Genome sequence of Candidatus Arsenophonus lipopteni, the exclusive symbiont of a blood sucking fly Lipoptena cervi (Diptera: Hippoboscidae)

Eva Nováková1*, Václav Hypša1, Petr Nguyen2, Filip Husník1 and Alistair C. Darby3

Abstract

Candidatus Arsenophonus lipopteni (Enterobacteriaceae, Gammaproteobacteria) is an obligate intracellular symbiont of the blood feeding deer ked, Lipoptena cervi (Diptera: Hippoboscidae). The bacteria reside in specialized cells derived from host gut epithelia (bacteriocytes) forming a compact symbiotic organ (bacteriome). Compared to the closely related complex symbiotic system in the sheep ked, involving four bacterial species, Lipoptena cervi appears to maintain its symbiosis exclusively with Ca. Arsenophonus lipopteni. The genome of 836,724 bp and 24.8 % GC content codes for 667 predicted functional genes and bears the common characteristics of sequence economization coupled with obligate host-dependent lifestyle, e.g. reduced number of RNA genes along with the rRNA operon split, and strongly reduced metabolic capacity. Particularly, biosynthetic capacity for B vitamins possibly supplementing the host diet is highly compromised in Ca. Arsenophonus lipopteni. The gene sets are complete only for riboflavin (B2), pyridoxine (B6) and biotin (B7) implying the content of some B vitamins, e.g. thiamin, in the deer blood might be sufficient for the insect metabolic needs. The phylogenetic position within the spectrum of known Arsenophonus genomes and fundamental genomic features of Ca. Arsenophonus lipopteni indicate the obligate character of this symbiosis and its independent origin within Hippoboscidae.

Keywords: Arsenophonus, Symbiosis, Tsetse, Hippoboscidae

Introduction

Symbiosis has for long been recognized as one of the crucial drivers of evolution. In insects, numerous symbiotic relationships, mainly with bacteria, enabled the hosts to exploit various environments and/or life strategies, and supposedly started adaptive radiations in some groups. The mechanisms of such evolutionary processes include for example contribution to the host immunity, modification of the reproductive strategy, or provision of essential compounds to the hosts relying on nutritionally compromised resources. Blood feeding (hematophagous) insects provide an illuminating example of a life strategy shift coupled with symbiosis. Since blood meal lacks some of the B vitamins, hematophagous insects rely on their supply by symbiotic bacteria. The relationships between bacteria and hematophagous insect displays considerable degree of variability spanning from less intimate associations with entire gut microbial community, e.g. triatomine bugs [1, 2], to highly specialized interactions with few or single obligate symbiont(s), e.g. lice, bed bugs, tsetse flies, louse flies and bat flies [3–7]. With the recent advancement of genomic approaches and genetic manipulations, symbioses in these insect groups, often important disease vectors, have become of a high interest.

Here we describe fundamental biological characteristics and genome properties of the obligate symbiont of a deer ked, Lipoptena cervi (Hippoboscidae). In comparison to multipartite symbiotic systems of closely related hosts from families Hippoboscidae (i.e. Melophagus ovinus [7]) and Glossinidae (i.e. Glossina sp. [6]), Lipoptena...
cervi harbors a single unaccompanied obligate symbiont from the genus Arsenophonus. The genome of Candidatus Arsenophonus lipopteni has been sequenced for two reasons. The first was to extend our knowledge on occurrence and genomics of the obligate symbionts across the spectrum of hematophagous hosts involved in strictly bilateral symbiosis, e.g. bed bugs [5], head lice [4], leaches [8, 9]. This is a necessary prerequisite for the future analysis of the origins and evolution of this kind of symbioses. In addition, we intend to use the sequence in a broader comparative framework focused on evolution of bacterial symbiosis, particularly on its role in B vitamin provision to various ecological types of the hosts.

Organism information
Classification and features
Ca. Arsenophonus lipopteni has an obligate association with its host, L. cervi, and is therefore uncultivable. In order to localize the bacteria within the host, Fluorescent In Situ Hybridization and Transmission Electron Microscopy was performed on dissected gut tissue as described in detail in [7]. For FISH, the tissue was fixed and hybridized in tubes with eubacterial (EUB338, Floc-GCTGCCTCCCGTAGGA; [10]) and Ca. Arsenophonus lipopteni specific probes (ArL, Cy3-CTGACTAACGCTTGACC; this study). The later was designed in a variable region of 16S rRNA gene taking the target sequence accessibility into account [11].

The distribution of Ca. Arsenophonus lipopteni (Fig. 1) in the host body closely resembles that of Ca. Arsenophonus melophagi and Wigglesworthia glossinidia[7], the obligate symbionts of the blood sucking flies Melophagus ovinus and Glossina sp., respectively [7]. Highly pleomorphic cells of the Gram negative non-sporulating bacteria from the family Enterobacteriales are primarily found in the modified part of the gut wall (bacteriome) formed by the specialized enlarged epithelial cells (bacteriocytes, Fig. 1c, 1d). Additional key features of Ca. Arsenophonus lipopteni are provided as a standardized summary in Table 1.

Apart from the functional characterization, the genome sequence of Ca. Arsenophonus lipopteni was also utilized to assess the relationship of this bacterium to other Arsenophonus symbionts. Since the sequence compositional shift compromises phylogenetic usage of 16S rDNA, leading to topological artifacts with long branched symbiotic taxa clustering together [12], we carried out a phylogenetic analysis of a multi-gene matrix and used advanced Bayesian approaches. The matrix was generated for all available Arsenophonus genomes (incl. Ca. Riesia pediculicola), five other symbionts, eight non-symbiotic members of Enterobacteriaceae, and two outgroups. A set of 70 orthologous genes was determined as an intersection of COGs shared by these bacteria (generated using the MicrobesOnline database; [13]) with "SICO" gene list [14]. The genes were retrieved from the finished assembly using Blastp searches [15] and processed as described previously [7]. The resulting matrix contained 22618 unequivocally aligned positions. Phylobayes [16], a tool specifically developed to overcome the difficulty with heterogeneous composition of sequences, was used for the tree reconstruction. The analysis was run in 2 chains under the GTR + CAT model with amino acids recoded according to the Dayhoff 6 option. When the convergence was not reached after 20,000 cycles, the program was stopped and majority rule consensus was calculated after discarding 4,000 cycles burn-in.

The results confirm Ca. Arsenophonus lipopteni membership in the genus Arsenophonus. All Arsenophonus species (including Ca. Rieisa pediculicola) formed a well-supported monophyletic branch clustering as a
sister group to Providencia (Fig. 2). Despite the length of branches for the obligate symbionts with highly modified genomes, this arrangement was assigned a high posterior probability. Although the six included Arsenophonus lineages certainly do not form a monophyletic group within the known Arsenophonus spectrum [17], the results indicate that Ca. Arsenophonus lipopteni evolved independently from Ca. Arsenophonus melophagi housed in related Hippoboscidae host [7].

Table 1 Classification and general features of Ca. Arsenophonus lipopteni

MIGS ID	Property	Term	Evidence code a	
	Classification	Domain Bacteria	TAS [33]	
	Phylum Proteobacteria		TAS [34]	
	Class Gammaproteobacteria		TAS [35]	
	Order “Enterobacteriales”		TAS [36]	
	Family Enterobacteriaceae		TAS [37]	
	Genus Arsenophonus		TAS [38]	
	Species Ca. Arsenophonus lipopteni		IDA	
	Strain: CB		IDA	
	Gram stain	Negative	TAS [38]	
	Cell shape	Pleomorphic	NAS	
	Motility	Non-motile	TAS [38]	
	Sporulation	Non-sporulating	TAS [38]	
	Temperature range	Not determined	IDA	
	Optimum temperature	Not determined	IDA	
	pH range; Optimum	Not determined	IDA	
	Carbon source	Not determined	IDA	
	MIGS-6	Habitat	Insect host; bacteriome of L. cervi	IDA
	MIGS-6.3	Salinity	Not determined	IDA
	MIGS-22	Oxygen requirement	Not determined	IDA
	MIGS-15	Biotic relationship	Symbiotic	IDA
	MIGS-14	Pathogenicity	Non-pathogen	NAS
	MIGS-4	Geographic location	Ceske Budejovice, Czech Republic	IDA
	MIGS-5	Sample collection date	June 2010	IDA
	MIGS-4.1	Longitude	14.43	IDA
	MIGS-4.2	Latitude	48.97	IDA
	MIGS-4.4	Altitude	399 m	IDA

aEvidence codes, IDA Inferred from Direct Assay, TAS Traceable Author Statement (i.e., a direct report exists in the literature), NAS Non-traceable Author Statement (i.e., not directly observed for the living, isolated sample, but based on a generally accepted property for the species, or anecdotal evidence). These evidence codes are from the Gene Ontology project [39].

Growth conditions and genomic DNA preparation
Since the bacterium is uncultivable, the host tissue was used for DNA extraction. The gut tissue containing the symbiotic organs were dissected from 6 flies in 1× phosphate buffered saline, homogenized with a sterile mortar and pestle and extracted using QiaAmp DNA Micro Kit (QIAGEN, United Kingdom). The DNA quality was assessed using Agilent 2100 Bioanalyzer (Agilent Technologies).

Genome sequencing and assembly
The paired end 100 bp long reads were generated on one lane of Illumina HiSeq2000 run at Yale Center for Genome Analysis. A5 assembly pipeline with the default settings was used to assemble the reads [18]. Of the 109,640 resulting contigs, the longest contig (836,730 bp) with 40× fold coverage formed a circular molecule with 99 bp overlap at the ends. This contig corresponds to the Ca.

Genome sequencing information
Genome project history
The host specimens Lipoptena cervi were collected from wild populations during summer 2010 in the Czech Republic. Finished genome sequence has been deposited in GenBank under acc. No. CP013920 on January 11, 2016. A summary on the sequencing project is provided in Table 2.
Arsenophonus lipopteni genome. Pilon v1.12 [19] was used to check assembly quality and to improve base calls and small indels.

Genome annotation
The finished genome was annotated using a combination of following tools: RAST [20], PGAP, and Prokka v1.10 [21]. The annotation was then manually curated and checked for the presence of gene remnants. The final annotation is available in GenBank (CP013920). Metabolic pathways were reconstructed in the RAST server [20] and gene absence was verified using BlastP searches. Proteins were assigned to the clusters of orthologous groups using COGnitor [22], and the presence of signal peptides was detected using SignalP [23]. Pfam domains were predicted using HMMER [24] against the Pfam-A database [25]. Transmembrane predictions were done using TMHMM Server v. 2.0. The search for CRISPR repeats was performed in Geneious [26].

Genome properties
The finished genome consists of 836,724 nucleotides in a single circular chromosome with a low GC content of 24.9%. The total number of predicted functional genes (667) relative to the genome size implies a lower coding density (75.8%). The average gene length of 1,001 bp however does not suggest that the genome underwent an extreme economization typical for the obligate symbionts, e.g. Buchnera aphidicola str. Cc, Ca. Sulcia muelleri, Ca. Carsonella ruddii, Ca. Zinderia insecticolla [27]. Over 99% of protein coding genes have been assigned to particular COGs and Pfam domains (Tables 3 and 4). Signal peptides and transmembrane helices have been identified for 5 and 124 protein coding genes respectively (Table 3). The noncoding RNA genes consist

Table 2: Project information

MIGS ID	Property	Term
MIGS 31	Finishing quality	Finished
MIGS 28	Libraries used	2 × 100 bp paired end
MIGS 29	Sequencing platforms	Illumina
MIGS 31.2	Fold coverage	40
MIGS 30	Assemblers	A5
MIGS 32	Gene calling method	RAST, PGAP, PROKKA
	Locus Tag	AUTO7
Genbank ID		CP013920
Genbank Date of Release		1-25-2016
GOLD ID		Gp0127464
BIOPROJECT		PRJNA306001
MIGS 13	Source Material Identifier	Host tissue
Project relevance		Evolution of bacterial symbiosis
of tmRNA, RNAsP, Alpha RBS, cspA, 35 tRNAs, and 3 rRNA genes (altogether 42 RNA genes). The three ribosomal genes are however not organized into a single operon, a phenomenon previously described for at least 9 unrelated bacterial clades, including gammaproteobacterial symbionts of the genus *Buchnera* and *Candidatus Blochmannia*, and attributed to their host-dependent lifestyle [28].

The genome properties described above coupled with 16 pseudogenes identified in the genome suggest rather recent establishment of the obligate symbiosis resulting in significant but recent gene/function loss without removal of presently non-coding regions. Regarding the coding capacity for B vitamins and related cofactors, the genome of *Ca. Arsenophonus lipopteni* appears to be highly economized. Similar to *Ca. Arsenophonus* melophagi, the bacteria cannot synthesize thiamine (B1), niacin (B3), pantothenic acid (B5) and folic acid (B9). In addition, the genome does not code for heme biosynthesis. Other basic genome characteristics are summarized in Table 3.

Conclusions

Compared to the closely related complex symbiotic system in the sheep ked, *Melophagus ovinus*, *Lipoptena cervi* appears to maintain symbiosis exclusively with *Ca. Arsenophonus lipopteni*. The growing number of genome sequences available for the symbionts and the hematophagous hosts involved in strictly bilateral symbiosis (e.g. [29, 30]) will help elucidating some common requirements on B vitamins, or possibly highlight diverse needs of insects digesting blood of various vertebrates. *Ca. Arsenophonus lipopteni* possesses complete gene sets for biosynthesis of three B vitamins, riboflavin (B2), pyridoxine (B6) and biotin (B7). While the metabolic capacity is directly assessed from genomic data, the presence of any vitamin efflux systems cannot be easily elucidated due to yet poorly understood mechanisms for vitamin export [31]. However, based on recent findings from other hematophagous systems, it has become more clear that the nutritional interaction does not rely on biosynthesis of all B vitamins as originally suggested by Puchta [32]. For instance, similar to all the other *Arsenophonus* genomes, biosynthetic capacity for thiamin is compromised in *Ca. Arsenophonus lipopteni*. The genome however possesses ABC thiamin transporter genes (*thiP, thiQ, tbpA*) implying the content of thiamin or thiamin pyrophosphate, compared to

Table 3 Statistics for finished genome assembly of *Ca. Arsenophonus lipopteni*

Attribute	Value	% of Total
Genome size (bp)	836,724	100.00
DNA coding (bp)	633,822	75.80
DNA G + C (bp)	208,103	24.90
DNA scaffolds	1	100.00
Total genes	683	100.00
Protein coding genes	625	91.50
RNA genes	42	6.10
Pseudo genes	16	2.30
Genes assigned to COGs	622	99.52
Genes assigned Pfam domains	625	100.00
Genes with signal peptides	5	0.80
Genes with transmembrane helices	124	19.80
CRISPR repeats	0	0.00

*The total is based on either the size of the genome in bp or the total number of genes.

Table 4 Number of protein coding genes assigned to the COG categories

Cat. code	Value	Percentage of total	Description
J	128	20.48	Translation, ribosomal structure and biogenesis
A	1	0.16	Processing and modification
K	17	2.72	Transcription
L	40	6.4	Replication, recombination and repair
B	0	0	Chromatin structure and dynamics
D	15	2.4	Cell cycle control, cell division, chromosome partitioning
Y	0	0	Nuclear structure
V	7	1.12	Defense mechanisms
T	10	1.6	Signal transduction mechanisms
M	70	11.2	Cell wall/membrane biogenesis
N	1	0.16	Cell motility
Z	0	0	Cytoskeleton
W	0	0	Extracellular structures
U	12	1.92	Intracellular trafficking and secretion
O	42	6.72	Posttranslational modification, protein turnover, chaperones
C	22	3.52	Energy production and conversion
G	26	4.16	Carbohydrate transport and metabolism
E	34	5.44	Aminoaicd transport and metabolism
F	24	3.84	Nucleotide transport and metabolism
H	49	7.84	Coenzyme transport and metabolism
I	26	4.16	Lipid transport and metabolism
P	24	3.84	Inorganic ion transport and metabolism
Q	1	0.16	Secondary metabolites biosynthesis, transport and catabolism
R	9	1.44	General function prediction only
S	13	2.08	Function unknown
-	51	8.16	Assigned to more than one category
-	3	0.48	Not in COGs
e.g. biotin or riboflavin, in the host blood might be sufficient for the insect metabolic needs (Nováková, unpublished data). Within the spectrum of known Arsenophonus genomes ranging from 0.57 Mb of Ca. Riesia pediculicola to 3.5 Mb of A. nasoniae, representing various symbiotic types, the genomic sequence of Ca. Arsenophonus lipoptenii clearly reflects characteristics common for obligate mutualists. Furthermore, the phylogenetic reconstruction suggests an independent origin of this obligate association within Hippoboscidae.

Acknowledgements
This work was supported by grant 13-01878S (Czech Science Foundation) to VH, and the project Postdoc USB (reg.no.CZ.1.07/2.3.00/30.0006) realized through EU Education for Competitiveness Operational Programme. PN was supported by Grant 14-35819P of the Czech Science Foundation.

Authors’ contributions
EN, AD, VH participated in the design of the study and coordination. EN, FH and PN performed the imaging. VH and FH assembled and annotated the genome sequence. All authors participated in editing of the manuscript and read and approved the final version.

Competing interests
The authors declare that they have no involvement in any organization or entity with any financial interest, or non-financial interest in the subject matter or materials discussed in this manuscript.

Author details
1Faculty of Science, University of South Bohemia, and Institute of Parasitology, Biology Centre, ASCR, v.v.i. Branisovka 31, 37005 Ceske Budejovice, Czech Republic. 2Faculty of Science, University of South Bohemia, and Institute of Entomology, Biology Centre, ASCR, v.v.i. Branisovka 31, 37005 Ceske Budejovice, Czech Republic. 3Institute of Integrative Biology, University of Liverpool, Crown Street, Liverpool L69 7ZB, UK.

Received: 26 January 2016 Accepted: 7 September 2016
Published online: 17 September 2016

References
1. Beard CB, Cordon-Rosales C, Duwasula RV. Bacterial Symbionts of the Triatominae and their potential use in control of Chagas disease transmission 1. Annu Rev Entomol. 2002;47:123–41.
2. Gumiel M, da Mota FF, Rizzo Vide S, Sarquis O, de Castro DP, Lima WM, et al. Characterization of the microbiota in the guts of Triatoma brasiliensis and Triatoma pseudomaculata infected by Trypanosoma cruzi in natural conditions using culture independent methods. Parasit Vectors. 2015;8.245.
3. Hyspa V, Křížek J. Molecular evidence for polyphyletic origin of the primary symbionts of sucking lice (Phthiraptera, Anoplura). Microbial Ecol. 2007;54:242–52.
4. Sasaki-Fukatsu K, Koga R, Nikoh N, Yoshizawa K, Kasai S, Mihara M, et al. Genome sequence of the tsetse fly (Glossina morsitans morsitans): an emerging clade of intracellular symbionts with a broad host distribution. BMC Microbiol. 2009;9:1–14.
5. Tritt A, Eisen JA, Facchiotto MT, Darling AE. An integrated pipeline for de novo assembly of microbial genomes. PLoS One. 2012;7:e42304.
6. Walker BJ, Abeel T, Shea T, Priest M, Abouelleil A, Salkhiuram S, et al. Pilorn: an integrated tool for comprehensive microbial variant detection and genome assembly improvement. PLoS One. 2014;9:e112963.
7. Aziz RK, Bartels D, Best AA, DeJongh M, Disz T, Edwards RA, et al. The RAST Server: rapid annotations using subsystems technology. BMC Genomics. 2008;9:75.
8. Seemann T. Pickka: rapid prokaryotic genome annotation. Bioinformatics. 2014;30:2068–9.
9. Tatusov RL, Galperin MY, Natale DA, Koonin EV. The COG database: a tool for genome-scale analysis of protein functions and evolution. Nucleic Acids Res. 2000;28:33–6.
10. Petersen TN, Brunak S, von Heijne G, Nielsen H. SignalP 4.0, discriminating signal peptides from transmembrane regions. Nat Methods. 2011;8:75–6.
11. Eddy SR. Accelerated Profile HMM Searches. PLoS Comput Biol. 2011;7:e1002195.
12. Bateman A, Birney E, Cerutti L, Durbin R, Eddy L, Eddy SR, et al. The Pfam protein families database. Nucleic Acids Res. 2002;30:276–80.
13. Kearse M, Moir R, Wilson A, Stones-Havas S, Cheung M, Sturrock S, et al. Geneious Basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics. 2012;28:1647–9.
14. McCutcheon JP, Moran NA. Extreme genome reduction in symbiotic bacteria. Nat Rev Microbiol. 2012;10:13–6.
15. Merhej V, Royer-Carelli M, Pontarotti P, Raoult D. Massive comparative genomic analysis reveals convergent evolution of specialized bacteria. Biol Direct. 2009;4:13.
16. Kirkness EF, Haas BJ, Sun W, Bryant HR, Perotti MA, Clark JM, et al. Genome sequences of the human body louse and its primary endosymbiont provide insights into the permanent parasitic lifestyle. Proc Natl Acad Sci U S A. 2010;107:12168–73.
17. Attardo GM, Abila PP, Auma JE, Baumann AA, Benoit JB, Brelsfoard CL, et al. Genome sequence of the triatomine blood-feeding insect Rhodnius prolixus (Hemiptera: Reduviidae): a model for the evolution of complex social systems. Genome Biol. 2006;7:238.
18. Woese CR, Kandler O, Wheelis ML. Towards a natural system of organisms: the domains Archaea, Bacteria, and Eucarya. Proc Natl Acad Sci U S A. 1990;87:4576–9.
19. Garrity GM, Bell JA, Lilburn T, Pyszewski T. Placement of the bacteria and actinomycetes in the domains Archaea, Bacteria, and Eucarya. Proc Natl Acad Sci U S A. 1997;94:14256–61.
35. Garrity GM, Bell JA, Lilburn T. Class III. Gammaproteobacteria class. nov. In: Garrity GM, Brenner DJ, Krieg NR, Staley JT, editors. Bergey's Manual of Systematic Bacteriology, vol. Volume 2, Part B. 2nd ed. New York: Springer; 2005. p. 1.
36. Garrity GM, Holt JG. Taxonomic Outline of the Archaea and Bacteria. In: Garrity GM, Boone DR, Castenholz RW, editors. Bergey's Manual of Systematic Bacteriology, vol. Volume 1, 2nd ed. New York: Springer; 2001. p. 155–66.
37. Judicial Commission Conservation of the family name Enterobacteriaceae, of the name of the type genus, and designation of the type species OPINION NO. 15. Int Bull Bacteriol Nomencl Taxon. 1958;8:73–4.
38. Werren JH. Arsenophonus. Bergey's Manual of Systematic Bacteriology (Vol. 2), G.M. Garrity (ed), New York: Springer-Verlag; 2004:1–4
39. Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM, et al. Gene ontology: tool for the unification of biology. The Gene Ontology Consortium. Nat Genet. 2000;25:25–9.