Effect of *Tithonia diversifolia* Mulch on *Atta cephalotes* (Hymenoptera: Formicidae) Nests

Jonathan Rodríguez,1,2 James Montoya-Lerma,1 and Zoraida Calle3

1Department of Biology, Grupo de Ecología de Agroecosistemas y Hábitats Naturales (GEAHNA), Universidad del Valle, Calle 13 No. 100-00, Cali, Colombia
2Corresponding author, e-mail: nathan.rodriguez.g@gmail.com
3Restoration Ecology Area, Fundación CIPAV, Carrera 25 No. 6-62, Cali, Colombia

Key Words: green manure, biological control, leaf-cutting ant, *Atta cephalotes*

ABSTRACT. Recent studies have shown an insecticidal effect of *Tithonia diversifolia* (Hems.) Gray (Asteraceae: Asteraceae) foliage on workers of *Atta cephalotes* L. and inhibitory effects of this plant on the growth of the symbiotic fungus *Leucoagaricus gongylophorus* (A. Müller) Singer. To evaluate the potential of *T. diversifolia* as a biological control treatment of this important pest, we assessed the effect of green manure (mulch) of this plant on natural nests of *A. cephalotes*, in Cali, Colombia. Three treatments were randomly assigned to 30 nests: 1) green mulch of *T. diversifolia*, 2) green mulch of *Miconia* sp., Ruiz & Pav. and 3) unmulched control. Every 2 wk for 6 mo, the surface of the nests was completely covered with leaves. Physical and chemical parameters of nest soil were assessed before the first and after the last application of the mulch. Ant foraging in *T. diversifolia*-treated nests decreased by 60% after the initial applications of the mulch, while nest surface area decreased by 40%. When the nests covered with *T. diversifolia* were opened, it was observed that the superficial fungus chambers had been relocated at a greater depth. In addition, microbial activity and soil pH increased by 84% and 12%, respectively, in nests covered with plant residues. In conclusion, the continued use of *T. diversifolia* mulch reduces foraging activity and negatively affects the internal conditions of the colonies, thereby inducing the ants to relocate the fungus chambers within the nests.

In laboratory colonies fed with *T. diversifolia*, workers of *A. cephalotes* rejected this plant as a forage resource (Rodríguez et al. 2008), and the plant caused a 100% size reduction and up to 83.3% mortality of the symbiotic fungus (Valderrama et al. 2009). Cañamero et al. (2013) observed that an ethanol extract of dry *T. diversifolia* leaves supplied as part of an artificial diet or applied directly on the cuticle caused 100% mortality of workers within 8 d.

Giraldo (2005) found that *Montanoa quadrangularis* Sch. (Asteraceae: Asteraceae) trees in a young plantation were less prone to the attack of leaf-cutting ants when fertilized with *T. diversifolia* green manure than when chemically fertilized. Considering that nest construction depends on soil pH, porosity, and infiltration capacity (Cammeraat et al. 2002, Moutinho et al. 2003), it is likely that the green manure of *T. diversifolia* not only alters fertility through the incorporation of nutrients from decomposition (Ikerra et al. 2006, Crespo et al. 2011) but also releases secondary metabolites that deter ant colonization. If so, this foliage could be applied deliberately to control *A. cephalotes* by altering the chemical and biological environment of the nests.

Green manure or mulch provides a natural cover with multiple benefits: it inhibits weed development (Burkhard et al. 2009) while reducing nutrient leaching, increases soil organic matter (Kuepper and Diver 2010) and cation exchange capacity (Proyecto Cheuca 2000), and creates a favorable environment for natural enemies of agricultural pests (Hartwig and Ammon 2002) thus enhancing biological pest control (Hooks et al. 1998, Frank and Liburd 2005, Prasifka et al. 2006, Pullaro et al. 2006). Studies of arthropod activity on mulch-covered soil are scant. For instance, not much information exists on how arthropods are affected by plant residues on the soil surface. The main objective of this study was to evaluate the physical, chemical, and biological impacts of *Tithonia* mulch on field colonies of *A. cephalotes*. We hypothesized that the *Tithonia* mulch would affect foraging and nest construction and that the decomposition of the green manure on top of the ant nests would alter soil physical-chemical properties and directly affect the development of the symbiotic fungus inside the nest.
Materials and Methods

Study Area. Field trials were conducted at two farms (Entre Quebradas 3° 24’ 58.78” N; 76° 35’ 30.69” W and Corral del Piedra 3°
24’ 51.84” N; 76° 35’ 36.39” W) located at 1,350 m above sea level in
the rural area of Cali, Colombia, with 80% average relative humidity
and 23°C average temperature. Conventional small-scale pastures for
cattle grazing occupied 90% of the area, covered by Bahia grass
(Paspalum notatum Alain ex Flügge [Poales: Poaceae]), small Miconia
sp. trees, and a few large Inga Mill (Fabaceae) and Ficus
L. (Riosales: Moraceae) trees. The remaining 10% of the area was cov-
ered by riparian vegetation dominated by bamboo Guadua angustifolia
Kunth (Poales: Poaceae) and Ficus sp (Cali: Colombia).

In 2009, a crop of Mexican sunflower was planted at the
Universidad del Valle campus (3° 22’ 23.07” N; 76° 31’ 50.69” O).
The plants were pruned in April 2011, and 2 mo later, the stems were
cut and transported to the study area. Additional Tithonia biomass
was collected along the Pance River, where this plant grows spontane-
ously.

Selection of A. cephalotes Nests and Application of Green
Manure. An intensive search for A. cephalotes nests was conducted in
the study area between May and June 2011. Nests with a surface area
≤35 m² were selected and georeferenced with a portable GPS after veri-
fying the absence of pest control treatments.

Selected A. cephalotes nests were randomly assigned to the three
treatments: T. diversifolia and Miconia mulches and control
(no mulch). Between July and December 2011, stems and leaves of
both plant species were applied biweekly covering the entire surface
of 20 nests (10 nests for each mulch treatment), until completing 12
applications. Plant residues from previous mulching were not
removed. The amount of green manure varied with nest size (10–30 kg
per nest). A group of 10 nests without green manure was used as an
unmulched control. No insecticides were applied throughout the
experiment.

Characterization of the Nests. A biological and physical character-
ization of all nests was done before and after applying the treatments,
taking into account the following variables, validated in previous stud-
ies (Montoya-Lerma et al. 2006, López 2008): 1) total number of
entrances: all nest mound openings, including those used for forage
entrance, ventilation, and excavation; 2) total nest area (m²): estimated
as the product of the N-S and E-W distances between the most remote
mound openings. 3) foraging activity: average number of foraging ants
within a 20 cm radius from the main mound opening, assessed with a
hand counter. Observations were made during 1-min bouts, and the
average of three counts was recorded. 4) excavation activity: the num-
ber of ants observed removing nest materials at the entrance of
the mound opening with the most active excavation. This was counted
for 1 min, only once.

Throughout the study, the sequence of nests was randomized, ensur-
ing that the variables were always evaluated at different times between
0600 and 0800 hours, before applying the plant material and then 1, 3,
5, and 10 d after each application.

To estimate soil microbial activity, soil samples (collected at depths
of 0, 10, and 20 cm) were taken randomly from four nests per treatment.
The samples were analyzed by modifying the method proposed by
Lagomarsino et al. (2011). For the physical characterization, soil samples
were taken randomly from 12 nests (four per treatment) using a
Drill with a 10 cm diameter. The drill was introduced in the central area
of each nest to depths of 0, 10 cm, and 20 cm. Soil samples collected at
the same depths 5 m away from each nest were used as references.
Porosity and pH were analyzed in the soil samples to assess permeabil-
ity and acidity, respectively.

Samples for evaluating microbial activity and physical properties of
the nests were taken before applying the treatments and 10 d after the
last application of green mulch (only for pH and microbial activity).
The analyses were carried out at the Soil Laboratory (Universidad del
Valle, Cali).

Once data collection ended, all nests were excavated, and the symbi-
otic fungus chambers were located. The volume of the symbiotic fun-
gus, number of empty chambers, and depth were recorded.

Data Analysis. Repeated-measures analysis of variance (ANOVA)
and post-ANOVA (Von Ende 1993) were done after verifying compli-
ance with the assumptions of homogeneity of variance and normal dis-
tribution. Data were analyzed for differences between treatments in
the foraging and excavation activities, the number of entrances, and the
surface area of the nests. Pre- and posttreatment microbial activity and pH
were compared with a Student’s t-test for dependent samples. Nest soil
density and porosity, as well as depth of the chambers, were analyzed
with a Student’s t-test for independent samples. All analyses were per-
formed using STATISTICA software (Statsoft 2007).

Results

Approximately 1.3 and 1.1 tons of T. diversifolia and Miconia sp.
foliage were used throughout the study, respectively. Miconia
sp. mulch, but not Tithonia, was partially foraged by ant workers.
T. diversifolia mulch decayed rapidly, forming a thick layer on top of
the treated nests. In contrast, Miconia mulch dried and hardened, form-
ing a loose cover. The mulch-treated area varied throughout the experi-
ment in nests covered with T. diversifolia mulch, due mainly to the
obstruction of the nest entrances located underneath the mulch and the
opening of new ones around it. Ant activity declined more than 50%-
between the fourth and eighth weeks. In most cases, the mound open-
ings were closed by the ants, thus reducing the external area of
the nests. However, after the 12th week, the opening of new entrances
in the periphery was concomitant with an increase in the surface area
of the nests. The observed interruption of nest activity, the closing
of some entrances, and the excavation of new ones outside the mulch
between the 4th and 12th weeks reflected an internal modification of
nest structure. This relocation behavior was observed exclusively in the
T. diversifolia mulch treatment.

Nest area varied significantly between treatments at the end of the
study (F(10,115) = 1.7858; P = 0.0486). In those treated with T. diversi-
folia mulch, nest area decreased by 40% after the fourth application,
reaching a significantly smaller size than control or Miconia mulched
nests (F(2,23) = 6.4740; P = 0.0059). However, at the end of the study,
the average size reduction of the nests treated with T. diversifolia
mulch was only 6%. Final area increments of 24% and 47.4% were
recorded on unmulched control and Miconia sp. mulch treatments,
respectively.

The treatments did not affect the number of excavation, foraging, or
ventilation mound openings. However, changes in the activities carried
out in these openings, such as the simultaneous use of a single mound
for removing soil particles and entering cut material, were noted in all
treatments.

![Fig. 1. Average foraging activity of ant workers in the three treatments. For each treatment, box limits show standard error and bars show minimum and maximum values. *Tukey's test: P < 0.05.](image-url)
Foraging activity showed significant differences between treatments \((F(2,24): 7.2992; P = 0.0033)\) (Fig. 1) and throughout the experiment \((F(28,672): 1.5531; P = 0.0352)\). Ant foraging declined significantly in the *T. diversifolia* mulch nests (less than two loaded workers per minute) between the fourth and eighth weeks of the study. In contrast, excavation activity showed no significant differences between treatments \((F(2,24): 0.5041; P = 0.6103)\) or weeks \((F(28,672): 0.5856; P = 0.9576)\) even though a peak in excavation activity was observed in *T. diversifolia* mulch nests between the fourth and ninth weeks.

No statistically significant differences in soil microporosity were found between ant nests and the surrounding soil at different depths. However, macroporosity was significantly higher in nest soil between 0 and 10 cm \((t_{(9)}: -3.3278; P = 0.0235)\) and 10 to 20 cm depth \((t_{(9)}: -2.9080; P = 0.0173)\) compared with surrounding soil; no differences were observed between 20 and 30 cm \((t_{(9)}: -0.6095; P = 0.5557)\). Soil pH increased significantly after all applications on the surface of the *T. diversifolia* mulch \((t_{(13)}: -3.3142; P = 0.0452)\) and *Miconia* sp. mulch \((t_{(13)}: -4.5033; P = 0.0204)\) nests. However, differences disappeared at 20 and 30 cm depths. Unmulched control nests showed no significant variations in pH (Table 1). Microbial activity increased by 84\% \((t_{(9)}: -3.3379; P = 0.0444)\) on the surface of the *T. diversifolia* mulch nests and decreased by 22\% and 8\% at 20 and 30 cm, respectively. In the *Miconia* sp. mulch and unmulched control nests, microbial activity decreased at all depths sampled and was significantly lower at 10–20 cm \((t_{(13)}: 6.2316; P = 0.008)\) in the *Miconia* sp. mulch treatment (Table 1).

During nest excavation, chambers were found to be empty or with soil and symbiotic fungus in all treatments (Table 2). There were no significant differences between treatments in the number of chambers; however, nests covered with *T. diversifolia* mulch had a higher percentage of empty chambers (Fig. 2). At the end of the study, the most superficial chambers containing symbiotic fungus had a significantly deeper location in the *T. diversifolia* mulch nests \((t_{(16)}: 2.6836; P = 0.0163)\) (Fig. 3). However, in the *T. diversifolia* mulch nests, the culture chambers excavated on soil that had not been covered with the green manure were found at a similar depth to the other treatments.

New entrances excavated in the *T. diversifolia* mulch nests led to new culture chambers; only two empty chambers were found in the expansion area of the nests. The majority (87\%) of the empty chambers were located underneath the foliage-covered surface, 76\% of them between 0 and 80 cm. These observations, coupled with the presence of new openings, suggest the relocation of the nests from *T. diversifolia* mulch to mulch-free areas. This behavior was not observed in the other treatments.

Discussion

In this study, *T. diversifolia* mulch decomposed forming a dense layer with effects on the studied nests of *A. cephalotes*. It also induced a partial or total reduction of foraging activity. Additionally, ants relocated the fungus chambers to areas not affected by the mulch. In some instances, we observed the complete abandonment of the nest areas that had been covered with this plant. Soil pH and microbial activity increased in the nests covered with *T. diversifolia* mulch, whereas soil porosity remained unchanged. We propose that changes in soil chemistry altered the microhabitat inducing the ants to modify nest structure and the workers to reduce their activity outside of the nests. Other studies have shown effects of plant mulches on ants. Meissner and Silverman (2001) observed that the mulch of *Juniperus virginiana* L. (Cupressales: Cupressaceae) is toxic to the ants *Tapinoma sessile* Say and *Linepithema humile* Mayr (Hymenoptera: Formicidae) under laboratory conditions and deters field colonization of the latter species (Meissner and Silverman 2003). Pullaro et al. (2006) assessed *Brassica oleracea* L. (Brassicales: Brassicaceae) and *Capsicum annum* L. (Solanaceae: Solanaceae) plantations covered with mulch of *Vicia sativa* L. (Fabales: Fabaceae) and *Secale cereale* L. (Poales: Poaceae) and observed a higher predation of weed seeds and insect pests by *Solenopsis invicta* Buren (Hymenoptera: Formicidae) ant than in control lots (covered by plastic).

Aluminium, nitrogen, phosphorus, calcium, and magnesium released during the decomposition of *T. diversifolia* biomass (Jama et al. 2000, Kwabiah et al. 2003, Partey et al. 2011) can alter soil acidity (Frouz et al. 2003), likely increasing soil pH underneath the green manure (Ikeru et al. 2006). Boaretto et al. (1999) and Loeck et al. (2004) have shown that the elevation of pH can affect the fungal symbionts of different ant species. The internal modification of the *T. diversifolia*-treated nests in our study was probably related to higher soil pH and microbial activity, which induced the workers to build new chambers and tunnels, resulting in the observed reduction of the external activity of ant workers. This lower foraging activity in *T. diversifolia* mulch nests suggests a negative effect of the treatment on ant colonies, a pattern comparable to those observed in studies of *Atta* spp. control with *Metarhizium anisopliae* and *Trichoderma viride* (López and Orduz 2003); compost made with animal manure, plant residues, molasses, yeast, and agricultural lime (Chaves 2006); grain formulations incorporating plant and fungi extracts (Herrera-Salazar 2009); and the control of *Acromyrmex* spp. with homeopathic preparations (Giesel et al. 2012).

Leaf-cutting ants display activity and behavioral changes when control measures are applied in their nests. In our study, ants reacted to disturbance by opening mound entrances outside the mulch-covered area. The same behavior was observed in partially excavated nests (Montoya-Correa et al. 2007) and those covered with organic compost (Chaves 2006). However, the opening of new entrances around the mulch could also be a reaction to the blocking of communication with the exterior. Different studies have shown that ant nests exchange gases through the entrances (Roces and Kleineidam 2000, Kleineidam et al. 2001, Bollazzi et al. 2012), and as the *T. diversifolia* mulch formed a

Table 1. Physicochemical properties of nests under three treatments

Treatment	0–10 cm (depth)	10–20 cm (depth)	20–30 cm (depth)			
	Microbial activity (kg C-CO₂ ha⁻¹ d⁻¹)	pH	Microbial activity (kg C-CO₂ ha⁻¹ d⁻¹)	pH	Microbial activity (kg C-CO₂ ha⁻¹ d⁻¹)	pH
TdM						
0 mo	9.90 ± 1.40*	4.28 ± 0.12*	11.28 ± 2.48	4.45 ± 0.08	10.67 ± 1.77	4.37 ± 0.12
6 mo	18.20 ± 1.16*	4.80 ± 0.15*	8.69 ± 0.57	4.66 ± 0.11	9.72 ± 1.27	4.49 ± 0.36
MM						
0 mo	13.12 ± 1.92	4.78 ± 0.21	21.99 ± 1.61*	4.71 ± 0.24	16.74 ± 1.97	4.65 ± 0.09
6 mo	12.72 ± 2.14	4.88 ± 0.16	17.34 ± 1.24*	4.90 ± 0.15	14.59 ± 2.11	4.71 ± 0.16
UC						
0 mo	14.37 ± 1.86	4.67 ± 0.20	12.78 ± 2.13	4.79 ± 0.21	14.54 ± 1.66	4.87 ± 0.28
6 mo	12.05 ± 3.83	4.99 ± 0.14	9.81 ± 2.27	4.68 ± 0.07	12.93 ± 2.58	4.93 ± 0.31

TdM, *T. diversifolia*; MM, *Miconia*; UC, control (mean values ± standard error; four samples per treatment).

*Significant differences between 0 and 6 mo \(P < 0.05\).
thick layer on top of the treated nests, it might have affected nest ventilation. More studies are needed to determine whether the blocking of entrances triggers the modification of nest structure (Jonkman 1980, Horstmann and Schmid 1986, Bollazzi and Roces 2007).

Nearly 150 chemical compounds have been found in *T. diversifolia* including sesquiterpenes, lactones, diterpenes, and flavonoids (Chagas-Paula et al. 2012). With so many secondary metabolites, it is not surprising that this plant has diverse applications in medicine and agricultural production. Some of its documented effects are the inhibition of *Sarcoptes scabiei* De Geer (Astigmata: Sarcoptidae) parasitism on rabbits (Thu Hang et al. 2012), a phago-deterrent activity in the whitefly *Bemisia tabaci* Gennadius (Hemiptera: Aleyrodidae) (Bagnarello et al. 2009), a repellent effect on mosquitoes (Oyewole et al. 2008), and insecticidal properties on termites (*Adoyo* et al. 1997) and *Callosobrochus maculatus* F. (Coleoptera: Bruchidae) (Adedire and Akinneye 2003, Kolawole et al. 2011).

In Colombia, Giraldo (2005) found reduced herbivory of *A. cephalotes* on *M. quadrangularis* when young trees were planted together and fertilized with green *T. diversifolia* foliage. In addition, Valderrama et al. (2009) found an antifungal effect of the Mexican sunflower on the symbiotic fungus *L. gongylophorus* associated with *A. cephalotes*.

Table 2. Number and state of internal chambers in ant nests with different treatments (TdM, Mulche of *T. diversifolia*; MM, Mulche of *Miconia* sp.; UC, unmulched control)

Treatment	Nest	Empty chambers	Chambers with soil	Symbiotic fungus culture chambers	Number of chambers	Volume of symbiotic fungus (l)
TdM	3	10	0	27	37	124
	5	5	2	13	20	67
	8	9	5	41	35	191
	10	55	5	201	261	897
	12	20	0	0	20	0
	20	4	0	24	28	71
	23	3	0	121	124	291
	25	5	4	27	36	75
	30	6	4	2	12	1
Total	117	20	456	593	1.717	
Average (%)	19.74	3.37	76.89	100		
MM	1	3	3	7	13	17
	9	5	0	77	82	148
	13	2	0	144	146	283
	14	16	6	7	29	19
	16	2	0	13	15	41
	19	5	5	5	10	8
	22	1	5	9	15	12
	26	2	0	6	8	11
Total	36	14	268	318	539	
Average (%)	11.33	4.40	84.27	100		
UC	4	15	4	139	158	339
	11	4	0	8	12	26
	15	5	8	54	58	178
	17	0	0	7	7	18
	18	3	0	5	8	13
	21	6	7	11	24	50
	24	2	2	29	33	96
	29	0	2	17	19	23
Total	39	23	286	348	819	
Average (%)	11.20	6.61	82.19	100		

Fig. 2. Distribution (%) of chamber contents inside the excavated nests. Small fragments of the symbiotic fungus were found in some of the empty chambers of *T. diversifolia* mulch nests.

Fig. 3. Average depth of the most superficial fungus culture chambers. Bars show standard error. (*t* ₁₆: 2.6836; *P* = 0.0163). The largest depth was recorded under the area initially covered by the mulch that remained covered throughout the study.
Moreover, Castaño et al. (2013) showed an insecticidal effect of this plant on leaf-cutting ant workers reared in the laboratory. Recent research has shown that leaf-cutting ants have symbiotic associations with specialized microorganisms, mostly bacteria and yeasts, which contribute to the proper functioning of the colonies and are involved in ant protection and decomposition of plant biomass (Santos et al. 2004, Rodrigues et al. 2005, Abril and Buccher 2007, Rodrigues et al. 2009, Rengifo-Ruiz 2012, Ortiz 2012). For this reason, the negative effect of Mexican sunflower mulch on A. cephalotes nests and the emergence of culture chambers outside the central conglomerate may be related to the antifungal, bactericidal, or insecticidal properties of this plant, all of which can threaten the stability and functioning of A. cephalotes colonies by disrupting the growth of the fungus, the symbiotic microorganisms and the ant workers.

In summary, the degradation of T. diversifolia green mulch induced the ants to relocate the symbiotic fungus into new chambers in response to the stressful conditions of the nest interior. External activity of the colonies declined 2 mo after mulch applications, as the ants built new chambers and tunnels inside the nests. The use of mulch is an economic and practical method that does not require specialized equipment. T. diversifolia can be planted close to ant nests and can be used by farmers as a live fence, fodder bank, or soil enhancer in alley cropping systems (Ikerra et al. 2006, Parthey et al. 2011). Additionally, some studies report positive effects of Tithonia mulch on soil fertility and crop production; soils fallowed with Mexican sunflower have higher organic matter (Agbede and Afolabi 2014), and the mulch Tithonia improves growth and development of beans (Phaseolus vulgaris L.) (Mustonen et al. 2014) and white yam Dioscorea rotundata Poir (Agbede et al. 2014). In turn, the Mexican sunflower increases the susceptibility of the ants to relocate the symbiotic fungus into new chambers in response to the demand made by the ant workers in the nests and counteract the effects of the control measures.

Acknowledgments

We wish to thank Elsy Alvear for her valuable collaboration in the fieldwork; Harold Guerrero, José Rodríguez, Stephanie Peña, Lina Isaza, Eliana Garzón, Pilar Caicedo, and other colleagues of the research group for their assistance in the implementation of the treatments in the field; Inge Armbrrecht and Edgar Varón Devia for their comments on J. Rodríguez’s MSc thesis, and two anonymous reviewers, who made useful comments to improve the manuscript. This work was supported by a Colciencias grant from the Francisco José de Caldas National Fund for Science, Technology and Innovation (253-2008), the Universidad del Valle (internal grant 7857-2011), and Fundación Centro para la Investigación en Sistemas Sostenibles de Producción Agropecuaria.

References Cited

Abril, A. B., and E. H. Buccher. 2007. Genetic diversity of fungi occurring in nests of three Acromyrmex leaf-cutting ant species from Córdoba, Argentina. Microb. Ecol. 45: 417–423.

Adedire, C. O., and J. O. Akinyeye. 2004. Biological activity of tree marigold, Tithonia diversifolia, on cowpea seed bruchid, Callosobruchus maculatus (Coleoptera: Bruchidae). Ann. Appl. Biol. 144: 185–189.

Adoyo, F., J. B. Mukulama, and M. Enyola. 1997. Using Tithonia concoctions for termite control in Busia District, Kenya. Ileia Newsl. 13: 24–25.

Agbede, T. M., and L. A. Afolabi. 2014. Soil fertility improvement potentials of Mexican sunflower (Tithonia diversifolia) and Siam weed (Chromolaena odorata) using okra test crop. Arch. Appl. Sci. Res. 6: 42–47.

Agdebe, T. M., A. O. Adekiya, and J. S. Ogeh. 2014. Response of soil properties and yam yield to Chromolaena odorata (Asteraceae) and Tithonia diversifolia (Asteraceae) mulches. Arch. Agr. Soil Sci. 60: 222–224.

Ambrósio, R. S., Y. Oki, V. C. Gomes, J. Siqueira, P. G. Barboni, J. Espada, M. Constantino, E. Moura, and F. B. Da Costa. 2008. Constituents of glandular trichomes of Tithonia diversifolia: relationships to herbivory and antifeedant activity. Phytochemistry 69: 2052–2060.

Bagnarello, G., L. Hilje, V. Bagnarello, V. Cartin, and M. Calvo. 2009. Actividad fagodisuasiva de las plantas Tithonia diversiflora y Montanillo hibiscifolia (Asteraceae) sobre adultos del insecto plaga Bemisia tabaci (Homoptera: Aleyrodidae). Rev. Biol. Trop. 57: 1201–1215.

Barone, J. A., and P. D. Coley. 2002. Herbivoryism and las defensas de las plantas, pp. 465–492. In M. R. Guariguata and G. H. Kattan (eds.), Ecología y Conservación de Bosques Neotropicales. Ediciones LUR, Cartago, Costa Rica.

Berish, C. W. 1986. Leaf-cutting ants (Atta cephalotes) select nitrogen-rich forage. Am. Midl. Nat. 115: 268–276.

Boaretto, M. A., C. L. Forti, and R. C. Fenielle. 1999. Influência do pH e temperatura no crescimento do fungo simbiônico de Atta cepiguiara Gonçalves (Hymenoptera: Formicidae). Naturalia 24: 41–43.

Bollazzi, M., and F. Roces. 2007. To build or not to build: circulating dry air organizes collective building for climate control in the leaf-cutting ant Atta cepiguiara. Horm. Behav. 44: 1–9.

Bollazzi, M., L. Forti, and F. Roces. 2012. Ventilation of the giant nests of Atta leaf cutting ants: does underground circulating air enter the fungus chambers? Insect Soc. 59: 487–498.

Burkhard, N. E., D. H. Lynch, D. C. Percival, and M. Sharrit. 2009. Organic mulch impact on vegetation dynamics and productivity of high bush blueberry under organic production. HortScience 44: 1–9.

Caffarini, P., P. Carrizo, A. Pelicano, P. Roggero, and J. Pacheco. 2008. Efectos de extractos acéticos y acuosos de Ricinus communis (Ricino), Melia azedarach (Paraíso) y Trichillia glauca (Trichillia), sobre la hormiga negra (Acromyrmex lundi). Iedea 26: 59–64.

Cammeraat, L. H., S. J. Willott, S. G. Compton, and L. D. Incoll. 2002. The effects of ants nests on the physical, chemical and hydrological properties of a rangeland soil in semi arid Spain. Geoderma 105: 1–20.

Castaño, K. J., J. Montoya-Lerma, and C. Giraldo. 2013. Toxicity of foliage extracts of Tithonia diversiflora (Asteraceae) on Atta cephalotes (Hymenoptera: Myrmicinidae) workers. Ind. Crops Prod. 44: 391–395.

Chagas-Paula, D. A., R. B. Oliveira, B. A. Rocha, and F. B. Da Costa. 2012. Ethnobotany, chemistry, and biological activities of the genus Tithonia (Asteraceae). Chem. Biodivers. 9: 210–235.

Chaves, M. C. 2006. Evaluación preliminar del compostaje “Arriyón” para el control de la hormiga Atta cephalotes (L.) en Jamundi (Valle, Colombia). Bol. Mus. Entomol. Univ. Valle 7: 10–21.

Crespo, G., T. E. Ruiz, and J. Alvarez. 2011. Efeito do abono verde de Tithonia (T. diversiflora) no desenvolvimento e produção de forrage de P. purpurea var. cv. Cuba CT-169 y en algunas propiedades del suelo. Rev. Cub. Ciencia Agric. 35: 79–82.

De Melo Cazal, C., D. V. De Cássia, J. R. Batuah, O. C. Bueno, G. M. F. Rodrigues, D. S. Fernandes, P. C. Vieira, and J. B. Fernandes. 2009. Isolation of xanthyletin, an inhibitor of ants’ symbiotic fungus, by high-speed counter-current chromatography. J. Chromatogr. A 1216: 4307–4312.

Della-Lucia, T. M. C. 2003. Hormigas de importancia económica en la región Neotropical, pp. 337–349. In: F. Fernández (ed.), Introducción a las Hormigas de la Región Neotropical. Instituto de Investigación de Recursos Biológicos Alexander von Humboldt, Bogotá, Colombia.

Della-Lucia, T. M. C. 2011. Formigas-Cortadeiras da Bioecologia ao Manejo, 2nd ed. UFV, Viçosa, Brazil.

Fernández, J. V., and K. Jaffe. 1995. Dano económico causado por populações de formigas Atta laevigata (F. Smith) em plantações de Pinus caribaea Mor. Elementos para o manejo da praga. Anais Soc. Entomol. Bras. 24: 287–289.

Forti, L. C., A. P. Pratti, and V. M. Ramos. 2000. Biologia e comportamento de Atta sexdens rubropilosa (Hymenoptera, Formicidae): implicações no seu controle. Série Técnica IPEF 13: 103–114.

Frank, D. L., and O. E. Liburd. 2005. Effects of living and synthetic mulch on the population dynamics of whiteflies and aphids, their associated natural enemies, and insect-transmitted plant diseases in zucchini. Environ. Entomol. 34: 857–865.

Frouz, J., M. Holec, and J. Kalcík. 2003. The effect of Lasius niger (Hymenoptera: Formicidae) ant nest on selected soil chemical properties. Pedobiologia 47: 205–212.

García, A., and G. Delgado. 2006. Constituents from Tithonia diversifolia: stereochemical revision of 2α-hydroxytroindin. J. Mex. Chem. Soc. 50: 180–183.
Silva, A., M. Bacci, C. G. Siqueira, O. C. Bueno, A. Correa, F. C. Pagnocca, and M. J. Aparecida. 2003. Survival of Atta sexdens workers on different food sources. J. Insect Physiol. 49: 307–313.

Statsoft Inc. 2007. Statistics (data analysis software system), version 7. (http://www.statsoft.com/textbook/stathome.html).

Thu Hang, V. T., C. D. Tuy, N. Ngoc, and T. R. Preston. 2012. Leaf extract from Tithonia diversifolia cures scabies in rabbits. Livest. Res. Rural Dev. 24: 221.

Valderrama, E. I., J. Montoya-Lerma, and C. Giraldo. 2009. Enforced herbivory on Canavalia ensiformis and Tithonia diversifolia and its effects on leaf-cutting ants, Atta cephalotes. J. Appl. Entomol. 133: 689–694.

Valmir, S. V., B. R. J. Dillon, B. V. M. Dillon, B. S. E. Reynolds, and R. I. Samuels. 2004. Occurrence of the antibiotic producing bacterium Burkholderia sp. in colonies of the leafcutting ant Atta sexdens rubropilosa. Microbiol. Lett. 239: 319–323.

Von Ende, C. N. 1993. Repeated measures analysis: growth and other time dependent measures, pp. 113–137. In S. M. Schneider and J. Gurevitch (eds.), Design of ecological experiments, Chapman & Hall, New York.

Received 11 August 2014; accepted 6 February 2015.