Thoracic and cardiovascular surgeries in Japan during 2017

Annual report by the Japanese Association for Thoracic Surgery

Committee for Scientific Affairs, The Japanese Association for Thoracic Surgery1 · Hideyuki Shimizu2 · Morihito Okada3 · Akira Tangoku4 · Yuichiro Doki5 · Shunsuke Endo6 · Hirotsugu Fukuda7 · Yasutaka Hirata8 · Hisashi Iwata9 · Junjiro Kobayashi10 · Hiraku Kumamaru11 · Hiroaki Miyata12 · Noboru Motomura13 · Shoji Natsugoe14 · Soji Ozawa15 · Yoshikatsu Saiki16 · Aya Saito13 · Hisashi Saji17 · Yukio Sato18 · Tsuyoshi Taketani19 · Kazuo Tanemoto20 · Wataru Tatsuishi21 · Yasushi Toh22 · Hiroyuki Tsukihara8 · Masayuki Watanabe23 · Hiroyuki Yamamoto12 · Kohei Yokoi24 · Yutaka Okita25

© The Author(s) 2020

The Japanese Association for Thoracic Surgery has conducted annual surveys of thoracic surgery throughout Japan since 1986 to determine statistics pertaining to the number of procedures performed, based on surgical category. Herein, we summarize the results of the association’s annual survey of thoracic surgery performed in 2017.

Adhering to the norm to date, thoracic surgery was classified into three categories: cardiovascular, general thoracic, and esophageal surgeries. Patient data were examined and analyzed for each group. Access to computerized data is available to all members of the association. We honor and value all members’ continued professional support and contributions (Tables 1, 2).

Incidence of hospital mortality was included in the survey to determine nationwide status, which has contributed to Japanese surgeons’ understanding of the present status of thoracic surgery in Japan, while helping to effect progress for improving operative results by enabling them to compare their work with that of others. In this way, the association has been able to gain a better understanding of present problems and future prospects, which is reflected in its activities and the education of its members.

Thirty-day mortality (so-called operative mortality) is defined as death within 30 days of surgery, regardless of the patient’s geographic location, including after the patient is discharged from hospital. Hospital mortality is defined as death within any time interval following surgery if the patient has not been discharged from hospital.

Hospital-to-hospital transfer in the category of esophageal surgery is not considered a form of discharge; transfer to a nursing home or a rehabilitation unit is considered hospital discharge, unless the patient subsequently dies because of complications from surgery. Contrastingly, hospital-to-hospital transfer 30 days following surgery in the categories of cardiovascular and general thoracic surgery is considered discharge, as data related to the National Clinical Database (NCD 2017) were employed in this category, and hospital-to-hospital transfer 30 days following surgery is considered discharge according to the NCD.

Survey abstract

All data pertaining to cardiovascular and thoracic surgeries were obtained from the NCD, whereas data regarding esophageal surgery were collected from a survey questionnaire derived from the Japanese Association for Thoracic Surgery documentation. The reason for this was that NCD information regarding esophageal surgery does not include non-surgical cases (i.e., patients with adjuvant chemotherapy or radiation only).

Because of changes in data collection related to cardiovascular surgery (initially self-reported using questionnaire sheets in each participating institution up to 2014, then by downloading an automatic package from the Japanese Cardiovascular Surgery Database (JCVSD), a cardiovascular sub-section of the NCD), the response rate is not available and is, therefore, not indicated in the cardiovascular surgery category (Table 1). Additionally, the number of institutions (based on surgery count) was not calculated in the cardiovascular surgery category (Table 2).
We are extremely pleased with the cooperation of our colleagues (members) in terms of completing the cardiovascular surgery survey, thereby undoubtedly improving the quality of this annual report. We are truly grateful for the significant efforts made by all within each participating institution in completing the JCVSD/NCD.

Figure 1 illustrates the development of cardiovascular surgery in Japan over the past 30 years. Aneurysm surgery includes only surgeries for thoracic and thoracoabdominal aortic aneurysms. Extra-anatomic bypass surgery for thoracic aneurysm and pacemaker implantation has been excluded from the survey since 2015. The number of assist device implantation surgeries is not included in the total number of surgical procedures but was nonetheless included in the survey.

A total of 70,078 cardiovascular surgeries including 56 heart transplants were performed in 2017, an increase of 3.3% compared with that in the 2016 survey results ($n = 67,867$). The number of cardiovascular surgeries is continuously increasing, despite an apparent decrease in 2015, likely due to major changes in data collection and aggregation approaches.

When compared with data for 2016 [1] and 2007 [2], the number of surgeries in 2017 for congenital heart disease increased by 7.1% (9368 vs. 8744) and 0.2%, respectively; procedures for valvular heart disease increased by 0.2% (23,312 vs. 23,254) and 53.2%, respectively; surgery for thoracic aortic aneurysm increased by 8.7% (20,746 vs. 19,078) and 114.6%, respectively; ischemic heart procedures decreased by 6.6% (13,898 vs. 14,874) and 23.6%,
Condition	Total	Neonate	Infant	1-17 years	≥ 18 years	Total								
	Cases	Hospital	After discharge											
PDA	1	0	0	4	0	0	0	14	0	0	19	0	0	0
Coarctation (complex)	7	0	0	11	0	0	0	13	0	0	4	0	0	35
+VSD	49	0	0	51	2 (3.9)	0	3 (5.9)	13	0	0	0	0	0	113
+DORV	2	0	0	1	0	0	0	0	0	0	0	0	0	3
+AVSD	2	0	0	3	0	0	0	0	0	0	0	0	0	0
+TGA	0	0	0	0	0	0	0	0	0	0	0	0	0	0
+IV	2	0	0	0	0	0	0	1	0	0	0	0	0	3
+Others	5	0	0	7	0	0	0	0	0	0	2	0	0	22
Interrupt. of Ao (simple)	0	0	0	0	0	0	0	0	0	0	0	0	0	0
+VSD	27	0	0	23	0	0	1 (4.3)	12	0	0	0	0	0	62
+DORV	0	0	0	0	0	0	0	0	0	0	0	0	0	0
+Truncus	4	0	0	2	0	0	0	5	0	0	0	0	0	11
+TGA	0	0	0	0	0	0	0	0	0	0	0	0	0	0
+Others	1	0	0	2	0	0	0	0	0	0	0	0	0	5
Vascular ring	1	0	0	1	0	0	0	0	0	0	0	0	0	2
PS	5	0	0	25	0	0	0	77	1 (1.3)	0	1 (1.3)	26	0	0
PA-IVS or critical PS	15	1 (67)	0	66	0	0	2 (3.0)	48	0	0	1 (2.1)	2	0	0
TAPVR	112	6 (54)	0	9 (8.0)	59	1 (17)	0	17	0	0	1 (5.9)	109	7 (37)	0
PAPVR ± ASD	0	0	0	5	0	0	0	38	0	0	22	0	0	65
ASD	1	0	0	73	0	0	0	583	0	0	764	0	7 (9.0)	7 (9.9)
Cor triatriatum	1	0	0	8	0	0	0	6	0	0	4	0	0	19
AVSD (partial)	1	0	0	7	0	0	1 (14.3)	42	0	0	6	0	0	56
AVSD (complete)	8	0	0	117	3 (26)	0	4 (3.6)	94	2 (21)	0	2 (21)	3	0	0
+TAPVR or DORV	2	1 (50.0)	0	9	0	0	0	14	1 (71)	0	1 (71)	0	0	25
+Others	0	0	0	0	0	0	0	0	0	0	0	0	0	0
VSD (subarterial)	3	0	0	106	0	0	0	142	0	0	14	0	0	265
VSD (perimembr. / muscular)	17	0	0	729	1 (0.1)	0	1 (0.1)	325	0	0	1 (0.3)	21	0	0
VSD (type unknown)	0	0	0	5	0	0	0	123	2 (16)	0	2 (16)	131	2 (15)	0
VSD + PS	0	0	0	32	1 (5.1)	0	21	0	0	0	0	54	1 (9)	0
Table 3 continued

Diagnosis	Cases	30-Day mortality	Hospital mortality	Hospital mortality	Cases	30-Day mortality	Hospital mortality	Hospital mortality	Cases	30-Day mortality	Hospital mortality	Hospital mortality	Cases	30-Day mortality	Hospital mortality	Hospital mortality	Cases	30-Day mortality	Hospital mortality	Hospital mortality	
DCRV + VSD	1	0	0	0	5	0	0	0	20	0	0	0	11	0	0	0	37	0	0	0	
Anomalies of sinus of Valsalva	0	0	0	0	0	0	0	0	2	0	0	0	3	0	0	0	5	0	0	0	
TOF	13	0	0	0	174	2 (1.1)	3 (1.7)	212	1 (0.5)	1 (0.5)	37	0	0	0	0	0	496	3 (0.7)	0	4 (0.9)	
PA + VSD	9	1 (1.1)	1 (1.1)	76	0	0	2 (2.6)	108	1 (0.9)	3 (2.6)	15	0	0	0	0	0	208	2 (1.0)	0	6 (2.9)	
DORV	24	1 (4.2)	0	2 (0.3)	142	0	3 (2.1)	100	0	0	0	11	0	0	0	0	352	1 (0.3)	0	5 (1.5)	
AVSD (simple)	97	1 (1.0)	0	5 (4.1)	9	1 (11.1)	1 (11.1)	3	0	0	0	2	0	0	0	0	111	2 (1.0)	0	5 (4.5)	
+ VSD	40	1 (2.5)	0	1 (2.5)	16	0	0	9	0	0	0	2	0	0	0	0	67	1 (1.5)	0	1 (1.5)	
VSD + PS	0	0	0	0	0	0	0	2	0	0	0	1	0	0	0	0	3	0	0	0	
Corrected TGA	2	0	0	0	17	0	0	0	33	1 (3.0)	0	1 (3.0)	16	0	0	0	66	1 (1.5)	0	1 (1.5)	
Truncus arteriosus	13	0	0	0	17	1 (5.9)	0	1 (5.9)	16	0	0	0	0	0	0	0	46	1 (2.2)	0	2 (0.4)	
SV	27	0	0	0	151	2 (1.3)	1 (0.7)	7	4 (6.6)	213	0	0	12	0	0	403	2 (0.5)	0	1 (0.2)		
TA	5	0	0	0	39	0	0	0	47	0	0	0	1 (2.1)	6	1 (16.7)	0	1 (16.7)	97	1 (1.0)	0	3 (31)
HLHS	33	6 (18.2)	0	11 (33.3)	80	0	0	0	3 (3.8)	104	3 (2.9)	0	5 (4.8)	0	0	0	217	9 (4.1)	0	19 (5.8)	
Aortic valve lesion	11	1 (9.1)	0	2 (18.2)	18	1 (5.6)	0	2 (11.1)	104	0	0	1 (1.0)	30	2 (6.7)	0	2 (6.7)	163	4 (2.5)	0	7 (4.5)	
Patent valve stenosis	0	0	0	0	43	0	0	1 (2.3)	70	0	0	1 (1.6)	19	1 (10.5)	0	2 (10.5)	152	2 (15.9)	0	4 (30)	
Marfan syndrome	41	4 (33.3)	0	4 (33.3)	12	4 (33.3)	9	0	0	0	0	23	0	0	0	7	51	4 (7.8)	0	4 (7.8)	
Coronary disease	2	0	0	0	10	0	0	0	18	0	0	0	1	0	0	0	31	0	0	0	
Others	13	2 (15.4)	0	2 (15.4)	27	1 (3.7)	0	3 (11.1)	49	0	0	11 (2.0)	232	1 (0.4)	0	1 (0.4)	321	4 (1.2)	0	7 (22)	
Conduct failure	0	0	0	0	0	0	0	0	19	1 (5.3)	0	1 (5.3)	7	0	0	0	28	1 (3.6)	0	1 (3.6)	
Redo (excluding conduit failure)	0	0	0	0	41	0	0	0	2 (4.9)	106	2 (19.0)	0	5 (4.7)	8 (2.44)	0	3 (3.6)	230	4 (17.7)	0	10 (4.3)	
Total	568	25 (4.4)	0	44 (7.7)	2222	15 (0.7)	2 (0.1)	44 (2.0)	2783	13 (0.5)	0	27 (1.0)	1499	17 (1.1)	0	18 (1.2)	7072	70 (1.0)	2 (0.0)	133 (1.9)	

() % mortality
CPR cardiopulmonary bypass, PDA patent ductus arteriosus, VSD ventricular septal defect, DORV double-outlet right ventricle, AVSD-ventricular septal defect, TGA transposition of great arteries, SV single ventricle, Interrupt. of Ao. interruption of aorta, PS pulmonary stenosis, PA-IVS pulmonary atresia with intact ventricular septum, TAPVR total anomalous pulmonary veins return, PAPVR partial anomalous pulmonary veins return, ASD atrial septal defect, TOF tetralogy of Fallot, DCRV double-chambered right ventricle, TA tricuspid atresia, HLHS hypoplastic left heart syndrome, RV-PA right ventricle-pulmonary artery
Condition	Neonate Cases	30-Day mortality	Hospital mortality	After discharge	Infant Cases	30-Day mortality	Hospital mortality	After discharge	1-17 years Cases	30-Day mortality	Hospital mortality	After discharge	≥ 18 years Cases	30-Day mortality	Hospital mortality	After discharge	Total Cases	30-Day mortality	Hospital mortality	After discharge
PDA	93	2 (2.1)	1 (1.1)	0	2296	11 (2.1)	0	18 (3.5)	0	514	11 (2.1)	0	18 (3.5)	0	18 (3.5)	0				
Coarctation (simple)	26	2 (7.7)	0	0	15	0	0	0	0	15	0	0	0	0	0	0				
+ VSD	1	0	0	0	235	1 (3.4)	0	4 (1.7)	0	33	1 (3.0)	0	3 (0.9)	0	3 (0.9)	0				
+ DORV	2	0	0	0	43	0	0	0	0	43	0	0	0	0	0	0				
+ AVSD	1	0	0	0	47	0	0	0	0	47	0	0	0	0	0	0				
+ TGA	0	0	0	0	58	0	0	0	0	58	3 (5.2)	0	5 (0.6)	0	5 (0.6)	0				
+ SV	0	0	0	0	7	0	0	0	0	7	0	0	0	0	0	0				
+ Others	4	0	0	0	19	0	0	0	1	19	0	0	1 (5.3)	0	1 (5.3)	0				
Interrupt. of Ao (simple)	2	0	0	0	2	0	0	0	0	2	0	0	1 (5.0)	0	1 (5.0)	0				
+ VSD	1	0	0	0	4	0	0	0	0	4	1 (2.3)	0	2 (4.5)	0	2 (4.5)	0				
+ DORV	0	0	0	0	2	0	0	0	0	2	0	0	0	0	0	0				
+ Truncus	0	0	0	0	12	0	0	0	0	12	0	0	0	0	0	0				
+ TGA	0	0	0	0	2	0	0	0	0	2	0	0	0	0	0	0				
+ Others	2	0	0	0	4	0	0	0	0	4	0	0	0	0	0	0				
Vascular ring	0	0	0	0	18	0	0	0	0	18	0	0	0	0	0	0				
PS	1	0	0	0	16	0	0	0	0	16	0	0	0	0	0	0				
PA+IVS or critical PS	3	0	0	0	65	1 (1.5)	0	1 (1.5)	0	65	1 (1.5)	0	1 (1.5)	0	1 (1.5)	0				
TAPVR	22	0 (9.1)	0	0	35	2 (5.7)	0	5 (4.3)	0	35	2 (5.7)	0	5 (4.3)	0	5 (4.3)	0				
PAPVR+ASD	0	0	0	0	1	0	0	0	0	1	0	0	0	0	0	0				
ASD	0	0	0	0	4	0	0	0	0	4	0	0	0	0	0	0				
Cor triatratium	0	0	0	0	1	0	0	0	0	1	0	0	0	0	0	0				
AVSD (partial)	0	0	0	0	2	0	0	0	0	2	0	0	0	0	0	0				
AVSD (complete)	51	0	0	0	152	3 (2.0)	0	6 (3.9)	0	152	3 (2.0)	0	6 (3.9)	0	6 (3.9)	0				
+ TOF or DORV	1	0	0	0	10	0	0	0	0	10	0	0	0	0	0	0				
+ Others	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0				
VSD (subarterial)	2	0	0	0	9	0	0	0	0	9	0	0	0	0	0	0				
VSD (perimembr/muscular)	67	2 (3.0)	0	0	204	4 (2.0)	0	5 (2.5)	0	204	4 (2.0)	0	5 (2.5)	0	5 (2.5)	0				
VSD (Type Unknown)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0				
VSD+PS	1	0	0	0	1	0	0	0	0	1	0	0	0	0	0	0				
DORV+VSD	0	0	0	0	1	0	0	0	0	1	0	0	0	0	0	0				
Aneurysm of sinus of Valsalva	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0				
TOF	19	0	0	0	108	2 (1.9)	0	3 (2.8)	0	108	2 (1.9)	0	3 (2.8)	0	3 (2.8)	0				
PA+VSD	20	2 (10.0)	0	0	95	2 (2.1)	0	5 (5.3)	0	95	2 (2.1)	0	5 (5.3)	0	5 (5.3)	0				
Diagnosis	Cases	30-Day Mortality	Hospital Mortality	After discharge																
----------------------------	-------	------------------	-------------------	----------------																
DORV	46	0	0	3 (6.5)																
TGA (simple)	6	0	0	0																
+ VSD	12	0	0	0																
VSD + PS	0	0	0	0																
Corrected TGA	7	0	0	0																
Truncus arteriosus	18	1 (5.6)	0	2 (11.1)																
SV	50	2 (4.0)	0	4 (8.0)																
TA	23	0	0	2 (8.7)																
HLHS	66	4 (6.1)	0	17 (25.8)																
Aortic valve lesion	8	1 (12.5)	0	2 (25.0)																
Mitral valve lesion	3	1 (33.3)	0	1 (33.3)																
Ebstein	8	0	0	4 (50.0)																
Coronary disease	1	0	0	0																
Others	13	1 (7.7)	0	1 (7.7)																
Conduct failure	0	0	0	3																
Redo (excluding conduit failure)	16	1 (6.3)	0	2 (1.2)																
Total	932	32 (3.4)	0	70 (7.5)																

CPB: cardiopulmonary bypass; PDA: patent ductus arteriosus; VSD: ventricular septal defect; DORV: double-outlet right ventricle; AVSD: atrioventricular septal defect; TGA: transposition of the great arteries; SV: single ventricle; Interrupt. of Ao: interruption of aorta; PS: pulmonary stenosis; PA-IVS: pulmonary atresia with intact ventricular septum; TAPVR: total anomalous pulmonary venous return; PAPVR: partial anomalous pulmonary venous return; ASD: atrial septal defect; TOF: tetralogy of Fallot; DORV: double-outlet right ventricle; TA: tricuspid atresia; HLHS: hypoplastic left heart syndrome; RV-PA: right ventricle-pulmonary artery
| Main procedure | Neonate | | | Infant | 1-17 years | ≥ 18 years | Total | | | Hospital after discharge | Hospital mortality | 30-Day mortality | Hospital after discharge | Hospital mortality | 30-Day mortality | Hospital after discharge | Hospital mortality | 30-Day mortality | Hospital after discharge | Hospital mortality | 30-Day mortality | Hospital after discharge | Hospital mortality | 30-Day mortality |
|----------------|---------|---------|---------|---------|---------|---------|-------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|
| SP shunt | 169 | 5 (3.0) | 0 | 12 (7.1) | 356 | 1 (0.3) | 0 | 6 (1.7) | 55 | 0 | 0 | 1 | 1.8 | 0 | 0 | 581 | 6 (1.0) | 0 | 19 (3.3) |
| PAIR | 388 | 3 (1.0) | 0 | 14 (4.5) | 311 | 4 (1.3) | 0 | 9 (2.9) | 15 | 1 (0.6) | 0 | 1 (0.6) | 1.6 | 0 | 0 | 635 | 8 (1.3) | 0 | 24 (3.8) |
| Bidirectional Glenn or hemi-Fontan ± TOF | 1 | 0 | 0 | 0 | 240 | 0 | 0 | 3 (1.3) | 103 | 1 (1.0) | 0 | 1 (1.0) | 1.0 | 0 | 0 | 350 | 1 (0.3) | 0 | 4 (1.1) |
| Damus-Kaye-Stansel operation | 3 | 1 (33.3) | 0 | 1 (33.3) | 21 | 1 (48) | 0 | 1 (4.8) | 4 | 0 | 0 | 0 | 0 | 0 | 2 | 2 (7.1) | 0 | 2 (7.1) |
| PA reconstruction repair (including redo) | 19 | 1 (5.3) | 0 | 2 (10.5) | 190 | 4 (21) | 0 | 7 (3.7) | 180 | 1 (0.6) | 0 | 3 (1.7) | 1.7 | 0 | 0 | 406 | 6 (1.5) | 0 | 12 (3.0) |
| IVOT reconstruction repair | 6 | 0 | 0 | 0 | 200 | 1 (0.5) | 0 | 1 (0.5) | 338 | 1 (0.3) | 0 | 1 (0.3) | 0.3 | 0 | 0 | 563 | 2 (0.3) | 1 (0.2) | 3 (0.5) |
| Rastelli procedure | 3 | 0 | 0 | 0 | 31 | 0 | 0 | 0 | 96 | 1 (10) | 0 | 2 (2.1) | 5 | 0 | 0 | 135 | 1 (0.7) | 0 | 2 (1.5) |
| Arterial switch procedure | 143 | 3 (2.1) | 0 | 7 (4.9) | 22 | 0 | 0 | 0 | 5 | 0 | 0 | 0 | 0 | 0 | 0 | 170 | 3 (1.8) | 0 | 7 (4.1) |
| Atrial switch procedure | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 7 | 1 (14.3) | 0 | 1 (14.3) | 0 | 0 | 0 | 8 | 1 (12.5) | 0 | 1 (12.5) |
| Double-switch procedure | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 12 | 0 | 0 | 0 | 0 | 0 | 0 | 13 | 0 | 0 | 0 |
| Repair of anomalies origin of CA | 0 | 0 | 0 | 0 | 4 | 0 | 0 | 0 | 3 | 0 | 0 | 0 | 0 | 0 | 0 | 7 | 0 | 0 | 0 |
| Closure of coronary AV fistula | 3 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 6 | 0 | 0 | 0 | 0 | 0 | 2 | 0 | 0 | 0 | 0 |
| Fontan/TCPC | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 40 | 2 (5.0) | 0 | 4 (10) | 2 | 7 (7.4) | 0 | 2 | 7 (7.4) | 429 | 4 (9.9) | 0 | 6 (1.4) |
| Norwood procedure | 34 | 5 (14.7) | 0 | 8 (23.5) | 70 | 1 (1.4) | 0 | 5 (7.1) | 4 | 0 | 0 | 0 | 0 | 0 | 0 | 108 | 6 (5.6) | 0 | 13 (12.0) |
| Ventricular septation | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 |
| Left-side AV valve repair (including redo) | 0 | 0 | 0 | 0 | 46 | 0 | 0 | 1 (2.2) | 77 | 1 (1.3) | 0 | 2 (2.6) | 15 | 0 | 0 | 138 | 1 (0.7) | 0 | 3 (2.2) |
| Left-side AV valve repair (including redo) | 19 | 6 (31.6) | 0 | 6 (31.6) | 82 | 1 (12) | 0 | 2 (2.4) | 85 | 1 (12) | 0 | 2 (2.4) | 72 | 0 | 0 | 258 | 8 (31) | 0 | 10 (3.9) |
| Right-side AV valve repair (including redo) | 0 | 0 | 0 | 0 | 2 | 0 | 0 | 0 | 12 | 0 | 0 | 0 | 36 | 1 (28) | 0 | 12 (28) | 50 | 1 (20) | 0 | 1 (2.0) |
| Common AV valve repair (including redo) | 4 | 1 (25.0) | 0 | 1 (25.0) | 20 | 2 (10.0) | 1 (5.0) | 3 (15.0) | 5 | 0 | 0 | 0 | 3 | 0 | 0 | 32 | 3 (9.4) | 1 (3.1) | 4 (12.5) |
| Common AV valve repair (including redo) | 0 | 0 | 0 | 0 | 4 | 0 | 0 | 0 | 8 | 0 | 0 | 1 (12.5) | 1 | 0 | 0 | 13 | 0 | 0 | 1 (7.7) |
| Repair of supra-aortic stenosis | 0 | 0 | 0 | 0 | 10 | 0 | 0 | 1 (10.0) | 19 | 0 | 0 | 1 (5.3) | 2 | 0 | 0 | 31 | 0 | 0 | 2 (6.5) |
| Repair of subaortic stenosis (including redo) | 1 | 0 | 0 | 0 | 6 | 0 | 0 | 0 | 32 | 0 | 0 | 0 | 1 | 0 | 0 | 40 | 0 | 0 | 0 |
| Aortic valve plasty ± VSD closure | 5 | 0 | 0 | 0 | 10 | 0 | 0 | 0 | 37 | 1 (27) | 0 | 1 (27) | 2 | 0 | 0 | 54 | 1 (19) | 0 | 1 (19) |
| Aortic valve replacement | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 27 | 1 (37) | 0 | 2 (7.4) | 30 | 0 | 0 | 58 | 1 (17) | 0 | 2 (3.4) |
| AVR with annular enlargement | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 9 | 0 | 0 | 0 | 0 | 0 | 0 | 9 | 0 | 0 | 0 |
Table 3 continued
27 Aortic root replace (except Ross)
28 Ross procedure
29 Bilateral pulmonary artery banding
Total

(), % mortality

SP systemic-pulmonary, PAB pulmonary artery banding, PA pulmonary artery, RVOT right ventricular outflow tract, CA coronary artery, AV fistula, arteriovenous fistula, TCPC total cavopulmonary connection, AV valve aortic valve, VSD ventricular septal defect, AVR aortic valve replacement
Value	Cases	Operation	Mechanical	Bioprosthesis	Repair	Unknown	WITH CABG	30-Day mortality	Hospital mortality	Redo					
										Cases	30-Day mortality	Hospital mortality			
Isolated A 10,690	1511	8508	293	381	2641	187 (1.9)	4 (1.4)	1 (0.01)	0	308 (3.1)	12 (4.1)	0	35 (5.6)		
M 4687	498	832	3264	93	593	52 (3.9)	29 (0.9)	2 (0.2)	0	70 (5.3)	39 (1.2)	542	31 (5.7)	2 (0.4)	38 (7.0)
T 615	11	94	503	7	57	2 (1.9)	15 (3.0)	0	0	7 (6.7)	32 (6.4)	110	6 (5.5)	0	12 (10.9)
P 32	2	21	7	2	2	0	0	0	0	1 (4.4)	0	20	0	0	1 (5.0)
A+M 1415	247	68 (4.8)	1 (0.1)	0	112 (7.9)	161	15 (9.3)	0	18 (11.2)						
A 1276	1030	57	52 &n												
M 1084	736	37 &n													
A+T 569	94	18 (3.2)	0	29 (5.1)	73	5 (6.9)	0	5 (6.9)							
A 185	446	13	25 &n												
T 11	6	550	37 &n												
M+T 3924	346	6 (1.6)	1 (0.01)	107 (27)	421	12 (29)	0	20 (48)							
M 403	1033	2402	86 &n												
T 3	35	3383	33 &n												
A+M+T 1196	155	52 (4.4)	0	84 (7.0)	123	7 (5.7)	0	15 (12.2)							
A 217	880	42	47 &n												
M 165	448	554	29 &n												
T 0	8	1175	13 &n												
Others 184	9	34	4	137	21	3 (3.8)	0	10 (5.4)	39	3 (7.7)	0	4 (10.3)			
Total 23,312	4156	51 (2.2)	5 (0.02)	837 (36)	2116	100 (4.7)	2 (0.1)	148 (7.0)							

TAVR	Cases	30-Day mortality
	4632	55 (1.2)
Table 4 (continued)

(2) Ischemic heart disease (total, (A)+(B): 13,898)

	Primary, elective	Primary, emergent	Redo, elective	Redo, emergent	Artery only	Artery +SVG	SVG only	Others	Unclear
Cases									
1VD									
2VD									
3VD									
LMT									
No info									
Total									
Kawasaki									
On dialysis									
1VD									
2VD									
3VD									
LMT									
No info									
Total									
Kawasaki									
On dialysis									

(1), % mortality

LMT includes LMT alone or LMT with other branch diseases

CABG coronary artery bypass grafting, 1VD one-vessel disease, 2VD two-vessel disease, 3VD three-vessel disease, LMT left main trunk, SVG saphenous vein graft

(a-1) On-pump arrest CABG (total: 2875)

	Primary, elective	Primary, emergent	Redo, elective	Redo, emergent	Artery only	Artery +SVG	SVG only	Others	Unclear
Cases									
1VD									
2VD									
3VD									
LMT									
No info									
Total									
Kawasaki									
On dialysis									
1VD									
2VD									
3VD									
LMT									
No info									
Total									
Kawasaki									
On dialysis									

(1), % mortality

LMT includes LMT alone or LMT with other branch diseases

CABG coronary artery bypass grafting, 1VD one-vessel disease, 2VD two-vessel disease, 3VD three-vessel disease, LMT left main trunk, SVG saphenous vein graft

(a-2) On-pump beating CABG (total: 2323)

	Primary, elective	Primary, emergent	Redo, elective	Redo, emergent	Artery only	Artery +SVG	SVG only	Others	Unclear
Cases									
1VD									
2VD									
3VD									
LMT									
No info									
Total									
Kawasaki									
On dialysis									

(1), % mortality

LMT includes LMT alone or LMT with other branch diseases

CABG coronary artery bypass grafting, 1VD one-vessel disease, 2VD two-vessel disease, 3VD three-vessel disease, LMT left main trunk, SVG saphenous vein graft

General Thoracic and Cardiovascular Surgery
(b) Off-pump CABG (total: 7,431)

(Including cases of planned off-pump CABG in which, during surgery, the change is made to an on-pump CABG or on-pump beating-heart procedure)

Artery	Primary, elective	Primary, emergent	Redo, elective	Redo, emergent	Artery only	Artery +SVG	SVG only	Others	Unclear													
	Cases	30-Day mortality	Hospital mortality																			
	1VD	347	1 (0.3)	0	4 (1.2)	45	1 (2.2)	0	1 (2.2)	7	0	0	0	1	0	0	0	284	79	33	0	4
	2VD	948	1 (0.1)	0	1 (0.1)	117	4 (3.4)	0	5 (4.3)	11	0	0	0	1	0	0	0	364	666	38	2	7
	3VD	2341	19 (0.8)	1 (0.0)	35 (1.5)	301	7 (2.3)	0	10 (3.3)	14	0	0	0	1	0	0	0	598	1978	60	12	10
	LMT	2394	26 (1.1)	0	38 (1.6)	622	21 (3.4)	0	27 (4.3)	27	0	0	0	8	0	0	0	913	2031	91	6	10
no info	185	1 (0.5)	0	2 (1.1)	40	2 (4.1)	0	2 (4.1)	7	0	0	0	4	1 (25.0)	0	1 (25.0)	84	142	13	2	4	
Total	6215	48 (0.8)	2 (0.0)	83 (1.3)	1134	35 (3.1)	0	45 (4.0)	66	0	0	0	1	16	1 (6.3)	0	1 (6.3)	2243	4896	235	22	35
Kawasaki	16	0	0	0	0	0	0	0	0	0	0	0	0	2	5	0	0	0				
On dialysis	725	15 (2.1)	1 (0.1)	34 (4.7)	123	9 (7.3)	0	11 (8.9)	9	0	0	0	4	1 (25.0)	0	1 (25.0)	202	618	33	3	5	

(), % mortality

LMT includes LMT alone or LMT with other branch diseases.

CABG coronary artery bypass grafting, 1VD one-vessel disease, 2VD two-vessel disease, 3VD three-vessel disease, LMT left main trunk, SVG saphenous vein graft.

(c) Cases of conversion, during surgery, from off-pump CABG to on-pump CABG or on-pump beating-heart CABG (these cases are also included in category (b))

Artery	Primary, elective	Primary, emergent	Redo, elective	Redo, emergent														
	Cases	30-Day mortality	Hospital mortality	Cases	30-Day mortality	Hospital mortality	Cases	30-Day mortality	Hospital mortality									
	Convened to arrest	34	0	0	0	6	0	0	0	0	0	0	0	0	0	0	0	0
	Convened to beating	131	5 (3.8)	0	9 (69)	45	6 (13.3)	0	6 (13.3)	1	0	0	0	1	0	0	0	0
	Total	165	5 (3.0)	0	9 (55)	51	6 (11.8)	0	6 (11.8)	1	0	0	0	1	0	0	0	
	On dialysis	31	1 (3.2)	0	3 (97)	9	4 (44.4)	0	4 (44.4)	0	0	0	0	0	0	0	0	

(), % mortality

CABG coronary artery bypass grafting.
Table 4 (continued)

(B) Operation for complications of MI (total: 1269)
Chronic Acute Concomitant operation
Cases 30-Day mortality Hospital mortality
Hospital After discharge
Total 612 43 (7.0) 1 (0.2) 65 (10.6) 657 173 (26.3) 1 (0.2) 235 (35.8) 529 244 215

(), % mortality
Acute, within 2 weeks from the onset of myocardial infarction
MI myocardial infarction, CABG coronary artery bypass grafting, MVP mitral valve repair, MVR mitral valve replacement, VSP ventricular septal perforation

(3) Operation for arrhythmia (total: 5066)
Cases 30-Day mortality Hospital mortality Concomitant operation
Hospital After discharge Isolated Congenital Valve IHD Others Multiple combination 2 categories 3 categories
Maze 3286 52 (1.6) 1 (0.03) 89 (2.7) 120 185 2844 561 257 627 46
For WPW 4 0 0 0 0 1 3 0 0 1 0
For ventricular tachyarrhythmia 35 2 (5.7) 0 3 (8.6) 2 1 10 18 5 7 1
Others 1741 34 (2.0) 3 (0.17) 52 (3.0) 31 124 1512 324 145 370 24
Total 5066 88 (1.7) 4 (0.08) 144 (2.8) 153 311 4369 903 407 1005 71

(), % mortality
Except for 153 isolated cases, all remaining 4913 cases are doubly allocated, one for this subgroup and the other for the subgroup corresponding to the concomitant operations
WPW, Wolff–Parkinson–White syndrome; IHD, ischemic heart disease
(4) Operation for constrictive pericarditis (total; 216)

CPB (+)	CPB (-)							
Cases	30-Day mortality	Hospital mortality	Cases	30-Day mortality	Hospital mortality			
	Hospital	After discharge		Hospital	After discharge			
Total	116	9 (7.8)	0	17 (14.7)	100	2 (2.0)	0	9 (9.0)

(), % mortality
CPB cardiopulmonary bypass

(5) Cardiac tumor (total; 622)

	Cases	30-Day mortality	Hospital mortality	Concomitant operation				
	Hospital	After discharge	Hospital		AVR	MVR	CABG	others
Benign tumor	548	6 (1.1)	0	11 (2.0)	19	15	47	112
(Cardiac myxoma)	385	6 (1.6)	0	9 (2.3)	6	6	26	61
Malignant tumor	74	2 (2.7)	0	5 (6.8)	1	3	2	18
(Primary)	9	0	0	0	1	1	1	4

(), % mortality
AVR aortic valve replacement, MVR mitral valve replacement, CABG coronary artery bypass grafting

(6) HOCM and DCM (total; 302)

	Cases	30-Day mortality	Hospital mortality	Concomitant operation				
	Hospital	After discharge	Hospital		AVR	MVR	MVP	CABG
Myectomy	138	2 (1.4)	0	4 (2.9)	63	20	17	12
Myotomy	11	0	0	0	2	0	3	1
No resection	144	8 (5.6)	0	12 (8.3)	30	70	74	13
Volume reduction surgery of the left ventricle	9	1 (11.1)	0	2 (22.2)	0	2	4	1
Total	302	11 (3.6)	0	18 (6.0)	95	92	98	27

(), % mortality
HOCM hypertrophic obstructive cardiomyopathy, DCM dilated cardiomyopathy, AVR aortic valve replacement, MVR mitral valve replacement, MVP mitral valve repair, CABG coronary artery bypass grafting
respectively. Data for individual categories are summarized in Tables 3, 4, 5, 6, 7, and 8.

In 2017, among 9368 procedures for congenital heart disease, 7072 open-heart surgeries were performed with an overall hospital mortality of 1.9%. Compared with data for 2007, the number of surgeries for neonates and infants has not changed significantly; however, hospital mortality decreased significantly from 13.7 to 7.7% for neonates and from 3.9 to 2.0% for infants. In 2017, atrial septal defect was once again the most common disease (1418 cases) for the first time in 3 years. This was primarily due to a doubling in the number of surgeries for patients above the age of 18 years (from 372 to 761 cases). Ventricular septal defect (perimemb/muscular) was the second most common health issue (1092 cases) and had previously been the most common disease in 2015 and 2016. In the past 10 years, hospital mortality for complex congenital heart disease was as follows (2007 [2], 2012 [3], and 2017): complete atrioventricular septal defect (4.3%, 3.2%, and 2.7%, respectively), tetralogy of Fallot (1.4%, 1.1%, and 0.9%, respectively), transposition of the great arteries with intact septum (2.7%, 2.6%, and 4.5%, respectively) and with ventricular septal defect (5.6%, 3.2%, and 1.5%, respectively), and single ventricle (5.4%, 5.5%, and 2.2%, respectively) and hypoplastic left heart syndrome (20.1%, 10.2%, and 8.8%, respectively). Right heart bypass surgery is now commonly performed (350 bidirectional Glenn procedures excluding 28 Damus–Kaye–Stansel procedures and 429 Fontan type procedures including total cavopulmonary connection) at an acceptable hospital mortality rate (1.1% and 1.4%). The Norwood type I procedure was performed in 108 cases, with a relatively low hospital mortality rate of 12.0% (Table 9).

The total number of procedures for valvular heart disease is increasing. The number of isolated aortic valve replacement/repair with/without coronary artery bypass grafting (CABG) \((n=10,690)\) increased by 12.9% from the previous year \((n=9472)\) and by 10.3% from 5 years ago \((n=9688)\), despite the rapid spread of transcatheter aortic valve replacement \((n=4632\) in 2017). On the other hand, the number of isolated mitral valve replacement/repair with/without CABG \((n=4687)\) remained stable, with a 2.4% increase from the previous year \((n=4576)\) and a 1.5% increase from 5 years ago \((n=4617)\). Aortic and mitral valve replacements with bioprostheses procedures were performed in 10,871 cases and 2747 cases, respectively. The ratio for employing bioprostheses increased dramatically from the 30% level in the early 2000s [4, 5] and was 83.9% and 68.7% in the aortic and mitral positions, respectively, in 2017. Additionally, CABG was performed as a concomitant procedure in 17.8% for all valvular procedures (15.7% in 2007 [2] and 18.2% in 2012 [3]). Repair of the valve was a popular procedure in mitral and tricuspid
Table 5 Thoracic aortic aneurysm (total; 20,746) (1) Dissection (total; 10,086)

Location	Stanford A	Stanford B	Cases	Hospital mortality	30-Day mortality	Hospital mortality	Cases	Hospital mortality	30-Day mortality	Hospital mortality	Cases	Hospital mortality	30-Day mortality	Hospital mortality	Cases
Ascending Ao.	2328	206 (8.8)	2 (0.1)	2.55 (11.0)	3	1 (33.3)	0	1 (33.3)	0	1 (33.3)	225	5 (2.2)	0	12 (5.3)	8
Aortic Root	229	39 (17.0)	0	47 (20.5)	2	0 (0.0)	0	0	0	0	86	6 (7.0)	0	7 (8.1)	7
Arch	2038	156 (7.7)	3 (0.1)	192 (9.4)	35	1 (2.9)	0	1 (2.9)	0	0	371	14 (38.3)	0	17 (46.6)	173
Aortic root + acc. Ao. + Arch	199	22 (11.1)	0	25 (12.6)	3	0 (0.0)	0	0 (0.0)	0	0	50	2 (4.0)	0	4 (8.0)	10
Descending Ao.	56	6 (10.7)	0	9 (16.1)	37	5 (13.5)	0	6 (16.2)	75	4 (5.3)	267	5 (19)	1 (6.4)	10 (3.7)	3
Thoracoabdominal	10	0	0	1 (10.0)	11	1 (9.1)	0	1 (9.1)	49	3 (6.1)	222	8 (36)	0	15 (6.8)	0
TEVAR without BR	75	12 (16.0)	0	15 (20.0)	318	26 (8.2)	2 (0.6)	32 (10.1)	175	3 (1.7)	919	10 (1.1)	1 (0.1)	14 (1.5)	0
Open stent graft with/without BR	1035	98 (9.5)	0	118 (11.4)	71	12 (16.9)	0	12 (16.9)	222	12 (5.4)	256	6 (23)	0	10 (3.9)	48
Arch TEVAR with BR	15	4 (26.7)	0	5 (33.3)	77	7 (9.1)	0	7 (9.1)	66	1 (1.5)	324	4 (12)	2 (6.6)	6 (19)	0
Thoracoabdominal TEVAR with BR	2	1 (50.0)	0	1 (50.0)	1	0 (0.0)	0	0	1	0	12	1 (25.0)	0	1 (25.0)	0
Other	8	1 (12.5)	0	2 (25.0)	5	2 (40.0)	0	2 (40.0)	3	0	13	1 (77)	0	1 (77)	0
5995	545 (9.1)	5 (0.1)	670 (11.2)	563	55 (9.8)	2 (0.4)	62 (11.0)	1323	50 (38)	0	67	5 (7.5)	2205	42 (1.9)	4 (2)

(1), % mortality

Ao, aorta; AVP, aortic valve repair; AVR, aortic valve replacement; MVP, mitral valve repair; MVR, mitral valve replacement; CABG, coronary artery bypass grafting; TEVAR, thoracic endovascular aortic (aneurysm) repair, BR, branch reconstruction
Table 5 (continued)
(2) Non-dissection (total: 10,660)

	Unruptured								
	Cases	30-Day mortality	Hospital mortality	Hospital mortality	Cases	30-Day mortality	Hospital mortality	Hospital mortality	
			Hospital	After discharge			Hospital	After discharge	
1 Ascending Ao.	1406	35 (2.5)	0	54 (3.8)	52	6 (11.5)	0	11 (21.2)	81
2 Aortic root	1066	35 (3.3)	0	50 (4.7)	36	4 (11.1)	0	7 (19.4)	394
3 Arch	2193	65 (3.0)	2 (0.1)	104 (4.7)	97	16 (16.5)	1 (0.1)	18 (18.6)	48
4 Aortic root + a. Ao + Arch	206	6 (2.3)	0	9 (3.4)	8	1 (12.5)	0	3 (37.5)	32
5 Descending Ao.	264	7 (2.7)	1 (0.4)	14 (5.3)	40	6 (15.0)	1 (2.5)	8 (20.0)	0
6 Thoracoabdominal	305	22 (7.0)	0	35 (9.0)	36	8 (22.2)	0	9 (25.0)	0
7d TEVAR without BR	1970	26 (1.4)	1 (0.1)	46 (2.4)	281	49 (17.4)	2 (0.7)	59 (21.0)	0
7c Arch TEVAR with BR	940	20 (2.1)	2 (0.2)	35 (3.7)	78	12 (15.4)	0	19 (24.4)	0
7d Thoracoabdominal TEVAR with BR	19	1 (5.0)	0	1 (5.0)	4	1 (25.0)	0	1 (25.0)	0
9 Other	158	8 (5.1)	0	9 (5.7)	22	5 (22.7)	0	6 (27.3)	2
	9009	273 (2.8)	6 (0.1)	422 (4.3)	751	131 (17.4)	5 (0.7)	169 (22.5)	479
		273 (2.8)	6 (0.1)	422 (4.3)	751	131 (17.4)	5 (0.7)	169 (22.5)	479

1. % mortality
Ao aorta, AVP aortic valve repair, AVR aortic valve replacement, MVP mitral valve repair, MVR mitral valve replacement, CABG coronary artery bypass grafting, TEVAR thoracic endovascular aortic (aneurysm) repair, TBR thoracoabdominal branch reconstruction, SABR supra-aortic branch reconstruction.
valve positions (6976 cases in the mitral and 6061 cases in the tricuspid) but is less frequently observed in aortic valve positions (405 patients, only 2.7% of all aortic valve procedures). Mitral valve repair constituted 29.9% of all valvular operations and 62.2% of all mitral valve procedures. Hospital mortality for single valve replacement was 3.1% and 5.3% for the aortic and mitral positions, respectively, whereas for mitral valve repair, this was only 1.2%. The hospital mortality for redo valve surgery was 3.4% and 5.7% in the aortic and mitral positions, respectively. Finally, overall hospital mortality did not show dramatic improvement during the past 10 years (3.8% in 2007, 3.2% in 2012, and 3.6% in 2017).

Isolated CABG was performed in 12,629 cases, representing only 73.0% of the number performed 10 years ago (n=17,295). Among these, off-pump CABG was intended in 7431 cases (58.8%) at a success rate of 97.1%. The percentage of intended off-pump CABG in 2017 was less than 60% for the first time in 13 years, since 2004.

Hospital mortality associated with primary elective CABG procedures in 10,283 cases was 1.6%, unchanged from 2003 (1.5%). Hospital mortality for primary emergency CABG in 2211 cases was still as high as 7.1%. The result of conversion from off-pump CABG was 2.9%, and hospital mortality in this context was 6.9%. Hospital mortality was higher in patients with end-stage renal failure on dialysis, regardless of surgical procedures (on-pump arrest, on-pump beating, and off-pump). In this report, the number of concomitant CABGs alongside other major procedures was not included in the category of ischemic heart disease but in other categories such as valvular heart disease and thoracic aortic aneurysm. Accordingly, the overall number of CABGs, including concomitant CABG with other major procedures, remained more than 18,000 cases per year in 2017.

Measures for arrhythmia were performed primarily as concomitant procedures in 5066 cases, with hospital mortality of 2.8%. Implantation of pacemaker and implantable cardioverter–defibrillator was not included in this category.

Table 6: Pulmonary thromboembolism (total; 174)

Cases	30-Day mortality	Hospital mortality		
		Hospital	After discharge	
Acute	101	11 (10.9)	0	12 (11.9)
Chronic	73	3 (4.1)	0	7 (9.6)
Total	174	14 (8.0)	0	19 (10.9)

(), % mortality

Table 7: Implantation of VAD (total; 172)

Cases	30-Day mortality	Hospital mortality	
		Hospital	After discharge
Implantation of VAD	172	5 (2.9)	7 (4.1)

(), mortality %

VAD ventricular assist device

Table 8: Heart transplantation (total; 56)

Cases	30-Day mortality	Hospital mortality		
		Hospital	After discharge	
Heart transplantation	56	1 (1.8)	0	1 (1.8)
Heart and lung transplantation	0	0	0	0
Total	56	1 (1.8)	0	1 (1.8)

(), mortality %

In 2017, 20,746 procedures were performed for thoracic and thoracoabdominal aortic diseases; 10,086 and 10,660 were for aortic dissection and non-dissection, respectively. The number of surgeries for aortic dissection increased by 6.9% this year, compared with that in the preceding year (n=9441). The hospital mortality of procedures for Stanford type A acute aortic dissections remained as high as 11.2%. The number of procedures for non-dissected aneurysm increased by 10.6%, with overall hospital mortality of 5.5%, and 4.3% and 22.5% for unruptured and ruptured aneurysms, respectively. The rate of thoracic endovascular aortic repair (TEVAR) among all operative
procedures for aortic diseases is increasing. A total of 3563 patients with aortic dissection underwent stent graft placement: 1969 TEVARs and 1594 open stent graftings, respectively. The number of TEVARs for type B chronic aortic dissections was 1505 cases and accounted for 68.3% of total cases. The hospital mortality rates associated with TEVAR for type B aortic dissection were 11.0% and 3.1% in acute and chronic cases, respectively. A total of 4656 patients with non-dissected aortic aneurysm underwent stent graft placement, comprising 3269 TEVARs (a 6.7% increase compared with that in 2016, \(n = 3063 \)) and 1387 open stent graftings (a 16.2% increase compared with that in 2016, \(n = 1194 \)). The hospital mortality rates for TEVARs and open stenting were as follows: TEVAR, 2.8% and 21.7% for unruptured and ruptured aneurysms, respectively, and open stent grafting, 5.1% and 28.7% for unruptured and ruptured aneurysms, respectively.

Table 9 Total cases of general thoracic surgery during 2017

Diagnosis	Cases	%
Benign pulmonary tumor	2197	2.6
Primary lung cancer	44,140	51.7
Other primary malignant pulmonary tumor	423	0.5
Metastatic pulmonary tumor	8950	10.5
Tracheal tumor	120	0.1
Mesothelioma	698	0.8
Chest wall tumor	691	0.8
Mediastinal tumor	5197	6.1
Thymectomy for MG without thymoma	189	0.2
Inflammatory pulmonary disease	2423	2.8
Empyema	2962	3.5
Bullous disease excluding pneumothorax	400	0.5
Pneumothorax	14,499	17.0
Chest wall deformity	193	0.2
Diaphragmatic hernia including traumatic	28	0.0
Chest trauma excluding diaphragmatic hernia	443	0.5
Lung transplantation	68	0.1
Others	1686	2.0
Total	85,307	100.0

(B) General thoracic surgery

The 2017 survey of general thoracic surgery comprised 678 surgical units, with the bulk of data submitted via a web-based collection system of the NCD [1]. In total, 85,307 procedures were reported by general thoracic surgery departments in 2017, twice the number of operations in 2000 and 12,560 more than in 2012 (Fig. 2).

In 2017, 44,140 procedures for primary lung cancer were performed, a number that has increased annually. The 2017 value was 2.4 times that of 2000. Procedures for lung cancer represented 52% of all general thoracic surgery instances.

The number of video-assisted thoracoscopic surgery (VATS) instances, defined by a surgical procedure utilizing a skin incision longer than 8 cm and/or a minithoracotomy (hybrid) approach, has been noted since the 2015 annual report. The number of VATS procedures for benign pulmonary tumors and primary lung cancer, and the total number of VATS procedures in 2016 are shown in Tables 10, 11, 13, 16, 17, 18, 19, 20, 21, 22, 23, 25, 26, and 27, respectively.

In 2017, 2197 procedures were conducted for benign pulmonary tumors (Table 10), a similar number to that recorded in 2016. Hamartoma was the most frequent diagnosis in procedures for benign pulmonary tumors. VATS was performed for 2071 patients (94%).

Additional information on primary malignant pulmonary tumors is shown in Tables 11 and 12. With regard to lung cancer sub-type, adenocarcinoma was by far the most frequent diagnosis (71% of all lung cancer procedures), followed by squamous cell carcinoma (18%). Sublobar resection was performed in 11,784 lung cancer cases (27% of all cases) and lobectomy in 31,584 cases (72% of
Sleeve lobectomy was performed in 496 cases, and pneumonectomy was required in 403 cases (0.9% of all cases). VATS lobectomy for lung cancer was performed in 21,992 cases (70% of all lobectomy cases). The number of VATS procedures for primary lung cancer was slightly higher in 2017 than that in 2016. The number of the patients aged 80 years or older who underwent lung cancer surgery was 5779 (13%). In total, 121 patients died prior to hospital discharge within 30 days following surgery, and 32 patients died following discharge within 30 days after surgery. Therefore, 153 patients died within 30 days after surgery (30-day mortality rate 0.3%). In total, 247 patients died prior to discharge (hospital mortality rate 0.6%), and the 30-day mortality rate, according to procedure, was 0.2% for segmentectomy, 0.3% for lobectomy, and 2% for pneumonectomy. Interstitial pneumonia was the leading cause of death following lung cancer surgery, followed by pneumonia, respiratory failure, and cardiovascular events.

Table 10 Benign pulmonary tumor

Benign pulmonary tumor	Cases	30-Day mortality	Hospital	After discharge	VATS
Hamartoma	518	0	0	0	498
Sclerosing hemangioma	76	0	0	0	73
Papilloma	23	0	0	0	21
Mucous gland adenoma bronchial	2	0	0	0	2
Fibroma	132	0	0	0	129
Lipoma	4	0	0	0	4
Neurogenic tumor	21	0	0	0	17
Clear cell tumor	3	0	0	0	3
Leiomyoma	18	0	0	0	17
Chondroma	7	0	0	0	7
Inflammatory myofibroblastic tumor	5	0	0	0	5
Pseudolymphoma	19	0	0	0	17
Histiocytosis	13	0	0	0	12
Teratoma	6	0	0	0	2
Others	1350	2 (0.1)	2 (0.1)	5 (0.4)	1264
Total	2197	2 (0.1)	2 (0.09)	5 (0.2)	2071

(1), mortality %

Table 11 Primary malignant pulmonary tumor

Primary malignant pulmonary tumor	Cases	30-Day mortality	Hospital	After discharge	VATS
Lung cancer	44,563	122 (0.3)	32 (0.1)	247 (0.6)	32.206
Adenocarcinoma	44,140	121 (0.3)	31 (0.1)	244 (0.6)	32.206
Squamous cell carcinoma	31,119	52 (0.2)	15 (0.0)	91 (0.3)	
Large cell carcinoma	8132	56 (0.7)	14 (0.2)	121 (1.5)	
LCNEC	301	1 (0.3)	1 (0.3)	4 (1.3)	
Small cell carcinoma	601	3 (0.5)	0	4 (0.7)	
Adenosquamous carcinoma	823	2 (0.2)	0	4 (0.5)	
Carcinoma with pleomorphic, sarcomatoid or sarcomatous elements	493	2 (0.4)	0	9 (1.8)	
Carcinoid	233	0	0	0	
Carcinomas of salivary-gland type	38	0	0	1 (2.6)	
Unclassified	43	0	0	0	
Multiple lung cancer	1464	3 (0.2)	1 (0)	6 (0.4)	
Others	322	1 (0.3)	0	2 (0.6)	
Wedge resection	7099	14 (0.2)	8 (0.1)	28 (0.4)	6299
Segmental excision	4685	9 (0.19)	2 (0.0)	16 (0.3)	3698
(Sleeve segmental excision)	14	0	0	3	
Lobectomy	31,584	85 (0.3)	18 (0.1)	179 (0.6)	21,992
(Sleeve lobectomy)	496	1 (0.2)	2 (0.4)	2 (0.4)	71
Pneumonectomy	403	8 (2.0)	1 (0.2)	15 (3.7)	33
(Sleeve pneumonectomy)	10	2 (20.0)	0	2 (20.0)	2
Other bronchopneumectomy	33	0	0	0	4
Pleuropneumonectomy	1	0	0	0	0
Others	335	5 (1.5)	2 (0.6)	6 (1.8)	180
Unknown	0	0	0	0	
Sarcoma	56	1 (1.8)	1 (1.8)	1 (1.8)	
AAH	117	0	0	0	
Others	250	0	0	2 (0.8)	

(1), mortality %

There were 46 procedures for malignant tracheal tumor in 2017; however, 21 patients were treated with sleeve resection and reconstruction (Table 14).

Pleural tumors numbered 698 in 2017 (Table 15). Diffuse malignant pleural mesothelioma was the most frequent histologic diagnosis. Total pleurectomy was performed in 104 cases and extrapleural pneumonectomy in 65 cases. The 30-day mortality rate was 0% following total pleurectomy and 2% after extrapleural pneumonectomy, both representing better outcomes than before.

In total, 691 chest wall tumors were resected in 2017 (Table 16), 362 (52%) of which were benign. Among the 329 malignant chest wall tumors, 189 (57%) were metastatic tumors.
Mediastinal tumors were resected in 5197 patients in 2017, a slight increase from the previous year (Table 17). Thymic epithelial tumor—including 1939 thymomas, 368 thymic carcinomas, and 39 thymic carcinoids—was the most frequent mediastinal tumor type in 2017.

Thymectomy for myasthenia gravis was performed in 508 patients (Table 18); 319 procedures were associated with thymoma, and the remaining was not associated with thymoma.

Procedures for non-neoplastic disease were performed for 22,634 patients. There were 2423 cases of lung resection for inflammatory lung diseases (Table 19), 20% of which were associated with atypical mycobacterium infections and 15% with fungal infections. Procedures for inflammatory nodules were performed in cases where lung cancer was suspected prior to surgery (in 918 cases, 38%).

The 2962 procedures for empyema (Table 20) comprised 2226 cases (75%) of acute empyema and 736 cases of chronic empyema. Bronchopleural fistula was reported in 453 patients with acute empyema and in 355 patients with chronic empyema. The hospital mortality rate was 15% among patients with acute empyema with fistula.

In 2017, 101 operations were performed for descending necrotizing mediastinitis (Table 21). The hospital mortality rate was 7%. Furthermore, 400 procedures were conducted for bullous diseases (Table 22); lung volume reduction surgery was performed in only 28 patients.

A total of 14,499 procedures were performed for spontaneous pneumothorax (Table 23). The 11,113 procedures for primary pneumothorax comprised 2838 patients (26%) who underwent bullectomy only and 7488 patients (67%) who underwent an additional procedure. There were 3386
Table 13 Metastatic pulmonary tumor

Case Description	Cases	30-Day mortality	Hospital mortality	VATS	
		Hospital	After discharge		
Metastatic pulmonary tumor	8950	12 (0.1)	4 (0.0)	18 (0.2)	8298
Colorectal	4240	5 (0.1)	0	7 (0.2)	3965
Hepatobiliary/pancreatic	422	0	0	1 (0.2)	400
Uterine	448	0	0	0	425
Mammary	545	0	1 (0.2)	0	517
Ovarian	71	0	0	0	65
Testicular	72	1 (1.4)	1 (1.4)	1 (1.4)	66
Renal	746	0	0	0	706
Skeletal	144	0	0	1 (0.7)	124
Soft tissue	274	0	1 (0.4)	0	248
Otorhinolaryngological	435	0	0	0	397
Pulmonary	573	3 (0.5)	0	4 (0.7)	483
Others	980	3 (0.3)	1 (0.1)	4 (0.4)	902

(), mortality %

Table 14 Tracheal tumor

Case Description	Cases	30-Day mortality	Hospital mortality	
		Hospital	After discharge	
Tracheal tumor	120	2 (1.7)	2 (1.7)	4 (3.3)
A. Primary malignant tumor				
Histological classification				
Squamous cell carcinoma	10	0	0	0
Adenoid cystic carcinoma	20	0	0	0
Mucoepidermoid carcinoma	4	0	0	0
Others	12	0	1 (8.3)	0
Total	46	0	1 (2.2)	0
B. Metastatic/invasive malignant tumor (e.g., invasion of thyroid cancer)	36	0	1 (2.8)	2 (5.6)
C. Benign tracheal tumor				
Histological classification				
Papilloma	5	0	0	0
Adenoma	1	0	0	0
Neurofibroma	0	0	0	0
Chondroma	0	0	0	0
Leiomyoma	2	0	0	0
Others	30	2 (6.7)	0	2 (6.7)
Histology unknown	0	0	0	0
Total	38	2 (5.3)	0	2 (5.3)
Operation				
Sleeve resection with reconstruction	21	0	0	0
Wedge with simple closure	2	0	0	0
Wedge with patch closure	1	0	0	0
Total laryngectomy with tracheostomy	0	0	0	0
Others	3	0	0	0
Unknown	0	0	0	0
Total	27	0	0	0

(), mortality %
procedures for secondary pneumothorax, where COPD was by far the most prevalent associated disease (69%). The hospital mortality rate for secondary pneumothorax associated with COPD was 2.6%.

The 2017 survey reported 193 procedures for chest wall deformity (Table 24). However, this may have been underestimated, because the Nuss procedure for pectus excavatum was more likely to have been performed in pediatric surgery centers not associated with the Japanese Association for Thoracic Surgery.

Diaphragmatic hernia was treated surgically in 28 patients (Table 25). This figure may also have been underestimated, as procedures may have been classified as gastrointestinal surgery.

The survey reported 443 procedures for chest trauma excluding iatrogenic injuries (Table 26). In this context, hospital mortality rate was 5%.

Table 27 shows procedures for other diseases, including 89 cases of arteriovenous malformation and 92 cases of pulmonary sequestration.

A total of 68 lung transplantations were performed in 2017 (Table 28): 57 patients received lung transplants from brain-dead donors, and 11 patients received transplants from living, related donors.

The number of VATS procedures has increased annually to reach 68,458 (80% of all general thoracic surgeries) in 2017 (Table 29).

The details of tracheobronchoplasty, pediatric surgery, and combined resection of neighboring organs are shown in Tables 30, 31, 32, and 33.

Table 15	Tumor of pleural origin			
Histological classification	Cases	30-Day mortality	Hospital mortality	
		Hospital	After discharge	
Tumor of pleural origin				
Solitary fibrous tumor	131	0	0	0
Diffuse malignant pleural mesothelioma	264	2 (0.8)	0	8 (3.0)
Localized malignant pleural mesothelioma	35	1 (2.9)	0	1 (2.9)
Others	268	1 (0.4)	1 (0.4)	5 (1.9)
Total	698	4 (0.6)	1 (0.1)	14 (2.0)
Operative procedure	Cases	30-Day mortality	Hospital mortality	
		Hospital	After discharge	
Extrapleural pneumonectomy	65	1 (1.5)	0	1 (1.5)
Total pleurectomy	104	0	0	3 (2.9)
Others	95	1 (1.1)	0	4 (4.2)
Total	264	2 (0.8)	0	8 (3.0)

(), mortality %

Table 16	Chest wall tumor			
Chest wall tumor	Cases	30-Day mortality	Hospital mortality	
		Hospital	After discharge	
Primary malignant tumor	140	1 (0.7)	1 (0.7)	6 (4.3)
Metastatic malignant tumor	189	0	1 (0.5)	0
Benign tumor	362	1 (0.3)	0	1 (0.3)
Total	691	2 (0.3)	2 (0.3)	7 (1.0)

(), mortality %
Table 17 Mediastinal tumor

Cases	30-Day mortality	Hospital mortality	By VATS		
	Hospital	After discharge			
Mediastinal tumor	5197	3 (0.1)	3 (0.06)	9 (0.2)	3808
Thymoma*	1939	1 (0.1)	2 (0.1)	3 (0.2)	1222
Thymic cancer	368	0	1 (0.3)	1 (0.3)	189
Thymus carcinoid	39	0	0	0	19
Germ cell tumor	85	0	0	0	59
Benign	66	0	0	0	51
Malignant	19	0	0	0	8
Neurogenic tumor	489	0	0	0	447
Congenital cyst	1185	1 (0.1)	0	1 (0.1)	1071
Goiter	68	0	0	0	29
Lymphatic tumor	185	0	0	1 (0.5)	134
Excision of pleural recurrence of thymoma	27	0	0	0	20
Thymolipoma	19	0	0	0	14
Others	793	1 (0.1)	0	3 (0.4)	604

() , mortality %

Table 18 Thymectomy for myasthenia gravis with thymoma

Cases	30-Day mortality	Hospital mortality	By VATS		
	Hospital	After discharge			
Thymectomy for myasthenia gravis with thymoma	508	0	0	1 (0.2)	298
319	0	0	1 (0.3)	175	

() , mortality %

Table 19 Operations for non-neoplastic diseases

Cases	30-Day mortality	Hospital mortality	VATS		
	Hospital	After discharge			
Operations for non-neoplastic diseases	22,634	214 (0.9)	31 (0.1)	467 (2.1)	
Cases	30-Day mortality	Hospital mortality	VATS		
-------	------------------	--------------------	-----		
	Hospital	After discharge			
A. Inflammatory pulmonary disease	2423	3 (0.1)	2 (0.1)	9 (0.4)	2165
Tuberculous infection	46	0	0	0	41
Mycobacterial infection	496	0	1 (0.2)	1 (0.2)	447
Fungal infection	361	1 (0.3)	0	3 (0.8)	284
Bronchiectasis	58	0	0	0	43
Tuberculous nodule	79	0	0	0	70
Inflammatory pseudotumor	918	0	1 (0.1)	0	858
Interpulmonary lymph node	76	0	0	0	74
Others	389	2 (0.5)	0	5 (1.3)	348

() , mortality %
Table 20 B. Empyema

Cases	30-Day mortality	Hospital mortality	By VATS		
		Hospital	After discharge		
Acute empyema	2226	54 (2.4)	5 (0.2)	128 (5.8)	1858
With fistula	453	26 (5.7)	1 (0.2)	69 (15.2)	251
Without fistula	1756	27 (1.5)	4 (0.2)	57 (3.2)	1592
Unknown	17	1 (5.9)	0	2 (11.8)	15
Chronic empyema	736	20 (2.7)	3 (0.4)	58 (7.9)	406
With fistula	355	9 (2.5)	2 (0.6)	23 (6.5)	148
Without fistula	357	11 (3.1)	1 (0.3)	33 (9.2)	236
Unknown	24	0	0	2 (8.3)	22
Total	2962	74 (2.5)	8 (0.3)	186 (6.3)	2264

(), mortality %

Table 21 C. Descending necrotizing mediastinitis

Cases	30-Day mortality	Hospital mortality	VATS		
		Hospital	After discharge		
C. Descending necrotizing mediastinitis	101	5 (5.0)	0	7 (6.9)	75

(), mortality %

Table 22 D. Bullous diseases

Cases	30-Day mortality	Hospital mortality	VATS		
		Hospital	After discharge		
D. Bullous diseases	400	2 (0.5)	0	5 (1.3)	371
Emphysematous bulla	308	2 (0.6)	0	5 (1.6)	289
Bronchogenic cyst	13	0	0	0	12
Emphysema with LVRS	28	0	0	0	28
Others	51	0	0	0	42

(), mortality %

LVRS lung volume reduction surgery
Cases	30-Day mortality	Hospital mortality	VATS
	Hospital	After discharge	
14,999	70 (0.5)	16 (0.1)	156 (1.1)

Spontaneous pneumothorax

Operative procedure	Cases	30-Day mortality	Hospital mortality	VATS
		Hospital	After discharge	
Bullectomy	2838	2 (0.1)	1 (0.04)	8 (0.3)
Bullectomy with additional procedure	7488	7 (0.1)	1 (0.01)	17 (0.2)
Coverage with artificial material	7233	7 (0.1)	1 (0.01)	17 (0.2)
Parietal pleurectomy	28	0	0	0
Coverage and parietal pleurectomy	79	0	0	0
Others	148	0	0	0
Others	783	6 (0.8)	3 (0.4)	12 (1.5)
Unknown	4	0	0	0
Total	11,113	15 (0.1)	5 (0.04)	37 (0.3)

Secondary pneumothorax

Associated disease	Cases	30-Day mortality	Hospital mortality	VATS
		Hospital	After discharge	
COPD	2350	28 (1.2)	6 (0.3)	62 (2.6)
Tumorous disease	130	5 (3.8)	2 (1.5)	14 (10.8)
Catamenal	157	0	0	0
LAM	41	0	0	0
Others (excluding pneumothorax by trauma)	708	22 (3.1)	3 (0.4)	43 (6.1)
Unknown	0	0	0	0
Total	3386	55 (1.6)	11 (0.3)	119 (3.5)

Operative procedure	Cases	30-Day mortality	Hospital mortality	VATS
		Hospital	After discharge	
Bullectomy	571	6 (1.1)	3 (0.5)	18 (3.2)
Bullectomy with additional procedure	2016	25 (1.2)	6 (0.3)	44 (2.2)
Coverage with artificial material	1914	24 (1.3)	5 (0.3)	43 (2.2)
Parietal pleurectomy	8	0	0	0
Coverage and parietal pleurectomy	29	1 (3.4)	0	1 (3.4)
Others	65	0	1 (1.5)	0
Others	793	24 (3.0)	2 (0.3)	57 (7.2)
Unknown	6	0	0	0
Total	3386	55 (1.6)	11 (0.3)	119 (3.5)

(), mortality %
Table 24 F. Chest wall deformity

Cases	30-Day mortality	Hospital mortality	After discharge	
Funnel chest	193	1 (0.5)	0	1 (0.5)
Others	182	0	0	0
Others	11	1 (9.1)	0	1 (9.1)

(), mortality %

Table 25 G. Diaphragmatic hernia

Cases	30-Day mortality	Hospital mortality	VATS	
Congenital	28	1 (3.6)	0	1 (3.6)
Traumatic	10	0	0	0
Others	14	1 (7.1)	0	1 (7.1)

(), mortality %

Table 26 H. Chest trauma

Cases	30-Day mortality	Hospital mortality	VATS	
Total lung transplantation	443	20 (4.5)	0	23 (5.2)

(), mortality %

Table 27 I. Other respiratory surgery

Cases	30-Day mortality	Hospital mortality	VATS		
Arteriovenous malformation*	1585	38 (2.4)	5 (0.3)	79 (5.0)	1161
Pulmonary sequestration	89	0	0	0	84
Postoperative bleeding - air leakage	92	0	0	0	84
Chylothorax	492	17 (3.5)	1 (0.2)	30 (6.1)	339
Others	62	2 (3.2)	0	4 (6.5)	52

(), mortality %

Table 28 Lung transplantation

Cases	30-Day mortality	Hospital mortality	After discharge	
Single-lung transplantation from brain-dead donor	29	0	0	3 (10.3)
Bilateral lung transplantation from brain-dead donor	28	0	0	0
Lung transplantation from living donor	11	0	0	0
Total lung transplantation	68	0	0	3 (4.4)
Donor of living donor lung transplantation	19	0	0	0

(), mortality %

Table 29 Video-assisted thoracic surgery

Cases	30-Day mortality	Hospital mortality	VATS	
Video-assisted thoracic surgery	68,458	218 (0.3)	51 (0.07)	470 (0.7)

(), mortality %

(including thoracic sympathectomy 160)%
Table 30 Tracheobronchoplasty

Procedure	Cases	30-Day mortality	Hospital mortality	Hospital After discharge
Tracheobronchoplasty	774	7 (0.9)	4 (0.5)	16 (2.1)
Trachea	40	0	0	1 (2.5)
Sleeve resection with reconstruction	28	0	0	1 (3.6)
Wedge with simple closure	4	0	0	0
Wedge with patch closure	1	0	0	0
Total laryngectomy with tracheostomy	0	0	0	0
Others	7	0	0	0
Carinal reconstruction	31	1 (3.2)	0	2 (6.5)
Sleeve pneumonecctomy	12	2 (16.7)	0	2 (16.7)
Sleeve lobectomy	492	1 (0.2)	2 (0.4)	2 (0.4)
Sleeve segmental excision	14	0	0	0
Bronchoplasty without lung resection	29	1 (3.4)	0	1 (3.4)
Others	156	2 (1.3)	2 (1.3)	8 (5.1)

(), mortality %

Table 31 Pediatric surgery

Procedure	Cases	30-Day mortality	Hospital mortality	Hospital After discharge
Pediatric surgery	292	3 (1.0)	0	3 (1.0)

(), mortality %

Table 32 Combined resection of neighboring organ(s)

Organ resected	Cases	30-Day mortality	Hospital mortality	Hospital After discharge
Combined resection of neighboring organ(s)	1371	7 (0.5)	0	21 (1.5)

Organ resected	Cases	30-Day mortality	Hospital mortality	Hospital After discharge
A. Primary lung cancer				
Aorta	11	0	0	0
Superior vena cava	14	1 (7.1)	0	1 (7.1)
Brachiocephalic vein	8	0	0	1 (12.5)
Pericardium	108	1 (0.9)	0	2 (1.9)
Pulmonary artery	127	1 (0.8)	0	1 (0.8)
Left atrium	19	1 (5.3)	0	2 (10.5)
Diaphragm	55	1 (1.8)	0	1 (1.8)
Chest wall (including ribs)	352	4 (1.1)	0	12 (3.4)
Vertebral	19	0	0	0
Esophagus	3	0	0	0
Total	716	9 (1.3)	0	20 (2.8)

Organ resected	Cases	30-Day mortality	Hospital mortality	Hospital After discharge
B. Mediastinal tumor				
Aorta	7	0	0	0
Superior vena cava	54	0	0	0
Brachiocephalic vein	107	0	0	2 (1.9)
Pericardium	351	0	0	3 (0.9)
Pulmonary artery	3	0	0	1 (33.3)
Left atrium	0	0	0	0
Diaphragm	21	0	0	0
Chest wall (including ribs)	10	0	0	0
Vertebral	5	0	0	0
Esophagus	3	0	0	0
Lung	476	0	0	2 (0.4)
Total	1037	0	0	8 (0.8)

(), mortality %

Table 33 Operation of lung cancer invading the chest wall of the apex

Procedure	Cases	30-Day mortality	Hospital mortality	Hospital After discharge
15. Operation of lung cancer invading the chest wall of the apex	743	7 (0.9)	2 (0.3)	15 (2.0)

(), mortality %

Includes tumors invading the anterior apical chest wall and posterior apical chest wall (superior sulcus tumor, so-called Pancoast type)
During 2017, a total of 12,336 patients with esophageal diseases were registered from 523 institutions (response rate: 92.1%) affiliated with the Japanese Association for Thoracic Surgery and/or the Japan Esophageal Society. Among these institutions, there were 139 (26.6%) where 20 or more patients underwent esophageal surgeries within the year 2017, indicating no definite shift from esophageal procedures to high-volume institutions when compared with the data from 2016 (24.5%) (Table 34). Among 2427 patients with a benign esophageal disease, 1614 (66.5%) underwent surgery and 73 (3.0%) underwent endoscopic resection, whereas 740 (30.5%) patients did not undergo surgical treatment (Tables 35, 36). Among 10,554 patients with a malignant esophageal tumor, 8525 (80.8%) underwent resection, esophagectomy was performed for 6319 (74.1%), and endoscopic mucosal resection (EMR) or endoscopic submucosal dissection (ESD) was performed for 2170 (25.5%); 2025 (23.8%) patients did not undergo any resection (Tables 36 and 37). Annual trends among registered inpatients with esophageal diseases have not changed for the past last decades (Fig. 3).

Among benign esophageal diseases (Table 35), hiatal hernia, achalasia, esophageal varices, and esophagitis (including reflux esophagitis) were the most common conditions in Japan. On the other hand, benign esophageal tumors, spontaneous rupture of the esophagus, and congenital esophageal atresia were common diseases that were surgically treated in addition to the aforementioned diseases. Open surgery was performed in 1009 (57.7%) patients with a benign esophageal disease, with 30-day mortality in 3 (0.3%) patients, whereas thoracoscopic and/or laparoscopic surgery was performed for 605 (37.5%) patients, with no instances of 30-day mortality. The difference in these death rates between open and scopic surgery appears to be related to conditions requiring open surgery.

The majority of malignant diseases were carcinomas (Table 36). Among esophageal carcinomas, the incidence of squamous cell carcinoma was 88.8%, whereas that of adenocarcinomas, including Barrett’s cancer, was 4.3%. The resection rate for patients with a squamous cell carcinoma was 79.9%, whereas that for patients with adenocarcinoma was 93.8%.

On the basis of location, cancer in the thoracic esophagus was the most common (Table 37). Among 4303 patients (40.9% of total esophageal malignancies) with superficial esophageal cancers within mucosal and submucosal layers, 6319 (60.1%) patients underwent esophagectomy, whereas 2170 (20.6%) patients underwent EMR or ESD. The 30-day mortality rate and hospital mortality rate after esophagectomy for patients with a superficial cancer were 0.5% and 1.0%, respectively.

Multiple primary cancers were observed in 2077 (19.8%) of all 10,514 patients with esophageal cancer. Synchronous cancer was found in 1008 (9.3%) patients, whereas metachronous cancer was observed in 1063 (10.1%) patients. The stomach and head and neck were common sites for both synchronous and metachronous malignancies (Table 37).

Among esophagectomy procedures, transthoracic esophagectomy via right thoracotomy was most commonly adopted for patients with a superficial cancer, as well as for those with advanced cancer (Table 38). Transhiatal esophagectomy, which is commonly performed in Western countries, was adopted in only 9.1% of patients with a superficial cancer or advanced cancer who underwent esophagectomy in Japan. Thoracoscopic and/or laparoscopic esophagectomy was adopted for 1434 patients (74.0%) with a superficial cancer and for 2422 patients (55.3%) with an advanced cancer. The number of cases of thoracoscopic and/or laparoscopic surgery for superficial or advanced cancer has been increasing for a number of years (Fig. 4).

Combined resection of the neighboring organs during the resection of an esophageal cancer was performed in 296 patients (Tables 38 and 39). Resection of the aorta, together with esophagectomy, was performed in eight cases. Tracheal and/or bronchial resection combined with esophagectomy was performed for 20 patients, with both 30-day mortality rate and hospital mortality rate at 0%. Lung resection combined with esophagectomy was performed for 60 patients, with both 30-day mortality rate and hospital mortality rate at 0%.

Salvage surgery following definitive (chemo)radiotherapy was performed for 230 patients, with 30-day mortality rate at 1.7% and hospital mortality rate at 2.6% (Table 38).
Table 35 Benign esophageal diseases

Operation (+)	Number of patients	Hospital mortality	Endoscopic resection	Operation (-)	Total								
		~30 days 31–90 days	~30 days 31–90 days										
operation	Total Open T/L*3	Open surgery	Total (including after 91-day mortality)	Total (including after 91-day mortality)									
1. Achalasia	261	146	115	0	0	0	32	295					
2. Benign tumor	140	86	54	0	0	1 (1.2)	2 (1.4)	14	193				
(1) Leiomyoma	78	46	32	0	0	1 (2.2)	2 (2.6)	10	114				
(2) Cyst	16	10	6	0	0	0	0	16					
(3) Others	46	30	16	0	0	0	0	13	63				
(4) Not specified	0	0	0	0	0	0	0	0					
3. Hiatal hernia	42	28	14	0	0	0	0	13					
4. Spontaneous rupture of the esophagus	110	96	14	1 (1.0)	2 (2.1)	3 (3.1)	0	2 (14.3)	2 (14.3)	5 (4.5)	10	120	
5. Esophago-tracheal fistula	14	13	1	0	0	0	0	0	0	4	18		
6. Congenital esophageal atresia	13	13	0	0	0	0	0	0	0	7	20		
7. Congenital esophageal stenosis	2	2	0	0	0	0	0	0	0	19	21		
8. Esophageal varices	93	52	41	0	0	0	0	0	0	93			
9. Corrosive stricture of the esophagus	11	56	0	1 (1.8)	0	1 (1.8)	0	0	1 (1.8)	471	527		
10. Esophagitis, esophageal ulcer	56	56	0	1 (1.6)	1 (1.6)	2 (3.2)	0	0	0	2 (2.6)	34	134	
(1) Laparotomy	12	12	0	0	0	0	0	0	0	12			
(2) Sclerotherapy	89	89	0	0	0	0	0	0	0	89			
(3) EVL	329	329	0	0	0	0	0	0	0	329			
12. Others	76	63	13	1 (1.6)	1 (1.6)	2 (3.2)	0	3 (0.5)	4 (0.7)	12	73	740	2427

(1), mortality
T/L, thoracoscopic and/or laparoscopic %
Table 36 Malignant esophageal diseases (histologic classification)

Carcinomas	Resection (+)	Resection (–)	Total
	8473	2025	10,498
1 Squamous cell carcinoma	7455	1870	9325
2 Basaloid(-squamous)carcinoma	86	8	94
3 Carcinosarcoma	48	5	53
4 Adenocarcinoma in the Barrett’s esophagus	426	28	454
5 Other adenocarcinoma	369	62	431
6 Adenosquamous carcinoma	20	3	23
7 Mucoepidermoid carcinoma	2	0	2
8 Adenoid cystic carcinoma	4	0	4
9 Endocrine cell carcinoma	39	26	65
10 Undifferentiated carcinoma	8	6	14
11 Others	16	17	33
Other malignancies	36	4	40
1 Malignant non-epithelial tumors	8	1	9
2 Malignant melanoma	20	2	22
3 Other malignant tumors	8	1	9
Not specified	16	0	16
Total	8525	2029	10,554

Resection: including endoscopic resection
Table 37 Malignant esophageal disease (clinical characteristics)

Location	Cases	Hospital mortality	Total (including after 91-day mortality)				
	~30 days	31–90 days					
1. Esophageal cancer	6319	33 (0.5)	30 (0.5)	83 (1.3)	2170	2025	10,514
(1) Cervical esophagus	223	0	0	2 (0.9)	102	142	467
(2) Thoracic esophagus	5117	30 (0.6)	27 (0.5)	75 (1.5)	1637	1682	8436
(3) Abdominal esophagus	718	2 (0.3)	3 (0.4)	5 (0.7)	119	99	936
(4) Multiple cancers	261	1 (0.4)	0	1 (0.4)	216	41	518
(5) Others/not described	0	0	0	0	96	61	157
2. Multiple primary cancers	1167	7 (0.6)	9 (0.8)	19 (1.6)	611	299	2077
(1) Head and neck	658	6 (0.9)	8 (1.2)	16 (2.4)	260	145	1063
(2) Stomach	203	3 (1.5)	4 (2.0)	9 (4.4)	66	34	303
(3) Colorectum	83	1 (1.2)	0	1 (1.2)	16	12	111
(4) Lung	42	1 (2.4)	0	1 (2.4)	8	17	67
(5) Pancreas	2	0	0	0	3	2	7
(6) Liver	6	0	0	0	1	2	9
(7) Others	56	0	1 (1.8)	0	16	17	89
(8) Triple cancers	35	0	1 (2.9)	1 (2.9)	17	11	63
(9) Unknown	0	0	0	0	0	0	0
2. Metachronous	509	1 (0.2)	1 (0.2)	3 (0.6)	351	154	1014
(1) Head and neck	98	0	0	0	117	31	246
(2) Stomach	104	0	0	0	76	31	211
(3) Colorectum	70	0	0	1 (1.4)	35	20	125
(4) Lung	47	0	0	0	10	19	76
(5) Pancreas	3	0	0	0	2	0	5
(6) Liver	5	0	0	0	1	2	8
(7) Others	148	1 (0.7)	1 (0.7)	2 (1.4)	60	31	239
(8) Triple cancers	34	0	0	0	49	20	103
(9) Unknown	0	0	0	0	1	0	1
Unknown	0	0	0	0	0	0	0

()*, mortality %

EMR endoscopic mucosal resection (including endoscopic submucosal dissection)
Fig. 3 Annual trend of inpatients with esophageal diseases. EMR endoscopic mucosal resection (including endoscopic submucosal)
Table 38: Malignant esophageal disease (surgical procedures)

Operation (+)	Cases	Hospital mortality	Thoracoscopic and/or laparoscopic procedure	EMR or ESD					
	~ 30 days	31–90 days	Total (including after 91-day mortality)	~ 30 days	31–90 days	Total (including after 91-day mortality)			
Superficial cancer (T1)	1938	10 (0.5)	6 (0.3)	19 (1.0)	1434	8 (0.6)	5 (0.3)	15 (1.0)	2162
Mucosal cancer (T1a)	346	1 (0.3)	1 (0.3)	4 (1.2)	210	1 (0.5)	1 (0.5)	4 (1.9)	1557
Esophagectomy	1938	10 (0.5)	6 (0.3)	19 (1.0)	1434	8 (0.6)	5 (0.3)	15 (1.0)	2162
(1) Transhiatal esophagectomy,	176	0 (0.0)	0 (0.0)	1 (0.6)	85	0 (0.0)	0 (0.0)	1 (1.2)	
mediascope-assisted esophagectomy									
(2) Thoracic (rt.) esophagectomy	1649	10 (0.6)	5 (0.3)	16 (1.0)	1296	8 (0.6)	5 (0.4)	13 (1.0)	
(3) Transhiatal esophagectomy and	31	0 (0.0)	1 (3.2)	1 (3.2)	9	0 (0.0)	0 (0.0)		
reconstruction									
(4) Cervical esophageal resection	20	0 (0.0)	0 (0.0)	0 (0.0)	5	0 (0.0)	0 (0.0)		
and reconstruction									
(5) Robot-assisted esophagectomy	19	0 (0.0)	0 (0.0)	0 (0.0)	19	0 (0.0)	0 (0.0)		
(6) Others	28	0 (0.0)	0 (0.0)	0 (0.0)	12	0 (0.0)	0 (0.0)		
(7) Esophagectomy without	9	0 (0.0)	0 (0.0)	1 (11.1)	2	0 (0.0)	0 (0.0)	1 (50.0)	
reconstruction									
(8) Not specified	6	0 (0.0)	0 (0.0)	0 (0.0)	6	0 (0.0)	0 (0.0)		

Advanced cancer (T2–T4)

Esophagectomy	4377	23 (0.5)	24 (0.5)	64 (1.5)	2422	11 (0.5)	10 (0.4)	28 (1.2)	5
(1) Transhiatal esophagectomy,	240	1 (0.4)	1 (0.4)	2 (0.8)	92	0 (1.1)	1 (1.1)		
mediascope-assisted esophagectomy									
(2) Thoracic (rt.) esophagectomy	3818	21 (0.6)	20 (0.5)	55 (1.4)	2255	10 (0.4)	9 (0.4)	25 (1.1)	
and reconstruction									
(3) Thoracic (lt.) esophagectomy	89	0 (0.0)	0 (0.0)	0 (0.0)	4	0 (0.0)	0 (0.0)		
and reconstruction									
(4) Cervical esophageal resection	105	0 (0.0)	0 (0.0)	1 (1.0)	6	0 (0.0)	0 (0.0)		
and reconstruction									
(5) Robot-assisted esophagectomy	19	0 (0.0)	0 (0.0)	0 (0.0)	19	0 (0.0)	0 (0.0)		
(6) Others	57	1 (1.8)	1 (1.8)	2 (3.5)	22	1 (4.5)	0 (4.5)		
(7) Esophagectomy without	43	0 (0.0)	2 (4.7)	4 (9.3)	19	0 (0.0)	0 (0.0)	1 (5.3)	
reconstruction									
(8) Not specified	6	0 (0.0)	0 (0.0)	0 (0.0)	5	0 (0.0)	0 (0.0)		
(Depth not specified)	4	0 (0.0)	0 (0.0)	0 (0.0)	3	0 (0.0)	0 (0.0)		3

Combined resection of other organs

Combined resection of other organs	296	3 (1.0)	3 (1.0)	7 (2.4)	70	1 (1.4)	0 (1.4)	1 (1.4)	25
(1) Aorta	8	1 (12.5)	0 (12.5)						
(2) Trachea, bronchus	20	0 (0.0)	0 (0.0)	1 (5.0)					
(3) Lung	60	0 (0.0)	0 (0.0)						
(4) Others	208	2 (1.0)	3 (1.4)	5 (2.4)					
Unknown	0	0 (0.0)	0 (0.0)						

Salvage surgery

| Salvage surgery | 230 | 4 (1.7) | 1 (0.4) | 6 (2.6) | 70 | 1 (1.4) | 0 (1.4) | | 25 |
Table 39 Mortality after combined resection of the neighbouring organs

Year	Esophagectomy	Combined resection													
	a: number of patients who underwent the operation	b: number of patients died within 30 days after operation	c: % ratio of b/a, i.e., direct operative mortality												
	a	b	c	a	b	c	a	b	c	a	b	c	a	b	c
1996	4194	120	2.86%	7	3	42.86%	24	0	0.00%	50	2	4.00%	78	4	5.13%
1997	4441	127	2.86%	1	0	0.00%	34	5	14.71%	56	1	1.79%	94	3	3.19%
1998	4878	136	2.79%	4	0	0.00%	29	0	0.00%	74	1	1.35%	128	2	1.56%
1999	5015	116	2.31%	5	0	0.00%	23	2	8.70%	68	0	0.00%	122	1	0.82%
2000	5350	81	1.51%	2	0	0.00%	23	2	8.70%	69	0	0.00%	96	1	1.04%
2001	5521	110	1.99%	1	0	0.00%	26	1	3.85%	83	3	3.61%	99	2	2.02%
2002	4904	66	1.35%	3	1	33.33%	20	2	10.00%	63	0	0.00%	63	1	1.59%
2003	4639	45	0.97%	0	0	0.00%	24	2	8.33%	58	0	0.00%	88	1	1.14%
2004	4739	64	1.35%	2	0	0.00%	17	0	0.00%	59	5	8.47%	119	2	1.68%
2005	5163	52	1.01%	1	0	0.00%	11	1	9.09%	67	1	1.49%	73	1	1.37%
2006	5236	63	1.20%	0	0	0.00%	17	0	0.00%	62	2	3.23%	122	3	2.46%
2007	4990	60	1.20%	0	0	0.00%	25	1	4.00%	44	1	2.27%	138	2	1.45%
2008	5124	63	1.23%	0	0	0.00%	17	1	5.88%	48	1	2.08%	185	0	0.00%
2009	5260	63	1.20%	0	0	0.00%	19	2	10.53%	58	2	3.45%	211	3	1.42%
2010	5180	45	0.87%	2	0	0.00%	33	0	0.00%	58	0	0.00%	245	5	2.04%
2011	5430	38	0.70%	4	0	0.00%	26	0	0.00%	41	0	0.00%	179	5	2.79%
2012	6055	47	0.78%	2	0	0.00%	23	1	4.35%	69	0	0.00%	240	1	0.42%
2013	5824	41	0.70%	2	0	0.00%	44	0	0.00%	77	1	1.30%	156	3	1.92%
2014	6244	47	0.75%	2	0	0.00%	24	0	0.00%	77	3	3.90%	227	3	1.32%
2015	6151	39	0.63%	3	0	0.00%	15	0	0.00%	67	3	4.48%	266	4	1.50%
2016	6158	40	0.65%	3	0	0.00%	12	0	0.00%	56	0	0.00%	155	1	0.65%
2017	6319	33	0.52%	8	1	12.50%	20	0	0.00%	60	0	0.00%	208	2	0.96%
Total	116,815	1496	1.28%	52	5	9.62%	506	20	3.95%	1364	26	1.91%	3292	50	1.52%

Fig. 4 Annual trend of video-assisted esophagectomy for esophageal malignancy

![Graph showing annual trend of video-assisted esophagectomy for esophageal malignancy](#)
We aim to continue our efforts to gather all-encompassing survey data via more active collaboration with the Japan Esophageal Society and other related institutions.

Acknowledgements On behalf of the Japanese Association for Thoracic Surgery, the authors thank the Heads of the Affiliate and Satellite Institutes of Thoracic Surgery for their cooperation, and the Councilors of the Japan Esophageal Society.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

1. Shimizu H, Endo S, Natsugoe S, et al. Thoracic and cardiovascular surgery in Japan during 2016—annual report by the Japanese Association for Thoracic Surgery. Gen Thorac Cardiovasc Surg. 2019;67:377–411.
2. Ueda Y, Fujiy Y, Kuwano H. Thoracic and cardiovascular surgery in Japan during 2007—annual report by the Japanese Association for Thoracic Surgery. Gen Thorac Cardiovasc Surg. 2009;57:488–513.
3. Masuda M, Kuwano H, Okumura M, et al. Thoracic and cardiovascular surgery in Japan during 2012—annual report by the Japanese Association for Thoracic Surgery. Gen Thorac Cardiovasc Surg. 2014;62:734–64.
4. Kazui T, Wada H, Fujita H. Thoracic and cardiovascular surgery in Japan during 2003—annual report by the Japanese Association for Thoracic Surgery. Jpn J Thorac Cardiovasc Surg. 2005;53:517–36.
5. Kazui T, Osada H, Fujita H. Thoracic and cardiovascular surgery in Japan during 2004—annual report by the Japanese Association for Thoracic Surgery. Jpn J Thorac Cardiovasc Surg. 2006;54:363–86.

Publisher's Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Affiliations

Committee for Scientific Affairs, The Japanese Association for Thoracic Surgery1 · Hideyuki Shimizu2 · Morihito Okada3 · Akira Tangoku4 · Yuichiro Doki5 · Shunsuke Endo6 · Hirotugu Fukuda7 · Yasutaka Hirata8 · Hisashi Iwata9 · Junjiro Kobayashi10 · Hiraku Kumamaru11 · Hiroaki Miyata12 · Noboru Motomura13 · Shoji Natsugoe14 · Soji Ozawa15 · Yoshikatsu Saiki16 · Aya Saito13 · Hisashi Saji17 · Yukio Sato18 · Tsuyoshi Taketani19 · Kazuo Tanemoto20 · Wataru Tatsuishi21 · Yasushi Toh22 · Hiroyuki Tsukihar28 · Masayuki Watanabe23 · Hiroyuki Yamamoto12 · Kohei Yokoi24 · Yutaka Okita25

Hideyuki Shimizu
survey-adm@umin.net

1 Committee for Scientific Affairs, The Japanese Association for Thoracic Surgery, Tokyo, Japan
2 Department of Cardiovascular Surgery, Keio University, 35, Shinnomachi, Shinjuku-Ku, Tokyo, Japan
3 Department of Surgical Oncology, Hiroshima University, Hiroshima, Japan
4 Department of Thoracic, Endocrine Surgery and Oncology, Institute of BioMedicine, Tokushima University Graduate School, Tokushima, Japan
5 Department of Gastroenterological Surgery, Osaka University, Suita, Osaka, Japan
6 Department of Thoracic Surgery, Jichi Medical University, Shimotsuke, Japan
7 Department of Cardiac and Vascular Surgery, Dokkyo Medical University School of Medicine, Shimotsuga-gun, Tochigi, Japan
8 Department of Cardiac Surgery, The University of Tokyo Hospital, Tokyo, Japan
9 Department of General Thoracic Surgery, Gifu University Hospital, Gifu, Japan
10 Department of Cardiovascular Surgery, National Cerebral and Cardiovascular Center, Suita, Japan
11 Department of Healthcare Quality Assessment, Graduate School of Medicine, University of Tokyo, Tokyo, Japan
12 Department of Health Policy and Management, Keio University, Tokyo, Japan
13 Department of Cardiovascular Surgery, Toho University Sakura Medical Center, Sakura, Japan
14 Department of Digestive Surgery, Breast and Thyroid Surgery, Kagoshima University Graduate School of Medicine, Kagoshima, Japan
15 Department of Gastroenterological Surgery, Tokai University School of Medicine, Isehara, Japan
16 Division of Cardiovascular Surgery, Tohoku University Graduate School of Medicine, Sendai, Japan
17 Department of Chest Surgery, St. Marianna University School of Medicine, Kawasaki, Japan
18 Department of Thoracic Surgery, University of Tsukuba, Tsukuba, Japan
19 Department of Cardiovascular Surgery, Mitsu Memorial Hospital, Tokyo, Japan
20 Department of Cardiovascular Surgery, Kawasaki Medical School, Kurashiki, Japan
21 Division of Cardiovascular Surgery, Department of General Surgical Science, Gunma University, Maebashi, Japan
22 Department of Gastroenterological Surgery, National Hospital Organization Kyushu Cancer Center, Fukuoka, Japan
23 Department of Gastroenterological Surgery, Cancer Institute Hospital of Japanese Foundation for Cancer Research, Tokyo, Japan
24 Chunichi Hospital, Nagoya, Japan
25 Cardio-Aortic Center, Takatsuki General Hospital, Takatsuki, Japan