A self-assembled respiratory chain that catalyzes NADH oxidation by ubiquinone-10 cycling between complex I and the alternative oxidase

Article (Published Version)

Jones, Andrew J Y, Blaza, James N, Bridges, Hannah R, May, Benjamin, Moore, Anthony L and Hirst, Judy (2016) A self-assembled respiratory chain that catalyzes NADH oxidation by ubiquinone-10 cycling between complex I and the alternative oxidase. Angewandte Chemie International Edition, 55 (2). pp. 728-731. ISSN 1433-7851

This version is available from Sussex Research Online: http://sro.sussex.ac.uk/id/eprint/71979/

This document is made available in accordance with publisher policies and may differ from the published version or from the version of record. If you wish to cite this item you are advised to consult the publisher's version. Please see the URL above for details on accessing the published version.

Copyright and reuse:
Sussex Research Online is a digital repository of the research output of the University.

Copyright and all moral rights to the version of the paper presented here belong to the individual author(s) and/or other copyright owners. To the extent reasonable and practicable, the material made available in SRO has been checked for eligibility before being made available.

Copies of full text items generally can be reproduced, displayed or performed and given to third parties in any format or medium for personal research or study, educational, or not-for-profit purposes without prior permission or charge, provided that the authors, title and full bibliographic details are credited, a hyperlink and/or URL is given for the original metadata page and the content is not changed in any way.

http://sro.sussex.ac.uk
A Self-Assembled Respiratory Chain that Catalyzes NADH Oxidation by Ubiquinone-10 Cycling between Complex I and the Alternative Oxidase

Andrew J. Y. Jones, James N. Blaza, Hannah R. Bridges, Benjamin May, Anthony L. Moore, and Judy Hirst

Abstract: Complex I is a crucial respiratory enzyme that conserves the energy from NADH oxidation by ubiquinone-10 (Q_{10}) in proton transport across a membrane. Studies of its energy transduction mechanism are hindered by the extreme hydrophobicity of Q_{10}, and they have so far relied on native membranes with many components or on hydrophilic Q_{10} analogues that partition into membranes and undergo side reactions. Herein, we present a self-assembled system without these limitations: proteoliposomes containing mammalian complex I, Q_{10}, and a quinol oxidase (the alternative oxidase, AOX) to recycle Q_{10}H_{2} to Q_{10}. AOX is present in excess, so complex I is completely rate determining and the Q_{10} pool is kept oxidized under steady-state catalysis. The system was used to measure a fully-defined K_M value for Q_{10}. The strategy is suitable for any enzyme with a hydrophobic quinone/quinol substrate, and could be used to characterize hydrophobic inhibitors with potential applications as pharmaceuticals, pesticides, or fungicides.

Mitochondrial complex I (NADH:ubiquinone oxidoreductase) is a crucial energy-transducing respiratory enzyme. It catalyzes NADH oxidation in the matrix and ubiquinone-10 (Q_{10}) reduction in the inner membrane by a process coupled to energy-conserving proton transfer across the membrane. The mechanism of NADH oxidation by the flavin-containing active site has been characterized in detail by using soluble electron acceptors. The mechanism of Q_{10} reduction, an integral part of the unknown coupling mechanism, presents a much greater challenge owing to the extreme hydrophobicity of Q_{10}. Previous studies have addressed the effects of inhibitors\[3\] and mutations in and around the substrate binding site\[3,4\] and made use of spectroscopy to search for ubisemiquinone intermediates.\[3\] However, they have relied on either Q_{10} in native membranes\[5,6\] (which contain many different enzymes, thus complicating spectroscopic and kinetic analyses) or on non-physiological hydrophilic Q_{10} analogues such as ubiquinone-1, ubiquinone-2 and decylubiquinone (DOQ)\[4,7\] (which must be added in excessive concentrations to maintain steady-state catalysis and that react adventitiously at the flavin to generate damaging reactive oxygen and semiquinone species\[8\]).

Proteoliposomes (PLs) are artificial phospholipid vesicles into which membrane proteins are reconstituted to mimic their natural environment. PLs suitable for kinetic and spectroscopic studies of Q_{10} reduction by complex I require Q_{10} in the membrane and co-reconstitution of an enzyme to reoxidize Q_{10}H_{2} (ubiquinol-10, reduced Q_{10}). The alternative oxidase (AOX) is a single-subunit quinol oxidase that catalyzes Q_{10}H_{2} oxidation and Q_{2} reduction (but not proton transfer across the membrane).\[9\] Herein, we present a new, self-assembled respiratory membrane system (termed Q_{10}PLs) that contains mammalian complex I (from Bos taurus), Q_{10} (its physiological substrate), and AOX (from Trypanosoma brucei brucei; see Scheme 1).

Scheme 1. Q_{10} cycling in the Q_{10}PL membrane. Complex I (CI) oxidizes NADH in the external solution and reduces Q_{10} to Q_{10}H_{2} in the membrane; AOX reoxidizes the Q_{10}H_{2} and reduces Q_{2} to H_{2}O. k_{1} and k_{2} are the rate constants for catalysis by complex I and AOX, respectively.

Table 1 presents the catalytic properties of Q_{10}PLs formed with a CI/Q_{10}/AOX molar ratio of 1:800:26 (equal masses of complex I and AOX; see the Supporting Information for experimental details). The highest reported turnover numbers for AOX and B. taurus complex I are approximately 500 and 330 s^{-1}, respectively\[10,11\] (assuming complex I comprises ca. 10% of the protein in mitochondrial membranes\[12\]). The high CI/AOX ratio is intended to ensure that, during steady-state catalysis, complex I is rate determining and the Q_{10} pool is oxidized. First, to confirm that complex I is rate determining,
Q_0PLs were prepared with half the usual amount of complex I (Table S1 in the Supporting Information), and the rate of catalysis was exactly halved. Second, Equation 1 (derived from Scheme 1) indicates that a 1:26 ratio of complex I and AOX with equal rate constants, the Q_0 pool is 96% oxidized. Finally, complex I in Q_0PLs catalyzes at up to 400 s$^{-1}$ (see Table 1), which is faster than in native membranes (in which Q_0H$_2$ reoxidation is rate limiting).

$$\frac{[Q_0]}{[Q_0]_{[0]}+[Q_0]_{H_2}} = \frac{[\text{AOX}]}{[\text{AOX}]} \cdot 2$$

Q_0PLs allow direct comparison of complex I catalysis using Q_0 with catalysis using its hydrophilic analogue DQ.[7] Catalysis with 100 μM DQ (molar CI/DQ ratio 1:200,000) was measured with Q_0-free CI/AOX PLs, with AOX inhibited by ascorfuranone[14] to prevent DQH$_2$ reoxidation. Complex I turnover was three times slower than with Q_0 (127 vs. 410 s$^{-1}$, see Table 1). However, the rate increased to 215 s$^{-1}$ when AOX was allowed to oxidize DQH$_2$ in the membrane, which matches the rate of $NADH$:DQ oxidoreduction by the detergent-solubilized complex I used to prepare the (Q_0)PLs (233 ± 53 s$^{-1}$), and also the rate from (Q_0)PLs resolubilized by detergent addition. Therefore, steady-state reduction of DQ by complex I in (Q_0)PLs is hindered by accumulation of DQH$_2$ in the membrane and its slow exchange for DQ across the membrane interface. Our results highlight three important advantages of a reconstituted Q_0 system for studying the quinone chemistry of complex I: the rapid kinetics of Q_0 reduction, the physiological relevance of Q_0, and the simplicity of having all of the Q_0 species confined to the membrane with no exchange across the membrane interface.

Table: Characterization of a typical Q_0PL preparation.

Reaction	Specific activitya	Complex I turnoverb	Value determinedc
1) $NADH$:O$_2$	18.6 ± 0.51	309 ± 9	–
2) $NADH$:O$_2$ + gramicidind	20.4 ± 0.76	340 ± 13	RCR
3) $NADH$:O$_2$ + alamethicine	24.6 ± 1.26	410 ± 21	% Oriented
4) $NADH$:DQ + alf	7.64 ± 0.73	127 ± 12	Relative activity
5) $NADH$:DQ + alg	12.90 ± 0.23	215 ± 4	Relative activity

[a] Gramicidin is an ionophore that dissipates Δp. [b] Alamethicin is a pore-forming antibiotic that allows NADH access to the Q_0 lumen. [c] Ascorfuranone is an AOX inhibitor. [d] Mean ± S.E.M. (n = 3).

There are two well-established methods for assessing proton-motive force (Δp) formation by respiratory enzymes in PLs, a central requirement for mechanistic studies. First, substantial quenching of the fluorescence of 9-amino-6-chloro-2-methoxyacridine (ACMA) during NADH oxidation by Q_0PLs indicates the formation of a substantial ΔpH (Figure 1A).[5] Second, the respiratory control ratio (RCR) is the ratio of the coupled and uncoupled rates of catalysis: Δp opposes catalysis, so when an “uncoupler” is used to dissipate Δp, the rate increases. The RCR value for NADH oxidation by Q_0PLs (1.1, 4 H$^+$ translocated per NADH) is low compared to values reported for mitochondria particles (3.0–5.5,[11,12,16] 10 H$^+$ per NADH for complexes I, III, and IV) and complex I containing PLs measured using DQ (2.2–4.5,[17,18] 4 H$^+$ per NADH) However, lower values are typical for succinate oxidation by SMPs (1.6–3.2,[19,12,36] 6 H$^+$ per succinate from complexes II, III, and IV), and the highest value from inverted Escherichia coli vesicles that are known to sustain Δp ≈ 160 mV.[19] is 1.7[20] (6 H$^+$ per NADH, from complex I and an ubiquinol oxidase). Higher RCR values are usually taken to indicate “better coupled” vesicles, but the values are also affected by the enzyme activity and configuration. More highly active or tightly packed proton-pumping enzymes are better able to compete with proton leak back across the membrane, so they push Δp higher. During steady-state catalysis, proton leak and translocation are equal and opposite: because leak increases with Δp,[21] the more active or packed enzyme reaches a higher Δp but displays a lower

Figure 1. Analyses of ΔpH formation and Q_0 concentration in Q_0PLs. A) Formation of ΔpH across the PL membrane is demonstrated by quenching of ACMA fluorescence. Gramicidin collapses Δp and the fluorescence returns to its starting value. Conditions: 4 μM NADH and 6 μM L- AOX in Q_0PLs containing ca. 20 nmol Q_0/mg phospholipid in 10 mm Tris-SO$_4$ (pH 7.5), 50 mm KCI, 75 mm KNO$_3$, and 0.5 μM ACMA, 32 °C. B) Spectroscopic determination of Q_0 concentration in a Q_0PL preparation. The spectra are from Q_0PLs that have been solubilized with 1% sodium dodecyl sulfate (SDS) before (oxidized) and after (reduced) addition of 1.5 mM KBH$_4$ to reduce the Q_0 to Q_0H$_2$. The intensity of the difference spectrum at 275 nm denotes the Q_0 concentration. Concentrations present: 11.8 nm complex I, 0.6 μM AOX, 0.472 mg mL$^{-1}$ phospholipid, and 6.88 μM Q_0 (calculated).
RCR. Therefore, it is not currently possible to quantify the Δp sustained by complex I in Q_{10}PLs. The pore-forming antibiotic alamethicin[13] was used in all subsequent experiments to dissipate Δp and prevent it from confounding the results.

Q_{10}PLs are a unique respiratory system because all of their components are known and can be quantified (see the Supporting Information). Complex I concentrations were quantified using the flavin-catalyzed NADH:APAD$^+$ oxidoreduction reaction,[22] and AOX concentrations were taken to be the difference between the total protein and complex I concentrations. Phospholipid concentrations were quantified by phosphate determination[23] and Q_{10} concentrations were determined spectrophotometrically by measuring the absorbance change upon addition of KBH$_4$ (a reducing agent, see Figure 1B).[24] Table S1 shows the values from a set of Q_{10}PLs containing different Q_{10} concentrations. Finally, density-gradient centrifugation was used to check the homogeneity of a high-Q_{10} preparation of Q_{10}PLs. Two distinct bands were observed: the denser band contained approximately 80% of the phospholipid and roughly 90% of the complex I. The vesicles in the less dense band may contain less complex I because they became less saturated with detergent during reconstitution. Crucially, both bands contained the same phospholipid/Q_{10} ratio, so the minor inhomogeneity present was not considered significant.

Figure 2 shows the rate of NADH:O$_2$ oxidoreduction by complex I in Q_{10}PLs as a function of Q_{10} concentration, defined using the phospholipid concentration as a proxy for the hydrophobic/membrane phase volume. The complex I/Q_{10} ratio is fixed in the preparation, so standard solution kinetic analyses are not possible and each point is from an independent preparation. The fact that the preparation with half the usual complex I content has a matching rate of turnover confirms that the rate is set only by the Q_{10} concentration (complex I is diluted in the membrane but the Q_{10} concentration is constant). The data in Figure 2 were fit to the Michaelis–Menten equation, giving a K_M (Q_{10}) value for $B. taurus$ complex I of 3.9 nmol/mg phospholipid (approximately one Q_{10} molecule per 300 phospholipids). To our knowledge this is the first steady-state K_M measurement for an enzyme and its native quinone, for which the quinone substrate pool is held fully oxidized in every condition tested. Previously, elegant single-turnover kinetics on Rhodobacter complex III in chromatophores defined $K_M(Q_{10}H_2) = 3–5 Q_{10}H_2$ per complex, but using a “collisional mechanism” in which the rate is determined by $[Q_{10}H_2]$ and unaffected by $[Q_{10}]$.[26] For complex I, a value of $K_M(Q_{10}) = 2.4 \pm 1.7$ mmol/mg protein (consistent with our value) was reported using pentane-extracted mitochondria (but with the redox state of the Q pool undefined).[27]

Figure 2 also shows our value for complex I turnover in $B. taurus$ heart mitochondrial membranes that contain approximately 12 nmol Q_{10}/mg phospholipid (ca. 60 Q_{10} per complex I; see Table S2). Because the membrane Q_{10} concentration is three times the complex I K_M value, respiratory-chain turnover in membranes is not limited at complex I by Q_{10} pool concentration. The membrane data point in Figure 2 falls below the curve owing to rate-limiting contributions from complexes III and IV (which also render the Q_{10} pool partially reduced).

The K_M (Q_{10}) value of 3.9 nmol Q_{10}/mg phospholipid equates to approximately 3.9 mm Q_{10} in the membrane phase because 1 mg of phospholipid has a volume of around 1 μL.[26] The value is high in comparison to values for enzymes that act on soluble substrates, but Q_{10} is restricted to diffusion only within the two-dimensional membrane bilayer, and the K_M tells us little about the Q pool undefined).

Figure 2 shows the value for complex I turnover in $B. taurus$ heart mitochondrial membranes that contain approximately 12 nmol Q_{10}/mg phospholipid (ca. 60 Q_{10} per complex I; see Table S2). Because the membrane Q_{10} concentration is three times the complex I K_M value, respiratory-chain turnover in membranes is not limited at complex I by Q_{10} pool concentration. The membrane data point in Figure 2 falls below the curve owing to rate-limiting contributions from complexes III and IV (which also render the Q_{10} pool partially reduced).

The K_M (Q_{10}) value of 3.9 nmol Q_{10}/mg phospholipid equates to approximately 3.9 mm Q_{10} in the membrane phase because 1 mg of phospholipid has a volume of around 1 μL.[26] The value is high in comparison to values for enzymes that act on soluble substrates, but Q_{10} is restricted to diffusion only within the two-dimensional membrane bilayer, and the K_M tells us little about the Q pool undefined).

Figure 2 also shows our value for complex I turnover in $B. taurus$ heart mitochondrial membranes that contain approximately 12 nmol Q_{10}/mg phospholipid (ca. 60 Q_{10} per complex I; see Table S2). Because the membrane Q_{10} concentration is three times the complex I K_M value, respiratory-chain turnover in membranes is not limited at complex I by Q_{10} pool concentration. The membrane data point in Figure 2 falls below the curve owing to rate-limiting contributions from complexes III and IV (which also render the Q_{10} pool partially reduced).

The K_M (Q_{10}) value of 3.9 nmol Q_{10}/mg phospholipid equates to approximately 3.9 mm Q_{10} in the membrane phase because 1 mg of phospholipid has a volume of around 1 μL.[26] The value is high in comparison to values for enzymes that act on soluble substrates, but Q_{10} is restricted to diffusion only within the two-dimensional membrane bilayer, and the K_M tells us little about the Q pool undefined).

Q_{10}PLs are independent respiratory units formed by self-assembly from a mixture of phospholipids, Q_{10}, complex I, and AOX. Complex I (from $B. taurus$ heart) and AOX (from $T. brucei$) originate from very different sources and assemble independently into Q_{10}PLs, thus making non-physiological supercomplex assemblies highly unlikely and imposing the fluid mosaic model[29] on the membrane. The rapid rates of catalysis observed support the interpretation that supercomplexes are not necessary for efficient catalysis and argue further against a role for Q_{10} channeling within them.[25]

Self-assembled artificial respiratory chains are suitable for biophysical studies of any respiratory or photosynthetic enzyme that uses a membrane-bound quinone substrate. Historically, they were used to demonstrate the construction of respiratory chains from individual enzymes and Q_{10}, but their capabilities have not (with very few exceptions[30,31]) been exploited for detailed mechanistic studies. Furthermore, many quinone antagonists are already used as pharmaceuticals or pesticides,[32,33] and bioenergetic enzymes specific to parasites and phytopathogenic fungi (including the alternat-
tive NADH dehydrogenase and AOX) are being investigated as drug targets.\[14,35\] Our self-assembled QPL system enables candidate drugs and inhibitors to be competed against physiologically relevant quinone substrates to provide properly defined and robust inhibitor dissociation constants for translational research.

Acknowledgements

This research was funded by The Medical Research Council (grant U105663141 to J.H.), BBSRC (BB/L022915/1 to A.L.M.) and the University of Sussex.

Keywords: electron transport chain · NADH · oxidoreductases · proteoliposomes · quinones

How to cite: Angew. Chem. Int. Ed. 2016, 55, 728–731

Angew. Chem. 2016, 128, 738–741

[1] J. Hirst, Annu. Rev. Biochem. 2013, 82, 551–575.
[2] T. Ito, M. Murai, H. Morisaka, H. Miyoshi, Biochemistry 2015, 54, 3677–3686.
[3] P. K. Sinha, N. Castro-Guerrero, G. Patki, M. Sato, J. Torres-Bacete, S. Sinha, H. Miyoshi, A. Matsuno-Yagi, T. Yagi, Biochemistry 2015, 54, 753–764.
[4] M. A. Tocilescu, U. Fendel, K. Zwicker, S. Kerscher, U. Brandt, J. Biol. Chem. 2007, 282, 29514–29520.
[5] A. D. Vinogradov, V. D. Sled, D. S. Burbaev, V. G. Grivennikova, I. A. Moroz, T. Ohnishi, FEBS Lett. 1995, 370, 83–87.
[6] A. Kröger, M. Klingenberg, Eur. J. Biochem. 1973, 34, 358–368.
[7] E. Estornell, R. Fato, F. Pallotti, G. Lenaz, FEBS Lett. 1993, 332, 127–131.
[8] M. S. King, M. S. Sharpley, J. Hirst, Biochemistry 2009, 48, 2053–2062.
[9] T. Shiba, Y. Kido, K. Sakamoto, D. K. Inaoka, C. Tsuge, R. Tatsumi, G. Takahashi, E. O. Balogun, T. Nara, T. Aoki, et al., Proc. Natl. Acad. Sci. USA 2013, 110, 4580–4585.
[10] Y. Kido, K. Sakamoto, K. Nakamura, M. Harada, T. Suzuki, Y. Yabu, H. Saimoto, F. Yamakura, D. Ohmori, A. Moore, et al., Biochim. Biophys. Acta 2010, 1797, 443–450.
[11] A. D. Vinogradov, V. G. Grivennikova, Biochemistry 2005, 70, 120–127.
[12] K. R. Pryde, J. Hirst, J. Biol. Chem. 2011, 286, 18056–18065.
[13] I. S. Gostimskaya, V. G. Grivennikova, T. V. Zharova, L. E. Bakeeva, A. D. Vinogradov, Anal. Biochem. 2003, 313, 46–52.
[14] C. Nihei, Y. Fukushima, K. Kawai, A. Osanai, Y. Yabu, T. Suzuki, N. Ohta, N. Minagawa, K. Nagai, K. Kita, FEBS Lett. 2003, 538, 35–40.
[15] S. Grzesiek, H. Otto, N. A. Dencher, Biophys. J. 1989, 55, 1101–1109.
[16] A. B. Kotlyar, A. D. Vinogradov, Biochim. Biophys. Acta Bioenerg. 1990, 1019, 151–158.
[17] A. Galkin, S. Dröse, U. Brandt, Biochim. Biophys. Acta Bioenerg. 1990, 1757, 1575–1581.
[18] P. G. Roberts, J. Hirst, J. Biol. Chem. 2012, 287, 34743–34751.
[19] W. W. Reenstra, L. Patel, H. Rottenberg, H. R. Kaback, Biochemistry 1980, 19, 1–9.
[20] C. Burstein, L. Tiankova, A. Kepes, Eur. J. Biochem. 1979, 94, 387–392.
[21] D. G. Nicholls, Eur. J. Biochem. 1974, 50, 305–315.
[22] G. Yakovlev, J. Hirst, Biochemistry 2007, 46, 14250–14258.
[23] B. N. Ames, Methods Enzymol. 1966, 8, 115–118.
[24] R. Covian, B. L. Trumpower, J. Biol. Chem. 2005, 280, 22732–22740.
[25] J. N. Blaza, R. Serreli, A. J. Y. Jones, K. Mohammed, J. Hirst, Proc. Natl. Acad. Sci. USA 2014, 111, 15735–15740.
[26] G. Venturoli, J. G. Fernández-Velasco, A. R. Crofts, B. A. Melandri, Biochim. Biophys. Acta 1986, 851, 340–352.
[27] E. Estornell, R. Fato, C. Castelluccio, M. Cavazzoni, G. Parenti Castelli, G. Lenaz, FEBS Lett. 1992, 311, 107–109.
[28] G. C. Newman, C. Huang, Biochemistry 1975, 14, 3363–3370.
[29] A. M. James, R. A. J. Smith, M. P. Murphy, Arch. Biochem. Biophys. 2004, 423, 47–56.
[30] S. J. Singer, G. L. Nicolson, Science 1972, 175, 720–731.
[31] G. Venturoli, N. Gabbolini, D. Oesterhelt, B. A. Melandri, Eur. J. Biochem. 1990, 189, 95–103.
[32] P. R. Rich, Pestic. Sci. 1996, 47, 287–296.
[33] K. B. Wallace, A. A. Starkov, Annu. Rev. Pharmacol. Toxicol. 2000, 40, 353–388.
[34] E. A. Weinstein, T. Yano, L. S. Li, D. Avarbock, A. Avarbock, D. Helin, A. A. McColm, K. Duncan, J. T. Lonsdale, H. Rubin, Proc. Natl. Acad. Sci. USA 2005, 102, 4548–4553.
[35] H. Saimoto, Y. Kido, Y. Haga, K. Sakamoto, K. Kita, J. Biochem. 2013, 153, 267–273.

Received: August 6, 2015
Revised: September 28, 2015
Published online: November 23, 2015