Holographic Signatures of Resolved Cosmological Singularities

Norbert Bodendorfer
Universität Regensburg

work with A. Schäfer, J. Schliemann, F. Mele, J. Münch
[arXiv:1612.06679 , arXiv:1804.01387]

Gauge/Gravity Duality 2018, Würzburg
Scope of work:
- Holography in non-string QG?
- Focus: loop quantum gravity
Scope of work:
- Holography in non-string QG?
- Focus: loop quantum gravity

Content:
- Short review of recent work
- Focus: Implications of bulk singularity resolution
Outline

1. Introduction and related work
2. Strategy
3. Example: Kasner-AdS
4. Conclusion
Quantisation of classical gravity in connection variables

Diffeomorphism-invariant extension of lattice gauge theory
Loop quantum gravity

- Quantisation of classical gravity in connection variables
- Diffeomorphism-invariant extension of lattice gauge theory

Main areas of progress

- 3+0 dimensions (topological), $\Lambda = 0$
 - [Ponzano, Regge '68; Turaev, Viro '92; Rovelli '93; Freidel, Louapre '04; Barrett, Naish-Guzman '08; ...]

- State counting / surface entropy
 - [Krasnov '96; Rovelli '96; Ashtekar, Baez, Corichi, Krasnov '97-; Engle, Noui, Perez '07-; ...]

- Symmetry reduced quantisation \rightarrow quantum cosmology
 - [Bojowald '01-; Ashtekar, Bojowald, Lewandowski '03; Ashtekar, Pawlowski, Singh '06; ...]
3+0 dimensions (topological), $\Lambda = 0$

- Partition function can be evaluated exactly
- Various dual statistical models for different boundary states

[Costantino '11; Dittrich, Hnybida '13; Bonzom, Costantino, Livine '15; Dittrich, Goeller, Livine, Riello '17]
LQG and Holography (other work)

3+0 dimensions (topological), $\Lambda = 0$
- Partition function can be evaluated exactly
- Various dual statistical models for different boundary states
 - [Costantino '11; Dittrich, Hnybida '13; Bonzom, Costantino, Livine '15; Dittrich, Goeller, Livine, Riello '17]

State counting
- State counting à la black hole entropy for general surfaces
- Augment discrete Ryu-Takayanagi formula for tensor networks by
 - [Hayden, Nezami, Qi, Thomas, Walter, Yang '16] to geometric formula [Han, Hung '16]
Outline

1. Introduction and related work
2. Strategy
3. Example: Kasner-AdS
4. Conclusion
Gravitational bulk singularities at least in classical limit
Classical limit and singularities

Gravitational bulk singularities at least in classical limit

Field theory picture:

- Non-perturbative string theory defined via AdS/CFT
- Quantum gravity from field theory

 [Hertog, Horowitz '04, '05; Das, Michelson, Narayan, Trivedi '06; Turok, Craps, Hertog '07; Barbón, Rabinovici '11; Smolkin, Turok '12;]
Classical limit and singularities

Gravitational bulk singularities at least in classical limit

Field theory picture:

- Non-perturbative string theory defined via AdS/CFT
- Quantum gravity from field theory

 [Hertog, Horowitz '04, '05; Das, Michelson, Narayan, Trivedi '06; Turok, Craps, Hertog '07; Barbón, Rabinovici '11; Smolkin, Turok '12;]

Gravity picture:

- Quantum gravity resolves singularities!?
- Holographic dual of (resolved) singularities
Two-point correlators in Kasner

[Engelhardt, Horowitz '14; Engelhardt, Horowitz, Hertog '15]

Boundary: \(ds_4^2(t) = -dt^2 + \sum_{i=1}^{3} t^{2p_i} dx_i^2, \quad p_i \in \mathbb{R} \)

Bulk: \(ds_5^2 = \frac{1}{z^2} \left(dz^2 + ds_4^2(t) \right) \)
Two-point correlators in Kasner

[Engelhardt, Horowitz '14; Engelhardt, Horowitz, Hertog '15]

Boundary: \(ds_4^2(t) = -dt^2 + \sum_{i=1}^{3} t^{2p_i} dx_i^2, \quad p_i \in \mathbb{R} \)

Bulk: \(ds_5^2 = \frac{1}{z^2} \left(dz^2 + ds_4^2(t) \right) \)

Geodesic approximation: (heavy scalar operators)

\[\langle \mathcal{O}(x)\mathcal{O}(-x) \rangle \sim \exp(-\Delta L_{\text{ren}}) \]

\(\Delta \): conformal weight of \(\mathcal{O} \)
\(L_{\text{ren}} \): renormalised geodesic length
Two-point correlators in Kasner

Boundary: \[ds_4^2(t) = -dt^2 + \sum_{i=1}^{3} t^{2p_i} dx_i^2, \quad p_i \in \mathbb{R} \]

Bulk: \[ds_5^2 = \frac{1}{z^2} \left(dz^2 + ds_4^2(t) \right) \]

Geodesic approximation: (heavy scalar operators)

\[\langle \mathcal{O}(x)\mathcal{O}(-x) \rangle \sim \exp(-\Delta L_{\text{ren}}) \]

\(\Delta \): conformal weight of \(\mathcal{O} \)

\(L_{\text{ren}} \): renormalised geodesic length

Main result

Geodesic passing singularity \(\leftrightarrow \) finite distance pole in 2-point correlator
Effective bouncing metric

Strategy: modify 4d part, no large curvatures from z-direction

\[ds_5^2 = \frac{1}{z^2} \left(dz^2 + ds_4^2(t) \right) \]
Effective Bouncing Metric

Strategy: modify 4d part, no large curvatures from z-direction

\[ds_5^2 = \frac{1}{z^2} \left(dz^2 + ds_4^2(t) \right) \]

- Quantum bounce interpolates between classical solutions [Bojowald '01-; Ashtekar, Bojowald, Lewandowski '03; Ashtekar, Pawlowski, Singh '06; . . .]
- Transitions between different Kasner solutions [Gupt, Singh '12]

\[\propto \left(-t\right)^{-1/6} \propto t^{5/6} \]

\[x - \text{scale} \]
Improved 2-point correlators

\[ds_5^2 = \frac{1}{z^2} \left(dz^2 + ds_4^2(t) \right) \]

Possible simplifications

- QG scale is 4d, no Kasner transitions \(\rightarrow\) analytic solution
- QG scale is 5d, no Kasner transitions \(\rightarrow\) numeric solution

5d scale + Kasner transitions not straightforward
(Ansatz too narrow, 5d QG theory required)
IMPROVED 2-POINT CORRELATORS

\[ds_5^2 = \frac{1}{z^2} \left(dz^2 + ds_4^2(t) \right) \]

Possible simplifications

- QG scale is 4d, no Kasner transitions → analytic solution
- QG scale is 5d, no Kasner transitions → numeric solution

5d scale + Kasner transitions not straight forward
(_ansatz too narrow, 5d QG theory required_

All calculations give qualitatively similar results
Signatures of the resolved singularity

Dual of the resolved singularity

- Finite distance bump instead of pole
- Subdominant large distance contribution

Discussion

So far: prototype calculation
Goal: find system where independent field theory computation possible
Signatures of the resolved singularity

- Finite distance bump instead of pole
- Subdominant large distance contribution

Discussion

- So far: prototype calculation
- Goal: find system where independent field theory computation possible
Analytical result (above): no Kasner transition, 4d Planck scale [NB, Schäfer, Schliemann '16]

Numerics: 5d Planck scale + Kasner transitions qualitatively similar [NB, Mele, Münch '18]
Outline

1. Introduction and related work
2. Strategy
3. Example: Kasner-AdS
4. Conclusion
CONCLUSION

- Holographic aspects of LQG actively investigated
 - 3d gravity
 - Tensor networks
 - Singularity resolution

Thank you for your attention!
Conclusion

- Holographic aspects of LQG actively investigated
 - 3d gravity
 - Tensor networks
 - Singularity resolution

- Starting point for collaboration / cross-influence
CONCLUSION

- Holographic aspects of LQG actively investigated
 - 3d gravity
 - Tensor networks
 - Singularity resolution

- Starting point for collaboration / cross-influence

- Other effective metric, e.g. black holes
Conclusion

- Holographic aspects of LQG actively investigated
 - 3d gravity
 - Tensor networks
 - Singularity resolution

- Starting point for collaboration / cross-influence

- Other effective metric, e.g. black holes

- Quantum gravity with(out) holographic dual?

Thank you for your attention!
Conclusion

- Holographic aspects of LQG actively investigated
 - 3d gravity
 - Tensor networks
 - Singularity resolution

- Starting point for collaboration / cross-influence

- Other effective metric, e.g. black holes

- Quantum gravity with(out) holographic dual?

Thank you for your attention!
Long distance behaviour

- Complex geodesics:
 \[\langle \mathcal{O}(x)\mathcal{O}(-x) \rangle \xrightarrow{x \to \infty} \infty (\mathcal{L}_{\text{bdy}})^{-\frac{2\Delta}{1-p}} \]
 \[\neq (\mathcal{L}_{\text{bdy}})^{-2\Delta} \] due to Kasner background breaking conformal symmetry

- Real singularity-free geodesic \(p < 0 \):
 \[\langle \mathcal{O}(x)\mathcal{O}(-x) \rangle \xrightarrow{x \to \infty} \infty \lambda^{-2p\Delta} (\mathcal{L}_{\text{bdy}})^{-2\Delta} \]
 - Subdominant to complex contribution
 - Vanishes as \(\lambda \to 0 \)
General holography from QG

AdS/CFT relies on

- Asymptotic symmetry of AdS ↔ global CFT symmetry
- Geometry of AdS near boundary ↔ UV structure of CFT
General holography from QG

AdS/CFT relies on

- Asymptotic symmetry of AdS ↔ global CFT symmetry
- Geometry of AdS near boundary ↔ UV structure of CFT

→ Generalized holography?
General holography from QG

AdS/CFT relies on

- Asymptotic symmetry of AdS ↔ global CFT symmetry
- Geometry of AdS near boundary ↔ UV structure of CFT

→ Generalized holography?

Derive dual theory directly from QG partition function!

- Finite region QG
- Boundary state / condition ↔ dual theory

\[\langle \cdots \rangle_{\text{Dual theory}(\phi^i_b)} := Z_{\text{QG}} \left[\phi^i_b \right] \]

→ Euclidean 3d gravity best understood / solvable

[cf. neg. cos. constant: Castro, Gaberdiel, Hartman, Maloney, Volpato '11]
$\mathbf{3+0 \ LQG, \ \Lambda = 0}$

3-dim. gravity is topological:

$$S = \int_M e_i \wedge F^i(A), \quad \delta e_i S = F^i(A) = 0$$
$3+0$ LQG, $\Lambda = 0$

3-dim. gravity is topological:

$$S = \int_M e_i \wedge F_i(A), \quad \delta_{e_i} S = F_i(A) = 0$$

Path integral:

$$Z(M) = \int De D\mathcal{A} e^{i \int_M e_i \wedge F_i(A)} \rightarrow \int D\mathcal{A} \delta \left(F_i(A) \right)$$
3+0 LQG, \(\Lambda = 0 \)

3-dim. gravity is topological:

\[
S = \int_M e_i \wedge F^i(A), \quad \delta e_i S = F^i(A) = 0
\]

Path integral:

\[
Z(M) = \int \mathcal{D}e \mathcal{D}A e^{i \int_M e_i \wedge F^i(A)} \rightarrow \int \mathcal{D}A \delta \left(F^i(A) \right)
\]

Discretize on fixed simplicial decomposition:

\[
Z_{PR}(M) = \left(\prod_{\text{links } l} \int_{\text{SU}(2)} dg_l \right) \prod_{\text{faces } f} \delta \left(\prod_{l \in f} g^\epsilon_{l,f} \right)
\]

Needs regularization: Gauge fixing / quantum group
Holography from partition functions

Dual 2d Ising model [Costantino '11; Dittrich, Hnybida '13; Bonzom, Costantino, Livine '15]

- Tri-valent boundary graph Γ on 2-sphere

$$\left(Z^{\text{Ising}}(\Gamma)\right)^2 Z^{\text{LQG}}(\Gamma) = \left(\prod_{\text{edges } e} \cosh(y_e)\right)^2 2^{2\#\text{vertices}}$$

- Ising couplings $y_e \leftrightarrow$ QG coherent state parameters

Dual "twisted" 6-vertex model [Dittrich, Goeller, Livine, Riello '17]

Four-valent boundary graph Γ on twisted 2-torus

Only spin $1/2$ rep., "fuzzy parallelograms"

Torus twist + monodromy integration in 6-vertex model:

$$Z^{\text{LQG}}(\Gamma) = Z^{\text{6 vertex twisted}}(\Gamma)$$

Intertwiners \leftrightarrow vertex parameters
Holography from Partition Functions

Dual 2d Ising Model

- Tri-valent boundary graph Γ on 2-sphere

\[
\left(Z^{\text{Ising}}(\Gamma) \right)^2 Z^{\text{LQG}}(\Gamma) = \left(\prod_{\text{edges } e} \cosh(y_e) \right)^2 2^{2\#\text{vertices}}
\]

- Ising couplings $y_e \leftrightarrow$ QG coherent state parameters

Dual “Twisted” 6-Vertex Model

- Four-valent boundary graph Γ on twisted 2-torus
- Only spin $1/2$ rep., “fuzzy parallelograms”
- Torus twist + monodromy integration in 6-vertex model:

\[
Z^{\text{LQG}}(\Gamma) = Z^{6 \text{ vertex}}_{\text{twisted}}(\Gamma)
\]

- Intertwiners \leftrightarrow vertex parameters
Random tensor networks

- Approximate ground states of interacting many-body Hamiltonians
- Different types, here MERA (gapless systems) [figures from Orús, arXiv:1407.6552]

\[S_{EE}(L) \sim \min. \ # \ crossed \ legs \]

[Swingle '09; ...; Hayden, Nezami, Qi, Thomas, Walter, Yang '16; ...]
Random tensor networks

- Approximate ground states of interacting many-body Hamiltonians
- Different types, here MERA (gapless systems) [figures from Orús, arXiv:1407.6552]

\[S_{EE}(L) \sim \text{min. } \# \text{ crossed legs} \]

[Swingle '09; …; Hayden, Nezami, Qi, Thomas, Walter, Yang '16; …]

Compared to
- Ryu-Takayanagi formula
- Tensor network ↔ real space renormalization ↔ AdS geometry
Random tensor networks

- Approximate ground states of interacting many-body Hamiltonians
- Different types, here MERA (gapless systems) [figures from Orús, arXiv:1407.6552]

![Diagram of tensor networks](image)

- $S_{EE}(L) \sim \min. \# \text{ crossed legs}$

 [Swingle '09; ...; Hayden, Nezami, Qi, Thomas, Walter, Yang '16; ...]

Compares to

- Ryu-Takayanagi formula
- Tensor network ↔ real space renormalization ↔ AdS geometry

→ Model for discrete holography

- How to relate to continuum geometry / continuum RT-formula?
Figure 3. The spatial region with boundary and its semi-classical geometry are built by a large number of polyhedra p ... glu-
ing tetrahedrap's. It effectively connects the spin-network states from each p, and consistently produces the

Deriving RT from random tensor networks

[Hayden, Nezami, Qi, Thomas, Walter, Yang ’16]

- Average over random tensors ↔ Ising model ↔ RT-surface as domain wall
- Discrete RT formula for constant large bond dimension D:
 \[S_{EE}(L) = \log D \times \min. \# \text{crossed legs} \]
- Missing input: \(\log D \leftrightarrow \text{geometry} \)
Deriving RT from random tensor networks

- Average over random tensors ↔ Ising model ↔ RT-surface as domain wall
- Discrete RT formula for constant large bond dimension D:
 $$S_{EE}(L) = \log D \times \min \text{ \# crossed legs}$$
- Missing input: $\log D$ ↔ geometry

LQG interpretation [Han, Hung '16, figure from Han, Hung: arXiv:1610.02134]
Geometric RT from LQG

- Codim. 2 area from bond dimension \leftrightarrow surface (black hole) entropy
- State counting: [Krasnov '96; Rovelli '96; Ashtekar, Baez, Corichi, Krasnov '97-; ...]

$$D \sim \exp(A)$$

- Generic codim. 2 surfaces and dimensions [Husain '98; NB '13, '14]
- Codim. 2 area from bond dimension \leftrightarrow surface (black hole) entropy
- State counting: [Krasnov '96; Rovelli '96; Ashtekar, Baez, Corichi, Krasnov '97-; ...]

$$D \sim \exp(A)$$

- Generic codim. 2 surfaces and dimensions [Husain '98; NB '13,'14]

Geometric RT from LQG

- Repeat computation for generic large bond dimensions $D \sim \exp(A)$
 - \rightarrow discrete Nambu-Goto path integral
 - \rightarrow minimal surface [Han, Hung '16]
- Correct entanglement spectrum from Wheeler-de Witt wave function in 3d [Han, Huang '17]
Test hypothesis of singularity resolution for consistency with holography
[c.f. Engelhardt, Horowitz '16]

Work with effective bouncing metric in simple models

Independent of underlying QG approach, e.g.
- String cosmology
- Loop quantum cosmology
- Modified gravity
- ...

Compute 2-point boundary correlators in geodesic approximation
(Neglect possible corrections to geodesic equation)

Check for consistency with CFT description