Exponential suppression with four legs and an infinity of loops

David J. Broadhursta∗ and Andrei I. Davydychevbc

aPhysics and Astronomy Department, Open University, Milton Keynes MK7 6AA, UK
bInstitute for Nuclear Physics, Moscow State University, 119992 Moscow, Russia
cSchlumberger, HFE, 110 Schlumberger Dr., Sugar Land, TX 77478, USA

The L-loop 4-point ladder diagram of massless ϕ^3 theory is finite when all 4 legs are off-shell and is given in terms of polylogarithms with orders ranging from L to $2L$. We obtain the exact solution of the linear Dyson–Schwinger equation that sums these ladder diagrams and show that this sum vanishes exponentially fast at strong coupling.

1. INTRODUCTION

Results for two-loop 3-point and 4-point ladder diagrams shown in Figure 1 were obtained in [1]. In [2], results were found for an arbitrary number of loops, L. These were confirmed in [3], using Gegenbauer-polynomial methods. Here we shall sum the 4-point ladders of Figure 1b.

With massless internal propagators, each diagram gives a finite real contribution for positive values of the 6 kinematic invariants

$$k_1^2, k_2^2, k_3^2, k_4^2, s = (k_1 + k_2)^2, t = (k_2 + k_3)^2.$$

We shall investigate the strong-coupling limit of the exact solution to a linear Dyson–Schwinger equation, of the schematic form

$$D = T + g^2 \int \text{d}^4k \ T \cdot D,$$

(1)

which sums these ladder diagrams of Figure 1b. Here, T is the t-channel tree-diagram, which we normalize to $1/t$, and the dot indicates convolution under the 4-dimensional integration that adds another loop (including the factor $\text{i}(2\pi)^{-4}$). Note that the function D in Equation (1) can be also understood as the kernel of Bethe–Salpeter equation in the ladder approximation (see also in Ref. [4]).

∗Talk presented at “Loops and Legs in Quantum Field Theory”, Wörlitz, Germany, April 2010
zero for the sum of 4-point ladder diagrams at infinite coupling. It has taken us 17 years to prove that this indeed is the case. Secondly, and more recently, we have noted that ladder approximations are of interest to workers in $\mathcal{N} = 4$ super Yang–Mills theory [56], whose strong coupling limit may be governed by an AdS/CFT correspondence. Another interesting application is the conformal quantum mechanics [7]. We also note that some properties of the functions occurring in [12] were studied in [8]. Certain asymptotic limits of ladder diagrams in [1,2] were studied in [8]. Ladder approximations are of interest to workers in Yang–Mills theory [5,6], whose strong coupling limit may be governed by an AdS/CFT correspondence. Another interesting application is the conformal quantum mechanics [7]. We also note that some properties of the functions occurring in [12] were studied in [8]. Certain asymptotic limits of ladder diagrams in [1,2] were studied in [8].

2. THE L-LOOP TERM

We write the perturbation series of ladder diagrams as

$$ D(k_1^2, k_2^2, k_3^2, k_4^2, s, t) = \left\{ 1 + \sum_{L=1}^{\infty} \left(-\frac{\kappa^2}{4} \right)^L \Phi^{(L)}(X, Y) \right\} $$

with dimensionless ratios

$$ X \equiv \frac{k_3 k_2}{s t}, \quad Y \equiv \frac{k_2 k_3}{s t}, \quad \kappa^2 \equiv \frac{g^2}{4\pi^2 s} $$

that we assume to be positive. As shown in [2], the L-loop term

$$ \Phi^{(L)}(X, Y) = -\frac{1}{L! (L - 1)!} \times \frac{d}{dx} \left\{ \frac{Y x + Y - 1}{Y x + Y} \right\} $$

$$ \times \left[\ln \left(\ln \frac{Y}{X} \right) \right] \left[\ln \left(\ln \frac{Y}{X} \right) + 2 \ln \xi \right] $$

depends only on the cross ratios X and Y and is described by the same function as the ladder 3-point function. The origin of this simplification was elucidated in [2], which gave the conformal transformation that relates Figure 1b to Figure 1a. When scaled by an appropriate power of p^2, the latter depends only on the ratios $x = p_1^2/p_3^2$ and $y = p_2^2/p_3^2$ and is given by $\Phi^{(L)}(x, y)$.

The integral (4) may be evaluated in terms of polylogarithms [2]. Here, we shall consider the case where the Källen function

$$ \mu = \sqrt{4XY - (X + Y - 1)^2} $$

is real and positive. Then we are comfortably outside the region that contains Landau singularities and hence may define the geometrical angle [10] (see also in [11])

$$ \phi = \arccos \left(\frac{X + Y - 1}{\sqrt{4XY}} \right) $$

with $\pi > \phi > 0$. In this region, the L-loop term [2]

$$ \Phi^{(L)}(X, Y) = \frac{2}{\mu L!} \sum_{j=L}^{2L} \frac{j!}{(j-L)! (2L-j)!} \times \left(\ln \frac{X}{Y} \right)^{2L-j} \Im \ln \left(\sqrt{\frac{Y}{X} e^{i\phi}} \right) \right\} $$

is given in terms of products of powers $\ell \equiv \ln(X/Y)$ and the imaginary parts of polylogarithms $\ln l$ with orders running from $j = L$ to $j = 2L$. The symmetry $\Phi^{(L)}(X, Y) = \Phi^{(L)}(Y, X)$ is ensured by the inversion formula for polylogarithms, given in [14].

3. INFINITE SUM OF LADDER DIAGRAMS

3.1. An integral with a Bessel function

In the first instance we omit the tree term and use the integral representation (4) to sum the series

$$ \sum_{L=1}^{\infty} \left(-\frac{\kappa^2}{4} \right)^L \Phi^{(L)}(X, Y) $$

$$ \times \frac{d}{dx} \left\{ \frac{Y x + Y - 1}{Y x + Y} \right\} $$

$$ \times \left[\ln \left(\ln \frac{Y}{X} \right) \right] \left[\ln \left(\ln \frac{Y}{X} \right) + 2 \ln \xi \right] $$

$$ \times \left(\ln \left(\ln \frac{Y}{X} \right) \right) \left(\ln \left(\ln \frac{Y}{X} \right) + 2 \ln \xi \right) $$

depends only on the cross ratios X and Y and is described by the same function as the ladder 3-point function. The origin of this simplification was elucidated in [2], which gave the conformal transformation that relates Figure 1b to Figure 1a. When scaled by an appropriate power of p^2, the latter depends only on the ratios $x = p_1^2/p_3^2$ and $y = p_2^2/p_3^2$ and is given by $\Phi^{(L)}(x, y)$.
\[L > 1, \text{ for } x > 1, \text{ for } x > 0, \text{ and } \phi \equiv \arccos((X + Y - 1)/\sqrt{4XY}) \text{ is symmetric in } (X, Y). \] The integral between \(-\ell/2\) and \(\ell/2\) is zero, since the integrand is an odd function of \(\eta\) and an even function of \(\ell \equiv \ln(X/Y)\). Hence we may take \(\frac{1}{2}\ell = \frac{1}{2}\ln X - \ln Y\) as the lower limit of integration in (14).

3.2. Exponential suppression at strong coupling

We re-write (14) as

\[D(k_1^2, k_2^2, k_3^2, k_4^2, s, t) = \frac{1}{2t\sqrt{XY}} \int_0^\infty \frac{d\eta}{(\cosh \eta - \cos \phi)^2} \] where the tree-term \(1/t\) is precisely included by the surface term of the partial integration enabled by (13). Our hopes had increased: the full Dyson–Schwinger solution (13) is now presented in a form that looks more promising for confirmation of our guess of exponential suppression at strong coupling.

Next, we shift the integration variable \(\eta\) and obtain

\[D(k_1^2, k_2^2, k_3^2, k_4^2, s, t) = \frac{1}{2t\sqrt{XY}} \int_0^\infty \frac{d\eta}{(\cosh \eta - \cos \phi)^2}. \]
From Equation (2.5.48.18) of [12] (with \(t \) obtaining \(c = z \) as a double integral. Next, the substitution \(\nu \) of the integration limit \(\ell/c = 1 \), us use the integral representation

\[
\int_{0}^{\infty} d\tau \; \sin(\kappa \eta \cosh \tau) \cos\left(\frac{1}{2}\ell \kappa \sinh \tau\right) = \frac{\pi}{2} J_0\left(\kappa \sqrt{\eta^2 - \frac{1}{4}\ell^2}\right) \eta \left(\eta^2 - \frac{1}{4}\ell^2\right) \tag{16}
\]

which may be obtained from Equation (2.5.25.9) of [12] (with the substitutions \(x = \kappa \sinh \tau, y = \kappa, c = \eta, \) and \(b = \frac{1}{2}\ell \)). The key point is that we are rid of the integration limit \(\ell/2 \).

By this device, we obtain

\[
\mathcal{D}(k_1^2, k_2^2, k_3^2, k_4^2, s, t) = \frac{1}{\pi t \sqrt{XY}} \int_{0}^{\infty} d\eta \; \sinh \eta \left(\cosh \eta - \cos \phi\right)^2 \times \int_{0}^{\infty} d\tau \sin(\kappa \eta \cosh \tau) \cos\left(\frac{1}{2}\ell \kappa \sinh \tau\right) \tag{17}
\]

as a double integral. Next, the substitution \(z = \kappa \cosh \tau \) gives \(\kappa \sinh \tau = \sqrt{z^2 - \kappa^2} \) and \(d\tau = dz/\sqrt{z^2 - \kappa^2} \). Hence we obtain

\[
\mathcal{D}(k_1^2, k_2^2, k_3^2, k_4^2, s, t) = \frac{1}{\pi t \sqrt{XY}} \int_{0}^{\infty} d\eta \; \sinh \eta \left(\cosh \eta - \cos \phi\right)^2 \times \int_{0}^{\infty} dz \; \frac{\sin(\eta z)}{\sqrt{z^2 - \kappa^2}} \cos\left(\frac{1}{2}\ell \sqrt{z^2 - \kappa^2}\right) \tag{18}
\]

Now we reverse the order of the integrations, obtaining

\[
\mathcal{D}(k_1^2, k_2^2, k_3^2, k_4^2, s, t) = \frac{1}{\pi t \sqrt{XY}} \int_{0}^{\kappa} dz \; \frac{\cos\left(\frac{1}{2}\ell \sqrt{z^2 - \kappa^2}\right)}{\sqrt{z^2 - \kappa^2}} \times \int_{0}^{\infty} d\eta \; \sinh \eta \sin(\eta z) \left(\cosh \eta - \cos \phi\right)^2 \tag{19}
\]

From Equation (2.5.48.18) of [12] (with \(t = \pi - \phi, c = 1, b = z \)), we obtain

\[
\int_{0}^{\infty} d\eta \; \sinh \eta \sin(\eta z) \left(\cosh \eta - \cos \phi\right)^2 = \pi z \frac{\sinh[(\pi - \phi)z]}{\sin \phi \sinh(\pi z)} \tag{20}
\]

Recalling that \(\mu = 2\sqrt{XY} \sin \phi \), we obtain

\[
\mathcal{D}(k_1^2, k_2^2, k_3^2, k_4^2, s, t) = \frac{2}{t \mu} \int_{0}^{\infty} dz \; \frac{\sinh[(\pi - \phi)z]}{\sqrt{z^2 - \kappa^2}} \sinh(\pi z) \times \cos\left(\frac{1}{2}\ell \sqrt{z^2 - \kappa^2}\right) \tag{21}
\]

This is our final solution to the Dyson–Schwinger equation (11) that sums all \(L \)-loop 4-point ladder diagrams, including (most crucially) the tree-diagram, with \(L = 0 \) loops. The sum manifestly vanishes, exponentially fast, as the dimensionless coupling \(\kappa = y/(2\pi \sqrt{X}) \) tends to infinity, since the ratio of sinh functions in the integrand of (21) satisfies

\[
\frac{\sinh[(\pi - \phi)z]}{\sinh(\pi z)} \leq \frac{\sinh[(\pi - \phi)\kappa]}{\sinh(\pi \kappa)} = O(e^{-\kappa \phi}) \tag{22}
\]

with \(\pi > \phi > 0 \).

So we are done, 17 years after conjecturing such an exponential suppression.

4. COMMENTS

Our actual route to this final answer bears scant relation to the more coherent explanation offered here. After many fruitful exchanges of ideas, the first author guessed the final result, by means far too involved to be recounted here, and then the second author neatly devised a process of reverse-engineering that resulted in the proof presented here, via formulae presented in [12][13].

It is not clear to either of us whether our explicit all-orders summation of 4-point ladder diagrams may still hold some interest for the loops-and-legs community that has nurtured our efforts. Yet we hope that it might. In any case, it was fun to achieve.

We gratefully acknowledge the crucial role of Natalia Ussyukina and the moral support of Bas Tausk and Dirk Kreimer, which sustained our resolve.
REFERENCES

1. N.I. Ussyukina and A.I. Davydychev, Phys. Lett. B298 (1993) 363.
2. N.I. Ussyukina and A.I. Davydychev, Phys. Lett. B305 (1993) 136.
3. D.J. Broadhurst, Phys. Lett. B307 (1993) 132.
4. B.A. Arbuzov and V.E. Rochev, Sov. J. Nucl. Phys. 21 (1975) 455; K.G. Klimenko and V.E. Rochev, Theor. Math. Phys. 32 (1978) 787.
5. B. Eden, P.S. Howe, C. Schubert, E. Sokatchev and P.C. West, Nucl. Phys. B557 (1999) 355; B. Eden, C. Schubert and E. Sokatchev, Phys. Lett. B482 (2000) 309; M. Bianchi, S. Kovacs, G. Rossi and Y.S. Stanev, Nucl. Phys. B584 (2000) 216; F.A. Dolan and H. Osborn, Nucl. Phys. B599 (2001) 459; N. Beisert, C. Kristjansen, J. Plefka, G.W. Semenoff and M. Staudacher, Nucl. Phys. B650 (2003) 125; J.M. Drummond, G.P. Korchemsky and E. Sokatchev, Nucl. Phys. B795 (2008) 385; D. Nguyen, M. Spradlin and A. Volovich, Phys. Rev. D77 (2008) 025018; L.F. Alday and R. Roiban, Phys. Rept. 468 (2008) 153; G.C. Rossi and Y.S. Stanev, Nucl. Phys. B807 (2009) 534; B. Basso and G.P. Korchemsky, J. Phys. A42 (2009) 254005.
6. J.M. Drummond, J. Henn, V.A. Smirnov and E. Sokatchev, JHEP 0701 (2007) 064.
7. A.P. Isaev, Nucl. Phys. B662 (2003) 461; A.P. Isaev, Phys. Atom. Nucl. 71 (2008) 914.
8. I. Kondrashuk and A. Kotikov, JHEP 0808 (2008) 106; I. Kondrashuk and A. Vergara, JHEP 1003 (2010) 051.
9. P. Osland and T.T. Wu, Nucl. Phys. B288 (1987) 77, 95.
10. A.I. Davydychev and J.B. Tausk, Nucl. Phys. B397 (1993) 123; Phys. Rev. D53 (1996) 7381; A.I. Davydychev, Phys. Rev. D61 (2000) 087701.
11. A.I. Davydychev and R. Delbourgo, J. Math. Phys. 39 (1998) 4299; A.I. Davydychev and M.Yu. Kalmykov, Nucl. Phys. B605 (2001) 266.
12. A.P. Prudnikov, Yu.A. Brychkov and O.I. Marichev, Integrals and Series, Vol. 1, Nauka, Moscow, 1981.
13. A.P. Prudnikov, Yu.A. Brychkov and O.I. Marichev, Integrals and Series, Vol. 2, Nauka, Moscow, 1983.
14. L. Lewin, Polylogarithms and Associated Functions, North-Holland, Amsterdam, 1981.