On Symmetries of Extremal Black Holes with One and Two Centers

Sergio Ferraraa,b and Alessio Marrania

a Physics Department, Theory Unit, CERN, CH -1211, Geneva 23, Switzerland
sergio.ferrara@cern.ch
alessio.marrani@cern.ch

b INFN - Laboratori Nazionali di Frascati, Via Enrico Fermi 40, I-00044 Frascati, Italy

ABSTRACT

After a brief introduction to the Attractor Mechanism, we review the appearance of groups of type E\textsubscript{7} as generalized electric-magnetic duality symmetries in locally supersymmetric theories of gravity, with particular emphasis on the symplectic structure of fluxes in the background of extremal black hole solutions, with one or two centers. In the latter case, the role of an “horizontal” symmetry \textit{SL}\textsubscript{h}(2,\mathbb{R}) is elucidated by presenting a set of two-centered relations governing the structure of two-centered invariant polynomials.

Based on Lectures given by SF and AM at the School ”Black Objects in Supergravity” (BOSS 2011), INFN - LNF, Rome, Italy, May 9-13 2011.
To appear in the Proceedings
1 Introduction

The Attractor Mechanism (AM) \[1\] governs the dynamics in the scalar manifold of Maxwell-Einstein (super)gravity theories. It keeps standing as a crucial fascinating key topic. Along the last years, a number of papers have been devoted to the investigation of attractor configurations of extremal black \(p\)-branes in diverse space-time dimensions; for some lists of Refs., see e.g. \[2\].

The AM is related to dynamical systems with fixed points, describing the equilibrium state and the stability features of the system under consideration\[1\]. When the AM holds, the particular property of the long-range behavior of the dynamical flows in the considered (dissipative) system is the following: in approaching the fixed points, properly named attractors, the orbits of the dynamical evolution lose all memory of their initial conditions, but however the overall dynamics remains completely deterministic.

The first example of AM in supersymmetric systems was discovered in the theory of static, spherically symmetric, asymptotically flat extremal dyonic black holes in \(N=2\) Maxwell-Einstein supergravity in \(d=4\) and 5 space-time dimensions (see the first two Refs. of \[1\]). In the following, we will briefly present some basic facts about the \(d=4\) case.

The multiplet content of a completely general \(N=2\), \(d=4\) supergravity theory is the following (see e.g. \[3\], and Refs. therein):

1. the gravitational multiplet
 \[
 (V^a_\mu, \psi^A, \psi_A, A^0),
 \]
 described by the Vielbein one-form \(V^a (a = 0, 1, 2, 3)\) (together with the spin-connection one-form \(\omega^{ab}\)), the \(SU(2)\) doublet of gravitino one-forms \(\psi^A, \psi_A (A = 1, 2, \text{with the upper and lower indices respectively denoting right and left chirality, i.e. } \gamma_5 \psi_A = -\gamma_5 \psi^A)\), and the graviphoton one-form \(A^0\);

2. \(n_V\) vector supermultiplets
 \[
 \left(A^I, \lambda^{iA}, \bar{\lambda}_A, z^i\right),
 \]
 each containing a gauge boson one-form \(A^I (I = 1, ..., n_V)\), a doublet of gauginos (zero-form spinors) \(\lambda^{iA}, \bar{\lambda}_A\), and a complex scalar field (zero-form) \(z^i (i = 1, ..., n_V)\). The scalar fields \(z^i\) can be regarded as coordinates on a complex manifold \(M_{n_V} (\dim \mathbb{C} M_{n_V} = n_V)\), which is actually a special Kähler manifold;

3. \(n_H\) hypermultiplets
 \[
 (\zeta_\alpha, \zeta^\alpha, q^u),
 \]

\[1\] We recall that a point \(x_{fix}\) where the phase velocity \(v(x_{fix})\) vanishes is called a fixed point, and it gives a representation of the considered dynamical system in its equilibrium state,

\[v(x_{fix}) = 0.\]

The fixed point is said to be an attractor of some motion \(x(t)\) if

\[\lim_{t \to \infty} x(t) = x_{fix}.\]
each formed by a doublet of zero-form spinors, that is the hyperinos $\zeta_\alpha, \zeta^\alpha \ (\alpha = 1, \ldots, 2n_H)$, and four real scalar fields $q^u \ (u = 1, \ldots, 4n_H)$, which can be considered as coordinates of a quaternionic manifold $\mathcal{H}_{n_H} \ (\text{dim}\mathcal{H}_{n_H} = n_H)$.

At least in absence of gauging and without quantum corrections, the n_H hypermultiplets are spectators in the AM. This can be understood by looking at the transformation properties of the Fermi fields: the hyperinos $\zeta_\alpha, \zeta^\alpha$’s transform independently on the vector fields, whereas the gauginos’ supersymmetry transformations depend on the Maxwell vector fields. Consequently, the contribution of the hypermultiplets can be dynamically decoupled from the rest of the physical system; in particular, it is also completely independent from the evolution dynamics of the complex scalars z^i’s coming from the vector multiplets (i.e. from the evolution flow in \mathcal{M}_{n_V}). Indeed, disregarding for simplicity’s sake the fermionic and gauging terms, the supersymmetry transformations of gauginos and hyperinos respectively read (see e.g. [3], and Refs. therein)

\[\delta \lambda^A = i \partial_\mu z^i \gamma^\mu \varepsilon^A + G^{-1}_{\mu\nu} \gamma^{\mu\nu} \varepsilon_B \varepsilon^{AB}; \]
\[\delta \zeta_\alpha = i U^{B\beta} \partial_\mu q^u \gamma^\mu \varepsilon^A \varepsilon_{AB} C_{\alpha\beta}. \]

(1.5) implies that the asymptotical configurations of the quaternionic hypermultiplets’ scalars are unconstrained, and therefore they can vary continuously in the manifold \mathcal{H}_{n_H} of the related quaternionic non-linear sigma model.

Thus, as far as ungauged theories are concerned, for the treatment of AM one can restrict to consider $N = 2, d = 4$ Maxwell-Einstein supergravity, in which n_V vector multiplets (1.2) are coupled to the gravity multiplet (1.1). The relevant dynamical system to be considered is the one related to the radial evolution of the configurations of complex scalar fields of such n_V vector multiplets. When approaching the event horizon of the black hole, the scalars dynamically run into fixed points, taking values which are only function (of the ratios) of the electric and magnetic charges associated to Abelian Maxwell vector potentials under consideration.

The inverse distance to the event horizon is the fundamental evolution parameter in the dynamics towards the fixed points represented by the attractor configurations of the scalar fields. Such near-horizon configurations, which “attracts” the dynamical evolutive flows in \mathcal{M}_{n_V}, are completely independent on the initial data of such an evolution, i.e. on the spatial asymptotical configurations of the scalars. Consequently, for what concerns the scalar dynamics, the system completely loses memory of its initial data, because the dynamical evolution is “attracted” by some fixed configuration points, purely depending on the electric and magnetic charges.

In the framework of supergravity theories, extremal black holes can be interpreted as BPS (Bogomol’ny-Prasad-Sommerfeld)-saturated [4] interpolating metric singularities in the low-energy effective limit of higher-dimensional superstrings or M-theory [5]. Their asymptotically relevant parameters include the ADM mass [6], the electrical and magnetic charges (defined by integrating the fluxes of related field strengths over the 2-sphere at infinity), and the asymptotical values of the (dynamically relevant set of) scalar fields. The AM implies that the class of black holes under consideration loses all its “scalar hair” within the near-horizon geometry. This means that the extremal black hole solutions, in
the near-horizon limit in which they approach the Bertotti-Robinson $AdS_2 \times S^2$ conformally flat metric \cite{7}, are characterized only by electric and magnetic charges, but not by the continuously-varying asymptotical values of the scalar fields.

An important progress in the geometric interpretation of the AM was achieved in the last Ref. of \cite{1}, in which the attractor near-horizon scalar configurations were related to the critical points of a suitably defined black hole effective potential function V_{BH}. In general, V_{BH} is a positive definite function of scalar fields and electric and magnetic charges, and its non-degenerate critical points in \mathcal{M}_{n_V}

$$\forall i = 1, \ldots, n_V, \frac{\partial V_{BH}}{\partial z^i} = 0 : \left. V_{BH} \right|_{\frac{\partial V_{BH}}{\partial z^i} = 0} > 0,$$

(1.6)

fix the scalar fields to depend only on electric and magnetic fluxes (charges). In the Einstein two-derivative approximation, the (semi)classical Bekenstein-Hawking entropy (S_{BH}) - area (A_H) formula \cite{8} yields the (purely charge-dependent) black hole entropy S_{BH} to be

$$S_{BH} = \pi \left. A_H \right|_4 = \pi \left. V_{BH} \right|_{\frac{\partial V_{BH}}{\partial z^i} = 0} \left. \frac{\partial V_{BH}}{\partial z^i} \right|_{z^i = 0} = \pi \sqrt{|I_4|},$$

(1.7)

where I_4 is the unique independent invariant homogeneous polynomial (quartic in charges) in the relevant representation \mathbf{R} of G in which the charges sit (see Eq. (1.9) and discussion below). The last step of (1.7) does not apply to $d = 4$ supergravity theories with quadratic charge polynomial invariant, namely to the $N = 2$ minimally coupled sequence \cite{9} and to the $N = 3$ \cite{12} theory; in these cases, in (1.7) $\sqrt{|I_4|}$ gets replaced by $|I_2|$.

In presence of $n = n_V + 1$ Abelian vector fields, the charge vector $(\Lambda = 0, 1, \ldots, n_V)$

$$Q \equiv (p^\Lambda, q^\Lambda)$$

(1.8)

of magnetic (p^Λ) and electric (q^Λ) fluxes sits in a $2n$-dimensional representation \mathbf{R} of the U-duality\cite{2} group G, defining the Gaillard-Zumino embedding \cite{13} of G itself into $Sp(2n, \mathbb{R})$, which is the largest group acting linearly on the fluxes themselves:

$$G \overset{\mathbf{R}}{\subseteq} Sp(2n, \mathbb{R}).$$

(1.9)

We consider here the (semi-)classical limit of large charges, also indicated by the fact that we consider $Sp(2n, \mathbb{R})$, and not $Sp(2n, \mathbb{Z})$ (no Dirac-Schwinger-Zwanziger quantization condition is implemented on the fluxes themselves).

After \cite{14} \cite{15} \cite{16}, the \mathbf{R}-representation space of the U-duality group is known to exhibit a stratification into disjoint classes of orbits, which can be defined through invariant sets of constraints on the (lowest order, actually unique) G-invariant \mathcal{I} built out of the symplectic representation \mathbf{R}; this will be reported in Sec. 3. It is here worth remarking the crucial distinction between the “large” orbits and “small” orbits. While the former have $\mathcal{I} \neq 0$ and support an attractor behavior of the scalar flow in the near-horizon geometry of the extremal black hole background \cite{1}, for the latter the Attractor Mechanism does not hold, they have $\mathcal{I} = 0$ and thus they correspond to solutions with vanishing Bekenstein-Hawking \cite{8} entropy (at least at the Einsteinian two-derivative level).
2 \(U \)-Duality and Groups of Type \(E_7 \)

From the treatment above, the black hole entropy \(S_{BH} \) is invariant under the electric-magnetic duality, in which the non-compact \(U \)-duality group has a symplectic action both on the charge vector \(Q \) \([1,3]\) and on the scalar fields (through the definition of a flat symplectic bundle \([14]\) over the scalar manifold itself); see \textit{e.g.} \([18]\) for a review. The latter property makes relevant the mathematical notion of groups of type \(E_7 \).

The first axiomatic characterization of groups of type \(E_7 \) through a module (irrep.) was given in 1967 by Brown \([19]\). A group \(G \) of type \(E_7 \) is a Lie group endowed with a representation \(\mathbf{R} \) such that:

1. \(\mathbf{R} \) is \textit{symplectic}, \textit{i.e.}:
 \[
 \exists \mathbf{C}_{[MN]} \equiv 1 \in \mathbf{R} \times \mathbf{R}; \tag{2.1}
 \]
 (the subscripts “\(s \)” and “\(a \)” stand for symmetric and skew-symmetric throughout) in turn, \(\mathbf{C}_{[MN]} \) defines a non-degenerate skew-symmetric bilinear form (\textit{symplectic product}); given two different charge vectors \(Q_1 \) and \(Q_2 \) in \(\mathbf{R} \), such a bilinear form is defined as
 \[
 \langle Q_1, Q_2 \rangle \equiv Q_1^M Q_2^N C_{MN} = - \langle Q_2, Q_1 \rangle; \tag{2.2}
 \]

2. \(\mathbf{R} \) admits a unique rank-4 completely symmetric primitive \(G \)-invariant structure, usually named \(K \)-tensor
 \[
 \exists \mathbf{K}_{(MNPQ)} \equiv 1 \in [\mathbf{R} \times \mathbf{R} \times \mathbf{R} \times \mathbf{R}]_s; \tag{2.3}
 \]
 thus, by contracting the \(K \)-tensor with the same charge vector \(Q \) in \(\mathbf{R} \), one can construct a rank-4 homogeneous \(G \)-invariant polynomial, named \(\mathcal{I}_4 \):
 \[
 \mathcal{I}_4(Q) \equiv \frac{1}{2} K_{MNPQ} Q^M Q^N Q^P Q^Q, \tag{2.4}
 \]
 which corresponds to the evaluation of the rank-4 symmetric form \(q \) induced by the \(K \)-tensor on four identical modules \(\mathbf{R} \):
 \[
 \mathcal{I}_4(Q) = \frac{1}{2} q(Q_1, Q_2, Q_3, Q_4)|_{Q_1 = Q_2 = Q_3 = Q_4 = Q} = \frac{1}{2} \left[K_{MNPQ} Q_1^M Q_2^N Q_3^P Q_4^Q \right]_{Q_1 = Q_2 = Q_3 = Q_4 = Q}. \tag{2.5}
 \]
 A famous example of \textit{quartic} invariant in \(G = E_7 \) is the \textit{Cartan-Cremmer-Julia} invariant \([20]\), constructed out of the fundamental irrep. \(\mathbf{R} = 56 \).

3. if a trilinear map \(T: \mathbf{R} \times \mathbf{R} \times \mathbf{R} \rightarrow \mathbf{R} \) is defined such that
 \[
 \langle T(Q_1, Q_2, Q_3), Q_4 \rangle = q(Q_1, Q_2, Q_3, Q_4), \tag{2.6}
 \]
 then it holds that
 \[
 \langle T(Q_1, Q_1, Q_2), T(Q_2, Q_2, Q_2) \rangle = \langle Q_1, Q_2 \rangle q(Q_1, Q_2, Q_2, Q_2). \tag{2.7}
 \]
 This last property makes the group of type \(E_7 \) amenable to a treatment in terms of (rank-3) Jordan algebras and related Freudenthal triple systems.
Remarkably, groups of type E_7, appearing in $D = 4$ supergravity as U-duality groups, admit a $D = 5$ uplift to groups of type E_6, as well as a $D = 3$ downlift to groups of type E_8; see [21]. It should also be recalled that split form of exceptional Lie groups appear in the exceptional Cremmer-Julia [22] sequence $E_{D(D)}$ of U-duality groups of M-theory compactified on a D-dimensional torus, in $D = 3, 4, 5$.

It is intriguing to notice that the first paper on groups of type E_7 was written about a decade before the discovery of of extended ($N = 2$) supergravity [23], in which electromagnetic duality symmetry was observed [24]. The connection of groups of type E_7 to supergravity can be summarized by stating that all $2 \leq N \leq 8$-extended supergravities in $D = 4$ with symmetric scalar manifolds have of type E_7 [25, 26], with the exception of $N = 2$ group $G = U(1, n)$ and $N = 3$ group $G = U(3, n)$. These latter in fact have a quadratic invariant Hermitian form (Q_1, \overline{Q}_2), whose imaginary part is the symplectic (skew-symmetric) product and whose real part is the symmetric quadratic invariant $I_2(Q)$ defined as follows

$$I_2(Q) = [\text{Re} (Q_1, \overline{Q}_2)]_{Q_1 = Q_2};$$
$$\langle Q_1, \overline{Q}_2 \rangle = -\text{Im} (Q_1, \overline{Q}_2).$$

Thus, the fundamental representations of pseudo-unitary groups $U(p, n)$, which have a Hermitian quadratic invariant form, do not strictly qualify for groups of type E_7.

In theories with groups of type E_7, the Bekenstein-Hawking black hole entropy is given by

$$S = \pi \sqrt{|I_4(Q)|},$$

as it was proved for the case of $G = E_7(7)$ (corresponding to $N = 8$ supergravity) in [27]. For $N = 2$ group $G = U(1, n)$ and $N = 3$ group $G = U(3, n)$ the analogue of (2.10) reads

$$S = \pi |I_2(Q)|.$$

For $3 < N \leq 8$ the following groups of type E_7 are relevant: $E_{7(7)}$, $SO^*(12)$, $SU(1, 5)$, $SL(2, \mathbb{R}) \times SO(6, n)$; see Table 1. In $N = 2$ cases of symmetric vector multiplets’ scalar manifolds, there are 6 groups of type E_7 [28]: $E_{7(-25)}$, $SO^*(12)$, $SU(3, 3)$, $Sp(6, \mathbb{R})$, $SL(2, \mathbb{R})$, and $SL(2, \mathbb{R}) \times SO(2, n)$; see Table 2. Here n is the integer describing the number of matter (vector) multiplets for $N = 4, 3, 2$.

3 Duality Orbits

We here report some results on the stratification of the \mathbb{R} irrep. space of simple groups $G E_7$. For a recent account, with a detailed list of Refs., see e.g. [29].

In supergravity, this corresponds to U-duality invariant constraints defining the charge orbits of a single-centered extremal black hole, namely of the G-invariant conditions defining the rank of the dyonic charge vector Q [1.8] in \mathbb{R} as an element of the corresponding Freudenthal triple system (FTS) (see [30] [31], and Refs. therein). The symplectic indices $M = 1, ..., f$ ($f = \dim_\mathbb{R} \mathbb{R}(G)$) are raised and lowered with the symplectic metric C_{MN} defined by (2.1). By recalling the definition (2.1) of the unique primitive rank-4 G-invariant polynomial constructed with Q in \mathbb{R}, the rank of a non-null Q
Table 1: $N \geq 3$ supergravity sequence of groups G of the corresponding $\frac{G}{H}$ symmetric spaces, and their symplectic representations R as an element of $\text{FTS}(G)$ ranges from four to one, and it is manifestly G-invariantly characterized as follows:

1. $\text{rank}(Q) = 4$. This corresponds to “large” extremal black holes, with non-vanishing area of the event horizon (exhibiting Attractor Mechanism [1]):
 \[I_4(Q) < 0, \text{ or } I_4(Q) > 0 \] (3.1)

2. $\text{rank}(Q) = 3$. This corresponds to “small” lightlike extremal black holes, with vanishing area of the event horizon:
 \[I_4(Q) = 0; \]
 \[T(Q,Q,Q) \neq 0. \] (3.2)

3. $\text{rank}(Q) = 2$. This corresponds to “small” critical extremal black holes:
 \[T(Q,Q,Q) = 0; \]
 \[3T(Q,Q,P) + \langle Q, P \rangle_Q \neq 0. \] (3.3)

4. $\text{rank}(Q) = 1$. This corresponds to “small” doubly-critical extremal BHs [14][16]:
 \[3T(Q,Q,P) + \langle Q, P \rangle_Q Q = 0, \forall P \in R. \] (3.4)
| G | R |
|------------------|--------------|
| $U(1,n)$ | $(1+n)$ |
| $SL(2,\mathbb{R}) \times SO(2,n)$ | $(2,2+n)$ |
| $SL(2,\mathbb{R})$ | 4 |
| $Sp(6,\mathbb{R})$ | $14'$ |
| $SU(3,3)$ | 20 |
| $SO^*(12)$ | 32 |
| $E_7(-25)$ | 56 |

Table 2: $N = 2$ choices of groups G of the $\frac{G}{H}$ symmetric spaces and their symplectic representations R. The last four lines refer to “magic” $N = 2$ supergravities.

Let us consider the doubly-criticality condition (3.4) more in detail. At least for simple groups of type E_7, the following holds:

$$ R \times_s R = \text{Adj} + S; \quad (3.5) $$

$$ R \times_a R = 1 + A, \quad (3.6) $$

where S and A are suitable irreps. For example, for $G = E_7$ ($R = 56, \text{Adj} = 133$) one gets

$$ (56 \times 56)_s = 133 + 1463; \quad (3.7) $$

$$ (56 \times 56)_a = 1 + 1539. \quad (3.8) $$

For such groups, one can construct the projection operator on $\text{Adj}(G)$:

$$ P_{AB}^{CD} = P_{(AB)}^{(CD)}; \quad (3.9) $$

$$ P_{AB}^{CD} \frac{\partial^2 I_4}{\partial Q^C \partial Q^D} = \frac{\partial^2 I_4}{\partial Q^A \partial Q^B} \bigg|_{\text{Adj}(G)}; \quad (3.10) $$

$$ P_{AB}^{CD} P_{CD}^{EF} \frac{\partial^2 I_4}{\partial Q^E \partial Q^F} = P_{AB}^{EF} \frac{\partial^2 I_4}{\partial Q^E \partial Q^F}, \quad (3.11) $$

where (recall (3.5))

$$ \frac{\partial^2 I_4}{\partial Q^A \partial Q^B} = \frac{\partial^2 I_4}{\partial Q^A \partial Q^B} \bigg|_{\text{Adj}(G)} + \frac{\partial^2 I_4}{\partial Q^A \partial Q^B} \bigg|_{S(G)}; \quad (3.12) $$

$$ \frac{\partial^2 I_4}{\partial Q^A \partial Q^B} \bigg|_{\text{Adj}(G)} = 2 (1 - \tau) (3 K_{ABCD} + C_{AC} C_{BD}) Q^C Q^D; \quad (3.13) $$

$$ \frac{\partial^2 I_4}{\partial Q^A \partial Q^B} \bigg|_{S(G)} = 2 [3 \tau K_{ABCD} + (\tau - 1) C_{AC} C_{BD}] Q^C Q^D, \quad (3.14) $$
where \(\tau \equiv \frac{2d}{f(f + 1)} \), \(d \equiv \dim_{\mathbb{R}} (\text{Adj}(G)) \). The explicit expression of \(P_{AB}^{CD} \) reads:\(^3\) (\(\alpha = 1, \ldots, d \)):

\[
P_{AB}^{CD} = \tau \left(3C_E C_{DF} K_{EFAB} + \delta^C_A \delta^D_B \right) = -t^{\alpha [CD}_{a|AB},
\]

where the relation \(^{34} \) (see also \(^{35} \))

\[
K_{MNPQ} = -\frac{1}{3\tau} t^{\alpha}_{(MN} t^{\beta}_{a)PQ} = -\frac{1}{3\tau} \left[t^{\alpha}_{MN} t^{\beta}_{a(PQ} - \tau C_{M(P} C_{Q)N} \right],
\]

where \(t^{\alpha}_{MN} = t^{\alpha}_{(MN)} \); \(t^{\alpha}_{MN} C^{MN} = 0 \) \(^{37} \)

is the symplectic representation of the generators of the Lie algebra \(\mathfrak{g} \) of \(G \). Notice that \(\tau < 1 \) is nothing but the ratio of the dimensions of the adjoint \(\text{Adj} \) and rank-2 symmetric \(R \times_{\alpha} R \) \(^{3.5} \) reps. of \(G \), or equivalently the ratio of upper and lower indices of \(t^{\alpha}_{MN} \)’s themselves.

4 From One to Two Centers

In multi-centered black hole solutions \(^{36} \), a charge vector \(Q_a \) can be associated to each center, with the index \(a = 1, \ldots, p \), with \(p \) denoting the number of centers. This index transforms in the fundamental representation \(p \) of the so-called “horizontal” symmetry \(SL_h(p, \mathbb{R}) \) introduced in \(^{37} \) (see also \(^{38} \)).

We will here focus on the simplest case \(p = 2 \), presenting a number of fundamental relations defining the structure of electric-magnetic fluxes of two-centered black hole solutions \(^{39} \).

From \(^{37, 40} \), we define the symmetric \(I_{abcd} \) tensor, sitting in the spin \(s = 2 \) irrep. \(5 \) of \(SL_h(2, \mathbb{R}) \), as

\[
I_{abcd} \equiv \frac{1}{2} K_{MNPQ} Q^M_a Q^N_b Q^P_c Q^Q_d.
\]

Thus, its first derivative reads

\[
\tilde{Q}_{M|abc} \equiv \frac{1}{4} \frac{\partial I_{abcd}}{\partial Q^M_d} = \frac{1}{2} K_{MNPQ} Q^N_a Q^P_b Q^Q_c = \tilde{Q}_{M|(abc)},
\]

sitting in the spin \(s = 3/2 \) irrep. \(4 \) of \(SL_h(2, \mathbb{R}) \) (the horizontal indices \(a = 1, 2 \) are raised and lowered with \(\epsilon^{ab} \), with \(\epsilon^{12} \equiv 1 \)). For clarity’s sake, we report the explicit expressions of the various components of \(I_{abcd} \) \(^{41} \), as well as their relations with the components of \(\tilde{Q}_{abc} \) \(^{42} \) (the subscripts “+2, +1, 0, −1, −2” denote the horizontal helicity of the various components \(^{37, 40} \)):

\[
\begin{align*}
I_{+2} & \equiv I_4 (Q_1) \equiv I_{1111} = \langle \tilde{Q}_{1111}, Q_1 \rangle; \\
I_{+1} & \equiv I_{1112} = \langle \tilde{Q}_{1111}, Q_2 \rangle = \langle \tilde{Q}_{1112}, Q_1 \rangle; \\
I_0 & \equiv I_{1122} = \langle \tilde{Q}_{1112}, Q_2 \rangle = \langle \tilde{Q}_{122}, Q_1 \rangle; \\
I_{-1} & \equiv I_{1222} = \langle \tilde{Q}_{1222}, Q_2 \rangle = \langle \tilde{Q}_{22}, Q_1 \rangle;
\end{align*}
\]

\(^3\)For related results in terms of a map formulated in the “4D/5D special coordinates” symplectic frame (and thus manifestly covariant under the \(d = 5 \) \(U \)-duality group \(G_5 \)), see e.g. \(^{32, 33} \).
\[I_{-2} \equiv I_4(Q_2) \equiv I_{2222} = \langle \tilde{Q}_{222}, Q_2 \rangle. \]

(4.7)

Thus, one can consider the following symplectic product of spin 3/2 horizontal charge tensors:

\[\langle \tilde{Q}_{abc}, \tilde{Q}_{def} \rangle \equiv \tilde{Q}_{M|abc} \tilde{Q}_{N|def} C^{MN}. \]

(4.8)

A priori, \(\langle \tilde{Q}_{abc}, \tilde{Q}_{def} \rangle \) should project onto spin \(s = 3, 2, 1, 0 \) irreps. of \(SL_h(2, \mathbb{R}) \) itself; however, due to the complete symmetry of the \(K \)-tensor (and to the results of [19, 34]), the projections on spin \(s = 3 \) and 1 do vanish:

\[s = 3 : \langle \tilde{Q}_{(abc}, \tilde{Q}_{|def)} \rangle = 0; \]

(4.9)

\[s = 2 : \langle \tilde{Q}_{(ab|c}, \tilde{Q}_{d|ef)} \rangle \epsilon^{cd} = \frac{2}{3} W I_{abcdef}; \]

(4.10)

\[s = 1 : \langle \tilde{Q}_{(abc}, \tilde{Q}_{def)} \rangle \epsilon^{ad} \epsilon^{be} \epsilon^{cf} = 0; \]

(4.11)

\[s = 0 : \langle \tilde{Q}_{abc}, \tilde{Q}_{def} \rangle \epsilon^{ad} \epsilon^{be} \epsilon^{cf} = 8 I_6, \]

(4.12)

where the symplectic product \(W \) and the sextic horizontal polynomial \(I_6 \) are respectively defined

\[W \equiv \langle Q_{1}, Q_{2} \rangle = \frac{1}{2} C_{MN} \epsilon^{ab} Q_a^M Q_b^N; \]

(4.13)

\[I_6 \equiv \frac{1}{8} \langle \tilde{Q}_{abc}, \tilde{Q}_{def} \rangle \epsilon^{ad} \epsilon^{be} \epsilon^{cf} = \frac{1}{4} \langle \tilde{Q}_{111}, \tilde{Q}_{222} \rangle + \frac{3}{4} \langle \tilde{Q}_{122}, \tilde{Q}_{112} \rangle. \]

(4.14)

The complementary relation to (4.14), namely \(\frac{1}{4} \langle \tilde{Q}_{111}, \tilde{Q}_{222} \rangle - \frac{3}{4} \langle \tilde{Q}_{122}, \tilde{Q}_{112} \rangle \) consistently turns out to be proportional (through \(W \)) to the zero helicity component of \(I_{abcd} \); indeed, by setting \((a, b, c, f) = (1, 1, 2, 2)\) in (4.10), one obtains:

\[\frac{1}{2} I_0 W = \frac{1}{4} \langle \tilde{Q}_{111}, \tilde{Q}_{222} \rangle - \frac{3}{4} \langle \tilde{Q}_{122}, \tilde{Q}_{112} \rangle. \]

(4.15)

We conclude by pointing out some consequences of the rank of a charge vector, say \(Q_1 \), on the set of two-centered invariant polynomials defined above [39]:

\[\text{rank} (Q_1) = 3 \Rightarrow I_{+2} = 0; \]

(4.16)

\[\text{rank} (Q_1) = 2 \Rightarrow \tilde{Q}_{111} = 0 \Rightarrow \begin{cases} I_{+2} = I_{+1} = 0; \\ I_6 = -\frac{1}{2} I_0 W; \end{cases} \]

(4.17)

\[\text{rank} (Q_1) = 1 \Rightarrow \begin{cases} I_{+2} = I_{+1} = 0; \\ I_0 = -\frac{1}{6} W^2; \\ I_6 = -\frac{1}{12} I_0 W = \frac{1}{12} W^3. \end{cases} \]

(4.18)
Acknowledgments

The reported results were obtained in different collaborations with Laura Andrianopoli, Leron Borsten, Anna Ceresole, Riccardo D’Auria, Mike Duff, G. W. Gibbons, Murat Günaydin, Renata Kallosh, Emanuele Orazi, William Rubens, Raymond Stora, A. Strominger, Mario Trigiante, and Armen Yeranyan, which we gratefully acknowledge.

This work is supported by the ERC Advanced Grant no. 226455, “Supersymmetry, Quantum Gravity and Gauge Fields” (SUPERFIELDS).

References

[1] S. Ferrara, R. Kallosh and A. Strominger, \textit{N} = 2 Extremal Black Holes, Phys. Rev. \textbf{D52}, 5412 (1995), \texttt{hep-th/9508072}. A. Strominger, \textit{Macroscopic Entropy of \textit{N} = 2 Extremal Black Holes}, Phys. Lett. \textbf{B383}, 39 (1996), \texttt{hep-th/9602111}. S. Ferrara and R. Kallosh, \textit{Supersymmetry and Attractors}, Phys. Rev. \textbf{D54}, 1514 (1996), \texttt{hep-th/9602136}. S. Ferrara and R. Kallosh, \textit{Universality of Supersymmetric Attractors}, Phys. Rev. \textbf{D54}, 1525 (1996), \texttt{hep-th/9603090}. S. Ferrara, G. W. Gibbons and R. Kallosh, \textit{Black Holes and Critical Points in Moduli Space}, Nucl. Phys. \textbf{B500}, 75 (1997), \texttt{hep-th/9702103}.

[2] S. Bellucci, S. Ferrara and A. Marrani, “Supersymmetric Mechanics. Vol. 2: The Attractor Mechanism and Space-Time Singularities”, Lect. Notes Phys. \textbf{701} (Springer-Verlag, Heidelberg, 2006). L. Andrianopoli, R. D’Auria, and S. Ferrara, \textit{U} duality and central charges in various dimensions revisited, Int. J. Mod. Phys. \textbf{A13}, 431 (1998), \texttt{hep-th/9612105}. B. Pioline, \textit{Lectures on Black holes, Topological Strings and Quantum Attractors}, Class. Quant. Grav. \textbf{23}, S981 (2006), \texttt{hep-th/0607227}. L. Andrianopoli, R. D’Auria, S. Ferrara and M. Trigiante, \textit{Extremal Black Holes in Supergravity}, Lect. Notes Phys. \textbf{737}, 661 (Springer-Verlag, Heidelberg, 2008), \texttt{hep-th/0611345}. A. Sen, \textit{Black Hole Entropy Function, Attractors and Precision Counting of Microstates}, Gen. Rel. Grav. \textbf{40}, 2249 (2008), \texttt{arXiv:0708.1270}. S. Bellucci, S. Ferrara, R. Kallosh and A. Marrani, \textit{Extremal Black Hole and Flux Vacua Attractors}, Lect. Notes Phys. \textbf{755}, 115 (Springer-Verlag, Heidelberg, 2008), \texttt{arXiv:0711.4547}. S. Ferrara, K. Hayakawa and A. Marrani, \textit{Erice Lectures on Black Holes and Attractors}, Fortsch. Phys. \textbf{56}, 993 (2008), \texttt{arXiv:0805.2498}. S. Bellucci, S. Ferrara, M. Günaydin and A. Marrani, \textit{SAM Lectures on Extremal Black Holes in d = 4 Extended Supergravity}, \texttt{arXiv:0905.3739}. M. Günaydin, \textit{Lectures on Spectrum Generating Symmetries and \textit{U}-Duality in Supergravity, Extremal Black Holes, Quantum Attractors and Harmonic Superspace}, \texttt{arXiv:0908.0374}. G. Dall’Agata, \textit{Black holes in supergravity: flow equations and duality}, \texttt{arXiv:1106.2611} [\texttt{hep-th}]. A. Ceresole, \textit{Extremal black hole flows and duality}, Fortsch. Phys. \textbf{59}, 545 (2011).

[3] L. Andrianopoli, M. Bertolini, A. Ceresole, R. D’Auria, S. Ferrara, P. Fré and T. Magri, \textit{N = 2 Supergravity and \textit{N} = 2 Super Yang-Mills Theory on General Scalar Manifolds: Symplectic Covariance, Gaugings and the Momentum Map}, J. Geom. Phys. \textbf{23}, 111 (1997), \texttt{hep-th/9605032}.

[4] G. W. Gibbons and C. M. Hull, *A Bogomol’ny Bound for General Relativity and Solitons in N= 2 Supergravity*, Phys. Lett. **B109**, 190 (1982).

[5] G. W. Gibbons and P. K. Townsend, *Vacuum Interpolation in Supergravity via super-p-branes*, Phys. Rev. Lett. **71**, 3754 (1993), hep-th/9307049.

[6] R. Arnowitt, S. Deser and C. W. Misner, *The Dynamics of General Relativity*, in: “Gravitation: an Introduction to Current Research”, L. Witten ed. (Wiley, New York, 1962).

[7] B. Bertotti, “Uniform Electromagnetic Field in the Theory of General Relativity”, Phys. Rev. **116**, 1331 (1959). I. Robinson, Bull. Acad. Polon. **7**, 351 (1959).

[8] J. D. Bekenstein, Phys. Rev. **D7**, 2333 (1973). S. W. Hawking, Phys. Rev. Lett. **26**, 1344 (1971); in C. DeWitt, B. S. DeWitt, “Black Holes” (Les Houches 1972) (Gordon and Breach, New York, 1973). S. W. Hawking, Nature **248**, 30 (1974). S. W. Hawking, Comm. Math. Phys. **43**, 199 (1975).

[9] J. F. Luciani: *Coupling of O(2) Supergravity with Several Vector Multiplets*, Nucl. Phys. **B132**, 325 (1978).

[10] E. Cremmer and B. Julia, *The N= 8 Supergravity Theory. 1. The Lagrangian*, Phys. Lett. **B80**, 48 (1978). E. Cremmer and B. Julia, *The SO(8) Supergravity*, Nucl. Phys. **B159**, 141 (1979).

[11] C. Hull and P. K. Townsend, *Unity of Superstring Dualities*, Nucl. Phys. **B438**, 109 (1995), hep-th/9410167.

[12] L. Castellani, A. Ceresole, S. Ferrara, R. D’Auria, P. Fré and E. Maina, *The Complete N= 3 Matter Coupled Supergravity*, Nucl. Phys. **B268**, 317 (1986).

[13] M. K. Gaillard and B. Zumino, *Duality Rotations for Interacting Fields*, Nucl. Phys. **B193** (1981), 221.

[14] S. Ferrara and M. Gţiaydin, *Orbits of Exceptional Groups, Duality and BPS States in String Theory*, Int. J. Mod. Phys. **A13**, 2075 (1998), hep-th/9708025.

[15] R. D’Auria, S. Ferrara and M. A. Lledó, *On central charges and Hamiltonians for 0-brane dynamics*, Phys. Rev. **D60**, 084007 (1999), hep-th/9903089.

[16] S. Ferrara and J. M. Maldacena, *Branes, central charges and U-duality invariant BPS conditions*, Class. Quant. Grav. **15**, 749 (1998), hep-th/9706097.

[17] A. Strominger, *Special Geometry*, Commun. Math. Phys. **133**, 163 (1990).

[18] B. de Wit, *Introduction to Black Hole Entropy and Supersymmetry*, hep-th/0503211.

[19] R. B. Brown, *Groups of Type E7*, J. Reine Angew. Math. **236**, 79 (1969).
[20] E. Cartan, Œuvres complètes (Editions du Centre National de la Recherche Scientifique, Paris, 1984).

[21] P. Truini, Exceptional Lie Algebras, SU(3) and Jordan Pairs, arXiv:1112.1258 [math-ph].

[22] B. Julia, Group Disintegrations; E. Cremmer, Supergravities in 5 Dimensions, in : “Superspace and Supergravity”, S.W.Hawking and M.Rocek Eds., Cambridge Univ. Press (1981).

[23] S.Ferrara and P. Van Nieuwenhuizen, Phys. Rev. Lett. 17, 1669 (1976).

[24] S. Ferrara, C. Savoy and B. Zumino, Nucl. Phys. B121, 393 (1977).

E. Cremmer, B. Julia, “The SO(8) Supergravity,” Nucl. Phys. B159, 141 (1979).

[25] L. Borsten, D. Dahanayake, M. J. Duff, W. Rubens, “Black holes admitting a Freudenthal dual,” Phys. Rev. D80, 026003 (2009). [arXiv:0903.5517 [hep-th]].

[26] S. Ferrara, A. Marrani, A. Yeranyan, “Freudenthal Duality and Generalized Special Geometry,” Phys. Lett. B701, 640-645 (2011). [arXiv:1102.4857 [hep-th]].

[27] R. Kallosh and B. Kol, E(7) Symmetric Area of the Black Hole Horizon, Phys. Rev. D 53, 5344 (1996) [arXiv:hep-th/9602014].

[28] M. Gunaydin, G. Sierra, P. K. Townsend, “Exceptional Supergravity Theories and the Magic Square,” Phys. Lett. B133, 72 (1983).

[29] L. Borsten, M. J. Duff, S. Ferrara, A. Marrani, and W. Rubens, Small Orbits, Phys. Rev. D85, 086002 (2012), arXiv:1108.0424 [hep-th], to appear in Phys. Rev. D.

[30] J. C. Ferrar, Strictly Regular Elements in Freudenthal Triple Systems, Trans. Amer. Math. Soc. 174, 313 (1972).

[31] S. Krutelevich, Jordan Algebras, Exceptional Groups, and Higher Composition Laws, J. Algebra 314, 924 (2007). arXiv:math/0411104.

[32] O. Shukuzawa, Explicit Classification of Orbits in Jordan Algebra and Freudenthal Vector Space over the Exceptional Lie Groups, Commun. Algebra 34, no.1, 197 (2006).

[33] K. Yokota, Exceptional Lie Groups, arXiv:0902.0431 [math.DG].

[34] A. Marrani, E. Orazi and F. Riccioni, Exceptional Reductions, J. Phys. A44, 155207 (2011), arXiv:1012.5797 [hep-th].

[35] A. Galperin and O. Ogievetsky, Harmonic Potentials for Quaternionic Symmetric Sigma Models, Phys. Lett. B301, 67 (1993), hep-th/9210153.

[36] F. Denef, Supergravity flows and D-brane stability, JHEP 0008 (2000) 050, hep-th/0005049.

B. Bates and F. Denef, Exact solutions for supersymmetric stationary black hole composites,
hep-th/0304094. D. Gaiotto, W. W. Li and M. Padi, *Non-supersymmetric attractor flow in symmetric spaces*, JHEP 07\textbf{12} (2007) 093, arXiv:0710.1638 [hep-th]. K. Goldstein and S. Katmadas, *Almost BPS black holes*, JHEP 09\textbf{05} (2009) 058, arXiv:0812.4183 [hep-th]. E. G. Gimon, F. Larsen and J. Simon, * Constituent Model of Extremal non-BPS Black Holes*, JHEP 09\textbf{07} (2009) 052, arXiv:0903.0719 [hep-th]. I. Bena, S. Giusto, C. Ruef and N. P. Warner, * Multi-center non-BPS black holes: the solution*, JHEP 09\textbf{11} (2009) 032, arXiv:0908.2121 [hep-th]. G. Bossard and C. Ruef, *Interacting non-BPS black holes*, Gen. Rel. Grav. 44, 21 (2012), arXiv:1106.5806 [hep-th]. G. Bossard, *Octonionic black holes*, arXiv:1203.0530 [hep-th]. P. Fré and A. S. Sorin, *Extremal Multicenter Black Holes: Nilpotent Orbits and Tits Satake Universality Classes*, arXiv:1205.1233 [hep-th].

[37] S. Ferrara, A. Marrani, E. Orazi, R. Stora and A. Yeranyan, *Two-Center Black Holes Duality-Invariants for stu Model and its Lower-Rank Descendants*, J. Math. Phys. 52, 062302 (2011), arXiv:1011.5864 [hep-th].

[38] P. Levay, *Two-Center Black Holes, Qubits and Elliptic Curves*, Phys. Rev. D84 (2011) 025023, arXiv:1104.0144 [hep-th].

[39] A. Ceresole, S. Ferrara, A. Marrani and A. Yeranyan, *Small Black Hole Constituents and Horizontal Symmetry*, JHEP 11\textbf{06}, 078 (2011), arXiv:1104.4652 [hep-th].

[40] L. Andrianopoli, R. D’Auria, S. Ferrara, A. Marrani and M. Trigiante, *Two-Centered Magical Charge Orbits*, JHEP 11\textbf{04}, 041 (2011), arXiv:1101.3496 [hep-th].