Positive knots have negative signature

Jozef H. Przytycki

Abstract. We show that if a nontrivial link in \mathbb{R}^3 has a diagram with all crossings positive (\bigtriangledown) then the signature of the link is negative. It settles the old folklore conjecture.

It was asked by Birman, Williams, and Rudolph whether nontrivial Lorentz knots [B-W] have always positive signature. Lorentz knots are examples of positive braids (in our convention they have all crossings negative so they are negative links). It was shown by Rudolph [R] that positive braids have positive signature (if they represent nontrivial links). Murasugi has shown that nontrivial, alternating, positive links have negative signature. Here we solve the conjecture in general.

Theorem 1. Let L be a nontrivial link which has a diagram with all crossings positive (i.e. L is positive), then the signature of L, $\sigma(L) < 0$.

Proof: Our main tool is the result of Murasugi (compare [P]) which says that if two links L_+ and L_- have identical diagrams except near one crossing where they look as on Fig. 1

\begin{figure}[h]
\centering
\includegraphics[width=0.5\textwidth]{fig1.png}
\caption{}
\end{figure}

then $\sigma(L_+) \leq \sigma(L_-)$. First assume that L is a knot. Consider a positive diagram of L (also denoted by L) with minimal number of crossings. Consider an innermost 1-gon in L. Now move along L starting from b (Fig. 2). Let p_1 be the last enter of L into the 1-gon. Now change the overcrossing to undercrossing in L in such a way that, starting from b,

\footnote{The paper was published in Bull. Polish Acad. Sci.: Math. 37, no. 7-12, 1989, 559-562.}
Fig. 2.

the new diagram, L', is descending except the crossing p_2. Therefore the crossings p_0, p_1 and p_2 are not changed (Fig. 2). By the Murasugi result $\sigma(L') \geq \sigma(L)$. We claim the L' is a diagram of the right handed trefoil knot (Fig. 3) and therefore $\sigma(L') = -2$, so $\sigma(L) < 0$.

It remains to prove the above claim.

Let us assume that the point b is on the level 3 and that the diagram descends to level 2 just before p_2 (say in p_2^-) then the underscrossing reach the lever -1 and ascends back to level 1 at c, finally reaching the level 0 just before b. From this point of we ascend quickly to the level 3 at b. We can assume that the 1-gon is convex. Now we can easily deform L' by isotopy so that the part b,p_2^- is the straight line and the part p_2^+,c, is a simple arc which is descending and disjoint from other parts of the diagram (except ends). Therefore L' is isotopic to the diagram of Fig. 3 which represents the right handed trefoil knot.

This completes the proof of Theorem 1. in the case of a knot. The case of a link is analogous. The only difference is that we have to consider an innermost 1-gon or 0-gon and reduce diagram to the right handed trefoil or Hopf link (with, possibly, some additional trivial components).

Theorem 1 is stronger than that of Rudolph or Murasugi because there are positive knots which are neither alternating nor have a presentation as positive braids.

Corollary 2 A nontrivial positive link is neither slice link nor amphicheiral link.
Proof: Amphicheiral links and slice links have signature equal to 0 \([M-1]\). □

Corollary 3 (Murasugi) The following inequalities hold for the Jones polynomial of a non-split link:

(a) \(d_{\min} V_L(t) > 0\) for a nontrivial positive link \(L\),

(b) \(d_{\max} V_L(t) < 0\) for a nontrivial negative link \(L\),

where \(d_{\max}\) (resp. \(d_{\min}\)) denotes the highest (resp. lowest) power of \(t\) in \(V_L(t)\).

Proof: By Murasugi \([M-5]\), Theorem 13.3, the following holds for any non-split link diagram \(\tilde{L}\) of a link \(L\):

\[
\begin{align*}
 &d_{\max} V_L(t) \leq c_+((\tilde{L})) - \frac{1}{2} \sigma(L), \\
 &d_{\min} V_L(t) \geq -c_-((\tilde{L})) - \frac{1}{2} \sigma(L),
\end{align*}
\]

where \(c_+\) (resp. \(c_-\)) is the number of positive (resp. negative) crossings of \(\tilde{L}\). Now Corollary 3 follows from Theorem 1. □

Corollary 3 was first proven by Murasugi \([M-3]\, \text{Theorem 2.1}\) in implicit form. A different proof has been found by Traczyk.

Theorem 1 can be extended to other Tristram–Levine signatures as long as it holds for the Hopf link and the trefoil knot.

We use the notation of \([G]\) (see also \([P]\)). We assume also (without loss of generality) that \(|1 - \xi| = 1\) in the Tristram–Levine signature \(\sigma_\xi\).

Theorem 4 If \(L\) is a nontrivial positive link then for \(\Re \xi < \frac{1}{2}\), \(\sigma_\xi < 0\).

Proof: For \(\Re \xi < 1/2\), \(\sigma_\xi\) is negative for the right handed trefoil knot and Hopf link. Furthermore, by \([P-T]\) (see also \([P]\, \text{Lemma 4.13(b)}\) for \(\Re \xi < 1\), \(\sigma_\xi(L_+) \leq \sigma_\xi(L_-)\) so the proof of Theorem 1 can be repeated without changes here too. □

Conjecture 5 If a nontrivial link has a diagram with at most one negative crossing then the link has negative signature.\(^1\)

I have been informed, after completing this manuscript that the Theorem 1 has been proven independently by P. Traczyk (“Non-trivial negative links have positive signature”, preprint, Summer 1987) and, in the case of knots by R. Gompf and T. Cochran (“Applications of Donaldson’s theorems to classical knot concordance. Homology 3-spheres and property P”, preprint 1987).

\(^1\)Added for e-print: This conjecture with its generalizations was proved in a joint paper with K. Taniyama \([P-T]\).
References

[B-W] J. Birman, R.F. Williams, Knotted orbits in dynamical systems- I: Lorentz’s equations, *Topology*, 22(1), 1983, 47-82.

[G] C. McA. Gordon, some aspects of classical knot theory, In: Knot theory, Lect. Notes in Math. 685, 1978, 1-60.

[M-1] K. Murasugi, On a certain numerical invariant of link types, *Trans. Amer. Math. Soc.* 117, 1965, 387-422.

[M-2] K. Murasugi, On the signature of links, *Topology* 9, 1981, 283-298.

[M-3] K. Murasugi, Jones polynomial of alternating links, *Trans. Amer. Math. Soc.* 295(1), 1986, 147-174.

[M-4] K. Murasugi, Jones polynomial and classical conjectures in knot theory, II, *Math. Proc. Camb. Phil. Soc.*, to appear. (Added for e-print: 102, 1987, 317-318.)

[M-5] K. Murasugi, On invariants of graphs with applications to knot theory, preprint 1987. (Added for e-print: *Trans. Amer. Math. Soc.* , 314, 1989, 1-49.)

[P] J. H. Przytycki, Survey on recent invariants in classical knot theory, preprint, Warsaw University, 1986. (Added for e-print: Warsaw University, Preprints 6,8,9; Warszawa, 1986; e-print: http://front.math.ucdavis.edu/0810.4191)

[P-T] J. H. Przytycki, P. Traczyk, Conway algebras and skein equivalence of links, preprint Warsaw 1985. (Added for e-print: part of the preprint was published in *Proc. Amer. Math. Soc.*, 100(4), 1987, 744-748.)

[R] L. Rudolph, Non-trivial positive braids have positive signature, *Topology* 21, 1982, 325-327.

Added for e-print:

[C-G] T. Cochran, E. Gompf, Applications of Donaldson’s theorems to classical knot concordance, homology 3-spheres and property P, *Topology* 27(4), 1988, 495–512.

[P-T] J. H. Przytycki, K. Taniyama, Almost positive links have negative signature, preprint 1991; e-print: arXiv:0904.4130

[T-1] K. Taniyama, A partial order of knots, *Tokyo J. Math.* 12(1), 1989, 205-229.

[T-2] K. Taniyama, A partial order of links, *Tokyo J. Math.* 12(2), 1989, 475-484.
[T] P. Traczyk, Nontrivial negative links have positive signature. *Manuscripta Math.* 61(3), 1988, 279–284.

Department of Mathematics
University of Toronto
Toronto, Canada
M5S 1A1
(and Warsaw University)

This e-print is based on the preprint written in Toronto in September 1987; most likely it is the version I submitted to Bulletin Polish Acad. Sci.: Math.