Bile acids and sphingosine-1-phosphate receptor 2 in hepatic lipid metabolism

Eric Kwonga, Yunzhou Lib, Phillip B. Hylemona,b, Huiping Zhoua,b,*

aDepartment of Microbiology and Immunology, Virginia Commonwealth University, Medical College of Virginia Campus, Richmond, VA 23298, USA \\
bMcGuire VA Medical Center, Richmond, VA 23249, USA

Received 21 November 2014; received in revised form 9 December 2014; accepted 29 December 2014

KEY WORDS

Bile acid; Sphingosine-1 phosphate receptor; Hepatic lipid metabolism

Abstract The liver is the central organ involved in lipid metabolism. Dyslipidemia and its related disorders, including non-alcoholic fatty liver disease (NAFLD), obesity and other metabolic diseases, are of increasing public health concern due to their increasing prevalence in the population. Besides their well-characterized functions in cholesterol homeostasis and nutrient absorption, bile acids are also important metabolic regulators and function as signaling hormones by activating specific nuclear receptors, G-protein coupled receptors, and multiple signaling pathways. Recent studies identified a new signaling pathway by which conjugated bile acids (CBA) activate the extracellular regulated protein kinases (ERK1/2) and protein kinase B (AKT) signaling pathway via sphingosine-1-phosphate receptor 2 (S1PR2). CBA-induced activation of S1PR2 is a key regulator of sphingosine kinase 2 (SphK2) and...
1. Introduction

Bile acids are synthesized from cholesterol and are known to solubilize cholesterol in the gallbladder and promote the digestion and absorption of dietary fats and fat-soluble vitamins (A, D, E and K) in the intestines. The production of bile acids is also known to be one of the predominant mechanisms for excretion of excess cholesterol from the body. In addition to their beneficial effects, bile acids also produce toxic effects in the liver. It is becoming increasingly evident that bile acids exert various biological effects by activating different signaling pathways. However, the concept of bile acids acting as signaling molecules is recent. It was not until the past two decades that studies have reported that bile acids act as natural ligands for the farnesoid X receptor (FXR). Following this discovery, bile acids have been shown to activate other nuclear receptors (pregnane X receptor, vitamin D receptor), G protein coupled receptors (GPCRs) (G-protein-coupled bile acid receptor 5 (TGR5), masurcan receptor 2 (M2), sphingosine-1-phosphate receptor 2 (S1PR2)) and cellular signaling pathways (c-Jun N-terminal kinase (JNK1/2), protein kinase B (AKT), and extracellular regulated protein kinases (ERK1/2)).

Bile acids have also been implicated in the inflammatory response and various liver diseases, as well as the promotion of cancers such as colon cancer and cholangiocarcinoma. The emerging role of bile acids as hormones and nutrient signaling molecules helped contribute to our understanding of glucose and lipid metabolism. In this review, we will discuss our current understanding of how bile acids and the S1PR2 regulate hepatic lipid metabolism.

2. Enterohepatic circulation of bile acids

Bile acids are synthesized from cholesterol in the hepatocytes and are actively transported into the bile duct system using ATP-binding cassette (ABC) transporter after conjugation with glycine or taurine. Hepatocytes secrete bile acids via bile salt export proteins (BSEP, ABCB11) along with phosphatidylcholine by ABCB4 and cholesterol by ABCG5/ABCG8. As detergent molecules, bile acids keep cholesterol in solution within the gallbladder by forming micelles with cholesterol and phospholipids. The ratio of conjugated bile acids, cholesterol and phospholipids is highly regulated and excess cholesterol has been linked to an increased risk for cholesterol gallstone formation. Bile is stored in the gallbladder and excreted into the duodenum in response to eating to activate pancreatic lipases and solubilize lipids to promote dietary fat absorption. Approximately 95% of bile acids are reabsorbed through the ileum by ileal sodium-dependent bile acid transporter (IBAT, SLC10A2). Bile acids reabsorbed from the intestines travel through the portal blood and return to the liver via the sodium taurocholate cotransporting polypeptide (NTCP, SLC10A1). A small portion of primary bile acids are converted into secondary bile acids by anaerobic gut bacteria, which can be either passively absorbed from the large intestine or secreted in the feces. During enterohepatic circulation, bile acids lost through fecal excretion must be replenished by de novo bile acid synthesis.

3. Bile acid synthesis

Bile acids are direct end-products of cholesterol catabolism. In humans, two primary bile acids, CA (3α, 7α, 12α-trihydroxycholanoic acid or cholic acid) and CDCA (3α, 7α-dihydroxycholanoic acid or chenodeoxycholic acid), are formed in the liver through two synthetic pathways, the neutral pathway and the acidic pathway (Fig. 1). The neutral pathway, also called the classic pathway, is the major pathway of generating bile acids for humans under physiological conditions and produces both CA and CDCA. The initiation of bile acid synthesis involves the enzyme cholesterol 7α-hydroxylase (CYP7A1) to catalyze the 7α-hydroxylation of cholesterol. In this rate-limiting step, CYP7A1 gene expression is tightly regulated at the transcriptional level and by a negative feedback mechanism involving bile acids, glucagon, tumor necrosis factor α (TNFα) and fibroblast growth factor 15/19 (FGF15/19). In ileocytes, bile acids stimulate the production of FGF15/19 which can bind to the fibroblast growth factor receptor 4 (FGFR4)/β-Klotho complex on the cell membrane of hepatocytes and regulate bile acids and carbohydrate metabolism via activating several signaling cascades including JNK1/2 and ERK1/2. Activation of the JNK1/2 pathway has been shown to repress Cyp7a1 gene expression in hepatocytes, Fgfr4 and β-Klotho null mice have been shown to contain increased Cyp7a1 mRNA levels and bile acid levels. These results demonstrate the critical role FGF15/19, an FXR target gene, plays in the regulation of CYP7A1 and bile acid synthesis. In addition, FXR can induce the expression of an atypical orphan nuclear receptor, small heterodimer partner (SHP). SHP has no DNA-binding domain and functions as a common transcriptional repressor of nuclear receptors. SHP can form a heterodimer with several transcription factors, including hepatocyte nuclear factor 4α (HNF-4α) and liver-related homolog-1 (LRH-1), to inhibit their transactivation activities, which results in inhibiting Cyp7a1 and sterol 12α-hydroxylase (Cyp8b1) transcription.

The acidic pathway is initiated by sterol 27-hydroxylase (CYP27A1) in the mitochondrial inner membrane and has been shown to be more active in cirrhosis and various liver diseases. Since cholesterol concentration is very low in the inner mitochondrial membrane, the rate limiting step in acidic pathway may be the transport of cholesterol into the mitochondrion. The acidic pathway generates mostly CDCA. In addition to the liver, CYP27A1 is ubiquitously expressed in most tissues including the macrophages. CYP27A1 can catalyze cholesterol to form oxysterols by introducing a hydroxyl group to the carbon at either the 27 or 25 position in cholesterol. The products, 27-hydroxycholesterol and 25-hydroxycholesterol, are known to be regulatory oxysterols that are important in maintaining cholesterol and fat levels in the liver.
phospholipid and cannot easily pass the membrane lipid bilayer without transporters. ABC transporters, including ABCA1 and ABCC1, have been identified as active transporters of S1P\(^{27,29}\). In addition, spinster homologue 2 (Sphns2), a member of the major facilitator superfamily, has been shown to mediate S1P secretion\(^{30,31}\). Extracellular S1P exerts its function via activating five different G protein coupled receptors (S1PR1–5) on the cell membrane to induce various cellular responses\(^{32–34}\) (Fig. 2). In the nucleus, pERK1/2 phosphorylates and activates SphK2 to synthesize S1P. Nuclear S1P has been identified as a potent histone deacetylase 1 and 2 inhibitor\(^{35}\).

S1PRs are differentially expressed in various tissues, and the individual S1PR expression level varies under different physiological and pathological conditions\(^{36}\). Each S1PR is coupled to specific G proteins, which mediate unique functions. S1PR1 is ubiquitously expressed and plays a key role in angiogenesis, vascular maturation and immune cell trafficking\(^{36,37}\). Deletion of S1PR1 affects maturation and is embryonically lethal\(^{38}\). S1PR1 has been reported only to be linked with Gαi\(^{37}\). S1PR2 is highly expressed in vascular smooth muscle cells, heart, liver, kidney, spleen, lung and brain\(^{39,41}\). Unlike S1PR1, mice deficient in S1PR2 exhibit no phenotypic defects, but develop spontaneous and sporadic seizures\(^{42}\). S1PR2/–/ mouse studies have also shown S1PR2 to be responsible for proper development of the auditory and vestibular systems\(^{43}\). In addition, S1PR2 is coupled to different G proteins. Each of these G proteins activates different pathways involved in various biological processes. S1PR2 has been reported to be required for mast cell degranulation and chemotaxis towards the site of inflammation\(^{44}\). S1PR3 is highly expressed in the brain, heart, lung, spleen, kidney, liver, intestine and skeletal muscle\(^{45}\). Similar to S1PR2, S1PR3 is also coupled to different G proteins. S1PR3 plays an important role in pulmonary epithelial and endothelial barriers\(^{46}\). S1PR4 is primarily expressed in leukocytes and has been suggested to be a regulator of T cell cytokine production\(^{37}\). S1PR5 expression is largely localized in the white matter of the central nervous system with oligodendrocytes having the highest expression. S1pr5 knockout mice did not exhibit any changes in myelination\(^{48}\). The functional role of S1PR5 is unclear. However, recent studies have suggested a role in natural killer cells (NK) mobilization in the immune system\(^{49,50}\).

5. Bile acids, S1PR2 and lipid metabolism

The role of bile acids regulating lipid metabolism in humans has been well established. Cholesterol gallstone patients treated with CDCA experience a decrease in hepatic very-low-density lipoprotein (VLDL) production and plasma triglyceride levels. Patients with hypercholesterolemia received bile acid binding resins, which increased serum levels of VLDL-triglycerides and high density lipoprotein (HDL)-cholesterol while reducing low-density lipoprotein (VLDL) production and plasma triglyceride levels. Patients CDCA experience a decrease in hepatic very-low-density lipoprotein (VLDL) production and plasma triglyceride levels. Patients with hypercholesterolemia received bile acid binding resins, which increased serum levels of VLDL-triglycerides and high density lipoprotein (HDL)-cholesterol while reducing low-density lipoprotein (VLDL) production and plasma triglyceride levels. Patients CDCA experience a decrease in hepatic very-low-density lipoprotein (VLDL) production and plasma triglyceride levels. Patients with hypercholesterolemia received bile acid binding resins, which increased serum levels of VLDL-triglycerides and high density lipoprotein (HDL)-cholesterol while reducing low-density lipoprotein (VLDL) production and plasma triglyceride levels. Patients CDCA experience.

Figure 1 Bile acid synthesis and metabolism. Two major pathways are involved in bile acid synthesis. The neutral (or classic) pathway is controlled by CYP7A1 in the endoplasmic reticulum. The acidic (or alternative) pathway is initiated by sterol CYP27A1 in mitochondria. CYP8B1 is required to synthesize CA. Oxysterol 7α-hydroxylase (CYP7B1) is involved in the formation of CDCA in the acidic pathway. The neutral pathway is also able to form CDCA by CYP27A1. Primary bile acids are metabolized by gut bacteria to form the secondary bile acids, DCA and LCA.

The primary bile acids CA and CDCA are converted into deoxycholic acid (DCA) and lithocholic acid (LCA) respectively by a small population of intestinal anaerobic bacteria.

4. Sphingosine-1-phosphate and sphingosine-1-phosphate receptors

Sphingosine-1-phosphate (S1P) is a simple, but potent bioactive sphingolipid. It is involved in a variety of cellular processes, including cell proliferation, differentiation, motility, angiogenesis, inflammation and malignant transformation\(^{77}\). S1P is synthesized by sphingosine kinase 1 (SphK1) or sphingosine kinase 2 (SphK2), which transfer the phosphate from ATP to the 1-hydroxyl group of sphingosine. SphK1 and SphK2 reside in different subcellular compartments and regulate the production of S1P. SphK1 is located in the cytoplasm, and upon an external signal, it translocates to the plasma membrane to convert sphingosine to S1P. Intracellular S1P can act as a signaling molecule, but its target has not been well-characterized. S1P can be converted to sphingosine by cytosolic S1P phosphatases or degraded by S1P lyase (SPL) to ethanolamine phosphate and hexadecanal. In order to activate the cell surface GPCRs, S1P must be transported to the cell’s exterior, but S1P is a small polar
mice exhibit decreased plasma cholesterol and triglycerides upon treatment with bile acids or FXR agonists. The FXR inducible gene, FGF19, has been shown to repress lipogenesis and increase metabolism. Fgf19 transgenic mice exhibited resistance to diet-induced obesity and insulin resistance. Interestingly, overexpressing Cyp7a1 in mice prevents fat-induced obesity and insulin resistance.

S1PR2 is highly expressed in the liver and plays a unique and critical role in the pathophysiology of the liver. The role of S1PR2 in bile acid-mediated hepatic lipid metabolism was identified in recent studies. In primary rodent hepatocytes, conjugated bile acids activate S1PR2, which further activates the downstream ERK1/2 and AKT signaling pathways. Bile acid-mediated activation of ERK1/2 and AKT signaling pathway plays an important role in the regulation of hepatic glucose and lipid metabolism. In primary rat hepatocytes, insulin and bile acids both activated glycogen synthase activity to a similar extent. Infusion of taurocholate (TCA) into the chronic bile fistula rat rapidly activated the AKT and ERK1/2 signaling pathway and glycogen synthase activity. In addition, TCA induced a rapid down-regulation of the gluconeogenic genes, PEP carboxykinase (Pepck) and glucose-6-phosphatase (G-6Pase) and a marked up-regulation of Shp mRNA in the livers. These results suggest that TCA has insulin-like activity to regulate hepatic glucose metabolism both in vitro and in vivo.

A recent study reported S1pr2 null mice rapidly develop overt fatty livers on a high fat diet compared to wild-type mice, suggesting that S1PR2 is an important regulator of hepatic lipid metabolism. Infusion of taurocholate into the chronic bile fistula rat or overexpression of the gene encoding S1PR2 in mouse hepatocytes significantly up-regulated hepatic SphK2, but not SphK1. Interestingly, key genes encoding nuclear receptors/enzymes involved in nutrient metabolism were significantly down-regulated in livers of S1pr2−/− and Sphk2−/− mice. In contrast, overexpression of the gene encoding S1PR2 in primary mouse hepatocytes increased mRNA levels of key genes involved in nutrient metabolism. Previous studies have identified nuclear S1P as an endogenous inhibitor of HDAC1/2. In the primary hepatocytes of S1pr2−/− and Sphk2−/− mice, nuclear S1P levels and the acetylation of H3K9, H4K5 and H2BK12 were significantly decreased. Both S1pr2−/− and Sphk2−/− mice rapidly developed fatty livers on a high fat diet suggesting the importance of conjugated bile acids, S1PR2 and SphK2 in regulating hepatic lipid metabolism. Our previous studies in rodent hepatocytes and human hepatocytes also reported that bile acid-induced ERK1/2 activation can be blocked not only by pertussis toxin (PTX), but also by the epidermal growth factor receptor (EGFR; ErbB-1) antagonist (AG1478) and the proto-oncogene tyrosine-protein kinase (SRC) inhibitor PP270. As illustrated in Fig. 3, inhibition of S1PR2 activation either by chemical antagonist (JTE-013) or PTX will block ERK1/2 activation in hepatocytes, suggesting that S1PR2-mediated signaling is the upstream of EGFR-mediated signaling.

Inflammation is believed to be an important factor in the development of type 2 diabetes and fatty liver disease. A Western diet is correlated with low grade chronic inflammation and insulin resistance. Inhibition of the insulin signaling pathway may decrease the ability of bile acids to activate FXRα and induce SHP and other FXR target genes, leading to an increased risk of fatty liver and non-alcoholic fatty liver disease (NAFLD). It has been reported that S1P inhibits macrophage migration to the inflammation site via S1PR2 activation. Hepatocyte proliferation and matrix remodeling occur during liver injury, and S1PR2 has been suggested to play a role in promoting the wound healing response.

6. Conclusions and future directions

Bile acids mediate complex biological activities. Current data supports the extensive interplay between bile acid-mediated signaling and insulin signaling in the regulation of lipid and nutrient metabolism in the liver. Bile acids not only activate nuclear receptors, but also activate GPCRs. The emerging roles of bile acids and S1PR2 in hepatic lipid metabolism have paved the way for the future direction of bile acid signaling research.
Currently, it is unclear what physiological role of ERK1/2 activation by bile acids and S1PR2 has on hepatic lipid metabolism. Future studies aimed at elucidating the downstream target genes of ERK1/2 and the mechanisms by which these genes are activated are important. Since the identification of GPCR, a lot of drugs have been developed to treat various diseases. GPCRs are the most successful category of drug targets to date\(^7\). Understanding the molecular basis of bile acids and S1PR2 in signaling pathways may provide an avenue for drug targets and therapeutic discoveries in various hepatic lipid disorders.

Acknowledgements

The work was supported by A.D. Williams Award (to Huiping Zhou), National Institutes of Health (NIH, No. R01 DK-057543 to Phillip B. Hylemon and Huiping Zhou). This study is also partially supported by VA Merit Awards (No. 1BX0013828-01 to Phillip B. Hylemon; No. 1I01BX001390 to Huiping Zhou).

References

1. Zakim D, Boyer TD. *Hepatology: A Textbook of Liver Disease*. 3rd ed. Philadelphia: W.B. Saunders 1996.
2. Parks DJ, Blanchard SG, Bledsoe RK, Chandra G, Consler TG, Kliewer SA, et al. Bile acids: natural ligands for an orphan nuclear receptor. *Science* 1999;284:1365–8.
3. Makishima M, Okamoto AY, Repa JJ, Tu H, Marc Learned R, Luk A, et al. Identification of a nuclear receptor for bile acids. *Science* 1999;284:1362–5.
4. Wang H, Chen J, Hollister K, Sowers LC, Forman BM. Endogenous bile acids are ligands for the nuclear receptor FXR/BAR. *Mol Cell* 1999;3:543–53.
5. Schaap FG, Trauner M, Jansen PL. Bile acid receptors as targets for drug development. *Nat Rev Gastroenterol Hepatol* 2014;11:55–67.
6. de Aguiar Vallim TQ, Tarling EJ, Edwards PA. Pleiotropic roles of bile acids in metabolism. *Cell Metab* 2013;17:657–69.
7. Lefebvre P, Cariou B, Lien F, Kuipers F, Staels B. Role of bile acids and bile acid receptors in metabolic regulation. *Physiol Rev* 2009;89:147–91.
8. Liu R, Zhao R, Zhou X, Liang X, Campbell DJ, Zhang X, et al. Conjugated bile acids promote cholangiocarcinoma cell invasive growth through activation of sphingosine 1-phosphate receptor 2. *Hepatology* 2014;60:908–18.
9. Trauner M, Boyer JL. Bile salt transporters: molecular characterization, function, and regulation. *Physiol Rev* 2003;83:633–71.
10. Ouazi F, Molday RS. Lipid transport by mammalian ABC proteins. *Essays Biochem* 2011;50:265–90.
11. LaRusso NF, Hoffman NE, Hofmann AF, Northfield TC, Thistle JL. Effect of primary bile acid ingestion on bile acid metabolism and biliary lipid secretion in gallstone patients. *Gastroenterology* 1975;69:1301–14.
12. Craddock AL, Love MW, Daniel RW, Kirby LC, Walters HC, Wong MH, et al. Expression and transport properties of the human ileal and renal sodium-dependent bile acid transporter. Am J Physiol 1998;274: G157–69.

13. Hofmann AF. The continuing importance of bile acids in liver and intestinal disease. Arch Intern Med 1999;159:2647–58.

14. Döring B, Lütteke T, Geyer J, Petzinger E. The SLC10a1 carrier family: transport functions and molecular structure. Curr Top Membr 2012;70:105–68.

15. Inagaki T, Choi M, Moschetta A, Peng L, Cummins CL, McDonald JG, et al. Fibroblast growth factor 15 functions as an enterohepatic signal to regulate bile acid homeostasis. Cell Metab 2005;2:217–25.

16. Ponthoff MJ, Kliwer SA, Mangelsdorf DJ. Endocrine fibroblast growth factors 15/19 and 21: from feast to famine. Genes Dev 2012;26:312–24.

17. Ciccone C, Degirolamo C, Moschetta A. Emerging role of fibroblast growth factors 15/19 and 21 as metabolic integrators in the liver. Hepatology 2012;56:2404–11.

18. Gupta S, Stravitz RT, Dent P, Hylemon PB. Down-regulation of cholesterol 7α-hydroxylase (Cyp7a1) gene expression by bile acids in primary rat hepatocytes is mediated by the c-Jun N-terminal kinase pathway. J Biol Chem 2001;276:15816–22.

19. Lee YK, Schmidt DR, Cummins CL, Choi M, Peng L, Zhang Y, et al. Liver receptor homolog-1 regulates bile acid homeostasis but is not essential for feedback regulation of bile acid synthesis. Mol Endocrinol 2008;22:1345–56.

20. Mataka C, Magnier BC, Houten SM, Annicotte JS, Argmann C, Thomas C, et al. Compromised intestinal lipid absorption in mice with a liver-specific deficiency of liver receptor homolog 1. Mol Cell Bioi 2007;27:8330–9.

21. Axelson M, Sjövall J. Potential bile acid precursors in plasma and intracellular bile acid synthesis in chronic liver disease. Clin Chim Acta 2007;382:82–8.

22. Li X, Hylemon P, Pandak WM, Ren S. Enzyme activity assay for sphingosine 1-phosphate receptor in neuronal excitability. Eur J Neurosci 2013;14:203–9.

23. MacLennan AJ, Carney PR, Zhu WJ, Chaves AH, Garcia J, Grimes JR, et al. An essential role for the H218/AGR1/Edg-5/LP(B2) sphingosine 1-phosphate receptor in neuronal excitability. Eur J Neurosci 2009;30:524–9.

24. Li X, Pandak WM, Erickson SK, Ma Y, Yin L, Hylemon P, et al. Biosynthesis of the regulatory oxysterol, 5-cholesten-3β-sulfate, in hepatocytes. J Lipid Res 2007;48:2578–96.

25. Cafl JJ, Russell DW. Characterization of human steroid 27-hydroxylase. A mitochondrial cytochrome P-450 that catalyzes multiple oxidation reaction in bile acid biosynthesis. J Biol Chem 1991;266:7774–8.

26. Björkhem I. Cerebrotendinous xanthomatosis. Curr Opin Lipidol 2013;24:283–7.

27. Maceyka M, Harikumar KB, Milstien S, Spiegel S. Sphingosine-1-phosphate signaling and its role in disease. Biochim Biophys Acta 2013;1832:1922–9.

28. Strub GM, Maceyka M, Hait NC, Milstien S, Spiegel S. Extracellular and intracellular actions of sphingosine-1-phosphate. Adv Exp Med Biol 2010;688:141–55.

29. Hait NC, Allegood J, Maceyka M, Strub GM, Harikum KB, Singh SK, et al. Regulation of histone acetylation in the nucleus by sphingosine-1-phosphate. Science 2009;325:1254–7.

30. Kawaka Y, Okamoto Y, Yoshioka K, Takaku N. Sphingosine-1-phosphate signaling in physiology and diseases. Biofactors 2012;38:329–37.

31. Liu Y, Wada R, Yamashita T, Mi Y, Deng CX, Hobson JP, et al. Edg-1, the G protein-coupled receptor for sphingosine-1-phosphate, is essential for vascular maturation. J Clin Invest 2000;106:951–61.

32. Matloubian M, Lo CG, Cinamon G, Lesneski MJ, Xu Y, Brinkmann V, et al. Lymphocyte egress from thymus and peripheral lymphoid organs is dependent on S1P receptor 1. Nature 2004;427:355–60.

33. Allende ML, Proia RL. Sphingosine-1-phosphate receptors and the development of the vascular system. Biochim Biophys Acta 2002;1582:222–7.

34. Adada M, Canals D, Hannun YA, Obeid LM. Sphingosine-1-phosphate receptor 2. FEBS J 2013;280:6354–66.

35. Waeber C, Blondeau N, Salomone S. Sphingosine-1-phosphate S1P1 and S1P3 receptors. Drug News Perspect 2004;17:365–82.

36. Rosen H, Gonzalez-Cabrera PJ, Sanna MG, Brown S. Sphingosine 1-phosphate receptor signaling. Annu Rev Biochem 2009;78:743–68.

37. MacLennan AJ, Benner SJ, Andringa A, Chaves AH, Rosing JL, Vesey R, et al. The S1P2 sphingosine 1-phosphate receptor is essential for auditory and vestibular function. Hear Res 2006;220:38–48.

38. Jolly PS, Bektas M, Olivera A, Gonzalez-Espinosa C, Proia RL, Rivera J, et al. Transactivation of sphingosine-1-phosphate receptors by FecepsilonRI triggering is required for normal mast cell degranulation and chemotaxis. J Exp Med 2004;199:959–70.

39. Ishii I, Friedman B, Ye X, Kawanura S, McGiffert C, Contos JJ, et al. Selective loss of sphingosine 1-phosphate signaling with no obvious phenotypic abnormality in mice lacking its G protein-coupled receptor, LP/B3/EDG-3. J Biol Chem 2001;276:33697–704.

40. Gon Y, Wood MR, Kiooss WB, Jo E, Sanna MG, Chun J, et al. S1P3 receptor-induced reorganization of epithelial tight junctions compromises lung barrier integrity and is potentiated by TNF. Proc Natl Acad Sci USA 2005;102:9270–5.

41. Wang W, Graeler MH, Goetzl EJ. Type 4 sphingosine 1-phosphate G protein-coupled receptor (S1P4) transduces S1P effects on T cell proliferation and cytokine secretion without signaling migration. FASEB J 2005;19:1731–3.

42. Terai K, Soga T, Takahashi M, Kamohara M, Ohno K, Yatsugi S, et al. Edg-8 receptors are preferentially expressed in oligodendrocyte lineage cells of the rat CNS. Neuroscience 2003;116:1053–62.

43. Pal G, Chiossan L, Chaix J, Calver A, Carozzo C, Garrigue-Antar L, et al. Natural killer cell trafficking in vivo requires a dedicated sphingosine-1-phosphate receptor. Nat Immunol 2007;8:1337–44.

44. Grundy SM, Ahrens Jr EH, Salen G. Interruption of the enterohepatic circulation of bile acids in man: comparative effects of cholestyramine and intravenously administered bile acids. J Clin Invest 1971;50:289–94.

45. Grundy SM, Ahrens Jr EH, Salen G. Interruption of the enterohepatic circulation of bile acids in man: comparative effects of cholestyramine and intravenously administered bile acids. J Clin Invest 1971;50:289–94.

46. Watanabe M, Houten SM, Wang L, Moschetta A, Mangelsdorf DJ, Heyman RA, et al. Bile acids lower triglyceride levels via a pathway involving FXR, SHP, and SREBP-1c. J Clin Invest 2004;113:1408–18.
54. Zhang Y, Castellani LW, Sinal CJ, Gonzalez FJ, Edwards PA. Peroxisome proliferator-activated receptor-γ coactivator 1α (PGC-1α) regulates triglyceride metabolism by activation of the nuclear receptor FXR. Genes Dev 2004;18:157–69.

55. Horton JD, Goldstein JL, Brown MS. SREBP: activators of the complete program of cholesterol and fatty acid synthesis in the liver. J Clin Invest 2002;109:1125–31.

56. Kast HR, Nguyen CM, Sinal CJ, Jones SA, LaFitte BA, Reue K, et al. Farnesoid X-activated receptor induces apolipoprotein C-II transcription: a molecular mechanism linking plasma triglyceride levels to bile acids. Mol Endocrinol 2001;15:1720–8.

57. Houten SM, Watanabe M, Auwerx J. Endocrine functions of bile acids. EMBO J 2006;25:1419–25.

58. Claudel T, Staels B, Kuipers F. The farnesoid X receptor: a molecular mechanism linking plasma triglyceride levels to bile acids. http://dx.doi.org/10.1002/hep.27592.

59. Zhang Y, Lee FY, Barrera G, Lee H, Vales C, Gonzalez FJ, et al. Activation of the nuclear receptor FXR improves hyperglycemia and hyperlipidemia in diabetic mice. Proc Natl Acad Sci USA 2006;103:1006–11.

60. Lundåsen T, Gålman C, Angelin B, Rudling M. Circulating intestinal fibroblast growth factor 19 has a pronounced diurnal variation and modulates hepatic bile acid synthesis in man. J Intern Med 2005;258:260–6.

61. Tomlinson E, Fu L, John L, Hultgren B, Huang X, Renz M, et al. Transgenic mice expressing human fibroblast growth factor-19 display increased metabolic rate and decreased adiposity. Endocrinology 2002;143:1741–7.

62. Fu L, John LM, Adams SH, Yu XX, Tomlinson E, Renz M, et al. Fibroblast growth factor 19 increases metabolic rate and reverses dietary and leptin-deficient diabetes. Endocrinology 2004;145:2594–603.

63. Bhatnagar S, Damron HA, Hillgartner FB. Fibroblast growth factor-19, a novel factor that inhibits hepatic fatty acid synthesis. J Biol Chem 2009;284:10023–33.

64. Miyata M, Sakaida Y, Matsuzawa H, Yoshinari K, Yamazoe Y. Fibroblast growth factor 19 treatment ameliorates disruption of hepatic lipid metabolism in farnesoid X receptor (FXR)-null mice. Biol Pharm Bull 2011;34:1885–9.

65. Li T, Owlesley E, Matozel M, Hsu P, Novak CM, Chiang JY. Transgenic expression of cholesterol 7α-hydroxylase in the liver prevents high-fat diet-induced obesity and insulin resistance in mice. Hepatology 2010;52:678–90.

66. Studer E, Zhou X, Zhao R, Wang Y, Takabe K, Nagahashi M, et al. Conjugated bile acids activate the sphingosine-1-phosphate receptor 2 in primary rodent hepatocytes. Hepatology 2012;55:267–76.

67. Cao R, Cronk ZX, Zha W, Sun L, Wang X, Fang Y, et al. Bile acids regulate hepatic gluconeogenic genes and farnesoid X receptor via G (ori)-protein-coupled receptors and the AKT pathway. J Lipid Res 2010;51:2234–44.

68. Fang Y, Studer E, Mitchell C, Grant S, Pandak WM, Hylemon PB, et al. Conjugated bile acids regulate hepatocyte glycogen synthase activity in vitro and in vivo via Gα signaling. Mol Pharmacol 2007;71:1122–8.

69. Nagahashi M, Takabe K, Liu R, Peng K, Wang X, Wang Y, et al. Conjugated bile acid activated S1P receptor 2 is a key regulator of sphingosine kinase 2 and hepatic gene expression. Hepatology 2014 http://dx.doi.org/10.1002/hep.27592.

70. Dent P, Fang Y, Gupta S, Studer E, Mitchell C, Spiegel S, et al. Conjugated bile acids promote ERK1/2 and AKT activation via a pertussis toxin-sensitive mechanism in murine and human hepatocytes. Hepatology 2005;42:1291–9.

71. Michaud J, Im DS, Hla T. Inhibitory role of sphingosine 1-phosphate receptor 2 in macrophage recruitment during inflammation. J Immunol 2010;184:1475–83.

72. Serriére-Lanneau V, Teixeira-Clerc F, Li L, Schippers M, de Wries W, Julien B, et al. The sphingosine 1-phosphate receptor S1P2 triggers hepatic wound healing. FASEB J 2007;21:2005–13.

73. Guo D, Hillger JM, Ilzerman AP, Hetman LH. Drug-target residence time—a case for G protein-coupled receptors. Med Res Rev 2014;34:856–92.