Abstract—Visual P300 mind speller is a brain-computer interface allowing an individual to type through his mind. To this aim, the subject sits in front of a screen full of letters, and when his desired one flashes, there will be a P300 response (a positive deflection nearly 300ms after stimulus) in his brain signals. Due to the very low signal-to-noise (SNR) of the P300 in the background activities of the brain, detection of this component is challenging. Principal ERP reduction (pERP-RED) is a newly developed method that effectively extracts the underlying templates of event-related potentials (ERPs) by employing a three-step spatial filtering procedure. In this research, we investigate the performance of pERP-RED in conjunction with linear discriminant analysis (LDA) to classify P300 data. The proposed method is examined on a real P300 dataset and compared to the state-of-the-art LDA and support vector machines. The results demonstrate that the proposed method achieves higher classification accuracy in low SNRs and low numbers of training data.

Index Terms—Principal event-related potentials, P300, visual mind speller, brain-computer interface.

I. INTRODUCTION

Brain-computer interface (BCI) is a system that provides a communication channel between mind and computer, by translating brain signals [1]–[5]. One of the most convenient ways to record brain activities is electroencephalography (EEG). EEG is non-invasive, cheap, and accessible compared to other methods [6]. One type of EEG-based BCI system is the P300 speller which allows an individual to type letters through his mind [7]. P300 is a kind of event-related potential (ERP) that can be emerged by an oddball paradigm [8]. In this paradigm, a series of sensory stimuli (e.g. visual, auditory) are produced where some of them are rare. In response to the infrequent stimulus, a positive deflection with a 300ms delay regarding the stimulus onset emerges in subjects’ brain signals. This response can be used as a cue to control a mind speller device. An example of the P300 speller paradigm is a matrix of alphabets suggested by Farwell et al. [7]. In this setup, the system intensifies each row or column of the matrix in a random fashion. When the row or column corresponding to the desired letter is intensified, there will be a P300 signal in the subject’s EEG, and the letter can be identified (by the intersection of the row and column of interest).

It is well-known that P300 has a very small signal-to-noise ratio (SNR), hence, its detection from ongoing EEG is hard. Trial averaging of post stimuli signals is a usual method to increase SNR level. By assuming the independence between the activities of background EEG (nearly random behavior) and a near to deterministic morphology of P300 regarding stimuli onset, trial averaging can cancel out the background noise and increase SNR [9]. The more trials for averaging, the more P300 becomes clear. However, collecting many trials is time-consuming and leads to low bit rates, not applicable for practical purposes. Also, in long sessions, the data’s quality decreases (the P300 level decreases, and the noise level increases). This is due to brain fatigue and getting used to periodic stimuli. Brain fatigue reduces the P300 amplitude and increases its latency. Therefore, new and applicable signal processing methods to emerge the P300 more precisely, are very useful.

P300 detection or classification is an important issue in the field of biomedical signal processing, hence, the domain is fairly mature. A large number of researchers have worked on this problem, and they have mostly focused on either designing a better paradigm to evoke the P300 [10] or signal processing stage [11]. The scope of this paper is the latter. According to [11], the most favorite P300 classifiers are based on linear discriminant analysis (LDA) [12] and support vector machines (SVM) [13], [14] due to achieving very good results.

It is well-known that the observed ERP signals are the summation of several waveforms. For example, P300 can be divided into two subcomponents called p3a and p3b. The former emerges first and is closely related to the attention, distributed frontally on the scalp, however, the latter is related to memory update, originated from temporal-parietal scalp regions [8]. In a recent work by Campos et al. (2020), a new approach toward studying ERPs has been developed [15]. The underlying idea of the proposed method is that any ERP signal can be described by a set of basic templates called principal ERPs (pERPs). These basis waveforms are extracted using a three-step spatial filtering method called pERP-reduction (pERP-RED). PERP-RED has performed very successfully to analyze different ERPs.

Contribution: To the author’s knowledge, the pERP-RED algorithm has not been investigated for P300 classification up to now. Hence, in this paper, we develop a rather simple
method based on pERPs and LDA (pERP-LDA), which shows to be very effective for emerging P300. The proposed method is examined on a real P300 dataset from BCI competition III [16] and compared to LDA and SVM. The results demonstrate that the proposed method achieves a higher classification accuracy in low SNRs. This leads to higher bit rates which are very important to the real-life applicability of mind spellers. Furthermore, the proposed pERP-LDA shows to have a better performance in the case of small training sets, which means a faster calibration of the P300 speller.

II. METHOD

A. Overview of pERP-RED Algorithm

The basic assumption of the pERP-RED method [15] is that any observed ERP signal at any electrode, for any subject, and any task can be described by a linear combination of underlying ERP waveforms (i.e. pERPs). To extract the pERPs, three levels of spatial filtering are employed (Fig.1). Let \( X_i^v \in \mathbb{R}^{T \times E_i} \) be a post-stimulus data matrix for \( i \)'th subject \((i = 1, 2, \ldots, N)\) and \( v \)'th task \((v = 1, 2, \ldots, V)\), where \( T \) is the number of recorded samples in time and \( E_i \) is the number of recorded channels for \( i \)'th subject. The data are scaled and biased to have a zero mean and unit variance in each channel. In the first step, the data matrices of each subject are concatenated in the columns (leading to \((T \times V) \times E_i\) matrices). Then an electrode reduction step is done through principal component analysis (PCA) to eliminate highly correlated channels. This leads to a smaller set of uncorrelated bases called principal regions. The number of these regions \( R_i \) could be different for each subject, and it depends on a pre-specified amount of variations to preserve (by default the threshold is 80%; larger thresholds mean preserving more data, but at the cost of keeping more noise as well). It is obvious that \( R_i \leq E_i \). The second step is dedicated to subject-region reduction. For this, the resulting matrices from the first step and all subjects are concatenated in the rows leading to a big matrix of size \((T \times V) \times \sum_{i=1}^N R_i\). Each task-region ERP record is normalized to unit variance. Then again, PCA is used to generate \( N_{pr} \) principal subject-regions based on a pre-specified amount of variance (by default the threshold is 80%). This results in a \((T \times V) \times N_{pr}\) matrix. At last, the latter mentioned matrix is reshaped to a matrix of size \( T \times (V \times N_{pr}) \), then independent component analysis (ICA) is used to extract \( P \) principle ERPs. \( P \) could be specified based on a priori information about ERP structure (e.g. \( P = 2 \) for P300, as it consists of two main subcomponents [8]), or it could be found by excluding a small set of data from the training set and using it to find the number of required pERPs [15].

Consider \( \Phi = [\phi_1, \phi_2, \ldots, \phi_P] \) as a matrix of extracted pERPs. Now each observed data matrix \( X^v_i \) can be expressed by a linear combination of these pERPs through the following regression (note that the data must be biased to have a zero mean in each channel),

\[
\hat{X}_i^v = \Phi(\Phi^T\Phi)^{-1}\Phi^T X^v_i
\]

where \( \{,\}^T \) denotes the transpose operator. This can also be seen as a column-wise regression of \( X^v_i \) on pERPs. One may consider \( \hat{X}_i^v \) as a filtered version of \( X^v_i \) through \( F_{erp} = \Phi(\Phi^T\Phi)^{-1}\Phi^T \).

A ready-to-use package of the pERP-RED algorithm can be found at www.github.com/emjcampos/perpred. This package is provided in R language [17].

B. Proposed pERP-LDA

In the studies of P300 classification, it is common practice to pass the data through a filter (temporal, spatial, or spatiotemporal [18]) to enhance P300, and then, feed it to a classifier to find the final label (target or non-target). Our proposed method also consists of two main successive blocks, a filter of pERPs \( (F_{erp}) \) to enhance the P300, and an LDA classifier to find the final label.

In the training phase, first, the pERPs are found through the pERP-RED algorithm using the training data, then, the same data are projected on pERPs through \( F_{erp} \). At last, the filtered data are used to train the LDA classifier. In the testing phase, first, the test data are passed through \( F_{erp} \) to enhance the P300, then, the filtered data are fed to the LDA classifier to find the final label.

III. METHOD ASSESSMENT

A. P300 Data

The pERP-LDA method is examined using a real visual P300 speller dataset from BCI competition III [16]. This dataset consists of EEG recordings from two subjects (A and B) while attempting to spell 185 different letters. For this, a matrix of letters was shown to the users while they were asked to focus on the desired one. The rows and columns of this matrix were successively and randomly flashed, and two of them (one row and one column) contained the targeted letter. This procedure has been repeated 15 times to collect more data for each letter. Data were captured from 64 channels using...
blocks are captured from four channels (each row or column flash in a chronological manner. The data contains 15 subsequences corresponding to 15 repetitions of them are target trials. This leads to (corresponding to twelve rows and columns) where two of letter, the data sequence is split into twelve 700ms blocks target trials from the post-stimuli EEG recordings. For each segmentation step is required to extract the target and non-240Hz.

10-20 standards, filtered between 0.1 to 60Hz, and sampled at 240Hz.

To perform further experiments on the dataset, a data segmentation step is required to extract the target and non-target trials from the post-stimuli EEG recordings. For each letter, the data sequence is split into twelve 700ms blocks (corresponding to twelve rows and columns) where two of them are target trials. This leads to $185 \times 10$ non-target and $185 \times 2$ target trials for each subject. Each of these blocks contains 15 subsequences corresponding to 15 repetitions of each row or column flash in a chronological manner. The data blocks are captured from four channels ($C_z, PO_7, F_z$ and $P_1$) which mostly reflect the P300 activity [11].

B. Assessment Framework and Results

The proposed pERP-LDA is compared with LDA and SVM in sense of classification accuracy. To this aim, the competing methods are evaluated on two equal-size groups of randomly chosen target and non-target trials, through 10-fold cross-validation. The methods are also evaluated in different SNRs and different amounts of training data. To increase the SNR, the trials are averaged over the first $k$ repetitions.

To enhance the P300 and reduce the noise, the data are bandpass filtered, by a 0.1 to 15Hz [19] Butterworth filter of order 4. The filtered data are fed to LDA and SVM classifiers, however, the raw data are fed to pERP-LDA thanks to its internal noise cancelation procedure. The number of pERPs is set to 2 (as there are mainly two subcomponents in the P300), and the threshold is set to 80% for the electrode reduction step.

In the following, the results in Fig. 2 to 5 are achieved using two-channel data ($C_z$ and $PO_7$). Fig. 2 indicates the extracted pERPs for subject A (Fig. 2a) and subject B (Fig. 2b). For both subjects, it can be seen that pERP$_1$ picks first about 200ms, and pERP$_2$ picks later about 350ms. Hence, these components could be closely related to p3a and p3b. Figs. 3 and 4 show the performance of pERP-LDA, LDA, and SVM in different SNRs (i.e. different $k$ values) using data groups of size 20 and 370. For both subjects, the proposed method provides higher accuracy almost in all SNR levels over the small set of data and performs as well as LDA and SVM over the large training set. The average performances of competing methods over different sizes of the training set are shown in Fig. 5. It can be seen that, for both subjects, pERP-LDA outperforms the other two methods in small amounts of training data. This can be more clearly seen for training sets of size 150 or less. For instance, the LDA and SVM need 100 training data to achieve the same performance as pERP-LDA with only 30 training data (Fig. 5b). By increasing the size of the training set, the performance gaps between pERP-LDA and competing methods decrease which is due to better estimation of unknown model parameters of LDA and SVM classifiers. Figs. 6 and 7 indicate the average performance of different methods using different numbers of EEG channels. Again, the same results as before are seen. For both subjects and all different channel setups, the proposed method outperforms LDA and SVM in small amounts of data (Figs. 6a and 7a), however, for large training sets, the performance of all methods are rather close (Figs. 6b and 7b).
In this study, we proposed a new approach called pERP-LDA for P300 classification in mind speller paradigms. This method is based on recent research regarding ERP analysis (pERP-RED [15]) and the LDA classifier. PERP-RED extracts the waveforms which are believed to represent the underlying activities of ERPs. P300 is a well studied ERP component and it consists of two main subcomponents named p3a and p3b [8]. In Fig. 2, the extracted pERPs from real P300 data are closely related to these subcomponents, which verifies the effectiveness of the pERP-RED method. When the principal ERPs are found, the P300 trials of any type (i.e. target or non-target), and for any electrode could be represented by them. This leads to an effective noise reduction and P300 enhancement.

The results suggest that pERP-LDA provides higher classification accuracies for small training sets and low SNR situations compared to traditional classifiers (LDA and SVM). This is very promising as many P300-based mind spellers require large training datasets to have a good performance, making their calibration time very long. Also, good performance in a low number of repetitions (i.e. low SNRs) means a higher bit rate of the speller. Putting these two together approaches the P300 speller to an applicable system in real-life situations. In future studies, the effectiveness of the proposed method should be investigated over different datasets and different ERPs. Also, the combination of pERP-RED with deep structures [1], [20] may lead to a universal ready-to-use mind speller which is of great interest.

**REFERENCES**

[1] M. Dehghani, A. Mobaien, and R. Boostani, “A deep neural network-based transfer learning to enhance the performance and learning speed of BCI systems,” Brain-Computer Interfaces, vol. 8, no. 1-2, pp. 14–25, 2021.

[2] A. Mobaien and R. Boostani, “ACSP: Adaptive CSP filter for BCI applications,” in 2016 24th Iranian Conference on Electrical Engineering (ICEE). IEEE, 2016, pp. 466–471.

[3] R. Boostani and M. H. Moradi, “A new approach in the BCI research based on fractal dimension as feature and Adaboost as classifier,” J. Neural Eng., vol. 1, no. 4, p. 212, 2004.

[4] R. Boostani, B. Graumann, M. H. Moradi, and G. Pfurtscheller, “A comparison approach toward finding the best feature and classifier in cue-based BCI,” Med. Biol. Eng. Comput., vol. 45, no. 4, pp. 403–412, 2007.

[5] F. Ailiardani, R. Boostani, and B. Blankertz, “Weighted spatial based geometric scheme as an efficient algorithm for analyzing single-trial EEGs to improve cue-based BCI classification,” Neural Networks, vol. 92, pp. 69–76, 2017.

[6] D. L. Schomer and F. L. Da Silva, Niedermeyer’s Electroencephalography: Basic Principles, Clinical Applications, and Related Fields. Lippincott Williams & Wilkins, 2012.

[7] L. A. Farwell and E. Donchin, “Talking off the top of your head: Toward a mental prosthesis utilizing event-related brain potentials,” Electroen. Clin. Neuro., vol. 70, no. 6, pp. 510–523, 1988.

[8] T. W. Picton, “The P300 wave of the human event-related potential,” J. Clin. Neurophysiol., vol. 9, no. 4, pp. 456–479, 1992.

[9] H. Parvar, L. Sculthorpe-Petley, J. Satel, R. Boshra, R. C. D’Arcy, and T. P. Trappenberg, “Detection of event-related potentials in individual subjects using support vector machines,” Brain Informatics, vol. 2, no. 1, pp. 1–12, 2015.

[10] G. Townsend, B. K. LaPallo, C. B. Boulay, D. J. Krusienski, G. Frye, C. Hauser, N. E. Schwartz, T. M. Vaughan, J. R. Wolpaw, and E. W. Sellers, “A novel P300-based brain–computer interface stimulus presentation paradigm: Moving beyond rows and columns,” Clin. Neurophysiol., vol. 121, no. 7, pp. 1109–1120, 2010.

[11] J. T. Philip and S. T. George, “Visual P300 mind-speller brain-computer interfaces: A walk through the recent developments with special focus on classification algorithms,” Clin. EEG Neurosci., 2019.

[12] J. Qu, F. Wang, Z. Xia, T. Yu, J. Xiao, Z. Yu, Z. Gu, and Y. Li, “A novel three-dimensional P300 speller based on stereo visual stimuli,” IEEE Trans. Human-Mach. Syst., vol. 48, no. 4, pp. 392–399, 2018.

[13] M. Keshani, Z. Azimifar, F. Tajaripour, and R. Boostani, “Lung nodule segmentation and recognition using SVM classifier and active contour modeling: A complete intelligent system,” Comput. Biol. Med., vol. 43, no. 4, pp. 287–300, 2013.

[14] E. Campos, C. Hazlett, P. Tan, H. Truong, S. Loo, C. Di Stefano, S. Jeste, and D. Şentürk, “Principle ERP reduction and analysis: Estimating and using principle ERP waveforms underlying ERPs across tasks, subjects and electrodes,” NeuroImage, vol. 212, p. 116630, 2020.

[15] J. R. Wolpaw, G. S. Schalk, and D. Krusienski. (2005) BCI competition III webpage. [Online]. Available: http://www.bbci.de/competition/iii/

[16] E. Campos, C. Hazlett, and D. Şentürk, pERPred: Principle ‘ERP’ Reduction, 2021, r package version 0.0.0.9000. [Online]. Available: https://github.com/emscampos/pERPred

[17] D. Fattahi, B. Nasihatkon, and R. Boostani, “A general framework to estimate spatial and spatio-spectral filters for EEG signal classification,” NeuroComputing, vol. 119, pp. 165–174, 2013.

[18] B. Busquets, S. Saavedra, and R. Ranta, “Finally, what is the best filter for P300 detection?” in TOBI Workshop III-Tools for Brain-Computer Interaction-2012, 2012.

[19] S. Afsar, R. Boostani, and S. Saeid, “A combinatorial deep learning structure for precise depth of anesthesia estimation from EEG signals,” IEEE J. Biomed. Health. Inf., 2021.