The Impact of Digital Technologies on Self-Learning in Mathematics

Lasma Markevica
Rezekne Academy of Technologies, Latvia

Janis Dzerviniks
Rezekne Academy of Technologies, Latvia

Abstract. During the pandemic, digital technologies had a major impact on self-directed learning in mathematics. Without digital skills and self-directed learning, everyday learning is unthinkable, as learning in 2020 has largely taken place remotely. It is important for students to acquire these skills in order to learn fully and qualitatively at a distance. These acquired skills are and will be useful in full-time studies and later in life. Digital literacy allows the student to develop self-directed learning and self-directed learning develops digital literacy. Both of these skills are interrelated and help you learn math. The student's skills are greatly influenced by internal and external life factors, which unfortunately cannot be influenced by the educational institution. Thus, these negative factors also affect the student's motivation and discipline for learning and learning outcomes are low. The research analyzes the scientific literature and emphasizes the author's personal experience.

Keywords: self-directed learning, mathematics, digital literacy, skills, motivation.

Ievads
Introduction

Mūsdieni pasaule nav iedomājama bez digitālo tehnoloģiju izmantošanas. Informācijas tehnoloģiju nozīme cilvēku dzīvē ir kļuvusi daudz vairākāka. Šī ir digitālais laikmets, kur bez viedajām ierīcēm, interneta, datora nav iedomājams dzīvot. Izglītības ieguve ir kārti mainījusies. 2020./2021. gada COVID - 19 pandēmijas laiks, ikviena cilvēka dzīvi izmainīja, lielākā daļa iedzīvotāju darbu vai mācības turpināja attālināti, strādājot ar digitālajām tehnoloģijām.

Uzsākot jaunā mācību saturu apguvi Latvijā, viena no caurviju prasmēm, kura skolēniem jāattīsta, ir digitālā prātība – skolēns efektīvi izmanto digitālās

https://doi.org/10.17770/er2021.2.6726
This is an open access article under the Creative Commons Attribution 4.0 International License.
Digitālās prattiņas jēdziena analīze

Analysis of the concept of digital literacy

Digitālo tehnoloģiju attīstībai ir liela nozīme mācību procesā. Digitālo tehnoloģiju pielietošana ir viena no svarīgākajām prasmēm, kurās skolēniem ir jāapgūst. 21.gs. skolēnam ir nepieciešams būt elastīgam- jāspēj pielietot digitālās tehnoloģijas un organizēt savu mācību procesu. Izglītība šajā gadsimtā ir kļuvusi daudz svarīgāka un skolēniem ir nepieciešams apgūt prasmes, kurās viņš varēs pielietot iekšieras situācijās (Wraithnolo, 2018).

Digitālās prattiņas jēdzienu definē kā prasmi, kura nepieciešama digitālajā vidē, lai sasniegtu noteiktus mērķus. Šī prasme ir nepieciešama mūsdienu
izglītībā, jo digitālo tehnoloģiju straujās attīstības ietekmē, šī prasme ir nepieciešama darba tirgū (skat. 1. tabulu).

1. tabula. *Digitālās prātības raksturojums*
Table 1 Characterization of digital literacy

Definīcija	Autori
Digitālā prātība atspoguļo cilvēka zināšanas un prasmes izmantot digitālās tehnoloģijas digitālajā vidē. Tā ir kļuvusi par prasmi, kas nepieciešama cilvēkiem, lai iegūtu informāciju, personīgi attīstītos un uzlabotu savas sadarbības prasmes.	Lee, 2014
Digitālā prātība ietver kognitīvās, motoriskās, socioloģiskās un emocionālās prasmes, kas ir pieciešamas, lai efektīvi darbotos digitālā vidē.	Eshet, 2004
Digitālā prātība ir prasme, kuru skolēns izmanto klātienes vai attālināto mācību laikā, lai iegūtu digitālos mācību materiālus.	Lin & Chen, 2017
Digitālā prātība ir galvenā prasme mūsdienu izglītībā. Digitālā prātība sevī ietver vairākas prasmes- datorprasme, digitālo materiālu lasītprasme, prasme atlasīt informāciju, komunikācijas, vizuālā un tehnoloģiskā prasme.	Zulkarnain, Heleni & Thahir, 2020
Digitālā mācību vide lauj izglītojamajiem uzlabot kognitīvās kompetences un spējas. Digitālā rakstprātība palīdz studentiem attīstīt kritiskās prasmes- darbojoties digitālajos plašsaziņas līdzekļos. Motīvējot izglītojamos strādāt ar digitālajiem rīkiem, tas palīdz sagatavot tos dzīvot digitālajā pasaulē, kas nepārtraukti mainās.	Niemi, Niu, Vivitsou & Li, 2018

Digitālā prātība attiecas uz spēju rīkoties ar tehnoloģiskām ierīcēm un informāciju kopumā. Pandēmijas laikā ikviens apgava jaunas digitālās prasmes-strādājot un mācoties ar tiešsaistes digitālajiem rīkiem (Spante, Hashemi, Lundin, & Algers 2018).

Digitālā prātība tiek definēta kā dažādu prasmju kopums, kurus var klasificēt dažādu līmeņu kategorijās- vienkāršas un sarežģītas darbības ar digitālajām tehnoloģijām (Iordache, Mariën, & Baelden 2017).
Pašvadītas mācīšanās jēdziena analīze

Analysis of the concept of self-directed learning

Zinātnieki uzskata, ja skolēniem ir attīstītas pašvadītas mācīšanās prasmes, tad viņi nākotnē var klūt par labiem speciālistiem. Viņi spēj uzņemties atbildību un ir motivēti darbam. Tāpat arī tiešsaistes mācību vidē spēj tikt galā ar noteiktiem uzdevumiem, bez skolotāja starpniecības (Wong & Baars, 2019).

Pašvadīta mācīšanās tiek definēta kā process, kurā skolēns nepārtraukti un mērķtiecīgi mācās, uzņemmas atbildību par savu darbu. Spēj sameklēt nepieciešamo informāciju un to analizēt. Ir motivēts darbam un spēj kontrolēt savas emocijas un uzvēršu (skat. 2. tabulu).

2.tabula. Pašvadītas mācīšanās raksturojums

2 table Characteristics of self-directed learning

Definīcija	Autori
Pašvadīta mācīšanās nepārtraukta virzība uz savu mācību mērķu sasniegšanu. Process, kurā izglītojamie aktīvi uzņemmas atbildību par savu mācīšanos. Uzrauga savu mācību procesu un rezultātus.	Rovers, Clarebout, Savelberg, Bruin & van Meerienboer, 2019
Pašvadīta mācīšanās pētījums tiek skaidrota kā process, kad izglītojamais spēj pārvaldīt savu mācīšanos un izstrādā mācīšanās stratēģijas, lai uzlabotu pašvadītu mācīšanos. Izglītojamais pats meklē informāciju, izrāda iniciatīvu, ir motivēts darbam un ir neatlaidīgs.	Yot-Dominguez, & Marcelo, 2017
Pašvadīta mācīšanās ir spēja kontrolēt gan savu uzvedību, gan emocijas, kurās ietekmē ārējie faktori (ģimene, notikumi, aktivitātes, troksnis, skābešķis vai uzturs) vai iekšējie faktori (psihofizioloģija, garastāvoklis, emocijas, miega trūkums, uzturvielu defīcīts, apzinātas un neapzinātas gaidas, cerības, vajadzības, vērtības u.c.).	Malanchini, Engelhardt, Grotzinger, Harden & Tucker-Drob, 2019. SPKC (n.g)
Pašvadīta mācīšanās sevišķi ietver mācīšanās izziņas procesus, kuru ietekmē izglītojamo uzvedība, motivācija un emocionālie aspekti.	Panadero, 2017

Pētījumā par pašvadītu mācīšanos ir minēts, ka to ietekmē skolēna dzimums. Meitenes ir daudz disciplīnētākas. Zēniem ir grūtāk organizēt savu laiku un sevi disciplinēt. Lielu ietekmi uz pašvadītu mācīšanos rada skolēnu emocionālā spriedze, kuru ietekmē apkārtējā vide - draugi vai ģimene (Weis, Heikamp & Trommsdorff, 2013).
Paš vadit a s mąc išan aš pr asme ir viena no svar īg ė ką j ėm pras mėm, kur as cilv ė k a m ir nepie c i ė šamas. Pėt į j um o s tiek pėt į i m esli, kas i et k mi ė paš v ĭ d ĭ t as mąc iš an aš efek ti v ī t ĭ, skol ī nu moti v ī ciu ju un sp Ė Jess. Ir daud z daž ė du i m esl u, kas n ega ti v ī i et k mi ė šo cilv ė ki em dž ėve nepie c i ė š a mo pr a sm ė, tād ėl š ė i m esla dēl tā ir kļu v usi viena no svar īg ė ką j ėm pėt ĭ j um u tēm ė m ps iho lo g ī j as jom ė (Panadero, 2017).

Paš vadit a s mąc iš an aš un digit ālo tehnolo gij u ietekme uz matem ātik as apguv ė

The impact of self-directed learning and digital technologies on the acquisition of mathematics

Pozitīvai attieksmei matemātikas apguvē ir svarīga loma mācību procesā. Matemātikas sasniegumi ir saistīti ar skolēnu pašsajūtumu. Pozitīvi noskaņots skolēns un uz mācībām centrēts, saprot, cik matemātikas apguve ir svarīga. Skolēniem, kuriem ir negatīva attieksme pret mācībām, matemātikas apguvē ir grūti koncentrēties, jo emocijas ietekmē skolēna uzvedību. Negatīvi noskaņots skolēns, neuzskata matemātiku par svarīgu un nozīmīgu (Ajisuksmo & Saputri, 2017).

Lai skolēns pilnveidīgi attīstītu skolē nepieciešamās prasmēs, viņam ir jājūtas labi. Izglītības iestādēm ir jānodrošina pozitīva gaisotne, lai skolēns justos pieņemts savu vienaudžu vidū, kas arī nodrošinātu veiksmīgu mācīšanās procesu.

Pašvadīta mācīšanās un digitālā pratiša matemātikas apguvē ir svarīga. Digitālā pratiša var skolēnos attīstīt zināšanas, veicināt zinātņu un radošumu. Šis digitālais laikmets skolēniem dod iespēju sekot līdz tehnoloģiju attīstībai, lai mācīšanās tikt pasniegta atbilstoši laikam un skolēnu interesēm (Zulkarnain, Heleni, & Thahir, 2020).

Interneta izmantosana matemātikas apguvē var radīt jēgpilnu un patīkamu mācību vidi. Matemātika jāmācīs skolēniem tā, lai viņi spētu domāt logiski, analītiski, sistemātiski, kritiski un radoši, kā arī spētu sadarboties ar skolas biedru (Zulkarnain, Heleni, & Thahir, 2020).

Izglītības iestādes vide, kas ir nodrošināta ar digitālajām tehnoloģijām, nodrošina praktiskas, mērkītiegas, starpdisciplīnāras pieejas, kas ļauj izglītojamiem apgūt daudz labāk matemātiku, kas attīsta viņu radošo domāšanu,
izmantojot dažādas mācību pieejas izglītības procesā (Soroko & Mykhailenko, 2019).

Pētot un analizējot teoriju par caurviju prasmēm, kurus skolēniem ir jāattīsta, tika saskatīta līdzība starp digitālo prātību un pašvadītu mācīšanos. Digitālā prātība un pašvadīta mācīšanās papildina viena otru. Skolēnam ir svarīgi attīstīt šīs prasmes, lai spētu kvalitatīvi un jēgpilni apgūt nepieciešamās zināšanas matemātikas apguvē, attālino un klātienes mācību laikā.

Pašvadīta mācīšanās ir skolēna apzināta darbība, lai sasniegtu savu mērķi.

Digitālā prātība ir spēja pielietot un jēgpilni izmantot digitālos rīkus, savu mērķu sasniegšanai.

Abas šīs prasmes ir tendētas uz konkrētu mērķu sasniegšanu. Ja skolēnam būs skaidri zināms savs mērķis, skolēns būs disciplinēts un motivēts darbam, tad šo prasmju apguve viņam nesagādās grūtības.

Attālino mācību process skolēnam šīs abas prasmes apvienoja. Bija gan jauzlabo digitālās prasmes- apgūstot jaunas aplikācijas un programmas, gan jāvada pašam savs mācīšanās process.

Ne visi skolēni šīs prasmes ir uzlabojusi. Pēc autores domām un darba pieredzē iegūtajām atzinām, skolēniem trūka motivācijas uzsākt mācību procesu patstāvīgi. Lai skolēniem attīstītu un uzlabotu caurviju prasmes ir jāatrod pareizā pieeja, lai skolēnu motivētu. Nemotivēts skolēns nesasniegs tādus rezultātus un neapgūs nepieciešamās prasmes, kādas sasniegs motivēts skolēns. Matemātikas apguvē motivācijai ir liela nozīme. Motivāciju ietekmē vairāki mainīgie- atšķirīgs dzimums, ģimenes situācija, skolotāja atbalsts, zems pašvērtējums (Herges, Duffied, Martin, & Wageman, 2017).

Matemātikas apguvē pašvadīta mācīšanās ir bijusi nepieciešama visos laikos. Šī prasme ir skolēniem palīdzējusi matemātiku apgūt daudz vieglāk, jo, ja skolēns jūtas pārliecināts par sevi, tad arī mācīšanās norit daudz labāk.

Digitālā prātība matemātikas apguvē ir kļuvusi par šī gadsimta aktuālāko prasmi, kuru ir nepieciešams attīstīt un uzlabot, lai ar savām zināšanām spētu konkurēt darba tirgū.

Analizējot teoriju un apkopojot informāciju par digitālo prātību un pašvadītu mācīšanās, tika saskatītas kopīgās izejmes, kuras ir vienlīdzīgas un vienlīdzīgās matemātikas apguvei (skat. 1.attēlu).
Ja skolēnam tiek attīstītas šīs dzīvei nepieciešamās prasmes, tās palīdz apgūt matemātiku daudz vieglāk. Lai veiksmīgi noritētu mācību process matemātikā, skolas videi ir nepieciešams kvalitatīvs un moderns aprikojums, lai skolēnu ieinteresētu un motivētu mācību darbam. Skolas personālam ir svarīgi sadarboties ar skolēnu vecākiem, lai kopīgi saprastu kā skolēnu motivēt un disciplinēt mācību darbam, lai sasniegumi uz uzlabotos.

Secinājumi

Conclusions

1. Matemātikas apgūvē ir svarīgi attīstīt pašvadītas mācīšanās prasmes un digitālā prātība lai uzlabotu mācību sasniegumus.
2. Digitālā prātība un pašvadīta mācīšanās ir savstarpēji saistītas. Abām šīm prasmēm ir nepieciešama- motivācija un disciplīna, atbildība, mērķtiecība, emociju kontrola, kritiskā domāšana, digitālo mācību materiālu izmantošana un pielietošana.
3. Skolēna dzīves iekšējie un ārējie faktori rada lielu ietekmi uz pašvadītu mācīšanos, kas rada negatīvu ietekmi uz skolēna motivāciju, disciplīnu un zemiem sasniedzumiem mācību priekšmetos.

4. Skolēniem digitālā pratiņa nepārtrauki ir jāattīsta, jo straujo digitālo tehnoloģiju attīstība strauji mainās un ir nepieciešama nepārtraukta mācīšanās. Matemātikas apguvē, pielietojot izstrādātos digitālos materiālus vai programmas, daudz atrāk un vieglāk var apgūt matemātikā nepieciešamās zināšanas.

5. Izglītības vide, kura ir nodrošināta ar digitālajām tehnoloģijām, palīdz skolēniem labāk un daudz interesantāk apgūt matemātiku un citus mācību priekšmetus.

Summary

The importance of digital technology in our lives is becoming increasingly important. Our daily lives are unimaginable without them. Also in today's education, the use of digital technology is very important. In order for students to be interested in learning, they need to be offered methods that are binding on them, such as digital materials.

When starting the new curriculum in Latvia, students need to develop skills that will be useful to them in the future. Equally important and engaging skills are self-directed learning and digital literacy. Both of these skills are important in learning mathematics because they helped and make learning this subject much easier during a pandemic. The time of the pandemic also helped students to develop these skills, as the training took place at a distance.

Digital literacy is a skill that a person is able to apply using digital technologies. It is important for face-to-face or distance learning.

Self-directed learning is the ability to work independently. Take responsibility and be motivated to take certain actions. During distance learning, students had to apply this skill on a daily basis. In full-time teaching, the teacher supervised the process of whether the work was being done, but during distance learning, students had to complete the tasks without a teacher. For self-directed learning to be effective, students need to be motivated, focused, and develop their own learning strategy. Self-directed learning is influenced by external circumstances (family, friends) or internal factors (mood, emotions, needs) that
the teacher or school staff cannot influence. Studies show that girls are much more disciplined.

Digital literacy and self-directed learning play an important role in learning mathematics. In order for a student to successfully master any subject, he or she needs a positive attitude. If the student is in a positive mood, he will be focused on learning and learning outcomes will be good. The learning environment is important for the student's attitude towards learning. When entering school, the student must feel good and belong to this place. The learning environment provided by digital technologies makes the learning process more interesting and engaging for students.

Digital literacy develops students' knowledge, creativity and desire to learn and develop. Self-directed learning and digital literacy are interlinked, as both tend to achieve a specific goal. If the student has a clear lesson goal, the student will be able to cope with the specific task using these specific skills.

During the remote process, the author observed that not all students coped with their studies because many lacked the motivation to work independently. Motivation is important for learning math, because a motivated student will achieve much more than an unmotivated student.

Self-directed learning in mathematics has always been important, but digital literacy has become the most relevant skill of this century, where it is necessary to develop and improve it in order to be able to compete in the labor market with its knowledge in the future.

If students develop these life skills, they will make learning math much easier. The learning environment must be modern and equipped with digital technologies to engage and motivate students to learn.

Literatūra

References

Ajisuksmo, C. R., & Saputri, G. R. (2017). The influence of attitudes towards mathematics, and metacognitive awareness on mathematics achievements. *Creative Education, 8*(03), 486. DOI: https://doi.org/10.4236/ce.2017.83037

Eshet, Y. (2004). Digital literacy: A conceptual framework for survival skills in the digital era. *Journal of educational multimedia and hypermedia, 13*(1), 93-106. Retrieved from https://iopscience.iop.org/article/10.1088/1757-899X/296/1/012036/pdf
Herges, R.M., Duffied, S., Martin, W., & Wageman, J. (2017). Motivation and achievement of middle school mathematics students. *The Mathematics Educator, 26*(1). Retrieved from https://eric.ed.gov/?id=EJ1153299

Iordache, C., Mariën, I., & Baelden, D. (2017). Developing digital skills and competences: A quick-scan analysis of 13 digital literacy models. *Italian Journal of Sociology of Education, 9*(1). DOI: https://doi.org/10.14658/pupj-ijse-2017-1-2

Lee, S. H. (2014). Digital literacy education for the development of digital literacy. *International Journal of Digital Literacy and Digital Competence (IJDLDC), 5*(3), 29-43. DOI: https://doi.org/10.4018/ijdldc.2014070103

Lin, M.H., & Chen, H.G. (2017). A study of the effects of digital learning on learning motivation and learning outcome. *Eurasia Journal of Mathematics, Science and Technology Education, 13*(7), 3553-3564. DOI: https://doi.org/10.29333/ejmste/99514

Malanchini, M., Engelhardt, L.E., Grotzinger, A.D., Harden, K.P., & Tucker-Drob, E.M. (2019). “Same but different”: Associations between multiple aspects of self-regulation, cognition, and academic abilities. *Journal of Personality and Social Psychology, 117*(6), 1164.DOI: https://doi.org/10.1037/pspp0000224

Ministru kabinet (2019). *Noteikumi par valsts vispārējās videjās izglītības standartu un vispārējās videjās izglītības programmu paraugiem*. Riga, 2019.gada 3.septembrī (prot. Nr. 37 21. §). Retrieved from https://likumi.lv/ta/id/309597-noteikumi-par-valsts-visparejas-videjas-izglitibas-standartu-un-visparejas-videjas-izglitibas-programmu-paraugiem

Niemi, H., Niu, S., Vivitsou, M., & Li, B. (2018). Digital Storytelling for Twenty-First-Century Competencies with Math Literacy and Student Engagement in China and Finland. *Contemporary Educational Technology, 9*(4), 331-353. DOI: https://doi.org/10.30935/cet.470999

Panadero, E. (2017). A review of self-regulated learning: Six models and four directions for research. *Frontiers in psychology, 8*, 422. DOI: https://doi.org/10.3389/fpsyg.2017.00422

Rovers, S.F., Clarebout, G., Savelberg, H.H., de Bruin, A.B., & van Merriënboer, J.J. (2019). Granularity matters: comparing different ways of measuring self-regulated learning. *Metacognition and Learning, 14*(1), 1-19. DOI: https://doi.org/10.1007/s11409-019-09188-6

Soroko, N., & Mykhailenko, L. (2019). Teachers’digital competence development as an important factor for the creation and support of the steam-based educational environment. *Studies in comparative education, 2*, 47-58. DOI: https://doi.org/10.31499/2306-5532.2.2019.186784

Spante, M., Hashemi, S.S., Lundin, M., & Algers, A. (2018). Digital competence and digital literacy in higher education research: Systematic review of concept use. *Cogent Education, 5*(1), 1519143. DOI: https://doi.org/10.1080/2331186X.2018.1519143

Stoeger, H., Sontag, C., & Ziegler, A. (2014). Impact of a teacher-led intervention on preference for self-regulated learning, finding main ideas in expository texts, and reading
comprehension. *Journal of Educational Psychology, 106*(3), 799. DOI: https://doi.org/10.1037/a0036035

Weis, M., Heikamp, T., & Trommsdorff, G. (2013). Gender differences in school achievement: The role of self-regulation. *Frontiers in psychology, 4*, 442. DOI: https://doi.org/10.3389/fpsyg.2013.00442

Wong, J., Baars, M., Davis, D., Van Der Zee, T., Houben, G. J., & Paas, F. (2019). Supporting self-regulated learning in online learning environments and MOOCs: A systematic review. *International Journal of Human–Computer Interaction, 35*(4-5), 356-373. DOI: https://doi.org/10.1080/10447318.2018.1543084

Wrahatnolo, T. (2018). 21st centuries skill implication on educational system. *IOP Conference Series: Materials Science and Engineering, Vol. 296*, No. 1, 012036. DOI: https://doi.org/10.1088/1757-899X/296/1/012036

Yot-Domínguez, C., & Marcelo, C. (2017). University students’ self-regulated learning using digital technologies. *International Journal of Educational Technology in Higher Education, 14*(1), 1-18. DOI: https://doi.org/10.1186/s41239-017-0076-8

Zulkarnain, Z., Heleni, S., & Thahir, M. (2020, October). Digital literacy skills of math students through e-learning in COVID-19 era: a case study in Universitas Riau. *Journal of Physics: Conference Series, Vol. 1663*, No. 1, p. 012015. DOI: https://doi.org/10.1088/1742-6596/1663/1/012015