Use of the Combination of Ankle-brachial Index and Percentage of Mean Arterial Pressure at Ankle for Improving Prediction of All-cause Mortality in type 2 Diabetes Mellitus

Yu-Hsuan Li
Taichung Veterans General Hospital

Wayne Huey-Herng Sheu
Taichung Veterans General Hospital

I-Te Lee (itlee@vghtc.gov.tw)
Taichung Veterans General Hospital https://orcid.org/0000-0003-2665-3635

Original investigation

Keywords: ankle-brachial index, diabetes, lower extremity artery disease, mortality, percentage of the mean arterial pressure, peripheral artery disease

DOI: https://doi.org/10.21203/rs.3.rs-44227/v1

License: © This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License
Abstract

Background: Peripheral artery disease (PAD) in lower extremities is a common complication in type 2 diabetes and has shown to be associated with mortality. The ankle-brachial index (ABI) is a simple noninvasive method to screen PAD, but has limited sensitivity. We hypothesized that using the percentage of mean arterial pressure (%MAP) and ABI in combination would improve prediction of mortality.

Methods: We retrospectively collected the data of patients with type 2 diabetes who had undergone measurement of ABI and %MAP at our hospital. We separated the cohort into four groups according to the ABI and %MAP values, and examined these indices were associated with mortality.

Results: A total of 5101 patients (mean age, 65 ± 11 years) were enrolled. During the follow-up period (median, 22.9 months), 266 (4.8%) of enrolled patients died. The combination of ABI and %MAP was significantly better at predicting mortality than ABI alone. (C index: 0.62 [95% CI: 0.57, 0.65] vs. 0.57 [95% CI: 0.53, 0.62], P = 0.038). In multivariate analysis (with ABI > 0.90 and %MAP ≤ 45% as the reference group), the highest risk of mortality was seen in patients with ABI ≤ 0.90 and %MAP > 45% (hazard ratio = 1.983 [95% CI: 1.380, 2.848], P < 0.001).

Conclusions: Adding %MAP to ABI appears to significantly improve the predictive ability for all-cause mortality in patients with type 2 diabetes.

Background

Diabetes mellitus (DM) is a complex metabolic disorder associated with several chronic complications [1]. One common complication is peripheral artery disease (PAD) of the lower extremities, which is associated with high mortality risk in type 2 DM [2]. The use of ankle-brachial index (ABI) to screen for PAD in diabetic patients with cardiovascular risk is recommended by the American heart association / American college of cardiology (AHA/ACC) guideline on the management of patients with lower extremity peripheral artery disease [3]. However, the commonly used ABI value of < 0.90 has been reported only 75% sensitivity, and the sensitivity is even lower in patients with DM than in those without DM [4, 5]. Since borderline low ABI value between 0.91 and 0.99 is associated with higher risk of PAD and mortality than ABI ≥ 1.00 [6, 7], it is suggested that sensitivity could be increased by raising the cutoff value of normal ABI to 1.00 [4, 8]. Further increase in diagnostic accuracy could be achieved by using other tests in combination with ABI [4]. It has been reported that combination of percentage of ABI and mean arterial pressure (%MAP) at ankle has shown better diagnostic accuracy than increase in ABI cutoff to 1.00 [9].

The %MAP calculated from the pulse volume recording at ankle can be automatically reported by the ABI-measuring machine, and so it is a convenient index for use along with the ABI when screening for PAD [9–11]. A previous study has shown that %MAP > 45% predicts a high mortality risk in patients with ABI > 0.90 [12]. However, the predictive value of the combination of ABI and %MAP for long-term mortality has not yet been investigated in patients with type 2 DM. We hypothesized that the combination of low ABI and high %MAP would be a better predictor of all-cause mortality than low ABI alone. Therefore, this study aimed to determine whether the combination of the two indices, ABI ≤ 0.90 and %MAP > 45%, could be used to improve the predictive power for mortality in patients with type 2 DM.

Materials And Methods

Study design and population

This retrospective cohort study was conducted at Taichung Veterans General Hospital in Taiwan. According to our computer interpretable guideline since August 2016, ABI was suggested via annual diabetes review program of the hospital information system if ABI data had not been available in patients who were older than 50 years and had participated diabetes pay-for performance (P4P) program [13].

From the hospital database, we retrospectively identified all patients with DM who had undergone ABI assessment between August 01, 2016 and July 31, 2019. Moreover, all enrolled patients must have at least one of following inclusion criteria: 1) age ≥ 50 years, 2) diabetic duration ≥ 10 years, 3) current smoker, 4) a history of cardiovascular disease (CVD), 5) hypertension, 6) body mass index ≥ 25 kg/m², 7) hemoglobin A1c (HbA1c) ≥ 7%, 8) total cholesterol ≥ 160 mg/dL (4.1 mmol/L), 9) high-density lipoprotein (HDL) cholesterol < 50 mg/dL (1.29 mmol/L) in women or < 40 mg/dL (1.03 mmol/L) in men, 10) triglycerides ≥ 150 mg/dL (1.69 mmol/L), 11) estimated glomerular filtration rate (eGFR) < 60 mL/min/1.73 m², and 12) albuminuria. We excluded patients with the following conditions: 1) incomplete laboratory data, 2) not type 2 DM, 3) incomplete ABI, brachial-ankle pulse wave velocity (baPWV), or %MAP data due to uncompleted four-limb assessments, 4) unreliable ABI data due to previous lower-limb surgery, pregnancy, or hemodialysis treatment, or 5) ABI > 1.40.

ABI measurements were made using a validated device (VP-1000 Plus; Omron Healthcare Co. Ltd., Kyoto, Japan). In addition to ABI, this device automatically reports the values of baPWV and %MAP of ankle pulse volume waveform. These data, along with anthropometric data and results of laboratory tests performed within 3 months of the ABI assessment, were extracted from the electronic medical records. For patients who had undergone repeated assessments during this period, only the data of the first assessment were recorded. This research protocol was approved by the Institutional Review Board of Taichung Veterans General Hospital, with a waiver of the need for informed consent.

Assessments

The laboratory data of the following were recorded: total cholesterol, HDL cholesterol, triglycerides, glucose, HbA1c, and creatinine. The eGFR was calculated using the Modification of Diet in Renal Disease equation, i.e., eGFR = 186 × (serum creatinine [mg/dL])⁻¹.154 × (age [years])⁻₀.₂₀₃ (× 0.742, if female) [14]. Urinary albumin-to-creatinine ratio (UACR) was calculated using the formula: UACR = albumin (mg) / creatinine (g); and albuminuria was defined as a UACR ≥ 300 mg/g [14]. Hypertension was defined as systolic blood pressure ≥ 140 mmHg or diastolic blood pressure ≥ 90 mmHg, or current use of an antihypertensive drug.
The %MAP value was automatically determined based on the ankle pulse volume waveform during ABI measurement. The reproducibilities of the ABI and %MAP have been demonstrated using Bland-Altman plots in our previous study [15]. The lower ABI value, and the higher %MAP and baPWV values between lower limbs in an individual were used for the analyses. ABI ≤ 0.90 and %MAP > 45% were defined as abnormal [12, 15].

Statistical analysis

Continuous data were summarized as the mean ± standard deviation; differences among four study subgroups were analyzed using the one-way analysis of variance, and the Scheffe post hoc test was conducted to examine the differences between the high %MAP and normal %MAP subgroups in patients with a normal ABI group or a low ABI group. Categorical data were summarized as number with percentage (%) and compared among groups using the chi-square test. The primary endpoint was all-cause mortality. Information on deaths registered up to August 31, 2019 was obtained from the Ministry of Health and Welfare, Executive Yuan, Taiwan.

Improvement in prediction of mortality caused by addition of the %MAP to ABI was assessed by examining the increments in the area under the receiver operating characteristic curve (AUC). The performances of the model containing the combination of ABI and %MAP and the model with ABI alone were evaluated by the C index. Integrated discrimination improvement (IDI) and continuous net reclassification improvement (NRI) were also assessed.

Cumulative risk for the all-cause mortality was assessed using Kaplan-Meier analysis; the log-rank test was used to determine if the differences between groups were significant. Multivariable Cox proportional hazards regression analysis was conducted to identify the independent predictors of mortality; hazard ratio (HR) and 95% confidence interval (CI) were calculated. Two-sided P value < 0.05 was considered statistically significant. Statistical analysis was performed using SPSS v22.0 (IBM Corp., Armonk, NY, USA), and R software v3.4.

Results

A total of 5569 patients were enrolled in this study, and %MAP was inversely correlated with ABI (Pearson correlation coefficient: -4.70, P < 0.001). Based on the ABI value, all patients were first separated into two groups: a normal ABI group and a low ABI group. Each group was then separated into two subgroups according to the %MAP value. Thus, there were four subgroups: patients with normal ABI and normal %MAP (n = 4601); patients with normal ABI but high %MAP (n = 500); patients with low ABI but normal %MAP (n = 130); and patients with low ABI and high %MAP (n = 338, Fig. 1).

Table 1 showed the baseline characteristics of patients in the different subgroups. Patients with high %MAP were significantly older than patients with normal %MAP in both the normal ABI group (70 ± 12 vs. 64 ± 10 years, P < 0.001) and the low ABI group (73 ± 12 vs. 65 ± 12 years, P < 0.001). The baPWV was significantly higher in the high %MAP subgroup than in the normal %MAP subgroup in both the normal ABI group (P < 0.001) and the low ABI group (P < 0.001). BMI, ABI and eGFR were significantly lower in the high %MAP subgroup than in the normal %MAP subgroup in both the normal ABI group (P = 0.027, P < 0.001, and P < 0.001; respectively) and the low ABI group (all P values < 0.001). Prevalence of CVD, albuminuria and use of antiplatelet drugs were significantly higher in the high %MAP subgroup than in the normal %MAP subgroup in both the normal ABI group (all P values < 0.001) and the low ABI group (P = 0.015, P = 0.004, and P < 0.001; respectively). The proportions of patients using oral antihyperglycemic drugs was significantly lower in the high %MAP subgroup than in the normal %MAP subgroup in both the normal ABI group (P < 0.001) and the low ABI group (P = 0.008). Patients with high %MAP were significantly more likely to be female, to have hypertension and higher systolic blood pressure, to be using antihypertensive drugs and insulin therapy, and to have longer diabetes duration than those with normal %MAP in the normal ABI group (all P < 0.001), but not in the low ABI group.
Group	Normal ABI (n = 5101)	Low ABI (n = 468)	p‡	Normal %MAP (n = 4601)	Low %MAP (n = 338)	
Subgroup						
	Normal %MAP					
	High %MAP					
	mean ± SD	mean ± SD	p†	mean ± SD	mean ± SD	p†
Age (year)	64 ± 10	70 ± 12	<0.001	65 ± 12	73 ± 12	<0.001
Male, n (%)	2559 (55.6%)	203 (40.6%)	<0.001	66 (50.8%)	196 (58.0%)	0.192
Diabetic duration (year)	11 ± 7	14 ± 8	<0.001	14 ± 8	15 ± 8	0.400
Currently smoking, n (%)	415 (9.0%)	32 (6.4%)	0.060	11 (8.5%)	26 (7.7%)	0.932
CVD, n (%)	357 (7.8%)	72 (14.4%)	<0.001	22 (16.9%)	96 (28.4%)	0.015
BMI (kg/m²)	25.9 ± 4.1	25.3 ± 4.2	0.027	28.0 ± 5.0	25.0 ± 4.0	<0.001
Systolic BP (mmHg)	135 ± 19	144 ± 24	<0.001	140 ± 20	145 ± 25	0.139
Diastolic BP (mmHg)	77 ± 12	76 ± 13	0.519	75 ± 15	74 ± 16	0.584
Fasting glucose (mmol/L)	8.2 ± 3.6	8.2 ± 3.4	0.999	8.3 ± 2.9	8.7 ± 3.8	0.760
HbA1c (%)	7.5 ± 1.6	7.6 ± 1.6	0.990	7.9 ± 2.0	7.8 ± 1.9	0.997
Total cholesterol (mmol/L)	4.1 ± 0.9	4.1 ± 1.0	0.966	4.1 ± 0.9	4.0 ± 1.0	0.881
HDL cholesterol (mmol/L)	1.3 ± 0.4	1.3 ± 0.4	0.999	1.2 ± 0.3	1.2 ± 0.3	0.915
Triglyceride (mmol/L)	1.6 ± 1.3	1.5 ± 1.2	0.637	2.0 ± 1.9	1.7 ± 1.1	0.193
eGFR (mL/min/1.73 m²)	81 ± 28	70 ± 34	<0.001	73 ± 34	53 ± 32	<0.001
UACR ≥ 300 mg/g	498 (10.8%)	88 (17.6%)	<0.001	19 (14.6%)	94 (27.8%)	0.004
ABI	1.11 ± 0.09	1.07 ± 0.09	<0.001	0.83 ± 0.08	0.68 ± 0.21	<0.001
baPWV (cm/sec)	1823 ± 433	2087 ± 671	<0.001	1867 ± 690	2176 ± 1143	<0.001
Ankle %MAP (%)	39.4 ± 3.1	47.2 ± 1.8	<0.001	40.9 ± 3.1	50.4 ± 3.5	<0.001
Antiplatelet, n (%)	1212 (26.3%)	178 (35.6%)	<0.001	64 (49.2%)	273 (80.8%)	<0.001
Statins, n (%)	3253 (70.7%)	351 (70.2%)	0.855	97 (74.6%)	250 (74.0%)	0.979
Hypertension, n (%)	3466 (75.3%)	414 (82.8%)	<0.001	115 (88.5%)	317 (93.8%)	0.081

Continuous data are presented as the mean ± SD, and categorical data are presented as numbers (percentages).

* low ABI was defined as an ABI value ≤ 0.90 and normal ABI > 0.90; high %MAP was defined as a %MAP > 45% and normal %MAP ≤ 45%.

‡P: denotes a significant difference across the four subgroups.

†P: post hoc analysis between two groups in patients with normal ABI; ‡P: post hoc analysis between two subgroups in patients with normal ABI.

%MAP = percentage of mean arterial pressure, ABI = ankle-brachial index, ACE = angiotensin-converting enzyme, ARB = angiotensin II receptor antagonist, baPWV = brachial-ankle pulse wave velocity, BMI = body mass index, BP = blood pressure, CVD = cardiovascular disease, DPP4 = dipeptidyl peptidase-4, eGFR = estimated glomerular filtration rate, HbA1c = hemoglobin A1c, HDL = high-density lipoprotein, SD = standard deviation, SGLT2 = sodium glucose cotransporter 2, UACR = urine albumin-to-creatinine ratio.
To evaluate how addition of the %MAP result to ABI affected prediction of all-cause mortality, we analyzed the increments in the AUC. We used ABI as the standard risk factor, AUC increased significantly from 0.57 (95% CI: 0.53–0.62) for the ABI alone model to 0.62 (95% CI: 0.57–0.65) for the ABI plus %MAP model (P = 0.038). Furthermore, addition of the %MAP to the ABI yielded a significant IDI of 0.006 (95% CI: 0.002–0.014, P < 0.001) and a significant NRI of 0.119 (95% CI: 0.045–0.183, P < 0.001; Fig. 2).

Group	Normal ABI (n = 5101)	Low ABI (n = 468)					
	Normal %MAP (n = 4601)	High %MAP (n = 500)	p†	Normal %MAP (n = 130)	High %MAP (n = 338)	p‡	
	mean ± SD	mean ± SD	p†	mean ± SD	mean ± SD	p‡	
Antihypertensive drugs, n (%)	2397 (52.1%)	307 (61.4%)	< 0.001	87 (66.9%)	257 (76.0%)	0.060	< 0.001
ACE inhibitor or ARB, n (%)	1714 (37.3%)	213 (42.6%)	0.022	58 (44.6%)	168 (49.7%)	0.377	< 0.001
α-Blocker, n (%)	255 (5.5%)	74 (14.8%)	< 0.001	11 (8.5%)	64 (18.9%)	0.009	< 0.001
β-Blocker, n (%)	949 (20.6%)	138 (27.6%)	< 0.001	38 (29.2%)	135 (39.9%)	0.041	< 0.001
Calcium channel blocker, n (%)	217 (4.7%)	28 (5.6%)	0.443	12 (9.2%)	37 (10.9%)	0.708	< 0.001
Diuretics, n (%)	396 (8.6%)	88 (17.6%)	< 0.001	24 (18.5%)	95 (28.1%)	0.043	< 0.001
Insulin therapy, n (%)	1032 (22.4%)	159 (31.8%)	< 0.001	42 (32.3%)	132 (39.1%)	0.213	< 0.001
Oral antihyperglycemic drugs	4175 (90.7%)	424 (84.8%)	< 0.001	113 (86.9%)	254 (75.1%)	0.008	< 0.001
Insulin secretagogues, n (%)	1638 (35.6%)	190 (38.0%)	0.311	45 (34.6%)	96 (28.4%)	0.230	0.028
Metformin, n (%)	1838 (39.9%)	174 (34.8%)	0.029	54 (41.5%)	69 (20.4%)	< 0.001	< 0.001
Thiazolidinediones, n (%)	2737 (59.5%)	287 (57.4%)	0.393	72 (55.4%)	191 (56.5%)	0.908	0.469
α-Glucosidase inhibitors, n (%)	530 (11.5%)	40 (8.0%)	0.022	17 (13.1%)	17 (5.0%)	0.005	< 0.001
DPP4 inhibitors, n (%)	1046 (22.7%)	95 (19.0%)	0.065	30 (23.1%)	51 (15.1%)	0.056	0.002
SGLT2 inhibitors, n (%)	415 (9.0%)	57 (11.4%)	0.096	8 (6.2%)	31 (9.2%)	0.384	0.212
Mortality, n (%)	165 (3.6%)	45 (9.0%)	< 0.001	11 (8.5%)	45 (13.3%)	0.197	< 0.001

Incidence of mortality (deaths/100 person-years) | 2.0 | 5.0 | 4.8 | 8.3 |

Continuous data are presented as the mean ± SD, and categorical data are presented as numbers (percentages).

*= low ABI was defined as an ABI value ≤ 0.90 and normal ABI > 0.90; high %MAP was defined as a %MAP > 45% and normal %MAP ≤ 45%.

‡P: denotes a significant difference across the four subgroups.

†P: post hoc analysis between two subgroups in patients with normal ABI; †P: post hoc analysis between two groups in patients with low ABI.

%MAP = percentage of mean arterial pressure, ABI = ankle-brachial index, ACE = angiotensin-converting enzyme, ARB = angiotensin II receptor antagonist, baPWV = brachial-ankle pulse wave velocity, BMI = body mass index, BP = blood pressure, CVD = cardiovascular disease, DPP4 = dipeptidyl peptidase-4, eGFR = estimated glomerular filtration rate, HbA1c = hemoglobin A1c, HDL = high-density lipoprotein, SD = standard deviation, SGLT2 = sodium glucose cotransporter 2, UACR = urine albumin-to-creatinine ratio.
Multivariate Cox regression analysis was performed using the patients with normal ABI and normal %MAP as the reference group. The highest risk for mortality was observed in patients with low ABI and high %MAP (HR = 1.983, 95% CI: 1.380, 2.848, P < 0.001), followed by patients with low ABI but normal %MAP (HR = 1.740, 95% CI: 0.939, 3.225) and patients with normal ABI but high %MAP (HR = 1.564, 95% CI: 1.112, 2.199). Furthermore, high %MAP was found to be a significant predictor of all-cause mortality in patients with normal ABI (P = 0.010, Table 2).

Table 2

Crude	Model 1	Model 2	Model 3					
	HR 95% CI	P						
Normal ABI and normal %MAP	1.000	1.000	1.000	1.000				
Normal ABI but high %MAP	2.510 (1.805, 3.490)	<0.001	2.231 (1.597, 3.116)	<0.001	2.018 (1.443, 2.823)	<0.001	1.564 (1.112, 2.199)	0.010
Low ABI but normal %MAP	2.390 (1.298, 4.400)	0.005	2.171 (1.178, 4.000)	0.013	1.965 (1.063, 3.631)	0.031	1.740 (0.939, 3.225)	0.079
Low ABI and high %MAP	4.167 (2.997, 5.795)	<0.001	3.076 (2.199, 4.305)	<0.001	2.539 (1.801, 3.578)	<0.001	1.983 (1.380, 2.848)	<0.001

Abbreviations: %MAP = percentage of mean arterial pressure, ABI = ankle-brachial index.

Low ABI was defined as an ABI value ≤ 0.90 and normal ABI > 0.90; high %MAP was defined as a %MAP > 45% and normal %MAP ≤ 45%.

Model 1: adjusted for age and sex; **Model 2**: adjusted for age, sex, diabetic duration, smoker, cardiovascular disease, and body mass index; **Model 3**: adjusted for age, sex, diabetic duration, smoker, cardiovascular disease, body mass index, hemoglobin A1c, hypercholesterolemia, high-density lipoprotein, triglycerides, estimated glomerular filtration rate, albuminuria, brachial-ankle pulse wave velocity, hypertension, use of insulin, use of statins and use of antiplatelet agents.

Discussion

The main finding of our study was that high ankle %MAP acted synergistically with low ABI to improve prediction of all-cause mortality in patients with type 2 DM. Using a combination of the two indices, ABI ≤ 0.90 and %MAP > 45%, predicted an approximately two-fold mortality risk than ABI > 0.90 and %MAP ≤ 45%. These results support our previous study which showed that high %MAP was a significant predictor of all-cause mortality in subjects with normal ABI [12]. A recent study has also shown that %MAP was associated with cardiovascular mortality in patients receiving hemodialysis [16]. The strength of the present study is that we demonstrated the synergistic effect of ABI and %MAP for prediction of mortality in a large sample of more than 5000 patients with type 2 DM.

Low ABI indicates a reduced systolic blood pressure at the ankle relative to that in the brachial artery, and this suggests partial occlusion of the ankle arteries [17]. Since the systolic blood pressure will be elevated in a non-compressible artery at the ankle, a false negative PAD diagnosis may occur when ABI alone is used for screening [18, 19]. In the study by Wukich, et al., 42.7% of patients with DM and confirmed PAD had normal ABI value [20].

The %MAP represents the percentage difference between the mean and maximum amplitude of the ankle pulse volume waveform [11]. An occluded artery with a flatted waveform will result in an increased %MAP value [10]. Therefore, the pulse volume recording at the ankle might be a sensitive indicator of an occlusive artery with a non-compressible pattern, which is frequently observed in patients with DM [21].

The prevalence of PAD is increasing worldwide, and DM is an important risk factor for PAD [22, 23]. Most patients with PAD are asymptomatic, but they have elevated risk for mortality [22–24]. In Taiwan, annual screening for foot complications is recommended in the clinical guidelines and in the P4P program for patients with DM [13, 25]. In previous studies that have used the cutoff value of ABI ≤ 0.90, the prevalence of PAD in type 2 DM was about 10.0% in patients with a mean age of 63 years in Taiwan, 10.4% in Malay patients (mean age, 63 years) who living in Singapore, and 9.5% in patients (age > 40 years) in the US [26–28]. According to the real-world database, PAD was reported in 18.7% of patients with type 2 DM (mean age, 65 years) in the UK and in 13.6% patients with type 2 DM (mean age, 66 years) in the US [29, 30]. In the present cohort, PAD prevalence was 8.4% when ABI ≤ 0.90 was the only criterion used, but
increased to 17.4% when the combination of ABI ≤ 0.90 and %MAP > 45% were used. In the Taiwan National Health Insurance database, less than 2.2% patients with DM and age ≥ 65 years have a diagnosis of PAD, indicating that the condition is greatly underdiagnosed in clinical practice [31]. Thus, using ABI along with the automatically reported ankle %MAP is an effective and convenient method for PAD screening and for prediction of mortality [9, 12].

The risk factors for abnormal ABI have been well investigated, but the risk factors for high %MAP are still not specified [32, 33]. In the present study, the risk factors significantly associated with %MAP in both the different ABI groups, included age, CVD history, BMI, HbA1c, eGFR, UACR, baPWV, use of antiplatelet agents, type of oral antihyperglycemic drug, and type of hypertensive drug (Table 1). However, we did not include all cardiovascular risk factors in the present study; for example, a higher HbA1c variability has been previously reported to be associated with a higher %MAP [15]. Furthermore, this study has several limitations. First, all participants were from a single teaching hospital, and the results may not be generalizable to all population with type 2 DM. Second, this was a retrospective study and so we could not control the risk factors and treatments received during the follow-up period. Third, the cutoff value of 45% for %MAP is based on the findings of previous studies [12]; we did not assess the normal range of %MAP in the present study.

In conclusion, the use of %MAP along with ABI appears to improve prediction of all-cause mortality in patients with type 2 DM. The %MAP is automatically reported during ABI measurement and so can conveniently be used for improving prognosis prediction in clinical practice.

Abbreviations

%MAP: percentage of the mean arterial pressure; ABI: ankle-brachial index; AUC: area under the receiver-operating characteristic curve; baPWV: brachial-ankle pulse wave velocity; CI: confidence interval; CVD: cardiovascular disease; DM: diabetes mellitus; eGFR: estimated glomerular filtration rate; HbA1c: hemoglobin A1c; HDL: high-density lipoprotein; HR: hazard ratio; IDI: integrated discrimination improvement; NRI: net reclassification improvement; P4P: pay-for-performance; PAD: peripheral artery disease; SD: standard deviation; UACR: urinary albumin-to-creatinine ratio.

Declarations

Ethics approval and consent to participate

The study complied with the Declaration of Helsinki, and was approved by the Institutional Review Board of Taichung Veterans General Hospital, with a waiver of the need for informed consent.

Consent for publication

Not applicable.

Availability of data and materials

The datasets used and/or analyzed during the current study are available from the corresponding author on reasonable request.

Competing interests

The authors declare that they have no competing interests.

Funding

This work was supported by grants from Taichung Veterans General Hospital, Taichung, Taiwan (TCVGH-1093505D) and National Health Research Institute (grant number NHRI-EX109-10927HT). The funding bodies had no role in the decision to submit the manuscript for publication.

Author contributions

YL participated in the data collection and writing of the manuscript. WS contributed to the study design. IL contributed to the study design, the data collection, interpretation of the data, and revision of the manuscript. IL is the guarantor of this work and had full access to all the data in the study and takes responsibility for the integrity of the data and the accuracy of the data analysis.

Acknowledgements

Statistical analysis was performed by the Biostatistics Task Force of Taichung Veterans General Hospital

References

1. Ogurtsova K, da Rocha Fernandes JD, Huang Y, Linnenkamp U, Guariguata L, Cho NH, Cavan D, Shaw JE, Makaroff LE. IDF Diabetes Atlas: Global estimates for the prevalence of diabetes for 2015 and 2040. Diabetes Res Clin Pract. 2017;128:40–50.
2. American Diabetes Association. 10. Cardiovascular Disease and Risk Management: Standards of Medical Care in Diabetes-2020. Diabetes Care. 2020, 43(Suppl 1):S111–S134.

3. Gerhard-Herman MD, Gornik HL, Barrett C, Barshes NR, Corriere MA, Drachman DE, Fleisher LA, Fowkes FG, Hamburg NM, Kinlay S, et al. 2016 AHA/ACC Guideline on the Management of Patients With Lower Extremity Peripheral Artery Disease: A Report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines. Circulation. 2017;135(12):e726–79.

4. Aboyans V, Ricco JB, Bartelink MEL, Bjorck M, Brodmann M, Cohnert T, Collet JP, Czerny M, De Carlo M, Debus S, et al. 2017 ESC Guidelines on the Diagnosis and Treatment of Peripheral Arterial Diseases, in collaboration with the European Society for Vascular Surgery (ESVS): Document covering atherosclerotic disease of extracranial carotid and vertebral, mesenteric, renal, upper and lower extremity arteriesEndorsed by: the European Stroke Organization (ESO)The Task Force for the Diagnosis and Treatment of Peripheral Arterial Diseases of the European Society of Cardiology (ESC) and of the European Society for Vascular Surgery (ESVS). Eur Heart J 2018, 39(9):763–816.

5. Xu D, Zou L, Xing Y, Hou L, Wei Y, Zhang J, Qiao Y, Hu D, Xu Y, Li J, et al. Diagnostic value of ankle-brachial index in peripheral arterial disease: a meta-analysis. Can J Cardiol. 2013;29(4):492–8.

6. Natsuaki C, Inoguchi T, Maeda Y, Yamada T, Sasaki S, Sonoda N, Shimabukuro M, Nawata H, Takayanagi R. Association of borderline ankle-brachial index with mortality and the incidence of peripheral artery disease in diabetic patients. Atherosclerosis. 2014;234(2):360–5.

7. Tanaka S, Kaneko H, Kano H, Matsuno S, Suzuki S, Takai H, Otsuka T, Uejima T, Okawa Y, Nagashima K, et al. The predictive value of the borderline ankle-brachial index for long-term clinical outcomes: An observational cohort study. Atherosclerosis. 2016;250:69–76.

8. Kithcart AP, Beckman JA. ACC/AHA Versus ESC. Guidelines for Diagnosis and Management of Peripheral Artery Disease: JACC Guideline Comparison. J Am Coll Cardiol. 2018;72(22):2789–801.

9. Lin HL, Lee IT. Combination of the ankle-brachial index and percentage of mean arterial pressure to improve diagnostic sensitivity for peripheral artery disease: An observational study. Med (Baltim). 2018;97(39):e12644.

10. Hashimoto T, Ichihashi S, Iwakoshi S, Kichikawa K. Combination of pulse volume recording (PVR) parameters and ankle-brachial index (ABI) improves diagnostic accuracy for peripheral arterial disease compared with ABI alone. Hypertens Res. 2016;39(6):430–4.

11. Shirasu T, Hoshina K, Akagi D, Miyahara T, Yamamoto K, Watanabe T. Pulse volume recordings to identify falsely elevated ankle brachial index. Asian Cardiovasc Thorac Ann. 2016;24(6):517–22.

12. Li YH, Lin SY, Sheu WH, Lee IT. Relationship between percentage of mean arterial pressure at the ankle and mortality in participants with normal ankle-brachial index: an observational study. BMJ open. 2016;6(3):e010540.

13. Chen YC, Lee CT, Lin BJ, Chang YY, Shi HY. Impact of pay-for-performance on mortality in diabetes patients in Taiwan: A population-based study. Med (Baltim). 2016;95(27):e4197.

14. Inker LA, Astor BC, Fox CH, Isakova T, Lash JP, Peralta CA, Kurella Tamura M, Feldman HL. KDOQI US commentary on the 2012 KDIGO clinical practice guideline for the evaluation and management of CKD. Am J Kidney Dis. 2014;63(5):713–35.

15. Lee IT. Mean and variability of annual haemoglobin A1c are associated with high-risk peripheral artery disease. Diab Vasc Dis Res. 2020;17(3):1479164120909030.

16. Lee WH, Hsu PC, Huang JC, Chen YC, Chen SC, Wu PY, Lee MK, Lee CS, Yen HW, Su HM. Association of Pulse Volume Recording at Ankle with Total and Cardiovascular Mortality in Hemodialysis Patients. Journal of clinical medicine. 2018, 39(9):763–816.

17. Hiatt WR. Medical treatment of peripheral arterial disease and claudication. N Engl J Med. 2001;344(21):1608–21.

18. Osmundson PJ, Cheserebo JH, O’Fallon WM, Zimmerman BR, Kazmier FJ, Palumbo PJ. A prospective study of peripheral arterial occlusive disease in diabetes. II. Vascular laboratory assessment. Mayo Clin Proc. 1981;56(4):223–32.

19. Toth-Vajna Z, Toth-Vajna G, Szilagyi B, Jarai Z, Berczeli M, Sotonyi P. Screening of peripheral arterial disease in primary health care. Vasc Health Risk Manag. 2019;15:355–63.

20. Wukich DK, Shen W, Rasovic KM, Suder NC, Baril DT, Avergingos E. Noninvasive Arterial Testing in Patients With Diabetes: A Guide for Foot and Ankle Surgeons. Foot Ankle Int. 2015;36(12):1391–9.

21. Eslahpazir BA, Allemang MT, Lakin RO, Carman TL, Trivonovich MR, Wong VL, Wang J, Baele HR, Kashyap VS. Pulse volume recording does not enhance segmental pressure readings for peripheral arterial disease stratification. Ann Vasc Surg. 2014;28(1):18–27.

22. Fowkes FG, Aboyans V, Fowkes FJ, McDermott MM, Sampson UK, Criqui MH. Peripheral artery disease: epidemiology and global perspectives. Nat Rev Cardiol. 2017;14(3):156–70.

23. Tapp RJ, Shaw JE, de Courten MP, Dunstan DW, Welborn TA, Zimmet PZ. AusDiab Study G. Foot complications in Type 2 diabetes: an Australian population-based study. Diabet Med. 2003;20(2):105–13.

24. Aponte J. The prevalence of asymptomatic and symptomatic peripheral arterial disease and peripheral arterial disease risk factors in the U.S. population. Holist Nurs Pract. 2011;25(3):147–61.

25. Diabetes Association Of The Republic Of China T. Executive summary of the DAROC clinical practice guidelines for diabetes care- 2018. J Formos Med Assoc. 2020;119(2):577–86.

26. Tseng CH. Prevalence and risk factors of peripheral arterial obstructive disease in Taiwanese type 2 diabetic patients. Angiology. 2003;54(3):331–8.

27. Tavintharan S, Ning C, Su Chi L, Tay W, Shankar A, Shyong Tai E, Wong TY. Prevalence and risk factors for peripheral artery disease in an Asian population with diabetes mellitus. Diab Vasc Dis Res. 2009;6(2):80–6.

28. Gregg EW, Sorlie P, Paulose-Ram R, Gu Q, Eberhardt MS, Wolz M, Burt V, Curtin L, Engelgau M, Geiss L, et al. Prevalence of lower-extremity disease in the US adult population > 40 years of age with and without diabetes: 1999–2000 national health and nutrition examination survey. Diabetes Care.
29. Lautsch D, Wang T, Yang L, Rajpathak SN. Prevalence of Established Cardiovascular Disease in Patients with Type 2 Diabetes Mellitus in the UK. Diabetes Ther. 2019;10(6):2131–7.

30. Arnold SV, Kosiborod M, Wang J, Fenici P, Gannedahl G, LoCasale RJ. Burden of cardio-renal-metabolic conditions in adults with type 2 diabetes within the Diabetes Collaborative Registry. Diabetes Obes Metab. 2018;20(8):2000–3.

31. Lee CH, Wu YL, Kuo JF, Chen JF, Chin MC, Hung YJ. Prevalence of diabetic macrovascular complications and related factors from 2005 to 2014 in Taiwan: A nationwide survey. J Formos Med Assoc. 2019;118(Suppl 2):96–102.

32. Fowkes FG, Rudan D, Rudan I, Aboyans V, Denenberg JO, McDermott MM, Norman PE, Sampson UK, Williams LJ, Mensah GA, et al. Comparison of global estimates of prevalence and risk factors for peripheral artery disease in 2000 and 2010: a systematic review and analysis. Lancet. 2013;382(9901):1329–40.

33. Nativel M, Potier L, Alexandre L, Baillet-Blanco L, Ducasse E, Velho G, Marre M, Roussel R, Rigalleau V, Mohammedi K. Lower extremity arterial disease in patients with diabetes: a contemporary narrative review. Cardiovasc Diabetol. 2018;17(1):138.

Figures

![Study flow diagram](image)

Figure 1

Study flow diagram. (Abbreviation: %MAP = percentage of mean arterial pressure, ABI = ankle-brachial index)
Figure 2

Kaplan-Meier curves showing the survival rate across the four groups, categorized based on ankle-brachial index (ABI) of 0.90 and ankle percentage of mean arterial pressure (%MAP) of 45%.

Figure 3

Receiver operating characteristic curves for prediction of all-cause mortality in the ABI alone model and in the ABI + %MAP model. (Abbreviation: %MAP = percentage of mean arterial pressure, ABI = ankle-brachial index, IDI = integrated discrimination improvement, NRI = continuous net reclassification improvement)