Theoretical study of the effect of water clusters on the enol content of acetone as a model for understanding the effect of water on enolization reaction

Zahra Tohidi Nafe1 · Nematollah Arshadi1

Received: 1 June 2021 / Accepted: 15 July 2021 / Published online: 29 July 2021
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021

Abstract
The enolization of simple carbonyl compounds is a key reaction for many chemical and biochemical processes. Numerous theoretical and experimental studies have been done to probe aspects of the mechanism of this reaction. In this work, the effect of small water clusters, (H₂O)ₙ, n = 1–9, on the enol content of acetone has been investigated by using density functional theory calculations at the M06 level of theory in the gas and solution phases. The calculations indicated that the formation of hydrogen-bonded assemblies between water clusters and both tautomers of acetone affect the enolization reaction. Among them, the trimeric water cluster has the highest binding energy difference (ΔE_b) in the solution phase and greatly shifts the equilibrium in favor of the enol form. The results also show that under this condition, the enol content of acetone increased with decreasing polarity of the solvent. The practical conclusion of this study is that the enol content of carbonyl compounds can be maximized only by addition of a defined amount of water.

Keywords Enol content · DFT calculations · Water clusters · Hydrogen-bonded assembly · Water-clustered tautomer · Enolization reaction

Introduction
The study of enolization or keto-enol tautomerism of ketones from experimental and theoretical aspects is an active area of research due to its essential role in the chemical and biochemical processes [1–4]. Experimental data reveal that the enol content, Kₑ ([enol]/[ketone]), of simple ketones is low even in pure form and in their aqueous solutions. It is not over 1–2% [5, 6]. The enol content values (pKₑ) of acetone which have been reported by other authors are given for comparison in Table 1.

The keto form is thermodynamically more stable than the enol form, but some factors, such as the dielectric constant and hydrogen bond–forming ability of solvent, temperature, concentration, catalyst, and substituent groups, shift the equilibrium in favor of the enol form. For instance, the more polar keto form in a polar solvent is the predominant tautomeric form due to the solvation effect [8, 15–21].

The enol content of carbonyl compounds has been traditionally determined by the Kurt-Meyer titration method, but when the amount of enol form is less than 1 ppm, this technique does not work well. In that case, spectroscopic methods, flash photolysis, and thermochemical and kinetic methods can be used [6, 7, 14, 22–26]. Also, some theoretical studies have been carried out as well [27–32].

Researchers are interested in designing systems that improve the Kₑ of mono-carbonyl compounds. Recently, water was used as a catalyst to increase the rate of enolization reactions. It is found that the free energy of activation of the keto-enol tautomerization process decreases in the presence of one or two water molecules [16, 17, 21, 28, 31]. It also seems that water molecules control the pathway of aldol reaction by decreasing or increasing the formation rate of the enol intermediate, in other words, the enol content of the carbonyl compound. In our previous work, we theoretically found that the aldol reaction in the presence of L-proline as a catalyst can proceed concurrently through enamine-based and enol-based pathways in DMSO as a solvent at room temperature. But the formation of the enol intermediate predominates upon the addition of water [33]. Also, the product of L-proline-catalyzed aldol reaction between acetone and...
4-nitrobenzaldehyde in the presence of water shows good yield and weak stereoselectivity but in the absence of water, the results reversed [34, 35]. Now these questions arise: does water change the reaction mechanism? Do water molecules alone or together affect the reaction rate? To answer these questions, we calculated the enol content of acetone in the presence of one molecule of water and some small water clusters (WCs) using DFT calculations.

Computational method

All the calculations were performed using the Spartan ’16 software package [36]. The enol content of acetone was examined in the presence of one molecule of water and some small WCs, \((H_2O)_n, n = 2–9\), in the gas phase and acetone and DMSO as a solvent at room temperature (Fig. 1) [37–39].

The key idea of the work is based on the formation of a hydrogen-bonded assembly between a WC and both tautomeric forms of acetone — water-clustered tautomers — and thus, hydrogen bonding plays an important role in the stability and behavior of the assemblies. The computations were done using M06, the hybrid functional of Truhlar, which can account for dispersion interactions and describe some weak non-covalent interactions such as hydrogen bonding [40–42]. So, all calculations were carried out at the M06/6–31 + G** level of theory in the gas phase and acetone and DMSO as a solvent at room temperature. Solvent effects were included using the SM8 solvation model.

The enol content \((K_e)\) was calculated based on the thermodynamic properties of the assembly of both tautomeric forms of acetone with the same water cluster by the following equation:

\[
K_e = e^{\left(\frac{-\Delta G}{RT}\right)}
\]

where \(K_e\) is the equilibrium constant between the tautomers, the gas constant \(R\) is 8.314 J/mol, and the temperature \(T\) is 298.15 K.

Vibrational frequencies for characterizing stationary points were calculated at the same level. No imaginary frequency was observed. Thus, all optimized structures are true minima of the potential energy surface.

Results and discussion

The water-clustered tautomers, including WCs, 1–5, 8, and 9, and the keto form (K) of acetone, \(K^n\), show one hydrogen bond between its oxygen atom and the WCs. But in two other assemblies including 6 and 7, the acetone molecule enters into the structure of WC and forms a new mixed cluster. In all assemblies, the oxygen atom of one water molecule is slightly pointed to the hydrogen atom of the methyl group (\(\alpha\)-proton) of the acetone. This interaction may facilitate the formation of enol through proton abstraction by the nearby water molecule (Fig. 2). The length of the hydrogen bond between K and WC \(d_1\) and the distance between the water molecule and the \(\alpha\)-proton of acetone \(d_2\) are presented in Table 2.

In the water-clustered tautomers including the enol form (E) of acetone, \(E^n\), the hydroxyl group actively participates, mainly through two hydrogen bonds, to merge two structures into a new WC-like structure (Fig. 3). The lengths of two hydrogen bonds between E and WC \(d_3, d_4\) are presented in Table 2.

According to Table 1, the K3 assembly is geometrically much more prone to being converted into the corresponding enol form, \(E^3\), in the solution phase because it has the

Table 1
Some reported values for enol content value of acetone at 25 °C.

Author	\(K_e\)	p\(K_e\)	Author	\(K_e\)	p\(K_e\)
Schwarzenbach\(^a\)	2.5 × 10^{-4}	3.6	Gero\(^b\)	1.5 × 10^{-4}	3.82
Bell\(^a\)	< 10^{-4}	4	Hine\(^c\)	2.4 × 10^{-7}	6.62
Chiang\(^a\)	6 × 10^{-9}	8.22	Sunner\(^d\)	1.6 × 10^{-4}	3.8
Dubois\(^e\)	3.5 × 10^{-7}	6.46	Osuga\(^f\)	4.0 × 10^{-2}	1.4
Kresse\(^e\)	4.6 × 10^{-9}	8.34	Msiedeen\(^f\)	3.5 × 10^{-11}	10.5

\(^a\)In aqueous solution [7–10]
\(^b\)In 75% methanol–water [5]
\(^c\)Idealized gas state [11]
\(^d\)In 60% ethanol–water [12]
\(^e\)In toluene/high pressure [13]
\(^f\)DFT study in gas phase [14]
shortest distance between the α-proton of acetone and the oxygen atom of water molecule (d2).

The enol contents of acetone in the presence of different WCs and in the gas phase or polar solvents were calculated based on the Gibbs free energy of both assemblies, Kn and En (Table 3). It is expected that the increase in the water content leads to the rise of the enol content, pKe, of acetone because of the formation of hydrogen-bonded assemblies, Kn and En, that stabilize both tautomeric forms of acetone. But the results showed that the number of water molecules of WCs and the solvent polarity have different effects on the enol content of acetone. The pKe decreases with increase of the solvent polarity. Therefore, the gas phase and non-polar solvents are more suitable condition for the enolization of acetone.

In the gas phase, the WC including 5 water molecules behaves differently from most other WCs. But, in the polar solvents, WC with 3 water molecules shows such a behavior. For both cases, the enolization of acetone is maximum. It seems that the WCs can stabilize the enol form more than the keto form by the formation of an assembly that includes a more stable WC-like segment, E3 and E5 (Fig. 3). The significant decrease of enol content in 8 can be attributed to the high stability of its WC, the cubic structure of which is disrupted by the formation of the E8 assembly (Table 3, Fig. 3). (H2O)4 and (H2O)8 among the other small cyclic WCs have distinct stability. Therefore, as is seen in Fig. 2, K4 and K8 show the resistance of the WC against inser-

\[
\begin{array}{|c|c|c|c|}
\hline
\text{K}^n & \text{d}_1, \text{d}_2 (\text{Å}) & \text{Gas} & \text{Acetone} \\
\hline
\text{K}^1 & 1.90, 2.36 & 1.85, 2.76 & 1.84, 3.02 \\
\text{K}^2 & 1.82, 2.27 & 1.78, 2.86 & 1.78, 2.87 \\
\text{K}^3 & 1.77, 2.46 & 1.75, 2.40 & 1.75, 2.41 \\
\text{K}^4 & 1.89, 2.43 & 1.83, 2.69 & 1.83, 2.69 \\
\text{K}^5 & 1.94, 2.50 & 1.84, 2.57 & 1.84, 2.54 \\
\text{K}^6 & 1.93, 2.51 & 1.76, 3.33 & 1.75, 3.32 \\
\text{K}^7 & 1.86, 2.48 & 1.83, 2.62 & 1.82, 2.64 \\
\text{K}^8 & 2.00, 2.79 & 1.78, 3.02 & 1.77, 3.03 \\
\text{K}^9 & 1.85, 2.54 & 1.82, 3.01 & 1.82, 3.05 \\
\hline
\end{array}
\]

\[
\begin{array}{|c|c|c|c|}
\hline
\text{E}^n & \text{d}_3, \text{d}_4 (\text{Å}) & \text{Gas} & \text{Acetone} \\
\hline
\text{E}^1 & 1.87, - & 1.83- - & 1.84, - \\
\text{E}^2 & 1.82, 1.98 & 1.82, 2.03 & 1.83, 2.02 \\
\text{E}^3 & 1.76, 1.84 & 1.73, 1.84 & 1.74, 1.84 \\
\text{E}^4 & 1.72, 1.79 & 1.71, 1.82 & 1.73, 1.83 \\
\text{E}^5 & 1.75, 2.00 & 1.73, 1.98 & 1.74, 1.98 \\
\text{E}^6 & 1.72, 1.85 & 1.71, 1.87 & 1.72, 1.88 \\
\text{E}^7 & 1.66, 1.92 & 1.68, 1.93 & 1.70, 1.93 \\
\text{E}^8 & 1.68, 1.73 & 1.68, 1.76 & 1.69, 1.75 \\
\text{E}^9 & 1.65, 1.89 & 1.66, 1.90 & 1.67, 1.90 \\
\hline
\end{array}
\]

* The distance between the O atom of water molecule and the α-proton of K.
interaction between water molecules and the hydroxyl group of the enol form as a part of a stable WC [44]. For more details see the supporting information.

The orientation of orbitals and distance between the hydrogen atom of water and carbon–carbon double bond of the enol form in E^5 is such that H-π bonding can form quite easily (Fig. 4) [45]. Therefore, this extra interaction stabilizes more the assembly and increases K_e.

The energy difference (ΔE) and the Gibbs free energy difference (ΔG) of K_n and E_n assemblies in different solvents are plotted against the number of water molecules (n) in the WC (Fig. 5a, b). It is seen that the value of ΔE for acetone in the gas phase is 13 kcal/mol, which is in good agreement with experimental data, 13.9 kcal/mol [24, 46, 47]. The positive value of ΔE indicates that the keto form is more stable than the enol one. Decreasing ΔE values mean the enolization process is facilitated by the WC. In other words, the keto form of acetone is easier to convert to the enol form.

As shown in Fig. 5a, the ΔE values for 3, 5, and 9 assemblies in the polar solvents and for 5 and 9 assemblies in the gas phase are all minimum values. The above results are also confirmed by the Gibbs free energy difference (ΔG) graphs (Fig. 5b). It is seen that 3 for the solution phase and 5 for the gas phase are global minimum.

To confirm these results, the binding energy for the assemblies was calculated. The binding energy of an assembly (E_b) is defined as:

$$E_b = \frac{\Delta E}{n}$$

The dipole moment of acetone and DMSO are 2.62 D and 3.96 D, respectively.
where \(n \) is the number of water molecules, \(E_{\text{H}_2\text{O}} \) is the energy of a water molecule, \(E_{\text{tautomeric form}} \) is the energy of the enol or keto form of acetone, and \(E_{\text{assembly}} \) is the energy of the assembly, \(K^n \) or \(E^n \). The binding energy \((E_b) \) of each assembly \((K^n \text{ and } E^n) \) is plotted against the number of involved water molecules \((n) \) (Fig. 6a). From the graph, it is observed that the binding energy of each assembly increases with increasing \(n \). Except in some few special cases, the binding energy of \(E^n \) is a little higher than that of \(K^n \) both in the gas phase and in solution, but the \(K^n \) assemblies are still more stable than the \(E^n \) ones. The \(E_b \) values for the gas phase are higher than those for the solution phases. This is due to the interaction of water molecules with the solvent, which leads to weakening of the hydrogen bonds in the solution phase and, therefore, decreasing the stability of assemblies.

The binding energy difference (\(\Delta E_b \)) of water-clustered tautomers is calculated by subtracting \(E_b(K^n) \) from \(E_b(E^n) \). This quantity is a good and reliable estimate of the overall energy for the enolization reaction of acetone. An energy diagram is created by plotting the \(-\Delta E_b \) values as a function of \(n \) (Fig. 6b). The \(pK_e \) values are also plotted for comparison. As is seen, the enolization reaction of acetone is very favorable in the presence of 5 and 3 water molecules in the gas and solution phases, respectively. As mentioned before, in these cases, the binding energy of the enol form of acetone is approaching the keto form.
Conclusions

The results showed that the formation of mixed hydrogen-bonded assemblies between WC s and both tautomers of a carbonyl compound affect the equilibrium position of its enolization process. Also, it is seen that the enol content increased with decreasing polarity of the solvent, so the trend is gas > acetone > DMSO. It indicated that the shift of the keto-enol equilibrium toward the enol tautomer was highest in non-polar solvents.

As reported earlier, the L-proline-catalyzed aldol reaction in organic solvents may proceed through two parallel competing reaction pathways ($\Delta E_a \sim 2$ kcal/mol), the formation of enamine or the formation of enol as an intermediate, based on the amount of water. The enamine formation is a favorable pathway in the absence of water, but the addition of a small amount of water preferred the formation of enol [33].

According to our results, the enol content (K_e) of acetone improved by adding a defined amount of water. Any changes in this defined amount of water cause a decrease in the enol formation. Thus, the enol formation pathway preferred the enamine one in the presence of an optimized amount of water. If this conclusion is correct, then the addition of a non-optimized amount of water to the proline-catalyzed aldol reaction solvent can have unpleasant effects on the yield and stereoselectivity of the reaction [34, 35]. This topic is currently under investigation in our group for more confirmation and development.

Supplementary information The online version contains supplementary material available at https://doi.org/10.1007/s11224-021-01813-y.
Acknowledgements We gratefully acknowledge the Department of Chemistry of the University of Zanjan for its technical support of this work.

Author contribution Both authors contributed equally to this work. N. Arshadi as a PhD thesis supervisor contributed to the study conception and design. All calculations and analysis were performed by Z. Tohidi Nafe as a PhD student. The first draft of the manuscript was written by Z. Tohidi Nafe, and N. Arshadi commented on previous versions of the manuscript. Both authors read and approved the final manuscript.

Availability of data and material The authors confirm that the data supporting the findings of this study are available within the article and its supplementary material.

Declarations

Conflict of interest The authors declare no competing interests.

References

1. Berg JM, Tymoczko JL, Stryer L (2006) Lecture notebook for biochemistry. Macmillan
2. Knox WE (1953) The relation of liver kynureninase to tryptophan metabolism in pyridoxine deficiency. Biochem J 53:379–385
3. Heidelberger C, Abraham EP, Leprovsky S (1949) Tryptophan metabolism; concerning the mechanism of the mammalian conversion of tryptophan into nicotinic acid. J Biol Chem 179:151–155
4. Rund JV, Plane RA (1964) Catalysis of the decarboxylation of dimethylxalolacacetate by manganese (II), nickel (II), and their complexes. J Am Chem Soc 86:367–371
5. Gero A (1954) Studies on enol titration. II. Enol contents of some ketones and esters in the presence of methanol. J Org Chem 19:1960–1970. https://doi.org/10.1021/jo01377a013
6. Domonkos L, Ratkovics F (1988) Identification of the enol content in some monoketones by an IR spectroscopic method. Monatsh Chem 119:177–186. https://doi.org/10.1007/BF00805992
7. Dubois JE, El-Alaoui M, Toullec J, (1981) Kinetics and thermodynamics of keto-enol tautomism of simple carbonyl compounds: an approach based on a kinetic study of halogenation at low halogen concentrations. J Am Chem Soc 103:5393–5401. https://doi.org/10.1021/ja00408a020
8. Chaing Y, Kresge AJ, Tang YS, Wizj J (1984) pKa and keto-enol equilibrium constant of acetone in aqueous solution. J Am Chem Soc 106:460–462. https://doi.org/10.1021/ja00314a055
9. Bell RP, Smith PW (1966) The enol content and acidity of cyclopentanone, cyclohexanone, and acetone in aqueous solution. J Chem Soc B 241–243 https://doi.org/10.1039/J29660000241
10. Kresge AJ (2007) Generation and study of enols other reactive and species. Pure Appl Chem 63:213–221. https://doi.org/10.1351/pac199163020213
11. Hine J, Arata K (1976) Keto-enol tautomism. II. The calorimetric determination of the equilibrium constant for keto-enol tautomerism for cyclopentanone. Bull Chem Soc Jpn 49:3085–3088
12. Sunner S (1957) The heat of hydrolysis of i-propenyl acetate and m-cresyl acetate and the heat of enolization of acetone. Acta Chem Scand 1:1757–1760
13. Osugi J, Mizukami T, Tachibana T (1966) The effect of pressure on the keto-enol equilibria of acetone and cyclohexanone. Rev Phys Chem Jpn 36:8–19. http://hdl.handle.net/24334/46874
14. Al-Msedeek AM, Al-Mazaideh G, Khalil SM (2016) A theoretical study of the enol contents of cyclohexanone, cyclopentanone and acetone. Am Chem Sci J 13:1–8. https://doi.org/10.9734/acsij/2016/25048
15. Shechter H, Colliis MJ, Desry R, Okuzumi Y, Chen A (1962) The effects of ring size on the rates of acid- and base-catalyzed enolization of homologous cycloalkanones and cycloalkyl phenyl ketones. J Am Chem Soc 84:2905–2910. https://doi.org/10.1021/ja00874a012
16. Malhotra S, Jaspal DK, Khamparia S (2017) p-Chloroacetophenone: a study of enolization kinetics. Chem Eng Commun 204:1445–1451. https://doi.org/10.1080/00986445.2017.1367672
17. Malhotra S, Jaspal DK (2013) Kinetics of enolisation of aceto- phenone and p-bromoacetophenone: comparative studies. Bull Chem React Eng Catal 8:105–109. https://doi.org/10.9767/bcrec.8.2.4653.105-109
18. Hegarty AF, Dowling JP, Eustace SJ, McGarraghy M (1998) Enolization of aldehydes and ketones: structural effects on concerted acid-base catalysis. J Am Chem Soc 120:2290–2296. https://doi.org/10.1021/ja9729544
19. Lienhard GE, Wang TC (1969) On the mechanism of acid-catalyzed enolization of ketones. J Am Chem Soc 91:1146–1153. https://doi.org/10.1021/ja1033a019
20. Novak P, Škare D, Sekušak S, Vickič-Topič D (2000) Substituent, temperature and solvent effects on keto-enol equilibrium in symmetrical pentane-1,3,5-triones. Nuclear magnetic resonance and theoretical studies. Croatica Chem Acta 73:1153–1170
21. Malhotra S, Jaspal DK (2014) Kinetics of the enolisation reaction of m-nitro acetophenone catalyzed by amino acid. Bull Chem React Eng Catal 9:16–22. https://doi.org/10.9767/bcrec.9.1.5258.16-22
22. Bell RP, Gelles E, Moller E (1949) Kinetics of the base-catalyzed halogenation of some ketones and esters. Proc R Soc London Ser A Math Phys Sci 198:308–322. https://doi.org/10.1098/rspa.1949.0103
23. Keeffe JR, Kresge AJ (1990) The chemistry of enols. Wiley, Chichester
24. Zhang X, Malick D, Petersson GA (1998) Enolization enthalpies for aliphatic carbonyl and thiocarbonyl compounds. J Org Chem 63:5314–5317
25. Schweitzer GK, Benson EW (1968) Enol content of some beta-diketones. J Chem Eng Data 13(3):452–453
26. Wizj J (2010) Kinetic studies of keto-enol and other tautomeric equilibria by flash photolysis. Adv phys Org Chem 44:325–356
27. Falklőf O (2015) Computational studies of photobiological keto-enol reactions and chromophores (Doctoral dissertation, Linköping University Electronic Press)
28. Jana K, Ganguly B (2018) DFT study to explore the importance of ring size and effect of solvents on the keto-enol tautomerization process of α- and β-cyclodexins. ACS Omega 3:8429–8439. https://doi.org/10.1021/acsomega.8b01008
29. Lee D, Kim CK, Lee BS, Lee I, Lee BC (1997) A theoretical study on keto-enol tautomerization involving simple carbonyl derivatives. J Comput Chem 18:56–69. https://doi.org/10.1002/(SICI)1096-987X(19970115)18:1<56::AID-JCC3>3.0.CO;2-Z
30. Noack WE (1979) An ab initio study of the keto-enol tautomerism. Theor Chim Acta 53:101–119. https://doi.org/10.1007/BF00548824
31. Cucinotta CS, Ruini A, Catellani A, Stirling A (2006) Ab initio molecular dynamics study of the keto-enol tautomerism of acetone in solution. Chem Phys Chem 7:1229–1234. https://doi.org/10.1002/cphc.200600007
32. Babu NS (2013) DFT studies of molecular structure, equilibrium constant for keto-enol tautomerism and geometrical isomerism (E-Z) of 2-amino-1-phenylpropan-1-one (Cathinone). Adv Appl Sci Res 4:147–153
33. Nobakht Y, Arshadi N (2018) DFT study of the dual catalytic role of L-proline in the aldol reaction and the effect of water on it. J Mol Model 24:334. https://doi.org/10.1007/s00894-018-3851-0
34. Giacalone F, Gruttadauria M, Meo PL, Rielà S, Noto R (2008) New simple hydrophobic proline derivatives as highly active and stereoselective catalysts for the direct asymmetric aldol reaction in aqueous medium. Adv Synth Catal 350:2747–2760
35. Pihko PM, Laurikainen KM, Usano A, Nyberg AI, Kaavi JA (2006) Effect of additives on the proline-catalyzed ketone–aldehyde aldol reactions. Tetrahedron 62:317–328
36. Wavefunction Inc. (2017) Spartan’16, Windows version 2.0.7., Wavefunction Inc., Irvine
37. Grabowski SJ (2006) Hydrogen bonding: new insights. Springer
38. Sen S, Boda M, Lata SV, Patwari GN (2016) Internal electric fields in small water clusters [(H2O)n; n = 2–6], Phys Chem Chem Phys 18:16730–16737. https://doi.org/10.1039/c6cp02803a
39. The Cambridge Energy Landscape Database (2021) http://www.wales.ch.cam.ac.uk/~wales/CCD/TIP4P-water.html. Accessed May 21.
40. Zhao Y, Truhlar DG (2008) The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: two new functionals and systematic testing of four M06-class functionals and 12 other functionals. Theor Chem Acc 120:215–241
41. Wheeler SE, Moran A, Pieniazek SN, Houk KN (2009) Accurate reaction enthalpies and sources of error in DFT thermochemistry for aldol, Mannich, and α-aminooxylation reactions. J Phys Chem A 113:10376–10384
42. Hartley MK, Vine S, Walsh E, Avrantinis S, Daub GW, Cave RJ (2015) Comparison of relative activation energies obtained by density functional theory and the random phase approximation for several Claisen rearrangements. J Phys Chem B 120:1486–1496
43. Liu X, Lu WC, Wang CZ, Ho KM (2011) Energetic and fragmentation stability of water clusters (H2O)n, n = 2–30. Chem Phys Lett 508:270–275. https://doi.org/10.1016/j.cplett.2011.04.055
44. Maheshwary S, Patel N, Sathyamurthy N, Kulkarni AD, Gadre SR (2001) Structure and stability of water clusters (H2O)n; n = 8–20: an ab initio investigation. J Phys Chem A 105:10525–10537
45. Philip D, Robinson JMA (1998) A computational investigation of cooperativity in weakly hydrogen-bonded assemblies. J Chem Soc Perkin Trans 2:1643–1650. https://doi.org/10.1039/A800931G
46. Turecek F, Brabec L, Korvola J (1988) Unstable enols in the gas phase. Preparation ionization, energies, and heats of formation of (E)-and (Z)-2-buten-2-ol, 2-methyl-1-propen-1-ol, and 3-methyl-2-buten-2-ol. J Am Chem Soc 110:7984–7990
47. Holmes JL, Lossing FP (1982) Heats of formation of ionic and neutral enols of acetaldehyde and acetone. J Am Chem Soc 104:2648–2649

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.