On the abundance theorem in the case $\nu = 0$

Yujiro Kawamata

May 18, 2010

Abstract

We present a short proof of the abundance theorem in the case of numerical Kodaira dimension 0 proved by Nakayama and its log generalization.

1 Introduction

Nakayama [5] proved the abundance conjecture for a non-minimal algebraic variety whose numerical Kodaira dimension is equal to 0:

Theorem 1. Let X be a smooth projective variety. Assume that the function $\dim H^0(X, mK_X + A)$ is bounded when $m \to \infty$ for arbitrarily fixed ample divisor A. Then there exists a positive integer m such that $H^0(X, mK_X) \neq 0$.

Nakayama’s result is more general in the sense that the theorem holds for KLT pairs. Siu [7] proved the same result by analytic method.

The purpose of this note to present a simplified version of the proof. The main point is to use the numerical version of the Zariski decomposition as in [4] and Simpson’s finiteness result [6].

We shall also prove a logarithmic generalization of Theorem 1 for normal crossing pairs (Theorem 6). We note that the coefficients of the boundary in this case are equal to 1 and the pair is not KLT.

Abundance theorem in the case $\nu = 0$ for minimal algebraic varieties is already proved in [3] as an application of the additivity theorem of the Kodaira dimension for algebraic fiber spaces.

We work over \mathbb{C}. We denote by \equiv and \sim the numerical and linear equivalences respectively.
When this paper was posted on the web, the author learned from a message by Frederic Campana that the argument using [6] already appeared in [1].

2 Numerical Zariski decomposition

Let \(X \) be a smooth projective variety. Two \(\mathbb{R} \)-divisors \(D \) and \(D' \) on \(X \) are said to be *numerically equivalent*, and denoted by \(D \equiv D' \), if \((D \cdot C) = (D' \cdot C) \) for all irreducible curves \(C \). The set of all numerical classes of \(\mathbb{R} \)-divisors form a finite dimensional real vector space \(N^1(X) \). The *pseudo-effective cone* \(\text{Pseff}(X) \) is the smallest closed convex cone in \(N^1(X) \) which contains all the numerical classes of effective divisors. An \(\mathbb{R} \)-divisor is said to be *pseudo-effective* if its numerical class is contained in \(\text{Pseff}(X) \). The *movable cone* \(\text{Mov}(X) \) is the smallest closed convex cone in \(N^1(X) \) which contains all the numerical classes of effective divisors whose complete linear systems do not have fixed components.

Lemma 2. Let \(D \) be an \(\mathbb{R} \)-divisor and \(A \) an ample divisor on a smooth projective variety \(X \). The following are equivalent:

1. \(D \) is pseudo-effective.
2. For an arbitrary positive number \(\epsilon \), there exists an effective \(\mathbb{R} \)-divisor \(D' \) such that \(D + \epsilon A \equiv D' \).
3. For an arbitrary positive number \(\epsilon \), there exists a positive integer \(m \) such that \(H^0(X, \mathcal{I}m(D + \epsilon A)) \neq 0 \).

Proof. The equivalence of (1) and (2) is clear. Obviously (3) implies (2). If (2) holds, then we can write

\[
D + \frac{1}{3} \epsilon A - D' = \sum_j d_j D_j
\]

for an effective \(\mathbb{R} \)-divisor \(D' \), real numbers \(d_j \) which are linearly independent over \(\mathbb{Q} \) and \(\mathbb{Q} \)-divisors \(D_j \) such that \(D_j \equiv 0 \). Thus we can write

\[
D + \frac{1}{3} \epsilon A \sim_\mathbb{Q} D_1 + D_2 + L
\]

where \(\sim_\mathbb{Q} \) denotes the \(\mathbb{Q} \)-linear equivalence, for an effective \(\mathbb{Q} \)-divisor \(D_1 \), a small \(\mathbb{R} \)-divisor \(D_2 \) and \(L \in \text{Pic}^0(X) \otimes \mathbb{Q} \) such that \(\frac{1}{2} \epsilon A + D_2 \) and \(\frac{1}{2} \epsilon A + L \)
are \(\mathbb{Q} \)-linearly equivalent to effective \(\mathbb{R} \)-divisors. Then there exists a positive integer \(m \) such that \(m(D + \epsilon A) \) is linearly equivalent to an effective \(\mathbb{R} \)-divisor, hence (3).

Let \(D \) be a pseudo-effective \(\mathbb{R} \)-divisor, and \(A \) an ample divisor. We define the \textit{numerically fixed part} and the \textit{numerical base locus} of \(D \) by

\[
N(D) = \lim_{\epsilon \to 0} (\inf \{ D' \mid D + \epsilon A \equiv D' \geq 0 \})
\]

\[
NBs(D) = \bigcup_{\epsilon > 0} \left(\bigcap \{ \text{Supp}(D') \mid D + \epsilon A \equiv D' \geq 0 \} \right).
\]

They are independent of \(A \). By setting \(P(D) = D - N(D) \), we obtain a formula \(D = P(D) + N(D) \) called the \textit{numerical Zariski decomposition} of \(D \).

\textbf{Lemma 3.} \begin{enumerate}
\item The irreducible components of \(N(D) \) are numerically independent, i.e., linearly independent in \(N^1(X) \).
\item If \(D \) is a \(\mathbb{Q} \)-divisor and \(D \equiv N(D) \), then \(N(D) \) is also a \(\mathbb{Q} \)-divisor.
\item \(N(D) = 0 \) if and only if the numerical class of \(D \) is contained in \(\text{Mov}(X) \). In this case, \(NBs(D) \) is a countable union of subvarieties of codimension at least 2.
\end{enumerate}

\textit{Proof.} \begin{enumerate}
\item If there is a numerical linear relation, then \(N(D) \) is numerically equivalent to a different effective \(\mathbb{R} \)-divisor, a contradiction.
\item The intersection numbers of \(N(D) \) with curves are rational numbers, hence so are the coefficients of \(N(D) \).
\item We can take the limit \(\epsilon \to 0 \) for only those \(\epsilon \) which are rational numbers.
\end{enumerate}

Let \(D \) be a pseudo-effective \(\mathbb{R} \)-divisor. Then there are two cases:

1. \(\nu(X,D) = 0 \): The function \(\dim H^0(X, \lfloor mD \rfloor + A) \) is bounded when \(m \to \infty \) for any ample divisor \(A \).

2. \(\nu(X,D) > 0 \): There exists an ample divisor \(A \) such that the function \(\dim H^0(X, \lfloor mD \rfloor + A) \) is unbounded when \(m \to \infty \).

The following proposition is [5] Theorem V.1.11. We include a proof for the convenience of the reader.
Proposition 4. Let X be a smooth projective variety, and D a pseudo-effective \mathbb{R}-divisor. Assume that $D \not\equiv 0$ and $N(D) = 0$. Then there exist an ample divisor A, a positive number b and a positive integer m_0 such that

$$\dim H^0(X, \lceil mD \rceil + A) > bm$$

for $m \geq m_0$.

Proof. Since $\text{NBs}(D)$ is a countable union of closed subvarieties of codimension at least 2, a general curve section C does not meet $\text{NBs}(D)$. Since $D \not\equiv 0$, we have $(D \cdot C) > 0$.

We fix an ample divisor A and denote $L_m = \lceil mD \rceil + A$. It is sufficient to prove that the natural homomorphism $H^0(X, L_m) \to H^0(C, L_m|_C)$ is surjective for m large.

Let $\mu : Y \to X$ be the blowing up along C and E the exceptional divisor. We take an effective \mathbb{R}-divisor $B_m \equiv mD + \epsilon A$ such that $C \not\subset B_m$ and that (Y, μ^*B_m) is KLT near E.

We calculate

$$\mu^*L_m - E - (K_Y + \mu^*B_m)$$

$$= \mu^*(\lceil mD \rceil + A - (K_X + B_m)) - (n - 1)E$$

$$\equiv \mu^*((1 - \epsilon)A - \langle mD \rangle - K_X) - (n - 1)E$$

where $n = \dim X$ and $\langle mD \rangle = mD - \lceil mD \rceil$. It is ample for any $m > 0$ if A is sufficiently large compared to the irreducible components of D, K_X and E.

Let I be the multiplier ideal sheaf for the pair (Y, μ^*B_m). We have $E \cap \text{Supp}(\mathcal{O}_Y/I) = \emptyset$. By the Nadel vanishing theorem, we have $H^1(Y, I(\mu^*L_m - E)) = 0$. It follows that the homomorphism $H^0(Y, \mu^*L_m) \to H^0(E, \mu^*L_m|_E)$ is surjective, and our assertion is proved.

Corollary 5. Let X be a smooth projective variety, and D a pseudo-effective \mathbb{R}-divisor. Assume that $\dim H^0(X, \lceil mD \rceil + A)$ is bounded. Then D is numerically equivalent to an effective \mathbb{R}-divisor $N(D)$.

When $D = K_X$, we denote $\nu(X) = \nu(X, K_X)$. The Kodaira dimension $\kappa(X)$ is a birational invariant. Its numerical version $\nu(X)$ is also a birational invariant: if X and X' are birationally equivalent smooth projective varieties, then $\nu(X) = 0$ if and only if $\nu(X') = 0$. For more precise definition of the numerical Kodaira dimension $\nu(X)$, we refer the reader to [5].
3 Proof of the theorem

Proof of Theorem 1. By assumption, K_X is numerically equivalent to an effective \mathbb{Q}-divisor. We take the smallest possible positive integer m such that $m(K_X + L)$ for some $L \in \text{Pic}^r(X)$ is linearly equivalent to an effective divisor N. We shall prove that L is a torsion in $\text{Pic}^r(X)$.

By blowing up X further, we may assume that the support of N is a normal crossing divisor. We take a holomorphic section h of $O_X(m(K_X + L))$ such that div$(h) = N$. By taking the m-th root of h, we construct a finite and surjective morphism $\pi : Y' \to X$ from a normal variety with only rational singularities. Let $\mu : Y \to Y'$ be a desingularization. We have

$$\mu_* K_Y \sim \pi^*(K_X + (m - 1)(K_X + L) - N')$$

for some \mathbb{Q}-divisor N' such that $0 \leq N' \leq N$. Then

$$\mu_* K_Y + \pi^* L \sim \pi^*(m(K_X + L) - N') \sim \pi^*(N - N')$$

Since Y' has only rational singularities, it follows that $H^0(Y, K_Y + \mu^* \pi^* L) \neq 0$.

By [6], it follows that there exists a torsion element $L' \in \text{Pic}^r(Y)$ such that $H^0(Y, K_Y + L') \neq 0$. If $L' \not\sim \mu^* \pi^* L$, then $\pi^*(N - N')$ is numerically equivalent to a different effective divisor. Then N must be numerically equivalent to a different effective \mathbb{Q}-divisor, a contradiction. Therefore $L' \sim \mu^* \pi^* L$, and L is a torsion.

We prove a logarithmic version:

Theorem 6. Let X be a smooth projective variety and $D = \sum_i D_i$ a simple normal crossing divisor. Assume that $\dim H^0(X, m(K_X + D) + A)$ is bounded when $m \to \infty$ for any fixed ample divisor A. Then there exists a positive integer m such that $H^0(X, m(K_X + D)) \neq 0$.

Proof. The proof is parallel to the non-log case. We have $m(K_X + D + L) \sim N$ as before. We make the union of N and D to be normal crossing by blowing up X, and take a ramified covering $\pi : Y' \to X$ branching along N. By resolution, we obtain a smooth projective variety Y with a simple normal crossing divisor E which is the union of the preimage of D and the exceptional divisors of the resolution. We note that common irreducible components of N and D do not cause any trouble for the formula

$$\mu_*(K_Y + E) \sim \pi^*(K_X + D + (m - 1)(K_X + D + L) - N')$$
though we have to modify N'. We have $\mu_\ast(K_Y + E) + \pi^\ast L \sim \pi^\ast(N - N')$ as before. We have to prove that $\pi^\ast L$ is torsion.

In the moduli space of local systems V of rank 1 on X, we consider the closed subvarieties where the dimensions of the cohomology groups

$$H^p_B(Y \setminus E, V) = H^p(Y \setminus E, \mu^\ast \pi^\ast V)$$

jump. Let $i: Y \setminus E \to Y$ be an open immersion, and denote by $E^{[p]}$ the disjoint union of all the p-fold intersections of the irreducible components of E as in [2]. We have $E^{[0]} = Y$ by convention. Then the canonical filtration on the complex $Ri_\ast \mathbb{Q}_{Y \setminus E}$ induces a spectral sequence among Betti cohomologies

$$E_{1}^{p,q} = H^{2p+q}_B(E^{[p] \setminus E}, V) \Rightarrow H^{p+q}_B(Y \setminus E, V)$$

where we denote $H^{q}_B(E^{[p]}, V) = H^q(E^{[p]}, \mu^\ast \pi^\ast V \otimes \Omega^\bullet_{E^{[p]}})$. We denote furthermore

$$H^{q}_{DR}(E^{[p]}, V) = H^q(E^{[p]}, \mu^\ast \pi^\ast V \otimes \Omega^\bullet_{E^{[p]}})$$
$$H^{q}_{DR}(Y \setminus E, V) = H^q(Y, \mu^\ast \pi^\ast V \otimes \Omega^\bullet_{Y \setminus E})$$
$$H^{q}_{Dol}(E^{[p]}, V) = H^q(E^{[p]}, (\mu^\ast \pi^\ast V \otimes \Omega^\bullet_{E^{[p]}}, \phi))$$
$$H^{q}_{Dol}(Y \setminus E, V) = H^q(Y, (\mu^\ast \pi^\ast V \otimes \Omega^\bullet_{Y \setminus E}, \phi))$$

where $\phi \in H^0(X, \Omega^1_X)$ is the Higgs field corresponding to the flat connection on V. The filtration with respect to the orders of log poles on the complex $\Omega^\bullet_Y(\log E)$ induces spectral sequences

$$E_{1}^{p,q} = H^{2p+q}_{DR}(E^{[p] \setminus E}, V) \Rightarrow H^{p+q}_{DR}(Y \setminus E, V)$$
$$E_{1}^{p,q} = H^{2p+q}_{Dol}(E^{[p] \setminus E}, V) \Rightarrow H^{p+q}_{Dol}(Y \setminus E, V)$$

By [2], these spectral sequences are compatible with the isomorphisms

$$H^q_B(E^{[p]}, V) \cong H^q_{DR}(E^{[p]}, V) \cong H^q_{Dol}(E^{[p]}, V)$$

so that we have isomorphisms

$$H^q_B(Y \setminus E, V) \cong H^q_{DR}(Y \setminus E, V) \cong H^q_{Dol}(Y \setminus E, V).$$

Thus our jumping loci are canonically defined in the sense of Simpson [6]. We apply Simpson’s result, and deduce that there is a torsion element $L' \in \text{Pic}^+(X)$ such that $H^0(Y, L' \otimes \mathcal{O}_Y(K_Y + E)) \neq 0$. The rest of the proof is the same as in Theorem [4].
References

[1] Frederic Campana, Thomas Peternell, Matei Toma. *Geometric stability of the cotangent bundle and the universal cover of a projective manifold*. math/0405093.

[2] Deligne, Pierre. *Théorie de Hodge. II*. (French) Inst. Hautes Études Sci. Publ. Math. No. 40 (1971), 5–57.

[3] Kawamata, Yujiro. *Minimal models and the Kodaira dimension of algebraic fiber spaces*. J. Reine Angew. Math. 363 (1985), 1–46.

[4] Kawamata, Yujiro. *Remarks on the cone of divisors*. arXiv:0909.3621

[5] Nakayama, Noboru. *Zariski-decomposition and abundance*. MSJ Memoirs, 14. Mathematical Society of Japan, Tokyo, 2004. xiv+277 pp. ISBN: 4-931469-31-0.

[6] Simpson, Carlos. *Subspaces of moduli spaces of rank one local systems*. Ann. Sci. École Norm. Sup. (4) 26 (1993), no. 3, 361–401.

[7] Siu, Yum-Tong. *Abundance conjecture*. arXiv:0912.0576

Department of Mathematical Sciences, University of Tokyo, Komaba, Meguro, Tokyo, 153-8914, Japan
kawamata@ms.u-tokyo.ac.jp
On the abundance theorem in the case $\nu = 0$

Yuyiro Kawamata

May 18, 2010

Abstract

We present a short proof of the abundance theorem in the case of numerical Kodaira dimension 0 proved by Nakayama and its log generalization.

1 Introduction

Nakayama [6] proved the abundance conjecture for a non-minimal algebraic variety whose numerical Kodaira dimension is equal to 0:

Theorem 1. Let X be a smooth projective variety. Assume that the function $\dim H^0(X, mK_X + A)$ is bounded when $m \to \infty$ for arbitrarily fixed ample divisor A. Then there exists a positive integer m such that $H^0(X, mK_X) \neq 0$.

Nakayama’s result is more general in the sense that the theorem holds for KLT pairs. Siu [8] proved the same result by analytic method.

The purpose of this note to present a simplified version of the proof. The main point is to use the numerical version of the Zariski decomposition as in [5] and Simpson’s finiteness result [7].

We shall also prove a logarithmic generalization of Theorem [1] for normal crossing pairs (Theorem [6]). We note that the coefficients of the boundary in this case are equal to 1 and the pair is not KLT.

Abundance theorem in the case $\nu = 0$ for minimal algebraic varieties is already proved in [4] as an application of the additivity theorem of the Kodaira dimension for algebraic fiber spaces.

We work over \mathbb{C}. We denote by \equiv and \sim the numerical and linear equivalences respectively.
When this paper was posted on the web, the author learned from a message by Frederic Campana that the argument using [7] already appeared in [2].

2 Numerical Zariski decomposition

Let X be a smooth projective variety. Two \mathbb{R}-divisors D and D' on X are said to be numerically equivalent, and denoted by $D \equiv D'$, if $(D \cdot C) = (D' \cdot C)$ for all irreducible curves C. The set of all numerical classes of \mathbb{R}-divisors form a finite dimensional real vector space $N_1(X)$. The pseudo-effective cone $Pseff(X)$ is the smallest closed convex cone in $N_1(X)$ which contains all the numerical classes of effective divisors. An \mathbb{R}-divisors is said to be pseudo-effective if its numerical class is contained in $Pseff(X)$. The movable cone $Mov(X)$ is the smallest closed convex cone in $N_1(X)$ which contains all the numerical classes of effective divisors whose complete linear systems do not have fixed components.

Lemma 2. Let D be an \mathbb{R}-divisor and A an ample divisor on a smooth projective variety X. The following are equivalent:

1. D is pseudo-effective.
2. For an arbitrary positive number ϵ, there exists an effective \mathbb{R}-divisor D' such that $D + \epsilon A \equiv D'$.
3. For an arbitrary positive number ϵ, there exists a positive integer m such that $H^0(X, \mathcal{I}_m(D + \epsilon A)) \neq 0$.

Proof. The equivalence of (1) and (2) is clear. Obviously (3) implies (2). If (2) holds, then we can write

$$D + \frac{1}{3} \epsilon A - D' = \sum_j d_j D_j$$

for an effective \mathbb{R}-divisor D', real numbers d_j which are linearly independent over \mathbb{Q} and \mathbb{Q}-divisors D_j such that $D_j \equiv 0$. Thus we can write

$$D + \frac{1}{3} \epsilon A \sim \mathbb{Q} D_1 + D_2 + L$$

where $\sim \mathbb{Q}$ denotes the \mathbb{Q}-linear equivalence, for an effective \mathbb{Q}-divisor D_1, a small \mathbb{R}-divisor D_2 and $L \in \text{Pic}^g(X) \otimes \mathbb{Q}$ such that $\frac{1}{3} \epsilon A + D_2$ and $\frac{1}{3} \epsilon A + L$
are \mathbb{Q}-linearly equivalent to effective \mathbb{R}-divisors. Then there exists a positive integer m such that $m(D + \epsilon A)$ is linearly equivalent to an effective \mathbb{R}-divisor, hence (3). \hfill \Box

Let D be a pseudo-effective \mathbb{R}-divisor, and A an ample divisor. We define the **numerically fixed part** and the **numerical base locus** of D by

$$N(D) = \lim_{\epsilon \to 0^-}(\inf\{D' | D + \epsilon A \equiv D' \geq 0\})$$

$$\text{NBs}(D) = \bigcup_{\epsilon > 0}(\bigcap\{\text{Supp}(D') | D + \epsilon A \equiv D' \geq 0\}).$$

They are independent of A. By setting $P(D) = D - N(D)$, we obtain a formula $D = P(D) + N(D)$ called the **numerical Zariski decomposition** of D.

Lemma 3. (1) The irreducible components of $N(D)$ are numerically independent, i.e., linearly independent in $N^1(X)$.

(2) If D is a \mathbb{Q}-divisor and $D \equiv N(D)$, then $N(D)$ is also a \mathbb{Q}-divisor.

(3) $N(D) = 0$ if and only if the numerical class of D is contained in $\text{Mov}(X)$. In this case, $\text{NBs}(D)$ is a countable union of subvarieties of codimension at least 2.

Proof. (1) If there is a numerical linear relation, then $N(D)$ is numerically equivalent to a different effective \mathbb{R}-divisor, a contradiction.

(2) The intersection numbers of $N(D)$ with curves are rational numbers, hence so are the coefficients of $N(D)$.

(3) We can take the limit $\epsilon \to 0$ for only those ϵ which are rational numbers. \hfill \Box

Let D be a pseudo-effective \mathbb{R}-divisor. Then there are two cases:

1. $\nu(X, D) = 0$: The function $\dim H^0(X, \lceil mD \rceil + A)$ is bounded when $m \to \infty$ for any ample divisor A.

2. $\nu(X, D) > 0$: There exists an ample divisor A such that the function $\dim H^0(X, \lceil mD \rceil + A)$ is unbounded when $m \to \infty$.

The following proposition is [6] Theorem V.1.11. We include a proof for the convenience of the reader.
Proposition 4. Let X be a smooth projective variety, and D a pseudo-effective \mathbb{R}-divisor. Assume that $D \not\equiv 0$ and $N(D) = 0$. Then there exist an ample divisor A, a positive number b and a positive integer m_0 such that

$$\dim H^0(X, mD + A) > bm$$

for $m \geq m_0$.

Proof. Since $\text{NBs}(D)$ is a countable union of closed subvarieties of codimension at least 2, a general curve section C does not meet $\text{NBs}(D)$. Since $D \not\equiv 0$, we have $(D \cdot C) > 0$.

We fix an ample divisor A and denote $L_m = mD + A$. It is sufficient to prove that the natural homomorphism $H^0(X, L_m) \to H^0(C, L_m|_C)$ is surjective for m large.

Let $\mu : Y \to X$ be the blowing up along C and E the exceptional divisor. We take an effective \mathbb{R}-divisor $B_m \equiv mD + \epsilon A$ such that $C \not\subset B_m$ and that (Y, μ^*B_m) is KLT near E. We calculate

$$\mu^*L_m - E - (K_Y + \mu^*B_m)$$

$$= \mu^*(mD + A - (K_X + B_m)) - (n - 1)E$$

$$\equiv \mu^*((1 - \epsilon)A - \langle mD \rangle - K_X) - (n - 1)E$$

where $n = \dim X$ and $\langle mD \rangle = mD - mD \cdot$. It is ample for any $m > 0$ if A is sufficiently large compared to the irreducible components of D, K_X and E.

Let I be the multiplier ideal sheaf for the pair (Y, μ^*B_m). We have $E \cap \text{Supp}(\mathcal{O}_Y/I) = \emptyset$. By the Nadel vanishing theorem, we have $H^1(Y, I(\mu^*L_m - E)) = 0$. It follows that the homomorphism $H^0(Y, \mu^*L_m) \to H^0(E, \mu^*L_m|_E)$ is surjective, and our assertion is proved.

Corollary 5. Let X be a smooth projective variety, and D a pseudo-effective \mathbb{R}-divisor. Assume that $\dim H^0(X, mD + A)$ is bounded. Then D is numerically equivalent to an effective \mathbb{R}-divisor $N(D)$.

When $D = K_X$, we denote $\nu(X) = \nu(X, K_X)$. The Kodaira dimension $\kappa(X)$ is a birational invariant. Its numerical version $\nu(X)$ is also a birational invariant: if X and X' are birationally equivalent smooth projective varieties, then $\nu(X) = 0$ if and only if $\nu(X') = 0$. For more precise definition of the numerical Kodaira dimension $\nu(X)$, we refer the reader to [6].
3 Proof of the theorem

Proof of Theorem 1. By assumption, K_X is numerically equivalent to an effective \mathbb{Q}-divisor. We take the smallest possible positive integer m such that $m(K_X + L)$ for some $L \in \text{Pic}^\tau(X)$ is linearly equivalent to an effective divisor N. We shall prove that L is a torsion in $\text{Pic}^\tau(X)$.

By blowing up X further, we may assume that the support of N is a normal crossing divisor. We take a holomorphic section h of $O_X(m(K_X + L))$ such that $\text{div}(h) = N$. By taking the m-th root of h, we construct a finite and surjective morphism $\pi : Y' \to X$ from a normal variety with only rational singularities. Let $\mu : Y \to Y'$ be a desingularization. We have

$$\mu_*K_Y \sim \pi^*(K_X + (m - 1)(K_X + L) - N')$$

for some \mathbb{Q}-divisor N' such that $0 \leq N' \leq N$. Then

$$\mu_*K_Y + \pi^*L \sim \pi^*(m(K_X + L) - N') \sim \pi^*(N - N').$$

Since Y' has only rational singularities, it follows that $H^0(Y, K_Y + \mu^*\pi^*L) \neq 0$.

By [7], it follows that there exists a torsion element $L' \in \text{Pic}^\tau(Y)$ such that $H^0(Y, K_Y + L') \neq 0$. If $L' \not\sim \mu^*\pi^*L$, then $\pi^*(N - N')$ is numerically equivalent to a different effective divisor. Then N must be numerically equivalent to a different effective \mathbb{Q}-divisor, a contradiction. Therefore $L' \sim \mu^*\pi^*L$, and L is a torsion.

We prove a logarithmic version:

Theorem 6. Let X be a smooth projective variety and $D = \sum_i D_i$ a simple normal crossing divisor. Assume that $\dim H^0(X, m(K_X + D) + A)$ is bounded when $m \to \infty$ for any fixed ample divisor A. Then there exists a positive integer m such that $H^0(X, m(K_X + D)) \neq 0$.

Proof. The proof is parallel to the non-log case. We have $m(K_X + D + L) \sim N$ as before. We make the union of N and D to be normal crossing by blowing up X, and take a ramified covering $\pi : Y' \to X$ branching along N. By resolution, we obtain a smooth projective variety Y with a simple normal crossing divisor E which is the union of the preimage of D and the exceptional divisors of the resolution. We note that common irreducible components of N and D do not cause any trouble for the formula

$$\mu_*(K_Y + E) \sim \pi^*(K_X + D + (m - 1)(K_X + D + L) - N').$$
though we have to modify N'. We have $\mu_\ast(K_Y + E) + \pi^\ast L \sim \pi^\ast(N - N')$ as before. We have to prove that $\pi^\ast L$ is torsion.

In the moduli space of local systems V of rank 1 on X, we consider the closed subvarieties where the dimensions of the cohomology groups

$$H_B^p(Y \setminus E, V) = H^p(Y \setminus E, \mu^\ast \pi^\ast V)$$

jump. Let $i : Y \setminus E \to Y$ be an open immersion, and denote by $E^{[p]}$ the disjoint union of all the p-fold intersections of the irreducible components of E as in [3]. We have $E^{[0]} = Y$ by convention. Then the canonical filtration on the complex $Ri_\ast Q_{Y \setminus E}$ induces a spectral sequence among Betti cohomologies

$$E_1^{p,q} = H^{2p+q}_B(Y^{[-p]}, V) \Rightarrow H^{p+q}(Y \setminus E, V)$$

where we denote $H^q_B(E^{[p]}, V) = H^q(E^{[p]}, \mu^\ast \pi^\ast V \otimes \Omega_{E^{[p]}}^\bullet)$. We denote furthermore

$$H^q_{DR}(E^{[p]}, V) = H^q(E^{[p]}, \mu^\ast \pi^\ast V \otimes \Omega_{E^{[p]}}^\bullet)$$
$$H^q_{DR}(Y \setminus E, V) = H^q(Y, \mu^\ast \pi^\ast V \otimes \Omega_Y^\bullet (\log E))$$
$$H^q_{Dol}(E^{[p]}, V) = H^q(E^{[p]}, (\mu^\ast \pi^\ast V \otimes \Omega_{E^{[p]}}^\bullet, \phi))$$
$$H^q_{Dol}(Y \setminus E, V) = H^q(Y, (\mu^\ast \pi^\ast V \otimes \Omega_Y^\bullet (\log E), \phi))$$

where $\phi \in H^0(X, \Omega_X^1)$ is the Higgs field corresponding to the flat connection on V. The filtration with respect to the orders of log poles on the complex $\Omega_Y^\bullet (\log E)$ induces spectral sequences

$$E_1^{p,q} = H^{2p+q}_{DR}(Y^{[-p]}, V) \Rightarrow H^{p+q}_{DR}(Y \setminus E, V)$$
$$E_1^{p,q} = H^{2p+q}_{Dol}(Y^{[-p]}, V) \Rightarrow H^{p+q}_{Dol}(Y \setminus E, V)$$

By [3], these spectral sequences are compatible with the isomorphisms

$$H^q_B(E^{[p]}, V) \cong H^q_{DR}(E^{[p]}, V) \cong H^q_{Dol}(E^{[p]}, V)$$

so that we have isomorphisms

$$H^q_B(Y \setminus E, V) \cong H^q_{DR}(Y \setminus E, V) \cong H^q_{Dol}(Y \setminus E, V).$$

Thus our jumping loci are canonically defined in the sense of Simpson [4]. We apply Simpson’s result, and deduce that there is a torsion element $L' \in \text{Pic}^+(X)$ such that $H^0(Y, L' \otimes \mathcal{O}_Y(K_Y + E)) \neq 0$. The rest of the proof is the same as in Theorem [4]
4 Addendum

After the first version of this paper is written, the author received a paper [1]. Then the author realized that a more precise calculation on the construction of this paper yields a more general result for LC pairs as follows. The proof is added for the sake of completeness though it is basically the same.

Theorem 7. Let \((X, B)\) be a projective pair with log canonical (LC) singularities. Assume that \(H^0(X, m(K_X + B + L)) \neq 0\) for a positive integer \(m\) and \(L \in \text{Pic}^\tau(X)\). Then there exists a positive integer \(m'\) such that \(H^0(X, m'(K_X + B)) \neq 0\).

Proof. We have \(m(K_X + B + L) \sim N\) for an effective divisor \(N\) as before. By a resolution of singularities, we may assume that the support of \(B + N\) is a normal crossing divisor. Moreover we may assume that \(B\) and \(N\) have no common irreducible components by subtracting the overlap and multiplying \(m\) if necessary. We denote \(B = D + B'\) for \(D = \cup B_i\). Let \(\pi : Y' \to X\) be the ramified covering obtained by taking the \(m\)-th root of \(N - mB\), and \(\mu : Y \to Y'\) a log resolution as before. Let \(f = \pi \mu\).

Let \(E = (f^*D)_{\text{red}}\). Then we have \(R\mu_* \mathcal{O}_Y(K_Y + E) \cong \mathcal{O}_{Y'}(K_{Y'} + \pi^*D)\) by the vanishing theorem. We have the following more precise formula:

\[
R_f_* \mathcal{O}_Y(K_Y + E) \cong \bigoplus_{i=0}^{m-1} \mathcal{O}_X(K_X + D + i(K_X + B + L - N/m)\gamma).
\]

Since \(H^0(X, \bullet)\) of each term on the right hand side is upper semicontinuous, the jumping locus on the moduli space of flat line bundles on \(X\) for each term is a union of torsion translations of triple tori by Simpson’s result as before.

If we set \(i = m - 1\), then we have

\[
K_X + D + (m-1)(K_X + B + L - N/m)\gamma = m(K_X + B) + (m-1)L - \cup N/m_i.
\]

Therefore we conclude that there exists a torsion line bundle \(L'\) such that \(H^0(X, m(K_X + B) + L' - \cup N/m_i) \neq 0\).

References

[1] Frédéric Campana, Vincent Koziarz, Mihai Paun. *Numerical character of the effectivity of adjoint line bundles*. [arXiv:1004.0584](http://arxiv.org/abs/1004.0584)
[2] Frederic Campana, Thomas Peternell, Matei Toma. *Geometric stability of the cotangent bundle and the universal cover of a projective manifold*. math/0405093.

[3] Deligne, Pierre. *Théorie de Hodge. II*. (French) Inst. Hautes Études Sci. Publ. Math. No. 40 (1971), 5–57.

[4] Kawamata, Yujiro. *Minimal models and the Kodaira dimension of algebraic fiber spaces*. J. Reine Angew. Math. 363 (1985), 1–46.

[5] Kawamata, Yujiro. *Remarks on the cone of divisors*. arXiv:0909.3621

[6] Nakayama, Noboru. *Zariski-decomposition and abundance*. MSJ Memoirs, 14. Mathematical Society of Japan, Tokyo, 2004. xiv+277 pp. ISBN: 4-931469-31-0.

[7] Simpson, Carlos. *Subspaces of moduli spaces of rank one local systems*. Ann. Sci. École Norm. Sup. (4) 26 (1993), no. 3, 361–401.

[8] Siu, Yum-Tong. *Abundance conjecture*. arXiv:0912.0576

Department of Mathematical Sciences, University of Tokyo,
Komaba, Meguro, Tokyo, 153-8914, Japan
kawamata@ms.u-tokyo.ac.jp