The Hey (Hesr/HERP/CHF) family of transcriptional repressors comprises three basic-helix-loop-helix proteins (Hey1, Hey2, HeyL) that function as downstream effectors of Notch signaling. As canonical direct targets of Notch (1-3), these factors have been implicated in the control of vascular and cardiac morphogenesis (4-9), neurogenesis (10), myogenesis (11), and inner ear and kidney development (12,13).

Hey proteins have been extensively studied in a structure-function perspective. They dimerize with one another (and other bHLH proteins) via their HLH motif and bind to E-box or N-box elements within DNA via their basic domain (14-16). In contrast to the closely related Hes family of inhibitors, which recruit corepressors such as TLE/Groucho via a C-terminal WRPW tetrapeptide, Hey factors lack this interaction domain and associate with the corepressors mSin3A, N-CoR, and HDAC1 by way of their basic domain (14). Hey family members also share a conserved Orange domain downstream of the bHLH motif, which is thought to mediate protein interactions and potentially serve as an extended dimerization interface (17). Despite the accumulation of this structural knowledge, the detailed molecular mechanisms by which Hey proteins function in specific biological contexts are still largely unknown.

While Hey family members are capable of binding to DNA E-box or N-box elements in vitro, many reports have highlighted instead their apparent ability to physically associate with and antagonize the activity of other transcription factors. Hey1 has been shown to bind GATA-1 and neutralize its ability to induce erythropoiesis (18), while all three Hey family members are capable of binding to GATA4/6 and inhibiting GATA-driven cardiac gene expression (19,20). Inhibitory physical interactions between Hey proteins and Runx2 may prevent Runx-induced aortic calcification (21), while associations between Hey factors and Ptf1-p48 may account for Notch-directed inhibition of pancreatic exocrine differentiation (22). Other work has revealed Hey1 can act as a corepressor for androgen receptor and has linked nuclear exclusion of Hey1 to prostate cancer (23). By contrast, there have been only rare instances that implicate a role for DNA binding in Hey function. One report has presented evidence that Hey1 may target a specific E-box to shut off expression of p57 and maintain cell proliferation within the lens epithelium (24), and another has linked a single E-box within the IL-6 promoter to Hey1-mediated inhibition (25). More often, however, studies have demonstrated that binding to E-boxes within target promoters either does not occur or is not required for Hey-directed repression (19,26-28).

Initial studies on Hey family members suggested that Hey1 might function in the
regulation of skeletal muscle development, as it is expressed in the developing somites and limb buds (29,30) and can inhibit the differentiation of C2C12 myoblasts in culture (11). More recent work has revealed important roles for Notch signaling in the control of both embryonic and post-natal skeletal myogenesis. Notch activity in the embryo is required to prevent the premature differentiation of myogenic precursors (31,32), while in the adult is induced upon injury and essential for the expansion of muscle stem cells, or satellite cells (33,34). The precise mechanisms by which Notch carries out these functions are not well understood. Our previous work has shown that ligand-mediated Notch signaling appears to act through multiple, redundant pathways to repress myogenesis (35). Of the two Hey proteins induced by Notch in myoblasts (Hey1 and HeyL), only Hey1 exhibited inhibitory activity. Interestingly, induction of Hey1 was not required for inhibition, consistent with the absence of overt muscle phenotypes in the Hey1 knockout mouse (4). Rather than ruling out an important role for Hey1 in muscle, however, these findings likely reflect the fact that Hey1 functions together or in parallel with other inhibitors (eg. MyoR or Id3) to mediate the effects of Notch. Indeed, genetic studies have provided a precedent for Hey1 working in collaboration with other transcription factors to control developmental processes. Specifically, the Hey1/Hey2 double knockout mouse and the Hey1/HeyL double knockout exhibit vascular or cardiac phenotypes not observed in Hey1, Hey2, or HeyL single knockout animals (4,5). In systems where functional redundancy may be a defining feature, it is only by unraveling the modes of action of individual effectors that we can reach a complete understanding of the pathway as a whole.

With this rationale, we have investigated the question of how Hey1 inhibits skeletal muscle differentiation. On a transcriptional level, myogenesis is controlled by a group of four bHLH proteins known as muscle regulatory factors (MRFs)—MyoD, Myf-5, Myogenin, and MRF4. Upon dimerization with E-proteins (E12/E47, HEB, E2-2), MRFs associate with E-box elements within target gene promoters and collaborate with a second family of transcription factors, Mef2, to activate muscle-specific gene expression (36). Previously, it was proposed that Hey1 functions by forming inactive heterodimers with the skeletal muscle master regulator MyoD (11). Contrary to this proposal, we present evidence that Hey1 does not repress the intrinsic transcriptional activity of MyoD, but rather associates with chromatin in the vicinity of myogenic promoters to repress target gene expression.

EXPERIMENTAL PROCEDURES

Plasmids- G133-luciferase was provided by Vittorio Sartorelli (National Institutes of Health) and contains the 133-bp Myogenin proximal promoter fused to luciferase (37). pcDNA3.1-Mef2C (α1β splice isoform) and 3x-Mef2-tk-luciferase were provided by Tod Gulick (Harvard Medical School). 3x-Mef2-tk-luciferase contains three copies of a Mef2 binding element fused to a minimal thymidine kinase (tk) promoter driving firefly luciferase (38). pEMSV-MyoD and 4RE-tk-luciferase were provided by Eric Olson (University of Texas). 4RE-tk-luciferase contains 4 copies of the MCK enhancer right E-box fused to a minimal tk promoter driving firefly luciferase (39). Mef2C-luciferase was generated by PCR amplification of the Mef2C proximal promoter (-158 to +106) from genomic DNA and insertion into the KpnI/BglIII sites of pGL3-basic (Promega, Madison, WI). pcDNA3.1-TOPO-Hey1-V5 (C-terminal V5 epitope) was generated by inserting the full-length Hey1 cDNA (provided by Eric Olson) into the TOPO recognition site of pcDNA3.1D/V5- His-TOPO (Invitrogen, Carlsbad, CA). pcDNA3.1-Hey1-V5 (C-terminal V5 epitope) was generated by PCR sub-cloning the full-length Hey1 cDNA into the BamHI/EcoRI sites of pcDNA3.1-V5/HisA (Invitrogen). pcDNA-Myc-Hey1 (N-terminal Myc epitope) has been described previously (28). G133-mutMef2-luciferase, G133-mutE1-luciferase, and G133-mutGata-luciferase were generated by QuikChange-mediated mutagenesis of the G133-luciferase reporter construct. The Mef2 element was mutated from [CTATTTTAT] to [CTATCTTTAT] (40), the E1 element from [CAGTTG] to [ATTTCG], and the Gata element from [ATTTATCT] to [ATTTATTG]. CMV-E47 and pBABE-FLAG-Hey1 (N-terminal FLAG epitope) have been described (35,41). DamID lentiviral vectors pLgw-RFC1-V5-EcoDam and
pLgw-V5-EcoDam (42) were provided by Bas Van Steensel (Netherlands Cancer Institute). pLgw-MyoD-V5-EcoDam and pLgw-Hey1-V5-EcoDam were generated via the Gateway recombination system (Invitrogen). The MyoD and Hey1 cDNAs were first sub-cloned by PCR into the Gateway entry vector pENTR-3C. Resulting entry clones were then recombined using LR Clonase II with the lentiviral destination vector pLgw-RFC1-V5-EcoDam. pVSVG, pGag/Pol, and pRSV-REV were provided by Carl June (University of Pennsylvania). All plasmids generated by PCR were verified by sequencing.

Cell culture- C2C12 myoblasts, C3H 10T1/2 fibroblasts, and 293T cells were cultured in Dulbecco’s modified Eagle medium (DMEM) containing 10% fetal bovine serum (FBS) supplemented with L-glutamine and penicillin-streptomycin (growth medium, GM). For myoblast differentiation, cells were grown to near confluence, and then shifted to DMEM containing 0.5% FBS (differentiation medium, DM).

Cell transfections and luciferase assays- 10T1/2 cells were transfected according to the FuGENE 6 protocol (Roche Diagnostics, Indianapolis, IN). For quantitative RT-PCR experiments, cells were seeded at a density of 5x10⁵ cells per well in 6-well plates and transfected with a total of 1.5 μg of DNA per well (pcDNA3.1/V5-5HsA empty vector was used to keep the total amount of DNA constant). Cultures were maintained in growth medium (GM) for 1 day post-transfection and then switched to differentiation medium (DM) for 24 hours prior to isolation of RNA. For luciferase assays, cells were seeded at a density of 1x10⁴ cells per well in 24-well plates and transfected with a total of 300 ng DNA. Cultures were maintained for 1 day in GM post-transfection and then switched to DM for 24 hours prior to harvesting of lysates. Luciferase activity was determined using the Dual-Luciferase Reporter Assay System (Promega, Madison, WI). Transfections were normalized to Renilla luciferase (pRL-TK; Promega).

Quantitative RT-PCR- Total RNA was isolated from cultured cells using the RNeasy kit (Qiagen, Valencia, CA). 2 μg of RNA was used to generate cDNA with the High Capacity cDNA Archive Kit (Applied Biosystems, Foster City, CA). TaqMan gene expression assays were employed for Myogenin, Cadherin-15, Mef2C, MyoD, and 18S as an endogenous control (Applied Biosystems). 3% of a given cDNA reaction, 10 μl of 2X Taq Universal Mastermix, and 1 μl of the indicated 20X TaqMan assay were included in a 20 μl reaction volume per well. Reactions were performed in triplicate, and results analyzed using the SDS2.2 Software (Applied Biosystems).

Co-immunoprecipitation assays and Western immunoblotting- For immunoprecipitations, 293T or 10T1/2 cells were harvested ~48 hours post-transfection by scraping into lysis buffer (20 mM Tris-HCl pH 8.0, 100 mM KCl, 0.1% NP-40, 5 mM MgCl₂, 10% glycerol) supplemented with freshly added protease inhibitor cocktail (Roche Diagnostics, Indianapolis, IN), 10 mM sodium fluoride, and 400 μM sodium orthovanadate (14). Lysates were incubated on ice for 15 minutes and cleared by centrifugation. Protein concentrations were determined using the DC Assay (Bio-Rad Laboratories, Hercules, CA). Lysates were pre-cleared in lysis buffer supplemented with 50 μl proteinA/G PLUS-agarose and 4 μg normal rabbit IgG (Santa Cruz Biotechnology sc-2027, Santa Cruz, CA) for 2 hours at 4°C. 500-600 μg of pre-cleared lysate was incubated with 2 μg of anti-MyoD (Novocasta 5.8A, Newcastle upon Tyne, United Kingdom), 2 μg anti-E47 (BD/Pharmingen G127-32, San Jose, CA), or 2 μg anti-Myc (Santa Cruz Biotechnology 9E10, Santa Cruz, CA) antibody and 15 μl of protein A/G PLUS-agarose at 4°C overnight. Immune complexes were washed 4X with lysis buffer, eluted in 2X SDS sample buffer, and boiled for 5 minutes prior to resolution by SDS-PAGE. Proteins were transferred to nitrocellulose and blotted with the following antibodies at the indicated dilutions: 1:5000 anti-V5 (Invitrogen, Carlsbad, CA), 1:1000 anti-E47 (BD/Pharmingen G127-32, San Jose, CA), 1:500 anti-MyoD (Novocasta 5.8A, Newcastle upon Tyne, United Kingdom), and 1:500 anti-Myc (Santa Cruz Biotechnology 9E10, Santa Cruz, CA). After incubation with a 1:2000 dilution of HRP-conjugated anti-mouse secondary antibody (Amersham, Piscataway, NJ), bands were visualized via the LumiLight or LumiLight-plus detection system (Roche Diagnostics, Indianapolis, IN).
For direct Western immunoblotting (Figs. 3B, S3A), cells were scraped into RIPA lysis buffer (50 mM Tris pH 7.5, 150 mM NaCl, 1% NP-40, 0.5% sodium deoxycholate, 0.1% SDS) supplemented with freshly added protease and phosphatase inhibitors as above. 25-50 µg of lysate was loaded per well. Blots were incubated with the following dilutions of primary antibodies: 1:500 anti-Myogenin (Santa Cruz M-225), 1:5000 anti-Mre11 (Novus NB 100-142G1, Littleton, CO), or 1:500 anti-GFP (Santa Cruz sc-8334).

Retroviral infections. The infection of C2C12 myoblasts with pBABE-puro and pBABE-FLAG-Hey1 retroviruses has been described previously (35).

Electrophoretic mobility shift assays (EMSA).—Nuclear extracts for EMSAs were prepared from 293T or C2C12 cells using the NXTACT CellLytic NuCLEAR Extraction Kit (Sigma, St. Louis, MO). 293T cells were transiently transfected with either 2 µg EMSV-MyoD and 2 µg CMV-E47, or 4 µg pcDNA3.1/Myc-HisC (Invitrogen, Carlsbad, CA), 48 hours prior to harvesting of extracts. C2C12 cells stably transduced with pBABE-puro or pBABE-FLAG-Hey1 were maintained in 0.5% serum for 24 hours prior to extract isolation. Hey1-V5 was transcribed and translated in vitro using the TNT T7 Coupled Reticulocyte Lysate System (Promega, Madison, WI). 32P-labeled oligonucleotide probes containing the Mef2C E-box (43) or the Hey1 consensus target E-box were prepared by end-labeling annealed oligonucleotides with [γ-32P] ATP using T4 polynucleotide kinase (New England Biolabs, Ipswich, MA). Labeled probes were purified through G-25 Quick Spin Sephadex Columns (Roche Diagnostics, Indianapolis, IN) as specified by the manufacturer. 8 µg of nuclear extract or 8 µl of TNT lysate was incubated for 15 minutes at room temperature with 100,000 cpm of probe in a 15 µl binding reaction consisting of 0.2-1.0 µg poly dI:dC, 10 mM Tris pH 7.5, 50 mM NaCl, 1 mM EDTA, 1 mM DTT, and 5.4% glycerol. Prior to addition of probe, extract was pre-incubated in binding buffer at room temperature for ten minutes. Where indicated, 50X excess of cold competitor probe was added to the reaction. For supershifts, 1 µg of anti-MyoD (Novocastra 5.8A, Newcastle upon Tyne, United Kingdom) or 1 µg of anti-V5 (Invitrogen) antibody was added to the sample and incubated for an additional 15 minutes. Binding reactions were run out on 5% non-denaturing polyacrylamide TBE Ready Gels (Bio-Rad Laboratories, Hercules, CA) in 0.5X TBE. Gels were dried and visualized by autoradiography. Oligonucleotide sequences used for the generation of labeled probes and cold competitors are as follows, with E-boxes or N-boxes underlined: MEF2C.F GAGTGACATGAAACAGGTGCACCCTGGCCT; MEF2C.R ACGGGACGGGTGAACCTGTGATGTCCTC; HCE.F TCCAAAGGCACTGCATGACTCC; HCE.R GGCAATGGCAGTCGACTGCC; AHEC.F TCCAAAGGAGCTGACCTGACC; AHEC.R GGCAGTGATCTGGGCAATTTGGA; E1.F CACCCACAGTGGTTGTTAG; E1.R CTCAACACAACTGCTGGTG; N1.F TGCCCTGTCCCAGCTGCTTG; N1.R CAAGGCTAGCAGTTGACGAG; E2.F GAAAGGAATCAGATGTAAATCCAGT; E2.R CAGTGAGATTACATGTATTTCCCTTC.

DamID—DamID assays were carried out essentially as described (42), with minor modifications. Briefly, lentiviral supernatants were harvested from 10-cm dishes of 293T cells on three consecutive days, two days following FuGENE6 (Roche Diagnostics, Indianapolis, IN)-mediated transfection with 10 µg of the indicated pLgw lentiviral vector, 3.5 µg of pVSVG, 6.5 µg of pGag/Pol, and 2.5 µg of pRSV-REV. Supernatants were filtered (0.4 µm) to remove non-adherent 293T cells prior to storage at ~80°C. ~18 hours prior to infection, C2C12 cells were plated on 6-well plates at a density of 1x10^5 cells/well. Each well was incubated overnight with 1.5 ml viral supernatant, diluted 1:2 in growth medium. After removal of virus, cultures were maintained for two days in GM and then switched to DM for an additional 24 hours. Genomic DNA was isolated with the DNeasy Tissue Kit (Qiagen, Valencia, CA). Following ethanol precipitation of gDNA, DpnI digestion, ligation of adaptors, DpnII digestion, and ligation-mediated PCR (11 cycles of amplification in the final stage of PCR), samples were purified with Qiagen columns and diluted 1:60 in buffer EB prior to Q-PCR analysis (44). 8 µl of a diluted sample was mixed with 10
μl 2X Power-SYBR green mastermix (Applied Biosystems, Foster City, CA), 1 μl of 2 μM forward primer, and 1 μl of 2 μM reverse primer. PCRs primers were first tested on genomic DNA via semi-quantitative PCR to verify amplification of a single product of the expected size. Q-PCR reactions were also subjected to dissociation curve analysis. Primer sequences are as follows: Myog.F GTGGACTTGCAAGGGAAC; Myog.R GTGGACTTGGGACAAACAG; Mef2C.F GAGAACGAAAGGGCAG; Mef2C.R CATTCTCACTGCTCATC; IgH.F GTCATGTGGCAAGGCTATTG; IgH.R TTTGCTCAGCTGGACTTTC; GAPDH.F CTCAGCTCACTGGACTTTC; GAPDH.R GGCTCTATAGTGATCTCCAC; GAPDH.F AGAAGCAGAAAGGCACTGG; Mef2C.R GTGGACTGGCACAGGAGAAC; Myog.R GTGGACTCTGCCACAAGTGTCTG.

Chromatin immunoprecipitation assays- ChIP was performed as previously described (45), with minor modifications. C2C12 cells stably transduced with pBABE-puro or pBABE-FLAG-Hey1 were seeded on 15-cm dishes at a density of 1.25-1.4 x 10⁶ cells per plate, maintained in GM for 2 days, and then switched to DM for 40 hours. Cultures were fixed in 1% formaldehyde for 10 minutes at room temperature, incubated for 5 minutes in 0.125 M glycine, washed twice in cold PBS, and scraped into 3 mL PBS. Following brief centrifugation, cell pellets were resuspended in 500 μl cell lysis buffer (5 mM Pipes pH 8.0, 85 mM KCl, 0.5% NP-40) supplemented with 1 mM PMSF and protease inhibitor cocktail (Roche Diagnostics, Indianapolis, IN), incubated on ice for 10 minutes, and dounced 15X to facilitate nuclei release. After a 5-minute centrifugation at 5000 rpm, nuclei were resuspended in 300 μl nuclei lysis buffer (50 mM Tris-Cl pH 8.1, 10 mM EDTA, 1% SDS, 1 mM PMSF, protease inhibitor cocktail) and incubated on ice for 10 minutes. Samples were sonicated in ice water using a Misonix 3000 sonicator for three 10-second intervals interrupted by 1 minute rests, followed by a 10-minute centrifugation at 14,000 rpm at 4°C. Supernatants were transferred to clean tubes, diluted 1:10 with dilution buffer (0.5% Triton X-100, 2 mM EDTA, 20 mM Tris-Cl pH 8.1, 150 mM NaCl), and pre-cleared with protein A/G agarose-ssDNA (Upstate Biotechnology, Billerica, MA) for 2 hours. 250 μg pre-cleared chromatin was incubated with 4 μg of normal rabbit IgG (Santa Cruz sc-2027, Santa Cruz, CA), 4 μg of anti-MyoD (Santa Cruz M-318X), or 4 μg anti-RNA-Pol II (Santa Cruz H-224X) antibody overnight with rotation at 4°C. Immune complexes were collected with BSA-blocked protein A/G agarose-ssDNA for 2 hours. Beads were washed eight times as follows: 2X buffer 1 (0.1% SDS, 1% Triton X-100, 2 mM EDTA, 20 mM Tris, pH 8.1, 150 mM NaCl), 2X buffer 2 (0.1% SDS, 1% Triton X-100, 2 mM EDTA, 20 mM Tris, pH 8.1, 500 mM NaCl), 2X buffer 1, 1X buffer 3 (0.25% LiCl, 1% NP-40, 1% deoxycholate, 1 mM EDTA, 10 mM Tris, pH 8.1), 1X TE. Washed beads were incubated twice in 150 μl elution buffer (1% SDS, 100 mM NaHCO₃) for 15 minutes at 65°C. Pooled eluates were treated with DNase-free RNase (Roche Diagnostics, Indianapolis, IN) and incubated at 65°C overnight to reverse crosslinks. Following proteinase K treatment, phenol:chloroform extraction, and ethanol precipitation, samples were analyzed by Q-PCR. 2 μl of a 50 μl sample was mixed with 10 μl 2X Power-SYBR green mastermix (Applied Biosystems, Foster City, CA), 6 μl water, 1 μl of 2 μM forward primer, and 1 μl of 2 μM reverse primer. PCR primer sequences for the Myogenin promoter and IgH enhancer have been published (46,47). Primers for the Mef2C promoter are as follows: Mef2C.F2 CATTCCAGCTCACTCATC; IgH.F GTCTAGTGGAAGGCTATTG; IgH.R TTTGCTCAGCTGGACTTTC; GAPDH.F CTCACGTCCCAACTCTCCAC; GAPDH.R GGCTCTATAGTGATCTCCAC; GAPDH.F AGAAGCAGAAAGGCACTGG; Mef2C.R GTGGACTGGCACAGGAGAAC; Myog.R GTGGACTCTGCCACAAGTGTCTG.

RESULTS

Hey1 does not repress intrinsic MyoD transcriptional activity. Past studies have demonstrated that Hey1 inhibits MyoD-mediated myogenic conversion of cultured fibroblasts and the differentiation of C2C12 myoblasts (11,35). An important question relates to whether this inhibition reflects a generalized block to MyoD-driven transcription, or rather a selective targeting
of individual myogenic promoters. To address this, we performed transfection assays in 10T1/2 fibroblasts. When these cells are transfected with a vector expressing MyoD, they convert to a muscle phenotype and express a wide array of myogenic transcripts. We reasoned that if Hey1 were repressing the inherent ability of MyoD to activate gene expression, the induction of all targets downstream of MyoD should be compromised in the presence of Hey1. Two of the earliest markers activated in this system are the cell adhesion molecule Cadherin-15 and the muscle regulatory factor Myogenin. While transfection of 10T1/2 cells with a MyoD-expression plasmid robustly induced both of these genes, as expected, co-expression of Hey1 strikingly inhibited the induction only of Myogenin, and not Cadherin-15 (Fig. 1A). This apparent specificity in Hey1-mediated repression was also observed in luciferase reporter assays. Two reporter constructs were employed, one consisting of the proximal 133-bp Myogenin promoter (G133-luciferase), and the other composed simply of four high-affinity MyoD consensus E-box elements linked to a minimal promoter (4RE-tk-luciferase). 4RE-tk-luciferase has been used previously as a readout of “pure” MyoD activity, as this construct does not contain binding sites for any MyoD cofactors, such as Mef2 (39). While MyoD robustly induced both reporters, Hey1 repressed the induction only of G133-luciferase, and not 4RE-tk-luciferase (Fig. 1B). Together, these results strongly suggest that Hey1’s inhibitory effects on myogenesis reflect promoter-specific repression of select myogenic targets, rather than generalized inhibition of MyoD activity.

Hey1 does not form dimers with MyoD or E47 or disrupt endogenous MyoD:E47 complexes. While the above functional data revealed that not all MyoD-responsive promoters are subject to repression by Hey1, a past report had proposed that Hey1 targets MyoD itself, by sequestering it into inactive heterodimers (11). To revisit this proposal, we evaluated whether Hey1 associates with MyoD or its binding partner E47 to repress myogenic transcription. We first performed co-immunoprecipitation assays in which we overexpressed either MyoD in combination with E47 or Hey1 (Fig. 2A), or E47 in combination with MyoD or Hey1 (Fig. 2B). 293T cells were used for these experiments, as they allow for very high transfection efficiencies and levels of expressed proteins, raising the likelihood that even weak interactions can be detected. These studies confirmed the expected binding of MyoD to E47 (Fig. 2A, lane 5; Fig. 2B, lane 11) but failed to reveal any evidence of association between either of these factors and Hey1 (Fig. 2A, lane 6; Fig. 2B, lane 12). The ability of Hey1 to dimerize with itself was verified independently using the Hey1 construct employed in these assays in combination with a Myc-tagged Hey1 (Fig. S1). Similar results were obtained in 10T1/2 fibroblasts (Fig. S2).

In parallel, we used electrophoretic mobility shift assays (EMSAs) to determine whether forced expression of Hey1 in C2C12 myoblasts would disrupt the formation of endogenous MyoD:E47 complexes. Nuclear extracts were prepared from C2C12 cells stably transduced with either the pBABE-puro or pBABE-FLAG-Hey1 retrovirus. As a control, we examined extracts of control 293T cells or 293T cells co-transfected with MyoD and E47 expression plasmids. When these 293T extracts were incubated with a radio-labeled probe containing a high-affinity E-box, complexes corresponding to MyoD:E47 heterodimers were readily observed (Fig. 3A, compare lanes 2 and 3). A MyoD antibody shifted the mobility of the complexes, confirming that they contain MyoD (lane 4). Similar complexes were observed in the C2C12 cell extracts (Fig. 3A, lanes 5-8). Importantly, these complexes were not appreciably affected by the presence of Hey1 (compare lanes 5 and 6 to lanes 7 and 8). The complex migrating just below what we tentatively identify as MyoD homodimers in extracts from the pBABE-transduced cells was not shifted by a MyoD antibody, but was shifted with a Myogenin antibody (data not shown). As expected, this complex was not observed in extracts from Hey1-expressing cells, consistent with the lack of Myogenin protein (Fig. 3B). Taken together, our results indicate that Hey1 does not disrupt MyoD:E47 heterodimers, a finding fully consistent with our initial functional data demonstrating promoter-specific repression by Hey1.

A role for Mef2C inhibition in Hey1-mediated repression of myogenesis. Our previous results (Fig. 1) showed that Hey1 inhibits MyoD-
mediated induction of the endogenous Myogenin gene and a transfected Myogenin promoter, but not the endogenous Cadherin-15 gene or a transfected E-box-driven reporter. We sought to investigate the basis for this specificity. Past work in cultured fibroblasts by Tapest and colleagues demonstrated that Cadherin-15, but not Myogenin, is transcriptionally induced by MyoD in the absence of new protein synthesis (46). This finding suggested that MyoD must collaborate with a secondary mediator or coactivator to activate Myogenin transcription. Indeed, other studies revealed that Myogenin induction, which is absolutely required for myogenesis in vivo, requires both MyoD and Mef2 proteins (40,48,49). Mef2C is itself a target of MyoD (43,50) and has been shown to be the only Mef2 family member transcriptionally upregulated upon differentiation in C2C12 cells (35). We considered the possibility that Hey1 represses myogenesis primarily by repressing Mef2C activity and/or Mef2C gene transcription, not the Myogenin promoter per se.

To explore this possibility, we first confirmed that Mef2 is critical for Myogenin promoter activity. Indeed, mutation of the single Mef2 element within the Myogenin proximal promoter dramatically reduced MyoD-stimulated reporter activity (Fig. 4A). We next asked if Hey1 affects Mef2C activity. We transfected 10T1/2 cells with a Mef2C expression vector along with a reporter consisting of three Mef2 DNA binding elements upstream of a minimal promoter driving luciferase. Induction of this reporter by Mef2C was unaffected by increasing amounts of Hey1, indicating that Hey1 does not inhibit Mef2C transcriptional activity per se (Fig. 4B). By contrast, transcriptional induction of the endogenous Mef2C gene by MyoD was significantly repressed by Hey1 (Fig. 4C), a result consistent with those obtained with Hey1-transduced C1C12 cells (35). We further demonstrated that Hey1 repressed MyoD-mediated induction of a minimal 158-bp Mef2C promoter in luciferase reporter assays (Fig. 4D), suggesting that Hey1 likely targets the Mef2C proximal promoter to inhibit gene expression.

If Hey1 functions primarily by repressing Mef2C transcription, then one would expect exogenous Mef2C to rescue Hey1-mediated repression of Myogenin. Reporter assays revealed that repression of the Myogenin promoter was reduced, but not eliminated by a Mef2C expression plasmid (Fig. 4E). These data suggest that inhibition of Mef2C expression likely contributes to Hey1-mediated repression of myogenesis, but that Hey1 may also function through additional inhibitory mechanisms.

Evaluation of in-vitro DNA binding by Hey1 to myogenic promoter elements. We next asked if Hey1 inhibits transcription by binding DNA within target gene promoters. As a first step, we determined the ability of Hey1 to bind elements within the Myogenin and Mef2C proximal promoters in vitro. Prior studies employing SELEX approaches derived an optimum binding site for Hey1, which is the E-box CACGTG. Closely related variants of this sequence bind Hey1 less well (14-16). The 133-bp Myogenin promoter contains a single E-box (E1, CAGTTG), with an additional E-box (E2, CACATG) and N-box (N1, CACCAG) located within the 400bp proximal to the start site. The Mef2C minimum promoter contains a single E-box (2C, CAGGTG). We performed EMSAs using in vitro transcribed and translated (TNT) Hey1-V5 and a labeled probe containing the Hey1 consensus E-box (HCE). The Hey1 complex ran with the same mobility as a complex present in TNT lysates, so we evaluated Hey1 binding after shifting the complex to a slower mobility with an anti-V5 antibody (Fig. 5A, lanes 1-3). As expected, addition of cold HCE competitor, but not mutant HCE, completely eliminated the binding of Hey1 to labeled probe (lanes 4-5). Addition of competitor DNA containing the various E-boxes and N-box found in the Myogenin and Mef2C promoters only marginally reduced formation of the Hey1 complex, despite a 50X molar excess of cold DNA (Fig 5A, lanes 6-9). Other reports have also failed to show association of Hey1 with the high-affinity MyoD E-box (CAGGTG) (15,16). These data argue against robust DNA binding by Hey1 to known control elements within these myogenic promoters. Consistent with this conclusion, when we mutated the E1 site within the Myogenin promoter and carried out reporter assays in 10T1/2 cells, Hey1 still repressed MyoD-induced activity, indicating that inhibition is independent of this particular E-box (Fig. 5B). Efforts to map Hey1-responsive elements in the Myogenin promoter distinct from those necessary...
for induced activity were unsuccessful (data not shown).

Evidence for association of Hey1 with the Myogenin and Mef2C promoters in vivo. Despite the above findings in vitro, we sought to determine if Hey1 associates with the Myogenin and Mef2C promoters in vivo. Multiple rounds of chromatin immunoprecipitation (ChIP) assays failed to provide evidence of Hey1 recruitment; accordingly, we turned to DamID, an assay that is better suited for detecting potentially weak or indirect interactions with DNA in vivo (51,52). In this assay, a protein of interest is fused with the bacterial DNA adenine methyltransferase (Dam) and then expressed at low levels in mammalian cells. If the chimeric protein associates with particular regions of DNA, then only the targeted DNA becomes methylated since mammalian cells lack Dam. Methylated regions are revealed on the basis of cutting by the methylation-specific restriction enzyme DpnI and subsequent amplification of digested fragments (42,44). This assay is capable of detecting even transient and weak interactions between the chimeric proteins and their target DNA.

We generated lentiviruses that express MyoD-Dam and Hey1-Dam. Expression and activity of the fusion proteins were confirmed with Western immunoblots and reporter assays, respectively (Fig. S3). When transiently transfected, the pLgw-based lentiviral vectors employ a strong CMV promoter to drive high-level expression. This promoter is deleted following infection and integration, and subsequent low-level expression from the virus DNA is controlled by an un-induced heat shock promoter. We infected C2C12 cells with individual lentiviruses, and genomic DNA was isolated and processed (see Materials and Methods). Amplified (i.e. methylated) DNA was interrogated for genes of interest using quantitative PCR. Cells infected with a Dam-only virus were used to control for background methylation. As expected, cells infected with the MyoD-Dam virus gave rise to a ~3 fold relative increase in methylation in the vicinity of the Myogenin and Mef2C promoters, but not in the vicinity of the GAPDH promoter or immunoglobulin heavy-chain (IgH) enhancer (Fig. 6A). Importantly, cells infected with the Hey1-Dam virus also generated significantly increased relative methylation (~12 fold) in the vicinity of the Myogenin and Mef2C promoters (Fig. 6B). These data indicate that Hey1 associates specifically with the Myogenin and Mef2C genes, and this likely leads to their transcriptional repression.

We next asked if targeting of Hey1 has consequences for the recruitment of MyoD. We transduced C2C12 cells with either a pBABE-puro or a pBABE-FLAG-Hey1 retrovirus and switched the cultures from growth medium to differentiation medium for 40 hours. We then used ChIP to evaluate the recruitment of MyoD in each group of cells. We observed a reduction in MyoD recruitment in cells transduced with FLAG-Hey1 relative to those harboring the parental virus (Fig. 6C). As expected, Pol II recruitment was also reduced at the Myogenin promoter (Pol II was not detected at the Mef2C promoter for unknown reasons). Only negligible recruitment of either factor was observed at the silent immunoglobulin heavy-chain enhancer, which was used to normalize the data. Reduced MyoD recruitment in vivo is not likely to result from the downregulation of MyoD expression by Hey1, as MyoD RNA levels were only marginally reduced (Fig. S4), and MyoD:E47 heterodimers were still observed in Hey1-expressing C2C12 cells (Fig. 3A). We conclude that forced expression of Hey1 results in compromised recruitment of the master regulator MyoD to its target gene promoters.

DISCUSSION

Notch signaling plays a critical role in embryonic and post-natal myogenesis (31-34); however, the molecular mechanisms by which the pathway represses myogenic transcription are not well defined. Our past work demonstrated that ligand-mediated Notch activity induces the expression of dozens of target genes in cultured myoblasts (35). The emerging picture is one of redundancy, in which multiple Notch targets (e.g. the transcriptional repressors Hey1 and MyoR) are each capable of phenocopying the pathway’s effects. While no single target may be essential, only by elucidating how these individual effectors impact myogenesis can we reach a complete functional understanding of the pathway as a whole. In this report, we focused our analysis on...
Hey1, a canonical target of Notch and a known inhibitor of myogenic differentiation. We propose that Hey1 functions primarily by binding in the vicinity of the Myogenin and Mef2C promoters to shut off target gene expression.

We present three independent and complementary lines of evidence that support this model and argue against a proposal that Hey1 sequesters MyoD into inactive heterodimers (11). First, MyoD-mediated induction of a direct MyoD target gene (Cadherin-15) or of an E-box-driven reporter (4RE-tk-luc) was resistant to repression by Hey1. Second, MyoD did not form heterodimers with Hey1 under the conditions of our co-immunoprecipitation assays, yet readily formed heterodimers with E47 as expected. Importantly, Hey1 did form homodimers. Third, MyoD:E47 heterodimers were unaffected in cells expressing Hey1, despite the inability of these cells to differentiate. While the basis for the discrepancy with a previous study (11) is currently unknown, it should be noted that Chin and colleagues employed an N-terminal Myc-tagged MyoD construct in their coIP assays, while our own studies in two independent cell lines used an untagged version of MyoD. It remains possible that the tagged MyoD protein exhibits altered dimerization properties. Our functional and biochemical data in combination strongly argue that Hey1 does not repress the intrinsic ability of MyoD to activate transcription.

Since Hey1 repressed the induction of Myogenin but not Cadherin-15, we sought to determine the basis for this promoter specificity. Past work had implicated the Mef2 family of transcription factors as critical mediators of Myogenin induction, in particular Mef2C (40,43,50). While Hey1 did not inhibit Mef2C activity, it did repress Mef2C expression, suggesting that repression of Myogenin might be due to the lack of Mef2C protein. However, forced expression of Mef2C only partially restored Myogenin promoter activity in the presence of Hey1, suggesting additional mechanisms. Indeed, DamID assays showed that Hey1 associates with both the Mef2C and Myogenin promoter regions, indicating that its ability to inhibit myogenesis may be due to the repression of multiple myogenic loci.

The resolution of DamID has been reported to be ~1 kb at best (53) and thus cannot be used to identify specific binding sites occupied by Hey1 within these promoters. Our luciferase reporter assays suggest that Hey1 targets the Myogenin and Mef2C proximal promoters, as minimal promoter fragments were sensitive to repression. Our EMSA data argue that Hey1 is not likely to bind directly to E-boxes or N-boxes at these loci, leaving open the possibility that Hey1 may associate instead through distinct DNA-bound regulatory proteins. Interestingly, the Myogenin and Mef2C promoters contain conserved GATA sites, and a precedent exists for interactions between Hey1 and GATA proteins (18-20). We considered the possibility that Hey1 functions in conjunction with GATA3, which is induced by Notch in myoblasts ((35, unpublished observations) as well as other cell types (58,59).

However, our functional studies argue against this model, as mutation of the GATA binding site within the Myogenin proximal promoter did not alleviate repression by Hey1 (data not shown). Aside from MyoD and Mef2, additional transcription factors such as Pbx1b/Meis1, MSY-3, Six1/4, and Ski also participate in the complex transcriptional control of the Myogenin locus (54-57). We did not detect evidence of physical or functional interaction between Hey1 and Six1 (data not shown), yet Hey1 may interact with any of these other proteins present at the two promoters.

The presence of Hey1 correlates with reduced MyoD recruitment, yet it does not affect significantly MyoD expression. How this occurs is a matter of speculation. Hey proteins have been shown to bind HDACs in vitro (14), but many studies have indicated Hey-mediated repression is insensitive to trichostatin A (18,19,21,28), calling into question the relevance of such associations. We found that Hey1 did not repress the Thymidine Kinase promoter when linked with an upstream Myogenin promoter (data not shown). This suggests that Hey1 is not a classic repressor and that the its repressive effects may be highly context dependent and intimately linked to the process of promoter complex assembly and activation.

While these questions require additional investigation, our results provide strong evidence that Hey1 functions by physically associating with the promoter regions of two critical myogenic genes, Myogenin and Mef2C. It would appear that
repressing one gene or the other would be sufficient for myogenic inhibition, thus raising the question, why both? One possibility is that Hey1-mediated repression is inherently weak and that multiple targets are therefore necessary. A second possibility relates to the mechanism of Hey1 action and its relationship to activation as opposed to repression of the myogenic program. During the processes of embryogenesis and muscle regeneration, the Notch signal is initially on, allowing progenitor pools to expand, but then turned off to allow terminal myogenesis (34,60). Repression of multiple genes by Hey1—indeed, Myogenin and Mef2C may represent only a fraction of the total—may be more relevant to the manner in which the myogenic program is resumed once the Notch signal is removed. It is possible that Hey1 target genes are poised to be rapidly induced and that the process of myogenesis is more efficient or robust if multiple genes are involved.

ACKNOWLEDGEMENTS

This work was supported by funds from the Muscular Dystrophy Association (MDA 3888). M.B. was supported by NIH Training Grant 5-T32-GM-008216-20 and S.K. by NIH NRSA Training Grant F32GM068394-01A1. We thank Dr. Vittorio Sartorelli for providing a ChIP protocol, and Drs. Sartorelli, Tod Gulick, Eric Olson, Bas van Steensel, and Carl June for generously providing reagents. We acknowledge Daan Peric Hupkes for expert assistance with DamID, and Jamie Planck, Matt Culyba, and Yao-juan Liu for technical support.

REFERENCES

1. Iso, T., Chung, G., Hamamori, Y., and Kedes, L. (2002) J Biol Chem 277, 6598-6607
2. Iso, T., Sartorelli, V., Chung, G., Shichinohe, T., Kedes, L., and Hamamori, Y. (2001) Mol Cell Biol 21, 6071-6079
3. Maier, M. M., and Gessler, M. (2000) Biochem Biophys Res Commun 275, 652-660
4. Fischer, A., Schumacher, N., Maier, M., Sendtner, M., and Gessler, M. (2004) Genes Dev 18, 901-911
5. Fischer, A., Steidl, C., Wagner, T. U., Lang, E., Jakob, P. M., Friedl, P., Knobeloeh, K. P., and Gessler, M. (2007) Circ Res 100, 856-863
6. Kokubo, H., Miyagawa-Tomita, S., Nakazawa, M., Saga, Y., and Johnson, R. L. (2005) Dev Biol 278, 301-309
7. Kokubo, H., Tomita-Miyagawa, S., Hamada, Y., and Saga, Y. (2007) Development 134, 747-755
8. Rutenberg, J. B., Fischer, A., Jia, H., Gessler, M., Zhong, T. P., and Mercola, M. (2006) Development 133, 4381-4390
9. Gessler, M., Knobeloeh, K. P., Helisch, A., Amann, K., Schumacher, N., Rohde, E., Fischer, A., and Leimeister, C. (2002) Curr Biol 12, 1601-1604
10. Sakamoto, M., Hirata, H., Ohtsuka, T., Bessho, Y., and Kageyama, R. (2003) J Biol Chem 278, 44808-44815
11. Sun, J., Kamei, C. N., Layne, M. D., Jain, M. K., Liao, J. K., Lee, M. E., and Chin, M. T. (2001) J Biol Chem 276, 18591-18596
12. Hayashi, T., Kokubo, H., Hartman, B. H., Ray, C. A., Reh, T. A., and Bermingham-McDonogh, O. (2008) Dev Biol 316, 87-99
13. Taelman, V., Van Campenhout, C., Solter, M., Pieler, T., and Bellefroid, E. J. (2006) Development 133, 2961-2971
14. Iso, T., Sartorelli, V., Poizat, C., Iezzi, S., Wu, H. Y., Chung, G., Kedes, L., and Hamamori, Y. (2001) *Mol Cell Biol* **21**, 6080-6089
15. Fischer, A., Leimeister, C., Winkler, C., Schumacher, N., Klamt, B., Elmasri, H., Steidl, C., Maier, M., Knobeloch, K. P., Amann, K., Helisch, A., Sendtner, M., and Gessler, M. (2002) *Cold Spring Harb Symp Quant Biol* **67**, 63-70
16. Pichon, B., Taelman, V., Bellefroid, E. J., and Christophe, D. (2004) *Biochim Biophys Acta* **1680**, 46-52
17. Taelman, V., Van Wayenbergh, R., Solter, M., Pichon, B., Pieler, T., Christophe, D., and Bellefroid, E. J. (2004) *Dev Biol* **276**, 47-63
18. Elagib, K. E., Xiao, M., Hussaini, I. M., Delehanty, L. L., Palmer, L. A., Racke, F. K., Birrer, M. J., Shanmugasundaram, G., McDevitt, M. A., and Goldfarb, A. N. (2004) *Mol Cell Biol* **24**, 7779-7794
19. Fischer, A., Klattig, J., Kneltz, B., Diez, H., Maier, M., Holtmann, B., Englert, C., and Gessler, M. (2005) *Mol Cell Biol* **25**, 8960-8970
20. Kathiriya, I. S., King, I. N., Murakami, M., Nakagawa, M., Astle, J. M., Gardner, K. A., Gerard, R. D., Olson, E. N., Srivastava, D., and Nakagawa, O. (2004) *J Biol Chem* **279**, 54937-54943
21. Garg, V., Muth, A. N., Ransom, J. F., Schluterman, M. K., Barnes, R., King, I. N., Grossfeld, P. D., and Srivastava, D. (2005) *Nature* **437**, 270-274
22. Ghosh, B., and Leach, S. D. (2006) *Biochem J* **393**, 679-685
23. Belandia, B., Powell, S. M., Garcia-Pedrero, J. M., Walker, M. M., Bevan, C. L., and Parker, M. G. (2005) *Mol Cell Biol* **25**, 1425-1436
24. Jia, J., Lin, M., Zhang, L., York, J. P., and Zhang, P. (2007) *Mol Cell Biol* **27**, 7236-7247
25. Hu, X., Chung, A. Y., Wu, I., Foldi, J., Chen, J., Ji, J. D., Tateya, T., Kang, Y. J., Han, J., Gessler, M., Kageyama, R., and Ivashkiv, L. B. (2008) *Immunity* **29**, 691-703
26. Holderfield, M. T., Henderson Anderson, A. M., Kokubo, H., Chin, M. T., Johnson, R. L., and Hughes, C. C. (2006) *Biochem Biophys Res Commun* **346**, 637-648
27. Huang, Q., Raya, A., DeJesus, P., Chao, S. H., Quon, K. C., Caldwell, J. S., Chanda, S. K., Izpisua-Belmonte, J. C., and Schultz, P. G. (2004) *Proc Natl Acad Sci U S A* **101**, 3456-3461
28. Nakagawa, O., McFadden, D. G., Nakagawa, M., Yanagisawa, H., Hu, T., Srivastava, D., and Olson, E. N. (2000) *Proc Natl Acad Sci U S A* **97**, 13655-13660
29. Leimeister, C., Externbrink, A., Klamt, B., and Gessler, M. (1999) *Mech Dev* **85**, 173-177
30. Nakagawa, O., Nakagawa, M., Richardson, J. A., Olson, E. N., and Srivastava, D. (1999) *Dev Biol* **216**, 72-84
31. Schuster-Gossler, K., Cordes, R., and Gossler, A. (2007) *Proc Natl Acad Sci U S A* **104**, 537-542
32. Vasyutina, E., Lenhard, D. C., Wende, H., Erdmann, B., Epstein, J. A., and Birchmeier, C. (2007) *Proc Natl Acad Sci U S A* **104**, 4443-4448
33. Conboy, I. M., Conboy, M. J., Smythe, G. M., and Rando, T. A. (2003) *Science* **302**, 1575-1577
34. Conboy, I. M., and Rando, T. A. (2002) *Dev Cell* **3**, 397-409
35. Buas, M. F., Kabak, S., and Kadesch, T. (2009) *J Cell Physiol* **218**, 84-93
36. Molkentin, J. D., Black, B. L., Martin, J. F., and Olson, E. N. (1995) *Cell* **83**, 1125-1136
37. Xu, Q., and Wu, Z. (2000) *J Biol Chem* **275**, 36750-36757
Zhu, B., and Gulick, T. (2004) Mol Cell Biol 24, 8264-8275
39. Lu, J., McKinsey, T. A., Zhang, C. L., and Olson, E. N. (2000) Mol Cell 6, 233-244
40. Edmondson, D. G., Cheng, T. C., Cserjesi, P., Chakraborty, T., and Olson, E. N. (1992) Mol Cell Biol 12, 3665-3677
41. Shen, C. P., and Kadesch, T. (1995) Mol Cell Biol 15, 4518-4524
42. Vogel, M. J., Peric-Hupkes, D., and van Steensel, B. (2007) Nat Protoc 2, 1467-1478
43. Wang, D. Z., Valdez, M. R., McAnally, J., Richardson, J., and Olson, E. N. (2001) Development 128, 4623-4633
44. Reddy, K. L., Zullo, J. M., Bertolino, E., and Singh, H. (2008) Nature 452, 243-247
45. Caretti, G., Di Padova, M., Micales, B., Lyons, G. E., and Sartorelli, V. (2004) Genes Dev 18, 2627-2638
46. Bergstrom, D. A., Penn, B. H., Strand, A., Perry, R. L., Rudnicki, M. A., and Tapscott, S. J. (2002) Mol Cell 9, 587-600
47. Mal, A., and Harter, M. L. (2003) Proc Natl Acad Sci U S A 100, 1735-1739
48. Hasty, P., Bradley, A., Morris, J. H., Edmondson, D. G., Venuti, J. M., Olson, E. N., and Klein, W. H. (1993) Nature 364, 501-506
49. Nabeshima, Y., Hanaoka, K., Hayasaka, M., Esumi, E., Li, S., and Nonaka, I. (1993) Nature 364, 532-535
50. Greil, F., Moorman, C., and van Steensel, B. (2006) Methods Enzymol 410, 342-359
51. van Steensel, B., and Henikoff, S. (2000) Nat Biotechnol 18, 424-428
52. van Steensel, B., and Henikoff, S. (2003) Biotechniques 35, 346-350, 352-344, 356-347
53. Spitz, F., Demignon, J., Porteu, A., Kahn, A., Concordet, J. P., Daegelen, D., and Maire, P. (1998) Proc Natl Acad Sci U S A 95, 14220-14225
54. Berghella, L., De Angelis, L., De Buyscher, T., Mortazavi, A., Biressi, S., Forcales, S. V., Sirabella, D., Cossu, G., and Wold, B. J. (2008) Genes Dev 22, 2125-2138
55. Fang, T. C., Yashiro-Ohtani, Y., Del Bianco, C., Knoblock, D. M., Blacklow, S. C., and Pear, W. S. (2007) Immunity 27, 100-110
56. Brack, A. S., Conboy, I. M., Conboy, M. J., Shen, J., and Rando, T. A. (2008) Cell Stem Cell 2, 50-59

FIGURE LEGENDS

Figure 1. Hey1 exerts promoter-specific repression of myogenesis. A) 10T1/2 cells were transfected with 30 ng of pEMSV-MyoD alone or in combination with increasing amounts of pcDNA3.1-Hey1-V5 (60-180 ng). Myogenin (left) and Cadherin-15 (right) RNA levels were determined by quantitative RT-PCR and plotted as the average of two replicate samples +/- standard deviation. (B) 10T1/2 cells were transfected with 25 ng pRL-TK-Renilla, 25 ng G133-luciferase (left) or 25 ng 4RE-tk-luciferase (right), 25 pg pEMSV-MyoD, and 25-100 ng of pcDNA3.1-Hey1-V5. Firefly luciferase values were normalized to Renilla luciferase and plotted as averages of three replicate samples +/- standard deviation.
Figure 2. Hey1 does not form heterodimers with MyoD or E47. (A) 293T cells were transfected as indicated with 2 µg of pEMSV-MyoD alone or in combination with 2 µg CMV-E47 or 2 µg pcDNA-3.1-TOPO-Hey1-V5. Lysates were harvested after 48 hours and subjected to immunoprecipitation with MyoD-specific antibodies. Immunoprecipitates and input samples were immuno-botted with anti-V5, anti-E47, or anti-MyoD antibodies. (B) 293T cells were transfected as indicated with 2 µg of CMV-E47 alone or in combination with 2 µg pEMSV-MyoD or 2 µg pcDNA-3.1-TOPO-Hey1-V5. Lysates were harvested after 48 hours and immunoprecipitated with E47-specific antibodies, followed by immuno-blotting as in (A).

Figure 3. Hey1 does not disrupt endogenous MyoD:E47 complexes in C2C12 cells. (A) Nuclear extracts were harvested from C2C12 cells stably transduced with pBABE-puro or pBABE-FLAG-Hey1 and maintained in differentiation medium (DM) for 24 hours. Nuclear extracts were also isolated from 293T cells transiently transfected with either 6 µg pcDNA3.1 empty vector or 2 µg pEMSV-MyoD, 2 µg CMV-E47, and 2 µg pcDNA3.1. Extracts were incubated with a 30-nucleotide 32P-labeled probe containing the high-affinity MyoD E-box (CAGGTG) found within the Mef2C promoter and MCK enhancer. Protein-DNA complexes were incubated with or without MyoD-specific antibodies prior to resolution via non-denaturing SDS-PAGE. Supershifted MyoD-containing complexes are indicated “MyoD ss”. (B) Nuclear extracts from pBABE or pBABE-Hey1 C2C12 cells used in (A) were Western blotted with antibodies specific for Myogenin or Mre11 as a loading control.

Figure 4. A role for inhibition of Mef2C expression in repression of Myogenin by Hey1. (A) 10T1/2 cells were transfected with 25 ng pRL-TK-Renilla, 25 ng G133-luciferase or G133-mutMef2-luciferase, and 25 ng pEMSV-MyoD. Firefly luciferase values were normalized to Renilla luciferase and plotted as averages of three replicate samples +/- standard deviation. (B) 10T1/2 cells were transfected with 25 ng pRL-TK-Renilla, 25 ng 3X-Mef2-tk-luciferase, 25 ng pcDNA3.1-Mef2C (α18), and 25-100 ng of pcDNA3.1-Hey1-V5. Firefly luciferase values were normalized to Renilla luciferase and plotted as averages of three replicate samples +/- standard deviation. (C) 10T1/2 cells were transfected with 30 ng of pEMSV-MyoD alone or in combination with 180 ng pcDNA3.1-Hey1-V5. Mef2C RNA levels were determined by quantitative RT-PCR and plotted as the average of two replicate samples +/- standard deviation. (D) 10T1/2 cells were transfected with 25 ng pRL-TK-Renilla, 25 ng Met2C-luciferase, 25 ng pEMSV-MyoD, and 25-100 ng of pcDNA3.1-Hey1-V5. Firefly luciferase values were normalized to Renilla luciferase and plotted as averages of three replicate samples +/- standard deviation. (E) 10T1/2 cells were transfected with 25 ng pRL-TK-Renilla, 25 ng G133-luciferase, 25 ng of pEMSV-MyoD, 25-100 ng pcDNA3.1-Hey1-V5, and 100 ng pcDNA3.1-Mef2C (α18), as indicated. Firefly luciferase values were normalized to Renilla luciferase and plotted as averages of three replicate samples +/- standard deviation.

Figure 5. Evaluation of in-vitro DNA binding of Hey1 to myogenic promoter elements. (A) TNT lysates programmed with either pcDNA3.1-V5/HisA empty vector or pcDNA3.1-TOPO-Hey1-V5 were incubated with a 22-nucleotide 32P-labeled probe containing the Hey1 consensus target E-box (CACGTG). Anti-V5 antibodies and cold competitor probes (50X excess relative to labeled probe) were added as indicated prior to resolution of complexes by non-denaturing SDS-PAGE. HCE, Hey1-consensus E-box; ΔHCE, mutant Hey1-consensus E-box; E1, E2, E-boxes within the Myogenin proximal promoter; N1, N-box ~400bp upstream of Myogenin start site; 2C, high-affinity MyoD E-box within the Mef2C proximal promoter. (B) 10T1/2 cells were transfected with 25 ng pRL-TK-Renilla, 25 ng G133-luciferase or G133-mutE1-luciferase, 25 ng of pEMSV-MyoD, and 25-100 ng pcDNA3.1-Hey1-V5. Firefly luciferase values were normalized to Renilla luciferase and plotted as averages of three replicate samples +/- standard deviation.
Figure 6. Hey1 association with myogenic promoter regions in-vivo correlates with reduced recruitment of MyoD. C2C12 cells were infected with pLgw-V5-EcoDam, pLgw-MyoD-V5-EcoDam, or pLgw-Hey1-V5-EcoDam lentiviruses, maintained for two days in growth medium (GM), and then switched to differentiation medium (DM) for 24 hours. Genomic DNA was harvested, subjected to the DamID protocol, and analyzed by quantitative PCR using primers in proximity to the promoter regions of Myogenin, Mef2C, and GAPDH, or within the immunoglobulin-heavy-chain enhancer (IgH). PCR values are presented as ratios of the MyoD-Dam (A) or Hey1-Dam (B) signal to the Dam-only signal and represent averages of two independent experiments +/- standard deviation. (C) C2C12 cells stably transduced with either pBABE-puro or pBABE-FLAG-Hey1 retrovirus were switched to DM for 40 hours prior to fixation and harvesting for ChIP assays. Chromatin was immunoprecipitated with IgG or antibodies specific for MyoD or RNA Pol II. Samples were analyzed by quantitative PCR using primers specific for the Myogenin promoter (left) or Mef2C promoter (right) and IgH enhancer. Anti-MyoD to IgG or anti-Pol II to IgG ratios at the Myogenin and Mef2C promoters were normalized to those at the IgH enhancer and presented as averages of two independent experiments +/- standard deviation.
Figure 1

A

10T1/2 Myogenin

Fold Induction

MyoD Hey1
- + + + +
0 200 400 600 800 1000

10T1/2 Cadherin-15

Fold Induction

MyoD Hey1
- + + + +
0 200 400 600 800 1000

B

G133-luciferase

Fold Induction

MyoD Hey1
- + + + +
0 20 10 5 15

4RE-tk-luciferase

Fold Induction

MyoD Hey1
- + + + +
0 20 10 5 15
Figure 2

A

6% Input	IP: MyoD
+ + +	+ + +
- - +	- - +
- + -	- + -

: Blot

V5: Hey1-V5

E47: E47

MyoD: MyoD

B

6% Input	IP: E47
+ + +	+ + +
- - +	- - +
- + -	- + -

: Blot

V5: Hey1-V5

E47: E47

MyoD: MyoD

HC: HC
Figure 3

Free probe	293T pc +M+E	C2C12 pBABE	Hey1
	+	+	+

anti-MyoD

- MyoD ss
- MyoD:E47
- MyoD:MyoD

-A

B

Western

1 2

Myogenin

Mre11

1 2

Downloaded from http://www.jbc.org/ by guest on March 22, 2020
Figure 5

A

-	-	-	HCE	ΔHCE	E1	E2	N1	2C
-	+	+	+	+	+	+	+	+
+	+	+	+	+	+	+	+	+
-	-	+	+	+	+	+	+	+
-	-	+	+	+	+	+	+	+

- Hey1-V5 ss
- NS / Hey1-V5
- Free probe

B

![Graph showing fold induction](http://www.jbc.org/downloaded)

MyoD	Hey1	25	50	100	25	50	100
-	-	-	-	-	-	-	-
+	+	+	+	+	+	+	+

G133-luc | G133-mutE1-luc

![Image of gel with experimental conditions](http://www.jbc.org/downloaded)
Figure 6

A

B

C

Myogenin promoter

Mef2C promoter

Fold Enrichment (Myog/IgH)

Fold Enrichment (Mef2C/IgH)

MyoD

Pol II

MyoD

pBABE

Hey1

pBABE

Hey1

0

2

4

6

8

10

12

14

16

18

20

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

0
The notch effector Hey1 associates with myogenic target genes to repress myogenesis
Matthew F. Buas, Shara Kabak and Tom Kadesch

J. Biol. Chem. published online November 16, 2009

Access the most updated version of this article at doi: 10.1074/jbc.M109.046441

Alerts:
- When this article is cited
- When a correction for this article is posted

Click here to choose from all of JBC's e-mail alerts

Supplemental material:
http://www.jbc.org/content/suppl/2009/11/16/M109.046441.DC1