Review of the African distribution of the brine shrimp genus *Artemia*

H Kaiser1*, AK Gordon2 and TG Paulet1

1 Department of Ichthyology and Fisheries Science, Rhodes University, PO Box 94, Grahamstown 6140, South Africa
2 Unilever Centre for Environmental Water Quality, Institute for Water Research, Rhodes University, PO Box 94, Grahamstown 6140, South Africa

Abstract

Brine shrimp (genus *Artemia*) are small (8 to 12 mm long) cosmopolitan crustaceans (Anostraca) found predominately in hypersaline water bodies such as inland salt lakes and pans, coastal lagoons, and salt works at salinity levels above 40 g·ℓ⁻¹. They have been extensively studied due to their high monetary value as food for larval fish in aquaculture and their unique reproductive strategies. Brine shrimp occur as either bisexual species or as parthenogenetic populations. Despite published reviews of their world-wide distribution little is known about their occurrence in Africa. This review adds new information about 70 African *Artemia* sites and lists 26 potential sites and their coordinates. Sixteen sites in Southern Africa and Namibia were visited during a collecting trip, and new information on the reproductive mode of nine of these sites is given. Several South African populations exhibit bisexual reproduction. In Namibia there are two parthenogenetic populations (Walvis Bay and Swartkops) and an additional bisexual population (Hentie’s Bay). A mixed population (bisexual and parthenogenetic reproduction at the same site) was found at Coega, South Africa.

Keywords: Biogeography, brine shrimp, site description, hypersaline water bodies

Introduction

Brine shrimp of the genus *Artemia* (Crustacea, Anostraca) are of interest to both biologists studying their evolution and developmental biology (Abatzopoulos et al., 2002) and aquaculturists using them as live food in fish and shrimp larviculture (Dhont and Sorgeloos, 2002). The life cycle of *Artemia* can begin as an embryo within a dormant cyst. Depending on environmental conditions, embryos can enter into diapause and arrested development for many years and are capable of surviving a very wide range of environmental conditions (Clegg and Trotman, 2002). *Artemia* nauplii can be easily hatched from cysts and have various applications in aquaculture, for example: they can be enriched with nutrients, i.e., essential fatty acids and vitamins to improve their nutritional value to cultured fish larvae or juveniles (Dhont and Sorgeloos, 2002); they have been used as carriers of spawning hormones to treat fish diseases or induce spawning in adult fish (Burton et al., 1998); and they have been tested as a promising vehicle for probiotics in marine fish larviculture (King, 2002).

The genus is cosmopolitan and comprises both sexually reproducing species and parthenogenetic populations. Salinity is the most important environmental factor governing *Artemia* distribution with populations being found in salt lakes and pans at salinity levels above approximately 40 g·ℓ⁻¹ (Vanhaecke et al., 1987) where fish and many predatory invertebrates are absent (Browne and MacDonald, 1982). Information from reviews (Persoone and Sorgeloos, 1980; Browne and MacDonald, 1982; Vanhaecke et al., 1987 and Trianta-
Methods

The sampling trip through parts of South Africa and Namibia was conducted in July/August 2003. Salt pans were visited and GIS coordinates were recorded. Either live *Artemia* or *Artemia* cysts were collected. Adult *Artemia* were preserved in alcohol (>95% ethanol) and kept frozen at -20°C. Cysts were cleaned and dried and kept at -20°C and used for genetic analyses. The approximate size of the pans and the water depth (m) at the time of sampling were estimated, and the salinity (g·ℓ⁻¹) was recorded using an Atago Hand Refractometer (Model S-10E). Annual average temperature records were taken from information available in GIS databases pertaining to the respective coordinates. Adult *Artemia* were sexed by using a dissection microscope to discern the egg sacs of females or the claspers of males.

Results and discussion

Artemia populations in Africa

Most African *Artemia* populations have been recorded from countries bordering the Mediterranean (Table 1). Although the

Country	Locality	Geographical coordinates	Reproductive mode/species	Artemia research centre number	Reference number
Algeria	# ?			1285*, 1182*, 1127*, 1098*, 1066*, 1065*	2
	Chegga Oase	34°29'N-05°53'E			1
	Chott Meden	34°01'N-06°20'E			1
	Chott Ouargla	31°57'N-05°20'E			3
	Dayet Morselli	35°30'N-00°46'E			14, 15
	# El-Menaceria				15
	Gharabas Lake	35°35'N-00°25'W			2
	# Mellaha Guergour El-Amri	35°50'N-05°15'E			1
	Salin de Bethiona				1129*
	Sebkat Idemdi	35°43'N-06°32'E			3
	Sebket Ez Zemouk	35°53'N-06°33'E			1
	Sebket Oran	35°32'N-00°48'W			1
	# Sekha Azrew	35°43'N-00°08'E			3
	# Sekba d’Arzeut				1119
	# Sekba N’zourit	35°50'N-06°35'E			3
	# Sekba Sidi Bouzian	35°52'N-00°35'E			3
	Tougoud				15
	# Santa Maria				30
Egypt	# Bourg El-Arab	P	1497*, 1146*, 1136*, 1131*, 1063	4, 15, 17, 18, 31	
	El Max Saline (Alexandria)	P	1142*, 1132*, 1155*, 1064*	4, 15, 17, 18, 31	
	Ismailia	30°36'N-23°15'E			1
	Port Fouad	P	4		2
	Port Said	P	1152, 1144*, 1140*, 1134*, 1135*, 1114	4, 15, 17, 18, 31	
	Qarun Lake	P	1139*, 1135*, 1118*		2
	# Rassoua	1145*, 1143*, 1141*, 1138			2
	Solar Lake (Sina)	29°10'N-34°50'E			4, 15, 17, 18, 31
	Wadi Natron	30°10'N-30°27'E	A. salina		6
	# Wadi el Natrun	A. salina (B *)	1290*, 1147, 1117, 1026*, 5, 56, 358	2, 4, 6, 31	
Kenya	Elmenteita	00°27'S-36°15'E			1
	# Fundisha	1035*			2
	# Fundisha	A. salina			5
	# Kensait Saltworks	1036*			2
	# Kensait Saltworks	A. franciscana			2
	# Kurawa Saltworks	1441*			2
	# Kurawa Saltworks	A. salina			5
	# Malindi Saltworks	1440*			2
	# ?	339, 1437*			2
	# Abu-Khammash	A. salina			2
	Gabr Acun (Fezzan)	25°22'N-13°E			6
	Mandara	26°40'N-13°20'E			16, 19, 21
	Mandara	B	341, 1459		16, 19
	Quem el Ma	26°41'N-13°22'E			16, 19
	Kamba-Az-Zallaf (Fezzan)	27°26'N-13°E			20
	Trouna	26°50'N-13°30'E			19
	# Trouna	340			2
	# Ankembe Saltworks	P	1314*		2, 4, 7
	# Hany Saltworks	A. franciscana			4
	Salins de Diego Suarez	12°19'S-49°17'E			1
Morrocco	# Chemmnaa	A. salina			6
	Larache	35°12'N-02°20'W			8, 22
	Moulaya Estuary	35°07'N-02°20'W			1
	Qued Ammatafma	28°18'N-12°00'W			16
	Qued Chbheica	28°25'N-11°50'W			16
	Sebkett Bon Areg	35°10'N-02°50'W			1
	Sebkett Zima	35°05'N-08°40'W			1
	# Souzamma	1427*			2
Country	Area	Coordinates	Artemia Population		
------------------	--------------------------	--------------------------------	--------------------		
Namibia	Henties Bay Salt Refineries	22°00'S-00°14'E	*1418*		
	Swakopmund Saltworks	22°40'S-14°34'E			
	Vineta Swakopmund	22°40'S-14°34'E	P, *1186*, 480*,		
	Walvis Bay	22°56'S-14°30'E			
Niger	Teguidda In Tassoun	17°26'N-06°39'E			
Senegal	Dakar	14°34'N-17°29'W			
	Lake Kayar	15°55'N-17°11'W			
	Lake Relba	14°50'N-17°20'W			
South Africa	Bloemfontein Saltworks	P			
	Brandvlei Saltworks	30°22°S-20°13'E			
	Coega Salt Flats	33°46'S-25°40'E			
	Driehoekspan	29°43°S-23°14'E			
	Haagegestad Pan				
	Hayfield Saltpan	29°15°S-24°13'E			
	Holpan Saltworks	30°22°S-20°30'E			
	Hoop Saltworks	30°12°S-20°40'E			
	Jonkerwater Saltworks	30°05°S-22°36'E			
	Kaalpan Saltworks	30°00°S-20°03'E			
	Klein Soupan	30°21°S-22°24'E			
	Klipfontein Saltworks	33°55°S-18°13'E			
	Kliphoek Salina				
	Missionvale Salina	33°52°S-25°32'E			
	Patenoster Salt Pan	33°47°S-17°55'E			
	Playas	1169			
	Rietfontein se Pan	30°16°S-20°07'E			
	Reynekespan Saltworks	33°44°S-25°47'E			
	Keynekespan Salt (populations)	29°43°S-12°15'E			
	Saldanha Steel	33°00°S-18°02'E			
	Salt Lake	29°17°S-24°00'E			
	Hopetown Salt Pan	29°16°S-24°10'E			
	Kliquefominita Salina	33°51°S-25°34'E			
	Swartkops	33°52°S-25°36'E			
	Swartkops Marina				
	Swartkops Cerebosa	33°47°S-25°32'E			
	Soutpan	29°36°S-24°26'E			
	Velddrif	29°38°S-25°32'E			
	Velddrif Saltworks	33°43°S-18°12'E			
	Velddrif Saltworks	32°47°S-18°10'E			
	Vermeulepsan	29°30°S-24°20'E			
	Wintersdam Farm	25°45°S-26°08'E			
	Witkraal Saltpan	28°58°S-25°31'E			
	Wilpan Saltworks	29°53°S-24°03'E			
	Yezerfontein Saltworks	33°19°S-18°10'E			
	Zoutaar Saltworks	30°19°S-23°05'E			
Tunisia	Bekalta	36°48°N-10°20'E	*1289*		
	A. salina				
	Chott Ariana	36°54°N-10°18'E	*A. salina*, 636*		
	Chott Ariana	36°54°N-10°18'E	A. salina*		
	Chott El Djeral	33°42°N-08°25'E	A. salina*		
	A. salina				
	Ebege	36°47°N-10°14'E	*A. salina*		
	Megeine				
	Sebeket Koweza	36°26°N-09°46'E	*A. salina*		
	Sebeket Mafa Moknine	35°39°N-10°53'E	*A. salina*		
	Sebeket Sidi El Hani	35°31°N-10°27'E	*A. salina*		
	Slax	35°43°N-10°43'E	*A. salina*		
	Slax	35°43°N-10°43'E	A. salina*		

Legend: (B) = bisexual but species not known; (P) = parthenogenetically reproducing population; *= cysts are available at the Artemia Reference Center (ARC), Ghent, Belgium; # = a new Artemia population added to the list since the last general review by Triantaphyllidis et al. (1998). The number in the last column indicates the reference in which the Artemia population was first reported; ? = Site name not known or not given.

References for Table 1

1. Vanhaecke et al. (1987); 2. ARC table; 3. Zemmouri (1991); 4. Triantaphyllidis et al. (1998); 5. Rasowo and Radull (1986); 6. Triantaphyllidis et al. (1997a); 7. Triantaphyllidis et al. (1996); 8. Hontoria and Amat (1992); 9. Triantaphyllidis et al. (1997b); 10. Williams and Mitchell (1992); 11. Seaman et al. (1991); 12. Mitchell and Seaman (1988); 13. Amat et al. (1995); 14. Cole and Brown (1967) cited in Vanhaecke et al. (1987); 15. McCarragher (1972) cited in Vanhaecke et al. (1987); 16. Dumont (1979) cited in Vanhaecke et al. (1987); 17. Por (1968) cited in Vanhaecke et al. (1987); 18. Por (1969) cited in Vanhaecke et al. (1987); 19. Monod (1969) cited in Vanhaecke et al. (1987); 20. Ghannudi and Tufail (1978) cited in Vanhaecke et al. (1987); 21. George and Bobrie (1985) cited in Vanhaecke et al. (1987); 22. De Pinto Canelas (1971) cited in Vanhaecke et al. (1987); 23. De Pinto Canelas (1971) cited in Vanhaecke et al. (1987); 24. Van Baarlen et al. (1987) cited in Vanhaecke et al. (1987); 25. Clark and Bowen (1976) cited in Vanhaecke et al. (1987); 26. Sousa (1994) cited in Triantaphyllidis et al. (1998); 27. Du Toit (2001), 28. Present study – cyst/nauplii samples collected.; 29. Present study – personal communication; 30. Van Stappen (2002); 31. Baxevanis et al. 2004. 32. Toumi et al. (2005).
The reproductive mode for most *Artemia* populations in Algeria has not been established. Populations with a confirmed reproductive mode are bisexual, but their species status is either not known or has not been published. One bisexual population was recorded at a salt works and others were found in natural salt lakes (Zemmouri, 1991). In Libya one population was confirmed as bisexual (Triantaphyllidis et al., 1997b), but the reproductive mode of the other populations was not given. Records from Morocco show one population of *A. salina* (Triantaphyllidis et al., 1997b), one occurrence of a parthenogenetic population, and populations of unknown reproductive mode. Most Egyptian *Artemia* populations are parthenogenetic. *A. salina* was found at the Wadi Natron site in northern Egypt, and a permanent population of *A. franciscana* was discovered at a salt works (Triantaphyllidis et al., 1998). All Tunisian populations have been reported as *A. salina*. Dumont (1979) reported an *Artemia* population from Lake Retba, Senegal. Only personal communications account for the records of all other *Artemia* populations in Niger and Senegal (Table 1), and their reproductive mode is not known.

Records available prior to our sampling trip show the existence of both bisexual species and parthenogenetic populations in sub-Saharan Africa (Table 1). These populations were located at salt works, some of which were operating at the time of sampling, others had been abandoned. In addition, a number of personal communications report the existence of *Artemia* populations which required further investigation. For example, for three of six South African populations listed by Van Stappen (2002) the information is based on personal communications, and their species status is undetermined. *Artemia salina* is reported to have been inoculated into Kenyan salt works (Rasowo and Radull, 1986; see Table 1), but the *Artemia* Reference Centre in Ghent, Belgium, identified *Artemia* from those salt works as *A. franciscana*. Both Mozambique and Namibia have parthenogenetic *Artemia* populations occurring at salt works. A parthenogenetic population as well as *A. franciscana* have been found in Madagascar, with an unidentified population occurring in the northern part of the island. The *A. franciscana* population was not permanent, and had to be inoculated annually (Triantaphyllidis et al., 1998).

The low number of recorded *Artemia* populations in Africa does not reflect *Artemia* distribution on the continent. Large areas of Africa, (i.e., Mauritania, Somalia, Ethiopia, Sudan, and southern Africa) are considered potential *Artemia* habitat (Vanhaecke et al., 1987). However, very few collections have been reported for these areas. Vanhaecke et al. (1987) suggested that 97% of the known *Artemia* populations in Africa are in areas where yearly evaporation exceeds yearly precipitation. Williams (1996) estimated that 37% (11.3 x10³ km⁻²) of the African continent can be categorised as arid and semi-arid where salt lakes are likely to occur.

Salt lakes of northern Africa were among the first on the continent to be investigated, followed by locations in East Africa (Hammer, 1986; Seaman et al., 1991). More recently, the salt pans of Southern Africa have come under investigation (Seaman et al., 1991). Studies of these saltwater bodies have mainly focused on geological and chemical characteristics, with few biological surveys. Thus, the presence or absence of *Artemia* in most of these water bodies remains unclear. Saline water bodies in East and Southern Africa with salinities greater than 40 g·ℓ⁻¹ (Table 3) may contain populations of *Artemia* and should be the focus of further investigations. Lists of salt pans or lakes with salinities below 40 g·ℓ⁻¹ can be found in Seaman et al. (1991), Hammer (1986), Shumway (1999) and Williams (1996).

Addition of new *Artemia* sites in sub-Saharan Africa

During July and August 2003, adult *Artemia* and cysts were collected from nine and five sites, respectively. For most adult specimens gender could be determined, but as the sample sizes

Table 1

Site name	Type	Elevation (m)	Approximate size (km²)	Temperature in °C (average; min/max)
Brandtvlei	I	940	4	20.2; -8 / +42
Coega Cerebos	C	1	10	19.1; 0 / +32
Henties Bay	C	0	5	20; 0 / +34
Kleinzee Yacht Club	N	0	3	7; 0 / +40
Klipfontein Salt	C	15	5	23.6; 0 / +40
Missionvale Salt	C	4	5	18.3; 0 / +35
Reynekepan	I	1149	0.5	22.2; -6 / +40
Saldanha Steel	S	40	0.5	23.6; 0 / +40
Sundays River	I	30	5	20.2; -1 / +36
Swakopmund	C	0	4	20; 0 / +34
Swartkops Cerebos	I	10	4	18.8; 0 / +35
Swartkops Salt	I	3	4	18.2; 0 / +35
Velddrif Cerebos	C	12	5	24.6; 0 / +40
Velddrif Salt	C	12	5	24.6; 0 / +40
Walvis Bay	C	0	10	20; 0 / +34
Yzerfontein	S	80	0.5	20; -2 / +38

Legend:

I = Inland salt works; C = Coastal salt works; N = Natural coastal lagoon; S = Salt pan.
TABLE 3
Salt pans, salt works and lakes in East and Southern Africa with salinity values known to be greater than 40 g l⁻¹ (some sites have water only seasonally)

Name	Position	Country	Salinity	Reference
Annaspan	28°31'S - 25°48'E	South Africa		Present study
Banksdrifpan	28°56'S - 25°14'E	South Africa		Present study
Bogoria	-	Kenya	50	Williams (1996)
Britten Pan	27°45'S - 25°21'E	South Africa	181.6	Seaman et al. (1991)
Dealsville	28°40'S - 25°41'E	South Africa		Present study
Delareyville area	26°41'S - 25°27'E	South Africa		Present study
Etosha Pan	18°40'S - 16°40'E	Namibia	62.0	Seaman et al. (1991)
Florisdab Pan	28°45'S - 26°05'E	South Africa	197.3	Seaman et al. (1991); Present study
Gannaleegte (3 sites)	28°42'S - 25°52'E	South Africa		Present study
Hoffontein	28°42'S - 25°52'E	South Africa		Present study
Hosabes Pool	23°30'S - 15°05'E	Namibia	115.9 - 161.7	Seaman et al. (1991)
Karee Pan	27°30'S - 25°35'E	South Africa	41.8	Seaman et al. (1991); Present study
Kimberley area	28°53'S - 24°15'E	South Africa		Present study
Koppieskraal Pan	26°55'S - 20°18'E	South Africa	48.6	Seaman et al. (1991)
Magadi	-	Kenya	114	Williams (1996)
Mollerspan	28°53'S - 24°14'E	South Africa		Present study
Natron	-	Tanzania	340	Williams (1996)
Oranjemund Pan	28°35'S - 16°35'E	Namibia	302.4	Seaman et al. (1991)
Rensburg Salt Pan	28°55'S - 26°05'E	South Africa	102.4	Seaman et al. (1991)
Skietbaana	26°43'S - 25°28'E	South Africa		Present study
Skoppa	28°40'S - 26°05'E	South Africa	160.1	Seaman et al. (1991); Present study
Soutbron	28°41'S - 25°50'E	South Africa		Present study
Soutpan area (15 sites)	28°42'S - 26°03'E	South Africa		Present study
Stink Pan	27°46'S - 26°40'E	South Africa	51.1	Seaman et al. (1991)
Tara	28°42'S - 25°49'E	South Africa		Present study
Wadrif Soutpan	32°12'S - 18°21'E	South Africa		Present study

Legend:
a = indicates sites visited where no Artemia were found
b = indicates sites which were dry at the time of the visit during the present study

were low, only numbers of males and females in parentheses, rather than percentage values, will be reported. These results can be used as an indication of the most likely reproductive status of the population since parthenogenetic populations do not have males, except for the rare occurrence of non-functional males (MacDonald and Brown, 1990). Therefore, these figures do not allow an estimation of the gender ratio in the population as this would require a larger sample size and repeated sampling at different times. They provide, however, a basis for hypotheses regarding a population’s reproductive mode.

In South Africa the sites Brandtvlei (10:47), Yzerfontein (13:33), Reynekespaaan (30:17), Swartkops Marina Salt (9:5), Swartkops Cerebos (7:7) and Missionvale (3:10) were inhabited either by sexually reproducing Artemia only, or they had at least one bisexual species. The presence of males in a population suggests the existence of a bisexual species, but the same site may also contain a parthenogenetic population. For example, Van Stappen (2002) listed the population from Swakopmund suggested the existence of a parthenogenetic population. At two sites in Namibia no males were recorded. These sites were Swakopmund (0:30) and Walvis Bay Salt Pan (0:42). Previously recorded Namibian populations (see Table 1) were parthenogenetic, and our recent records from the population at Swakopmund suggested the existence of a parthenogenetic population, thus confirming this reproductive mode for both sites using samples taken in 2003. Results from collections at Henties Bay (14:5) provide the first record of bisexual reproduction for Namibian Artemia although the species status of this population has not yet been determined.

Additional information (Table 2) was collected for some new southern African Artemia sites investigated as part of this study. This information included site management, GIS data relating average temperatures and their ranges, as well as elevation and the approximate area of the sites at the time of sampling. The latter value fluctuates strongly depending on season and rainfall and records should be taken repeatedly during the year.

Several other sites were visited but no Artemia or cysts were found (see Table 3). Of the 47 sites in South Africa and Namibia, 24 were at an elevation of above 1 000 m, with the highest elevation being 1 556 m a.m.s.l. Four sites were at sea level. The average elevation of the other sites was 793 m a.m.s.l. The average annual ambient temperature was 18.2°C (-8 to +42°C). The average minimum and maximum ambient temperatures of these 47 Southern African sites were -0.4°C and 36°C, respectively.
Site names

There are two South African populations at Swartkops; these are at Swartkops Marina and Swartkops Cerebos. These sites belong to different salt production companies and, although geographically close to each other, were not listed as being the same due to different management. Similarly, sites listed under the name Veldrif do not all belong to the same salt company. In addition, very similar names have been given to different sites; for example, the name Soutpan (Afrikaans for salt pan) appears as part of several composite names. Spelling may differ between Afrikaans and English (i.e., Coega or Koega).

Conclusion

There are 127 records of either sexually reproducing or parthenogenetic populations of *Artemia* on the continent, but reproductive mode has only been given for 41 populations. An estimated 32% of the populations appear to be parthenogenetic and 68% are bi-sexual species. However, only a tentative species list can be presented due to the uncertainty and paucity of published and anecdotal information. Most work on African *Artemia* populations needs verification using molecular techniques. Thus, applying caution with regard to the precision of the data, and considering that relatively few records are available, it is estimated that about 50% of the identified populations are *A. salina*, 12% can be hypothetically assigned to *A. franciscana*, and 38% of the populations so far described appear to be parthenogenetically reproducing *Artemia*.

By combining the information obtained during the sampling trips and climatic and GIS data available for South Africa with information provided in the literature the number of potentially available *Artemia* biotopes was updated (Table 3). These sites deserve further investigation. In order to obtain a representative picture of South African populations, sampling should be done repeatedly over several years and throughout the year since distinct dry seasons occur.

Acknowledgements

This study was supported by the INCO project on Artemia Biodiversity (Project Number ICA4-CT-2001-10020), an International Scientific Cooperation Programme with Developing Countries of the European Commission. We also acknowledge funding from the Rhodes University Joint Research Council Fund.

References

ABATZOPoulos ThJ, BEARMORE JA, CLEGG JS and SORGELOOS P (2002) Artemia Basic and Applied Biology. Kluwer Academic Publishers, Dordrecht / London / Boston. 286 pp.

AMAT DOMENECH F (1980) Differentiation in *Artemia* strains from Spain. In: Sorgeloos P, Roels O and Jaspers E (eds.) The Brine Shrimp *Artemia*. Vol. I. Morphology, Genetics, Radiobiology, Toxicology. Universal Press, Wetteren Belgium. 19-41.

AMAT F, BARATA C and HONTORIA F (1995) A Mediterranean origin for the Veldrift (South Africa) *Artemia salina* population. *J. Biogeogr.* 22 49-59.

BAXEVANIS AD, EL-BERMawi N and ABATZOPoulos, ThJ (2004) Salinity effects on maturation, reproductive and life span characteristics of four Egyptian *Artemia* populations (International Study on *Artemia. LXVIII*). *Hydriold.* 513 87-100.

BEADLE LC (1974) Temporary saline and thermal waters: Lake Chilwa. In: Urban EK, Fry CH and Keith S (eds.) *The Inland Waters of Tropical Africa: An Introduction to Tropical Limnology.* Longman, London and New York. 259-282.

BROWNE RA and MACDONALD GH (1982) Biogeography of the brine shrimp *Artemia*: Distribution of parthenogenetic and sexual populations. *J. Biogeogr.* 9 331-338.

BURTON S, KAISER H and HECHT T (1998) The potential of *Artemia*-mediated delivery of a gonadotropin hormone analogue to induce ovulation in the cardinal tetra (*Paracheirodon axelrodi*). *Aquarium Sci. Cons.* 2 89-92.

CLARK LS and BOWEN ST (1976) The genetics of *Artemia salina*. VII. Reproductive isolation. *J. Hered.* 67 385-388.

CLEGG JS and TROTMAN CNA (2002) Physiological and biochemical aspects of *Artemia* ecology. In: ABATZOPoulos ThJ, Bearmore JA, Clegg JS and Sorgeloos (eds.) *Artemia Basic and Applied Biology.* Kluwer Academic Publishers, Dordrecht / London / Boston. 129-170.

COLE GA and BROWN RJ (1967) The chemistry of *Artemia* habitats. *Ecol.* 48 858-861.

DE PINHO CANELHAS MH (1971) Breve noticia sobre a *Artemia* na lagoa Nhamaiano IX Jornadas Silvo Agronomicas Sept 27-Oct 2. Laurneo Marques 26 7.

DHONT J and SORGELOOS P (2002) Applications of *Artemia*. In: ABATZOPoulos ThJ, Bearmore JA, Clegg JS and Sorgeloos (eds.) *Artemia Basic and Applied Biology.* Kluwer Academic Publishers, Dordrecht / London / Boston. 251-257.

DU TOIT SR (2001) Biological Management of South African Solar Saltworks. PhD. Thesis University of Port Elizabeth, South Africa.

DUMONT HJ (1979) Limnologie van Sahara en Sahel: Naar een Beter Begrip van be Klimaatveranderingen van het laat Pleistoceen en Holocene. Thesis, State University, Gent, Belgium.

GHANNUDI SA and TUFAIL M (1978) A report on a two-day visit to eight salt-water lakes of Ramla Azzalaf Fezzan Libyan Arab Jamihiya. *Libyan J. Sci.* 8 69-74.

GREEN AJ, SANCHEZ MI, AMAT F, FIGUEROLA J, HONTARIA F, RUIZ O and HORTAS F (2005) Dispersal of invasive and native brine shrimps *Artemia* (Anostraca) via waterbirds. *Limnol. Ocean.* 50 (2) 737-742.

HAMMER UT (1986) Saline Lake Ecosystems of the World. Dr W Junk Publishers Dordrecht, Netherlands. 616 pp.

HONTORIA F and AMAT F (1992) Morphological characterization of adult *Artemia* (Crustacea Branchiopoda) from different geographical origin Mediterranean populations. *J. Plankton Res.* 14 949-959.

KING K (2002) On the Use of *Artemia* as a Vector for Probiotics. Honours Thesis, Rhodes University, Grahamstown, South Africa.

MACDONALD G and BROWN RA (1990) Population dynamics of an asexual brine shrimp *Artemia* population. *J. Exp. Mar. Biol. Ecol.* 133 (3) 169-188.

MCCARRAHER DB (1972) A preliminary bibliography and lake index of the inland mineral waters of the world. *FAO Fish. Circular 146* 33.

MITCHELL SA and SEAMAN MT (1988) Observations on the co-existence of fresh and saltwater invertebrates in an inland saltworks. *J. Limnol. Soc. S. Afr.* 12 121-123.

MONOD T (1969) A propos du Lac des Vers ou Bahr ed-Dud. Inst. Fondam. *Afr. Noire.* 31 25-41.

PERSONO G and SORGELOOS P (1980) General aspects of the ecology and biogeography of *Artemia*. In: Perseno G, Sorgeloos P, Roels O and Jaspers E (eds.) *The Brine Shrimp *Artemia* Vol 3. Ecology Culturing Use in Aquaculture.* University Press, Weteren Belgium. 3-24.

POR FD (1968) Solar Lake on the shores of the Red Sea. *Nature* 218 860-861.

POR FD (1969) Limnology of the heliothermal Solar Lake on the coast of Sinai (Gulf of Elat). *Verhandlungen für Internationale Theoretische und Angewandte Limnologie 17* 1031-1034.

RASOWO J and RADULL J (1986) Inoculation of the brine shrimp *Artemia salina* in Kenya: expected impact on aquaculture development. In: Huisman EA (ed.) *Aquaculture Research in the Africa Region. Proc. Afr. Seminar on Aquaculture.* International Foundation for Science (IFS) Stockholm Sweden. Kisumu Kenya 7-11 October 1985. Pudoc Wageningen Netherlands. 54-59.

SEAMAN MT, ASHTON PJ and WILLIAMS WD (1991) Inland saltworks of Tropical Africa: An Introduction to Tropical Limnology. Longman, London and New York. 259-282.
SHUMWAY CA (1999) Forgotten Waters: Freshwater and Marine Ecosystems in Africa: Strategies for Biodiversity Conservation and Sustainable Development. Biodiversity Support Program 1999. Boston USA.

SOUSA MI (1994) Artemia in Mozambique. Larviculture and Artemia Newsletter 33:27.

TOUMI N, AYADI H, ABID O, CARRIAS J-F, SIME-NGANDO T, BOUKHRIS M, BOUAIN A (2005) Zooplankton distribution in four ponds of different salinity: A seasonal study in the solar systems of Sfax (Tunisia). Hydrobiol. 534:1-9.

TRIANTAPHYLIDIS GV, ABATZOPoulos ThJ, MIASA E and SORGELOOS P (1996) International study on Artemia. LVI. Characterization of two Artemia populations from Namibia and Madagascar: cytogenetics, biometry, hatching characteristics and fatty acid profiles. Hydrobiologia 335:97-106.

TRIANTAPHYLIDIS GV, CRIEL GRJ, ABATZOPoulos ThJ and SORGELOOS P (1997a) International study on Artemia. LIV. Morphological study of Artemia with emphasis on Old World strains. II. Parthenogenetic populations. Hydrobiol. 357:155-163.

TRIANTAPHYLIDIS GV, CRIEL GRJ, ABATZOPoulos ThJ, THOMAS KM, ELEMAN J, BEARDMORE J and SORGELOOS P (1997b) International study of Artemia. LVII. Morphological and molecular characters suggest con-specificity of all bisexual European and North African Artemia populations. Mar. Biol. 129:477-487.

TRIANTAPHYLIDIS GV, ABATZOPoulos ThJ and SORGELOOS P (1998) Review of the biogeography of the genus Artemia (Crustacea Anostraca). J. Biogeogr. 25:213-226.

VAN BALLAER ED, VERSICHELE P, LEGER PH, BEN ABDELKADER N, TURKI S and SORGELOOS P (1987) Characterisation of Artemia from different localities in Tunisia with regard to their use in local aquaculture. In: Sorgeloos P, Bengston DA, Decleir W and Jaspers E (eds.) Artemia Research and its Applications. Vol. I. Universal Press, Wetteren Belgium.

VANHAECKE P, TACKAERT W and SORGELOOS P (1987) The biogeography of Artemia: an updated review. In: Sorgeloos P, Bengston DA, Decleir W and Jaspers E (eds.) Artemia Research and its Applications. Vol. I. Morphology, Genetics, Strain Characterization, Toxicology. Universal Press, Wetteren Belgium. 129-155.

VAN STAPPEN G (2002) Zoogeography. In: Abatzopolous ThJ, Beardmore JA, Clegg JS and Sorgeloos P (eds.) Artemia: Basic and Applied Biology. Kluwer Academic Publishers, Dordrecht/London/Boston. 171-215.

VU DO QUYNH and NGUYEN NGOC LAM (1987) Inoculation of Artemia in experimental ponds in central Vietnam: an ecological approach. In: Sorgeloos P, Bengston DA, Decleir W and Jaspers E (eds.) Artemia Research and its Applications. Morphology, Genetics, Strain Characterization, Toxicology. Universal Press, Wetteren Belgium. 253-269.

WILLIAMS BF and MITCHELL SA (1992) The effect of salinity on the reproductive characteristics of parthenogenetic Artemia from South Africa. Water SA 18:181-184.

WILLIAMS WD (1996) The largest, highest and lowest lakes of the world: Saline lakes. Verhandlungen der Internationalen Vereinigung für Limnologie 26:61-79.

ZEMMOURI A (1991) A note on the genus Artemia in Algeria. Hydrobiol. 212:231-233.