REVIEW

Bioactive natural compounds against human coronaviruses: a review and perspective

Yanfang Xiana,b,1, Juan Zhanga,1, Zhaoxiang Bianc, Hua Zhoud, Zhenbiao Zhanga, Zhixiu Lina,b,c,*, Hongxi Xud,f,*

aSchool of Chinese Medicine, Faculty of Medicine, the Chinese University of Hong Kong, Hong Kong SAR, China
bBrain Research Centre, School of Chinese Medicine, Faculty of Medicine, the Chinese University of Hong Kong, Hong Kong SAR, China
cCentre for Cancer and Inflammation Research, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
dShuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
eHong Kong Institute of Integrative Medicine, the Chinese University of Hong Kong, Hong Kong SAR, China
fSchool of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China

Received 8 April 2020; received in revised form 19 May 2020; accepted 25 May 2020

DEFINITIONS

Abbreviations: ACE2, angiotensin-converting enzyme 2; BALF, bronchoalveolar lavage fluid; CoVs, coronaviruses; COVID-19, coronavirus disease 2019; DAT, desaminotyrosine; ER, endoplasmic reticulum; ERGIC, endoplasmic reticulum–Golgi intermediate compartment; HCoVs, human coronaviruses; IL, interleukin; LHQWC, Lian-Hua-Qing-Wen Capsule; MERS, Middle East respiratory syndrome; MERS-CoV, Middle East respiratory syndrome coronavirus; MAPK, mitogen-activated protein kinase; N protein, nucleocapsid protein; NF-kB, nuclear factor-kB; NCIP, novel coronavirus-infected pneumonia; PLpro, papain-like protease; PI3K, phosphoinositide 3-kinases; RTC, replication transcription complex; S protein, spike protein; RdRp, RNA-dependent RNA polymerase; SARS, severe acute respiratory syndrome; SARS-CoV, severe acute respiratory syndrome coronavirus; SARS-CoV-2, severe acute respiratory syndrome coronavirus 2; STAT, signal transducer and activator of transcription; TCM, traditional Chinese medicine; WHO, World Health Organization; 3CLpro, chymotrypsin-like protease.

*Corresponding authors. Tel.: +852 39436347, fax: +852 39420941 (Zhixiu Lin); Tel.:+86 21 51323089, fax: +86 21 51323089 (Hongxi Xu).
E-mail addresses: linzx@cuhk.edu.hk (Zhixiu Lin), xuhongxi88@gmail.com (Hongxi Xu).
1 These authors made equal contributions to this work.

Peer review under responsibility of Chinese Pharmaceutical Association and Institute of Materia Medica, Chinese Academy of Medical Sciences.

https://doi.org/10.1016/j.apsb.2020.06.002
2211-3835 © 2020 Chinese Pharmaceutical Association and Institute of Materia Medica, Chinese Academy of Medical Sciences. Production and hosting by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Abstract Coronaviruses (CoVs), a family of enveloped positive-sense RNA viruses, are characterized by club-like spikes that project from their surface, unusually large RNA genome, and unique replication capability. CoVs are known to cause various potentially lethal human respiratory infectious diseases, such as severe acute respiratory syndrome (SARS), Middle East respiratory syndrome (MERS), and the very recent coronavirus disease 2019 (COVID-19) outbreak. Unfortunately, neither drug nor vaccine has yet been approved to date to prevent and treat these diseases caused by CoVs. Therefore, effective prevention...
and treatment medications against human coronavirus are in urgent need. In the past decades, many natural compounds have been reported to possess multiple biological activities, including antiviral properties. In this article, we provided a comprehensive review on the natural compounds that interfere with the life cycles of SARS and MERS, and discussed their potential use for the treatment of COVID-19.

© 2020 Chinese Pharmaceutical Association and Institute of Materia Medica, Chinese Academy of Medical Sciences. Production and hosting by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Coronaviruses (CoVs) comprise a large family of RNA viruses that infect a wide variety of mammalian and avian hosts, and cause a broad spectrum of diseases. CoVs have a single-stranded, positive-sense RNA genome and comprise four genera of α-, β-, γ-, and δ-coronaviruses. CoVs are prone to mutation and recombination during replication, and this propensity has contributed to the diversity of coronavirus. Human coronaviruses (HCoVs) are known respiratory pathogens associated with a wide range of respiratory outcomes. The advent of severe acute respiratory syndrome coronavirus (SARS-CoV) and Middle East respiratory syndrome coronavirus (MERS-CoV) in the past two decades have thrust HCoVs into the spotlight in the research community due to their high pathogenicity in humans. More recently, the sudden emergence of a new coronavirus discovered at the end of 2019 has caused a major outbreak of human fatal pneumonia with a widespread global impact, and this infectious disease caused by the new coronavirus has been named coronavirus disease 2019 (COVID-19) by the World Health Organization (WHO). We have now known that the causative agent of this outbreak is a novel coronavirus phylogenetically in the SARS-CoV clade, hence referred to as severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The SARS-CoV-2 is more widespread than the SARS-CoV.

The common respiratory symptoms of a person infected with coronavirus include fever, cough, shortness of breath, and dyspnea. In more severe cases, infection can cause pneumonia, severe acute respiratory syndrome, kidney failure and even death. By 20 May 2020, this potentially fatal virus has caused more than 4.98 million confirmed infected cases and resulted in over 327,000 deaths globally. COVID-19 has spread to more than 200 countries around the world, and its outbreak has seen no signs of abating. Unfortunately, despite extensive efforts have been devoted to the development of anti-CoV agents, effective therapeutics for coronavirus infection have remained elusive so far. A lack of effective immunization and antiviral drugs poses a daunting challenge to current global efforts to contain the COVID-19 outbreak. Thus, there clearly exists an unmet medical need for effective antivirals to manage the current COVID-19 pandemic.

Herbal medicines and medicinal plant-based natural compounds provide a rich resource for novel antiviral drug development. Some natural medicines have been shown to possess antiviral activities against various virus strains including coronavirus, herpes simplex virus, influenza virus, human immunodeficiency virus, hepatitis B and C viruses, SARS and MERS. To date, dozens of Chinese herbs and hundreds of natural compounds have been reported to possess antiviral activities. The past few decades have also witnessed tremendous efforts in revealing the antiviral action mechanisms of these natural agents on the influence of the viral life cycle, such as viral entry, replication, assembly, and release, as well as virus-host-specific interactions. The purpose of this review is to provide an update on natural products that have promising antiviral effects against coronaviruses and discuss their molecular targets and mechanisms.

2. Life cycle and pathogenesis of coronavirus

To understand the life cycle and pathogenesis of coronavirus is of importance for the development of anti-CoV agents. Coronavirus infection is initiated by the binding of virions to cellular receptors (Fig. 1). This sets off a series of events culminating in the deposition of the nucleocapsid into the cytoplasm, where the viral genome becomes available for translation.

The route of the SARS-CoV entry into humans is through the respiratory tract mainly by droplet transmission. The surface envelope spike protein (S protein) of SARS-CoV-2 plays an important role in establishing infection and determining the cell and tissue tropism. The initial attachment of the virion to the host cell is initiated by interactions between the S protein and its receptor. Entry of the virus requires receptor binding, followed by conformational change of the S protein, and then cathepsin L-mediated proteolysis within the endosome. The angiotensin-converting enzyme 2 (ACE2), found in the lower respiratory tract of humans, is known as cell host receptor for SARS-CoV, and is expressed in a wide variety of body tissues and regulates both cross-species and human-to-human transmission. Through analyzing the bronchoalveolar lavage fluid (BALF) from a COVID-19 patient, Zhou et al. and Walls et al. have confirmed that SARS-CoV-2 uses the same cellular entry receptor, ACE2, as does the SARS-CoV. The virion S glycoprotein on the surface of the coronavirus can attach to the ACE2 receptor on the surface of human cells.

Following receptor binding, the virus must next gain access to the host cell cytosol, and this is generally accomplished by acid-dependent proteolytic cleavage of S protein by a cathepsin or another protease, followed by fusion of the viral and cellular membranes. S glycoprotein includes two subunits, S1 and S2. S1 determines the virus-host range and cellular tropism with the key fusion domain (RBD), while S2 mediates virus-cell membrane fusion by two tandem domains, heptad repeats 1 (HR1) and HR2. The next step in the coronavirus lifecycle is the translation of the replicase gene from the virion genomic RNA. After membrane fusion, the viral genome RNA is released into the cytoplasm, and the uncoated RNA translates two polyproteins, pp1a and pp1ab, which encode non-structural proteins, and form a replication–transcription complex (RTC) in the double-membrane vesicle. Viral RNA synthesis follows the translation and assembly of the viral replicase complexes. RTC replicates and synthesizes a nested set of subgenomic RNAs, which encode
accessory proteins and structural proteins. The latter is translated into structural proteins and accessory proteins. The membrane-bound structural proteins, membrane (M), S, and envelope (E) are inserted into the endoplasmic reticulum (ER), from there they transit to the endoplasmic reticulum–Golgi intermediate compartment (ERGIC). Nucleocapsids are formed from the encapsidation of progeny genomes by N protein, and these coalesce with the membrane-bound components, forming virions by budding into the ERGIC. Lastly, the virion-containing vesicles fuse with the membrane of the host cell to release the virus.

3. Antiviral properties of natural products against coronavirus

Extensive studies have been conducted over the past years to identify anti-CoV agents from natural products and Chinese herbal medicine. In this section, we discuss the medicinal plant-based natural compounds and traditional Chinese medicine (TCM) formulae with antiviral action against coronaviruses and their potential for use in clinical practice.

3.1. Natural products against CoVs

Various natural products have shown potent antiviral effects against SARS-CoV, MERS-CoV, HCoV-229 E, and HCoV-OC43. Aescin isolated from Aesculus hippocastanum and reserpine isolated from various Rauwolfia species, were both shown to have significant anti-SARS activities with the concentration for 50% of maximal effect (EC$_{50}$) values of 3.4 and 6.0 μmol/L, respectively. Ginsenoside-Rb1, one of the pharmacologically active components of Panax ginseng, was reported to possess activity against SARS-CoV at the concentration of 100 μmol/L. Boenninghausenia sessilicarpa (Rutaceae), a slender and perennial plant, has long been known as a coumarin-rich Chinese herbal medicine distributed in the temperate hilly regions at an altitude of 1500–2500 m in southwestern China. It is traditionally used for the treatment of fever, fester, and tonsillitis. Leptodactylone, extracted from B. sessilicarpa, was found to have a strong protective effect against virus-infected cells and anti-SARS-CoV activity with the inhibition rate of 60% at 100 mg/mL. Lycorine extracted from Lycoris radiata was identified to have anti-SARS-CoV activity with EC$_{50}$ value of 15.7 ± 1.2 nmol/L. Latest study of repurposing of clinically approved drugs for treatment of COVID-19 showed that cepharanthine, a bisbenzylisoquinoline alkaloid from tubers of Stephania japonica (Qianjinteng), exhibited a potent inhibition of a 2019-nCoV-related pangolin coronavirus GX_P2V infection, with EC$_{50}$ value of 0.98 μmol/L using a 2019-novel coronavirus-related coronavirus model. Dihydrotanshinone is a major lipophilic compound isolated from Salvvia...
Table 1 Summary of the anti-CoVs effects of natural compounds and their possible action mechanisms.

Plant	Compound	Virus acting on	IC_{50} value	Reported antiviral mechanism	Ref.
Lycoris radiata	Lycorine	SARS-CoV	15.7 ± 1.2 nmol/L	—	43
Salvia miltiorrhiza	Dihydrorhizone	MERS-CoV	1 μg/mL	—	44
Bupleurum chinense	Saikosaponin B2	HCoV-229E	1.7 ± 0.1 μmol/L	Interferes with events of early viral entry	43,45
Stephania tetranda	Tetradrine	HCoV-OC43	0.33 ± 0.03 μmol/L	Inhibits p38 MAPK pathway	46
Stephania japonica	Cepharanthine	SARS-CoV-2	0.98 μmol/L	ACE inhibitor	48
Rheum palmatum	Emodin	SARS-CoV	200 μmol/L	Blocks the binding of S protein to ACE2	50
Tritergyrrum regeli	Celastrol	SARS-CoV	10.3 μmol/L	Inhibits SARS-CoV 3CLpro	51
Tritergyrrum regeli	Pristimerin	SARS-CoV	5.5 μmol/L	Inhibits SARS-CoV 3CLpro	51
Tritergyrrum regeli	Tigeneone	SARS-CoV	9.9 μmol/L	Inhibits SARS-CoV 3CLpro	51
Tritergyrrum regeli	Iguesterin	SARS-CoV	2.6 μmol/L	Inhibits SARS-CoV 3CLpro	51
Ginkgo biloba	Quercetin-3-β-galactoside	SARS-CoV	42.79 ± 4.97 μmol/L	Competitively inhibits SARS-CoV 3CLpro	52
Salvia miltiorrhiza	Tanshinones I–VII	SARS–CoV	0.7–30 μmol/L	Inhibits PLpro activity	53
Alnus japonica	Hirsutenone	SARS-CoV	4.1 μmol/L	Inhibits PLpro activity	53,54
Black tea	Theaflavin	SARS-CoV-2	—	Inhibits RdRp activity	55
Myrica rubra	Myricetin	SARS-CoV	2.71 ± 0.19 μmol/L	Inhibits ATPase activity	56
Scutellaria baicalensis	Scutellarein	SARS-CoV	0.86 ± 0.48 μmol/L	Inhibits ATPase activity	56
Angelica keiskei	Chalcones I–IX	SARS–CoV	11.4–129.8 μmol/L	Competitively inhibits SARS-CoV 3CLpro	57

—IC_{50} value or the mechanism of antiviral activity of these active compounds is not clear.

Miltiorrhizae Radix et Rhizoma, which is commonly used in TCM. A recent study showed that dihydrorhizone inhibited inhibitory effects against viral entry in the MERS-CoV with the IC_{50} value of 1 μg/mL.\(^{44}\) Saikosaponin B2, isolated from Bupleurum Radix, exerted potent antiviral activity against HCoV-229E, with the IC_{50} value of 1.7 ± 0.1 μmol/L.\(^{45}\) The antiviral action mechanism of saikosaponin B2 may be mediated, at least in part, by inhibiting viral attachment to cells, blocking viral penetration into cells, and interfering with the early stage of viral replication, such as virus absorption and penetration. Tetradrine, isolated from Stephaniae Tetrandrae Radix, has been found to dramatically suppress the replication of HCoV-OC43, with the IC_{50} value of 0.33 ± 0.03 μmol/L.\(^{46}\) All these natural compounds possess antiviral effects against the coronavirus, and their action mechanisms were summarized in Table 1.\(^{29,30,41–46,48–57}\), while their chemical structures shown in Fig. 2. This article also reported the IC_{50} values of the natural products against the HCoVs including SARS and MERS. As shown in Table 1, the IC_{50} values of these compounds mostly ranged from micro to milligrams per liter. These natural compounds have been reported to act on various viral targets such as spike (S) glycoprotein, coronavirus main protease-chymotrypsin-like protease (3CLpro), the papain-like protease (PLpro), RNA-dependent RNA polymerase (RdRp), and nucleocapsid (N) proteins. These pharmacological targets are further discussed in the section below.

3.2. Chinese herbal formulae against CoVs

TCM has been used for the treatment of epidemic diseases for a long history and accumulated rich experience. Thus, the antiviral activities are not limited to natural compounds, and also extended to TCM formulae. For example, *Lian-Hua-Qing-Wen Capsule* (LHQWC, Clearing Pestilential Disease with Forsythiae Fructus-Lonicerae Capsule), a commonly used Chinese medicine preparation, is widely used in clinical practice to treat viral influenza, and plays a very important role in the fight against SARS-CoV.\(^{58–60}\) In particular, LHQWC has been reported to exert inhibitory effects on the SARS-CoV in cultured Vero-E6 cells, with the EC_{50} value of 0.11 mg/mL.\(^{61}\) LHQWC ameliorated the clinical symptoms such as fever, cough, fatigue and shortness of breath in 63 patients with COVID-19.\(^{62}\) A recent study by Academician Nanshan Zhong revealed that LHQWC significantly inhibited the SARS-CoV-2 replication with the IC_{50} value of 411.2 μg/mL, affected virus morphology, and exerted anti-inflammatory activity *in vitro*.\(^{63}\) They also conducted a prospective multicenter open-label randomized controlled trial on the effectiveness of LHQWC in 284 confirmed cases of COVID-19 (142 each in treatment and control group). The results showed that COVID-19 patients treated with LHQWC for 14 days resulted in a significantly higher recovery rate (91.5% vs. 82.4%, *P* = 0.022), a markedly shorter median time to symptom recovery (7 vs. 10 days, *P* < 0.001), as well as a dramatically shorter time to recovery of fever (2 vs. 3 days), fatigue (3 vs. 6 days) and coughing (7 vs. 10 days) (*P* < 0.001 for all) than the control group (baseline treatment). The results of this trial amply attested the safety and efficacy of LHQWC in patients with COVID-19.\(^{64}\) In a retrospective clinical analysis, it was revealed that LHQWC could significantly ameliorate the major symptoms associated with the novel coronavirus-infected pneumonia (NCIP) patients by shortening the duration of fever and cough, and improving the recovery rate.\(^{55}\) Moreover, the functional indications of LHQWC have been
added to the originally approved indications for COVID-19 treatment. LHQWC can be used to treat clinical symptoms such as fever, cough, and fatigue for the light and common types of COVID-19 patients.

As revealed by network pharmacology approach, Ren-Shen-Bai-Du-San (Ginseng to Defeat Toxicity Powder) may inhibit the cytokine storm formation in COVID-19 patients through regulating chemokines, increasing blood oxygen saturation, inhibiting signal transducer and activator of transcription (STAT), mitogen-activated protein kinase (MAPK), nuclear factor-κB (NF-κB), phosphoinositide 3-kinases (PIK3K) and interleukin-6 (IL-6) signaling pathways. Another TCM formula, Qing-Fei-Jie-Du Decoction (Decoction for Clearing the Lung and Detoxification) was used for the prevention and treatment of SARS and also recommended for COVID-19 treatment according to the 7th edition of the Guidelines of Diagnosis and Treatment for COVID-19 issued by the National Health Commission of China. Based on this latest edition of the Guidelines, several TCM formulae were recommended for the prevention and treatment of patients with COVID-19, including Jin-Hua-Qing-Gan Granule (Lonicerae Flos for Clearing Influenza Granule), Huo-Xiang-Zheng-Qi Water (Agastaches Herba Qi-Correcting Water), Shu-Feng-Jie-Du Capsule (Wind-Expelling and Detoxification Capsule), Xue-Bi-Jing Injection (Blood Definitely Be Cleansed Injection Fluid) and other herbal formulae (as shown in Table 2).

4. The targets of natural products against CoVs

Natural products alone and TCM herbal formulae have antiviral activities against coronaviruses through acting on different...
molecular targets. We summarized the molecular targets of natural products against coronavirus, and these targets include S glycoprotein, coronavirus main 3CLpro, PLpro, RdRp, N proteins and other kinase such as viral helicase.

4.1. Targeting on S glycoprotein

The coronavirus spike (S) glycoprotein is the main antigen presented at the viral surface and is the target of neutralizing antibodies during infection, and a focus of vaccine design. S is a class I viral fusion protein synthesized as a single polypeptide chain precursor of approximately 1300 amino acids. For many coronaviruses, S is processed by host proteases to generate two subunits, designated S1 and S2, which remain non-covalently bound in the pre-fusion conformation. The size of the abundantly N-glycosylated S protein varies greatly between CoV species ranging from approximately 1100 to 1600 residues in length, with an estimated molecular mass of up to 220 kDa. Trimers of the S protein form the 18–23-nm long, club-shaped spikes that decorate the membrane surface of the CoV particle. Besides being the primary determinant in CoV host tropism and pathogenesis, the S protein is also the main target for neutralizing antibodies elicited by the immune system of the infected host. The CoV S protein is responsible for host cell attachment and mediates host cell membrane and viral membrane fusion during infection, the two key steps in the viral life cycle and major targets for antiviral drugs and vaccines. Various antiviral natural compounds act on antiviral S glycoprotein. For instance, emodin, the major component of Rhei Radix et Rhizoma, has been demonstrated to possess antiviral effects against SARS-CoV via targeting S protein and blocking the binding of S protein to ACE2 in a dose-dependent manner. Extracts of Eucalyptus globulus and Lonicera Japonica Flos, as well as ginsenoside-Rb1, have been reported to possess antiviral activity against SARS-CoV due to their ability to disrupt the envelope glycoprotein processing. Saikosaponins isolated from Bupleuri Radix exerted antiviral activity against HCoV-229E. More specifically, saikosaponin B2 possessed potent anti-CoV activity via affecting the viral penetration process including viral attachment and penetration through disturbing viral glycoproteins. Bisbenzylisoquinoline alkaloids-tetrandrine from Stephanisia Tetrandrae Radix dramatically suppressed the replication of HCoV-OC43 via targeting S protein.

4.2. Targeting on 3CLpro and PLpro

3CLpro and PLpro are two proteases that process the polypeptide translation product from the genomic RNA into the structural and nonstructural protein components, which are vital for the replication and packaging of a new generation of viruses. 3CLpro is an essential part of the polypeptide and is usually present as a monomer. However, upon substrate binding, dimer formation has been observed. Each monomer has two domains (I and II) along with a C-terminal domain. 3CLpro is an important drug target, as its protease activity is crucial for viral survival and replication. PLpro enzyme has two distinct functions in viral pathogenesis. The first one is to process the viral polyprotein into individual proteins that are essential for viral replication. The second is to remove ubiquitin and ISG15 proteins from host cell proteins, which likely helps coronaviruses shun the host’s innate immune
response\(^5\). Both 3CLpro and PLpro are essential to the virus for replication and controlling the host cell, and are viable targets for antiviral agents\(^6,8,9\). The important functions of 3CLpro and PLpro in the life cycle of virus render them the key viable targets for the development of anti-SARS therapeutics. Numerous promising candidates have been reported to kill the virus via targeting 3CLpro and PLpro. For example, chalcones, flavonones and coumarins from Angelicae Sinensis Radix showed dose-dependent inhibitory effects against SARS-CoV by inhibiting the activity of 3CLpro. In addition, natural compounds such as hesperetin and sinigrin isolated from Isatidis Radix\(^1\), celastrol, pristimerin, tingenone and iguesterin isolated from Tritergium regelii\(^2\) and quercetin derivatives quercetin-3-β-galactoside\(^3\) have antiviral activities against SARS-CoV through targeting on SARS-CoV 3CLpro. Moreover, tanshinone I isolated from Salviae Miltiorrhizae Radix et Rhizoma\(^4\) and hirsutene isolated from Alnus japonica\(^5\) exhibited dose-dependent inhibitory effects against SARS-CoV through targeting PLpro, with the IC\(_{50}\) values of 0.7 and 4.1 μmol/L, respectively.

4.3. Targeting on RdRp

RdRp, also called RNA replicases, is an important protease that catalyzes the replication of RNA from RNA template and is an essential protein encoded in the genomes of all RNA-containing viruses with no DNA stage. An RdRp is involved in a pathway outside the “central dogma” of early molecular biology. RdRps, present in a wide variety of RNA viruses, are involved in genome replication, mRNA synthesis, and RNA recombination. They are essential for the survival of viruses\(^6,7\). RdRp has served as an excellent antiviral target against coronaviruses, and many promising naturally-occurring chemical principles exhibit their antiviral activity through targeting RdRp. For instance, theaflavin markedly suppressed SARS-CoV-2 replication through inhibiting RdRp\(^8\). Houttuyniae Herba also exhibited significant inhibitory effects against SARS-CoV via suppressing the activities of SARS-CoV 3CLpro and RdRp\(^9\).

4.4. Targeting on N proteins

The N protein is the only structural protein that is associated with RTCs. It binds to the gRNA, and is essential for the incorporation of the virus genetic material into CoV particles. Moreover, it is the major component of ribonucleoprotein complex sitting in the virion cores, and thus also plays an essential architectural role in the virus particle structural organization through a network of interactions with the gRNA, M protein and other N molecules. For CoVs, N protein primarily encapsidates the viral genome but also plays an important role in viral replication, virus particle assembly and release\(^10\). Due to its pivotal role in the incorporation of the virus genetic material into CoV particles, it has been recognized as an important target for various antiviral compounds. Resveratrol, a well-known natural compound widely presented in different plants, including Vitis vinifera, Polygonum cuspidatum and Vaccinium macrocarpon, has been demonstrated to decrease the production of nitric oxide in tissue to reduce inflammation\(^11\). It also acts as an antioxidant to remove free radicals to suppress tumor growth\(^12\) and treat age-related diseases\(^13,14\). Moreover, resveratrol has been shown to have antiviral activity on MERS-CoV via targeting N protein and prolong cellular survival after viral infection\(^15\).

4.5. Other targets

Besides targeting S protein, 3CLpro, PLpro, RdRp, and N proteins, natural products can also target on other proteins to exert their anti-CoV activities. Glycyrrhizin, an active ingredient of Glycyrrhizae Radix et Rhizoma, has been observed to exert anti-SARS-CoV activity through targeting protein kinase C, which upregulates the nitrous synthase and production\(^16,17\). Viral helicase is essential for subsequent viral replication and proliferation, and is considered as a potential target for antiviral therapy\(^18\). Natural compounds such as myricetin and scutellarein, potently inhibited the SARS-CoV helicase protein by affecting the ATPase activity\(^19\).

5. The potential of natural compounds for clinical treatment of COVID-19

As shown in Fig. 3, CoV relies on its spike proteins to bind to the host cell surface receptor for entry. For SARS-CoV-2, it is now known that this receptor is ACE2\(^20\). After the virus entries into the host cell, its positive genomic RNA attaches directly to the host ribosome for the translation of two large, coterminal polypeptides that are processed by proteolysis into components for packaging new virions. Two proteases that participate in this proteolysis process are 3CLpro and PLpro. In order to replicate the RNA genome, the CoV encodes a replicase that is a RdRp. These four proteins are essential for the pathogenicity of virus. Therapeutics currently targeting spike, RdRp, 3CLpro, and PLpro are possible treatments for SARS-CoV-2\(^21\). Moreover, the initial analyses of genomic sequences from COVID-19 patients indicate that the catalytic sites of the four COVID-19 enzymes that could represent antiviral targets are highly conserved and share a high level of sequence similarity with the corresponding SARS and MERS enzymes. SARS-CoV-2 shares 82% similarity of sequence identity with SARS-CoV and more than 90% similarity of sequence identity in several essential enzymes\(^22\). Therefore, it is rational to consider repurposing existing MERS and SARS inhibitors for COVID-19 treatment\(^23\). As listed in Table 1, natural compounds such as theaflavin and cephaphanein suppressed SARS-CoV-2 by suppressing RdRp and ACE activities; hirsutene and tanshinones I–VII showed antiviral action against SARS-CoV via inhibiting the PLpro activity, while celastrol, pristimerin, tingenone, iguesterin, chalcones I–IX and quercetin-3-β-galactoside were able to inhibit SARS-CoV by suppressing the 3CLpro activity. Owing to the close resemblance between SARS-CoV and SARS-CoV-2, all these natural compounds and their original plants with the antiviral activities against SARS-CoV and MERS-CoV may have potential protective effects against COVID-19.

6. Discussion and perspectives

CoVs are associated with a number of infectious disease outbreaks in humans in recent years, including SARS in 2002–2003 and MERS in 2012. Four other CoVs including human coronaviruses HKU1, OC43, NL63 and 229E are also associated with respiratory diseases\(^24\). The epidemic outbreak caused by SARS-CoV in 2002–2003 involved 8422 patients and affected 29 countries worldwide. The MERS-CoV outbreak in 2012 mainly affected the Middle Eastern countries. The sequence of SARS-CoV-2, which is responsible for COVID-19 outbreak, is different from the six other coronavirus subtypes, and can be classified as beta-coronavirus.
The number of COVID-19 cases is growing rapidly and has affected more than 200 countries globally by early April 2020. It has become obvious that SARS-CoV-2 is more infectious than both SARS-CoV and MERS-CoV. It is now known that the SARS-CoV-2 can be transmitted by asymptomatic or presymptomatic COVID-19 patients. Fever, cough and fatigue are the early signs and symptoms of COVID-19. Significant decrease in the lymphocyte counts and new pulmonary infiltrates on chest radiography were usually found in the COVID-19 patients. Moreover, 97% of COVID-19 cases confirmed by RT-PCR test eventually developed pneumonia as evidenced by CT scan. However, the symptoms associated with COVID-19 did not improve after treatment with antibiotics for three days.

Due to a lack of vaccine and efficacious antiviral agents, COVID-19 continues to cause havoc in many parts of the world. Only a small set of evidence-based non-pharmaceutical interventions are available for COVID-19. There is clearly an unmet medical need for effective treatment of COVID-19. Increasing evidence suggested that a subgroup of severe COVID-19 patients might be caused by a cytokine storm syndrome. Pulmonary involvement (including ARDS) occurs in approximately 50% of COVID-19 patients with hemophagocytic lymphohistiocytosis (HLH). A cytokine profile resembling secondary HLH is associated with the patients with severe COVID-19, characterized by an increase in TNF-α, IL-2, IL-7, interferon-γ inducible protein 10, granulocyte colony stimulating factor, macrophage inflammatory protein 1-α and monocyte chemoattractant protein 1. A recent retrospective and multi-center study on 150 confirmed COVID-19 cases revealed the association between fatality and significantly elevated ferritin (mean 614.0 ng/mL in survivors, 614.0 ng/mL in non-survivors vs. 1297.6 ng/mL in survivors, \(P < 0.001 \)) and IL-6 (\(P < 0.0001 \)), suggesting that the mortality of the patients with COVID-19 might be related to virus-induced hyperinflammation.

Historically, TCM has developed medical theories and accumulated rich and valuable experiences in the prevention and treatment of lung diseases, especially pneumonia. Natural products such as Chinese herbs possess various bioactivities and have been extensively used to treat diseases of virus origin such as common cold, influenza and SARS. Many studies have reported the anti-inflammatory activities of natural compounds, and inflammation has been considered as the basic pathogenesis underlying various medical conditions, including flu and COVID-19. Emodin, a flavonoid isolated from the Rhei Radix et Rhizoma, is able to block the SARS-CoV via interfering the interaction of S protein and ACE2. It also exhibited anti-inflammatory, anti-proliferative and anti-carcinogenic properties. Emodin dose-dependently ameliorated the asthmatic airway inflammation by inhibiting the activated macrophages polarization and STAT6 phosphorylation. Scutellarein, another plant-derived flavonoid, exerted anti-inflammatory via suppressing the expression of cyclooxygenase-2 and inducible nitric oxide synthase through inhibition of NF-κB pathway. Flavonoids of Lonicerae Japonicae Flos, glycyrrhizin, and resveratrol have also been reported to possess anti-inflammatory effects. A high-profile research published in the *Science* reported that desaminotyrosine (DAT), a microbial metabolite, was able to protect the host from influenza through suppression of the type I interferon signaling and augmentation of lung immunopathology. DAT could be produced by human enteric bacteria from flavonoids and amino acid metabolism. Moreover, DAT is also a degradation product of flavonoids that is rich in certain foods and some Chinese medicines. Flavonoids have been reported to exert good anti-inflammation effects. Overwhelming inflammation and cytokine-related lung injury might induce rapid and progressive pneumonia in critically ill patients with influenza. Therefore, the protective effect of DAT against influenza may be related to the anti-inflammatory effect of flavonoids.

Because of a lack of specific antiviral therapeutics and vaccines for COVID-19, both conventional medicine and TCM are usually used for the treatment of COVID-19 patients in China. Western medicine used to treat COVID-19 patients usually include broad-spectrum antibiotics, antivirals, corticosteroids, or their combination. These conventional medicine could quickly manage the major symptoms of the patients, but may cause severe side effects, while TCM treatment modality has the advantage of low...
toxicity. It is well known that TCM could modulate immune cells and cytokine production associated with immune responses. Proper immune regulation helps maintain the homeostasis of the immune system, protect the body from sources of infection or other harmful substances. A systematic review and meta-analysis revealed that integrated Chinese and Western medicine had better effects and fewer adverse drug reactions on COVID-19 patients as compared with western medicine alone. Moreover, it has been reported that TCM treatment could attenuate side effects associated with conventional therapeutics for SARS-CoV patients. Therefore, more investigations are warranted to establish the efficacy and safety of the integrated Chinese and Western medicine for human CoVs.

Since TCM has the characteristics of multi-component, multitarget and multi-pathway for treatment of diseases, it possesses great potential for the treatment of COVID-19. As shown in this review, many natural products or TCM formulae have demonstrated promising antiviral activities against CoVs through multiple target-approaches, and can be further developed into bioactive derivatives and therapeutic leads. However, although natural products have shown good potential for the treatment of COVID-19, it is still a long way for them to be eventually used in clinic. One of the main limitations of developing natural products into pharmaceuticals is their solubility and bioavailability. The high costs and complexity of clinical trials add another barrier to the development of new antivirals from natural products. Pharmaceutical companies are facing with multiple regulatory bottlenecks such as increased stringency of trial design, and enhanced safety requirements for drug licensing. Despite many difficulties in developing natural compounds into antiviral drugs, increasing efforts have been seen in many parts of the world for the development of antivirals from natural products in both preclinical and clinical studies. Searching new antiviral agents from natural products remains a challenging yet exciting task.

Our present review provides an important update on a number of natural products that have shown promise as anti-CoV agents and potential for COVID-19 treatment. However, since many studies about the antiviral effects of the natural compounds and Chinese medicine in this domain are only preliminary, in-depth in vivo studies on appropriate animal models are needed to unravel the underlying cellular and molecular mechanisms. Pharmacokinetic studies on the promising natural compounds are few and far between, and should be conducted to obtain pharmacokinetic profile, including absorption, distribution, metabolism and excretion parameters. Moreover, clinical trials (phase I to III) are required to test their anti-CoV efficacy and safety on human subjects. More importantly, investigations should be carried out to explore the potential interactions between TCM or natural products and available antivirals on anti-CoV effects. Optimization of some of the aforementioned lead compounds with known or new mechanisms of action may lead to eventual development of new therapeutics for COVID-19.

Author contributions

Zhixiu Lin and Hongxi Xu conceived and designed the review. Yanfang Xian and Juan Zhang retrieved the literature and drafted the manuscript. Zhaoxiang Bian and Hua Zhou participated in the design of study and assessed the quality of study. Zhenbiao Zhang drew the chemical structures of nature compounds. Zhixiu Lin and Hongxi Xu revised the review. All authors have consented for publication.

Conflicts of interest

The authors declare that they have no competing interests.

References

1. Lim YX, NgYL, Tam JP, Liu DX. Human coronaviruses: a review of virus-host interactions. Diseases 2016;4:26.
2. Zumla A, Chan JF, Azhar EI, Hui DS, Yuen KY. Coronaviruses-drug discovery and therapeutic options. Nat Rev Drug Discov 2016;15:327–47.
3. Li F. Structure, function, and evolution of coronavirus Spike proteins. Annu Rev Virol 2016;3:237–61.
4. Schönen D, Fielding BC. Coronavirus envelope protein: current knowledge. Virol J 2019;16:69.
5. Song ZQ, Xu YF, Bao LL, Zhang L, Yu P, Qu YJ, et al. From SARS to MERS, thwarting coronaviruses into the spotlight. Viruses Basel 2019;11:59.
6. Wu C, Liu Y, Yang Y, Zhang P, Zhong W, Wang Y, et al. Analysis of therapeutic targets for SARS-CoV-2 and discovery of potential drugs by computational methods. Acta Pharm Sin B 2020;10:766–88.
7. Wang H, Wang Z, Dong Y, Chang R, Xu C, Yu X, et al. Phase-adjusted estimation of the number of coronavirus disease 2019 cases in Wuhan, China. Cell Discov 2020;6:10.
8. Coronaviridae study group of the international committee on taxonomy of V. The species severe acute respiratory syndrome-related coronavirus: classifying 2019-ncov and naming it SARS-CoV-2. Nat Microbiol 2020;5:33–44.
9. Liu Y, Gayle AA, Wilder-Smith A, Rocklov J. The reproductive number of COVID-19 is higher compared to SARS coronavirus. J Trav Med 2020;27:taaa021.
10. Huang C, Wang Y, Li X, Ren L, Zhao J, Hu Y, et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet 2020;395:497–506.
11. Guo YR, Cao QD, Hong ZS, Tan YY, Chen SD, Jin HJ, et al. The origin, transmission and clinical therapies on coronavirus disease 2019 (COVID-19) outbreak—an update on the status. Mil Med Res 2020;7:11.
12. Kim Y, Liu H, Galasiti Kankanamalage AC, Weerasekara S, Hua DH, Grouats WC, et al. Reversal of the progression of fatal coronavirus infection in cats by a broad-spectrum coronavirus protease inhibitor. PLoS Pathog 2016;12:e1005531.
13. Gordon CJ, Tchesaukov EP, Feng JY, Porter DP, Grothe M. The antiviral compound remdesivir potently inhibits RNA-dependent RNA polymerase from middle east respiratory syndrome coronavirus. J Biol Chem 2020;295:4773–9.
14. Lin LT, Hsu WC, Lin CC. Antiviral natural products and herbal medicines. J Tradit Complement Med 2014;4:24–35.
15. Kurokawa M, Ochiai H, Nagasaka K, Neki M, Xu HX, Kadota S, et al. Antiviral traditional medicines against herpes-simplex virus (Hsv-1), poliovirus, and measles-virus in-vitro and their therapeutic efficacies for Hsv-1 infection in mice. Antivir Res 1993;22:175–88.
16. Calland N, Dubuisson J, Rouille Y, Seron K. Hepatitis C virus and natural compounds: a new antiviral approach?. Viruses 2012;4:2197–217.
17. Du J, He ZD, Jiang RW, Ye WC, Xu HX, But PPH. Antiviral flavonoids from the root bark of Morus alba L. Phytochemistry 2003;62:1235–8.
18. Xu HX, Lee SH, Lee SF, White RL, Blay J. Isolation and characterization of an anti-HSV polysaccharide from Prunella vulgaris. Antivir Res 1999;44:43–54.
19. Xu HX, Kadota S, Wang H, Kurokawa M, Shiraki K, Matsumoto T, et al. A new hydrolyzable tannin from geum-japonicum and its antiviral activity. Heterocycles 1994;38:167–75.
20. Xu HX, Kadota S, Kurokawa M, Shiraki K, Matsumoto T, Namba T. Isolation and structure of woodorien, a new glucoside having antiviral activity, from woodwardia orientalis. *Chem Pharm Bull* 1993; 41:1803–6.

21. Kannan S, Kolandaivel P. Antiviral potential of natural compounds against influenza virus hemagglutinin. *Comput Biol Chem* 2017;71: 207–18.

22. Luginani A, Terlizzi ME, Catucci G, Gilardi G, Maffei ME, Gribaudo G. The cranberry extract oxicamicro® exerts in vitro virucidal activity against influenza virus by interfering with hemagglutinin. *Front Microbiol* 2018;9:1826.

23. Xu HX, Zeng FQ, Wan M, Sim KY. Anti-HIV triterpene acids from *Geum japonicum*. *J Nat Prod* 1996;59:643–5.

24. Xu HX, Ming DS, Dong H, But PP. A new anti-HIV triterpene from *Geum japonicum*. *Chem Pharm Bull* 2000;48:1367–9.

25. Xu HX, Wan M, Loh BN, Koo OL, Chow PW, Sim KY. Screening of traditional medicines for their inhibitory activity against HIV-1 protease. *Phytother Res* 1996;10:207–10.

26. Sahue ME, Sahli R, Riviere C, Pene V, Lavie M, Vandeputte A, et al. Tolstikov GA, et al. Antiviral activity of glycyrrhizic acid derivatives against SARS-coronavirus. *J Med Chem* 2005;48:1256–9.

27. Zhang YB, Luo D, Yang L, Cheng W, He LJ, Kuang GK, et al. Matrine-type alkaloids from the roots of sophora flavescens and their antiviral activities against the hepatitis B virus. *J Nat Prod* 2018;81:2259–65.

28. Li B, Li L, Peng ZG, Liu D, Si LL, Wang J, et al. Harzianic acids A and B, new natural scaffolds with inhibitory effects against hepatitis C virus. *Bioorg Med Chem* 2019;27:560–7.

29. Cinatl J, Morgenstern B, Bauer G, Chandra P, Rabenau H, Doerr HW. Glycyrrhizin, an active component of liquorice roots, and replication of SARS-associated coronavirus. *Lancet* 2003;361:2045–6.

30. Lin SC, Ho CT, Chao WH, Li S, Wang TT, Lin CC. Effective inhibition of MERS-CoV infection by resveratrol. *Antivir Res* 2007;74:92–101.

31. Lin SC, Ho CT, Chao WH, Li S, Wang TT, Lin CC. Effective inhibition of MERS-CoV infection by resveratrol. *BMC Infect Dis* 2017;17:144.

32. Hui DS, Memish ZA, Zumla A. Severe acute respiratory syndrome *vs.* the middle east respiratory syndrome. *Curr Opin Pulm Med* 2014; 20:233–41.

33. Fehr AR, Perlman S. Coronaviruses: an overview of their replication and pathogenesis. *Methods Mol Biol* 2015;1282:1–23.

34. Yan W, Shang J, Graham R, Baric RS, Li F. Repressor recognition by SARS coronavirus spike protein and angiotensin-converting enzyme 2 interaction. *Antivir Res* 2007;74:92–101.

35. Ruy YB, Park SJ, Kim YM, Lee JY, Seo WD, Chang JS, et al. SARS-CoV-3CLpro inhibitory effects of quinone-methide triterpenes from *Tripterygium regelii*. *Bioorg Med Chem Lett* 2010;20:1873–6.

36. Chen L, Li J, Luo C, Liu H, Xu W, Chen G, et al. Binding interaction of quercetin-3-beta-galactoside and its synthetic derivatives with SARS-CoV 3CL(pro): structure–activity relationship studies reveal salient pharmacophore features. *Bioorg Med Chem* 2006;14:8295–306.

37. Park JY, Kim JH, Kim YM, Jeong HJ, Kim DW, Park KH, et al. Tanshinones as selective and slow-binding inhibitors for SARS-CoV cysteine proteases. *Bioorg Med Chem* 2012;20:5928–35.

38. Park JY, Jeong HJ, Kim JH, Kim YM, Park SJ, Kim D, et al. Diallylpyranoids from *Alnus japonica* inhibit papain-like protease of severe acute respiratory syndrome coronavirus. *Biol Pharm Bull* 2012;35:2036–42.

39. Jung L, Lin YS, Yang YH, Chou YL, Shu LH, Cheng YC, et al. The potential chemical structure of anti-SARS-CoV-2 RNA-dependent RNA polymerase. *J Med Virol* 2020;92:693–7.

40. Yu MS, Lee J, Lee JM, Kim Y, Chin YW, Lee JG, et al. Identification of myricetin and scutellarein as novel chemical inhibitors of the SARS coronavirus helicase, nsP13. *Bioorg Med Chem Lett* 2012;22:4049–54.

41. Park JY, Ko JA, Kim DW, Kim YM, Kwon HJ, Jeong HJ, et al. Chalcones isolated from *Angelica keiskei* inhibit cysteine proteases of SARS-CoV. *J Enzym Inhib Med Chem* 2016;31:23–30.

42. Ding Y, Zeng L, Li R, Chen Q, Zhou B, Chen Q, et al. The Chinese prescription lianhuaqengwen capsule exerts anti-influenza activity through the inhibition of viral propagation and impacts immune function. *BMC Compl Alternative Med* 2017;17:130.

43. Dong L, Xia JW, Gong Y, Chen Z, Yang HH, Zhang J, et al. Effect of lianhuaqengwen capsules on airway inflammation in patients with acute exacerbation of chronic obstructive pulmonary disease. *Evid Based Complement Alternat Med* 2014;2014:657969.

44. Jeong CS, Hyun JE, Kim YS. Ginsenoside Rb1: the anti-ulcer constituent from the head of *Panax ginseng*. *Arch Pharm Res (Seoul)* 2003;26:906–11.

45. Fan HJ, Wang LQ, Liu WL, An XP, Liu ZD, He XQ, et al. Repurposing of clinically approved drugs for treatment of coronavirus disease 2019 in a 2019-novel coronavirus-related coronavirus model. *Chin Med J (Engl)* 2020;133:1051–6.

46. Hoeyer G, Baltina L, Michaelis M, Kondratenko R, Baltina L, Tolstikov GA, et al. Antiviral activity of glycyrrhizic acid derivatives against SARS-coronavirus. *J Med Chem* 2005;48:1256–9.

47. Masters PS. The molecular biology of coronaviruses. *Adv Virus Res* 2006;66:193–292.

48. Li-Weber M. Targeting apoptosis pathways in cancer by Chinese traditional medicines. *Curr Top Microbiol Immunol* 2010;332:304–12.

49. Chen FE, Huang J. Reserpine: a challenge for total synthesis of natural products. *Chem Rev* 2005;105:4671–706.

50. Wu CY, Jan JT, Ma SH, Kuo CJ, Juan HF, Cheng YS, et al. Small molecules targeting severe acute respiratory syndrome coronavirus. *Proc Natl Acad Sci U S A* 2004;101:10012–7.

51. Yang QY, Tian XY, Fang WS. Bioactive coumarins from *Boenninghausenia sessilicarpa*. *J Asian Nat Prod Res* 2007;9:59–65.

52. Li SY, Chen C, Zhang HQ, Guo HY, Wang H, Wang L, et al. Identification of natural compounds with antiviral activities against SARS-associated coronavirus. *Antivir Res* 2005;67:18–23.
Bioactive natural compounds against human CoVs

64. Hu K, Guan WJ, Bi Y, Zhang W, Li L, Zhang B, et al. Efficacy and safety of Lianhuaoqinwen capsules, a repurposed Chinese herb, in patients with Coronavirus disease 2019: a multicenter, prospective, randomized controlled trial. *Phytomedicine* 2020. Available from: https://doi.org/10.1016/j.phymed.2020.153242.

65. Yao KT, Liu MY, Li X, Huang JH, Cai HB. Retrospective clinical analysis on treatment of novel coronavirus-infected pneumonia with traditional Chinese medicine Lianhua Qingwen. *Chin J Exp Tradit Med Form 2020*:1–7.

66. National medical products administration of the People’s Republic of China. 2020. Available from: http://www.nmcp.gov.cn/zyjyzs/202004/1514662.html.

67. Li JJ, Zhang K, Wang SS, Jing WL, Bao JM, Yang JY, et al. The network pharmacology for treatment of COVID-19 with Renshenbaidusan based on cytokines. *Chin Tradit Herb Drugs* 2020;51:1375–85.

68. Chen F, Chan KH, Jiang Y, Kao RY, Lu HT, Fan KW, et al. In vitro susceptibility of 10 clinical isolates of SARS coronavirus to selected antiviral compounds. *J Clin Virol* 2004;31:69–75.

69. National Health Commission of the People’s Republic of China. Notice on the issuance of guidelines of diagnosis and treatment for 2019-nCoV infected pneumonia (version 7). 7 ed 2020. Available from: http://www.nhc.gov.cn/zz/zyjyzs/202003/46e9294a7ddf4c80dc7f5912e1b989.shtml.

70. Li QQ, Zhao J, Tu ZT, Li JB, Liu QQ, Shi LQ, et al. Treating influenza patients of wind-heat affecting Fei syndrome by jinhua qinggan granule: a double-blinded randomized control trial. *Chin J Integr Med 2013*:33:1631–5.

71. Tao ZG, Yang YX, Shi WN, Xue MM, Yang WQ, Song ZJ, et al. Complementary and alternative medicine is expected to make greater contribution in controlling the prevalence of influenza. *Biosci Trends* 2013;7:253–6.

72. Tao Z, Gao J, Zhang G, Xue M, Yang W, Tong C, et al. Shufeng Jiedu Capsule protect against acute lung injury by suppressing the MAPK/NF-kappab pathway. *Biosci Trends* 2014;8:45–51.

73. Yuan Y, Liao Q, Xue M, Shi Y, Rong L, Song Z, et al. Shufeng Jiedu capsules alleviate lipopolysaccharide-induced acute lung inflammatory injury via activation of GPR18 by verbenalin. *Cell Physiol Biochem* 2018;50:629–39.

74. Song J, Zhang F, Tang S, Liu X, Gao Y, Lu P, et al. A module analysis approach to investigate molecular mechanism of TCM formula: a trial on Shu-feng-jie-du formula. *Evid Based Complement Alternat Med*:2013;7:31370.

75. Wang P, Song Y, Liu Z, Wang H, Zheng W, Liu S, et al. Xuebijing injection in the treatment of severe pneumonia: study protocol for a randomized controlled trial. *Trials* 2016;17:142.

76. Fei YX, Zhao B, Yin QY, Qiu YY, Ren GH, Wang BW, et al. Ma Xing Shi Gan decoction attenuates PM2.5 induced lung injury via inhibiting HMGBl/TLR4/NFkappab signal pathway in rat. *Front Pharmacol 2019*:10.1361.

77. Gao W, Li JY, Tang Y, Zhuang CL, Li B, Wang SG, et al. Experiment study on Ma-Xing-Shi-Gan-Tang (MXSGT) and its decomposed recipes on anti-influenza virus A in vitro. *Nature Preceding* 2008;3. Available from: https://doi.org/10.1038/npre.2008.2260.1.

78. Zhang H, Chen Q, Zhou W, Gao S, Lin H, Ye S, et al. Chinese medicine injection shuanghuanglian for treatment of acute upper respiratory tract infection: a systematic review of randomized controlled trials. *Evid Based Complement Alternat Med*:2013;2013:987326.

79. Tang Y, Wang Z, Hua C, Guo X, Yang G, Wang M, et al. Antiviral effects of Shuanghuanglian injection powder against influenza A virus HSNI in vitro and in vivo. *Microb Pathog* 2018;121:318–24.

80. Fu YJ, Yan YQ, Qin HQ, Wu S, Shi SS, Zheng X, et al. Effects of different principles of traditional Chinese medicine treatment on TLR7/NF-kappab signaling pathway in influenza virus infected mice. *Chin Med 2018*:13:42.

81. Liu LS, Lei N, Lin Q, Wang WL, Yan HW, Duan XH. The effects and mechanism of Yinqiao Powder on upper respiratory tract infection. *Int J Biotechnol Wellness Ind* 2015;4:57–60.

82. Tortorici MA, Walls AC, Lang Y, Wang C, Li Z, Koehn D, et al. Structural basis for human coronavirus attachment to sialic acid receptors. *Nat Struct Mol Biol* 2019;26:481–9.

83. Huishwit RJ, de Haan CA, Bosch BJ. Coronavirus spike protein and tropism changes. *Adv Virus Res* 2016;96:29–57.

84. Walls AC, Tortorici MA, Snijder J, Xiong X, Bosch BJ, Rey FA, et al. Tectonic conformational changes of a coronavirus spike glycoprotein promote membrane fusion. *Proc Natl Acad Sci USA* 2017;114:11157–62.

85. Schwarz S, Wang K, Yu WJ, Sun B, Schwarz W. Emodin inhibits current through SARS-associated coronavirus 3a protein. *Antivir Res* 2011;90:64–9.

86. Durai P, Batool M, Shah M, Choi S. Middle East respiratory syndrome coronavirus: transmission, virology and therapeutic targeting to aid in outbreak control. *Exp Mol Med* 2015;47:e181.

87. Ratia K, Killianski A, Baez-Santos YM, Baker SC, Mesecar A. Structural basis for the ubiquitin-linkage specificity and delISGylating activity of SARS-CoV papain-like protease. *PLoS Pathog* 2014;10:e1004113.

88. Sulea T, Lindner HA. Purisma EO, Menard R. DeubiQinatin, a new function of the severe acute respiratory syndrome coronavirus papain-like protease?. *J Virol* 2005;79:4550–1.

89. Baez-Santos YM, St John SE, Mesecar AD. The SARS-coronavirus papain-like protease: structure, function and inhibition by designed antiviral compounds. *Antivir Res* 2015;115:21–38.

90. Lin CW, Tsai FJ, Tsai CH, Lai CC, Wan L, Ho TY, et al. Anti-SARS coronavirus 3C-like protease effects of Isatis indigotica root and planted phenolic compounds. *Antivir Res* 2005;68:36–42.

91. Ganeshpurkar A, Gutt G, Singh SK. RNA-dependent RNA polymerases and their emerging roles in antiviral therapy. In: Gupta Satya, editor. *Viral polymerases: structures, functions, and roles as antiviral drug targets*. New York: Academic Press; 2019. p.1–42.

92. Lau KM, Lee KM, Koon CM, Cheung CS, Lau CP, Ho HM, et al. Immunomodulatory and anti-SARS activities of *Houttuynia cordata*. *J Ethnopharmacol* 2008;118:79–85.

93. Cong Y, Kriegenburg F, de Haan CAM, Reggiori F. Coronavirus nucleocapsid proteins assemble constitutively in high molecular oligomers. *Sci Rep* 2017;7:3540.

94. Abouge JO, Yew CW, Ng OW, Monteil VM, Mirazimi A, Tan YJ. Overexpression of the nucleocapsid protein of Middle East respiratory syndrome coronavirus up-regulates CXCL10. *Biosci Rep* 2018;38:BSR20181059.

95. Wang LL, Shi DL, Gu HY, Zheng MZ, Hu J, Song XH, et al. Resveratrol attenuates inflammatory hyperalgesia by inhibiting glial activation in mice spinal cords. *Mol Med Rep* 2016;13:4051–7.

96. Kimbrough CW, Lakshmanan J, Mathiesen PJ, Woeste M, Gentile A, Benns MV, et al. Resveratrol decreases nitric oxide production by hepatocytes during inflammation. *Surgery* 2015;158:1095–101.

97. Zulueta A, Caretti A, Signorelli P, Ghidoni R. Resveratrol: a potential challenger against gastric cancer. *World J Gastroenterol* 2015;21:10656–43.

98. Toth P, Tarantini S, Tucsek Z, Ashpole NM, Sosnowska D, Gautam T, et al. Resveratrol treatment rescues neurovascular coupling in aged mice: role of improved cerebromicrovascular endothelial function and downregulation of NADPH oxidase. *Biosci Rep* 2014;306:579–85.

99. Gliemann L, Nyberg M, Hellsten Y. Effects of exercise training and resveratrol on vascular health in aging. *Free Radic Biol Med* 2016;98:165–76.

100. Jang KJ, Jeong S, Kang DY, Sp N, Yang YM, Kim DE. A high ATP concentration enhances the cooperative translocation of the SARS coronavirus helicase nsp13 in the unwinding of duplex RNA. *Sci Rep* 2020;10:44811.

101. Dong N, Yang X, Ye L, Chen K, Chan EW-C, Yang M, et al. Genomic and protein structure modelling analysis depicts the origin and pathogenicity of 2019-nCoV, a new coronavirus which caused a
pneumonia outbreak in Wuhan, China. F1000Research 2020;9.

102. Morse JS, Lalonde T, Xu S, Liu WR. Learning from the past: possible urgent prevention and treatment options for severe acute respiratory infections caused by 2019-nCoV. Chembiochem 2020;21:730–8.

103. Li G, De Clercq E. Therapeutic options for the 2019 novel coronavirus (2019-nCoV). Nat Rev Drug Discov 2020;19:149–50.

104. Wu F, Zhao S, Yu B, Chen YM, Wang W, Song ZG, et al. A new coronavirus associated with human respiratory disease in China. Nature 2020;579:265–9.

105. Zhang YZ, Holmes EC. A genomic perspective on the origin and transmission of COVID-19. Lancet Infect Dis 2020;20:1037–43.

106. Hope MD, Raptis CA, Shah A, Hammer MM, Henry TS. A role for corticosteroids in COVID-19 and other severe acute respiratory infections caused by 2019-nCoV. Lancet 2020;395:1189–90.

107. Flahault A. COVID-19 cacophony: is there any orchestra conductor?. Lancet 2020;395:1037.

108. Mehta P, McAuley DF, Brown M, Sanchez E, Tattersall RS, Manson JJ, et al. COVID-19: consider cytokine storm syndromes and immunosuppression. Lancet 2020;395:1033–4.

109. Seguin A, Galicier L, Boutboul D, Lemiale V, Azoulay E. Pulmonary involvement in patients with hemophagocytic lymphohistiocytosis. Chest 2016;149:1294–301.

110. Wu T, Yang X, Zeng X, Poole P. Traditional Chinese medicine in the treatment of acute respiratory tract infections. Respir Med 2008;102:1093–8.

111. Sun X, Zeng H, Wang Q, Yu Q, Wu J, Feng Y, et al. Glycyrrhizin ameliorates inflammatory pain by inhibiting microglial activation-mediated inflammatory response via blockage of the HMGB1-TLR4-NF-κB pathway. Exp Cell Res 2018;369:112–9.

112. Zhu T, Zhang W, Feng SJ, Yu HP. Emodin suppresses LPS-induced inflammation in RAW264.7 cells through a PPAR gamma-dependent pathway. Int Immunopharm 2016;34:16–24.

113. Chen YC, Shen SC, Lee WR, Hsu FL, Lin HY, Ko CH, et al. Emodin induces apoptosis in human promyeloleukemic HL-60 cells accompanied by activation of caspase 3 cascade but independent of reactive oxygen species production. Biochem Pharmacol 2002;64:1713–24.

114. Pandith H, Zhang XB, Thongpraditchote S, Wongkrajang Y, Gritsanapan W, Baek SJ. Effect of Siam weed extract and its bioactive component scutellarein tetramethyl ether on anti-inflammatory activity through NF-kappa B pathway. J Ethnopharmacol 2013;147:434–41.