ON QUASI-PRÜFER AND UM⁻domains

PARVIZ SAHANDI

Abstract. In this note we show that an integral domain \(D \) of finite \(w \)-dimension is a quasi-Prüfer domain if and only if each overring of \(D \) is a \(w \)-Jaffard domain. Similar characterizations of quasi-Prüfer domains are given by replacing \(w \)-Jaffard domain by \(w \)-stably strong \(S \)-domain, and \(w \)-strong \(S \)-domain. We also give new characterizations of UM⁻domains.

1. Introduction

The quasi-Prüfer notion was introduced in [2] for rings (not necessarily domains). As in [9], we say that an integral domain \(D \) is a quasi-Prüfer domain if for each prime ideal \(P \) of \(D \), if \(Q \) is a prime ideal of \(D[X] \) with \(Q \subseteq P[X] \), then \(Q = (Q \cap D)[X] \). It is well known that an integral domain is a Prüfer domain if and only if it is integrally closed and quasi-Prüfer [11, Theorem 19.15]. There are several different equivalent conditions for quasi-Prüfer domains (c.f. [9, 2, 3]).

On the other hand as a \(t \)-analogue, an integral domain \(D \) is called a UM⁻domain [12], if every upper to zero in \(D[X] \) is a maximal \(t \)-ideal and has been studied by several authors (see [8], [6], and [18]). UM⁻domains are closely related to quasi-Prüfer domains in the sense that a domain \(D \) is a UM⁻domain if and only if \(D_P \) is a quasi-Prüfer domain for each \(t \)-prime ideal \(P \) of \(D \) [8, Theorem 1.5]. And the other relation is the characterization of quasi-Prüfer domains due to Fontana, Gabelli and Houston [8, Corollary 3.11]: a domain \(D \) is a quasi-Prüfer domain if and only if each overring of \(D \) is a UM⁻domain.

In [16] we defined and studied the \(w \)-Jaffard domains and proved that all strong Mori domains (domains that satisfy the ACC on \(w \)-ideals) and all UM⁻domains of finite \(w \)-dimension, are \(w \)-Jaffard domains. In [17] we defined and studied a subclass of \(w \)-Jaffard domains, namely the \(w \)-stably strong \(S \)-domains and showed how this notion permit studies of UM⁻domains in the spirit of earlier works on quasi-Prüfer domains. The aim of this paper is to prove that, for a domain \(D \) with some condition on \(w \)-dim(\(D \)), the following statements are equivalent, which gives new descriptions of quasi-Prüfer domains; a result reminiscent of the well-known result of Ayache, Cahen and Echi [2] (see also [9, Theorem 6.7.8]).

1. Each overring of \(D \) is a \(w \)-stably strong \(S \)-domain.
2. Each overring of \(D \) is a \(w \)-strong \(S \)-domain.
3. Each overring of \(D \) is a \(w \)-Jaffard domain.
4. Each overring of \(D \) is a UM⁻domain.
5. \(D \) is a quasi-Prüfer domain.

2000 Mathematics Subject Classification. Primary 13A15, 13G05, 13C15.
Key words and phrases. Strong \(S \)-domain, stably strong \(S \)-domain, Jaffard domain, quasi-Prüfer domain, star operation.
This research was in part supported by a grant from IPM (No. 900130059).
Throughout, the letter D denotes an integral domain with quotient field K and $F(D)$ denotes the set of nonzero fractional ideals. Let $f(D)$ be the set of all nonzero finitely generated fractional ideals of D. Let \ast be a star operation on the domain D. For every $A \in F(D)$, put $A^{\ast} := \bigcup F^\ast$, where the union is taken over all $F \in f(D)$ with $F \subseteq A$. It is easy to see that \ast_{f} is a star operation on D. A star operation \ast is called of finite character if $\ast_{f} = \ast$. We say that a nonzero ideal I of D is a \ast-ideal of D, if $I^\ast = I$; a \ast-prime, if I is a prime \ast-ideal of D. It has become standard to say that a star operation \ast is stable if $(A \cap B)^\ast = A^\ast \cap B^\ast$ for all $A, B \in F(D)$. Given a star operation \ast on an integral domain D it is possible to construct a star operation \ast which is stable and of finite character defined as follows: for each $A \in F(D)$,

$$A^\ast := \{x \in K| xJ \subseteq A, \text{ for some } J \subseteq D, J \in f(D), J^\ast = D\}.$$

The \ast-dimension of D is defined as follows:

$$\ast\text{-dim}(D) = \sup\{\hbar(P) \mid P \text{ is a } \ast\text{-prime ideal of } D\}.$$

The most widely studied star operations on D have been the identity d, and v, $t := v_{f}$, and $w := v$ operations, where $A_{v} := (A^{-1})^{-1}$, with $A^{-1} := (D : A) := \{x \in K| xA \subseteq D\}$.

Let D be a domain and T an overring of D. Let \ast and \ast' be star operations on D and T, respectively. One says that T is (\ast, \ast')-linked to D if $F^\ast = D \Rightarrow (FT)^{\ast'} = T$ for each nonzero finitely generated ideal F of D. As in [4] we say that T is t-linked to D if T is (t, t)-linked to D. As in [6] a domain D is called t-linkative if each overring of D is t-linked to D. As a matter of fact t-linkative domains are exactly the domains such that the identity operation coincides with the w-operation, that is DW-domains in the terminology of [15].

If $F \subseteq K$ are fields, then tr. deg.$_{F}(K)$ stands for the transcendence degree of K over F. If P is a prime ideal of the domain D, then we set $k_{p}(P) := D_{p}/PD_{p}$.

2. w-JAFFARD DOMAINS

First we recall a special case of a general construction for semistar operations (see [16]). Let D be an integral domain with quotient field K, let X, Y be two indeterminates over D and \ast be a star operation on D. Set $D_{1} := D[X]$, $K_{1} := K(X)$ and take the following subset of $\text{Spec}(D_{1})$:

$$\Theta_{1}^{\ast} := \{Q_{1} \in \text{Spec}(D_{1}) \mid Q_{1} \cap D = (0) \text{ or } (Q_{1} \cap D)^{\ast} \subseteq D\}.$$

Set $G_{1}^{\ast} := D_{1}[Y]\langle \cup\{Q_{1}[Y]|Q_{1} \in \Theta_{1}^{\ast}\}\rangle$ and:

$$E_{C_{1}}^{\ast} := E[Y]|G_{1}^{\ast} \cap K_{1}, \text{ for all } E \in F(D_{1}).$$

It is proved in [16] Theorem 2.1 that the mapping $[*][X] := \diamond E_{1}^{\ast}$: $F(D_{1}) \rightarrow F(D_{1})$, $E \mapsto E^{[X]}$ is a stable star operation of finite character on $D[X]$, i.e., $[*][X] = [*][X]$. It is also proved that $[*][X] = [*][X]$, $d_{D}[X] = d_{D}[X]$. If X_{1}, \cdots, X_{r} are indeterminates over D, for $r \geq 2$, we let

$$[*][X_{1}, \cdots, X_{r}] := ([*][X_{1}, \cdots, X_{r}])[X_{r}].$$

For an integer r, put $[*][r]$ to denote $[*][X_{1}, \cdots, X_{r}]$ and $D[r]$ to denote $D[X_{1}, \cdots, X_{r}]$.

Let \ast be a star operation on D. A valuation overring V of D is called a \ast-valuation overring of D provided that $F^\ast \subseteq FV$, for each $F \in f(D)$. Following [16], the \ast-valuative dimension of D is defined as:

$$\ast\text{-dim}_{\ast}(D) := \sup\{\dim(V)|V \text{ is } \ast\text{-valuation overring of } D\}.$$
It is shown in [16] Theorem 4.5 that
\[\dim_v(D) = \sup \{ w\text{-dim}(R) \mid R \text{ is a } (*,t)\text{-linked over } D \}. \]

It is observed in [16] that we have always the inequality \(\dim(D) \leq \dim_v(D) \).
We say that \(D \) is a \(*\)-Jaffard domain, if \(\dim(D) = \dim_v(D) < \infty \). When \(* = d \) the identity operation then \(d\)-Jaffard domain coincides with the classical Jaffard domain (cf. [1]). It is proved in [16], that \(D \) is a \(*\)-Jaffard domain if and only if
\[*[X_1, \ldots, X_n] \cdot \dim(D[X_1, \ldots, X_n]) = \dim(D) + n, \]
for each positive integer \(n \). In [19] we gave examples to show that the two classes of \(w\)-Jaffard and Jaffard domains are incomparable by constructing a \(w\)-Jaffard domain which is not Jaffard and a Jaffard domain which is not \(w\)-Jaffard.

At this point we are now prepared to state and prove the first main result of this paper.

Theorem 2.1. Let \(D \) be an integral domain of finite \(w\)-dimension. Then the following statements are equivalent:

1. Each overring of \(D \) is a \(w\)-Jaffard domain.
2. \(D \) is a quasi-Prüfer domain.

Proof. (1) \(\Rightarrow \) (2) Let \(Q \) be a prime ideal of an overring \(T \) of \(D \), and set \(q := Q \cap D \). Let \(\tau : T_Q \to \mathbb{K}(Q) \) be the canonical surjection and let \(\iota : \mathbb{K}(q) \to \mathbb{K}(Q) \) be the canonical embedding. Consider the following pullback diagram:

\[
\begin{array}{ccc}
D(Q) := \tau^{-1}(\mathbb{K}(q)) & = D_q + QT_Q & \longrightarrow \mathbb{K}(q) \\
\downarrow & & \downarrow \\
\tau & & \tau \\
T_Q & \longrightarrow & \mathbb{K}(Q).
\end{array}
\]

Since \(T_Q \) is quasilocal and \(\mathbb{K}(q) \) is a DW-domain, then \(D(Q) \) is a DW-domain by [15] Theorem 3.1(2). Thus the \(w\)-operation coincides with the identity operation \(d \) for \(D(Q) \). Since by the hypothesis \(D(Q) \) is a \(w\)-Jaffard domain we actually have \(D(Q) \) is a Jaffard domain. On the other hand by [1] Proposition 2.5(a) we have
\[\dim_v(D(Q)) = \dim_v(T_Q) + \text{tr. deg}_{\mathbb{K}(q)}(\mathbb{K}(Q)). \]

In particular \(\text{tr. deg}_{\mathbb{K}(q)}(\mathbb{K}(Q)) \) and \(\dim_v(T_Q) \) are finite numbers. Note that by [7] Proposition 2.1(5) we have \(\dim(D(Q)) = \dim(T_Q) \) and since \(\dim_v(D(Q)) = \dim(D(Q)) \), we obtain that
\[\dim(T_Q) = \dim_v(T_Q) + \text{tr. deg}_{\mathbb{K}(q)}(\mathbb{K}(Q)). \]

Since \(\dim(T_Q) \leq \dim_v(T_Q) \), then \(\text{tr. deg}_{\mathbb{K}(q)}(\mathbb{K}(Q)) = 0 \). Consequently \(D \) is a residually algebraic domain, and hence is a quasi-Prüfer domain by [3] Corollary 2.8.

(2) \(\Rightarrow \) (1) Let \(T \) be an overring of \(D \). We claim that \(T \) is of finite \(w\)-dimension. Since \(D \) is a quasi-Prüfer domain, [16] Theorem 2.4 implies that \(D \) is a \(t\)-linkative and UMt domain. Thus in particular \(T \) is a \(t\)-linked overring of \(D \). Then
\[w\text{-dim}(T) \leq \sup \{ w\text{-dim}(R) \mid R \text{ is } t\text{-linked over } D \} \]
\[= w\text{-dim}_{v}(D) = w\text{-dim}(D) < \infty, \]
where the first equality is by [16] Theorem 4.5]. Finally by [17] Corollary 2.6], every UMt domain of finite \(w\)-dimension is a \(w\)-Jaffard domain to deduce that \(T \) is a \(w\)-Jaffard domain. \(\square \)
As an immediate corollary we have:

Corollary 2.2. Let D be an integral domain of finite w-dimension. Then the following statements are equivalent:

1. Each t-linked overring of D is a w-Jaffard domain.
2. D is a UMt domain.

Proof. (1) \Rightarrow (2) Let P be a t-prime ideal of D, and T be an overring of D_P. Thus $T = T_D \setminus P$ is a t-linked overring of D by [5, Proposition 2.9]. Therefore T is a w-Jaffard domain by the hypothesis. Consequently D_P is a quasi-Pr"ufer domain by Theorem 2.1. Then D is a UMt domain by [8, Theorem 1.5].

(2) \Rightarrow (1) Let T be a t-linked overring of D. Then as the proof of Theorem 2.1 we have

$$w\dim(T) \leq \sup\{w\dim(R) \mid R \text{ is } t\text{-linked over } D\}$$

$$= w\dim_u(D) = w\dim(D) < \infty.$$

By [17, Corollary 2.6] we get that T is a w-Jaffard domain. \square

3. w-stably strong S-domains

Let $*$ be a star operation on D. Following [17] the domain D is called a $*$-strong S-domain, if each pair of adjacent $*$-prime ideals $P_1 \subset P_2$ of D, extend to a pair of adjacent $[*X]$-prime ideals $P_1[X] \subset P_2[X]$, of $D[X]$. If for each $n \geq 1$, the polynomial ring $D[n]$ is a $[*n]$-strong S-domain, then D is said to be an $*$-stably strong S-domain. It is observed in [17] that a domain D is $*$-strong S-domain (resp. $*$-stably strong S-domain) if and only if D_P is strong S-domain (resp. stably strong S-domain) for each $*$-prime ideal P of D. Thus a strong S-domain (resp. stably strong S-domain) D is $*$-strong S-domain (resp. $*$-stably strong S-domain) for each star operation $*$ on D. However, the converse is not true in general; i.e., for some star operation $*$, the domain D might be $*$-strong S-domain (resp. $*$-stably strong S-domain), but D is not strong S-domain (resp. stably strong S-domain). In [14, Example 4.17] Malik and Mott gave an example of a UMt domain (in fact a Krull domain) which is not strong S-domain. But a UMt domain is a w-stably strong S-domain (and hence w-strong S-domain as well) by [17, Corollary 2.6].

We observe [14, Corollary 2.3] that a finite w-dimensional w-stably strong S-domain is a w-Jaffard domain.

We are now prepared to state and prove the second main result of this paper.

Theorem 3.1. Let D be an integral domain of finite w-valuative dimension. Then the following statements are equivalent:

1. Each overring of D is a w-stably strong S-domain.
2. Each overring of D is a w-strong S-domain.
3. Each overring of D is a UMt domain.
4. D is a quasi-Pr"ufer domain.

Proof. The implication (1) \Rightarrow (2) is trivial, and (3) \Rightarrow (1) holds by [17, Corollary 2.6].
(2) ⇒ (4) Let \(Q \) be a prime ideal of an overring \(T \) of \(D \) and set \(q := Q \cap D \). As in the proof of Theorem 2.1 we have the following pullback diagram:

\[
\begin{array}{ccc}
D(Q) & \longrightarrow & \mathbb{K}(q) \\
\downarrow & & \downarrow \\
T_Q & \tau & \mathbb{K}(Q).
\end{array}
\]

Since \(T_Q \) is quasilocal and \(\mathbb{K}(q) \) is a DW-domain, then \(D(Q) \) is a DW-domain by [15, Theorem 3.1(2)]. Thus the \(w \)-operation coincides with the identity operation \(d \) for \(D(Q) \). Since by the hypothesis \(D(Q) \) is a \(w \)-strong S-domain, we actually have \(D(Q) \) is a strong S-domain. Next we claim that \(D(Q) \) is of finite dimension. Indeed since \(D(Q) \) is a DW-domain it is in fact a \(t \)-linked overring of \(D \). Then

\[
\dim(D(Q)) = w-\dim(D(Q))
\]

\[
\leq \sup \{ w-\dim(R) | R \text{ is } t \text{-linked over } D \}
\]

\[
= w-\dim_w(D) < \infty,
\]

where the second equality is by [16, Theorem 4.5]. On the other hand by [1, Proposition 2.7] we have the inequality below

\[
1 + \dim(T_Q) + \min \{ \text{tr. deg}_{\mathbb{K}(q)}(\mathbb{K}(Q)), 1 \} \leq \dim(D(Q)[X])
\]

\[
= \dim(D(Q)) + 1
\]

\[
= \dim(T_Q) + 1.
\]

The first equality holds since \(D(Q) \) is strong S-domain and [13, Theorem 39], and the second one holds by [7, Proposition 2.1(5)]. Thus \(\text{tr. deg}_{\mathbb{K}(q)}(\mathbb{K}(Q)) = 0 \). Consequently \(D \) is a residually algebraic domain and hence is a quasi-Prüfer domain by [8, Corollary 2.8].

(4) ⇒ (3) Suppose that \(D \) is a quasi-Prüfer domain and let \(T \) be an overring of \(D \). Thus \(T \) is also a quasi-Prüfer domain. Therefore \(T \) is a UMt domain by [8, Theorem 2.4]. □

As an immediate corollary we have:

Corollary 3.2. Let \(D \) be an integral domain of finite \(w \)-valuative dimension. Then the following statements are equivalent:

1. Each \(t \)-linked overring of \(D \) is a \(w \)-stably strong S-domain.
2. Each \(t \)-linked overring of \(D \) is a \(w \)-strong S-domain.
3. Each \(t \)-linked overring of \(D \) is a UMt domain.
4. \(D \) is a UMt domain.

Proof. The implication (1) ⇒ (2) is trivial.

For (2) ⇒ (4) let \(P \) be a \(t \)-prime ideal of \(D \), and \(T \) be an overring of \(D_P \). Thus \(T = T_{D \setminus P} \) is a \(t \)-linked overring of \(D \) by [5, Proposition 2.9]. Therefore \(T \) is a \(w \)-strong S-domain by the hypothesis. Consequently \(D_P \) is a quasi-Prüfer domain by Theorem 3.1. Then \(D \) is a UMt domain by [8, Theorem 1.5].

(4) ⇒ (3) Suppose \(T \) is a \(t \)-linked overring of \(D \). Then \(T \) is a UMt domain by [8, Theorem 3.1].

(3) ⇒ (1) Is true by [17, Corollary 2.6]. □
Note that the equivalence (3) \Leftrightarrow (4) in Theorem 3.1 (resp. Corollary 3.2) is well known [8, Corollary 3.11] (resp. [4, Theorem 2.6]), but our proof is completely different.

ACKNOWLEDGMENT

I would like to thank the referee for carefully reading the first version of this paper.

REFERENCES

1. D. F. Anderson, A. Bouvier, D. Dobbs, M. Fontana and S. Kabbaj, On Jaffard domain, Expo. Math., 6, (1988), 145–175.
2. A. Ayache and P. Cahen and O. Echi, Anneaux quasi-Prüferiens et P-anneaux. Boll. Un. Mat. Ital 10-B, (1996), 1–24.
3. A. Ayache and A. Jaballah, Residually algebraic pairs of rings, Math. Z. 225 (1997), 49–65.
4. G.W. Chang and M. Zafrullah, The w-integral closure of integral domains, J. Algebra, 295, (2006), 195–210.
5. D. E. Dobbs, E. G. Houston, T. G. Lucas and M. Zafrullah, T-linked overrings and Prüfer v-multiplication domains, Comm. Algebra 17 (1989), 2835–2852.
6. D. E. Dobbs, E. G. Houston, T. G. Lucas M. Roitman, and M. Zafrullah, On t-linked overrings, Comm. Algebra 20. No. 5, (1992), 1463–1488.
7. M. Fontana, Topologically defined classes of commutative rings, Ann. Mat. Pura Appl. 123, (1980), 331–355.
8. M. Fontana, S. Gabelli and E. Houston, UMT-domains and domains with Prüfer integral closure, Comm. Algebra 26, (1998), 1017–1039.
9. M. Fontana, J. Huckaba, and I. Papick, Prüfer domains, New York, Marcel Dekker, 1997.
10. M. Fontana and K. A. Loper, Nagata rings, Kronecker function rings and related semistar operations, Comm. Algebra 31 (2003), 4775–4801.
11. R. Gilmer, Multiplicative ideal theory, New York, Dekker, 1972.
12. E. Houston and M. Zafrullah, On t-invertibility, II, Comm. Algebra 17 (1989), 1955–1969.
13. I. Kaplansky, Commutative rings, rev. ed., Univ. Chicago Press, Chicago, 1974.
14. S. Malik and J. L. Mott, Strong S-domains, J. Pure Appl. Algebra, 28 (1983), 249–264.
15. A. Mimouni, Integral domains in which each ideal is a w-ideal, Comm. Algebra 33, No. 5, (2005), 1345–1355.
16. P. Sahandi, Semistar-Krull and valuative dimension of integral domains, Ricerche Mat., 58, (2009), 219–242.
17. P. Sahandi, Universally catenarian integral domains, strong S-domains and semistar operations, Comm. Algebra 38, No. 2, (2010), 673–683.
18. P. Sahandi, Semistar dimension of polynomial rings and Prüfer-like domains, Bull. Iranian Math. Soc., to appear, arXiv:0808.1331v2 [math.AC].
19. P. Sahandi, W-Jaffard domains in pullbacks, J. Algebra and its Applications, to appear, arXiv:1003.1565v3 [math.AC].

School of Mathematics, Institute for Research in Fundamental Sciences (IPM), P.O. Box: 19395-5746, Tehran, Iran and Department of Mathematics, University of Tabriz, Tabriz, Iran
E-mail address: sahandi@ipm.ir