Electronic Supplementary Information (ESI†)

A coumarin–dihydropyrimidine dye as a fluorescent chemosensor for hypochlorite in 99% water

Yasuhiro Shiraishi,* Chiharu Yamada and Takayuki Hirai

Research Center for Solar Energy Chemistry, and Division of Chemical Engineering, Graduate School of Engineering Science, Osaka University, Toyonaka 560-8531, Japan

shiraish@cheng.es.osaka-u.ac.jp

CONTENTS

Table/S	Page	
Table S1	TD-DFT calculation results for 1, 1’ and 1”	2
Fig. S1	1H NMR chart of 1	4
Fig. S2	13C NMR chart of 1	5
Fig. S3	FAB-MS chart of 1	6
Fig. S4	Absorption spectra of 1	7
Fig. S5	1H NMR chart of 1’	8
Fig. S6	13C NMR chart of 1’	9
Fig. S7	FAB-MS chart of 1’	10
Fig. S8	1H–1H COSY chart of 1	11
Fig. S9	1H–1H COSY chart of 1’	12
Fig. S10	Effect of water content on the fluorescence intensity of 1	13

Cartesian coordinates for respective compounds | 14 |
Table S1. Calculated excitation energy (E), wavelength (λ), and oscillator strength (f) for low-laying singlet state (S_n) of 1, 1' and 1''.[ii]

compound	Main orbital transition (CIC [b])	E (eV) [λ (nm)]	f
$S_0 \rightarrow S_1$	HOMO \rightarrow LUMO (0.70571)	2.2918 eV [540.99 nm]	0.0023
$S_0 \rightarrow S_2$	HOMO-1 \rightarrow LUMO (0.70440)	3.0942 eV [400.70 nm]	0.0000
$S_0 \rightarrow S_3$	HOMO \rightarrow LUMO+1 (0.70406)	3.3076 eV [374.84 nm]	0.0008
$S_0 \rightarrow S_4$	HOMO \rightarrow LUMO+2 (0.65062)	3.7590 eV [329.83 nm]	0.1681
$S_0 \rightarrow S_5$	HOMO \rightarrow LUMO+3 (0.66998)	3.8658 eV [320.72 nm]	0.0014
$S_0 \rightarrow S_6$	HOMO-2 \rightarrow LUMO (0.67869)	3.9242 eV [315.95 nm]	0.0031
$S_0 \rightarrow S_1$	HOMO \rightarrow LUMO (0.67202)	2.5622 eV [483.90 nm]	0.0271
$S_0 \rightarrow S_2$	HOMO \rightarrow LUMO (-0.18684)	2.8956 eV [428.17 nm]	0.0152
$S_0 \rightarrow S_3$	HOMO-2 \rightarrow LUMO+3 (-0.10524)	3.7678 eV [329.06 nm]	0.2785
$S_0 \rightarrow S_4$	HOMO-1 \rightarrow LUMO+1 (0.12636)	3.8169 eV [324.83 nm]	0.172
$S_0 \rightarrow S_5$	HOMO-1 \rightarrow LUMO+1 (0.20599)	3.9169 eV [316.53 nm]	0.0572
$S_0 \rightarrow S_6$	HOMO-3 \rightarrow LUMO (0.14907)	3.9693 eV [312.36 nm]	0.2865
$S_0 \rightarrow S_1$	HOMO \rightarrow LUMO (0.66986)	2.8187 eV [439.87 nm]	0.0095

[ii] Compound 1, 1’, and 1’’ results from computational analysis. CIC stands for compound independent coordinates.

Transition	HOMO → LUMO Energy (eV)	LUMO+1 Energy (eV)	Oscillator Strength
$S_0 \rightarrow S_2$	HOMO → LUMO (-0.14003)	3.2523	0.0010
	HOMO → LUMO+1 (0.68548)		
$S_0 \rightarrow S_3$	HOMO-1 → LUMO (0.59565)	3.2670	0.2737
	HOMO-1 → LUMO+1 (0.29465)		
$S_0 \rightarrow S_4$	HOMO-1 → LUMO (-0.27485)	3.6413	0.3661
	HOMO-1 → LUMO+1 (0.58007)		
	HOMO-7 → LUMO (0.10009)		
$S_0 \rightarrow S_5$	HOMO-3 → LUMO+3 (0.11442)	3.8806	0.1753
	HOMO → LUMO+2 (0.63331)		
	HOMO-3 → LUMO+1 (-0.29114)		
$S_0 \rightarrow S_6$	HOMO-1 → LUMO+2 (-0.11142)	4.0682	0.1186
	HOMO → LUMO+3 (0.61780)		

[a] The optimized structures for the respective models are summarized in the end of this ESI.
[b] CI expansion coefficients for the main transitions.
Fig. S1 1H NMR chart of 1 (24 mM, DMSO–d$_6$, 400 MHz).
Fig. S2 13C NMR chart of 1 (48 mM, DMSO–d$_6$, 100 MHz).
Fig. S3 FAB–MS chart of 1. (top) full and (bottom) partial charts.

$C_{21}H_{16}O_3N_2^+ (M^+) \ m/z \ 344.1158$

(Calculated: $C_{21}H_{16}O_3N_2^+ (M^+) \ m/z \ 344.1161$)
Fig. S4 (a) Change in absorption spectra of 1 measured at 25 °C in 1% MeCN solutions (HEPES 0.1 M, pH 7.0) with different concentration of 1. (b) Change in the absorbance at 325 nm as a function of the concentration of 1.
Fig. S5
1H NMR chart of 1’ (24 mM, DMSO–d$_6$, 400 MHz).
Fig. S6 13C NMR chart of $1'$ (49 mM, DMSO–d$_6$, 100 MHz).
Fig. S7 FAB–MS chart of 1'. (top) full and (bottom) partial charts.

C_{21}H_{14}O_3N_2^+ (M^+) m/z 342.1003
(Calculated: C_{21}H_{14}O_3N_2^+ (M^+) m/z 342.1004)
Fig. S8 1H–1H COSY chart of 1 (30 mM, DMSO–d$_6$, 400 MHz). Colored circles indicate the observed cross peaks. The texts next to the circle mean the coupling protons.
Fig. S9 1H-1H COSY chart of 1' (30 mM, DMSO–d$_6$, 400 MHz). Colored circles indicate the observed cross peaks. The texts next to the circle mean the coupling protons.
Fig. S10 Time-dependent change in the fluorescence intensity of 1 at 462 nm (10 μM) after addition of OCl(⁻) (50 equiv) measured at 25 °C in MeCN solutions (HEPES 0.1 M, pH 7.0) with different water contents.
Cartesian Coordinates (in Å) of 1 (DFT/B3LYP/6–31+G*)

Atom	X	Y	Z	Atom	X	Y	Z
C	-2.59998	2.665419	-0.00016	C	3.059685	-0.05288	-2.43551
C	-1.30104	2.122463	-0.00013	H	-2.72707	3.746045	-0.00022
C	-1.10217	0.727232	-3.1E-05	H	-4.69881	2.275944	-0.00012
C	-2.25129	-0.08475	0.000018	H	-5.22576	-2.56471	0.000175
C	-3.5653	0.436016	-1.2E-05	H	0.169034	-0.99211	0.000113
C	-3.70712	1.835229	0.00001	H	-0.49296	3.859368	-0.00026
O	-2.04423	-1.43422	0.000097	H	-6.29185	0.645239	0.883376
C	-3.08388	-2.37208	0.00018	H	-6.29183	0.645076	-0.88353
C	-4.4286	-1.82921	0.00013	H	-6.81258	-0.8015	0.000053
C	-4.68196	-0.4931	0.00039	H	0.53197	0.374526	2.045974
C	0.283028	0.10234	0.000012	H	0.531927	0.374141	-2.046
O	-0.21267	2.930196	-0.00019	H	2.539396	0.096748	3.379357
C	-6.09647	0.0244	-1.8E-05	H	4.939409	-0.5332	3.380705
O	-2.7745	-3.54241	0.000175	H	6.165051	-0.8784	1.257772
N	1.043652	0.518103	1.182202	H	6.165027	-0.87863	-1.25769
C	2.379962	0.110716	1.236732	H	4.939344	-0.53382	-3.38066
C	3.066915	-0.08666	0	H	2.539331	0.096131	-3.37938
C	2.379938	0.110493	-1.23675	N	1.043627	0.517892	-1.18227
C	3.059732	-0.05244	2.435509	C	4.426643	-0.40805	2.429927
C	5.113351	-0.60361	1.248362	C	4.452032	-0.44108	0.00002
C	5.113327	-0.60384	-1.24831	C	4.426596	-0.4085	-2.42989
Cartesian Coordinates (in Å) of 1' (DFT/B3LYP/6-31+G*)

	C	C		C	C		C	C			C	C			H	H
	-2.39828	2.535728	0.004035	O	0.468111	-3.3021	0.001439									
	-3.77172	2.877929	0.004016	H	-1.63685	3.314675	0.005575									
	-4.76072	1.911836	0.002177	H	-4.04639	3.932516	0.005508									
	-4.41637	0.529281	0.002422	H	-5.81255	2.196413	0.002197									
	-3.03233	0.179967	0.0024	H	-6.43152	-0.28443	-0.00179									
	-2.04167	1.196913	0.002172	H	-5.69292	-2.64723	-0.00507									
	-5.36951	-0.52877	-0.00175	H	-3.26806	-3.23395	-0.00498									
	-4.95165	-1.84821	-0.00358	H	4.800607	-2.23354	0.002606									
	-3.57993	-2.1905	-0.00354	H	2.934406	-3.84995	0.002979									
	-2.62046	-1.18539	-0.00166	H	4.992548	2.628992	-0.00221									
N	-1.25928	-1.49611	-0.00159	H	6.247798	-0.50404	0.88488									
	-0.35063	-0.54241	0.000165	H	6.248926	-0.5056	-0.88068									
N	-0.7061	0.774861	0.002072	H	6.670849	0.977479	0.00106									
	1.076946	-0.95218	0.000509	H	-0.4405	-2.81595	-9.1E-05									
C	2.178517	-0.05788	-0.00022	H	0.02803	1.473898	0.003469									
	3.521757	-0.47823	0.000672													
C	3.776708	-1.86895	0.001968													
	2.744403	-2.77822	0.002216													
C	1.40121	-2.34592	0.001351													
O	1.90004	1.282537	-0.00205													
C	2.871409	2.285091	-0.00329													
C	4.236283	1.846849	-0.00165													
C	4.569175	0.521925	0.000124													
C	6.01435	0.103494	0.001417													
O	2.454138	3.435226	-0.00571													
Cartesian Coordinates (in Å) of 1" (DFT/B3LYP/6–31+G*)

	C	C	C	C	C	C	C	O	O	O
	2.37416	2.522559	-0.00129	0.483158	-3.3102	-0.00283				
	-3.7451	2.878156	-0.00031	-1.60664	3.295546	-0.0021				
	-4.74181	1.92105	0.000792	-4.00934	3.935198	-0.00041				
	-4.4108	0.53598	0.000971	-5.7911	2.214756	0.001571				
	-3.03094	0.177156	-3.5E-05	-6.43313	-0.259	0.002969				
	-2.03019	1.183408	-0.00114	-5.71618	-2.62907	0.003345				
	-5.37365	-0.51358	0.002171	-3.29944	-3.23985	0.001656				
	-4.96965	-1.83544	0.002371	4.815675	-2.22837	0.002315				
	-3.59918	-2.1923	0.001382	2.979776	-3.86025	0.000617				
	-2.64666	-1.18944	0.00161	4.980906	2.638133	0.002026				
	-1.27325	-1.46935	-0.00077	6.249434	-0.48788	0.885605				
	-0.30687	-0.53777	-0.00158	6.251229	-0.48776	-0.87957				
	-0.68937	0.758337	-0.00192	6.661218	0.997367	0.003554				
	1.084074	-0.97029	-0.0016	0.044764	1.459333	-0.00241				
	2.183708	-0.0667	-0.00094	-0.89967	-2.44376	-0.00078				
	3.526125	-0.47506	0.000374	0.890955	-0.48776	-0.87957				
	3.786633	-1.87659	0.001054	6.249434	-0.48788	0.885605				
	2.77247	-2.79149	0.000165	6.251229	-0.48776	-0.87957				
	1.386249	-2.4033	-0.00182	6.661218	0.997367	0.003554				
	1.897803	1.271479	-0.00137	6.661218	0.997367	0.003554				
	2.864031	2.286576	-0.00023	4.225091	1.855903	0.001149				
	4.225091	1.855903	0.001149	4.56151	0.526302	0.001369				
	6.01094	0.118632	0.00282	6.01094	0.118632	0.00282				
	2.429016	3.432491	-0.00014	2.429016	3.432491	-0.00014				