Dark Matter annual modulation results by DAMA/LIBRA

Marina del Rey
February 22-24, 2012
DAMA: an observatory for rare processes @LNGS

- by-products and small scale expts.: INR-Kiev
- neutron meas.: ENEA-Frascati
- in some studies on ββ decays (DST-MAE project): IIT Kharagpur, India

Roma2, Roma1, LNGS, IHEP/Beijing

http://people.roma2.infn.it/dama
DAMA/LXe: results on rare processes

Dark Matter Investigation

- Limits on recoils investigating the DMp-^{129}Xe elastic scattering by means of PSD
- Limits on DMp-^{129}Xe inelastic scattering
- Neutron calibration
- ^{129}Xe vs ^{136}Xe by using PSD \rightarrow SD vs SI signals to increase the sensitivity on the SD component

Other rare processes:
- Electron decay into invisible channels
- Nuclear level excitation of ^{129}Xe during CNC processes
- N, NN decay into invisible channels in ^{129}Xe
- Electron decay: $e^{-} \rightarrow \nu_{e} \gamma$
- 2β decay in ^{136}Xe
- 2β decay in ^{134}Xe
- Improved results on 2β in ^{134}Xe, ^{136}Xe
- CNC decay ^{136}Xe \rightarrow ^{136}Cs
- N, NN, NNN decay into invisible channels in ^{136}Xe

DAMA/R&D set-up: results on rare processes

- Particle Dark Matter search with CaF$_2$(Eu)
- 2β decay in ^{136}Ce and in ^{142}Ce
- 2EC2ν ^{40}Ca decay
- 2β decay in ^{46}Ca and in ^{40}Ca
- 2β^+ decay in ^{106}Cd
- 2β and β decay in ^{48}Ca
- 2EC2ν in ^{136}Ce, in ^{138}Ce and α decay in ^{142}Ce
- 2β^+ 0v, EC β^+ 0v decay in ^{130}Ba
- Cluster decay in LaCl$_3$(Ce)
- CNC decay ^{139}La \rightarrow ^{139}Ce
- α decay of natural Eu
- β decay of ^{113}Cd
- $\beta\beta$ decay of ^{64}Zn, ^{70}Zn, ^{180}W, ^{186}W
- $\beta\beta$ decay of ^{108}Cd and ^{114}Cd
- $\beta\beta$ decay of ^{136}Ce, ^{138}Ce and ^{142}Ce with CeCl$_3$
- ^{106}Cd, and ^{116}Cd in progress

DAMA/Ge & LNGS Ge facility

- RDs on highly radiopure NaI(Tl) set-up
- several RDs on low background PMTs
- qualification of many materials
- meas. on Li$_6$Eu(BO$_3$)$_3$ (NIMA572(2007)734)
- $\beta\beta$ decay in ^{100}Mo with the 4π low-bckg HPGe facility of LNGS (NPA846(2010)143)
- search for ^{7}Li solar axions (NPA806(2008)388)
- $\beta\beta$ decay of ^{96}Ru and ^{104}Ru (EPJA42(2009)171)
- meas. with a Li$_2$MoO$_4$ (NIMA607(2009)573)
- $\beta\beta$ decay of ^{136}Ce and ^{138}Ce (NPA824(2009)101)
- First observation of α decay of ^{190}Pt to the first excited level (137.2 keV) of ^{186}Os (PRC83(2011)034603)
- $\beta\beta$ decay in ^{190}Pt and ^{198}Pt (EPJA47(2011)91)
- $\beta\beta$ decay of ^{156}Dy, ^{158}Dy (NPA859(2011)126)
- Contaminations of SrI$_2$(Eu) (NIMA670(2012)703)
- Many other meas. already scheduled
+ CdWO$_4$ and ZnWO$_4$ radiopurity studies (NIMA626-627(2011)31, NIMA615(2010)301)
What accelerators can do:

to demonstrate the existence of some of the possible DM candidates

What accelerators cannot do:

to credit that a certain particle is the Dark Matter solution or the “single” Dark Matter particle solution…

+ DM candidates and scenarios exist (even for neutralino candidate) on which accelerators cannot give any information

DM direct detection method using a model independent approach and a low-background widely-sensitive target material
Some direct detection processes:

- Scatterings on nuclei
 → detection of nuclear recoil energy

- Conversion of particle into e.m. radiation
 → detection of γ, X-rays, e^-

- Interaction only on atomic electrons
 → detection of e.m. radiation

- Interaction of light DMp (LDM) on e^- or nucleus with production of a lighter particle
 → detection of electron/nucleus recoil energy

- Inelastic Dark Matter: $W + N \rightarrow W^* + N$
 → W has Two mass states χ^+ , χ^- with δ mass splitting
 → Kinematical constraint for the inelastic scattering of χ^- on a nucleus
 \[
 \frac{1}{2} \mu \nu^2 \geq \delta \Leftrightarrow \nu \geq \nu_{thr} = \sqrt{\frac{2\delta}{\mu}}
 \]

- Excitation of bound electrons in scatterings on nuclei
 → detection of recoil nuclei + e.m. radiation

- Inelastic Dark Matter:
 e.g. signals from these candidates are completely lost in experiments based on "rejection procedures" of the e.m. component of their rate

- Ionization: Ge, Si
- Bolometer: TeO$_2$, Ge, CaWO$_4$, ...
- Scintillation: NaI(Tl), LXe, CaF$_2$(Eu), ...

 DMp → detection of nuclear recoil energy

... even WIMPs

... also other ideas ...

... and more
The annual modulation: a model independent signature for the investigation of Dark Matter particles component in the galactic halo

With the present technology, the annual modulation is the main model independent signature for the DM signal. Although the modulation effect is expected to be relatively small a suitable large-mass, low-radioactive set-up with an efficient control of the running conditions would point out its presence.

Drukier, Freese, Spergel PRD86
Freese et al. PRD88

Requirements of the annual modulation

1) Modulated rate according cosine
2) In a definite low energy range
3) With a proper period (1 year)
4) With proper phase (about 2 June)
5) Just for single hit events in a multi-detector set-up
6) With modulation amplitude in the region of maximal sensitivity must be <7% for usually adopted halo distributions, but it can be larger in case of some possible scenarios

To mimic this signature, spurious effects and side reactions must not only - obviously - be able to account for the whole observed modulation amplitude, but also to satisfy contemporaneously all the requirements

The DM annual modulation signature has a different origin and, thus, different peculiarities (e.g. the phase) with respect to those effects connected with the seasons instead

\[v_\oplus(t) = v_{\text{sun}} + v_{\text{orb}} \cos \gamma \cos[\omega(t-t_0)] \]

\[S_k[\eta(t)] = \int_{\Delta E_k} \frac{dR}{dE_R} dE_R \equiv S_{0,k} + S_{m,k} \cos[\omega(t-t_0)] \]

Expected rate in given energy bin changes because the annual motion of the Earth around the Sun moving in the Galaxy

- \(v_{\text{sun}} \approx 232 \text{ km/s} \) (Sun velocity in the halo)
- \(v_{\text{orb}} = 30 \text{ km/s} \) (Earth velocity around the Sun)
- \(\gamma = \pi/3, \ \omega = 2\pi/T, \ T = 1 \text{ year} \)
- \(t_0 = 2^{\text{nd}} \text{June} \) (when \(v_\oplus \) is maximum)
The pioneer DAMA/NaI:
≈100 kg highly radiopure NaI(Tl)

Performances: N.Cim.A112(1999)545-575, EPJC18(2000)283,
Riv.N.Cim.26 n. 1(2003)1-73, IJMPD13(2004)2127

Results on rare processes:
• Possible Pauli exclusion principle violation
• CNC processes
• Electron stability and non-paulian transitions in Iodine atoms (by L-shell)
• Search for solar axions
• Exotic Matter search
• Search for superdense nuclear matter
• Search for heavy clusters decays

PLB408(1997)439
PRC60(1999)065501
PLB460(1999)235
PLB515(2001)6
EPJdirect C14(2002)1
EPJA23(2005)7
EPJA24(2005)51

Results on DM particles:
• PSD
• Investigation on diurnal effect
• Exotic Dark Matter search
• Annual Modulation Signature

PLB389(1996)757
N.Cim.A112(1999)1541
PRL83(1999)4918

PLB424(1998)195, PLB450(1999)448, PRD61(1999)023512, PLB480(2000)23, EPJC18(2000)283,
PLB509(2001)197, EPJC23(2002)61, PRD66(2002)043503, Riv.N.Cim.26 n.1 (2003)1, IJMPD13(2004)
2127, IJMPA21(2006)1445, EPJC47(2006)263, IJMPA22(2007)3155, EPJC53(2008)205, PRD77(2008)
023506, MPLA23(2008)2125.

model independent evidence of a particle DM component in the galactic halo at 6.3σ C.L.
total exposure (7 annual cycles) 0.29 ton×yr
As a result of a second generation R&D for more radiopure NaI(Tl) by exploiting new chemical/physical radiopurification techniques (all operations involving crystals and PMTs - including photos - in HP Nitrogen atmosphere)

The new DAMA/LIBRA set-up ~250 kg NaI(Tl) (Large sodium Iodide Bulk for RAre processes)

Residual contaminations in the new DAMA/
LIBRA NaI(Tl) detectors:
\[{232}\text{Th}, \ 238\text{U} \text{ and } {40}\text{K} \text{ at level of } 10^{-12} \text{ g/g} \]

- Radiopurity, performances, procedures, etc.: NIMA592(2008)297
- Results on DM particles: Annual Modulation Signature: EPJC56(2008)333, EPJC67(2010)39
- Results on rare processes: PEP violation in Na and I: EPJC62(2009)327
...calibration procedures
The DAMA/LIBRA set-up

For details, radiopurity, performances, procedures, etc.

NIMA592(2008)297

- 25 x 9.7 kg NaI(Tl) in a 5x5 matrix
- two Suprasil-B light guides directly coupled to each bare crystal
- two PMTs working in coincidence at the single ph. el. threshold

Installation

5.5-7.5 phe/keV

~ 1m concrete from GS rock

- Dismounting/Installing protocol (with “Scuba” system)
- All the materials selected for low radioactivity
- Multicomponent passive shield (>10 cm of Cu, 15 cm of Pb + Cd foils, 10/40 cm Polyethylene/paraffin, about 1 m concrete, mostly outside the installation)
- Three-level system to exclude Radon from the detectors
- Calibrations in the same running conditions as production runs
- Installation in air conditioning + huge heat capacity of shield
- Monitoring/alarm system; many parameters acquired with the production data
- Pulse shape recorded by Waveform Analyzer Acqiris DC270 (2chs per detector), 1 Gsample/s, 8 bit, bandwidth 250 MHz
- Data collected from low energy up to MeV region, despite the hardware optimization was done for the low energy
Some on residual contaminants in new ULB NaI(Tl) detectors

α/e pulse shape discrimination has practically 100% effectiveness in the MeV range

The measured α yield in the new DAMA/LIBRA detectors ranges from 7 to some tens α/kg/day

Second generation R&D for new DAMA/LIBRA crystals: new selected powders, physical/chemical radiopurification, new selection of overall materials, new protocol for growing and handling

232Th residual contamination
From time-amplitude method. If 232Th chain at equilibrium: it ranges from 0.5 ppt to 7.5 ppt

238U residual contamination
First estimate: considering the measured α and 232Th activity, if 238U chain at equilibrium \(\Rightarrow\) 238U contents in new detectors typically range from 0.7 to 10 ppt

238U chain splitted into 5 subchains: 238U \(\rightarrow\) 234U \(\rightarrow\) 230Th \(\rightarrow\) 226Ra \(\rightarrow\) 210Pb \(\rightarrow\) 206Pb

Thus, in this case: (2.1±0.1) ppt of 232Th; (0.35 ±0.06) ppt for 238U and: (15.8±1.6) µBq/kg for 234U + 230Th; (21.7±1.1) µBq/kg for 226Ra; (24.2±1.6) µBq/kg for 210Pb.

natK residual contamination
The analysis has given for the natK content in the crystals values not exceeding about 20 ppb

double coincidences

129I and 210Pb
129I/natI \(\approx\) 1.7×10^{-13} for all the new detectors

210Pb in the new detectors: (5 – 30) µBq/kg.

No sizable surface pollution by Radon daughters, thanks to the new handling protocols

... more on NIMA592 (2008)297
DAMA/LIBRA calibrations

Low energy: various external gamma sources (241Am, 133Ba) and internal X-rays or gamma’s (40K, 125I, 129I), routine calibrations with 241Am

$$\frac{\sigma_{LE}}{E} = \frac{(0.448 \pm 0.035)}{\sqrt{E(keV)}} + (9.1 \pm 5.1)\cdot 10^{-3}$$

High energy: external sources of gamma rays (e.g. 137Cs, 60Co and 133Ba) and gamma rays of 1461 keV due to 40K decays in an adjacent detector, tagged by the 3.2 keV X-rays

$$\frac{\sigma_{HE}}{E} = \frac{(1.12 \pm 0.06)}{\sqrt{E(keV)}} + (17 \pm 23)\cdot 10^{-4}$$

Thus, here and hereafter keV means keV electron equivalent.
Model Independent Annual Modulation Result

DAMA/NaI (7 years) + DAMA/LIBRA (6 years) Total exposure: 425428 kg×day = 1.17 ton×yr

experimental single-hit residuals rate vs time and energy

The data favor the presence of a modulated behavior with proper features at 8.8σ C.L.

2-4 keV
A=(0.0183±0.0022) cpd/kg/keV
χ²/dof = 75.7/79 8.3 σ C.L.
Absence of modulation? No
χ²/dof=147/80 ⇒ P(A=0) = 7×10⁻⁶

2-5 keV
A=(0.0144±0.0016) cpd/kg/keV
χ²/dof = 56.6/79 9.0 σ C.L.
Absence of modulation? No
χ²/dof=135/80 ⇒ P(A=0) = 1.1×10⁻⁴

2-6 keV
A=(0.0114±0.0013) cpd/kg/keV
χ²/dof = 64.7/79 8.8 σ C.L.
Absence of modulation? No
χ²/dof=140/80 ⇒ P(A=0) = 4.3×10⁻⁵
Modulation amplitudes (A), period (T) and phase (t₀) measured in DAMA/NaI and DAMA/LIBRA

	A (cpd/kg/keV)	T = 2π/ω (yr)	t₀ (day)	C.L.
DAMA/NaI (7 years)				
(2+4) keV	0.0252 ± 0.0050	1.01 ± 0.02	125 ± 30	5.0σ
(2+5) keV	0.0215 ± 0.0039	1.01 ± 0.02	140 ± 30	5.5σ
(2+6) keV	0.0200 ± 0.0032	1.00 ± 0.01	140 ± 22	6.3σ
DAMA/LIBRA (6 years)				
(2+4) keV	0.0180 ± 0.0025	0.996 ± 0.002	135 ± 8	7.2σ
(2+5) keV	0.0134 ± 0.0018	0.997 ± 0.002	140 ± 8	7.4σ
(2+6) keV	0.0098 ± 0.0015	0.999 ± 0.002	146 ± 9	6.5σ
DAMA/NaI + DAMA/LIBRA				
(2+4) keV	0.0194 ± 0.0022	0.996 ± 0.002	136 ± 7	8.8σ
(2+5) keV	0.0149 ± 0.0016	0.997 ± 0.002	142 ± 7	9.3σ
(2+6) keV	0.0116 ± 0.0013	0.999 ± 0.002	146 ± 7	8.9σ

The modulation amplitudes for the (2 – 6) keV energy interval, obtained when fixing the period at 1 yr and the phase at 152.5 days, are:

- (0.019±0.003) cpd/kg/keV for DAMA/NaI
- (0.010±0.002) cpd/kg/keV for DAMA/LIBRA.

Thus, their difference: (0.009±0.004) cpd/kg/keV is ~2σ which corresponds to a modest, but non negligible probability.

The χ² test (χ² = 9.3, 12.2 and 10.1 over 12 d.o.f. for the three energy intervals, respectively) and the run test (lower tail probabilities of 57%, 47% and 35% for the three energy intervals, respectively) accept at 90% C.L. the hypothesis that the modulation amplitudes are normally fluctuating around their best fit values.

Compatibility among the annual cycles

- 8.8σ 136 ± 7
- 7.2σ 135 ± 8
- 7.4σ 140 ± 8
- 6.5σ 146 ± 9
- 8.9σ 146 ± 7
- 9.3σ 142 ± 7
- 8.8σ 136 ± 7
- 6.3σ 1.00 ± 0.01
- 5.5σ 0.009 ± 0.004
- 5.0σ 0.019 ± 0.003
- 5.5σ 0.010 ± 0.002
- 5.0σ 0.020 ± 0.003
- 5.0σ 0.021 ± 0.004
- 5.0σ 0.025 ± 0.005
- 5.0σ 0.010 ± 0.002
- 5.0σ 0.010 ± 0.002
- 5.0σ 0.010 ± 0.002

DAMA/NaI (7 annual cycles: 0.29 ton x yr) + DAMA/LIBRA (6 annual cycles: 0.87 ton x yr) total exposure: 425428 kg×day = 1.17 ton×yr

A, T, t₀ obtained by fitting the single-hit data with Acos[ω(t-t₀)]
Power spectrum of single-hit residuals
(according to Ap.J.263(1982)835; Ap.J.338(1989)277)

Treatment of the experimental errors and time binning included here

2-6 keV vs 6-14 keV

DAMA/NaI (7 years)
total exposure: 0.29 ton×yr

DAMA/LIBRA (6 years)
total exposure: 0.87 ton×yr

DAMA/NaI (7 years) +
DAMA/LIBRA (6 years)
total exposure: 1.17 ton×yr

Principal mode in the 2-6 keV region:
DAMA/NaI
2.737 × 10^{-3} d^{-1} \approx 1 \text{ y}^{-1}

DAMA/LIBRA
2.697 × 10^{-3} d^{-1} \approx 1 \text{ y}^{-1}

DAMA/NaI+LIBRA
2.735 × 10^{-3} d^{-1} \approx 1 \text{ y}^{-1}

Not present in the 6-14 keV region (only aliasing peaks)

Clear annual modulation is evident in (2-6) keV while it is absent just above 6 keV
Rate behaviour above 6 keV

No Modulation above 6 keV

- Mod. Ampl. (6-10 keV): cpd/kg/keV
 - (0.0016 ± 0.0031) DAMA/LIBRA-1
 - (-0.0010 ± 0.0034) DAMA/LIBRA-2
 - (-0.0001 ± 0.0031) DAMA/LIBRA-3
 - (-0.0006 ± 0.0029) DAMA/LIBRA-4
 - (-0.0021 ± 0.0026) DAMA/LIBRA-5
 - (0.0029 ± 0.0025) DAMA/LIBRA-6
 → statistically consistent with zero

- No Modulation in the whole energy spectrum:
 studying integral rate at higher energy, R_{90}

 - R_{90} percentage variations with respect to their mean values for single crystal in the DAMA/LIBRA running periods

Period	Mod. Ampl.
DAMA/LIBRA-1	(-0.05±0.19) cpd/kg
DAMA/LIBRA-2	(-0.12±0.19) cpd/kg
DAMA/LIBRA-3	(-0.13±0.18) cpd/kg
DAMA/LIBRA-4	(0.15±0.17) cpd/kg
DAMA/LIBRA-5	(0.20±0.18) cpd/kg
DAMA/LIBRA-6	(-0.20±0.16) cpd/kg

 $\sigma \approx 1\%$, fully accounted by statistical considerations

- Fitting the behaviour with time, adding a term modulated with period and phase as expected for DM particles:

 consistent with zero

 $+$ if a modulation present in the whole energy spectrum at the level found in the lowest energy region $\rightarrow R_{90} \sim$ tens cpd/kg $\rightarrow \sim 100 \sigma$ far away

No modulation above 6 keV

This accounts for all sources of bckg and is consistent with studies on the various components
Multiple-hits events in the region of the signal

- Each detector has its own TDs read-out → pulse profiles of multiple-hits events (multiplicity > 1) acquired (exposure: 0.87 ton×yr).

- The same hardware and software procedures as those followed for single-hit events

signals by Dark Matter particles do not belong to multiple-hits events, that is:

\[\text{multiple-hits events} = \text{Dark Matter particles events “switched off”} \]

Evidence of annual modulation with proper features as required by the DM annual modulation signature:
- present in the single-hit residuals
- absent in the multiple-hits residual

This result offers an additional strong support for the presence of Dark Matter particles in the galactic halo, further excluding any side effect either from hardware or from software procedures or from background.
Energy distribution of the modulation amplitudes

\[R(t) = S'_0 + S'_m \cos(\omega(t - t_0)) \]

DAMA/NaI (7 years) + DAMA/LIBRA (6 years)
total exposure: 425428 kg×day ≈ 1.17 ton×yr

A clear modulation is present in the (2-6) keV energy interval, while \(S_m \) values compatible with zero are present just above.

The \(S_m \) values in the (6–20) keV energy interval have random fluctuations around zero with \(\chi^2 \) equal to 27.5 for 28 degrees of freedom.
Statistical distributions of the modulation amplitudes (S_m)

a) S_m for each detector, each annual cycle and each considered energy bin (here 0.25 keV)
b) $<S_m>$ = mean values over the detectors and the annual cycles for each energy bin; σ = error on S_m

DAMA/LIBRA (6 years)
total exposure: 0.87 ton\(\times\)yr

Each panel refers to each detector separately; 96 entries = 16 energy bins in 2-6 keV energy interval \(\times\) 6 DAMA/LIBRA annual cycles (for crys 16, 1 annual cycle, 16 entries)

Individual S_m values follow a normal distribution since $(S_m-<S_m>)/\sigma$ is distributed as a Gaussian with a unitary standard deviation (r.m.s.)

S_m statistically well distributed in all the detectors and annual cycles
\[x = \frac{(S_m - \langle S_m \rangle)}{\sigma}, \]
\[\chi^2 = \sum x^2 \]

Statistical analyses about modulation amplitudes (S_m)

\(\chi^2 / \text{d.o.f.} \) values of \(S_m \) distributions for each DAMA/LIBRA detector in the (2–6) keV energy interval for the six annual cycles.

DAMA/LIBRA (6 years)
total exposure: 0.87 ton yr

The line corresponds to an upper tail probability of 5%.

The \(\chi^2 / \text{d.o.f.} \) values range from 0.7 to 1.22 (96 d.o.f. = 16 energy bins \(\times \) 6 annual cycles) for 24 detectors \(\Rightarrow \) at 95% C.L. the observed annual modulation effect is well distributed in all these detectors.

The remaining detector has \(\chi^2 / \text{d.o.f.} = 1.28 \) exceeding the value corresponding to that C.L.; this also is statistically consistent, considering that the expected number of detectors exceeding this value over 25 is 1.25.

- The mean value of the twenty-five points is 1.066, slightly larger than 1. Although this can be still ascribed to statistical fluctuations, let us ascribe it to a possible systematics.

- In this case, one would have an additional error of \(\leq 4 \times 10^{-4} \) cpd/kg/keV, if quadratically combined, or \(\leq 5 \times 10^{-5} \) cpd/kg/keV, if linearly combined, to the modulation amplitude measured in the (2 – 6) keV energy interval.

- This possible additional error (\(\leq 4 \% \) or \(\leq 0.5\% \), respectively, of the DAMA/LIBRA modulation amplitude) can be considered as an upper limit of possible systematic effects.
Is there a sinusoidal contribution in the signal? Phase $\neq 152.5$ day?

\[R(t) = S_0 + S_m \cos[\omega(t - t_0)] + Z_m \sin[\omega(t - t_0)] = S_0 + Y_m \cos[\omega(t - t^*)] \]

For Dark Matter signals:

- $|Z_m| \ll |S_m| \approx |Y_m|$
- $\omega = 2\pi / T$
- $t^* \approx t_0 = 152.5d$
- $T = 1$ year

Slight differences from 2nd June are expected in case of contributions from non thermalized DM components (as e.g. the SagDEG stream)

E (keV)	S_m (cpd/kg/keV)	Z_m (cpd/kg/keV)	Y_m (cpd/kg/keV)	t^* (day)
2-6	0.0111 ± 0.0013	-0.0004 ± 0.0014	0.0111 ± 0.0013	150.5 ± 7.0
6-14	-0.0001 ± 0.0008	0.0002 ± 0.0005	-0.0001 ± 0.0008	--
Summarizing on a hypothetical background modulation

- No Modulation above 6 keV
- No modulation in the whole energy spectrum
 - If a modulation present in the whole energy spectrum at the level found in the lowest energy region → $R_{90} \sim$ tens cpd/kg
 - $\sigma \sim 100\sigma$ far away
- No modulation in the 2-6 keV *multiple-hits* residual rate

No background modulation (and cannot mimic the signature): all this accounts for the all possible sources of bckg

Nevertheless, additional investigations performed ...
No role for 40K in the experimental S_m

DeltaE = 0.5 keV bins

The experimental S_m cannot be due to 40K for many reasons.

DM-like modulation amplitude:
- (0.117 ± 0.094); χ^2/dof = 1.04

Sin-like modulation amplitude:
- (0.025 ± 0.098); χ^2/dof = 1.05

Gaussian fluctuation around zero:
- χ^2/dof = 1.04

The 40K double coincidence events (1461 keV-3 keV).

No modulation of the double coincidence events from the hypothetical cases of: i) 40K "exotic" modulated decay; ii) spill-out effects from double to single events and vice versa, is ruled out at more than 10 σ.

No role for 40K in the experimental S_m also see arXiv:0912.0660

The 40K double coincidence events are not modulated

Any modulation contribution around 3 keV in the single-hit events from the hypothetical cases of: i) 40K "exotic" modulated decay; ii) spill-out effects from double to single events and vice versa, is ruled out at more than 10 σ.
Can a possible thermal neutron modulation account for the observed effect?

- Thermal neutrons flux measured at LNGS:
 \[\Phi_n = 1.08 \times 10^{-6} \text{ n cm}^{-2} \text{ s}^{-1} \] (N.Cim.A101(1989)959)

- Experimental upper limit on the thermal neutrons flux “surviving” the neutron shield in DAMA/LIBRA:
 ➢ studying triple coincidences able to give evidence for the possible presence of 24Na from neutron activation:
 \[\Phi_n < 1.2 \times 10^{-7} \text{ n cm}^{-2} \text{ s}^{-1} \] (90% C.L.)

- Two consistent upper limits on thermal neutron flux have been obtained with DAMA/NaI considering the same capture reactions and using different approaches.

Evaluation of the expected effect:

- Capture rate = \(\Phi_n \sigma_n N_T < 0.022 \text{ captures/day/kg} \)

HYPOTHESIS: assuming very cautiously a 10% thermal neutron modulation:

\[S_m^{(\text{thermal n})} < 0.8 \times 10^{-6} \text{ cpd/kg/keV} < 0.01\% S_m^{\text{observed}} \]

In all the cases of neutron captures (24Na, 128I, ...) a possible thermal neutron modulation induces a variation in all the energy spectrum

Already excluded also by R$_{90}$ analysis
Can a possible fast neutron modulation account for the observed effect?

In the estimate of the possible effect of the neutron background cautiously not included the 1m concrete moderator, which almost completely surrounds (mostly outside the barrack) the passive shield.

Measured fast neutron flux @ LNGS:
\[\Phi_n = 0.9 \times 10^{-7} \text{ n cm}^{-2} \text{ s}^{-1} \]
(Astropart.Phys.4 (1995)23)

By MC: differential counting rate above 2 keV ≈ 10^{-3} \text{ cpd/kg/keV}

HYPOTHESIS: assuming - very cautiously - a 10% neutron modulation:

\[S_m^{(\text{fast n})} < 10^{-4} \text{ cpd/kg/keV} \]
(< 0.5\% \ S_m^{\text{observed}})

- Experimental upper limit on the fast neutrons flux “surviving” the neutron shield in DAMA/LIBRA:
 - through the study of the inelastic reaction \(^{23}\text{Na}(n,n')^{23}\text{Na}^*(2076 \text{ keV})\) which produces two \(\gamma\)’s in coincidence (1636 keV and 440 keV):
 \[\Phi_n < 2.2 \times 10^{-7} \text{ n cm}^{-2} \text{ s}^{-1} \]
 (90\% C.L.)
 - well compatible with the measured values at LNGS. This further excludes any presence of a fast neutron flux in DAMA/LIBRA significantly larger than the measured ones.

Moreover, a possible fast n modulation would induce:
- a variation in all the energy spectrum (steady environmental fast neutrons always accompanied by thermalized component)
 - already excluded also by \(R_{90}\)
- a modulation amplitude for multiple-hit events different from zero
 - already excluded by the multiple-hit events

Thus, a possible 5% neutron modulation (ICARUS TM03-01) cannot quantitatively contribute to the DAMA/NaI observed signal, even if the neutron flux would be assumed 100 times larger than measured by various authors over more than 15 years @ LNGS.
The μ case

DAMA/LIBRA surface ≈ 0.13 m2

μ flux @ DAMA/LIBRA $\approx 2.5 \mu$/day

Monte Carlo simulation
- muon intensity distribution
- Gran Sasso rock overburden map

Single-hit events

$\Phi_\mu @ LNGS \approx 20 \mu$ m$^{-2}$d$^{-1}$ (±1.5% modulated)

Case of fast neutrons produced by μ

Measured neutron yield @ LNGS:
- $Y = 1 \div 7 \times 10^{-4}$ n/μ/g/cm2
- $R_n = (\text{fast n by } \mu)/(\text{time unit}) = \Phi_\mu Y M_{\text{eff}}$

Annual modulation amplitude at low energy due to μ modulation:

$$S_m^{(\mu)} = R_n g \varepsilon f_{\Delta E} f_{\text{single}} 2\% / (M_{\text{setup}} \Delta E)$$

$g =$ geometrical factor; $\varepsilon =$ detection effic. by elastic scattering

$f_{\Delta E} =$ energy window (E>2 keV) effic.; $f_{\text{single}} =$ single hit effic.

Hyp.: $M_{\text{eff}} = 15$ tons; $g \approx \varepsilon \approx f_{\Delta E} \approx f_{\text{single}} \approx 0.5$ (cautiously)

Knowing that: $M_{\text{setup}} \approx 250$ kg and $\Delta E = 4$ keV

Moreover, this modulation also induces a variation in other parts of the energy spectrum and in the multi-hits events

It cannot mimic the signature: already excluded by R_{90}, by multi-hits analysis + different phase, etc.

R_{90}, multi-hits, phase, and other analyses

also arXiv:1202.4179
about the phase of muons ...

- μ flux @ LNGS (MACRO, LVD, BOREXINO) $\approx 2.3 \times 10^{-4} \, \text{m}^{-2}\text{s}^{-1}$; modulation amplitude 1.5%; phase: roughly around middle of July (Macro), July 5\(\pm\)15 d (LVD), July 7\(\pm\)6 d (Borexino1), June 29\(\pm\)6 d (Borexino2)

- LVD and Borexino partially overlapped with DAMA/NaI and fully with DAMA/LIBRA.

BUT: the muon phase largely variable from year to year (error no purely statistical); LVD/Borexino phase value is a “mean” of the muon phase of each year

DAMA/NaI + DAMA/LIBRA: modulation amplitude 10^{-2} cpd/kg/keV (2-6 keV single hit events); phase:

- May 26 ± 7 days (stable over 13 years)

7.1 σ from July 15, 5.9 σ from July 7, and 4.7 σ from June 29

1) assuming for a while that the real value of the DAMA phase is June 16th (that is 3σ fluctuation from the measured value), it is well far from all the measured phases of muons by LVD, MACRO and BOREXINO, in all the years

2) considering the seasonal weather in Gran Sasso, it is quite impossible that the maximum temperature of the outer atmosphere (on which μ flux modulation is dependent) is observed in the middle of June

Can (whatever) hypothetical cosmogenic products be considered as side effects, assuming that they might produce:

- only events at low energy,
- only single-hit events,
- no sizable effect in the multiple-hit counting rate
- pulses with time structure as scintillation light

But, its phase should be (much) larger than μ phase, t_{μ}:

- if $\tau \ll T/2\pi$: $t_{\text{side}} = t_{\mu} + \tau$
- if $\tau \gg T/2\pi$: $t_{\text{side}} = t_{\mu} + \frac{T}{4}$

It cannot mimic the signature: different phase

Inconsistency of the phase between DAMA signal and μ modulation
Investigating the possible presence of long term modulation in the counting rate

In K. Blum, arXiv:1110.0857 it is claimed that muons in the LVD may show a long term variation with a period of about 6 years, suggesting that a similar long term modulation might also be present in DAMA.

We calculated annual baseline counting rates – that is the averages on all the detectors (j index) of flat_j (i.e. the single-hit rate of the j-th detector averaged over the annual cycle) – for the $(2–4)\,\text{keV}$ and $(2–6)\,\text{keV}$ energy intervals, respectively.

Their power spectra (blue and green lines)

For comparison the power spectrum for the measured single-hit residuals in $(2-6)\,\text{keV}$ is also shown:

- **Principal mode at** 2.735×10^{-3} d$^{-1}$ (period ≈ 1 yr)

- **No statistically significant peak at lower frequency and for frequency corresponding to 6 years period**

GENERAL CONCLUSION on muons: No role for μ or μ induced effect + requirements of the DM annual modulation signature failed
Summary of the results obtained in the additional investigations of possible systematics or side reactions

(NIMA592(2008)297, EPJC56(2008)333, arXiv:0912.0660, Can. J. Phys. 89 (2011) 11, S.I.F.Atti Conf.103(2011) (arXiv:1007.0595), arXiv:1202.4179)

Source	Main comment	Cautious upper limit (90% C.L.)
RADON	Sealed Cu box in HP Nitrogen atmosphere, 3-level of sealing, etc.	<2.5×10⁻⁶ cpd/kg/keV
TEMPERATURE	Installation is air conditioned+ detectors in Cu housings directly in contact with multi-ton shield → huge heat capacity + T continuously recorded	<10⁻⁴ cpd/kg/keV
NOISE	Effective full noise rejection near threshold	<10⁻⁴ cpd/kg/keV
ENERGY SCALE	Routine + intrinsic calibrations	<1-2 ×10⁻⁴ cpd/kg/keV
EFFICIENCIES	Regularly measured by dedicated calibrations	<10⁻⁴ cpd/kg/keV
BACKGROUND	No modulation above 6 keV; no modulation in the (2-6) keV multiple-hits events; this limit includes all possible sources of background	<10⁻⁴ cpd/kg/keV
SIDE REACTIONS	Muon flux variation measured at LNGS	<3×10⁻⁵ cpd/kg/keV

+ they cannot satisfy all the requirements of annual modulation signature

Thus, they cannot mimic the observed annual modulation effect
Summarizing

- Presence of modulation for 13 annual cycles at 8.9σ C.L. with the proper distinctive features of the DM signature; all the features satisfied by the data over 13 independent experiments of 1 year each one.

- The total exposure by former DAMA/NaI and present DAMA/LIBRA is $1.17 \text{ ton} \times \text{yr} (13 \text{ annual cycles})$.

- In fact, as required by the DM annual modulation signature:

 1. The *single-hit* events show a clear cosine-like modulation, as expected for the DM signal.
 2. Measured period is equal to $(0.999\pm0.002) \text{ yr}$, well compatible with the 1 yr period, as expected for the DM signal.
 3. Measured phase $(146\pm7) \text{ days}$ is well compatible with 152.5 days, as expected for the DM signal.
 4. The modulation is present only in the low energy $(2-6) \text{ keV}$ interval and not in other higher energy regions, consistently with expectation for the DM signal.
 5. The modulation is present only in the *single-hit* events, while it is absent in the *multiple-hits*, as expected for the DM signal.
 6. The measured modulation amplitude in NaI(Tl) of the *single-hit* events in $(2-6) \text{ keV}$ is: $(0.0116 \pm 0.0013) \text{ cpd/kg/keV} (8.9\sigma \text{ C.L.})$.

No systematic or side process able to simultaneously satisfy all the many peculiarities of the signature and to account for the whole measured modulation amplitude is available.
Model-independent evidence by DAMA/NaI and DAMA/LIBRA

well compatible with several candidates (in many possible astrophysical, nuclear and particle physics scenarios)

Neutralino as LSP in various SUSY theories

Various kinds of WIMP candidates with several different kind of interactions
Pure SI, pure SD, mixed + Migdal effect +channeling,... (from low to high mass)

WIMP with preferred inelastic scattering

Mirror Dark Matter

Light Dark Matter

Self interacting Dark Matter

Pseudoscalar, scalar or mixed light bosons with axion-like interactions

a heavy ν of the 4-th family

Elementary Black holes such as the Daemons

Sterile neutrino

… and more…

Available results from direct searches using different target materials and approaches do not give any robust conflict & compatibility with positive excesses

Possible model dependent positive hints from indirect searches (but interpretation, evidence itself, derived mass and cross sections depend e.g. on bckg modeling, on DM spatial velocity distribution in the galactic halo, etc.) not in conflict with DAMA results;
Just few examples of interpretation of the annual modulation in terms of candidate particles in some scenarios

WIMP: SI

- Not best fit
- About the same C.L.

WIMP: SI & SD \(\theta = 2.435 \)

LDM, bosonic DM

\(m_L = 0 \)

Compatibility with several candidates; other ones are open

EPJC56(2008)333
Uncertainty in experimental parameters, as well as necessary assumptions on various related astrophysical, nuclear and particle-physics aspects, affect all the results at various extent, both in terms of exclusion plots and in terms of allowed regions/volumes. Thus comparisons with a fixed set of assumptions and parameters’ values are intrinsically strongly uncertain.

No experiment can be directly compared in model independent way with DAMA
Supersymmetric expectations in MSSM

- Assuming for the neutralino a dominant purely SI coupling
- When releasing the gaugino mass unification at GUT scale: $M_1/M_2 \approx 0.5 (<)$;
 (where M_1 and M_2 U(1) and SU(2) gaugino masses)

Heavier Higgs boson in MSSM

$M_H \approx 126$ GeV

If the two CDMS events are interpreted as relic neutralino interactions

DAMA allowed regions for a particular set of astrophysical, nuclear and particle Physics assumptions with and without channeling

CoGeNT and CRESST

arXiv:1112.5666

CRESST

CoGeNT

DAMA allowed regions for a particular set of astrophysical, nuclear and particle Physics assumptions without (green), with (blue) channeling, with en.dep. Q.F.(red)
... examples in some given frameworks

DM particle with preferred inelastic interaction

• In the Inelastic DM (iDM) scenario, WIMPs scatter into an excited state, split from the ground state by an energy comparable to the available kinetic energy of a Galactic WIMP.

\[\chi^+ + N \rightarrow \chi^- + N \]

→ W has two mass states \(\chi^+ \), \(\chi^- \) with \(\delta \) mass splitting

→ Kinematical constraint for iDM

\[\frac{1}{2} \mu v^2 \geq \delta \Leftrightarrow v \geq v_{thr} = \sqrt{\frac{2\delta}{\mu}} \]

DAMA/NaI+DAMA/LIBRA
Slices from the 3-dimensional allowed volume

• In the Inelastic DM (iDM) scenario, WIMPs scatter into an excited state, split from the ground state by an energy comparable to the available kinetic energy of a Galactic WIMP.

• Inelastic scattering WIMPs with large splittings do not give rise to sizeable contribution on Na, I, Ge, Xe, Ca, O, … nuclei.

• For large splittings, the dominant scattering in NaI(Tl) can occur off of Thallium nuclei, with \(A \approx 205 \), which are present as a dopant at the \(10^{-3} \) level in NaI(Tl) crystals.

Fund. Phys. 40(2010)900

iDM interaction on Thallium nuclei

... and more considering experimental and theoretical uncertainties

arXiv:1007.2688
Second upgrade on Nov/Dec 2010

All PMTs replaced with new ones of higher Q.E.

Since Dec 2010 data taking and optimizations in this new configuration started
what next

Continuously running

- Replacement of all the PMTs with higher Q.E. ones done

- New PMTs with higher Q.E.:
 - Continuing data taking in the new configuration with lower software energy threshold (below 2 keV).
 - New preamplifiers and trigger modules realized to further implement low energy studies.
 - Suitable exposure planned in the new configuration to deeper study the nature of the particles and features of related astrophysical, nuclear and particle physics aspects.
 - Investigation on dark matter peculiarities and second order effect
 - Special data taking for other rare processes.
Conclusions

- Positive evidence for the presence of DM particles in the galactic halo now supported at 8.9 σ C.L. (cumulative exposure 1.17 ton x yr – 13 annual cycles DAMA/NaI and DAMA/LIBRA)
- The modulation parameters determined with better precision
- Full sensitivity to many kinds of DM candidates and interactions both inducing recoils and/or e.m. radiation. That is not restricted to DM candidate inducing only nuclear recoils
- No experiment exists whose result can be directly compared in a model independent way with those by DAMA/NaI & DAMA/LIBRA

- Possible positive hints in direct searches – due to excesses above an evaluated background – are compatible with DAMA in many scenarios; null searches not in robust conflict. Consider also the experimental and theoretical uncertainties.
- Indirect model dependent searches not in conflict.
- Investigations other than DM

DAMA/LIBRA still the highest radio-pure set-up in the field with the largest sensitive mass, full control of running conditions, the largest duty-cycle, exposure orders of magnitude larger than any other activity in the field, etc., and the only one which effectively exploits a model independent DM signature