Structural Basis of Focal Adhesion Localization of LIM-only Adaptor PINCH by Integrin-linked Kinase**

Received for publication, July 11, 2008, and in revised form, December 11, 2008 Published, JBC Papers in Press, December 11, 2008, DOI 10.1074/jbc.M805319200

Yanwu Yang†‡§, Xiaoxia Wang†‡, Cheryl A. Hawkins§, Kan Chen†, Julia Vaynberg§, Xiaobing Zuo†‡, Jinbu Wang†‡, Yun-xing Wang†‡, Chuanyue Wu†, Nico Tjandra§, and Jun Qin†‡§**

From the †Department of Molecular Cardiology, Lerner Research Institute, The Cleveland Clinic, Cleveland, Ohio 44195, the ‡Department of Biochemistry, Case Western Reserve University, Cleveland, Ohio 44102, the §Laboratory of Molecular Biophysics, NHLBI, National Institutes of Health, Bethesda, Maryland 20892, the †Department of Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, the **Protein Nucleic Acid Interaction Section, Structural Biophysics Laboratory, NCI, National Institutes of Health, Frederick, Maryland 21702, and the ***Cleveland Center for Structural Biology, Cleveland, Ohio 44102

The LIM-only adaptor PINCH (the particularly interesting cysteine- and histidine-rich protein) plays a pivotal role in the assembly of focal adhesions (FAs), supramolecular complexes that transmit mechanical and biochemical information between extracellular matrix and actin cytoskeleton, regulating diverse cell adhesive processes such as cell migration, cell spreading, and survival. A key step for the PINCH function is its localization to FAs, which depends critically on the tight binding of PINCH to integrin-linked kinase (ILK). Here we report the solution NMR structure of the core ILK-PINCH complex (28 kDa, \(K_D \sim 68 \text{ nm} \)) involving the N-terminal ankyrin repeat domain (ARD) of ILK and the first LIM domain (LIM1) of PINCH. We show that the ILK ARD exhibits five sequentially stacked ankyrin repeat units, which provide a large concave surface to grip the two contiguous zinc fingers of the PINCH LIM1. The highly electrostatic surface is evolutionally conserved but differs drastically from those of known ARD and LIM bound to other types of protein domains. Consistently mutation of a hot spot in LIM1, which is not conserved in other LIM domains, disrupted the PINCH binding to ILK and abolished the PINCH targeting to FAs. These data provide atomic insight into a novel modular recognition and demonstrate how PINCH is specifically recruited by ILK to mediate the FA assembly and cell-extracellular matrix communication.

Cell-extracellular matrix (ECM) adhesion, migration, and survival are essential for the development and maintenance of tissues and organs in living organisms. They are mediated by integrin transmembrane receptors, which function by adhering to ECM proteins via their large extracellular domains while connecting to the actin cytoskeleton via their small cytoplasmic tails (20–70 residues) (1). The integrin-actin connection supports strong cell-ECM adhesion, and its alteration leads to dynamic cell shape change, migration, and survival (2). The molecular details of such connection, however, are highly complex, involving a large protein complex network called focal adhesions (FAs) (3, 4).

Integrin-linked kinase (ILK) is a 50-kDa FA protein that contains an N-terminal ankyrin repeat domain (ARD), a middle pleckstrin homology domain, and a C-terminal kinase domain. Originally discovered as an integrin \(\beta \) cytoplasmic tail-binding protein (5), ILK has been established as a major regulator that controls the complex FA assembly and transmits many cell adhesive signals between integrins and actin (6–8). Soon after the discovery of ILK, Tu et al. (9) identified an ILK binding partner called PINCH that contains five LIM domains. Extensive studies have shown that the PINCH binding to ILK is essential for triggering the FA assembly and for relaying diverse mechanical and biochemical signals between ECM and the actin cytoskeleton (9–11). Consistent with the importance of the ILK/PINCH association in almost all cellular behavior and fate, ablation of either ILK (12) or PINCH in mice is embryonically lethal (13, 14). PINCH also has a highly homologous isoform called PINCH-2. However, although complementary to PINCH in many cellular behaviors (for reviews, see Refs. 8 and 15), PINCH-2 appears to be involved at the later stage of development (16), and thus its ablation in mice is not embryonically lethal (17). At the clinical level, dysregulation of the ILK/PINCH interaction has been implicated in the development of numerous human disorders such as cancer (6, 18) and heart diseases (19, 20). A Phase I clinical trial is ongoing on a drug called thymosin \(\beta-4 \) (Regeneron) that appears to specifically tar-
get ILK/PINCH for treating myocardial infarction, a major heart failure disorder (19).

Despite the cellular, physiological, and pathological importance of the ILK/PINCH interaction, the structural basis for how exactly PINCH binds to ILK has not been well understood. Previous biochemical/structural analyses have indicated that ILK utilizes its N-terminal ARD to recognize the LIM1 domain of PINCH, and such binding may promote the targeting of PINCH to FAs (9, 21). However, the precise atomic basis for such targeting process is elusive. No structure of any ARD/LIM complex has been reported.

Using a combination of NMR-based techniques, we have solved the solution structure of the ILK ARD-PINCH LIM1 complex that revealed an interface that is distinct from other ARD and LIM bound to non-ARD/LIM domains. Structure-based mutation of a hot spot in PINCH LIM1, which is not conserved in other LIM domains, abolished the PINCH binding to ILK and its localization to FAs. These results not only reveal a unique LIM/ARD recognition mode but also provide a definitive functional basis for how PINCH is recruited by ILK to focal adhesion site, a major step toward the dynamic cell adhesion and migration processes.

EXPERIMENTAL PROCEDURES

DNA Constructs, Protein Expression, and Protein Purification—Initial subcloning, expression, and purification of the ILK ARD and the PINCH-1 LIM1 were described previously (21). Additional constructs were made including residues 1–171 of human ILK cloned into pTYB11 (New England Biolabs) and into pGEX-5X-3 (GE Healthcare), respectively. The former construct required no protease digestion because the fusion was chitin that could be cleaved by dithiothreitol thus eliminating the heterogeneity problem often caused by protease digestion using the pGEX construct. The ILK-(1–171) using pTYB11 construct was purified following the manufacturer’s instructions (New England Biolabs). The GFP-PINCH-1 mutants for transfection experiments were made as described before (10). To prepare 15N- and/or 13C-labeled proteins, cells were grown in M9 minimal medium containing 1.1 g liter⁻¹ [15N]NH₄Cl and/or 3.3 g liter⁻¹ [13C]glucose. To prepare partially deuterated samples, cells were grown in minimal medium containing 70–90% H₂O, but the growth rate for cell culture was slower, and thus the induction time for the protein expression was usually 2 times longer than for the undeuterated sample. Because of a precipitation problem that occurs within a week or two, many samples had to be made for the completion of all NMR experiments as required for the total structure determination. The following six different sets of samples ranging between 0.5 and 0.8 mM were made for various NMR experiments in 25 mM NaH₂PO₄, 5 mM NaCl, and 0.1–1 mM tris(2-carboxyethyl)phos-
phine, pH = 7.0 buffer (note that some samples had to be made several times because of the precipitation problem within a week or two for completion of the NMR experiments): (i) 15N/13C-labeled ILK ARD bound to unlabeled LIM1, (ii) 15N, 13C-, 70% 3H-labeled ILK ARD bound to unlabeled LIM1, (iii) 15N-labeled ILK ARD bound to unlabeled LIM1, (iv) 15N/13C/3H-labeled LIM1 bound to the unlabeled ILK ARD, (v) 15N/13C-labeled LIM1 bound to unlabeled ILK ARD, and (vi) 15N-labeled LIM1 bound to unlabeled ILK ARD. All the complex samples were purified through an S75 gel filtration column at the final stage and concentrated for NMR experiments.

Isothermal Calorimetry Measurements—Isothermal titration calorimetry was performed using a VP-ITC instrument (Microcal, Inc.). The PINCH LIM1 was dialyzed and diluted in 5 mM NaCl and 25 mM sodium phosphate, pH 7.0, to a final concentration of 6 μM. ILK ARD was prepared in the same buffer to 0.1 mM. Titrations consisted of 30 injections each; the final ratio of PINCH LIM1/ILK ARD was ~1.8 at the end of titrations. The titration curves were fitted, and thermodynamic parameters were calculated using Origin software (Microcal, Inc.).

NMR Spectroscopy—All heteronuclear NMR experiments used in the structure determination were reviewed in Ref. 22. All NMR spectra were obtained at 25 °C on a Varian Inova 600-MHz spectrometer and Bruker Avance 800 equipped with a cryogenic triple resonance probe or 900-MHz spectrometer equipped with a cryogenic triple resonance probe. For resonance assignments of the bound ILK ARD or LIM1, the following triple resonance spectra of HNHA, HNCO, HN(CO)NH, and HCCCH total correlation spectroscopy were analyzed in conjunction with three-dimensional CCONH, H(CCO)NH, and HCCH total correlation spectroscopy spectra of HNHA, HNCO, HNCACB, CBCACONH, HN/LIM1 C, and ARD Trp-110 N NOEs, ARD Gly-66 H3 NOEs, ARD Gly-66 NH/LIM1 Leu-66 Cα, ARD Gly-66 NH/LIM1 Leu-66 Cα, ARD Thr-67 NH/LIM1 Leu-66 Cα, and ARD Asp-68 NH/LIM1 Leu-66 Cα were observed. These intermolecular NOEs were further confirmed in three-dimensional 15N- and three-dimensional 15N/13C-edited NOE spectroscopy. The latter also led to the assignment of three additional NOEs: ARD Arg-66 NH/LIM1 Cα H NOEs, ARD Gly-66 Hα/LIM1 Leu-66 Cδ, and ARD Thr-110 NH/e/LIM1 Ala-39 Cα.

Magnetic Spin Labeling Experiment—The cysteine-specific spin label (1-oxyl-2,2,5,5-tetramethylpyrroline-3-methyl)pernichethiosulfonate (MTSSL) was purchased from Sigma. MTSSL was attached to the C-terminal Cys of purified LIM1 (1–70) where the residue 70 is Cys. There is no other free Cys in the construct. The preparation of the MTSSL-labeled LIM1 was as follows: 0.4 mM LIM1 and a 10-fold excess of MTSSL were mixed and stirred for 12 h in a 4:1 (v/v) solution of 25 mM sodium phosphate buffer, pH 7.0, and 10 mM NaCl and acetone.

Table 1

R.m.s. Deviations	20 Lowest Energy Conformers	Lowest Energy	
Distances (Å)	0.029 ± 0.005	0.025	
Intramolecular	0.095 ± 0.002	0.090	
Sequential	0.10 ± 0.012	0.093	
Long range	0.079 ± 0.004	0.068	
Hydrogen bonds (Å)	0.19 ± 0.07	0.11	
Dihedrals (°)	2.06 ± 0.22	1.58	
Residual dipolar couplings (Hz)	109	1.49 ± 0.17	1.22
1D$_{NN}$ (ILK)	1.23 ± 0.23	1.07	
1D$_{NH}$ (LIM)	1.32 ± 0.20	1.1	

*The Lennard-Jones van der Waals energy was calculated with the CHARMM PARAM19/20 parameters and was not included in structure calculation.

**The root mean square (r.m.s.) deviation is reported between the 20 conformers and the mean coordinates.*

900-MHz spectrometer (two mixing times of 300 and 400 ms). A cluster of four intermolecular NOEs (ARD Arg-65 NH/LIM1 Leu-66 Cα, ARD Gly-66 NH/LIM1 Leu-66 Cα, ARD Thr-67 NH/LIM1 Leu-66 Cα, and ARD Asp-68 NH/LIM1 Leu-66 Cα) were observed. These intermolecular NOEs were further confirmed in three-dimensional 15N- and three-dimensional 15N/13C-edited NOE spectroscopy. The latter also led to the assignment of three additional NOEs: ARD Arg-66 NH/LIM1 Cα H NOEs, ARD Gly-66 Hα/LIM1 Leu-66 Cδ, and ARD Thr-110 NH/e/LIM1 Ala-39 Cα.

Paramagnetic Spin Labeling Experiment—The cysteine-specific spin label (1-oxyl-2,2,5,5-tetramethylpyrroline-3-methyl)pernichethiosulfonate (MTSSL) was purchased from Sigma. MTSSL was attached to the C-terminal Cys of purified LIM1 (1–70) where the residue 70 is Cys. There is no other free Cys in the construct. The preparation of the MTSSL-labeled LIM1 was as follows: 0.4 mM LIM1 and a 10-fold excess of MTSSL were mixed and stirred for 12 h in a 4:1 (v/v) solution of 25 mM sodium phosphate buffer, pH 7.0, and 10 mM NaCl and acetone.
and the protein was folded with significant line broadening due to paramagnetic spin label as compared with non-spin-labeled LIM1. 0.3 mM spin-labeled LIM1 was mixed with the 15N-labeled ILK ARD at a 1.3:1 ratio, and the heteronuclear single quantum correlation of the free ILK ARD and the mixture was collected for comparison.

Structure Calculations—The structures of bound forms of ILK ARD and PINCH LIM1 domains were calculated separately using protocols described previously (24). The 1H(N)/15N chemical shift mapping data were transformed into a set of ambiguous, intermolecular distance restraints according to the two criteria defined in Ref. 25, i.e. the significant chemical shift perturbation of the residues and their surface accessibility in the individual subunits. The dipolar couplings were incorporated into structure calculation as described previously (25, 26). The alignment tensor was initially estimated using the histogram approach (27) and later optimized by the grid search method as described previously (28). Because the dipolar couplings for the ILK ARD and the PINCH LIM1 were acquired with different samples the magnitude of their D_a was optimized separately while keeping the rhombicity and the alignment tensor direction the same. The final optimized D_a values are 11.8 and 8.2 Hz for the ILK ARD and the PINCH LIM1, respectively. The optimized rhombicity used was 0.48. The complex structure was obtained by simulated annealing of the ILK ARD and the PINCH LIM1 structures with slowly increasing forces on the intermolecular NOEs, the chemical shift-based intermolecular ambiguous distances, the van der Waals repulsion, and the dipolar coupling restraints. All structures satisfying the experimental restraints (i.e. both the ambiguous intermolecular distance restraints and the dipolar couplings) converge to a single cluster. In the next iteration the ambiguity in the chemical shift-based intermolecular restraints was reduced by examining the resulting structures so that residues that are clearly outside the interaction clusters were eliminated, and a total of 200 final structures were calculated from which 20 with the lowest energies were chosen for analysis and deposited in the Protein Data Bank (code 2kbx).

DNA Transfection, Immunoprecipitation, and Immunofluorescence Staining—Human SK-LMS-1 cells were transfected with DNA vectors encoding GFP or GFP-tagged wild type and mutant forms of PINCH-1 using Lipofectamine 2000. One day after the transfection, the cells were analyzed by immunoprecipitation and immunofluorescence staining. For immunoprecipitation, the cells were lysed with 1% Triton X-100 in 50 mM Tris–HCl, pH 7.4 containing 150 mM NaCl, 10 mM Na4P2O7, 2 mM Na3VO4, 100 mM NaF, and protease inhibitors. The lysates (350 μg) were mixed with 2 μl of rabbit anti-GFP antiserum (Clontech). The anti-GFP immune complexes were precipitated with 20 μl of protein A/G plus-agarose beads (Santa Cruz...
Biotechnology). After washing, the precipitated proteins were released from the beads by boiling in 30 μl of SDS-PAGE sample buffer for 5 min and analyzed by Western blotting with a polyclonal anti-GFP antibody (Santa Cruz Biotechnology) or a monoclonal anti-ILK antibody (clone 65.1).

RESULTS

The Structure of the ILK ARD/PINCH LIM1 Complex—To understand the nature of the ILK/PINCH interaction, we first decided to measure the binding affinity of the complex by performing the isothermal titration calorimetry experiment. Fig. 1 shows the binding profile of the ILK ARD to PINCH LIM1. Consistent with the large chemical shift changes upon the ILK ARD/PINCH LIM1 interaction (supplemental Fig. S1, a and b), the isothermal titration calorimetry experiment revealed a strong binding affinity at $K_D \sim 68$ nM (Fig. 1). The complex was found to be more stable at low salt concentration, although its heteronuclear single quantum correlation perturbation pattern at low salt (supplemental Fig. S1a) is the same as that at high salt condition as shown previously (21). The stable interaction at lower ionic strength and the enthalpy-driven nature of the binding (Fig. 1) are consistent with the highly electrostatic interface of the structure as revealed at a later stage of the study. It is also consistent with the fact that only a very limited number of intermolecular NOEs were obtained between the two subunits. The structure of the complex was thus calculated by using residual dipolar couplings and ambiguous chemical shift mapping-based distance constraints (25) and intermolecular NOEs. Such a protocol successfully led to a well converged structure, which was independently confirmed by multiple additional experiments (see below). Table 1 summarizes the structural statistics for the 20 final calculated structures with the lowest energies. The root mean square deviations for the structures are 1.18 Å for the backbone and 1.64 Å for all heavy atoms (also see Fig. 2A).

Examination of the structure revealed that the bound ILK ARD (residues 2–154) is quite elongated, containing five sequentially stacked ankyrin repeats (ANKs) (Fig. 2B). Each ANK adopts the typical ANK fold (29) with a conserved helix-turn-helix conformation preceded by a β-hairpin-like loop with the exception of the first ANK (residues 2–20). The first ANK unit was not recognized previously because of little sequence homology to the consensus ANK sequence, but its ANK fold was clear in our NOE analysis and structure calculations (Fig. 2B). The stacking of the adjacent ANKs is mediated by highly conserved hydrophobic interactions between the helices of the helix-turn-helix motifs and hydrophilic interactions between the hairpin-like loops (Fig. 2C). The hydrophilic interactions involve a series of side-chain and backbone hydrogen bonds and/or salt bridges (Fig. 2C). The overall structure of the ILK ARD is like a cupped hand with hairpin-like loops protruding to one side of the ARD structure (Fig. 2B). Such a sequential folding pattern emphasizes the importance of every ANK unit, especially the middle units because they contact the ANK units both before and after them. Deletion of any of these ANK units, especially the middle units, would disrupt the integrity of the ARD folding (29) (supplemental Fig. S2) and its function (30). The bound LIM1 (residues 8–67) adopts the characteristic double zinc finger structure with four antiparallel β-sheets followed by a short helix (Fig. 2B). The overall shape of the bound LIM1 is also elongated (Fig. 2B); this is similar to but not identical to the previously reported unbound LIM1 (21), indicating some binding-induced conformational change. The two zinc fingers are linked by a central hydrophobic core involving Val-24, Tyr-31, Phe-36, Pro-46, Leu-49, Phe-50, and the hydrophobic part of Lys-57 (Fig. 2D).

The surface presentation of the whole complex is shown in Fig. 3A, which exhibits a head-to-tail packing. Such packing is
consistent with the paramagnetic spin labeling experiment in which adding a bulky spin label (MTSSL) to the C-terminal Cys of LIM1 prevented the LIM1 binding to the ILK ARD (supplemental Fig. S3).

Distinct Interaction Features of the ILK ARD-PINCH LIM1 Complex and Comparison with Other ARD or LIM Complexes—Although the structures of the bound the ILK ARD and PINCH LIM1 adopt conserved folding patterns, the binding interface appears to be quite distinct with highly electrostatic nature (Fig. 3, B and C). The interface (~1800 Å) is larger than the observed average value of 1600 Å for the protein complex interface (31), which is consistent with the tight ILK/PINCH binding ($K_D \sim 68$ nM). The highly polar feature of the interface also explains why the binding is enthalpy-driven (Fig. 1) and why the complex is more stable at low salt condition. Fig. 4A summarizes the binding site information. Although the majority of the contacts are hydrophilic, a significant number of hydrophobic interactions are also present especially involving aromatic residues (Fig. 4A). The interactions are exemplified in Fig. 4, B and C, respectively. Characteristically many hydrophilic residues from the hairpin tips and the first α-helices of the ANK units 2–5 in the ILK ARD are involved in the binding (Fig. 5A). These residues form a distinct surface (Fig. 3B) that recognizes a complementary interface in the PINCH LIM1 (Fig. 3C) involving two zinc fingers and a portion of the C-terminal helix (Fig. 5B). The second zinc finger seems to be more important as it encompasses more ILK ARD/PINCH LIM1 interaction, compared its recognition pattern with other types of known ARD and LIM complexes. Three representative ARDs were chosen; all exhibit the cupped hand fold, but they bind to distinct targets. These ARDs include transcription regulator GABP that binds to the ETS DNA binding domain (32), tumor suppressor p16 that binds to the kinase domain of cyclin-dependent kinase Cdk6 (33), and IkBα that binds to and inhibits transcription factor NFκB (34, 35). Fig. 5A shows that although the binding region in the ILK ARD shares some shape-specific features with other ARDs, e.g. the β-hairpin like loops are involved in the interaction, the specific interface residues are drastically different. The binding mode of the PINCH LIM1 was compared with two other available LIM complex structures including the PINCH LIM4 bound to Nck-2 adaptor (24) and oncoprotein LMO4 LIM1 and LIM2 bound to nuclear adaptor Ldb1 (36). As summarized in Fig. 5B, the ILK binding sequence on the PINCH LIM1 is also entirely different from those for either the PINCH LIM4 or the LIMO LIM complexes. Interestingly the PINCH LIM1 and LMO4 LIM1 utilize both zinc fingers and the C-terminal helix to tightly bind to targets, although the specific binding regions and the residues involved are totally different.

PINCH Binding to ILK Is Critical for the PINCH Targeting to FAs—To functionally evaluate the mechanism of PINCH binding to ILK, we made structure-based point mutations on two interface residues, Phe-42 and Arg-56, in full-length PINCH than 80% of the interface. This is consistent with the previous deletion mutagenesis data, which revealed that the C-terminal region of LIM1 plays a dominant role in ILK binding (30).

Because previous studies have demonstrated that the ILK/PINCH interaction is crucial in a variety of species (for a review, see Ref. 7), we wondered whether the ILK/PINCH interface is conserved in these species. We therefore compared the three most representative sequences from human, *Drosophila*, and *Caenorhabditis elegans*, which are the most widely varied among all species (7). Fig. 5 shows that the binding interface for the ILK-PINCH complex in these species is highly conserved. Thus our data provide the definitive structural basis for understanding the essential role of the ILK/PINCH interaction in mediating cell adhesion and migration in all species.

The ILK ARD/PINCH LIM1 interface represents the first example of an interaction between the two highly distributed protein binding domains (ARD and LIM). To understand the specificity of the
Both Phe-42 and Arg-56 are conserved in the PINCH LIM1 family members but not in other LIM domains (Fig. 5B). Fig. 6 shows that although both F42A and R56A have the same expression as WT PINCH (Fig. 6A) the F42A binding to ILK was completely lost and the R56A binding to ILK was slightly reduced (Fig. 6B) indicating that aromatic Phe-42-mediated hydrophobic contacts contribute substantially to the ILK/PINCH binding energy. Consistently compared with WT PINCH (Fig. 6, C and D), F42A completely failed to localize to FAs (Fig. 6, E and F), whereas R56A still had effect (Fig. 6, G and H).

It has been reported previously that Q40A mutation in PINCH (11, 37) also causes defects in cell spreading, migration, and survival (11, 37). Examination of the structure revealed that Gln-40 resides in a loop between the two β-strands and that its side chain protrudes onto the surface, making multiple potential contacts with the ILK ARD (Fig. 4A). It is clear that replacement of Gln-40 with Ala would completely remove these contacts thereby disrupting the PINCH/ILK interaction (10) and the PINCH/ILK-mediated cell adhesion processes.

DISCUSSION

Mounting evidence has indicated that the binding of PINCH to ILK is essential for the assembly of FAs and for regulating cytoskeleton and cell adhesion (5). However, the detailed structural basis of the interaction has remained elusive. Our data now provide definitive insight into how PINCH binding to ILK promotes the localization of PINCH to cell-ECM adhesion sites. The structure also provides an important template for further investigating the ILK/PINCH-mediated supramolecular FA assembly and signaling. As shown in Fig. 3A, the ILK ARD and PINCH LIM1 are packed in a head-to-tail manner. The directions of the subunits in such a packing mode suggest that the rest of ILK and PINCH may be extended out. Although this model requires future investigation, it is consistent with the following facts.

(i) The ILK ARD has no interaction with ILK kinase domain when the kinase domain is bound to another FA molecule that binds to F-actin (data not shown). (ii) The tandem PINCH LIM domains are linearly arrayed as indicated by our NMR data (21, 24). Such extended conformation may favor the docking of other proteins such as parvin, Nck-2, etc. (7) thereby facilitating the formation of supramolecular FA machinery.

From a protein recognition point of view, our structure also revealed a novel mode of modular recognition between LIM and ARD: two widely distributed protein interaction domains. We showed that such recognition is evolutionally conserved across the species supporting the essential role of the ILK/PINCH interaction in cell adhesive processes. Disruption of this interaction either by point mutation (Ref. 10 and Fig. 6) or by deletion of important binding fragments in the ILK ARD (30, 38) or in the PINCH LIM1 (30) causes a spectrum of cellular defects. On the biomedical side, our structure may help the design of specific compounds or peptide-mimetic agents for...
detailed investigation and/or treatment of the ILK/PINCH-mediated diseases. Substantial elevation of ILK and/or PINCH levels has been detected in several cancers suggesting that manipulating the ILK/PINCH complex level in these cancers may be therapeutically useful (for a review, see Ref. 6). Indeed inhibition of the ILK expression and activity has been shown to suppress tumors (for a review, see Ref. 6). Increasing animal model-based evidence is also pointing to an important role of the ILK/PINCH complex in mediating heart disease, a major cause of death in humans (for a review, see Ref. 39). By examining human patient hearts with dilated cardiomyopathy, a major heart failure disease, we found that not only the individual ILK and PINCH levels but also the level of their complex was highly elevated in human failing hearts. Thus, our structure may provide an important template for designing agents to further investigate heart disease and other diseases that in turn lead to more effective therapies for these diseases.

Acknowledgments—We thank F. Delaglio for nmrPipe software; D. Garrett for PIPP; and Marius Clore, Saurav Misra, Dhanuja Perera, Algirdas Velyvis, Sudhi Gupta, Asta Velyviene, Koichi Fukuda, Sujay Ithychanda, and Xiaolin Zhang for useful discussion and technical assistance.

REFERENCES

1. Hynes, R. O. (1992) Cell 69, 11–25
2. Brakebusch, C., and Fassler, R. (2003) EMBO J. 22, 2324–2333
3. Critchley, D. R. (2000) Curr. Opin. Cell Biol. 12, 133–139
4. Geiger, B., Bershadsky, A., Pankov, R., and Yamada, K. M. (2001) Nat. Rev. Mol. Cell Biol. 2, 793–805
5. Hannigan, G. E., Leung-Hagesteijn, C., Fitz-Gibbon, L., Coppolino, M. G., Radeva, G., Filmus, J., Bell, J. C., and Dedhar, S. (1996) Nature 379, 91–96
6. Hannigan, G., Troussard, A. A., and Dedhar, S. (2005) Nat. Rev. Cancer 5, 51–63
7. Wu, C. (2005) Trends Cell Biol. 15, 460–466
8. Legate, K. R., Montanez, E., Kudlacek, O., and Fassler, R. (2006) Nat. Rev. Mol. Cell Biol. 7, 20–31
9. Tu, Y., Li, F., Goicoechea, S., and Wu, C. (1999) Mol. Cell. Biol. 19, 2425–2434
10. Zhang, Y., Chen, K., Tu, Y., Velyvis, A., Yang, Y., Qin, J., and Wu, C. (2002). J. Cell Sci. 115, 4777–4786
11. Fukuda, T., Chen, K., Shi, X., and Wu, C. (2003) J. Biol. Chem. 278, 51324–51333
12. Sakai, T., Li, S., Docheva, D., Grashoff, C., Sakai, K., Kostka, G., Braun, A., Pfeifer, A., Yurchenco, P. D., and Fassler, R. (2003) Genes Dev. 17, 926–940
13. Li, S., Bordoy, R., Stanchi, F., Moser, M., Braun, A., Kudlacek, O., Wewer, U. M., Yurchenco, P. D., and Fassler, R. (2005). J. Cell Sci. 118, 2913–2921
14. Liang, X., Zhou, Q., Li, X., Sun, Y., Lu, M., Dalton, N., Ross, J., and Chen, J. (2005) Mol. Cell. Biol. 25, 3056–3062
15. Wu, C. (2004) Biochim. Biophys. Acta 1692, 55–62
16. Braun, A., Bordoy, R., Stanchi, F., Moser, M., Kostka, G. G., Ehler, E., Brandau, O., and Fassler, R. (2003) Exp. Cell Res. 284, 239–250
17. Stanchi, F., Bordoy, R., Kudlacek, O., Braun, A., Pfeifer, A., Moser, M., and Fassler, R. (2005). J. Cell Sci. 118, 5899–5910
18. Huang, H. C., Hu, C. H., Tang, M. C., Wang, W. S., Chen, P. M., and Su, Y. (2007) Oncogene 26, 2781–2790
19. Bock-Marquette, I., Saxena, A., White, M. D., Dimiao, J. M., and Srivastava, D. (2004) Nature 432, 466–472

4 S. Gupta and J. Qin, unpublished results.
Snapshot of ILK-PINCH Heterocomplex

20. Chen, H., Huang, X. N., Yan, W., Chen, K., Guo, L., Tummalapali, L., Dedhar, S., St-Arnaud, R., Wu, C., and Sepulveda, J. L. (2005) Lab. Invest. 85, 1342–1356
21. Velyvis, A., Yang, Y., Wu, C., and Qin, J. (2001) J. Biol. Chem. 276, 4932–4939
22. Clore, G. M., and Gronenborn, A. M. (1998) Curr. Opin. Chem. Biol. 2, 564–570
23. Ottiger, M., Delaglio, F., and Bax, A. (1998) J. Magn. Reson. 131, 373–378
24. Vaynberg, J., Fukuda, T., Chen, K., Vinogradova, O., Velyvis, A., Tu, Y., Ng, L., Wu, C., and Qin, J. (2005) Mol. Cell 17, 513–523
25. Clore, G. M., and Schwieters, C. D. (2003) J. Am. Chem. Soc. 125, 2902–2912
26. De Alba, E., and Tjandra, N. (2002) Prog. Nucl. Magn. Reson. Spectrosc. 40, 175–197
27. Clore, G. M., Gronenborn, A. M., and Bax, A. (1998) J. Magn. Reson. 133, 216–221
28. Clore, G. M., Gronenborn, A. M., and Tjandra, N. (1998) J. Magn. Reson. 131, 159–162
29. Li, J., Mahajan, A., and Tsai, M. D. (2006). Biochemistry 45, 15168–15178
30. Li, F., Zhang, Y., and Wu, C. (1999) J. Cell Sci. 112, 4589–4599
31. Jones, S., and Thornton, J. M. (1996) Proc. Natl. Acad. Sci. U. S. A. 93, 13–20
32. Batchelor, A. H., Piper, D. E., de la Brousse, F. C., McKnight, S. L., and Wolberger, C. (1998) Science 279, 1037–1041
33. Russo, A. A., Tong, L., Lee, J. O., Jeffrey, P. D., and Pavletich, N. P. (1998) Nature 395, 237–243
34. Jacobs, M. D., and Harrison, S. C. (1998) Cell 95, 749–758
35. Huxford, T., Huang, D. B., Malek, S., and Ghosh, G. (1998) Cell 95, 759–770
36. Deane, J. E., Mackay, J. P., Kwan, A. H., Sum, E. Y., Visvader, J. E., and Matthews, J. M. (2003) EMBO J. 22, 2224–2233
37. Xu, Z., Fukuda, T., Li, Y., Zha, X., Qin, J., and Wu, C. (2005) J. Biol. Chem. 280, 27631–27637
38. Nikolopoulos, S. N., and Turner, C. E. (2002) J. Biol. Chem. 277, 1568–1575
39. Srivastava, D., and Yu, S. (2006) Genes Dev. 20, 2327–2331