A COMBINATORIAL PROOF FOR CAYLEY’S IDENTITY

MARKUS FULMEK

Abstract. In [3], Caracciolo, Sokal and Sportiello presented, \textit{inter alia}, an algebraic/combinatorial proof for Cayley's identity. The purpose of the present paper is to give a "purely combinatorial" proof for this identity; i.e., a proof involving only combinatorial arguments together with a generalization of Laplace's Theorem [6, section 148], for which a "purely combinatorial" proof is given in [4, proof of Theorem 6].

1. Introduction

For \(n \in \mathbb{N} \), denote by \([n]\) the set \(\{1, 2, \ldots, n\} \) and let \(X = X_n = (x_{i,j})_{(i,j) \in [n] \times [n]} \) be an \(n \times n \) matrix of indeterminates. For \(I \subseteq [n] \) and \(J \subseteq [n] \), we denote

\[\begin{align*}
&\text{• the minor of } X \text{ corresponding to the rows } i \in I \text{ and the columns } j \in J \text{ by } X_{I,J}, \\
&\text{• the cominor of } X_{I,J} \text{ (which corresponds to the rows } i \notin I \text{ and the columns } j \notin J \text{) by } X_{I,J}.
\end{align*} \]

Let \(M = \{x_1 \leq x_2 \leq \cdots \leq x_m\} \) be a finite ordered set, and let \(S = \{x_{i_1}, \ldots, x_{i_k}\} \subseteq M \) be a subset of \(M \). We define

\[\text{sgn (} S \subseteq M \text{) := } (-1)^\sum_{j=1}^k i_j. \]

As pointed out in [3, Section 2.6], the following identity is conventionally but erroneously attributed to Cayley. (Muir [5, vol. 4, p. 479] attributes this identity to Vivanti [7].)

Theorem 1 (Cayley’s Identity). Consider \(X = (x_{i,j})_{(i,j) \in [n] \times [n]} \), and let \(\partial = \left(\frac{\partial}{\partial x_{i,j}} \right) \) be the corresponding \(n \times n \) matrix of partial derivatives. Let \(I, J \subseteq [n] \) with \(|I| = |J| = k \). Then we have for \(s \in \mathbb{N} \):

\[\det (\partial_{I,J}) (\det (X))^s = s \cdot (s + 1) \cdots (s + k - 1) \cdot (\det (X))^{s-1} \cdot \text{sgn (} I \subseteq [n] \text{))} \cdot \text{sgn (} J \subseteq [n] \text{)} \cdot \det (X_{I,J}). \quad (1) \]

By the alternating property of the determinant, Cayley’s Identity is in fact equivalent to the following special case of (1).

\text{Date: May 22, 2014.}

Research supported by the National Research Network “Analytic Combinatorics and Probabilistic Number Theory”, funded by the Austrian Science Foundation.

\(^1\partial \) is also known as \textit{Cayley’s }\(\Omega \)-\textit{process}.

1
Figure 1. View the permutation $\pi = (25143)$ as the corresponding perfect matching m_π in the complete bipartite graph $K_{5,5}$. The intersections of edges are indicated by small circles; they correspond bijectively to π’s inversions:

$$\# \text{(inversions of } \pi) = |\{(1, 3), (2, 4), (2, 5), (4, 5)\}| = 4.$$

Assigning weight $x_{i,j}$ to the edge pointing from i to j gives the contribution of the permutation π to the determinant of X_5:

$$\omega(\pi) = (-1)^4 \cdot x_{1,2} \cdot x_{2,5} \cdot x_{3,1} \cdot x_{4,4} \cdot x_{5,3}.$$

Corollary 1 (Vivanti’s Theorem). Specialize $I = J = [k]$ for some $k \leq n$ in Theorem 1. Then we have for $s \in \mathbb{N}$:

$$\det(\partial_{[k],[k]}) (\det(X))^s = s \cdot (s+1) \cdots (s+k-1) \cdot (\det(X))^{s-1} \cdot \det(X_{[k],[k]}) \cdot \omega(m_{\pi_{[k],[k]}}).$$ (2)

2. Combinatorial proof of Vivanti’s Theorem

We may view the determinant of X as the generating function of all permutations π in \mathfrak{S}_n, where the (signed) weight of a permutation π is given as $\omega(\pi) := \text{sgn}(\pi) \prod_{i=1}^{n} x_{i,\pi(i)}$:

$$\det(X) = \sum_{\pi \in \mathfrak{S}_n} \omega(\pi).$$

2.1. View permutations as perfect matchings. For our considerations, it is convenient to view a permutation $\pi \in \mathfrak{S}_n$ as a perfect matching m_π of the complete bipartite graph $K_{n,n}$, where the vertices consist of two copies of $[n]$ which are arranged in their natural order; see Figure 1 for an illustration of this simple idea. It is easy to see that the edges of such perfect matching can be drawn in a way such that all intersections are of precisely two (and not more) edges, and that the number of these intersections equals the number of inversions of π, whence the sign of π is

$$\text{sgn}(\pi) = (-1)^{\# \text{(intersections in } m_\pi)}.$$

This simple visualization of permutations and their inversions is already used in [1 §15, p.32]: We call it the permutation diagram. So assigning weight $x_{i,j}$ to the edge pointing from i to j and defining the weight $\omega(m_\pi)$ of the permutation diagram m_π to be the product of the edges belonging to m_π, we may write

$$\omega(\pi) = (-1)^{\# \text{(intersections in } m_\pi)} \cdot \omega(m_\pi).$$
A combinatorial proof for Cayley’s identity

Figure 2. For \(n = 5 \), the picture shows a typical object of weight
\[-x_1 x_2^2 x_1 x_4 x_2 x_3 x_2 x_1 x_3 x_3 x_1 x_4 x_1 x_4 x_4 x_5 x_1 x_5 x_5^2 x_5^3,\]
which is counted by the generating function \(\det (X)^4 \). (The edge connecting lower vertex 3 to upper vertex 3 in the 4-th (right-most) matching is drawn as zigzag-line, just to avoid intersections of more than two edges in a single point.)

Given this view, the combinatorial interpretation of the \(s \)-th power of the determinant \(\det (X) \) is obvious: It is the generating function of all \(s \)-tuples \(m = (m_{\pi_1}, \ldots, m_{\pi_s}) \) of permutation diagrams, where the (signed) weight of such \(s \)-tuple \(m \) is given as
\[\omega(m) = \prod_{i=1}^{s} (-1)^{\# \text{(intersections in } m_{\pi_i} \text{)}} \cdot \omega(m_{\pi_i}). \]
(See Figure 2 for an illustration.)

2.2. Action of the determinant of partial derivatives. Next we need to describe combinatorially the action of the determinant \(\det (\partial_{[k],[k]}) \) of partial derivatives. Let \(m = (m_{\pi_1}, \ldots, m_{\pi_s}) \) be an \(s \)-tuple of permutation diagrams counted in the generating function \((\det (X))^s \), and let \(\tau \in S_k \). Then the summand
\[\partial_\tau := \text{sgn} (\tau) \cdot \prod_{i=1}^{k} \frac{\partial}{\partial x_{i, \tau(i)}} \]
applied to \(\omega(m) \) yields
\[\text{sgn} (\tau) \cdot \left(\prod_{i=1}^{k} \frac{\partial}{\partial x_{i, \tau(i)}} \right) \omega(m) = \text{sgn} (\tau) \cdot c_{\tau,m} \cdot \frac{\omega(m)}{\prod_{i=1}^{k} x_{i, \tau(i)}} , \]
where \(c_{\tau,m} \) is the number of ways to choose the set of \(k \) edges \(\{ (i \rightarrow \tau(i)) : i \in [k] \} \) from all the edges in \(m \) (this number, of course, might be zero). We may visualize the action of \(\delta_\tau \) as “erasing the edges constituting \(\tau \) in \(m \)”; see Figure 3 for an illustration.

Hence we have:
\[\det (\partial_{[k],[k]}) (\det (X))^s = \sum_{m \in S_n} \omega(m) \sum_{\tau \in S_k} c_{\tau,m} \cdot \frac{\text{sgn} (\tau)}{\prod_{i=1}^{k} x_{i, \tau(i)}} . \]

2.3. Double counting. For our purposes, it is convenient to interchange the summation in (3). This application of double counting amounts here to a simple change of view: Instead of counting the ways to choose the set of edges corresponding to \(\tau \) from all the edges corresponding to some fixed \(s \)-tuple \(m \), we fix \(\tau \) and consider the set of \(m \)'s from which \(\tau \)'s edges might be chosen. This will involve two considerations:
Figure 3. Let \(n = 5, s = 4 \) and \(k = 3 \) in Corollary 1. The picture shows the four possible ways of “erasing” the edges constituting \(\tau \in S_3 \) from the 4-tuple \((m_{\pi_1}, m_{\pi_2}, m_{\pi_3}, m_{\pi_4})\) of matchings, where \((\pi_1, \pi_2, \pi_3, \pi_4) \in S_5^4\) is \(((31254), (51324), (14253), (23415))\). The erased edges are shown as grey dashed lines.

\[
\tau = (312) \in S_3:
\]

\[
\delta_t = \frac{\partial}{\partial x_{1,3}} \cdot \frac{\partial}{\partial x_{2,1}} \cdot \frac{\partial}{\partial x_{3,2}}
\]

- In how many ways can the edges corresponding to \(\tau \) be distributed on \(s \) copies of the bipartite graph \(K_{n,n} \)?
- For each such distribution, what is the set of compatible \(s \)-tuples of permutation diagrams?

For example, if \(k = 3 \) and \(s = 4 \) (as in Figure 3), there clearly

- is 1 way to distribute the three edges on a single copy of the 4 bipartite graphs (see the fourth row of pictures in Figure 3), and there are 4 ways to choose such single copy,
- are 3 ways to distribute the three edges on precisely two copies of the 4 bipartite graphs (see the second and third row of pictures in Figure 3), and there are \(4 \cdot 3 \) ways to choose such pair of copies (whose order is relevant),
- is 1 way to distribute the three edges on precisely three copies of the 4 bipartite graphs (see the first row of pictures in Figure 3), and there are \(4 \cdot 3 \cdot 2 \) ways to choose such triple of copies (whose order is relevant).

2.4. Partitioned permutations. A distribution of the edges corresponding to \(\tau \in S_k \) on \(s \) copies of the bipartite graph \(K_{n,n} \) may be viewed (see Figure 3).
as an s-tuple of \textit{partial matchings} (some of which may be empty) of $K_{k,k}$

such that the union of these s partial matchings gives the \textit{perfect matching} m_τ of $K_{k,k}$.

Clearly, to each of such partial matching corresponds a \textit{partial permutation} τ_i, which we may write in two-line notation as follows:

- the lower line shows the \textit{domain} of τ_i in its natural order,
- the upper line shows the \textit{image} of τ_i,
- the \textit{ordering} of the upper line represents the permutation τ_i.

We say that each of these τ_i is a \textit{partial permutation} of τ, and that τ is a \textit{partitioned permutation}. We write in short:

$$\tau = \tau_1 \star \tau_2 \star \ldots \star \tau_s.$$

For example, the rows of pictures in Figure 3 correspond to the partitioned permutations (written in the aforementioned two-line notation)

- $\left(\frac{3}{1} \frac{1}{2} \frac{2}{3} \right) \star \left(\frac{3}{1} \frac{1}{2} \frac{2}{3} \right)$ for the first row,
- $\left(\frac{3}{1} \frac{1}{2} \frac{2}{3} \right) \star \left(\frac{1}{2} \frac{2}{3} \right)$ for the second row,
- $\left(\frac{3}{1} \frac{1}{2} \frac{2}{3} \right) \star \left(\frac{1}{2} \frac{2}{3} \right)$ for the third row,
- $\left(\frac{1}{2} \frac{2}{3} \right) \star \left(\frac{1}{2} \frac{2}{3} \right)$ for the fourth row.

2.5. Equivalence relation for partitioned permutations

For any partitioned permutation $\tau = \tau_1 \star \tau_2 \star \ldots \star \tau_s$, consider the s-tuple of the upper rows (in the aforementioned two-line notation) only: We call this s-tuple of \textit{permutation words} the \textit{partition scheme} of τ and denote it by $[\tau]$. We say that $\tau = \tau_1 \star \tau_2 \star \ldots \star \tau_s$ \textit{complies} to its partition scheme $[\tau] = [\tau_1 \star \tau_2 \star \ldots \star \tau_s]$ and denote this by $\tau \subseteq [\tau_1 \star \tau_2 \star \ldots \star \tau_s]$.

Now consider the following equivalence relation on the set of partitioned permutations:

$$\mu = \mu_1 \star \ldots \star \mu_s \sim \nu = \nu_1 \star \ldots \star \nu_s : \iff [\mu] = [\nu].$$

By definition, the corresponding equivalence classes are \textit{indexed} by a partition scheme, and $\mu = \mu_1 \star \mu_2 \star \ldots \star \mu_s$ belongs to the equivalence class of $\tau = \tau_1 \star \tau_2 \star \ldots \star \tau_s$ iff $\mu \subseteq [\tau]$. (For $s > 1$, a partitioned permutation τ is not uniquely determined by $[\tau]$.)

It is straightforward to compute the \textit{number} of these equivalence classes: In the language of \textit{combinatorial species} (see, for instance, [2]) the s-tuples of permutation words indexing these classes correspond bijectively to the (labelled) species $(\text{Permutations})^s$, and since the exponential generating function of \text{Permutations} is

$$\sum_{n=0}^\infty \frac{n! \cdot z^n}{n!} = \frac{1}{1 - z},$$

the exponential generating function of $(\text{Permutations})^s$ is simply

$$\left(\frac{1}{1 - z}\right)^s = (1 - z)^{-s} = \sum_{k=0}^\infty \binom{-s}{k} (-1)^k z^k = \sum_{k=0}^\infty s \cdot (s + 1) \cdots (s + k - 1) \frac{z^k}{k!}. $$
how the sign of a permutation π is changed by removing a given partial permutation π': We view this as erasing all the edges belonging to π'’s permutation diagram $m_{\pi'}$ from π’s permutation diagram m_π; see again Figure 3.

Lemma 1. Let $\pi \in \mathfrak{S}_n$ be a permutation, and let π^* be the permutation corresponding to the permutation diagram m_π with edge $(i, \pi(i))$ removed. Then we have

$$\sgn(\pi) = (-1)^{\pi(i) - i} \cdot \sgn(\pi^*).$$

Proof. We count the number of intersections with edge $(i, \pi(i))$ in m_π: Let $A = [i - 1], B = [n] \setminus [i], C = [n] \setminus [\pi(i)]$ and $D = [\pi(i) - 1]$ (see Figure 4 for an illustration).

Assume $|\pi^{-1}(C) \cap A| = k$: Then edge $(i, \pi(i))$ clearly intersects the k edges joining vertices from A to vertices from C (see again Figure 4).

The only other intersections with $(i, \pi(i))$ come from edges joining vertices from B to vertices from D: Since π is a bijection, we have $|\pi^{-1}(C) \cap B| = n - \pi(i) - k$, whence $|\pi^{-1}(D) \cap B| = |B \setminus \pi^{-1}(C)| = n - i - (n - \pi(i) - k) = k + \pi(i) - i$.

Altogether, the removal of edge $(i, \pi(i))$ removes $2k + \pi(i) - i$ intersections of edges. \Halmos

Corollary 2. Let $\pi \in \mathfrak{S}_n$ be a partitioned permutation $\pi = \pi_1 \star \pi_2$, where π_1 is the partial permutation

$$\pi_1 = \begin{pmatrix} \pi(i_1) & \pi(i_2) & \cdots & \pi(i_k) \\ i_1 & i_2 & \cdots & i_k \end{pmatrix}$$

(with $\{i_1 \leq i_2 \leq \cdots \leq i_k\} \subseteq [n]$). Clearly, π_2 is the permutation corresponding to the matching m_π with edges $(i_1, \pi(i_1)), (i_2, \pi(i_2)), \ldots, (i_k, \pi(i_k))$ erased, which we also denote by $\pi \setminus \pi_1$. Then we have

$$\sgn(\pi) = (-1)^{\sum_{j=1}^k \pi(i_k) - i_k} \cdot \sgn(\pi_1) \cdot \sgn(\pi_2).$$
A COMBINATORIAL PROOF FOR CAYLEY’S IDENTITY

Figure 5. Erase several edges, corresponding to some partial permutation \(\pi_1 \) of \(\pi \): Start with the edge incident with the rightmost vertex from image \((\pi)_1\) in \(m_\pi\).

If we denote \(I = \{i_1, \ldots, i_k\} \) and \(J = \{\pi(i_1), \ldots, \pi(i_k)\} \), we may rewrite this as

\[
\text{sgn}(\pi) = \text{sgn}(I \leq [n]) \cdot \text{sgn}(J \leq [n]) \cdot \text{sgn}(\pi_1) \cdot \text{sgn}(\pi \setminus \pi_1).
\]

Proof. We proceed by induction: \(k = 1 \) simply amounts to the statement of Lemma 1.

For \(k > 1 \), let \(i_{\text{max}} := \pi^{-1}(\max(\text{image } \pi_1)) \) be the pre-image of the maximum of the image of \(\pi_1 \). Let \(l \) be the number of elements in the domain of \(\pi_1 \) which are greater than \(i_{\text{max}} \):

\[
l = |\{i : i \in \text{domain } \pi_1 \land i > i_{\text{max}}\}|.
\]

See Figure 5 for an illustration. Removing the edge \((i_{\text{max}}, \pi(i_{\text{max}}))\) leaves (the diagram of) a permutation \(\pi' \in \mathfrak{S}_{n-1} \) and a partial permutation

\[
\pi'_1 = \begin{pmatrix} \pi(i_1) & \cdots & \pi(i_{\text{max}} - 1) & \pi(i_{\text{max}} + 1) & \cdots & \pi(i_k - 1) \\ i_1 & \cdots & i_{\text{max}} - 1 & (i_{\text{max}} + 1) - 1 & \cdots & i_k - 1 \end{pmatrix}
\]

therein of length \(k - 1 \). By induction, we have

\[
\text{sgn}(\pi') = (-1)^{\left(\sum_{j=1}^k \pi(i_k) - i_k\right) - \left(\pi(i_{\text{max}}) - i_{\text{max}}\right) - l} \cdot \text{sgn}(\pi' \setminus \pi'_1) \cdot \text{sgn}(\pi'_1).
\]

Since we have

\[
\begin{align*}
& \bullet \ \pi \setminus \pi_1 = \pi' \setminus \pi'_1 \implies \text{sgn}(\pi_2) = \text{sgn}(\pi \setminus \pi_1) = \text{sgn}(\pi' \setminus \pi'_1), \\
& \bullet \ \text{sgn}(\pi_1) = (-1)^l \cdot \text{sgn}(\pi'_1) \ (\text{see again Figure 5}), \\
& \bullet \ \text{and } \text{sgn}(\pi) = (-1)^{\pi(i_{\text{max}}) - i_{\text{max}}} \text{sgn}(\pi') \ (\text{by Lemma 1}),
\end{align*}
\]

the assertion follows.

2.7. Sums of (signed) products of minors. Now consider a fixed equivalence class in the sense of Section 2.5 which is indexed by a partition-scheme

\[
[\tau_1 \ast \tau_2 \ast \cdots \ast \tau_s].
\]

We want to compute the generating function \(G_{[\tau]} \) of this equivalence class: Clearly, we may concentrate on the nonempty partial permutations; so w.l.o.g. we have to consider the partition-scheme

\[
[\tau_1 \ast \tau_2 \ast \cdots \ast \tau_m]
\]
which consists only of nonempty partial permutations \(\tau_j \) for \(1 \leq j \leq m \leq s \). For any \(\sigma \in \mathfrak{S}_k \) with \(\sigma \subseteq [\tau_1 \ast \tau_2 \ast \cdots \ast \tau_m] \), such partition scheme corresponds to a unique ordered partition of the image of \(\sigma \):

\[
\text{image } \sigma = [k] = (\text{image } \tau_1) \cup (\text{image } \tau_2) \cup \cdots \cup (\text{image } \tau_m) = J_1 \cup J_2 \cup \cdots \cup J_m,
\]

and any specification of a compatible ordered partition \(I_{[\sigma]} = (I_1, I_2, \ldots, I_m) \), i.e.,

\[
[k] = I_1 \cup I_2 \cup \cdots \cup I_m \text{ where } |I_i| = |J_i|, i = 1, \ldots, m,
\]

uniquely determines such \(\sigma \), which we denote by \(\sigma (I_{[\sigma]}, [\tau]) \).

Equation (4) gives the sign-change caused by erasing the edges corresponding to \(\tau_j \) (with respect to any permutation in \(\mathfrak{S}_n \) which contains \(\tau_i \) as a partial permutation), whence we can write the generating function as

\[
G_{[\tau]} = \det (X)^{s-m} \times \sum_{I_{[\sigma]}} \text{sgn } (\sigma (I_{[\sigma]}, [\tau])) \cdot \prod_{l=1}^{m} (\text{sgn } (\tau_l) \cdot \text{sgn } (I_l \subseteq [n]) \cdot \text{sgn } (J_l \subseteq [n]) \cdot \det (X_{I_l \cup J_l})),
\]

where the sum is over all compatible partitions \(I_{[\sigma]} \). (The factor \(\text{sgn } (\sigma (I_{[\sigma]}, [\tau])) \) comes from the determinant of partial derivatives.) Clearly,

\[
\prod_{l=1}^{m} \text{sgn } (I_l \subseteq [n]) = \prod_{l=1}^{m} \text{sgn } (J_l \subseteq [n]) = 1,
\]

so it remains to show

\[
\sum_{I_{[\sigma]}} \text{sgn } \sigma (I_{[\sigma]}, [\tau]) \cdot \prod_{l=1}^{m} (\text{sgn } (\tau_l) \cdot \det (X_{I_l \cup J_l})) = \det (X)^{m-1} \det (X_{I_{[\sigma]} \cup J_{[\tau]}}).
\]

This, of course, is true for \(m = 1 \). We proceed by induction on \(m \).

For any ordered partition \(S_1 \cup S_2 \cup \ldots \cup S_m = [k] \), we introduce the shorthand notation

\[
S_i := [k] \setminus (S_1 \cup S_2 \cup \ldots \cup S_i).
\]

Moreover, write \(d_{I_j} := \det (X_{I_j \cup J_j}) \) for short. Then the lefthand-side of (5) may be written as the \((m-1)\)-fold sum

\[
\sum_{I_1 \subseteq I_0} \text{sgn } (\tau_1) d_{I_1} \sum_{I_2 \subseteq I_1} \text{sgn } (\tau_2) d_{I_2} \cdots \sum_{I_{m-1} \subseteq I_{m-2}} \text{sgn } (\tau_{m-1}) d_{I_{m-1}} \text{sgn } (\tau_m) d_{I_m} \cdot \text{sgn } (\sigma),
\]

where \(I_m = I_{m-2} \setminus I_{m-1} \) and \(\sigma = \sigma (I_{[\sigma]}, [\tau]) \).

Assume \(J_{m-2} = \{j_1, \ldots, j_a\} \), \(I_{m-2} = \{i_1, \ldots, i_a\} \) and \(J_m = \{j_1, \ldots, j_s\} \). Then the special choice \(\tau_{m-1} = \{i_{s_1}, \ldots, i_{s_a}\} \) (i.e., with respect to the relative ordering, “\(\tau_{m-1} \) is the same subset as \(J_m \)”) and \(\tau_{m-1} = I_{m-2} \setminus \tau_m \) determines uniquely a partial permutation \(\tau_{m-1} \)

\[
\tau_{m-1} : I_{m-2} \rightarrow J_{m-2}.
\]

According to (4), by construction we have

\[
\text{sgn } (\tau_{m-1}) = \text{sgn } (\tau_m) \cdot \text{sgn } (\tau_m).
\]

(7)
Now consider \(\sigma = \sigma (I_{[J]}, [\tau]) \) in the innermost sum of (6): Erasing the edges corresponding to \(\tau_{m-1} \) and \(\tau_{m-2} \) and replacing them by the edges corresponding to \(\overline{\tau_{m-1}} \) yields a permutation \(\overline{\sigma} = \tau_1 \cdots \tau_{m-2} \cdot \tau_{m-1} \) (which, of course, complies to the partition scheme \([\tau] = [\tau_1 \cdots \tau_{m-2} \cdot \tau_{m-1}] \)). Since by (4) together with (7) we have

\[
\sgn (\overline{\tau_{m-1}}) = \sgn (\tau_{m-1} \cdot \tau_m) \cdot \sgn (I_m \subseteq I_{m-2}) \cdot \sgn (J_m \subseteq J_{m-2})
\]

and (clearly)

\[
\sigma \backslash (\tau_{m-1} \cdot \tau_m) = \overline{\sigma} \backslash \overline{\tau_{m-1}},
\]

we also have (again by (4))

\[
\sgn (\sigma) = \sgn (I_m \subseteq I_{m-2}) \cdot \sgn (J_m \subseteq J_{m-2}) \cdot \sgn (\overline{\sigma}).
\]

Hence the innermost sum of (6) can be written as

\[
\sgn ([\tau]) \cdot \left(\sum_{I_{m-1} \subseteq I_{m-2}} \sgn (I_m \subseteq I_{m-2}) \cdot \sgn (J_m \subseteq J_{m-2}) \cdot d_{I_{m-1}} \cdot d_{I_m} \right) \cdot \sgn (\overline{\sigma}).
\]

If we can show that this last sum equals \(\det (X) \cdot \det \left(X_{\overline{I_{m-2}} \cdot \overline{J_{m-2}}} \right) \), then (5) follows by induction, since the \((m-1)\)-fold sum in (6) thus reduces to an \((m-2)\)-fold sum, which corresponds to the partition-scheme \([\tau] = [\tau_1 \ast \tau_2 \ast \ldots \ast \tau_{m-2} \cdot \tau_{m-1}] \).

2.8. (A generalization of) Laplace’s theorem

Luckily, a generalization (see [6, section 148]) of Laplace’s Theorem serves as the closer for our argumentation:

Theorem 2. Let \(a \) be an \((m+k) \times (m+k)\)-matrix, and let \(1 \leq i_1 < i_2 < \cdots < i_m \leq m+k \) and \(1 \leq j_1 < j_2 < \cdots < j_m \leq m+k \) be (the indices of) \(k \) fixed rows and \(k \) fixed columns of \(a \). Denote the set of these (indices of) rows and columns by \(R \) and \(C \), respectively. Consider some fixed set \(I \subseteq R \). Then we have:

\[
det (a) \cdot \det (a_{\overline{R \cup C \cup J}}) = \sum_{J \subseteq C, |J|=|I|} \sgn (I \subseteq R) \cdot \sgn (J \subseteq C) \cdot \det \left(a_{\overline{R \cup C \cup J}} \right) \cdot \det (a_{\overline{I \cup J}}).
\]

A combinatorial proof for this identity is given in [4, proof of Theorem 6]: So altogether, we achieved a “purely combinatorial” proof for (2). \(\square \)

References

[1] A.C. Aitken. Determinants and Matrices. Oliver & Boyd, Ltd., Edinburgh, 9th edition, 1956.

[2] F. Bergeron, G. Labelle, and P. Leroux. Combinatorial Species and tree–like Structures, volume 67 of Encyclopedia of Mathematics and its Applications. Cambridge University Press, 1998.

[3] S. Caracciolo, A.D. Sokal, and A. Sportiello. Algebraic/combinatorial proofs of Cayley-type identities for derivatives of determinants and pfaffians. Advances in Applied Mathematics, 50(4):474 – 594, 2013.

[4] M. Fulmek. Viewing determinants as nonintersecting lattice paths yields classical determinantal identities bijectively. Electron. J. Combin., 19(3):P21, 2012.

[5] T. Muir. The Theory of Determinants in the historical order of development, volume 4 volumes. MacMillan and Co., Limited, London, 1906–1923.

[6] T. Muir. A Treatise on the Theory of Determinants. Longmans, Green and Co., London, 1933.

[7] G. Vivanti. Alcune formole relative all’operazione \(\Omega \). Rend. Circ. Mat. Palermo, 1890.
Fakultät für Mathematik, Oskar-Morgenstern-Platz 1, A-1090 Wien, Austria

E-mail address: Markus.Fulmek@Univie.Ac.At
WWW: http://www.mat.univie.ac.at/~fulmek