Abstract
The role of serotonin in major depressive disorder (MDD) is the focus of accumulating clinical and preclinical research. The results of these studies reflect the complexity of serotonin signaling through many receptors, in a large number of brain regions, and throughout the lifespan. The role of the serotonin transporter in MDD has been highlighted in gene by environment association studies as well as its role as a critical player in the mechanism of the most effective antidepressant treatments – selective serotonin reuptake inhibitors. While the majority of the 15 known receptors for serotonin have been implicated in depression or depressive-like behavior, the serotonin 1A (5-HT\textsubscript{1A}) and 1B (5-HT\textsubscript{1B}) receptors are among the most studied. Human brain imaging and genetic studies point to the involvement of 5-HT\textsubscript{1A} and 5-HT\textsubscript{1B} receptors in MDD and the response to antidepressant treatment. In rodents, the availability of tissue-specific and inducible knockout mouse lines has made possible the identification of the involvement of 5-HT\textsubscript{1A} and 5-HT\textsubscript{1B} receptors throughout development and in a cell-type specific manner. This, and other preclinical pharmacology work, shows that autoreceptor and heteroreceptor populations of these receptors have divergent roles in modulating depression-related behavior as well as responses to antidepressants and also have different functions during early postnatal development compared to during adulthood.

Keywords
serotonin, MDD, major depressive disorder, serotonin receptor, 5-HT\textsubscript{1A}, 5-HT\textsubscript{1B}, 5-HTT, selective serotonin reuptake inhibitors, antidepressant
Introduction

The serotonin hypothesis of depression has dominated the field of depression for over four decades\(^1\). This theory is centered on the idea that reduced serotonin signaling is a risk factor in the etiology and/or pathophysiology of major depressive disorder (MDD)\(^2\). However, the most robust body of evidence for the role of serotonin in depression is the efficacy of increasing extracellular serotonin for the treatment of depression. The discovery that the efficacy of tricyclic antidepressants (TCAs) and monoamine oxidase inhibitor (MAOI) antidepressants was largely due to their serotonergic actions, which prompted the use of serotonin selective reuptake inhibitors (SSRIs), the first among them fluoxetine, to treat depression\(^3\). These drugs act at the serotonin transporter (5-HTT, also known as SERT) and cause increases in extracellular serotonin, which is the purported mechanism of action\(^4\). Many subsequent drugs inhibiting serotonin reuptake have shown behavioral efficacy as antidepressant drugs, suggesting that increasing synaptic serotonin levels may lead to the treatment of depression\(^5,6\).

Despite the relative success in treating depression by increasing extracellular serotonin, there is a lack of strong evidence supporting a direct correlation between low serotonin signaling and depression. While some studies report an association between levels of platelet serotonin and depression, this has not been a consistent finding in large sample sets, and it is also unclear how platelet levels are related to brain levels of serotonin\(^7,8,9\). Additionally, recent studies report direct correlations between cerebrospinal fluid 5-hydroxyindoleacetic acid (5-HIAA), a serotonin metabolite, and depression\(^10,11,12\). Low levels of tryptophan have been consistently linked to depression; however, these effects could be independent of serotonin\(^13,14\). The lack of consistent clear-cut abnormalities in global measures of serotonin signaling isn’t surprising if one considers the complexity of the receptors at which serotonin binds, the intricate neuroanatomical circuitry of the serotonin system, and the developmental role serotonin plays as a neurotrophic factor\(^15,16,17\). Many recent studies have focused on understanding the mechanisms through which serotonin affects depression by studying the impact of 5-HTT and the 15 known receptors through gene-association studies, human brain imaging, and pharmacological and genetic mouse models\(^18\).

The success in treating depression by targeting the transporter with SSRIs prompted investigations into whether variability in 5-HTT expression levels could be involved in the etiology of depression. A highly cited study showed that there is an association between a polymorphism in the serotonin transporter (5-HTTLPR) and susceptibility to developing depression\(^19\). This and other studies have shown that the short “s” allele, which results in lower levels of 5-HTT expression (at least in vitro) and therefore increased extracellular 5-HT, is associated with a higher risk of depression when combined with stressful life events\(^20,21,22\). This discovery was unexpected if developmental considerations were not considered. Although inhibiting the function of the transporter during adulthood decreases depressive symptoms as in the case of SSRIs, reduced expression of 5-HTT during development may increase depressive behavior in adulthood. A human functional magnetic resonance imaging (fMRI) study supports this, showing that short allele carriers show morphological and functional alterations in limbic circuits\(^23\). Additionally, mice lacking 5-HTT throughout life display increased depressive-like behaviors, and pharmacological blockade of 5-HTT in mice exclusively during early postnatal development resulted in increased adult depressive behavior\(^24\). These results highlight the differences in developmental versus adult effects of altered serotonin neurotransmission on depression.

In addition to the serotonin transporter, the majority of the 15 serotonin receptors have been implicated in the modulation of depression, depressive-like behaviors, or the response to antidepressant treatment\(^25\). There are numerous pre-clinical studies which have investigated the role of serotonin receptors using pharmacological manipulations and genetic knockout (KO) models in rodents (Table 1). Given the breadth of this literature, this review will focus on two receptors that are among the most extensively studied for their role in modulating depression, the 5-HT\(_{1A}\) and 5-HT\(_{1B}\) receptor subtypes. In addition, attention will be paid to population-dependent and development-dependent effects of serotonin signaling at these receptors and will draw from both rodent and human studies.

The 5-HT\(_{1A}\) and 5-HT\(_{1B}\) receptors are both inhibitory Gi/o-coupled seven transmembrane receptors that are located throughout the brain\(^26,27\). A major difference between these two receptors is their subcellular distribution\(^28\). 5-HT\(_{1A}\) receptors are somatodendritic, while 5-HT\(_{1B}\) receptors are located on axon terminals\(^29\). This difference is also reflected in their mechanisms of inhibitory action (Figure 1). Activation of either receptor causes decreased neurotransmitter release; however, 5-HT\(_{1A}\) receptor activation causes hyperpolarization, leading to decreased firing, while 5-HT\(_{1B}\) receptors inhibit voltage-gated calcium channels in the presynaptic terminal\(^30-32\). Another mechanism for 5-HT\(_{1B}\) receptor-mediated inhibition is via effects on 5-HTT, and activation of the 5-HT\(_{1B}\) receptor increases serotonin reuptake\(^33,34\).

Both 5-HT\(_{1A}\) and 5-HT\(_{1B}\) receptors act as autoreceptors located on serotonin neurons and also have heteroreceptor populations located on non-serotonin receptors (Figure 2). Although the mRNA in the raphe (corresponding to autoreceptors) is comparable between the two receptors, their heteroreceptors have distinct patterns of expression\(^35\). 5-HT\(_{1A}\) receptors are enriched in the hippocampus and cortex, while 5-HT\(_{1B}\) receptors are highly expressed in the basal ganglia\(^36,37\). These differences in mechanism of action and localization may play a role in the different functional effects of these receptors.

While this review focuses on the contribution of 5-HT\(_{1A}\) and 5-HT\(_{1B}\) receptors in depression and depressive-like behaviors, these receptors also modulate other psychiatric-relevant phenotypes. For example, alterations in 5-HT\(_{1A}\) receptor expression influence anxiety behavior, and 5-HT\(_{1B}\) receptor signaling affects reward- and impulsivity-related phenotypes. These receptor-based differences in serotonergic regulation of emotional behavior, which segment into endophenotypes, could contribute to the heterogeneity of symptoms found in MDD\(^38\). Understanding the neural circuits that subserve these receptor-based and endophenotype-based
differences can help clarify the often confusing and sometimes contradictory findings from various preclinical approaches. From a behavioral perspective, these phenotypes can be segmented through formal unsupervised factor analyses to better divide depressive behaviors into meaningful endophenotypes. Then predictors of the different endophenotypes could be tested by including genetic or pharmacological manipulations.

5-HT\textsubscript{1A} and depression

Of the 15 known serotonin receptors, the 5-HT\textsubscript{1A} receptor is the most studied for its role in depression\cite{49}. Quantification of 5-HT\textsubscript{1A} receptor levels in humans from post mortem and positron emission tomography (PET) imaging studies reveals an increased level of 5-HT\textsubscript{1A} receptors in patients diagnosed with MDD\cite{50-52}. Gene association studies have linked a polymorphism in the 5-HT\textsubscript{1A} regulatory region (rs6295; G-1019C) with receptor levels in the brain and also to increased risk for depression\cite{53-55}. The GG genotype at this single nucleotide polymorphism (SNP) is associated with altered levels of 5-HT\textsubscript{1A} receptor expression and reduced responsiveness to antidepressant treatment\cite{56,57}. Additionally, clinical studies have revealed antidepressant effects of buspirone and other 5-HT\textsubscript{1A} receptor agonists\cite{58,59}.

Rodent models have also shown that 5-HT\textsubscript{1A} receptor agonists, such as 8-hydroxy-2-(di-n-propylamino) tetralin (8-OH-DPAT), can have acute antidepressant-like effects\cite{60,61}. These effects are blocked by 5-HT\textsubscript{1A} receptor antagonists, suggesting that the antidepressant-like response is specific to 5-HT\textsubscript{1A} receptor signaling. 5-HT\textsubscript{1A} heteroreceptors, expressed throughout the limbic system, are the likely site of action for these acute 5-HT\textsubscript{1A} receptor-mediated effects\cite{62,63}. On the other hand, 5-HT\textsubscript{1A} autoreceptors work in opposition to the heteroreceptors, leading to pro-depressive effects. Specifically, activation results in hyperpolarization and reduced firing of raphe neurons, leading to diminished serotonin release in projection regions\cite{64}. Therefore, stimulation of 5-HT\textsubscript{1A} autoreceptors from increased extracellular

Receptor	PubMed Hits*	Pharmacological studies on depression	Genetic effects on depression	Other behavioral phenotypes
5-HT\textsubscript{2A}	588	Agonists have antidepressant-like effects\cite{65,66}, potentiate the effects of SSRIs\cite{67,68}	No known effect of 5-HT\textsubscript{2A} KO on depressive-like behavior\cite{69}	Agonists are hallucinogenic; antagonists are antipsychotic and anxiolytic; KO mouse has reduced anxiety-like behavior\cite{70-72}
5-HT\textsubscript{2B}	52	Agonists have antidepressant-like effects\cite{73}	Required for behavioral effects of SSRIs\cite{74,75}	KO mouse shows increased impulsivity\cite{76}
5-HT\textsubscript{2C}	282	Agonists have antidepressant-like effects; agonists have pro-depressive effects\cite{77,78}	No known effect of 5-HT\textsubscript{2C} KO on depressive-like behavior	Agonists have anxiolytic effects; antagonists decrease impulsivity and motivation for drug and food consumption; KO mouse has reduced anxiety-like behavior\cite{79-81}
5-HT\textsubscript{3A}	252	Agonist has antidepressant-like effects\cite{82}	5-HT\textsubscript{3} required for exercise-induced antidepressant effects; KO has antidepressant-like phenotype\cite{83,84}	Antagonists are anxiolytic\cite{85}
5-HT\textsubscript{4}	81	Agonists have rapid antidepressant-like effects\cite{86,87}	KO has attenuated responses to stress\cite{88}	Agonists are anxiolytic; antagonists improve cognitive performance and reduce feeding\cite{89,90}
5-HT\textsubscript{5A}	5	Unknown	Unknown	KO mice display increased exploratory behavior\cite{91}
5-HT\textsubscript{6}	62	Agonists produce antidepressant-like effects and antagonists block the effects of SSRIs\cite{92,93}	Unknown	Antagonists enhance cognitive performance; blockade of signaling is anxiogenic\cite{94,95}
5-HT\textsubscript{7}	137	Antagonists have antidepressant-like effects\cite{96}	KOIs have an antidepressant-like phenotype\cite{97}	Antagonists have pro-cognitive effects\cite{98}

*Number of PubMed hits based on the search terms including “depression” and the receptor as of August 25, 2016.

N.B. 5-HT1D, 1E, 1F, 3B, and 5B are not included in the chart owing to a lack of published research concerning the role of these receptors in behavior.

5-HT, serotonin; KO, knockout; SSRI, selective serotonin reuptake inhibitor.
serotonin following SSRI treatment is thought to oppose SSRI actions by downregulating serotonin neuron activity37. Over the first few weeks of treatment, these receptors desensitize, which may underlie the delayed behavioral efficacy of SSRIs38. Therefore, blocking 5-HT\textsubscript{1A} autoreceptor activation has been introduced as an adjunctive therapy to SSRIs. 5-HT\textsubscript{1A} receptor partial agonists such as pindolol, and more recently vilazodone, have been shown to be an effective adjunctive therapy to SSRIs in clinical studies59–62. The development of new agonists that preferentially target subpopulations of 5-HT\textsubscript{1A} receptors, for example autoreceptors versus heteroreceptors, potentially through biased agonism, may be useful tools for the treatment of MDD63.

Differences in receptor levels have also been modeled in mice by using genetic loss-of-function models and have allowed causal links between receptor expression levels and depressive-like behavior. 5-HT\textsubscript{1A} receptor KO mice have an anti-depressive phenotype64,65. Tissue-specific KOs have been especially valuable for the dissection of this phenotype and have allowed investigations into the distinct roles of different populations of receptors66. The absence of heteroreceptors results in increased depressive-like behavior- as measured in the forced swim test. This mouse model also allowed for temporal control of receptor expression, which revealed a developmental sensitive period for the effect of heteroreceptors on depressive-like behavior. Specifically, knockdown of 5-HT\textsubscript{1A}
heteroreceptors in adulthood was not sufficient to produce the depressive-like behavior. On the other hand, reduction of autoreceptors in adulthood increased mobility in the forced swim test, suggesting an “anti-depressed” phenotype.

Preclinical studies have also confirmed a causal role for alterations in 5-HT$_{1A}$ receptor expression in antidepressant efficacy. 5-HT$_{1A}$ receptor KO mice do not show a behavioral response to fluoxetine6. As expected from the pharmacology work, this effect is not mediated by autoreceptors, since reduced expression of 5-HT$_{1A}$ autoreceptors actually increases the speed and efficacy of SSRI response, requiring only 8 days of fluoxetine treatment to show a behavioral antidepressant-like response6. Recent data show that 5-HT$_{1A}$ heteroreceptors are critical for an effective behavioral response to an SSRI in mice7. Genetic or viral deletion of 5-HT$_{1A}$ receptors specifically in the dentate gyrus of the hippocampus reduced the behavioral response to fluoxetine. Furthermore, expression of 5-HT$_{1A}$ receptors only in the dentate gyrus was sufficient for normal antidepressant-like responses. These results importantly demonstrate a mechanism for 5-HT$_{1A}$-mediated antidepressant effects localized in the mature granule cells of the dentate gyrus.

5-HT$_{1A}$ and other psychiatric-relevant phenotypes

Anxiety behavior is also modulated strongly by the 5-HT$_{1A}$ receptor, and, among depressed patients, almost half have a comorbid anxiety disorder8. In preclinical studies, 5-HT$_{1A}$ receptor agonists have anxiolytic effects, and 5-HT$_{1A}$ receptor KO mice display increased anxiety-like behavior9. This effect has a developmental sensitive period, since early developmental but not adult rescue of the receptor was sufficient to restore the normal phenotype in the KO10. Consistent with this, early postnatal blockade of 5-HT$_{1A}$ receptors, through genetic or pharmacological methods, also leads to increased anxiety11,12. Recent work has shown that the sensitive period is peri-puberal, and tissue-specific KO mice point to a role for autoreceptors during this period of development13,14,15.

Other psychiatric disorders have also been linked to the 5-HT$_{1A}$ receptor, including bipolar disorder and post-traumatic stress disorder16,17. Additionally, the SNP rs6295 found in the premotor region that is associated with risk for depression is also linked with psychiatric hospitalization, a history of substance abuse, and prior suicide attempts18. Consistent with the studies in depression, the G allele is associated with reduced expression of the 5-HT$_{1A}$ receptor in the prefrontal cortex and an increased risk for psychiatric outcomes. Interestingly, the effects on receptor expression were also seen in the brain during early human embryonic development, suggesting its potential importance in mediating developmental contributions to adult depression. Finally, there were associations with childhood maltreatment with trends towards significant genotype by environment interactions19.

5-HT$_{1B}$ and depression

While the 5-HT$_{1B}$ receptor is best known for its role in regulating aggressive and impulsive behavior, it also plays an important role in modulating depression. Activation of the 5-HT$_{1B}$ receptor decreases serotonin levels in the brain through effects on release, synthesis, and reuptake20,21,22. In humans, reduced 5-HT$_{1B}$ receptor function is associated with MDD23. Additionally, patients with MDD are less responsive to 5-HT$_{1B}$ receptor agonists, suggesting reduced expression or desensitization24. This is consistent with clinical studies showing that 5-HT$_{1B}$ receptor agonists produce antidepressant effects in humans25,26,27. This has also been shown in mice, with specific agonists resulting in antidepressant-like behavior28,29. However, genetic KO of the receptor also results in antidepressant-like behavior, suggesting that this is possibly caused by compensatory effects$^{30-34}$.

Both autoreceptor and heteroreceptor populations of 5-HT$_{1B}$ receptors have been implicated in depressive-like behaviors using rodent models. However, since 5-HT$_{1B}$ receptors are located on presynaptic terminals, heteroreceptors and autoreceptors have overlapping localization35. This rules out brain imaging and pharmacological manipulations in preclinical models as tools to differentiate the role of the two populations of receptors. Therefore, it has been only the recent availability of a tissue-specific genetic mouse model that has allowed the dissection of the role of 5-HT$_{1B}$ receptors in the regulation of behavior36.

Our recent studies show that selective ablation of 5-HT$_{1B}$ autoreceptors results in decreased depressive-like behaviors in mice37. These mice also show increased elevations in serotonin levels compared to controls following SSRI administration, suggesting a potential mechanism of action for the behavioral effects. Specifically, removing the terminal auto-inhibition may result in increased serotonin in projection regions that are relevant to depressive behavior. Furthermore, we also showed that the impact of 5-HT$_{1B}$ autoreceptors on behavior was not due to developmental expression, since the phenotype was not recapitulated in a mouse with developmental knockdown. These data are consistent with other evidence suggesting a pro-depressive role for the activation of 5-HT$_{1B}$ autoreceptors38. For example, 5-HT$_{1B}$ mRNA is elevated in the raphe of rats following stress and in models of depression such as learned helplessness, and viral overexpression of 5-HT$_{1B}$ receptors in the raphe results in depressive-like behavior following stress39. In rats, reductions in 5-HT$_{1B}$ receptor mRNA in the raphe are seen following SSRI treatment in post mortem brains40,41. This effect isn’t seen in other brain regions such as the cortex, hippocampus, or striatum, suggesting that this effect is specific to autoreceptors. Additionally, another study showed that 5-HT$_{1B}$ autoreceptors may desensitize following SSRI treatment, similar to 5-HT$_{1A}$ autoreceptors42. Finally, a recent PET study in humans reported that following effective cognitive behavioral therapy for depression, 5-HT$_{1B}$ receptor binding was reduced in the brainstem43.

There is evidence which suggests an opposing role for 5-HT$_{1B}$ heteroreceptors in depressive behaviors. Activation of 5-HT$_{1B}$ heteroreceptors in a rodent serotonin depletion model (to remove the contribution of autoreceptors) results in an antidepressant-like effect44. Additionally, reduced expression of 5-HT$_{1B}$ heteroreceptors in the ventral striatum is associated with depression in humans45. Finally, 5-HT$_{1B}$ receptors located in the ventral striatum have been suggested to interact with p11 (a 5-HT$_{1B}$ receptor-binding protein) to affect depression-related behaviors46,47.

5-HT$_{1B}$ and other psychiatric-related phenotypes

Reward dysfunction is a major symptom of MDD which is mediated, in part, by altered signaling in the mesolimbic reward system$^{48-52}$. 5-HT$_{1B}$ receptors have been implicated in the neural
basis of dysregulated reward sensitivity in a number of human studies and preclinical models13-15, and both 5-HT\textsubscript{1B} receptor protein and mRNA are located within the mesolimbic pathway in the nucleus accumbens (NAc) and ventral tegmental area (VTA)15. Additionally, activation of 5-HT\textsubscript{1B} receptors in the VTA increases dopamine levels in the NAc, potentially via effects on GABAergic signaling in the VTA17.

Many studies linking the receptor to functional deficits in reward processing have focused on addiction. Polymorphisms in the 5-HT\textsubscript{1B} receptor gene have also been associated with drug and alcohol abuse18-20. Additionally, a PET imaging study revealed increased 5-HT\textsubscript{1B} receptor binding in pathological gamblers, who have known deficits in reward sensitivity, and gambling disorder is highly comorbid with depression and alcohol and substance use disorders16,21-23. Another PET imaging study shows that there is reduced 5-HT\textsubscript{2A} receptor binding in cocaine-dependent participants compared to healthy controls22. In preclinical models, 5-HT\textsubscript{1B} receptor KO mice are more motivated to self-administer cocaine22. Consistent with this, 5-HT\textsubscript{2A} receptor agonists attenuate the motivation for cocaine but paradoxically increase the rewarding effects of cocaine24. These effects are mediated by 5-HT\textsubscript{1B} receptor expression on medium spiny neurons in the NAc, likely through their projections to the VTA25,26. Additionally, 5-HT\textsubscript{1B} receptors are required for the rewarding properties of social interaction, supporting an impact on general reward systems14.

5-HT\textsubscript{1B} receptors are also implicated in impulsive aggression. In humans, polymorphisms in the gene encoding 5-HT\textsubscript{1B} receptors have been associated with aggression, suicide, and disorders that include impulsivity as a core phenotype, including attention deficit hyperactivity disorder and substance use disorder15,20,27. In mice, 5-HT\textsubscript{1B} receptor KOs are highly aggressive in tests of male and female aggression and also display increased impulsivity28-30. Additionally, 5-HT\textsubscript{1B} receptor agonists are known as “serenics” because they decrease aggression31. While the aggressive and impulsive phenotype was originally thought to be modulated by the same underlying circuits, our recent work shows that distinct populations of 5-HT\textsubscript{1B} receptors modulate aggression and impulsivity32. Furthermore, developmental expression of the 5-HT\textsubscript{1B} receptor influences aggression, while adult expression modulates impulsive behavior.

Conclusion

There is a considerable body of research that implicates serotonin in the modulation of depression and depression-related behaviors. The preclinical work delineating the effects of signaling through the 5-HT\textsubscript{1A} and 5-HT\textsubscript{1B} receptors has been made possible because of careful pharmacological studies as well as the development of transgenic mouse models that have allowed for tissue-specific and inducible knockdown. These studies have highlighted the complexity of serotonin receptors, showing that their role varies through the lifespan and by cell-type population. Additionally, the availability of specific radioligands for PET imaging of these receptors has allowed for the translation of findings from preclinical work to humans. The large number of studies concerning the role of these receptors is partially due to the fact that the 5-HT\textsubscript{1} receptor subtypes were some of the first discovered, and it may be only a matter of time before the roles of more newly discovered receptors are clarified33.

Despite the amassing of evidence of serotonin receptor-specific involvement in depression, the primary pharmaceutical treatment strategy for depression remains the inhibition of serotonin reuptake. The lack of new treatment options is surprising given the need for them, since current SSRI treatments are ineffective in one-third of patients12. Additionally, the majority of patients, as seen in the STAR*D study, don’t respond to administration of the first SSRI treatment, requiring multi-step treatment plans that take months10,11. Furthermore, the considerable differences in treatment outcome also emphasize the heterogeneity of the depressed patient population. A better understanding of receptor signaling and neural circuit mechanisms by which serotonin affects depression may inform the development of novel, more targeted drugs that influence specific receptors, signaling cascades, or time periods. Also, personalized treatment plans could be developed based on symptoms, biomarkers, or pathophysiological presentation.

Competing interests

The authors declare that they have no competing interests.

Grant information

Support for René Hen was provided by Hope for Depression Research Foundation (RGA 13-003), NIH R37MH068542, and R01MH083862. Funding for Katherine Nautiyal was provided by NIH K99 MH106731 and a NARSAD Young Investigator Award.

The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
hydrochloride (Lilly 110140), a specific inhibitor of serotonin uptake. Psychopharmacol. Commun. 1976; 1(5): 511–21. Published Abstract

6. de Montigny C, Blier P: Effects of antidepressant treatments on 5-HT neurotransmission: electrophysiological and clinical studies. Adv Biochem Psychopharmacol. 1984; 29: 233–39. Published Abstract

7. Lemberger L, Rowe H, Carmichael R, et al.: Pharmacologic effects in man of a specific serotonin uptake inhibitor. Science. 1978; 198(4327): 436–7. Published Abstract | Publisher Full Text

8. Nackenoff AG, Mousa-Tooks AB, McMeekin AM, et al.: Essential Contributions of Serotonin Transporter Inhibition to the Acute and Chronic Actions of Fluoxetine and Citalopram in the SERT Met172 Mouse. Neuropsychopharmacology. 2016; 41(7): 1733–41. Published Abstract | Publisher Full Text | F1000 Recommendation

9. Asberg M, Mårtensson B: Serotonin selective antidepressant drugs: past, present, future. Neuropsychopharmacol. 1993; 16 Suppl 3: 532–44. Published Abstract

10. Mann JJ, McBride PA, Anderson GM, et al.: The serotonin transporter promoter polymorphism (5-HTTLPR), stress, and depression meta-analysis revisited: evidence for a susceptibility mechanism for depression. Molecular Psychiatry. 2005; 10: 879–81. Published Abstract | Publisher Full Text

11. Coppen A, Turner P, Rowess AR, et al.: 5-Hydroxytryptamine (5-HT) in the whole-blood of patients with depressive illness. Postgrad Med J. 1976; 52(605): 156–8. Published Abstract | Publisher Full Text | Free Full Text

12. van Praag HM, de Haan S: Central serotonin metabolism and frequency of depression. Psychiatry Res. 1979; 1(3): 219–24. Published Abstract | Publisher Full Text | Free Full Text

13. Asberg M, Bertilsson L, Mårtensson B, et al.: CSF monoamine metabolites in melancholia. Acta Psychiatr Scand. 1984; 69(3): 201–19. Published Abstract | Publisher Full Text

14. Karré F, Widmer J, Bouver P, et al.: Platelet serotonin and plasma tryptophan in depressed patients: effect of drug treatment and clinical outcome. Neuropsychopharmacology. 1994; 10(3): 207–14. Published Abstract | Publisher Full Text

15. Ogawa S, Fuji T, Koga N, et al.: Plasma u-tryptophan concentration in major depressive disorder: new data and meta-analysis. J Clin Psychiatry. 2014; 75(9): e906–15. Published Abstract | Publisher Full Text | Free Full Text

16. Gaspar P, Cases O, Maroteaux L: The developmental role of serotonin: news from mouse molecular genetics. Nat Rev Neurosci. 2003; 4(12): 1002–12. Published Abstract | Publisher Full Text | Free Full Text

17. Barnes NM, Sharp T: A review of central 5-HT receptors and their function. Neuropharmacology. 1999; 38(8): 1083–152. Published Abstract | Publisher Full Text

18. Bang SJ, Jensen P, Dynek SM, et al.: Projections and interconnections of genetically defined serotonin neurons in mice. Eur J Neurosci. 2012; 35(1): 85–96. Published Abstract | Publisher Full Text | Free Full Text

19. Carr GV, Lucki I: The role of serotonin receptor subtypes in treating depression: a review of animal studies. Psychopharmacology (Berl). 2011; 213(2–3): 265–87. Published Abstract | Publisher Full Text | Free Full Text

20. Caspi A, Sugden K, Moffit TE, et al.: Influence of life stress on depression: moderation by a polymorphism in the 5-HTT gene. Science. 2003; 301(5631): 386–9. Published Abstract | Publisher Full Text | F1000 Recommendation

21. Karg K, Burmeister M, Shedden K, et al.: The serotonin transporter promoter variant (5-HTTLPR), stress, and depression meta-analysis reviewed: evidence of genetic moderation. Arch Gen Psychiatry. 2011; 68(5): 444–54. Published Abstract | Publisher Full Text | Free Full Text | F1000 Recommendation

22. Risch N, Herrell R, Lehner T, et al.: Interaction between the serotonin transporter promoter variant (5-HTTLPR), stressful life events, and risk of depression: a meta-analysis. JAMA. 2009; 301(23): 2462–71. Published Abstract | Publisher Full Text | Free Full Text | F1000 Recommendation

23. Pezawas L, Meyer-Lindenberg A, Drabant EM, et al.: 5-HTTLPR polymorphism impacts human cingulate-amygdala interactions: a genetic susceptibility mechanism for depression. Nat Neurosci. 2005; 8(6): 828–34. Published Abstract | Publisher Full Text | F1000 Recommendation

24. Ansonge MS, Zhou M, Lira A, et al.: Early-life blockade of the 5-HT transporter alters emotional behavior in adult mice. Science. 2004; 306(5697): 879–81. Published Abstract | Publisher Full Text | F1000 Recommendation

25. Albert PR, Robillard L: G protein specificity: traffic direction required. Cell Signal. 2002; 14(5): 407–18. Published Abstract | Publisher Full Text | F1000 Recommendation

26. Laporte AM, Lima L, Gozlan H, et al.: Selective in vivo labelling of brain 5-HT1A receptors by [3H]WAY 100635 in the mouse. Eur J Pharmacol. 1994; 271(2–3): 505–14. Published Abstract | Publisher Full Text

27. Boschert U, Amara DA, Segu L, et al.: The mouse 5-hydroxytryptamine1A receptor is localized predominantly on axon terminals. Neuroscience. 1994; 58(1): 167–82. Published Abstract | Publisher Full Text

28. Ghashami A, Stark KL, Jareb M, et al.: Differential addressing of 5-HT1A and 5-HT1B receptors in epithelial cells and neurons. J Cell Sci. 1999; 112(Pt 6): 967–76. Published Abstract

29. Riad M, Garcia S, Watkins KC, et al.: Somatodendritic localization of 5-HT1A and axon terminal axonal localization of 5-HT1B serotonin receptors in adult rat brain. J Comp Neurol. 2000; 417(2): 181–94. Published Abstract | Publisher Full Text

30. Beck SG, Choi KC, List TJ: Comparison of 5-hydroxytryptamine1A-mediated hyperpolarization in CA1 and CA3 hippocampal pyramidal cells. J Pharmacol Exp Ther. 1992; 263(1): 350–9. Published Abstract

31. Strobel A, Gutknecht L, Rothe C, et al.: H[WAY 100635 in the mouse. J Neurosci. 2004; 24(31): 991–1000. Published Abstract | Publisher Full Text | Free Full Text

32. Donaldson ZR, Le Francois B, Santos TL, et al.: Mouse SHT1B serotonin receptor: cloning, functional expression, and localization in motor control centers. Proc Natl Acad Sci U S A. 1992; 89(7): 3020–4. Published Abstract | Publisher Full Text | Free Full Text | F1000 Recommendation

33. Crake MS, McDevitt RA, Neumayer JF: Quantitative mapping of tryptophan hydroxylase-2, 5-HT1A, 5-HT1B, and serotonin transporter expression across the anteroposterior axis of the rat dorsal and median raphe nuclei. J Comp Neurol. 2006; 498(5): 611–23. Published Abstract | Publisher Full Text | Free Full Text

34. Maroteaux L, Saudou F, Amiaiky N, et al.: Platelet serotonin and plasma tryptophan concentration in major depressive Disorder: new data and meta-analysis. J Clin Psychiatry. 2014; 75(9): e906–15. Published Abstract | Publisher Full Text | Free Full Text

35. Clark MS, McDevitt RA, Neumaier JF: Studies using KO mice. Neurochem Int. 2014; 73: 127–31. Published Abstract | Publisher Full Text | Free Full Text

36. Donaldson ZR, Hen R: From psychiatric disorders to animal models: a bidirectional and dimensional approach. Biol Psychiatry. 2015; 77(1): 15–21. Published Abstract | Publisher Full Text | Free Full Text

37. Savitz J, Lucki I, Dreovs WC: 5-HT1A receptor function in major depressive disorder. Prog Neurobiol. 2009; 88(1): 17–46. Published Abstract | Publisher Full Text | Free Full Text | F1000 Recommendation

38. Kaufman J, Sullivan GM, Yang J, et al.: Quantification of the Serotonin 1A Receptor Using PET: Identification of a Potential Biomarker of Major Depression in Males. Neuropsychopharmacology. 2015; 40(7): 1992–9. Published Abstract | Publisher Full Text | Free Full Text | F1000 Recommendation

39. Stockmeier CA, Shapiro LA, Delley GE, et al.: Increase in serotonin-1A autoreceptors in the midbrain of suicide victims with major depression: postmortem evidence for decreased serotonin activity. J Neurosci. 1998; 18(18): 7394–401. Published Abstract

40. Donaldson ZR, Le Francois B, Santos TL, et al.: Functional serotonin 1a receptor promoter polymorphism, ref295, is associated with psychiatric illness and differences in transcription. Transl Psychiatry. 2016; 6: e746. Published Abstract | Publisher Full Text | Free Full Text

41. Albert PR, Lemone S: 5-HT1A receptors, gene repression, and depression: guilt by association. Neurosci Res. 2014; 80(2): 170–8. Published Abstract | Publisher Full Text | Free Full Text | F1000 Recommendation

42. Strobel A, Gutknecht L, Rothe C, et al.: Allelic variation in 5-HT1A receptor expression is associated with anxiety- and depression-related personality traits. J Neurol Transm (Vienna). 2003; 110(12): 1445–53. Published Abstract | Publisher Full Text | Free Full Text

43. Lemone S, Turecki G, Bakish D, et al.: Impaired repression at a 5-hydroxytryptamine 1A receptor gene polymorphism associated with major depression and suicide. J Neurosci. 2003; 23(25): 8788–99. Published Abstract | Publisher Full Text | F1000 Recommendation

44. Parsey RV, Olvet DM, Quenodo MA, et al.: Higher 5-HT1A receptor binding potential
helpless rats in the forced swim test. Synapse. 2004; 52(1): 73–5.

F Weisstaub NV, Zhou M, Lira A, et al.: Cortical 5-HT₆ receptor signaling modulates anxiety-like behaviors in mice. Science. 2006; 313(5786): 536–40. PubMed Abstract | Publisher Full Text | F1000 Recommendation

136. Moeltzer HY: The role of serotonin in antipsychotic drug action. Neuropsychopharmacology. 1999; 21(2 Suppl): 1065–1105. PubMed Abstract | Publisher Full Text

137. Haberstadt AL, Geyer MA: Multiple receptors contribute to the behavioral effects of indoleamine hallucinogens. Neuropsychopharmacology. 2011; 61(3): 364–81. PubMed Abstract | Publisher Full Text | Free Full Text

138. Diaz SL, Doly S, Narboux-Neme N, et al.: S-HT_{1A} receptors are required for serotonin-selective antidepressant actions. Mol Psychiatry. 2012; 17(2): 154–63. PubMed Abstract | Publisher Full Text | Free Full Text

139. Diaz SL, Narboux-Neme N, Boutsourinsky K, et al.: Mice lacking the serotonin S-HT_{1A} receptor as an animal model of resistance to selective serotonin reuptake inhibitors antidepressants. Eur Neuropsychopharmacol. 2016; 26(2): 265–79. PubMed Abstract | Publisher Full Text | F1000 Recommendation

140. Bevilacqua L, Doly S, Kaprio J, et al.: A population-specific NTR2B stop codon predisposes to severe impulsivity. Nature. 2010; 468(7327): 1061–6. PubMed Abstract | Publisher Full Text | Free Full Text | F1000 Recommendation

141. Cryan JF, Lucki I: Antidepressant-like behavioral effects mediated by 5-hydroxytryptamine_{1A} receptors. J Pharmacol Exp Ther. 2000; 295(3): 1120–6. Published Abstract

142. Ogal MD, Klenotich SC, Morais M, et al.: Serotonin 2C receptor antagonists induce fast-onset antidepressant effects. Mol Psychiatry. 2014; 19(10): 1106–14. PubMed Abstract | Publisher Full Text | F1000 Recommendation

143. Heisler LK, Zhou L, Bajwa P, et al.: Serotonin 5-HT_{1A} receptors regulate anxiety-like behavior. Gene Expr Brain Behav. 2007; 6(5): 491–6. PubMed Abstract | Publisher Full Text

144. Higgins GA, Sileniekis LB, Alther EB, et al.: Lorcaserin and CP-809101 reduce motor impulsivity and reinstatement of food seeking behavior in male rats: Implications for understanding the anti-obesity property of 5-HT_{2C} receptor agonists. Psychopharmacology (Berl). 2016; 233(14): 2841–56. PubMed Abstract | Publisher Full Text

145. Griebel G, Pernaull G, Sanger DJ: A comparative study of the effects of selective and non-selective 5-HT_{1A} receptor subtype antagonists in rat and mouse models of anxiety. Neuropsychopharmacology. 1997; 16(6): 793–802. PubMed Abstract | Publisher Full Text

146. Ramamoorthy R, Radhakrishnan M, Bonah M: Antidepressant-like effects of serotonin type-3 antagonist, ondansetron: an investigation in behaviour-based rodent models. Behav Pharmacol. 2008; 19(1): 29–40. PubMed Abstract | Publisher Full Text

147. Kondo M, Nakamichi Y, Ishida Y, et al.: The 5-HT₃ receptor is essential for exercise-induced hippocampal neurogenesis and antidepressant effects. Mol Psychiatry. 2015; 20(11): 1428–37. PubMed Abstract | Publisher Full Text

148. Bhanagar S, Nowak N, Babich L, et al.: Deletion of the 5-HT_{2A} receptor differentially affects behavior of males and females in the Porsolt forced swim and defensive withdrawal tests. Behav Brain Res. 2004; 163(2): 527–35. PubMed Abstract | Publisher Full Text
Open Peer Review

Current Peer Review Status: ✔ ✔ ✔

Editorial Note on the Review Process

Faculty Reviews are review articles written by the prestigious Members of Faculty Opinions. The articles are commissioned and peer reviewed before publication to ensure that the final, published version is comprehensive and accessible. The reviewers who approved the final version are listed with their names and affiliations.

The reviewers who approved this article are:

1. Irwin Lucki
 Department of Psychiatry, Department of Pharmacology, University of Pennsylvania, Philadelphia, PA, USA
 Competing Interests: No competing interests were disclosed.
2. Randy Blakely
 Department of Biomedical Sciences, Charles E. Schmidt College of Medicine, Florida Atlantic University, Jupiter, FL, 33458, USA
 Competing Interests: No competing interests were disclosed.
3. John Neumaier
 Department of pharmacology, University of Washington, Seattle, WA, USA
 Competing Interests: No competing interests were disclosed.

The benefits of publishing with F1000Research:

• Your article is published within days, with no editorial bias
• You can publish traditional articles, null/negative results, case reports, data notes and more
• The peer review process is transparent and collaborative
• Your article is indexed in PubMed after passing peer review
• Dedicated customer support at every stage

For pre-submission enquiries, contact research@f1000.com