Correlation between sagittal morphology of lower lumbar end plate and degenerative changes in patients with lumbar disc herniation

ABSTRACT

Objective: As an important anatomic factor in the process of lumbar disc herniation (LDH), the correlation between end plate sagittal morphology and intervertebral disc degeneration (IDD) is unclear. Moreover, research on imaging data of lumbar end plate in patients with LDH is still insufficient. Our study aimed to observe the morphological change of the lower lumbar end plate (L3-S1) in patients with LDH on magnetic resonance imaging (MRI) and analyze its correlation with the degree of IDD.

Materials and Methods: A total of 116 patients were included in the study. Based on their MRI, we divided end plates into three types (concave, flat, and irregular), assigned intervertebral discs with Grade I–V given 1–5 points successively according to the Pfirrmann system, and determined whether there was Modic change of each end plate. The correlation between the morphology of the end plate and the degree of IDD was analyzed.

Results: There was an excellent interobserver agreement for each item we analyzed (interclass correlation coefficient >0.75). Concave end plate appeared most frequently (187, 53.7%) and was mainly distributed in L3/4 and L4/5, whereas irregular end plate was the least common type (54, 15.5%) and mainly concentrated in L5/S1. The IDD degree of the corresponding disc increased gradually from concave (3.27 ± 0.81) to irregular end plates (4.25 ± 0.79) (P < 0.05). Irregular end plates were more likely to have Modic changes than concave and flat end plates (P < 0.05).

Conclusion: The sagittal morphology of the lower lumbar end plate is related to modic changes and degree of IDD (based on the Pfirrmann grading system) in patients with LDH, and the concave end plate mostly reflects a lower degree of lumbar disc degeneration, which has substantial clinical significance.

Keywords: Lumbar disc herniation, lumbar end plate, magnetic resonance imaging, sagittal morphology

INTRODUCTION

Lumbar disc herniation (LDH) is an usual type of lumbar degeneration disease, which is a common cause of low back pain and lower extremity dysfunction. Studies indicate that aging, obesity, smoking, end plate injury, lumbar rotation load, and bone mineral density are the risk factors for LDH. The end plate is closely adjacent to the intervertebral disc, which is the direct conduction site of disc biomechanics. The mechanism of spinal compensation is complex, and the current cognition is still limited. Clinical studies have shown that the end plate will remodel to adapt to intervertebral disc degeneration (IDD), and imaging changes of end plate are often observed in IDD. With the development of surgical procedures, devices in some technologies such as...
One spine surgeon and one radiologist were selected to...
Measurements and correlations
Among the three types of morphology, concave end plate appeared most frequently (187, 53.7%) and mainly distributed in L3/4 and L4/5 segments; there were 107 (30.8%) pairs of flat end plates, which increased gradually from L3/4 to L5/S1; irregular end plate was the least common type (54, 15.5%) and mainly concentrated in L5/S1 [Table 3].

According to the Pfirrmann grading system, the degeneration degree of corresponding intervertebral disc increased gradually from concave (3.27 ± 0.81) to irregular end plates (4.25 ± 0.79) (P < 0.05), and IDD of Grade IV accounted for the most. In addition, the proportion of Grade V in irregular end plate is far greater than that of the other two types, as shown in Table 4.

The flat and irregular end plates were more common than the concave ones in the herniated segments (P < 0.05), whereas there was no significant difference between the flat and irregular types (P > 0.05). On the contrary, the concave end plates appeared most frequently in the nonherniated segments, following by the flat ones, with significant difference (P < 0.05). There were 49 segments of end plates (43 in herniated segment) in 37 patients accompanied by Modic changes. Those end plates in herniated segments accompanied by Modic changes mainly belonged to irregular type, with statistical difference (P < 0.05), whereas there was no significant difference between the concave and flat type (P > 0.05) [Table 5].

DISCUSSION
As a key component of spine structure, end plate plays an important role in nourishing intervertebral disc and conducting stress and has a significant impact on physiological state and pathological changes of intervertebral disc. In the treatment of IDD, motion preservation techniques are increasingly used. However, these techniques have certain requirements for end plate shape and height of intervertebral space. Therefore, it is helpful to study the correlation between morphology of end plate and IDD in clinical work. Previous studies on the morphology of the end plate mostly focused on the anatomical structure or the use of imaging to observe the transverse and sagittal diameter, circumference and area of end plates, as well as the measurement of their concave angle and relative curvature. Although measuring the concave angle can objectively and quantitatively reflect the depression degree of end plate, it is so complex, and the uncertainty of the arc vertex positioning makes larger deviations. By contrast, the method used in this study can intuitively define the shape of end plate, which is simple to operate.

Harrington et al.[14] observed the influence of axial shape of the end plates on herniated discs, and pointed out that the end plate morphology with high curvature is an independent risk factor for LDH. Pappou et al.[7] analyzed the correlation between end plate morphology and IDD in patients with low back pain. Although their results were similar to ours, the study subjects were different, and they did not take Modic changes and disc herniation into consideration.
According to our results, we found that concave end plate is the main type in intervertebral discs with lower grade of degeneration on MRI. The biomechanical studies\[^{15,16}\] show that the stress conducted by normal disc is mainly concentrated in the center of the vertebral end plate. The stress not only affects the volume and shape of the disc but also has an effect on the end plate. The load of axial stress, especially, can lead to the deformation of end plate and trabecula under it. That may explain why concave end plate is commonly seen in discs with milder IDD. In addition, when the intervertebral disc degenerates, the hydrodynamic characteristics of the nucleus pulposus gradually disappear, and the stress shifts from the center of the end plate to the periphery, resulting in relatively concentrated stress on the peripheral end plate, which not only increases the shear force and makes it prone to microfracture,\[^{13}\] but also activate the bone reconstruction process of the end plate and vertebral body,\[^{3}\] which will eventually lead to the gradual loss of the peripheral height of vertebral body and the flattening of end plate.\[^{17}\] Meanwhile, the stress load of the peripheral part of lumbar intervertebral disc exceeds the normal range, which will lead to the injury of annulus fibrosus and accelerate the occurrence of LDH. Moreover, studies have shown that the pressure of lumbar end plate increases gradually from the top to bottom.\[^{18}\] In our study, with the descent of lumbar segments, the concave end plates gradually decreased, and the flat end plates were increasingly common. The end plates of L5/ S1 segment were mainly flat type, which may be related to the higher stress load of L4/5 and L5/S1 segments. The proportion of irregular type was the least and mainly concentrated in L5/S1 segment. We believed that the long-term effect of large stress load may easily lead to the irregular shape of end plate. Since L5/S1 segment is located at the lumbosacral junction and has high shear force, irregular end plates are more likely to appear in this segment than in others. In the process of disc herniation, the end plate morphology changes from concave to flat and then irregular, and the degeneration degree of corresponding disc gets increasingly severe. Meanwhile, the herniated discs are mainly accompanied with flat and irregular end plates. The result that the proportion of Grade V IDD in irregular end plate is far greater than that of the other two types can also explain this.

Modic changes in MRI signal of end plate are highly correlated with IDD\[^{19}\] account for approximately 19%–59% of disc degenerative diseases.\[^{20,21}\] At present, it is generally believed that abnormal stress load after IDD,\[^{14}\] lumbar instability,\[^{22}\] and release of inflammatory factors\[^{23}\] will cause vertebral microfracture and affect local microenvironment of marrow, leading to histological changes which ultimately manifest as changes in MRI signal of end plate. Based on our results, Modic changes accounted for 30% in patients with LDH, and irregular end plates had more Modic changes than the ones of other two types. It is reasonable for us to speculate that the Modic change may be the result of the end plate subjected to long-term abnormal stress and degeneration to a certain extent.

The current study has several limitations. First, limited by the hardware conditions of our radiology department, we did not use computed tomography (CT) reconstruction which was better for evaluating the sagittal morphology of end plate than MRI. Studies have shown that the bony edge of end plate is more easily identified on CT images.\[^{24}\] Second, the relatively few evaluators. Considering the cognitive differences among specialties, we selected physicians from orthopedics and radiology department to assess the data. Nevertheless, increasing the number of evaluators will eliminate coincidence as much as possible, and improve the reliability of the results. Finally, we did not analyze the coronal morphology of end plate, and its effect on LDH or other lumbar degeneration disease needs further research. Therefore, high-quality, large sample, and multicenter studies should be performed in our future clinical work to provide spine surgeons with the best evidence-based information.

CONCLUSION

The sagittal morphology of lower lumbar end plate is related to Modic changes and degree of IDD (based on Pfirrmann grading system) in patients with LDH, and the concave end plate mostly

Table 4: The disc degeneration grade and score of patients based on Pfirrmann classification

Morphology	Grade of Pfirrmann classification	Scores of the grade (mean±SD)				
	I	II	III	IV	V	
Concave	4	37	51	94	1	3.27±0.81
Flat	0	8	25	70	4	3.84±0.67 *
Irregular	0	2	33	19		4.25±0.79 **

*Compared with concave, P<0.05; *Compared with flat, P<0.05. SD - Standard deviation

Table 5: The relationship among end plate morphology, disc herniation, and modic changes of patients

Morphology	Disc herniation	No disc herniation				
	n	Modic change	No modic change	n	Modic change	No modic change
Concave	24	5	19	163	2	161
Flat	41 *	9	32 *	66 *	1	65 *
Irregular	44 *	29 *	15 *	10 *	3	7 *

*Compared with concave, P<0.05; *Compared with flat, P<0.05
reflects a lower degree of lumbar disc degeneration, which has substantial clinical significance. However, larger sample and multicenter studies should be performed to improve the accuracy and reliability of the finding, and further clinical correlation should be evaluated in future works.

Financial support and sponsorship
Nil.

Conflicts of interest
There are no conflicts of interest.

REFERENCES

1. Li Y, Lord E, Cohen Y, Ruangchainikom M, Wang B, Lv G, et al. Effects of sagittal endplate shape on lumbar segmental mobility as evaluated by kinetic magnetic resonance imaging. Spine (Phila Pa 1976) 2014;39:E1035-41.
2. Samartzis D, Karpipinen J, Mok F, Fong DY, Luk KD, Cheung KM. A population-based study of juvenile disc degeneration and its association with overweight and obesity, low back pain, and diminished functional status. J Bone Joint Surg Am 2011;93:662-70.
3. Grosland NM, Goel VK. Vertebral endplate morphology follows bone remodeling principles. Spine (Phila Pa 1976) 2007;32:E667-73.
4. Modic MT. Modic type 1 and type 2 changes. J Neurosurg Spine 2007;6:150-1.
5. Lakshmanan P, Purushothaman B, Dvorak V, Schratt W, Thambiraj S, Boszczyk M. Sagittal endplate morphology of the lower lumbar spine. Eur Spine J 2012;21 Suppl 2:S160-4.
6. Gamradt SC, Wang JC. Lumbar disc arthroplasty. Spine J 2005;5:95-103.
7. Pappou IP, Cammisa FP Jr., Girardi FP. Correlation of end plate shape on MRI and disc degeneration in surgically treated patients with degenerative disc disease and herniated nucleus pulposus. Spine J 2007;7:32-8.
8. Pfirrmann CW, Metzdorf A, Zanetti M, Hodler J, Boos N. Magnetic resonance classification of lumbar intervertebral disc degeneration. Spine (Phila Pa 1976) 2001;26:1873-8.
9. Modic MT, Masaryk TJ, Ross JS, Carter JR. Imaging of degenerative disk disease. Radiology 1988;168:177-86.
10. Shroot PE, Fleiss JL. Intraclass correlations: Uses in assessing rater reliability. Psychol Bull 1979;86:420-8.
11. Fleiss J. The Design and Analysis of Clinical Experiments. New York: Wiley; 1986. p. 1-31.
12. Landis JR, Koch GG. The measurement of observer agreement for categorical data. Biometrics 1977;33:159-74.
13. Gu HS, Zhou WY, Li ZY. Clinic research between vertebral endplate morphology and lumbar disc herniation. J Clin Rehabil Tissue Eng Res 2010;14:9497-500.
14. Harrington J Jr., Sungarian A, Rogg J, Makker VJ, Epstein MH. The relation between vertebral endplate shape and lumbar disc herniations. Spine (Phila Pa 1976) 2001;26:2133-8.
15. Li FC, Zhang N, Chen WS, Chen QX. Endplate degeneration may be the origination of the vacuum phenomenon in intervertebral discs. Med Hypotheses 2010;75:169-71.
16. Zhao F, Pollintine P, Hole BD, Dolan P, Adams MA. Discogenic origins of spinal instability. Spine (Phila Pa 1976) 2005;30:2621-30.
17. He X, Liang A, Gao W, Peng Y, Zhang L, Liang G, et al. The relationship between concave angle of vertebral endplate and lumbar intervertebral disc degeneration. Spine (Phila Pa 1976) 2012;37:E1068-73.
18. Li ZG, Zheng LJ, Li GC, Chen XZ, Xia ZJ. Biomechanical research on the properties of the lumbosacral endplates. Chin J Spine Spinal Cord 2007;17:210-3.
19. Albert HB, Briggs AM, Kent P, Byrragen A, Hansen C, Kjaergaard K. The prevalence of MRI-defined spinal pathoanatomies and their association with modic changes in individuals seeking care for low back pain. Eur Spine J 2011;20:1355-62.
20. Kjaer P, Leboeuf-Yde C, Korsholm L, Sorensen JS, Bendix T. Magnetic resonance imaging and low back pain in adults: A diagnostic imaging study of 40-year-old men and women. Spine (Phila Pa 1976) 2005;30:1173-80.
21. Kuisma M, Karpipinen J, Niinimäki J, Ojala R, Haapea M, Heliovaara M, et al. Modic changes in endplates of lumbar vertebral bodies: Prevalence and association with low back and sciatic pain among middle-aged male workers. Spine (Phila Pa 1976) 2007;32:1116-22.
22. Zhang YH, Zhao CQ, Jiang LS, Chen XD, Dai LY. Modic changes: A systematic review of the literature. Eur Spine J 2008;17:1289-99.
23. Peng B, Zhang Y, Hou S, Wu W, Fu X. Intradiscal methylene blue injection for the treatment of chronic discogenic low back pain. Eur Spine J 2007;16:33-8.
24. Rajasekaran S, Bajaj N, Tubaki V, Kanna RM, Shetty AP. ISSLS prize winner: The anatomy of failure in lumbar disc herniation: An in vivo, multimodal, prospective study of 181 subjects. Spine (Phila Pa 1976) 2013;38:1491-500.