The Presence of Intraductal Carcinoma of The Prostate Is Closely Correlated with Poor Prognosis: A Systematic Review and Meta-Analysis

CURRENT STATUS: UNDER REVIEW

Yucong Zhang
Tongji Hospital of Tongji Medical College of Huazhong University of Science and Technology

Guoliang Sun
Tongji Hospital of Tongji Medical College of Huazhong University of Science and Technology

Delin Ma
Tongji Hospital of Tongji Medical College of Huazhong University of Science and Technology

Chao Wei
Tongji Hospital of Tongji Medical College of Huazhong University of Science and Technology

Haojie Shang
Tongji Hospital of Tongji Medical College of Huazhong University of Science and Technology

Zhuo Liu
Tongji Hospital of Tongji Medical College of Huazhong University of Science and Technology

Rui Li
Tongji Hospital of Tongji Medical College of Huazhong University of Science and Technology

Tao Wang
Tongji Hospital of Tongji Medical College of Huazhong University of Science and Technology

Shaogang Wang
Tongji Hospital of Tongji Medical College of Huazhong University of Science and Technology

Jihong Liu
Tongji Hospital of Tongji Medical College of Huazhong University of Science and Technology

Xiaming Liu
Tongji Hospital

✉ Xmliu77@hust.edu.cn Corresponding Author

ORCiD: https://orcid.org/0000-0002-1194-8791
DOI: 10.21203/rs.2.22376/v1

SUBJECT AREAS
Oncology Cancer Biology

KEYWORDS
intraductal carcinoma of the prostate, prostate cancer, prognostic, clinicopathological, meta-analysis
Abstract

Background

We aimed to confirm the predictive ability of the presence of intraductal carcinoma of the prostate (IDC-P) on prognosis and association between IDC-P and clinicopathological parameters.

Methods

Literatures were identified in PubMed, Cochrane Library, etc. up to December 1st, 2019. Hazard ratio (HR) for survival data and odds ratio (OR) for clinicopathological data with 95% confidence interval (CI) were extracted. Heterogeneity was evaluated by I² value and quality assessment by Newcastle-Ottawa Scale (NOS) criteria.

Result

A total of 4179 patients from 13 studies were included. The results showed IDC-P presence was significantly associated with poor progression-free survival (PFS) (HR = 2.31; 95% CI 1.96 to 2.73), cancer-specific survival (CSS) (HR=1.89; 95% CI 1.28 to 2.77) and overall survival (OS) (HR=2.14; 95% CI 1.53 to 3.01). In subgroup analysis, IDC-P presence was significantly associated with poor PFS in prostate cancer treated by radical prostatectomy (RP) (HR = 2.48; 95% CI 2.05 to 3.00) and those by radiotherapy (RT) (HR=2.83; 95% CI 1.65 to 4.85). For clinicopathological characteristics, IDC-P present patients showed significantly higher tumor clinical stage, Gleason score and probability of lymph node invasive, positive surgical margin and positive extraprostatic extension.

Conclusion

Our meta-analysis indicates presence of IDC-P is closely correlated with poor prognosis and adverse clinicopathological characteristics. Our data support the value and clinical utility of routine detection of IDC-P by pathological examination. These conclusions need further validation and prospective studies are needed to find better treatment modalities for patients with IDC-P other than traditional first-line androgen deprivation therapy.

Background

Due to high heterogeneity in histology, genetics, and clinical outcome, the management of newly diagnosed prostate cancer remains challenging. Currently, the clinical decision is usually made
according to serum PSA level, clinical tumor stage, and Gleason score by biopsy. Although there are several powerful prognosis predictive factors including TNM staging, a stronger one remains lacking so far. IDC-P is one histological variant of prostate cancer which has been identified as a potential prognostic factor. IDC-P is strongly associated with high-grade and high-volume invasive prostate cancer and unfavorable clinical outcomes.[1, 2] The incidence of IDC-P is approximately 20%.[3-5] Moreover, IDC-P has been recognized in the 2014 ISUP and 2016 World Health Organization classifications,[6, 7] and officially recommended being reported by The College of American Pathologists in 2017.[8]

Until now, some clinical studies have reported treatment prognosis of IDC-P with conflicting results.[9] In order to further confirm the predictive ability of IDC-P on treatment outcome, we conducted this systematic review and meta-analysis of relevant studies.

Methods

Data sources and searches

A comprehensive literature search was performed of databases including PubMed, Cochrane Library, EMBASE, Web of Science, and SCOPUS to identify relevant studies up to December 1st, 2019. The following terms and their combinations were employed: ("prostate cancer") AND ("intraductal carcinoma") OR ("IDC-P") OR ("intraductal carcinoma of the prostate") OR ("intraductal carcinoma of prostate").

Study selection

Every study was independently examined by two reviewers (Guoliang Sun and Yucong Zhang) for comprehensive evaluation according to the following inclusion criteria: (1) Patients were confirmed prostate cancer by pathological examination; (2) IDC-P was identified in prostate cancer tissues and was divided into present and absent categories; (3) studies investigated the association between IDC-P with clinicopathological features or prognosis; (4) studies directly provided HR with corresponding 95% CI, or survival curves of patients to estimate them; (5) studies were published in English. The exclusion criteria were as follows: (1) case reports, letters, reviews, editorials, notes, meeting abstracts, etc.; (2) non-human studies or in vitro studies; (3) duplicated studies with overlapping data;
(4) studies provided information unable to be pooled.

Data extraction

Two authors (Chao Wei, Haojie Shang) independently extracted and summarized the data of interest, and disagreement was resolved by discussion. The following basic characteristics were collected: name of the first author, year of publication, country, tumor type, treatment, number of patients, age, Gleason score, tumor stage, nodal status, PSA, follow-up months. For survival data, IDC-P present or absent status with HR and 95% CI for PFS, CSS and OS were collected. The following clinicopathological data were extracted: numbers of IDC-P present and absent patients with (a) PSA values, (b) tumor stage cT1-cT2, (c) tumor stage cT3-cT4, (d) Gleason score≥8, (e) Gleason score <8, (f) lymph node metastasis N0, (g) lymph node metastasis N1, (h) positive surgical margins (i) negative surgical margins (j) positive extraprostatic extension, (k) negative extraprostatic extension.

Population, Interventions, Comparators, Outcomes and Study Designs (PICOS)

The population of our study is prostate cancer patients. IDC-P status was assessed in these patients. IDC-P present or absent were compared by the endpoint including PFS, CSS and OS. The associations between IDC-P status and clinicopathological characteristics were evaluated. The study was designed to evaluate the association between IDC-P status and prognosis and clinicopathological characteristics.

Quality assessment

Quality assessment was performed by two investigators (Zhuo Liu, Rui Li) independently according to the Newcastle-Ottawa Scale (NOS) criteria. The NOS criteria consists of the following three parameters of quality: (1) selection: 0-4; (2) comparability: 0-2; and (3) exposure/outcome: 0-3. Studies scoring greater than five were considered to be of high quality.

Data synthesis and analysis

HR with their 95% CI was used to estimate the association between PFS, CSS and OS and IDC-P status. Patients were dichotomized by tumor stage (cT1-T2 vs. cT3-T4), Gleason score (<8 vs.≥8), lymph node metastasis (N0 vs. N1), surgical margins (positive vs. negative), and extraprostatic extension (positive vs. negative) categories. OR with 95% CI was used to evaluate the correlation.
between IDC-P status and clinicopathological features. We used the Review Manager software version 5.3 to calculate HR and OR with 95% CIs. Heterogeneity was assessed by the Chi-squared test and I^2 statistic. Fixed-effect models were employed when P-values of Chi-squared test is more than or equal to 0.05, and random-effect models when less than 0.05. Statistical tests were two-sided and P-values < 0.05 was considered to be statistically significant. Publication bias was assessed by funnel plots if number of included cohorts was over or equal to 10.

Results

Study characteristics

As Fig. 1 shows, 906 records were identified at first and 13 articles were included in the final qualitative and quantitative synthesis. Table 1 shows the characteristics of the included studies.[11-23] These studies were published between 2010 and 2019. A total of 4179 patients from 6 countries including Portland, Canada, Japan, America, China and Norway were enrolled. Of note, the article by Kwast et al offered 2 cohorts, one of which included 2 arms. Among these articles, IDC-P status was detected by immunohistochemistry, with the percentage ranging from 9.4 to 76.5%. According to NOS score, all included studies are high-quality (Additional file 1, Supplementary Table 1).

Quantitative data synthesis

Prognostic value of IDC-P status in prostate cancer

Progression-free survival 9 studies including 11 comparisons reported the relationship between PFS and IDC-P status. The HR for PFS showed that IDC-P present status was significantly associated with poor PFS in prostate cancer. IDC-P present status increased the risk of progression by 131% with fixed effects (HR = 2.31; 95% CI 1.96 to 2.73; p < 0.00001) (Fig. 2a). There was no significant heterogeneity (p = 0.31; I^2 = 14%). The publication bias was assessed by funnel plot, which indicates moderate publication bias (Additional file 2, Supplementary Figure 1).

Cancer-specific survival Four studies reported the association between CSS and IDC-P status. The HR showed that IDC-P present status was associated with poor CSS in prostate cancer with statistical significance and it increased the risk of cancer-specific death by 89% (HR = 1.89; 95% CI 1.28 to
2.77; \(p = 0.001\) (Fig. 2b). There was no significant heterogeneity (\(p = 0.38; \, I^2 = 3\%\)), so fixed-effects model was used.

Overall survival Three studies discussed the relation between CSS and IDC-P status. An association with statistical significance between IDC-P present status and the increased risk for death was found (fixed effect, HR = 2.14; 95% CI 1.53 to 3.01; \(p < 0.0001\)) (Fig. 2c), without significant heterogeneity (\(p = 0.68; \, I^2 = 0\%\)).

Prognostic value of IDC-P status in prostate cancer with radical prostatectomy

Progression-free survival Seven studies reported the relationship between PFS and IDC-P status of prostate cancer treated by RP. IDC-P present status was significantly associated with poor PFS in prostate cancer treated by RP with fixed effect (HR = 2.48; 95% CI 2.05 to 3.00; \(p < 0.00001\)) (Fig. 3a).

Prognostic value of IDC-P status in prostate cancer with radiotherapy

Progression-free survival IDC-P present status was significantly related to poor PFS in prostate cancer treated by RT and it increased the risk of progression by 183% (HR = 2.83; 95% CI 1.65 to 4.85; \(p = 0.0002\)) (Fig. 3b). There was no significant heterogeneity (\(p = 0.37; \, I^2 = 0\%\)), so fixed-effects model was used.

Correlation between clinicopathological characteristics and IDC-P status in prostate cancer

Fig. 4a - f compared the clinicopathological characteristics of IDC-P present and absent patients. There was no significant difference for PSA value in two group (WMD = 1.59, 95% CI -1.62 to 4.79; \(p = 0.003\)). Furthermore, IDC-P present patients seemed to show significantly more clinical stage T3-T4 (OR = 2.20, 95% CI 1.14 to 4.22; \(p = 0.02\)), higher Gleason score (OR = 4.03, 95% CI 2.40 to 6.75; \(p < 0.00001\)), more N1 lymph node status (OR = 3.79, 95% CI 1.97 to 7.28; \(p < 0.0001\)), more positive surgical margin (OR = 1.77; 95% CI 1.26 to 2.48; \(P = 0.0009\)) and more positive extraprostatic extension (OR = 3.49, 95% CI 1.88 to 6.47; \(P < 0.0001\)) than IDC-P absent patients. Significant heterogeneity was detected in the analysis of clinical stage, Gleason score, extraprostatic extension, so random-effect model was used. In other analysis, fixed-effect models were used.
Discussion

IDC-P is defined as growth of tumor cells within benign prostatic ducts and acini.[24] Specifically, it is defined as malignant epithelial cells filling large acini and prostatic ducts, with preservation of basal cells forming either solid or dense cribriform patterns or loose cribriform or micropapillary patterns with marked nuclear atypia (nuclei six times the normal size or larger) or comedonecrosis.[25] IDC-P is usually juxtaposed with invasive adenocarcinoma, and both histopathologies arise from a common tumor clone.[26] Tumors with IDC-P are also enriched for copy number aberrations associated with poor prognosis.[27] Several studies have reported on genetic abnormalities related to CR/IDC-P. Dawkins et al reported frequent losses of 8p22 and 16q23.1 in intraductal carcinoma.[28] Bettendorf et al found that intraductal carcinoma has more frequent loss of TP53, RB1, and PTEN.[29] Using break-point regions to infer phylogenetic relationships, Lindberg et al showed that the clone closely related to the metastases was found in intraductal carcinoma. These are consistent with the reporting of IDC-P in patients with adverse pathological and clinical features.[26]

The incidence of intraductal carcinoma of the prostate was reported to be 36.3% in needle biopsies and 50.5% in radical prostatectomy specimens of high-risk prostate cancer patients, and that the incidence rose to 67% in patients with distant metastasis at initial diagnosis.[11] Though in the TAX327 study, visceral metastasis, performance status, pain, and hemoglobin and alkaline phosphatase levels were proposed as prognostic parameters for overall survival[30, 31], they demonstrated that the presence of intraductal carcinoma of the prostate on needle biopsy was the strongest prognostic parameter for cancer-specific survival and overall survival among previously reported parameters, including clinical parameters, in patients with distant metastasis at initial diagnosis.

However, two studies also discussed the relationship between presence of IDC-P on diagnostic needle biopsy and a high risk of mortality in localized and metastatic prostate cancer patients.[18, 32] Both of them did not demonstrated the presence of IDC-P was a prognostic factor by multivariate analysis, although they showed it was a prognostic factor by univariate analysis. Even so, the detection of IDC-
P in a needle biopsy may still be superior to prostatectomy in predicting high-risk and aggressive prostate cancer. Furthermore, the detection of IDC-P in a needle biopsy can give useful information regarding patients’ outcome prior to radical prostatectomy. Pre- or/and post- surgical therapies may be needed to improve patients’ outcome in patients with IDC-P in needle biopsies.[12] Though some conflicting results were reported, our meta-analysis also demonstrates that IDC-P is related to poor prognosis and adverse pathological and clinical features. Overall, the presence of IDC-P is significantly related to shorter PFS, CSS and OS. Whether receiving RP or RT, patients with IDC-P show higher risk of tumor progression. And no matter high-risk prostate cancer or localized cancer, the presence of IDC-P also shows higher risk of tumor progression. In addition, patients with IDC-P showed significantly higher PSA value, tumor stage, Gleason score and probability of lymph node invasive, positive surgical margin, and positive extraprostatic extension. Therefore, beyond RP and RT, other anti-tumor modalities may be necessary for IDC-P patients.

The CHAARTED study and the STAMPEDE trial demonstrated that upfront chemotherapy combined with androgen-deprivation therapy could improve survival in high-volume hormone-sensitive metastatic prostate cancer.[33-35] van Soest et al [36] reported that docetaxel had the most pronounced survival benefit in patients with poorly differentiated tumors (Gleason score 7–10). Therefore, patients with metastatic prostate cancer with intraductal carcinoma of the prostate detected in biopsy specimens are highly likely to obtain the greatest benefit from chemotherapy as a first-line treatment instead of androgen-deprivation therapy.[11] Prospective studies are necessary to verify this.

Our meta-analysis has the following limitations that must be taken into consideration. The quality of the present meta-analysis was limited by several factors which might contribute to seemingly contrary results reported in included studies. First, among 13 included studies, most studies are retrospective studies without randomized controlled studies. Hence, confounding factors cannot be eliminated, which introduced bias to result. Second, small sample size of some studies may lead to completely opposite results caused by publication bias. Third, the adjunctive therapy for RT or RP weren’t fully described in most studies, which may also bring bias to the results. Fourth, as described
above, the presence of IDC-P is often related to poor clinicopathological characteristics, which might account for some part of the poor outcome. It remains unclear to deal with this important confounding factor, even in a randomized setting. Without multi-factor analysis, IDC-P may not be considered as an independent predictive factor of prognosis. Fifth, OS and CSS were only reported in few articles (articles without extractable HR were excluded). Long-term prognosis has not been adequately assessed. Sixth, studies without extractable HR data were excluded, resulting in ignorance of results from those studies. Several vital measures were made to reduce these limitations. Firstly, we conducted a systematic, comprehensive search across multiple online databases. Second, we strictly stipulated the inclusion criteria, eliminating the bias caused by some potential confounding factors and data were extracted by two reviewers. Third, we conducted a subgroup analysis of different treatment modalities and clinicopathological characteristics.

Conclusions
In conclusion, our meta-analysis indicates that presence of IDC-P is closely correlated with poor prognosis. It should be considered to recommend chemotherapy to patients with IDC-P as a treatment option. Our data support the value and clinical utility of routine detection of IDC-P by pathological examination.

Abbreviations
IDC-P: intraductal carcinoma of the prostate; HR: hazard ratio; OR: odds ratio; CI: confidence interval; NOS: Newcastle-Ottawa Scale; PFS: progression-free survival; CSS: cancer-specific survival; OS: overall survival; RP: radical prostatectomy; RT: radiotherapy; PICOS: Population, Interventions, Comparators, Outcomes and Study Designs.

Declarations

Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Availability of data and materials
Not applicable.

Competing Interests

The authors declare that they have no competing interests.

Funding

This work was supported by National Natural Science Foundation of China (Grant Number: 81702518), National Natural Science Foundation of China (Grant Number: 81500636), Innovation foundation of Huazhong University of Science and Technology (Grant Number 2019kfyXKJC06). These funding were used for software cost, data collection and analysis.

Authors' contributions

GS, YZ and XL contributed to the conception. SW and JL performed the literature search. ZL and RL contributed to studies examination and quality assessment. HS and TW did the data analysis. GS and DM drafted the work and CW revised it. All authors read and approved the final manuscript.

Acknowledgements

We thank Tongji Hospital for its sponsorship.

References

1. Tsuzuki T: *Intraductal carcinoma of the prostate: a comprehensive and updated review*. *International journal of urology : official journal of the Japanese Urological Association* 2015, **22**(2):140-145.

2. Zhou M: *Intraductal carcinoma of the prostate: the whole story*. *Pathology* 2013, **45**(6):533-539.

3. Humphrey PA: *Intraductal Carcinoma of the Prostate*. *The Journal of urology* 2015, **194**(5):1434-1435.

4. Wilcox G, Soh S, Chakraborty S, Scardino PT, Wheeler TM: *Patterns of high-grade prostatic intraepithelial neoplasia associated with clinically aggressive prostate cancer*. *Human pathology* 1998, **29**(10):1119-1123.

5. Rubin MA, de La Taille A, Bagiella E, Olsson CA, O'Toole KM: *Cribriform carcinoma*
of the prostate and cribriform prostatic intraepithelial neoplasia: incidence and clinical implications. The American journal of surgical pathology 1998, 22(7):840-848.

6. Epstein JI, Egevad L, Amin MB, Delahunt B, Srigley JR, Humphrey PA: The 2014 International Society of Urological Pathology (ISUP) Consensus Conference on Gleason Grading of Prostatic Carcinoma: Definition of Grading Patterns and Proposal for a New Grading System. The American journal of surgical pathology 2016, 40(2):244-252.

7. Humphrey PA, Moch H, Cubilla AL, Ulbright TM, Reuter VE: The 2016 WHO Classification of Tumours of the Urinary System and Male Genital Organs-Part B: Prostate and Bladder Tumours. European urology 2016, 70(1):106-119.

8. Srigley JR, Humphrey PA, Amin MB, Chang SS, Egevad L, Epstein JI, Grignon DJ, McKiernan JM, Montironi R, Renshaw AA et al: Protocol for the examination of specimens from patients with carcinoma of the prostate gland. Archives of pathology & laboratory medicine 2009, 133(10):1568-1576.

9. Porter LH, Lawrence MG, Ilic D, Clouston D, Bolton DM, Frydenberg M, Murphy DG, Pezaro C, Risbridger GP, Taylor RA: Systematic Review Links the Prevalence of Intraductal Carcinoma of the Prostate to Prostate Cancer Risk Categories. European urology 2017, 72(4):492-495.

10. Deeks JJ, Dinnes J, D’Amico R, Sowden AJ, Sakarovitch C, Song F, Petticrew M, Altman DG: Evaluating non-randomised intervention studies. Health technology assessment (Winchester, England) 2003, 7(27):iii-x, 1-173.

11. Kato M, Tsuzuki T, Kimura K, Hirakawa A, Kinoshita F, Sassa N, Ishida R, Fukatsu A, Kimura T, Funahashi Y et al: The presence of intraductal carcinoma of the prostate in needle biopsy is a significant prognostic factor for prostate
cancer patients with distant metastasis at initial presentation. Modern pathology : an official journal of the United States and Canadian Academy of Pathology, Inc 2016, 29(2):166-173.

12. Kato M, Kimura K, Hirakawa A, Kobayashi Y, Ishida R, Kamihira O, Majima T, Funahashi Y, Sassa N, Matsukawa Y et al: Prognostic parameter for high risk prostate cancer patients at initial presentation. The Prostate 2018, 78(1):11-16.

13. Kato M, Hirakawa A, Kobayashi YM, Yamamoto A, Ishida R, Sano T, Kimura T, Majima T, Ishida S, Funahashi Y et al: The influence of the presence of intraductal carcinoma of the prostate on the grade group system's prognostic performance. The Prostate 2019, 79(10):1065-1070.

14. Kimura K, Tsuzuki T, Kato M, Saito AM, Sassa N, Ishida R, Hirabayashi H, Yoshino Y, Hattori R, Gotoh M: Prognostic value of intraductal carcinoma of the prostate in radical prostatectomy specimens. The Prostate 2014, 74(6):680-687.

15. Miyai K, Divatia MK, Shen SS, Miles BJ, Ayala AG, Ro JY: Clinicopathological analysis of intraductal proliferative lesions of prostate: intraductal carcinoma of prostate, high-grade prostatic intraepithelial neoplasia, and atypical cribriform lesion. Human pathology 2014, 45(8):1572-1581.

16. Murata Y, Tatsugami K, Yoshikawa M, Hamaguchi M, Yamada S, Hayakawa Y, Ueda K, Momosaki S, Sakamoto N: Predictive factors of biochemical recurrence after radical prostatectomy for high-risk prostate cancer. International journal of urology : official journal of the Japanese Urological Association 2018, 25(3):284-289.

17. O'Brien C, True LD, Higano CS, Rademacher BL, Garzotto M, Beer TM: Histologic changes associated with neoadjuvant chemotherapy are predictive of nodal metastases in patients with high-risk prostate cancer. American journal of
18. Saeter T, Vlatkovic L, Waaler G, Servoll E, Nesland JM, Axcrona K, Axcrona U:

Intraductal Carcinoma of the Prostate on Diagnostic Needle Biopsy Predicts Prostate Cancer Mortality: A Population-Based Study. The Prostate 2017, 77(8):859-865.

19. Trinh VQ, Benzerdjeb N, Chagnon-Monarque S, Dionne N, Delouya G, Kougioumoutzakis A, Sirois J, Albadine R, Latour M, Mes-Masson AM et al:

Retrospective study on the benefit of adjuvant radiotherapy in men with intraductal carcinoma of prostate. Radiation oncology (London, England) 2019, 14(1):60.

20. Trinh VQ, Sirois J, Benzerdjeb N, Mansoori BK, Grosset AA, Albadine R, Latour M, Mes-Masson AM, Hovington H, Bergeron A et al: The impact of intraductal carcinoma of the prostate on the site and timing of recurrence and cancer-specific survival. The Prostate 2018, 78(10):697-706.

21. Van der Kwast T, Al Daoud N, Collette L, Sykes J, Thoms J, Milosevic M, Bristow RG, Van Tienhoven G, Warde P, Mirimanoff RO et al: Biopsy diagnosis of intraductal carcinoma is prognostic in intermediate and high risk prostate cancer patients treated by radiotherapy. European journal of cancer (Oxford, England : 1990) 2012, 48(9):1318-1325.

22. Zhao J, Shen P, Sun G, Chen N, Liu J, Tang X, Huang R, Cai D, Gong J, Zhang X et al:

The prognostic implication of intraductal carcinoma of the prostate in metastatic castration-resistant prostate cancer and its potential predictive value in those treated with docetaxel or abiraterone as first-line therapy. Oncotarget 2017, 8(33):55374-55383.

23. Zhu S, Zhao JG, Chen JR, Liu ZH, Sun GX, Wang ZP, Ni YC, Dai JD, Shen PF, Zeng H:
Intraductal carcinoma of the prostate in prostate biopsy samples: correlation with aggressive pathological features after radical prostatectomy and prognostic value in high-risk prostate cancer. Asian journal of andrology 2019.

24. Rhamy RK, Buchanan RD, Spalding MJ: Intraductal carcinoma of the prostate gland. The Journal of urology 1973, 109(3):457-460.

25. Guo CC, Epstein JI: Intraductal carcinoma of the prostate on needle biopsy: Histologic features and clinical significance. Modern pathology : an official journal of the United States and Canadian Academy of Pathology, Inc 2006, 19(12):1528-1535.

26. Montironi R, Cheng L, Lopez-Beltran A, Scarpelli M, Montorsi F: A better understating of the morphological features and molecular characteristics of intraductal carcinoma helps clinicians further explain prostate cancer aggressiveness. European urology 2015, 67(3):504-507.

27. Taylor RA, Fraser M, Livingstone J, Espiritu SM, Thorne H, Huang V, Lo W, Shiah YJ, Yamaguchi TN, Sliwinski A et al: Germline BRCA2 mutations drive prostate cancers with distinct evolutionary trajectories. Nature communications 2017, 8:13671.

28. Dawkins HJ, Sellner LN, Turbett GR, Thompson CA, Redmond SL, McNeal JE, Cohen RJ: Distinction between intraductal carcinoma of the prostate (IDC-P), high-grade dysplasia (PIN), and invasive prostatic adenocarcinoma, using molecular markers of cancer progression. The Prostate 2000, 44(4):265-270.

29. Bettendorf O, Schmidt H, Staebler A, Grobholz R, Heinecke A, Boecker W, Hertle L, Semjonow A: Chromosomal imbalances, loss of heterozygosity, and immunohistochemical expression of TP53, RB1, and PTEN in intraductal
cancer, intraepithelial neoplasia, and invasive adenocarcinoma of the prostate. *Genes, chromosomes & cancer* 2008, **47**(7):565-572.

30. Armstrong AJ, Garrett-Mayer E, Ou Yang YC, Carducci MA, Tannock I, de Wit R, Eisenberger M: **Prostate-specific antigen and pain surrogacy analysis in metastatic hormone-refractory prostate cancer.** *Journal of clinical oncology: official journal of the American Society of Clinical Oncology* 2007, **25**(25):3965-3970.

31. Armstrong AJ, Garrett-Mayer ES, Yang YC, de Wit R, Tannock IF, Eisenberger M: **A contemporary prognostic nomogram for men with hormone-refractory metastatic prostate cancer: a TAX327 study analysis.** *Clinical cancer research: an official journal of the American Association for Cancer Research* 2007, **13**(21):6396-6403.

32. Zhao T, Liao B, Yao J, Liu J, Huang R, Shen P, Peng Z, Gui H, Chen X, Zhang P et al: **Is there any prognostic impact of intraductal carcinoma of prostate in initial diagnosed aggressively metastatic prostate cancer?** *The Prostate* 2015, **75**(3):225-232.

33. Bernard B, Sweeney CJ: **Management of metastatic hormone-sensitive prostate cancer.** *Current urology reports* 2015, **16**(3):14.

34. Tombal B: **Metastatic Castration-resistant Prostate Cancer: Piling Up the Benefits of Chemotherapy.** *European urology* 2015, **68**(2):236-237.

35. James ND, Spears MR, Clarke NW, Dearnaley DP, De Bono JS, Gale J, Hetherington J, Hoskin PJ, Jones RJ, Laing R et al: **Survival with Newly Diagnosed Metastatic Prostate Cancer in the "Docetaxel Era": Data from 917 Patients in the Control Arm of the STAMPEDE Trial (MRC PR08, CRUK/06/019).** *European urology* 2015, **67**(6):1028-1038.

36. van Soest RJ, de Morree ES, Shen L, Tannock IF, Eisenberger MA, de Wit R: **Initial**
biopsy Gleason score as a predictive marker for survival benefit in patients with castration-resistant prostate cancer treated with docetaxel: data from the TAX327 study. *European urology* 2014, 66(2):330-336.

Table

Table 1 - Characteristics of studies included in the meta-analysis.

Author/Year	Study Design	Country	Tumor Type	Treatment	Case, N	Positive Rate (%)	Median Age, year (range) (Positive vs Negative)	Gleason Score, n (%)	Tumor Stage, n (%)	Nodal Status, n (%)	Median PSA, ng/ml (range) (Positive vs Negative)	Follow-up, months (range)
O’Brien 2010	Prospective	Portland	High, localized PCA	RP (100%); neoadjuvant chemotherapy (100%)	10 40	20.0 63 (52-74)	6: 5 (10); 7: 19 (38); 8: 13 (26); 9: 12 (24); 10: 1 (2)	pT1: 0 (0); pT2: 24 (48); pT3: 24 (48); pT4: 2 (4)	NA	NA	12.0 (1.4-58.6)	65.1
Kwast 2012 PMH cohort	Retrospective	Canada	Intermediate risk PCA	RT (100%); neoadjuvant ADT (22%)	23 93	19.8 71 (55-82)	≤6: 38 (32); 7: 80 (68); 8: 0 (0); 9: 0 (0)	cT1: 51 (43); cT2: 67 (57); cT3: 0 (0); cT4: 0 (0)	NA	NA	7.9 (1.3-19.3)	78 (9.6-124.8)
Kwast 2012 EORTC cohort	Retrospective	Canada	High risk PCA	RT arm: RT (100%); RT plus LTAD arm: RT plus LTAD (100%)	30 102	22.7 70 (51-79)	≤6: 12 (9); 7: 75 (58); 8: 30 (23); 9: 13 (10); U: 5 (4)	cT1: 0 (0); cT2: 6 (4); cT3: 116 (86); cT4: 13 (10)	NA	NA	NA	NA
Kimura 2014	Retrospective	Japan	High, localized PCA	RP (100%); Neoadjuvant hormone therapy (38.8%); Adjuvant hormone therapy (11.2%); Neoadjuvant and adjuvant therapies (26.7%)	104 102	50.5 68 (46-80)	≤6: 11 (53); 7: 42 (20); ≥8: 153 (74)	cT1: 35 (17); cT2: 85 (41); cT3: 86 (42); cT4: 0 (0)	N0: 176 (85); N1: 30 (15)	N0: 176 (85); N1: 30 (15)	25.0 (2.4-296)	82.8 (3.6-237.6)
Miyai 2014	Retrospective	America	PCa	RP (100%)	613 288	68.0 61 (41-79) vs 59 (42-84)	≤7: 751 (83); ≥8: 150 (17)	≤pT2: 759 (84); ≥pT3: 142 (16)	N0: 176 (85); N1: 30 (15)	N0: 176 (85); N1: 30 (15)	25.0 (2.4-296)	82.8 (3.6-237.6)
Kato 2016	Retrospective	Japan	Metastatic PCa	ADT (100%); chemotherapy	100 50	66.7 73 (50-90)	7: 15 (10); 8: 18 (12); 9: 108 (72); 10: 9 (6)	cT2: 26 (17); cT3: 71 (48); cT4: 53 (35)	NA	NA	328 (4.18-10992)	38 (0.67-141.1)
Zhao 2017	Retrospective	China	Metastatic PCa progressed to	MAB (100%); Standard first-line therapies (abiraterone or	62 69	47.3 72 (64-75)	≤7: 21 (16); ≥8: 110 (84)	NA	NA	65.7 (23.3-172.7)	59	
Year	Study Type	Country/City	Stage	Treatment	Method	Median PSA (IQR)	Median Age (IQR)	Median PSA (IQR)	Median Age (IQR)			
--------	------------	--------------	-------	-----------	--------	-----------------	-----------------	-----------------	-----------------			
2017	Retrospective	Norway	M0 or Mx PCa	mCRPC (docetaxel) (73%)	Radical prostatectomy (RP) (14%); RT (12%); Endocrine treatment (34%); Watchful waiting (39%); Other (1%)	73%	98	185	34.6 / 71 (66-78) #			
2018	Retrospective	Japan	High risk PCa	RP (100%)		100%	76	116	39.3 / 70 (41-78) #			
2018	Retrospective	Japan	High risk, localized PCa	RP (100%)			74	130	36.3 / 68 (46-80)			
2018	Retrospective	Canada	Localized PCa	RP (100%); Adjuvant RT (16%)			65	20	76.5 / 62.0 ± 5.5^&			
2019	Retrospective	Japan	Localized PCa	RP (100%)			157	862	15.4 / 67 (45-80)			
2019	Retrospective	China	High risk PCa	RP (100%)			36	382	9.4 / 69 (64-73) #			

PSA, prostate-specific antigen; PCa, prostate cancer; RP, radical prostatectomy; NA, not available; RT, radiotherapy; ADT, androgen deprivation therapy; LTAD, long-term androgen deprivation; U, unknown; MAB, maximal androgen blockade; mCRPC, metastatic castration-resistant prostate cancer.

IQR

^& Mean ± SD

Figures
Figure 1

Study selection process.
Figure 2

Forest plots assessing the association between IDC-P status and (A) PFS, (B) CSS, (C) OS in patients with prostate cancer. Bars indicate the 95% CI.
Figure 3

Forest plots assessing the association between IDC-P status and PFS in patients with prostate cancer treated by (A) RP, (B) RT. Bars indicate the 95% CI.
Forest plots assessing the association between IDC-P status and clinicopathological characteristics: (A) PSA, (B) tumor clinical stage, (C) Gleason score, (D) lymph node status, (E) surgical margin, (F) extraprostatic extension. Bars indicate the 95% CI.

Supplementary Files

This is a list of supplementary files associated with this preprint. Click to download.

Additional file 1.doc
Additional file 2.doc
Additional file 3.doc