Consequences from conservation of the total density of the universe during the expansion

Dimitar Valev
Stara Zagora Department, Space and Solar-Terrestrial Research Institute, Bulgarian Academy of Science, 6000 Stara Zagora, Bulgaria
August 12, 2010

Abstract

The recent Cosmic Microwave Background (CMB) experiments have shown that the average density of the universe is close to the critical one and the universe is asymptotically flat (Euclidean). Taking into account that the universe remains flat and the total density of the universe Ω_0 is conserved equal to a unit during the cosmological expansion, the Schwarzschild radius of the observable universe has been determined equal to the Hubble distance $R_s = 2GM/c^2 = R \sim c/H$, where M is the mass of the observable universe, R is the Hubble distance and H is the Hubble constant. Besides, it has been shown that the speed of the light c appears the parabolic velocity for the observable universe $c = \sqrt{2GM/R} = v_p$ and the recessional velocity $v_r = Hr$ of an arbitrary galaxy at a distance $r > 100 \text{ Mps}$ from the observer, is equal to the parabolic velocity for the sphere, having radius r and a centre, coinciding with the observer. The requirement for conservation of $\Omega_0 = 1$ during the expansion enables to derive the Hoyle-Carvalho formula for the mass of the observable universe $M = c^3/(2GH)$ by a new approach.

Key words: flat universe; critical density of the universe; Schwarzschild radius; mass of the universe; parabolic velocity

1 Introduction

The problem for the average density of the universe $\bar{\rho}$ acquires significance when it was shown that the General Relativity allows to reveal the geometry and evolution of the universe by simple cosmological models [1, 2, 3]. Crucial for the geometry of the universe appears the dimensionless total density of
the universe $\Omega_0 = \overline{\rho}/\rho_c$, where $\overline{\rho}$ is the average density of the universe and ρ_c is the critical density of the universe. In the case of $\Omega_0 < 1$ (open universe) the global spatial curvature is negative and the geometry of the universe is hyperbolic and in the case of $\Omega_0 > 1$ (closed universe) the curvature is positive and the geometry is spherical. In the special case of $\Omega_0 = 1$ (flat universe) the curvature is zero and the geometry is Euclidean. Until recently scarce information has been available about the density and geometry of the universe. The most reliable determination of the total density Ω_0 is by measurements of the dependence of the anisotropy of the Cosmic Microwave Background (CMB) upon the angular scale. The recent results have shown that $\Omega_0 \approx 1 \pm \Delta\Omega_0$, where the error $\Delta\Omega_0$ decreases from 0.10 \cite{4, 5} to 0.02 \cite{6}, i.e. the density of the universe is close to the critical one and the universe is asymptotically flat (Euclidean).

The fact that Ω_0 is so close to a unit is not accidental since only at $\Omega_0 = 1$ the geometry of the universe is flat and the flat universe was predicted from the inflationary theory \cite{7}. The total density Ω_0 includes density of baryon matter $\Omega_b \approx 0.05$, cold dark matter $\Omega_c \approx 0.22$ \cite{8} and dark energy $\Omega_\Lambda \approx 0.73$ \cite{9}, producing an accelerating expansion of the universe \cite{10, 11}. The found negligible CMB anisotropy $\delta T/T \sim 10^{-5}$ indicates that the early universe was very homogeneous and isotropic \cite{12}. Three-dimensional maps of the distribution of galaxies corroborate homogeneous and isotropic universe on large scales greater than 100 Mps \cite{13, 14}.

2 Consequences from conservation of the total density of the universe during the expansion

The flat geometry of the universe allows to solve some cosmological problems in the Euclidean space. The finite time of the cosmological expansion H^{-1} (age of the universe) and the finite speed of the light c set a finite particle horizon $R \sim cH^{-1}$ beyond which no material signals reach the observer. Therefore, for an observer in an arbitrary location, the universe appears a three-dimensional, homogeneous and isotropic sphere having finite “radius” (particle horizon) equal to the Hubble distance $R \sim cH^{-1}$, where $H \approx 70$ km s^{-1} Mps^{-1} \cite{15} is the Hubble constant and $H^{-1} \approx 1.37 \times 10^{10}$ years is the Hubble time (age of the universe).

The fact that the total density of the universe Ω_0 is close to a unit is fundamental since only $\Omega_0 = \overline{\rho}/\rho_c = 1$ supplies flat geometry of the universe. There are no arguments to assume the recent epoch privileged in relation to the other epochs; therefore, the universe always remains flat, and
the total density of the universe Ω_0 is conserved equal to a unit during the cosmological expansion:

$$\Omega_0 = \frac{\rho}{\rho_c} = 1$$ \hspace{1cm} (1)

The critical density of the universe \[16\] is determined from equation (2):

$$\rho_c = \frac{3H^2}{8\pi G} \approx 9.5 \times 10^{-27} \text{ kg m}^{-3}$$ \hspace{1cm} (2)

where G is the universal gravitational constant.

Considering $\rho = \frac{3M}{4\pi R^3}$, where M and R are the mass and the Hubble distance (“radius”) of the observable universe, and replacing ρ_c with expression (2) in (1) we obtain:

$$\frac{2MG}{R^3H^2} = 1$$ \hspace{1cm} (3)

Replacing $H \sim cR^{-1}$ in (3) we obtain:

$$R = \frac{2GM}{c^2}$$ \hspace{1cm} (4)

Obviously, (4) appears the formula for the Schwarzschild radius \[17\] of the mass of the observable universe M. Therefore, the Schwarzschild radius of the observable universe R_s is equal to the Hubble distance $R_s = R \sim cH^{-1} \sim 1.37 \times 10^{10}$ light years.

From (4) we find:

$$c = \sqrt{\frac{2GM}{R}}$$ \hspace{1cm} (5)

Evidently, (5) is the formula of the parabolic velocity for the Hubble sphere, i.e. the sphere having mass M and a radius, equal to the Hubble distance $R \sim cH^{-1}$. Therefore, the speed of the light c appears the parabolic velocity v_p for the observable universe.

Below, we find that the recessional velocity $v_r = Hr$ of an arbitrary galaxy at a distance $r > 100 \text{ Mps}$ from the observer is equal to the parabolic velocity for a sphere, having radius r and a centre, coinciding with the observer. As mentioned at the end of the Introduction, the universe is homogeneous and isotropic on large scales greater than 100 Mps. Therefore, the average density ρ_r of a sphere having radius $r > 100 \text{ Mps}$ is equal to the average density of the universe $\overline{\rho}$.
\[\rho_r = \frac{3m}{4\pi r^3} = \bar{\rho} \approx \rho_c = \frac{3H^2}{8\pi G} \] (6)

where \(m \) is the mass of the total matter in the sphere.

We find from equation (6):

\[H = \sqrt{\frac{2Gm}{r^3}} \] (7)

Replacing \(H \) in the Hubble law \(v_r = Hr \) we obtain the recessional velocity of a galaxy:

\[v_r = Hr = \sqrt{\frac{2Gm}{r}} \] (8)

Equation (8) coincides with the formula for the parabolic velocity of a sphere, having radius \(r \) and a centre, coinciding with the observer.

Finally, the requirement for conservation of the total density of the universe equal to a unit during the expansion allows to estimate the total mass of the observable universe \(M \). Actually, replacing \(R \sim cH^{-1} \) in (3) we find:

\[M = \frac{c^3}{2GH} \approx 8.8 \times 10^{52} \text{ kg} \] (9)

Obviously, this mass is close to the mass of the Hubble sphere \(M_H \):

\[M_H = \frac{4}{3} \pi R^3 \bar{\rho} \sim \frac{4\pi c^3 \rho_c}{3H^3} = \frac{c^3}{2GH} \] (10)

Formula (9) has been derived independently by dimensional analysis without consideration of the average density of the universe in [18, 19] and practically coincides with the Hoyle-Carvalho formula for the mass of the universe [20, 21], obtained by a totally different approach.

3 Conclusions

The recent CMB experiments have shown that the average density of the universe is close to the critical one and the universe is asymptotically flat. The flat geometry of the universe allows to solve some cosmological problems in the Euclidean space. Taking into account that the universe remains flat and the total density of the universe \(\Omega_0 \) is conserved equal to a unit during the expansion, the Schwarzschild radius of the observable universe has been determined equal to the Hubble distance \(R_s = 2GM/c^2 = R \sim cH^{-1} \), and
the speed of the light \(c \) appears the parabolic velocity for the observable universe \(c = \sqrt{2GM/R} = v_p \). Besides, the recessional velocity \(v_r = Hr \) of an arbitrary galaxy at a distance \(r > 100 \text{ Mps} \) from the observer, is equal to the parabolic velocity of a sphere, having radius \(r \) and a centre, coinciding with the observer.

The requirement for conservation of \(\Omega_0 = 1 \) during the cosmological expansion enables to derive the Hoyle-Carvalho formula for the mass of the observable universe \(M = c^3/(2GH) \) by a new approach.

References

[1] Friedmann A., 1922, Z. Physik, 10, 377.
[2] Lemaître G., 1927, Ann. Soc. Sci. Brux., 47A, 49.
[3] Einstein A., de Sitter W., 1932, Proc. Nat. Acad. Sci. USA, 18, 213.
[4] de Bernardis P. et al., 2000, Nature, 404, 955.
[5] Balbi A. et al., 2000, Astrophys. J., 545, L1.
[6] Spergel D. N. et al., 2003, Astrophys. J. Suppl. Series, 148, 175.
[7] Guth A. H., 1981, Phys. Rev. D, 23, 347.
[8] Peacock J. A. et al., 2001, Nature, 410, 169.
[9] Hinshaw G. et al., 2009, Astrophys. J. Suppl. Series, 180, 225.
[10] Riess A. G. et al., 1998, Astron. J., 116, 1009.
[11] Perlmutter S. et al., 1999, Astrophys. J., 517, 565.
[12] Bennett C. L. et al., 1996, Astrophys. J., 464, L1.
[13] Shectman S. A.et al., 1996, Astrophys. J., 470, 172.
[14] Stoughton C. et al., 2002, Astron. J., 123, 485.
[15] Mould J. R. et al., 2000, Astrophys. J., 529, 786.
[16] Peebles P. J. E., 1971, Physical Cosmology, Princeton Univ. Press, Princeton.
[17] Schwarzschild K., 1916, Sitzungsberichte der Königlich Preussischen Akademie der Wissenschaften zu Berlin, 189.

[18] Valev D., 2009, Suppl. Compt. rend. Acad. bulg. Sci.: ‘Fundamental Space Research’, 233; http://arxiv.org/abs/0909.2726

[19] Valev D., 2010, http://arxiv.org/abs/1004.1035

[20] Hoyle F., 1958, Proceedings of 11th Solvay Conference in Physics, The Structure and Evolution of the Universe, Edited by R. Stoops, Brussels.

[21] Carvalho J. C., 1995, Int. J. Theor. Phys., 34, 2507.