Activated Protein C Anticoagulant System Dysfunction and Thrombophilia in Asia

Naotaka Hamasaki, M.D.¹, Hiroyuki Kuma, Ph.D.¹, and Hiroko Tsuda, M.D.²

Department of Clinical Chemistry¹, Faculty of Pharmaceutical Sciences, Natagaki International University, Nagasaki; Department of Nutrition Sciences², Nakamura Gakuen University, Fukuoka, Japan

Thrombophilia that is common among Caucasians is caused by genetic polymorphisms of coagulation factor V Leiden (R506Q) and prothrombin G20210A. Unlike that in Caucasians, thrombophilia that is common in the Japanese and Chinese involve dysfunction of the activated protein C (APC) anticoagulant system caused by abnormal protein S and protein C molecules. Approximately 50% of Japanese and Chinese individuals who develop venous thrombosis have reduced activities of protein S. The abnormal sites causing the protein S molecule abnormalities are distributed throughout the protein S gene, PROS1. One of the most common abnormalities is protein S Tokushima (K155E), which accounts for about 30% of the protein S molecule abnormalities in the Japanese. Whether APC dysfunction occurs in other Asian countries is an important aspect of mapping thrombophilia among Asians. International surveys using an accurate assay system are needed to determine this.

Key Words: Venous thromboembolism, Activated protein C anticoagulant system, Asian thrombophilia, Deep vein thrombosis, Protein S, Quantitative assay of protein S

INTRODUCTION

The incidence of venous thromboembolism (VTE) is high among Caucasians, and some individuals and families are predisposed to developing it. Thrombophilia predisposes an individual to developing thrombosis [1, 2]. In Western countries, a large number of VTE patients have been found to be carriers of a coagulation factor V polymorphism, factor V Leiden (R506Q) [3-8]. Factor V Leiden (R506Q) has normal coagulation activity but shows resistance to the activated protein C (APC)-anticoagulant system (APC resistance). Thus, it can cause excessive blood coagulation. Another influential factor that has a different mechanism of action has also been discovered: a single-base substitution in the 3′-untranslational region of the prothrombin gene, prothrombin G20210A. Carriers of this mutation are prone to developing VTE [9]. The majority of Caucasian VTE patients have 1 of these 2 thrombophilias: factor V Leiden (R506Q) and prothrombin G20210A [7-11].

Meanwhile, carriers of these polymorphisms are quite rare among non-Caucasians [12-18], thus warranting the assumption that very few non-Caucasians are affected by VTE. However, recent studies demonstrate that there are a considerable number of VTE patients among non-Caucasians such as the Japanese and Chinese [13-21].

1. Thrombophilia and VTE in Japan and other Asian countries

After the discovery of factor V Leiden (R506Q) [3-5], Shen et al. from National Taiwan University reported that 47 (55%) out of 85 thrombosis patients had reduced activity of the APC anticoagulant system (28 had low protein S activity, 16 had low protein C activity, and 3 had both low protein S and C activities) [15]. Our investigation on Japanese subjects revealed that 49 (58%) of 85 deep vein thrombosis (DVT) patients had reduced activity of factors of the APC anticoagulant system (22 had low protein S...
activity, 9 had low protein C activity, and 18 had both low protein S and C activities) and that the reduced activities of 27 patients were due to genetic abnormalities in the protein S and C molecules [18]. However, no carriers of factor V Leiden (R506Q) were found among these Japanese patients [18]. A report from Hong Kong claims that as many as 53% of Chinese VTE patients have reduced activity of the APC anticoagulant system [19]. All of these studies provide very similar results, suggesting that Japanese and Chinese individuals have thrombophilias that differ from those of Caucasians, with a high likelihood of thrombophilia being a protein S or C molecule abnormality—especially protein S molecule abnormality, at least in Japan. These results are summarized in Table 1.

VTE gained much public attention and acquired the layman’s term of “economy class syndrome” recently [22-24]. This kind of VTE develops because of the stagnation of blood flow in the deep veins of a lower limb as a result of prolonged sitting in the same position in a confined space (i.e., an economy-class seat) of an aircraft. This condition, diagnosed as DVT and pulmonary embolism, has been reported to occur in people forced to live in emergency shelters as a result of natural disasters such as the earthquake and tsunami that occurred near the northeastern coast of Japan on March 11, 2011 [25].

2. Protein S Tokushima (K155E) in Japanese DVT patients and healthy individuals
Protein S Tokushima (K155E), an abnormal protein S molecule, was discovered in thrombotic patients by Shigekiyō et al. [26] and Yamazaki et al. [27]. The lysine (K) residue at position 155 of the protein S Tokushima molecule is replaced by glutamic acid (E) [27, 28]; the molecule has low protein S activity [26, 28]. We previously identified a patient suffering from DVT as a homozygous carrier of protein S Tokushima (K155E) [18]. The protein S activity and free protein S concentration in this patient were 35% and 78% of the reference value, respectively; thus, the specific activity (activity/protein concentration) of protein S Tokushima was 45% [18]. The specific activity of protein S Tokushima (K155E) expressed in HEK293 cells was slightly less than 60% of the specific activity of the wild type [29]. The extent of reduction between the in vivo activity and activity in the cultured cell expression system differed slightly. Nevertheless, the activity of protein S Tokushima (K155E) was obviously reduced.

The frequency of heterozygous carriers of protein S Tokushima (K155E) among healthy individuals in Japan is nearly 2% [18, 21, 30, 31], namely, 77 heterozygous carriers among 4,319 individuals [30], indicating a mutant allele frequency of 0.0089. The frequency is much higher (about 6-10%) among DVT patients, with an odds ratio of 3.74-8.56 [18, 21, 30, 31]. Whether protein S Tokushima (K155E) occurs in other Asian countries is an important aspect of mapping thrombophilia among Asians, and international surveys are needed to determine this.

3. Variants in the protein S gene (PROS1) in Japanese DVT patients
In our previous studies [18, 32], the age at first incidence of DVT was unexpectedly low, peaking from 20-30 yr for both men and women. Surprisingly, the first incidence occurred before the age of 40 yr in about 60% of the patients. This suggests that an individual’s constitutional factors influence the development of DVT more strongly than lifestyle factors.

Combined with our analysis [18, 33-36] and the results of other studies [37-48], a total of 51 variants were identified in a Japanese population. These variants are distributed throughout the coding sequence (exons 2-15), except exon 1, of the protein S gene, PROS1 (Fig. 1) [49]. The close sequence homology between PROS1 and its pseudo-gene, PROS2, suggests the possibility of gene rearrangements similar to those in the von Willebrand factor (vWF) gene [50, 51]. However, to our knowledge, no recombination between these 2 genes has been described. A large deletion of PROS1 has been found in Swedish families in which mutations in PROS1 were not detected despite sequencing [52, 53], suggesting that screening for large deletions in PROS1 may be useful for protein S deficiency patients.
Role of the APC anticoagulant system in coagulation control in vivo

The anticoagulant system in a healthy body mainly comprises 3 systems: 1) the tissue factor pathway inhibitor (TFPI) anticoagulant system, 2) antithrombin (AT) anticoagulant system, and 3) APC anticoagulant system (Fig. 2). Both the TFPI and AT anticoagulant systems have very potent anticoagulant activity. It is well known that the TFPI anticoagulant system plays its physiological and pathological roles through the inhibition of tissue factor-initiated blood coagulation. Meanwhile, the AT anticoagulant system plays these roles through the inhibition of thrombin and coagulation factor Xa. Unlike the other 2 anticoagulant systems, the APC anticoagulant system is only activated after thrombin is formed as a result of the activation of the coagulation system. The APC anticoagulant system is unique in that its anticoagulation activity is regulated in proportion to the activity of the coagulation system. Abnormal thrombus formation is thought to occur when the equilibrium between the coagulation system and APC anticoagulant system is disturbed [49, 54].

Summarizing the results from surveys and existing research allow us to conclude the following. Thrombophilia among Caucasians is mainly caused by resistance to the APC anticoagulant system (APC resistance) and factor V Leiden (R506Q) [3-8, 10, 11], while thrombophilia among Japanese and Chinese individuals is due to the reduced activity of the APC anticoagulant system (APC dysfunction) [15, 17-21, 31, 49, 54].

These 2 phenomena are not in fact all that unpredictable: either the coagulation activity becomes relatively stronger than the APC anticoagulant activity due to factor V Leiden (R506Q) or the APC anticoagulant activity declines relative to the coagulation activity due to molecular abnormalities in protein S or C. Taken together, these findings suggest that the APC anticoagulant sys-
tem maintains a balance between coagulation and anticoagulation activities, thus greatly contributing to thrombus formation. Regardless of APC resistance in Caucasians or APC dysfunction in Japanese and Chinese individuals, “the creation of a condition where coagulation activity becomes relatively stronger than the APC anticoagulant activity” could be the trigger mechanism for thrombosis development in thrombophilic carriers [49, 54].

5. Significance of the measurement of protein S specific activity and its practical use

Protein S deficiency is approximately 10 times more prevalent in Asians than in Caucasians [18]. In addition, the prevalence of the type II deficiency is quite high, at least in Japan [18, 21, 31, 49]. To screen for type II protein S deficiency, clotting-based protein S activity assays and free protein S assays are currently performed. However, Kimura et al. report that these assays are unsuitable for identifying deficiencies such as protein S Tokushima (K155E) [55]. A new quantitative protein S assay method with the following advantages was recently developed [56]: 1) total protein S, i.e., the sum of free protein S and bound protein S, can be measured; 2) the accuracy and reproducibility of the measurement is dramatically improved because protein S can be measured without separating the free form from the bound form; 3) the absolute amount (μg/mL) of protein S can be determined; and 4) the specific activity of the protein S molecule can be calculated by measuring the protein S activity and amount of protein S. The type II deficiency can easily be determined by measuring the specific activity of the molecule [56].

The protein S activity and amount of protein S (mean±2SD) in men (N=107) were 25.7±6.8 μg/mL protein S equivalent and 26.0±6.8 μg/mL protein S, respectively, while those in women (N=94) were 21.9±6.8 μg/mL protein S equivalent and 22.4±6.4 μg/mL protein S, respectively, confirming the difference in protein S between sexes. However, the mean protein S specific activities and its reference intervals (mean, mean±2SD) were 0.99 and 0.79-1.19 in men (N=107), respectively, and 0.98 and 0.76-1.20 in women (N=94), respectively, showing no difference between the sexes [56]. These results indicate that estrogen, which is secreted more in women than in men, suppresses protein S production [57]; but, the protein S molecules produced in both sexes are normal, and thus there is no difference in the protein S specific activity between sexes. This quantitative protein S assay can rapidly identify carriers of protein S type II deficiency without genetic testing by measuring the total amount of protein S, total protein S activity, and protein S specific activity in the blood.

CONCLUSION

Thrombophilias among Japanese and Chinese individuals are mainly due to APC dysfunction, whereas their major cause in Caucasians is APC resistance [49, 54]. Whether APC dysfunction occurs in other Asian countries is an important unresolved aspect of thrombophilia among Asians; international surveys are needed to determine this. A newly developed assay system for the specific activity of protein S would be useful for such international surveys, which could potentially contribute to the early detection of thrombophilic traits.

Authors’ Disclosures of Potential Conflicts of Interest

No potential conflicts of interest relevant to this article were reported.

Acknowledgements

We wish to thank Dr. Sheshadri Narayanan, Adjunct Clinical Professor of Pathology and Laboratory Medicine, Weill Medical College of Cornell University, New York, NY, USA, for critiquing this manuscript. This work was supported in part by Grants-in-Aid for Scientific Research from the Ministry of Education, Science, Technology, Sports, and Culture of Japan and from Naga- saki International University.

REFERENCES

1. Lane DA, Mannucci PM, Bauer KA, Bertina RM, Bochkov NP, Boulyjenkov V, et al. Inherited thrombophilia: Part 1. Thromb Haemost 1996;76: 651-62.
2. Lane DA, Mannucci PM, Bauer KA, Bertina RM, Bochkov NP, Boulyjenkov V, et al. Inherited thrombophilia: Part 2. Thromb Haemost 1996;76: 824-34.
3. Dahlbäck B, Carlsson M, Svensson PJ. Familial thrombophilia due to a previously unrecognized mechanism characterized by poor anticoagulant response to activated protein C: prediction of a cofactor to activated protein C. Proc Natl Acad Sci USA 1993;90:1004-8.
4. Koster T, Rosendaal FR, de Ronde H, Briët E, Vandenbroucke JP, Bertina RM. Venous thrombosis due to poor anticoagulant response to activated protein C: Leiden Thrombophilia Study. Lancet 1993;342:1503-6.
5. Bertina RM, Koelman BP, Koster T, Rosendaal FR, Dirven RJ, de Ronde H, et al. Mutation in blood coagulation factor V associated with resistance to activated protein C. Nature 1994;369:64-7.
6. Ridker PM, Hennekens CH, Lindpaintner K, Stampfer MJ, Eisenberg PR, Miletich JP. Mutation in the gene coding for coagulation factor V and the risk of myocardial infarction, stroke, and venous thrombosis in apparently healthy men. N Engl J Med 1995;332:912-7.
7. Rosendaal FR. Risk factors for venous thrombosis: prevalence, risk, and
interaction. Semin Hematol 1997;34:171-87.
8. Castoldi E and Rosing J. APC resistance: biological basis and acquired influences. J Thromb Haemost 2010;8:445-53.
9. Poort SR, Rosendaal FR, Reitsma PH, Bertina RM. A common genetic variation in the 3′-untranslated region of the prothrombin gene is associated with elevated plasma prothrombin levels and an increase in venous thrombosis. Blood 1996;88:3698-703.
10. Franco RF and Reitsma PH. Genetic risk factors of venous thrombosis. Hum Genet 2001;109:369-84.
11. Bounameaux H and Rosendaal FR. Venous thromboembolism: Why does ethnicity matter? Circulation 2011;123:2189-91.
12. Rees DC, Cox M, Clegg JB. World distribution of factor V Leiden. Lancet 1995;346:1133-4.
13. Seki T, Okayama H, Kunagai T, Kumakasa N, Sakuma M, Isoyama S, et al. Arg506Gln mutation of the coagulation factor V gene not detected in Japanese pulmonary thromboembolism. Heart Vessels 1998;13:195-8.
14. Ishikii I, Murata M, Watanabe R, Matsubara Y, Kawano K, Aoki N, et al. Frequencies of prothrombin 20210 G A mutation may be different among races–studies on Japanese populations with various forms of thrombotic disorders and healthy subjects. Blood Coagul Fibrinolysis 1998;9:105-6.
15. Shen MC, Lin JS, Tsay W. High prevalence of antithrombin III, protein C and protein S deficiency, but no factor V Leiden mutation in venous thrombophiliic Chinese patients in Taiwan. Thromb Res 1997;87:377-85.
16. Kim YW, Yoon KY, Park S, Shim YS, Cho HL, Park SS. Absence of factor V Leiden mutation in Koreans. Thromb Res 1997;86:181-2.
17. Tang L, Guo T, Yang R, Mei H, Wang H, Lu X, et al. Genetic background analysis of protein C deficiency demonstrates a recurrent mutation associated with venous thrombosis in Chinese population. PLoS One 2012;7:e35773.
18. Kinoshita S, Iida H, Inoue S, Watanabe K, Kurihara M, Wada Y, et al. Protein S and protein C gene mutations in Japanese deep vein thrombosis patients. Clin Biochem 2005;38:908-15.
19. Liu HW, Kwong YL, Bourke C, Lam CK, Lie AK, Wei D, et al. High incidence of thrombophilia detected in Chinese patients with venous thrombosis. Thromb Haemost 1994;71:416-9.
20. Tsuda H, Hattori S, Tanabe S, Iida H, Nakahara M, Nishioka S, et al. Protein S deficiency associated with venous thromboembolism. J Thromb Haemost 2012;10:319-20.
21. Miyata T, Hamasaki N, Wada H, Kojima T. More on: racial differences in venous thromboembolism. J Thromb Haemost 2002;17:136-43 (in Japanese).
22. Trujillo-Santos AJ, Jiménez-Puente A, Perea-Milla E. Association between long term and venous thromboembolic disease: a systematic review and meta-analysis of case-control studies. Ann Hematol 2008;87:79-86.
23. House of Commons Health Committee, The prevention of venous thromboembolism in hospitalised patients (Second report of session 2004-2005). http://www.publications.parliament.uk/pa/cm200405/cmselect/cmhealth/99/99.pdf. (Updated on Mar 2005).
24. Bhatia V, AroraP, Pandey AK, Kaul U. Air travel and thrombosis: a phenotypically neutral dimorphism of protein S: the substitution with thrombosis. Thromb Haemost 1993;70:244-6.
25. Yamazaki Y, Sugiuira I, Matsushita T, Kojima T, Kagami K, Takamatsu J, et al. A phenotypically neutral dimorphism of protein S: the substitution of Lys155 by Glu in the second EGF domain predicted by an A to G base exchange in the gene. Thromb Res 1993;70:395-403.
26. Hayashi T, Nishioja J, Shigekyo T, Saito S, Suzuki K. Protein S Tokushima: abnormal molecule with a substitution of Glu for Lys-155 in the second epidermal growth factor-like domain of protein S. Blood 1994;83:683-90.
27. Tsuda H, Urata M, Tsuda T, Wakiyama M, Iida H, Nakahara M, et al. Four missense mutations identified in the protein S gene of thrombosis patients with protein S deficiency: effects on secretion and anticoagulant activity of protein S. Thromb Res 2002;105:233-9.
28. Hamasaki N, Hamasaki T, Tsuji H, Madoiwa S, Sakata Y, et al. Protein S-K196E mutation as a genetic risk factor for deep vein thrombosis in Japanese patients. Blood 2006;107:1737-8.
29. Iikeiri M, Wada H, Sakamoto Y, Ito N, Nishioja J, Nakatani K, et al. The association of protein S Tokushima-K196E with a risk of deep vein thrombosis. Int J Hematol 2010;92:302-5.
30. Hamasaki N. Japanese thrombophilia: Protein S/Protein C as the major risk factor for Japanese thrombophilia. Jpn J Thromb Hemost 2006;17:136-43 (in Japanese).
31. Tatewaki H, Iida H, Nakahara M, Tsuda H, Kinoshita S, Kanaji T, et al. A novel splice acceptor site mutation which produces multiple splicing abnormalities resulting in protein S deficiency type I. Thromb Haemost 1999;82:65-71.
32. Nakahara M, Iida H, Urata M, Fujise M, Wakiyama M, Kinoshita S, et al. A novel splice acceptor site mutation of protein S gene in affected individuals with type I protein S deficiency: allelic exclusion of the mutant gene. Thromb Res 2001;101:387-93.
33. Iida H, Nakahara M, Komori K, Fujise M, Wakiyama M, Urata M, et al. Failure in the detection of aberrant mRNA from the heterozygotic splice site mutant allele for protein S in a patient with protein S deficiency. Thromb Res 2001;102:187-96.
34. Tsuda H, Tokunaga F, Nagamitsu H, Koide T. Characterization of endoplasmic reticulum-associated degradation of a protein S mutant identified in a family of quantitative protein S deficiency. Thromb Res 2006;117:329-31.
35. Yamazaki T, Hamaguchi M, Katsuni A, Kagami K, Kojima T, Takamatsu J, et al. A quantitative protein S deficiency associated with a novel nonsense mutation and markedly reduced levels of mutated mRNA. Thromb Haemost 1995;74:590-5.
36. Yamazaki T, Katsuni A, Kagami K, Okamoto Y, Sugiuira I, Hamaguchi M, et al. Molecular basis of a hereditary type I protein S deficiency caused by a substitution of Cys for Arg474. Blood 1996;87:4643-50.
37. Okamoto Y, Yamazaki T, Katsuni A, Kojima T, Takamatsu J, Nishida M, et al. A novel nonsense mutation associated with an exon skipping in a patient with hereditary protein S deficiency type I. Thromb Haemost 1996;75:877-82.
38. Yamazaki T, Katsuni A, Okamoto Y, Takafuta T, Tsuzuki S, Kagami K, et al. Two distinct novel splice site mutations in a compound heterozygous patient with protein S deficiency. Thromb Haemost 1997;77:14-20.
39. Fujimura H, Kambayashi J, Katoh H, Sakon M, Kawasaki T, Ariyoshi H, et al. Three novel missense mutations in unrelated Japanese patients with type I and type II protein S deficiency and venous thrombosis. Thromb Res 1998;89:151-60.
40. Iwaki T, Mastushita T, Kobayashi T, Yamamoto Y, Nomura Y, Kagami K, et al. A novel null mutation associated with a protein S deficiency type I. Thromb Haemost 2006;95:438-45.
41. Fujimura H, Kambayashi J, Katoh H, Sakon M, Kawasaki T, Ariyoshi H, et al. Four missense mutations in unrelated Japanese patients with type I and type II protein S deficiency. Thromb Haemost 2006;95:438-45.
42. Iwaki T, Mastushita T, Kobayashi T, Yamamoto Y, Nomura Y, Kagami K, et al. DNA sequence analysis of protein S deficiency—identification of four point mutations in twelve Japanese subjects. Semin Thromb Hemost 2001;27:155-60.
43. Yamazaki T, Saito H, Dahiback B. Rapid intracellular degradation of a truncated mutant protein S (Q522X). Thromb Haemost 2002;87:171-2.
44. Hirose M, Kimura F, Wang HQ, Takebayashi K, Kobayashi M, Nakashin K, et al. Protein S gene mutation in a young woman with type III protein S deficiency and venous thrombosis during pregnancy. J Thromb Haemost 2002;10:136-43.
Thrombolysis 2002;13:85-8.
45. Okada H, Takagi A, Murate T, Adachi T, Yamamoto K, Matsushita T, et al. Identification of protein Sx gene mutations including four novel mutations in eight unrelated patients with protein S deficiency. Br J Haematol 2004;126:219-25.
46. Okada H, Yamazaki T, Takagi A, Murate T, Yamamoto K, Takamatsu J, et al. In vitro characterization of missense mutations associated with quantitative protein S deficiency. J Thromb Haemost 2006;4:2039.
47. Mizukami K, Nakabayashi T, Naitoh S, Takeda M, Tarumi T, Mizoguchi I, et al. One novel and one recurrent mutation in the PROS1 gene cause type I protein S deficiency in patients with pulmonary embolism associated with deep vein thrombosis. Am J Hematol 2006;81:787-97.
48. Sanada N, Fujimori Y, Kashiwagi T, Takagi A, Murate T, Mizutani E, et al. An Sp1 binding site mutation of the PROS1 promoter in a patient with protein S deficiency. Br J Haematol 2007;138:663-5.
49. Hamasaki N and Kanaji T. Clinical role of protein S deficiency in Japanese. In: Panackel M, Davie EW, eds. Recent advances in thrombosis and hemostasis. Japan: Springer, 2008:597-613.

50. Bonnthon D and Orkin SH. The human von Willebrand factor gene. Structure of the 5’ region. Eur J Biochem 1988;171:51-7.
51. Mancuso DJ, Tuley EA, Westfield LA, Lester-Mancuso TL, Le Beau MM, Sorace JM, et al. Human von Willebrand factor gene and pseudogene: structural analysis and differentiation by polymerase chain reaction. Biochemistry 1991;30:253-69.
52. Johansson AM, Hillarp A, Säili T, Zöller B, Dahlbäck B, Halldén C. Large deletions of the PROS1 gene in a large fraction of mutation-negative patients with protein S deficiency. Thromb Haemost 2005;94:951-7.
53. Lind-Halldén C, Dahlien A, Hillarp A, Zöller B, Dahlbäck B, Halldén C. Small and large PROS1 deletions but no other types of rearrangements detected in patients with protein S deficiency. Thromb Haemost 2012;108:94-100.
54. Hamasaki N. Unmasking Asian thrombophilia: is APC dysfunction the real culprit? J Thromb Haemost 2012;10:2016-8.
55. Kimura R, Sakata T, Kubo K, Okamoto A, Tomoike H, Miyata T. Plasma protein S activity correlates with protein S genotype but is not sensitive to identify K106E mutant carriers. J Thromb Haemost 2006;4:2039.
56. Tsuda T, Jin X, Tsuda H, Ieko M, Morishita E, Adachi T, et al. New quantitative total protein S assay system for diagnosing of protein S type II deficiency: clinical application of the screening system for protein S type II deficiency. Blood Coagul Fibrinolysis 2012;23:56-63.
57. Suzuki A, Sanda N, Miyawaki Y, Fujimori Y, Yamada T, Takagi A, et al. Down-regulation of PROS1 gene expression by 17β-estradiol via estrogen receptor α (ERα)-Sp1 interaction recruiting receptor-interacting protein 140 and the corepressor-HDAC3 complex. J Biol Chem 2010;285:13444-53.
58. Drakenberg T, Gasbarri H, Thulin E, Thamitz AM, Muranyi A, Annila A, et al. Solution structure of the Ca2+ Binding EGF3-4 pair from vitamin K-dependent protein S: identification of an unusual fold in EGF3. Biochemistry 2005;44:8782-9.
59. Schwede T, Kopp J, Guex N, Peitsch, MC. SWISS-MODEL: An automated protein homology-modeling server. Nucleic Acids Res 2003;31:3381-5.
60. Huang M, Furie BC, Furie B. Crystal structure of the calcium-stabilized human factor IX Gla domain bound to a conformation-specific anti-factor IX antibody. J Biol Chem 2004;279:14388-46.
61. Groebke Zbinden K, Banner DW, Ackermann J, D’Arcy A, Kirchhofer D, Ji YH, et al. Design of selective phenylglycine amide tissue factor/factor VIIa inhibitors. Bioorg Med Chem Lett 2005;15:817-22.
62. Sasaki T, Kryazhev PG, Cheburkin Y, Göhring W, Tisi D, Ullrich A, et al. Crystal structure of a C-terminal fragment of growth arrest-specific protein Gas6. Receptor tyrosine kinase activation by laminin G-like domains. J Biol Chem 2002;277:41464-70.