Antibacterial activities of the methanol extracts of ten Cameroonian vegetables against Gram-negative multidrug-resistant bacteria

Jaurès AK Noumedem, Marius Mihasan, Stephen T Lacmata, Marius Stefan, Jules R Kuiate and Victor Kuete

Abstract

Background: Many edible plants are used in Cameroon since ancient time to control microbial infections. This study was designed at evaluating the antibacterial activities of the methanol extracts of ten Cameroonian vegetables against a panel of twenty nine Gram negative bacteria including multi-drug resistant (MDR) strains.

Methods: The broth microdilution method was used to determine the Minimal Inhibitory Concentrations (MIC) and the Minimal Bactericidal Concentrations (MBC) of the studied extracts. When chloramphenicol was used as a reference antibiotic, the MICs were also determined in the presence of Phenylalanine-Arginine β-Naphtylamide (PAβN), an efflux pumps inhibitor (EPI). The phytochemical screening of the extracts was performed using standard methods.

Results: All tested extracts exhibited antibacterial activities, with the MIC values varying from 128 to 1024 mg/L. The studied extracts showed large spectra of action, those from L. sativa, S. edule, C. pepo and S. nigrum being active on all the 29 bacterial strains tested meanwhile those from Amaranthus hybridus, Vernonia hymenolepis, Lactuca carpensis and Manihot esculenta were active on 96.55% of the strains used. The plant extracts were assessed for the presence of large classes of secondary metabolites: alkaloids, anthocyanins, anthraquinones, flavonoids, phenols, saponins, steroids, tannins and triterpenes. Each studied plant extract was found to contain compounds belonging to at least two of the above mentioned classes.

Conclusion: These results confirm the traditional claims and provide promising baseline information for the potential use of the tested vegetables in the fight against bacterial infections involving MDR phenotypes.

Keywords: Antibacterial, Gram-negative bacteria, Multi-drug resistant, Extract, Vegetable

Background

Infectious diseases are still a major health concern, accounting for 41% of the global disease burden measured in terms of Disability-Adjusted Life Years (DALYS), close to all noninfectious diseases (43%) and far more than injuries (16%) [1]. One of the main causes of this problem is the widespread emergence of acquired bacterial resistance to antibiotics in such a way that the world is facing today, a serious threat to global public health [2] in the form of not only epidemics, but also pandemics of antibiotic resistance [3]. Several mechanisms have been accounted for, but active efflux plays an important role in this phenomenon [4]. The accumulation of different antibiotic resistance mechanisms within the same strains has led to the appearance of the so called superbugs, or multi-drug resistant bacteria [2]. Due to this problem of resistance to antibiotics, attention is now being shifted towards biologically active components isolated from plant species commonly used as herbal medicine, as they may offer a new source of antibacterial, antifungal and antiviral activities [5]. The potential antimicrobial properties of plants are related to their ability to synthesize several secondary metabolites of relatively complex structures possessing antimicrobial activities [6,7]. Among medicinal plants, vegetables associated to non or less-toxic effects have been shown to possess many medicinal properties [8,9] including antibacterial effects [3]. The present work was therefore designed to investigate the antibacterial effects of ten...
Cameroonian vegetables namely *Amaranthus hybridus* Linn (Amarantaceae), *Vernonia hymenolepis* (H.F.) Hook, *Lactuca sativa* Linn. and *Lactuca capensis* Thumb. (Asteraceae), *Manihot esculenta* Crantz (Euphorbiaceae), *Phaseolus vulgaris* Linn (Fabaceae), *Cucurbita pepo* Linn and *Sechium edule* (Jacq) Sw. (Cucurbitaceae), *Solanium nigrum* Linn. and *Capsicum frutescens* L. (Solanaceae) against MDR bacteria expressing active efflux pumps

Methods

Plant material and extraction

The collected plant materials used in this study were harvested from Dschang, West Region of Cameroon in June 2010 and included the leaves of *Amaranthus hybridus*, *Vernonia hymenolepis*, *Lactuca sativa*, *Lactuca capensis*, *Sechium edule*, *Manihot esculenta*, *Cucurbita pepo*, *Solanium nigrum*, the cloues of the Green bean (*Phaseolus vulgaris*), and the fruits of *Capsicum frutescens*. These plants were identified by Mr Victor Nana of the National Herbarium (Yaoundé-Cameroon) where all the voucher specimens were deposited with the corresponding reference number (Table 1).

Air dried and powdered sample (1 kg) of each plant was extracted with methanol (MeOH) for 48 h at room temperature (25°C), using Whatman Grade No.1 filter paper and concentrated under reduced pressure, then dried to give the crude extracts. All extracts were stored at 4°C until further use.

Preliminary phytochemical investigations

The major secondary metabolites classes such as alkaloids, anthocyanins, anthaquinones, flavonoids, phenols, saponins, tannins, sterols and triterpenes were screened according to the common phytochemical methods previously described by Harbone, 1973 [70].

Bacterial strains and culture media

The studied bacteria included both reference (from the American Type Culture Collection) and clinical strains of *Providencia stuartii*, *Pseudomonas aeruginosa*, *K. pneumoniae*, *Escherichia coli*, *Enterobacter aerogenes* and *Enterobacter cloacae* (See Additional file 1: Table S1 for their features). These clinical strains were obtained from the laboratory “Transporteurs Membranaires, Chimiorésistance et Drug Design, UMR-MD1, IFR 88, UFRs de Médecine et de Pharmacie, Marseille, France”.

All strains were maintained in Nutrient Broth at 4°C and activated on Mueller Hinton Agar plates 24 h prior to any antimicrobial test. Mueller Hinton Broth (MHB) was used for all antibacterial assays.

Bacterial susceptibility testing

The MICs were determined using the rapid INT colorimetric assay [71,72]. Briefly, test samples were first emulsified in DMSO/MHB (50:50 V/V). The solution obtained was then added to MHB, and serially diluted two fold (in a 96- wells microplate). One hundred microlitres (100 μl) of inoculum (1.5 × 10⁶ CFU/ml) prepared in MHB was then added. The plate was covered with a sterile plate sealer, then agitated to mix the contents of the wells using a shaker and incubated at 37°C for 18 h. The final concentration of DMSO was 2.5% and did not affected the microbial growth. Wells containing MHB, 100 μl of inoculum and DMSO at a final concentration of 2.5% served as negative control. The MICs of samples were detected after 18 h incubation at 37°C, following addition of 40 μl of a 0.2 mg/ml INT solution and incubation at 37°C for 30 minutes. Viable bacteria reduce this yellow dye to pink. MIC was defined as the lowest sample concentration that exhibited complete inhibition of microbial growth and then prevented this change [73]. The MBC was determined by adding 50 μl of the suspensions from the wells, which did not show any growth after incubation during MIC assays, to 150 μl of fresh broth. These suspensions were re-incubated at 37°C for 48 hours. The MBC was determined as the lowest concentration of extract which completely inhibited the growth of bacteria [74]. Chloramphenicol, used as reference antibiotic, was tested also in the presence of the PAβN, at 30 mg/L final concentration to confirm the resistance of bacterial strains.

Results

Chemical composition of the vegetable extracts

The results of the qualitative analysis showed that each of the studied plant extract contains at least two classes of secondary metabolites such as alkaloids, anthocyanins, anthaquinones, flavonoids, phenols, saponins, tannins, sterols and triterpenes (Table 2). Only the extract from *A. hybridus* contains anthocyanins, while triterpenes were found both in this extract as well as that of *C. frutescens*. The extract from *C. frutescens* as well as those from *S. edule* and *M. esculenta* contained the highest number of classes of the studied secondary metabolites (five). Alkaloids and phenols were present in all vegetable extracts except that of *A. hybridus*.

Antibacterial activity of the vegetable extracts

The data summarized in Table 3 show the antibacterial activities of the tested extracts on a panel of twenty-nine Gram-negative bacteria. All extracts were active on at least twelve bacterial strains with MIC ≤ 1024 μg/mL. The extract of *C. frutescens* showed inhibitory activities against 16 (55.17%) of the 29 tested bacteria whilst that of *P. vulgaris* inhibited the growth of 12/29 (41.38%) pathogens (narrowest spectrum). None of these two extracts showed any antibacterial activity against *Pseudomonas* species, but were active against at least one bacterial strain of other studied genus. Extracts from *L. sativa*, *S. edule*, *C. pepo*...
and *S. nigrum* displayed the largest spectra of activity, their inhibitory effects being observed on all the 29 Gram-negative bacteria (100% of activity). The extracts from *A. hybridus*, *V. hymenolepis*, *L. sativa*, *L. carpensis* and *M. esculenta* also exhibited large spectrum of activity as they were active on 28/29 tested bacteria. The top eight active extracts, with large spectra of activity, showed MIC values generally ranging from 128 to 512 μg/ml. These MIC values were in some of the cases better than those of chloramphenicol (Table 3). This was the case with the extract from *V. hymenolepis* (MIC of 128 μg/ml) against *E. aerogenes* EA27. The extracts from *A. hybridus*, *S. edule* and *C. pepo* as well as those from *L. carpensis* and *M. esculenta* were more active than chloramphenicol on at least one of the tested MDR bacteria. The activity of chloramphenicol increased in the presence of PAβN in the majority of the tested bacteria (Table 3). The best activity was obtained with the extract from *A. hybridus* with the lowest MIC value of 128 μg/ml observed against 7/29 (25%) tested bacteria. The extracts from *P. vulgaris* and *C. frutescens* did not show any MBC value at up to 1024 μg/ml. Concerning the eight other vegetable extracts, the MBC results showed values equal to or below 1024 μg/ml in many cases. The extract from *C. pepo* leaves showed the best MBC spectrum with the values below to 1024 μg/ml recorded on 58,62% (17/29) of the studied microorganisms, best MBC spectrum with the values below to 1024 μg/ml (Table 4). The results of the phytochemical test on *P. vulgaris* are in accordance with some other reports [48,79]. *Phaseolus vulgaris* was found to inhibit also the growth of Gram-positive bacteria *B. subtilis* [49]. Amarowicz et al. [80] showed that the acetone extract of *P. vulgaris* contains tannins with good antimicrobial properties against *Listeria monocytogenes*. Therefore, the low antibacterial effects of this plant as obtained herein (generally MIC values at 1024 μg/ml) (Table 3) could be due to the multi-drug resistance ability of the studied bacteria.

Table 4 also shows that *M. esculenta* exhibited MBC values against all the strains of *E. aerogenes* and that, in general, the extracts showed values which were not 4-fold greater than the corresponding MICs.
Table 1 Plant species used in this study and their reported effects

Plant (family); and voucher number*	Traditional uses	Parts used traditionally	Bioactive or potentially bioactive components	Bioactivities of extracts and/or compounds
Amaranthus hybridus Linn (Amarantaceae); 15630 HNC	intestinal bleeding, diarrhea and excessive menstruation [5,10]	Leaves, seeds	flavonoids, steroids, terpenoids, cardiac glycosides [5] alkaloid, saponin, tannins, phenols, hydrocyanic acid and phytic acid [11,12]	antimicrobial [5,13]
Vernonia calva (H.F.) Hook (Asteraceae); 27743 HNC	wounds [14], anticancer [15], fever, stomach ache, diarrhea, herna, spleen enlargement [16]	leaves	vernolepin [17,18], vernomenin [18], flavonoids (quercetin, apigenin, luteolin) [19]	cytotoxic [17], spasmylic, anti-aggregating and de-aggregating activities, 2 antitumor activity, antimicrobial [20], insecticide [21], antifilarial [22]
Lactuca sativa Linn; (Asteraceae); 25624/SRF.Cam	analgesic, conjunctivitis, tired eyes, Insomnia, sedative [23] insomnia, anxiety, neuralgia, dry coughs, rheumatic pain [24] stimulate digestion, enhance appetite and relieve inflammation [25]	leaves	phenolic acids, triterpenoids, saponins, phytol [23], carotenoids [26], flavonoids including kaempferol [19] Lettucenin-A guaianolide sesquiterpenelactones conjugates, lactucin, deoxy lactucin and lactucopicrin [27]	antimicrobial [28], antifungal, antibacterial [29], antitumor [30] antioxidating, analgesic, and anti-inflammatory [23] depressant [31] sedative, hypnotic, analgesic and anticonvulsant [32] hypoglycaemic [33] antioxidant I [34,35], and anxiolytic
Lactuca capensis Thumb (Asteraceae); 27743 HNC	anti spasmodic, digestive, diuretic, hypnotic, narcotic and sedative properties. Treatment of insomnia, anxiety, neuralgia, hyperactivity in children, dry coughs, whooping cough, rheumatic pain, chronic joint pains [30]	leaves	luctacarium, sesquiterpene lactone [37]	
Sechium edule (Jacq) SW (Cucurbitaceae); 42459/HNC	urine retention, kidney diseases, arteriosclerosis, hypertension [38]	leaves	C-glycosyl and O-glycosyl flavonoids, saponins and saponins [38]	diuretic [9], free radical scavenger and antioxidant [40], antibacterial [41], antihypertensive [42], hepatoprotective activity of ethanolic extract and its different [43]
Manihot esculenta Crantz (Euphorbiaceae); 57650/HNC	hypertension, headache and pain, irritable bowel syndrome, fever, headache, aches and pains [44]	leaves	3-rutinosides of kaempferol and quercetin; the cyanogenic glycosides, lotaustralin and linamarin, from the fresh leaves of cassava [45]	antihelminthic activity of crude extracts antibacterial [46]
Phaseolus vulgaris Linn (Fabaceae); 42587/HNC	osteoporosis prevention, diuretic, eczema, antihyperglycemic [47]	leaves	ascorbic acid, phenol, alkaloids, sterols, saponins (aqueous extract), carotenoids like lutein, β-carotene, violanthin and neoxanthin, flavonoids [48] including quercetin, kaempherol, catechins, epicatechins and procyanidins	antioxidatant [48], antibacterial [49]
Cucurbita pepo Linn (cucurbitaceae); 15630 HNC	intestinal infections and kidney problems (seeds), minor injuries (flowers), anthelmintic, hypertension, erysipelas, enteritis, dyspepsia, stomach disorders, liver disorders like jaundice [50]	leaves	saponin, tannin, quinone, coumarins, flavonoids, steroid, terpenes, lignin, alkaloids, protein and sugar Curcicin [52] anthocyanin, phenols like syringic acid [52], phytin, lecithin, cucurbitane and hexacurcurbutane L-2-O-β-glucopyranoside, Curcicin [52], flavonoids, Vitamins B, C, and E, β-sitostérol	antihypertensive, anti-oxidative activities, Arthritis, reduce the symptoms of BPH [52,53]. High Cholesterol, anti-parasitic activity in vi-vitro [54], alleviates the detrimental effects associated with protein malnutrition [55], antiparasitic [56], nephron and hepato-protective, vermifuge, inhibitor of prostaglandin biosynthesis [57], antiparasitic, protects gastric mucosal [50]
Solanum nigrum Linn (Solanaceae); 43000 HNC	pneumonia aching teeth, stomach ache, tonsilitis, tonic, cold worms [14], pain, inflammation and fever, tumor, antioxidant, anti-inflammatory, hepatoprotective, diuretic, anti-pyretic [58]	leaves	kaempferol [19,59] terpenoids and condensed tannin [60], quercetin, flavonoids [19], polysaccharides, polyphenolic compounds including galic acid, catechin, caffeic acid, rutin and naringenin [58]	anti-inflammatory, antioxidant, anthelmintic activity [60] antiinocceptive, antipyretic, antitumor, antilucreogenic, cancer chemopreventive, hepatoprotective, and immunomodulatory effects [61] Mosquito larvicidal [62], antibacterial [63]
of *M. esculenta* against MDR strains of *P. aeruginosa*, *E. coli*, *E. cloacae*, *K. pneumoniae*, *P. stuartii* and *E. aerogenes*. The activity of *Amaranthus hybridus* was reported against *E. coli*, *S. typhi*, *K. pneumoniae* and *P. aeruginosa* with MICs ranged between 200 and 755 mg/ml [5]. The ethyl acetate extract exhibited activity against *S. aureus* and *B. subtilis* whilst the ethanol extract was found effective against *E. coli* [13].

The high MIC values observed with chloramphenicol can be explained only if we take into account the non-specific resistance mechanism: active efflux of the toxic compound by pumps belonging to the small multidrug resistance (SMR) proteins family [4]. The fact that the efflux pump inhibitor (PAβN) enhances the chloramphenicol antibacterial properties is a clear indication that the tested strains express an active efflux system and that this system is responsible for resistance of the tested bacteria to chloramphenicol. The wide substrate specificity of these pumps, as well as their widespread among bacterial species make us believe that these efflux pumps are also responsible for the extrusion of various active compounds from the plant extract out of bacteria cells, therefore preventing their inhibitory effects. Therefore, the activities of the vegetable as observed herein against MDR strains (with MIC comprised between 128 and 1024 μg/mL) could be considered important, especially when considering the fact that we are dealing with edible plants. Apart for the extracts of *P. vulgaris* and *C. frutescens* which did not show any MBC below 1024 μg/mL, other values further confirmed the bactericidal effect of the 8 remaining extracts as they were generally less than 4-fold greater than corresponding MIC values [82,83].

Conclusions

The overall results of the present investigation confirmed the traditional uses of the studied vegetables in the treatment of bacterial infections. This study also provide baseline information for the possible use of the methanol extracts of the tested plant samples in the control of infectious diseases involving Gram-negative MDR bacteria. The arising question is of course which are the active compounds responsible for these effects. Our research group is currently focusing on the characterization of these plants extracts in terms of chemical composition and synergistic effects.

Table 1 Plant species used in this study and their reported effects (Continued)

Scientific names	Part used	Yield (%)	alkaloids	phenols	tannins	terpènes	stéroids	flavonoids	anthraquinones	anthocyanins	saponins
Capsicum frutescens L. (Solanaceae); 10737/SRFCa	leaves	7.9	-	-	-	+	-	+	-	+	
Vernonia hymenolepis	leaves	9.40	+	+	-	-	+	-	-	-	
Lactuca sativa	leaves	7.14	+	+	-	-	+	-	-	-	
Lactuca capensis	leaves	7.14	+	+	+	-	+	-	-	-	
Sechium edule	leaves	3.76	+	+	-	+	+	-	-	+	
Manihot esculenta	leaves	0.46	+	+	+	+	+	+	-	+	
Phaseolus vulgaris	clove	17.81	+	+	-	-	+	+	-	-	
Cucurbita pepo	leaves	12.68	+	+	-	-	+	+	-	-	
Solanum nigrum	leaves	11.84	+	+	-	-	+	+	-	-	
Capsicum frutescens	fruits	16.24	+	+	-	-	+	+	-	-	

*(HNC): Cameroon National Herbarium; (SRFC): Société des Réserves Forestières du Cameroun.

Table 2 Extraction yields and phytochemical composition of the plant extracts

Scientific names	Part used	Yield (%)	alkaloids	phenols	tannins	terpènes	stéroids	flavonoids	anthraquinones	anthocyanins	saponins
Amaranthus hybridus	leaves	7.9	-	-	-	+	-	+	-	+	-
Vernonia hymenolepis	leaves	9.40	+	+	-	-	+	-	-	-	-
Lactuca sativa	leaves	7.14	+	+	-	-	+	-	-	-	-
Lactuca capensis	leaves	7.14	+	+	+	-	+	-	-	-	-
Sechium edule	leaves	3.76	+	+	-	+	+	-	-	+	-
Manihot esculenta	leaves	0.46	+	+	+	+	+	+	-	+	-
Phaseolus vulgaris	clove	17.81	+	+	-	-	+	+	-	-	-
Cucurbita pepo	leaves	12.68	+	+	-	-	+	+	-	-	-
Solanum nigrum	leaves	11.84	+	+	-	-	+	+	-	-	-
Capsicum frutescens	fruits	16.24	+	+	-	-	+	+	-	-	-

*(+): Present; (−): Absent; *The yield was calculated as the ratio of the mass of the obtained methanol extract/mass of the plant powder.
Table 3 Susceptibility of bacteria to plant extracts - MICs of methanol extracts vs chloramphenicol

Bacteria strains	MIC (μg/ml) of the plant extracts										
	A. hybridus	V. hymenolepis	L. sativa	L. capensis	S. edule	M. esculenta	P. vulgaris	C. pepo	S. nigrum	C. frutescens	Chloramphenicol²
E. coli											
ATCC8739	256	1024	512	512	256	256	1024	512	512	512	4
ATCC10536	128	256	128	256	128	-	256	128	-	4	
W3110	256	512	256	256	512	-	128	256	-	8 (< 2)	
MC4100	512	1024	512	1024	256	512	1024	256	512	1024	16 (< 2)
AG100A	256	512	512	512	512	512	-	512	512	1024	< 2 (< 2)
AG100Atet	256	512	512	512	512	-	512	512	1024	64 (< 2)	
AG1012	1024	128	1024	512	512	128	-	-	256	512	64 (< 2)
AG100	128	1024	128	512	512	512	-	512	256	-	8 (< 2)
E. aerogenes											
ATCC13048	128	1024	256	256	256	256	1024	256	256	-	8
EA294	512	512	512	512	512	1024	-	512	512	1024	16
CM64	128	128	256	256	128	256	1024	512	512	512	256 (8)
EA3	256	256	128	128	256	128	1024	128	128	-	256 (128)
EA298	256	512	256	256	512	512	1024	128	256	512	1024
EA27	512	512	256	512	512	-	512	512	256	512	≥ 256 (< 2)
EA289	-	512	1024	256	512	512	512	1024	512	256	≥ 256 (64)
K. pneumoniae											
ATCC11296	256	512	256	512	512	512	512	512	256	-	8
KP55	256	512	256	512	256	512	512	256	256	256	32 (4)
KP63	256	256	256	256	256	256	512	1024	128	-	64 (< 2)
K2	512	-	512	512	1024	512	-	1024	512	1024	32 (< 2)
K24	512	1024	512	512	512	-	1024	512	512	1024	16 (< 2)
P. aeruginosa											
PA01	256	512	512	256	256	512	-	256	512	-	16
PA124	512	1024	512	512	512	512	-	512	512	-	32 (< 2)
P. stuartii											
ATCC29916	128	128	256	1024	128	1024	-	1024	256	-	16
NAE16	128	512	256	256	256	256	1024	512	256	-	64 (8)
PS2636	512	512	256	256	256	256	-	256	256	512	32
PS299645	512	1024	512	512	512	512	-	512	1024	-	32 (< 2)
E. cloacae											
BM47	128	256	512	1024	256	1024	-	128	512	-	≥ 256 (< 2)
ECC69	256	512	512	256	256	512	-	256	512	-	≥ 256 (16)
BM67	256	512	512	256	256	512	1024	128	512	1024	128 (32)

The results are shown as average values from three separate experiments.

(−) MIC > 1024 μg/ml.

¹ - chloramphenicol was used as a reference antibiotic. MIC was measured in absence and presence of PAßN (in brackets).

² chloramphenicol was used as a reference antibiotic. MIC was measured in absence and presence of PAßN (in brackets).
Bacteria strains	A. hybridus	V. hymenolepis	L. sativa	L. capensis	S. edule	M. esculenta	Green bean (P. vulgaris)	C. pepo	S. nigrum	C. frutescens	Chloramphenicol
E. coli											
ATCC8739	-	-	-	-	1024	1024	-	512	-	-	64
ATCC10536	1024	-	-	-	-	-	1024	-	-	1024	128
W3110	1024	512	256	-	512	-	512	-	-	-	-
MC4100	1024	-	-	-	-	-	-	-	-	-	-
AG100A	-	1024	512	-	-	-	-	-	-	-	-
AG100A\text{tet}	-	-	512	1024	-	-	-	-	-	-	-
AG102	-	-	512	1024	-	-	-	-	-	-	-
AG100	256	1024	-	1024	-	512	1024	-	-	-	-
E. aerogenes											512
ATCC13048								1024	1024	-	128
EA294	-	-	-	1024	-	-	-	-	-	-	32
CM64	512	-	512	512	512	-	-	-	-	-	-
EA3	1024	512	1024	1024	-	512	1024	-	1024	-	-
EA298	512	1024	1024	1024	256	-	256	512	-	-	-
EA27	-	-	-	-	512	-	-	-	-	-	-
EA289	-	1024	-	512	1024	1024	512	-	-	-	-
K. pneumoniae											
ATCC11296	-	-	-	1024	-	-	256	1024	-	64	
KP55	1024	-	-	1024	1024	-	1024	512	-	128	
KP63	512	512	-	-	-	-	-	512	1024	-	-
K2	1024	-	1024	-	-	-	-	-	-	256	
K24	-	-	-	1024	-	-	-	512	-	512	
P. aeruginosa											
PA01	-	-	-	-	-	-	-	-	-	-	256
PA124	-	1024	1024	-	-	-	1024	512	-	-	-
P. stuartii											
ATCC29916	-	256	-	1024	1024	1024	-	1024	512	-	128
NAE16	-	-	512	1024	-	-	-	1024	-	-	256
PS2636	512	1024	1024	1024	-	512	-	512	-	-	-
PS299645	-	-	-	-	-	-	-	-	-	-	-
E. cloacae											
BM47	-	1024	512	-	-	-	-	1024	-	-	-
ECCI69	1024	512	-	1024	512	1024	-	1024	512	-	-
BM67	512	1024	1024	1024	1024	1024	-	1024	-	-	-

The results are shown as average values from three separate experiments.
(−) MBC > 1024 μg/ml.
(−) chloramphenicol was used as a reference antibiotic.
Additional file

Additional file 1: Table S1. Bacterial strains and features.

Competing interest
The authors declare that they have no competing interest.

Authors' contributions
JAKN, MM, STL and MS carried out the study; VK designed the experiments. JAKN, MM and VK wrote the manuscript; VK and JRK supervised the work; VK provided the bacterial strains; all authors read and approved the final manuscript.

Acknowledgements
Authors are thankful to Prof. Dumitru Cojocaru (University Alexandru Ioan Cuza, Iasi-Romania), the Romanian Government and The Agence Universitaire de la Francophonie for travel grant to JAKN, and also to Professor Jean-Marie Pages (through VK), Chair of the UMR-MDI 1, Université de la Méditerranéen, France for providing us with MDR bacteria.

Author details
1Department of Biochemistry, Faculty of Science, University of Dschang, P.O. Box 67, Dschang, Cameroon. 2Department of Biochemistry and Molecular Biology, Faculty of Biology, Alexandru Ioan Cuza University, Iasi, Romania.

Received: 28 September 2012 Accepted: 28 January 2013 Published: 31 January 2013

References
1. NIE 99-17D NIE: The global infectious disease threat and its implications for the United States. 2000, http://www.heart-int.net/HEART/0724G04/. accessed on August 12, 2012.
2. Chopra I: New drugs for superbugs. Microbiology Today 2000, 47:6–4.
3. Chanda S, Baralavya Y, Kaneria M, Rakhola R: Fruit and vegetable peels – strong natural source of antimicrobics. In Current research, technology and education topics in applied microbiology and microbial biotechnology. Edited by Mendez-Vivas A. Badajoz, Spain: Formatex, 2010.
4. Pages JM, Lavigne JP, Lefron-Guilbou Y, Marcon E, Bert F, Nousiari L, Nicolas-Chanoine MH: Efflux pump, the masked side of ß-Lactam resistance in Klebsiella pneumoniae clinical isolates. PLoS ONE 2009, 4:e4817.
5. Mayo ZC, Ngure RM, Matasyoh JC, Chepkorir R: Phytochemical constituents and antimicrobial activity of leaf extracts of three Amaranthus plant species. Afr J Biotechnol 2010, 9:3718–3722.
6. Matasyoh JC, Mayo ZC, Ngure RM, Chepkorir R: Chemical composition and antimicrobial activity of the essential oil of Coriandrum sativum. J Food Chem 2009, 113:526–529.
7. Evarando LS, Oliveira LE, Freire LKR, Marcon E, Bert F, Nousiari L, Nicolas-Chanoine MH: Coriandrum sativum, a strong natural source of antimicrobics. Phytochemistry 2009, 70:4027–4032.
8. Hedges LJ, Lister CE: Nutritional attributes of some exotic and lesser known vegetables. In Plant & Food Research Confidential Report No. 2325. Edited by Report PFRC, vol. 2325 Christchurch. New Zealand Institute for Plant & Food Research Limited, 2009.
9. Dhirman K, Gupta A, Sharma DK, Gill NS, Goyal K: A review on the medicinal important plants of the family of Cucurbitaceae. Asian J Clin Nutr 2012, 4:16–26.
10. He HF, Corke H, Cai JG: Supercritical carbon dioxide extraction of oil and squalene from Amaranthus Grain. J Agr Food Chem 2003, 51:7921–7925.
11. Akubugwo IE, Obasi NA, Chinnyere GC, Ugboegu AE: Nutritional and phytochemical contents in leaves of Amaranthus hybridus L subjected to different processing methods. Afr J Biotechnol 2007, 6:24833–2839.
12. Akubugwo IE, Obasi NA, Chinnyere GC, Ugboegu AE: Mineral and phytochemicals constituents of leaf extracts of Amaranthus hybridus L. subjected to different processing methods. Afr J Biochim Res 2008, 2:040–044.
13. Dahiya SS, Sheoran SS, Sharma SK: Antibacterial activity of Amaranthus hybridus linum. root extracts. UABPT 2010, 1:96–49.
14. teCA2010: Contribution of agriculture to achieving MDGs. In Contribution of Agricultural Sciences towards achieving the Millennium Development Goals. Edited by Mwangi M. Kenya: Nairobi, FACT Publishing, 2010.
15. Rajwar S, Khatri P, Patel R, Dwivedi S, Dwivedi A: An overview on potent herbal antitancer drugs. Int J Res Pharm Chem 2011, 1:202–210.
16. Hamisi WC, Mwaseba D, Zilhona IE, Miwimbeke ST: Status and domestication potential of medicinal plants in the Uluguru mountain area, Tanzania. Morogoro: Tanzania: Wildlife Conservation Society of Tanzania (WCST); 2000:55.
17. Perdue REJ, Carlson KD, G GM: Vernonia galamensis, potential new crop source of epoxy acid. J Econ Bot 1986, 40:34–68.
18. Sims RJ: Synthesis of furanosesquiterpenoid natural products. Southampton: University Of Southampton; 1981.
19. Yang R-Y, Lin S, Kuo G: Content and distribution of flavonoids among 91 edible plant species. Asia Pac J Clin Nutr 2008, 17:527–579.
20. Barrero AF, Oltra JE, Barragan A, Alvarez M: Approaches to the synthesis of 8-epi-vermelonein from germacrolides. J Chem Soc 1998, 19107–4113.
21. Fane S: Etude de la toxicité de certaines plantes vendues sur les marches du district de Bamaro, Doctorat d’Etat. Bamako: Université de Bamako, 2003.
22. Bhanu Prasad K, Avinash Kumar RG, Jyothi MJ, Rasheed A, Dalith D: Natural antifludar drugs: a review. International Journal of Pharmacology and Toxicology 2011, 11:1–10.
23. Rodrigues E, Tabach R, Galduróz JCF, Negri G: Plants with possible anxiolytic and/or hypnotic effects indicated by three Brazilian cultures - Indians, afro-Brazilians, and river-dwellers. Stud Nat Prod Chem 2008, 35:549–595.
24. Katz SH, Weaver WW: Encyclopedia of food and culture. New York: In. scribner Ed, 2003.
25. Sayyah M, Hadidi N, Kamalinejad M: Alginics and anti-inflammatory activity of Lactuca sativa seed extract in rats. J Ethnopharmacol 2004, 92:325–329.
26. Cruz R, Baptista P, Cunha S, Pereira JA, Cartoit AE: Sesquiterpene lactones from chicory roots. J Agr Food Chem 1999, 38:1035–1038.
27. Lindley S, Anil K, Sivakumar P, Natarajan V, Sai: Sesquiwereapon of lettuce (lactuca sativa L.) grown on soil enriched with spent coffee grounds. Molecules 2012, 17:1535–1547.
28. Van Beek TA, Mass P, King BM, Lacerda E, Voragen AGJ, de Groot A: Bitter sesqueripetone lactones from chicory roots. J Agr Food Chem 1999, 47:2274–2279.
29. Bennett MH, Gallagher MDS, Bestwick CS, Rossiter JT, Mankind JW: The phytoalexin response of lettuce to challenge by Botrytis cinerea, Bremialactueae and Pseudomonas syringae pv.phaseoelica. Physiol Mol Plant Pathol 1994, 44:221–239.
30. Ye X-J, Ng T-B, Wu Z-J, Xie L-H, Fang E-F, Wong J-H, Pan W-L, Wing S-S-C, Zhang Y-B: Plant protein from red cabbage (Brassica oleracea). Protoplasma 2009, 232:1–8.
31. González LF, Valedón A, Stehli WL: Depressant pharmacological effects of component isolated from lettuce, lactuca sativa. J Compud Drug Res 1998, 48:154.
32. Sid SA, El-Kashif H, El Maza, Slam OMM: Phytochemical and pharmacological studies on Lactuca sativa seed oil. Fitoterapia 1996, 67:215–219.
33. Roman RR, Flores S-J, Alarcón AFJ: Anti-hypoglycaemic effect of some edible plants. J Ethnopharmacol 1995, 48:25–32.
34. Gang M, Gang G, Mukherjee Puolok K, Suresh B: Antioxidant potential of Lactuca sativa. Ancient Sci Life 2004, 24:111–14.
35. Patil RB, Vora SR, Pillai MM: Antioxidant effect of plant extracts on fat accumulation in rats. Int J Crude Drug Res 1996, 24:154.
36. Wambugu SN, Mathiu PM, Gakuya DW, Kanui TI, Kabasa JD, Kiama SG: Carotenoids of lettuce (Lactuca sativa L.) leaf juice on foodborne pathogenic bacteria. J Food Prot 2006, 69(9):2274–2279.
37. Bennett MH, Gallagher MDS, Bestwick CS, Rossiter JT, Mankind JW: The phytoalexin response of lettuce to challenge by Botrytis cinerea, Bremialactueae and Pseudomonas syringae pv.phaseoelica. Physiol Mol Plant Pathol 1994, 44:221–239.
38. Albone KS, Skin PG: Status and antifungal, antibacterial, and antitancer activities. J Agr Food Chem 2011, 59:10232–10238.
39. Brandi G, Amagagni G, Schiavoni GF, De Sant M, Sisti M: Activity of Brassica oleracea leaf juice on foodborne pathogenic bacteria. J Food Prot 2006, 69(9):2274–2279.
40. Bennett MH, Gallagher MDS, Bestwick CS, Rossiter JT, Mankind JW: The phytoalexin response of lettuce to challenge by Botrytis cinerea, Bremialactueae and Pseudomonas syringae pv.phaseoelica. Physiol Mol Plant Pathol 1994, 44:221–239.
41. Ye X-J, Ng T-B, Wu Z-J, Xie L-H, Fang E-F, Wong J-H, Pan W-L, Wing S-S-C, Zhang Y-B: Protein from red cabbage (Brassica oleracea). Protoplasma 2009, 232:1–8.
39. Siciliano T, De Tommasi N, Morelli I, Braca A: Study of flavonoids of Sechium edule (Jacq) swartz (Cucurbitaceae) different edible organs by liquid chromatography photodiode array mass spectrometry. J Agr Food Chem 2004, 52:650–6515.

40. Ordonez AAL, Gomez JD, Vattuone MA, Isla MI: Antioxidant activities of Sechium edule (Jacq.) Swartz extracts. Food Food Chem 2006, 97:452–458.

41. Ordonez AAL, Gomez JD, Cudimani MM, Vattuone MA, Isla MI: Antimicrobial Activity of Nine Extracts of Sechium edule (Jacq.) Swartz. Microb Ecol Health Dis 2003, 15:33–39.

42. Gordon EA: The antihypertensive effects of the Jamaican cho-cho. W Indian Med J 2000, 1:27–31.

43. Firdous SM: Effect of ripe fruit pulp extract of Cucurbita pepo Linn. in aspirin induced gastric and duodenal ulcer in rats. Indian J Exp Bio 2008, 46:639–645.

44. Abd Aziz SM, Low CN, Chai LC, Abd Razak SSN, Selamat J, Son R, Sarker MZI, Gordon EA: The antihypertensive effects of the Jamaican cho-cho. W Indian Med J 2000, 1:27–31.

45. Suresh R, Saravanakumar M, Suganyadevi P: Anthocyanins from indian cassava (Manihot esculenta crantz) and its antioxidant properties. Int J Food Res 2011, 18:1195–1201.

46. Zakaria ZA, Khairi HM, Somchit MN, Sulaiman MR, Mat Jais AM, Reezal I, Mat Zaid NN, Abdul Wahab SNZ, Fadzil NS, Abdullah M, Fatmah CA: The in vitro antibacterial activity and brine shrimp toxicity of Manihot esculenta var. Sri Pontian extracts. Int J Pharmacocol 2006, 2216–2220.

47. The Health Benefits of Green Beans. http://www.elementsthehealth.com/green-beans.html. Accessed on July 12, 2012.

48. Abd Aziz SM, Low CN, Chai LC, Abd Razak SSN, Selamat J, Son R, Sarker MZI, Khatib A: Screening of selected Malaysian plants against several food borne pathogen bacteria. Int Food Res J 2011, 18:1195–1201.

49. Suresh K, Saravanakumar M, Suganyadevi P: Anthocyanins from indian cassava (Manihot esculenta crantz) and its antioxidant properties. Int J Food Res 2011, 18:1195–1201.

50. Zakaria ZA, Khairi HM, Somchit MN, Sulaiman MR, Mat Jais AM, Reezal I, Mat Zaid NN, Abdul Wahab SNZ, Fadzil NS, Abdullah M, Fatmah CA: The in vitro antibacterial activity and brine shrimp toxicity of Manihot esculenta var. Sri Pontian extracts. Int J Pharmacocol 2006, 2216–2220.

51. Karpagam T, Vananakshmi B, Bai JS, Gomathi S: Effect of different doses of Curcubitacina pepo linn extract as an anti-inflammatory and analgesic nutraceutical agent on inflamed rats. JPHRO 2011, 3:184–192.

52. Carbin BE, Elaason R: Treatment by curbicin in benign prostatic hyperplasia. J Urol 1990, 66:639–641.

53. Carbin BE, Elaason R: Treatment by curbicin in benign prostatic hyperplasia. J Urol 1990, 66:639–641.

54. al-Zuhaier H, Abd el-Fattah AA, el Latif HA: A: Efficacy of Simvastatin and pumpkin-seed oil in the management of dietary-induced hypercholesterolemia. Pharmacol Res 1997, 34:43–49.

55. Nikolić CZ, OPoku AR, Terblanche SE: Effect of pumpkin seed (Cucurbita pepo) protein isolate on the activity levels of certain plasma enzymes in (Jacq.) swartz (Cucurbitaceae) different edible organs by phytochemical screening of seeds of some manihot esculenta crantz) and its antioxidant properties. Int J Food Res 2011, 18:1195–1201.

56. Carbin BE, Elaason R: Treatment by curbicin in benign prostatic hyperplasia. J Urol 1990, 66:639–641.

57. al-Zuhaier H, Abd el-Fattah AA, el Latif HA: A: Efficacy of Simvastatin and pumpkin-seed oil in the management of dietary-induced hypercholesterolemia. Pharmacol Res 1997, 34:43–49.

58. Nikolić CZ, OPoku AR, Terblanche SE: Effect of pumpkin seed (Cucurbita pepo) protein isolate on the activity levels of certain plasma enzymes in (Jacq.) swartz (Cucurbitaceae) different edible organs by phytochemical screening of seeds of some manihot esculenta crantz) and its antioxidant properties. Int J Food Res 2011, 18:1195–1201.

59. Carbin BE, Elaason R: Treatment by curbicin in benign prostatic hyperplasia. J Urol 1990, 66:639–641.

60. al-Zuhaier H, Abd el-Fattah AA, el Latif HA: A: Efficacy of Simvastatin and pumpkin-seed oil in the management of dietary-induced hypercholesterolemia. Pharmacol Res 1997, 34:43–49.

61. Nikolić CZ, OPoku AR, Terblanche SE: Effect of pumpkin seed (Cucurbita pepo) protein isolate on the activity levels of certain plasma enzymes in (Jacq.) swartz (Cucurbitaceae) different edible organs by phytochemical screening of seeds of some manihot esculenta crantz) and its antioxidant properties. Int J Food Res 2011, 18:1195–1201.

62. Carbin BE, Elaason R: Treatment by curbicin in benign prostatic hyperplasia. J Urol 1990, 66:639–641.

63. al-Zuhaier H, Abd el-Fattah AA, el Latif HA: A: Efficacy of Simvastatin and pumpkin-seed oil in the management of dietary-induced hypercholesterolemia. Pharmacol Res 1997, 34:43–49.

64. Nikolić CZ, OPoku AR, Terblanche SE: Effect of pumpkin seed (Cucurbita pepo) protein isolate on the activity levels of certain plasma enzymes in (Jacq.) swartz (Cucurbitaceae) different edible organs by phytochemical screening of seeds of some manihot esculenta crantz) and its antioxidant properties. Int J Food Res 2011, 18:1195–1201.