Disrupting Deep Uncertainty Estimation Without Harming Accuracy
Supplementary Material

Ido Galil
Technion
idogalil.ig@gmail.com

Ran El-Yaniv
Technion, Deci.AI
rani@cs.technion.ac.il

A Evaluation metrics

Let \(V_n \) be an independent set of \(n \) labeled points. Given a prediction model \(f \) and a confidence score function \(\kappa \), we define \(\Theta \) as a set of all possible values of \(\kappa \) in \(V_n \), \(\Theta \equiv \{ \kappa(x, \hat{y}_f(x)) : (x, y) \in V_n \} \), and assume that \(\Theta \) contains \(n \) unique values. Then the area under the RC curve (AURC) \([2]\) for \(\kappa \) is:

\[
\text{AURC}(\kappa, f | V_n) = \frac{1}{n} \sum_{\theta \in \Theta} \hat{r}(f, g_\theta | V_n).
\]

While AURC is a useful and well motivated metric, we also report on two other metrics that are often used in the relevant literature. The Negative Log Likelihood (NLL) is defined as \(\sum_{y \in Y} - \ln(p_y) \), with \(Y \) being the correct labels and \(p_y \) being the probability assigned by the model to label \(y \).

The Brier score \([1]\) computed over a sample of size \(N \) for which there are \(R \) possible labels is defined as:

\[
\frac{1}{N} \sum_{i=1}^{N} \sum_{j=1}^{R} (f_{ij} - o_{ij})^2.
\]

B Attacking softmax uncertainty

Code for the algorithm is available at: https://github.com/IdoGalil/ACE

B.1 Softmax under white-box settings

Table 1 shows the results of using ACE for different values of \(\epsilon \). As was the case for black-box settings, for larger values of \(\epsilon \), the effective \(\epsilon \) is half the size or less, meaning even fewer resources are needed for a very harmful attack. Under attack by ACE with \(\epsilon = 0.005 \), the AURC is about seven times worse and the NLL and Brier score are about three times worse. Figure 1 includes all the RC curves for ACE under white-box settings.

B.2 Adversarial robustness via adversarial training

Table 2 presents an evaluation of ACE performance on an EfficientNetB0 that was adversarially trained \([3]\). We include the results of a non-adversarially trained EfficientNetB0 for comparison. These results suggest there is no significant gain in robustness to ACE by using standard adversarial training. We hypothesize that it is due to adversarial training focusing on crafting examples with a very high loss, or that are able to cross the decision boundary. Such examples require a relatively large \(\epsilon \). Adversarial training using ACE or that uses various smaller values of \(\epsilon \) might be able to improve robustness to ACE.

35th Conference on Neural Information Processing Systems (NeurIPS 2021).
Table 1: Results of ACE under white-box settings on various architectures pretrained on ImageNet with softmax as the confidence score.

White-box	ε	Effective ε	AURC	NLL	Brier Score	Accuracy
ResNet50	0	0	69.1	0.958	0.322	77.67
	0.00005	0.000049	81	1	0.343	77.67
	0.0005	0.00422	269	1.639	0.562	76.01
	0.005	0.02245	555.4	2.837	0.815	76.01
EfficientNetB0	0	0	69.1	0.958	0.322	77.67
	0.00005	0.000049	81	1	0.343	77.67
	0.0005	0.00446	291.5	1.416	0.516	77.67
	0.005	0.002563	553.3	2.837	0.815	76.01
MobileNet V2	0	0	89.7	1.147	0.386	71.85
	0.0005	0.000049	112	1.232	0.428	71.85
	0.0005	0.00397	377.3	1.973	0.671	71.85
	0.005	0.01934	624.8	3.854	0.789	71.85
DenseNet161	0	0	66.8	0.945	0.326	77.15
	0.00005	0.000049	82.6	1.02	0.36	77.15
	0.0005	0.00425	261	1.643	0.54	77.15
	0.005	0.002153	521.6	3.932	0.68	77.15
VGG16	0	0	80.5	1.065	0.366	73.48
	0.00005	0.000049	103.4	1.164	0.413	73.48
	0.0005	0.00387	361.7	2.015	0.646	73.48
	0.005	0.001832	572.3	4	0.7	73.48

Table 2: Comparison of an EfficientNetB0 adversarially trained with a non-adversarially trained EfficientNetB0 in both black-box and white-box settings.

Effects of Adversarial Training	ε	Effective ε	AURC	NLL	Brier Score	Top1 Accuracy
EfficientNetB0 (Black-box)	0	0	69.1	0.958	0.322	77.67
	0.0005	0.00049	78.8	1	0.342	77.67
	0.005	0.00446	185	1.334	0.47	77.67
	0.05	0.02902	300.9	1.775	0.585	77.67
EfficientNetB0 AdvProp (Black-box)	0	0	73.4	1.009	0.337	76.56
	0.0005	0.00050	77.9	1.029	0.346	76.56
	0.005	0.00475	127.3	1.206	0.421	76.56
	0.05	0.03322	295.5	1.736	0.686	76.56
EfficientNetB0 (White-box)	0	0	69.1	0.958	0.322	77.67
	0.00005	0.000049	81	1	0.343	77.67
	0.0005	0.00446	291.5	1.416	0.516	77.67
	0.005	0.002563	553.3	2.837	0.815	77.67
EfficientNetB0 AdvProp (White-box)	0	0	73.4	1.009	0.337	76.56
	0.00005	0.000050	78.5	1.028	0.346	76.56
	0.0005	0.00476	144.7	1.211	0.429	76.56
	0.005	0.003172	569.9	2.537	0.79	76.56

B.3 Risk-coverage curves for softmax under black-box settings

Figure 2 includes all of the RC curves for ACE under black-box settings. Note that for MobileNetV2, VGG16 and ResNet50, the ε for the most potent attack depends greatly on which coverage is targeted. For example, the selective risk for MobileNetV2 on coverage 0.6 is higher for ε = 0.005 than it is for ε = 0.05.
Figure 1: RC Curves of ACE being used under white-box settings with softmax

C Deep ensembles

C.1 Deep ensembles under white-box settings

Table 3 shows the results of ACE on ensembles of different sizes consisting of ResNet50 models trained on ImageNet. Under attack by ACE with $\epsilon = 0.005$, the AURC degrades about eightfold. Note that the bigger the ensemble, the more resilient it is to ACE, and even the smallest ensemble is more resilient than a single ResNet50 model (an ACE used on a single ResNet50 model is presented in Table 1). The resulting RC curves are shown in Figure 3.

C.2 Risk-coverage curve for deep ensembles under black-box settings

Figure 4 includes the RC curve for using ACE on an ensemble of size 5 consisting of ResNet50 models under black-box settings, attacking it with either an equal ensemble consisting of different ResNet50 models or a “foreign” ensemble (consisting of EfficientNet, MobileNet and VGG). Note
that for the ResNet50 proxy, the selective risk for any coverage above 0.45 is slightly higher for \(\epsilon = 0.005 \) than it is for \(\epsilon = 0.05 \), meaning it is more effective to use a smaller \(\epsilon \) for these values. We observe the same to a lesser extent when using a foreign proxy; the selective risk for any coverage above 0.8 is slightly higher for \(\epsilon = 0.005 \) than it is for \(\epsilon = 0.05 \).

D Monte Carlo dropout

D.1 Monte Carlo dropout under white-box settings

We use ACE on MC-Dropout under white-box settings, with predictive entropy as its confidence score, using either an indirect attack (targeting softmax) or a direct attack (targeting predictive entropy). The results for the indirect softmax method are shown in Table 4 and Figure 5 and results for the direct predictive entropy method appear in Table 5 and Figure 6.
Table 3: Results of ACE under white-box settings on ensembles of different sizes consisting of ResNet50 models trained on ImageNet.

ϵ	Effective ϵ	AURC	NLL	Brier Score	Accuracy
0	0	63	0.871	0.314	77.82
0.00005	4.97E-05	68.8	0.897	0.327	77.82
0.005	0.003325908	133.7	1.112	0.425	77.82
0.00005	4.96E-05	71.2	0.916	0.333	77.61
0.005	0.00460713	154.8	1.177	0.449	77.61
0.00005	4.95E-05	74.4	0.94	0.34	77.2
0.005	0.00453732	176.9	1.252	0.474	77.2
0.00005	4.95E-05	74.4	0.94	0.34	77.2
0.005	0.003114596	533.4	2.344	0.713	77.2

Figure 3: RC Curves resulting from using ACE under white-box settings on ensembles of different sizes consisting of ResNet50 models.

We can observe two interesting phenomena: First, while for small ϵ values the direct method is slightly more harmful, for bigger values the indirect softmax method is significantly more harmful. Secondly, the more forward passes used for MC-Dropout, the weaker a direct attack becomes. The effects of more forward passes are not as clear for an indirect attack, and they sometimes seem to cause an even stronger attack (as observed in the example of VGG16).
D.2 Risk-coverage curves for Monte Carlo dropout under black-box settings

Using the knowledge gained from the white-box experiments, we attack MC-Dropout in black-box settings identically to how we attacked softmax: by using an ensemble as a proxy and attacking its softmax score, without using dropout at all. Observing Figure 4, which shows the RC curves for this setting, we can see that more forward passes made by the models do not seem to affect ACE’s effectiveness.

D.3 Monte Carlo dropout when measuring epistemic uncertainty

We additionally study ACE’s impact on MC-Dropout (in white-box settings) when measuring the model’s uncertainty (epistemic). We measure it by the variance of the label probabilities. We test ACE
Table 5: Results of ACE on MobileNetV2 and VGG16 pretrained on ImageNet with predictive entropy over several dropout-enabled passes as the confidence score, and targeted by ACE (a direct attack).

Direct attack (Entropy)	ϵ	Effective ϵ	AURC	NLL	Brier Score	Accuracy
MobileNet V2 30 passes	0	0	94.4	1.143	0.386	71.78
	0.0005	0.000049	110.8	1.212	0.417	71.84
	0.005	0.001822	323.1	1.820	0.623	71.79
MobileNet V2 10 passes	0	0	94.9	1.148	0.387	71.69
	0.0005	0.000048	111.3	1.215	0.417	71.71
	0.005	0.001826	321.9	1.818	0.620	71.61
VGG16 30 passes	0	0	85.8	1.056	0.365	73.37
	0.0005	0.000049	102.4	1.131	0.398	73.35
	0.005	0.001686	312.9	1.782	0.606	73.31
VGG16 10 passes	0	0	86.7	1.067	0.368	73.17
	0.0005	0.000048	102.7	1.138	0.399	73.21
	0.005	0.001704	308.4	1.783	0.599	73.26

in both indirect (targeting softmax) and direct (targeting variance) settings, and use 10 forward-passes for each.

The results are presented in Table 6 with its matching RC curves in Figure 8. These results suggest a few interesting points: (1) epistemic uncertainty is vulnerable to ACE. (2) Similarly to when using predictive entropy, an indirect attack on softmax is more potent than attacking variance directly. (3) We included a large ϵ (for white-box settings) of 0.05 to highlight that values too large may lower ACE potency, and that sometimes smaller values of ϵ are preferable.

E CIFAR10 with softmax confidence score

Table 7 shows the results of using ACE on ResNet18 and VGG16 trained on CIFAR-10 with softmax as the confidence score.
Figure 5: RC Curves of an indirect white-box attack by ACE targeting softmax and tested on MC-Dropout using a various amounts of forward-passes.

Table 6: Results of ACE on MobileNetV2 and VGG16 pretrained on ImageNet with variance over several dropout-enabled passes as the confidence score. ACE either targets the variance itself (a direct attack) or softmax (an indirect attack).

MC-Dropout	Variance (Epistemic)	ϵ	Effective ϵ	AURC	NLL	Brier Score	Accuracy
MobileNet V2	Indirect (Softmax)	0	0	120.4	1.15	0.387	71.61
		0.0005	0.0004	370.6	1.916	0.665	71.754
		0.005	0.00194	624.3	3.769	0.799	71.646
		0.05	0.01377	444.9	2.623	0.682	71.716
MobileNet V2	Direct (Variance)	0	0	119.5	1.149	0.387	71.75
		0.0005	0.00037	322.3	1.479	0.501	71.76
		0.005	0.00148	453.2	2.07	0.566	71.82
		0.05	0.00984	414.3	1.78	0.545	71.73
VGG16	Indirect (Softmax)	0	0	112.1	1.069	0.368	73.084
		0.0005	0.00039	361.6	1.904	0.643	73.06
		0.005	0.00185	565.9	3.771	0.753	73.104
		0.05	0.01514	448	2.642	0.679	73.114
VGG16	Direct (Variance)	0	0	112.4	1.069	0.368	73.08
		0.0005	0.00037	297.1	1.398	0.479	73.11
		0.005	0.00142	414.5	1.932	0.537	73.07
		0.05	0.01078	394.3	1.693	0.528	73.09
Figure 6: RC Curves of a direct white-box attack by ACE targeting the predictive entropy directly and tested on MC-Dropout using various amounts of forward-passes (matching the amount targeted).

Table 7: Results of ACE on ResNet18 and VGG16 trained on CIFAR-10 and softmax as the confidence score.

ϵ	Effective ϵ	AURC	NLL	Brier Score	Accuracy
0	0	6.5	0.229	0.083	94.98
0.00005	0.00005	7.2	0.239	0.087	94.98
0.0005	0.00049	16.1	0.331	0.111	94.98
0.005	0.00385	175	0.728	0.152	94.98
0	0	8.5	0.322	0.116	93.17
0.00005	0.00005	9.1	0.333	0.12	93.17
0.0005	0.00049	15.9	0.426	0.145	93.17
0.005	0.00395	133.8	0.789	0.18	93.17
Figure 7: RC Curves of a black-box attack by ACE targeting the softmax of the ensemble proxy tested on MC-Dropout using predictive entropy and various amounts of forward-passes.
Figure 8: RC Curves of a white-box attack by ACE targeting either the variance of 10 dropout enabled forward-passes for a direct setting, or softmax (with dropout disabled) for an indirect setting.
References

[1] G. W. Brier. Verification of Forecasts Expressed in Terms of Probability. *Monthly Weather Review*, 78(1):1, Jan. 1950.

[2] Y. Geifman, G. Uziel, and R. El-Yaniv. Bias-reduced uncertainty estimation for deep neural classifiers. In *International Conference on Learning Representations*, 2018.

[3] C. Xie, M. Tan, B. Gong, J. Wang, A. L. Yuille, and Q. V. Le. Adversarial examples improve image recognition. *CoRR*, abs/1911.09665, 2019.

Checklist

1. For all authors...
 (a) Do the main claims made in the abstract and introduction accurately reflect the paper’s contributions and scope? [Yes]
 (b) Did you describe the limitations of your work? [Yes] See Section ??
 (c) Did you discuss any potential negative societal impacts of your work? [N/A]
 (d) Have you read the ethics review guidelines and ensured that your paper conforms to them? [Yes]

2. If you are including theoretical results...
 (a) Did you state the full set of assumptions of all theoretical results? [N/A]
 (b) Did you include complete proofs of all theoretical results? [N/A]

3. If you ran experiments...
 (a) Did you include the code, data, and instructions needed to reproduce the main experimental results (either in the supplemental material or as a URL)? [No] The code will be publicly available upon acceptance.
 (b) Did you specify all the training details (e.g., data splits, hyperparameters, how they were chosen)? [N/A]
 (c) Did you report error bars (e.g., with respect to the random seed after running experiments multiple times)? [N/A]
 (d) Did you include the total amount of compute and the type of resources used (e.g., type of GPUs, internal cluster, or cloud provider)? [N/A]

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...
 (a) If your work uses existing assets, did you cite the creators? [Yes] See Section ??.
 (b) Did you mention the license of the assets? [Yes]
 (c) Did you include any new assets either in the supplemental material or as a URL? [Yes] See Appendix
 (d) Did you discuss whether and how consent was obtained from people whose data you’re using/curating? [N/A]
 (e) Did you discuss whether the data you are using/curating contains personally identifiable information or offensive content? [N/A]

5. If you used crowdsourcing or conducted research with human subjects...
 (a) Did you include the full text of instructions given to participants and screenshots, if applicable? [N/A]
 (b) Did you describe any potential participant risks, with links to Institutional Review Board (IRB) approvals, if applicable? [N/A]
 (c) Did you include the estimated hourly wage paid to participants and the total amount spent on participant compensation? [N/A]