Global Analysis of Fragmentation Functions for Protons and Charged Hadrons

Daniel de Florian† and Rodolfo Sassot‡
Departamento de Física, Universidad de Buenos Aires,
Ciudad Universitaria, Pab. 1 (1428) Buenos Aires, Argentina

Marco Stratmann¶
Radiation Laboratory, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan

We present new sets of fragmentation functions for protons and inclusive charged hadrons obtained in combined NLO QCD analyses of single-inclusive hadron production in electron-positron annihilation, proton-proton collisions, and deep-inelastic lepton-proton scattering. These analyses complement previous results for pion and kaon fragmentation functions with charge and flavor discrimination. The Lagrange multiplier technique is used to assess the uncertainties in the extraction of the new sets of fragmentation functions.

PACS numbers: 13.87.Fh, 13.85.Ni, 12.38.Bx

I. INTRODUCTION

Single-inclusive hadron production is the most appropriate and powerful benchmark for challenging altogether our understanding of the partonic structure of nucleons, the dynamics of hard Quantum Chromodynamics (QCD) interactions, the validity of QCD factorization, and the way in which quarks and gluons produce the detected final-state hadrons. The last few years have witnessed a remarkable improvement in both precision and variety for this kind of measurements, which are expected to continue yielding crucial pieces of information in the future.

In a recent article [1], we have demonstrated the feasibility of performing a next-to-leading order (NLO) combined QCD analysis of single-inclusive pion and kaon production data, coming from electron-positron annihilation, semi-inclusive deep-inelastic lepton-nucleon scattering (SIDIS), and proton-proton collisions, collected over a wide kinematic range. The analysis not only allowed a very good global description of all these processes, but provided also accurate parametrizations for the parton-to-pion and parton-to-kaon fragmentation functions, which encode the details of the non-perturbative hadronization process relevant for the perturbative QCD (pQCD) framework based on the factorization theorem.

In the following, we extend the analysis of Ref. [1] first to the case of single-inclusive proton and anti-proton production, again including not only the electron-positron annihilation data [2, 3, 4, 5, 6], used in all previous fits [7, 8, 9], but, for the first time, also the very precise data recently obtained in proton-proton collisions at RHIC [10], where final state protons and anti-protons are discriminated.

Next, after having obtained reliable fragmentation functions for the three lightest and most copiously produced charged hadron species, pions and kaons from Ref. [1] and (anti-)protons, we analyze inclusive, i.e., unidentified, charged hadron yields obtained in electron-positron annihilation [2, 3, 4, 5, 6, 7, 8, 9, 11, 12, 13, 14], proton-(anti-)proton collisions [15, 16, 17], and SIDIS [18]. Here we are aiming at an extraction of the contribution from the “residual” charged hadrons other than pions, kaons, and (anti-)protons, to the inclusive charged hadron fragmentation functions.

Only from a global QCD analysis we can obtain individual quark and anti-quark fragmentation functions for unidentified positively or negatively charged hadrons without having to make assumptions on the relation between favored (valence-type) and unfavored (sea-type) contributions. Such assumptions have been shown to be often not adequate for reproducing presently available single-inclusive hadron production yields beyond those obtained in electron-positron annihilation [1]. In addition, data from proton-(anti-)proton collisions are crucial for reducing the uncertainties in the gluon-to-hadron fragmentation function since scaling violations of e^+e^- data are not much of a constraint due to the lack of precision data at more than one value of the center-of-mass system (c.m.s.) energy \sqrt{s}. Both resulting new sets of NLO fragmentation functions reproduce with remarkable accuracy the data available and hence complement consistently our previous studies for pions and kaons.

Previously available sets of inclusive charged hadron fragmentation functions are all based on fits to e^+e^- data only and either sum up the results obtained for pions, kaons, and (anti-)protons, ignoring possible contributions from heavier charged hadrons [7, 8] or the residual hadron contribution already includes protons and anti-protons [9]. The analysis of Ref. [20] provides only fragmentation functions for unidentified charged hadrons, again based on e^+e^- data only, however, an attempt was made to further constrain the gluon fragmentation function by comparing to one of the many data sets from proton-(anti-)proton collisions.
In the next section, we briefly highlight the main features of the present analysis, specifically discussing our choice of parametrizations for the proton and the residual charged hadron fragmentation functions and emphasizing the charge conjugation and flavor symmetry assumptions we still have to make. In Section III we present our results for both NLO fits, and assess the uncertainties involved with the help of the Lagrange multiplier technique. In Sec. IV we summarize our main results. For completeness, the Appendix contains the results of the global analyses performed at leading order (LO) accuracy, which compares significantly less favorable to data than our NLO fits.

II. OUTLINE

In the present analysis we work in the well established framework of pQCD for single-inclusive hadron production processes at NLO accuracy, thoroughly discussed and implemented in Ref. [1]. We make an extensive use of the Mellin transform technique [2] developed for a fast computation of the exact NLO cross sections in each step of a global χ^2 minimization procedure. We refer the reader to [1] and references therein for further technical details on the general QCD framework and the assessment of uncertainties in global fits with the help of Lagrange multipliers. The analysis proceeds in two stages, the first dedicated to the extraction of the parton-to-proton fragmentation functions, followed by the determination of inclusive charged hadron fragmentation functions in the second.

A. Proton fragmentation functions

In the first step of our global analysis we aim to determine individual fragmentation functions D_i^H for quarks and anti-quarks of all flavors i as well as for gluons into either protons ($H = p$) or anti-protons ($H = \bar{p}$). At variance with previous analyses [7,8,9], the use of data that discriminate between p and \bar{p} in the final-state, allows us to extract fragmentation functions for either particle. As explained in Ref. [1], in order to have the flexibility required by charge separated distributions and to accommodate the additional data, we adopt a somewhat more versatile functional form for the input distributions at scale μ_0 than in [7,8,9]

$$D_i^H(z, \mu_0) = \frac{N_i z^{\alpha_i} (1 - z)^{\delta_i} [1 + \gamma_i (1 - z)^{\delta_i}]}{B[2 + \alpha_i, \beta_i + 1] + \gamma_i B[2 + \alpha_i, \beta_i + \delta_i + 1]},$$

where $B[a,b]$ represents the Euler beta function and N_i is normalized such to represent the contribution of D_i^H to the second moment $\int_0^1 dz z^2 D_i^H(z, \mu_0)$ entering the energy-momentum sum rule. z denotes the fraction of the fragmenting parton’s energy taken by the produced hadron H. As in [1], the initial scale μ_0 in Eq. (1) for the Q^2-evolution is taken to be $\mu_0 = 1$ GeV for the light u, d, s partons and the quark masses for the heavier ones.

The parameters describing the fragmentation functions $D_i^H(z, \mu_0)$ in Eq. (1) are determined by a standard χ^2 minimization for K data points, where

$$\chi^2 = \sum_{j=1}^K \frac{(T_j - E_j)^2}{\delta E_j^2},$$

E_j is the measured value of a given observable, δE_j the error associated with this measurement, and T_j is the corresponding theoretical estimate for a given set of parameters in (1). Since the full error correlation matrices are not available for most of the data entering the global analysis, we take the statistical and systematical errors in quadrature in δE_j.

In order to reduce the number of parameters in (1) to those that can be effectively constrained by the data, we impose, as usual, certain relations among the individual fragmentation functions. We have checked in each case that relaxing these assumptions indeed does not significantly improve the total χ^2 of the fit to warrant any additional parameters. In detail, for the fragmentation of light quark flavors to a proton we assume the same shape for up and down quarks and for up and down anti-quarks with the same z-independent normalization ratios N_i, i.e.,

$$D_u^p = N D_u^0 \quad \text{and} \quad D_{\bar{u}}^p = N D_{\bar{u}}^0.$$ \hspace{1cm} (3)

The relation between quark and anti-quark fragmentation functions for u and d flavors is determined by the global fit through

$$2 D_{\bar{q}}^p = (1 - z)^{\beta} D_q^{p+q}, \hspace{1cm} (4)$$

with β constrained to be positive. For strange quarks it is assumed that

$$D_s^p = D_s^0 = N' D_u^p, \hspace{1cm} (5)$$

with the SU(3)-breaking parameter N' independent of z. For charm, bottom, and gluon-to-proton fragmentation we find no improvement in the total χ^2 for $\gamma_i \neq 0$ in (1), hence we set $\gamma_i = 0$.

To obtain the corresponding fragmentation functions D_q^0 for anti-protons we assume charge conjugation symmetry, i.e.,

$$D_q^0 = D_{\bar{q}}^p, \hspace{1cm} (6)$$

leaving in total 17 free parameters to be determined by the global fit.

B. Charged hadron fragmentation functions

The fragmentation functions D_i^H for unidentified positively charged hadrons ($H = h^+$) are defined by

$$D_i^{h^+} = D_i^{+} + D_i^{K^+} + D_i^{p} + D_i^{\pi^+}, \hspace{1cm} (7)$$
where $D_i^{\pi^+}$ and $D_i^{K^+}$ were already determined in Ref. [1]. $D_i^{\pi^+}$ denotes the residual contribution of positively charged hadrons other than pions, kaons, and protons to the inclusive sum D_i^{p+}. A definition analogous to Eq. (7) is used for the fragmentation $D_i^{h^-}$ into negatively charged hadrons.

Since pions are much more copiously produced than heavier kaons and protons are even less abundant, it is natural to expect that Eq. (7) is strongly dominated by $D_i^{\pi^+} + D_i^{K^+} + D_i^p$ leaving $D_i^{\pi^+}$ to be small. Nevertheless it is an important consistency check to extract a small but non-vanishing $D_i^{\pi^+}$ (and $D_i^{\pi^-}$) from data to actually confirm this hierarchy. If the global fit would require, for instance, a large or even a negative residual contribution, the usefulness of the previously extracted fragmentation functions for light hadrons would be in jeopardy.

For $D_i^{\pi^+}$ it turns out that the data are most economically described by assuming full SU(3) flavor symmetry for both quarks and anti-quarks

$$D_i^{\pi^+} = D_i^{\bar{q}^+} = D_i^{res^+}$$

and

$$D_i^{\bar{q}^+} = D_i^{\bar{d}^+} = D_i^{res^+},$$

respectively, in the ansatz (1). Again,

$$2D_i^{\pi^+} = (1 - z)^{\beta} D_i^{\pi^+}$$

and for $D_i^{res^+}$ we set $\gamma_{c,b} = 0$ in (1), however, $D_i^{res^+}$ has a preference for $\gamma_g \neq 0$. For $D_i^{res^+}$ we assume charge conjugation symmetry, i.e.,

$$D_i^{\bar{q}^+} = D_i^{\bar{q}^-},$$

leaving in total 18 free parameters to be fitted here.

We note that the Q^2-dependence for all fragmentation functions is computed with the appropriate NLO evolution equations as explained in detail in Ref. [1]. Uncertainties in the extraction of the parameters in Eq. (1) will be assessed with the help of the Lagrange multiplier technique as described again in [1] and references therein.

III. RESULTS OF THE GLOBAL ANALYSES

In this section we discuss in detail the results of our global analyses of fragmentation functions [31] for protons and residual charged hadrons as outlined above. We present the parameters of the optimum fits describing the NLO D_i^{p,π^+} at the input scale μ_0 and compare to all data sets used in the analyses, including individual χ^2 values. Detailed comparisons are made with previous fits based exclusively on the available electron-positron annihilation data in Refs. [8], [9], and [19], in the following labeled as AKK, HKNS, and KRE, respectively.

A. NLO analysis of proton fragmentation functions

Three different processes allow the extraction of the (anti-)proton fragmentation functions in our global analysis. First of all, we have the “standard” electron-positron annihilation data [2, 3, 4, 5] customarily included also in most of the previous analyses [4, 5]. A characteristic feature of e^+e^- annihilation data in general is that they only provide information on a certain hadron species summed over the charges, i.e., in this case on the sum of protons and anti-protons. Besides the fully inclusive measurements, SLD [5] and DELPHI [9] also give results for “flavor enriched” cross sections, distinguishing between the sum of light u, d, s quarks, charm, and bottom events. The quark flavor is determined from Monte-Carlo simulations and refers to the primary $q\bar{q}$ pair created by the intermediate Z-boson or photon. Such results have to be taken with a grain of salt as they cannot be unambiguously interpreted and calculated in pQCD. Nevertheless, in our analysis of pion and kaon data [1] we always found good agreement between data and theory.

In Fig. I we provide a detailed comparison in terms of “(data-theory)/theory” between all the e^+e^- data sets included in the analysis and our NLO results. The best agreement is found for ALEPH and DELPHI inclusive measurements, although SLD and TPC, as well as flavor tagged data sets, also agree well with the fit within the fairly large experimental uncertainties. The fluctuations in the data are significantly larger than in the case of pions, but roughly comparable to those found for kaons, see Ref. [1]. Other recent fits [8, 9] also reproduce the data shown in Fig. I quite well within the experimental uncertainties. Since the current e^+e^- data basically only constrain the total singlet fragmentation function $D_i^{p\pi^+}$ at scale M_Z, all sets differ considerably in their individual flavor content as we shall see below.

We wish to recall that the range of applicability for fragmentation functions is severely limited to medium-to-large values of z, see, e.g., Ref. [1]. In order to avoid the potentially problematic low-z region, we exclude from the fit all data with energy fractions lower than $z_{min} = 0.1$. The extrapolation of our fit, however, reproduces the trend of the data reasonably well also below z_{min} as indicated in Fig. I.

The second key ingredient in our global analysis are the single-inclusive hadron production data from proton-proton collisions at BNL-RHIC taken by STAR [10] at mid-rapidity $|y| < 0.5$ and shown in Fig. 2. These data discriminate final-state protons from anti-protons and hence, in principle, allow to separate quark-to-proton and anti-quark-to-proton fragmentation functions in the fit. However, at the presently accessible range of transverse momenta p_T and at mid-rapidities the production of single-inclusive hadrons is mainly driven by gluon-induced processes and fragmentation, turning these data into the best constraint on the gluon fragmentation function D_g^p at large values of z currently available. Figure
FIG. 1: "(data-theory)/theory" comparison of our NLO results for the electron-positron annihilation cross section into protons and anti-protons with the data sets used in the fit, see also Tab. II.

FIG. 2: Upper panels: comparison of our NLO results (solid lines) for single-inclusive proton (anti-proton) production \(pp \to p(\bar{p})X \) at \(\sqrt{s} = 200 \text{ GeV} \) with STAR data [10] at mid-rapidity \(|y| < 0.5 \) using \(\mu_f = \mu_r = p_T \). Also shown are the results obtained with the HKNS [9] parametrization. The shaded bands indicate theoretical uncertainties when all scales are varied in the range \(p_T/2 \leq \mu_f = \mu_r \leq 2p_T \). Lower panels: "(data-theory)/theory" for our NLO results.
uncertainty to the η^p data in the χ^2 minimization. The agreement between OPAL data and theory is reasonably good.

Tables II and III show the values obtained for the parameters in Eq. (1) specifying the optimum fit of proton fragmentation functions $D^p_i(z, \mu_0)$ at NLO accuracy and summarize the χ^2 values for each individual set of data included in the global analysis, respectively. In cases where the normalization uncertainty of the experiment is not included in the error bars of the data, we apply a free normalization factor constrained to vary within range quoted by the experiment. The values of the normalization factors resulting from the fit are also included in Tab. II.

Finally, a third source of information on the parton-to-proton transition is provided by the OPAL “tagging probabilities” η_i^p, also included in the AKK fit \[8\] but not in \[9\], which are sensitive to the flavor of $q + \bar{q}$ fragmentation functions. The $\eta_i^p(x_p)$ represent “probabilities” for a quark flavor i to produce a “jet” containing the (anti-)proton with a momentum fraction z larger than x_p. Figure 3 compares the results from our and the AKK fit with the data. As discussed at length in Ref. \[1\] and also mentioned in the discussion of the flavor tagged SLD and DELPHI data above, any flavor tagged information is highly model dependent and difficult to interpret within pQCD beyond the LO approximation involve non trivial theoretical uncertainties. To take this into account, we assign an up to 10% extra normalization uncertainty to the η^p data in the χ^2 minimization.
TABLE I: Parameters describing the NLO fragmentation functions for protons, \(D_i^p(z, \mu_0) \), in Eq. (11) at the input scale \(\mu_0 = 1 \text{ GeV} \). Inputs for the charm and bottom fragmentation functions refer to \(\mu_0 = m_c = 1.43 \text{ GeV} \) and \(\mu_0 = m_b = 4.3 \text{ GeV} \), respectively.

flavor \(i \)	\(N_i \)	\(\alpha_i \)	\(\beta_i \)	\(\gamma_i \)	\(\delta_i \)
\(u + \bar{u} \)	0.091	-0.222	1.414	15.0	3.29
\(d + \bar{d} \)	0.058	-0.222	1.414	15.0	3.29
\(s + \bar{s} \)	0.034	-0.222	2.024	15.0	3.29
\(c + \bar{c} \)	0.022	-0.222	2.024	15.0	3.29
\(g \)	0.034	0.022	2.024	15.0	3.29
\(b + \bar{b} \)	0.076	-0.899	5.920	0.0	0.00
\(g \)	0.007	6.000	1.200	0.0	0.00

TABLE II: Data used in the NLO global analysis of proton fragmentation functions, the individual \(\chi^2 \) values for each set, the fitted normalizations, and the total \(\chi^2 \) of the fit.

experiment	data type	rel. norm.	data points	\(\chi^2 \)
TPC [2]	incl.	1.06	12	7.7
SLD [3]	incl.	0.983	18	12.0
"uds tag"	incl.	0.983	9	10.5
"c tag"	incl.	0.983	9	9.8
"b tag"	incl.	0.983	9	8.9
ALEPH [4]	incl.	0.97	13	11.5
DELPHI [5]	incl.	1.0	12	3.9
"uds tag"	incl.	1.0	12	0.6
"c tag"	incl.	1.10	5	7.6
"b tag"	incl.	1.10	5	13.5
OPAL [6]	"p tag"	1.10	5	5.0
"s tag"	incl.	1.10	5	5.0
"c tag"	incl.	1.10	5	4.9
"b tag"	incl.	1.10	5	5.5
STAR [10]	\(p \)	0.95	14	35.4
\(\bar{p} \)	0.95	14	26.0	

TOTAL: 159 171.9

FIG. 5: Profiles of \(\chi^2 \) for the NLO proton fragmentation fit as a function of the truncated second moments \(\eta_i^p(x_p = 0.2, Q^2 = 25 \text{ GeV}^2) \) for different flavors. The moments are normalized to the value \(\eta_i^p \) they take in the best fit to data. The value \(\chi^2 \) is closer to 10%. The rather stringent constraint for bottom comes from the availability of DELPHI and SLD flavor tagged data, while for charm only SLD data with much larger errors are available. Note that neither charm nor bottom fragmentation play any role in the description of the STAR data due to the relatively low scales of \(\mathcal{O}(p_T) \) involved. For the gluon fragmentation function \(D_g^p \), the STAR data make the difference. We wish to stress that compared to pions and kaons, the parton-to-proton fragmentation functions \(D_i^p \) are much less constrained at the moment. This is also reflected in the stronger assumptions, Eqs. (4)-[5], which have to be imposed on the fit in order to be able to determine all parameters. In particular the lack of (anti-)proton production data from SIDIS prevent a more reliable separation of favored and unfavored fragmentation functions. Also the gluon fragmentation is currently mainly determined from a single set of data (STAR). Here, possible future high precision data from B-factories would open up the possibility for studies of scaling violations in \(e^+e^- \) annihilation, which should help to further constrain \(D_g^p \).

B. NLO analysis of charged hadrons fragmentation functions

As outlined in Sec. III B rather than extracting fragmentation functions for inclusive charged hadrons from scratch, we take advantage of the knowledge already acquired on pion, kaon, and proton fragmentation functions. In the following, we isolate and determine the
FIG. 6: Left-hand side: comparison of our NLO results for the electron-positron annihilation cross section into inclusive charged hadrons with the data sets used in the fit, see Tab. IV. Right-hand side: (data-theory)/theory for our NLO results for each of the data sets.

FIG. 7: Same as in Fig. 6 but now for light (“uds”) and heavy quark (“c,b”) tagged cross sections.
contributions coming just from residual charged hadrons D_{i}^{res} as defined in Eq. (7). In this way, there is no need to make assumptions on the relations between the inclusive charged hadron fragmentation functions – necessary for fitting purposes – which may hold for one of the most abundant hadron species like pions, but not necessarily for the others. Factoring out the contributions from charged pion, kaon, and (anti-)proton fragmentation functions, we are left with a comparatively small residual contribution D_{i}^{res}, whose flavor symmetry assumptions, see Sec. III B, have very little impact on the inclusive charged hadron fragmentation functions and the quality and reliability of the fit.

We begin by discussing the remarkable measurements of single-inclusive charged hadron production in $e^{+}e^{-}$ annihilation, collected by a variety of experiments [2, 3, 4, 5, 11, 12]. Figures 6 and 7 show detailed comparisons between the available data and the results of adding the already known pion, kaon, and proton fragmentation functions to the outcome of the fit for the residual hadron contributions D_{i}^{res}.

Tables III and IV show the values obtained for the parameters in Eq. (1) specifying the optimum fit of residual charged hadron fragmentation functions $D_{i}^{res}(z, \mu_{0})$ at NLO accuracy and summarize the χ^2 values for each individual set of data included in the fit, respectively. As in Tab. II, for each set of data, values of the normalization factors resulting from the fit and constrained to vary within range quoted by experiment, are also given in Tab. IV.

All data sets shown in Figs. 6 and 7 are very well reproduced by our new fit, again closely following the trend of the data again also below $z_{min} = 0.1$. This is most apparent in the (data-theory)/theory comparisons. The impressive quality of the fit serves as an important cross-check of the consistency of entire fitting procedure for all hadron species since the main contributions to the inclusive charged hadron cross sections, a non-vanishing $O(\alpha_{s})$ gluon coefficient function is already present at LO. For our NLO fits of the longitudinal cross section, we include the $O(\alpha_{s}^{2})$ coefficient functions [24]. In Fig. 8 we compare the result from the NLO global analysis for the longitudinal inclusive total cross sections, a non-vanishing $O(\alpha_{s})$ gluon coefficient function is already present at LO. For our NLO fits of the longitudinal cross section, we include the $O(\alpha_{s}^{2})$ coefficient functions [24].

flavor i	N_{i}	α_{i}	β_{i}	γ_{i}	δ_{i}
$u + \bar{u}$	0.0038	10.000	1.20	0.0003	18.51
\bar{u}	0.0001	10.000	21.20	0.0003	18.51
$c + \bar{c}$	0.0752	0.406	3.91	0.0000	0.00
$b + \bar{b}$	0.0936	-0.150	3.61	0.0000	0.00
g	0.0001	-0.497	9.99	20.000	14.75

We begin by discussing the remarkable measurements of single-inclusive charged hadron production in $e^{+}e^{-}$ annihilation, collected by a variety of experiments [2, 3, 4, 5, 11, 12]. Figures 6 and 7 show detailed comparisons between the available data and the results of adding the already known pion, kaon, and proton fragmentation functions to the outcome of the fit for the residual hadron contributions D_{i}^{res}.

Tables III and IV show the values obtained for the parameters in Eq. (1) specifying the optimum fit of residual charged hadron fragmentation functions $D_{i}^{res}(z, \mu_{0})$ at NLO accuracy and summarize the χ^2 values for each individual set of data included in the fit, respectively. As in Tab. II, for each set of data, values of the normalization factors resulting from the fit and constrained to vary within range quoted by experiment, are also given in Tab. IV.

All data sets shown in Figs. 6 and 7 are very well reproduced by our new fit, again closely following the trend of the data again also below $z_{min} = 0.1$. This is most apparent in the (data-theory)/theory comparisons. The impressive quality of the fit serves as an important cross-check of the consistency of entire fitting procedure for all hadron species since the main contributions to the inclusive charged hadron cross sections, a non-vanishing $O(\alpha_{s})$ gluon coefficient function is already present at LO. For our NLO fits of the longitudinal cross section, we include the $O(\alpha_{s}^{2})$ coefficient functions [24]. In Fig. 8 we compare the result from the NLO global analysis for the longitudinal inclusive total cross sections, a non-vanishing $O(\alpha_{s})$ gluon coefficient function is already present at LO. For our NLO fits of the longitudinal cross section, we include the $O(\alpha_{s}^{2})$ coefficient functions [24].

experiment	data type	rel. norm.	data points	χ^2
TPC [2]	incl.	1.027	17	1.7
SLD [3]	incl.	1.006	21	13.2
ALEPH [4]	incl.	1.027	27	27.0
DELPHI [5]	incl.	1.0	12	6.8
TASSO [11]	incl. (44 GeV)	1.0	14	11.5
OPAL [12]	incl.	1.0	12	5.7
ALEPH [4]	long. incl.	1.0	11	1.8
OPAL [13]	long. incl.	1.0	12	3.3
DELPHI [14]	long. incl.	1.0	12	35.1
EMC [18]	h^{+}	0.987	98	99.1
	h^{-}	0.987	99	156.8
CDF [15]	630 GeV	1.1	16	103.4
	1.8 TeV	1.1	37	112.7
UA1 [16]	200 GeV	1.1	31	111.5
	500 GeV	1.1	32	44.5
	630 GeV	1.1	41	214.2
	900 GeV	1.1	44	118.1
UA2 [17]	540 GeV	1.1	27	89.3

TOTAL: 661 1227.6
FIG. 8: Same as in Figs. 6 and 7 but now for the longitudinal cross sections.

FIG. 9: Comparison of our NLO results (solid lines) for the positively and negatively charged hadron multiplicities in SIDIS, \((1/N_{\text{DIS}})dN^{h\pm}/dzdQ^2\), with data from EMC [18] for different bins in \(z\). Upper, middle and lower panels correspond to beam energies of 120, 200, and 280 GeV, respectively. Also shown are the results obtained with the KRE [19] parameterization (dashed lines).
The shaded bands indicate theoretical uncertainties when all scales are varied in the range covered. Also shown are the results obtained with the AKK \cite{8} parametrization including only pions, kaons, and (anti-)protons.

FIG. 10: Upper panels: comparison of our NLO results for single-inclusive charged hadron production data, the statistical precision is not really impressive, in LEP data \cite{4,13,14}. With the exception of the ALEPH data, the statistical precision is not really impressive, in particular, in the fitted region \(z > z_{\text{min}} \), but all data are reasonably well described by the fit.

Data on charged pion and kaon multiplicities in SIDIS have provided valuable information on scale dependence and the charge and flavor separation of the corresponding fragmentation functions in our previous analysis \cite{1}. For inclusive charged hadrons, the data collected by EMC \cite{18} cover a rather large kinematic region with very narrow \(Q^2 \)-bins, what makes it particularly suitable for a QCD fit. As expected, these data prove to be very valuable in our global analysis here. Figure \ref{fig:10} shows the outcome of the fits compared to the EMC multiplicities for positively and negatively charged hadrons covering all beam energies of 120, 200, and 280 GeV. The good precision of the data over the entire \(z \) range helps to further constrain the high \(z \) behavior of the quark and anti-quark fragmentation functions. An interesting thing to notice is that even though the KRE sets for pions and kaons overestimate the corresponding SIDIS multiplicities as demonstrated in \cite{1}, this effect is somehow compensated for in the charged hadron multiplicities shown in Fig. \ref{fig:10} at the expense of comparatively small residual fragmentation functions. In order to account for the error introduced by the finite size of the bins in \(z \) and \(Q^2 \), as well as the uncertainties introduced by the use of the pion, kaon, and proton fragmentation functions, we include an additional 10% theoretical uncertainty in the \(\chi^2 \) minimization. There is also an additional 11% experimental normalization uncertainty \cite{18} not included in the error bars shown in Fig. \ref{fig:9}.

The final ingredient to our global analysis of fragmentation functions \(D_{h}^{\mu} \) for unidentified charged hadrons are single-inclusive hadroproduction data from \(p\bar{p} \) collisions measured by the UA1 \cite{10} and UA2 \cite{17} collaborations at CERN, and by the CDF collaboration \cite{15} at Fermilab’s Tevatron. We have not included proton-proton collision data from fixed target experiments, since the validity of fixed order calculations in pQCD at lower energies is seriously in doubt \cite{25}. The data span a range of c.m.s. energies \(\sqrt{s} \) from 200 GeV to 1.8 TeV but do not discriminate different hadron charges. Due to the dominance of gluon-induced processes at the available small-to-medium values of the hadron’s \(p_T \), they mainly probe the gluon fragmentation function \(D_{g}^{\mu} \). To give an example, in the case of UA1 at \(\sqrt{s} = 630 \) GeV, where the available data cover the largest range of transverse momenta \(p_T \) from 1 GeV to 22 GeV, in which the gluonic contribution decreases from around 90% in the lowest \(p_T \) bin to a sizable 40% at the highest transverse momentum. Figures \ref{fig:10} and \ref{fig:11} show the comparisons between the results of our NLO fits to the single-inclusive cross sections and the experimen-
Fig. 12 is the only slightly broken flavor democracy for functions (Fig. 4). Served for the pion, kaon \([1]\), and proton fragmentation the gluon fragmentation \(D_g\) become larger towards \(z\) charge and flavor separation, for instance, in contribution \(A\), we find again good agreement in the total singlet fragmentation functions. Compared to sets of KRE and AKK \([8]\). Recall that in the AKK analysis the relatively large theoretical scale ambiguities, indicated by the shaded bands, which refer to varying the factorization and renormalization scales simultaneously in the range \(\mu_f = \mu_r \lesssim 2p_T\), the overall agreement between theory and data is reassuringly good. The obtained gluon fragmentation functions into charged pions, kaons, and (anti-)protons, which dominate the single-inclusive cross sections shown in Figs. 10 and 11, are consistent with data, and the residual contribution \(D_{g}^{\text{res}}\) is very small. Again, we include a 5\% theoretical error due to the choice of the scale in the \(\chi^2\) minimization and another 5\% associated with the propagation of the uncertainties of pion, kaon, and proton fragmentation functions.

The resulting fragmentation functions for positively charged hadrons \(D_i^{h^+}\), evolved to the scale \(M_Z\), are shown in Fig. 12 and compared to the distributions of KRE \([10]\) and AKK \([8]\). Recall that in the AKK analysis \(D_i^{h^+}\) is approximated by the sum of pion, kaon, and proton fragmentation functions. Compared to sets of KRE and AKK, we find again good agreement in the total singlet contribution \(D_i^{\Sigma}\), but some noticeable differences in the charge and flavor separation, for instance, in \(D_i^{h^+}\), and in the gluon fragmentation \(D_g^{h^+}\). In general, the differences become larger towards \(z \to 1\), which has been already observed for the pion, kaon \([1]\), and proton fragmentation functions (Fig. 4).

One striking feature of the distributions shown in Fig. 12 is the only slightly broken flavor democracy for \(q + \bar{q}\) fragmentation functions into charged hadrons. To understand this better, the partial contributions of pions, kaons, and protons to the charged hadron fragmentation functions as a function of \(z\) at \(Q^2 = M_Z^2\).
charged hadron fragmentation functions $D_i^{x \pm}$ are rather large, exceeding even 200% within a conservative 2% increase $\Delta \chi^2$ in the total χ^2 of the fit, the effect on $D_i^{h^+}$ is fairly small and amounts to less than about 2%. This is readily explained by the relative smallness of the residual charged hadron contribution to the sum in Eq. (12). The best constrained residual densities are those for charm and bottom, which are also the most significant ones in absolute size, although almost innocuous for SIDIS and $p\bar{p}$ data. In Fig. 14 we show the χ^2-profiles of the global fit as a function of the range of variation of the truncated second moments $\eta_i^{x \pm} (x_p = 0.2, Q^2 = 50 \text{GeV}^2)$ for different flavors. The moments are normalized to the value $\eta_i^{0 \pm}$ they take in the best fit to data. The upper horizontal scales show variations relative to the change in the moments of the total charged hadron fragmentation functions $\eta_i^{h^+}$.

IV. CONCLUSIONS

By extending our previous global analyses for pions and kaons to the case of (anti-)protons and unidentified charged hadrons, we have completed a comprehensive study of single-inclusive hadron production within pQCD at NLO accuracy. Specifically, we have demonstrated that the pQCD framework based on factorized cross sections can consistently account for a large variety of processes with hadrons in the final-state with remarkable precision, producing at the same time accurate and universal sets of fragmentation functions. The availability of these crucial non-perturbative inputs now opens a wide range of possibilities for detailed studies of the nu-

flavor i	N_i	α_i	β_i	γ_i	δ_i
$u + \overline{u}$	0.094	0.041	1.485	15.0	3.44
$d + \overline{d}$	0.059	0.041	1.485	15.0	3.44
\overline{u}	0.036	0.041	1.998	15.0	3.44
\overline{d}	0.022	0.041	1.998	15.0	3.44
$s + \overline{s}$	0.045	0.041	1.998	15.0	3.44
$c + \overline{c}$	0.079	-0.887	5.436	0.0	0.00
$b + \overline{b}$	0.047	0.103	10.00	0.0	0.00
g	0.029	6.000	1.200	0.0	0.000

| TABLE VII: Same as in Tab. II but now at LO accuracy. |

experiment	type	data points	data points	χ^2
TPC [2] incl.	1.043	12	7.5	
SLD [3] incl.	0.983	18	11.8	
"uds tag"	0.983	9	10.7	
"c tag"	0.983	9	9.6	
"b tag"	0.983	9	9.3	
ALEPH [4] incl.	0.97	13	11.6	
DELPHI [5] incl.	1.0	12	3.9	
"uds tag"	1.0	12	0.7	
"b tag"	1.0	12	9.0	
OPAL [6] "u tag"	1.10	5	7.8	
"d tag"	1.10	5	12.8	
"s tag"	1.10	5	5.4	
"c tag"	1.10	5	5.0	
"b tag"	1.10	5	5.7	
STAR [10] p	0.95	14	42.9	
\overline{p}	0.95	14	32.4	

| TOTAL: | 159 | 186.1 |
TABLE VIII: Same as in Tab. IV but now at LO accuracy.

experiment	data type	rel. norm. data points	χ² type in fit	fitted
TPC [2]	incl.	1.041	17	7.7
SLD [3]	incl.	1.014	21	63.0
ALEPH [4]	incl.	1.013	27	46.4
DELPHI [5]	incl.	1.0	12	12.2
	“uds tag”	1.0	12	22.3
	“b tag”	1.0	12	16.6
TASSO [11]	incl. (44 GeV)	1.0	14	22.3
	incl. (35 GeV)	1.0	14	56.3
OPAL [12]	incl.	1.0	12	28.5
	“uds tag”	1.0	12	32.9
	“c tag”	1.0	12	18.1
	“b tag”	1.0	12	8.6
ALEPH [4]	long. incl.	1.0	11	11.5
OPAL [13]	long. incl.	1.0	12	8.1
DELPHI [14]	long. incl.	1.0	12	7.2
	long. “uds tag”	1.0	12	28.0
	long. “b tag”	1.0	12	5.0
EMC [18]	h⁺	1.0	98	183.0
	h⁻	1.0	99	289.1
CDF [15]	630 GeV	1.1	16	222.4
	1.8 TeV	1.1	37	515.5
UA1 [16]	200 GeV	0.988	31	84.5
	500 GeV	0.988	32	129.4
	630 GeV	0.988	41	48.3
	900 GeV	0.988	44	391.7
UA2 [17]	540 GeV	0.988	27	135.3
TOTAL:			661	2393.9

We warmly acknowledge Werner Vogelsang for helpful discussions, and Carlos García Canal for comments and suggestions. This work was partially supported by CONICET, ANPCyT and UBACyT.

V. APPENDIX: LO RESULTS

For completeness, we have also performed global analyses of the same sets of data given in Tables II and IV, where now all observables, α_s, and the scale evolution of the fragmentation functions are computed at LO accuracy. We use the same parametrization (1) and fitting procedure as in the NLO case, outlined in Sec. II. The parameters of the optimum LO fits for D_Pi and D_res+i are given in Tables V and VI while the χ² values obtained for the individual sets of data are compiled in Tables VII and VIII, respectively.

It is important to notice that the total χ² of the LO fits is significantly worse than at NLO accuracy, in particular, in case of the inclusive charged hadron data. Our LO sets should be used only for rough estimates of observables where NLO corrections are not yet available, or in event generators based on matrix elements at LO accuracy. Because of the limited usefulness of the LO sets, we refrain from going into any further details here.

[1] D. de Florian, R. Sassot and M. Stratmann, Phys. Rev. D75, 114010 (2007).
[2] H. Aihara et al. (TPC Collaboration), Phys. Rev. Lett. 61, 1263 (1988); Phys. Lett. B184, 299 (1987); X.-Q. Lu, Ph.D. thesis, Johns Hopkins University [Report No. UMI-87-07273, 1986].
[3] K. Abe et al. (SLD Collaboration), Phys. Rev. D59, 052001 (1999).
[4] D. Buskulic et al. (ALEPH Collaboration), Z. Phys. C66, 355 (1995); Phys. Lett. B357, 487 (1995); R. Barate et al. (ALEPH Collaboration), Phys. Rept. 294, 1 (1998).
[5] P. Abreu et al. (DELPHI Collaboration), Eur. Phys. J. C5, 585 (1998).
[6] G. Abbiendi et al. (OPAL Collaboration), Eur. Phys. J. C16, 407 (2000).
[7] B.A. Kniehl, G. Kramer, and B. Pötter, Nucl. Phys. B582, 514 (2000).
[8] S. Albino, B.A. Kniehl, and G. Kramer, Nucl. Phys. B725, 181 (2005); B734, 50 (2006).
[9] M. Hirai, S. Kumano, T.-H. Nagai, and K. Sudoh, Phys. Rev. D75, 094009 (2007).
[10] J. Adams et al. (STAR Collaboration), Phys. Lett. B637, 161 (2006).
[11] W. Braunschweig et al. (TASSO Collaboration), Z. Phys. C42, 189 (1989).
[12] K. Ackerstaff et al. (OPAL Collaboration), Eur. Phys. J. C7, 369 (1999).
[13] R. Akers et al. (OPAL Collaboration), Z. Phys. C68, 203 (1995).
[14] P. Abreu et al. (DELPHI Collaboration), Eur. Phys. J. C6, 19 (1999).
[15] F. Abe et al. (CDF Collaboration), Phys. Rev. Lett. 61, 1819 (1988).
[16] C. Albajar et al. (UA1 Collaboration), Nucl. Phys. B335, 261 (1990); G. Bocquet et al. (UA1 Collaboration), Phys. Lett. B366, 434 (1996).
[17] M. Banner et al. (UA2 Collaboration), Z. Phys. C27, 329 (1985).
[18] J. Ashman et al. (EMC Collaboration), Z. Phys. C52, 361 (1991).
[19] S. Kretzer, Phys. Rev. D62, 054001 (2000).
[20] L. Bourhis, M. Fontannaz, J. Ph. Guillet, and M. Werlen, Eur. Phys. J. C19, 89 (2001).
[21] M. Stratmann and W. Vogelsang, Phys. Rev. D64, 114007 (2001).
[22] I. Arsene et al. (BRAHMS Collaboration), arXiv:hep-ex/0701041.
[23] D. Stump et al., Phys. Rev. D65, 014012 (2002).
[24] P.J. Rijken and W.L. van Neerven, Nucl. Phys. B487, 233 (1997); Phys. Lett. B386, 422 (1996); A. Mitov and S.O. Moch, Nucl. Phys. B751, 18 (2006).
[25] D. de Florian and W. Vogelsang, Phys. Rev. D71, 114004 (2005).
[26] D. de Florian, G.A. Navarro, and R. Sassot, Phys. Rev. D71, 094018 (2005).
[27] D. de Florian, Phys. Rev. D67, 054004 (2003); B. Jäger, A. Schäfer, M. Stratmann, and W. Vogelsang, Phys. Rev. D67, 054005 (2003).
[28] B. Jäger, M. Stratmann, and W. Vogelsang, Phys. Rev. D68, 114018 (2003); Eur. Phys. J. C44, 533 (2005).
[29] D. de Florian and R. Sassot, Phys. Rev. D69, 074028 (2004).
[30] A. Daleo, D. de Florian, and R. Sassot, Phys. Rev. D71, 034013 (2005).
[31] A Fortran package containing our LO and NLO sets of fragmentation functions can be obtained upon request from the authors.