Data Article

Sampling and composition of airborne particulate matter (PM$_{10}$) from two locations of Mexico City

Yolanda I. Chirinoa, Yesennia Sánchez-Pérezb, Álvaro Román Osornio-Vargasc, Irma Rosasd, Claudia María García-Cuellarb,*

a Unidad de Biomedicina, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Los Reyes Iztacala, CP 54090 Tlalnepantla, Estado de México, México
b Instituto Nacional de Cancerología (INCan), Subdirección de Investigación Básica, San Fernando No. 22, Tlalpan, 14080 México, D.F., México
c Department of Pediatrics, University of Alberta, 3-591 ECHA, 11405 87th Avenue, Edmonton, Canada T6G 1C9
d Centro de Ciencias de la Atmósfera, Universidad Nacional Autónoma de México (UNAM), Circuito Exterior s/n, Ciudad Universitaria, Del. Coyoacán, C.P. 04510, Mexico, D.F., Mexico

A R T I C L E I N F O

Article history:
Received 9 June 2015
Accepted 15 June 2015
Available online 2 July 2015

A B S T R A C T

The PM$_{10}$ airborne particulate matter with an aerodynamic diameter $\leq 10 \mu m$ is considered as a risk factor of various adverse health outcomes, including lung cancer. Here we described the sampling and composition of PM$_{10}$ collected from an industrial zone (IZ), and a commercial zone (CZ) of Mexico City. The PM$_{10}$ was collected with a high-volume sampler in the above mentioned locations and both types of PM$_{10}$ sampled were characterized by the content of polycyclic aromatic hydrocarbons (PAHs), metals, and endotoxin. The endotoxin PM$_{10}$ content from IZ and CZ...
displayed 138.4 UE/mg and 170.4 UE/mg of PM$_{10}$, respectively.

© 2015 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

Specifications table

Subject area	Biology
More specific subject area	PM$_{10}$ sampling and description of polycyclic aromatic hydrocarbons, metals and endotoxin content.
Type of data	Text file and figures.
How data were acquired	Data were acquired used through a kinetic assay of Limulus Amebocyte lysate (BioWhittaker, Walkersville, MD, USA) using *Escherichia coli* endotoxin as standard. The optical density of each well was recorded at a wavelength of 405 nm every 150 s. The microplate reader was controlled and data were recorded by a Gateway 450 PC-XT computer.
Data format	Analyzed.
Data source location	The samples were collected from Mexico City.
Data accessibility	The data are within this paper.

Fig. 1. Particulate matter with aerodynamic diameter of 10 μm (PM$_{10}$) was sampled from an industrial zone (yellow circle) and commercial zone (red circle) in Mexico City (shadowy outline in the map). Particle collector was used to sample PM$_{10}$ from October 2004 to May 2005 in cellulose nitrate filters, which were kept in dark desiccators at 4 °C. Then, PM$_{10}$ was scrapped off from filters and maintained in sterile vials until usage. Before experiments, PM$_{10}$ contained in vials were sterilized and resuspended in cell culture medium for in vitro experiments or used for characterization in order to determine PM components.
Value of the data

- Air quality can be evaluated partially by the content of particulate matter with an aerodynamic diameter $\leq 10 \, \mu m$ (PM_{10}).
- Specific PM_{10} components could be responsible for effects on human health.
- PM_{10} sampled reveals the presence of harmful components such as polycyclic aromatic hydrocarbons (PAHs) and oxidant metals.

Data
Here we describe the sampling and composition of PM_{10} collected from an industrial zone (IZ), and a commercial zone (CZ) of Mexico City.

1. Experimental design, materials and methods

1.1. PM_{10} sampling

Particulate matter with an aerodynamic size of $10 \, \mu m$ (PM_{10}) was collected using a high-volume sampler [1] from an Industrial zone (IZ) located in the northern part of Mexico City, where several industries are located. This area, which includes some neighboring municipalities of Xalostoc in the State of Mexico, harbors a wide variety of industries related to steel, grinding minerals, plastic manufacturing, industrial soap production, concrete, and cleaning products.

Fig. 2. The composition of particulate matter with aerodynamic diameter of $10 \, \mu m$ (PM_{10}). PM_{10} is a complex mixture of polycyclic aromatic hydrocarbons (PAHs), metals and endotoxin, among others. PAHs were analyzed by high-pressure liquid chromatography (HPLC); metals by particle-induced X-ray emission (PIXE) analysis, and endotoxin content was analyzed by limulus amebocyte lysate (LAL) assay.
The other selected area for collecting particles is a commercial zone (CZ) located in the neighborhood called La Merced, which is a traditional food market area found closely to the Mexico City Historic downtown. Every day, several trucks with diesel and gasoline engines deliver food products in this area. Also, there is an important bus terminal station (Terminal de Autobuses de Pasajeros de Oriente) in this area. In addition, there is a heavy private and public transportation based on diesel or gasoline engines constituting an additional source of pollution in this area.

Sample collection of PM$_{10}$ was performed using one cellulose nitrate filter per day, excluding the rainy season (June–September). PM$_{10}$ from the whole period (October–May) was recovered from filters and a PM$_{10}$-year pool was stored in free-endotoxin sterile vials at 4 °C until usage for experimentation and physicochemical characterization (see Fig. 1).

1.2. PM$_{10}$ composition

The characterization of collected particles was initially performed to identify the main components of PM$_{10}$, which are related to polycyclic aromatic hydrocarbons (PAHs), metals and endotoxin. Then, using dichloromethane extraction followed by high-pressure liquid chromatography (HPLC; Agilent HP, 1100 series) PAHs content was determined [2]. Elemental metal analysis to the pool of PM$_{10}$ [3] was performed by particle-induced X-ray emission (PIXE) using a proton beam produced by a 9SDH-2 Pelletron accelerator. Endotoxin content was measured through a kinetic assay of Limulus Amebocyte lysate (LAL) assay according to the manufacturer’s specifications (BioWhittaker, Walkersville, MD, USA) using Escherichia coli endotoxin as standard [4]. We have reported some of the most representative compounds of PM$_{10}$, which includes PAHs, endotoxin and aluminum (Al), silicon (Si), phosphorus (P), sulfur (S), chlorine (Cl), potassium (K), calcium (Ca), titanium (Ti), chrome (Cr), manganese (Mn), iron (Fe), nickel (Ni), copper (Cu), zinc (Zn) and lead (Pb). Endotoxin results showed that PM$_{10}$ collected from both the industrial zone and the commercial zone displayed 138.4 UE/mg and 170.4 UE/mg of PM$_{10}$, respectively (Fig. 2).

Importance of PM$_{10}$ composition lies on the possibility to explain that biological effects associated to inhalatory exposure are different among polluted cities. Some of these effects are specially alarming because can be related to the acquisition of new characteristics such as invasiveness by targeted PM$_{10}$ cells, such as lung epithelial cells and PM$_{10}$ derived from one location can even be more harmful that other [5].

References

[1] E. Alfaro-Moreno, V. Torres, J. Miranda, L. Martinez, C. Garcia-Cuellar, T.S. Nawrot, B. Vanaudenaerde, P. Hoet, P. Ramirez-Lopez, I. Rosas, B. Nemery, A.R. Osornio-Vargas, Induction of IL-6 and inhibition of IL-8 secretion in the human airway cell line Calu-3 by urban particulate matter collected with a modified method of PM sampling, Environ. Res. 109 (2009) 528–535.

[2] N. Manzano-Leon, R. Quintana, B. Sanchez, J. Serrano, E. Vega, I. Vazquez-Lopez, L. Rojas-Bracho, T. Lopez-Villegas, M.S. O’Neill, F. Vadillo-Ortega, A. De Vizcaya-Ruiz, I. Rosas, A.R. Osornio-Vargas, Variation in the composition and in vitro proinflammatory effect of urban particulate matter from different sites, J. Biochem. Mol. Toxicol. 27 (2013) 87–97.

[3] Y. Sanchez-Perez, Y.I. Chirino, A.R. Osornio-Vargas, L.A. Herrera, R. Morales-Barcenas, A. Lopez-Saavedra, I. Gonzalez-Ramirez, J. Miranda, C.M. Garcia-Cuellar, Cytoplasmic p21(CIP1/WAF1), ERK1/2 activation, and cytoskeletal remodeling are associated with the senescence-like phenotype after airborne particulate matter (PM$_{10}$) exposure in lung cells, Toxicol. Lett. 225 (2014) 12–19.

[4] I. Rosas Perez, J. Serrano, E. Alfaro-Moreno, D. Baumgardner, C. Garcia-Cuellar, J.M. Martin Del Campo, G.B. Raga, M. Castillejos, R.D. Colin, A.R. Osorno Vargas, Relations between PM10 composition and cell toxicity: a multivariate and graphical approach, Chemosphere 67 (2007) 1218–1228.

[5] R. Morales-Barcenas, Y.I. Chirino, V. Sanchez-Perez, A.R. Osornio-Vargas, J. Melendez-Zagzga, I. Rosas, C.M. Garcia-Cuellar, Particulate matter (PM) induces metalloprotease activity and invasion in airway epithelial cells., Toxicol Lett 237 (2015) 167–173.