The airway in face, head and neck injury

Milner A
Department of Anaesthesia, Pretoria Academic Hospital, Pretoria

Correspondence to: Prof Analee Milner, e-mail: amil@iafrica.com

INTRODUCTION
Penetrating neck injury was first described 5 000 years ago on a piece of papyrus. Hugh Munro closed a longitudinal tracheal laceration in 1792 by using external straps. Horizontal lesions were sutured over a stent and the patient's neck remained in the flexed position while the wound was allowed to heal. The first successful management of a penetrating vascular injury in the neck was achieved in 1952 (with no resultant stroke or hemiplegia), and the first bronchial laceration was repaired in 1945. Current mortality rates for penetrating neck injuries are quoted as ~2 to 6%. In the wars of the twentieth century, ending with the Vietnam War, the incidence was 7 to 15%. Mortality rates from the massive aspiration of blood, related cervicothoracic vascular injuries and other injured organs, can be as high as 15 to 30%. The highest mortality occurs with gunshot injuries (35%), followed by blunt trauma (25%) and stab wounds of the upper airway (22%).

ANATOMY OF THE AIRWAY
The airway stretches from the lips and nose via the oropharynx down to the larynx, the trachea and finally the main bronchi. Any pathology to these structures, as well as to the surrounding structures, has the potential to obstruct the airway. The anatomy of the neck is unique, with multiple vital structures concentrated in a small anatomic area, yet generally unprotected by bone or dense muscular coverings. The anterior triangle contains all the vital structures of the neck. Its contents are as follows:
- Respiratory: larynx and trachea
- Digestive: pharynx and oesophagus
- Vascular: jugular vein and carotid artery
- Neurological: cranial nerves and cervical nerves
- Endocrine: thyroid and parathyroid glands

The anterior triangle is divided into three zones, defined by horizontal planes (see Figure 1):
- **Zone I**: Clavicle to the cricoid cartilage: injuries here have the highest mortality.
- **Zone II**: Cricoid cartilage to the angle of the jaw: most common zone to be injured.
- **Zone III**: Angle of the mandible to the base of the skull: surgical exposure is very difficult in this zone.

Different zones of entry mandate different protocols for evaluation and management. In this respect, facial injuries fall under Zone 3.

Facial injuries can be classified as follows (Figure 2):
- **Zone a**: Midface injuries: superior orbital rim superiorly to the oral commissure inferiorly, and to the external auditory meatus laterally.
- **Zone b**: Mandible injuries
- **Zone c**: A combination of a and b

The laryngotracheal junction (at the level of C6) is the most important anatomical area. The cricoid cartilage joins the trachea, the pharynx joins the oesophagus and in addition the recurrent laryngeal nerve runs between the trachea and oesophagus to enter the larynx through the cricothyroid membrane. The connective tissue in this area is relatively weak.

The recurrent laryngeal nerve is the motor nerve to the intrinsic muscles of the larynx and sensation below the vocal cords. It penetrates between the cricoid and thyroid cartilages, and is frequently damaged in patients with laryngeal injury.

Classification of airway trauma
The overall incidence of airway trauma is rare (0.5%). The exact incidence is, however, difficult to determine, as the more serious
injuries are usually fatal and might only be detected on autopsy. Factors that contribute to the low survival and inability to detect injuries to the larynx and trachea are:

- Mechanism of injury
- Injury site
- Time until diagnosis
- Additional injuries
- Interventions undertaken, i.e. endotracheal intubation with undiagnosed laryngotracheal injury
- Age of patient

Airway trauma can be broadly classified into external airway trauma and internal airway trauma (See Frame 1).

Frame 1: Classification of airway trauma

External Blunt injuries	Sharp penetrating injuries
Assault	Stab wounds
MVA, safety belts and airbags	Gunshots – high and low velocity
Sport	-
Strangulation and hanging (results in thyroid and hyoid fractures)	-

Internal a. Iatrogenic injuries	b. Burns, inhalation of noxious or hot gas fumes
Diagnostic procedures	-
Surgical intervention/laser: thyroideectomy and recurrent laryngeal nerve	-
Percutaneous tracheostomy or tracheostomy	-
Penetrating trauma, e.g. from intravascular lines	-

Internal a. Iatrogenic injuries	b. Burns, inhalation of noxious or hot gas fumes
Diagnostic procedures	-
Surgical intervention/laser: thyroideectomy and recurrent laryngeal nerve	-
Percutaneous tracheostomy or tracheostomy	-
Penetrating trauma, e.g. from intravascular lines	-

Table 1: American figures on airway trauma

Structures affected by blunt trauma in descending order of prevalence		
Cervical trachea	45%	
Larynx above the cricoid	35%	
Cricoid cartilage	15	
Other	5%	

Incidence in blunt and penetrating trauma
Thyroid cartilage
Arytenoid cartilage
Cricoid cartilage

Note: The mortality from such injuries appears to be 20 to 25%, and the incidence appears to be increasing over the past 30 years.

Mechanism of injury

Most injuries are the result of direct blows, severe flexion/extension injuries, and crush injuries to the chest. (See Frame 2)

Frame 2: Mechanisms of blunt external injuries to the airway

- **Direct blows**
 - More energy is transferred over a broader area during blunt trauma. As a result, injury to the airway may occur despite no closely associated injuries. Direct blows can be categorised as high-energy (e.g. auto-pedestrian) and low-energy transfer (blunt assault, bicycle accidents).
 - May cause injury to the cartilage of the larynx.
 - Blunt injury to the anterior cervical structures is typically the result of a rapid deceleration, neck extension and inertial impact of the steering column or dashboard during a motor vehicle accident (MVA).
 - Laryngeal impact between the vertebral bodies and an anterior object results in high-energy shearing of the laryngeal ligament or arytenoid cartilages. This can result in laryngeal crush injuries or laryngotracheal separation (see classification in Figure 4).
 - Interruption of venous and lymphatic drainage from complete laryngotracheal separation can result in significant airway compromise, secondary to stasis and oedema.
 - Damage to the cervical spine occurs in 10 to 50% of cases.
 - Always assume that such an injury is present, and avoid flexion/extension of the neck until it has been excluded.
 - Many of these patients may have associated head injuries or maxillofacial injuries.
 - Cricoid cartilage fractures are associated with a high incidence of recurrent laryngeal nerve damage.
 - Damage to the neopharynx should also be ascertained.
 - Clinical features of tracheobronchial injury include:
 - dyspnoea and air leak
 - haemoptysis
 - dysphonia and air leak
 - 10% of patients have no clinical or radiological signs

- **Severe flexion/extension injuries**
 - These are commonly associated with tracheal tears and laryngotracheal separation, and also with paramedian vertical fracture of larynx and trachea.
 - Signs: stridor, subcutaneous emphysema, haemoptysis, haematoma, ecchymosis, laryngeal tenderness, flattened thyroid dashboard contour, neck pain and crepitus over the laryngeal shield.
 - Hyperextension usually results from acute deceleration in an unrestrained front seat driver — “the paddled dashboard syndrome”

- **Crush injuries to the chest**
 - Anterior-posterior crush injuries result in a rapid rise in intrathoracic pressure against a closed glottis, causing tracheal and bronchial disruption. The trachea tears as it is crushed between the manubrium and vertebral column. Air cannot escape as the glottis closes reflexly. There is a marked increase in intraluminal pressure. La Place’s Law states that the largest increase in wall tension occurs in the larger airways. Vertical tears in the membranous portion of the trachea or bronchi occur, usually 2.5 cm from the trachea. The right main bronchus is affected more often because the left bronchus is protected by the aorta. Causes of these injuries include:
 - MVA’s where the patient is pinned between the car seat and the steering wheel or ejected and pinned beneath the wreckage.
 - Slippage of car jacks.
 - Construction site accidents.

LARYNGOTRACHEAL AND LARYNGEAL INJURIES

The classification and management are summarised in table II. The Legacy Emanuel Hospital and Health Centre laryngeal injury classification is commonly used, and is summarised in table III.

EXTERNAL PENETRATING AIRWAY TRAUMA

Incidence

- In the overseas literature, these injuries appear to be relatively uncommon (4,5%)(fewer than three cases per year per reported centre).
- Incidence usually increases with an upsurge in crime.
Table II: Classification and management of laryngotracheal injuries

Group 1	Classification	Management
Minor endolaryngeal haematoma or laceration	Minor lacerations; No detectable fracture; Close	Indirect laryngoscopy (IL) or flexible nasopharyngoscopy (FN) in casualty,
without detectable fracture followed by CT	observation; CT scan	with repeat IL and FN if necessary
scan.		

Group 2	Oedema, haematoma, minor mucosal disruption	IL or FN in casualty, followed by:
without exposed cartilage, non-displaced	Non-displaced fracture; Direct laryngoscopy and	Immediate tracheostomy. Direct laryngoscopy and oesophagoscopy. CT scan
fractures noted on CT scan	oesophagoscopy.	of larynx

| Group 3 | Massive oedema, mucosal tears, exposed cartilage, | Immediate tracheostomy, direct laryngoscopy and oesophagoscopy followed |
|--| cord immobility, displaced fractures | by exploration |

| Group 4 | Same as group 3, with more than two fracture lines, | Same as group 3 |
|--| or massive trauma to laryngeal mucosa | |

| Group 5 | Complete laryngotracheal separation | Immediate tracheostomy, direct laryngoscopy and oesophagoscopy followed by |
|--| | exploration |

Table III: LEHHC* laryngeal injury classification

Stage 1	Clinical presentation	Diagnostic findings	Management
	Minor airway symptoms	Minor lacerations; Small lacerations;	Observation; Humidified air; Head of bed elevation
	~ voice changes	No detectable fractures	

Stage 2*	Airway compromise,	Oedema/haematoma; Minor mucosal disruption	Direct laryngoscopy; +/- ORIF
	~ voice changes	No cartilage exposure	
	Subcutaneous emphysema		

Stage 3*	Airway compromise	Massive oedema; Mucosal tears; Class 2 side	Direct laryngoscopy; Exploration/ORIF
	Palpable laryngeal	effects; Exposed cartilage; Vocal cord	
	fracture	immobility	
	Subcutaneous		
	emphysema		
	Voice changes		

Stage 4*	Airway compromise	Massive oedema; Mucosal tears; Multiple	Direct laryngoscopy; Exploration/ORIF; Consider stent
	Palpable laryngeal	displaced fractures; Skeletal instability;	
	fracture	Exposed cartilage; Vocal cord immobility	
	Subcutaneous		
	emphysema		
	Voice changes		

Mechanism of injury

a. Gunshot wounds

In the USA, one in four deaths in the age group 15 to 24 years is related to firearms. High-velocity wounds are associated with extensive tissue loss and high morbidity, while low-velocity bullets tend to cause less damage to the surrounding tissue. Kinetic energy (KE) can be calculated as follows:

\[KE = MV^2 \]

V = velocity, (therefore the higher the velocity the higher the kinetic energy)
M = mass

The degree of airway management required does not correlate with the entrance wound or type of weapon used. Shotgun injuries are divided into close range (7 m) (~ high velocity) and long range. Yaw from bullet is important, as it causes tumbling of the bullet as it penetrates the tissue. Cavitation causes perpendicular shock waves sent out by the missile. This may cause compression of the surrounding tissues. The wounds created may vary from superficial skin damage to transcervical injuries with extensive damage such as blindness, mandibular malunion, cardiovascular accident, quadriplegia, upper extremity weakness, Brown-Sequard syndrome, facial nerve weakness and oral nasal fistula.

Transcervical gunshots cause:

- Vascular injuries in 48% of cases – mostly requires airway management
- Spinal cord injury in 24% of cases
- Mandible and maxillary fractures in 9% of cases. None appear to be Le Fort type fractures
- Laryngeal and pharyngeal injuries in 2% of cases

b. Stab wounds

- These wounds are inflicted by knives and other instruments such as screwdrivers
• Knife wounds cause minimal damage to the areas surrounding the path of the knife.
• Blunt instruments tear, and the repair is more difficult.
• All instruments should always be considered to be infected.
• Bullingham et al. described a patient impaled on a spike of a railing who was intubated fibre-optically.
• Joly et al. described a feathered arrow that penetrated the cranium and face. Fibre-optic intubation was utilised.
• Stab wounds most commonly injure the trachea. The larynx is injured in approximately 1/3 of cases and the cervical trachea in 2/3.
• Death is usually associated with a vascular injury.

Associated injuries
• Oesophageal damage in 25% of cases.
• Vascular damage.
• Thoracic injuries.

In the patient’s own words...

Bullingham et al. described a patient impaled on a spike of a railing who was intubated fibre-optically.

Compounding the difficulty to evaluate and manage penetrating neck wounds is the complicated anatomy of the area, in which a dense concentration of vital vascular, aerodigestive and central nervous system structures are located within a very small space.

INTERNAL IATROGENIC AIRWAY INJURIES

The following are causes of tracheal trauma:
• Endotracheal tube and tracheostomy.
• Cricotracheal (scarring) of the subglottic area, with resultant stenosis especially prevalent in the paediatric population, where the subglottis is the narrowest portion of the airway.
• Tracheo-oesophageal fistulas.
• Tracheal erosions.
• Trachea-innominate artery fistula.
• Bronchial rupture.

Trauma caused by endotracheal intubation

The overall incidence of endotracheal intubation trauma is thought to be 0.1%. The most common indication for tracheal resection and reconstruction is damage caused by an endotracheal intubation. Although low-pressure, high-volume cuffs have been around for 20 years, the incidence of tracheal stenosis from high pressures in cuffs has not disappeared. Note that injury may occur even after a brief period of intubation. The perfusion pressure in the trachea dictates how long the tracheal mucosa can tolerate excessive pressure. After inhalational burns, cuff pressures are critical to ensure that no tracheal damage occurs.

A study at the Massachusetts General Hospital looked at 208 patients in this category:
• 185 had tracheostomy injuries, 50% were from the cuff.
• 25 had injuries from endotracheal intubation, and 22 of these were from overinflation of the cuff, i.e. 95%.

The endotracheal tube is more likely to move, and the cuff tends to be inflated all the time, whereas the tracheostomy is less likely to move and the cuff usually is uninflated.

Mechanisms of injury
• The endotracheal tube leads to abrasions which lead to erosion of the tracheal lining. As the patient moves, shearing of the lining from either the cuff or the endotracheal tube itself, leads to disruption of the mucosal membrane, allowing bacterial colonisation. Granulation tissue formation, perichondritis or cicatricial scarring is the next step. Perichondritis may lead to tracheal malacia.
• The above pathology can occur any time, from after one day to several months.
• Possible factors in the development of stenosis include:
 a) Traumatic intubation.
 b) Patient susceptibility to infection secondary to immune or diabetic status.
 c) Type of sedation used during intubation.
 d) Length of intubation.
 e) Size of endotracheal tube.

The most common site for stenosis is the subglottic area or posterior laryngeal area.

The exact role of the gastro-oesophageal reflux is unknown, but it presumed to be significant. Acid or bile accumulation bathing the posterior glottis or subglottis aggravates mucosal injury by stimulating inflammation and predisposing to bacterial colonisation.

Tracheostomy may lead to granulation tissue formation and scarring and trachomalacia at the stomal site or the distal tip of the tracheotomy tube.

Injuries caused by laryngeal mask airway placement

Cuff pressures in laryngeal masks can increase when N2O is used over a three-hour period. Laryngeal nerve, hypoglossal nerve and recurrent laryngeal nerve injury have been reported.

Displacement of arytenoid cartilage has also been described. There is also a report of an inadvertent pharyngeal tear after an easy LMA insertion, causing aspiration of a large amount of blood. It became extremely difficult to ventilate the patient until she coughed out a blood cast of her entire tracheobronchial tree. The presence of blood in the pharynx after LMA insertion is not uncommon. The classic LMA also does not protect against lower airway soiling. This usually happens when the mask becomes displaced. The LMA causes more sore throat and dysphagia, but less jaw pain than the face mask.

Airway injury during anaesthesia

Airways may be traumatised during routine intubations. The common injuries that have reached the ASA closed claims database are as follows:
• Pharyngoesophageal perforation.
 - Early diagnosis is difficult (approximately 25% die).
 - Usually due to difficult intubation: obesity, cervical arthritis, improper head positioning, poor muscle relaxation and haste.
 - Cricoid pressure, long-term indwelling nasogastric catheter.
 - Rigid or flexible stylet (even if the tip was not exposed).
• Older than 60 years.
• Female gender.
• Emergency intubation.
• Intubation by inexperienced personnel.

Laryngeal and tracheal injuries
• Abrasion of mucosa by movement of the endotracheal tube.
• Pressure on the posterior laryngeal mucosa.
• Especially tracheal perforation.
• Temporomandibular joint injuries.
 - Female, young to middle-aged.
 - May be due to underlying temporomandibular joint pathology.

INTERNAL BURN INJURIES

These injuries have also been seen with the inhalation of hot steam, gas or other noxious fumes of incomplete combustion. Injuries occur primarily to the larynx (supraglottis, glottis and upper cervical trachea), and seldom lower. Twenty per cent of patients admitted to regional burn centres have inhalation injury. This has adverse effects on both gas exchange and haemodynamics. The diagnosis depends on history and examination and the anaesthetist should pay attention to the following:
• Presence of carbonated debris in mouth or sputum, singled
 nasal hairs and facial burns
• CXR and bronchoscopy are gold standards.
• Radioisotope imaging, as well as tracheobronchial lavage and
cytology have been used to diagnose.

Mechanisms of injury
In patients subjected to direct burning of the upper airway with
resultant mucosal oedema and airway obstruction, the swelling is
exacerbated by the diffuse capillary leak associated with a
cutaneous burn. The major airways are demuded of their normal
mucosal layer, and the ciliary transport mechanism is thereby
impaired. The small airways become obstructed by debris and
accumulated secretions. Alveolar flooding occurs due to disruption
of alveolar epithelium from toxic products. Clinically important
problems that predictably occur include:
• Loss of airway patency due to mucosal oedema
• Bronchospasm
• Intrapulmonary shunting from small airway occlusion
• Diminished compliance, secondary to alveolar flooding and
collapse
• Pneumonia secondary to loss of ciliary clearance
• Respiratory failure secondary to a combination of the above
 factors
• Bronchiectasis and variable degrees of obstructive and
 restrictive defects
• Necrosis and scar formation occur and deform the affected
 area.
• Early intubation and tracheostomy are essential in most cases
due to the development of laryngeal oedema. (Remember the
intubation and/or tracheostomy can produce additional
injury)
• Heliox can be used in children in an attempt to avoid
intubation. However, subsequent intubation in those who
fail on heliox may be even more difficult. Therefore it is
probably wiser to carefully intubate a child with progressive
stridor.

DIAGNOSIS OF AIRWAY TRAUMA

Physical findings
Airway trauma may presents with a wide spectrum of signs and
symptomatology. It may have no visible sign of trauma (25%
have no physical evidence and manifest 24 to 48 hours later).
It is, therefore, imperative to take the following into consideration
(Table IV):
• Type of accident
• Signs of local contusion, subcutaneous emphysema
• Hoarseness, inspiratory stridor, respiratory distress
• Haemoptysis
• Pneumothorax

Table IV: Physical signs seen in patients with trauma to the
head, neck and chest

| Respiratory | • Stridor
 | Airway obstruction |
| Digestive | • Dysphagia
 | Haematemesis
 | Subcutaneous emphysema |
| Vascular | • Shock
 | Expanding haematomas
 | External haemorrhage
 | Decreased carotid pulse |
| Neurological| • Lateralising neurological deficit
 | Altered state of consciousness
 | Brachial plexus injury |

Furthermore, airway trauma may have gross signs of tissue
destruction. Thus surgical emphysema and oesophageal perforation
that is missed, may lead to mediastinitis and death.

Radiological assessment
This assessment should be sufficient to diagnose 60% of patients
with cervical airway trauma as well as fractures of the cervical
spine. Cervical mediastinal emphysema (airway disruption), disruption
of airway contours, displacement of endotracheal tube. Persistent
pneumothorax, despite properly placed intercostal drains should
alert one to airway rupture. Subtle trauma to the oesophagus can
also be diagnosed radiologically. However, definitive airway manage-
ment should not be delayed excessively, as an obstructed airway
may occur during this time. Also, patients who are dyspneic may
be unable to lie down. Thus prolonged radiological investigations
will not be applicable. Use of intravenous sedatives is not advised.
Flexion-extension X-rays may have detrimental consequences, and
may even cause avulsion of the bronchus.

Other useful radiological examinations include:
• CAT scans, which are the investigation of choice for laryngeal
 fractures
• Contrast enhanced oesophageal studies
• Computerised tomography
• MRI
• High resolution helical CAT-scanning

Note: In “tracheobronchial injury” (TBI) the ‘fallen lung sign’ is
pathognomonic. This occurs due to the loss of central anchoring
of the avulsed bronchus.

Airway management
Many patients are successfully managed with traditional techniques.
Always remember to have additional suction. A rigid bronchoscope
should always be available. Airway obstruction may be caused by the
presence of foreign material such as blood or secretions
in the trachea or larynx, laryngotracheal damage or an expanding
haematoma. In TBI, radiology and fibre-optic endoscopy should be
used in the diagnosis.

The specific technique and route of intubation
is multifactorial and depends on the patient’s
anatomy, the extent and type of injury, urgency,
the location of the patient, the skills of the airway
professional, the equipment available and the
presence of surgical colleagues.

Head trauma and cervical spine injury
Serious head injury requiring intubation usually does not present
a problem for intubation. Some care should be taken to avoid
increased increases in intracranial pressure. Use of an opiate
such as fentanyl is advocated. One should have a high index
of suspicion for cervical spine injuries and cricoid fractures.
Endotracheal intubation in these scenarios may be disastrous.
A cricoid fracture may be dislocated or may disrupt a partial
tracheal transsection, producing complete airway obstruction.
Virtually all victims of blunt trauma are immobilised on a spine
board with a cervical collar. It is essential to keep the head in
a neutral position for intubation, with a colleague maintaining
in-line mobilisation. The equipment and personnel must be
present prior to manipulation of the injured airway.

Facial trauma
Usually it is not a problem to intubate if the oral cavity is readily
accessible. Suction can be used to manage the blood in the
upper airways. Bleeding may make intubation by direct vision
with a laryngoscope or fibre-optic laryngoscope very difficult.
If the entire central face is disrupted and there is no access to
the upper airway, then tracheostomy/cricothyroidotomy is
indicated. The need for emergency airway management differs
according to both weapon type and entry site. Gunshot wounds
require early airway establishment. These patients may initially
appear to maintain their airway and then rapidly decompensate.
Nasal intubation should probably be avoided in some cases due
to a possible fractured base of the skull. One should always
look at the X-ray of the face to check for impacted bones, such
as the zygomatic arch, that may prevent mouth opening.
Anterior neck trauma

Rapid production of anaesthesia, together with the use of neuromuscular blocking agents can cause loss of the airway and the inability to give positive pressure ventilation. Blunt trauma to the neck can disrupt continuity of the airway (see cricoid fracture above), cause subcutaneous emphysema, or result in haematoma formation. As laryngeal trauma is rare due to the bony structures that protect it, diagnosis may be missed. Even when diagnosed, controversy exists as to how it should be treated. When intubating a patient with laryngeal trauma, a smaller tube should be used. Intubation failure rates can be as high as 76%, and intubation may worsen an already significant injury and create false passages. Tracheostomy is the gold standard in this scenario. Positive pressure ventilation can exacerbate air leaks and rapidly worsen symptoms from pneumomediastinum and air dissecting around the airway structure. Wherever possible, the patient should be permitted to breathe spontaneously. Flexible bronchoscopy may occlude the airway in a critical stenosis. Although limited use in trauma patients (see later), it may be useful in some patients. Awake intubation – either blind nasal or orally – may be another option. Rigid laryngoscopes and bronchoscopes are inserted, with the patient breathing spontaneously. This is especially useful when there is blood or debris present. Small doses of propofol may be necessary to supplement anaesthesia. Doses of propofol may be necessary to supplement anaesthesia. Anterior neck trauma: diagnosis and management. Anaesth Intensive Care 2002;30:145–52

SUMMARY

- Sometimes the injuries are obvious and initial management is straightforward
- Often the diagnosis is difficult. Prompt diagnosis requires a high index of suspicion and judicious use of endoscopy and radiological imaging
- Initial management may be complicated by associated head, neck and thoracic injuries
- A patient’s airway can be lost with injudicious use of sedation and physiotherapy
- Mortality rates and incidence of late complications remain high and have been related to delays in diagnosis and definitive treatment
- Open trauma to the larynx often facilitates rather than impedes intubation
- Closed injury or separation of the trachea from the larynx are much more serious. Paralysis should preferably be avoided. Plan for surgical exploration with formal tracheostomy
- Careful evaluation of each patient is essential and the management of the patient has to be individualised
- There are scenarios where tracheostomy is the only sustainable option
- Do not allow the surgeon to “scope” the trauma patient before the airway has been secured.

It is imperative to evaluate and treat each one of these cases individually.

IN CONCLUSION

Plans A, B and C must be in place. Be flexible and ready to convert to the next plan in seconds. Fibre-optic intubation in the trauma situation is not advocated for most cases for the following reasons:

- Difficulty in handling secretions and blood with limited suction
- Operator inexperience
- A degree of patient cooperation is necessary, and these patients may not be able to cooperate.

BIBLIOGRAPHY

1. Peralta R, Hurford WE. Airway trauma. International Anesthesiology Clinics 1999;Summer:111–27.
2. Davidge-Pitts KJ. Head and neck trauma: p. 628–48.
3. Cole BD, Brown DJ, Phillips DJ. Gunshot wounds to the mandible and midface: evaluation, treatment, and avoidance of complications. Otolaryngology – Head and Neck Surgery 1994;December:759–45.
4. Kendall R, Anglin D, Demetriades D. Penetrating neck trauma. Emergency Medicine Clinics of North America 1998;16(1):45–105.
5. Walls RM. Management of the difficult airway in the trauma patient. Emergency Medicine of North America 1998;16(1):45–61.
6. Mason RA, Fielder CP. Editorial. The obstructed airway in head and neck surgery. Anaesthesia 1999;54:625–8.
7. Bent JP, Silver JR, Ponsoby ES. Otolaryngology – Head and Neck Surgery 1995;September:441–9.
8. Cooney MS. Airway obstruction. The problems and its causes. Otolaryngologic Clinics of North America 1995;28:4:675–83.
9. Sheridan RL. Airway management and respiratory care of the burn patient. International Anesthesiology Clinics 1999;Summer:128–45.
10. Chen CPW, Chen PP. Tracheobronchial injury secondary to blunt chest trauma: diagnosis and management. Anaesth Intensive Care 2002;30:145–52
11. Osellato RG. The effect of nitrous oxide on laryngeal mask cuff pressure. AANA J 2000;68(5):411–4.
12. Gaylard D. Lingual nerve injury following the use of the laryngeal mask airway. Anaesth Intensive Care 1999;27(6):668.
13. Laxton CH, Kipling R. Lingual nerve paralysis following the use of the laryngeal mask airway. Anaesthesia 1996;51:869–70.
14. Lowinger D, Benjamin B, Gadd L. Recurrent nerve injury caused by the laryngeal mask airway. Anaesthesia 1994;49:786–7.
15. Norton A, Gernonpre J, Semple T. Anaesthetic Intensive Care 1999;20(2):213–5.
16. Brixacome J, et al. Pharyngo-laryngeal neck, and jaw discomfort after anaesthesia with a face mask and the laryngeal mask airway at high and low cuff volumes in males and females. Anaesthesiology 2000;94(1):26–31.
17. Domino WJ, et al. Airway injury during anaesthesia. Closed claims analysis. Anesthesiology 1991;84:1703–13.
18. Rosenberg M, et al. Aerynoid cartilage dislocation caused by a laryngeal mask airway treated with chemical splinting. Anesth Analg 1996;83:150–6.
19. Bussingham A, et al. An impaled neck. Management of difficult airway access. Anaesthesia 1994;49:886–9.
20. Jolly LM, et al. Difficult tracheal intubation as a result of penetrating cranio-facial injury by an arrow. Anaesth Analg 2002;94(1):231–2.
21. Zonies D, et al. Diagnosis and management of laryngotracheal injuries. Intensive Care 2004;Winter:161-6.
22. Verschueren DMD, et al. Management of laryngo-tracheal injuries associated with craniomaxillofacial trauma. Journal of Oral and Maxillofacial Surgery 2006;64:42:213–14.
23. Nelson LA. Airway trauma. International Anesthesiology Clinics 2007;49(3):99–118.