Anaerostipes Faecalis Sp. Nov. Isolated from Swine Faeces

Seung-Hyeon Choi
Korea Research Institute of Bioscience and Biotechnology (KRIBB),

Ji Young Choi
Korea Research Institute of Bioscience and Biotechnology (KRIBB),

Jam-Eon Park
Korea Research Institute of Bioscience and Biotechnology (KRIBB),

Ji-Sun Kim
Korea Research Institute of Bioscience and Biotechnology (KRIBB),

Se Won Kang
Korea Research Institute of Bioscience and Biotechnology (KRIBB),

Jiyoung Lee
Korea Research Institute of Bioscience and Biotechnology (KRIBB),

Mi-Kyung Lee
Korea Research Institute of Bioscience and Biotechnology (KRIBB),

Jung-Sook Lee
Korea Research Institute of Bioscience and Biotechnology (KRIBB),

Ju Huck Lee
Korea Research Institute of Bioscience and Biotechnology (KRIBB),

Hyunjung Jung
National Institute of Animal Science

Tai-Young Hur
National Institute of Animal Science

Hyeun Bum Kim
Dankook University

Ju-Hoon Lee
Seoul National University

Jae-Kyung Kim
Korea Atomic Energy Research Institute

Seung-Hwan Park (✉ biopark@kribb.re.kr)
Korea Research Institute of Bioscience and Biotechnology

Research Article
Abstract

A novel, strictly anaerobic, gram-negative, segmented filamentous bacterium (SFB), strain AGMB03513T, was isolated from the faeces of a 5-month-old pig. Comparative analysis of 16S rRNA gene sequences indicated that strain AGMB03513T forms a lineage within the genus \textit{Anaerostipes} and is most closely related to \textit{Anaerostipes butyraticus} DSM 22094T (= KCTC 15125T, 95.8\%), \textit{Anaerostipes hadrus} DSM 3319T (= KCTC 15606T, 95.5\%), \textit{Anaerostipes caccae} DSM 14662T (= KCTC 15019T, 94.0\%), and \textit{Anaerostipes rhamnosivorans} DSM 26241T (= KCTC 15316T, 93.4\%). Phylogenetic analysis based on the 16S rRNA gene and whole genome sequencing analysis revealed that its closest relatives are members of the family \textit{Lachnospiraceae} and that the closest related is \textit{Anaerostipes butyraticus}. Strain AGMB03513T grows at temperatures of between 30 and 45°C within a pH range of 7.0 to 9.0, and in medium containing up to 1.5% NaCl. Cells were found to utilize d-glucose, d-mannitol, d-lactose, d-saccharose, d-maltose, d-xylose, l-arabinose, d-mannose, and d-sorbitol, and acetate was identified as the major end product of metabolism. The DNA G+C content of the strain is 37.0 mol\%. Average nucleotide identity (ANI) values obtained in comparisons of strain AGMB03513T with reference strains of species in the genus \textit{Anaerostipes} were between 71.0\% and 75.7\%, which are below the ANI criterion for interspecies identity. The major components of cellular fatty acids were C\textsubscript{12:0}, C\textsubscript{16:0}, and C\textsubscript{18:0}. On the basis of phenotypic, phylogenetic, biochemical, chemotaxonomic, and genomic characteristics, we consider it reasonable to assign novel species status to strain AGMB03513T, for which we propose the name \textit{Anaerostipes faecalis} sp. nov. The type strain AGMB03513T (=KCTC 25020T=NBRC 114896T).

Introduction

In the past few decades, antibiotics have been used indiscriminately to prevent diseases and promote livestock growth. However, this indiscriminate usage has given rise to the increasing emergence of antibiotic-resistant bacteria, which affects not only livestock but also humans (Gong et al., 2014). In recent years, antibiotic alternatives such as prebiotics and probiotics have been used with increasing frequency (Mingmongkolchai and Panbangred, 2018). Identifying viable alternatives to antibiotics is of particular importance in the pork industry, in which premature mortality accounts for approximately 15\% of the stock. In this regard, the use of probiotics and prebiotics as antibiotic alternatives can improve health and limit disease by nurturing healthy intestinal microbiota through the promotion of optimal initial microbial colonization (Nowland et al., 2019). In suckling piglets, the bacterial genera \textit{Bacteroides}, \textit{Oscillibacter}, \textit{Escherichia}, \textit{Shigella}, \textit{Lactobacillus}, and unclassified \textit{Ruminococcaceae} are the primary components of the intestinal microbiota. In contrast, after weaning, species in the genera \textit{Acetivibrio}, \textit{Dialister}, \textit{Oribacterium}, \textit{Succinivibrio}, and \textit{Prevotella} become increasingly prominent (Mach et al., 2015). Analysis of the intestinal contents of piglets, has revealed that the dominant genus \textit{Lactobacillus} plays an important role in disease prevention by reducing gut populations of pathogenic bacteria (Beasley, 2004). Furthermore, a higher abundance of \textit{Prevotella} has been found to be associated with increased body weight, which is correlated with the production of luminal secretory IgA by \textit{Prevotella} within the gut (Mach et al., 2015). However, our current understanding of the role of the gut microbiota in promoting
livestock health is notably limited, and therefore, there is a pressing need for further studies on the characterization of intestinal microorganisms, the effects of these microorganisms on host health, and microbial community manipulation (Nowland et al., 2019).

The genus *Anaerostipes*, within the phylum *Firmicutes*, was initially proposed by Schwiertz et al. (2002), who classified *Anaerostipes caccae* within this new genus and assigned it to the family *Lachnospiraceae*. The members of *Anaerostipes* are non-motile, rod-shaped, gram-variable obligate anaerobes (Schwiertz et al., 2002). At the time of writing, the genus *Anaerostipes* comprised four species with validly published names (www.bacterio.net/anaerostipes.html) (Euzéby, 1997). In this study, we isolated a novel strain, AGMB03513\(^T\), from swine faeces, which was characterized through phenotypic, biochemical, phylogenetic, and chemotaxonomic analyses, and on the basis of our findings, we propose that this strain represents a novel species within the genus *Anaerostipes*.

Materials And Methods

Isolation of the bacterial strain and culture conditions

Strain AGMB03513\(^T\) was isolated from faeces of swine raised in the National Institute of Animal Science (Wanju, Republic of Korea). The collected samples were immediately maintained under anaerobic conditions and subsequently transported to the laboratory. Isolation was performed using an anaerobic chamber (Coy Laboratory Products, Michigan, USA) containing an atmosphere of 86% nitrogen, 7% hydrogen, and 7% carbon dioxide. The sample was serially diluted in a saline solution [0.85% (w/v) NaCl] and spread on tryptic soy agar containing 5% (v/v) sheep blood (TSAB). After incubation for 72 h at 37°C, single colonies were isolated. Identification was performed based on 16S rRNA gene sequencing, and taxonomic analysis was performed based on phylogenetic, phenotypic, biochemical, chemotaxonomic, and genomic analyses. The isolate was stored at -80°C in 10% (w/v) skim milk. For the purpose of comparative studies, we used strains of the four existing members of the genus, namely, *Anaerostipes butyricus* KCTC 15125\(^T\), *Anaerostipes hadrus* KCTC 15606\(^T\), *Anaerostipes caccae* KCTC 15019\(^T\), and *Anaerostipes rhamnosivorans* KCTC15316\(^T\) as reference species.

16S rRNA gene sequencing and phylogenetic analysis

Genomic DNA was extracted from strain AGMB03513\(^T\) grown on Reinforced clostridial medium (RCM) (MB Cell, Republic of Korea; 10.0 g peptone, 5.0 g NaCl, 10.0 g beef extract, 3.0 g yeast extract, 5.0 g dextrose, 1.0 g starch, 0.5 g l-cysteine hydrochloride monohydrate, and 3.0 g sodium acetate per litre) supplemented with agar (15.0 g per litre) using the phenol:chloroform:isoamyl alcohol method (Wilson et al., 1990). The extracted genomic DNA was used to amplify the near complete sequence of the 16S rRNA gene by using the universal primer pair 785F (5′-GGATTAGATACCCTGGTA-3′) and 907R (5′-CCGTCAATTCMTTTRAGTTT-3′). The amplified 16S rRNA gene was sequenced commercially by Macrogen Inc. (Republic of Korea). The complete 16S rRNA sequence was assembled by comparison with the whole-genome sequence and identified using the EZBioCloud (Yoon et al., 2017) and
GenBank/EMBL/DDBJ (http://www.ncbi.nlm.nih.gov/blast) databases. Respective sequences of the 16s rRNA of the isolate and related strains were aligned using CLUSTAL W (Thompson et al., 1997), and phylogenetic analysis was performed using Molecular Evolutionary Genetics Analysis (MEGA) 7.0.26 software (Kumar et al., 2016). Evolutionary distances were calculated using Kimura's two-parameter model (Kimura, 1980). Phylogenetic trees based on sequences of the 16S rRNA gene were reconstructed according to the neighbour-joining (NJ) (Saitou and Nei, 1987), maximum-likelihood (ML) (Fitch, 1971), and maximum-parsimony (MP) (Felsenstein, 1981) algorithms with bootstrap analysis (1000 replications).

Phenotypic and biochemical analyses

For the purposes of phenotypic and biochemical analyses, the AGMB03513\(^T\) isolate was grown on RCM agar for 24–48 h. Cell morphology was observed using an Eclipse 80i phase-contrast microscope (Nikon), a SUPRA 55VP scanning electron microscope (Carl Zeiss, Germany), and a Tecnai 10 transmission electron microscopy (FEI, USA). Gram staining was performed using a Gram stain kit (Difco) according to the manufacturer's instructions. KOH tests were based on determinations of the formation of viscous and mucoid strings within 15 s (Suslow, 1982). To determine the optimal growth conditions, cells were incubated at a temperature of 37°C, over a temperature range of 10 to 50°C (at 5°C intervals), and at eight different pH values (4, 5, 6, 7, 8, 9, 10, and 11). Salt tolerance was determined by growing cells in media with NaCl concentrations ranging from 0.5% to 4.0% (at 0.5% intervals). Growth was measured using a DU 700 UV-visible spectrophotometer (Beckman Coulter, CA, USA). Catalase activity was confirmed based on bubble formation using a catalase reagent (bioMérieux, #55561), and oxidase activity was verified based on the production of a purple colouration by using an oxidase reagent (bioMérieux, #55635). Spore formation was assessed using the Schaeffer–Fulton method with malachite green (Schaeffer and Fulton, 1933), whereas for characterization of biochemical properties, cells were analysed using API 20A, Rapid ID 32A, and ZYM strips (bioMérieux, Marcy-l’Étoile, France).

Chemotaxonomic and genomic characteristics

Fermentation end products were characterized in cell-free supernatants derived from cells cultured for 2 days in RCM broth by high-performance liquid chromatography (Shimadzu, Kyoto, Japan) equipped with Aminex™ Organic Acid Columns (Bio-Rad, CA, USA). The diamino acid in cell walls was determined using a previously described method (Komagata and Suzuki, 1988). Fatty acid profiles were determined in cells grown on RCM agar at 37°C for 24 h. The cellular fatty acids were saponified, methylated, and extracted according to instructions of the Chemical Analysis System (MIDI, DE, USA), and subsequently identified using gas chromatography (GC-2010; Shimadzu) and Sherlock™ Chromatographic Analysis System software package (Anaerobe Database version 6.4). Diamino acids in cell wall peptidoglycans were analysed as described previously (Schleifer and Kandler, 1972). Polar lipids were extracted using a chloroform/methanol method and analysed by two-dimensional thin-layer chromatography following a previously described method (Kates, 1986). Briefly, after extracting polar lipids from 100 mg freeze-dried cells, silica gel 60 F\(_{254}\) aluminium-backed thin layer plates (Merck) were dotted with samples and
subjected to two-dimensional development, with a first mobile phase solvent of chloroform/methanol/distilled water (65:25:4, v/v) followed by a second mobile phase solvent of chloroform/methanol/acetic acid/distilled water (40:7.5:6:2, v/v). Whole-genome sequencing using the NovaSeq 6000 system (Illumina, San Diego, CA, USA) was performed at Macrogen Inc. to determine the G + C content of genomic DNA and for genomic analysis. The average nucleotide identity (ANI) and the average amino acid identity (AAI) were calculated using ChunLab’s online ANI calculator with the OrthoANI algorithm (Lee et al., 2016) and AAI calculator tools (http://enve-omics.ce.gatech.edu/aai/) (Rodriguez and Konstantinidis, 2016). Digital DNA–DNA hybridization (dDDH) was calculated using the Genome-to-Genome Distance Calculator (GGDC) version 2.1 (Meier-Kolthoff et al., 2013). Whole-genome analysis was performed using CLgenomics™ software (ChunLab, Republic of Korea) and the UniProt database (https://www.uniprot.org).

Results And Discussion

Phylogenetic analysis

Approximately 1459 bases of the 16S rRNA gene were sequenced, and comparative analysis of the sequence indicated that strain AGMB03513T is closely related to species in the genus *Anaerostipes*. AGMB03513T showed sequence similarities of between 93.3% and 95.8% with the reference bacteria, with highest similarity to *A. butyraticus* 35-7T (KCTC 15125; 95.8%). Phylogenetic analysis based on 16S rRNA gene sequences indicated that strain AGMB03513T is a species within the family *Lachnospiraceae* (Fig. 1).

Phenotypic and biochemical characteristics

Cells of strain AGMB03513T were found to be strictly anaerobic, gram-negative, non-motile, and formed spores. The strain failed to grow on RCM agar incubated in air or in an atmosphere containing 5% CO₂, whereas under anaerobic conditions, cells grew in several long chains of connected rods, referred to as segmented filamentous bacteria (SFB) (Figs. S1 and S2). Colonies grown on RCM agar were circular, convex, white, opaque, and shiny, and grew at temperatures of between 35 and 45°C (optimum at 37°C). In RCM broth, cells were found to grow at pH values ranging from 7 to 9 (optimum pH 7) and NaCl concentrations up to 1.5%. The isolate was observed to utilize carbon sources, such as d-glucose, d-mannitol, d-lactose, d-saccharose, d-mannose, d-sorbitol, and d-raffinose, and to a limited extent, l-leucine. As final products of fermentation, strain AGMB03513T produces acetate and small amounts of propionate and butyrate, the latter of which is the final fermentation product of the reference strain of *A. caccae* used in the present study (Table 1). However, none of the four reference strains were found to produce acetate as the final fermentation product. Furthermore, strain AGMB03513T showed no evidence of either catalase or oxidase activity.

Chemotaxonomic and genomic characteristics
The major cellular fatty acids (>10%) of strain AGMB03513^T were C_{12:0} (20.8%), C_{16:0} (16.8%), and C_{18:0} (11.9%). Comparatively, the major fatty acids of the four reference strains in this study are as follows: A. caccae DSM 14662^T: C_{12:0} (29.7%), C_{18:0} DMA (12.5%), and C_{18:0} ALDE (19.5%); A. butyraticus DSM 22094^T: C_{12:0} (32.0%), C_{18:0} (12.1%), and C_{18:0} ALDE (12.2%); A. rhamnosivorans DSM 26241^T: C_{12:0} (32.1%), C_{16:0} (9.4%), and C_{18:0} ALDE (12.6%); and A. hadrus DSM 3319^T: C_{11:0} DMA (13.2%), C_{12:0} (24.5%), C_{18:0} DMA (15.4%), and C_{18:0} ALDE (22.7%). Details of the cellular fatty acid profiles of strain AGMB03513^T and the reference strains are shown in Table 2. Strain AGMB03513^T was found to contain the following polar lipids: three glycpophosphoaminolipids, four glycolipids, four unidentified lipids, one glycpophosphoaminolipid, one glycoaminolipid, one phospholipid, and an aminolipid (Fig. S4).

The genome of strain AGMB03513^T is 2,544,126 bp in length and contains 2,492 coding sequences, and genes encoding 10 rRNA and 59 tRNAs. The ANI and AAI values obtained based on comparisons between strain AGMB03513^T (JABRXE000000000) and strains of the four congeneric species A. butyraticus JCM 17466 (BLYI000000000), A. caccae NCIMB 13811^T (CP036345), A. hadrus ATCC 29173^T (AMEY000000000), and A. rhamnosivorans 1y-2^T (CP040058) were 75.3%, 71.0%, 75.5%, and 71.2% and 73.2%, 66.6%, 72.5%, and 66.7%, respectively, and the respective dDDH values were 19.5%, 20.2%, 20.1%, and 21.4%. These values were found to be notably lower than the threshold values of ANI and AAI (95%–96 %) and dDDH (70 %) for differentiating bacterial species.

Strain AGMB03513^T was also found to contain meso-diaminopimelic acid (DAP) in the cell wall (Fig. S3), which is synthesized from l-aspartate, and l-aspartate via tetrahydrodipicolinate (THDPA) as an intermediate product (Rodionov et al., 2003, Xu et al., 2019). Within cells, l-aspartate is converted to THDPA via activity of the lysC, asd, dapA, and dapB gene products (Rodionov et al., 2003), and there are several pathways whereby THDPA is converted to DAP (Xu et al., 2019), among which is the succinylase pathway containing the enzyme encoded by dapDH. In addition, the new isolate expresses the dapL and dapF genes that play roles in the meso-DAP/L-lysine biosynthetic pathway.

DNA G+C content

The G + C content of strain AGMB03513^T genomic DNA was found to be 37.0 mol%, which compared with the values of 45.5–46.0 mol%, 44.0 mol%, 44.5 mol%, and 37.0 mol% obtained for the reference strains of A. caccae, A. butyraticus, A. rhamnosivorans, and A. hadrus, respectively (Allen-Vercoe et al., 2012) (Table 1).

Taxonomic conclusions

Phylogenetic tree analysis based on 16S rRNA gene sequences revealed that strain AGMB03513^T is grouped in the family Lachnospiraceae and closely related to species in the genus Anaerostipes. The strain AGMB03513^T showed 93.3%–95.5% identity to the four reference strains with respect to the 16S rRNA gene sequence and showed clear similarities as well as differences with respect to phenotypic,
biochemical, chemotaxonomic, and genomic characteristics. On the basis of this evidence, we consider it reasonable to designate strain AGMB03513ᵀ as a novel species in the genus _Anaerostipes_, for which the name _Anaerostipes faecalis_ sp. nov. is proposed.

Description of *Anaerostipes faecalis* sp. nov.

Anaerostipes faecalis sp. nov. (fae.ca'lis. L. fem. adj. faecalis derived from faeces).

Cells were long rod-shaped, gram-negative, non-motile, and non-spore forming obligate anaerobes. SEM images revealed a segmented filamentous bacterial morphology. Colonies cultured for 24–48 h on RCM agar were circular, convex, white, opaque, and shiny. Growth occurred at temperatures between 30 and 45°C (optimum 37°C) within a pH range from 7 to 9 (optimum pH 7). API 20A strip analysis indicated that cells produce acid from d-glucose, d-mannitol, d-lactose, d-saccharose, d-mannose, and d-sorbitol, whereas acid production from d-maltose, d-xylene, and l-arabinose was weakly positive, and no acid was produced from salicin, glycerol, d-cellobiose, d-melezitose, d-raffinose, d-rhamnose, or d-trehalose. Neither indole nor urease was detected. Additionally, esculin and gelatin hydrolysis were absent. API Rapid ID 32A strip analysis revealed positive reactions for alkaline phosphatase and the fermentation of d-mannose and d-raffinose, whereas negative reactions were detected for urease, arginine dihydrolase, α-galactosidase, β-galactosidase, β-galactosidase-6-phosphate, α-glucosidase, β-glucosidase, α-arabinosidase, β-glucuronidase, N-acetyl-β-glucosaminidase, glutamic acid decarboxylase, α-fucosidase, nitrate reduction, indole production, arginine arylamidase, proline arylamidase, leucyl glycine arylamidase, phenylalanine arylamidase, pyroglutamic acid arylamidase, tyrosine arylamidase, alanine arylamidase, glycine arylamidase, histidine arylamidase, glutamyl glutamic acid arylamidase, and serine arylamidase. Leucine arylamidase activity was, however, found to be weakly positive. API ZYM strip analysis indicated positive reactions for alkaline phosphatase, acid phosphatase, and naphthol-AS-BI-phosphohydrolase, whereas esterase (C4) and leucine arylamidase showed weakly positive activity. In contrast, negative reactions were observed for esterase lipase (C8), lipase (C14), valine arylamidase, cystine arylamidase, trypsin, α-chymotrypsin, α-galactosidase, β-glucuronidase, β-glucosidase, α-glucosidase, β-glucosidase, N-acetyl-β-glucosaminidase, α-mannosidase, and α-fucosidase. As end products of fermentation, cells produce acetate, propionate, and butyrate. *meso*-DAP was identified as the diagnostic cell-wall diamino acid. The cell polar lipid profile comprised three glycoprophosphoaminolipids, four glycolipids, four unidentified lipids, one glycoprophosphoaminolipid, one glycoaminolipid, one phospholipid, and an aminolipid, and the major cellular fatty acids (>10%) were C₁₂:₀, C₁₆:₀, and C₁₈:₀. The G + C content of genomic DNA was 37.0 mol%.

The type strain AGMB03513ᵀ (=KCTC 25020ᵀ = NBRC 114896ᵀ) was isolated from swine faeces. The GenBank/EMBL/DDBJ accession number for the 16S rRNA gene sequence of strain AGMB03513ᵀ is MT534274, and the GenBank/EMBL/DDBJ accession number for the whole-genome sequence of strain AGMB03513ᵀ is JABRXE0000000000.

Abbreviations
SFB segmented filamentous bacterium
ANI average nucleotide identity
AGMB animal gut microbiome bank
KCTC Korean Collection for Type Cultures
TSAB Tryptic soy agar containing 5% (v/v) sheep blood
RCM reinforced clostridial medium
DAP diaminopimelic acid

Declarations

Acknowledgements

This work was supported by the Bio & Medical Technology Development Program (Project No. NRF-2019M3A9F3065226 and NRF-2021M3H9A1030164) of the National Research Foundation of Korea (NRF), funded by the Ministry of Science and ICT (MSIT) of the Republic of Korea; by the Korea Research Institute of Bioscience and Biotechnology (KRIBB) Research Initiative Program (KGM5232113). S.-H.P. was supported by the Technology Innovation Program (20009412, Discovery and fermentation optimization of uncultured bacteria from the gut microbiome based on genomic big data), funded by the Ministry of Trade, Industry & Energy (MOTIE, Korea). J.-S. L. was supported by a National Research Foundation of Korea (NRF) grant, funded by the Korean government (NRF-2016M3A9F3946674).

Author contributions

Seung-Hwan Park, Seung-Hyeon Choi, Ji Young Choi designed and coordinated this study; Seung-Hyeon Choi, Ji Young Choi performed experiments and draft manuscript; Jameon Park, Ji-Sun Kim helped in experiments and interpreting the results; Se Won Kang, Jiyoung Lee, Mi-Kyung Lee, Jung-Sook Lee, Ju Huck Lee collected the samples and helped in experiments; Seung-Hwan Park, Hyunjung Jung, Tai-Young Hur, Hyeun Bum Kim, Ju-Hoon Lee, Jae-Kyung Kim revised the manuscript.

Conflicts of interest

The authors declare that there are no conflicts of interest.

References

1. Allen-Vercoe E, Daigneault M, White A, Panaccione R, Duncan SH, Flint HJ, O’Neal L, Lawson PA (2012) Anaerostipes hadrus comb. nov., a dominant species within the human colonic microbiota;
reclassification of *Eubacterium hadrum* Moore et al. 1976. *Anaerobe*, 18, 523–529. https://doi.org/10.1016/j.anaerobe.2012.09.002

2. Bui TPN, de Vos WM, Plugge CM (2014) *Anaerostipes rhamnosivorans* sp. nov., a human intestinal, butyrate-forming bacterium. *Int J Syst Evol Microbiol*, 64, 787–793. https://doi.org/10.1099/ijs.0.055061-0

3. Eeckhaut V, Van Immerseel F, Pasmans F, De Brandt E, Haesebrouck F, Ducatelle R, Vandamme P (2010) *Anaerostipes butyraticus* sp. nov., an anaerobic, butyrate-producing bacterium from Clostridium cluster XIVa isolated from broiler chicken caecal content, and emended description of the genus *Anaerostipes*. *Int J Syst Evol Microbiol*, 60, 1108–1112. https://doi.org/10.1099/ijs.0.015289-0

4. Euzéby JP (1997) List of Bacterial Names with Standing in Nomenclature: a folder available on the Internet. *Int J Syst Bacteriol*, 47, 590–592. https://doi.org/10.1099/00207713-47-2-590

5. Felsenstein J (1981) Evolutionary trees from DNA sequences: a maximum likelihood approach. *J Mol Evol*, 17, 368–376. https://doi.org/10.1007/BF01734359

6. Fitch WM (1971) Toward defining the course of evolution: minimum change for a specific tree topology. *Syst Zool*, 20, 406–416. https://doi.org/10.2307/2412116

7. Gong J, Yin F, Hou Y, Yin Y (2014) Review: Chinese herbs as alternatives to antibiotics in feed for swine and poultry production: potential and challenges in application. *Can J Anim Sci*, 94, 223–241. https://doi.org/10.4141/cjas2013-144

8. Kates M (1986) Techniques of lipidology. 2. rev. Elsevier. Netherlands

9. Kimura M (1980) A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. *J Mol Evol*, 16, 111–120. https://doi.org/10.1007/BF01731581

10. Komagata K, Suzuki K-I (1988) 4 Lipid and cell-wall analysis in bacterial systematics. *Methods Microbiol*. Elsevier, 161–207. https://doi.org/10.1016/S0580-9517(08)70410-0

11. Kumar S, Stecher G, Tamura K (2016) MEGA7: Molecular Evolutionary Genetics Analysis Version 7.0 for Bigger Datasets. *Mol Biol Evol* version 7.0, 33, 1870–1874. https://doi.org/10.1093/molbev/msw054

12. Lee I, Ouk Kim YO, Park SC, Chun J (2016) OrthoANI: an improved algorithm and software for calculating average nucleotide identity. *Int J Syst Evol Microbiol*, 66, 1100–1103. https://doi.org/10.1099/ijsem.0.000760

13. Mach N, Berri M, Estellé J, Levenez F, Lemonnier G, Denis C, Leplat JJ, Chevaleyre C, Billon Y, Doré J, Rogel-Gaillard C, Lepage P (2015) Early-life establishment of the swine gut microbiome and impact on host phenotypes. *Environ Microbiol Rep*, 7, 554–569. https://doi.org/10.1111/1758-2229.12285

14. Meier-Kolthoff JP, Auch AF, Klenk HP, Göker M (2013) Genome sequence-based species delimitation with confidence intervals and improved distance functions. *BMC Bioinformatics*, 14, 60. https://doi.org/10.1186/1471-2105-14-60
15. Mingmongkolchai S, Panbangred W (2018) Bacillus probiotics: an alternative to antibiotics for livestock production. *J Appl Microbiol*, 124, 1334–1346. https://doi.org/10.1111/jam.13690

16. Nowland TL, Plush KJ, Barton M, Kirkwood RN (2019) Development and function of the intestinal microbiome and potential implications for pig production. *Animals (Basel)*, 9. https://doi.org/10.3390/ani9030076

17. Rodionov DA, Vitreschak AG, Mironov AA, Gelfand MS (2003) Regulation of lysine biosynthesis and transport genes in bacteria: yet another RNA riboswitch? *Nucleic Acids Res*, 31, 6748–6757. https://doi.org/10.1093/nar/gkg900

18. Rodriguez RL, Konstantinidis K (2016) The enveomics collection: a toolbox for specialized analyses of microbial genomes and metagenomes. *PeerJ Prepr*. https://doi.org/10.7287/peerj.preprints.1900v1

19. Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. *Mol Biol Evol*, 4, 406–425. https://doi.org/10.1093/oxfordjournals.molbev.a040454

20. Schaeffer AB, Fulton MD (1933) A simplified method of staining endospores. *Science*, 77, 194. https://doi.org/10.1126/science.77.1990.194

21. Schleifer KH, Kandler O (1972) Peptidoglycan types of bacterial cell walls and their taxonomic implications. *Bacteriol Rev*, 36, 407–477

22. Schwiertz A, Hold GL, Duncan SH, Gruhl B, Collins MD, Lawson PA, Flint HJ, Blaut M (2002) *Anaerostipes caccae* gen. nov., sp. nov., a new saccharolytic, acetate-utilising, butyrate-producing bacterium from human faeces. *Syst Appl Microbiol*, 25, 46–51. https://doi.org/10.1078/0723-2020-00096

23. Suslow TV, Schroth MN, Isaka M (1982) Application of a rapid method for gram differentiation of plant pathogenic and saprophytic bacteria without staining. *Phytopathology*, 72, 917–918. https://doi.org/10.1094/Phyto-72-917

24. Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1997) The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. *Nucleic Acids Res*, 25, 4876–4882. https://doi.org/10.1093/nar/25.24.4876

25. Wilson KH, Blitchington RB, Greene RC (1990) Amplification of bacterial 16S ribosomal DNA with polymerase chain reaction. *J Clin Microbiol*, 28, 1942–1946. https://doi.org/10.1128/JCM.28.9.1942-1946.1990

26. Xu JZ, Ruan HZ, Liu LM, Wang LP, Zhang WG (2019) Overexpression of thermostable meso-diaminopimelate dehydrogenase to redirect diaminopimelate pathway for increasing L-lysine production in *Escherichia coli*. *Sci Rep*, 9, 2423. https://doi.org/10.1038/s41598-018-37974-w

27. Yoon SH, Ha SM, Kwon S, Lim J, Kim Y, Seo H, Chun J (2017) Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. *Int J Syst Evol Microbiol*, 67, 1613–1617. https://doi.org/10.1099/ijsem.0.001755

Tables
Table 1. Differential characteristics of strain AGMB03513T and the phylogenetically related type species in the genus *Anaerostipes*

Characteristic	1	2	3	4	5	
Source	Swine faeces	Human faecesa	Chicken caecalb	Human intestinalc	Human faecesd	
Cell morphology	Segmented filaments	Rodsa	Large rodsb	Curved rodsc	Rodsd	
Size (\(\mu\))	NA	0.5−0.6 × 2.0−4.0a	5.0−15.0b	0.7−0.8 × 3.0−6.0c	4.8 × 0.8d	
Temperature range for growth (ºC)	30−45	30−45	35−45	30−45	30−45	
pH range for growth	7−9	6−10	6−8	6−9	6−9	
NaCl concentration for growth (%)	0.5−1.5	0.5−3.5	0.5−3.0	0.5−3.0	0.5−4.0	
Gram reaction	-	+a	+b	+c	+d	
Spore formation	-	-a	+b	+c	-d	
Enzyme activity	Arginine arylamidase	W	-	W	-	
	Leucine arylamidase	W	+	-	-	
Acid production	d-saccarose	+	W	+	-	
	Esculin	-	+	+	-	
	d-cellobiose	-	-	+	+	W
	d-rhamnose	-	-	+	W	
	d-trehalose	-	+	+	-	
End products of fermentation	A, p, b	b	NA	NA	NA	
DNA G + C content (mol\%)	37.0	45.5−46.0a	44.0b	44.5c	37.0d	

Strains: 1, *Anaerostipes faecalis* AGMB03513T; 2, *Anaerostipes caccae* KCTC 15019T; 3, *Anaerostipes butyraticus* KCTC 15125T; 4, *Anaerostipes rhamnosivorans* KCTC 15316T; and 5, *Anaerostipes hadrus*
KCTC 15606T.

Unless otherwise stated, all presented data were obtained in the present study. +, Positive; -, negative; W, weakly positive. NA, not available; v, gram variable A, acetate; P, propionate; B, butyrate. Upper- and lower-case letters indicate the major and minor end products of fermentation, respectively.

aData from Schwirtz et al. (2000); bEeckhaut et al. (2010); cBui et al. (2014); and dAllen-Vercoe et al. (2012).

Table 2. Cellular fatty acid profiles (% of total) of strain AGMB03513T and the type strains of closely related species in the genus *Anaerostipes*
Fatty acid	1	2	3	4	5
C_{10:0}	TR	1.6	-	1.7	1.1
C_{11:0} DMA	1.8	TR	5.2	1.1	**13.3**
C_{12:0}	**20.8**	**29.7**	**32.0**	**32.12**	**24.5**
C_{14:0}	8.0	6.5	5.6	4.2	2.7
C_{14:0} DMA	1.6	TR	1.4	TR	TR
anteiso-C_{15:0}	-	TR	2.5	TR	-
iso-C_{15:0}	-	TR	1.6	-	-
C_{16:0}	**16.4**	5.2	7.2	9.4	3.5
C_{16:0} DMA	5.8	1.8	2.8	5.4	1.8
C_{16:0} ALDE	5.6	2.1	2	5.6	2.0
C_{17:0} cyc	1.5	3.0	1.9	2.2	3.8
C_{18:0}	**12.0**	2.3	**12.1**	2.5	4.8
C_{18:0} DMA	4.7	**12.5**	7.2	5.9	**15.4**
C_{18:0} ALDE	7.1	**19.5**	**12.7**	**12.6**	**22.7**
C_{18:1} DMA	1.1	2.2	1.5	1.7	2.5
C_{18:1} cis 9	1.8	TR	-	TR	-
C_{18:1} cis 9 DMA	3.2	4.0	-	4.3	-
Summed features*					
1	TR	TR	1.1	-	TR
7	3.7	6.4	-	6.0	-

Strains: 1, *Anaerostipes faecalis* AGMB03513T; 2, *Anaerostipes caccae* KCTC 15019T; 3, *Anaerostipes butyraticus* KCTC 15125T; 4, *Anaerostipes rhamnosivorans* KCTC 15316T; 5, *Anaerostipes hadrus* KCTC 15606T.

All presented data were obtained in the present study. Values are percentages of total cellular fatty acids. TR, trace amount (< 1%); -, not detected. Only fatty acids accounting for more than 1% in at least one of the strains are shown. Major components (>10%) are highlighted in bold.
Figures

Figure 1

Phylogenetic tree based on the near full-length 16S rRNA gene sequence, showing the placement of strain AGMB03513T and relationships between strain AGMB03513T and related taxa among species in the family Lachnospiraceae. Phylogenetic trees were constructed using neighbour-joining (NJ), maximum-likelihood (ML), and maximum-parsimony (MP) methods, with bootstrap values obtained from 1000 replicates. Bootstrap values >50% are shown at the nodes. Filled circles indicate that the corresponding nodes (groupings) were recovered in trees generated using the NJ, ML, and MP methods. The open circles indicate that the corresponding nodes are also depicted by NJ and ML. Bars: 0.02 substitutions per nucleotide position.

Supplementary Files

This is a list of supplementary files associated with this preprint. Click to download.

- SupplementaryfiguresAnaerostipesChoietal.pdf