Use of a spoof plasmon to optimize the coupling of infrared radiation to Josephson Junction fluxon oscillations

A. Tagliacozzo¹, ², S. De Nicola², D. Montemurro¹, ², G. Campagnano¹, C. Petrarca³, C. Forestiere³, G. Rubinacci³, F. Tafuri¹, ², and G. P. Pepe¹, ²

¹ Dipartimento di Fisica, Università degli Studi di Napoli Federico II, Via Cintia, I-80126 Napoli, Italy
² CNR-SPIN, Monte S. Angelo via Cintia, I-80126 Napoli, Italy
³ Department of Electrical Engineering, Università degli Studi di Napoli Federico II, Via Claudia I-80125, Napoli, Italy

We show that Infrared radiation impinging onto a 1-d array of grooves drilled in the superconductor electrode of a long overlap junction can improve matching between fluxon oscillations at THz frequencies and a spoof plasmon of comparable wavelength. This example proves that metamaterials can be very helpful in integrating superconductive and subwavelength optical circuits with optimized matching bridging the gap between infrared and microwave radiation.

I. INTRODUCTION

Integrating superconductive and optical circuits in the infrared - microwave frequency range would boost solid state design of quantum information processing in a tremendous way.²⁴ By engineering the optical absorption, Single Flux Quanta in long Josephson junctions can be manipulated.² Connecting optical fibers or optical quantum memories, with superconducting circuits, would increase performances and operating speed as well as reduce power losses.² While integrated optics devices usually operate at the single-photon level, detection of surface plasmon or Surface Plasmon-Polariton (SPP) resonances induced by an evanescent field from a waveguide into a metal film appears as a different promising method to keep the power delivered at the interaction with the solid state device low and controlled.¹¹ Off-resonance, the evanescent non propagating field penetrating into the metal film is reflected back to the photodetector with minimal loss. At resonance, instead, energy is transferred to the metal film generating the surface plasmon mode that can be used to control a superconducting device. At present, detection of surface plasmon or SPP resonances is mostly being developed for biosensors and Surface Enhanced Raman Scattering substrates at visible and near infrared wavelengths.¹² Plasmonic photon sorters can be used for spectral and polarimetric imaging.¹³ Surface-plasmons are already successfully used at very long wavelengths (60 ÷ 160 µm wavelength) as a guiding solution for THz quantum cascade (QC) lasers.¹³ Dielectric-based integrated optics is always limited in scaling by diffraction. Instead, optical generation of plasmon excitations uniquely offers a larger degree of confinement and therefore allows for the creation of structures smaller than the diffraction limit.¹⁵,¹⁶ SPP propagate in metamaterials (MM) obtained by etching metal surfaces with periodic subwavelength grooves or holes, at infrared frequencies.¹⁷,¹⁸ Highly localized plasmon fields can be generated using ordered arrays of nanoparticles or nanohole arrays, instead of thin metal films.¹⁹ Changes in the environmental dielectric, will change the plasmon mode and shift the resonance to lower frequencies.¹⁸,²⁰

A large majority of existing MM designs rely on the use of metallic structures sitting on a dielectric substrate.²¹,²² However, as the frequency of operation is pushed higher toward the terahertz (THz), infrared, and visible, the Ohmic losses quickly render the current MM approaches impractical. Thus, a top priority is to reduce the absorption losses to levels suitable for device applications. This would require MM designs that do not depend solely on metallic structures and low temperature environment to prevent strong inherent vibrational absorption bands and the high skin-depth losses of the conductors.²³,²⁴ One approach would...
be to use low power Josephson devices as the MM constituent media which allow dissipationless flow of electrical current. Metamaterials with rf SQUID meta-atoms have already been implemented to provide electromagnetically induced transparency (EIT).

However, while plasmons belong to the high frequency optical band, Josephson junctions are usually controlled by shaped free space microwaves tones (\(\lambda \sim 3\text{ cm}\)) at a frequency: \(\nu = 10^{11}\text{ Hz}\), appropriate for fluxon oscillations in long Josephson Junctions, which occur at a velocity which is about 1/20th of that of light. This disparity in wave velocities makes it difficult to couple electromagnetic energy in and out of the junction region.

In this paper we propose to exploit subwavelength optics to integrate infrared radiation with fluxon oscillations in a long Josephson Junction. One of the superconducting electrodes of a long Josephson Junction, can be modulated in shape, thus inducing periodic variation of the local critical current density which, in turn, is the source of radiative losses in the fluxon dynamics. Infrared radiation impinging on the MM electrode can generate a SPP and appropriate choice of the MM geometry can trigger resonance between fluxon radiation in the insulating junction barrier and the spoof plasmon in the infrared band. Such a trick would bridge the gap between infrared and microwave radiation in controlled Josephson systems.

In Section II we briefly review how infrared radiation can generate a SPP in the THz range by irradiating a 1-d subwavelength structure formed by an array of grooves drilled on the top of a normal conductor electrode (see Fig. 1 for a sketch of the structure). We argue that there are limited consequences of the fact that the MM is fabricated in the superconductor electrode of the JJ. In Section III we discuss how a fluxon generated in a long overlap Josephson Junction radiates in the junction as a consequence of the periodic modulation of its critical current density. We show that it is possible to design the structure and the active circuit element in such a way that the energy dispersions of the fluxon and of the plasmon cross in the THz range. In Section IV we provide a simple model for the interaction between the radiation mode of the fluxon and the SPP mode. The interaction produces an anticrossing of the two mode dispersions and resonant mixture of the two modes provides strong absorption. In Section V the motion equation for the fluxon \(\varphi(x,t)\) is extended by including the effects due to the presence of the MM modulation and of the SPP interaction. The latter generates a dissipative term which can be recognized as the third order derivative \(\varphi_{xxx}\), dissipative ‘\(\beta\)–term’. Additionally, a forcing term arises, which strongly influences the fluxon dynamics, by increasing or decreasing its momentum, according to the phase of the applied perturbation. A simulation of the fluxon dynamics is reported and discussed in Section VI in the absence of dissipation. The pendulum motion of the fluxon between the junction edges can be highly perturbed, and the fluxon can be backscattered by a perturbation pulse.

Increasing the forcing perturbation, multiple scattered waves are produced which interfere and produce beatings depending on the initial velocity of the fluxon. However the shape of the principal kink is rather robust with the increase of the perturbation up to some critical velocity. Section VII collects the conclusions. Appendices A, B and C report some details on the derivation of the dissipative and forcing terms.

II. SPOOF SURFACE PLASMON DISPERSION

Infrared radiation impinging from vacuum on the surface of a semiinfinite normal metal, on the top of which an array of grooves has been drilled with periodicity \(\vec{d} \parallel \hat{x}\), in the \(\hat{y}\) direction, of the kind shown in Fig. 2, generates a SPP bound at the surface array and decaying in the inside of the film. The plasma frequency of the SPP dispersion is dictated by the hole array size. In this Section, we recall the simplest derivation of the spoof plasmon bound state.

Let the top surface be at \(z = 0\) and the bottom of the grooves be at \(z = h\), so that the depth of the grooves is \(h\) and their width is \(a\). The TE mode of the field, \(E_x, H_y\), propagating in the vacuum, can be expressed as the sum of an incident wave and of reflected waves with reflection coefficients \(p_n\), where \(n\) is the diffraction order. The subwavelength modulation which provides diffraction by the periodic structure, is unable to resolve the fine structure, so that the radiation can be averaged in space and continuously matched at \(z = 0\). The \(E_z\) field is evanescent in \(z (k_z = i \sqrt{k_x^2 - (\omega/c)^2}, with \left| k_z \right| > \omega/c\), but, in the limits \(\lambda >> d >> a\) we can neglect the penetration of \(E_z\) into the semiinfinite bulk of the normal metal and impose its vanishing at \(z = h\). As the wavelength of the radiation is much larger than the width of the grooves \((\lambda > 2 n_g a, where n_g is the refraction index inside the groove), just the fundamental mode can be considered in the region \(-h < z < 0\). Within these approximations, a very simple relation arises from the matching conditions, which provides the dispersion relation when reflectivity

![FIG. 2: Sketch of the periodic structure with grooves digged in the topmost electrode of the overlap JJ.](image)
ρ_0 is taken to diverge\cite{13}

\[
\sqrt{\frac{k_x^2 - k_0^2}{k_0^2}} = S_0^2 \tan(k_0 h),
\]

(1)

where $\omega = c k_0$, and $S_0^2 = a/d$. At large k_z, ω saturates at $\omega_{app} = c \frac{\pi}{2h}$, as if the groove acted as a cavity waveguide (vacuum is assumed in the grooves). By choosing $d = 0.45 \mu m$, $h = 13 \mu m$ and $S_0^2 \sim 0.2$, we find $\omega_{app} \approx 0.33 \times 10^{12} Hz$. The plot of the SPP, obtained by solving Eq. (4) is reported in Fig. (5). The units chosen in the plots for k_x and ω are $(\pi/d, \pi/c/2h)$. The additional quasi-linear dispersion appearing in Fig. (5) is the radiation field due to the fluxon given by Eq. (8) and discussed in the next Section.

III. FLUXON RADIATING IN A MODULATED SUPERCONDUCTING JOSEPHSON JUNCTION

As discussed in the Introduction, an infrared radiation impinging in free space on the top electrode of an overlap JJ of frequency ω couples weakly to the fluxon dynamics due to the mismatch between the radiation wavelength λ and the typical length scale - Josephson length - λ_J of the fluxon. By modulating the top electrode of an overlap JJ in the form of a MetaMaterial (MM), sketched in Fig. (1), we find that the interaction between radiation coming from the vacuum and the fluxon can be enhanced.

We consider a $S_{MM}/I/S$ long overlap Josephson Junction of length $L \parallel \hat{x}$. Here S_{MM} stands for one of the superconducting banks, let’s say the top one, in which an array of grooves has been drilled in the \hat{y} direction, as the one sketched in Fig. (2) and presented in Section II. S denotes the bottom uniform and homogeneous superconductor electrode, while I stands for insulator of thickness d_i and width w. SPP device based on the proposed layout (see Fig. (3)) could be built using a top-down nanofab techniques that include steps of Electron Beam Lithography, dry and wet etching\cite{14} for writing and then drilling the array of junctions for example, inside a Nb/NbO$_2$/Nb or Al/KO$_2$/Al trilayer sample. We expect that the most relevant effect of the added periodic modulation of the electrode is a corresponding modulation of the Josephson critical current density J_c. The inhomogeneities introduced by the diffractive grating attract or repel the fluxon in its propagation. The dips in the modulation tend to attract and localize the fluxon, while the mesas tend to delocalize it.

The problem was studied long ago both theoretically and experimentally\cite{15} in junctions of millimeter size. They prove that a fluxon shuttling to and from in a periodically inhomogeneous overlap junction radiates. As the derivation of the energy dispersion of the radiating fluxon is based on perturbation of the fluxon propagating in a homogeneous junction, we start here recalling the usual approach to the homogeneous problem.

The gauge invariant form of the supercurrent, written in terms of the phase of the order parameter of the top and bottom electrodes θ_{\pm} and of the vector potential \vec{A}, is:

\[
\vec{J}^s = -\frac{2e}{2m} |\psi_0|^2 \left(\hbar \nabla \vartheta + \frac{2e}{c} \vec{A} \right).
\]

(2)

Here m and $-e$, with $e > 0$, are the electron mass and charge, respectively and $|\psi_0|^2 = n_s$, is the superfluid density. ϑ is the phase of the superconducting order parameter. The usual approach to the equation of motion for the phase difference $\vartheta = \vartheta_+ - \vartheta_-$ in a 1-d overlap junction of length L, along the \hat{x} axis, is to consider the z component of the Maxwell equation:

\[
\nabla \times B_{\parallel} - \epsilon_r \frac{\partial E_{\parallel}}{\partial t} = 4 \pi \left(J_{\parallel} - \frac{1}{\lambda_J^2} \frac{V}{R} \right),
\]

(3)

where $J_{\parallel} = J_c \sin \vartheta$ is the Josephson current of critical Josephson length λ_J. V is the voltage difference across the barrier and R is the quasiparticle resistance in the insulating layer. The length scale characterizing the spacial variation of ϑ is the Josephson length λ_J. To be concrete, estimates will be presented for a junction with Nb superconducting contacts with $L \gg \lambda J$, where λJ is of the order of various tens of μm. The width d_i of the insulating barrier, along the \hat{z} axis, is of few μm’s.

In the case of bulky superconducting banks one recognizes that the phase difference ϑ, at points where the superconducting screening currents \vec{J}^s of Eq. (2) have vanished, takes the value dictated by unperturbed superconductors. This allows to relate the Laplacian of ϑ to the z component of the curl of B of Eq. (3) obtaining:

\[
\frac{\partial^2 \vartheta}{\partial x^2} + \frac{\partial^2 \vartheta}{\partial y^2} = \frac{1}{\epsilon_r^2} \frac{\partial^2 \vartheta}{\partial t^2} = \frac{1}{\lambda_J^2} \left(\sin \vartheta - \alpha' \frac{\partial \vartheta}{\partial t} \right),
\]

(4)

which is the celebrated Sine-Gordon (S-G) equation for the superconducting phase difference at the overlap junction. Here

\[
\tau^2 = 1 + 2 \lambda_L / d_i, \quad \lambda_J^2 = \frac{\epsilon_r}{8 \pi^2 J_c (d_i + 2 \lambda_J)},
\]

(5)

\[
\omega_J = \frac{\tau}{\lambda_J} = \left(\frac{2 \epsilon_r I_c}{\hbar C} \right)^{1/2}, \quad \alpha' = \frac{\hbar}{2e \tau R J_c}
\]

λ_L is the London penetration length, $\lambda_L = 4 \pi |\psi_0|^2 c^2 / (e^2)$ ($\sim 50 \ nm$ for Nb). Dimensionally the Josephson critical current density is $J_c \sim 10^3 A/cm^2$ for a device that has $a = d_i = 200 \ nm$ and $w = 1 \mu m$.

The capacitance of the junction, expressed in terms of the thickness of the barrier d_i, $C = \epsilon_r A / (4 \pi d_i)$, is rather large, so that charging effects are assumed to be absent. α' is a parameter accounting for the ohmic (zero frequency) dissipation. In presence of an incoming radiation of wavelength $\lambda \sim 700 \ nm$, we have $\lambda_J >> \lambda$.
In the absence of dissipation ($\alpha' = 0$), the kink solution for the 1-d approximation to Sine-Gordon equation, Eq. (4), is:

$$\varphi_0(x \pm ut) = 4 \arctan \left(\frac{x \pm ut}{\sqrt{1 - u^2/c^2}} \right).$$

(6)

where $u < c$ is the velocity of the fluxon.

In the presence of the perturbation induced by the incoming radiation, an additional field $\hat{B}^{(2)}$ will be considered in Section V, to be added to the one of Eq. (5). For the time being we consider in this Section only the perturbation induced on the fluxon by the groove array at the top contact. We assume that the effect induced by this modulation is to cause a modulation of J_c: $J_c = J_{c0} + J_{c1} \cos \frac{2\pi}{d}x$ in the non dissipative case as follows. If $J_{c1} < J_{c0}$, to lowest order, a solution of the motion equation for the fluxon can be searched by adding a correction to the unperturbed fluxon of Eq. (6), as follows:

$$\varphi(x, t) = \varphi_0(x, t) + \varphi_1(x, t).$$

It has been shown [3] that the perturbation $\varphi_1(x, t)$ can take the form of a plane wave:

$$\varphi_1(x, t) = \sum_{n \neq 0} A_n \exp[i(\omega_{pl} t - k_{pl} n x)],$$

(7)

generating a transverse radiation field $\varphi_t \propto E_z \propto k_x \propto H_y$ corresponding to the plasma frequency $\omega_{pl}/2\pi$ and wavevector $k_{pl} n$ given by (here $\nu = \sqrt{1 - u^2/c^2}$ and n integer):

$$\omega_{pl}^2 = \frac{2\pi n}{d} \nu^2 \pm \frac{u}{\lambda J n} \sqrt{\left(\frac{u}{c} \frac{2\pi \lambda J n}{d \nu}\right)^2 - 1},$$

$$k_{pl}^2 = \frac{2\pi n}{d} \nu^2 \pm \frac{1}{\lambda J n} \sqrt{\left(\frac{u}{c} \frac{2\pi \lambda J n}{d \nu}\right)^2 - 1}.$$

(8)

The accelerated fluxon radiates in the MM and Eq. (5) is the dispersion law of the radiation. The approximated form is valid for the far field away from the soliton, with emissions ahead of the fluxon (+), or far away behind the fluxon (-). It can be shown that the amplitudes A_n of the plasma oscillations decrease exponentially as n increases, so that we will concentrate only on the term $n = 1$. Increasing u/c, both k_{pl} and ω_{pl} increase. An estimate of k_{pl} for $d = 0.45 \mu m$, $h = 13 \mu m$, $\lambda J = 100 \mu m$, $c = 0.05 c$, $\omega_J = 1 \times 10^{11} sec^{-1}$ and $u/c \sim 0.8$ gives $k_{pl} d/\pi \sim -0.89$. The corresponding radiation frequency is, from Eq. (8), $\omega_{pl} \sim 0.93 \times 10^{14} Hz$, which is comparable to the plasma frequency of the SPP. These parameters are used in the plot of Fig. (3). Note that ω_{pl} is about three orders of magnitude smaller than ω_{pl}, so that the dispersion of Eq. (6) is practically linear. The dependence of k_{pl} on the fluxon velocity is first order in u/c. In the next Section we discuss a simplified model for the interaction between the fluxon radiating field and the SPP originated by the MM, which leads to absorption of energy from the radiation source.

IV. MODES INTERACTION AND ANTICROSSING

As shown in Fig. (3), the SPP dispersion and the radiation mode of the fluxon cross at $k_p \sim 0.6 \pi/d$ for $d = 0.45 \mu m$ and $h = 13 \mu m$. The presence or absence of the crossing strongly depends on the choice of ratio d/h. The fluxon extends over a length λJ much larger than the period of the modulation in the MM, d, so that it is reasonable to assume that it moves at an average velocity prior to interaction with a SPP pulse. The initial velocity should be also determined by accounting for the dissipation mechanisms acting in the dynamics (tuned by the parameters α' appearing in Eq. (1) and β, to be introduced in the following). These mechanisms also determine the dynamics of the fluxon and, in turn, its radiative power. We address this point in Section V and Appendices A and B. In the average, we assume that the fluxon keeps an average stationary velocity during its motion so that we are in presence of steady state radiation, except when under the action of a short perturbing pulse. This is a very crude approximation, of course, which, however, allows us to modelize the interaction between the SPP and the fluxon radiation mode with a very simple approach. The crossing in Fig. (3) turns into an anticrossing as shown in Fig. (4).

The model rests on few simplified assumptions. An electric field from the MM in the non dissipative superconductor boundary generates a time derivative of the current density according to the London equation:

$$\frac{\partial}{\partial t} J = \frac{n_s e^2}{m} E,$$

(10)

where $n_s e^2/m = c^2/(4\pi \lambda_L^2)$. The motion equation (in the \hat{x} direction along the boundary) for the current in time Fourier transform is (\(\omega_{pl} \equiv \omega_{pl}(k_p)\))

$$-\omega^2 J + \omega_{pl}^2 J = -i \omega \frac{e^2}{4\pi \lambda_L^2} E$$

(11)
The AC electrodynamics of a superconductor for \(\omega < 2\Delta/h \) (\(\Delta \) is the superconducting gap) is dominated by the imaginary part of the conductivity, which, at finite temperature, is much greater than the real part in magnitude and is strongly frequency dependent (\(\sigma = \sigma_1 - i \sigma_2, \sigma_2 \sim 1/\omega \)). However, at THz frequencies (\(> 2\Delta/h \)), the real part of the conductivity plays also a role even at distances from the boundary larger than \(\lambda_L \). Here we replace \(\epsilon \) with the effective \(\epsilon_{xx} \) given by the MM SPP:

\[
\epsilon_{xx}(\omega) = \frac{\pi^2 d^2 \epsilon_y}{8a^2} \left(1 - \frac{\pi^2 \epsilon_y^2}{\omega^2 a^2 n_g^2} \right),
\]

\[
\omega_{spp}^2 = \frac{\pi^2 \epsilon_y^2}{a^2 n_g^2}
\]

(13)

where \(\epsilon_y \) and \(n_g \) are the dielectric constant and refraction index of the material in the holes. \(\omega_{spp} \) is assumed to be rather independent of \(k_x \) in the range where the dispersion has reached saturation. In this approximation, the motion equation for the electric field at the boundary is:

\[
-\omega^2 E + \omega_{spp}^2 E = -\omega^2 \rho(\omega) J(k_x, \omega).
\]

(14)

The system of Eqs. (11,14) provides the eigenvalues which are solution of:

\[
\omega^4 - \omega^2 \left(\omega_{spp}^2 + \omega_{p,J}^2 + i \frac{\omega \epsilon_y^2}{4\pi \chi L} \rho(\omega) \right) + \omega_{spp}^2 \omega_{p,J}^2 = 0
\]

The anticrossing which arises from this very crude approach appears in Fig.(3). The dissipated power can be extracted by squaring Eq.(14) and by using \(\rho(\omega) = [-i\omega (\epsilon_{xx}(\omega) - 1)]^{-1} \):

\[
-i \omega |E|^2 \propto \frac{1}{1 - \left(\omega_{spp}^2/k_x^2 \right)^2} (\epsilon_{xx}(\omega) - 1) \rho(\omega)|J|^2
\]

(15)

and has been plotted in Fig. 4 as a function of \(\omega \). It is peaked at the crossing point, \(k_x d/\pi \sim 0.6 \). Eqs. (11,14) are coupled to the equation of motion of the fluxon, Eq.(3), because the propagation velocity \(u \) is required to define the dispersion of the radiating field generated by the fluxon, Eq.(8). Forcing terms acting in the superconducting phase dynamics arising from \(B_y^{\text{source}} \), the magnetic field generated by the TEM incoming wave, are derived in the next Section.

V. THE FLUXON MOTION EQUATION IN PRESENCE OF RADIATION

The goal of this Section is to extend the S-G equation, Eq.(1), to include the presence of the SPP perturbation and the induced radiating fields. Indeed, the modulation in the top contact due to the presence of the grooves is responsible for extra radiation by the fluxon during its dynamics. Special concern, in presence of radiating fields, is for the dissipation mechanisms in the junction. Both effects generate a current imbalance at the interface \(J_+ - J_- \), and an added extra field \(B^{(2)} \). Extension of Eq.(3) implies that two extra terms have to appear in Eq.(3): curl \(B^{(2)} \) in the first term on the l.h.s. of Eq.(3) and the imbalance current \(J_+ - J_- \) on the r.h.s. of Eq.(3). They will account both for the SPP generated by the incoming radiation and for the radiating fluxon itself. As discussed in Appendix C, Eq.(2) has to be rewritten as (Eq.(C6)):

\[
\phi_0 \frac{\partial \varphi}{\partial x} = \frac{4\pi \lambda L^2}{c} [J_+ - J_-] - (2\lambda L + d_i) B_y - \lambda_p B^{(2)} y.
\]

(16)
The penetration length λ_p is discussed here below.

In Appendix C we derive an expression for curl $B^{(2)}$ which contributes to the motion equation of Eq. [4] with a dissipative term, the usually called ‘β-term’ (see Eq. [21] given here below). Finally, using the London equation (see Appendix C, Eq. (C7)) we obtain

$$\nabla \times \nabla \times \vec{B}^{(2)} \bigg|_{y} = \frac{1}{\lambda_{\omega}^2} B_y^{(2)} = -\frac{4 \pi}{c} \frac{h}{2 e d} \sigma_{qp} \frac{\partial^2 \varphi}{\partial t \partial x}$$

with $\frac{1}{\lambda_{\omega}^2} \equiv \frac{1}{\lambda_{L}^2} + \epsilon_b(\omega) \frac{\omega^2}{c^2}$

and $\epsilon_b(\omega) = \epsilon_b + \frac{4 \pi i \sigma_b}{c^2 \omega}$.

Eq. (18) can be interpreted as follows. $2 \pi / \lambda_{\omega}$ plays the role of k_z. By choosing $\epsilon_b \sim 41.4 \ (\mathrm{Nb \ in \ the \ THz \ range \ \omega \sim \pi \times 10^{13} \ Hz)$, we get $\lambda_{\omega}^{-1} \sim 2.1 \times 10^6 m^{-1} = k_z/2\pi$ ($\lambda_L \sim 50 \ nm$). On the other hand,

$$-i k_z = \sqrt{\frac{\omega^2}{c^2} - \frac{\pi}{d}} \sqrt{\left(0.63\right)^2 - \left(\frac{0.8d}{2h}\right)^2} \sim 4.4 \times 10^6 m^{-1}$$

We have integrated the integral of Eq. (21) by parts. The term at the boundary vanishes due to the chosen boundary conditions, so that the ‘β-term’ displays the third order derivative of the field φ. A current source term γ has also been included.

Usually no retardation is assumed in Eq. (23), so that $G(x, x', \omega) \sim G_k(x, x')$. The Green’s function could account for the periodicity of the grooves potential following the lines of Ref. 34 but, as $\lambda_L >> d$, we can expect that the modulation of the potential is on a much smaller scale than the scale characterising the fluxon dissipation so that we can treat the superconductor MM as an effective homogeneous medium. This is consistent with a similar approximation which gives rise to the SPP dispersion.
sion. Moreover, it is customary to turn to a local approximation for the kernel, so that the integral in Eq. (23) disappears. Then, the motion equation for the phase driven by the plasmonic magnetic field \(E_y^{source} \), in dimensionless coordinates, \(t \to \omega_J t \) and \(x \to x \lambda_J \), takes the usual form (see below):

\[
\varphi_{xx} - \varphi_{tt} - \sin \varphi = \alpha \varphi_t - \beta \varphi_{ext} - \gamma - g(t, x) \tag{24}
\]

where \(g(t, x) \) includes the forcing terms, on the r.h.s. of Eq. (23).

We concentrate now on the two added terms included in \(g(t, x) \), produced by the SPP. From Eq. (11), the Fourier transform of the current difference term gives:

\[
- \frac{4\pi \lambda_J^2}{c} [J_+ - J_-] = i \frac{\omega}{\omega^2 - \omega_{pp}^2} c \delta E_x,
\]

where \(\delta E_x \) is the difference in electric field component between the upper and lower boundary of the junction. Similarly, from \(k \times \vec{E} = \vec{B} \omega/c \), the last term reads:

\[
-\lambda_B B_y^{source} = -i \frac{\omega}{\omega^2 - \omega_{pp}^2} c \delta E_x,
\]

where \(i \omega = \sqrt{k_x^2 - \omega^2} > 0 \) (here \(\omega \) is the frequency of the source radiation). We get:

\[
g(\omega, x) = -i \frac{2e \lambda_J^2}{\hbar \omega_J} \left[\frac{\omega}{\omega^2 - \omega_{pp}^2} - |k_x| \frac{4\pi}{\omega} \right] \nabla_x \delta E_x(x) \tag{27}
\]

At \(\omega \approx \omega_{spp} \) the charge density modulation induced by the SPP, \(\rho_{spp} \), appears, as \(\frac{\partial}{\partial t} \delta E_{x}^{spp}(x) = 4\pi \rho_{spp}(x) \). Here \(Q_{spp} \equiv \lambda_p w L \rho_{spp} \) is defined as the charge imbalance induced by the oscillating SPP. We average over the length \(\lambda_J \) in the \(\hat{x} \) direction, assuming an oscillating dependence \(e^{ik_x x} \) and in the transverse directions of cross-section \(\lambda_p w \).

We rewrite Eq. (27) in terms of the amount of charge, \(Q_{spp} \), singling out just one frequency \(\omega \approx \omega_{spp} \):

\[
g(\omega, x, t) \approx \frac{4\pi}{\hbar \omega_J \omega^2 - \omega_{pp}^2} \frac{\lambda_J}{w} \frac{e Q_{spp}}{\lambda_p} \cos \omega t,
\]

The largest contribution to the perturbation comes from the first term of Eq. (27), at frequency \(\omega \approx \omega_{spp} \approx \omega_p J \). When the fluxon velocity provides a \(k_p J \) close to the point at which the two dispersions cross, (see Eq. (6)), the perturbation enters a resonance with the excitation modes of the combined system and its effect is largest. According to our parameters and to Fig. (6), this occurs at velocity \(u = 0.6c \) which corresponds to \(k_{p, J} d/\pi \approx 0.7 \).

VI. DISSIPATIONLESS SIMULATED DYNAMICS OF THE PERTURBED FLUXON

Let us now consider a dissipationless dynamics of the fluxon perturbed at some given time \(t_0 > 0 \) by a short square pulse, acting for a restricted time interval \(\sim 0.1 T \). The effect of the perturbation depends on the incoming velocity of the fluxon, and, of course, on the perturbation strength. Depending on its sign, the perturbation can increase or decrease the propagation velocity of the travelling fluxon, and can even scatter back the fluxon.

The sequence of figures Fig. (6-14) shows the 3-d plots of the simulated dynamics of the fluxon \(\varphi(x, t) \) vs \(x \) and \(t \), in units \(\lambda_J \) and \(\omega_J \). The maximum displayed time in these plots is \(T = 450 \omega_J^{-1} \), while the length of the junction is \(L = 25 \lambda_J \). In the time interval \(\Delta t \in (187, 220) \sim 0.1 T \) a square pulse of the form \(A \cos \omega_{p, J} t \), of amplitude \(A \) is turned on, with \(\omega_{p, J} / \omega_J = 0.33 \times 10^3 \). The first
FIG. 8: 3D-plot of the fluxon amplitude ϕ vs x and t, same as Fig. (6), for initial velocity $u/\bar{c} = 0.1$ and $A = 0.6$. The fluxon is speeded up, but its shape is conserved except for beatings which mark the approach of a critical perturbation. The inset shows the impulse of the field $P(t)$ vs t.

FIG. 9: 3D-plot of the fluxon amplitude ϕ vs x and t, same as Fig. (6), for initial velocity $u/\bar{c} = 0.1$ and $A = 0.62$. The perturbation scatters the fluxon both backwards and forwards. The various components of the field interfere heavily and the fluxon itself is lost, while acquiring and eventually losing extra impulse (see inset). The phase difference rolls down with time when the effect of the pulse (but not the acquired impulse) is over.

sequence of plots, Fig. (6-9), monitors the propagation of a fluxon of incoming velocity $u/\bar{c} = 0.1$. For $A = \pm 0.1$ the fluxon is just speeded up (Fig. (6)) or slowed down (Fig. (7)), respectively. The insets show the change in impulse $P(t, A)$ as a function of time:

$$P(t; A) \propto \int_0^L dx \varphi_t(x, t; A) \varphi_x(x, t; A)$$

with flip of sign when the fluxon hits the junction edge and is reflected. During the time of the pulse the impulse increases approximately linearly and stabilizes at a higher value, when the perturbation is turned off. From the pulse switch off time, onward, some beating can be seen in the fluxon amplitude time dependence, which is left over by the perturbation. The fluxon is reflected when it reaches $x = L = 160$, as seen from the change of slope of the field and from the sudden change of sign of the impulse in the inset. Since then, the motion is again at constant impulse, but backwards. At the reflection, the amplitude of the fluxon jumps by 2π.

It is noticeable that the various scatterings induced by the pulse, with coexistence of forward and backward propagating waves, end up in an impulse which is strictly periodic with the dwelling of the superconducting phase excitation inside the Josephson junction. This is due to the fact that dissipative terms have not included in the dynamics. The overshooting at each reflection is clearly seen.
The initial velocity is $u/c = 0.6$, which locates the k vector close to the resonance, according to Eq.(9). A square pulse of small amplitude $A = 0.1$, acts between times 187 and 220 (duration 0.1 T), marked by the black slashes. The fluxon is backscattered by the pulse. The inset shows the impulse of the field $P(t)$ vs t according to Eq.(29). The pulse acts in the time interval marked by the black lines.

By increasing the amplitude, A, of the forcing term, there is no qualitative change in the time evolution of the fluxon, till A reaches the value $A \sim 0.6$ (Fig.(6)). Subharmonic oscillations and beating markedly increase but the amplitude of the kink is still limited to the 2π flux jump. Beatings appear as a consequence of screening of the incoming kink by the collection of scattered antikinks as it happens when an electric charged particle is screened by a bath of opposite charges. This is the classical analogue of Friedel oscillations appearing in quantum scattering.

Fig.(9) shows the φ evolution for $A = 0.62$. The pulse acts as a strong scattering potential, so that there are scattered components of the original fluxon which move backward and forward with different velocities, generated by the pulse itself which are reflected at the boundary $x = 0, L$. The various components of the field interfere heavily and the fluxon kink is fully lost. Even when the effect of the pulse is over, such an interference generates an overshooting in the impulse at the reflection at the boundary, which is reabsorbed in a finite time in the multiple interference processes (see inset). Again, the inset shows the impulse of the system as a function of time. However, it is a space integrated quantity, so that it captures only the average of the complex evolution. During the overshooting time and beyond, the phase field rolls down to higher and higher values, as confirmed by the voltage difference at the junction integrated over the whole junction length:

$$V(t; A) \propto \int_0^L dx \varphi_t(x; t; A),$$

which is plotted in Fig.(10) for $A = 0.8$. Of course, the physical phase difference amplitude is $\text{mod}[2\pi]$. While the shape of the kink is lost, the propagation across the junction with reflection at the edges survives and strongly characterizes the impulse for larger evolution in times. This is reported in Fig.(11) for $A = 0.8$ (red curve for $u/c = 0.1$).

The sequence Figs.(12-14) corresponds to the sequence Figs.(6-9), but for $u/c = 0.6$, which implies that the k_x vector is close to the point where anticrossing occurs in Fig.(4). We made the choice of keeping similar strength of the perturbation A, although, according to Eq.(28), there would be an extra factor of ~ 20 included in A in
this case, to account for the vicinity to the pole. Apart for the obvious increase of the strength of the perturbation due to this extra factor, two features can be noticed when the initial velocity of the fluxon increases. Comparing Fig. [8] with Fig. [11] with same perturbation strength \(A \), the evolution of the fluxon having initial velocity \(u/c = 0.6 \) appears to be less sensitive to beating and subharmonic oscillations than when the fluxon is moving slower. On the other hand the overshooting of the impulse when the fluxon inverts its motion at the edges is even larger as shown in Fig. [11]. This corresponds to a faster roll down of the phase as marked by the larger scale for \(\varphi \), which appears in Fig. [14], when compared to Fig. [8].

Let us now inquire up to what SPP charge \(\dot{Q}_{spp} \), the fluxon may be assumed to be insensitive to the pulse. In other words, to which extent the forcing term can simply neutralize some dissipation induced by a term \(-\alpha \varphi \dot{t} \) appearing in the motion equation. Let \(T \) be the time scale of the SPP pulse. Qualitatively, ignoring the \(\beta \)-term which is expected to be small, we can estimate a compensation in the average, between the forcing term and the dissipative \(\alpha \)-term:

\[
-i.e. \quad 2\pi \alpha \frac{u}{1 + (\omega_p T)^2} = \frac{\lambda_p L w \rho_{spp}}{\lambda_p} \frac{\lambda_f}{1 + 2(\omega_p T)^2} - \frac{\lambda_p}{1 + 4(\omega_p T)^2},
\]

where the unperturbed fluxon waveform \(\varphi(x - ut) \) of Eq. (5) has been used.

The requirement that \(u < 1 \) implies \(\omega_p T \ll 1 \ll \omega_p \bar{T} \) that the overall induced charge by the SPP, \(Q_{spp} = \lambda_p L w \rho_{spp} \), has to satisfy the inequality:

\[
\dot{Q}_{spp} < \frac{\alpha \lambda_p}{2\pi \lambda_f} \frac{1}{(\omega_p T)^2},
\]

which is a stringent condition on the intensity of the incoming radiation.

VII. CONCLUSIONS

Integrating superconductive and optical networks in a low temperature environment is becoming more and more desirable for quantum information processing, but it faces a longstanding problem. While optical fibers and optical circuits mostly involve frequencies in the infrared or, recently, THz frequency window, typical frequencies of a superconducting device are in the microwave range. On the other hand the possibility of putting fluxons travelling in a long Josephson Junction (JJ) in interaction with optical signals would increase enormously their flexibility as a tool for biasing and controlling gates in a classical or quantum circuit. Recently optically generated Spoof Plasmon Polaritons (SPPs) can be read out by means of integrated superconducting single-photon detectors and, in general, interaction of a Josephson Junction with a surface plasmon allows to limit the power delivered to the junction and to avoid large increase of quasiparticle excitations. Still, optimization of energy exchange between a surface plasmon and a fluxon requires that the difference in frequency between the two excitation modes is somehow reduced. We have shown that a feasible way to reach this goal is to engineer one of the banks of the JJ in the form of a metamaterial (MM) which has been proved to generate a SPP at THz frequency. The SPP can be absorbed by the moving fluxon.

We have shown that the two excitation modes, SPP and fluxon radiative field, can interact (see Fig. [4]). Indeed, the MM bank induces a radiative field by the fluxon of comparable frequency. The typical anticrossing in the dispersion is due to charge oscillations at the MM bank, which gives, rise to absorption of impulse by the fluxon. The latter can be speeded up or slowed down or even scattered backwards by interaction with a pulsed SPP, which acts as a forcing term on the Sine-Gordon (S-G) dynamics of the fluxon, driven by the oscillations of the SPP charge.

We provide examples of the simulated S-G dissipationless dynamics of a fluxon in a long JJ in which a free propagating fluxon is acted on by the SPP perturbation for a limited time interval. The boundary conditions for \(\varphi_x \) in the motion equation are standard. We show that the fluxon field acquires subharmonic oscillations and beating, due to extra impulse absorbed from the perturbation, without loosing its kink shape, unless the perturbation amplitude is higher than a critical value, which depends on the initial velocity, that is on the vicinity to the anticrossing point. Indeed the fluxon keeps being rather robust but, meanwhile, it generates interference of extra \(2\pi \)-jumps. This happens because the soliton energy is two orders of magnitude larger than the energies of the excitation modes of Fig. [4], involved. For perturbation amplitudes higher than the critical value, the fluxon field
looses its shape, but not the periodic dwelling motion, with reflections at the edge of the junction. The superconducting phase rolls down as in a washboard potential, and a marked kink in the voltage appears (see Fig. (11)). Increasing the initial velocity of the fluxon makes it more robust up to the critical perturbation strength, but lowers the threshold of criticality quite a lot, because the anticrossing point is approached.

We argue in Appendix B, with an approach similar to the standard one reported in Appendix A, that dissipative terms in the motion equation do not affect qualitatively the fluxon motion provided an applied current bias is fed in the junction. This is because the MM has a structure on a scale of hundreds of nm, much smaller than the typical length scale of the junction dynamics \(\lambda_J\). However this also requires that the junction itself is quite long, up to millimeters.

Acknowledgement

We acknowledge useful discussions with G. Filatrella, D. Giuliano, P. Lucignano and G. Miano. This work was supported financially by University of Napoli "Federico II" with project PLASMJAC, E62F17000290005.

Appendix A: Fluxon energy in the dissipationless case

Let us neglect for the time being the electromagnetic source in the motion equation for the fluxon, Eq. (24). The \(\gamma\) term accounts for a current source and can sustain the propagation of the fluxon along the junction compensating the dissipations. In the infinite length limit for the junction an energy eigenmode for the fluxon can be derived. When considering the motion equation, Eq. (23), the eigenmode will have a dispersion characterized by the \(k\)-vector \(k_x\). The \(3 - d\) Hamiltonian \(H_0\) for the fluxon in the absence of dissipation is:

\[
H_0 = \frac{\hbar}{2e} J_c \lambda_j^2 \int dx \left[\frac{1}{2} (\varphi_t)^2 + \frac{1}{2} (\varphi_x)^2 + (1 - \cos \varphi) \right]
\]

\[
\gamma \frac{1}{\omega_J} \int dx (\partial_x \varphi)^2 - \beta \int dx dx' \left\{ \frac{\partial^2 \varphi}{\partial t^2} (x,t) G(k(x,x')) \frac{\partial^3 \varphi}{\partial t^2 \partial x'} (x',t) \right\} - \int dx \gamma \partial_t \varphi = 0,
\]

As in the derivation of the SPP, we rely on the fact that the MM modulation is subwavelength and that all space dependences are on a scale larger that the periodicity \(d\) of the groove lattice. In particular \(k = 2\pi/\lambda_c < \pi/d\), so that we can consider just average homogeneous MM dependences on a scale larger than the typical length scale of the junction dynamics \(\lambda_J\). However this also requires that the junction itself is quite long, up to millimeters.

Appendix B: Dissipative terms in the absence of excitation modes interaction

In our approximations we expect that the dissipative terms, in presence of a bias current \(\gamma\) lead to a stationary state dynamics which is not qualitatively different from the dynamics presented in the dissipationless simulation of Section VI. The dissipation losses should be compensated by the driving current. In the absence of the forcing term, the fluxon velocity \(u\) can be determined following the same lines of Appendix A, with inclusion of the \(\beta\)-term. In analogy with Eq. (A2), we impose:

\[
gamma \frac{1}{\omega_J} \int dx (\partial_x \varphi)^2 - \beta \int dxdx' \left\{ \frac{\partial^2 \varphi}{\partial t^2} (x,t) G(k(x,x')) \frac{\partial^3 \varphi}{\partial t^2 \partial x'} (x',t) \right\} - \int dx \gamma \partial_t \varphi = 0,
\]
where \(x_+(x_-) \) is the larger (smaller) argument between \(x,x' \). From the edges, we can approximate the unperturbed kink \(\varphi(\xi) \) as a step function at \(\xi = x - ut = L/2 \). Hence, \(\varphi_t \) has even symmetry in space with respect to \(L/2 \), while \(\varphi_{tx} \) has odd symmetry. On the other hand \(G(k;x,x') \sim G(K|x-x'|) \) and a double integration by parts changes the \(\beta \)-term into

\[
\int dx dx' \left[\frac{\partial \varphi}{\partial t}(x,t) \frac{\partial^2}{\partial x \partial x'} G(k;x,x') \frac{\partial \varphi}{\partial t}(x',t) \right].
\]
(B3)

Here \(\frac{\partial^2}{\partial x \partial x'} G(k;x,x') \) is very localized at \(x \sim x' \), so that this term can be changed into a local term which renormalizes the \(\alpha \)-term. The derivation of \(u_{\infty} \) given in Appendix A follows.

Appendix C: Forcing terms in the non dissipative S-G equation of motion

Let us now derive the forcing terms to be added in the S-G equation of motion Eq.(4), assumed to be one-dimensional and non dissipative (\(\alpha' = 0 \)).

From Eq[2] the phase jump between the two edges of the insulating layer is:

\[
\frac{\partial \theta_+}{\partial x} - \frac{\partial \theta_-}{\partial x} = \frac{8\pi^2 \lambda_L^2}{\phi_0 c} [J_+ - J_-] - \frac{2e}{\hbar c} [A_x(+\infty) - A_x(-\infty)], \]
(C1)

\([J_+ - J_-] \) is the difference of superconducting screening currents at the barrier boundaries of the Josephson Junction. Eq.[C1] is consistent with the London equation Eq.[C2]s:

\[
\frac{\partial J^s}{\partial t} = \frac{n_s e^2}{m} E \bigg|_b, \quad \nabla \times \vec{J}^s + \frac{n_s e^2}{mc} \vec{B} = 0. \]
(C2)

In fact, usually the contacts are bulk superconductors and the \(\vec{A} \) field decays far from the edge on the scale of \(\lambda_L \) and it is possible to take a circuit with \(z_\pm \) well within the bulk so that \(J_\pm \equiv J(z_\pm) \) vanish and the circulation of \(\vec{A} \) along the circuit provides the full flux piercing the weak link area \((2\lambda_L + d_i) L \). In the limit to an inhomogeneous but spatially continuous superconductor, \(2\lambda_L + d_i \rightarrow z_+ - z_- \rightarrow 0 \), a local expression can be obtained and the finite difference of the currents \(J_\pm \) divided by \(z_+ - z_- \) turns into the curl of the screening currents:

\[
\frac{[J_+ - J_-]}{2\lambda_L + d_i} \rightarrow -\partial_x J^b_x \sim -\nabla \times \vec{J}^b \bigg|_y \]
(C3)

(the label \(b \) stands for "bulk"). Similarly, for a continuous phase

\[
-\frac{\partial \varphi_+}{\partial x} - \frac{\partial \varphi_-}{\partial x} \rightarrow \nabla \times \varphi \bigg|_y = 0.
\]
(C4)

so that, the \(\vec{y} \) component of the London equation, Eq.[2], is recovered (\(1/\lambda_L^2 = (4\pi n_s e^2/mc) \)):

\[
0 = -\nabla \times \vec{J}^b \bigg|_y - (n_s e^2/mc) B_y \bigg|_b. \]
(C5)

However, there are two crucial differences in our case. On the one hand the thickness of the superconducting contacts in the overlap junction is finite and relatively small. On the other hand, there is the SPP leaking into the upper superconducting edge generated by the MM at the top, which does not allow to drop the difference in the current flowing between the two contacts. We assume that the perturbed phase difference \(\varphi \) depends on the current imbalance induced by the plasmon and on the source field, \(B_{y,\text{source}} \), which penetrates a distance \(\lambda_p \) along the \(\vec{z} \) direction (\(\lambda_p \) is discussed in the text). It follows that Eq.[C1], along the \(\vec{z} \) direction, takes the form:

\[
\frac{\phi_0}{2\pi} \frac{\partial \varphi}{\partial x} = -(2\lambda_L + d_i) B_y + \frac{4\pi \lambda_L^2}{c} [J_+ - J_-]_{\text{SPP}} - \lambda_p B_{y,\text{source}}, \]
(C6)

where we assume that \(B_y = B^{(1)} + B^{(3)} \), where \(B^{(1)} \) is the one generated by the fluxon in the absence of the external source and \(B^{(3)} \) is the one giving rise to radiating effects. In the following we derive an expression for curl \(B^{(2)} \), which contributes to the motion equation of Eq.[4] with a dissipative term, the usually called \(\beta \) term (see Eq.[21]). We will drop the magnetic field generated by the Josephson current itself in the derivation, which is usually considered to be small. We have, excluding the term due to the source, \(B_{y,\text{source}} \), for the time being:
\[\nabla \times \nabla \times B^{(2)}_{y} = \partial_z \left(\nabla \times B^{(2)} \bigg|_x \right) - \partial_x \left(\nabla \times B^{(2)} \bigg|_z \right) = \frac{\partial}{\partial z} \left[\frac{4\pi}{c} J^b_y + \frac{4\pi \lambda^2_L}{c} \left(\frac{4\pi i \sigma_b \omega}{c^2} + \epsilon_\infty \frac{\omega^2}{c^2} \right) J^b_y \right] \]

\[- \frac{\partial}{\partial x} \left[\frac{4\pi}{c} J^b_y \right] \]

Here \(J^b_y \) denotes the superconducting screening currents induced by the radiation at the boundary of the contacts. The first square bracket term on the r.h.s. arises from the Maxwell-Ampere equation

\[\nabla \times B^{(2)} \bigg|_x = \frac{4\pi}{c} J_x + \frac{1}{c} \frac{d D^{(b)}_x}{dt}, \]

where the total current \(J \) also includes a contribution from the Ohmic transport, \(J = J^b + J^{sh} = J^b + \sigma_b E^{(2)} \). \(B^{(b)} \) is the electric induction vector penetrating in the contacts. Both \(E^{(2)}_x \) and \(D^{(b)}_x \) of Eq. (C8) can be related to \(J^b_x \) itself, by means of the Fourier transform

\[\frac{4\pi}{c} \frac{\partial J^{nT}}{\partial x} = \frac{4\pi}{c} \sigma_{qp} \frac{\partial E_x}{\partial x} \approx \frac{4\pi}{c} \sigma_{qp} \frac{\partial V(z = 0)}{\partial x} = \frac{4\pi}{c} \sigma_{qp} \frac{h}{2e} \frac{\partial^2 \varphi}{\partial t \partial x}, \]

Finally, according to Eq. (C5),

\[\left(\frac{4\pi}{c} \nabla \times J^{sh} \right)_y \approx \frac{4\pi}{c} \partial_x J^{sh} = -\frac{1}{\lambda_L^2} B^{(2)}_y, \]

so that Eq. (C7) can be written as

\[\nabla \times \nabla \times \vec{B}^{(2)} \bigg|_y + \frac{1}{\lambda_L^2} B^{(2)}_y = \frac{4\pi}{c} \frac{h}{2e} \frac{\sigma_{qp}}{d} \frac{\partial^2 \varphi}{\partial t \partial x} \]

with \(\frac{1}{\lambda_L^2} \equiv \frac{1}{\lambda_L^2} + \epsilon(\omega) \frac{\omega^2}{c^2} \) and \(\epsilon(\omega) = \epsilon_\infty + \frac{4\pi i \sigma_b}{c^2} \omega \).

The full motion equation for the fluxon is reported in the text, Eq. (23).
superconducting and optical circuits", Appl. Phys. Lett. 92, 202505 (2008)
7 T. I. Larkin, V. V. Bol’ginov, V.S. Stolyarov, V. V. Ryazanov, I.V. Vernik, S. K. Tolpygo, and O.A. Mukhanov
"Ferromagnetic Josephson switching device with high characteristic voltage", Appl.Phys.Lett. 100, 222601 (2012)
8 A. Politii, M.J. Cryan, J.G. Rarity, S.Yu, and J.L. O’Brien,
"Silica-on-silicon waveguide quantum circuits.", Science 320, 646 (2008).
9 M. A. Jaspan, J. L. Habif, R. H. Hadfield, and S. W. Nam,
"Heralding of telecommunication photon pairs with a superconducting single photon detector", Appl. Phys. Lett. 89, 031112 (2006)
10 R.W. Heeres, L. P. Kouwenhoven and V.Zwol, "Quantum interference in plasmonic circuits", Nature Nanotechnology, 8, 719 (2013.
11 Dror Sarid and W. Challener,"Modern Introduction to Surface Plasmons: Theory, Mathematical Modeling, and Applications", Cambridge (2010)
12 H.K. Hunta and A. M. Armani, "Label-free biological and chemical sensors", Nanoscale, 2, 1544 (2010)
13 E. Laux, C. Genet, T. Skauli, and T.W. Ebbesen, "Plasmonic photon sorters for spectral and polarimetric imaging", Nature Photonics 2, 161 (2008)
14 B. S. Williams "Terahertz quantum-cascade lasers", Nature Photonics 1, 517 (2007)
15 Barnes, W. L., Dereux, A., and Ebbesen, T. W. "Surface plasmon subwavelength optics", Nature 424(6950), 824 (2003).
16 Zhiwen Kang and Guo Ping Wang,"Coupled metal gap waveguides as plasmonic wavelength sorters", Optics Express, Vol. 16, No. 11, 7680 (2008)
17 J.B.Pendry, L. Martin-Moreno, F. J. Garcia-Vidal, "Mimicking Surface Plasmons with Structured Surfaces", Science 305, 847 (2004)
18 P.J. Garcia-Vidal, L. Martin-Moreno and J.B.Pendry, "Surfaces with holes in them: new plasmonic metamaterials.", J. Opt.A: Pure Appl Opt 7 ,S97 (2005)
19 Maier, S. A., Andrews, S. R., Martin-Moreno, L., and Garcia-Vidal, F., "Terahertz surface plasmon-polariton propagation and focusing on periodically corrugated metal wires", Phys. Rev. Lett. 97(17), 176805 (2006).
20 C. Forestiere, G. Miano, G. Rubiniacci, L. Dal Negro, "Role of aperiodic order in the spectral, localization, and scaling properties of plasmon modes for the design of nanoparticle arrays", Phys. Rev.B79, 085404 (2009)
21 J. B. Pendry, A. J. Holden, W. J. Stewart, and I. Youngs, "Extremely low frequency plasmons in metallic mesostructures", Phys. Rev Lett 76 (25), 4773-4776 (1996).
22 Linfang Shen, Xudong Chen,Tzong-Jer Yang,"Terahertz surface plasmon polaritons on periodically corrugated metal surfaces",Optics Express,16, 3326 (2008)
23 C.Yeh, F. Shimabukuro, and P. H. Siegel, "Low-loss terahertz ribbon waveguides", Appl. Optics, 44, 5937 (2005).
24 Yong Jin Zhou, and Bao Jia Yang, "Planar spoof plasmonic ultra-wideband filter based on low-loss and compact terahertz waveguide corrugated with dumbbell grooves", Appl. Optics, 54, 4529 (2015)
25 P. Jung, A. V. Ustinov, and S. M. Anlage, "Progress in Superconducting Metamaterials", Supercond. Sci. Technol. 27, 073001 (2014).