Mechanical properties of concrete with recycled composite and plastic aggregates
Li, Dan; Kaewunruen, Sakdirat

License:
None: All rights reserved

Document Version
Peer reviewed version

Citation for published version (Harvard):
Li, D & Kaewunruen, S 2018, 'Mechanical properties of concrete with recycled composite and plastic aggregates', Paper presented at 8th International Conference on Geotechnique, Construction Materials and Environment, Kuala Lumpur, Malaysia, 20/11/18 - 22/11/18.

Link to publication on Research at Birmingham portal

Publisher Rights Statement:
Checked for eligibility 05/12/2018
This is an accepted version of a paper accepted for GEOMATE 2018

General rights
Unless a licence is specified above, all rights (including copyright and moral rights) in this document are retained by the authors and/or the copyright holders. The express permission of the copyright holder must be obtained for any use of this material other than for purposes permitted by law.

• Users may freely distribute the URL that is used to identify this publication.
• Users may download and/or print one copy of the publication from the University of Birmingham research portal for the purpose of private study or non-commercial research.
• Users may use extracts from the document in line with the concept of 'fair dealing' under the Copyright, Designs and Patents Act 1988 (?)
• Users may not further distribute the material nor use it for the purposes of commercial gain.

Where a licence is displayed above, please note the terms and conditions of the licence govern your use of this document.

When citing, please reference the published version.

Take down policy
While the University of Birmingham exercises care and attention in making items available there are rare occasions when an item has been uploaded in error or has been deemed to be commercially or otherwise sensitive.

If you believe that this is the case for this document, please contact UBIRA@lists.bham.ac.uk providing details and we will remove access to the work immediately and investigate.
MECHANICAL PROPERTIES OF CONCRETE WITH RECYCLED COMPOSITE AND PLASTIC AGGREGATES

Dan Li1 and Sakdirat Kaewunruen2
1Department of Civil Engineering, School of Engineering, The University of Birmingham, U.K.
2Birmingham Centre for Railway Research and Education, The University of Birmingham, U.K.

ABSTRACT

This project is aimed at studying the influence of incorporating recycled plastic and composite aggregate on the workability, mechanical property, water absorption, and electrical resistance of silica fume concrete. Secondly, the paper will evaluate the possibility to use recycled plastic concrete (RPC) in railway track application (i.e. traditional ballasted track and ballastless track). Two replacements (10% and 20%) of natural coarse aggregate by 3.35mm, 5.6mm and mixed size recycled plastic aggregate are introduced. The experimental results confirm that the workability is improved with an increase in the plastic aggregate replacement. In addition, it is found that mechanical strength and durability in terms of water permeability are reduced, whilst electrical resistance is improved. The result also reveals that application of this environment friendly recycled plastic concrete in railway tracks sustainably can improve ability to absorb vibration energy of railway system.

Keywords: Mechanical properties, recycled composite, plastic aggregates, concrete.

INTRODUCTION

Rapid industrialization and urban development globally have led to many waste handling and disposal problems. The rapid growth affects the uses of raw materials, which are available only in limited quantities. The pressure on finite resources and burdensome wastes results in both economic and societal constraints. The problem of remaining wastes is of major concern around the globe. However, plastic waste is one of materials that have potential for recycling. The management and recycling of plastic waste is rapidly growing. The utilization of recycled plastics in concrete is a partial solution to resolve environment and ecological problem. In this study, the research mainly focuses on the application of concrete to railway tracks and evaluates the feasibility to utilize recycle plastic aggregate concrete. Two type of railway track systems will be analysis and compared including traditional ballasted tracks (sleeper) and ballastless track (Slab Track). A number of experiments will be carried out to evaluate the physical and mechanical properties of the plastic aggregate concrete. The concrete has included Mixed Engineering Polymer (MEP) aggregate as partial replacement of conventional coarse aggregate to create plastic aggregate concrete.

Over the past 50 years, railway systems have been revolutionizing rapidly. The train speed and axle load have come to commuters’ primary concern nowadays. Because of these challenges, slab track has been a breakthrough technology to replace conventional ballasted track system. Slab track technology offers a proven higher performance in services and a longer life span than traditional ballasted tracks. It is a modern form of track construction, which has been used successfully throughout the world for heavy rail, high speed lines, light rail as well as tram systems. Slab track technology offers proven higher performance in service and a longer life compare to traditional ballasted track. Table 1 shows how successful that slab track is constructed around the world.

Table 1 Slab track projects in the world

| Project                     | Country         | Track form                |
|-----------------------------|-----------------|---------------------------|
| Shinkansen                  | Japan           | Slab track                |
| Duurme                      | The Netherlands | Embedded Rail            |
| Besi                        | The Netherlands | Embedded Rail            |
| Cervo-Kugelrode             | UK              | BBEST Embedded Rail       |
| High Speed Line HSL-Zuid    | The Netherlands | Rhino 2000               |
| Cologne-Frankfurt High Speed Line | Germany | Rhino 2000               |
| Hild & Prether Tunnels      | UK              | Rhino 2000               |
| Nuremberg-Hoplar High Speed Line | Germany | Rhino 2000               |
| Trains and Kusten High Speed Rail | Taiwan | Rhino 2000               |
| Eire Atlantico              | Spain           | Sleep                    |
| Perthesig Figurin           | Spain           | Sleep                    |
| Guadianara Tunnel           | Spain           | Sleep                    |
| Beijing-Tianjin Intercity Railway | China   | Sleep                    |
| TGV Mediterranee           | France          | Sleep or ball sleeper     |
| Channel Tunnel              | UK/France       | Sleeper block            |
| Channel Tunnel Rail Link Phase II | UK | Ballered sleeper         |
| Gotthard Tunnel             | Switzerland     | Ballered sleeper         |
| St. Prunas                   | UK              | Resident hospital         |
| Docklands Light Railway     | UK              | Resident hospital         |
| Athens Athina Metro          | Greece          | Ballered sleeper         |
| Hong Kong MRT               | Hong Kong       | Resident hospital         |
| Kula Leppey (Uy LRT)        | Malaysia        | Resident hospital         |
| London Underground          | UK              | Resident hospital         |
| Trainway de Grenoble        | France          | Ballered sleeper         |
| Nottingham Express Transit  | UK              | Embedded Rail            |
| Sheffield Supertram         | UK              | Embedded Rail            |

The design life for traditional ballasted tracks is typically around 50 years. But concrete track slabs (see Fig. 1) offer longer design life up to at least 60 years. In addition, track slab do not require frequent inspections and maintenance. Comparing to ballasted tracks, slab track system is fixed in
position therefore it is not necessary to carry out regular realignment of the rails. By considering the aspect in maintenance and design life, track slab is a sustainable option over a 60 year and 120 year lifecycle.

Fig. 1 A typical slab track

DESIGN PARAMETERS FOR SLAB TRACKS

For the slab track construction (see Fig. 2), a stabilized subbase are required to provide a more uniform distribution of wheel load stresses which reduces the subgrade stresses and provides a degree of frost protection. Stable subgrade is also an important aspect to consider. The subgrade need to be uniform, well prepared, with adequate strength and well drained. Poor subgrade may lead to pier settlement and cause rail deformation. Slab track will exhibit failure such as cracking, faulting and pumping due to poor subgrade condition. The failure modes are similar to concrete pavement. Weak subgrade soil and soils are susceptible to frost heave and should be removed and replaced with compacted granular soil. The adjustments to track geometry after construction are very limited. Hence, special preparation of subsoil before construction is essential.

Fig. 2 Typical cross section of a slab track

Concrete used for slab track construction is similar to highway pavement construction. Therefore, material specification developed by the local jurisdiction (state or provincial railway agencies) can be directly adopted [1]. The followings are the minimum requirements:

- Minimum 28 days compressive strength - 27 MPa
- Minimum 28-day flexural strength - 4.1 MPa
- Cement meeting requirement of ASTM C150
- Aggregate meeting requirement of ASTM C33 A. 25 to 38 mm maximum aggregate size may be used. Special attention should be paid to susceptibly freezing, thawing and alkali-aggregate reactivity.
- Air entrainment based on exposure condition. Typically 4 to 7% total air content is specified for mild to severe exposure conditions.

RECYCLED PLASTICS

As the world population increasingly growing, much more wastes are being generated. Plastic waste is one of the major issues affecting the globe environment. In the past 50 years, world consumption and production of plastics have continued to go up. 260 million tons of plastic was generated worldwide in 2008, plastic consumption is to reach 297.5 million tons by the end of 2015 [2]. As its nature, plastics belong to a chemical family of high polymers, they are essentially made up of a long chain of molecules containing repeated units of carbon atoms. Because of this inherent molecular stability (high molecular weight), plastics do not easily breakdown into simpler components [3-4]. Therefore, it is very essential to find a sustainable way to solve this issue. It is extreme difficult that the recycled plastic is usable. That’s because plastic waste contains many different types of plastic that have to be treated in different ways for recycling. Now, a new method designed to create expanded construction nodules from mixed plastic waste may replace the expanded clay traditionally used in light concrete that is not used for structural part of a building and often contains air bubbles [5-9].

Fig. 3 Mixed plastic waste
Under a project supported by the EU’s eco-innovation programme, plastic waste has been successfully converted into a high-performance aggregate for use in making lightweight concrete and mortar, as shown in Fig. 3. However, many researchers have demonstrated that use of recycled plastic in concrete partial replacement of aggregate significantly reduces its mechanical properties dependent on the replacement level [9-17]. Therefore, the recycled plastic concrete still requires further development.

**CONCRETE MIX DESIGN**

For the concrete mix design used in this research, the proportion of content was calculated by the method documented in the “Design of normal concrete mixes” published by the building research Establishment. Prestressed concrete sleeper (or railroad ties) are usually designed using high strength concrete (around 50-80). Therefore, the control mixes were designed aiming to achieve a target mean strength of 63 MPa (also known as C 50/60) at 28 day. A water-cement ratio of 0.44 was designed on the basis of the target mean strength, the maximum size and the type of aggregate. The amount of free water content used to achieve the designed w/c ratio was based on the desired slump, the maximum size and the type of aggregate. Cement content was calculated by the values of w/c ratio and the amount of free water. Mixed engineering polymers (MEP) sizes of 5.6mm and 3.35mm were used to replace 10% and 20% of coarse aggregate using direct volume replacement method. In addition, MEP without sieve was also used to replace 10% of coarse aggregate. Silica fume was also added to replace 10% of cement by volume in all MEP concrete. Due to lack of time, 20% MEP without sieve concrete haven’t conduct in the reports. Seven concrete mixtures are prepared (as tabulated in Table 2) for this research program to study the effect of MEP sizes and their distribution: RFC, SFC, SFRC-5.6-10, SFRC-5.6-10, SFRC-3.35-10, SFRC 3.35-20 and SFRC mix-10.

**Cement:**

The cement used for the present investigation was Ordinary Portland type 1 with characteristic strength of 52.5MPa according BS EN 197-1.

**Aggregate:**

Fine aggregate with a maximum particle size of 5mm. Coarse aggregate with a maximum size of 10mm

**Silica Fume:**

Elkom Silica fume, grade 940 was replace 10% of cement by volume in all recycled plastic concrete to enhancing the mechanical properties.

**Reused plastic aggregate:**

In this study, recycled plastic aggregates also called Mixed Engineering Polymers (MEP) were used to replace the coarse aggregate to study the property of plastic aggregate concrete. The MEP were kindly supplied by Axion Polymers. This type of MEP is a mixture of clean, wasted granular chips rich in PP with regular particle size. MEP sizes of 6.7mm, 5.6mm, 4.75mm and 3.35 mm were classified from the sieving vibrator. Two different sizes of MEP are used in this study: 5.6 mm and 3.35 mm.

**WORKABILITY**

Slump tests are carried out to determine the workability of the fresh concrete. The procedure of slump tests complies with BS EN 12350-2. Fresh concrete is filled to the cone in three stages. In each stage, the layer is compacted 25 times with a rod or stick. At the end of the third stage, the protruding concrete on the top of the mould is struck off flush with a trowel. The mould is then lifted vertically upward. Finally, the slump is then measured.

| No | Mixes  | Cement | Water | Gravel | Sand | Silica fume | MEP |
|----|--------|--------|-------|--------|------|-------------|-----|
| 1  | RFC    | 530    | 233   | 986    | 630  | 0           | 0   |
| 2  | SFC    | 477    | 233   | 986    | 630  | 53          | 0   |
| 3  | SFC-5.6-10% | 477 | 233 | 887.4 | 630 | 53 | 98.6 |
| 4  | SFC-5.6-20% | 477 | 233 | 788.8 | 630 | 53 | 197.2 |
| 5  | SFC-3.35-10% | 477 | 233 | 887.4 | 630 | 53 | 98.6 |
| 6  | SFC-3.35-20% | 477 | 233 | 788.8 | 630 | 53 | 197.2 |
| 7  | SFC mix-10% | 477 | 233 | 887.4 | 630 | 53 | 98.6 |
Workability of concrete is measured in terms of ease and homogeneity with which a freshly mixed concrete or mortar can be mixed, transported to construction site, placed in forms and compacted. The higher the slump, the easier the concrete to mix, transported, placed and compacted. From the result obtained from the Slump test, replace 10% cement by silica fume to significantly reduce the workability about 50%. The workability can improve by low replacement rate of silica fume around 2-3% by mass of cement, but can reduce workability when added at higher replacement rates. Fig. 4 clearly shows that adding plastic can enhance the workability.

![Slump of concrete](image3)

**Fig. 3**  Slump of concrete

**COMRESSIVE STRENGTH**

Six 100mm x 100mm x 100mm cube test were casted per concrete mixture. Three cubes were tested at 7 days and the other three cubes were tested at 28 days. The compressive strength tests were carried out on those cubes. The compressive strength test was conducted according to BS EN 12390-3.

![Compressive strength of concrete](image4)

**Fig. 4**  Compressive strength of concrete

As earlier mentioned, this type of concrete are designed to apply for railway applications either concrete sleeper or slab track. The control concrete (RFC) was designed to have the target mean strength of 62 MPa at 28day in order the meet the minimum requirement of concrete sleeper which is 55 MPa. Each mechanical property value presented in Fig. 4 is the average value obtained from tests performed on three specimens. It can be seen that a reduction in the mechanical strength according to increase in percentage of MEP in the silica fume concrete.

**TENSILE STRENGTH**

Cylinder splitting test was conducted according to BS EN 12390-6. Three sample of 100mm diameter x 200mm long concrete cylinder per mixture were used. The splitting tensile strength of concrete specimen in MPa was calculated by using the below formula according to BS EN 12390-6

\[
f_t = \frac{2P}{\pi DL}
\]

where:
- \( f_t \) is the splitting tensile strength of concrete specimen (MPa)
- \( P \) is the applied failure load obtained from the testing machine
- \( D \) is the cross-sectional diameter of cylinder (mm)
- \( L \) is the cylinder length (mm)

The effect of EMP content on the splitting tensile strength of silica fume concrete show in Fig. 5. At 28-day testing result showed that the splitting tensile strength of all concrete mixes have a similar trend to compressive strength. The SFC still was the highest tensile strength of 3.85MPa which is approximately 22.9% increase compare to RFC.

![Tensile strength of concrete](image5)

**Fig. 5**  Tensile strength of concrete

**CONCLUSION**

This research focused on the study and evaluation of the environment-friendly concrete containing with recycled plastic aggregate (5.56, 3.35 and mixed size) to utilize for railway concrete sleepers and ballastless tracks. Seven concrete mix tests were conducted to investigate the possibility of using those concrete in the railway industry. The test aimed to study the effects on workability and mechanical properties due to the presence of plastic
inside the concrete. The experiment result have showed that the utilization of the plastic material in making concrete can provide an alternative solution to minimize the environmental impact due to unscientific disposal of waste plastic.

The following conclusions are drawn from this study:

- Plastic can enhance workability of concrete which facilitate mix, transport, place and compact process.
- Presence Plastic aggregate will leading to significant reduction in mechanical strength e.g. Compressive and tensile strengths, however adding 10wt % silica fume can slightly compensate the loss of the strength. SFCA – 5.6-10% and SFCA-mix-10% obtain the highest strength compare to other plastic.
- All of the EMP concrete failed to meet the concrete sleeper minimum compressive strength requirement of 55MPa. However all the MEP concrete can be use in ballastless track since all the concrete compressive strength excess 27 MPa
- SFCA -5.6-20% and SFCA-3.35-10% can be used in light weigh concrete such as back-filling trench, pavement, or in nonstructural element which not required high strength.

ACKNOWLEDGEMENTS

The second author wishes to gratefully acknowledge the Japan Society for Promotion of Science (JSPS) for his JSPS Invitation Research Fellowship (Long-term), Grant No L15701, at Track Dynamics Laboratory, Railway Technical Research Institute and at Concrete Laboratory, the Universi-ty of Tokyo, Tokyo, Japan. The JSPS financially supports this work as part of the research project, entitled “Smart and reliable railway infrastructure”. Special thanks to European Commission for H2020-RISE Project No. 691135 “RISEN: Rail Infrastructure Systems Engineering Net-work” (www.risen2rail.eu). In addition, the sponsorships and assistance from CEMEX, Network Rail, RSSB (Rail Safety and Standard Board, UK) are highly appreciated. Financial support from BRIDGE Grant (Collaboration between University of Birmingham and University of Illinois at Urbana Champaign) is also grate-fully acknowledged.

REFERENCES

[1] Meesit, R. and Kaewunruen, S. (2017) "Vibration Characteristics of Micro-Engineered Crumb Rubber Concrete for Railway Sleeper Applications", Journal of Advanced Concrete Technology, 15(2), pp. 55-66. doi: 10.3151/jact.15.55.
[2] Hossain, M., Bhowmik, P. and Shaad, K. (2016) "Use of waste plastic aggregation in concrete as a constituent material", Progressive Agriculture, 27(3), p. 383. doi: 10.3329/pa.v27i3.30835.
[3] Liu, F., Yan, Y., Li, L., Lan, C. and Chen, G. (2015) "Performance of Recycled Plastic-Based Concrete", Journal of Materials in Civil Engineering, 27(2), p. A4014004. doi: 10.1061/(asce)mt.1943-5533.0000989.
[4] Kaewunruen, S., Remennikov, A. and Murray, M. (2014). Introducing a New Limit States Design Concept to Railway Concrete Sleepers: An Australian Experience.
[5] Michas, G. (2012). Georgios michas slab track system, pp. 86-89.
[6] Helleman, A. (2012) Using mixed plastic waste as a component of light concrete, Yoursis.com. Available at: http://www.yoursis.com/Environment/Recycling/Plastic_Waste_Set_In_Concrete.kl (Accessed: 12 August 2017).
[7] Tayabji, S. and Bilow, D. (2001). Concrete Slab Track State of the Practice. Transportation Research Record: Journal of the Transportation Research Board, 1742, pp.25-26.
[8] Constructionclimatechallenge (2017) waste plastic recycled into high-performance aggregate for construction. Available at: http://constructionclimatechallenge.com/2014/07/28/waste-plastic-recycled-into-high-performance-aggregate-for-construction/ (Accessed: 12 August 2017).
[9] Ozturun T. (1993) A re-evaluation of IV international conference on the use of fly ash, silica fume, slag and natural pozzolans in concrete. Proceeding of symposium on the use of industrial solid waste in construction sector. Turkey pp 57-58
[10] Aköz, F., Türker, F., Koral, S. and Yüzer, N. (1999) "Effects of raised temperature of sulfate solutions on the sulfate resistance of mortars with and without silica fume", Cement and Concrete Research, 29(4), pp. 537-544. doi: 10.1016/s0008-8846(98)00251-8
[11] Kumaran, M.Nidhi, Bini P.R. (2015) "Evaluation of strength and Durability of waste plastic Mix concrete" International Journal of Research in Advent Technology pp 37.
[12] Kaewunruen, S.; Meesit, R. Sensitivity of crumb rubber particle sizes on electrical resistance of rubberised concrete. Cogent Engineering, 2016, 3 (1), 1126937.
[13] Kaewunruen, S.; Meesit, R.; Mondal, P. Early-age dynamic moduli of crumbed rubber concrete for compliant railway structures. J. Sust. Cement-based Mat. 2017, 6(5), 281-292.
[14] Akono, A.-T.; Chen, J.; Kaewunruen, S. Friction and fracture characteristics of...
engineered crumb-rubber concrete at microscopic lengthscale. Constr. Build. Mater. 2018, 175, 735-745.

[15] Kaewunruen, S.; Wu, L.; Goto, K.; Najih, Y.M. Vulnerability of Structural Concrete to Extreme Climate Variances. Climate 2018, 6, 40.

[16] Siddique R, Khatib J, Kaur I, “Use of recycled plastic in concrete: a review”, Waste management, 2008, in press.

[17] Ismail, ZZ., Al-Hashmi, E.A., “Use of waste plastic in concrete mixture as aggregate replacement”, Waste management, 2008, in press.