Neuro-ophthalmologic Findings in Visual Snow Syndrome

Background and Purpose The findings of ophthalmic examinations have not been systematically investigated in visual snow syndrome. This study reviewed the abnormal neuro-ophthalmologic findings in a patient cohort with symptoms of visual snow syndrome.

Methods We retrospectively reviewed 28 patients who were referred for symptoms of visual snow to a tertiary referral hospital from November 2016 to October 2019. We defined the findings of best corrected visual acuity (BCVA), visual field testing, pupillary light reflex, contrast sensitivity, full-field and multifocal electroretinography, and optical coherence tomography.

Results Twenty patients (71%) were finally diagnosed as visual snow syndrome. Their additional visual symptoms included illusionary palinopsia (61%), enhanced entoptic phenomena (65%), disturbance of night vision (44%), and photophobia (65%). A history of migraine was identified in ten patients (50%). The mean BCVA was less than 0.1 logarithm of the minimum angle of resolution, and electrophysiology showed normal retinal function in all patients. Contrast sensitivity was decreased in two of the seven patients tested. Medical treatment was applied to five patients which all turned out to be ineffective. Among the eight patients who were excluded, one was diagnosed with rod-cone dystrophy and another with idiopathic intracranial hypertension.

Conclusions Neuro-ophthalmologic findings are mostly normal in patients with visual snow syndrome. Retinal or neurological diseases must be excluded as possible causes of visual snow.

Key Words visual snow, electrophysiological phenomena, cortical excitability, migraine, optical coherence tomography.

INTRODUCTION

Visual snow is an uncommon phenomenon that is characterized by the perception of TV static-like “snow” in the entire visual field.1 Cortical hyperexcitability and thalamocortical dysrhythmia are potential mechanisms for explaining the persistent symptoms.2,3 In addition to visual snow persisting for more than 3 months, the International Headache Society diagnostic criteria specify that patients must also have at least two of the following symptoms: excessive entoptic phenomenon, palinopsia, photophobia, and nyctalopia.4,5 While visual snow syndrome is typically benign,6 it occasionally appears as the first symptom of serious neurological diseases such as the Heidenhain variant of Creutzfeldt-Jakob disease.6,7 Beside neurological diseases, retinal diseases, persistent migraine aura, and hallucinogenic drugs must be excluded as possible causes of visual snow and palinopsia—visual snow syndrome must be diagnosed by exclusion after a thorough ophthalmic examination.8

There are a few case series that have described ophthalmological findings of visual snow. However, none of these previous reports have included pupillary light reflex and contrast sensitivity in these patients, whereas both of these measurements are reported to be abnormal in patients with migraine visual aura.8,9 Since visual snow is suggested to share some pathophysiological mechanisms with migraine visual aura, these parameters may help in...
identifying visual snow syndrome and inferring the underlying pathophysiology.

This study examined the ocular characteristics of 20 patients with visual snow syndrome, including the pupillary light reflex, contrast sensitivity, and electrophysiological studies, as well as the clinical features of comorbid diseases and treatment responses. Atypical neuro-ophthalmologic findings in patients with visual snow syndrome are reported.

METHODS

Study subjects
We performed a retrospective review of patients referred to a neuro-ophthalmology outpatient clinic with “positive visual disturbance” between November 2016 and October 2019. Previously published standard criteria were used after being translated into Korean. The translation of each term was performed by a neuro-ophthalmologist following the standard English-Korean terminology provided by the Korean Medical Association. Each visual symptom mentioned in the English version criteria was associated to a Korean term. This translation was checked by two neuro-ophthalmologists, and then other translators performed a back-translation into English. The English and Korean versions were reconciled based on the agreement of two neuro-ophthalmologists.

Patient characteristics
Twenty-eight patients had seen a primary eye-care provider or neurologist before referral to the neuro-ophthalmology clinic, but they had not received a definitive diagnosis (Fig. 1). Twenty patients (71%, 14 males, age=11–50 years) were diagnosed as visual snow syndrome (Table 1). The eight excluded patients comprised one diagnosed with rod-cone dystrophy (Fig. 2), one with idiopathic intracranial hypertension (Fig. 3), two with peripheral retinal degeneration that caused photopsia without visual snow, one with typical migraine with scintillating scotoma, one with transient photopsia after refractive surgery, one with visual snow symptoms for less than 2 months, and one with no additional visual symptoms who therefore did not meet the diagnostic criteria of visual snow syndrome (Fig. 1).

RESULTS

Patient characteristics
The 28 patients had seen a primary eye-care provider or neurologist before referral to the neuro-ophthalmology clinic but did not receive a definitive diagnosis (Fig. 1). Twenty patients (71%, 14 males, age=11–50 years) were diagnosed as visual snow syndrome (Table 1). The eight excluded patients comprised one diagnosed with rod-cone dystrophy (Fig. 2), one with idiopathic intracranial hypertension (Fig. 3), two with peripheral retinal degeneration that caused photopsia without visual snow, one with typical migraine with scintillating scotoma, one with transient photopsia after refractive surgery, one with visual snow symptoms for less than 2 months, and one with no additional visual symptoms who therefore did not meet the diagnostic criteria of visual snow syndrome (Fig. 1). The median age at onset was 19 years (range, 9 years to 46 years) among the 18 patients (90%) who could remember their time of onset. Most patients experienced more than two
Neuro-ophthalmic Findings in Visual Snow Syndrome

Associated visual symptoms (Table 1).

Symptom progression could not be identified in 18 patients (90%). Associated nonvisual symptoms included concentration difficulty (47%), lethargy (88%), phonophobia (53%), and daily tinnitus (70%). Comorbid migraine was present in ten patients, which was without aura in eight of them. Six patients (35%) had depression and six (35%) had anxiety disorder. Panic disorder, posttraumatic stress disorder, and schizotypal personality disorder had been diagnosed in one patient each (Table 1).

Ocular examinations

Table 2 summarizes the ocular parameters of the patients diagnosed as visual snow syndrome. BCVAs were less than 0.05 logMAR in both eyes for all patients, with normal findings for the color vision, visual field, and slit-lamp examination. Spherical equivalent refractive errors were less than -6.0 diopters in 18 of the 20 patients (37 eyes). The findings for the visual field (n=15), full-field ERG (n=12), and mERG (n=12) were normal in all patients tested (Table 2).

Three patients showed exophoria of less than 20 prism diopters in primary gaze during both distance and near fixation. One patient who experienced traumatic visual loss in the left eye showed sensory esotropia. No patients complained of binocular diplopia or gaze limitation. Two out of seven patients in whom contrast sensitivity was tested had decreased contrast sensitivity in both distance and near fixation, including one with a history of migraine without aura. None of the patients with normal contrast sensitivity reported migraines or headaches related to visual snow (Table 2).

The pupil constriction ratio was below the normal range (<20%) in one patient who had comorbid migraine, depression, and anxiety disorder. The average maximal pupil constriction velocity was 5.03±0.74 mm/s (mean ± SD, n=14). The peripapillary RNFL thickness measured using SD-OCT (n=17) revealed no abnormalities, which was 95.9±7.8 μm in the global area and 77.2±12.5 μm in the temporal sector (Table 2).

Treatment outcome

Medication therapy was recommended, but most patients refused it because either their symptoms were tolerable, or they feared adverse events. The following medications were prescribed to five patients (25%): lamotrigine (25 mg/day) for one, propranolol (20 mg/day) for two, topiramate (25 mg/day) for one, and acetazolamide (750 mg/day) for one. Major adverse events of an allergic reaction and daytime sleepiness were found in one of the patients taking propranolol. None of the drugs resulted in symptom remission.
We evaluated the neuro-ophthalmologic findings in 20 patients with visual snow syndrome. Migraine, depression, anxiety, and tinnitus were highly prevalent comorbidities. The findings for the visual field, fundus examination, and RNFL thicknesses as measured using SD-OCT were normal. However, contrast sensitivity was impaired in two patients, one of whom suffered from migraine.

In line with other studies, patients experiencing visual snow reported continuous symptoms that mainly manifested in the second to fourth decades of life. Our cohort was predominantly male (70%), in contrast with the female predominance or sex neutrality reported previously. Taken together with another report of male predominance, these results support the concept that visual snow is not affected by sex.

The pupillary light reflex—including the constriction ratio, constriction latency, and maximal pupil constriction velocity—was evaluated in detail in this study. To the best of our knowledge, this is first study to examine pupillary light reflex parameters measured with a digital pupilometer in patients with visual snow syndrome. Comparisons with the previously reported normal values of each parameter revealed that the pupillary light reflex was intact in most patients. Meanwhile, an increased pupil constriction latency and a reduced redilation amplitude were reported in migraineurs with clinically severe symptoms, while the pupil constriction ratio and constriction velocity were significantly decreased in patients with major depressive disorders. The most likely neurobiological mechanism underlying these phenomena is an autonomic dysfunction that occurs in an anatomically intact system. Visual snow shares some of the pathophysiological mechanisms of migraine aura. However, the alterations of sympathetic and parasympathetic functions found in chronic migraineurs have not been demonstrated in visual snow syndrome, and most patients in our cohort reported a relatively short symptom duration of less than 1 year. Therefore, further evaluations are needed in chronic patients with visual snow syndrome to determine if there is any change in the pupillary light reflex like there is in migraine.

Two patients exhibited decreased contrast sensitivity at all spatial frequencies compared with the normal reference values. One patient with a contrast sensitivity deficit suffered from migraine without aura, while none of the patients with normal contrast sensitivity reported headaches or a history of visual snow.
of migraine. Contrast-sensitivity deficits have been reported previously in a cohort of chronic migraineurs. The pathophysiological mechanism underlying the contrast-processing dysfunction in patients with visual snow syndrome is still unknown, and further investigations are needed on patients with chronic visual snow syndrome to better understand the relationship between visual snow syndrome and migraine.

Diagnoses of visual snow have been based on patient self-assessments, so efforts have been made to identify objective and quantitative tools for its assessment. Yildiz et al. demonstrated a loss of habituation response by repetitive-pattern-reversal visual evoked potentials in visual snow syndrome patients with and without migraine, which is thought to indicate occipital cortex hyperexcitability. Visual-perception measures that have previously been used to investigate imbalance between the excitation and inhibition of the visual system in patients with other diseases were reported to be abnormal in patients with visual snow syndrome. Specific biomarkers that can discriminate visual snow syndrome from other diseases are mandatory for identifying the characteristics and pathophysiology of this rare disorder.

Two of the patients referred from other clinics had underlying pathologies of rod-cone dystrophy and idiopathic intracranial hypertension. Since the additional visual symptoms included in the diagnostic criteria of visual snow syndrome can manifest in other visual disorders, it is important for clinicians to keep in mind the possibility of other diseases. Palinopsia is present in more than 80% of patients with visual snow syndrome, but this condition can also be present in migraine patients with visual phenomena, focal brain lesions, and those taking preventive headache medications such as topiramate. Photopsia and spontaneous light flashes can in-
dicate retinal or vitreal detachment, retinal degeneration, or cancer-associated retinopathy. Photophobia is very common in migraine. Finally, common causes of nyctalopia include retinitis pigmentosa and vitamin A deficiency. Therefore, a thorough ophthalmic examination including visual field testing, dilated fundoscopy, and ERG is crucial to avoid misdiagnosis.

Five of our patients were treated with medications and failed to obtain complete remission. The diagnostic criteria of visual snow were proposed only 5 years ago, and there is still no consensus on its optimal treatment, with most of the available information on the effectiveness of treatment being based on case reports and clinical expertise. Previous pharmacological treatments of visual snow and persistent visual phenomena have included diuretics, anticonvulsants, calcium-channel blockers, beta blockers, nonsteroidal anti-inflammatory medications, antiplatelet agents, and antidepressants. In particular, the anticonvulsant lamotrigine, the diuretic acetazolamide, and the calcium-channel blocker verapamil are recommended as first-line therapies for visual snow. Lamotrigine down-regulates glutamate, which is known to propagate cortical spreading depression in migraine.

Table 2. Ocular characteristics of patients with visual snow syndrome

Characteristic	Value
BCVA, logMAR	-0.06±0.07 (-0.18 to 0.05)
Refractive error, diopters	-2.14±2.76 (-9.25 to 2.00)
Presence of strabismus	20 (4/20)†
Visual field testing	
Visual field mean deviation, dB	-0.52±1.86 (-3.00 to 3.58)
Visual field index, %	99.2±1.0 (96-100)
Pupil light reflex	
Constriction ratio, %	29.2±5.1 (17-38)
Latency, s	0.22±0.02 (0.19-0.25)
Maximum constriction velocity, mm/s	5.03±0.74 (3.49-6.47)
SD-OCT measurements	
Global RNFL thickness, μm	95.9±7.8 (83-110)
Temporal RNFL thickness, μm	77.2±12.5 (68-116)
Abnormal standard ERG	0 (0/12)†
Abnormal mFERG	0 (0/12)†
Reduced contrast sensitivity	28.6 (2/7)†

Data are mean±SD (range) or % (n) values.
*Only 39 eyes of the 20 patients were included because 1 patient had unilateral traumatic optic neuropathy. †A generalized estimating equation was used for values accounting for intereye correlations. Both eyes were included in the analyses. ‡Abnormal findings in patients who received ocular examinations.

BCVA: best corrected visual acuity, ERG: electroretinography, logMAR: logarithm of the minimum angle of resolution, mFERG: multifocal electroretinography, RNFL: retinal nerve fiber layer, SD-OCT: spectral-domain optical coherence tomography.

REFERENCES
1. Liu GT, Schatz NJ, Galetta SL, Volpe NJ, Skobieranda F, Kosmorsky GS. Persistent positive visual phenomena in migraine. Neurology 1995;45:664-668.
2. Schankin CJ, Maniyar FH, Sprenger T, Chou DE, Eller M, Goadsby PJ. The relation between migraine, typical migraine aura and ‘visual snow’. Headache 2014;54:957-966.
3. Lausche JL, Plant GT, Fraser CL. Visual snow: a thalamocortical dysrhythmia of the visual pathway? J Clin Neurosci 2016;28:123-127.
4. Schankin CJ, Maniyar FH, Digre KB, Goadsby PJ. ‘Visual snow’-a disorder distinct from persistent migraine aura. Brain 2014;137:1419-1428.
5. Headache Classification Committee of the International Headache Society (IHS) The International Classification of Headache Disorders, 3rd edition. Cephalalgia 2018;38:1-211.
6. Chen BS, Lance S, Lallu B, Anderson NE. Visual snow: not so benign. J Clin Neurosci 2019;64:37-39.
7. Bou Ghanam A, Pelak VS. Visual snow: a potential cortical hyperexcitability syndrome. Curr Treat Options Neurol 2017;19:9.
8. Yennie O, Onal S, Incili B, Temel A, Afsar N, Tanrıdağ T. Assessment of spatial-contrast function and short-wavelength sensitivity deficits in patients with migraine. Eye (Lond) 2007;21:218-223.
9. Mylius V, Braune HJ, Schepelmann K. Dysfunction of the pupillary light reflex following migraine headache. Clin Auton Res 2003;13:16-21.
10. Korean Medical Association. English-Korean, Korean-English medical terminology. 5th ed. Seoul: Academya, 2015;1888.
11. van Dongen RM, Waaijer LC, Onderwater GLJ, Ferrari MD, Terwindt GM. Treatment effects and comorbid diseases in 58 patients with visual snow. Neurology 2019;93:e398-e403.
12. Yoo YJ, Yang HK, Hwang JM. Efficacy of digital pupillometry for diagnosis of Horner syndrome. PLoS One 2017;12:e0178361.
13. Hood DC, Bach M, Brigell M, Keating D, Kondo M, Lyons JS, et al. ISCEV standard for clinical multifocal electroretinography (mfERG) (2011 edition). Doc Ophthalmol 2012;124:1-13.
14. McCulloch DL, Marmor MF, Brigell MG, Hamilton R, Holder GE, Tzekov R, et al. ISCEV standard for full-field clinical electroretinography (2015 update). Doc Ophthalmol 2015;130:1-12.
15. Bak E, Yoo YJ, Yang HK, Hwang JM. Quantitative pupillometry of the pupillary light reflex in Koreans. J Korean Ophthalmol Soc 2017;58:712-717.
16. Bessero AC, Plant GT. Should ‘visual snow’ and persistence of after-images be recognised as a new visual syndrome? J Neurol Neurosurg Psychiatry 2014;85:1057-1058.
17. Cortez MM, Rea NA, Hunter LA, Digre KB, Brennan KC. Altered pupillary light response scales with disease severity in migraineous photophobia. Cephalalgia 2017;37:801-811.
18. Mestanikova A, Ondrejka I, Mestanik M, Cesnekova D, Visonovcova Z, Bujnakova I, et al. Pupillary light reflex is altered in adolescent depression. Physiol Res 2017;66:S277-S284.
19. Peroutka SJ. Migraine: a chronic sympathetic nervous system disorder. Headache 2004;44:53-64.
20. Yildiz FG, Turkyilmaz U, Unal-Cevik I. The clinical characteristics and neurophysiological assessments of the occipital cortex in visual snow syndrome with or without migraine. Headache 2019;59:484-494.
21. McKendrick AM, Chan YM, Tien M, Millist L, Clough M, Mack H, et al. Behavioral measures of cortical hyperexcitability assessed in people who experience visual snow. Neurology 2017;88:1243-1249.
22. Gersztenkorn D, Lee AG. Palinopsia revamped: a systematic review of the literature. Surv Ophthalmol 2015;60:1-35.
23. Amos JF. Differential diagnosis of common etiologies of photopsia. J Am Optom Assoc 1999;70:485-504.
24. Drummond PD. A quantitative assessment of photophobia in migraine and tension headache. Headache 1986;26:465-469.
25. Hartong DT, Berson EL, Dryja TP. Retinitis pigmentosa. Lancet 2006;368:1795-1809.
26. Kemp CM, Jacobson SG, Faulkner DJ, Walt RW. Visual function and rhodopsin levels in humans with vitamin A deficiency. Exp Eye Res 1988;46:185-197.
27. Unal-Cevik I, Yildiz FG. Visual snow in migraine with aura: further characterization by brain imaging, electrophysiology, and treatment-case report. Headache 2015;55:1436-1441.
28. Simpson JC, Goadsby PJ, Prabhakar P. Positive persistent visual symptoms (visual snow) presenting as a migraine variant in a 12-year-old girl. Pediatr Neurol 2013;49:361-363.
29. Haan J, Sluis P, Sluis LH, Ferrari MD. Acetazolamide treatment for migraine aura status. Neurology 2000;55:1588-1589.
30. Jäger HR, Giffin NJ, Goadsby PJ. Diffusion- and perfusion-weighted MR imaging in persistent migrainous visual disturbances. Cephalalgia 2005;25:323-332.
31. Chen WT, Fuh JL, Lu SR, Wang SJ. Persistent migrainous visual phenomena might be responsive to lamotrigine. Headache 2001;41:823-825.
32. Cuadrado ML, Aledo-Serrano Á, López-Ruiz P, Gutiérrez-Viedma A, Fernández C, Orviz A, et al. Greater occipital nerve block for the acute treatment of prolonged or persistent migraine aura. Cephalalgia 2017;37:812-818.