Solitary subdural osteomas: Systematic review of the literature with an illustrative case

Antonio Colamaria¹, Matteo Sacco¹, Savino Iodice¹, Giulia Settembrini², Giuseppe Ciavarella², Nicola Pio Fochi², Francesco Carbone³, Augusto Leone³

¹Department of Neurosurgery, “Riuniti” Hospital, ²Department of Neurosurgery, University of Foggia, Foggia, Italy, ³Department of Neurosurgery, Städtisches Klinikum Karlsruhe, Karlsruhe, Germany.

E-mail: Antonio Colamaria - colamariaa@gmail.com, Matteo Sacco - matteosacco88@gmail.com, Savino Iodice - savio.tesi@libero.it, Giulia Settembrini - giulia.settembrini.552724@unifg.it, Giuseppe Ciavarella - giuseppe_ciavarella.553055@unifg.it, Nicola Pio Fochi - nicola_fochi.556052@unifg.it, *Francesco Carbone - francesco.carbone615@gmail.com, Augusto Leone - augustoleone96@gmail.com

ABSTRACT

Background: Subdural osteomas represent an extremely rare entity with only 20 cases described to date. Despite the typical benign behavior, these tumors can grow to compress the brain and occasionally detach from the dura mater.

Methods: A systematic search of the literature was performed in compliance with the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. After screening for duplicates, 179 publications met the eligibility criteria. Finally, 18 manuscripts were included in this review. Moreover, a detailed description of an illustrative case is provided.

Results: The median age at diagnosis was 43.2 years, showing a female prevalence. The inner table of the frontal bone was reported as the most frequent location, and in six cases, the lesions did not show any relation with the dura, which appeared intact. Surgical resection appears to be an effective and safe management option. In the present work, the case of a 60-year-old female who presented with persistent, diffuse headaches which had first occurred 6 months earlier is described. On admission, the physical and neurological examinations were unremarkable, and her medical history disclosed no systemic disease, meningitis, or head injury. Computed tomography showed a homogeneous, high-density nodule attached to the inner table of the left middle cranial fossa.

Conclusion: In addition to an in-depth case description, the first systematic and qualitative review of the literature on intracranial subdural osteomas using the PRISMA is provided.

Keywords: Brain tumor, Review, Subdural osteoma

INTRODUCTION

Osteomas are benign tumors consisting of mature normal osseous tissue, commonly encountered on long bones, the mandible, sinuses of the facial bones, and the skull. When originating from the inner table of the skull, these tumors may grow to compress the brain’s parenchyma and sometimes involve the dura mater.[1] Subdural osteomas, without any attachment to the skull or the dura, are infrequent, with only six cases reported in the literature to date.[1,3,11,14,15,21] In the present work, a systematic review of previously described subdural osteomas is provided along with an illustrative case.
MATERIALS AND METHODS

Patient's medical history including comorbidities, concomitant medications, diagnosis, and treatment were taken from clinical records. Written informed consent for the case publications was obtained. A systematic review of the literature was performed in compliance with the Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines. Screening was performed by reviewing article titles or full text up to December 2021 using the electronic database PubMed. The primary search terms included “Osteoma,” “Subdural,” “Intradural,” and “Intracranial” in the article titles using operator “OR.” The extracted citations were then screened for duplicates. Later, operator “AND” was applied to the extracted records by the use of the abovementioned terms to narrow the scope of the review. One hundred and seventy-nine articles met the eligibility criteria for our qualitative systematic review and 161 were excluded because not relevant. Finally, 18 papers were included in the qualitative analysis [Figure 1],[2,4-8,12-13,17,20]

ILLUSTRATIVE CASE

A 60-year-old woman presented with persistent, diffuse headaches first occurred 6 months earlier. On admission, the physical and neurological examinations were unremarkable, and her medical history disclosed no systemic disease, meningitis, or head injury. Computed tomography (CT) investigation showed a homogeneous, high-density nodule attached to the inner table of the left middle cranial fossa without any evidence of a curvilinear lucent line between the inner layer of the skull and the calcified mass [Figure 2a]. A head magnetic resonance imaging (MRI) examination revealed a hypointense lesion in T1, T2, and FLAIR sequences [Figures 2b-d] causing a mild mass effect on the temporal lobe. The extra-axial lesion measured 2.5 × 1.9 cm and was first believed to be either an osteoma stemming from the inner table of the cranium or a calcified meningioma. The patient underwent a left temporal craniotomy followed by the incision and exposure of the dura that appeared normal in color but slightly elevated. The tumor was noticed to be whitish in color and hard in consistency and it was firmly attached to the inner layer of the meninges, covering the posterior aspect of the petrous bone and showing no signs of adhesion to the subarachnoid membrane [Figures 3a and b]. A sulcus was observed on the surface of the mass due to the compression of the underlying brain parenchyma. The covering dura and the tumor were excised, and the latter was

Figure 1: Preferred Reporting Items for Systematic Reviews and Meta-Analyses protocol used for the systematic review.
found to measure 2.5 × 2.0 × 1.8 cm. The dural defect was closed using an artificial dural substitute.

Postoperatively, the patient referred generalized headaches and nausea that persisted for 3 days after surgery. CT scans documented the complete resection of the tumor [Figure 3c], and she was, therefore, discharged.

Pathological examination of the decalcified paraffin sections demonstrated a very dense sclerotic bone covered by a thin layer of collagenous tissue. The lesion was composed of mature lamella bone and normal osteocytes between osteoid layers. The bony trabeculae encased marrow spaces, filled with adipose tissue without any active osteoclastic or osteoblastic activity.

At 2-year follow-up examination, the patient was found to be neurologically intact and reported no relapse of the headaches. A control CT scan was unremarkable for any sign of tumor recurrence.

REVIEW OF THE LITERATURE

Subdural osteomas represent a rare entity, with only case reports published to date [Table 1]. The mean age of presentation was 43.2 years (range 16–66) with the female sex that appears to be more frequently affected by this tumor (17 F and 3 M). The age distribution suggests a congenital origin rather than an acquired pathology, especially when considering the peculiar slow growth rate of subdural osteomas. Although the most commonly reported locations were the frontal (13) and temporal (3) inner tables of the skull, some authors have documented lesions in the frontolateral (1), parafalcine (1), parietal (1), and sphenoid (1) areas. Six patients presented with parenchymal lesions localized in the frontal cerebral convexity, causing mass effects on the intact cerebral cortex. In one patient, the lesion was located in the frontal intracallosal region and extended to both the lateral ventricles. Intraoperatively, subdural osteomas were frequently adherent to the bone and the inner layer of the dura mater, not allowing for the identification of a clear plane for microdissection. Nonetheless, in six cases, “no connections with the dura mater or the skull” were reported with tumors enclosed within the arachnoid membrane, suggesting a subarachnoid origin.

The average duration of symptoms before the diagnosis was 21.8 months, with headache, mostly localized at the site of the lesion, representing the most common manifestation (14 cases). Other symptoms, although less common, included dizziness (4), Jacksonian seizures (1), tinnitus (1), altered mental status (1), and fatigue (1). At follow-up examination (average 21.8 months), the pain subsided in the majority of cases (15) following complete tumor removal, suggesting that the otherwise intractable headaches might be caused by the irritation or compression of the proximal
Table 1: Demographic, clinical, and surgical characteristics of subdural osteomas.
Table 1: (Continued).

Year and author	Sex	Age	Size (cm)	Symptoms	Duration of symptoms (months)	Surgery	Surgical findings	Surgical findings	Outcome	Follow-up after surgery (months)
2016 Takeuchi et al.[20]	F	40	-	Persistent diffuse headache	=	Bilateral frontal craniotomy	Subdural Osteoma	Recovery	12	
2018 Yang et al.	F	64	3.5×3.3×4.5	Dizziness	24	Left temporal convexity	Subdural Osteoma	Recovery	3	
2020 Yang et al.	F	35	6.5×4×0.5	Headache and fatigue	24	Right frontal convexity	Subdural Osteoma	Recovery	72	
2021 Li et al.	F	47	2.1×1.8×1.1	Headache and dizziness	=	Left frontal convexity	Subdural Osteoma	Recovery	72	
2021 Li et al.	F	56	1.3×1.1×0.8	Headache and dizziness	=	Right great wing of sphenoid	Subarachnoid Osteoma	Recovery	72	
Present case	F	66	2.5×2.0×1.8	Persistent diffuse headache	6	Left temporal convexity	Subdural Osteoma	Recovery	24	

Nonetheless, in the remaining patients, significant improvement was seen in four cases with the fifth unfortunately dying due to a postoperative hemorrhage.

DISCUSSION

The pathophysiological mechanisms that lead to the formation of subdural osteomas are still debated, with some authors suggesting that trauma could be an initiating factor that would subsequently lead to a local ossification (a theory already disproved)[9,16] and others speculating on the role of enclosed primitive pluripotential mesenchymal cells or the unregulated proliferation of the connective tissue found within the wall of intracranial blood vessels.[18] More recently, various evidence suggested that subdural osteomas could originate from the uncontrolled mitosis of heteroplastic primitive cells located in the neural crest, whose uncontrolled proliferation might lead to the slow formation of such lesions. However, pathological examination showed that, although most subdural osteomas are attached to the inner layer of the dura, no dural cells are observed in these tumors.[15]

From a radiological standpoint, subdural osteomas appear as calcified, radiopaque lesions on CT scan which is, along with plain radiography, the most common imaging technique used for their identification.[1,11,14] The presence of a lucent dural line on CT scans could indicate a subdural origin, which is considered a key feature for the differential diagnosis between subdural osteomas and meningiomas.[22] On MRI examination, these tumors appear mostly as low-intensity lesions on T1-weighted images and show either a mixed low and high intensity or a homogeneous hyperintensity on T2WI. Adipose tissue within the lesion can sometimes cause a hyperintense appearance on T1WI and serve as an additional element in the differential diagnosis with meningioma.[19] Moreover, the administration of contrast can be useful in the differentials with meningeal ossifications or meningeal calcifications of the dura in elderly patients and is particularly useful when planning for surgical resection.[3]

CONCLUSION

Solitary subdural osteomas represent rare entities, with only 20 cases reported to date. Although pathological examination represents the gold standard for their diagnosis, CT and MRI techniques allow for the identification and differentiation of these tumors from more common lesions such as ossified meningiomas. In the present work, the first systematic literature review along with an illustrative case is provided.

Declaration of patient consent

Patient’s consent not required as patient’s identity is not disclosed or compromised.
Financial support and sponsorship
Nil.

Conflicts of interest
There are no conflicts of interest.

REFERENCES
1. Akiyama M, Tanaka T, Hasegawa Y, Chiba S, Abe T. Multiple intracranial subarachnoid osteomas. Acta Neurochir (Wien) 2005;147:1085-9.
2. Aoki H, Nakase H, Sakaki T. Subdural osteoma. Acta Neurochir (Wien) 1998;140:727-8.
3. Barajas RF Jr., Perry A, Sughrue M, Aghi M, Cha S. Intracranial subdural osteoma: A rare benign tumor that can be differentiated from other calcified intracranial lesions utilizing MR imaging. J Neuroradiol 2012;39:263-6.
4. Cao L, Hong L, Li C, Zhang Y, Gui S. Solitary subdural osteoma: A case report and literature review. Oncol Lett 2016;12:1023-6.
5. Chen SM, Chuang CC, Toh CH, Jung SM, Lui TN. Solitary intracranial osteoma with attachment to the falx: A case report. World J Surg Oncol 2013;11:221.
6. Cheon JE, Kim JE, Yang HJ. CT and pathologic findings of a case of subdural osteoma. Korean J Radiol 2002;3:211-3.
7. Choudhury AR, Haleem A, Tjan GT. Solitary intracranial osteoma. Br J Neurosurg 1995;9:557-9.
8. Dukes HT, Odom GL. Discrete intradural osteoma. Report of a case. J Neurosurg 1962;19:251-3.
9. Gass JD, Guerry RK, Jack RL, Harris G. Choroidal osteoma. Arch Ophthalmol 1978;96:428-35.
10. Izci Y. Management of the large cranial osteoma: experience with 13 adult patients. Acta Neurochir (Wien) 2005;147:1151-5.
11. Jung TY, Jung S, Jin SG, Jin YH, Kim YW, Kang SS. Solitary intracranial subdural osteoma: Intraoperative findings and primary anastomosis of an involved cortical vein. J Clin Neurosci 2007;14:468-70.
12. Kim EY, Shim YS, Hyun DK, Park H, Oh SY, Yoon SH. Clinical, radiologic, and pathologic findings of subdural osteoma: A case report. Brain Tumor Res Treat 2016;4:40-3.
13. Krisht KM, Palmer CA, Couldwell WT. Multiple osteomas of the falx cerebri and anterior skull base: Case report. J Neurosurg 2016;124:1339-42.
14. Lee ST, Lui TN. Intracerebral osteoma: Case report. Br J Neurosurg 1997;11:250-2.
15. Li L, Ying YJ, Tang YJ, Wu H. Intradural osteomas: Report of two cases. World J Clin Cases 2021;9:1863-70.
16. Maitland CG, Pcsolyar DW, Morris WJ, Ragsdale BD. Chiasmal osteoma following tuberculous meningitis. Case report. J Neurosurg 1984;61:184-7.
17. Page MJ, McKenzie JE, Bossuyt PM, Boutron I, Hoffmann TC, Mulrow CD, et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. BMJ 2021;372:n71.
18. Pau A, Chiaramonte G, Ghio G, Pisani R. Solitary intracranial subdural osteoma: Case report and review of the literature. Tumori 2003;89:96-8.
19. Schick E, Duda SH, Lutz O, Claussen CD. Lipids in bone tumors assessed by magnetic resonance: Chemical shift imaging and proton spectroscopy in vivo. Anticancer Res 1996;16:1569-74.
20. Takeuchi S, Tanikawa R, Tsuboi T, Noda K, Miyata S, Ota N, et al. Surgical case of intracranial osteoma arising from the falx. Oncol Lett 2016;12:1949-52.
21. Vakaet A, De Reuck J, Thiery E, vander Eecken H. Intracerebral osteoma: A clinicopathologic and neuropsychologic case study. Childs Brain 1983;10:281-5.
22. Yang H, Niu L, Zhang Y, Jia J, Li Q, Dai J, et al. Solitary subdural osteoma: A case report and literature review. Clin Neurol Neurosurg 2018;172:87-9.

How to cite this article: Colamaria A, Sacco M, Iodice S, Settembrini G, Ciavarella G, Fochi NP, et al. Solitary subdural osteomas: Systematic review of the literature with an illustrative case. Surg Neurol Int 2022;13:203.