Microbiota-gut-brain axis: enteroendocrine cells and the enteric nervous system form an interface between the microbiota and the central nervous system

Atsukazu Kuwahara1, Kyoko Matsuda2, Yuko Kuwahara3, Shinji Asano2, Toshio Inui3, and Yoshinori Marunaka1, 4, 5

1 Research Unit for Epithelial Physiology and Research Center for Drug Discovery and Pharmaceutical Development Science, Research Organization of Science and Technology; 2 Department of Molecular Physiology, College of Pharmaceutical Sciences, Ritsumeikan University, Kusatsu 525-8577; 3 Saisei Mirai Clinics, Moriguchi 570-0012; 4 Department of Molecular Cell Physiology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto 602-0841; and 5 Research Institute for Clinical Physiology, Kyoto Industrial Health Association, Kyoto 604-8472, Japan

(Received 30 June 2020; and accepted 29 July 2020)

ABSTRACT

The microbiota-gut-brain axis transmits bidirectional communication between the gut and the central nervous system and links the emotional and cognitive centers of the brain with peripheral gut functions. This communication occurs along the axis via local, paracrine, and endocrine mechanisms involving a variety of gut-derived peptide/amine produced by enteroendocrine cells. Neural networks, such as the enteric nervous system, and the central nervous system, including the autonomic nervous system, also transmit information through the microbiota-gut-brain axis. Recent advances in research have described the importance of the gut microbiota in influencing normal physiology and contributing to disease. We are only beginning to understand this bidirectional communication system. In this review, we summarize the available data supporting the existence of these interactions, highlighting data related to the contribution of enteroendocrine cells and the enteric nervous system as an interface between the gut microbiota and brain.

INTRODUCTION

Humans have evolved through the influence of environmental factors. Among these factors, microbiota constitute the most important factor for the evolution of humans because bacteria appeared on Earth approximately 3.8 billion years ago, which was earlier than the appearance of human beings (Bordenstein et al. 2015). Thus, humans have evolved with the microbiota, and they have established a complex host-microbiota interaction since intestinal microbes confer numerous metabolic and biological functions that humans are unable to perform within their own cells. This symbiotic relationship may influence not only human health but also the risk of developing disease when the communication between the microbes and human organs is disordered (Fun et al. 2017; Liang et al. 2018; Valdes et al. 2018).

Recent advancements in the scientific knowledge have changed the prevailing thought of unidirectional communication from the brain to the gut. Recently, gut-brain crosstalk has been considered to be bidirectional and includes a complex communication system that not only ensures the proper maintenance of gut homeostasis but also likely has multiple effects on affect, motivation, and higher cognitive functions (Fun et al. 2017; Siva et al. 2020). Most individuals are made aware of such communication when alterations in gut function are transferred to the brain,
eliciting perceptions of visceral events such as nausea, satiety, and pain or, in contrast, when stressful experiences lead to altered intestinal secretions and motility (Liang et al. 2018). These interactions are called based on the “gut-brain axis” or the “brain-gut axis”. The role of the gut-brain axis is to monitor and integrate gut functions and to facilitate the communication of the energy, emotional and cognitive centers in the brain with peripheral intestinal functions and mechanisms. Recent studies have suggested that the gut-brain axis is influenced by the gut microbiota, together forming the “microbiota-gut-brain axis” (Montiel-Castro et al. 2013; Carabotti et al. 2015; Mayer et al. 2015; Cryan et al. 2019).

A number of different mechanisms have been proposed to explain how the intestinal microbiota might influence the nervous system including the enteric nervous system (ENS) and the central nervous system (CNS) and vice versa (Montiel-Castro et al. 2013; De Vadder et al. 2014; Dinan et al. 2015; Mukhtar et al. 2019). The immune system may also play an important role in many of the phenomena described below (Fagundes et al. 2012; Rooke et al. 2016; Reardon et al. 2018), but in this review, we will focus specifically on the nonimmune aspects of the communication between the gut microbiota and the nervous system. We will first provide descriptions of the gut microbiota, its metabolites, the enteroendocrine system and the ENS because they are essential components of the microbiota-gut-brain axis. Finally, we will discuss how these components contribute to the communication along the microbiota-gut-brain axis.

Gut microbiota

The gut microbiota is found in the gut lumen of vertebrates and invertebrates. It is a complex community consisting of more than 40,000 species, with Firmicutes and Bacteroides as the dominant phyla that contribute to the maintenance of a dynamic metabolic ecological balance (Lynch et al. 2016; Rinnella et al. 2019). The human gut contains 10^{13}–10^{14} microorganisms, many more than the number of nucleated cells in the human body, with 150-fold more genes than comprise the human genome (Marchesi and Shanahan 2007). The density of the microbiota exponentially increases from the proximal to the distal gastrointestinal (GI) tract, reaching its peak in the colon. The composition of the gut microbiota in the human stool is diverse, even among healthy individuals. However, the genes related to metabolic pathways are stable among individuals, regardless of bacterial composition (Human Microbiome Project Consortium 2012). Thus, the gut microbiota and its metabolic products are able to influence a variety of aspects of vertebrate physiology (Wikoff et al. 2009; Hills Jr et al. 2019). Commensal bacteria mediate the extraction, synthesis and absorption of a wide variety of metabolites (Nicholson et al. 2012). Imbalances in or disruptions to the microbiota are associated with various diseases including obesity, type 2 diabetes, nonalcoholic fatty liver disease, dyslipidemia and higher brain disorders (Fabbiano et al. 2017; Quesada-Vázquez et al. 2020).

Through the fermentation of undigested dietary fibers that reach the large intestine, the gut microbiota produces wide range of metabolites (Rooke and Garrett 2016). Among the quantitatively most important gut microbiota-derived metabolites are short-chain fatty acids (SCFAs). SCFAs are organic fatty acids, with from two to six carbon atoms, are produced in the caecum and the colon by the microbiota following the fermentation of indigestible dietary fibers, proteins, and glycoproteins (Wong et al. 2006). Acetate (C2), propionate (C3), and butyrate (C4) represent 95% of the SCFAs (Cummins et al. 1987). SCFAs locally modulate the gut function from the duodenum to the colon (Kaji et al. 2014; Akiba et al. 2015; Kaji et al. 2016) but they can also be absorbed (only 5%–10% are excreted in feces) and can control the metabolism of other organs—such as adipose, liver, muscle, and brain tissue, thus influencing the host’s energetic homeostasis, including appetite regulation (Canfora et al. 2015; Silva et al. 2020; Xiao and Kang 2020). Under physiological conditions, luminal concentrations of total SCFAs reach up to 80–130 mM in the human colon (Cummins et al. 1987). SCFAs are absorbed by the host epithelium through the SCFAs transporter, sodium-dependent monocarboxylate transporter 1 (SMCT-1) or by passive diffusion (Fig. 1) (Cryan et al. 2019). Absorbed butyrate is used as an energy source for colonocytes. Propionate, acetate and the remaining butyrate are subsequently metabolized by hepatocytes resulting in 1–15 μM propionate and butyrate in the circulation while acetate is found in concentrations of approximately 100–200 μM (Peters et al. 1992; Bloemen et al. 2009). In addition to serving as energy sources for the host, SCFAs function as signaling molecules (Silva et al. 2020). SCFAs are sensed by specific G protein-coupled receptors (GPCRs) and free fatty acid receptors 2 and 3 (FFA2 and FFA3) and they modulate a variety of physiological and hormonal processes that contribute to whole-body energy bal-
Bile acids also represent an important class of metabolites modulated by the gut microbiota (Staley et al. 2017; Wei et al. 2018). Bile acids affect a number of important processes including lipid, glucose and energy homeostasis through bile acid receptors (Fig. 2 Inset) (Wang et al. 1999; Lefebvre et al. 2009; Copple and Li 2016). Nearly 95% of bile acids can be reabsorbed in their conjugated form in the terminal ileum and recycled back to the liver via the portal vein in a process called enterohepatic circulation (Copple and Li 2016). Escaped primary bile acid is converted to secondary bile acids by colonic bacteria. Even in the small intestine, bile acids are subjected to biotransformation by the resident microbial community (Staley et al. 2017). Some conjugated bile acids are deconjugated by bacterial bile salt hydrolases (BSHs) to become free bile acids (Li and Chiang 2014). In the ileum, most conjugated bile acids are reabsorbed by the apical sodium-dependent bile salt transporter (ASBT) or the ileal bile acid transporter (IBAT) (Staley et al. 2017). Unconjugated bile acids can cross the epithelial cell membrane by passive diffusion, then function as signaling molecules and metabolic integrators (Li and Chiang 2014).

The gut microbiota produces a number of metabolites as explained above. Multiple bioactive molecules derived from the diet also undergo microbial modification. For example, indole, the most prevalent metabolite of tryptophan, is produced by many bacterial species (Lee and Lee 2010; Jaglin et al. 2018). Indole is reported to modulate the secretion of the incretin hormone, glucagon-like peptide 1 (GLP-1) (Chimerel et al. 2014). Indole presents in low millimolar concentrations in the colonic lumen and has an effect opposite that of GLP-1 release (Chimerel et al. 2014). The acute effect of indole is to raise intracellular Ca²⁺ levels and enhance GLP-1 secretion but it reduces GLP-1 secretion over longer periods. These effects are induced not via a specific indole receptor but by the inhibitory action of indole on voltage-gated potassium channels in primary mouse colonic L-cells. Blocking K⁺ channels result in a widening of the action potentials and consequent voltage-gated Ca²⁺ entry, thereby acutely stimulating GLP-1 secretion. Thus, indole might also function as a chemical messenger through the release of GLP-1. However, it is not known whether GLP-1 secretion induced by indole paves a functional route for sending the luminal information to the ENS and/or CNS.

It has been suggested that at least some neuroactive compounds were conserved during the process of coevolution to serve as the “words” of a common language, thus allowing communication between the microbiota and the host. Indeed, the gut microbiota is able to produce a wide variety of neurochemicals including γ-aminobutyric acid (GABA), 5-hydroxytryptamine (5-HT), melatonin, histamine, acetylcholine (ACh), norepinephrine and dopamine (Iyer et al. 2004; Lyte 2011; Mazzoli and Pessione 2016). For example, multiple strains of Lactobacillus have been found to express glutamic acid decarboxylases (GADs) that convert glutamate into GABA (Lie and Cao 2010). In addition, GABA, produced by the gut microbiota is sufficient to influence neuronal activity in the ENS (Krantis 2000). Under physiological conditions, protein-sized molecules cannot pass through the intestinal epithelium. However, lipophilic and small hydrophilic compounds as large as 600 Da can
cross the intestinal barrier through transcellular and paracelllar routes (Keita and Söerholm 2010). Therefore, it is possible that small neuroactive compounds diffuse into the lamina propria, which is in contact with intrinsic and/or extrinsic afferent neurons to send the information from the gut lumen (Fig. 2). These neuroactive compounds essentially act locally on the ENS, as is discussed below (Lyte 2011; Sarkar et al. 2016). Finally, an important component of luminal signaling to the epithelium is accomplished by proteases. Both bacteria and host cells release proteases that can activate protease activated receptors (PARs) which are found not only on epithelial cells but also on enteric neurons and extrinsic nerves integrated into the gut (Steck et al. 2012). They are activated by the proteolytic cleavage of the N-terminus, which
allows the ligand domain to bind to the receptor. PAR1, PAR2 and PAR4 activate enteric neurons, enteric glia and extrinsic primary afferents (Vergnolle 2009). The next section will concentrate on the role of the EECs in the microbiota-gut-brain axis.

Enteroendocrine cells (EECs)

Understanding the function of EECs is essential because they establish neurological epithelial synapses with enteric afferent neurons and form a critical part of the reflex microcircuit mediating various GI functions (Fig. 2). The intestinal epithelium is one of the body’s most important compartmentalized interfaces between the lumen and the host, and this single layer of epithelium forms a crucial barrier. EECs are found throughout the epithelium of the GI tract and are embedded in the majority of nonendocrine cells, including absorptive enterocytes, goblet cells, and Paneth cells (Fig. 2) (Gunawardene et al. 2011; Mace et al. 2015). EECs comprise only 1% of the epithelium but collectively form the largest endocrine system in mammals (Buffa et al. 1978; Stermini et al. 2008; Furness et al. 2013). The EEC population varies along the length of the GI tract with differing hormone production profiles (Roberts et al. 2019). L-cells are highly abundant and distinguishable by their production of GLP-1 and PYY which are known to suppress appetite and stimulate insulin secretion (Mace et al. 2015). EC cells are another subtype of EECs that secrete 5-HT and regulate secretory and peristaltic reflexes (Bertrand and Bertrand 2010; Gershon 2013; Mawe and Hofman 2013). EC cells produce approximately 95% of the 5-HT in the body and are the most numerous of the intestinal EECs (Diwakarla et al. 2017). EECs were originally believed to originate in the neural crest (Pearse and Polak 1971), but EECs have now been shown to develop from the same pluripotent stem cells as the other three intestinal epithelium cell lineages: absorptive enterocytes, goblet cells and Paneth cells (Barker et al. 2007). A summary of some of the different EEC subtypes, secreted hormones, receptors and their functions are provided in Table 1.

EECs establish transepithelial signal transduction routes that respond to luminal nutrients and microbiota metabolites by secreting gut peptides or binding specific receptors (Ralbould 2010; Begg and Woods 2013). The secretion of gut peptide/amine is considered to be a first step in sending a variety of messages from the gut lumen to the ENS and CNS since the most afferent nerve terminals innervating the gut mucosa cannot directly detect luminal chemicals but can detect them through EECs or immune cells (Mayer 2011; Gribble and Reimann 2016; Worthington et al. 2018). Indeed, certain luminal molecules activate intrinsic primary afferent neurons

Table 1 Summary of enteroendocrine cells of the mammalian gastrointestinal tract

Cell Types	Secretory products	Locations	Function
A (X-like) cells	Ghrelin	Stomach	Appetite control, growth hormone release
ECL cell	Histamine	Stomach	Regulation of gastric acid secretion
G cells	Gastrin	Stomach	Regulation of gastric acid secretion
D cells	Somatostatin	Entire gastrointestinal tract, Pancreas	Inhibition of gastroparesis (stomach), modulation of insulin secretion (pancreas)
Enterochromaffin (EC) cells	5-HT, 5-HT is also contained in subgroups of I, K and L cells	Entire gastrointestinal tract	Facilitation of intestinal motility reflexes and secretion
I cells	CCK (5-HT)	Duodenum and jejunum	Gallbladder contraction, stimulation of pancreatic enzyme secretion, stimulation of food intake
K cells	GlP	Duodenum and jejunum	Regulation of insulin secretion
L cells	GLP-1, GLP-2, PYY, Oxyntomodulin (5-HT)	Jejunum and colon	Stimulation of carbohydrate uptake, slowing intestinal transit, appetite regulation, stimulation of intestinal motility and secretion, inhibition of gastric acid secretion, enhancement of insulin secretion
M cells	Motilin	Duodenum and jejunum	Initiation of migrating motor complex in pig, dog, and human
N cells	Neurotensin	Small and large intestine	Inhibition of intestinal contractions
P cells	Leptin	Stomach	Appetite regulation, reduction of food intake
S cells	Secretin	Duodenum and jejunum	Reduction of acidity in duodenum and jejunum

ECL, Enterochromaffin-like cell; 5-HT, 5-hydroxytryptamine (serotonin); CCK, cholecystokinin; GlP, glucose-dependent insulinotropic polypeptide; GLP-1 and GLP-2, glucagon-like peptide 1 and 2; PYY, peptide YY.
(IPANs) and extrinsic afferent neurons through EECs, which release gut peptide/amine to stimulate axon terminals to trigger action potentials. These action potentials are then conducted orthodromically from the sensory neurons to the ENS and CNS. Therefore, EECs seem to function as chemical sensors and reside at an ideal position to send the luminal information to the host upon the release of gut hormones. This proposed action is supported by the observation suggesting that the structure and biochemical profiles of the EECs are similar to the taste cells of the lingual epithelia, expressing an array of chemical sensing proteins (Gershon 2013).

Specific gut microbiota profiles have been reported to play important roles in regulating the levels of EC cell-derived 5-HT because an analysis of the plasma metabolites in the germ-free mice shows a more than 2-fold decrease in 5-HT levels relative to the levels in conventionally colonized mice (Wikoff et al. 2009; O’Mahony et al. 2015). Indeed, human and mouse-derived gut microbiota promote colonic tryptophan hydroxylase 1 (TPH1) expression and 5-HT secretion from EC cells through the activation of SCFA receptors on EC cells (Reigstad et al. 2015; Yano et al. 2015). Furthermore, fluorescence-activated cell sorting (FACS)-purified EC cells from both the small intestine and colon express gut microbiota-derived metabolite receptors including SCFA receptors (Mawe and Hofman 2013). Therefore, 5-HT secretion from EC cells induced by SCFAs has local influence on neighboring cells as a major paracrine signal transmitted through 5-HT receptors including those on enteric nerves in the lamina propria, to modulate GI motility and send luminal information to the CNS (Mawe and Hofman 2013) (Fig. 2).

SCFAs stimulate GLP-1 and PYY release from L-cells through the activation of FFA2 and/or FFA3 (Tolhurst et al. 2012; Kaji et al. 2014; Tough et al. 2018). Released GLP-1 from L-cells is rapidly cleaved and inactivated by dipeptidyl peptidase 4 (DPP4) once it enters the circulation (Hansen et al. 2015). The secondary bile acids can be passed primary bile acids into secondary more-hydrophobic bile acids via α-dehydroxylation (Li and Chiang 2014; Copple and Li 2016). TGR5 immunoreactivity is widely distributed throughout the GI tract of mice, with prominent expression in the ENS (Poole et al. 2010; Duboc et al. 2016). In the colon, bile acids are modified by the gut microbiota, which converts primary bile acids into secondary more-hydrophobic bile acids via α-dehydroxylation (Li and Chiang 2014; Copple and Li 2016). The activation of apical membrane TGR5 on L-cells in the distal ileum and colon leads to portal release of the GLP-1 and PYY in both mice and humans (Fig. 2 Inset) (Harach et al. 2012; Wu et al. 2013). In addition, bile acid-activated TGR5 stimulates GLP-1 production in the STC-1, enteroendocrine cell line (Katsuma et al. 2005). The secondary bile acids can be pas-

in primary culture have been shown to have increased their firing rates upon the application of GLP-1, and some of these neurons are considered to be IPANs because of their electrophysiological similarities with activated hyperpolarization (AH)/type II neurons (Richards et al. 2014). Thus, it is reasonable to speculate that L-cells expressing FFA2 and/or FFA3 may relay signals to other neurons in the ENS or send information to the CNS through extrinsic afferent neurons (Fig. 2, Inset). L-cells contain PYY in addition to GLP-1 (Cox 2007; Panaro et al. 2014) and SCFAs are reported to induce PYY secretion through the activation of FFA2 in the colon (Cherbut et al. 1998; Tough et al. 2018). Furthermore, the PYY receptor, Y1, is localized in the rat ENS (Jackerott and Larsson 1997). Recent study reported that FFA2 and FFA3 signaling differed and demonstrated that luminal propionate costimulates FFA2 and FFA3 pathways, reducing anion secretion and slowing colonic motility; FFA2 via PYY mediation and FFA3 signaling by activation of enteric sensory neurons (Tough et al. 2018). Thus, it is possible that PYY also conveys the luminal information by activating the FFA2 and FFA3 expressed on L-cells. Combined with these results, in one proposed signaling route for gut microbiota metabolites, SCFA-induced signaling is transduced from EECs to the ENS, which involves GLP-1 and PYY release and the activation of GLP-1R and Y1 receptor located on enteric neurons. In addition, FFA3 has recently been reported to be localized within the peripheral nervous system (Noehr et al. 2013, 2015), further suggesting that SCFAs are important signaling molecules in the microbiota-gut-brain axis.

Bile acids activate farnesoid X receptor (FXR), and Takeda G protein-coupled receptor 5 (TGR5) (also known as the G protein-coupled bile acid receptor 1) (Schaap et al. 2014; Florucci and Distrutti 2015; Copple and Li 2016). TGR5 immunoreactivity is widely distributed throughout the GI tract of mice, with prominent expression in the ENS (Poole et al. 2010; Duboc et al. 2016). In the colon, bile acids are modified by the gut microbiota, which converts primary bile acids into secondary more-hydrophobic bile acids via α-dehydroxylation (Li and Chiang 2014; Copple and Li 2016). The activation of apical membrane TGR5 on L-cells in the distal ileum and colon leads to portal release of the GLP-1 and PYY in both mice and humans (Fig. 2 Inset) (Harach et al. 2012; Wu et al. 2013). In addition, bile acid-activated TGR5 stimulates GLP-1 production in the STC-1, enteroendocrine cell line (Katsuma et al. 2005). The secondary bile acids can be pas-
sively reabsorbed through the epithelium (Dawson and Karpen 2015). Taken together, these data suggest that luminal secondary bile acids are directly detected by the TGR5 located on EECs to trigger the release of GLP-1 and PYY from L-cells. Then the released gut peptides affect the enteric neuronal circuit to send the information to the CNS (Poole et al. 2010; Duboc et al. 2016). Alternatively, absorbed secondary bile acids directly activate TGR5 on enteric neurons to modulate neuronal activity and send the luminal information to the CNS. Evidence showing the localization of TGR5 on enteric neurons and the apical or basolateral membrane of colonocytes provides a neuroanatomical support for the concept of a microbiota-gut-brain axis. GLP-1 is known to promote insulin secretion and regulate glucose homeostasis. Therefore, it is possible that secondary bile acid can modulate energy homeostasis through the activation of the microbiota-gut-brain axis through the communication of EECs with the ENS. However, GLP-1 and PYY have been shown to be situated in separate storage vesicles in the same intestinal cells taken from a number of mammalian species including humans, pigs, rats and mice (Cho et al. 2014a, 2014b). These findings suggest the possibility that different hormones are selectively released from L-cells. However, further studies are needed to prove this hypothesis in more detail. On the other hand, FXR, a metabolic nuclear receptor, is highly expressed in hepatocytes and enterocytes (Makishima et al. 1999). FXR is mainly activated by both the free and conjugated primary bile acids, glycocholic acid (CDCA) and colic acid (CA) (Makishima et al. 1999). As a ligand-activated transcription factor, FXR binds to DNA (i.e., FXR response element) to regulate the expression of the diverse genes involved in the metabolism of bile acids, lipids, and carbohydrates (Chan 2018; Shin and Wang 2019). Thus, FXR also contributes to the regulation of energy metabolism similar to that of TGR5 (Lynch et al. 2016; Kuhre et al. 2018). However, it is unclear whether FXR contributes to the transduction of luminal information to the ENS and CNS. Bile acids can also activate other bile acid receptors such as pregnane X receptor (PXR), constitutive androstane receptor (CAR) and vitamin D receptor (VDR) but the contribution degree of these receptors on microbiota-gut-brain axis is still unknown (Li and Chiang 2014).

In the GI tract, odorant receptors are functionally expressed by human EC cells and induce the 5-HT secretion which stimulates the submucosal sensory neurons (Braun et al. 2007). In addition, Olf78 is expressed in mouse colonic L-cells (Fleischer et al. 2015). Moreover, Olf78 and the human ortholog OR51E2 are activated by SCFAs, most notably propionate and acetate (Saito et al. 2009; Plznick et al. 2013). The functional implications of these receptors on microbiota-gut-brain axis are so far largely unknown but previous studies have indicated that odorant receptors expressed in nonolfactory tissues serve as receptors for small molecules and have roles similar to those in olfactory sensory neurons (Plznick et al. 2013). Moreover, odorant receptors expressed in the colonic intestinal epithelia are restricted to L-cells (Plznick et al. 2013). Thus, it is speculated that these receptors function as chemical sensors to monitor the luminal microenvironment and convey such information to the ENS and CNS, although further studies are needed to prove the hypothesis in more detail.

Gut microbiota can produce neuroactive compounds as described above. Among these compounds, some receptors and transporters critical for neuroactive compounds are found in enterocytes (Mazzoli and Pessione 2016). For example, high-affinity plasma membrane GABA transporters are present in the rat GI tract. Furthermore, in the rat mucosal epithelium, GABA_B receptor-expressing EC cells are observed along the length of the GI tract from gastric corpus to the colon that is morphologically similar to EECs (Nakajima et al. 1996). Therefore, 5-HT-expressing EC cells can directly detect luminal GABA produced by the microbiota (Fig. 2). In the ENS, GABA_B receptors on enteric neurons are found in both submucosal and myenteric ganglia throughout the entire GI tract (Hyland and Cryan 2010). Both GABA_A and GABA_B receptors have been shown to release EC cell-derived 5-HT from vasculary-perfused guinea-pig small intestine (Schworer et al. 1989). However, they appear to have opposite effects; baclofen (GABA_B agonist)-induced inhibition of 5-HT release is TTX insensitive while GABA_A receptor activation induces a predominant TTX-sensitive, muscarinic receptor-mediated release of 5-HT (Schworer et al. 1989). Therefore, 5-HT release by GABA_B receptor activation may indirectly regulate ENS activity. These results indicate that neuroactive compounds derived from gut microbiota metabolism act as potential mediators of communication between the gut microbiota and the host.

EECs also detect signals from the microbiota through toll-like receptors (TLRs), which recognize bacterial products, such as lipopolysaccharide (LPS), and others (Bogunovic et al. 2007; Mayer 2011). A total of 10 TLRs are expressed in human whole
body (Frosali et al. 2015). In the intestine, TLR1, TLR2 and TLR4 are present on the apical surface of the EECs in human and adult mice (Bogunovic et al. 2007). In addition, 5-HT-containing EC cells in human and murine ileal and colonic epithelia were colocalized with TLRs, TLR2 and TLR4 (Bogunovic et al. 2007). LPS triggers a calcium influx in STC-1 cells expressing TLR4, resulting in a rapid increase in cholecystokinin secretion (Bogunovic et al. 2007). Furthermore, the intestinal infusion of Escherichia coli proteins has been reported to increase the secretion of GLP-1 and PYY from L-cells (Breton et al. 2016). Taken together, these results indicate that TLRs expressed on EECs including EC cells can directly detect gut microbiota-derived metabolites. Therefore, it is possible that the information detected by TLRs on EECs is conveyed to IPANs and extrinsic primary afferent neurons. In other words, this route may function as an alternative pathway of communication between the gut microbiota and nervous system. Taken together, EECs are key players in the detection of luminal bacteria and their metabolites that can modulate microbiota-gut-brain axis through ENS activity.

Enteric nervous system
The ENS is a large, complex compartment of the peripheral nervous system that regulates many GI functions including motility and ion transport and abnormalities in its formation or functions cause several morbid or life-threatening human diseases. In the previous section, we have discussed how gut microbiota and/or its metabolites send their information to CNS through the activation of EECs in microbiota-gut-brain axis. The ENS is located upstream of the EECs in the microbiota-gut-brain axis. Therefore, in this section, we discuss how the gut microbiota and/or its metabolites send information to the ENS by the release of gut peptides from EECs and how the ENS sends the received information further upstream through microbiota-gut-brain axis. Several mechanisms have been proposed for the communication of microbiota with enteric neurons (Hyland and Cryan 2016).

The ENS is derived from neural crest progenitors that colonize the gut during fetal development to form two interconnected ganglionated plexuses (Fig. 2) (Rao and Gershon 2018). The ENS is sometimes called the “second brain” because of the diversity of its neuronal cell types and the complex, integrated circuits that are similar to those of the CNS (Furness et al. 2013). The ENS exhibits a columnar topology along the radial axis of the GI tract similar to that of the CNS (Lasrado et al. 2017). The ENS is composed of more than 600 million neurons and glia approximately the same number of neurons as in the spinal cord. The ENS runs along the GI tract and is organized into two main plexuses. The submucosal plexus (or Meissner’s plexus) which itself is subdivided into two smaller plexuses (the inner and outer submucosal plexuses) in larger mammals lies in the submucosa, and the myenteric plexus (Auerbach’s plexus) lies between the longitudinal and circular muscle layers in the intestinal wall (Fig. 2) (Furness 2012). These plexuses integrate a variety of signals from the CNS via connections with the parasympathetic and sympathetic branches of the ANS and vice versa. Nerve fiber bundles connect to the ganglia within the plexuses and between different plexuses. Myenteric and submucosal neurons are composed of discrete populations of neurons that can be classified based on their function and morphology. These include intrinsic primary afferent neurons (IPANs) that allow them to regulate GI motility and secretion without CNS input, motor neurons (muscle, secretomotor and vasodilator neurons) and interneurons. The majority of the sensory nerve fibers innervating the intestinal mucosa is derived from IPANs of the ENS (Ekblad et al. 1987). IPANs project directly to motor and interneurons through which they send luminal information to other enteric neurons and to the CNS. Therefore, IPANs are a second target for gut microbiota metabolites or the microbiota itself in the microbiota-gut-brain axis. In addition to paracrine or hormonal signaling mechanisms, a synapse may form between the EECs and enteric nerves projecting to the epithelium (Bohórquez et al. 2015). This synaptic structure may also be important to pave an alternative route to send the luminal information to the ENS and CNS. Neurons in the ENS are also divided into two subtypes based on their electrophysiological properties, which correlate with their morphologies (Furness 2012). AH (after hyperpolarizing) neurons have multiple long processes and a large oval soma (AH/ Dogiel Type II neurons) and S (synaptic) neurons (Brookes et al. 1995; Clerc et al. 1998; Nurgali et al. 2004). Morphology of S neuron is flattened, slightly elongated with stellate or angular forms. The characteristic belongs to Dogiel Type I neurons. S neurons function as muscular motors, secretomotor and interneurons. On the other hand, AH neurons are chemo- and mechanosensitive IPANs. Both types of neurons are located in close proximity to and in contact with spinal and vagal afferent nerves that send intestinal information to the CNS, and
they also communicate in a bidirectional manner with the CNS via both vagal parasympathetic and sympathetic nerve pathways. Glia constitutes another component of ENS. The primary roles of glia in GI function remains incompletely understood but enteric glia participate in bidirectional communication with enteric neurons to regulate motility (Turco et al. 2014; Rao et al. 2017).

The ENS components are separated from the contents of the intestinal lumen including the gut microbiota, by the epithelial cell barrier and mucus layer. Direct interactions require the gut microbiota or its metabolites to pass the epithelial barrier to access the nerve endings of IPANs but under physiological conditions, the gut microbiota usually cannot penetrate into the subepithelial space (Ashida et al. 2012; Sharon et al. 2014). Previous studies demonstrated that the gut microbiota and their metabolites originating in the gut lumen influence the ENS through direct or indirect mechanisms and changes in ENS activity contribute to afferent signals transduced to the brain (Kunze et al. 2009; Forsythe et al. 2012). For example, luminal puff application of Lactobacillus rhamnosus (JB-1), Bacteroides fragilis or the capsular exopolysaccharide polysaccharide A (PSA) to the epithelia evoked brief low-frequency bursts of orthodromic action potentials in ex vivo mouse small intestinal preparations (Mao et al. 2013). This close relationship between IPANs and the gut microbiota has been supported by the observation revealing that the absence of the microbiota results in a decrease in gut IPAN excitability in the mouse (McVey et al. 2013). The report also demonstrated that PSA is necessary and sufficient to evoke action potential in IPANs. From these results, the authors speculated that specific luminal bacteria and their carbohydrate components interact with cells in the epithelium through C-type lectin or TLRs as these are present on epithelial cells and EC cells (Sharma et al. 2010). Furthermore, considering the latency of neuronal responses, these authors speculate that PSA may first act on EECs, which then activate IPANs through the release of intermediate mediators including gut peptides (Mao et al. 2013). Therefore, the luminal gut microbiota may be able to send the luminal information through epithelial cells to the ENS. The mechanisms whereby gut microbiota signals to enteric neurons (AH and S cells) to alter their excitability include many plausible possible routes including EECs as mentioned above. Thus, further studies are needed to identify the molecular mechanism since it is still unknown what kind of molecules are involved in the activation of IPANs but this pathway composes important intrinsic afferent pathway in the microbiota-gut-brain axis.

SCFAs are important gut microbiota-derived mediators in the microbiota-gut-brain axis as mentioned in the previous section. The mucosal application of 5×10^{-3} M butyrate also induced a non-synaptic burst of action potential in rat colonic myenteric AH neurons (Kunze et al. 2009). In addition to the activation of FFAs expressed on EECs, SCFAs are also transported by the SCFA transporter, SMCT-1 into the subepithelial space, where they affect various aspects of ENS activity (Iwanaga et al. 2006). Indeed, direct application of 10^{-7} M sodium butyrate into the myenteric AH neurons of the guinea pig proximal colon induced transient depolarization associated with increased excitability (Neunlist et al. 1999). In contrast to a previous study in which an action potential was observed in rat colonic myenteric AH neurons stimulated by butyrate, the mucosal application of butyrate on AH neuron somata was ineffective when applied directly onto the mucosa (Mayer 2000). The reasons for these discrepancies remain speculative but might result from species differences or segmental differences. Butyrate but not acetate or propionate is reported to enhance the expression of choline acetyltransferase in rat colonic myenteric neurons through the activation of FFA3 (Soret et al. 2010). This result suggests that butyrate may modulate microbiota-gut-brain axis signaling pathway through the activation of neurotransmitter synthesis mechanisms. However, to prove this molecular mechanism in this pathway, further study is needed.

The ENS expresses multiple 5-HT receptors; three excitatory receptors and one inhibitory receptor for 5-HT have been identified using electrophysiological methods (Galligan 1996). 5-HT activates IPANs and extrinsic sensory terminals in the lamina propria mainly via 5-HT$_3$ receptors (Bertrand et al. 2000). Furthermore, 5-HT$_3$ receptor-expressing nerve fibers are in contact with the basolateral side of 5-HT-expressing EC cells (Bellono et al. 2017). Thus, EC cells in close proximity with 5-HT$_3$ receptor-expressing nerve fibers appear to form synaptic-like structures for transmitting signals from EC cells to the ENS (Fig. 2). Based on these observations, the gut microbiota can directly or indirectly influence 5-HT production in EC cells and released 5-HT modulates the neuronal activity of the ENS. The cholera toxin also releases 5-HT from EC cells, and the released 5-HT acts on 5-HT$_3$ receptors on sensory nerves (Fung et al. 2010). Therefore, it is possible that microbiota-modulated 5-HT release in the mucosa may participate in sending luminal informa-
tion to the CNS through the modulation of ENS neuronal activity. Furthermore, dysregulation in the serotonergic system has been related to chronic inflammatory diseases such as intestinal bowel disease (IBD) and diarrhea (Monocha et al. 2012). Together, these findings suggest that 5-HT functions as a chemical language with which it communicates with the gut microbiota and the ENS. This communication route is important to maintain microbiota-EEC-ENS interactions. In the ENS, GABA acting on GABA_A receptors evoked the depolarization of AH neurons in the intact myenteric plexus in the guinea pig ileum (Bertrand and Galligan 1992; Auteri et al. 2014). Therefore, the endogenous source of GABA produced by the microbiota also functions as a chemical language of the gut microbiota and the ENS. This supposition is supported by the observation indicating that the concentrations of most neurotransmitters found in the GI tract are equal to or higher than those in the brain (Sampson and Mazmanian 2015).

Despite the separation between the microbiota and the ENS, enteric neurons in TLR2-knockout mice showed altered ENS architecture and neurochemical profiles; a reduction in the number of ileal neurons and glial cells and reduced myenteric ganglion area (Brun et al. 2013). They also presented with structural abnormalities in the submucosal plexus, which manifested functionally as a decrease in nerve-driven secretory responses to cholinergic stimulation and induced intestinal dysmotility (Brun et al. 2013). Similar alterations were observed in the TLR4-knockout, which showed a reduction in in vivo transit coupled with important changes in neurochemistry (Anitha et al. 2012). Therefore, the collective evidence suggests that both TLR2 and TLR4 influence both the ENS and the function of the small intestine, with similar neurochemical changes observed in the myenteric neurons in the proximal colon of TLR4-deficient mice. The TLR 3 and 7 proteins have been identified in the murine and human ENS, respectively, and on neural elements innervating Peyer’s patches, which may provide a pathway for microbes to access the ENS (Barajon et al. 2009). Thus, TLR3 and 7 may also function as messengers of the communication system formed by the microbiota-gut-brain axis. Enteric glia also expresses TLRs (Turco et al. 2014). Using immunohistochemistry studies, Kabouridis et al. recently demonstrated that the microbiota is required for both the initial establishment (i.e., migration) and for the postnatal development of enteric glial cells in the intestine (Kabouridis et al. 2015). Therefore, the microbiota may affect the microbiota-gut-brain axis through TLRs expressed on glial cells. The gut microbiota also activates resident immune cells of the GI tract, which may signal to the ENS. Briefly, molecular mediators secreted by gut-resident immune cells can be detected by corresponding receptors in the ENS and affect enteric function. For example, muscularis macrophages of the gut secrete bone morphogenetic protein 2 (BMP2), which activates BMP receptors on enteric neurons to regulate motility (Muller et al. 2014).

Overall, the ENS combined with EECs is considered to function as an intermediate transducer between the gut microbiota and the CNS that signals through the microbiota-gut-brain axis. Furthermore, information may be transferred to the CNS through changes in the excitability status of enteric neurons and then, the CNS modulates peripheral gut functions including motility and/or ion secretion, in addition to brain function through sympathetic and parasympathetic pathways. Bacterial signaling to the CNS through visceral afferent neurons of the GI tract is discussed in the following section.

Microbiota-gut-brain axis: Communication between the CNS and ENS

Neural communication between the GI tract and CNS occurs through the innervation of the ANS. Incoming visceral information from the GI tract is processed by the CNS, which then evokes responses essential for survival. From an anatomical perspective, in general, there are two distinct neuroanatomical routes of neural communication from the intestine to the CNS; nonpainful homeostatic functions, including satiety, distention, and motility, are mediated predominantly through vagal/pelvic nerves and painful sensory stimuli evoke the transmission of information through splanchnic nerves (Fig. 2) (Vermeulen et al. 2014). Furthermore, these signals can also be transmitted through spinal splanchnic nerves via the nucleus tractus solitarii (NTS) of the brainstem to higher centers of the brain (Christianson et al. 2009). Three afferent pathways connect the GI tract to the CNS: vagal afferents, pelvic afferents and splanchnic afferents (Beyak et al. 2006). These visceral afferent nerve fibers transmit sensory information from the GI tract to the CNS, including to the brainstem and sensorimotor brain circuits (Berthoud et al. 2004; Brookes et al. 2013; Furness et al. 2014; Keightley et al. 2015). Several structurally distinct types of sensory endings are reported to be present in the gut wall. Each of these major types of ending structures seems to be associated with distinctive
combinations of physiological responses (Brookes et al. 2013). Among these types, “mucosal” endings are located in the subepithelial layer, thus these endings can detect intestinal molecules such as bacterial metabolites, gut peptides and neurotransmitters (Beyak et al. 2006; Brookes et al. 2013). Cell bodies of vagal and spinal afferents are located in nodose ganglion (NG) which project to the brainstem, and dorsal root ganglia (DRG), which project to the dorsal horn of the spinal cord and the dorsal column nuclei. Histological and electrophysiological evidence indicates that visceral afferent endings in the GI tract express a diverse array of chemical and mechanosensitive receptors which are the main targets of the gut peptides released from EECs (Beyak et al. 2006; Blackshaw et al. 2007; Egerod et al. 2018). For example, the GPCRs for gut peptides expressed on vagal unmyelinated afferents are neuropeptide receptor 1 (NTSR1), neuropeptide YY receptor 2 (NPY2R), CCK-1R and GLP-1R (Egerod et al. 2018). Furthermore, both vagal and spinal afferents have collateral branches that innervate the ENS (Fig. 2) (Blackshaw et al. 2007). These findings suggest that changes in the neuronal activity of the ENS are easily transmitted to the CNS through these collateral branches. Thus, visceral afferent fibers may indirectly sense microbiota signals through the interplay between the EEC and ENS, and the corresponding gut information is thus transferred to the CNS to exert various reactions; CNS function and, subsequently human and animal behavior, is influenced by microbiota and their metabolites (Mayer et al. 2015; Sampson and Mazmanian 2015).

As described above, microbiota metabolites are able to signal both locally and to distant organs, including the brain (Sharon et al. 2014; Schroder et al. 2016). For example, butyrate directly activates rat jejunal vagal afferent nerve fibers (Lal et al. 2001). As FFA3 was found to be expressed in the mouse NG but no expression was observed in the brain or spinal cord (Nohr et al. 2015), it is possible that this effect was mediated by FFA3 expressed on vagal sensory neurons. Furthermore, the oral administration of butyrate to fasting mice resulted in decreased neuronal activity in the NTS and dorsal vagal complex and decreased activity of orexigenic NPY-positive neurons in the hypothalamus (Li et al. 2018). Therefore, these results indicate that SCFAs modulate satiety activity at the CNS level through the activation of vagal nerve signaling. This supposition is further supported by observations indicating that the butyrate concentration of peripheral blood is relatively low (~18 μmol/L in the portal vein in a fasting human and in the lower μmol range in peripheral blood) and radiolabelled butyrate uptake in primate brain was less than 0.006% and subjected to higher turnover, as indicated by positron emission tomography study (Kim et al. 2013). Thus, it can be expected that butyrate levels in the brain tissue or cerebrospinal fluid are extremely low. In another example, acetate was implicated in the regulation of weight gain and appetite based on the parasympathetic nervous system; an increase in acetate production by the gut microbiota in response to a high fat diet promoted glucose-stimulated insulin and ghrelin secretion by activating the parasympathetic nervous system (Perry et al. 2016). Furthermore, acetate derived from the colon has been reported to directly induce anorectic signals in the hypothalamic arcuate nucleus (ARC) (Frost et al. 2014). Therefore, gut-derived SCFAs may actively regulate satiety homeostasis through neural circuits involved in the brain both by visceral sensory afferent activation and EEC-ENS interplay. The visceral afferent nerve in the microbiota-gut-brain axis also contributes to the energy homeostasis affected by propionate. Propionate enhances glucose homeostasis by modulating the microbiota-gut-brain neural circuitry; that is, propionate acts as an agonist of FFA3 in the vagal afferent innervating the portal vein to induce intestinal gluconeogenesis via the activation of the dorsal vagal complex which receives input from the vagal afferent pathway (De Vadder et al. 2014). Taken together, these results indicate that the mechanisms of energy homeostasis controlled by SCFAs somewhat differ by the types of SCFAs. More research is needed to clarify which specific neuronal circuits are activated by a specific type of SCFAs to induce signaling in the brain and how this specificity affects satiety-related behavior.

Another microbiota-derived metabolite, indole influences higher brain function through the microbiota-gut-brain axis; direct administration of indole into the cecum of rats induced the activation of the vagal afferent fibers, which was confirmed by c-fos expression in the dorsal vagal complex (DVC), and this activation induced a dramatic increase in the number of eye blinks (Jaglin et al. 2018). The results also suggest that the vagus nerve is a major modulatory communication pathway between the gut microbiota and the brain. However, the underlying molecular mechanisms are still unknown.

The microbiota itself also affects the microbiota-gut-brain axis through the modulation of visceral afferent nerves. For example, the luminal application of Lactobacillus rhamnosus (JB-1) into the jejunal
segment of male Swiss Webster mice increased vagal afferent discharge within minutes but the application of Lactobacillus salivarius (a negative control) was ineffective (Perez-Burgos et al. 2013). The increase in vagal discharge was abolished by vagotomy. Chronic treatment with JB-1 also led to region-dependent alterations in central GABA receptor expression, accompanied by reduced anxiety- and depression-like behaviors and attenuation of the stress-induced corticosterone response, and these effects also required an intact vagus nerve (Bravo et al. 2011). Thus, the results suggest that the gut microbiota is an important factor influencing stress-induced behavior and that the intact vagus nerve is particularly linked to microbiota-induced behavioral changes. Another gut microbiota, Bifidobacterium longum NCC3001, was also reported to normalize anxiety-like behavior and hippocampal brain-derived neurotrophic factor (BDNF) in mice with infectious colitis, and the anxiolytic effect of NCC3001 required vagal integrity but did not involve gut immunomodulation or production of BDNF by neurons (Bercik et al. 2011; Bravo et al. 2011). Furthermore, the results suggest that signals transmitted to the CNS by activating vagal pathways are transduced at the ENS level since the products of bacterial fermentation decreased the excitability of enteric neurons. From these results, the vagus nerve and the ENS are considered to be important to the neural pathway modulation of the constitutive communication between the gut microbiota and the brain. However, to identify the nerves affected by the microbiota, further study is needed. Furthermore, to determine whether the effects are due to the direct stimulation of vagal afferent nerve terminals or are secondary to the effects on the ENS, more study is required. In addition, these findings suggest that certain microbiota may be involved in stress-related disorders such as anxiety and depression.

In the previous section, we have discussed the contribution of TLRs in the microbiota-gut-brain axis. Recently, electrophysiological recordings from the vagal afferent pathway stimulated by TLRs in the intestine have been described; the application of peptidoglycan (a ligand for TLR2), a major component of the wall of gram-positive bacteria, to rat distal colonic mucosa resulted in increased nerve firing in the vagus (Buckley et al. 2018). However, LPS (a ligand for TLR4) had no effect on vagal nerve activity, although TLR4, a selective receptor for LPS, was expressed in the vagal afferent neurons in the NG (Hosoi et al. 2005; Reardon et al. 2018). Therefore, TLR2 may contribute to the afferent input pathway in the microbiota-gut-brain axis at the peripheral level since enteric neurons express TLR2 (Brun et al. 2013). On the other hand, LPS may affect afferent neuronal activity of NG through circulation.

Spinal afferents are generally associated with pain (Vermeulen et al. 2014), but they are also equipped to convey information on physiological events (Harrington et al. 2018). These neurons form the afferent limb of spinal and brainstem reflexes (Brookes et al. 2013). Spinal afferent signaling is also evoked by bacterial cell products (Kamiya et al. 2006; Ma et al. 2009; Ochoa-Cortes et al. 2010). Recent studies have shown that extrinsic sensory neurons respond directly to several bacterial products such as cell wall components and toxins. For example, Citrobacter rodentium infection increased the hyperexcitability of mouse colonic DRG neurons and resulted in enhanced pain associated with colorectal distension (Ibeakanma et al. 2009). This hyperexcitability of colonic DRG neurons is caused by bacterial LPS; LPS enhanced the excitability and firing rate of the DRG neurons and increased the production of pro-inflammatory TNF-α and IL-β transcripts and cytokines (Ochoa-Cortes et al. 2010). TLR3, 4, 7 and 9 are expressed on spinal afferent neurons and in DRG (Reardon et al. 2018). Taken together, these results suggest that the microbiota itself also sends information to the CNS through the activation of TLRs expressed in the ENS and spinal afferent neurons.

Under normal circumstances, the majority of visceral afferent signals are not consciously perceived, with only salient (e.g., hunger) or potentially noxious stimuli (i.e., pain) eliciting a behavioral response reaching consciousness (Mayer 2011). However, dysfunction at any level of the microbiota-gut-brain axis may disrupt this delicate balance. Irritable bowel syndrome (IBD) is related to stress-related psychiatric disorders, including major depression and anxiety and is recognized as a disorder of the gut-brain axis (Collins 2014; Quigley 2018). Gut microbiota treatment has been shown to ameliorate stress-related GI diseases. Indeed, Bifidobacterium and Lactobacillus have been reported to improve mood and reduce anxiety symptoms in patients with IBD and chronic fatigue syndrome (Bravo et al. 2011; Collins 2014; Quigley 2018). Furthermore, the consumption of Lactobacillus acidophilus Rosell-52 and Bifidobacterium longum Rosell-175 has been shown to be effective in ameliorating stress-related GI complaints such as abdominal pain and nausea/vomiting (Diop et al. 2008). These results, taken together, show that certain microbiota strains can modulate brain function and behavior, some of which are vagus dependent.
However, it is still unknown how the microbiota affects higher behavioral response through the microbiota-gut-brain axis and what kinds of mechanisms are involved. Therefore, further studies are needed to better understand the mechanism by which visceral information transmitted through the microbiota-gut-brain axis elicits behavioral responses.

The efferent part of the ANS and the central circuits also affect the microbiota-gut-brain axis signaling pathway (Cryan et al. 2012). Most efferent pathways contain pre-enteric neurons that end within the ENS and control or modify the activities of enteric neurons (Holst et al. 1997; Gunawardene et al. 2011). The sympathetic and parasympathetic efferent branches of the ANS directly connect emotional arousal and central autonomic brain circuits within the ENS, which in turn innervates visceral smooth muscles and mucosal epithelial cells to induce endocrine and immune functions. Preganglionic neurons of the vagal efferent originate from the motor neurons of the dorsal motor nucleus and synapse with postganglionic neurons within the myenteric plexus. Physiological and psychological stressors increase sympathetic tone and decrease parasympathetic tone in the ANS, which is a key regulator of the ENS (Chang 2011). At the gut level, these stress effector systems influence various gut functions, including motility and secretion, mucosal permeability, local and circulating immune cell functions, inflammatory reactions and the microbiota composition and its function (Bailey et al. 2011; Bischoff et al. 2014). For example, four motility patterns in the small intestine have been classified: the interdigestive motor complex (MMC), segmentation, power propulsion and neutrally programmed musculomotor quiescence (Grundy et al. 2006). The program for each motility pattern is controlled by the ENS, but the CNS modulates the ENS activity to change motility patterns. These motility patterns easily change the composition of the gut microbiota. For example, impaired intestinal transit caused by acute pancreatitis is associated with bacterial overgrowth in the small intestine (Van Felius et al. 2003). Thus, the brain can influence the gut microbiota through changes in GI motility, secretion and intestinal permeability (Mayer 2000).

Under healthy conditions, the GI tract is densely inhabited by commensal bacteria, which are active producers of metabolites. Therefore, the gut chemosensory system, including the EEC and ENS continuously monitors chemical signatures in the gut lumen by the microbiota-gut-brain axis to maintain body homeostasis. Alterations in this bidirectional communication cause impaired gut function and brain function, such as stress responses, anxiety and altered memory functions, as described above. Thus, more work is required to understand how microbiota-gut-brain axis contributes to maintain our body homeostasis.

Conclusion
In this review, we have outlined recent developments in microbiota-gut-brain axis research especially the involvement of EECs and the ENS. The ENS expresses the molecular machinery required to respond directly or indirectly to the microbiota and its metabolites, and this feature also characterizes EECs and extrinsic sensory nerves. The information transfer by EECs and the ENS seems to be an important route of communication along the microbiota-gut-brain axis. An understanding of the interaction between EECs and ENS may provide new insights into gut-brain communication to help explain how the gut microbiota may modulate pathophysiological processes relevant to brain disorders, such as anxiety and depression in addition to physiological processes. Furthermore, understanding the microbiota-gut-brain axis can lead to the development of new therapeutics for disorders. Thus, future studies are needed to fully understand this complex network.

Acknowledgement
This work was supported in part by funding from the Japan Society for the Promotion of Science to AK (No. 20K11544) and to Y.M. (No. JP1803182).

CONFLICT OF INTERESTS
The authors declare no conflicts of interest.

REVIEW CRITERIA
Literature searches have mainly concentrated on publication in the past 10 years. Combinations of the following search terms were used: “gut microbiota”, “gut-brain axis”, “brain-gut axis” “enteric neurons”, “autonomic nervous system” “enteroendocrine cells” “chemosensing”, “nutrient sensing”, “microbiota metabolites”, “gut hormone”. Searches were conducted using Pubmed and Google Scholar.

REFERENCE
Akiba Y, Inoue T, Kaji I, Higashiyama M, Narimatsu K, et al. (2015) Short-chain fatty acid sensing in rat duodenum. J Physiol 593, 585–599.
Microbiota-gut-brain axis

intestine and colon. Cell Tissue Res 359, 693–698.

Christiansen JA, Bielefeldt K, Altier C, Cenac N, Davis BM, et al. (2009) Development, plasticity and modulation of visceral afferent. Brain Res Rev 60, 171–186.

Clerc N, Furness JB, Bornstein JC and Kunze WA (1998) Correlation of electrophysiological and morphological characteristics of myenteric neurons of the duodenum in the guinea-pig. Neuroscience 82, 899–914.

Collins SM (2014) A role for the gut microbiota in IBS. Nat Rev Gastroenterol Hepatol 11, 497–505.

Copple BL and Li T (2016) Pharmacology of bile acid receptors: Evolution of bile acids from simple detergents to complex signaling molecules. Pharmacol Rev 104, 9–21.

Cox HM (2007) Peptide YY: a neuroendocrine neighbor of note. Peptides 28, 345–351.

Cryan JF, O’Riordan KJ, Cowan CSM, Sandhu KV, Bastiaanssen TFS, et al. (2019) The microbiota-gut-brain axis. Physiol Rev 99, 1877–2013.

Cryan JF and Dinan TG (2012) Mind-altering microorganisms: the impact of the gut microbiota on brain and behavior. Nat Rev Neurosci 13, 701–712.

Cummings JH, Pomare EW, Branch WJ, Naylor CP and Macfarlane GT (1987) Short chain fatty acids in human large intestine, portal, hepatic and venous blood. Gut 28, 1221–1227.

Dawson PA and Karpen SJ (2015) Intestinal transport and metabolism of bile acids. J Lipid Res 56, 1085–1099.

De Vadder F, Kovatcheva-Datchary P, Goncalves D, Vinera J, Zitoun C, et al. (2014) Microbiota-generated metabolites promote metabolic benefits via gut-brain neural circuits. Cell 156, 84–96.

Dinan TG, Stilling RM, Stanton C and Cryan JF (2015) Collective unconscious: how gut microbes shape human behavior. J Psychiatr Res 63, 1–9.

Diop L, Guillou S, and Durand H (2008) Probiotic food supplement reduces stress-induced gastrointestinal symptoms in volunteers: a double-blind placebo-controlled, randomized trial. Nutr Res 28, 1–5.

Diwakarla S, Forbergill LJ, Fakhry J, Callaghan B and Furness JB (2017) Heterogeneity of enterochromaffin cells with the gastrointestinal tract. Neurogastroenterol Motil 29, 10.1111/nmo.13101.

Dobuc H, Tolstanova G, Yuan PQ, Wu W, Kaji I, et al. (2016) Reduction of epithelial secretion in male rat distal colon mucosa by bile acid receptor TGR5 agonist, INT-777: role of submucosal neurons. Neurogastroenterol Motil 28, 1663–1676.

Egerod KL, Petersen N, Timshel PN, Rekling JC, Wang Y, et al. (2018) Profiling of G protein-coupled receptors in vagal afferents reveals novel gut-to-brain sensing mechanisms. Mol Metab 12, 62–75.

Ekblad E, Winther C, Ekman R, Hakanson R and Sundler F (1987) Projections of peptide containing neurons in rat small intestine. Neuroscience 20, 169–188.

Fabbiano S, Suarez-Zamorano N and Trajkovski M (2017) Host-microbiota mutualism in metabolic diseases. Front Endocrinol (Lausanne) 8, 267.

Fagundes CT, Amaral FA, Teixeira AL, Souza DG and Teixeira MM (2012) Adapting to environmental stresses: the role of the microbiota in controlling innate immunity and behavioral responses. Immunol Rev 245, 250–264.

Fiorucci S and Distruitti E (2015) Bile acid-activated receptors, intestinal microbiota, and the treatment of metabolic disorders. Trends Mol Med 21, 702–714.

Fleischer J, Bumbalo R, Bautze V, Strotmann J and Breer H (2015) Expression of odorant receptor Olfr78 in enterodendritic cells of the colon. Cell Tissue Res 361, 697–710.

Forsythe P, Kunze WA and Bienenstock J (2012) On communication between gut microbes and the brain. Curr Opin Gastroenterol 28, 557–562.

Frosali S, Pagliari D, Gambassi G, Landolfi R, Pandolfi F, et al. (2015) How the innate interaction among toll-like receptors, microbiota, and intestinal immunity can influence gastrointestinal pathology. J Immunol Res 2015, Article ID 489821.

Frost G, Stith ML, Sahuri-Arisoylu M, Lizarbe B, Gerdan S, et al. (2014) The short-chain fatty acid acetate reduces appetite via a central homeostatic mechanism. Nat Commun 5, 3611.

Fung C, Ellis M and Bornstein JC (2010) Luminal cholera toxin alters motility in isolated guinea-pig jejunum via pathway independent 5-HT3 receptors. Front Neurosci 4, 162.

Fung FC, Olson CA and Hsiao EY (2017) Interactions between the microbiota, immune and nervous system in health and disease. Nat Neurosci 20, 145–155.

Furness JB (2012) The enteric nervous system and neurogastroenterology. Nat Rev Gastroenterol Hepatol 9, 286–294.

Furness JB, Rivera LR, Cho HJ, Bravo DM and Callaghan B (2013) The gut as a sensory organ. Nat Rev Gastroenterol Hepatol 10, 729–740.

Furness JB, Callaghan BP, Rivera LR and Cho HJ (2014) The enteric nervous system and gastrointestinal innervation: integrated local and central control. Adv Exp Med Biol 817, 39–71.

Galligan JJ (1996) Electrophysiological studies of 5-hydroxytryptamine receptors on enteric neurons. Behav Brain Res 73, 199–201.

Gershon MD (2013) 5-Hydroxytryptamine (serotonin) in the gastrointestinal tract. Curr Opin Endocrinol Diabetes Obes 20, 14–21.

Gribble FM and Reimann F (2016) Enterodendritic cells: Chemosensors in the intestinal epithelium. Annu Rev Physiol 78, 277–299.

Grundy D, Al-Chaer ED, Aziz Q, Collins SM, Ke M, et al. (2006) Fundamentals of neurogastroenterology: Basic science. Gastroenterology 130, 1391–1411.

Gunawardene AR, Corfe BM and Staton CA (2011) Classification and functions of enterodendritic cells of the lower gastrointestinal tract. Int J Exp Pathol 92, 219–231.

Hansen L, Deacon CF, Orskov C and Holst JJ (1999) Glucagon-like peptide-1-(7–36)amide is transformed to glucagon-like peptide-1(9–36)amide by dipeptidyl peptidase IV in the capillaries supplying the L cells of porcine intestine. Endocrinology 140, 5356–5363.

Harach T, Pols TWH, Nomura M, Maida A, Watanabe M, et al. (2012) TGR5 potentiates GLP-1 secretion in response to anionic exchange resins. Sci Rep 2, 430.

Harrington AM, Castro M, Erickson A, Grundy D, Al-Chaer ED, Aziz Q, Collins SM, Ke M, et al. (2006) Fundamentals of neurogastroenterology: Basic science. Gastroenterology 130, 1391–1411.

Gunawardene AR, Corfe BM and Staton CA (2011) Classification and functions of enterodendritic cells of the lower gastrointestinal tract. Int J Exp Pathol 92, 219–231.

Hansen L, Deacon CF, Orskov C and Holst J (1999) Glucagon-like peptide-1-(7–36)amide is transformed to glucagon-like peptide-1(9–36)amide by dipeptidyl peptidase IV in the capillaries supplying the L cells of porcine intestine. Endocrinology 140, 5356–5363.

Harach T, Pols TWH, Nomura M, Maida A, Watanabe M, et al. (2012) TGR5 potentiates GLP-1 secretion in response to anionic exchange resins. Sci Rep 2, 430.

Harrington AM, Castro M, Erickson A, Grundy D and Brierley SM (2018) Extrinsic sensory afferent nerves innervating the gastrointestinal tract in health and disease. In: Physiolo of the Gastrointestinal Tract (Sixth Ed.) pp. 387–418, Academic Press.

Hills JR, Pontefract BA, Mishcon HR, Black CA, Sutton SC, Brierley Hills Jr RD, Pontefract BA, Mishcon HR, Black CA, Sutton SC, et al. (2009) Development, plasticity and modulation of visceral afferent. Brain Res Rev 60, 171–186.

Klusek BL and Li T (2016) Pharmacology of bile acid receptors: Evolution of bile acids from simple detergents to complex signaling molecules. Pharmacol Rev 104, 9–21.

Ko C, Han S, and Durand H (2008) Probiotic food supplement reduces stress-induced gastrointestinal symptoms in volunteers: a double-blind placebo-controlled, randomized trial. Nutr Res 28, 1–5.

Ko C, Han S, and Durand H (2008) Probiotic food supplement reduces stress-induced gastrointestinal symptoms in volunteers: a double-blind placebo-controlled, randomized trial. Nutr Res 28, 1–5.

Ko C, Han S, and Durand H (2008) Probiotic food supplement reduces stress-induced gastrointestinal symptoms in volunteers: a double-blind placebo-controlled, randomized trial. Nutr Res 28, 1–5.
pathway for LPS-induced afferent vagus nerve activation: possible role of nodose ganglion. *Auton Neurosci* **120**, 104–107.

Human Microbiome Project Consortium (2012) Structure, function and diversity of the healthy human microbiome. *Nature* **486**, 207–214.

Hyland NP and Cryan JF (2010) A gut feeling about GABA: Focus on GABAA receptors. *Front Pharmacol* **1**, 124.

Hyland NP and Cryan JF (2016) Microbe-host interactions: Influence of the gut microbiota on the enteric nervous system. *Dev Biol* **417**, 182–187.

Ibeakanma C, Miranda-Morales M, Richards M, Bautista-Cruz F, Martin N, et al. (2009) Citrobacter rodentium colitis evokes post-infectious hypersensitivity of mouse nociceptive colonic dorsal root ganglion neurons. *J Physiol* **587**, 3505–3521.

Hyland NP and Cryan JF (2010) The intestinal barrier and its regulation by neuroimmune factors. *Neurogastroenterol Motil* **22**, 718–733.

Kim SW, Hooker JM, Otto N, Win K, Muench L, et al. (2013) Whole-body pharmacokinetics of HDAC inhibitor drugs, butyric acid, valproic acid and 4-phenylbutyric acid measured with carbon-11 labeled analogs by PET. *Nucl Med Biol* **40**, 912–928.

Krantis A (2000) GABA in the mammalian enteric nervous system. *News Physiol Sci* **15**, 284–290.

Kuhre RE, Wewer Albrechtsen NJ, Larsen O, Jepsen SL, Balk-Møller E, et al. (2018) Bile acids are important direct and indirect regulators of the secretion of appetite- and metabolism-regulating hormones from the gut and pancreas. *Mol Metab* **11**, 84–95.

Kunze WA, Mao YK, Wang B, Huizinga JD, Ma X, et al. (2009) Lactobacillus reuteri enhances excitability of colonic AH neurons by inhibiting calcium-dependent potassium channel opening. *J Cell Mol Med* **13**, 2261–2270.

Lal S, Kirkup AJ, Brunsden AM, Thompson DG and Grundy D (2001) Vagal afferent responses to fatty acids of different chain length in the rat. *Am J Physiol* **281**, G907–G915.

Lasrado R, Boemens W, Kleinjung J, Pin C, Bell D, et al. (2017) Lineage dependent spatial and functional organization of the mammalian enteric nervous system. *Science* **356**, 722–726.

Layden BT, Angueira AR, Brodsky M, Durai V and Lowe WL Jr (2013) Short chain fatty acids and their receptors: new metabolic targets. *Transl Res* **161**, 131–140.

Lee JH and Lee J (2010) Indole as an intercellular signal in microbial communities. *FEMS microbial Rev* **34**, 426–444.

Lefebvre P, Cariou B, Lien F, Kuipers F and Staels B (2009) Role of bile acids receptors in metabolic regulation. *Physiol Rev* **89**, 147–191.

Li H and Cao Y (2010) Lactic acid bacterial cell factories for gamma-aminobutyric acid. *Amino Acids* **39**, 1107–1116.

Li T and Chiang JY (2014) Bile acid signaling in metabolic disease and drug therapy. *Pharmacoel Rev* **66**, 948–983.

Li Z, Yi CX, Katiraei S, Kooijman S, Zhou E, et al. (2018) Butyrate reduces appetite and activates brown adipose tissue via gut-brain neural circuit *Gut* **67**, 1269–1279.

Liang S, Wu X and Jin F (2018) Gut-brain psychology: rethinking psychology from the microbiota-gut-brain-axis. *Front Integr Neurosci* **12**, 33.

Lynch SM and Pedersen O (2016) The normal intestinal microbiome in health and disease. *N Engl J Med* **375**, 2369–2379.

Lyte M (2011) Probiotics function mechanistically as delivery vehicles for neuroactive compounds: Microbial endocrinology in the design and use of probiotics. *Bioessays* **33**, 574–581.

Ma X, Mao YK, Wang B, Huizinga JD, Bienenstock J, et al. (2009) Lactobacillus reuteri ingestion prevents hyperexcitability of colonic DRG neurons induced by noxious stimuli. *Am J Physiol* **296**, G868–G875.

Mace OJ, Tehan B and Marshall F (2015) Pharmacology and Physiology of gastrointestinal enteroidoecrine cells. *Pharmacol Res Perspect* **3**, e00155.

Makishima M, Okamoto AY, Repa JJ, Tu H, Learned RM, et al. (1999) Identification of a nuclear receptor for bile acids. *Science* **284**, 1362–1365.

Mao YK, Kasper DL, Wang B, Forsythe P, Bienenstock J, et al. (2013) Bacteroides fragilis polysaccharide A is necessary and sufficient for acute activation of intestinal sensory neurons. *Nat Commun* **4**, 1465.

Marchesi J and Shanahan F (2007) The normal intestinal microbiota. *Curr Opin Infect Dis* **20**, 508–513.

Mawe GM and Hofman JM (2013) Serotonin signaling in the gut-functions, dysfunctions and therapeutic targets. *Nat Rev Gastroenterol Hepatol* **10**, 473–486.

Mayer EA (2000) The neurobiology of stress and gastrointestinal disease. *Gut* **47**, 861–869.

Mayer EA (2011) Gut feelings: the emerging biology of gut-brain
communication. Nat Rev Neurosci 12, 453–466.
Mayer EA, Tillisch K and Gupta A (2015) Gut-brain axis and the microbiota. J Clin Invest 125, 926–938.
Mazzoli R and Pessone E (2016) The neuro-endocrinological role of microbial glutamate and GABA signaling. Front Microbiol 7, 1934.
McVeey Neufeld KA, Mao YK, Bienenstock J, Foster JA and Kunze WA (2013) The microbiome is essential for normal gut intrinsic primary afferent neuron excitability in the mouse. Neurogastroenterol Motil 25, 183–e88.
Moncho M and Khan WI (2012) Serotonin and GI disorders: An update on clinical and experimental studies. Clin Transl Gastroenterol 3, e13.
Montiel-Castro AJ, González-Cervantes RM, Bravo-Ruiseco G and Pacheco-López, G (2013) The microbiota-gut-brain axis: neurobehavioral correlates, health and sociality. Front Integr Neurosci 7, 70.
Mukhtar K, Nawaz H and Abid S (2019) Functional gastrointestinal disorders and gut-brain axis: What does the future hold? World J Gastroenterol 25, 552–566.
Muller PA, Kocsó B Rajani GM, Kerres M-L, Hashimoto D, et al. (2014) Crosstalk between muscularis macrophages and enteric neurons regulates gastrointestinal motility. Cell 158, 300–313.
Nakajima K, Tsyono I, Kuriyama K and Kimura H (1996) Immunohistochemical demonstration of GABAα receptors in the rat gastrointestinal tract. Neurochem Res 21, 211–215.
Neuclist M, Dobrevu G and Schemann M (1999) Characteristics of mucosally projecting myenteric neurons in the guinea-pig proximal colon. J Physiol 517, 533–546.
Nicholson JK, Holmes E, Kinross J, Burcelin R, Gibson G, et al. (2012) Host-gut microbiota metabolic interactions. Science 336, 1262–1267.
Nohr MK, Pederson MH, Egerod KL, Engelstoft MS, Matthews RT, Digby GJ, et al. (2015) Expression of the short chain fatty acid receptor GPR41/FFAR3 in autonomic and somatic sensory ganglia. Neuroscience 290, 3552–3564.
Nohr MK, Egerod KL, Christiansen SH, Gille A, Offermanns S, et al. (2015) Expression of the short chain fatty acid receptor GPR41/FFAR3 in autonomic and somatic sensory ganglia. Neuroscience 290, 126–137.
Nurgali K, Stebbing MJ and Furness JB (2004) Correlation of electrophysiological and morphological characteristics of enteric neurons in the mouse colon. J Comp Neurol 468, 112–124.
Ochoa-Cortes F, Ramos-Lomas T, Miranda-Morales M, Spreadbury I, Ibeakamma C, et al. (2010) Bacterial cell products signal to mouse colonic nociceptive dorsal root ganglia neurons. Am J Physiol 299, G723–732.
O’Mahony SM, Clarke G, Borre YE, Dinan TG and Cryan JF (2015) Serotonin, tryptophan metabolism and the brain-gut-microbiome axis. Behav Brain Res 277, 32–48.
Panaro BL, Tough IR, Engelstoft MS, Matthews RT, Digby GJ, et al. (2014) The melancortin-4 receptor is expressed in enteroendocrine L cells and regulates the release of peptide YY and glucagon-like peptide 1 in vivo. Cell Metab 20, 1018–1029.
Pearse AG and Polak JM (1971) Neural crest origin of the ento-
crine polypeptide (APUD) cells of the gastrointestinal tract and pancreas. Gut 12, 783–788.
Perez-Burgos A, Wang B, Mao YK, Mistry B, McVeey Neufeld KA, et al. (2013) Psychoactive bacteria Lactobacillus rhamnosus (JB-1) elicits rapid frequency facilitation in vagal af-
ferents. Am J Physiol 304, G211–G220.
Perry RJ, Peng L, Barry NA, Cline GW, Zhang D, et al. (2016) Acetate mediates a microbiome-brain-β-cell axis to promote metabolic syndrome. Nature 534, 213–217.
Peters SG, Pomare EW and Fisher CA (1992) Portal and peripher-
al blood short chain fatty acid concentration after caecal lactulose instillation at surgery. Gut 33, 1249–1252.
Pluznick JP (2017) Microbial short-chain fatty acids and blood pressure regulation. Curr Hypertens Rep 19, 25.
Pluznick J, Protzko RJ, Gevorgyan H, Peterlin Z, Sipos A, et al. (2013) Offactory receptor responding to gut microbiota-de-
rivied signals plays a role in renin secretion and blood pres-
sure regulation. Proc Natl Acad Sci USA 110, 4410–4415.
Poole DP, Godfrey C, Cattaruzza F, Cottrell GS, Kirkland JG, et al. (2010) Expression and function of the bile acid receptor GpBAR1 (TGR5) in the murine enteric nervous system. Neurogastroenterol Motil 22, 814–825.
Priyadarshini M, Kotlo KU, Dudeja PK and Layden BT (2018) Role of short chain fatty acid receptors in intestinal physiology and pathophysiology. Compr Physiol 8, 1091–1115.
Quesada-Vázquez, Aragonés G, Del Bas JM and Escoté X (2020) Diet, gut microbiota and non-alcoholic fatty liver disease: Three parts of the same axis. Cells 9, 176.
Quigley EM (2018) The gut-brain axis and the microbiome: Clues to pathophysiology and opportunities for novel man-
gement strategies in irritable bowel syndrome (IBS). J Clin Med 7, 6.
Ralphoul HE (2010) Gut chemosensing: interactions between gut endocrine cells and visceral afferents. Auton Neurosci 153, 41–46.
Rao M, Rastelli D, Dong L, Chiu S, Setlik W, et al. (2017) Enter-
ic glia regulate gastrointestinal motility but are not required for maintenance of the epithelium in mice. Gastroenterology 153, 1068–1081.
Rao M and Gershon MD (2018) Enteric nervous system develop-
ment: what could possibly go wrong? Nat Rev Neurosci 19, 552–565.
Reardon C, Murray K and Lomax AE (2018) Neuroimmune com-
unication in health and disease. Physiol Rev 98, 2287–2316.
Reigstad CS, Salmonson CE, Rainey JF 3rd, Szurszewski JH, Linden DR, et al. (2015) Gut microbes promote colonic se-
rotonin production through an effect of short-chain fatty ac-
ids on enterochromaffin cells. FASEB J 29, 1395–1403.
Richards P, Parker HE, Adriaenssens AE, Hodgson JM, Cork SC, et al. (2014) Identification and characterization of GLP-1 recep-
tor-expressing cells using a new transgenic mouse model. Diabetes 63, 1224–1233.
Riminella E, Raoul P, Cintoni M, Franceschi F, Miggiano GAD, et al. (2019) What is the healthy gut microbiota composi-
tion? A changing ecosystem across age, environment, diet, and diseases. Microorganisms 1, pii: E14.
Roberts JP, Larraufile P, Richards P, Kay RG, Galvin SG, et al. (2019) Comparison of human and murine enteroendocrine cells by transcriptomic and peptidomic profiling. Diabetes 68, 1062–1072.
Rooke MG and Garrett WS (2016) Gut microbiota, metabolites and host immunity. Nat Rev Immunol 16, 341–352.
Saito H, Chi Q, Zhuang H, Matsunami H and Mainland JD (2009) Odor coding by a mammalian receptor repertoire. Sci Signal 2, ra9.
Sampson TR and Mazmanian SK (2015) Control of brain develop-
ment, function, and behavior by the microbiome. Cell Host Microbe 17, 565–576.
Sarkar A, Lehto SM, Harty S, Dinan TG, Cryan JF, et al. (2016) Psychobiotics and the manipulation of bacteria-gut-brain signals. Trends Neurosci 39, 763–781.

Schaap FG, Trauner M and Jansen P (2014) Bile acid receptors as targets for drug development. Nat Rev Gastroenterol Hepatol 11, 55–67.

Sharma R, Young C and Neu J (2010) Molecular modulation of intestinal epithelial barrier: contribution of microbiota. J Biomed Biotechnol 305879.

Sharon G, Garg N, Debelius J, Knight R, Dorrestein PC, et al. (2010) Molecular modulation of the gut microbiota to distinct organs in physiology and disease. Nat Med 22, 1079–1089.

Silva YP, Bernardi A and Frozza RL (2020) The role of short-chain fatty acids receptors, GPR41 and GPR43 on colonic functions. Front Endocrinol (Lausanne) 11, 25.

Staley C, Weingarden AR, Khoruts A and Sadowsky MJ (2017) Interaction of gut microbiota with bile acid metabolism and its influence on disease states. Appl Microbiol Biotechnol 101, 47–67.

Steck N, Mueller K, Schemann M and Haller D (2012) Bacterial proteases in IBD and IBS. Gut 61, 1610–1618.

Sternini C, Anselmi L and Rozengurt E (2008) Enteroendocrine cells: a site of ‘taste’ in gastrointestinal chemosensing. Curr Opin Endocrinol Diabetes Obes 15, 73–78.

Tazoe H, Otomo Y, Kaji I, Tanaka R, Karaki SI, et al. (2008) Roles of short-chain fatty acids receptors, GPR41 and GPR43 on colonic functions. J Physiol Pharmacol 59 (Suppl. 2), 251–262.

Thangaraju M, Cresci GA, Liu K, Ananth S, Gnanaprakasam JP, et al. (2009) GPR109A is a G-protein-coupled receptor for the bacterial fermentation product butyrate and functions a tumor suppressor in colon. Cancer Res 69, 2826–2832.

Tolhurst G, Heffron H, Lam YS, Parker HE, Habib AM, et al. (2012) Short-chain fatty acids stimulate glucagon-like-peptide-1 secretion via the G-protein-coupled receptor FFAR2. Diabetes 61, 364–371.

Tough IR, Forbes S and Cox HM (2018) Signaling of free fatty acid receptor 2 and 3 differs in colonic mucosa following selective agonism or coagonism by luminal propionate. Neurol-gastroenterol Motil 23, e13454.

Turco F, Sarnelli G, Cirillo C, Palumbo I, De Giorgi F, et al. (2014) Enteroendocrine-derived S100B protein integrates bacteria-induced Toll-like receptor signaling in human enteric glial cells. Gut 63, 105–115.

Valdes AM, Walter J and Segal TD (2018) Role the gut microbiota in nutrition and health. BMJ 361, 33–44.

Van Felius ID, Akkermans LM, Bosscha K, Verheem A, Harmsen W, et al. (2003) Intestinal bacterial overgrowth in experimental acute pancreatitis. Neurogastroenterol Motil 15, 267–276.

Vernegole N. (2009) Protease-activated receptors as drug targets in inflammation and pain. Pharmacol Ther 123, 292–309.

Vermeulen W, De Man JG, Pelckmans PA and De Winter BY (2014) Neuroanatomy of lower gastrointestinal pain disorders. World J Gastroenterol 20, 1005–1020.

Wang H, Chen J, Hollister K, Sowers LC and Forman BM (1999) Endogenous bile acids are ligands for the nuclear receptor FXR/BAR. Molecular Cell 3, 543–553.

Wei J, Guoxiang X and Weiping J (2018) Bile acid-microbiota cross-talk in gastrointestinal inflammation and carcinogenesis. Nat Rev Gastroenterol Hepatol 15, 111–128.

Wikoff WR, Anforn, AT, Liu L, Schultz PG, Lesley SA, et al. (2009) Metabolomics analysis reveals large effects of gut microbiota on mammalian blood metabolites. Proc Natl Acad Sci USA 106, 3698–3703.

Wong JM, de Souza R, Kendall CW, Emam A and Jenkins DJ (2006) Colonic health: fermentation and short chain fatty acids. J Clin Gastroenterol 40, 235–243.

Worthington JJ, Reimann F and Gribble FM (2018) Enteroendocrine cells-sensory sentinels of the intestinal environment and orchestrators of mucusal immunity. Mucosal Immunol 11, 3–20.

Wu T, Bound MJ, Standfield SD, Gedulin B, Jones KL, et al. (2013) Effects of rectal administration of taurocholic acid on glucagon-like peptide-1 and peptide YY secretion in healthy humans. Diabetes Obes Metab 15, 474–477.

Xiao H and Kang S (2020) The role of the gut microbiome in energy balance with a focus on the gut-adipose tissue axis. Front Genet 11, 297.

Yano JM, Yu K, Donaldson GP, Shastrī GG, Ann P, et al. (2015) Indigenous bacteria from the gut microbiota regulate host biosynthesis. Cell 161, 264–276.