High resolution spectroscopy of the three dimensional cosmic web with close QSO groups

M. Cappetta1,2†, V. D’Odorico2, S. Cristiani2,3, F. Saitta2, M. Viel2,3

1MPE – Max-Planck-Institut für Extraterrestrische Physik, Giessenbachstrasse 1, 85748 Garching bei München, Germany
2INAF – Osservatorio Astronomico di Trieste, via G.B. Tiepolo 11, I-34127 Trieste, Italy
3INFN/National Institute for Nuclear Physics, Via Valerio 2, I-34127 Trieste, Italy

Accepted 2010 May 8. Received 2010 May 6; in original form 2009 October 13

ABSTRACT

We study the three-dimensional distribution of matter at $z \sim 2$ using high resolution spectra of QSO pairs and simulated spectra drawn from cosmological hydrodynamical simulations. We present a sample of 15 QSOs, corresponding to 21 baselines of angular separations evenly distributed between ~ 1 and 14 arcmin, observed with the Ultraviolet and Visual Echelle Spectrograph (UVES) at the European Southern Observatory-Very Large Telescope (ESO-VLT). The observed correlation functions of the transmitted flux in the H\textsc{i} Lyman-\textsc{a} forest transverse to and along the line of sight are in agreement, implying that the distortions in redshift space due to peculiar velocities are relatively small and - within the relatively large error bars - not significant. The clustering signal is significant up to velocity separations of ~ 300 km s-1, corresponding to about 5 h^{-1} comoving Mpc. Compatibility at the 2 σ level has been found both for the Auto- and Cross-correlation functions and for the set of the Cross correlation coefficients. The analysis focuses in particular on two QSO groups of the sample, the Sextet and the Triplet. Searching for alignments in the redshift space between Lyman-\textsc{a} absorption lines belonging to different lines of sight, it has been possible to discover the presence of a wide H\textsc{i} structures extending over about ten Mpc in comoving space, and give constraints on the sizes of two cosmic under-dense regions in the intergalactic medium, which have been detected with a 91% and 86% significance level, respectively in the Sextet and in the Triplet.

Key words: intergalactic medium, quasars: absorption lines, cosmology: observations, large-scale structure of Universe

1 INTRODUCTION

The understanding of the Lyman-\textsc{a} forest has dramatically improved in the recent decade, both on the theoretical and the observational side. Semi-analytical and hydro-dynamical simulations have outlined a new picture where the Lyman-\textsc{a} forest is due to the fluctuations of the intermediate and low-density intergalactic medium (IGM), arising naturally in the hierarchical process of structure formation. Relatively simple physical processes impact on the thermal state of the gas, which, on scales larger than the Jeans length, effectively traces the underlying distribution of dark matter. Support for this scenario is given by the satisfactory reproduction by semi-analytical and hydro-simulations of many properties of the Lyman-\textsc{a} forest (from the column density and the Doppler parameter distribution to the number density and effective opacity evolution) derived from the analysis of high resolution, high signal-to-noise ratio (SNR) QSO spectra obtained at 8-10m class telescopes (e.g., Dav\`e et al. 1999; Brian & Machacek 2000; Kim et al. 2001; Bianchi et al. 2003; Janknecht et al. 2006). A step forward in the study of the IGM with QSO absorption spectra is represented by the use of multiple lines of sight at close angular separations, which allows information about the transverse direction to be obtained. Common absorption features observed in the spectra of multiply lensed quasars (e.g., Smette et al. 1992) and of close quasar pairs (e.g., D’Odorico et al. 1998; Aracil et al. 2002) have provided evidence that the Lyman-\textsc{a} absorbers have dimensions of a few hundred kpc, in agreement with the predictions of simulations. Recently, lensed and more widely separated QSO pairs have been used to recover the
kinematics of the gaseous cosmic web (Rauch et al. 2003), confirming that the Hubble expansion and gravitational instability are the main processes influencing the Lyman-α forest gas.

A critical test of the nature of the Lyman-α absorbers, as proposed by simulations, comes from the determination of their spatial distribution properties. This has been done by analysing a great number of uncorrelated QSO lines of sight and computing the flux correlation function by averaging over many spectra (e.g., Tripp et al. 1998, Savaglio et al. 1999, Croft et al. 2002). In this observational approach, however, the three-dimensional information is convolved with distortions in redshift space, due to peculiar motions and thermal broadening. Multiple lines of sight at small angular separations offer an invaluable alternative to address the spatial distribution of the absorbers, enabling a more direct interpretation of the observed correlations.

The final goal of this work is to investigate the distribution properties of matter in the IGM applying the modern interpretation of the Lyman-α forest to a sample of close QSO groups. The computation and comparison of the flux correlation function along and across the lines of sight was carried out in a previous paper (D’Odorico et al. 2006, Paper I). In this paper, we update the previous results using higher SNR spectra and, in particular, we investigate the coincidences of absorbers among three or more close lines of sight in order to detect cosmological structures extending to large scales. Finally, we look for extended under-dense regions in the IGM using multiple lines of sight.

Note that tomographic studies based on Lyman-alpha lines similar to those presented here will be of great importance in the near future due to the large numbers of quasar absorbers, as proposed by simulations. The three-dimensional information is convolved with distortions in redshift space, due to peculiar motions and thermal broadening. Multiple lines of sight at small angular separations offer an invaluable alternative to address the spatial distribution of the absorbers, enabling a more direct interpretation of the observed correlations.

The paper structure is the following: in Section 2 we describe the observed data sample, the reduction procedure and the simulated spectra. Section 3 is devoted to the computation of the auto- and cross-correlation functions and the cross correlation coefficients of both the observed and simulated spectra. In Section 4, we analyze the coincidences in redshift space of the H i and C IV absorbers in order to detect structures extending over several comoving Mpc, while the under-dense regions common to multiple lines of sight are studied in Section 5. The conclusions are then drawn in Section 6. Throughout this paper we adopt $\Omega_{0m} = 0.26$, $\Omega_{0\Lambda} = 0.74$, and $h = H_0/(72 \text{ km s}^{-1} \text{ Mpc}^{-1})$.

2 DATA SAMPLE

The QSO pairs and groups forming our sample are the same as Paper I and are described in Table 1. The patterns on the sky of the two QSO groups called the Sextet and the Triplet are reported in Fig. 1.

We were allocated 17 hours with UVES at the VLT in order to increase the SNR of the spectra of objects T1 and T2 of the Triplet and S1, S2, S5 and S6 of the Sextet.

Table 1. Characteristics of the observed QSO spectra.

Object	z	M_B	Lyman-α range	SNR per pixel	
Pair A	PA1	2.645	19.11	2.094–2.585	8–12
	PA2	2.610	19.84	2.094–2.550	3.5–6.5
Triplet	T1	2.041	18.20	1.633–1.991	3–15
	T2	2.05	18.30	1.592–1.999	4–15
	T3	2.053	18.10	1.665–2.002	2.5–7
Sextet	S1	1.907	19.66	1.665–1.859	2–7
	S2	2.387	19.53	1.858–2.331	3–8
	S3	2.102	19.31	1.633–2.051	4–12
	S4	1.849	19.59	1.575–1.802	3–9
	S5	2.121	18.85	1.633–2.069	4–12
	S6	2.068	20.19	1.592–2.017	3–10
Pair U	UM680	2.144	18.60	1.653–2.092	6.5–17
	UM681	2.122	19.10	1.634–2.070	7–17
Pair Q	Q2343+12	2.549	17.00	1.994–2.490	13–23
	Q2344+12	2.773	17.50	2.183–2.711	12–18

The new observations were reduced with the UVES pipeline following a standard procedure (Ballester et al. 2000). A pre-filtering of the cosmic rays of the blue band frames was necessary for the faintest spectra to carry out the optimal extraction properly.

Then, the heliocentric and vacuum wavelength corrections were performed and the new spectra were combined with the old ones. The final spectra have resolution $R \sim 45000$, while the SNR per pixel varies on average between 3 and 12 in the Lyman-α forest and between 6 and 20 in the C IV forest (see Table 1 for details).

The estimate of the continuum level, in particular in the Lyman-α forest region, is a very delicate step in the process of spectra reduction. Procedures realized up to now in order to determine the continuum position through automatic algorithms do not give satisfactory results. Following the same procedure adopted in Paper I, we fitted the regions free from clear absorption with a spline polynomial of third order. The limitations introduced by the uncertainty in the true continuum level should play a minor role in the computation of the cross-correlation function with respect to the case of single line of sight analysis. This is because the power on scales of the continuum fluctuations is uncorrelated between the different lines of sight. Thus, probing the transverse direction could potentially allow to measure the matter distribution at scales larger than those probed along the line of sight (see Viel et al. 2002 for a discussion in the case of power spectra).

All the lines falling in the Lyman-α forest have been fitted with a Voigt profile via χ^2 minimization. The lines with an equivalent width (EW) lower than three times the related EW uncertainty have been removed from the list of fitted lines. The metal lines have been identified first looking for the most common doublets (e.g., C IV, Si IV, O VI, and Mg II). Then, we have searched for other common transitions (e.g., Si III, Si II, C II, Fe II) at the redshift of the previously determined systems.
Our sample provides 21 QSO pairs with angular separations uniformly distributed between ~ 1 and 14 arcmin, corresponding to comoving spatial separations between ~ 1.4 and 21.6 h^{-1} Mpc. The median redshift of the Lyman-\(\alpha\) forest is $z \sim 1.8$. This is the largest sample of high-resolution spectra of QSO pairs ever collected, unique both for the number density - we have six QSOs in a region of ~ 0.04 deg2 - and the variety of line of sight separations investigated.

2.1 Simulated spectra

In order to both assess the nature of the Lyman-\(\alpha\) forest inferred from simulations and to constrain the cosmological scenario of the same simulations, we compared the results obtained for our sample of observed QSO spectra with analogous results for a sample of mock Lyman-\(\alpha\) forests.

The details of the adopted simulations can be found in Paper I, here we provide only the basic information. We used simulations run with the parallel hydro-dynamical (TreeSPH) code GADGET-2 [Springel et al. 2001; Springel 2005]. The simulations were performed with periodic boundary conditions with an equal number of dark matter and gas particles and used the conservative ‘entropy-formulation’ of SPH proposed by Springel & Hernquist (2002). Radiative cooling and heating processes were followed for a primordial mix of hydrogen and helium. We assumed a mean UV background produced by quasars and galaxies as given by Haardt & Madau (1996) with helium heating rates multiplied by a factor 3.3 in order to fit observational constraints on the temperature evolution of the IGM. More details can be found in Viel et al. (2004).

The cosmological model corresponds to a ‘fiducial’ ΛCDM universe with parameters $\Omega_{\text{DM}} = 0.26$, $\Omega_{\Lambda} = 0.74$, $\Omega_{\text{ob}} = 0.0463$ and $H_0 = 72$ km s$^{-1}$ Mpc$^{-1}$ (the B2 series of Viel et al. 2004). We have used 2×400^3 dark matter and gas particles in a 120 h^{-1} comoving Mpc box. The gravitational softening was set to 5 h^{-1} kpc in comoving units for all particles. We note that the parameters chosen here, including the thermal history of the IGM, are in perfect agreement with observational constraints including recent results on the CMB and other results obtained by the Lyman-\(\alpha\) forest community (e.g. Spergel et al. 2003; Viel et al. 2004; Seljak et al. 2005).

The $z = 1.8$ output of the simulated box was pierced by three lines of sight in order to obtain 50 triplets of spectra carefully reproducing the observed Triplet mutual separations and spectral properties. The same was done for 50 sextets of lines of sight reproducing the observed Sextet and 50 pairs of lines of sight at the same angular separation as Pair U. 50 different realizations of Pair A spectra and of Pair Q were obtained from the output box at redshift $z = 2.4$.

Finally, we added to the simulated spectra both instrumental broadening and a Gaussian noise in order to reproduce the observed average SNR (per pixel): $\text{SNR} = 5$ for the Triplet, the Sextet and Pair A; $\text{SNR} = 9$ for Pair U and $\text{SNR} = 15$ for Pair Q.

3 CORRELATION FUNCTIONS OF THE IGM

In this section, we discuss the flux correlations in the absorption spectra of our sample of QSO pairs. The statistical quantities are the same as those already computed in Paper I, here we verify the effect of having an increased SNR.

On the basis of the interpretation of the Lyman-\(\alpha\) forest as due to a continuous density field with a one-to-one correspondence between density and transmitted flux, we computed the correlation properties of the transmitted flux in QSO lines of sight and regarded them as indicators of the correlation properties of matter in the IGM. We selected in each normalized spectrum the region between the Lyman-\(\beta\) emission (or the shortest observed wavelength,
when the Lyman-β was not included in the spectrum) and 5000 km s\(^{-1}\) from the Lyman-α emission (to avoid proximity effect due to the QSO). Absorption lines due to ions of elements heavier than hydrogen contaminate the Lyman-α forest and can give spurious contributions to the clustering signal (see Kim et al. [2004] for a discussion in the case of single lines of sight). We flagged and removed the spectral regions where metal lines and Lyman-α absorptions of damped and sub-damped systems occurred inside the Lyman-α forest.

Given the normalized transmitted flux, \(f\), as a function of the velocity \(v\) along the line of sight and the angular position \(\theta\) on the sky, we define \(\delta f = (f - \bar{f})\), where the average flux, \(\bar{f}\), is computed for every spectrum as the mean of the transmitted flux across all the considered pixels in that spectrum. We neglected the redshift evolution of the average transmitted flux in the Lyman-α forest of the individual spectra, which translates into the redshift evolution of the mean H\,I opacity of the Universe (Kim et al. [2002], Schaye et al. [2003], Viel et al. [2004], Kirkman et al. [2005], Rauch-Giguère et al. [2008]), because we verified that its effect on the correlation function is negligible. By means of this new field, \(\delta f\), we could then define and compute three useful tools for the investigation of the Lyman-α correlation properties: the Auto and Cross correlation functions and the set of the Cross correlation coefficients.

3.1 The Auto-correlation function

The unnormalized Auto correlation function (Auto CF) of the flux along the line of sight is defined as:

\[
\xi_f^A (\Delta v) = \langle \delta_f (v) \delta_f (v + \Delta v) \rangle, \tag{1}
\]

following previous studies on the same subject (e.g. McDonald et al. [2000], Rollinde et al. [2003], Becker et al. [2004]). The Auto CF for our sample of QSO spectra was obtained by averaging over all the pixels of all the QSOs. The results were binned in 50 km s\(^{-1}\) velocity bins. The Auto CF for the simulated spectra was computed as the arithmetic mean of the correlation functions obtained for 50 realizations of the simulated spectra, which translates into the redshift evolution of the IGM across the lines of sight. The great advantage with respect to the correlation function along the line of sight, in particular for a sample like ours showing a large variety of pair separations, is that we have the guarantee of sampling true spatial separations between the pixels, the effect of peculiar velocities being negligible or absent. As a first approach, we computed the Cross-correlation function (Cross CF) extending in a natural way the procedure adopted for the Auto CF.

Every pixel along the line of sight is considered as an element of the density field at the QSO angular position in the sky and at a distance from the observer (comoving along the line of sight) corresponding to the redshift of the pixel:

\[
r_{\parallel} (z) = \frac{c}{H_0} \int_0^z \frac{dz'}{E(z')}, \tag{2}
\]

where \(E(z)\) describes the evolution of the Hubble parameter as a function of the redshift.

In the definition of the comoving distance there is the implicit hypothesis that peculiar velocities give a negligible contribution to the measured redshift in the Lyman-α forest (Rauch et al. [2005], Paper I). The Cross CF of the transmitted flux between two lines of sight at angular separation \(\Delta \theta\) is defined as

\[
\xi_f^C (\Delta \theta) = \langle \delta_f (\theta, r_{\parallel,1}) \delta_f (\theta + \Delta \theta, r_{\parallel,2}) \rangle, \tag{3}
\]

where, \(\Delta r = \sqrt{r_{\parallel,1}^2 + r_{\perp,2}^2 - 2r_{\parallel,1}r_{\parallel,2} \cos \Delta \theta}\) is the spatial separation between pixel 1 at \(r_{\parallel,1}\) along one line of sight and pixel 2 at \(r_{\parallel,2}\) along the paired line of sight.

We also computed the Cross CF for the sample of mock spectra. The simulated spectra are characterized by the redshift of the output box and a velocity extent. In order to assign a redshift value to every pixel, we gave the central pixel of every spectrum the redshift of the corresponding output box, then we numbered the pixels one by one, transforming the velocity size of the pixel into a redshift size. Once the redshifts were determined pixel by pixel, we followed the same procedure adopted for the observed spectra for the 50 simulated samples and computed the average Cross CF and

\[1\ E(z) = \sqrt{\Omega_{\text{tot}} (1 + z)^3 + \Omega_{0}\Lambda}\]
its 1 σ standard deviation. The result of our computation is shown in Fig. 3 compared with the observed Cross CF of the pairs. The two functions show very good agreement (at the 1 σ level) and a significant clustering signal up to comoving separations of ~ 4 h⁻¹ comoving Mpc.

We also compared the Cross CF with the previously computed Auto CF. As can be seen in Fig. 4, the two data series show a consistency at the 1 σ level, supporting the hypothesis that the peculiar velocity along the lines of sight is negligible.

3.3 The Cross correlation coefficient

A measure of the transverse clustering properties of the IGM which is less affected by peculiar velocities is the set of the flux Cross correlation coefficients (CCC),

\[\chi_f^x(\Delta \theta) = \langle \delta_f(\theta, v_\parallel) \delta_f(\theta + \Delta \theta, v_\parallel) \rangle, \tag{4} \]

where, every pixel along one line of sight is correlated with the one face-to-face in redshift space along the paired line of sight and the result is averaged over all the pixels in the common redshift interval.

Every pair of QSOs at angular separation \(\Delta \theta \) gives one value of \(\chi_f^x(\Delta \theta) \), and a sample with several pairs at different separations, as in our sample, gives an estimate of the correlation function. At a given redshift, the angular separation \(\Delta \theta \) corresponds to a velocity separation \(\Delta v_\perp = c F(z) \Delta \theta \), where \(c \) denotes the speed of light, and \(F(z) \) is a dimensionless function of redshift that includes all the dependence on the global cosmological metric. In the cosmological model that we have adopted:

\[F(z) = \frac{E(z) \int_0^z [d z'/E(z')] \left(\frac{1 + z}{1 + z'}\right)}{(1 + z)}. \tag{5} \]

where \(z \) is the mean redshift of the overlapping Lyman-α region from a pair. We computed the range of velocity separations covered by each of our pairs of spectra then we grouped the pairs in velocity bins of variable width and computed the average CCC for every group. Given the small number of pairs in each group (a maximum of three QSO pairs) the uncertainties associated with these determinations can be only computed by applying a simple error propagation. However, these uncertainties would account only for the pixel statistics and the noise associated with the transmitted flux, but would be not representative of the true error due to the cosmic variance. In the case of the simulated spectra, we had 50 realizations of each of our QSO pairs, so we could obtain in every velocity interval defined for the observed pairs an average CCC with its error, that in this case is the standard deviation of the distribution of values.

The results are shown in Fig. 5. The CCC computed from the observations are in excellent agreement, at the 1 σ confidence level, with the simulations. A comparison can be done with the same results obtained in Paper I: thanks to the increased SNR for some of the spectra in the present sample, in particular the S1-S3 pair, the enhanced clustering signal measured in Paper I with the cross correlation coefficient at a transverse velocity separation \(\Delta v_\perp \sim 500 \text{ km s}^{-1} \) is no longer significant.

Concerning the CCC, the angular separation \(\Delta \theta \) between two QSO lines of sight was transformed into a comoving spatial separation, \(\Delta r \), with the formula

\[\Delta r = \frac{c \Delta \theta}{H_0} \int_0^z \frac{d z'}{E(z')}, \tag{6} \]

where \(E(z) \) was defined above and here \(z \) is the mean redshift of the Lyman-α interval considered for each pair. Assigning,
at both the CCC and the Cross CF observed data points, the error bars computed from the simulations, there is an agreement within 1σ between the two series of points (see Fig. 5), confirming the hypothesis that the peculiar velocity along the lines of sight are negligible. The large variations from one data point to the other in the CCC should be due mainly to the small number of QSO pairs (between one and three) contributing to each point. On the other hand, the smoothness of the Cross correlation function of the transmitted flux, ξ^{\perp}, for our sample of pairs and groups of QSOs (empty triangle, slightly shifted in Δv) compared with the observed Cross correlation coefficients, χ^{\perp} (squares), as a function of spatial separation (see text). Error bars both on χ^{\perp} and ξ^{\perp} have been determined from simulations.

All the results reported in this section are in agreement with the same quantities derived from other larger sample of QSO pairs (see for e.g. Rollinde et al. 2003, Coppolani et al. 2006).

4 COINCIDENCES OF THE ABSORPTION LINES

4.1 The Lyman-α line coincidences

The Cross CF and the CCC are two powerful tools which allow us to measure the statistical properties of the IGM distribution in the real 3D comoving space. By definition, they account for the correlation between pairs of Lyman-α forests in close QSO spectra. What we want to study now is the simultaneous correlation among three or more Lyman-α forests. A natural way to extend the Cross CF of the transmitted flux to more than two lines of sight is the addition of a third parameter, related to the third QSO at angular separation $\Delta \theta^{\perp}$ with respect to the first. This operation leads to a function of three variables, the three reciprocal comoving distances between the three considered pixels, which is computation time demanding and difficult to interpret.

In the previous section, we have taken advantage of the interpretation of the Lyman-α forest which allows us to map directly the transmitted flux along the line of sight into the IGM density field. A boost in the signal of the Cross CF between two lines of sight is due to the presence in redshift space of two aligned, or very close, Lyman-α lines belonging to the two considered spectra. On this basis, we can provide a measure of the cross correlation between three Lyman-α forests by searching for triplets of Lyman-α lines, belonging to three different spectra, aligned in redshift space within a given velocity window. This kind of analysis has been applied to the Sextet and to all the combinations of 3 QSOs that could be formed with the Sextet. The adopted procedure has been the following:

1. The lists of H I Lyman-α lines compiled for the QSOs in our sample were considered in the redshift range between the Lyman-β emission (or the shortest observed wavelength, when the Lyman-β was not included in the spectrum) and 5000 km s$^{-1}$ from the Lyman-α emission (to avoid proximity effect due to the QSO).

2. Each pair of lines with a velocity separation $\Delta v \leq 100$ km s$^{-1}$ has been replaced by a single line with central wavelength equal to the average value of the parent lines weighted on the EW. This velocity threshold has been chosen on the basis of the characteristic width of Lyman-α lines, $\sim 25 - 30$ km/s (see e.g. Kim et al. 2002). Furthermore, this is also the velocity scale corresponding to the Jeans length, which sets the characteristic dimension of H I absorbers.

3. Triplets of lines, each one belonging to a different line of sight, have been considered and the velocity difference between the largest and smallest redshift has been computed. This operation has been done for the Lyman-α lines in the three lines of sight of the Sextet and in all the triplets of lines of sight (20 possible combinations) provided by the Sextet. Then, all the measures of velocity difference lower than 1000 km s$^{-1}$ have been divided into velocity bins of 100 km s$^{-1}$ and the related histogram with the number of occurrences for each bin has been computed.
4. Next, the previous three steps have been repeated for a sample of 10^3 mock lists of lines built in the following way. In order to take into account the varying number density of detectable lines along the Lyman-α forests, due to the varying SNR, each forest has been simulated in chunks of about 200 Å. In each mock chunk, the number of simulated lines has been determined from a Poissonian distribution centred on the number of observed lines in that chunk, while the positions of the mock lines have been randomly generated following a uniform distribution within the related wavelength range of each chunk. The redshift intervals masked in the observed spectra were masked also in the simulated ones. The EWs of the mock lines have been randomly chosen among all the EWs measured by the fit of the lines in the observed spectra. In this way it has been possible, for each velocity bin, to compute the mean and the standard deviation of the number of occurrences for synthetic lists of lines.

5. Finally, we have defined the three point probability excess (PE3) as a function of the velocity difference, Δv, according to the following formula:

$$PE(v) = \frac{N_{\text{obs}}(\Delta v)}{N_{\text{sim}}(\Delta v)} - 1$$ \hspace{1cm} (7)

The resulting PE3 is reported in Fig. 7 together with the 1, 2 and 3 σ confidence levels. The PE3 is non-zero at a 2 σ level up to a velocity difference of ~ 250 km s$^{-1}$. Most of the signal of the PE3 is due to the large number (26) of coincidences produced by the S3-S5-S6 QSOs triplet which is also the closest triplet (mean angular separation of 2.02 arcmin corresponding to ~ 2 h$^{-1}$ comoving Mpc).

Fig. 8 shows the probability excess considering quadruplets of Lyman-α lines. A significant signal at more than 3 σ level is measured up to a velocity difference of ~ 250 km s$^{-1}$. Besides, one group of five coincident lines within 100 km s$^{-1}$ in the S2-S3-S4-S5-S6 QSOs is observed at a mean redshift of 1.825, an occurrence that has a probability $P=0.013$ to arise from a random distribution of lines. The portion of spectra where these five lines fall are reported in Fig. 9.

In particular, it is possible to observe in the spectrum of the S3 QSO the presence of a Damped Lyman-α system (DLA): the fitted Voigt profile gives a column density value of log $N = 20.6$. This DLA is associated with several metallic ion absorption lines found in the redder part of the spectrum. Indeed at the same redshift we have found evidence of C iv, Fe ii, Si iv, Si iii, Si ii, Al iii and Al ii. This correlated H i absorption across lines of sight separated by ~ 14 h$^{-1}$ comoving Mpc could be interpreted as due to a gas filament, but other explanations are possible such as detected H i halos of clustered galaxies.

4.2 The C iv lines coincidences

We have also looked for correlation across two lines of sight for C iv absorbers. Given the characteristics of our sample, which allow us to investigate comoving scales larger than ~ 1 h$^{-1}$ comoving Mpc, we do not expect C iv coincidences due to the same C iv cloud, whose typical size should be of the order of tens of kpc (Rauch et al. 2001). Our lines of sight could pierce C iv gas connected with different galaxies in groups or clusters (Francis et al. 2001).

The procedure to identify C iv coincidences is similar but simpler than that previously employed for the Lyman-α lines. The first two steps are the same, with the difference that here lines closer than 500 km s$^{-1}$ have been merged together. Then, we searched for coincidences of C iv merged absorbers lying along the redshift space in windows smaller than 500 km s$^{-1}$. According to Scannapieco et al. (2006) this velocity scale corresponds to the characteristic size of coherent C iv structures.

In order to establish the significance of our observation, we have applied our algorithm for coincidences to 10^4 groups of synthetic list of lines. The method for creating the synthetic list of lines is the same as adopted before in the
Figure 10. Portions of spectra representing the C iv systems found to be in coincidence between the S3 and S6 QSOs (left plots) and the T1 and T2 QSOs (right plots). The single C iv components are marked with increasing number. The same number is related to both the C iv lines.

The two groups of QSOs in our sample are well suited to search for large under-dense regions in the IGM. Previous attempts to detect under-dense regions in the Lyman-α forest have searched for regions without absorption lines along a single line of sight. They looked for portions of spectra where the observed number of absorption lines was significantly smaller than the expected number from synthetic spectra (Carswell & Reed, 1987; Crotts, 1987; Ostriker, Bajtlik & Duncan, 1988; Cristiani et al., 1995; Kim et al., 2001). A strong improvement of the statistical significance of each detection can be provided by the simultaneous presence of an under-dense region along several close lines of sight. This would allow the detection of smaller under-dense regions maintaining a high confidence level. As done in the previous section, we focused our attention on searching for common under-dense regions among the lines of sight of the Triplet and among all the possible groups of lines of sight provided by the Sextet.

Following Rollinde et al. (2003), we can define an under-dense region along a single line of sight as a portion of the spectrum between \(\lambda_i \) and \(\lambda_e \), where the normalized flux \(f \) is higher than the specific threshold \((\bar{f} - \sigma_f) \), where \(\bar{f} \) is the average flux in the Lyman-α forest and \(\sigma_f \) is the value of the flux uncertainty. Note also that at \(z \sim 2 \) regions above the mean correspond on average to regions below the mean level of high resolution spectra (Viel et al., 2008). Since the SNR of the spectra analyzed by Rollinde et al. (2003) is much larger than that of our spectra (15 – 70 vs. 4 – 15 respectively), this simple procedure for the detection of under-dense regions cannot be adopted in the present case. Indeed, the fluctuations due to the flux noise cause the splitting of single large under-dense regions into several smaller regions, preventing their detection.

In order to reveal the presence of under-dense regions in our spectra, we have developed the following method. The spectra are smoothed with a median filter characterized by a very short kernel length, only three pixels. After the smoothing, common under-dense regions are looked for with the method described above (always adopting the same average flux and flux uncertainty). Then, the spectra are smoothed again and again searched for common voids. This process is iterated several times. The results are shown in Fig. 12 where we have reported the size of the bigger common under-dense region found in the Triplet and in the S3-S5-S6 group of Sextet QSOs as a function of the number of times the spectra have been smoothed. We report only the result concerning the S3-S5-S6 group because it is the only one in which a significant under-dense region has been detected.
Figure 11. Spectra of the two close groups of quasars (S3-S5-S6 on the left and the Triplet on the right) centred on the common under-dense regions. The extension of the common under-dense regions are shown with dashed vertical lines.

Figure 9. Portions of the spectra of the QSOs S2, S3, S4, S5 and S6 centred at 3435 Å showing the aligned Lyman-α lines.

Figure 12. Size of the common under-dense regions of Triplet group (empty triangle) and the S3-S5-S6 group (filled square) as a function of the number n of times the spectra have been smoothed.

We can see how, after an initial linear growth of the size of the common under-dense region, a step behaviour occurs in both the series of data. Steps occur whenever two separate under-dense regions are merged together, that is when the absorption line (both real or spurious) lying between them is smoothed out by the n-th action of the median filter. We can notice also how, after ~ 10 smoothings, the size of the under-dense regions in both the Triplet and the S3-S5-S6 group reaches an "asymptotic" value. Each asymptotic rate corresponds to the size of a common under-dense region enclosed between two strong lines (not necessarily belonging to the same spectrum) requiring a large number of smoothings to be cancelled.
A series of simulations has been carried out in order to evaluate the minimum value of the column density \(N(\text{H} \text{I}) \) of the Lyman-\(\alpha \) lines surviving after 6 and 8 smoothing processes in the Triplet and the S3-S5-S6 group, respectively. First, a mock spectrum has been created placing several lines characterized by an increasing \(\log N(\text{H} \text{I}) \), from 12 to 15 by steps of 0.05, and central wavelengths separated by 10 Å. Line profiles have been modeled with a Gaussian, since we were interested only in the centre of the lines and not in reproducing correctly their wings. The Doppler parameter \(b \) was set to a value of 20 km s\(^{-1}\) (Kim et al. 2001); the dependence of the simulation results from this parameter is negligible.

White noise has been added to the spectrum in order to obtain \(SNR = 7 \), roughly consistent with the observed SNR values of the Triplet, and of the S3, S5 and S6 spectra in the segments where the common under-dense regions are situated. Then, the length of the void has been measured, namely the portion of mock spectrum where \(f \geq (f - \sigma_f) \), after each smoothing. Since the lines are ordered by increasing column density and separated by 10 Å, each increase in void length of \(\sim 10 \) Å corresponds to the vanishing of a specific line with known value of \(N(\text{H} \text{I}) \). Repeating this procedure 10\(^3\) times, we have computed the values, and the related uncertainties, of the column density of the lines washed away after a given number of smoothings. The effect of having different SNR in the QSOs spectra (Fig. 11) instead of a fixed value of \(SNR = 7 \) is smaller than the error bars reported in Fig. 13.

The same kind of simulations have been used to compare the action of the short scale filter iterated \(n \) times with respect to that of a median filter of length \((2n+1) \) pixel employed once. Both the series of data are shown in Fig. 13 with the related error bar, as a function of \(n \). The trend followed by the two series at large \(n \) is different: for the short scale filter iterated \(n \) times the smoothing effect is relatively lower and the growth of the column density of the lines smoothed away is flatter. Furthermore, the related uncertainties are much smaller. This behaviour helps us to estimate more accurately the lower column density of the surviving lines, because the range of \(\log N(\text{H} \text{I}) \) between 12.5 and 13 is sampled more accurately with respect to the upper curve.

Fig. 13 (filled circles) shows that the asymptotic size of the voids observed in the Triplet and in the S3-S5-S6 group are referred to spectra where the absorption lines characterized by \(\log N(\text{H} \text{I}) \) \(\geq 12.8 \) have been smoothed away.

The two largest under-dense regions common to the S3, S5 and S6 lines of sight and to the Triplet lines of sight are 12.8 Å (corresponding to 10.7 h\(^{-1}\) comoving Mpc) and 10.6 Å (or 8.8 h\(^{-1}\) comoving Mpc) in size, respectively. They are shown in Fig. 11. The sizes of the related under-dense regions along the single lines of sight are: 13.4, 19.8 and 15.2 Å for the S3, S5 and S6 lines of sight; 10.6, 12.4 and 14.2 Å for the lines of sight of the Triplet. As already said, no common under-dense region has been found considering any other combination of lines of sight in the Sextet.

Assuming that the under-dense regions have a spherical geometry (again following Rollinde et al. 2003), a void is then defined as the largest sphere that may be included inside one connected region. We searched for the largest spherical region included in the three individual under-dense regions. This is equivalent to the requirement that the surface of the under-dense region matches the six edges of the three segments. We allow an uncertainty of few Å in the position of the surface along each line of sight. This takes into account the fact that observations are in redshift space, so that the border of the under-dense region may have a peculiar velocity that shifts its position in wavelength, and that a real under-dense region probably does not have a simple boundary surface. This set of equations can constrain a sphere that has four degrees of freedom. Inside the sphere, the IGM will be under-dense along each line of sight and on its surface it will be over-dense at six positions identifying the edges of the individual under-dense regions. When we applied this procedure to the S3-S5-S6 group, the under-dense region can be parametrized with a sphere of 6.75 h\(^{-1}\) comoving Mpc radius. On the other hand, due to the positions of the members of Triplet in the sky, a spherical parametrisation of the void is not possible in this case.

In order to assign a significance level to the detection of these two under-dense regions, we performed \(10^3 \) simulations of mock spectra reproducing the two triplets of QSO spectra. First, the lists of central wavelengths were created following the same procedure as defined in Section 4.1. Then, the line profiles were created with the observed column density and Doppler parameter distribution (e.g., Kim et al. 2002). Random white noise was added, according to the observed SNR of each spectrum in each chunk, and then the spectra were smoothed 8 times by the median filter. We verified that the results of the simulations do not change significantly for a number of iterations larger than six. Finally, we computed the distribution function of the probability of having one common under-dense region of given dimension along three lines of sight. Computing the random probability of having a common under-dense regions of size equal to or greater than ours, we obtained that the final significance levels of our detections are 91% and 86% for the Triplet and for the S3-S5-S6 group respectively. These two values are smaller than one connected region. We searched for the largest spherical region included in the three individual under-dense regions. This is equivalent to the requirement that the surface of the under-dense region matches the six edges of the three segments. We allow an uncertainty of few Å in the position of the surface along each line of sight. This takes into account the fact that observations are in redshift space, so that the border of the under-dense region may have a peculiar velocity that shifts its position in wavelength, and that a real under-dense region probably does not have a simple boundary surface. This set of equations can constrain a sphere that has four degrees of freedom. Inside the sphere, the IGM will be under-dense along each line of sight and on its surface it will be over-dense at six positions identifying the edges of the individual under-dense regions. When we applied this procedure to the S3-S5-S6 group, the under-dense region can be parametrized with a sphere of 6.75 h\(^{-1}\) comoving Mpc radius. On the other hand, due to the positions of the members of Triplet in the sky, a spherical parametrisation of the void is not possible in this case.

In order to assign a significance level to the detection of these two under-dense regions, we performed \(10^3 \) simulations of mock spectra reproducing the two triplets of QSO spectra. First, the lists of central wavelengths were created following the same procedure as defined in Section 4.1. Then, the line profiles were created with the observed column density and Doppler parameter distribution (e.g., Kim et al. 2002). Random white noise was added, according to the observed SNR of each spectrum in each chunk, and then the spectra were smoothed 8 times by the median filter. We verified that the results of the simulations do not change significantly for a number of iterations larger than six. Finally, we computed the distribution function of the probability of having one common under-dense region of given dimension along three lines of sight. Computing the random probability of having a common under-dense regions of size equal to or greater than ours, we obtained that the final significance levels of our detections are 91% and 86% for the Triplet and for the S3-S5-S6 group respectively. These two values are smaller than one connected region. We searched for the largest spherical region included in the three individual under-dense regions. This is equivalent to the requirement that the surface of the under-dense region matches the six edges of the three segments. We allow an uncertainty of few Å in the position of the surface along each line of sight. This takes into account the fact that observations are in redshift space, so that the border of the under-dense region may have a peculiar velocity that shifts its position in wavelength, and that a real under-dense region probably does not have a simple boundary surface. This set of equations can constrain a sphere that has four degrees of freedom. Inside the sphere, the IGM will be under-dense along each line of sight and on its surface it will be over-dense at six positions identifying the edges of the individual under-dense regions. When we applied this procedure to the S3-S5-S6 group, the under-dense region can be parametrized with a sphere of 6.75 h\(^{-1}\) comoving Mpc radius. On the other hand, due to the positions of the members of Triplet in the sky, a spherical parametrisation of the void is not possible in this case.
than the significance levels of the common under-dense region detected by Rollinde et al. (2003). We expect that this is due to the fact that we are dealing with only three lines of sight and that our spectra have a lower SNR.

6 CONCLUSIONS

In this paper, we exploited the capabilities of high resolution UVES spectra of QSO pairs to study the 3-dimensional distribution properties of baryonic matter in the IGM as traced by the transmitted flux in the QSO Lyman-α forests. Our sample is formed by 21 QSO pairs evenly distributed between angular separations of \(\sim 1\) and 14 arcmin, with Lyman-α forests at a median redshift \(z \sim 1.8\). By calculating the correlation functions we compared the observed sample with a set of mock spectra drawn from a cosmological hydro-simulation run in a box of 120 \(h^{-1}\) comoving Mpc, adopting the cosmological parameters of the concordance model. The simulated sample reproduces 50 different realizations of the observed sample (see Section 2 for details). Furthermore, particular emphasis has been given to the search for alignments and other particular features of the Lyman-α forests in the two QSO groups present in our sample.

In the following, we summarize our main results:

Two-point statistics

(i) The computed correlation functions are in substantial agreement with those obtained in our previous paper (D’Odorico et al. 2006 Paper I). There is consistency between the clustering properties of matter in the IGM calculated in the direction parallel and transverse to the line of sight using the parameters of the concordance cosmology to map the angular distance into velocity separation. This is also due to the relatively large error bars of the computed quantities. As an implication, peculiar velocities in the absorbing gas are likely to be smaller than \(\sim 100\) km s\(^{-1}\). Matter in the IGM is clustered on scales smaller than \(\sim 300\) km s\(^{-1}\) or about 4 \(h^{-1}\) comoving Mpc. The simulated correlation functions are consistent with the observed analogous quantities at the \(1 - 2\sigma\) level for this particular sample.

(ii) Thanks to the increased SNR for some of the spectra in our sample the enhanced clustering signal measured in Paper I with the cross correlation coefficient at a transverse velocity separation \(\Delta v_{\perp} \sim 500\) km s\(^{-1}\) is no longer significant.

Three or more point statistics

(iii) Significant coincidences of Lyman-α absorptions have been detected among the lines of sight forming the Sextet implying the presence of coherent gas structures extending \(\sim 14h^{-1}\) comoving Mpc. In particular an excess of triplets and quadruplets of lines within \(\Delta \tau = 100\) km s\(^{-1}\) has been measured at a significance of 16 and 9 \(\sigma\). Besides, one group of five coincident lines in the S2-S3-S4-S5-S6 QSOs is observed, an occurrence that has a probability \(P=0.013\) to arise from a random distribution of lines.

(iv) A method for the detection of under-dense regions in relatively low SNR spectra has been developed. One cosmic common under-dense region has been detected in each QSO group; in the Sextet the under-dense region has a dimension of 10.7 \(h^{-1}\) comoving Mpc and a significance level of 91\%, while in the Triplet it has a dimension of 8.8 \(h^{-1}\) comoving Mpc and a significance level of 86\%. These values are significantly smaller than those typical of under-dense regions detected along single lines of sight. The under-dense region common to the lines of sight of the Sextet can be parametrized by a sphere of radius 6.75 \(h^{-1}\) comoving Mpc.

This study of the cosmic web environment at \(z \sim 2\) will soon be extended with many more QSO spectra either at medium resolution with the X-Shooter spectrograph or/and with the \(R \sim 10^5\) QSO spectra provided by SDSS-III (Schlegel et al. 2007). The ultimate goal is the characterization of the topology of the IGM in real space in a variety of environments by using Lyman-α and metal lines. On this basis, both hydrodynamical simulations of structure formation and high-resolution spectroscopic samples, like the one presented here, will provide the link between observational quantities and the underlying density field and shed light on the impact of systematic effects.

ACKNOWLEDGMENTS

MC is grateful to Prof. R. Rui for the stimulating discussion on the right statistical approach and interpretation to be adopted for this work. Simulations were performed at the COSMOS UK National Cosmology Supercomputer, sponsored by SGI, Intel and HEFCE. This research has been partially supported by ASI Contract No. I/016/07/0 COFIS, INFN PD51 grant and PRIN MIUR "Diffuse baryons in the Universe".

REFERENCES

Aracil B., Petitjean P., Smette A., Surdej J., Mucket J. P. and Cristiani S., 2002, A&A, 391, 1
Ballester P., Modigliani A., Boitquin O., Cristiani S., Hanschik R., Kauffer A., Wolf S., 2000, ESO The Messenger, 101, 31
Becker G. D., Sargent W. L. W., Rauch M., 2004, ApJ, 613, 61
Bianchi S., Cristiani S., Kim T. S., D’Odorico S., 2003, Astronomy, Cosmology and Fundamental Physics, 4-7 March 2002, p. 417
Bryan G. L., Machacek M. E., 2000, ApJ, 534, 57
Carswell R. F., Rees M. J., 1987, MNRAS, 224, 13
Coppolani F., Petitjean P., Stoehr F., Rollinde E., Pichon C., Colombi S., Hachmelt M. G., Carswell B. and Teyssier R., 2006, MNRAS, 370, 1804
Cristiani S., D’Odorico S., Fontana A., Galllongo E., Savaglio S., 1995, MNRAS, 273, 1016
Croft R. A. C., Weinberg D. H., Bolte M., Burles S., Hernquist L., Katz N., Kirkman D., Tytler D., 2002, ApJ, 581, 20
Crofts A. P. S., 1987, MNRAS, 228, 41
Daw R., Hernquist L., Katz N., Weinberg D. H., 1999, ApJ, 511, 521
D’Odorico V., Cristiani S., D’Odorico S., Fontana A., Galllongo E., Shaver P., 1998, A&A, 339, 678
D’Odorico V., Viel M., Saitta F., Cristiani S., Bianchi S., Boyle B., Lopez S., Maza J., Outram P., 2006, MNRAS, 372, 1333
D’Odorico V., Bruscoli M., Saitta F., Fontanot F., Viel M., Cristiani S., Monaco P., 2008, MNRAS, 379, 1727
Faucher-Giguère C.-A., Prochaska J. X., Lidz A., Hernquist L., Zaldarriaga M., 2008, ApJ, 681, 831
Francis P. J., Catherine L. D., Matthew T. W., Michael J. W., Rachel L. W., 2001, PASA, 18, 221
Haardt F., Madau P., 1996, ApJ, 461, 20
Janknecht E., Reimers D., Lopez S., Tytler D., 2006, A&A, 458, 427
Kaper L., et al. 2009, in Proceedings ESO workshop on "Science with the VLT in the E-ELT era", Ed. A. Moorwood, Springer Netherlands, pg. 319
Kim T.-S., Cristiani S., D’Odorico S., 2001, A&A, 373, 757
Kim T.-S., Carswell R.F., Cristiani S., D’Odorico S., Giallongo E., 2002, MNRAS, 335, 555
Kim T. S., Viel M., Haehnelt M., Carswell R.F., Cristiani S., 2004, MNRAS, 347, 355
Kirkman D., Tytler D., Suzuki N., Melis C., Hollywood S., So G., Lubin D., Jena T., Norman M. L., Paschos P., 2005, MNRAS, 360, 1373
McDonald P., Seljak U., Cen R., Bode P., Ostriker J. P., 2005, MNRAS, 360, 1471
Ostriker J. P., Bajtlik S., Duncan R. C., 1988, ApJ, 327, 35
Rauch M., Sargent W. L. W., Barlow T. A., Carswell R. F., 2001, ApJ, 562, 76
Rauch M., Becker G. D., Viel M., Sargent W. L. W., Smette A., Simcoe R. A., Barlow T. A., Haehnelt M. G., 2005, ApJ, 632, 58
Rollinde E., Petitjean P., Pichon C., Colombi S., Aracil B., D’Odorico V., Haehnelt M. G., 2003, MNRAS, 341, 1279
Savaglio S., Ferguson H. C., Brown T. M., Espey B. R., Sahu K. C., Baum S. A., Carollo C. M., Kaiser M. E., Stiavelli M., Williams R. E., Wilson J., 1999, ApJ, 515, L5
Scannapieco E., Pichon C., Aracil B., Petitjean P., Thacker R. J., Pogosyan D., Bergeron J., Couchman H. M. P., 2006, MNRAS, 365, 615
Schaye J., Aguirre A., Kim T. S., Theuns T., Rauch M., Sargent W. L. W., 2003, ApJ, 596, 768
Schlegel, D.J., et al. 2007, Bulletin of the American Astronomical Society, 38, 966
Seljak U., et al., 2005, PhysRevD, 71, 3511
Smette A., Surdej J., Shaver P. A., Foltz C. B., Chaffee F. H., Weymann R. J., Williams R. E., Magain P., 1992, ApJ, 389, 39
Spergel D. N., 2003, ApJ Suppl. S., 148, 175
Springel V., Yoshida N., White S. D. M., 2001, NewA, 6, 79
Springel V., Hernquist L., 2002, MNRAS, 333, 649
Springel V., 2005, MNRAS, 364, 1105
Tripp T. M., Limin Lu, Savage B. D., 1998, ApJ, 508, 200
Viel M., Matarrese S., Mo H. J., Haehnelt M., Theuns T. 2002, MNRAS 329, 848
Viel M., Haehnelt M. G., Springel V., 2004a, MNRAS, 354, 684
Viel M., Colberg J. M. and Kim T.S., 2008, MNRAS, 386, 1285