A pneumonia outbreak of unknown aetiology was reported in Wuhan at the end of 2019 (ref. 1). The previously unknown virus responsible for this pneumonia was identified and named severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), and the new disease was termed coronavirus disease 2019 (COVID-19) (WHO situation report). On 11 March 2020, the WHO declared the COVID-19 outbreak a pandemic 4.

As the virus spread, new findings were published on a daily basis and, although the respiratory tract seemed to be the main field of interest, attention soon focused on extra-pulmonary manifestations of the infection 5. Results from autopsy studies on patients deceased of COVID-19-associated causes reported severe tissue alterations in various organs 6,7.

In gastroenterology, diarrhoea is a frequently reported symptom of SARS-CoV-2 infection 8, and COVID-19 has also been associated with liver damage and dysfunction 9, as well as with acute pancreatitis 10. Cardiologists report that COVID-19-induced myocarditis can lead to fulminant myocardial dysfunction and is associated with poor overall prognosis 11. In neurology, systemic inflammatory responses induced by COVID-19 can result in devastating hypoxic and metabolic changes that can lead to encephalopathy and encephalitis 12. Experience with long-term complications of COVID-19 is still limited. After the acute phase of SARS-CoV-2 infection, patients might still suffer from fatigue, breathing difficulty and fever 14. In patients with so-called long COVID (a complex condition characterized by prolonged heterogeneous symptoms following SARS-CoV-2 infection, such as weakness, general malaise or fatigue 15), mounting evidence of impairment or scarring of multiple organs has been reported 16. In urology, evidence suggests that kidneys and testes are at a particularly high risk of severe damage following COVID-19 infection 17,18.

In this Review, data concerning the effects of COVID-19 on the urogenital system are discussed to provide further information for the medical treatment of patients with COVID-19 and evaluate the risk of possible long-term damage. Current findings on urological symptoms of COVID-19 and damage to organs of the genitourinary tract induced by SARS-CoV-2 infection are also presented. Furthermore, the effect of COVID-19 on male sexual health and the risk of viral transmission through urine or semen are discussed.

SARS-CoV-2 viral entry into human cells

Spike proteins of SARS-CoV-2 are membrane proteins that give the virus its crown-like appearance and bind to angiotensin-converting enzyme 2 (ACE2) receptors on the cellular surface, enabling the entry of the...
Key points

- High expression levels of the angiotensin-converting enzyme 2 (ACE2) receptor, which has a central role in severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) invasion, can be found in the genitourinary tract, especially in kidney proximal tubule cells, bladder urothelial cells and testes.
- Acute kidney injury (AKI) occurs frequently in patients with coronavirus disease 2019 (COVID-19) and is the most common complication of COVID-19. Cytokine-storm-induced systemic inflammatory response and direct cytopathic effects are possible pathophysiological mechanisms of AKI.
- The detection of SARS-CoV-2 in urine is rare, although the virus can be detected in urine up to 52 days after disease onset. SARS-CoV-2 is rarely detected in semen.
- Results of autopsy studies have shown severe structural changes in testes of deceased patients with COVID-19. An acute impairment of spermatogenesis in patients with COVID-19 is probably caused by fever; however, the existence of long-term effects of COVID-19 on fertility, as observed in other viral orchitides, is still conceivable.
- Low levels of total testosterone in patients with COVID-19 are reported frequently, and hypogonadism is often secondary. The effect of androgen deprivation therapy on COVID-19 survival is still debated.
- COVID-19-associated coagulopathy can cause endothelial damage and vasculitis, potentially leading to thromboembolism, which also affects urogenital organs.

Acute kidney injury in COVID-19

The reported incidence of acute kidney injury (AKI) in patients with COVID-19 is heterogeneous and ranges from 1% to 46%\(^\text{31}\). Results from a big retrospective, observational study analysing the incidence of AKI in 3,993 hospitalized patients with COVID-19 showed that AKI occurred in 46% of patients\(^\text{32}\); 19% of whom required kidney replacement therapy\(^\text{32}\). The mortality was 50% in patients with AKI and 8% in patients without AKI\(^\text{32}\). Moreover, only ~30% of patients who survived showed a recovery of kidney function at the time of discharge\(^\text{32}\). Thus, AKI in patients with COVID-19 is common and associated with high mortality; recovery of kidney function is delayed or absent in many patients with AKI. AKI was reported to be the most common complication of COVID-19 in a multicentre cohort study including 80,388 patients with COVID-19 (REF.\(^\text{33}\)).

In a prospective cohort study including 701 patients with COVID-19, 43.9% had proteinuria and 26.7% had haematuria on admission, indicating severe damage of kidney tissue\(^\text{34}\). Patients with highly prevalent risk factors, such as diabetes, obesity or hypertension, are at an increased risk of developing SARS-CoV-2-mediated AKI (adjusted odds ratio (OR): 1.76 for diabetes, 1.11 for obesity and 1.25 for hypertension)\(^\text{35,36}\). The reported mortality in hospitalized patients with COVID-19 and AKI varies tremendously (34–80%)\(^\text{37}\), but might still be considered substantially higher than the average mortality of all hospitalized patients with COVID-19 (including patients without AKI), reported to be between 9.3% and 19.7% in a cohort study including 503,409 patients\(^\text{38}\).

The rate of AKI correlates with the classification of COVID-19 disease severity by the WHO, as AKI has been observed in 3.2%, 15.2% and 24.3% of patients with moderate COVID-19, severe COVID-19 and acute respiratory distress syndrome, respectively, in a prospective assessment of 333 patients with COVID-19 (REF.\(^\text{39}\)). AKI in patients with COVID-19 also correlates with patients’ history of chronic kidney disease (CKD)\(^\text{40}\). In a case series of 7,624 patients with COVID-19, the reported mortality was 23.1% in patients with CKD and 10.2% in patients without CKD (P<0.001), with odds of mortality 1.51 times higher (95% CI 1.19–1.90) in patients with CKD than in the non-CKD group\(^\text{41}\).

Pathophysiological mechanisms leading to AKI development in patients with COVID-19 have not
yet been fully elucidated and are probably multifactorial. Severe structural changes can be detected in kidney biopsy samples from patients with COVID-19 (refs 41,42). In a study analysing kidney biopsy samples from 14 patients with COVID-19, 5 patients had collapsing glomerulopathy, 2 had memranous glomerulopathy, 1 had crescentic transformation of lupus nephritis, 1 had anti-glomerular basement membrane nephritis and 4 had isolated acute tubular injury41. In another study, post-mortem kidneys from 42 patients who died of COVID-19 were examined, and acute tubular injury was the most common kidney alteration (detected in 45% of patients)42. Two instances of acute necrotizing glomerulonephritis associated with COVID-19 have also been described in children41.

One of the biggest studies in which histopathological changes in kidney tissue in patients with COVID-19 have been evaluated is an international multicentre retrospective cohort study, including 284 patients with COVID-19 and kidney symptoms (AKI, acute on CKD or proteinuria)44. Overall, 240 native biopsy samples and 44 allograft biopsy samples were compared with biopsy samples from a pre-COVID-19 database and a wide range of histopathological changes were found 44; the most common observation in patients with COVID-19 and kidney symptoms was acute tubular injury (detected in 78.3% of native biopsy samples and 88.6% of allograft biopsy samples). However, acute tubular injury as the sole or predominant finding was detected in only 13.3% of native biopsy samples and 27.3% of the allograft

Fig. 1 | Pathways of SARS-CoV-2 cell entry. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) binds to angiotensin-converting enzyme 2 (ACE2; step 1 in the left and right panels) on the host-cell membrane and undergoes a conformational change in the spike protein subunit 1 (S1) leading to exposure of the S2' cleavage site in the S2 subunit of the virus; these cleavage events in the two spike proteins of the virus are necessary for the virus entry process. Two viral entry pathways (endosomal and cell surface) are available. Left: in the case of insufficient transmembrane protease serine 2 (TMPRSS2) levels on the host cell, or if a virus–ACE2 complex does not encounter TMPRSS2, the virus–ACE2 complex is internalized via clathrin-mediated endocytosis (step 2) into the endolysosomal compartment, where S2' is cleaved by the enzymes cathepsins, working in an acidic environment (steps 3 and 4). Right: in the presence of TMPRSS2, S2' is cleaved at the cell surface (step 2). In both entry pathways, cleavage of the S2' site exposes the fusion peptide (FP) and induces dissociation of S1 from S2. A dramatic conformational change in the S2 subunit moves the FP forward into the target membrane, initiating membrane fusion (step 5 on the left and step 3 on the right). After the fusion between viral and cellular membranes, viral RNA is released into the host-cell cytoplasm through a fusion pore and viral RNA uncoating occurs (step 6 on the left and step 4 on the right). Several agents disrupt the interaction between the S proteins and ACE2, such as ACE2 mimetics, therapeutic antibodies (targeting S protein) and vaccine-elicited antibodies (blocking the virus binding to ACE2). Other strategies target post-receptor-binding steps: the serine protease inhibitor camostat mesylate acts on TMPRSS2, blocking the TMPRSS2-mediated entry pathway; hydroxychloroquine and chloroquine block endosomal acidification, which is necessary for cathepsin activity, acting on the cathepsin-mediated entry pathway. Reprinted from REF 19, Springer Nature Limited.
biopsy samples, not significantly different from what was detected in pre-COVID-19 biopsy samples (11.9%,
P = 0.52 for native biopsy samples and 17.7%, P = 0.09
for allograft biopsy samples)44. The most common find-
ing in native biopsy samples (25.8% of patients) was
collapsing glomerulopathy, also known as COVID-19-
associated nephropathy (COVAN)44. The G1 and G2
alleles of the apolipoprotein L1 (APOL1), which are
very frequent in men with African ancestry and greatly
increase the risk of multiple types of kidney disease45,
were found in 91.7% of the tested kidney biopsy samples
from African American and Hispanic patients with
COVAN44. Thus, whether the glomerular changes
observed in this population (African American and
Hispanic patients with COVID-19 who express the G1
and G2 risk alleles of APOL1) are a direct consequence
of SARS-CoV-2 infection or emerge as a form of a
’s second hit’ additional to a pre-existing risk factor
is still unclear46. Analysis of biopsy samples from patients
with kidney allograft showed that allograft rejection
disproportionately affected patients with COVID-19
(61.4% versus 27.1% in allograft biopsy samples from
the pre-COVID-19 database, P < 0.001)34. Taken
together, these results show that a wide spectrum of
pathological changes in kidney could be detected in
patients with COVID-19, with COVAN being the most
common diagnosis in native biopsy samples34; more-
over, patients with COVID-19 who have a kidney trans-
plant seem to be at a considerable risk of developing
an allograft rejection45. In this study, no evidence of direct
SARS-CoV-2 infection was found in the examined kid-
ney biopsy samples34, whereas, in other studies, the virus
could be detected in some kidney samples, although this
event seems to be rare and depends on the method of
detection. However, understanding the viral load in
kidney tissue might help to clarify whether the alterations
in kidney observed in patients with COVID-19 are
carried by the viral infection or occur in response to
systemic inflammation.

One possible pathophysiological mechanism of
AKI in COVID-19 is a cytokine-storm-induced sys-
temic inflammatory response47,48. A cytokine storm is
characterized by an excessive and maladaptive release
of pro-inflammatory cytokines during an inflam-
matory response, which can lead to excessive organ
dysfunction49. SARS-CoV-2 might cause inflammatory
cytokine storms, which lead to acute respiratory
disease syndrome or multiple-organ failure and could
be associated with disease severity48,50. Results from a
study including 41 hospitalized patients with COVID-19
showed higher plasma concentration of multiple
cytokines, such as IL-2, IL-7, IL-10, granulocyte colon-
ystimulating factor (G-CSF) and tumour necrosis fac-
tor (TNF) in patients treated in the intensive care unit
(ICU)51 than in patients in the non-ICU group49. In
another study, the concentration of numerous cytokines
was significantly higher in patients with COVID-19
(n = 44) than in healthy individuals (n = 66, P < 0.05) and
cytokine levels were shown to be associated with differ-
ent extents of COVID-19 severity52. However, no single
definition for the term cytokine storm is widely ac-
tended and the line between a normal and a dysregulated
response to a severe infection is blurred53.

Another mechanism of COVID-19-mediated AKI
might be the induction of structural changes in host
cells54. ACE2 is highly expressed in renal tubular cells,
and SARS-CoV-2 has been shown to be able to bind to
ACE2 on the surface of these cells in vitro studies54.
Results from a single-cell transcriptome analysis of
15 kidney samples from healthy individuals showed
co-expression of ACE2 and TMPRSS in the kidney,
especially in proximal tubular cells and podocytes55. The
co-expression level of ACE2 and TMPRSS in these cells
was similar to that observed in the lung, supporting the
hypothesis that the kidney might be a main target organ
for SARS-CoV-256. Podocytes have a crucial role in
urine filtration, and proteinuria has been observed in
patients with COVID-19 (44% of patients (n = 701) in
a prospective study)57. Thus, based on the high level of
ACE2 and TMPRSS co-expression in podocytes, the
investigators concluded that proteinuria in patients
with COVID-19 might be caused by a direct cyto-
pathic effect of SARS-CoV-2 on podocytes58. Evidence
for ACE2-independent cell damage in kidney cells has
also been reported. In kidney epithelial cells, a novel
route of viral invasion for SARS-CoV-2 mediated by
the interaction of spike proteins with CD147 (a trans-
membrane glycoprotein also known as basigin) has been
described59, suggesting that other ACE2-independent
mechanisms of viral invasion in the kidney might exist
and warrant further investigation.

In summary, AKI is a serious and frequently reported
complication in patients with COVID-195, but the
pathophysiological background of AKI is not fully
understood. A wide range of severe pathological changes
can be found in kidney tissue samples from patients
with COVID-196,44, but whether this damage
is caused by an exuberant systemic inflammatory

Fig. 2 | Proportion of ACE2+ cells in different tissues.
Results from a single-cell RNA-sequencing study showed that the average proportion of angiotensin-converting enzyme 2 (ACE2)-positive type II alveolar cells in the lungs was ~1%, with 1% standard deviation1. On this basis, cell types with >1% of ACE2+ cells were defined as being at a ‘high risk’ of SARS-CoV-2 infection1. High ACE2 expression levels were found in kidney proximal tubule cells (4% ACE2+ cells) and in bladder urothelial cells (2.4% ACE2+ cells); the percentage of ACE2+ cells in these compartments was even higher than that observed in respiratory epithelial cells (2.0% ACE2+ cells)1.
SARS-CoV-2 in urine and semen
The detection of SARS-CoV-2 in urine is very rare. In a meta-analysis of 93 studies in which urine samples from 533 patients with COVID-19 were analysed, the presence of SARS-CoV-2 in urine was reported in only 14 studies, in 24 patients in total (4.5%)\(^6\). In most studies, the urinary SARS-CoV-2 viral load was lower than that observed in oropharyngeal or rectal samples\(^6\). However, SARS-CoV-2 was detected in urine up to 52 days after disease onset, indicating that the virus might be detectable in urine in the acute stage of COVID-19 and also after recovery\(^6\). In adults, SARS-CoV-2 was more likely to be found in the urine samples of patients with moderate or severe disease\(^6\). These observations could suggest either that the viral load of SARS-CoV-2 in the urogenital tract is low or that the viral excretion via the urogenital tract is highly restricted. SARS-CoV-2 could also be unstable in urine, but a PCR test should still detect it.

The detection of SARS-CoV-2 in mucous membranes seems to be dependent on the region tested\(^6\). SARS-CoV-2 can be detected in anal swabs and in some patients, the test remained positive even when throat swabs and sputum swabs were negative\(^6\). Thus, this method has been also discussed as a possible tool to evaluate hospital discharge of patients with COVID-19 (REF.\(^6\)). The situation seems to be different for urethral swabs: in a case series, all ten of the patients tested had a negative urethral swab for SARS-CoV-2 RNA, despite having a positive rhino-oropharyngeal test\(^6\).

In a meta-analysis of eight studies including 160 semen samples from patients with COVID-19, SARS-CoV-2 was only detected in six patients from one study\(^61\). The presence of SARS-CoV-2 viral RNA in ejaculate has only been reported in four studies to date\(^6\)–\(^66\) (6.66%\(^6\), 15.8%\(^6\), 2.3%\(^6\) and 14.3%\(^6\) of patients). During sexual intercourse, COVID-19 infection through respiratory droplets is of course possible, but, according to the available data, a sexual transmission of SARS-CoV-2 via semen seems to be very unlikely\(^6\).

Overall, these results indicate that detection of SARS-CoV-2 in urine and semen is possible, but is a rare event\(^6\)–\(^6\).

Cystitis and lower urinary tract symptoms
Viral cystitides dependent on SARS-CoV-2 infection have been observed since the beginning of the pandemic, with a high urinary frequency observed in 7 of 57 men with COVID-19, who had no signs of AKI, bacterial infection or prostatitis\(^6\). De novo urinary symptoms associated with COVID-19, such as increased urinary frequency and nocturia, were also reported in another study including SARS-CoV-2-positive outpatients (\(n = 39\))\(^6\). A bacterial urinary tract infection in these patients was excluded; therefore, the urinary symptoms were assumed to be caused by SARS-CoV-2, although no viral detection was conducted\(^6\). In another study, the average International Prostate Symptom Score (IPSS), which is used as a validated questionnaire to quantify lower urinary tract symptoms (LUTS)\(^6\), was assessed in patients with COVID-19 aged >50 years (\(n = 62\)) in the acute stage of the disease and surveyed retrospectively for the time before COVID-19 infection\(^6\). In the acute stage of COVID-19, the IPSS was significantly higher than before (9 ± 6.4 versus 5.1 ± 4.1, \(P < 0.0001\)); no correlation was found between IPSS and radiological degree of pulmonary infiltrates, and no significant differences in IPSS before and during COVID-19 were reported in a group of patients <50 years old (\(P = 0.053\))\(^6\). Taken together, these results provide clinical evidence that SARS-CoV-2 infection might trigger LUTS, especially in elderly men\(^6\). The absence of statistically significant differences in IPSS before and during COVID-19 in patients <50 years might be explained by the small sample size of this age group in this study (\(n = 32\))\(^6\).

Urinary symptoms reported in patients with COVID-19 overlap with common diseases such as benign prostatic hyperplasia; therefore, proving SARS-CoV-2 is the underlying cause is difficult\(^6\). Searching for possible mechanisms explaining the high prevalence of LUTS in patients with COVID-19, the levels of pro-inflammatory cytokines in urine was assessed in a small study including eight participants (four patients with COVID-19 and de novo urinary tract symptoms and four age-matched participants without COVID-19 and with no history of urinary tract diseases\(^6\)). The investigators hypothesized that what they called COVID-19-associated cystitis is caused by an increased inflammatory cytokine release into the urine and/or expression in the bladder\(^6\). Thus, urine samples from patients and age-matched individuals were collected\(^6\); all patients positive for COVID-19 (\(n = 4\)) had significantly higher levels of IL-6 (\(P = 0.046\)) and IL-8 (\(P = 0.002\)) in urine than individuals in the COVID-19-negative group (\(n = 4\))\(^6\). Urinary tract infections can lead to intermittent secretion of IL-6 and IL-8 into the urine\(^6\); however, increased interleukin levels in urine are not specific for urinary tract infections at all and might only depend on renal excretion of plasma interleukins.

The detection of SARS-CoV-2 in urine and semen is very rare, but the high prevalence of LUTS in the acute stage of COVID-19 reasonably suggests that the lower urinary tract might still be affected by the virus\(^6\)–\(^6\). Whether the inflammation in the urinary tract of patients with COVID-19 directly depends on SARS-CoV-2 or is secondary to renal excretion of plasma interleukins is still unclear.

SARS-CoV-2 and male reproductive health
Long-term effects of viral orchitis caused by viruses such as mumps, HIV or hepatitis B virus on fertility have been extensively studied\(^6\). Viral infection of the testes can result in a reduction of sperm quality and endocrine function, and possible long-term effects include oncogenic outcomes or vertical transmission of virus-induced mutations\(^6\). Understanding how SARS-CoV-2 will affect male fertility has received widespread attention. A survey in multiple European countries showed that 38–58% of individuals who had planned to have a baby
in 2020 were going to postpone this decision26, although expected financial challenges caused by the pandemic was the main reason for this choice.

ACE2 expression levels in testes are amongst the highest in the body27; ACE2 can be found in Sertoli cells, Leydig cells and cells of the seminiferous ducts28. In vitro cell-binding assays showed that SARS-CoV-2 can also bind to ACE2 on the surface of these cells27,29. Results from histopathological assessment of testicular and epididymal specimens of six deceased men with COVID-19 showed the presence of interstitial oedema, congestion and red blood cell exudation, which were absent in the group of deceased men without COVID-19 (REF27). Furthermore, thinning of seminiferous epithelium was observed in deceased patients with COVID-19, and the proportion of apoptotic cells in testes of these patients was significantly higher (2.95-fold, \(P = 0.018\)) than the average of deceased men without COVID-19. However, no data on histopathological changes in patients with non-fatal COVID-19 are available; therefore, whether the alterations in testes are a general consequence of COVID-19 or exclusively occur in patients with fatal COVID-19 is still unclear.

In another study, SARS-CoV-2 could be detected in testis tissue samples from deceased patients with COVID-19 (\(n = 6\)) by transmission electron microscopy, and the density of ACE2 receptors (quantified through immunofluorescence) was reported to be inversely proportional to the level of spermatogenesis, defined as impaired if full spermatogenesis was not visualized in proportional to the level of spermatogenesis, defined as impaired if full spermatogenesis was not visualized in.

Results from histopathological assessment of testicular and epididymal specimens of six deceased men with COVID-19 showed the presence of interstitial oedema, congestion and red blood cell exudation, which were absent in the group of deceased men without COVID-19 (REF27). Furthermore, thinning of seminiferous epithelium was observed in deceased patients with COVID-19, and the proportion of apoptotic cells in testes of these patients was significantly higher (2.95-fold, \(P = 0.018\)) than the average of deceased men without COVID-19.

However, no data on histopathological changes in patients with non-fatal COVID-19 are available; therefore, whether the alterations in testes are a general consequence of COVID-19 or exclusively occur in patients with fatal COVID-19 is still unclear.

In another study, SARS-CoV-2 could be detected in testis tissue samples from deceased patients with COVID-19 (\(n = 6\)) by transmission electron microscopy, and the density of ACE2 receptors (quantified through immunofluorescence) was reported to be inversely proportional to the level of spermatogenesis, defined as impaired if full spermatogenesis was not visualized in all observed tubules30. The direct association between increased ACE2 levels and impairment of spermatogenesis supports the hypothesis that organs with high ACE2 levels are at a high risk of cell damage and suggests that the testes might be target organs of SARS-CoV-2. In this study, testes seem to also be affected in men with non-fatal COVID-19. In a cross-sectional testicular ultrasonography study, incidental epididymitis was found in 42% of patients with mild-to-moderate COVID-19, all of whom had no scrotal complaints and no clinical signs of orchitis31. In another study evaluating the potential association between COVID-19 and testicular pain or epididymo-orchitis in 91 patients with COVID-19, 11% of patients reported scrotal pain32. These results suggest that COVID-19 can affect testis and epididymis in the acute stage of the infection, although these effects might be clinically inapparent in many instances.

Effects of SARS-CoV-2 infection on sperm quality also seem to be of concern. Results from a study including 23 patients with COVID-19 and 22 age-matched healthy men showed oligozoospermia (mean ratio: 0.29 (95% CI 0.12–0.71, \(P = 0.008\))) and a significant increase in leukocytes (\(P = 0.006\)) in semen of patients with COVID-19 compared with the healthy participants group33. In another study, impaired sperm quality in patients with COVID-19 was attributed to recurrent fever34, which has been shown to have a detrimental effect on sperm quality35, potentially owing to the thermal dependence of spermatogenesis36,37. In a prospective, observational study, sperm quality after recovery from COVID-19 was assessed using the WHO criteria. Sperm parameters were evaluated at three different time points after the infection: short (0–31 days, \(n = 35\)); intermediate (32–62 days, \(n = 51\)); and long (\(n = 34\)). Mean progressive sperm motility was reduced in 60%, 37% and 28% of men in the short, intermediate and long follow-up time groups, respectively, whereas mean sperm count was reduced in 37%, 29% and 6% of patients in the three groups, respectively38. The authors concluded that the estimated recovery time of sperm quality after COVID-19 infection is 3 months, but further follow-up studies are needed to determine whether a minority of men might suffer from permanent testicular damage39. The severity of COVID-19 infection (for example, the need to be hospitalized) and the presence of fever did not correlate with sperm characteristics in this study40. The effect of COVID-19 on fertility potential in the acute stage of the infection was assessed in a multicentre study including 69 patients aged 20–45 years who previously had COVID-19 but had recovered at least 3 months earlier41. Sperm motility and vitality significantly decreased (\(P \leq 0.03\)) in these patients after COVID-19 infection compared with the values from a spermogram analysis performed in the same patients within the year before SARS-CoV-2 onset. These results could indicate that the estimated recovery time of sperm quality after COVID-19 infection might be longer than the 3 months previously suggested42. In another study, men recovering from COVID-19 (\(n = 30\), median age: 40 years) showed a lower total sperm number than age-matched healthy men43. In a follow-up analysis (median time: 3 months), the total sperm number in 5 of these 30 men was similar to that reported in the acute phase of COVID-19 (REF44). No data on the sperm quality in these men before COVID-19 infection are available; therefore, the possibility of a low sperm count before COVID-19 infection exists. In another study, sperm quality was assessed in 74 men aged between 20 and 50 years, who were recovering from COVID-19 (two consecutive negative pharyngeal swab PCR tests were required for inclusion)45. Urine, expressed prostatic secretion and semen were analysed for SARS-CoV-2 detection, and the PCR was negative in all the samples collected in all patients. Semen characteristics, including semen volume, total sperm number, sperm concentration, vitality, progressive motility and total (progressive plus non-progressive) motility, were compared with the WHO reference values (based on data from a fertile population and generated from men whose partners had a time to pregnancy \(\leq 12\) months)46. The total sperm count and total sperm motility in patients with COVID-19 were lower than age-matched healthy men (total sperm count: 197 million versus 261 million, \(P = 0.021\); total motility: 48.9% versus 56.4%, \(P < 0.0001\)), but still above the lower reference limit released by the WHO (total sperm count: 39 million per ejaculate (95% CI 33–46), total sperm motility: 40% (95% CI 38–42))47. Furthermore, patients with a recovery
time from COVID-19 of ≥90 days had a significantly lower total sperm count than patients who recovered in less than 90 days (152 million versus 224 million, \(P = 0.0369 \))\(^{96}\). These results suggest that no substantial long-term threats on male fertility after recovery from COVID-19 exist, but the effect of COVID-19 on fertility might be worse for men with a long recovery time than for men who recover within a short time frame.

COVID-19 infection is also associated with endocrine imbalances\(^{92,93}\). In a cohort study including 286 patients with COVID-19 and 281 healthy individuals, significantly lower levels of total testosterone were found in men with COVID-19 at hospital admission than in healthy participants (2.5 nmol/l versus 10.4 nmol/l, \(P < 0.0001 \))\(^{92}\). In detail, hypogonadism (defined as total testosterone <9.2 nmol/l) was observed in 89.8% of patients with COVID-19, and in only 14.9% of healthy individuals\(^{92}\). Most patients (85%), showed secondary hypogonadism (hypogonadotrophic hypogonadism, total testosterone <9.2 nmol/l and luteinizing hormone (LH) ≤9.4 mUI/ml)\(^{92}\) (Fig. 3). These results indicate that, although the testes might be heavily affected by a SARS-CoV-2 infection under other circumstances\(^{90,97}\), in these patients, the cause of the imbalances in total testosterone levels lies in the central nervous system, as secondary hypogonadism indicates a problem in the pituitary gland or hypothalamus\(^{94}\). Results from the univariate analysis showed that total testosterone levels were inversely associated with increased risk of ICU admission (OR 0.54, \(P < 0.0001 \)) or death (OR 0.68, \(P < 0.002 \))\(^{92}\). Thus, in these patients, SARS-CoV-2 infection is associated with low total testosterone levels, mostly secondary hypogonadism, and total testosterone correlates with COVID-19 severity\(^{92}\). Male hormone levels vary tremendously through acute illness or stress\(^{92}\); therefore, these results should be interpreted with caution. Moreover, in a prospective cohort study in which patients with COVID-19 (\(n = 89 \)) were compared with patients with non-COVID-19 respiratory tract infection (\(n = 30 \)) and age-matched healthy individuals (\(n = 143 \)), total testosterone levels were decreased in patients with COVID-19, but also in patients with non-COVID-19 respiratory tract infections\(^{92}\), indicating that the observed hormonal imbalances might be a general phenomenon of critical illness, non-specific for SARS-CoV-2 infection\(^{92}\). In another study, the levels of follicle-stimulating hormone (FSH)\(^{98}\), LH, testosterone and oestradiol in 74 men aged between 20 and 50 years who were recovering from COVID-19 were reported to be within the normal range\(^{99}\). However, opposite results were reported from a study including 121 men who recovered from COVID-19: at a 7-month follow-up time, 55% of men still suffered from hypogonadism (total testosterone <9.2 nmol/l)\(^{99}\). Thus, a substantial effect of COVID-19 on the hormonal balance is observed during the acute phase of the infection, but whether this imbalance has long-term repercussions for the total testosterone balance is still unclear\(^{90,97}\).

Analysis of the effects of COVID-19 infection on male reproductive health through histopathological examinations showed that testicular tissue can be severely damaged by SARS-CoV-2 infection\(^{90,93}\) (Fig. 4). However, the observed reduced sperm quality in patients in the acute stage of COVID-19 could also be attributed to fever\(^{96,99}\), and long-term data on sperm quality after recovery from COVID-19 are still very limited. Regarding hormonal modifications induced by COVID-19, a reduction in testosterone levels can be found regularly in patients with COVID-19 (REFS\(^{95,96}\)); secondary hypogonadism is the most frequently observed form of hormonal imbalance, indicating a disturbance in the central nervous system, rather than in the testes\(^{92}\). However, contradictory evidence makes it difficult to understand whether or not hormonal imbalance in patients recovering from COVID-19 is only a temporary phenomenon of the acute stage of infection\(^{90,97}\).

Testosterone and androgen deprivation therapy

A higher mortality rate for COVID-19 in men than in women has been reported in multiple studies\(^{96,100}\). Moreover, disease severity of COVID-19, measured by hospitalizations and ICU admissions, is higher in men than in women, a phenomenon already observed in previous coronavirus epidemics (SARS-CoV, 2002, and Middle East respiratory syndrome-related coronavirus (MERS), 2012)\(^{90,101}\). Sex disparities in the observed severity of COVID-19 are most likely multifactorial and could partly be explained by different comorbidities and behaviours\(^{101}\). Men might be more vulnerable to infections than women owing to biological causes (including immunological, hormonal and genetic differences) and a worse overall health status\(^{102}\); the higher prevalence of smoking in men than in women might also predispose to worse COVID-19 outcomes\(^{102}\). Testosterone has also been hypothesized to have a role in sex differences in COVID-19 outcomes, as it regulates ACE2 and TMPRSS2 expression\(^{90,102}\). The link between testosterone and COVID-19 symptoms could also explain why children, who generally exhibit lower expression levels of androgen receptor, show fewer COVID-19 symptoms than adults\(^{100}\). Furthermore, androgen-dependent prostate cancer cells highly express TMPRSS2 (a key mediator in viral invasion\(^{98}\)) in response to androgens\(^{92}\). Thus, in the early stages of the pandemic, treatment with androgen deprivation therapy (ADT)\(^{102}\) in men with prostate cancer was hypothesized to be protective against COVID-19 infection\(^{98}\). In a large population-based study including 4,532 men with...
confirmed SARS-CoV-2 infection, patients with prostate cancer who received ADT were at a significantly lower risk of infection than patients with prostate cancer without ADT (OR 4.05, 95% CI 1.55–10.59, P = 0.0043) or patients with any other malignancy (OR 4.86; 95% CI 1.55–10.59, P = 0.0043). The authors attributed the protective effect of ADT to its ability to decrease TMPRSS2 levels, which has an important role in the fusion process of cellular and viral membranes. TMPRSS2 expression levels in testes are amongst the highest in the body and can be found in Sertoli cells, Leydig cells and cells of the seminiferous ducts.

In a testicular ultrasonography study, incidental epididymitis was found in 142% of patients with mild-to-moderate coronavirus disease 2019 (COVID-19). Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) can be detected in semen, but this event is rare. Oligozoospermia, reduced sperm motility and sperm vitality, as well as leukocytospermia, are reported frequently in the acute phase of COVID-19 infection. Testicular tissue can be severely damaged by SARS-CoV-2 infection, leading to a wide range of pathological changes in autopsy studies. Angiotensin-converting enzyme 2 (ACE2) expression levels in testes are amongst the highest in the body and can be found in Sertoli cells, Leydig cells and cells of the seminiferous ducts.

In conclusion, evidence suggests that testosterone could be associated with higher COVID-19 disease severity in men than in women. However, the exact effect of testosterone on COVID-19 severity and the underlying mechanisms are still unclear, as reflected in the contradictory findings about the effect of ADT on the risk of SARS-CoV-2 infection.
Urological thromboembolic complications

Thromboembolism is a frequent and severe complication of COVID-19 (REF.118). A study including 184 patients with COVID-19 pneumonia in the ICU reported a remarkably high incidence of thromboembolic complications in these patients (31%), including deep vein thrombosis or pulmonary embolism119. In a meta-analysis of 49 studies including 18,093 patients with COVID-19, the reported pooled incidence was 17.0% for venous thromboembolism and 7.1% for pulmonary embolism120; the incidence of venous thromboembolism was higher in studies that used systematic screening than in those relying on clinical diagnosis (33.1% versus 9.8%, P < 0.0001)120. However, in a study including 256 patients with COVID-19 pneumonia and 360 patients with non-COVID-19 pneumonia, the rate of venous thromboembolism was not significantly different between the two groups (2% versus 3.6% respectively, P = 0.229), indicating that the observed hypercoagulable state in patients with COVID-19 might not be dependent on SARS-CoV-2 (REF.121). However, the underlying mechanisms of thromboembolism in patients with COVID-19 seem to be different from COVID-19-independent thromboembolism. COVID-19-associated coagulopathy seems to be mediated by excessive inflammation, endothelial activation and injury, platelet activation, impaired or dysfunctional fibrinolysis and systemic hypercoagulability122; vascular endothelial cells are among the primary targets of SARS-CoV-2, and COVID-19 infection can result in endothelial damage and also in systemic vasculitis123. COVID-19-associated coagulopathy is probably a multifactorial combination of low-grade disseminated intravascular coagulation, thrombotic microangiopathy and released pro-inflammatory cytokines such as IL-6, which can induce tissue factor expression on mononuclear cells and subsequently initiate coagulation activation and thrombin generation124. COVID-19-associated coagulopathy is characterized by an isolated elevation of D-dimer (a degradation product from fibrin used as a biomarker of coagulation and fibrinolysis125) and is associated with disease severity and numerous thrombotic complications122. Differently from sepsis-induced disseminated intravascular coagulation, alterations in platelet counts, prothrombin time and partial thromboplastin time are uncommon in the initial presentation of patients with COVID-19-associated coagulopathy126.

Repercussions of thromboembolism in the genito-urinary tract of patients with COVID-19 have also been observed, and include a patient with prostate infarction and several patients with renal infarction associated with COVID-19 (REFS.127–131). Moreover, ischaemia-related priapism was reported as a thromboembolic complication in a 62-year-old patient with COVID-19 (REF.132). However, no clear proof indicating that these thromboembolism effects are directly caused by SARS-CoV-2 is currently available.

In summary, thromboembolism is a frequent complication of COVID-19 (REF.119) and also affects organs of the genitourinary tract127–132. The incidence of thromboembolism in patients with COVID-19 is similar to that observed in non-COVID-19 pneumonia121, but the pathophysiological background seems to be completely different121,134–136.

Outlook for COVID-19 pandemic

Variants of concern. COVID-19 variants have the potential to substantially increase mortality. In a retrospective cohort study including 212,326 patients with COVID-19, patients with variants of concern (including Alpha/B.1.1.7, Beta/B.1.351 and Gamma/P.1) were at a higher risk of hospitalization (OR 1.52 (95% CI 1.42–1.63)), ICU admission (OR 1.89 (95% CI 1.67–2.17)) and death (OR 1.51 (95% CI 1.30–1.78)) than patients with non-variant of concern SARS-CoV-2 strains133. Patients infected with the Delta variant showed further increased risk of hospitalization (OR 2.08 (95% CI 1.78–2.40), ICU admission (OR 3.35 (95% CI 2.60–4.31)) and death (OR 2.33 (95% CI 1.54–3.31))133. However, mounting evidence suggests that infection with the Omicron variant of SARS-CoV-2 (lineage B.1.1.529) causes a milder disease phenotype than previous variants of concern134–136. The effects of the new COVID-19 variants on the risk of developing urological complications in patients with COVID-19 still need to be assessed.

Vaccines. Vaccines for COVID-19 are considered an essential part of the strategy for ending the pandemic137; but one major reason for COVID-19 vaccine refusal is anxiety about adverse effects138,139. Regarding urology, no evidence of male or female fertility reduction following COVID-19 vaccination has been reported139. Results from an analysis of the FDA Vaccine Adverse Event Reporting System showed that <1% of vaccinated people described urological symptoms140. Many of the reported symptoms of COVID-19 vaccination (LUTS, haematuria and urinary infection) have the same prevalence in vaccinated and unvaccinated individuals; thus, a causal attribution to the vaccination seems unlikely140.

In a study analysing sperm parameters before and after COVID-19 mRNA vaccination in 45 men (median age: 28 years) receiving BNT162b2 (Pfizer-BioNTech, 46.7%) or mRNA-1273 (Moderna, 53.3%), no substantial decrease in any sperm parameter was reported141. Another reason for vaccine refusal is misunderstanding about vaccine efficacy. Results from a study including three online experimental studies involving 1,800 participants showed that vaccine efficacy is constantly confused with the non-incidence rate of COVID-19 in vaccinated people, which leads to an overestimation of the probability of developing COVID-19 (REF.142). The investigators suggested that educational programmes are urgently needed to increase the understanding of vaccine safety and efficacy, which would lead to increased vaccination campaign adherence.

Effect of COVID-19 on survival in uro-oncology. Patients with medical emergencies often avoid hospital emergency departments because of the fear of COVID-19
AKI
AKI is frequently reported in patients with COVID-19 (1–46%). Severe structural changes in kidneys from patients with COVID-19 can be found in pathological examinations, and underlying mechanisms include cytokine storm-induced SIRS and direct cytopathic effects.

Cystitis and LUTS
Increased urinary frequency, nocturia and IPSSs were reported in patients with COVID-19.

Urine
Detection of SARS-CoV-2 in urine is rare (<5% of patients), but can persist up to 52 days after disease onset.

Testosterone
Secondary hypogonadism was found in 85% of patients with COVID-19, but the possible effect of testosterone levels on survival is controversial.

Thromboembolism
Thromboembolism is a major complication of COVID-19 and has been reported in 31% of patients in the ICU with COVID-19 pneumonia. Prostate and renal infarction, as well as priapism, were reported as thromboembolic complications.

ACE2 receptor expression
Binding of the viral spike proteins to ACE2 receptors on the host cell surface enables cellular entry of SARS-CoV-2 virus. Kidney proximal tubule cells, bladder urothelial cells and testes show high ACE2 expression levels.

Male reproductive health
Histopathological analysis of testes from patients with COVID-19 showed noticeable changes like interstitial oedema, focal atrophy and red blood cell exudation. SARS-CoV-2 was detected in testis tissues by transmission electron microscopy, but, in most studies, it could not be detected in semen. Low sperm count and low total sperm motility have been reported in patients with COVID-19.

End of the pandemic. The perspective of when the COVID-19 pandemic will end is mainly influenced by two factors: the progress of vaccine programmes and the spread of variants of concern. The spread of the Delta variant caused a set-back for high-income countries in the race to reach herd immunity. However, the Omicron variant induces a considerably milder disease at the population level and has been shown to trigger cross-protective immunity towards the Delta variant. The transition of COVID-19 to an endemic disease might be a more realistic endpoint than herd immunity, but countless unpredictable variables make any serious prediction impossible. COVID-19 might truly become endemic only when most adults have developed natural immunity by having been exposed to the virus multiple times as children. This process might take decades; thus, until this point, a judgement call on how vulnerable people can be protected and how many deaths society is willing to tolerate is needed. Vaccine development and also research into the mechanisms and effects of SARS-CoV-2 infection in different organs are crucial to get a realistic chance of managing this disease efficiently, thereby bringing the pandemic to an end.

Conclusions
In March 2020, the WHO declared the COVID-19 outbreak a pandemic. Since then, a considerable number of studies describing the effects of SARS-CoV-2 infection in different organs have been published. Urology soon
emerged as a focus of interest, owing to a potential threat of long-term damage induced by COVID-19 to kidney function, fertility and hormonal balance. ACE2 expression in different tissues is hypothesized to correlate with the risk of viral invasion, and results from several studies reported high expression levels of ACE2 in the genitourinary tract. AKI is a severe urological complication of COVID-19 accompanied by high mortality, which is hypothesized to be caused by a cytokine-storm-induced systemic inflammatory response and direct cytopathic effects. The detection of SARS-CoV-2 in urine and semen is very rare; however, a possible risk of transmission through these body fluids has not yet been ruled out. Viral orchitis are accepted to lead to a reduction in fertility and endocrine function; therefore, the effects of SARS-CoV-2 on male fertility seem to be a main focus of interest. Results from autopsy studies on patients with COVID-19 revealed severe structural changes in testes, and, in several studies on semen samples, an impairment of spermatogenesis was reported in patients with COVID-19. However, these effects might also be attributed to fever, and long-term data on sperm quality after recovery from COVID-19 are still very limited. Low levels of testosterone were also detected frequently in men with COVID-19, and, in most instances, hypogonadism was secondary. An intense discussion on the role of testosterone in the high prevalence of severe COVID-19 complications is in place. Low total testosterone levels are associated with poor outcomes; however, whether hypogonadism is caused by SARS-CoV-2 infection or is just a general phenomenon of critical illness is still unclear. Thromboembolic complications, which are frequent in COVID-19, also affect urogenital organs.

Long-term effects of COVID-19 cannot yet be fully evaluated, but understanding how SARS-CoV-2 causes injury in genitourinary organs and defining risk factors associated with severe damage of these organs is crucial for developing strategies to protect patients with COVID-19 from urological complications. To date, high-quality evidence of these pathophysiological processes in the urogenital system is limited. Published studies on the effect of COVID-19 on the urogenital tract often have a small sample size and, in some cases, reported heterogeneous results. Moreover, many urological symptoms overlap with common diseases and, therefore, a causal attribution to SARS-CoV-2 is difficult to prove. Some clinical manifestations might not be directly caused by SARS-CoV-2, but could be secondary effects induced by an excessive immune response or cardiorespiratory impairment; thus, further exploration with prospective studies and large cohorts is urgently needed.

In summary, published data made one point clear: COVID-19 is also a urological matter (Fig. 5) and urologists must learn to detect and manage short-term and long-term damage to the genitourinary tract caused by COVID-19 for the benefit of patients.
Basiratnia, M., Derakhshan, D., Yeganeh, B. S. & Friedman, D. J. & Pollak, M. R. APOL1 and kidney injury. Clin. Kidney J. 14, 50–59 (2021).

Fagienbaum, D. C. & June, C. H. Cytokine storm. N. Engl. J. Med. 385, 2255–2275 (2020).

Huang, C. et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet 395, 497–506 (2020).

Ye, Q., Wang, B. & Mas, J. The pathogenesis and treatment of cytokine storm in COVID-19. J. Infect. 80, 607–613 (2020).

Ragab, D., Salah Eldin, H., Taimani, M., Khattab, R. & El-Husseini, M. Cytokine storm: what we know so far. Front. Immunol. 11, 1446 (2020).

Suriano, F. et al. Bacteriuria in patients with an orthopedic lesion: urinary tract infection or asymptomatic bacteriuria? BJU Int. 101, 1576–1579 (2008).

Khalidouni, D. A. et al. A deep look into COVID-19 severity through dynamic changes in blood cytokine levels. Front. Immunol. https://doi.org/10.3389/fimmu.2021.626852 (2021).

Fan, C., Li, W., Li, L., Shi, Y. & Wang, J. ACE2 expression in kidney and testis may cause kidney and testis infection in COVID-19. Front. Med. 7, 486 (2021).

Song, J. et al. Expression profiles revealed potential kidney injury caused by SARS-CoV-2: a systematic analysis of ACE2 and clinical lessons learned from this discovery. Aging https://doi.org/10.18632/aging.202226 (2021).

Paul, A. W. et al. Cardiopulmonary adaptations of a potential mechanism of acute kidney injury during the COVID-19 outbreak: a study based on single-cell transcriptome analysis. Intensive Care Med. 46, 1114–1120 (2020).

Wang, K. et al. CD147–spike protein is a novel route for SARS-CoV-2 infection to host cells. Signal. Transduct. Target. Ther. 5, 283 (2020).

Liu, C., von Brunn, A. & Zhou, D. Cyclophilin A and CD147: novel therapeutic targets for the treatment of COVID-19. Med. Drug Discov. 7, 100056 (2020).

Karawajjol, W. et al. Viral shedding of COVID-19 and its clinical associations: a systematic review and meta-analysis of observational studies. Urol. J. 17, 8 (2021).

Sun, M. et al. Anal swab as a potentially optimal specimen for SARS-CoV-2 detection to evaluate hospital discharge of COVID-19 patients. Future Microbiol. 15, 1101–1107 (2020).

Longo, D. et al. Cytokine release syndrome: outcomes in COVID-19 patients. Nat. Rev. Immunol. 20, 435–445 (2020).

Smedile, L. et al. Pulse pressure and COVID-19: a cross-sectional, pilot study. Am. Heart J. 218, 49–57 (2020).

Liu, H. et al. Severe respiratory failure in COVID-19: a review of the mechanisms of disease. Am. J. Respir. Crit. Care Med. 202, 972–987 (2020).

Sharma, P. et al. Cytokine storm: a review of severe COVID-19. J. Clin. Med. 10, 223–238 (2020).

Carmignani, L. et al. Role of the cytokine storm in the pathogenesis and severity of COVID-19. J. Transl. Med. 19, 230 (2021).

Fedele, A. et al. Novel aspects of COVID-19. J. Clin. Med. 10, 2231–2258 (2021).

Basiratnia, M. Saleh, S. N. & Salem, R. The COVID-19 cytokine storm; what we know so far. Andrology 8, 95–194 (2019).

Li, W., Han, R., Wu, H. & Han, D. Viral threat to male fertility. Andrology 50, e13140 (2018).

Deuja, N. & Jegou, B. Viruses in the mammalian male genital tract: a complex and evolving system. Microbiol. Mol. Biol. Rev. 65, 208–231 (2001).

Luppo, R., Arpino, B. & Rosana, A. The impact of COVID-19 on fertility plans in Italy, Germany, France, Spain and UK. Demogr. Res. 43, 1399–1412 (2020).

Zhang, J. et al. Does the COVID-19 pandemic reveal the potential high vulnerability of Leydig cells on SARS-CoV-2? Ant. Med. 2. 678 (2021).

Li, X. et al. Detailed transcriptomic analysis of the novel coronavirus (SARS-CoV-2) associated gene ACE2 expression in normal and non-obstructive azoospermia (NOA) human male testes. Sci. China Life Sci. 63, 1306–1315 (2020).

Zhu, M. et al. Cross-sectional study of the SARS-CoV-2 infection and virus RNA in semen of confirmed COVID-19 patients. Sci. Rep. 10, 15069 (2020).

Liu, J. et al. Male reproductive parameters in patients with COVID-19: a cross-sectional study. Sci. Rep. 11, 551–557 (2021).

Donders, G. G. G. et al. Sperm quality and absence of epididymitis in mild- to-moderate COVID-19 patients: a 7-month cohort study. Andrology 10, 54–60 (2021).

Roumeguère, T. COVID-19 and the male susceptibility: role of the ACE2, TMPRSS2 and the androgen receptor. Prog. Urol. 30, 484–487 (2020).

Bhoomick, N. A. et al. COVID-19 and androgen-targeted therapy for prostate cancer patients. Endocr. Relat. Cancer 27, 2281–2292 (2020).

Montopoli, M. et al. Androgen deactivations for prostate cancer and risk of infection by SARS-CoV-2: a population-based study (N=4533). Androol. Clin. Lab. Investig. 53, 1040–1045 (2020).

Shaw, G. L. et al. The early effects of rapid androgen deprivation on prostate cancer. Eur. Urol. 70, 216–218 (2016).

Klein, S. L. & Flanagan, K. L. Sex differences in inflammatory response to urinary tract infections. Best. Pract. Res. Clin. Endocrinol. Metab. 223–228 (2006).

Klein, E. A. et al. Androgen deprivation therapy in men with prostate cancer does not affect risk of infection with SARS-CoV-2. Urol. J. 205, 441–445 (2021).

Zhou, F. et al. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study. Lancet 395, 1054–1062 (2020).

Baek, M. S., Lee, M.-T., Choi, J. C. & Jung, S.-Y. COVID-19-related outcomes in immunocompromised patients: a nationwide study in Korea. PLoS ONE 16, e0257641 (2021).

Mizukami, T. & Akaike, T. COVID-19 and the male susceptibility: role of the ACE2, TMPRSS2 and the androgen receptor. Prog. Urol. 30, 484–487 (2020).

Bhoomick, N. A. COVID-19 and androgen-targeted therapy for prostate cancer patients. Endocr. Relat. Cancer 27, 2281–2292 (2020).

Montopoli, M. et al. Androgen deactivations for prostate cancer and risk of infection by SARS-CoV-2: a population-based study (N=4533). Androol. Clin. Lab. Investig. 53, 1040–1045 (2020).

Shaw, G. L. et al. The early effects of rapid androgen deprivation on prostate cancer. Eur. Urol. 70, 216–218 (2016).

Klein, S. L. & Flanagan, K. L. Sex differences in immune responses. Nat. Rev. Immunol. 16, 626–638 (2016).

Klein, E. A. et al. Androgen deprivation therapy in men with prostate cancer does not affect risk of infection with SARS-CoV-2. Urol. J. 205, 441–445 (2021).

Zhou, F. et al. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study. Lancet 395, 1054–1062 (2020).
