Thoracic epidural anaesthesia and analgesia and outcome

Van Aken H
Klinik und Poliklinik für Anästhesiologie und Operative Intensivmedizin, University Hospital Münster, Germany

Correspondence to: Prof Hugo Van Aken, e-mail: hva@uni-muenster.de

ABSTRACT
Thoracic – but not lumbar – epidural anaesthesia provides relevant clinical advantages compared with general anaesthesia, improving patients’ morbidity and mortality after major surgical procedures. These advantages are excellent perioperative neuraxial analgesia and effective attenuation of the perioperative stress response by a reversible blockade of sympathetic afferents and efferents. In particular the attenuation of sympathetic tone prevents perioperative myocardial ischaemia and improves global and regional left ventricular function, pulmonary function and gastrointestinal perfusion. Thus, thoracic epidural anaesthesia is more than simply an anaesthetic regimen; it also has therapeutic options, especially in high-risk patients who underwent major cardiac, thoracic or abdominal surgical procedures.

Myocardial function
Major surgical procedures are associated with exaggerated perioperative adrenergic stimulation resulting in hormonal response and systemic inflammation. These pathophysiological changes can lead to perioperative myocardial ischaemia or other life-threatening cardiac events. The incidence of perioperative myocardial infarction is 0.2% in patients without and 4.0% in patients with pre-existing coronary artery disease, and severe myocardial ischaemia appears most frequently during the first 48 hours after major surgery. However, in patients with major surgery and pre-existing coronary artery disease the incidence of perioperative myocardial ischaemia is 18%. Thus, effective cardiomyocyte functional protection during a perioperative insult stress requires a balanced preservation versus blunting of β-adrenergic signalling. Adrenergic sensitisation optimises post-ischaemic functional recovery while desensitisation protects against intraoperative oxygen supply/demand imbalance. The harmful effects of adrenergic stimulation on β-adrenergic receptor density and β-adrenergic receptor coupling and the positive effects of thoracic epidural anaesthesia have been well documented. Therefore, attenuation of the stress response via blockade and/or selective anaesthetic regimens, such as thoracic epidural anaesthesia, has the potential to prevent adverse events. Consequently, a multimodal approach to reduce patients’ stress response and to improve recovery, consisting of intraoperative general anaesthesia, thoracic epidural anaesthesia, postoperative patient-controlled epidural anaesthesia, early extubation, early oral nutrition and enforced mobilisation is the most appropriate regimen, in particular for patients undergoing thoracic and cardiac surgical procedures.

An activation of myocardial sympathetic nerves in cardiac surgery can result in myocardial ischaemia, especially in patients with coronary artery disease. Subsequently, a reversible cardiac sympathectomy by high thoracic epidural anaesthesia has anti-ischaemic effects owing to the blockade of efferent sympathetic fibres. Clinical studies of high thoracic epidural anaesthesia imply beneficial effects for the perioperative management of patients who underwent coronary artery bypass grafting. The sympathetic blockade by high thoracic epidural anaesthesia results in depression of the endocrine perioperative stress response, an improvement in global systolic and diastolic left ventricular function, and a reduction of new wall motion abnormalities during and after coronary artery bypass grafting.

Pulmonary function
Major surgical procedures are known to impair pulmonary function. For example, sternotomy and in particular lateral thoracotomy result in postoperative pain and impair respiratory mechanics and coughing. Both affect the retraction forces of the chest wall. The following major problems result in impaired pulmonary function:
1. Decreased lung volume (e.g. atelectasis, resection of lung tissue, pleural effusion, thoracic restriction)
2. Impaired ventilation (decreased functional residual capacity, dysfunction of the diaphragm, dysfunction of intercostal...
3. Impaired gas exchange (atelectasis, lung oedema, decreased cardiac output, decreased minute ventilation)\(^\text{19}\)

The effects of thoracic epidural anaesthesia on lung volume, respiratory mechanics and pulmonary gas exchange depend on the extent of segmental regional blockade and sympathetic block. Theoretically, thoracic epidural anaesthesia may lead to an alteration of intrathoracic blood volume, lung volume and pulmonary vasotone by sympatheticolysis, and to paralysis of intercostal muscles, decreased volume of thoracic cavity and increased thoracic and abdominal compliance. However, the results of prospective, randomised clinical trials postulate beneficial effects of thoracic epidural anaesthesia, and no study reported a deterioration of pulmonary function by thoracic epidural anaesthesia during and after thoracic surgery. The excellent results of prospective, randomised clinical trials postulate beneficial effects of thoracic epidural anaesthesia to increase the arterial oxygen saturation and the lower gastrointestinal tract, such as a reduced rate of ileus and improved enteric function.

Gastrointestinal perfusion

Gastrointestinal hypoperfusion following low systemic perfusion may also occur during major surgical procedures due to haemorrhage or transfusion. The greatest benefit of thoracic epidural anaesthesia on microvascular perfusion was observed in the muscularis layer.\(^\text{13}\) Since thoracic epidural anaesthesia does not increase cardiac output, the question is whether the effects of sympathetic block on splanchnic blood flow are due to a redistribution of blood flow within splanchnic organs, or to an effect of thoracic epidural anaesthesia to increase the proportion of flow directed to these organs. The exact mechanisms underlying the protection, and the potential therapeutic uses of thoracic epidural anaesthesia on gastrointestinal perfusion beyond its use as an anaesthetic or analgesic technique, are matters for further investigation.\(^\text{19}\)

One important issue in the effect of thoracic epidural anaesthesia on splanchnic perfusion, however, is the location of the epidural block. A complete sympathetic block in the splanchnic region is achieved only if the spread of the local anaesthetic includes the thoracic sympathetic nerve fibres, which extend from T5 to T10. On the other hand, the epidural blockade of lumbar segments results in increased sympathetic activity in the splanchnic nerves due to a barometer effect.\(^\text{17}\) For the clinician it is important that thoracic epidural anaesthesia offers advantages after operations on both the upper and the lower gastrointestinal tract, such as a reduced rate of anastomotic leakage, less frequent vomiting and earlier resumption of gastrointestinal motility, and that these protective effects of high thoracic epidural anaesthesia should be used for early enteral nutrition and mobilisation of patients.\(^\text{16}\)

Risks of thoracic epidural anaesthesia

Any invasive medical procedure with an inherent risk mandates a thorough assessment of the risk/benefit ratio. The most common complication of epidural anaesthesia is accidental dural perforation. The incidence using the loss resistance method is approximately 0.01%–0.001%.\(^\text{18}\) The most disastrous complication is paraplegia after development of an epidural haematoma.\(^\text{20}\)

For this reason the German Society of Anaesthesiology and Intensive Care Medicine published guidelines for the safe use of thoracic epidural anaesthesia in patients treated with anticoagulants. These guidelines, which were published in 1997, were updated recently.\(^\text{20}\) A recently published study describes relatively high incidences of spinal haematoma (1:18 000), cauda equina syndrome (1:37 500), meningitis (1:50 000) and epidural abscesses (1:37 500).\(^\text{21}\) However, this prospective analysis, performed for Sweden, addresses the period from 1990 to 1999, without existing rules for thromboembolism prophylaxis. Thus, management of perioperative anticoagulation as well as the insertion and removal of epidural catheters are necessary to reduce these complications associated with thoracic epidural anaesthesia.

References

1. Rodgers A, Walker N, Schug S et al. Reduction of postoperative mortality and morbidity with epidural spinal anaesthesia: results from overview of randomised trials. BMJ 2000;321:1–12.
2. Ashton CM, Petersen NJ, Wray NP, Kefie CJ, Dunn JK, Thomas JM. The incidence of perioperative myocardial infarction in men undergoing non-cardiac surgery. Ann Intern Med 1993;118:504–10.
3. Brodmer, Molfhoff T, Van Aken H. Thorakale Epiduralanästhesie und das Risiko perioperator Myokardinfarkte bei Patienten mit koronarer Herzkrankheit. Anästh & Intensivmed 2003;44:92–7.
4. Leftkowit RJ, Rokman HA, Koch WF. Catecholaminen, cardic β-adrenergic receptors, and heart failure. Circulation 2000;101:1634–37.
5. Brodmer G, Van Aken H, Hertle L et al. Multimodal perioperative management — combining thoracic epidural analgesia, forced mobilization, and oral nutrition reduces hormonal and metabolic stress and improves convalescence after major urologic surgery. Anesth Analg 2001;92:1594–1600.
6. Glausson K, Magnusdottir H, Lupe L, Lennesflo B, Emaneussson H, Ricksten SE. Anti-ischaemic effects and anti-anginal effects of thoracic epidural anaesthesia versus those of conventional therapy in the treatment of severe refractory unstable angina pectoris. Circulation 1997;96:2718–82.
7. Schmidt C, Hinder F, Van Aken H et al. Effect of high thoracic epidural anaesthesia on systolic and diastolic left ventricular function in patients with coronary artery disease. Anesthes Analg 2004, in press.
8. Berendes E, Schmidt C, Van Aken H et al. Reversible cardiac sympathomatomy by high thoracic epidural anaesthesia improves regional left ventricular function in patients undergoing coronary artery bypass grafting. Arch Surg 2003;138:1283–90.
9. Mc Fadden EP, Stable E, Regar E et al. Late thrombosis in drug-eluting coronary stents after discontinuation of antiplatelet therapy. Lancet 2004;364:1466–7.
10. Hachenberg T, Pfeiffer B. Use of thoracic epidural anaesthesia for thoracic surgery and its effect on pulmonary function. Balliol’s Clinical Anaesthesiology 1999;13:57–72.
11. Ballantyne JC, Carr DB, De Ferrari D et al. The comparative effects of postoperative analgesic therapies on pulmonary outcome: cumulative meta-analyses of randomised, controlled trials. Anesth Analg 1998;86:508–612.
12. Sielenkamp A, Van Aken H. Thoracic epidural anaesthesia. Anaesthesiology 2003;99:525–5.
13. Adolfs J, Schmidt DK, Mousa SA et al. Thoracic epidural anaesthesia attenuates hemorrhage-induced impairment of intestinal perfusion in rats. Anesthesiology 2003;99:695–832.
14. Sielenkamp A, Van Aken H. Epidural analgesia in patients undergoing coronary artery bypass surgery. Arch Surg 2003;138:1283–90.
15. Meissner D, Rolf N, Van Aken H. Thoracic epidural anaesthesia and the patient with heart disease: benefits, risks, and controversies. Anesth Analg 1997;85:517–520.
16. Zuegel N, Bruer C, Breeschaft K, Angerst R. Influence of thoracic epidural analgesia on the early postoperative stage after gastrointestinal surgery. Chinurg 2002;73:202–8.
17. Giebler RM, Scherer RU, Peters J. Incidence of neurologic complications related to thoracic epidural catheterization. Anaesthesiology 1997;86:65–65.
18. Tanaka K, Watanabe R, Harada T et al. Extensive application of epidural anesthesia and analgesia in a university hospital: incidence of complication related to technique. Reg Anesth 1993;18:34–8.
19. Vandermeulen EP, Van Aken H, Vermelen J. Anticoagulants and spinal-epidural anesthesia. Anesth Analg 1994;79:1165–77.
20. Gogarten W, Van Aken H, Wulf H, Klose R, Vandermeulen E, Harenberg J. Spinal regional anesthesia and prevention of thromboembolism/anticoagulation. Recommendations of the German Society of Anaesthesiology and Intensive Care Medicine, October 1997. Urologie 1998;57:347–51.
21. Moen V, Dahlgren N, Irestedt L. Severe neurological complications after central neuraxial blockades in Sweden 1990–1999. Anaesthesiology 2004;101:950–9.