The role of image guided ablation in the management of metastatic colorectal cancer

This special issue compiled of 10 selected articles describes the role of thermal ablation in the management of metastatic colorectal cancer with emphasis to liver and lung metastases and in the setting of oligometastatic disease. Finally, it provides a framework for future applications.

Thermal ablation as local cure for colorectal liver metastases

Although metasectomy for hepatic and lung colorectal metastases has historically been considered the preferred local therapy for selected patients with CRC metastases, image-guided ablation can be used as an alternative local therapy with similar oncologic outcomes to surgery and minimal risk for patients with limited volume and small size tumors [1]. Current guidelines recommend the use of thermal ablation as a single therapy or in combination with surgery in the treatment of limited hepatic or pulmonary metastases, as long as all visible disease can be eradicated [1]. A small randomized controlled trial (RCT) provided level one evidence about the positive impact of Radiofrequency ablation-RFA(-+hepatectomy) on patient survival, when used in addition to oxaliplatin based chemotherapy vs. Chemotherapy alone in patients with initially unresectable CRC hepatic disease [2]. Several papers from different investigators have shown that thermal ablation of CRC liver metastases (CLM) is indicated as a local cure for relatively small tumors (ideally smaller than 3 cm) when located in relatively peripheral location where ablation can create margins all around the target tumor. Most papers indicate that a 5 mm minimal margin is the absolute minimal requirement for acceptable tumor control, whereas a 10 mm margin seems to offer optimal local control. A 10 mm margin practically eliminates the risk for local failure or local tumor progression (LTP) [3–7]. It has also been shown that margin assessments are challenging and that 3D software operates best for margin detection [8–9]. A dedicated paper describing the use of a 3D software in the assessment of the ablation zone (AZ) by Vasiniotis Kamarinos N et al. [10] discusses in detail all issues related to the AZ assessments by 3D software platforms. Paolucci et al. [11] provide further in-depth information with their paper on Volumetric Analyses of Ablation Dimensions in MWA for CLM.

Assessments of the AZ with biopsies, fluorescent stains and metabolic imaging have also been described [12–15]. Biopsy proven complete ablation with minimal margin of 5 mm can provide local control similar to optimal minimal margin over 10 mm [12–14]. Results of complete ablation with margins are similar to those reported by limited hepatic resection [3–7,9,12–15]. The role of thermal ablation as a local curative therapy for CLM with relevant literature is discussed in the paper by Odioso et al. [16].

Non-thermal ablation options including irreversible electroporation (IRE), Yttrium 90 radiation segmentectomy and image-guided radiotherapy are also presented, and their emerging role in the treatment of CLM is discussed [16,17]. Irreversible electroporation and its role in the treatment of CLM are discussed in detail in the paper of Narayanan R et al. [18] and Yttrium 90 radioembolization in the dedicated paper by Lewandowski et al. [19]. A detailed description of Stereotactic Body Radiation Therapy (SBRT) for CLM is authored by Hosni Abdalaty A et al. and provides a comprehensive review of the available evidence of SBRT in the setting of oligometastatic disease [20]. Recent developments with the use of metabolic imaging including real-time FDG-PET in the treatment of CLM are presented in a dedicated paper by Hunt S et al. [21].

Thermal ablation in the management of CRC pulmonary metastases

Ablation has been increasingly used as a local therapy in the treatment of small pulmonary metastases providing long-term disease control similar to resection and with minimal toxicity [22–25]. Outcomes of Thermal ablation (TA) have been reported after RFA [26], microwave ablation-MWA [22,23] and cryoablation [24,25]. Several publications indicate that smaller tumor size is associated with best local tumor control [22–24,26] and that ablation minimal margin of at least 5 mm is an important factor for local tumor control [23]. There is currently no definite maximum number of tumors that is a contraindication to local therapy. However, it is generally accepted that a small number (arguable 3–5 per lung) of relatively small metastases (arguably under 3 cm and ideally under 1.5 cm) are good indication for local therapy including TA [22–25]. Repeated ablation has been used to treat oligometastatic disease in the lung to provide long-term disease control with minimal risk and no long-term impact on pulmonary reserve. Ablation has been shown to be safe, even when repeated treatments are required as well as in patients with limited pulmonary reserve. Repeated TA presents a significant advantage of ablation over other local therapies especially in the metastatic setting, where subsequent metastases and repeated local therapy are likely [22–25,27,28]. The emerging role of repeated ablation provides disease control while extending the chemotherapy-free interval and better quality of life [23,28].

The role of ablation in the management of oligometastatic CRC in the liver and lung as well as in less common sites is discussed [29,30]. Concepts, expectations and outcomes of ablation in these different settings are described and discussed, summarizing available evidence [29,30]. deBaere et al. provide a comprehensive review on the role of ablation in the oligometastatic setting in patient with CRC and hepatic and pulmonary metastases [31], whereas Thompson et al. elaborate on the role of ablation for CRC oligometastatic disease in extrahepatic and extrapulmonary sites [32].
Antenna designs to improve safety and efficacy of thermal ablation

A final paper by Phannensteil et al. [33] focuses on performance and limitations of current microwave applicators currently used for thermal ablation. Emerging antenna designs with capability of controlling radial power deposition may enable better coverage of target volumes while protecting nearby normal tissues from thermal damage.

Funding

The author(s) reported there is no funding associated with the work featured in this article.

References

[1] Benson AB, Venook AP, Al-Hawary MM, et al. Colon cancer, version 2.2021, NCCN clinical practice guidelines in oncology. J Natl Compr Canc Netw. 2021;19(3):329–359.
[2] Ruers T, Van Coevorden F, Punt CJA, et al. Local treatment of unresectable colorectal liver metastases: results of a randomized phase II trial. J Natl Cancer Inst 2017;109(9):dxo015.
[3] Shady W, Petre EN, Gonen M, et al. Percutaneous radiofrequency ablation of colorectal cancer liver metastases: factors affecting outcomes—a 10-year experience at a single center. Radiology. 2016;278(2):601–611.
[4] Calandrì M, Yamashita S, Gazzera C, et al. Ablation of colorectal liver metastasis: Interaction of ablation margins and RAS mutation profiling on local tumour progression-free survival. Eur Radiol. 2018;28(7):2727–2734.
[5] Wang X, Sofocleous CT, Einhorn JP, et al. Margin size is an independent predictor of local tumor progression after ablation of colon cancer liver metastases. Cardiovasc Intervent Radiol. 2013;36(1):166–175.
[6] Han K, Kim JH, Yang SG, et al. A single-center retrospective analysis of periprocedural variables affecting local tumor progression after radiofrequency ablation of colorectal cancer liver metastases. Radiology. 2021;298(1):212–218.
[7] Kurilova I, Bendet A, Fung EK, et al. Radiation segmentectomy of hepatic metastases with Y-90 glass microspheres. Abdom Radiol. 2021;46(7):3428–3436.
[8] Kaye EA, Cornelis FH, Petre EN, et al. Volumetric 3D assessment of ablation zones after thermal ablation of colorectal liver metastases to improve prediction of local tumor progression. Eur Radiol. 2019;29(5):2698–2705.
[9] Laimer G, Jaschke N, Schullian P, et al. Volumetric assessment of the periblational safety margin after thermal ablation of colorectal liver metastases. Eur Radiol. 2021;31(9):6489–6499.
[10] Sotiriou VS, Petrovic LM, Gonen M, et al. Colorectal cancer liver metastases: biopsy of the ablation zone and margins can be used to predict oncologic outcome. Radiology. 2016;280(3):949–959.
[11] Paolucci I, Ruiter SJS, Freedman J, et al. Volumetric analyses of ablation dimensions in microwave ablation for colorectal liver metastases. Int J Hyperthermia. 2022;39(1):639–648.
[12] Vasiniotis Kamarinos N, Vakiani E, Gonen M, et al. Biopsy and margins optimize outcomes after thermal ablation of colorectal liver metastases. Cancers. 2022;14(3):693.
[13] Vasiniotis Kamarinos N, Vakiani E, Fujisawa S, et al. Immunofluorescence assay of ablated colorectal liver metastases: the frozen section of Image-Guided tumour ablation? J Vasc Interv Radiol. 2022;33(3):308.e1–315.e1.
[14] Tanis E, Spliethoff JW, Evers DJ, et al. Real-time in vivo assessment of radiofrequency ablation of human colorectal liver metastases using diffuse reflectance spectroscopy. Eur J Surg Oncol. 2016;42(2):251–259.
[15] Kurilova I, Bendet A, Fung EK, et al. Radiation segmentectomy of hepatic metastases with Y-90 glass microspheres. Abdom Radiol. 2021;46(7):3428–3436.
[16] De Baere T, Tselikas L, Delpla A, et al. Thermal ablation in the management of oligometastatic colorectal cancer. Int J Hyperthermia. 2022;39(1):627–632.
[17] Padia SA, Johnson GE, Agopian VG, et al. Yttrium-90 radiation segmentectomy for hepatic metastases: a multi-institutional study of safety and efficacy. J Surg Oncol. 2021;123(1):172–178.
[18] Koethe Y, Wilson N, Narayan G. Irreversible electroporation for colorectal cancer liver metastasis: a review. Int J Hyperthermia. 2022;39(1):682–687.
[19] Entezari P, Gabr A, Salem R, et al. Yttrium-90 for colorectal liver metastasis – the promising role of radiation segmentectomy as an alternative local cure. Int J Hyperthermia. 2022;39(1):620–626.
[20] Mohamad I, Barry A, Dawson L, et al. Stereotactic body radiation therapy for colorectal liver metastases. Int J Hyperthermia. 2022;39(1):611–619.
[21] Hunt S, Zandifar A, Alavi A. Molecular imaging in management of colorectal metastases by the interventional oncologist. Int J Hyperthermia. 2022;39(1):675–681.
[22] Vogl TJ, Naguib NN, Gruber-Rohr T, et al. Microwave ablation therapy: clinical utility in treatment of pulmonary metastases. Radiology. 2011;261(2):643–651. Erratum in: Radiology. 2013;266(3):1000.
[23] Kurilova I, Gonzalez-Aguirre A, Beets-Tan RG, et al. Microwave ablation in the management of colorectal cancer pulmonary metastases. Cardiovasc Intervent Radiol. 2018;41(10):1530–1544.
[24] Callstrom MR, Wooddum DA, Nichols FC, et al. Multicenter study of metastatic lung tumors targeted by interventional cryoablation evaluation (SOLSTICE). J Thorac Oncol. 2020;15(7):1200–1209.
[25] de Baere T, Woodrum D, Tselikas L, et al. The ECLIPSE study: efficacy of cryoablation on metastatic lung tumors with a 5-year follow-up. J Thorac Oncol. 2021;16(11):1840–1849. Erratum in: J Thorac Oncol 2021.
[26] de Baere T, Aupérin A, Deschamps F, et al. Radiofrequency ablation is a valid treatment option for lung metastases: experience in 566 patients with 1037 metastases. Ann Oncol. 2015;26(5):987–991.
[27] Lencioni R, Crocetti L, Cioni R, et al. Response to radiofrequency ablation of pulmonary tumours: a prospective, intention-to-treat, multicentre clinical trial (the RAPTURE study). Lancet Oncol. 2008;9(7):621–628.
[28] Fonck M, Perez JT, Catena V, et al. Pulmonary thermal ablation enables long Chemotherapy-Free survival in metastatic colorectal cancer patients. Cardiovasc Intervent Radiol. 2018;41(11):1727–1734.
[29] Chandy E, Saxby HJ, Pang JW, et al. The multidisciplinary management of oligometastases from colorectal cancer: a narrative review. Ann Palliat Med. 2021;10(5):5988–6001.
[30] Calandrì M, Gazzera C, Giurazza F, et al. Oligometastatic colorectal cancer management: a survey of the Italian college of interventional radiology. Cardiovasc Intervent Radiol. 2020;43(10):1474–1483.
[31] De Baere T, Tselikas L, Delpla A, et al. Thermal ablation in the management of oligometastatic colorectal cancer. Int J Hyperthermia. 2022;39(1):627–632.
[32] Thompson SM, Welch BT, Nick Kurup A. Ablation for oligometastatic colorectal carcinoma in extrahepatic, extrapulmonary sites. Int J Hyperthermia. 2022;39(1):633–638.
[33] Pfannenstiel A, Iannuccilli C, Cornelis FH, et al. Shaping the future of microwave tumor ablation: a new direction in precision and control of device performance. Int J Hyperthermia. 2022;39(1):664–674.

Constantinos T. Sofocleous
Professor IR, Weill-Cornell Medical College, Interventional Oncology/IR Service, Department of Radiology, Memorial Sloan-Kettering Cancer Center, New York, NY, USA
ssofocle@mskcc.org

© 2022 The Author(s). Published with license by Taylor & Francis Group, LLC
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.