Abstract

With the web getting bigger and assimilating knowledge about different concepts and domains, it is becoming very difficult for simple database driven applications to capture the data for a domain. Thus developers have come out with ontology based systems which can store large amount of information and can apply reasoning and produce timely information. Thus facilitating effective knowledge management. Though this approach has made our lives easier, but at the same time has given rise to another problem. Two different ontologies assimilating same knowledge tend to use different terms for the same concepts. This creates confusion among knowledge engineers and workers, as they do not know which is a better term then the other. Thus we need to merge ontologies working on same domain so that the engineers can develop a better application over it. This paper shows the development of one such matcher.
which merges the concepts available in two ontologies at two levels; 1) at string level and 2) at semantic level; thus producing better merged ontologies. We have used a graph matching technique which works at the core of the system. We have also evaluated the system and have tested its performance with its predecessor which works only on string matching. Thus current approach produces better results.

References

- Cruz, I. F., Stroe, C., Caci, M., Caimi, F., Palmonari, M., Antonelli, F. P., Keles, U. C. 2010. Using AgreementMaker to Align Ontologies for OAEI 2010. Fifth International Workshop on Ontology Matching, co-located with the International Semantic Web Conference, Shanghai, China.
- Ruiz, E. J., & Grau, B. C. 2011. LogMap: Logic-based and Scalable Ontology Matching. In the 10th International Semantic Web Conference.
- Jérôme, D. 2011. AROMA results for OAEI 2011. In Proceedings of the Sixth International Workshop on Ontology Matching.
- Agrawal, R., Imielinski, T., Swami, A. 1993. Mining association rules between sets of items in large databases. Vol 22 (2), ACM.
- Jorge, G., Bernad, J., Mena, E. 2011. Ontology matching with CIDER: evaluation report for OAEI 2011. In Proceedings of the Sixth International Workshop on Ontology Matching.
- Peng, W., Xu, B. 2008. Lily: Ontology alignment results for OAEI 2008. In Proceedings of the Third International Workshop on Ontology Matching.
- Juanzi, L., Tang, J., Li, Y., & Luo, Q. 2009. Rimom: A dynamic multistrategy ontology alignment framework. Knowledge and Data Engineering, IEEE Transactions on, Vol. 21(8), pp 1218-1232.
- Fayçal, H., Safar, B., Niraula, N. B., Reynaud, C. 2010. TaxoMap alignment and refinement modules: Results for OAEI 2010. In Proceedings of the Fifth International Workshop on Ontology Matching.
- DuyHoa, N., Bellahsene, Z. 2012. YAM++: a multi-strategy based approach for ontology matching task. Knowledge Engineering and Knowledge Management. Springer Berlin Heidelberg, pp 421-425.
- Mathur, I., Joshi, N., Darbari, H., Kumar, A. 2014. Shiva: A Framework for Graph Based Ontology Matching. International Journal of Computer Applications, Vol 87.
- Shvaiko, P., Euzenat, J., Srinivas, K., Mao, M., Ruiz, E. J. (Eds) 2013. Proceedings of the 8th International Workshop on Ontology Matching.
- Vashisth, A., Mathur, I., Joshi, N. 2012. OntoAna: Domain Ontology for Human Anatomy. arXiv preprint arXiv:1208. 3802.
- Mathur, I., Mathur, S., Joshi, N. 2011. Ontology development for health care in India. Proceedings of the International Conference & Workshop on Emerging Trends in Technology. ACM.
- Mathur, I., Darbari, H., Joshi, N. 2013. Domain Ontology Development for Communicable Diseases. Proceedings of International Conference on Artificial Intelligence, Soft Computing.
Shiva++: An Enhanced Graph based Ontology Matcher

Index Terms

Computer Science Information Sciences

Keywords

Ontology Matching Graph Matching Kuhn-Munkres Algorithm String Similarity Semantic Similarity.