Association of Circulating Leptin and Adiponectin with Risk and Prognosis of Hepatocellular carcinoma: A Combination of Traditional, Survival and Dose-response Meta-analysis

Lilong Zhang
Renmin Hospital of Wuhan University

Qihang Yuan
First Affiliated Hospital of Dalian Medical University

Man Li
Wuhan University Renmin Hospital

Dongqi Chai
Wuhan University Renmin Hospital

Wei-Xing Wang (✉ satelite@163.com)
Renmin Hospital of Wuhan University https://orcid.org/0000-0002-3854-0083

Research article

Keywords: Leptin, Adiponectin, Hepatocellular carcinoma, Meta-analysis

DOI: https://doi.org/10.21203/rs.3.rs-53229/v1

License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License
Abstract

Background: The association between leptin, adiponectin levels and the risk and prognosis of hepatocellular carcinoma has been investigated by a growing number of studies, but the results were controversial.

Methods: We performed the meta-analysis to assess the relationships between leptin, adiponectin levels and the risk and prognosis of hepatocellular carcinoma (CRD42020195882). Through June 14, 2020, PubMed, Cochrane Library, Embase databases, Clinicaltrials, and Opengrey was searched, including references of qualifying articles. Titles, abstracts, and articles were reviewed by at least 2 independent readers. Stata 16.0 was used to calculate statistical data.

Results: Thirty studies were included in this meta-analysis and results showed that hepatocellular carcinoma group has significantly higher leptin levels than the cancer-free control group (SMD = 1.83, 95% CI (1.09, 2.58), P = 0.000), the healthy control group (SMD = 4.32, 95% CI (2.41, 6.24), P = 0.000) and the cirrhosis group (SMD = 1.85, 95% CI (0.70, 3.01), P = 0.002). Hepatocellular carcinoma group has significantly higher adiponectin levels than the the healthy control group (SMD = 1.57, 95% CI (0.37, 2.76), P = 0.010), but no statistical difference compared with the cancer-free control group (SMD = 0.24, 95% CI (-0.35, 0.82), P = 0.430) and the cirrhosis group (SMD = -0.51, 95% CI (-1.30, 0.29), P = 0.213). The leptin rs7799039 polymorphism was associated with an increased the risk of hepatocellular carcinoma (G vs A: OR = 1.28, 95% CI (1.10, 1.48), P = 0.002). There were linear relationships between adiponectin levels and the risk of hepatocellular carcinoma (OR = 1.066, 95% CI (1.03, 1.11), P = 0.001). In addition, the results showed that high/positive expression of adiponectin was significantly related to lower overall survival in hepatocellular carcinoma patients (HR = 1.70, 95% CI (1.22, 2.37), P = 0.002); however, there was no significantly association between the leptin levels and overall survival (HR = 0.92, 95% CI (0.53, 1.59), P = 0.766).

Conclusion: The study shows that high leptin levels were associated with a higher risk of hepatocellular carcinoma. Adiponectin levels were proportional to hepatocellular carcinoma risk, and were related to the poor prognosis.

1 Introduction

In 2018, hepatocellular carcinoma (HCC) became the sixth most common cancer in the world and the fourth leading cause of cancer death globally [1]. The pathogenesis of HCC is complicated and still unclear, the process is high invasion and aggression, and the prognosis is very poor [2]. HCC is generally secondary to liver cirrhosis or viral hepatitis. Approximately 80% of patients with newly viral infections evolve chronic infections, with about10-20% developing cirrhosis and 1–5% advancing to end-stage HCC over 20–30 years [3]. Studies have further identified obesity, particularly abdominal obesity, as a potential risk factor for HCC. Hence, leptin and adiponectin, as the most plenteous and the best-studied obesity-related adipokines, may play an important role in the development of HCC [4, 5].

Leptin is well known as a regulator of energy expenditure and food intake through Hypothalamic regulation. Research into leptin has revealed that this hormone not only plays a critical part in metabolism, but mediates the development of neoplasm by enhancing tumor angiogenesis, promoting cellular proliferation, migration, invasion, and inhibiting apoptosis of tumor cells [6]. Leptin acts on receptors that are expressed across many tissues (including liver). Adiponectin is also referred to as AdipoQ, initially described by Arita et al., and has hepatoprotective properties and anti-inflammatory [7, 8]. The beneficial effects of AdipoQ have been observed in alcoholic and non-alcoholic liver disease models [9]. Animal studies have also proven a protective role for AdipoQ in HCC and cirrhosis [10, 11], and high AdipoQ levels in patients with cirrhosis and HCC were linked to the progression of disease [12, 13].

In recent years, reports on the correlation between leptin, AdipoQ levels and HCC have gradually increased, and some studies have attempted to clarify the role of both in HCC. However, conflicting associations are reported between leptin, AdipoQ levels and HCC. Therefore, the meta-analysis has been performed to systematically determine the relationship between leptin, AdipoQ levels as well as relevant gene polymorphisms and the risk and prognosis of HCC.

2. Methods

The meta-analysis was performed according to the Meta-Analysis of Observational Studies in Epidemiology recommendations and the Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines [14, 15]. The protocol for this meta-analysis is available in PROSPERO (CRD42020195882).

2.1 Literature search strategy

We searched PubMed, Embase, the Cochrane Library, Clinicaltrials (https://clinicaltrials.gov/), and Opengrey (http://www.opengrey.eu/) on June 14, 2020, limited to the English language. The following terms were searched in [Title/Abstract]: Adiponectin [MeSH], AdipoQ, Adipocyte Complement Related Protein 30 kDa, Adipose Most Abundant Gene Transcript 1, apm1 Protein, ACRP30 Protein, Adipocyte, C1q and Collagen Domain Containing Protein, Leptin [MeSH], Obese Protein, Obese Gene Product, Ob Gene Product, Ob Protein, Liver Neoplasms [MeSH], Liver Neoplasm*, Hepatocellular Cancer*, Hepatic Cancer*, Liver Cancer*, Cancer of Liver. Besides, the reference lists of the included articles were manually searched.

2.2 Study selection criteria

Inclusion criteria: studies (1) were focused on the correlation between leptin or AdipoQ levels and HCC risk, and provided full text and complete data in HCC patients and controls, or (2) investigate the correlation between AdipoQ or leptin levels and the prognosis of HCC, and provide sufficient information to get the hazard ratio (HR) and 95% confidence intervals (CIs). Exclusion criteria: conference abstracts, case reports, comments, review, editorials, letters to the editor, and experimental animal studies were excluded. When studies reported on the same or overlapping patient populations, only the study with the most complete data set and the most rigorous methodology was used.
2.3 Data extraction

Extracted the basic information from each study: the first author, year of publication, country, study design, study period, number of subjects and sample source. In addition, Extracted the following information in Table 1: the source of the case group, the source of the cancer-free control (CFC) group, age, gender, body mass index, measured indicators and detected method. Summarized the following information in Table 2: the source of case/control, matching variables, single-nucleotide polymorphisms, genotyping methods, frequency of case and control genotype. Selected the following information in Table 3: follow-up, measured indicators, detected method, cut-off value, survival analysis, source of HR and analytic method. If there was inaccurate or missing information extracted from the original article, we tried to contact the corresponding authors of studies to guarantee data accuracy.
Table 1
Main characteristics of the studies examining the relationship between leptin, AdipoQ levels and the risk of HCC

Author, Year, Country	Study design	Study period	the source of case group	the source of Cancer-free control group	Number	Mean age	Males	BMI
Abouzied, 2017, Egypt	C	--	HCC	Healthy controls	25/25	57.7/29.2	18/23	21.7/22.2
Aleksandrova, 2014, Europe	N	2000–2006	HCC	Healthy controls	125/250	60.1/60.1	85/171	28.1/26.9
Ataseven, 2006, Yurkey	C	--	HBV-related HCC	HBV-related cirrhosis/Healthy controls	22/23	59.8/45.5/37.1	15/11/11	--
Bakir, 2017, Egypt	S	03/2016–11/2016	HCV-related cirrhotic HCC	HCV-related cirrhosis	50/40	53.2/50.7	29/25	24.5/26.1
Bastard, 2018, France	N	03/2006–07/2016	Viral cirrhotic HCC	Viral cirrhosis	56/96	59.8/58.9	34/61	25.6/25.8
Chen, CL, 2014, Taiwan	N	01/1999–12/2004	HBV-related HCC	Chronic hepatitis B	187/374	52.4/52.2	154/311	--
Chen, MJ, 2012, Taiwan	C	01/2009–12/2009	Viral HCC	Healthy controls	65/165	58.8/47.7	47/112	24.7/24.4
Costantini, 2013, Italy	C	--	HCV-related HCC	HCV-related cirrhosis/Chronic hepatitis C/Healthy controls	26/30/30/20	70.0/68/63.4/60.9	18/14/15/9	--
Feder, 2019, Germany	P	05/2012–05/2015	HCC	Healthy controls	32/49	--	--	--
Fukushima, 2010, Japan	P	1993–2003	HCV-related HCC	Chronic hepatitis C	9/27	53.0/51.3	5/11	--
Hamdy, 2015, Egypt	S	01/2014–12/2014	HCV-related cirrhotic HCC	HCV-related cirrhosis	61/29	52.3/52.3	51/21	33.7/36.7
Khattab, 2012, Egypt	C	02/2009–01/2010	HCC	Chronic hepatitis C/Healthy controls	147/147/320	43.9/41.6/42.9	114/115/201	24.9/25.1/25.3
Kotani, 2009, Japan	N	1990–1999	HCC	Healthy controls	59/334	63.5/62.7	--	--
Liu, CJ, 2009, Taiwan	S	01/2002–10/2005	HBV-related HCC	HBV-related cirrhosis/Chronic hepatitis B/Healthy controls	120/40/120/116	50.7/50.3/30/53.8	100/29/63/67	--
Liu, ZW, 2005, China	C	--	HCV-related cirrhotic HCC	HCV-related cirrhosis/Chronic hepatitis C/Healthy controls	2/10/30/30	59.5/53.7/41/39.4	2/6/17/18	23.0/22.7/23.0/23.1
Author, Year, Country	Study design	Study period	the source of case group	the source of Cancer-free control group	Number	Mean age	Males	BMI
-----------------------	--------------	--------------	-------------------------	---	--------	----------	-------	-----
Michikawa, 2013, Japan	N	1993–2006	Viral HCC	Chronic viral hepatitis	90/117	–	62/80	–
Radwan, 2019, Egypt	S	–	HCC	Chronic hepatitis C	48/52	53.2/52.5	26/32	25.2/27.7
Sadik, 2012, Egypt	C	01/2008–02/2009	HCV-related HCC	HCV-related cirrhosis/Healthy controls	69/36/21	59.1/53.0/55.8	43/23/13	28.0/27.1/29.1
Sumie, 2011, Japan	C	01/1997–10/2007	HCV-related HCC	Chronic hepatitis C	97/97	67.4/61.2	67/67	22.5/23.1
Voumvouraki, 2011, Greece	C	–	Viral cirrhotic HCC	Viral cirrhosis/Chronic hepatitis C/Healthy controls	38/34/44/60	62.0/60.0/53.0/–	25/12/8/–	–
Wang, 2003, Taiwan	C	01/2000–12/2000	Viral cirrhotic HCC	Viral cirrhosis/Healthy controls	31/26/25	65.0/59.0/65.0	31/26/25	23.2/23.7/24.4

P = Cohort, S = Cross-sectional, C = Case-control, N = Nested Case-control, HCC = Hepatocellular carcinoma, HCV = hepatitis C virus, HBV = hepatitis B virus, ELI = Electro-chemiluminescence immunoassay, RIA = Radioimmunoassay, HMW AdipoQ = High Molecular Weight Adiponectin, BMI = body mass index, NOS = Newcastle-Ottawa Scale

Author, Year, Country	Study design	Case/control	Number	Matching variables	SNP	Samples source	Genotyping methods	Frequency of case genotype	Frequency of control genotype	NOS score
Amer, 2017, Egypt	C	HCC/Healthy controls	150/100	age, sex and smoking rate	rs7799039 (leptin gene)	blood	PCR-RFLP technique	AA = 60; AG = 69; GG = 21; G allele = 111; A allele = 189	AA = 49; AG = 47; GG = 4; G allele = 54; A allele = 146	7
Zhang, 2018, China	C	HCC/Healthy controls	575/921	age and sex	rs7799039 (leptin gene)	blood	SNPscan™	AA = 295; AG = 221; GG = 59; G allele = 339; A allele = 811	AA = 505; AG = 360; GG = 56; G allele = 472; A allele = 1370	7
Cai, 2013, China	C	HCC/Healthy controls	200/200	age and sex	rs1501299 (adiponectin gene)	blood	DNA sequencing	TT = 12; TG = 60; GG = 128; G allele = 316; T allele = 84	TT = 39; TG = 69; GG = 92; G allele = 253; T allele = 147	8

C = Case-control, SNP = single-nucleotide polymorphisms, PCR-RFLP = polymerase chain reaction-restriction fragment length polymorphism, NOS = Newcastle-Ottawa Scale
relationship between AdipoQ or leptin expression and the prognosis of HCC, and the main characteristics were summarized in Table 2. A total of 30 articles met our inclusion criteria for the meta-analysis of AdipoQ expression and HCC risk.

3.4 Quality assessment

The Newcastle-Ottawa Scale (NOS), a risk assessment tool recommended by the Cochrane collaboration, was applied to evaluate the quality of non-randomized controlled studies. The following factors were taken into consideration: patient selection, comparability of the study groups, and assessment of outcome. The maximum score obtained by this scoring system was 9, and studies with scores ≥ 7 were defined as high quality [14]. The above steps were carried out by two researchers (Lilong Zhang, Qihang Yuan) independently and cross-checked, and all disagreements were dealt with by the senior authors (Weixing Wang).

3.5 Statistical analysis

All statistical analyses were performed using Stata 16.0. Continuous and dichotomous variables were compared by the standardized mean difference (SMD) and odds ratio (OR), respectively. Hazard ratio (HR) was calculated to assess correlations between AdipoQ or leptin expression and the prognosis of HCC. For studies that presented continuous data as median and range values/ interquartile, the means and standard deviations were calculated using statistical algorithms described by Luo et al. and Wan et al., respectively [16, 17]. In the case of the studies only provided Kaplan-Meier survival curves, Engage Digitizer version 2.11 software was used to extract relevant numerical value from survival curves and calculate the HR (95% CI) [18, 19]. All the effect quantities were represented by the 95% confidence interval (CI). P < 0.05 was considered statistically significant. We used the chi-squared test to evaluate the statistical heterogeneity between different studies. P > 0.1 and I² < 50% indicated low heterogeneity where a fixed-effect model was used; otherwise, the random-effect model was used.

Furthermore, a 2-stage dose-response meta-analysis was performed to explore the association between different categories of leptin, AdipoQ levels and HCC risk [20, 21]. 1) The fixed-effect nonlinear model was constructed based on the restrictive cubic spline function (Knot = 3). 2) According to the results of the heterogeneity test and nonlinear correlation test, the corresponding model is adopted.

Finally, for the indicators with high heterogeneity, we carried out sensitivity analyses for identifying the source of heterogeneity and checking the robustness of the results. The leave-one-out method was employed, which allowed us to determine the implication of each study on the pooled effect size. Besides, meta-regression analysis was performed to explore the potential sources of heterogeneity. For indicators with over 10 included articles, we generated a funnel plot to inspect publication bias visually. Begg’s and Egger’s tests were also conducted for analyzing the publication bias quantitatively, where, P < 0.05 was regarded as statistically significant. We validated the results of publication bias by establishing trim and fill funnel plot if required.

3. Results

3.1 Studies Retrieved and Characteristics

In this meta-analysis, we identified 1,068 potentially eligible records, and screened the titles and abstracts of these records for inclusion. On examination of the full text of 78 records, and 30 met our inclusion criteria (Fig. 1). Although Ebrahim’s article met the research topics, it was excluded because the full text was not available [22]. Twenty-one articles [23–44] (10 case-control, 5 nested case-control, 4 cross-sectional and 2 cohort studies) evaluated the relationship between leptin or AdipoQ levels and HCC risk, and main characteristics were summarized in Table 1. Three case-control studies [44–46] assessed the relationship between Leptin or AdipoQ gene polymorphism and HCC risk, and main characteristics were reported in Table 2. Six articles [47–52] analyzed the relationship between AdipoQ or leptin expression and the prognosis of HCC, and the main characteristics were summarized in Table 3.
the included studies using the Newcastle–Ottawa scale is shown in Table 1–3, and the score obtained ranged from 5 to 8. Twenty articles were awarded 7 or 8 points, and considered as high-quality; Six studies were awarded 6 points and four studies were awarded 5 points, which were considered as moderate quality.

3.2 Association between circulating leptin levels and HCC risk

Pooling data of 12 studies [23–28, 30, 32, 37, 40–42] with 1896 participants assessed the association between leptin levels and HCC risk. Heterogeneity analysis showed that the significant heterogeneity was observed among the studies ($I^2 = 97.5\%, \ P = 0.000$), the random-effect model was applied. The results showed that leptin levels were significantly higher in the HCC group than in the CFC group (SMD = 1.83, 95% CI (1.09, 2.58), $P = 0.000$) (Fig. 2). Subgroup analysis, according to the source of CFC group, showed HCC group has significantly higher leptin levels than the healthy control group (SMD = 4.32, 95% CI (2.41, 6.24), $P = 0.000$) and the cirrhosis group (SMD = 1.85, 95% CI (0.70, 3.01), $P = 0.002$), but no statistical difference compared with the chronic hepatitis group (SMD = 0.94, 95% CI (-0.1, 2.03), $P = 0.090$) (Fig. 3 and Table 4). We further conducted subgroup analysis by the source of case group, and the results showed HCV-related cirrhotic HCC has significantly higher leptin levels than HCV-related cirrhosis (SMD = 0.82, 95% CI (0.40, 1.24), $P = 0.000$), whereas there was no difference in other subgroups (Table 4).
In addition, we also performed other subgroup analyses and the results were shown in Table 4. Stratification by ethnicity showed no significant difference in the HCC group and CFC group in Asian (SMD = 0.10, 95% CI (-0.50, 0.70), P = 0.751), Caucasian (SMD = 0.58, 95% CI (-0.06, 1.22), P = 0.077) and African population (SMD = 9.36, 95% CI (1.27, 19.99), P = 0.084). Stratification by sample size showed HCC group has significantly higher leptin levels than CFC group shown in bold.

Variable	Included studies	Test of association	Test of heterogeneity				
		SMD	95%CI	Pvalue*	Mod	Pvalue	\(\phi \)
HCC vs Healthy controls							
Overall	[23–25, 30, 37, 40–42]	4.32	2.41–6.24	0.000	RE	0.000	98.4%
HCC(unreported reason) vs Healthy controls	[23, 24]	5.58	-5.11–16.26	0.306	RE	0.000	98.8%
Viral cirrhotic HCC vs Healthy controls	[37, 41, 42]	1.02	-0.78–2.79	0.263	RE	0.000	94.1%
HCV-related HCC vs Healthy controls	[30, 37, 40]	8.87	-1.08–1.82	0.081	RE	0.000	98.7%
HCC vs Cirrhosis							
Overall	[25–27, 30, 37, 40–42]	1.85	0.70–3.01	0.002	RE	0.000	97.0%
HCV-related cirrhotic HCC vs HCV-related cirrhosis	[26, 37]	0.82	0.40–1.24	0.000	FE	0.145	53.0%
HCV-related HCC vs HCV-related cirrhosis	[30, 40]	8.71	-3.84–21.25	0.174	RE	0.000	99.2%
Viral cirrhotic HCC vs Viral cirrhosis	[27, 41, 42]	0.13	-0.11–0.37	0.302	FE	0.591	0
HCC vs Chronic hepatitis							
Overall	[28, 30, 32, 37, 41]	0.94	-0.15–2.03	0.090	RE	0.000	94.9%
HCV-related HCC vs Chronic hepatitis C	[30, 32, 37]	1.63	-1.39–4.65	0.290	RE	0.000	96.0%
Viral cirrhotic HCC vs Chronic hepatitis C	[37, 41]	-0.10	-0.51–0.32	0.643	FE	0.561	0
Ethnicity							
Asian	[25, 28, 32, 37, 42]	0.10	-0.50–0.70	0.751	RE	0.000	85.6%
Caucasian	[24, 27, 30, 41]	0.58	-0.06–1.22	0.077	RE	0.000	93.3%
African	[23, 26, 40]	9.36	-1.27–19.99	0.084	RE	0.000	99.3%
Sample size							
< 100	[23, 25, 26, 32, 37, 42]	1.57	0.22–2.91	0.022	RE	0.000	95.8%
\(\geq 100 \)	[24, 27, 28, 30, 40, 41]	2.23	1.21–3.26	0.000	RE	0.000	98.4%
Mean age							
< 60	[23, 25–27, 28, 32, 37, 40]	2.87	1.57–4.17	0.000	RE	0.000	98.2%
\(\geq 60 \)	[24, 30, 41, 42]	0.76	0.03–1.49	0.040	RE	0.000	93.7%
Study design							
Case-control	[23, 25, 30, 37, 40–41]	3.81	1.83–5.79	0.000	RE	0.000	97.5%
Nested Case-control	[24, 27, 28]	0.14	0.01–0.26	0.035	FE	0.777	0.0%
Assay method							
ELISA	[23–28, 30, 37, 40, 41]	2.13	1.27–2.99	0.000	RE	0.000	97.9%
RIA	[32, 42]	0.79	0.39–1.19	0.000	FE	0.570	0.0%
Alanine aminotransferase							
< 70 U/L	[23, 26, 28, 32, 37, 40]	4.42	2.26–6.50	0.000	RE	0.000	98.6%
\(\geq 70 \) U/L	[25, 27, 30, 41, 42]	0.43	-0.38–1.23	0.296	RE	0.000	94.4%
Albumin							
< 3.5 g/dl	[25, 26, 30, 40, 42]	3.47	1.28–5.66	0.002	RE	0.000	98.7%
\(\geq 3.5 \) g/dl	[27, 28, 32, 41]	0.12	-0.02–0.26	0.091	FE	0.633	0.0%

RE = Random-effects model, FE = Fixed-effects model, HCC = Hepatocellular carcinoma, HCV = hepatitis C virus. * Statistically significant results were shown in bold.
in both small (n < 100) sample numbers (SMD = 1.57, 95% CI (0.22, 2.91), P = 0.022) and large (n ≥ 100) sample numbers (SMD = 2.23, 95% CI (1.21, 3.26), P = 0.000). Stratification by mean age showed HCC group has significantly higher leptin levels than CFC group in both “< 60” (SMD = 2.87, 95% CI (1.57, 4.17), P = 0.000) and “≥ 60” (SMD = 0.76, 95% CI (0.03, 1.49), P = 0.040). Stratification by study design showed HCC group has significantly higher leptin levels than CFC group in both case-control studies (SMD = 3.81, 95% CI (1.83, 5.79), P = 0.000) and nested case-control studies (SMD = 0.14, 95% CI (0.01, 0.26), P = 0.035). Stratification by assay method revealed the HCC group has significantly higher leptin levels than the CFC group by both “ELISA” (SMD = 2.13, 95% CI (1.27, 2.99), P = 0.000) and “RIA” (SMD = 0.79, 95% CI (0.39, 1.19), P = 0.000). Stratification by Alanine aminotransferase (ALT) levels of HCC patients showed HCC group has significantly higher leptin levels than CFC group in “< 70 U/L” (SMD = 4.42, 95% CI (2.26, 6.50), P = 0.000), but not in the “≥ 70 U/L” (SMD = 0.43, 95% CI (0.38, 1.23), P = 0.296). Stratification by albumin levels of HCC patients showed HCC group has significantly higher leptin levels than CFC group in “< 3.5 g/dl” (SMD = 3.47, 95% CI (1.28, 5.66), P = 0.002), but not in the “≥ 3.5 g/dl” (SMD = 0.12, 95% CI (-0.02, 0.26), P = 0.091).

Meta-regression analysis showed that the ethnicity (P = 0.004), but not the source of control (P = 0.242) and case (P = 0.185), sample size (P = 0.735), mean age (P = 0.420), study design (P = 0.344), assay method (P = 0.606), ALT (P = 0.172) and albumin (P = 0.853) had significant impacts on the heterogeneity in the meta-analysis. To assess the impacts of each study on the overall meta-analysis, we carried out sensitivity analysis using the leave-one-out method. No substantial change of data on leptin levels was observed. Therefore, the results of our meta-analysis were relatively stable and credible (Fig. 4).

Funnel plot representing SMDs of the leptin levels in the HCC group compared to the CFC group were used to evaluate publication bias. Through the visual inspection of the funnel plot, there was obvious asymmetry that indicated a possibility of publication bias (Fig. 5), which were supported by the Begg’s tests (P = 0.034) and Egger’s tests (P = 0.025). Therefore, further verification by trim and fill funnel plot was employed to adjust for the potential publication bias. However, the pooled data regarding leptin that had been significant before the adjustment with the “trim and fill” method remained significant after the adjustment (SMD = 3.486, 95% CI (0.937–6.035), P < 0.05), indicating that this publication bias did not affect the pooled estimates.

3.3 Association between circulating AdipoQ levels and HCC risk.

Pooling data of 13 studies [24, 27–29, 31, 33–36, 38–40, 43] with 2092 participants evaluated the association between AdipoQ levels and HCC risk. Heterogeneity analysis showed that the significant heterogeneity was observed among the studies (I² = 98.2%, P = 0.000), the random-effect model was applied. The results showed that AdipoQ levels were no statistical difference in the HCC group than in the CFC group (SMD = 0.24, 95% CI (0.35, 0.82), P = 0.430) (Fig. 6).

Subgroup analysis, according to the source of CFC group, showed HCC group has significantly higher AdipoQ levels than the healthy control group (SMD = 1.57, 95% CI (0.37, 2.76), P = 0.010), but no statistical difference compared with the chronic hepatitis group (SMD = 0.10, 95% CI (0.80, 1.00), P = 0.826) and the cirrhosis group (SMD = -0.51, 95% CI (-1.30, 0.29), P = 0.213) (Fig. 7 and Table 5). We further conducted subgroup analysis by the source of case group, and the results showed viral HCC has significantly higher AdipoQ levels than Healthy controls (SMD = 1.11, 95% CI (0.44, 1.78), P = 0.001), and HCV-related HCC has significantly lower AdipoQ levels than HCV-related cirrhosis (SMD = -1.22, 95% CI (-1.54, -0.90), P = 0.000), whereas there was no difference in other subgroups (Table 5).
Table 5
Subgroup analysis of the association between adiponectin levels and HCC risk

Variable	Included studies	Test of association	Test of heterogeneity				
		SMD	95%CI	P-value*	Modal	P-value	χ²
HCC vs Healthy controls							
Overall	[24, 29, 31–36, 40]	1.57	0.37, 2.76	0.010	RE	0.000	99.0%
HCC(unreported reason) vs Healthy controls [24, 31, 34, 35]	1.88	-0.31, 4.08	0.092	RE	0.000	99.5%	
Viral HCC vs Healthy controls	[29, 36, 40]	1.11	0.44, 1.78	0.001	RE	0.000	90.8%
HCC vs Cirrhosis							
Overall	[27, 33, 36, 40]	-0.51	-1.30, 0.29	0.213	RE	0.000	93.9%
Viral cirrhotic HCC vs Viral cirrhosis	[27, 33]	-0.37	-1.80, 1.05	0.607	RE	0.000	95.9%
HCV-related HCC vs HCV-related cirrhosis	[33, 40]	-1.22	-1.54, -0.90	0.000	FE	0.531	0.0%
HCC vs Chronic hepatitis							
Overall	[28, 34, 36, 38, 39, 43]	0.10	-0.80, 1.00	0.826	RE	0.000	98.4%
HCC(unreported causes) vs Chronic hepatitis C	[34, 39]	-0.48	-5.71, 4.75	0.857	RE	0.000	99.6%
HCV-related HCC vs Chronic hepatitis C	[28, 43]	0.08	-0.22, 0.38	0.599	RE	0.068	70.0%
Viral HCC vs Chronic viral hepatitis	[28, 36, 38, 43]	0.35	-0.08, 0.78	0.108	RE	0.000	91.8%
Ethnicity							
Asian	[28, 29, 35, 36, 38, 43]	0.31	0.02, 0.61	0.036	RE	0.000	88.3%
Caucasian	[24, 27, 31]	0.73	0.11, 1.35	0.022	RE	0.000	90.3%
African	[33, 34, 39, 40]	-0.32	-2.93, 2.29	0.811	RE	0.000	99.5%
Sample size							
< 200	[27, 31, 33, 39, 40, 43]	0.76	0.03, 1.50	0.042	RE	0.000	98.5%
≥ 200	[24, 28, 29, 34–36, 38]	-0.40	-1.34, 0.54	0.403	RE	0.000	97.1%
Mean age							
< 60	[27–29, 33, 34, 36, 39, 40]	0.10	-0.85, 1.05	0.833	RE	0.000	98.8%
≥ 60	[24, 35, 43]	0.13	-0.14, 0.39	0.362	RE	0.037	69.7%
Study design							
Nested Case-control	[24, 27, 28, 35, 38]	0.25	0.14, 0.36	0.000	EE	0.585	0.0%
Case-control	[29, 34, 40, 43]	0.84	-0.74, 2.12	0.298	RE	0.000	99.2%
Cross-sectional	[33, 36, 39]	-1.10	-3.46, 1.26	0.361	RE	0.000	99.0%
Sample source							
Serum	[24, 27, 29, 31, 33–36, 39, 40, 43]	0.23	-0.51, 0.97	0.540	RE	0.000	98.5%
Plasma	[28, 38]	0.23	0.08, 0.38	0.003	FE	0.795	0.0%
Assay method							
ELISA	[24, 27, 28, 31, 33, 35, 36, 38–40, 43]	-0.03	-0.45, 0.40	0.901	RE	0.000	95.7%
Non-ELISA	[29, 34]	1.75	-0.75, 4.26	0.170	RE	0.000	99.4%
Alanine aminotransferase							
< 70 U/L	[28, 33, 36, 40, 43]	0.00	-0.53, 0.53	0.992	RE	0.000	94.8%
≥ 70 U/L	[27, 34, 39]	0.08	-2.96, 3.12	0.958	RE	0.000	99.5%
Albumin							
< 3.5 g/dl	[33, 34, 40]	0.62	-1.98, 3.22	0.639	RE	0.000	98.5%
≥ 3.5 g/dl	[27, 28]	0.24	0.09, 0.40	0.002	RE	0.000	99.4%

RE = Random-effects model, FE = Fixed-effects model, HCC = Hepatocellular carcinoma, HCV = hepatitis C virus. *Statistically significant results were shown in bold.
Subgroup analysis, according to the molecular-weight of AdipoQ, showed no significant difference about high-molecular-weight AdipoQ (SMD = -0.01, 95% CI (-0.20, 0.18), P = 0.911) and non-high-molecular-weight AdipoQ (SMD = 0.28, 95% CI (0.06, 0.62), P = 0.103) levels in the HCC group and CFC group (Fig. 8). In addition, we also performed other subgroup analysis and the results were shown in Table 5. Stratification by ethnicity showed HCC group has significantly higher AdipoQ levels than CFC group in Asian (SMD = 0.31, 95% CI (0.02, 0.61), P = 0.036) and Caucasian population (SMD = 0.73, 95% CI (0.11, 1.35), P = 0.022), but not in African population (SMD = -0.32, 95% CI (-2.93, 2.29), P = 0.811). Stratification by sample size showed HCC group has significantly higher AdipoQ levels than CFC group in small (n < 200) sample numbers (SMD = 0.76, 95% CI (0.03, 1.50), P = 0.042), but not in large (n ≥ 200) sample numbers (SMD = -0.40, 95% CI (-1.34, 0.54), P = 0.403). Stratification by mean age showed no significant difference in the HCC group and CFC group in both “< 60” (SMD = 0.10, 95% CI (0.85, 1.05), P = 0.833) and “≥ 60” (SMD = 0.13, 95% CI (0.14, 0.39), P = 0.362). Stratification by study design showed HCC group has significantly higher AdipoQ levels than CFC group in nested case-control studies (SMD = 0.25, 95% CI (0.14, 0.36), P = 0.000), but not in case-control studies (SMD = 0.84, 95% CI (-0.74, 2.12), P = 0.298) and cross-sectional studies (SMD = -1.10, 95% CI (-3.46, 1.26), P = 0.361). Stratification by the sample source revealed HCC group has significantly higher AdipoQ levels than CFC group in the source of plasma (SMD = 0.23, 95% CI (0.08, 0.38), P = 0.003), but not in the source of serum (SMD = 0.23, 95% CI (0.51, 0.97), P = 0.540). Stratification by assay method revealed no significant difference in the HCC group and CFC group by both "ELISA" (SMD = -0.03, 95% CI (0.45, 0.40), P = 0.901) and "Non-ELISA" (SMD = 1.75, 95% CI (0.75, 4.26), P = 0.170). Stratification by ALT levels of HCC patients showed no significant difference in the HCC group and CFC group in both "< 70U/L" (SMD = 0.00, 95% CI (-0.53, 0.53), P = 0.992) and "≥ 70U/L" (SMD = 0.08, 95% CI (2.96, 3.12), P = 0.958). Stratification by albumin levels of HCC patients showed HCC group has significantly higher AdipoQ levels than CFC group in "≥ 3.5 g/dl" (SMD = 0.24, 95% CI (0.09, 0.40), P = 0.002), but not in the "< 3.5 g/dl" (SMD = 0.62, 95% CI (1.98, 3.22), P = 0.639). In addition, we also found that AdipoQ levels in HCC patients was not related to gender (man vs woman: SMD = -0.29, 95% CI (-0.69, 0.11), P = 0.153) and vascular invasion (present vs absent: SMD = 0.19, 95% CI (0.11, 0.49), P = 0.208).

Khattab et al. [34] found that AdipoQ levels in HCC with the size of nodules ≥ 5 cm were significantly greater than 5 cm (24.2 ± 2.1 vs 20.8 ± 3.8, P = 0.009), whereas, AdipoQ levels were not related to TNM stages, number of nodules and lymph node metastasis. Feder et al. [31] discovered that AdipoQ levels were no statistical difference in HCC and colorectal liver metastases patients, and negatively related to steatosis grade, but not correlate with inflammation or fibrosis score. Sadik et al. [40] reported that AdipoQ levels of cirrhotic HCC were significantly higher than the noncirrhotic HCC group, whereas leptin was not.

Meta-regression analysis showed that the source of control (P = 0.150) and case (P = 0.579), ethnicity (P = 0.338), sample size (P = 0.140), mean age (P = 0.540), study design (P = 0.283), assay method (P = 0.092), source of sample (P = 0.993), ALT (P = 0.544) and albumin (P = 0.575) had no significant affects on the heterogeneity in the meta-analysis. We also carried out sensitivity analysis using the leave-one-out method, and no substantial change of data on AdipoQ levels was observed, therefore, the results of our meta-analysis were relatively stable and credible (Fig. 9).

Funnel plot representing SMDs of the AdipoQ levels in the HCC group compared to the CFC group were used to assess publication bias. Through the visual inspection of the funnel plot, there was obvious asymmetry that indicated a possibility of publication bias (Fig. 10), which were not supported by the Begg’s tests (P = 0.300) and Egger’s tests (P = 0.142); therefore, further verification by trim and fill funnel plot was employed to adjust for the potential publication bias. The result of the “trim and fill” method revealed that no trimming was performed and the data was unchanged, suggesting that there was no significant publication bias.

3.4 Association between leptin, AdipoQ gene polymorphism and HCC risk

Pooling data from 2 studies [44, 46] with 1746 participants evaluated the association between leptin rs7799039 and HCC risk. In the allele model analysis, the G allele was significantly associated with an increased risk of HCC (G vs A: OR = 1.28, 95% CI (1.10, 1.48), P = 0.002). In the codominant model analysis, the GG genotypes was associated with a 2.03-fold elevated risk in HCC (GG vs AA: OR = 2.03, 95% CI (1.41, 2.93), P = 0.000), whereas the AG genotypes was no (AG vs AA: OR = 1.07, 95% CI (0.87, 1.31), P = 0.505). In the recessive model analysis, the GG genotypes was associated with a 1.97-fold elevated risk for developing HCC (GG vs AA + AG: OR = 1.97, 95% CI (1.38, 2.82), P = 0.000). However, in the overdominant and dominant model analysis, the AG and GG genotypes were no significantly associated with an increased HCC risk (AG vs AA + GG: OR = 0.97, 95% CI (0.80, 1.18), P = 0.770; AG + GG vs AA: OR = 1.19, 95% CI (0.98, 1.44), P = 0.078). There was no significant heterogeneity in the above results (Fig. 11).

As for AdipoQ, Cai et al. [45] found that the AdipoQ rs1501299 was associated with the increased susceptibility to HCC, and the additive model showed that the GT and GG genotypes were significantly associated with an increased HCC risk (GT vs TT: OR = 2.83, 95% CI (1.36, 5.89), P = 0.006; GG vs TT: OR = 4.52, 95% CI (2.25, 9.11), P = 0.001). In the dominant model analysis, the GG + GT genotypes were associated with a 3.8-fold elevated risk in HCC(GG + GT vs TT: OR = 3.795, 95% CI (1.92, 7.49), P = 0.001). However, the rs266729, rs822395, rs822396 and rs2241766 were no significantly associated with HCC. It is a pity that we just retrieved one study that evaluated the association of AdipoQ gene polymorphism with HCC, so that we failed to perform related meta-analysis.

3.5 Dose-response of circulating AdipoQ, leptin levels and HCC risk

Pooling data from 4 studies [24, 28, 35, 38] with 1507 participants showed that there was a linear dose-response relationship between AdipoQ levels and HCC risk (Pnon-linearity = 0.233). We defined the increment in 1 µg/ml AdipoQ levels as a unit to show the trend more clearly. The trends were significant for increasing HCC risk per one unit increase of AdipoQ (OR = 1.066, 95% CI (1.03, 1.11), P = 0.001; Fig. 12), without significant heterogeneity (P_heterogeneity = 0.338).

As for leptin, Aleksandrova et al. [24] and Chen et al. [28] both confirmed that leptin was no significant dose-response trend in the development of HCC. Unfortunately, we only found these two studies, and we unable to perform a meta-analysis.

3.6 Association between AdipoQ, leptin and survival in HCC
Pooling data of 4 studies [47–49, 51] with 435 participants analyzed the association between AdipoQ expression and survival in HCC. Heterogeneity analysis showed that no significant heterogeneity was observed among the studies ($I^2 = 0\%$, $P = 0.660$), the fixed-effect model was applied. The results showed that high/positive expression of AdipoQ was significantly related to lower overall survival (OS) in HCC patients ($HR = 1.70$, 95% CI (1.22, 2.37), $P = 0.002$; Fig. 13).

Pooling data of 3 studies [47, 50, 52] with 241 participants measured the association between leptin expression and prognosis in HCC. Heterogeneity analysis showed that the significant heterogeneity was observed among the studies ($I^2 = 66.0\%$, $P = 0.053$), the random-effect model was applied. The results showed that high/positive expression of leptin was no significantly associated with prognosis in HCC patients ($HR = 0.92$, 95% CI (0.53, 1.59), $P = 0.766$; Fig. 13).

4. Discussion

Over the last two decades, the abnormal expression of leptin and AdipoQ is correlated with various obesity-related cancers. In 2016, Wei et al. [53] carried out a meta-analysis of 107 articles to investigate AdipoQ levels in various malignancies and found that AdipoQ levels in some cancer cases (including acute leukemia, multiple myeloma, breast cancer, colorectal cancers, endometrial cancer, prostate cancer, thyroid cancer, tongue cancer, gastroesophageal cancer) were significantly lower, and in HCC was significantly higher than in the CFC group. However, only 7 articles regarding HCC were involved in the meta-analysis. Song et al. [54] performed a meta-analysis of 9 Chinese and English studies and also revealed that the AdipoQ levels in HCC patients were significantly higher than those in the CFC group. Our results indicated that HCC patients showed significantly higher AdipoQ levels than the healthy control group, but no significant difference about AdipoQ levels than CFC group. Currently, no meta-analysis on leptin and HCC risk has been carried out, and our results showed that HCC patients showed significantly higher leptin levels than the CFC group, healthy control group and cirrhosis group. Besides, comparing the HCC group and the different sources of the CFC group, the results were different. Thus we can conclude that AdipoQ and leptin levels are altered in patients with chronic hepatitis and cirrhosis compared to healthy controls, which is consistent with Buechler’s conclusion [13].

However, the high heterogeneity was observed in this pooled analysis and the findings should be explained with caution. We conducted meta-regression, subgroup analyses, and carried out sensitivity analyses to determine the source of heterogeneity. In the pooled analysis of leptin, the results of meta-regression indicated that the heterogeneity derived from ethnicity, and subgroup analyses showed that heterogeneity is related to the source of the control group, study design, assay method and baseline levels of albumin. In the pooled analysis of AdipoQ, the source of heterogeneity wasn’t found by the meta-regression, and heterogeneity is linked to the source of the control group, study design, mean age and sample source by the subgroup analyses.

Many single-nucleotide polymorphisms were found in the leptin gene, and the earliest one is the LEP rs7799039 polymorphism, an SNP identified in the 50-untranslated region of the leptin gene [55], which has been studied in various malignant tumors and was suggested it could affect the transcriptional level and leptin expression [56]. Some previous meta-analyses indicated that LEP rs7799039 polymorphism conferred the risk of cancer [57–59]. However, no meta-analysis was conducted to explore the correlation between LEP rs7799039 polymorphism and HCC risk. In this study, we found that LEP rs7799039 polymorphism was involved in the susceptibility to HCC. Unfortunately, the included studies are too few, and the conclusion ought to be further verified by more high-quality studies.

By dose-response, we were able to more clearly explore the association between AdipoQ and leptin and the risk of HCC. In 2019, Yoon et al. [60] found that AdipoQ levels were significantly associated with decreased risk of cancer, such as breast, colorectal, and endometrial cancer, and leptin was significantly associated with increased risk of cancer, such as endometrial and kidney cancer. However, our results showed that the increase of AdipoQ levels was significant for increasing HCC risk. There were just 2 dose-response studies between leptin and HCC risk, so meta-analysis was given up.

Leptin and AdipoQ may have closely associated with not only the occurrence of cancer, but the prognosis of cancer. Our findings that high/positive expression of AdipoQ was significantly correlated with lower OS in HCC patients are similar to the meta-analysis of 10 studies, which revealed that elevated AdipoQ expression was related to poor prognosis in cancer patients (including HCC patients) [61]. It is worth noting that high/positive expression of leptin was no significantly correlated with prognosis in HCC patients in this meta-analysis.

High levels of leptin may play an important role in the promotion of cancer cell migration, proliferation, survival and angiogenesis [62, 63]. This is achieved by the activation of Janus kinase/signal transducer and activator of transcription, phosphatidylinositol 3-kinase, mitogen-activated protein kinase, and extracellular signal-regulated kinase signaling pathways [64, 65], which were thought to be related to oncogenes [66, 67]. Leptin can also promote the development of liver fibrosis, steatosis and proinflammation [4, 68]. Besides, Mittenbuhler et al. revealed leptin signaling as a promoter of HCC in obesity [69].

Many studies have found AdipoQ to have significant anti-proliferative, anti-carcinogenic activity and anti-inflammatory [70]. Nazmy et al. found that AdipoQ’s tumorigenic activity can provide more protection for the body against the HCC by hindering reduction in p53 expression, reactivation of TNF-related apoptosis-inducing ligand signaling and induction of apoptotic pathway [71]. Al-Gayyar et al. revealed that AdipoQ can completely block the increase of sulfatase 2 induced by HCC, ameliorate the expression of tumor invasion markers, matrix metalloproteinase-9, syndecan-1 and fibroblast growth Factor-2 induced by HCC, decrease the expression of nfkb and tumor necrosis factor α (TNF-α) induced by HCC, thus achieve the hepatoprotective [72]. Manieri’s research showed that adipoQ can activate two proteins in liver cells, p38α and AMP-activated protein kinase, which can prevent cell proliferation and impair tumor growth [73]. Our finding that elevated AdipoQ was linked to higher risk and poor prognosis of HCC, which seems paradoxical with the above view. Some mechanisms have been suggested to account for this contradiction. 1) AdipoQ resistance: even if AdipoQ is plentifully expressed, it may not be able to prevent poor prognosis due to the down-regulated of AdipoQ receptor or the dysfunctional of AdipoQ signaling pathway. Many HCC patients have liver cirrhosis or fibrosis, both of which are related to the down-regulation of AdipoQ receptors in the liver and reduction of AdipoQ clearance, leading to AdipoQ resistance status [74]. Also, the expression of AdipoQ originally enhances to compensate for the progression of HCC, but the higher levels of AdipoQ are ineffective due to the overall worsening of the patient’s physical condition [51]. 2) AdipoQ stimulates AKT-mediated activation of cancer cells, which is a significant predictor of poor survival [51, 75].
There are some limitations to this meta-analysis that should be considered. First, the partial results should be interpreted with caution due to the high level of heterogeneity. Second, few studies were conducted to explore the correlation between leptin, AdipoQ gene polymorphism and HCC risk. The results of LEP rs7799039 polymorphism and HCC risk should require more studies to confirm. Third, we extracted partly HR from the survival curve of the original article, which may introduce some small errors. Finally, almost all studies included in the meta-analysis had leptin and AdipoQ levels measured only one time and did not show its long-term changes in the development of HCC.

5. Conclusions
The present study shows that high leptin levels were associated with a higher risk of HCC, which may represent a useful biomarker for early detection of HCC. AdipoQ levels were proportional to HCC risk, with a linear dose-response relationship, and were related to the poor prognosis, which may be a useful biomarker for determining the prognosis of HCC.

Abbreviations
HCC
Hepatocellular carcinoma; HCV:hepatitis C virus; HBV:hepatitis B virus; CFC:Cancer-free control; AdipoQ:Adiponectin; SMD:standardized mean difference; OR:odds ratio; HR:Hazard ratio; CI:confidence interval; NOS:Newcastle-Ottawa Scale; ALT:Alanine aminotransferase; ELISA:Enzyme-linked immunosorbent assay; RIA:Radioimmunoassay; OS:overall survival

Declarations
Acknowledgements
The authors thank all the medical staff who contributed to the maintenance of the medical record database.

Authors’ contributions
ZL and WW conceived and designed the study. ZL, YQ and CD were responsible for the collection and assembly of data, data analysis, and interpretation. ZL was involved in writing the manuscript. LM, and WW revised the manuscript. All the work was performed under WW instruction. All authors read and approved the final manuscript.

Funding
The authors received no specific funding for this work.

Availability of data and materials
The data that support the findings of this study are available from the corresponding author upon reasonable request.

Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Author details
1Department of Hepatobiliary and Laparoscopic Surgery, Renmin Hospital of Wuhan University, No. 99 Jiefang Road, Wuhan 430060, Hubei, China.
2Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, No.222 Zhongshan Road, Dalian 116011, Liaoning, China.

References
1. Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2018;68(6):394–424.
2. Liang H, Xiong Z, Li R, Hu K, Cao M, Yang J, et al. BDH2 is downregulated in hepatocellular carcinoma and acts as a tumor suppressor regulating cell apoptosis and autophagy. J Cancer. 2019;10(16):3735–45.
3. Ueno Y, Sollano JD, Farrell GC. Prevention of hepatocellular carcinoma complicating chronic hepatitis C. J Gastroenterol Hepatol. 2009;24(4):531–6.
4. Wang SN, Lee KT, Ker CG. Leptin in hepatocellular carcinoma. World J Gastroenterol. 2010;16(46):5801–9.
5. Buechler C, Wanninger J, Neumeir M. Adiponectin, a key adipokine in obesity related liver diseases. World J Gastroenterol. 2011;17(23):2801–11.
6. Stolzenberg-Solomon RZ, Newton CC, Silverman DT, Pollak M, Nogueira LM, Weinstein SJ, et al. Circulating Leptin and Risk of Pancreatic Cancer: A Pooled Analysis From 3 Cohorts. Am J Epidemiol. 2015;182(3):187–97.

7. Arita Y, Kihara S, Ouchi N, Takahashi M, Maeda K, Miyagawa J, et al. Paradoxical decrease of an adipose-specific protein, adiponectin, in obesity. Biochem Biophys Res Commun. 1999;257(1):79–83.

8. Wang ZV, Scherer PE. Adiponectin, the past two decades. J Mol Cell Biol. 2016;8(2):93–100.

9. Adolph TE, Grander C, Grabherr F, Tilg H. Adipokines and Non-Alcoholic Fatty Liver Disease: Multiple Interactions. Int J Mol Sci 2017, 18(8).

10. Kamada Y, Matsumoto H, Tamura S, Fukushima J, Kiso S, Fukui K, et al. Hypoadiponectinemia accelerates hepatic tumor formation in a nonalcoholic steatohepatitis mouse model. J Hepatol. 2007;47(4):556–64.

11. Saxena NK, Fu PP, Nagalingam A, Wang J, Handy J, Cohen C, et al. Adiponectin modulates C-jun N-terminal kinase and mammalian target of rapamycin and inhibits hepatocellular carcinoma. Gastroenterology 2010, 139(5):1762–73, 1773.e1761-1765.

12. Wieser V, Moschen AR, Tilg H. Adipocytokines and hepatocellular carcinoma. Dig Dis. 2012;30(5):508–13.

13. Buechler C, Haberl EM, Rein-Fischboeck L, Aaslindin C. Adipokines in Liver Cirrhosis. Int J Mol Sci 2017, 18(7).

14. Stroup DF, Berlin JA, Morton SC, Olkin I, Williamson GD, Rennie D, et al. Meta-analysis of observational studies in epidemiology: a proposal for reporting. Meta-analysis Of Observational Studies in Epidemiology (MOOSE) group. JAMA. 2000;283(15):2098–108.

15. Liberiati A, Altman DG, Tetzlaff J, Mulrow C, Gøtzsche PC, Ioannidis JP, et al. The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate health care interventions: explanation and elaboration. PLoS Med. 2009;6(7):e1000100.

16. Wan X, Wang W, Liu J, Tong T. Estimating the sample mean and standard deviation from the sample size, median, range and/or interquartile range. BMC Med Res Methodol. 2014;14:135.

17. Luo D, Wan X, Liu J, Tong T. Optimally estimating the sample mean from the sample size, median, mid-range, and/or mid-quartile range. Stat Methods Med Res. 2018;27(6):1785–805.

18. Parmar MK, Torri V, Stewart L. Extracting summary statistics to perform meta-analyses of the published literature for survival endpoints. Stat Med. 1998;17(24):2815–34.

19. Tierney JF, Stewart LA, Gherzi D, Burdett S, Sydes MR. Practical methods for incorporating summary time-to-event data into meta-analysis. Trials 2007, 8:16.

20. Guo J, Astrup A, Lovegrove JA, Gijsbers L, Givens DI, Soedamah-Muthu SS. Milk and dairy consumption and risk of cardiovascular diseases and all-cause mortality: dose-response meta-analysis of prospective cohort studies. Eur J Epidemiol. 2017;32(4):269–87.

21. Greenland S, Longnecker MP. Methods for trend estimation from summarized dose-response data, with applications to meta-analysis. Am J Epidemiol. 1992;135(11):1301–9.

22. Ebrahim MA, Shamis MEE, Al-Gayyar MMH, El-Shishtawy MM. Circulating adiponectin in hepatocellular carcinoma: A possible risk factor for development and progression. European journal of Clinical and Medical Oncology 2012, 4(4).

23. Abouzied MM, Nazmy MH, Mohamed RM, Fawzy MA, Eltahir HM. Diagnostic utility of leptin and insulin-like growth factor binding protein-2 in hepatocellular carcinoma of diabetic and non-diabetic Egyptian patients. Tropical Journal of Pharmaceutical Research 2017, 16(1):211–218.

24. Aleksandrova K, Boeing H, Nothlings U, Jenab M, Fedirko V, Kaaks R, et al: Inflammatory and metabolic biomarkers and risk of liver and biliary tract cancer. Hepatology 2014, 60(3):858–871.

25. Bakir AS, Al Swaff R, Rasmy HS, Mandoor A. Circulating leptin in patients with liver cirrhosis and hepatocellular carcinoma. Research Journal of Pharmaceutical, Biological and Chemical Sciences 2017, 8(3):341–350.

26. Bastard JP, Fellahi S, Audureau E, Layese R, Roudot-Thoraval F, Cagnot C, et al. Elevated adiponectin and sTNFRII serum levels can predict progression to hepatocellular carcinoma in patients with compensated HCV1 cirrhosis. Eur Cytokine Netw. 2018;29(3):112–20.

27. Chen CL, Yang WS, Yang HI, Chen CF, You SL, Wang LY, et al. Plasma adipokines and risk of hepatocellular carcinoma in chronic hepatitis B virus-infected carriers: a prospective study in taiwan. Cancer Epidemiol Biomarkers Prev. 2014, 23(8):1659–71.

28. Chen MJ, Yeh YT, Lee KT, Tsai CJ, Lee HH, Wang SN. The promoting effect of adiponectin in hepatocellular carcinoma. J Surg Oncol. 2012;106(2):181–7.

29. Costantini S, Capone F, Maio P, Guerriero E, Colonna G, Izzo F, et al. Cancer biomarker proling in patients with chronic hepatitis C virus, liver cirrhosis and carriers: a prospective study in taiwan. Cancer Epidemiol Biomarkers Prev. 2014;23(8):1659–71.

30. Luo D, Wan X, Liu J, Tong T. Estimating the sample mean and standard deviation from the sample size, median, mid-range, and/or mid-quartile range. Stat Methods Med Res. 2018;27(6):1785–805.

31. Parmar MK, Torri V, Stewart L. Extracting summary statistics to perform meta-analyses of the published literature for survival endpoints. Stat Med. 1998;17(24):2815–34.

32. Tierney JF, Stewart LA, Gherzi D, Burdett S, Sydes MR. Practical methods for incorporating summary time-to-event data into meta-analysis. Trials 2007, 8:16.

33. Guo J, Astrup A, Lovegrove JA, Gijsbers L, Givens DI, Soedamah-Muthu SS. Milk and dairy consumption and risk of cardiovascular diseases and all-cause mortality: dose-response meta-analysis of prospective cohort studies. Eur J Epidemiol. 2017;32(4):269–87.

34. Greenland S, Longnecker MP. Methods for trend estimation from summarized dose-response data, with applications to meta-analysis. Am J Epidemiol. 1992;135(11):1301–9.

35. Ebrahim MA, Shamis MEE, Al-Gayyar MMH, El-Shishtawy MM. Circulating adiponectin in hepatocellular carcinoma: A possible risk factor for development and progression. European journal of Clinical and Medical Oncology 2012, 4(4).

36. Abouzied MM, Nazmy MH, Mohamed RM, Fawzy MA, Eltahir HM. Diagnostic utility of leptin and insulin-like growth factor binding protein-2 in hepatocellular carcinoma of diabetic and non-diabetic Egyptian patients. Tropical Journal of Pharmaceutical Research 2017, 16(1):211–218.

37. Aleksandrova K, Boeing H, Nothlings U, Jenab M, Fedirko V, Kaaks R, et al: Inflammatory and metabolic biomarkers and risk of liver and biliary tract cancer. Hepatology 2014, 60(3):858–871.

38. Bakir AS, Al Swaff R, Rasmy HS, Mandoor A. Circulating leptin in patients with liver cirrhosis and hepatocellular carcinoma. Research Journal of Pharmaceutical, Biological and Chemical Sciences 2017, 8(3):341–350.

39. Bastard JP, Fellahi S, Audureau E, Layese R, Roudot-Thoraval F, Cagnot C, et al. Elevated adiponectin and sTNFRII serum levels can predict progression to hepatocellular carcinoma in patients with compensated HCV1 cirrhosis. Eur Cytokine Netw. 2018;29(3):112–20.

40. Chen CL, Yang WS, Yang HI, Chen CF, You SL, Wang LY, et al. Plasma adipokines and risk of hepatocellular carcinoma in chronic hepatitis B virus-infected carriers: a prospective study in taiwan. Cancer Epidemiol Biomarkers Prev. 2014, 23(8):1659–71.

41. Chen MJ, Yeh YT, Lee KT, Tsai CJ, Lee HH, Wang SN. The promoting effect of adiponectin in hepatocellular carcinoma. J Surg Oncol. 2012;106(2):181–7.

42. Costantini S, Capone F, Maio P, Guerriero E, Colonna G, Izzo F, et al. Cancer biomarker profiling in patients with chronic hepatitis C virus, liver cirrhosis and hepatocellular carcinoma. Oncol Rep. 2013;29(6):2163–8.

43. Feder S, Kandulski A, Schacherer D, Weiss TS, Buechler C. Serum Adiponectin Levels Do Not Distinguish Primary from Metastatic Liver Tumors. Anticancer Res. 2020;40(1):143–51.

44. Fukushima N, Kuromatsu R, Arinaga-Hino T, Ando E, Takahashi J, Miyagawa J, et al. Hypoadiponectinemia accelerates hepatic tumor formation in a nonalcoholic steatohepatitis mouse model. J Hepatol. 2007;47(4):556–64.

45. Liu ZW, Zhang N, Han QY, Zeng JT, Chu YL, Qiu JM, et al. Correlation of serum leptin levels with anthropometric and metabolic parameters and biochemical liver function in Chinese patients with chronic hepatitis C virus infection. World J Gastroenterol. 2005;11(22):3357–62.
36. Michikawa T, Inoue M, Sawada N, Sasazuki S, Tanaka Y, Iwasaki M, et al. Plasma levels of adiponectin and primary liver cancer risk in middle-aged Japanese adults with hepatitis virus infection: a nested case-control study. Cancer Epidemiol Biomarkers Prev. 2013;22(12):2250–7.

37. Radwan HA, Hamed EH, Saleh OM. Significance of Serum Adiponectin and Insulin Resistance Levels in Diagnosis of Egyptian Patients with Chronic Liver Disease and HCC. Asian Pac J Cancer Prev. 2019;20(6):1833–9.

38. Sadik NA, Ahmed A, Ahmed S. The significance of serum levels of adiponectin, leptin, and hyaluronic acid in hepatocellular carcinoma of cirrhotic and noncirrhotic patients. Hum Exp Toxicol. 2012;31(4):311–21.

39. Voumvouraki A, Koulentaki M, Notas G, Sfaitaniak O, Kouromalis E. Serum surrogate markers of liver fibrosis in primary biliary cirrhosis. Eur J Intern Med. 2011;22(1):77–83.

40. Sumie S, Kawaguchi T, Kuromatsu R, Takata A, Nakano M, Satani M, et al. Total and high molecular weight adiponectin and hepatocellular carcinoma with HCV infection. PLoS One. 2011;6(11):e26840.

41. Ataseven H, Bahcecioglu IH, Kuzu N, Yalniz M, Celebi S, Erensoy A, et al: The levels of ghrelin, leptin, TNF-alpha, and IL-6 in liver cirrhosis and hepatocellular carcinoma due to HBV and HDV infection. Mediators Inflamm. 2006;2006(4):78380.

42. Kotani K, Wakai K, Shibata A, Fujita Y, Ogimoto I, Naito M, et al. Serum adiponectin multimer complexes and liver cancer risk in a large cohort study in Japan. Asian Pac J Cancer Prev. 2009;10 Suppl:87–90.

43. Wang YY, Lin SY. Leptin in relation to hepatocellular carcinoma in patients with liver cirrhosis. Horm Res. 2003;60(4):185–90.

44. Amer T, El-Baz R, Mokhtar AR, El-Shaer S, Elshazli R, Settin A. Genetic polymorphisms of IL-23R (rs7517847) and LEP (rs7799039) among Egyptian patients with hepatocellular carcinoma. Arch Physiol Biochem 2017, 123(5):279–285.

45. Cai X, Gan Y, Fan Y, Hu J, Jin Y, Chen F, et al. The adiponectin gene single-nucleotide polymorphism rs1501299 is associated with hepatocellular carcinoma risk. Clin Transl Oncol. 2014;16(2):166–72.

46. Zhang S, Jiang J, Chen Z, Wang Y, Tang W, Liu C, et al. Investigation of LEP and LEPR polymorphisms with the risk of hepatocellular carcinoma: a case-control study in Eastern Chinese Han population. Onco Targets Ther. 2018;11:2083–9.

47. Siegel AB, Goyal A, Salomao M, Wang S, Lee V, Hsu C, et al: Serum adiponectin is associated with worsened overall survival in a prospective cohort of hepatocellular carcinoma patients. Oncology 2015, 88(1):57–68.

48. Shen J, Yeh CC, Wang Q, Gurvich I, Siegel AB, Santella RM. Plasma Adiponectin and Hepatocellular Carcinoma Survival Among Patients Without Liver Transplantation. Anticancer Res. 2016;36(10):5307–14.

49. Shin E, Yu YD, Kim DS, Won NH. Adiponectin receptor expression predicts favorable prognosis in cases of hepatocellular carcinoma. Pathol Oncol Res. 2014;20(3):667–75.

50. Watanabe N, Takai K, Imai K, Shimizu M, Naiki T, Nagaki M, et al. Increased levels of serum leptin are a risk factor for the recurrence of stage I/II hepatocellular carcinoma after curative treatment. J Clin Biochem Nutr. 2011;49(3):153–8.

51. Wang SN, Yang SF, Tsai HH, Lee KT, Yeh YT. Increased adiponectin associated with poor survival in hepatocellular carcinoma. J Gastroenterol. 2014;49(9):1342–51.

52. Wang SN, Yeh YT, Yang SF, Chai CY, Lee KT. Potential role of leptin expression in hepatocellular carcinoma. J Clin Pathol. 2006;59(9):930–4.

53. Wei T, Ye P, Peng X, Wu LL, Yu GY. Circulating adiponectin levels in various malignancies: An updated meta-analysis of 107 studies. Oncotarget. 2016;7(30):48671–91.

54. Song RR, Gu XL. Serum adiponectin levels may be associated with the pathogenesis of hepatocellular carcinoma. Tumour Biol. 2015;36(4):2983–92.

55. Skibola CF, Holly EA, Forrest MS, Hubbard A, Bracci PM, Skibola DR, et al. Body mass index, leptin and leptin receptor polymorphisms, and non-Hodgkin lymphoma. Cancer Epidemiol Biomarkers Prev. 2004;13(5):779–86.

56. Hoffstedt J, Eriksson P, Mottagui-Tabar S, Arner P. A polymorphism in the leptin promoter region (-2548 G/A) influences gene expression and adipose tissue secretion of leptin. Horm Metab Res. 2002;34(7):813–41.

57. Liu P, Shi H, Huang C, Shu H, Liu R, Yang Y, et al. Association of LEP A19G polymorphism with cancer risk: a systematic review and pooled analysis. Tumour Biol. 2014;35(8):8133–41.

58. Yang Y, Liu P, Guo F, Liu R, Yang Y, Huang C, et al. Genetic G2548A polymorphism of leptin gene and risk of cancer: a meta-analysis of 6860 cases and 7956 controls. J BUON. 2014;19(4):1096–104.

59. Liu Y, Wu H, Zhu Y, Gao Y. Genetic association between leptin-2548G/A polymorphism and risk of cancer: a meta-analysis. Int J Clin Exp Med. 2015;8(1):448–55.

60. Yoon YS, Kwon AR, Lee YK, Oh SW. Circulating adipokines and risk of obesity related cancers: A systematic review and meta-analysis. Obesity Research Clinical Practice. 2019;13(4):329–39.

61. Ye J, Liang Z, Liang Q, Zhang J, Mao S, Liang R. Adiponectin is associated with poor prognosis in carcinoma patients: Evidence from a meta-analysis. Lipids Health Dis 2015, 14(1).

62. Saxena NK, Sharma D, Ding X, Lin S, Marra F, Merlin D, et al. Concomitant activation of the JAK/STAT, PI3K/AKT, and ERK signaling is involved in leptin-mediated promotion of invasion and migration of hepatocellular carcinoma cells. Cancer Res. 2007;67(6):2497–507.

63. Zhou Q, Lui VW, Yeo W. Targeting the PI3K/Akt/mTOR pathway in hepatocellular carcinoma. Future Oncol. 2011;7(10):1149–67.

64. Dupont J, Reverchon M, Cloix L, Froment P, Ramé C. Involvement of adipokines, AMPK, PI3K and the PPAR signaling pathways in ovarian follicle development and cancer. Int J Dev Biol. 2012;56(10–12):959–67.

65. Wauman J, Tavemeier J. Leptin receptor signaling: pathways to leptin resistance. Front Biosci (Landmark Ed). 2011;16:2771–93.
66. El-Habr EA, Levidou G, Trigka EA, Sakalidou J, Piperi C, Chatziandreou I, et al. Complex interactions between the components of the PI3K/AKT/mTOR pathway, and with components of MAPK, JAK/STAT and Notch-1 pathways, indicate their involvement in meningioma development. Virchows Arch. 2014;465(4):473–85.

67. Pietrzyk L, Torres A, Maciejewski R, Torres K. Obesity and Obese-related Chronic Low-grade Inflammation in Promotion of Colorectal Cancer Development. Asian Pac J Cancer Prev. 2015;16(10):4161–8.

68. Polyzos SA, Kountouras J, Zavos C, Dereti G. The potential adverse role of leptin resistance in nonalcoholic fatty liver disease: a hypothesis based on critical review of the literature. J Clin Gastroenterol. 2011;45(1):50–4.

69. Mittenbuhler MJ, Sprenger HG, Gruber S, Wunderlich CM, Kern L, Bruning JC, et al. Hepatic leptin receptor expression can partially compensate for IL-6Ralpha deficiency in DEN-induced hepatocellular carcinoma. Mol Metab. 2018;17:122–33.

70. Perrier S, Jarde T. Adiponectin, an anti-carcinogenic hormone? A systematic review on breast, colorectal, liver and prostate cancer. Curr Med Chem. 2012;19(32):5501–12.

71. Nazmy EA, El-Khouly OA, Zaki MMA, Elsherbiny NM, Said E, Al-Gayyar MMH, et al. Targeting p53/TRAIL/caspase-8 signaling by adiponectin reverses thioacetamide-induced hepatocellular carcinoma in rats. Environ Toxicol Pharmacol. 2019;72:103240.

72. Al-Gayyar MM, Abbas A, Hamdan AM. Chemopreventive and hepatoprotective roles of adiponectin (SULF2 inhibitor) in hepatocellular carcinoma. Biol Chem. 2016;397(3):257–67.

73. Manieri E, Herrera-Melle L, Mora A, Tomás-Loba A, Leiva-Vega L, Fernández Dl, et al. Adiponectin accounts for gender differences in hepatocellular carcinoma incidence. J Exp Med. 2019;216(5):1108–19.

74. Corbetta S, Redaelli A, Pozzi M, Bovo G, Ratti L, Redaelli E, et al. Fibrosis is associated with adiponectin resistance in chronic hepatitis C virus infection. Eur J Clin Invest. 2011;41(8):898–905.

75. Barb D, Neuwirth A, Mantzoros CS, Balk SP. Adiponectin signals in prostate cancer cells through Akt to activate the mammalian target of rapamycin pathway. Endocr Relat Cancer. 2007;14(4):995–1005.

Figures

Figure 1

PRISMA 2009 Flow Diagram

Records identified through database searching (n = 1053)

Additional records identified through other sources (n = 15)

Records after duplicates removed (n = 913)

Records screened (n = 915)

Records excluded (n = 837)

Full-text articles assessed for eligibility (n = 78)

Studies included in qualitative synthesis (n = 30)

Studies included in quantitative synthesis (meta-analysis) (n = 30)

Full-text articles excluded, with reasons (n = 48)

- Conference abstracts: 21
- Not original articles: n=8
- Non-English literature: n=3
- Different topics of current research: n=14
- Unable to access full text: n=1

PRISMA flow diagram of study selection for the meta-analysis.
Figure 2

Forest plot for studies comparing leptin levels between the HCC patients and cancer-free control group. SMD: standardized mean difference; CI: confidence interval

Figure 3

Forest plot of the subgroup analyses concerning leptin levels based on the source of cancer-free control group. SMD: standardized mean difference; CI: confidence interval

Figure 4

Sensitivity analysis for studies comparing leptin levels between the HCC patients and cancer-free control group. CI: confidence interval

Figure 5

Funnel plot for studies comparing leptin levels between the HCC patients and cancer-free control group. SMD: standardized mean difference
Figure 6
Forest plot for studies comparing adiponectin levels between the HCC patients and cancer-free control group. SMD: standardized mean difference; CI: confidence interval.

Figure 7
Forest plot of the subgroup analyses concerning adiponectin levels based on the source of cancer-free control group. SMD: standardized mean difference; CI: confidence interval.

Figure 8
Forest plot of the subgroup analyses based on the the molecular-weight of adiponectin between the HCC patients and cancer-free control group. SMD: standardized mean difference; CI: confidence interval.

Figure 9
Sensitivity analysis for studies comparing adiponectin levels between the HCC patients and cancer-free control group. CI: confidence interval.
Figure 10

Funnel plot for studies comparing adiponectin levels between the HCC patients and cancer-free control group. SMD: standardized mean difference

Figure 11

Forest plot for studies comparing adiponectin leptin gene polymorphism between the HCC patients and cancer-free control group. OR: odds ratio; CI: confidence interval

Figure 12

Dose-response associations of adiponectin levels and the risk of HCC.

Figure 13

Forest plot of the relationship between adiponectin, leptin expression and the survival in HCC. HR: Hazard ratio; CI: confidence interval