An efficient scalable time-frequency method for tracking energy usage of domestic appliances using a two-step classification algorithm

Paula Meehan

BEng

A Dissertation submitted in fulfilment of the requirements for the award of
Doctor of Philosophy (PhD)

to the

Dublin City University

Faculty of Engineering and Computing, School of Electronic Engineering

Supervisors: Dr. Stephen Daniels, Dr. Conor McArdle

September 8, 2015
Declaration

I hereby certify that this material, which I now submit for assessment on the programme of study leading to the award of a PhD is entirely my own work, and that I have exercised reasonable care to ensure that the work is original, and does not to the best of my knowledge breach any law of copyright, and has not been taken from the work of others save and to the extent that such work has been cited and acknowledged within the text of my work.

Signed: (Candidate)

Student ID: 56412521

Date: September 8, 2015
Acknowledgements

I would like to thank all the people in Dublin City University and the Energy Design Lab, past and present, who helped me along my PhD journey. This work would not have been possible without the financial support of the School of Engineering, to whom I am grateful. I’d like to thank my supervisors, Dr. Stephen Daniels and Dr. Conor McArdle, for their support and guidance.

A special thanks to Shane and Jie, who made the Energy Lab a place I wanted to work. I would especially like to thank all those friends who’ve spent time with me and provided me with much needed chocolate (and wine!). Thanks to JP and his special brand of motivation, to Jean, Kelly and Jackie for the nights out and to Ruaidhri and Oisin who were always ready for a cup of tea and a chat.

To Scott, who probably ended up learning more about my PhD than he ever cared to know, thank you for putting up with me, cheering me up when things were tough and being there to listen to my discoveries.

To my family, particularly my parents Sheila and Paul, thank you for your love, support, and unwavering (and maybe sometimes deluded) belief in me. There is no doubt in my mind that this PhD would not have been possible without the support from both my family and friends.
Contributions

List of peer reviewed contributions

- P. Meehan, C. McArdle and S. Daniels. An efficient scalable time-frequency method for tracking energy usage of domestic appliances using a two-step classification algorithm. *Energies*, 7041-7066, 2014, doi:10.3390/en7117041.

- P. Meehan, S. Phelan, C. McArdle and S. Daniels. Temporal and frequency analysis of power signatures for common household appliances. *Symposium on ICT and Energy Efficiency and Workshop on Information Theory and Security (CIICT 2012)*, pages 2227, Stevenage, UK, July 2012, doi:10.1049/cp.2012.1856. Institution of Engineering and Technology.

- S. Phelan, P. Meehan, and S. Daniels. Using Atmospheric Pressure Tendency to Optimise Battery Charging in Off-Grid Hybrid Wind-Diesel Systems for Telecoms. *Energies*, 3052-3071, 2013, doi:10.3390/en6063052.

- S. Phelan, P. Meehan, S. Krishnamurthy and S. Daniels. Smart energy management for off-grid hybrid sites in telecoms. *Symposium on ICT and Energy Efficiency and Workshop on Information Theory and Security (CIICT 2012)*, pages 1521, Stevenage, UK, July 2012, doi:10.1049/cp.2012.1855. Institution of Engineering and Technology.

- J. Yang, S. Phelan, P. Meehan, and S. Daniels. A distributed real time sensor network for enhancing energy efficiency through ICT. *Symposium on ICT and Energy Efficiency and Workshop on Information Theory and Security (CIICT*
2012), pages 814, Stevenage, UK, July 2012, doi:10.1049/cp.2012.1854. Institution of Engineering and Technology.
List of other contributions

- Paula Meehan and Stephen Daniels. Identification of Domestic Appliances using NILM. *Presentation of work at RINCE Research Day*, January 2013.

- Paula Meehan and Stephen Daniels. Temporal and Frequency Analysis of Power Signatures for Common Household Appliances. *Presentation of work at Faculty of DCU Engineering Research Day*, August 2012.

- Paula Meehan and Stephen Daniels. Temporal and Frequency Analysis of Power Signatures for Common Household Appliances. *Poster presentation at Symposium on ICT and Energy Efficiency and Workshop on Information Theory and Security (CIICT 2012)*, July 2012.

- Paula Meehan and Stephen Daniels. Monitoring Appliance Power Usage from a Single Point of Measurement. *Presentation of work at RINCE Research Day*, January 2012.

- Paula Meehan and Stephen Daniels. Efficiency of Energy Systems. *Poster presentation at Faculty of DCU Engineering Research Day*, May 2011. (Best poster award).
Contents

Acknowledgements III
Contributions IV
List of Figures XII
List of Tables XVIII
Abstract XXI

1 Introduction 1
 1.1 Research objectives .. 4
 1.2 Solution and contributions 5
 1.3 Organisation of thesis document 7

2 Literature review of domestic appliance identification 9
 2.1 Introduction ... 9
 2.2 An overview of load identification 10
 2.3 Applications of load identification 10
 2.4 Load identification signal acquisition techniques 13
5 Identifying appliances using signatures based on FFT harmonics and a
naive Bayes classifier

5.1 Introduction .. 73
5.2 Methodology ... 74
5.3 Algorithm .. 76
 5.3.1 Signature library 78
 5.3.2 Naive Bayes classifier 80
5.4 Experimental procedure 82
5.5 Results and Analysis 84
 5.5.1 Using the steady state FFT to identify appliances in isolation 85
 5.5.2 Identifying appliance combinations and comparing using a
 virtual signature library versus a real measured signature
 library ... 87
5.6 Conclusion .. 90

6 A two step classification method that uses a time frequency signature

6.1 Introduction .. 92
6.2 Methodology ... 93
6.3 Algorithm .. 98
 6.3.1 Event detection and the extraction of the FFT signature of
 an event .. 100
8.5 Code ... 146

8.5.1 LabVIEW™ code for acquiring signals using the LabJack 146

Bibliography .. 149
List of Figures

1.1 Core components of an appliance load monitoring system 2

2.1 The signal choices for a load monitoring system 14

2.2 PQ signature space for different appliances [1] 17

2.3 First sixteen current harmonic signatures for four different appli-
ances (monitor, CPU, lamp, television) [2] 20

2.4 Four of the seven signatures (normalised FFT, IPW, admittance,
eigenvalues) for a water boiler, air conditioner, TV and induction
cooker, [3] . 22

2.5 Using ‘v sections’ derived from the instantaneous power at start up
as a signature [4] . 23

2.6 Using the transient EMI noise on the voltage line as a signature to
identify different appliances [5] . 25

2.7 Supplementary sensor information for a microwave appliance, this
figure shows the current draw and the corresponding sound, tem-
perature and vibration signals measured when the microwave is in
operation [6] . 26

2.8 An example of a ROC curve [7] 35

XII
2.9 Comparison of complexity for different load identification algorithms, \(n, n + n^2 \) and \(2^n \) .. 36

3.1 Experimental set-up .. 42

3.2 Measurement box which measures both current (using a Hall Effect Sensor) and voltage passively 43

3.3 Allegro Hall Effect ACS712 (current sensor in measurement box) input output signal relationship [8] 45

3.4 Voltage sensing circuit which consists of a potential divider circuit, inverting amplifier circuit and an optocoupler circuit 46

3.5 Comparison of current acquired for the fridge using the PM3000a and the measurement box (which contains an Allegro Hall Effect Sensor for current measurement) 49

4.1 The voltage variation measured over one day and the corresponding national power demand [9] ... 53

4.2 Measured amplitudes of the first five odd voltage harmonics from the test environment over a 24 hour period (01/05/12). 54

4.3 Relationship of higher voltage harmonics to fundamental over a 24 hour period (01/15/2012). These are the same voltages as shown in Figure 4.2. ... 55

4.4 Radiator current draw cycles with respect to temperature of radiator 57

4.5 Current and temperature of refrigerator over an eight hour period at setting 2 ... 59

4.6 The current draw for each microwave oven setting 60

4.7 PC current draw at different CPU usages 61
6.3 This plot is an example of an event being detected at time τ and the requirements this event must fulfil in order to be labelled an event. Each point along the line represents the RMS current calculated from a one second array of current signal (as denoted by a window). 101

6.4 This plot shows the data used to calculate ΔFFT from an event that occurred at time τ, used to classify the appliance. 102

6.5 An example of a TYPE I and II transient signal (kettle and refrigerator respectively) where the signal, profile and derivative of the envelope can be seen. 105

6.6 Breakdown of switching and background appliances used in each test. 110

6.7 RMS current of the LCD TV when it turns ON and a possible non-off event detection (highlighted). 112

6.8 The transient current for the panel radiator and vacuum cleaner illustrating the potential poor performance of their TYPE classification. 114

6.9 Identification accuracy for specific appliances as more appliances are added to operate in the background. 119

8.1 The schematic for the measurement box used to measure current and voltage in the experiment (1/2). 134

8.2 The schematic for the measurement box used to measure current and voltage in the experiment (2/2). 135

8.3 The voltage measured in a domestic environment and the relationship of higher voltage harmonics to fundamental over a 24 hour period on a weekend day. 137
8.4 The voltage measured in a lab environment and the relationship of higher voltage harmonics to fundamental over a 24 hour period on a weekend day. .. 138

8.5 The voltage measured in a lab environment and the relationship of higher voltage harmonics to fundamental over a 24 hour period on a weekday. .. 139

8.6 The voltage measured in a lab environment and the relationship of higher voltage harmonics to fundamental over a 24 hour period on a weekday. .. 140

8.7 A histogram and corresponding Gaussian distribution for the each of the first five odd current harmonic amplitudes of the fridge 141

8.8 Positive profile of the transient temporal waveforms for each of the TYPE I test appliances .. 142

8.9 Positive profile of the transient temporal waveforms for each of the TYPE II test appliances .. 143

8.10 Derivative of the positive profile of the transient temporal waveforms for each of the TYPE I test appliances 144

8.11 Derivative of the positive profile of the transient temporal waveforms for each of the TYPE II test appliances 145

8.12 The front panels used for viewing the signals acquired in real time by the measurement system, the first panel is the total power consumption, the second panel is the temporal and frequency of the current signal and the third panel is the same for the voltage. The power consumption of a PC is being measured in this panel. 146

XVI
8.13 The VI shows the extraction of the various mathematical features from each signal. The input to this VI is a 1 second array containing the temporal signal. The maximum and minimum amplitudes, wavelength, frequency, RMS and FFT of the signal are acquired in this VI and passed to the next stage. 147

8.14 This is the front panel of the LabVIEW™ VI which identifies the appliance(s) consuming power using the naive Bayes classifier. A green light indicates the on appliances. 148

8.15 The VI shows the identification of which appliance is consuming power using the naive Bayes classifier. The input to the VI is the FFT of the current signal. The VI contains a signature library for the individual appliances. The output of the VI is the most likely appliance(s) that are consuming power. 149
List of Tables

2.1 Description of true negative, false negative, false positive, true positive 34
2.2 Confusion matrix description 35
2.3 Comparison of complete load identification techniques. 39

4.1 Voltage statistics measured in the test environment (30/04/12 to 09/05/12) 52
4.2 EN50160 standard limits for harmonic amplitudes on voltage supply 54
4.3 Measured variation range of harmonic amplitudes on the voltage supply (30/04/12 to 09/05/12) 55
4.4 Difference between refrigerator power settings for Thor TH251 fridge (with no contents) 58
4.5 Relative consumption in a household by load type [10] 62
4.6 Details of the appliances used in the tests, including their rated power (based on manufacturer’s details) and their power factor measured by the Allegro PM3000a Universal Power Analyser at 50 Hz. 63
4.7 EN61000-3-2 current harmonic limits for two classes of household appliances, Class A appliances are household appliances up to 16 A and Class D appliances are electronic appliances that are rated less than 600 W. ... 66

5.1 Signatures of the individual appliances calculated from training data, the mean and standard deviation measured for each appliance harmonic amplitude (where the 1st harmonic is at 50 Hz). 79
5.2 List of the appliances used in the test and their rated power 83
5.3 Number of test combinations collected for each of the nine appliances 84
5.4 Accuracy for identifying each individual appliance using the five odd current harmonics as a signature and with two days of unseen test data. ... 87
5.5 Accuracy of method when comparing measured signatures with virtual signatures ... 88

6.1 Properties of the set of test appliances, as measured by the Allegro PM3000a Universal Power Analyser at 50 Hz. 94
6.2 The mean of the amplitude of the current harmonics for each appliance used in this experiment. 96
6.3 An example entry in the signature library for two appliances (one of each type). ... 103
6.4 The library values representing the rate of change of the transient signal. ... 104
6.5 Number of test ON and OFF events for each appliance divided by type ... 109

XIX
6.6 Accuracy of the event detection algorithm. 111

6.7 Area under the curve (AUC) values for classifying the correct type
to an appliance based on features from the ON transient signal (Eqn.
2.4, Chapter 2). 113

6.8 Amplitude and phase of voltage and current for two types of appli-
ances, the panel radiator (TYPE I) and microwave (TYPE II) 115

6.9 Accuracy for identifying an appliance when using two different fea-
ture sets and a naive Bayes classifier (Eqn. 2.4, Chapter 2). 116

6.10 AUC calculated for identifying an appliance turning ON and OFF
when classifying the type based on the transient signal and then
using a select set of current harmonics as features based on the type
(Eqn. 2.4, Chapter 2). 117

6.11 Number of harmonics in signature versus sum of the squared error. . 120

6.12 Accuracy of classifying the TYPE of appliance OFF using a the set
of current harmonics as features (Eqn. 2.4, Chapter 2). 122

6.13 Comparison between accuracy of identifying appliances at OFF
when using three odd current harmonics to identify appliance and
when using a two step classification method which classifies the
appliance TYPE first and then reclassifies the appliance using the
specific number of harmonics to that appliance TYPE (Eqn. 2.4,
Chapter 2). 123

XX
Abstract

Load identification is the practice of measuring electrical signals in a domestic environment in order to identify which electrical appliances are consuming power. One reason for developing a load identification system is to reduce power consumption by increasing consumers’ awareness of which appliances consume most energy. The thesis outlines the development of a load disaggregation method that measures the aggregate electrical signals of a domestic environment and extracts features to identify each power consuming appliance. A single sensor is deployed at the main incoming power point, to sample the aggregate current signal. The method senses when an appliance switches ON or OFF and uses a two-step classification algorithm to identify which appliance has caused the event. Parameters from the current in the temporal and frequency domains are used as features to define each appliance. These parameters are the steady state current harmonics and the rate of change of the transient signal. Each appliance’s electrical characteristics are distinguishable using these parameters. There are three types of loads that an appliance can fall into, linear nonreactive, linear reactive or nonlinear reactive. It has been found that by identifying the load type first, and then using a second classifier to identify individual appliances within these types, the overall accuracy of the identification algorithm is improved.
Chapter 1

Introduction

The growing concern of climate change has motivated research in the reduction of energy consumption. In Europe, households account for 25.9% of energy consumption, which is equivalent to approximately 250 million tonnes of oil per annum [13]. The average U.S. household consumed 11 MWh of electricity in 2009, approximately 66% of which is consumed by household electrical appliances [14]. Studies have shown that making users aware of how much power they are consuming can encourage reductions in power consumption by approximately 15% [15]. Load monitoring is one technique enabling the reduction of energy consumption. The ability to identify the appliances that are consuming power, and how much power specific appliances consume, will give a more detailed indication to users of where energy savings can be made, allowing usage behaviour to be modified and so optimising energy savings.

Load monitoring involves disaggregating the total power consumption of a domestic household into the appliances which are consuming power at that moment in time. The process involves analysing changes in the aggregate electrical signals
of a household, for example power or current signals, and identifying what appli-
cances are running. This allows one to know each individual appliance’s power con-
sumption. Figure 1.1 shows the core components of an appliance load monitoring
system. The complete system consists of the appliances that are being monitored,
the electrical network to which they are connected and the monitoring system. A
mix of disparate appliance types and the non-ideal nature of the electrical supply
both contribute to the challenge of designing an effective and efficient method that
accurately determines the state of the system.

Figure 1.1: Core components of an appliance load monitoring system

Before an efficient load monitoring method is developed, there is a need to
understand the power system in more detail. The power source and the electrical
load are complex components of the electrical environment. The voltage source
provided by the electrical supplier should ideally be a single-frequency sine wave, undistorted and with no harmonic content. Due to nonlinear loads operating on the grid this is not the case. There are multiple voltage harmonics evident in the source, the amplitudes of these vary daily. This varying voltage can have an effect on the current of the electrical loads on the system.

An appliance in its most simple form has two states - it can be either ON or OFF. However, this is not indicative of the behaviour of the majority of electrical appliances. Typically, when switched on, an appliance goes through a transitional state before it reaches its operational steady state. This can be caused by an initial spike in electrical current, or by the appliance needing time to reach its operating temperature etc. Appliances with multiple operating states add an extra dimension of complexity. Some appliances (for example a fan heater with multiple settings) have multiple discrete states while others (for example a hand drill) have continuously varying states. Appliance behaviour can also be subject to user interaction. Finding a single, or small number, of meaningful electrical features that can be used to identify all appliances is one of the challenges of load monitoring.

Studies have shown that up to 42 unique appliances contribute to the average household’s electric load, although typically 80% of its total power consumption can be attributed to eight appliances [16]. In a household of N appliances, there are \(2^N - 1\) possible different combinations of these appliances consuming power at the same time, assuming 'binary' appliances. This large number of possible combinations means the load monitoring system should classify each appliance with an easily identifiable unique signature. It should be possible to identify a single appliance if it is operating alongside one or more other appliances. The cost of adding sensors and additional equipment may be hard to justify in a domestic setting, so a
single point of measurement is preferable.

An effective load monitoring method should have a number of capabilities along-side having an acceptable degree of accuracy of identification. The computational methods used for appliance identification should have low complexity and be efficient and so be capable of operating in a system with large numbers of appliances. Each type of domestic appliance should be catered for, including simple resistive loads and more complex nonlinear appliances. The method should be developed with a view to being deployed on a system that uses a single cost-effective sensor and simple data processing engine that can be deployed remotely and should be feasible to deploy in a real environment. The signature for each appliance should be sufficiently detailed to distinguish appliances with a high degree of accuracy without being overly complex or have numerous parameters. The method should not rely on large amounts of training data and should be able to cope with random variations in the environment, and not be sensitive to voltage and temperature variations.

This thesis outlines an investigation into load monitoring techniques and the environment in which a load monitoring system is to be deployed.

1.1 Research objectives

This work is carried out with the aim to achieve the following criteria:

- To identify a method of identifying what appliances are consuming power using a single point of measurement. This method should be an efficient method that can operate in a system with large numbers of appliances and has good scalability, has an acceptable degree of accuracy and works for all
types of domestic loads.

- The method should be developed with a view to being deployed on a system that uses a single cost effective sensor and simple data processing engine that can be deployed remotely. The method should be feasible to deploy in a real environment.

There are also a number of subset objectives that will be addressed when achieving the main research aims.

- The signature for each appliance should be sufficiently detailed to distinguish appliances with a high degree of accuracy without being overly complex or have numerous parameters.

- The signature for each appliance shouldn’t need large amounts of training data to create.

- Each type of domestic appliance should be catered for with this method, including simple resistive loads and more complex nonlinear appliances.

- The method should be able to cope with random variations in the environment, and not be sensitive to voltage and temperature variations.

1.2 Solution and contributions

This work presents a load monitoring system that identifies what appliances are consuming power using a single electrical signal measured at a single point of measurement. The method uses a two-step classification algorithm and the aggregate
current signal to identify each appliance. The method waits for an event to occur, where an event is an appliance switching on or off. Information from the current signal in both the temporal and frequency domains is used to identify what appliance is responsible for the event. The signature for each appliance is derived from the rate of change of the current in the temporal domain when an appliance turns on, and from the amplitudes of specific steady state current harmonics. The method has been optimised to work for both simple resistive appliances and more complex nonlinear loads.

The proposed system has been designed, implemented and tested in a deployment of domestic environment in a laboratory. A prototype load monitoring system has been deployed and real measurements from multiple appliances have been used in order to both verify and validate the system’s performance. The appliances used in the tests encompass a wide variety of load types that are commonly found in domestic households, including resistive heating loads, lighting loads, motor loads and electronic loads. The tests are carried out in an environment which is uncontrolled and subject to varying voltages and temperatures.

The contributions of the load monitoring system described in this thesis and the work carried out in its development are highlighted as the following:

- The design and development of an efficient, scalable, accurate load identification method that identifies what appliances are consuming power using a single point of measurement.

- A method that will work for all types of appliances commonly found in a domestic environment, including simple linear loads and more complex non-
linear loads. The method will work in an efficient way using robust characteristics that are not overly complex and will give a unique signature to each appliance.

- A method designed for practical implementation in a domestic environment, that will be efficient and have low computational complexity and is cost-effective.

1.3 Organisation of thesis document

The rest of this thesis is laid out as follows; Chapter 2 outlines a literature review of the state of the art research. It details the different methods currently employed for domestic load identification. The various measurement techniques, identification signatures and classification methods are described. This chapter also details the various ways in which load identification can be utilised. The chapter is ended with a comparison of the complete load monitoring techniques which have a signature library and algorithm and have been deployed and tested for several appliances.

Chapter 3 describes the measurement and experimental set-up in detail. It outlines how the electrical signals and other measurements were obtained and the calibration process used to ensure these measurements were correct.

Chapter 4 outlines a thorough investigation of the environment in which the load monitoring system is to be deployed. It details the complex environment including the voltage supply in the test environment and its variation. It also contains an analysis on the different appliances’ behaviour, including start up and steady state
power usage profiles for different appliances. The chapter outlines a breakdown of a common household’s power consumption and lists the appliances used in the test and the reasons why these appliances were chosen. An initial introduction of the transient and steady state signals for each of these appliances is shown. The work presented in this chapter is new as it hasn’t been covered in such detail in the literature to date.

Chapter 5 outlines an approach to identifying appliances consuming power. The method uses signatures for each appliance based on the harmonics in the current signal. Each individual appliance in the set is measured in isolation and a virtual combination library is created. The signature library is used with a naive Bayes classifier to identify what appliance(s) are consuming power.

Chapter 6 develops the method in Chapter 5 further and improves on any of the shortcomings from it. The method proposed in this chapter uses features from the temporal and frequency current signals and a two step classification algorithm to identify what appliance has caused a change in the system. A thorough analysis of this method is carried out including justification for using a two step classification algorithm. The results of the method are presented and conclusions are made.

The thesis is concluded in Chapter 7 where there is a summary of the work that has been done and also suggestions for future work.
Chapter 2

Literature review of domestic appliance identification

2.1 Introduction

This chapter introduces load identification, discusses the state of the art and the applications of load monitoring. It details the various methods that are currently undergoing research to identify appliances. It describes the different processes involved in creating a total load monitoring and identification method, namely the measurement process, appliance characterisation method and decision algorithm. The load identification methods are then assessed on their confidence and complexity.
2.2 An overview of load identification

Load identification is the process of analysing signals emitted by appliances to identify what appliance is in operation. Identification is carried out by classifying unique features from the signals that correspond to each individual appliance. This is undertaken with the intention of discerning the different appliance’s individual energy consumption. Classifiable signals emitted by appliances that can be used include temperature, light intensity, acoustic intensity, electromagnetic interference, current, voltage and phase or a variation of these. Changes in these signals are analysed and used to characterise and classify the individual appliances. Disaggregating one composite signal, for example the incoming mains signal to a house, is considered a low cost alternative to attaching individual sensors on each individual appliance.

2.3 Applications of load identification

There are several approaches in which load identification is implemented in a domestic environment [17, 18]. Load identification in its most simple state is used as an energy reduction method. The ability to identify a domestic environment’s main power consumers allows the opportunity to identify where it can be reduced. Power suppliers are currently driving toward reducing their carbon footprint and closing the energy gap between sustainable power generation and sustainable power consumption [19]. A study carried out by the European Environmental Agency found that households account for 25.9% of Europe’s energy consumption, which is equivalent to approximately 250 million tonnes of oil per annum [13]. Using energy
monitoring and smart metering can help reduce this domestic power consumption. By identifying what the main power consuming devices are in an environment, this knowledge can allow people to adjust their behaviour and reduce some of their power consumption. Research has shown that by increasing bill-payers awareness of which appliances are consuming power in a domestic environment, the overall consumption can be reduced up to 15% [15]. This study also shows that using direct feedback (i.e. instantaneous load identification) over indirect feedback (i.e. billing) has a greater impact on encourage the reduction of energy consumption, 5 to 15% versus 0 to 10%.

From a smart grid perspective, demand side management could be supplemented by having an analysis of power consumption at peak times [20]. An example of demand side management is encouraging consumers to reduce energy consumption during peak hours and moving this usage to off-peak times through the incentive of financial savings. This will give a more in-depth picture of power usage and potentially give an indication of where energy consumption can be reduced. Utility providers believe that investing in the smart grid network, which includes smart meters will provide them with increasing capabilities over time. Within the context of these new capabilities, communication and data management play an important role. This will potentially lead to improvements in areas like demand response, the ability to tie into the grid with microgrids, plug in electric vehicles and energy storage [21].

A use of load identification which hasn’t been fully researched is combining the identification of appliances with electrical signal condition monitoring and fault detection. There has been extensive work investigating the use of electrical signal analysis to identify the condition of industrial pumps and to identify faults, using
the FFT or the wavelet of the electrical signals [22, 23]. These works demonstrate that the FFT of the electrical signal for the pump indicates when there is a fault by inducing extra peaks in the spectrum. Each fault induces a different peak in the spectrum allowing identification of multiple faults. It has been proposed [4], that the transient signal of a load can potentially indicate if a device has deteriorated. This deterioration can in principle be detected using load identification depending on the resolution of the system and the magnitude of the fault. An example of using a combination of load identification and electrical condition monitoring can be seen in [24], where a US navy propulsion plant is monitored. This offers the potential for a load identification system to identify when appliances are working outside of their normal behaviour and to determine when equipment is working inefficiently. The implementation of appliance identification with condition monitoring could potentially allow for early identification of faulty appliances, preventing unexpected breakdowns. It could also reduce power loss due to the ability to identify and replace inefficient appliances.

The final example where appliance identification can be used is to sense activity in the home. This has a range of applications, including healthcare, entertainment, home automation and energy monitoring. One study in particular uses background sensing in homes for proactive care for the ageing by monitoring activity levels in the house [11, 12]. By monitoring electrical appliances, for example a kettle, an activity level in the house is measurable. The main focus of the research described in this thesis is energy monitoring.
2.4 Load identification signal acquisition techniques

There are numerous ways in which information can be acquired from a home in order to identify what device is consuming power. Figure 2.1 shows the variety of choices that can be made when creating a signature library. The monitoring system can measure at one point [1, 2, 5, 25] or a limited number of points [6, 26] or the system can be sub-metered [27, 28]. If the signal is measured at a single point, it needs to be disaggregated, which is a complex mathematical problem. Although sub-metering also has its own associated complications for example installation or networking. There are many variations on sensor choice, for example, whether to use indirect sensing (environmental sensors) [6, 26] or direct sensing (electrical sensors) [1, 2, 5, 25]. Environmental sensing of a living environment can give a detailed picture of appliance usage, for example, through using temperature, acoustic or light profiles [6, 29, 30]. A more obvious choice is to use direct sensing with electrical sensors [1], where you can look at a number of different parameters; the real and reactive power, current, voltage, phase angle, impedance or admittance. As the loads being monitoring are all electrical, they will all have associated electrical signals, whereas not all appliances emit acoustic or light signals. Another consideration to be made is what part of the signal to look at and what domain to analyse the signal in.
The OWL® meter [31] or a Kill-A-Watt® meter [32] are examples of measurement devices that can be deployed in a sub-metered measurement system. This type of method can give a high level of accurate information that is specifically tied to each appliance [27, 28]. However, there are constraints associated with installation of all the sensors such as the cost effectiveness of installing the number of sensors required. Another complication is the need for the sensors to be networked in order to acquire and transmit information to a central location. The alternative is to use a single sensor placed in a prominent position, for example at the incoming meter for power measurements. This allows the measurement of the total power consumption of the environment but the total measurement has to be disaggregated into the

Figure 2.1: The signal choices for a load monitoring system
The sampling frequency at which the measurements are taken is an important consideration. Low frequency measurements are taken at a sampling rate of approximately 1 Hz and the higher frequency measurements are taken at rates ranging from 105 Hz (which is derived from the Nyquist-Shannon sampling theorem and is a minimum of two times the fundamental frequency) to 500 kHz. Low frequency measurements tend to depend on using features such as time of use or operation duration. Higher frequency measurements allow an in-depth snapshot of events - particularly transient events when devices turn on, off or to different states.

Generally the physical measurement system is designed with a specific measurement signal in mind. The system is optimised for the type of signal being analysed, whether it is a transient or steady state signal and in the time or frequency domain.

2.5 Appliance characterisation signature types

This section outlines the different types of signature libraries used in an appliance load identification system. These methods are based either on the transient electrical signal, the steady state electrical signal or an ambient environmental signal. Some of these signatures are analysed in the frequency domain, while others in the temporal domain.

2.5.1 Steady state signatures

Signatures based on steady state signals are one of the more popular load identification methods [1, 2, 33, 34, 35]. Transients tend to last for less than five sec-
onds and have been found to be less repeatable than steady state signals by some researchers [36]. The steady state signal lasts for the duration of an appliance’s operation, which, depending on the appliance can last for several minutes or more, for example typically a kettle runs for three minutes, a fridge for twenty minutes and a TV could be run for an hour upwards. The following section details the four most significant ways in which a steady state signature has been used to identify appliances. The first method is one of the most popular methods and it uses the real and reactive power to identify appliances with a simple matching algorithm; the second method uses the real power with a more complex decision algorithm; the third method is based on the frequency spectrum of the appliance; and the fourth method uses a combination of multiple signature types.

Using signatures from the temporal domain is also one of the more popular methods being used to identify appliances [3, 4, 37, 38, 39]. One of the first papers which used this approach was Hart [1], where high frequency measurements of real (P) and reactive (Q) power are categorised into a PQ signature space (Figure 2.2). As can be seen in the figure, loads that are far from each other in the PQ signature space are easy to identify. However this method also leads to overlapping devices which lie in the same area of the signature space when appliances consume approximately the same real and reactive power. An algorithm which matches equal turn on and turn off power changes is used to detect appliances. The matching algorithm assumes that the positive change of power (start on) matches the negative change of power (turn off). This method can easily detect and track the on-off appliances, but has problems in detecting multi-state and variable-load appliances. Another problem with this method is due to appliances changing their resistance after they turn on, from the heating of components. Appliances can be mismatched
because of this power drift, which can be as high as 10% [40]. Alternatively, a method is proposed [41] that instead records both the on and off PQ values as signatures for each appliance and uses a nearest neighbour classifier to identify the appliances. This method uses a smart phone application to help train the algorithm and is tested for nine appliances, although has not been tested for variable and multi-state loads.

![Figure 2.2: PQ signature space for different appliances [1]](image)

The method of using the PQ signature space has been extended further by adding additional features to distinguish between appliances [4, 38, 39]. One of these methods uses the PQ signature and additionally filters the current and uses the transient shapes as signatures [4]. This work focusses on industrial type loads, which induce noise on the current line. The method initially removes meaningless abrupt peaks from the electrical signal using a median filter. Appliances that contain variable speed drive controllers induce noise on the current which can lead to misla-
belling appliances. This approach considers the shapes of the transient events (their power profile in time) as an additional feature. This method is discussed in further detail in the transient section below. An alternative additional feature proposed was to use edge detection of appliances from powering on and off or changing between states, and the slopes of the appliance’s current during operation [38, 39]. This method was developed exclusively for appliances with significant power draw, for example a washing machine or refrigerator and was tested for identifying up to six appliances successfully.

The second steady state signature method uses a simple signature based on the real power and a complex algorithm [40, 33, 34]. This method has a high accuracy (90%) in identifying large household appliances (for example white goods appliances) with distinguishable power features. These methods tend to train appliance models based on usage patterns. Generic models of appliance are tuned to specific appliance instances using aggregate data, for example fridges have typical characteristics like the shape of their current draw over time. A generic model is created based on this shape and then tuned to the specific values for the actual instance of this appliance. These models are used to disaggregate the energy consumption of individual appliances from a household’s aggregate load. To combat the problem of distinguishing between appliances with similar power consumption, the algorithm uses rules about appliance behaviour, for example time of use or length of usage [40]. Another example of one of these types of methods is based on modelling the appliances using hidden Markov models (HMMs) [33, 34]. The appliances models are disaggregated using an extension of the Viterbi algorithm, before being subtracted from the aggregate load. This method is evaluated using real data from multiple households and it is shown that it is possible to generalise between similar
appliances in different households. The tests involve disaggregating specific large appliances (for example a refrigerator and electric shower) from household data using sub-metered training data and total current draw at mains as test data. The method is not tested on all appliances in the household and does not work for small loads.

The third steady state signature method analyses the steady state signals in the frequency domain and uses the spectrum as a signature for each appliance. This method of using the steady state signal in the frequency domain has been explored in various ways. The first suggestion of using the power spectrum as a characteristic can be found in papers by Hart and Sultanem [1, 35] but they deferred to using the PQ signature space as their main techniques. Using harmonic content as a signature was not implemented until 2000 when a method for identifying ten loads in a three phase environment was developed by measuring a variation of the (1st, 2nd, 3rd, 4th, 5th, 7th and 9th) current harmonics of each load [36]. They found that the steady state measurement had a lower standard deviation than the transient measurement and was more repeatable. Using the harmonic spectrum was also suggested as a method for identifying variable speed loads [42]. Variable-speed drives (VSDs) are industrially important variable-demand loads that are difficult to track non-intrusively. VSDs can also be found in domestic appliances, for example a vacuum cleaner. The method uses the correlation between the fundamental power harmonic and selected harmonics as an identifier for the motor. The correlations are strong they can be modelled by a function [42]. The reason for this correlation is unknown and therefore could make this method unstable.

The most complete method using the spectrum of the steady state signal as a signature was developed by Srinivasan [2], who proposed using the first fifteen FFT
harmonics of the current as a characterisation signature, as shown in Figure 2.3. They used a multi-layer perception (MLP) neural network (NN) to predict what appliances are on. The test set consisted of recording each appliance and combination of appliances for a total of eighteen readings over a three minute period. The recorded data is split 66%, 33% into training and test data. There are eight appliances in most of the tests and one test is carried out with ten appliances. In some of the simulations the test data is mathematically created using the same hypothesis that the training data is created with added random noise. The signature library is created using virtual signatures, which are the individual signatures of the individual appliances summed together. Accuracy lies between 70% and 86% depending on number of appliances and levels of noise added. The scalability of the method is 2^N which means the number of combinations of appliances increase exponentially.

![Figure 2.3: First sixteen current harmonic signatures for four different appliances (monitor, CPU, lamp, television) [2]](image)

The final steady state signature method of significance involves using a com-
bination of multiple signatures. The CLP Research Institute [3, 37] uses seven different load signatures to identify their appliances. The seven signatures are PQ, the current waveform, the eigenvalues, the instantaneous admittance waveform, the FFT harmonics of the current, the length of the switching transient waveform and the instantaneous power waveform. The appliance library consists of twenty-seven different appliances. The test data is created based on the individual measurements, where events and combinations of appliances are mathematically created using Monte Carlo methods and noise was added. There are three simulations scenarios tested, the first are normally distributed switching events, the second are evenly distributed switching events and the third are behaviourally based switching events. The algorithm detects an event as a change in power of 100 W and the difference between two time periods, one before and one after the event, is found. The seven unknown signatures are derived from this event. These unknown signatures are each classified using a least residue method and a NN and provide a candidate pool of possible predictions. A committee decision is made using this candidate pool to decide what appliance(s) have just turned on or off. The three committee decision types used are most common appliance (MCO) predicted, least unified residue (LUR) (i.e. the smallest difference between the event signature and the predicted signatures) and a maximum likelihood estimate (MLE), which is based on a simulated a priori knowledge estimation of the probability reflecting the accuracy of the combination. The MLE is the most computationally intensive method and involves a large amount of a priori simulation for the appliances. There are several results from the method, the accuracy of the method (with both ACs on) is 90% for MLE, 85% for the LUR and 83% for the MCO. The accuracy decreases with the number of appliances operating simultaneously, it decreases by about 10% when
the number of appliances increases from four to fifteen.

Figure 2.4: Four of the seven signatures (normalised FFT, IPW, admittance, eigenvalues) for a water boiler, air conditioner, TV and induction cooker, [3]

The four methods discussed in detail above are the most significant and complete methods based on using a steady state signature to characterise what appliances are on. Each of the methods have relatively similar success levels with various problems.

2.5.2 Transient signatures

An alternative, less popular method to using a steady state signal as a signature is to use the transient signal. The following section outlines the different approaches developed that have found the transient signal useful in detecting appliances.

The first attempt at using transient events to detect appliances was carried out in MIT [4, 43, 44]. This method uses a time pattern of ‘v sections’ alongside the PQ signature space to identify an appliance. A ‘v section’ is when the mean current changes rapidly in a specific time period, or the rate of change of current (Figure
2.5). Each appliance tested has a unique transient ‘v section’ pattern that is time dependant. This method has been tested on four separate appliances. The initial method was developed further for industry, tying it in with the building management system (BMS) signals. The initial ‘v section’ was based on the current [44], but it has also been investigated using voltage signals [43]. This is based on the premise that when an appliance is turned on there is a dip in the mains voltage. By using the distortion of the mean voltage different appliances’ transients give different shapes. These distorted voltages transient shapes can be used to identify appliances.

![Figure 2.5: Using ‘v sections’ derived from the instantaneous power at start up as a signature [4]](image)

Another method which uses the profile of the instantaneous power at start up at the PQ signatures was proposed by Chang, [45, 46, 47, 48, 49]. This method, similar to the previous method, uses the transient profile of the instantaneous power draw for each appliance over a 0.3s time period. It also uses the PQ steady state
signals and a multi layer feed forward (MLFF) neural network. The system is tested for three appliances which have similar PQ signatures and the transient signature is used to distinguish between the appliances further. Each of the transient signatures are recorded for four seconds at $30kHz$, there are 78 events recorded in total. Half of the data is used for training and and half for testing. The average accuracy of the method is 87%. This method is tested for a total of five different appliances, it is found that the accuracy of the method increases from approximately 60% to 90 % when the PQ signature is supplemented with the transient signature. The scalability of this method with the addition of more appliances is $(N + N^2)$.

The third technique in which the transient signal is used to identify appliances was proposed by Patel [5, 25], this method uses the voltage EMI transients to identify appliances. This approach is based in the frequency domain, between $10Hz$ and $500kHz$. The noise on the voltage line is used to detect appliances turning on and off with a k-nearest neighbour classifier as shown in Figure 2.6. This method has been tested in seven different households identifying between ten and twenty appliances in each. The training data for each appliance consists of a single transient event of each appliance in isolation. The average accuracy of the method is 89 %. As the method just detects the transients of an appliance turning on or off the scalability of the method is not a problem unless there are appliances with similar signatures. This method works mainly for electronic loads as they emit more noise on the voltage line. It does not detect some major household loads for example resistive heaters. This method is susceptible to changes in detections due to the way the house is wired and EMI from neighbouring households. It has been found that similar appliance models can have similar signatures within a variance, irrespective of what house. This is promising for training purposes of new appliances although
this can also cause a problem when there are similar appliances in different rooms which can be mislabelled as one another

Figure 2.6: Using the transient EMI noise on the voltage line as a signature to identify different appliances [5]

The three methods listed above are the significant methods which use transient information to identify appliances. Again none of these methods are a complete solution and still have problems associated with them that need to be addressed before a complete load monitoring system can be defined.

2.5.3 Ambient signatures

Sometimes power measurements are supplemented by ambient sensor data. The University of California have developed the VirdiScope [30], which uses a number of ambient external sensors alongside a current sensor to identify appliances. Changes in acoustics, temperature and light intensity are combined with power events as an alternative way of identifying appliances. A similar method has been developed by the Clarity Research group in University College Dublin [6, 26] (Fig-
Clarity uses temperature, light, sound, vibration and current variations to classify appliances. Ambient sensors offer a cheap way of monitoring devices and take advantage of the heat, sound and light energy and vibrations that appliances produce when on. Again a problem with using ambient sensors is associated with installation of all the sensors and the need for the sensors to be networked. Ambient sensors also tend to be used in conjunction with power measurements.

![Figure 2.7: Supplementary sensor information for a microwave appliance, this figure shows the current draw and the corresponding sound, temperature and vibration signals measured when the microwave is in operation [6]](image)

Other examples of using ambient sensing to identify appliances consuming power include the following: the TinyEars project uses a high definition acoustic sensor and power meter readings to identify appliances [29]; WisperMon (Michigan State University) uses fine-grained information with distributed sensors (light, acoustics and power meter readings) to identify appliances [50]; the Supero project uses direct and indirect sensing (light sensor distance, acoustic properties of appli-
ances, and appliances rated powers) to identify appliances [51]. A method of using ambient light sensors was proposed by Jazizadeh, from the University of Southern California [52]. Baransi proposed using an optical sensor that reads the revolutions of a house’s power meter to monitor power usage [53]. Alahmad suggested alongside using power feature analysis to use time domain reflectometry (TDR) and frequency domain reflectometry (FDR) to find the location of the appliances [54]. These methods represent alternative approaches to monitoring and identifying when appliances are consuming power. Using environmental sensors alongside power sensors to identify appliances is a way of increasing the accuracy of a load identification system.

2.6 Appliance classification algorithms and performance metrics

The main research effort in appliance load identification has been focused on signature exploration rather than algorithm development. Each of the power monitoring methods described above use a classification algorithm to decide which appliance is consuming power. Classification is the problem of identifying to which of a set of classes a new observation belongs, on the basis of a training set of data containing observations whose class membership is known. In machine learning, classifiers are associated with supervised learning. Supervised learning is the task of creating a function based on labelled training data.

Support vector machines (SVMs) have been used in several different load identification methods. Patel [25] uses high frequency transient current information and
a SVM to identify appliances. They are also used in [55] with features extracted from the real and reactive power signals. A SVM is one of the most robust classification algorithms [56]. A SVM only requires a small number of training data samples and is insensitive to the number of dimensions each class may have. The classification is performed geometrically, which means that each class occupies a space derived from the training data. The best classification function is found by maximizing the margin between the classes. An initial drawback of SVMs is their computational inefficiency when the number of classes increases to thousands, although this is not really a problem with load identification algorithms, where the maximum number of appliances tend to be around forty [57]. In order to work for a problem with such a large number of classes the approach is to break the larger optimization problem into a series of carefully chosen smaller variables.

Hidden Markov models (HMMs) [33, 58, 59, 60] are a classifier typically used with low frequency measurements in load identification, where the maximum sampling time is every one second. The data tends to be real power or real current and contains less information than higher frequency measurements. HMMs are widely used to model stochastic processes and are suited to modelling the combination of independent processes [61]. HMMs are a popular algorithm choice as the models are mathematically rich and when applied properly, they work well in practice. There are four main components in a HMM; the states, or the labels that are to be assigned; the emission probabilities, each state has its own emission probability which are based on the parameters of each class; the transition probabilities, which is the probability of moving from one state to another; and the final component is the output probability [62]. An HMM generates a sequence, when one state is visited, there is a residue from the states emission probability distribution. The
next state to visit is chosen according to the state’s transition probability distribution. The model thus generates two strings of information. One is the underlying state path, as the model transitions from state to state. The other is the observed sequence, each residue being emitted from one state in the state path. HMMs do not deal well with correlations between residues as they assume that each residue depends only on one underlying state.

Each appliance is modelled as a single HMM trained using a number of observations. An example of an observation used could be the initial probability of an appliance state, the number of possible states an appliance may have or the probability of the appliance being on at a particular point in time. The system uses an observation to infer what state has changed. The task is to identify, given the parameters of the model, the probability of a particular output sequence. One of the difficulties with using HMMs is determining how a given observation sequence is derived. The observation sequence is used to adjust the model parameters during the training sequence. The training problem is the crucial one for most applications of HMMs, since it allows the model parameters to be adapted under observed training. There is no known way to analytically solve for the model which maximizes the probability of the observation sequence.

Finite state machines (FSMs) are another example of an algorithm which has been implemented in load identification, for example Hart [1] uses the PQ signature space and a FSM to identify appliances. FSMs are widely used to model systems in diverse areas [63]. A FSM is an abstract machine that can be in one of a finite number of states. The machine is in only one state at a time; the state it is in at any given time is called the current state. It can change from one state to another when initiated by a triggering event or condition; this is called a transition. A
particular FSM is defined by a list of its states, and the triggering condition for each transition. Optimizing an FSM means finding the machine with the minimum number of states that performs the same function. FSM are not known for scaling particularly well. Another example of a load identification method using FSM is [64] where the real power measurements sampled every second and a FSM is used to decide what appliances are on.

Another relatively common classification method used are artificial neural networks (ANNs). An ANN is a computational mathematical model based on the neural networks found in the brain [65]. An ANN works by using a weighted sum of the inputs which represent ‘neurons’ to predict an output. The weights in an ANN are adaptive and are tuned by a learning algorithm. The functionality of the network is determined by the strengths of the connections between neurons. In a supervised ANN the training data, \(i \), is used to create an attribute vector \(X_i \), and an target vector \(Y_i \). \(X_i \) is processed through the neural network to produce an output \(y_i \), the parameters or weights \(w \) of the network are modified to optimise the search and minimised the total squared error. Non-linear functions are easily approximated using ANNs. ANNs are a black box method, so it is not obvious how it carries out its decisions and can be difficult to interpret. ANNs can also be sensitive to the initial choice of network parameters, such as the input weights.

An example of ANN being used for load identification can be seen in [46, 48, 49], where they are used in conjunction with a number of different signatures including the real and reactive power, transient events and wavelets to improve accuracy. The fifteen first real and imaginary current harmonics are used by [2] with an ANN to identify appliances. Another method developed uses neural networks in combination with a selection of features, namely the current waveform, active
and reactive power, harmonics, instantaneous admittance waveform, instantaneous power waveform and eigenvalues and switching transient waveform to identify appliances [3]. An unusual method of using time domain reflectrometry along power lines and the real time power in conjunction with an ANN [54, 66] uses turn on transients and the PQ space with neural networks. ANNs are one of the more popular classification algorithms used in load identification.

A k-nearest neighbour (kNN) classifier has been used by [5] to classify appliances using high frequency voltage information. The kNN classifier finds a group of k objects in the training set that are closest to the test object and bases the assignment of the label based on the neighbourhood [56]. This approach is based on a set of labelled objects, a similarity measure to compute the distance between objects and a value for k, the number of nearest neighbours to be considered.

There are a number of parameters that need to be decided before implementing the kNN classifier, for example the choice of k. Another parameter to be chosen is the size of the neighbourhood, which can affect the sensitivity of the classifier. The choice in counting the labels in the neighbourhood, and whether to base it on the majority number of the neighbours or the labels of the closest neighbours is another parameter. How to measure the distance between objects, whether to chose euclidean or cosine can also affect the results. This distance can depend on the dimensionality of the data and whether the attributes need to be scaled, or if one attribute will dominate the decision. A kNN classifier is a computationally inexpensive model to build, but classifying unknown objects is relatively expensive due to the need to compute the distance of the k nearest neighbours to each new sample, which can be expensive for a large training data set. The kNN classifier is a classifier that can perform well, despite its simplicity and is well suited for
multi-model classes.

The naive Bayes classifier is another classifier that has been as a classification algorithm for a load identification method [67, 68]. It is an algorithm that can be rapidly deployed within a system [69]. It is an appealing classifier because of its simplicity, robustness and surprising effectiveness [56]. The classifier can be readily applied to large data sets and the results are easy to interpret. An advantage of the naive Bayes is that it only requires a small amount of training data to estimate the parameters necessary for classification. The classifier is based on Bayes’ theorem and assumes independence between the individual features and because independent variables are assumed, only the variances of the features for each class need to be calculated [56, 69]. Although the classifier assumes independence between the individual features, it has been shown that the naive Bayes classifier may still be optimal even when there are strong dependencies present between the attributes [69, 70].

Some work has been carried out in the literature to compare different algorithms for load identification. Marchiori et al [67] compared a maximum likelihood classifier with a naive Bayes classifier using the PQ signature space. They found that the naive Bayes classifier performed better. Reinhardt compares a total of nine different classification methods including a Bayesian network, a naive Bayes, a random forest and random committee method [68]. They find the Bayesian network the most favourable method for their signature, with the naive Bayes classifier as a very close second (0.03% difference in accuracy). It is clear that there is no one specific classification method that is currently being used for load identification.

ANNs have been used in a number of load identification algorithms [2, 46, 48, 49] mainly due to their ability to recognize nonlinear functions, the ability to adapt
to different environments, and their high noise tolerance. In general neural networks have won popularity in time series analysis research, under which appliance identification falls. However, current research in other fields, for example in the prediction of packet-switched traffic, shows that in some cases traditional linear models can succeed over neural networks with less resources and less time-consuming methods [71, 72]. Therefore although ANNs appear to be one of the more popular algorithms used in load identification methods, the naive Bayes classifier has been chosen as the classifier in this work. Of the work that has been carried out to compare between different classification methods [67, 68] it has been found that the naive Bayes classifier performs very well. Also, the results from a naive Bayes classifier are easy to interpret, whereas an ANN is a black box method so it can be difficult to interpret the decision process.

2.6.1 Performance metrics: accuracy

To ensure that the identification system and classification algorithm being used is effective the accuracy is calculated to assess its performance. This is done by comparing the output results of the classifier with the expected targets. In statistical analysis there are two types of error that can occur, a type I error which is a false positive and a type II error which is a false negative. For the purpose of this work, and as mentioned in [17], a receiver operating characteristic (ROC) curve is used to test effectiveness of the algorithm. The ROC curve [73] illustrates the performance of a binary classifier system by identifying the true positives, true negatives, false positives and false negatives. An example of a true negative (TN), false negative (FN), false positive (FP) and true positive (TP) can be seen in Table 2.1.
The ROC curve the true positive rate (TPR) versus the false positive rate (FPR), Figure 2.8. The TPR is the fraction of true positive values out of positives plotted (Eqn. 2.1) and the FPR is the fraction of false positives out of negatives (Eqn. 2.2). The TPR is also known as the sensitivity and accounts for type II errors and the FPR is 1 - specificity which accounts for type I errors. This means the trade off between false detection and missed detection errors are detected. The accuracy can be calculated as the number of true positives and false negatives out of the total population, Eqn. 2.3. A common method to compare classifiers is to calculate the area under the ROC curve (AUC). The AUC’s value will always be between 0 and 1. If a classifier randomly guesses the positive class half of the time it can be expected to get an AUC value of 0.5, therefore a realistic result from a classifier should be at least 0.5.

\[
TPR = \frac{TP}{P} \quad (2.1)
\]

\[
FPR = \frac{FP}{N} \quad (2.2)
\]

\[
FPR = \frac{TP + TN}{(TP + FN) + (FP + TN)} \quad (2.3)
\]
AUC = \int_{-\infty}^{\infty} TPR(T)FPR(T)dT \quad \text{(2.4)}

A confusion matrix is a specific table layout that allows visualisation of the performance of an algorithm, typically a supervised learning one. Each column of the matrix represents the instances in a predicted class, while each row represents the instances in an actual class, Table 2.2. The name stems from the fact that it can be seen if the system is confusing two classes (i.e. commonly mislabelling one as another). The best performance of a confusion matrix will have 100 % along the diagonal.

Actual class	Predicted class		
1	True Positive	0	False Negative
0	False Positive	1	True Negative

Table 2.2: Confusion matrix description
2.6.2 Performance metrics: complexity

Another important metric to consider when measuring the performance of a method is the complexity. Complexity is the ability of a system to handle a growing amount of work in a capable manner. An algorithm is said to scale if it is suitably efficient and practical when applied to large situations, in the case of load identification this is a large input data set. If the system fails when a quantity increases, the method does not scale. The load identification problem has a large dependency on complexity, namely the number of appliances in a home to be identified. Figure 2.9 portrays the scalability different load identification algorithms designed exhibit. It is clear from the figure that a complexity of n is better than $n + n^2$, which in turn is better than a complexity of 2^n.

![Graphs showing scalability of different load identification algorithms: n, $n + n^2$, and 2^n.](image)

Figure 2.9: Comparison of complexity for different load identification algorithms, n, $n + n^2$ and 2^n
2.6.3 Performance metrics: efficiency

The efficiency indicates the manner in which the inputs are used by the system. An efficient method means the system uses inputs in a ‘right’ way. Algorithmic efficiency are the properties of an algorithm which relate to the amount of resources used by the algorithm. For maximum efficiency the resource usage is minimized. An algorithm is considered efficient if its resource consumption (or computational cost) is at or below some acceptable level. Roughly speaking, ‘acceptable’ means: will it run in a reasonable amount of time on an available computer.

An efficient appliance identification method should be deployable on a single cost effective point of measurement with a simple data processing engine that can be deployed remotely. For a load identification method to be efficient it should be feasible to deploy in a real environment.

2.7 Summary table of state of the art

Table 2.3 offers a comparison of the most complete load identification methods described above. These methods are analysed by the differences in their approach, the input data required by the method (e.g., voltage, current, sampling rate), the testing regime used (e.g., number of appliances, amount of test data), the algorithm confidence and the computational complexity of the algorithm used.

To date, there have been several load identification methods proposed that achieve a good accuracy of appliance identification. Accuracy is not the only metric on which the efficacy of a load identification technique is measured and in these other metrics there is still room for improvement. For example, some of the methods have not been tested, or do not work for all types of domestic appliances [2, 5, 45].
These methods focus mainly on electronic and motor loads (which overall can account for approximately 45% of a domestic environment’s load consumption [10]) and they ignore resistive heating loads (which account for approximately 25% of a domestic load). Some of the methods proposed do not use real measurements to test their hypothesis, but simulate the test data [3, 37]. This is not a robust enough test. One of the methods proposed is quite computationally complex and has numerous signatures in the signature library, but does not show the efficacy of having seven signatures over a smaller set [3, 37].

The current state of the art leads us to develop a method with the main goal of being efficient with a low complexity algorithm that can scale to many appliances has good accuracy in differentiating appliances, particularly between resistive loads. The method needs to be tested in a proper test regime with a realistic number of appliances (and a reasonable distribution of appliance types) and a reasonable amount of test data. This research aims to provide a solution that addresses all of the criteria for an effective load identification solution.
Method	Loads	Variety of test appliance	Training and test data	Confidence	Complexity	Comparative comments
Real and reactive power (PQ) values for each appliance at the start and end of runtime and a nearest neighbour classifier with Euclidean distance [41].	8	Tested for ohmic, inductive and capacitive loads. Does not work for variable appliances.	Training: three events per appliance Testing: 144 random events of different combinations.	87%	N	The test set of appliances is quite small. The test data is small.
Instantaneous power transient profile and PQ steady state with a neural network [45, 46, 47, 48, 49].	5	Motor and electronic loads. Unknown appliances not considered.	Training: 13 events per appliance Testing: same as training	87%	$N + N^2$	The test set of appliances is small. The method has only been tested for reactive loads. The complexity of this method is comparatively poor.
High frequency noise on voltage line and a k-nearest neighbour classifier [5, 25].	10 – 20 in 7 houses	Detects electronic loads, cannot detect resistive loads. Unknown appliances not considered.	Training: 1 event per appliance Testing: 2576 events	89%	N	This method will not work for non-reactive loads.
Fifteen harmonics from the Fourier transform of the current and a neural network [2].	8–10	Tested for a selection of loads, mainly electronic loads. Unknown appliances not considered.	Training: 18 readings per appliance (10 s apart) Testing: 18 readings per (256) combination	70%–86%	2^N	The complexity of this method is comparatively poor (Figure 2.9).
Hidden Markov models are used to model each appliance based on observations, and the total power is disaggregated using these models [33, 34, 60].	5	Trained for large consumer loads. Unknown appliances have no effect.	Training: 30 min per appliance in isolation Testing: 120 events of 10 combinations	90%	N	This method is computationally complex (HMM) and has only been test for a small set of specific load types.
Seven IV signatures with a least residue, a NN classifier and three committee decisions [3, 37].	27	Tested for a large selection of load types. Unknown appliances not considered.	Training: Each appliance is measured in isolation Testing: combinations are mathematically created	MLE: 90% N LUR: 85% MCO: 83%		This method is computationally complex (inefficient) and is tested on simulated data.

Table 2.3: Comparison of complete load identification techniques.
2.8 Conclusion

This chapter outlines the state of the art research into load identification, it describes the processes involved in developing a load identification system, namely data measurement and acquisition techniques, characterisation methods and classification algorithms. It also discusses how to assess the performance of a load identification method. The chapter also outlines the uses of a load identification system, including those outside of generic power monitoring. This chapter also highlights the capabilities the proposed load identification must have in order to be an effective method. The method must have an acceptable degree of accuracy, the algorithm’s computational complexity should be low and efficient and be capable of working for a large number of appliances. The load disaggregation method should be able to identify the different varieties of loads found in a domestic environment. The method must be tested with real measurements to ensure the validity of the results and to accurately measure the method’s effectiveness. The next chapter outlines the monitoring system developed in order to acquire the signals used in the load identification technique developed and the initial analysis of the signals acquired.
Chapter 3

Measurement tools and techniques

3.1 Introduction

This section outlines the methods in which the appliance data are recorded. It will describe the equipment and sensors used to measure signals and their limitations. The measurement system must be designed with considerations of cost, accuracy and safety with regards to electrical isolation. The experimental set-up comprised of a simulated domestic environment in a laboratory which contained commonly found household appliances. This lab setting allows an in-depth analysis for each of the appliances, where the temperature and electrical signals of a device are measured simultaneously. This analysis can inform us about the appliance’s behaviour, for example the fridge, and the temperature at which the compressor turns on and off and the effect on the current draw. It also offers the ability to measure appliances at different voltage levels (using a variable AC transformer) to see the effect of this on the current. The measurement system used to carry out the experiments comprises a PC connected to a data acquisition (DAQ) device and a current sensor.
and voltage sensor which measure the load’s electrical characteristics (Figure 3.1). This system is tested on a 230 V 50 Hz electrical power grid, but it can easily be adapted to work on a 60 Hz system. The experiments are carried out in a simulated domestic environment in a university lab setting.

Figure 3.1: Experimental set-up

3.2 Measurement sensors

With the problem of load monitoring in mind there are a number of considerations to be taken into account: the measurements signals must be safe and isolated from the electrical mains; the cost of the system must be affordable; the accuracy of the system must be acceptable; and the feasibility of deployment in a real domestic
setting. Figure 3.2 shows the measurement box designed specifically for the set of experiments. The total cost of the components for the first prototype amounted to less than €20. The measurement box passively measures both current and voltage and the measurement signals are isolated from the mains. The system is powered through both the mains and a 5V source from the DAQ. The output signals from the measurement box vary between 0 and 5V and are directly proportional to the live current and voltage signals that are present in the system. A schematic for the measurement box shown in 3.2 can be found in Appendix 8.1, Figures 8.1 and 8.2.

![Measurement box](image)

Figure 3.2: Measurement box which measures both current (using a Hall Effect Sensor) and voltage passively

3.2.1 Current sensor

There are several sensors commonly used for current measurements, the most popular of these being a low resistance current shunt, a current transformer and a Hall effect transducer. The current shunt is a small power resistor that is inserted in
series with the load [74]. The current shunt has a number of advantages including it is easy to understand, is extremely reliable, has no external power requirements and can measure AC currents up to high frequencies. It has several disadvantages the most important being it has no electrical isolation which is a potential safety hazard and it is difficult to install. The shunt also has insertion loses including heat and energy dissipation and it causes a drop in voltage in the measurement circuit. A current transformer is a transformer which converts the primary current into a smaller secondary current [74]. The turns ratio between the primary and secondary core determines the current output. Current transformers have an advantage over current shunts in that they do not need to be inserted in series with the circuit. They have several other advantages such as they are low cost sensors, they provide voltage isolation, they are very reliable and do not require an external power source. The disadvantages of current transformers are they produce AC insertion losses, their output is frequency dependant and they are susceptible to stray AC magnetic fields. A Hall effect sensor is a transducer that varies its output voltage in response to a magnetic field [74]. The sensor provides electrical isolation, is very reliable and has a very good frequency response. Disadvantages of an Hall effect sensor are that it requires an external power supply and the effect of varying temperature and its power supply need to be taken into account.

The current is measured using a 20 A Allegro Hall Effect ACS712 sensor that has an 80 kHz bandwidth [8]. This current sensor is electrically isolated from the mains and outputs a voltage between 0 and 5V. The signal is recorded in the temporal domain at a sampling frequency of 20 kHz. The sensor has a total output error of 1.5% at 25°C, the sensitivity of the sensor is typically 100 mV/A and the sensor noise is 11 mV. The relationship between the measured current and the output
voltage with respect to changing temperature is shown in Figure 3.3. It is clear that changes in temperature have little effect on the linearity. All tests were carried out at room temperature, $20^\circ \pm 5^\circ \text{C}$.

![Output Voltage versus Sensed Current](image)

Figure 3.3: Allegro Hall Effect ACS712 (current sensor in measurement box) input output signal relationship [8]

3.2.2 Voltage sensor

The voltage is measured using a potential divider circuit and then isolated from the mains using an Avago HCNR201 optocoupler [75]. The signal is passed through several LM7332 amplifiers [76] in order to limit the output range between 0 and 5 V and to centre the signal around 2.5 V. An overview of the circuit can be seen in figure 3.4 where the peak and offset voltages at each step are displayed. The bandwidth of the voltage sensing circuit is 1 MHz.
3.2.3 Temperature sensor

Lighting, heating and cooling, and major appliances account for 70% of a household’s total electric energy consumption [77]. This means that many heavy usage appliances have a component that is temperature dependant, for example, ovens, heaters and fridges. For several of these appliances the temperature was measured during their operation to understand the relationship between temperature and power consumption. These experiments were carried out as an initial investigation of how appliances operate and to see if there was a large impact of temperature. A LM335 temperature sensor [78] was used in experiments to determine this. The LM335 has a temperature range of $-40 \degree C$ to $100 \degree C$ with an error of less than $1 \degree C$ over a $100 \degree C$ temperature range.

3.3 Data acquisition device

The current, voltage and temperature measurement signals are read into a PC using a LabJack UE9 DAQ [79]. The LabJack has a dual-processor with 168 MHz
processing power and USB 2.0 interface. It has 14 analog inputs each of which have a 0 to 5 V range and a 12 bit resolution. The PC interfaces with the LabJack using National Instruments’ LabVIEW™ software (Appendix 8.5.1). The current and voltage measurement signals are read at 20 kHz into two of the analog inputs. Eqn. 3.1 and 3.2 are examples of the calculations used to convert the measurement signals to the true current and voltage. I_P is the current being measured and $V_{I_{OUT}}$ is the related measurement signal, similarly V_P is the voltage being measured and $V_{V_{OUT}}$ is the related measurement signal. These equations are based on the components being used and calibrated using multimeters. Depending on the specific electronic components the offset value and the scaling values can vary.

$$I_P = 10.8 \times (V_{I_{OUT}} - 2.475) \quad (3.1)$$

$$V_P = 195 \times (V_{V_{OUT}} - 1.905) \quad (3.2)$$

3.4 Calibration of the measurement system

A PM3000a universal power analyser [80] was used to calibrate the signals from the measurement box (Figure 3.2). It was used to check the accuracy of the measurement signal conversion and to account for any noise that may be a result of the components. The PM3000a also measures a range of electrical characteristics including current, voltage and phase, the first 100 harmonics of the Fourier transform for each and total harmonic distortion. The PM3000a is interfaced over serial at a baud rate of 9600 with LabVIEW™. The PM3000a can directly measure an input
of $30\ A_{RMS}$ and $1400\ V_{RMS}$ with an accuracy of 0.5\%. A comparison was carried out between the measurement box current sensor and the PM3000a for a test load, in this case the fridge. Figure 3.5 graphs the output from both sensors for the first, third, fifth, seventh and ninth current harmonics. There is more noise apparent for the signals acquired with the current sensor than the PM3000a, but the current sensor is an inexpensive sensor whereas the PM3000a is an industrial multimeter with high accuracy so this is to be expected. The magnitude of the current measured by each sensor is within a very close range (less than 5\% for the first three harmonics and less than 10\% for the last two) and the Hall Effect sensor was deemed acceptable for future tests.
Comparison of Allegro Hall Effect Sensor with Voltech PM3000a for test appliance Fridge

First Current Harmonic

Comparison of current acquired for the fridge using the PM3000a and the measurement box (which contains an Allegro Hall Effect Sensor for current measurement)

3.5 Conclusion

This chapter outlines the measurement techniques used in the load monitoring method, validation for their choice and a discussion of their abilities and resolution. An Hall effect sensor was chosen to measure current. This sensor was chosen as it provides electrical isolation, is very reliable and has a very good frequency response. The output of the Hall effect sensor was compared to the same measurements from a more expensive power analyser and it was found that both signals were comparable within that time period. The Hall effect sensor was found to give
an accurate measurement of the current while keeping within acceptable cost constraints. The next chapter analyses the environment in which the tests will be carried out and typical electrical loads found in a domestic environment.
Chapter 4

An analysis of the electrical system

4.1 Introduction

This chapter discusses the electrical environment in which a load monitoring system will be deployed. In order to develop an efficient algorithm for identifying appliances, there is a need to understand the problem in more detail. The power source and the electrical load are complex components of the electrical system. This section discusses the environment in which the appliances are interacting and the appliances themselves. The voltage is supplied by the Irish Electrical Supply Board. Ideally there shouldn’t be any harmonics on the line but there are due to nonlinear loads. In the electrical system all loads are in parallel, therefore theoretically the total current consumed in the system is the sum of the individual currents. The measurements used to explain the electrical system were taken with the equipment described in Chapter 3.
4.2 Voltage source

In Ireland the mains voltage can vary between 207 V and 253 V in accordance with European Standard EN50160 [81]). The voltage was measured in the test environment over a two week period, 30th April to the 9th May 2012. It was found that the voltage varied throughout the day and overall had a standard deviation of 2.52 V and a range of 13 V, Table 4.1.

Mean voltage	232.67 V\textsubscript{RMS}
Standard deviation of voltage	2.52 V
Maximum voltage	239.20 V\textsubscript{RMS}
Minimum voltage	226.10 V\textsubscript{RMS}

Table 4.1: Voltage statistics measured in the test environment (30/04/12 to 09/05/12)

Figure 4.1 shows the voltage measured over a 24 hour period, and the corresponding national power demand for that day. It was found that the trends visible in Figure 4.1 were typical of voltage measured on a weekday and very similar trends were visible for other days. The voltage was also measured in other locations to corroborate the repetition of the voltage (Appendix 8.2). Some of the trends in both graphs appear to be negatively correlated. For example the drop in voltage that occurs between 8 and 10 hours corresponds to the surge in the national power demand. In general, it can be deduced that when the power demand increases there is a corresponding drop in the local voltage. Alongside with the large change in voltage that is visible in the graph, there are also smaller jumps visible in the voltage measurement that are most likely due to appliances in the vicinity turning on or off. For example at 17 hours there is a jump in voltage that corresponds to the time when the air conditioning in the building of the test site is switched off. This
jump was present every weekday the voltage was measured. The voltage variation portrayed in Figure 4.1 was found to repeat on a daily basis with some variation.

![Irish national grid power demand (01/05/12)](image1)

![Voltage measured in test environment (01/05/12)](image2)

Figure 4.1: The voltage variation measured over one day and the corresponding national power demand [9]

The source voltage waveform coming from an AC generator is ideally supposed to be a single-frequency sine wave, that is undistorted and has no harmonic content. This would be true were it not for nonlinear loads. Nonlinear loads draw current disproportionately with respect to the source voltage, causing non-sinusoidal current waveforms. This means that the voltage source has multiple frequencies coexisting simultaneously. European standard EN50160 sets the voltage characteristics of electricity supplied by public electricity networks and stipulates the maximum limits that the amplitudes that higher harmonics are not allowed to exceed on the grid, Table 4.2.
Table 4.2: EN50160 standard limits for harmonic amplitudes on voltage supply

Harmonic	Amplitude as % of fundamental
Total Harmonic Distortion (THD)	8%
Third	5%
Fifth	6%
Seventh	5%
Ninth	1.5%

Figure 4.2 is the voltage harmonic amplitudes measured over a 24 hour period on a weekday in the test environment. It can be seen clearly that each voltage harmonic also varies throughout the day. It was also appears that the voltage harmonics are not positively correlated with the fundamental, this is because the harmonics are a residue of nonlinear loads.
Figure 4.3 shows the third, fifth, seventh and ninth harmonics as a percentage of the fundamental, over a 24 hour period and Table 4.3 shows the range measured over a week. It can be seen that each harmonic is below the limits set out in Table 4.2. There is no clear correlation between all of the harmonics.

Figure 4.3: Relationship of higher voltage harmonics to fundamental over a 24 hour period (01/15/2012). These are the same voltages as shown in Figure 4.2.

Harmonic	Amplitude as % of fundamental
Third	1.79% 0.79%
Fifth	2.92% 1.14%
Seventh	1.20% 0.38%
Ninth	0.79% 0.19%

Table 4.3: Measured variation range of harmonic amplitudes on the voltage supply (30/04/12 to 09/05/12)

It has been shown that the voltage in an electrical environment varies throughout
the day. There are further voltage measurements included in Appendix 8.2, Figures 8.3, 8.4, 8.5 and 8.6. This section has shown that the voltage in the electrical system is complex, and it can be seen that it is susceptible to many factors, such as changes on the electrical grid itself, like power demand and changes due to appliances along the line.

4.3 Domestic appliances as electrical loads

4.3.1 Appliances and operation modes

The most simple appliance possible has two states - it can be either on or off. However, this is not indicative of the behaviour of the majority of electrical appliances. Typically, an appliance goes through a transitional state before it reaches its operational steady state. This can be caused by an initial spike in electrical current, or by the appliance needing time to reach its operating temperature etc. Some appliances (for example an oven hob with multiple rings) have multiple discrete states while others (for example a hand drill) have continuously varying states. Appliance behaviour can be subject to internal controls for example temperature or to user interaction.

An example of a simple appliance that has just two states (on and off) and is subject to internal temperature control is an electrical panel radiator, the current draw of which can be seen in Figure 4.4. This appliance has no transient signal and its RMS current is repeatable over a number of cycles. The radiator is controlled internally by a thermostat, when the sensor detects the temperature of the radiator has reached a specific temperature, the switch is closed and the radiator is turned on.
The case is the same for the radiator turning off. The running time of the appliance will change based on the temperature of the environment in which the appliance is operating, but the general operation of the appliance will not.

Figure 4.4: Radiator current draw cycles with respect to temperature of radiator

An example of an appliance with two states (on and off), is subject to internal temperature control and has a transitional state is the refrigerator (Figure 4.5). The refrigerator is one of the most common appliances found in a domestic setting and is one of the top ten contributors to power consumption in a domestic environment [58]. The refrigerator used in our tests has five settings, each setting corresponds to the thermostat of the refrigerator operating for a different temperature. This means the refrigerator will run for different lengths of time at each setting (Table 4.4).

Figure 4.5 shows nine cycles of the fridge operating at setting 2. Each cycle lasts for approximately the same duration and the time between cycles is also similar. The temperature and RMS current cycles of the fridge are plotted. The temperature varies between 8 °C and 9 °C turning on and off the compressor. It is noteworthy
in the plot that the magnitude of the transient peaks are not the same for any of the cycles. The transient peak can vary depending on at which time during the voltage waveform the fridge switches on, whether it switches on at the zero crossing or at the peak can affect the amount of time the relay and compressor take to turn on. Each run time is dependant on the heat leakage from the refrigerator but in a room that has a relatively constant temperature and for the contents to remain unchanged the running times are approximately equal in length. The current draw from the refrigerator also varies throughout each cycle. This variation is most likely due to the components heating during operation and causing their resistance to change. This change in resistance directly effects the current draw.

Power Setting	Average run time	Average temperature
1	10 minutes	10 °C
2	20 minutes	8 °C
3	40 minutes	6 °C
4	always on	4 °C
5	always on	2 °C

Table 4.4: Difference between refrigerator power settings for Thor TH251 fridge (with no contents)
Figure 4.5: Current and temperature of refrigerator over an eight hour period at setting 2

An example of an appliance which has multiple power settings is a microwave oven, which has six cooking settings. Figure 4.6 shows the current draw for each of microwave oven’s settings over a five minute period. Each setting has two states, the first state is when the rotary motor of the interior plate is on and the second state is when the motor and the magnetron is on. The difference between each of the cooking settings is the duty cycle of the magnetron. It can also be seen that the current decreases over time, again this is due to electrical components heating and their resistance changing and therefore the current.
Figure 4.6: The current draw for each microwave oven setting

An example of a more complex nonlinear load which has varying states that are influenced by the user is a PC. Figure 4.7 shows the current draw of a PC for different CPU intensive processes running. It is clear that there are variations in the current draw over the various operation modes. In the case of identification of this type of load this variation will have to be taken into account. Depending on personal usage, some PCs will have more intense CPU usage than others.
4.3.2 Typical appliances found in a household

The majority of loads in households tend to be resistive heaters (kettle, oven, storage heating), or have a motor (fridge, blender, water pump) or are electronic loads which have a switched mode power supply (SMPS) (laptop, PC, TV). Lighting, space heating and cooling, water heating and major appliances account for 70% of total electric energy consumption while medium electrical loads such as PCs and TVs account for about 30% of total electric use in residential buildings [77]. A household survey was carried out in England on 251 different houses over the course of a year (May 2010 to July 2011) [10], it found the average annual
consumption per household was 3567 kWh. Table 4.5 shows a breakdown of relative power consumption per appliance type calculated from the data collected. The assumption is made that the appliance distribution will be very similar in Ireland.

Appliance Type	Relative contribution
Cold appliances	13.4%
Cooking	11.7%
Lighting	10.0%
Audio-visual	10.4%
ICT	3.6%
Washing/Drying	10.7%
Heating	22.5%
Water Heating	4.0%
Other	5.8%
Unknown	7.9%

Table 4.5: Relative consumption in a household by load type [10]

In a system of N appliances, there are $2^N - 1$ possible combinations of appliances, assuming each appliance has binary states. The Residential Energy Consumption Survey data indicates that on average 42 unique types of appliances account for 92.7% in the U.S. [57]. Typically a domestic environment can attribute 80% of its total power consumption to eight appliances [16].

4.3.3 Appliance test set

The appliances used in the experiments were chosen based on the breakdown of appliance types in Table 4.5. Table 4.6 lists the appliances, their rated power and measured power factor. Several of the loads chosen have similar values for rated power. All of the loads fall into the categories mentioned in Table 4.5, for example the refrigerator is a cold appliance, the grill and kettle are cooking appliances and the LCD TV is an example of an audio-visual appliance.
Table 4.6: Details of the appliances used in the tests, including their rated power (based on manufacturer’s details) and their power factor measured by the Allegro PM3000a Universal Power Analyser at 50 Hz.

Appliance	Rated Power (W)	Power factor
Panel radiator	300	1.000
Fan heater	2000	1.000
Kettle	2000	1.000
Grill	1200	1.000
Hairdryer	1700	1.000
Refrigerator	90	0.947
Blender	300	0.997
Vacuum cleaner	1200	0.982
Microwave	1200	0.998
Ceiling lights	300	0.999
Halogen lamp	50	0.995
PC	70	0.997
LCD TV	120	0.949
Laptop	40	0.997
LCD Monitor	50	0.890
CRT Monitor	80	0.938

The steady state temporal waveform for each of the appliances in Table 4.6 is depicted in Figure 4.8 and 4.9. Each appliance is shown for two full periods. The LCD TV is shown for slightly longer as it also has a recurring signal at approximately 6 Hz. There are many different types of waveform visible in the test set. The waveform is an indication as to what type of components the appliance has. A pure sinusoidal waveform is indicative of a linear load. A waveform with flat shoulders is indicative of a rectified signal, which is common to appliances with electronic components for example those with SMPS. Triangular waveforms show the presence of harmonics. It is clear from the temporal steady state waveforms that there are relatively simple linear loads, and there are more complex nonlinear loads in the test set.
Figure 4.8: Steady state temporal waveforms for each of the test appliances (1/2)
Many of the test appliances have non-sinusoidal steady state signals that suggest the presence of harmonics in the signal. The international standard EN61000-3-2 for electromagnetic compatibility sets limits for harmonic current emitted by electric equipment supplied from the mains network at 230 V, Table 4.7. Class A appliances are most household appliances for example cooking appliances, cold appliances and lighting and Class D are electronic appliances with power less than 600 W. The even harmonic limits are lower than the odd harmonic limits and as the harmonic order increases the limit of the harmonic amplitude decreases.
Harmonic Order	Current Limit (A)		
2nd	1.08		
3rd	2.30	2.30	
4th	0.43		
5th	1.14	1.14	
6th	0.30		
7th	0.77	0.77	
8th	0.23		
9th	0.40	0.40	
10th	0.18		
11th	0.33	0.33	
...	
n th	0.15 \(\frac{15}{n}\)	0.15 \(\frac{15}{n}\)	

Table 4.7: EN61000-3-2 current harmonic limits for two classes of household appliances, Class A appliances are household appliances up to 16 A and Class D appliances are electronic appliances that are rated less than 600 W.

The first five odd current harmonic amplitudes for each of the appliances are shown in Figures 4.10 and 4.11. The first five odd current harmonics were chosen based on the EN61000-3-2 standard, Table 4.7. The electronic loads such as the PC, laptop and LCD TV have harmonics that are highly visible. Appliances that have motors such as the refrigerator, blender and vacuum cleaner have a significant third harmonic. Resistive heating loads such as the panel radiator, kettle and grill all appear to have very low harmonic content, but do have some content visible nonetheless. Similarly powered loads for example the vacuum cleaner and microwave which are both rated at 1200 W have different levels at each of the harmonics.
Figure 4.10: First five odd current harmonic amplitudes of each of the test appliances in steady state (1/2)
Figure 4.11: First five odd current harmonic amplitudes of each of the test appliances in steady state (2/2)

The transient temporal waveform is shown in Figure 4.12 and 4.13. Each appliance is also shown in the first few ms after they are turned on. Typically it has been found that the transient signal tends to last for no more than $20\, ms$ after an appliance has been switched on. The positive envelope of the transient signal can also give information on the load, and its start up reactance. A nonreactive load will have no transient signal and just turns on into steady state. A positively reactive load i.e. an inductive load will have a slow envelope transient, where the current is suppressed and it has to build up to reach steady state. A negatively reactive load i.e. an overall capacitive load will have an overshoot in the transient signal and then settle to steady state. These three types of reactive loads are visible in the test set. The components responsible for the transient signal are not necessarily present in the steady state signal, for example the refrigerator uses a capacitor to build up charge for the compressor to start up.
Figure 4.12: Transient temporal waveforms for each of the test appliances (with the transient highlighted) (1/2)
The appliances chosen for testing represent a variety of domestic load types that have differing complexities, functionalities, electrical components and therefore have unique electrical features. The signature feature set chosen for identification must be able to encompass all these loads in all their differences.

4.3.4 Appliance current variation during operation

It was found during the initial investigation into the test appliances that the magnitude of the RMS current for each appliance varied throughout their operation. The reasons for these variations varies from appliance to appliance. Figure 4.14 shows the current for some of the appliances during a standard run time. For some of the appliances (see the radiator, fridge, LCD TV and microwave oven) the initial current draw is noticeably larger than the final current draw. This is due to electrical components heating during operation and changing the resistance and the
current draw. In general the electrical resistivity of metal materials increases with temperature, therefore an increasing temperature causes an increase in resistance and a decrease in current draw. For other appliances such as the PC and laptop, variations in current are generally due to the different CPU intensive processes running on the machine. Appliances such as the halogen lamp, and the CRT and LCD monitors just exhibit general noise which is due to either the internal switching of the appliance or the variation of the voltage and its low power so the signal to noise ratio is low. This variation must be taken into account when choosing the electrical signatures for each appliance.

![Graphs of current during appliances’ operation](image)

Figure 4.14: Variation of current during appliances’ operation
4.4 Conclusion

This chapter details some initial experiments carried out on the various appliances which builds the foundation for the next two chapters make some of their assumptions. The operation of some of the appliances has been analysed in detail and an understanding of why these appliances consume power and the way they do has been found. It has been found that there are harmonics present on the voltage line, and these vary throughout the day. It is evident from the analysis of the measurements that the electrical system is subjected to complex appliance behaviour and a complex voltage source. This makes the problem of load monitoring and disaggregating appliances challenging. The next chapter presents a preliminary method for disaggregating the appliances contributing to the total power consumption based on the findings of this chapter.
Chapter 5

Identifying appliances using signatures based on FFT harmonics and a naive Bayes classifier

5.1 Introduction

Load monitoring involves disaggregating the total power consumption of the environment into the appliances which are consuming power. The changing incoming electrical signals are analysed and from these it can be deduced what appliances are running and thereby allow one to know each individual appliance’s power consumption. Chapter 4 describes the complexities of the electrical system and analyses the different type of load variations. With this information in mind this chapter outlines an approach to using the electrical signals from an appliance to identify what appliances are in operation.

This chapter presents a method that measures individual signatures for each
appliance and from this creates a virtual signature library of all the possible combinations of appliances. Each individual appliance is measured operating in isolation and a signature is extracted from the signal. The signature in this method is specific harmonic selected from the Fourier transform of the steady state current signal. A virtual library is created by additively combining the individual signatures. A naive Bayes classifier is used to identify what the most probable appliance(s) are operating allowing the identification of multiple appliances operating at the same time. The merits and limitations of this method are discussed and recommendations for an improved scheme are presented.

5.2 Methodology

In most countries, household power is single-phase electric power, with two or three wired contacts at each outlet. In Europe, 230 V_{RMS} are supplied at 50 Hz to each household’s main incoming power point where each domestic load is then connected in parallel. Kirchoff’s current law states that at any node in an electrical circuit, the sum of currents flowing into that node is equal to the sum of currents flowing out of that node. It is assumed that the electrical system in a domestic setting is linear and therefore all individual currents can be summed together to give the aggregate current.

The method of load monitoring developed measures the aggregate current signal and identifies the contributing appliances. In order to identify each appliance when it turns on, an appliance signature library, derived from the electrical power signal of each appliance, is created. The signature library should uniquely identify each appliance. The Fourier transform of a signal transforms the waveform from
the time domain into a sequence of values at different frequencies in the frequency domain. Figures 4.10 and 4.11 (Chapter 4) show each appliance’s unique FFT spectrum. These current spectra are different for each appliance and each appliance has harmonic content present in the signal. The first five odd harmonics of the spectrum give a sufficient approximation of the signal. These harmonics were chosen based on the harmonic limits presented by EN61000-3-2, Table 4.7. If these limits are met by appliance manufacturers, there should be very little harmonic content in the even current harmonics. As the frequency spectrum increases the amplitudes of the odd current harmonics also should decrease. For these reasons the first five odd current harmonic amplitudes are chosen as a signature for each appliance.

This chapter carries out a number of experiments in order to test the effectiveness of using the odd current harmonic amplitudes and a naive Bayes classifier to identify appliances. First the hypothesis that the current harmonic amplitudes and a naive Bayes classifier are accurate in identifying each individual appliance in isolation is tested. This will test both the effectiveness of the harmonic amplitudes as a signature for distinguishing between appliances and the naive Bayes as a classifier, which has been chosen as due to its simplicity and robustness. The method will then be extended to work for combinations of multiple appliance, first by using measured signatures for each of the different combinations and then by creating a virtual library from the individual signatures. A comparison of the accuracy of using a measured signature library for each appliance combination versus a virtual signature library for each appliance combination is carried out. This will ultimately show whether creating a virtual library for multiple appliances is a suitable method.
5.3 Algorithm

The method continuously disaggregates the total current signal to identify the most likely appliance or set of appliances in operation at any point in time. The current is measured every second and the identifying features i.e. the odd current harmonics are calculated from each second of data. A signature is created for each individual appliance from the first five odd current harmonics. The signature library consists of the individual signatures for each individual appliance, and the ‘virtual signatures’ which are signatures for each of the possible appliance combinations, are created by adding the individual signatures. Each second, the unknown measured harmonics are compared to each appliance’s signature harmonics and the most likely attributing appliance or set of appliances are identified. The classifier used in this method is a naive Bayes classifier. Figure 5.1 is a flow diagram of the algorithm.
Figure 5.1: Flow diagram representing the load identification algorithm which runs every second.

The naive Bayes classifier was chosen due to reasons outlined in Chapter 2. The classifier uses the training data to create a distribution for each class i.e. appliance. The training data consists of the steady state samples of each of the five odd current harmonic amplitudes for each appliance. The most likely appliance that is consuming power is calculated using the library of signature distributions and Bayesian probabilities. The probability is calculated for each appliance that the unknown measurement belongs to that appliance (or set of appliances). The maximum probability from all the possible calculated appliance probabilities indicates the most likely appliance to be consuming power.
5.3.1 Signature library

There are two steps or parts to creating the signature library. The first step is to use real measured data to describe the individual appliances. This data is used to create a signature for each appliance, that is sampled from the training data. The second part of the library is the virtual library. The virtual library is created to account for all the possible combinations of appliances that can occur. The virtual library is created by adding the individual signatures to create the appliance combinations’ signatures.

Each individual appliance’s signature is generated from that appliance operating in isolation in steady state. The first five odd harmonics are sampled for a training time, and the mean μ and standard deviation σ of each are calculated and are used as the signature parameters, Table 5.1. It can be seen that similarly powered appliances are separated through using multiple harmonic amplitudes, for example the CRT monitor and the fridge which are both approximately 80 W the signature parameters are completely different, Table 5.1.
Appliance	1st (A)	3rd (A)	5th (A)	7th (A)	9th (A)
Panel radiator	1.345	0.024	0.031	0.013	0.004
Refrigerator	0.329	0.047	0.023	0.014	0.028
Microwave	4.931	1.504	0.585	0.267	0.137
Halogen lamp	0.204	0.002	0.007	0.002	0.002
PC	0.274	0.241	0.178	0.110	0.044
LCD TV	0.484	0.080	0.026	0.025	0.028
Laptop	0.142	0.127	0.103	0.075	0.049
LCD Monitor	0.154	0.016	0.015	0.004	0.007
CRT Monitor	0.242	0.201	0.139	0.080	0.025

| Standard deviation |
|-------------------|---------|---------|---------|---------|---------|
| Panel radiator | 0.006 | 0.001 | 0.004 | 0.001 | 0.001 |
| Refrigerator | 0.025 | 0.003 | 0.005 | 0.003 | 0.001 |
| Microwave | 0.196 | 0.145 | 0.024 | 0.009 | 0.003 |
| Halogen lamp | 0.004 | 0.001 | 0.003 | 0.001 | 0.001 |
| PC | 0.006 | 0.005 | 0.007 | 0.006 | 0.004 |
| LCD TV | 0.025 | 0.006 | 0.004 | 0.002 | 0.003 |
| Laptop | 0.013 | 0.011 | 0.010 | 0.004 | 0.003 |
| LCD Monitor | 0.105 | 0.011 | 0.010 | 0.003 | 0.004 |
| CRT Monitor | 0.005 | 0.004 | 0.006 | 0.006 | 0.003 |

Table 5.1: Signatures of the individual appliances calculated from training data, the mean and standard deviation measured for each appliance harmonic amplitude (where the 1st harmonic is at 50 Hz).

Each individual appliance’s signature is modelled as a set of five normal distributions with mean and standard deviation determined from sampled values (for an example appliance see Figure 8.7, Appendix 8.3). In the system, there are $2^N - 1$ possible appliance combination signatures. It is not feasible to measure all combinations and so a virtual library is created. In order to create a virtual library each of the N individual signatures are combined to create each of the $2^N - 1$ combination signatures. The sum of two independent normally distributed random variables is normal, with its mean being the sum of the two means, and its variance being the sum of the two variances (i.e., the square of the standard deviation is the sum
of the squares of the standard deviations). For example, if X and Y are independent random variables that are normally distributed, then their sum is also normally distributed. i.e., if $X \sim N(\mu_X, \sigma_X)$ and $Y \sim N(\mu_Y, \sigma_Y)$ then $Z = X + Y$ therefore $Z \sim N(\mu_X + \mu_Y, \sqrt{\sigma^2_X + \sigma^2_Y})$. The virtual signature library is built using this premise, where X is the signature for one appliance operating, Y is the signature for a second appliance and Z is the signature of both appliances operating concurrently.

5.3.2 Naive Bayes classifier

Classification is the problem of identifying which class a new observation belongs to. Each class is described by its features. In this case, an individual appliance is the class and the features are the amplitudes of the first five odd current harmonics. The prior probability is the probability before any evidence is taken into account. It is assumed that each appliance A_j is equally likely to be switched on at any time, so the prior probability is the same for all appliances, Eqn. 5.1, where N is the number of appliances and j is the appliance 1:N.

$$P(A_j) = \frac{1}{N} \quad (5.1)$$

Each appliance A_j, is represented in the library by five harmonics, and each harmonic is a normal distribution $H_i \sim N(\mu_i, \sigma_i)$, where i is one of the five current harmonics. The mean, μ_i, and standard deviation, σ_i, for each distribution are calculated from training data. The algorithm is fed a test sample \bar{x}, where the values for each of the harmonic amplitudes are known, but the appliance is unknown. The sample \bar{x} is a vector which contains five values, each representing a current harmonic amplitude at a point in time. The probability that \bar{x} belongs to appliance
A_j is calculated, using the harmonics from \bar{x} and the distributions for A_j from the signature library. The probability is calculated for each of the harmonics from test sample \bar{x} to belong to a specific harmonic distribution using Eqn. 5.2.

$$p(x_i|H_i) = \frac{1}{\sqrt{2\pi\sigma_i^2}} \exp\left(-\frac{(x_i - \mu_i)^2}{2\sigma_i^2}\right)$$ \hspace{1cm} (5.2)$$

It is assumed that for each appliance, the harmonics are independent. The product of the harmonic probabilities for each appliance is calculated, Eqn. 5.3. This probability is known as the likelihood, which is the probability of the sample \bar{x} belonging to A_j.

$$p(\bar{x}|A_j) = \prod_{n=1}^{5} p(x_i|H_i)$$ \hspace{1cm} (5.3)$$

The algorithm calculates the posterior probability that \bar{x} belongs to each of the appliances A_j (for example the refrigerator, radiator etc.). The adjusted probability (posterior) is $p(\bar{x}|A_j)$, which is the probability that the sample \bar{x} belongs to A_j, given the features of the class A_j. The posterior probability is calculated in Eqn. 5.4 and 5.5, where the prior is the probability of a specific appliance switching on. The likelihood is the probability that the features of \bar{x} belong to A_j. The evidence is a summation of the likelihoods of the sample \bar{x} belonging to any of the appliances. The evidence is then used as a scaling factor so that the posteriors lie between 0 and 1.

$$\text{posterior} = \frac{\text{prior} \times \text{likelihood}}{\text{evidence}}$$ \hspace{1cm} (5.4)$$
\begin{equation}
\text{posterior}(A_j) = p(A_j|\bar{x}) = \frac{P(A_j) \times p(\bar{x}|A_j)}{\sum_{n=1}^{N} P(A_k) \times p(\bar{x}|A_k)} \tag{5.5}
\end{equation}

The posterior probability is calculated for all of the appliances in the library. The maximum calculated posterior from all the appliance posteriors is then identified as the most likely appliance to be consuming power. The algorithm is then expanded to account for all the combinations of appliances. There are \(2^N - 1\) possible combinations, so the prior probability will become \(\frac{1}{2^N - 1}\). In the equations above \(A_j\) will represent each probable appliance combination.

5.4 Experimental procedure

Each signature is derived from a full running cycle of their operation, so for the case of the fridge the amount of the data used for training is twenty minutes and for the PC it is one hour. The training data amount varies depending on each appliance, but in all cases it does not exceed ninety minutes. Each appliance is isolated from other appliances and measured directly at the electrical mains. The mean and standard deviation were calculated for each harmonic and can be seen in Table 5.1. As the transient part of the signal generally only lasts for approximately one or two seconds it is disregarded from the signature definition. This decision has been made on the premise that, for example, a fridge can have a run time of ten minutes (or even thirty minutes), and the transient part of the signal is trivial in comparison.

To carry out the test, nine appliances were chosen from the appliances listed in Table 4.6, Chapter 4. Nine appliances were chosen, similar to work presented in [2],
which used eight test appliances. Most of the appliances chosen have a significant amount of harmonic content in their higher harmonics, which can be seen in Figures 4.10 and 4.11. The test set of appliances and their rated power are listed in Table 5.2 and their signature parameters can be seen in Table 5.1.

Appliance	Rated Power (W)
Panel radiator	300
Refrigerator	90
Microwave	1200
Halogen lamp	50
PC	70
LCD TV	120
Laptop	40
LCD Monitor	50
CRT Monitor	80

Table 5.2: List of the appliances used in the test and their rated power

As there are nine different appliances in the test set there are 511, \((2^N - 1)\) unique combinations of the different appliances being on and off. Not all 511 combinations were collected during the test, but a total of 157 combinations were collected. A range of possible combinations was acquired in order to give a true test set (i.e. combinations of two, three, four appliances etc.). Each appliance combination was recorded for a minimum time of one hour. This ensured that the algorithm functioned correctly over the whole operation cycle of an appliance. Table 5.3 outlines a breakdown of the different combinations of appliances recorded. Each appliance is turned on and off at random intervals. Each data point in the test set consists of a one second sample of the first five odd harmonics of the current. There is a total of 8.3 days of recorded test data and each individual appliance is on for approximately the same amount of time.
There are two signature libraries used for identifying combinations of appliances. The first signature library is from measurements from each of the combinations. This is a real measured signature library and is used to provide a benchmark for the virtual library’s performance. The signature for each of the combinations was created from between five and eight minutes of data (five minutes for any appliance combination with the microwave and eight minutes for every other combination due to the assumed operation of a microwave in a domestic setting). The virtual signature library was created by additively combining the individual signatures recorded from each of the appliances in isolation.

5.5 Results and Analysis

This section outlines the results from using the algorithm shown in Figure 5.1. The method is tested for identifying individual appliances initially, to show that the odd current harmonics are a good signature for identifying each individual appliance. Then the method is tested with various different combinations of appliances.
with both real and virtual libraries. The first library is made up of measured values for each combination and is therefore the ‘real’ library. The results with this library are used as a benchmark for the virtual library. The virtual library is a summation of the individual appliance signatures.

5.5.1 Using the steady state FFT to identify appliances in isolation

The first test assesses if the current harmonics a representative signature capable of identifying and distinguishing the individual appliances. The test data was collected over a two day period where each of the appliances were recorded in isolation, randomly switching on and off for fixed durations of time. The first test involved varying the number of odd current harmonics used as a signature to see the effect of using all five harmonics. The confusion matrices in Figure 5.2 show that the five odd current harmonics are needed to completely distinguish all of the appliances under test. When using any less than the five odd current harmonics several appliances are almost completely misidentified, specifically the LCD TV and fridge. The distributions of the first four odd current harmonics overlap for these two appliances so it is in the fifth odd harmonic that they are separated.
Table 5.4 shows the accuracy of using all five odd current harmonics to identify each appliance (Eqn. 2.4, Chapter 2). The accuracy of identification is very high indicating that using the first five odd harmonic amplitudes to identify single appliances in isolation is very effective. The average accuracy of the method is 0.996. This is a very good accuracy but it is very unlikely that only one appliance will be on at any one point in time. This means that the method must be able to work for combinations of appliances, which leads to the test carried out in the next section.

Figure 5.2: The effect of changing the number of harmonics used in the signature to identify each individual appliance with two days unseen test data.
Table 5.4: Accuracy for identifying each individual appliance using the five odd current harmonics as a signature and with two days of unseen test data.

Appliance	AUC
Panel radiator	0.999
Refrigerator	0.999
Microwave	0.999
Halogen lamp	0.999
PC	0.983
LCD TV	0.998
Laptop	0.994
LCD Monitor	0.999
CRT Monitor	0.998

5.5.2 Identifying appliance combinations and comparing using a virtual signature library versus a real measured signature library

The method was extended and tested for combinations of multiple appliances. Table 5.5 and Figure 5.3 show the accuracy values for the prediction of each appliance from the test combination set (Table 5.3) . The accuracy is the ratio of the number of correctly predicted occurrences of an appliance to the total number of occurrences of that appliance (Eqn. 2.4, Chapter 2). Real (measured) signatures have been used as a benchmark to compare how accurate a representation the virtual library is. As is expected the accuracy of using a real measured signature library is better than a virtual signature library.
Appliance	Real signatures	Virtual signatures
Panel radiator	0.972	0.776
Refrigerator	0.923	0.598
Microwave	0.974	0.973
Halogen lamp	0.835	0.494
PC	0.877	0.706
LCD TV	0.901	0.688
Laptop	0.913	0.737
LCD Monitor	0.797	0.555
CRT Monitor	0.884	0.806
Average	**0.897**	**0.704**

Table 5.5: Accuracy of method when comparing measured signatures with virtual signatures

The average identification accuracy when using the real signature library is 0.897. This values drops from 0.996 for identifying individual appliances in isolation. This drop is expected as there is a greater chance of overlap between appliances when more combinations are introduced. The average accuracy when using a virtual signature library is 0.704. This drop from real signatures to virtual signatures is expected as the virtual signatures will not be a fully accurate representation of the real signatures. The virtual library is built upon a number of premises, that the distribution for each harmonic is a Gaussian distribution and that the system is linear and the currents can be added. It does not take into account the effect appliances can have on each other or directly account for the effect of the continuously varying voltage source.
The classification accuracy values aren’t the same for all appliances. For some appliances it is much higher than for others, for example the microwave has the highest accuracy. The microwave is also the largest load, (Table 5.2) so its signal to noise ratio (SNR) would be much larger than that of the halogen lamp, which is the smallest load and also has one of the lowest identification accuracies. The LCD monitor and the halogen lamp have the lowest accuracy in this test and are also two of the smallest loads at 60 W and 50 W respectively, Table 5.2. Another note is that the appliances with lower harmonic content (relative to the amplitude their fundamental harmonics) have the worst accuracy. Appliances that appear to have lower harmonic content (halogen bulb) are ‘lost’ within combined signals.

A study was carried out to investigate the impact of the interaction between appliances due to a shared source impedance [82]. It found that using arithmetic sums of harmonic current magnitudes can overestimate the cumulative harmonic currents produced by distributed single-phase power electronic loads. This work found that, for an adjustable speed drive appliance, that as the power increased there was an attenuation effect on harmonic current magnitudes and an impact on phase angles, especially for higher order harmonics. These variations are also visible in the sys-
tem impedance magnitude. This implied that there is an attenuation effect when a number of similar load types are operated on a shared system impedance. From this they found that there is an attenuation affect on harmonics when similar load types operate on the same system, and if the aggregate current is calculated using superposition, there can be an overestimation. This is a very likely reason that the virtual library is not a fully accurate representation of the appliance combinations. As more appliances are added to the system the virtual harmonic amplitudes increasingly overestimate the cumulative harmonic currents produced by the appliances and the signatures are not representative of the actual system.

5.6 Conclusion

This chapter outlines a method for continuously identifying appliances consuming power using the current FFT as a signature for each appliance and a naive Bayes classifier to identify when each appliance is on. The work in this chapter does not present a feasible fully deployable method for identifying appliances consuming power. There are a number of problems with the final method including the average accuracy of the method not being as good as the literature (70% versus 80%, Table 2.3, Chapter 2) not being good enough, the complexity of the method ($2^N - 1$) being quite high and other concerns, such as a lengthy training time. The overall accuracy of the method is 70% when all the combinations of the appliances are taken into account, which is not competitive with other methods. The virtual library is not a fully accurate representation for the appliance combinations, and the sum of the harmonic current amplitudes may overestimate the total actual current. This work shows that the first five odd current harmonics alongside the naive Bayes classifier
is an effective method at distinguishing between individual appliances (Table 5.4).

With these findings in mind the next chapter presents a further developed method where both the scalability and the accuracy are improved. The training time is decreased to a more acceptable time for a real time deployment and the method is optimised to work for all types of appliances including lower powered appliances and appliances with smaller amounts of higher harmonic content.
Chapter 6

A two step classification method that uses a time frequency signature

6.1 Introduction

The previous chapter outlines a method that uses the steady state current harmonics to identify which appliances are consuming power continuously. This method shows that the odd current harmonics and the naive Bayes classifier are accurate at identifying individual appliances, but the method is limited when combinations of appliances are included. The complexity of the method is $2^N - 1$ which is not ideal and the training time for each individual signature is longer than feasible (greater than five minutes). The average confidence is 70% and when compared with other methods it falls short. This chapter presents a method which builds on this work with the goal of improving on performance in these areas.

The method presented in this chapter is event based, and uses time and frequency features from the current signal to identify what appliance has turned ON or
OFF. An event is when an appliance turns on or off. The method utilizes a two-step classification algorithm and looks at the differences before and after the event and extracts features for classification. By changing the algorithm to an event based method the scalability of the method is instantly improved to a complexity of N, as only one appliance at a time has to be identified.

6.2 Methodology

There are several key points that need to be achieved when developing an efficient load identification method. Table 2.3, Chapter 2 outlines the current state of the art and highlights the specific research areas that need to be maintained or improved on when developing an efficient method. A good load monitoring method will be efficient and not overly complex, it will have an accuracy of identification above 80%, an algorithm complexity of N and will identify all types of appliances.

The method presented in Chapter 5 has several shortcomings and this chapter aims to improve on these shortcomings. The method in this chapter monitors the continuous aggregate current signal and waits for an appliance to turn on or off. When an appliance switches state, the current signal changes and this is identified as an event. The algorithm uses the change in the current signal from before and after the event to identify what appliance has caused it. By changing the method from continuous identification to event based identification this will also improve the complexity of the method. If the algorithm only identifies an appliance at an event, it will only need to be able to identify one appliance at a time (assuming only one appliance changes at any time). Therefore the complexity of the system will be N. Using an event based method introduces the possibility of using transient
signals as an extra source of information, instead of discarding it.

The method in this chapter is tested for a set of loads, each of which has different electrical components and characteristics, Table 6.1. The appliances chosen for this test represent a typical household and are based on a survey carried out in 251 different houses over the course of a year [10]. These different categories of loads will have general trends in terms of reactance, i.e. resistive heating loads will have very small to negligible reactance, motor loads will have inductive reactance (due to the coil in their motor) and lighting loads, specifically halogen bulbs, are capacitive. Table 6.1 shows the set of appliances selected to test our proposed method, each of which fit into one of the four load categories listed. Included are the measured resistance, reactance and power factor for each appliance. There are more appliances in this test set in the previous chapter and this is mainly to include more resistive loads, as the previous experiment under-represented them.

Appliance	Average Power (W)	Resistance (Ω)	Reactance (Ω)	Power Factor
Panel radiator	320	160	0.005	1.000
Fan heater	1790	30	0.260	1.000
Kettle	1975	30	0.005	1.000
Grill	1300	42	-0.400	1.000
Kettle	1720	31	0.031	1.000
Refrigerator	120	460	150.1	0.947
Blender	365	230	34.0	0.997
Vacuum cleaner	1360	42	6.9	0.982
Microwave	1710	50	3.3	0.998
Ceiling lights	280	186	-1.5	0.999
Halogen bulb	50	1086	-9.0	0.995
PC	200	718	-40.0	0.997
LCD television	190	419	-113.5	0.949
Laptop	130	1684	-119.4	0.997
LCD Monitor	110	1546	-650.0	0.890

Table 6.1: Properties of the set of test appliances, as measured by the Allegro PM3000a Universal Power Analyser at 50 Hz.
In order to identify each appliance, an appliance signature derived from the electrical signal of each appliance is created. The signature library should uniquely identify each appliance. The current spectra were found to be different for each appliance. From empirical tests, it has been found that for the set of appliances used in the test that the first three odd harmonics of the spectrum give a sufficient approximation of the signal and distinguish each appliance.

There are three different types of electrical loads evident in the test set, linear nonreactive loads (for example heating loads like radiators or kettle) and linear reactive loads (for example halogen bulbs) and nonlinear reactive loads (for example refrigerator and PCs etc.). Table 6.2 shows the mean FFT harmonic amplitudes measured for each appliance in this test.

When analysing the current FFT with the intention of creating an identifiable signature library, the load type and its characteristics are to be taken into account. Which harmonics have useful information for the purpose of identifying an appliance depends on the type of load. Linear nonreactive loads do not generate harmonics of their own. The current harmonics exhibited by linear nonreactive loads are a reflection of the voltage harmonics and scaled by their unchanging impedance. Linear reactive loads do not generate harmonics of their own, but their impedance changes at each harmonic with respect to the frequency. The impedance of the load changes at each harmonic and therefore each harmonic gives additional information about the load. Nonlinear loads contain circuit components which distort the voltage waveform and generate their own harmonic currents, in addition to harmonics already present in the voltage supply waveform. The measured reactance is shown in Table 6.1 and it can be seen that depending on the type of load the reactance values vary. Linear nonreactive loads have a very low measured reactance (< 1Ω)
whereas linear reactive and nonlinear loads have a higher reactances than this. Consequently the power factor is different for these different types of loads, it is equal to one for nonreactive loads and less than one for reactive loads.

Appliance	First Harmonic (50 Hz)	Third Harmonic (150 Hz)	Fifth Harmonic (250 Hz)
Panel radiator	1.314 A	1.60%	1.57%
Fan heater	7.440 A	1.05%	2.28%
Kettle	8.229 A	0.92%	2.07%
Grill	5.414 A	1.05%	2.09%
Hairdryer	7.150 A	0.79%	2.51%
Refrigerator	0.402 A	13.40%	3.90%
Blender	1.255 A	21.56%	1.96%
Vacuum cleaner	5.140 A	11.14%	1.15%
Microwave	4.998 A	30.86%	10.49%
Ceiling lights	1.190 A	0.70%	1.45%
Halogen bulb	0.202 A	0.80%	1.98%
PC	0.294 A	85.82%	61.91%
Microwave	0.530 A	38.19%	1.84%
Laptop	0.169 A	86.95%	66.46%
LCD Monitor	0.344 A	11.89%	16.16%

Table 6.2: The mean of the amplitude of the current harmonics for each appliance used in this experiment.

There is a significant distinction between the harmonic content for the linear nonreactive loads (the first five loads) and the nonlinear loads (the remainder of the loads excluding the two lighting loads), Table 6.2. Reactive loads filter and attenuate the voltage harmonic content, for example the third harmonic of the ceiling lights and halogen bulb are lower than any other appliance. Due to the low harmonic content of linear nonreactive loads and it being mostly a reflection of the voltage it would suggest that using these harmonics add a source of noise, the voltage source variation. The nonlinear loads have high harmonic content. It is for this reason that the appliances are separated into two different TYPES, where TYPE I
loads are linear nonreactive loads and TYPE II are nonlinear loads and linear reactive loads. A steady state characteristic of a TYPE I load is that the inherent signal information is contained in the fundamental harmonic and the higher harmonics are simply a reflection of the line voltage harmonics at that point in time. Contrastingly a steady state characteristic of a TYPE II load is that the higher harmonics contain information that is inherent to the appliance. Therefore, when classifying the appliances, TYPE I loads may be classified using only use the fundamental harmonic and TYPE II may use all the harmonic content.

In order to differentiate between the two TYPES of appliances a second characteristic of each load TYPE is needed, this is where the transient signal applies. When an appliance turns ON it has a unique transient signal. This signal can inform about the overall reactance of a load and whether it is purely resistive or has an overall inductive or capacitive reactance. This characteristic is tied to the type of appliance and therefore with the steady state characteristics of the load. This work assumes that all nonlinear loads are reactive and so, the transient can be used to distinguish between TYPES I and II loads. Figure 6.1 shows the start-up transient signal for four different loads, each belonging to one of the two load TYPES, a radiator (TYPE I), grill (TYPE I), a microwave (TYPE II) and a blender (TYPE II). TYPE I loads, due to the characteristics of a linear nonreactive load, have no associated transient. When the appliance turns on, it immediately enters steady state operation with no ‘inrush’ or ‘suppression’ of the starting current. TYPE II loads do have an inrush or suppressed starting current due to the nature of reactive and/or non-linear loads. This transient signal information can be used to differentiate between the two load TYPES at start up. Appendix 8.4, Figures 8.8, 8.9, 8.10 and 8.11 contain the transient profiles for all the appliances under test.
Figure 6.1: The transient current signal for four different loads in the temporal domain, a panel radiator and grill (TYPE I) and a microwave oven and a blender (TYPE II).

6.3 Algorithm

A flow diagram of the proposed algorithm can be seen in Figure 6.2. The method waits for an appliance to turn ON or OFF, this is identified as an event. The algorithm deals with ON and OFF events differently. In the case of an ON event, the algorithm uses characteristics from the current signal in both the temporal and frequency domains to identify each appliance. Characteristics from the transient signal in the temporal domain and from the steady state signal in the frequency domain are used to identify the appliance. In the case of an OFF event, the algorithm identifies the appliance using characteristics from the current signal in the frequency domain only. This is as there is no temporal transient characteristics detected at OFF events.

By tracking what appliance has caused each event, the algorithm can identify what appliances are consuming power at any time. There are three parts to the appliance identification algorithm, the event detection, the classification of the load...
TYPE and the specific appliance identification.

Figure 6.2: Algorithm flow diagram representing the load identification algorithm.
6.3.1 Event detection and the extraction of the FFT signature of an event

The event detection is based on a moving window that identifies changes in RMS current amplitude. A one second array of current signal samples contains fifty wavelengths (at 50Hz). The RMS current is calculated from this array every second. There are two criteria that must be met in order for an event to be identified. The first criterion is that the absolute magnitude of the RMS current signal at this time now, must be greater by a threshold value (75% of the smallest appliance’s current) than the RMS current signal four seconds before. The second criterion that must be fulfilled is that the previous event detected must not have occurred in the last three seconds. This avoids parts of the same transient signal being detected as spurious events. A four second window was chosen in order to allow for appliances with long start up signals. This was chosen through initial analysis of the behaviour of the test appliance set. This allows the appliances enough time to settle into steady state. This also adds the limitation to the algorithm that events that occur within three seconds of each other will not all be identified correctly. If these criteria are met an event has been detected, Figure 6.3. The event is labelled ON or OFF depending on the direction of the change in magnitude.

Once an event has been detected, the difference in the FFT harmonic amplitudes (∆FFT) before and after the event is found, Figure 6.4, Eqn. 6.2. The windows before (W₁) and after (W₂) the event are selected and the first three odd harmonic amplitudes are calculated from each, Eqn. 6.1. The windows are selected from [τ − 7, τ − 4], before the event and [τ + 4, τ + 7] after the event. The window is chosen four seconds after the event occurs in order to allow the appliance to reach
steady state.

Figure 6.3: This plot is an example of an event being detected at time τ and the requirements this event must fulfil in order to be labelled an event. Each point along the line represents the RMS current calculated from a one second array of current signal (as denoted by a window).

\[
I_{fftW_1} = \sum_{n=\tau-7}^{N=\tau-4} i_n e^{-2\pi k \frac{n}{N}}, k = 1, 3, 5 \tag{6.1}
\]

\[
\Delta FFT = |I_{fftW_1} - I_{fftW_2}| \tag{6.2}
\]

The event detection is based on a moving window that identifies changes in RMS current amplitude. A one second array of current signal samples contains fifty wavelengths (at 50Hz). The RMS current is calculated from this array every second. There are two criteria that must be met in order for an event to be identified. The first criterion is that the absolute magnitude of the RMS current signal at this time now, must be greater by a threshold value (75% of the smallest appliance’s current) than the RMS current signal four seconds before. The second criterion that must be fulfilled is that the previous event detected must not have occurred in the
last three seconds. This avoids parts of the same transient signal being detected as spurious events. A four second window was chosen in order to allow for appliances with long start up signals. It allows the appliances enough time to settle into steady state. If these criteria are met an event has been detected, Figure 6.3. The event is labelled ON or OFF depending on the direction of the change in magnitude.

![Diagram showing current and time](image)

Figure 6.4: This plot shows the data used to calculate ΔFFT from an event that occurred at time τ, used to classify the appliance.

6.3.2 Signature library

The signature library contains parameters that represent each appliance. For each appliance there are eight parameters, these parameters represent feature characteristics of each appliance. The parameters are derived from the training data. There are two sets of parameters; one set represents steady state characteristics and the other, transient characteristics. Table 6.3 shows an example entry in the signature library for two appliances. Each individual appliance’s signature is generated from that appliance operating in isolation in steady state. The first three odd harmonics are sampled for a training time, and the mean μ_{FFT} and standard deviation σ_{FFT}
of each are calculated and are used as the signature parameters. Each appliance is measured in isolation and switched ON and OFF several times. The steady state signal was then taken a set amount of time after each transient occurs and recorded for a specific length of time. This steady state data was then used to calculate the mean and standard deviation used as signatures for each appliance.

Appliance	Steady-state signal	Transient signal	\(\mu_{FFT50} \)	\(\sigma_{FFT50} \)	\(\mu_{FFT150} \)	\(\sigma_{FFT150} \)	\(\mu_{FFT250} \)	\(\sigma_{FFT250} \)
Kettle	Steady-state signal	8.229 A	0.076 A	0.170 A	0.030 A	0.002 A	0.004 A	
	Transient signal	1.7	0.0					
Refrigerator	Steady-state signal	0.402 A	0.055 A	0.014 A	0.023 A	0.003 A	0.002 A	
	Transient signal	1.4	4.7					

Table 6.3: An example entry in the signature library for two appliances (one of each type).

The transient signal is represented by two values in the library that denote the rate of change of the current signal at start up. In our method the transient signal is characterised by its rate of change. The positive profile of the transient signal is found, calculated from the maximum peak values from each waveform period. The derivative of the positive profile is calculated and the peaks in the derivative above and below a threshold represent the rate of change of the transient signal. If there are no negative peaks in the derivative this means that there isn’t an overshoot in the transient signal, and the appliance’s transient signal isn’t capacitive. To create the signature library, each appliance was switched ON several times. The transient signal was captured and the number of positive peaks \(N_{TSpp} \) and negative peaks \(N_{TSnp} \) in the derivative were counted. The average of these counts is given in Table 6.4.
Appliance	Type I	Positive Peaks N_{TSpp}	Negative Peaks N_{TSnp}	Type II	Positive Peaks N_{TSpp}	Negative Peaks N_{TSnp}
Panel radiator	1.6	0.4		Refrigerator	1.4	4.7
Fan heater	1.9	0.0		Blender	1.2	13.9
Kettle	1.7	0.0		Vacuum cleaner	1.2	3.7
Grill	1.3	0.0		Microwave	6.3	11.6
Hairdryer	1.8	0.7		Ceiling lights	1.0	3.7
				Halogen bulb	1.5	5.2
				PC	1.3	4.6
				LCD television	2.2	4.6
				Laptop	0.9	2.4
				LCD Monitor	2.8	7.6

Table 6.4: The library values representing the rate of change of the transient signal.

It can be seen that all of the TYPE II appliances have many negative peaks in the rate of change of their transient signal, whereas for the TYPE I appliances this is not the case. From the data recorded in the signature library it was decided that if the number of positive peaks in the transient signal were equal to 1 or 2, and there were no negative peaks in the transient signal, the appliance was TYPE I. Otherwise if this criteria was not met, the appliance was TYPE II. This information from the signature library is used to identify the load TYPE in the first step of the algorithm.

6.3.3 Step I: classify load TYPE using the transient signal

When an ON event is detected the algorithm classifies whether the appliance is TYPE I or II from the rate of change of the transient signal. The load’s TYPE effects how it is treated by the next classification step. There is no classification...
of TYPE carried out at OFF events. When an appliance switches OFF, there is no transient signal associated with the OFF event. For this reason there are no extractable features from an OFF event and no way of classifying the load TYPE using the current transient signal.

Figure 6.5: An example of a TYPE I and II transient signal (kettle and refrigerator respectively) where the signal, profile and derivative of the envelope can be seen.

When an ON transient signal is detected, the positive profile of the signal is calculated. Figure 6.5 shows an example of the transient signal of a TYPE I appliance (kettle) and a TYPE II appliance (refrigerator). The first row of the figure shows the temporal transient current signal of each appliance. The second row shows the positive profile of the transient signal which is derived from the maximum peak value from each period of the transient signal in a 40 ms window. The derivative
of this envelope is calculated and normalised to lie between -1 and 1 (this ensures that the transient signal parameters can be detected from the same threshold for all appliances). Then, the numbers of positive and negative peaks in the transient profile derivative above and below certain thresholds are counted. An upper threshold of 0.15 and lower threshold of -0.075 were chosen from tuning the algorithm using the transient signals collected from the training data. These thresholds were chosen as the first (positive) rate of change tended to be of more significance than any other rate of change within the derivative, and in general the positive rates of change tended to be more significant than any of the negative rates of change. In order to capture some of the smaller deviations for some of the TYPE II appliances a smaller negative threshold was needed.

Figure 6.5 shows the difference between two different TYPE loads. For the TYPE I appliance’s derivative it can be seen that there is only one positive peak that lies outside the boundaries. The TYPE II appliance has one positive peak and six negative peaks that lie outside the boundaries. Table 6.1 shows a reactance of 0.005 Ω for the kettle and 150.1 Ω for the refrigerator at 50 Hz. The overall reactance of the refrigerator is capacitive and this is visibly by the inrush current in the transient signal. The overall reactance of the kettle is quite small - almost negligible, and this is clear from the lack of transient signal when the appliance turns ON. For all TYPE I appliances there are one or two positive peaks and no negative peaks in the derivative plots. For all TYPE II appliances there is at least one negative peak in the derivative. Plots for all of the test appliances can be seen in Appendix 8.4, Figures 8.8, 8.9, 8.10 and 8.11.
6.3.4 Step II: classifying appliance using steady state signal and naive Bayes classifier

This step uses the same algorithm outlined in Section 5.3.2 with a few amendments. The classifier used is a naive Bayes classifier which uses training data to calculate signature distributions for each appliance. The naive Bayes classifier uses training data to calculate signature distributions for each appliance. The signatures for each appliance are the amplitudes of the first three odd current harmonics. The calculated difference in the harmonic amplitudes (ΔFFT, Figure 6.4) from before and after an event are input into the classifier, and the probability of that value belonging to each individual appliance is calculated. The appliance with the highest probability is chosen as the most likely appliance to have caused that event.

When an event occurs, the appliance TYPE is classified. Depending on the appliance TYPE, the specific harmonics used to identify the appliance are varied. If an appliance is classified as TYPE I, the fundamental harmonic is used by the naive Bayes classifier. If the appliance is classified as TYPE II, the first five odd harmonics are used by the naive Bayes classifier.

In the appliance test set there are five TYPE I appliances and ten TYPE II appliances. If the appliance has been classified as a TYPE I load the fundamental FFT amplitude, and the fundamental harmonic signatures of the five TYPE I appliances are input to the naive Bayes classifier. Similarly if the appliance is identified as TYPE II the five FFT amplitudes are input to the naive Bayes classifier alongside the ten TYPE II appliance signatures. The most likely appliance is identified from the appliance with the highest probability from the classifier.

When the event is OFF there are not transient features associated with the signal
and there is no classification of TYPE step. In this case the difference before and after the event are found for all three FFT harmonics of the measurement signal and with all fifteen appliance signatures are input into the naive Bayes classifier. The most likely appliance to have caused the event is identified.

6.4 Experimental procedure

In order to assume a realistic training time for a real environment deployment it was attempted to keep the training time for each appliance to a minimum. Each appliance was measured in isolation. The appliance under test was switched ON ten times to record the transient signal. The steady state signal was measured from five seconds after each transient and recorded for a further ten seconds. For each appliance there was a total of 100 seconds of steady state data to create the steady state signatures and ten transient events from which to derive the transient signatures. All of the training data for all of the appliances was recorded over a three hour period. The experiment was carried out in a simulated domestic environment, described in Chapter 4.

There are fifteen different test appliances, which means there are over 32,000 \((2^N - 1)\) unique combinations of the different appliances being power cycled. It is not possible to record all these combinations. In order to attempt to have a stringent robust test each appliance was switched ON and OFF a number of times under different conditions. Initially each appliance is tested individually and then tested while other appliances are operating in steady state. The appliance under test was switched ON and OFF while combinations of up to nine other appliances were operating in steady state. A breakdown of the number of events recorded per ap-
Appliance is listed in Table 6.5. Figure 6.6 shows a breakdown of which appliances were switched ON and OFF and which appliances were used as background appliances in each set of tests. Each row in the figure denotes one set of experiments, the first row has no background appliance and each appliance is switched ON and OFF while in isolation, the second row has one background appliance (the refrigerator) and fourteen appliances are switched ON and OFF while it runs and so on. There were a total of 758 events recorded. Each appliance was turned ON for between thirty seconds and a minute and then turned OFF.

Appliance	Number of Events
Type I	
Panel radiator	52
Fan heater	62
Kettle	70
Grill	62
Hairdryer	68
Type II	
Refrigerator	22
Blender	68
Vacuum cleaner	70
Microwave	62
Ceiling lights	44
Halogen bulb	44
PC	26
LCD TV	40
Laptop	38
LCD Monitor	30

Table 6.5: Number of test ON and OFF events for each appliance divided by type
Figure 6.6: Breakdown of switching and background appliances used in each test.

The test data was recorded over a period of twelve hours over the space of a weekend day. The test scenario was constructed to test the robustness of both the transient and steady state features for each appliance when subjected to the variation in the voltage source over the course of the day and to possible interference from other appliances. To ensure sufficient data was collected to test the algorithm fully, different appliances were used as background appliances while others were tested as switching appliances. In general the appliances chosen as background appliances for each test tend to be those that would be found operating over longer periods of time as background appliances in a household, for example the PC, LCD TV or the refrigerator. The switching appliances chosen in this test also tend to be appliances that are switched on for shorter periods of time, while other appliances are operating, for example the kettle or the blender.
6.5 Results and Analysis

To ensure that the classification algorithm used has a high degree of confidence, a calculation to assess its performance is carried out. This is done by comparing the output results of the classifier with its expected targets. As there are three parts to the algorithm, there are three stages at which the accuracy of the method must be calculated; the event detection; appliance TYPE classification; and the specific appliance identification.

6.5.1 Accuracy of event detection

The overall accuracy of event detection was 0.903, Table 6.6. The accuracy is calculated from the total number of true positive and true negatives out of all the positives and negatives detected by the event detection algorithm (Eqn. 2.4, Eqn. 2.1, Eqn. 2.2, Chapter 2). The perfect event detection will have a TPR of 1 and a FPR of 0, in this case the event detector has a TPR of 0.890 and a FPR of 0.084. The accuracy is calculated using Eqn. 2.3, Chapter 2.

Total number of events	758
Number of detected events	701
True positive rate	0.890
False positive rate	0.084
Accuracy	0.903

Table 6.6: Accuracy of the event detection algorithm.

The accuracy of the event detector was spread evenly across all appliances apart from the halogen lamp, which had an overall accuracy of detection of 0.670. This was lower than other appliances due to its low power consumption and its small transient signal. The threshold values chosen for the event detection could be
changed to improve the halogen lamp’s accuracy. It was found that changing this had an effect on other appliances, specifically the TV, where extra non-events would be captured. Figure 6.7 shows the RMS current of the TV when it turns on. It can be seen that it has an initial state that lasts for thirty seconds and then a drop in current, which would be identified as an OFF event if the threshold values were changed. It was for this reason the poor accuracy of the halogen lamp’s events was accepted.

Figure 6.7: RMS current of the LCD TV when it turns ON and a possible non off event detection (highlighted).

6.5.2 Accuracy of TYPE classification

The average AUC calculated for the classification of the appliance TYPE using the transient signal is 0.936 which is shown per appliance in Table 6.7 (Eqn. 2.4, Chapter 2). The threshold values chosen in the algorithm were optimised to work across all appliances.
Appliance	AUC
Panel radiator	0.697
Fan heater	0.989
Kettle	0.973
Grill	0.973
Hairdryer	0.967
Refrigerator	1.000
Blender	1.000
Vacuum cleaner	0.700
Microwave	0.963
Ceiling lights	0.857
Halogen bulb	1.000
PC	1.000
LCD television	0.931
Laptop	1.000
LCD Monitor	0.969
Average	**0.9348**

Table 6.7: Area under the curve (AUC) values for classifying the correct type to an appliance based on features from the ON transient signal (Eqn. 2.4, Chapter 2).

Most appliances have a very good AUC (> 0.85). The radiator and vacuum cleaner have the worst performance. As shown in Figure 6.8, The vacuum cleaner’s current transient has a slow rate of decay and therefore sometimes the peaks in the derivative of the envelope fall below the threshold values. The radiator shows a low frequency oscillation (10 Hz) which sometimes falls above the threshold values. This oscillation could be due to the thermal lag of the appliance and the effect of the changing temperature on the resistance. The thresholds were optimized in order to have an acceptable classification accuracy for both these appliances.
Figure 6.8: The transient current for the panel radiator and vacuum cleaner illustrating the potential poor performance of their TYPE classification.

6.5.3 Differences between TYPE I and II appliance steady state signatures with respect to voltage

Table 6.8 illustrates measured values for the amplitude and phase for the voltage and current’s first five odd harmonic amplitudes for two different appliance TYPES. The panel radiator is a TYPE I appliance and the microwave is a TYPE II. The higher harmonics of the panel radiator exactly reflect those of the voltage at that point in time. The microwave, which is a TYPE II load, has harmonic content in the current in addition to the harmonic content of the voltage which is visible in all the harmonics. Different TYPE II appliances have different percentages of
harmonic content in their higher harmonics, whereas TYPE I appliances do not.

Harmonic	Voltage	Current		
	Panel radiator			
1st	225 V	0°	1.31 A	0°
3rd	1.22% -289°	1.22% -289°		
5th	1.71% -177°	1.71% -177°		
7th	0.85% -329°	0.85% -329°		
9th	0.6% -206°	0.6% -206°		
	Microwave			
1st	225 V	0°	4.4 A	-0.5°
3rd	1.22% -279°	24% -123°		
5th	2.08% -177°	9.8% -50°		
7th	0.87% -342°	4.8% -7°		
9th	0.33% -219°	2.5% -274°		

Table 6.8: Amplitude and phase of voltage and current for two types of appliances, the panel radiator (TYPE I) and microwave (TYPE II)

This difference justifies the reason for classifying the appliance TYPE first. These values verify that the harmonics present in TYPE I loads are artefacts of the voltage harmonics.

6.5.4 Accuracy of appliance identification

Once an event has been detected the specific appliance is to be classified. The first table in this section classifies all the appliances with the same set of features. There is no TYPE classification in this table. Table 6.9 shows the results of using specific harmonics amplitudes for identification. The method uses an event detection to find an event. The naive Bayes classifier is then used with either one or three current harmonics to identify the appliance. It can be seen that using just the fundamental harmonic for TYPE I appliances is best whereas using the first three odd harmonics is better for identifying all of the TYPE II appliances. This is due to the
higher harmonics containing extra information for TYPE II appliances and redundant information for TYPE I appliances. This compounds the concept of classifying the appliance TYPE first. The results of using the TYPE classification combined with a specific number of harmonics can be seen in Table 6.10.

Appliance	Type I	Type II
	Fundamental Harmonic	First Three Odd Harmonics
Panel radiator	0.681	0.545
Fan heater	0.873	0.613
Kettle	0.929	0.689
Grill	0.583	0.537
Hairdryer	0.812	0.642
Refrigerator	0.809	0.951
Blender	0.936	0.965
Vacuum cleaner	0.784	0.855
Microwave	0.966	0.988
Ceiling lights	0.792	0.894
Halogen bulb	0.795	0.952
PC	0.710	0.983
LCD television	0.667	0.796
Laptop	0.788	0.949
LCD Monitor	0.528	0.667

Table 6.9: Accuracy for identifying an appliance when using two different feature sets and a naive Bayes classifier (Eqn. 2.4, Chapter 2).

As the first classification step only works for ON transients, the results in Table 6.10 are divided into ON and OFF events to compare the performance in greater detail and to see the improvement more clearly. There will be no improvements in the OFF events as, if the event is OFF, the method uses all three odd current harmonic amplitudes to identify the appliance due to no OFF transient signal. The percentage classified as the correct TYPE is quite high (Table 6.7), so this high confidence allows the set of possible appliances to be reduced, i.e. if the load TYPE is classified as TYPE I there are only five possible candidate appliances, and vice
versa. This adds additional improvement to the method when the correct TYPE is classified, but it also results in a disimprovement to those appliances whose TYPE is not classified correctly. It is expected that overall the method should show an improvement compared to using only one or three current harmonic amplitudes. This improvement will be visible in the ON events, specifically the TYPE I appliances.

Appliance	Total AUC	On AUC	Off AUC
Panel radiator	0.576	0.624	0.544
Fan heater	0.733	0.861	0.606
Kettle	0.805	0.923	0.693
Grill	0.703	0.887	0.519
Hairdryer	0.722	0.821	0.623
Refrigerator	0.951	0.961	0.939
Blender	0.965	0.972	0.969
Vacuum cleaner	0.764	0.679	0.960
Microwave	0.975	0.962	0.987
Ceiling lights	0.912	0.930	0.894
Halogen bulb	0.954	0.982	0.926
PC	0.983	1.000	0.967
LCD television	0.766	0.783	0.955
Laptop	0.949	0.967	0.930
LCD Monitor	0.667	0.638	0.708

Table 6.10: AUC calculated for identifying an appliance turning ON and OFF when classifying the type based on the transient signal and then using a select set of current harmonics as features based on the type (Eqn. 2.4, Chapter 2).

All TYPE I appliances show an overall improvement compared to using the three odd current harmonics (Table 6.9, Column 2). They also show an improvement compared to using the fundamental harmonic. This is due to the reduction of possible appliances through classification of appliance TYPE, as there are only five possible TYPE I appliances in the set. This improvement is particularly noticeable in the ON events.

In nearly all cases the TYPE II appliances retain their high accuracy of predic-
tion as seen in column 2 of Table 6.9. The vacuum cleaner does not, due to its lower accuracy of 0.7 when classifying TYPE (Table 6.7). The vacuum cleaner is an example of an appliance that TYPE is not always classified correctly. This means that when the appliance TYPE of the vacuum cleaner is incorrectly identified as TYPE I, the vacuum cleaner is then misidentified by the naive Bayes classifier as one of the TYPE I loads. This is why the accuracy of the identification of the vacuum cleaner is lower at ON events than OFF events in Table 6.10. This can also be seen to a lesser extent for the microwave oven, LCD television and LCD monitor who have TYPE accuracies of 0.963, 0.931 and 0.969 respectively and the accuracy when identifying an ON event has dropped slightly from the accuracy when just using all three current harmonics. Contrastingly, the ceiling lights, which also have a lower TYPE accuracy than other appliances (0.857) has a much higher accuracy of identification at ON events than to just using the odd current harmonics. This is most likely due to this appliance being misidentified as a TYPE I appliance when just using all three current harmonics.

6.5.4.1 Effect of background appliances

One experiment carried out was to examine the effect on the algorithm’s accuracy of identification as more appliances operated in the background. The overall trend of the algorithm’s accuracy is to decrease as more appliances are switched on in the background. This is to be expected as when more appliances are operating in the background it adds more noise to the system. This affects appliances at different rates. Figure 6.9 shows the accuracy of the appliances identification as more background appliances (zero to nine) are switched on. Not all appliances are affected at the same rate, as can be seen in the graph. The blender has a better
performance when more appliances are switched on than the vacuum cleaner. The blender and vacuum cleaner can be seen as an example of best and worst case performances, the average performance of the vacuum cleaner being 0.76 and the blender being 0.97.

![Identification accuracy for specific appliances as more appliances are added to operate in the background.](image)

Figure 6.9: Identification accuracy for specific appliances as more appliances are added to operate in the background.

Not every single combination of background appliances were tested in each set of background appliances and not every appliance was tested for each set (Figure 6.6). This should be taken into account when looking at the average accuracy. For example in the last test the appliances used as switching appliance in the last test (fan heater, kettle, blender, grill, vacuum cleaner and ceiling light) are the lower accuracy appliances therefore, overall the average accuracy will drop in that case.

6.5.4.2 Effect of number of harmonics in signature

The accuracy of identification of TYPE II appliances is improved with the addition of more harmonics. The number of harmonics needed for this improvement is dependent on the appliances being identified, namely the set of loads used in the test and the number of loads. Retrospectively a test has been carried out to find the
optimal number of harmonics to identify each appliance for this set of appliances. It has been found that there is no significant improvement in the overall accuracy of the method beyond three harmonics, Table 6.11. Therefore this method has been presented for three harmonics. The sum of the squared error for each method has been found to be best for three harmonics.

Signature harmonics	Sum of the squared error
1st	0.2328
1st, 3rd	0.0090
1st, 3rd, 5th	0.0060
1st, 3rd, 5th, 7th	0.0065
1st, 3rd, 5th, 7th, 9th	0.0073

Table 6.11: Number of harmonics in signature versus sum of the squared error.

6.5.5 Applying TYPE classification at OFF events

The method proposed shows an improvement in the accuracy of identification by classifying the load TYPE and then classifying the appliance using this information at ON events. Although there is an improvement of identification overall, there is still some room left to improve at OFF events. Table 6.12 shows the accuracy of using the three current harmonics to classify the appliance TYPE for OFF events.

This method uses a two step classification method where the first step uses the naive Bayes classifier and the three odd current harmonic amplitudes to identify the appliance TYPE. The second step of the classifier then decides that if the appliance is identified as a TYPE I load, the naive Bayes classifier is rerun with just the fundamental harmonic and the five possible TYPE I appliances, otherwise the previous appliance identification is accepted. As there is no detectable transient information from an OFF event, the steady state signature must be used to identify the appli-
ance. Also, as the higher harmonics for TYPE I loads can be considered as noise, rerunning the naive Bayes classifier with just the fundamental harmonic amplitude could possibly improve the identification of TYPE I loads by reducing the confusion between these similar loads. Table 6.12 shows that for TYPE II appliances, using the five odd current harmonics to classify the appliance TYPE works very well (\(> 90\% \)), although for TYPE I appliances it does not have as high an accuracy.

Table 6.13 shows the results of using a two step classification for identifying appliances that have turned OFF. There is an improvement using this classification of TYPE for TYPE I appliances. There is no change in accuracy for TYPE II appliances, which is good, and the accuracy of identification for TYPE II appliances stays high. By reclassifying TYPE I appliances to ensure the correct appliance has been identified, there is an improvement in the overall accuracy of identification for almost all of the TYPE I appliances. The minor improvement in the fan heater and hairdryer, is due to these appliances no longer being misclassified as each other when using the fundamental harmonic to identify them. There is no improvement in the grill, panel radiator or kettle’s identification accuracy.
Appliance	Accuracy of TYPING
Type I	
Panel radiator	0.548
Fan heater	0.667
Kettle	0.703
Grill	0.519
Hairdryer	0.667
Type II	
Refrigerator	1.000
Blender	0.983
Vacuum cleaner	1.000
Microwave	1.000
Ceiling lights	0.944
Halogen bulb	1.000
PC	1.000
LCD TV	1.000
Laptop	1.000
LCD Monitor	1.000

Table 6.12: Accuracy of classifying the TYPE of appliance OFF using a set of current harmonics as features (Eqn. 2.4, Chapter 2).
Appliance	OFF Accuracy (NO TYPING)	OFF Accuracy (WITH TYPING)
Panel radiator	0.544	0.544
Fan heater	0.606	0.665
Kettle	0.693	0.693
Grill	0.519	0.519
Hairdryer	0.623	0.667
Refrigerator	0.939	0.939
Blender	0.969	0.969
Vacuum cleaner	0.860	0.860
Microwave	0.987	0.987
Ceiling lights	0.894	0.894
Halogen bulb	0.926	0.926
PC	0.967	0.967
LCD TV	0.755	0.755
Laptop	0.930	0.930
LCD Monitor	0.708	0.708

Table 6.13: Comparison between accuracy of identifying appliances at OFF when using three odd current harmonics to identify appliance and when using a two step classification method which classifies the appliance TYPE first and then reclassifies the appliance using the specific number of harmonics to that appliance TYPE (Eqn. 2.4, Chapter 2).

6.6 Conclusion

This chapter presents a method that identifies appliances that are consuming power with a high degree of accuracy. The method is event based, and uses time and frequency signals from the current to identify what appliance has turned ON or OFF. The system uses a rule based algorithm and a naive Bayes classifier as a two step classification method. The algorithm is event based and the scalability of the method is N. The problems presented in the previous chapter have been addressed and several conclusions can be made about the system from this work.

It is clear that the current harmonics and a naive Bayes classifier are a good
combination for identifying and distinguishing individual appliances. Utilising the knowledge of what appliances emit harmonics due to their internal components and what appliances do not when choosing an identification signature improves the accuracy of the method. There are general characteristics that can be associated with each type which allows different appliances to be categorised into typesets. Linear nonreactive loads have no harmonic content of their own, and have no transient signal. Nonlinear loads and reactive loads do have harmonic content, and also have a transient signal.

The method presented in this chapter is capable of identifying what appliances are consuming power using a single point of measurement. It is an efficient method that can operate in a system with large numbers of appliances and still has an acceptable degree of accuracy. The method presented has been tested for real world measurements taken from an environment where appliances are actively operating. Some of the methods presented in Chapter 2 do not work for all types of domestic appliances. These methods focus mainly on electronic and motor loads and they do not account for resistive heating loads. The method presented in this chapter is capable of identifying electronic, motor and resistive heating loads that are common to domestic environments.
Chapter 7

Conclusion

This chapter concludes the thesis and the work carried out in developing a load monitoring method. The chapter first summaries the work described throughout the thesis. A series of overall conclusions are then made from the work and the contributions of this work are listed. The end of this chapter proposes future work for the load monitoring method described.

7.1 Summary

This thesis outlines the development of a load monitoring method that identifies what appliances are consuming power using a single point of measurement. The aggregate current signal is measured at the incoming point and the appliances that are consuming power are derived from this signal. Chapter 1 introduces load monitoring and presents the motivations for load monitoring and this work. It outlines the research objectives and the criteria which the method should meet. The method developed must be efficient with good scalability, accuracy and work for all types
of domestic loads.

Chapter 2 documents the state of the art research in this area. It outlines the various methods developed for load monitoring. It describes the processes involved in developing a load monitoring system, namely data measurement and acquisition techniques, characterisation methods and classification algorithms. It also discusses how to assess the performance of a load monitoring method. The chapter also outlines the applications of a load monitoring system, including those outside of power monitoring for energy reduction. The chapter finishes with a comparison of the six most complete load monitoring methods and draws the conclusion that presently there are no load monitoring approaches which fulfil all the requirements of an effective load monitoring method.

Chapter 3 describes the measurement techniques used in this work and provides a justification for the sensor choice. An Hall effect sensor was chosen to measure current. This sensor was chosen as it provides electrical isolation, is very reliable and has a very good frequency response. The current is sampled with a DAQ at a relatively low sampling frequency (20 kHz).

Chapter 4 details the initial experiments carried out to investigate the complex environment in which a load monitoring system is to operate. The findings from this chapter provide the foundation on which the chapters following make their assumptions. The voltage source in the test environment was measured and analysed and it was found that there are multiple varying harmonics present on the voltage line. This can potentially have an effect on the appliances on this network. The different variants of appliances were outlined and how this can also affect the method. An appliance can differ in a number of ways, specifically by the number of operating states and by the electrical composition of the load. The operation of some appli-
ances have been analysed in detail and an understanding of the way these appliances consume power is shown. The different variants of an appliance’s electrical components and the resulting current signals are shown. These variations and complexities of the load monitoring environment make disaggregating appliances challenging.

Chapter 5 outlines a method for continuously identifying appliances consuming power using the current FFT as a signature for each appliance and a naive Bayes classifier to identify when each appliance is on. The current signal of each appliance is measured in isolation and a signature is derived from this. The signature for each appliance is the first five odd current harmonic amplitudes. A virtual signature library is created by adding the individual signatures together in different combinations to create a library of all the possible combinations. The library is built upon the premise that in a domestic household’s electrical network, the system is linear and all the appliances are in parallel. The method investigated is not a feasible fully deployable method but there are a number of conclusions drawn from the work. It is shown that the first five odd current harmonics alongside the naive Bayes classifier is an effective method at distinguishing individual appliances (Table 5.4). There are a number of problems with the final method including the overall accuracy per appliance not being good enough when compared to the literature, the complexity of the method \((2^N - 1)\) being quite poor and other concerns, such as a lengthy training time.

Chapter 6 builds on the findings from the previous chapters and presents a method that identifies appliances that are consuming power with a higher degree of accuracy. The method is event based, and uses time and frequency signals from the current to identify each appliance. An event occurs when an appliance turns ON or OFF. The system uses a rule based algorithm and a naive Bayes classifier in
a two step classification method. The problems presented in the previous chapter
have been addressed and several conclusions can be made about the system from
this work. The new method divides the appliances into two categories, or TYPES,
which are treated differently by the classifier based on their characteristics. TYPE I
loads are linear nonreactive have no harmonic content of their own, and the transient
signal is flat with no inrush. TYPE II loads are nonlinear appliances and reactive
appliances, which do have harmonic content, and a reactive transient signal. This
work shows that if the method utilises the TYPE of appliance and therefore the
amount of harmonic content that is inherent to that appliance, the system is im-
proved. Utilising these characteristics for identifying the appliances can greatly
improve the method. The final method presented has an overall accuracy of 83%
and a complexity of N, with a greatly reduced training time from before.

This chapter concludes the work and presents the contributions from this work.
The chapter also offers some areas for future work in which the load monitoring
method can be advanced further.

7.2 Contributions of this work

• This thesis presents an efficient, scalable, accurate load identification method
 that identifies what appliances are consuming power using a single point of
 measurement.

 – The method has a complexity of N and can operate in a system with
 large numbers of appliances.

 – The overall accuracy of the method is 83%.
- The method works for all types of appliances including simple linear nonreactive loads and more complex nonlinear reactive loads.
- The method works in an efficient way using robust signatures that are not overly complex and give a unique identity to each appliance.
- The method designed has low computational complexity and is practical to implement in cost-effective hardware.

- This work shows that using a two step classification method, that uses a signature set optimised for an appliance based on its general characteristics, can improve the overall accuracy of identifying appliances. The algorithm in this method treats different types of appliances by optimising their signature based on their electrical properties. This allows the method to work for a wider range of appliances.

- This work shows that by combining time and frequency domain information derived from the aggregate electrical current signal, the accuracy of appliance identification (over a wide range of appliance types) can be improved.

7.3 Future Work

The next step to this work is to deploy the load monitoring system in a real setting and track the appliance changes. There are different scenarios where the system can be deployed, as an in-home appliance monitoring method for either personal energy monitoring or as a health/activity monitor, in conjunction with smart metering, or in an office or industrial environment. In order for the system to be deployed there are a number of areas which the system needs to be tuned. The physical mea-
urement and monitoring system needs to be adapted for remote monitoring and communication; the algorithm method needs to be adapted to track appliances and to extend the set of appliances it can work for; and a user interface for training appliances and generating reports needs to be developed, with perhaps with some alert system.

In order to deploy the system in a real environment the system would need to be slightly adapted for easy installation and for remote communication. The measurement sensor should be feasible to deploy in a domestic environment, it should be easy to install, inexpensive and not require a large power supply. The method presented in this thesis has been tested using an inexpensive current sensor. The sensor can be easily adapted to be used in a smart meter and this would not impact the accuracy of the method. The identification algorithm that has been developed has an acceptable accuracy and is not overly complex and therefore should not be difficult to deploy on an inexpensive chipset. The algorithm calculated the FFT and the rate of change of the current signal, both of which can be easily carried out using microprocessors. The decision process the algorithm uses itself is not overly complex and should not take too much effort to deploy on a microprocessor.

An application needs to be developed that will have some user interface and a procedure for training appliances. The method has been tested with a short training period for each appliance (less than five minutes). This is the area in which the method will have to be developed further in order to deploy the method in a real environment. Ideally the system could just be placed in the system and training should not be cumbersome to the consumer. Training multiple appliances can be time consuming and it is unrealistic to assume that all consumers would be willing to take the time to do this. Another area for future work is to investigate the feasibility of
adapting the method for office and industry environments. Some of the appliances tested in the method would be similar to those found in these environments so that would suggest that it would work well in such a setting. There would be a lot of similar appliances so this may add some difficulty to the problem.

Depending on the function of the deployment, there needs to be a reporting functionality that will track the actual appliance usage and build a summary report. If this method were to be used in conjunction with an energy tracking method the reporting function should ideally build weekly reports and track energy usage per appliance and then compare the weekly usage with historical data to ensure power usage is not rising. The future method could identify areas of power reduction for specific appliances. Alternatively, if this method were to be used as a health monitoring method it could monitor for specific events throughout the day, for example turning the kettle on at 9 a.m. and if these events do not occur send out an alert.

The system algorithm at the minute does not tracking appliances as they turn on or off. This could be implemented as a standalone tracking system that tracks appliance state and does not feed into the decision algorithm or it could be used to help the current appliance identification algorithm make a more informed decision based on the current state of the system. A benefit of implementing tracking appliances into the algorithm, is a reduced set of appliances that can cause a possible event and therefore possibly an increase probability of identifying the correct appliance. One of the pitfalls of using a tracking algorithm that reduces the possible appliance that could have caused an event is that if an appliance is incorrectly labelled as switching on or off and then actually switches on or off this can affect the overall accuracy. To combat this the method could use a limited memory to overcome accumulating state error in the system.
Future work would include extending the capability of the method to identify more signatures for example those of multi-state appliances or faulty appliances. The identification of multi state appliances can be achieved by adding a subset of appliances to TYPE II appliances where, when a multi-state appliance is detected switching on, the algorithm will expect one of the following events to be a change in state of this appliance.

The current method could also be expanded to include some fault detection. For example using historical data it could potentially alert for when appliances start behaving abnormally, for example longer run times on the refrigerator or increased current draw for a specific appliance. Alternatively the method could be expanded to incorporate electrical fault detection, for example electrical arcing. An electrical arc is an unconstrained transfer of energy between the exposed conductor and another conductor or ground [83]. As electrical devices and cables age they are subjected to physical damage. This may result in part of a conductor becoming exposed causing current to ‘arc’ across conductors. Sometimes when an arc fault occurs in an electrical circuit, it can go unnoticed by conventional protection devices. A load monitoring method could have an extra layer of monitoring where if the characteristics of an arc are detected an alarm is flagged.
Chapter 8

Appendices

8.1 Measurement box schematic

Figure 8.1 and 8.2 show the circuit schematic for the measurement box used in the experiment set-up. The measurement box measures current using a Hall Effect sensor and measures voltage using a voltage divider circuit optically isolated from the mains. The output of the circuit is two 0-5V signals that are linear to the live current and voltage.
Figure 8.1: The schematic for the measurement box used to measure current and voltage in the experiment (1/2).
Figure 8.2: The schematic for the measurement box used to measure current and voltage in the experiment (2/2).
8.2 Voltage and harmonics measured in different environments

It was found that the voltage varied in the environment where the tests took places. The voltage was measured in two additional environments to assess whether the variation of the voltage was an artefact of the building the experiments were being carried out in, or if the voltage variation was common in all environments. It can be seen that the variation of the voltage and the voltage harmonics is different in different environments. It can also be seen that the voltage and the voltage harmonics vary in many different environments.
Figure 8.3: The voltage measured in a domestic environment and the relationship of higher voltage harmonics to fundamental over a 24 hour period on a weekend day.
Figure 8.4: The voltage measured in a lab environment and the relationship of higher voltage harmonics to fundamental over a 24 hour period on a weekend day.
Figure 8.5: The voltage measured in a lab environment and the relationship of higher voltage harmonics to fundamental over a 24 hour period on a weekday.
Figure 8.6: The voltage measured in a lab environment and the relationship of higher voltage harmonics to fundamental over a 24 hour period on a weekday.
8.3 Appliance harmonic distributions

Figure 8.7 shows an example of the current harmonic distributions for one of the appliances (the fridge) used in the test set. As can be seen in the figure, the measured data fits to a normal distribution. To generate these distributions the current signal was sampled for fifteen minutes of steady state operation.

Figure 8.7: A histogram and corresponding Gaussian distribution for each of the first five odd current harmonic amplitudes of the fridge
8.4 Transient signal profile and rate of change plots for all appliances

When the appliance turns on there is a transient signal. The upper envelope of the signal is plotted for each of the appliances (Figure 8.8 and 8.9) and the derivative of this profile is calculated and normalised (Figure 8.10 and 8.11). The derivative plot represents the rate of change of the transient signal when the appliance turns on.

![Graphs of transient signal profiles for various appliances](image-url)

Figure 8.8: Positive profile of the transient temporal waveforms for each of the TYPE I test appliances
Figure 8.9: Positive profile of the transient temporal waveforms for each of the TYPE II test appliances
Figure 8.10: Derivative of the positive profile of the transient temporal waveforms for each of the TYPE I test appliances
Figure 8.11: Derivative of the positive profile of the transient temporal waveforms for each of the TYPE II test appliances
8.5 Code

8.5.1 LabVIEW™ code for acquiring signals using the LabJack

The following figures are screen-shots of the code developed in LabVIEW™ in conjunction with the LabJack UE9 in acquiring the various measurement signals and analysing them.

Figure 8.12: The front panels used for viewing the signals acquired in real time by the measurement system, the first panel is the total power consumption, the second panel is the temporal and frequency of the current signal and the third panel is the same for the voltage. The power consumption of a PC is being measured in this panel.
Figure 8.13: The VI shows the extraction of the various mathematical features from each signal. The input to this VI is a 1 second array containing the temporal signal. The maximum and minimum amplitudes, wavelength, frequency, RMS and FFT of the signal are acquired in this VI and passed to the next stage.
Figure 8.14: This is the front panel of the LabVIEW™ VI which identifies the appliance(s) consuming power using the naive Bayes classifier. A green light indicates the on appliances.
Figure 8.15: The VI shows the identification of which appliance is consuming power using the naive Bayes classifier. The input to the VI is the FFT of the current signal. The VI contains a signature library for the individual appliances. The output of the VI is the most likely appliance(s) that are consuming power.
Bibliography

[1] G. Hart, “Nonintrusive appliance load monitoring,” Proceedings of the IEEE, vol. 80, no. 12, pp. 1870–1891, 1992.

[2] D. Srinivasan, W. Ng, and A. Liew, “Neural-network-based signature recognition for harmonic source identification,” Power Delivery, IEEE Transactions on, vol. 21, no. 1, pp. 398–405, 2006.

[3] J. Liang, S. Ng, G. Kendall, and J. Cheng, “Load signature study part I: Basic concept, structure, and methodology,” Power Delivery, IEEE Transactions on, vol. 25, no. 2, pp. 551–560, 2010.

[4] L. Norford and S. Leeb, “Non-intrusive electrical load monitoring in commercial buildings based on steady-state and transient load-detection algorithms,” Energy and Buildings, vol. 24, no. 1, pp. 51–64, 1996.

[5] S. Gupta, M. Reynolds, and S. Patel, “Electrisense: single-point sensing using EMI for electrical event detection and classification in the home,” in Proceedings of the international conference on Ubiquitous computing. ACM, 2010, pp. 139–148.
[6] A. Schoofs, A. Guerrieri, D. Delaney, G. O’Hare, and A. Ruzzelli, “Annot: Automated electricity data annotation using wireless sensor networks,” in *Sensor Mesh and Ad Hoc Communications and Networks (SECON), 2010 7th Annual IEEE Communications Society Conference on*. IEEE, 2010, pp. 1–9.

[7] Wikipedia, “The ROC space and plots of four prediction types,” https://en.wikipedia.org/wiki/Receiver_operating_characteristic#/media/File:ROC_space-2.png, accessed on 05 July 2015.

[8] Allegro MicroSystems, LLC, “ACS712: Fully integrated, hall-effect-based linear current sensor IC with 2.1 kVRMS voltage isolation and a low-resistance current conductor,” http://www.allegromicro.com/Products/Current-Sensor-ICs/Zero-To-Fifty-Amp-Integrated-Conductor-Sensor-ICs/ACS712.aspx, accessed on 15 October 2013.

[9] Eirgrid Operations, Ireland, “Irish national grid system demand,” http://www.eirgrid.com/operations/systemperformance-data/system-demand/, accessed on 03 September 2013.

[10] Intertek Testing and Certification Ltd, Milton Keyes, “R66141 final report issue 4 household electricity survey: A study of domestic electrical product usage,” http://savethebulb.org/wordpress/wp-content/uploads/2012/07/10043_R66141HouseholdElectricitySurveyFinalReportissue41.pdf, accessed on 09 August 2014.

[11] E. D. Mynatt, J. Rowan, S. Craighill, and A. Jacobs, “Digital family portraits: supporting peace of mind for extended family members,” in *Proceedings of the*
SIGCHI conference on Human factors in computing systems. ACM, 2001, pp. 333–340.

[12] E. M. Tapia, S. S. Intille, and K. Larson, Activity recognition in the home using simple and ubiquitous sensors. Springer, 2004.

[13] European Environmental Agency, “Final energy consumption by sector in the EU-27, 1990-2006,” http://www.eea.europa.eu/data-and-maps/figures(final-energy-consumption-by-sector-in-the-eu-27-1990-2006, accessed on 12 December 2012.

[14] U.S Energy Information Administration, “Residential energy consumption survey,” http://www.eia.gov/todayinenergy/detail.cfm?id=10271&src=%E2%80%80Consumption%20%20%20%20%20%20Residential%20Energy%20Consumption%20Survey%20(RECS)-b1, accessed on 02 August 2014.

[15] S. Darby, “The effectiveness of feedback on energy consumption,” A Review for DEFRA of the Literature on Metering, Billing and Direct Displays, vol. 486, 2006.

[16] D. R. Carlson, M. Bergés, and H. S. Matthews, “How many appliances does it take to??” in 1st International Workshop on Non-Intrusive Load Monitoring, 2012.

[17] M. Zeifman and K. Roth, “Nonintrusive appliance load monitoring: Review and outlook,” Consumer Electronics, IEEE Transactions on, vol. 57, no. 1, pp. 76–84, 2011.
[18] Y. Du, L. Du, B. Lu, R. Harley, and T. Habetler, “A review of identification and monitoring methods for electric loads in commercial and residential buildings,” in *Energy Conversion Congress and Exposition (ECCE), IEEE*. IEEE, 2010, pp. 4527–4533.

[19] Electrical Supply Board Ireland, “Sustainability report 2012,” http://www.esb.ie/main/downloads/sustainability/sustainability_report_2012.pdf, accessed on 14 February 2014.

[20] Electrical Supply Board, Ireland, “Sustainable networks and smart metering,” http://www.esb.ie/main/sustainability/smart-meters.jsp, accessed on 30 August 2013.

[21] H. Farhangi, “The path of the smart grid,” *Power and Energy Magazine, IEEE*, vol. 8, no. 1, pp. 18–28, 2010.

[22] S. Nandi, H. Toliyat, and X. Li, “Condition monitoring and fault diagnosis of electrical motors—a review,” *Energy Conversion, IEEE Transactions on*, vol. 20, no. 4, pp. 719–729, 2005.

[23] N. Mehala, “Condition monitoring and fault diagnosis of induction motor using motor current signature analysis,” 2010.

[24] W. C. Greene, “Evaluation of non-intrusive monitoring for condition based maintenance applications on US Navy propulsion plants,” 2005.

[25] S. Patel, T. Robertson, J. Kientz, M. Reynolds, and G. Abowd, “At the flick of a switch: Detecting and classifying unique electrical events on the residential
power line,” in Proceedings of the international conference on Ubiquitous computing. Springer-Verlag, 2007, pp. 271–288.

[26] A. Ruzzelli, C. Nicolas, A. Schoofs, and G. O’Hare, “Real-time recognition and profiling of appliances through a single electricity sensor,” in Sensor Mesh and Ad Hoc Communications and Networks (SECON), 2010 7th Annual IEEE Communications Society Conference on. IEEE, 2010, pp. 1–9.

[27] S. Park, H. Kim, H. Moon, J. Heo, and S. Yoon, “Concurrent simulation platform for energy-aware smart metering systems,” Consumer Electronics, IEEE Transactions on, vol. 56, no. 3, pp. 1918–1926, 2010.

[28] M. Berges, E. Goldman, H. S. Matthews, and L. Soibelman, “Training load monitoring algorithms on highly sub-metered home electricity consumption data,” Tsinghua Science & Technology, vol. 13, pp. 406–411, 2008.

[29] Z. Taysi, M. Guvensan, and T. Melodia, “Tinyears: spying on house appliances with audio sensor nodes,” in Proceedings of the ACM Workshop on Embedded Sensing Systems for Energy-Efficiency in Buildings. ACM, 2010, pp. 31–36.

[30] Y. Kim, T. Schmid, Z. Charbiwala, and M. Srivastava, “Viridiscope: design and implementation of a fine grained power monitoring system for homes,” in Proceedings of the international conference on Ubiquitous computing. ACM, 2009, pp. 245–254.

[31] OWL, “The owl wireless electricity monitor,” http://www.theowl.com/, accessed on 7th January 2014.
[32] P3International, “The Kill-A-Watt energy meter,” http://www.p3international.com/, accessed on 7th January 2014.

[33] O. Parson, S. Ghosh, M. Weal, and A. Rogers, “Using hidden markov models for iterative non-intrusive appliance monitoring,” 2011.

[34] Parson, Ghosh, Weal, and Rogers, “Non-intrusive load monitoring using prior models of general appliance types,” AAAI, 2012.

[35] F. Sultanem, “Using appliance signatures for monitoring residential loads at meter panel level,” Power Delivery, IEEE Transactions on, vol. 6, no. 4, pp. 1380–1385, 1991.

[36] A. Cole and A. Albicki, “Nonintrusive identification of electrical loads in a three-phase environment based on harmonic content,” in Instrumentation and Measurement Technology Conference, IMTC. Proceedings of the IEEE, vol. 1. IEEE, 2000, pp. 24–29.

[37] J. Liang, S. Ng, G. Kendall, and J. Cheng, “Load signature study-part II: Disaggregation framework, simulation, and applications,” Power Delivery, IEEE Transactions on, vol. 25, no. 2, pp. 561–569, 2010.

[38] A. Cole and A. Albicki, “Data extraction for effective non-intrusive identification of residential power loads,” Instrumentation and Measurement Technology Conference, IMTC. Proceedings of the IEEE, vol. 2, pp. 812–815, 1998.

[39] Cole and Albicki, “Algorithm for nonintrusive identification of residential appliances,” Circuits and Systems, 1998. ISCAS’98. Proceedings of the 1998 IEEE International Symposium on, vol. 3, pp. 338–341, 1998.
[40] J. Powers, B. Margossian, and B. Smith, “Using a rule-based algorithm to disaggregate end-use load profiles from premise-level data,” *Computer Applications in Power, IEEE*, vol. 4, no. 2, pp. 42–47, 1991.

[41] M. Weiss, A. Helfenstein, F. Mattern, and T. Staake, “Leveraging smart meter data to recognize home appliances,” in *Pervasive Computing and Communications (PerCom), 2012 IEEE International Conference on*. IEEE, 2012, pp. 190–197.

[42] K. Lee, S. Leeb, L. Norford, P. Armstrong, J. Holloway, and S. Shaw, “Estimation of variable-speed-drive power consumption from harmonic content,” *Energy Conversion, IEEE Transactions on*, vol. 20, no. 3, pp. 566–574, 2005.

[43] R. Cox, S. Leeb, S. Shaw, and L. Norford, “Transient event detection for nonintrusive load monitoring and demand side management using voltage distortion,” in *Applied Power Electronics Conference and Exposition, APEC, IEEE*. IEEE, 2006, pp. 7–pp.

[44] S. B. Leeb, S. R. Shaw, and J. L. Kirtley Jr, “Transient event detection in spectral envelope estimates for nonintrusive load monitoring,” *Power Delivery, IEEE Transactions on*, vol. 10, no. 3, pp. 1200–1210, 1995.

[45] K.-L. Chen, H.-H. Chang, and N. Chen, “A new transient feature extraction method of power signatures for nonintrusive load monitoring systems,” in *Applied Measurements for Power Systems (AMPS), 2013 IEEE International Workshop on*. IEEE, 2013, pp. 79–84.
[46] H.-H. Chang, “Non-intrusive demand monitoring and load identification for energy management systems based on transient feature analyses,” *Energies*, vol. 5, no. 11, pp. 4569–4589, 2012.

[47] H.-H. Chang, K.-L. Chen, Y.-P. Tsai, and W.-J. Lee, “A new measurement method for power signatures of nonintrusive demand monitoring and load identification,” *Industry Applications, IEEE Transactions on*, vol. 48, no. 2, pp. 764–771, 2012.

[48] H.-H. Chang, C.-L. Lin, and J.-K. Lee, “Load identification in nonintrusive load monitoring using steady-state and turn-on transient energy algorithms,” in *Computer Supported Cooperative Work in Design (CSCWD), 2010 14th International Conference on*. IEEE, 2010, pp. 27–32.

[49] H.-H. Chang, H.-T. Yang, and C.-L. Lin, “Load identification in neural networks for a non-intrusive monitoring of industrial electrical loads,” in *Computer Supported Cooperative Work in Design IV*. Springer, 2008, pp. 664–674.

[50] (2012) Wispermon: Residential power usage monitoring in the dark. [Online]. Available: http://www.cse.msu.edu/glxing/docs/power.pdf

[51] D. Phillips, R. Tan, M. Moazzami, G. Xing, and J. Chen, “Superflo: A sensor system for unsupervised residential power usage monitoring.”

[52] F. Jazizadeh and B. Becerik-Gerber, “A novel method for non intrusive load monitoring of lighting systems in commercial buildings,” *Bridges*, vol. 10, pp. 9 780 784 412 343–0066, 2014.
[53] M. Baransi and J. Voss, “Nonintrusive appliance load monitoring based on an optical sensor,” in Power Tech Conference Proceedings, 2003 IEEE Bologna, vol. 4. Ieee, 2003, pp. 8–pp.

[54] M. Alahmad, H. Hasna, and E. Sordiashie, “Non-intrusive electrical load monitoring and profiling methods for applications in energy management systems,” in Systems, Applications and Technology Conference (LISAT), 2011 IEEE Long Island. IEEE, 2011, pp. 1–6.

[55] M. Berges, E. Goldman, H. Matthews, and L. Soibelman, “Enhancing electricity audits in residential buildings with nonintrusive load monitoring,” Journal of Industrial Ecology, vol. 14, no. 5, pp. 844–858, 2010.

[56] X. Wu, V. Kumar, J. R. Quinlan, J. Ghosh, Q. Yang, H. Motoda, G. J. McLachlan, A. Ng, B. Liu, S. Y. Philip et al., “Top 10 algorithms in data mining,” Knowledge and Information Systems, vol. 14, no. 1, pp. 1–37, 2008.

[57] Energy Information Administration, “Residential energy consumption survey (RECS) end-use consumption of electricity,” 2001.

[58] J. Kolter and M. Johnson, “Redd: A public data set for energy disaggregation research,” in Workshop on Data Mining Applications in Sustainability (SIGKDD), San Diego, CA, 2011.

[59] Y. Wang, X. Hao, L. Song, C. Wu, Y. Wang, C. Hu, and L. Yu, “Tracking states of massive electrical appliances by lightweight metering and sequence decoding,” in Proceedings of the Sixth International Workshop on Knowledge Discovery from Sensor Data. ACM, 2012, pp. 34–42.
[60] A. Zoha, A. Gluhak, M. Nati, and M. A. Imran, “Low-power appliance monitoring using factorial hidden markov models,” pp. 527–532, 2013.

[61] L. R. Rabiner, “A tutorial on hidden markov models and selected applications in speech recognition,” Proceedings of the IEEE, vol. 77, no. 2, pp. 257–286, 1989.

[62] S. R. Eddy, “What is a hidden markov model?” Nat Biotech, vol. 22, no. 10, 2004.

[63] D. Lee and M. Yannakakis, “Principles and methods of testing finite state machines-a survey,” Proceedings of the IEEE, vol. 84, no. 8, pp. 1090–1123, 1996.

[64] D. Bergman, D. Jin, J. Juen, N. Tanaka, C. Gunter, and A. Wright, “Distributed non-intrusive load monitoring,” in Innovative Smart Grid Technologies (ISGT), IEEE PES International Conference and Exhibition on. IEEE, 2011, pp. 1–8.

[65] D. Michie, D. J. Spiegelhalter, and C. C. Taylor, “Machine learning, neural and statistical classification, ch. 6 p85-86,” 1994.

[66] H. Chang, K. Chen, Y. Tsai, and W. Lee, “A new measurement method for power signatures of non-intrusive demand monitoring and load identification,” in Industry Applications Society Annual Meeting (IAS), IEEE. IEEE, 2011, pp. 1–7.
[67] A. Marchiori, D. Hakkarinen, Q. Han, and L. Earle, “Circuit-level load monitoring for household energy management,” *Pervasive Computing, IEEE*, vol. 10, no. 1, pp. 40–48, 2011.

[68] A. Reinhardt, D. Burkhardt, M. Zaheer, and R. Steinmetz, “Electric appliance classification based on distributed high resolution current sensing,” in *Local Computer Networks Workshops (LCN Workshops), 2012 IEEE 37th Conference on*. IEEE, 2012, pp. 999–1005.

[69] “The optimality of naive Bayes, author=Zhang, Harry, journal=A A, volume=1, number=2, pages=3, year=2004.”

[70] P. Domingos and M. Pazzani, “Beyond independence: Conditions for the optimality of the simple Bayesian classifier,” in *Proc. 13th Intl. Conf. Machine Learning*, 1996, pp. 105–112.

[71] I. Klevecka, “Forecasting network traffic: A comparison of neural networks and linear models,” in *Proceedings of the 9th International Conference Reliability and Statistics in Transportation and Communication, RelStat*, 2009, pp. 21–24.

[72] D. Xhemali, C. J. Hinde, and R. G. Stone, “Naive bayes vs. decision trees vs. neural networks in the classification of training web pages,” 2009.

[73] T. Fawcett, “An introduction to ROC analysis,” *Pattern recognition letters*, vol. 27, no. 8, pp. 861–874, 2006.

[74] B. Drafts, “Methods of current measurement,” http://fwbell.com/downloads/files/Methods_Current_Measurement.pdf, accessed on 21 August 2014.
[75] Avago Technologies, “HCNR201 high-linearity analog optocouplers,” http://www.avagotech.com/pages/en/optocouplers_plastic/plastic_high_linearity_analog_optocoupler/hcnr201/, accessed on 15 October 2013.

[76] Texas Instruments, “LM7332 dual rail-to-rail input/output, 30V, wide voltage range, high output operational amplifier,” http://www.ti.com/product/lm7332, accessed on 15 October 2013.

[77] Y. Yi-xin, L. Peng, and Z. Chun-liu, “Non-intrusive method for on-line power load decomposition,” in Electricity Distribution, 2008. CICED 2008. China International Conference on. IEEE, 2008, pp. 1–8.

[78] Texas Instruments, “LM335 precision temperature sensor,” http://www.ti.com/product/lm335, accessed on 16 October 2013.

[79] LabJack Corporation, “Labjack UE9 data acquisition device,” http://labjack.com/ue9, accessed on 16 October 2013.

[80] Voltech, “PM3000a three-phase power analyzer,” http://www.voltech.com/products/poweranalyzers/PM3000.aspx, accessed on 29 July 2013.

[81] ESB Networks Ireland, “Domestic voltage range in Ireland,” http://www.esb.ie/ESBNetworks/en/domestic-customers/voltage_problems.jsp, accessed on 8 August 2013.

[82] A. Mansoor, W. Grady, A. Chowdhury, and M. Samotyi, “An investigation of harmonics attenuation and diversity among distributed single-phase power
electronic loads,” in *Transmission and Distribution Conference, 1994. Proceedings of the 1994 IEEE Power Engineering Society*. IEEE, 1994, pp. 110–116.

[83] D. Sweeting and A. Stokes, “Energy transfers within arcing faults in electrical equipment,” in *Electric Fuses and their Applications, 2007. ICEFA 2007. 8th International Conference on*. IEEE, 2007, pp. 169–178.