From \textit{BRCA1} to Polygenic Risk Scores: Mutation-Associated Risks in Breast Cancer-Related Genes

Emma R. Woodward\textsuperscript{a, b} Elke M. van Veen\textsuperscript{a, b} D. Gareth Evans\textsuperscript{a–d}

\textsuperscript{a}Manchester Centre for Genomic Medicine, Manchester University Hospitals NHS Foundation Trust, Manchester, UK; \textsuperscript{b}Division of Evolution and Genomic Sciences, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK; \textsuperscript{c}PREVENT Breast Cancer Prevention Centre, Nightingale Centre, Manchester Universities Foundation Trust, Wythenshawe Hospital, Manchester, UK; \textsuperscript{d}Manchester Breast Centre, Manchester Cancer Research Centre, The Christie, University of Manchester, Manchester, UK

\textbf{Keywords}
Breast cancer · High-risk genes · \textit{BRCA1} · \textit{BRCA2} · \textit{TP53}

\section*{Abstract}
\textbf{Background:} There has been huge progress over the last 30 years in identifying the familial component of breast cancer. \textbf{Summary:} Currently around 20\% is explained by the high-risk genes \textit{BRCA1} and \textit{BRCA2}, a further 2\% by other high-penetrance genes, and around 5\% by the moderate risk genes \textit{ATM} and \textit{CHEK2}. In contrast, the more than 300 low-penetrance single-nucleotide polymorphisms (SNP) now account for around 28\% and they are predicted to account for most of the remaining 45\% yet to be found. Even for high-risk genes which confer a 40–90\% risk of breast cancer, these SNP can substantially affect the level of breast cancer risk. Indeed, the strength of family history and hormonal and reproductive factors is very important in assessing risk even for a \textit{BRCA} carrier. The risks of contralateral breast cancer are also affected by SNP as well as by the presence of high or moderate risk genes. Genetic testing using gene panels is now commonplace.

\section*{Introduction}

The inherited aggregation of breast cancer has been intimated for over 130 years \cite{1}. A family history of breast cancer in a first-degree relative has been linked to an approximate 2-fold relative risk \cite{2}. Approximately 4–5\% of all breast cancers are thought to result from inheriting high-risk dominantly inherited pathogenic variants (PV) \cite{2} (but only 2–3\% result from \textit{BRCA1/2} mutations). However, around 27\% are thought to have some form of inherited component, as reported in twin studies \cite{3}. This means that the majority of the inherited components of breast cancer are likely due to polygenic inheritance rather than inheritance of a single gene PV.

Relatively few women with breast cancer present with a clear pattern of cancers in the family consistent with that reported by Broca \cite{1}. However, clusters of breast cancers within families, particularly occurring at younger ages, are not infrequent and account for approximately 5\% of cases overall \cite{3}. As even genes conferring the highest risk do not cause breast cancer in every woman in their lifetime unaffected carriers of the “cancer gene” may mask true inherited families and chance clusters may mimic inherited disease.

In many instances of familial breast cancer, there is a high incidence of other tumors, notably ovarian, prostate, and pancreatic cancer or in rarer instances sarcomas and brain tumors. Empiric risks for women who have particular types of family history have been calculated \cite{2}.
Inherited Predisposition to Breast Cancer

and have led to criteria for proposed enrolment in familial breast cancer clinics. However, increasingly risk is informed by undertaking panel tests of genes linked to breast cancer risk and also tests for multiple common variants in a polygenic risk score (PRS).

This paper will cover all of the known genes and genetic variants linked to breast cancer risk from the discovery of the first bona fide breast cancer genes including \textit{BRCA1} through to the development of PRS from multiple single-nucleotide polymorphisms (SNP) discovered through genome-wide association studies.

Generally, genes and SNP have been divided into high-risk genes with an OR $\geq 4.0$ (lifetime risks in European populations $\geq 40\%$), moderate risk genes with an OR $\geq 2.0$ but $< 4.0$ (lifetime risks in European populations $\geq 20\%$ but $< 40\%$), and genetic modifiers with an OR of $1.01–1.5$ (Fig. 1).

\textbf{Molecular Genetics}

\textbf{High-Risk Breast Cancer Genes}

\textit{BRCA1}

Molecular geneticists started to try to identify breast cancer genes in the mid 1980s. By 1990 the first gene (\textit{BRCA1}) had been identified on chromosome 17q by linkage analysis in breast cancer families [4]. It quickly became apparent that the locus later termed \textit{BRCA1} conferred a risk of both breast cancer and ovarian cancer [5], as originally predicted by Henry Lynch and Krush [6] some 20 years earlier. The gene itself was cloned in 1994 [7]. The \textit{BRCA1} gene is very large, with a 7,207-bp transcript. It has only limited homology with any previously identified human sequence, and its function is not fully clarified. The main functions are homologous repair of double-stranded DNA breaks and transcriptional activation. \textit{BRCA1} is predominantly a breast/ovarian cancer gene conferring lifetime risks of 50–85\% for breast cancer and 30–60\% for ovarian cancer [8–11]. Initial assessments based on high-risk families tended to provide risk estimates only appropriate for that setting [8, 9]. However, attempts to strip out the biases of familial ascertainment providing very low estimates were not really realistic in relation to the real situation outside of those identified with no family history of breast or ovarian cancer [12]. The best current estimates are based on prospective studies [10, 11], which lack the ascertainment bias of the earlier historic studies. Nonetheless, clinicians and genetic counsellors should refrain from providing a very specific risk (e.g., 72\% breast cancer risk by age 80 years for \textit{BRCA1}) [11] as the risks will vary with nongenetic risk factors such as reproductive factors as well as the degree of family history. These factors can be incorporated into a model developed from the BOADICEA algorithm called CanRisk [13]. The addition of a PRS from SNP (see below) is likely to provide an even more accurate likelihood of the breast and ovarian cancer risk, with overall likelihoods varying from as little as 45\% to $> 95\%$ for female breast cancer in \textit{BRCA1} [14]. The risks of estrogen receptor negative (ER–) breast cancer varied from 59 to 83\% at the 5th and 95th percentiles, while the risks of ovarian cancer by age 80 years were 30 and 59\% for \textit{BRCA1}. The pathology of \textit{BRCA1}-related cancers is fairly specific, with the great majority of ovarian cancers being high grade serous and around 70\% of breast cancers being ductal triple negative (negative for HER2, ER, and progesterone receptor) [15]. There is no evidence of an increased risk of mucinous ovarian cancer [15, 16] and this should be discounted in algorithms to predict the likelihood of \textit{BRCA1}, as it is in the pathology-adjusted scoring system [17]. Similarly, HER2 positivity is uncommon in \textit{BRCA1} PV carriers and should reduce the likelihood of finding a causative variant [17]. There is no strong convincing evidence for the risk of other cancers in \textit{BRCA1} carriers [18].

\textbf{Fig. 1. Relative risk and allele frequencies of high-, moderate-, and low-risk genetic variants.}
A number of other cancers have been shown to potentially be related, including early-onset prostate cancer [19, 20], colorectal cancer [19, 21], endometrial cancer [19, 22], and pancreatic cancer [20]. However, the OR for these cancers are generally < 3-fold and have not been convincingly replicated [18, 23, 24]. Although there may be a specific risk of high-grade serous endometrial cancer as this translates to < 10% of all endometrial cancers, this is unlikely to translate into a substantial OR for endometrial cancer as a whole [24]. Furthermore, a study comparing BRCA1 and BRCA2 found that it was BRCA2 that harbored the truly more heterogeneous cancer risk [25]. Indeed, the only prospective study of early detection outside of breast and ovarian cancer showed no evidence of benefit for prostate cancer in BRCA1, with cancer incidence not being significantly increased compared to controls [26]. Overall, BRCA1 carriers should be advised that there is unconvincing evidence of substantial increased risks of cancers beyond breast and ovarian cancer and that if there is any increased risk it is unlikely to be sufficient to warrant early detection measures.

BRCA2

Soon after the BRCA1 locus was identified, it became clear that many large breast cancer kindreds, particularly those with an affected male, were not accounted for by BRCA1. A second locus, i.e., BRCA2, was mapped by family linkage analysis to chromosome 13q in 1994 and within a year the gene had been isolated [27]. The size of the gene is even greater than that of BRCA1 (11,386 bp), with which it shows some homology particularly with regard to homologous repair and cancer predisposition. BRCA2 PV confer female lifetime risks of 40–87% for breast cancer and 10–30% for ovarian cancer [8–11, 28]. The effect of a breast cancer family history on breast cancer risk is even greater for women with BRCA2 PV [8–11, 28]. Estimates of the BRCA2 breast cancer risk have been as low as 38%, stripping out any additional familial risk effects [12]. However, these studies, which rely on historic data, include women born before 1930 in whom breast cancer risks are much lower than those for modern day women [28]. Again, the best current risk estimates are based on prospective studies [10, 11]. Like for BRCA1, clinicians and genetic counsellors should refrain from providing a very specific risk, such as 69% breast cancer risk by age 80 years for BRCA2 [11], as similarly to BRCA1 the risks will vary with nongenetic risk factors such as reproductive factors as well as the degree of family history. These factors can be incorporated into a model developed from the BOADICEA algorithm called CanRisk to give a personalized risk assessment based on germline genetic and other known risk factors [13]. The addition of a PRS from SNP (see below) is likely to provide an even more accurate likelihood of breast and ovarian cancer risks, with overall likelihoods varying from as little as 43% to > 95% for female breast cancer in BRCA2 [14]. The risks breast cancer varied from 57–81% at the 5th and 95th percentile, but they were as little as 43% with no family history and as high as 85% with a family history of breast cancer. Likewise, the ovarian cancer risks by age 80 years at the 5th and 95th percentile were 10 and 28% for BRCA2. The pathology of BRCA2-related breast cancer is not as specific as that for BRCA1, although there is a trend toward higher-grade ductal ER+ PR+ HER2–, with only 16% of cases being triple negative, but unlike BRCA1 the likelihood of triple-negative increases with age [15]. HER2 positivity is less common but not as infrequent as for BRCA1 PV carriers [17]. The great majority of ovarian cancers are high-grade serous [15]. Similarly to BRCA1, there is no evidence of an increased risk of mucinous ovarian cancer [15, 16]. Males have a substantially increased risk of breast cancer, with a lifetime risks of 5–14% [29, 30]. One study using a PRS found that the risk of breast cancer by age 80 years is 5% for men at the 5th percentile of the PRS and 14% for men at the 95th percentile [30]. In addition to breast and ovarian cancer risk, BRCA2 PV clearly also predispose to prostate cancer (OR = 2.5–6.3), pancreatic cancer (OR = 3.5–5.9), gastric cancer (OR = 2.4–2.59), and various skin cancers including melanoma, all of which have been validated in at least 2 studies [18, 31–33]. Though rare, ocular (uveal) melanoma appears to also be strongly linked [18, 34]. As above, a study comparing BRCA1 and BRCA2 found that BRCA2 conferred the greater cancer risk beyond breast and ovarian cancer [25]. The prospective IMPACT study of early detection of prostate cancer showed an excess risk in BRCA2 carriers and that PSA was effective at earlier detection of the predominantly more aggressive higher Gleason score prostate cancer [26].

Li-Fraumeni Syndrome and TP53

Even before the identification of BRCA1/2, the TP53 gene had been implicated in hereditary breast cancer as part of the Li-Fraumeni cancer family syndrome [35]. It was, however, recognized that this accounted for only a very small proportion of breast cancer families and subsequent studies confirmed this impression. Nonetheless, mutations in TP53 may account for almost as many breast cancers in patients ≤30 years of age as BRCA2 [36], and diagnosis at an age ≤30 years is a criterion for testing by the Chompret criteria [37]. Overall, 2–8% of breast cancers in patients aged ≤30 years harbor a TP53 germline PV and these are more common with HER2+ invasive disease and high-grade comedo-DCIS [38]. Detection rates drop dramatically after 30 years of age, and testing of women after age 45 years with no previous malignancy and no other element of Chompret criteria fulfilled (no typical Li-Fraumeni cancer in a close relative) is not rec-
ommended [37]. This is due to the much likelier possibilities of identifying clonal hematopoiesis of indeterminate potential (CHIP) or a variant of uncertain significance, which could be misclassified as likely pathogenic erroneously [37]. People identified as carrying PV in TP53 have a very high lifetime risk of malignancy, although this may vary with the exact variant, with dominant negative missense variants in the core binding domain conferring the highest risks [37]. There are particularly high risks of sarcoma, especially osteosarcoma and embryonal rhabdomyosarcoma, gliomas, and other brain malignancies such as choroid plexus carcinoma and SHH-medulloblastoma as well as adrenocortical carcinoma [37]. Although screening has been shown to have an impact, with whole-body MRI, breast MRI, and dedicated brain MRI now being recommended, the psychological impact of being identified as a TP53 PV carrier or erroneously being misdiagnosed is considerable.

Cowden Syndrome and PTEN
The PTEN gene on chromosome 10q has been identified as the causal gene in Cowden syndrome, in which early-onset breast cancer is associated with a variety of other features including hamartomas of the skin and mucous membranes, thyroid adenomas and cancer, colonic polyps (including juvenile polyps), and craniomegaly [39]. While prospective breast cancer risk data is lacking due to its rarity, women with Cowden syndrome are at a high breast cancer risk and ought be offered equivalent high-risk breast cancer risk reduction measures. Addi-

### Table 1. Genes associated with a moderate or high lifetime risk of breast cancer and effects on life expectancy

| Disease gene | Location | Tumors | Tumor age, years | Risk, % | Birth incidence of PV | Life expectancya |
|-------------|----------|--------|-----------------|--------|-----------------------|-----------------|
| **High-risk genes** | | | | | | |
| **BRCA1** | 17q | Breast (women) | >18 | 50–90 | 1 in 800 | 62 years |
| | | Ovary | >35 | 30–60 | | |
| **BRCA2** | 13q | Breast (women) | >18 | 40–90 | 1 in 4–800 | 68 years |
| | | Ovary | >40 | 10–30 | | |
| | | Prostate (men) | >30 | 25 | | |
| | | Pancreas | >30 | 5 | | |
| **LFS** | 17p | Sarcoma | 1<sup>a</sup> | 80 | 1 in 5,000 | Severe reduced |
| **TP53**<sup>a</sup> | | Breast cancer (women) | >16 | 80–95 | | |
| | | Gliomas | 1<sup>a</sup> | 20 | | |
| **PALB2** | 16 | Breast cancer | >25 | 40–60 | <1 in 1,000 | Normal |
| | | Ovarian cancer | >40 | 4–5 | | |
| | | Pancreatic cancer | >40 | 2–3 | | |
| **HDGC. CDH1**<sup>a</sup> | 16q | Gastric | >16 | 70–80 | Very rare | Reduced |
| | | Breast | >20 | 40–80 | | |
| **PTEN** | 10q | Breast cancer | >25 | 60 | 1 in 10,000–250,000 | Reduced in women |
| **Cowden** | | Thyroid | 30 | 10 | | |
| **STK11** | 19p | Gastrointestinal malignancy | >20 | 60 | 1 in 25,000 | 58 years |
| | | Breast | >30 | 30–50 | | |
| **Moderate-risk genes** | | | | | | |
| **CHEK2** | 22q | Breast cancer | >25 | 40 | 1 in 200 | Normal |
| **ATM** | 11q | Breast cancer | >25 | 20 | 1 in 300 | Normal |
| **RAD51D** | 17 | Breast cancer | >25 | 20 | 1 in 1,000 | Normal |
| | | Ovary | >40 | 5–10 | | |
| **RAD51C** | 17 | Breast cancer | >25 | 20 | 1 in 1,000 | Normal |
| | | Ovary | >40 | 5–10 | | |
| **NF1** | 17q | Neurofibroma | 1<sup>a</sup> | 100 | 1 in 2–3,000 | 54–72 years |
| | | Glioma | 1<sup>a</sup> | 12 | | |
| | | Breast cancer | >25 | 17 | | |
| **BARD1** | 2 | Breast cancer | >25 | 20 | 1 in 1,000 | Normal |

<sup>a</sup> Will include mortality from other cancers associated with PV of that cancer predisposition gene.
tional tumor risks include thyroid cancer and endometrial cancer. Due to its rarity and usual syndromic features of marked macrocephaly, PTEN is rarely found on gene panels in the absence of diagnostic features (< 0.1%) [40].

**Peutz-Jeghers Syndrome and STK11**

STK11 (LKB1) is associated with the dominantly inherited condition Peutz-Jeghers syndrome (PJS), which is characterized by typical benign PJS polyps throughout the gastrointestinal tract and mucocutaneous pigmentation (particularly on the lips). The breast cancer risk is probably between 40 and 60% lifelong [41]. Due to the rarity and distinct clinical features of PJS, STK11 PV are extremely rarely found on gene panels (Table 1).

**Hereditary Diffuse Gastric Cancer and CDH1**

Mutations in the gene CDH1 causes the dominantly inherited condition hereditary diffuse gastric cancer. Women with mutations in CDH1 again have a 40–60% lifetime risk of breast cancer, often of lobular histology [42]. Due to its rarity and frequent family history of diffuse gastric cancer, CDH1 is rarely found on gene panels (< 0.1%) [40], and some countries recommend that it be excluded from gene panels in the absence of familial lobular cancer or diffuse gastric cancer due to the consequences of erroneously identifying women as PV carriers [43].

**PALB2**

Upon first identification, PALB2 was identified as a moderate-penetrance breast cancer susceptibility gene. In a case-control study, 10 truncating PV were identified in 923 individuals with familial breast cancer but no PV were identified in 1,084 healthy controls (p = 0.0004) [44]. Despite the absence in controls, the relative risk of breast cancer associated with a PV in PALB2 was only assessed as moderate in this discovery paper with a 2-fold OR [44]. However, subsequent assessment of risk in families confirmed a high risk, with an OR of 7.18 (95% CI 5.82–8.85; p = 6.5 × 10−76), and a lifetime risk of around 50% [45]. As with BRCA2 the risks vary based on the family history and presumably the SNP PRS profile [45]. There is likely a small increase in the ovarian cancer risk and the evidence for an increased risk of pancreatic cancer is also fairly robust [45].

**Moderate-Risk Genes**

**Ataxia-Telangiectasia**

Ataxia-telangiectasia (ATM) was the first moderate-penetrance breast cancer gene for which there was strong clinical evidence. The possibility that ATM could be a breast cancer susceptibility gene was first proposed nearly 40 years ago when epidemiologists suggested that relatives of patients with an autosomal recessive condition called ATM, which predisposes to cancer in childhood, particularly lymphoid cancers, had an increased risk of breast cancer. The role of ATM in breast cancer susceptibility has been investigated in many studies. The first conclusive study identified 12 mutations in 443 familial breast cancer cases and 2 in healthy controls (p = 0.0047), suggesting that the relative risk in female ATM mutation carriers is 2.37 [46]. A 2- to 3-fold OR for ATM has been confirmed in many studies, consistent with lifetime risks of 20–30% [47]. There is nonetheless evidence of one dominant negative missense variant in ATM c.7271T>G, i.e., p.(Val2424Gly), that is consistent with a 60% lifetime risk [48, 49]. However, the risks for other missense variants may be < 2-fold and these are difficult to classify [47, 50].

**CHEK2**

CHEK2 is a gene that encodes a cell cycle checkpoint protein kinase that phosphorylates TP53 and BRCA1 and is involved in DNA repair. The relative risk of breast cancer in carriers of the CHEK2 c.1100delC allele was estimated to be 2.2 [51], and it appears to be similar for other truncating PV in CHEK2 [47]. Missense variants can be associated with increased risks, but these are generally below 2-fold [47]. PRS appear to be helpful in more accurately defining risk in CHEK2 PV carriers [52], and individual risks can be assessed taking into account reproductive and other risk factors as for BRCA1/2 [13]. There are no clear additional risks to CHEK2 PV carriers, although increased risks of colorectal and prostate cancer have been found in some studies.

**Neurofibromatosis 1**

Women with the inherited tumor-prone condition neurofibromatosis 1 (NF1) are now thought to be at a moderately increased risk of developing breast cancer [53–55]. There is a particularly high OR in patients aged < 50 years, with a 10% risk by that age, after which the risk levels off [54]. The breast tumors associated with NF1 PV have adverse pathological features, with higher proportions of grade 3 ER– and HER2+ and poor survival [55, 56]. As NF1 is an easy syndromic diagnosis with clinically easily detectable features (café au lait patches, skin neurofibromas) in the vast majority of individuals gene panel testing is unlikely to be required and it is very unlikely that testing will find a PV in NF1 without these features [57].

Each of these moderate penetrance genes makes a relatively small contribution to the overall familial risk of breast cancer. Compared to the 16–18% of familial risk accounted for by mutations in BRCA1 and BRCA2, currently it is estimated that moderate-penetrance breast cancer susceptibility genes only account for 6–7% of the familial risk (Fig. 2). In keeping with findings in BRCA1
and BRCA2, most of the PV in these genes lead to premature protein truncation through nonsense codons or translational frameshifts. A very small number are possibly due to missense sequence variants. The moderate-penetrance breast cancer susceptibility genes each harbor multiple different rare PV.

Other Probable Moderate-Risk Genes
Three further genes that had previously been linked to breast cancer risk, but for which validation studies were inconclusive, were also supported in the BRIDGES study of 60,000 cases and 53,000 controls as having close to a 2-fold relative risk. These are the ovarian cancer genes RAD51C (OR = 1.93; 95% CI 1.20–3.11) and RAD51D (OR = 1.80; 95% CI 1.11–2.93) as well as BARD1 (OR = 2.09; 95% CI 1.35–3.23). All 3 genes were particularly strongly linked to triple-negative breast cancer [47].

Genes Probably Spuriously Linked to Breast Cancer BRIP1
In 2006 BRIP1, a BRCA1-interacting helicase (also known as BACH1), was also identified as a probable rare moderate-penetrance breast cancer susceptibility allele. In a case-control study, 9 mutations were identified in 1,212 familial breast cancer cases compared to 2 in 2,081 healthy controls (p = 0.003); the relative risk of breast cancer in monoallelic carriers of BRIP1 mutations is 2.0 [58]. More recent work has, however, shown that the original link with breast cancer was spurious [59], and a large case-control study of over 60,000 cases showed an OR of only 1.11 with a 95% CI (i.e., 0.80–1.53) excluding a 2-fold risk [47]. At present, germline BRIP1 mutations are considered a risk factor for postmenopausal ovarian cancer.

In addition to BRIP1 a number of other genes identified as significantly linked to breast cancer have been shown by the BRIDGES study to be likely spurious [47]. These include NBN (OR = 0.90; 95% CI 0.67–1.20), FANCM (OR = 1.06; 95% CI 0.90–1.26), RECQL (OR = 0.84; 95% CI 10.64–1.10), RAD50 (OR = 1.08; 95% CI 0.83–1.40), and XRCC2 (OR = 0.96; 95% CI 0.47–1.93).

Missing Heritability of Breast Cancer Predisposition
While recent population-based studies have estimated the frequency of germline BRCA1/2 PV to be as high as 1 in 200 [47, 60], outside of strong founder populations such as the Icelandic and Jewish, this is insufficient to account for more than 20% of the heritable component of breast cancer and only about 2% of all breast cancers [61, 62]. The discrepancy has become even greater with the recognition that many women with germline mutations in either BRCA1 or BRCA2 have an average lifetime risk of developing breast cancer (“penetrance”) of around 65–70% or less rather than the 85–90% originally generated from high-risk families. While there may be families and individuals with hitherto undetected germline BRCA1/2 mutations, or novel mechanisms of disruption, e.g., epigenetic silencing [63], structural variants, or deep intronic variants causing splicing that are missed by standard DNA testing, the evidence for these reducing sensitivity by more than 2–5% is limited [64]. It is nonetheless likely that the majority of the missing heritability is due to the presence of undiscovered low-penetrance genetic modifiers (Fig. 2).

Low-Risk Genetic Susceptibility
For longer than a decade genome-wide association studies have been performed in order to identify associations between common variants and disease. This has led to the robust identification of more than 300 SNP that are associated with breast cancer risk [65–83]. These common low-risk alleles only confer a small risk by themselves, but when combined in a PRS the SNP provide a more informative risk estimate. It has been estimated that these SNP currently explain 28% of the familial risk of breast cancer [83] (Fig. 2), though much of the remaining 45% of the familial component of breast cancer yet to be discovered is thought to be likely more SNPs.

Due to the increase in the number of SNP found to be associated with breast cancer, and the increasing number of patients included in these association studies, subgroup analysis has shown that there are several SNP that are more strongly associated with ER-negative disease than with ER-positive disease and vice versa [75, 76, 79, 83–87]. Similarly, it has been proposed that these SNP potentially can be utilized to modify the risk of PV carriers (see above) [88].
Numerous studies have validated the predictive power of these SNP, as well as their added value for existing prediction models based on classical risk factors [88–94]. The majority of the SNP related to breast cancer risk have been found and validated using data of studies participating in the Breast Cancer Association Consortium (BCAC), which is a collaboration involving over 100 international case control studies. The vast majority of studies included in the BCAC are performed in populations of European ancestry. Therefore, the current PRS is mostly applicable to women of European ancestry. With some adjustments, the current PRS may be suitable for women of Asian ancestry [95]. However, for women with any other ancestry, the current PRS provide no correct predictive estimate of the breast cancer risk.

Application of an SNP PRS alongside a risk evaluation tool such as Tyrer-Cuzick and a measurement of mammographic density can identify about 45% of breast cancers in the top 20% of the population [94].

Detection of Mutations in Known Breast Cancer Genes

While varied laboratory techniques were used previously to detect germline mutations of the known high-risk breast cancer genes, these were time consuming, had a limited sensitivity, and were offered to families in which there was a high likelihood of detection of a germline mutation. The introduction of Sanger sequencing to detect intragenic sequence variants followed by the addition of MLPA (multiplex ligation-dependent probe amplification) to detect whole exon or gene deletions (accounting for 10–15% of germline \(BRCA1/2\) [15–20% \(BRCA1\) and 4–5% \(BRCA2\)] PV) has resulted in a much higher mutation detection rate. In recent years, advances in genomic technologies with massively parallel sequencing approaches have lowered the costs further and increased the sensitivity of mutation detection, further enabling testing to be offered to a wider patient population.

With these technological advances comes a separate and new set of challenges including accurate classification of the variants identified [96]. Equally important is ensuring that, for mutations detected in the mainstream setting, at-risk family members are offered testing for the familial PV where appropriate [97]. Where specific founder PV are present in certain population groups, laboratories will often retain a Sanger sequencing-based specific assay for their detection. For example, as approximately 2–2.5% of Ashkenazi Jewish women carry 1 of 3 specific mutations (\(BRCA1\) c.68_69delAG, \(BRCA1\) c.5266dupC, or \(BRCA2\) c.5964delT), which collectively account for around 60% of all familial breast cancers in

Table 2. Frequency of PV in panel tests with controls from the BRIDGES study

| Gene   | Breast cancer cases tested, \(n\) | PV, \(n\) | % Controls in BRIDGES\(^b\) (\(n=50,706\)), % | OR | 95% CI | \(p\) value |
|--------|----------------------------------|--------|---------------------------------|----|--------|------------|
|CHEK2\(^a\) | 62,692                          | 1,668  | 2.66                            | 0.62 | 4.39   | 3.89–4.95  | <0.0001 |
|BRCA2\(^a\) | 77,439                          | 1,415  | 1.83                            | 0.27 | 6.87   | 5.76–8.19  | <0.0001 |
|BRCA1\(^a\) | 77,439                          | 1,350  | 1.74                            | 0.11 | 16.05  | 12.28–20.97| <0.0001 |
|ATM\(^a\)   | 62,671                          | 777    | 1.24                            | 0.30 | 4.18   | 3.51–4.97  | <0.0001 |
|PALB2\(^a\) | 65,935                          | 627    | 0.95                            | 0.11 | 8.68   | 5.81–11.42 | <0.0001 |
|PMS2       | 35,737                          | 117    | 0.33                            | 0.07 | 4.76   | 3.28–6.92  | <0.0001 |
|BRIP1\(^a\) | 59,512                          | 191    | 0.32                            | 0.15 | 2.15   | 1.64–2.80  | <0.0001 |
|MSH6       | 35,737                          | 109    | 0.31                            | 0.05 | 6.20   | 4.03–9.53  | <0.0001 |
|TP53\(^a\)  | 79,368                          | 238    | 0.30                            | 0.00 | 15.04  | 2.76–150.7 | <0.0001 |
|RADS5\(^a\) | 59,375                          | 164    | 0.28                            | 0.24 | 1.15   | 0.91–1.45  | 0.2594 |
|BARD1\(^a\) | 59,375                          | 158    | 0.27                            | 0.06 | 4.51   | 3.05–6.66  | <0.0001 |
|RADS1C\(^a\) | 59,512                         | 127    | 0.21                            | 0.05 | 4.34   | 2.82–6.66  | <0.0001 |
|NBN\(^a\)   | 59,375                          | 120    | 0.20                            | 0.20 | 1.02   | 0.78–1.32  | 0.9462 |
|NF1\(^a\)   | 56,097                          | 90     | 0.16                            | 0.03 | 5.43   | 3.14–9.38  | <0.0001 |
|MRE11A\(^a\) | 59,375                         | 79     | 0.13                            | 0.11 | 1.21   | 0.86–1.70  | 0.3307 |
|RADS1D\(^a\) | 56,230                         | 64     | 0.11                            | 0.05 | 2.31   | 1.46–3.67  | 0.0003 |
|MSH2       | 35,737                          | 38     | 0.11                            | 0.03 | 3.60   | 2.00–6.59  | <0.0001 |
|MLH1       | 35,737                          | 35     | 0.10                            | 0.02 | 4.97   | 2.46–10.27 | <0.0001 |
|PTEN\(^a\)  | 79,157                          | 71     | 0.09                            | 0.01 | 9.10   | 3.68–22.55 | <0.0001 |
|CDH1\(^a\)  | 77,273                          | 53     | 0.07                            | 0.02 | 3.48   | 1.77–6.84  | <0.0001 |

\(^a\)In breast cancer panels. \(^b\)Only protein truncating variants, so will exclude CNV and missense variants which, for genes like TP53, BRCA1, PMS2, MSH2, MLH1, and MSH6, will underestimate carrier frequency and overestimate relative risk. We used 1 in 5,000 to account for this in TP53 [38].
Inherited Predisposition to Breast Cancer

Interaction of Genetic and Environmental Risk Factors

Past history may not be an adequate guide for future events. In a number of families for which data are available, the age of onset of cancer seems to decline over several generations and its frequency increases. This apparent trend might be explained by selection bias, but data from Iceland again suggest that this is real and can be attributed to the environmental and lifestyle factors that account for the rising incidence of breast cancer in populations in most economically advanced countries of northern Europe and North America. At present, most evidence suggests that standard risk factors such as reproductive history, breast-feeding, use of oral contraceptives or hormone replacement therapy, diet, alcohol consumption, or any other lifestyle factor also influences the cancer risk (penetrance) of carriers of breast cancer gene mutations. For example, the penetrance of the Icelandic BRCA2 founder mutation increased from 20 to 80% during the 20th century [102].

Contralateral Breast Cancer Risk (SNP and Known High-Risk Single Genes)

With improved breast cancer survival and high breast cancer incidence, some women are at an increased risk of developing a contralateral breast cancer. Whilst the overall risk is 0.4–0.5% per annum, estimates of likelihood are influenced by various factors including germline genetics [103]. Where a high-risk single gene disorder is present, prospective cohort studies have shown a contralateral breast cancer risk of ~2% per annum for BRCA1 and 1–2% per annum for BRCA2 [11]. The lower incidence for BRCA2 likely reflects that the breast cancers occurring in BRCA2 mutation carriers tend to be estrogen receptor positive where therapeutic endocrine therapy is indicated. Oophorectomy, particularly undertaken at a younger age (<45 years), is associated with a significant contralateral breast cancer risk reduction in BRCA2 carriers [10]. For the rarer, but high-risk, equivalent single gene alterations (Fig. 2), prospective contralateral breast cancer risk data is lacking, although a pragmatic BRCA1/2 equivalent high-risk approach is offered in the clinic. Nonetheless,
for TP53 carriers diagnosed at age < 35 years, contralateral risks appear higher than for BRCA1 and BRCA2 [104] and there is evidence of a relatively high rate of contralateral breast cancer for the moderate-risk genes ATM and CHEK2 and a higher frequency of synchronous bilateral disease [105, 106].

Considering that collectively SNP account for a greater proportion of the familial risk of breast cancer, on a breast cancer population basis, it is those with women with a higher-risk PRS profile who are more likely to contribute to the population of contralateral breast cancers. For an SNP profile based on 313 variants, the contralateral lifetime breast cancer risk ranges from 12 to 20%, depending on the initial risk percentile [107].

**Germline Genetics and Novel Therapeutic Strategies**

Alongside the expansion of genetic testing capabilities has been the development of, and subsequent clinical trials involving, poly (ADP-ribose) polymerase (PARP) inhibitors, agents which render a cell unable to repair single-stranded DNA breaks. Where there is also defective homologous recombination to repair double-stranded breaks, cell lethality results. These agents are prime candidates for treatment of advanced breast cancers associated with germline or acquired mutations of BRCA1/2 and potentially also PALB2 given their functional roles in homologous recombination pathways. With advances in genomic technologies enabling improved turnaround times and testing being offered in mainstream clinical settings, identification of a germline BRCA1/2 mutation in the oncology setting has important therapeutic implications, with PARP inhibition of advanced breast cancers being associated with increased progression-free survival over standard care [108, 109]. Given their use now in a maintenance setting in ovarian cancer, they well be employed after primary treatment even for earlier-stage breast cancer.

**Conclusion**

Breast cancer predisposition is complex, being influenced by multiple genetic and environmental factors, and our knowledge of the genetic predisposition landscape has changed markedly over the past 30 years. Thus, PV of BRCA1 and BRCA2 are more common than originally thought, and the associated cancer risks have been shown to be influenced by both environmental factors and lower-risk susceptibility alleles (SNP). While considerable effort has been made toward the identification of further breast cancer predisposition genes, collectively known SNP and currently unidentified genetic modifiers of risk are likely to account for the remaining heritability. With advances in genomic technologies, more widespread genetic testing is now available but needs to be concomitant with accurate variant interpretation and family follow-up. Looking to the future, the challenges that lie ahead will include the incorporation of low-risk allele detection in the clinic and accurate risk stratification so that cancer prevention and early detection strategies can be put in place, especially for contralateral risk in newly identified cases.

**Conflict of Interest Statement**

D.G.E. has undertaken consultancy work for Astrazeneca and Springworks.

**Funding Sources**

D.G.E. and E.R.W. are supported by the National Institute for Health Research (NIHR) BRC Manchester (grant reference No. 1215-200074).

**Author Contributions**

All of the authors contributed to all aspects of this article.

---

**References**

1. Broca P. Traité des tumeurs. Paris: P. Asselin; 1866.
2. Claus EB, Risch NJ, Thompson WD. Age at onset as an indicator of familial risk of breast cancer. Am J Epidemiol. 1990 Jun;131(6):961–72.
3. Lichtenstein P, Holm NV, Verkasalo PK, Illiadou A, Kaprio J, Koskenvuo M, et al. Environmental and heritable factors in the causation of cancer—analyses of cohorts of twins from Sweden, Denmark, and Finland. N Engl J Med. 2000 Jul;343(2):78–85.
4. Hall JM, Lee MK, Newman B, Morrow JE, Anderson LA, Huey B, et al. Linkage of early-onset familial breast cancer to chromosome 17q21. Science. 1990 Dec;250(4988):1684–9.
5. Narod SA, Feunteun J, Lynch HT, Watson P, Conway T, Lynch J, et al. Familial breast-ovarian cancer locus on chromosome 17q21. Science. 1990 Dec;250(4988):1684–9.
6. Lynch HT, Kuhs ML, Lynch J, et al. Familial breast-ovarian cancer locus on chromosome 17q21. Lancet. 1991 Jul;338(8759):82–3.
7. Miki Y, Swensen J, Shattuck-Eidens D, Futreal PA, Harshman K, Tavtigian S, et al. A strong candidate for the breast and ovarian cancer susceptibility gene BRCA1. Science. 1994 Oct;266(5182):66–71.
8. Easton DF, Ford D, Bishop DT; Breast Cancer Linkage Consortium. Breast and ovarian cancer incidence in BRCA1-mutation carriers. Am J Hum Genet. 1995 Jan;56(1):265–71.
9. Ford D, Easton DF, Stratton M, Narod S, Goldgar D, Devilee P, et al.; The Breast Cancer Linkage Consortium. Genetic heterogeneity and penetrance analysis of the BRCA1 and BRCA2 genes in breast cancer families. Am J Hum Genet. 1998 Mar;62(3):676–89.

210 Breast Care 2021;16:202–213
DOI: 10.1159/000515319
Woodward/van Veen/Evans
Inherited Predisposition to Breast Cancer

10 Mavddat N, Pecok S, Frost D, Ellis S, Platte R, Fineberg E, et al.; EMBRACE. Cancer risks for BRCA1 and BRCA2 mutation carriers: results from prospective analysis of EMBRACE. J Natl Cancer Inst. 2013 Jun;105(11):812–22.

11 Kuchenbaecker KB, Hopper JL, Barnes DR, Phillips KA, Mooij TM, Roos-Blom MJ, et al.; BRCA1 and BRCA2 Cohort Consortium. Risks of Breast, Ovarian, and Contralateral Breast Cancer for BRCA1 and BRCA2 Mutation Carriers. JAMA. 2017 Jun;317(23):2402–16.

12 Fatimah J, Offit K, Foulkes W, Robson ME, Wacholder S, Eng CM, et al. The lifetime risks of breast cancer in Ashkenazi Jewish carriers of BRCA1 and BRCA2 mutations. Cancer Epidemiol Biomarkers Prev. 2001 May;10(5):467–73.

13 Archer S, Babb de Villiers C, Scheil F, Carv-...
58 Seal S, Thompson D, Renwick A, Elliott A, Luccarini C, Wahlström C, et al. Breast cancer risk genes: association analysis of rare coding variants in 34 genes in 60,466 cases and 53,461 controls. N Engl J Med. Forthcoming 2021.

47 Bernstein JL, Teraoka S, Southey MC, Jenkins MA, Andrushis IL, Knight JA, et al. Population-based estimates of breast cancer risks associated with ATM gene variations c.7271T>G and c.1066-6T>G (IVS10-6T>G) from the Breast Cancer Family Registry. Hum Mutat. 2006 Nov;27(11):1122–8.

53 Sharif S, Moran A, Huson SM, Iddenden R, et al.; CHEK2-Breast Cancer Consortium. Genetic modifiers of CHEK2*1100delC in noncarriers of ATM gene variants c.7271T>G and c.1066-6T>G (IVS10-6T>G) from the Breast Cancer Family Registry. Hum Mutat. 2006 Nov;27(11):1122–8.

59 Easton DF, Lesueur F, Decker B, Michailidou K, Li J, Allen J, et al.; Australian Ovarian Cancer Study Group; kConFab Investigators; Lifepool Investigators; NBCS Investigators. No evidence that protein truncating variants in BRIP1 are associated with breast cancer risk: implications for gene panel testing. J Med Genet. 2016 May;53(5):298–309.

60 Dong H, Chandratre K, Qin Y, Zhang J, Tian X, Rong C, et al. Prevalence of BRCA1/BRCA2 pathogenic variation in Chinese Han population. J Med Genet. 2020. doi: 10.1136/jmedgenet-2020-106970.

61 Anglian Breast Cancer Study Group. Prevalence and penetration of BRCA1 and BRCA2 mutations in a population-based series of breast cancer cases. Br J Cancer. 2000 Nov;83(10):1301–8.

62 Li J, Wen WX, Eklund M, Kivistö A, Eriksson M, Chresten HS, et al. Prevalence of BRCA1 and BRCA2 pathogenic variants in a large, unselected breast cancer cohort. Int J Cancer. 2019 Mar;144(5):1195–204.

63 Evans DG, van Veen EM, Byers HJ, Wallace AJ, Ellingford JM, Beaman G, et al. Dominantly Inherited 5′ UTR Variant Causing Methylated-Associated Silencing of BRCA1 as a Cause of Breast and Ovarian Cancer. Am J Hum Genet. 2018 Aug;103(2):213–20.

64 Byers H, Wallis Y, van Veen EM, Laloo F, Reay K, Smith P, et al. Sensitivity of BRCA1/2 testing in high-risk breast/ovarian/male breast cancer families: little contribution of comprehensive RNA/NGS panel testing. Eur J Hum Genet. 2016 Nov;24(11):1591–7.

65 Cox A, Dunning AM, Garcia-Closas M, BALANCARE Investigators; kConFab/AOCS Investigators. Rare variants in the ATM gene and risk of breast and ovarian cancer. Nat Genet. 2011 Jul;43(9):2143–51.

66 Easton DF, Pooley KA, Dunning AM, Pharoah PD, Thompson D, Ballinger DG, et al.; SEARCH collaborators; kConFab; AOCS Investigators; KATHARINE Consortium; Breast Cancer Association Consortium. Genome-wide association studies identify two novel breast cancer susceptibility loci on 3p24 and 53,461 controls. N Engl J Med. Forthcoming 2021.
Inherited Predisposition to Breast Cancer

81 Michailidou K, Beesley J, Lindstrom S, Canisius S, Dennis J, Lush MJ, et al.; BOCS; kConFab Investigators; AOCs Group; NBCS; GENICA Network. Genome-wide association analysis of more than 120,000 individuals identifies 15 new susceptibility loci for breast cancer. Nat Genet. 2015 Apr;47(4):373–80.

82 Michailidou K, Lindstrom S, Dennis J, Beesley J, Hui S, Kar S, et al.; NBCS Collaborators; ABCtB Investigators; kConFab/AoCs Investigators; NBCs Collaborators. Polygenic Risk Scores for Prediction of Breast Cancer and Breast Cancer Subtypes. Am J Hum Genet. 2019 Jan;104(1):21–34.

83 Mavaddat N, Michailidou K, Dennis J, Lush M, Fachal L, Lee A, et al.; ABCtB Investigators; kConFab/AOCs Investigators; NBCs Collaborators. Polygenic Risk Scores for Prediction of Breast Cancer and Breast Cancer Subtypes. Am J Hum Genet. 2019 Jan;104(1):21–34.

84 Antoniou AC, Wang X, Frederiksen ZS, McGuffog L, Tarrell R, Sinilnikova OM, et al.; EMBRACE; GEMO Study Collaborators; HEBON; kConFab; SWE-BRCA; MOD SQUAD; GENICA. A locus on 19p13 modifies risk of breast cancer in BRCA1 mutation carriers and is associated with hormone receptor-negative breast cancer in the general population. Nat Genet. 2010 Oct;42(10):885–93.

85 Couch FJ, Kuchenbaecker KB, Michailidou K, Mendoza-Fandino GA, Nord S, Lyllyquist J, et al. Identification of four novel susceptibility loci for oestrogen receptor negative breast cancer. Nat Commun. 2016 Apr;7(1):13735.

86 Dunning AM, Michailidou K, Kuchenbaecker KB, Thompson D, French JD, Beesley J, et al.; EMBRACE; GEMO Study Collaborators; HEBON; kConFab Investigators. Breast cancer risk variants at 6q25 display different phenotype associations and regulate ERα, RMND1 and CDCC170. Nat Genet. 2016 Apr;48(4):374–86.

87 Evans DG, Brentnall AR, Byers H, Harkness E, Dite GS, MacInnis RJ, Bickerstaffe A, Dowty D, French JD, Beesley J, et al.; FH-risk study Group. The impact of a panel of 88 single nucleotide polymorphisms on the Risk of Breast Cancer in High-Risk Women: Results From Two Randomized Tamoxifen Prevention Trials. J Clin Oncol. 2017 Mar;35(7):743–50.

88 Evans DG, Brentnall AR, Byers H, Harkness E, Stavrinos P, Howell A, et al.; FH-risk study Group. Identification of four novel susceptibility loci for breast cancer risk variants at 6q25 display different phenotypic risk factors in women of routine screening age in the UK. Br J Cancer. 2014 Feb;110(3):827–8.

89 Diet Gs, MacInnis RJ, Bickerstaffe A, Dowty DG, Allman R, Apicella C, et al. Breast Cancer Risk Prediction Using Clinical Models and 77 Independent Risk-Associated SNPs for Women Aged Under 50 Years: Australian Breast Cancer Family Registry. Cancer Epidemiol Biomarkers Prev. 2016 Feb;25(2):359–65.

90 Cuzick J, Brentnall AR, Segal C, Byers H, Reuter C, Detre S, et al. Impact of a Panel of 88 Single Nucleotide Polymorphisms on the Risk of Breast Cancer in High-Risk Women: Results From Two Randomized Tamoxifen Prevention Trials. J Clin Oncol. 2017 Mar;35(7):743–50.

91 Evans DG, Brentnall AR, Byers H, Harkness E, Stavrinos P, Howell A, et al.; FH-risk study Group. The impact of a panel of 18 SNPs on breast cancer risk in women attending a UK familial screening clinic: a case-control study. J Med Genet. 2017 Feb;54(2):111–3.

92 van Veen EM, Brentnall AR, Byers H, Harkness EF, Astley SM, Sampson S, et al. Use of Single-Nucleotide Polymorphisms and Mammographic Density Plus Classic Risk Factors for Breast Cancer Risk Prediction. JAMA Oncol. 2018 Apr;4(4):476–82.

93 Brentnall AR, van Veen EM, Harkness EF, Rafiq S, Byers H, Astley SM, et al. A case-control evaluation of 143 single nucleotide polymorphisms for breast cancer risk stratification with classical factors and mammographic density. Int J Cancer. 2020 Apr;146(8):2122–9.

94 Ho WK, Tan MM, Mavaddat N, Tai MC, Mariapun S, Li J, et al. European polygenic risk score for prediction of breast cancer shows similar performance in Asian women. Nat Commun. 2020 Jul;11(1):3833.

95 Garrett A, Callaway A, Durkie M, Cubak C, Alikian M, Burghel GJ, et al.; CanViG-UK. Cancer Variant Interpretation Group UK (CanViG-UK): an exemplar national subspeciality multidisciplinary network. J Med Genet. 2020 Dec;57(12):829–34.

96 Flaum N, Morgan RD, Burghel GJ, Bulman M, Clamp AR, Hasan J, et al. Mainstreaming germline BRCA1/2 testing in non-mucinous epithelial ovarian cancer in the North West of England. Eur J Hum Genet. 2020 Nov;28(11):1541–7.

97 Johannesdottir G, Gudmundsson J, Berghörsson JT, Arason A,agnarsson BA, Eiriksdottir G, et al. High prevalence of the 999del5 mutation in icelandic breast and ovarian cancer patients. Cancer Res. 1996 Aug;56(16):3663–5.

98 Easton DF, Pharoah PD, Antoniou AC, Tischkowitz M, Tavitian SV, Nathanson KL, et al. Genome-panel sequencing and the prediction of breast-cancer risk. N Engl J Med. 2015 Jun;372(23):2243–57.

99 Dominguez-Valentin M, Sampson JR, Sepéla TT, Ten Broeke SW, Palmer JP, Nakkenn S, et al. Cancer risks by gene, age, and gender in 6350 carriers of pathogenic mismatch repair variants: findings from the Prospective Lynch Syndrome Database. Genet Med. 2020 Jan;22(1):15–25.

100 Smith MJ, Uqarqut JE, Harkness EF, Miles EK, Bowers NL, Byers HJ, et al. The Contribution of Whole Gene Deletions and Large Rearrangements to the Mutation Spectrum in Inherited Tumor Predisposing Syndromes. Hum Mutat. 2016 Mar;37(3):250–6.

101 Tryggvadottir L, Sigvaldason H, Olafsdottir GH, Jonasson JG, Jonsson T, Tunilinus H, et al. Population-based study of changing breast cancer risk in Icelandic BRCA2 mutation carriers. 1920–2000. J Natl Cancer Inst. 2006 Jan;98(2):116–22.

102 Kramer I, Schapavold M, Oldenberg HS, Sonke GS, McCool D, van Leeuwen FE, et al. The Influence of Adjuvant Systemic Regimens on Contralateral Breast Cancer Risk and Receptor Subtype. J Natl Cancer Inst. 2019 Jul;111(7):709–18.

103 Hyder Z, Harkness EF, Woodward ER, Bowes NL, Pereira M, Wallace AJ, et al. Risk of Contralateral Breast Cancer in Women with and without Pathogenic Variants in BRCA1, BRCA2, and TP53 Genes in Women with Very Early-Onset (<36 Years) Breast Cancer. Cancers (Basel). 2020 Feb;12(2):E378.

104 de Rock GH, Schutte M, Krol-Warnerdam EM, Sneyaee C, Blom J, Brekelmans CT, et al. Tumour characteristics and prognosis of breast cancer patients carrying the germline CHEK2*21100delC variant. J Med Genet. 2004 Oct;41(10):731–5.

105 Bernstein JL, Haile RW, Stovall M, Boice JD Jr, Shore RE, Langholz B, et al.; WECARE Study Collaborative Group. Radiation exposure, the ATM Gene, and contralateral breast cancer in the women’s environmental cancer and radiation epidemiology study. J Natl Cancer Inst. 2010 Apr;102(7):475–83.

106 Kramer I, Hooning MJ, Mavaddat N, Hauptmann M, Kieran R, Steyerberg EW, et al.; NBCS Collaborators; ABCtB Investigators; kConFab Investigators. Breast Cancer Polygenic Risk Score and Contralateral Breast Cancer Risk. Am J Hum Genet. 2020 Nov;107(5):837–48.

107 Robson M, Im SA, Senkus E, Xu B, Domchek SM, Masuda N, et al. Olaparib for Metastatic Breast Cancer in Patients with a Germline BRCA Mutation. N Engl J Med. 2017 Aug;377(6):523–33.

108 Litton JK, Rugo HS, Ettl J, Hurvitz SA, Gonçalves A, Lee KH, et al. Talazoparib in Patients with Advanced Breast Cancer and a Germline BRCA Mutation. N Engl J Med. 2018 Aug;379(8):753–63.