Decay properties of b-hadrons with the ATLAS experiment

Leonid Gladilina,b,1

a Lomonosov Moscow State University Skobeltsyn Institute of Nuclear Physics (SINP MSU), Russian Federation
b Dzelepop Laboratory of Nuclear Problems, Joint Institute for Nuclear Research (DLNP JINR), Russian Federation

Abstract

Recent results of the ATLAS experiment at LHC on decay properties of b-hadrons are reviewed. The time-dependent CP asymmetry parameters have been measured in $B^0_s \to J/\psi\phi$ decays using flavour tagging. The parity-violating decay asymmetry parameter α_{ψ} and the helicity amplitudes have been measured for the decay $\Lambda^0_b \to J/\psi\Lambda^0$. The branching fraction $\mathcal{B}(B^+ \to \chi_c K^+)$ has been measured with χ_c reconstruction in the decay $\chi_{c1} \to J/\psi\gamma$. An excited B^0_s state has been observed through its decays to the ground B^0_s state and two oppositely charged pions. The mass and decay of this state are consistent with expectations for the second S-wave state of the B^0_s meson, $B^0_s(2S)$.

Keywords: heavy quarks, B physics, CP violation, parity violation, ATLAS, LHC

1. Introduction

The ATLAS detector [1] at the Large Hadron Collider (LHC) consists of several subsystems including the inner detector (ID), the electromagnetic and hadronic calorimeters, and the muon spectrometer (MS). Muon reconstruction at ATLAS makes use of both the ID and the MS, and covers the pseudorapidity range $|\eta| < 2.5$. A three-level trigger system allows ATLAS to effectively select events containing single muons with large transverse momentum p_T (above ~ 20 GeV), and events with two muons with the pair invariant mass between 2.5 GeV and 4.3 GeV. In such J/ψ trigger, the minimal muon p_T thresholds of $4-6$ GeV have been used in 2011-2012. During this period ATLAS has accumulated data samples of pp collisions corresponding to luminosities of ~ 5 fb$^{-1}$ at $\sqrt{s} = 7$ GeV and ~ 20 fb$^{-1}$ at $\sqrt{s} = 8$ GeV.

In this note, recent ATLAS results on decay properties of b-hadrons are presented. The time-dependent CP asymmetry parameters are measured in $B^0_s \to J/\psi\phi$ decays using flavour tagging [2]. The parity-violating decay asymmetry parameter α_{ψ} and the helicity amplitudes are measured for the decay $\Lambda^0_b \to J/\psi\Lambda^0$ [3]. The branching fraction $\mathcal{B}(B^+ \to \chi_c K^+)$ is measured with χ_c reconstruction in the decay $\chi_{c1} \to J/\psi\gamma$ [4]. An excited B^0_s state is observed through its decays to the ground B^0_s state and two oppositely charged pions [5]. Corrections for detector effects are done with high-statistics Monte Carlo (MC) samples. Uncertainties due to uncertainties of simulation of physics processes and detector, MC statistic, luminosity measurement and assumptions of the analyses procedures are included into systematic errors. The measurements are compared to theoretical predictions and to the measurements by other experiments.

2. CP violation for the $B^0_s \to J/\psi\phi$ decay

The decay $B^0_s \to J/\psi\phi$ is expected to be sensitive to new physics contributions. CP violation in the decay occurs due to interference between direct decays and decays with $B^0_s - B^0_s$ mixing. The CP violating phase ϕ_s is defined as the weak phase difference between the $B^0_s - B^0_s$ mixing amplitude and the $b \to c\bar{c}s$ decay ampli-

Email address: gladilin@mail.cern.ch (Leonid Gladilin)

1On behalf of the ATLAS Collaboration
Figure 1: Left: The mass fit projection for the $B_s^0 \rightarrow J/\psi\phi$. The red line shows the total fit, the dashed green line shows the signal component while the dotted blue line shows the contribution from $B_s^0 \rightarrow J/\psi K^{*0}$ events. Right: Proper decay time fit projection for the $B_s^0 \rightarrow J/\psi\phi$. The red line shows the total fit while the green dashed line shows the total signal. The light and heavy components of the signal are shown in green as a dotted and a dash-dotted line, respectively. The total background is shown as a blue dashed line with a grey dotted line showing the prompt background. The pull distributions at the bottom show the difference between data and fit value normalized to the data statistical uncertainty.

The oscillation frequency of B_s^0 meson mixing is characterized by the mass difference of the heavy (B_{H}) and light (B_L) mass eigenstates. In the Standard Model (SM), the phase ϕ_s is small, $\phi_s \approx -0.037 \pm 0.002$ rad [6]. Another physical quantity involved in $B_s^0 - B_{H}^0$ mixing is the width difference $\Delta \Gamma = \Gamma_L - \Gamma_H$, which is predicted to be $\Delta \Gamma = 0.087 \pm 0.021$ ps$^{-1}$ [7]. Although the $\Delta \Gamma$ value is not expected to be significantly affected by physics beyond the SM, its measurement allows theoretical predictions to be tested [8].

In this report, an update [2] to the previous ATLAS measurement [9] of the $B_s^0 \rightarrow J/\psi\phi$ decay with the addition of flavour tagging, is presented. The analysis uses 4.9 fb$^{-1}$ of pp data at $\sqrt{s} = 7$ TeV. The CP states are separated statistically using an angular analysis of the final-state particles. Flavour tagging is used to reduce the uncertainty of the measured value of ϕ_s. The determination of the initial flavour of neutral B-mesons is inferred using information from the B-meson that is typically produced from the other b-quark in the event. To study and calibrate the opposite-site tagging, events containing the decays of $B^\pm \rightarrow J/\psi K^\mp$ are used. Two methods are used to infer the flavour of the opposite-side b-quark, with varying efficiencies and discriminat-

ing powers. The measured charge of a muon from the semileptonic decay of the B meson provides strong separation power. The separation power is enhanced by considering a weighted sum of the charge of the tracks in a cone around the muon. If no muon is present, a weighted sum of the charge of tracks associated with a b-tagged jet [10] provides some separation.

Candidates for $B_s^0 \rightarrow J/\psi(\mu^+\mu^-)\phi(K^+K^-)$ are reconstructed by fitting two oppositely-charged muon tracks and two additional oppositely-charged tracks, assumed to be kaons, to a common vertex. The fit is constrained by fixing the invariant mass calculated from the two muon tracks to the nominal J/ψ mass [11]. The invariant mass of two kaon tracks is required to fall within the interval $1.0085 < m(K^+K^-) < 1.0305$ GeV. For each selected candidate the proper decay time t is estimated as $t = L_{xy} m(B_s^0)/p_T$, where p_T is the reconstructed transverse momentum of the B_s^0 meson candidate and $m(B_s^0)$ is the nominal B_s^0 mass [11]. The transverse decay length, L_{xy}, is the displacement in the transverse plane of the B_s^0 meson decay vertex with respect to the primary vertex, projected onto the direction of the B_s^0 transverse momentum.

An unbinned maximum likelihood fit is performed on
the selected candidates to extract the parameters of the $B^0_s \to J/\psi (\mu^+\mu^-) \phi (K^+K^-)$ decay. The fit uses information about the reconstructed B^0_s mass and its uncertainty, the measured proper decay time t and its uncertainty, the tag probability, and three transversity angles of each candidate. The transversity angles are defined in the J/ψ and ϕ rest frames [2].

Figure 1 shows the mass and the proper decay time fit projections for the $B^0_s \to J/\psi$. The number of signal B^0_s mesons extracted from the fit is 22670 ± 150. The signal contribution from $B^0_s \to J/\psi K^+K^-$ and $B^0_s \to J/\psi \phi$ is measured to be consistent with zero. The results for ϕ_s and $\Delta \Gamma_s$, assuming $\Delta \Gamma_s$ is positive, are

$$\phi_s = 0.12 \pm 0.25 \text{(stat)} \pm 0.05 \text{(syst)} \text{rad},$$

$$\Delta \Gamma_s = 0.053 \pm 0.021 \text{(stat)} \pm 0.010 \text{(syst)} \text{ps}^{-1}.$$

Figure 2 shows the likelihood contours in the ϕ_s–$\Delta \Gamma_s$ plane. The results are consistent with the values predicted in the Standard Model. The values measured for all physical parameters [2] are consistent with those obtained in the untagged analysis [9]. The overall uncertainty on ϕ_s is significantly reduced.

3. Parity violation for the $\Lambda_b^0 \to J/\psi \Lambda^0$ decay

The decay asymmetry parameter α enters into the angular distribution of a two-body spin 1/2 particle decay as

$$w(\cos \theta) = (1 + \alpha P \cos \theta)/2,$$

where P is the polarization of the particle and θ is the angle between the polarization vector and the direction of the decay product in the particle’s rest frame. Parity violation is not maximal in hadrons weak decays due to the presence of strongly bound spectator quarks. The spectator quarks effects can be computed for decays of heavy baryons, where the factorization theorem and perturbative QCD (pQCD) are applicable. The decay $\Lambda_b^0 \to J/\psi \Lambda^0$ can be described by four helicity amplitudes: $a_0 \equiv A(1/2, 0)$, $a_+ \equiv A(-1/2, 0)$, $b_+ \equiv A(-1/2, -1)$ and $b_- \equiv A(1/2, 1)$, where first and second parameters represent the J/ψ and Λ^0 helicities, respectively. A sum of the amplitudes squared is normalized to unity, and the parity-violating decay asymmetry parameter α_b is given by [12]

$$\alpha_b = |a_+|^2 - |a_0|^2 + |b_0|^2 - |b_+|^2.$$

The full angular probability density function (PDF) of the decay $\Lambda_b^0 \to J/\psi (\mu^+\mu^-) \Lambda^0 (p\pi^-)$ [12, 13, 14] connects the helicity amplitudes with functions of the angle θ, and polar and azimuthal angles of the J/ψ and Λ^0 decays with respect to their directions in the Λ_b^0 rest frame.

The analysis [3] uses 4.9 fb$^{-1}$ of pp data at $\sqrt{s} = 7$ TeV. Candidates for $\Lambda_b^0 \to J/\psi (\mu^+\mu^-) \Lambda^0 (p\pi^-)$ are
reconstructed by fitting two oppositely-charged muon tracks and two additional oppositely-charged tracks, assumed to be a proton and a pion, to their respective vertexes. The fit is constrained by fixing the invariant masses calculated from the two muon tracks and two additional tracks to the nominal J/ψ and Λ0 masses \cite{11}, respectively. The combined momentum direction of the refitted Λ0 track pair is constrained to point to the dimuon vertex.

Figure 3 shows the invariant mass distribution of events passing all selection cuts \cite{3}, fitted with a three-component probability density function consisting of signal, combinatorial background, and residual contribution of \(B^0 \rightarrow J/\psi (\mu^+ \mu^-) K^0_s (\pi^+ \pi^-) \) decays. The combinatorial background is non-resonant and assumed to be linear. The shapes of the Λ0 signal component and the \(B^0 \) background are modeled using one-dimensional Gaussian-kernel estimation PDFs \cite{15} of the MC events. The number of signal Λ0 and \(\bar{\Lambda}^0 \) baryons extracted from the fit is 1400 ± 50.

The helicity amplitudes are obtained from the \(\chi^2 \) fit of the mean values of five angular distributions for Λ0 and \(\bar{\Lambda}^0 \) candidates in the mass range 5560 < \(m(J/\psi \Lambda^0) \) < 5680 MeV to the mean values for MC with variable amplitudes. The background is estimated by adding the left and right sidebands and scaling by 0.5. Figure 4(left) shows one of the five angular distributions, \(F_2 = \cos \theta \), for data and a sum of the MC events, weighted to the measured values of \(\alpha_b \) and helicity amplitudes, and the background. The distribution for the sum with the unweighted MC events is also shown.

The measured values of \(\alpha_b \) and helicity amplitudes are

\[
\alpha_b = 0.30 \pm 0.16(\text{stat}) \pm 0.06(\text{syst}),
\]

\[
|\alpha_+| = 0.17^{+0.12}_{-0.17}(\text{stat}) \pm 0.09(\text{syst}),
\]

\[
|\alpha_-| = 0.59^{+0.06}_{-0.07}(\text{stat}) \pm 0.03(\text{syst}),
\]

\[
|b_+| = 0.79^{+0.04}_{-0.05}(\text{stat}) \pm 0.02(\text{syst}),
\]

\[
|b_-| = 0.08^{+0.13}_{-0.08}(\text{stat}) \pm 0.06(\text{syst}).
\]

The statistical uncertainties are calculated by finding the range that satisfies \(\chi^2 - \chi^2_{\text{min}} < 1 \). Figure 4(right) shows \(\chi^2_{\text{min}} \) as a function of the assumed \(\alpha_b \) value with the condition that the \(\alpha_b \) parameter is fixed in the fit.

The large \(|\alpha_-| \) and \(|b_+| \) amplitudes correspond to the negative-helicity states of Λ0. The measured \(\alpha_b \) value is consistent with the recent LHCb measurement \cite{16}. The expectations from pQCD \cite{17} (from \(-0.17 \) to \(-0.14 \)) and heavy quark effective theory \cite{18, 19} (0.78) disagree with the measured value at a level of \(\sim 2.5 \) standard deviations.

4. Branching fraction for the \(B^\pm \rightarrow \chi c \bar{c} K^\pm \) decay

The prompt and non-prompt (from B-hadron decays) production for the \(\chi c_1 \) and \(\chi c_2 \) charmonium states is measured \cite{4} uses 4.5 fb\(^{-1}\) of LHC pp data at \(\sqrt{s} = 7 \) TeV. The \(\chi c \) states are reconstructed through the radiative decay \(\chi c \rightarrow J/\psi \gamma \) (with \(J/\psi \rightarrow \mu^+ \mu^- \)) where photons are reconstructed from \(\gamma \rightarrow e^+ e^- \) conversions. Candidate \(\chi c \rightarrow J/\psi \gamma \) decays are selected by associating a reconstructed photon conversion with a candidate \(J/\psi \rightarrow \mu^+ \mu^- \) decay. To reject combinations of \(J/\psi \rightarrow \mu^+ \mu^- \) decays and photons not consistent with a
χ_c decay, the impact parameter of the converted photon with respect to the dimuon vertex is required to be less than 5 mm. Candidate $B^+ \rightarrow \chi_{c1} K^+ \rightarrow \mu^+ \gamma K^+$ decays are required to have $0.32 < m(\mu^+ \mu^- \gamma) - m(\mu^+ \mu^-) < 0.43$ GeV to select χ_{c1} decays and $4.65 < m(\mu^+ \mu^- K^+) - m(\mu^+ \mu^-) + m(J/\psi) < 5.2$ GeV to reject backgrounds from $B^+ \rightarrow J/\psi K^+$ decays.

Figure 5(left) shows the $m(\mu^+ \mu^- \gamma K^+) - m(\mu^+ \mu^- \gamma) + m(\chi_{c1})$ distribution of selected B^+ decay candidates, where $m(\chi_{c1})$ is the nominal χ_{c1} mass [11]. The candidates are weighted to correct for trigger efficiency, muon reconstruction efficiency, conversion probability and converted-photon reconstruction efficiency. Also shown is the background template derived from MC simulation. The mass distribution for candidate $B^+ \rightarrow \chi_{c1} K^+$ decays is fitted with a B^+ signal modelled by a Gaussian PDF where both the mean value and width are free parameters in the fit. The background distribution is modelled with the template derived from MC simulation.

The branching fraction $B(B^+ \rightarrow \chi_{c1} K^+)$ is measured using the decay $B^+ \rightarrow J/\psi K^+$ as a reference channel. The final states of both channels are identical apart from the photon. The measured branching fraction is $B(B^+ \rightarrow \chi_{c1} K^+) = (4.9 \pm 0.9 (stat.) \pm 0.6 (syst.)) \times 10^{-4}$. This value is in good agreement with the current world-average value [11] (dominated by measurements from Belle [20] and BaBar [21]). The precision of this measurement is significantly better than previous measurements from hadron collider experiments [11]. Figure 5(right) compares the measurement of the branching fraction $B(B^+ \rightarrow \chi_{c1} K^+)$ to the measurements of other experiments and to the world average.

5. Observation of an excited B_c^+ meson state

Excited states of the B_c^+ meson have not previously been observed. The spectrum and properties of the B_c^+ family are predicted by non-relativistic potential models, perturbative QCD, and lattice calculations [22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38]. The second S-wave state, $B_c^+(2S)$, is predicted to have a mass in the range $6835 - 6917$ MeV. Both the $1S$ and $2S$ states have pseudoscalar $B_c^+(0^-)$ and vector $B_c^{*+}(1^-)$ spin states that are predicted to differ in mass by about $20 - 50$ MeV. Transitions between the spin states occur through soft photon radiation. The dominant $B_c^+(2S)$ decay is expected to be $B_c^{(*)+}(2S) \rightarrow B_c^{(*)+} (1S) \pi^+ \pi^-$. The mass differences of $2S$ and $1S$ states for the pseudoscalar and vector B_c^+ mesons can be similar.

A search for excited B_c^* states is performed using 4.9 fb$^{-1}$ and 19.2 fb$^{-1}$ of pp data at $\sqrt{s} = 7$ TeV and $\sqrt{s} = 8$ TeV, respectively. The B_c^* mesons are reconstructed through their decays to $J/\psi \pi^+$ with $J/\psi \rightarrow \mu^+ \mu^-$. B_c^* candidates are reconstructed by fitting two muon tracks from the J/ψ candidate together with a pion candidate track to a common vertex. The invariant mass of the two muons is constrained to the world average of J/ψ mass. The transverse momentum of the B_c^* candidates is required to be above 15 GeV for 7 TeV data and above 18 GeV for 8 TeV data.

Figure 6 shows invariant mass distributions of the reconstructed $B_c^+ \rightarrow J/\psi \pi^+$ candidates in 7 TeV and 8 TeV data. Both distributions are fitted separately using an extended unbinned maximum likelihood fit, with a Gaus-
sian function modeling the signal and an exponential modeling the background shape. The fitted mass values are consistent with the world average for the B_c^+ mass [11]. The fit yields 100 ± 23 and 227 ± 25 B_c^+ mesons in 7 TeV and 8 TeV data, respectively.

The reconstruction of the excited state candidates uses the B_c^+ ground state candidates within ±3σ of the fitted mass values. The excited state candidates are reconstructed in the decay to the B_c^+ meson and two oppositely charged tracks associated with the corresponding primary vertex and assumed to be pions. The transverse momentum threshold of the pion candidates is 400 MeV. The three tracks from the B_c^+ candidate vertex and the two additional tracks from the primary vertex are refit simultaneously with the following constraints given by the decay topology: the refitted triplet of the B_c^+ tracks and the pair of additional tracks must intersect in two separate vertices. The invariant mass of the refitted muon tracks is constrained to the nominal J/ϕ mass, and the combined momentum of the refitted B_c^+ tracks must point to the vertex of the excited candidate.

Figure 7 shows the $m(B_c^+)$ distributions for the right-charge combinations and for the same (wrong) pion charge combinations in 7 TeV and 8 TeV data. A structure is observed in the mass difference distributions. In order to characterize it, an unbinned maximum likelihood fit to the right-charge combinations is performed. The fit includes a third-order polynomial to model the background and a Gaussian function for the structure. The fit finds the peak at a mass difference value of 288.2 ± 5.1 MeV in the 7 TeV data and 288.4 ± 4.8 MeV in the 8 TeV data. The fit yields 22 ± 6 and 35 ± 13 signal events in the 7 TeV and 8 TeV data, respectively. The peak mass difference values, combined as the error weighted mean, correspond to a mass of 6842 ± 4(stat) ± 5(syst) MeV. Within the uncertainties, the mass of the resonance corresponding to the observed structure is consistent with the predicted mass of the $B_c^+(2S)$ state.

The significance of the new structure is evaluated with pseudo-experiments. For the combined 7 TeV and 8 TeV dataset the total significance of the observation is found to be 5.2σ. The local significance of the observation, obtained by fixing the mean value of the signal component, is 5.4σ.

6. Summary

A measurement of time-dependent CP asymmetry parameters in $B_c^+ \to J/\psi(\mu^+\mu^-)\phi(K^+K^-)$ decays has been performed using flavour tagging. The results are consistent with those obtained in the previous untagged analysis and significantly reduce the overall uncertainty on the CP violating phase ϕ_s. The results are consistent with the values predicted in the Standard Model.

A measurement of the parity-violating decay asymmetry parameter α_b and the helicity amplitudes for the decay $\Lambda_b^0 \to J/\psi(\mu^+\mu^-)\Lambda(940)(p\pi^-)$ has been performed. The measured α_b value is consistent with the recent measurement by LHCb, and does not support available theoretical predictions.

The branching fraction $\mathcal{B}(B_c^+ \to \chi_c(1P)) = (4.9 ± 0.9(stat) ± 0.6(syst)) \times 10^{-4}$ has been measured. The measured value agrees well with the world average and is significantly better than previous measurements from hadron collider experiments.
An excited B_c^+ state has been observed through its hadronic transition to the ground state with a significance of 5.2 standard deviations. The mass of the observed state is $6842 \pm 4 (\text{stat}) \pm 5 (\text{syst})$ MeV. The mass and decay of this state are consistent with expectations for the second S-wave state of the B_c^+ meson, $B_c^+(2S)$.

References

[1] ATLAS Collaboration, JINST 3 (2008) S08003.
[2] ATLAS Collaboration, Phys. Rev. D 90 (2014) 052007, arXiv:1407.1796.
[3] ATLAS Collaboration, Phys. Rev. D 89 (2014) 092009, arXiv:1404.1071.
[4] ATLAS Collaboration, JHEP 07 (2014) 154, arXiv:1404.7035.
[5] ATLAS Collaboration, arXiv:1407.1032.
[6] UFit Collaboration, M. Bona et al., Phys. Rev. Lett. 97 (2006) 151803, arXiv:hep-ph/0605213.
[7] A. Lenz and U. Nierste, JHEP 06 (2007) 072, arXiv:0705.1828.
[8] A. Lenz and U. Nierste, arXiv:1102.4274.
[9] ATLAS Collaboration, arXiv:1105.0177.
[10] ATLAS Collaboration, ATLAS-CONF-2011-102, http://cds.cern.ch/record/1369219.
[11] Particle Data Group Collaboration, J. Beringer et al., Phys. Rev. D 86 (2012) 010001 (and 2013 partial update for the 2014 edition).
[12] I. Hrivnac, R. Lednicky and M. Smizanska, J. Phys. G 21 (1995) 629, arXiv:hep-ph/9405231.
[13] R. Lednicky, Sov. J. Nucl. Phys. 43 (1986) 817.
[14] P. Bialas et al., Z. Phys. C 57 (1993) 115.
[15] K. S. Cranmer, Comput. Phys. Commun. 136 (2001) 198, arXiv:hep-ex/0011057.
[16] LHCb Collaboration, R. Aaij et al., Phys. Lett. B 724 (2013) 27, arXiv:1302.5578.
[17] C.-H. Chou et al., Phys. Rev. D 65 (2002) 074030, arXiv:hep-ph/0112145.
[18] Z. Ajaltouni, E. Conte and O. Leitner, Phys. Lett. B 614 (2005) 165, arXiv:hep-ph/0412116.
[19] O. Leitner, Z. Ajaltouni and E. Conte, Nucl. Phys. A 755 (2005) 755, arXiv:hep-ph/0412131.
[20] Belle Collaboration, V. Bhardwaj et al., Phys. Rev. Lett. 107 (2011) 091803, arXiv:1105.0177.
[21] BaBar Collaboration, B. Aubert et al., Phys. Rev. Lett. 102 (2009) 132001, arXiv:0809.0042.
[22] E. J. Eichten and C. Quigg, Phys. Rev. D 49 (1994) 5845, arXiv:hep-ph/9402210.
[23] V. V. Kiselev, A. K. Likhoded and A. V. Tkabladze, Phys. Rev. D 51 (1995) 3613, arXiv:hep-ph/9406229.
[24] S. Godfrey, Phys. Rev. D 70 (2004) 054017, arXiv:hep-ph/0406228.
[25] A. A. Penin et al., Phys. Lett. B 593 (2004) 124, Erratum-ibid. 677 (2009) 343, Erratum-ibid. 683 (2010) 358, arXiv:hep-ph/0403080.
[26] P. Jain and H. J. Munczek, Phys. Rev. D 48 (1993) 5403, arXiv:hep-ph/9307221.
[27] S. Narison, Phys. Lett. B 210 (1988) 238.
[28] L. Motyka and K. Zalewski, Eur. Phys. J. C 4 (1998) 107, arXiv:hep-ph/9709254.
[29] L. P. Fulcher, Z. Chen and K. C. Yeong, Phys. Rev. D 51 (1995) 3613, arXiv:hep-ph/9406229.
[30] S. M. Ikhdair and R. Sever, Int. J. Mod. Phys. A 20 (2005) 4035, arXiv:hep-ph/0403280.
[31] M. Baldicchi and G. M. Prosperi, Phys. Rev. D 62 (2000) 114024, arXiv:hep-ph/0008017.
[32] W. Kwong and J. L. Rosner, Phys. Rev. D 44 (1991) 212.
[33] Y.-Q. Chen and Y.-P. Kuang, Phys. Rev. D 46 (1992) 1165, arXiv:hep-ph/9202229.
[34] L. Motyka and K. Zalewski, Eur. Phys. J. C 4 (1998) 107, arXiv:hep-ph/9709254.
[35] D. Ebert, R. N. Faustov and V. O. Galkin, Phys. Rev. D 67 (2003) 054510, arXiv:hep-ph/0210381.
[36] N. Brambilla et al., Phys. Rev. D 63 (2001) 014027, arXiv:hep-ph/0002250.
[37] A. Pineda and A. Vairo, Phys. Rev. D 63 (2001) 054007, Erratum-ibid. D64 (2001) 039902, arXiv:hep-ph/0009145.
[38] HPQCD and Fermilab Lattice and UKQCD Collaborations, I. F. Allison et al., Phys. Rev. Lett. 102 (2009) 172001, arXiv:hep-lat/0411027.
[39] R. J. Dowdall et al., Phys. Rev. D 86 (2012) 094510, arXiv:1207.5149.