Fast Execute-Only Memory for Embedded Systems

Zhujia Shen
Department of Computer Science
University of Rochester
Rochester, NY
zhen10@cs.rochester.edu

John Criswell
Department of Computer Science
University of Rochester
Rochester, NY
criswell@cs.rochester.edu

Abstract—Remote code disclosure attacks threaten embedded systems as they allow attackers to steal intellectual property or to find reusable code for use in control-flow hijacking attacks. Execute-only memory (XOM) prevents remote code disclosures, but existing XOM solutions either require a memory management unit that is not available on ARM embedded systems or incur heavy overhead.

We present PicoXOM: a fast and novel XOM system for ARMv7-M and ARMv8-M devices which leverages ARM’s Data Watchpoint and Tracing unit along with the processor’s simplified memory protection hardware. On average, PicoXOM incurs 0.33% performance overhead and 5.89% code size overhead on two benchmark suites and five real-world applications.

I. INTRODUCTION

Remote code disclosure attacks threaten computer systems. Using a buffer readwrite vulnerability [39], not only can a remote attacker steal intellectual property e.g., proprietary application code, for reverse engineering, but she can use the leaked code to locate gadgets for advanced code reuse attacks [35] against systems deploying code layout diversification defenses like Address Space Layout Randomization (ASLR) [30]. Embedded Internet-of-Things (IoT) devices exacerbate the situation; many of these microcontroller-based systems have the same Internet connectivity as desktops and servers but rarely employ protections against attacks [21], [34]. Given the ubiquity of these embedded devices in industrial production and in our lives, making them immune to code disclosure attacks is crucial.

Recent research [6]–[8], [10], [13], [17]–[19], [24], [31], [42] implements execute-only memory (XOM) to defend against code disclosure attacks. XOM enforces memory protection on the code region so that instruction fetching is allowed but reading or writing instructions as data is disallowed. This simple and effective defense, however, is not natively available on low-end microcontrollers. For example, the ARMv7-M and ARMv8-M architectures used in mainstream devices support memory protection but not execute-only (XO) permissions [3], [4]. uXOM [24] implements XOM on ARM embedded systems but incurs non-negligible performance and code size overhead (7.3% and 15.7%, respectively) as it transforms most load instructions into special unprivileged load instructions. Given embedded systems’ real-time constraints and limited memory resources, we argue an embedded XOM solution must have close-to-zero performance penalty and less resource usage overhead to be usable in practice.

This paper presents PicoXOM, a fast and novel XOM system for ARMv7-M and ARMv8-M devices using a memory protection unit (MPU) and on-chip debugging facilities. Specifically, the Data Watchpoint and Tracing (DWT) unit is one of the debug features available on ARMv7-M and ARMv8-M architectures [3], [4]. PicoXOM uses the MPU to enforce write protection on code and uses the address range matching capability of the DWT unit to monitor read accesses to the code region. On a matched access, the DWT unit generates a debug monitor exception indicating an illegal code read, while unmatched accesses execute normally without slowdown. As PicoXOM disallows all read accesses to the code segment, it includes a minimal compiler change that removes all data embedded in the code segment.

We built a prototype of PicoXOM and evaluated it on an ARMv7-M board with two benchmark suites and five real-world embedded applications. Our results show that PicoXOM adds negligible performance overhead of 0.33% and only has a small code size increase of 5.89% while providing strong protection against code disclosure attacks. To summarize, our contributions are:

- PicoXOM: a novel method of utilizing the ARMv7-M and ARMv8-M debugging facilities to implement XOM. To the best of our knowledge, this is the first use of ARM debug features for security purposes.
- A prototype implementation of PicoXOM on ARMv7-M.
- An evaluation of PicoXOM’s performance and code size impact on the BEEBS benchmark suite, the CoreMark-Pro benchmark suite, and five real-world embedded applications, showing that PicoXOM only incurs 0.33% runtime overhead and 5.89% code size overhead.

The rest of the paper is organized as follows. Section II provides background information on ARMv7-M and ARMv8-M. Section III describes our threat model and assumptions. Sections IV and V present the design and implementation of PicoXOM, respectively. Section VI reports on our evaluation of PicoXOM, Section VII discusses related work, and Section VIII concludes the paper and discusses future work.

II. BACKGROUND

PicoXOM targets ARMv7-M and ARMv8-M architectures which cover a wide range of embedded devices on the market, and it leverages unique features of these architectures. This...
Fig. 1. Memory Layout of ARMv7-M and ARMv8-M Architectures

section provides important background material on the instruction sets, execution modes, address space layout, memory protection mechanisms, and on-chip debug support found in ARMv7-M and ARMv8-M.

A. Instruction Sets and Execution Modes

ARMv7-M [3] and ARMv8-M [4] are the mainstream M-profile ARM architectures for embedded microcontrollers. Unlike ARM’s A and R profiles, they only support the Thumb instruction set which is a mixture of 16-bit and 32-bit densely-encoded Thumb instructions.

ARMv7-M [3] supports two execution modes: thread mode (unprivileged) and handler mode (privileged). An ARMv7-M processor always executes exception handlers in privileged mode, while application code is allowed to execute in either mode. Code running in unprivileged mode can raise the current execution mode to privileged mode using a supervisor call instruction (SVC). This is typically how ARMv7-M realizes system calls. However, embedded applications usually run in privileged mode to reduce the cost of system calls.

ARMv8-M inherits all the features of ARMv7-M and adds a security extension called TrustZone-M [4] that isolates software into a secure world and a non-secure world; this effectively doubles the execution modes as software can be executing in either world, privileged or unprivileged.

B. Address Space Layout

Both ARMv7-M [3] and ARMv8-M [4] architectures operate on a single 32-bit physical address space and use memory-mapped I/O to access external devices and peripherals. As Figure 1 shows, the address space is generally divided into eight consecutive 512 MB regions; the Code region maps flash memory/ROM that contains code and read-only data, the SRAM region typically contains heaps and stacks, and the System region holds memory-mapped system registers including a Private Peripheral Bus (PPB) subregion. The PPB subregion contains all critical system registers such as MPU configuration registers and the Vector Table Offset Register (VTOR). All other regions are for memory-mapped peripherals and external devices. Note that ARMv7-M and ARMv8-M do not have special privileged instructions to access system registers mapped in the System region; instead, they can be modified by regular load and store instructions.

C. Memory Protection Unit

ARMv7-M and ARMv8-M devices do not have a memory management unit (MMU) that supports virtual memory; instead, they may have an optional MPU that can be configured to enforce region-based access control on physical memory [3], [4]. A typical ARMv7-M device supports up to 8 MPU regions, each of which is configurable with a base address, a power-of-two size from 32 bytes to 4 GB, and separate access permissions (R, W, and X) for privileged and unprivileged modes. With TrustZone-M, ARMv8-M has separate MPU configurations for secure and non-secure worlds [4]. MPU configuration registers are in the PPB region.

There are, however, limitations on how one can configure access permissions for an MPU region. First, the privileged access permission cannot be more restrictive than the unprivileged one; this prohibits an MPU region with, for example, unprivileged read-write and privileged read-only permissions. Second, the PPB region is always privileged-accessible, unprivileged-inaccessible, and non-executable regardless of the MPU configuration. Third, and most importantly, the MPU does not have the execute-only permission necessary to support XOM; an MPU region is executable only if it is configured as both readable and executable.

D. Debug Support

Debug support is another processor feature that ARMv7-M and ARMv8-M devices can optionally support. Of all components in the architecture’s debug support, we focus on the DWT unit [3], [4] which provides groups of debug registers called DWT comparators that support instruction/data address matching, PC value tracing, cycle counters, and many other functionalities. What is most important to PicoXOM is the ability of a DWT comparator to match an address range for data accesses; if the processor reads from or writes to an address within a specified range, the DWT comparator will halt the software execution or generate a debug monitor exception.

If, instead, the access does not fall into the specified range, it will get no performance impact and proceed as normal. If multiple DWT comparators are configured for data address range matching, an access that hits any of them will trap.

On ARMv7-M, a DWT comparator can be configured to match an address range by programming its base address with a mask that specifies a power-of-two range size [3]. ARMv8-M implements DWT address range matching by using two consecutively numbered DWT comparators [4], where the first one specifies the lower bound of the address range and the second one specifies the upper bound.

III. Threat Model and System Assumptions

We assume a buggy but unmalicious application running on an embedded device with memory safety vulnerabilities that allow a remote attacker to read or write arbitrary memory locations. The attacker wants to either steal proprietary application code for purposes like reverse engineering or learn the application code layout in order to launch code reuse attacks such as Return-into-libc [40] and Return-Oriented Programming (ROP) [33] attacks. Physical and offline attacks are out of scope as we believe such attacks can be stopped by orthogonal defenses [22], [34]. Our threat model also assumes the application code and data is diversified, using techniques
such as those in EPOXY [12]. Therefore, remotely tricking the buggy application into reading its code content becomes a reasonable choice for the attacker.

We assume that the target embedded device supports MPU and DWT with enough configurable MPU regions and DWT comparators. We assume that the device is running a single bare-metal application statically linked with libraries, boot-sequences, and exception handlers. The application is assumed to run in privileged mode, as Section II-A dictates. For ARMv8-M devices with TrustZone-M, the application is assumed to reside in the non-secure world, while software in the secure world is trusted.

IV. DESIGN

Figure 2 shows PicoXOM’s overall design. PicoXOM consists of three components that together implement a strong and efficient XOM on ARM embedded devices. First, PicoXOM uses a specially-configured DWT configuration to detect read accesses to program code. Second, it utilizes a special MPU configuration that prevents write access to the code region and prevents writeable memory from being executable. Third, it employs a small change to the LLVM compiler [25] to eliminate constant data embedded within the code region.

To use PicoXOM, an embedded application developer merely compiles her code with the PicoXOM compiler and installs it on her embedded ARM device. On boot, the PicoXOM run-time configures MPU regions and DWT comparators using PicoXOM’s MPU and DWT configurations and then passes control to the compiled embedded software.

A. W⊕X with MPU

PicoXOM requires that memory either be writeable or executable but not both i.e., the W⊕X policy [29]; otherwise, an attacker could simply inject code or overwrite code to achieve arbitrary code execution. To enforce W⊕X, PicoXOM configures the MPU regions at device boot time so that the code region is readable and executable, read-only data is read-only, and RAM regions are readable and writable. Note that the MPU cannot configure memory to be executable but unreadable; the MPU can configure a memory region as executable only if it is also configured as readable [3], [4].

PicoXOM runs application code in privileged mode and configures a background MPU region to allow read and write access to the remainder of the address space such as peripherals. This, however, leaves critical memory-mapped system registers in the PPB (such as MPU configuration registers and VTOR) open to modifications, which can be leveraged by an attacker to turn off MPU protections or, even worse, implant a custom exception handler. Section IV-B discusses how PicoXOM prevents such cases.

B. R⊕X with DWT

PicoXOM leverages ARM’s DWT comparators to watch over the whole code region for read accesses. As Section II-D states, each (pair) of DWT comparators available on an ARM microcontroller can be configured to generate a debug monitor exception when a memory access of a specified type to an address within a specified range occurs. PicoXOM therefore uses one (pair) of the available DWT comparators as follows:

1) At device boot time, PicoXOM configures a DWT comparator register (say DWT_COMP<n>) to hold the lower bound of the code region.

2) PicoXOM then sets the address-matching range by either writing the upper bound of the code region to the next DWT comparator register DWT_COMP<n+1> (for ARMv8-M) or writing the correct mask to the corresponding DWT mask register DWT_MASK<n> (for ARMv7-M).

3) PicoXOM enables the DWT comparator (pair) by configuring the DWT function register DWT_FUNC<n> for data address reads. For ARMv8-M devices, DWT_FUNC<n+1> is also configured in order to form address range matching.

4) Finally, PicoXOM enables the debug monitor exception by setting the MON_EN bit (bit 16) of the Debug Exception and Monitor Control Register DEMCR.

With a DWT comparator (pair) set up for monitoring read accesses to the code region, R⊕X is effectively enforced. However, as Section IV-A stated, the DWT registers and DEMCR are also memory-mapped system registers which could be modified by vulnerable application code. An attacker could leverage such a buffer overflow vulnerability to reconfigure the debug registers to neutralize PicoXOM.

We can address the issue in two ways. One approach is to break the assumption that PicoXOM runs everything in privileged mode. As code running in unprivileged mode has no access to the PPB region regardless of the MPU configuration, the system registers that PicoXOM must protect (e.g., MPU configuration registers, DWT registers, DEMCR, and VTOR) are all in the PPB region and therefore inherently safe from unprivileged tampering. However, this approach requires PicoXOM to implement system calls that support privileged operations which application code could previously perform, incurring expensive context switching between privilege modes. The other approach is to use extra (pairs of) DWT comparators to prevent write to critical system registers. For example, on ARMv7-M, we can configure one DWT comparator to write-protect the System Control Block SCB (0xE000ED00 – 0xE000ED8F) and DEMCR (0xE000EDFC) by setting the
forms such load constants into MOVW scheme of the Thumb instruction set [3], [4]. PicoXOM trans-

Fig. 3. Constant Island Removal of a Load Constant

L: .word 0x12345678

movw r0,#0x5678

movt r0,#0x1234

... Explicit instructions that calculate which branch instruction to jump to and perform an indirect jump.

L: ... L: ... L: ... L: ...

mov r0,-L

Fig. 4. Constant Island Removal of a Jump-Table Jump

L0: ... L1: ... L2: ... L3: ...

tbb [pc,r2]

.byte (L1-L0)/2
.byte (L2-L0)/2
.byte (L3-L0)/2

... explicit instructions that calculate which branch instruction to jump to and perform an indirect jump.

L0: ... L1: ...

adr.w r1,-L0

add.w r1,r1,r2,lsl #2

; indirect jump

mov pc,r1

b.w L1

b.w L2

b.w L3

... Explicit instructions that calculate which branch instruction to jump to and perform an indirect jump.

V. IMPLEMENTATION

We built our PicoXOM prototype for the ARMv7-M architecture. Our prototype provides MPU and DWT configurations as a run-time component written in C. We implemented constant island removal as a simple intermediate representation (IR) pass in the LLVM 10.0 compiler [25]. The constant island removal pass simply uses the existing −execute-only option in LLVM’s Clang front-end and passes it along to the link-time optimization (LTO) code generator. Our prototype runs the constant island removal pass when linking the IR of the application, libraries (e.g., newlib and compiler-rt), and MPU and DWT configurations; this ensures that all code has no constant islands. Our prototype adds 58 source lines of C++ code to LLVM and has 177 source lines of C code in the PicoXOM run-time. We leave the PicoXOM implementation on ARMv8-M for future work.

Different ARM microcontrollers support different numbers of MPU regions and DWT comparators, and the maximum ranges of their DWT comparators may vary. Our prototype runs on an STM32F469 Discovery board which supports up to 8 MPU regions [37] and 4 DWT comparators [38]. Each DWT comparator can only watch over a maximum address range of 32 KB (a maximal mask value of 15), limiting our prototype to the following two options:

1) Use all 4 DWT comparators to support a maximum code size of 128 KB; the application must run in unprivileged mode in order for the critical system registers to be write-protected.

2) Configure one DWT comparator to write-protect the DWT registers (0xE0001000 – 0xE0001FFF) and another to write-protect the SCB (0xE000ED00 – 0xE000ED8F) and DEMCR (0xE000EDFC). This protects a maximum code size of 64 KB using the remaining 2 DWT comparators.

To accommodate a wider range of applications on our board with less performance loss, our prototype automatically chooses one option over the other based on the application code size. It rejects an application if the code size exceeds our board’s 128 KB limit.

VI. EVALUATION

We evaluated PicoXOM on our STM32F469 Discovery board [38] which has an ARM Cortex-M4 processor implementing the ARMv7-M architecture that can run as fast as 180 MHz. The board comes with 2 MB of flash memory, 384 KB of SRAM, and 16 MB of SDRAM, and has an LCD screen and a microSD card slot. We configured the board to run at its fastest speed to understand the maximum impact that PicoXOM can incur on performance.

To evaluate PicoXOM’s performance and code size overhead, we used the BEEBS [28] and CoreMark-Pro [15] benchmark suites and five embedded applications (FatFs-RAM, FatFs-uSD, LCD-Animation, LCD-uSD, and PinLock). BEEBS targets energy consumption measurement for embedded platforms and is widely used in evaluating embedded systems including uXOM [24], the state-of-the-art XOM
implementation on ARM microcontrollers. It consists of a wide range of programs characterizing different workloads seen on embedded systems, including AES encryption, data compression, and matrix multiplication. Of all 80 benchmarks in BEEBS, we picked 42 benchmarks that have an execution time longer than 500 milliseconds when executed for 10,240 iterations. CoreMark-Pro is a processor benchmark suite that works on both high-performance processors and low-end microcontrollers, featuring five integer benchmarks (e.g., fast Fourier transform JPEG image compression, XML parser, and SHA-256) and four floating-point benchmarks (e.g., fast Fourier transform and neural network) that stress the CPU and memory. FatFs-RAM and FatFs-uSD operate a FAT file system on SDRAM and an SD card, respectively. LCD-Animation displays a single animated picture loaded from an SD card. LCD-uSD displays multiple static pictures from an SD card with fading transitions. PinLock simulates a smart lock reading user input from a serial port and deciding whether to unlock (send an I/O signal) based on whether the SHA-256 hashed input matches a precomputed hash. The above five applications represent real-world use cases of embedded devices and were also used to evaluate previous work [2], [11], [12].

We used the LLVM compiler infrastructure [25] to compile benchmarks and applications into the default non-XO format, with MPU and DWT disabled; this is our baseline. We then used PicoXOM’s configuration, i.e. enabling MPU, DWT, and constant island removal. Note that with PicoXOM, none of the benchmarks and applications exceeds the code size limitation (128 KB) on our board. Only jpeg-rose7-preset in CoreMark-Pro has a code size larger than 64 KB and thereby has to run in unprivileged mode.

	Baseline (ms)	PicoXOM (\times)	Baseline (ms)	PicoXOM (\times)
aha-compress	821	1.0000	nettle-arcfour	814
aha-mont64	856	0.9988	picojpeg	43,864
bubblesort	4,392	1.0000	qrduno	40,877
crc32	956	1.0000	rijndael	70,024
cli-string	630	1.0000	sglib-arraybin	808
cli-vector	786	0.9987	sglib-arrayhea	1,039
cubic	35,140	1.0000	sglib-arrayqui	735
dijkstra	36,582	1.0000	sglib-dlist	1,000
dtoa	631	1.0127	sglib-hashable	1,302
edn	3,167	1.0003	sglib-latinuset	2,030
fasta	16,900	0.9999	sglib-listsort	1,265
fir	16,048	1.0000	sglib-queue	1,177
frac	5,858	1.0323	sglib-rtree	4,908
huffbench	20,682	0.9986	sre	2,761
levenshtein	2,685	1.0000	sqrt	38,506
matmul-float	1,150	0.9991	st	20,906
matmul-int	4,532	1.0000	sst_perlin	5,132
mergesort	24,353	1.0062	trio-sprintf	697
nbody	128,126	1.0090	trio-sscanf	1,064
ndes	2,039	0.9995	whetstone	112,754
nettle-aeas	5,687	0.9998	wikisort	113,195

Min (\times) | 0.9873 |
Max (\times) | 1.0748 |
Geomean (\times) | 1.0046 |

Fig. 5. Performance Overhead on Real-World Applications

A. Performance

We measured PicoXOM’s performance on our benchmarks and applications. We configured each BEEBS benchmark to print the time, in milliseconds, for executing its workload 10,240 times. We ran each BEEBS benchmark 10 times and report the average execution time. Each CoreMark-Pro benchmark is pre-programmed to print out the execution time in a similar way; the difference is that we configure each benchmark to run a minimal number of iterations so that the program takes at least 10 seconds to run for each experimental trial. Again, we ran each benchmark 10 times and report the average execution time. For the real-world applications, we ran FatFs-RAM 10 times and report the average execution time. The other applications exhibit higher variance in their execution times as they access peripherals like an SD card, an LCD screen, and a serial port, so we ran them 20 times and report the average with a standard deviation. All other programs exhibit a standard deviation of zero.

Tables I and II and Figure 5 present PicoXOM’s performance on BEEBS, CoreMark-Pro, and the five real-world applications, respectively; Figure 5 shows baseline execution time in milliseconds on top of the Baseline bars. Overall, PicoXOM incurs negligible performance overhead of 0.33%: 0.46% on BEEBS with a maximum of 7.48%, –0.11% on CoreMark-Pro with a maximum of 0.17%, and 0.02% on applications with a maximum of 0.22%. 13 programs exhibit a minor speedup with PicoXOM. We re-ran our experiments with the MPU and DWT disabled so that the only change to performance is due to constant island removal and the alignment of the code segment (the DWT on ARMv7-M requires the monitored address range to be aligned by its power-of-two size). In this configuration, we observed the same speedups, so either constant island removal and/or code...
code size alignment is causing the slight performance improvement.

B. Code Size

We measured the code size of benchmarks and applications by using the size utility on generated binaries and collecting the .text segment size.

Table III and Figure 6 show the baseline code size and the overhead incurred by PicoXOM on BEEBS, CoreMark-Pro, and the five real-world applications, respectively. Due to space, we only present summarized results for BEEBS. On average, PicoXOM increases the code size by 6.14% on BEEBS, 4.39% on CoreMark-Pro, and 6.52% on the real-world applications, with a 5.89% overall overhead. We studied PicoXOM’s code size overhead and discovered that constant island removal caused the majority of the code size overhead, especially for programs with relatively large code bases like CoreMark-Pro. In fact, the additional code that sets up the MPU and DWT only contributes a minor part of the overhead (1.22% and 0.53% on average, respectively).

VII. RELATED WORK

Two other XOM implementations exist for ARM microcontrollers. uXOM [24] provides XOM for ARM Cortex-M systems by transforming loads into special unprivileged load instructions and configuring the MPU to make the code region unreadable by unprivileged loads. uXOM similarly transforms stores to protect the memory-mapped MPU configuration registers. Since some loads and stores do not have unprivileged counterparts, transforming them requires the compiler to insert additional instructions, causing the majority of uXOM’s overhead. PicoXOM is more efficient in both performance (0.33% compared to uXOM’s 7.3%) and code size (5.89% compared to uXOM’s 15.7%) as no such transformation is needed. A trade-off for PicoXOM is the code size limit on some ARMv7-M devices; we envision no such limit on ARMv8-M. PCROP [36] is a programmable feature of the flash memory which prevents the flash memory from being read out and modified by application code. However, PCROP is only available on some STMicroelectronics devices and cannot be used for other types of memory. In contrast, PicoXOM relies on the MPU and DWT features [3], [4] which can be found on most conforming devices and can protect code stored in any type of memory.

Hardware-assisted XOM has been explored on other architectures. The AArch64 [5] and RISC-V [32] page tables natively support XO permissions. NORAX [10] enables XOM for commercial-off-the-shelf binaries on AArch64 that have constant islands using static binary instrumentation and runtime monitoring. Various approaches [8], [13], [17]–[19], [42] leverage features of the MMU on Intel x86 processors to implement XOM. None of these approaches are applicable on ARM embedded devices lacking an MMU. Lie et al. [26] proposed an architecture with memory encryption to mimic XOM, but it only provides probabilistic guarantees and cannot be directly applied to current embedded systems. Compared to systems lacking native hardware XOM support, PicoXOM is faster as it has nearly no overhead.

Software can emulate XOM. XnR [6] maintains a sliding window of currently executing code pages and keeps only these pages accessible. It still allows read accesses to a subset of code pages and may incur higher overhead for a smaller sliding window size due to frequent page permission changes. LR² [7] and kR²X [31] instrument all load instructions to prevent them from reading the code segment. While these software XOM approaches can generally be ported to embedded devices, they can be bypassed by attacker-manipulated control flow and are less efficient than hardware-assisted XOM [24].

There are also methods of hardening embedded systems. Early versions of SAFECode [14] enforced spatial and temporal memory safety on embedded applications, and nesCheck [27] uses static analysis to build spatial memory safety for simple nesC [16] applications running on TinyOS [20]. PicoXOM enforces weaker protection than memory safety but supports arbitrary C programs (unlike SAFECode and nesCheck) and does not rely on heavy static analysis like nesCheck. RECFISH [41], µRAI [2], and Silhouette [43] mitigate control-flow hijacking attacks on embedded systems. They protect forward-edge control flow using coarse-grained CFI [1] and backward-edge control flow by using either a protected shadow stack [9] or a return address encoding mechanism. EPOXY [12] randomizes the order of functions and the location of a modified safe stack from CPI [23] to resist control-flow hijacking attacks on bare-metal microcontrollers. These systems do not enforce XOM and are still vulnerable to forward-edge corruptions; they can incorporate PicoXOM’s techniques to mitigate forward-edge attacks with negligible additional overhead.

VIII. CONCLUSIONS AND FUTURE WORK

This paper presented PicoXOM: a fast and novel XOM system for ARMv7-M and ARMv8-M devices which leverages ARM’s MPU and DWT unit. PicoXOM incurs an average

![Fig. 6. Code Size Overhead on CoreMark-Pro and Real-World Applications](image-url)
performance overhead of 0.33% and an average code size overhead of 5.89% on the BEEBS and CoreMark-Pro benchmarks suites and five real-world applications.

In future work, we will investigate techniques to ensure that randomization techniques utilizing PicoXOM are effective against brute-force attacks. Embedded systems have limited code placement options for code layout randomization. We will investigate whether the entropy is sufficient and develop techniques to strengthen code randomization if necessary.

REFERENCES

[1] M. Abadi, M. Budiu, U. Erlingsson, and J. Ligatti, “Control-flow integrity,” in Proceedings of the 12th ACM Conference on Computer and Communications Security, ser. CCS ’05. Alexandria, VA: ACM, 2005, pp. 340–353. [Online]. Available: https://doi.org/10.1145/1102120.1102165

[2] N. S. Almakhdhub, A. A. Clements, S. Bagchi, and M. Payer, “µRAI: Securing embedded systems with return address integrity,” in Proceedings of the 20th Network and Distributed System Security Symposium, ser. NDSS ’20. San Diego, CA: Internet Society, 2020. [Online]. Available: https://doi.org/10.14722/ndss.2020.24016

[3] ARMv7-M Architecture Reference Manual, Arm Holdings, December 2014, DDI 0403E.b.

[4] ARMv8-M Architecture Reference Manual, Arm Holdings, October 2015, DDI 0553B.i.

[5] ARMv8 Reference Manual: for Armv8-A architecture profile, Arm Holdings, March 2020, DDI 0487Fb.

[6] M. Backes, T. Holz, B. Kollenda, P. Koppe, S. Nünberger, and J. Pevny, “You can run but you can’t read: Preventing disclosure exploits in executable code,” in Proceedings of the 21st ACM Conference on Computer and Communications Security, ser. CCS ’14. Scottsdale, AZ: ACM, 2014, pp. 1342–1353. [Online]. Available: https://doi.org/10.1145/2660267.2660378

[7] K. Braden, L. Davi, C. Liebchen, A.-R. Sadeghi, S. Crane, M. Franz, and P. Larsen, “Leakage-resilient layout randomization for mobile devices,” in Proceedings of the 2016 Network and Distributed System Security Symposium, ser. NDSS ’16. San Diego, CA: Internet Society, 2016. [Online]. Available: https://doi.org/10.14722/ndss.2016.23364

[8] S. Brookes, R. Denz, M. Osterloh, and S. Taylor, “ExOShim: Preventing memory disclosure using execute-only kernel code,” in Proceedings of the 11th International Conference on Cyber Warfare and Security, ser. ICSW ’15. Boston, MA: ACPI, 2016, pp. 56–64.

[9] N. Burow, X. Zhang, and M. Payer, “SoK: Shining light on shadow stacks,” in Proceedings of the 2019 IEEE Symposium on Security and Privacy, ser. SP ’19. San Francisco, CA: IEEE Computer Society, 2019, pp. 985–999. [Online]. Available: https://doi.org/10.1109/SP.2019.00076

[10] Y. Chen, D. Zhang, R. Wong, R. Qiao, A. M. Azab, L. Lu, H. Vijayakumar, and W. Shen, “NORAX: Enabling execute-only memory for COTS binaries on ARM64,” in Proceedings of the 2017 IEEE Symposium on Security and Privacy, ser. SP ’17. San Jose, CA: IEEE Computer Society, 2017, pp. 304–319. [Online]. Available: https://doi.org/10.1109/SP.2017.30

[11] A. A. Clements, N. S. Almakhdhub, S. Bagchi, and M. Payer, “ACES: Automatic compartments for embedded systems,” in Proceedings of the 27th USENIX Security Symposium, ser. Security ’18. Baltimore, MD: USENIX Association, 2018, pp. 65–82. [Online]. Available: https://www.usenix.org/conference/usenixsecurity18/presentation/clements

[12] A. A. Clements, N. S. Almakhdhub, K. S. Saab, P. Sriwastava, J. Koo, S. Bagchi, and M. Payer, “Protecting bare-metal embedded systems with privilege overlays,” in Proceedings of the 2017 IEEE Symposium on Security and Privacy, ser. SP ’17. San Jose, CA: IEEE Computer Society, 2017, pp. 289–303. [Online]. Available: https://doi.org/10.1109/SP.2017.37

[13] S. Crane, C. Liebchen, A. Homescu, L. Davi, P. Larsen, A.-R. Sadeghi, S. Brunthaler, and M. Franz, “Readauctor: Practical code randomization resilient to memory disclosure,” in Proceedings of the 2015 IEEE Symposium on Security and Privacy, ser. SP ’15. San Jose, CA: IEEE Computer Society, 2015, pp. 763–780. [Online]. Available: https://doi.org/10.1109/SP.2015.52

[14] D. Dhurjati, S. Kowshik, V. Adve, and C. Lattner, “Memory safety without garbage collection for embedded applications,” ACM Transactions in Embedded Computing Systems, vol. 4, no. 1, pp. 73–111, February 2005. [Online]. Available: https://doi.org/10.1145/1053271.1053275

[15] EEMBC. CoreMark-Pro: An EEMBC benchmark. [Online]. Available: https://www.eembc.org/coremark-pro

[16] D. Gay, P. Levis, R. von Behren, M. Welsh, E. Brewer, and D. Culler, “The nesC language: A holistic approach to networked embedded systems,” in Proceedings of the ACM SIGPLAN 2003 Conference on Programming Language Design and Implementation, ser. PLDI ’03. San Diego, CA: ACM, 2003, pp. 1–11. [Online]. Available: https://doi.org/10.1145/781131.781133

[17] J. Gionta, W. Enck, and P. Ning, “HideM: Protecting the contents of userspace memory in the face of disclosure vulnerabilities,” in Proceedings of the 5th ACM Conference on Data and Application Security and Privacy, ser. CODASPY ’15. San Antonio, TX: ACM, 2015, pp. 325–336. [Online]. Available: https://doi.org/10.1145/2690026.2699107

[18] J. Gionta, W. Enck, and P. Ning, “HideM: Protecting the contents of userspace memory in the face of disclosure vulnerabilities,” in Proceedings of the 5th ACM Conference on Data and Application Security and Privacy, ser. CODASPY ’15. San Antonio, TX: ACM, 2015, pp. 325–336. [Online]. Available: https://doi.org/10.1145/2690026.2699107

[19] Y. Jin, G. Hernandez, and D. Buentello, “Smart Nest Thermostat: A smart spy in your home,” in Black Hat USA, 2014.

[20] D. E. Kouicem, A. Bouabdallah, and H. Lakhdar, “Intel’s [Online]. Available: https://doi.org/10.1016/j.ijcm.2018.03.012

[21] V. Kuznetsov, L. Szekeres, M. Payer, G. Candea, R. Sekar, and D. Song, “Code-pointer integrity,” in Proceedings of the 11th USENIX Symposium on Operating Systems Design and Implementation, ser. OSDI ’14. Brookfield, CO: USENIX Association, 2014, pp. 147–163. [Online]. Available: https://www.usenix.org/conference/osdi14/technical-sessions/presentation/kuznetsov

[22] D. Kwon, J. Shin, G. Kim, B. Lee, Y. Cho, and Y. Paek, “uXOM: Efficient execute-only memory on ARM Cortex-M,” in Proceedings of the 28th USENIX Symposium on Security, ser. USENIX Security ’14. Santa Clara, CA: USENIX Association, 2014, pp. 231–247. [Online]. Available: https://www.usenix.org/conference/usenixsecurity14/presentation/kwon

[23] C. Lattner and V. Adve, “LLVM: A compilation framework for lifelong program analysis & transformation,” in Proceedings of the 2nd International Symposium on Code Generation and Optimization: Feedback-Directed and Runtime Optimization, ser. CGO ’04. Palo Alto, CA: IEEE Computer Society, 2004. [Online]. Available: https://doi.org/10.1109/CGO.2004.1281665

[24] D. Lie, C. Thekath, M. Mitchell, P. Lincoln, D. Boneh, J. Mitchell, and M. Horowitz, “Architectural support for copy and tamper resistant software,” in Proceedings of the 9th International Conference on Architectural Support for Programming Languages and Operating Systems, ser. ASPLOS ’00. Cambridge, MA: ACM, 2000, pp. 93–104. [Online]. Available: https://doi.org/10.1145/378993.379006

[25] D. Midi, M. Payer, and E. Bertino, “Memory safety without garbage collection for embedded applications,” in Proceedings of the 20th USENIX Symposium on Security, ser. Security ’19. Santa Clara, CA: USENIX Association, 2019, pp. 231–247. [Online]. Available: https://doi.org/10.1145/3378993.3379006

[26] J. Pallister, S. Hollis, and J. Bennett, “BEEBS: Open benchmarks for energy measurements on embedded platforms,” in Proceedings of the 2015 IEEE Symposium on Security and Privacy, ser. SP ’15. San Jose, CA: IEEE Computer Society, 2015, pp. 763–780. [Online]. Available: https://doi.org/10.1109/SP.2015.52

[27] PaX Team. (2000) Non-executable pages design & implementation. [Online]. Available: https://pax.grsecurity.net/docs/noexec.txt
[30] ——. (2001) Address space layout randomization. [Online]. Available: https://pax.grsecurity.net/docs/aslr.txt

[31] M. Pomonis, T. Petsios, A. D. Keromytis, M. Polychronakis, and V. P. Kemerlis, “kR˚X: Comprehensive kernel protection against just-in-time code reuse,” in Proceedings of the 12th European Conference on Computer Systems, ser. EuroSys ’17. Belgrade, Serbia: ACM, 2017, pp. 420–436. [Online]. Available: https://doi.org/10.1145/3064176.3064216

[32] The RISC-V Instruction Set Manual, Volume II: Privileged Architecture, RISC-V Foundation, June 2019, Document Version 20190608.

[33] R. Roemer, E. Buchanan, H. Shacham, and S. Savage, “Return-oriented programming: Systems, languages, and applications,” ACM Transactions on Information and System Security, vol. 15, no. 1, pp. 2:1–2:34, March 2012. [Online]. Available: https://doi.org/10.1145/2133375.2133377

[34] A.-R. Sadeghi, C. Wachsmann, and M. Waidner, “Security and privacy challenges in industrial Internet of Things,” in Proceedings of the 52nd Annual Design Automation Conference, ser. DAC ’15. San Francisco, CA: ACM, 2015, pp. 54:1–54:6. [Online]. Available: https://doi.org/10.1145/2744769.2747942

[35] K. Z. Snow, F. Monrose, L. Davi, A. Dmitrienko, C. Liebchen, and A.-R. Sadeghi, “Just-in-time code reuse: On the effectiveness of fine-grained address space layout randomization,” in Proceedings of the 2013 IEEE Symposium on Security and Privacy, ser. SP ’13. San Francisco, CA: IEEE Computer Society, 2013, pp. 574–588. [Online]. Available: https://doi.org/10.1109/SP.2013.45

[36] AN4701 Application Note: Proprietary Code Read-Out Protection on Microcontrollers of the STM32F4 Series, STMicroelectronics, November 2016, DocID027893 Rev 3.

[37] PM0214 Programming Manual: STM32 Cortex®-M4 MCUs and MPUs Programming Manual, STMicroelectronics, March 2020, PM0214 Rev 10.

[38] UM1932 User Manual: Discovery Kit with STM32F469NI MCU, STMicroelectronics, April 2020, UM1932 Rev 3.

[39] R. Strackx, Y. Younan, P. Philippaerts, F. Piessens, S. Lachmund, and T. Walter, “Breaking the memory secrecy assumption,” in Proceedings of the 2nd European Workshop on System Security, ser. EuroSec ’09. Nuremburg, Germany: ACM, 2009, pp. 1–8. [Online]. Available: https://doi.org/10.1145/1519144.1519145

[40] M. Tran, M. Etheridge, T. Bletsch, X. Jiang, V. Freeh, and P. Ning, “On the expressiveness of return-into-libc attacks,” in Proceedings of the 14th International Symposium on Recent Advances in Intrusion Detection, ser. RAID ’11. Menlo Park, CA: Springer-Verlag, 2011, pp. 121–141. [Online]. Available: https://doi.org/10.1007/978-3-642-23644-0_7

[41] R. J. Walls, N. F. Brown, T. Le Baron, C. A. Shue, H. Okhravi, and B. C. Ward, “Control-flow integrity for real-time embedded systems,” in Proceedings of the 31st Euromicro Conference on Real-Time Systems, ser. ECRTS ’19. Stuttgart, Germany: Schloss Dagstuhl–Leibniz-Zentrum füër Informatik, 2019, pp. 2:1–2:24. [Online]. Available: https://doi.org/10.4230/LIPIcs.ECRTS.2019.2

[42] M. Zhang, R. Sahita, and D. Liu, “XOM-Switch: Hiding your code from advanced code reuse attacks in one shot,” in Black Hat Asia, 2018.

[43] J. Zhou, Y. Du, Z. Shen, L. Ma, J. Criswell, and R. J. Walls, “Silhouette: Efficient protected shadow stacks on embedded systems,” arXiv preprint arXiv:1910.12157, October 2019. [Online]. Available: https://arxiv.org/abs/1910.12157