INTRODUCTION

Coastal aquatic systems are highly susceptible and can be directly or indirectly affected by adjacent terrestrial ecosystems, anthropogenic activities and climate change. Yamagawa Bay is a coastal basin located in Ibusuki, Kagoshima Prefecture, Japan with a central depth of up to 50 m with a shallow entrance of 8 m. The geographical feature gives rise to reduction of the water exchange and makes the water stagnant for a long time, allowing deposition of organic matters and resulting in bottom-water hypoxia and sulfide accumulation in the sediment (Ide, 2012).

Aquatic microbiota vary spatio-temporarily due to changes of their surrounding environment, and composition and dominancy of the bacterial assemblages are highly correlated to the environmental conditions; thus, elucidation of the community structure enable us to understand physicochemical status of the environments, especially of the sediments.

Anoxygenic photosynthetic bacteria (AnPBs) are Gram-negative prokaryotes, performing anoxygenic photosynthesis with pigments such as bacteriochlorophylls (Bchl) and carotenoids. They convert light energy into chemical energy and grow autotrophically by using...
carbon dioxide as a sole source of carbon. Major groups are purple non-sulfur bacteria, purple sulfur bacteria, green sulfur bacteria and green non-sulfur bacteria (Kobilížek et al., 2006). Aerobic anoxygenic phototrophic bacteria, accounting for up to 10% of bacterial communities in the marine euphotic zones (Yutin et al., 2007), also produce Bchl a and complement their energy requirements by harvesting light under an aerobic condition. Habitats of AnPBs are restricted by availability of light and electron donors including reduced sulfur or organic compounds for their phototrophic growth as well as redox potential (van Gemerden and Mas, 1995; Guyoneaud et al., 1996). Therefore, community structure of the phototrophs will be a good bioindicator reflecting their ambient pollution levels, especially in the organically polluted marine sediments, resulting in eutrophication, oxygen depletion and high sulfide concentration.

The aim of this study is to gain insight into diversity of AnPBs in the Yamagawa Bay sediments. Three approaches were adopted: isolation and identification of pigmented anaerobic microorganisms; polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE) of 16S ribosomal RNA (16S rRNA) genes (16S rDNA); and PCR-DGGE of puM encoding the M subunit of the reaction center complex.

MATERIALS AND METHODS

Sample collection
Sediment samples were collected from Yamagawa Bay, Kagoshima, Japan from May to November 2016 and May 2017 with a G.S. type core sampler (Ashura). Surface sediments within a depth of 10 mm were used for bacterial isolation and environmental DNA preparation.

Enrichment and isolation of photosynthetic bacteria
Portions of the collected sediments were transferred into tightly-sealed test tubes filled with 30 mL of Basic I medium (Hoshino and Kitamura, 1984) and cultivated at 20˚C under 12:12 light:dark cycling condition in order to enrich photosynthetic bacteria. Composition of the medium is as follows (concentrations are given as grams per 100 mL except as otherwise noted): KH₂PO₄, 0.5; K₂HPO₄, 0.6; (NH₄)₂SO₄, 1.0; MgSO₄·7H₂O, 0.2; NaCl, 0.2; CaCl₂·2H₂O, 0.05; Na₂S₂O₄·5H₂O, 0.1; yeast extract, 0.1; malate, 0.5. The following supplements were also added: the growth factor solution (thiamin-HCl, 0.05; nicotinic acid, 0.05; p-aminobenzoic acid, 0.03; vitamin B₂, 0.01; pyridoxine-HCl, 0.01; D-biotin, 0.005; shown as grams per 100 mL), 1 mL/L; the trace element solution (EDTA·2Na, 2.0; FeSO₄·7H₂O, 2.0; H₂BO₃, 0.1; CoCl₂·6H₂O, 0.1; ZnCl₂, 0.1; MnCl₂·4H₂O, 0.1; Na₂MoO₄·2H₂O, 0.02; shown as grams per 100 mL), 1 mL/L.

For AnPB isolation, a double layer agar technique was used by spreading the enriched cultures on Basic I plates with 1.5% of agar and then covering the plates with 1.2% agar. The agar plates were incubated anaerobically with Anaeropack Kenki system (Mitsubishi Gas Chemical, Tokyo, Japan) under the same condition as above. Pure isolates were obtained by sequential isolation from colonies with different morphology and maintained in Basic I liquid or agar plate media for further application.

Determination of the 16S rDNA nucleotide sequences
Liquid cultures of the isolates were centrifuged to obtain cell pellets, from which the bacterial DNA were extracted with DNeasy Plant Mini Kit (Qiagen, Hilden, Germany). Genes of 16S rRNA were amplified by PCR using a universal primer set 27F and 1525R (TABLE 1). A reaction mixture of PCR consisted of 1 x ExTaq Buffer (Takara Bio, Otsu, Japan), 100 µM dNTP Mixture (Takara Bio, Otsu, Japan), 0.5 µM primers and 0.025 units/µL ExTaq DNA Polymerase (Hot Start Version, Takara Bio, Otsu, Japan), and 5 µL of the bacterial DNA solutions were added to 100 µL of the mixture. Thermal cycling was conducted at 94˚C for 1 min, followed by 25 cycles of denaturation at 94˚C for 30 s, annealing at 58˚C for 30 s and extension at 72˚C for 90 s, and final extension at 72˚C was performed for 7 min. Specific amplification of the target gene was confirmed by subjecting the PCR products to 1.5% agarose gel electrophoresis in TAE buffer (40 mM Tris-acetate, pH 8.3, 1 mM ethylenediaminetetraacetic acid).

The amplified 16S rDNA fragments were cleaned up with ExoSAP-IT (Affymetrix, Santa Clara, CA, USA), and their nucleotide sequences were determined using a set of universal primers, 27F, PrSSU.2F, 1525R and 531R (TABLE 1), with ABI PRISM BigDye Terminator v3.1 Cycle Sequencing Kit (Applied Biosystems, Waltham, MA, USA). The obtained sequences were assembled with the program GENETYX-MAC Ver. 19 (Genetyx, Tokyo, Japan). Their most homologous sequences were retrieved from the GenBank DNA database with the program of Basic Local Alignment Search Tool (BLAST; Altschul et al., 1990).

Bacterial community analyses by 16S rDNA PCR-DGGE
Microbial DNAs in the sediments were extracted using PowerSoil DNA Isolation Kit (MOBio, Carlsbad, CA, USA). Amplification of their 16S rDNAs was conducted by PCR with the primers 341F-GC and 907R (TABLE 1); composition of the reaction mixtures was the same as above. After initial denaturation at 95˚C for 1 min,
thermal cycling was performed as follows: 20 cycles of denaturation at 95°C for 1 min, 62°C for 1 min with a decrement of 0.8°C at every cycle and extension at 72°C for 1 min, followed by 10 cycles of 95°C for 1 min, 52°C for 1 min and 72°C for 1 min with final extension at 72°C for 10 min.

The 16S rDNA amplicons were applied to DGGE with DCode System (Bio-Rad, Hercules, CA, USA). The reaction mixtures were applied onto 6% polyacrylamide gel with 25-55% denaturant, in which 100% denaturant contained 40% deionized formamide and 7 M urea. Bands were visualized on a blue light transilluminator Safe Imager 2.0 (Thermo Fisher Scientific, Waltham, MA, USA) by staining the gel with SYBR Gold (Thermo Fisher Scientific, Waltham, MA, USA). Representative bands were excised using 1 mL pipette tips. The gel pieces were suspended in 100 µL of TE buffer (10 mM Tris-HCl, pH 8.0, 1 mM ethylenediaminetetraacetic acid), and frozen and thawed. The eluted DNA fragments were re-amplified and subjected to nucleotide sequencing with the primer 907R (TABLE 1) and homology searches as mentioned above.

Bacterial community analyses by pufM PCR-DGGE

The _pufM_ genes were amplified from the sediment DNAs by nested PCR. The first-round amplification was done with an outer primer pair _pufM557F_ and _pufM.1R_ (TABLE 1), whose thermal cycling was as follows: 30 cycles of 94°C for 30 s, 56°C for 30 s and 72°C for 30 s. The amplified products were further subjected to the second run with inner primer sets _pufM557F_ and _pufM750R_, or _pufM557Fencing_ and _pufM750R_ (TABLE 1). The same thermal setting as above was adopted, except for the primer set with a GC clamp: annealing temperature and cycle numbers were 58-63°C and 10-12 cycles, respectively.

The amplified products were applied to DGGE as shown above, except for 10% of polyacrylamide and 30-60% or 40-60% of the denaturant. Representative bands were excised, re-amplified with the same primers, and subjected to DGGE. This procedure was repeated until homogeneous sequences were obtained; bands whose sequences were still heterogeneous were excluded for further analyses. Nucleotide sequences were determined using the primer 907F (TABLE 1) and their homology searches were performed.

Results

Isolation and identification of photosynthetic bacteria

Enrichment of AnPBs from the Yamagawa Bay sediments in the Basic I liquid medium under semi-anaerobic or anaerobic condition showed growth of microbial consortia with the color of green, pink or yellow. Totally

TABLE 1. Oligonucleotide primers used for PCR amplification, PCR-DGGE and nucleotide sequencing

Primers	Application	Target genes	Target organisms	Nucleotide sequences (5' -> 3')
27F	PCR, sequencing	16S rDNA	Bacteria	AGAGTTTGATCCTGGCTCAG
1525R	PCR, sequencing	16S rDNA	Bacteria	AAAGGAGGTGATCCAGCC
PrSSU.2F	Sequencing	16S rDNA	Bacteria	TCCTACGGGAGGCAGCA
531R	Sequencing	16S rDNA	Bacteria	TACCGCGGCTGCTGGCA
341F-GC	PCR-DGGE and nucleotide sequencing	16S rDNA	Bacteria	CGCCCGGGGCGCGCCCCGGGCGGGGCGGGGGC
907R	PCR-DGGE and nucleotide sequencing	16S rDNA	Bacteria	CCGTCAATTCCTTTGAGTTT
341F-GC	PCR-DGGE and nucleotide sequencing	16S rDNA	Bacteria	CGCCCGGGGCGCGCCCCGGGCGGGGCGGGGGC
pufM557F	PCR-DGGE and nucleotide sequencing	16S rDNA	Purple photosynthetic bacteria	CGCACCTGGACTGGAC
pufM557FGC	PCR-DGGE and nucleotide sequencing	16S rDNA	Purple photosynthetic bacteria	CGCACCTGGACTGGAC
pufM.1R	PCR-DGGE and nucleotide sequencing	16S rDNA	Aerobic anoxygenic phototrophic bacteria	GCAAAACCAAGCCCA
pufM750R	PCR-DGGE and nucleotide sequencing	16S rDNA	Purple photosynthetic bacteria	CCGTCAATTCCTTTGAGTTT
pufMR	PCR-DGGE and nucleotide sequencing	16S rDNA	Aerobic anoxygenic phototrophic bacteria	CCGTCAATTCCTTTGAGTTT
pufM557F	PCR-DGGE and nucleotide sequencing	16S rDNA	Purple photosynthetic bacteria	CCGTCAATTCCTTTGAGTTT

a GC clamps added to 5' termini of the PCR-DGGE primers are underlined.
b The International Union of Pure and Applied Chemistry (IUPAC) codes are used for mixed nucleotides.

36 bacterial isolates were obtained in the agar plates and their 16S rDNA sequences were determined. They showed identities to known species with 99% or above with one exception (TABLE 2). *Rhodobacter sphaeroides*, an anoxygenic, photosynthetic purple non-sulfur bacterium with a freshwater origin (Pfennig and Trüper, 1971), was most prevalent (16 isolates) in the sediments. The remaining bacterial isolates were primarily chemoorganotrophic and showed no close relationship to AnPBs. Eight isolates possessed homologous sequences to plastidal 16S rDNAs of a chlorophyte *Chlorella* spp.

Bacterial community analyzed by 16S rDNA and pufM PCR-DGGE

Environmental DNAs extracted from microbial communities in the sediments of Yamagawa Bay were applied to 16S rDNA PCR-DGGE. Resultant band profiles were shown in FIG. 1. One major band prevailing among all the sediment was observed with some faint bands, whose profiles were indistinguishable among the sampling periods. The nucleotide sequences were identical to *Chlorobium phaeobacteroides* (Chlorobia - Chlorobiales - Chlorobiaceae), an anoxygenic photosynthetic green sulfur bacterium with a freshwater origin (Pfennig, 1968; Pfennig and Overmann, 2001).

Band profiles of *pufM* DGGE were similar among the sampling periods and the triplicated samples with some differences (FIG. 2). In order to determine their nucleotide sequences, representative bands were collected, re-amplified, and electrophoresed on DGGE gel. Bands whose mobilities were not identical to the originals were also sequenced, but bands whose sequences had been still heterogeneous were excluded from further analyses. All the bands showed close relationships to known AnPBs or potential Bchl a-producing AnPBs, including *Rhodopseudomonas lichen*, *Rhodovibrio sodomensis*, *Porphyrobacter tepidarius*, *Thiorhodococcus bheemlicus*, *Dinoroseobacter shibae*, *Sulfitobacter gutiformis* and *Roseobacter litoralis* (TABLE 3). The band A1 was also homologous to *Sphingomonas lacus* (TABLE 3): this species is not possibly a phototroph, since Bchl a was not detected, although harboring structural genes, *putL* and *pufM*, of the type II photosynthetic reaction center (Kim et al., 2015).

Band profiles of *pufM* DGGE with the GC clump-added primer also showed almost identical patterns with slight variation (FIG. 3). All the sequences obtained from the bands 1-4, commonly detected in all the sediments, showed 92% of identities to *Thiocapsa marina* and *Allochromatium phaeobacterium* (Gammaproteobacteria - Chromatiales - Chromatiaceae), both of which are purple sulfur bacteria.

Discussion

In order to elucidate compositions of bacterial populations in the organically polluted, anoxic, reductive sediments in the geographically enclosed coastal marine inlet, approaches of AnPB isolation and PCR-DGGE of 16S rRNA and *pufM* genes were adopted.

Basic I medium employing the AnPB isolation contains a low concentration of yeast extract as a carbon source and lacks sulfides. Under an anaerobic condition, the medium is selective for purple non-sulfur bacteria among AnPBs; therefore, green sulfur bacteria, which dominantly detected in 16S rDNA PCR-DGGE (mentioned below), were not detected, due to their requirement of sulfur as an electron donor. Among the AnPB isolates
from the Yamagawa Bay sediments, relatives of *Rhodob. sphaeroides* were most dominant. This species is known as an anoxygenic purple non-sulfur bacterium (Pfennig and Trüper, 1971) with a freshwater origin. In view of their diverse metabolic systems and multiple uses (e.g., Lu et al., 2011; Subudhi et al., 2016), the Rhodob. sphaeroides isolates may be associated with its rapid growth and the possibility of using a variety of organic pollutant substances as their nutrients.

One isolate, PSBYam1608St4-1 belonged to the same family Rhodobacteraceae as *Rhodob. sphaeroides*. However, the most relative species *Thioclava pacifica* is not phototrophic: it grows chemooautrophically with thiosulfate, heterotrophically with simple organic compounds, or methylotrophically utilizing hydrogen as an electron donor (Sorokin et al., 2005). The remaining bacterial clones showed no close relationship to AnPBs: all of them are heterotrophic, and no photoautotrophic growth has been reported. An eukaryotic green microalga *Chlorella sorokiniana* was also found in the anaerobically enriched culture, attributable to its capacity of anaerobic growth with photosynthesis and internally produced oxygen (Qiao et al., 2009).

The band profiles of PCR-DGGE were similar throughout the sampling period with slight differences in faint

FIG. 2. Band profiles of *pufM* PCR-DGGE. Amplicons of *pufM*, amplified from environmental DNAs of Yamagawa Bay sediments with secondary primers *pufM*557F/*pufM*750R, were applied. Bands excised for further analyses are shown (A1-A12), and the bands whose nucleotide sequences were determined are underlined. Years/months of sediment sampling and serial numbers (#) of the samples are as follows: lane 1, 2016/May, #1; lane 2, 2016/May, #2; lane 3, 2016/May, #3; lane 4, 2016/June, #1; lane 5, 2016/June, #2; lane 6, 2016/June, #3; lane 7, 2016/July, #1; lane 8, 2016/August, #1; lane 9, 2016/November, #2; lane 10, 2016/November, #3.

FIG. 3. Band profiles of *pufM* PCR-DGGE with a GC-clamp primer. Amplicons of *pufM*, amplified from environmental DNAs of Yamagawa Bay sediments with secondary primers *pufM*557FGC/*pufM*750R, were applied. Bands excised for further analyses are shown (1-8), and the bands whose nucleotide sequences were determined are underlined. Years/months of sediment sampling and serial numbers (#) of the samples are as follows: lanes 1, 4, 5, 8, 2016/May, #1; lanes 2, 6, 9, 2016/May, #2; lane 3, 7, 10, 2016/May, #3. Annealing temperatures/thermal cycling to obtain the *pufM* amplicons with the secondary primers were 60˚C/10 cycles (lanes 1-4), 58˚C/12 cycles (lanes 5-7), and 63˚C/12 cycles (lanes 8-10).
PSB isolates	Isolation years/months	Sequence length (nts)	Most homologous relatives	Taxonomic groups	Sequence identity (%)
PSBYam1606St1-1	2016/June	1412	*Rhodobacter sphaeroides*	Alphaproteobacteria - Rhodobacterales - Rhodobacteraceae	100
PSBYam1606St3-1-1	2016/June	787	*Chlorella sorokiniana/variabilis/thermophila*	Trebouxiophyceae - Chlorellales - Chlorellaceae	99
PSBYam1606St3-1-2	2016/June	798	*Chlorella sorokiniana/variabilis/thermophila*	Trebouxiophyceae - Chlorellales - Chlorellaceae	99
PSBYam1606St3-1-3	2016/June	817	*Chlorella sorokiniana/variabilis/thermophila*	Trebouxiophyceae - Chlorellales - Chlorellaceae	99
PSBYam1606St3-1-4	2016/June	829	*Chlorella sorokiniana/variabilis/thermophila*	Trebouxiophyceae - Chlorellales - Chlorellaceae	99
PSBYam1606St3-1-5	2016/June	793	*Chlorella sorokiniana/variabilis/thermophila*	Trebouxiophyceae - Chlorellales - Chlorellaceae	99
PSBYam1606St3-1-6	2016/June	830	*Chlorella sorokiniana/variabilis/thermophila*	Trebouxiophyceae - Chlorellales - Chlorellaceae	99
PSBYam1606St3-3-1	2016/June	898	*Acinetobacter venetianus*	Gammaproteobacteria - Pseudomonadales - Moraxellacea	100
PSBYam1606St3-5	2016/June	1405	*Rhodobacter sphaeroides*	Alphaproteobacteria - Rhodobacterales - Rhodobacteraceae	100
PSBYam1606St3-7-1	2016/June	857	*Pseudomonas putida/pseudoalcaligenes*	Gammaproteobacteria - Pseudomonadales - Pseudomonadaceae	100
PSBYam1606St3-9	2016/June	1414	*Rhodobacter sphaeroides*	Alphaproteobacteria - Rhodobacterales - Rhodobacteraceae	99
PSBYam1606St5-1	2016/June	1412	*Rhodobacter sphaeroides*	Alphaproteobacteria - Rhodobacterales - Rhodobacteraceae	100
PSBYam1606St5-3	2016/June	1389	*Rhodobacter sphaeroides*	Alphaproteobacteria - Rhodobacterales - Rhodobacteraceae	99
PSBYam1607St1-1	2016/July	1426	*Bosea vestrisii/eneae/thiocidans*	Alphaproteobacteria - Rhizobiales - Bradyrhizobiaceae	99
PSBYam1607St1-5	2016/July	1401	*Rhodobacter sphaeroides*	Alphaproteobacteria - Rhodobacterales - Rhodobacteraceae	99
PSBYam1607St1-7	2016/July	1414	*Rhodobacter sphaeroides/johrii*	Alphaproteobacteria - Rhodobacterales - Rhodobacteraceae	99
PSBYam1607St1-8	2016/July	1405	*Rhodobacter sphaeroides*	Alphaproteobacteria - Rhodobacterales - Rhodobacteraceae	99
PSBYam1607St2-4	2016/July	1404	*Rhodobacter sphaeroides*	Alphaproteobacteria - Rhodobacterales - Rhodobacteraceae	100
PSBYam1607St2-5	2016/July	1398	*Rhodobacter sphaeroides*	Alphaproteobacteria - Rhodobacterales - Rhodobacteraceae	99
PSBYam1607St2-7	2016/July	1404	*Rhodobacter sphaeroides*	Alphaproteobacteria - Rhodobacterales - Rhodobacteraceae	100
PSBYam1607St3-1	2016/July	1414	*Rhodobacter sphaeroides*	Alphaproteobacteria - Rhodobacterales - Rhodobacteraceae	99
PSBYam1607St3-3	2016/July	1413	*Rhodobacter sphaeroides*	Alphaproteobacteria - Rhodobacterales - Rhodobacteraceae	99
PSBYam1607St3-5	2016/July	1405	*Rhodobacter sphaeroides*	Alphaproteobacteria - Rhodobacterales - Rhodobacteraceae	99
PSBYam1607St4-2	2016/July	1340	*Mycoplana ramosa*	Alphaproteobacteria - Rhizobiales - Brucellaceae	98
PSBYam1608St1-1	2016/August	1402	*Rhodobacter sphaeroides*	Alphaproteobacteria - Rhodobacterales - Rhodobacteraceae	99
PSBYam1608St2-1	2016/August	1407	*Rhodobacter sphaeroides*	Alphaproteobacteria - Rhodobacterales - Rhodobacteraceae	99
PSBYam1608St4-1	2016/August	756	*Thioclava pacifica*	Alphaproteobacteria - Rhodobacterales - Rhodobacteraceae	99
PSBYam1705St.2-4-A1	2017/May	701	*Acidovorax delafieldii*	Betaproteobacteria - Burkholderiales - Comamonadaceae	99
PSBYam1705St.2-4-A2	2017/May	703	*Pseudomonas knackmussii/nitroreducens*	Gammaproteobacteria - Pseudomonadales - Pseudomonadaceae	100
PSBYam1705St.2-4-A3	2017/May	700	*Pseudomonas knackmussii/nitroreducens*	Gammaproteobacteria - Pseudomonadales - Pseudomonadaceae	99
PSBYam1705St.3-1-A4	2017/May	700	*Pseudomonas knackmussii/nitroreducens*	Gammaproteobacteria - Pseudomonadales - Pseudomonadaceae	100
PSBYam1705St.3-2-A8	2017/May	703	*Pseudomonas knackmussii/nitroreducens*	Gammaproteobacteria - Pseudomonadales - Pseudomonadaceae	100
PSBYam1705St.3-3-A13	2017/May	671	*Chlorella sorokiniana/variabilis/thermophila*	Trebouxiophyceae - Chlorellales - Chlorellaceae	99
PSBYam1705St.4-1-A14	2017/May	701	*Acidovorax delafieldii*	Betaproteobacteria - Burkholderiales - Comamonadaceae	99
PSBYam1705St.4-1-A16	2017/May	703	*Pseudomonas knackmussii/nitroreducens*	Gammaproteobacteria - Pseudomonadales - Pseudomonadaceae	100
PSBYam1705St.4-2-A18	2017/May	666	*Chlorella sorokiniana*	Trebouxiophyceae - Chlorellales - Chlorellaceae	99

a Lengths of the nucleotide sequences subjected to BLASTN searches were shown.

b A sequencing primer PrSSU.2F was used for sequencing.

c Sequencing primers PrSSU.2F and 531R were used for sequencing.

d Identity to 16S rDNA encoded in their plastidal genomes.
bands, regardless of the primer sets used. Due to its high water depth, the water column of Yamagawa Bay was stratified throughout the year, resulting in poor vertical mixing. Consequently, with loading and accumulation of organic pollutants, the sedimentary environments were continuously in a deleterious condition: poor dissolved oxygen and high sulfide content in the pore water (Ide, 2012). The persistence of the microbial community structures during the experimental period could account for such temporal stability of the benthic environments.

The primers universal to the Domain I of 16S rDNAs including the hypervariable regions V1-V4 produced one major band in DGGE whose nucleotide sequence was identical to a green sulfur bacterium Chlorob. phaeobacteroides BS1. The continual dominance of this bacterial species, which is a strictly anaerobic photolithotroph oxidizing reduced sulfur (Overmann, 2001; Frigaard et al., 2003), was also reported in a brackish lake with oyster aquaculture (Santander-de Leon et al., 2013), reflecting the reductive condition observed in the seabed as mentioned above. However, it should be noted that the strain BS1 was phylogenetically reclassified into the genus Prosthocochloris (Imhoff and Thiel, 2010), suggesting its diverse characteristics from Chlorob. phaeobacteroides. In fact, monospecific abundance of Chlorobium sp. BS1 was also reported in the Black Sea (Marschall et al., 2010) whose water body is characterized by oxic-anoxic transition zone and sulfidic chemocline. The bacterium was inhabited at the depth of upper limit of sulfide-containing water layers with lower limit of downwelling irradiance for photosynthetic carbon fixation. The bacterial assemblage was deposited at the flocculent surface layer of the sea bottom and could survive under the extreme low-light conditions (Marschall et al., 2010). Predominance of the green sulfur bacterium in the Yamagawa Bay sediments could be explained by the similar process to the Black Sea, although its microbial ecophysiology should be elucidated.

A protein PufM, a gene product of pufM, is a component of the type II (pheophytin-quinone type) photosynthetic reaction center (RC; Cardona, 2015). The protein is known as an accurate tool for assessing phylogeny and diversity of bacteria employing the photosystem II in nature (Imhoff et al., 2018). Distribution of pufM is limited to purple bacteria including aerobic anoxygenic photosynthetic bacteria, and green sulfur bacteria including the genus Chlorobium lack the pufM gene since their photoenergy capturing depends on the type I (iron-sulfur type) RC with a protein PscA (Cardona, 2015). Thus, PCR-DGGE with the pufM primer sets was carried out to clarify temporal diversity of the type II RC-harboring bacteria, eliminating preferred amplification from a limited number of predominant populations, such as Chlorob. phaeobacteroides BS1, in 16S rDNA-targeted PCR. As a result, three out of eleven bands sequenced showed high identity to a pufM gene of Rhodop. lichen (TABLE 3); however, its bacterial characteristics have not been reported. The closest relative to this uncharacterized species is Rhodopseudomonas palustris, a purple non-sulfur phototroph, whose pufM possessed 92% identity at a nucleotide level and 95% at an amino acid level. In addition, diverse comparables to photosynthetic sulfur oxidizers were also found. Rhodov. sodomensis, Thiorn. bheemicus, Thiorn. marina and A. phaeobacterium are members of purple sulfur bacteria, oxidizing sulfide, thiosulfate or elemental sulfur as electron donors for photolithotrophic growth under an anoxic condition (Imhoff et al., 1998; Caurnette et al., 2004; Kumar et al. 2007; Srinivas et al., 2009). This finding is supported by the study of Mukkata et al. (2016), in which high concentration of H2S was assumed by the detection of anaerobic purple sulfur bacteria Allochromatium sp. in shrimp pond. Further, Imhoff et al. (2018) clearly recognized anaerobic purple non-sulfur bacteria Rhodovibrio sp. with PuLM sequences. The existence of Rhodovibrio sp. with Allochromatium sp. refers to the ability of Rhodovibrio to tolerate high levels of sulfides.

It is noticeable that pufM sequences closely related to aerobic anoxygenic phototrophs were also detected, such as Ros. litoralis and D. shibae. Both the species were originally isolated from micro- and macroalgal phycosphere (Shiba, 1991; Biebl et al., 2005). The former species belongs to the Roseobacter clade based on the 16S rDNA phylogeny, and the latter species is one of the closest sister taxa (Biebl et al., 2005). This lineage is one of the major marine bacterial groups, representing diverse marine habitats from coastal to open oceans as well as of sediments (Buchan et al., 2005). Moreover, several Roseobacter isolates harbor abilities to transform inorganic sulfur compounds (González et al., 1999; Buchan et al., 2005). Lenk et al. (2012) also revealed abundance of Roseobacter clade bacteria in marine surface sediments of tidal flats. They reported up to 9.6% of relative bacterial abundance of this clade and succeeded in its own enrichment under an anoxic, sulfidic condition. They also detected gene components of the SOX and reverse dissimilatory sulfite reductase (rDSR) pathways for inorganic sulfur oxidation. Taken together, Roseobacter is likely to be one of the sulfur oxidizers in highly eutrophicated marine coastal sediments, including Yamagawa Bay.

The present study suggested prevalence of AnPBs under the deteriorating sediment condition. The sulfide-rich reductive environments considered, colonization of the photosynthetic sulfur oxidizers is very relevant. It is also conceivable that purple non-sulfur phototrophs
have a potential role of degrading the organic pollutants. However, distribution and metabolism of the AnPBs must be regulated by the environmental factors in their sedimental habitat, such as oxygen availability, redox potential, types and concentrations of sulfur compounds, and solar illuminance. Hence, more detailed research on relationship between physicochemical factors of the sediments and population dynamics and biological activity of the AnPB communities is expected to improve our understanding of how the AnPBs contribute to cycling of the organic pollutants and their organic or inorganic sulfur derivatives.

ACKNOWLEDGMENT

The first author would like to thank JGC-S and SUZAKI Scholarships Foundation for financial support. This research is a part of dissertation submitted by the first author in partial fulfillment of the doctoral degree, to which all the co-authors have provided consent.

REFERENCES

Achenbach, L.A., Carey, J., and Madigan, M.T. (2001) Photosynthetic and phylogenetic primers for detection of anoxygenic phototrophs in natural environments. Appl. Environ. Microbiol., 67, 2922-2926.

Altschul, S.F., Gish, W., Miller, W., Myers, E.W., and Lipman, D.J. (1990) Basic local alignment search tool. J. Mol. Biol., 215, 403-410.

Béjà, O., Suzuki, M.T., Heidelberg, J.F., Nelson, W.C., Preston, C.M., Hamada, T., Eisen, J.A., Fraser, C.M., and DeLong, E.F. (2002) Unsuspected diversity among marine aerobic anoxygenic phototrophic bacteria. Nature, 415, 630-633.

Biebl, H., Allgaier, M., Tindall, B.J., Koblizek, M., Lünsdorf, H., Pukall, R., and Wagner-Döbler, I. (2005) Dinoroseobacter shibae gen. nov., sp. nov., a new aerobic phototrophic bacterium isolated from dinoflagellates. Int. J. Syst. Evol. Microbiol., 55, 1089-1096.

Buchan, A., González, J.M., and Moran, M.A. (2005) Overview of the marine Roseobacter clade. App. Environ. Microbiol., 71, 5665-5677.

Cardona, T. (2015) A fresh look at the evolution and diversification of photochemical reaction centers. Photosynth. Res., 126, 111-134.

Caumette, P., Guyonraud, R., Imhoff, J.F., Suling, J., and Gorlenko, V. (2004) Thiothrix marina sp. nov., a novel, okenone-containing, purple sulfur bacterium isolated from brackish coastal and marine environments. Int. J. Syst. Evol. Microbiol., 54, 1031-1036.

Frigaard, N.-U., Li, H., Chew, A.G.M., Maresca, J.A., and Bryant, D.A. (2003) Chlorobium tepidum: insights into the structure, physiology and biochemistry of green sulfur bacteria from the complete genome sequence. Photosynth. Res., 78, 93-117.

González, J.M., Kiene, R.P., and Moran, M.A. (1999) Transformation of sulfur compounds by an abundant lineage of marine bacteria in the alpha-subclass of the class Proteobacteria. Appl. Environ. Microbiol., 65, 3810-3819.

Guyonraud, R., Matheron, R., Baulaigue, R., Podeur, K., Hirschler, A., and Caumette, P. (1996) Anoxygenic...
phototrophic bacteria in eutrophic coastal lagoons of the French Mediterranean and Atlantic Coasts (Prévoet Lagoon, Arcachon Bay, Carteres fishponds). Hydrobiologia, 329, 33-43.

Hsiao, J.-F., Lee, M.-H., Chia, J.-H., Ho, W.-J., Chu, J.-J. and Chu, P.-H. 2008. Neisseria elongata endocarditis complicated by brain embolism and abscess. J. Med. Microbiol., 57, 376-381.

Hoshino, Y. and Kitamura, H. (1984) Ecology, In Photosynthetic Bacteria (Kitamura, H., Morita, S., and Yamashita, J., eds; in Japanese), pp. 9-21, Gakkai Shuppan Center, Tokyo.

Imhoff, J.F., Petrì, R., and Suling, J. (1998) Reclassification of species of the spiral-shaped phototrophic purple non-sulfur bacteria of the alpha-Proteobacteria: description of the new genera Phaeospirillum gen. nov., Rhodovibrio gen. nov., Rhodolithalassium gen. nov. and Roseospira gen. nov. as well as transfer of Rhodospirillum fulvum to Phaeospirillum fulvum comb. nov., of Rhodospirillum molischianum to Phaeospirillum molischianum comb. nov., of Rhodospirillum salinarum to Rhodovibrio salinarum comb. nov., of Rhodospirillum sordemodens to Rhodovibrio sordemodens comb. nov., of Rhodospirillum salexigens to Rhodothalassium salexigens comb. nov. and of Rhodospirillum medusalinum to Roseospira medusalinum comb. nov. Int. J. Syst. Bacteriol., 48, 793-798.

Imhoff, J.F. and Thiel, V. (2010) Phylogeny and taxonomy of Chlorobiaceae. Photosynth. Res., 104, 123-136.

Imhoff, J.F., Rahn, T., KüNZel, S., and Neulinger, S.C. (2018) Photosynthesisers are widely distributed among Proteobacteria as demonstrated by the phylogeny of PutLM reaction center proteins. Front. Microbiol., 8, 2679.

Kim, J.H., Kim, S.H., Kim, K.H., and Lee, P.C. (2015) Sphingomonas lacus sp. nov., an astaxanthin-dideoxyglycoside-producing species isolated from soil near a pond. Int. J. Syst. Evol. Microbiol., 65, 2824-2830.

Koblížek, M., Falkowski, P.G., and Kolber, Z.S. (2006) Diversity and distribution of photosynthetic bacteria in the Black Sea. Deep Sea Res. Part 2 Top. Stud. Oceanogr., 53, 1934-1944.

Kumar, P.A., Sasi Jyothsna, T.S., Srinivas, T.N.R., Sasikala, Ch, Ramana, Ch.V. and Imhoff, J.F. (2007) Two novel species of marine phototrophic Gammaproteobacteria: Thiorhodococcus bheemilicus sp. nov. and Thiorhodococcus kakinadensis sp. nov. Int. J. Syst. Evol. Microbiol., 57, 2458-2461.

Lane, D.J. (1991) 16S/23S rRNA sequencing. In Nucleic Acid Techniques in Bacterial Systematics (Stackebrandt, E. and Goodfellow, M., eds), pp. 115-175, Wiley, Chichester.

Lenk, S., Moraru, C., Hahnke, S., Arndt, J., Richter, M., Kubé, M., Reinhartd, R., Brinckhoff, T., Harder, J., and Amann, R. (2012) Roseobacter clade bacteria are abundant in coastal sediments and encode a novel combination of sulfur oxidation genes. ISME J., 6, 2178-2187.

Lu, H., Zhang, G., Wan, T., and Lu, Y. (2011) Influences of light and oxygen conditions on photosynthetic bacteria macromolecule degradation: Different metabolic pathways. Bioreasour. Technol., 102, 9503-9508.

Marschall, E., JogrÃ·ler, M., Henßge, U., and Overmann, J. (2010) Large-scale distribution and activity patterns of an extremely low-light-adapted population of green sulfur bacteria in the Black Sea. Environ. Microbiol., 12, 1348-1362.

Mukkata, K., Kantachote, D., Wittayaweeraras, B., Techkarnjanaru, S., and Boonapatcharoen, N. (2016) Diversity of purple nonsulfur bacteria in shrimp ponds with varying mercury levels. Saudi J. Biol. Sci., 23, 478-487.

Muyzer, G., de Waal, E.C., and Uitterlinden, A.G. (1993) Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction- amplified genes coding for 16S rRNA. Appl. Environ. Microbiol., 59, 695-700.

Overmann, J. (2001) Green sulfur bacteria. In Bergey’s Manual of Systematic Bacteriology, 2nd Edition, Volume I (Boone, D.R. and Castenholz, R.W., eds), pp. 601-605, Springer-Verlag, New York.

Pfennig, N. (1968) Chlorobium phaeobacteroides nov. spec. und C. phaeovibrioideis nov. spec., zwei neue Arten der grünen Schwebelbakterien. Arch. Microbiol., 63, 224-226.

Pfennig, N. and Trüper, H.G. (1971) Type and neotype strains of the species of photothetic bacteria maintained in pure culture. Int. J. Syst. Bacteriol., 21, 19-24.

Pfennig, N. and Overmann, J. (2001) Genus I. Chlorobium. In Bergey’s Manual of Systematic Bactology, 2nd Edition, Vol. I (Boone, D.R. and Castenholz, R.W., eds), pp. 614-617, Springer-Verlag, New York.

Phuong, N.D.T., Yoshikawa, T., Hidaka, M., and Maeda, H. (2006) Isolation and characterization of sulfate-reducing bacteria from sediments of Kagoshima Bay. Mem. Fac. Fish. Kagoshima Univ., 55, 69-78.

Qiao, H., Wang, G., and Zhang, X. (2009) Isolation and characterization of Chlorella sorokiniana GXNN01 (Chlorophyta) with the properties of heterotrophic and microaerobic growth. J. Phycol., 45, 1153-1162.

Santander-de Leon, S.M., Okumushi, S., Kihara, M., Nakano, M., Muñal, S.N., Hidaka, M., Yoshikawa, T., and Maeda, H. (2013) Characterization of the bacterial community in the sediment of a brackish lake with oyster aquaculture. Biocontrol Sci., 18, 29-40.

Schwalbach, M.S. and Fuhrman, J.A. (2005) Wide-ranging abundances of aerobic anaerobic phototrophic bacteria in the world ocean revealed by epifluorescence microscopy and quantitative PCR. Limnol. Oceanogr., 50, 620-628.

Shiba, T. (1991) Roseobacter litoralis gen. nov., sp. nov., and Roseobacter dentinitranscans sp. nov., aerobic pink-pigmented bacteria which contain bacteriochlorophyll a. Syst. Appl. Microbiol., 14, 140-145.

Sorokin, D.Y., Tourova, T.P., Spiridonova, E.M., Rainey, F.A., and Muzyer, G. (2005) Thioclava pacifica gen. nov., sp. nov., a novel facultatively autotrophic, marine, sulfur-oxidizing bacterium from a near-shore sulfidic hydrothermal area. Int. J. Syst. Evol. Microbiol., 55, 1069-1075.

Srinivas, T.N.R., Kumar, P.A., Sucharittha, K., Sasikala, Ch., and Ramana, Ch.V. (2009) Allochromatium phaeobacte- rium sp. nov. Int. J. Syst. Evol. Microbiol., 59, 750-753.

Subudhi, S., Mogal, S.K., Kumar, N.R., Nayak, T., Lal, B., Velankar, H., Kumar, T.A.R., Rao, P.V.C., Choudary, N.V., Shah, G., and Gandham, S. (2016) Photo fermentative hydrogen production by a new strain; Rhodobacter sphaeroides CNT 2A, isolated from pond sediment. Int. J. Hydrogen Energy, 41, 13979-13985.

van Gemerden, H. and Mas, J. (1995) Ecology of phototrophic sulfur bacteria. In Anoxogenic photosynthetic Bacteria (Blankenship, R.E., Madigan, M.T., and Bauer, C.E., eds), pp. 49-85, Kluwer Academic Publishers, Dordrecht.

Yutin, N., Suzuki, M.T., Teeling, H., Weber, M., Venter, J.C., Rusch, D.B., and Béja, O. (2007) Assessing diversity and biogeography of aerobic anoxygenic phototrophic bacteria in surface waters of the Atlantic and Pacific Oceans using the Global Ocean Sampling expedition metagenomes. Environ. Microbiol., 9, 1464-1475.