THE GENERAL IKEHATA THEOREM FOR H-SEPARABLE CROSSED PRODUCTS

GEORGE SZETO and LIANYONG XUE

(Received 26 March 1999)

Abstract. Let B be a ring with 1, C the center of B, G an automorphism group of B of order n for some integer n, C^G the set of elements in C fixed under G, $\Delta = \Delta(B,G,f)$ a crossed product over B where f is a factor set from $G \times G$ to $U(C^G)$. It is shown that Δ is an H-separable extension of B and $V_\Delta(B)$ is a commutative subring of Δ if and only if C is a Galois algebra over C^G with Galois group $G_C \cong G$.

Keywords and phrases. Crossed products, Galois extensions, H-separable extensions.

2000 Mathematics Subject Classification. Primary 16S35; Secondary 16W20.

1. Introduction. Let B be a ring with 1, ρ an automorphism of B of order n, $B[x;\rho]$ a skew polynomial ring with a basis $\{1, x, x^2, \ldots, x^{n-1}\}$ and $x^n = v \in U(B^\rho)$ for some integer n, where B^ρ is the set of elements in B fixed under ρ and $U(B^\rho)$ is the set of units of B^ρ.

In [4] it was shown that any skew polynomial ring $B[x;\rho]$ of prime degree n is an H-separable extension of B if and only if C is a Galois algebra over C^ρ with Galois group $\langle \rho | C \rangle$ generated by $\rho | C$ of order n. This theorem was extended to any degree n [5, Theorem 1]. Recently, the theorem was completely generalized by the present authors in [8], that is, let $B[x;\rho]$ be a skew polynomial ring of degree n for some integer n. Then, $B[x;\rho]$ is an H-separable extension of B if and only if C is a Galois algebra over C^ρ with Galois group $\langle \rho | C \rangle \cong \langle \rho \rangle$. The purpose of the present paper is to generalize the above Ikehata theorem to an automorphism group of B (not necessarily cyclic) and f is an factor set from $G \times G$ to $U(C^G)$. We show that Δ is an H-separable extension of B and $V_\Delta(B)$ is a commutative subring of Δ if and only if C is a Galois algebra over C^G with Galois group $G_C \cong G$.

2. Preliminaries and basic definitions. Throughout this paper, B represents a ring with 1, C the center of B, G an automorphism group of B of order n for some integer n, B^G the free basis $\{U_g \mid g \in G \text{ and } U_1 = 1\}$ over B and the multiplications are given by $U_gb = g(b)U_g$ and $U_gU_h = f(g,h)U_{gh}$ for $b \in B$ and $g, h \in G$ where f is a map from $G \times G$ to $U(C^G)$ such that $f(g,h)f(gh,k) = f(h,k)f(g,hk)$, Z the center of Δ, \hat{G} the inner automorphism group of Δ induced by G, that is, $\hat{g}(x) = U_gxU_g^{-1}$ for each $x \in \Delta$ and $g \in G$. We note that $f(g,1) = f(1,g) = f(1,1) = 1$ for all $g \in G$ and \hat{G} restricted to B is G.

Let A be a subring of a ring S with the same identity 1. We denote $V_\epsilon(A)$ the
commutator subring of A in S. A ring S is called a G-Galois extension of S^G if there exist elements $\{a_i, b_i \in S, i = 1, 2, \ldots, m\}$ for some integer m such that $\sum_{i=1}^{m} a_i g(b_i) = \delta_{1, g}$. The set $\{a_i, b_i\}$ is called a G-Galois system for S. S is called an H-separable extension of A if there exists an H-separable system $\{x_i \in V_S(A), y_i \in V_{S_{alg}}(S) \mid i = 1, 2, \ldots, m\}$ for S over A for some integer m such that $\sum_{i=1}^{m} x_i y_i = 1 \otimes_A 1$.

3. The Ikehata theorem. In this section, we show that Δ is an H-separable extension of B and $V_\Delta(B)$ is a commutative subring of Δ if and only if C is a Galois algebra over C^G with Galois group $G|_{C} \cong G$. We begin with a lemma.

Lemma 3.1. (a) $V_\Delta(B) = \sum_{g \in G} J_g U_g$ where $J_g = \{b \in B \mid ab = bg(a) \text{ for all } a \in B\}$.
(b) $V_{\Delta \oplus \Delta}(\Delta) = \{\sum_{g \in G} \sum_{h \in G} b_{(g,h)} U_g \otimes_B U_h \mid b(g,h) \in J_{gh} \text{ and } k(b(h^{-1},g))f(k, k^{-1}g) = b_{(g,h)}f(hk^{-1},k) \text{ for all } g, k \in G\}$.
(c) If $\sum_{g \in G} \sum_{h \in G} b_{(g,h)} U_g \otimes U_h \in V_{\Delta \oplus \Delta}(\Delta)$, then $b_{(g,h)} U_{gh} \in V_\Delta(B)$.
(d) If $\sum_{g \in G} \sum_{h \in G} b_{(g,h)} U_g \otimes U_h \in V_{\Delta \oplus \Delta}(\Delta)$, then $b_{(g,h)} = g(b_{1,1})(f(g^{-1},g))^{-1}$ for all $g \in G$.

Proof. (a) Let $b \in J_g$. Then $a(b U_g) = (ab) U_g = bg(a) U_g = (bU_g) a$ for all $a \in B$. Hence $J_g U_g \subset V_\Delta(B)$. Therefore, $\sum_{g \in G} J_g U_g \subset V_\Delta(B)$. Conversely, let $\sum_{g \in G} b_g U_g \in V_\Delta(B)$. Then $a \sum_{g \in G} b_g U_g = \sum_{g \in G} b_g a U_g = \sum_{g \in G} b_g g(a) U_g$ for all $a \in B$, and so $ab_g = b_g g(a)$ for all $a \in B$ and $g, a \in G$, that is, $b_g \in J_g$ for all $g \in G$. Thus $V_\Delta(B) \subset \sum_{g \in G} J_g U_g$.

(b) Let $x = \sum_{g \in G} \sum_{h \in G} b_{(g,h)} U_g \otimes U_h \in V_{\Delta \oplus \Delta}(\Delta)$ if and only if $bx = xb$ and $U_k x = x U_k$ for all $a \in B$ and $k \in G$. But

$$bx = \sum_{g \in G} \sum_{h \in G} b_{(g,h)} U_g \otimes_B U_h,$$

$$xb = \sum_{g \in G} \sum_{h \in G} b_{(g,h)} U_g \otimes_B U_h b = \sum_{g \in G} \sum_{h \in G} b_{(g,h)} U_g \otimes_B h(b) U_h$$

$$= \sum_{g \in G} \sum_{h \in G} b_{(g,h)} U_g h(b) \otimes_U U_h = \sum_{g \in G} \sum_{h \in G} b_{(g,h)} (gh) (b) U_g \otimes_B U_h,$$

so $bx = xb$ if and only if $bb_{(g,h)} = b_{(g,h)} ((gh)(b))$ for all $b \in B$ and $g, h \in G$, that is, $b_{(g,h)} \in J_{gh}$ by noting that $\{U_g \otimes_B U_h \mid g, h \in G\}$ is a basis for Δ over B. Moreover,

$$U_k x = \sum_{g \in G} \sum_{h \in G} b_{(g,h)} U_g \otimes_B U_h = \sum_{g \in G} \sum_{h \in G} k(b_{(g,h)}) U_k U_g \otimes_B U_h$$

$$= \sum_{g \in G} \sum_{h \in G} k(b_{(g,h)})f(k,g) U_k g \otimes_B U_h$$

$$= \sum_{g \in G} \sum_{h \in G} k(b_{(k^{-1}(g),h)})f(k,k^{-1}(g)) U_{(k,g)} \otimes_B U_h$$

$$= \sum_{l \in G} \sum_{h \in G} k(b_{(k^{-1},h)})f(k,k^{-1}) U_l \otimes_B U_h$$

$$= \sum_{g \in G} \sum_{h \in G} k(b_{(k^{-1},g)})f(k,k^{-1}g) U_g \otimes_B U_h,$$
and
\[xU_k = \sum_{g \in G} \sum_{h \in G} b_{(g,h)} U_g \otimes_B U_h U_k = \sum_{g \in G} \sum_{h \in G} b_{(g,h)} U_g \otimes_B f(h,k) U_{hk} \]
\[= \sum_{g \in G} \sum_{h \in G} b_{(g,h)} f(h,k) U_g \otimes_B U_{hk} \]
\[= \sum_{g \in G} \sum_{h \in G} b_{(g,h,k)^{-1}} f((hk)^{-1},k) U_g \otimes_B U_{hk} \]
\[= \sum_{g \in G} \sum_{h \in G} b_{(g,k)^{-1}} f((k^{-1},h)U_g \otimes_B U_1 = \sum_{g \in G} \sum_{h \in G} b_{(g,h,k)^{-1}} f((hk)^{-1},k) U_g \otimes_B U_h. \]

Hence, \(U_k x = xU_k \) if and only if \(k b_{(k^{-1},g,h)} f(k,k^{-1}g) = b_{(g,h,k)^{-1}} f((hk)^{-1},k) \) for all \(g,h,k \in G \).

(c) If \(\sum_{g \in G} \sum_{h \in G} b_{(g,h)} U_g \otimes_B U_h \in V_{\Delta \otimes_B \Delta}(\Delta) \), then \(b_{(g,h)} \in J_{gh} \) by (b); and so \(b_{(g,h)} U_{gh} \in V_{\Delta}(B) \) by (a).

(d) If \(\sum_{g \in G} \sum_{h \in G} b_{(g,h)} U_g \otimes_B U_h \in V_{\Delta \otimes_B \Delta}(\Delta) \), then \(k b_{(k^{-1},g,h)} f(k,k^{-1}g) = b_{(g,h,k)^{-1}} f((hk)^{-1},k) \) for all \(g,h,k \in G \) by (b). Let \(k = g \) and \(h = 1 \). Then \(b_{(g,g^{-1})} f(g^{-1},g) = g(b_{1,1}) f(g,1) = g(b_{1,1}) \) for all \(g \in G \). This implies that \(b_{(g,g^{-1})} = g(b_{1,1}) f(g^{-1},g)^{-1} \) for all \(g \in G \).

\[\square \]

Theorem 3.2. \(\Delta \) is an \(H \)-separable extension of \(B \) and \(V_{\Delta}(B) \) is a commutative subring of \(\Delta \) if and only if \(C \) is a Galois algebra over \(C^G \) with Galois group \(G|_C \cong G \).

Proof. \((\Rightarrow)\) Since \(\Delta \) is an \(H \)-separable extension of \(B \) and \(B \) is a direct summand of \(\Delta \) as a left \(B \)-module, \(V_{\Delta}(V_{\Delta}(B)) = B \) [7, Proposition 1.2]. But \(V_{\Delta}(B) \) is commutative, so \(V_{\Delta}(B) \subset V_{\Delta}(V_{\Delta}(B)) = B \). Thus \(V_{\Delta}(B) = C \).

Since \(\Delta \) is an \(H \)-separable extension of \(B \) again, there exists an \(H \)-separable system \(\{x_i \in V_{\Delta}(B), y_i \in V_{\Delta \otimes_B \Delta}(\Delta) \mid i = 1,2,\ldots,m \} \) for some integer \(m \) such that \(\sum_{i=1}^m x_i y_i = 1 \otimes_B 1 \). Let \(y_i = \sum_{g \in G} \sum_{h \in G} b_{(g,h)} U_g \otimes_B U_h \). We claim that \(\{a_i = x_i, b_i = b_{(i,1,1)} \mid i = 1,2,\ldots,m \} \) is a \(G \)-Galois system for \(C \). In fact, \(a_i = x_i \in V_{\Delta}(B) = C \) and by Lemma 3.1(b), \(b_i = b_{(i,1,1)} \in J_1 = 1 \). Moreover, since \(y_i = \sum_{g \in G} \sum_{h \in G} b_{(g,h)} U_g \otimes_B U_h \in V_{\Delta \otimes_B \Delta}(\Delta), b_{(g,h)} U_{gh} \in V_{\Delta}(B) \) by Lemma 3.1(c). But \(V_{\Delta}(B) = C \), so \(b_{(g,h)} = 0 \) when \(gh \neq 1 \). Thus, \(y_i = \sum_{g \in G} b_{(g,g^{-1})} U_g \otimes_B U_{g^{-1}} \). By Lemma 3.1(d), \(b_{(g,g^{-1})} = g(b_{(i,1,1)} f(g^{-1},g)^{-1} = g(b_{1,1}) (f(g^{-1},g)^{-1} \), so \(y_i = \sum_{g \in G} g(b_{1,1}) (f(g^{-1},g)^{-1} U_g \otimes_B U_{g^{-1}} \). Therefore,

\[1 \otimes_B 1 = \sum_{i=1}^m x_i y_i = \sum_{i=1}^m a_i \sum_{g \in G} g(b_{1,1}) (f(g^{-1},g)^{-1} U_g \otimes_B U_{g^{-1}} \]
\[= \sum_{g \in G} \sum_{i=1}^m a_i g(b_{1,1}) (f(g^{-1},g)^{-1} U_g \otimes_B U_{g^{-1}} \]

This implies that \(\sum_{i=1}^m a_i g(b_{1,1}) (f(g^{-1},g)^{-1} = \delta_{1,g} \), so \(\sum_{i=1}^m a_i g(b_{1,1}) = \delta_{1,g} \), that is \(\{a_i, b_i \mid i = 1,2,\ldots,m \} \) is a \(G \)-Galois system for \(C \). Therefore, \(C \) is a Galois algebra over \(C_G \) with Galois group \(G|_C \cong G \).

\((\Leftarrow)\) Since \(C \) is a Galois algebra over \(C_G \) with Galois group with \(G|_C \cong G \), there exists a \(G \)-Galois system \(\{a_i, b_i \in C \mid i = 1,2,\ldots,m \} \) for some integer \(m \) such that \(\sum_{i=1}^m a_i g(b_{1,1}) = \delta_{1,g} \). Let \(x_i = a_i \) and \(y_i = \sum_{g \in G} g(b_{1,1}) U_g \otimes_B U_{g^{-1}} \). We claim that \(\{x_i \in
$V_\Delta(B)$, $y_i \in V_{\Delta_B \Delta}(\Delta) \mid i = 1, 2, \ldots, m$ is an H-separable system for Δ over B. In fact, $x_i = a_i \in C \subset V_\Delta(B)$. Noting that $U_\Delta^{-1} = f(g, g^{-1})^{-1} U_\Delta^{-1}$, we have $U_\Delta^{-1} b = f(g, g^{-1})^{-1} U_\Delta^{-1} b = f(g, g^{-1})^{-1} g^{-1}(b) f(g, g^{-1})^{-1} U_\Delta^{-1} = g^{-1}(b) U_\Delta^{-1}$ for any $b \in B$. Hence

$$b y_i = b \sum_{g \in G} g(b_i) U_\Delta \otimes_B U_\Delta^{-1} = \sum_{g \in G} g(b_i) b U_\Delta \otimes_B U_\Delta^{-1}$$

$$= \sum_{g \in G} g(b_i) U_\Delta g^{-1}(b) \otimes_B U_\Delta^{-1} = \sum_{g \in G} g(b_i) U_\Delta \otimes_B g^{-1}(b) U_\Delta^{-1}$$

$$= \sum_{g \in G} g(b_i) U_\Delta \otimes_B U_\Delta^{-1} b = y_i b.$$ \hspace{1cm} (3.5)

for any $h \in G$,

$$U_h y_i = U_h \sum_{g \in G} g(b_i) U_\Delta \otimes_B U_\Delta^{-1} = \sum_{g \in G} (h g)(b_i) U_h U_\Delta \otimes_B U_\Delta^{-1}$$

$$= \sum_{g \in G} (h g)(b_i) f(h, g) U_{h g} \otimes_B U_{h g}^{-1} = \sum_{g \in G} (h g)(b_i) U_{h g} \otimes_B f(h, g) U_{h g}^{-1}$$

$$= \sum_{h \in G} \sum_{g \in G} (h g)(b_i) U_{h g} \otimes_B U_{h g}^{-1} U_{h g} U_h U_\Delta^{-1} = \sum_{g \in G} (h g)(b_i) U_{h g} \otimes_B U_{h g}^{-1} U_h$$

$$= \sum_{h \in G} k(b_i) U_k \otimes_B U_{k^{-1}} U_h = y_i U_h.$$ \hspace{1cm} (3.6)

Thus $y_i \in V_{\Delta_{B B}}(\Delta)$. Moreover, $\sum_{i=1}^m x_i y_i = \sum_{i=1}^m a_i \sum_{g \in G} g(b_i) U_\Delta \otimes_B U_\Delta^{-1} = \sum_{g \in G} \sum_{i=1}^m a_i g(b_i) U_\Delta \otimes_B U_\Delta^{-1} = \sum_{g \in G} \delta_{1, g} U_\Delta \otimes_B U_\Delta^{-1} = 1 \otimes 1$. This implies that $\{x_i \in V_\Delta(B), \ y_i \in V_{\Delta_{B B}}(\Delta) \mid i = 1, 2, \ldots, m\}$ is an H-separable system for Δ over B. Thus, Δ is an H-separable extension of B. Moreover, B is a direct summand of Δ as a left B-module, so $V_\Delta(V_\Delta(B)) = B$ [7, Proposition 1.2]. But then, the center of Δ, $Z \subset B$; and so $Z = C^G$. Clearly, $V_\Delta(B)^G = Z = C^G$ and $\Delta \subset V_\Delta(B)$, so $V_\Delta(B)$ is a G-Galois algebra over C^G with the same Galois system as C. Therefore, $V_\Delta(B) = C$ which is commutative. The proof is completed.

The Ikehata theorem is an immediate consequence of Theorem 3.2 by the fact that any Galois algebra with a cyclic Galois group is a commutative ring [1, Theorem 11].

Corollary 3.3 (the Ikehata theorem). Let ρ be an automorphism of B of order n and $B[x; \rho]$ a skew polynomial ring of degree n with $x^n = v \in U(B^\rho)$ for some integer n. Then, $B[x; \rho]$ is an H-separable extension of B if and only if C is a Galois algebra over C^ρ with Galois group $\langle \rho \mid c \rangle \cong \langle \rho \rangle$.

Proof. It is easy to check that if ρ has order n, then $x^n = v \in U(C^\rho)$. Let $B[x; \rho]$ be an H-separable extension of B. Then $V_\Delta(B[x; \rho])$ is a Galois algebra over C^ρ with cyclic Galois algebra group $\langle \rho \rangle$ generated by ρ [6, Theorem 3.2]; and so $V_\Delta(B[x; \rho])$ is a commutative ring by [1, Theorem 11]. On the other hand, $B[x; \rho]$ is a crossed product $\Delta(B, \rho, f)$ where $f: \langle \rho \rangle \times \langle \rho \rangle \to U(C^\rho)$ by $f(\rho^i, \rho^j) = 1$ if $i + j < n$, $f(\rho^i, \rho^j) = v$ if $i + j \geq n$, and $U_{\rho^i} = x^i$ for $i = 0, 1, 2, \ldots, n - 1$. Thus the corollary is immediate from Theorem 3.2. \hfill \Box
Next we prove more characterizations of the ring B as given in Theorem 3.2.

Theorem 3.4. Assume Δ is an H-separable extension of B. Then the following statements are equivalent:

1. $V_\Delta(B)$ is a commutative subring of Δ.
2. $V_\Delta(B) = C$.
3. $V_\Delta(C) = B$.
4. $J_g = \{0\}$ for each $g \neq 1$ where $J_g = \{b \in B \mid ab = bg(a) \text{ for all } a \in B\}$.
5. $I_g = \{0\}$ for each $g \neq 1$ where $I_g = \{b \in B \mid cb = bg(c) \text{ for all } c \in C\}$.

Proof. We prove (1) \implies (2) \implies (3) \implies (4) \implies (5) \implies (1).

(1) \implies (2). This was given in the proof of the necessity of Theorem 3.2.

(2) \implies (3). Clearly, $B \subseteq V_\Delta(C)$. Conversely, for each $\sum_{g \in G} b_g U_g$ in $V_\Delta(C)$, we have $c(\sum_{g \in G} b_g U_g) = (\sum_{g \in G} b_g U_g)c$ for each c in C, so $cb_g = b_g c(c)$, that is $b_g (c - g(c)) = 0$ for each $g \in G$ and $c \in C$. But C is a commutative G-Galois extension of C^G, so the ideal of C generated by $\{c - g(c) \mid c \in C\}$ is C when $g \neq 1$ [2, Proposition 1.2(5)]. Hence $b_g = 0$ for each $g \neq 1$. But then $\sum_{g \in G} b_g U_g = b_1 \in B$. Thus $V_\Delta(C) \subseteq B$, and so $V_\Delta(C) = B$.

(3) \implies (4). By hypothesis, $V_\Delta(C) = B$ so $V_\Delta(B) \subseteq V_\Delta(C) = B$. But $V_\Delta(B) = \sum_{g \in G} J_g U_g$ by Lemma 3.1(a), so $\sum_{g \in G} J_g U_g = V_\Delta(B) \subseteq B$. Thus $J_g = \{0\}$ for each $g \neq 1$.

(4) \implies (5). By Lemma 3.1(a) again, $V_\Delta(B) = \sum_{g \in G} J_g U_g$, and by hypothesis, $J_g = \{0\}$ for each $g \neq 1$, so $V_\Delta(B) = J_1 = C$. Hence part (2) holds; and so $V_\Delta(C) = B$ by (2) \implies (3).

Clearly, $V_\Delta(C) = \sum_{g \in G} J_g U_g$, so $\sum_{g \in G} J_g U_g = B$. Thus $I_g = \{0\}$ for each $g \neq 1$.

(5) \implies (1). Since $C \subseteq B$, $J_g \subseteq I_g$ for all $g \in G$. Hence $I_g = \{0\}$ implies $J_g = \{0\}$. But then $V_\Delta(B) = \sum_{g \in G} J_g U_g = J_1 = C$ which is commutative.

Corollary 3.5. C is a Galois algebra over C^G with Galois group $G|_C \cong G$ if and only if Δ is an H-separable extension of B and anyone of the equivalent conditions in Theorem 3.4 holds.

We conclude the present paper with two examples of crossed products Δ to demonstrate our results:

1. Δ is an H-separable extension of B, but $V_\Delta(B)$ is not commutative.
2. $V_\Delta(B)$ is commutative, but Δ is not an H-separable extension of B.

Hence C is not a Galois algebra over C^G with $G|_C \cong G$ in either example by Theorem 3.2.

Example 3.6. Let $B = Q[i,j,k] = Q + Qi + Qj + Qk$ be the quaternion algebra over the rational field Q, $G = \{g_1 = 1, g_i, g_j, g_k \mid g_1(x) = ix^{-1}, g_j(x) = jx, g_k(x) = kx^{-1} \text{ for all } x \in B\}$, and $\Delta = \Delta(B, G, 1)$. Then

1. The center of Δ, $Z = Q = C$, the center of B.
2. Δ is a separable extension of B and B is an Azumaya Q-algebra, so Δ is an Azumaya Q-algebra. Since Δ is a free left B-module, Δ is an H-separable extension of B [3, Theorem 1].
3. $V_\Delta(B) = Q + Qi U_{g_1} + Qj U_{g_2} + Qk U_{g_3}$ which is not commutative, so C is not a Galois algebra over C^G with Galois group $G|_C \cong G$ by Theorem 3.2.

Example 3.7. Let $B = Q[i,j,k] = Q + Qi + Qj + Qk$ be the quaternion algebra over the rational field Q, $G = \{g_1 = 1, g_i \mid g_1(x) = ix^{-1} \text{ for all } x \in B\}$, and $\Delta = \Delta(B, G, 1)$.

Then
(1) The center of B, $C = Q = C^G$.
(2) $V_\Delta(B) = Q + QiU_\beta$, which is commutative.
(3) The center of Δ, $Z = Q + QiU_\beta \neq C^G$. On the other hand, assume that Δ is an H-separable extension of B. Since B is a direct summand of Δ as a left B-module, $V_\Delta(V_\Delta(B)) = B$ [7, Proposition 1.2]. This implies that the center of Δ, $Z = C^G$, a contradiction. Thus Δ is not an H-separable extension of B. Therefore, C is not a G-Galois algebra over C^G with $G|c \cong G$ by Theorem 3.2.

Acknowledgement. This paper was written under the support of a Caterpillar Fellowship at Bradley University. We would like to thank Caterpillar Inc. for the support.

References
[1] F. R. DeMeyer, Some notes on the general Galois theory of rings, Osaka J. Math. 2 (1965), 117–127. MR 32#128. Zbl 143.05602.
[2] F. R. DeMeyer and E. Ingraham, Separable Algebras over Commutative Rings, Lecture Notes in Mathematics, vol. 181, Springer-Verlag, Berlin, Heidelberg, New York, 1971. MR 43#6199. Zbl 215.36602.
[3] S. Ikehata, Note on Azumaya algebras and H-separable extensions, Math. J. Okayama Univ. 23 (1981), no. 1, 17–18. MR 82j:16012. Zbl 475.16003.
[4] ———, On H-separable polynomials of prime degree, Math. J. Okayama Univ. 33 (1991), 21–26. MR 93g:16043. Zbl 788.16022.
[5] S. Ikehata and G. Szeto, On H-separable polynomials in skew polynomial rings of automorphism type, Math. J. Okayama Univ. 34 (1992), 49–55 (1994). MR 95f:16033. Zbl 819.16028.
[6] ———, On H-skew polynomial rings and Galois extensions, Rings, Extensions, and Cohomology (Evanston, IL, 1993) (New York), Lecture Notes in Pure and Appl. Math., vol. 159, Dekker, 1994, pp. 113–121. MR 95j:16033. Zbl 815.16009.
[7] K. Sugano, Note on semisimple extensions and separable extensions, Osaka J. Math. 4 (1967), 265–270. MR 37#1412. Zbl 199.0790.
[8] G. Szeto and L. Xue, On the Ikehata theorem for H-separable skew polynomial rings, Math. J. Okayama Univ., to appear.

Szeto: Department of Mathematics, Bradley University, Peoria, Illinois 61625, USA
E-mail address: szeto@bradley.bradley.edu

Xue: Department of Mathematics, Bradley University, Peoria, Illinois 61625, USA
E-mail address: lxue@bradley.bradley.edu
Mathematical Problems in Engineering

Special Issue on
Modeling Experimental Nonlinear Dynamics and Chaotic Scenarios

Call for Papers

Thinking about nonlinearity in engineering areas, up to the 70s, was focused on intentionally built nonlinear parts in order to improve the operational characteristics of a device or system. Keying, saturation, hysteretic phenomena, and dead zones were added to existing devices increasing their behavior diversity and precision. In this context, an intrinsic nonlinearity was treated just as a linear approximation, around equilibrium points.

Inspired on the rediscovering of the richness of nonlinear and chaotic phenomena, engineers started using analytical tools from “Qualitative Theory of Differential Equations,” allowing more precise analysis and synthesis, in order to produce new vital products and services. Bifurcation theory, dynamical systems and chaos started to be part of the mandatory set of tools for design engineers.

This proposed special edition of the Mathematical Problems in Engineering aims to provide a picture of the importance of the bifurcation theory, relating it with nonlinear and chaotic dynamics for natural and engineered systems. Ideas of how this dynamics can be captured through precisely tailored real and numerical experiments and understanding by the combination of specific tools that associate dynamical system theory and geometric tools in a very clever, sophisticated, and at the same time simple and unique analytical environment are the subject of this issue, allowing new methods to design high-precision devices and equipment.

Authors should follow the Mathematical Problems in Engineering manuscript format described at http://www.hindawi.com/journals/mpe/. Prospective authors should submit an electronic copy of their complete manuscript through the journal Manuscript Tracking System at http://mts.hindawi.com/ according to the following timetable:

Event	Date
Manuscript Due	December 1, 2008
First Round of Reviews	March 1, 2009
Publication Date	June 1, 2009

Guest Editors

José Roberto Castilho Piqueira, Telecommunication and Control Engineering Department, Polytechnic School, The University of São Paulo, 05508-970 São Paulo, Brazil; piqueira@lac.usp.br

Elbert E. Neher Macau, Laboratório Associado de Matemática Aplicada e Computação (LAC), Instituto Nacional de Pesquisas Espaciais (INPE), São José dos Campos, 12227-010 São Paulo, Brazil; elbert@lac.inpe.br

Celso Grebogi, Center for Applied Dynamics Research, King’s College, University of Aberdeen, Aberdeen AB24 3UE, UK; grebogi@abdn.ac.uk