Microbiology and immunology: An ideal partnership for a tango at the gut surface—A tribute to Philippe Sansonetti

Nadine Cerf-Bensussan

1 Laboratory of Intestinal Immunity, INSERM UMR 1163, Institut Imagine, Paris, France
2 Université de Paris, Paris, France

Correspondence
Nadine Cerf-Bensussan, Laboratory of Intestinal Immunity, Institut Imagine, 24 boulevard du Montparnasse, 75015 Paris, France.
Email: nadine.cerf-bensussan@inserm.fr

Abstract
Over the past 20 years, the highly dynamic interactions that take place between hosts and the gut microbiota have emerged as a major determinant in health and disease. The complexity of the gut microbiota represents, however, a considerable challenge, and reductionist approaches are indispensable to define the contribution of individual bacteria to host responses and to dissect molecular mechanisms. In this tribute to Philippe Sansonetti, I would like to show how rewarding collaborations with microbiologists have guided our team of immunologists in the study of host–microbiota interactions and, thanks to the use of controlled colonisation experiments in gnotobiotic mice, toward the demonstration that segmented filamentous bacteria (SFB) are indispensable to drive the post-natal maturation of the gut immune barrier in mice. The work led with Philippe Sansonetti to set up in vitro culture conditions has been one important milestone that laid the ground for in-depth characterization of the molecular attributes of this unusual symbiont. Recent suggestions that SFB may be present in the human microbiota encourage further cross-fertilising interactions between microbiologists and immunologists to define whether results from mice can be translated to humans and, if so, how SFB may be used to promote human intestinal defences against enteropathogens. Nurturing the competences to pursue this inspiring project is one legacy of Philippe Sansonetti.

KEYWORDS
E. coli K12, gut barrier, host–microbiota interactions, intestinal immunity, radiative evolution, segmented filamentous bacterium

1 | INTRODUCTION

Following avenues opened by Robert Koch and Louis Pasteur at the end of the 19th century, microbiologists have succeeded in identifying many disease-causing microbes. They next made remarkable progresses in characterizing the cellular and molecular mechanisms that govern dual interactions between individual pathogens and their hosts and also in developing antibiotics and vaccines that have radically transformed epidemiology and prognosis of infectious diseases. Along this line, work led by Philippe Sansonetti has been instrumental to unravel the multiple mechanisms evolved by Shigella to hijack host defences and to establish its niche of replication (Schnupf & Sansonetti, 2019) as well as to develop a vaccinal approach against a murderous bacterium causing millions of deaths in young children in...
of developing countries. After demonstrating in 1982 that the virulence of *Shigella flexneri* depends on a large plasmid of approximately 220 kb that encodes for a type III secretion system (Sansonetti, Kopecko, & Formal, 1982), Philippe and his collaborators developed numerous in vitro and in vivo approaches to dissect how the different functions encoded by this plasmid enable the interactions of *Shigella* with the intestinal barrier, opening the new discipline of cellular microbiology. They notably uncovered how *Shigella* can propagate within and between epithelial cells by hijacking the host actin cytoskeleton (Bernardini, Mounier, d’Hauteville, Coquis, & Sansonetti, 1989). They showed how *Shigella* induces the death of Peyer’s patch macrophages, which release IL-1β and IL-18, and how these two cytokines, in turn, induce a host inflammatory response that initially promotes bacterial invasion but is ultimately indispensable to clear infection (Sansonetti et al., 2000; Zychlinsky, Prevost, & Sansonetti, 1992). Another set of important studies led by Philippe with Stéphane Girardin and Dana Philpott established how the recognition of a tripeptide derived from bacterial peptidoglycan by a novel intracellular receptor, the nucleotide oligomerisation domain receptor 1, enables mammalian cells to react upon invasion by *Shigella* and more generally upon invasion by pathogenic strains of Gram-negative bacteria (Girardin et al., 2001; Girardin et al., 2003). Eager to translate his work into tools to fight against *Shigella*, Philippe has pursued for many years with his collaborators, and especially with Armelle Phalipon, the quest for the best vaccinal strategy against *S. flexneri*. Their efforts are now close to succeeding with the development of synthetic functional mimics of the O-antigen that can drive a potent protective IgG response (Phalipon et al., 2001; van der Put et al., 2016). Given the capacity of *Shigella* to acquire and accumulate multiple antibiotic resistances (Njamkepo et al., 2016), this vaccine remains more than ever indispensable. Over the past 15 years, Philippe and his collaborators have progressively extended their expertise to the field of host–microbiota interactions, with notably the goal to understand how the gut can aggravate or, on the contrary protect, against stunting and environmental enteropathy, a devastating condition that increases susceptibility to infections and impairs the development of young children in developing countries (Vonaesch et al., 2018; Vonaesch et al., 2018). The interest of Philippe into host–microbiota provided our team with the chance to set up the very rewarding collaboration that is discussed below to study an unusual symbiont, segmented filamentous bacteria (SFB).

A novel era in microbiology opened at the end of the 20th century with the discovery by Carl Woese of a sequence-based phylogenetic framework for the identification of microbes and with the rapid development of sequencing technologies (Pace, Sapp, & Goldenfeld, 2012). Limitations of microbial cell culture were overcome, and beyond the study of the small number of bacteria that were culturable, it became possible to explore the structure and dynamics of multiple microbial communities in diverse ecosystems (Gibbons & Gilbert, 2015). The microbial communities that assemble at our body surfaces and notably the gut microbiota, which is by far the largest of these communities, became the centre of considerable attention (Davenport et al., 2017; Dominguez-Bello, Godoy-Vitorino, Knight, & Blaser, 2019). A new field of research for microbiologists and immunologists opened at the gut mucosal surface. In a perspective published in *Cell and Host Microbe* in 2008, Thierry Péron and Philippe Sansonetti thus highlighted the change of paradigm in the host–pathogen relationship and outlined the “ménage à trois” that takes place between pathogens, commensals, and the host immune system at the gut surface (Pedron & Sansonetti, 2008). The barrier effect of the microbiota, initially described in the 1950s (Miller, Bohnhoff, & Rifkind, 1956), received renewed attention, leading microbiologists to identify the multiple mechanisms evolved by symbiotic bacteria to protect their niche and to restrain the access of pathogens to their hosts (reviewed in: Schnupf, Gaboriau-Routhiau, & Cerf-Bensussan, 2018; Sorbara & Pamer, 2019). Simultaneously, immunologists realised that the immune system may not only have evolved under the selective pressure of highly virulent pathogenic microbes (Shultz & Saklat, 2019), but also to cope with the complex communities of symbiotic bacteria that colonise body surfaces after birth (Lee & Mazmanian, 2010; McFall-Ngai, 2007). As highlighted in a recent review by Philippe and his collaborators, new paradigms based on in-depth knowledge of intestinal ecology are now necessary to apprehend the role of microbes in health and disease and to revisit Koch’s postulates (Vonaesch, Anderson, & Sansonetti, 2018).

Here, I would like to outline how cooperation with microbiologists has guided our team of mucosal immunologists toward the study of host–microbiota interactions and how the use of gnotobiotic mice led us to embark on the quest for bacteria able to stimulate the post-natal maturation of the gut immune barrier. Once the SFB were identified as a key taxon, Philippe Sansonetti provided us the chance to initiate cellular microbiological approaches to culture this unusual symbiont and to characterize its intimate relationship with the intestinal epithelium. Strikingly, SFB proved to be not only a strong inducer of gut innate and adaptive immune responses, but its presence was shown to greatly enhance the barrier effect of the gut microbiota against enteropathogens, raising considerable interest by both immunologists and microbiologists for this unusual commensal bacterium. This tribute to Philippe Sansonetti will thus be an opportunity to summarise present results and to discuss perspectives in SFB research.

2 | LESSONS FROM *Escherichia coli* ADAPTATION TO INTESTINAL LIFE

Two circumstances led our team to step into the field of host–microbiota interactions. Valérie Gaboriau-Routhiau joined the group, bringing skills in gnotoxeny learned from Pierre Raibaud and Robert Ducluzeau, two pioneers in microbial ecology at the National Institute of Research in Agronomy in Jouy-en-Josas (Raibaud et al., 1980). Simultaneously, microbiologists headed by François Taddei, requested our help to delineate how *Escherichia coli* K12 MG1655, a commensal strain that had been isolated 50 years ago from human faeces and had acclimatised to test tubes, could readapt to the life in the mouse intestine. Using strains that differed by their spontaneous rate of mutation, Antoine Giraud and François Taddei had shown that adaptive mutations promoted gut colonisation by *E. coli* K12 (Giraud et al., 2001).
The obvious next steps were to define the nature of the mutations and to identify the constraints that drove selection of the mutant stains in the mouse intestine. After colonisation of previously germ-free mice, we observed a rapid genetic diversification of *E. coli* K12 with the systematic successive selection of mutations in the *EnvZ/OmpR* operon, in the flagellar *flhDC* operon, and in *malT*, the transcriptional activator of the maltose regulon (De Paepe et al., 2011; Giraud et al., 2008). Strikingly, the gain of fitness conferred by the first two types of mutations was associated with loss in motility and flagella expression (De Paepe et al., 2011; Giraud et al., 2008). Given the potent agonist effect of the flagellin derived from *E. coli* K12 on Toll-like receptor 5 (TLR5) and the downstream activation of the NF-κB cascade (Bambou et al., 2004), a tantalising hypothesis for immunologists was that the two first mutations reflected the selective pressure exerted by the host immune system and enabled *E. coli* to escape destruction by an NF-κB-induced inflammatory response. To our surprise, however, we found no transcriptomic evidence of NF-κB activation in the intestine of *E. coli* monocolonised mice even at very early time points (Giraud et al., 2008). Moreover, the same radiative evolution was observed in *MyD88*-deficient mice that cannot activate NF-κB upon TLR5 ligation (De Paepe et al., 2011). In contrast, determination of the fitness advantages of the selected mutations in controlled in vitro experiments showed that the selective forces that drove *E. coli* diversification in the mouse gut were the osmotic stress induced by bile acids and the competition for nutrients (De Paepe et al., 2011; Giraud et al., 2008). Overall, these results indicated that the trade-off between stress resistance and nutritional competence can generate sympatric diversification of the gut microbiota independently of host immune responses. They also left us with the unexpected finding that colonisation of adult mice by a single commensal bacterium such as *E. coli* K12 was not sufficient to trigger a significant inflammatory response in the mouse ileum. Among all immune responses tested, only a moderate increase of the concentration of SlgA could be detected (see below).

3 | LESSONS FROM COLONISATION EXPERIMENTS IN GNOTOBIOTIC MICE

Observation in *E. coli*-monocolonised mice contrasted with published evidence that mouse colonisation by a complex microbiota induces a broad spectrum of immune responses in the intestine. Such responses result in a state of tightly regulated physiological inflammation that is now known to be indispensable to confine the microbiota within the intestinal lumen while maintaining intestinal homeostasis (Cerf-Bensussan & Gaboriau-Routhiau, 2010; Hooper & Macpherson, 2010). Taking advantage of our access to gnotoxeny, a powerful tool to explore the impact of microbial colonisation on the hosts (Macpherson & McCoy, 2015; Skelly, Sato, Kearney, & Honda, 2019), we first confirmed that colonisation of adult germ-free mice by a complex microbiota induced the coordinated maturation of both proinflammatory and regulatory immune responses. A robust transcriptomic response combining both innate (Nos2, Reg3, Il1b, and Il12p40) and adaptive (Ifng, Il10, Gzb, Foxp3, and Il17) signals was induced in the ileum; and a strong expansion of T cells, including CD4+ T cells producing IL-10, IL-13, interferon gamma, and IL-17, was evidenced in the lamina propria of colonised mice compared with germ-free mice (Gaboriau-Routhiau et al., 2009). To our surprise, however, monocolonisation by a variety of cultivable bacteria as well as colonisation by a complex microbiota derived from human faeces or from the cultivable fraction of the mouse microbiota failed to recapitulate the full spectrum of responses induced by a complete pathogen-free mouse microbiota (Gaboriau-Routhiau et al., 2009). In keeping with observations in *E. coli*-monocolonised mice, all mice developed an IgA response. In addition, some mice colonised by the cultivable fraction of the mouse microbiota showed increased transcription of IL-10 and FOXP3, suggesting expansion or induction of regulatory T cells. The latter result is in keeping with numerous studies, which have demonstrated that a diverse spectrum of gut symbionts, and notably anaerobic *Clostridium* species, which metabolise dietary fibres into short-chain fatty acids, can induce regulatory T cells in the gut mucosa (Arpaia et al., 2013; Furusawa et al., 2013; Skelly, Sato, Kearney, & Honda, 2019; Smith et al., 2013). Unexpectedly, however, only colonisation by the spore-enriched fraction of the mouse microbiota was able to generate proinflammatory innate and adaptive immune responses measurable by transcriptomic analysis of intestinal biopsies. This fraction of the mouse microbiota was notably indispensable to recapitulate the strong TH17 response induced by the complete microbiota in C3H/HeN mice (Gaboriau-Routhiau et al., 2009). Because spore-forming gut bacteria are enriched in strict anaerobes difficult or impossible to culture, we inferred that one or several unculturable bacterial taxa present in the mouse but not in the human microbiota were indispensable for driving the full-blown maturation of homeostatic gut immune responses (Gaboriau-Routhiau et al., 2009). Several clues led us to select SFB as a likely candidate. SFB are spore-forming *Clostridia*-related bacteria that colonise the mouse intestine at time of weaning concurrently to the initiation of the post-natal maturation of the gut immune barrier (Davis & Savage, 1974). SFB display tight adherence to ileal epithelial cells (Chase & Erlandsen, 1976; Davis & Savage, 1974; Ferguson & Birch-Andersen, 1979). Although SFB have been observed in many vertebrates, attachment has been shown to be species specific, suggesting that SFB species have coevolved with their respective hosts (Tannock, Miller, & Savage, 1984). This property of SFB seemed to us germane to why the microbiota from mice but not from humans induced a sizeable immune response. Furthermore, a potent inducing effect of SFB on the intestinal IgA response (Klaasen et al., 1993; Talham, Jiang, Bos, & Cebra, 1999) and on the expansion and activation of CD8+ intraepithelial T cells (Umesaki, Okada, Matsumoto, Imaoka, & Setoyama, 1995) had been demonstrated in SFB-monocolonised mice that were obtained in the late 1990s by two groups in the Netherlands (Klaasen, Koopman, Van den Brink, Van Wezel, & Beynen, 1991) and in Japan (Umesaki et al., 1995). Thanks to Jan Snel, who provided access to the SFB strain maintained in monocolonised mice in the Netherlands, we confirmed our hypothesis and demonstrated that monocolonisation of C3H/HeN mice by SFB induced a broad spectrum of innate and adaptive immune responses (Gaboriau-Routhiau et al., 2009).
et al., 2009). SFB monocolonisation notably recapitulated the proinflammatory innate signals and the strong TH17 response induced by the complete microbiota (Gaboriau-Routhiau et al., 2009). The role of SFB as a potent inducer of the intestinal homeostatic TH17 response was simultaneously demonstrated by Ivan Ivanov and Dan Littman in C57BL/6 mice using the SFB strain maintained in monocolonised mice in Japan (Ivanov et al., 2009). Littman and coworkers also showed that SFB colonisation induced the production of IL-22, a cytokine that, alike IL-17, stimulates the production of microbicidal peptides by the gut epithelium (Ivanov et al., 2009). During colonisation by SFB, IL-22 is, however, mainly produced by type 3 innate lymphoid cells (ILC3) in response to IL-23-dependent signals (Sano et al., 2015). A recent work further indicates that activation of IL-22-producing ILC3 by SFB is maximal very early after colonisation and in Rag-/- mice, which lack adaptive immunity, but that it decreases at later time points in immunocompetent mice with the development of the SFB-induced adaptive TH17 response (Mao et al., 2018). Confirming and extending previous work led by the group of John Cebra in the 1990s (Talham et al., 1999), we observed that SFB is a potent inducer of gut-associated lymphoid tissues (Lecuyer et al., 2014). SFB not only can stimulate the development of Peyer’s patches but also, in the absence of Peyer’s patches, can drive the development of cryptopatch-derived lymphoid follicles and induce de novo formation of gut tertiary lymphoid tissue (Lecuyer et al., 2014). The absence of IgA and SFB-specific TH17 responses in SFB-monocolonised mice, in which the formation of Peyer’s patches and inducible gut-associated lymphoid tissue has been inhibited (Lecuyer et al., 2014), suggests that the outstanding role of SFB in driving gut adaptive immune responses largely depends on its strong impact on the development of gut-associated lymphoid tissues where these responses are initiated (Figure 1).

Recent work suggests that other bacteria present in the gut microbiota, and notably in the human gut microbiota, can induce intestinal CD4+ TH17 (Atarashi et al., 2015; Tan et al., 2016), CD4+ TH1 responses (Atarashi et al., 2017), or CD8+ TH1 responses (Tanoue et al., 2019) in the mouse intestine. In two studies, a consortium of several strains was, however, necessary to observe the induction of TH17 cells or of CD8+ TH1 T cells (Atarashi et al., 2015; Tanoue et al., 2019). In another study, the Klebsiella strains that induced intestinal CD4+ TH1 responses were isolated from the saliva and enriched in the microbiota of patients with inflammatory bowel diseases, suggesting that they may not be the symbionts that activate steady-state responses (Atarashi et al., 2017). A fourth study identified a strain of Bifidobacterium adolescentis that could induce the accumulation of gut CD4+ TH17 cells in monocolonised mice. Yet this strain failed to stimulate the complete spectrum of innate and adaptive responses induced by SFB and notably did not induce the development of gut-associated lymphoid tissue (Tan et al., 2016). Thus, up to now, SFB remains unique in its capacity to launch the full maturation of the mouse gut immune barrier without inducing any intestinal pathology. Ileal colonisation by SFB decreases, however, after 2 months of life, when gut immune responses induced by colonisation reach a plateau. In SFB-monocolonised mice, the decreased colonisation is accompanied by a reduction in the intensity of gut homeostatic immune responses (reviewed in Schnupf, Gaboriau-Routhiau, & Cerf-Bensussan, 2013). This is not the case in mice colonised by SFB in the context of a complex microbiota, indicating that other gut bacteria can later in life maintain the homeostatic immune responses initiated by SFB (Chung et al., 2012). Besides its outstanding immunostimulatory functions, SFB has attracted much interest due to its protective role against colonisation by enteropathogens, such as Salmonella Typhimurium or Citrobacter rodentium (reviewed in Schnupf et al., 2018). In contrast with the stimulation of gut immune responses, which can be initiated by SFB independently of the presence of other bacteria, the barrier effect of SFB was shown to require the additional presence of a complex microbiota (Chung et al., 2012). The exact role of SFB is not well delineated, but a mechanism of cooperation between SFB and fucosylase-producing Bacteroidetes has been proposed to account for SFB-enhanced protection against C. rodentium (Pickard et al., 2014). Accordingly, SFB activates, via an IL-23-dependent mechanism, the production of IL-22 by ILC3. In turn, IL-22 stimulates epithelial expression of fucosyl-transferase 2, which can decorate glyocalyx proteins with fucosyl residues. These
enzymatic pathways that are necessary for the synthesis of most amino acids and for de novo synthesis of nucleotides. Description of the SFB life cycle that was inferred from electron microscopy studies performed in the late 1970s further suggests that SFB may derive some anabolic resources from host epithelial cells (Chase & Erlandsen, 1976; Ferguson & Birch-Andersen, 1979). These studies notably revealed that SFB life cycle starts by the attachment of teardrop-shaped unicellular SFB to host epithelial cells. Attachment is followed by elongation and septation, resulting in the formation of long filaments (50–80 μm), which differentiate while remaining bound to the epithelium. Differentiation is associated with the appearance of spherical forespore-like inclusions, which convert into two teardrop-shaped intracellular offsprings (IOs) that can be encapsulated into spores or released from the free end of the filaments to start a new cycle (Chase & Erlandsen, 1976). On the basis of these observations, we decided in 2012 to try to demonstrate definitively that SFB growth depends on its intimate contacts with epithelial cells by setting in vitro culture conditions that mimicked its replica niche. This goal was achieved thanks to Philippe Sansonetti and Pamela Schnupf, then a postdoctoral scientist in his group. Genome analysis predicted SFB to be an obligate anaerobe with a complete glycolysis pathway but lacking most components required for aerobic respiration (Kuwahara et al., 2011). Accordingly, it was decided to attempt coculture of SFB with epithelial cells in a hypoxic chamber at low oxygen concentrations of oxygen. After over 2 years of strenuous efforts, Pamela Schnupf succeeded in establishing all steps necessary to purify SFB IOs from SFB-monoassociated mice and to obtain within 4 days the growth of numerous long filaments that released newly formed IOs, overall recapitulating in vitro the life cycle of SFB that had been described in vivo (Schnupf et al., 2015). She observed that epithelial cells cocultured with SFB displayed a transcriptomic programme largely overlapping that induced during in vivo colonisation. With Valérie Gaboriau-Routhiau, she further demonstrated that both IOs and filaments derived from in vitro culture could successfully colonise germ-free mice and recapitulate the induction of ILAng and TH17 intestinal responses (Schnupf et al., 2015). In keeping with our initial hypotheses, successful in vitro growth of SFB was strictly dependent on the presence of alive epithelial cells, was optimal at 2.0% of oxygen, and also depended on SFB IOs being grown in direct contact with the apical surface of epithelial cells. SFB in vitro growth also required the addition of iron and that of several as yet unidentified components present in brain–heart infusion and yeast/peptone/casein media (Schnupf et al., 2015). Despite this remarkable success, in vitro culture of SFB remains challenging.

4 | SFB: LESSONS FROM MICROBIOLOGY

Complete sequences of the genomes of mouse and rat SFB that were published in 2011 have positioned SFB as a unique clade of Clostridiales that is most closely related to Type I Clostridia, but differing from other commensal clostridial strains by the reduced size of their genome (approximately 1.5–1.6 instead of 2.7–3 Mb), and by the evidence of numerous auxotrophic needs (Kuwahara et al., 2011; Pamp, Harrington, Quake, Relman, & Blainey, 2012; Prakash et al., 2011; Sczesnak et al., 2011). SFB lack notably the enzymatic pathways that are necessary for the synthesis of most
and in vitro passage of SFB is not used for long-term propagation.

The in vitro growth system is, however, a promising advance to try to establish SFB transformation methods. As the in vitro system also recapitulates SFB attachment, including actin recruitment (Figure 2c, d), it may be used to interrogate the intriguing SFB–epithelial cell interaction and to screen for the putative receptors that underlie adhesion and trigger downstream signalling.

5 | MECHANISMS OF SFB-INDUCED TH17 RESPONSES: LESSONS FROM IN VIVO STUDIES

For now, several studies have used in vivo approaches to further characterize the molecular mechanisms, which underlie the immunostimulatory properties of SFB and notably its remarkable TH17-inducing activity. Yang et al. screened a whole-genome shotgun library of SFB with T cell hybridomas carrying T-cell receptors expressed by lamina propria SFB-specific TH17 cells and identified two putative secreted or surface SFB proteins (SFBNYU-003340 and SFBNYU-004940) specifically targeted by the latter cells (Yang et al., 2014). They next compared the induction of T cells specific for SFBNYU-003340 in mice orally infected with SFB or with Listeria monocytogenes engineered to express SFBNYU-003340. Strikingly, specific CD4+ T cells expanded in both groups of mice, but they differentiated into ROR-γT+, presumably TH17 cells, only in mice colonised by SFB, indicating that the nature of the T-cell responses induced by SFB can be uncoupled from specific T-cell recognition (Yang et al., 2014). Overall, these data suggest that SFB delivers (a) signals that create a microenvironment permissive for the differentiation of TH17 cells. In keeping with this hypothesis, we observed that mice monocolonised by the commensal strain E. coli K12 do not develop TH17 cell responses, whereas TH17 responses specific of this bacterium can be detected in mice colonised by a complex microbiota containing both SFB and E. coli (Lecuyer et al., 2014).

SFB may use several nonexclusive mechanisms to shape gut immune responses. A first mechanism may involve the production of flagellin(s). Indeed, SFB harbour a full set of flagella genes in their
genome (Kuwahara et al., 2011; Pamp et al., 2012; Prakash et al., 2011; Sczesnak et al., 2011), and recombinant SFB flagellins are TLR5 stimulatory (Chen, Yin, Wang, Wang, & Xiang, 2017). Moreover, a recent work led by Pamela Schnupf has demonstrated SFB flagellation at the single-cell stage during both in vivo and in vitro SFB growth conditions (unpublished). Whereas flagella-mediated motility may enable IOs to reach their replicative niche at the epithelial surface, flagellated SFB IOs may simultaneously stimulate TLR5 or the NLR family CARD domain-containing protein 4 inflammasome in the intestinal epithelial cells, as well as, perhaps, in antigen-presenting cells if they can be reached by IOs. Of note, however, mice lacking MyD88, an adaptor indispensable for TLR5 signalling, develop normal TH17 response after colonisation by a complex microbiota (Ivanov et al., 2009), or monocolonisation by SFB (Gaboriau-Routhiau, unpublished observations), indicating that TLR5 is dispensable for this response.

One hallmark of SFB is its strong host-specific attachment of ileal epithelial cells (Figure 2a,b). By analogy with the attachment-dependent induction of TH17 cells by the enteropathogen C. rodentium, Atarashi et al., therefore, suggested that the TH17-inducing capacity of SFB requires epithelial attachment (Atarashi et al., 2015). Accordingly, they showed that, although the SFB isolated from mouse or rat intestine could comparably colonise germ-free rats and mice, gut TH17 responses were only induced in autologous hosts in parallel with SFB attachment to ileal epithelial cells. This result contrasted with a comparable induction of IL-22-producing LC3 in autologous and heterologous hosts (Atarashi et al., 2015). SFB attachment was associated with an epithelial transcriptomic response and notably with the induction of mRNA encoding serum amyloid A (SAA), a protein that can act on CD11c+ dendritic cells to promote TH17 differentiation from naive T cells and, of DUOX2, an epithelial enzyme that, via the production of reactive oxygen species, may also foster TH17 differentiation. Atarashi et al. further suggested that the actin reorganisation that is associated with the attachment of SFB to epithelial cells could promote SAA transcription (Atarashi et al., 2015). A very recent study also links the induction of TH17 cells with SFB-induced actin rearrangement in epithelial cells (Ladinsky et al., 2019). This study used electron tomography to analyse the synapse between SFB and epithelial cells and demonstrated that proteins, including the SFBNYU-03340 immunogenic protein that is targeted by the TH17 response (Yang et al., 2014), was transferred into epithelial cells trough adhesion-triggered endocytosis. Endocytosis of vesicles budding from the surface of SFB was independent of clathrin but required dynamin and activation of the cell division control protein 42 (Cdc42), a small GTPase of the Rho family, which plays a key role in actin cytoskeleton dynamics and vesicular trafficking (Ladinsky et al., 2019). Moreover, selective inactivation of Cdc42 in epithelial cells impaired SFB adhesion-triggered endocytosis and simultaneously reduced the induction of TH17 cells by SFB, especially those displaying specificity for SFBNYU-03340 (Ladinsky et al., 2019). Surprisingly, however, inactivation of Cdc42 in epithelial cells only partially impaired the epithelial transcriptomic response induced upon colonisation by SFB, and notably, it also did not affect the transcription of genes encoding SAAs or DUOX2. It also failed to impair the IgA response induced by SFB (Ladinsky et al., 2019). Further studies are, therefore, necessary to delineate the exact role of adhesion-induced endocytosis and epithelial actin rearrangement in driving the spectrum of immune responses stimulated by SFB. Of note, adhesion-triggered endocytosis was not observed with other commensal or pathogenic strains, including strains that induce TH17 responses, suggesting that this mode of communication with epithelial cells is specific to SFB (Ladinsky et al., 2019). TH17 cells elicited by SFB may thus differ from those induced by pathogens. Accordingly, recent work showed that the homeostatic TH17 cells induced by SFB differ from the proinflammatory TH17 cells induced by C. rodentium by distinctive metabolic and transcriptomic programmes (Omenetti et al., 2019). Finally, it is interesting that the capacity of SFB to induce an intestinal TH17 response varies between mouse strains. Thus, in BALB/c mice, monocolonisation by SFB induced the expansion of ROR-γt+ T cells in the gut lamina propria, but the latter cells did not express IL-17 unless mice were treated with IL-1β. Accordingly, this cytokine was strongly induced upon colonisation by SFB in LP CD11c+ cells in C57BL/6 but not in BALB/c mice (Atarashi et al., 2015). It is now known that ROR-γt+ T cells induced in response to intestinal colonisation can differentiate alternatively into ROR-γt+ TH17 cells in the presence of proinflammatory cytokines or into ROR-γt+ FOXP3+ Tregs in the presence of butyrate or retinoic acid (Ohnmacht et al., 2015). Dietary factors that affect the production of short-chain acids in the intestinal tract can thus influence the differentiation of SFB-induced ROR-γt+ T cells toward a TH17 or a Treg fate (Al Nabhani et al., 2019; Luu et al., 2019; Ohnmacht et al., 2015). Whether and how the mouse genetic background may influence SFB-induced signals and thereby modify the balance between different T cell subsets remain to be investigated.

6 | Conclusion and Perspective

OUTLOOK

Over the past 20 years, it has become clear that the gut microbiota has a considerable impact on multiple host metabolic and immune pathways, whereas, conversely, environmental factors, lifestyle habits and host responses can modify the intestinal ecosystem and influence the composition and the metabolism of intestinal bacteria (Rook, Backhed, Levin, McFall-Ngai, & McLean, 2017). The highly dynamic interactions that take place between hosts and the gut microbiota have thus emerged as a major determinant in health and disease, raising multiple questions at the crossroads between microbiology, ecology, and host physiology. This review illustrates how cross-fertilising interactions between microbiologists and immunologists can help to dissect this complex cross-talk. The outstanding role of one single symbiont in orchestrating the maturation of the gut immune barrier in mice was not anticipated. This finding is, however, not completely surprising as most intestinal symbionts possess a core genome that allows their growth embedded within the mucus, a lifestyle that restricts direct contacts with the host surface and thereby minimises the activation of the immune system. In contrast, SFB have a reduced genome and a complex life cycle that requires their intimate contact...
with the epithelium for growth. SFB lifestyle is thus closer to that of enteropathogens than that of commensals. Yet if there is now compelling evidence that SFB adherence to epithelial cells contributes to the robust activation of the host immune system, it does not result in epithelial damage, indicating that SFB and its hosts have evolved a unique trade-off. The biology behind this unusual partnership remains largely enigmatic. Work is needed to identify the host receptors and signalling pathways that are used by SFB to launch self-limited immune responses as well as to define how these homeostatic responses may limit colonisation by SFB and/or participate to the barrier effect of the microbiota against pathogens. On the bacterial side, elegant studies have already identified surface proteins and immunodominant epitopes that are specifically targeted by host T cells (Yang et al., 2014). Yet much remains to be learned concerning the SFB receptors and molecular pattern motifs that mediate adherence and trigger host proinflammatory responses. Improvement of SFB culture and method(s) to genetically manipulated SFB remains to be established and will be instrumental to address adequately these questions. A crucial question also concerns the translation to humans of the outstanding role of SFB that has been established in laboratory rodents. Although SFB have been identified in the microbiota of many vertebrates, their presence in the human microbiota has remained debated due to the difficulty to identify relevant 16S DNA in human faeces (Szcesnak et al., 2011). SFB-related 16S DNA sequences have, however, been detected in the human faeces of Chinese children and, more recently, of U.S. children (Chen et al., 2017; Yin et al., 2013). The presence of SFB in the colonic lumen was confirmed using in situ hybridization and mass spectrometry detection of SFB-derived peptides (Chen et al., 2017). Interestingly, SlgA concentrations in the colonic fluid and ileal expression of immune transcripts and, notably IL-17 mRNA, were significantly increased in children with colonic fluid positive for SFB-16S DNA (Chen et al., 2017). These exciting results encourage cooperation between microbiologists and immunologists to further characterize the putative human SFB, to define whether and how it may contribute to a healthy and robust gut immune barrier in humans, and if so, to learn how to use it to boost gut defences against pathogens. Nurturing the competencies necessary to pursue this inspiring project is one important legacy of Philippe Sansonetti.

ACKNOWLEDGEMENTS

The laboratory of Intestinal Immunity is supported by Institut national de la santé et de la recherche médicale (INSERM), Université de Paris, Fondation Princesse Grace, and ANR-10-LabX 6201. N. C.-B. is the recipient of ERC-2013-AdG 339407-IMMUNOBIOTA (H2020 European Research Council). Institut Imagine is supported by the programme “Investissement d’Avenir” ANR-10-IAHU-01. N. C.-B. thanks all the members of the laboratory and the collaborators who have contributed over the years to the work on host-microbiota interactions. She is particularly grateful to V. Gaboriau-Routhiau and P. Schnupf for the work led together, for their helpful comments on the manuscript, and for their generous gifts of figures. She thanks also I. Nkamba for providing the image of in vitro culture of SFB.

CONFLICT OF INTEREST

The author discloses no conflict of interest.

ORCID

Nadine Cerf-Bensussan https://orcid.org/0000-0003-0665-1245

REFERENCES

Al Nabhani, Z., Dulauroy, S., Marques, R., Cousu, C., Al Bouny, S., Dejardin, F., ... Eberl, G. (2019). A weaning reaction to microbiota is required for resistance to immunopathologies in the adult. Immunity, 50(5), 1276–1288. e1275. https://doi.org/10.1016/j.immuni.2019.02.014

Arpaia, N., Campbell, C., Fan, X., Dikiy, S., van der Veeken, J., deRoos, P., ... Rudensky, A. Y. (2013). Metabolites produced by commensal bacteria promote peripheral regulatory T-cell generation. Nature, 504(7480), 451–455. https://doi.org/10.1038/nature12726

Atarashi, K., Suda, W., Luo, C., Kawaguchi, T., Motoo, I., Narushima, S., ... Honda, K. (2017). Ecotopic colonization of oral bacteria in the intestine drives TH1 cell induction and inflammation. Science, 358(6361), 359–365. https://doi.org/10.1126/science.aan4526

Atarashi, K., Tanoue, T., Ando, M., Kamada, N., Nagano, Y., Narushima, S., ...Honda, K. (2015). Th17 cell induction by adhesion of microbes to intestinal epithelial cells. Cell, 163(2), 367–380. https://doi.org/10.1016/j.cell.2015.08.058

Bambou, J. C., Giraud, A., Menard, S., Begue, B., Rakotobe, S., Heyman, M., ... Gaboriau-Routhiau, V. (2004). In vitro and ex vivo activation of the TLR5 signaling pathway in intestinal epithelial cells by a commensal Escherichia coli strain. J Biol Chem, 279(41), 42984–42992. https://doi.org/10.1074/jbc.M405410200

Bernardini, M. L., Mounier, J., d’Hauteville, H., Coquis-Rondon, M., & Sansonetti, P. J. (1989). Identification of icsA, a plasmid locus of Shigella flexneri that governs bacterial intra- and intercellular spread through interaction with F-actin. Proc Natl Acad Sci U S A, 86(10), 3867–3871. https://doi.org/10.1073/pnas.86.10.3867

Bolotin, A., de Wouters, T., Schnupf, P., Bouchier, C., Loux, V., Rhimi, M., ...Gaboriau-Routhiau, V. (2004). In vitro and ex vivo activation of the TLR5 signaling pathway in intestinal epithelial cells by a commensal Escherichia coli strain. J Biol Chem, 279(41), 42984–42992. https://doi.org/10.1074/jbc.M405410200

Bozic, K., Cooper, S., Siegel, D. B., & Darrow, W. C. (1968). Evidence for a complex life cycle of Shigella dysenteriae serotype 1 and the gut microbiota: Friends or foes? Nat Rev Immunol, 10(10), 735–744. https://doi.org/10.1038/nri2850

Chase, D. G., & Erlandsen, S. L. (1976). Evidence for a complex life cycle and endospore formation in the attached, filamentous, segmented bacterium from murine ileum. J Bacteriol, 127(1), 572-583. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/931952

Chen, H., Yin, Y., Wang, Y., Wang, X., & Xiang, C. (2017). Host specificity of flagellins from segmented filamentous bacteria affects their patterns of interaction with mouse ileal mucosal proteins. Appl Environ Microbiol, 83(18). https://doi.org/10.1128/AEM.01061-17

Chung, H., Pamp, S. J., Hill, J. A., Surana, N. K., Edelman, S. M., Troy, E. B., ...Kasper, D. L. (2012). Gut immune maturation depends on colonization with a host-specific microbiota. Cell, 149(7), 1578–1593. https://doi.org/10.1016/j.cell.2012.04.037

Davenport, E. R., Sanders, J. G., Song, S. J., Amato, K. R., Clark, A. G., & Knight, R. (2017). The human microbiome in evolution. BMC Biol, 15(1), 127. https://doi.org/10.1186/s12915-017-0454-7

Davis, C. P., & Savage, D. C. (1974). Habitat, succession, attachment, and morphology of segmented, filamentous microbes indigenous to the
murine gastrointestinal tract. *Infect Immun.*, 10(4), 948-956. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/4426712

De Paepe, M., Gaboriau-Routhiau, V., Rainteau, D., Rakotobe, S., Taddei, F., & Cerf-Bensussan, N. (2011). Trade-off between bile resistance and nutritional competence drives Escherichia coli diversification in the mouse gut. *PLoS Genet.*, 7(6), e1002107. https://doi.org/10.1371/journal.pgen.1002107

Dominguez-Bello, M. G., Godoy-Vitorino, F., Knight, R., & Blaser, M. J. (2019). Role of the microbiome in human development. *Gut.*, 68(6), 1108–1114. https://doi.org/10.1136/gutjnl-2018-317503

Ferguson, D. J., & Birch-Andersen, A. (1979). Electron microscopy of a filamentous, segmented bacterium attached to the small intestine of mice from a laboratory animal colony in Denmark. *Acta Pathol Microbiol Scand B.*, 87(4), 247-252. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/495101

Furusawa, Y., Obata, Y., Fukuda, S., Endo, T. A., Nakato, G., Takahashi, D., Giraud, A., Arous, S., De Paepe, M., Gaboriau...CERF

Girardin, S. E., Boneca, I. G., Carneiro, L. A., Antignac, A., Jehanno, M., Viala, J., ... Philpott, D. J. (2003). Nod1 detects a unique muropeptide from Gram-negative bacterial peptidoglycan. *Science*, 300(5625), 1584–1587. https://doi.org/10.1126/science.1084677

Girardin, S. E., Tournebize, R., Mavris, M., Page, A. L., Li, X., Stark, G. R., ... Philpott, D. J. (2001). CARD4/Nod1 mediates NF-kappaB and JNK activation by invasive *Shigella flexneri*. *EMBO Rep.*, 2(8), 736–742. https://doi.org/10.1093/embo-reports/kve155

Giraud, A., Arous, S., De Paepe, M., Gaboriau-Routhiau, V., Bambou, J. C., Rakotobe, S., ... Cerf-Bensussan, N. (2008). Dissecting the genetic components of adaptation of Escherichia coli to the mouse gut. *PLoS Genet.*, 4(1), e2. doi:10.1371/journal.pgen.0040002

Giraud, A., Matic, I., Tenaillon, O., Clara, A., Radman, M., Fons, M., & Taddei, F. (2001). Costs and benefits of high mutation rates: Adaptive evolution of bacteria in the mouse gut. *Science*, 291(5513), 2606–2608. https://doi.org/10.1126/science.1056421

Hooper, L. V., & Macpherson, A. J. (2010). Immune adaptations that maintain homeostasis with the intestinal microbiota. *Nat Rev Immunol.*, 10(3), 159–169. https://doi.org/10.1038/nri2710

Ivanov, I. I., Atarashi, K., Manel, N., Brodie, E. L., Shima, T., Karaoz, U., ... Littman, D. R. (2009). Induction of intestinal Th17 cells by segmented filamentous bacteria. *Cell.*, 139(3), 485–498. https://doi.org/10.1016/j.cell.2009.09.033

Kim, S., Kim, H., Yim, Y. S., Ha, S., Atarashi, K., Tan, T. G., ... Huh, J. R. (2017). Maternal gut bacteria promote neurodevelopmental abnormalities in mouse offspring. *Nature*, 549(7673), 528–532. https://doi.org/10.1038/nature23910

Klaassen, H. L., Koopman, J. P., Van den Brink, M. E., Van Wezel, H. P., & Beynen, A. C. (1991). Mono-association of mice with non-cultivable, intestinal, segmented, filamentous bacteria. *Arch Microbiol.*, 156(2), 148-151. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/1838241

Klaassen, H. L., Van der Heijden, P. J., Stok, W., Poelma, F. G., Koopman, J. P., Van der Brink, M. E., Bakker, M.H., Eling, W.M. and Beynen, A.C. (1993). Apathogenic, intestinal, segmented, filamentous bacteria stimulate the mucosal immune system of mice. *Infect Immun.*, 61(1), 303-306. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/8418051

Kuwahara, T., Ogura, Y., Oshima, K., Kurokawa, K., Ooka, T., Hirakawa, H., ... Hayashi, T. (2011). The lifestyle of the segmented filamentous bacterium: A non-culturable gut-associated immunostimulating microbe inferred by whole-genome sequencing. *DNA Res.*, 18(4), 291–303. https://doi.org/10.1038/dnares.2012.22

Ladinsky, M. S., Araujo, L. P., Zhang, X., Velti, J., Galan-Diez, M., Souali, S., ... Ivanov, I. I. (2019). Endocytosis of commensal antigens by intestinal epithelial cells regulates mucosal T cell homeostasis. *Science*, 363(6431), eaat4042. https://doi.org/10.1126/science.aat4042

Lecuyer, E., Rakotobe, S., Lengline-Garnier, H., Lebreton, C., Picard, M., Juste, C., ... Gaboriau-Routhiau, V. (2014). Segmented filamentous bacterium uses secondary and tertiary lymphoid tissues to induce gut IgA and specific T helper 17 cell responses. *Immunity*, 40(4), 608–620. https://doi.org/10.1016/j.immuni.2014.03.009

Lee, Y. K., & Mazmanian, S. K. (2010). Has the microbiota played a critical role in the evolution of the adaptive immune system? *Science*, 330(6012), 1768–1773. https://doi.org/10.1126/science.1195568

Luu, M., Pautz, S., Kohl, V., Singh, R., Romero, R., Lucas, S., ... Visekruna, A. (2019). The short-chain fatty acid pentanoate suppresses autoimmunity by modulating the metabolic-epigenetic crosstalk in lymphocytes. *Nat Commun.*, 10(1), 760. https://doi.org/10.1038/s41467-019-08711-2

Macpherson, A. J., & McCoy, K. D. (2015). Standardised animal models of host microbial mutualism. *Mucosal Immunol.*, 8(3), 476–486. https://doi.org/10.1038/mi.2014.113

Mao, K., Baptista, A. P., Tamoutounour, S., Zhuang, L., Bouladoux, N., Martins, A. J., ... Germain, R. N. (2018). Innate and adaptive lymphocytes sequentially shape the gut microbiota and lipid metabolism. *Nature*, 554(7691), 255–259. https://doi.org/10.1038/nature25437

Marteyn, B., Scorza, F. B., Sansonetti, P. J., & Tang, C. (2011). Breathing life into pathogens: The influence of oxygen on bacterial virulence and host responses in the gastrointestinal tract. *Cell Microbiol.*, 13(2), 171–176. https://doi.org/10.1111/j.1462-5822.2010.01549.x

Marteyn, B., West, N. P., Browning, D. F., Cole, J. A., Shaw, J. G., Palm, F., ... Tang, C. M. (2010). Modulation of Shigella virulence in response to available oxygen in vivo. *Nature*, 465(7296), 355–358. https://doi.org/10.1038/nature08970

McFall-Ngai, M. (2007). Adaptive immunity: Care for the community. *Nature*, 445(7124), 153. https://doi.org/10.1038/445153a

Miller, C. P., Bohnhoff, M., & Rifkind, D. (1956). The effect of an antibiotic on the susceptibility of the mouse’s intestinal tract to Salmonella infection. *Trans Am Clin Climatol Assoc.*, 68, 51-55; discussion 55-58. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/13486607

Njamkepo, E., Fawal, N., Tran-Dien, A., Hawkey, J., Stockbne, N., Jenkins, C., ... Weill, F. X. (2016). Global phylogeography and evolutionary history of Shigella dysenteriae type 1. *Nat Microbiol.*, 1: 16027. https://doi.org/10.1038/nmicrobiol.2016.27

Ohnmacht, C., Park, J. H., Cording, S., Wing, J. B., Atarashi, K., Obata, Y., ... Eberl, G. (2015). MUCOSAL IMMUNOLOGY. The microbiota regulates type 2 immunity through RORgammat(+) T cells. *Science*, 349(6251), 989–993. https://doi.org/10.1126/science.aac2463

Omenetti, S., Bussi, C., Metidji, A., Iseppon, A., Lee, S., Tolaini, M., ... Stockinger, B. (2019). The intestine harbors functionally distinct homeostatic tissue-resident and inflammatory Th17 cells. *Immunity*, 51(1), 77–89 e76. https://doi.org/10.1016/j.immuni.2019.05.004
Sano, T., Huang, W., Hall, J. A., Yang, Y., Chen, A., Gavzy, S. J., Raibaud, P., Ducluzeau, R., Dubos, F., Hudault, S., Bewa, H., & Muller, M. C. (2015). An IL-23R/IL-19 interaction promotes local effector Th17 responses. *Nature*, 1(99), 344–347. https://doi.org/10.1016/j.nature.2015.08.061

Pamp, S. J., Harrington, E. D., Quake, S. R., Reiman, D. A., & Blainey, P. C. (2012). Single-cell sequencing provides clues about the host interactions of segmented filamentous bacteria (SFB). *Genome Res.*, 22(6), 1107–1119. https://doi.org/10.1101/gr.131482.111

Pedron, T., & Sansonetti, P. (2008). Commensals, bacterial pathogens and intestinal inflammation: An intriguing menage a trois. *Cell Host Microbe*, 3(6), 344–347. https://doi.org/10.1016/j.chom.2008.05.010

Phalipon, A., Tanguy, M., Grandjean, C., Guerreiro, C., Belot, F., Cohen, D., ... Muller, M. C. (2014). Rapid fucosylation of intestinal epithelium sustains host commensal symbiosis in sickness. *Nature*, 514(7524), 638–641. https://doi.org/10.1038/nature13823

Pickard, J. M., Maurice, C. F., Kinnebrew, M. A., Abt, M. C., Schenten, D., Golovkina, T. V., ... Pamp, S. J., Harrington, E. D., Quake, S. R., Relman, D. A., & Blainey, P. C. (2013). Rapid fucosylation of intestinal epithelium sustains host commensal symbiosis in sickness. *Nature*, 514(7524), 638–641. https://doi.org/10.1038/nature13823

Shin Yim, Y., Park, A., Berrios, J., Lafourcade, M., Pascual, L. M., Soares, N., ... Choi, G. B. (2017). Reversing behavioural abnormalities in mice exposed to maternal inflammation. *Nature*, 549(7673), 482–487. https://doi.org/10.1038/nature23909

Shultz, A. J., & Sakton, T. B. (2019). Immune genes are hotspots of shared positive selection across birds and mammals. *Elife*, 8, e41815. https://doi.org/10.7554/elife.41815

Skelly, A. N., Sato, Y., Kearney, S., & Honda, K. (2019). Mining the microbiota for microbial and metabolite-based immunotherapies. *Nat Rev Immunol*, 19(5), 305–323. https://doi.org/10.1038/s41577-019-0144-5

Smith, P. M., Howitt, M. R., Panikov, N., Michaud, M., Gallin, C. A., Bohlooly, Y. M., ... Garrett, W. S. (2013). The microbial metabolites, short-chain fatty acids, regulate colonic Treg cell homeostasis. *Science*, 341(6145), 569–573. https://doi.org/10.1126/science.1241165

Sorbara, M. T., & Pamer, E. (2019). Interbacterial mechanisms of colonization resistance and the strategies pathogens use to overcome them. *Mucosal Immunol*, 12(1), 1–9. https://doi.org/10.1038/s41385-018-0053-0. Epub 2018 Jul 9. Review.

Tanham, G. L., Jiang, H. Q., Bos, N. A., & Cebra, J. J. (1999). Segmented filamentous bacteria are potent inducers of a physiologically normal state of the murine gut mucosal immune system. *Infect Immun.*, 67(4), 1992–2000. Retrieved from http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=10085047

Tan, T. G., Sepfik, E., Geva-Zatorsky, N., Kua, L., Naskar, D., Teng, F., ... Mathis, D. (2016). Identifying species of symbiotic bacteria from the human gut that, alone, can induce intestinal Th17 cells in mice. *Proc Natl Acad Sci U S A*, 113(50), E8141–E8150. https://doi.org/10.1073/pnas.1617460113

Tannock, G. W., Miller, J. R., & Savage, D. C. (1984). Host specificity of filamentous, segmented microorganisms adherent to the small bowel epithelium in mice and rats. *Appl Environ Microbiol.*, 47(2), 441–442. Retrieved from http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=6712214

Tanoue, T., Morita, S., Plichta, D. R., Skelly, A. N., Suda, W., Sugiura, Y., ... Tanoue, T., Morita, S., Plichta, D. R., Skelly, A. N., Suda, W., Sugiura, Y., ... Honda, K. (2019). A defined commensal consortium elicits CD8 T cells and anti-cancer immunity. *Nature*, 565(7741), 600–605. https://doi.org/10.1038/s41586-019-0878-z

Umesaki, Y., Okada, Y., Matsumoto, S., Imaoka, A., & Setoyama, H. (1995). Identification of segmented filamentous bacteria (SFB) in the human gut. *Infect Immun.*, 35(3), 1163–1168. https://doi.org/10.1128/IAI.63.3.1163-1168.1995

van der Put, R. M., Kim, T. H., Guerreiro, C., Thouron, F., Hoogerhout, P., Sansonetti, P. J., ... Muller, L. A. (2016). A synthetic carbohydrate conjugate vaccine candidate against shigellosis: Improved bioconjugation and impact of alum on immunogenicity. *Bioconjug Chem.*, 27(4), 883–892. https://doi.org/10.1021/acs.bioconjugchem.5b00617

Vonaesch, P., Anderson, M., & Sansonetti, P. J. (2018). Pathogens, microbiome and the host: Emergence of the ecological Koch’s postulates. *FEMS Microbiol Rev.*, 42(3), 273–292. https://doi.org/10.1093/femsre/fuy003
Vonaesch, P., Morien, E., Andrianonimiadana, L., Sanke, H., Mbecko, J. R., Huus, K. E., ..., Afribiota, I. (2018). Stunted childhood growth is associated with decompartmentalization of the gastrointestinal tract and overgrowth of oropharyngeal taxa. *Proc Natl Acad Sci U S A*, 115(36), E8489–E8498. https://doi.org/10.1073/pnas.1806573115

Vonaesch, P., Randremanana, R., Gody, J. C., Collard, J. M., Giles-Vernick, T., Doria, M., ..., Investigators, A. (2018). Identifying the etiology and pathophysiology underlying stunting and environmental enteropathy: Study protocol of the AFIRIBIOTA project. *BMC Pediatr*, 18(1), 236. https://doi.org/10.1186/s12887-018-1189-5

Yang, Y., Torchinsky, M. B., Gobert, M., Xiong, H., Xu, M., Linehan, J. L., ..., Littman, D. R. (2014). Focused specificity of intestinal TH17 cells towards commensal bacterial antigens. *Nature*, 510(7503), 152–156. https://doi.org/10.1038/nature13279

Yin, Y., Wang, Y., Zhu, L., Liu, W., Liao, N., Jiang, M., ..., Wang, X. (2013). Comparative analysis of the distribution of segmented filamentous bacteria in humans, mice and chickens. *ISME J*, 7(3), 615–621. https://doi.org/10.1038/ismej.2012.128

Zychlinsky, A., Prevost, M. C., & Sansonetti, P. J. (1992). *Shigella flexneri* induces apoptosis in infected macrophages. *Nature*, 358(6382), 167–169. https://doi.org/10.1038/358167a0

How to cite this article: Cerf-Bensussan N. Microbiology and immunology: An ideal partnership for a tango at the gut surface—A tribute to Philippe Sansonetti. *Cellular Microbiology*. 2019;21:e13097. https://doi.org/10.1111/cmi.13097