Mechanisms and management of 3rd-generation EGFR-TKI resistance in advanced non-small cell lung cancer (Review)

JINGYI HE1, ZHENGJONG HUANG1,2, LINZHI HAN3,4, YAN GONG2,5 and CONGHUA XIE1,3,4

Departments of 1Radiation and Medical Oncology, and 2Biological Repositories; 3Hubei Key Laboratory of Tumor Biological Behaviors; 4Hubei Cancer Clinical Study Center, Zhongnan Hospital of Wuhan University; 5Tumor Precision Diagnosis and Treatment Technology and Translational Medicine, Hubei Engineering Research Center, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, P.R. China

Received June 25, 2021; Accepted September 9, 2021

DOI: 10.3892/ijo.2021.5270

Abstract. Targeted therapy with epidermal growth factor receptor (EGFR)-tyrosine kinase inhibitors (TKIs) is a standard modality of the 1st-line treatments for patients with advanced EGFR-mutated non-small cell lung cancer (NSCLC), and substantially improves their prognosis. However, EGFR T790M mutation is the primary mechanism of 1st- and 2nd-generation EGFR-TKI resistance. Osimertinib is a representative of the 3rd-generation EGFR-TKIs that target T790M mutation, and has satisfactory efficacy in the treatment of T790M-positive NSCLC with disease progression following use of 1st- or 2nd-generation EGFR-TKIs. Other 3rd-generation EGFR-TKIs, such as abirateronib, rociletinib, nazartinib, olmutinib and alflutinib, are also at various stages of development. However, the occurrence of acquired resistance is inevitable, and the mechanisms of 3rd-generation EGFR-TKI resistance are complex and incompletely understood. Genomic studies in tissue and liquid biopsies of resistant patients reveal multiple candidate pathways. The present review summarizes the recent findings in mechanisms of resistance to 3rd-generation EGFR-TKIs in advanced NSCLC, and provides possible strategies to overcome this resistance. The mechanisms of acquired resistance mainly include an altered EGFR signaling pathway (EGFR tertiary mutations and amplification), activation of aberrant bypassing pathways (hepatocyte growth factor receptor amplification, human epidermal growth factor receptor 2 amplification and aberrant insulin-like growth factor 1 receptor activation), downstream pathway activation (RAS/RAF/MEK/ERK and PI3K/AKT/mTOR) and histological/phenotypic transformations (SCLC transformation and epithelial-mesenchymal transition). The combination of targeted therapies is a promising strategy to treat osimertinib-resistant patients, and multiple clinical studies on novel combined therapies are ongoing.

Contents
1. Introduction
2. Third-generation EGFR-TKIs
3. Primary resistance mechanisms
4. Acquired resistance mechanisms
5. Strategies to overcome resistance
6. Conclusions and perspectives

1. Introduction

Lung cancer is the leading cause of cancer-related death throughout the world. More than half (57%) of all patients with lung cancer have metastasis at the time of diagnosis, and the 5-year survival rate is only 5% (1). Non-small cell lung cancer (NSCLC) constitutes 85% of all lung cancer cases (2). Epidermal growth factor receptor (EGFR) is one of the most common driver genes in NSCLC. Female patients have higher
mutation rates than male patients. Adenocarcinomas and non-smoking are also associated with \(\text{EGFR} \) mutations (3). The \(\text{EGFR} \) belongs to the HER/ErbB family; it locates on the cell surface, and binds to its ligands, such as EGF and transforming growth factor. Upon ligand binding, \(\text{EGFR} \) undergoes dimer formation and auto-phosphorylation at the tyrosine residues, and activates downstream signaling through MAPK and PI3K pathways, leading to cancer cell proliferation, differentiation and migration (4). Approximately 20% of NSCLC patients bear activating mutations in \(\text{EGFR} \) and PI3K pathways, leading to cancer cell proliferation, dimer formation and auto-phosphorylation at the tyrosine forming growth factor. Upon ligand binding, \(\text{EGFR} \) undergoes cell surface, and binds to its ligands, such as EGF and transforming growth factor receptor 2 (HER2) inhibitor that is designed to overcome this problem. The so-called ‘gatekeeper’ T790M mutation increases the competition between ATP and the reversible \(\text{EGFR-TKIs} \) by exerting effects on both steric hindrance and increased ATP affinity to mutant \(\text{EGFR} \) receptor, thereby decreasing the efficacy of 1st- and 2nd-generation \(\text{EGFR-TKIs} \) (15). The 3rd-generation \(\text{EGFR-TKIs} \), represented by osimertinib, have satisfactory efficacy in overcoming acquired resistance to the 1st- and 2nd-generation \(\text{EGFR-TKIs} \) mediated by T790M mutation (Fig. 1). Osimertinib selectively targets the \(\text{EGFR} \) T790M mutation, forming covalent bonds with the C797 residue in the ATP-binding site of mutant \(\text{EGFR} \). Since their binding is irreversible, this agent overcomes the enhanced ATP affinity conferred by the T790M mutation; it exhibits ~200 times greater potency against L858R/T790M mutant \(\text{EGFR} \) than wild-type \(\text{EGFR} \) (18). The 3rd-generation \(\text{EGFR-TKIs} \) have promising clinical activity and tolerability. For patients who progressed on the 1st-generation \(\text{EGFR-TKI} \) treatment and have a T790M mutation, osimertinib has significantly improved their PFS and OS times compared with chemotherapy (17). Furthermore, osimertinib has shown better efficacy than gefitinib or erlotinib in untreated NSCLC with \(\text{EGFR} \) mutations (19). Patients receiving osimertinib have a lower incidence of serious adverse events than those treated with the 1st- or 2nd-generation \(\text{EGFR-TKIs} \) (12,19). However, patients with \(\text{EGFR-activating mutations} \) administered osimertinib as the 1st-line treatment have also been found to inevitably develop resistance after 18.9 months (19). Previous studies on the mechanisms of 3rd-generation \(\text{EGFR-TKI} \) resistance have revealed both primary and acquired resistance (Fig. 2). For patients with NSCLC progression after the 3rd-generation \(\text{EGFR-TKI} \) treatments, the use of next-generation sequencing (NGS) of plasma or tissue samples to clarify the resistance mechanism is important to guide further treatment. The molecular targets and resistance mechanisms of different generations of \(\text{EGFR-TKIs} \) are shown in Table I. Comprehensive and in-depth studies on the resistance to the 3rd-generation \(\text{EGFR-TKIs} \) are urgently required to provide better therapeutic strategies.

2. Third-generation \(\text{EGFR-TKIs} \)

In addition to osimertinib, several other 3rd-generation \(\text{EGFR-TKIs} \) targeting the T790M mutation (Fig. 1), such as rociletinib (CO1686), lazertinib (YH25448), abivertinib (AC0010), nazartinib (EGF816), naquotinib (ASP8273) and afatinib and dacomitinib exhibited low maximum tolerated doses in the patients. Compared to gefitinib, they were associated with a higher incidence of adverse events, including increased skin and gastrointestinal toxicity. The 2nd-generation \(\text{EGFR-TKIs} \) therefore have limited roles in patients with developed resistance to the 1st-generation \(\text{EGFR-TKIs} \) (13-15). Most patients inevitably develop acquired resistance through various mechanisms after 9-13 months of treatment with the 1st- and 2nd-generation \(\text{EGFR-TKIs} \). The T790M mutation in \(\text{EGFR} \) exon 20 is the predominant cause, occurring in 50-60% of patients (15-17).
Figure 1. Chemical structures of different generations of EGFR-TKIs. Chemical structures were sourced from https://pubchem.ncbi.nlm.nih.gov/. EGFR-TKI, epidermal growth factor receptor-tyrosine kinase inhibitor.

Figure 2. Mechanisms of primary and acquired 3rd-generation EGFR-TKI resistance in advanced EGFR-mutated non-SCLC. BIM, B-cell lymphoma-2 (BCL-2)-like 1; MET, hepatocyte growth factor receptor; HER2, human epidermal growth factor receptor 2; FGFR, fibroblast growth factor receptor; IGF1R, insulin-like growth factors 1 receptor; AXL, anexelekto; SCLC, small cell lung cancer; SCC, squamous cell carcinoma; EGFR-TKI, epidermal growth factor receptor-tyrosine kinase inhibitor.
Table I. Different generations of EGFR-TKIs.

A, 1st-generation EGFR-TKIs

Drug name	Molecular target	Target binding mode	Resistance mechanisms	Status	Adverse events
Gefitinib (ZD1839)	EGFR Ex19del, L858R	Reversible; competitive	T790M, EGFR amp, HER2 amp, MET amp	Approved by the FDA in 2005	Skin rash/acne, abnormal LFT, anorexia (7)
Erlotinib (OSI-774)	EGFR Ex19del, L858R	Reversible; competitive	T790M, EGFR amp, HER2 amp, MET amp	Approved by the FDA in 2003	Skin rash, abnormal LFT, diarrhea (9)
Icotinib (BPI-2009H)	EGFR Ex19del, L858R	Reversible; competitive	T790M, EGFR amp, HER2 amp, MET amp	Approved by the SFDA in 2011	Skin rash, cough, diarrhea, abnormal LFT (10)

B, 2nd-generation EGFR-TKIs

Drug name	Molecular target	Target binding mode	Resistance mechanisms	Status	Adverse events
Afatinib (BIBW 2992)	EGFR Ex19del, L858R, HER2, HER4, uncommon mutations	Irreversible; covalent	T790M, EGFR amp, HER2 amp, MET amp	Approved by the FDA in 2013	Diarrhea, paronychia, skin rash (11)
Dacomitinib (PF-00299804)	EGFR Ex19del, L858R, HER2, HER4	Irreversible; covalent	T790M, EGFR amp, HER2 amp, MET amp	Approved by the FDA in 2018	Diarrhea, skin rash/acne, paronychia (12)

C, 3rd-generation EGFR-TKIs

Drug name	Molecular target	Target binding mode	Resistance mechanisms	Status	Adverse events
Osimertinib (AZD9291)	EGFR Ex19del, L858R, T790M	Irreversible; covalent	C797S, MET amp, EGFR amp, HER2 amp/mut, PIK3CA amp/mut, SCLC transformation	Approved by the FDA in 2015	Diarrhea, skin rash, dry skin, paronychia (17-19)
Rociletinib (AVL301/CO1686)	EGFR Ex19del, L858R, T790M	Irreversible; covalent	C797S, EGFR amp, MET amp, HER2 amp, KRAS mut	After phase I/II trial, rejected by the FDA Phase II	Hyperglycemia, QTc prolong, cataracts (20,26)
Abivertinib (AC0010)	EGFR Ex19del, L858R, T790M	Irreversible; covalent	C797S, EGFR amp, MET amp, HER2 amp, KRAS mut	Phase III	Rash, diarrhea, pruritus (23,28)
Nazartinib (EGF816)	EGFR Ex19del, L858R, T790M	Irreversible; covalent	C797S	Approved by the FDA in 2015	Diarrhea, skin exfoliation, nausea (25,29)
Olmutinib (HM61713)	EGFR Ex19del, L858R, T790M	Irreversible; covalent	C797S	Approved in China in 2021	Diarrhea, skin rash, abnormal LFT (20,22)
Allflutinib (AST2818)	EGFR G719X, Ex19del, L858R, L861Q, T790M	Irreversible; covalent	N/A	Approved in China in 2021	Diarrhea, skin rash, abnormal LFT (30)
Almonertinib (HS-10296)	EGFR G719X, Ex19del, L858R, L861Q, T790M	Irreversible; covalent	N/A	Approved in China in 2020	Creatine phosphokinase elevation, skin rash, abnormal LFT, leukopenia (31)
olmutinib (HM61713), are at various stages of development (Table I) (17,20‑33). Osimertinib, rociletinib and olmutinib are currently approved for clinical use by the U.S. FDA. Osimertinib has dominated the global landscape of treatment of EGFR-positive NSCLC, since it is the current standard of care for the 1st‑line treatment of advanced EGFR-mutated NSCLC and for EGFR T790M-positive NSCLC after 1st- or 2nd-generation EGFR-TKIs (17,19).

Table I. Continued.

Drug name	Molecular target	Target binding mode	Resistance mechanisms	Status	Adverse events
Lazertinib (YH25448/GNS-1480)	EGFR Ex19del, L858R, T790M	Irreversible; covalent	C797S, EGFR amp, PIK3CA, MET amp, HER2 amp	Approved in South Korea in 2021	Skin rash, pruritus, paresthesia (21,32)
Naquotinib (ASP8273)	EGFR Ex19del, L858R, T790M	Irreversible; covalent	N/A	Phase III discontinued	Diarrhea, hyponatremia, abnormal LFT, nausea (24,33)

D, 4th-generation EGFR-TKIs

Drug name	Molecular target	Target binding mode	Resistance mechanisms	Status	Adverse events
EAI045	EGFR L858R, C797S, T790M	Non-ATP-competitive; reversible	N/A	Preclinical (91)	N/A
BLU-945	EGFR Ex19del, L858R, C797S, T790M	N/A	N/A	Preclinical (93)	N/A
TQB3804	EGFR Ex19del, L858R, C797S, T790M	N/A	N/A	Phase I (94)	N/A

E, Multi-target TKIs

Drug name	Molecular target	Target binding mode	Resistance mechanisms	Status	Adverse events
Brigatinib (AP26113)	EGFR Ex19del, L858R, C797S, T790M	ATP-competitive; reversible	N/A	Approved by the FDA in 2016	Nausea, diarrhea, headache, creatine phosphokinase elevation (92,95)

Osimertinib. In 2015, the FDA approved osimertinib for the treatment of patients with metastatic EGFR-mutant NSCLC who have acquired the EGFR T790M resistance mutation. The drug was then approved as the 1st-line therapy for advanced EGFR-mutated NSCLC in 2018 (34). Osimertinib is an oral, irreversible EGFR-TKI that is selective for both EGFR and T790M mutations and has activity in the central nervous system (CNS). AURA3 is a randomized, open-label, phase 3 trial that has been conducted to show the superiority of osimertinib over platinum therapy plus pemetrexed in patients with T790M-positive advanced NSCLC after 1st-generation EGFR-TKI therapy. The results showed that the median PFS time was significantly longer with osimertinib than that with platinum therapy plus pemetrexed (10.1 vs. 4.4 months; HR, 0.30; 95% CI, 0.23-0.41; P<0.001), which establish a
standard protocol for the treatment of EGFR T790M-positive patients after failure of 1st-generation EGFR-TKI therapy, as well as targeted therapy for brain metastasis (17). The double-blind, phase 3 FLAURA trial compared the efficacy and safety of osimertinib with the standard EGFR-TKIs (gefitinib or erlotinib) in patients with untreated EGFR mutation-positive advanced NSCLC. It demonstrated that the median PFS time of untreated patients with EGFR mutation was significantly longer following osimertinib administration compared with that following gefitinib or erlotinib administration (18.9 vs. 10.2 months; HR, 0.80; 95% CI, 0.37-0.57; P<0.001) (19), as was the median OS time (38.6 vs. 31.8 months; HR, 0.46; 95% CI, 0.64-1.00; P=0.046) (35). In patients with measurable brain metastases, the objective response rate (ORR) was 91% with osimertinib versus 68% with the 1st-generation EGFR-TKIs (odds ratio, 4.6; 95% CI, 0.9-34.9; P=0.066) (36). Several studies have investigated the safety and efficacy of EGFR-TKIs in combination with other targeted therapies (37-39). The phase 1b TATTON study assessed the safety and tolerability of osimertinib in combination with selumetinib (MEK inhibitor), savolitinib [hepatocyte growth factor receptor (MET) inhibitor] or durvalumab, a human anti-programmed cell death-ligand-1 (PD-L1) antibody. The ORR in the selumetinib, savolitinib and durvalumab arms was 42, 44 and 43%, respectively (39).

Overall, osimertinib is a promising 3rd-generation EGFR-TKI in current lung cancer treatment regimens, and osimertinib-based combination therapy deserves broad investigations to improve outcomes in patients with advanced EGFR-mutated NSCLC.

Rociletinib. Rociletinib (CO1686) is a small-molecule, orally administered and irreversibly selective EGFR-TKI that inhibits EGFR mutations, including Ex19del, L858R and T790M, but not exon 20 insertion (e20ins) (26). The TIGER-X trial (phase I/II study) and the TIGER-2 trial (phase II, open-label, multicenter study) evaluated the safety and efficacy of rociletinib in previously treated patients with EGFR-mutated NSCLC. A total of 130 patients were enrolled in the TIGER-X study. Of the 46 evaluable T790M patients, the ORR was 59% (95% CI, 45-73), and the estimated median PFS time was 13.1 months (95% CI, 5.4-13.1) (26). However, results of the TIGER-X and TIGER-2 trials using a pooled cohort of patients found that the rate of confirmed response was 28-34% for rociletinib, which significantly differed from the result of the TIGER-X trial. After independent analysis, the maturation confirmation response rate was updated to 45% and the median PFS time to 6.1 months (20). Sequist et al (40) reported that 9 patients with progression on rociletinib were subsequently treated with osimertinib. Among them, 2 patients exhibited a partial response, 3 presented with stable disease and 4 developed progressive disease. The 3 patients with brain metastasis after rociletinib treatment also showed improvement in CNS disease response to osimertinib. The development of rociletinib was terminated on May 6, 2016, due to a lower efficacy than osimertinib and incidences of adverse events such as high-grade hyperglycemia and corrected QT interval prolongation (41).

Abivertinib. Abivertinib (AC0010) is one of the 3rd-generation EGFR-TKIs developed in China; it is a pyrrolopyrimidine compound, which is highly selective, irreversible and potent (42). A phase I study of abivertinib presented significant clinical benefits and a good safety profile in patients with NSCLC and acquired resistance to the 1st-generation EGFR-TKIs. The ORR in patients with T790M mutation was 42%, and the median PFS time estimated by Kaplan-Meier ranged between 14.0 and 35.6 weeks in those patients receiving a daily dose of 350-600 mg (42). A phase I, open, multicenter study explored the efficacy of abivertinib in patients with NSCLC and CNS metastasis. The median intracranial PFS time was 142 days (95% CI, 31.1-252.9) in 7 patients with brain metastasis, suggesting that abivertinib had good control of asymptomatic brain metastasis (43). A recent study reported that 9 patients received osimertinib treatment after progression on abivertinib, with a median total treatment duration of 15.9 months (95% CI, 12.5-19.3) (27). These results have demonstrated that osimertinib might be an option for subsequent therapy in patients with disease progression after abivertinib treatment. Further studies on abivertinib are required to investigate its interaction with osimertinib.

Other 3rd-generation EGFR-TKIs. Several other 3rd-generation EGFR-TKIs are also under development. Nazartinib (EGF816) is a covalent and irreversible EGFR-TKI. Preliminary results from an open-label, multicenter, phase I/II study of 180 patients at 9 academic medical centers in Europe, Asia and North America demonstrated that nazartinib had an excellent safety profile, with low dermatologic toxicity and a primary adverse event of maculopapular rash (40%) (28). Olmutinib (HM61713), approved by the FDA in December 2015 for the treatment of NSCLC, has potent inhibitory activity against L858R/T790M mutant NSCLC cells (44). In a recently published single-arm, open-label, phase I/II trial, EGFR T790M-positive patients receiving olmutinib (800 mg/day) had an ORR of 55% (38/69 evaluable patients; 95% CI, 42.6-67.1) and an estimated median PFS time of 6.9 months (95% CI, 5.6-9.7). The common adverse events included diarrhea (59%), pruritus (42%), rash (41%) and nausea (40%) (29). On September 30, 2016, two cases of toxic epidermal necrolysis/Stevens-Johnson syndrome, one of which was fatal, were reported in a phase II trial of olmutinib in South Korea. On April 13, 2018, the development of olmutinib was terminated (41). Alflutinib (AST2818) is a newly developed 3rd-generation EGFR-TKI; its ORR was 77% (89 out of 116 patients), and 9% of patients (11 out of 130 patients) experienced grade 3 or higher drug-related adverse events (30). Almonertinib, a 3rd-generation EGFR-TKI developed in China, has also shown good efficacy in the treatment of T790M-positive NSCLC after EGFR-TKI resistance. In a phase II trial, it exhibited a median PFS time of 12.3 months, an ORR of 69% and acceptable toxicity. On March 19, 2020, almonertinib was approved by the Center for Drug Evaluation of the China National Medical Products Administration (31). Phase I/II clinical studies on lazertinib showed that lazertinib had a favorable safety profile and exhibited promising antitumor activity in patients with EGFR T790M-positive NSCLC, with a median PFS time of 11.0 months and an ORR of 58%. Lazertinib was approved for EGFR T790M-positive NSCLC in South Korea in 2021 (21,32). Naquotinib has antitumor activity in preclinical models of EGFR-mutant NSCLC that targets mutant EGFR, including EGFR T790M. In phase I
trials, it had an ORR of 31% against T790M-positive NSCLC. However, the phase III clinical trial of naquotinib was terminated due to toxicity and limited predicted efficacy (24,33). Further investigations on 3rd-generation EGFR-TKIs are still ongoing.

3. Primary resistance mechanisms

Similar to chemotherapy-associated resistance, resistance to EGFR-TKIs includes both primary (intrinsc) and acquired (secondary) types. The primary type is generally defined as resistance that is present prior to the EGFR-TKI treatment. There are few studies related to primary resistance, and the mechanisms are unclear. Possible causes include EGFR e20ins and B-cell lymphoma-2 (BCL-2)-like 11 (BIM) deletion polymorphism.

EGFR e20ins. EGFR e20ins occur in ~3% of lung adenocarcinoma patients and 9% of EGFR-mutated tumors. EGFR e20ins block EGFR-TKI binding to EGFR target sites, leading to primary resistance (45). For patients with EGFR e20ins, the overall effectiveness of 1st-line treatment with 1st- and 2nd-generation EGFR-TKIs is 3-8%, with a median PFS of only 2 months. An in vitro study showed that NSCLC cells stably expressing EGFR e20ins were resistant to the 3rd-generation EGFR-TKIs, suggesting that EGFR e20ins might be primary mechanisms of 3rd-generation EGFR-TKI resistance (46). Qin et al (47) demonstrated that p.A767_V769dup (25%) and p.S768_D770dup (18%) were the 2 most common EGFR e20ins, accounting for 44% of cases and serving as primary targets for future drug development. In addition, different EGFR e20ins might be associated with different outcomes in patients with advanced NSCLC. p.A763_Y764insFQEA conferred better PFS times than the other e20ins when patients were treated with various EGFR-TKIs, while p.S768_D770dup showed a limited response and p.D770delinsGY patients experienced a short PFS time. Therefore, it is important to select the appropriate EGFR-TKIs according to the specific EGFR e20in type (47). van Veggel et al (48) reported that osimertinib (80 or 160 mg/day) treatment had an ORR of 5% and a median PFS time of 3.6 months (95% CI, 2.6-4.5) in 21 patients with advanced NSCLC and EGFR e20ins (48). Phase II clinical studies on osimertinib for EGFR e20ins in patients with advanced NSCLC. p.A767_V769dup (25%) and p.S768_D770dup (18%) were the 2 most common EGFR e20ins, accounting for 44% of cases and serving as primary targets for future drug development. In addition, different EGFR e20ins might be associated with different outcomes in patients with advanced NSCLC. p.A763_Y764insFQEA conferred better PFS times than the other e20ins when patients were treated with various EGFR-TKIs, while p.S768_D770dup showed a limited response and p.D770delinsGY patients experienced a short PFS time. Therefore, it is important to select the appropriate EGFR-TKIs according to the specific EGFR e20in type (47). van Veggel et al (48) reported that osimertinib (80 or 160 mg/day) treatment had an ORR of 5% and a median PFS time of 3.6 months (95% CI, 2.6-4.5) in 21 patients with advanced NSCLC and EGFR e20ins (48). Phase II clinical studies on osimertinib for EGFR e20ins in NSCLC are currently underway (NCT03414814 and NCT03191149).

BIM deletion polymorphism. BIM is a member of the BCL-2 family and a pro-apoptotic molecule. The BIM deletion polymorphism is present in ~21% of East Asian individuals, and is absent in African and European populations (49,50). Tanimoto et al (51) demonstrated that EGFR-mutant NSCLC cells with BIM deletion polymorphism were resistant to 3rd-generation EGFR-TKIs. Li et al (49) first reported that a patient with NSCLC plus the EGFR L858R/T790M mutation and the BIM deletion polymorphism exhibited a poor clinical outcome after treatment with osimertinib (49). In addition, another study indicated that the median PFS time of patients with BIM deletion polymorphism was significantly shorter than that of wild-type BIM patients (227 vs. 553 days; P<0.001). Multivariate Cox regression analysis showed that the BIM deletion polymorphism was an independent indicator of shorter PFS time (52). However, Liu et al (53) concluded that it was the concomitant genetic alterations, rather than BIM deletion polymorphism, that influenced the EGFR-TKI response. Cox multivariate regression analysis showed that TP53 mutations, NTRK1 mutations and amplifications, R1I mutations and PIK3CA mutations were associated with poorer PFS. In addition, TP53 mutations, KEAPII mutations and deletions were shown to have an impact on OS in patients treated with EGFR-TKI. By contrast, neither analysis showed an effect of BIM deletion polymorphisms on PFS and OS (53). The roles of BIM deletion polymorphism in the prediction of EGFR-TKI responses are still controversial. Further studies are required to explore the exact functions of BIM deletion polymorphism in the primary resistance of 3rd-generation EGFR-TKIs.

4. Acquired resistance mechanisms

Acquired resistance refers to the evading effects of EGFR-TKIs in tumor cells via alteration of their metabolic pathways after exposure to the drugs. With the application of NGS-based genomic profiling, the mechanisms of 3rd-generation EGFR-TKI resistance have been extensively studied. The acquired resistance of osimertinib as the 2nd- and 1st-line therapy (54-60), as well as rociletinib and abiveritinib (42,61-63), is summarized in Fig. 3. The mechanisms of acquired resistance to 3rd-generation EGFR-TKIs include an altered EGFR signaling pathway, aberrant activation of bypass and downstream signaling pathways, and histological transformation. The molecular mechanisms are depicted in Fig. 4.

Altered EGFR signaling pathway

EGFR tertiary mutations. EGFR tertiary mutations are common resistance mechanisms against 3rd-generation EGFR-TKIs in lung cancer, and multiple EGFR tertiary mutations have been observed. The C797S mutation at EGFR exon 20 is the most common tertiary mutation mediating 3rd-generation EGFR-TKI resistance. C797S is a missense mutation in the tyrosine kinase region of EGFR, which prevents the 3rd-generation EGFR-TKIs forming covalent bonds in the ATP-binding domain of EGFR kinase, resulting in EGFR-TKI dysfunction. The C797S mutation has been found to affect the sensitivity of NSCLC to 3rd-generation EGFR-TKIs in both in vitro and in vivo models (54,56,59). Erkan et al (64) evaluated the sensitivity of EGFR inhibitors in models harboring drug-resistant EGFR mutations. It was found that NSCLC cell lines harboring C797S mutation were resistant to irreversible EGFR-TKIs such as osimertinib, rociletinib and olmutinib (64). NGS analysis of plasma samples from 73 patients with progression after 2nd-line treatment of osimertinib in the AURA3 study showed that 10 patients (14%) had the C797S mutation, and all retained the T790M mutation (54). Le et al (56) found 8 (19%) C797S mutations in 42 patients coinciding with the T790M mutation. In the FLAURA study, the frequency of the C797S mutation was 7% (6/91) (59). In addition to that in osimertinib, the C797S mutation was reported to mediate resistance to other 3rd-generation TKIs, such as olmutinib, larzertinib, rociletinib and abiveritinib (61-63,65,66). Zhang et al (61) first indicated that EGFR tertiary mutations mediated abiveritinib resistance. The EGFR C797S mutation was detected in 3 patients (10%), all occurred...
in cis with the EGFR T790M mutation. By contrast, the EGFR C797S mutation is an infrequent mechanism of rociletinib resistance, only observed in 2.3-4.5% of patients (62,63).

Other rare EGFR tertiary mutations associated with drug resistance observed in the AURA3 and FLAURA studies are L792X (3%), G796S (1%), L718Q (1-2%) and S768I (1%), which have the potential to sterically interfere with the osimertinib-EGFR interaction (59). Osimertinib treatment may be ineffective against G724S mutation (67,68). Structural analysis revealed that the G724S mutation might induce a glycine-rich loop conformation, which is incompatible with the binding of 3rd-generation EGFR-TKIs (68). Further studies indicated that the L718Q mutation showed cross-resistance to all the 3rd-generation EGFR-TKIs (69). In addition, the L718V mutation was observed in abivertinib-resistant patients, while the E709K, L692V and L798I mutations were detected in rociletinib-resistant patients (61,62).

Loss of T790M. Patients enrolled in the AURA3 study all developed the T790M mutation after the 1st-line treatment with 1st- or 2nd-generation EGFR-TKIs, and 49% (36/73) of them had loss of T790M after osimertinib resistance (54). The frequency of T790M mutation loss in osimertinib-resistant patients in the studies by Le et al (56) and Oxnard et al (57) was 53% (21/40) and 68% (28/41), respectively. Oxnard et al (57) conducted tumor biopsies for genomic analysis in 41 patients, and suggested that the loss of T790M was associated with a small decrease in EGFR-activating mutations after 1-3 weeks of treatment. Another recent study demonstrated a markedly shorter median PFS time in the T790M-loss group than that in the T790M group (5.93 vs. 11.87 months, P=0.0004). Loss of T790M mutation was correlated with earlier disease progression and worse survival in the osimertinib-resistant patients (70). In addition, the loss of T790M was present in 50% (6/12) of patients resistant to rociletinib (71). In T790M cases, the resistant mechanism is mostly related to C797S mutation or bypass pathway activation, while patients without T790M often show EGFR-independent mechanisms (56,71).

EGFR amplification. Le et al (56) demonstrated that EGFR amplification occurred in 8 (19%) of 42 patients who developed resistance to osimertinib (56). One patient with progression after osimertinib treatment developed amplified copies of EGFR Ex19del, with amplification levels parallel to clinical and radiological progression (72). EGFR amplification is more commonly observed in patients treated with rociletinib. Piotrowska et al (71) reported that 25% (3/12) of patients resistant to rociletinib showed EGFR amplification. This was comparable to 29% (17/58) in the study by Helman et al (63). In addition, EGFR amplification in 7 (23%) patients was conducted tumor biopsies for genomic analysis in 41 patients.
considered as putative mechanisms of abivertinib resistance. Among them, 4 patients had EGFR amplification after abivertinib treatment, and the other 3 had EGFR amplification prior to treatment but had elevated EGFR copy numbers at progressive disease (61).

Activation of aberrant bypassing pathways

MET amplification. Amplification of c-Met plays an important role in 1st- and 3rd-generation EGFR-TKI resistance; it functions as a transmembrane receptor tyrosine kinase. When hepatocyte growth factor ligands bind to c-Met, c-Met is activated, inducing homodimerization and phosphorylation of intracellular tyrosine residues, which activates the downstream RAS/ERK/MAPK and PI3K-AKT signaling pathways (73,74). These pathways can drive cell survival, proliferation, motility, migration, invasion, angiogenesis and epithelial-mesenchymal transition (EMT), providing a bypass pathway in the presence of an EGFR inhibitor (73,74). The AURA3 study showed that 19% (14/73) of patients developed MET gene amplification after the 2nd-line treatment with osimertinib, which is the second most common cause of resistance following the C797S mutation (54). Moreover, the incidence of MET amplification was 14% (6/42) in the study by Le et al (56). In the FLAURA study, for the patients resistant to 1st-line treatment with osimertinib, the incidence of HER2 amplification was 2% (2/91) (59). Moreover, HER2 e20ins and E1247K were also identified in osimertinib-resistant patients (60). A recent in vitro study found that HER2 D16 can form a homodimer and activate downstream signaling pathways in NSCLC cells, resulting in acquired resistance to osimertinib. The combination of osimertinib and afatinib could synergistically inhibit H1975-HER2 D16 cells (75). In addition, the HER2 amplification also occurred in rociletinib-resistant patients with a frequency of 9% (62).

HER2 amplification. HER2 belongs to the EGFR family. HER2 amplification has a sustained effect on the PI3K/AKT and MAPK signaling pathways downstream of EGFR, thereby promoting osimertinib resistance in lung cancer cells (54,56,59). In the AURA3 study, HER2 amplification occurred in 6% of patients resistant to 2nd-line treatment with osimertinib (4/73) (54), and in 10% (4/42) of patients in the study by Le et al (56). In the FLAURA study, for the patients resistant to 1st-line treatment with osimertinib, the incidence of HER2 amplification was 2% (2/91) (59). Moreover, HER2 e20ins and E1247K were also identified in osimertinib-resistant patients (60). A recent in vitro study found that HER2 D16 can form a homodimer and activate downstream signaling pathways in NSCLC cells, resulting in acquired resistance to osimertinib. The combination of osimertinib and afatinib could synergistically inhibit H1975-HER2 D16 cells (75). In addition, the HER2 amplification also occurred in rociletinib-resistant patients with a frequency of 9% (62).

Aberrant fibroblast growth factor receptor (FGFR) signaling pathway. FGFR signaling pathways regulate cell proliferation,
migration, cycle progression, metabolism and survival (76). Kim et al (77) found that FGFR1 amplification and FGFR2 expression were upregulated in patients resistant to osimertinib, suggesting that the FGFR2-FGFR1 autocrine loop might be associated with osimertinib resistance (77). The plasma-based circulating tumor DNA (ctDNA) assay revealed that the FGFR3-TACC3 fusion mutation was present in patients with the T790M mutation, and disease progression occurred upon osimertinib and naqutinib treatment (78). These results suggested that abnormalities of the FGFR signaling pathway might contribute to 3rd-generation EGFR-TKI resistance.

Aberrant insulin-like growth factor 1 receptor (IGF1R) activation. IGF1R is present in numerous cell types in various tissues, such as muscle, cartilage, bone and brain; it is a tyrosine kinase receptor that is involved in the pathogenesis and progression of various malignancies, including lung cancer (79). Abnormalities of IGF1R confer resistance to 3rd-generation EGFR-TKIs by activating the EGFR bypass signaling pathway (79). Manabe et al (80) demonstrated for the first time that IGF2 autocrine-mediated activation of the IGF1R pathway in lung cancer cells was involved in osimertinib resistance. Immunohistochemistry confirmed the increased IGF2 expression in lung cancer patients with acquired osimertinib resistance (80). Phosphate-receptor tyrosine kinase array analysis of osimertinib-resistant cells showed that IGF1R was activated in PC9/T790M/AZDR and H1975/AZDR cells. Inhibition of IGF1R activation by small interfering RNA or linstinib (IGF1R inhibitor) significantly restored osimertinib sensitivity, suggesting that aberrant IGF1R activation might be one of the causes of 3rd-generation EGFR-TKI resistance (79).

Anexelekto (AXL) activation. AXL is a member of the receptor tyrosine kinases, which are involved in the regulation of cell survival, proliferation, migration and metabolism. A study by Taniguchi et al (81) demonstrated that the overexpression of AXL was associated with a poor response to osimertinib. This study showed that osimertinib stimulated AXL by inhibiting the feedback inhibition of SPRY4. Activated AXL interacted with EGFR and HER3 to maintain cell survival and induced osimertinib resistance, which could be delayed by AXL inhibitors (81). Another study demonstrated that AXL was upregulated in osimertinib-resistant lung adenocarcinoma cells. Osimertinib combined with cabozantinib (AXL inhibitor) inhibited the growth of these cells both in vitro and in vivo (82). In addition, AXL amplification was also detected in abivertinib-resistant patients (61). Therefore, AXL activation and AXL amplification might also contribute to the primary and acquired resistance to 3rd-generation EGFR-TKIs.

Downstream pathways activation.

RAS/RAF/MEK/ERK pathway activation. Acquired resistance to the 3rd-generation EGFR-TKIs is associated with the activation of the RAS-MAPK pathway. BRAF is a serine/threonine protein kinase, which regulates cell survival, proliferation, differentiation and apoptosis, and plays a crucial role in RAS/RAF/MEK/ERK pathways. Nakatani et al (83) observed KRAS overexpression in osimertinib-resistant cells. One case (1%) in the AURA3 study had a KRAS (G12D) mutation after resistance and 2 cases (3%) had BRAF V600E mutations (54). KRAS Q61K mutation, BRAF mutations and ESYT2-BRAF gene fusion have also been detected in patients with acquired osimertinib resistance (57). KRAS mutations in the FLAURA study included A146T (1%), G12C (1%) and G12D (1%), and the incidence of the BRAF V600E mutation was 3% (3/91) (59).

PI3K/AKT/mTOR pathway activation. Phosphatidylinositol-3-kinase catalytic α (PIK3CA) amplification or mutations promote tumor infiltration and activate the PI3K/AKT/mTOR pathway. In the AURA3 study, PIK3CA amplification and E545K mutation were detected in patients with osimertinib resistance (54). Oxnard et al (57) reported a 10% (4/41) incidence of PIK3CA amplification in osimertinib-resistant patients (57), PIK3CA mutations in the FLAURA study included E453K (1%), E545K (4%) and H1047R (1%) (59). These results suggested that PI3K/AKT/mTOR pathway activation might be involved in the 3rd-generation EGFR-TKI resistance.

Histological/phenotypic transformation. Marcoux et al (84) reported that 19 NSCLC patients developed SCLC transformation after treatment with the 3rd-generation EGFR-TKIs. The median time of transformation was 17.8 months (95% CI, 14.3-26.2) and the median survival time after SCLC transformation was 10.9 months (95% CI, 8.0-13.7). The incidence of squamous cell carcinoma (SCC) transformation after the 1st- and 2nd-line osimertinib treatment was 15 and 14%, respectively (85). SCLC and SCC transformation have not yet been identified in vitro, suggesting that the tumor microenvironment might play potential roles in these processes. The transdifferentiation of epithelial cells into mesenchymal cells, a process known as EMT, involves the loss of epithelial cell markers, such as E-cadherin, and the acquisition of mesenchymal markers, such as vimentin, N-cadherin, fibronectin, β-catenin and zeb-1, which confers on cancer cells increased tumor-initiating and metastatic potential (86). Nukaga et al (87) demonstrated that osimertinib- and rociletinib-resistant H1975 cells exhibited a shuttle cell-like morphology and acquired a more mesenchymal phenotype in vitro. NSCLC cells from patients with acquired osimertinib resistance were reported to exhibit EMT features, including decreased epithelial junction proteins and increased mesenchymal markers, confirming that EMT was closely associated with 3rd-generation EGFR-TKI resistance (88). Therefore, in addition to liquid biopsy to clarify the relevant mutant genes, it is also important to clarify the presence of histological/phenotypic transformation by tissue biopsy in osimertinib-resistant patients.

Altered cell cycle genes. The AURA3 and FLAURA studies demonstrated that the frequency of cell cycle gene alterations was 11 and 12%, respectively, in patients with disease progression after osimertinib treatment as the 1st- or 2nd-line therapy (54,59). Both CCNE1 and CDK6 amplification occurred at a frequency of 7% (5/73) as the most common cell cycle gene alterations in the AURA3 study (54). The most common cell cycle gene alteration in the FLAURA study was CDK6 amplification (3%) (59). In the study by Le et al (56), CCND1, CCNE1 and CDKN2A deletions were also found. Alterations in cell cycle genes may be involved in the development of osimertinib resistance.
Carcinogenic gene fusion. RET-ERC1 and NTRK1-TPM3 gene fusions were found in osimertinib-resistant patients in the AURA3 study (54). ALK gene fusion was detected in the FLAURA study (59). Schrock et al (89) identified BRAF, ALK, RET and FGFR3 gene fusions in 31 patients with osimertinib resistance. One of the patients with the T790M mutation had disease progression after osimertinib treatment. Analysis of tumor and blood-based ctDNA samples by NGS revealed a PLEKHA7-ALK gene fusion. Combined treatment of osimertinib and the ALK inhibitor alectinib alleviated the disease. A blood-based ctDNA test 4 months later revealed the disappearance of the PLEKHA7-ALK gene fusion (89). Batra et al (90) reported the case of a patient who developed echinoderm microtubule-associated protein like 4-ALK fusion after osimertinib resistance, and revealed that further treatment with the combination of osimertinib and alectinib was effective, suggesting that the oncogenic gene fusion might contribute to EGFR-TKI resistance (90).

5. Strategies to overcome resistance

Scientists are exploring approaches to overcome the different mechanisms of 3rd-generation EGFR-TKI resistance. Combination of targeted therapies is a promising strategy. For the reversion of 3rd-generation EGFR-TKI resistance, possible strategies to overcome different mechanisms are shown in Fig. 5. Some representative 4th-generation EGFR-TKIs are summarized in Table I (91-95). Case reports and ongoing clinical trials exploring the emerging combination are shown in Table II (84,89,96-104).

Targeting EGFR tertiary mutations

Fourth-generation EGFR-TKIs. If the C797S and T790M mutations are cis-structured (located in the same allele; 85%), patients are resistant to 1st-, 2nd- and 3rd-generation EGFR-TKIs (105). The 4th-generation EGFR-TKI, EAI045, is the first selective, non-ATP-competitive allosteric TKI targeting the L858R, T790M and C797S mutations (Fig. 1). However, EGFR dimerization affects the efficacy of allosteric EGFR inhibitors. EAI045 is ineffective when used alone. Cetuximab is a chimeric monoclonal antibody that inhibits EGFR dimerization (91). EAI045 in combination with cetuximab was demonstrated to significantly inhibit the proliferation of lung cancer cells with EGFR L858R/T790M/C797S mutations both in vitro and in vivo. However, it was ineffective against drug resistance caused by EGFR Ex19del/C797S/T790M mutation (91). Brigatinib, an ALK and EGFR inhibitor, was effective against both EGFR Ex19del/C797S/T790M and L858R/C797S/T790M mutant cells in vitro and in vivo (96). Uchibori et al (92) demonstrated that brigatinib fits into the ATP-binding pocket of triple-mutant EGFR. The structure-activity relationship analysis revealed that the chloro, phosphine oxide group and the methoxy group of brigatinib worked as key components to inhibit the triple-mutant EGFR. The efficacy of brigatinib was significantly enhanced when used in combination with anti-EGFR antibody due to the reduction of surface and total EGFR expression (92). A recent study reported the cases of 15 osimertinib-resistant patients with EGFR T790M-cis-C797S mutation, 5 of whom were treated with a combination of brigatinib and cetuximab, and the remainder of whom received cisplatin-based doublet.
Table II. Combined therapies to overcome 3rd-generation EGFR-tyrosine kinase inhibitor resistance.

Targeted resistance	Target	Combined strategies	Primary outcomes	Clinical trial identifier (Refs.)
EGFR-dependent resistance	EGFR C797S, in cis	C797S Brigatinib + cetuximab Osimertinib + bevacizumab + brigatinib	mPFS time of 14 months and an ORR of 60% PR after 1 month of treatment and had fewer EGFR mutations	None (96)
	EGFR C797S, in trans	C797S Osimertinib + erlotinib Osimertinib + gefitinib	PR after 1 month of treatment, PD after 3 months Clinical improvement within 3 days, PD after 1 month	None (98)
EGFR-independent resistance	MET amplification	c-Met Osimertinib + crizotinib Osimertinib + savolitinib Nazartinib + INC280	PR after 1 month of treatment Safety (DLTs and incidence of AEs) and efficacy (ORR, PFS, DCR and OS) Safety (DLTs and MTD) and efficacy (ORR and PFS)	None (99)
	HER2 amplification	HER2 Osimertinib + trastuzumab Osimertinib + necitumumab + trastuzumab	Safety (intensity and incidence of AEs) and efficacy (ORR, PFS, DCR and OS) Safety (intensity and incidence of AEs) and efficacy (ORR, PFS and OS)	NCT03784599 None
	AXL amplification	AXL Osimertinib + DS-1205c	Safety (DLTs and incidence of AEs) and efficacy (ORR, PFS and OS)	NCT03255083 None
	RAS/RAF/MEK/ ERK pathway aberrant activation	MEK Osimertinib + selumetinib	Safety (DLTs and incidence of AEs) and efficacy (ORR, PFS, DCR and OS)	NCT02143466 None
	BRAF mutation	BRAF Dabrafenib + trametinib Dabrafenib + trametinib mTOR Osimertinib + sapanisertib	ORR of 63% and a DCR of 79% Safety (intensity and incidence of AEs) and efficacy (ORR, PFS, DCR and OS) Safety (DLTs and incidence of AEs) and efficacy (ORR, PFS, DCR and OS)	None (101)
	JAK/STAT3	JAK Osimertinib + itacitinib Osimertinib + AZD4205	Safety (intensity and incidence of AEs) and efficacy (ORR, PFS and OS) Safety (incidence of AEs) and efficacy (ORR)	NCT02917993 None
	Histological transformation	SCLC transformation None Etoposide + cisplatin Etoposide + cisplatin	Responded well to chemotherapy Clinical response rate of 54% and an estimated mPFS time of 3.4 months	None (102) (84)
chemotherapy. The median PFS time was 14 and 3 months, respectively, with an ORR of 60 and 10%, respectively (96).

Blu‑945 is a 4th‑generation EGFR‑TKI designed to target EGFR T790M/C797S and T790M‑resistant mutations. A recent study reported that BLU‑945 alone or in combination with osimertinib significantly inhibited osimertinib‑resistant lung cancer cell growth both in vitro and in vivo (93). TQB3804 is a 4th‑generation EGFR‑TKI developed in China (Fig. 1). A preclinical study showed that TQB3804 exhibits a prominent inhibitory effect on the Ex19del/T790M/C797S and L858R/T790M/C797S triple mutations (94). A phase I clinical trial of TQB3804 is currently recruiting (NCT04128085). More clinical trials are required to validate the efficacy of the novel EGFR‑TKIs in patients with advanced NSCLC.

Combination of the 1st‑ and 3rd‑generation EGFR‑TKIs. When EGFR T790M/C797S and T790M mutations are in the trans structure (on separate alleles; 10%), the tumor is resistant to 3rd‑generation TKIs, but sensitive to combined therapy with 1st‑ and 3rd‑generation TKIs (105). Erlotinib combined with osimertinib was effective for a patient developing T790M and C797S trans mutations after osimertinib treatment. However, resistance reappeared 3 months later and liquid biopsies showed T790M and C797S mutations in cis (106). An ongoing phase I/II study investigated the safety and efficacy of osimertinib plus gefitinib as the 1st‑line treatment for EGFR‑mutated NSCLC. The adverse events were tolerable, and the ORR was 85.2% (95% CI, 67.5‑94.1), consistent with the 1st‑line ORR to osimertinib. The median PFS time was not yet reached (107).

1st‑ or 2nd‑generation EGFR‑TKIs. In vitro studies have shown that NSCLC cells with EGFR Ex19del/C797S mutation and without EGFR T790M mutation are resistant to 3rd‑generation EGFR‑TKIs, but remain sensitive to 1st‑ or 2nd‑generation EGFR‑TKIs (105). One patient with EGFR Ex19del/C797S mutation had a partial tumor remission after gefitinib treatment (108). Rangachari et al (109) demonstrated that osimertinib‑resistant NSCLC with EGFR C797S mutation responded transiently to the 1st‑generation EGFR‑TKIs, but acquired EGFR T790M/C797S mutation eventually (109). Yang et al (110) reported that afatinib was effective against EGFR L858R/L718Q mutation with T790M loss after osimertinib resistance, indicating that 2nd‑generation EGFR‑TKIs might be promising agents for selected osimertinib‑resistant patients.

Targeting EGFR‑independent resistance

Bypassing pathway inhibitors. Against drug resistance due to MET or HER2 amplification, use of c‑Met or HER2 inhibitors alone or in combination with the 3rd‑generation EGFR‑TKIs...
is a potential therapeutic strategy. Romaniello et al (111) demonstrated that the combination of cetuximab, trastuzumab and osimertinib inhibited ERK activation and reduced the abundance of c-Met, AXL and HER3 in vitro and in vivo, suppressing tumor growth and preventing recurrence (111). An ongoing phase I study demonstrated that patritumab deruxtecan (a HER3-directed antibody-drug conjugate) had good efficacy in patients with various types of osimertinib resistance, including EGFR C797S, MET amplification and HER2 mutations (112). The combination of crizotinib and osimertinib substantially reduced tumor size after a 1-month treatment in a patient with MET amplification (99). In a multicenter, open-label, phase Ib TATTON study, osimertinib in combination with the c-Met inhibitor savolitinib was used to treat patients with advanced NSCLC harboring EGFR mutations and MET amplification after the 3rd-generation EGFR-TKI treatment, and encouraging results were obtained. In 69 patients with disease progression on the 3rd-generation EGFR-TKI treatments, the ORR was 30% (20-43) and the median PFS time was 5.4 months (95% CI, 4.1-8.0) (100). In addition, amivantamab (EGFR-MET bispecific antibody) with lazertinib has demonstrated synergistic inhibition of tumor growth in preclinical studies. Ongoing studies are exploring the safety and preliminary efficacy of this combined therapy in patients with disease progression upon osimertinib treatment (113).

Currently, the studies on AXL inhibitors are mainly at the preclinical stages, and there are few clinical trials. Okura et al (114) demonstrated that the novel AXL inhibitor ONO-7475 increased the sensitivity of AXL-overexpressing NSCLC cells to osimertinib and suppressed the emergence of osimertinib-resistant cells in vitro (114). Kim et al (115) found that promoting AXL degradation in combination with osimertinib delayed or overcame osimertinib resistance in EGFR-mutant patient-derived xenograft models (115). In addition, the newly developed drug CB469 inhibited both AXL and c-Met activation and phosphorylation, thereby overcoming acquired resistance to EGFR-TKIs mediated by AXL and c-Met activation both in vitro and in vivo (116).

Downstream signaling pathway inhibitors. For drug resistance caused by RAS/RAF/MEK/ERK signaling pathway activation, 3rd-generation EGFR-TKIs combined with MEK inhibitors are potential therapeutic strategies. Preclinical studies demonstrated that the combination of osimertinib and selumetinib overcame the resistance caused by KRAS amplification and overexpression (83). In another in vitro study, MEK inhibitors restored the sensitivity of EGFR ex19del/T790M/C797S-mutated PC9 cells to osimertinib by modulating MEK/ERK-dependent degradation of BIM and MCL-1 (117). Osimertinib and MEK/ERK inhibitors synergistically promoted apoptosis and inhibited survival in osimertinib-resistant cells, and this combination could delay the emergence of osimertinib resistance both in vitro and in vivo (118). In 2017, the FDA approved the combination of dabrafenib (BRAF V600E inhibitor) plus trametinib (MEK inhibitor) for the treatment of patients with BRAF V600E mutations, with an ORR of 63 and 61%, respectively, for the 1st- and 2nd-line treatments (101). Xie et al (119) demonstrated that osimertinib combined with vemurafenib was effective to overcome BRAF V600E-mediated osimertinib resistance (119). More clinical trials are required to validate the roles of RAS/RAF/MEK/ERK signaling pathway inhibitors in osimertinib-resistant patients.

Targeting EMT- and BIM-mediated resistance. In a recent study, the 3rd-generation EGFR inhibitor WZ-4002 and the FGFR inhibitor dovitinib synergistically inhibited EMT-mediated resistant cell survival and prevented the generation of resistant clones. It was shown that FGFR signaling is critical for the emergence of mesenchymal-like drug tolerant clones. Dual EGFR plus FGFR inhibition might be a promising strategy to avoid resistance (120). Yochum et al (121) reported that the transcription factor TWIST1 inhibitor harmine and the Bcl-2/BclXL inhibitor ABT737 were able to target the EMT transcription factor TWIST1 in EGFR-mutant NSCLC. The study demonstrated that downregulated TWIST1 and upregulated BIM could overcome EMT- and BIM-mediated drug resistance (121). Another recent study demonstrated that combined treatment with osimertinib and aspirin promoted BIM-dependent apoptosis in osimertinib-resistant lung cancer cells. A retrospective analysis of 45 patients with NSCLC also confirmed that the median PFS time of the osimertinib plus aspirin group was significantly longer than that of the osimertinib alone group (104).

Targeting EGFR 20 exon insertion mutations. A recent study included 693 patients with EGFR e20ins and uncommon mutations (G719X, L861Q and S768). Afatinib was demonstrated to have broad activity against uncommon EGFR mutations and several e20ins, with an ORR of 60.0 and 24.3%, respectively (122). In vitro studies showed that cetuximab combined with afatinib was specifically sensitive to EGFR e20ins tumors, and this was also confirmed in clinical studies (123-125). Fang et al (123) reported that afatinib and cetuximab achieved long-term disease control in a patient with NSCLC and a rare EGFR e20ins. Poziotinib is a potent inhibitor of EGFR and HER2 e20ins mutations; it can effectively inhibit EGFR e20ins cells in vitro with 100-fold greater potency than osimertinib. In a phase II clinical study, the ORR of poziotinib in patients with NSCLC and EGFR e20ins was 64%, and the median OS was not achieved (46). In addition, the promising clinical activity of amivantamab and mobocertinib (oral EGFR/HER2 inhibitor) in ongoing phase I/II studies also provides hope for the treatment of patients with EGFR e20ins in future (126,127).

Other strategies

Vascular endothelial growth factor receptor (VEGFR) inhibitors. VEGFR inhibitors have synergistic antitumor effects with EGFR inhibitors. Phase I/II clinical trials of osimertinib in combination with ramucirumab (128) or bevacizumab (129) in patients with advanced NSCLC and EGFR mutations are ongoing. In addition, an open-label, phase II, multicenter, single-arm trial is exploring the efficacy of afatinib plus bevacizumab in patients with EGFR-mutant NSCLC and osimertinib resistance (130).

Immunotherapy. A retrospective analysis showed that anti-programmed cell death-1 (PD-1) monotherapy was poorly effective in EGFR-mutated patients, even for patients with...
PD-L1 expression ≥50% (131). In phase Ib TATTON study, osimertinib in combination with durvalumab had an ORR of 67% in patients with EGFR T790M mutation. However, the incidence of interstitial lung disease was 38% (132). The osimertinib plus durvalumab combination arm of the TATTON study was suspended due to severe adverse events. Immunotherapy combined with chemotherapy may provide new hope for patients resistant to the 3rd-generation EGFR-TKIs. A recent study reported that combined therapy of toripalimab (anti-PD-1 antibody) and pemetrexed/cisplatin achieved a partial response for >8 months in a osimertinib-resistant patient. A phase II clinical trial of toripalimab combined with chemotherapy in patients without EGFR T790M mutation achieved an ORR of 50% and a median PFS time of 7.0 months (133). Clinical trials of nivolumab (anti-PD-1 antibody) in combination with chemotherapy or ipilimumab (anti-cytotoxic T lymphocyte-associated antigen-4 antibody) (NCT02864251) and pembrolizumab (anti-PD-1 antibody) in combination with chemotherapy (NCT03515837) in patients who were resistant to the 1st- or 2nd-line treatment of osimertinib are currently underway.

Chemotherapy. For patients who developed SCLC transformation, chemotherapy after osimertinib resistance is an option. Marcoux et al (84) demonstrated that patients with SCLC transformation had higher response rates to etoposide, cisplatin and paclitaxel. For patients with unknown resistant mechanisms, chemotherapy is still an option. If the patient is asymptomatic or has symptomatic local progression, osimertinib can be combined with local treatment according to National Comprehensive Cancer Network (NCCN) guidelines (134). Furthermore, carboplatin/paclitaxel/bevacizumab/atezolizumab (anti-PD-L1 antibody) are also options for patients who experience systemic progression after osimertinib treatment (135). Whether chemotherapy can delay resistance to the 3rd-generation EGFR-TKIs remains unknown. A study on osimertinib with or without chemotherapy as the 1st-line treatment in patients with EGFR-mutated NSCLC is currently recruiting (NCT04035486).

6. Conclusions and perspectives

The resistance mechanism of 3rd-generation EGFR-TKIs for advanced NSCLC is very complex. The mechanism of 3rd-generation EGFR-TKI resistance in EGFR-mutated tumors is different between patients, and heterogeneous among different tumor sites. Therefore, NGS of blood-based ctDNA or tissue samples to clarify the resistance mechanism is of importance to guide the next treatment, which will be conducive to the clinical research of novel combined therapy to overcome drug resistance. According to the NCCN guidelines (version 4. 2021) (136), radical local therapy combined with osimertinib continuation should be considered for patients who progressed on osimertinib, except those who developed extensive progression after resistance, for whom platinum-based two-drug chemotherapy with or without bevacizumab is recommended. To improve survival in patients with EGFR mutations, a range of new therapies targeting different resistance mechanisms are being developed. 4th-generation EGFR-TKIs have emerged, such as EAI045, TQB3804 and BLU-945, and the multi-target TKI brigatinib, showing high potential and being worthy of attention with regard to targeting EGFR T790M/C797S mutation. EA1045 is a representative of allosteric EGFR-mutant selective compounds. A number of other allosteric EGFR inhibitors, including JBI-04-125-02 and DDC-01-163, are currently in development. Studies have suggested that EGFR dimerization affects the efficacy of allosteric EGFR inhibitors, so it is more effective when allosteric EGFR inhibitors are combined with osimertinib or EGFR-targeted monoclonal antibodies (cetuximab), than when used as single agents. Furthermore, the allogeneic EGFR inhibitors have potential to improve the clinical efficacy of osimertinib and delay the emergence of mutant EGFR-mediated resistance in NSCLC (91,137,138). Receptor structure-based drug design and library screening provides novel allogeneic EGFR inhibitors. Combined therapy of allogeneic EGFR inhibitors with conventional EGFR-TKIs, EGFR-targeted monoclonal antibodies, chemotherapy or immunotherapy offers an effective treatment option for patients with 3rd-generation EGFR-TKI-resistant NSCLC. More preclinical and clinical studies are required to validate the efficacy of combined therapies. The combinations of EGFR-TKIs with agents targeting aberrant EGFR bypassing pathways, as well as downstream pathways, are also promising to overcome EGFR-TKI resistance. Mutations in some EGFR loci are insensitive to conventional EGFR-TKIs, and the emergence of new agents such as mobocertinib, avibatimab and poziotinib have shown promising efficacy against EGFR e20ins. Recent studies have shown that chemotherapy plus EGFR-TKIs or bevacizumab is superior to chemotherapy alone in SCLC-transformed EGFR-mutant lung adenocarcinoma. In addition, the rapid development of immunotherapy has brought new hope for EGFR-TKI resistant patients. The combination of immune checkpoint inhibitors, anti-angiogenic agents and chemotherapy may be a promising research direction in future. Although the combination of immunotherapy and EGFR-TKIs has achieved satisfactory efficacy, serious adverse events have hindered further promotion of clinical trials. The manner in which the occurrence of adverse reactions can be reduced in the process of combination therapy is an important concern. Most combined therapies are still under development, several of which have shown satisfactory results at the preclinical stage, but failed in clinical trials. Therefore, more studies should be conducted in the future to improve our understanding of the complex signaling pathways involved in the resistance to 3rd-generation EGFR-TKIs and to find the best combination treatments modality to overcome the 3rd-generation EGFR-TKI resistance under the guidance of NGS.

Acknowledgements

The authors acknowledge that the 2D structures of different EGFR-TKIs were sourced from https://pubchem.ncbi.nlm.nih.gov/(Gifitinib: CID 123631; https://pubchem.ncbi.nlm.nih.gov/compound/123631#section=2D-Structure; Erlotinib:CID 176870; https://pubchem.ncbi.nlm.nih.gov/compound/176870#section=2D-Structure; Icotinib: CID 22024915; https://pubchem.ncbi.nlm.nih.gov/compound/22024915#section=2D-Structure; Gefitinib: CID 10184653; https://pubchem.ncbi.nlm.nih.gov/compound/10184653#section=2D-Structure; Dacomitinib: CID 115111120; https://pubchem.ncbi.nlm.nih.gov/compound/115111120#section=2D-Structure; Osimertinib: CID 71496458; https://pubchem.ncbi.nlm.nih.gov/compound/71496458#section=2D-Structure; Rociletinib, CID 57335384; https://pubchem.
ncbi.nlm.nih.gov/compound/57335384#section=2D‑Structure; Abirateron: CID 72734520; https://pubchem.ncbi.nlm.nih.gov/compound/72734520#section=2D‑Structure; Nazaratinib: CID 72703790; https://pubchem.ncbi.nlm.nih.gov/compound/72703790#section=2D‑Structure; Olmutinib: CID 54758501; https://pubchem.ncbi.nlm.nih.gov/compound/54758501#section=2D‑Structure; Alflutinib: CID 118861389; https://pubchem.ncbi.nlm.nih.gov/compound/118861389#section=2D‑Structure; Almonertinib: CID 121280087; https://pubchem.ncbi.nlm.nih.gov/compound/121280087#section=2D‑Structure; Lazertinib: CID 121269225; https://pubchem.ncbi.nlm.nih.gov/compound/121269225#section=2D‑Structure; Naquotoninib: CID 71667668; https://pubchem.ncbi.nlm.nih.gov/compound/71667668#section=2D‑Structure; EAI045: CID 138911391; https://pubchem.ncbi.nlm.nih.gov/compound/138911391#section=2D‑Structure; Brigatinib: CID 68165256; https://pubchem.ncbi.nlm.nih.gov/compound/68165256#section=2D‑Structure).

Funding
This study was supported by the National Natural Science Foundation of China (grant nos. 81773236, 81800429 and 81972852), the Key Research & Development Project of Hubei Province (grant no. 2020BCA069), the Nature Science Foundation of Hubei Province (grant no. 2020CFB612), the Health Commission of Hubei Province Medical Leading Talent Project, Young and Middle‑Aged Medical Backbone Talents of Wuhan (grant no. WHQG201902), the Application Foundation Frontier Project of Wuhan (grant no. 2020020601012221), the Zhongnan Hospital of Wuhan University Science, Technology and Innovation Seed Fund (grant nos. znpy2019001 and znpy2019048) and the Translational Medicine and Interdisciplinary Research Joint Fund of Zhongnan Hospital of Wuhan University (grant nos. ZNJC201922 and ZNJC202007).

Availability of data and materials
Not applicable.

Authors’ contributions
JH, YG and CX were responsible for the study conception and design. Administrative support was provided by YG and CX. JH and ZH contributed to the provision of study materials or patients. JH, ZH and LH collected and assembled the data, and JH, ZH and LH were responsible for data analysis and interpretation. All authors helped to write the manuscript and have read and approved the final manuscript. Data authentication is not applicable.

Ethics approval and consent to participate
Not applicable.

Patient consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.

References
1. Siegel RL, Miller KD and Jemal A: Cancer statistics, 2020. CA Cancer J Clin 70: 7‑30, 2020.
2. Testa U, Castelli G and Pelosi E: Lung cancers: Molecular characterization, clonal heterogeneity and evolution, and cancer stem cells. Cancers (Basel) 10: 248, 2018.
3. Rossell R, Moran T, Queralt C, Porta R, Cardenal F, Camps C, Majem M, Lopez‑Vivanoco G, Iсла D, Provencio M, et al.: Screening for epidermal growth factor receptor mutations in lung cancer. New Engl J Med 361: 958‑967, 2009.
4. da Cunha Santos G, Shepherd FA and Tsao MS: EGFR mutations and lung cancer. Ann Rev Pathol 6: 49‑69, 2011.
5. Roskoski R Jr: Small molecule inhibitors targeting the EGFR/ErbB family of protein‑tyrosine kinases in human cancers. Pharmacol Res 139: 395‑411, 2019.
6. Huang L and Fu L: Mechanisms of resistance to EGFR tyrosine kinase inhibitors. Acta Pharm Sin B 5: 390‑401, 2015.
7. Mok TS, Wu YL, Thongprasert S, Yang CH, Chu DT, Saijo N, Sunpaweravong P, Han B, Margono B, Ichinose Y, et al.: Gefitinib or carboplatin‑paclitaxel in pulmonary adenocarcinoma. N. Engl J Med 361: 947‑957, 2009.
8. Kazandjian D, Blumenthal GM, Yuan W, He K, Keegan P and Pazdur R: FDA approval of gefitinib for the treatment of patients with metastatic EGFR mutation‑positive non‑small cell lung cancer. Clin Cancer Res 22: 1307‑1312, 2016.
9. Rosell R, Cano‑Herrera E, Gervais R, Vergnenegre A, Massuti B, Felip E, Palermo R, Garcia‑Gomez R, Pallares C, Sanchez JM, et al.: Erlotinib versus standard chemotherapy as first‑line treatment for European patients with advanced EGFR mutation‑positive non‑small‑cell lung cancer (EURTAC): A multicentre, open‑label, randomised phase 3 trial. Lancet Oncol 13: 239‑246, 2012.
10. Shi YK, Wang L, Han BH, Li W, Yu P, Liu YP, Ding CM, Song X, MaZY, Ren XL, et al.: First‑line icotinib versus cisplatin/ pemetrexed plus pemetrexed maintenance therapy for patients with advanced EGFR mutation‑positive lung adenocarcinoma (CONVINCE): A phase 3, open‑label, randomised study. Ann Oncol 28: 2443‑2450, 2017.
11. Park K, Tan EH, O’Byrne K, Zhang L, Boyer M, Mok T, Hirsh V, Yang JC, Lee KH, Lu S, et al.: Afatinib versus gefitinib as first‑line treatment of patients with EGFR mutation‑positive non‑small‑cell lung cancer (LUX‑Lung 7): A phase 2B, open‑label, randomised controlled trial. Lancet Oncol 17: 577‑589, 2016.
12. Wu YL, Cheng Y, Zhou X, Lee KH, Nakagawa K, Niho S, Tsuji F, Linke R, Rosell R, Corral J, et al.: Dacomitinib versus gefitinib as first‑line treatment for patients with EGFR‑mutation‑positive non‑small‑cell lung cancer (ARCHER 1050): A randomised, open‑label, phase 3 trial. Lancet Oncol 18: 1454‑1466, 2017.
13. Miller VA, Hirsh V, Cadranel J, Chen YM, Park K, Kim SW, Zhou C, Su WC, Wang M, Sun Y, et al.: Afatinib versus placebo for patients with advanced, metastatic non‑small‑cell lung cancer after failure of erlotinib, gefitinib, or both, and one or two lines of chemotherapy (LUX‑Lung 1): A phase 2b/3 randomised trial. Lancet Oncol 13: 528‑538, 2012.
14. Ellis PM, Shepherd FA, Millward M, Perrone F, Seymour L, Liu G, Sun S, Cho BC, Morabito A, Leigh NB, et al.: Dacomitinib compared with placebo in pretreated patients with advanced or metastatic non‑small‑cell lung cancer (NCIC CTG BR.26): A double‑blind, randomised, phase 3 trial. Lancet Oncol 15: 1379‑1388, 2014.
15. Westover D, Zugazagoitia J, Cho BC, Lovly CM and Paz‑Ares L: Mechanisms of acquired resistance to first‑ and second‑generation EGFR tyrosine kinase inhibitors. Ann Oncol 29 (Suppl‑1): i10‑i19, 2018.
16. Passaro A, Guarini‑Rocco E, Pochesci A, Vacirca D, Spitaleri G, Catania CM, Rappa A, Barberis M and de Marinis F: Targeting EGFR T790M mutation in NSCLC: From biology to evaluation and treatment. Pharmacol Res 117: 406‑415, 2017.
17. Mok TS, Wu YL, Ahn MJ, Garassino MC, Kim HR, Ramalingam SS, Shepherd FA, He Y, Akamatsu H, Theelen WS, et al.: Osimertinib or platinum‑pemetrexed in EGFR T790M‑positive lung cancer. New Engl J Med 376: 629‑640, 2017.
18. Cross DA, Ashton SE, Ghiorgiu S, Eberlein C, Nebhan CA, Spitzler PJ, Orme JP, Finlay MR, Ward RA, Mellor MJ, et al.: AZD9291, an irreversible EGFR TKI, overcomes T790M-mediated resistance to EGFR inhibitors in lung cancer. Cancer Discov 4: 1044-1060, 2014.

19. Soria JC, Ohe Y, Vansteenkiste J, Reungwattana T, Chwaskulony B, Lee KH, Dechaphunkul A, Imamura F, Nogami N, Kurata T, et al.: Osimertinib in untreated EGFR-mutated advanced non-small-cell lung cancer. New Engl J Med 378: 113-125, 2018.

20. Sequist LV, Soria JC and Camidge DR: Update to rociletinib data with the RECIST confirmed response rate. New Engl J Med 374: 2296-2297, 2016.

21. Yun J, Hong MH, Kim SY, Park CW, Kim S, Yun MR, Kang HN, Pyo JS, Lee SS, Koh JS, et al.: YH23448, an irreversible EGFR-TKI with potent intracranial activity in EGFR mutant non-small cell lung cancer. Clin Cancer Res 25: 2575-2587, 2019.

22. Xu X, Mao L, Xu W, Tang W, Zhang X, Bi X, Xu R, Fang X, Liu J, Fang C, et al.: AC0010, an irreversible EGFR inhibitor selectively targeting mutated EGFR and overcoming T790M-induced resistance in animal models and lung cancer patients. Mol Cancer Ther 15: 2586-2597, 2016.

23. Jia Y, Juarez J, Liu J, Manuia M, Niederst MJ, Tompkins C, Timpone N, Vaillancourt MT, Pferdekamper AC, Lockerman EL, et al.: Erlotinib exerts cancer effects in non-small-cell lung cancer by irreversibly and selectively targeting primary and acquired activating mutations in the EGFR receptor. Cancer Res 76: 1591-1602, 2016.

24. Yu HA, Spira A, Horn L, Weiss J, Fuhrer S, Lee KH, Dechaphunkul A, Imamura F, Chewaskulyong B, Lee KH, Dechaphunkul A, Krivoshik A, Jie F and Horn L: A phase I, dose escalation study of oral ASP8273 in patients with non-small cell lung cancers with epidermal growth factor receptor mutations. Clin Cancer Res 23: 7467-7473, 2017.

25. Ma Y, Zheng X, Zhao H, Fang W, Zhang Y, Ge J, Wang L, Wang W, Jiang J, Chuaei S, et al.: TATTON: A multi-arm, phase Ib trial of osimertinib combined with selumetinib, sunitinib, or durvalumab in EGFR-mutant lung cancer. Ann Oncol 31: 507-516, 2020.

26. Sequist LV, Piotrowska Z, Niederst MJ, Heist RS, Digumarthy S, Shaw AT and Engelman JA: Osimertinib responses after disease progression in patients who had been receiving rociletinib. JAMA Oncol 2: 541-543, 2016.

27. Nagasaka S, Zhu VW, Lim SM, Greco M, Wu F and Ou SI: Beyond osimertinib: The development of third-generation EGFR tyrosine kinase inhibitors for advanced EGFR NSCLC who failed previous EGFR-tyrosine kinase inhibitor (TKI). J Clin Oncol 33 (Suppl 15): S8084, 2015.

28. Sequist LV, Rolle L and Allen AR: Rociletinib in EGFR-mutated non-small-cell lung cancer. New Engl J Med 373: 578-579, 2015.

29. Wang H, Pan R, Zhang X, Si X, Wang M and Zhang L: Abirateron in patients with T790M-positive advanced NSCLC and its subsequent treatment with osimertinib. Thorac Cancer 11: 594-602, 2020.

30. Tan DS, Leight NB, Riely GJ, Yang JC, Sequist LV, Wolf J, Seto T, Felip E, Ais SP, Jongmaa M, et al.: Safety and efficacy of nazaritnib (EGF816) in adults with EGFR-mutant non-small-cell lung carcinoma: A multicentre, open-label, phase 1 study. Lancet Respir Med 8: 2017.

31. Kim DW, Lee DH, Han JY, Jeon JH, Cho BC, Kang JH, Lee KH, Cho EK, Kim JS, Min YJ, et al.: Safety, tolerability, and anti-tumor activity of olmutinib in non-small cell lung cancer with T790M mutation: A single arm, open label, phase 1/2 trial. Lung Cancer 135: 66-72, 2019.

32. Shi Y, Zhang S, Hu X, Feng J, Ma Z, Zhou J, Yang N, Wu L, Liao W, Zhong D, et al.: Safety, clinical activity, and pharmacokinetics of alluitumib (AST2818) in patients with advanced NSCLC With EGFR T790M mutation. J Thorac Oncol 15: 1015-1026, 2020.

33. Yang JC, Camidge DR, Yang CT, Zhou J, Guo R, Chiu CH, Chang GC, Shah IS, Chen Y, Wang CC, et al.: Safety, efficacy, and pharmacokinetics of almonertinib (HS-10296) in pretreated patients with EGFR-mutated advanced NSCLC: A multicenter, open-label, phase 1 Trial. J Thorac Oncol 15: 1907-1918, 2020.

34. Ahn MJ, Han JY, Lee KH, Kim SW, Kim DW, Lee YG, Cho EK, Kim JH, Lee GW, Lee JS, et al.: Lazertinib in patients with EGFR mutation-positive advanced non-small-cell lung cancer: Results from the dose escalation and dose expansion parts of a first-in-human, open-label, multicentre, phase 1-2 study. Lancet Oncol 21: 1691-1690, 2020.

35. Kelly RJ, Shepherd FA, Krivoshik A, Jie F and Horn L: A phase III, randomized, open-label study of AS8273 versus erlotinib or gefitinib in patients with advanced stage IIIB/IV non-small-cell lung cancer. Ann Oncol 30: 1127-1135, 2019.

36. Menzola L, Varga A and Planchar D: Safety of osimertinib in EGFR-mutated non-small cell lung cancer. Expert Opin Drug Saf 17: 1239-1248, 2018.
60. Ramalingam SS, Yang JC, Lee CK, Kurata T, Kim DW, Isobe K, Hata Y, Tochigi N, Kaburaki K, Kobayashi H, Makino T, Ercan D, Choi HG, Yun CH, Capelletti M, Xie T, Eck MJ, Park S, Ku BM, Jung HA, Sun JM, Ahn JS, Lee SH, Park K and Oztan A, Fischer S, Schrock AB, Erlich RL, Lovly CM, Papadimitrakopoulou VA, Wu YL, Han JY, Ahn MJ, Zhang YC, Chen ZH, Zhang XC, Xu CR, Yan HH, Xie Z, Lin CC, Shih JY, Yu CJ, Ho CC, Liao WY, Lee JH, Tsai TH, Le X, Puri S, Negrao MV, Nilsson MB, Robichaux J, Boyle T, Helman E, Nguyen M, Karlovich CA, Despain D, Choquette AK, Simmons AD: Cell-free DNA next-generation sequencing reveals dynamic heterogeneity of EGFR inhibitor resistance mechanisms in patients with EGFR T790M advanced NSCLC from the FLAURA cohort. Ann Oncol 29 (Suppl 8): S77-S84, 2018.

50. Gray NS and Jänne PA: EGFR mutations and resistance to irreversible EGFR tyrosine kinase inhibitor (HM61713) in non-small cell lung cancer. J Thorac Oncol 11: 84-87, 2016.

40. Oztan A, Fischer S, Schrock AB, Erlich RL, Lovly CM, Stephens PJ, Ross JS, Miller V, Ali SM, Ou SI and Raez LE: Emergence of G724S mutation in EGFR-mutant lung adenocarcinoma post progression on osimertinib. Lung Cancer 111: 84-87, 2017.

30. Simons AD: Cell-free DNA next-generation sequencing reveals dynamic heterogeneity of EGFR inhibitor resistance mechanisms in patients with EGFR T790M advanced NSCLC from the FLAURA cohort. Ann Oncol 29 (Suppl 8): S77-S84, 2018.
86. Donge A and Weinberg RA: New insights into the mechanisms of epithelial-mesenchymal transition and implications for cancer. Nat Rev Mol Cell Biol 20: 69-84, 2019.

87. Higuchi T, Tsuchihara K, Matsuamoto J, Masuzawa K, Kawai J, Naoki K, Matsumoto S, Mikami I, Ikemura S, et al: Amplification of EGFR wild-type alleles in non-small cell lung cancer cells confers acquired resistance to mutation-selective EGFR tyrosine kinase inhibitors. Cancer Res 77: 2078-2089, 2017.

88. Weng CH, Chen LY, Lin YC, Shih JY, Lin YC, Tseng RY, Chiu AC, Yeh YH, Liu C, Lin YT, et al: Epithelial-mesenchymal transition (EMT) beyond EGFR mutations per se is a common mechanism for acquired resistance to EGFR TKI. Oncogene 38: 455-468, 2019.

89. Schleck JC, Zhu VW, Hsieh WS, Madison R, Cereblan B, Silbergberg J, Costin D, Bhave A, Bonta I, Bosemani T, et al: Receptor tyrosine kinase fusions and BRAF kinase fusions are rare but actionable resistance mechanisms to EGFR and Tumor kinase inhibitors. J Thorac Oncol 13: 1312-1328, 2018.

90. Batra U, Sharma M, Anrith BP, Mehta A and Jain P: EML4-ALK fusion as a resistance mechanism to osimertinib and its successful management with osimertinib and alecinib: Case report and review of the literature. Clin Lung Cancer 21: e597-e600, 2020.

91. Yang X, Yang JH, Park E, Ercan D, Manuia M, Juarez J, Xu C, Liu J, Ren H, et al: Osimertinib overcomes EGFR(T790M) and EGFR(C797S) resistance with mutant-selective alosteric inhibitors. Nature 534: 129-132, 2016.

92. Uchibori K, Ita S, Araki K, Kamada M, Sato S, Okuno Y, Fujita N and Katayama R: Brigatinib combined with anti-EGFR antibody, trastuzumab in EGFR-mutant non-small-cell lung cancer. Nat Commun 8: 14768, 2017.

93. Schalm SS, Dineen T, Lim SM, Park CW, Hsieh J, Woessner S, Zhang Z, Wilson K, Eno M, Wilson D, et al: 1296P BLU-945, a highly potent and selective 4th generation EGFR TKI for the treatment of EGFR T790M/C797S resistant NSCLC. Ann Oncol (Suppl 6): S1386-S1406, 2020.

94. Liu X, Zhang X, Yang L, Tian X, Dong T, Ding CZ, Hu L, Wu L, Zhao L, Mao J, et al: Abstract 1320: Preclinical evaluation of TQB3804, a potent EGFR C797S inhibitor. 79 (Suppl 13): S1201, 2019.

95. Kim DW, Tiseo M, Ahn MJ, Reckamp KL, Kim SW, Yang JC, Lee SK: AXL degradation in combination with EGFR-TKI can overcome resistance to initial EGFR-TKI treatment in advanced non-small-cell lung cancer. Cell Death Dis 10: 361, 2019.

96. Schacht P, Oh YT, Deng L, Zhang G, Qian G, Zhang S, Ren H, Wu G, Legendre B Jr, Anderson E, et al: Overcoming acquired osimertinib resistance in the treatment of EGFR T790M/C797S resistant NSCLC. Lung Cancer 46: 70-77, 2020.

97. Shiotsu S, Katayama Y, Yoshimura A, Watanabe S, Kikuchi T, et al: Epithelial-mesenchymal transition (EMT) beyond EGFR mutations per se is a common mechanism for acquired resistance to EGFR TKI. Oncogene 38: 9507, 2020.

98. Piotrowska Z, Isozaki H, Lennertz JK, Gainor JF, Lennes IT, Zhu VW, Marcoux N, Banwait MK, Digumarthy SR, Su W, et al: Landscape of acquired resistance to osimertinib in T790M-Mutant NSCLC. J Thorac Oncol 15: 1369-1375, 2020.

99. Han R, Hao S, Lu C, Zhang C, Lin C, Li L, Wang Y, Hu C and He Y: Aspirin sensitizes osimertinib-resistant NSCLC cells in vitro and in vivo by proinflammatory activation. Mol Cancer 14: 1152-1160, 2020.

100. Niederst MJ, Hu H, Mulvehy HE, Lockerman EL, Garcia AR, Piotrowska Z, Sequist LV and Engelman JA: The allelic context of the C797S mutation acquired upon treatment with third-generation EGFR inhibitors impacts sensitivity to subsequent treatment strategies. Clin Cancer Res 25: 5223-5231, 2019.

101. Wang Z, Yang JH, Jiang X, Zhang X, Hu TY, Han-Zhang H and Wu YL: Lung Adenocarcinoma Harboring EGFR T799M and in trans C797S responds to combination therapy of first- and third-generation EGFR TKIs and shifts allelic configuration at resistance. J Thorac Oncol 12: 1722-1727, 2017.

102. Rotow JK, Costa DB, Pawletz CP, Awad MM, Marcoux P, Ragnar-Dachiari B, Baribe DB, Sands J, Cheng ML, Johnson BE, et al: Concurrent osimertinib plus gefitinib for first-line treatment of EGFR-mutated non-small cell lung cancer (NSCLC). J Clin Oncol 35: 3924-3933, 2017.

103. Schalk S, Dineen T, Lim SM, Park CW, Hsieh J, Woessner S, Zhang Z, Wilson K, Eno M, Wilson D, et al: 1296P BLU-945, a highly potent and selective 4th generation EGFR TKI for the treatment of EGFR T790M/C797S resistant NSCLC. Ann Oncol (Suppl 6): S1386-S1406, 2020.

104. Liu X, Zhang X, Yang L, Tian X, Dong T, Ding CZ, Hu L, Wu L, Zhao L, Mao J, et al: Abstract 1320: Preclinical evaluation of TQB3804, a potent EGFR C797S inhibitor. 79 (Suppl 13): S1201, 2019.

105. Yang X, Huang C, Chen R and Zhao J: Resolving resistance to osimertinib treatment with afatinib in a NSCLC patient with EGFR L718Q mutation. Clin Lung Cancer 21: e258-e260, 2020.

106. Romaniello D, Mazzeo L, Mancini M, Marrocco I, Noronha A, Kreitman M, Srivastava S, Ghosh S, Linden Z, Salame TM, et al: A combination of approved antibodies overcomes resistance of lung cancer to osimertinib by blocking bypass pathways. Clin Cancer Res 24: 5610-5621, 2018.

107. Yu HA, Baik KS, Gold K, Hayashi H, Johnson M, Koczysw M, Morakami H, Nishio M, Steuer C, Su WC, et al: LBA62 Efficacy and safety of patientum derutaxel (JNJ-3134-1450), a novel HER3 directed antibody drug conjugate, in patients (pts) with EGFR-mutated (EGFRm) NSCLC. Ann Oncol 31: S1189-S1190, 2020.

108. Cho BC, Lee KH, Cho EK, Kim DW, Lee JS, Han JY, Kim SW, Smid A, Haura EB, Sabari JK, et al: 1258O Amivantamab (M8312): Effective treatment of lung cancer cells confers acquired resistance to mutation-selective EGFR TKI. J Thorac Oncol 12: e232-e234, 2018.
119. Xie Z, Gu Y, Xie X, Lin X, Ouyang M, Qin Y, Zhang J, Lizardo A, Chen S and Zhou C: Lung adenocarcinoma harboring concomitant EGFR mutations and BRAF V600E responds to a combination of osimertinib and vemurafenib to overcome osimertinib resistance. Clin Lung Cancer 22: e390-e394, 2021.

120. Raof S, Mulford JJ, Frisco-Cabanos H, Nangia V, Timonina D, Labrot E, Hafeez N, Milton SJ, Drier Y, Ji F, et al.: Targeting FGFR overcomes EMT-mediated resistance in EGFR mutant non-small cell lung cancer. Oncogene 38: 6399-6413, 2019.

121. Yoshum ZA, Cades J, Wang H, Chatterjee S, Simons BW, O'Brien JP, Khetarpal SK, Lemtriri-Chlieh G, Myers KV, Huang EH, et al.: Targeting the EMT transcription factor TWIST1 overcomes resistance to EGFR inhibitors in mutant non-small-cell lung cancer. Oncogene 38: 656-670, 2019.

122. Yang JC, Schuler M, Popat S, Miura S, Heeke S, Park K, Märten A and Kim ES: Afatinib for the treatment of NSCLC harboring uncommon EGFR mutations: A database of 693 cases. J Thorac Oncol 15: 803-815, 2020.

123. Fang W, Huang Y, Gan J, Shao YW and Zhang L: Durable response of low-dose afatinib plus cetuximab in an adenocarcinoma patient with a novel EGFR exon 20 insertion mutation. J Thorac Oncol 14: e220-e221, 2019.

124. Hasegawa H, Yasuda H, Hamamoto J, Masuzawa K, Tani T, Nakaga S, Hirano T, Kobayashi K, Manabe T, Terai H, et al.: Efficacy of afatinib or osimertinib plus cetuximab combination therapy for non-small-cell lung cancer with EGFR exon 20 insertion. Lung Cancer 127: 146-152, 2019.

125. van Veggel B, de Langen AJ, Hashemi SMS, Monkhorst K, Fang W, Huang Y, Gan J, Shao YW and Zhang L: Durable response of low-dose afatinib plus cetuximab in an adenocarcinoma patient with a novel EGFR exon 20 insertion mutation. J Thorac Oncol 14: e220-e221, 2019.

126. Jang J, To C, De Clercq DJH, Park E, Ponthier CM, Shin BH, Park E, Mushajiang M, Nowak RP, Fischer ES, Eck MJ, et al.: Targeting the EMT transcription factor TWIST1 overcomes resistance to EGFR inhibitors in EGFR mutant non-small-cell lung cancer. Oncogene 38: 656-670, 2019.

127. Yang JC, Schuler M, Popat S, Miura S, Heeke S, Park K, Märten A and Kim ES: Afatinib for the treatment of NSCLC harboring uncommon EGFR mutations: A database of 693 cases. J Thorac Oncol 15: 803-815, 2020.

128. Fang W, Huang Y, Gan J, Shao YW and Zhang L: Durable response of low-dose afatinib plus cetuximab in an adenocarcinoma patient with a novel EGFR exon 20 insertion mutation. J Thorac Oncol 14: e220-e221, 2019.

129. Hasegawa H, Yasuda H, Hamamoto J, Masuzawa K, Tani T, Nakaga S, Hirano T, Kobayashi K, Manabe T, Terai H, et al.: Efficacy of afatinib or osimertinib plus cetuximab combination therapy for non-small-cell lung cancer with EGFR exon 20 insertion. Lung Cancer 127: 146-152, 2019.

130. Kobayashi N, Hashimoto H, Kamimaki C, Nagasawa R, Tanaka K, Kubo S, Katakura S, Chen H, Hirama N, Ushio R, et al.: Afatinib + bevacizumab combination therapy in EGFR-mutant NSCLC patients with osimertinib resistance: Protocol of an open-label, phase II, multicenter, single-arm trial. Thorac Cancer 11: 2125-2129, 2020.

131. Lisberg A, Cummings A, Goldman JW, Bornazyan K, Reese N, Wang T, Coluzzi P, Ledezma B, Mendenhall M, Hunt J, et al.: A phase II study of pembrolizumab in EGFR-Mutant, PD-L1+, tyrosine kinase inhibitor naive patients with advanced NSCLC. J Thorac Oncol 13: 1138-1145, 2018.

132. Ahn MJ, Yang J, Yu H, Saka H, Ramalingam S, Goto K, Kim SW, Yang L, Walding A and Oxnard GR: 136O: Osimertinib combined with durvalumab in EGFR-mutant non-small cell lung cancer: Results from the TATTON phase Ib trial. J Thorac Oncol 11: S115, 2016.

133. Zhou J, Zhou F, Xie X, Wu Y, Zhao J and Su C: An advanced non-small cell lung cancer patient with epidermal growth factor receptor sensitizing mutation responded to toripalimab in combination with chemotherapy after resistance to osimertinib: A case report. Transl Lung Cancer Res 9: 354-359, 2020.

134. Zhang YC, Zhou Q and Wu YL: Clinical management of third-generation EGFR inhibitor-resistant patients with advanced non-small cell lung cancer: Current status and future perspectives. Cancer Lett 429: 240-247, 2019.

135. Wu YL, Planchard D, Lu S, Sun H, Yamamoto N, Kim DW, Tan DSW, Yang JC, Azrif M, Mitsudomi T, et al.: Pan-Asian adapted clinical practice guidelines for the management of patients with metastatic non-small-cell lung cancer: A CSCO-ESMO initiative endorsed by JSMO, KSMO, MOS, SSO and TOS. Ann Oncol 30: 171-210, 2019.

136. Non-Small Cell Lung Cancer Version 4. NCCN Clinical Practice Guidelines in Oncology. 2021. https://www.nccn.org. Accessed at 25 Jun 2021.

137. Jung J, To C, De Clercq DJH, Park E, Ponthier CM, Shin BH, Mushajiang M, Nowak RP, Fischer ES, Eck MJ, et al.: Mutant-selective allostERIC EGFR degraders are effective against a broad range of drug-resistant mutations. Angew Chem Int Ed Engl 59: 14481-14489, 2020.

138. To C, Jung J, Chen T, Park E, Mushajiang M, De Clercq DJH, Xu M, Wang S, Cameron MD, Heppner DE, et al.: Single and dual targeting of mutant EGFR with an allosoteric inhibitor. Cancer Discov 9: 926-943, 2019.