An overview of horizontal-axis Magnus wind turbines

O F Marzuki, A S Mohd Rafie*, F I Romli, K A Ahmad and M F Abdul Hamid
Department of Aerospace Engineering, Faculty of Engineering, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia.

*shakrine@upm.edu.my

Abstract. Magnus force shows extraordinary results in producing lift force, hence gives rise to its application. One of the applications is by replacing airfoil-shaped blades of wind turbine with the rotating cylinder blades. This is known as Magnus Wind Turbine (MWT), where it generates lift force on the rotating cylinder that perpendicular to the incoming wind flows. Due to high consumption of fossil fuel, natural gas and coal that risk our and earth health. Thus to overcome this conundrum, MWT is one of the innovative approaches to harvest the low wind speed energy. This paper presents an overview of the horizontal-axis MWT state-of-the-art.

1. Introduction
Sustainable energy is a necessity to meet the current and future generation needs of energy. The basic principle of harvesting wind energy is by converting the incoming wind flow to kinetic energy through mechanical mechanism and using a generator to generate electricity [1–3]. As one of natural resources, wind energy can be used repeatedly and will never be depleted. However, availability of wind energy resources is dependent on the geographical location and topography [4–5]. Nowadays, harvesting high speed wind energy is mainly dominated by horizontal axis wind turbine (HAWT) with airfoil-shaped blades. The airfoil-shaped-blades wind turbine requires a minimum wind speed of 4 meters per second (m/s) to generate minimal power and wind speed of 16 m/s to generate optimum power [6]. Due to this limitation, an innovative type of wind turbines is researched and designed for harvesting wind energy at lower wind speeds that can produce optimum power.

One of the types of wind turbines that can harvest wind energy at lower wind speed condition is the horizontal-axis Magnus Wind turbines (MWT) [7]. The main difference of MWT in comparison to the wind turbine utilizing airfoil-shaped blades lies in the means of extracting wind energy. By utilizing rotating cylinder blades, MWT can harvest wind energy at low wind speed condition. Additionally, the performance of MWT can be increased by enhancing the surface of the rotating cylinder blades. There are several ways that researchers have innovated the MWT rotating cylinder blades performance such as by utilizing dimple and fin [8–9]. Moreover, the use of sandpaper to add surface roughness on the rotating cylinder blades can further improve the torque generated by the MWT rotor [10–12]. Figure 1 shows the MWT with spiral fins coiled around the rotating cylinder blades that has been developed in Japan.

This paper offers an overview of the state-of-the-arts for horizontal-axis MWT that can be used for reference in developing low wind speed wind energy harvester. This paper also aims to uncover some of operational principles surrounding MWT such as with regard to the number of blades and types of surface roughness on the rotating cylinders.
2. Magnus wind turbine

Commonly, a wind turbine with airfoil-shaped blades utilizes and prioritizes a smooth surface blades to produce high lift and optimum power at high wind speed condition. However, the lift performance drops considerably when there are some irregularities to the surface of the airfoil-shaped blades [14]. In addition, high noise level is produced by the wind turbine due to the rotor rotating at a high speed [15]. Hence, the application of MWT as an alternative of the wind turbine using airfoil-shaped blades is taken into deliberation. As the MWT uses rotating cylinder as blade, it can generate high torque and lift at low wind speed condition by further increasing the cylinder blades rotation speed as compared to the airfoil-shaped blades that is limited by the angle of attack. Besides, in comparison with the wind turbine with airfoil-shaped blades, the MWT can also reduce environmental hazard and noise due to a slower rotor rotation [7].

To overcome the drawback of the wind turbines with airfoil-shaped blades, Bychkov et al. [7] have demonstrated an experiment on the MWT using 6 smooth rotating cylinders blades with endplates as shown in Figure 2. They have concluded that 6 rotating cylinders blades and the cylinder aspect ratio of 15 are the most optimized for MWT [16]. Moreover, they have proposed that MWT will produce higher performance in low wind speed condition than the wind turbine with airfoil-shaped blades. On the other hand, based on Bychkov et al. [7], MWT rotating cylinder blades are designed by using computational fluid dynamics while Mara [17] has offered the rotating cylinder blades design profile characteristics for MWT blades.
Murakami and Ito [18] have patented a MWT with 6 spiral fins rotating cylinder blades known as Spiral MWT. Afterwards, they have upgraded the patent for the Spiral MWT with 5 spiral fins rotating cylinder blades [9]. They have demonstrated that the rotating cylinder blades with spiral fins coiled around the cylinder can produce more than 2 times higher lift coefficient and torque as compared to the smooth surface rotating cylinder blades. Figure 3 depicts the Spiral MWT patents from 6 rotating cylinder blades to 5 rotating cylinder blades. Later on, Kato et al. [19] and Murakami et al. [20] have conducted Particle Image Velocimetry (PIV) experiment to investigate the effectiveness of MWT that uses spiral fins coiled around the rotating cylinder blades.

![Spiral MWT patents upgraded from 6 to 5 rotating cylinder blades][1]

Figure 3. Spiral MWT patents upgraded from 6 to 5 rotating cylinder blades [9,18]

Based on prior patents of MWT using spiral fins [18], the researchers have fabricated MWT model with 6 spiral fins coiled around cylinder blades to find the optimize value of power generated based on the cylinder blades speed rotation [21–23] and proposed an algorithm to control the rotating cylinder speed [8]. Moreover, Corrêa et al. [24] have proposed a performance emulator for MWT. Figure 4 shows the MWT model utilized in their performance optimization experiment with an oversized rotor hub.

![MWT model with spiral fins coiled around cylinder blades][2]

Figure 4. MWT model with spiral fins coiled around cylinder blades [22]
Giudice and La Rosa [25] have presented a MWT prototype that is also developed for harvesting water stream energy known as Chiral Rotor. This MWT prototype utilizes 4 smooth surface rotating cylinder blades and it is designed to harvest energy from water channels like drainage and irrigation. They have concluded that the Chiral Rotor prototype has a great prospect toward hydroelectricity as an alternative to wind energy harvester. Figure 5 shows the Chiral Rotor prototype with 4 short rotating cylinder blades. Moreover, they emphasize that, the Chiral Rotor prototype use smooth surface on the cylinder blades due to the absence of knowledge and research regarding the surface roughness effect on rotating cylinder blades. Meanwhile, Ito et al. [26] have investigated a prospect of 3 cylinder blades shaped like Savonius wind turbine with endplates and concluded it as one of the possible combinations as shown in Figure 6.

Figure 5. Chiral rotor prototype with 4 smooth surface rotating cylinder blades [25]

Figure 6. MWT with Savonius shaped as cylinder blades [27]

Marzuki et al. [10, 28, 29] have investigated the torque performance impact of sandpaper surface roughness types on MWT with 5 rotating cylinder blades. The finding highlights that, as the surface
roughness is changed from smooth to rough sandpaper, the torque produced by the MWT significantly increases up to 5 times compared to that with smooth surface [10]. Figure 7 shows the MWT model without and with sandpaper enhancement inside wind tunnel. Meanwhile, researchers Sakipova et al. [12, 30] have investigated the performance of MWT with porous surface roughness with 3 cylinder blades and later on with 2 cylinder blades as shown in Figure 8. In an analysis of the effect of porosity surface on the rotating cylinder, Kussaiyynov et al. [31] have found that it gives a notable improvement of lift force around 1.5 times in comparison to the smooth surface cylinder.

![Figure 7. MWT model with (a) sandpaper attachment, (b) smooth [10]](image)

There are various researchers that have proposed numerical theories and run analytical analysis on MWT [32–37]. In additional, Ogretim et al. [38] have proposed solar enhanced MWT by covering the rotating cylinder surface with solar cells. However, with the absence of MWT experimental approach, restraints must be made when implementing the proposed theories. Sedaghat [33] has reviewed and concluded that, as more experimental study on MWT are being conducted, it will have bright prospect in harvesting wind energy.
3. Conclusion
Overall, this overview strengthens the idea that horizontal-axis MWT is feasible as sustainable energy harvester. There are several ways to improve the MWT performance and one of them is by utilizing the surface roughness effect on rotating cylinder that include fins, dimples, groove, porous, sandpapers and so on. Moreover, considering all evidences, it seems that there is no fixed number of cylinder blades for MWT. Despite its exploratory nature, this overview offers some insights into current state-of-the-art horizontal-axis MWTs. Further research could also be conducted to determine the power usage and the power produced from the MWT, and the effect of number of rotating cylinder blades. A reasonable approach to tackle this issue could be to do an experimental research.

Acknowledgement
The authors acknowledge the financial support for this study from the Ministry of Higher Education, Malaysia through Exploratory Research Grant Scheme – ERGS/1/11/TK/UPM/02/12

References
[1] Daut I, Razliana R N, Irwan Y M, Farhana Z. A study on the wind as renewable energy in Perlis, northern Malaysia. Energy Procedia 2012; 18: 1428–33
[2] Haidar A M, John P N, Shawal M. Optimal configuration assessment of renewable energy in Malaysia. Renew. Energy 2011; 36: 881–8
[3] Qian X, He Y. Wind power turbine and its aerodynamic characteristics. Int. J. Educ. Manag. Eng. 2012; 2: 80–7
[4] Goh H H, Lee S W, Chua Q S, Goh K C, Teo K T K. Wind energy assessment considering wind speed correlation in Malaysia. Renew. Sustain. Energy Rev. 2016; 54: 1389–400
[5] Khatib T, Sopian K, Mohamed A, Ibrahim M Z. Sizing of a wind charger at minimum cost for remote housing electrification: A case study for nine coastal sites in Malaysia. Energy Build. 2012; 51: 185–90
[6] Balat M. A review of modern wind turbine technology. Energy Sources, Part A Recover. Util. Environ. Eff. 2009; 31: 1561–72
[7] Bychkov N M, Dovgal A V, Kozlov V V. Magnus wind turbines as an alternative to the blade ones. J. Phys. Conf. Ser. 2007; 75: 12004
[8] Jinbo M, Ceretta Moreira M, Lellis Hoss D, Farret F A, Cardoso Junior G. Fixed and adaptive step HCC algorithms for MPPT of the cylinders of Magnus wind turbines. 3rd Renewable Power Generation Conference, 2014
[9] Murakami A N. Magnus Type Wind Power Generator 1, 2010
[10] Marzuki O F, Mohd Rafie A S, Romli F I, Ahmad K A. Magnus wind turbine: the effect of sandpaper surface roughness on cylinder blades. Acta Mech. 2018; 229: 71–85
[11] Marzuki O F, Rafie A M, Romli F I, Ahmad K A. An experimental investigation on the effect of surface roughness on the performance of Magnus wind turbine. ARPN J. Eng. Appl. Sci. 2015; 10
[12] Sakipova S E, Tanasheva N K, Kussaiynova A K. Study of aerodynamics of a two-bladed wind turbine with porous-surfaced cylindrical blades. Eurasian Phys. Tech. J. 2017; 14; 120–4
[13] MECARO Co. Ltd. Spiral Magnus: Latest evolution of wind turbine technology, 2007
[14] Soltani M, Birjandi H, Moorani M. Effect of surface contamination on the performance of a section of a wind turbine blade. Sci. Iran. 2011; 18: 349–57
[15] Dai K, Bergot A, Liang C, Xiang W-N, Huang Z. Environmental issues associated with wind energy – A review. Renew. Energy 2015; 75: 911–21
[16] Bychkov N M, Dovgal A V, Sorokin A M. Parametric optimization of the Magnus wind turbine. Int. Conf. Methods Aerophysical Res., 2008
[17] Mara B K, Mercado B C, Mercado L A, Pascual J M, Lopez N S. Development and validation of a CFD model using ANSYS CFX for aerodynamics simulation of Magnus wind rotor blades. International Conference on Humanoid, Nanotechnology, Information Technology,
Communication and Control, Environment and Management (HNICEM), 2014

[18] Murakami N and Ito J. Magnus Type Wind Power Generator U.S. Pat. No. 7,504,740 B2, 2009

[19] Kato H, Koike S, Nakakita K, Ito T, Shiohara T, Kato C, Iida A, Doi Y, Kato Y, Miura Y. PIV measurements of unsteady flowfields around Magnus wind turbines with spiral fins. 10th Int. Symp. Part. IMAGE Velocim. – PIV13, 2013

[20] Murakami N, Hasegawa H, Haniti T, Nakamura M. The mechanism of flow field around a rotating cylinder with fins for high performance Magnus wind turbine. J. Energy Power Eng. 2016; 10: 23–31

[21] Correa L C, Lenz J M, Ribeiro C G, Trapp J G, Farret F A. MPPT for Magnus wind turbines based on cylinders rotation speed. Brazilian Power Electronics Conference (IEEE), 2013

[22] Jinbo M, Farret F A, Cardoso Junior G, Dreher J R, Lellis Hess D. MPPT for Magnus wind system with DC servo drive for the cylinders and boost converter. 3rd Renewable Power Generation Conference, 2014

[23] Jinbo M, Farret F A, Cardoso Junior G, Senter D, Lorensetti M F. MPPT for Magnus wind system with DC servo drive for the cylinders and boost converter. J. Wind Energy 2015; 148680

[24] Corrêa L C, Lenz J M, Ribeiro C G, Farret F A. Magnus wind turbine emulator with MPPT by cylinder rotation control. J. Dyn. Syst. Meas. Control 2018; 140: 101012–7

[25] Giudice F, La Rosa G. Design, prototyping and experimental testing of a chiral blade system for hydroelectric microgeneration. Mech. Mach. Theory 2009; 44: 1463–84

[26] Ito A, Nishizawa Y, Ushiyama I. An experiment study on the Savonius type Magnus wind turbine. Japan Soc. Mech. Eng. 2009

[27] Ito A, Kawashima S, Nishizawa Y, Ushiyama I, Komatinovic N. A Study on Savonius type Magnus wind turbine. Eur. Wind Energy Conf. Exhib., 2007

[28] Marzuki O F, Mohd Rafie A S, Romli F I, Ahmad K A. An experimental investigation on the effect of surface roughness on the performance of Magnus wind turbine. ARPN J. Eng. Appl. Sci. 2015; 10

[29] Marzuki O F, Rafie A S M, Romli F I, Ahmad K A. Torque performance study of Magnus wind turbine. Int. Rev. Mech. Eng. 2015; 9: 38–42

[30] Sakipova S E, Tanasheva N K, Kivrin V I, Kussaiynova A K. Study of aerodynamic characteristics of the model of a wind turbine with rotating cylinders. Eurasian Phys. Tech. J. 2016; 1–6

[31] Kussaiynov K, Tanasheva N K, Turgunov M, Shaimerdenova G M, Alibekova A R. The effect of porosity on the aerodynamic characteristics of a rotating cylinder. Mod. Appl. Sci. 2015; 9: 215–22

[32] Luo D, Huang D, Wu G. Analytical solution on Magnus wind turbine power performance based on the blade element momentum theory. J. Renew. Sustain. Energy 2011; 3

[33] Sedaghat A. Magnus type wind turbines: Prospectus and challenges in design and modelling. Renew. Energy 2014; 62: 619–28

[34] Sedaghat A, Samani I, Ahmadi-Baloutaki M, El Haj Assad M, Gaith M. Computational study on novel circulating aerofoils for use in Magnus wind turbine blades. Energy 2015; 91: 393–403

[35] Sun X, Zhuang Y, Cao Y, Huang D, Wu G. A three-dimensional numerical study of the Magnus wind turbine with different blade shapes. J. Renew. Sustain. Energy 2012; 4: 63139

[36] Richmond-Navarro G, Calderon-Munoz W R, LeBoeuf R, Castillo P. A Magnus wind turbine power model based on direct solutions using the blade element momentum theory and symbolic regression. IEEE Trans. Sustain. Energy 2017; 8: 425–30

[37] Gustavo R N, Noel U S, Giancarlo R. High correlation models for small scale Magnus wind turbines. 5th International Conference on Renewable Energy: Generation and Applications (ICREGA), 2018

[38] Ogretim E O, Uygun D, Koklu M O. Analytical evaluation of solar enhanced Magnus effect wind turbine concept. Int. J. Renew. Energy Res. 2016; 6: 2–7