Isolation of MERS-related coronavirus from lesser bamboo bats that uses DPP4 and infects human-DPP4-transgenic mice

Susanna K. P. Lau1,2,3,6✉, Rachel Y. Y. Fan1,6, Longchao Zhu1,6, Kenneth S. M. Li1,6, Antonio C. P. Wong1, Hayes K. H. Luk1, Emily Y. M. Wong1, Carol S. F. Lam1, George C. S. Lo1, Joshua Fung1, Zirong He1, Felix C. H. Fok1, Rex K. H. Au-Yeung4, Libiao Zhang5, Kin-Hang Kok1, Kwok-Yung Yuen1,2,3,6 & Patrick C. Y. Woo1,2,3✉

While a number of human coronaviruses are believed to be originated from ancestral viruses in bats, it remains unclear if bat coronaviruses are ready to cause direct bat-to-human transmission. Here, we report the isolation of a MERS-related coronavirus, Tylonycteris-bat-CoV-HKU4, from lesser bamboo bats. Tylonycteris-bat-CoV-HKU4 replicates efficiently in human colorectal adenocarcinoma and hepatocarcinoma cells with cytopathic effects, and can utilize human-dipeptidyl-peptidase-4 and dromedary camel-dipeptidyl-peptidase-4 as the receptors for cell entry. Flow cytometry, co-immunoprecipitation and surface plasmon resonance assays show that Tylonycteris-bat-CoV-HKU4-receptor-binding-domain can bind human-dipeptidyl-peptidase-4, dromedary camel-dipeptidyl-peptidase-4, and Tylonycteris pachypus-dipeptidyl-peptidase-4. Tylonycteris-bat-CoV-HKU4 can infect human-dipeptidyl-peptidase-4-transgenic mice by intranasal inoculation with self-limiting disease. Positive virus and inflammatory changes were detected in lungs and brains of infected mice, associated with suppression of antiviral cytokines and activation of proinflammatory cytokines and chemokines. The results suggest that MERS-related bat coronaviruses may overcome species barrier by utilizing dipeptidyl-peptidase-4 and potentially emerge in humans by direct bat-to-human transmission.

1 Department of Microbiology, The University of Hong Kong, Hong Kong, China. 2 Carol Yu Centre for Infection, The University of Hong Kong, Hong Kong, China. 3 State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Hong Kong, China. 4 Department of Pathology, The University of Hong Kong, Hong Kong, China. 5 Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Guangdong Institute of Applied Biological Resources, Guangzhou, China. 6 These authors contributed equally: Susanna K. P. Lau, Rachel Y. Y. Fan, Longchao Zhu, Kenneth S. M. Li, Kwok-Yung Yuen. ✉email: skplau@hku.hk; pcywoo@hku.hk
Bats are major reservoirs of diverse coronaviruses (CoVs) and believed to be the primary origin of recent human CoV epidemics caused by severe acute respiratory syndrome coronavirus (SARS-CoV) and Middle East respiratory syndrome coronavirus (MERS-CoV)1–3. While these flying mammals are likely the ultimate origin of SARS-CoV-2, the immediate source of COVID-19 remains unidentified3. MERS-CoV was likely to have originated from bats before it jumped to camels and humans, although existing bat CoVs under the Betacoronavirus subgenus Merbecovirus (previously named Betacoronavirus Lineage C, which contains MERS-CoV) were not close enough to represent the immediate ancestral virus. Yet, some bat merbecoviruses, such as Tylonycteris-bat-CoV-HKU4 (Ty-Bat-CoV HKU4), possess spike (S) proteins capable of utilizing the MERS-CoV receptor, human-dipeptidyl-peptidase-4 (hDPP4), in pseudovirus assays8–12. However, none of these bat merbecoviruses have been successfully isolated in vitro, which has hampered understanding of their potential for emergence and direct bat-to-human transmission.

In this work, a MERS-related CoV, Ty-Bat-CoV HKU4, is directly isolated from lesser bamboo bats using human colorectal adenocarcinoma (Caco-2) cells. The virus also replicates efficiently in human hepatocarcinoma (HuH7) cells and uses hDPP4 and dromedary camel-DPP4 (dcDPP4) as cell entry receptors. Ty-Bat-CoV HKU4 infects hDPP4 transgenic mice with lung and brain pathologies. The results show that MERS-related bat CoVs may overcome species barrier by utilizing DPP4 from different hosts, with the potential for direct bat-to-human transmission.

Results

Isolation of Ty-BatCoV HKU4 using Caco-2 cells. We conducted a 6-year surveillance study of merbecoviruses in 6086 alimentary samples from 51 different bat species from Hong Kong and mainland China (Supplementary Fig. 1a). Ty-Bat-CoV HKU4 was detected in 32 (3.07%) of 1044 samples from lesser bamboo bats (Tylonycteris pachypus) in Hong Kong, Guizhou or Guangxi using reverse transcription-PCR (RT-PCR) and sequencing for a partial RNA-dependent RNA polymerase (RdRp) gene fragment and S1 gene (Supplementary Table 1 and Supplementary Fig. 1b). We obtained 14 isolates of Ty-Bat-CoV HKU4 from positive samples using Caco-2 cells, with cytopathic effects (CPE) observed during the first blind passage. Purified viral particles displayed typical CoV morphology of around 100–120 nm in diameter under electron microscopy (Fig. 1e). The full-length genome sequence (30,136 bp) of selected strain SM3A was determined, sharing 97.6% and 68.7% nucleotide identities to full-length genome sequence (30,136 bp) of selected strain SM3A of COVID-19 remains unlikely the ultimate origin of SARS-CoV-2, the immediate source of which may be bats. Ty-BatCoV HKU4 was determined, sharing 97.6% and 68.7% nucleotide identities to the binding affinity to SM3A of MERS-CoV strains, respectively (Supplementary Fig. 1c). Upon passages, Ty-Bat-CoV HKU4 SM3A showed one synonymous and one nonsynonymous (G22997T) substitutions at the 5th passage, resulting in Q476H in the S gene; and five synonymous and one nonsynonymous (A12899G) substitutions at the 15th passage, resulting in H4208R in ORF1ab.

Cellular tropism of Ty-BatCoV HKU4. To determine the potential for interspecies transmission and if Ty-Bat-CoV HKU4 may possess broad tissue tropism similar to that of MERS-CoV, various cell lines were tested for susceptibility to Ty-Bat-CoV HKU4 (Supplementary Table 2). The virus replicated efficiently in Caco-2 and HuH7 cells, with viral loads of 9.6 × 10^{10} copies/ml and 1.3 × 10^{10} copies/ml on day 5, respectively. CPE, mainly consisted of rounding up of fused and granulated cells progressively detaching from the monolayer forming masses of dead cells, could be observed in both cell lines on day 5, which showed viral nucleocapsid expression by immunofluorescence (IF) assay in 50% of cells (Fig. 1a–d). Ty-BatCoV HKU4 was unable to replicate efficiently in other human, bat, or camel cell lines, including normal human bronchial epithelial (NHBE) cells derived from primary airway epithelial cells (Fig. 2a, b).

Ty-BatCoV HKU4 replication is inhibited by interferons-α/β. Since type I interferon (IFN) response may serve as a barrier against CoV infections, we also tested the sensitivity of Ty-Bat-CoV HKU4 to IFN response13. Pretreatment of HuH7 with IFN-α A/D and IFN-β reduced replication of both MERS-CoV EM and Ty-Bat-CoV HKU4 SM3A, with more significant reduction of MERS-CoV replication (Supplementary Fig. 2a, b). Notably, pretreatment of HuH7 with both IFNs prevented the formation of CPE in Ty-Bat-CoV HKU4-infected cells (Supplementary Fig. 2c). The results suggested IFNs as potential antiviral candidates against diverse merbecoviruses.

MERS-CoV neutralizing antibody does not neutralize Ty-Bat-CoV HKU4. To assess potential serological cross-neutralization between MERS-CoV and Ty-Bat-CoV HKU4, neutralization assays were performed using 16 serum samples from MERS-infected camels from Dubai with MERS-CoV neutralizing antibody titers of 10–16014. None of the samples neutralized Ty-Bat-CoV HKU4, suggesting little cross-antigenicity (Supplementary Table 3).

Ty-Bat-CoV HKU4 uses hDPP4 and dcDPP4 as receptors. To determine if live Ty-Bat-CoV HKU4 can utilize DPP4 as receptor, virus infectivity studies using HEK293T cells expressing or not expressing DPP4 proteins from humans, dromedaries or lesser bamboo bats were performed. Ty-Bat-CoV HKU4 SM3A can use hDPP4 and dcDPP4 as receptors and replicated efficiently in HEK293T cells upon their expression with >1.5 × 10^{4} and 1 × 10^{3}-fold increase in viral load, respectively (Fig. 2d). However, it cannot replicate efficiently in Tylonycteris pachypus DPP4 (TpDPP4)-expressing HEK293T cells or TpDPP4-expressing primary Tylonycteris pachypus kidney and lung cells (Fig. 2c, d). To further confirm if Ty-Bat-CoV HKU4 can use hDPP4, we performed infectivity assays using small interfering RNA (siRNA) knockdown and CRISPR-Cas9 knockout of hDPP4 in HuH7 cells. The infectivities of both Ty-Bat-CoV HKU4 and MERS-CoV were significantly attenuated in both hDPP4-knockdown and hDPP4-knockout cells compared to control HuH7 cells (Fig. 2e, f).

HKU4-RBD binds to hDPP4, dcDPP4, and TpDPP4. While previous studies based on sequence and binding analysis showed that Ty-BatCoV HKU4-receptor-binding-domain (HKU4-RBD) can bind to hDPP4, its relative binding affinity to dcDPP4 and TpDPP4 was not examined. The S1-RBD sequences of Ty-Bat-CoV HKU4 strains possessed 54.5% aa identities to that of MERS-CoV, with Ka/Ks ratio of 0.067, suggesting purifying selection. Of the 14 critical residues in MERS-RBD important for hDPP4 binding12,15, five were conserved16. Most of the 14 residues in hDPP4 were also conserved in TpDPP4 and dcDPP4, except I → K substitution at position 295 in TpDPP4 and T → V substitution at position 288 in dcDPP4, suggesting possible binding of HKU4-RBD to TpDPP4 and dcDPP4. We examined the binding affinity of HKU4-RBD to hDPP4, dcDPP4 and TpDPP4 in comparison to MERS-RBD using flow cytometry, co-immunoprecipitation (co-IP) and surface plasmon resonance (SPR) assays (Fig. 3). Flow cytometry using HEK293T cells transfected with hDPP4, dcDPP4, and TpDPP4 showed that MERS-RBD bound hDPP4 and dcDPP4 with higher affinity than TpDPP4, whereas HKU4-RBD bound TpDPP4 with slightly higher affinity than hDPP4 and dcDPP4 (Fig. 3a). Co-IP assays
showed that MERS-RBD can pull down hDPP4 and dcDPP4 but not TpDPP4, whereas HKU4-RBD can pull down all three DPP4 receptor proteins (Fig. 3b). SPR assays using Biacore X100 showed that MERS-RBD and HKU4-RBD bound to hDPP4 with an equilibrium dissociation constant \(K_d \) of 631.7 nM and 1.103 μM, respectively, suggesting stronger binding between MERS-RBD and hDPP4 by two-fold. MERS-RBD and HKU4-RBD bound to dcDPP4 with \(K_d \) of >18.68 and >47.66 μM, respectively, suggesting weaker binding than to hDPP4. MERS-RBD and HKU4-RBD bound to TpDPP4 with \(K_d \) of 0.7 M and 2.583 μM, respectively, suggesting much lower binding between MERS-RBD and TpDPP4 (Fig. 3c). The ability of HKU4-RBD to bind hDPP4, dcDPP4, and TpDPP4 albeit with low affinity suggests that Ty-BatCoV HKU4 may have the ability to overcome species barrier by using diverse mammalian DPP4 proteins.

Ty-BatCoV HKU4 infects hDPP4 transgenic mice. We studied the infectivity of Ty-BatCoV HKU4 in hDPP4 transgenic C57BL/6N mice by intranasal inoculation (Fig. 4 and Supplementary
Table 4). All mice survived till 28 days post-infection (dpi) (Fig. 4a). Ty-BatCoV HKU4 was detected in the lungs, spleens and/or brains of infected mice. Reverse transcription quantitative PCR (RT-qPCR) showed the highest viral loads in lung (2.84 log_{10} copies/mg) and brain (2.99 log_{10} copies/mg) on 4 and 14 dpi respectively, with viral clearance on 28 dpi (Fig. 4b). RT-qPCR showed that hDPP4 was stably expressed in different tissues (Supplementary Fig. 3). Histology of lung tissues showed moderate to marked degree of lymphocytic infiltration within the alveolar septa and macrophages in the alveoli, compatible with

Fig. 2 Cellular tropism and receptor usage of Ty-BatCoV HKU4 SM3A. Ty-BatCoV HKU4 SM3A of 1 MOI was inoculated to a 16 human cell lines; b 12 bat and 10 other mammalian cell lines; c primary Tylonycteris pachypus kidney and lung cells with overexpressed TpDPP4; d different host-DPP4-expressing 293 T cells; e hDPP4 CRISPR-knockout Huh7 cells; and f siRNA hDPP4-knockdown Huh7 cells. Culture supernatants (a, c, e, f) and cell lysates (d) were harvested from respective timepoints and viral titers were determined by RT-qPCR and normalized to β-actin gene. f siRNA efficiency was determined by measuring hDPP4 mRNA expression level in knockdown Huh7 cell lysate at 0 and 24 hpi and compared with mock-treated samples. Data are presented as mean values ± SD, n = 3 independent biological replicates for each cell line at each time point. Dots in each graph represent individual samples. The p-values calculated by multiple two-tailed unpaired t-test without correction for multiple comparisons (<=0.05) are indicated in each graph. Statistical significances are indicated by the asterisks (*P < 0.05, **P < 0.01, ***P < 0.0001).
Inflammation secondary to viral infections, being most severe on 4 dpi. Histology of brain tissues on 14 dpi also showed marked perivascular lymphocytic infiltration, as well as increased lymphocytes in the brain parenchyma (Fig. 4e). Immunohistochemical (IHC) staining with mouse monoclonal antibody against Ty-BatCoV HKU4 S1 protein revealed positive viral antigen expression in lung alveolar septal cells and brain lymphocytes and glial cells of mice sacrificed on 4 and 14 dpi, respectively (Fig. 4f). Anti-Ty-BatCoV HKU4 antibody was detected in mice sacrificed on 14 dpi by western blot and IF assays (Fig. 4c, d).

Cytokine response in Ty-BatCoV HKU4-infected mice. MERS-CoV causes delayed proinflammatory response and evades innate immunity with attenuated interferon-β response, contributing to virulence. To study the cytokine response during Ty-BatCoV HKU4 infection, the mRNA expression levels of antiviral cytokines (IFN-β, IFN-γ, and Mx1), proinflammatory cytokines (IL-1β, IL-2, IL-6, IL-12p40, and TNF-α), and chemokines (IP-10, MCP-1, MIP-1α, RANTES, CXCL-1, and G-CSF) in mouse tissues were measured using RT-qPCR assays (Supplementary Fig. 4). Antiviral cytokines were suppressed in both lung and brain tissues during Ty-BatCoV HKU4 infection. In lung tissues, IL-1β showed gradual increase from 4 to 14 dpi, whereas RANTES and CXCL-1 showed rapid increase on 4 dpi but decreased afterwards. In brain tissues, IL-6 showed rapid increase on 4 dpi but decreased afterwards, whereas IP-10, MIP-1α, and RANTES showed marked increase on 14 dpi.

Discussion

This is the first isolation of a bat CoV capable of using hDPP4 as the receptor for cell entry. Our findings carry significant public health implications, by showing that bat CoVs closely related to MERS-CoV can potentially infect human cells and utilize the ubiquitous cellular protein for cell entry. It is considered that the RBD-receptor-binding interphase is a critical barrier for CoV cross-species transmission from bats to humans. The fact that bat CoVs can readily infect human cells suggests that they have the potential to emerge in humans by direct bat-to-human transmission without intermediate hosts. SARS-CoV was likely a recombinant virus originated from horseshoe bats, while civet was the intermediate host for bat-to-human transmission. Although bat CoVs are notoriously difficult to cultivate, a few SARSr-BatCoV strains have been shown to replicate in Vero cells and able to utilize human angiotensin converting enzyme II (ACE2) as receptor, suggesting the potential for SARSr-BatCoVs to infect humans directly. SARS-CoV-2 was also believed to be originated from related viruses in bats, with its genome backbone closest to bat viruses on day 4 and brain on day 14, and lymphocytic inflammation observed in infected tissues. Ty-BatCoV HKU4 infection was associated with suppression of antiviral cytokines and activation of different proinflammatory cytokines and chemokines in lung and brain tissues, which mimics MERS-CoV infection in vitro. Nevertheless, the lack of replication of Ty-BatCoV HKU4 in airway
epithelial cultures may suggest limited adaptation to the human respiratory tract. This is in contrast to MERS-CoV, which can infect both upper and lower airway cells24. Moreover, we were unable to passage Ty-BatCoV HKU4 in transgenic mice (unpublished data), suggesting inefficient transmission of Ty-BatCoV HKU4 in humans unless the virus is able to evolve rapidly upon human infection. Ty-BatCoV HKU4 showed purifying selection in its S protein and very few mutations were noted during passage in Caco-2 cells. Yet, the potential of Ty-BatCoV HKU4 and related viruses to emerge and adapt rapidly in an intermediate host or humans like SARSr-CoVs should be closely monitored. Given the genetic diversity among members of Merbecovirus and the lack of serological cross-reactivity between MERS-CoV and Ty-BatCoV HKU4, humans with past MERS-CoV infections are unlikely protected against other merbecovirus infections. And should these viruses emerge, interferon-based treatment may be evaluated as for MERS-CoV infections.

The ability of Ty-BatCoV HKU4 to infect human cells and hDPP4 transgenic mice further supports a possible bat origin of MERS-CoV. However, the molecular mechanism of interspecies transmission along the evolutionary path and the role of host DPP4 remain to be elucidated. In this study, Ty-BatCoV HKU4 could only replicate efficiently in Caco-2 and Huh7 cells and showed limited replication in a dromedary cell line and a mouse

Fig. 4 Transgenic mice with hDPP4 expression are permissive to Ty-BatCoV HKU4 infection. a Weight of transgenic mice after challenge with 1 × 10⁶ TCID₅₀ Ty-BatCoV HKU4 SM3A (n = 3) or culture media (n = 3). b RNA levels of Ty-BatCoV HKU4 SM3A detected in lung and brain tissues at 2, 4, 7, 14, and 28 dpi. Data are presented as mean values ± SD, n = 4 (for lung tissues) or 5 (for brain tissues) independent biological replicates at each time point. c IF assay showing antibodies against Ty-BatCoV HKU4 in virus-infected mouse serum. Scale bars, 100 μm. d Western blot assay showing antibodies against viral N antigen in virus-infected mouse serum. Representative H&E (e) and IHC (f) stained tissue sections from lungs at 4 dpi and brains at 14 dpi. Scale bars, 100 μm. Images are representative of three independent experiments. Uncropped blots in Source Data are provided as Source Data file.
cell line. Although the critical residues in the DPP4 sequences were mostly conserved between human, dromedaries and lesser bamboo bats, differential binding affinities of HKU4-RBD and MERS-RBD to hDPP4, dcDPP4 and TpDPP4 were observed. HKU4-RBD protein was able to bind all three proteins but with lower binding affinity to hDPP4 and dcDPP4 than MERS-RBD by SPR assays. The lower binding affinity of HKU4-RBD to TpDPP4 than to hDPP4 was in-line with the inability of Ty-Bat-CoV HKU4 to replicate in primary cells derived from *Tylonycteris pachyus* and TpDPP4-expressing *Tylonycteris pachyus* or HEK293T cells. This suggests that DPP4 may not be the receptor for Ty-Bat-CoV HKU4 in its natural host. Although the bat ancestral origin of MERS-CoV is yet to be identified, our results suggest that MERS-CoV may have evolved from a closely related bat CoV, which could utilize dcDPP4 and hDPP4 as receptors for infections in camels and humans respectively. Besides MERS-CoV, SARS-CoV, and SARS-CoV-2, human coronavirus-299D and the virus-like particles of SARS-CoV-2, which are also closely related to CoVs, were also likely originated from bats, which may have caused unrecognized epidemics in human history.5,25,26 The public should be aware of the potential of bat coronaviruses to emerge and cause human epidemics, and should be refrained from disturbing the ecology of bats and consuming these important wild animals.

Methods

Ethics statement. Bat samples were collected and approved by Department of Agriculture, Fisheries and Conservation, HKSAR and animals were handled in accordance with guidelines of Regulations for the Administration of Laboratory Animals (Decree No. 2 of the State Science and Technology Commission of the People’s Republic of China on 14 November 1988) using standard procedures under a license from the Guangdong Entomological Institute Administrative Panel on Laboratory Animal Care (GDEI-AE-2006001); and the Committee on the Use of Live Animals in Teaching and Research at the University of Hong Kong.

Bat sample collection. Bats were captured from various locations in Hong Kong and mainland China over a 6-year period (August 2010 to August 2016). Animalary samples were collected using procedures described previously.27 All specimens were immediately placed in viral transport medium before transportation to the laboratory for RNA extraction. The bat species identity of samples positive for Ty-Bat-CoV HKU4 was confirmed by cytochrome b sequence analysis as described previously.28

Detection of Ty-Bat-CoV HKU4 from bat samples. To detect Ty-Bat-CoV HKU4, viral RNA was extracted from the respiratory and alimentary samples of bats using QIAamp Viral RNA Mini Kit (Qiagen). The RNA was used as the template for RT-PCR. CoV detection was performed by amplifying a 440 bp fragment of the RdRp gene of CoVs as described previously.29 The sequences of the PCR products were compared with known sequences of the RdRp genes of CoVs in the GenBank database.

Spike and genome sequence analysis of Ty-Bat-CoV HKU4 strains. To study the genetic diversity of 5 genes of Ty-Bat-CoV HKU4, the complete S genes of 35 Ty-Bat-CoV HKU4 strains detected were amplified and sequenced using the primers as shown in Supplementary Table 5. To study the genetic changes of Ty-Bat-CoV HKU4 during passage in infected cells, the genomes of progeny viruses of Ty-Bat-CoV HKU4 and HKU4 SM3A were centrifuged at 19,000 × g at 4 °C, after which the pellet was resuspended in PBS and stained with 2% phosphotungstic acid. Samples were examined with Philips CM100 transmission electron microscope.

Virul replica studies. To study viral replication, progeny viruses from cell culture supernatant collected at 5 dpi were subjected to RT-qPCR as described previously.30 Total RNA extracted from cell culture supernatants was reverse transcribed and amplified with Ty-Bat-CoV HKU4 primers (forward primer 5'-CTTCAAATACACCCAGATGGTTCTTCTA-3' and reverse primer 5'-CCCGGGATCCACCCGATCC-3') using real-time one-step RT-qPCR assay. Probes for Ty-Bat-CoV HKU4 5'- (FAM)TTAAACAATTGGCYCCCAGATGGTTCTTCTA CTACA(BHQ1)-3' were used. All experiments were performed in triplicates.

IFN susceptibility of Ty-Bat-CoV HKU4. Confluent HuH7 cells were pretreated overnight with IFN-α/β, IFN-γ, or IFN-α, and then infected with Ty-Bat-CoV HKU4. Pretreated cells were washed once with PBS, followed by inoculation with MERS-CoV EMC and Ty-Bat-CoV HKU4 SM3A at MOI 1, respectively. After 1 h of virus adsorption, the inocula were removed and the cells were washed with PBS twice. MEM supplemented with 1% FBS were added to the cells before further incubation for 72 h. Apically released progeny virus genomes were determined from supernatants collected at 0, 24, 48, and 72 h of post-infection (hpi) using RT-qPCR mentioned above.

Neutralization assays against Ty-Bat-CoV HKU4. Dromedary sera with neutralizing antibodies to MERS-CoV detected in previous studies were selected for neutralization assays against Ty-Bat-CoV HKU4 as described previously.33 The sera were heat inactivated for 30 minutes and were serial diluted from 1:10 to 1:320. Pretreated HuH7 cells were infected with Ty-Bat-CoV HKU4 SM3A for 2 h at 37 °C. The mixture was inoculated in duplicate to 96-well plates of Caco-2 cells. Results were recorded after 6 days of incubation at 37 °C.

sRNA hDPP4-knockdown HuH7 cells and infectivity assays. Silencer Select siRNA targeting hDPP4 proteins and negative control siRNA were transfected to HuH7 cells using Lipofectamine RNAiMAX transfection reagent (Invitrogen) according to the manufacturer’s instructions. Briefly, confluent HuH7 cells were transfected with 10 pmol siRNA in serum-free medium for 6 h and siRNA-Lipofectamine complex was removed after incubation. After 24 h of transfection, cells were inoculated with MERS-CoV and Ty-Bat-CoV HKU4 at MOI 1, respectively. DPP4 mRNA expression level in cell lysates and viral load in supernatants were determined using RT-qPCR.

CRISPR-Cas9 hDPP4-knockdown HuH7 cells and infectivity assays. Lentiviral CRISPR-DPP4 plasmid was constructed by the subcloning of DPP4 gRNA sequence (5'-CTTAGAATACAACTACGTGA-3') into the LentiCRISPR (Addgene 52961). Lentivirus expressing DPP4 gRNA and Cas9 was produced by the transfection of LentiviralCRISPR-DPP4, pSAX2 (Addgene 12260) and pCMV-VSV-G (Addgene 8454) into 293FT cells (Life Technologies). HuH7 cells were transfected with Lentivirus-CRISPR-Cas9-DPP4 virus and further selected with puromycin dihydrochloride (Life Technologies) at 3.5 μg/ml in 10% FBS MEM. Cells were observed every 24 h for cell death. The transfected cells were subcultured to T75 culture flask for expansion when all the control cells were dead while the transfected cells stayed alive. hDPP4 expression in selected knockout cells was determined by western blot and IF staining. Purified CRISPR-Cas9 hDPP4-knockdown HuH7 cells were subject to infection with Ty-Bat-CoV HKU4 SM3A. Infectivity assay was performed as previously described at MOI 1.34 Both supernatants and cell lysates were collected.
respectively. The formed protein complex was then precipitated by 25 RBD-Fc-His or HKU4-RBD-Fc-His were mixed overnight at 4 °C with HEK293T

measured by HA tag monoclonal antibody (Biolegend) at 4 °C for 30 min. The mixture was

antibody (Invitrogen) at 4 °C for 30 min. After washing with PBS-1% BSA, cells

fl

qPCR.

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-020-20458-9

was further con

Binding assays with SPR analysis. SPR analysis was carried out at 25 °C using BIAcore X100 machine with CM5 chips (GE Healthcare). All proteins used in the experiment were exchanged to HBS-P + buffer consisting of 0.1 M HEPS, pH7.4, 1.5 M NaCl and 0.5% v/v surfactant P20. RBD proteins were immobilized on the chip at a range of 3193–4370 response units (RUs). Gradient concentrations of TP-/dc-/HDP4 were then injected. After each cycle, the sensor surface was regenerated using 10 mM glycine-HCl pH 3.0. Measurements from the reference flow cell (immobilized with BSA) were subtracted from experimental values. The binding kinetics was analyzed with the software BIAevaluation Version 4.1 using 1:1 Langmuir binding and/or steadying state affinity models.

hDPP4 transgenic mice challenge. hDPP4 transgenic mice were developed from a transgenic mouse line generated by at least five microinjection experiments. In brief, 200 C57BL/6 N fertilized oocytes were collected and microinjected with the hDPP4 transgene to ensure successful integration into the mouse genome in each experiment. The oocytes carrying the transgene were transferred to pseudopregnant ICR foster mother mice to produce the founder mice. Founder mice were tested for the presence of transgene using isolated DNA from earpunch biopsy by PCR with primers targeting to the hDPP4 gene (Forward: 5’-AGTACAACTA-CAACAGCACAACAGCTCTATCT-3’ and Reverse: 5’-ACTG-CCACATCAGGA-GATATGAAATACCTAGTATG-3’) as well as the GFP expression in the mouse earpunch biopsy under fluorescent microscope. The genotype-positive founder mouse were backcrossed with wild-type C57BL/6 N to generate offsprings carrying hDPP4 transgene genotyped. The mice were maintained at the following housing condition (room temperature: 22 ± 2 °C; relative humidity: 55 ± 10%) on a dark-light cycle of 12:12 h of artificial light.

Virus stock used for mouse challenge was obtained from the 7th passage of Ty-BatCoV HKU4 SM3A in Caco-2 cells. hDPP4 transgenic mice (6–8 week old) were infected intranasally with approximately 80 µl (1 × 10^6 TCID₅₀) of virus suspensions as described previously35. Mice challenged with culture media (MEM with 2% FBS) from uninfected cells were included as negative controls. Mice were monitored daily for signs of disease. Mice were sacrificed at 2, 4, 7, 14, and 28 dpi, respectively. After euthanasia, necropsies of mice were performed to obtain the following tissues: intestine, spleen, kidney, liver, lung, and brain. Blood was collected for antibody tests by immunofluorescence and western blot analysis.

Detection of Ty-BatCoV HKU4 antibodies in mice by western blot and immunofluorescence assays. To detect the presence of antibodies against Ty-BatCoV HKU4 in infected mouse sera, 50 ng of purified recombinant N protein of Ty-BatCoV HKU4 used as antigen for western blot analysis. After electrophoresis and transferred onto a nitrocellulose membrane (Bio-Rad). The nitrocellulose membrane was further blocked by 3% BSA-PBS at 4 °C overnight. Then, the blot was incubated with mouse serum of 1:100 dilution at 4 °C overnight. After incubation with 1:4000 goat anti-mouse HRP (Invitrogen) at 37 °C for 1 h, the blot was developed by WesternBright ECL HRP substrate (Advanstar) as described previously36.

The presence of antibodies against Ty-BatCoV HKU4 in infected mouse sera was further confirmed by IF assay. Serum samples of Ty-BatCoV HKU4-infected and -uninfected mice of 2, 4, 7, 14, and 28 dpi were initially diluted 10-fold in 5% BatCoV HKU4 SM3A Caco-2 cell cultures. The serial two-fold diluted serum was further incubated with the Ty-BatCoV HKU4-infected Caco-2 cells in 96-wells plate, followed with incubation of 1:200 dilution of FITC-conjugated goat anti-mouse monoclonal antibody (Invitrogen) at 37 °C for 1 h. The presence of antibodies against Ty-BatCoV HKU4 in infected mice were observed by fluorescence microscopy (Nikon).

Histopathological and IHC studies. To examine the histopathology and viral replication of Ty-BatCoV HKU4 SM3A in tissues of challenged mice, necropsy organs of the mice were subject to both viral RNA detection by RT-PCR and immunohistological studies as described previously35,37. Tissues for histological examination were fixed in 10% neutral-buffered formalin, embedded in paraffin, and stained with hematoxylin and eosin (H&E). Histopathological changes were observed under Nikon 80i microscope and imaging system. Infected cell lines and tissues from challenged mice that were tested positive for Ty-BatCoV HKU4 by RT-PCR were subject to viral load assays and IHC staining for viral S protein. Tissue sections were subjected to antigen retrieval with pH 6.0 antigen unmasking solution (Vector Laboratories) by pressure cooker after deparaffinization and rehydration. Followed by blocking endogenous peroxidase with H₂O₂ for 30 min, the sections were pretreated with streptavidin solution and biotin blocking solution at room temperature for 15 min, respectively, to avoid high background signals from the endogenous biotin or biotin-binding proteins. To minimize nonspecific signal interference, tissue sections were further blocked by incubation with 2% mouse IgG Avidin blocking solution (Vector Laboratories) and 1% BSA/ PBS for 1 h and 30 min at 4 °C, respectively. The sections were incubated at 4 °C overnight with 1:5000 dilution of mouse anti-Ty-BatCoV HKU4 SM1 monoclonal at 0, 1, 2, 3, 5 and 7 dpi. Viral load in supernatants was determined using RT-qPCR.

Amplification and sequencing of camel and bat DPP4 mRNA transcripts. Total RNA was extracted from dromedary camel and lesser bamboo bat cell lysates using RNeasy Mini Spin Column (Qiagen). RNA was eluted with 50 µl of RNase-free water and 1 µg of RNA was used as template for reverse transcription. The cDNA generation was performed using random hexamers and Superscript III kit (Invitrogen). Subsequently, dCP4P gene was amplified with following primers: forward (5’-ATGAGAC ACCGTTGAAGGACTGGTCTGGACTGGCAGGAA-3’) and reverse (5’-CTAAAGTGATACAGATTTGTTAGAATGCTGATGCTGGG-3’) (Supplementary Table 4). The dCP4P gene was amplified with following primers: forward (5’-ATGAGAC ACCGTTGAAGGACTGGTCTGGACTGGCAGGAA-3’) and reverse (5’-CTAAAGTGATACAGATTTGTTAGAATGCTGATGCTGGG-3’) (Supplementary Table 4).

The PCR products were cloned into pCAGEN vector using the primers as shown in Supplementary Table 4. The resulting plasmids were transformed into DH5α. Sf9 cells and supernatants were harvested 96 hpi by centrifugation at 4 °C for 30 min. Supernatants were collected and then proteins were purified from conditioned media using MAb Tylonycteris pachypus DPP4 mAbs (Quest Biotechnologies). The mAbs were subsequently captured on a protein A–Sepharose column (Amersham Pharmacia Biotech). Cleavage of DPP4-transfected cells, respectively, was monitored daily for signs of disease. Mice were sacri
cific at 2, 4, 7, 14, and 28 dpi, respectively. After euthanasia, necropsies of mice were performed to obtain the following tissues: intestine, spleen, kidney, liver, lung, and brain. Blood was collected for antibody tests by immunofluorescence and western blot analysis.

Detection of Ty-BatCoV HKU4 antibodies in mice by western blot and immunofluorescence assays. To detect the presence of antibodies against Ty-BatCoV HKU4 in infected mouse sera, 50 ng of purified recombinant N protein of Ty-BatCoV HKU4 used as antigen for western blot analysis. After electrophoresis and transferred onto a nitrocellulose membrane (Bio-Rad). The nitrocellulose membrane was further blocked by 3% BSA-PBS at 4 °C overnight. Then, the blot was incubated with mouse serum of 1:100 dilution at 4 °C overnight. After incubation with 1:4000 goat anti-mouse HRP (Invitrogen) at 37 °C for 1 h, the blot was developed by WesternBright ECL HRP substrate (Advanstar) as described previously36.

The presence of antibodies against Ty-BatCoV HKU4 in infected mouse sera was further confirmed by IF assay. Serum samples of Ty-BatCoV HKU4-infected and -uninfected mice of 2, 4, 7, 14, and 28 dpi were initially diluted 10-fold in 5% BatCoV HKU4 SM3A Caco-2 cell cultures. The serial two-fold diluted serum was further incubated with the Ty-BatCoV HKU4-infected Caco-2 cells in 96-wells plate, followed with incubation of 1:200 dilution of FITC-conjugated goat anti-mouse monoclonal antibody (Invitrogen) at 37 °C for 1 h. The presence of antibodies against Ty-BatCoV HKU4 in infected mice were observed by fluorescence microscopy (Nikon).

Histopathological and IHC studies. To examine the histopathology and viral replication of Ty-BatCoV HKU4 SM3A in tissues of challenged mice, necropsy organs of the mice were subject to both viral RNA detection by RT-PCR and immunohistological studies as described previously35,37. Tissues for histological examination were fixed in 10% neutral-buffered formalin, embedded in paraffin, and stained with hematoxylin and eosin (H&E). Histopathological changes were observed under Nikon 80i microscope and imaging system. Infected cell lines and tissues from challenged mice that were tested positive for Ty-BatCoV HKU4 by RT-PCR were subject to viral load assays and IHC staining for viral S protein. Tissue sections were subjected to antigen retrieval with pH 6.0 antigen unmasking solution (Vector Laboratories) by pressure cooker after deparaffinization and rehydration. Followed by blocking endogenous peroxidase with H₂O₂ for 30 min, the sections were pretreated with streptavidin solution and biotin blocking solution at room temperature for 15 min, respectively, to avoid high background signals from the endogenous biotin or biotin-binding proteins. To minimize nonspecific signal interference, tissue sections were further blocked by incubation with 2% mouse IgG Avidin blocking solution (Vector Laboratories) and 1% BSA/ PBS for 1 h and 30 min at 4 °C, respectively. The sections were incubated at 4 °C overnight with 1:5000 dilution of mouse anti-Ty-BatCoV HKU4 SM1 monoclonal
antibody (Cambridge Biologies), followed with incubation of biotinylated anti-mouse IgG (1:1000 dilution) for 10 min (Vector Laboratories). Streptavidin-peroxidase complex reagent (Vector Laboratories) was then added and incubated at room temperature for 30 min. Sections were counterstained with hematoxylin. Cells infected or uninfected by β2-Tat-CoV HKU4 were included as positive and negative controls respectively in each staining. Cells were fixed in chilled acetone at −20 °C for 10 min before incubation with antibodies for staining. Color development was performed using 3,3′-diaminobenzidine and images captured with Nikon 80i imaging system and Spot-advance computer software.

Cytokine RT-qPCR assays. To study virus-induced cytokine profiles, lung and brain tissues of β2-Tat-CoV HKU4-infected and -uninfected mice were collected at 2, 4, 7, and 14 dpi, respectively. Tissue samples were weighed and homogenized in MEM (Gibco) by TissueRuptor (Qiagen). Total RNA was extracted from tissue lysates using RNeasy Mini Kit (Qiagen). RNA was eluted in 50 μl of RNase-free water. 1 μg of RNA was converted into cDNA using random hexamers by the SuperScript III reverse transcriptase kit (Invitrogen). RT-qPCR assays for interferons (IFN-β, IFN-γ), Mx1, interleukins (IL-β, IL-2, IL-6, IL-12p40), TNF-α, IL-10, MCP-1, MIP-1α, RANTES, CXCL-1, and G-CSF were performed as described previously with modifications, using the primers as shown in Supplementary Table 9 with mouse β-actin for normalization.39 RT-qPCR was performed using FastStart Universal SYBR Green Master kit (Roche) in LightCycler 2.0 (Roche). The relative expression between β2-Tat-CoV HKU4-infected and -uninfected transgenic mice for each gene was calculated by the comparative ΔΔCT method.

Data availability

The nucleotide sequences of the complete S and genome sequence of β2-Tat-CoV HKU4 strains have been lodged within the GenBank sequence database under accession no. MW218376-MW218394 and MW218395 respectively. Source data are provided with this paper.

References

1. Chan, J. F. et al. A familial cluster of pneumonia associated with the 2019 novel coronavirus indicating person-to-person transmission: a study of a family cluster. *Lancet* **395**, 514–523 (2020).

2. Woo, P. C., Lau, S. K., Huang, Y. & Yuen, K. Y. Coronavirus diversity, phylogeny and interspecies jumping. *Exp. Biol. Med. (Maywood)* **234**, 1117–1127 (2009).

3. Lau, S. K. & Sei. K. novel severe acute respiratory syndrome coronavirus-like virus in Chinese horseshoe bats. *Proc. Natl Acad. Sci. USA* **102**, 14040–14045 (2005).

4. Lau, S. K. P. et al. Possible bat origin of severe acute respiratory syndrome Coronavirus 2. *Emerg. Infect. Dis.* https://doi.org/10.3202/eid2607.200902 (2020).

5. Woo, P. C. et al. Molecular diversity of coronaviruses in bats. *Virology* **351**, 180–187 (2006).

6. Woo, P. C. et al. Comparative analysis of twelve genomes of three novel group 2c and group 2d coronaviruses reveals unique group and subgroup features. *J. Virol.* **81**, 1574–1585 (2007).

7. van Boheemen, S. et al. Genomic characterization of a newly discovered bat coronavirus in dromedaries of the Middle East, evidence for interspecies transmission. *Virol. J.* **11**, 11870 (2015).

8. Chan, J. F. et al. Comparative analysis of complete genome sequences of three novel group C betacoronavirus to Tylonycteris bat coronavirus HKU5 in Japanese pipistrelle: implications for the origin of the novel Middle East respiratory syndrome coronavirus. *J. Virol.* **87**, 8638–8650 (2013).

9. Lai, S. K. P. et al. Delayed induction of proinflammatory cytokines and suppression of innate antiviral response by the novel Middle East respiratory syndrome coronavirus: implications for pathogenesis and treatment. *J. Gen. Virol.* **94**, 2679–2690 (2013).

10. Luk, H. K. H., Li, X., Fung, J., Lau, S. K. P. & Woo, P. C. Y. Molecular epidemiology, evolution and phylogeny of SARS coronavirus. *Infect. Genet. Evol.* **17**, 21–30 (2019).

11. Chinese, S. M. E. C. Molecular evolution of the SARS coronavirus during the course of the SARS epidemic in China. *Science* **303**, 1666–1669 (2004).

12. Ge, X. Y. et al. Isolation and characterization of a bat SARS-like coronavirus that uses the ACE2 receptor. *Nature* **503**, 535–538 (2013).

13. Yang, X. L. et al. Isolation and characterization of a novel bat coronavirus closely related to the direct progenitor of severe acute respiratory syndrome coronavirus 1. *J. Virol.* **90**, 3253–3256 (2015).

14. Lau, P. K. et al. A pneumonia outbreak associated with a new coronavirus of probable bat origin. *Nature* https://doi.org/10.1038/s41586-020-2012-7 (2020).

15. Lam, T. T. et al. Identifying SARS-CoV-2-related coronaviruses in Malayan pangolins. *Nature* https://doi.org/10.1038/s41586-020-2169-9 (2020).

16. Guery, B. et al. Clinical features and viral diagnosis of two cases of infection with Middle East Respiratory Syndrome coronavirus: a report of nosocomial transmission. *Lancet* **381**, 2265–2272 (2017).

17. Corman, V. M. et al. Evidence for an ancestral association of human coronavirus 229E with bats. *J. Virol.* **89**, 11858–11870 (2015).

18. Huynh, J. et al. Evidence supporting a zoonotic origin of human coronavirus strain NL63. *Virology* **86**, 12816–12825 (2012).

19. van Boheemen, S. et al. Complete genome sequence of bat coronavirus HKU2 from Chinese horseshoe bats revealed a much smaller spike gene with a different evolutionary lineage from the rest of the genome. *Virology* **367**, 428–439 (2007).

20. Marchi, A. et al. A new genotype of Trypanosoma cruzi associated with bats evidenced by phylogenetic analyses using SSU rDNA, cytochrome b and Histone H2R genes and genotyping based on ITS1 rDNA. *Parasitol. 136*, 641 (2009).

21. Woo, P. C. et al. Comparative analysis of complete genome sequences of three avian coronaviruses reveals a novel group 3c coronavirus. *J. Virol.* **83**, 908–917 (2009).

22. Edgar, R. C. MUSCLE: multiple sequence alignment with high accuracy and high throughput. *Nucleic Acids Res.* **32**, 1792–1797 (2004).

23. Tamura, K. et al. MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. *Mol. Biol. Evol.* **28**, 2731–2739 (2011).

24. Guindon, S. et al. New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. *Syst. Biol.* **59**, 307–321 (2010).

25. Lai, S. K. P. et al. Replication of MERS and SARS coronaviruses in bat cells offers insights to their ancestral origins. *Emerg. Microbes Infect.* **7**, 209 (2018).

26. Chan, J. F. et al. Differential cell lineage susceptibility to the emerging novel human betacoronavirus 2c EMC/2012: implications for disease pathogenesis and clinical manifestation. *J. Infect. Dis.* **207**, 1743–1752 (2013).

27. Woo, P. C. et al. Feline morbillivirus, a previously undescribed paramyxovirus associated with tubulointerstitial nephritis in domestic cats. *Proc. Natl Acad. Sci. USA* **109**, 5435–5440 (2012).

28. Lai, S. K. P. et al. Isolation and characterization of a novel Betacoronavirus subgroup A coronavirus, rabbit coronavirus HKU14, from domestic rabbits. *J. Virol.* **86**, 5481–5496 (2012).

29. Lai, S. K. et al. Identification of novel rodent species that infects diverse rodent species and causes multisystemic dissemination in mouse model. *PLoS Pathog.* **12**, e1005911 (2016).

30. Woo, P. C. et al. Cytokine profiles induced by the novel swine-origin influenza A/H1N1 virus: implications for treatment strategies. *J. Infect. Dis.* **201**, 346–353 (2010).

Acknowledgements

We thank Chung-Tong Shek and members of HKSAR Department of Agriculture, Fisheries, and Conservation (AFCD) for collection of bat specimens in Hong Kong. This study was partly supported by the theme-based research scheme (project no. T11-707/15-R) of the Research Grants Council of Hong Kong.
Author contributions
S.K.P.L. and P.C.Y.W. conceived and planned the study. R.Y.Y.F., L.Z., K.S.M.L., A.C.P.W., H.K.H.L., E.Y.M.W., C.S.F.L., G.C.S.L., J.F., Z.H., F.C.H.F., and R.K.H.A.Y. carried out experiments and performed data analysis. S.K.P.L., L.Z., K.S.M.L., A.C.P.W., H.K.H.L., and P.C.Y.W. coordinated data analysis and wrote the manuscript. L.Z., K.H.K., and K.Y.Y. coordinated animal sampling and transgenic mouse model development. S.K.P.L., R.Y.Y.F., L.Z., K.S.M.L., and K.Y.Y. contributed equally to this work. All authors provided critical feedback and revised the manuscript.

Competing interests
The authors declare no competing interests.

Additional information
Supplementary information is available for this paper at https://doi.org/10.1038/s41467-020-20458-9.

Correspondence and requests for materials should be addressed to S.K.P.L. or P.C.Y.W.

Peer review information Nature Communications thanks the anonymous reviewers for their contribution to the peer review of this work. Peer reviewer reports are available.

Reprints and permission information is available at http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

© The Author(s) 2021