Tetra-quark Systems in Heavy Mesons
– $D_{s0}^+(2317)$, $X(3872)$ and related –

Kunihiko Terasaki
Yukawa Institute for Theoretical Physics, Kyoto University, Kyoto 606-8502, Japan,
Institute for Theoretical Physics, Kanazawa University, Kanazawa 920-1192, Japan
(Dated: August 18, 2010)

Typical candidates of open- and hidden-charm tetra-quark mesons are studied through their decays and productions, and are compared with conventional mesons. In addition, it is proposed how to confirm experimentally that they are tetra-quark mesons.

I. INTRODUCTION

Tetra-quark mesons can be classified into the following four groups in accordance with the difference of symmetry property of their flavor wavefunctions (wfs.) \[\{qq\bar{q}q\} \[\{qq\bar{q}q\} \[\{qq\bar{q}q\} \[\{qq\bar{q}q\}, \ (q = u, d, s, c), \] \] (I.1)

where parentheses and square brackets denote symmetry and anti-symmetry, respectively, of flavor wfs. under exchange of flavors between them. Each term on the right-hand-side (r.h.s.) of Eq. (I.1) is again classified into two groups with \[3_c \times 3_c \] and \[6_c \times 6_c \] of the color SU$_3$, which can provide colorless tetra-quark states. The force between two quarks is attractive (or repulsive) when they are of \[3_c \] (or \[6_c \] states), so that the \[3_c \times 3_c \] state is taken as the lower lying one. Narrow widths of the open- and hidden-charm tetra-quark mesons with \[3_c \times 3_c \] and \[6_c \times 6_c \] can be understood by a small overlap of color and spin wfs. On the other hand, the light scalar mesons \[3_c \] and \[6_c \] can be understood in the \[J \leq 0 \] scheme. However, in this case, the corresponding small overlap of color and spin wfs. is not guaranteed, because QCD is non-perturbative and states with \[3_c \times 3_c \] and \[6_c \times 6_c \] can largely mix with each other at such a low energy scale, so that they are not necessarily narrow. When it is required that the total wfs. of \[\{qq\} \] and \[\{q\bar{q}\} \] are antisymmetric as in the flavor symmetry limit, their spins are 0 and 1, respectively, because the color wf. is antisymmetric for \[\bar{q}q \]. Therefore, the spin and parity of (at least, dominant components of) \[\{qq\bar{q}q\} \] and \[\{qq\bar{q}q\} \] mesons with \[3_c \times 3_c \] are \[J^P = 0^+ \] and \[1^+ \], respectively. For the same reason, \[\{qq\bar{q}q\} \] can have \[J^P = 0^+, 1^+, 2^+ \]. However, we ignore it, because no candidate of \[(K\pi)_{I=3/2} \] state which can be given by the \[\{qq\bar{q}q\} \] state has been observed in the region \[\lesssim 1.8 \text{ GeV} \] in contrast with the theoretical expectation [1]. For more details, see Refs. [2–5].

II. OPEN-CHARM SCALAR MESONS

$D_{s0}^+(2317)$ was discovered through the $D^0_\pi^0$ channel in inclusive e^+e^- annihilation, while no signal of resonance peak at the same energy in the radiative $D_s^+\gamma$ channel has been observed. Therefore, a severe constraint

$$ R(D^+_{s0}(2317))_{\text{CLEO}} = \frac{\Gamma(D^+_{s0}(2317) \rightarrow D_{s}^{*+}\gamma)}{\Gamma(D^+_{s0}(2317) \rightarrow D^0_{s}\pi^0)}_{\text{CLEO}} < 0.059 \quad (\text{II.1}) $$

was given by the CLEO [10]. In the case of D_{s}^{*+}, the ratio of decay rates has been measured as [4]

$$ R(D_{s}^{*+})_{\exp} = \frac{\Gamma(D_{s}^{*+} \rightarrow D_{s}^{+}\pi^0)}{\Gamma(D_{s}^{*+} \rightarrow D_{s}^{+}\gamma)}_{\exp} = 0.062 \pm 0.008. \quad (\text{II.2}) $$

This implies that isospin non-conserving interactions are much weaker than the electromagnetic ones which are much weaker than the isospin conserving strong ones. In fact, assuming that the isospin non-conservation is caused by the $\eta\pi^0$ mixing with the mixing parameter, $\epsilon \simeq 10^{-2}$, as usual [11], and applying the vector meson dominance

* Invited talk at the workshop on New Frontier of QCD 2010 (NFQCD 2010), Jan. 18 – Mar. 19, 2010, Yukawa Institute for Theoretical Physics, Kyoto University, Kyoto, Japan.
to the radiative decay, we can easily reproduce Eq. \(\text{(12)} \), i.e., \(R(D_s^{+}) \sim 0.06 \). Next, when \(D_s^{+}(2317) \) is assigned to the iso-triplet tetra-quark scalar \(\tilde{F}_1^* \sim [c\bar{s}]\bar{u}d \), Eq. \(\text{(11)} \) can be satisfied, i.e., \(R(D_s^{+}(2317) = \tilde{F}_1^*) \sim (4 - 5) \times 10^{-3} \ll 0.059 \). In contrast, if \(D_s^{+}(2317) \) were assigned to an iso-singlet state, (i) the conventional scalar \(D_s^{+} \sim \{cs\} \), or (ii) the iso-singlet tetra-quark \(F_1^* \sim [c\bar{s}]\bar{u}d \), Eq. \(\text{(11)} \) could not be satisfied, i.e., (i) \(R(D_s^{+}(2317) = D_s^{+}) \sim 70 \gg 0.059 \), and (ii) \(R(D_s^{+}(2317) = \tilde{F}_1^*) \sim 3 \gg 0.059 \), as expected above. In this way, it is seen that \(D_s^{+}(2317) \) should be assigned to an iso-triplet state \(\tilde{F}_1^* \). In addition, we have learned that \(\tilde{F}_1^* \) and \(D_s^{+} \) decay dominantly into radiative channels. For more details, see Refs. \(\text{[7]} \) and \(\text{[8]} \).

Just after the discovery of \(D_s^{+}(2317) \), charm-strange scalar mesons which are degenerate with \(D_s^{+}(2317) \) have been observed not only in the \(D_s^+\pi^0 \) but also the \(D^{*+}\gamma \) channels of \(B \) decays \(\text{[12]} \), \(Br(B \rightarrow D\bar{D}_s^{0}(2317)[D_s^+\pi^0]) \sim (8.5 \pm 2.1 \pm 2.6) \times 10^{-4} \) and \(Br(B \rightarrow D\bar{D}_s^{0}(2317)[D_s^+\gamma]) \sim (2.5 \pm 1.9 \pm 0.7 < 7.5) \times 10^{-4} \). (The above naming conventions, \(D_s^{+}(2317)[D_s^+\pi^0] \) and \(D_s^{+}(2317)[D_s^+\gamma] \), have been taken to distinguish the charm-strange scalar mesons observed in \(D \) decays from \(D_s^{+}(2317) \) in e^+e^- annihilation.) It should be noted that the above production rate of \(D_s^{+}(2317)[D_s^+\gamma] \) seems to be not much smaller than that of \(\tilde{D}_s^{+}(2317)[D_s^+\pi^0] \), in contrast with the e^+e^- annihilation. We now identify \(\bar{D}_s^{+}(2317)[D_s^+\pi^0] \) with \(\tilde{F}_1^* \) which has been assigned to \(\tilde{F}_1^* \), and \(\tilde{D}_s^{+}(2317)[D_s^+\gamma] \) is assigned to \(\tilde{F}_0^* \) which decays dominantly into the \(D_s^{+}\gamma \), as discussed above. It should be noted that \(\tilde{F}_1^* \) and \(\tilde{F}_0^* \) are degenerate with each other, in analogy to \(a_0(980) \) and \(f_0(980) \).

On the other hand, mass of the charm-strange \((C = S = 1) \) scalar state has recently been calculated on the lattice \(\text{[14]} \), and the result has reproduced the measured mass of \(D_s^{+}(2317) \) which has been naturally assigned to the iso-triplet \(\tilde{F}_1^* \) in the above. This implies that the mass of the lowest \(C = S = 1 \) state which can contain not only the scalar \(\{cs\} \) but also the scalar \([c\bar{s}]\bar{u}d \), etc. is much lower than that of the scalar \(\{cs\} \) which has been calculated in the quench approximation (i.e., with no multi-quark component) on the lattice \(\text{[12]} \), and hence the lowest \(C = S = 1 \) state cannot be dominated by the \([c\bar{s}]\bar{u}d \) but could be by the \([c\bar{s}]\bar{u}d \) component. It would be natural because \(a_0(980) \) and \(f_0(980) \) have been assigned \(\text{[1]} \) to the scalar \([ns][\bar{ns}]_{I=1} \) and \([ns][\bar{ns}]_{I=0} \), and are approximately degenerate with each other while \(f_0(1500) \) which is expected \(\text{[12]} \) to be dominated by the scalar \(ss \) is much heavier.

Because \(D_s^{+}(2317) \) has been assigned to \(\tilde{F}_1^* \), its neutral and doubly charged partners, \(F_0^* \) and \(F_1^* \), should exist, although they have not been observed in inclusive e^+e^- annihilation \(\text{[17]} \). This implies that their production is suppressed in this process, as was understood within the framework of minimal \(q\bar{q} \) pair creation \(\text{[15]} \). In this way, it can be understood why experiments did not observe them \(\text{[19]} \). In addition, it has been discussed \(\text{[18]} \) that it is better to search for them in \(B \) decays, because the \(\tilde{D}_s^{+}(2317)[D_s^+\gamma] \) as a signal of \(\tilde{F}_0^* \) has already been observed in \(B \) decays, as mentioned above, and that their production rates are expected to be

\[
Br(B_{u} \rightarrow D^{-}\tilde{F}_1^{*+}) \sim Br(B_{u} \rightarrow D^{0}\tilde{D}_s^{0}(2317)[D_s^+\pi^0])_{\exp} \\
\sim Br(B_{d} \rightarrow D^{0}\tilde{F}_1^{*0}) \sim Br(B_{d} \rightarrow D^{-}\tilde{D}_s^{0}(2317)[D_s^+\pi^0])_{\exp} \sim 10^{-3-4},
\]

(II.3)

because all these decays can be described by similar quark-line diagrams, where more precise values of their measurements have been given in Refs. \(\text{[13]} \) and \(\text{[20]} \). In addition to \(\tilde{F}_0^{*+,++,+++} \) and \(\tilde{F}_0^{*0} \), the \([c\bar{q}][q\bar{q}] \) states can have a narrow \(\text{[2]} \) \(\tilde{D} \sim [c\bar{s}][\bar{u}d] \). This, as well as the conventional \(D_s^{+} \), should be found in the observed \(D\pi \) enhancement just below the well-known \(D_s^{+} \) peak. Therefore, we now investigate the conventional open-charm scalar mesons, \(D_s^{+} \) and \(D_s^{0} \), to distinguish them from tetra-quark \(\tilde{D} \) and \(\tilde{F}_1^{*0} \). The most recent measurement of the \(D\pi \) enhancement \(\text{[21]} \) has provided \(m_{D_s^{0}} = 2297 \pm 32 \text{ MeV} \) and \(\Gamma(D_0) = 273 \pm 74 \text{ MeV} \). However, it is expected that the above very broad enhancement might have a structure \(\text{[22]} \) containing a broad conventional scalar \(D_s^{0} \) and a narrow tetra-quark \(\tilde{D} \). Although the latter seems to have already been observed as a narrow peak around the lower tail of the \(D\pi \) enhancement, it has not seriously been considered in Ref. \(\text{[21]} \). Because masses of \(D_s^{0} \) and \(D_s^{++} \) are not definitely known yet, as seen above, we tentatively take \(m_{D_s^{0}} \approx 2.3 \text{ GeV} \) and \(m_{D_s^{++}} \approx 2.4 \text{ GeV} \). The latter seems to be compatible with a prediction on the scalar \(\{cs\} \) mass in the quench approximation \(\text{[13]} \), as mentioned before. Taking the flavor \(SU_f(4) \) relation for the strong vertices with a \(20 - 30 \% \) deviation of spatial \(w \)-overlap from unity (the symmetry limit) \(\text{[2]} \) and the experimental data \(\text{[4]} \) on the well-known light scalar \(F_0(980) \) as the input data, rates for their dominant decays, \(\tilde{D}_s^{0} \) and \(D_s^{++} \) to \(DK \), and hence their widths can be estimated to be \(\Gamma(D_0) \approx 50 - 60 \text{ MeV} \) and \(\Gamma(D_s^{++}) \approx 40 - 50 \text{ MeV} \). The latter leads to \(\Gamma(D_s^{0} \rightarrow D_s^{0}\gamma) \approx 0.2 - 0.3 \text{ keV} \), and hence \(R(D_s^{0}) \approx 70 \), as discussed before. Therefore, we expect that the observed broad \(D\pi \) enhancement can have a structure which includes the broad \(D_s^{0} \) and the narrow \(\tilde{D} \), as discussed before. The CDF \(\text{[24]} \) also observed peaks in \(D\pi \) mass distributions around 2.2 - 2.3 \text{ GeV} which can include \(\tilde{D} \) and \(D_s^{0} \). Besides, a clear peak in \(DK \) mass distribution around 2.4 \text{ GeV} which is degenerate with \(D_s^{++} \) has been observed by the CLEO \(\text{[23]} \). Because these peaks have been taken away as false peaks, however, we hope that experiments re-analyze more precisely the above mass distributions and find true signals of \(D_s^{++} \), \(D_s^{0} \) and \(\tilde{D} \) behind the false peaks.
III. HIDDEN-CHARM MESONS

$X(3872)$ was discovered in the $\pi^+\pi^- J/\psi$ mass distribution by the Belle [25] and then confirmed [26] by the CDF, D0 and Babar. (Hereafter, we describe J/ψ as ψ, for simplicity.) Experiments [23,29] favor 1^{++} as the J^{PC} of $X(3872)$. However, it decays into two different final states with opposite G-parities,

$$R = \frac{Br(X(3872) \to \pi^+\pi^-\bar{\psi})}{Br(X(3872) \to \pi^+\pi^- \psi)} = 1.0 \pm 0.4 \pm 0.3.$$ \hspace{1cm} (III.1)

This is puzzling because the well-known strong interactions conserve G-parity. In addition, the Belle [25] and CDF [30] have noted that the decay $X(3872) \to \pi^+\pi^- \psi$ proceeds through $\rho^0 \psi$. If the isospin were conserved in the decay, there should exist charged partners of $X(3872)$, in contradiction to a negative result from an experimental search [31].

This would imply that $X(3872)$ is an isospin-singlet state, and hence the isospin conservation does not work in the $X(3872) \to \rho^0 \psi \to \pi^+\pi^- \psi$ decay. Besides, the Belle [32] has suggested that the $X(3872) \to \pi^+\pi^- \rho^0 \psi$ decay proceeds through the sub-threshold $X(3872) \to \omega \psi$. If isospin is conserved in this decay, $X(3872)$ would be an isospin-singlet state. This is consistent with the above negative result on the search for its charged partners.

Although various approaches [33] to solve the above puzzle have been proposed, they are unnatural, because the phenomenologically well-known $\omega \rho^0$ mixing [34] which can play an important role in the isospin non-conservation under consideration [35], has not been considered. Under the assumption that the above isospin non-conservation is caused by the $\omega \rho^0$ mixing with a mixing parameter [34], the isospin non-conserving $X(3872) \to \rho^0 \psi$ decay proceeds through two steps: the isospin conserving $X(3872) \to \omega \psi$ and the subsequent $\omega \rho^0$ mixing. $X(3872) \to \omega \psi \to \rho^0 \psi$. Here we consider the $X(3872) \to \gamma \psi$ in place of the $X(3872) \to \pi^+\pi^- \rho^0 \psi$ decay in Eq. (III.1), because the kinematics of the former is much simpler than the latter. As the result, we shall see below that existing data on the ratio

$$R_X' = \frac{Br(X(3872) \to \gamma \psi)}{Br(X(3872) \to \pi^+\pi^- \psi)}$$ \hspace{1cm} (III.2)

will select a realistic interpretation of $X(3872)$. When the above assumption is combined with the VMD [12], the $X(3872) \to \gamma \psi$ decay would proceed as

$$X(3872) \to \omega \psi \to \gamma \psi \text{ and } X(3872) \to \omega \psi \to \rho^0 \psi \to \gamma \psi.$$ \hspace{1cm} (III.3)

However, the contribution of the second decay is much smaller than that for the first one because $|g_{\omega \rho^0}/m_{\omega^0}^2| \ll 1$, while the role of the ρ^0 pole can be strongly enhanced [35] in the $X(3872) \to \omega \psi \to \rho^0 \psi \to \pi^+\pi^- \psi$ because $|g_{\omega \rho^0}/(m_{\omega^0}^2 - m_{\rho^0}^2)| \gg |g_{\omega \rho^0}/m_{\omega^0}^2|$.

If $X(3872)$ were an axial-vector charmonium, the radiative decay under consideration could have an extra contribution through the ψ pole, $X(3872) \to \psi \psi \to \gamma \psi$, as the dominant one. In contrast, when $X(3872)$ is a tetra-quark state like [36] $\{(|cn|\bar{c}n) + (|cn|\bar{c}n)\}$ arising from the last term on the r.h.s. of Eq. (I.1), such a contribution is suppressed because of the OZI rule [37]. Therefore, we study if the above isospin non-conservation can be reconciled with the measured ratios, $(R_X')_{\text{Belle}} = 0.11 \pm 0.05$ [32] and $(R_X')_{\text{Babar}} = 0.33 \pm 0.12$ [38].

In the above $\omega \rho^0$ mixing model [35], the value of R_X' in Eq. (III.2) can be estimated without any unknown parameter, if $X(3872)$ is a tetra-quark system, i.e., $(R_X')_{\text{tetra}} \simeq (R_X')_{\text{Babar}} \simeq (R_X')_{\text{Belle}}$, because all the parameters involved in the decays can be estimated by using the existing experimental data [4], except for the $X\omega \psi$ coupling $g_{X\omega \psi}$ which can be canceled by taking the ratio of decay rates in Eq. (III.2). The γV coupling strengths $X_V(0)$, $V = \rho^0, \omega, \phi, \psi$, on the photon-mass-shell have already been estimated [39]. In addition, the measured production of prompt $X(3872)$ seems to favor a more compact object (i.e., a tetra-quark meson) over a loosely bound meson-meson molecule [40]. In contrast, if $X(3872)$ were a charmonium, the estimated ratio would be much larger than the observation, i.e., $(R_X')_{\text{cqc}} \gg (R_X')_{\text{tetra}} \simeq (R_X')_{\text{Babar}} \simeq (R_X')_{\text{Belle}}$, because of the OZI rule. Therefore, the existing data on R_X' favor a tetra-quark interpretation of $X(3872)$, although a small mixing of χ_{c1}' would be needed to understand the measured ratio [38], $\Gamma(X \to \gamma \psi')/\Gamma(X \to \gamma \psi)_{\text{Babar}} = 3.4 \pm 1.4$. See Ref. [35] for more details.

IV. SUMMARY

Comparing the ratio of rates for the $D^+_s(2317) \to D^{*+}_s \gamma$ decay to the $D^+_s \pi^0$ with the experimental constraint Eq. (III.1), we have seen that assigning $D^+_s(2317)$ to $D^{*+}_s \pi^0$ is favored by experiments. In this case, F^+_0, F^+_1 and F^+_2 should exist and be observed. However their production through inclusive $e^+e^- \to c\bar{c}$ is suppressed, so that their observation is likely to be quite difficult, although $D^+_s(2317)$ itself has already been observed. Therefore, we have
discussed that, to search for them, B decays would be much better. In fact, an indication of $\hat{F}_0^+ = \hat{D}_{s0}^+(2317)[D_s^{*+}\gamma]$ has already been observed by the Belle [13].

We have studied the ratio of decay rates $R_{\gamma X}$ in Eq. (III.2), assuming that the isospin non-conservation is caused by the phenomenologically well-known $\omega\rho_0$ mixing. As the result, we have seen that the existing data on $R_{\gamma X}$ and production of the prompt $X(3872)$ favor a tetra-quark interpretation of $X(3872)$ like $\{[cn](\bar{c}\bar{n}) + (cn)(\bar{c}\bar{n})]\}_{I=0}$ over a meson-meson molecule and a charmonium. To confirm the above interpretation, observation of $\{[cn](\bar{c}\bar{n}) - (cn)(\bar{c}\bar{n})\}_{I=0}$ with a mass close to $m_{X(3872)}$ in the $\pi^0\pi^0\psi$ channel is awaited.

Acknowledgments

The author would like to thank Yukawa Institute for Theoretical Physics (YITP) at Kyoto University. Discussions during the workshop on New Frontier in QCD 2010 at YITP were useful to complete this work. He also would like to appreciate the organizers for financial supports.

[1] R. L. Jaffe, Phys. Rev. D 15 (1977), 267 and 281.
[2] K. Terasaki, Phys. Rev. D 68 (2003), 011501(R).
[3] M. Y. Han and Y. Nambu, Phys. Rev. 139 (1965), B 1006; S. Hori, Prog. Theor. Phys. 36 (1966), 131.
[4] C. Amsler et al., the Particle Data Group, Phys. Lett. B667 (2008), 1.
[5] P. Estabrooks et al., Nucl. Phys. B133 (1978), 490.
[6] K. Terasaki, AIP Conf. Proc. 717 (2004), 556; [hep-ph/0309279]
[7] A. Hayashigaki and K. Terasaki, Prog. Theor. Phys. 114 (2005), 1191; [hep-ph/0410393].
[8] K. Terasaki, Invited talk at the workshop on Resonances in QCD, July 11 – 15, 2005, ECT*, Trento, Italy; [hep-ph/0512285].
[9] B. Aubert et al., Babar Collaboration, Phys. Rev. Lett. 90 (2003), 242001.
[10] D. Besson et al., the CLEO Collaboration, Phys. Rev. D 68 (2003), 032002.
[11] R. H. Dalitz and F. von Hippel, Phys. Lett. 10 (1964), 153.
[12] M. Gell-Mann and F. Zambra, Phys. Rev. 124 (1961), 953.
[13] P. Krokovny et al., Belle Collaboration, Phys. Rev. Lett. 91 (2003), 262002.
[14] K.-F. Liu, Invited talk at this workshop.
[15] G. S. Bali, Phys. Rev. D 68 (2003), 071501(R).
[16] F. E. Close and N. A. Törnqvist, J. Phys. G 28 (2002), R249.
[17] B. Aubert et al., Babar Collaboration, Phys. Rev. D 74 (2006), 032007.
[18] K. Terasaki, Prog. Theor. Phys. 116 (2006), 435; [hep-ph/0604207]
[19] K. Terasaki, AIP Conf. Proc. 1030 (2008), 190; [hep-ph/0804.2295].
[20] E. Robutti, Babar Collaboration, Acta Phys. Polon. B36 (2005), 2315.
[21] B. Aubert et al., Babar Collaboration, [hep-ph/0901.1291v2].
[22] K. Terasaki, [hep-ph/0311069] K. Terasaki and Bruce H J McKellar, Prog. Theor. Phys. 114 (2005), 205; [hep-ph/0501188].
[23] Y. Kubota et al., CLEO Collaboration, Phys. Rev. Lett. 72 (1994), 1972.
[24] M. Shapiro, CDF Collaboration, Flavor Physics and CP Violation (FPCP) conference, Paris, June 3 – 6, 2003.
[25] S. K. Choi et al., Belle Collaboration, Phys. Rev. Lett. 91 (2003), 262001.
[26] D. Acosta et al., CDF Collaboration, Phys. Rev. Lett. 93 (2004), 072001; V. M. Abazov et al., D0 Collaboration, Phys. Rev. Lett. 93 (2004), 162002; B. Aubert et al., Babar Collaboration, Phys. Rev. D 71 (2005), 071103.
[27] K. Abe et al., Belle Collaboration, [hep-ex/0505038]
[28] K. Abe et al., Belle Collaboration, [hep-ex/0505037]
[29] B. Aubert et al., Babar Collaboration, Phys. Rev. D 74 (2006), 071101(R); [hep-ex/0809.0042].
[30] A. Abulencia et al., CDF Collaboration, Phys. Rev. Lett. 96 (2006), 102002.
[31] B. Aubert et al., Babar Collaboration, Phys. Rev. D 71 (2005), 031501.
[32] K. Abe et al., Belle Collaboration, [hep-ex/0505037].
[33] N. A. Törnqvist, [hep-ph/0308277] L. Maiani, F. Piccinini, A. D. Polosa and V. Riquer, Phys. Rev. D 71 (2005), 014028; D. Gamermann and E. Oset, Phys. Rev. D 80 (2009), 014003; M. Takizawa and S. Takeuchi, to appear in EPJ web of Conference, Few-Body 19.
[34] G. A. Miller, A. K. Opper and E. J. Stephenson, Ann. Rev. Nucl. Part. Sci. 56, 253 (2006).
[35] K. Terasaki, Prog. Theor. Phys. 122 (2009), 1285; hep-ph/0904.3368v2.
[36] K. Terasaki, Prog. Theor. Phys. 118 (2007), 821; hep-ph/0706.3944.
[37] S. Okubo, Phys. Lett. 5 (1963), 165; G. Zweig, CERN Report No. TH401 (1964); J. Iizuka, K. Okada and O. Shito, Prog. Theor. Phys. 35 (1965), 1061.
[38] B. Aubert et al., Babar Collaboration, hep-ex/0809.0042.
[39] K. Terasaki, Lett. Nuovo Cim. 31, 457 (1981); Nuovo Cim. 66A, 475 (1981).
[40] C. Bignamini, B. Grinstein, F. Piccinini, A. D. Polosa and C. Saballi, hep-ph/0906.0882; A. Abulencia et al., CDF Collaboration, Phys. Rev. Lett. 98 (2007), 132002; CDF note 7159 (2004); URL http://www-cdf.fnal.gov.