Oral lichen planus: comparative efficacy and treatment costs—a systematic review

Shaiba Sandhu1,2,5*, Brittany A. Klein1,2, Malak Al-Hadlaq1,2, Prazwala Chirravur1,2, Amal Bajonaid1,2, Yuanming Xu1,2, Rossella Intini1,2, Mai Hussein3,4, Piamkamon Vacharotayangui1,2, Herve Sroussi1,2, Nathaniel Treister1,2 and Stephen Sonis1,2

Abstract

Objective: To compare the reported efficacy and costs of available interventions used for the management of oral lichen planus (OLP).

Materials and methods: A systematic literature search was performed from database inception until March 2021 in MEDLINE via PubMed and the Cochrane library following PRISMA guidelines. Only randomized controlled trials (RCT) comparing an active intervention with placebo or different active interventions for OLP management were considered.

Results: Seventy (70) RCTs were included. The majority of evidence suggested efficacy of topical steroids (dexamethasone, clobetasol, fluocinonide, triamcinolone), topical calcineurin inhibitors (tacrolimus, pimecrolimus, cyclosporine), topical retinoids, intra-lesional triamcinolone, aloe-vera gel, photodynamic therapy, and low-level laser therapies for OLP management. Based on the estimated cost per month and evidence for efficacy and side-effects, topical steroids (fluocinonide > dexamethasone > clobetasol > triamcinolone) appear to be more cost-effective than topical calcineurin inhibitors (tacrolimus > pimecrolimus > cyclosporine) followed by intra-lesional triamcinolone.

Conclusion: Of common treatment regimens for OLP, topical steroids appear to be the most economical and efficacious option followed by topical calcineurin inhibitors. Large-scale multi-modality, prospective trials in which head-to-head comparisons interventions are compared are required to definitely assess the cost-effectiveness of OLP treatments.

Keywords: Oral lichen planus, Treatment, Cost, Efficacy, Critical review

Introduction

Oral lichen planus (OLP) is a chronic, T-cell-mediated inflammatory condition, with a global prevalence between 0.1 and 3.2% [1, 2]. It is most common in the fourth-fifth decade of life and has a female predilection [1]. Clinically, OLP is characterized by white reticulations (Wickham striae), erythema, and/or ulcerations. While there is no consensus on subtypes, OLP is often categorized as reticular/keratotic, erythematous/erosive, or ulcerative. OLP can be either asymptomatic or symptomatic, and when symptomatic, can range from mild sensitivity to significant pain that impacts quality of life. OLP is considered an oral potentially malignant disorder with a malignant transformation rate of 0.4–1.4% [3].

The exact etiology of OLP is unknown, and there is currently no known cure [2]. The primary therapeutic goal is symptom management and current treatment options include corticosteroids, calcineurin inhibitors, retinoids, photodynamic therapy, and natural alternatives, although...
with varying degrees of efficacy [4, 5]. A recent meta-analysis of 55 RCTs compared different interventions and concluded that topical corticosteroids were the most effective treatment modality [6]. There are, however, multiple classes and preparations of topical corticosteroids, ranging in cost and efficacy. And not all patients respond favorably to steroids making alternative treatment options necessary.

Despite the large number of potential OLP treatment modalities, few comparisons exist relative to their costs, even at a time when the subject of rising healthcare expenses is a concern. Consequently, we thought an appraisal of OLP treatments relative to reported efficacy and costs might be desirable in helping to guide clinical decision-making and innovative management approaches. The aim of this systemic review was to compare the various topical and systemic therapeutic interventions used for the management of oral lichen planus in terms of their reported efficacy and estimated current costs.

Materials and methods
To conduct this systematic review, we followed the steps according to the Preferred Reporting Items for Systematic Review and Meta-Analysis (PRISMA).

Inclusion and exclusion criteria
Included articles were randomized controlled trials (RCTs) that evaluated OLP treatment. RCT eligibility required: (1) studies conducted among adult participants 18 years of age or older; (2) participants with OLP; (3) medication or procedural treatment modalities such as: topical corticosteroids, topical calcineurin inhibitors, systemic therapies, lesion-directed therapy (intra-lesional therapies, phototherapy, laser therapy), natural alternatives, or other topical interventions; (4) measured the treatment efficacy as an outcome, estimated or quantified by various methods of improvement (e.g. different objective and subjective clinical scoring scales/systems). We excluded (1) non-English language papers (2) unavailability of full-text papers; (3) uncontrolled studies without a comparative arm; (4) studies using multiple/combination therapies in single arm, and (5) studies using experimental formulations.

Search strategy
Systematic literature search was performed from database inception until March 2021 in the electronic databases, MEDLINE via PubMed and the Cochrane library. The search was conducted in PubMed on 03/24/2021 using Medical Subject Heading (MeSH) terms, "Lichen Planus, Oral" [Mesh] OR "Lichen Planus, Oral/drug therapy”[Mesh] AND “topical corticosteroids”[Mesh] OR dexamethasone[tiab] OR clobetasol[tiab] OR fluocinonide[tiab] OR triamcinolone[tiab] AND “topical calcineurin inhibitors”[tiab] OR tacrolimus[tiab] OR pimecrolimus[tiab] OR cyclosporine[tiab] AND (“systemic therapies”[Mesh] OR corticosteroids[tiab] OR hydroxychloroquine[tiab] OR dapsone[tiab] OR azathioprine[tiab] OR “mycophenolate mofetil”[tiab] OR levamisole[tiab] OR retinoids[tiab]) AND (“lesion-directed therapy”[Mesh] OR “intra-lesional steroid injections”[tiab] OR “intralesional BCG-PSN”[tiab]) AND (“phototherapy”[Mesh] OR “photodynamic therapy”[tiab] OR “psoralen and ultraviolet A therapy”[tiab]) AND (“laser therapy”[Mesh]) AND (“topical ameloxanox”[tiab]) OR “topical thalidomide”[tiab] OR “topical retinoids”[tiab]) AND (“natural therapies”[Mesh] OR lycopene[tiab] OR Ignatia[tiab] OR curcumin [tiab] OR “aloe-vera”[tiab]).

Study selection
Abstracts of the screened articles were reviewed by two authors for eligibility. Any disagreements were judged by a third author. Full text documents of the articles were retrieved and reviewed for final inclusion in the systematic review.

Data collection and data items
Data extraction was performed independently by eight reviewers. The following information was extracted from each article: author name, publication year, RCT design (single-, double-blind or open-label; parallel or crossover), treatment modality being studied (strength and preparation, duration, frequency of treatment, treatment outcome and adverse events), sample size (n), therapy assessment (adverse events, relapse rate after successful treatment, follow-up time), cost of therapy and cost of managing the adverse events.

Risk of bias
For the quality assessment of RCTs, we utilized the Revised Cochrane risk-of-bias tool for randomized trials (RoB2) which involves assessment of six domains: 1. randomization process, 2. assignment to intervention, 3. missing outcome data, 4. measurement of the outcome, 5. selection of the reported result, and 6. overall assessment.

Outcome measures
The outcome objective and subjective scoring systems utilized by individual studies were considered for assessing the efficacy of different types of treatment modalities employed. The statistical evidence of efficacy
between intervention and control was recognized when p value < 0.05. Costs of the medications and procedures were retrieved and the range of cost per unit of treatment was calculated using information available on various online pharmacies and websites comparing prescription drug prices with discounted prices (i.e., goodrx.com, singlecare.com, pharmacychecker.com, otc-online-store.com, ebay.com, amazon.com, naturallythinking.com, etc.). The cost was estimated for per unit and per month utilization of the generic or branded equivalents of treatments assessed in RCTs. Costs of the interventions not available in the USA were converted into US dollars; all costs in current dollars.

Results

Search results

Two-thousand six hundred nineteen (2619) articles were retrieved using the search strategy. Of these, 70 studies were included in the systematic review. Sixty-six full text articles were excluded with reasons {absent controlled arm (35), combination drug therapies (5), experimental formulations (25), unavailability of full text (1)} (Fig. 1).

Study characteristics

70 studies (total of 2612 patients) published between 1977 and 2020 met the inclusion criteria: Four were single-blinded, three were triple-blinded, six were open-label trials, and the remaining were double-blinded. 67 trials had a parallel RCT design and three had a crossover design. Eighteen RCTs were placebo-controlled, and the remaining 53 trials compared 2–4 treatment modalities. Key characteristics of included studies are listed in Table 1.

Treatment modalities

The treatment modalities investigated in eligible studies included: topical therapies {dexamethasone (n = 3), clobetasol (n = 6), fluocinonide (n = 2), triamcinolone (n = 14), betamethasone (1), fluocinolone (1), tacrolimus (5), pimecrolimus (9), cyclosporine (7), amlexanox (1), retinoids (3), tocopherol (1)}; systemic therapies {retinoids (1), levamisole (1)}; intra-lesional therapies {triamcinolone (1), Bacillus Calmette-Guerin polysaccharide nucleic acid (1)}; natural alternatives {aloe-vera (3), Ignatia (1), lycopene (1)}; laser (6) and photodynamic therapy (2).

![Fig. 1 PRISMA flow chart for selection of studies in this systematic review](image-url)
Topical steroids	Reference Study	Intervention	Comparative agent	No. of pts	Indication	Duration	Frequency	Outcome measure	Results	ADRs	Efficacy Comparison	Level of evidence
Dexamethasone	Bakhtiari [27]	Dex solution	PDT	30; Dex: 15, Bx-proven clinical OLP	2 wks	VIO	No significant difference between the two gps in efficacy index, sign score, symptom score or clinical severity on post-treatment days 15, 30, 60 and 90. Decreases in symptoms statistically significant in both (p-value NS)	PDT: 3 pts-pain Dex = PDT from manipulation of the probe tip	None	Commercial dex > self-formulated dex	High risk of bias	
	Hambly [28]	Dex solution	self-compounded	9; Dex:4, 5; then cross-over	7 wks	TID	TSQM-9 revealed the compounded mouth rinse more favorable than the self-formulation rinse, with a mean improv. in convenience of therapy (22.25%), onset of action (8.48%), and attained symptom relief (4.18%) (p-value NS)	None	Commercial dex > self-formulated dex	High risk of bias		
	Mirza [29]	Dex solution	LLLT vs. PDT	45; 15 in each group (dex, LLLT, PDT)	4 wks	VIO	Significant difference in sign score changes before and after the treatment in the PDT group (p = 0.03), LLLT group (p = 0.02), and in dex group (p = 0.02); statistically significant difference between PDT (p = 0.001) and LLLT (p = 0.001) against dex group before and after treatment. Mean improv. in pain significantly greater in dex group in comparison with the PDT and LLLT gps (p = <0.001). Efficacy index of PDT group improved significantly more than the LLLT (p = <0.001), and corticosteroid gps (p = 0.001)	None	Commercial dex > self-formulated dex	High risk of bias		
Clobetasol	Rödström [33]	Clo oint. 0.05%	TA paste 0.1%	40, 20 in each	9 wks	BDx3wks, QDx3wks, and 4-point clinical score	Clo more effective than NS TA at 3 wks (p < 0.05).	Clo > TA (at 3 wks); Clo = TA	Low risk of bias			
	Muzio [30]	Clo oint. 0.05%	Clo in analgesic base vs. Clo in denture paste	24, 8 in each	2 wks	TID	VAS	Clo effective in each group (p < 0.05)	candidiasis (number NS)	Clo oint = Clo + analgesic base = Clo + denture paste	Low risk of bias	
Topical steroids	Reference Study	Intervention	Comparative agent	No. of pts	Indication	Duration	Frequency	Outcome measure	Results	ADRs	Efficacy Comparison	Level of evidence
-----------------	-----------------	--------------	--------------------	------------	------------	----------	-----------	-----------------	---------	------	----------------------	------------------
Sandhu et al. [31]	Clo oint. 0.025% vs. Clo oint. 0.05%	35; 15 in 8-weeks & Bx-proven symptomatic OLP	35; 15 in 8-weeks & Bx-proven symptomatic OLP	8 wks	BID	VAS and clinical score	VAS and clinical score	None	Clo oint 0.025% vs. Clo oint 0.05%	Low risk of bias		
Kaur [32]	Clo oint. 0.025% vs. TC oint. 0.1%	40; 20 in each 4-weeks & Bx-proven symptomatic OLP	40; 20 in each 4-weeks & Bx-proven symptomatic OLP	4 wks	BID	Symptom and clinical grading score	Symptom and clinical grading score	None	Clo oint 0.025% vs. TC oint. 0.1%	Low risk of bias		
Arduino [26]	Clo gel 0.05% vs. Placebo	32; 16 in each group OLP	32; 16 in each group OLP	8 wks	BID	VAS and 4-point clinical score	VAS and 4-point clinical score	None	Clo > Placebo	Low risk of bias		
Fluocinonide Voute [37]	Fluocinonide oint. 0.025% vs. Placebo	40; 20 in each group Bx-proven OLP	40; 20 in each group Bx-proven OLP	9 wks	6 x daily	VAS and 4-point clinical score	VAS and 4-point clinical score	None	Flu > Placebo	Low risk of bias		
Sandhu et al. [31]	Flucinonide oint. 0.025% vs. Placebo	60 (Flucinonide, Placebo)	60 (Flucinonide, Placebo)	24 wks	TID	Objective and subjective clinical progress score	Objective and subjective clinical progress score	None	Clo > Placebo	Low risk of bias		
Sandhu et al. [31]	TA paste 0.1% vs. TC paste 0.1%	13; 13 TA paste 0.1%	13; 13 TA paste 0.1%	6 wks	TID	7-point mucosal clinical score	7-point mucosal clinical score	None	TA > TC	Some concerns		
Ungroupthisbon et al. [39]	TA paste 0.1% vs. Placebo	20; 20 TA paste 0.1%	20; 20 TA paste 0.1%	4 wks	QID	Clinical response	Clinical response	None	TA paste 0.1% vs. Placebo	Some concerns		
Laeijendecker et al. [38]	TA oint. 0.1% vs. TC oint. 0.1%	40; 20 in each OLP	40; 20 in each OLP	6 wks	QID	Reduction in pain	Reduction in pain	None	TC > TA	Some concerns		
Topical steroids	Reference Study	Intervention	Comparative agent	No. of pts	Indication	Duration	Frequency	Outcome measure	Results	ADRs	Efficacy Comparison	Level of evidence
-----------------	-----------------	--------------	-------------------	------------	------------	----------	-----------	-----------------	---------	------	---------------------	------------------
Sandhu et al. [67]	TA paste 0.1%	Oral betamethasone mini pulse (5 mg twice/wk)	49 (TA: 24, BM: 25)	Bx-proven symptomatic OLP	24 wks	TID × 1.2 wks, BID × 4 wks, QD × 4 wks, alternate days × 4 wks; BM: 5 mg × 12 symptoms wks; 4 mg × 4 wks; 3 mg × 4 wks; 2 mg × 4 wks	Clinical score (based on number of sites and area affected) and change in BM: 5 mg × 12 symptoms wks; 4 mg × 4 wks; 3 mg × 4 wks; 2 mg × 4 wks	Clinical score: reduction in severity score more in TA group (p = 0.026); No statistical difference in symptomatic improvement b/w 2 gps	TA group: 5 pts candidiasis, 1 pt epigastric discomfort; BM group: 7 pts facial edema, 7 pts epigastric discomfort, 5 pts fatigue, 4 pts hand/foot edema, 1 pt diabetes mellitus	Clinical score: TA > BM	High risk of bias	
Mansourian et al. [48]	TA paste 0.1%	AV solution	46; 23 in each	Bx-proven OLP	4 wks	QID	VAS, Thongprasom score, lesion size (grid)	Both AV and TA significantly reduced VAS, Thongprasom score and lesion size (p < 0.001). No significant difference b/w 2 gps	None	TA = AV	Low risk of bias	
Handa [37]	TA paste 0.1%	Fluticasone propionate 0.05% spray	40; 20 in each group	Symptomatic OLP	8 wks, 2 wks washout, 8 wks crossover	TA: QID, Fluticasone: 50 μg, 2 dose unit BID	Clinical scoring, VAS, OHIP-14	No statistically significant difference b/w 2 gps (p value NS)	NS	TA = fluticasone spray	Some concerns	
Amanat et al. [54]	TA paste 0.1% in Cryotherapy (NO)	ORABASE	30 (one side intervention, the other side control)	Bx-proven, bilateral OLP	4 wks	TID	Lesion size, RPAE score	Both treatments reduced the sign scores and severity significantly (p < 0.05), no significant differences between gps (p > 0.05)	Cryotherapy: 17 pts - minor swelling, 12 pts - pain in first 7–10 days	TA = cryotherapy	High risk of bias	
Kia et al. [48]	TA paste 0.1%	Curcumin paste 5%	50; 25 in each group	Bx-proven OLP	4 wks	TID	VAS and Thongprasom score	No significant difference between the two gps in VAS (VAS at baseline: p = 0.17; VAS two weeks later: p = 0.3; swelling and xerostomia, yellow gingiva; TA: 1 burning sensation, itching, mild swelling and desquamation	TA = Curcumin	Some concerns		
Sivaraman et al. [36]	TA paste 0.1%	Clo oint. 0.05%, vs. TC oint. 0.03%	30, 10 in each of the OLP	Atrophic, ulcerative 6 wks	QID	Reduction in lesion size	TA and Clo significant reduction in lesion size than Tac gp; overall better results with Clo (p = 0.005)	None	Clo > TA > TC	Some concerns		
Topical steroids	Reference Study	Intervention	Comparative agent	No. of pts	Indication	Duration	Frequency	Outcome measure	Results	ADRs	Efficacy Comparison	Level of evidence
-----------------	----------------	--------------	-------------------	------------	------------	----------	-----------	----------------	---------	------	----------------------	-----------------
Topical steroids												
	Thomas et al. [49]	TA paste 0.1%	Curcumin gel 1% TID vs. curcumin gel 6x/d	75; 25 in each of the 3 gps	Bx-proven symptomatic OLP	12 wks	TID; curcumin: TID, 6x/d	Numerical Rating Score (burning) and Modified Oral Mucositis Index	Reduction in burning and erythema/ulceration (p < 0.001) in all 3 gps. TA showed max. reduction in burning sensation (77% change) and erythema/ulceration (67% change) (p < 0.001)	None	TA > curcumin gel 1% 6x > curcumin gel 1% TID	High risk of bias
	Singh et al. [40]	TA paste 0.1%	Dapsone 100 mg vs. TC oint. 0.1% vs. topical retinoid (type NS)	40; 10 in each of the 4 gps	Reticular, erosive, atrophic, plaque-like OLP	12 wks	BID	Symptoms and signs scored according to Raj et al. and Kaliakatsou et al. scales	All clinical improv. (p < 0.03), steroidal and non-steroidal agents had equal efficacy. Of the non-steroidal drugs, oral dapsone had greater efficacy than topical retinoid (p < 0.05); no significant differences between oral dapsone and topical tacrolimus (p > 0.05) or between topical retinoid and TC (p > 0.05)	Mild tingling in the oral cavity in patients treated with topical agents	Dapsone > TA = TC = retinoid	Some concerns
	Siponen et al. [39]	TA paste 0.1%	TC oint. 0.1% vs. placebo	18; TA: 7, TC: 11, placebo: 9	Bx-proven symptomatic OLP	9 wks	TID	VAS and clinical score	Reduction in both TC and TA gps as compared to placebo (p = 0.012 and 0.031). No statistically significant difference b/w 2 gps	TA: 3 pts-burning, tingling, gingival tenderness, 2 pts-candidiasis	TA = TC	Low risk of bias
	Li et al. [1]	TA paste 0.1%	S. Salivarius K12 lozenge	40; 20 in each	Symptomatic OLP	4 wks	TID; Lozenges: BID	Sign scores and VAS	No statistical difference was observed between two gps after 4-week treatment in sign scores (p = 0.063) or VAS (p = 0.698)	TA = S. Salivarius K12	None	High risk of bias
	Bakshi et al. [27]	TA solution 0.1% Nanocurcumin gel 1% vs. placebo	31; 17 in TA+ placebo, 14 in TA+NC	Symptomatic OLP	4 wks	TID	REU score and efficacy index	Both had significant improv. in REU score and efficacy score, TA+NC group significantly better in both measures than TA+placebo (p < 0.001)	NS	Nanocurcumin gel > TA	Low risk of bias	
	Betamethasone	Tyldesley and Harding[1]	BM valerate aerosol (2 puffs/dose), daily dose: 800/ug Placebo	23; BM: 12, placebo: 11	Symptomatic OLP	8 wks	QID	Lesion size, discomfort/pain	BM: improv. of lesion size and pain in 8 vs. 2 in placebo (p < 0.05)	BM: Placebo candidiasis	BM > placebo	Low risk of bias
	Fluocinolone	Thongprasom et al. [7]	Fluocinolone acetonide 0.025% in orabase	TA 0.1% in orabase	Bx-proven symptomatic OLP	4 wks	QID	5-point Thongprasom clinical score	Fl: lesions in 13/19 pts effectively cured, TA: 8/19 pts cured (p < 0.05) TA+pts	Oral candidiasis: Fl: 9 pts; Fluocinolone > TA	High risk of bias	
Table 1 (continued)												

Topical steroids	**Reference Study**	**Intervention**	**Comparative agent**	**No. of pts**	**Indication**	**Duration**	**Frequency**	**Outcome measure**	**Results**	**ADRs**	**Efficacy Comparison**	**Level of evidence**
Tacrolimus	Radfar et al. [55]	TC oint. 0.1%	Clobetasol gel 0.05%	29; TC: 15, clo: 14	Erosive OLP	6 wks	QID x 2 wk; TID x 2 wk; BID x 1 wk; QHS x 1 wk	Complete resolution of the clinical signs and symptoms 83.6% in tacrolimus and 81.6% in the clobetasol group (p < .0001)	Discomfort, burning and tingling	TC > Clo	Low risk of bias	
	Corrocher et al. [56]	TC oint. 0.05%	Clobetasol oint. 0.05%	32; 16 in each	OLP	4 wks	QID	Pain severity, burning sensation, 4-point clinical score	TC group- low median pain score p < 0.001; Clo group- low pain score p < 0.05 but mild increase in the median severity scores	None	TC > Clo	Low risk of bias
Corrocher et al. [56]	Corrocher et al. [56]	TC oint. 0.05%	Clobetasol oint. 0.05%	40; 20 in each	OLP	8 wks	TID	VAS, Clinical score	VAS and clinical score decreased (p < 0.05) in both gps, but no significant sensitivity diff b/w 2 gps	Burning and increased severity scores	TC = Clo	Low risk of bias
Vohra et al. [59]	Vohra et al. [59]	PI cream 1%	Placebo	40; 20 in each	Erosive, OLP	8 wks	BID	Clinical score	Significant reduction in the clinical severity score in both pimecrolimus and tacrolimus (p < 0.05)	None	TC = PI	Low risk of bias
Hettiarachchi et al. [58]	Hettiarachchi et al. [58]	TC cream 0.1%	Clobetasol cream 0.05%	40; 34 in each	OLP	3 wks	BID	VAS, Thongprasom clinical response	No significant difference b/w 2 arms in VAS (p = 0.70), OHIP (p = 0.38), clinical score (p = 0.86)	PI: 2 pts transient burning; TA: none	PI = TA	Low risk of bias
	Swift et al. [12]	PI cream 1%	Placebo	20; 10 in each	Erosive OLP	4 wks	BID	Lesion size, VAS	PI more effective, VAS decreased (p = 0.02)	None	PI > Placebo	Low risk of bias
	Passeron et al. [13]	PI cream 1%	Placebo	12; 6 in each	Erosive OLP	4 wks	BID	12-point clinical score & VAS	Mean score 6.83 on day 0 vs. 3.33 on day 28 in PI arm (p = 0.04)	PI: 2 pts transient burning sensation	PI > Placebo	Low risk of bias
	Gorouhi et al. [41]	PI cream 1%	TA cream 0.1%	40; 20 in each	OLP > 8 yrs	8 wks	QID	VAS, OHIP score & objective clinical score	No significant difference b/w 2 arms in VAS (p = 0.70), OHIP (p = 0.38), clinical score (p = 0.86)	PI: 2 pts transient burning; TA: none	PI = TA	Low risk of bias
	Volz et al. [14]	PI cream 1%	Placebo	20; 10 in each	Erosive OLP	4 wks	BID	Composite score (mucosal erosions and pain sensation)	Composite score reduced in PI arm (p = 0.025)	PI: 4 pts burning sensation, 1 pt- mucosal paresthesia; Placebo 1 pt- mucosal paresthesia	PI > Placebo	Low risk of bias
Topical steroids	Reference Study	Intervention	Comparative agent	No. of pts	Indication	Duration	Frequency	Outcome measure	Results	ADRs	Efficacy Comparison	Level of evidence
------------------	-----------------	---------------	-------------------	------------	------------	----------	-----------	----------------	---------	------	---------------------	------------------
McCaughey et al. [15]	PI cream 1%	Placebo	21; PI: 10, placebo: 11	Erosive OLP	6 wks	BID	Investigator's Global Assessment of severity, pain, erosion size (mean size 11.10 at baseline vs. 3.70 at week 6) (p = 0.02)	PI superior in reducing mean pain and erosion size (p = 0.02)	None	PI > Placebo	Low risk of bias	
Arduino et al. [9]	PI cream 1%	TC oint. 0.1%	30; 15 in each	Topical steroid refractory OLP	8 wks	BID	Symptomatic improvement, therapeutic effectiveness	Both effective; no statistically significant difference b/w 2 arms	PI > 2pts xerostomia, 2pts GERD, 1pt herpes labialis; TC: 2pts burning	PI = TC	Low risk of bias	
Arunkumar et al. [46]	PI cream 1%	TA paste 0.1%	30; 15 in each	Atrophic-erosive OLP	8 wks	QID	VAS, mean clinical score and erythematous area	Reduced clinical score in PI arm (p < 0.01); no statistically significant difference in reduction of VAS (p = 0.18) & erythema (p = 0.07)	PI: 2pts xerostomia, 2pts GERD, 1pt herpes labialis; TC: 2pts burning	PI > TA	Low risk of bias	
Pakfetrat et al. [42]	PI cream 1%	TA cream 0.1%	28; 14 in each	Atrophic-erosive OLP	8 wks	TID	Thongprasom lesion scoring, VAS	Both effective; No statistically significant difference	None	PI = TA	Low risk of bias	
Ezzatt and Helmy [60]	PI cream 1%	Betamethasone valerate cream 0.1%	30; 15 in each	Atrophic-erosive OLP	4 wks	QID	Clinical score, VAS	Both showed reduction in clinical score and VAS (p < 0.001) but no statistically significant difference b/w 2 arms in 4 wks; PI: 33% clinical score reduction, 57.5% VAS reduction; BM: 13.9% clinical score reduction and 30.6% VAS reduction after 1 wk	PI: 2pts xerostomia, 2pts GERD, 1pt herpes labialis; TC: 2pts burning	PI > BM	Low risk of bias	
Cyclosporine Eisen et al. [16]	CSA solution 100 mg/ml	Placebo	16, 8 in each	Atrophic-erosive OLP	8 wks	QID	Pain (4-grade scale); erosion (4-grade scale)	CSA: improvement in erythema (p = 0.003), erosion (p = 0.02), reticulation (p = 0.007), all pts	CSA > placebo	Low risk of bias		
Harpenau et al. [17]	CSA solution 100 mg/ml	Placebo	14; 7 in each	Atrophic-erosive OLP	4 wks	QID	VAS, lesion character (ulcer, erythema & reticulation) & size	CSA: significant reduction in erythema, ulceration, and VAS; p-value NS	None	CSA > placebo	Low risk of bias	
Lopez [61]	CSA solution 1% TA solution 0.1%	20; 10 in each	Atrophic-erosive OLP	8 wks	TID	Symptom, erosion and erythema score	CSA: greater decrease of NS symptoms (90% vs. 60% in TA), erythema and erosion; p-value NS	None	CSA > TA	Low risk of bias		
Topical steroids	Reference Study	Intervention	Comparative agent	No. of pts	Indication	Duration	Frequency	Outcome measure	Results	AdRs	Efficacy Comparison	Level of evidence
-----------------	-----------------	--------------	-------------------	------------	------------	----------	-----------	----------------	---------	------	---------------------	------------------
Femiano et al. [63]	CsA solution 100 mg/ml	IM sul 600 IU, then oral doses 250 IU	Topical steroid recalcitrant bx-proven OLP	20; 10 in each	4 wks	CsA: TID, Sul/BID	Pain relief, clinical resolution of erosions/ulceration	Sulodexide more effective faster than CsA at a mean of 36 days and pain resolution in 90% by mean 6.4 days (p < 0.004)	CsA: None; Sul: vertigo, vomiting and hot flushes	Sul > CsA	High risk of bias	
Yoke et al. [44]	CsA solution 100 mg/ml	TA paste 0.1%	Topical steroid proven OLP	139; CY: 68; BX: 71	8 wks	TID	VAS; Thongprasom clinical grading	No statistically significant difference b/w two arms	TA: 3 pts- transient burning; CsA: 14 pts- burning; 4 pts- GI upset; 1 pt- lip swelling & itching	CsA = TA	Low risk of bias	
Thongprasom et al. [45]	CsA solution 100 mg/ml	TA paste 0.1%	Topical steroid proven OLP	13; CsA: 6, TA: 7	8 wks	TID	VAS; Thongprasom clinical grading (5-point)	No statistically significant differences b/w 2 gps	CsA: 5 pts- burning sensation, itching, swelling lips, petechial hemorrhage; TA: None	CsA = TA	Low risk of bias	
Georgaki et al. [62]	CsA solution 100 mg/ml	Dex rinse 0.5 mg/5 ml	Topical steroid proven symptomatic OLP	32; 16 in each	4 wks	TID	VAS; Thongprasom clinical grading, dysphagia and speech difficulties	Dex: better in clinical scoring (p = 0.001). No significant diff b/w 2 gps in improv. of pain, dysphagia and speech difficulties	NS	Clinical score: Dex > CsA; VAS: Dex = CsA	Low risk of bias	

Other topical agents

Arimexanox

Verma [52] | AX paste 5% | TA paste 0.1% | Symptomatic reticular/erasure OLP | 60; 30 in each | 12 wks | QID | VAS; clinical sign stage: erythematous areas, white striae + lesion size | TA more effective > AX. AX: 60% reduction in the clinical sign stage & TA: 98% reduction (p < 0.05); VAS: no significant difference | None | Clinical score: TA > AX; VAS: TA = AX | Low risk of bias |

Retinoid

Giustina et al. [18] | Isotretinoin gel 0.1% | Placebo | Ulcerated lichen planus | 22; 11 in each | 8 wks | BID | Reduction in pain and erythema - severity scale (0-5) | Significant improv in topical retinoid group with statistically significant (p < 0.02); Reduction in severity scale 3.0 to 1.7 after 8 weeks | Burning and superficial desquamation | Isotretinoin > Placebo | Low risk of bias |

Petruzzi et al. [20] | Tazarotene cream 0.1% | Placebo | Hyperkeratotic OLP | 12; 6 in each | 8 wks | BID | 6-degree score scale; reduction in lesion | 4 patients healed, 2 patients improved in Tazarotene and 5 patients with no improv and 1 worsening (p = 0.0049) | Burning, taste abnormalities | Tazarotene > Placebo | Low risk of bias |

Pattelli et al. [19] | Isotretinoin gel 0.1% | Placebo | Topical steroid proven OLP | 20; 10 in each | 16 wks | TID | Complete healing of the lesions | Isotretinoin: 60% complete healing (p = 0.029) | NA | Isotretinoin > Placebo | Low risk of bias |
Topical steroids	Reference Study	Intervention	Comparative agent	No. of pts	Indication	Duration	Frequency	Outcome measure	Results	ADRs	Efficacy Comparison	Level of evidence
Tocopherol	Bacci et al. [21]	Tocopherol acetate (gelly formulation)	Placebo	33; Tocoph-Bx-proven reticular OLP = 17, Pla‑cebo = 16; then crossover	4 wks, 2 wk washout, 4 wks crossover	TID	VAS, length of striae, surface area of lesion, Thongprasom score	Significant difference in surface area of lesion (p = 0.0045) and Thongprasom score (p = 0.0052) in tocopher‑ erol group	None	Tocopherol > Placebo	Low risk of bias	
Intralesional												
Triamcinolone	Ahuja et al. [65]	Intralesional triamcinolone (10 mg/ml)	PRP 0.5 ml	20; 10 in each	8 wks	Weekly injection—for 2 to 4 months	VAS, reduction in erythema and size of the lesions	Statistically significant reduction in both gps (p < 0.005), no significant difference b/w 2 gps	None	TA: Erythema in 1 pt; PRP: increased VAS score in 1 pt	Low risk of bias	
BCG-PSN	Xiong et al. [64]	Intralesional baci‑ lleus Cal‑ mette–Guerin polysaccharide nucleic acid (BCG-PSN)	Intralesional triam‑ cinolone (10 mg/ml)	56; BCG‑PSN = 31 & TA = 25	2 wks	Bx-proven erosive OLP every other day; TA every week	VAS & measured erosive areas	No statistical differences b/w 2 gps in erosive areas (p = 0.801)	None	BCG-PSN < TA group and 8% in TA group	Low risk of bias	
Systemic												
Therapies												
Systemic retinoids	Hersle et al. [22]	Etretinate 25 mg	Placebo	28; 14 in each	8 wks	TID	4-point clinical scoring	Etretinate: 93% improv. vs. 5% in placebo (p < 0.001)	None	Etretinate > Placebo	Some concerns	
Levamisole	Lin et al. [66]	Levamisole 50 mg (Levamisole + Vit B12 only)	Placebo	147, 100 in L + B12 gps, 37 in L gps, & 10 in B12 gp	2–50 months (mean = 14)	BID if 30–50 kg Size & distribution of lesions, pain & burning symptoms interval	Only group & L + B12 group: 100% objective & subjective improv.; Vit B12 alone: 13% improv. in symptoms and 20% improv. in signs (p-value NS)	None	Levamisole + B12 > B12 only	High risk of bias		
Natural alternative												
Lycopene (systemic)	Saawaran et al. [23]	Lycopene 4 mg	Placebo	30, 15 in each	8 wks	BID	VAS, Tel Aviv–San Francisco scale	Lycopene: 84% VAS reduction, 100% showed >50% benefit; Placebo: 67% VAS reduction, 66.6% showed >50% benefit (p < 0.05)	None	Lycopene > Placebo	Low risk of bias	
Ignatia (topical)	Mousavi et al. [24]	Ignatia 30C liquid	Placebo	30, 15 in each	BID	VAS and mean lesion size (cm)	Ignatia more effective; Ignatia mean lesion size: 2.2 cm, VAS: 13 mm; Placebo: mean lesion size: 4 cm, VAS: 40 mm (p < 0.05)	None	Ignatia > Placebo	Low risk of bias		
Topical steroids	Reference Study	Intervention	Comparative agent	No. of pts	Indication	Duration	Frequency	Outcome measure	Results	ADRs	Efficacy Comparison	Level of evidence
------------------	-----------------	--------------	--------------------	------------	------------	----------	-----------	-----------------	---------	------	---------------------	-------------------
Aloe Vera (topical)	Choonhakarn et al. [23]	AV gel 70%	Placebo	54; 27 in each	Bx proven OLP	8 wks	BID	VAS and Thongprasom clinical scale	AV improved clinical response in 88% and improved burning in 33% vs. 4% in placebo group (p < 0.001)	None	AV > Placebo	Low risk of bias
Salazar-Sánchez et al. [26]		AV gel 70%	Placebo	64; 32 in each	Bx proven OLP	12 wks	TID	VAS, Thongprasom clinical scale, OHIP-49	No statistically significant diff in VAS and clinical score at 12 wk; AV showed improv. in total OHIP score (p = 0.046)	None	AV = Placebo	Low risk of bias
Reddy et al. [51]		AV gel 70%	TA 0.1% paste	40; 20 in each	Erosive & atrophic OLP	8 wks	TID	VAS & clinical score	AV clinical score and VAS significantly better than TA (p < 0.05)	None	AV > TA	Low risk of bias
LLLT	Jajarm et al. [68]	Low intensity laser therapy (LILT) 630 nm diode laser	Dexamethasone solution 0.5 mg/5 ml	30 (one side intervention, the other side control)	Erosive-atrophic OLP	4 wks	LILT, BID, Dec QID	Thongprasom clinical scale, VAS, RAE	Appearance score, pain score, and lesion severity was reduced in both gps (p value NS). No significant differences b/w the treatment gps regarding the response rate and relapse	None	LLLT = Dec	Some concerns
Laser	Agha-Hosseini et al. [72]	CO2 laser irradiation	low-level laser therapy (LLLT)	28 (one side intervention, the other side control)	Oral lichen planus	2 wks	CO2 laser: 1 session, LLLT sessions	Thongprasom clinical scale, VAS, size of lesions	Lesion size reduction significantly higher in LLLT compared to CO2 (p < 0.05). Improvement in clinical signs significantly higher in LLLT (p < 0.05). Symptom reduction was significantly higher in LLLT group (p < 0.05)	NS	LLLT > CO2 laser	High risk of bias
LLLT	Dillenburg et al. [70]	Laser phototherapy (LPT) 660 nm diode laser	Clobetasol gel 0.05%	42 (one side intervention, the other side control)	Atrophic/erosive OLP	4 wks	LPT: 3x/wk, Clo: TID	Clinical, symptoms, and functional scores	The LPT group had significantly lower clinical scores compared to clobetasol group (p = 0.001). Symptom score was maintained at a stable level for the LPT group in the follow up period, whereas a significant increase was found in the clobetasol group (p = 0.001)	Clo: 3 pts-Transient burning sensation, LPT: None	LPT > Clo	Low risk of bias
Topical Steroids	Reference Study	Intervention	Comparative agent	No. of pts	Indication	Duration	Frequency	Outcome measure	Results	ADRs	Efficacy Comparison	Level of evidence
-----------------	-----------------	--------------	-------------------	------------	------------	----------	-----------	----------------	---------	------	---------------------	------------------
PDT	Jajarm et al. [68]	Toluidine blue for 10 min followed by photodynamic therapy	Dexamethasone rinse 0.5 mg/5 ml	25 (one side intervention, the other side control)	Erosive/atrophic OLP	4 wks	PDT:2x/wk; Dex:QID	Thongprasom clinical scale, efficacy indices, and experienced pain	Statistically significant reduction in sign score for the experimental (p = 0.021) and control (p = 0.002) gps; Efficacy index of the control group improved significantly more than the experimental group (p = 0.001)	None	Dex > PDT	High risk of bias
Laser	Kazancoglu (2015)	A diode laser 808	Ozone vs. dex rinse vs. placebo	120; 30 in each gp	Erosive-erosive OLP	4 wks	Laser:2x/wk; Ozone:2x/wk; Dex: QID	Thongprasom clinical scale, VAS, RAE score	Improv in all gps but significantly better in Ozone and steroid gps (p < 0.05) as compared to laser and placebo	None	Ozone = Dex > Laser > placebo	Some concerns
Laser	Othman et al. [74]	A diode laser 970	TA 0.1% orabase	24 (one side intervention, the other side control)	Erosive-atrophic Reticular	4–5 wks	Laser: 2x/wk; TA: QID	Thongprasom clinical scale, RAE score; TNF-α level	TA group showed statistically significantly lower mean RAE score than Laser group (p = 0.02) as well as lower TNF-α level	None	TA > laser	Some concerns
Laser	El Sherawy et al. [73]	A diode laser 970	TA 0.1% orabase	24; 12 in each	Erosive-atrophic Reticular	Laser: 8 wks; TA: 4 wks	Laser: 2x/wk; TA: QID	VAS, RAE score	Significant improv. in TANS group than laser group (p < 0.05)	None	TA > laser	Some concerns
PDT	Lavaee and Shadmanpour [69]	660-nm diode laser for 10 min	Topical TA 0.1%	8 (one side intervention; the other side control)	Atrophic/erosive OLP	PDT: 3 wks; TA: 4 wks	PDT: 1x/wk; TA: TID	Thongprasom clinical scale, VAS, size of lesions	Significant difference in all scores between session 0 and 4 in both gps (p < 0.05). Changes in scores between the intervention and comparative gps were not statistically significant (p = 0.340)	None	PDT > TA	Low risk of bias
LLLT	Ferri et al. [71]	Clo-gel 0.05%	Photobiomodulation (PBM)	34; 17 in each group and erosive OLP	Reticular/atrophic, erosive OLP	4 wks	Clo: TID; PBM: 2x/wk	VAS: Thongprasom clinical score	Decreased pain in both; clinical resolution: cloo: 79.4%, PBM: 64.7% (p < 0.05)	None	Clo > PBM	Low risk of bias

AV: aloe-vera, BM: betamethasone, Bx: biopsy, b/w: between, BCG-PSN: Bacillus Calmette–Guerin polysaccharide nucleic acid, Clo: clobetasol, CsA: cyclosporine, Dex: dexamethasone, Flu: fluocinonide, FBS: fasting blood sugar, Gp: group, Improv.: improvement, LLLT: low level laser therapy, LPT: laser phototherapy, Mins: minutes, NS: not stated, NC: nanocurcumin, OLP: oral lichen planus, OHIP: Oral Health Impact Profile, Oint.: ointment, PDT: photodynamic therapy, PBM: photobiomodulation, Pt: patient, RA: reticulation, atrophy, erosion score; RPAE: reticular, white plaque, atrophy, erosion and ulceration clinical score, Rxn: reaction, TA: triamcinolone, TC: tacrolimus, TSQM: Treatment Satisfaction Questionnaire for Medication, Ttx: treatment, VAS: visual analog scale, wk: week.
Outcome measures

For assessing the subjective treatment response, the majority of RCTs (57%) used a visual analog scale (VAS) [7–10, 12, 13, 17, 21, 23–31, 33, 37, 39, 41, 42, 45–48, 51, 53, 57, 58, 60, 62, 64, 65, 68, 69, 71, 73, 75, 76]. While there was significant heterogeneity in the clinical scoring scales used to measure treatment response among studies, the Thongprasom scoring system was used most often (19 RCTs; 27%) [7, 21, 25–27, 42, 44, 45, 47, 48, 58, 62, 68, 69, 71–74, 76]. Alternatively, other scales included the Modified Oral Mucositis Index, the Tel Aviv-San Francisco scale, RAE score (reticulation, atrophy, erosion), RPAE score (reticular, white plaque, atrophy, erosion and ulceration), and the REU (reticulation, erosion, ulceration) score [23, 49, 50, 54, 73–75].

Efficacy (objective and subjective improvement)

The two primary efficacy endpoints reported in the RCTs were objective improvement (reduction in the clinical score or severity) and subjective improvement (reduction in pain/VAS). Most studies (57%) showed statistically significant results ($p < 0.05$) supporting the effectiveness of their respective interventions. Based on the RCTs results, we created a consensus list reflecting the level of efficacy from most efficacious to the least for steroidal and non-steroidal modalities (Additional file 1: Table S1).

Placebo-controlled trials (18)

Of the 70 trials, 18 compared an intervention to placebo. The following were associated with statistically significant improvements in pain and lesion response compared to placebo: clobetasol gel 0.05% [8], fluocinonide ointment 0.025% [10], betamethasone valerate aerosol [11], pimecrolimus cream 1% [12–15], cyclosporine solution 100 mg/ml [16, 17], isoretinoin gel 0.1% [18, 19], tazarotene cream 0.1% [20], tocopherol gel [21], systemic retinoid [22] and the three natural alternatives (oral lycopene 4 mg, Ignatia 30 C liquid and aloe-vera gel 70% [23–25]. There was a single placebo-controlled trial (n = 4) comparing aloe-vera gel 70% with placebo that did not demonstrate statistically significant superiority of the intervention [26].

RCTs comparing interventions

Topical Dexamethasone (Dex) Commercially available dexamethasone solutions 0.5 mg/5 ml were associated with better clinical outcomes than self-compounded dex [27]. One study comparing dex to photodynamic therapy (PDT) found no difference in efficacy [28], while another comparing dexamethasone, PDT, and low-level laser therapy (LLLT) found dex to be most effective in reducing the pain score and PDT to be most effective in improving the clinical lesions [29].

Topical Clobetasol (Clo) Studies comparing delivery methods of clobetasol 0.05%-clo ointment vs. clo in oral analgesic base vs. clo in denture paste (n = 24) and concentrations of clo (0.025% vs. 0.05%) found each to be effective in reducing pain with additional improvement in clinical scores in the latter (n = 35) [30, 31]. Clo ointment 0.025% was also shown to be comparable to tacrolimus ointment 0.1% (n = 40) [32].

In comparison to triamcinolone paste 0.1%, clo ointment 0.05% showed greater efficacy at 3 weeks of treatment, however, at 6 and 9 weeks of treatment, there was no significant difference between the two (n = 40) [33]. Clo ointment 0.05% demonstrated greater efficacy in reducing objective scores than fluocinolide ointment 0.05% and placebo (n = 60) [34].

Topical Triamcinolone (TA) Over a third of the RCTs (26/70; 37%) studied the efficacy of TA paste 0.1%. The two formulations of TA paste and TA solution were determined to be equally efficacious [35]. Three RCTs (n = 30, 40 and 40) comparing TA paste 0.1% with other topical steroids found that clobetasol 0.05% ointment and fluocinolone acetonide 0.025% in orabase were more efficacious than TA [7, 36] but fluticasone spray 0.05% was equally efficacious to TA [37].

In comparison to tacrolimus (TC) ointment, four RCTs (n = 40, 30, 18 and 40) found different results, with TA paste 0.1% shown to be inferior to TC ointment 0.1% [38], superior to TC ointment 0.03% [36] and equal to TC ointment 0.1% [39, 40] in terms of clinical improvement. Two RCTs (n = 40 and 28) comparing pimecrolimus cream 1% with TA cream 0.1% [41, 42], and three RCTs (n = 13, 139 and 13) comparing cyclosporine solution with TA paste 0.1% found no statistically significant difference between these therapies [43–45]. A double-blind RCT (n = 30) comparing pimecrolimus cream 1% with TA paste 0.1% showed a mixed outcome, with TA showing equal efficacy in reducing VAS but reduced efficacy in reducing the clinical score at 8 weeks of treatment [46].

In comparison to natural alternatives, the results were mixed. While two RCTs (n = 46 and 50) found TA paste 0.1% to be equally efficacious to aloe-vera (AV) solution and curcumin paste 5% respectively [47, 48]; one study (n = 75) showed that TA paste 0.1% was better than curcumin gel 1% [49] and another study (n = 31) showed nanocurcumin gel 1% was better than TA solution [50]. A double-blind RCT (n = 40) comparing AV gel 70% to TA paste 0.1% for 8 weeks showed that OLP clinical score and VAS was statistically significantly better in the AV arm [51].

A trial (n = 60) showed that TA paste 0.1% was more effective than amlexanox paste 5% (anti-inflammatory agent) in improving clinical signs but there was
Topical Tacrolimus (TC) Four trials compared different topical formulations of clobetasol and TC. Two trials (n = 29 and 32), showed TC ointment 0.1% was superior to clobetasol gel 0.05% and clobetasol ointment 0.05%, respectively [55, 56]; however, the third RCT (n = 40) demonstrated no significant difference between TC ointment 0.1% and clobetasol ointment 0.05% [57]. The fourth RCT compared TC cream 0.1% (compounded) and clobetasol cream 0.05% (n = 68) and found TC cream to be more effective in reducing VAS and clinical response score [58].

Topical Pimecolimus (PI) Two RCTs (n = 40 and 30) compared PI cream 1% and tacrolimus ointment 0.1% and showed no statistically significant difference between the two in therapeutic effectiveness [9, 59]. Additionally, the efficacy of PI cream 1% was found to be equal to betamethasone valerate cream 0.1% in reducing clinical score and VAS (n = 30) [60].

Topical Cyclosporine (CsA) When CsA solution 100 mg/ml (with a 10% dilution in olive oil) was compared with triamcinolone solution 0.1% (n = 20), there was greater symptomatic and clinical improvement in the CsA group after 8 weeks, although, p-value was not stated [61]. On the other hand, dexamethasone solution 0.5 mg/5 ml was found to be significantly better than CsA solution 100 mg/ml (n = 32) in reducing the clinical score (although both were equally effective in improving VAS) [62].

An open-label trial (n = 20) comparing sulodexide, a systemic heparinoid, with topical CsA (100 mg/ml solution) showed that sulodexide (one dose of I/M followed by oral doses) led to a faster clinical resolution [63].

Intralesional therapies The two RCTs included in this systematic review that evaluated intralesional therapies compared intralesional triamcinolone (TA) 10 mg/ml with Bacillus Calmette-Guérin polysaccharide nuleic acid (BCG-PSN) and autologous platelet rich plasma (PRP). Intralesional injection of the immunomodulatory extract of BCG administered every other day was found to be equally effective as weekly administration of intralesional TA (n = 56) in reducing lesion size and VAS in OLP [64]. Similarly, the RCT comparing intralesional TA and PRP (n = 20) did not find any significant difference between the two arms [65].

Systemic therapies An anti-helminthic and immunomodulatory agent, levamisole (not available in US), was studied in a triple arm open label RCT (n = 147) comparing levamisole 50 mg vs. vitamin B12 vs. combination of levamisole + B12 [66]. The results showed clinical and symptomatic improvement in all patients in both the levamisole arm and the levamisole + vitamin B12 arm, but the p-value was not-stated.

Dapsone, another immunomodulatory agent, showed the highest clinical and symptomatic improvement in a four-arm open-label RCT (n = 40) comparing oral dapsone 100 mg vs. TA paste 0.1% vs. TC ointment 0.1% vs. topical retinoid (type not stated in the study) after 12 weeks [40]. Another open-label trial (n = 49) comparing TA paste 0.1% with systemic betamethasone (mini-pulse therapy with oral betamethasone 5 mg on 2 consecutive days/week) for 24 weeks, found significant reduction in clinical severity score in the TA group but no difference in the symptomatic improvement between the two groups [67].

Laser and Photodynamic therapies Eleven RCTs studying laser and photodynamic therapies (PDT) met the inclusion criteria. When comparing PDT with topical steroids, the studies indicated mixed results- one study (n = 45) showed superiority of PDT over dexamethasone [29], another (n = 25) showed inferiority to dexamethasone [68], and two studies (n = 30 and 8) showed equal efficacy (PDT = dexamethasone) [70–72].

Dexamethasone solution and triamcinolone paste 0.1% showed increased efficacy (LLLT > clobetasol gel 0.05%), another (n = 34) showed reduced efficacy (clobetasol gel 0.05% > LLLT) and the third (n = 30) showed equal efficacy (LLLT = dexamethasone) [70–72].

Dapsone, another immunomodulatory agent, showed higher efficacy than laser therapies (n = 120, 24 and 24) [73–75]. In comparing the clinical efficacy of the three phototherapies, a direct comparison trial (n = 45) showed PDT to be more efficacious than LLLT [29] and the second (n = 28) showed superior results with LLLT than carbon dioxide laser [76].

Adverse reactions Twenty-six studies reported adverse drug reactions (ADRs) (Additional file 2: Table S2). Most topical interventions were associated with mild, local ADRs. Oral candidiasis was a common documented ADR of topical corticosteroids (clobetasol, triamcinolone,
betamethasone and fluocinolone) [7, 11, 30, 35, 67]. Oral burning sensation was associated with topical agents- tacrolimus, pimecrolimus, cyclosporine, triamcinolone, retinoids, and curcumin [9, 13, 14, 16, 18, 20, 38–41, 43–45, 48, 55, 57, 60, 68]. Overall, topical regimens were well-tolerated without evidence of systemic ADRs.

While patients treated with systemic therapies such as levamisole and lycopene did not experience any local or systemic side-effects, significant systemic side effects including skin dryness, keratoconjunctivitis, rash, headache, itchiness, and hair loss were reported in patients treated with etretinate, a systemic retinoid [22]. ADRs such as vertigo, vomiting and hot flushes were documented in patients treated with sulodexide [63]. Intral- esional therapies were associated with local erythema (TA), increased pain (PRP) and burning/swelling at injection site (BCG-PSN and TA) in a subset of patients [64, 65].

Among patients treated with cryotherapy using nitrous oxide, the majority experienced local swelling at the treatment side [54]. None of the studies reported any side effects associated with laser therapy; only one study on PDT reported pain upon manipulation with probe tip [27].

Assessment of risk of bias
At the individual study level, most of the domains were with low risk of bias. The overall assessment of the risk of bias showed that 49 (70%) studies had low risk of bias, 11 (15.7%) studies had high risk of bias, and 10 (14.2%) studies had some concern.

Cost of therapeutics
Table 2 presents the estimated costs (U.S. dollars) for the studied interventions. The costs range of topical steroids and topical calcineurin is from $0.04–14.13/unit and $1.13–10.16/unit respectively. The cost of commonly used and commercially available topical therapies is as follows (from highest to lowest): cyclosporine solution > pimecrolimus cream > tacrolimus ointment > clobetasol gel > clobetasol ointment > dexamethasone solution > fluocinonide ointment > betamethasone cream > triamcinolone paste. The cost of intral- esional triamcinolone (10 mg/ml) ranges from $10.24–17.00 per ml, but this excludes the procedural cost. Among the systemic medications, the cost of betamethasone was the lowest and oral dapsone was the highest. Considering the costs of different therapeutics and their efficacies, treatment recommendations for OLP have been made based on expert opinion (Fig. 2).

Discussion
Ideal therapies are cost-effective, efficacious, and carry a low risk of local or systemic toxicity. The preferred modality for treating OLP is topical therapy due to ease of application, liberty to modify the frequency and duration of treatment and lack of systemic side-effects [5]. Important considerations in choosing a topical regimen include the location, extent of the lesions, and patient tolerability. Gels, ointments, and pastes are best used for focal lesions. For lesions that are more diffuse and/or difficult to access, solutions are preferable, though adequate contact time (3–5 min) must be ensured.

Consistent with other reviews, we found that OLP responds to a wide range of topically delivered medications and procedures including topical steroids (dexamethasone, clobetasol, fluocinonide, triamcinolone), topical calcineurin inhibitors (tacrolimus, pimecrolimus, cyclosporine), topical retinoids, intra-lesional triamcinolone, aloe-vera gel, photodynamic therapy and low-level laser therapies in OLP management.

Comparatively, the high potency topical steroid, clobetasol with an average cost of ~$4.12/g for the ointment formulation and $4.54/g for the gel formulation, was found to be efficacious compared to topical fluocinonide, triamcinolone and tacrolimus [34, 36]. Contrastingly, three RCTs demonstrated higher efficacy of topical tacrolimus over topical clobetasol, with the average cost of tacrolimus being about $4.96/g [55, 56, 58]. Triamcinolone paste 0.1%, a low potency steroid, costs the least (average cost $0.68/g) among the topical steroids and calcineurin inhibitors. Topical pimecrolimus was comparable to topical triamcinolone, topical betamethasone, and topical tacrolimus [9, 42, 60], but the average cost of pimecrolimus ($6.11/g) was comparatively higher. The higher cost of topical calcineurin inhibitors discourages their use as first-line therapy in OLP management.

Intral-lesional steroid therapy has been shown to be efficacious but can be deemed invasive, technique sensitive with need for repeated procedures [64, 65]. While the average cost of triamcinolone solution (10 mg/ml) is roughly $13.62/ml, the total cost would also include the procedural cost of the injection itself. Although PDT and laser therapy were shown to be efficacious lesion-directed therapies without significant side-effects [70, 72, 76], the range of cost per treatment session was highest among all the treatment modalities. Among natural alternatives, aloe-vera gel was shown to be comparable to triamcinolone paste 0.1% [51], with the most modest price of $0.04/g. Based on the estimated cost/month and the evidence for efficacy and side-effects, topical steroids (fluocinonide > dexamethasone > clobetasol > triamcinolone) appear to be more cost-effective than topical calcineurin.
inhibitors (tacrolimus > pimecrolimus > cyclosporine) followed by intra-lesional triamcinolone.

Systemic steroids can require complex dosing schedules and carry an increased risk of side effects. They are most used short-term to treat severe flare-ups, and while low cost, monitoring and treating side effects when used longer term can significantly alter the cost-to-benefit ratio. Surprisingly, few trials have studied the use of systemic steroids in OLP, and only one comparing short-term betamethasone pulse therapy to topical

Table 2 Estimated cost per unit and per month of common commercially available oral lichen planus interventions studied in the included randomized controlled trials

Intervention	Estimated cost per unit*	Estimated cost per month**
Topical steroids		
1. Dexamethasone solution	$0.04–0.27 per ml	$77.50
2. Clobetasol ointment	$0.44–7.8 per g	$123.60
3. Clobetasol gel	$0.76–8.33 per g	$136.35
4. Fluocinonide ointment	$0.39–2.68 per g	$46.05
5. Fluocinonide gel	$1.19–3.45 per g	$69.60
6. Triamcinolone ointment	$0.17–0.44 per g	$9.15
7. Triamcinolone paste	$0.30–1.06 per g	$20.40
8. Betamethasone valerate cream	$0.43–0.96 per g	$20.85
9. Fluocinolone acetonide ointment	$0.52–2.91 per g	$51.45
Topical calcineurin inhibitors		
1. Tacrolimus ointment	$1.26–8.66 per g	$148.80
2. Tacrolimus cream	$1.13–3.39 per g	$67.80
3. Pimecrolimus cream	$2.06–10.16 per g	$183.30
4. Cyclosporine rinse	$1.83–8.66 per ml	$2622.50
Other topical agents		
1. Amlexanox paste (not available in US)	$0.28–1.38 per g	$24.90
2. Isotretinoin gel	$0.63–1.34 per g	$29.55
3. Tazarotene cream	$1.28–3.66 per g	$74.10
4. Tocopherol acetate gel	$0.15–0.27 per g	$6.30
5. Ignatia liquid	$0.14–0.64 per ml	$195.00
6. Aloe vera gel	$0.02–0.06 per g	$1.20
7. Curcumin gel	$1.48–3.18 per g	$69.9
8. Nanocurcumin gel	$0.27–0.45 per g	$10.8
9. S. salivarius K12 lozenge	$0.59–1.13 per lozenge	$51.60
Intralesional therapies		
1. Triamcinolone	$10.24–17.00 per ml	$54.48
2. BCG-PSN	$2.67–3.26 per ml	$44.48
Systemic therapies		
1. Lycopene	$0.07–0.19 per capsule (4 mg)	$7.80
2. Oral dapsone	$0.73–3.12 per tablet (100 mg)	$115.50
3. Oral betamethasone	$0.52–0.64 per tablet (0.5 mg)	$46.60
Other procedure-directed therapies		
1. Photodynamic therapy	$100–4000 per treatment	$16,400.00
2. Low level laser therapy	$30–200 per treatment	$920.00
3. CO2 laser	$450–1450 per treatment	$7600

*Based on information available on websites: goodrx.com, singlecare.com, pharmacychecker.com, otc-online-store.com, rupills.com, usaherbalmart.com, ebay.com, amazon.com, adooq.com, sastasundar.com, naturallythinking.com, aaos.org, plasticsurgery.org

**Calculated based on mean price per unit and the following amounts dispensed: 500 mL for solutions; 30 g for ointments, gels, and creams; BID for lozenges; 1 mL weekly for intralesional triamcinolone; 1 mL every other day for intralesional BCG-PSN; BID for lycopene and dapsone; 5 mg twice weekly for betamethasone; twice weekly photodynamic therapy, low level laser therapy, and CO2 laser sessions
triamcinolone met the inclusion criteria [67]. The average price of betamethasone 0.5 mg tablet is $0.58/tablet, but the total cost would vary according to the frequency and duration of the steroid pulse. Another systemic agent, dapsone which costs about $1.92/100 mg tablet was demonstrated to have increased efficacy over topical triamcinolone, tacrolimus, and retinoids [40].

There are several limitations to our study. There was significant heterogeneity in inclusion criteria and outcome measures of the RCTs included in this systematic review. Inclusion criteria of some trials required only a clinical diagnosis of OLP, while others required biopsy proven or symptomatic OLP. Furthermore, variable outcome measures, different trial durations, dosing regimens, and small sample sizes limited objective comparison of treatment outcomes. This heterogeneity underscores the necessity of developing consensus outcome measurements in the treatment of OLP to reduce study biases and allow for meta-analyses.

Conclusion

Various therapeutics have been used for the treatment of OLP over the past five decades, but a consensus treatment guideline is still lacking. In this systematic review, topical steroids were found to be potentially the most economical and efficacious treatment modality followed by topical calcineurin inhibitors supporting the use of topical steroids as the first-line treatment with escalation to other treatment modalities only as needed. Future standardized RCTs and meta-analyses are required to assess the efficacy of additional therapeutics, especially systemic therapies.

Supplementary Information

The online version contains supplementary material available at https://doi.org/10.1186/s12903-022-02168-4.

Additional file 1: Table S1. Consensus efficacy list of topical steroid and non-steroidal therapies.

Additional file 2: Table S2. Reported adverse reactions to oral lichen planus interventions.

Acknowledgements

Not applicable.

Author contributions

SS, BAK, MA-H, PC, AB, YX, RI, MH and SS contributed to the conception and design of the study, acquisition and interpretation of data, drafting of the article, revising it critically for important intellectual content, and the final approval of the version to be submitted. PV, HS, and NT contributed to drafting of the article, revising it critically for important intellectual content, and all authors read and approved the final manuscript.

Funding

None.

Availability of data and materials

All data generated during this study are included in this published article (Table 1).

Declarations

Ethics approval and consent to participate

Not applicable.

Consent for publication

Not applicable.
Competing interests

The authors declare that they have no competing interests.

Author details

1 Division of Oral Medicine and Dentistry, Brigham and Women’s Hospital/ Dana Farber Cancer Institute, Boston, USA. 2 Department of Oral Medicine, Infection and Immunity, Harvard School of Dental Medicine, Boston, USA. 3 Harvard Medical School, Boston, MA, USA. 4 Ministry of Health and Population, Cairo, Egypt. 5 Present Address: Department of Oral and Maxillofacial Surgery, Massachusetts General Hospital, 55 Street Street, Boston, MA 02114, USA.

Received: 4 January 2022 Accepted: 11 April 2022 Published online: 06 May 2022

References

1. Li C, Tang X, Zheng X, Ge S, Wen H, Lin X, Chen Z, Lu L. Global prevalence and incidence estimates of oral lichen planus: a systematic review and meta-analysis. JAMA Dermatol. 2020. https://doi.org/10.1001/jamadermatol.2019.3797.
2. Zhou XJ, Sugerman PB, Savage NW, Walsh LJ, Seymour GJ. Intra-epithelial CD8+ T cells and basement membrane disruption in oral lichen planus. J Oral Pathol Med. 2002. https://doi.org/10.1034/j.1600-2512.2001.100663.x.
3. Wang D, Sandhu S, Woo SB. A guide for dental practitioners of common oral potentially malignant disorders. CDA J 2021;49.
4. Zhou X, Sugerman PB, Savage NW, Walsh LJ, Seymour GJ. Intra-epithelial CD8+T cells and basement membrane disruption in oral lichen planus. J Oral Pathol Med. 2002. https://doi.org/10.1034/j.1600-2512.2001.100663.x.
5. Obrtli L, Gabriene F, Lucchese A, Di Stasio D, Carinci F, Lauritano D. Treatment of oral lichen planus: a narrative review. Front Physiol. 2019. https://doi.org/10.3389/conf.fphys.2019.27.00004.
6. Lodigiani A, Maggi ML, Candurci S, Fiaschi E, De Giorgi S. Efficacy and safety of topical cyclosporine for the treatment of oral lichen planus. J Eur Acad Dermatol Venereol. 2011. https://doi.org/10.1111/j.1468-3033.2010.03923.x.
7. Eisen D, Ellis CN, Duell EA, Griffiths CE, Voorhees JJ. Effect of topical cyclosporine solution on oral lichen planus. A double-blind analysis. N Engl J Med. 1990.
8. Harperau LA, Plemmons JM, Rees TD. Effectiveness of a low dose of cyclosporine in the management of patients with oral erosive lichen planus. Oral Surg Oral Med Oral Pathol Oral Radiol. 1995. https://doi.org/10.1016/S0703-0752(95)80195-7.
9. Giustina TA, Stewart JCB, Ellis CN, Regezi JA, Annesley T, Woo TV, Voorhees JJ. Topical application of tacrolimus gel improves oral lichen planus: a double-blind study. Arch Dermatol. 1986. https://doi.org/10.1001/archderm.1986.01660170064021.
10. Sridharan K, Sivaramakrishnan G. Interventions for oral lichen planus: corticosteroid therapies. Cochrane Database Syst Rev. 2020. https://doi.org/10.1002/14651858.CD001168.pub3.
11. Voûte ABE, Schulten EAJM, Langendijk PNJ, Kostense PJ, van der Waal I. Topical corticosteroids in association with miconazole and chlorhexidine orabase: a double-blind clinical trial. J Dermatol Treat. 1994. https://doi.org/10.3109/09546639409081837.
12. Bacc C, Vanzo V, Frigo AC, Stellini E, Sbircioli L, Valente M. Topical tocopherol for treatment of reticular oral lichen planus: a randomized, double-blind, crossover study. Oral Dis. 2017. https://doi.org/10.1111/odi.12573.
13. Hensle T, Klobacken H, Slabek K, Thilander H. Severe oral lichen planus: treatment with an aromatic retinoid (etretinate). Br J Dermatol. 1982. https://doi.org/10.1111/1365-2133.1982.tb09004.x.
14. Saawarn N, Shashikant M, Saawarn S, Jirge V, Chaitanya N, Pinakapani R. Lycopene in the management of oral lichen planus: a placebo-controlled study. Indian J Dent Res. 2011. https://doi.org/10.4103/0970-9290.93448.
15. Mosavi F, Sherafati S, Nosad Mojaver Y. Ignatia in the treatment of oral lichen planus. Homeopath. 2009. https://doi.org/10.1016/j.homp.2008.11.007.
16. Choonhakarn C, Busaracome P, Siripanichkulchi B, Sarakam P. The efficacy of aloe vera gel in the treatment of oral lichen planus: a randomized controlled trial. Br J Dermatol. 2008. https://doi.org/10.1111/j.1365-2133.2007.08370.x.
17. Salazar-Sánchez N, López-Jornet P, Camacho-Alonso F, Sánchez-Siles M. Efficacy of topical Aloe vera in patients with oral lichen planus: a randomized double-blind study. J Oral Pathol Med. 2010. https://doi.org/10.1111/j.1600-0714.2010.00947.x.
18. Bakhiani S, Azari-Marhabi S, Mojahedi SM, Namdari M, Rangkahi ZE, Jafari S. Comparing clinical effects of photodynamic therapy as a novel method with topical corticosteroid for treatment of Oral Lichen Planus. Photodermatol Photoimmunol Photomed. 2017. https://doi.org/10.1111/pdp.12761.
19. Hambly JL, Haywood A, Hattingh L, Nair RG. Comparison between self-formulation and compounded-formulation dexamethasone mouth solution for oral lichen planus: a pilot, randomized, cross-over trial. J Investig Clin Dent. 2017. https://doi.org/10.1111/jcld.12221.
20. Meda S, Renman N, Alrachah A, Alman WR, Vohra F. Efficacy of photodynamic therapy or low level laser therapy against steroid therapy in the treatment of erosive-atrophic oral lichen planus. Photodermatol Photoimmunol Photomed. 2018. https://doi.org/10.1111/pdp.12801.
21. Muzio LL, Della Valle A, Mignoaga MD, Pannone G, Bucci P, Bucci E, Scrubba J. The treatment of oral aphthous ulceration or erosive lichen planus with topical clotebasol propionate in three preparations: a clinical and pilot study on 54 patients. J Oral Pathol Med. 2001. https://doi.org/10.1034/j.1600-0714.2001.301006.x.
22. Carbone M, Arduino PG, Carrozzo M, Calogiuri PL, Broccoletti R. Pimecrolimus vs. tacrolimus for treatment of erosive atrophic oral lichen planus with 1% pimecrolimus cream: a double-blind, randomized, placebo-controlled study. Oral Surg Oral Med Oral Pathol Oral Radiol. 1995. https://doi.org/10.1016/0029-7831(94)00129-K.
23. Swift JC, Rees TD, Plemmons JM, Hallmon WW, Wright JC. The Effectiveness of 1% pimecrolimus cream in the treatment of erosive oral lichen planus. J Periodontol. 2005. https://doi.org/10.1902/jop.2005.76.4.627.
24. Bremeron T, Lacour JP, Fontes E, Oronne JP. Treatment of oral erosive lichen planus with 1% pimecrolimus cream: a double-blind, randomized, prospective trial with measurement of pimecrolimus levels in the blood. Arch Dermatol. 2007. https://doi.org/10.1001/archderm.143.4.472.
25. Veitz T, Carol U, Ludkte H, Bräutigam M, Kohler-Spath H, Röcken M, Biedermann T. Pimecrolimus cream 1% in erosive oral lichen planus—a prospective randomized double-blind vehicle-controlled study. Br J Dermatol. 2008. https://doi.org/10.1111/j.1365-2133.2008.08726.x.
26. McCaughey C, MacHan M, Bennett R, Zone JJ, Hull CM. Pimecrolimus 1% cream for oral erosive lichen planus: a 6-week randomized, double-blind, vehicle-controlled study with a 6-week open-label extension to assess efficacy and safety. J Eur Acad Dermatol Venereol. 2011. https://doi.org/10.1111/j.1468-3033.2010.03923.x.
in the long-term management of atrophic-erosive oral lichen planus: a placebo-controlled and comparative study between clobetasol and fluocinonide. Oral Dis. 1999. https://doi.org/10.1111/j.1601-0825.1999.tb00635.x.

35. Ungphaisan S, Nittayavananta W, Vuddhakul V, Maneenuan D, Kietthubthue S, Wongpoonwarak W, Phadoongkombat N. Formulation and efficacy of triamcinolone acetonide mouthwash for treating oral lichen planus. Am J Health Syst Pharm. 2005. https://doi.org/10.1093/ajhp/62.5.485.

36. Silvaraman S, Santham K, Nelson A, Laliytha B, Azhalvel P, Deepak J. A randomized triple-blind clinical trial to compare the effectiveness of topical triamcinolone acetonide (0.1%), clobetasol propionate (0.05%), and tacrolimus ointbase (0.03%) in the management of oral lichen planus. J Pharmacy Bioalied Sci. 2016. https://doi.org/10.4103/0975-7406.191796.

37. Handa. Comparison of efficacy and safety of topical triamcinolone acetonide paste 0.1% and fluscasone propionate spray 0.05% in the treatment of symptomatic oral lichen planus and their influence on quality of life. J Am Acad Dermatol. 2012. https://doi.org/10.1016/j.jaad.2011.11.702.

38. Læjendecker R, Tank B, Dekker SK, Neumann HAM. A comparison of treatment of oral lichen planus with topical tacrolimus and triamcinolone acetonide ointment. Acta Derm Venereol. 2006. https://doi.org/10.2340/00015555-0070.

39. Siponen M, Huuskonen L, Kallio-Pulkkinen S, Nieminen P, Salo T. Topical tacrolimus, triamcinolone acetonide, and placebo in oral lichen planus: a pilot randomized controlled trial. Oral Dis. 2017. https://doi.org/10.1111/odi.12653.

40. Singh AR, Rai A, Aftab M, Jain S, Singh M. Efficacy of steroidal vs non-steroidal agents in oral lichen planus: a randomised, open-label study. J Laryngol. 2017. https://doi.org/10.1017/S0022215116009659.

41. Gorouhi F, Solhpour A, Beitollahi JM, Afshar S, Davari P, Hashemi P, Nassiri et al. BMC Oral Health. 2022. https://doi.org/10.1186/s12903-014-1694-1.
69. Lavaee F, Shadmanpour M. Comparison of the effect of photodynamic therapy and topical corticosteroid on oral lichen planus lesions. Oral Dis. 2019. https://doi.org/10.1111/odi.13188.

70. Dillenburg CS, Martins MAT, Munerato MC, Marques MM, Carrard VC, Filho MS, Castilho RM, Martins MD. Efficacy of laser phototherapy in comparison to topical clobetasol for the treatment of oral lichen planus: a randomized controlled trial. J Biomed Opt. 2014. https://doi.org/10.1117/1.jbo.19.6.068002.

71. Ferri EP, Gallo CDB, Abboud CS, Yanaguizawa WH, Horliana ACRT, De Fatima Teixeira Da Silva D, Pavani C, Bussadori SK, Nunes FD, Mesquita-Ferrari RA, Fernandes KPS, Rodrigues MFSD. Efficacy of photobiomodulation on oral lichen planus: A protocol study for a double-blind, randomised controlled clinical trial. BMJ Open. 2018. https://doi.org/10.1136/bmjopen-2018-020483.

72. Jajarm HH, Falaki F, Mahdavi O. A comparative pilot study of low intensity laser versus topical corticosteroids in the treatment of erosive-atrophic oral lichen planus. Photomed Laser Surg. 2011. https://doi.org/10.1089/pho.2010.2876.

73. Kazancioglu HO, Erisen M. Comparison of low-level laser therapy versus ozone therapy in the treatment of oral lichen planus. Ann Dermatol. 2015. https://doi.org/10.5021/ad.2015.27.S.485.

74. Othman NA, Shaker OG, Eshenawy HM, Abd-Elmoniem W, Eldin AM, Fakhry MY. The effect of diode laser and topical steroid on serum level of TNF-alpha in oral lichen planus patients. J Clin Exp Dent. 2016. https://doi.org/10.4317/jced.52665.

75. El Shenawy HM, Eldin AM, Nasry SA. Management of pain in oral lichen planus patients: a comparative pilot study. Bull Natl Res Centre. 2018. https://doi.org/10.1186/s42269-018-0014-3.

76. Agha-Hosseini F, Moslemi E, Mirzaei-Dizgah I. Comparative evaluation of low-level laser and CO2 laser in treatment of patients with oral lichen planus. Int J Oral Maxillofac Surg. 2012;41(10):1265–9. https://doi.org/10.1016/j.ijom.2012.06.001.

Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.