Nematophilic bacteria associated with entomopathogenic nematodes and drug development of their biomolecules

Ryan Musumba Awori1,2*
1Department of Biology, University of Nairobi, Nairobi, Kenya, 2Elakistos Biosciences, Nairobi, Kenya

The importance of *Xenorhabdus* and *Photorhabdus* symbionts to their respective *Steinernema* and *Heterorhabditis* nematode hosts is that they not only contribute to their entomopathogenicity but also to their fecundity through the production of small molecules. Thus, this mini-review gives a brief introductory overview of these nematophilic bacteria. Specifically, their type species, nematode hosts, and geographic region of isolations are tabulated. The use of nucleotide sequence-based techniques for their species delineation and how pangenomes can improve this are highlighted. Using the *Steinernema–Xenorhabdus* association as an example, the bacterium-nematode lifecycle is visualized with an emphasis on the role of bacterial biomolecules. Those currently in drug development are discussed, and two potential antimalarial lead compounds are highlighted. Thus, this mini-review tabulates forty-eight significant nematophilic bacteria and visualizes the ecological importance of their biomolecules. It further discusses three of these biomolecules that are currently in drug development. Through it, one is introduced to *Xenorhabdus* and *Photorhabdus* bacteria, their natural production of biomolecules in the nematode-bacterium lifecycle, and how these molecules are useful in developing novel therapies.

KEYWORDS
nematophilic bacteria, *Xenorhabdus* bacteria, *Photorhabdus* bacteria, entomopathogenic nematode (EPN), natural product (NP), pangenomics, drug development

Introduction

Nematophilic “nematode loving” bacteria are prokaryotes that are symbiotically associated with members of phylum Nematoda. Three such genera are *Xenorhabdus*, *Photorhabdus*, and *Serratia*, which are symbionts of *Steinernematidae*, *Heterorhabditidae*, and *Rhabditidae* members, respectively. Each of these three
families of the order Rhabditida contain entomopathogenic species—all members of Steinernema and Heterorhabditis, all members of the Insectivora—group of Oscheius, and Caenorhabditis briggsae. However, it is their Xenorhabdus, Photobacterium, or Serratia symbionts that contribute in large part to this trait through both septicemia and toxemia (Bowen et al., 1998; Firench-Constant and Waterfeld, 2005; Abebe et al., 2011; Clarke, 2020). Hence, Xenorhabdus, Photobacterium, and a few Serratia strains are also termed entomopathogenic bacteria. Whereas Serratia symbionts form associations with Oscheius and Caenorhabditis hosts, Xenorhabdus and Photobacterium are more genus-specific associating only with Steinernema and Heterorhabditis hosts, respectively (Table 1).

Apart from Xenorhabdus and Serratia, other entomopathogenic bacterial symbionts such as Pseudomonas sp. (Ogier et al., 2020) and Alcaligenes sp. (Shan et al., 2019) associate with Steinernema and Oscheius nematodes, respectively.

This classification of Serratia as nematophilic bacteria has caveats. Not all species in the Serratia genus are nematode symbionts (Grimont and Grimont, 2006), and only a few Oscheius-Serratia/ Caenorhabditis-Serratia associations are known (Table 1). Moreover, for some of these associations, Serratia were only facultative symbionts—Serratia sp. strain SCBI and Serratia marcescens from C. briggsae and Oscheius carolinensis, respectively (Abebe et al., 2011; Torres-Barragan et al., 2011). Conversely, except one, all characterized Xenorhabdus and Photobacterium species are natural nematode intestinal symbionts (Table 1). Thus, this mini-review focused on Xenorhabdus and Photobacterium as nematophilic bacteria.

Xenorhabdus and Photobacterium bacteria

Xenorhabdus and Photobacterium are both gram-negative, rod-shaped, peritrichously flagellated, facultative anaerobes of the family Morganellaceae, order Enterobacterales, and class Gammaproteobacteria (Adeolu et al., 2016). They are uniquely characterized by not only having primary and secondary variants but also an endosymbiosis with entomopathogenic nematodes (EPNs). Other distinguishing traits include Photobacterium as the only terrestrial bioluminescent bacterium genus and Xenorhabdus as the only member of Enterobacterales that does not produce catalase (Boemare and Akhurst, 2006). Despite this taxonomic relatedness, the similar ecological niche of the two is more due to convergent evolution (Chaston et al., 2011). Twenty-seven Xenorhabdus species that were isolated from twenty-seven steinernematids have been described to date (Table 1). However, 100 Steinernema species have been characterized (Bhat et al., 2020) highlighting that at most—because of species with more than one nematode host (Table 1)—63 novel Xenorhabdus species could be added to the genus from these respective under-investigated yet described steinernematids. This prediction can be mathematically supported by determining whether the Xenorhabdus pangenome is open (Medini et al., 2020).

Nucleotide sequence-based techniques are not only the gold standard for prokaryotic species delineation (Chun et al., 2018) but are also useful for either identification of new isolates or emendation of already described taxon. For example, Xenorhabdus sp. strain BMMCB was described as an Xenorhabdus griffini species (Mothupi et al., 2015), but we (Awori et al., 2017) demonstrated that its nucleotide identities values for the recombine A (recA), phosphoserine transferase (serC), and small subunit ribosomal ribonucleic acid (rRNA) (SSU) genes, with those of the type species, were below the accepted threshold for conspecific strains—97% for protein-coding genes (Taittiz et al., 2010) and 98.7% for SSU gene (Kim et al., 2014).

Two powerful nucleotide sequence-based techniques are average nucleotide identities (ANI) and digital DNA-DNA hybridization (dDDH), which both delineate species by calculating how related two genomes are. The thresholds for conspecific strains are >95% (Richter and Rossello-Mora, 2009) and >70% (Auch et al., 2010) for ANI and dDDH, respectively. Both were used to reclassify Photobacterium species (Machado et al., 2018). However, strains S8-52, S9-53, and S10-54 identified as Photobacterium kleinii had ANI values of 96.7% with the Photobacterium bodei type strain and Photobacterium temperata Meg1 had ANI values of 96.3% with the Photobacterium thracensis type strain demonstrating the difficulty in delineating species of Photobacterium (Fischer-Le Saux et al., 1998; Tailliez et al., 2010; Machado et al., 2021b) even with these nucleotide-based thresholds (Bobay, 2020). Thus, the use of pangenome analysis for species delineations—as was done in the Prochlorococcus genus (Moldovan and Gelfand, 2018)—is recommended for Photobacterium systematics when sufficient genome sequences—at least five per species (Medini et al., 2020)—are available.

The nematode-bacterium lifecycle and bacterial biomolecules

The nematode-bacterium lifecycle begins with soil-dwelling infective third larval stage juvenile nematode (I3) preying on an insect (Figure 1). Anatomically, IJ3 are third larval stage juvenile nematodes (I3) with a retained second larval stage cuticle that seals both mouth and anus rendering the nematodes into a non-feeding, developmentally arrested, and perennation-like stage (Poinar and Leutenegger, 1968). Steinernematids I3 infect an insect only through natural openings, whereas heterorhabditis can additionally gain entry by piercing into the hemocoel using a bursa (Bedding and Molyneux, 1982). Once within, the IJ3s undergo “recovery” (Clarke, 2020) whereby they shed their second larval stage cuticle and
TABLE 1 Nematophilic bacteria associated with entomopathogenic nematodes (EPNs).

Species	Nematode host of isolation	Geographic origin of nematode	Example of a bioactive molecule produced by the type strain
Xenorhabdus beddingtoni (Akhurst and Boemare, 1988)	Steinernema longicaudum	Tasmania, Australia (Akhurst, 1983)	Xeompeptide (Tobias et al., 2017; Kegler and Bode, 2020)
X. bovienii (Akhurst and Boemare, 1988)	S. affine	Tasmania, Australia (Akhurst, 1983)	Xenocyloin (Proschak et al., 2014)
	S. intermedium		
	S. kraussii		
	S. feltiae		
X. budapestensis (Lengyel et al., 2005)	S. bicornutum	Szabadka, Serbia (Tallosi et al., 1995)	Bicornutin (Boszorményi et al., 2009)
X. cabanillaii (Tailliez et al., 2006)	S. riobrave	Weslaco, USA (Cabanillas et al., 1994)	Rhabdopeptide (Reimer et al., 2013)
X. ducetiae (Tailliez et al., 2006)	S. diaprepesi	Martinique, Caribbean (Fischer-Le Saux et al., 1998)	Xenorhabdin (Bode et al., 2015)
X. eapokensis (Kämpfer et al., 2017)	S. capokense	Eapok, Vietnam (Phan et al., 2006)	GameXPeptide (Tobias et al., 2017; Shi et al., 2022)
X. ehlersii (Lengyel et al., 2005)	S. serratum	Shangdong, China (Qiu et al., 2004)	GameXPeptide (Tobias et al., 2017; Shi et al., 2022)
X. griffiniae (Tailliez et al., 2006)	S. hermaphroditum	Kamal, Indonesia (Stock et al., 2004)	
X. hominisci (Tailliez et al., 2006)	S. karsi	Kirinyaga, Kenya (Waturu et al., 1997)	Fabclavine (Wenski et al., 2020)
	S. monticolum		
X. indica (Somvanshi et al., 2006)	S. thermophilum	New Delhi, India (Sudarshan and Singh, 2000)	Taxillaid (Kronenwerth et al., 2014)
X. innexi (Lengyel et al., 2005)	S. scapterisci	Rivera, Uruguay (Nguyen and Smart, 1996)	Rhabdopeptide/xenorhadin-like peptide (Zhao L. et al., 2018)
X. japonica (Nishimura et al., 1994)	S. kushidai	Hamakita, Japan (Nishimura et al., 1994)	Lipocitide (Shi et al., 2022)
X. shubaudhi (Kuwata et al., 2013)	S. aciari	Haimen, China (Qiu et al., 2005)	Xenorhabdin (McIlnerney et al., 1991; Bode et al., 2015; Tobias et al., 2017)
X. lircayensis (Castaneda-Alvarez et al., 2021)	S. unicornum	Altos de Lircay, Chile (Castaneda-Alvarez et al., 2021)	
X. khoisanae (Ferreira et al., 2013)	S. khoisanae	Villiersdorp, South Africa (Malan et al., 2006)	
X. koppenhoeferi (Tailliez et al., 2006)	S. scarabaei	New Jersey, USA (Stock and Koppenhöfer, 2003)	
X. khoisanae (Castaneda-Alvarez et al., 2021)			
X. kolodnii (Tailliez et al., 2006)	S. arenarium	Voronezh, Russia (Artyukhovsky, 1997)	Xenocoumacin (Park et al., 2009; Tobias et al., 2017)
	S. apuliae		
X. magdalenensis (Tailliez et al., 2012)	S. australis	Isla Magdalena, Chile (Edgington et al., 2009)	Xenoamocin (Zhou et al., 2013)
X. mauleonis (Tailliez et al., 2006)	Steinernema sp.	St. Vincent, Carribean (Fischer-Le Saux et al., 1998)	
X. miramontesi (Tailliez et al., 2006)	Steinernema sp.	Mirani, Australia (Akhurst and Boemare, 1988)	Ambactin (Schimming et al., 2014)
X. nematophila (Akhurst and Boemare, 1988)	S. carpopodae	Virginia, USA (Poinar et al., 1972)	Rhabduscin (Eugenia Nuñez-Valdez et al., 2019)
X. paniculata (Akhurst and Boemare, 1988)	S. glaseri	North Carolina, USA (Poinar, 1978)	
	S. cubanum		
X. romanii (Tailliez et al., 2006)	S. puertoricense	Puerto Rico, USA (Román and Figueroa, 1994)	GameXPeptide (Tobias et al., 2017; Shi et al., 2022)
X. stockiae (Tailliez et al., 2006)	S. siamhuyai	Lohmsak, Thailand (Stock, 1998)	

(Continued)
Species	Nematode host of isolation	Geographic origin of nematode	Example of a bioactive molecule produced by the type strain
X. szentirmaii (Lengyel et al., 2005)	*S. rarum*	Cordoba, Argentina (Aguera de Doucet, 1986)	Szentiamide (Ohlendorf et al., 2011)
X. thuongxuanensis (Kämpfer et al., 2017)	*S. sangi*	Thuongxuan, Vietnam (Phan et al., 2001)	GameXPeptide (Tobias et al., 2017; Shi et al., 2022)
X. vietnamensis (Tailliez et al., 2010)	*O. microvilli*	Xuanmy, Vietnam (Phan et al., 2001)	Benzobactin A (Shi et al., 2022)
Serratia nematodiphila (Zhang et al., 2009)	*O. carolinensis*	Chongming Islands, China (Zhang et al., 2009)	
S. marcescens (Torres-Barragan et al., 2011)	*O. africana*	Raleigh, USA (Ye et al., 2010)	
Serratia sp. strain TEL (Lephoto Tiisetso et al., 2015)	*H. gerrardi*	Victoria, Australia (Peel et al., 1999; Pichta et al., 2009)	Gldobactin (Tobias et al., 2017)
Serratia sp. strain N19 (Zhou et al., 2017)	*H. bacteriophora*	Basse Terre, Guadeloupe Islands (Machado et al., 2018)	Photoxenobactin (Shi et al., 2022)
Serratia sp. strain SCBI (Abebe et al., 2015)	*H. indica*	Grande Terre, Guadeloupe Islands (Machado et al., 2018)	
Photorhabdus aegyptia (Machado et al., 2011)	*H. indicus*	Hainan Island, China (Akhurst, 1987)	
P. akhurstii (Machado et al., 2018)	*H. bacteriophora*	Brits, South Africa (Mothupi, 2016)	
P. australis (Machado et al., 2018)	*H. gerrardi*	Victoria, Australia (Peel et al., 1999; Pichta et al., 2009)	Gldobactin (Tobias et al., 2017)
P. bodei (Machado et al., 2018)	*H. gerrardi*	Victoria, Australia (Peel et al., 1999; Pichta et al., 2009)	Gldobactin (Tobias et al., 2017)
P. caribbeanensis (Machado et al., 2018)	*H. gerrardi*	Victoria, Australia (Peel et al., 1999; Pichta et al., 2009)	Gldobactin (Tobias et al., 2017)
P. cinerea (Machado et al., 2018)	*H. gerrardi*	Victoria, Australia (Peel et al., 1999; Pichta et al., 2009)	Gldobactin (Tobias et al., 2017)
P. hainanensis (Machado et al., 2018)	Unknown	San Antonio, USA (Farmer et al., 1989)	
P. hainanensis (Machado et al., 2018)	*H. gerrardi*	Victoria, Australia (Peel et al., 1999; Pichta et al., 2009)	Gldobactin (Tobias et al., 2017)
P. heterorhabditis (Ferreira et al., 2014)	H. zealandica	Brits, South Africa (Mothupi, 2016)	
P. hundutanensis (Machado et al., 2021b)	Heterorhabditis sp.	Meghalaya, India (Ganguly et al., 2010)	
P. kleinii (Machado et al., 2018)	*H. georgiana*	Ohio, USA (An and Grewal, 2011)	
P. kajai (Machado et al., 2018)	*H. bacteriophora*	Aksaray, Turkey (Hazir et al., 2003)	
P. khanii (Machado et al., 2018)	*H. bacteriophora*	Clayton, USA (Khan et al., 1976)	
P. laumontii (Machado et al., 2018)	*H. bacteriophora*	Trinidad, Trinidad and Tobago (Fischer-Le Saux et al., 1998)	Makes Caterpillar Floppy toxin (Daborn et al., 2002)
P. luminescens (Boemare et al., 1993)	*H. bacteriophora*	Brecon, Australia (Thomas and Poinar, 1979)	3,5-dihydroxy-4-isopropylstilbene (Hu et al., 1997)
P. namnaonensis (Machado et al., 2018)	*H. bacteriophora*	Nam Nao, Thailand (Glasser et al., 2017)	3-isopropyl-4-oxo-2-oxetanecarboxylic acid (Shi et al., 2022)
P. nematodenensis (Machado et al., 2018)	*H. bacteriophora*	Nelspruit, South Africa (Malan et al., 2011)	
P. nematodenensis (Machado et al., 2018)	*H. bacteriophora*	Atwood, USA (Grewal et al., 2002)	
P. stackebrandtii (Machado et al., 2018)	*H. bacteriophora*	Clayton, USA (Khan et al., 1976)	
P. tasmaniensis (Machado et al., 2018)	*H. bacteriophora*	Nicholls Rivulet, Australia (Akhurst, 1987)	
P. temperata (Fischer-Le Saux et al., 1999)	*H. gerrardi*	Nicholls Rivulet, Australia (Akhurst, 1987)	
P. thraecensis (Machado et al., 2018)	*H. bacteriophora*	Kirkclare, Turkey (Hazir et al., 2003)	GameXPeptide (Tobias et al., 2017; Shi et al., 2022)
release into the hemocoel, their gut bacterial symbionts. For *Steinernema, Xenorhabdus* would have been previously localized in a receptacle (Stilwell et al., 2018) at the anterior gut whereas, in *Heterorhabditis, Photorhabdus* would have previously lined the entire gut (Waterfield et al., 2009). Detection of L-proline concentrations >4.8 mM in insect hemolymph triggers an upregulated bacterial secretion of specialized metabolites of various ecological functions (Crawford et al., 2010).

Despite the following grouping of biomolecules from both *Xenorhabdus* and *Photorhabdus* according to the similarity of ecological function, their biosynthesis is species-specific. The first grouping is insecticidal toxins, and these can be divided into insect immune suppressors via inhibition of phenoloxidase pathway: 1,2-benzene dicarboxylic acid (PA) (Ullah et al., 2014), benzylidenacetone (BZA) (Song et al., 2011), rhaduscin (Crawford et al., 2012; Eugenia Nunez-Valdez et al., 2019), and 1,3-dihydroxy-2-(2-isopropyl)-5-(2-phenylethyl)benzene (Elefrethianos et al., 2007); hemocyte pore-forming complexes: *Xenorhabdus* particulate toxins (Xpt) (Sheets et al., 2011), toxin complex toxins (Tc) (Blackburn et al., 1998), and *Xenorhabdus* α-xenorhabdolsyn toxins (Xax) (Vigneux et al., 2007); apoptosis inducers: make caterpillar floppy toxins (Mcf) (Daborn et al., 2002; Dowling et al., 2004) and PaTox toxins (Jank et al., 2016); and those with yet unknown modes of action: PirAB (Yang et al., 2017) and xenocoylin (Proschak et al., 2014). Moreover, another ecological function of secreted metabolites is bioconversion by enzymes such as lipases, proteases, amylases, and proteases—theyir respective genes are enriched in *Xenorhabdus* and *Photorhabdus* genomes (Chaston et al., 2011)—creating a rich nutrient pool. To defend this from colonization by microbial competitors, a broad spectrum of antimicrobials is produced. These include antifungals: biocornutin (Böszörmenyi et al., 2009), cabanillasins (Houard et al., 2013), EP-19, GP-20 (Xiao et al., 2012), and xenococumacin (Yang et al., 2011); antibacterials: darobactin (Imai and Imae, 2019), xenematide (Lang et al., 2008), photoditritide (Zhao et al., 2019), xenobactin (Grundmann et al., 2013), odiorhabdins (Pantel et al., 2018), xenorhabdin (Mcinerney et al., 1991), and PAX peptides (Gualtieri et al., 2009); antiprotozoals: phototemtide (Zhao et al., 2020), szentiamide (Ohlendorf et al., 2011), rhabdopeptide/xenortide-like peptides (RXP) (Zhao et al., 2018), xenortide (Reimer et al., 2014), xenomacin (Zhou et al., 2013), and ambactin (Schimming et al., 2014); and cytotoxic agents: fabclavines (Wenski et al., 2020) and phenylethylamine (PEA) derivatives (Proschak et al., 2011).

Recovered IJ3s leverage this nutrient-filled, enclosed environment to molt to fourth larval stage juvenile nematodes (J4) and then adults (Figure 1) that lay eggs after mating in the case of all steinernematids except *Steinernema hermafroditum*—these species lay eggs without mating due to their hermaphroditic nature. This is like the androdioecious heterorhabditids whose adult females are also self-fertilized. Uniquely, *Heterorhabditis* adult females lay eggs into their uterus which hatch and develop into first larval stage juvenile nematodes (J1) through *endotokia matricida* (Clarke, 2020). Newly hatched EPNs molt from J1 through to J4 and then adults, which mate and lay eggs thus beginning another lifecycle. This continues until nutrients are depleted (Figure 1). Notably, infected cadavers are themselves protected from consumption by non-microbial competitors such as ants by the bacterial production of scavenger deterring factors (Zhou et al., 2002; Gulcu et al., 2012).

Upon nutrient depletion, J3 nematodes commence transformation to IJ3s by reassociating with bacterial symbionts (Figure 1)—this can be as few as one per nematode in the case of *Xenorhabdus* reassociations (Stilwell et al., 2018). Moreover, a highly species-specific reassociation occurs in *Xenorhabdus-Steinernema* complexes, and in *Xenorhabdus nematophila*, this is attributed to the NilC protein (Cowles and Goodrich-Blair, 2004). By retaining the second larval stage cuticle, J3s complete their transformation to IJ3s that then emigrate the cadaver in search of new insect prey. Notably, all seven macroyclic antimicrobial non-ribosomal peptides (NRPs) with known toxicities—chayiaphumins, photoditritide, szentiamide, xenobactin, phototemtide, xenoamicin, and PAX lipopeptides—were locally toxic to mammalian cells—the lowest half-maximal inhibitory concentration (IC_{50}) was 52 μM (Gualtieri et al., 2009; Ohlendorf et al., 2011; Grundmann et al., 2013, 2014; Zhou et al., 2013; Zhao et al., 2019, 2020). The bacteria possibly evolved to synthesize these compounds to inhibit diverse soil microorganisms while remaining locally toxic to animal nematode hosts (Racine and Gualtieri, 2019). Biotechnologically, their low toxicity, natural derivatization, and macrocyclic structure (Dathe et al., 2004; Rodriguez et al., 2021) make them suitable for antibiotic drug development.

Xenorhabdus/Photorhabdus molecules in drug development

Many *Xenorhabdus/Photorhabdus* molecules have the potential to be developed into approved drugs (Challinor and Bode, 2015; Dreyer et al., 2018; Racine and Gualtieri, 2019; Boosyen and Dicks, 2020). For example, *Photorhabdus luminescens* biosynthesized 3,5-dihydroxy-4-isopropylstilbene (Hu et al., 1997)—this is the active pharmaceutical ingredient in the drugs benvitimod and tapinarof (Zhang et al., 2022), which are approved for market in China and the USA, respectively, for the treatment of psoriasis and topical dermatitis (Lebwohl et al., 2021). NOS-502, an antibiotic lead compound currently in pre-clinical development, is a synthetic derivative of the odiorhabdins (Figure 1). These are cationic antimicrobial NRPs biosynthesized by *X. nematophila* that inhibit protein synthesis.
FIGURE 1

FIGURE 1: Xenorhabdus-Steinernema lifecycle and selected biomolecules that contribute toward nematode fecundity. Free-living infective third-stage juvenile (IJ3) nematodes seek out insects and gain entry through natural openings such as spiracles, and once within the hemocoel, nematodes exit their non-feeding state and release *Xenorhabdus* gut symbionts. The bacteria secrete a range of biomolecules (1–13) that increase the fecundity of the nematodes. Nematodes go through complete lifecycles thus increasing their numbers and upon depletion of nutrients each J3 re-associates with a few *Xenorhabdus* bacteria and exit the insect cadaver as an IJ3. J1, J2, J3, and J4 = first, second, third, and fourth larval stage juvenile nematodes, respectively. Benzylacetone (1), rhabduscin (2), xenocyloin (3), cabanillasin (4), biocornutin (5), xenocoumacin 2 (6), odilorhabdin (7), nematophin (8), xenorhabdin (9), xenocoumacin 1 (10), xenotride (11), rhabdopeptide (12), and rhabdopeptide/xenortide-like peptides (13) were created in biorender.com.

via unique sites on the 30S ribosome (Pantel et al., 2018). NOS-502 not only had a good in vivo safety profile but also inhibited beta-lactam resistant strains of both *Escherichia coli* and *Klebsiella pneumoniae* at minimum inhibitory concentrations (MICs) of 1.85 and 0.93 µM, respectively (Zhao M. et al., 2018). Another lead compound in pre-clinical development is darobactin A which is produced by *Photorhabdus khanii* (Lewis, 2020). It too was lowly toxic in murine models and inhibited beta-lactam resistant strains of both *E. coli* and *K. pneumoniae* at an MIC of 2.1 µM (Imai et al., 2019).

The development of novel antimalarial drugs is of current global health importance due to increasing resistance to artemisinin-based therapies in malaria-endemic regions such as East Africa (Asua et al., 2021), because of mutations in the *Plasmodium falciparum* K13 gene (Amaratunga et al., 2019). Two potential antimalarial lead compounds for pre-clinical development are the NRPs chaiyaphumin A from *Xenorhabdus* sp. PB61.4 (Grundmann et al., 2014) and rhabdopeptide/xenortide-like peptide (RXP) 6 from *Xenorhabdus innex* (Zhao L. et al., 2018). This is because RXP 6 and chaiyaphumin A were inhibitory to *P. falciparum* at IC50 of 0.091 and 0.61 µM, respectively. Moreover, they had respective selectivity indexes of 63 and 151. Biochemically, the bioactivity of chaiyaphumin A was affected by the fatty acid acylated to its N terminal as the natural swapping of phenylacetic acid for n-butyrate created a derivative with an
I_{50} \text{ of 15.4 \mu M and selectivity index of 10. Thus, a probable route for creating chaiyaphumin derivatives with enhanced pharmacological properties is by swapping the C\text{arter} domain of its non-ribosomal peptide synthetase (NRPS) via NRPS re-engineering (Beck et al., 2020).}

Although antibody–drug conjugates are promising anticancer therapies, their intrinsic high cost of development makes the price of approved drugs—such as enfortumab vedotin for the treatment of urothelial carcinoma—currently cost-ineffective (Wu et al., 2022). A possible solution is replacing the antibody component with a modified \textit{Photorhabdus} Tc toxin, to translocate—within a cocoon-like structure (Roderer et al., 2019)—and deliver cytotoxic compounds into targeted cancer cells (Nganga et al., 2019). However, the concept that the \textit{Photorhabdus} TcA subunit can selectively bind to a cancer cell needs to be first proven.

Conclusion

Twenty-seven \textit{Xenorhabdus}, twenty-one \textit{Photorhabdus} species, and four \textit{Serratia} strains were identified as isolated from EPNs. Sixty-three novel species of \textit{Xenorhabdus} could be discovered from corresponding characterized but under-investigated steinernematids. Due to the low phylogenetic diversity in the genus, the use of pangenome analyses for species delineation in \textit{Photorhabdus} is recommended when enough genomes per species are available. The lifecycle of the nematode-bacterium complex is marked by the secretion of its non-ribosomal peptide synthetase (NRPS) and proposal of elevation of the subspecies of \textit{X. nematophilus} to species. \textit{Microbiology} 134, 1835-1845. doi: 10.1099/00221287-134-7-1835

Author contributions

RA did the research, wrote the manuscript, and approved the submitted version.

Funding

This research was funded by the Kenya National Research Fund: NRF 1st CALL/MULTIDISCIPLINARY RESEARCH/127, "Drug Development of Antibiotics: \textit{Xenorhabdus} bacteria from Kenya".

Conflict of interest

RA is the proprietor of Elakistos Biosciences. This did not influence this research.

Publisher's note

All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.
Asua, V., Conrad, M. D., Aydemir, O., Duvalaisin, M., Legac, J., Duarte, E., et al. (2021). Changing prevalence of potential mediators of aminosinquinoline, antibiotic, and artemisinin resistance across Uganda. J. Infect. Dis. 223, 985–994. doi: 10.1093/infdis/jiaa687

Auch, A. F., von Jan, M., Klenk, H.-P., and Goker, M. (2010). Digital DNA-DNA hybridization for microbial species delineation by means of genome-to-genome sequence comparison. Stand. Genomic Sci. 2, 117–134. doi: 10.4329/sgs.v2.117

Awori, R. M., Nyenga Ng’ang’a, P., Nyongesa, L. N., Amugune, N. O., and Masiga, D. (2017). Muramycin. A novel class of antibiotics from soil-dwelling roundworms of Central Kenya that inhibits methicillin-resistant Staphylococcus aureus [version 2; peer review: 2 approved, 1 approved with reservations]. F1000Research 5:2431. doi: 10.12688/f1000research.9652.2

Beck, C., Garzón, J. F. G., and Weber, T. (2020). Recent advances in re-engineering modular PKS and NRPS assembly lines. Biotechnol. Bioeng. 25, 886–894. doi: 10.1002/bit.20265-5

Bedding, R. A. and Molyneux, A. S. (1982). Penetration of insect cuticle by infective juveniles of Heterorhabditis Spp. (Heterorhabditidae: Nematoda). Nematologica 28, 354–359. doi: 10.1127/0065-2164(1982)028<0354:POICBI>2.3.CO;2

Bhat, A. H., Chauhey, A. K., and Askary, T. H. (2020). Global distribution of entomopathogenic nematodes, Steinernema, Stein. J. Biol. Pest Control 30:31. doi: 10.1186/s41398-020-0121-y

Blackburn, M., Golubeva, E., Bowen, D., and French-Constant, R. H. (1998). A novel insecticidal toxin from Photobacterium luminescens, toxin complex a (Tca), and its histopathological effects on the midgut of Manduca sexta. Appl. Environ. Microbiol. 64, 3036–3041. doi: 10.1128/AEM.64.10.3036-3041.1998

Boby, L.-M. (2008). “The prokaryotic species concept and challenges.” In The pangenome: Diversity, dynamics and evolution of genomes, eds H. Tettelin and D. Medini (Cham: Springer), 21–49. doi: 10.1007/978-3-03-038281-0_2

Bode, E., Brachmann, A. O., Kegler, C., Simsek, R., Dauth, C., Zhou, Q., et al. (2015). Simple “on-demand” production of bioactive natural products. ChemBiochem 16, 1115–1119. doi: 10.1002/chem.201500094

Boemare, N. E., Akhurst, R. J., and Mournat, R. G. (1993). DNA relatedness between Xenorhabdus spp. (Enterobacteriaceae), symbiotic bacteria of entomopathogenic nematodes, and a proposal to transfer Xenorhabdus luminescens to a new genus, Photorhabdus gen. nov. Int. J. Syst. Bacteriol. 43, 249–255.

Boemare, N. E., and Akhurst, R. (2006). “The genera Photobacterium and Xenorhabdus,” in The prokaryotes: A handbook on the biology of bacteria: Proteobacteria: Gamma subclass, Vol. 6, eds M. Dworkin, S. Falkow, E. Rosenberg, K.-H. Schleifer, and E. Stackebrandt (New York, NY: Springer New York), 451–494. doi: 10.1007/3-540-24372-x

Booyse, E., and Dicks, L. M. T. (2020). Does the future of antibiotics lie to a new genus, Photorhabdus gen. nov. Front. Microbiol. 9:3177. doi: 10.3389/fmicb.2018.03177

Edgington, S., Baddie, A. G., Tymo, L., Hunt, D. J., Nguyen, K. B., France, A. I., et al. (2009). Steinernema australis n. sp. (Pagenalomonarchiata: Steinernematidae), a new entomopathogenic nematode from Isla Magdalena, Chile. Nematology 11, 699–717. doi: 10.1116/15658413.039926

Edlefsenians, I., Boundy, S., Joyce, S. A., Aslan, S., Marshall, J. W., Cox, R. J., et al. (2007). An antibacterial produced by an insect-pathogenic bacterium suppresses host defenses through phenoloxidase inhibition. Proc. Natl. Acad. Sci. U.S.A. 104, 2419–2424. doi: 10.1073/pnas.0610525104

Eugenia Nuñez-Valdez, M., Lanois, A., Pagès, S., Ducru, B., and Gaudriault, S. (2019). Inhibition of Spodoptera frugiperda phenoloxidase activity by the products of the Xenorhabdus rhodocin gene cluster. PLoS One 14:e0212809. doi: 10.1371/journal.pone.0212809

Farmer, J. J., Jorgensen, J. H., Grimont, P. A., Akhurst, R. J., Poinar, G. O., Ageron, E., et al. (1989). Xenorhabdus luminescens (DNA hybridization group 5) from human clinical specimens. J. Clin. Microbiol. 27, 1594–1600. doi: 10.1128/JCM.27.7.1594-1600.1989

Ferreira, T., van Reenen, C. A., Endo, A., Sproer, C., Malan, A. P., and Dicks, L. M. T. (2013). Description of Xenorhabdus khoisanae sp. nov., the symbiont of the entomopathogenic nematode Steinernema khoisansae. Int. J. Syst. Evol. Microbiol. 63, 3220–3224. doi: 10.1099/ijsem.0.049049-0

Ferreira, T., van Reenen, C. A., Endo, A., Tailliez, P., Pagès, S., Sproer, C., et al. (2014). Photobacterium heterorhabditis sp. nov., a symbiont of the entomopathogenic nematode Heterorhabditis zealandica. Int. J. Syst. Evol. Microbiol. 64, 1540–1545. doi: 10.1099/ijsem.0.059840-0

French-Constant, R., and Waterfield, N. (2005). “An ABC guide to the bacterial toxic complex.” In Advances in applied microbiology, eds A. I. Laskin, J. W. Bennett, G. M. Gadd, and S. Sariaslani (San Diego, CA: Academic Press), 169–183. doi: 10.1016/S0065-2164(05)58005-5

Fischer-Le Saux, M., Mauleon, H., Constant, P., Brunel, B., and Boemare, N. (1998). PCR ribotyping of Xenorhabdus and Photorhabdus isolates from the Caribbean region in relation to the taxonomy and geographic distribution of their nematode hosts. Appl. Environ. Microbiol. 64, 4246–4254. doi: 10.1128/AEM.64.11.4246-4254.1998

Fischer-Le Saux, M., Viallard, V., Brunel, B., Normand, P., and Boemare, N. E. (1999). Polyphasic classification of the genus Photobacterium and proposal of new taxa: P. luminescens subsp. luminescens subsp. nov., P. luminescens subsp. akhurstii subsp. nov., P. luminescens subsp. laumondii subsp. nov., P. temperata subsp. nov., P. temperata subsp. temperata subsp. nov. and P. asymbiotica subsp. nov. Int. J. Syst. Bacteriol. 49, 1645–1656.

Ganguly, S., Kumar, S., and Rathour, K. S. (2010). Availability of biopesticidal nematodes to suit different agro-climatic region of India, for commercialisation. Indian J. Nematol. 40, 261–264.

Glaeser, S. P., Tobias, N. J., Thanwisai, A., Chantratita, N., Bode, H. B., and Kampfer, P. (2017). Photobacterium luminescens subsp. namnanoensis subsp. nov., isolated from Heterorhabditis basjardi nematodes. Int. J. Syst. Evol. Microbiol. 67, 1046–1051.

Grewal, S. S., Grewal, S. K., Malik, V. S., and Klein, M. G. (2002). Differences in susceptibility of introduced and native white grub species to entomopathogenic
isolated from E. (2005). Description of four novel species of Xenorhabdus innexi, Xenorhabdus budapestensis, Enterobacteriaceae: similarity for species demarcation of prokaryotes. Int. J. Syst. Evol. Microbiol. 55, 877ñ883. doi: 10.1099/ijsem.0.07057-0

Gulca, B., Hazir, S., and Yagi, H. K. (2012). Scavenger deterrent factor (SDF) from symbiotic bacteria of entomopathogenic nematodes. J. Nematol. 45(4), 459ñ464. doi: 10.1038/s41586-019-1791-1

Hajizadeh, S., Khan, S. S., and Emamverdi, A. (2015). Antiparasite chainones from entomopathogenic Xenorhabdus sp. PB61.4. J. Nat. Prod. 78, 777ñ783. doi: 10.1021/acs.jnatprod.5b00255

Güller, M., Goetz, G., and Thaler, J.-O. (2009). Identification of a new antimicrobial lysine-rich cyclolipopeptide family from Xenorhabdus nematophila. J. Antibiot. 62, 295ñ302. doi: 10.1038/ja.2009.31

Hu, K., Li, J., and Webster, J. M. (1997). Quantitative analysis of a bacteria-derived antibiotic in nematode-infected insects using HPLC-UV and TLC-UV methods. J. Chromatogr. B Biomed. Sci. Appl. 703, 177ñ183. doi: 10.1016/s0378-4347(97)00398-8

Hussein, M. A., and El-Sound, A. B. A. (2006). Isolation and characterization of two heterorhabditid and one steinernematid nematodes from Egypt. Int. J. Nematol. 16:7.

Imai, Y., Meyer, K. J., Iinishi, A., Fávrez-Godal, Q., Green, R., Manuese, S., et al. (2015). A new antibiotic selectively kills Gram-negative pathogens. Nature 526, 459-464. doi: 10.1038/nature15719-1791-1

Jank, T., Lang, A. E., and Aktories, K. (2016). Rho-modifying bacterial protein toxins from Xenorhabdus species. Toxicol. 116, 17-22. doi: 10.1016/j.toxicol.2015.05.017

Kämpfer, P., Tobias, N. J., Ke, L. P., Bode, H. B., and Glaser, S. P. (2017). Xenorhabdus thauguyense sp. nov. and Xenorhabdus copakensis sp. nov., isolated from Steinerema species Int. J. Syst. Evol. Microbiol. 67, 1107ñ1114. doi: 10.1099/ijsem.0.017700

Kegler, C., and Bode, H. B. (2020). Artificial splitting of a non-ribosomal peptide synthetase by inserting natural docking domains. Angew. Chem. Int. Ed. 59, 13463ñ13467. doi: 10.1002/anie.201915989

Khan, A., Brooks, W. M., and Hirschmann, H. (1976). Chromona heliocista n. gen., n. sp. (Steinernematidae, Nematoda), a parasite of Heliothis zea (Noctuidae, Lepidoptera), and other insects. J. Nematol. 8, 159ñ168.

Kim, M., Oh, H.-S., Park, S.-C., and Chun, J. (2014). Towards a taxonomic coherence between average nucleotide identity and 16S rRNA gene sequence similarity for species demarcation of prokaryotes. Int. J. Syst. Evol. Microbiol. 64, 346ñ351. doi: 10.1099/ijsem.0.059774-0

Kronenwerth, M., Bouchyuk, K. A. J., Kahnt, A. S., Steinhilber, D., Gaudriault, J.-C., Lang, A. E., and Aktories, K. (2016). Rho-modifying bacterial protein toxins from Xenorhabdus species. Toxicol. 116, 17-22. doi: 10.1016/j.toxicol.2015.05.017

Kuwata, R., Qin, L., Wang, W., Harada, Y., Yoshida, M., Kondo, E., et al. (2013). Xenorhabdus shibahai sp. nov., isolated from the entomopathogenic nematode Steinernema clarkei. J. Invertebr. Pathol. 113, 177ñ183. doi: 10.1016/j.jip.2011.07.006

Kwon, J., Ciezki, K., Van Der Hoeven, R., Singh, S., Reimer, D., Bode, H. B., et al. (2012a). Xenorhabdus phylogeny: Proposal for the elevation of most Photorhabdus subspecies to the species level and description of one novel species Photorhabdus bodieae sp. nov., and one novel subspecies Photorhabdus basalmi subs. clarkei subs. nov. Int. J. Syst. Evol. Microbiol. 68, 2664ñ2681. doi: 10.1099/ijsem.0.05075a006

Malan, A. P., Knoetze, R., and Moore, S. D. (2011). Isolation and identification of entomopathogenic nematodes from citrus orchards in South Africa and their biocontrol potential against false codling moth. J. Invertebr. Pathol. 108, 115ñ125. doi: 10.1016/j.jip.2011.07.006

Moldovan, M. A., and Gelfand, M. S. (2018). Pangenomic definition of prokaryotic species and the phylogenetic structure of Pseudomonas spp. Front. Microbiol. 9:428. doi: 10.3389/fmicb.2018.00428

Mothupi, B. (2016). Genomics of entomopathogenic bacterial endosymbiotic species associated with desiccation tolerant entomopathogenic nematode. Available online at: https://wirelesspace.wits.ac.za/xmlui/bitstream/handle/10539/21282/Boipelo%20Mothupi_MSc_FINAL.pdf?isAllowed=y&sequence=1 (accessed July 13, 2022).

Mothupi, B., Featherston, J., and Gray, V. (2015). Draft whole-genome sequence and annotation of Xenorhabdus griffini strain BMMCB associated with the South African entomopathogenic nematode Steinernema khanai Strain BMMCB. Genome Announc. 3, 703, 177ñ183. doi: 10.1128/genomeA.00785-15

Nägänder, P. X., Fibiger, J. K., Piessens, M., Aktories, K., and Schmidt, G. (2019). Engineering Photorhabdus luminescens toxins complex (PTC) into a recombinant injection nanomachine. Life Sci. Alliance e201900485. doi: 10.26508/lfa.201900485

Nuygen, K. B., and Smart, G. C. (1990). Steinernema scapterisci sp. n. (Rhabditida: Steinernematidae). J. Nematol. 22, 187ñ199.

Nisumira, Y., Hagiwara, A., Suzuki, T., and Yamanaka, S. (1994). Xenorhabdus japonicus sp. nov. associated with the nematode Steinernema khanai. World J. Microbiol. Biotechnol. 10, 207ñ210. doi: 10.1007/BF00360889

Ogier, J.-C., Pagès, S., Fraysenet, M., and Gaudriault, S. (2020). Entomopathogenic nematode-associated microbiota: From monospecific paradigm to pathobiome. Microbiota 8:25. doi: 10.1007/s41157-020-00880-5

Olenhofen, B., Simon, S., Wiese, I., and Imhof, J. F. (2011). Serratia marcescens sp. n. (Enterobacteriaceae). J. Nematol. 43, 226ñ232. doi: 10.2166/jn.2011.039

Park, D., Ciezki, K., Van Der Hoeven, R., Singh, S., Reimer, D., Bode, H. B., et al. (2009). Genetic analysis of Xenocarcinocin antibiotic production in the mutualistic bacterium Xenorhabdus nematophila. Mol. Microbiol. 73, 938ñ949. doi: 10.1111/j.1365-2958.2009.06817.x

Lephot Tiseto, E., Featherston, J., and Gray Vincent, M. (2015). Draft whole-genome sequence of Serratia sp. strain TEL, associated with Oseucho sp. TEL-2014 (Nematoda: Rhabditida) isolated from a Grassland in South Africa. Genome Announc. 3:00747-15. doi: 10.1128/genomeA.00747-15

Lewis, K. (2020). The science of antibiotic discovery. Cell 181, 29ñ45. doi: 10.1016/j.cell.2020.02.056
Xenorhabdus nematophilus: Structure and pore formation. J. Biol. Chem. 286, 22742–22749. doi: 10.1074/jbc.M604301200

Shi, Y.-M., Hirschmann, M., Shi, Y.-N., Ahmed, S., Abbeew, D., Tobias, N. J., et al. (2022). Global analysis of biosynthetic gene clusters reveals conserved and unique natural products in entomopathogenic nematode-symbiotic bacteria. Nat. Chem. 14, 701–712. doi: 10.1038/s41557-022-00923-2

Somvanshi, V. S., Lang, E., Ganguly, S., Swiderski, J., Saxena, A. K., and Stackebrandt, E. (2006). A novel species of Xenorhabdus, family Enterobacteriaceae: Xenorhabdus indica sp. nov., symbiotically associated with entomopathogenic nematode Steinernema thermophilum Ganguly and Singh, 2000. Syst. Appl. Microbiol. 29, 519–525. doi: 10.1016/j.syapm.2006.01.004

Song, C. J., Seo, S., Shrestha, S., and Kim, Y. (2011). Bacterial metabolites of an entomopathogenic bacterium, Xenorhabdus nematophila, inhibit a catalytic activity of phenoloxidase of the diamondback moth, Platulla xylostella. J. Microbiol. Biotechnol. 21, 317–322.

Stilwell, M. D., Cao, M., Goodrich-Blair, H., and Werbel, D. B. (2018). Studying the symbiotic bacterium Xenorhabdus nematophilus in individual, living Steinernema carpocapsae nematodes using microfluidic systems. mSphere 3,e00530-17. doi: 10.1128/mSphere.00530-17

Stock, S. P. (1998). Steinernema iasmakayi n. sp. (Rhabditida: Steinernematidae), an entomopathogenic nematode from Thailand. Syst. Parasitol. 41, 105–113. doi: 10.1007/BF006707195

Stock, S. P., and Koppenhöfer, A. (2013). Steinernema scarabaei n. sp. (Rhabditida: Steinernematidae), a natural pathogen of scarab beetle larvae (Coleoptera: Scarabaeidae) from New Jersey, USA. Nematology 5, 191–204. doi: 10.1007/s10008-011-0768-0

Stock, S. P., Griffin, C. T., and Chæran, R. (2004). Morphological and molecular characterisation of Steinernema hermaphroditum n. sp. (Nematoda: Steinernematidae), an entomopathogenic nematode from Indonesia, and its phylogenetic relationships with other members of the genus. Nematology 6, 401–412.

Sudershan, G., and Singh, L. K. (2000). Steinernema thermophilum sp. n. (Rhabditida: Steinernematidae) from India. Int. J. Nematol. 10, 183–191.

Tailliez, P., Larouci, G., Ginibre, N., Paule, A., Pagis, S., and Boemare, N. (2010). Phylogeny of Photorhabdus and Xenorhabdus based on universally conserved protein-coding sequences and implications for the taxonomy of these two genera. Proposal of new taxa: X. viennensis sp. nov., P. luminescens subsp. caribbeanensis subsp. nov., P. luminescens subsp. hainanensis subsp. nov., P. temperata subsp. khanii subsp. nov., P. temperata subsp. tsamianensis subsp. nov., and the reclassification of P. luminescens subsp. thracensis as P. temperata subsp. thracensis comb. nov. Int. J. Syst. Evol. Microbiol. 60, 1921–1937. doi: 10.1099/ijs.0.014308-0

Tailliez, P., Pagis, S., Edgington, S., Tymo, L. M., and Buddle, A. G. (2012). Description of Xenorhabdus mugilenensis sp. nov., the symbiotic bacterium associated with Steinernema australae. Int. J. Syst. Evol. Microbiol. 62, 1761–1765. doi: 10.1099/ijs.0.034322-0

Tailliez, P., Pagis, S., Ginibre, N., and Boemare, N. (2006). New insight into diversity in the genus Xenorhabdus, including the description of ten novel species. Int. J. Syst. Evol. Microbiol. 56, 2805–2818. doi: 10.1099/ijs.0.046287-0

Tallosi, B., Peters, A., and Ehlers, R.-U. (1995). Steinernema bicorpus sp. n. (Rhabditida: Steinernematidae) from Vojvodina, Yugoslavia. Russ. J. Nematol. 3, 71–80.

Thomas, G. M., and Poinar, G. O. (1979). Xenorhabdus gen. nov., a genus of entomopathogenic, nematobacterial bacteria of the family Enterobacteriaceae. Int. J. Syst. Evol. Microbiol. 29, 352–360.

Tobias, N. J., Wolff, H., Djahanschiri, B., Grundmann, F., Kronenwerth, M., Shi, Y.-M., et al. (2017). Natural product diversity associated with the nematode symbionts Photorhabdus and Xenorhabdus. Nat. Microbiol. 2, 1676–1685. doi: 10.1038/nm.41564-017-0039-9

Torres-Barragan, A., Suzao, A., Buhler, W. G., and Cardora, Y. J. (2011). Studies on the entomopathogenicity and bacterial associates of the nematode Ochusius carolinensis. Biol. Control 59, 123–129. doi: 10.1016/j.biocontrol.2011.05.020

Tóth, T., and Lakatos, T. (2008). Photorhabdus temperata subsp. cinerea subsp. nov., isolated from Heterorhabditis nematodes. Int. J. Syst. Evol. Microbiol. 58, 2579–2581. doi: 10.1099/ijs.0.00027-0

Ullah, I., Khan, A. L., Ali, L., Khan, A. R., Waqas, M., Lee, I.-J., et al. (2014). An insecticidal compound produced by an insect-pathogenic bacterium suppresses host defenses through phenoloxidase inhibition. Molecules 19, 20913–20928. doi: 10.3390/molecules191220913

Vigneux, F., Zumbrühl, R., Jabulin, G., Ribeiro, C., Poncet, J., Baghdiguian, S., et al. (2007). The xaxAB genes encoding a new apoptotic toxin from the insect pathogen Xenorhabdus nematophilus are present in plant and human pathogens. J. Biol. Chem. 282, 9731–9730. doi: 10.1074/jbc.M604301200
Waterfield, N. R., Ciche, T., and Clarke, D. (2009). *Photorhabdus* and a host of hosts. *Annu. Rev. Microbiol.* 63, 557–574. doi: 10.1146/annurev.micro.091208.073507

Waturu, C. N., Hunt, D. J., and Reid, A. P. (1997). *Steinernema karii* sp. n. (Nematoda: Steinernematidae), a new entomopathogenic nematode from Kenya. *Int. J. Nematol.* 7, 68–75.

Wenski, S. L., Cimen, H., Berghaus, N., Fuchs, S. W., Hazir, S., and Bode, H. B. (2020). Fabclavine diversity in *Xenorhabdus* bacteria. *Beilstein J. Org. Chem.* 16, 956–965. doi: 10.3762/bjoc.16.84

Wu, Q., Qin, Y., Liao, W., Zhang, M., Yang, Y., Zhang, P., et al. (2022). Cost-effectiveness of enfortumab vedotin in previously treated advanced urothelial carcinoma. *Ther. Adv. Med. Oncol.* 14:17588359211068732. doi: 10.1177/17588359211068733

Xiao, Y., Meng, F., Qiu, D., and Yang, X. (2012). Two novel antimicrobial peptides purified from the symbiotic bacteria *Xenorhabdus budapestensis* NMC-10. *Peptides* 35, 253–260. doi: 10.1016/j.peptides.2012.03.027

Yang, Q., Zhang, J., Li, T., Liu, S., Song, P., Nanong, Z., et al. (2017). PirAB protein from *Xenorhabdus nematophila* HB310 exhibits a binary toxin with insecticidal activity and cytotoxicity in *Galleria mellonella*. *J. Invertebr. Pathol.* 148, 43–50. doi: 10.1016/j.jip.2017.04.007

Yang, X., Qiu, D., Yang, H., Liu, Z., Zeng, H., and Yuan, J. (2011). Antifungal activity of xenocoumacin I from *Xenorhabdus nematophilus* var. pekingensis against *Phytophthora infestans*. *World J. Microbiol. Biotechnol.* 27, 523–528. doi: 10.1007/s11274-010-0485-5

Ye, W., Torres-Barragan, A., and Cardoza, Y. J. (2010). *Oscheius microvilli* n. sp. (Nematoda: Rhabditidae): A facultatively pathogenic nematode from vermicompost. *Nematology* 12, 121–135

Zhang, C.-X., Yang, S.-Y., Lu, X.-M., Sun, J., Liu, H., Liu, J.-R., et al. (2009). *Serratia nematodiphila* sp. nov., associated symbiotically with the entomopathogenic nematode *Heterorhabditoides chongmingensis* (Rhabditidae: Rhabditidae). *Int. J. Syst. Evol. Microbiol.* 59, 1603–1608. doi: 10.1099/ijs.0.65718-0

Zhang, J., Cai, L., and Zheng, M. (2022). A novel topical treatment for plaque psoriasis: Benvitimod/tapinarof. *J. Am. Acad. Dermatol.* 86, e137-e138. doi: 10.1016/j.jaad.2021.10.053

Zhao, L., Awori, R. M., Kaiser, M., Groiß, J., Opatz, T., and Bode, H. B. (2019). Structure, biosynthesis, and bioactivity of photoditritide from *Photorhabdus temperata* Meg1. *J. Nat. Prod.* 82, 3499–3503. doi: 10.1021/acs.jnatprod.9b00932

Zhao, L., Kaiser, M., and Bode, H. B. (2018). Rhabdopeptide/Xenortide-like peptides from *Xenorhabdus innesi* with terminal amines showing potent antiprotozoal activity. *Org. Lett.* 20, 5116–5120. doi: 10.1021/acs.lett.8b01975

Zhao, L., Ye, T. D., Kaiser, M., and Bode, H. B. (2020). Phototemtide A, a cyclic lipopeptide heterologously expressed from *Photorhabdus temperata* Meg1, shows selective antiprotozoal activity. *ChemBioChem* 21, 1288–1292. doi: 10.1002/cbic.201900665

Zhao, M., Lepak, A. J., Marchillo, K., VanHecker, J., and Andes, D. R. (2018). *In Vivo* pharmacodynamic characterization of a Novel Odilorhabdin Antibiotic, NOSO-502, against *Escherichia coli* and *Klebsiella pneumoniae* in a murine thigh infection model. *Antimicrob. Agents Chemother.* 62:e01067-18. doi: 10.1128/AAC.01067-18

Zhou, G., Yang, H., Wang, F., Bao, H., Wang, G., Hou, X., et al. (2017). *Oscheius microvilli* n. sp. (Nematoda: Rhabditidae): A facultatively pathogenic nematode from Chongming Island, China. *J. Nematol.* 49, 33–41. doi: 10.21307/jofnem-2017-044

Zhou, Q., Grundmann, F., Kaiser, M., Schill, M., Gaudriault, S., Batzer, A., et al. (2013). Structure and biosynthesis of xenocoumacins from entomopathogenic *Xenorhabdus*. *Chem. Eur. J.* 19, 16772–16779. doi: 10.1002/chem.201302481

Zhou, X., Kaya, H. K., Heungens, K., and Goodrich-Blair, H. (2002). Response of ants to a deterrent factor(s) produced by the symbiotic bacteria of entomopathogenic nematodes. *Appl. Environ. Microbiol.* 68, 6202–6209. doi: 10.1128/AEM.68.12.6202-6209.2002