The HIV-1 Tat protein is monomethylated at lysine-71 by the lysine methyltransferase KMT7*

Ibraheem Ali†‡, Holly Ramage‡, Daniela Boehm‡, Lynnette M.A. Dirk§, Naoki Sakane‡¶, Kazuki Hanada†, Sara Pagans‡, Katrin Kaehlke‡, Kay Aul† trolling, Raymond Trievel††, Martina Schnoelzer‡‡, Masafumi Kamada†, Robert Houtz§, Melanie Ott†‡‡

From the † Gladstone Institute of Virology and Immunology, San Francisco, CA, ‡ University of California, San Francisco, Department of Medicine, San Francisco, CA, § University of Kentucky, Department of Horticulture, Lexington, KY, ¶ Pharmaceutical Frontier Research Laboratory, Yokohama, Japan, ‡ University of California, San Francisco, Department of Biochemistry and Biophysics, San Francisco, CA, †† University of Michigan, Department of Biological Chemistry, Ann Arbor, MI, and the ‡‡ German Cancer Research Center (DKFZ), Heidelberg, Germany.

* This work was supported by grant support from the University of California San Francisco, Gladstone Institute of Virology and Immunology Center for AIDS Research, a collaboration with JT Pharma, Gladstone Institutes, California Aids Research Program, and grants R01AI083139, U19AI096113, T32AI7334-26, P30AI027763, and F13-GI-316 from the National Institutes of Health.

† These authors contributed equally to the study.
‡ To whom correspondence should be addressed. Tel. (415) 734-4807; mott@gladstone.ucsf.edu

Running Title: KMT7 monomethylates Tat at K71

Keywords: Human immunodeficiency virus type 1 (HIV-1), post-translational modification, protein methylation, viral transcription, transcription regulation

ABSTRACT

The HIV-1 transactivator protein Tat is a critical regulator of HIV transcription primarily enabling efficient elongation of viral transcripts. Its interactions with RNA and various host factors are regulated by ordered, transient posttranslational modifications (PTMs). Here, we report a novel Tat modification, monomethylation at lysine-71 (K71). We found that K71 monomethylation (K71me) is catalyzed by KMT7, a methyltransferase that also targets lysine-51 (K51) in Tat. Using mass spectrometry, in vitro enzymology, and modification-specific antibodies, we found that KMT7 monomethylates both K71 and K51 in Tat. K71me is important for full Tat transactivation, as KMT7 knockdown impaired the transcriptional activity of wild type (WT) Tat but not a Tat K71R mutant. These findings underscore the role of KMT7 as an important monomethyltransferase regulating HIV transcription through Tat. The HIV-1 epidemic remains a global health problem despite the growing availability of potent antiretroviral therapies. These therapies are not curative, as latent, transcriptionally silent virus can spontaneously reactivate from sanctuaries and rapidly rekindle viral infection after withdrawal of therapy (1-3). Therefore, the molecular mechanisms of the activation and suppression of HIV transcription are of great interest.

HIV encodes its own viral transactivator, Tat, which activates HIV transcription and facilitates its own production in a positive feedback loop. Tat is a small protein, typically found in a full-length form of ~101 amino acids (aa) or as a splice variant (72 aa) encoded only by the first exon of the tat open reading frame. Both isoforms efficiently transactivate the HIV promoter in the 5’ long terminal repeat (LTR). Tat interacts with the positive transcriptional elongation factor b (P-TEFb), and viral RNA through several well-characterized domains that can be found in its one-exon form: a cysteine-
rich domain (aa 22–37) and a highly conserved core domain (aa 41–48), both of which participate in binding of P-TEFb (4–6). The neighboring arginine-rich motif (ARM; aa 49–57) interacts with a specific stem-loop RNA structure called transactivation response element (TAR) located in the 5′ extremities of all viral transcripts (7–10). Specific binding of the Tat ARM to TAR requires the coordinated binding of P-TEFb to Tat, as the cyclin T1 subunit of P-TEFb binds both the Tat cysteine-rich and core domains and loop sequences of TAR (11). C-terminal to these well-characterized domains is a glutamine-rich motif (aa 59–72). When expressed as a peptide, this region adopts a conserved α-helical structure that is stabilized upon binding to TAR RNA and is implicated in T-cell apoptosis (12,13).

Tat is regulated by a number of PTMs including phosphorylation, acetylation, methylation, and polyubiquitylation (14). The Tat ARM is highly modified at lysine and arginine residues. These modifications, including acetylation of K50/51 and methylation of K51 and R52/53, regulate TAR and P-TEFb binding positively (K51me) or negatively (K50ac/K51ac; R52me2/R53me2) (15–20). The role of PTMs in the glutamine-rich motif is still unclear. Several phosphorylation sites in this domain (S62, T64, S68) enhance transcriptional activity, but are not well conserved among viral isolates (21,22). In contrast, lysine-71 is a highly conserved residue found in 74% of HIV-1 isolates across all clades reported in the HIV-1 sequence compendium (22). At this residue, polyubiquitylation at K71 is required for full transactivation, but does not affect Tat stability (23).

We previously reported that K51, within the Tat ARM, is monomethylated (K51me) by the methyltransferase KMT7 (also called SET7/9) (17). Monomethylation at K51 enhanced TAR RNA binding of Tat, and increased trimolecular complex formation between Tat, TAR, and P-TEFb. Interestingly, KMT7 itself was found to bind TAR RNA in band-shift assays, indicating that it could be recruited to the HIV promoter before Tat was produced (17). In in vitro methylation assays of ARM peptides (aa 44–59), we observed that that KMT7 fails to methylate residues other than K51 in Tat (17,18).

However, when we conducted the same in vitro assays using purified one-exon Tat proteins (Tat72), we observed additional methylation on Tat indicating that one or more additional methylation sites existed outside of the ARM region. In this study, we sought to further understand the role of KMT7 in the Tat transcription cycle by identifying and characterizing the additional modification(s). We hypothesized that understanding the full extent of Tat methylation would bring new insight into the regulation of Tat function and the role of KMT7 as an HIV-1 transcriptional cofactor.

RESULTS

*In Vitro Methylation of Tat72 Peptides Reveals a Novel KMT7 Methylation Site at K71—*To determine whether K51 is the only KMT7 methylation site in Tat, we performed in vitro methylation reactions with Tat peptides spanning aa 1–72 (Tat72). We observed substantial incorporation of 3H-SAM in Tat72 peptides carrying monomethylated K51, indicating additional KMT7 methylation sites in Tat (Fig. 1A and 1B). In Tat72 peptides with an acetyl group at K50, 3H-SAM incorporation was also slightly decreased. This is consistent with previous observations that this modification reduces access of KMT7 to K51 (18).

To specifically identify additional KMT7 methylation sites in Tat, we performed in vitro methylation reactions using non-radiolabeled SAM and subjected modified Tat proteins to MALDI-TOF MS/MS analysis developed to analyze Tat (18). This analysis revealed monomethylation at a single additional site, K71 (Fig. 1C, 1D, Table S-1) in two distinct peptides in reactions with KMT7, but not in reactions with a control enzyme KMT1E (also called SETDB1) or no enzyme (Fig. 1C). In one peptide, only K71 was monomethylated (Fig. 1D, left); in the other, both K51 and K71 were monomethylated (Fig. 1D, right). Neither K51 nor K71 was dimethylated, underscoring the function of KMT7 as a monomethyltransferase in Tat.

*KMT7 Modifies Tat at K71 in Vitro—*Next, we tested whether pre-modification of K71 in Tat72 peptides affects in vitro methylation by KMT7.
Premethylation of K71 markedly decreased 3H-SAM incorporation while K51 pre-methylation had a lesser effect. Finally, premethylation of both K51 and K71 abolished methylation of Tat, demonstrating that there are no additional targets for KMT7 in Tat (Fig. 2A). These findings support K51 and K71 as the sole sites for KMT7 monomethylation in Tat72.

To better quantify dynamics of KMT7-mediated methylation of Tat72 proteins, we used pre-modified Tat proteins in a modified kinetic radiometric assay (24). After testing for linearity with time and KMT7 enzyme concentrations, kinetics assays were performed with various concentrations of Tat72 proteins (Fig. 2B). Methyltransferase activity was hyperbolic, and all Tat proteins except the Tat K51/K71me doubly modified form followed Michaelis-Menten kinetics. The doubly modified form had very little methylation, consistent with our observations using autoradiography (Fig. 2A).

The catalytic turnover (k_{cat}) and Michaelis constant (K_m) of the Tat K51me proteins were 62% lower relative to the unmodified proteins. Interestingly, the k_{cat} of the K71me proteins decreased by 83% but the K_m decreased only 21%. Thus, the methylation efficiency (k_{cat}/K_m) on K51me protein was similar to that of the unmodified protein, but the K71me was 78% less than that on control proteins. Furthermore, almost no methylation was detected in the K51/K71me protein. Together, these data support the model that K71 is preferred over K51 as a target for KMT7 in Tat (Fig. 2B, C) and there are no additional sites in Tat72 for KMT7 monomethylation.

MS of Tat Purified from HEK293T and Jurkat A2 Cells Reveals Monomethylation at K71 exists in vivo—To examine K71 methylation in vivo, we coexpressed Tat101 bearing a C-terminal FLAG tag together with either a KMT7 or empty vector in HEK293T cells for 24h. We first purified Tat from lysates by FLAG immunoprecipitation, followed by SDS-PAGE separation. The separated Tat protein was subjected to MALDI-TOF MS/MS which showed that K71 was monomethylated only when KMT7 was overexpressed (Fig. 3A, B; Table S-2). This suggests that the fraction of Tat that is naturally monomethylated at K71 in HEK293T cells may be small compared to the unmodified form.

Next, we analyzed Tat methylation in J-Lat A2 T cells, in which expression of FLAG-tagged Tat101 is controlled by its natural promoter and induced by stimuli such as tumor necrosis factor α (TNFα) (25). Tat expression was induced with TNFα, FLAG-affinity purified, and analyzed by MS. We identified a peptide fragment of 1032.627 Da, corresponding to Tat aa 70–78 with a monomethyl group at K71 (Fig. 3C). MS/MS confirmed the monomethylation at K71 (Fig. 3D, Table S-2). Together these findings show that Tat K71 is monomethylated in Jurkat T cells under conditions mimicking natural HIV infection and that this modification can be induced by KMT7 overexpression in 293T cells.

Generating Antibodies Specific for K71me—We confirmed these results using newly generated modification-specific polyclonal antibodies. We previously published methods to produce and characterize mono-, di- and tri-methyl Tat-specific antibodies at K51 (26). Following these methods, we focused on two chemically synthesized K71me 11-mer peptides (type 1 and type 2) (Fig. 4A). Peptide 1 (aa 63–72) ends with the first exon, and peptide 2 (aa 67–76) spans both Tat exons. Cysteine residues are added to the C-terminal end of the peptides for purification purposes as described (26). After antigen-purification of the modification-specific antibodies, we performed dot-blot analysis of various chemically modified Tat proteins (Fig. 4B). Type 1 antibodies reacted with all synthetic Tat72 proteins (WT, K51me, K71me, K50Ac and K51/K71me), but type 2 antibodies detected only the K71me Tat72 proteins. Similar results were obtained by SDS-PAGE and Western blotting (Fig. 4C). The type 2 antibodies were highly specific for Tat72 proteins carrying a monomethyl group at K71, and the type 1 antibodies recognized all Tat proteins. Type 2 antibodies detected several cellular bands in whole cell lysates (data not shown). Therefore, for further analysis, we used type 2 TatK71me antibodies on FLAG immunopurified samples.

Detecting Tat K71me by Western Blot in vivo—To confirm the specificity of the type 2
antibodies in vivo, we overexpressed WT or FLAG-tagged Tat101 proteins carrying mutations at K71, K51, or K50 in 293T cells. After FLAG immunoprecipitation, we detected K71me Tat only in WT, K50 and K51 mutants, but not in K71 mutants (Fig. 5A). This finding indicates that endogenous KMT7 is sufficient to methylate K71 in cells. Furthermore, we were able to increase TatK71me by coexpressing Tat101 with WT KMT7 relative to coexpression with a catalytically inactive KMT7 mutant (H297A). Importantly, no change in methylation was observed on the K71R mutant (Fig. 5B).

Next, we determined whether the K71me antibodies are able to detect Tat72 in T cells. For this, we used an HIV-1 mini-genome to generate Jurkat cell lines that stably express Tat72, as described for the Jurkat A2 cells (27). We sorted for cells with high-level GFP expression, and transduced them with lentiviruses containing one of two shRNAs targeting KMT7 (a and b) or a scrambled shRNA (Scr). The lentiviral constructs also contained a puromycin resistance gene, which allowed us to select for shRNA-expressing cells. After selection, shRNA-expressing cells were lysed and subjected to FLAG immunoprecipitation, and Tat K71me levels were determined by Western blotting (Fig. 5C). Knockdown of KMT7 was robust; in accordance, Tat K71me levels were reduced by 51% in cells treated with the KMT7b shRNA and by 28% in cells treated with KMT7a shRNA (Fig. 5B, bottom). These results underscore the role of KMT7 as an important K71 methyltransferase for both forms of Tat in T cells. Since a substantial amount of Tat remained methylated at K71 despite the knockdown, we suspect that a small residual pool of KMT7 may be sufficient to modify a proportion of Tat proteins, or perhaps another enzyme is capable of mono-methylating Tat in cells.

K71me Does Not Affect Tat Half-life—A number of substrates modified by KMT7 are altered in their stability by downstream changes in their polyubiquitylation (28). Since K71 has previously been reported as a site for polyubiquitination (23), we examined whether K71 methylation by KMT7 affects the stability of Tat in Jurkat cell lines expressing fluorescent Tat101-Dendra fusion proteins generated for this purpose (25). The Tat-Dendra system has been used to determine the Tat half-life in flow cytometry and microscopy studies (29,30). To knock down KMT7, we transduced Tat-Dendra cells with the lentiviral vectors expressing scrambled or KMT7b shRNAs used for Figure 5B. After puromycin selection, we monitored effects of KMT7 knockdown on Tat half-life only in successfully transduced cells. Knockdown of KMT7 was confirmed by western blotting (Fig. 6B). Expression of WT or K71R Tat-Dendra proteins was induced with TNFα. After 16-20 h of TNFα treatment, cycloheximide was added to inhibit de novo production of Tat. Cells were fixed at various times, and Tat expression was determined by flow cytometry of Dendra (Fig. 6A). Tat stability did not differ in cells transduced with control and KMT7 shRNAs, excluding any prominent effect of K71 methylation on Tat stability (Fig. 6C). In cells expressing scrambled shRNA, the K71R Tat mutant had a slightly longer half-life than WT Tat (10.9 vs 9.0 h, P = 0.043). However, time-lapse single-cell microscopy of Tat-Dendra cells revealed no statistical difference in the half-lives of WT and K71R Tat in the absence of shRNAs (Fig. 6D). Together, these data affirm previous findings that K71 modifications are not involved in Tat protein stability (29).

K71 Methylation Enhances Tat Transactivation—Previously, we found that KMT7-mediated monomethylation of Tat K51 enhances interactions between Tat and TAR RNA and P-TEFb and activates HIV gene expression (17). To assess the effect of K71 monomethylation on Tat transactivation, we transfected plasmids expressing WT or mutant Tat101 (K51R, K71R, or K51/71R) into TZMBL cells, which express firefly luciferase from the integrated HIV LTR when functional Tat is expressed (31). Transactivation was ~50% lower in the Tat K51R and Tat K71R mutants than in WT Tat at three different plasmid concentrations, confirming that these residues are important for Tat transactivation (17,23). Transactivation was almost completely lost when both K51 and K71 were mutated, underscoring their combined importance in Tat
transactivation. All Tat proteins were expressed at similar levels as confirmed by western blot (Fig. 7A).

To test whether monomethylation at K71 by KMT7 contributes to Tat transactivation, we knocked down KMT7 expression using KMT7b shRNAs in TZMBL cells before transfection with WT Tat or K71R mutant Tat101. Knockdown of KMT7 decreased the transcriptional activity of Tat WT but had no effect on K71R mutant Tat. Evidently, KMT7 activates Tat transactivation, at least in part, through K71 monomethylation (Fig. 7B). Knockdown of KMT7 was confirmed by western blotting (Fig. 7B). These findings indicate that K71 monomethylation, rather than regulating Tat stability, plays a positive role in the transcriptional activity of Tat.

DISCUSSION

HIV-1 Tat is a potent viral transactivator that undergoes extensive post-translational modifications. Here, we expand the role of KMT7 in Tat function by identifying K71 as a second monomethylation site. We found that K71 is monomethylated in both functional HIV-1 Tat101 and Tat72 splice variants, underscoring its importance throughout the HIV-1 life cycle. We identified KMT7 as a robust Tat K71 monomethyltransferase in both in vitro and in vivo assays. Although KMT7 substrates often have perturbed stability, mutation of K71 or knock down of KMT7 did not affect the stability of Tat. Instead, K71 monomethylation is important for the transcriptional activity of Tat through a yet unresolved mechanism.

Notably, in vitro methylation and enzymology experiments indicate that the preferred methylation site of KMT7 is K71 rather than K51, previously identified as a target of KMT7. Although KMT7 has no known stringent site specificity, two consensus sequences in KMT7 targets have been described: (K,R)^2-(S,T,A)^1-Kme^0-X^1 (where X is a polar residue) and a newer sequence (G,R,H,K,P,S,T)^3-(K,R)^2-(S,K,Y,A,R,T,P,N)^1-Kme^0-(Q,N)^1-(A,Q,G,M, S,P,T,Y,V)^1 (32,33). Comparing the sequences of K71me (S^3L^2S^1Kme^0Q^1P^2) and K51me (G^3R^2K^0Kme^R^1P^2), K71 is more closely aligned with the newer consensus sequence than K51, possibly explaining why K71 was the preferred target in our in vitro studies (32).

Our finding that KMT7 methylates Tat at two sites is consistent with reports that KMT7 often has multiple targets within individual substrates. For example, the RelA subunit of the NF-κB transcription factor has three KMT7 monomethylation sites (K37me, K314me, K315me) and the PCAF acetyltransferase has two (K78me, K89me) (34-36). Since the addition of a monomethyl group is a rather subtle modification (14 Da), it is likely that multiple monomethylation sites act in concert to mediate appropriate regulation of the substrate protein by KMT7.

Two main consequences of KMT7-mediated methylation have emerged: alteration of protein stability and the regulation of interactions between nucleic acids and proteins (32). The oncogene p53 and estrogen receptor α are both stabilized upon monomethylation by KMT7 (37,38). In contrast, RelA of NF-κB and DNMT1 are both destabilized upon monomethylation of one or more sites by KMT7 (35,39). One review regarded KMT7 as a bona fide protein stability modifier, proposing the presence of a methyl/ubiquityl switch that can regulate the stability of substrates (28). However, polyubiquitination of Tat at K71 has been linked to enhanced transcriptional activity, not degradation (23). Indeed, we found that KMT7 knockdown did not significantly affect the stability of WT or K71R Tat.

Early structural studies of Tat isolates suggested that the glutamine-rich motif (aa 59 – 72) has a degenerate α-helical structure, consistent across different Tat isolates and adopted in the presence of TAR RNA (12). This structure is adopted partially through conserved glutamine-RNA hydrogen bonds (Q60, Q63, Q66, Q72) and an electrostatic interaction between K71 and the TAR phosphodiester backbone at nucleotides 31–35 (12,13). K71 monomethylation could thus enhance these interactions by stabilizing the electrostatic interaction between K71 and the TAR loop (13,17). Previously, we showed that methylation of K51 by KMT7 activates appropriate Tat/TAR/P-TEFb binding (17). K51 lies in the ARM of Tat, which binds TAR RNA
in the bulge region. Therefore, methylation of K51 and K71 by KMT7 might coordinately enhance the binding of TAR RNA to multiple residues in Tat, potentially positioning the RNA properly with respect to Tat and P-TEFb. Future experiments are necessary to explore this model and elucidate the mechanism by which KMT7 activates Tat transactivation by monomethylating K71.

EXPERIMENTAL PROCEDURES

Materials—HEK293T, Jurkat, and TZMBL cells were obtained from American Type Culture Collection. Anti-FLAG M2 affinity gel (A2220) and anti-FLAG monoclonal rabbit antibodies (F7425) were from Sigma-Aldrich (St. Louis, MO). Tubulin antibodies (ab15246) were from Abcam and KMT7 antibodies (Clone 5F2.3, #04-805) were from Millipore. KMT7 siRNAs (#4392420) were from ThermoFisher. Tat72 proteins (unmodified, Tat K71me, Tat K51me, Tat K50Ac and Tat K51/K71me) were synthesized by PSL Peptide Specialty Laboratories (Heidelberg, Germany). TNFα (ThermoFisher, PHC3011) was resuspended in water at 100 ng/μl. Cycloheximide (MP Biomedicals, 02100183) was resuspended in water at 10 mg/ml.

In Vitro Methylation—Reactions were carried out with 3 μg of synthesized Tat peptides and 0, 1, or 2 μg of purified KMT7 in a solution of 0.1 M bicine, pH 8.2, 60 μM 3H-labeled S-adenosyl methionine (3H-SAM). After incubating the mixtures for 18h at room temperature, the methylation reactions were run on 15% SDS-PAGE gels, which were stained with Coomassie Blue, and destained overnight. Methylation was detected by autoradiography (22-h exposure).

Mass Spectrometry—In vitro modified and in vivo purified Tat peptides were analyzed by MALDI-TOF tandem mass spectrometry (MS) as described (18).

Enzymology—Methyltransferase activity was measured with a modified radiometric assay (24). Kinetic assays were performed with various concentrations of synthetic Tat72 peptides (unmodified, Tat K71me, Tat K51me and Tat K51/K71me). The 20 μl reactions contained Tat peptides, 0.1 M bicine, pH 8.2, 60 μM 3H-SAM (3.4Ci/mmol), and 1 μg of purified full-length KMT7 (40). The reactions were incubated for 1 min at 37°C. To terminate the reaction and ensure full precipitation of the substrates, 0.5 ml of 10% TCA and 5 μl of a bovine serum albumin (BSA) solution (10 g/100 ml of water) were added. After this addition the mixture was then vortexed, incubated on ice for 3 mins, and centrifuged at 14,000 RPM for 3 minutes. To process the reaction, the protein pellets were washed with 150 μl of 0.1 M NaOH, re-precipitated in TCA, vortexed and centrifuged at 14,000 RPM for 3 minutes. The pelleted proteins were dissolved in 50 μl of formic acid, diluted by half with water, mixed with 1.25 ml of Bio-Safe II scintillant (Research Products International), and subjected to liquid scintillation. Activity was calculated after correcting for methylation in control reactions lacking either the enzyme or the substrate. The assays were performed in triplicate, and the data were plotted and fitted with SigmaPlot 11 (Systat Software) to the Michaelis-Menten equation.

Tat K71me Antibody Purification—Peptides for antibody synthesis (K71me1 Type 1, K71me1 Type 2; Fig. 4A) were synthesized by PSL Peptide Specialty Laboratories and injected into rabbits and antibodies were purified from serum with antigenic peptides as described (26). Purified antibodies were eluted under acidic conditions, resuspended in 1% BSA and 0.1% sodium azide, and stored at –80°C.

Dot Blot Analysis of K71me Antibodies—Tat peptides were serially diluted in water and spotted on a 0.2 μm Hybond ECL membrane. Membranes were air-dried, and nonspecific binding was blocked with nonfat dry milk (5 g/100 ml in TBST consisting of 50 mM Tris-HCl, ph 7.4, 150 mM NaCl and 0.1% Tween 20) for 1 h at room temperature. Membranes were incubated with K71me antibodies diluted in blocking buffer for 1 h, washed 5 times with TBST, then incubated with HRP-conjugated anti-rabbit IgG (Jackson ImmunoResearch) at a concentration of 16 ng/ml in blocking buffer, washed 3–5 times with TBST, and analyzed using standard ECL substrate.
Detection of K71me in vivo—Tat mutants (K71A, K71R, K51/71A, K51/71R) were generated by site-directed mutagenesis of previously described Tat constructs (17). KMT7 expression vectors (WT and H297A) were also previously described (17). For experiments conducted in HEK293T cells, Tat constructs (2 μg) or Tat and KMT7 (2.5 μg and 6 μg, respectively) were transfected into cells using Lipofectamine 2000 and incubated for 24 h prior to lysis. For experiments conducted in Jurkat cells, WT and K71R Tat72 expressing cells were produced as described (27). After sorting, cells were transduced with lentiviruses containing control short hairpin RNAs (shRNAs) or KMT7 shRNAs (KMT7a: GCACTTTATGGGA-AATTTC; KMT7b: GTAGCTGTGGGACCTAGTTA) and a puromycin resistance cassette. After 1 week of puromycin selection at 10 ng/ml, cells were fixed at 4°C for at least 1 h, and analyzed on a FACSCalibur DxP8 (Cytek). Flow cytometry data were analyzed by FlowJo X. Data were normalized to 100% at time 0 and natural log transformed to produce a linear half-life curve, from which the slope was calculated. Two-tailed Z-tests were performed on averaged slope values from at least 4 independent experiments. The equation \(t_{1/2} = \ln(2)/-\text{slope} \) was used to generate half-life values. Time-lapse microscopy experiments were performed as described (29).

Luciferase Assays—TZMBL cells (1x10^5) were transfected with a total of 100 ng of DNA containing 1, 2, 5, or 10 ng of Tat-expressing plasmids (WT, K51R, K71R, K51/71R) or empty vector using X-tremeGENE 9 (Roche Diagnostics) as recommended by the manufacturer. The cells were incubated for 48 h and lysed in 1x Promega Passive Lysis Buffer. Luciferase assays were processed with the Promega Dual-Luciferase Reporter Assay System and measured on a Monolight 2010 luminometer. Experiments were conducted with 4 independent biological replicates with technical duplicates and the statistical significance of differences was determined with one-sided \(t \) tests.

Acknowledgements—We thank members of the Ott, Weinberger, and Verdin labs for helpful discussions, reagents, and expertise. We thank John Carroll for graphics, Stephen Ordway for editorial support, and Veronica Fonseca for administrative assistance.

Conflict of Interest—The authors declare no conflicts of interest.

Author Contributions—IA, HR, DB, LD, NS, KH, SP and KK contributed to experiment design and data collection. IA, HR and DB performed luciferase assays and western blots. LD, SP and KK performed in vitro methylation and enzymology assays. NS and KH performed in vitro methylation and mass spectrometry. MS provided Tat proteins. KA and IA performed half-life experiments, computational and statistical analysis of data. RT provided active KMT7. LW, RH, MK and MO supervised the experiments and helped with data interpretation. IA and MO wrote the manuscript.
REFERENCES

1. Dahabieh, M. S., Battivelli, E., and Verdin, E. (2015) Understanding HIV latency: the road to an HIV cure. *Annu. Rev. Med.* **66**, 407-421

2. Mbonye, U., and Karn, J. (2014) Transcriptional control of HIV latency: cellular signaling pathways, epigenetics, happenstance and the hope for a cure. *Virology* **454-455**, 328-339

3. Bruner, K. M., Hosmane, N. N., and Siliciano, R. F. (2015) Towards an HIV-1 cure: measuring the latent reservoir. *Trends Microbiol.* **23**, 192-203

4. Yang, X., Gold, M. O., Tang, D. N., Lewis, D. E., Aguilar-Cordova, E., Rice, A. P., and Herrmann, C. H. (1997) TAK, an HIV Tat-associated kinase, is a member of the cyclin-dependent family of protein kinases and is induced by activation of peripheral blood lymphocytes and differentiation of promonocytic cell lines. *Proc. Natl. Acad. Sci. U. S. A.* **94**, 12331-12336

5. Zhu, Y., Pe’ery, T., Peng, J., Ramanathan, Y., Marshall, N., Marshall, T., Amendt, B., Mathews, M. B., and Price, D. H. (1997) Transcription elongation factor P-TEFb is required for HIV-1 tat transactivation in vitro. *Genes Dev.* **11**, 2622-2632

6. Garber, M. E., Wei, P., KewalRamani, V. N., Mayall, T. P., Herrmann, C. H., Rice, A. P., Littman, D. R., and Jones, K. A. (1998) The interaction between HIV-1 Tat and human cyclin T1 requires zinc and a critical cysteine residue that is not conserved in the murine CycT1 protein. *Genes Dev.* **12**, 3512-3527

7. Taube, R., Fujinaga, K., Irwin, D., Wimmer, J., Geyer, M., and Peterlin, B. M. (2000) Interactions between equine cyclin T1, Tat, and TAR are disrupted by a leucine-to-valine substitution found in human cyclin T1. *J. Virol.* **74**, 892-898

8. Selby, M. J., Bain, E. S., Luciw, P. A., and Peterlin, B. M. (1989) Structure, sequence, and position of the stem-loop in tar determine transcriptional elongation by tat through the HIV-1 long terminal repeat. *Genes Dev.* **3**, 547-558

9. Ivanov, D., Kwak, Y. T., Nee, E., Guo, J., Garcia-Martinez, L. F., and Gaynor, R. B. (1999) Cyclin T1 domains involved in complex formation with Tat and TAR RNA are critical for tat-activation. *J. Mol. Biol.* **288**, 41-56

10. Garcia, J. A., Harrich, D., Soulтанакис, Е., Wu, F., Mitsuyasu, R., and Gaynor, R. B. (1989) Human immunodeficiency virus type 1 LTR TATA and TAR region sequences required for transcriptional regulation. *EMBO J.* **8**, 765-778

11. Wei, P., Garber, M. E., Fang, S. M., Fischer, W. H., and Jones, K. A. (1998) A novel CDK9-associated C-type cyclin interacts directly with HIV-1 Tat and mediates its high-affinity, loop-specific binding to TAR RNA. *Cell* **92**, 451-462

12. Campbell, G. R., Pasquier, E., Watkins, J., Bourgarel-Rey, V., Peyrot, V., Esquieu, D., Barbier, P., de Mareuil, J., Braguer, D., Kaleebu, P., Yirrell, D. L., and Loret, E. P. (2004) The glutamine-rich region of the HIV-1 Tat protein is involved in T-cell apoptosis. *J. Biol. Chem.* **279**, 48197-48204

13. Loret, E. P., Georgel, P., Johnson, W. C., Jr., and Ho, P. S. (1992) Circular dichroism and molecular modeling yield a structure for the complex of human immunodeficiency virus type 1 trans-activation response RNA and the binding region of Tat, the trans-acting transcriptional activator. *Proc. Natl. Acad. Sci. U. S. A.* **89**, 9734-9738

14. Ott, M., Geyer, M., and Zhou, Q. (2011) The control of HIV transcription: keeping RNA polymerase II on track. *Cell Host Microbe* **10**, 426-435

15. Sivakumaran, H., van der Horst, A., Fulcher, A. J., Apolloni, A., Lin, M. H., Jans, D. A., and Harrich, D. (2009) Arginine methylation increases the stability of human immunodeficiency virus type 1 Tat. *J. Virol.* **83**, 11694-11703

16. Xie, B., Invernizzi, C. F., Richard, S., and Wainberg, M. A. (2007) Arginine methylation of the human immunodeficiency virus type 1 Tat protein by PRMT6 negatively affects Tat Interactions with both cyclin T1 and the Tat transactivation region. *J. Virol.* **81**, 4226-4234
17. Pagans, S., Kauder, S. E., Kaehlcke, K., Sakane, N., Schroeder, S., Dormeyer, W., Trievel, R. C., Verdin, E., Schnolzer, M., and Ott, M. (2010) The Cellular lysine methyltransferase Set7/9-KMT7 binds HIV-1 TAR RNA, monomethylates the viral transactivator Tat, and enhances HIV transcription. *Cell Host Microbe* 7, 234-244

18. Sakane, N., Kwon, H. S., Pagans, S., Kaehlcke, K., Mizusawa, Y., Kamada, M., Lassen, K. G., Chan, J., Greene, W. C., Schnoelzer, M., and Ott, M. (2011) Activation of HIV transcription by the viral Tat protein requires a demethylation step mediated by lysine-specific demethylase 1 (LSD1/KDM1). *PLoS Pathog.* 10.1371/journal.ppat.1002184

19. Ott, M., Schnolzer, M., Garnica, J., Fischle, W., Emiliani, S., Rackwitz, H. R., and Verdin, E. (1999) Acetylation of the HIV-1 Tat protein by p300 is important for its transcriptional activity. *Curr. Biol.* 9, 1489-1492

20. Mujtaba, S., He, Y., Zeng, L., Farooq, A., Carlson, J. E., Ott, M., Verdin, E., and Zhou, M. M. (2002) Structural basis of lysine-acetylated HIV-1 Tat recognition by PCAF bromodomain. *Mol. Cell* 9, 575-586

21. Endo-Munoz, L., Warby, T., Harrich, D., and McMillan, N. A. (2005) Phosphorylation of HIV Tat by PKR increases interaction with TAR RNA and enhances transcription. *Virology journal* 2, 17

22. Foley B. L. T., Apetrei C, Hahn B, Mizrachi I, Mullins J, Rambaut A, Wolinsky S, Korber B. (2015) HIV Sequence Compendium. Theoretical Biology and Biophysics Group, Los Alamos National Laboratory

23. Bres, V., Kiernan, R. E., Linares, L. K., Chable-Bessia, C., Plechakova, O., Treand, C., Emiliani, S., Peloponese, J. M., Jeang, K. T., Coux, O., Scheffner, M., and Benkirane, M. (2003) A non-proteolytic role for ubiquitin in Tat-mediated transactivation of the HIV-1 promoter. *Nat. Cell Biol.* 5, 754-761

24. Houtz, R. L., Royer, M., and Salvucci, M. E. (1991) Partial Purification and Characterization of Ribulose-1,5-bisphosphate Carboxylase/Oxygenase Large Subunit epsilonN-Methyltransferase. *Plant Physiol.* 97, 913-920

25. Jordan, A., Bisgrove, D., and Verdin, E. (2003) HIV reproducibly establishes a latent infection after acute infection of T cells in vitro. *EMBO J.* 22, 1868-1877

26. Pagans, S., Sakane, N., Schnolzer, M., and Ott, M. (2011) Characterization of HIV Tat modifications using novel methyl-lysine-specific antibodies. *Methods* 53, 91-96

27. Jordan, A., Defechereux, P., and Verdin, E. (2001) The site of HIV-1 integration in the human genome determines basal transcriptional activity and response to Tat transactivation. *EMBO J.* 20, 1726-1738

28. Yang, X. D., Lamb, A., and Chen, L. F. (2009) Methylation, a new epigenetic mark for protein stability. *Epigenetics* 4, 429-433

29. Razooky, B. S., Pai, A., Aull, K., Rouzine, I. M., and Weinberger, L. S. (2015) A hardwired HIV latency program. *Cell* 160, 990-1001

30. Singh, A., Razooky, B. S., Dar, R. D., and Weinberger, L. S. (2012) Dynamics of protein noise can distinguish between alternate sources of gene-expression variability. *Mol. Syst. Biol.* 8, 607

31. Montefiori, D. C. (2009) Measuring HIV neutralization in a luciferase reporter gene assay. *Methods Mol. Biol.* 485, 395-405

32. Del Rizzo, P. A., and Trievel, R. C. (2011) Substrate and product specificities of SET domain methyltransferases. *Epigenetics* 6, 1059-1067

33. Dhayalan, A., Kudithipudi, S., Rathert, P., and Jeltsch, A. (2011) Specificity analysis-based identification of new methylation targets of the SET7/9 protein lysine methyltransferase. *Chem. Biol.* 18, 111-120

34. Ea, C. K., and Baltimore, D. (2009) Regulation of NF-kappaB activity through lysine monomethylation of p65. *Proc. Natl. Acad. Sci. U. S. A.* 106, 18972-18977
35. Yang, X. D., Huang, B., Li, M., Lamb, A., Kelleher, N. L., and Chen, L. F. (2009) Negative regulation of NF-kappaB action by Set9-mediated lysine methylation of the RelA subunit. *The EMBO journal* **28**, 1055-1066

36. Masatsugu, T., and Yamamoto, K. (2009) Multiple lysine methylation of PCAF by Set9 methyltransferase. *Biochem. Biophys. Res. Commun.* **381**, 22-26

37. Chuikov, S., Kurash, J. K., Wilson, J. R., Xiao, B., Justin, N., Ivanov, G. S., McKinney, K., Tempst, P., Prives, C., Gamblin, S. J., Barlev, N. A., and Reinberg, D. (2004) Regulation of p53 activity through lysine methylation. *Nature* **432**, 353-360

38. Subramanian, K., Jia, D., Kapoor-Vazirani, P., Powell, D. R., Collins, R. E., Sharma, D., Peng, J., Cheng, X., and Vertino, P. M. (2008) Regulation of estrogen receptor alpha by the SET7 lysine methyltransferase. *Mol. Cell* **30**, 336-347

39. Esteve, P. O., Chin, H. G., Benner, J., Feehery, G. R., Samaranayake, M., Horwitz, G. A., Jacobsen, S. E., and Pradhan, S. (2009) Regulation of DNMT1 stability through SET7-mediated lysine methylation in mammalian cells. *Proc. Natl. Acad. Sci. U. S. A.* **106**, 5076-5081

40. Couture, J. F., Collazo, E., Hauk, G., and Trievel, R. C. (2006) Structural basis for the methylation site specificity of SET7/9. *Nat. Struct. Mol. Biol.* **13**, 140-146

41. Dull, T., Zufferey, R., Kelly, M., Mandel, R. J., Nguyen, M., Trono, D., and Naldini, L. (1998) A third-generation lentivirus vector with a conditional packaging system. *J. Virol.* **72**, 8463-8471
FIGURE LEGENDS

FIGURE 1. HIV-1 Tat is monomethylated at K71 by KMT7. In vitro methylation assays were done with 3 μg of synthesized Tat72 proteins that were unmodified, acetylated (K50ac), methylated (K51me), or both acetylated and methylated, with or without 1 μg of recombinant KMT7 in the presence of ^3H-SAM. A, (Top) Representative autoradiogram. This image is uncropped and from one gel; the difference in background is an imperfection of the film. (Bottom) Coomassie-Blue stain for Tat. Molecular weight markers are noted in kilodaltons (KDa) B, Quantification of three autoradiograms with ImageJ (mean ±SEM). C, In vitro methylation assays on unmodified Tat proteins with indicated enzymes were subjected to MS, shown are the zoomed regions containing Tat ions corresponding to aa 48–72. Boxed in red are peaks indicating modified Tat ions. D, MS/MS spectra of the ions boxed in 1C, and their corresponding peptide sequences. Ion annotations are found in Table S-1.

FIGURE 2. KMT7 preferentially monomethylates Tat K71 in vitro. A, Reactions were done as in Figure 1A with 2 μg of synthesized Tat72 proteins that were unmodified, monomethylated at K51 or K71 or both, and incubated with 0, 1, or 2 μg of purified KMT7 in the presence of ^3H-SAM. (Top) Representative autoradiogram. (Bottom) Coomassie-blue stain for Tat and KMT7. B, Kinetic assays were done with indicated concentrations of Tat peptides and 1 μg of recombinant KMT7. Assays were conducted in triplicate; error bars indicate SEM. C, Activity calculated by fitting data to Michaelis-Menten equation with SigmaPlot 11 after correction for methylation in the control reactions with either the enzyme or the substrate removed. ND, not determined in doubly modified peptides.

FIGURE 3. In vivo detection of Tat K71me in HEK293T and Jurkat A2 cell lines. A, WT Tat101-FLAG and KMT7 were overexpressed in HEK293T cells and analyzed by MS after FLAG affinity purification. A zoomed region of the initial MS spectrum shows the K71me containing ion found in the presence of KMT7 overexpression, but not the control. The spectrum is representative of two independent experiments. B, MS/MS of the ion containing K71me indicated by a red box in 3A and sequence of the fragment. C, Tat101-FLAG was FLAG-affinity purified from Jurkat A2 cells after induction with TNFα and analyzed by MS. Depicted is the full spectrum with a Tat K71me-carrying ion (aa 70–78). D, MS/MS of the ion containing K71me indicated by a red box in 3C and sequence of the fragment. Ion annotations are found in Table S-2.

FIGURE 4. Generation of K71me-specific antibodies. A, Schematic of the synthetic methylated peptides used as antigens to generate K71me Tat antibodies. B, Dot blots with synthetically modified Tat72 proteins (K51me, K71me, K51/K71me and K50ac) incubated with antigen-purified type 1 or type 2 K71me antibodies. C, Western blots of indicated Tat72 proteins (1, 10, 100 ng each) with type1 antibodies (top) and type 2 antibodies (bottom).

FIGURE 5. Detection of K71me Tat methylation in vivo. Lysates from 293T or Jurkat cells were FLAG-immunopurified and blotted with indicated antibodies including type 2 Tat K71me antibodies. A, Western blots of indicated Tat101-FLAG mutants expressed in HEK293T cells. B, Western blots of Wt or K71R Tat101-FLAG co-expressed with Wt or catalytically inactive KMT7 mutant in HEK293T cells. Tat Wt and K71R blots were cropped from the same gel and had the same exposure times. C, Western blots of FLAG-purified Tat72-FLAG isolated from stable cells lines transduced with shRNAs against KMT7 (KMT7a or KMT7b) or a scrambled control. Western blots were performed with indicated antibodies. ImageJ was used for quantification.

FIGURE 6. K71 mutation or KMT7 knockdown does not affect Tat stability. A, Flow cytometry histograms showing mean Tat-Dendra fluorescence (MFI) at indicated times (0–8 h) in WT cells stably transduced with KMT7b or scrambled shRNAs and treated with cycloheximide. B, Western blots confirm
knockdown of KMT7 in Tat-Dendra J-Lat lysates after puromycin selection. C, Measurements of Tat half-life by flow cytometry. MFI s were normalized to t=0 after removing background, natural log transformed, and plotted over time as mean ln(MFI) ± SEM of 4 independent experiments in cells transduced with lentiviruses containing KMT7b or scrambled shRNAs and expressing WT or K71R Tat. D, Time-lapse single cell microscopy of WT or K71R Tat-Dendra J-Lats each point represents the MFI of 50 independent cells that were tracked for at least 2h.

FIGURE 7. Tat K71me regulates Tat transactivation. A, TZMBL cells were transfected with increasing concentrations of plasmids (2, 5 and 10 ng) expressing WT or mutant Tat101. Luciferase values are shown from 4 independent experiments measured as fold expression over empty vector (mean ± SEM). Western blotting was performed in cells transfected with 100 ng of Tat-FLAG plasmid and blotted with anti-FLAG antibodies. B, Luciferase values in TZMBL cells transduced with KMT7b or scrambled shRNAs and then transfected with WT or TatK71R Tat-expressing plasmids (20 ng). KMT7 knockdown is visualized by western blotting. Values are mean ± SEM from 4 independent experiments. Significance was calculated with a one-sided t test. *, p < 0.05.
Figure 1

A) [A diagram showing experimental results with columns labeled Unmodified, K50ac, K51me, K50ac K51me. The top row includes KMT7 and 3H-Tat, with Coomassie staining at the bottom.]

B) A bar graph showing % incorporation relative to WT.

C) [A set of gel images labeled No Enzyme, KMT7, and KMT1E. Each image shows Abs Int * 100000 at different points.]
Figure 2

Panel A: Western blots showing the expression of KMT7 and the modified forms of Tat (K51me, K71me, and K51/K71me) in

Panel B: A graph illustrating the turnover of Tat (1-72) peptides at varying concentrations. The turnover rate is

Panel C: Table summarizing the kinetic parameters of Tat (1-72) peptides.

Synthetic Tat (1-72)	K_m (μM)	k_cat (sec^{-1})	k_cat/K_m
Unmodified	24.6±1.79	0.0145±0.0004	0.000589
K51me	9.3±4.79	0.0055±0.0007	0.000590
K71me	19.3±9.07	0.0025±0.0004	0.000129
K51/K71me	ND	ND	ND
Figure 3
Figure 4

A

Peptide 1
QTHQVSLSKQC

Peptide 2
VSLSKQPTSQC

Type 1

Type 2

Tat

Exon 1

Exon 2

K71

B

Tat (ng):

WT

K51me

K71me

K51/K71me

K50ac

K71me Type 1

K71me Type 2

C

WT

K51me

K71me

K51/

K71me

K71me Type 1

K71me Type 2

KDa

15
Figure 5

A

WT	Vector	K50A	K50R	K71A	K71R	K51/71A	K51/71R
K71me	![Image](image1.png)						
Tat 101 (FLAG)	![Image](image2.png)						

B

Tat:	WT	K71R
KMT7 H297A:	-	+
KMT7 WT:	+	-

K51/71A	K51/71R
K71me	![Image](image3.png)
Tat 101 (FLAG)	![Image](image4.png)
Tubulin	![Image](image5.png)
KMT7 (FLAG)	![Image](image6.png)

C

Tat 72 (FLAG)	KMT7	Tubulin	Input	IP-FLAG
KMT7b	![Image](image7.png)			
KMT7a	![Image](image8.png)			
Sc	![Image](image9.png)			

RI	49	72	100
Figure 6

A

Scrambled (Scr) and KMT7b treated cells were analyzed for Dendra fluorescence over time.

B

Western blot analysis showing expression levels of KMT7 and tubulin with and without KMT7b shRNA.

C

Graph showing the change in In(MFI) over time for Tat WT and Tat K71R with and without KMT7b.

D

Graph comparing the change in In(MFI) over time for Tat WT and Tat K71R.
Figure 7

A

Fold LTR Activation Relative to Empty Vector

Tat (ng):

2

5

10

Tat WT

Tat K71R

Tat K51/71R

B

Fold LTR Activation Relative to Empty Vector

Scr

KMT7b

KDa

55

Tubulin

Tat (FLAG)
The HIV-1 Tat protein is monomethylated at lysine-71 by the lysine methyltransferase KMT7
Ibraheem Ali, Holly Ramage, Daniela Boehm, Lynnette M. A. Dirk, Naoki Sakane, Kazuki Hanada, Sara Pagans, Katrin Kaehlke, Kay Aul, Leor Weinberger, Raymond Trievel, Martina Schnoeelzer, Masafumi Kamada, Robert Houtz and Melanie Ott

J. Biol. Chem. published online May 27, 2016

Access the most updated version of this article at doi: 10.1074/jbc.M116.735415

Alerts:
- When this article is cited
- When a correction for this article is posted

Click here to choose from all of JBC's e-mail alerts

Supplemental material:
http://www.jbc.org/content/suppl/2016/05/27/M116.735415.DC1