Research Article

The Correlation between Functional Connectivity of the Primary Somatosensory Cortex and Cervical Spinal Cord Microstructural Injury in Patients with Cervical Spondylotic Myelopathy

Guoshu Zhao, Chenlei Zhang, Yaru Zhan, and Laichang He

First Affiliated Hospital of Nanchang University, Nanchang 330006, China

Correspondence should be addressed to Laichang He; laichang_he@163.com

Received 10 October 2021; Accepted 17 December 2021; Published 19 January 2022

Academic Editor: Ting Su

Copyright © 2022 Guoshu Zhao et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Objectives. To explore functional connectivity reorganization of the primary somatosensory cortex, the chronic microstructure damage of the cervical spinal cord, and their relationship in cervical spondylotic myelopathy (CSM) patients. Methods. Thirty-three patients with CSM and 23 healthy controls (HCs) were recruited for rs-fMRI and cervical spinal cord diffusion tensor imaging (DTI) scans. Six subregions (including leg, back, chest, hand, finger and face) of bilateral primary somatosensory cortex (S1) were selected for seed-based whole-brain functional connectivity (FC). Then, we calculated the apparent diffusion coefficient (ADC) and fractional anisotropy (FA) values of the cervical spinal cord. Correlation analysis was conducted between FC values of brain regions and DTI parameters of cervical spinal cord (ADC, FA), and their relationship with each other and clinical parameters. Results. Compared with the HC group, the CSM group showed decreased FC between areas of the left S1_hand, the left S1_leg, the right S1_chest, and the right S1_leg with brain regions. The mean FA values of the cervical spinal cord in CSM patients were positively correlated with JOA scores. Especially, the FA_pos values of bilateral posterior funiculus were positively correlated with JOA scores. The ADC and FA values of bilateral posterior funiculus in the cervical spinal cord were also positively correlated with the FC values. Conclusions. There was synchronization between chronic cervical spinal cord microstructural injury and cerebral cortex sensory function compensatory recombination. DTI parameters of the posterior cervical spinal cord could objectively reflect the degree of cerebral cortex sensory function impairment to a certain extent.

1. Introduction

Cervical spondylotic myelopathy (CSM) is the most common disorder that causes sensory and motor function impairment in the upper and lower limbs [1]. The long-term compression of the cervical spinal cord can cause the degeneration of the anterior horn and motor neurons, even the lateral and posterior funiculus axons demyelination [2]. Since there is an extensive functional and structural coupling between the spinal cord and the somatosensory cortex of the brain, however, the relationship between cervical spinal cord and brain remains unclear.

At present, MRI is the most commonly used imaging examination method to diagnose CSM. Compared with conventional MRI, diffusion tensor imaging (DTI) has higher sensitivity and specificity for the detection of CSM. Particularly, the apparent diffusion coefficient (ADC) and fractional anisotropy (FA) can detect white matter lesions before the high signal of T2 weighted image (T2WI), and FA can be a biomarker for the severity of myelopathy and for subsequent surgical outcome [3]. However, most of the current studies have not taken into account the anatomical factors of the spinal cord, such as the distribution of gray matter and white matter in the spinal cord and the distribution of sensory and motor fibers in the anterior, posterior, and lateral funiculus [4–6]. As a special spinal cord injury, CSM still needs more detailed studies on the cervical spinal cord, especially on DTI of dorsal column tracts (fasciculus gracilis and fasciculus cuneatus).

Recently, functional MRI (fMRI) could be used to assess neurological function and provide information on predicting potential neurological recovery or new experimental
treatment strategies in patients with spinal cord injury [7–9]. A number of neuroimaging studies have clarified cortical reorganization in CSM patients [10–12]. Our previous study found that alterations of intrinsic functional plasticity within the sensorimotor network in CSM patients [13]. Besides, Zhou et al. [14] also analyzed the amplitude of low-frequency fluctuations (ALFF) within sensorimotor network and its association with impaired spinal segment in CSM patients and then found that the increased ALFF values in the right posterior central gyrus was associated with decreased FA values at the C2 level. Besides, Cao et al. [15] found the altered functional topological organization of sensory-motor regions in CSM patients. However, these studies offered some clues of brain functional reorganization in CSM patients, changes in functional connectivity of the posterior central gyrus, namely, the primary somatosensory cortex (S1), and have not been thoroughly explored. Actually, different body surface regions such as the chest, back, hand, finger, face, and leg have corresponding projection areas in S1, which are related to sensory fineness and sensitivity. CSM patients existed sensory disorders, but not all surface parts of the body suffered from sensory disorders. In view of this, the present study divided S1 into six sensory subregions: chest, back, finger, hand, leg, head and face, namely, S1_chest, S1_back, S1_finger, S1_hand, S1_leg, S1_head, and S1_face [16–19].

As we all know, the somatosensory cortex of brain can be divided into the primary somatosensory cortex (S1) and the secondary somatosensory cortex (S2). Studies on spinal cord injury have found reduced gray matter volume of S1 [20–22]. Therefore, the reduction of ascending sensory fibers after spinal cord injury causes structural changes in S1. However, it is unclear whether the functional reorganization of S1 caused by sensory impairment in CSM patients is related to the reduction of afferent sensory impulses caused by varying degrees of spinal cord compression.

Based on this, this study is aimed at exploring the changes of cerebral functional connectivity in the primary somatosensory cortex and DTI in cervical spinal cord, as well as their correlation in CSM patients. We intend to (1) perform functional connectivity (FC) analysis by seed-based whole-brain functional connectivity in CSM patients, (2) use the DTI technique to obtain the microstructural parameters of cervical spinal cord, and (3) analyze the correlation between FC values of brain regions and cervical spinal cord DTI parameters, as well as their correlation with clinical scale scores.

2. Methods

This study was approved by the Institutional Review Board of the First Affiliated Hospital of Nanchang University. Written informed consent was obtained from each subject before the study.

2.1. Participants. There were 33 CSM patients (14 males and 19 females; mean age 48.15 ± 7.12 years; disease duration from 24.5 ± 3 months) from the First Affiliated Hospital of Nanchang University and 23 HCs of level-matched age, sex, and education (10 males and 13 females; mean age 46.75 ± 7.65 years; range 30 to 59 years) and were recruited in our study from December 2015 to August 2017. The gold diagnosis standard of CSM [23] is as follows: (1) clinical manifestations of cervical spinal cord injury; (2) radiographically confirmed spinal cord compression; and (3) no amyo trophic lateral sclerosis, intramedullary tumors, secondary adhesion arachnoiditis, multiple peripheral neuritis, or spinal cord injury. Besides, patients should meet these following inclusions: (1) volunteer to enroll in the study; (2) clear evidence of cord compression on a cervical spine MRI, such as an ossified posterior longitudinal ligament, herniated discs, and demyelination with hyperintensity of the cord on T2WI; and (3) no medication therapy or decompression surgery. Exclusion criteria included (1) other neurological disorders such as multiple sclerosis, (2) a history of psychiatric disorders, and (3) claustrophobia or poor cooperation during imaging scanning. All patients should complete Japanese Orthopaedic Association (JOA) Scores and Neck Disability Index (NDI) assessment [24, 25].

2.2. MRI Data Acquisition. All participants performed 3.0 T MRI (Siemens Trio Tim, Erlangen, Germany) scan with a 4-channel cervical coil and an 8-channel head coil. Before the scan, subjects were asked to stay awake without intense mental activity, close their eyes, and lie comfortably on the examination bed. Sagittal and axial images of the brain and cervical spinal cord were collected, including conventional T1WI, T2WI, and fluid attenuated inversion recovery T2WI. Conventional MR scan was performed to diagnose and exclude brain disorders (such as tumor, cerebral infarction, hemorrhage, encephalomalaica foci) and cervical spinal cord disease (such as multiple sclerosis, amyotrophic lateral sclerosis, and intramedullary tumors). (1) High-resolution anatomic images of brain were acquired by 3D T1-weighted spoiled gradient recall sequence with the following parameters: repetition time (TR) = 1900 ms, echo time (TE) = 2.26 ms, flip angle = 9°, field of view (FOV) = 256 × 256 mm, matrix = 256 × 256, slice thickness = 1 mm, number of slices = 176, voxel size = 1.0 × 1.0 × 1.0 mm³, and interslice gap = 0.5 mm. (2) Gradient-recalled echo-planar imaging (GRE-EPI) sequence parameters of brain were as followed: TR/TE = 2000 ms/30 ms, flip angle = 90°, FOV = 200 × 200 mm, matrix = 64 × 64, number of slices = 30, slice thickness = 4 mm, interslice gap = 1.2 mm, voxel size = 3.0 × 3.0 × 4.0 mm³, and 240 time points (8 min 6 s). (3) C1-C7 cervical spinal cord DTI parameters were acquired by single-shot spin echo echo-planar image (SS-SE-EPI): TR = 5000 ms, TE = 111 ms, FOV = 109 × 109 mm, number of excitations (NEX) = 2, matrix = 128 × 124, slice thickness = 7 mm, voxel size = 0.7 × 0.7 × 7 mm, and diffusion encoding occurred in 20 noncollinear and noncoplanar diffusion directions, with b = 600 s/mm².

2.3. Data Preprocessing. The brain fMRI preprocessing was performed by Data Processing Assistant for Resting-State 5.0 (DPABI, http://www.restfmri.net) [26]. The procedures included (1) removal of the first 10 time points; (2) slice timing and head motion correction; (3) coregistration of
functional data to the structural T1-weighted image and normalization into the Montreal Neurological Institute (MNI) space with a resampling voxel size of 3 mm × 3 mm × 3 mm; (4) removal of linear trends and nuisance covariate regression (cerebrospinal fluid signals, white matter signals, and Friston-24 head motion parameters); (5) band-pass filtering (0.01~0.08 Hz) to reduce the impact of physiological noises such as heartbeat and breathing rhythm; and (6) smooth (6 mm full-width half-maximum Gaussian Kernel).

2.4. Seed-Based Whole-Brain Functional Connectivity and Statistical Analysis. We divided each side of S1 into 6 subregions (chest, back, hand, finger, face, and leg) according to references [16–19]. According to the MNI coordinates of above six subregions of bilateral S1, 12 spherical regions of interest (ROIs) with radius of 4 mm were made (Figure 1(a)). The MNI coordinates were as follows: the face (±60, -14, 40), chest (±18, -36, 64), back (±18, -44, 64), hand (±28, -30, 50), and finger (±50, -16, 50). Then, we extracted the average fMRI signal of the above ROIs and further calculated Pearson’s correlation coefficients with the whole brain. FC map was constructed, and then Fisher Z transformation was used to compare the FC map between CSM group and HC group (FDR correction with p < 0.05, cluster voxel ≥ 10).

2.5. Processing of Cervical Spinal Cord DTI Parameters. After DTI scanning, the original data of cervical spinal cord DTI were transmitted to the postprocessing workstation of Siemens to automatically generate ADC, FA values, and FA color images. Image registration was carried out for each parameter image, and ROIs were manually selected on ADC and FA images. Six ROIs were selected for each segment and placed on the cervical spinal cord, respectively (Figures 1(b)–1(d)), with an area of 3mm². Cerebrospinal fluid, central canal, and gray matter were avoided, and ADC and FA values were directly measured. In the CSM group, ROIs were placed on the main compression level segments for measurement (for multisegment compression, the segment with the most obvious compression was selected) and calculated the average values of measured 6 ROI values. The total mean value of 6 ROI represented in the whole section of spinal cord, and the ROIs of posterior funiculus were calculated separately. In the HC group, the ROI was placed on each segment from C2/3 to C6/7 cross-section, and the total mean value of each segment was calculated. The data were measured twice by two researchers, and their average values were final taken. The intraclass correlation coefficient was used to test intra observer and interobserver agreement.

Figure 1: (a) ROI diagram of primary sensory cortex: according to the projection characteristics of sensory fibers, the posterior central gyrus was divided into different parts of the body surface. (b) Sketch of spinal cord anatomy. ROIs were manually selected on ADC (c) and FA (d) images, and 6 ROIs were selected at each segment and placed on the left and right anterior, posterior, and lateral funiculus, respectively.
Table 1: Demographic and clinical characteristics of the subjects.

Clinical variables	CSM (n = 33)	HC (n = 23)	p value
Age	48.15 ± 7.12a	46.57 ± 7.656a	0.43b
Gender (%)			
Male	14	10	0.938d
Female	19	13	
Duration of symptoms (month)	24.4 ± 3a	NA	
NDI scores (%)	27.64 ± 15.350a	NA	
JOA scores	12.24 ± 2.077a	NA	
Motor function	6 (4, 6)b	NA	
Upper limb movement	3 (2, 3)b	NA	
Lower limb movement	3 (2, 3)b	NA	
Sensory function	4 (3, 4)b	NA	
Upper limb sensation	1 (1, 1)b	NA	
Lower limb sensation	1 (1, 2)b	NA	
Trunk sensation	2 (1, 2)b	NA	

Abbreviations: CSM: cervical spondylotic myelopathy; HC: healthy control; NDI: Neck Disability Index; JOA: Japanese Orthopedic Association; a the measurement data conforming to normal distribution, expressed as mean ± standard deviation; b the measurement data that did not conform to normal distribution, expressed as median (interquartile spacing); c the p value obtained by the two-sample t-test; d the p value obtained by χ² test.

3. Results

3.1. Demographics and Clinical Characteristics. There was no significant difference in sex and age between CSM patients and HCs. CSM patients had a mean symptom duration of 24.5 ± 3 months, mean JOA score of 12.24 ± 2.007, and mean NDI score of 27.64 ± 15.350 (Table 1).

3.2. Analysis of Functional Connectivity Based on Bilateral Primary Somatosensory Cortex (S1). We used the seed-based correlation analysis to construct the whole brain FC maps of CSM and HC group with each sensory subregion of bilateral S1 as ROIs (SFigure 1-6). The main brain regions were as follows: (1) bilateral postcentral; (2) bilateral frontal lobe, which were consisted of precentral gyrus (PreCG), superior frontal gyrus (SFG), middle frontal gyrus (MFG), and inferior frontal gyrus (IFG); (3) bilateral temporal lobe, which were consisted of superior temporal gyrus (STG), middle temporal gyrus (MTG), and inferior temporal gyrus (ITG); (4) bilateral parietal lobe, which were consisted of superior parietal lobule (SPG) and inferior parietal lobule (IPG); (5) bilateral occipital lobe, which were consisted of inferior occipital gyrus (IFG); (6) limbic system, which were consisted of hippocampus (HIP) and parahippocampal gyrus (PHG), anterior cingulate gyrus (ACG) and posterior cingulate gyrus (PCG), and bilateral insular (INS); (7) bilateral cerebellar posterior lobe; and (8) right rolandic operculum (ROL). Single sample t-test was performed for both groups (p < 0.001, FDR corrected). The spatial distribution of FC maps in two groups was similar.

3.2.1. Comparison of Functional Connectivity between the CSM Group and HC Group. Compared with the HC group,
CSM patients showed (1) reduced FC between the left S1_hand and left angular gyrus (ANG), left STG, and right MTG; (2) reduced FC between the left S1_leg and left ANG; (3) reduced FC between the right S1_chest and left ANG, left SFG/MFG, left superior frontal gyrus, medial (SFGmed), left MTG/IFG, right ANG, right SFG, and right cerebellar posterior lobe; and (4) reduced FC between the right S1_leg and left ANG (p < 0.05, FDR corrected). There was no significant difference between the bilateral S1_finger, bilateral S1_back, bilateral S1_head, left S1_chest, right S1_hand, and the whole brain after FDR correction.

3.2.2. Correlation Analysis of FC Value and Clinical Parameters in the CSM Group. Normality test confirmed that FC values of abnormal brain regions in S1 sensory sub-areas, JOA scores, and NDI scores of CSM patients showed normal distribution. Pearson's test was used to analyze the correlation between FC values and JOA scores, FC values, and NDI scores of CSM patients separately. The results showed that the FC value between the left S1_hand and left ANG was negatively correlated with NDI score (r = -0.377, p = 0.031) (Table 3, Figure 3). The JOA scores of motor function, upper limbs movement, lower limbs movement, sensory function, upper limbs sensation, lower limbs sensation, and trunk sensation of CSM patients did not conform to normal distribution. Therefore, the Spearman test was used to analyze the correlation between FC values and JOA scores (motor function, upper limbs movement, lower limbs movement, sensory function, upper limbs sensation, lower limbs sensation, and trunk sensation), FC values, and NDI scores of CSM patients separately. The results showed that the FC value between the left S1_hand and left ITG was positively correlated with JOA score of upper limbs sensation (r = 0.353, p = 0.044) (Table 3, Figure 3). The results showed that the FC value between the right S1_leg and left ANG was positively correlated with JOA score of lower limb sensation (r = 0.406, p = 0.019) (Table 3, Figure 3).

3.3. DTI Analysis of the Cervical Spinal Cord

3.3.1. Comparison of ADC Value and FA Value in the HC Group and CSM Group. The intraclass correlation coefficient of the DTI data showed good levels of reliability (ADC: ICC = 0.826, p < 0.001; FA: ICC = 0.924, p < 0.001). ADC values and FA values at C2/3 to C6/7 level of cervical spinal cord in the HC group were shown in supplemental materials (STable 1). From C2/3 to C6/7, ADC values increased, while FA values decreased (ADC: F = 19.471, p ≤ 0.01; FA: F = 38.710, p ≤ 0.001) (supplemental materials, SFigure 7). The ADC values of C2/3 were significantly lower than those of C3/4, C4/5, C5/6, and C6/7. The ADC values of C3/4 were significantly higher than those of C5/6 and C6/7. The ADC values of C4/5 and C5/6 were significantly lower than those of C6/7. The FA values of C3/4 were significantly higher than those of C4/5, C5/6, and C6/7. The FA values of C4/5 and C5/6 were significantly higher than those of C6/7. There were no significant differences in ADC values and FA values between C4/5 and C5/6 levels (p > 0.05) (supplemental materials, STable 2). Since there was no significant difference at C4/5 and C5/6 levels in the HC group, and about 81.82% (27/33) of patients in the CSM group had the most obvious cervical spinal cord compression at C4/5 and C5/6 levels, the average values of ADC and FA of C4/5 and C5/6 levels in the HC group were taken as the final reference.

The comparison of ADC and FA values of cervical spinal cord in the CSM and HC groups was shown in supplemental materials, STable 3. Compared with the HC group, the ADC values of the CSM group increased, while the FA values decreased.

3.3.2. Correlation Analysis of Mean ADC Value, Mean FA Value, ADC_pos Value, FA_pos Value, and Clinical Parameters
According to the normality test results, Pearson’s test and Spearman correlation test were performed, respectively. The results showed that mean FA values of cervical spinal cord in CSM patients were positively correlated with JOA scores and JOA scores of motor function and lower limb motor function (Figures 4(a)–4(c)). However, there was no significant correlation between the mean ADC values and clinical parameters of CSM patients (Table 4).

In addition, correlation analysis was conducted between the ADC_{pos} values and FA_{pos} values of bilateral posterior funiculus and clinical parameters of CSM patients. The
Table 3: Correlation analysis of FC values and clinical parameters in the CSM group (r/p).

Abnormal brain regions	JOA Motor function	Upper limb movement	Lower limb movement	Sensory function	Upper limb sensation	Lower limb sensation	Trunk sensation	NDI	
Left S_hand-left ANG	0.210/0.136	0.153/0.094	0.223/0.006	0.109/0.211	-0.377/				
Left S_hand-left ITG	0.241	0.449	0.396/0.603	0.212/0.972	0.544/0.239	0.031*			
Left S_hand-right MTG	0.103/0.040	0.096/-0.005	0.224/0.353	0.052/-0.006	-0.170/				
Left S_leg-left ANG	0.569	0.827	0.596/0.978	0.21/0.044*	0.776/0.973	0.344			
Right S_chee-left ANG	-0.051/-0.186	-0.228/-0.082	0.176/0.154	0.019/0.045	0.240/				
Right S_chee-left SFG	0.777	0.301	0.201/0.652	0.327/0.393	0.915/0.805	0.178			
Right S_chee-left SFGmed	0.054/-0.112	-0.161/-0.051	0.281/0.243	0.135/0.180	0.196/				
Right S_chee-left MFG	0.765	0.553	0.37/0.776	0.114/0.172	0.453/0.316	0.274			
Right S_chee-left MTG	-0.069/0.012	0.003/0.051	-0.117/-0.124	≤0.001/-0.005	0.052/				
Right S_chee-left SFG	0.701	0.949	0.986/0.779	0.516/0.492	1/0.764/	0.775			
Right S_chee-left SFGmed	0.118/0.080	0.125/0.057	0.204/-0.032	0.225/0.174	-0.021/				
Right S_chee-left MFG	0.513	0.656	0.489/0.753	0.254/0.86	0.207/0.332	0.907			
Right S_chee-left MTG	0.039/-0.124	0.007/-0.144	0.214/0.143	0.328/-0.066	-0.066/				
Right S_chee-left cerebellar posterior lobe	0.828	0.492	0.971	0.424	0.231	0.428	0.062	0.714	0.717
Right S_chee-left ANG	-0.205/-0.193	-0.211/-0.152	-0.170/0.107	-0.270/-0.092	0.135/				
Right S_chee-right ANG	-0.074/-0.018	0.004/-0.031	-0.028/0.163	-0.064/-0.054	0.036/				
Right S_chee-right SFG	0.681	0.923	0.981/0.865	0.878/0.363	0.722/0.764	0.84			
Right S_chee-right SFGmed	0.102/0.084	0.161/0.026	0.006/0.014	0.206/-0.150	-0.108/				
Right S_chee-right cerebellar posterior lobe	0.574	0.641	0.37	0.885	0.974	0.939	0.25	0.405	0.549
Right S_chee-right cerebellar posterior lobe	0.071	0.015	0.073	0.029	0.051	-0.061	0.019	0.065	-0.152
Right S_chee-right ANG	0.693	0.933	0.687/0.871	0.777/0.738	0.915/0.719	0.397			
Right S_chee-right ANG	0.188	0.131/0.055	0.207/0.231	-0.116/0.406	0.100/0.101				
Right S_leg-left ANG	0.295	0.467	0.759/0.249	0.197/0.521	0.019*/0.582	0.576			

Abbreviations: FC: functional connection; CSM: cervical spondylotic myelopathy; NDI: Neck Disability Index; JOA: Japanese Orthopedic Association; ANG: angular gyrus; ITG: inferior temporal gyrus; MTG: middle temporal gyrus; SFG: superior frontal gyrus; SFGmed: superior frontal gyrus, medial; MFG: middle frontal gyrus; * the difference was statistically significant.

results showed that FA pos values of bilateral posterior funiculus were positively correlated with JOA scores and JOA scores of sensory function and lower limb sensory function (Figures 4(d)–4(f)). However, there was no significant correlation between the ADC pos values and clinical parameters of CSM patients (Table 5).

3.3.3. Correlation Analysis of FC Value and Mean ADC Value, Mean FA Value, ADC pos Value, and FA pos Value in the CSM Group. The correlation analysis of FC values and mean ADC values, mean FA values, ADC pos values, and FA pos values in the CSM group was performed, and then the coefficient was obtained by statistical analysis. The results showed that the ADC pos values of bilateral posterior funiculus were positively correlated with the FC value between the left S1 leg and left ANG, the FC value between the right S1 chest and MTG (r = 0.373, p = 0.032; r = 0.376, p = 0.031) (Figure 5). The FA pos values of bilateral posterior funiculus were positively correlated with the FC value between the right S1 chest and right cerebellar posterior lobe (r = 0.345, p = 0.049) (Figure 5). However, there was no significant correlation between the FC values and mean ADC values and mean FA values.

4. Discussion
Our study used resting-state fMRI to explore the FC between the whole brain and the primary somatosensory cortex (S1) by seed-based analysis in CSM patients. We finally found that the abnormal FC between sensory subregion of bilateral S1 and other brain regions. Then, we found the FC of abnormal brain regions were related to JOA score. These might suggest that there was relationship between the spinal cord injury and brain function. Besides, we calculated the ADC and FA value at different segments of cervical spinal cord to find the evidence of spinal cord directly. We further found the relationship between the mean FA value of cervical spinal cord and JOA score. Finally, we explored the relationship between the ADC pos value of bilateral posterior funiculus and the FC value of abnormal brain regions, which could better offer evidence of the relationship between the spinal cord injury and brain function.
Figure 3: (a) The FC value between the left S1\textsubscript{hand} and left inferior temporal gyrus was positively correlated with JOA score of upper limb sensation. (b) The FC value between the right S1\textsubscript{leg} and left angular gyrus was positively correlated with JOA score of lower limb sensation. (c) The FC value between the left S1\textsubscript{hand} and left angular gyrus was negatively correlated with NDI score.
Figure 4: Continued.
Figure 4: Continued.
The S1 accepted the impulses from thalamus projection such as the contralateral sensation of pain, warmth, and touch. There were nociceptive neurons in S1, which encoded the nociceptive perception of pain, and its function was to feel and analyze sensory stimuli [27, 28]. Studies [29, 30] found that synaptic plasticity of S1 was altered after

Figure 4: (a)–(c) Correlation analysis of mean ADC and FA value in the CSM group. The results showed that mean FA values of the cervical spinal cord in CSM patients were positively correlated with JOA scores, JOA scores of motor function and lower limb motor function. (d)–(f) Correlation analysis of ADC_{pos} and FA_{pos} value in the CSM group. The results showed that FA_{pos} values of bilateral posterior funiculus were positively correlated with JOA scores and JOA scores of sensory function and lower limb sensory function.
peripheral nerve injury in neuropathic pain, which represented new synaptic connections. Some studies [31–33] believed that the sensorimotor network was composed of the primary sensorimotor area of cortex (SMC), premotor cortex (PMC), parietal cortex (PC), supplementary motor area (SMA), prefrontal cortex (PFC), insula, and cerebellum. In this study, we observed reduced FC between multiple sensory subareas of S1 and PC (including ANG and MTG), SMA (including SFG), and PFC (including SFG, SFGmed, and MFG). The ANG was located in the posterior part of the inferior parietal lobule. The posterior PC was an important associative cortical region that regulated sensory and motor functions as well as cognitive functions. The reduced FC between S1 and ANG could be related to sensory disorders in CSM. Therefore, we could infer that reduced proprioceptive and tactile afferent fibers might lead to reduced FC between the posterior parietal cortex and S1.

JOA score has been proven to be a reliable and effective functional measure in CSM [34–36]. JOA score included the assessment of upper and lower limb motor function, upper and lower limb sensory function, trunk sensory function, and bladder function. The lower the score was, the more severe the dysfunction was. NDI score included neck pain and related symptoms and the ability to perform daily living activities. Higher scores indicated higher levels of dysfunction. Our study showed that the FC value between the left S1hand and left ANG was negatively correlated with NDI score. Besides, the FC value between the left S1hand and left ITG was positively correlated with JOA score of upper limb sensation. These results were similar to previous reports [13]. This might be because the more severe spinal cord compression in CSM patients, the more obvious fiber bundle damage, resulting in the more serious brain function impairment, and thus the lower FC value.

Our results showed the ADC values increased, while FA values decreased from C2/3 to C6/7. This was fundamentally similar to previous studies but still existed partial differences [37, 38]. The difference might be caused by the different ROI selection ranges in the measurement of ADC and FA values. They measured the ADC values and FA values by the average values of gray and white matter, while the ROI selection of this study directly measured white matter rather than gray matter. Therefore, our method of measurement was more accurate. Compared with the HC group, the ADC values of the CSM group increased, while the FA values decreased, which was consistent with the previous studies [39–43]. We thought the chronic compression of the cervical spinal cord might lead to chronic ischemia hypoxia. Therefore, cell membrane permeability increased, part of the cell membranes and myelin was damaged, the number of fiber cells reduced, and the internal molecular outflowed from extracellular edema [44]. Besides, Jin et al. [45] compared the segmentation effect of FA and ADC and then found that the FA map was better for segmentation. Finally, the diffusion of water molecules along the direction of the nerve fiber bundle degree increased, and the spread of the perpendicular to the direction of the nerve fiber bundle degree increased. That is, the degree of anisotropy decreased, and the degree of isotropy increased.

The results showed that mean FA values of the cervical spinal cord in CSM patients were positively correlated with JOA scores, especially positively correlated with JOA scores of and lower limb motor function. This was consistent with previous studies [46–48]. The bilateral posterior funiculus only existed the ascending sensory fibers, namely, fasciculus gracilis and fasciculus cuneatus. However, the anterior and lateral funiculus not only existed the ascending sensory fibers but also descending motor fibers. Our study aimed at exploring sensory fibers, so that the ADC and FA values of bilateral posterior cord were separately extracted and correlated with clinical parameters for analysis. Consequently, the results showed that FApos values of bilateral posterior

JOA	Motor function	Upper limb movement	Lower limb movement	Sensory function	Upper limb sensation	Lower limb sensation	Trunk sensation	NDI
ADC	0.144/0.153/0.095/0.156/0.244/0.192/0.079/0.588/0.172/0.508/0.284/0.663	0.423/0.464/0.598/0.386/0.111/0.271/0.194/0.202/0.049*						
FA	0.345/0.345/0.343/0.111/0.271/0.194/0.202/0.049*							

JOA	Motor function	Upper limb movement	Lower limb movement	Sensory function	Upper limb sensation	Lower limb sensation	Trunk sensation	NDI
ADCpos	-0.054/-0.178/-0.140/-0.208/0.136/0.312/-0.258/0.233/0.040/0.765/0.538/0.127/0.28/0.259	0.367/0.64/0.367/0.64/0.438/0.078/0.666/0.13	0.376/0.311/0.318/0.281/0.367/0.064/0.438/0.078/0.666/0.13	0.031*/0.079/0.071/0.113/0.036*/0.725/0.011*/0.666/0.13				

Abbreviations: CSM: cervical spondylotic myelopathy; NDI: Neck Disability Index; JOA: Japanese Orthopedic Association; ADC: apparent diffusion coefficient; FA: fractional anisotropy; "*" the difference was statistically significant.
funiculus were positively correlated with JOA scores and JOA scores of sensory function and lower limb sensory function. This might indicate that the lower the FA value of the posterior funiculus, the more obviously the patient’s dysfunction, especially sensory dysfunction. It might be related to the existence of ascending sensory fibers in the posterior funiculus.

Studies have shown that spinal cord injury was associated with decreased gray matter volume in the primary sensory cortex in patients with spinal cord injury, and the change of gray matter volume was significantly correlated with the degree of sensory impairment [21]. Our results showed that the ADC$_{pos}$ values of bilateral posterior funiculus were positively correlated with the FC value between the left S1$_{leg}$ and left ANG and the FC value between the right S1$_{chest}$ and MTG. The FA$_{pos}$ values of bilateral posterior funiculus were positively correlated with the FC value between the right S1$_{chest}$ and right cerebellar posterior lobe.

The author believed that different degrees of spinal cord compression in CSM patients might lead to axon demyelination, and cerebral cortical nerve cells lacked nutrition leading to atrophy or apoptosis. The decrease of ascending afferent neurons leaded to decreased gray matter volume. Changes in the brain structure further leaded to brain functional changes. However, there was no significant correlation between the FC values and mean ADC values and mean FA values. This further illustrated the importance of extracting the posterior funiculus for separate analysis. And the results might suggest that chronic cervical spinal cord microstructural injury was synchronized with the compensatory recombination of cortical sensorimotor network in CSM patients. To some extent, the DTI parameters of the cervical spinal cord could objectively reflect the degree of impairment of cerebral cortex sensory network.

Figure 5: (a) ADC$_{pos}$ value of bilateral posterior funiculus was positively correlated with the FC value between the left S1$_{leg}$ and left ANG. (b) ADC$_{pos}$ value of bilateral posterior funiculus was positively correlated with the FC value between the right S1$_{chest}$ and MTG. (c) The FA$_{pos}$ value of bilateral posterior funiculus was positively correlated with the FC value between the right S1$_{chest}$ and right cerebellar posterior lobe.
5. Limitations

There are several limitations in this current study. First, the sample size is relatively small in this study, and studies with a large number of participants are necessary in the future. Second, this is a cross-sectional study that reveals the correlation between FC of the primary somatosensory cortex and cervical spinal cord DTI in CSM patients. However, longitudinal studies are necessary to evaluate the effect of decompression surgery on alterations of dynamic connectomics of brain networks. Third, this study included all the CSM patients. However, the FC and DTI results of mild, moderate, and severe patients may be different. Finally, it is necessary to carry out the comparison of CSM patients before and after surgery and long-term follow-up after surgery.

6. Conclusion

Cervical spinal cord DTI parameters (ADC and FA) and rs-fMRI of CSM patients can evaluate the functional impairment after spinal cord injury. In CSM patients, chronic cervical spinal cord microstructural injury might be synchronized with the compensatory recombination of cerebral cortex sensory function, and DTI parameters of bilateral posterior funiculus could objectively reflect the degree of cerebral cortex sensory function impairment to a certain extent.

Data Availability

The patient data used to support the findings of this study are restricted by the Institutional Review Board of the First Affiliated Hospital of Nanchang University in order to protect patient privacy.

Conflicts of Interest

The authors have no conflicts of interest to declare.

Authors’ Contributions

Guoshu Zhao and Chenlei Zhang contributed equally to this work and should be considered as co-first authors.

Acknowledgments

This work was supported by the National Natural Science Foundation of China (No. 81460329) and the National Natural Science Foundation of Jiangxi Province (No. 20192ACBL20039, 20181BAB205063).

Supplementary Materials

Supplemental materials contained SFigure 1-7 and Stable 1-3, which described the analysis of functional connectivity based on bilateral primary somatosensory cortex (S1), ADC and FA value of different levels of the cervical spinal cord in healthy controls, ADC and FA value from C2/3 to C6/7 of the cervical spinal cord in the HC group, comparison of ADC and FA value in the healthy control group, and comparison of ADC and FA value in the healthy control group. (Supplementary Materials)

References

[1] M. Lannon and E. Kachur, “Degenerative cervical myelopathy: clinical presentation, assessment, and natural history,” Journal of Clinical Medicine, vol. 10, no. 16, p. 3626, 2021.
[2] D. Baptiste and M. G. Fehlings, “Pathophysiology of cervical myelopathy,” The Spine Journal: Official Journal of the North American Spine Society, vol. 6, no. 6, pp. S190–S197, 2006.
[3] C. Wen, J. Cui, H. Liu et al., “Is diffusion anisotropy a biomarker for disease severity and surgical prognosis of cervical spondylotic myelopathy?,” Radiology, vol. 270, no. 1, pp. 197–204, 2014.
[4] E. Lee, J. W. Lee, Y. J. Bae, H. J. Kim, Y. Kang, and J. M. Ahn, “Reliability of pre-operative diffusion tensor imaging parameter measurements of the cervical spine in patients with cervical spondylotic myelopathy,” Scientific Reports, vol. 10, no. 1, p. 17410, 2020.
[5] S. Shabani, M. Kaushal, M. Budde, M. Wang, and S. Kurpad, “Diffusion tensor imaging in cervical spondylotic myelopathy: a review,” Journal of Neurosurgery. Spine1–8.
[6] H. Zhang, L. Guan, Y. Hai, Y. Liu, H. Ding, and X. Chen, “Multi-shot echo-planar diffusion tensor imaging in cervical spondylotic myelopathy,” The Bone & Joint Journal, vol. 102-B, no. 9, pp. 1210–1218, 2020.
[7] J. Leitch, C. R. Figley, and P. W. Stroman, “Applying functional MRI to the spinal cord and brainstem,” Magnetic Resonance Imaging, vol. 28, no. 8, pp. 1225–1233, 2010.
[8] P. Freund, N. Weiskopf, J. Ashburner et al., “MRI investigation of the sensorimotor cortex and the corticospinal tract after acute spinal cord injury: a prospective longitudinal study,” The Lancet Neurology, vol. 12, no. 9, pp. 873–881, 2013.
[9] A. Athanasiou, M. A. Klados, N. Pandria et al., “A Systematic Review of investigations into functional brain connectivity following spinal cord injury,” Frontiers in Human Neuroscience, vol. 11, p. 517, 2017.
[10] N. Duggal, D. Rabin, R. Bartha et al., “Brain reorganization in patients with spinal cord compression evaluated using fMRI,” Neurology, vol. 74, no. 13, pp. 1048–1054, 2010.
[11] A. Oni-Orisan, M. Kaushal, W. Li et al., “Alterations in cortical sensorimotor connectivity following complete cervical spinal cord injury: A Prospective resting-state fMRI study,” PLoS One, vol. 11, no. 3, article e0150351, 2016.
[12] K. Ryan, S. Goncalves, R. Bartha, and N. Duggal, “Motor network recovery in patients with chronic spinal cord compression: a longitudinal study following decompression surgery,” Journal of Neurosurgery. Spine, vol. 28, no. 4, pp. 379–388, 2018.
[13] F. Zhou, Y. M. Tan, L. Wu, Y. Zhuang, L. C. He, and H. H. Gong, “Intrinsic functional plasticity of the sensory-motor network in patients with cervical spondylotic myelopathy,” Scientific Reports, vol. 5, no. 1, p. 9975.
[14] F. Zhou, H. Gong, X. Liu, L. Wu, K. D. K. Luk, and Y. Hu, “Increased low-frequency oscillation amplitude of sensorimotor cortex associated with the severity of structural impairment in cervical myelopathy,” PLoS One, vol. 9, no. 8, article e104442, 2014.
[15] Y. Cao, Y. Zhan, M. du et al., “Disruption of human brain connectivity networks in patients with cervical spondylotic myelopathy,” *Quantitative Imaging in Medicine and Surgery*, vol. 11, no. 8, pp. 3418–3430, 2021.

[16] J. Kim, M. Loggia, C. Cahalan et al., “The somatosensory link in fibromyalgia: functional connectivity of the primary somatosensory cortex is altered by sustained pain and is associated with clinical/autonomic dysfunction,” *Arthritis & Rheumatology* (Hoboken, NJ), vol. 67, no. 5, pp. 1395–1405, 2015.

[17] I. Strigo, G. H. Duncan, M. Boivin, and M. C. Bushnell, “Differentiation of visceral and cutaneous pain in the human brain,” *Journal of Neurophysiology*, vol. 89, no. 6, pp. 3294–3303, 2003.

[18] V. Napadow, J. Liu, M. Li et al., “Somatosensory cortical plasticity in carpal tunnel syndrome treated by acupuncture,” *Human Brain Mapping*, vol. 28, no. 3, pp. 159–171, 2007.

[19] E. Moulton, G. Pendse, S. Morris, M. Aiello-Lammens, L. Becerra, and D. Borsook, “Segmentally arranged somatotopy within the face representation of human primary somatosensory cortex,” *Human Brain Mapping*, vol. 30, no. 3, pp. 757–765, 2009.

[20] F. D. V. Fallani, L. Astolfi, F. Cincotti et al., “Cortical functional connectivity networks in normal and spinal cord injured patients: evaluation by graph analysis,” *Human Brain Mapping*, vol. 28, no. 12, pp. 1334–1346, 2007.

[21] L. Henderson, S. M. Gustin, P. M. Macey, P. J. Wrigley, and P. J. Siddall, “Functional reorganization of the brain in humans following spinal cord injury: evidence for underlying changes in cortical anatomy,” *The Journal of Neuroscience: The Official Journal of the Society for Neuroscience*, vol. 31, no. 7, pp. 2630–2637, 2011.

[22] P. Wrigley, S. Press, S. Gustin et al., “Neuropathic pain and primary somatosensory cortex reorganization following spinal cord injury,” *Pain*, vol. 141, no. 1, pp. 52–59, 2009.

[23] S. Emery, “Cervical spondylotic myelopathy: diagnosis and treatment,” *The Journal of the American Academy of Orthopaedic Surgeons*, vol. 9, no. 6, pp. 376–388, 2001.

[24] H. Vernon, “The Neck Disability Index: state-of-the-art, 1991-2008,” *Journal of Manipulative and Physiological Therapeutics*, vol. 31, no. 7, pp. 491–502, 2008.

[25] P. Azimi, H. R. Mohammadi, and A. Montazeri, “An outcome measure of functionality and pain in patients with lumbar disc herniation: a validation study of the Japanese Orthopedic Association (JOA) score,” *Journal of Orthopaedic Science: Official Journal of the Japanese Orthopaedic Association*, vol. 17, no. 4, pp. 341–345, 2012.

[26] Y. Chao-Gan and Z. Yu-Feng, “DPARSF: a MATLAB Toolbox for “Pipeline” data analysis of resting-state fMRI,” *Frontiers in Systems Neuroscience*, vol. 4, p. 13, 2010.

[27] E. Duerden and M. C. Albanese, “Localization of pain-related brain activation: a meta-analysis of neuroimaging data,” *Human Brain Mapping*, vol. 34, no. 1, pp. 109–149, 2013.

[28] Y. Wang, X. Zhang, Q. Guan, L. Wan, Y. Yi, and C. Liu, “Altered regional homogeneity of spontaneous brain activity in idiopathic trigeminal neuralgia,” *Neuropsychiatric Disease and Treatment*, vol. 11, pp. 2659–2666, 2015.

[29] S. Kim and J. Nabekura, “Rapid synaptic remodeling in the adult somatosensory cortex following peripheral nerve injury and its association with neuropathic pain,” *The Journal of Neuroscience: The Official Journal of the Society for Neuroscience*, vol. 31, no. 14, pp. 5477–5482, 2011.

[30] S. Kim, H. Hayashi, T. Ishikawa et al., “Cortical astrocytes rewire somatosensory cortical circuits for peripheral neuropathic pain,” *The Journal of Clinical Investigation*, vol. 126, no. 5, pp. 1983–1997, 2016.

[31] W. Shrier, S. Ryali, E. Rykhlevskaia, V. Menon, and M. D. Greicius, “Decoding subject-driven cognitive states with whole-brain connectivity patterns,” *Cerebral Cortex*, vol. 22, no. 1, pp. 158–165, 2012.

[32] S. Kokkonen, J. Nikkinen, J. Remes et al., “Preoperative localization of the sensorimotor area using independent component analysis of resting-state fMRI,” *Magnetic Resonance Imaging*, vol. 27, no. 6, pp. 733–740, 2009.

[33] V. van de Ven, E. Formisano, D. Prulovic, C. H. Roeder, and D. E. J. Linden, “Functional connectivity as revealed by spatial independent component analysis of fMRI measurements during rest,” *Human Brain Mapping*, vol. 22, no. 3, pp. 165–178, 2004.

[34] C. Chen, R. K. Lyu, S. T. Lee, Y. C. Wong, and L. J. Wang, “Intramedullary high signal intensity on T2-weighted MR images in cervical spondylotic myelopathy: prediction of prognosis with type of intensity,” *Radiology*, vol. 221, no. 3, pp. 789–794, 2001.

[35] F. Salvi, J. C. Jones, and B. J. Weigert, “The assessment of cervical myelopathy,” *The Spine Journal: Official Journal of the North American Spine Society*, vol. 6, no. 6, pp. S182–S189, 2006.

[36] Y. Aota, T. Niwa, M. Usugi, T. Yamashita, T. Inoue, and T. Saito, “The correlation of diffusion-weighted magnetic resonance imaging in cervical compression myelopathy with neurologic and radiologic severity,” *Spine*, vol. 33, no. 7, pp. 814–820, 2008.

[37] H. Mamata, F. A. Jolesz, and S. E. Maier, “Apparent diffusion coefficient and fractional anisotropy in spinal cord: age and cervical spondylosis-related changes,” *Journal of Magnetic Resonance Imaging: JMRI*, vol. 22, no. 1, pp. 38–43, 2005.

[38] C. Wheeler-Kingshott, S. J. Hickman, G. J. M. Parker et al., “Investigating Cervical Spinal Cord Structure Using Axial_Diffusion Tensor Imaging,” *NeuroImage*, vol. 16, no. 1, pp. 93–102, 2002.

[39] J. Renoux, D. Facon, P. Fillard, I. Huynh, P. Lasjaunias, and D. Duceux, “MR diffusion tensor imaging and fiber tracking in inflammatory diseases of the spinal cord,” *AJNR. American Journal of Neuroradiology*, vol. 27, no. 9, pp. 1947–1951, 2006.

[40] A. Martin, I. Aleksanderek, J. Cohen-Adad et al., “Translating state-of-the-art spinal cord MRI techniques to clinical use: a systematic review of clinical studies utilizing DTI, MT, MWF, MRS, and fMRI,” *NeuroImage Clinical*, vol. 10, pp. 192–238, 2016.

[41] F. Dong, Y. Wu, P. Song et al., “A preliminary study of 3.0-T magnetic resonance diffusion tensor imaging in cervical spondylotic myelopathy,” *European Spine Journal*, vol. 27, no. 8, pp. 1839–1845, 2018.

[42] K. Wang, O. Idowu, C. B. Thompson et al., “Tract-specific diffusion tensor imaging in cervical spondylotic myelopathy before and after decompressive spinal surgery: preliminary results,” *Clinical Neuroradiology*, vol. 27, no. 1, pp. 61–69, 2017.

[43] L. Guan, X. Chen, Y. Hai et al., “High-resolution diffusion tensor imaging in cervical spondylotic myelopathy: a preliminary follow-up study,” *NMR in Biomedicine*, vol. 30, no. 10, 2017.
[44] T. M. O’Shea, J. E. Burda, and M. V. Sofroniew, “Cell biology of spinal cord injury and repair,” The Journal of Clinical Investigation, vol. 127, no. 9, pp. 3259–3270, 2017.

[45] R. Jin and Y. Hu, “Effect of segmentation from different diffusive metric maps on diffusion tensor imaging analysis of the cervical spinal cord,” Quantitative Imaging in Medicine and Surgery, vol. 9, no. 2, pp. 292–303, 2019.

[46] S. Gao, X. Yuan, X. Jiang et al., “Correlation study of 3T-MR-DTI measurements and clinical symptoms of cervical spondylotic myelopathy,” European Journal of Radiology, vol. 82, no. 11, pp. 1940–1945, 2013.

[47] D. Jones, T. R. Knösche, and R. Turner, “White matter integrity, fiber count, and other fallacies: the do’s and don’ts of diffusion MRI,” NeuroImage, vol. 73, pp. 239–254, 2013.

[48] J. Budzik, V. Balbi, V. le Thuc, A. Duhamel, R. Assaker, and A. Cotten, “Diffusion tensor imaging and fibre tracking in cervical spondylotic myelopathy,” European Radiology, vol. 21, no. 2, pp. 426–433, 2011.