Almost Everywhere Stability of Discrete-Time Dynamical Systems

Özkan Karabacak, Rafael Wisniewski and John-Josef Leth

September 27, 2016

Abstract

It is known that the existence of a Lyapunov-type density function, called Lyapunov densities or Lyapunov measures, implies the convergence of Lebesgue almost all solutions to an equilibrium. Considering the evolution of densities using Perron-Frobenius operator, the Lyapunov density approach can be formulated clearly. In this paper, we consider discrete-time dynamical systems and prove a a Lyapunov density theorem with less assumption than the ones that exist in the current literature.

1 Introduction

Lyapunov density has been proposed by Rantzer [1] and shown to guarantee convergence of almost all solutions to an equilibrium. This approach has been proved to be useful in control theory, in particular in feedback stabilization [2]. In [3], Lyapunov density (called also Lyapunov measure) has been considered in view of Markov processes. In this paper, we improve Theorem 16 in [3] by removing two necessary condition, namely the compactness of the state space and the local almost everywhere stability assumption of the invariant set.

By a measure \(\mu \) on \(X \), we always mean a \(\sigma \)-finite measure defined on the Borel \(\sigma \)-algebra of \(X \). We say that a property is satisfied \(\mu \) almost everywhere of \(\mu \)-a.e. in short, if the set of points (initial conditions for solutions) that do not satisfy the property has \(\mu \)-measure zero. For any set \(V \subset X \), we denote the \(\varepsilon \)-neighborhood of \(V \) by \(B_\varepsilon(V) \), or sometimes just by \(B_\varepsilon \) if the set \(V \) is clear from the context. For \(0 \in X \), notation \(B_\varepsilon = B_\varepsilon(\{0\}) \) will be used for \(\varepsilon \)-neighborhood of the point set \(\{0\} \). For a set \(A \subset X \), \(A^c := X - A \) denotes the complement of \(A \).

2 Main Results

Consider a discrete-time dynamical system on a metric space \(X \) given by

\[x(k+1) = T(x(k)) \quad x(0) \in X. \]
Let m be a $(\sigma$-finite) measure defined on $\mathcal{B} = \mathcal{B}(X)$, i.e. the σ-algebra of Borel subsets of X. We assume that the dynamics T is nonsingular, namely $A \in \mathcal{B}$ and $m(A) = 0$ implies that $m(T^{-1}A) = 0$. A pair of measure μ_1 and μ_2 are said to be equivalent if they give rise to the same set of zero measures, i.e. if for any $A \in \mathcal{B}$, $\mu_1(A) = 0 \iff \mu_2(A) = 0$. A measure μ is said to be properly subinvariant if $\mu(T^{-1}A) < \mu(A)$ whenever $\mu(A) > 0$.

Theorem 1 (Lyapunov measure) Let $0 \in X$ be an equilibrium of (1). Assume that there exists a properly subinvariant measure μ that is equivalent to m and finite on \mathcal{B}_ε for any $\varepsilon > 0$. Then, solutions of (1) converge to 0 m.a.e.

3 Preliminary Definitions and Tools

A measure μ_2 is said to be weaker than another measure μ_1 if $\mu_1(A) = 0 \implies \mu_2(A) = 0$. In this case, we write $\mu_2 \ll \mu_1$. Clearly, μ_1 and μ_2 are equivalent if and only if $\mu_1 \ll \mu_2$ and $\mu_2 \ll \mu_1$. Radon-Nikodym theorem states that if μ and m are signed measures with $\mu \ll m$ then there exists a measurable function defined on X such that

$$\mu(A) = \int_A \rho \ d m.$$ \hspace{1cm} (2)

ρ is called Radon-Nikodym derivative of μ with respect to m. If μ is a positive measure equivalent to a positive measure m then ρ must be strictly positive (m.a.e.). The Radon-Nikodym derivative of a measure is unique up to a set of m-measure zero. On the other hand, if m is a positive measure and $\rho \geq 0$ (resp. $\rho > 0$) is an m-measurable function on X, then $\mu(A) := \int_A \rho \ d m$ defines a measure weaker than (resp. equivalent to) m. Therefore, there is a one-to-one correspondence between the set of positive measures (resp. signed measures) that are weaker than m and the set of equivalence classes of nonnegative measurable functions (resp. all measurable functions), where equivalence classes are defined as sets of functions that differs only on m-measure zero points.

3.1 Perron-Frobenious Operator

Let \mathcal{M} denote the linear vector space of signed measures on X. The evolution of distributions under the dynamics of (1) can be captured by a linear operator $P : \mathcal{M} \to \mathcal{M}$ defined as

$$(P\mu)(A) := \mu(T^{-1}A).$$ \hspace{1cm} (3)

Assume that μ is weaker than m. Since T is nonsingular $m(A) = 0 \implies m(T^{-1}A) = 0 \implies \mu(T^{-1}A) = 0 \implies (P\mu)(A) = 0$. Then $P\mu$ is also weaker than m. Therefore, P maps weaker (than m) measures to weaker (than m) measures. Equivalently, P can be seen to act over the space of measurable functions (Radon-Nikodym derivatives of measures). In other words, $P\rho$ is defined as the Radon-Nikodym derivative of $P\mu$ with respect
Therefore,
\[\int_{A} P \rho dm = \int_{T^{-1}A} \rho dm. \] (4)

\(P \) maps integrable functions to integrable functions. Therefore, the restriction of \(P \) as \(P : L_1 \rightarrow L_1 \) is a Markov operator:

- \(\rho \geq 0 \Rightarrow P\rho \geq 0 \)
- \(\|P\rho\| \leq \|\rho\| \).

3.2 Koopman Operator

A dual method to capture the statistical behaviour of the deterministic system (1) is via the Koopman operator \(U \), which describes the evolution of the values of observables under the dynamics of (1). Let \(\mathcal{O} = \mathcal{O}(X) \) denote the set of \(\nu \) equivalence classes of measurable functions on \(X \).

Define \(U : \mathcal{O} \rightarrow \mathcal{O} \) as
\[(Uf)(x) := f(Tx). \] (5)

Clearly, \(U \) is linear and maps positive functions to positive functions. It also maps bounded functions to bounded functions. Hence \(U \) can be restricted to \(L_\infty \), the normed vector space of equivalence classes of bounded measurable functions.

3.3 Duality between Perron-Frobenious and Koopman Operators

If \(\rho \in L_1 \) and \(f \in L_\infty \), then
\[< \rho, f > := \int \rho f dm \] (6)

is finite. To see the duality between \(P : L_1 \rightarrow L_1 \) and \(U : L_\infty \rightarrow L_\infty \), observe that
\[< P\rho, 1_A > = \int P\rho 1_A dm = \int_A P\rho dm = \int_{T^{-1}A} \rho dm = \int \rho 1_{T^{-1}A} dm = < \rho, 1_{T^{-1}A} > = < \rho, U1_A >. \]
Since any function in \(L_\infty \) can be approximated by characteristic functions we have the following duality
\[< P\rho, f > = < \rho, Uf > \quad \rho \in L_1, \ f \in L_\infty. \] (7)

This duality persists even for general measurable functions whenever the integral is finite.

4 Proofs

We will use the following characterization for almost sure attractivity of the equilibrium:

Lemma 1 \(\lim_{n \to \infty} x(n) = 0 \ m \text{-a.e. if and only if the series} \sum_{k=0}^{\infty} U^k 1_{B_\varepsilon} \) is finite \(m \text{-a.e. for all} \ \varepsilon > 0. \)

\(^1\)We allow here the integral to be infinite.
Proof. Consider a trajectory \(x(n) \) with initial condition \(x_0 \in X \). Then, \(\sum_{k=0}^{\infty} U^k 1_{B_{\varepsilon}}(x_0) = \sum_{k=0}^{\infty} 1_{B_{\varepsilon}}(T^n x_0) \) is equal to the number of visits of the trajectory \(x(n) \) to the closed set \(B_{\varepsilon} \). Hence, it is finite if and only if the set of limit points of \(x(n) \) is nonempty and contained in \(B_{\varepsilon} \). Therefore, \(\sum_{k=0}^{\infty} U^k 1_{B_{\varepsilon}}(x_0) \) is finite if and only if the set of limit points of \(x(n) \) is nonempty and contained in \(B_{\varepsilon} \) for \(m \)-a.e. initial points \(x_0 \). Invoking this statement for a sequence \(\varepsilon_i \to 0 \) and considering the fact that \(\bigcap_i B_{\varepsilon_i} = \{0\} \) and that any intersection of countably many full measure sets is a full measure set give the result.

Proof of Theorem \(\blacksquare \) We assume that there exists a properly subinvariant equivalent measure \(\mu \) that is finite on \(B_{\varepsilon} \) for every \(\varepsilon > 0 \). Let \(\rho > 0 \) be the Radon-Nikodym derivative of \(\mu \) with respect to \(m \). Then, \(m \)-a.e. \(\mathbb{P} \rho < \rho \). Define \(\rho_0 := \rho - \mathbb{P} \rho \). Clearly \(\rho_0 \) is positive \(m \)-a.e.

Note that

\[
\rho_0 := \sum_{k=0}^{\infty} \mathbb{P}^k \rho_0
\]

\[
= \rho_0 + \mathbb{P} \rho_0 + \mathbb{P}^2 \rho_0 + \cdots
\]

\[
= \rho - \mathbb{P} \rho + \mathbb{P} \rho + \mathbb{P}^2 \rho + \cdots
\]

\[
= \rho - \lim_{n \to \infty} \mathbb{P}^n \rho.
\]

The last limit exists \(m \)-a.e. since \(\mathbb{P}^n \rho \) is a decreasing sequence bounded from below. Since \(\rho \) and therefore all \(\mathbb{P}^n \rho \) has finite integral on sets \(B_{\varepsilon} \), we conclude that \(\rho_0 \) has finite integral on sets \(B_{\varepsilon} \). Therefore,

\[
\text{finite} = \langle \rho_0, 1_{B_{\varepsilon}} \rangle
\]

\[
= \sum_{k=0}^{\infty} \langle \rho_0, 1_{B_{\varepsilon}} \rangle
\]

\[
= \sum_{k=0}^{\infty} \rho_0 \mathbb{P}^k 1_{B_{\varepsilon}}
\]

\[
= \langle \rho_0, \sum_{k=0}^{\infty} \mathbb{P}^k 1_{B_{\varepsilon}} \rangle
\]

Since \(\rho_0 \) is positive \(m \)-a.e., \(\sum_{k=0}^{\infty} \mathbb{P}^k 1_{B_{\varepsilon}} \) is finite \(m \)-a.e. and from Lemma \(\blacksquare \) 0 is attracting \(m \)-a.e.. \(\blacksquare \)

References

[1] Anders Rantzer. A dual to Lyapunov’s stability theorem. *Systems and Control Letters*, 42:1–17, 2001.

[2] Stephen Prajna, Pablo a. Parrilo, and a. Rantzer. Nonlinear control synthesis by convex optimization. *IEEE Transactions on Automatic Control*, 49(2):310–314, 2004.

[3] Umesh Vaidya and Prashant G. Mehta. Lyapunov measure for almost everywhere stability. *IEEE Transactions on Automatic Control*, 53(1):307–323, 2008.