On Reliability Estimation of Stress-Strength (S-S) Modified Exponentiated Lomax Distribution

Bareq B. Selman1, Alaa M. Hamad2, Adel Abdulkadhim Hussein3
1,2,3Department of Mathematics, Ibn-Al-Haitham College of Education, University of Baghdad, Iraq

Corresponding Author Email: bareqbaqe@gmail.com

https://doi.org/10.26782/jmcms.2019.08.00032

Abstract

This paper deals with estimation of the stress-strength reliability for modified exponentiated Lomax distribution the suggested approach biased on using different estimation methods such as, Maximum likelihood method, Moment method, Least square method and Shrinkage methods, numerical study via MATLAB software, has been done and comparison between the obtained results has been carried out according to mean square error, the results showed that the effectiveness of these estimators which evaluated using Monte-Carlo simulation study.

Keywords: Modified Exponentiated Lomax Distribution, Stress-Strength (S-S), Shrinkage Estimation, Least Square, Maximum likelihood estimation

I. Introduction

The Lomax distribution it can be called pareto distribution presented by the Lomax in (1954), It was used frequently in several statistical literature to study business failure data, It was applied in many application fields such as actuarial sciences, biological sciences and engineering [IV]. Actually the problem for estimation of the reliability has been discussed by many researchers for different distributions like, gamma, half normal, Rayleigh, power, exponential, Burr, Weibull and others [XI]. In recent years the Lomax distribution has been used in the data of business failure, so that the income has been introduced into the field of life testing [XI]. Extended and modified for Lomax distribution have been studied in different distributions such as exponentiated Lomax distribution, Poisson Lomax distribution, Weibull Lomax distribution, exponential Lomax distribution, gamma Lomax distribution, McDonald Lomax distribution and power Lomax distribution [VIII].

Assume a random variable x, then the (c.d.f) of exponentiated Lomax distribution will be [I]

$$F(x, \alpha, \beta, \lambda) = \left[1 - \left(1 + \lambda x \right)^{-\beta} \right]^\alpha, \quad x > 0, \alpha, \beta, \lambda > 0$$

(1)
The (p.d.f) for exponentiated Lomax distribution
\[f(x, \alpha, \theta, \lambda) = \alpha \theta \lambda [1 - (1 + \lambda x)^{-\theta}]^{-1} (1 + \lambda x)^{-\alpha (\theta - 1)} \quad x > 0 \quad \theta, \alpha, \lambda > 0 \quad (2) \]

We will study special case from exponentiated Lomax distribution when \(\theta = 2, \lambda = 1 \)

The (c.d.f) for modified exponentiated Lomax distribution will be
\[F(x, \alpha) = \left[1 - \left(1 + x \right)^{-2\alpha} \right]^\alpha \quad x > 0 \quad (3) \]

The (p.d.f) for modified exponentiated Lomax distribution
\[f(x, \alpha) = 2 \alpha \left[1 - (1 + x)^{-2\alpha} \right]^{-1} (1 + x)^{-3} \quad x > 0 \quad (4) \]

Where \(\theta, \alpha \) are the scale and shape parameters respectively

II. The reliability of stress-strength (S-S) model

The reliability function can be defined as the probability for failure of process until a given time and the reliability function can be defined as the ratio for the true variance to total variance that does not contain the variance for the random measurement \([X][V] \). The stress \(y \) and the strength \(x \) in stress-strength (S-S) model will be considered as the random variables follow the modified exponentiated Lomax distribution. Assume the two random variables \(x \) and \(y \)
\[x \sim ME LD (2, \alpha_1) \text{ and } y \sim ME LD (2, \alpha_2) \]
then the strength and stress (S-S) reliability for \(R \) this model define as
\[R = P \left(y < x \right) \]

\[R = \int_0^\infty \int_0^x f(x) f(y) dy \, dx \]

\[= \int_0^\infty \int_0^x 2 \alpha_1 \left[1 - (1 + x)^{-2} \right]^{-1} (1 + x)^{-3} \cdot 2 \alpha_2 \lambda \left[1 - (1 + y)^{-2} \right]^{-1} (1 + y)^{-3} \, dy \, dx \]

\[= \int_0^\infty 2 \alpha_1 \left[1 - (1 + x)^{-2} \right]^{-1} (1 + x)^{-3} \left[1 - (1 + y)^{-2} \right]^{-1} \, dx \]

\[= \int_0^\infty 2 \alpha_1 \left[1 - (1 + x)^{-2} \right]^{-1} (1 + x)^{-3} \, dx \]

\[R = \frac{\alpha_1}{\alpha_1 + \alpha_2} \quad (5) \]
III. Estimation methods of \(R = P(y < x) \)

The estimation of reliability is a very common problem in the statistical literature. The widest approach applied for reliability estimation is the well-known stress–strength model. This model is used in many applications of physics and engineering such as strength failure and the system collapse. In some engineering systems, many have more than components there may fail separately or together [VII]

Maximum likelihood Estimator [VIII] [III] [II]

In this estimator method. The log likelihood function of a random sample has been considered, Let \(x_1, x_2, \ldots, x_n \) be a random sample of size \(n \) and Let \(y_1, y_2, \ldots \)

\(y_m \) be a random sample of size \(m \) obtained as in below,

The maximum likelihood for \(\alpha_1, \alpha_2 \) will be

\[
L = f(\alpha_1, x_i, y_j) = 2^n \alpha_1^n \prod_{i=1}^{n} [1 - (1 + x_i)^{-\alpha_1}] \prod_{i=1}^{m} [1 + x_i]^{-3} 2^m \alpha_2^m
\]

\[
= m \prod_{j=1}^{m} [1 - (1 + y_j)^{-\alpha_2}] \prod_{j=1}^{m} (1 + y_j)^{-3}
\]

(6)

Taking the logarithm of the both sides for equation (6), then

\[
\ln L(f(x, \alpha_1, \alpha_2)) = n \ln 2 + n \ln \alpha_1 + (\alpha_1 - 1) \sum_{i=1}^{n} \ln [1 - (1 + x_i)^{-\alpha_1}] - 3 \sum_{i=1}^{n} \ln (1 + x_i) +
\]

\[
m \ln 2 + m \ln \alpha_2 + (\alpha_2 - 1) \sum_{j=1}^{m} \ln [1 - (1 + y_j)^{-\alpha_2}] - 3 \sum_{j=1}^{m} \ln (1 + y_j)
\]

The partial derivative for log-function with respect to parameter \(\alpha_1 \) will become

\[
\frac{\partial \ln L}{\partial \alpha_1} = \frac{n}{\alpha_1} + \sum_{i=1}^{n} \ln \left[1 - \left(1 + \frac{x_i}{\alpha_1} \right)^{-2} \right]
\]

Equating partial derivation with zero, then

\[
\hat{\alpha}_{1, mle} = \frac{-n}{\sum_{i=1}^{n} \ln \left[1 - \left(1 + \frac{x_i}{\hat{\alpha}_1} \right)^{-2} \right]}
\]

(7)

And

\[
\hat{\alpha}_{2, mle} = \frac{-m}{\sum_{i=1}^{m} \ln \left[1 - \left(1 + \frac{y_i}{\hat{\alpha}_2} \right)^{-2} \right]}
\]

(8)
Substituting equations (7) and (8) in equation (5) then the reliability for stress-strength model by using maximum likelihood method will be as in the following

\[R_{\text{mle}} = \frac{\hat{\alpha}_{1\text{mle}}}{\hat{\alpha}_{1\text{mle}} + \hat{\alpha}_{2\text{mle}}} \]

(9)

Moment method (MOM)

The moment method has been introduced by Pearson in (1894), it can be represented as one of the oldest methods that used to estimate the parameter in this method.

Let \(x_1, x_2, \ldots, x_n \) be a random sample of size \(n \) and let \(y_1, y_2, \ldots, y_m \) be a random sample of size \(m \).

The two parameters \(\alpha_1 \) and \(\alpha_2 \) will be estimated with using the first order population moment, hence the first moment for modified Generalized Lomax distribution will be

\[E(x) = \alpha_1 B\left(\frac{1}{2}, \alpha_1 \right) - \frac{1}{\alpha_1} = \frac{\sum_{i=1}^{n} x_i}{n}, \quad E(y) = \alpha_2 B\left(\frac{1}{2}, \alpha_2 \right) - \frac{1}{\alpha_2} = \frac{\sum_{j=1}^{m} y_j}{m} \]

\[\frac{\Gamma\left(\frac{1}{2} \right) \Gamma\left(\alpha_1 \right)}{\Gamma\left(\frac{1}{2} + \alpha_1 \right)} - \frac{1}{\alpha_1} = \frac{\sum_{i=1}^{n} x_i}{\alpha_1 n}, \quad \frac{\Gamma\left(\frac{1}{2} \right) \Gamma\left(\alpha_2 \right)}{\Gamma\left(\frac{1}{2} + \alpha_2 \right)} - \frac{1}{\alpha_2} = \frac{\sum_{j=1}^{m} y_j}{\alpha_2 m} \]

\[\frac{\Gamma\left(\frac{1}{2} \right) \Gamma\left(\alpha_1 \right)}{\Gamma\left(\alpha_1 + \frac{1}{2} \right)} = \frac{x}{\alpha_1} + \frac{1}{\alpha_1} \]

\[\frac{\Gamma\left(\frac{1}{2} \right) \Gamma\left(\alpha_1 \right)}{\Gamma\left(\alpha_1 + \frac{1}{2} \right)} = \frac{x + 1}{\alpha_1} \]

\[\hat{\alpha}_{1\text{mle}} = \frac{\Gamma\left(\frac{1}{2} + \alpha_{01} \right) (x + 1)}{\Gamma\left(\frac{1}{2} \right) \Gamma\left(\alpha_{01} \right)} \]

(10)

And by the same way
Substituting equations (10) and (11) in equation (5) then the reliability for stress-strength model by using moment method will be as follows

\[
\hat{R}_{mom} = \frac{\hat{\alpha}_{1mom}}{\hat{\alpha}_{1mom} + \hat{\alpha}_{2mom}}
\]

Least square method (LS) [VI] [XIV]

To estimate the parameters \((\alpha_1)\) and \((\alpha_2)\) with using least square method the nonlinear equation must be convert to linear as in the follows

\[
F(x_i) = \left[1 - (1 + x_i)^{-2}\right]^{\frac{1}{\alpha_i}}
\]

\[
\left[F(x_i) \right]^{\frac{1}{\alpha_i}} = 1 - (1 + x_i)^{-2}
\]

Taking the logarithm for both sides

\[
\frac{1}{\alpha_i} \text{Ln} \left[F(x_i) \right] = \text{Ln} \left[1 - (1 + x_i)^{-2} \right]
\]

\[
a x + b = y_i
\]

\[
a = \frac{1}{\alpha_i}
\]

\[
b = 0
\]

\[
x_i = \text{Ln} \left[F(x_i) \right]
\]

\[
y_i = \text{Ln} \left[1 - (1 + x_i)^{-2} \right]
\]

\[
a = \frac{\sum_{i=1}^{n} x_i y_i}{\sum_{i=1}^{n} x_i^2} - \frac{\left(\sum_{i=1}^{n} x_i^2\right)^{\frac{1}{2}}}{n}
\]

\[
\hat{a}_{ls} = \frac{\sum_{i=1}^{n} [LnF(x_i)] - \left[\sum_{i=1}^{n} LnF(x_i)\right]^2}{\sum_{i=1}^{n} LnF(x_i) - \left[\sum_{i=1}^{n} LnF(x_i) Ln \left[1 - (1 + x_i)^{-2}\right]\right]/n}
\]

And by the same way

Copyright reserved © J. Mech. Cont. & Math. Sci.
Bareq B. Selman et al
Substituting equations (13) and (14) in equation (5), then the reliability for stress-strength model with using least square method will become

\[
\hat{R}_{s} = \frac{\hat{\alpha}_{1s} - \hat{\alpha}_{2s}}{\hat{\alpha}_{1s} + \hat{\alpha}_{2s}}
\]

(15)

Shrinkage methods (SH)[XII][XIII]

In the shrinkage estimation method the prior estimation will be \(\phi(\hat{\alpha}) \) and \(0 < \phi(\hat{\alpha}) < 1 \)

\[
\hat{\alpha}_{ub} = \phi(\hat{\alpha}) \alpha_{ub} + [1 - \phi(\hat{\alpha})] \alpha_{\omega}\]

(16)

Where "we are estimating (\(\alpha \)) and we believe (\(\alpha_{0} \)) is closed to the true value of (\(\alpha \)) and something bad happens if \(\alpha = \alpha_{0} \) and we do not use \(\alpha_{0} \)"

To find \(\alpha_{ub} \)

\[
n - 1
\frac{n - 1}{n} \times \alpha_{M.L.E}
\]

\[
\alpha_{ub} = \frac{n - 1}{n} \times \alpha_{M.L.E}
\]

\[
\alpha_{ub} = \frac{(n - 1)}{\sum_{i=1}^{n} \ln \left[1 - \left(1 + x_{i} \right)^{-2} \right]}
\]

(17)

Shrinkage weight function (sh1)[XIII]

In this method, the Shrinkage weight factor as function

\[
n \cdot \phi(\hat{\alpha}) = \frac{\sin n}{n}, \phi(\hat{\alpha}) = \frac{\sin m}{m}
\]
We put \(\phi(\bar{\alpha}) \) in (16), will be

\[
\hat{\alpha}_{1b1} = \frac{\sin n}{n} \alpha_{1b} + \left(1 - \frac{\sin n}{n} \right) \alpha_{01} \tag{18}
\]

And by the same way

\[
\hat{\alpha}_{2b1} = \frac{\sin m}{m} \alpha_{2b} + \left(1 - \frac{\sin m}{m} \right) \alpha_{02} \tag{19}
\]

Substituting equations (18) and (19) in equation (5), then the reliability for stress-strength model by using shrinkage weight function will be

\[
\hat{R}_{sh1} = \frac{\hat{\alpha}_{1b1}}{\hat{\alpha}_{1b1} + \hat{\alpha}_{2b1}} \tag{20}
\]

Constant shrinkage factor (sh\(_2\)) [XIII]

In this method, the constant shrinkage weight factor will be assumed

\[
\phi(\hat{\alpha}_1) = K_1 = 0.001 \quad \phi(\hat{\alpha}_2) = K_2 = 0.001 \quad \text{we put } \phi(\bar{\alpha}) \text{ in (16), will be}
\]

\[
\hat{\alpha}_{1b2} = k_1 \alpha_{1b} + \left(1 - k_1 \right) \alpha_{01} \tag{21}
\]

And by the same way

\[
\hat{\alpha}_{2b2} = k_2 \alpha_{2b} + \left(1 - k_2 \right) \alpha_{02} \tag{22}
\]

Substituting equations (21) and (22) in equation (5), then reliability for stress-strength model by using constant shrinkage factor

\[
\hat{R}_{sh2} = \frac{\hat{\alpha}_{1b2}}{\hat{\alpha}_{1b2} + \hat{\alpha}_{2b2}} \tag{23}
\]

Beta shrinkage factor (sh\(_3\)) [XIII]

The beta shrinkage weight factor will be assumed

\[
\phi(\hat{\alpha}_1) = B(1, n) \quad \phi(\hat{\alpha}_2) = B(1, m) \quad \text{we put } \phi(\bar{\alpha}) \text{ in (16), will be}
\]

\[
\hat{\alpha}_{1b3} = B(1, n) \alpha_{1b} + \left(1 - B(1, n) \right) \alpha_{01} \tag{24}
\]

And by the same way
\[
\hat{\alpha}_{2sh} = B(1,m)\alpha_{2sh} + (1 - B(1,m))\alpha_{02}
\] \hspace{3cm} \text{(25)}

Substituting equations (24) and (25) in equation (5), then reliability for stress-strength model by using beta shrinkage factor

\[
\hat{R}_{sh3} = \frac{\hat{\alpha}_{1sh3}}{\hat{\alpha}_{1sh3} + \hat{\alpha}_{2sh3}}
\] \hspace{3cm} \text{(26)}

IV. Simulation process

The simulation process has been done with using unlike sample size (30, 50, 100) and built on 1000 replications via mean square error (MSE). It has been used in several steps to find the performance, \(x \) according to the uniform distribution on interval \((0,1)\) as \(w_1, w_2, \ldots, w_n \) and \(y \) according to the uniform distribution on interval \((0,1)\) as \(z_1, z_2, \ldots, z_m \) as in the following:

Step 1: from equation \(F(x,\alpha) = \left[1 - \left(1 + x\right)^{-2}\right]^{\alpha} \),
\[x_{ij} = \left[1 - \left(\frac{1}{w_i}\right)^{\alpha_1}\right]^{\frac{1}{2}} - 1 \] \hspace{1cm} i=1,2,3,\ldots,n

And
\[z_{ij} = \left[1 - \left(\frac{1}{z_j}\right)^{\alpha_2}\right]^{\frac{1}{2}} - 1 \] \hspace{1cm} j=1,2,3,\ldots,m

Step 2: from equations (7) and (8), \(\hat{\alpha}_{1mle} \) and \(\hat{\alpha}_{2mle} \) have been calculated respectively.

Step 3: from equations (10) and (11), \(\hat{\alpha}_{1mom} \) and \(\hat{\alpha}_{2mom} \) have been calculated respectively.

Step 4: from equations (13) and (14), \(\hat{\alpha}_{1ls} \) and \(\hat{\alpha}_{2ls} \) have been calculated respectively.

Step 5: from equations (18), (19), (21), (22), (24) and (25), \(\hat{\alpha}_{1shi} \) and \(\hat{\alpha}_{2shi} \) have been calculated for \(i = 1,2,3 \)

Step 6: from equation (9), (12), (15), (20), (23) and (26), \(\hat{R}_{mle}, \hat{R}_{mom}, \hat{R}_{ls}, \hat{R}_{shi}, \hat{R}_{shi2} \) and \(\hat{R}_{sh3} \) have been calculated respectively.

The results in tables (1), (3), (5), (7), (9), (11), (13), (15) and (17) explain the reliability of estimation, while the results in tables (2), (4), (6), (8), (10), (12), (14), (16), (18) show the mean square error (MSE).

Copyright reserved © J. Mech. Cont. & Math. Sci.
Bareq B. Selman et al
Table 1: Shown estimation when \(R = 0.50000 \), \(\alpha_1 = 1 \), \(\alpha_2 = 1 \)

n	m	\(\hat{R}_{\text{mle}} \)	\(\hat{R}_{\text{mom}} \)	\(\hat{R}_{\text{sh1}} \)	\(\hat{R}_{\text{sh2}} \)	\(\hat{R}_{\text{sh3}} \)	\(\hat{R}_{\text{ls}} \)
30	0.500475	0.492403	0.500026	0.500000	0.500026	0.496673	
50	0.496051	0.491338	0.500002	0.500001	0.500030	0.497260	
100	0.496909	0.494117	0.500004	0.500002	0.500019	0.499171	
30	0.503786	0.515426	0.499938	0.499998	0.499952	0.502514	
50	0.504399	0.494969	0.500000	0.500000	0.500026	0.502310	
100	0.496909	0.494117	0.500004	0.500002	0.500019	0.499171	

Table 2: Shown MSE values when \(R = 0.50000 \), \(\alpha_1 = 1 \), \(\alpha_2 = 1 \)

n	m	MSE_{\text{mle}}	MSE_{\text{mom}}	MSE_{\text{sh1}}	MSE_{\text{sh2}}	MSE_{\text{sh3}}	MSE_{\text{ls}}	Best
30	0.006002	0.011637	0.000000	0.000000	0.000000	0.006936	MSE	
50	0.001903	0.001161	0.000000	0.000000	0.000000	0.001503	MSE	
10	0.079360	0.072828	0.000000	0.000000	0.000000	0.020860	MSE	
0	0.004959	0.051857	0.000000	0.000000	0.000000	0.007500	MSE	
30	0.034849	0.038892	0.000000	0.000000	0.000000	0.027660	MSE	
50	0.002636	0.011103	0.000000	0.000000	0.000000	0.001970	MSE	
10	0.002636	0.011103	0.000000	0.000000	0.000000	0.001970	MSE	
0	0.011340	0.002828	0.000000	0.000000	0.000000	0.003870	MSE	
30	0.004530	0.042649	0.000000	0.000000	0.000000	0.028390	MSE	
10	0.007907	0.048823	0.000000	0.000000	0.000000	0.019950	MSE	
0	0.027419	0.048130	0.019107	0.007469	0.006365	0.009592	MSE	
Table 3: Shown estimation when $R = 0.66666$, $\alpha_1= 2$, $\alpha_2= 1$

n	m	\hat{R}_{mle}	\hat{R}_{mom}	\hat{R}_{sh1}	\hat{R}_{sh2}	\hat{R}_{sh3}	\hat{R}_{Ls}
30	30	0.670644	0.673761	0.666714	0.666668	0.666714	0.671054
50	50	0.663320	0.655894	0.666664	0.666666	0.666657	0.666083
100	100	0.659543	0.661369	0.666602	0.666665	0.666607	0.664609

Table 4: Shown MSE values when $R = 0.66666$, $\alpha_1= 2$, $\alpha_2= 1$

n	m	mse_{mle}	mse_{mom}	mse_{sh1}	mse_{sh2}	mse_{sh3}	mse_{Ls}	Best	mse
30	30	0.028234	0.233989	0.000014	0.000000	0.000015	0.000012	0.036490	0.12771
30	50	0.015703	0.130395	0.000002	0.000000	0.000003	0.000001	0.093	
100	100	0.013217	0.061803	0.000019	0.000000	0.000017	0.000004	0.234732	
50	50	0.132166	0.054519	0.000002	0.000000	0.000016	0.000002	0.083	
10	10	0.013282	0.054519	0.000002	0.000000	0.000004	0.000001	0.234732	
30	30	0.022039	0.054519	0.000002	0.000000	0.000016	0.000002	0.083	
10	10	0.257713	0.083168	0.000001	0.000000	0.000001	0.000001	0.386141	
50	50	0.013217	0.061803	0.000002	0.000000	0.000004	0.000001	0.16311	
Table 5: Shown estimation when R = 0.33333, alpha1= 1, alpha2= 2

n	m	\hat{R}_{mle}	\hat{R}_{mom}	\hat{R}_{sh1}	\hat{R}_{sh2}	\hat{R}_{sh3}	\hat{R}_{Ls}
30	30	0.331588	0.323635	0.333354	0.333334	0.333354	0.326357
	50	0.327932	0.322604	0.333334	0.333334	0.333354	0.327064
100	100	0.334910	0.324680	0.333369	0.333334	0.333354	0.330783

Table 6: Shown MSE values when R = 0.33333, alpha1= 1, alpha2= 2

n	m	mse_{mle}	mse_{mom}	mse_{sh1}	mse_{sh2}	mse_{sh3}	mse_{Ls}	Best
30	30	0.005357	0.01744	0.000000	0.000000	0.000000	0.000000	0.01021
	50	0.003170	0.01366	0.000000	0.000000	0.000000	0.000000	0.00457
100	100	0.000728	0.005008	0.000000	0.000000	0.000000	0.000000	0.03354

Copyright reserved © J. Mech. Cont.& Math. Sci.
Bareq B.Selman et al
Table 7: Shown estimation when R = 0.500000, alpha1= 2, alpha2= 2

n	m	mle	mom	sh1	sh2	sh3	Ls
30	30	0.500475	0.493166	0.500026	0.500000	0.500026	0.496673
50	50	0.496051	0.492136	0.500002	0.500001	0.500026	0.497260
100	100	0.489019	0.485763	0.499928	0.499998	0.499928	0.499872
30	30	0.504675	0.506444	0.500044	0.499999	0.500010	0.500231
50	50	0.505597	0.502586	0.500027	0.500005	0.500105	0.504625
100	100	0.493941	0.493004	0.499989	0.499997	0.499984	0.494804
30	30	0.506682	0.506464	0.499916	0.499997	0.499964	0.499963
50	50	0.500619	0.501888	0.499984	0.499996	0.499963	0.496296
100	100	0.497709	0.497540	0.499987	0.499997	0.499976	0.496810

Table 8: Shown MSE values when R = 0.500000, alpha1= 2, alpha2= 2

n	m	mle	mom	sh1	sh2	sh3	Ls	Best
30	30	0.00600	0.01646	0.00000	0.00000	0.00000	0.00693	sh2
50	50	0.00190	0.01097	0.00000	0.00000	0.00000	0.00150	sh2
100	100	0.01299	0.02227	0.00000	0.00000	0.00000	0.00371	sh2
30	30	0.00312	0.01336	0.00000	0.00000	0.00000	0.00282	sh2
50	50	0.00544	0.00248	0.00000	0.00000	0.00000	0.00430	sh2
100	100	0.00442	0.00564	0.00000	0.00000	0.00000	0.00523	sh2
30	30	0.00570	0.01297	0.00000	0.00000	0.00000	0.00282	sh2
50	50	0.00105	0.00349	0.00000	0.00000	0.00000	0.00314	sh2
100	100	0.00122	0.00178	0.00000	0.00000	0.00000	0.00172	sh2
0	0	0.6984	3573	0032	001	0126	1086	sh2
Table 9: Shown estimation when R = 0.750000, alpha1 = 3, alpha2 = 1

n	m	mle	mom	sh1	sh2	sh3	Ls
30	30	0.755734	0.748044	0.750082	0.750002	0.750083	0.754089
30	50	0.747484	0.743238	0.749927	0.749998	0.749938	0.755993
100	75	0.746065	0.745587	0.750015	0.750001	0.750019	0.749192
30	50	0.755921	0.756221	0.749998	0.750000	0.750001	0.752759
100	75	0.750889	0.749384	0.749999	0.749999	0.749984	0.753031
30	100	0.749510	0.747731	0.750004	0.750004	0.750001	0.752929
50	50	0.757137	0.757004	0.750000	0.750000	0.750001	0.754089
100	75	0.750857	0.756221	0.749998	0.750000	0.750001	0.752759

Table 10: Shown MSE values when R = 0.750000, alpha1 = 3, alpha2 = 1

n	m	mle	mom	sh1	sh2	sh3	sh2
30	30	0.03613	0.02020	0.000001	0.000001	0.000001	0.02901
30	50	0.01684	0.07156	0.000002	0.000001	0.000001	0.06948
100	75	0.02225	0.02365	0.000000	0.000000	0.000000	0.00488
30	50	0.03978	0.08559	0.000000	0.000000	0.000000	0.02936
50	10	0.01059	0.00710	0.000000	0.000000	0.000000	0.01672
50	50	0.01059	0.00710	0.000000	0.000000	0.000000	0.01672
50	10	0.00469	0.01384	0.000000	0.000000	0.000000	0.01987
10	30	0.07653	0.06751	0.000001	0.000001	0.000001	0.09079
0	30	0.02142	0.00599	0.000000	0.000000	0.000000	0.05540
0	50	0.00368	0.00761	0.000000	0.000000	0.000000	0.01119
0	60	0.04367	0.151	0.000005	0.0588	0.4837	sh2
Table 11: Shown estimation when R = 0.250000, alpha1= 1, alpha2= 3

n	m	\hat{m}_{mle}	\hat{m}_{mom}	\hat{m}_{sh1}	\hat{m}_{sh2}	\hat{m}_{sh3}	\hat{m}_{Ls}
30	30	0.247618	0.240610	0.250016	0.250000	0.250016	0.242459
50	30	0.244659	0.239707	0.250000	0.250001	0.250017	0.243124
100	30	0.236585	0.236032	0.249934	0.249995	0.249920	0.239052
30	50	0.252024	0.243497	0.250011	0.250000	0.250022	0.246713
50	50	0.250985	0.245903	0.250014	0.250002	0.250055	0.249077
100	50	0.248124	0.247139	0.250011	0.250002	0.250030	0.247603
30	100	0.256303	0.248820	0.250063	0.250001	0.250063	0.249796
50	100	0.250757	0.253537	0.249995	0.249999	0.249983	0.248375
100	100	0.250037	0.249814	0.250004	0.250000	0.250009	0.247633

Table 12: Shown MSE values when R = 0.250000, alpha1= 1, alpha2= 3

n	m	MSE_{mle}	MSE_{mom}	MSE_{sh1}	MSE_{sh2}	MSE_{sh3}	MSE_{Ls}	Best	
30	30	0.00678	0.01620	0.00000	0.00000	0.00000	0.00000	0.00260	sh2
50	30	0.00303	0.01180	0.00000	0.00000	0.00000	0.00000	0.00520	sh2
100	30	0.19019	0.20284	0.00000	0.00000	0.00000	0.00000	0.13883	sh1
30	50	0.1452	0.05898	0.00001	0.00000	0.00000	0.00000	0.03043	sh2
50	50	0.00077	0.00027	0.00000	0.00000	0.00000	0.00000	0.00263	sh1
100	50	0.00077	0.00000	0.00000	0.00000	0.00000	0.00000	0.00131	sh2
30	100	0.01100	0.00263	0.00000	0.00000	0.00000	0.00000	0.00133	sh2
50	100	0.00110	0.00000	0.00000	0.00000	0.00000	0.00000	0.00058	sh1
100	100	0.00050	0.00000	0.00000	0.00000	0.00000	0.00000	0.00099	sh2
Table 13: Shown estimation when \(R = 0.600000 \), \(\alpha_1=3 \), \(\alpha_2=2 \)

n	m	\(\hat{\mu}_{\text{mle}} \)	\(\hat{\mu}_{\text{mom}} \)	\(\hat{\mu}_{\text{sh1}} \)	\(\hat{\mu}_{\text{sh2}} \)	\(\hat{\mu}_{\text{sh3}} \)	\(\hat{\mu}_{Ls} \)
30	30	0.599965	0.594228	0.5999956	0.5999956	0.599956	0.604850
50	50	0.597252	0.593312	0.599938	0.600000	0.599984	0.598718
100	100	0.591781	0.589941	0.600003	0.599999	0.600002	0.601835
30	30	0.608563	0.603401	0.600004	0.600001	0.600036	0.607182
50	50	0.600595	0.597543	0.5999997	0.5999999	0.599999	0.600587
100	100	0.601205	0.609301	0.600005	0.600001	0.600027	0.607343

Table 14: Shown MSE values when \(R = 0.600000 \), \(\alpha_1=3 \), \(\alpha_2=2 \)

n	m	\(\text{MSE}_{\text{mle}} \)	\(\text{MSE}_{\text{mom}} \)	\(\text{MSE}_{\text{sh1}} \)	\(\text{MSE}_{\text{sh2}} \)	\(\text{MSE}_{\text{sh3}} \)	\(\text{MSE}_{Ls} \)	Best
30	30	0.029099	0.09293	0.000002	0.000002	0.04937	0.000000	sh2
30	50	0.025258	0.06023	0.00001	0.00000	0.00001	0.02344	sh2
30	100	0.008476	0.01200	0.00000	0.00000	0.00000	0.00150	sh2
30	0	0.011628	0.00593	0.00000	0.00000	0.00000	0.00961	sh2
50	30	0.016424	0.04118	0.00000	0.00000	0.00000	0.02832	sh2
50	50	0.0621	0.4519	0.0425	0.015	0.6185	2354	sh2
50	100	0.001053	0.01375	0.00000	0.00000	0.00000	0.00880	sh2
50	0	0.02501	0.9339	0.0066	0.002	0.0564	2075	sh2
30	30	0.017939	0.03557	0.00000	0.00000	0.00000	0.00959	sh2
30	100	0.006720	0.01504	0.00000	0.00000	0.00000	0.01266	sh2
10	50	0.006451	0.01795	0.00000	0.00000	0.00000	0.01342	sh2
0	8820	0.0117	0.004	0.0459	2827			
Table 15: Shown estimation when $R = 0.40000$, $\alpha_1 = 2$, $\alpha_2 = 3$

n	m	$\hat{\alpha}_{\text{mle}}$	$\hat{\alpha}_{\text{mom}}$	$\hat{\alpha}_{\text{sh1}}$	$\hat{\alpha}_{\text{sh2}}$	$\hat{\alpha}_{\text{sh3}}$	$\hat{\alpha}_{\text{Ls}}$
30	30	0.399050	0.391347	0.400023	0.400000	0.400023	0.394188
50	50	0.394979	0.390309	0.400011	0.400001	0.400023	0.394875
100	100	0.391577	0.391983	0.400039	0.400011	0.400041	0.398444
30	30	0.402963	0.398266	0.399979	0.399999	0.399984	0.399179
50	50	0.403020	0.406418	0.400019	0.400003	0.400073	0.400784
100	100	0.398825	0.397170	0.400015	0.400002	0.400067	0.399961

Table 16: Shown MSE values when $R = 0.40000$, $\alpha_1 = 2$, $\alpha_2 = 3$

n	m	MSE_{mle}	MSE_{mom}	MSE_{sh1}	MSE_{sh2}	MSE_{sh3}	MSE_{Ls}	Best
30	30	0.00583	0.01812	0.00000	0.00000	0.00000	0.00927	sh2
50	50	0.00283	0.01283	0.00000	0.00000	0.00000	0.00335	sh2
100	100	0.00900	0.00827	0.00000	0.00000	0.00000	0.00229	sh2
30	30	0.00256	0.00363	0.00000	0.00000	0.00000	0.00184	sh2
50	50	0.00114	0.00705	0.00000	0.00000	0.00000	0.00075	sh2
100	100	0.00276	0.00267	0.00000	0.00000	0.00000	0.00481	sh2
30	30	0.01073	0.00253	0.00000	0.00000	0.00000	0.00552	sh2
100	100	0.00185	0.03012	0.00000	0.00000	0.00000	0.00210	sh2
50	50	0.00136	0.00308	0.00000	0.00000	0.00000	0.00418	sh2
100	100	0.00136	0.00308	0.00000	0.00000	0.00000	0.00418	sh2

Copyright reserved © J. Mech. Cont. & Math. Sci.
Bareq B. Selman et al
Table 17: Shown estimation when R = 0.50000, alpha1= 3, alpha2= 3

n	m	mle	mom	sh1	sh2	sh3	Ls	Best
30	30	0.500475	0.493457	0.500026	0.500000	0.500026	0.496673	sh2
50	50	0.496051	0.492439	0.500002	0.500001	0.500026	0.497260	sh2
100	100	0.492299	0.493380	0.500042	0.500001	0.500044	0.500258	sh2
30	30	0.504675	0.507075	0.500044	0.499999	0.500010	0.500231	sh2
50	50	0.494800	0.546276	0.499972	0.499994	0.499896	0.496510	sh2
100	100	0.495996	0.495441	0.500001	0.500015	0.498652	0.505113	sh2

Table 18: Shown MSE values when R = 0.50000, alpha1= 3, alpha2= 3

n	m	mle_m	mom_m	sh1_m	sh2_m	sh3_m	Ls_m	Best_m
30	30	0.00600	0.01651	0.00000	0.0000000	0.00000	0.00693	sh2
50	50	0.00190	0.01077	0.00000	0.0000000	0.00000	0.00150	sh2
10	10	0.00793	0.00630	0.00000	0.0000000	0.00000	0.00208	sh2
0	0	0.00073	0.00000	0.00000	0.0000000	0.00000	0.00020	sh2
30	30	0.00312	0.01471	0.00000	0.0000000	0.00000	0.00282	sh2
50	50	0.00007	0.00823	0.00000	0.0000000	0.00000	0.00004	sh2
10	10	0.00201	0.00269	0.00000	0.0000000	0.00000	0.00086	sh2
0	0	0.00131	0.00623	0.00000	0.0000000	0.00000	0.00406	sh2
30	30	0.00153	0.00318	0.00000	0.0000000	0.00000	0.00197	sh2
10	10	0.00187	0.00040	0.00000	0.0000000	0.00000	0.00439	sh2
0	0	0.00277	0.499872	0.500013	0.500002	0.50026	0.504741	sh2
V. Numerical result

The result of simulation refer to all methods have been used to estimate reliability for modified exponentiated Lomax distribution have had good results, but we have to find best method, from the tables for all \(n=(30,50,100), m=(30,50,100) \), for each \(\alpha \), It is clear that, the best method is shrinkage estimation method \([\text{constant shrinkage weight factor } (\overline{h}_2)]\), and always follow by\([\text{shrinkage weight function } (\overline{h}_1)]\).

VI. Conclusion

All the results are listed in tables. Montecarlo simulation study shows that if we compare methods estimator. Find that for all samples size their shrinkage estimators produce better results anchor methods, and the shrinkage estimator using constant shrinkage weight factor \((\overline{sh}_2)\) has minimum statistic indicator \((\text{MSE})\) in at most cases.

References

I. Abdul-Moniem, I. B. Recurrence relations for moments of lower generalized order statistics from exponentiated Lomax distribution and its characterization. *Journal of Mathematical and Computational Science*, 2(4), 999-1011. 2012.

II. Bander Al-zahrani. An extended Poisson –Lomax distribution. *Journal advances in mathematics*, 4(2), 79-89.2015.

III. El-Bassiouny, A. H., Abdo, N. F., &Shahen, H. S. Exponential Lomax distribution. *International Journal of Computer Applications*, 121(13).2015.

IV. Fatima, K., Jan, U., & Ahmad, S. P. Statistical Properties of Rayleigh Lomax distribution with applications in Survival Analysis. *Journal of Data Science*, 16(3), 531-548.2018.

V. Kareem,A.Nabeel ,A. Comparison between five estimation methods for reliability function of weighted Rayleigh distribution by using simulation. *Journal of mathematical theory and modeling*, 4(6), 123-137. 2014.

VI. Kundu, D., & Raqab, M. Z. Generalized Rayleigh distribution: different methods of estimations. *Computational statistics & data analysis*, 49(1), 187-200. 2005.
VII. Kundu, D., & Raqab, M. Z. Estimation of $R = P(Y < X)$ for three-parameter Weibull distribution. *Statistics & Probability Letters*, 79(17), 1839-1846. 2009.

VIII. Oguntunde, P. E., Khaleel, M. A., Ahmed, M. T., Adejumo, A. O., & Odetunmibi, O. A. A New Generalization of the Lomax Distribution with Increasing, Decreasing, and Constant Failure Rate. *Modelling and Simulation in Engineering*, 2017.

XI. Pathak, A., & Chaturvedi, A. Estimation of the reliability function for four-parameter exponentiated generalized Lomax distribution. *International Journal of Scientific and Engineering Research*, 5(1), 1171-1180. 2013.

X. Pathak, A., & Chaturvedi, A. Estimation of the reliability function for two-parameter exponentiated Rayleigh or Burr type X distribution. *Statistics, Optimization & Information Computing*, 2(4), 305-322. 2014.

XI. Shams, T. M. The Kumaraswamy-generalized Lomax distribution. *Middle-East Journal of Scientific Research*, 17(5), 641-646. 2013.

XII. Salman, A. Eman, A. On the reliability estimation in multicomponent stress-strength models different failure distribution. Master theses, university of Baghdad, college of education Ibn-Haithem. 2018.

XIII. Salman, A. N and Hamed, A. M. Estimating the shape parameter for the power function distribution through shrinkage Technique *International Journal of Science and Research*, 78-96. 2017.

XIV. Zaka, A., Akhter, A. Sand Farooq, N. Methods of Estimating the parameters of power function distribution *Journal of statistics* 21 PP 90-102. 2014.