World Journal of Hepatology

World J Hepatol 2017 July 18; 9(20): 867-906
REVIEW
867 Value of quality of life analysis in liver cancer: A clinician’s perspective
 Li L, Yeo W

ORIGINAL ARTICLE
Retrospective Cohort Study
884 Impact of comorbidity on waiting list and post-transplant outcomes in patients undergoing liver retransplantation
 Al-Freah MAB, Moran C, Foxton MR, Agarwal K, Wendon JA, Heaton ND, Heneghan MA

Prospective Study
896 Bacterial infections post-living-donor liver transplantation in Egyptian hepatitis C virus-cirrhotic patients: A single-center study
 Montasser MF, Abdelkader NA, Abdelhakam SM, Dabbous H, Montasser IF, Massoud YM, Abdelmoaty W, Saleh SA, Bahaa M, Said H, El-Meteini M

LETTERS TO THE EDITOR
905 Changing landscape of hepatitis C virus-positive donors
 Kling CE, Limaye AP, Sibulesky L
ABOUT COVER

Editorial Board Member of World Journal of Hepatology, Manuel L Rodriguez-Peralvarez, MD, PhD, Senior Postdoctoral Fellow, Department of Hepatology and Liver Transplantation, Reina Sofia University Hospital, Cordoba 14014, Spain

AIM AND SCOPE

World Journal of Hepatology (World J Hepatol, WJH, online ISSN 1948-5182, DOI: 10.4254), is a peer-reviewed open access academic journal that aims to guide clinical practice and improve diagnostic and therapeutic skills of clinicians.

WJH covers topics concerning liver biology/pathology, cirrhosis and its complications, liver fibrosis, liver failure, portal hypertension, hepatitis B and C and inflammatory disorders, steatohepatitis and metabolic liver disease, hepatocellular carcinoma, biliary tract disease, autoimmune disease, cholestatic and biliary disease, transplantation, genetics, epidemiology, microbiology, molecular and cell biology, nutrition, geriatric and pediatric hepatology, diagnosis and screening, endoscopy, imaging, and advanced technology. Priority publication will be given to articles concerning diagnosis and treatment of hepatology diseases. The following aspects are covered: Clinical diagnosis, laboratory diagnosis, differential diagnosis, imaging tests, pathological diagnosis, molecular biological diagnosis, immunological diagnosis, genetic diagnosis, functional diagnostics, and physical diagnosis; and comprehensive therapy, drug therapy, surgical therapy, interventional treatment, minimally invasive therapy, and robot-assisted therapy.

We encourage authors to submit their manuscripts to WJH. We will give priority to manuscripts that are supported by major national and international foundations and those that are of great basic and clinical significance.

INDEXING/ABSTRACTING

World Journal of Hepatology is now indexed in Emerging Sources Citation Index (Web of Science), PubMed, PubMed Central, and Scopus.

FLYLEAF

I-IV Editorial Board

EDITORS FOR THIS ISSUE

Responsible Assistant Editor: Xiang Li
Responsible Science Editor: Fang-Fang Ji
Responsible Electronic Editor: Huan-Liang Wu
Proofing Editor-in-Chief: Lian-Sheng Ma

PUBLICATION DATE

July 18, 2017

COPYRIGHT

© 2017 Baishideng Publishing Group Inc. Articles published by this Open Access journal are distributed under the terms of the Creative Commons Attribution Non-commercial License, which permits use, distribution, and reproduction in any medium, provided the original work is properly cited, the use is non commercial and is otherwise in compliance with the license.

SPECIAL STATEMENT

All articles published in journals owned by the Baishideng Publishing Group (BPG) represent the views and opinions of their authors, and not the views, opinions or policies of the BPG, except where otherwise explicitly indicated.

INSTRUCTIONS TO AUTHORS

http://www.wjgnet.com/bpg/giinfo/204

ONLINE SUBMISSION

http://www.f6publishing.com
Prospective Study

Bacterial infections post-living-donor liver transplantation in Egyptian hepatitis C virus-cirrhotic patients: A single-center study

Mohamed F Montasser, Nadia A Abdelkader, Sara M Abdelhakam, Hany Dabbous, Iman F Montasser, Yasmine M Massoud, Waleed Abdelmoaty, Shereen A Saleh, Mohamed Bahaa, Hany Said, Mahmoud El-Meteini

Mohamed F Montasser, Nadia A Abdelkader, Sara M Abdelhakam, Hany Dabbous, Iman F Montasser, Yasmine M Massoud, Waleed Abdelmoaty, Department of Tropical Medicine, Faculty of Medicine, Ain Shams University, Cairo 11341, Egypt

Shereen A Saleh, Department of Internal Medicine, Faculty of Medicine, Ain Shams University, Cairo 11341, Egypt

Mohamed Bahaa, Hany Said, Mahmoud El-Meteini, Department of Hepatobiliary Surgery, Ain Shams Center for Organ Transplant, Faculty of Medicine, Ain Shams University, Cairo 11341, Egypt

Author contributions: Montasser MF and El-Meteini M contributed equally to the work; Montasser MF, El-Meteini M, Abdelkader NA, Abdelhakam SM, Dabbous H and Montasser IF designed the research; Montasser MF, El-Meteini M, Dabbous H, Montasser IF, Massoud YM, Abdelmoaty W, Saleh SA, Bahaa M and Said H performed the research; Montasser MF, El-Meteini M, Abdelkader NA, Abdelhakam SM, Massoud YM, Saleh SA, Bahaa M and Said H contributed analytical tools; Montasser MF, El-Meteini M, Abdelkader NA, Abdelhakam SM, Dabbous H, Montasser IF, Massoud YM and Abdelmoaty W analyzed the data; Abdelkader SM, Dabbous H, Montasser IF, Massoud YM, Abdelmoaty W and Saleh SA wrote the paper.

Institutional review board statement: This study was reviewed and approved by the Research Ethics Committee of Faculty of Medicine, Ain Shams University Institutional Review Board.

Clinical trial registration statement: This study is registered at https://clinicaltrials.gov/ct2/show/NCT02777632, and the registration identification number is: NCT02777632.

Informed consent statement: All study participants provided written informed consent prior to study enrollment.

Conflict-of-interest statement: None of the authors have any conflicts of interest or financial disclosures.

Data sharing statement: The technical appendix, statistical code, and dataset are available from the corresponding author at saratropical@yahoo.com. The participants gave informed consent for the data sharing.

Open-Access: This article is an open-access article which was selected by an in-house editor and fully peer-reviewed by external reviewers. It is distributed in accordance with the Creative Commons Attribution Non Commercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited and the use is non-commercial. See: http://creativecommons.org/licenses/by-nc/4.0/

Manuscript source: Invited manuscript

Correspondence to: Sara M Abdelhakam, MD, Assistant Professor, Department of Tropical Medicine, Faculty of Medicine, Ain Shams University, Khalifa El-Maamon St., Abbassia, Cairo 11341, Egypt, sara_abdelhakam@med.asu.edu.eg

Telephone: +20-22-1601548
Fax: +20-22-2598751

Received: February 8, 2017
Peer-review started: February 14, 2017
First decision: April 17, 2017
Revised: May 8, 2017
Accepted: June 12, 2017
Article in press: June 13, 2017
Published online: July 18, 2017

Abstract

AIM

To determine risk factors, causative organisms and...
antimicrobial resistance of bacterial infections following living-donor liver transplantation (LDLT) in cirrhotic patients.

METHODS

This prospective study included 45 patients with hepatitis C virus-related end-stage liver disease who underwent LDLT at Ain Shams Center for Organ Transplant, Cairo, Egypt from January 2014 to November 2015. Patients were followed-up for the first 3 mo after LDLT for detection of bacterial infections. All patients were examined for the possible risk factors suggestive of acquiring infection pre-, intra- and post-operatively. Positive cultures based on clinical suspicion and patterns of antimicrobial resistance were identified.

RESULTS

Thirty-three patients (73.3%) suffered from bacterial infections; 21 of them had a single infection episode, and 12 had repeated infection episodes. Bile was the most common site for both single and repeated episodes of infection (28.6% and 27.8%, respectively). The most common isolated organisms were gram-negative bacteria. *Acinetobacter baumannii* was the most common organism isolated from both single and repeated infection episodes (19% and 33.3%, respectively), followed by *Escherichia coli* for repeated infections (11.1%), and *Pseudomonas aeruginosa* for single infections (19%). Levofloxacin showed high sensitivity against repeated infection episodes (P = 0.03). *Klebsiella, Acinetobacter* and *Pseudomonas* were multi-drug resistant (MDR). Pre-transplant hepatocellular carcinoma (HCC) and duration of drain insertion (in days) were independent risk factors for the occurrence of repeated infection episodes (P = 0.024).

CONCLUSION

MDR gram-negative bacterial infections are common post-LDLT. Pre-transplant HCC and duration of drain insertion were independent risk factors for the occurrence of repeated infection episodes.

Key words: Living-donor liver transplantation; Bacterial infection; Multi-drug resistance; Hepatitis C virus; Liver cirrhosis

© The Author(s) 2017. Published by Baishideng Publishing Group Inc. All rights reserved.

Core tip: We evaluated 45 patients with hepatitis C virus-related end-stage liver disease for the occurrence of bacterial infections during the first 3 mo post-living-donor liver transplantation. Thirty-three patients (73.3%) suffered from bacterial infections; 21 of them had a single infection episode, and 12 had repeated infection episodes. Bile was the most common site for both single and repeated episodes of infection (28.6% and 27.8%, respectively). Multi-drug resistant gram-negative bacteria, especially *Klebsiella, Acinetobacter* and *Pseudomonas*, were the most commonly isolated bacteria. Pre-transplant hepatocellular carcinoma and duration of drain insertion were independent risk factors for occurrence of repeated infection episodes.

Montasser MF, Abdelkader NA, Abdelhakam SM, Dabbous H, Montasser IF, Massoud YM, Abdelmoaty W, Saleh SA, Bahaa M, Said H, El-Meteini M. Bacterial infections post-living-donor liver transplantation in Egyptian hepatitis C virus-cirrhotic patients: A single-center study. *World J Hepatol* 2017; 9(20): 896-904

Available from: URL: http://www.wjgnet.com/1948-5182/full/v9/i20/896.htm DOI: http://dx.doi.org/10.4254/wjh.v9.i20.896

INTRODUCTION

Infection following living-donor liver transplantation (LDLT) is a serious problem with a high mortality rate reaching 50%. Many factors were associated with high risks of acquiring infection following LDLT, including the difficulty of surgery, the poor patient’s condition, and the immunosuppressive drugs[1].

Nearly 80% of recipients develop one infection episode during the first year, predominantly during the first three months post-transplant. Bacterial infections account for 50%-75% of infections post-LDLT and commonly occur in the first month post-transplant[2].

Patients may become infected with antimicrobial-resistant bacteria, especially methicillin-resistant *Staphylococcus aureus*, vancomycin-resistant *Enterococcus faecalis*, *Clostridium difficile*, and gram-negative bacteria[3]. Currently, multidrug-resistant (MDR) organisms are the most common cause of nosocomial infections in liver transplant recipients[4].

Multiple organism infection is common as well as concurrent infections caused by different infectious agents[4]. Infections are usually difficult to diagnose because the usual manifestations of infection, such as fever and leukocytosis, may be absent and because of the need to exclude an acute rejection episode[5].

The aim of the present study was to determine risk factors, causative organisms and antimicrobial resistance patterns of bacterial infections following LDLT in Egyptian cirrhotic patients.

MATERIALS AND METHODS

Forty-five adult patients with hepatitis C virus (HCV)-related end-stage liver disease (ESLD) who were eligible for and underwent LDLT at Ain Shams Center for Organ Transplant, Cairo, Egypt, during the period from January 2014 to November 2015, were included in the current prospective study. They were followed-up for the first 3 mo post-LDLT for detection of bacterial infections.

Patients with other etiologies for ESLD (hepatitis B virus, primary biliary cirrhosis, and others) and patients with pre-operative infections, infections within 48 h after transplantation or early post-operative death
were excluded.

Each patient provided an informed written consent prior to enrollment. The study protocol was accepted by the Research Ethical Committee of the Faculty of Medicine-Ain Shams University. This was in accordance to the ethical guidelines of the 1975 Declaration of Helsinki.

Immunosuppressive drugs

Immediately following liver transplantation (LT), we used triple-therapy of immunosuppressive drugs which was comprised of a steroid, a calcineurin inhibitor: Cyclosporine or tacrolimus, and mycophenolate mofetil. In patients with renal dysfunction, immunosuppression with monoclonal antibodies to T-cells was used. In patients with hepatocellular carcinoma (HCC), tacrolimus monotherapy was used to decrease the incidence of HCC recurrence.

Antimicrobial prophylaxis

Piperacillin/tazobactam 4.5 mg/d was used post-operatively for 5 d. A polymerase chain reaction (PCR) assay for cytomegalovirus (CMV) was done every two weeks until patient’s discharge. Ganciclovir for prevention of CMV disease was used if the PCR assay was positive.

Checked parameters

All patients were checked for the following parameters: (1) pre-operatively: Demographic data, other co-morbidities, presence of HCC, any bridging techniques, Child and MELD scores, CBC with differential cell count, liver profile, C-reactive protein, serum ferritin, documented or suspected SBP and third generation cephalosporin administration, renal impairment, and positive cultures; (2) intra-operatively: Total operative period, cold and warm ischemia time, amount of transfused blood or blood products and type of biliary anastomosis; and (3) post-operatively: Intensive care unit stay, ventilator duration, duration of central venous line and catheter insertion, duration of abdominal drain placement, dialysis post-transplant and immunosuppressive drugs.

Case identification

Post-operative infection was defined as any positive culture, based on clinical suspicion, within 3 mo following LDLT, according to the Centers for Disease Control and Prevention’s definition of a nosocomial infection and as described in liver transplant recipients’[6,7]. The diagnosis of wound infection was established by the presence of redness/induration and the presence of pus on exploration and/or positive wound culture. The diagnosis of urinary tract infection was based upon the following criteria: The patient has at least one of the following symptoms or signs with no other identified cause: fever (≥ 38 °C), dysuria, frequency, urgency, suprapubic or costovertebral angle pain or tenderness, as well as a positive urine culture, that is, ≥ 10^5 CFU/mL of urine with no more than 2 species of microorganisms. The diagnosis of pneumonia was based upon the presence of pulmonary infiltrates together with clinical symptoms indicating lower respiratory tract infection, the identification of a relevant etiologic microorganism, and the absence of another possible diagnosis during the follow-up. Bloodstream infection was diagnosed when microorganisms were isolated from one blood culture. Ascitic fluid cultures were performed for all patients with manifestations of bacterial peritonitis or who were suspected of having bacterial peritonitis. Samples were collected before the start of any antimicrobial treatment. Bile samples were withdrawn for those suspected of having a biliary tract infection. In cases of suspected sepsis-induced cholestasis, cultures from blood, the biliary tube, abdominal drains, urine, and sputum were collected, and culture-based treatment was started accordingly.

The term multidrug-resistant (MDR) was used to refer to pathogens resistant to three or more classes of the following antibiotics: extended-spectrum penicillins, 3rd generation cephalosporins, quinolones, carbapenems, and aminoglycosides[8].

Recruited patients were divided into two groups. Group 1 included patients who had a single episode of post-operative bacterial infection, and Group 2 included those patients who had more than one episode of a bacterial infection.

Statistical analysis

Statistical analyses were performed using IBM® SPSS® Statistics version 22 (IBM® Corp., Armonk, NY, United States). Continuous numerical variables were shown as the mean and standard deviation, and differences between groups were compared using the unpaired t test. Discrete numerical variables were shown as the median and interquartile range, and the Mann-Whitney test was used to compare intergroup differences. Categorical data were shown as ratios or as the number and percentage, and differences between groups were compared using Pearson’s χ² test or Fisher’s exact test. Variables shown to be significantly associated with the occurrence of repeated infection episodes by univariate analysis were entered in multivariate binary logistic regression analysis to identify independent predictors of this outcome. Time-to-event analysis was done using the Kaplan-Meier method, and the log-rank test was used to compare individual Kaplan-Meier curves. A P-value < 0.05 was considered significant.

The statistical methods for this study were performed by Sameh M. Hakim, Diploma of Medical Biostatistics, Faculty of Medicine of Ain Shams University, Cairo, Egypt.

RESULTS

The present study enrolled forty-five adult patients...
with HCV-related ESLD, and each patient was followed-up for 3 mo post-LDLT for the occurrence of bacterial infections. Thirty-three patients (73.3%) suffered from bacterial infections post-transplant and fulfilled the inclusion criteria. They were further subdivided into two groups. Group 1 included 21 patients who developed a single episode of infection (19 males and 2 females), and Group 2 included 12 patients (all of them were males) who developed recurrent episodes of infection (total number of attacks = 36) throughout the follow-up period.

Table 1 shows the comparison between patients who developed a single episode of infection post-LDLT and those who developed repeated episodes of infection regarding pre-operative parameters. The presence of pre-transplant hepatocellular carcinoma (HCC) showed a statistically significant increased risk of developing repeated episodes of infection post-LDLT ($P = 0.033$). There was no significant difference between patients who developed a single episode and those who developed repeated episodes of infection regarding the operative details ($P > 0.05$) (Table 2).

Table 2 shows that the duration of drain insertion revealed a statistically significant increased risk for the development of repeated episodes of infection ($P = 0.002$).

Table 3 shows that bile was found to be the most common site for both single and repeated episodes of infection (28.6% and 27.8%, respectively), followed by the bloodstream for repeated infection episodes (22.2%) and drains for a single infection episode (23.8%).

The most common isolated organisms were gram-negative bacteria for both single and repeated episodes of infections. *Acinetobacter baumannii* was found solely to be the most common organism isolated from both single and repeated infection episodes (19% and 33.3%, respectively), followed by *Escherichia coli* (*E. coli*) for repeated infections (11.1%), and *Pseudomonas aeruginosa* for a single infection (19%). Additionally, *Acinetobacter baumannii* was found in combination with other organisms in three cultures.

Table 5 shows the antimicrobial sensitivity pattern in patients who suffered from single vs repeated episodes of infection. The sensitivity of levofloxacin was found to be statistically significant against repeated episodes of infection ($P = 0.03$). Repeated episodes of infection showed 100% resistance to piperacillin and co-trimoxazole. Both single and repeated episodes of infections were 100% resistant to cefotaxime and aztreonam.

Regarding the pattern of resistance of isolated organisms to the major antibiotic groups, most of the isolated gram-negative organisms were found to be resistant to several groups of antibiotics; especially *Klebsiella* species, *Acinetobacter baumannii* and *Pseudomonas aeruginosa*, all of which were proven to be MDR.

The detailed antibiotic-resistance pattern was as follows: For *Klebsiella* species, 100% of the isolates showed resistance to each of the quinolones and aminoglycosides, 87.5% showed resistance to cephalosporins, 80% to carbapenems, and 25% showed resistance to piperacillin-tazobactam. For *Acinetobacter baumannii*, 100% of the isolates showed resistance to aminoglycosides, 60% to carbapenems, 46.5% to quinolones, 42% to cephalosporins, and 33.3% showed resistance to piperacillin-tazobactam. For *Pseudomonas aeruginosa*, 100% of the isolates showed resistance to quinolones, and 83.3% showed resistance to carbapenems.
resistance to cephalosporins. Meanwhile, 100% of them were sensitive to aminoglycosides, piperacillin-tazobactam and carbapenems. For *E. coli*, 70% of the isolates showed resistance to cephalosporins, 50% to quinolones, and 25% showed resistance to aminoglycosides. Moreover, 100% of them were sensitive to piperacillin-tazobactam and carbapenems.

Table 2 Comparison between patients who developed single episode and those who developed repeated episodes of infection regarding operative details

	Single episode (n = 21)	Repeated episodes of infection (n = 12)	P value
CIT (min), mean ± SD	43.6 ± 17.3	50.8 ± 17.7	0.259
WIT (min), mean ± SD	45.7 ± 13.4	50.8 ± 12.4	0.288
Recipient’s operative time (h), mean ± SD	10.3 ± 1.1	10.5 ± 1.5	0.704
Packed red cell transfusion (U), (median, interquartile range)	2 (2-4)	3 (2-6)	0.493

CIT: Cold ischemia time; WIT: Warm ischemia time.

Table 3 Length of intensive care unit stay, length of exposure to invasive procedures, and time to occurrence of infection in patients who suffered from single vs repeated episodes of infection

	Single episode (n = 21)	Repeated episodes of infection (n = 12)	P value
Length of ICU stay (d)	6 (5-7)	7 (5-7)	0.969
Days on mechanical ventilator	1 (1-1)	1 (1-1)	0.176
Days with CVC	6 (5-7)	6 (5-7)	0.770
Days with urinary catheter	6 (5-7)	7 (6-8)	0.467
Days with drains	17 (15-20)	25 (21-30)	0.002
Time-to-infection (d)	14 (12-17)	9 (6-19)	0.189

Data are presented as median (interquartile range). ICU: Intensive care unit; CVC: Central venous catheter.

Table 4 Site of infection and implicated organisms in patients who suffered from single vs repeated episodes of infection n (%)

Site of organism isolation	Single episode (n = 21)	Repeated episodes of infection (n = 36)	P value
Bile	6 (28.6)	10 (27.8)	
Wound	1 (4.8)	2 (5.6)	
Sputum	3 (14.3)	7 (19.4)	
Blood	5 (23.8)	7 (19.4)	
Urine	2 (9.5)	5 (13.9)	
Ascitic fluid	1 (4.8)	0 (0.0)	
Organism isolated			0.456
Coagulase (-) Staph. aureus	3 (14.3)	1 (2.8)	
Staph. aureus	0 (0.0)	1 (2.8)	
MRSA	3 (14.3)	1 (2.8)	
E. coli	2 (9.5)	4 (11.1)	
Klebsiella species	0 (0.0)	2 (5.6)	
Pseudomonas aeruginosa	0 (0.0)	2 (5.6)	
Acinetobacter baumannii	4 (19.0)	12 (33.3)	
Proteus	0 (0.0)	2 (5.6)	
Enterobacteriaceae	1 (4.8)	1 (2.8)	
Enteroxici	1 (4.8)	2 (5.6)	
Bacillus species	0 (0.0)	2 (5.6)	
Pseudomonas + Acinetobacter	1 (4.8)	0 (0.0)	
Pseudomonas + Klebsiella	0 (0.0)	0 (0.0)	
Acinetobacter + Klebsiella	0 (0.0)	1 (2.8)	
Acinetobacter + coagulase (-)	0 (0.0)	0 (0.0)	
Staph. aureus	0 (0.0)	1 (2.8)	

1Represents the total number of attacks occurred among the 12 patients who developed repeated episodes of infections. MRSA: Methicillin-resistant *Staphylococcus aureus*.

DISCUSSION

Infectious complications have become the most common sources of mortality and morbidity following LT. Multiple organism infection is common. The occurrence of infection following LT is due to the dysfunction of the patient’s defensive mechanisms, as a result of liver cirrhosis and the use of immunosuppressant drugs[4].

The current study included 45 patients with HCV-related ESLD who were eligible for and underwent LDLT at Ain Shams Center for Organ Transplant, Cairo, Egypt during the period from January 2014 to November 2015. They were followed-up for the first 3 mo post-LDLT for the detection of bacterial infections.

In the current study, 73.3% of included patients developed a nosocomial bacterial infection in the first 3 mo post-LDLT. This finding is in agreement with previous reports, which denoted a high incidence of bacterial infections post-LDLT ranging from 50% to 75%[5,6].
In the current study, the presence of pre-transplant HCC was an independent risk factor for the occurrence of repeated episodes of bacterial infection in the recipients during the early post-transplant period. HCC patients are more susceptible to infection due to poor long-term nutrition, poor physical condition and weak immune system\(^1\).

In the present study, the duration of time for abdominal drain placement was considered an independent risk factor for the development of repeated episodes of bacterial infection as confirmed by the multivariate binary logistic regression model. Patients with prolonged drain insertion time had an increased risk of developing recurrent episodes of infection compared to patients who had less drain insertion time.

Results in our study revealed that the major sites of bacterial infections in patients who experienced a single infection episode were as follows: Bile (28.6%), followed by the drains (23.8%), sputum (14.3%), bloodstream infections (14.3%), urine (9.5%) and lastly wound and ascitic fluid infection (4.8%) each. These results were in accordance with another Egyptian multicenter study performed by Mukhtar \(et\ al\)\(^1\). In contrast, Kim \(et\ al\)\(^9\) and Iida \(et\ al\)\(^10\) revealed that the most dominant bacterial infection was bacteremia, which was catheter-related. El-Araby \(et\ al\)\(^11\) showed that the main sites of infection were the chest (24.4%), followed by the bile duct or cholangitis (17.1%), and

Antimicrobial	All episodes of infection \(n = 57\)	Single episode of infection \(n = 21\)	Repeated episodes of infection \(n = 36\)	\(P\) value
Levofloxacin	S 11 (52.4)	2 (22.2)	9 (75.0)	0.030
	R 10 (47.6)	7 (77.8)	3 (25.0)	
Ciprofloxacin	S 5 (38.5)	0 (0.0)	5 (45.5)	0.487
	R 8 (61.5)	2 (100.0)	6 (54.5)	
Co-trimoxazole	S 1 (7.1)	0 (0.0)	1 (10.0)	1.000
	R 13 (92.9)	4 (100.0)	9 (90.0)	
Penicillin	S 1 (11.1)	1 (14.3)	0 (0.0)	1.000
	R 8 (88.9)	6 (85.7)	2 (100.0)	
Doxycycline	S 14 (77.8)	5 (100.0)	9 (69.2)	0.278
	R 4 (22.2)	0 (0.0)	4 (30.8)	
Vancomycin	S 8 (88.9)	4 (100.0)	4 (80.0)	1.000
	R 1 (11.1)	0 (0.0)	1 (20.0)	
Piperacillin-tazobactam	S 8 (72.7)	3 (75.0)	5 (71.4)	1.000
	R 3 (27.3)	1 (25.0)	2 (28.6)	
Aminoglycosides	S 9 (75.0)	1 (50.0)	8 (80.0)	0.455
	R 3 (25.0)	1 (50.0)	2 (20.0)	
Imipenem	S 20 (69.0)	8 (88.9)	12 (60.0)	0.201
	R 9 (31.0)	1 (11.1)	8 (40.0)	
Ceftriaxone	S 7 (38.9)	1 (16.7)	6 (50.0)	0.316
	R 11 (61.1)	5 (83.3)	6 (50.0)	
Cefotaxime	R 8 (100.0)	7 (100.0)	1 (100.0)	-
Aztreonam	R 6 (100.0)	1 (100.0)	5 (100.0)	-

S: Sensitive; R: Resistant.

Regression coefficient	SE	Odds ratio	95% CI	\(P\) value
Donor’s age (yr)	0.05	1.05	0.90-1.23	0.552
Hepatocellular carcinoma (HCC = 1, no HCC = 0)	3.24	25.44	1.53-422.21	0.024
Duration of drain insertion (d)	0.32	1.38	1.04-1.83	0.024
Constant	-10.28			

Model diagnostics

-2 Log Likelihood test: \(P\) value < 0.001
Hosmer and Lemeshow test: \(P\) value 0.369
Correct classification rate: 87.88%

ROC curve analysis

AUC: 0.935 (95% CI: 0.791-0.991; \(P\) value < 0.0001)
Sensitivity, %: 91.7 (95% CI: 61.5-99.8)
Specificity, %: 81.0 (95% CI: 58.1-94.6)
PPV, %: 73.3 (95% CI: 43.8-92.7)
NPV, %: 94.4 (95% CI: 72.7-99.9)

HCC: Hepatocellular carcinoma; AUC: Area under ROC curve; ROC: Receiver-operating characteristic; PPV: Positive predictive value; NPV: Negative predictive value.
Montasser MF et al. Bacterial infections following LDLT

Table 7 Results of the Kaplan-Meier analysis for time to infection in patients who suffered from single and repeated infection episodes

	Single infection episode (n = 21)	Repeated infection episodes (n = 12)
Median time to infection (d)	14 (95%CI: 13-16)	8.5 (95%CI: 6-17)
Hazard ratio	1.16 (95%CI: 56-2.40)	1.16 (95%CI: 56-2.40)
Log-rank test		P value = 0.647

Repeate episodes (19% each), followed by methicillin resistant Staphylococcus aureus (MRSA) and coagulase-negative Staphylococcus aureus (14.3% each), and Klebsiella species and E. coli (9.5% each). These results were in accordance with Zhong et al[15]. However, Sganga et al[13] and Iida et al[10] concluded that Pseudomonas aeruginosa was the most common isolated organism.

At present, MDR organisms are the most common causes of nosocomial infections in post-LDLT patients. Zhong et al[15] found that MDR gram-negative bacilli were isolated in 56% of patients with gram-negative infection, which was in accordance with Shi et al[14], who stated that the three most common pathogens of MDR gram-negative bacilli were Acinetobacter baumannii, E. coli and Klebsiella species. This finding is not fully consistent with a previous report by Pappas et al[10] who found that the four most common MDR gram-negative bacilli were E. coli, Klebsiella pneumoniae, Pseudomonas aeruginosa and Acinetobacter baumannii. The difference in the findings between the studies was related to differences in patients’ underlying diseases and nosocomial infections.

Our results are consistent to some extent with that of Mukhtar et al[1] in their retrospective multicenter Egyptian study on bacterial infections post-LDLT. The authors reported that Pseudomonas aeruginosa was the most commonly isolated species (26%), followed by Klebsiella (19%), E. coli (16%), Acinetobacter baumannii (8%), and MRSA (7.7%). In their study, 75% of the gram-negative bacteria were MDR, including 90% of Acinetobacter baumannii isolates, 76% of Pseudomonas aeruginosa isolates, 57% of Klebsiella species isolates, and 53% of E. coli isolates.

Our study revealed that most of the gram-negative organisms were found to be resistant to several groups of antibiotics, especially Klebsiella species, Acinetobacter baumannii and Pseudomonas aeruginosa, which proved to be MDR. In the study of Zhong et al[15] Acinetobacter baumannii displayed resistance to all antibiotic groups, including β-lactams, quinolones, and aminoglycosides and even showed high resistance to carbapenems, including 100% resistance to meropenem and imipenem. E. coli was found to be sensitive to aminoglycosides, carbapenems and piperacillin-tazobactam but showed a pattern of resistance to cephalosporins. Among all the antibiotics used in the current cohort, levofloxacin was found to be of

Lastly, the bloodstream (12.2%). However, Kawecki et al[12] revealed that the urinai tract was the main site of infection after LDLT. The discrepancies between the major sites of post-transplant infection between the different centers are most likely related to the variability of the hygienic measures, infection control programs, as well as the peri-, intra- and post-operative disparities.

In the current study, the most common isolated organisms were the gram-negative bacteria for both single and repeated episodes of infections, and these results were consistent with Al-Araby et al[11] and Linares et al[13]. Shi et al[14] reported the same results and explained that the prevalence of gram-negative bacteria may be because these bacteria are inhabitants of the digestive tract. In the current study, Acinetobacter baumannii and Pseudomonas aeruginosa were found to be the most common organisms in the

Figure 1 Receiver-operating characteristic curve derived from the multivariate binary logistic regression model for prediction of the occurrence of repeated episodes of infection. AUC = 0.935 (95%CI: 79.1%-99.1%; P < 0.0001); sensitivity: 91.7% (95%CI: 61.5%-99.8%); specificity: 81.0% (95%CI: 58.1%-94.6%); PPV: 73.3% (95%CI: 43.8%-92.7%); NPV: 94.4% (95%CI: 72.7%-99.9%); AUC: Area under ROC curve; PPV: Positive predictive value; NPV: Negative predictive value.

Figure 2 Kaplan-Meier curves for the time-to-infection in patients who suffered from single and repeated episodes of infection. HR = 1.16 (95%CI: 56%-92.4%; P = 0.647).
statistical significance regarding its sensitivity in the treatment of repeated episodes of infection. It is worth mentioning that all infection episodes in our study occurred in the first month post-operative and by applying Kaplan-Meier analysis for time-to-infection. The median time-to-infection was 14 d in the single infection episode group and 8.5 d in the repeated infection episodes group. Similarly, previous studies have reported that the majority of bacterial infections occurred during the first month following LT1,17.

In conclusion, MDR gram-negative bacterial infections are common post-LDLT. Pre-transplant HCC and duration of drain insertion are independent risk factors for the occurrence of repeated infection episodes.

ACKNOWLEDGMENTS
The authors gratefully acknowledge members of the Ain Shams Center for Organ Transplant, Cairo, Egypt for their support.

COMMENTS

Background
Bacterial infections are common following living-donor liver transplantation (LDLT), especially multiple-organism infections. The occurrence of following liver transplantation is due to the dysfunction of the patient’s defensive mechanisms, as a result of liver cirrhosis and the use of immunosuppressant drugs.

Research frontiers
The authors assessed 45 patients with hepatitis C virus-related end-stage liver disease for the occurrence of bacterial infections during the first 3 mo post-LDLT. Thirty-three patients (73.3%) suffered from bacterial infections; 21 patients experienced a single episode of infection, and 12 patients experienced repeated episodes of infection. Bile was the most common site for both single and repeated episodes of infection (28.6% and 27.8%, respectively). Multi-drug resistant (MDR) gram-negative bacteria, especially Klebsiella, Acinetobacter and Pseudomonas, were the most commonly isolated bacteria. Pre-transplant hepatocellular carcinoma and duration of drain insertion were independent risk factors for the occurrence of repeated infection episodes.

Innovations and breakthroughs
This study is a single-center Egyptian study that addresses risk factors, causative organisms and antimicrobial resistance of bacterial infections following LDLT in cirrhotic patients.

Applications
The findings in this study may help in determining the proper antimicrobial prophylaxis for cirrhotic patients pre-LDLT.

Terminology
MDR was used to refer to pathogens resistant to three or more classes of the following antibiotics: Extended-spectrum penicillins, 3rd generation cephalosporins, quinolones, carbapenems, and aminoglycosides.

Peer-review
Acceptance of this manuscript for publication is recommended.

REFERENCES
1 Mukhtar A, Abdelaal A, Hussein M, Dabous H, Fawzy I, Obayah G, Hasanin A, Adel N, Ghaith D, Bahaa M, Abdelaal A, Fathy M, El Meinei M. Infection complications and pattern of bacterial resistance in living-donor liver transplantation: a multicenter epidemiologic study in Egypt. Transplant Proc 2014; 46: 1444-1447 [PMID: 24935311 DOI: 10.1016/j.transproceed.2014.02.022]
2 Saner FH, Olde Damink SW, Pavlakovic G, van den Broek MA, Rath PM, Sotirooulos GC, Radtke A, Canbay A, Paul A, Nadalin S, Malagò M, Broelsch CE. Pulmonary and blood stream infections in adult living donor and cadaveric liver transplant patients. Transplantation 2008; 85: 1564-1568 [PMID: 18551060 DOI: 10.1097/TP.0b013e31816f1b6f]
3 del Pozo JL. Update and actual trends on bacterial infections following liver transplantation. World J Gastroenterol 2008; 14: 4977-4983 [PMID: 18763277 DOI: 10.3748/wjg.v14.i49.4977]
4 Fagiulli S, Colli A, Bruno R, Burrà P, Craxì A, Gaeta GB, Grossi P, Mondelli MU, Puoti M, Sagnelli E, Stefani S, Toniutto P. Management of infections in cirrhotic patients: report of a consensus conference. Dig Liver Dis 2014; 46: 204-212 [PMID: 24021271 DOI: 10.1016/j.dld.2013.07.015]
5 Sganga G, Bianco G, Fiori B, Nure E, Spanu T, Lirosi MC, Frongillo F, Agnes S. Surveillance of bacterial and fungal infections in the postoperative period following liver transplantation: a series from 2005-2011. Transplant Proc 2013; 45: 2718-2721 [PMID: 24034031 DOI: 10.1016/j.transproceed.2013.08.010]
6 Garner JS, Jarvis WR, Emori TG, Hornan TC, Hughes JM. CDC definitions for nosocomial infections, 1988. Am J Infect Control 1988; 16: 126-140 [PMID: 2841893]
7 CDC definitions for nosocomial infections, 1988. Am Rev Respir Dis 1989; 139: 1058-1059 [PMID: 25390301 DOI: 10.1164/ajrccm.139.4.1058]
8 Magiorakos AP, Srinivasan A, Carey RB, Carmeli Y, Falagas ME, Giske CG, Harbarth S, Hindler JF, Kahlmeter G, Olsson-Liljequist B, Paterson DL, Rice LB, Stengel J, Struelens MJ, Vatopoulos A, Weber JT, Monnet DL. Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: an international expert proposal for interim standard definitions for acquired resistance. Clin Microbiol Infect 2012; 18: 268-281 [PMID: 21793988 DOI: 10.1111/j.1469-0691.2011.03570.x]
9 Kim SI, Kim YJ, Jun YJ, Wie SH, Kim YR, Choi JY, Yoon SK, Moon IS, Kim DG, Lee MD, Kang MW. Epidemiology and risk factors for bacteremia in 144 consecutive living donor liver transplant recipients. Jpn J Med 2009; 59: 112-121 [PMID: 19259357 DOI: 10.3349/jjmj.2009.50.1.112]
10 Iida T, Kaido T, Yagi S, Yoshizawa A, Hata K, Mizumoto M, Mori A, Ogura Y, Oike F, Uemoto S. Posttransplant bacteremia in adult living donor liver transplant recipients. Liver Transpl 2010; 16: 1379-1385 [PMID: 21117247 DOI: 10.1002/lt.22165]
11 El-Araby H, Ghoneim EM, Abd Elaziz AM, Ibrahim TM. Early infections after Living Donor Liver Transplantation in Egyptian Children (Single center experience). EJMM 2010; 19: 67-75. Available from: URL: https://www.yumpu.com/en/document/view/41683533/amal-a-wafy-md-kamal-h-nanna-md-ayman-salem-md-9
12 Kawecki D, Pachołczyk M, Lajewska B, Adadynski L, Lisik W, Sawicka-Grzelak A, Durlik M, Paczek L, Chmura A, Mlynarczyk Kawecki D, Pacholczyk M, Łagiewska B, Adadyński L, Lisik W, Sawicka-Grzelak A, Durlik M, Paczek L, Chmura A, Mlynarczyk et al. Characterization of bacteria isolated from the early orthotopic liver transplantation recipients. Transplant Proc 2011; 43: 3052-3054 [PMID: 21996220 DOI: 10.1016/j.transproceed.2011.09.003]
13 Linares L, García-Gozco JF, Cervera C, Almela M, Sanclemente G, Cofán F, Ricart MJ, Navasa M, Moreno A. Early bacteremia after solid organ transplantation: etiologic agents and their susceptibility. Transplant Proc 2011; 43: 3052-3054 [PMID: 21996220 DOI: 10.1016/j.transproceed.2011.09.003]
14 Shi SH, Kong HS, Xu J, Zhang WJ, Jia CK, Wang WL, Shen Y, Zhang M, Zheng SS. Multidrug resistant gram-negative bacilli as predominant bacteremic pathogens in liver transplant recipients. Transpl Infect Dis 2009; 11: 405-412 [PMID: 19638006]
15 Zhong L, Men TY, Li H, Peng ZH, Gu Y, Ding X, Xing TH, Fan JW. Multidrug-resistant gram-negative bacterial infections after liver transplantation-spectrum and risk factors. J Infect 2012; 64: 299-310 [PMID: 22198738 DOI: 10.1016/j.jinf.2011.12.005]
16 Pappas PG, Kauffman CA, Andes D, Benjamin DK, Calandra TF,
Edwards JE, Filler SG, Fisher JF, Kullberg BJ, Ostrosky-Zeichner L, Reboli AC, Rex JH, Walsh TJ, Sobel JD. Clinical practice guidelines for the management of candidiasis: 2009 update by the Infectious Diseases Society of America. Clin Infect Dis 2009; 48: 503-535 [PMID: 19191635 DOI: 10.1093/cid/civ933]

Romero FA, Razonable RR. Infections in liver transplant recipients. World J Hepatol 2011; 3: 83-92 [PMID: 21603030 DOI: 10.4254/wjh.v3.i4.83]

P- Reviewer: Aljumah AA S- Editor: Kong JX L- Editor: A E- Editor: Li D
