Parallel-in-time optical simulation of history states

D. Pabón,1, 2 L. Rebón,3, 4, S. Bordakevich,1 N. Gigena,3, 4, A. Boette,3, 4 C. Iemmi,1, 2 R. Rossignoli,3, 4, 5 and S. Ledesma1, 2

1Departamento de Física, FCEyN, Universidad de Buenos Aires, Pabellón 1, Ciudad Universitaria, Buenos Aires (1428), Argentina
2Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina.
3Departamento de Física, FCE, Universidad Nacional de La Plata, C.C. 67, La Plata (1900), Argentina
4Instituto de Física de La Plata, UNLP - CONICET, Argentina
5Comisión de Investigaciones Científicas de la Provincia de Buenos Aires (CIC), La Plata (1900), Argentina

We present an experimental optical implementation of a parallel-in-time discrete model of quantum evolution, based on the entanglement between the quantum system and a finite dimensional quantum clock. The setup is based on a programmable spatial light modulator which entangles the polarization and transverse spatial degrees of freedom of a single photon. It enables the simulation of a qubit history state containing the whole evolution of the system, capturing its main features in a simple and configurable scheme. We experimentally determine the associated system-time entanglement, which is a measure of distinguishable quantum evolution, and also the time average of observables, which in the present realization can be obtained through one single measurement.

I. INTRODUCTION

Physics is a science that attempts to describe the behavior of natural systems, i.e., their evolution through time. In classical mechanics time is treated as an external classical parameter, assumption that remains in the standard formulation of quantum mechanics since probabilities are only assigned to observable measures made at a certain moment in time. In this sense, time conserves a special status in quantum mechanics.

The Newtonian notion of time, considering it as a parameter essentially different from space coordinates, was modified with the introduction of Lorentz transformations in relativity theory, but for each inertial frame it remains as a global external background parameter. In both cases, furthermore, it is assumed that time coordinates can be read from an appropriate classical clock. This assumption fails in quantum gravity, where the spacetime metric is a dynamical object and must therefore be quantized, implying that a physical clock should be a quantum system itself. Indeed, as predicted by the Wheeler-DeWitt equation, in quantum gravity “there is no time”. Canonical quantization of general relativity preserves the constraint of a static state of the universe, and this lead essentially to the problem of time: the incompatibility between a timeless static description of the universe and the notion of time in the evolution of quantum systems.

In the early 80’s Page and Wootters proposed a mechanism to reconcile this apparent contradiction and since then the incorporation of time in a fully quantum framework has attracted increasing attention. According to this timeless approach of time the universe is in a stationary state, and quantum evolution is explained by the entanglement between an evolving subsystem of the universe and a second quantum system, chosen as the reference clock. The ensuing history state contains the information about the whole evolution of the subsystem, which can be recovered through appropriate measurements at the clock.

An experimental illustration of these ideas was presented in Ref. 20 using the polarization entangled state of two photons, one of which is used as a two-dimensional clock to gauge the evolution of the second. More recently, this realization has been extended to use the position of a photon as a continuous variable, to describe time 21.

On the other hand, a fully discrete version of the formalism, based on a finite dimensional quantum clock, was developed in Refs. 18, 19. Such scheme leads to discrete history states, which have the advantage that they can be directly generated through a quantum circuit. Moreover, the associated Schmidt-decomposition and ensuing system-time entanglement can be easily obtained, with the latter representing a measure of distinguishable quantum evolution.

In the present work we introduce a simple optical implementation of such parallel-in-time discrete model of quantum evolution, in which the quantum clock has a finite configurable dimension N. This realization is carried out by entangling the polarization and the transverse spatial degrees of freedom (DOFs) of a light beam through the use of a programmable spatial light modulator (SLM). The scheme enables the generation of discrete history states of a qubit, and hence to experimentally determine related quantities which characterize the quantum evolution, such as the associated system-time entanglement. Moreover, it allows us to recover time averages of observables of the system efficiently through one single measurement, instead of a set of N sequential measurements.

The paper is organized as follows: We first provide, in Section II, a succinct description of the discrete formalism presented in Refs. 18, 19. The experimental implementation and results are described in Section III where the modulation introduced by the SLM is analyzed in detail and expressed as unitary operators in polarization space. Theoretical and experimental results for
time-averages are determined and compared. The ensuing system-clock entanglement is also analyzed for different trajectories, and the so-called entangling power of the setup is as well discussed. Conclusions and perspectives are finally presented in IV.

II. FORMALISM

We consider a system S and a reference clock system T in a joint pure state $|\Psi\rangle \in \mathcal{H}_S \otimes \mathcal{H}_T$, with \mathcal{H}_T of finite dimension N. Any such state can be written as

$$|\Psi\rangle = \frac{1}{\sqrt{N}} \sum_t |\psi_t\rangle |t\rangle$$

where $\{|t\rangle\}_{t=0}^{N-1}$ is an orthonormal basis of T and $|\psi_t\rangle$ are states of S (not necessarily orthogonal or normalized, but satisfying $\sum_t \langle \psi_t | \psi_t \rangle /N = \langle \Psi | \Psi \rangle = 1$. The state $|\Psi\rangle$ can describe, for instance, the whole evolution of an initial pure state $|\psi_0\rangle$ of a physical system S at a discrete set of times, in which case $|\psi_t\rangle$ is the state of the system at time t. Then, $|\psi_t\rangle$ can be recovered as the conditional state of S after a local measurement at T in the previous basis, with result t: If $\Pi_t = \mathbb{1} \otimes |t\rangle \langle t|$, then

$$|\psi_t\rangle = \frac{\text{Tr}_{T}(|\Psi\rangle \langle \Psi| \Pi_t)}{\langle \Psi | \Pi_t | \Psi \rangle}.$$

In shorthand notation, $|\psi_t\rangle = \sqrt{N} |t\rangle |\Psi\rangle$. Moreover, if $|\Psi\rangle$ is enforced to be an eigenstate of the unitary operator

$$U = \sum_t U_{t,t-1} \otimes |t\rangle \langle t-1|,$$

where $U_{t,t-1}$ are arbitrary unitary operators satisfying the cyclic condition $U_{N,N-1} \cdots U_{1,0} = \mathbb{1}_S$ then $|\psi_t\rangle$ follows a discrete unitary evolution [19]: $|\psi_t\rangle = U_t |\psi_0\rangle$ if $U|\Psi\rangle = |\Psi\rangle$, with $U_t = U_{t,t-1} \cdots U_{1,0}$ (the eigenvalues of U are the N Nth roots of unity, and $U_t \rightarrow e^{-i2\pi k t/N} U_t$, $k = 1, \ldots, N-1$, for the other eigenvalues). Writing $U = \exp[-iJ]$, the previous eigenvalue equation corresponds to $\mathcal{J}|\Psi\rangle = 0$, which is a generalized discrete version of the Wheeler-DeWitt equation [18]. And in the special case of a non-interacting \mathcal{J}, such that $\mathcal{J} = H_S \otimes \mathbb{1} + \mathbb{1} \otimes H_T$, then $U_t = \exp[-i H_S t]$, with H_S a Hamiltonian for system S and H_T a “momentum” for system T, both with eigenvalues $2\pi k/N$. Moreover, the equation $\mathcal{J}|\Psi\rangle = 0$ then implies

$$-\langle t|PT|\Psi\rangle = H_S|\psi_t\rangle,$$

which in the continuous limit obtained for large N (and setting $\hbar = 1$), reduces to the Schrödinger equation $i\partial_t |\psi_t\rangle = H_S|\psi_t\rangle$ [19].

The entanglement of the history state [11] is a measure of the distinguishable evolution undergone by the system [13]. If all states $|\psi_t\rangle$ are orthogonal, then $|\Psi\rangle$ is maximally entangled, whereas if all $|\psi_t\rangle$ are proportional (i.e., a stationary state), then $|\Psi\rangle$ becomes separable. Its entanglement entropy

$$E(S,T) = S(\rho_S) = S(\rho_T), \quad S(\rho) = -\text{Tr} \rho \log_2 \rho,$$

where $\rho_{S,T} = \text{Tr}_{T,S} |\Psi\rangle \langle \Psi|$ are the reduced system and clock states, respectively, then ranges from 0 for stationary states to $\log_2 N$ for maximally evolving states. Thus, $2E(S,T)$ is a measure of the number of distinguishable states visited by the system.

We may also employ the quadratic entanglement

$$E_2(S,T) = S_2(\rho_S) = S_2(\rho_T)$$

$$= \frac{2}{N} \left(N - 1 - \frac{2}{N} \sum_{t \neq t'} |\langle \psi_t | \psi_{t'} \rangle|^2 \right),$$

where $S_2(\rho) = 2 \text{Tr} \rho (\mathbb{1} - \rho) = 2(1 - \text{Tr} \rho^2)$ is the quadratic entropy (also known as linear entropy, as it corresponds to $-\ln \rho \approx 1 - \rho$ in $S(\rho)$). This entropy can be directly evaluated without knowledge of the eigenvalues, and can be accessed experimentally through purity measurements of the reduced state ρ_S. The entropy $E_2(S,T)$ is a measure of the distinguishability between the evolved states. Its minimum value for an evolution between fixed initial and final states due to a constant Hamiltonian H_S is obtained for an evolution within the subspace generated by the initial and final states [19], which proceeds precisely along the geodesic determined by the Fubini-Study metric [22-23].

III. EXPERIMENTAL IMPLEMENTATION

To provide an experimental realization of the concepts here discussed we propose a full-optical architecture to generate the discrete history states. We use the linear transverse momentum-position of single photons to set the time $|t\rangle$ of the quantum clock system T and its polarization to encode the state $|\psi_t\rangle$ of the quantum system S.

One of the simplest ways to accomplish this is to use a programmable SLM as a means to create entanglement between polarization and spatial DOF of photons [26-28]. In general, this kind of devices allows to coherently modulate the amplitude, phase and polarization of the electromagnetic field. It is thus possible to display different regions on the SLM screen and vary, in each of these regions, the polarization of the light field keeping constant its amplitude and phase. It leads to a state generation scheme as that indicated in Fig. [11] where, as an example, eight independent rectangular regions are addressed on the SLM, each one with a different constant function modulation.
Let us consider a modulation distribution \(\Gamma_{\mu\nu}(x)\) defining an array of \(N\) rectangular and adjacent spatial regions of width \(2a\), and length \(2b\). On each of these regions we have a constant complex modulation, \(C_{\mu\nu}^{(t)}\). Thus,

\[
\Gamma_{\mu\nu}(x) = \sum_{t=0}^{N-1} C_{\mu\nu}^{(t)} \text{rect}\left(\frac{x-x_t}{2a}\right) \text{rect}\left(\frac{y-y_t}{2b}\right)
\]

where \(\text{rect}(u) = 1\) if \(|u| < \frac{1}{2}\), \(0\) in other case, and the centres of these regions are in \(\{(x_t, y_t)\}_{t=0}^{N-1}\), with \(x_t = a, 3a, 5a, \ldots\), and \(y_t = b, 3b, 5b, \ldots\). With this prescription we can define the spatial states

\[
|t\rangle = \frac{1}{\sqrt{N_t}} \int dx \text{rect}\left(\frac{x-x_t}{2a}\right) \text{rect}\left(\frac{y-y_t}{2b}\right) |1x\rangle,
\]

which form an orthonormal basis of the discretized spatial Hilbert space of the single photon. Finally, by combining this result with Eq. (12), the transformed state in Eq. (11) can be written in the following way:

\[
|\Psi\rangle \propto \sum_{t=0}^{N-1} \sum_{\mu,\nu} \alpha_{\mu} C_{\mu\nu}^{(t)} \langle \mu | t \rangle.
\]

In our implementation the modulation introduced by the SLM implies a transformation only of the polarization degree of freedom. It means that \(\sum_{\mu,\nu} \alpha_{\mu} C_{\mu\nu}^{(t)} |t\rangle = (U_t \otimes \mathbb{1}) |\psi_0\rangle |t\rangle \equiv |\psi_t\rangle |t\rangle\), with \(U_t\) a unitary operator and \(|\psi_t\rangle |t\rangle\) the polarization state associated to the \(t\)-spatial region. Therefore, the SLM transforms the initial photon state as

\[
|\psi_0\rangle |0\rangle \overset{\text{SLM}}{\Rightarrow} \frac{1}{\sqrt{N}} \sum_{t=0}^{N-1} U_t |\psi_0\rangle |t\rangle = \mathcal{W} \left(|\psi_0\rangle \sum_{t=0}^{N-1} \frac{1}{\sqrt{N}} |t\rangle \right)
\]

and thus generates the history state as expressed in Eq. (8), where the system \(S\) and the clock system \(T\) are emulated by the polarization and spatial degrees of freedom, respectively.

B. Setup and measurements

The experimental setup used for simulating the parallel-in-time quantum evolution is sketched in Fig. 2. In the first part, a 660nm solid state laser beam is expanded, filtered and collimated in order to illuminate a SLM with a planar wave with approximately uniform amplitude distribution over the region of interest (ROI). This SLM, based on a reflective liquid crystal-on-silicon (LCOS) micro-display, with a spatial resolution...
of 1024x768 pixels, is used to represent the whole system \(|\Psi\rangle \) of Eq. (1). It gives the possibility to dynamically address the optical function on the screen, pixel by pixel. In particular, the SLM used in our experiment, consists of a HoloEye Lc-R 2500 in combination with a polarizer (P1) and a quarter wave plate (QW1) that provide the adequate incoming state of light to obtain the maximum range of polarization modulation. This is obtained from a Mueller-Stokes characterization of the LCoS [30, 31], followed by an optimization to have a wide range of pure polarization modulation, i.e., without any additional global phase due to an optical path difference, regardless of the gray level that the pixels of the LCoS are set for. Therefore, as each pixel is controlled individually, we can program a particular function \(F(x) \) which characterizes the modulation distribution. Then, the wavefront of the electromagnetic field acquires a specific polarization conditioned on the transverse position in the plane of the SLM.

In the second part of the setup, a polarization state analyzer (PSA) is used for the initial characterization of the SLM as a polarization state generation (PSG). For this purpose, after reflection on the SLM, the outgoing beam is focused by the lens L3 onto the detection plane, which is chosen to match the image plane (IP) or the Fourier plane (FP). A quarter wave plate (QW2) and a linear polarizer (P2) project the polarization state of the light beam in the different states of the reconstruction basis. Intensity measurements are recorded in the IP or in the FP, depending on the characterization for amplitude or phase modulation, respectively.

In addition, and as a proof-of-principle demonstration, we have inserted neutral-density filters, previous to the PSG stage, to highly attenuate the power of the laser beam at the single-photon regime, in such a way, that it corresponds to the presence of less than one photon, on average, at any time, in the experiment. This pseudo single-photon source can be used to mimic a single-photon state, and as is usual in optical implementations of quantum simulations or quantum-states estimation [32, 33], it is enough to test the feasibility of the proposed method for simulating the main features of a parallel-in-time quantum evolution. Besides, instead a CCD camera, we used a high sensitive camera based on CMOS technology (Andor Zyla 4.2 sCMOS) to carry out the intensity measurements in this regime.

In Fig. 2 we plot the Stokes parameters of the state prepared by the SLM when a single gray level, between 0 and 40, is addressed on the whole screen. In any case the polarization of the input state is \((S_0, S_1, S_2, S_3) = (1.000, 0.040, 0.951, -0.026) \). The graphic shows the parameter values obtained as a measurement in the IP (triangles) or in the FP (cross), in comparison with those predicted by the Mueller matrix (circles). For these range of gray levels, all the values are in good agreement which indicates a good performance of the whole setup for the modulation of the polarization state and subsequent characterization of such states. We should mention that, while it is possible to set gray levels up to 255, for those above 40 the depolarization due to temporal phase fluctuations of the employed SLM becomes important.

In fact, devices based on LCoS technology may lead to a flicker in the optical beam because of the digital addressing scheme (pulse width modulation) which introduces, among other undesirable effects, those phase fluctuations [32, 33] that affect the quality of the state that is intended to encode.

Once the modulation of the SLM was fully characterized, the same PSG-PSA system was used for experimentally perform the system-time history state \(|\Psi\rangle \), and the subsequent characterization of the discrete unitary evolution of the system state \(|\psi_t\rangle = U_t |\psi_0\rangle \) \((t = 0, ..., N - 1) \). For gray levels between 0 and 40, different history states \(|\Psi\rangle \) were generated with 2, 4, and 8 time steps. These history states are displayed in Tables I, II, and III, and according to our experimental implementation, each state \(|\psi_t\rangle \) visited by the system, is given in terms of the mean values \(\langle \sigma_\mu \rangle \) of the Pauli operators \(\sigma_\mu \), which are just the

![Normalized Stokes Parameters](image-url)
measured Stokes parameters: \(S_1 = \langle \sigma_z \rangle, \quad S_2 = \langle \sigma_x \rangle, \) and \(S_3 = \langle \sigma_y \rangle \) (see subsection IIIA).

C. System evolution and mean values

In the previous subsection we have described how our setup generates history states within a parallel-in-time discrete model of quantum evolution. This implementation allows us to compute the time-average of the expected values of the system throughout its evolution in two different ways:

- From the set of measurements which are performed, sequentially, on the system \(S \).
- From a single measurement that involves information of the whole evolution of the system \(S \).

In fact, let us consider an operator \(A \) of the joint system \(S+T \) of the form \(A = O \otimes 1 \), with \(1 \) the identity operator on the clock system and \(O \) an observable of the system \(S \). Then, the expectation value of such operator is given by

\[
(A)_\Psi \equiv \langle \Psi | O \otimes 1 | \Psi \rangle = \frac{1}{N} \sum_{t=0}^{N-1} \langle \psi_t | O | \psi_t \rangle, \tag{16}
\]

which represents the time-average \(\langle O \rangle = \frac{1}{N} \text{Tr}_S(\sum_{t=0}^{N-1} O | \psi_t \rangle \langle \psi_t |) \).

In our experimental scheme, we can identify the observable \(O \) with one of the Pauli operators \(\sigma_\mu \). In order to test these two approaches we perform a proper polarization measurement to compute the time-average \(\langle \sigma_\mu \rangle \) for different evolutions of the system \(S \). For this purpose the PSA is used to project the polarization state of the incoming beam and record the intensity of the non-extinguished beam. On one hand, if an intensity measurement is performed in the IP, the mean values of the Pauli operators \(\sigma_\mu \), will vary from one of the spatial regions defined in Eq. (12) to the other, depending on the modulation \(C_{\mu t} \) assigned to each of these regions. If the polarization state associated to the region \(t \) is \(| \psi_t \rangle \), \(\sigma_\mu \) will have the mean value \(\langle \psi_t | \sigma_\mu | \psi_t \rangle \) on this region, and the average on the full ROI is then compute as \(\frac{1}{N} \sum_{t=0}^{N-1} \langle \psi_t | \sigma_\mu | \psi_t \rangle \). On the other hand, if an intensity measurement is performed in the FP each of the spatial regions addressed on the SLM contribute to build the interference pattern. However, it is not possible to relate a spatial region in the IP to a particular region in the FP. The mean values are then given by \(\langle \Psi | \sigma_\mu \otimes 1 | \Psi \rangle \).

These two quantities are of course the same, since in the absence of optical losses, the total intensity of the non-extinguished beam is involved in their calculation, as expressed in Eq. (16).

Therefore, if we think of \(| \Psi \rangle \) as a history state, our scheme provides an efficient method for the evaluation of the time-averaged polarization of the system throughout its trajectory. In fact, results shown on Fig. 4 exhibit an excellent agreement between both experimental measurements and between these and the theoretical values. We have generated 7 different history states corresponding to different evolutions of the same initial state \(| \psi_0 \rangle \).

The polarization states \(| \psi_t \rangle \) were chosen by setting the gray level of the individual regions between 0 and 40. In this plot we can see the time averages \(\langle \sigma_\mu \rangle \) of that history states described in Tables I [1] and III [31]. We want to emphasize that although the values of the time averages are very close for all trajectories, as inferred from Fig. 3 the system evolves between distinguishable states.

In subsection IIIA we stated that the modulation introduced by the SLM can be described by a unitary transformation in polarization space. Experimentally, the modulation associated to a given gray level on the screen is described by a \(4 \times 4 \) Mueller matrix \(M \) [31]. The Mueller matrix acts as a linear transformation on the polarization state of the light field represented by the Stokes vector \(S \), defined as

\[
S = \begin{pmatrix} S_0 \\ S_1 \\ S_2 \\ S_3 \end{pmatrix} = \begin{pmatrix} P_{00} + P_{\pi\pi} & P_{0\pi} & P_{\pi0} & P_{\pi\pi} \\ P_{0\pi} & P_{00} - P_{\pi\pi} & P_{\pi0} & P_{\pi\pi} \\ P_{\pi0} & P_{\pi0} & P_{\pi\pi} - P_{\pi\pi} & P_{\pi\pi} \\ P_{\pi\pi} & P_{\pi\pi} & P_{\pi\pi} & P_{\pi\pi} \end{pmatrix}, \tag{17}
\]

where the vector coefficients \(P_{\theta\phi} \) are the results of six polarization measurements: horizontal and vertical linear polarization \((P_{00}, P_{\pi\pi}) \), \(+45 \) and \(-45 \) linear polarization \((P_{0\pi}, P_{\pi0}) \), and right and left circular polarization \((P_{\pi\pi}, P_{\pi\pi}) \). Within the quantum formalism, such measurements correspond to projections onto the polarization states \(| P_{\theta\phi} \rangle = \cos(\theta)|H\rangle + e^{i\phi} \sin(\theta)|V\rangle \), so that we have \(S_{1,2,3} = (\sigma_{x,y,z}) \), provided \(P_{00} + P_{\pi\pi} = 1 \) and \(\sigma_\mu \)'s are the Pauli operators defined with respect to the basis \(\{|H\rangle, |V\rangle \} \). The polarization state of a single...
TABLE I. Generated history state corresponding to two time-steps. The discrete evolution of the system is seen as a trajectory on the Bloch sphere. The initial state of the system \(|\psi_0\rangle \) is described by the Stokes vector \((S_0, S_1, S_2, S_3) = (1.000, 0.040, 0.951, -0.026)\).

\(\langle \sigma_x \rangle\)	\(t_1\)	\(t_2\)
No 1	-0.6621	-0.9365
No 2	0.0541	0.0385

TABLE II. Idem Table I for four different history states corresponding to four time-steps.

\(\langle \sigma_x \rangle\)	\(\langle \sigma_y \rangle\)	\(\langle \sigma_z \rangle\)	\(\langle \sigma_x \rangle\)	\(\langle \sigma_y \rangle\)	\(\langle \sigma_z \rangle\)				
No 3	-0.6787	-0.9404	-0.9214	-0.6551	No 6	-0.6491	-0.7692	-0.8889	-0.9627
No 4	-0.6505	-0.9306	-0.6802	-0.9299	-0.4558	-0.7218	-0.6019	-0.2006	
No 5	-0.07357	-0.3465	-0.7122	-0.3147	No 5	-0.8689	-0.6673	-0.7789	-0.9632
No 6	-0.7093	-0.2996	-0.3614	-0.7277	-0.7312	-0.6167	-0.4331	-0.2030	

The photon is therefore given by

\[
\rho = \frac{1}{2} (I + r \cdot \sigma),
\]

with \(r = \frac{1}{S_0} (S_1, S_2, S_3)\), and a unitary transformation in polarization space corresponds then to a rotation of the Bloch vector \(r\), which will be associated to a Mueller matrix of the form

\[
M_R = \begin{pmatrix} 1 & 0 \\ 0 & m_R \end{pmatrix},
\]

where \(m_R\) denotes an arbitrary \(3 \times 3\) rotation matrix. A Mueller matrix such as that describes the effect of an ideal retarder. However, the SLM used in our implementation introduces not only retardance but also diattenuation. Therefore the Mueller matrix associated to a given gray level will not have the form (19) that maps to a unitary transformation in polarization space. It is possible, nonetheless, to extract from a general Mueller matrix a pure retardance matrix that accounts for the effective phase transformation introduced by the optical system, by means of the Lu-Chipman decomposition [37]. In this way, from the Mueller matrices obtained from the experimental characterization of the SLM we extracted a set of unitary matrices that describe the transformations performed on the polarization of the photon field for 54 gray levels between 0 and 255.

The set of unitary matrices described above allows us to simulate history states beyond those that we have actually implemented. Figure 4 shows examples of such simulated evolutions of the photon polarization as trajectories on the Bloch sphere.

In Fig. 5 we plot the system-time entanglement entropy associated with the trajectory determined by the 50 unitaries associated with the 50 experimentally determined Mueller matrices, for two different (random) initial states, as a function of the number of steps of the trajectories. Time-ordering corresponds to increasing gray levels. In the top panel the trajectory exhibits a loop starting at step \(\approx 35\), implying a decreasing distinguishability between evolved states in this sector which is reflected in a decrease of the \(E(S, T)\) entanglement for \(\approx 35\). In contrast, in the central panel \(E(S, T)\) increases linearly as the trajectory has no loops and does not cross itself.

The bottom panels depict \(E(S, T)\) for the two experimental eight-step trajectories of Table III. That on the left stays approximately constant after the third step,
since it is determined by a configuration with just two gray levels and the trajectory essentially oscillates between two non-orthogonal states $|\psi_1\rangle$ and $|\psi_2\rangle$. The value of $E(S,T)$ for a two-state periodic evolution is given by

$$E(S,T) = -\sum_{\nu=\pm} p_{\nu} \log_2 p_{\nu}, \quad p_{\pm} = \frac{1 \pm |\langle \psi_1 | \psi_2 \rangle|}{2}, \quad (20)$$

and the observed value $E(S,T) \approx 0.11$ is in agreement with the overlap $|\langle \psi_1 | \psi_2 \rangle| \approx 0.97$ between both states. This almost periodic trajectory is compatible with an approximately constant Hamiltonian $H = \frac{2}{\pi} n \cdot \sigma$, where n is a vector in the plane spanned by the Bloch vectors of $|\psi_1\rangle$ and $|\psi_2\rangle$, halfway between both states, such that e^{-iH} is a rotation of angle π around this axis and $e^{-iH}|\psi_1\rangle = |\psi_2\rangle$, $e^{-iH}|\psi_2\rangle = |\psi_1\rangle$.

On the other hand, on the bottom right plot, $E(S,T)$ increases almost linearly for $t \geq 5$, reflecting a trajectory where the distance between the evolved state $|\psi_t\rangle$ and the initial state increases monotonically, in agreement with the increasing gray values of the configuration. In this case the evolved states lie approximately within a plane and the trajectory is approximately compatible with a Hamiltonian $H = \alpha_1 n \cdot \sigma$, with n orthogonal to this plane and varying strength α_1 (or equivalently, constant α_t and varying time steps).

D. Evolution operators and entangling power

For any of these simulated history states we can now reconsider the generating operator $W = \sum_t U_t \otimes |t\rangle\langle t|$ which can be here expressed as

$$W = \sum_t \left(\frac{1}{2} \sum_{\mu} r_{\mu}(t) \sigma_\mu \right) \otimes |t\rangle\langle t| = \sum_{\mu} \lambda_\mu \sigma_\mu \otimes O_\mu. \quad (21)$$

Here we have first expanded the unitary operators in polarization space in the Pauli operators plus $\sigma_0 = \mathbb{1}$, with $r_{\mu}(t) = \text{Tr} U_t \sigma_\mu$ (and $\sum_{\mu} = \sum_{\mu=0}$), and then written the ensuing Schmidt decomposition [19], where σ_μ and O_μ are orthogonal operators in polarization and spatial spaces ($\text{Tr} \sigma_\mu \sigma_\nu = 2 \delta_{\mu\nu}$, $\text{Tr} (O_\mu O_\nu) = N \delta_{\mu\nu}$), and the real non-negative numbers λ_μ are the Schmidt coefficients, which satisfy $\sum_{\mu} \lambda_\mu^2 = 1$. They are singular values of the $4 \times N$ matrix $r_{\mu}(t)/\sqrt{N}$.

Time	Trajectory	t_1	t_2	t_3	t_4	t_5	t_6	t_7	t_8
$\langle \sigma_x \rangle$	No 4	-0.7110	-0.3183	-0.6819	-0.2957	-0.7112	-0.3432	-0.7315	-0.3496
$\langle \sigma_y \rangle$	No 7	-0.5961	-0.3058	-0.5848	-0.5961	-0.3058	-0.5848	-0.5961	-0.3058
$\langle \sigma_z \rangle$	No 5	-0.6614	-0.9382	-0.7017	-0.9303	-0.6475	-0.9263	-0.6473	-0.9180

TABLE III. Idem Table I for two different history states corresponding to eight time-steps.

![System-time entanglement entropy](image)

FIG. 6. System-time entanglement entropy $E(S,T)$ vs. number of steps. (Top panels) Trajectories in the polarization Bloch sphere and its $E(S,T)$ corresponding to the evolution of two different initial states under the same set of unitary operators. (Bottom panels) We depict the value of $E(S,T)$ through the two 8-steps trajectories of Table III.

Its quadratic entanglement, $E_2(W) = 2(1 - \sum_{\mu} \lambda_\mu^4)$ is proportional to the *entangling power* of W [10], which is the average quadratic entanglement it generates when applied to initial product states $|\psi_0\rangle H^\otimes n|0\rangle$ ($N = 2^n$):

$$\langle E_2(S,T) \rangle = \frac{dS}{dS + 1} E_2(W) , \quad (22)$$

where

$$\langle E_2(S,T) \rangle = \int H 2(1 - \text{Tr} \rho_S^2) d\psi_0 \quad (23)$$

is the average over all $|\psi_0\rangle$ of the quadratic entanglement entropy $E_2(S,T)$ of the history state, with the integral.
running over the whole set of initial states $|\psi_0\rangle$ with the Haar measure $d\psi_0$. We have verified this relation by considering the full set of available polarization unitaries which provided a value $E_2(W) = 0.712$. A simulation with 1000 random initial states satisfied the previous relation with and error less than 0.01.

IV. CONCLUSIONS

We have presented a simple optical implementation for realizing discrete history states. The approach is based on the entanglement between the polarization and spatial degrees of freedom generated by the SLM, and can be used to generate history states with a controllable number of time steps for a qubit system. It enables an efficient determination of time averages through a single measurement. The experimental results obtained with the previous scheme show in fact and excellent agreement between the direct and sequential method, and also with the theoretical results. The associated “system-clock” entanglement, which is a measure of the distinguishability of the evolved polarization states, was also determined and shown to characterize the basic features of the discrete trajectories obtained for different initial states. The entangling power of the setup, which determines the average quadratic entanglement that it generates when applied to random initial states, was also analyzed. Variations of the present scheme based on two entangled photons could provide a realization of discrete history states of higher dimensional systems, and are currently under development.

ACKNOWLEDGMENTS

We express our gratitude to Prof. C. T. Schmiegelow for providing us with the sCMOS camera. This work was supported by the Agencia Nacional de Promoción de Ciencia y Técnica ANPCyT (PICT 2014-2432) and Universidad de Buenos Aires (UBACyT 20020170100040B). R. R. acknowledges support from CIC of Argentina.
[35] A. Lizana, I. Moreno, A. Márquez, C. Iemmi, E. Fernández, J. Campos, and M. J. Yzuel, Opt. Express 16, 16711 (2008).

[36] A. Lizana, A. Márquez, L. Lobato, Y. Rondange, I. Moreno, C. Iemmi, and J. Campos, Opt. Express 18, 10581 (2010).

[37] S.-Y. Lu and R. A. Chipman, J. Opt. Soc. Am. A 13, 1106 (1996).