Inelastic collisions involving molecular species are key to energy transfer in gaseous environments. They are commonly governed by an energy gap law, which dictates that transitions are dominated by those between initial and final states with roughly the same ro-vibrational energy. Transitions involving rotational inelasticity are often further constrained by the rotational angular momentum. Here, we demonstrate using full-dimensional quantum scattering on an \textit{ab initio} based global potential energy surface (PES) that HF-HF inelastic collisions do not obey the energy and angular momentum gap laws. Detailed analyses attribute the failure of gap laws to the exceedingly strong intermolecular interaction. On the other hand, vibrational state-resolved rate coefficients are in good agreement with existing experimental results, validating the accuracy of the PES. These new and surprising results are expected to extend our understanding of energy transfer and provide a quantitative basis for numerical simulations of hydrogen fluoride chemical lasers.
Collision-induced energy transfer is a fundamentally important process in many gas-phase chemical environments, such as combustion\(^1\), atmospheric chemistry\(^2\), astrochemistry\(^3\), and chemical laser engineering\(^4\). It is responsible for a wide array of macroscopic phenomena, such as heating and cooling as well as energy transport. As a result, many experimental and theoretical studies have been devoted to a better understanding of such processes\(^5\). Since molecules are quantum objects, the ultimate understanding need be based on inelastic transitions between different quantum states of the collision partners, which can now be prepared experimentally with lasers\(^6\). This field is currently undergoing a renaissance, thanks to advances in experimental techniques\(^7\)–\(^12\).

Many quantum state-resolved studies have found that the most dominant ro-vibrationally inelastic transitions are often resonant or nearly resonant\(^13\)–\(^14\). A classic example is the resonant energy transfer between CO\(_2\)(\(v_1 = 0, 1\)) and \(N_2\)(\(v = 1, 0\)) in the CO\(_2\) laser\(^15\). The resonant energy transfer is even more prevalent for highly excited molecules because of their higher densities of states\(^16\). These observations have led to rules of the thumb on the dominant energy transfer mechanisms\(^17\), often called gap laws\(^18\)–\(^19\). The most important one is perhaps the energy gap law, which states that the most dominant inelastic transitions are the ones with the smallest energy gaps between the combined initial and final states of the collision partners. For many inelastic collisions involving rotational transitions, the rotational angular momentum presents an additional constraint\(^20\), and these transitions might also be subjected to the angular momentum gap law, namely, the dominant transitions being the ones with the minimal changes in the sum of rotational angular momenta. Numerous experimental and theoretical studies to date have shown that molecular collisions conform to these propensity rules. As a result, most kinetic simulations are based on these gap laws to describe energy transfer when experimental or theoretical data are lacking.

As a working medium for chemical lasers\(^21\), vibrational relaxation rates of hydrogen fluoride (HF) are of great interest to laser engineering, because they directly determine populations of HF ro-vibrational levels in the laser cavity\(^22\). The rate coefficient for self-relaxation of HF from its first excited vibrational state,

\[
\text{HF}(v_1 = 1) + \text{HF}(v_2 = 0) \rightarrow \text{HF}(v'_1 = 0) + \text{HF}(v'_2 = 0).
\]

This has been extensively studied theoretically\(^23\)–\(^29\). Theoretical understanding has unfortunately lagged behind. So far, dynamical calculations for HF self-relaxation have only been performed in 1970s\(^30\)–\(^33\), employing the quasi-classical trajectory (QCT) approximation on an analytical potential energy surface (PES) fit to 294 low-level self-consistent-field ab initio points\(^34\). The first quantum mechanical calculations\(^35\) for vibrational energy transfer were carried out in 1983, with a rotation-neglected three-dimensional (3D) approximation. These theoretical studies are not expected to be quantitatively accurate because of the poor quality PES and inaccurate dynamical treatments.

So far, a full six-dimensional (6D) quantum dynamics study of the HF vibrational self-relaxation is still absent, despite the availability of full-dimensional PESs\(^36\)–\(^38\). The slow progress can be largely attributed to difficulties associated with time-independent quantum mechanical (TIQM) calculations of ro-vibrationally inelastic scattering between two “heavy” molecules. Such calculations require much higher computational costs than those for systems involving light molecules such as H\(_2\), because of (i) a large number of rotational levels in the basis set due to the small rotational constants of the “heavy” molecules, (ii) numerous partial waves contributing to the cross-section and the rate coefficient, and (iii) many propagation steps in solving the scattering equation. In the current system, such calculations are particularly challenging because of the exceptionally strong intermolecular interaction, which makes it very difficult for a fully coupled quantum-scattering method to converge the cross-section, even when reaction probabilities at low \(J\) partial waves are possible. To solve this problem, we have recently developed an approximate method, in which the coupled-states approximation (CSA) is improved with the nearest neighbor Coriolis couplings (NNNC)\(^39\). This CSA–NNNC method has been shown to significantly reduce computational costs without a major loss of accuracy. Its application to the HF–HF system reported here represents the first full-dimensional TIQM calculations of ro-vibrational inelastic scattering between two non-hydrogen molecules that yield converged cross-sections and rate coefficients, which can be directly compared with the experiment.

In this work, we present an accurate theoretical dynamics investigation on vibrationally inelastic scattering between two HF molecules. Our full-dimensional quantum-scattering calculations represent the first such study involving two “heavy” (non-H\(_2\)) molecules, and were made possible by a recently proposed scheme to reduce the size of the scattering calculations\(^39\). Both state-to-state cross-sections and rate coefficients are obtained, and the vibrational state-resolved rate coefficients are in excellent agreement with available experimental results, thanks to a highly accurate global PES obtained recently from high-level ab initio calculations\(^40\). Surprisingly, our results indicate that the energy transfer between these molecules satisfies neither the energy gap law nor angular momentum gap law. As discussed below, such breakdown might have significant implications in HF-based chemical lasers. We further demonstrate that the breakdown of these gap laws stems from the strong interaction between two HF molecules due to hydrogen bonding. This study thus expands our understanding of quantum state-resolved energy transfer between molecules.

Results

State-to-state and total rate coefficients

For convenience, a notation labeled by four quantum numbers (\(v_1, j_1; v_2, j_2\)) is used to describe a combined molecular state (CMS), which is the combination of ro-vibrational states of two diatoms before or after a collision\(^19\). Note that this CMS notation obeys the “well-ordered states” classification\(^41\), in which \(v_1 \geq v_2\) and \(j_1 \geq j_2\) for \(v_1 = v_2\). Similarly, the notation (\(v_1; v_2\)) is used to label a combined vibrational state (CVS).

The state-to-state rate coefficient for the HF–HF collision from the initial (1, 0; 0, 0) CMS was calculated as a function of temperature for each relevant final CMS. As shown in Fig. 1a for the rotationally elastic channel \(j_2 = j'_2 = 0\), the rate coefficients initially increase with temperature from 100 to 200 K, before decreasing from 200 to 1200 K. The only exception is for the final (0, 14; 0, 0) CMS, whose rate coefficient increases monotonically. The rate coefficient to the final (0, 13; 0, 0) CMS dominates in all the temperatures considered, followed by those to the (0, 12; 0, 0) and (0, 10; 0, 0) CMSs. The rate coefficient of the rotation–angular–momentum–conserving final CMS (0, 0; 0, 0) is clearly suppressed, two orders of magnitude smaller than the largest one. Figure 1b shows the rate coefficients for the initial (1, 3; 0, 0) CMS. Almost all the rate coefficients decrease monotonically with temperature. They increase with increasing \(j_2\), and the transition to (0, 14; 0, 0) is dominant in this group.

In general, these state-to-state rate coefficients appear to be quite sensitive to the final rotational quantum numbers, but not to the temperature. The differences between rate coefficients of a single transition at 100 K and that at 1200 K are smaller than an order of magnitude, while the difference between that to the final (0, 1; 0, 0) CMS and that to (0, 14; 0, 0) can reach up to a factor of...
Breakdown of gap laws. It is well established that collisional energy transfer between molecules is often governed by the energy and angular momentum gaps between the initial and final states. In short, transitions are dominated by those with small gaps in the internal energy and/or in the rotational angular momentum, while others are suppressed. Furthermore, mass-symmetric species (e.g., H₂) usually follow the angular momentum gap law, while those mass-asymmetric molecules like hydrogen halides tend to follow the energy gap law. The conformation to these gap laws has also been extensively discussed and verified in the H₂–HCl, H₂–CO, H₂–CN, and Ar–HCl systems. The cross-sections or rate coefficients of other HF-involved vibrational relaxation systems (Ar–HF and H₂–HF) are also dominated by specific final CMSs whose energies nearly equal to the initial ones, in accord with the energy gap law.

In order to test the gap laws discussed above, state-to-state cross-sections for the initial (1, 0; 0, 0) CMS are calculated, for which there are 83, 91, and 97 open final CMSs in total at the collision energy of 0.01, 0.05, and 0.1 eV, respectively. In Fig. 3, the cross-sections of these final CMSs are arranged by their energy differences with the initial CMS, from low to high. In all collision energies, it is clear that there is no final CMS dominating the cross-sections. Instead, inelastic transitions are spread out to a range of final CMSs with energy differences roughly between −0.2 and −0.1 eV. There is clearly a breakdown of the energy gap law.

The product rotational branching ratio for the initial (1, 0; 0, 0) CMS is further examined in Fig. 4, which is evaluated in terms of

\[
\text{Rate coefficient/10}^{-12} \text{cm}^3 \text{s}^{-1} \text{mole}^{-1}
\]

were obtained by fitting various experimental results. At low temperatures, the fitted results are consistent with our calculated ones, but they gradually deviate from ours as temperature increases, with a factor of 2.4 at 1200 K.

Breakdown of gap laws

The conformation to these gap laws has also been extensively discussed and verified in the H₂–HCl, H₂–CO, H₂–CN, and Ar–HCl systems. The cross-sections or rate coefficients of other HF-involved vibrational relaxation systems (Ar–HF and H₂–HF) are also dominated by specific final CMSs whose energies nearly equal to the initial ones, in accord with the energy gap law.

In order to test the gap laws discussed above, state-to-state cross-sections for the initial (1, 0; 0, 0) CMS are calculated, for which there are 83, 91, and 97 open final CMSs in total at the collision energy of 0.01, 0.05, and 0.1 eV, respectively. In Fig. 3, the cross-sections of these final CMSs are arranged by their energy differences with the initial CMS, from low to high. In all collision energies, it is clear that there is no final CMS dominating the cross-sections. Instead, inelastic transitions are spread out to a range of final CMSs with energy differences roughly between −0.2 and −0.1 eV. There is clearly a breakdown of the energy gap law.

The product rotational branching ratio for the initial (1, 0; 0, 0) CMS is further examined in Fig. 4, which is evaluated in terms of

\[
\text{Rate coefficient/10}^{-12} \text{cm}^3 \text{s}^{-1} \text{mole}^{-1}
\]

were obtained by fitting various experimental results. At low temperatures, the fitted results are consistent with our calculated ones, but they gradually deviate from ours as temperature increases, with a factor of 2.4 at 1200 K.

Breakdown of gap laws

The conformation to these gap laws has also been extensively discussed and verified in the H₂–HCl, H₂–CO, H₂–CN, and Ar–HCl systems. The cross-sections or rate coefficients of other HF-involved vibrational relaxation systems (Ar–HF and H₂–HF) are also dominated by specific final CMSs whose energies nearly equal to the initial ones, in accord with the energy gap law.

In order to test the gap laws discussed above, state-to-state cross-sections for the initial (1, 0; 0, 0) CMS are calculated, for which there are 83, 91, and 97 open final CMSs in total at the collision energy of 0.01, 0.05, and 0.1 eV, respectively. In Fig. 3, the cross-sections of these final CMSs are arranged by their energy differences with the initial CMS, from low to high. In all collision energies, it is clear that there is no final CMS dominating the cross-sections. Instead, inelastic transitions are spread out to a range of final CMSs with energy differences roughly between −0.2 and −0.1 eV. There is clearly a breakdown of the energy gap law.

The product rotational branching ratio for the initial (1, 0; 0, 0) CMS is further examined in Fig. 4, which is evaluated in terms of

\[
\text{Rate coefficient/10}^{-12} \text{cm}^3 \text{s}^{-1} \text{mole}^{-1}
\]

were obtained by fitting various experimental results. At low temperatures, the fitted results are consistent with our calculated ones, but they gradually deviate from ours as temperature increases, with a factor of 2.4 at 1200 K. Since our calculations are based on highly accurate electronic structure data and a full-dimensional quantum mechanical treatment of the scattering, we are confident about the accuracy of our calculated results in providing important benchmarks for chemical laser engineering.

Breakdown of gap laws

The conformation to these gap laws has also been extensively discussed and verified in the H₂–HCl, H₂–CO, H₂–CN, and Ar–HCl systems. The cross-sections or rate coefficients of other HF-involved vibrational relaxation systems (Ar–HF and H₂–HF) are also dominated by specific final CMSs whose energies nearly equal to the initial ones, in accord with the energy gap law.

In order to test the gap laws discussed above, state-to-state cross-sections for the initial (1, 0; 0, 0) CMS are calculated, for which there are 83, 91, and 97 open final CMSs in total at the collision energy of 0.01, 0.05, and 0.1 eV, respectively. In Fig. 3, the cross-sections of these final CMSs are arranged by their energy differences with the initial CMS, from low to high. In all collision energies, it is clear that there is no final CMS dominating the cross-sections. Instead, inelastic transitions are spread out to a range of final CMSs with energy differences roughly between −0.2 and −0.1 eV. There is clearly a breakdown of the energy gap law.

The product rotational branching ratio for the initial (1, 0; 0, 0) CMS is further examined in Fig. 4, which is evaluated in terms of

\[
\text{Rate coefficient/10}^{-12} \text{cm}^3 \text{s}^{-1} \text{mole}^{-1}
\]
At collision energies of 0.01 and 0.05 eV, the most probable rotational quantum numbers of the final states tend to be \(j' = 8 \sim 10 \). As the collision energy increases, higher rotational channels are opened and populated. The most probable final states are \(j_{HF} = 9 \sim 10 \) at the collision energy of 0.1 eV. Apparently, these data do not support the angular momentum gap law.
largest cross-section of final state \((\nu' = 0, j' = 13)\) of HF in the Ar–HF system, as shown in previous studies\(^{46,47}\). This result strongly supports our hypothesis that the breakdown of the energy gap law in the current system is indeed due to the deep interaction well.

It is conceivable that the attractive part of the PES provides ample opportunity for energy randomization, thanks to the high density of states in the well. To illustrate this point, we have carried out QCT calculations for HF–HF scattering at low collision energies. As shown in Supplementary Fig. 3, a significant fraction of the scattering trajectories has multiple inner turning points and long lifetimes, suggesting significant trapping. This is consistent with the previous QCT results for predissociation of the \((\text{HF})_2\) dimer\(^9\). Such energy scrambling is not possible for scattering on PESs with shallow wells. Under the latter circumstances, the energy transfer is dominated by impulsive collisions due to repulsive walls in short distances, on which the gap laws are based\(^{17}\).

Discussion
In this work, we report the converged full-dimensional quantum mechanical cross-sections for the HF–HF inelastic scattering on a newly developed global PES based on high-level ab initio calculations. The calculated vibrational energy transfer rate coefficient is in reasonably good agreement with existing experimental results, validating the PES. These quantum state-resolved rate coefficients provide useful information for chemical laser engineering. Furthermore, our calculations found that the energy and angular momentum gap laws are not observed in this system. The breakdown of the well-established propensity rules is attributed to the extraordinarily strong intermolecular interaction between the two dipolar molecules, which leads to energy transfer to the attractive potential well rather than on the repulsive potential wall. The failure of these well-established propensity rules suggests a different regime in energy transfer, which might need to be carefully considered in kinetic simulations involving other strongly interacting systems, such as dimers formed by hydrogen bonding molecules (e.g., \(\text{H}_2\text{O}\) and \(\text{NH}_3\)).

Methods
Quantum dynamics calculation. The details of the TIQM scattering calculations are given in our previous work\(^{39}\) and in Supplementary Information (SI) as well, thus only a brief outline is given here. The Hamiltonian is defined in diatom–diatom Jacobi coordinates and the scattering matrix (S-matrix) elements for a given set of total angular momentum \((J)\) and parities are computed in the body-fixed frame using a log-derivative method\(^{50,51}\). The validity of CSA--NNCC approach has been demonstrated for the \(\text{H}_2/\text{HD}\) and \(\text{H}_2/\text{H}_2\)\(^{52}\) systems, and in SI for the current system as well. The use of this approximation reduces the size of the system to \(J_{\max}/3\), which makes such calculations possible. Since TIQM scales as \(N^3\), where \(N\) is the dimension of the Hamiltonian matrix, the saving amounts to about \(10^3\) for \(J = 150\). Our recently developed 6D PES\(^{39}\) is used, which is much more accurate for scattering studies than previous PESs because it is based on high-level ab initio data, free of empirical adjustments, and accurate in both strongly interacting and in asymptotic regions. The state-to-state integral cross-section can be evaluated in terms of the state-to-state probability \(P^J\),

\[
\sigma_{J'J'';\nu'\nu';\ell';\ell''}^{\nu\nu'}(E) = \frac{\pi}{k_{\nu\nu'}^2} \sum_J (2J + 1)P^J_{J'J'';\nu'\nu';\ell';\ell''}(E),
\]

where \(k_{\nu\nu'} = \sqrt{2}E^J\) is the translational wave vector, and \(E\) is the collision energy. The rate coefficient as a function of temperature \(T\) is given by

\[
k_{J'J'';\nu'\nu'}(T) = \frac{1}{k_B T} \sqrt{\frac{8}{\pi \hbar^2 T}} \int_0^\infty \sigma_{J'J'';\nu'\nu'}(E) \exp\left(-E/k_B T\right) E^J e^{-E},
\]

where \(k_B\) is the Boltzmann constant and \(\mu\) is the reduced mass of this system. The total vibrational relaxation rate coefficient for an initial CMS can be obtained by simply summing the state-to-state rate coefficients over all the corresponding final rotational states,

\[
k_{J'J'';\nu'\nu'}^{\text{fi}}(T) = \sum_{J,J'} k_{J'J'';\nu'\nu'}^{\text{fi}}(T).
\]

In order to compare with experimental results, which do not distinguish rotational states, the vibrational state-resolved rate coefficient is calculated by Boltzmann averaging the \(k_{J'J'';\nu'\nu'}^{\text{fi}}\) over all the initial rotational states,

\[
k_{J'J'';\nu'\nu'}(T) = \sum_{J,J'} w_{J\nu J'\nu'} k_{J'J'';\nu'\nu'}^{\text{fi}}(T),
\]

where the weight factors \(w_{J\nu J'\nu'} = (2J + 1)\exp\left(-E_{J'}/k_B T\right)\) and \(E_J\) are the ro-vibrational energy.

Parameters for convergence. Numerous convergence tests have been performed, and the final parameters used in the calculations are given here. Specifically, all propagations were carried out with a variable radial step size \(\Delta r\) in different ranges of \(R\), namely \(\Delta r = 0.02\ a_0\) in \(R \in [3.5, 6.0]\) and \(0.03\ a_0\) in \(R \in [6.0, 9.0, 20.0]\) and \(0.05\ a_0\) in \(R \in [20.0, 45.0]\) respectively, where \(a_0\) denotes as the Bohr radius. A sufficient large distance of \(R = 80.0\ a_0\) was applied in the test calculations and the results showed that the state-to-state probabilities change no >1%. The number of potential optimized discrete variable representation (PODVR)\(^{35}\) points were chosen as \(N_p = N_c = 4\). The number of points in \(\theta_1\) and \(\theta_2\) for Gauss–Legendre quadrature and in \(p\) for Chebyshev quadrature were chosen as \(N_p = 30, N_c = 30\), and \(N_p = 15\), respectively.

Three initial CVSs were considered, namely \((0, 0)\), \((1, 0)\), and \((1, 1)\). Different maximum values of the sum of rotational quantum numbers \((J_1 + J_2)\)max were introduced in the calculations to limit the number of the internal states included in the basis set, namely \((J_1 + J_2)\)max = 35, 20, and 10, respectively, for the three initial CVSs. These choices of the basis set finally made the number of coupled channels in the typical calculations to be 1450, 5925, and 12685 for \(J(P, \ell) = 0(++, +), 1(++, +), \) and \(10(+++, +)\), respectively.

Data availability
The data that support the findings of this study are available from the corresponding author upon reasonable request.

Received: 16 July 2019; Accepted: 16 September 2019; Published online: 11 October 2019

References
1. Jasper, A. W. et al. Predictive a priori pressure-dependent kinetics. Science 346, 1212–1215 (2014).
2. McCaffery, A. J. Kinetics and dynamics of near-resonant vibrational energy transfer in gas ensembles of atmospheric interest. Philos. Trans. R. Soc. A 376, 20170150 (2018).
3. Roueff, E. & Liquic, F. Molecular excitation in the interstellar medium: recent advances in collisional, radiative, and chemical processes. Chem. Rev. 113, 8906–8938 (2013).
4. Lin, M. C., Umstead, M. E. & Djeu, N. Chemical lasers. Annu. Rev. Phys. Chem. 34, 557–591 (1983).
5. Rapp, D. & Kassel, T. Theory of vibrational energy transfer between simple molecules in nonreactive collisions. Chem. Rev. 69, 61–102 (1969).
6. Flynn, G. W., Parmenter, C. S. & Wodtke, A. M. Vibrational energy transfer. J. Phys. Chem. 100, 12837–12838 (1996).
7. Kirste, M. et al. Quantum-state resolved bimolecular collisions of velocity-controlled OH with NO radicals. Science 338, 1060–1063 (2012).
8. von Zastrow, A. et al. State-resolved diffraction oscillations imaged for inelastic collisions of NO radicals with He, Ne and Ar. Nat. Chem. 6, 216–221 (2014).
9. Gouzev, J. et al. Imaging quantum stroboscopy through Fraunhofer scattering of NO radicals with rare-gas atoms. Nat. Chem. 9, 226 (2016).
10. Perreault, W. E., Mukherjee, N. & Zare, R. N. Quantum control of molecular collisions at 1 kelvin. Science 358, 356–359 (2017).
11. Vogels, S. N. et al. Scattering resonances in bimolecular collisions between NO radicals and H\(_2\): challenge the theoretical gold standard. Nat. Chem. 10, 435–440 (2018).
12. Amarasinghe, C. et al. Differential cross sections for state-to-state collisions of NO(\(v = 10\)) in near-copropagating beams. J. Phys. Chem. Lett. 10, 2422–2427 (2019).
13. Polanyi, J. C. & Woodall, K. B. Mechanism of rotational relaxation. J. Chem. Phys. 56, 1563–1572 (1972).
14. Stewart, B., Magill, P. D., Scott, T. P., Deroard, J. & Pritchard, D. E. Quasiresonant vibration–rotation transfer in atom-diatom collisions. Phys. Rev. Lett. 60, 282–285 (1988).

15. Moore, C. B., Wood, R. E., Hu, B. L. & Yardley, J. T. Vibrational energy transfer in CO2 lasers. J. Chem. Phys. 46, 4222–4231 (1967).

16. Mack, J. A., Mikulecky, K. & Wodtke, A. M. Resonant vibration–vibration energy transfer between highly vibrationally excited O2(X 2Σ+, v = 15–26) and CO2, J. Chem. Phys. 105, 4105–4116 (1996).

17. McCaffery, A. J. A new approach to molecular collision dynamics. Phys. Chem. Chem. Phys. 6, 1637–1657 (2004).

18. Quéméner, G. & Balakrishnan, N. Quantum calculations of H2–H2 collisions: from ultracold to thermal energies. J. Chem. Phys. 130, 114303 (2009).

19. dos Santos, S. F. et al. Quantum dynamics of rovibrational transitions in H2–H2 collisions: internal energy and rotational angular momentum conservation effects. J. Chem. Phys. 134, 214303 (2011).

20. McCaffery, A. J., Osborne, M. A., Marsh, R. J., Lawrance, W. D. & Wacławik, E. R. The role of angular momentum in collision-induced vibration–rotation relaxation in polyatomics. J. Chem. Phys. 121, 169–180 (2004).

21. Kompa, K. L. & Pimentel, G. C. Hydrofluoric acid chemical laser. J. Chem. Phys. 47, 857–858 (1967).

22. Manke, G. C. & Hager, G. D. A review of recent experiments and calculations relevant to the kinetics of the HF laser. J. Phys. Chem. Ref. Data 30, 713–733 (2001).

23. Hancock, J. K. & Green, W. H. Vibrational deactivation of HF(ν=1) in pure HF and in HF-additive mixtures. J. Chem. Phys. 57, 4515–4529 (1972).

24. Stephens, R. R. & Cool, T. A. Vibrational energy transfer and de-excitation in the HF, DF, HFCO, and DF2CO systems. J. Chem. Phys. 56, 5863–5878 (1972).

25. Ahi, J. L. & Cool, T. A. Vibrational relaxation in the HF–HClHF–HBF HF–H2–HF–DF systems. J. Chem. Phys. 58, 5540–5548 (1973).

26. Böttger, J. F. G. Ab initio corrections applied to laser-induced fluorescence measurements of HF (v = 1) and DF (v = 1) deactivation. J. Chem. Phys. 61, 3414–3416 (1974).

27. Hancock, J. K. & Green, W. H. Vibrational relaxation in HF and DF between 200–300 K. IEEE J. Quantum Electron 11, 694 (1975).

28. Kwok, M. A. & Wilkins, R. L. Flow-tube studies of vibrational energy transfer in HF(v) + HF; DF(v) + DF; and DF(v) + DF2 systems. J. Chem. Phys. 63, 2453–2460 (1975).

29. Lucht, R. A. & Cool, T. A. Temperature dependence of vibrational relaxation in the HF–DF, HFCO, and DF2CO systems. II. J. Chem. Phys. 63, 3962–3970 (1975).

30. Wilkins, R. L. Mechanisms of energy transfer in hydrogen fluoride systems. J. Chem. Phys. 67, 5838–5854 (1977).

31. Billing, G. D. & Poulsen, L. L. Theory of V–V and V–T energy transfer for HF (n = 1 to 7) + HF (0). J. Chem. Phys. 68, 5128–5138 (1978).

32. Poulsen, L. L., Billing, G. D. & Steinfeld, J. I. Temperature dependence of HF vibrational relaxation. J. Chem. Phys. 68, 5121–5127 (1978).

33. Wilkins, R. L. & Kwok, M. A. Temperature dependence of HF(v) = 1 + HF (v0 = 0) vibrational relaxation. J. Chem. Phys. 70, 1705–1710 (1979).

34. Yarkony, D. R., O’Neil, S. V., Schafer, H. F., Baskin, C. P. & Bender, C. F. Interaction potential between two rigid HF molecules. J. Chem. Phys. 60, 855–865 (1974).

35. Schwenke, D. W., Thirumalai, D., Truhlar, D. G. & Coltrin, M. E. Tests of the quasiadiabatic trajectory cross-correlation moment method against accurate quantum dynamics for V–V energy transfer in HF–HF collisions. J. Chem. Phys. 78, 3078–3083 (1983).

36. Kofranek, M., Lischka, H. & Karpfen, A. Coupled pair functional study on the hydrogen fluoride dimer: I. Energy surface and characterization of stationary points. Chem. Phys. 121, 137–153 (1988).

37. Quack, M. & Suhm, M. A. Potential energy surfaces, quasiadiabatic channels, rovibrational spectra, and intramolecular dynamics of (HF2) and its isotopomers from quantum Monte Carlo calculations. J. Chem. Phys. 95, 28–59 (1991).

38. Kloooper, W., Quack, M. & Suhm, M. A. HF dimer: empirically refined analytical potential energy and dipole hypersurfaces from ab initio calculations. J. Chem. Phys. 108, 10096–10115 (1998).

39. Yang, D., Hu, X., Zhang, D. H. & Xie, D. An improved coupled-states approximation including the nearest neighbor Coriolis couplings for diatom-diatomic inelastic collision. J. Chem. Phys. 148, 084101 (2018).

40. Huang, J., Yang, D., Zhou, Y. & Xie, D. A new fully-dimensional ab initio intermolecular potential energy surface and vibrational states for (HF2) and (DF2). J. Chem. Phys. 150, 154302 (2019).

41. Alexander, M. H. & De Pristo, A. E. Symmetry considerations in the quantum treatment of collisions between two diatomic molecules. J. Chem. Phys. 66, 2166–2172 (1977).

42. dos Santos, S. F., Balakrishnan, N., Forrey, R. C. & Stancil, P. C. Vibration–vibration and vibration–translation energy transfer in H2–H2 collisions: a critical test of experiment with full-dimensional quantum dynamics. J. Chem. Phys. 138, 104302 (2013).

43. Yang, B. et al. Quantum dynamics of CO–H2 in full dimensionality. Nat. Commun. 6, 6629 (2015).

44. Yang, B. et al. Full-dimensional quantum dynamics of CO in collision with H2. J. Chem. Phys. 145, 034308 (2016).

45. Yang, B. et al. Full-dimensional quantum dynamics of rovibrationally inelastic scattering between CN and H2. J. Chem. Phys. 145, 224307 (2016).

46. Krems, R. V., Buchachenko, A. A., Marković, N. & Nordholm, S. On the role of interaction anisotropy in vibrational relaxation of HF and HCl by Ar. J. Chem. Phys. Lett. 335, 273–280 (2001).

47. Yang, D., Liu, Q., Zhao, H. & Xie, D. Theoretical study on quantum dynamics for Ar–HF inelastic collision. Chin. J. Chem. Phys. 32, 67–71 (2019).

48. Yang, D., Huang, J., Zuo, J., Hu, X. & Xie, D. A full-dimensional potential energy surface and quantum dynamics of inelastic collision process for H2–HF. J. Chem. Phys. 148, 184301 (2018).

49. Manca, C., Quack, M. & Willeke, M. Vibrational predissociation in hydrogen bonded dimers: the case of (HF2) and its isotopomers. CHIMIA Int. J. Chem. 62, 235–239 (2008).

50. Johnson, B. R. The multichannel log-derivative method for scattering calculations. J. Comput. Phys. 13, 445–449 (1973).

51. Manolopoulos, D. E. An improved log derivative method for inelastic scattering. J. Chem. Phys. 85, 6425–6429 (1986).

52. Yang, D., Hu, X. & Xie, D. Quantum dynamics of vibration–vibration energy transfer for vibrationally excited HF colliding with H2. J. Comput. Chem. 40, 1084–1090 (2019).

53. Light, J. C. & Carrington, T. Discrete-variable representations and their utilization. Adv. Chem. Phys. 114, 263–310 (2000).