Glycated albumin suppresses glucose-induced insulin secretion by impairing glucose metabolism in rat pancreatic β-cells

Takayuki Shiraki1, Yoshikazu Miura2, Tokihiko Sawada1*, Toshie Okada1, Yuhki Sakuraoka1, Takashi Muto2 and Keiichi Kubota1

Abstract

Background: Glycated albumin (GA) is an Amadori product used as a marker of hyperglycemia. In this study, we investigated the effect of GA on insulin secretion from pancreatic β cells.

Methods: Islets were collected from male Wistar rats by collagenase digestion. Insulin secretion in the presence of non-glycated human albumin (HA) and GA was measured under three different glucose concentrations, 3 mM (G3), 7 mM (G7), and 15 mM (G15), with various stimulators. Insulin secretion was measured with antagonists of inducible nitric oxide synthetase (iNOS), and the expression of iNOS-mRNA was investigated by real-time PCR.

Results: Insulin secretion in the presence of HA and GA was 20.9 ± 3.9 and 21.6 ± 5.5 μU/3 islets/h for G3 (P = 0.920), and 154 ± 9.3 and 126.1 ± 7.3 μU/3 islets/h (P = 0.046), for G15, respectively. High extracellular potassium and 10 mM tolbutamide abrogated the inhibition of insulin secretion by GA. Glyceraldehyde, dihydroxyacetone, methylpyruvate, GLP-1, and forskolin, an activator of adenylate cyclase, did not abrogate the inhibition. Real-time PCR showed that GA did not induce iNOS-mRNA expression. Furthermore, an inhibitor of nitric oxide synthetase, aminoguanidine, and NG-nitro-L-arginine methyl ester did not abrogate the inhibition of insulin secretion.

Conclusion: GA suppresses glucose-induced insulin secretion from rat pancreatic β-cells through impairment of intracellular glucose metabolism.

Background

It has been suggested that glycated albumin (GA) is associated with the risk of complications in diabetic patients, and is used as a marker of hyperglycemia [1]. GA is an Amadori product formed non-enzymatically through the condensation reaction of glucose with reactive proteins under conditions of hyperglycemia [2,3]. Amadori products undergo further irreversible reactions to yield advanced glycation end-products (AGEs) [4,5]. Thus, Amadori products are formed through a reversible process that depends on the level of glycemica, whereas AGEs are produced irreversibly and are strong inducers of inflammation [6].

Previous studies have shown that GA itself has biological effects. Cassese et al. reported that GA induced insulin resistance in skeletal muscle cells by activating protein kinase Cu and Src [7]. Other studies have reported that GA induces the expression of proinflammatory molecules such as monocyte chemoattractant peptide (MCP-1) and interleukin-6 [8], and genes associated with fibrosis and neovascularization [9].

In general, Amadori products/AGEs trigger signaling cascades that produce oxygen free radicals, thus exposing cells to oxidative stress [10,11]. Although one previous study has indicated that glucose-derived AGEs inhibit insulin secretion from pancreatic β cells by increasing the transcription of inducible nitric oxide synthetase (iNOS) and nitric oxide [12], no investigations have addressed the effect of GA on insulin secretion from pancreatic β-cells. AGEs bind to a specific cell surface receptor, the receptor of AGE (RAGE), and
exert their biological effects [13]. Because it is uncertain whether GA binds to RAGE [14], the downstream mechanism of action of GA still remains unclear. In the present study, we investigated the effect of GA on insulin secretion from pancreatic β cells and found that GA inhibits K_{ATP}-channel-dependent insulin secretion.

Methods

The present study was approved by the ethics committee of the Laboratory Animal Research Center at Dokkyo Medical University.

Agents

GA, human non-glycated albumin (HA), α-ketoisocaproic acid (α-KIC), and 1,3-dihydroxyacetone dimer (DHA) were purchased from Sigma-Aldrich (St. Louis, MO), collagenase, D-glyceraldehyde (glyceraldehyde), and methylpyruvate from Wako Pure Chemical Industries Ltd. (Osaka, Japan), Ficoll 400 from Pharmacia and methylpyruvate from Wako Pure Chemical Industries Ltd. (Osaka, Japan), Conray 400 (sodium iotolamate) from Daiichi Pharmaceutical (Tokyo, Japan), Dulbecco’s modified Eagle medium (DMEM) from Nissui Pharmaceutical Company Ltd. (Tokyo, Japan), glucon-like peptide-1 (GLP-1) from Peptide Institute (Osaka, Japan), furosemide and aminoguanidine (AG) from Godo-Shusei Co. (Chiba, Japan). Anti-human GA neutralizing antibody, A717, was purchased from Exocell (Philadelphia, PA).

Animals and procedures

Male Wistar rats, 8-12 weeks after birth, were obtained from Japan SLC, Inc. (Shizuoka, Japan) and housed under semi-SPF conditions. The rats were anesthetized by intraperitoneal injection of pentobarbital sodium at 50 mg/kg body weight, and their pancreatic islets were removed and subjected to collagenase digestion [15]. The islets were then separated by Ficoll-Conray gradient centrifugation [16], and individually isolated by stereoscopic microarray in DMEM containing 2% heat-inactivated fetal calf serum (FCS).

Insulin release from pancreatic islets

The pancreatic islets were cultured overnight at 37°C in RMPI containing 10% FCS and 5.5 mM glucose, and preincubated for 90 min in HEPES-buffered solution containing 5.5 mM glucose at 37°C in 5% CO₂-95% O₂. Three islets were then picked up and incubated for 60 min at 37°C in 1 mL of bicarbonate buffer (pH 7.4) under three different glucose concentrations, 54 mg/dL (3 mM: G3), 126 mg/dL (7 mM: G7), and 170 mg/dL (15 mM: G15), with various agents.

Measurement of intracellular free calcium in islet β-cells

Intracellular free calcium concentration ([Ca²⁺]) was measured using a modification of the method of Gilon and Henquin [20], and Miura and colleagues [21]. The overnight-cultured islet cells were loaded with fura-2 for 45-60 min at 37°C in HEPES-buffered medium containing 120 mM NaCl, 4.8 mM KCl, 2.5 mM CaCl₂, 1.2 mM MgCl₂, 24 mM NaHCO₃, and 10 mM HEPES (pH 7.4), containing 1 μM fura 2-AM and 5.5 mM glucose. Fura-2-loaded cells were placed in HEPES medium (37°C) containing 3 mM glucose and fixed in a hand-made chamber (fitted with a peristaltic pump for perfusion) mounted on the stage of an inverted IX 70 microscope (Olympus, Tokyo, Japan). The loaded cells were excited at 340 nm and 380 nm, the fluorescence emitted at 510 nm was captured by an intensified charge-coupled device camera, and the images were analyzed using the QuantiCell 700 system (Applied Imaging, Sunderland, UK). The changes in [Ca²⁺], in single islet cells were calculated from the ratio of the fluorescence measured with excitation at 340 nm to that at 380 nm using the following equation [22]: $[Ca^{2+}]_i = K_d \times (R - R_{min})/(R_{max} - R) \times \beta$, where K_d is the dissociation constant for fura-2 (224 nM), R_{max} and R_{min} are the ratios of the unbound and bound forms of the fura-2-Ca²⁺ complex, respectively, and β is the ratio of the fluorescence of fura 2 at 380 nm excitation in the
obtained. For each sample, at least three assays were performed. The t value was calculated from the mean of three different assays. The level of expression was calculated using the formula: Relative expression (t-value) = (Copy number of target molecule/Copy number of β-actin) × 1000 [23].

Western blotting
Anti-iNOS and anti-β-actin antibodies were purchased from BD Bioscience (Franklin Lakes, NJ). Islet cells prepared as described previously were lysed with 200 µL of 0.5% (w/v) SDS, and centrifuged at 10000 rpm. The supernatants were adjusted to contain equal amounts of protein by dilution, using a BCA Protein Assay Kit (Pierce, Rockford, IL). Samples (20 µg protein) were run on 12.5% (w/v) SDS-PAGE with 10% gel and electroblotted onto PVDF membranes. The blots were blocked for 1 h with 5% (w/v) non-fat milk powder and 0.1% (v/v) Tween 20 in Tris-NaCl, then exposed to the primary antibody at a 1000-fold dilution overnight at 4°C. After extensive washing, the blots were incubated with the secondary horseradish-peroxidase-conjugated antibody (1:2000) for 2 h at room temperature. Immunoreactive bands were visualized using an enhanced chemiluminescence detection system (Amersham Life Sciences, Arlington Heights, IL). The levels of protein expression were estimated quantitatively by densitometric scanning using a Molecular Imager FX (Bio-Rad Laboratories, Hercules, CA).

Statistics
Data were expressed as means ± SEM. All statistical analyses were performed with GraphPad Prism ver 5.0 (La Jolla, CA). Data from the two groups were compared using two-sided t-test. For Figure 3, repeated measures analysis of variance was used. Differences at P <0.05 were considered significant.

Results and Discussion
Effect of GA on insulin secretion induced by glucose, high K⁺, and tolbutamide
Insulin secretion in the presence of HA and GA was 20.9 ± 3.9 and 21.6 ± 5.5 µU/3 islets/h (P = 0.920) for G3 (Figure 1A), and 154 ± 9.3 and 126.1 ± 7.3 µU/3 islets/h (P = 0.046) for G15, respectively (Figure 1B). For G3, in the presence of 1.25 µg/mL anti-human GA neutralizing antibody, A717, insulin secretion of HA and GA was 19.7 ± 4.4 and 23.1 ± 6.0 µU/3 islets/h (P = 0.693), and in the presence of 5.0 µg/mL A717, the corresponding values were 16.8 ± 6.6 and 20.4 ± 5.2 µU/3 islets/h (P = 0.693) (Figure 1A). For G15, in the presence of 1.25 µg/mL A717, insulin secretion of HA and GA was 152.7 ± 12.8 and 150.5 ± 6.2 µU/3 islets/h (P = 0.194), and in the presence of 5.0 µg/mL A717, the corresponding values were 152.7 ± 12.8 and 155.0 ± 12.4 µU/3 islets/h (P = 0.139)
Thus, the anti-human GA neutralizing antibody, A717, significantly abrogated the inhibitory effect of GA on insulin secretion.

Figure 2 shows the effect of GA on the insulin secretion induced by 30 mM K+ (K30) and Tolb. K30 depolarizes the cell membrane of islet β cells without the need for KATP channel closure. In the presence of K30, insulin secretion elicited by HA and GA was 116.3 ± 6.1 and 123.6 ± 16.2 μU/3 islets/h for G3 (P = 0.686), and 123.3 ± 15.7 and 124.3 ± 14.7 μU/3 islets/h for G15, (P = 0.965), respectively. Tolb promotes insulin secretion by binding to the regulatory sulfonylurea receptor-1 (SUR1) and inhibiting the KATP channel current [25]. In the presence of Tolb, insulin secretion elicited by HA and GA was 42.4 ± 3.4 and 53.4 ± 4.7 μU/3 islets/h for G3 (P = 0.079), and 138.5 ± 6.7 and 123.4 ± 5.4 μU/3 islets/h for G15 (P = 0.536), respectively.

Effect of GA on intracellular Ca2+ concentration [Ca2+]i

Figure 3 shows the changes in [Ca2+]i. [Ca2+]i was measured in the presence of G3 during the first 5 min, then in the presence of G15 for the next 10 min (Figure 3A). In the presence of HA, [Ca2+]i reached a maximum level of 81.7 ± 2.0 nM at 8 min, and remained at higher level than that in the presence of GA, which was 65.2 ± 0.7 nM at 8 min, and thereafter remained lower than that in the presence of HA (P = 0.021). To investigate [Ca2+]i in the presence of a high extracellular potassium concentration or Tolb, [Ca2+]i was measured in the presence of HA or GA under the G15 condition for 5 min, followed by that in the presence of K30 (Figure 3B) or Tolb (Figure 3C) for 10 min. [Ca2+]i increased rapidly after 5 min when islets were cultured in the presence of G15 and K30 (P = 0.331), or G15 and Tolb (P = 0.236).

Effect of GA on insulin secretion induced by glyceraldehyde, DHA, α-KIC, and methylpyruvate

Glyceraldehyde and DHA enter the glycolysis pathway directly and stimulate insulin secretion [26,27]. Insulin secretion elicited by HA and GA under the G3 condition was 67.0 ± 3.5 and 53.6 ± 5.3 μU/3 islets/h in the presence of glyceraldehyde (P = 0.044), and 77.2 ± 5.2 and 58.2 ± 5.4 μU/3 islets/h in the presence of DHA (P = 0.017), respectively (Figure 4A).

α-KIC enters mitochondrial metabolism through α-ketoglutamate and increases insulin secretion [28]. Methylpyruvate is a membrane-permeable form of the mitochondrial fuel pyruvate, and also increases insulin secretion [29]. Under the G3 condition, insulin secretion elicited by HA and GA was 108.8 ± 9.4 and 107.9 ± 7.9 μU/3 islets/h in the presence of α-KIC (P = 0.946), respectively, and 96.4 ± 6.5 and 76.6 ± 6.6 μU/3 islets/h
in the presence of methylpyruvate ($P = 0.047$), respectively. Under the G15 condition, insulin secretion elicited by HA and GA was 121.4 ± 8.0 and 118.3 ± 9.0 μU/3 islets/h in the presence of α-KIC ($P = 0.799$), respectively, and 111.2 ± 13.5 and 73.5 ± 8.2 μU/3 islets/h in the presence of methylpyruvate ($P = 0.031$), respectively.

To investigate the effect of GA on insulin production, insulin concentration in β cells was measured. The insulin content in the presence of HA and GA under the G3 condition was 1181.9 ± 72.5 and 1024.6 ± 98.6 μ Unit/3 islets, respectively ($P = 0.222$), and those under the G15 condition were 1143.6 ± 48.9 and 1040.8 ± 65.8 μ Unit/3 islets, respectively ($P = 0.237$).

Inhibition of insulin secretion by GA is cAMP-dependent

Glucose-stimulated insulin secretion is augmented by the cAMP-dependent amplifying pathway [30]. To investigate the mechanism of inhibition of insulin secretion by GA further, insulin secretion was tested in the presence of the incretin, GLP-1, and the activator of adenylate cyclase, forskolin. Insulin secretion elicited by HA and GA under the G7 condition was 99.5 ± 12.6 and 61.8 ± 9.6 μU/3 islets/h ($P = 0.029$) in the presence of GLP-1, and 185.5 ± 28.3 and 80.1 ± 14.3 μU/3 islets/h ($P = 0.005$) in the presence of forskolin (Figure 5A).

Figure 5B shows the cAMP content of the islet β cells. Under the G7 condition, the cAMP contents elicited by HA and GA were 24.5 ± 1.1 and 18.1 ± 1.4 pmol/10 islets, respectively ($P = 0.003$), in the presence of GLP-1, and 51.4 ± 2.7 and 41.0 ± 2.1 pmol/10 islets, respectively ($P = 0.018$), in the presence of forskolin.

Inhibition of insulin secretion by GA is not iNOS-mediated

Although the mechanism responsible for the suppression of insulin release by GA remains unknown, one
previous study has suggested that glucose-derived AGE inhibits insulin secretion by activating iNOS, resulting in the inhibition of cytochrome c oxidase and ATP production [12]. Insulin secretion was therefore investigated in the presence of an inhibitor of nitric oxide synthetase, L-NAME, or a selective inhibitor of iNOS, AG [12]. Insulin secretion in the presence of HA and GA alone or with L-NAME and AG under the G3 condition was 28.2 ± 3.3, 27.6 ± 4.1, and 25.3 ± 2.2 μU/3 islets/h for HA (P = 0.921), and 26.3 ± 3.3, 26.4 ± 4.2, and 21.1 ± 2.8 μU/3 islets/h for GA (P = 0.895). The corresponding results under the G15 condition were 138.1 ± 5.7, 132.0 ± 6.1, and 135.3 ± 8.5 μU/3 islets/h for HA (P = 0.724), and 117.5 ± 3.8, 111.3 ± 4.4, and 107.4 ± 6.0 μU/3 islets/h for GA (P = 0.847). Figure 6B shows the data for iNOS-mRNA expression. The t-values of iNOS-mRNA for HA and GA were 2.2 ± 0.7 and 2.0 ± 1.0 under the G3 condition (P = 0.877), 2.4 ± 0.8 and 2.1 ± 1.1 under G7 (P < 0.001), and 2.2 ± 0.4 and 2.2 ± 0.6 under G15 (P = 0.822), respectively. Figure 6C shows the results of Western blotting. The relative expression of iNOS-protein to β-actin-protein in the presence of HA and GA was 0.40 and 0.42, respectively (P > 0.05).

The present study has demonstrated for the first time that glycated albumin (GA) suppresses glucose-induced insulin secretion from islet β-cells. As shown in Figure 3A, GA significantly decreased [Ca^{2+}]_i, and therefore the suppression of insulin secretion by GA may be due mainly to suppression of cytosolic Ca^{2+} influx in response to glucose stimulation.

Am extracellular high potassium concentration (K30) depolarizes the cell membrane without any need for the K_{ATP} channel current, and activates voltage-sensitive calcium channels; the calcium influx then stimulates insulin secretion. As shown in Figure 2, K30 abrogated the inhibition of insulin secretion by GA, suggesting that GA inhibits insulin secretion upstream of voltage-sensitive calcium channels. Tolb binds to SUR1 and keep the K_{ATP} channel closed, thus inhibiting the K_{ATP} channel influx of extracellular Ca^{2+} and inducing depolarization of the cell membrane, consequently inducing insulin secretion [25]. Tolb abrogated the inhibition of insulin secretion by GA (Figure 2), suggesting that GA did not affect the function of the K_{ATP} channel. As both K30 and Tolb increased [Ca^{2+}]_i (Figure 2B and 2C), the mechanism responsible for suppression of insulin secretion occurs upstream of the K_{ATP} channel.

In the process of insulin secretion by β-cells, glucose is phosphorylated by glucokinase and forms glucose-6-phosphate (G6P). The G6P is further metabolized via glycolysis, to generate ATP. Glyceraldehyde and DHA are potent insulin secretagogues that enter the glycolytic pathway directly and produce ATP, resulting in insulin secretion [26,27]. In the present study, glyceraldehyde and DHA did not abrogate the inhibition of insulin secretion by GA (Figure 4A).
On the other hand, α-KIC and methylpyruvate stimulate mitochondrial metabolism and induce insulin secretion. α-KIC is a transamination partner, which enters mitochondrial metabolism through α-ketoglutarate and induces mitochondrial NADPH, thus increasing insulin secretion [28]. As shown in Figure 4B, KIC restored insulin secretion from rat β-cells, and methylpyruvate [29] did not abrogate the inhibitory effect of GA. Although the discrepancy between the effects of α-KIC and methylpyruvate is not fully understood, a previous
Study indicated that α-KIC not only stimulates mitochondrial metabolism but also stimulates the K_{ATP} channel directly [30]. Pyruvate is an end-product of aerobic glycolysis and transported to mitochondria after oxidization to form acetyl coenzyme A (CoA), then entering the tricarboxylic acid (TCA) cycle. In β-cells, the supply of nicotinamide adenine dinucleotide (NAD⁺) from the oxidization of pyruvate is insufficient. Eto et al. reported that the NADH shuttle, including the glycerol-3-phosphate shuttle and the malate-aspartate shuttle, utilizes mitochondrial electrons to reoxidize NADH, thus playing an important role in the production of ATP in β-cell mitochondria [31]. Because, in the present study, addition of methylpyruvate did not restore insulin secretion, GA appears to also impair NADH shuttle.

GLP-1 stimulates insulin secretion by increasing cAMP [34]. Forskolin is a potent activator of adenylyl cyclase [35]. Activation of adenylyl cyclase/cAMP leads to the activation of protein kinase A, which in turn increases Ca²⁺ influx to β-cells [36]. Because GLP-1 and forskolin did not restore insulin secretion and the cAMP content in β-cells, it was suggested that the pathway for amplification of insulin secretion by adenylyl cyclase/cAMP was also impaired by GA treatment. We also investigated the effect of acetylcholine (ACh) on the suppression of insulin secretion by GA, and found that ACh did not elicit recovery of insulin secretion (data not shown). ACh binds to the muscarinic receptor of β-cells and activates phospholipase C-β (PLC), then stimulates release of Ca²⁺ from the endoplasmic reticulum [37].

Zhao et al. reported that glucose-derived AGE inhibits insulin secretion by activating iNOS, resulting in inhibition of cytochrome c oxidase and ATP production [12]. Our results were contradictory to theirs; GA did not increase the expression of iNOS-mRNA (Figure 6A), and the inhibitor of nitric oxidase synthetase, L-NAME, and AG, did not restore insulin secretion. In Zhao’s study, L-NAME and AG abrogated the inhibition of insulin secretion by glucose-derived AGE, although insulin secretion did not fully return to the normal level. As mentioned earlier, AGEs bind to RAGE, and
transduce signals to downstream pathways, including mitogen-activated protein kinases, the Janus Kinase-signal transducer and activation of transcription pathway, and phosphoinositol 3 kinase [38]. These signals result in activation of nuclear factor-κB (NFκB), and increase the expression of iNOS, C-reactive protein (CRP), transforming growth factor-β, and other molecules. Although RAGE interacts with multiple ligands, it remains unclear whether GA binds RAGE or not. GA is not an AGE, and as the mechanism involved may be different, we suggest that induction of iNOS and impairment of mitochondrial cytochrome c does not play a major role in the inhibition of insulin secretion by GA.

Conclusion
GA suppresses glucose-induced insulin secretion from rat pancreatic β cells through impairment of intracellular mitochondrial glucose metabolism.

List of abbreviations
GA: glycated albumin; AGES: advanced glycation end-products

Acknowledgements and funding
The study was supported by research grants from the Japan Pancreas Research Foundation and the Japan Biomarker Society.

Authors’ details
1Second Department of Surgery, Dokkyo Medical University, School of Medicine, Kitakobayashi 880, Mibu, Shimotsuga, Tochigi 321-0293, Japan.
2Public Health, Dokkyo Medical University, School of Medicine, Kitakobayashi 880, Mibu, Shimotsuga, Tochigi 321-0293, Japan.

Authors’ contributions
All authors declare that the manuscript was read and approved by all the authors.
T.S. Reserched the data, contributed to the discussion, and wrote the manuscript.
T.M. Reserched the data, contributed to the discussion, and reviewed the edited manuscript.
T.O. Reserched the data, contributed to the discussion, and wrote the manuscript.
T.S. Reserched the data.
Y.S. Reserched the data.
K.K. Contributed to the discussion, and reviewed the edited manuscript.

Declaration of competing interest
The authors declare that they have never received reimbursements, fees, funding, or salary from any organization that may in any way gain or lose financially from the publication of this manuscript, in the past five years, currently, or in the future. Also, the authors do not own stocks or shares in any organization that may in any way gain or lose financially from the publication of this manuscript, either currently or in the future. The authors have not applied for any patent relating to the manuscript, and have no competing financial interests.

Received: 28 December 2010 Accepted: 6 April 2011 Published: 6 April 2011

References
1. The DCCT Research Group: The effect of intensive treatment of diabetes on the development and progression of long-term complications of insulin dependent diabetes mellitus. New Eng J Med 1993, 329:977-986.
2. Bunn HF, Gabby KH, Gallop PM: The glycosylation of hemoglobin: relevance to diabetes mellitus. Science 1978, 200:21-27.
3. Cohen MP, Zyadiah FN: Amadori glucose adducts modulate mesangial cell growth and collagen gene expression. Kidney Int 1994, 45:675-684.
4. Vassara H, Palace MR: Diabetes and advanced glycation end products. J Intern Med 2002, 251:87-101.
5. Yamagishi S, Takeuchi M, Inagaki Y, Nakamura K, Imaizumi T: Role of advanced glycation end products (AGES) and their receptor (RAGE) in the pathogenesis of diabetic microangiopathy. Int J Clin Pharmacol Res 2003, 23:129-134.
6. Takeuchi M, Yamagishi S: Involvement of toxic AGES (TAGE) in the pathogenesis of diabetic vascular complications and Alzheimer’s Disease. J Alzheimer Dis 2009, 16:845-858.
7. Caisese A, Espósito I, Fiorio F, Barbagallo AP, Patuzzi F, Mira P, Ulianich L, Gacoo F, Ladicciico C, Lombardi A, Oriente F, Van Obberghen E, Beguinot F, Formisano P, Miele C. In skeletal muscle advanced glycation end-products (AGES) inhibit insulin action and induce the formation of multimolecular complexes including the receptor for AGES. J Biol Chem 2008, 52:36088-36099.
8. Hattori Y, Suzuki M, Hattori S, Kasi A. Vascular smooth muscle cell activation by glycated albumin (Amadori adducts). Hypertension 2002, 39:22-28.
9. Zyadiah F, Han DC, Cohen JA, Guo J, Cohen MP: Glycated albumin stimulates gene expression in glomerular mesangial cells: involvement of the transforming growth factor-β system. Kidney Int 1998, 53:631-638.
10. Schmidt AM, Yan SD, Yan SF, Stern DM. The biology of the receptor for advanced glycation end products and its ligands. Biochem Biophys Acta 2000, 1498:99-111.
11. Brownlee M: Biochemistry and molecular cell biology of diabetic complications. Nature 2001, 414:813-820.
12. Zhao Z, Zhao C, Zhang XH, Zheng F, Cai W, Vassara H, Ma ZA: Advanced glycation end products inhibit glucose-stimulated insulin secretion through nitric oxide-dependent inhibition of cytochrome c oxidase and adenosine triphosphate synthesis. Endocrinology 2009, 150:2569-2576.
13. Yamagishi S, Takeuchi M, Inagaki Y, Nakamura K, Imaizumi T: Role of advanced glycation end products (AGES) and their receptor (RAGE) in the pathogenesis of diabetic microangiopathy. Int J Clin Pharmacol Res 2003, 23:129-134.
14. Schmidt AM, Yan SD, Yan SF, Stern DM. The multiligand receptor RAGE as a progression factor amplifying immune and inflammatory responses. J Clin Invest 2001, 108:959-965.
15. Koizumi M, Yada T: Sub-chronic stimulation of glucocorticoid receptor impairs and mineralocorticoid receptor protects cytosolic Ca2+ responses to glucose in pancreatic β-cells. J Endocrinol 2008, 197:221-229.
16. Okeda T, Ono J, Takaki R, Todo S. Simple method for the collection of pancreatic islets by the use of Ficoll-Conray gradient. Endocrinol Jpn 1979, 26:495-499.
17. Baynes JW, Thorpe SR, Muntiashaw MH. From Nonenzymatic glycosylation of lysine residues in albumin. In Methods in Enzymology. Edited by: Finn Wold, Kivie Moldave. Orland: Academic Press; 1984:88-99.
18. Miele C, Riboulet A, Matar MA, Oriente F, Romano C, Formisano P, Giudicelli J, Beguinot F, Van Obberghen E: Human glycated albumin affects glucose metabolism in L6 skeletal muscle cells by impairing insulin-induced insulin receptor substrate (IRS) signaling through a protein kinase Cα-mediated mechanism. J Biol Chem 2003, 278:47376-47387.
19. Morgen CR, Lazarow A: Immunoassay of insulin. Two-antibody system, plasma insulin level of normal, subdiabetic, and diabetic rats. Diabetes 1963, 12:115-126.
20. Gilon P, Henquin JC: Activation of muscarinic receptors increases the concentration of free Na+ in mouse pancreatic β-cells. FEBS Lett 1993, 315:353-356.
21. Miura Y, Matsumoto Y: Glucagon-like peptide-1 induces a cAMP-dependent increase of [Na+]i, associated with insulin secretion in pancreatic β-cells. Am J Physiol Endocrinol Metab 2003, 285:E1001-E1009.
22. Grynkievich G, Poenie M, Tsien RY: A new generation of Ca2+ indicators with greatly improved fluorescence properties. J Biol Chem 1985, 260:3460-3465.
23. Nelson TV, Gaines KJ, Rajan AS, Berg M, Boyd AE III: Increased cytosolic calcium: a signal for sulfonylurea-stimulated insulin release from β cells. J Biol Chem 1987, 262:2608-2612.

24. Okada T, Sadekta T, Kubota K: Deferoxamine enhances anti-proliferative effect of interferon-γ against hepatocellular carcinoma cells. Cancer Lett 2007, 248:24-31.

25. Ashcroft AM, Ashcroft SJH: The sulfonylurea receptor. Biochim Biophys Acta 1992, 1175:45-59.

26. Taniguchi S, Okinaka M, Tanigawa K, Miwa I: Difference in mechanism between glyceraldehyde- and glucose-induced insulin secretion from isolated rat pancreatic islets. J Biochem 2000, 127:289-295.

27. Meglasson MD, Matschinsky FM: Pancreatic islet glucose metabolism and regulation of insulin secretion. Diabetes Metab Rev 1986, 2:163-214.

28. Gao Z, Young RA, Li G, Najafi H, Buettger C, Sukumvanich SS, Wong RK, Wolf BA, Matschinsky FM: Distinguishing features of leucine and α-ketoisocaproate sensing in pancreatic β-cells. Endocrinology 2003, 144:1949-1957.

29. Jijakli H, Nadi AB, Cook L, Best L, Sener A, Malaisse WJ: Insulinotropic action of methyl pyruvate: enzyme and metabolic aspects. Arch Biochem Biophys 1996, 335:245-257.

30. Heissig H, Urban KA, Hastedt K, Zünkler BJ, Panten U: Mechanism of the insulin-releasing action of α-ketoisocaproate and related α-keto acid anions. Mol Pharmacol 2005, 68:1097-1105.

31. Eto K, Tsunamoto Y, Terauchi Y, Sugiyama T, Kishimoto T, Takahashi N, Yamauchi N, Kubota N, Murayama S, Atsawa T, Akanuma Y, Atsawa S, Kasai H, Yazaki Y, Kaovski T: Role of NADH shuttle system in glucose-induced activation of mitochondrial metabolism and insulin secretion. Science 1999, 283:981-985.

32. Sakuma I, Stuehr DJ, Gross SS, Nathan C, Levi R: Identification of arginine as a precurser of endothelium-derived relaxing factor. Proc Natl Acad Sci USA 1988, 85:8644-8667.

33. Corbett JA, McDaniel MI: The use of aminoguanidine, a selective iNOS inhibitor, to evaluate the role of nitric oxide in the development of autoimmune diabetes. Methods 1996, 10:21-30.

34. Nathan DM, Schreiber E, Fogel H, Mojsov S, Habener JF: Insulinotropic action of glucagon-like peptide-1-(7-37) in diabetic and nondiabetic subjects. Diabetes Care 1992, 15:270-276.

35. Henquin JC, Messner HP: The ionic, electrical, and secretory effects of endogenous cyclic adenosine monophosphate in mouse pancreatic β cells: studies with forskolin. Endocrinology 1984, 115:125-134.

36. Malaisse Wj, Malaisse-Lagae F: The role of cyclic AMP in insulin release. Experientia 1984, 40:1068-1075.

37. Gilon P, Nenquin M, Henquin JC: Muscarinic stimulation exerts both stimulatory and inhibitory effects on the concentration of cytoplasmic Ca2+ in the electrically excitable pancreatic β-cell. Biochem J 1995, 311:259-267.

38. Yan SF, Ramasamy R, Schmidt AM: Mechanism of disease: advanced glycation end-products and their receptor in inflammation and diabetes complications. Nature Clin Pract Endocrinol Metab 2008, 4:285-293.

doi:10.1186/1743-7075-8-20
Cite this article as: Shiraki et al.: Glycated albumin suppresses glucose-induced insulin secretion by impairing glucose metabolism in rat pancreatic β-cells. Nutrition & Metabolism 2011 8:20.