ABSTRACT

Background: The advanced development of lipid nanocarrier contributes a lot to the domain of therapeutic effectiveness of the drug. However, the parameter such as drug loading, drug release, stability, and targeting influence much more towards the limitation of many lipid nanocarriers. The Nanostructured lipid carrier, the second generation of lipid carrier has more promising advantages over others and have tremendous targeting ability to skin for drug administration.

Objective: The present review paper focus to understand the different fabrication technique, impact of lipid and surfactant on formulation effectiveness, characterization of formulation, and Crystalinity concept of lipid which have an impact on stability & drug loading. Focus on a parameter such as Transepidermal water loss, skin occlusion, and hydration which determine the ability of the carrier to target the skin. Hence the effectiveness of the drug improved. This review also focused on patents based on Nanostructured lipid carriers.

Method of preparation: many methods have been adopted to prepare Nanostructured lipid carriers and among all High-pressure homogenization method is considered as best one.

Authors’ contributions

This work was carried out in collaboration among all authors. All authors read and approved the final manuscript.

Article Information

DOI: 10.9734/JPRI/2022/v34i17B35771

Open Peer Review History:
This journal follows the Advanced Open Peer Review policy. Identity of the Reviewers, Editor(s) and additional Reviewers, peer review comments, different versions of the manuscript, comments of the editors, etc are available here: https://www.sdiarticle5.com/review-history/82641

Received 20 December 2021
Accepted 22 February 2022
Published 02 March 2022
Conclusion: Because of numerous advantages of this carrier system such as biocompatibility of lipid, high drug encapsulation, stability over others, it is considered as a major focused area for researchers. The new domain of Nanostructured lipid carrier is transdermal drug administration by targeting the skin; hence more research is focused on topical preparation. However, toxicity must have to be studied in humans. So by considering all factors one can rename it as “smart nano lipid carrier”.

Keywords: Nanostructured lipid carrier; skin occlusion; stability; skin targeting; fabrication; safety and toxicity; patent; transepidermal water loss.

ABBREVIATIONS

NLC : Nanostructured Lipid Carrier
SL : Solid Lipid
LL : Liquid Lipid
ZP : Zeta Potential
EE : Entrapment Efficiency
TEWL : Trans Epidermal Water Loss
WAXS : Wide Angle X-ray Scattering
SAXS : Small Angle X-ray Scattering (SAXS)
CCT : Critical Crystalline Temperature
PPI : Proton Pump Inhibitor
NSAID : Non-steroidal Anti-inflammatory Drug

1. INTRODUCTION

In the last decade the nanoparticulate carrier imparting a promising drug delivery system for drugs. Among the nanoparticulate carrier, lipid nanoparticles carrier is the emerging carrier for recent development. As many drugs are structurally designed and well-formulated but their toxicity, low bioavailability, stability make them limited for use. Hence by choosing the route of administration along with lipid nanocarrier removes the boundary of limitation. The various lipid carriers used in the formulation are liposome, niosome, Solid Lipid Nanoparticles (SLN), Nanostructured Lipid Carriers (NLC). Among these, the NLC is now a promising carrier for researchers as it provides more advantages over other lipid carriers for drug delivery. The solid lipid nanoparticles which contain only solid lipid produce more limitations to formulation such as poor drug loading capacity(which is attributed due to lipid crystalline nature), the expulsion of drug content (because of perfect crystalline lattice formation), and stability concern of formulation over long storage [1,2]. However, NLCs are second-generation lipid carriers that consist of solid lipid and liquid lipid enhancing drug entrapment capacity and preventing leakage of the drug during storage [3,4]. Hence the current study is concerned with how NLC is a promising delivery system through the skin by studying the important parameter such as skin barrier & permeability, skin hydration & occlusion, TPEL(Trans Epidermal Water Loss), skin targeting, and stability aspect of the formulation [5,6,7]. Skin's enormous surface area makes drug easy administration and acts as a barrier for drug molecules having a molecular weight greater than 500 Da [8]. The top layer of skin called the epidermis act as a barrier that limits many drugs from their effectiveness. Hence NLC is the approach equipped with nanotechnology and lipid carriers that can make effectiveness through the skin.

NLC has particle diameter ranges from 10-1000 nm consisting of solid lipid & liquid lipid which are biocompatible. The presence of different fatty acid carbon chain in liquid lipids make NLC with a less organized crystalline structure. Hence improving loading capacity for drug accommodation. The presence of Liquid lipids is an excellent solubilizer of drugs than Solid Lipid (SLS). The NLC produces low cytotoxicity/systemic toxicity as it is composed of physiological and biodegradable lipids. The nanosizes of lipid particles enhance drug penetration through the stratum corneum. The controlled release from this carrier is also possible due to the solid lipid matrix [9,10].

Table 1. Type of NLC model along with characteristics

NLC type	Characteristics	References
Imperfect types crystal types	Nanoemulsion is formed by blending SL(solid lipid) & LL (liquid lipid) followed by cooling and highly disorder matrix formed due to crystallization process - characterized by low liquid lipid - Disordered matrix contain more space due to gap between	[11]
### NLC type	Characteristics	References
Multiple types carrier | fatty acid chain which will accompany more drug
- NLC matrix does not form a high order structure due to different chain lengths of fatty acid & other glycerol | [12,13]
- It is Oil/fat/water system
- In the solid matrix, the oil compartment distributed
- High drug solubility in nanosized lipid oil compartment
- A high concentration of liquid lipid is used as a drug that has poor solubility in solid lipid
- Drug entrapment is more
- Prolong release is achieved because of being surrounded by a solid lipid matrix
- Drug leakage minimized

Amorphous types | Mixing of special lipid to form amorphous state (e.g. hydroxycocatalcohol hydroxyl stearate or isopropyl myristate)
- Drug leakage minimized due to crystallization of lipid matrix | [14]

![Type of NLC](solid_lipid_carrier.png)
NLC(SL+LL)

Fig. 1. Different types of NLC [15]

2. **NLC FABRICATION**

2.1 **Ingredients Used for NLC**

The Nanostructured lipid carrier contains major component that are solid lipid, Liquid lipid, surfactants, and water. Normally surfactants are dispersed in water and they add to the lipid mixture followed by homogenization. The ratio of SL and LL is from 70:30 to 99:9:0:1. The concentration of surfactant varies from 0.5-5% [16].

2.2 **Lipids and Surfactants as Component of NLC**

To formulate the NLC lipid is the primary component of the formulation. It influences a parameter such as drug encapsulation, stability, and prolonged action. The lipids used in the carrier are biodegradable and non-toxic, and physiologically acceptable. Even though many lipids are available and they have GRAS (Generally Recognized As safe) status, the choice of suitable lipid for NLC is of more concern. The characteristics such as solubility of the drug in lipid and partition coefficients are extremely vital for the selection of lipid. Most of the study reveals that the solubility of the drug in lipid influences the drug loading/encapsulation efficiency [23]. The research also reveals that drug loading, charge, and size of the particle are also affected by the degree of crystallization of lipid [24]. The melting point of lipid also has a vital role as the higher melting point of lipid leads to an increase in the viscosity of the dispersed...
phase which increases particle size. The other characteristics such as lipid hydrophilicity & crystal shape also influence the NLC quality. The increase in lipid amount 5-10 percent leads to an increase in particle size [25]. Hence it is highly concerning to select the suitable lipid for NLC.

Table 2. List of the ingredients used in NLC: [17-22]

Component	Trade name	Chemical name	Melting point
Solid Lipids			
	Compriro® 888 ATO	Glyceryl behenate	69°C - 74°C
	Precirol ATO®5	Glyceryl palmitostearate	50°C - 60°C
	Crodamol™ CP, Precipac ATO, Cutina CP®	Cetyl palmitate	47°C - 54°C
	Glycerol tripalmitate	Tripalmitin	44.7°C - 67.4°C
	Octadecanoic acid	Stearic acid	68°C - 70°C
	Glycerin Monostearate	Glyceryl monostearate	57°C - 65°C
	Softisan 142	Hydrogenated coco-glycerides	42°C - 44°C
	Dynasan 114	Glyceryl trimyristate	55°C - 58°C
	Softemul 165	Glycerol stearate & PEG 100 stearate	50°C - 60°C
	Dynasan® 116	Triacylglycerol of palmitic acid	62°C - 64°C
	Elfacos® C 26	Hydroxyoctacosanyl	80°C
	Dynasan® 116	Hydroxy stearate	80°C
	Imwitor 900®	Mono diglyceride	54°C - 64°C.
	Syncrowax ERLC	Ethylene glycol ester	60°C - 68°C
Liquid Lipids	Myverol 18-99K	Monoacylglycerols	-
	Gelucire® 44/14	Lauroyl Polyoxyglycerides	-
	Epikuron™ 200	Soy lecithin	-
	Miglyol® 812	Caprylic/Capric triglycerides (C8/C10)	
	Softisan® 378	Oleic acid (9Z)-Octadecenoic acid	-
	Labrasol®	Linoleic acid	-
	Oleic Acid	Propylene glycol decaprylate	-
	Caproyl 90	Glyceroyl Caprylate/Caprate	-
Surfactants	Tween®20	Polyoxylethylene sorbitan laurate	16.7
	Tween® 80	Polyoxylethylene sorbitan oleate	15
	Lutrol® F68	Poloxamers 188	29
	Lutrol® F127	Poloxamer 407	21.5
	Cremophor EL	Polyoxy castor oil	12-14
	Solutol® HS 15	Macrogol-15-hydroxy stearate	15
	Kolliphor® HS 15	Phosphatidylcholine	9
	Phospholipon® 80/H	Soybean lecithin	7-10
	Epikuron® 200	Soy lecithin	-
	Cremophor® RH 40	PEG-40 Hydrogenated castor oil	14-16
	Labrasol®	Caprylic capryl macroglycerides	8-12
	Gelucire® 44/14	Lauroyl polyoxy 32	14
	Span 20	Sorbitan monolaurate	8.6
	Sodium oleate	Sodium oleate	18.0
	Polyvinyl alcohol	Polyvinyl alcohol	15-19
The crystallization, stability, and toxicity of NLC are affected by surfactant type and concentration [26]. The choice of surfactant is also based on the route by which the drug is administered, the effect on particle size, and HLB value. Due to crystallization during NLC formulation particle surface area increases that leading to the whole system being unstable. Therefore, the selection of surfactant becomes necessary to make the formulation stable. Another important parameter of surfactant is rHLB (required HLB) value for lipid can be calculated by dispersing in a mixture of surfactant with different HLB values followed by high-pressure homogenization to find out least particle size [27,28].

Other excipients as a component of NLC: There are other categories of excipients such as counter ion (ionic polymer and organic salts) used to minimize the problem associated with water-soluble drug encapsulation. The surface modifiers were also used to reduce the NLC formulation from phagocytic uptake by macrophages. Various polymers like polyethylene glycol can be used to coat the lipid particle so that drug residence time can be increased in the systemic circulation. This surface modification can also improve the physical stability and drug targeting [23,29].

2.3 NLC Method of Fabrication: The Method is Categorized into 3 Groups Namely [30]

i) High energy method
ii) Low energy method
iii) Organic solvent-based method

2.4 Methods of NLC Preparation

High energy method based on the requirement of equipment that can produce high shear force, distortion of pressure, or the mechanism involved in particle size reduction. The low energy method does not require any specific amount of energy for the reduction of particle size. However, the solvent-based method involves the requirement of organic solvent on a mechanistic basis to the system for the reduction of particle size [30]. Among all the methods high-pressure homogenization method is the most accepted and well-reported method for the research work because of its less production time & easy scale-up process. This method is again categorized into two parts - the hot method and the cold method.

Methods of preparation of NLC

- **High Energy Method**
 1. High pressure homogenization
 2. Ultrasonication
 3. Microwave assisted
 4. Super critical fluid technique

- **Low Energy Method**
 1. Micro emulsion
 2. Double emulsion
 3. Phase inverted Temperature
 4. Membrane Contactor

- **Organic Solvent Based Method**
 1. Solvent Injection Method
 2. Emulsification
 3. Solvent Evaporation
 4. Membrane Contactor
 5. Solvent Diffusion

Fig. 2. Different methods used for the preparation of NLC
In the hot method, initially solid lipid has to be melted above 5-10°C of its melting point, then liquid lipid has to be added to it & mixed for a few minutes to ensure proper mixing of it. Then surfactant solution heat at the same temperature as lipid mixture. At the same temperature, surfactant solution was added to lipid mixture followed by homogenization under high pressure (500-800 bar) to form nanoemulsion. Subsequently, the mixture allows cooling below room temperature to give NLC [31,21,32]. In the cold homogenization method, the melted hot mixture of lipid & drug is allowed to cool by using nitrogen of ice. Then the mass is ground into fine particles. The obtained macro particle has to be dispersed in a cold aqueous solution containing surfactant/stabilizer followed by homogenization with high pressure. To get particles with average size & good polydisperse index it is necessary to use high pressure with more number cycles as compared with the hot homogenization method [33,34,35].

Ultrasonication: The cavitation mechanism used for the ultrasonication method. Initially the solid lipid and liquid lipid melted at a temperature higher than the melting point of solid lipid. The drug substance needs to add the lipid mixture. The next step involves preparing the aqueous phase of surfactant heated at the same temperature and adding drop by drop to the lipid mixture with constant stirring. The obtained emulsion is sonicated by using a probe sonicator.

Microemulsion method: Lipid mixture containing drug mixed with surfactant and co-surfactant with proper ratio to form a microemulsion. The prepared microemulsion (hot) is diluted with cold water so that breaking of microemulsion takes place which forms nanoemulsion.

Phase inversion method: This method involves the use of heating as well as the cooling cycles for the formulation component. During this cycle the temperature used in increasing order of 4°C/min from 25°C to 80°C and bring back the temperature to 60°C. Due to this Thermal treatment inversion of emulsion occurs.

Solvent emulsification/Evaporation methods: This method involves the dissolution of solid lipid and liquid lipid with drugs in an organic solvent (water - immiscible). Then it is emulsified in an aqueous phase using high shear homogenization. Instead of using temperature, low pressure (40-50 bar) is used to evaporates the organic solvent. This method is suitable for the thermo labile drug as the method use low - pressure technique. However presence of residual solvent (as heat avoided) makes this method limited for use.

Membrane contractor method: The lipid mixture is placed in a pressure vessel above its MP(melting point). Under applied pressure, the lipids allow passing through the pores of the ceramic membrane to produce tiny droplets. With constant stirring, the aqueous phase allows to flow tangentially inside the ceramic membrane and remove droplets formed at the outlet. Then bring the preparation to room temperature so that lipid particle formed.

3. VARIOUS METHODS OF FABRICATION, PROCEDURE INVOLVED ALONG WITH ADVANTAGES AND DISADVANTAGES OF METHODS

Methods of fabrication	Procedure involved	Advantages of method	Disadvantages of method	References
Hot high-pressure homogenization	Drug lipid mixture emulsified in a hot aqueous solution containing surfactant at same temperature followed by homogenization with high pressure then cool to room temp to form NLC	Simple & cost effective method	Not suitable for thermo labile drug	[36,37]
Cold high-pressure homogenization	The melted drug–lipid mixture solidified using liquid nitrogen or ice and milled to get microparticles. Then it dispersed in cold aqueous solution containing surfactant, then homogenized at high pressure to form NLC	Suitable for thermo labile drug & large scale production	The presence of macroparticle affect dispersion quality	[37,38]
Methods of fabrication	Procedure involved	Advantages of method	Disadvantages of method	References
------------------------	--------------------	----------------------	-------------------------	------------
Ultrasoundation	Methods involve direct mixing of melted lipid phase with heated with aqueous surfactant solution using ultrasonication. Probe Sonication is more useful to obtain the narrow distribution of NLC.	Simple & feasible for production as significant available of ultrasonicator	Large polydispersity & moderate product stability	[39]
Microemulsion	The lipid–drug mixture is dispersed in the hot aqueous solution of surfactant at the same temperature to form a microemulsion. Then hot micro emulsion is poured into cold water to form nanoemulsion which will produce NLC upon recrystallization.	Scale-up process easy	Dilution of the particle due to high volume of water, a high concentration of surfactant used	[40,41]
Phase inversion technique	Under this method mixture of lipid, drug, surfactant, and water is formed by stirring & exposed to heat & cold cycle (3 cycles). Then dilute with cold water to induce shock which will produce NLC by phase inversion.	Suitable for thermo sensitive drugs, avoid using organic solvents	The process is complex & require more time	[42]
Membrane contractor	This method involves the passing of melted lipid over the membrane to produce tiny lipid particles & at the same time aqueous phase is circulated in the membrane to remove lipid droplets from the pore. Then cool at room temperature.	Simple methodology	It may not be more effective as particles may stick to the membrane	[43,44]
Solvent diffusion method	In this method, an organic solvent such as benzyl alcohol is used to dissolve lipid. To maintain the thermodynamic equilibrium organic solvent is saturated with water. The o/w emulsion is diffused into the water with continuous stirring to	Water miscible solvent used	Use of organic solvent	[4,7]
Methods of fabrication

Procedure involved	Advantages of method	Disadvantages of method	References
Solvent emulsification evaporation	Suitable to thermo sensitive drug	Use of organic solvent, Ultrasonication required	[45]
The lipid dissolves in a water-immiscible solvent like cyclohexane. After that it is emulsified in an aqueous surfactant solution with continuous stirring, then lipid is precipitating on the removal of organic solvent.			
Solvent Injection method	Easy process	Use of organic solvent	[46,47]
Dissolve lipid in water-immiscible solvent & quickly inject the preparation into an aqueous solution containing surfactant through the needle.			

4. DIFFERENT PARAMETERS OF NLC FORMULATION, ITS DESCRIPTION AND TEST METHODS

Table 4. Characterization of NLC

Parameter	Description	Test method	References
Morphology (particle size & distribution)	Stability of NLC mostly affected by Particle size & distribution		
- Particle with smaller size & limited distribution tend to reduce aggregation & improve physical stability
- Increase amount of liquid lipid may increase particle size
- Low concentration of surfactant produce larger NLC particle compare with the high surfactant-to-lipid ratio | Transmission Electron microscopy (TEM)
- Scanning electron microscopy (SEM)
- Dynamic light scattering (DLS) | [31,50,51] |
| **Zeta potential** | This parameter analyze the NLC repulsion of particles & measure the long term stability
- Greater surface charge increases electrostatic repulsion & decrease aggregation between particles
- The stable Nanostructured Lipid Carrier should have a minimum ZP of ±30Mv
- Formulation parameters like liquid lipid & SL concentration and surfactant nature have a significant impact on NLC surface charge
- Higher LL to SL ratio, the impact is less as LL mostly negative charge | Dynamic light scattering (DLS) | [52,17] |
| **Crystallinity** | Lipid crystal lattice structure affect encapsulation efficiency and drug release rate from NLC
- Amount of drug-loaded, viscosity of preparation, and storage time have an impact on the Crystallinity of NLC
- More the crystal lattice imperfection, more the encapsulation of drug due to entrapment & | Differential scanning Calorimetry (DSC)
X-ray Diffraction (XRD) | [53,54] |
| Parameter | Description | Test method | References |
|---------------------------------|---|--|------------|
| Drug load & Encapsulation | - The nature and amount of drugs have a significant impact on entrapment efficiency
 | - There is inverse relationship was observed between the amount of drug-loaded and entrapment efficiency
 | - Lipophilic drug uniformly solubilized in LL/SL mixture and entrapped for a long period | Ultracentrifugation & spectroscopic analysis | [55,56] | |
| efficiency | In vitro drug release | Dialysis bag method, Franz diffusion cell | [57] |
| | - Factors such as liquid lipid quantity, type of solid lipid, the surfactant used, the quantity of drug and location in NLC, pH of medium affect the drug release | | |
| | - Release of drug from NLC controlled by diffusion of drug or erosion of matrix which depends on drug entrapped in NLC core, in the matrix or the shell. | | |
| | - Due to more surface area & shorter diffusion path, small particle size results in faster drug release compare with larger particle | | |

4.1 Parameter of NLC Formulation

Morphology: The effectiveness of NLC formulation depend on particle size and shape. The study shows that particle of NLC formulation ranges from 10-1000nm. However depending on site-specific action, the range may vary or be specific (50-300 nm for chemotherapeutic agent). The physical stability of NLC formulation depends on particle size & its distribution throughout the formulation. The parameter like entrapment efficiency, cellular uptake, the potential for a target is affected by the shape of particles present in the formulation. The analysis technique such as TEM (Transmission Electron Microscopy) and SEM (scanning Electron Microscopy) is necessary to find out the shape of the particle. Generally, NLC formulation shows the spherical particle with low surface area [31].

Surface charge: The surface charge of particles affected by the concentration of lipid mixture and surface active agent. The term ‘Zeta potential’ is used to measure the surface charge. The determination of zeta potential (ZP) of a particle based on electrophoretic mobility. Higher the zeta potential value (> +30 mV) lesser the particle aggregation. Generally, the dispersion should have ZP either more than +30mV or less than -30Mv [52].

Entrapment Efficiency (EE): Entrapment efficiency is the percentage amount drug entrapped in particle and determine the efficiency of the formulation. The lipophilic drug entrapped more as compared with hydrophilic one as the drug easily solubilized in lipid. The release rate of the drug in NLC formulation is significantly affected by EE as a high entrapment value changes the concentration gradient [55]. The formula for EE is as below

\[
EE = \left(\frac{WI - WS}{WI} \right) \times 100
\]

Where WI : Initial amount of drug added to the formulation
WS: Amount of drug present in the supernatant
WL: Total weight of lipid in formulation

In vitro drug diffusion study: A Dialysis bag is used for in-vitro drug diffusion study. Initially the dialysis membrane activated by soaking with distilled water overnight for better results. The prepared NLC formulation is required to be put inside the bag and both ends to be sealed. The total experiment need to conduct under sink condition. At specific time intervals samples are withdrawn and replaced with fresh media. The sample is analyzed with UV-visible spectrophotometer [57].

5. SCREENING METHODS FOR SOLID LIPID AND LIQUID LIPID

Liquid lipid: Liquid lipid can be selected depending on the solubility of the drug in it. The excess amount of drug added to 2 ml of various
liquid lipid in a small vial. Then the vial stoppered tightly & continued stirring with the help of a mechanical shaker at 25°C for 24-48 hours followed by centrifugation for 30 minutes at 37°C. The collected supernatant was suitably diluted & analyzed with a UV-Vis spectrophotometer [48].

Solid lipid: one of the methods used to select solid lipid-based on the solubility of the drug in it. This can be performed by incremental addition of the drug to solid lipid at above its melting point until the excess of drug fails to dissolve in it. Usually, solid lipid has to be melted above 5-10°C of its melting point. Then depending on the solubility of drug amount in various solid lipids it can be chosen for NLC formulation [49].

6. LIPID MATRIX CRYSTALLINE BEHAVIOR

The crystalline behavior of the lipid matrix is to be studied as it is fundamental to optimize the formulation. The melting point depression (temperature much below its melting point) of the liquid mixture is responsible for the crystallization of lipid. The crystallization of lipid occurs only when the lipid blend of NLC cooled below its CTT (critical crystalline temperature). The crystallization of the internal structure of lipid determines the shape of the particle, amount of drug incorporation, and stability of the formulation. The characterization of Crystallinity of NLC study utmost importance as encapsulated drug undergoes polymorphic changes leads to leakage of the drug, impact on release rate and encapsulation efficiency [2,58]. There are structural changes of lipid during heating and cooling of the mixture, which lead to different polymorphic formations [59]. Therefore control of transition of the polymorphic form allows the metastable crystalline form to entrap more drugs [60] and stable polymorphic forms of nanoparticles are formed.

Depending on the cooling rate of NLC preparation and solidification of starting material, the nucleation process starts from the inner layer of lipid [61,62]. That is why depending on the preparation process and composition, the internal structure of lipid particle has various conformations like gel, liquid crystal, etc.

The study also reported melting point of the stabilizing agent can affect the lipid polymorphic form of thermodynamic stability. The melting point of stabilizer greater than 50°C maintains the lipid in low thermodynamic stability as compared with lipid having melting point <0°C (which favors stable polymorphic transition) [63]. Two possible ways that the crystallization process modulation is mediated by lipid having low molecular weight. In the first way interaction between molecules of low molecular weight lipid with triglyceride molecules. On the other hand, heterogeneous nucleation process induction leads to organized of minor lipids into the micellar structure.

DSC (Differential scanning calorimetry) and X-ray diffraction are the two possible methods that investigate the crystalline status. DSC gives information about the change in physical & chemical properties as a function of temperature due to heat loss or gain. This information tells about the status of lipid, crystallization, and melting of solid lipid used in NLC [23]. DSC is used to analyze the crystalline nature of lipid in a pure state and after processing (freeze-dried powder). The solid lipid & liquid lipid compatibility identified by DSC and help to analyze the polymorphic transition. The degree of Crystallinity or RI (recrystallization index) can be measured by DSC data.

\[
RI(%) = \frac{\Delta H_{\text{of NLC}}}{\Delta H_{\text{bulk lipid}} \times \text{concentration of lipid}} \times 100
\]

Where,
\[
\Delta H_{\text{of NLC}} = \text{melting enthalpy of 1g NLC preparation}
\]
\[
\Delta H_{\text{bulk}} = \text{melting enthalpy of 1g bulk lipid}
\]
\[
\Delta H \text{ is given in j/g & concentration given in percentage}
\]

XRD is the technique that helps to determine crystal structure & various polymorphic forms and reveals compound polymorphic structural changes. In different ways, lipids may aggregate to give polymorphic forms like micelles, laminar phases. Wide range X-ray scattering (WAXS) and small-angle X-ray scattering (SAXS) give information on layer arrangement, polymorphic behavior, crystal structure. The length of long & short spacing of lattice and drug localization in it can also be studied by X-ray diffraction [64,65].

7. NLC STABILITY CONCERN

The long-term storage of NLC may lead to aggregation due to perikinetoflocculation (flocculation due to Brownian motion of colloidal particles). A pearl-like network arrangement observed with NLC of highly concentrated
dispersion leads to prevent collision and as a result, perikinetic floculation can be avoided. This pearl-like network converts to fine particles once it is in contact with gastric fluid on administration [57].

As NLC formulation possesses less water in comparison with solid lipid nanoparticles, then care must be considered to avoid bacterial growth and changes in initial particle size. There are two possible ways to preserve the stability of NLC. One is to remove water content by freeze-drying (by converting nanoparticles liquid dispersion to solid). The second possible way is to add a preservative to NLC preparation [66,67]. Generally, the freeze-dried nanoparticles should maintain stability by preventing changes in particle diameter, reducing reconstitution time, and maintaining the appearance while maintaining drug activity [68]. As the freeze-drying process leads to aggregation of particles it is necessary to add cryoprotectant. A group of researchers (Beloqui et al.) conducted the study to know the effect of cryoprotectant on NLC formulation by taking different concentrations of trehalose, sucrose, sorbitol (5,10,15% W/V) respectively [69,70,71]. The study concluded that trehalose is effective to prevent the aggregation of particles. Another study was conducted by Varshosaz et al using microcelac, Avicel PH 102, Avicel RC 591, Mannitol, and sucrose at different concentrations and found that Avicel RC 591 at 1% concentration exhibit effective agent to prevent the increase of particle size [66]. So it needs to be attention for the formulator that the lyophilization process only does not improve stability but required adding cryoprotectant for it. Another way to prevent the instability of NLC is the use of preservatives. Obeidat et al conduct a study by using eleven different preservatives and study their influence on particle size, ZP (zeta potential) & other physical stability of NLC formulation loaded with Q10. They collected the sample at 3,6,12 month intervals (sample store at room temp.) and the result found that seven preservatives out of 11 show efficacy for the stability of NLC formulation (Hydrolite 5 was the best effective preservative) [67].

In topical NLC preparation preservative is added to maintain physical stability but preservative also causes destabilization of NLC. So preservatives are categorized into various types based on their impact on NLC preparation.

A multifactorial phenomenon is related to physical stability or the effect of destabilization. Examples of such factors are the nature of particle stabilizer, the affinity between particle surface and preservative, a preservative with stabilizer layer interaction, anchoring of stabilizer onto/into the surface, preservative ability to reduce zeta potential, surface hydrophobicity of particle [67].

![Fig. 3. stabilization effect A) particles collide to form an aggregate in low lipid concentration dispersion B) in high concentration NLC dispersion, pearl-like network dispersed into fine particles upon dilution](image-url)
Table 5. Different preservatives & their impact on NLC stability

Example of preservative	Impact on stabilization of NLC
Ethanol	Preservative causing major stability problem
Caprylyl glycol	Minor stability issue by preservative
Pentylene Glycol (pentylene + propylene glycol)	Preservative with stabilizing effect
Propylene glycol	Have no impact on the stability

8. SKIN AS TARGETING ORGAN FOR NLC

8.1 Skin Barrier

Human body covers the skin as the largest organ having a surface area of approximately 2 sq.m. It serves as a permeability barrier against the transdermal absorption of many biological agents [72]. Skin acts as a major factor to determine drug delivery aspect such as permeation & drug absorption through the dermis. The skin is composed of mainly three layers such as epidermis, dermis, and lower layer of adipose tissue. The stratum corneum (SC), the outermost layer of skin is the rate-limiting barrier for the movement of various chemical substances. The coenocytes of the stratum corneum embedded in a lipid matrix have a significant role in the permeability of substance. Lipids that are present in SC are ceramide, phospholipids, sterol ester, cholesterol-3 sulfate & free fatty acid. The stratum corneum also contains sebaceous lipid (composed of triglyceride, wax ester & squalene). This organized structure of lipid is completely related to barrier properties of skin [73]. The factors which are responsible to target skin for NLC are skin permeation, skin hydration & elasticity, skin occlusion, Transepidermal water loss.

8.2 Skin Permeation

The Transepidermal pathway contains intercellular and transcellular routes as micro pathways for the transport of drugs. As two pathways involved in the transport of drugs through intercellular lipid, more research work focused on to understanding the organization of the structure and composition in the SC. The following mechanism involves drug penetration through the skin:

i) Lipid present in formulation mediating increased transdermal drug delivery through the appendageal route.

ii) By skin fluidizing property lipid acts as a penetration enhancer.

iii) Direct skin-carrier drug exchange through ‘collision complex transfer’.

![Drug penetration through the different route of the skin](image-url)
Among the appendageal route, the hair follicle is the most penetration pathway for NLC. As NLC contains more lipid as a component it may exchange with skin lipid and facilitate drug penetration. However other factors responsible for drug permeation are particle size, aggregation form, the solubility of a particle in skin lipid, particle surface charge, and capacity to form a film over skin [7].

8.3 Skin Hydration

The hydration state of the stratum corneum normally ranges from 10-20%. The content of lipid and water has a significant influence on the skin frictional resistance. The presence of biocompatible lipid in NLC produces occlusive action which enhances skin hydration. Due to skin hydration, cornocyte packing is loosened and an expanded gap leads to more drug penetration [74]. As a particle of less size in NLC, the capillary channel of nanometer pores will be very smaller. Hence decrease the hydrodynamic evaporation of water [75]. When the concentration of lipid is more in formulation leads to more occlusion resulting in increased hydration. Corneometer is the instrument used to measure skin hydration. This instrument measures the conductance of the dielectric medium. The dielectric properties changes as the skin hydration level increases.

8.4 Transepidermal Water Loss (TEWL)

It is a good indicator to know the impaired barrier function of SC. It is the passive evaporation of water to the environment through the skin due to vapor pressure gradient. The increase in TEWL indicates disruption of SC and depletion of intercellular fluid [6]. When NLC is used in topical the TEWL is lesser due to skin occlusion resulting in skin hydration. The nanosizes of the particle of NLC have more surface area and improve the particle contact with the stratum corneum. The lipid particle forms a thin film over the skin and reduces the evaporation of water. The other factor responsible for TEWL is the size of the particle, amount of lipid, and presence of emollients in the formulation [76,77].

8.5 Skin occlusion: occlusion involves hydration skin due reducing of TEWL. The presence of lipid in formulation produces film over skin leads to occlusion effect. With lipid formulation like NLC ‘controlled occlusion effect’ can be achieved by i) at a given lipid concentration the occlusion effect can be increased by reducing the particle size or ii) at a given particle size by increasing the lipid concentration [76]. The characteristics of lipid such as low melting point & high Crystallinity can attribute more occlusion effect.

Fig. 5. Skin as a target organ for NLC
Table 6. Literature survey on the drug used in NLC topical formulation for targeting skin

Name of drug	Category	Dosage form	Method used	Composition of formulation (solid lipid, liquid lipid, surfactant)	The particle size & Zeta potential	Encapsulation efficiency	Research output	References
Aceclofenac	Non-steroidal Anti-inflammatory drug for rheumatoid arthritis	Gel	Ultrasonic high-speed homogenization	Stearic acid, oleic acid, Tween 80	< 500 nm	75-85%	Optimized formulation converted into topical gel & shows the sustained release profile	[78]
Betamethasone	Glucocorticoids for treatment of atopic dermatitis	Ointment	Melt emulsification method	Precirol ATO 5, oleic acid, Tween 80, span 80	169.1 nm, -23.4 mV	85%	Topical ointment NLC formulation shows high skin retention (35.43 μg/g) and low penetration (0.87 μg/ml). More advantage for skin retention as it was better for drug release	[79]
Clindamycin	Antifungal treatment for acne	Gel	High-pressure homogenization	Stearic acid, oleic acid, Pluronic F-68	258.83 nm, -19.0 mV	-	Topical gel formulation shows stability with short term stability study. No change of pH, viscosity & consistency	[80]
Clotrimazole	Antifungal drug for skin occlusion effect	Semi-solid	Hot high-pressure homogenization	Dynasan 116, tyloxapol, Miglyol 812	<1 μm	>50%	Research carried out for both SLN & NLC for topical delivery. Particle diameter same after 3 months for SLN & NLC. NLC shows a faster release profile than SLN	[81]
Dexamethasone	Corticosteroid for allergic reaction and skin inflammation	Hydrogel	Ultrasonic homogenization	Compritol ATO 888, Mygriol 812, Tween 80 and Span 80	224.4 nm	-	Research shows hydrogel containing NLC was 7.3 times higher than dexamethasone ointment. Skin deposition of hydrogel was 3.8 times more than solution	[82]
Diclofenac	Non-steroidal	Gel	Hot high-pressure homogenization	GMS, lanolin, PEG-75	<126 nm	78.26%	Research reported that	[83]
Name of drug	Category	Dosage form	Method used	Composition of formulation (solid lipid, liquid lipid, surfactant)	The particle size & Zeta potential	Encapsulation efficiency	Research output	References
--------------	----------	-------------	-------------	---	-----------------------------------	----------------------------	-----------------	------------
Anti-inflammatory drug for pain and inflammatory condition	pressure homogenization	Phospholipon® 90G, preciros ATO 5, Tween 80	high drug loading achieved by smaller particle size which improved drug penetration & in vivo efficacy improved					
Etoricoxib	COX-2 inhibitor for treatment of inflammation & allied condition	Gel	Melt emulsification & low-temperature solidification method	Stearic acid, oleic acid, Tween 80	244 nm, -11.9 mV	69-76%	high drug loading achieved by smaller particle size which improved drug penetration & in vivo efficacy improved	
Flurbiprofen	Platelet aggregation inhibitor for treatment of gout, rheumatoid arthritis	Hydrogel	Hot high-pressure homogenization	Dynasan114, Epikuron 200, cpax 355, polysorbate 80	150-300 nm, 21.7 mV	>90%	Invitro drug release pattern experience burst effect & prolong release -Zeta potential value predict good stability	
Ibuprofen	NSAID for treatment of osteoarthritis and other musculoskeletal diseases	Gel	Hot high-pressure homogenization	Witpepsol E85, Miglyol 812, Lutrol F68	106 nm, -18.4 mV	98.51%	NLC gel is of great potential to increase drug permeation through the skin and enhance the efficacy	
Ketoprofen	NSAID for treatment of musculoskeletal disorders	Gel	Melt emulsification & low-temperature solidification method	Compritol 888 ATO, Labrafac Lipophile, LutrolF68	298 nm	77%	Drug-cyclodextrin complex loaded to NLC -NLC hydrogel exhibit better permeation than plain drug-loaded NLC	
Lansoprazole	PPI (proton pump inhibitor), objective to protect drug form gastric degradation	Hydrogel	Ultrasound	GMS, Stearyl amine, Pluronic F65	90-210 nm, -61.9 to +3.2 mV	-	NLC hydrogel showed that drug elimination significantly reduced and prolong the mean residence time	
Lidocaine	Local anesthesia	Gel	Ultrasound	Compritol 888 ATO	72.1 nm	95.9%	Formulation prepared with	
Name of drug	Category	Dosage form	Method used	Composition of formulation (solid lipid, liquid lipid, surfactant)	The particle size & Zeta potential	Encapsulation efficiency	Research output	References
-------------	----------	-------------	-------------	---	----------------------------------	------------------------	-------------------	-----------
Methotrexate	Used for Rheumatoid arthritis	Hydrogel	Hot micro-emulsion method	Phospholipon S 100, Gelucire® 50/13, Transcutol®P	181.5 ± 11.5 nm, −16.58 ± 1.8 mV	-	NLC gel resulted in a six-fold increase in the duration of anesthesia compared with a market gel product	90
Minoxidil	used in case of Alopecia	Gel	Melt dispersion Ultrasonication	Tristearin, Oleic acid, Tween 80, soya lecithin, Pluronic F-68	280 nm, 42.40 mV	86.09%	A biphasic release pattern was observed in NLC gel and provided a fast release initially for skin saturation followed by a slow-release profile to maintain the skin concentration.	91
Nebivolol	Used for hypertension (Selective β1-blocker)	Gel	High-pressure homogenization	Glyceryl monostearate, oleic acid, Span 80, Cremophor EL	228 nm, -29mV	95%	-Increase encapsulation efficiency along with stability and sustainable transdermal effect has been observed.	92
Pioglitazone	Antihypertensive	Gel	High-pressure homogenization	Apil, labrasol, Carbopol, Tween 80	81.33 to 181.87 nm, 27.5 mV	63.46–87.56%,	- The pharmacokinetic study showed 2.17 times enhanced bioavailability in comparison to oral tablet.	93
Quercetin and Resveratrol	Anti-cancer	Gel	Melt emulsification and ultrasonication	Precirol ATO 5, Compritol ATO 888, Labrasol, Labrafil M2125CS, Labrafil M1944CS, Captex GTO	191 nm ± 5.20 mV ± 0.30 a	92.85 ± 0.25%	-NLC gel formulation evaluated for permeability study - The enhanced drug deposition in the epidermal layer was observed through dermatokinetic and CLSM studies.	94
Name of drug	Category	Dosage form	Method used	Composition of formulation (solid lipid, liquid lipid, surfactant)	The size of particle & Zeta potential	Encapsulation efficiency	Research output	References
-------------	----------	-------------	-------------	---	--------------------------------------	------------------------	----------------	------------
Sildenafil	Phosphodiesterase type 5 inhibitor, used for erectile dysfunction	Gel	Modified high-shear homogenization technique	Cetyl palmitate, Glycerol monolinoleate, Cremophor® RH 40, Span 85	<1µm	97.5%	- Formulation was prepared with both SLN & NLC - Improved SC transdermal permeation & prolonged action	[95]
Tadalafil	Phosphodiesterase-5 inhibitor, used for erectile dysfunction	Gel	Hot-melted ultrasonic method	Glyceryl monostearate, Oleic acid, Tween 80	<0.5 µm	89.6%	- The Tadalafil-loaded NLC dispersion with skin permeation enhancers (ethanol and limonene) exhibited the highest flux - Tadalafil-loaded NLC gel with selected permeation enhancers showed tolerance against toxicity in HaCaT cells.	[96]

Table 7. List of patents for Nanostructured lipid carrier formulation

Patent number	Patent publication date	Title of the patent	Description	Applicant of patent	References
RO135202	30.09.2021	Process for dual encapsulation of two categories of bioactive plant-based principles in the same nanostructure distribution system	The invention comprises a dual nanocarrier. The NLC formulation contains licorice extract & wild yam extract which provide sustained release and enhance antioxidant & anti-inflammatory effect.	Ac helcors.r.l.	[97]
EP3876913	15.09.2021	Artificial tears	It involves the preparation of NLC consisting of solid lipid outer shell & liquid lipid as the liquid core. It used for dry eye disorder	Waterford institute of tech	[98]
AU2021104317	19.08.2021	An Artemether-Loaded Nanostructured Lipid Carrier (NLC) Nanogel Composition and A	The research involves the preparation of lyophilized NLC formulation and covert into a gel for the treatment of	Nnamani, Petra Obioma	[99]
Patent number	Patent publication date	Title of the patent	Description	Applicant of patent	References
---------------	-------------------------	---------------------	-------------	--------------------	------------
AU2021104270	19.08.2021	Desvenlafaxine succinate loaded Nanostructured lipid carrier (NLC) for brain targeting via nasal route	The NLC preparation improved the bioavailability of the lipophilic drugs by crossing the Blood - Brain Barrier through the nasal route and producing an antidepressant effect	Fatma, Bushra Kumar, Vikram Kushwaha, Swatantra K S Mantry, Shubhrajit Mohanto, Sourav Srivastava, Dipti Tiwari, Pallavi	[100]
CN113041234	29.06.2021	Cannabidiol lipid nanoparticles, freeze-dried powder, and preparation method	Encapsulation of Cannabidiol in NLC for improvement of bioavailability & sustained release	Shanghai normal university, East china university of science and technology	[101]
AU2021102817	17.06.2021	Novel formulations of 5-fluorouracil against diabetic retinopathy and process thereof.	Present research involved for preparation of 5-Fluorocil loaded NLC with enhanced drug absorption and molecular targeting for diabetic retinopathy	Lovely Professional University	[102]
CN112641727	13.04.2021	Antioxidant water-in-oil-in-water type micro-nano multiple emulsion as well as preparation method and application thereof	Modification of lipoic acid into water-soluble derivative and incorporated in NLC formulation. The obtained preparation has better antioxidant activity & improve bioavailability	Beijing Technology and business university	[103]
US20210085618	25.03.2021	Ocular drug delivery	An Ocular delivery system was prepared where the outer shell is solid lipid and liquid lipid in the core. Therapeutic agent present in core used for an eye disorder	Waterford Institute Of Technology	[104]
IN202141009486	12.03.2021	Ant psoriatic effects of clobetasol loaded nano structured lipid carriers	Preparation of novel NLC loaded with clobetasol for Psoriasis treatment	Mr. Ramesh reddy kudamala, prof.venkata	[105]
Patent number	Patent publication date	Title of the patent	Description	Applicant of patent	References
-----------------	-------------------------	--	--	---	-------------
MYPI 2019005424	19.03.2021	Nanostructured lipid carrier composition and method for enhanced trans-epidermal absorption of Ficus deltoidea extract	The NLC preparation contain Ficus-deltoidea extract improve epidermal absorption so that antioxidant & anti-inflammatory action improved	Universiti Teknologi Malaysia	[106]
KR102020011734	14.10.2020	Nanostructured lipid carrier containing econazole and film-forming topical pharmaceutical composition containing same	Topical film-forming NLC formulation containing econazole for long term anti-bacterial effect	The Industry & Academic Cooperation InChungnam National University (IAC)	[107]
KR102020005199	14.05.2020	Cosmetic composition for delaying skin aging containing active ingredient stabilized with nanostructure lipid carrier	NLC preparation contains retinol, tocopherol and glutathione as core active ingredient for the treatment of skin wrinkle with enhanced stability	Coreana Cosmetics Co., Ltd.	[108]
IN201811021213	13.12.2019	Novel nanostructured lipid carrier-based ophthalmic controlled release formulation for treatment in fungal keratitis	The poor solubility & low permeability nature of the drug is used to formulate NLC for the treatment of fungal keratitis. The research aim was to improve retention time & increase solubility in intraocular tissue.	Manish Kumar Ajay Pathania Vipin Saini A. Pandurangan Shailendra Bhatt Prerna Sarup	[109]
MYPI 2018300001	22.07.2019	A Nanostructured solid lipid carrier encapsulates bromelain extract	The objective of the invention was to prepare Bromelain extract loaded NLC for better penetration and stabilize the physicochemical properties of extract	Universiti Teknologi Malaysia	[110]
CN109602706	12.04.2019	Ferulic acid lipid carrier and nanostructured preparation	The objective was to prepare Ferulic Acid (FA) loaded NLC with a lipid	Shaanxi University of Chinese medicine	[111]
Patent number	Patent publication date	Title of the patent	Description	Applicant of patent	References
---------------	------------------------	---------------------	-------------	---------------------	------------
AU2018285694	20.12.2018	Nanostructured lipid carriers and stable emulsions and uses thereof	To prepare NLC containing lipid phase along with other oil core which delivers the active ingredient to cell for generating of immune response like the vaccine	Infectious Disease Research Institute	[112]
CN108853054	23.11.2018	Cyclic peptide modified gambogic acid nanostructured lipid carrier and preparation method thereof	The prepared NLC formulation with modified gambogic acid is able to target tumor & strong penetration effect in tumor tissue.	Tianjin University of traditional Chinese medicine	[113]
CN107115531	01.09.2017	Nanostructured lipid carrier modified by glycolipid polymer as well as preparation method and application of Nanostructured lipid carrier	The method involves for encapsulation of hydrophobic drug A-317491 in NLC by using modified glycolipid polymer. The concentration of drug has improved in ectopic endometrium tissue.	Zhejiang University	[114]
US15163724	26.01.2017	Topical nano drug formulation	The prepared NLC gel contains spironolactone as a biomolecule for acne vulgaris disorder. The formulation shows improved skin penetration and drug release.	Hamidreza Kelidari Majid Saeedi	[115]
CN106176677	07.12.2016	N-acetyl-L-cysteine modified curcumin nanostructured lipid carrier used for oral administration	Work-based on the preparation of NLC load with curcumin. The formulation contains N-acetyl-L-cysteine modified accelerator which improves the solubility of curcumin in water & improves oral bioavailability.	China Pharmaceutical University	[116]
WO2016065444	06.05.2016	Method for producing nanostructured lipid carriers on	The Present invention related to producing NLC with triblock	UniversidadeEstadual De Campinas	[117]
Patent number	Patent publication date	Title of the patent	Description	Applicant of patent	References
---------------	-------------------------	---------------------	-------------	---------------------	------------
IN276/MUM/2014	11.09.2015	Idebenone lipid nanocarrier composition for the treatment of neurodegenerative disorders	The nanoprecipitation technique is used for formulating NLC by the solvent evaporation method. The preparation containing Idebenone as biomolecule for treatment of Alzheimer’s disease	Unicamp [BR]/[BR]	Sachin Subhash [118] Salunkhe
CN104367549	25.02.2015	Psoralen-doxorubicin-loaded composite nanostructured lipid carrier preparation and preparation method thereof	The investigation includes Psoralen-doxorubicin as two active biomolecules used to prepare NLC. The formulation contains 40-120 part of SL & 10-30 part of LL. The preparation used for multi-drug resistance of leukemia cells.	Liaoning University [119]	
9. LIST OF THE DRUGS USED TO PREPARE NLC TOPICAL FORMULATION ALONG WITH THEIR RESEARCH OUTCOMES

As the NLC remains an excellent lipid carrier, many researchers put their effort to find out the alternate route of administration. A different category of the drug such as antihypertensive, anticancer, NSAID, antidiabetic, local anesthesia, etc. is used to prepare topical NLC formulation with the aim to enhance bioavailability & avoid unwanted side effects. The lists of drugs formulated for topical use are presented in Table 6.

10. LIST OF DIFFERENT PATENTS BASED ON NANOSTRUCTURED LIPID CARRIER

In the era of nanotechnology, lipid carrier is attractive for formulation scientist. The researcher from academia and industry are eager to protect their invention related to NLC formulation. Every year many formulations of NLC is patented. The various patented NLC formulation is depicted in Table no 7.

11. SAFETY AND TOXICITY

A group of researchers (C Vario et al) conducted experimental work for the safety of NLC formulation in topical route. They used Compritol ATO, Migloyl 182 as lipid, and Tween 80 and polaxomer 188 as a surfactant for formulation. The prepared formulation was applied to the skin of the rat. It was observed that formulation remains 24 hr. in application site & no systemic absorption. Hence indicate the safety of formulation. Rahman et al carried-out research work using Zerumbone loaded NLC to know the toxicity of formulation. The oral route used for the experimental work uses mice as the animal. The formulation was composed of palm oil, Lipoid S 100, thimeosal, olive oil. The histopathological study report that the formulation does not have a toxicity effect on the kidney, liver & lungs. Bruge et al conducted research work to know the effect of various lipid carriers of NLC formulation on cytotoxicity in human dermal fibroblast using Precirol ATO 5,compritol 888 ATO, GMS, Dynasan 118, migloyl 812,softisan 100, and polaxomer 188 as ingredients for formulation. From the study, they found Compritol 888 ATO was the safest lipid as it has a neutral cytotoxic effect. V.R Salvi and P.Pawar with their research study found that because of biocompatible lipid, nonionic & biocompatible surfactant of NLC formulation without the use of organic solvent, lipid nanoparticles are non-toxic & relatively safe for ocular drug delivery [120].

12. CONCLUSION

NLC, a new generation of lipid carrier gaining more popularity as it has numerous advantages over others. The vigorous institutional research also progresses remarkably owing to its stability &effectiveness. The biocompatibility of lipid, high drug loading, prolonged-release, and non-use of organic solvent made the NLC more numerous areas for researchers. Among all the routes of administration skin targeting of NLC is the new domain for cosmetic research as well as topical formulation due to its occlusion and skin hydration effect. From the various methods of preparation HPH (High-pressure Homogenization) is considered as the most used method because of its scalability. The factor considered is its toxicity in humans to be evaluated. As day by day NLC formulation occupies more places in the market, we can predict its prospectiveness with more advancement in near future. Therefore by considering the above NLC can be termed as ‘smart nano lipid carrier’.

CONSENT TO PARTICIPATE AND ETHICS APPROVAL

It is not applicable.

AVAILABILITY OF DATA AND MATERIAL

The data and material that support the finding of this manuscript are available on request.

ACKNOWLEDGEMENTS

Acknowledge to all authors for their contribution and support.

COMPETING INTERESTS

Authors have declared that no competing interests exist.

REFERENCES

1. Martins S, Sarmento B, Ferreira DC, Souto EB. Lipid-based colloidal carriers for peptide and protein delivery – liposomes
2. Das S, Chaudhury A. Recent advances in lipid nanoparticle formulations with solid matrix for oral drug delivery. AAPS PharmSciTech. 2011;12(1):62–76.

3. Weber S, Zimmer A, Pardeike J. Solid lipid nanoparticles (sln) and nanostructured lipid carriers (nlc) for pulmonary application: a review of the state of the art. Eur. J. Pharm. Biopharm. 2014;86(2):7–22.

4. Iqbal MA, Md, JKS, Sahni S, Baboota. Nanostructured lipid carrier systems: recent advances in drug delivery. J. Drug. Target. 2012;20(10):813–830.

5. SusanHua. Lipid based nano delivery system for skin delivery of drug and bioactive. frontiers in pharmacology. 2015;(6).

6. Loo, et al, Effect of compositions in nanostructured lipid carriers (NLc) on skin hydration and occlusion, International Journal of Nanomedicine. 2013;8:13–22. DOI: 10.2147/ijn.s35648

7. Iti Chauhan, Mohd Yasi, Madhu Verma, Alok Pratap Singh. Nanostructured lipid carriers: A groundbreaking approach for transdermal drug delivery. Adv Pharm Bull. 2020;10(2):150-165.

8. Samantha N Andrews, Eunhye Jeong, Mark R Prausnitz. Transdermal delivery of molecules is limited by full epidermis, not just stratum corneum. Pharm Res. 2013;30:1099–1109.

9. Muller RH, Radtke M, Wissing SA. Nanostructured lipid matrices for improved microencapsulation of drugs. Int. J. Pharm. 2002;242:121-128.

10. Muller RH, Ruhl D, Runge S, SchulzeForster K, Mehnt W. Cytotoxicity of solid lipid nanoparticles as a function of the lipid matrix and the surfactant. Pharm. Res. 1997;14:458–462

11. Selvananthukumar S, Velmurugan R. Nanostructured lipid carriers: A potential drug carrier for cancer chemotherapy. Lipids Health Dis. 2012;11:59.

12. Iglic A, Kulkarni C, Rappolt M. Advances in biomembranes and lipid self-assembly. 1st ed. UK: Academic Press; 2016.

13. Shah R, Eldridge D, Palombo E, Harding I. Lipid nanoparticles: Production, characterization, and stability. Springer. 2015;1–97.

14. Muller RH, Radtke M, Wissing SA. Solid lipid nanoparticles (SLN) and nanostructured lipid carriers (NLC) in cosmetic and dermatological preparations. Adv. Drug Deliv Rev. 2002;54:S131–S155.

15. Sarabjotkaur, Ujwala Nautyal, Ramandeep Singh, Satvinder Singh, Anita Devi. Nanostructure lipid carrier (NLC): The new generation of lipid nanoparticles. Asian Pac. J. Health Sci. 2015;2(2):76-93.

16. Pardeike J, Hommoss A, Müller RH. Lipid nanoparticles (SLN, NLC) in cosmetic and pharmaceutical dermal products. Int J Pharm., 2009;366:170–184.

17. Abdelbary G, Haider M. In vitro characterization and growth inhibition effect of nanostructured lipid carriers for controlled delivery of Methotrexate. Pharm. Dev. Technol. 2013;18:1159–1168.

18. Bondi ML, Craparo EF, Giannona G, Cervello M, Azzolina A, Diana P, Mortarana A, Cirrinicone G. Nanostructured lipid carriers-containing anticancer compounds: Preparation, characterization, and cytotoxicity studies. Drug Deliv. 2007;14:61–67.

19. Fang YP, Lin YK, Su YH, Fang JY. Tryptanthrin-loaded nanoparticles for delivery into cultured human breast cancer cells, MCF7: The effects of solid lipid/liquid lipid ratios in the inner core. Chem. Pharm. Bull. 2011;59:266–271.

20. Montenegro L, Lai F, Offera A, Sarpietro MG, Micicche L, Maccioni AM. From nanoemulsion to nanostructured lipid carriers: A relevant development in dermal delivery of drugs and cosmetics. J Drug Deliv Sci Tech. 2016;32:100–12.

21. Beloqui AB, Solinis MA, Rodriguez-Gascón A, Almeida AJ, Preat V. Nanostructured lipid carriers: promising drug delivery systems for future clinics. Nanomedicine. 2016;12:143–61.

22. Czajkowska-Kosnik Anna, Szekalska Marta, Katarzyna Winnicka. Nanostructured lipid carriers: A potential use for skin drug delivery systems, Pharmacological Reports. 2019;71:156–166.

23. Shah R, Eldridge D, Palombo E, Harding I. Lipid nanoparticles: Production, characterization, and stability. UK: Springer; 2015.

24. Noor NM, Sheikh K, Somavarapu S, Taylor KMG. Preparation and characterization of dutasteride-loaded nanostructured lipid carriers coated with stearic acid chitosan oligomer for topical delivery. Eur J Pharm Biopharm. 2017;117:372-84.
25. Imran M, Shah MR, Ullah S. Lipid-based nanocarriers for drug delivery and diagnosis. UK: Elsevier; 2017.

26. Karan Orachai K, Smith SM, Phuneppe S, Treehtong A, Puttipipatkhachorn S, Pratontep S. The effect of surfactant composition on the chemical and structural properties of nanostructured lipid carriers. J Microencapsul. 2014;31(6):609-18.

27. Affandi MMM, Julianto T, Majeed A. Development and stability evaluation of astaxanthin nanoemulsion. Asian J Pharm Clin Res. 2011;4(1):142-148.

28. Arora R, Katiyar SS, Kushwah V, Jain S. Solid lipid nanoparticles and nanostructured lipid carrier-based nanotherapeutics in treatment of psoriasis: a comparative study. Expert Opin Drug Deliv. 2017;14(2):165-77.

29. Shi L, Li Z, Yu L, Jia H, Zheng L. Effects of surfactants and lipids on the preparation of solid lipid nanoparticles using double emulsion method. J Dispers Sci Technol. 2011;32(2):254-9.

30. Aldemar Gordillo-Galeano, Claudia Elizabeth, Mora-Huertas. Solid lipid nanoparticles and nanostructured lipid carriers: A review emphasizing on particle structure and drug release, European Journal of Pharmaceutics and Biopharmaceutics. 2018;133:285–308.

31. Montenegro L, Lai F, Offera A, Sarpietro MG, Micciche L, Maccioni AM. From nanoemulsion to nanostructured lipid carriers: A relevant development in dermal delivery of drugs and cosmetics. J Drug Deliv Sci Tech. 2016;32:100–12.

32. Sanap GS, Mohanta GP. Design and evaluation of micronazole nitrate loaded nanostructured lipid carriers (NLC) for improving the antifungal therapy. JAPS. 2013;3:46–54.

33. Upreti T, Senthil V. Nanostructured lipid carrier system for the treatment for skin disease – a review. JSM NanotechnolNanomed. 2017;5(3):1059–64.

34. Mehnert W, Mäder K. Solid lipid nanoparticles. production, characterization and applications. Adv. Drug Deliv. Rev. 2012;64:83–101.

35. Shidhaye SS, Vaidya R, Sutar S, Patwardhan A, Kadam VJ. Solid lipid nanoparticles and nanostructured lipid carriers – innovative generations of solid lipid carriers. Curr. Drug Deliv. 2008; 5:324–331.

36. Souto EB, Müller RH. Investigation of the factors influencing the incorporation of clotrimazole in SLN and NLC prepared by hot high-pressure homogenization. J. Microencapsul. 2006;23(4):377–388.

37. Mohamed Haider, Shifaa M, Abdin, Leena Kama, Gorkaorive. Nanostructured lipid carriers for delivery of chemotherapeutics: A review. Pharmaceuticals. 2020;12(3): 288.

38. Deepak Patil, Seema Pattewar, Sarvesh Palival, Gargi Patil, Swapnil Sharma. Nanostructured lipid carriers: A novel targeted drug delivery system. IJPSR. 2020;11(10):4784-4793.

39. Keservani RK, Sharma AK, Kesharwani RK. Nanocarriers for brain targeting: Principles and applications. 1st ed. Toronto: Apple Academic Press; 2019.

40. Joshi M, Patravale V. Nanostructured lipid carrier (NLC) based gel of celecoxib. Int. J. Pharm., 2008;346(1):124–132.

41. Gu N. Production of drug-loaded lipid nanoparticles based on phase behaviors of special hot microemulsion. Colloids Surf. A Physicochem, Eng. Asp. 2008;313: 27–30.

42. Heurtault B, Saulnier P, Pech B, Proust JE, Benoit JP. A novel phase inversion-based process for the preparation of lipid Nanocarriers. Pharm Res. 2002;19(6):875-80.

43. Charcosset C, EI-Harati A, Fessi H. Preparation of solid lipid nanoparticles using a membrane contactor. J Control Release. 2005;108(1):112-20.

44. Li Y, Fessi H, Charcosset C. Preparation of indomethacin-loaded lipid particles by membrane emulsification. Adv. Sci. Lett. 2011;4 (2) :591–595.

45. Liu D, Jiang S, Shen H, Qin S, Liu J, Zhang Q. Diclofenac sodium-loaded solid lipid nanoparticles prepared by emulsion/solvent evaporation method. J. Nanopart. Res. 2011;13(6):2375–2386.

46. Thalipamula RP, Palem CR, Gannu, R. Formulation and In vitro characterization of domperidone-loaded solid lipid nanoparticles and nanostructured lipid carriers. DARU. 2011;19(1):23–32.

47. Schubert MA, Müller-Goymann CC. Solvent injection as a new approach for manufacturing lipid nanoparticles- Evaluation of the method and process parameters. Eur J Pharm Biopharm. 2003;55(1):125-31.
48. Bharti Gaba, Mohammad Fazil, Saba Khan, Asgar Ali, Sanjula Baboota, Javed Ali. Nanostructured lipid carrier system for topical delivery of terbinafine hydrochloride. Bulletin of Faculty of Pharmacy, Cairo University. 2015:53:147–159.

49. Shete H, Patravale VS. Long chain lipid based tamoxifen NLC. Part I: Preformulation, formulation development, and physicochemical characterization. Int J Pharm. 2013;454(1):573–83.

50. Üner M. Characterization and imaging of solid lipid nanoparticles and nanostructured lipid carriers. In: Aliofkhaizrei M., editor. Handbook of Nanoparticles. Springer; New York, NY, USA. 2015;117–141.

51. Teeranachaideekul V, Souto EB, Junyaprasert VB, Müller RH. Cetyl palmitate-based NLC for topical delivery of Coenzyme Q10—Development, physicochemical characterization and in vitro release studies. Eur. J. Pharm. Biopharm. 2007;67:141–148.

52. Gonzalez-Mira E, Egea MA, Souto EB, Calpena AC, Garcia ML. Optimizing flurbiprofen-loaded NLC by central composite factorial design for ocular delivery. Nanotechnology. 2011;22:045101.

53. Han F, Li S, Yin R, Liu H, Xu L. Effect of surfactants on the formation and characterization of a new type of colloidal drug delivery system: Nanostructured lipid carriers. Colloids Surf. A Physicochem. Eng. Asp. 2008;315:210–216.

54. Teeranachaideekul V, Müller RH, Junyaprasert VB. Encapsulation of ascorbyl palmitate in nanostructured lipid carriers (NLC)-Effects of formulation parameters on physicochemical stability. Int. J. Pharm. 2007;340:198–206.

55. How CW, Rasedee A, Manickam S, Rosli R. Tamoxifen-loaded nanostructured lipid carrier as a drug delivery system: Characterization, stability assessment, and cytotoxicity. Colloids Surf. B Biointerfaces. 2013;112:393–399.

56. Fang CL, Al-Suwayeh S, Fang JY. Nanostructured lipid carriers (NLCs) for drug delivery and targeting. Recent Pat. Nanotechnol. 2013;7:41–55.

57. Khosa A, Reddi S, Saha RN. Nanostructured lipid carriers for site-specific drug delivery. Biomedicine and Pharmacotherap. 2018;103:598-613.

58. Beck R, Guterres S, Pohlmann A. Nanocosmetics and nanomedicines: New approaches for skin care. Berlin: Springer; 2014.

59. Metin S, Hartel RW. Crystallization of fats and oils, in F. Shahidi (Ed.), Bailey's Ind. Oil Fat Prod. Sixth ed., John Wiley & Sons, Inc., Hoboken, New Jersey. 2005;45–76.

60. Westesen K, Bunjes H, Koch MHJ. Physicochemical characterization of lipid nanoparticles and evaluation of their drug loading capacity and sustained release potential. J. Control. Release. 1997;48:223–236.

61. Westesen K, Bunjes H. Do nanoparticles prepared from lipids solid at room temperature always possess a solid lipid matrix?. Int. J. Pharm. 1995;115:129–131.

62. Sonoda T, Takata Y, Ueno S, Sato, K. Effects of emulsifiers on crystallization behavior of lipid crystals in nanometer-size oil-in-water emulsion droplets. Cryst. Growth Des. 2006;6:306–312.

63. Helgason T, Awad TS, Kristbergsson K, Decker EA, Mc Clements DJ, Weiss J. Impact of surfactant properties on oxidative stability of β-carotene encapsulated within solid lipid nanoparticles. J. Agric. Food Chem. 2009;57:8033–8040.

64. Nastruzzi C. Lipospheres in drug targets and delivery: Approaches, methods, and applications. Florida: CRC Press. 2004;15.

65. Babick F. Suspensions of colloidal particles and aggregates. Switzerland: Springer International Publishing; 2016.

66. Varshosaz J, Eskandari S, Tabbakhian M. Freeze-drying of nanostructured lipid carriers by different carbohydrate polymers used as cryoprotectants. Carbohydrate Polymers. 2012;88:1157–63.

67. Obeidat WM, Schwabe K, Müller RH, Keck CM. Preservation of nanostructured lipid carriers (NLC). Eur J Pharm Biopharm. 2010;76:56-67.

68. Abdelwahed W, Degobert G, Stainmesse S, Fessi H. Freeze-drying of nanoparticles: Formulation, process and storage considerations. Adv Drug Deliv Rev. 2006;58:1688-713.

69. Beloqui A, Solinis MA, Delgado A, Évora C, Isla A, Rodriguez-Gascón A. Fate of nanostructured lipid carriers (NLCs) following the oral route: Design, pharmacokinetics and biodistribution. J Microencapsul. 2014;31:1-8.

70. Mehnert W, Mäder K. Solid lipid nanoparticles: production, characterization,
and applications. Adv Drug Deliv Rev. 2001;47:165-96.

71. Konan YN, Gurny R, Allémann E. Preparation and characterization of sterile and freeze-dried sub-200 nm nanoparticles; Int J Pharm. 2002;233:239-52.

72. Lavrijsen AP, Bouwstra JA, Gooris GS, Weerheim A, Bodde HE, Ponec M. Reduced skin barrier function parallels abnormal stratum corneum lipid organization in patients with lamellar ichthyosis. J Invest Dermatol. 1995;105(4):619–624.

73. Harada K, Murakami T, Yata N, Yamamoto S. Role of intercellular lipids in stratum corneum in the percutaneous permeation of drugs. J Invest Dermatol. 1992;99(3):278–282.

74. Gelfuso GM, Cunha-Filho MS, Gratieri T. Nanostructured lipid carriers for targeting drug delivery to the epidermal layer. Ther Deliv. 2016;7(11):735-37.

75. Müller RH, Shegokar R, Keck CM. 20 years of lipid nanoparticles (SLN and NLC): present state of development and industrial applications. Curr Drug Discov Technol. 2011;8(3):207-27.

76. Müller RH, Petersen RD, Hommoss A, Pardeike J. Nanostructured lipid carriers (NLC) in cosmetic dermal products. Adv Drug Deliv Rev. 2007;59(6):522-30.

77. Wissing S, Muller R. The influence of the crystallinity of lipid nanoparticles on their occlusive properties. Int J Pharm. 2002;242(1-2):377-9.

78. Naglakshmi Sethuraman, Shanmuganathan S, Sandhya K, Anbarasan B. Design, development and characterization of nano-structured lipid carrier for topical delivery of aceclofenac. Indian Journal of Pharmaceutical Education and Research. 2018;4(52):581-86.

79. Xin Kong, Yuan Zhao, Peng Quan, Liang Fang. Development of a topical ointment of Betamethasone dipropionate loaded nanostructured lipid carrier. Asian journal of pharmaceutical sciences. 2016;11:248–254.

80. Ishrat S, Chhowala Devashimadhubhaian, Drabhaydharmsi, Gajanan Shinde, Rakesh Patel. Formulation and evaluation of nanoparticulate drug delivery system for an effective treatment of acne.

international Journal of Pharmacy Research and Technology. 2018;2:14-26.

81. Souto EB, Wissing SA, Barbosa CM, Müller RH. Development of a controlled release formulation based on SLN and NLC for topical clotrimazole delivery, International Journal of Pharmaceutics. 2004;278:71–77.

82. Nguyen-Thach Tung, Vu-Thu Huyen, Sang-Cheol Chi. Topical delivery of dexamethasone acetate from hydrogel containing nanostructured liquid carriers and the drug. Arch. Pharm. Res. 2015;38(11):1999-2007.

83. Chien Ngoc Nguyen, Thi Thuy Tran Nguyen, Hank Thuy Nguyen, Tuan Hiep Tran. Nanostructured lipid carriers to enhance transdermal delivery and efficacy of Diclofenac. Drug Deliv. and Transl. Res. 2017;7:664-673.

84. Sachan Anupam Kr, Gupta Ankita, Arora Mona. Formulation & characterization of nanostructured lipid carrier (nlc) based gel for topical delivery of Etoricoxib. Journal of Drug Delivery & Therapeutics. 2016;6(2):4-13.

85. Kesavan Bhaskar, Jayaraman Anbu, Velayutham Ravichandiran.; Vobalaboin. Formulation and evaluation of lidocaine nanostructured lipid carrier based gel: characterization and in vitro and in vivo studies. Lipids in Health and Disease. 2009;8(6):1-15.

86. Erzsébet Csányi, Blanka Sütő, Szilvia Berkó, Gabor Kozma. Development of ibuprofen-loaded nanostructured lipid carrier-based gels: Characterization and investigation of in vitro and in vivo penetration through the skin, International Journal of Nanomedicine. 2016;11:1201–1212.

87. Cirri M, Bragagni M, Mennini N, Mura P. Development of a new delivery system consisting in “drug – in cyclodextrin – in nanostructured lipid carriers” for ketoprofen topical delivery, European Journal of Pharmaceutics and Biopharmaceutics. 2012;80:46-53.

88. Lin WJ, Duh YS. Nanostructured lipid carriers for transdermal delivery of acid-labile lansoprazole. Eur J Pharm Biopharm. 2016;108:297-303.

89. Pankaj Pathak, Mangal Nagarsenker. Formulation and evaluation of lidocaine lipid nanosystems for dermal delivery. AAPS PharmSciTech. 2009;10(3):985-992.
90. Neeraj K Garg, Bhupinder Singha, Rajeev K Tyagi, Gajanand Sharma, Om Prakash Katare. Effective transdermal delivery of Methotrexate through nanostructured lipid carriers in an experimentally induced arthritis model. Colloids and Surfaces B: Biointerfaces. 2016;147:17–24.

91. Shubham Uprit, Ram Kumar Sahu, Amit Roy, Aniruddha Pare. Preparation and characterization of minoxidil loaded nanostructured lipid carrier gel for effective treatment of alopecia, Saudi pharmaceutical journal. 2013;4:379-385.

92. Ghazy E, Abdulrassool AA, Al-Tamimi JJ, Ayash N. Nebivolol hydrochloride loaded nanostructured lipid carriers as transdermal delivery system: Part 2: Hydrogel preparation, evaluation and permeation study. AJPS. 2016;3(2):1-16.

93. Sohrab Alam, Mohammed Aslam, Anam Khan, Syed Sarim Imam, Mohammed Aqil, Yasmin Sultana, Asgar Ali. Nanostructured lipid carriers of pioglitazone for transdermal delivery system: Part 2: Hydrogel preparation, evaluation and permeation study. AJPS. 2016;3(2):1-16.

94. Mohammad Imran, Mohammad Kashif Iqubal, Khalid Imtiyaz, Sadaf Saleema, Saurabh Mittal, M Moshahid A, Rizvi Javed Ali, Sanjula Baboota. Topical nanostructured lipid carrier gel of quercetin and resveratrol: Formulation, optimization, in vitro and ex vivo study for the treatment of skin cancer. International Journal of Pharmaceutics. 2020; 587:119705.

95. Yosra SR Elnaggar, Magda A El-Massik, Ossama Y Abdallah. Fabrication, appraisal, and transdermal permeation of sildenafil citrate-loaded nanostructured lipid carriers versus solid lipid nanoparticles, International Journal of Nanomedicine. 2011;6:3195–3205.

96. Baek Jong-Suep, Pham Cuong Viet, Myung Chang-Seon, Cho Cheong-Weon. Tadalafil-loaded nanostructured lipid carriers using permeation enhancers. International journal of Pharmaceutics. 2015;495(2):701-709.

97. Ac Helcor SRL. Process for dual encapsulation of two categories of bioactive plant-based principles in the same nanostructured distribution system. Romania patent 135202; 2021.

98. Waterford institute of tech. Artificial tears. European patent 3876913; 2021.

99. Nnamani Petra Obioma. An artemether-loaded nanostructured lipid carrier (NLC) nanogel composition and a method for formulation of the artemether-loaded (NLC) Nanogel. Australia patent 2021104317; 2021.

100. Fatma Bushra Kumar, Vikram Kushwaha, Swatantra KS Mantry, Shubhrajit Mohanto, Sourav Srivastava, Dipti Tiwari, Pallavi. Desvenlafaxine succinate loaded nanostructured lipid carrier (nlc) for brain targeting via nasal route. Australia patent 2021;104270.

101. Shanghai normal university. East China University of science and technology. Cannabidiol lipid nanoparticles, freeze-dried powder and preparation method, China patent. 2021;113041234.

102. Lovely Professional University, Novel formulations of 5-fluorouracil against diabetic retinopathy and process thereof. Australia patent 2021:102817.

103. Beijing Technology and business university. Antioxidant water-in-oil-in-water type micro-nano multiple emulsion as well as preparation method and application thereof. China patent. 2021;112641727.

104. Waterford Institute Of Technology, Ocular drug delivery. United state of America. 2021:0085618.

105. Ramesh Reddy Kudamala, Venkata Satyanarayana Suggala, Jayasankar Reddy Veeram, Sucharitha Palagati. Antipsoriatic effects of clobetasol loaded nanostructured lipid carriers on imiquimod induced psoriasis. India patent. 2021:41009486.

106. Universiti Teknologi Malaysia. Nanostructured lipid carrier composition and method for enhanced trans-epidermal absorption of fucoidan extract. Malaysia patent. 2019:005424.

107. The Industry Amp; Academic Cooperation InChungnam National University (IAC). Nanostructured lipid carrier containing econazole and film-forming topical pharmaceutical composition containing same. Republic of Korea patent. 2020;1020200117345.

108. Coreana Cosmetics Co., Ltd. Cosmetic composition for delaying skin aging containing active ingredient stabilized with nanostructured lipid carrier.Républic of Korea patent. 2020;1020200051997.

109. Manish Kumar, Ajay Pathania, Vipin Saini, Pandurangan A, Shailendra Bhatt, Prema Sarup. Novel nanostructured lipid carrier
based ophthalmic controlled release formulation for treatment in fungal keratitis. India patent. 2018;11021213.

10. Universiti Teknologi Malaysia. A Nanostructured solid lipid carrier encapsulates bromelain extract. Malaysia patent. 2018;300001.

11. Shaanxi University of Chinese medicine. Ferulic acid nanostructured lipid carrier and preparation method thereof. China patent. 2019;109602706.

12. Infectious Disease Research Institute. Nanostructured lipid carriers, and stable emulsions and uses thereof. Australia patent. 2018;285694.

13. Tianjin University of traditional Chinese medicine. Cyclic peptide modified gambogic acid nanostructured lipid carrier and preparation method thereof. China patent. 2018;108853054.

14. Zhejiang University, Nanostructured lipid carrier modified by glycolipid polymer as well as preparation method and application of Nanostructured lipid carrier. China patent. 2017;107115531.

15. Hamidreza Kelidari Majd Saeedi. Topical nanodrug formulation. United state patent. 2017;15163724.

16. China Pharmaceutical University. N-acetyl-L-cysteine modified curcumin nanostructured lipid carrier used for oral administration China patent. 2016;106176677.

17. Universidade Estadual De Campinas - Unicamp. Method for producing nanostructured lipid carriers on triblock copolymers, nanostructured lipid carriers thereby produced, and uses thereof. International patent. 2016;065444.

18. Sachin Subhash Salunkhe. Idebenone lipid nanocarrier composition for the treatment of neurodegenerative disorders. India patent 276/MUM/2014; 2015.

19. Liaoning University. Psoralen-doxorubicin-loaded composite nanostructured lipid carrier preparation and preparation method thereof China patent. 2015; 104367549.

20. Mohammed Elmowafy, Mohammad M Al-Sanea. Nanostructured lipid carriers (NLCs) as drug delivery platform: Advances in formulation and delivery strategies, Saudi Pharmaceutical Journal. 2021;29:999–1012.

© 2022 Sahoo et al.; This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Peer-review history:
The peer review history for this paper can be accessed here:
https://www.sdiarticle5.com/review-history/82641