Original Research

THE CARRIER RATE OF EXTENDED SPECTRUM BETA LACTAMASE (ESBL) PRODUCING BACTERIA IN COCKROACHES (PERIPLANETA AMERICANA) IN HOSPITAL AND COMMUNITY

Ardhiya Puspita1, Radita Yuniar Arizandy2, Eddy Bagus Wasito3,4, Kuntaman Kuntaman2-4
1Postgraduate Program of Basic Medical Science, Faculty of Medicine, Universitas Airlangga, Surabaya, Indonesia
2Institute of Tropical Disease, Universitas Airlangga, Surabaya, Indonesia
3Department of Clinical Microbiology, Faculty of Medicine, Universitas Airlangga, Surabaya, Indonesia
4Dr. Soetomo General Academic Hospital, Surabaya, Indonesia

ABSTRACT

Cockroach (Periplaneta americana) is one of the vectors in the environment that can transmit disease. Cockroaches can act as potential mechanical vectors of antibiotic resistant bacteria. Enterobacteriaceae is a gram-negative bacteria that has natural habitats in the digestive tract of humans and animals. Enterobacteriaceae that produce Extended Spectrum β-lactamases (ESBLs) have emerged as major pathogens in hospitals. The study analyzed the prevalence of ESBL producing bacteria in cockroaches that lived in hospitals and residential homes. In this study, a total of 200 cockroaches consisting of 100 cockroaches from the hospital environment and 100 cockroaches from the residential environment were analyzed bacteriologically for colonization of ESBL producing Enterobacteriaceae. The specimen of the alimentary tract was taken and sub-cultured in MacConkey agar supplemented with cefotaxime 2 ug/ml. Growth colonies were suggested as an ESBL-producing bacteria, then were confirmed as ESBL producers by the Double Disk Synergy Test (DDST). The ESBL gene was detected by Polymerase Chain Reaction (PCR). Among 100 household cockroach samples, 14 (14%) were identified as ESBL producers, while 100 hospital cockroaches were 26 (26%) positive ESBL. The ESBL gene, in hospital cockroach were identified of CTXM 19 (19%), SHV 7 (7%), and not any TEM gene, while among household cockroaches were identified CTXM 2 (2%), SHV 11 (11%), and also not detected TEM ESBL gene. Among ESBL genes, only the CTXM gene was significantly different between household and hospital cockroaches.

Keywords: ESBL; E coli; cockroach; disease

Correspondence: Kuntaman Kuntaman, Clinical Microbiology, Faculty of Medicine, Universitas Airlangga / Dr. Soetomo General Academic Hospital, Surabaya 60286, Indonesia. Email: kuntaman@fk.unair.ac.id
INTRODUCTION

Cockroaches (Periplaneta americana) are known as an insect living in dirty environments at housing, restaurants and even hospitals, where they eat a variety of waste substances that possibly inhabited by any bacteria. They can passively transmit microbial pathogens including Salmonella, Campylobacter, Shigella, Escherichia coli, Pseudomonas aeruginosa and Klebsiella pneumoniae to humans when they eat food scraps. However, cockroaches that colonize this environment can also act as potential mechanical vectors of antibiotic resistant bacteria (Loucif et al. 2016, Gwenzi et al. 2021).

Enterobacteriaceae is the bacteria that most often causes diseases, such as urinary tract infections (UTI), pneumonia, septicemia, cholecystitis, cholangitis, peritonitis, gastroenteritis and meningitis. Enterobacteriaceae is a gram-negative bacterium that has natural habitats in the digestive tract of humans and animals, and also the environment. Enterobacteriaceae that produces Extended Spectrum β-lactamases (ESBLs) has emerged as major pathogens in hospitals. The gene was first reported in the mid-1980s, mainly found in Klebsiella pneumoniae and Escherichia coli (Bradfrod 2011, Kantaman et al. 2011). ESBL-producing Enterobacteriaceae is also present in animals, in patients and populations in the community, with and without any diseases or chronic conditions (Mirelis et al. 2013).

ESBL producing, especially Klebsiella pneumoniae and Escherichia coli, are mostly resistance against any antibiotics, mainly the third generation cephalosporins, and aztreonam, where the enzyme activity can be inhibited by β-lactamase inhibitors, such as clavulanic acid. The ESBL encoding genes are in a plasmid that is easily transmitted to the other germs resulting in the spread of resistance (Paterson et al. 2010). The third-generation cephalosporin, which was marketed in the 1980s, was originally intended to overcome the β-lactamase producing germ, and widely used due to its less toxic effect. Nevertheless, its wide use impacted the increasing and spread of ESBL resistant genes among Gram negative (Park 2014, Ruppé et al. 2015).

ESBL-producing bacteria was also reported by Reich et al (2013) in chicken carcasses of about 88.6% cases and in cloaca of chicken of about 72.5% samples. Most of these bacteria were E. coli. The study of Salviati et al (2014) showed a high prevalence of ESBL-producing E. coli from the environment faecal waste storage of about 47.6%, and 5.9% of pig cage swabs. Resistant bacteria in the environment can spread to humans through contaminated food and water or through direct contact with animals or humans. In the study of Mesa (2006), ESBL-producing bacteria in food samples of salads (tomatoes and lettuce) and cooked foods by 0.4%, and in waste disposal system is almost 100%. Aycan et al (2013) also reported that hospital waste was found in 89% of ESBL-producing E. coli strains.

Organisms that produce ESBL also carry genes that provide resistance to non-beta lactams including quinolones, aminoglycosides, tetracyclines and sulfonamides. This is an antibiotic resistance enzyme that is often found in members of Enterobacteriaceae including Escherichia coli and Klebsiella pneumoniae as well as non-enteric bacteria, such as Pseudomonas aeruginosa and Acinetobacter baumannii. The selection pressure that drives the evolution of ESBL has been associated to the intensive use of oxyimino-beta lactam, broad spectrum antibiotics, prolonged hospitalization, medical devices and severe illness (Lin et al. 2010).

These organisms can also transmit to humans through fomites and other non-human hosts, such as cockroaches, and in such circumstances, they cause infection. Since arthropods (i.e., cockroaches) can contaminate human food by carrying agents of various diseases with the risk of human infection in hospitals and in the community, it is therefore important to take cockroaches seriously into consideration for detecting bacteria that contain drug-resistant genes, such as ESBL resistant gene.

MATERIALS AND METHODS

The design of this study was observational analytic-comparative with cross sectional study. The sampling technique used was consecutive sampling which required the inclusion criteria of the research sample. In this study, a total of 200 cockroaches consisted of 100 cockroaches from the hospital environment, and 100 cockroaches from the residential environment. The cockroaches were picked randomly from different parts of the house, like the kitchen, bathroom, guest room, storage, gutter, and exhaust of the house. Cockroaches (Periplaneta americana) were picked by using insecticide-spray and taken using sterile gloves. Then, every cockroach is put into a sterile pot.

Furthermore, the cockroaches were soaked in 70% alcohol for 5 minutes to clean the contaminant in the cockroach surface. After that, the alcohol was thrown away, and the sterile 0.9% physiological saline was
added for 5 ml then vortexed. The next step was that the cockroaches were picked using sterile pincers and put into a glass plate for dissecting the cockroach visceral. The cockroach alimentary tract was dissected, then put out the inside organ and kept in the 5 ml of 0.9% physiological saline, and finally let it for 10-20 minutes for a homogenate bacterial test.

The identification of ESBL producing bacteria

The homogenate sample was inoculated in MacConkey Agar plate supplemented with Cefotaxime (CTX) 2 mg/L, and incubated 37 o C for 18 – 24 hours. The growth colonies were suspected as ESBL producers, and the ESBL confirmation was conducted by using DDST. Then, if ESBL bacterial production was proven, the biochemical test for bacterial identification was applied (Nakayama et al. 2012).

The growth colonies were taken 4-5 colonies, and suspended in peptone water, diluted until the turbidity equal to McFarland 0.5, then inoculated spread evenly on MuellerHinton agar; keeping it dry for 15 minutes, and centrifuged at 10,000 rpm for 5 minutes. The suspension was then heated at 100oC temperature for 5 minutes, and centrifuged at 100oC for 5 minutes. Primer used were TEM F5’ FGGATGATTCCACATTTCG-3’ and TEM R 5’-CTGACAGTTACCAATGCTTA-3’. The amplicon result was 867 bp.

Bacterial identification

The biochemical test was applied to identify bacterial species of ESBL producers. The biochemical tests were oxidation, sulfide indole motility (SIM), Methyl-red Voges-Proskauer (MR-VP), citrate, urea, and triple sugar iron agar (TSIA). All the biochemical tests and identification according to Bailey and Scotts Diagnostic Microbiology 13th Edition (Tille 2014).

ESBL gene detection

The Polimerase Chain Reaction (PCR) assay to the detection gene of TEM, SHV and CTX-M. The DNA extraction was done by boiling method as a procedure (Ferreira et al. 2011). One bacterial colony was suspended into a 100 µl sterile TE buffer. The suspension was then heated at 100oC temperature for 5 minutes, and centrifuged at 10,000 rpm for 5 minutes. Supernatant was taken as a DNA template, stored at-20 o C until used.

PCR was run at each of ESBL gene with total 25µl PCR mix, consisted of 12.5 µl GoTaq Green Master Mix 2x, 1 µl primer forward (blaCTX-M, blaSHV, blaTEM), 1 µl primer reverse (blaCTX-M, blaSHV, blaTEM), 5 µl DNA template and 5.5 µl distilled water (Ferreira et al. 2011).

BlaTEM gene amplification: denatured under 96oC for 5 minutes followed by 35 cycles in 96oC for 5 minutes, annealing in 58oC for one minutes and extension in 72oC for 1 minutes and final extension in 72oC for 10 minutes. The used primer TEM-F 5’-ATGAGTATCAAACATTTCG-3’ and TEM-R 5’-CTGACAGTTACCAATGCTTA-3’. The amplicon result was 867 bp.

Amplification of gene blaSHV: denatured in 96oC temperatures for 5 minutes followed by 35 cycles in 96oC for one minute, annealing in 60oC for one minute, and extension in 72oC for one minute and final extension in 72oC for 10 minutes. Primer used were SHV-F5’-GGTTATGCGTTATATTCGCC-3’ and SHV-R 5’-TTAGGTGCCCAGTGCTC-3’. The amplicon result was 867 bp.

Amplification of geneblaCTX-M: denatured in 94oC for 7 minutes followed by 35 cycles in 94oC for 50 second, annealing in 50oC for 40 second, and extension in 72oC for one minute and final extension in 72oC for 5 minutes. Primer used were CTX-M-F 5’-ATGGTCGAYACGATTARGT-3’ and CTX-M-R 5’-TGGGTRAARTCRT SACCAGA -3’. The product of amplicon results was 593 bp. The PCR product was visualized in 1.5 % agarose gel. Electrophoresis was conducted on 100 volts for ± 60 minutes, then stained Ethidium Bromida (0.5 µg/ml).

Data analysis

The result of the research was presented in the table. Data analysis was done by using Chi Square test (if it was eligible), if it was not, Fisher Exact test was applied. The statistic test was SPSS version 22.

RESULTS

Among 100 samples of house cockroaches, 14 (14%) were identified as the ESBL producing bacteria, while hospital cockroaches 26 (26%). The total 14 ESBL producing bacteria from household cockroach, consisting of Escherichia coli 8 (8%), Klebsiella spp 1 (1%), Pseudomonas aeruginosa 1 (1%), Acinetobacter Spp 1 (1%), Klebsiella pneumoniae 3 (3%), while 26 hospital ESBL producing bacteria were consisting of Escherichia coli 9 (9%), Citrobacter spp 5 (5%), Acinetobacter spp 8 (8%), and Klebsiella pneumoniae 4 (4%) (Table 1).
Table 1. Distribution of bacteria ESBL-producing on household cockroaches’ samples and hospital samples

No.	Bacterial Types	Numbers n (%)	Total of bacterial types	
		Household cockroaches	Hospital cockroaches	
1.	Escherichia coli	8 (8%)	9 (9%)	17
2.	Klebsiella spp	1 (1%)	0 (0%)	1
3.	Citrobacter spp	0 (0%)	5 (5%)	5
4.	Pseudomonas aeruginosa	1 (1%)	0 (0%)	1
5.	Acinetobacter spp	1 (1%)	8 (8%)	9
6.	Klebsiella pneumoniae	3 (3%)	4 (4%)	7
7.	Non ESBL bacterial	86 (8%)	74 (74%)	160
	Total samples	100 (100%)	100 (100%)	200

Table 2. The distribution of ESBL genes of house and hospital cockroaches

Location	Location	CTX-M	SHV	TEM		
	Positive	Negative	Positive	Negative	Positive	Negative
Household (n=100)	2 (2%)	98 (98%)	11 (11%)	89 (89%)	0 (0%)	100 (100%)
Hospital (n=100)	19 (19%)	81 (81%)	7 (7%)	93 (93%)	0 (0%)	100 (100%)
Total gene	21	179	18	182	0	200 genes

The result of ESBL gene showed that TEM gene was not found in household cockroaches and hospital cockroaches. From 14 of house ESBL producers, 7 (7%) SHV genes and 19 (19%) CTXM were identified. In this study, the SHV gene was mostly found in household samples. It was possible, because the SHV gene was infected through food (Greko et al. 2017). SHV variants were detected for the first time in Switzerland with blaSHV–12 (Table 2).

DISCUSSION

ESBL-producing bacteria in cockroaches (Periplaneta americana) on residential environment were mostly found in cockroach of gutter 11 (11%) and 3(3%) were found inside of the house, such as kitchen and bedroom, while the hospital cockroaches with ESBL were found in the gutter 20 (20%) and in hospital environment 6 (6%).

The study of Salviati et al (2014) showed that ESBL producers E.coli were isolated from the environment of about 47.6 % from feces waste and boots swab, and 5.9% from the swab of swine farming. Bacteria resistance of the environment were spread through food and contaminated water and direct contact with the animals.

In Mesa’s study (2006), ESBL producing bacterial were found in food sample like salad (tomato and lettuce), 0.4% in cooked food, and in waste exhaust was almost 100%. Aycan (2013) also reported that in hospital waste was found 89% E.coli that were ESBL producer. This study also found the combination of CTX-M+SHV gene. This was similar to the study by Dagi et al (2015) which found that 8% had CTX-M gene and 77.4% had the combination of TEM and CTX-M. This was because the plasmid coded CTX gene of plasmid IncFII plasmid type categorized into big plasmid. The common type of plasmid was F2:A–B-. This plasmid type was found in blaCTXM in Enterobacteriaceae isolated from other country. CTX-M gene found in other isolated were in plasmid which had high spreading ability (highly transmissible plasmids), so that the spreading was fast and efficient. The bacterial which expressed CTX-M was mostly co-resistant or multi resistant (Ramos et al. 2020).

The appearance and the wide spreading of ESBL among E.coli isolate clinic in the hospital became the main concern in some countries which human infected. This infection brought a great impact, because it could lead to the failure medication and the level of serious condition. ESBL consists of TEM, SHV, dan CTX-M. Among those, the number of highest variants was CTX-M. The existence of CTX-M made E.coli was resistant to any type of beta-lactam and transferred trough plasmid including unconnected microbes (Canton 2012).

The use of third generation of cephalosporin antibiotic, beta lactam type of antibiotic, and fluoroquinolone type of antibiotic in the hospital was suspected as the factor of the ESBL producer bacterial appearance. On the other hand, the utilization of antibiotic in the community also had a role in the spreading of resistant gene among bacterial species (Adelyap 2011). The higher incorrect antibiotic used, the higher evolution
process selection and microorganism strain resistant proliferation (Pratiwi 2008).

In the last ten years, it was revealed that CTX-M almost changed other ESBL enzyme on Enterobacteriaceae, including TEM and SHV variants. The changes did not only happen as the result of the spreading of blaCTX-M gene on genetic incredible transfer mobilization including plasmid and transposon, but also the success of cloning (Rogers 2011). The increase of resistant phenomena which happened to the CTX-M producer organism to aminoglycoside, and fluoroquinolone also facilitated the selection process in resistance.

CONCLUSION

The prevalence of ESBL producing bacteria among cockroach in hospital was 26 (26%), while in household cockroach was 14 (14%). It was significantly different among cockroaches in hospital and residential.

REFERENCES

Adelyap MA, Harbart S, Vernaz N, et al (2011). The impact of antibiotic use on the incidence and resistance pattern of extended-spectrum beta-lactamase-producing bacteria in primary and secondary healthcare settings. British Journal of Clinical Pharmacology 74, 171-179.

Cantón R, González-Alba JM, Galán JC (2012). CTX-M enzymes: Origin and diffusion. Front. Microbiol 3, 1-19.

Ferreira CM, Ferreira WA, Almeida NC, Naveca FG, Barbosa Md (2011). Extended spectrum beta lactamase producing bacteria isolated from hematologic patients in manaus, stateof Amazonas, Brazil. Brazilian Journal of Microbiology. 42: 1076-1084

Gündoğdu A, Jennison AV, Smith HV, et al (2013). Extended-spectrum β-lactamase producing Escherichia coli in hospital waste waters and sewage treatment plants in Queensland, Australia. Canadian Journal of Microbiology 59, 737-745.

Gwenzi W, Chaukura N, Muisa GW, Gündoğdu A, Jennison AV, Smith HV, et al (2013). Extended-spectrum β-lactamase producing enterobacteriaceae in different environments (human, food, animal farms and sewage). J Antimicrob Chemother 58, 211-215.

Mirelis B, Navarro F, Miró E, et al (2013). Community transmission of extended-spectrum β-lactamase. Emerg Infect Dis 9, 1024-1025.

Nakayama S, Tribuddharat C, Pombha S, et al (2012). Molecular analyses of TEM genes and their corresponding penicillinase-producing Neisseria gonorrhoeae isolates in Bangkok, Thailand. Antimicrob Agents Chemother 56, 916-920

Park SH (2014). Third-generation cephalosporin resistance in gram-negative bacteria in the community: a growing public health concern. Koran J Intern Med 29, 27-30.

Paterson DL, Bonomo RA (2010). Extended-Spectrum β-Lactamases: A clinical update. Clinical Microbiology Review 18, 657-686.

Pomba C, Rantala M, Greko C, et al. (2017). Public health risk of antimicrobial resistance transfer from companion animals. J Antimicrob Chemother 72, 957-968.

Pratiwi ST (2008). Mikrobiologi farmasi. Erlangga, Jakarta.

Ramos S, Silva V, Dapkevicius MdLE, et al (2020). Escherichia coli as commensal and pathogenic bacteria among food-producing animals: Health implications of extended spectrum β-lactamase (ESBL) production. Animals 10, 1-15.

Reich F, Atanassova V, Klein G (2013). Extended-spectrum β-lactamase- and AmpC-producing enterobacteriaceae in healthy broiler chickens, Germany. Emerg Infect Dis 19, 1253-1259.

Rogers BA, Sidjabat HE, Paterson DL (2011). Escherichia coli O25b-ST131: A pandemic,
multiresistant, community-associated strain. J Antimicrob Chemother 66, 1-14.
Ruppé E, Woerther P-L, Barbier F (2015). Mechanisms of antimicrobial resistance in Gram-negative bacilli. Annals of Intensive Care 5, 1-15.
Salviati CV, Friese A, Roschanski N, et al (2014).

Extended-spectrum beta-lactamases (ESBL)/AmpC beta-lactamases-producing Escherichia coli in German fattening pig farms – A longitudinal study. Berl Münch Tierärztl Wschr 127, 412-419.
Tille PM (2014). Bailey & Scott’s diagnostic microbiology: 13th. Mosby Inc., United States.