Aneurysm Remnants after Flow Diversion: Clinical and Angiographic Outcomes

T.P. Madaelil, J.A. Grossberg, B.M. Howard, C.M. Cawley, J. Dion, R.G. Nogueira, D.C. Haussen, and F.C. Tong

ABSTRACT

BACKGROUND AND PURPOSE: Flow diversion is an established method to treat complex intracranial aneurysms. The natural history of flow-diversion treatment failure resulting in aneurysm remnants is not well-defined. We aimed to delineate the clinical and angiographic features of this entity.

MATERIALS AND METHODS: Review of a prospectively maintained Pipeline Embolization Device data base from inception to October 2017 was performed for aneurysms that demonstrated residual filling on follow-up imaging. Procedural and follow-up clinical details were recorded. Independent, blinded, angiographic assessment of occlusion was performed on the basis of the O’Kelly-Marotta scale. Aggregated outcomes were analyzed using the Fisher exact and Mann-Whitney U tests for categoric and continuous variables, respectively (statistical significance, α = .05).

RESULTS: During the study period, 283 sequential patients were treated; 87% (246/283) were women. The median patient age was 55 years (interquartile range, 47–65 years). Six-month follow-up imaging was available in 83.7% (237/283) of patients, which showed 62.4% (148/237) complete occlusion (class D, O’Kelly-Marotta grading scale). Adjunctive coiling (P = .06), on-label Pipeline Embolization Device use (P = .04), and multiple device constructs (P = .02) had higher rates of complete occlusion at 6 months. Aneurysm remnants were identified in 25 cases on long-term follow-up imaging (median, 16 months; interquartile range, 12–24 months). No patient with an aneurysm remnant after flow diversion presented with delayed rupture or other clinical sequelae, with a median clinical follow-up of 31 months (interquartile range, 23–33 months).

CONCLUSIONS: Aneurysm remnants after flow diversion are infrequent with minimal clinical impact. When appropriate, the presence of overlapping devices and possibly adjunctive coiling may result in higher rates of complete occlusion.

ABBREVIATIONS: IQR = interquartile range; OKM = O’Kelly-Marotta grading scale

Received September 3, 2018; accepted after revision February 4, 2019.
From the Departments of Neurointerventional Radiology and Neurosurgery (T.P.M., J.A.G., B.M.H., C.M.C., F.C.T.), Emory University School of Medicine, Atlanta, Georgia; Marcus Stroke and Neuroscience Center (R.G.N., D.C.H.), Departments of Neurology and Neurosurgery, Grady Memorial Hospital, Atlanta, Georgia; and MicroVention (J.D.), Aliso Viejo, California.
Drs Thomas P. Madaelil and Jonathan A. Grossberg are co-first authors.
Paper previously presented at: Annual Meeting of the American Society of Neuroradiology and the Foundation of the ASNR Symposium, June 2–7, 2018; Vancouver, British Columbia, Canada.
Please address correspondence to Jonathan Grossberg, MD, Department of Neurosurgery, 1364 Clifton Road, Atlanta, GA 30322; e-mail: jonathan.a.grossberg@emory.edu
http://dx.doi.org/10.3174/ajnr.A6010

694 Madaelil Apr 2019 www.ajnr.org

Flow diversion with the Pipeline Embolization Device (PED; Covidien, Irvine, California) was first reported in 2008.1 Since that time, multiple trials2,3 and retrospective case series4,5 have supported the role of the PED in the treatment of complex intracranial aneurysms. Current follow-up data show high rates of angiographic occlusion at 5 years with only a 4.8% rate of aneurysm persistence and no evidence of recanalization of previously occluded aneurysms.6 In contrast, coil embolization of intracranial aneurysms results in higher rates of aneurysm persistence.7 Increasingly, natural history data describing the angiographic8 and clinical outcomes9 of aneurysm remnants after endovascular therapy are now available. Preliminary evidence suggests that the type of aneurysm remnant (neck versus body filling) dictates the rate of recanalization after coil embolization (with neck filling having lower rates of recanalization compared with body filling)8 and remnants of previously ruptured aneurysms are at a higher risk of rerupture.9 However, long-term imaging and clinical data with respect to aneurysm remnants after flow diversion remain sparse. Our goal was to evaluate the longitudinal angiographic and clinical outcomes of aneurysm remnants after flow diversion with the PED.

MATERIALS AND METHODS

A prospectively maintained institutional (Emory University) data base of patients treated with the PED from 2011 through October 2017 was searched for patients who demonstrated resid-
Flow diversion has emerged as a paradigm shift in the treatment of intracranial aneurysms. As more data define characteristics associated with aneurysm persistence after flow diversion, improved patient selection and procedural technique may increase long-term occlusion rates. Parent vessel remodeling resulting in aneurysm occlusion after flow diversion is a remarkably different mechanism compared with coil embolization on follow-up imaging. Patient-level information regarding aneurysm characteristics, procedural details, and clinical follow-up was collected into an electronic data base. The main exclusion criterion was ruptured aneurysms treated in the acute or subacute period (0–14 days). Collected data points included patient characteristics of age, sex, family history of aneurysms, tobacco use; aneurysm characteristics, including type, size, and location; and procedural details such as the number of devices used, adjunctive coiling, and clinical outcome along with the duration of both clinical and radiographic follow-up. If data were available at 6 months, changes to dual antiplatelet therapy after aneurysm occlusion status were noted. Incomplete occlusion status was defined as classes A–C based on the O’Kelly-Marotta (OKM) grading scale for assessment of aneurysms treated by flow diversion. Independent, retrospective review of follow-up imaging was completed by a fellowship-trained neuroradiologist (3 years of dedicated cerebrovascular experience) who did not participate in the initial procedure. Complete occlusion was defined as class D based on the OKM grading scale.

The association between demographic and clinical risk factors with incomplete occlusion and long-term clinical outcome for patients with incomplete occlusion versus patients with complete occlusion was evaluated using the Fisher exact and Mann-Whitney U test for categoric and continuous variables, respectively. The threshold of statistical significance was \(\alpha = .05 \). All statistical analyses were performed using SPSS, Version 22 (IBM, Armonk, New York) and Excel 2007 (Microsoft, Redmond, Washington).

RESULTS

During the study period, 296 interventions were performed in 283 patients to treat 294 aneurysms. Overwhelmingly, the patients treated were women (87%). The median patient age was 55 years (interquartile range [IQR], 47–65 years). Minimum 6-month follow-up imaging was available in 83.7% (237/283) of patients, though this trend was not statistically significant (\(P = .53 \)). Figure 1 demonstrates progressive occlusion rates of aneurysms with residual filling on late surveillance imaging in a pictorial format.

Procedural characteristics and aneurysm morphology played an important role in aneurysm occlusion on midterm (6 month) imaging follow-up. Adjunctive coiling during the initial PED placement resulted in higher rates of complete occlusion at 6 months (73.9%, 34/46 versus 58.6%, 99/169); this result almost reached statistical significance (\(P = .06 \)). On-label use of the PED was associated with a higher rate of occlusion (73.0%, 54/74) than off-label use (58.5%, 93/159) (\(P = .04 \)). In addition, deployment of >1 device resulted in higher rates of complete occlusion at 6 months (79.5%, 31/39) versus a single device (58.9%, 116/197) (\(P = .02 \)). No correlation between wide-neck aneurysms (>4 mm; \(P = .29 \)) or diameter (>10 mm; \(P = .52 \)) and the rate of occlusion was found.

A total of 25 aneurysm remnants were available for clinical analysis based on last known follow-up imaging. No patient with an aneurysm remnant after flow diversion presented with delayed rupture or other clinical sequelae (median clinical follow-up, 31 months; IQR, 23–33 months). Details related to aneurysm remnants are noted in Table 2. In addition, angiographic follow-up demonstrated no progression of neck remnants. Figure 2 is one such representative case.

DISCUSSION

Flow diversion is remarkably different mechanism compared with coil embolization.
Aneurysm remnants after flow diversion

Table 2: Characteristics of aneurysm remnants after flow diversion

Characteristics	Count (% or IQR)
Anterior circulation	21(84%)
Posterior circulation	4 (16%)
Neck remnant	15 (60%)
Sac remnant	10 (40%)
Branch vessel arising from aneurysm neck	19 (76%)
Median size of remnant (mm)	3.24 (1.2-1.4)
Overlapping devices	1 (4%)

FIG 2. Aneurysm persistence after flow diversion. A 67-year-old woman who had a previously ruptured right posterior communicating artery aneurysm with evidence of recanalization on the 6-month follow-up angiogram. She was treated with flow diversion for the neck recurrence. A 6-month follow-up DSA (lateral x-ray) after flow diversion demonstrates class C OKM grade (continued filling at the neck of the aneurysm) (white arrow). At last clinical and angiographic follow-ups at 3 years, there is no evidence of aneurysm rupture or progression of the neck remnant on MRA (white arrow).

Predictors of Occlusion after Flow Diversion

Adjunctive coil embolization during flow diversion has been previously described by many reports. The placement of loosely packed coils inside the aneurysm at the time of flow diversion provides an additional element of flow disruption to aid aneurysm thrombosis. This observation is confirmed in our study and falls in line with the literature: The presence of adjunctive coil leads to greater rates of aneurysm occlusion on midterm imaging follow-up. Moreover, we find that the clinical impact of aneurysm remnants after flow diversion is benign, with no evidence of rerupture in our cohort.

Aneurysm Remnants after Flow Diversion

The natural history of remnants after coil embolization of a ruptured aneurysm is well-defined: The more complete occlusion on the basis of decreased complication rates and equivalent rates of occlusion between single- and multiple-device constructs. On the contrary, a larger study by Brinjikji et al showed that in 906 treated aneurysms, only fusiform aneurysm morphology was independently associated with ischemic complications after multivariate analysis ($P < .001$). Given the conflicting data, larger trials will be required to determine the safety profile of overlapping devices.

Aneurysm occlusion after flow diversion is dependent on metal surface coverage. Constricts with multiple overlapping flow diverters placed across the aneurysm neck favorably increase surface coverage both in ex vivo and computational fluid dynamics models. Multiple studies corroborate these basic science observations, with both the Pipeline embolization device for the Intracranial Treatment of Aneurysms trial (PITA) and Pipeline for Unco Ilable or Failed Aneurysms (PUFS) trials supporting the efficacy of using overlapping flow diverters to treat aneurysms. Similarly, we show that the use of multiple devices resulted in higher rates of occlusion compared with 1 device ($P = .02$). Understandably, increased metal surface coverage and number of devices may increase thrombogenicity and, as a result, thromboembolic complications.

Chalouhi et al proposed a single-device rationale for treatment of aneurysms on the basis of decreased complication rates and equivalent rates of occlusion between single- and multiple-device constructs. On the contrary, a larger study by Brinjikji et al showed that in 906 treated aneurysms, only fusiform aneurysm morphology was independently associated with ischemic complications after multivariate analysis ($P < .001$). Given the conflicting data, larger trials will be required to determine the safety profile of overlapping devices.
flow diversion resulting in neck remnants or persistent aneurysm filling did not progress in our series. Therefore, these cases could be monitored with noninvasive temporal MRA imaging. \(^{26}\) If progression of an aneurysm is confirmed on DSA, then a treatment decision about a second device can be considered. In addition, antiplatelet therapy can be de-escalated in cases in which remnants have persisted past 12 months because endothelialization of the stent construct has likely already occurred.

Limitations

The retrospective nature of this study and analysis from a single academic center introduces sampling bias and possibly limits external validity. In addition, other angiographic findings that may be associated with aneurysm persistence that were not measured include inflow angle to aneurysm ostium, vessel size arising from aneurysm neck, and degree of malposition as measured by VasoCT (Philips Healthcare, Best, the Netherlands). \(^{27}\) Angiographic follow-up at the 6-month time point was relatively consistent for the entire cohort; however, long-term imaging follow-up (MRA/DSA) was variable and at the discretion of the treating neurointerventionalist. The variable regimen of long-term imaging follow-up of the treating physician introduces heterogeneity with respect to our results of occlusion rates on long-term follow-up. In addition, long-term imaging follow-up was not available for all patients (52.8%; 47/89) with aneurysm persistence at 6 months. Some patients were lost to follow-up (72.3%; 34/47), or no follow-up was available for miniscule aneurysm remnants (27.7%; 13/47) that were initially interpreted as complete thrombosis or a tiny remnant that would eventually thrombose.

CONCLUSIONS

Preliminary results suggest that aneurysm remnants after flow diversion are infrequent with minimal clinical impact. When appropriate, the presence of overlapping devices and possibly adjunctive coiling may result in higher rates of complete occlusion. Larger studies with long-term clinical follow-up will be needed to confirm these findings.

ACKNOWLEDGMENTS

We thank Duk Soo Han, MPH, for statistical review.

Disclosures: Jonathan A. Grossberg—UNRELATED: Consultancy: Cognition Medical, Comments: no fees, only stock options; Grants/Grants Pending: Georgia Research Alliance; Stock/Stock Options: equity in Neurotechnology Investors (NTI), Jacques Dion—UNRELATED: Employment: MicroVention/Terumo, Comments: employee, Vice President of Scientific Affairs; Travel/ Accommodations/ Meeting Expenses Unrelated to Activities Listed: MicroVention/Terumo, Comments: as part of my employment duties, Raul G. Nogueira—OTHER RELATIONSHIPS: Stryker Neurovascular (DAWN Trial Principal Investigator, no compensation; TREVO Registry Steering Committee, no compensation; TREVO 2 trial Principal Investigator, modest; consultant, modest), Medtronic (SWIFT Trial Steering Committee, modest; SWIFT PRIME Trial Steering Committee, no compensation; STAR Trial Angiographic Core Lab, modest compensation), Penumbra (3D Separator Trial Executive Committee, no compensation), Cerenovasc/Neuravi (ENFLOW Trial Principal Investigator; EXCELLENT Registry Principal Investigator; ARISE 2 trial Steering Committee, no compensation; Physician Advisory Board, modest compensation), phenom (Physician Advisory Board, modest compensation), Anacoda (Physician Advisory Board, modest compensation), Genentech (Physician Advisory Board, modest compensation), Biogen (Physician Advisory Board, modest compensation), Prolong Pharmaceuticals (Physician Advisory Board, modest compensation), iSchemaView (speaker, modest compensation), Brainomix (research software use, no compensation), Sensome (research device use, no compensation), Viz.ai (Physician Advisory Board, stock options), Philips Healthcare (research software use, no compensation; speaker, modest), Corindus Vascular Robotics (Physician Advisory Board, stock options).

REFERENCES

1. Fiorella D, Woo HH, Albuquerque FC, et al. Definitive reconstruction of circumferential, fusiform intracranial aneurysms with the Pipeline embolization device. *Neurosurgery* 2008;62:1115–20; discussion 1120–21 *CrossRef Medline*

2. Becske T, Kallmes DF, Satci I, et al. Pipeline for Uncoilable or Failed Aneurysms: results from a multicenter clinical trial. *Radiology* 2013;267:858–68 *CrossRef Medline*

3. Nelson PK, Lylyk P, Szikora I, et al. The Pipeline embolization device for the intracranial treatment of aneurysms trial. *AJNR Am J Neuroradiol* 2011;32:34–40 *CrossRef Medline*

4. Lylyk P, Miranda C, Ceratto R, et al. Curative endovascular reconstruction of cerebral aneurysms with the Pipeline Embolization Device: the Buenos Aires experience. *Neurosurgery* 2009;64:632–42; discussion 642–43; quiz N6 *CrossRef Medline*

5. Kallmes DF, Brinjikji W, Cekirge S, et al. Safety and efficacy of the Pipeline Embolization Device for treatment of intracranial aneurysms: a pooled analysis of 3 large studies. *J Neurosurg* 2017;127:775–80 *CrossRef Medline*

6. Becske T, Brinjikji W, Potts MB, et al. Long-term clinical and angiographic outcomes following Pipeline Embolization Device treatment of complex internal carotid artery aneurysms: five-year results of the Pipeline for Uncoilable or Failed Aneurysms trial. *Neurosurgery* 2017;80:40–48 *CrossRef Medline*

7. Leclar P, Raymond J, Rodrigues-Rêgent C, et al. Intracranial aneurysms: recurrences more than 10 years after endovascular treatment—a prospective cohort study, systematic review, and meta-analysis. *Radiology* 2015;277:173–80 *CrossRef Medline*

8. Mascielli JR, Oermann EK, De Leacy RA, et al. Angiographic outcome of intracranial aneurysms with neck remnant following coil embolization. *J Neurointerv Surg* 2015;7:484–89 *CrossRef Medline*

9. Munich SA, Cress MC, Rangel-Castilla L, et al. Neck remnants and the risk of aneurysm rupture after endovascular treatment with coil or stent-assisted coiling: much ado about nothing? *Neurosurger* 2019;84:421–27 *CrossRef Medline*

10. O’Kelly C, Krings T, Fiorella D, et al. A novel grading scale for the angiographic assessment of intracranial aneurysms treated using flow diverting stents. *Interv Neuroradiol* 2010;16:133–37 *CrossRef Medline*

11. Aede N, Moore J, Wirtz M, et al. Predictors of incomplete occlusion following Pipeline embolization of intracranial aneurysms: is it less effective in older patients? *AJNR Am J Neuroradiol* 2015;38:2295–300 *CrossRef Medline*

12. Trivelato FP, Salles Rezende MT, Ulbóa AG, et al. Occlusion rates of intracranial aneurysms treated with the Pipeline Embolization Device: the role of branches arising from the sac. *J Neurosurg* 2018 Apr 1:1–7. [Epub ahead of print] *CrossRef Medline*

13. Bender MT, Colby GP, Lin LM, et al. Predictors of cerebral aneurysm persistence and occlusion after flow diversion: a single-institution series of 445 cases with angiographic follow-up. *J Neurosurg* 2018 Mar 1:1–9. [Epub ahead of print] *CrossRef Medline*

14. Lin N, Brouillard AM, Krishna C, et al. Use of coils in conjunction with the Pipeline embolization device for treatment of intracranial aneurysms. *Neurosurgery* 2015;76:142–49 *CrossRef Medline*

15. Nossek E, Chalif DJ, Chakraborty S, et al. Concurrent use of the Pipeline Embolization Device and coils for intracranial aneurysms: technique, safety, and efficacy. *J Neurosurg* 2015;122:904–11 *CrossRef Medline*

16. Siddiqui AH, Kan P, Abla AA, et al. Complications after treatment with Pipeline embolization for giant distal intracranial aneurysms with or without coil embolization. *Neurosurgery* 2012;71:E509–13 *CrossRef Medline*

17. Park M, Kilburg C, Taussey P, et al. Pipeline embolization device with or without adjunctive coil embolization: analysis of complica-
tions from the IntrePED Registry. AJNR Am J Neuroradiol 2016;37:1127–31 CrossRef Medline
18. Wang K, Huang Q, Hong B, et al. Correlation of aneurysm occlusion with actual metal coverage at neck after implantation of flow-diverting stent in rabbit models. Neuroradiology 2012;54:607–13 CrossRef Medline
19. Shapiro M, Raz E, Becske T, et al. Building multidevice Pipeline constructs of favorable metal coverage: a practical guide. AJNR Am J Neuroradiol 2014;35:1556–61 CrossRef Medline
20. Kim M1, Levy EI, Meng H, et al. Quantification of hemodynamic changes induced by virtual placement of multiple stents across a wide-necked basilar trunk aneurysm. Neurosurgery 2007;61:1305–12; discussion 1312–13 CrossRef Medline
21. Tan LA, Keigher KM, Munich SA, et al. Thromboembolic complications with Pipeline Embolization Device placement: impact of procedure time, number of stents and pre-procedure P2Y12 reaction unit (PRU) value. J Neurointerv Surg 2015;7:217–21 CrossRef Medline
22. Chalouhi N, Tjoumakaris S, Phillips J, et al. A single Pipeline embolization device is sufficient for treatment of intracranial aneurysms. AJNR Am J Neuroradiol 2014;35:1562–66 CrossRef Medline
23. Brinjikji W, Lanzino G, Cloft H, et al. Risk factors for ischemic complications following Pipeline Embolization Device treatment of intracranial aneurysms: results from the IntrePED study. AJNR Am J Neuroradiol 2016;37:1673–78 CrossRef Medline
24. Johnston SC, Dowd CF, Higashida RT, et al; CARAT Investigators. Predictors of rehemorrhage after treatment of ruptured intracranial aneurysms: the Cerebral Aneurysm Rerupture After Treatment (CARAT) study. Stroke 2008;39:120–25 CrossRef Medline
25. Kan P, Srinivasan VM, Mbabuike N, et al. Aneurysms with persistent patency after treatment with the Pipeline Embolization Device. J Neurosurg 2017;126:1894–98 CrossRef Medline
26. Boddu S, Tong F, Dehkharghani S, et al. Contrast-enhanced time-resolved MRA for follow-up of intracranial aneurysms treated with the Pipeline Embolization Device. AJNR Am J Neuroradiol 2014;35:2112–18 CrossRef Medline
27. van der Marel K, Gounis MJ, Weaver JP, et al. Grading of Regional Apposition after Flow-Diverter Treatment (GRAFT): a comparative evaluation of VasoCT and intravascular OCT. J Neurointerv Surg 2016;8:847–52 CrossRef Medline