Review Article

Travelling Wave Solutions of Wu–Zhang System via Dynamic Analysis

Hang Zheng,1,2 Yonghui Xia,1 Yuzhen Bai,3 and Guo Lei2

1Department of Mathematics, Zhejiang Normal University, Jinhua 321004, China
2Department of Mathematics and Computer, Wuyi University, Wuyishan 354300, China
3School of Mathematical Sciences, Qufu Normal University, Qufu 273165, China

Correspondence should be addressed to Yonghui Xia; xiadoc@163.com

Received 14 February 2020; Revised 9 April 2020; Accepted 3 June 2020; Published 27 June 2020

Academic Editor: Kousuke Kuto

Copyright © 2020 Hang Zheng et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

In this paper, based on the dynamical system method, we obtain the exact parametric expressions of the travelling wave solutions of the Wu–Zhang system. Our approach is much different from the existing literature studies on the Wu–Zhang system. Moreover, we also study the fractional derivative of the Wu–Zhang system. Finally, by comparison between the integer-order Wu–Zhang system and the fractional-order Wu–Zhang system, we see that the phase portrait, nonzero equilibrium points, and the corresponding exact travelling waves all depend on the derivative order α. Phase portraits and simulations are given to show the validity of the obtained solutions.

1. Introduction

Recently, many authors made some efforts on nonlinear partial differential equations (NPDEs) (see [1–14]). Wu and Zhang [15] proposed the equation of the form

$$
\epsilon_t + \epsilon \epsilon_x + \epsilon u_y + v_x = 0,
$$

$$
u_t + \epsilon u_u = \epsilon u_y + v_y = 0,
$$

$$
v_t + (\epsilon v)_x + (uv)_y + \frac{1}{3} (ee_{xxx} + ee_{yy} + uu_{xx} + uu_{yy}) = 0,
$$

(1)

where ϵ and u denote the surface velocity of water along the x-direction and the y-direction, respectively, and v means the elevation of water. Through some transformations, equation (1) reduces into the (1+1)-dimensional dispersive long wave equation (Wu–Zhang system) as follows:

$$
u_t = -uu_x - v_x,
$$

$$
v_t = -uu_x - uu_y - \frac{1}{3} uu_{xxx}.
$$

In fact, the Wu–Zhang system can describe the nonlinear water wave availability, and many engineers apply it in harbor and coastal design. For mathematical physics, one of the most important topics is to find the exact solutions. Many authors proposed various methods to solve the Wu–Zhang system numerically. We summarize as follows: the first integral method [16], extended tanh-function method [17], characteristic function method [18], modified Conte’s invariant Painlevé expansion method and truncation of the WTC’s approach [19–21], elliptic function rational expansion method [22], generalized extended tanh-function method [23], generalized extended rational expansion method [24], and so on.

However, different from the aforementioned methods [16–24], in this paper, we apply the dynamical system method to study the bifurcation and exact solutions of NPDEs. Dynamical system method is quite different from the mentioned methods, and it has many successful applications [25–39]. Another purpose is to study exact solutions of the fractional-order Wu–Zhang system [16]. It takes the form
\[D_t^\alpha u = -uu_x - \nu_x, \]
\[D_t^\alpha v = -uv_x - uu_x - \frac{1}{3} D_{xxxx}, \]
(3)

and \(t > 0 \) and \(0 < \alpha \leq 1 \). So far, Khater et al. [40, 41] studied the fractional-order Wu–Zhang system by the numerical method and the modified auxiliary equation method. Inspired by [38], we study the fractional-order Wu–Zhang system via the extended three-step method.

The structure of this paper is as follows. In Section 2, we first consider the bifurcation of phase portraits for the integer-order Wu–Zhang system. Correspondingly, we calculate all possible exact parametric expressions of solutions to the integer-order Wu–Zhang system. In Section 3, we study the bifurcation of phase portraits and exact solutions of the fractional-order Wu–Zhang system. In Section 4, comparison of phase portraits and exact solutions between the integer-order and fractional-order Wu–Zhang system is presented. Finally, we end this paper with a conclusion.

2. Exact Solutions of Integer-Order Wu–Zhang System (2)

In this part, we first consider the exact solutions of integer-order Wu–Zhang system (2).

By the following transformations,
\[u(x, t) = u(\xi), \]
\[v(x, t) = v(\xi), \]
\[\xi = x - lt, \]
(4)

we have
\[\frac{\partial u(x, t)}{\partial t} = -lu_x, \]
\[\frac{\partial v(x, t)}{\partial t} = -lv_x, \]
\[\frac{\partial^3 u(x, t)}{\partial x^3} = u_{xxx}, \]
(5)

where \(u_t \) and \(v_t \) denote the first-order derivative with respect to \(\xi \), respectively, and \(u_{xxx} \) means the third-order derivative with respect to \(\xi \). We substitute (4) and (5) into system (2); then, (2) turns into
\[lu_t = uu_x + v_x, \]
\[lv_t = uv_x + uu_x + \frac{1}{3} u_{xxx}. \]
(6)

Then, by integration over both sides of the first equation (6) and setting constant of integration to zero, hence, we have \(v(\xi) = lu(\xi) - (1/2)u^2(\xi) \). Substituting it into the second equation of (6), we have the following ordinary differential equation (ODE):
\[u_{xxx} - \frac{9}{2} u^2 u_x + 9luu_x - 3l^2 u_t = 0. \]
(7)

Integrating both sides on (7), it follows that
\[u_{xxx} - \frac{3}{2} u^2 u_x + \frac{9}{2} luu_x - 3l^2 u_t = c. \]
(8)

Obviously, equation (8) reduces to the planar dynamical system:
\[\frac{du}{d\xi} = y, \]
\[\frac{dy}{d\xi} = \frac{3}{2} u^3 - 9lu^2 + 3l^2 u + c. \]
(9)

Meanwhile, the first integral is written as
\[H(u, y) = \frac{1}{2} y^2 - \frac{3}{4} u^4 + \frac{3}{2} lu^3 - \frac{3}{2} l^2 u^2 - cu = h. \]
(10)

We let \(g(u) = (3/2)u^3 - (9/2)lu^2 + 3l^2 u + c \); then, \(g(u) = (9/2)u^3 - 9lu^2 + 3l^2 \). Obviously, the roots of \(g(u) = 0 \) depend on the parameter group \((l, c)\) taking different values. (i) If \(c > (\sqrt{3}/3)l^3 \) \((l > 0)\) or \(c < - (\sqrt{3}/3)l^3 \) \((l > 0)\) or \(c > - (\sqrt{3}/3)l^3 \) \((l < 0)\) or \(c < (\sqrt{3}/3)l^3 \) \((l < 0)\), then \(g(u) \) has only one real root \(u_1 \); (ii) if \(c = (\sqrt{3}/3)l^3 \) \((l > 0)\) or \(c < - (\sqrt{3}/3)l^3 \) \((l < 0)\), then \(g(u) \) has two real roots: \(u_1 \) and \(u_2 (u_2 < u_1) \); and (iii) if \(- (\sqrt{3}/3)l^3 < c < (\sqrt{3}/3)l^3 \) \((l > 0)\) or \((\sqrt{3}/3)l^3 < c < - (\sqrt{3}/3)l^3 \) \((l < 0)\), then \(g(u) \) has three real roots: \(u_1, u_5 \), and \(u_6 (u_6 < u_5 < u_1) \).

Furthermore, noting that
\[f(u_j, y_j) = \text{det}M(u_j, y_j) = -g'(u) = -\left(\frac{9}{2} u^2 - 9lu + 3l^2 \right), \]
(11)

where \(M(u_j, y_j) \) is the coefficient matrix of the linearized system of (9) at an equilibrium point \(E_j \) \((j = 1, 2, \ldots, 6)\), \(E_j = (u_j, 0) \). Using the theory of equilibrium points (see [42]), it is easy to compute that \(f(u_1, 0) < 0 \) (saddle point) (see Figure 1(a)), \(f(u_2, 0) = 0 \) (saddle point) (see Figure 1(b)) or \(f(u_2, 0) < 0 \) (saddle point) (see Figure 1(c)), and \(f(u_5, 0) < 0 \) (center point), \(f(u_6, 0) < 0 \) (center point) (see Figure 1(d)). Then, we draw the bifurcation of phase portraits of system (9) by Maple (see Figure 1).

From (10), we set integral constant \(h \) be fixed, which yields
\[y^2 = \frac{3}{4} u^4 - 3lu^3 + 3l^2 u^2 + 2cu + 2h = \frac{3}{4} G(u). \]
(12)

Then, we integrate over a branch of the curve from initial value \(u(t_0) = u_0 \). That is,
\[\xi = \int_{t_0}^u \frac{4}{3G(s)} ds. \]
(13)

Let \(h_j = H(u_j, 0) \) \((j = 1, 2, \ldots, 6)\); for the phase portraits, according to the parameters, we get \(h_2 < h_3 \) and \(h_5 < h_6 < h_5 \), respectively. Then, we just consider Figure 1(d) as follows:

(i) Firstly, if \(h \in (h_5, h_4) \), we get the green curve. It corresponds to a family of periodic orbits of system (9) surrounding \(E_5 (u_5, 0) \). Then, \(G(u) = (\lambda_1 - \)
\[u(\lambda_2 - u)(u - \lambda_3)(u - \lambda_4) (\lambda_1, \lambda_2, \lambda_3, \text{and } \lambda_4 \text{ are the points of intersection of the green curve with the } u\text{-axis in Figure 1(d))}. \]

Using the formula (see 254.00 in [43]), when \(\lambda_4 < \lambda_3 \leq u < \lambda_2 < \lambda_1 \), then we have

\[
\int_{\lambda_1}^{u} \frac{ds}{\sqrt{(\lambda_1 - s)(\lambda_2 - s)(s - \lambda_3)(s - \lambda_4)}} = gsn^{-1}(\sin \varphi, k_1)
\]

\[
= \frac{\sqrt{3}}{2} \xi,
\]

where \(g = 2/\sqrt{(\lambda_1 - \lambda_3)(\lambda_2 - \lambda_4)} \) and

\[
k_1^2 = ((\lambda_2 - \lambda_3)(\lambda_1 - \lambda_4))/((\lambda_1 - \lambda_3)(\lambda_2 - \lambda_4)).
\]

Consequently, on the basis of (14),

\[
\sin^{-1}(\sin \varphi, k_1) = (\sqrt{3}/2g)\xi;
\]

by virtue of

\[
\varphi = \sin^{-1}\sqrt{((\lambda_2 - \lambda_4)(u - \lambda_3))/((\lambda_2 - \lambda_3)(u - \lambda_4))},
\]

it leads us to

\[
\sin \varphi = sn(\omega_1, k_1) = \sqrt{((\lambda_2 - \lambda_4)(u - \lambda_3))/((\lambda_2 - \lambda_3)(u - \lambda_4))},
\]

where \(\omega_1 = \sqrt{3(\lambda_1 - \lambda_3)(\lambda_2 - \lambda_4)}/4 \).

Therefore, the parametric expression for the periodic orbit of system (9) is given by (see Figure 2(a))

\[
u(\xi) = \frac{\lambda_1(\lambda_2 - \lambda_3)sn^2(\omega_1, k_1) - \lambda_3(\lambda_2 - \lambda_4)}{(\lambda_2 - \lambda_3)sn^2(\omega_1, k_1) - (\lambda_2 - \lambda_4)},
\]

Figure 1: Bifurcation of phase portraits of system (9). (a) One equilibrium point. (b, c) Two equilibrium points. (d) Three equilibrium points. Parameters: (a) \(c = 4, l = \sqrt{3} \), (b) \(c = 3, l = \sqrt{3} \), (c) \(c = -3, l = \sqrt{3} \), and (d) \(c = 0.2, l = \sqrt{3} \).
Figure 2: Periodic wave of (9) and exact periodic wave solutions of (2) when $c = 0.2$ and $l = \sqrt{3}$. (a) Periodic wave. (b) Exact periodic wave solutions.

\[u(x, t) = \frac{\lambda_1 (\lambda_2 - \lambda_3) \sin^2 (\omega_1 (x - lt), k_1) - \lambda_3 (\lambda_2 - \lambda_4)}{(\lambda_2 - \lambda_3) \sin^2 (\omega_1 (x - lt), k_1) - (\lambda_2 - \lambda_4)} \]

\[\xi \]

\[u(x, t) = \lambda_1 - \frac{2(\lambda_2 - \lambda_1)(\lambda_3 - \lambda_1)}{(\lambda_2 - \lambda_3) \cosh (\omega_2 (x - lt)) - (\lambda_2 + \lambda_3 - 2\lambda_4)} \]

Through the above analysis, we get the following theorems:

Theorem 1. If the parameter group (l, c) satisfies $-(\sqrt{3}/3)l^3 < c < (\sqrt{3}/3)l^3 (l > 0)$ or $(\sqrt{3}/3)l^3 < c < -(\sqrt{3}/3)l^3 (l < 0)$ and level curves are defined by $h \in (h_1, h_3)$, then equation (2) has the periodic wave solutions with the exact parametric expression given by (16).

Theorem 2. If the parameter group (l, c) satisfies $-(\sqrt{3}/3)l^3 < c < (\sqrt{3}/3)l^3 (l > 0)$ or $(\sqrt{3}/3)l^3 < c < -(\sqrt{3}/3)l^3 (l < 0)$ and level curves are defined by $h = h_4$, then equation (2) has the solitary wave solutions with the exact parametric expression given by (20).

3. Exact Solutions of Fractional-Order Wu–Zhang System (3)

Secondly, we consider the fractional-order system. Here, we use the conformable fractional derivative proposed by Khalil et al. [44]. Different from (4), taking $\xi = x - lt^n$, we have

\[D_t^\alpha u(x, t) = t^{1-\alpha} u_t(x, t) = t^{1-\alpha} \frac{du}{dt} = t^{1-\alpha} u_t \frac{dx}{dt} = t^{1-\alpha} u_t \frac{dx}{dt} \]

\[D_t^\alpha v(x, t) = t^{1-\alpha} v_t(x, t) = t^{1-\alpha} \frac{dv}{dt} = t^{1-\alpha} v_t \frac{dx}{dt} = t^{1-\alpha} v_t \frac{dx}{dt} \]
Substituting (21) and (22) into system (3), then (3) turns into
\[
\begin{align*}
lau_t &= uu_t + v_t, \\
lav_t &= uv_t + uu_t + \frac{1}{3}u_{ttt}.
\end{align*}
\]
(23)

Similar discussion to the integer-order Wu–Zhang system leads us to
\[
u_{ttt} - \frac{3}{2}u_t^2 + \frac{9}{2}luu^2 - 3l^2a^2u = c.
\]
(24)

Then, equation (24) reduces to
\[
\begin{align*}
\frac{du}{d\xi} &= \frac{dy}{d\xi} = \frac{\sqrt{2}}{4}u^2 - \frac{3}{8}luu^2 + 3l^2a^2u + c.
\end{align*}
\]
(25)

Meanwhile, the first integral is written as
\[
H(u, y) = \frac{1}{2}y^2 - \frac{3}{8}u^2 + \frac{3}{2}luu^2 - \frac{3}{2}a^2u^2 - cu = h.
\]
(26)

It is not difficult to see that the first integral in the fractional-order case depends on the fractional α. Consequently, the equilibrium points $E_i(\bar{u}_i, 0)$ $(i = 1, 2, \ldots, 6)$ of system (25) change with the fractional α. Similarly, we let $\bar{g}(u) = (3/2)u^2 - (9/2)luu^2 + 3l^2a^2u + c$; then, $\bar{g}'(u) = (9/2)u^2 - 9luu + 3l^2a^2$. The roots of $\bar{g}(u) = 0$ also depend on the parameter group (l, c, a) taking different values. (i) If $c > (\sqrt{3}/3)l^3a^3 (l > 0)$ or $c < -(\sqrt{3}/3)l^3a^3 (l > 0)$ or $c > -(\sqrt{3}/3)l^3a^3 (l < 0)$ or $c < (\sqrt{3}/3)l^3a^3 (l < 0)$, then $\bar{g}(u)$ has only one real root \bar{u}_1; (ii) if $c = \pm (\sqrt{3}/3)l^3a^3 (l > 0$ or $l < 0)$, then $\bar{g}(u)$ has two real roots: \bar{u}_i and \bar{u}_{i+2} ($\bar{u}_i \leq \bar{u}_{i+2}$); and (iii) if $-(\sqrt{3}/3)l^3a^3 < c < (\sqrt{3}/3)l^3a^3 (l > 0)$ or $(\sqrt{3}/3)l^3a^3 < c < -(\sqrt{3}/3)l^3a^3 (l < 0)$, then $\bar{g}(u)$ has three real roots: \bar{u}_4, \bar{u}_5, and \bar{u}_6 ($\bar{u}_4 < \bar{u}_5 < \bar{u}_6$).

Then, as the same discussion as before, we set $\bar{h}_2 < \bar{h}_3$ and $\bar{h}_5 < \bar{h}_4 < \bar{h}_3$. Obviously, it has the similar representation of periodic orbits as (15) of the form
\[
\begin{align*}
u(\xi) &= \frac{\lambda_4(\lambda_2 - \lambda_3)sn^2(\bar{\omega}_1, \xi, \bar{h}_1) + \lambda_5(\lambda_2 - \lambda_4)}{(\lambda_2 - \lambda_3)sn^2(\bar{\omega}_1, \xi, \bar{h}_1) + (\lambda_2 - \lambda_4)},
\end{align*}
\]
(27)

where $\bar{\omega}_1 = \sqrt{(3/4)(\lambda_2 - \lambda_3)(\lambda_3 - \lambda_1)}$ and $\lambda_4 = ((\lambda_2 - \lambda_3)(\lambda_1 - \lambda_4))/((\lambda_2 - \lambda_3)(\lambda_1 - \lambda_4))$. Consequently, we have the exact periodic wave solutions of system (3):
\[
\begin{align*}
u(x, t) &= \frac{\lambda_4(\lambda_2 - \lambda_3)sn^2(\bar{\omega}_1, x - lt^a, \bar{h}_1) + \lambda_5(\lambda_2 - \lambda_4)}{(\lambda_2 - \lambda_3)sn^2(\bar{\omega}_1, x - lt^a, \bar{h}_1) + (\lambda_2 - \lambda_4)}.
\end{align*}
\]
(28)

We also get similar parametric representation for a homoclinic orbit of (25) when level curves are defined by $\bar{h} = \bar{h}_4$ as follows:
\[
\begin{align*}
u(\xi) &= \lambda_1 - \frac{2(\lambda_2 - \lambda_1)(\lambda_2 - \lambda_4)}{\lambda_2 - \lambda_3}\cosh(\bar{\omega}_2, \xi) - (\lambda_2 + \lambda_3 - 2\lambda_4),
\end{align*}
\]
(29)

where $\bar{\omega}_2 = \sqrt{(3/4)(\lambda_2 - \lambda_1)(\lambda_3 - \lambda_1)}$. Therefore, the exact solitary wave solutions of system (3) can be written as
\[
\begin{align*}
u(x, t) &= \lambda_1 - \frac{2(\lambda_2 - \lambda_1)(\lambda_2 - \lambda_4)}{\lambda_2 - \lambda_3}\cosh(\bar{\omega}_2, x - lt^a) - (\lambda_2 + \lambda_3 - 2\lambda_4).
\end{align*}
\]
(30)

For the fractional-order situation, we have the similar theorems:

Theorem 3. If the parameter group $(l, c, a)(0 < a < 1)$ satisfies
\[-(\sqrt{3}/3)l^3a^3 < c < (\sqrt{3}/3)l^3a^3 (l > 0)
\] or
\[-(\sqrt{3}/3)l^3a^3 < c < -(\sqrt{3}/3)l^3a^3 (l < 0)
\] and level curves are defined by $\bar{h} \in (\bar{h}_5, \bar{h}_4)$, then equation (3) has the periodic wave solutions with the exact parametric expression given by (28).
Figure 4: Phase portraits of system (9) and (25) when $c = 0.2$ and $l = \sqrt{3}$. (a) $\alpha = 1$, $E_{4}(u_{4},0)$, $E_{5}(u_{5},0)$, and $E_{6}(u_{6},0)$. (b) $\alpha = 1/2$, $\bar{E}_{4}(\bar{u}_{4},0)$, $\bar{E}_{5}(\bar{u}_{5},0)$, and $\bar{E}_{6}(\bar{u}_{6},0)$.

Figure 5: Comparison between the integer-order and fractional-order Wu–Zhang system when $c = 0.2$ and $l = \sqrt{3}$. (a) $\alpha = 1$ solitary wave. (b) $\alpha = 1$ exact solitary wave solutions. (c) $\alpha = 1/2$ solitary wave. (d) $\alpha = 1/2$ exact solitary wave solutions.
Theorem 4. If the parameter group \((l, c, \alpha)(0 < \alpha < 1)\) satisfies \((-\sqrt{3}/3)^{1/2} \leq c < (\sqrt{3}/3)^{1/2}(l > 0)\) or \((-\sqrt{3}/3)^{1/3} \leq c < 0\) and \((\sqrt{3}/3)^{1/2}(l < 0)\) and level curves are defined by \(\bar{h} = \bar{h}_\alpha\), then equation (3) has the solitary wave solutions with the exact parametric expression given by (30).

4. Comparison between the Integer-Order Wu–Zhang System and the Fractional-Order Wu–Zhang System

In this part, we compare the phase portraits and exact solutions of case (ii) for the integer-order and fractional-order Wu–Zhang system. Under the same parameters \((c = 0.2\) and \(l = \sqrt{3}\)), we take different derivative orders \(\alpha = 1\) and \(\alpha = 1/2\), respectively. According to different \(\alpha\), we obtain the different phase portraits of system (9) and system (25).

Obviously, we see that the nonzero equilibrium points are related to the derivative order \(\alpha\). The equilibrium points amount to \(E_1(3.4414364477, 0)\), \(E_2(1.0524405702, 0)\), and \(E_3(-0.0218059881, 0)\) in Figure 4(a). Nevertheless, in Figure 4(b), the equilibrium points amount to \(E_4(1.6236627178, 0)\), \(E_5(1.0524405702, 0)\), and \(E_6(-0.078027076777, 0)\). We find that the level curves defined by the first integral \(h\) (periodic orbits and homoclinic orbits) all rely on \(\alpha\). Thus, the corresponding exact parametric representations of the Wu–Zhang system also change along with \(\alpha\).

The exact solitary wave solution of the integer-order Wu–Zhang system is obtained by (see Figure 5(b))

\[
u(x, t) = \lambda_1 - \frac{2(\lambda_2 - \lambda_1)(\lambda_3 - \lambda_1)}{(\lambda_2 - \lambda_3) \cosh(\omega_2(x - lt)) - (\lambda_2 + \lambda_3 + 2\lambda_1)}
\]

(31)

However, for the fractional-order Wu–Zhang system, the exact solitary wave solutions can be written as (see Figure 5(d))

\[
u(x, t) = \bar{\lambda}_1 - \frac{2(\bar{\lambda}_2 - \bar{\lambda}_1)(\bar{\lambda}_3 - \bar{\lambda}_1)}{(\bar{\lambda}_2 - \bar{\lambda}_3) \cosh(\omega_2(x - lt^\alpha)) - (\bar{\lambda}_2 + \lambda_3 - 2\lambda_1)}
\]

(32)

We compare Figure 5(a) with Figures 5(c) and 5(b) with Figure 5(d), respectively. Certainly, the height and opening size of the solitary wave are different. The height of the solitary wave of the integer-order Wu–Zhang system is 3.3 in Figures 5(a) and 5(b), while the height of the solitary wave of the fractional-order Wu–Zhang system is almost 1.65 in Figures 5(c) and 5(d). Meanwhile, opening size of the integer order is less than the fractional order. Thus, the height and opening size of the solitary wave all depend on the derivative order \(\alpha\).

5. Conclusion

This paper has studied the bifurcation and exact solutions of the Wu–Zhang system. We employ the dynamical system method to obtain the solitary wave solutions and periodic wave solutions. Moreover, we studied the integer-order and fractional-order Wu–Zhang system in a united way. We find that the bifurcation of phase portraits, nonzero equilibrium points, and exact solutions for the integer-order and fractional-order Wu–Zhang system all depend on the derivative order \(\alpha\).

Conflicts of Interest

The authors declare that they have no conflicts of interest.

Authors’ Contributions

H. Zheng carried out the computations and figures in the proof. L. Guo helped to replot the figures and participated in the revision. Y. Xia conceived the study and designed and drafted the manuscript. Y. Bai participated in the discussion of the project. All authors read and approved the final manuscript.

Acknowledgments

This work was jointly supported by the Natural Science Foundation of Zhejiang Province (Grant no. LY20A010016), the National Natural Science Foundation of China (Grant no. 11931016), Fujian Province Young Middle-Aged Teachers Education Scientific Research Project (Grant no. JT180558), the Foundation of Science and Technology Project for the Education Department of Fujian Province (no. JA15512), and the Scientific Research Foundation for the Introduced Senior Talents, Wuyi University (Grant no. Y201802).

References

[1] R. A. M. Attia, D. Lu, T. Ak, and M. M. A. Khater, “Optical wave solutions of the higher-order nonlinear Schrödinger equation with the non-Kerr nonlinear term via modified Khater method,” Modern Physics Letters B, vol. 34, no. 5, Article ID 2050044, 2020.

[2] S. Chen and W. Ma, ”Exact solutions to a generalized Bogoyavlensky-Konopelchenko equation via Maple symbolic computations,” Complexity, vol. 2019, Article ID 8787460, 6 pages, 2019.

[3] E. Fan and H. Zhang, ”New exact solutions to a system of coupled kdV equations,” Physics Letters A, vol. 245, no. 5, pp. 389–392, 1998.

[4] M. M. A. Khater, R. A. M. Attia, A.-H. Abdel-Aty, M. A. Abdou, H. Eleuch, and D. Lu, ”Analytical and semi-analytical ample solutions of the higher-order nonlinear Schrödinger equation with the non-Kerr nonlinear term,” Results in Physics, vol. 16, Article ID 103000, 2020.

[5] M. Khater, R. Attia, and D. Baleanu, ”Abundant new solutions of the transmission of nerve impulses of an excitable system,” The European Physical Journal Plus, vol. 135, no. 2, pp. 1–12, 2020.

[6] M. M. A. Khater, C. Park, A.-H Abdel-Aty, R. A. M. Attia, and D. Lu, ”On new computational and numerical solutions of the modified Zakharov-Kuznetsov equation arising in electrical engineering,” Alexandria Engineering Journal, vol. 59, no. 3, pp. 1099–1105, 2020.

[7] M. Khater, C. Park, D. Lu, and R. Attia, ”Analytical, semi-analytical, and numerical solutions for the Cahn-Hen

Discrete Dynamics in Nature and Society

7
equation.” Advances in Difference Equations, vol. 2020, no. 1, pp. 1–12, 2020.

[8] M. M. A. Khater, A. R. Seadawy, and D. Lu, “Optical soliton and rogue wave solutions of the ultra-short femto-second pulses in an optical fiber via two different methods and its applications,” Optik, vol. 158, pp. 434–450, 2018.

[9] M. Khater, A. R. Seadawy, and D. Lu, “Optical soliton and bright-dark solitary wave solutions of nonlinear complex Kundu-Eckhaus dynamical equation of the ultra-short femto-second pulses in an optical fiber,” Optical and Quantum Electronics, vol. 50, no. 3, p. 155, 2018.

[10] J. Li, R. A. M. Attia, M. M. A. Khater, and D. Lu, “The new structure of analytical and semi-analytical solutions of the longitudinal plasma wave equation in a magneto-electro-elastic circular rod,” Modern Physics Letters B, vol. 34, no. 12, Article ID 2050123, 2020.

[11] W.-X. Ma and Y. Liu, “Invariant subspaces and exact solutions of a class of dispersive evolution equations,” Communications in Nonlinear Science and Numerical Simulation, vol. 17, no. 10, pp. 3795–3801, 2012.

[12] C. Park, M. M. A. Khater, R. A. M. Attia, W. Alharbi, and S. S. Alodhaibi, “An explicit plethora of solution for the fractional nonlinear model of the low-pass electrical transmission lines via Atangana-Baleanu derivative operator,” Alexandria Engineering Journal, vol. 59, no. 3, pp. 1205–1214, 2020.

[13] A.-M. Wazwaz, “The tanh method for travelling wave solutions to the Zhiber-Shabat equation and other related equations,” Communications in Nonlinear Science and Numerical Simulation, vol. 13, no. 3, pp. 584–592, 2008.

[14] A.-M. Wazwaz, “The variable separated ODE and the tanh methods for solving the combined and the double combined sinh-cosh-Gordon equations,” Applied Mathematics and Computation, vol. 177, no. 2, pp. 745–754, 2006.

[15] T. Wu and J. Zhang, “On modeling nonlinear long wave,” in Mathematics Is for Solving Problems, L. P. Cook, V. Roybhard, and M. Tulin, Eds., p. 233, SIAM, Philadelphia, PA, USA, 1996.

[16] M. Eslami and H. Rezazadeh, “The first integral method for Wu-Zhang system with conformable time-fractional derivative,” Calcolo, vol. 53, no. 3, pp. 1–11, 2015.

[17] E. Fan, “Extended tanh-function method and its applications to nonlinear equations,” Physics Letters A, vol. 277, no. 4-5, pp. 212–218, 2000.

[18] M. M. Helal, M. L. Mekky, and E. A. Mohamed, “The characteristic function method and its application to (1 + 1)-dimensional dispersive long wave equation,” Applied Mathematics, vol. 3, no. 1, pp. 12–18, 2012.

[19] C. Chen, X. Tang, and S. Lou, “Solutions of a (2 + 1)-dimensional dispersive long wave equation,” Physical Review E, vol. 66, no. 3, Article ID 036605, 2002.

[20] A. Pickering, “A new truncation in Painlevé analysis,” Journal of Physics A: Mathematical and General, vol. 26, no. 17, pp. 4395–4405, 1993.

[21] J. Weiss, M. Tabor, and G. Carnevale, “The Painlevé property for partial differential equations,” Journal of Mathematical Physics, vol. 24, no. 3, pp. 522–526, 1983.

[22] Q. Wang, Y. Chen, and Z. Hongqing, “A new Jacobi elliptic function rational expansion method and its application to (1 + 1)-dimensional dispersive long wave equation,” Chaos, Solitons & Fractals, vol. 23, no. 2, pp. 477–483, 2005.

[23] X. Zheng, Y. Chen, and H. Zhang, “Generalized extended tanh-function method and its application to (1 + 1)-dimensional dispersive long wave equation,” Physics Letters A, vol. 311, no. 2-3, pp. 145–157, 2003.

[24] X. Zeng and D.-S. Wang, “A generalized extended rational expansion method and its application to (1 + 1)-dimensional dispersive long wave equation,” Applied Mathematics and Computation, vol. 212, no. 2, pp. 296–304, 2009.

[25] Z. Du, J. Li, and X. Li, “The existence of solitary wave solutions of delayed Camassa-Holm equation via a geometric approach,” Journal of Functional Analysis, vol. 275, no. 4, pp. 988–1007, 2018.

[26] Z. Du, Z. Feng, and Z. Feng, “Existence and asymptotic behaviors of traveling waves of a modified vector-disease model,” Communications on Pure & Applied Analysis, vol. 17, no. 5, pp. 1899–2010, 2018.

[27] D. Feng, J. Li, and J. Jiao, “Dynamical behavior of singular traveling waves of (n + 1)-dimensional nonlinear Klein-Gordon equation,” Qualitative Theory of Dynamical Systems, vol. 18, no. 1, pp. 265–287, 2019.

[28] B. He and Q. Meng, “Bifurcations and new exact traveling wave solutions for the Gerdjikov-Ivanov equation,” Communications in Nonlinear Science and Numerical Simulation, vol. 15, no. 7, pp. 1783–1790, 2010.

[29] H. Liu and J. Li, “Symmetry reductions, dynamical behavior and exact explicit solutions to the Gordon types of equations,” Journal of Computational and Applied Mathematics, vol. 257, pp. 144–156, 2014.

[30] H. Liu and J. Li, “Lie symmetry analysis and exact solutions for the extended mkdV equation,” Acta Applicandae Mathematicae, vol. 109, no. 3, pp. 1107–1119, 2010.

[31] Y. Song and X. Tang, “Stability, steady-state bifurcations, and tuning patterns in a predator-prey model with Hurd behavior and prey-taxis,” Studies in Applied Mathematics, vol. 139, no. 3, pp. 371–404, 2017.

[32] Y. Song, H. Jiang, Q.-X. Liu, and Y. Yuan, “Spatiotemporal dynamics of the diffusive mussel-algae model near tuning-bop bifurcation,” SIAM Journal on Applied Dynamical Systems, vol. 16, no. 4, pp. 2030–2062, 2017.

[33] F. Yi, J. Wei, and J. Shi, “Diffusion-driven instability and bifurcation in the Lengyel-Epstein system,” Nonlinear Analysis: Real World Applications, vol. 9, no. 3, pp. 1038–1051, 2008.

[34] T. Zhang and J. Li, “Exact torus knot periodic orbits and homoclinic orbits in a class of three-dimensional flows generated by a planar cubic system,” International Journal of Bifurcation and Chaos, vol. 27, no. 13, pp. 1–12, 2017.

[35] T. Zhang and J. Li, “Exact solitons, periodic peakons and compactons in an optical soliton model,” Nonlinear Dynamics, vol. 91, no. 2, pp. 1371–1381, 2018.

[36] B. Zhang, Y. Xia, W. Zhu, and Y. Bai, “Explicit exact traveling wave solutions and bifurcations of the generalized combined double sinh-cosh-Gordon equation,” Applied Mathematics and Computation, vol. 363, p. 124576, 2019.

[37] B. Zhang, W. Zhu, Y. Xia, and Y. Bai, “A unified analysis of exact traveling wave solutions for the fractional-order and integer-order Biswas-Milovic equation: via bifurcation theory of dynamical system,” Qualitative Theory of Dynamical Systems, vol. 19, no. 1, p. 11, 2020.

[38] W. Zhu, Y. Xia, B. Zhang, and Y. Bai, “Exact traveling wave solutions and bifurcations of the time fractional differential equations with applications,” International Journal of Bifurcation and Chaos, vol. 29, no. 3, Article ID 1950041, 2019.

[39] W. Zhu, Y. Xia, and Y. Bai, “Traveling wave solutions of the complex Ginzburg-Landau equation with Kerr law
nonlinearity,” *Applied Mathematics and Computation*, vol. 382, Article ID 125342, 2020.

[40] M. M. A. Khater, R. A. M. Attia, and D. Lu, “Numerical solutions of nonlinear fractional Wu-Zhang system for water surface versus three approximate schemes,” *Journal of Ocean Engineering and Science*, vol. 4, no. 2, pp. 144–148, 2019.

[41] M. Khater, D. Lu, and R. Attia, “Dispersive long wave of nonlinear fractional Wu-Zhang system via a modified auxiliary equation method,” *AIP Advances*, vol. 9, no. 2, Article ID 025003, 2019.

[42] J. Li, *Singular Nonlinear Travelling Wave Equations: Bifurcations and Exact Solutions*, Science, Beijing, China, 2013.

[43] P. Byrd and M. Friedman, *Handbook of Elliptic Integrals for Engineers and Scientists*, Springer-Verlag, New York, NY, USA, 1971.

[44] R. Khalil, M. Al Horani, A. Yousef, and M. Sababheh, “A new definition of fractional derivative,” *Journal of Computational and Applied Mathematics*, vol. 264, pp. 65–70, 2014.