Phylogeny and evolution of habitat preference in *Goniurosaurus* (Squamata: Eublepharidae) and their correlation with karst and granite-stream-adapted ecomorphologies in species groups from Vietnam

L. Lee Grismer¹, Hai Ngoc Ngo²,³,⁴, Shuo Qi⁵, Ying-Yong Wang⁵, Minh Duc Le⁶,⁷,⁸, Thomas Ziegler³,⁴

¹ Herpetology Laboratory, Department of Biology, La Sierra University, Riverside, CA, USA
² Vietnam National Museum of Nature, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet Road, Hanoi, Vietnam
³ Institute of Zoology, University of Cologne, Zülpicher Straße 47b, 50674, Germany
⁴ Cologne Zoo, Richler Straße 173, 50735, Cologne, Germany
⁵ State Key Laboratory of Biocontrol/The Museum of Biology, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong 510275, China
⁶ Department of Environmental Ecology, Faculty of Environmental Sciences, University of Science, Vietnam National University, Hanoi, 334 Nguyen Trai Road, Hanoi, Vietnam
⁷ Central Institute for Natural Resources and Environmental Studies, Vietnam National University, Hanoi, 19 Le Thanh Tong Street, Hanoi, Vietnam
⁸ Department of Herpetology, American Museum of Natural History, Central Park West at 79th Street, New York, New York 10024, USA

http://zoobank.org/7B2E512E-5FA5-4F89-A7AC-8F0AC6EEDA59

Corresponding author: L. Lee Grismer (lgrismer@lasierra.edu)

Abstract

Maximum likelihood (ML) and Bayesian inference (BI) analyses using two mitochondrial (16S and cyt b) and two nuclear (CMOS and RAG1) genes and 103 specimens recovered the first phylogenies of all 23 extant species of *Goniurosaurus*. The analyses strongly supported the recognition of four monophyletic species groups with identical inter-specific relationships within the *kuroiwae*, *lichtenfelderi*, and *yingdeensis* groups but discordant topologies at some nodes within the *luii* group. Both analyses recovered a polyphyletic *G. luii* with respect to *G. kadoorieorum*, and owing to the lack of diagnostic characters in the latter, it is considered a junior synonym of *G. luii*. A stochastic character mapping analysis of karst versus non-karst habitat preference suggested that karstic landscapes may have played a major role in the evolution and diversification of *Goniurosaurus*. A karst habitat preference is marginally supported as the most probable ancestral condition for *Goniurosaurus* as well as for the *kuroiwae*, *luii*, and *yingdeensis* groups. However, a non-karst habitat preference is marginally supported as the most probable ancestral condition for the *lichtenfelderi* group. Multivariate and univariate ecomorphological analyses of the karst-adapted *G. catbaensis*, *G. hualiensis*, and *G. luii* of the *luii* group and the granite-stream-adapted *G. lichtenfelderi* of the *lichtenfelderi* group demonstrated that their markedly statistically different body shapes may be an adaptive response that contributes to habitat partitioning in areas of northern Vietnam where they are nearly sympatric.

Keywords

Asia, stochastic character mapping, systematics, synonymy, tiger geckos

Copyright L. L. Grismer et al. This is an open access article distributed under the terms of the Creative Commons Attribution License (CC BY 4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Introduction

Eublepharid geckos of the genus *Goniurosaurus* Barbour, 1908 comprise 23 saxicolous specialists (Uetz et al. 2021) that extend from the Ryukyu Archipelago in Japan, southward through East Asia to northern Vietnam. *Goniurosaurus* is a well-defined monophyletic group (Grismer 1988) comprised of four monophyletic species groups: the *kuroiwae* group containing six species endemic to the Ryukyu Archipelago, Japan; the *lichtenfelderi* group with five species from insular and mainland China and northern Vietnam; the *luii* group with eight species from northern Vietnam, some of its offshore islands, and southern China; and the *yingdeensis* group consisting of four species from southern China (Kurita et al. 2008; Nguyen et al. 2009; Nguyen 2011; Wang et al. 2013; Honda and Ota 2017; Liang et al. 2018; Qi et al. 2020a, 2020b; Zhu et al. 2020a, 2020b). Apart from these species, *Goniurosaurus sinensis* Zhou, Peng, Huo and Yuan, 2019 is likely a junior synonym of another species from Hainan Island, China and not included herein (Qi et al. in progress). Phylogenetic relationships within *Goniurosaurus* have never been strongly supported nor consistent among different studies (e.g. Wang et al. 2013; Liang et al. 2018; Qi et al. 2020a, 2020b; Zhu et al. 2020a, 2020b). This protracted state of discordance results, in part, from researchers focusing on different species groups as opposed to the entire genus, as well as using different genes or different combinations of genes with varying combinations of ingroup and outgroup species—all variables that bear significantly on tree construction (Wiens 1998; Zwickl et al. 2002; Heath et al. 2008; Wiens and Morrill 2011; Wainwright and Price 2016). The most commonly used genetic markers have been the mitochondrial genes 12S and 16S rRNA and cytochrome *b* (*cyt* *b*). Liang et al. (2018) were the first to address the challenges of properly aligning rRNA (Pyron et al. 2013) and constructed a well-supported mito-nuclear data set using 16S, *cyt* *b*, and the nuclear genes oocyte maturation factor MOS (CMOS), and recombination activating 1 (RAG1). Zhu et al. (2020b) also used this mito-nuclear combination, but examined only relationships within the *lichtenfelderi* group.

In an effort to continue building a more global understanding of the phylogenetic relationships within *Goniurosaurus*, we expanded the mito-nuclear data set of Liang et al. (2018) to include 103 individuals as opposed to 31 and 23 as opposed to 17 species, which for the first time, includes all extant species of the genus (Table 1). We used this phylogeny in a stochastic character state mapping (SCM) analysis (Revell 2012) of habitat preference to explore the role karstic landscapes may have played in the evolution and diversification of *Goniurosaurus* and if...
Figure 2. A1–A3. Photos of karst-adapted species (*Goniurosaurus catbaensis*, *G. huuliensis*, and *G. luii*, respectively), A4. Granite-stream-adapted species (*G. lichtenfelderi*), B1 – B3. Karst habitats of the *luii* group, B4. Granite-stream habitat of the *lichtenfelderi* group. Photos by Hai Ngoc Ngo.
Table 1. Species and GenBank accession numbers of the sequenced specimens used herein.

Species/Specimen	16s	cytb	CMOS	RAG1
Goniurosaurus araneus	AB308460			
G. araneus ECNU-V0008	MT533259			
G. araneus JFBM15830			HQ426537	HQ426286
G. bawanglingensis BL-RBZ-021	MH247190	MH247201	MH247212	MH247223
G. bawanglingensis BL-RBZ-022	MH247191	MH247202	MH247213	MH247224
G. bawanglingensis BL-RBZ-023	MH247192	MH247203	MH247214	MH247225
G. bawanglingensis BL-RBZ-024	MH247193	MH247204	MH247215	MH247226
G. bawanglingensis SYS 002162	MT995758	MT995773		
G. cathaensis G33	MW741550	MW650944		
G. cathaensis G34	MW741551	MW650945		
G. cathaensis G35			MW650946	
G. cathaensis MHNG 2699.49	EU499389			
G. gezhi ECNU-V0038	MT533260			
G. gezhi ECNU-V0040	MT533261			
G. gezhi ECNU-V0042	MT533262			
G. gezhi ECNU-V0046	MT533263			
G. gezhi ECNU-V0047	MT533264			
G. gollum SYS r002420	MT995784	MT995787	MW275559	MW27594
G. gollum SYS r002421	MT995785	MT995788	MW27560	MW27595
G. gollum SYS r002422	MT995786	MT995789	MW27561	MW27596
G. haiinanensis BL-RBZ-041	MH247194	MH247205	MH247216	MH247227
G. haiinanensis BL-RBZ-042	MH247195	MH247206	MH247217	MH247228
G. haiinanensis SYS r00349	KC765080			
G. haiinanensis JK1	AB308458			
G. hauensiensis Gohu	AB853453	AB853479		
G. hauensiensis G21			MW650936	
G. hauensiensis G23			MW650937	
G. hauensiensis G24			MW650938	
G. kadoorieorum ECNU-V0058	MT533258			
G. kadoorieorum ECNU-V0060	MT533265			
G. kadoorieorum ECNU-V0061	MT533266			
G. kuroiwaeki Goku1 Northern Okinawa	AB853448	AB853473		
G. kuroiwaeki Goku2 Southern Okinawa	AB853445			
G. kuroiwaeki Goo1 Southern Okinawa	AB853446	AB853467		
G. kwanghwa ECNU-V0003	MK782788	MK782782	MK782776	MK782770
G. kwanghwa ECNU-V0004	MK782789	MK782783	MK782777	MK782771
G. kwanghwa ECNU-V0005	MK782790	MK782784	MK782778	MK782772
G. kwangsensis ECNU-V0009	MK782786	MK782780	MK782774	MK782768
G. lioenfelderi ECNU-V0007	MK782785	MK782779	MK782773	MK782767
G. lioenfelderi IEBR 3692	JF799756			
G. lisi ECNU-V0012	MK782787	MK782781	MK782775	MK782769
G. lisi Golu2			EF081254	
G. lisi Golu3	AB853452	AB853478		
G. lisi SYS 000255	KC765083			
G. lisi SYS 000256	KC765084			
G. lisi ZFMK 87057	EU499391			
G. lisi TG00795			HQ426287	
G. orientalis Goku3	AB853446			
G. orientalis Goo2	AB853443	AB853461		
G. orientalis Goo3			AB853462	
G. sengoku Gose1	AB853444	AB853463		
G. sengoku Gose2			AB853464	
G. splendens Gosp1	AB853451	AB853477		
G. splendens Gosp2	AB853449			
G. splendens Gosp3	AB853450			
habitat preference coevolved with ecomorphology in near sympatric species of the *luii* and *lichtenfelderi* groups in Vietnam (Ngo et al. 2021; Figs. 1, 2).

Materials and methods

Genetic data and phylogenetic analyses

Genomic DNA was extracted from muscle tissue samples, using a DNA extraction kit from Tiangen Biotech (Beijing) Co., Ltd. Primers used for 16S were r16S-5L (5'- GGTMMYGCTGCCCCAGTG -3') and 16Sbr-H (5'- CCGGTCGAACTCAGATACGT-3') (Palumbi et al. 1991), for cyt b the primers were L14731 (5'- TG GTCTGAAAAACCATTGTTG-3') (Honda et al. 2014) and H15149m (5'- GCMCCTCAGAAKGATATTTGY CCTCA-3') (Chambers and MacAvoy 1999), for CMOS the primers were FU-F (5'- TTTGGTTCKGTCTACAA-GGCTAC -3') and FU-R (5'- AGGGAACATCCAAAG-TCTCCAAT -3') (Gamble et al., 2008), and for RAG1 the primers were R13 (5'- TCTGAATGGAAATTCAAGCTGTT -3') and R18 (5'- GATGCTGCCTCGGCTCGG- CCACCTTT -3') (Groth and Barrowclough 1999). The PCR procedure was performed with an initial denaturation at 94 °C for 5 min, 35 cycles of 94 °C for 30 s, 55 °C for 30 s and 72 °C for 1 min, followed by a final
extension at 72 °C for 10 min (Liang et al. 2018). PCR products were purified with spin columns and then sequenced with forward primers using BigDye Terminator Cycle Sequencing Kit as per the guidelines on an ABI Prism 3730 automated DNA sequencer by Shanghai Majorbio Bio-pharm Technology Co., Ltd.

We constructed Maximum Likelihood (ML), Bayesian Inference (BI), and Bayesian Evolutionary Analysis by Sampling Trees (BEAST) phylogenetic trees using a concatenated data set composed of 3070 base pairs (bp) of the mitochondrial genes, 16S (633 bp) and cyt b (1075 bp), and the nuclear genes, CMOS (472 bp) and RAG1 (890), from 103 specimens of 23 species of Goniurosaurus with varying degrees of sequence coverage across the samples (Table 1). Concatenation followed the comparison of separate gene trees to confirm there were no major discordances. One species, Eublepharis macularius, served as an outgroup (Grismer 1988; Jonniaux and Kumazawa 2008) to root the sequences. Gene data and GenBank accession numbers are listed in Table 1.

A Maximum likelihood (ML) analysis partitioned by gene was implemented using the IQ-TREE webserver (Nguyen et al. 2015; Trifinopoulos et al. 2016) preceded by the selection of substitution models using TIM2+F+I+G4 for 16S and cyt b and HKY+F for CMOS and RAG1. To avoid over parameterization, protein coding genes were not partitioned by codon. A thousand bootstrap pseudoreplicates via the ultrafast bootstrap (UFB: Hoang et al. 2018) approximation algorithm were employed, and nodes having UFB values of 95 and above were considered strongly supported (Minh et al. 2013). We considered nodes with values of 90–94 as well-supported. A Bayesian inference (BI) analysis was carried out in MrBayes 3.2.3. (Ronquist et al. 2012) on XSEDE using the CIPRES Science Gateway (Cyberinfrastructure for Phylogenetic Research; Miller et al. 2010). bModelTest was used to numerically integrate over the uncertainty of substitution models of each gene while simultaneously estimating phylogeny using Markov chain Monte Carlo (MCMC). MCMC chains were run for 100,000,000 generations and logged every 10,000 generations. The BEAST log file was visualized in Tracer v. 1.6.0 (Rambaut et al. 2014) to ensure effective sample sizes (ESS) were well-above 200 for all parameters. A Maximum clade credibility tree using mean heights at the nodes was generated using TreeAnnotator v.1.8.0 (Rambaut and Drummond 2014) with a burn-in of 1000 trees (10%). Nodes with BPPs of 0.95 and above were considered strongly supported (Huelsenbeck et al. 2001; Wilcox et al. 2002). We considered nodes with values of 0.90–0.94 as well-supported.

Ancestral state reconstruction

The BEAST tree was converted to newick format and pruned using the drop.tip() command (Paradis and Schliep 2018) in the R package ape [v.3.4.3] to include only the earliest diverged individual of each species. Habitat preference (karst or non-karst; see below) was mapped onto the tree using tree using TreeAnnotator (Revell 2012) in order to derive probability estimates of the ancestral states at each node. A transition rate matrix was identified that best fit the data by comparing the corrected Akaike Information Criterion (AICc) values in the R package ape (Paradis and Schliep 2018). Three transition rate models were considered: a 2-parameter model having different rates for every transition type (the ARD model); a single-parameter model with equal forward and reverse rates between states (the symmetrical rates SYM model); and a single rate parameter model that assumes equal rates among all transitions (ER). Lastly, an MCMC approach was used to sample the most probable 1000 trait histories from the posterior using the make.simmap() command and then summarized them using the summary() command.

The coding of habitat preference for each species was determined from the literature and field observations of the authors (Table 2). A species’ habitat preference was coded as “karst” if it had a strong association with karstic habitats. Many such species may range into forested areas or areas with other rock types (e.g. granite). These species never show any strong preference for karstic microhabitats even if such habitats exist within their range.

Morphological data and analyses

An ecomorphological analysis was conducted using four of the five recorded species from Vietnam (Grismer et al. 1999; Vu et al. 2006; Orlov et al. 2008; Ziegler et al. 2008; Nguyen et al. 2009; Nguyen 2011; Wilcox et al.
Species	1° habitat	2° habitat	Source
karoiwae group			
G. splendens	karst	forest	Nakamura and Ueno (1963), H. Ota pers. comm., L. Grismer pers. obs.
G. toyamai	forest		H. Ota pers. comm.
G. karoiwae North	forest		H. Ota pers. comm., L. Grismer pers. obs.
G. karoiwae South	karst	forest	Nakamura and Ueno (1963), H. Ota pers. comm., L. Grismer pers. obs.
G. yamashinae	karst	forest	H. Ota pers. comm., L. Grismer pers. obs.
G. sengoku	karst	forest	Werner et al. (2004), H. Ota pers. comm.
G. orientalis	karst		H. Ota pers. comm.
yingeoensis group			
G. gollum	karst		Qi et al. (2020a)
G. yingeoensis	karst	granite	Wang et al. (2010), S. Qi pers. obs.
G. zheliolongi	karst	granite	S. Qi, pers. obs., Wang et al. (2014)
G. varius	karst		Qi et al. (2020b)
lichtenfelderi group			
G. baivanglingensis	granite	karst	Grismer et al. (2002), Orlov et al. (2008)
G. zheliolongi	karst	granite	Zhou et al. (2018), S. Qi pers. obs.
G. kwanghua	karst	granite	Zhu et al. (2020)
G. lichtenfelderi	granite		Orlov et al. (2008)
G. hainanensis	granite	volcanic	S. Qi pers. obs., L. Grismer pers. obs.
luli group			
G. catbaensis	karst		Ziegler et al. (2008), Ngo et al. (2019a)
G. gezhi	karst		Zhu et al. (2020)
G. araneus	karst		Grismer et al. (1999)
G. kadooriororum	karst		Yang and Chan (2015)
G. huilienensis	karst		Orlov et al. (2008)
G. luli	karst		Grismer et al. (1999), Vu et al. (2006)
G. liboensis	karst		Wang et al. (2013)
G. kwangstiensis	karst		Yang and Chan (2015)

2020) for which there existed a substantially large morphometric data set (Ngo et al. 2021): the karst-adapted G. catbaensis Ziegler, Nguyen, Schmitz, Stenke, and Rössler, 2008, G. huilienensis Orlov, Ryabov, Nguyen, Nguyen, and Ho, 2008, and G. luli Grismer, Viets, and Boyle, 1999 of the luli group and the granite stream-adapted G. lichtenfelderi (Mocquard, 1897) of the lichtenfelderi group (Figs. 1, 2). A total of 486 live individuals and 54 museum specimens of four species were examined for morphological data, comprising 194 individuals of G. catbaensis (21 juveniles, 93 females, and 80 males), 80 individuals of G. huilienensis (two juveniles, 46 females, and 32 males), and 88 individuals of G. luli (11 juveniles, 43 females, and 34 males) of the luli species group and 178 individuals of G. lichtenfelderi (14 juveniles, 72 females, and 92 males) of the lichtenfelderi group.

Measurements were taken with dial calipers to the nearest 0.1 mm on the right side of each individual. Abbreviations are as follows: snout-vent length (SVL), from tip of snout to vent; axilla to groin length (AG), from posterior edge of forelimb insertion to anterior edge of hind limb insertion; maximum body width (BW), greatest width of torso, taken at level of midbody; maximum body height (BH), from dorsal surface of body to belly; interaural distance (ID), distance between nares; head length (HL), from the tip of snout to posterior edge of occiput; maximum head width (HW); cheek height (CH), from posterior edge of labial to top of head at parietal region; interorbital distance (IO), distance between posteriormost points of eyes; diameter of auditory meatus (AD); snout to eye distance (SL), measured from tip of snout to posteriormost point of eye; diameter of eye (ED), greatest diameter of eye; eye to ear distance (EE), from posterior margin of eye to posterior margin of ear; forelimb length (FLL), from axilla to the tip of the fourth finger; hind limb length (HLL), from groin to the tip of the fourth toe.

To remove potential effects of allometry, size was adjusted using the following equation: $X_{adj} = \log(X) - \beta \log(SVL_{\text{mean}})$, where $X_{adj} = \text{adjusted value}$; $X = \text{measured value}$; $\beta = \text{unstandardized regression coefficient for each population}$; and $SVL_{\text{mean}} = \text{overall average SVL of all populations}$ (Thorpe 1975, 1983; Turan 1999; Lleonart et al. 2000)—accessible in the R package GroupStruct (available at https://github.com/chankinonn/GroupStruct). The morphometrics of each species were adjusted separately and then concatenated so as not to conflate intra- with interspecific variation (Reists 1986). All data were then scaled to their standard deviation to insure they were analyzed on the basis of correlation and not covariance and were log-transformed to insure they were normally distributed.

An analysis of variance (ANOVA) was performed on a data set coded for species to search for the presence of statistically significant mean differences ($p < 0.05$)
Figure 3. Mito-nuclear maximum likelihood topology with ultrafast bootstrap values (UFB) and Bayesian posterior probabilities (BPP) at the nodes. All species except Goniurosaurus luii had strong nodal support (100/1.00) for their monophyly. The inset in the luii species group is a section of the BI analysis showing the non-monophyly of G. luii with respect to G. kadoorieorum. Colored species are those used in the ecomorphological analyses.
among characters across the selected subset of species in the *luii* and *lichtenfelderi* groups. Character means bearing statistical differences among species were subjected to a TukeyHSD test to ascertain which species pairs differed significantly from each other for those particular characters. A Student *t*-test was also performed on a second data set coded for only habitat preference (karst versus non-karst) to search for the presence of statistically significant mean differences (*p* < 0.05) among the same subsets of species coded for habitat. Violin plots with inserted boxplots were generated in order to visualize the range, frequency, mean, 50% quartile, and degree of differences between the dependent variables for both data sets bearing statistically different mean values.

The morphospatial clustering of the two separate data sets (species and habitat preference) were visualized using principal component analysis (PCA) along the ordination of the first two principal components (PC) using the Adegenet package in R (Jombart et al. 2010) and implemented by the `prcomp()` command. The data were log-transformed prior to analysis in order to normalize their distribution so as to ensure characters with very large or very low values could not over-leverage the results owing to intervariable nonlinearity. All statistical analyses were performed using R.3.1.2 (R Core Team 2018).

Results

Phylogenetic relationships

The ML, BI, and BEAST analyses recovered strong nodal support (UFB 98–100/BPP 1.00) for the monophyly of all four species groups with the *kuroiwae* group being the strongly supported (100/1.00) sister group to the remaining three groups (Fig. 3). The ML analysis weakly recovered (88) the *lichtenfelderi* and *yingdeensis* groups as sister lineages, although the support is so low (0.51), the three groups effectively form a polytomy. The ML and BI analyses recovered the identical inter-specific relationships within the species groups but discordant relationships with the BEAST analysis regarding the *luii* group. The ML and BI analyses recovered a poorly supported (*G. catbaensis* (*G. araneus*, *G. gezhi*)) clade but the BEAST analysis recovered *G. catbaensis* as the strongly supported (0.99) sister species to the remainder of the *luii* group species (Figs. 3, 4, respectively). All analyses recovered a polyphyletic *Goniurosaurus luii* with respect to *G. kadoorieorum* (not shown in the pruned tree of Fig. 4).
Table 3. Difference, lower and upper ranges, and adjusted p values of statistically significant mean differences between species pairs for each character based on ANOVA and subsequent TukeyHSD analyses.

	difference	lower range	upper range	p adjusted
axilla-groin (AG)				
huuliensis-catbaensis	0.095633573	0.072292064	0.118975082	3.37E-10
lichtenfelderi-catbaensis	-0.075967576	-0.094200659	-0.057734493	3.37E-10
luchi-catbaensis	-0.029676257	-0.05225407	-0.007098445	0.00206065
lichtenfelderi-huuliensis	-0.171601149	-0.195246969	-0.14795333	3.37E-10
luchi-huuliensis	-0.12530983	-0.152447204	-0.098172456	3.37E-10
luchi-lichtenfelderi	0.046291319	0.023399042	0.069183596	1.60E-06
body width (BW)				
huuliensis-catbaensis	0.106179184	0.066412755	0.145945613	4.37E-10
lichtenfelderi-catbaensis	-0.083314667	-0.123590666	-0.043029791	8.67E-07
luchi-huuliensis	-0.051843482	-0.098759604	-0.03927359	0.000295844
luchi-lichtenfelderi	0.046291319	0.023399042	0.069183596	1.60E-06
body height (BH)				
huuliensis-catbaensis	0.094637915	0.046801122	0.142474708	2.84E-06
lichtenfelderi-catbaensis	-0.073170210	-0.121630666	-0.024709755	0.00647886
lucht-huuliensis	-0.125013692	-0.180629845	-0.075315269	5.34E-10
internarial distance (ID)				
lichtenfelderi-catbaensis	-0.082396274	-0.105742691	-0.059049857	3.37E-10
luchi-huuliensis	-0.051843482	-0.098759604	-0.03927359	0.000295844
luchi-lichtenfelderi	0.046291319	0.023399042	0.069183596	1.60E-06
head length (HL)				
huuliensis-catbaensis	0.075818967	0.058801575	0.092836359	3.37E-10
lichtenfelderi-catbaensis	-0.162875997	-0.176169033	-0.149582961	3.37E-10
luchi-huuliensis	-0.09020154	-0.125668004	-0.056172303	5.78E-10
luchi-lichtenfelderi	0.133777111	0.110782382	0.15046985	3.37E-10
head width (HW)				
huuliensis-catbaensis	0.036775074	0.019138869	0.05441128	6.89E-07
lichtenfelderi-catbaensis	-0.158637886	-0.172414249	-0.14864143	3.37E-10
luchi-huuliensis	-0.096677642	-0.126545757	-0.066400527	3.37E-10
luchi-lichtenfelderi	0.03635767	0.07633899	0.110932545	3.37E-10
head height (HH)				
huuliensis-catbaensis	0.108413032	0.073172094	0.143653969	3.37E-10
lichtenfelderi-catbaensis	-0.032237965	-0.05766217	-0.00479013	0.01462568
luchi-huuliensis	-0.14605997	-0.176351381	-0.081272881	3.37E-10
luchi-lichtenfelderi	0.093635767	0.07633899	0.110932545	3.37E-10
cheek height (CH)				
huuliensis-catbaensis	0.069593379	0.028246161	0.110944597	0.00010199
lichtenfelderi-catbaensis	-0.140073735	-0.180373429	-0.11577403	3.37E-10
luchi-huuliensis	-0.057345812	-0.09734215	-0.017349473	0.001381599
luchi-lichtenfelderi	-0.217669109	-0.259557409	-0.175780808	3.37E-10
snout length (SL)				
huuliensis-catbaensis	0.108547374	0.083797596	0.133297152	3.37E-10
The mito-nuclear data set of Liang et al. (2018) differed from all the above analyses in that their ML and BI analyses (79/0.99) placed the yingdeensis group as the sister group to a sister lineage comprised of the luii group and lichtenfelderi group (87/1.00).

Ancestral state reconstruction

The AICc scores for the three transition rate models of the SCM analysis were ARD = 34.547134 and SYM and ER = 32.099451. The SCM analysis using either the SYM or ER model suggests that a karst habitat preference is the most probable ancestral condition for Goniurosaurus (57.0% probability), the kuroiwaie group (62.7%), the luii group (90.0%), and the yingdeensis group (95.7%; Fig. 4). The probable ancestral condition for the lichtenfelderi group is non-karst (55.4%). The karst habitat preference of G. kwanghua and G. zhoui of the lichtenfelderi group is considered to have evolved independently given that the ancestral condition of the lichtenfelderi group and that of the most recent common ancestor of the sister species G. lichtenfelderi and G. hainanensis was not karst-adapted (Fig. 4).

Ecomorphology

In both the species and habitat preference PCA analyses, PC1 accounted for 49.1% of the variation in the data set and loaded most heavily for limb length (FLL and HLL), snout length (SL), eye diameter (ED), interorbital distance (IO), head width (HW), and head length (HL). PC2 accounted for an additional 13.3% of the variation and loaded most heavily for body width (BW) and body height (BH) (Figs. 5, 6; Table 4).

The PCA analysis of the karst-adapted Goniurosaurus cathaenesis, G. huuliensis, and G. luii of the lui group demonstrates that their body shapes greatly overlap in morphospace despite there being several slight, but statistically significant mean differences among them (Fig. 5; Table 3). Additionally, none of the plots of the karst-adapted species overlap with that of the granite stream-adapted species G. lichtenfelderi along the ordination of PC1. The PCA analysis using habitat preference as the dependent variable among the four species, showed that the karst-adapted and granite-stream-adapted species plot separately as before along taxonomic lines and that collectively, the former have significantly longer axilla-groin lengths (AG); longer, wider, and thicker heads (HL, HW, and CH); longer snouts (SL); longer limbs (FLL and HLL); wider interorbital distances (IO); larger eyes (ED) and larger ear openings (AD) (Fig. 6). Many of these characters—longer head and snout, larger eyes, longer trunk, longer limbs—occur in many other distinctly related karst-adapted species of Cyrtodactylus (Grismer et al. 2016a, 2020b; Kaatz et al. 2021; Nielsen and Oliver 2017), indicating that these are convergent adaptations to a karstic life style within and between the gekkotan families.
Table 4. Summary statistics and principal component analysis scores for the morphological characters for Goniurosaurus catbaensis, G. lichtenefelderi, G. luei, and G. lichtenfelderi. Abbreviations are listed in the Materials and methods.

Character	PC1	PC2	PC3	PC4	PC5	PC6	PC7	PC8	PC9	PC10	PC11	PC12	PC13	PC14
Standard deviation	1.3669	1.0396	1.334	0.9977	0.0493	0.0425	0.0293	0.0293	0.0293	0.0293	0.0293	0.0293	0.0293	0.0293
Proportion of variance	0.7712	0.2288	0.4972	0.2900	0.1538	0.1472	0.1300	0.1300	0.1300	0.1300	0.1300	0.1300	0.1300	0.1300
Eigenvalue	1.3669	1.0396	1.334	0.9977	0.0493	0.0425	0.0293	0.0293	0.0293	0.0293	0.0293	0.0293	0.0293	0.0293
AG	0.4908	0.6248	0.7396	0.8543	0.5176	0.5176	0.5176	0.5176	0.5176	0.5176	0.5176	0.5176	0.5176	0.5176
BW	0.7273	0.6822	0.6822	0.6822	0.6822	0.6822	0.6822	0.6822	0.6822	0.6822	0.6822	0.6822	0.6822	0.6822
ND	0.6189	0.6248	0.7396	0.8543	0.5176	0.5176	0.5176	0.5176	0.5176	0.5176	0.5176	0.5176	0.5176	0.5176
HL	0.6189	0.6248	0.7396	0.8543	0.5176	0.5176	0.5176	0.5176	0.5176	0.5176	0.5176	0.5176	0.5176	0.5176
HW	0.6189	0.6248	0.7396	0.8543	0.5176	0.5176	0.5176	0.5176	0.5176	0.5176	0.5176	0.5176	0.5176	0.5176
CH	0.7273	0.7273	0.8543	0.8543	0.5176	0.5176	0.5176	0.5176	0.5176	0.5176	0.5176	0.5176	0.5176	0.5176
R2	0.4908	0.4908	0.6248	0.6248	0.6248	0.6248	0.6248	0.6248	0.6248	0.6248	0.6248	0.6248	0.6248	0.6248
SE	0.7273	0.7273	0.8543	0.8543	0.5176	0.5176	0.5176	0.5176	0.5176	0.5176	0.5176	0.5176	0.5176	0.5176
ED	0.4908	0.4908	0.6248	0.6248	0.6248	0.6248	0.6248	0.6248	0.6248	0.6248	0.6248	0.6248	0.6248	0.6248
EE	0.7273	0.7273	0.8543	0.8543	0.5176	0.5176	0.5176	0.5176	0.5176	0.5176	0.5176	0.5176	0.5176	0.5176
AD	0.4908	0.4908	0.6248	0.6248	0.6248	0.6248	0.6248	0.6248	0.6248	0.6248	0.6248	0.6248	0.6248	0.6248
HLL	0.7273	0.7273	0.8543	0.8543	0.5176	0.5176	0.5176	0.5176	0.5176	0.5176	0.5176	0.5176	0.5176	0.5176

Discussion

Geckos in general are particularly well-adapted to karstic landscapes (see Luu et al. 2016; Grismer et al. 2014, 2020a, 2021 and references therein; Google Scholar search using key words “karst” and “Gekkonidae”) and Goniurosaurus is no exception, being that 19 of its 23 species (83%) occupy karstic habitats (Grismer et al. 1994, 1999; Orlov et al. 2008; Ziegler et al. 2008; Yang and Chan 2015; Honda and Ota 2017; Zhou et al. 2018; Ngo et al. 2019a; Qi et al. 2020a, 2020b; Zhu et al. 2020a, 2020b). It is clear that karstic landscapes have played a significant role in the evolution and diversification of Goniurosaurus being that it is the probable ancestral habitat preference for the genus and three of the four species groups. Even the ancestor of the non-karst adapted ancestor of the lichtenefelderi group was karst-adapted (Fig. 4). Furthermore, within the species groups, the limited data herein would suggest that the karst-adapted species are specialized, range-restricted endemics (Grismer et al. 1994, 1999; Orlov et al. 2008; Ziegler et al. 2008; Yang and Chan 2015; Honda and Ota 2017; Zhou et al. 2018; Ngo et al. 2019a; Qi et al. 2020a, 2020b; Zhu et al. 2020a, 2020b). With the exception of G. lichtenfelderi, all the non-karst-adapted species are restricted to islands in the Ryukyu Archipelago (kuroiwae group) or Hainan Island (lichtenefelderi group). It may be that the absence of competition and/or predators in these insular habitats widened the fundamental niches of their ancestors and allowed some species to become more generalized in their habitat preference, which should be tested using new techniques combining phylogenetic history, character evolution, and ecological reconstruction programs.

Systematics of the luei group

The ML and BI analyses of Liang et al. (2018) and the BEAST analysis herein (Fig. 4) recovered Goniurosaurus catbaensis as the strongly supported sister species to the remainder of the luei group. Whereas the ML and BI analysis herein, recovered G. catbaensis as the very poorly supported (60/0.51) sister species of the G. aranues plus G. gezhi clade (Fig. 3). Given that three of the five analyses strongly supported the former relationship and two analyses poorly supported the latter, we prefer the placement of G. catbaensis as the sister species to the remainder of the luei group (Fig. 4). Given the very low nodal support of the latter, it essentially renders that portion of the tree a polytomy and as such, does not effectively contradict the strongly supported sister species position of G. catbaensis in the other trees.

Goniurosaurus kadoorieorum of the luei group (represented by only 16S) is nested within G. luei in
both the ML and BI analyses, rendering \(G. \textit{luii} \) polyphyletic (Fig. 3). The same relationship was recovered in the 16S phylogeny of Zhu et al. (2020a). This, and the lack of diagnostic characters separating \(G. \textit{kadoorieorum} \) from \(G. \textit{luii} \) (Yang and Chan 2015; Ngo et al. 2016), indicates the two species should be considered conspecific and as such, \(G. \textit{kadoorieorum} \) Yang and Chan, 2015 is relegated here to a junior synonym of \(G. \textit{luii} \) Grismer, Viets, and
In all analyses, *G. huuliensis* is consistently recovered as the sister species to *G. luii sensu lato* and its species status is not questioned (Figs. 3, 4).

Conservation

Wide-ranging more inclusive studies pertaining to ecosystems management are becoming commonplace in light of climate change and widespread habitat destruction. Such studies reconcile data from a broad range of disciplines in order to address issues that may bear on ecosystems management. Foundational to many of these studies is a basic understanding of species ecology and habitat preference—correlated here with ecomorphology (Cabral et al. 2009; Harfoot et al. 2014). Baseline information on habitat and microhabitat requirements of any species are paramount to understanding how they interact with, and navigate through, their environment (e.g. Grant and Grant 2008; Greene 2005; Losos 2010) and as such, the contextualization of ecosystem management may ultimately turn on these simple points (Meiri 2018; Sinervo et al. 2010).

Integrating the phylogenetic patterns of biodiversity and the morphological adaptations of habitat preference that, in part, underpin species radiations, can fundamentally contribute to conservation management programs (Grismer et al. 2020a, 2021; Erwin 1991; Vane-Wright et al. 1991; Williams et al. 1991; Vázquez and Gittleman 1998; Moritz et al. 2000; Forest et al. 2007; Sgro et al. 2010; Harvey et al. 2011; Rolland et al. 2012; Winter et al. 2012; Shaffer et al. 2015; Beaumont and Wang 2019; Fay et al. 2019; Holderegger et al. 2019)—especially in the karstic regions of northern Vietnam where anthropogenic impact is degrading the habitat and reducing the
density of localized populations of *Goniurosaurus* (Ngo et al. 2019b). Northern Vietnam and many of its offshore islands in the Gulf of Tonkin, harbor large areas of fragmented karstic habitats scattered across their landscapes (Cerrano et al. 2006; Do 2001, 2014; Luo et al. 2016; Ngo et al. 2019a) that are inhabited by an exceptionally large number of endemic plants and animals (Do 2001; Sterling et al. 2006; Clements et al. 2008; Luo et al. 2016; von Oheimb et al. 2017). The obligate restriction of many species to fragmented karstic environments—such as all species of the *luii* and *yingdeensis* groups—functionally transforms these environments into habitat islands (Clements et al. 2006, 2008; von Oheimb et al. 2017), which in some cases, bear an unprecedented degree of range-restricted endemism (e.g. Sgro et al 2012; Harvey et al. 2011; Grismer et al. 2018a, 2021).

Unfortunately, *Goniurosaurus* species are particularly attractive (Fig. 2) and over-harvested for the illegal pet trade (Stuart et al. 2006; Yang and Chan 2015; Ngo et al. 2019b). This is an additional threat to these range-restricted endemics from imperiled karstic environments (Grismer et al. 1997; Orlov et al. 2008; Ziegler et al. 2008; Nakamura et al. 2014; Yang and Chan 2015; Honda and Ota 2017; Zhou et al. 2018; Ngo et al. 2019a; Qi et al. 2020a,b; Zhu et al. 2020a,b). In fact, in areas of China and Vietnam, many populations have suffered huge declines in numbers, or even extinction at some localities, due to the illegal commercial pet trade (Stuart et al. 2006; Yang and Chan 2015; Ngo et al. 2019b, 2021). We hope that this study will bring more clarity to the plight of this genus and continue to serve ongoing conservation and management programs.

Acknowledgements

For supporting acknowledgement and issuing relevant permits, we thank the authorities of the Cat Ba National Park (CBNP), Hai Phong City, Hau Lien Nature Reserve, Lang Son Province, Bai Tu Long National Park, Quang Ninh Province, Tay Yen Tu Nature Reserve, Bac Giang Province, Yen Tu Nature Reserve and the Management Department of Ha Long Bay, Quang Ninh Province. We are thankful to N. H. Nguyen, C. T. Pham, T.Q. Pham, H.M. Tran (IEBR, Hanoi), H.Q. Nguyen (VNMN, Ha Noi), H.T. Ngo (HUS, Hanoi) for assistance in the field and laboratory. We are grateful to T. Pagel and C. Landsberg (Cologne Zoo), S.V. Nguyen, T.Q. Nguyen (IEBR, Hanoi), L.V. Vu and T.T. Nguyen (VNMN, Hanoi) for their support of conservation-based biodiversity research in Vietnam. Field surveys were partially funded by Cologne Zoo, the Wildlife Conservation Society ("WCS") John Thorbjarnarson Fellowship for Reptile Research Grant, the Mohamed bin Zayed Species Conservation fund (Project: 170515492) to H. N. Ngo, the *Goniurosaurus yingdeensis* Population Conservation Research of Guangdong Shimentai National Nature Reserve, China. Cologne Zoo is partner of the World Association of Zoos and Aquariums (WAZA): Conservation Project 07011, 07012 (Herpetodiversity Research, Amphibian and Reptilian Breeding and Rescue Stations). Researches of Hai Ngoc Ngo are funded by the German Academic Exchange Service (DAAD). We thank Dr. Hidetoshi Ota for his insight on the microhabitat preferences of the species of the *Goniurosaurus kuroiwae* species group.

References

Barbour T (1908) Some new reptiles and amphibians. Bulletin of the Museum of Comparative Zoology 51: 315–325.

Beaumont M, Wang J (2019) Conservation genetics. In: Balding D, Moltoke I, Marioni J (eds), Handbook of Statistical Genomics: fourth edition. Wiley Online Library. https://doi.org/10.1002/9781119487845.ch16

Cabral JS, Wiegand K, Kreft H (2009) Interactions between ecological, evolutionary and environmental processes unveil complex dynamics of insular plant diversity. Journal of Biogeography 46: 1582–1597. https://doi.org/10.1111/j.1360-2695.2008.01820.x

Cerrano C, Azzini F, Bavestrello G, Calcinaia B, Pansini M, Sarti M, Thung D (2006) Marine lakes of karst islands in Ha Long Bay (Vietnam). Chemistry and Ecology 22: 489–500

Chambers G, MacAvoy, ES (1999) *Molecular Genetic Analysis of Hybridization*. Department of Conservation, Wellington, 29 pp.

Clements R, Sodhi NS, Schlithuizen M, Ng PKL (2006) Limestone karsts of Southeast Asia: imperiled arks of biodiversity. BioScience 56: 733–742. https://doi.org/10.1641/0006-3568(2006)56[733:KLKSAI]2.0.CO;2

Clements R, Ng PKL, Lu XX, Ambu S, Schlithuizen M, Bradshaw CJA (2008) Using biogeographical patterns of endemic land snails to improve conservation planning for limestone karsts. Biological Conservation 141: 2751–2764. https://doi.org/10.1016/j.biocon.2008.08.011

Do T (2001) Characteristics of karst ecosystems of Vietnam and their vulnerability to human impact. Acta Geologica Sinica (English Edition) 75: 325–329. https://doi.org/10.1111/j.1755-6724.2001.tb00539.x

Do TC (2014) Distinctive features of the property of Cat Ba archipelago, Vietnam. Journal of Earth Science and Engineering 4: 271–283. https://doi.org/10.17265/2159-581X/2014.05.003

Erwin TL (1991) An evolutionary basis for conservation strategies. Science 253: 750–752. https://doi.org/10.1126/science.253.5021.750

Fay MF, Gargiulo R, Viruel J (2019) The present and future for population genetics, species boundaries, biogeography and conservation. Botanical Journal of the Linnean Society 191: 299–304. https://doi.org/10.1093/botlinnean/boz076

Forest F, Grenyer R, Rouget M, Davies JT, Cowling RM, Faith DP, Balmford A, Manning JC, Proches S, van der Bank M, Reeves G, Hedderson TAJ, Savolainen V (2007) Preserving the evolutionary potential of floras in biodiversity hotspots. Nature 445: 757–760. https://doi.org/10.1038/nature05587

Grant PR, Grant BR (2008) How and why species multiply: the radiation of Darwin’s finches. Princeton University Press, Princeton, NJ.

Greene HW (2005) Organisms in nature as a central focus for biology. Trends in Ecology and Evolution 20: 23–27.

Grismer LL (1988) The phylogeny, taxonomy, classification, and biogeography of eublepharid geckos (Reptilia: Squamata). In “Phylogenetic Relationships of the Lizard Families” Ed by Estes R, Pregill, G Stanford University Press, California, pp 369–469.

Grismer LL, Ota H, Tanaka S (1994) Phylogeny, classification, and biogeography of *Goniurosaurus kuroiwae* (Squamata: Eublepharidae) from the Ryukyu Archipelago, Japan, with description of a new subspecies. Zoological Science 11: 319–335.

Grismer LL, Viets BE, Boyle LJ (1999) Two new continental species of *Goniurosaurus* (Squamata: Eublepharidae) with a phylogeny and evolutionary classification of the genus. Journal of Herpetology 33: 382–393. http://dx.doi.org/10.2307/1565635
Grismer LL, Wood PL Jr., Le MD, Quah ESH, Grismer JL (2020a) Evolution of habitat preference in species of Bent-toed geckos (Genus Cyrtodactylus Gray, 1827) with a discussion of karst habitat conservation. Zoology and Evolution 2020: 00: 1–14.

Grismer LL, Chan KO, Oaks JR, Neang T, Lang S, Murdoch ML, Stuart BL, Grismer JL (2020b) A new insular species of the Cyrtodactylus intermedius (Squamata: Gekkonidae) group from Cambodia with a discussion of habitat preference and ecomorphology. Zootaxa 4830: 75–102, https://doi.org/10.11646/zootaxa.4830.1.3

Grismer LL, Wood Jr, PL, Thura MK, Zin T, Quah ESH, Murdoch ML, Grismer MS, Lin A, Kyaw H, Ngwe L (2018a) Twelve new species of Cyrtodactylus Gray (Squamata: Gekkonidae) from isolated limestone habitats in east-central and southern Myanmar demonstrate high localized diversity and unprecedented microendemism. Zoological Journal of the Linnean Society 182: 862–959. http://dx.doi.org/10.1093/zoolinnean/zlx057

Grismer LL, Wood Jr, PL, Anuar S, Grismer MS, Muin MA, Davis HR, Aguilar C, Klaback R, Cobos AJ, Aowphol A, Sites JR, J (2016a) Two new Bent-toed Geckos of the Cyrtodactylus pulchellus complex from Peninsular Malaysia and multiple instances of convergent adaptation to limestone forest ecosystems. Zootaxa 4105: 401–429. https://doi.org/10.11646/zootaxa.4105.5.1

Grismer LL, Wood PL Jr, Anuar S, Rianto A, Ahmad N, Muin MA, Sunnontha M, Grismer JL, Onn CK, Quah ESH, Pauwels OSA (2014) Systematics and natural history of Southeast Asian Rock Geckos (genus Cyrtodactylus) with descriptions of eight new species from Malaysia, Thailand, and Indonesia. Zootaxa 3880: 1–147. https://doi.org/10.1002/ece3.6961

Groth JG, Barrowclough GF (1999) Basal diversification in birds and the phylogenetic utility of the nuclear RAG-1 gene. Molecular Phylogenetics and Evolution 12: 115–123.

Harfoot MBJ, Newbold T, Tittleton DP, Emmott S, Hutton J, Lyutsarev V, Smith MJ, Scharlemann JPW, Purves DW (2014). Emergent global patterns of ecosystem structure and function from a mechanistic general ecosystem model. PLoS Biology 12, e1001841. https://doi.org/10.1371/journal.pbio.1001841

Harvey MS, Rix MG, Framenau VW, Hamilton ZR, Johnson MS, Teale RJ, Humphreys G, Humphreys WF (2011) Protecting the innocent: studying short-range endemic taxa enhances conservation outcomes. Invertebrate Systematics 25: 1–10. https://doi.org/10.1071/IS11011

Heath TA, Hedtke SM, Hillis DM (2008) Taxon sampling and the accuracy of phylogenetic analyses. Journal of Systematics and Evolution 46: 239–257.

Hoang DT, Chernomor O, von Haeseler A, Minh BQ, Vinh LS (2018) UFBoot2: Improving the ultrafast bootstrap approximation. Molecular Biology and Evolution 35: 518–522. https://doi.org/10.1093/molbev/msx281

Holderegger R, Balkenhol N, Bolliger J, Engler JO, Gugerli F, Hochkirch A, Nowak C, Selgabauer G, Widmer A, Zachos FE (2019) Conservation genetics: linking science with practice. Molecular Ecology 28: 3848–3856. https://doi.org/10.1111/mec.15202

Honda M, Ota H (2017) On the live coloration and partial mitochondrial DNA sequences in the topotypic population of Goniurosaurus kuroiwaee orientalis (Squamata: Eublepharidae), with description of a new subspecies from Tokashikijima Island, Ryukyu Archipelago, Japan. Asian Herpetological Research 8: 96–107. https://doi.org/10.16373/j.cnki.ahr.170003

Honda M, Kurita T, Toda M, Ota H (2014) Phylogenetic relationships, genetic divergence, historical biogeography and conservation of an endangered gecko, Goniurosaurus kuroiwaee (Squamata: Eublepharidae), from the central Ryukyus, Japan. Zoological Science 31: 309–320. https://doi.org/10.2108/zs130201

Huelsenbeck JP, Ronquist F, Nielsen R, Bollback JP (2001) Bayesian inference of phylogeny and its impact on evolutionary biology. Science 294: 2310–2314. https://doi.org/10.1126/science.1065889

Jombart T, Devillard S, Balloux F. 2010. Discriminant analysis of principal components: a new method for the analysis of genetically structured populations, BMC Genetics 11: 94.

Jomiaux P, Kumazawa Y (2008) Molecular phylogenetic and dating analyses using mitochondrial DNA sequences of eyelid geckos (Squamata: Eublepharidae). Gene 407: 105–115. https://doi.org/10.1016/j.gene.2007.09.023

Katz A, Grismer JL, Grismer LL (2021) Convergent evolution in ecomorphology and habitat preference in Bent-toed Geckos (Cyrtodactylus) from Peninsular Malaysia Vertebrate Zoology in press.

Kurita T, Honda M, Toda M (2008) Species delimitation and biogeography of the Ryukyu ground geckos, Goniurosaurus kuroiwaee sp. (Squamata: Eublepharidae), by use of mitochondrial and nuclear DNA analyses. Journal of Zoological Systematics and Evolutionary Research 56: 209–222. https://doi.org/10.1111/j.1439-0469.2013.01298

Liang B, Zhou RB, Liu YL, Chen B, Grismer LL, Wang N (2018) Renewed classification within Goniurosaurus (Squamata: Eublepharidae) uncovers the dual roles of a continental island (Hainan) in species evolution. Molecular Phylogenetics and Evolution 127: 646–654. https://doi.org/10.1016/j.ympev.2018.06.011

Lleonart J, Salat J, Torres GJ (2000) Removing allometric effects of body size in morphological analysis. Journal of Theoretical Biology 205: 85–93. https://doi.org/10.1006/jtbi.2000.2043

Losos JB (2010) Adaptive radiation, ecological opportunity, and evolutionary determinism. American Naturalist 175: 623–639.

Luo Z, Tang S, Jiang Z, Chen J, Fang H, Li C (2016) Conservation of terrestrial vertebrates in a global hotspot of karst in southwestern China. Scientific Reports. https://doi.org/10.1038/srep25717

Luu VQ, Bonkowski M, Nguyen TQ, Le MD, Schneider N, Ngo HT, Ziegler T (2016) Evolution in karst massifs, cryptic diversity among bent-toed geckos along the Truong Son Range with descriptions of three new species and one new country record from Laos. Zootaxa 4107: 101–140. https://doi.org/10.11646/zootaxa.4107.2.1

Meiri S (2018) Traits of lizards of the world: variation around a successful evolutionary design. Global Ecology and Biogeography 2108: 1–5. https://doi.org/10.1111/geb.12773

Minh BQ, Nguyen MAT, von Haeseler A (2013) Ultrafast approximation for phylogenetic bootstrap. Molecular Biology and Evolution 30: 1188–1195. https://doi.org/10.1093/molbev/ms3024

Miller MA, Pfeiffer W, Schwartz T (2010) Creating the CIPRES Science Gateway for inference of large phylogenetic trees. In: Proceedings of the Gateway Computing Environments Workshop (GCE), 14 Nov. 2010, New Orleans, LA pp. 1–8. https://doi.org/10.1109/GCE.2010.5676129

Moqquad F (1897) Notes herpetologiques. Bulletin of the Museum of Natural History, Paris 3: 211–217.

Moritz C, Patton JL, Schneider CJ, Smith TB (2000) Diversification of rainforest faunas: an integrated molecular approach. Annual Review of
Qi S, Wang J, Grismer LL, Chen H-H, Lyu Z-T, Wang Y-Y (2020b) The Stoob Hobbit of Guangdong: Goniurosaurus gollum sp. nov., a cave-dwelling Leopard Gecko (Squamata, Eublepharidae) from South China. ZooKeys 991: 137–153. https://doi.org/10.3897/zookeys.991.54935

R Core Team (2018) R: A language and environment for statistical computing. R Foundation for Statistical Computing. Vienna. Available from: http://www.R-project.org (accessed 1 August 2018)

Rambaut A, Drummond AJ (2014) TreeAnnotator v1. 7.0. https://doi.org/10.1186/1471-2148-7-214

Rambaut A, Suchard MA, Xie D, Drummond AJ (2014). Tracer v1.6. https://doi.org/10.1093/sysbio/syy032

Reist JD (1986) A empirical evaluation of coefficients used in residual and allometric adjustment of size covariation. Canadian Journal of Zoology 64: 1363–1368. https://doi.org/10.1139/z86-203

Revell LJ (2012) Phytools: An R package for phylogenetic comparative biology (and other things), Methods in Ecology and Evolution 3: 217–223. https://doi.org/10.1111/j.2041-210X.2011.00169.x

Rolland J, Cadotte MW, Davies J, Devictor V, Lavergne S, Mouquet N, Pavoine S, Rodrigues A, Thuiller W, Turcati L, Winter M, Zupan L, Jabot F, Morlon H (2012) Using phylogenies in conservation: new perspectives. Biology Letters 8: 692–694. https://doi.org/10.1098/rsbl.2011.1024

Ronquist F, Teslenko M, van der Mark P, Ayres DL, Darling A, Höhna B, Larget B, Liu L, Suchard MA, Huelsenbeck JP (2012) MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Systematic Biology 61: 539–542. https://doi.org/10.1093/sysbio/sys029

Sgro CM, Lowe AJ, Hoffmann AA (2010) Building evolutionary resilience for conserving biodiversity under climate change. Evolutionary Applications. https://doi.org/10.1111/j.1752-4571.2010.00157.x

Siervogel B, Méndez-de-la-Cruz F, Miles DB, Heulin B, Bastiaans B, Villagrá-Santa Cruz M, Lara-Resendiz R, Martínez-Méndez N, Calderón-Espinosa ML, Meza-Lázaro RN, Gadsden H, Avila LJ, Morando M, De la Riva J, Sepulveda PV, Rocha CFD, Ibargüen-Goyta N, Puntriano CA, Massot M, Lepezt V, Oksanen TA, Chapple DG, Bauer AM, BranchWR, Cobert J, Sites JR, JW (2006). Erosion of lizard diversity by climate change and altered thermal niches. Science 328: 894–899. https://doi.org/10.1126/science.1184695

Sterling E J, Hurley MM, Le MD (2006). Vietnam: A natural history. New Haven, CT, London: Yale University Press.

Stuart BL, Rhodin AG, Grismer LL, Hansel T. 2006. Scientific description can imperil species. Science 312: 1137. http://dx.doi.org/10.1126/science.312.5777.1137b

Thorpe RS (1975) Quantitative handling of characters useful in snake systematics with particular reference to interspecific variation in the Ringed Snake Natrix natrix (L.). Biological Journal of the Linnean Society 7: 27–43. https://doi.org/10.1111/j.1095-8312.1975.tb00732.x

Thorpe RS (1983) A review of the numerical methods for recognizing and analyzing racial differentiation. In: Felsenstein J (Ed.), Numerical Taxonomy. NATO ASI Series. Series G: Ecological Sciences. Vol. 1. Springer-Verlag, Berlin, pp. 404–423. https://doi.org/10.1007/978-3-642-69024-2_43

Trifinopoulos J, Nguyen L-T, von Haesele A, Minh BQ (2016) W-IQ-TREE: a fast online phylogenetic tool for maximum likelihood analysis. Nucleic Acids Research 44: W232–W235. https://doi.org/10.1093/nar/gkw256

Qi S, Wang J, Grismer LL, Chen H-H, Lyu Z-T, Wang Y-Y (2020a) A definition of the Goniurosaurus yingdeensis group (Squamata, Eublepharidae) with the description of a new species. ZooKeys 986: 127–155. https://doi.org/10.3897/zookeys.986.47989
Turan, C (1999) A note on the examination of morphometric differentiation among fish populations: The Truss System. Turkish Journal of Zoology, 23, 259–263.

Uetz, P, Hosek, J, eds. (2021) The Reptile database. http://www.reptile-database.org (accessed on 5 March 2021).

Vane-Wright RI, Humphries CJ, Williams PH (1991) What to protect? systematics and the agony of choice. Biological Conservation 55: 235–254. https://doi.org/10.1016/0006-3207(91)90030-D

von Oheimb PV, von Oheimb KCM, Hirano T, Do VT, Luong HV, Ablett J, Phanm SV, Naggs (2017) Competition matters: Determining the drivers of land snail community assembly among limestone karst areas in northern Vietnam. Ecology and Evolution 28: 4136–4149. https://doi.org/10.1002/ece3.3984

Vu NT, Nguyen TQ, Grismer LL, Ziegler T (2006) First record of the Chinese Leopard Gecko, Goniurosaurus luii (Reptilia: Eublepharidae) from Vietnam. Current Herpetology 25: 93–95.

Wainwright PC, Price SA (2016) The impact of organismal innovation on functional and ecological diversification. Integrative and Comparative Biology 56: 479–488.

Wang YY, Yang JH, Grismer LL (2013) A new species of Goniurosaurus (Squamata: Eublepharidae) from Libo, Guizhou Province, China. Herpetologica 69: 214–226.

Wiens JJ (1998) Does adding characters with missing data increase or decrease phylogenetic accuracy? Systematic Biology 47: 625–640.

Wiens JJ, Morrill MC (2011) Missing data in phylogenetic analysis: reconciling results from simulations and empirical data. Systematic Biology 60: 719–731. https://doi.org/10.1093/sysbio/syr025

Wilcox TP, Zwickl DJ, Heath TA, Hillis, DM (2002) Phylogenetic relationships of the Dwarf Boas and a comparison of Bayesian and bootstrap measures of phylogenetic support. Molecular Phylogenetics and Evolution 25: 361–371. https://doi.org/10.1016/S1055-7903(02)00244-0

Winter M, Devictor V, Schweiger O (2012) Phylogenetic diversity and nature conservation: where are we? Trends in Ecology and Evolution 28: 199–204. https://doi.org/10.1016/j.tree.2012.10.015

Vázquez DP, Gittleman JL (1998) Biodiversity conservation: does phylogeny matter? Current Biology 8: R379–R381. https://doi.org/10.1016/S0960-9822(98)70242-8

Vu NT, Nguyen TQ, Grismer LL, Ziegler T (2006) First record of the Chinese leopard gecko, Goniurosaurus luii (Reptilia: Eublepharidae) from Vietnam. Current Herpetology 25: 93–95.

Williams PH, Humphries CJ, Vane-Wright RI (1991) Measuring biodiversity: taxonomic relatedness for conservation priorities. Australian Systematic Botany 4: 665–679. https://doi.org/10.1071/SB9910665

Yang JH, Chan BP (2015) Two new species of the genus Goniurosaurus (Squamata: Sauria: Eublepharidae) from the Hainan Island, China. Zootaxa 4369: 281–291. https://doi.org/10.11646/zootaxa.4369.2.8

Zhou R, Peng X, Hou M, Yuan F (2019) A new species of genus Goniurosaurus—G. sinesis. Journal of Shihezi University (Natural Science) 37: 549–556.

Zhu XY, Chen GY, Román-Palacios C, Li Z, He ZQ (2020a) Goniurosaurus gezhi sp. nov., a new gecko species from Guangxi, China (Squamata: Eublepharidae). Zootaxa 4852: 211–222. https://doi.org/10.11646/zootaxa.4852.2.6

Zhu XY, Shen CZ, Liu YF, Chen L, Li Z, He ZQ (2020b) A new species of Goniurosaurus from Hainan Island, China based on molecular and morphological data (Squamata: Sauria: Eublepharidae). Zootaxa 4772: 349–360. https://doi.org/10.11646/zootaxa.4772.2.6

Ziegler T, Nguyen TQ, Schmitz A, Štence R, Rössler H (2008) A new species of Goniurosaurus from Cat Ba Island, Hai Phong, Northern Vietnam (Squamata: Eublepharidae). Zootaxa 1771: 16–30. https://doi.org/10.11646/zootaxa.1771.1.2

Zwickl DJ, Hillis DM (2002) Increased taxon sampling greatly reduces phylogenetic error. Systematic Biology 51: 588–598. https://doi.org/10.1080/10635150290102339