CLASSIFICATION OF LINKS UP TO SELF #-MOVE

TETSUO SHIBUYA
Department of Mathematics, Osaka Institute of Technology
Omiya 5-16-1, Asahi, Osaka 535-8585, Japan
e-mail: shibuya@ge.oit.ac.jp

AKIRA YASUHARA
Department of Mathematics, Tokyo Gakugei University
Nukuikita 4-1-1, Koganei, Tokyo 184-8501, Japan
Current address:
Department of Mathematics, The George Washington University
Washington, DC 20052, USA
e-mail: yasuhara@u-gakugei.ac.jp

Dedicated to Professor Shin’ich Suzuki for his 60th birthday

Abstract
A pass-move and a # move are local moves on oriented links defined by L.H. Kauffman and H. Murakami respectively. Two links are self pass-equivalent (resp. self # equivalent) if one can be deformed into the other by pass-moves (resp. # moves), where non of them can occur between distinct components of the link. These relations are equivalence relations on ordered oriented links and stronger than link-homotopy defined by J. Milnor. We give two complete classifications of links with arbitrarily many components up to self pass-equivalence and up to self # equivalence respectively. So our classifications give subdivisions of link-homotopy classes.

1. Introduction

We shall work in piecewise linear category. All links will be assumed to be ordered and oriented.

A pass-move (resp. # move) is a local move on oriented links as illustrated in Figure 1.1(a) (resp. 1.1(b)). If the four strands in Figure 1.1(a) (resp. 1.1(b)) belong to the same component of a link, we call it a self pass-move (resp. self # move) (12). We note that the first author called pass-move and # move # (II) move and # (I) move respectively in his prior papers (12), (13), (14), etc. Two links are self pass-equivalent (resp. self #-equivalent) if one can be deformed into the other by a finite sequence of self pass-moves (resp. self # moves). Two links are link-homotopic if one can be deformed into the other by finite sequence of self crossing changes. Since both self pass-move and self # move are realized by self crossing changes, self pass-equivalence and self # equivalence are

2000 Mathematics Subject Classification: 57M25
Keywords and Phrases: # move, pass-move, link-homotopy, Arf invariant
stronger than link-homotopy. Link-homotopy classification is already done by N. Habegger and X.S. Lin [3]. In this paper we give two complete classifications of links with arbitrarily many components up to self pass-equivalence and up to self #-equivalence respectively. So our classifications give subdivisions of link-homotopy classes.

![Diagram](image.png)

Figure 1.1

An n-component link \(l = k_1 \cup \cdots \cup k_n \) is proper if the linking number \(\text{lk}(l - k_i, k_i) \) is even for any \(i = 1, \ldots, n \). We define that a knot is a proper link. For a proper link \(l = k_1 \cup \cdots \cup k_n \), we call \(\text{Arf}(l) - \sum_{i=1}^{n} \text{Arf}(k_i) \pmod{2} \) the reduced Arf invariant [12] and denote it by \(\overline{\text{Arf}}(l) \), where Arf is the Arf invariant [10].

Theorem 1.1. Let \(l = k_1 \cup \cdots \cup k_n \) and \(l' = k'_1 \cup \cdots \cup k'_n \) be n-component links. Then the following (i) and (ii) hold.

(i) \(l \) and \(l' \) are self pass-equivalent if and only if they are link-homotopic and \(\overline{\text{Arf}}(k_{i_1} \cup \cdots \cup k_{i_p}) = \overline{\text{Arf}}(k'_{i_1} \cup \cdots \cup k'_{i_p}) \) for any proper links \(k_{i_1} \cup \cdots \cup k_{i_p} \subseteq l \) and \(k'_{i_1} \cup \cdots \cup k'_{i_p} \subseteq l' \).

(ii) \(l \) and \(l' \) are self #-equivalent if and only if they are link-homotopic and \(\overline{\text{Arf}}(k_{i_1} \cup \cdots \cup k_{i_p}) = \overline{\text{Arf}}(k'_{i_1} \cup \cdots \cup k'_{i_p}) \) for any proper links \(k_{i_1} \cup \cdots \cup k_{i_p} \subseteq l \) and \(k'_{i_1} \cup \cdots \cup k'_{i_p} \subseteq l' \).

For two-component links, both self pass-equivalence classification and self #-equivalence classification are done by the first author [13]. His proof can be applied to only two-component links. So we need different approach to proving Theorem 1.1.

A link \(l = k_1 \cup \cdots \cup k_n \) is \(\mathbb{Z}_2 \)-algebraically split if \(\text{lk}(k_i, k_j) \) is even for any \(i, j \) \((1 \leq i < j \leq n) \). We note that if \(l = k_1 \cup \cdots \cup k_n \) is \(\mathbb{Z}_2 \)-algebraically split link, then \(l \) and \(k_i \cup k_j \) \((1 \leq i < j \leq n) \) are proper.

Theorem 1.2. Let \(l = k_1 \cup \cdots \cup k_n \) and \(l' = k'_1 \cup \cdots \cup k'_n \) be n-component \(\mathbb{Z}_2 \)-algebraically split links. If \(l \) and \(l' \) are link-homotopic, then

\[
\overline{\text{Arf}}(l) + \sum_{1 \leq i < j \leq n} \overline{\text{Arf}}(k_i \cup k_j) \equiv \overline{\text{Arf}}(l') + \sum_{1 \leq i < j \leq n} \overline{\text{Arf}}(k'_i \cup k'_j) \pmod{2}.
\]
2. Preliminaries

In this section, we collect several results in order to prove Theorems 1.1 and 1.2.

Let \(l = k_1 \cup \cdots \cup k_n \) and \(l' = k'_1 \cup \cdots \cup k'_n \) be \(n \)-component links. Suppose that there is a disjoint union \(A = A_1 \cup \cdots \cup A_n \) of \(n \) annuli in \(S^3 \times [0, 1] \) with \((\partial (S^3 \times [0, 1]), \partial A_i) = (S^3 \times \{0\}, k_i) \cup (-S^3 \times \{1\}, -k'_i) \) \((i = 1, \ldots, n)\) such that

(i) \(A \) is locally flat except for finite points \(p_1, \ldots, p_m \) in the interior of \(A \), and

(ii) for each \(p_j \) \((j = 1, 2, \ldots, m)\), there is a small neighborhood \(N(p_j) \) of \(p_j \) in \(S^3 \times [0, 1] \) such that \((\partial N(p_j), \partial (N(p_j) \cap A)) \) is a link as illustrated in Figure 2.1,

where \(-X\) denotes \(X \) with the opposite orientation. Then \(A \) is called a pass-annuli between \(l \) and \(l' \).

Figure 2.1

The following is proved by the first author in [12].

Lemma 2.1. Two links \(l \) and \(l' \) are self pass-equivalent if and only if there is a pass-annuli between them. \(\Box \)

It is known that a pass-move is realized by a finite sequence of \#-moves [8]. Thus we have the following.

Lemma 2.2. If two links \(l \) and \(l' \) are self pass-equivalent, then they are self \#-equivalent. \(\Box \)

A \(\Gamma \)-move [4] is a local move on oriented links as illustrated in Figure 2.2.

Figure 2.2
The following is known \cite{4}.

Lemma 2.3. A Γ-move is realized by a single pass-move. \qed

Let $l = k_1 \cup \cdots \cup k_n$ and $l' = k'_1 \cup \cdots \cup k'_n$ be n-component links such that there is a 3-ball B^3 in S^3 with $B^3 \cap (l \cup l') = l$. Let b_1, \ldots, b_n be mutually disjoint disks in S^3 such that $b_i \cap l = \partial b_i \cap k_i$ and $b_i \cap l' = \partial b_i \cap k'_i$ are arcs for each i. Then the link $l \cup l' \cup (\bigcup_{i=1}^n \partial b_i) - (\bigcup \text{int}(b_i \cap (l \cup l'))) \text{ is called a band sum (or a product fusion \cite{11}) of } l \text{ and } l' \text{ and denoted by } (k_1 b_1 k'_1) \cup \cdots \cup (k_n b_n k'_n). \text{ Note that a band sum of } l \text{ and } l' \text{ is } \mathbb{Z}_2\text{-algebraically split if } lk(k_i, k_j) \equiv lk(k'_i, k'_j) \pmod{2} \text{ (}1 \leq i < j \leq n\text{).}

By the definition of the Arf invariant via 4-dimensional topology \cite{10}, we have the following.

Lemma 2.4. Two links l and l' are link-homotopic if and only if there is a band sum of l and $-l'$ that is link-homotopic to a trivial link, where $(S^3, -l) \cong (-S^3, -l')$. \qed

By the definition of the Arf invariant via 4-dimensional topology \cite{10}, we have the following.

Lemma 2.5. Let l and l' be proper links and L a band sum of l and $-l'$. Then L is proper and $\operatorname{Arf}(L) \equiv \operatorname{Arf}(l) + \operatorname{Arf}(l') \pmod{2}$. \qed

The following lemma forms an interesting contrast to the lemma above.

Lemma 2.6. Let $l = k_1 \cup k_2$ and $l' = k'_1 \cup k'_2$ be 2-component links with $\text{lk}(k_1, k_2)$ and $\text{lk}(k'_1, k'_2)$ odd. Let $L = (k_1 b_1 (-k'_1)) \cup (k_2 b_2 (-k'_2))$ be a band sum and L' a band sum obtained from L by adding a single full-twist to b_2; see Figure 2.3. Then L and L' are proper and link-homotopic, and $\operatorname{Arf}(L) \neq \operatorname{Arf}(L')$.

![Figure 2.3](imageURL)

Proof. Clearly L and L' are proper and link-homotopic. So we shall show $\operatorname{Arf}(L) \neq \operatorname{Arf}(L')$.

Let a_i be the ith coefficient of the Conway polynomial. Then we have

$$a_3(L) - a_3(L') = a_2((k_1 b_1 (-k'_1)) \cup k_2 \cup (-k'_2)).$$

It is known that the third coefficient of the Conway polynomial of two-component proper link is mod 2 congruent to the sum of the Arf invariants of the link and the components
This and Lemma 2.5 imply \(\text{Arf}(L) - \text{Arf}(L') \equiv a_3(L) - a_3(L') \) (mod 2). By 8,

\[
\begin{align*}
a_2((k_1 \# b_1(-k'_1)) \cup k_2 \cup (-k'_2)) &= \text{lk}(k_1 \# b_1(-k'_1), k_2)\text{lk}(k_2, -k'_2) + \text{lk}(k_2, -k'_2)\text{lk}(-k'_2, k_1 \# b_1(-k'_1)) \\
&\quad + \text{lk}(-k'_2, k_1 \# b_1(-k'_1))\text{lk}(k_1 \# b_1(-k'_1), k_2).
\end{align*}
\]

Thus we have \(\text{Arf}(L) - \text{Arf}(L') \equiv 1 \) (mod 2). \(\square \)

A \(\Delta \)-move is a local move on links as illustrated in Figure 2.4. If at least two of the three strands in Figure 2.4 belong to the same component of a link, we call it a quasi self \(\Delta \)-move. Two links are quasi self \(\Delta \)-equivalent if one can be deformed into the other by a finite sequence of quasi self \(\Delta \)-moves.

![Figure 2.4](image)

The following is proved by Y. Nakanishi and the first author in 9.

Lemma 2.7. Two links are link-homotopic if and only if they are quasi self \(\Delta \)-equivalent. \(\square \)

3. Proofs of Theorems 1.1 and 1.2

Proof of Theorem 1.2. Since \(l \) is link-homotopic to \(l' \), by Lemma 2.7, \(l \) is quasi self \(\Delta \)-equivalent to \(l' \). It is sufficient to consider the case that \(l' \) is obtained from \(l \) by a single quasi self \(\Delta \)-move.

Suppose that the three strands of the \(\Delta \)-move that is applied to the deformation from \(l \) into \(l' \) belong to one component of \(l \). Without loss of generality we may assume that the component is \(k_1 \). Note that \(k_i \) and \(k'_i \) are ambient isotopic for any \(i \neq 1 \), and that \(k_i \cup k_j \) and \(k'_i \cup k'_j \) are ambient isotopic for any \(i < j \) (\(i \neq 1 \)). Since a \(\Delta \)-move changes the value of Arf invariant, we have \(\text{Arf}(l) \neq \text{Arf}(l') \), \(\text{Arf}(k_1) \neq \text{Arf}(k'_1) \) and \(\text{Arf}(k_1 \cup k_j) \neq \text{Arf}(k'_1 \cup k'_j) \). Thus we have \(\text{Arf}(l) = \text{Arf}(l') \) and \(\text{Arf}(k_1 \cup k_j) = \text{Arf}(k'_1 \cup k'_j) \). So we have the conclusion.

We consider the other case, i.e., the three strands of the \(\Delta \)-move belong to exactly two components of \(l \). Without loss of generality we may assume that the two components
are k_1 and k_2. Note that k_i and k'_i are ambient isotopic for any i, and that $k_i \cup k_j$ and $k'_i \cup k'_j$ are ambient isotopic for any $i < j$ ($(i, j) \neq (1, 2)$). Since $\text{Arf}(l) \neq \text{Arf}(l')$ and $\text{Arf}(k_1 \cup k_2) \neq \text{Arf}(k'_1 \cup k'_2)$, $\text{Arf}(l) + \text{Arf}(k_1 \cup k_2) \equiv \text{Arf}(l') + \text{Arf}(k'_1 \cup k'_2) \pmod{2}$. This completes the proof. □

Lemma 3.1. Let $l = k_1 \cup \cdots \cup k_n$ and $l' = k'_1 \cup \cdots \cup k'_n$ be n-component \mathbb{Z}_2-algebraically split links. If l and l' are link-homotopic, $\text{Arf}(k_i) = \text{Arf}(k'_i)$ ($i = 1, \ldots, n$) and $\text{Arf}(k_i \cup k_j) = \text{Arf}(k'_i \cup k'_j)$ ($1 \leq i < j \leq n$), then l and l' are self pass-equivalent.

Proof. Since l is link-homotopic to l', by Lemma 2.7, l is quasi self Δ-equivalent to l'. Let u be the minimum number of quasi self Δ-moves which are needed to deform l into l'. By Theorem 1.2, $\text{Arf}(l) = \text{Arf}(l')$. Since a Δ-move changes the value of the Arf invariant, u is even. It is sufficient to consider the case $u = 2$. Therefore there is a union $A = A_1 \cup \cdots \cup A_n$ of level-preserving n annuli in $S^3 \times [0, 1]$ with $(\partial(S^3 \times [0, 1]), \partial A_i) = (S^3 \times \{0\}, k_i) \cup (-S^3 \times \{1\}, -k'_i)$ ($i = 1, \ldots, n$) such that

(i) A is locally flat except for exactly two points p_1, p_2 in the interior of A, and

(ii) for each p_t ($t = 1, 2$) there is a small neighborhood $N(p_t)$ of p_t in $S^3 \times [0, 1]$ such that $(\partial N(p_t), \partial(N(p_t) \cap A))$ is the Borromean ring R_t, at least two components of which belong to some A_i.

A singular points p_t is called type (i) if the three components of R_t belong to A_i and type (i, j) ($i < j$) if one or two componets are in A_i and the others in A_j. For each i (resp. i, j), let u_t (resp. $u_{i,j}$) be the number of the singular points of type (i) (resp. type (i, j)). We note that a number of Δ-moves which are needed to deform k_i into k'_i (resp. $k_i \cup k_j$ into $k'_i \cup k'_j$) is equal to u_i (resp. $u_{i,j} + u_i + u_j$). By the hypothesis of this lemma, we have u_i and $u_{i,j} + u_i + u_j$ are even. Hence u_i and $u_{i,j}$ are even. This implies that both p_1 and p_2 are the same type.

Suppose that p_1 and p_2 are type (i, j). Without loss of generality we may assume that $(i, j) = (1, 2)$ and two components of the Borromean ring R_1 belong to A_2. Let α be an arc in the interior of A_1 that connects two singular points p_1 and p_2 of type $(1, 2)$, and let $(S^3, L) = (\partial N(\alpha), \partial(N(\alpha) \cap (A_1 \cup A_2)))$. Then L is a 5-component link as illustrated in either Figure 3.1(a) or (b). In the case that L is as Figure 3.1(a), we can deform L into a trivial link by applying Γ-moves to the sublink $L \cap A_2$; see Figure 3.2. In the case that L is as Figure 3.1(b), we can deform L into the link as in Figure 3.2(a) by two Γ-moves, one is applied to $L \cap A_1$ and the other to $L \cap A_2$; see Figure 3.3. It follows from this and Figure
3.2 that L can be deformed into a trivial link by Γ-moves, one is applied to $L \cap A_1$ and the others to $L \cap A_2$.

Suppose that p_1 and p_2 are type (i). Let α be an arc in the interior of A_i that connects two singular points p_1 and p_2 of type (i), and let $(S^3, L) = (\partial N(\alpha), \partial (N(\alpha) \cap A_i))$. By the argument similar to that in the above, L can be deformed into a trivial link by applying Γ-moves to $L \cap A_i$.

Therefore, by Lemma 2.3, we can construct pass-annuli in $S^3 \times [0, 1]$ between l and l'. Lemma 2.1 completes the proof. \square
Lemma 2.5, we have $\text{Arf}(C)$

For a link $l = k_1 \cup \cdots \cup k_n$, let G_l^0 (resp. G_l^c) be a graph with the vertex set $\{k_1, ..., k_n\}$ and the edge set $\{k_i k_j | \text{lk}(k_i, k_j) \text{ is odd} \}$ (resp. $\{k_i k_j | \text{lk}(k_i, k_j) \text{ is even} \}$). Note that $G_l^0 \cup G_l^c$ is the complete graph with n vertices. For a band sum $L = K_1 \cup \cdots \cup K_n (= (k_1 \# b_1 (-\overrightarrow{K_1}))) \cup \cdots \cup (k_n \# b_n (-\overrightarrow{K_n}))$ of l and $-\overrightarrow{G}$, let A_L be a graph with the vertex set $\{K_1, ..., K_n\}$ and the edge set $\{K_i K_j | \text{Arf}(K_i \cup K_j) = 0 \}$. (Note that L is a \mathbb{Z}_2-algebraically split link since l and l' are link-homotopic.)

Claim. There is a band sum L of l and $-\overrightarrow{G}$ such that L is link-homotopic to a trivial link and A_L is the complete graph with n vertices.

Proof. Let T be a maximal subgraph of G_l^0 that does not contain a cycle. Since T does not contain a cycle, by Lemmas 2.4 and 2.6, there is a band sum L of l and l' such that L is link-homotopic to a trivial link and $T \subset h(A_L)$, where $h : A_L \rightarrow G_l^0 \cup G_l^c$ is the natural map defined by $h(K_i) = k_i$ and $h(K_i K_j) = k_i k_j$. By Lemma 2.5, we have $G_l^c \subset h(A_L)$. Since h is injective and $G_l^0 \cup G_l^c$ is the complete graph, it is sufficient to prove that h is surjective. Let E be the set of edges which are not contained in $h(A_L)$, and $H^o = h(A_L) \cap G_l^0$. Suppose $E \neq \emptyset$. Then there is an edge $e \in E$ such that there is a cycle C in $H^o \cup e$ containing e whose any ‘diagonals’ are not contained in G_l^c. (In fact, for each $e_i \in E$, consider the minimum length l_i of cycles in $H^o \cup e_i$ containing e_i and choose an edge e and a cycle C in $H^o \cup e$ containing e so that length C is equal to $\min\{l_i | e_i \in E\}$.) Without loss of generality we may assume that $C = k_1 k_2 \cdots k_c k_1$ and $e = k_1 k_2$. Set $l_c = k_1 \cup \cdots \cup k_c$ and $L_c = K_1 \cup \cdots \cup K_c$. Since C has no diagonals in G_l^0, all diagonals are in G_l^c. Thus we have $k_i k_j \subset H^c \cup G_l^c (= h(A_L))$ for any i, j ($1 \leq i < j \leq c$) except for $(i, j) = (1, 2)$. This implies $\text{Arf}(K_i \cup K_j) = 0$ for any i, j ($1 \leq i < j \leq c$, $(i, j) \neq (1, 2)$). The fact that C has no diagonals in G_l^c implies l_c is a proper link. By the hypothesis about the Arf invariants and Lemma 2.5, we have $\text{Arf}(L_c) \equiv 2\text{Arf}(l_c) \equiv 0 \pmod{2}$ and $\text{Arf}(K_i) \equiv 2\text{Arf}(k_i) \equiv 0 \pmod{2}$.

Figure 3.3
Since L_c is link-homotopic to a trivial link, by Theorem 1.2, $\text{Arf}(K_1 \cup K_2) = 0$. This contradicts $e = k_1k_2 \in E$. □

By Claim, there is a band sum $L = K_1 \cup \cdots \cup K_n$ of l and $-\overline{l}$ such that L is link-homotopic to a trivial link, $\text{Arf}(K_i) = 0$ ($i = 1, \ldots, n$) and $\text{Arf}(K_i \cup K_j) = 0$ ($1 \leq i < j \leq n$). By Lemma 3.1, L is self pass-equivalent to a trivial link. Since L is a band sum of l and $-\overline{l}$, we can construct a pass-annuli between l and l'. Lemma 2.1 completes the proof.

(ii) Since a $\#$-move changes the value of the Arf invariant, by applying self $\#$-moves, we may assume that $\text{Arf}(k_i) = \text{Arf}(k'_i)$ for any i. Theorem 1.1(i) and Lemma 2.2 complete the proof. □

References

[1] L. Cervantes and R.A. Fenn, Boundary links are homotopy trivial, Quart. J. Math. Oxford, 39 (1988), 151-158.
[2] N. Habegger and X.S. Lin, The classification of links up to link-homotopy, J. Amer. Math. Soc., 3 (1990), 389-419.
[3] J. Hoste, The first coefficient of the Conway polynomial, Proc. Amer. Math. Soc., 95 (1985), 299-302.
[4] L.H. Kauffman, Formal knot theory, Mathematical Notes, 30, Princeton Univ. Press, 1983.
[5] J. Milnor, Link groups, Ann. Math., 59 (1954) 177-195.
[6] H. Murakami, Some metrics on classical knots, Math. Ann., 270(1985), 35-45.
[7] K. Murasugi, On the Arf invariant of links. Math. Proc. Cambridge Philos. Soc., 95(1984), 61-69.
[8] H. Murakami and Y. Nakanishi, On a certain move generating link-homology, Math. Ann., 284(1989), 75-89.
[9] Y. Nakanishi and T. Shibuya, Link homotopy and quasi self delta-equivalence for links, J. Knot Theory Ramifications, to appear.
[10] R. Robertello, An invariant of knot cobordism, Comm. Pure and Appl. Math., 18(1965), 543-555.
[11] T. Shibuya, On the homotopy of links, Kobe J. Math., 5 (1989), 87-95.
[12] T. Shibuya, Self $\#$-unknotting operation of links, Osaka Insti. Tech., 34 (1989), 9-17.
[13] T. Shibuya, Mutation and self $\#$-equivalences of links, Kobe J. Math., 10 (1993), 23-37.
[14] T. Shibuya, A local move of links, Kobe J. Math., 16 (1999), 131-146.