RAPID DETECTION OF EXTENDED SPECTRUM B – LACTAMASES (ESBL) AND THEIR CTX-M GENETIC CHARACTERIZATION.

Manar Effat Zaiton¹, Samah Saad EL Din¹, Nahla Abd EL Hamid², Dalia Salem¹ and Somia EL Sheikh².
1. Microbiology Department, Theodor Bilharz Research Institute (TBRI), Giza, Egypt.
2. Clinical Microbiology and Immunology Department Faculty of Medicine, Zagazig University.

Manuscript Info

Abstract

Background: The recently described ESBL-NDP (Nordmann Dortet Poirel) test is a promising rapid and inexpensive phenotypic test used to recognize extended-spectrum-β-lactamases (ESBLs). Bla CTX-M gene is recently replacing bla SHV and bla TEM genotypes as the prevalent ESBL resistance genes and their detection may aid in infection control efforts and epidemiology of resistance.

Aim: The current study aimed to detect the burden of ESBLs by the rapid ESBL-NDP test, and to examine the prevalence of CTX-M gene among Enterobacteracea in Egyptian patients.

Material and Methods: One hundred forty seven Gram negative Enterobacteracea isolates were screened for ESBL production with disc diffusion method, double disc synergy test (DDST), and ESBL-NDP test. All confirmed ESBL-producing isolates were screened for the bla CTX-M gene.

Results: Overall, 49% of isolates were ESBL positive using the DDST while ESBL-NDP test revealed 47.6% ESBL producer. Two isolates (1.4%) gave false positive results with NDP test which indicated the presence of over expressed cephalosporinas (Amp C) with or without the presence of ESBL. The sensitivity and specificity of ESBL-NDP test were 97.2% and 100%, respectively in comparison with the DDST whereas the positive and negative predictive values of NDP test were 100% and 97.4%, respectively, with accuracy 98.6%. In our study CTX-M genotype could be identified in 83.3% of ESBL confirmed isolates.

Conclusion: The NDP test is a rapid, sensitive, and cheap test that could be introduced in routine clinical practice.

bla CTX-M gene was the predominant gene in ESBLs among Egyptian patients.

Introduction:-
Extended-spectrum beta-lactamases (ESBLs) produced by Gram-negative bacteria are considered one of the largest and rapidly evolving group of plasmid-mediated enzymes that confer resistance to oxyimino-cephalosporins and monobactams (Taha et al., 2015). Organisms carrying ESBL enzymes often display co-resistance to other

Corresponding Author: Dalia Salem.
Address: Microbiology Department, Theodor Bilharz Research Institute (TBRI), Giza, Egypt.
antibiotics including aminoglycosides, quinolones, trimethoprim-sulfamethoxazole and tetracycline. This can cause both community and hospital acquired infections, which represents a major challenge to combat (Manyahi et al., 2017).

The resistance acquired by ESBL producing strains stems from genetic point mutation and are derived mainly from the bla TEM or bla SHV types of β-lactamas, other types include bla CTX-M, bla VEB, and bla GES enzymes (Varkey et al., 2014). Among them, the highest number of variants described in the last years corresponds to the CTX-M family. This dramatic spread of CTX-Ms around the world has been referred as the “CTX-M pandemic” due to their increasing description worldwide (Canton et al., 2012).

Over 1.5 billion people are colonized with ESBL-producing Enterobacteriaceae by one estimate (Woerther et al., 2013). The majority of this burden falls on the developing countries, but the prevalence of ESBL-producing organisms is also increasing in the developed communities (Doi et al., 2017). blaCTX-M group ESBLs are now by far the most common ESBLs globally, both in the developing and developed worlds (D’Andrea et al., 2013).

According to “Antimicrobial resistance: global report on surveillance 2014” published by the World Health Organization (http://www.who.int/drugresistance/documents/surveillancereport/en/), rates of ESBL producers among E. coli clinical isolates in Egypt are estimated to range from 25-50%. This increase has coincided with a shift in the ESBL types from bla TEM and bla SHV to bla CTX-M group, and spread of ESBL-producing E. coli into the community (Doi et al., 2017).

Although Detection of ESBL-producing bacteria by phenotypic methods is a vital step for appropriate management of patients but it may take up to 24-48 h (Gazin et al., 2012). Genotypic identification of these enzymes provides essential information for infection prevention and control efforts, aiding to prevent cross-transmission to other patients (Pitout and Laupland, 2008). Therefore, the current study aimed for rapid detection of ESBLs by ESBL-NDP test, and to examine the prevalence of blaCTX-M gene among Enterobacteracea members in Egypt.

Material and Methods:-
Bacterial Isolates:-
A total of 147 Gram negative Enterobacteracea isolates were obtained from different clinical samples; urine (78; 53.1%), ascetic fluid (29; 19.7%), blood (20; 13.6%), and both sputum and pus were recovered from (10; 6.8%) samples. Samples were collected from patients admitted to Theodor Bilharz Research Institute hospital during the period from March 2016 to August 2016.

Phenotypic Diagnostic tests:-
Antimicrobial Susceptibility Testing:-
Samples were initially cultured on MacConkey agar medium (Oxoid, England). Identification of bacterial isolates to genus and species level was done by API-20E (Biomerieux, France).

All Enterobacteriacea isolates were tested for detection of ESBL production by observing reduced zones of inhibition around third generation cephalosporins discs (disc diffusion test). Such strains were considered to be “suspicious for ESBL production” according to Clinical and Laboratory Standards Institute (CLSI) guidelines (CLSI, 2016). Confirmatory Double disk synergy test (DDST) was performed to confirm ESBL production as described by Jarlier et al. (1988). Klebsiella pneumonia ATCC 700603 was used as a control strain for a positive ESBL production and Escherichia coli ATCC 25922 was used as a negative control for the ESBL production according to the guidelines of CLSI (CLSI, 2016).

The ESBL-NDP (Nordmann/ Dortet/ Poirel) test:-
This is a novel phenotypic detection of ESBL enzymes by colorimetric method. The test identifies the hydrolysis of the lactam ring of cephalosporin (ceftaxime), which generates a carboxyl group, by acidifying the culture media. The change in pH resulting from this hydrolysis is identified by the color change generated using a pH indicator (phenol red). Inhibition of ESBL activity is evidenced by adding tazobactam.

A single full 10 μl calibrated loop of the studied bacterial colonies was suspended in 150 μl of 20 mM Tris-HCl lysis buffer (Thermo Scientific, USA) in three 1.5 ml eppendorf tubes (A, B, and C). Eppendorfs were vortexed for 30 min at room temperature (Cole-Parmer, USA) for the mechanical lysis of bacteria. Phenol red solution was prepared
using 2 ml of concentrated (pH 8) phenol solution to which 16.6 ml of distilled water was added. Ten microliters of a concentrated tazobactam solution (Sigma-Aldrich, France) (40 mg/ml) was added to tube C. Next, 100 μl of the solution containing pH indicator (phenol red) was added to tube A (Control), and 100 μl of the same solution supplemented with cefotaxime (6 mg/ml) was added to tubes B and C. The three tubes were incubated at 37°C for 20 min. The results were considered negative when all tubes were red and thus interpreted as containing non-ESBL strains. When tube B was yellow/orange and both tubes A and C were red, the test result was considered positive (ESBL-producing isolate). When tube A turned to yellow/red, the test result was considered non interpretable, regardless of any color change for tubes B and C (Nordmann et al., 2012).

Genotypic identification of ESBLs:-
DNA Extraction:-
All phenotypically confirmed ESBL positive isolates by DDST were analyzed for blaCTX-M. Extraction of DNA from a single colony of cultured bacteria was done by Thermo Scientific Gene JET Genomic DNA purification kit; K 0721(Thermo Fisher Scientific, USA).

PCR Assay:-
The PCR reaction was performed in a final volume of 50 μL with a 5 μL of DNA template, 0.5 μM of each of the forward and reverse primers, 25 μL of master mix (DreamTaq Green PCR Master Mix, Thermo Scientific, USA) and the volume was completed to 50 μL by using 19 μL of sterile nuclease free water. Primers used were consensus designed to catch all groups of CTX-M gene and were described by Pagani et al., 2003 (Table 1). Amplification reactions were carried out in Biometra Germany thermal cycler, under the following conditions: initial denaturation at 95°C for 3 min, followed by 34 cycle of denaturation at 95°C for 30 sec, annealing at 49°C for 40 sec and elongation at 72°C for 40 sec. The final elongation step was extended to 10 min at 72°C. The amplified products of the PCR reactions were analyzed by electrophoresis in 2% agarose gel with ethidium bromide, and 100 bp ladder used as DNA molecular weight standard. In each PCR assay, a negative control (lacking DNA) was included.

Table1:-PCR primers used for amplification of CTX-M gene.

Amplified gene	Primers (5’-3’)	Amplicon size (bp)	Reference
CTX-M	F: ATGTGCAGYACCAGTAARGT R: TGGGTRAARTARGTSACAGA	593	Pagani et al., 2003

Results:-
DDST had classified the tested strains into (72/147; 49%) ESBL producers and (75/147; 51%) non-ESBL producers. On the other hand, NDP test revealed (70/147; 47.6%) ESBL producers among the examined Enterobactericeae isolates. Two isolates (2/147; 1.4%) - one E. coli and one K. pneumonia strains - gave results which indicated the presence of over expressed cephalosporinases (Amp C) with or without the presence of ESBL (Table 2; Fig. 1). They were recorded as false positive results. CTX-M genotype could be identified in 83.3% of all ESBL confirmed isolates (60/72) (Table 3; Fig.2). E.coli showed (48/72; 66.6%) positive result for ESBL producing strains (Table 2), among which blaCTX-M type ESBL producers were found in 66.7% of E. coli, 26.7% of K. pneumonia and 6.6% of K.oxytoca (Table 3). Both isolates detected by ESB-NDP test that were reported to be Amp-C didn’t found to carry the blaCTX-M.
Table 2: Frequency of Enterobacteriaceae species included in the study and their ESBL production rates

Organism	DDST test	ESBL NDP test			
	ESBL (n= 72)	Non-ESBL (n= 75)	ESBL (n= 70)	Non-ESBL (n= 75)	Amp C (n= 2)
E. coli (n= 85)	48 (66.6%)	47 (49.3%)	47 (67.2%)	37 (49.3%)	1 (50.0%)
K. pneumonia (n= 39)	20 (27.8%)	19 (25.4%)	19 (27.1%)	19 (25.4%)	1 (50.0%)
K. oxytoca (n= 12)	4 (5.6%)	8 (10.7%)	4 (5.7%)	8 (10.7%)	0 (0.0%)
Enterobacter (n= 7)	0 (0.0%)	7 (9.3%)	0 (0.0%)	7 (9.3%)	0 (0.0%)
P. mirabilis (n= 3)	0 (0.0%)	3 (4.0%)	0 (0.0%)	3 (4.0%)	0 (0.0%)
Citrobacter (n= 1)	0 (0.0%)	1 (1.3%)	0 (0.0%)	1 (1.3%)	0 (0.0%)

Data are expressed as number (%).

The sensitivity and specificity of ESBL-NDP test were 97.2% and 100%, respectively in comparison with the DDST whereas the positive and negative predictive values of NDP test were 100% and 97.4%, respectively, with accuracy 98.6%. Kappa testing showed an almost perfect agreement between the ESBL-NDP test and DDST in detecting ESBLs (K= 0.973 = very good agreement).

![Figure 1](image_url)

Fig. 1: NDP test results, 1=negative (non ESBL) 2= positive (ESBL) 3=Amp-c ± ESBL

1. Eppendorf a (bacterial suspension without antibiotic)
2. Eppendorf b (bacterial suspension with cefotaxime)
3. Eppendorf c (bacterial suspension with cefotaxime+ tazobactam).

Table 3: CTX-M (+/-) in ESBL Enterobacteriaceae species.

Organism	CTX-M consensus gene	P value	
	Positive (n= 60)	Negative (n= 12)	
E. coli (n= 48)	40 (66.7%)	8 (66.7%)	0.619
K. pneumonia (n= 20)	16 (26.7%)	4 (33.3%)	
K. oxytoca (n= 4)	4 (6.6%)	0 (0.0%)	

Data are expressed as number (%).

P > 0.05= not significant.
Fig. 2: Agarose gel (2%) electrophoresis for PCR products of CTX-M gene. Lane M: Molecular weight marker (100-1000 bp). Lane 1: Negative control. Lane 2: Positive control. Lanes 3-10 positive CTX-M gene showing bands at 593 bp.

Statistical analysis:-
Results are expressed as number (%). P value: 0.05 was considered significant and < 0.01 was considered highly significant. Agreement between the different diagnostic tests was tested using kappa statistic. Data analysis was done using computer programs SPSS (Statistical Package for the Social Science; SPSS Inc., Chicago, IL, USA) version 19 windows.

Discussion:-
ESBL production is among the commonest antibiotic resistance problem that has been accelerating worldwide (Oli et al., 2017). The frequent use of β-lactamases has given rise to continuous spread of resistant isolates due to their selective force driving alteration of the resistance mechanisms. Egypt has been recognized as one of the countries with extremely high rate of ESBL producers, with up to 70% of isolates producing the enzyme (Borg et al., 2006). Possibly, this high prevalence is related to the less controlled use of antibiotics in Egypt, where many drugs are still available over the counter (Taha et al., 2015). Therefore, establishing a new and rapid approach in diagnosis of ESBL is crucial in controlling resistance spread. In addition, data concerning dispersion and clonality of CTX-M producing isolates, and molecular epidemiology, arouse attention about rapid spread of CTX-M resistant genes and the high rate of horizontal transfer between different bacterial species (Cantón et al., 2012).

Therefore, we aimed to detect the burden of ESBLs by the rapid ESBL-NDP test, and to examine the prevalence of CTX-M gene among Enterobacteracea in Egypt.

In the present study, ESBL production among Enterobacteriaceae clinical isolates was found to be 49% by the DDST, which is nearly identical to 48.9% that was detected by Abdallah and colleagues (2015) at El Ahrar Hospital-Zagazig governorate. Comparable results were also obtained by researchers at Assiut University Hospital (Thabit et al., 2011) and Benha University Hospital (Khater and Sherif, 2014), as they reported prevalence rates of 52.9% and 53.3%, respectively. Other inter-country studies show a wide and statistically significant degree of variation. Higher results of ESBL prevalence of 65.8% were obtained from a previous study by Ahmed et al. (2009) in Assuit University Hospitals. This may be due to the fact that all the samples were obtained from ICU patients, which are likely affected by resistant strains rather than patients in other departments. In addition, results of 85.2% and 88.6% were obtained by El-Badawy et al. (2017) and by Fattouh et al. (2017) in Sohag University respectively. On the other hand, a former study by Fam et al. (2011) reported that ESBL producing Enterobacteriaceae isolated from clinical specimens represented 29.9%. Various factors may contribute for this difference as the prevalence of ESBL-expressing bacteria varies across different geographical regions, moreover, it depends on antimicrobial stewardship programs, and infection control practices in different hospitals.
Fewer than 10% of isolated strains express ESBLs as in USA (Castanheira et al., 2013), Canada (Simmer et al., 2011), Japan, and Korea (Yan et al., 2014). The level of resistant bacteria is higher in Africa and is comparable to those detected in Egypt. Ghana revealed resistance rate of (49 %) (Obeng et al., 2013), Cameroon (54 %) (Schaumburg et al., 2013), Gabon (45 %) (Magoué et al., 2013), and Morocco (43%) (Girlich et al., 2014).

Although Klebsiella spp. were more frequently recognized as ESBL producers in other studies (Chander and Shrestha, 2013), in the current study, 66.6% of E. coli, and 33.4% of Klebsiella species (K. pneumoniae 27.8%, K. oxytoca 5.6%) isolates were ESBL producers. A study performed by Kateregga et al. (2015), also reported that E. coli was the most common ESBL producer (53.9 %) isolated from urine samples, followed by K. pneumoniae (28.7 %). Similar predominance of ESBL producing Escherichia coli has been reported by Pant et al. (2016) from Nepal, Sharma et al. (2013) and Shanthi and Sekar (2010) from India.

In this work, we used another phenotypic method; the ESBL-NDP test in addition to the DDST. ESBL-NDP test was able to detect 70 out of 72 ESBL producers while the other 2 were Amp C. The sensitivity and positive predictive value of NDP test were 97.2% and 100% respectively in comparison with the DDST. This result was nearly similar to those of Nordmann et al. (2012) who evaluated the ESBL-NDP test on 255 strains, where the sensitivity of the test was 92.6%. Another study Dortet et al. (2014) who applied the ESBL-NDP test on 500 ESBL producing Enterobacteriaceae recovered from urine samples, reported that the sensitivity of the ESBL-NDP test was 98% while the positive predictive value was 98%.

In our study, the specificity and the negative predictive value of the ESBL-NDP test were 100% and 97.4%, respectively, which were comparable with Nordmann et al. (2012) and Dortet et al. (2014) as they were 100% and 99.8 respectively. In addition, Kappa testing had an excellent concordance between the ESBL-NDP test and DDST in detecting ESBLs (κ= 0.973).

Many studies reported that CTX-M genotypes has been widely increased, and was the most predominant bla resistant gene among Enterobacteriaceae. Moreover, it has been the most encountered gene in different geographical regions of the world including Middle East Arab countries (Badran et al., 2016; Baroud et al., 2011).

In our results, bla CTX-M gene was detected in 83.3% of ESBL producers by conventional PCR. The frequency of bla CTX-M gene in E. coli was 66.7%, but in K. pneumonia and K. oxytoca it was 26.7% and 6.7% respectively. This is consistent with the results obtained in Benha Governorate by Saeed et al. (2017), as 71.8% of the ESBL-producing isolates were of the bla CTX-M type. Also, many studies reported that CTX-M was the most prevalent ESBL gene type in Egypt (Abdallah et al., 2015; Fattouh et al., 2017; Abdel-Moaty et al., 2016). In contrast to our findings, Ahmed et al. (2009) reported that bla TEM was the most frequent β-lactamase encoding gene. Worldwide, bla CTX-M gene was the most detected resistance gene in Turkey and its prevalence in E. coli was reported to be 63.9% (Peirano and Pitout 2010). Furthermore, bla CTX-M gene was detected in 80% of E.coli proved to be ESBL in India (Sharma et al., 2013). Alfaresi and colleagues (2011) highlighted the emergence and dissemination of CTX-M-15 producing E. coli and K. pneumoniae in the United Arab Emirates (UAE) demonstrating that the majority of the strains (87%) in their study expressed the CTX-M gene which complies with the present study. These findings agree with other contemporary studies from around the world that show that ESBL genes of the CTX-M type are dominant (Livermore et al., 2007; Cantón et al., 2012; Burke et al. (2016)].
Conclusion:-
In conclusion, there is high prevalence of ESBL producing strains in our hospital. The ESBL-NDP test leads the DDST in its rapid ability for detection of ESBL production from bacterial cultures. It is also easy to prepare with cheap in-hand kits, making it a better alternative for ESBL detection in small laboratories. A positive result in the ESBL-NDP test may indicate exclusion of expanded-spectrum cephalosporins for treating such patients. In addition, our study clearly demonstrates the striking change in gene pool of Enterobacteriaceae, as higher rates of blaCTX-M detection confirms mobilization of these genes via plasmids replacing blaSHV and blaTEM resistance genes.

Acknowledgement:-
This work was supported by Theodor Bilharz Research Institute (TBRI) as part of an internal project No. 97 D.

References:-
1. Abdallah, H.M., Wintermans, B.B., Reuland, E.A., Koek, A., Al Naïemi, N., Ammar, A.M., et al. (2015): Extended- Spectrum beta-Lactamase- and Carbapenemase- Producing Enterobacteriaceae Isolated from Egyptian Patients with Suspected Blood Stream Infection. PLoS One, 10 (5):e0128120.
2. Abdel-Moaty, M.M., Mohamed, W.S., Abdel-All, S.M., El-Hendawy, H.H. (2016): Prevalence and molecular epidemiology of extended spectrum β-lactamase producing Escherichia coli from hospital and community settings in Egypt. J.of App. Pharmac. Sci., 6:042-047.
3. Ahmed, S., Daef, E., Badary, M., Mahmoud, M., Abd- Elsayed, A. (2009): Nosocomial blood stream infection in intensive care units at Assiut University Hospitals (Upper Egypt) with special reference to extended spectrum b-lactamase producing organisms. BMC Res. Notes., 2:76.
4. Alfaresi, M.S., Elkoush, A.A., Alshehhi, H.M., Abdulsalam, A.I. (2011): Molecular Characterization and Epidemiology of Extended-Spectrum Beta-Lactamase-Producing Escherichia coli and Klebsiella pneumoniae Isolates in the United Arab Emirates. Med Princ Pract., 20:177–180.
5. Badran, E., Qamer Din, R., and Shehabi, A. (2016): Low intestinal colonization of Escherichia coli clone ST131 producing CXT-M-15 in Jordanian infants. J Med Microbiol., 65(2): 137–141.
6. Baroud, M., Araj, G.F., and Matar, G.M. (2011): Spread of CXT-M-15 extended spectrum β-lactamas encoding genes among Enterobacteriaceae in the Middle Eastern Region. IAJAA., 1(1): 1-6.
7. Borg, M.A., Siciluna, E., de Kraker, M., van de Sande-Bruinsma, N., Tiemersma, E., Gur, D. (2006): Antibiotic resistance in the southeastern Mediterranean preliminary results from the AR Med project. Euro. Surveill., 11:164-167.PMID: 16966796
8. Burke, L., Humphreys, H., and Fitzgerald-Hughes, D. (2016): The Molecular Epidemiology of Resistance in Cefotaximase-Producing Escherichia coli Clinical Isolates from Dublin, Ireland. Microb. Drug Resis., 22(7):552-558.
9. Cantón, R., González-Alba, J.M., and Galán, J.C. (2012): CXT-M enzymes: origin and diffusion. Front Microbiol., 3 (110).
10. Castanheira, M., Farrell, S.E., Deshpande, L.M., Mendes, R.E., Jones, R.N. (2013): Prevalence of beta-lactamase-encoding genes among Enterobacteriaceae bacteremia isolates collected in 26 U.S. hospitals: report from the SENTRY Antimicrobial Surveillance Program (2010) Antimicrob Agents Chemother., 57:3012–3020.
11. Chander, A., and Shrestha, C.D. (2013): Prevalence of extended spectrum beta lactamase producing Escherichia coli and Klebsiella pneumoniae urinary isolates in a tertiary care hospital in Kathmandu, Nepal. BMC Res Notes., 6 (1): article no. 487.
12. Clinical and Laboratory Standards Institute. CLSI. (2016): Screening tests for detection of extended spectrum Nosocomial infection and characterization of extended-spectrum β-lactamas in Klebsiella pneumoniae, Klebsiella oxytoica, E. coli and proteus mirabilis. CLSI., 35 (3): 108.
13. D’Andrea, M.M., Arena, F., Pallecchi, L., Rossolini, G.M. (2013): CXT-M-type blactamas: a successful story of antibiotic resistance. Int J Med Microbiol., 303:305–317.
14. Doi, Y., Iovleva, A., and Bonomo, R.A. (2017): The ecology of extended-spectrum b-lactamas (ESBLs) in the developed world. J. of Travel Med., 24(1): S44–S51.
15. Dortet, L., Poirel, L., Nordmann, P. (2014): Rapid Detection of Extended- Spectrum-β-Lactamase-Producing Enterobacteriaceae from Urine Samples by Use of the ESBL NDP Test. J. Clin. Microbiol., 52(10): 3701-3706.
16. El-Badawy, M.F., Tawakol, W.M., Maghrabi, I.A., Mansy, M.S., Shohayeb, M.M., Ashour, M.S. (2017): Iodometric and Molecular Detection of ESBL Production Among Clinical Isolates of E. coli Fingerprinted by
ERIC-PCR: The First Egyptian Report Declares the Emergence of E. coli O25b-ST131 clone Harboring bla GES. Microb Drug Resist., 23 (6):703-717.

17. Fam, N., Leflon-Guibout, V., Fouad, S., Aboul-Fadl, L., Marcon, E., Desouky, D., et al. (2011): CTX-M-15-producing Escherichia coli clinical isolates in Cairo (Egypt), including isolates of clonal complex ST10 and clones ST131, ST73, and ST405 in both community and hospital settings. Microb Drug Resist., 17(1):67-73.

18. Fattouh, M., Goda, AM., Bakry, M.M., Abo Zaid, A.M. (2017): Prevalence and Molecular Characterization of Extended Spectrum Beta Lactamases Producing Escherichia coli Isolates Causing Hospital - Acquired Community -Acquired Urinary Tract Infections in Sohag University Hospitals, Egypt. EJMM., 26 (1): 49-59.

19. Gazin, M., Paasch, F., Goosens, H., Malhotra-Kumar, S. (2012): Current trends in culture-based and molecular detection 260 of extended spectrum β-lactamase-harboring and carbapenem-resistant Enterobacteriaceae. J. Clin. Microbiol., 50(4):1140-1146.

20. Girlich, D., Bouihat, N., Poirel, L., Benouda, A., Nordmann, P. (2014): High rate of faecal carriage of extended-spectrum β-lactamase and OXA-48 carbapenemase producing Enterobacteriaceae at a university hospital in Morocco. Clin Microbiol Infect., 20:350–354.

21. Jarlier, V., Nicola, M.H., Fournier, G., & Philippa, A. (1988): Extended broad-spectrum β- lactamases conferring transferable resistance to newer β-lactam agents in Enterobacteriaceae: hospital prevalence and susceptibility patterns. Rev Infect Dis., 10: 867–878.

22. Kateregga, J., Kantume, R., Atuhaire, C., Lubowa, M., Nduku, J. (2015): Phenotypic expression and prevalence of ESBL-producing Enterobacteriaceae in samples collected from patients in various wards of Mulago Hospital, Uganda. BMC Pharmacol. and Toxicol., 16:14-

23. Khater, E.S., and Sherif, H.W. (2014): Rapid Detection of Extended Spectrum B-lactamase (ESBL) Producing Strain of Escherichia coli in Urinary Tract Infections Patients in Benha University Hospital, Egypt. Br Microbiol Res J., 4(4):443-53.

24. Livermore, D.M., Canton, R., Gniadkowski, M., Nordmann, P., Rossolini, G.M., Arlet, G., et al. (2007): CTX-M: changing the face of ESBLs in Europe. J Antimicrob Chemother., 59:165–74.

25. Magoué, CL., Melin, P., Gangué-Piéboji, J., Okomo Assounou, MC., Boreux, R., De Mol, P. (2013): Prevalence and spread of extended-spectrum β-lactamase producing Enterobacteriaceae in Ngaoundere, Cameroon. Clin Microbiol Infect., 19:416–420.

26. Manyahi, J., Moyo, SJ., Tellevik, M.G., Ndugulile, F., Urassa, W., Blomberg, B., Langeland, N. (2017): Detection of CTX-M-15 beta-lactamas in Enterobacteriaceae causing hospital- and community-acquired urinary tract infections as early as 2004, in Dar Es Slaam, Tanzania. BMC Infect Dis., 17(1):282.

27. Nordmann, P., Dortet, L., and Poirel, L. (2012): Rapid Detection of Extended-Spectrum β–Lactamase Producing Enterobacteriaceae. J of Clin Microbiol., 50 (9): 3016–3022.

28. Obeng-Nkrumah, N., Twum-Danso, K., Kroghelt, K., Newman, M.J. (2013): High levels of extended-spectrum beta-lactamases in a major teaching hospital in Ghana: the need for regular monitoring and evaluation of antibiotic resistance. Am J Trop Med Hyg., 89 (5):960–964.

29. Oli, A.N., Eze, D.E., Gugu, T.H., Ezeobi, I., Maduagwu, U.N., Ihekwereme, C.P. (2017): Multi-antibiotic resistant extended-spectrum beta-lactamase producing Enterobacteriaceae: a challenge to the effective treatment of wound and skin infections. PAMJ., 27:66.

30. Pagani, L., Dell'Amico, E., Migliavacca, R., D'Andrea, M.M., Giacobone, E., Amicosante, G., Romero, E., Rossolini, G.M. (2003): Multiple CTX-M-type extended-spectrum beta-lactamases in nosocomial isolates of Enterobacteriaceae from a hospital in northern Italy. J Clin Microbiol., 41(9):4264-9.

31. Pant, N. D., Bhandari, R., Poudel, A., and Sharma, M. (2016): Assessment of the effectiveness of three different cephalosporins clavulanate combinations for the phenotypic confirmation of extended spectrum beta lactamases producer bacterial isolates from urine samples at National Public Health Laboratory, Kathmandu, Nepal. BMC Res Notes., vol. 9, article 390.

32. Peirano, G., Pitout, J.D. (2010): Worldwide epidemiology of Escherichia coli producing CTX-M beta-lactamases: the worldwide emergence of clone ST131 O25:H4. Int J Antimicrob Agents., 35(4):316–21.

33. Pitout, J.D., and Laupland, K.B. (2008): Extended spectrum beta lactamase producing Enterobacteriaceae: an emerging public health concern. The lancet. 8: 159-166.

34. Pitout, J.D., Reisbig, M.D., Venter, E.C., Church, D.L., and Hanson, N.D. (2003): Modification of the double disc test for detection of Enterobacteriaceae producing ESBL and Amp C β- lactamases. J. Clin. Microbiol.2003;41 (8): 3933–3935.

35. Saeed, A.M., Tabl, H.A., and Mobahed, M.M. (2017): Evaluation of the NDP Test, a Novel Chromogenic Test for Rapid Detection of Extended Spectrum β-Lactamase Producing Enterobacteriaceae. MRJL., 18 (6): 1-8.
36. Schaumburg, F., Alabi, A., Kokou, C., Grobusch., MP, Köck, R., Kaba, H., Becker, K., Adegikwa, AA., Kremsner, PG., Peters, G., Mellmann, A. (2013): High burden of extended spectrum β-lactamase-producing Enterobacteriaceae in Gabon. J Antimicrob Chemother., 68:2140–2143.

37. Shanthi, M., and Sekar, U. (2010): Extended spectrum beta lactamase producing Escherichia coli and Klebsiella pneumoniae: risk factors for infection and impact of resistance on outcomes. J of Ass phyis of Ind., 58: 41–44.

38. Sharma, M., Pathak, S., and Srivastava, P. (2013): Prevalence and antibiogram of Extended Spectrum β-lactamase (ESBL) producing Gramnegative bacilli and furthermolecular characterization of ESBL producing Escherichia coli and Klebsiella spp., J. of Clin. and Diagnos. Res., 7 (10):2173–2177.

39. Simner, P.J., Zhanel, G.G., Pitout, J., Taylor, F., McCracken, M., Mulvey, M.R., et al. (2011): Prevalence and characterization of extended-spectrum beta-lactamase- and AmpC beta-lactamase-producing Escherichia coli: results of the CANWARD 2007–2009 study. Diagn Microbiol Infect Dis., 69:326–34

40. Sonda, T., Kumburu, H., Zwetselaar, M.V., Alifrangis, M, Lund, O., Gibson Kibiki, G., and Aarestrup, F.M. (2016): Meta-analysis of proportion estimates of Extended-Spectrum-Beta-Lactamase producing Enterobacteriaceae in East Africa hospitals. Antimicrob Resis and Infe Cont., 5:18.

41. Taha, S., Youssef, N., Elkazaz, A., and Ramadan, H. (2015): Detection of extended-spectrum beta-lactamases (ESBLs) in clinical isolates of Klebsiella pneumonia using the ESBL NDP test and flow cytometric assay in comparison to the standard disc diffusion. Afr. J. Microbiol. Res., 9(34): 1947-1953.

42. Thabit, A., El-Khamissy, T., Ibrahim, M., Attia, A. (2011): Detection of extended-spectrum β-lactamase enzymes (ESBLS) produced by Escherichia coli urinary pathogens at Assiut university hospital. Bull Pharm Sci., 34 (2):93-103.

43. Varkey, D.R., Balaji, V., and Abraham, J. (2014): Molecular characterization of extended spectrum beta Lactamase producing strains from blood sample. Int J Pharm Pharm Sci., 6(3):276-278.

44. Woerther, P.L., Burdet, C., Chachatry, E., Andremont, A. (2013): Trends in human fecal carriage of extended-spectrum b- lactamases in the community: toward the globalization of CTX-M. Clin Microbiol Rev., 26:744-58.

45. Yan Y.Z., Sun, K.D., Pan, L.H., Fan, H.Q., Yang, H.Z., Lu, Y.C., Shi, Y. (2014): A screening strategy for phenotypic detection of carbapenemase in the clinical laboratory. Canad J of Microbiol., 60(4): 211–215.