Determining Internal and External Indices for Chart Generation

Arturo Trujillo
CCL, UMIST, PO Box 88
Manchester M60 1QD, England
iat@ccl.umist.ac.uk

Abstract. This paper presents a compilation procedure which determines internal and external indices for signs in a unification based grammar to be used in improving the computational efficiency of lexicalist chart generation. The procedure takes as input a grammar and a set of feature paths indicating the position of semantic indices in a sign, and calculates the fixed-point of a set of equations derived from the grammar. The result is a set of independent constraints stating which indices in a sign can be bound to other signs within a complete sentence. Based on these constraints, two tests are formulated which constrain the search space during generation.

1 Introduction

One problem with the classical transfer approach to machine translation (MT) is that it involves complex transformations of syntactic and semantic structures from the source to the target language. These transformations can have intricate interactions with each other, making transfer modules difficult to reverse, debug and maintain. They can also make monolingual components more heavily dependent on the language pair at hand. Much of the complexity in transfer stems from the recursive nature of the syntactic and semantic frameworks normally used. However, recent work in formal semantics has found it expedient to minimize the recursive structure of semantic representations to efficiently encode certain types of ambiguity [Reyle, 1995]. Naturally, flat semantics mitigate many structural differences between natural languages and their application to MT readily follows (see [Copestake et al., 1995]). Unfortunately, simplicity in the transfer component comes at the cost of generation complexity for such representations since their lack of structure increases the non-determinism of most generation algorithms, just as lexical-only transfer increases the complexity of bag generation in Shake-and-Bake MT [Whitelock, 1994]. For this reason, several researchers have investigated the efficiency of generators whose input has a flat structure, be this in the form of lists of semantic predicates or of lexical elements. Such generators, of the chart, bag and lexicalist varieties, differ in many ways but the source of their complexity is the same: the search space grows factorially on the size of the input for many algorithms, since they are based on a modified chart parser which essentially attempts all permutations of the input. This is the issue addressed by the paper, taking chart generation as an instance of the problem.

2 Chart Generation

A chart generator [Kay, 1996] takes as input a flat semantic representation and, using a chart data structure, outputs the string corresponding to it. The unordered character of the semantic input permits such generators to be viewed as parsers for languages with completely free word
order: an active edge combines with an inactive edge only if the two edges have no semantic predicates in common; no other restrictions apply. This regime leads to the combinatorial explosion mentioned above.

2.1 Example

Consider the following flat semantic representation corresponding to the string John ran fast:

\[r : \text{run}(r), \text{past}(r), \text{fast}(r), \text{arg1}(r,j), \text{name}(j,\text{John}) \]

Here, \(r \) is the distinguished index for the expression. These predicates will unify with the semantic component of suitably defined lexical entries resulting in the agenda entries shown below:

Word	Cat	Semantics
John	np(j)	j : name(j,John)
ran	vp(r,j)	r : \text{run}(r), \text{arg1}(r,j), \text{past}(r)
fast	adv(r)	r : \text{fast}(r)

Items are then moved into the chart and their interactions considered. Moving \(\text{John} \) results in no interactions, since the chart is empty. Moving \(\text{ran} \) results in \(\text{John ran} \) assuming the rule:

\[s(x) \rightarrow \text{np}(x), \text{vp}(x,y) \]

This is a complete sentence, but it does not subsume all the semantic material from the input; it therefore remains in the chart but cannot constitute an output sentence. Next, \(\text{fast} \) is moved, adding in \(\text{ran fast} \) to the agenda and then to the chart, at which point \(\text{John ran fast} \) is built. Generation thus terminates. One of the main sources of inefficiency in chart generation is that a multitude of edges are constructed which either do not subsume the entire semantics of the input or which can never be part of the solution because they omit semantic material which only they could have subsumed. In the example, \(\text{John runs} \) is one such edge. The problem is that these edges, if left in the chart, will interact with other edges to form yet further edges which can never be part of the final result, but which cause the search space to explode.

2.2 Internal and External Indices

To overcome this inefficiency, it is necessary to discard edges which would make it impossible to incorporate all the input into an output sentence. Achieving this involves exploiting the fact that after an edge is constructed, only certain indices in its semantic predicates are accessible by other rules in the grammar. For example, treatments of English VPs (e.g. chased the cat) typically disallow modification of the object NP once the VP has been analysed; thus if cat received index \(c \), it is not possible to bind into this index. Intuitively, this means that modifying the VP cannot lead to modification of the object NP. Following Kay, indices not available outside a category (i.e. outside an inactive edge) are called internal indices, while those which are accessible are called external indices. When an inactive edge is constructed, all indices in predicates not subsumed by the edge must be i) different from the indices the edge subsumes, or ii) be external to it. This ensures that inactive edges subsume all predicates indexed by their internal indices. The objective of this paper is to present a general algorithm for determining which indices are internal and external to a category without requiring the explicit identification of such information by the grammar writer.
3 Overview of the Algorithm

Ideally, internal indices should be determined directly from the rules of a grammar. However, different grammar writers adopt different index binding strategies, making such identification by automatic on-line inspection of rules very difficult at best. The algorithm proposed here therefore automatically extracts information from a grammar off-line and uses it to determine whether an index is internal or external to a category. Based on this information, it is possible to identify those edges which are incomplete with respect to the input and which may consequently be eliminated from further consideration. The algorithm has been implemented and tested on a lexicaliser generator operating on a small unification-based grammar; a description of the test and further discussion of the issues involved is given in [Trujillo and Berry, 1990]. The algorithm takes as input a unification-based phrase structure (PS) grammar and a set of paths and outputs a set of constraints on pairs of signs indicating which indices in the two signs can be bound for some possible derivation tree. Principal among the techniques used are those for predictive parser compilation [Aho et al., 1966] adapted to unification-based grammars [Trujillo, 1994]. In addition, following standard practice in data flow analysis [Kennedy, 1981], a data structure is maintained tracing how variables (or in this case, indices) are modified (or in this case, bound) in a valid derivation.

3.1 Inner and Outer Domains

Two main phases, themselves analogous to the calculation of FIRST and FOLLOW sets for predictive parsers, constitute the bulk of the algorithm. The first phase determines the indices at the root of a tree which are bound to items at the leaves; this phase will be called the calculation of inner domains. The second phase uses inner domains to calculate outer domains, which indicate the indices in a sign which are bound to the indices of signs outside the sign's subtree. Thus, inner domains express the relationship between phrases with related semantic material within subtrees for which they are roots, while outer domains express the relationship between a phrase and outside phrases with which the phrase shares semantic material. Calculating both inner and outer domains requires the computation of the fixed-point of a set of equations derived from the grammar. The fixed-point of a function is the value of X which satisfies

\[f(X) = X \]

3.2 Grammar

We adopt the following definition of a unification grammar:

Definition 1 A grammar is a tuple \((N,T,P,S)\), where \(P\) is a set of productions \(\alpha \Rightarrow \beta\), where \(\alpha\) is a sign, \(\beta\) is a list of signs, \(N\) is the set of all \(\alpha\), \(T\) is the set of all signs appearing in \(\beta\) such that they unify with lexical entries, and \(S\) is the start sign.

The grammar must generate sequences of coherent predicates (i.e. the graph with arcs for predicates sharing indices is connected).

3.3 The Triple Data Structure

A basic data structure in the algorithm will be triples of the form \((Left \ Sign, \ Right \ Sign, \ Bindings)\), where \(\text{Bindings}\) is a set of pairs consisting of a path in \(Left \ Sign\) and a path in \(Right \ Sign\).
Sign such that the values at the end of each path are assumed to be token identical; Left Sign and Right Sign are phrasal or lexical signs. The following triple for example represents part of the inner domain of an NP:

(1) (NP[sem:arg1:X],Det[sem:arg1:Y], {<sem:arg1,sem:arg1>})

It indicates that in a complete parse, it is possible that index X be bound to index Y for these two signs. Triples of this form are used uniformly throughout to encode inner and outer domains and to represent the functions and equations for which a fixed-point needs to be found. The algorithm proper consists of three main components: general operations, inner domain compilation and outer domain compilation.

4 General Operations

4.1 Fixed-Point Iteration

This is the key function in the compilation process and it is used to solve systems of equations derived from the grammar. Each such system can be interpreted as a vector function [Rayward-Smith, 1983] with one side of the equations used to calculate a value which is then assigned to the other side. The fixed-point algorithm takes a function and an initial argument value (both expressed as sets) and returns, also as a set, the result of iteratively applying the function to successive values:

Fixed-point(Function, Argument) \rightarrow Set of triples

Result := \{
A-new := Argument
Repeat
\quad Temp := Function X A-new
\quad Result := Result \cup __ Temp
\quad A-new := Result \setminus Result \textit{(i.e. set difference)}
\quad Result := Result
\Until A-new := \{
Return Result
Two (overloaded) operators are used in this algorithm:

1. The crossproduct operator, \(X\), takes two sets, \(A\) and \(B\) and constructs the set \(\{a \times b \mid a \in A, b \in B\}\), where \(\times\) is a type dependent operation, defined as follows:
 - If \(a\) and \(b\) are triples of the form \((L_a, R_a, B_a)\) and \((L_b, R_b, B_b)\), then
 \[a \times b = (L_a, R_b, B_a \times B_b)\] if \(R_a \cap L_b\) (i.e. they unify) and \(B_a \times B_b \neq \{\}\)
 - If \(a\) and \(b\) are pairs of paths of the form \(<L_{pa}, R_{pa}>\) and \(<L_{pb}, R_{pb}>\), then
 \(a \times b = <L_{pa}, R_{pb}>\) if \(R_{pa}\) is equal to \(L_{pb}\).

For example, the following operations indicates that if a PP is in the outer domain of a VP, so is a preposition:

\[
\{ (VP[sem:arg1:X],PP[sem:arg1:Y],{<sem:arg1,sem:arg1>}) \}
X \{ (PP[sem:arg1:Y],P[sem:arg1:Z],{<sem:arg1,sem:arg1>}) \}
= \{ (VP[sem:arg1:X],P[sem:arg1:Z],{<sem:arg1,sem:arg1>}) \}
\]

2. The subsume-union operator, \(\sqcup\), takes two sets, \(A\) and \(B\) and calculates the set \(\sqcup\{a \sqcup b \mid a \in A, b \in B\}\), where \(\sqcup\) is a type dependent generalisation operator, defined as follows:
 - If \(a\) and \(b\) are triples of the form \((L_a, R_a, B_a)\) and \((L_b, R_b, B_b)\) then \(a \sqcup b\) is
* * (La, Ra, Bab), where Bab = Ba \cup \subseteq Bb, if Lb \subseteq La (i.e. La subsume Lb) and \Rb \subseteq Ra.
* * (Lb, Rb, Bab), where Bab = Ba \cup \subseteq Bb, if La \subseteq Lb and Ra \subseteq Rb.
* * (La, Ra, Bab), (Lb, Rb, Bab) \} otherwise.
- If a and b are pairs of paths of the form \langle Lpa, Rpa \rangle and \langle Lpb, Rpb \rangle, then a \cup b is
* * \langle Lpa, Rpa \rangle if Lpa is a prefix of path Lpb and Rpa is a prefix of path Rpb.
* * \langle Lpb, Rpb \rangle if Lpb is a prefix of path Lpa and Rpb is a prefix of path Rpa.
* * \langle Lpa, Rpa \rangle, \langle Lpb, Rpb \rangle \} otherwise.

For example, the fact that prepositions can modify the event of a VP and also its subject, leads to the following union:
\{ \{ \text{VP}[\text{sem}: \arg1:U, \arg2:V]],[\text{P}[\text{sem}: \arg1:W],[\{\text{sem}: \arg1, \text{sem}: \arg1\}] \} \}
\cup \{ \{ \text{VP}[\text{sem}: \arg1:X, \arg2:Y]],[\text{P}[\text{sem}: \arg1:Z],[\{\text{sem}: \arg2, \text{sem}: \arg1\}] \} \}
\equiv \{ \{ \text{VP}[\text{sem}: \arg1:U, \arg2:V]],[\text{P}[\text{sem}: \arg1:W],[\{\text{sem}: \arg2, \text{sem}: \arg1\}, \text{sem}: \arg1\}] \}
\}

4.2 Shared Indices

When constructing the equations for inner and outer domains from grammar rules, the index paths shared between categories in a rule need to be identified. A dedicated function achieves this:

\textit{Shared-Indices(Sign1, Sign2, Paths) \rightarrow \{ \langle p1, p2 \rangle | \text{Sign1.p1 is token identical with Sign2.p2, and p1 and p2 are both prefixes of elements in Paths} \}}

For example:
\textit{Shared-Indices(NP[sem: \arg1:X], Det[sem: \arg1:X], \{\text{sem}: \arg1, \text{sem}: \arg2\})}
\equiv \{\text{sem}: \arg1, \text{sem}: \arg1\}

5 Compiling Inner Domain

Computing inner domains proceeds by finding the fixed-point of inner domain equations derived from the grammar, represented as triples. For instance, triple 1) above would be one of the equations for the rule:

\[
\begin{align*}
\text{CAT} = \text{NP} \\
\text{SEM} = \emptyset
\end{align*}
\]

The triple would therefore indicate that the inner domain of an \textit{NP} includes the inner domain of a \textit{Det}. In the case of inner domains, the equations can also be interpreted as the initial value to be fed to \textit{Fixed-point}; that is, triple 1) can also be interpreted as saying that the inner domain of \textit{NP} includes \textit{Det}. Inner domain equations are built as follows:

\textit{Inner-Equations(Grammar) \rightarrow Set of triples}
\textit{Inner-Eq := \{} \}
\textit{For each rule A \rightarrow B_1 \ldots B_n \in Grammar}
\textit{Inner-Eq := Inner-Eq \cup \bigcup_{k=1 \ldots n} \{(A, B_k, \text{Shared-Indices}(A, B_k, \text{Paths}))\}}
\textit{Return Inner-Eq}

Here, \textit{Paths} is a theory specific set of index paths. The set of inner domains can now be defined as:

147
6 Compiling Outer Domains

Outer domains encode the bindings that may exist between a sign and any signs external to it in a valid derivation. The tree:

\[
\begin{array}{c}
S \\
| \quad \quad | \\
NP[sem:arg1:X] & VP[sem:arg2:X] \\
| \\
\quad \quad Vtra[sem:arg2:X] & NP \\
\end{array}
\]

would give rise to the following triple in the outer domain set:

\[(2) (NP[sem:arg1:X], Vtra[sem:arg2:Y], \{<sem:arg1, sem:arg2>\})\]

This states that Vtra is in the outer domain of NP because the X in the NP can be bound to Y in Vtra. Outer domain equations are calculated as follows:

- **Outer-Equations(Grammar) → Set of triples**
 - **Outer-Eq := {}**
 - For each rule \(A \rightarrow B_1...B_n \in Grammar \)
 - **Outer-Eq := Outer-Eq \cup \{\{B_k, A, Shared-Indices(B_k, A, Paths)\}\}_{k=1,n}**

Return **Outer-Eq**

Each triple in these equations states that the outer domain of a sign in a rule is the outer domain of its mother. The initial value for outer domains can be calculated from the grammar and the set of inner domains:

- **Initialise-Outer-Domains(Grammar) → Set of triples**
 - **Outer-Dom := {}**
 - For each rule \(A \rightarrow B_1...B_n \in Grammar \)
 - **Outer-Dom := Outer-Dom \cup \{\{B_j, B_k, Shared-Indices(B_j, B_k)\}\}_{1 \leq j, k \leq n, j \neq k}**

Return **Outer-Dom**

I.e. the outer domain of a category is the inner domain of all its sisters within a rule. Once initialised, the outer domains can be computed with:

- **Fixed-point(Outer-Equations(Grammar), Initialise-Outer-Domains(Grammar))**

7 Using Outer Domains

Once calculated, outer domains can be used in at least two ways for chart generation. Firstly, they can be used to determine the internal indices of an edge and thus identify predicates which may have been 'left out' (see Section 2.2). To compute the internal indices for each inactive
edge, the edge's external indices are subtracted from all the indices subsumed by it. External indices can be determined via outer domain triples through the use of the left sign and the bindings set. The following predicate implements the relevant test; it assumes that as edges are built, a record of the indices found amongst its predicates is kept and accumulated as more complex edges are built. The function returns true if an edge includes all the predicates indexed by its internal indices.

\[
\text{Internal-Validation}(\text{Inact-Edge}, \text{Remaining-Preds}, \text{Outer-Domain}) \rightarrow \text{Boolean}
\]

\[
\text{External-Indices} := \{\}
\]

For each triple \((\text{Inact-Edge}, _, \text{Binds}) \in \text{Outer-Domain}\)

For each pair \(<p, _> \in \text{Binds}\)

Add the index at the end of Inact-Edge:p to External-Indices

\[
\text{Internal-Indices} := \text{Inactive-Edge}.indices \rightarrow \text{External-Indices}
\]

Return false if there is a predicate in Remaining-Preds indexed by an element of Internal-Indices

Return true otherwise

For example, given the logical form for the dog saw the white cat:

\[(3) s : \text{def}(d), \text{dog}(d), \text{see}(s,d,c), \text{past}(a), \text{def}(c), \text{cat}(c), \text{white}(c)\]

the edge saw the cat would be discarded because there would be no triple in which the third argument index in a VP is bound to an index in any category. Thus, index c would be deemed internal to the VP, and, since predicate white(c) includes this index, the VP could not be part of an output sentence. One disadvantage of this test is that it takes no account of the category of the sign outside the inactive edge and therefore allows too many unnecessary edges. Thus, while saw the cat is eliminated, the edge the cat is still constructed because c will be an external index to the NP. The second test is designed to exploit the information in the outer domains to detect such edges. The following function returns true if the external indices in an inactive edge can indeed be bound to indices on external signs. The main idea is that any lexical items indexed by external indices must be licenced by at least one triple in the outer domain set.

\[
\text{External-Validation}(\text{Inact-Edge}, \text{Remaining-Preds}, \text{Outer-Domain}) \rightarrow \text{Boolean}
\]

For each \(\text{LesSign} \in \text{Remaining-Preds} \text{which includes an external index from Inact-Edge}\)

If there is no triple \((\text{Inact-Edge}, \text{LesSign}, \text{Binds}) \in \text{Outer-Domain}\) for which \(\text{Inact-Edge}:a = \text{LesSign}:b\) for at least one \(<a, b> \in \text{Binds}\) for all external indices in LesSign, then

Terminate the loop and return False

Return True

To disallow the cat when generating from (3), the outer domain set is scanned for a triple with NP as its left sign, Adj as its right sign and a pair of paths binding index c in Adj to the index in the NP; since no such triple would be present, Adj could not be incorporated into the semantics of a sentence including this NP. Therefore, the NP is discarded. During generation, a conjunction of both predicates needs to be satisfied before a newly constructed inactive edge can be added to the chart:

\[
\text{Internal-Validation}(\text{Inact-Edge}, \text{Remaining-Preds}, \text{Outer-Domain}) \land
\text{External-Validation}(\text{Inact-Edge}, \text{Remaining-Preds}, \text{Outer-Domain})
\]
8 Evaluation and Conclusion

The algorithm was implemented in Sicstus Prolog and used to compile the outer domains for a small unification-based grammar; the resulting outer domains were tested on a lexicalist chart generator [Trujillo and Berry, 1996]. The grammar handles adjectival and prepositional modification, both of which are common in real text. Relative clauses and gapping in general are not handled fully since they cause a larger number of indices to become external. On a small corpus of 10 sentences (average length = 9.8 words), use of internal and external validation reduced average generation time and final number of edges in the chart by 32% and 27% respectively. The best improvements were for the sentence the big brown dog with the fancy collar chased a little cat in the middle of the afternoon (221 secs to 39 secs; 852 edges to 272); the worst performance came from the man employed the woman (29 secs to 30 secs; 50 edges to 50 edges). While the algorithm is generally applicable to grammars with a strong PS component, further work is required to extract inner and outer domains from purely lexicalized grammars such as UCG or hybrids like HPSG. The fixed-point algorithm is general and by modifying the equations constructed, it can be used for compiling parsing tables for unification-based grammars [Trujillo, 1994].

Acknowledgements

Thanks to two anonymous reviewers and to John Carroll, Nicolas Nicolov and the staff and students at ITRI, University of Brighton, for useful comments.

References

[Aho et al., 1986] Aho, A. V., R. Sethi, and J. D. Ullman. 1986. Compilers: Principles, Techniques, and Tools. Addison Wesley, Reading, MA.
[Copestake et al., 1995] Copestake, A., D. Flickinger, R. Malouf, S. Riehemann, and I. Sag. 1995. Translation using minimal recursion semantics. In Proceedings of the Sixth International Conference on Theoretical and Methodological Issues in Machine Translation, pages 15–32, Leuven, Belgium.
[Kay, 1996] Kay, M. 1996. Chart generation. In 34th Annual Meeting of the Association for Computational Linguistics, pages 200–04, Santa Cruz, CA.
[Kennedy, 1981] Kennedy, Ken. 1981. A survey of data flow analysis techniques. In Muchnick, Steven S. and Neil D. Jones, editors. Program Flow Analysis: Theory and Applications. Software. Prentice-Hall, Englewood Cliffs, NJ, chapter 1, pages 5–54.
[Rayward-Smith, 1983] Rayward-Smith, V. J. 1983. A First Course in Formal Language Theory. Computer Science Texts. Blackwell Scientific Publications, Oxford, UK.
[Reyle, 1995] Reyle, Uwe. 1995. On reasoning with ambiguities. In Seventh Conference of the European Chapter of the Association for Computational Linguistics, pages 1–15, Dublin, Ireland.
[Trujillo, 1994] Trujillo, Arturo. 1994. Computing FIRST and FOLLOW functions for Feature-Theoretic grammars. In COLING-94 - The 15th International Conference on Computational Linguistics, pages 875–80, Kyoto, Japan.
[Trujillo and Berry, 1996] Trujillo, Arturo and Simon Berry. 1996. Connectivity in bag generation. In COLING-96 - The 16th International Conference in Computational Linguistics, pages 101–106, Copenhagen, Denmark.
[Whitecock, 1994] Whitecock, Pete. 1994. Shake-and-bake translation. In Rapp, C. J., M. A. Rosner, and R. L. Johnson, editors. Constraints, Language and Computation. Academic Press, London, pages 339–59.