	0.02-2.91	0.01-198	1170	

Data from Frew [69] and Bowie [44] in the Australasian-Pacific sector are from non-fertilised surface waters

doi:10.1371/journal.pone.0125134.002

Reference

1. Ratnarajah L, Bowie AR, Lannuzel D, Meiners KM, Nicol S (2014) The Biogeochemical Role of Baleen Whales and Krill in Southern Ocean Nutrient Cycling. PLoS ONE 9(12): e114067. doi:10.1371/journal.pone.0114067 PMID: 25469984