FAST TRACK COMMUNICATION

\(\mathcal{PT} \)-symmetry, Cartan decompositions, Lie triple systems and Krein space-related Clifford algebras

Uwe Günther\(^1\) and Sergii Kuzhel\(^2\)

\(^1\) Research Center Dresden-Rossendorf, PO Box 510119, D-01314 Dresden, Germany
\(^2\) Institute of Mathematics of the NAS of Ukraine, 01601 Kyiv, Ukraine

E-mail: u.guenther@fzd.de and kuzhel@imath.kiev.ua

Received 6 June 2010, in final form 30 July 2010
Published 1 September 2010
Online at stacks.iop.org/JPhysA/43/392002

Abstract

Gauged \(\mathcal{PT} \) quantum mechanics (PTQM) and corresponding Krein space setups are studied. For models with constant non-Abelian gauge potentials and extended parity inversions compact and noncompact Lie group components are analyzed via Cartan decompositions. A Lie-triple structure is found and an interpretation as \(\mathcal{PT} \)-symmetrically generalized Jaynes–Cummings model is possible with close relation to recently studied cavity QED setups with transmon states in multilevel artificial atoms. For models with Abelian gauge potentials a hidden Clifford algebra structure is found and used to obtain the fundamental symmetry of Krein space-related \(J \)-self-adjoint extensions for PTQM setups with ultra-localized potentials.

PACS numbers: 03.65.Ca, 11.30.Er, 02.20.Sv, 02.30.Tb
Mathematics Subject Classification: 47B50, 46C20, 81Q12, 15A66, 20N10, 17B81

Introduction

During the last 10 years many of the basic features of quantum mechanics with \(\mathcal{PT} \)-symmetric Hamiltonians (PTQM) \([1, 2]\) have been worked out in detail and are now to a certain degree well understood. This concerns the mapping of the PTQM sector of exact \(\mathcal{PT} \)-symmetry to conventional (von-Neumann) quantum mechanics with Hermitian Hamiltonians \([3]\), the relevance of the \(\mathcal{C} \)-operator as dynamically adapted mapping \([4]\) between Krein space-related indefinite metric structures \([5]\) and positive definite metrics of usual Hilbert spaces (required for a sensible probabilistic interpretation of the related wavefunctions) as well as the understanding of \(\mathcal{PT} \)-symmetric Hamiltonians as self-adjoint operators in Krein spaces \([6–10]\).

Here, we will discuss some up to now unnoticed structural links of PTQM, and Krein space-related models in general, to Lie algebra and Lie group-related Cartan decompositions.
underlying structures will help in recognizing hidden \mathcal{PT}-like involutory structures in physical models which are up to now not related with \mathcal{PT}-symmetry and to deeper understand these models and the role of \mathcal{PT}-symmetry in general.

We start from the simplest \mathcal{PT}-symmetric Hamiltonian H, $[\mathcal{PT}, H] = 0$, of differential operator type:

$$H = p^2 + V(x), \quad p := -i\partial_x, \quad V(-x) = V^*(x), \quad \mathcal{P}x\mathcal{P} = -x, \quad \mathcal{P}p\mathcal{P} = -p$$

$$Ti\mathcal{T} = -i\mathcal{T}, \quad \mathcal{T}x\mathcal{T} = x, \quad Tp\mathcal{T} = -p. \quad (1)$$

In general, this Hamiltonian is a \mathcal{P}-self-adjoint operator in a Krein space $(\mathcal{K}, \langle \cdot, \cdot \rangle_\mathcal{P})$ (see, e.g., [19, 20]) with $[\cdot, \cdot]_\mathcal{P} := (\cdot, \cdot)\mathcal{P}$ being the \mathcal{PT} inner product [2], $[H\phi, \psi]_\mathcal{P} = [\phi, H\psi]_\mathcal{P}$, i.e.

$$\mathcal{P}H = H^\dagger\mathcal{P}. \quad (2)$$

Because of $\mathcal{P}p = -p\mathcal{P} = -p^\dagger\mathcal{P}$, i.e. $[p\phi, \psi]_\mathcal{P} = [-\phi, p\psi]_\mathcal{P}$, this \mathcal{P}-self-adjointness is spoilt for the gauged Hamiltonian

$$H_g = (p - A)^2 + V(x), \quad A(-x) = A^*(x), \quad \mathcal{P}H_g \neq H_g^\dagger\mathcal{P}. \quad (3)$$

Instead the gauge transformation (Kummer–Liouville transformation)

$$U : H_g \mapsto H = U H_g U^{-1}, \quad U = e^{-i\int A(x) dx}$$

together with (2), $\mathcal{P} = \mathcal{P}^\dagger$ and $[U^\dagger]^{-1} = [U^{-1}]^\dagger$ leads to the pseudo-Hermiticity condition

$$\eta H_g = H_g^\dagger \eta, \quad \eta := U^\dagger \mathcal{P}U, \quad \eta = \eta^\dagger. \quad (4)$$

\mathcal{PT}-symmetry of the system remains preserved under the gauge transformation U:

$$[\mathcal{PT}, U] = 0, \quad [\mathcal{PT}, H_g] = 0, \quad [\mathcal{PT}, H] = 0. \quad (5)$$

These facts are well known and have been widely discussed for various PTQM models [21–25].

Next we assume, for simplicity, a purely real coordinate dependence $x \in \Omega \subseteq \mathbb{R}$ with Ω any \mathcal{P}-symmetric interval. Then splitting $A(x) = A_+(x) + i A_-(x)$ into even and odd components, $[\mathcal{P}A_\pm(x) = A_\pm(-x) = \pm A_\pm(x)$, leads to a factorization of U into unitary and Hermitian \mathcal{P}-self-adjoint factors

$$U = U_u U_h, \quad U_u = e^{-i\int_{\Omega} A_+(x) dx}, \quad U_h = e^{i\int_{\Omega} A_-(x) dx} \quad (7)$$

$$U_u^\dagger = U_u^{-1}, \quad U_h^\dagger = U_h, \quad \mathcal{P}U = U^\dagger \mathcal{P}, \quad \mathcal{P}U_u = U_u^\dagger \mathcal{P}, \quad \mathcal{P}U_h = U_h. \quad (8)$$

This is just the simplest (Abelian) version of a polar decomposition which here is naturally associated with the corresponding decomposition of the metric $\eta = J|\eta|$ into the modulus $|\eta| := \sqrt{\eta^2} = U_h^\dagger \eta U_h$ and involution $J := J|\eta|^{-1} = U_u^{-1} \mathcal{P}U_u = J^\dagger = J^{-1}$. It shows that H_g is J-self-adjoint in the weighted ($|\eta|$-deformed) Hilbert space $L_2(|\eta| dx)$ with the inner product $(\phi, \psi)|\eta| := \int_{\Omega} \psi(x)\phi^*(x) e^{2i\int_{\Omega} A_-(x) dx} \, dx$

$$\langle H_g \phi, J \psi \rangle|\eta| = (\phi, J H_g \psi)|\eta|. \quad (9)$$

Obviously, the unitary component U_u of the gauge transformation $U(x)$ rotates the original involution (Krein space metric) \mathcal{P} into the new involution $J = U_u^{-1} \mathcal{P}U_u$ whereas the Hermitian component U_h induces the new integration weight $|\eta|$, i.e. we have a Krein space mapping $U : (\mathcal{K}_\mathcal{P}, 1, \cdot, \cdot) \mapsto (\mathcal{K}_J, 1, \cdot, \cdot|\eta|)$.

A further mapping ρ will be needed to pass from $L_2(|\eta| dx)$ in (9) to a Hilbert space \mathcal{H} where a Hamiltonian H_g with a real spectrum (exact \mathcal{PT}-symmetry) will be not only J-self-adjoint but self-adjoint [3, 26]. This ρ will strongly depend on the concrete form of the \mathcal{PT}-symmetric potentials $A(x)$, $V(x)$ and, in general, it will be highly nonlocal [2, 27].
Subsequently, we mainly concentrate on the symmetry structures inherent in the model and we will not focus on the nonlocalities as the latter are typical, e.g., for the construction of \(C \) operators for Hamiltonians built over differential operators [28].

The above decomposition (7) indicates on two ways of possible model generalizations based (i) on a generalization of the Abelian gauge potential to a non-Abelian one or, via slightly different structures, (ii) on the direct use of a hidden Clifford algebra.

Non-Abelian gauge potentials, Cartan decompositions and Lie triple systems

First we note that the decomposition (7) of the gauge transformation \(U \) into unitary and Hermitian components can be regarded as the trivial Abelian version of a Cartan decomposition of a Lie group into a compact subgroup and a noncompact homogeneous coset space. Subsequently we demonstrate the interrelation of \(PT \)-symmetry and Cartan decompositions of Lie groups (and Lie algebras) on the simplest example of a matrix Hamiltonian with non-Abelian but constant\(^3\) gauge potential \(A \). The parity inversion \(P \) is assumed to be of tensor product type, i.e. we set

\[
H_g = (p-A)^2 + V(x), \quad A \in \mathbb{C}^{m \times m}, \quad V(x) \in \mathbb{C}^{m \times m} \otimes L_1(\mathbb{R})
\]

\[
[PT, H_g] = 0, \quad P = \Theta \otimes T, \quad \Theta \in \mathbb{R}^{m \times m}, \quad \Theta^2 = I_m, \quad P^2 = I_m \otimes I.
\]

Involving property \(\Theta^2 = I_m \) and reality \(\Theta \in \mathbb{R}^{m \times m} \) imply diagonalizability and symmetry of the matrix \(\Theta = \Theta^T \). This means that without loss of generality, i.e. modulo a global SO(\(m, \mathbb{R} \)) rotation, we may fix henceforth \(\Theta = I_{p,q} = \text{diag}(I_p,-I_q), \quad p + q = m \). Furthermore, we assume for simplicity that \(T \) acts as the same complex conjugation as for the scalar Hamiltonian (3), i.e., \(T \cong I_m \otimes T \) so that involution commutativity concerning the extended parity inversion \(P \) is fulfilled trivially\(^4\) [\(P, T \) = 0]. In this case \(PT \)-symmetry, \([PT, H_g] = 0 \), implies

\[
\Theta A^* \Theta = A, \quad \Theta V^*(-x) \Theta = V(x)
\]

whereas \(P \)-self-adjointness \(PHP^* = H \) of the globally re-gauged Hamiltonian

\[
H = UH_gU^{-1} = p^2 + e^{-iAx} V(x) e^{iAx}, \quad U = e^{-iAx}
\]

leads to the additional conditions

\[
\Theta A^i \Theta = -A_i, \quad \Theta V^i(-x) \Theta = V(x).
\]

Together (12) and (14) give \(A = -A^T, \quad V = V^T \), and they fix via (13) the Lie group structure of the gauge transformation \(U \). Denote the set of corresponding Lie group elements by \(G_\Theta \supseteq U \) and the vector space of its Lie algebra elements by \(g_\Theta \). Then for the elements \(a \in g_\Theta \), because of \(a := -iA \), it holds

\[
a = -a^T, \quad \Theta a^i \Theta = a.
\]

\(^3\) In case of non-Abelian local (coordinate-dependent) gauge potentials in theories over a spacetime manifold \(M \) (e.g. over usual Minkowski space) finite gauge transformation operators \(U \) will have the form of path-ordered exponentials. For simplicity we restrict our consideration here to constant gauge transformations only.

\(^4\) In general, the time involution \(T \) may be extended nontrivially to any anti-linear involution \(T = \mu \otimes T \) with \(\mu^2 = I_m, \mu \in \mathbb{C}^{m \times m} \). In the simplest case of \(\mu \in \mathbb{R}^{m \times m} \), involution commutativity \([P, T] = 0 \) together with fixed \(\Theta = I_{p,q} \) implies a block-diagonal \(\mu = \text{diag}(\mu_p,\mu_q) = S L_s S^{-1}, \quad S \in SO(m,\mathbb{R}) \) with a possibly different signature \((r,s) \neq (p,q) \). Moreover, even involution commutativity may be violated, \([P, T] \neq 0 \) as, e.g., for the spinor-representations [29] of the Dirac equation. We leave corresponding considerations to future research and restrict our attention here to the simplest ansatz \(T = I_m \otimes T \) only.
Hence, \(g_\Theta \) is constituted by the \(\Theta\)-Hermitian elements of \(so(m, \mathbb{C}) \). In order to understand the role of this \(\Theta\)-Hermiticity condition we first note that the compact subgroup of the special complex orthogonal group \(SO(m, \mathbb{C}) \) is the real orthogonal group \(SO(m, \mathbb{R}) \), whereas the (homogeneous) coset space \(SO(m, \mathbb{C})/SO(m, \mathbb{R}) \) parameterizes the noncompact (‘boost’-type) transformations. This is well known (see, e.g. [11], chapter 9, section II) and follows trivially from the Cartan decomposition of general \(GL(m, \mathbb{C}) \) matrices into unitary compact components and Hermitian noncompact components (i.e. from their polar decomposition). In fact, the corresponding Cartan involution \(\tau \) for the Lie algebra \(gl(m, \mathbb{C}) \) of the Lie algebra \(gl(m, \mathbb{C}) \) can be decomposed as \(gl(m, \mathbb{C}) = \mathfrak{t} \oplus \mathfrak{p} \) with \(\tau \mathfrak{t} = \mathfrak{t} \), \(\tau \mathfrak{p} = -\mathfrak{p} \) for compact subalgebra \(\mathfrak{t} \) and the set of noncompact coset elements \(\mathfrak{p} \), respectively. Imposing the additional antisymmetry restriction \(a = -a^T \) for \(so(m, \mathbb{C}) \) elements the Cartan involution reduces to complex conjugation \(\tau(a) = -a^T = a^* = T a \). Accordingly, \(T \) splits \(so(m, \mathbb{C}) \) just into real and purely imaginary components

\[
so(m, \mathbb{C}) = \mathfrak{t} \oplus \mathfrak{p}, \quad \mathfrak{t} = so(m, \mathbb{R}), \quad \mathfrak{p} = \{ b \in so(m, \mathbb{C}) | b = i f, f \in so(m, \mathbb{R}) \} \quad (16)
\]

\[
\mathcal{T} \mathfrak{t} = \mathfrak{t}, \quad \mathcal{T} \mathfrak{p} = -\mathfrak{p}. \quad (17)
\]

The \(\Theta\)-Hermiticity condition in (15) refines this decomposition by an additional \(\Theta\)-related block structure. Explicitly \(\Theta a^T \Theta = a \) implies

\[
a := \begin{pmatrix}
ui & v \\
-v^T & iw
\end{pmatrix}, \quad u \in \mathbb{R}^{p \times p}, \quad v \in \mathbb{R}^{p \times q}, \quad w \in \mathbb{R}^{q \times q} \quad (18)
\]

\[
\mathfrak{t}_\Theta = \left\{ b \in so(m, \mathbb{R}) | b = \begin{pmatrix} 0 & v \\
-v^T & 0 \end{pmatrix} \right\}, \quad (19)
\]

\[
\mathfrak{p}_\Theta = \left\{ c \in so(m, \mathbb{C}) | c = i f = \begin{pmatrix} u & 0 \\
0 & iu \end{pmatrix}, \right\} \quad f \in so(p, \mathbb{R}) \oplus so(q, \mathbb{R}) \quad (20)
\]

\[
b^\dagger = -b, \quad b \in \mathfrak{t}_\Theta, \quad c^\dagger = c, \quad c \in \mathfrak{p}_\Theta. \quad (21)
\]

Denoting the Cartan decomposition of \(su(p, q) \) by\(^5\)

\[
\mathfrak{t}_\Theta = su(p, q) = \mathfrak{l} \oplus \mathfrak{q}, \quad \mathfrak{l} = s(u(p) \oplus u(q)), \quad \mathfrak{q} = su(p, q) \ominus \mathfrak{l} \quad (22)
\]

we see from \(a = -i A \) with \(A = -A^T \) and \(\Theta A^T \Theta = -A \), i.e. \(A \in so(m, \mathbb{C}) \cap su(p, q) \), that \(g_\Theta = \{ a \in so(m, \mathbb{C}) | a = i f, f \in so(m, \mathbb{C}) \cap su(p, q) \} = \mathfrak{t}_\Theta \oplus \mathfrak{p}_\Theta \)

\[
\mathfrak{t}_\Theta = so(m, \mathbb{C}) \cap iq, \quad \mathfrak{p}_\Theta = so(m, \mathbb{C}) \cap i\mathfrak{l}. \quad (23)
\]

This means that \(g_\Theta \) can be considered as a ‘Wick rotated’ \(so(m, \mathbb{C}) \cap su(p, q) \), an \(so(m, \mathbb{C}) \cap su(p, q) \) with Weyl unitary trick applied not only to the noncompact component \(\mathfrak{q} \) but to the algebra as a whole. Correspondingly the roles of compact and noncompact components in \(su(p, q) \cap so(m, \mathbb{C}) \) and \(g_\Theta \) are interchanged \(l, q \Rightarrow \mathfrak{p}_\Theta, \mathfrak{t}_\Theta \). The latter fact explains the block-diagonal decomposition of the noncompact \(\mathfrak{p}_\Theta \) in (19) and the off-diagonal block form of \(\mathfrak{t}_\Theta \).

Next we note that the intersection set \(g_\Theta \) is not a Lie algebra itself. Rather this Lie algebra subspace \(g_\Theta \) forms a Lie triple system (LTS) (see, e.g., [14], section 1.1; [17], section 10). To see this we follow standard techniques [12–16] and denote by \(\kappa \) the Lie algebra involution

\[
\kappa(a) := -\Theta a^T \Theta. \quad (24)
\]

\(^5\) Recall that the compact subgroup of \(SU(p, q) \) is \(S(U(p) \times U(q)) \) (see, e.g., [11]).
Then the Θ-Hermiticity condition in (15) defines g_Θ as κ-odd subspace in $so(m, \mathbb{C})$

$$g_\Theta = \{a \in so(m, \mathbb{C})| \kappa(a) = -a\},$$

(25)

whereas the commutator $[g_\Theta, g_\Theta]$ is κ-even $\kappa([g_\Theta, g_\Theta]) = [g_\Theta, g_\Theta]$, i.e. g_Θ does not close under the Lie bracket $[g_\Theta, g_\Theta] \not\subset g_\Theta$. It only closes under the ternary composition

$$a, b, c \in g_\Theta : \quad [a, [b, c]] \in g_\Theta$$

(26)

so that g_Θ is indeed a Lie triple system (LTS) $[[g_\Theta, g_\Theta], g_\Theta] \subset g_\Theta$.

For completeness, we display the Cartan decomposition of the group elements of the set $G_\Theta = K_\Theta \Pi_\Theta$. Separately considered the compact and the noncompact subset, $K_\Theta \subset SO(m, \mathbb{R})$ and $\Pi_\Theta \subset SO(m, \mathbb{C})/SO(m, \mathbb{R})$, have parameterizations induced by the corresponding Lie algebra elements in (19), (20) (see e.g. [11], chapter 9, section IV)

$$K_\Theta = \left\{ U_\ell \in SO(m, \mathbb{R})| U_\ell = e^{\kappa_b} = \begin{pmatrix} \cos(\sqrt{\nu} \nu^T x) & \nu \sin(\sqrt{\nu} \nu^T x) \sqrt{\nu} \nu^T x \\ -\sin(\sqrt{\nu} \nu^T x) \sqrt{\nu} \nu^T x & \cos(\sqrt{\nu} \nu^T x) \end{pmatrix}, \ b \in \mathfrak{k}_\Theta \right\},$$

(27)

$$\Pi_\Theta = \{ U_p \in SO(m, \mathbb{C})/SO(m, \mathbb{R}) \} \quad U_p = e^{i\sigma} = \text{diag}(e^{i\sigma_1}, e^{i\sigma_2}), \ c \in \mathfrak{p}_\Theta \}.$$

Furthermore, it follows from (21) that

$$U_\ell^\dagger = U_\ell^{-1}, \quad U_p^\dagger = U_p$$

(28)

as the generalization of decomposition (7) for the Abelian gauge transformation.

In the trivial case of $\Theta = I_m$ there is no compact subgroup present at all and the global gauge transformations U are pure boosts

$$U = e^{i\alpha x} \in \Pi_I, \quad A = -A^T \in \mathbb{R}^{m \times m}, \quad U = U^\dagger.$$

(29)

This fact is due to the obvious anti-Hermiticity of the gauge potential $A = -A^\dagger$ which is in clear contrast to the Hermitian gauge potentials present in the Hermitian Hamiltonians of conventional (von Neumann) quantum mechanics. For $m = 2$, e.g., it holds $i\sigma_1 = a\sigma_2$, $a \in \mathbb{R}$ with $A = i\sigma_2$ so that $U = e^{i\sigma_2 x} = \cosh(\alpha x)I_2 + \sinh(\alpha x)\sigma_2$ similar to earlier findings e.g. in [33, 34].

In contrast, for $\Theta \neq I_m, m \geq 2$ and vanishing noncompact component, we find the gauge potentials A as antisymmetric Hermitian matrices $A \in i\mathfrak{k}_\Theta = \{A \in so(m, \mathbb{C})| A = ib, \ b \in so(m, \mathbb{R})\}$. In the simplest case, $m = 2$, this reduces to $\Theta = \sigma_3, \ A = a\sigma_2, \ a \in \mathbb{R}$ and $U_\ell = e^{-i\sigma_2 x} \in SO(2, \mathbb{R}) \subset U(2)$.

For general Θ the gauge potential A will be composed simultaneously of anti-Hermitian as well as Hermitian components corresponding to non-compact and compact components of the Lie algebra element α, respectively.

The global gauge transformations $U \in G_\Theta$ are \mathbf{PT}-symmetry preserving

$$[\mathbf{PT}, U] = 0, \quad [\mathbf{PT}, H_\ell] = 0, \quad [\mathbf{PT}, H_I] = 0,$$

(30)

in analogy to (6) for Abelian systems. In contrast, the \mathbf{P}-symmetry properties of the $U \in G_\Theta$ components are reversed compared to that for the Abelian U in (8):

$$U \in G_\Theta : \quad \mathbf{P} U_\ell = U_\ell \mathbf{P}, \quad \mathbf{P} U_p = U_p^{-1} \mathbf{P}.$$

(31)

This reversed behavior can be traced back to the special interplay of complex conjugation and the antisymmetry of the gauge potential as an $so(m, \mathbb{C})$ element. On its turn it implies (via \mathbf{P}-Hermiticity of the re-gauged Hamiltonian H in (13), the relation to the original Hamiltonian

6 From the large number of recent studies on ternary and n-ary Lie algebras as well as metric Lie 3- and n-algebras we note as few examples [17, 30–32].
with a set of transmon states of a multilevel artificial atom with level energies describing a special type of Jaynes–Cummings type Hamiltonian\(^7\) with additional non-Hermitian\(^8\) For other regard to \([43, 44]\) allowing for the interaction of a single (\(d\))-particle-induced excitation process in a multi-level quantum system. Models of this type can be considered, e.g., as an Abelian gauge potential is due to the non-vanishing derivative term \(i\partial_x A(x)\) in \(H_g\). The vanishing of this term \(i\partial_x A = 0\) for the constant (global) gauge potential \(A\) removes this obstruction and leads to preserved \(P\)-self-adjointness of \(H_g\) in \(\text{(10)}\), \([H_g\phi, \psi]_P = [\phi, H_g\psi]_P\). Effectively, this results from the sign invariance of the \(P\)-term under the simultaneous action of \(\mathcal{P}\mathcal{T}\) and \(\Theta A = -A\Theta\) used for the construction of the Krein space adjoint with regard to \([\cdot, \cdot]_P\).

Before we turn to the discussion of Clifford algebra-related structures in the \(\mathcal{P}\mathcal{T}\)-symmetric scalar Schrödinger equation, we note that the \(\mathcal{P}\mathcal{T}\)-symmetric matrix Hamiltonian \(H_g\) in \(\text{(10)}\) with the constant gauge potential \(A\) and appropriately chosen \(V(x)\) can be related to a Jaynes–Cummings type Hamiltonian\(^7\) with additional non-Hermitian \(\mathcal{P}\mathcal{T}\)-symmetric degrees of freedom. To see this we introduce creation and annihilation operators \(d^\dagger := (-ip + x)/\sqrt{2}, d := (ip + x)/\sqrt{2}\) and split the Lie algebra element \(a\) (see equation \((18)\)) in strictly upper and lower triangular (nilpotent) components

\[
a = c - c^T, \quad c := \begin{pmatrix} i\hat{u} & v \\ 0 & i\hat{w} \end{pmatrix}, \quad c^m = 0
\]

with \(\hat{u}, \hat{w}\) the strictly upper triangular components of \(u, w\). For \(V(x) = (x^2 - 1)\lambda_0 + 2(c + c^T)x + a^2 + 2\omega, \quad \omega = \text{diag}[(\omega_1, \ldots, \omega_m)], \quad \omega_j \in \mathbb{R}\) (34) and particle number operator \(N = d^\dagger d\) this yields, e.g.,

\[
\frac{1}{2}H_g = N + \sqrt{2}(cd + c^T d^\dagger) + \omega
\]

describing a special type of \(\mathcal{P}\mathcal{T}\)-symmetry preserving (gain-loss-balanced\(^8\)) \(d\)-particle-induced excitation process in a multi-level quantum system. Models of this type can be considered, e.g., as \(\mathcal{P}\mathcal{T}\)-symmetric generalization of the recently studied circuit and cavity QED setups [43, 44] allowing for the interaction of a single \((d)\)-mode of the cavity electromagnetic field with a set of transmon states of a multilevel artificial atom with level energies \(\omega_j\).

Krein space-related hidden Clifford algebra

The analysis of the scalar \(\mathcal{P}\mathcal{T}\)-symmetric Hamiltonian \((3)\) with the local Abelian gauge potential \(A(x)\) can be pursued in another direction by concentrating on the symmetry properties of the unitary factor \(U_u = e^{-i\mathcal{Q}}\), \(\mathcal{Q} := \int_0^1 A_s(s) ds\) in \(\text{(7)}\) which was responsible for the rotation of the involution as \(U_u: \mathcal{P} \mapsto J = U_u^{-1}\mathcal{P}U_u\). Representing \(\mathcal{Q}\) as

\[
\mathcal{Q} = \mathcal{R}q, \quad \mathcal{R} := \text{sign}(\mathcal{Q}), \quad q := |\mathcal{Q}|
\]

we see that the essential structure underlying the \(\mathcal{P}\)-Hermiticity condition \(\mathcal{P}U = U^\dagger \mathcal{P}\) together with \(\mathcal{P}\mathcal{Q} = -\mathcal{Q}\mathcal{P}\) and \(\mathcal{P}q = q\mathcal{P}\) is the anticommutation of space reflection operator \(\mathcal{P}\) and sign operator \(\mathcal{R}\):

\[
\mathcal{PR} = -\mathcal{R}\mathcal{P}.
\]
From the fact that \mathcal{R} and \mathcal{P} are involutions, $\mathcal{R}^2 = \mathcal{P}^2 = \mathcal{I}$, we find that they can be interpreted as basis (generating) elements of the real Clifford algebra

$$R_{2,0} = \text{span}_{\mathbb{R}}\{I, \mathcal{P}, \mathcal{R}, \mathcal{PR}\}$$

or its complex extension

$$C_{2} = \text{span}_{\mathbb{C}}\{I, \mathcal{P}, \mathcal{R}, \mathcal{PR}\}.$$ (38)

We recall that a real Clifford algebra $R_{m,n}$ with generating elements $\{e_k\}_{k=1}^{m+n}$

$$\{e_i, e_k\} := e_i e_k + e_k e_i = 0 \quad \forall i \neq k$$

$$\varepsilon_i^2 = \mathcal{I} \quad \forall i = 1, \ldots, m, \quad \varepsilon_i^2 = -\mathcal{I} \quad \forall i = m + 1, \ldots, m + n$$

is naturally related to an indefinite form $B(x, y) = \sum_{k=1}^{m} x_k y_k - \sum_{k=m+1}^{m+n} x_k y_k$ over \mathbb{R}^{m+n} with fixed value $m + n$. For $C_{m,n}$ it suffices to work with basis elements of positive type $\varepsilon_i^2 = \mathcal{I}, \forall k = 1, \ldots, m + n$ so that the concrete interpretation as (38) or (39) depends only on whether one works with an \mathbb{R}- or a \mathbb{C}-span.

For a gauged scalar Hamiltonian H_s the Clifford algebra structures become especially clearly pronounced, e.g. when the potentials $A(x)$ and $V(x)$ in (3) under appropriate regularization are shrunken to an ultra-local support of delta-function type (see e.g. [45, 46]). Below we demonstrate this fact on a Hamiltonian with general regularized zero-range potential at the point $x = 0$ as studied, e.g., in [45, 46]:

$$H_{\text{reg}} = p^2 + t_{11}\{\delta, \cdot\}\delta + t_{12}\{\delta', \cdot\}\delta + t_{21}\{\delta, \cdot\}\delta' + t_{22}\{\delta', \cdot\}\delta'.$$ (41)

The concrete operator realization $H_T(T = \|t_{ij}\|) \in L_2(\mathbb{R})$ can be defined by setting

$$H_T = H_{\text{reg}} \mid \mathcal{D}(H_T), \quad \mathcal{D}(H_T) = \{f \in W^2_2(\mathbb{R}\setminus\{0\}) : H_{\text{reg}} f \in L_2(\mathbb{R})\},$$ (42)

where the derivative $p^2 = -\partial_x^2$ acts on $W^2_2(\mathbb{R}\setminus\{0\})$ in the distributional sense and the regularized delta-function δ and its derivative δ' (with support at 0) are defined on the piecewise continuous functions $f \in W^2_2(\mathbb{R}\setminus\{0\})$ as (for more details see, e.g., [46])

$$\langle \delta, f \rangle = [f(0) + f(-0)]/2, \quad \langle \delta', f \rangle = [-f'(0) + f'(-0)]/2.$$ (43)

Denoting the set of \mathcal{PT}-symmetric operators H_T, $[\mathcal{PT}, H_T] = 0$, by $\mathcal{N}_{\mathcal{PT}}$ one immediately verifies that $H_T \in \mathcal{N}_{\mathcal{PT}} \iff t_{11}, t_{22} \in \mathbb{R}, \quad t_{12}, t_{21} \in i\mathbb{R}$. $\mathcal{N}_{\mathcal{PT}}$ contains the subset of \mathcal{P}-self-adjoint Hamiltonians which are determined by the condition $t_{12} = t_{21}$. For their \mathcal{PT}-symmetric potentials $V = t_{11}\{\delta, \cdot\}\delta + t_{12}\{\delta', \cdot\}\delta + t_{21}\{\delta, \cdot\}\delta' + t_{22}\{\delta', \cdot\}\delta'$ it additionally holds

$$\mathcal{PV} = V\mathcal{P}, \quad \langle Vu, v \rangle = \langle u, V^\dagger v \rangle, \quad u, v \in W^2_2(\mathbb{R}\setminus\{0\})$$ (43)

In analogy to the gauged Hamiltonians (3), this \mathcal{P}-self-adjointness can be modified toward a \mathcal{P}_ϕ-self-adjointness with Clifford-rotated involution

$$\mathcal{P}_\phi = \mathcal{P} e^{i\phi/2} = e^{-i\phi R/2} \mathcal{P} e^{i\phi R/2}, \quad \mathcal{R} f(x) := \text{sign}(x) f(x)$$ (44)

so that an appropriate Krein space involution can be constructed for any parameter combination $t_{12} \neq t_{21}$ as well. The Clifford rotation angle ϕ is fixed by the parameters of the matrix T and can be defined from the relation

$$i \sin(\phi) [\det(T) + 4] = 2 \cos(\phi)(t_{12} - t_{21}).$$ (45)
The derivation of this relation is based on the interpretation of the $\mathcal{P}\mathcal{T}$-symmetric operators H_T as extensions of the symmetric operator

$$H_{\text{sym}} = -\frac{\partial^2}{\partial x^2}, \quad \mathcal{D}(H_{\text{sym}}) = \{ u(x) \in W^2_2(\mathbb{R}\setminus\{0\}) \mid u(0) = u'(0) = 0 \}. \quad (46)$$

It will be presented in full detail in [47]. For the specific angle ϕ the $\mathcal{P}\mathcal{T}$-symmetric Hamiltonian H_T in (42) is \mathcal{P}_ϕ-self-adjoint, $\mathcal{P}_\phi H_T^\dagger = H_T \mathcal{P}_\phi$. Accordingly, for the $\mathcal{P}\mathcal{T}$-symmetric potential V it holds (conf. (43))

$$\mathcal{P}_\phi V^\dagger = V \mathcal{P}_\phi, \quad (V u, v) = (u, V^\dagger v), \quad u, v \in W^2_2(\mathbb{R}\setminus\{0\}) \quad (47)$$

with the rotated involution $\mathcal{P}_\phi = e^{-i\phi R/2} \mathcal{P} e^{i\phi R/2}$ built from the Clifford algebra elements (involutions) \mathcal{P} and R. In the special case of $\phi = 0$ equation (45) implies $t_{12} = t_{21}$ so that (47) indeed coincides with (43), and $\mathcal{P}_{\phi=0} = \mathcal{P}$.

Concluding remarks

- The Cartan decomposition used here for the structure analysis of the gauge potentials A can also be applied to the similarity transformation\(^9\) ρ which maps a spectrally diagonalizable $\mathcal{P}\mathcal{T}$-symmetric Hamiltonian H with real spectrum into its equivalent Hermitian operator $h = \rho H \rho^{-1}$. Although, in general, ρ is a highly nonlocal operator, as similarity transformation it can nevertheless be understood as the Lie group element. Within the framework of generalized Cartan decompositions the Hermiticity $\rho = \rho^\dagger$ and positivity $\rho > 0$ clearly indicate that ρ should be an element of some noncompact coset space. For the simple finite-dimensional matrix setups of [33, 34, 37] this non-compactness of ρ was clearly visible in the corresponding $SO(m, \mathbb{C})$ boost-type.

- The possible use of the generalized Jaynes–Cummings setup of [43, 44] as reliable experimental candidate for the implementation of qubit states, together with the structural links indicated here, seems to open a new and interesting playground for experimental implementations of $\mathcal{P}\mathcal{T}$-symmetric and Lie-triple setups as well.

- The symmetric operator H_{sym} in (46) commutes with both generating involutions \mathcal{P} and \mathcal{R} from the Clifford algebra \mathcal{Cl}_2 in (39). It will be shown in [48] that for any involution J constructed in an arbitrary way from \mathcal{Cl}_2-involution elements there necessarily exists a very special subclass of J-self-adjoint extensions of H_{sym} which will have a spectrum filling the whole complex plane \mathbb{C}.

- It is known (see, e.g., section 1.3.5 in [18]) that a Clifford algebra \mathcal{Cl}_m with m basis elements $\{e_1, \ldots, e_m\}$ has a faithful representation as matrix algebra $\mathcal{Cl}_{2k} \sim \mathbb{C}^{2^k \times 2^k}$, $\mathcal{Cl}_{2k+1} \sim \mathbb{C}^{2^k \times 2^k} \oplus \mathbb{C}^{2^k \times 2^k}$. Furthermore, it is known that the J-self-adjoint extensions of a symmetric operator with deficiency indices (n, n) are parameterized by unitary matrices $U \in U(n) \subset \mathbb{C}^{n \times n}$. Once, the extension-related Clifford elements act via a representation in this $\mathbb{C}^{n \times n}$ matrix space the maximal number m of Clifford basis elements in \mathcal{Cl}_m is bounded by the dimensionality of this matrix space and, hence, by $2^k \leq n$ for $m = 2k$ and $2^{k+1} \leq n$ for $m = 2k + 1$. The Hamiltonian H_T in (42) is related to the symmetric operator H_{sym} in (46) with deficiency indices $(2, 2)$ and parameter matrix $U \in U(2)$ [5]. This means that not more than the two Clifford basis elements \mathcal{P} and \mathcal{R} can be naturally associated with this operator extension.

\(^9\) We use the notations from [2, 4, 5, 27] with $\rho^2 = e^{-\mathcal{O}} = \mathcal{P}\mathcal{C}$ and the \mathcal{C}-operator, as usual, as dynamical symmetry $[\mathcal{C}, H] = 0$ and involution $\mathcal{C}^2 = I$.

8
Acknowledgments

UG thanks Steven Duplij for useful discussions on n-ary Lie algebras and DFG for support within the Collaborative Research Center SFB 609. SK acknowledges support by DFFD of Ukraine (F28.1/017) and JRP IZ73Z0 of SCOPES 2009–2012.

References

[1] Bender C M and Boettcher S 1998 Phys. Rev. Lett. 80 5243–6 (arXiv:physics/9712001)
[2] Bender C M 2007 Rep. Prog. Phys. 70 947–1018 (arXiv:hep-th/0703096)
[3] Mostafazadeh A 2002 J. Math. Phys. 43 2814–6 (arXiv:math-ph/0110016)
[4] Bender C M, Brody D C and Jones H F 2002 Phys. Rev. Lett. 89 270401 (arXiv:quant-ph/0208076)
[5] Albeverio S, Günther U and Kuzhel S 2009 J. Phys. A: Math. Theor. 42 105205 (arXiv:0811.0365)
[6] Japaridze G S 2002 J. Phys. A: Math. Gen. 35 1709 (arXiv:quant-ph/0104077)
[7] Albeverio S and Kuzhel S 2004 Lett. Math. Phys. 67 223–38
[8] Langer H and Tretter C 2004 Czech. J. Phys. 54 1113–20
[9] Günther U, Stefani F and Znojil M 2005 J. Math. Phys. 46 063504 (arXiv:math-ph/0501069)
[10] Tanaka T 2006 J. Phys. A: Math. Gen. 39 14175–203 (arXiv:hep-th/0605035)
[11] Gilmore R 2002 Lie Groups, Lie Algebras and Some of Their Applications (New York: Dover)
[12] Lister W G 1952 Trans. Am. Math. Soc. 72 217–42
[13] Harris B 1961 Trans. Am. Math. Soc. 98 148–62
[14] Bertram W 2000 The Geometry of Jordan and Lie Structures (Lecture Notes in Mathematics vol 1754) (Berlin: Springer)
[15] Hodge T L and Parshall B J 2002 Trans. Am. Math. Soc. 354 4339–91
[16] Bertram W and Didry M 2009 J. Gen. Lie Theory Appl. 3 261–84 (arXiv:0710.1543)
[17] de Azcarraga J A and Izquierdo J M 2010 J. Phys. A: Math. Theor. 43 293001 (arXiv:1005.1028)
[18] Dijksma A and Langer H 1996 Linear Operators in Spaces with Indefinite Metric (Chichester: Wiley)
[19] J. Phys. A: Math. Theor. 43 293001 (arXiv:math-ph/0508195)
[20] Bend M, DeWitt-Morette C, Gwo S and Kramer E 2001 Rev. Math. Phys. 13 953–1034 (arXiv:math-ph/0012006)
[21] Borowiec A, Dudek W A and Duplij S 2006 Commun. Algebra 34 1651–70 (arXiv:math/0306210)
[22] Curtright T L, Fairlie D B and Zachos C K 2008 Phys. Lett. B 666 386–90 (arXiv:0806.3515)
[23] De Medeiros P et al 2009 Commun. Math. Phys. 290 871–902 (arXiv:0809.1086)
[24] Günther U and Samsonov B F 2008 Phys. Rev. A 78 042115 (arXiv:0709.0483)
[25] Günther U and Samsonov B F 2008 Phys. Rev. Lett. 101 230404 (arXiv:0807.3643)
[26] Samsonov B F and Negro J 2004 J. Phys. A: Math. Gen. 37 10115 (arXiv:quant-ph/0401092)
[27] Brihaye Y and Nininahazwe A 2006 J. Phys. A: Math. Gen. 39 9817 (arXiv:quant-ph/0506249)
[28] Fink J M et al 2009 Phys. Scr. T 137 014013 (arXiv:0911.3797)
[45] Albeverio S and Kurasov P 2000 Singular Perturbations of Differential Operators (Cambridge: Cambridge University Press)

[46] Albeverio S and Kuzhel S 2005 J. Phys. A: Math. Gen. 38 4975–88.

[47] Günther U, Kuzhel S and Patsiyk O Exceptional points of J-self-adjoint operators: extension theory approach (in preparation)

[48] Kuzhel S and Trunk C On a class of J-self-adjoint operators with empty resolvent set (in preparation)