Semileptonic and nonleptonic decays of B_c

Mikhail A. Ivanov1, Jürgen G. Körner2, and Pietro Santorelli3

1 Bogoliubov Laboratory of Theoretical Physics, Joint Institute for Nuclear Research, 141980 Dubna, Russia
2 Institut für Physik, Johannes Gutenberg-Universität, D-55099 Mainz, Germany
3 Dipartimento di Scienze Fisiche, Università di Napoli "Federico II", Istituto Nazionale di Fisica Nucleare, Sezione di Napoli, Italy

Pietro.Santorelli@na.infn.it

Summary. Using our relativistic constituent quark model we present results on the exclusive nonleptonic and semileptonic decays of the B_c-meson. The nonleptonic decays are studied in the framework of the factorization approximation. We calculate the branching ratios for a large set of exclusive nonleptonic and semileptonic decays of the B_c meson and compare our results with the results of other models.

1 Introduction

The B_c-meson is the lowest bound state of two heavy quarks (charm and bottom) with open flavor. The B_c-meson therefore decays weakly via (i) b-quark decay, (ii) c-quark decay, and (iii) the annihilation channel. Starting from the pioneering paper [1], the modern state of art in the spectroscopy, production and decays of the B_c-meson can be found in the review [2].

The first observation of the B_c meson was reported by the CDF Collaboration at Fermilab [3] in the semileptonic decay mode $B_c \rightarrow J/\psi + l + \nu$ with the J/ψ decaying into muon pairs. Values for the mass and the lifetime of the B_c meson were given as $M(B_c) = 6.40 \pm 0.39 \pm 0.13$ GeV and $\tau(B_c) = 0.46^{+0.12}_{-0.16}(\text{stat}) \pm 0.03(\text{syst})$ ps. Recently, CDF reported new value for the mass of B_c meson, $6.2857 \pm 0.0053(\text{stat}) \pm 0.0012(\text{syst})$ GeV with errors significantly smaller than in the first measurement. Also D0 has observed the B_c in the semileptonic mode $B_c \rightarrow J/\psi + \mu + X$ and reported preliminary evidence that $M(B_c) = 5.95^{+0.14}_{-0.13} \pm 0.34$ GeV and $\tau(B_c) = 0.45^{+0.12}_{-0.10} \pm 0.12$ ps [5].

In the following we report on the results of an analysis of almost all accessible low-lying exclusive nonleptonic two-body and semileptonic three-body modes of the B_c-decays [6] within our relativistic constituent quark model [7, 8, 9, 10]. In [6] we updated the free parameters of the model by using
the latest experimental data on the B_c-mass [4] and the weak decay constant f_D [11]. We give a set of numerical values for the leptonic, semileptonic and nonleptonic partial decay widths of the B_c-meson and compare them with the results of other approaches.

2 Results and discussions

The constituent relativistic quark model we employ to study B_c decays was developed in [7, 8, 9, 10] and successfully applied to a very large class of weak decays (see for example [12]). For technical details regarding the model we refer the interested reader to ref [6]. Here we present our results on the semileptonic decays into charmonia, into ($B_s^0, B_s^{*0}, D^0, D^{*0}, B^0, B^{*0}$)(cf. table 1) and on the two body nonleptonic B_c decays (cf. tables 2 and 3). Tables 2 and 3 contain numerical results corresponding to processes with branching ratios larger than 0.1%. For the complete list see the tables in [6].

Table 1. Branching ratios (in %) of exclusive semileptonic B_c decays. $\psi(3836)$. $\tau(B_c) = 0.45$ ps.

Mode	[6]	[13, 14]	[15]	[16]	[17]	[18]
$B_c^- \rightarrow \eta^+ e^\nu$	0.81	0.75	0.97	0.40	0.76	0.51
$B_c^- \rightarrow \eta^+ \tau^\nu$	0.22	0.23	-	-	-	-
$B_c^- \rightarrow J/\psi e^\nu$	2.07	1.9	2.35	1.21	2.01	1.44
$B_c^- \rightarrow J/\psi \tau^\nu$	0.49	0.48	-	-	-	-
$B_c^- \rightarrow D^0 e^\nu$	0.0035	0.004	0.006	0.001	0.003	0.0014
$B_c^- \rightarrow D^0 \tau^\nu$	0.0021	0.002	-	-	-	-
$B_c^- \rightarrow D^{*0} e^\nu$	0.0038	0.018	0.018	0.008	0.013	0.0023
$B_c^- \rightarrow D^{*0} \tau^\nu$	0.0022	0.008	-	-	-	-
$B_c^- \rightarrow \bar{B}^0 e^\nu$	1.10	4.03	1.82	0.82	0.98	0.92
$B_c^- \rightarrow \bar{B}^0 \tau^\nu$	2.37	5.06	3.01	1.71	3.45	1.41
$B_c^- \rightarrow \bar{B}^{*0} e^\nu$	0.071	0.34	0.16	0.04	0.078	0.048
$B_c^- \rightarrow \bar{B}^{*0} \tau^\nu$	0.063	0.58	0.23	0.12	0.24	0.051

From the tables we observe that our results are generally close to the QCD sum rule results of [13, 14] and the constituent quark model results of [15, 16, 17] for the $b \rightarrow c$ induced decays. In exception are the ($b \rightarrow c; c \rightarrow (s,d)$) results of [15] which are considerably smaller than our results, and smaller than the results of the other model calculations. Summing up the exclusive contributions one obtains a branching fraction of 8.8%. Considering the fact that the $b \rightarrow c$ contribution to the total rate is expected to be about 20% [2] this leaves plenty of room for nonresonant multibody decays.

For the $c \rightarrow s$ induced decays our branching ratios are considerably smaller than those predicted by QCD sum rules [13, 14] but are generally close to
Semileptonic and nonleptonic decays of B_c

Table 2. Branching ratios (in %) of exclusive nonleptonic B_c decays with the choice of Wilson coefficient: $a_1^c = 1.20$ and $a_2^c = -0.317$ for c-decay, and $a_1^b = 1.14$ and $a_2^b = -0.20$ for b-decay. Modes with branching ratios smaller than 0.1% can be found in table V of ref [6].

Mode	This work	[13, 14]	[15]	[16]	[17]
$B_c^+ \to \eta^c \pi^-$	0.19	0.20	0.18	0.083	0.14
$B_c^+ \to \eta^c \rho^-$	0.45	0.42	0.49	0.20	0.33
$B_c^+ \to J/\psi \pi^-$	0.17	0.13	0.18	0.060	0.11
$B_c^+ \to J/\psi \rho^-$	0.49	0.40	0.53	0.16	0.31
$B_c^- \to \eta^c D_s^+$	0.44	0.28	0.054	-	0.26
$B_c^- \to \eta^c D_s^{*-}$	0.37	0.27	0.044	-	0.24
$B_c^- \to J/\psi D_s^+$	0.34	0.17	0.041	-	0.15
$B_c^- \to J/\psi D_s^{*-}$	0.97	0.67	-	-	0.55
$B_c^+ \to \overline{B} _s \pi^-$	3.9	16.4	5.75	2.46	4.56
$B_c^- \to \overline{B} _s \rho^-$	2.3	7.2	4.41	1.38	3.86
$B_c^- \to \overline{B} _s^{0} \pi^-$	2.1	6.5	5.08	1.58	1.23
$B_c^- \to \overline{B} _s^{0} \rho^-$	11	20.2	14.8	10.8	16.8
$B_c^- \to \overline{B} _s K^+$	0.29	1.06	0.41	0.21	0.17
$B_c^- \to \overline{B} _s^{0} K^-$	0.13	0.37	0.29	0.11	0.13
$B_c^- \to \overline{B} _s^{0} K^{*-}$	0.50	-	-	-	1.14
$B_c^- \to \overline{B} _s \pi^-$	0.20	1.06	0.32	0.10	0.10
$B_c^- \to \overline{B} _s \rho^-$	0.20	0.96	0.59	0.13	0.28
$B_c^- \to \overline{B} _s^{0} \rho^-$	0.30	2.57	1.17	0.67	0.89
$B_c^- \to B^+ \overline{K}^{*-}$	0.38	1.98	0.66	0.23	0.27
$B_c^- \to B^- \overline{K}^{*-0}$	0.11	0.43	0.47	0.09	0.32
$B_c^- \to B^+ \overline{K}^{*-0}$	0.32	1.67	0.97	0.82	1.70

Table 3. The same as of table 2.

Mode	[6]	[20]	[21]	[22]
$B_c^- \to h_2 \pi^-$	0.11	0.05	1.60	-
$B_c^- \to h_2 \rho^-$	0.13	0.072	3.20	-
$B_c^- \to h_2 \rho^-$	0.25	0.12	5.33	-
$B_c^- \to h_2 \rho^-$	0.12	0.051	3.20	0.023

the other constituent quark model results. When we sum up our exclusive branching fractions we obtain a total branching ratio of 27.6% which has to be compared with the 70% expected for the $c \to s$ contribution to the total rate [2]. The sum rule model of [13, 14] gives a summed branching fraction of 73.4% for the $c \to s$ contribution, i.e. the model of [13, 14] predicts that the exclusive channels pretty well saturate the $c \to s$ part of the total rate.
3 Conclusions

In the coming few years one can expect large data samples on exclusive B_c decays at the TEVATRON and at the LHC. We are looking forward to a comparison of our model results with the upcoming experimental data.

References

1. M. Lusignoli and M. Masetti, Z. Phys. C 51, 549 (1991).
2. V. V. Kiselev in N. Brambilla et al., CERN Yellow Report “Heavy quarkonium physics”, CERN-2005-005, Geneva: CERN, 2005. 487 p. arXiv:hep-ph/0412158.
3. F. Abe et al. [CDF Collaboration], Phys. Rev. D 58, (1998) 112004 [arXiv:hep-ex/9804014]; Phys. Rev. Lett. 81, (1998) 2432 [arXiv:hep-ex/9805034].
4. D. Acosta et al. [CDF Collaboration], arXiv:hep-ex/0505076.
5. M. D. Corcoran [CDF Collaboration], arXiv:hep-ex/0506061.
6. M. A. Ivanov, J. G. Körner and P. Santorelli, Phys. Rev. D 73, 054024 (2006) [arXiv:hep-ph/0602050].
7. M. A. Ivanov, J. G. Körner and P. Santorelli, Phys. Rev. D 63, 074010 (2001) [arXiv:hep-ph/0007169].
8. A. Faessler, T. Gutsche, M. A. Ivanov, J. G. Körner and V. E. Lyubovitskij, Eur. Phys. J. directC 4, 18 (2002) [arXiv:hep-ph/0205287].
9. M. A. Ivanov, J. G. Körner and O. N. Pakhomova, Phys. Lett. B 555, 189 (2003) [arXiv:hep-ph/0212291].
10. M. A. Ivanov, J. G. Körner and P. Santorelli, Phys. Rev. D 71, 094006 (2005) [arXiv:hep-ph/0501051].
11. M. Artuso et al. [CLEO Collaboration], Phys. Rev. Lett. 95 (2005) 251801 [arXiv:hep-ex/0508057].
12. M. A. Ivanov, P. Santorelli, Phys. Lett. B 456, 248 (1999) [arXiv:hep-ph/9903446].
13. V. V. Kiselev, A. E. Kovalsky and A. K. Likhoded, Nucl. Phys. B 585, 353 (2000) [arXiv:hep-ph/0002127]; arXiv:hep-ph/0006104.
14. V. V. Kiselev, arXiv:hep-ph/0211021.
15. C. H. Chang and Y. Q. Chen, Phys. Rev. D 49, 3399 (1994).
16. D. Ebert, R. N. Faustov and V. O. Galkin, Mod. Phys. Lett. A 17, 803 (2002) [arXiv:hep-ph/0204167]; Eur. Phys. J. C 32, 29 (2003) [arXiv:hep-ph/0308149]; Phys. Rev. D 68, 094020 (2003) [arXiv:hep-ph/0306306].
17. A. Abd El-Hady, J. H. Munoz and J. P. Vary, Phys. Rev. D 62, 014019 (2000) [arXiv:hep-ph/9909046].
18. M. A. Nobes and R. M. Woloshyn, J. Phys. G 26, 1079 (2000) [arXiv:hep-ph/0005056].
19. C. H. Chang, Y. Q. Chen, G. L. Wang and H. S. Zong, Phys. Rev. D 65, 014017 (2002) [arXiv:hep-ph/0103036].
20. C. H. Chang, Y. Q. Chen, G. L. Wang and H. S. Zong, Phys. Rev. D 65, 014017 (2002) [arXiv:hep-ph/0103036]; Commun. Theor. Phys. 35, 395 (2001)
21. V. V. Kiselev, O. N. Pakhomova and V. A. Saleev, J. Phys. G 28, 595 (2002) [arXiv:hep-ph/0110180].
22. G. Lopez Castro, H. B. Mayorga and J. H. Munoz, J. Phys. G 28, 2241 (2002) [arXiv:hep-ph/0205273].