Collaborative hunting by complex social groups is a hallmark of large dogs (Mammalia: Carnivora: Canidae), whose teeth also tend to be hypercarnivorous, specialized toward increased cutting edges for meat consumption and robust p4-m1 complex for cracking bone. The deep history of canid pack hunting is, however, obscure because behavioral evidence is rarely preserved in fossils. Dated to the early Pleistocene (~1.2 Ma), Canis chihliensis from the Nihewan Basin of northern China is one of the earliest canines to feature a large body size and hypercarnivorous dentition. We present the first known record of dental infection in C. chihliensis, likely inflicted by processing hard food, such as bone. Another individual also suffered a displaced fracture of its tibia and, despite such an incapacitating injury, survived the trauma to heal. The long period required for healing the compound fracture is consistent with social hunting and family care (food-sharing) although alternative explanations exist. Comparison with abundant paleopathological records of the putatively pack-hunting late Pleistocene dire wolf, Canis dirus, at the Rancho La Brea asphalt seeps in southern California, U.S.A., suggests similarity in feeding behavior and sociality between Chinese and American Canis across space and time. Pack hunting in Canis may be traced back to the early Pleistocene, well before the appearance of modern wolves, but additional evidence is needed for confirmation.
Hypercarnivorous teeth and healed injuries to *Canis chihliensis* from early Pleistocene Nihewan beds, China, support social hunting for ancestral wolves

Hao-Wen Tong¹,²,³*, Xi Chen⁴, Bei Zhang¹,²,³, Bruce Rothschild⁵, Stuart C. White⁶, Mairin Balisi⁷, and Xiaoming Wang¹,⁷,*

¹ Key Laboratory of Vertebrate Evolution and Human Origins of Chinese Academy of Sciences, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing, China
² CAS Center for Excellence in Life and Paleoenvironment, Beijing, China
³ University of Chinese Academy of Sciences, Beijing, China
⁴ Nanjing Normal University, Nanjing, China
⁵ Department of Vertebrate Paleontology, Carnegie Museum of Natural History, Pittsburgh, Pennsylvania, USA
⁶ School of Dentistry, University of California, Los Angeles, California, USA
⁷ Natural History Museum of Los Angeles County, California, USA.

Corresponding Authors:
Xiaoming Wang
900 Expedition Blvd, Los Angeles, California, 90007, USA
Email address: xwang@nhm.org
Haowen Tong
142 Xizhimenwai Dajie, Western District, Beijing 100044, China
Email address: tonghaowen@ivpp.ac.cn

Abstract
Collaborative hunting by complex social groups is a hallmark of large dogs (Mammalia: Carnivora: Canidae), whose teeth also tend to be hypercarnivorous, specialized toward increased cutting edges for meat consumption and robust p4-m1 complex for cracking bone. The deep history of canid pack hunting is, however, obscure because behavioral evidence is rarely preserved in fossils. Dated to the early Pleistocene (~1.2 Ma), *Canis chihliensis* from the Nihewan Basin of northern China is one of the earliest canines to feature a large body size and hypercarnivorous dentition. We present the first known record of dental infection in *C. chihliensis*, likely inflicted by processing hard food, such as bone. Another individual also suffered a displaced fracture of its tibia and, despite such an incapacitating injury, survived the
trauma to heal. The long period required for healing the compound fracture is consistent with
social hunting and family care (food-sharing) although alternative explanations exist.
Comparison with abundant paleopathological records of the putatively pack-hunting late
Pleistocene dire wolf, *Canis dirus*, at the Rancho La Brea asphalt seeps in southern California,
U.S.A., suggests similarity in feeding behavior and sociality between Chinese and American
Canis across space and time. Pack hunting in *Canis* may be traced back to the early Pleistocene,
well before the appearance of modern wolves, but additional evidence is needed for
confirmation.

Introduction

Large, hypercarnivorous dogs (family Canidae)—such as gray wolves (*Canis lupus*), African
hunting dogs (*Lycaon pictus*), and Asian dholes (*Cuon alpinus*)—are known to be highly social
because of their need for collaborative hunting (Van Valkenburgh 1991). In all three species,
energetic requirements necessitate that they pursue prey species that are larger than themselves
(Carbone et al. 1999). But, unlike their felid (cat family) counterparts, canids lack retractile
claws and are usually unable to bring down their prey single-handedly (Wang et al. 2008),
making collaborative (pack) hunting a useful compensatory strategy. Despite the importance of
pack hunting as a key biological indicator for social interactions, trophic relationship, and diets,
however, fossil records rarely preserve direct information on behavior.

Discovery of an injured and healed skeleton and jaws of a large ancestral wolf, *Canis
chihliensis*, from the early Pleistocene hominin site of Nihewan Basin, northern China, is of
interest in inferring their social behavior. Evidence of healing raises the possibility that
individuals survived incapacitating injuries by sharing food with family members (Palmqvist et
al. 1999), a question to be explored in this paper.

Materials & Methods

The methods employed in this study include morphological observations, CT scanning, and X-
ray examination. CT slicing intervals followed that of Rothschild et al. (1994). The osteological
terms are from Mescher (2018). The stages of fracture healing follow Edge-Hughes & Nicholson
(2007). Age determination follows Sumner-Smith (1966) for epiphyseal fusion and Gipson et al.
(2000) for tooth wear. Body-mass estimates were calculated using regressions on canid femur
shaft diameter by Anyonge & Roman (2006) and m1 length by Van Valkenburgh (1990).
Permission for excavation was granted by the State Administration of Cultural Heritage with a
permit number of 2018-090.

Institution and Locality Abbreviations. HPICR, Hebei Province Institute of Cultural Relics;
IVPP, Institute of Vertebrate Paleontology and Paleoanthropology; MNHN,
Locality and Fauna. The present large sample of early Pleistocene wolf, *Canis chihliensis*, comprises more than 200 specimens including excellently preserved pathological conditions. A left dentary (IVPP V17755.11), a right dentary (IVPP V17755.12), and a right tibia (IVPP V18139.20) of *Canis chihliensis* are all from the Shanshenmiaozui (SSMZ) Site in Nihewan Basin. *C. chihliensis* from SSMZ is dominated by older individuals as inferred from wear on teeth (Chen 2018; Chen & Tong 2015). The SSMZ locality (40˚13' 08"N, 114˚ 39' 54"E) lies at the southern bank of the Sangganhe River, and at the edge of the Haojiatai fluvio-lacustrine platform in Yangyuan County, Hebei Province (Fig. S1). The fossiliferous layer was dated to ca. 1.2 Ma by magnetostratigraphy and associated fauna (Liu et al. 2016; Tong et al. 2011).

Canids are the most abundant carnivorans in the Early Pleistocene Nihewan Fauna (Qiu 2000; Teilhard de Chardin & Piveteau 1930), as also confirmed by our recent excavations at SSMZ (Fig. S2). The dominant taxon of the canid guild in the SSMZ Fauna is *Canis chihliensis* (Tong et al. 2011; Tong et al. 2012). The mammalian fauna associated with *C. chihliensis* at the SSMZ site are as follows: *Lepus* sp., *Ochotona* sp., *Pantherinae* gen. et sp. indet., *Pachycrocuta* sp., *Mammuthus trogontherii*, *Coelodonta nihowanensis*, *Elasmotherium peii*, *Proboscidipparion* sp., *Equus sanmeniensis*, *Sus* sp., *Eucladoceros boulei*, *Spirocerus wongi*, *Mammuthus trogontherii*, *Equus sanmeniensis*, *Sus* sp., *Eucladoceros boulei*, *Spyrocerus wongi*. Our fieldwork between 2015-2018 recovered additional taxa, e.g. *Alactaga* sp. (represented by metacarpal), *Acinonyx* sp. (radius), *Panthera* sp. (partial mandible and manus bones), *Lynx* sp. (partial mandible with m1, mandible), *Paracamelus* sp. (partial metatarsal), *Pseudodama* sp. (partial antler and metacarpal), and *Gazella subgutturosa* (metatarsal) (Tong & Chen 2015; Tong et al. 2017; Tong et al. 2018; Tong et al. 2011; Tong et al. 2012; Tong & Wang 2014; Tong & Zhang 2019).

Rancho La Brea *Canis dirus*. The best records of paleopathology in extinct canids are from the world’s largest collection of late Pleistocene dire wolves, *Canis dirus*, from the Rancho La Brea asphalt seeps in Los Angeles, California, U.S.A. The Rancho La Brea paleopathology collection comprises about 3,200 specimens of dire wolves assembled from over 200,000 specimens representing a minimum of 3,500 individuals (dire wolves represent greater than 50% of all mammal specimens from Rancho La Brea) (Shaw & Ware 2018). As the largest *Canis* that ever lived and presumably preferring larger prey, dire wolves are widely considered a social predator (Anyonge & Roman 2006; Carbone et al. 2009; Hemmer 1978; Merriam 1912; Stock 1930; Van Valkenburgh & Hertel 1998; Van Valkenburgh & Sacco 2002). The Rancho La Brea dire wolf collection preserves a range of pathological conditions throughout the skeleton (Hartstone-Rose et al. 2015; Lawler et al. 2017; Moodie 1918; Shaw & Howard 2015; Stock 1930; Ware 2005),
with particularly debilitating examples offering evidence that strong social bonds existed to allow weakened or disabled individuals to survive for extended periods of time (Shaw & Howard 2015; Shaw & Ware 2018).

Focusing on *Canis dirus* from a single deposit (Pit 61/67) at Rancho La Brea, Brown et al. (2017) quantified patterns of traumatic pathology—inhuries that likely resulted from hunting, including healed fractures and evidence of severe or chronic muscle strain as well as osteoarthritis—and predicted skull injuries to be common because of the probability of being kicked while chasing prey. Contrary to expectation, the cranium showed a low incidence of traumatic injury (1.6%) and the dentary even less so (0.18%) (Brown et al. 2017). This study, however, excluded dental injuries likely incurred from feeding—such as abscesses and alveolar resorption stemming from infection—which were also sustained by and preserved in *C. dirus* from Rancho La Brea. In the current study, we quantify these dental injuries, as well as traumatic damage to the dire wolf tibia, for comparison with dental and tibial injuries in *C. chihliensis*.

Taxonomic and Phylogenetic Remarks

As far as we are aware, there are few reports of debilitating injuries to large hypercarnivorous canines in the fossil record, including early Pleistocene *Canis falconeri* from Venta Micena of Spain (Palmqvist et al. 1999), *Cuon* from late Pleistocene of Italy (Iurino & Sardella 2014), and the latest Pleistocene occurrences of *Canis dirus* in the Rancho La Brea asphalt seeps (Shaw & Howard 2015). This is despite a generally excellent fossil record for large canids in the late Cenozoic because of canids’ preference for mid-latitude open habitats, where terrestrial fossil records are best preserved and most extensively explored (Tedford et al. 2009; Wang 1994; Wang et al. 2008; Wang et al. 1999).

The holotype of *Canis chihliensis* was originally described based on a maxillary fragment with P3-M2 from Feng-Wo at Huang-Lu village (Locality 64) in Huailai County, Hebei (Chihli) Province by Zdansky (1924). Teilhard de Chardin & Piveteau (1930) referred additional specimens to this species from Nihewan Basin. Rook (1994) synonymized *C. chihliensis* with *C. antonii* Zdansky, 1924, but Tedford et al. (2009) returned to *C. chihliensis* by restricting the concept to large Nihewan *Canis*. The systematics of *C. chihliensis* from SSMZ has been treated by Tong et al. (2012).

Rook (1994) and Sotnikova (2001) referred the Pliocene-Early Pleistocene species *Canis falconeri* from Europe, *C. antonii* from Asia and *C. africanus* from Africa to the supraspecific group *Canis* (*Xenocyon*) ex gr. *falconeri*. All of them readily fall into the category of hypercarnivores based on dentition and *C. falconeri* has also been hypothesized to be a hypercarnivore similar to modern gray wolves (Palmqvist et al. 1999). *Canis chihliensis* shares some similarities with *Sinicuon dubius* (Tong et al. 2012). Furthermore, *C. chihliensis* is among the largest *Canis* species of Eurasia in the early Pleistocene.
Results

Dental Fracture and Inflammations as Related to Bone-crushing and Hypercarnivory. The left dentary (IVPP V17755.11) and right dentary (IVPP V17755.12) belong to the same individual. The left dentary (Fig. 1.A-D) has c, p1-3 and m2-3 intact, while the crown of p4, trigonid of m1, and mesial root of m1 are fractured and lost, apparently due to injuries suffered during life. Both root fragments of p4 are retained. On m1 only the talonid is preserved. Note on Fig 1.A that the alveolar bone in the region of the missing mesial root of m1 shows no residual socket, which indicates antemortem bone remodeling. This is consistent with the radiographic evidence of periapical bone resorption associated with the apices of the retained roots of p4 and the distal root of m1 (described below). There is also partial loss of the enamel on c and m1 and fracturing of the crowns of p2, p3, and root of m1. The pulp cavities of p4 and m1 are exposed. The dentin of all teeth is stained brown. All remaining cusps are moderately worn.

There are multiple fractures of the buccal and lingual cortical surfaces of the dentary, primarily in the regions of p2-p3, m1-m2, and the posterior surface of the mandibular ramus including the condylar process. All fractures appear to be postmortem as suggested by the absence of any repair.

There is loss of the cortical bone on the alveolar ridge in the regions of p3, p4, and m1. This was most likely caused by periodontitis in vivo although there may have also been some postmortem fracturing of the alveolar bone around m1.

The right dentary (Fig. 1.E-H) preserves i2-3, c, p1-4, and m1-2 in situ; the crown of m3 is missing, but one root tip remains deep in the alveolus. The crown of m1 is brownish due to loss of most of the enamel cap, and with the pulp cavity exposed; m2 was broken during excavation; and other teeth are moderately worn. There are multiple fractures of the buccal and lingual cortical bone, predominantly in the regions of p1 and m2, that are postmortem defects.

The right dentary also suffered serious injury. The bone surrounding the m1 root is perforate on the buccal cortex (purple arrow, fpp, on Fig. 1.H) by an apparent fistula and there is extensive loss of alveolar bone over the buccal aspect of the mesial root of m1 (red arrow, pp, on Fig. 1.H). The buccal cortical surface is porous adjacent to p4 and m1 (white arrows, vab, on Fig. 1.F). This is most likely the result of increased number and size of vascular canals associated with inflammation in this region.

Radiographic Observation. The radiographic images of the right and left dentaries reveal periapical bone loss (rarefying osteitis) (blue arrows, pi, on Figs. 1.D and 1.H) associated with exposed pulp cavities, a periodontal pocket between the right p4 and m1 (red arrow, pp, on Fig. 1.H), and an apparent fistula from the periodontal pocket to the surface (purple arrows, fpp, on Figs. 1.F and 1.H).
Interpretation and Implications for Dental Injury. IVPP V17755 suffered from repeated dental injuries in similar locations on both left and right sides. Although both lever models and in vivo experimentation (Ellis et al. 2008) show that biting forces are greatest on the posterior-most molars, patterns of tooth wear suggest that the lower p4-m1 are used more frequently than more posterior molars (Tseng & Wang 2010; Wang et al. 2008; Werdelin 1989), although in the case of the most hypercarnivorous canid, *Lycaon*, bone consumption may be at a more posterior location (Van Valkenburgh 1996). Dental modifications for bone consumption in fossil borophagine canids are most apparent in the p4-m1 region, indicating that this was the location of most bone-cracking behavior (Wang et al. 1999). We interpret the loss of the left p4-m1 in IVPP V17755 as owing to bone-cracking—the p4 and m1 are the largest lower cheek teeth in *Canis* and their loss must have been inflicted by a strong biting force. Preservation of the roots of both the p4 and the m1 trigonid (Fig. 1.D) suggests tooth fracture from a strong bite and/or encountering hard objects. The alveolar bone in the region of the missing m1 mesial root eventually healed, but the periapical infections associated with both retained root fragments of p4 and the distal root of m1 still show active lesions.

The need for bone-crushing in IVPP V17755 would have continued during and after the healing of the wounds on the left side. Accordingly, the right p4-m1 suffered excessive wear, likely to compensate for the loss of the same function on the left side. Again, we infer that the heavy wear is due to chewing on bones. The wear on the crown of m1 led to exposure of the pulp chamber through two pulp horns in the mesial cusp and directly to the periapical lesions (abscess) (blue arrows, pi, in Figs. 1.D and 1.H). This lesion grew sufficiently that it created a fistula to the buccal surface of the dentary to allow drainage of pus. It is also likely that excessive use on the right side led to bone splinters (shards, fragments) being imbedded into the gum tissue between p4 and m1, causing a periodontal pocket.

The above scenario suggests prolonged and possibly repeated injuries and infections, first to the left p4-m1 (possibly broken in a single bite), and then to the right jaw perhaps after the left side had partially healed. Such a scenario is consistent with a hypercarnivorous dentition in *C. chihliensis* frequently used for bone consumption, as also seen in late Pleistocene European *Cuon* (Iurino & Sardella 2014). Bone-crushing behavior in canids has been linked to collaborative hunting and competitive consumption of carcasses within the same family group of predators (Wang et al. 2008; Wang et al. 2018). Such a behavior is especially prevalent among large, hypercarnivorous canids, and Van Valkenburgh et al. (2019) recently linked high tooth fractures in extant gray wolves to limited prey availability.

Comparison to Rancho La Brea *Canis dirus*. In Pit 61/67 alone, 35 dentaries of adult age (14 left, 21 right)—out of 64 pathological adult dentaries (25 left, 39 right; 55%) and 617 dentaries total (both pathological and non-pathological; 5.7%)—exhibit dental injuries similar to those in the Nihewan *C. chihliensis* dentaries examined in this current study (Fig. S3). Across Rancho La Brea deposits, abscesses and alveolar resorption likely due to infection were preserved in 43% (Pit 16) to 77% (Pit 3) of pathological dentaries (Fig. 2.A). Most of the remaining pathological...
dentaries also preserved dental anomalies, predominantly supernumerary teeth (particularly in
the first and second premolars) or a missing lower first premolar (p1) and/or third molar (m3).
Because both the p1 and m3 (Balisi et al. 2018; Buchalczyk et al. 1981; Wang 1994) vary in their
presence among canids, we excluded anomalies in these teeth from our comparison with
Nihewan C. chihliensis. Across 200 C. dirus jaws (both left and right) bearing abscesses and
alveolar infections, the lower first molar or carnassial showed the highest frequency of injury (87
total specimens with m1-associated injuries), likely inflicted by bone-crushing during the
consumption of prey, followed by the second premolar (79 total specimens with p2-associated
injuries), likely the result of biting and killing while chasing prey or in fighting with conspecifics
or competitors of other species (Fig. 2.B). The fourth premolar was the third most frequently
injured tooth (57 specimens); often, it was injured in conjunction with the lower first molar (34
specimens), as in the case of C. chihliensis. As C. dirus is a predator widely recognized to have
had a forceful bite capable of processing bone (Anyonge & Baker 2006; Brannick et al. 2015;
Van Valkenburgh & Hertel 1993), the high frequency of injury in its p4-m1 complex—similar to
that found in the specimens of C. chihliensis examined here—supports the inference that C.
chihliensis also processed bone using p4 and m1.

Tibia Fracture. A normal left tibia (IVPP V18139.21) and pathologic right tibia (IVPP
V18139.20) of Canis are present in the collection from Shanshenmiazuzi (SSMZ). The
pathologic tibia has healed fractures at the lower one-third of the shaft. Compared with the
normal tibia on the left side (Fig. 3), the pathologic tibia is stouter; it is much broader distally,
especially at the fracture site, and is shorter, the maximum length for the normal tibia being
181.6 mm, in contrast to the pathologic one at 166.5 mm (Table 1). In addition, the nutrient
foramen is much more enlarged in the pathologic tibia. The partially healed bone has a rough and
porous surface (callus).

The porous bone surface indicates that the periosteal vessels also took part in the repair of
the fracture, which penetrated into the hard callus. Because the woven/primary bone is not
replaced with secondary lamellar bone, this individual did not survive to the stage of lamellar
bone formation, i.e. the fracture healing stage 6 by Edge-Hughes & Nicholson (2007).

Foreshortening of tibia. The pathologic tibia has fused overlapping components with
remodeling starting 4 cm from the proximal surface and extending throughout the length.
Accentuation (irregularities) of the entheseal region at the lateral margin of the tibial plateau
suggests increased stress at the proximal tibial-fibular joint. The tibia widens abnormally starting
6 cm distal to proximal surface, with concurrent alteration of surface color and texture,
continuing on to the fused distal component of the tibial fracture, where surface filigree reaction
(characteristic of infection) is more prominent. There are increased vascular markings at the
junction of the proximal and middle third (related to current length) of the tibia. A shallow
groove identifies the original demarcation of the fracture components now fused. The fibula was
also fractured, and residual components are noted at the distal 6 cm. A linear defect is noted at
the mid-portion of the tibia, slightly medial to the sagittal line. It appears to be perforated in a
manner more suggestive of vasculature than of draining sinuses. It may be the residue of the
fracture. If so, it would mean that the injury not only caused fracture, separation and overlap of
components, but also caused a “splintering” or at least slight separation of the distal portion of
the proximal component. Increased vascularity is noted 2 cm from the distal end of the tibia.

X-ray Examination. Increased density of the medial tibial plateau is noted. If not related to an
artifact (e.g., glued component), this is suggestive of a healed, minimally displaced fracture.
There clearly is a displaced distal fracture, fused incompletely with overlap. The curvature of the
distal portion of the proximal component suggests torsion of the components related to each
other. Several layers of periosteal reaction are noted, with partial disruption of subjacent cortex.
The distal fibula is fused to the tibia, with focal loss of margin definition. Irregular cavities are
noted in the distal portion of the proximal component of the fracture and adjacent to the distal
junction of the tibia and fibula. Both contain radio-dense material. This suggests that this was a
compound fracture, with skin breach and exposure to environmental contamination. The fracture
was incompletely stabilized during the healing process, with continued movement of the
components.

CT Scan. The CT images show clearly that it was a comminuted fracture, and all three pieces of
the fractures are displaced, which resulted in the division of the medullary cavity into three
chambers whose broken ends were enclosed by callus or woven bones (Figs. 4.A-D).

CT longitudinal sections slice 1 (Figs. 4.A-B) – There is a focal area of trabecular loss just
distal to the proximal epiphyseal plate. It is irregularly ellipsoid in shape and contains slightly
thickened bone “fragments” of apparently increased density. Increased density is noted in the
subsequent proximal fracture component. Periosteal reaction is noted with multiple focal areas of
trabecular loss, bounded by sclerotic margins, characteristic of abscesses. There is massive loss
of cortical bone in the region of fragment fusion. Fibular fusion with a distal radio-dense
inclusion is noted. Presence of foreign bodies is consistent with the diagnosis of a compound
fracture.

CT longitudinal sections slice 2 (Figs. 4.C-D) – There is an area of increased density at the
median tibial plateau noted on the x-ray. The CT shows this area to be separated by a fracture
line from subjacent bone. The trabecular pattern is denser. The lateral portion of the proximal
epiphyseal plate is partially preserved, in contrast to the medial portion, which cannot be
distinguished from the epiphysis. This appears to be a non-displaced fracture through the
epiphyseal plate, only affecting a portion of that plate.

There is a linear focal disruption (partially occluded at the surface) of the medial aspect at
the midpoint of the current length and a U-shaped defect (also seen in CT slice 1) with thickened
margins at the distal fifth. The latter could represent a draining abscess, although the former
suggests the possibility of a penetrating injury. Radio-dense inclusions are noted, perhaps
representing environmental exposure at time of injury. The surface imperfection seen on the
reconstructed tibial image (Fig. 4.E) may be a CT averaging artifact. A series of 8 cross sections (Figs. 4.F-M) allows comparisons of healthy cancellous (F), healthy cortical (G-H), and injured and healed bones (I-M).

Interpretation, Comparison, and Implications for Limb Injury. That the injury, plus the subsequent infections, suffered by IVPP V18139 must have been devastating seems not in doubt. The displacement of the right hindlimb and the pain associated with a compound fracture with skin breach and exposure to environmental contamination all but rule out hunting activities. For modern domestic dogs of more than 1 year of age, fracture healing can take 7 weeks to 1 year (Edge-Hughes & Nicholson 2007). Therefore, it is safe to assume that healing of the open fractures in IVPP V18139 without medical intervention (broken bones not re-aligned nor cast to immobilize wounds) would take a considerable amount of time, much longer than its metabolic reserve can sustain. Such a long-term survival by an injured wolf requiring a high degree of meat consumption thus suggests collaborative hunting and potentially family care.

In addition to abnormalities in the jaws and dentition, the Rancho La Brea dire wolf collection has numerous healed fractures in the limb bones (Moodie 1918; Shaw & Howard 2015; Stock 1930; Ware 2005). Again focusing on Pit 61/67, which has a minimum number of 371 dire wolf individuals, Brown et al. (2017) showed that frequencies of traumatic injury—including healed fractures—were higher than expected for most limb bones, especially the tibia. Surveying dire wolf tibiae across all Rancho La Brea deposits, we found 11 specimens (5 left, 6 right) of 251 total pathologic tibiae (4.38%) to have suffered an oblique fracture with foreshortening similar to that in IVPP V18139 (Fig. S4). In studies of modern Saskatchewan gray wolves and sympatric coyotes, such bone fractures—which likely resulted from conflicts with large prey—were found to be more common in wolves than in coyotes, a difference thought to result from wolves’ tendency to prey on larger animals like moose (Wobeser 1992). Similarly, Rancho La Brea preserves no fractured and healed tibiae belonging to the coyote—which is also found abundantly in the Pleistocene to Holocene-age asphalt seeps—though this lack may be confounded by a coyote sample size an order of magnitude smaller than that of the dire wolf.

Discussions

Life is not easy for large predators. In modern canids, hypercarnivory is almost always associated with social hunting, such as in the gray wolves (Canis lupus), African hunting dogs (Lycaon pictus), and Asiatic dholes (Cuon alpinus). Of these, the latter two most hypercarnivorous species almost invariably hunt cooperatively, whereas gray wolves regularly, but not exclusively, hunt together for large prey (Macdonald 1983). Group hunting by these highly social canids offers apparent advantages that are otherwise unavailable to individual hunters, such as the ability to bring down prey much larger than the predators themselves, plus coordinated attacks that seal off escape routes as well as relaying strategies that lessen the burden of individual hunters. These strategies are especially critical to canids because, unlike felids,
canids never evolved fully retractile claws that are effective weapons for grappling with and subduing prey (Wang 1993). Therefore, for canids, group hunting is not optional, as it is for large cats (only the lions are social hunters, as are occasionally the cheetahs), once canids have crossed the critical body mass threshold of about 21 kg above which energetic costs necessitate feeding on large prey (Carbone et al. 1999). For canids, it is possible that this body size threshold may even be substantially lowered as in the case of the Asiatic dholes (10-13 kg) that have the most extremely hypercarnivorous dentitions among living canids (Cohen 1978). The Nihewan Canis chihliensis is larger than the dholes (13.7–16.8 kg based on femur shaft diameter; ~21.2 kg based on the mean of m1 length).

Social hunting is characteristic of large canids, hyaenids, and some felids, and depending on how such behavior is described, may even be quite common in carnivorans (Bailey et al. 2013). Such behavior has important implications not only in the social organizations of large carnivorans but also in their trophic relationships and diet. Among large, hypercarnivorous living canids, the gray wolf (Canis lupus) is the best studied in its pack hunting behavior. The basic social unit is the mated pair; prey size is a factor in pack sizes, which range from a few up to 20 individuals, with the largest packs preying on bison and moose and smaller packs preying on deer (Mech & Boitani 2003). Social hunting, however, may not always be the most efficient in terms of food intake per wolf because the packs must share their proceeds (Thurber & Peterson 1993). The formation of packs, therefore, offers the opportunity to kill prey too large to tackle by one individual alone, as well as the opportunity both to better defend kills against carcass theft and to steal carcasses from larger predators (Carbone et al. 1997; Eaton 1979; Van Valkenburgh 2001; Vucetich et al. 2004).

It has been long known that large Canis from the Nihewan Basin includes individuals with highly trenchant lower molars (Teilhard de Chardin & Piveteau 1930). Hypercarnivorous characteristics (dominance of cutting edge of m1 trigonid and enlargement of hypoconid at the expense of entoconid, along with reductions of posterior molars) in C. chihliensis are variable (Tong et al. 2012) but strongly converge on the morphology of living African hunting dogs and Asiatic dholes (Fig. 5). Such a dental morphology is commonly associated with emphasis in slicing meat using the sharp carnassial blades. Trenchant molars thus correlate well with hypercarnivory (Crusafont-Pairó & Truyols-Santonja 1956), i.e., tendency to consume meat exclusively, which also drives the evolution of larger body size as a macroevolutionary ratchet (Van Valkenburgh et al. 2004).

Wolves have a dangerous life as long-distance pursuit predators. The traumas and infections inflicted on Canis chihliensis likely are related to hunting behavior, feeding strategies, and predator-prey interactions, as have also been suggested for other extinct carnivores (Shaw & Ware 2018). Healing from such devastating injuries is also a testimony to its survival for long periods of time during which the ability to hunt must have been seriously limited or nonexistent, suggesting that assisted living was a possibility. Debilitating bone diseases in the Pleistocene apex predator Smilodon, which were even more hypercarnivorous than canids, have also been used to argue for social or gregarious behaviors (Akersten 1985; Heald 1989; Shaw 1992a; Shaw
388 1992b; Van Valkenburgh 2009; Van Valkenburgh & Sacco 2002) although the pathology-
389 sociality link has been challenged (McCall et al. 2003). Schleidt & Shalter (2004) also noted that
390 social predators should have more healed injuries than solitary predators. Often infirm animals
391 are allowed to feed on group kills, as observed in spotted hyaenas and African wild dogs.
392 Where sociality in sabertooth cats has been questioned given its rarity among extant large
393 felids, all of which are capable of killing on their own, pack hunting in dog-like carnivorans
394 (wolves, hunting dogs, dholes, hyenas) is the dominant mode of predation and may partly be
395 driven by the necessity of overcoming larger prey (Mech & Boitani 2003). Dental morphology
396 and pathology in our Nihewan Canis chihliensis strongly suggest processing of hard food (bone
397 cracking), which is commonly associated with hypercarnivory and pack hunting in large canids.
398 While herbivores, too, suffer from crippling injuries, comparisons to herbivores are irrelevant in
399 this case because injured herbivores can continue eating plant matter, foraging on food items that
do not move, while recovering from injuries. However, critical carnivore injuries, such as to the
400 running hindlimbs, blunt active predators’ ability to hunt and chase animal prey. Although the
401 massive, healed tibial fracture may not be a definitive indication of social care, a predator’s
402 recovery from such a devastating injury is suggestive of food provisioning that only social
403 groups can offer. This has been similarly proposed from an early Pleistocene Spanish record of
404 C. falconeri (Palmqvist et al. 1999), although temporary shift to a more omnivorous diet is also
405 possible. With this new record from Nihewan, we extend the history of Canis sociality to the
406 early Pleistocene, and likely to the Pliocene as well if the even larger Canis antonii from Fugu
407 area in Shanxi Province is taken into consideration (Tedford et al. 2009:appendix I).
408 Arguably the most definitive (though still correlative) pathological evidence to support
409 sociality in Canis chihliensis would be a significant prevalence of similar injuries not only in the
410 extinct Canis dirus but in the three extant hypercarnivorous canines whose pack-hunting
411 behavior can be observed directly, in contrast to a low prevalence of similar injuries in non-pack-
412 hunting carnivoran species. However, one common challenge in predator paleopathology is the
413 lack of sufficient samples of large-predator post-crania relative to crania in museum collections
414 of living mammals. Survival with just the leg or just the dental damage does have isolated
415 representation, but not the combination. Museum records of similar injuries and survivals
416 undoubtedly exist for non-bone-crunching and non-social species as well (but published
417 documentation is often lacking) and a definitive inference is not possible without more detailed
418 records, both extant and extinct. This limitation—and the corresponding lack of published
419 systematic pathological surveys across large sample sizes within and among extant species—
420 prevents statistically robust inferences of injury prevalence in extant wild animals. When isolated
421 cases are available, lack of field documentation on behaviors related to pathological specimens
422 also hampers interpretations. Such deficiencies make it difficult to ground-truth inferences of
423 extinct behaviors based on extant relatives, even where large samples of extinct predators are
424 available (Brown et al. 2017). While such a systematic comparative survey exceeds the scope of
425 the current paper, future studies that calculate injury prevalence across large museum and zoo
426 collections of extant species of known behavior (e.g., Rothschild et al. 1998) would bolster
inferences of extinct behavior based on skeletal injuries.

As knowledge of the fossil history of hypercarnivorous canids in the Plio-Pleistocene of
Eurasia increases, more complexity than has been previously assumed is now emerging, both in
its chronology and its morphologic diversity. Recent molecular studies placed *Cuon* and *Lycaon*,
two of the most hypercarnivorous living canids, near the base of the *Canis* clade (Chavez et al.
2019; Koepfli et al. 2015; Lindblad-Toh et al. 2005), in contrast to morphological analysis
suggesting that hypercarnivorous forms are at the terminal end of the canine phylogeny (Tedford
et al. 1995; Tedford et al. 2009). If the molecular relationship is correct, then records of *Cuon*
and *Lycaon* are expected to be at least as old, if not older, than that of many species of *Canis*.
This new record pushes back the first occurrence of pack hunting likely accompanied by social
care by about 1.7 million years to when early *Homo erectus* was first recorded in Asia (Ao et al.
2013; Zhu et al. 2004). This record is important because it coincides with the initial
diversification of the large canids (such as *Canis* and *Lycaon*), also known as the Wolf Event in
Eurasia (Azzaroli 1983; Sardella & Palombo 2007), and *Lycaon*’s arrival in Africa (Hartstone-
Rose et al. 2010).

Although records of early wolves have been pushed back slightly (Martínez-Navarro et al.
2009; Rook & Martínez-Navarro 2010; Sardella & Palombo 2007), the wolf event is essentially
confined to the Early Pleistocene, i.e., Late Pliocene before recent redefinition (Gibbard et al.
2010). A recent new Tibetan record in the Middle Pliocene, *Sinicuon* cf. *S. dubius*, seems to
suggest that hypercarnivorous canines may have predated the genus *Canis* (Wang et al. 2014).
Whatever the detailed relationships of these records, it seems clear that hyper-predators, such as
large wolves and hunting dogs, were associated with the increasingly open habitats in Eurasia
during the onset of the Pleistocene. In this background of large-canine radiation at the beginning
of the Ice Age, our new record of a pathological wolf from the Early Pleistocene of Nihewan
hints at pack hunting as a major step toward social collaboration while procuring food and, as
such, signals a major step in the evolution of large canids.

Conclusions

We document dental injuries and infections and a healed tibia fracture in *Canis chihliensis* from
the early Pleistocene (~1.2 Ma) Nihewan Basin of northern China. This early species of wolf-like
Canis signals the evolution of large body size and hypercarnivorous dentition in the genus. The
dental injuries and infections likely occurred while processing hard food, such as bones, whereas
the tibia fractures would have severely limited locomotion during recuperation. Dental injuries
and healing of compound fracture supports social hunting and family care (food-sharing)
although alternative explanations exist because similar injuries likely appear in non-bone
chewing and non-social species as well. Comparisons with abundant paleopathological records
of the putatively pack-hunting late Pleistocene dire wolf, *Canis dirus*, at Rancho La Brea in
southern California demonstrates similarity in feeding behavior and sociality between Chinese
and American *Canis* across space and time.
Acknowledgments

The authors wish to express their thanks to the following people and organizations for their help: Han F., Sun B. Y., Liu D., Sun J. J., Xu Z. J., Qiu Z. W., Wang Q. Y., Sun B. H., Hu N., Liu X. T. & Yin C. for participating the fieldwork; Xie F. of HPICR, Zhao W. J. of NNNRM and Hou W. Y. of NM for help during excavations; Qiu Z. X., Wei Q. for sharing bibliographies and/or for fruitful discussions; Hou Y. M. for CT scanning; F. Heald and C. Shaw for initial diagnosis and assembly of the Rancho La Brea pathology collection; A. Farrell and G. Takeuchi for Rancho La Brea collections access; B. Van Valkenburgh for thoughtful critique. We are grateful to Julie Meachen, Josh Samuels, and an anonymous reviewer (who kindly reviewed our paper twice) for their critical reviews and comments, and editor Virginia Abdala for her editorial suggestions.

References

Akersten WA. 1985. Canine function in Smilodon (Mammalia: Felidae: Machairodontinae). Natural History Museum of Los Angeles County Contributions in Science 356:1-22.

Anyonge W, and Baker A. 2006. Craniofacial morphology and feeding behavior in Canis dirus, the extinct Pleistocene dire wolf. Journal of Zoology 269:309-316.

Anyonge W, and Roman C. 2006. New body mass estimates for Canis dirus, the extinct Pleistocene dire wolf. Journal of Vertebrate Paleontology 26:209-212.

Ao H, An Z, Dekkers MJ, Li Y, Xiao G, Zhao H, and Qiang X. 2013. Pleistocene magnetochronology of the fauna and Paleolithic sites in the Nihewan Basin: Significance for environmental and hominin evolution in North China. Quaternary Geochronology 18:78-92. http://dx.doi.org/10.1016/j.quageo.2013.06.004

Azzaroli A. 1983. Quaternary mammals and the “end-Villafranchian” dispersal event — A turning point in the history of Eurasia. Palaeogeography, Palaeoclimatology, Palaeoecology 44:117-139. http://dx.doi.org/10.1016/0031-0182(83)90008-1

Bailey I, Myatt JP, and Wilson AM. 2013. Group hunting within the Carnivora: physiological, cognitive and environmental influences on strategy and cooperation. Behavioral Ecology and Sociobiology 67:1-17. 10.1007/s00265-012-1423-3

Balisi M, Wang X, Sankey J, Biewer J, and Garber D. 2018. Fossil canids from the Mehrten Formation, Late Cenozoic of Northern California. Journal of Vertebrate Paleontology 36:e1405009. 10.1080/02724634.2017.1405009

Brannick AL, Meachen JA, and O'Keefe FR. 2015. Microevolution of jaw shape in the dire wolf, Canis dirus, at Rancho La Brea. Natural History Museum of Los Angeles County Science Series 42:23-32.

Brown C, Balisi M, Shaw CA, and Van Valkenburgh B. 2017. Skeletal trauma reflects hunting behaviour in extinct sabre-tooth cats and dire wolves. Nature Ecology & Evolution 1:0131. 10.1038/s41559-017-0131

Buchalczyk T, Dynowski J, and Szteyn S. 1981. Variations in number of teeth and asymmetry of the skull in the wolf. Acta Theriologica 26:23-30.
Carbone C, Du Toit JT, and Gordon IJ. 1997. Feeding success in African Wild Dogs: Does kleptoparasitism by spotted hyenas influence hunting group size? *Journal of Animal Ecology* 66:318-326. 10.2307/5978

Carbone C, Mace GM, Roberts SC, and Macdonald DW. 1999. Energetic constraints on the diet of terrestrial carnivores. *Nature* 402:286-288.

Carbone C, Maddox T, Funston PJ, Mills MGL, Grether GF, and Valkenburgh BV. 2009. Parallels between playbacks and Pleistocene tar seeps suggest sociality in an extinct sabretooth cat, *Smilodon*. *Biology Letters* 5:81-85. doi:10.1098/rsbl.2008.0526

Chavez DE, Gronau I, Hains T, Kliver S, Koepfli K-P, and Wayne RK. 2019. Comparative genomics provides new insights into the remarkable adaptations of the African wild dog (*Lycaon pictus*). *Scientific Reports* 9:8329. 10.1038/s41598-019-44772-5

Chen X. 2018. Taphonomic study of Early Pleistocene Shanshenmiaozui fossil site in Nihewan Basin, North China Ph.D. University of Chinese Academy of Sciences.

Chen X, and Tong H-w. 2015. Taphonomy of the *Canis chihliensis* fossil assemblage from the Shanshenmiaozui Site, Nihewan Basin. *Acta Anthropologica Sinica* 34:553-564.

Cohen JA. 1978. *Cuon alpinus*. *Mammalian Species* 100:1-3.

Crusafont-Pairó M, and Truyols-Santonja J. 1956. A biometric study of the evolution of fissiped carnivores. *Evolution* 10:314-332.

Eaton RL. 1979. Interference competition among carnivores: A model for the evolution of social behavior. *Carnivore* 2:9-16.

Edge-Hughes L, and Nicholson H. 2007. 13, Canine treatment and rehabilitation. In: McGowan CM, Goff L, and Stubbs N, eds. *Animal Physiotherapy: Assessment, Treatment and Rehabilitation of Animals*. Oxford: Blackwell Publishing, 207-234.

Ellis JL, Thomason JJ, Kebreab E, and France J. 2008. Calibration of estimated biting forces in domestic canids: comparison of post-mortem and in vivo measurements. *Journal of Anatomy* 212:769-780. 10.1111/j.1469-7580.2008.00911.x

Gibbard PL, Head MJ, Walker MJC, Alloway B, Beu AG, Coltorti M, Hall VM, Liu J-q, Knudsen KL, Van Kolfschoten T, Litt T, Marks L, McManus J, Partridge TC, Piotrowski JA, Pillans B, Rousseau D-D, Suc JP, Tesakov AS, Turner C, and Zazo C. 2010. Formal ratification of the Quaternary System/Period and the Pleistocene Series/Epoch with a base at 2.58 Ma. *Journal of Quaternary Science* 25:96-102. 10.1002/jqs.1338

Gipson PS, Ballard WB, and Mech RMND. 2000. Accuracy and precision of estimating age of gray wolves by tooth wear. *Journal of Wildlife Management* 64:752-758.

Hartstone-Rose A, Dundas RG, Boyde B, Long RC, Farrell AB, and Shaw CA. 2015. The bacula of Rancho La Brea. *Natural History Museum of Los Angeles County Science Series* 42:53-63.

Hartstone-Rose A, Werdelin L, De Ruiter DJ, Berger LR, and Churchill SE. 2010. The Pleistocene ancestor of wild dogs, *Lycaon sekowei* n. sp. *Journal of Paleontology* 84:299-308. 10.1666/09-124.1

Heald FP. 1989. Injuries and diseases in *Smilodon californicus* Bovard, 1904 (Mammalia Felidae) from Rancho la Brea, California. *Journal of Vertebrate Paleontology* 9:24A.

Hemmer H. 1978. Considerations on sociality in fossil carnivores. *Carnivore* 1:105-107.

Iurino DA, and Sardella R. 2014. Medical CT scanning and the study of hidden oral pathologies in fossil carnivores. *Palaöontologische Zeitschrift* 89:251-259.

Koepfli K-P, Pollinger J, Godinho R, Robinson J, Lea A, Hendricks S, Schweizer Rena M, Thalmann O, Silva P, Fan Z, Yurchenko Andrey A, Dobrynin P, Makunin A, Cahill...
James A, Shapiro B, Álvares F, Brito José C, Geffen E, Leonard Jennifer A, Helgen
Kristofer M, Johnson Warren E, O’Brien Stephen J, Van Valkenburgh B, and Wayne
Robert K. 2015. Genome-wide evidence reveals that African and Eurasian golden jackals
are distinct species. Current Biology 25:2158-2165. 10.1016/j.cub.2015.06.060
Lawler DF, Widga C, and Smith GK. 2017. Observations of the acetabulum and proximal femur
of the dire wolf (Canis dirus, Leidy 1854). Journal of Veterinary Anatomy 10:73-83.
Lindblad-Toh K, Wade CM, Mikkelsen TS, Karlsson EK, Jaffe DB, Kamal M, Clamp M, Chang
JL, Kulbokas EJ, Zody MC, Mauceli E, Xie X, Breen M, Wayne RK, Ostrander EA,
Ponting CP, Galibert F, Smith DR, deJong PJ, Kirkness E, Alvarez P, Biagi T, Brockman
W, Butler J, Chin C-W, Cook A, Cuff J, Daly MJ, DeCaprio D, Gnerre S, Grabherr M,
Kellis M, Kleber M, Bardeleben C, Goodstadt L, Heger A, Hitte C, Kim L, Koepfli K-P,
Parker HG, Pollinger JP, Searle SMJ, Sutter NB, Thomas R, Webber C, and Lander ES.
2005. Genome sequence, comparative analysis and haplotype structure of the domestic
dog. Nature 438:803-819.
Liu P, Wu Z, Deng C, Tong H, Qin H, Li S, Yuan B, and Zhu R. 2016. Magnetostratigraphic
dating of the Shanshenmiaozui mammalian fauna in the Nihewan Basin, North China.
Quaternary International 400:202-211. https://doi.org/10.1016/j.quaint.2014.09.024
Macdonald DW. 1983. The ecology of carnivore social behaviour. Nature 301:379-384.
10.1038/301379a0
Martínez-Navarro B, Belmaker M, and Bar-Yosef O. 2009. The large carnivores from ‘Ubeidiya
(early Pleistocene, Israel): biochronological and biogeographical implications. Journal of
Human Evolution 56:514-524. http://dx.doi.org/10.1016/j.jhevol.2009.02.004
McCall S, Naples V, and Martin L. 2003. Assessing behavior in extinct animals: Was Smilodon
social? Brain, Behavior and Evolution 61:159-164. 10.1159/000069752
Mech LD, and Boitani L. 2003. Wolf social ecology. In: Mech LD, and Boitani L, eds. Wolves,
Behavior, Ecology, and Conservation. Chicago: University of Chicago Press, 1-34.
Merriam JC. 1912. The fauna of Rancho la Brea, Part II. Canidae. Memoirs of the University of
California 1:218-262.
Mescher AL. 2018. Junqueira’s Basic Histology: Text and Atlas, 15th Edition. New York:
McGraw-Hill Education.
Moodie RL. 1918. Paleontological evidences of the antiquity of disease. The Scientific Monthly
7:265-281.
Palmqvist P, Arribas A, and Martínez-Navarro B. 1999. Ecomorphological study of large canids
from the lower Pleistocene of southeastern Spain. Lethaia 32:75-88.
Qiu Z-x. 2000. Nihewan fauna and Q/N boundary in China. Quaternary Sciences 20:154-163.
Rook L. 1994. The Plio-Pleistocene Old World Canis (Xenocyon) ex gr. falconeri. Bollettino
della Società Paleontologica Italiana 33:71-82.
Rook L, and Martínez-Navarro B. 2010. Villafranchian: The long story of a Plio-Pleistocene
European large mammal biochronologic unit. Quaternary International 219:134-144.
http://dx.doi.org/10.1016/j.quaint.2010.01.007
Rothschild BM, Rothschild C, and Woods RJ. 1998. Inflammatory arthritis in large cats: An
expanded spectrum of spondyloarthropathy. Journal of Zoo and Wildlife Medicine
29:279-284.
Rothschild BM, Wang X, and Shoshani J. 1994. Spondyloarthropathy in proboscideans. Journal
of Zoo and Wildlife Medicine 25:360-366.
Sardella R, and Palombo MR. 2007. The Pliocene-Pleistocene boundary: which significance for the so called “Wolf Event”? Evidences from Western Europe. Quaternaire 18:65-71.

Schleidt WM, and Shalter MD. 2004. Co-evolution of humans and canids, An alternative view of dog domestication: Homo Homini Lupus? Evolution and Cognition 9:57-72.

Shaw CA. 1992a. Old wounds: the paleopathology of Rancho la Brea. Terra 31:17.

Shaw CA. 1992b. The sabertoothed cat. Terra 31:26.

Shaw CA, and Howard C. 2015. Facial asymmetry in the sabercat (Smilodon fatalis) and wolf (Canis dirus) from Rancho la Brea, Los Angeles, California. PaleoBios 32:15.

Shaw CA, and Ware CS. 2018. Chapter 11, Smilodon paleopathology: A summary of research at Rancho La Brea. In: Werdelin L, McDonald HG, and Shaw CA, eds. Smilodon, the Iconic Sabertooth. Baltimore: Johns Hopkins University Press, 196-206.

Sotnikova MV. 2001. Remains of Canidae from the lower Pleistocene site of Untermassfeld. In: Kahlke R-D, ed. Das Pleistozäne von Untermassfeld bei Meiningen (Thüringgen) Teil 2. Mainz: Römisch-Germanischen Zentralmuseums, 607-632.

Stock C. 1930. Rancho la Brea: a record of Pleistocene life in California. Los Angeles County Museum of Natural History Science Series 20:1-81.

Summer-Smith G. 1966. Observations on epiphyseal fusion of the canine appendicular skeleton. Journal of Small Animal Practice 7:303-311.

Tedford RH, Taylor BE, and Wang X. 1995. Phylogeny of the Caninae (Carnivora: Canidae): the living taxa. American Museum Novitates 3146:1-37.

Tedford RH, Wang X, and Taylor BE. 2009. Phylogenetic systematics of the North American fossil Caninae (Carnivora: Canidae). Bulletin of the American Museum of Natural History 325:1-218.

Teilhard de Chardin P, and Piveteau J. 1930. Les mammifères fossiles de Nihowan (Chine). Annales de Paléontologie 19:1-134.

Thurber JM, and Peterson RO. 1993. Effects of population density and pack size on the foraging ecology of gray wolves. Journal of Mammalogy 74:879-889. 10.2307/1382426

Tong H-w, and Chen X. 2015. New fossils of Bison palaeosinensis (Artiodactyla, Mammalia) from the steppe mammoth site of Early Pleistocene in Nihewan Basin, China. Quaternary International 406, Part B:57-69. http://dx.doi.org/10.1016/j.quaint.2015.02.026

Tong H-w, Chen X, and Zhang B. 2018. New fossils of Eucladoceros boulei (Artiodactyla, Mammalia) from Early Pleistocene Nihewan Beds, China. Palaeoworld 28:403-424.
Tseng ZJ, and Wang X. 2010. Cranial functional morphology of fossil dogs and adaptation for durophagy in *Borophagus* and *Epicyon* (Carnivora, Mammalia). *Journal of Morphology* 271:1386–1398.

Van Valkenburgh B. 1990. Skeletal and dental predictors of body mass in carnivores. In: Damuth J, and MacFadden BJ, eds. *Body Size in Mammalian Paleobiology: Estimation and Biological Implications*. Cambridge: Cambridge University Press, 181-206.

Van Valkenburgh B. 1991. Iterative evolution of hypercarnivory in canids (Mammalia: Carnivora): evolutionary interactions among sympatric predators. *Paleobiology* 17:340-362.

Van Valkenburgh B. 1996. Feeding behavior in free-ranging, large African carnivores. *Journal of Mammalogy* 77:240-254.

Van Valkenburgh B. 2001. The dog-eat-dog world of carnivores: a review of past and present carnivore community dynamics. In: Stanford C, and Bunn HT, eds. *Meat-Eating and Human Evolution*. Oxford: Oxford University Press, 101-121.

Van Valkenburgh B. 2009. Costs of carnivory: tooth fracture in Pleistocene and Recent carnivorans. *Biological Journal of the Linnean Society* 96:68-81. 10.1111/j.1095-8312.2008.01108.x

Van Valkenburgh B, and Hertel F. 1993. Tough times at La Brea: tooth breakage in large carnivores of the late Pleistocene. *Science* 261:456-459.

Van Valkenburgh B, and Hertel F. 1998. The decline of North American predators during the late Pleistocene. In: Saunders JJ, Styles BW, and Baryshnikov GF, eds. *Quaternary Paleozoology in the Northern Hemisphere*. Springfield: Illinois State Museum, 357-374.

Van Valkenburgh B, Peterson RO, Smith DW, Stahler DR, and Vucetich JA. 2019. Tooth fracture frequency in gray wolves reflects prey availability. *eLife* 8:e48628. 10.7554/eLife.48628

Van Valkenburgh B, and Sacco T. 2002. Sexual dimorphism, social behavior, and intrasexual competition in large Pleistocene carnivorans. *Journal of Vertebrate Paleontology* 22:164-169.

Van Valkenburgh B, Wang X, and Damuth J. 2004. Cope's rule, hypercarnivory, and extinction in North American canids. *Science* 306:101-104.

Vucetich JA, Peterson RO, and Waite TA. 2004. Raven scavenging favours group foraging in wolves. *Animal Behaviour* 67:1117-1126. https://doi.org/10.1016/j.anbehav.2003.06.018

Wang X. 1993. Transformation from plantigrady to digitigrady: functional morphology of locomotion in *Hesperocyon* (Canidae: Carnivora). *American Museum Novitates* 3069:1-23.

Wang X. 1994. Phylogenetic systematics of the Hesperocyoninae (Carnivora: Canidae). *Bulletin of the American Museum of Natural History* 221:1-207.

Wang X, Li Q, and Xie G. 2014. Earliest record of *Sinicuon* in Zanda Basin, southern Tibet and implications for hypercarnivores in cold environments. *Quaternary International* 355:3-10. 10.1016/j.quaint.2014.03.028

Wang X, Tedford RH, and Antón M. 2008. *Dogs: Their Fossil Relatives & Evolutionary History*. New York: Columbia University Press.

Wang X, Tedford RH, and Taylor BE. 1999. Phylogenetic systematics of the Borophaginae (Carnivora: Canidae). *Bulletin of the American Museum of Natural History* 243:1-391.
Wang X, White SC, Balisi M, Biewer J, Sankey J, Garber D, and Tseng ZJ. 2018. First bone-cracking dog coprolites provide new insight into bone consumption in Borophagus and their unique ecological niche. *eLife* 7:e34773. 10.7554/eLife.34773

Ware CS. 2005. Disease, skeletal injury and trauma as possible behavior modifiers in the fossil dire wolf *Canis dirus* (Canidae: Carnivora) from Rancho La Brea, California Ph.D. Union Institute & University.

Werdelin L. 1989. Constraint and adaptation in the bone-cracking canid Osteoborus (Mammalia: Canidae). *Paleobiology* 15:387-401.

Wobeser G. 1992. Traumatic, degenerative, and developmental lesions in wolves and coyotes from Saskatchewan. *Journal of Wildlife Diseases* 28:268-275.

Zdansky O. 1924. Jungtertiäre carnivoren Chinas. *Palaeontologia Sinica Series C* 2:1-149.

Zhu R-x, Potts R, Xie F, Hoffman KA, Deng CL, Shi CD, Pan YX, Wang HQ, Shi RP, Wang YC, Shi GH, and Wu NQ. 2004. New evidence on the earliest human presence at high northern latitudes in northeast Asia. *Nature* 431:559-562.

Captions of Figures

Figure 1 Two dentaries of the same individual of *Canis chihliensis*. (A-D) left dentary (IVPP V17755.11); (E-H) right dentary (IVPP V17755.12). (A, E) occlusal views; (B, F) buccal views; (C, G) lingual views; (D, H) X-ray images. White arrows (labeled vab) indicate areas of increased vascularity of alveolar bone; red arrows (labeled pp) mark periodontal pocket, purple arrows (labeled fpp) indicate probable fistula from periodontal pocket, and blue arrows (labeled pi) mark periapical infections associated with exposed pulp chambers.

Figure 2 Frequencies of dental injury in the mandible of Rancho La Brea dire wolves, *C. dirus*. (A) numbers of specimens of adult age bearing injuries similar to those in *C. chihliensis* (orange) compared with other dental injuries (gray). Most dental injuries in *C. dirus* involve abscesses and alveolar resorption stemming from infection. (B) categorization of dental injuries by tooth position. The m1 shows the highest frequency of infection or injury, followed by p2 and p4.

Figure 3 Tibias of the same individual of *Canis chihliensis* from SSMZ, Nihewan. (A-D) normal tibia of left side (IVPP V 18139.21). (E-H) pathologic tibia of right side (IVPP V 18139.20). (A, E) anterior views; (B, F) posterior views; (C, G) medial views; (D, H) lateral views. NF: nutrient foramen.

Figure 4 CT scan images of the pathologic right tibia of *Canis chihliensis* (V18139-20) from SSMZ, Nihewan. (A-B) anteroposterior longitudinal sections; (C-D) mediolateral longitudinal sections; (E) 3-D reconstruction of the pathologic tibia; (F-M) cross sections; (F-J) the upper part of the tibia; (K) the upper and middle parts of the fracture; (L) the middle and lower parts of the fracture; (M) lower part of the fracture, infection with subtle cortical loss. MC1-MC3, represent the medullar cavities of the three fractions of the fractured tibia; NP, nutrient foramen.
Figure 5 Lower molars from SSMZ as compared to living hypercarnivorous taxa. Occlusal views of lower molars, m1-3, of *Canis chihliensis* (A-C) from SSMZ in Nihewan, as compared with those of *C. lupus* (D), *Cuon alpinus* (E) and *Lycaon pictus* (F). (A) right m1-3 (IVPP V17755.6); (B) right m1-3 (IVPP V17755.4); (C) left (inverted) m1-2 (IVPP V17755.5); (D) right m1-3 (IOZ no number, extant, China); (E) right m1-2 (IOZ 26747, extant, China); (F) right m1-3 (T.M. No. 5560 and BPI/C 223, extant, South Africa). Modified from Tong et al. (2012).
Table 1 (on next page)

Dimensional comparisons between the normal and pathologic tibiae of *C. chihliensis* (in: mm).

Abbreviations: DAP: anteroposterior diameter; DT: transverse diameter.
Table 1 Dimensional comparisons between the normal and pathologic tibiae of *C. chihliensis* (in: mm). Abbreviations: DAP: anteroposterior diameter; DT: transverse diameter.

Dimensions	Normal (left) tibia (IVPP V 18139.21)	Pathologic (right) tibia (IVPP V 18139.20)
Maximum length	181.6	166.5
Proximal DAP	37.5	>32.2
Proximal DT	36.5	35.8
Distal DAP	17.6	>17.3
Distal DT	24.1	25.7
Shaft DAP at nutrient foramen	15.4	17.2
Shaft DT at nutrient foramen	13.2	14.8
Shaft DAP at the fracture	-	25.5
Shaft DT at the fracture	-	29.2
Figure 1

Two dentaries of the same individual of *Canis chihliensis*

(A-D) left dentary (IVPP V17755.11); (E-H) right dentary (IVPP V17755.12). (A, E) occlusal views; (B, F) buccal views; (C, G) lingual views; (D, H) X-ray images. White arrows (labeled vab) indicate areas of increased vascularity of alveolar bone; red arrows (labeled pp) mark periodontal pocket, purple arrows (labeled fpp) indicate probable fistula from periodontal pocket, and blue arrows (labeled pi) mark periapical infections associated with exposed pulp chambers.
Figure 2

Frequencies of dental injury in the mandible of Rancho La Brea dire wolves, *C. dirus*.

(A) numbers of specimens of adult age bearing injuries similar to those in *C. chihliensis* (orange) compared with other dental injuries (gray). Most dental injuries in *C. dirus* involve abscesses and alveolar resorption stemming from infection. (B) categorization of dental injuries by tooth position. The m1 shows the highest frequency of infection or injury, followed by p2 and p4.
A

![Bar chart showing the number of specimens for different Rancho La Brea deposit numbers. The chart distinguishes between adult specimens bearing other injuries and adult specimens with similar injuries.](image)

B

![Bar chart showing the count of tooth positions c, p2, p3, p4, m1, and m2.](image)
Figure 3

Tibias of the same individual of *Canis chihliensis* from SSMZ, Nihewan

(A-D) normal tibia of left side (IVPP V 18139.21). (E-H) pathologic tibia of right side (IVPP V 18139.20). (A, E) anterior views; (B, F) posterior views; (C, G) medial views; (D, H) lateral views. NF: nutrient foramen.
Figure 4

CT scan images of the pathologic right tibia of *Canis chihliensis* (V18139-20) from SSMZ, Nihewan

(A-B) anteroposterior longitudinal sections; (C-D) mediolateral longitudinal sections; (E) 3-D reconstruction of the pathologic tibia; (F-M) cross sections; (F-J) the upper part of the tibia; (K) the upper and middle parts of the fracture; (L) the middle and lower parts of the fracture; (M) lower part of the fracture, infection with subtle cortical loss. MC1-MC3, represent the medullar cavities of the three fractions of the fractured tibia; NP, nutrient foramen.
Figure 5

Lower molars from SSMZ as compared to living hypercarnivorous taxa.

Occlusal views of lower molars, m1-3, of *Canis chihliensis* (A-C) from SSMZ in Nihewan, as compared with those of *C. lupus* (D), *Cuon alpinus* (E) and *Lycaon pictus* (F). (A) right m1-3 (IVPP V17755.6); (B) right m1-3 (IVPP V17755.4); (C) left (inverted) m1-2 (IVPP V17755.5); (D) right m1-3 (IOZ no number, extant, China); (E) right m1-2 (IOZ 26747, extant, China); (F) right m1-3 (T.M. No. 5560 and BPI/C 223, extant, South Africa). Modified from Tong et al. (2012).