Interplay between sign problem and Z_3 symmetry in three-dimensional Potts model

Takehiro Hirakida,† Hiroaki Kouno,‡ Junichi Takahashi,† and Masanobu Yahiro†

†Department of Physics, Graduate School of Sciences, Kyushu University, Fukuoka 819-0395, Japan
‡Department of Physics, Saga University, Saga 840-8502, Japan

(Dated: June 15, 2016)

Thermodynamic properties of quantum chromodynamics (QCD) are often described as a phase diagram in the μ-T plane, where T and μ mean temperature and quark-number chemical potential, respectively. However, the QCD phase diagram is known only in the vicinity of the T axis, because lattice QCD (LQCD) simulations as the first principle calculation have a serious sign problem at finite real μ. Exploration of the QCD phase diagram then becomes one of the most challenging subjects in particle and nuclear physics, and the results have been playing an important role on cosmology and astrophysics. The quark determinant, which appears after the quark field is integrated out in the grand-canonical QCD partition function in the Euclidean path integral formalism, becomes complex for finite real μ. Several approaches were proposed so far to resolve this sign problem; for example, the reweighting method [1], the analytic continuation from imaginary μ to real μ [2,7] and the Taylor expansion method [6,9]. Recently, remarkable progress has been made in the complex Langevin simulation [10–14] and the Picard-Lefschetz thimble theory [15–17], but our understanding is still far from perfection.

Z_3 symmetry is exact in pure gauge theory but not in QCD with finite quark masses. However, the symmetry is considered to work well as an approximate symmetry and be related to the deconfinement transition. It was pointed out that Z_3 symmetry or group may play an important role in the sign problem. In Refs. [18] and [19], it was shown that, using the properties of Z_3 group elements, an effective center field theory with sign problem can be transformed into a flux model with no sign problem. It was also conjectured that the center dressed quarks undergo a new phase due to the Fermi Einstein condensation in cold but dense matter of the hadronic phase and the sign problem is cured in such a new phase [20].

Recently, in Ref. [21], it was suggested that, even in the case of the full QCD having Z_3 symmetry approximately, the sign problem may be cured to some extent by using the Z_3-averaged subset method, at least in the strong coupling limit. However, there are still many difficulties, when the methods are applied to realistic full LQCD simulations.

As mentioned above, in pure SU(3) gauge theory, Z_3 symmetry is exact and characterizes the confinement-deconfinement transition. The Polyakov loop $L(x)$ [22], not invariant under the Z_3 transformation, is an order parameter of the transition. The expectation value $\langle L(x) \rangle$ is also related with the free energy of a static quark. If $\langle L(x) \rangle = 0$, the free energy becomes infinite and thereby quarks are confined. In the full QCD with dynamical quarks, however, Z_3 symmetry is not exact anymore and the relation between Z_3 symmetry and the confinement-deconfinement transition is not clear.

In a series of papers [23–27], Z_3-symmetric QCD-like theory was proposed and studied extensively. In this paper, we simply refer to the theory as Z_3-QCD. In Z_3-QCD, the symmetry is relaxed and the flavor dependent imaginary chemical potential is introduced to retain Z_3 symmetry. In the papers, the phase structure in the Z_3-QCD was studied by using the Polyakov-loop extended Nambu–Jona-Lasinio (PNJL) model [28–32] as an effective model of QCD. Recently, lattice simulations of Z_3-QCD was done at $\mu = 0$ [33]. The result was shown to be consistent with the PNJL-model prediction. It should be also remarked that the Z_3-QCD tends to three flavor QCD in the limit of $T \rightarrow 0$ as is explained in next section.

There is a possibility that the sign problem becomes milder in Z_3-QCD than in QCD. Kouno et al. pointed out this possibility by making a qualitative comparison between the heavy-dense model [34,35] and its Z_3-symmetric extension newly constructed, and proposed a Taylor-expansion method of deriving QCD results from Z_3-QCD ones [27]. The interplay between the sign problem and Z_3 symmetry is thus quite interesting.

The heavy-dense model is well known as an effective model of QCD for large mass M and large μ keeping $\mu - M$ finite. The three-dimensional (3-d) 3-state Potts model [18,19,36–38] is a simplified version of the heavy-dense model. In this sense, the Potts model should be considered at large M and

I. INTRODUCTION

1. INTRODUCTION
\[Z_3 \] states are taken as three states at each site on a 3-d lattice. Considering the \(Z_3 \) elements as a substitute for the Polyakov-loop operator \(L(x) \) in QCD, one can discuss \(Z_3 \) symmetry and confinement through the 3-d Potts model. In QCD, the operator \(L(x) \) depends on the 3-d coordinate \(x \) and \(T \), but in the Potts model the \(Z_3 \) elements can depend on \(x \) but lose information on \(T \) as a result of the substitution. One can regard \(\Phi_x \) as "Polyakov-loop operator" in the 3-d Potts model. The \(\Phi_x \) should be averaged over \(x \) to define random and ordered states. The average \(\langle \Phi \rangle \) depends on the coupling strength of Polyakov loop \(\langle L(x) \rangle \) in QCD [38]. This indicates that \(\kappa \) plays a role of temperature and one can consider the phase diagram in the \(\mu-\kappa \) plane.

In this paper, we construct four kinds of \(Z_3 \)-symmetric 3-d Potts models, each with different number of states, in order (1) to clarify the interplay between \(Z_3 \) symmetry and the sign problem, and (2) to see how the deconfinement transition line changes in the \(\mu-\kappa \) plane with respect to increasing the number of states of \(\Phi_x \). Basic properties of the four \(Z_3 \)-symmetric 3-d Potts models, named (A)-(D), are tabulated in Table I together with those of the original 3-d 3-state Potts model. We clarify subject (1) by comparing the original Potts model with model (D) and subject (2) by changing the number of states from 3 of model (A) to 13 of model (D).

The Potts model is missing the chiral symmetry, because it considers the case of large quark mass. Hence we cannot discuss the chiral phase transition directly. However, there is an onset transition of quark number density, in addition to the deconfinement transition, in the Potts model. The order parameter of the transition is, of course, the quark number density itself. As for the critical endpoint of chiral transition at finite \(T \) and \(\mu \) in QCD, it was pointed out [39] that the order parameter is not the scalar density only, but a linear combination of the scalar, quark number and energy densities. This mixing makes the chiral transition the first order at middle and large \(\mu/T \). In this sense, we can regard the quark number density as the quantity related to the chiral transition at middle and large \(\mu \). Similarly, the onset transition also affects the deconfinement transition. We will show that, in the \(Z_3 \)-symmetric 3-d Potts model, the sign problem appears when the deconfinement transition is entangled strongly with the onset transition.

This paper is organized as follows. We recapitulate \(Z_3 \)-QCD in Sec. II. In Sec. III we overview the sign problem and show a way of making the QCD partition function real. In Sec. IV we see how the deconfinement transition line is defined by

\[S = \int_0^\beta d\tau \int_0^\infty dx^4 \int d^4x \mathcal{L} \]

with \(\beta = 1/T \) and the Lagrangian density

\[\mathcal{L} = \mathcal{L}_Q + \mathcal{L}_G \]

composed of the quark and gluon parts

\[\mathcal{L}_Q = \bar{q} \mathcal{M}(\mu, A_\mu) q, \]

\[\mathcal{L}_G = \frac{1}{4g^2} F_{\mu\nu}^2 = \frac{1}{2g^2} \text{Tr} \left[F_{\mu\nu}^2 \right], \]

where

\[\mathcal{M}(\mu, A_\mu) = D_\mu(A_\mu) \gamma_\mu + m - \mu \gamma_4, \]

\[F_{\mu\nu} = \partial_\mu A_\nu - \partial_\nu A_\mu - ig[A_\mu, A_\nu], \]

\[A_\mu = \sum_{a=1}^8 A_\mu^a T^a. \]

Here \(q, A_\mu, \) and \(T^a \) are the quark field, the gluon field, and the generator of SU(3) group, respectively, and the trace Tr is taken for the color indices. As for \(T^a \), we use the standard notation \(T^a = \gamma_5 \) defined by the Gell-Mann matrices \(\lambda^a \). The action \(S \) then can be decomposed into the quark and gluon components as \(S = S_Q + S_G \) with

\[S_Q = \int_0^\beta d\tau \int_0^\infty dx^4 \int d^4x \mathcal{L}_Q, \]

\[S_G = \int_0^\beta d\tau \int_0^\infty dx^4 \int d^4x \mathcal{L}_G. \]

In the present formalism, we have used the following Euclidean notations:

\[x_4 \equiv i x_0 = i x^0 = i t, \quad A_4 \equiv i A_0 = i A^0, \]

\[D_\mu(A_\mu) = \frac{\partial}{\partial x^\mu} - i A_\mu, \]

\[\gamma_4 = \gamma_0^T, \quad \gamma_i = i \gamma_i^T \quad (i = 1, 2, 3), \]

where the \(\gamma_i^T \) (\(\mu = 0, 1, 2, 3 \)) are the standard gamma matrices in Minkowski space [40]. The temporal anti-periodic boundary condition on the quark field is given by

\[q(x_4 = \beta, x) = -q(x_4 = 0, x), \]
while the gluon field satisfies the temporal periodic boundary condition. The Lagrangian density \(\mathcal{L} \) is invariant under the \(Z_3 \) transformation,

\[
q \rightarrow q' = Uq,
A_\mu \rightarrow A'_\mu = UA_\mu U^{-1} + i(\partial_\mu U)U^{-1},
\]

where

\[
U(x_4 = \beta, x) = \exp(i\alpha_a T_a)
\]

is an element of SU(3) group characterized by real functions \(\alpha_a \) satisfying the boundary condition

\[
U(x_4 = \beta, x) = \exp(-i2\pi k/3)U(x_4 = 0, x)
\]

for any integer \(k \). However, the quark field boundary condition \([10]\) is changed by the \(Z_3 \) transformation as

\[
q(x_4 = \beta, x) = -e^{i2\pi k/3}q(x_4 = 0, x).
\]

In full QCD with dynamical quarks, \(Z_3 \) symmetry is thus broken through the quark boundary condition.

\(Z_3 \) symmetry can be recovered by introducing the flavor-dependent twist boundary condition (FTBC) as follows.

\[
q(x_4 = \beta, x) = -e^{-i\theta_f}q(x_4 = 0, x)
\]

with

\[
\theta_f = \frac{2\pi}{3}f \quad (f = -1, 0, 1).
\]

For later convenience, the flavor indices are numbered as \(-1, 0, 1\). Under the \(Z_3 \) transformation \([11]\), the FTBC \([15]\) is changed into

\[
q_f(x_4 = \beta, x) = -e^{-i\theta'_f}q_f(x_4 = 0, x)
\]

with

\[
\theta'_f = \frac{2\pi}{3}(f - k) \quad (f = -1, 0, 1).
\]

The boundary condition \([17]\) after \(Z_3 \)-transformation returns to the original one \([15]\) by relabeling the flavor indices \(f - k \) as \(f \). Hence, we consider the FTBC instead of the standard one in \(S \), the QCD-like theory obviously has \(Z_3 \) symmetry. This theory is shortly referred to as \(Z_3 \)-QCD in this paper.

The \(Z_3 \)-QCD tends to QCD with symmetric three flavor quarks in the limit of \(T \to 0 \), since the difference between the two theories comes only from the temporal fermion boundary condition that has no contribution in the limit.

When the fermion fields \(q_f \) are transformed as \([41]\)

\[
q_f \rightarrow \exp(-i\theta_f T \tau)q_f,
\]

the boundary condition \([15]\) returns to the ordinary one \([10]\), but \(\mathcal{L} \) is changed into

\[
\mathcal{L}^\theta = \bar{q}(\gamma_\nu D^\theta_\nu + m)q + \frac{1}{4g^2}F^\theta_{\mu \nu}^2
\]

with \(D^\theta_\nu \equiv \partial_\nu - i(A_\nu + \hat{\theta}_\nu A T) \), where the flavor-dependent imaginary chemical potentials \(i\theta T \) are defined by

\[
\hat{\theta} = \text{diag}(\theta_1, \theta_0, \theta_1) = \text{diag}(-2\pi/3, 0, 2\pi/3).
\]

The flavor-dependent imaginary chemical potentials partially break \(SU(3) \) flavor symmetry and associated \(SU(3) \) chiral symmetry \([23, 24]\). In the chiral limit \(m \to 0 \), global \(SU_N(3) \times SU_A(3) \) symmetry is broken down to \((U(1)_V)^2 \otimes (U(1)_A)^2 \) [25]. The symmetry is even broken into \((U(1)_V)^2 \), as soon as chiral symmetry is spontaneously broken.

III. SIGN PROBLEM AND CHARGE CONJUGATION OF GAUGE FIELDS

The grand canonical partition function of QCD with finite \(\mu \) is obtained by

\[
Z(\mu) = \int D\mathbf{A} \mathcal{D}q \mathcal{D}c e^{-S}
\]

with the action \(S \) of Eqs. \([1] \sim [7]\) in the previous section. The path integration over the quark fields leads to

\[
Z(\mu) = \int D\mathbf{A} \det \left[\mathcal{M}(\mu, A_\mu) \right] e^{-S_G}.
\]

We start with the general case that \(\mu \) and \(A_\mu^a \) are complex. Using the relation

\[
\mathcal{M}(\mu, A_\mu)^\dagger = -D_\mu(A_\mu^1)\gamma_\mu + m - \mu^*\gamma_4 = \gamma_5\mathcal{M}(-\mu^*, A_\mu^1)\gamma_5,
\]

one can obtain

\[
\{ \det [\mathcal{M}(\mu, A_\mu)] \}^* = \det [\mathcal{M}(\mu, A_\mu)]^\dagger
= \{ \gamma_5 \mathcal{M}(-\mu^*, A_\mu^1) \gamma_5 \}
= \{ \gamma_5 \det [\gamma_5] \det [\mathcal{M}(-\mu^*, A_\mu^1)] \}
= \{ \det [\mathcal{M}(-\mu^*, A_\mu^1)] \}.
\]

In general, the last form of \([25]\) does not agree with \(\det [\mathcal{M}(\mu, A_\mu)] \). This leads to the fact that \(\det [\mathcal{M}(\mu, A_\mu)] \) is not real generally. Even in the case that \(\mu \) and \(A_\mu^a \) are real, Eq. \([25]\) does not ensure that \(\det [\mathcal{M}(\mu, A_\mu)] \) is real. If the integrand is not real in \([25]\), we cannot interpret the integrand as a probability. This makes it impossible to apply the importance sampling method to the QCD action for the case of finite real \(\mu \). This is nothing but the famous sign problem.

The sign problem is originated in the fact that the fermion determinant \(\det [\mathcal{M}(\mu, A_\mu)] \) is complex. For real \(\mu \) and \(A_\mu^a \), however, it is always possible to make \(Z(\mu) \) real by averaging the gauge configurations partially, as shown below. Using the charge conjugation matrix \(C = \gamma_2\gamma_4 \), one can get

\[
[(C^\dagger)^{-1}\mathcal{M}(-\mu^*, A_\mu^1)C]^\dagger = D_\mu(-A_\mu^1)^*\gamma_\mu + m + \mu^*\gamma_4 = \mathcal{M}(\mu^*, -A_\mu^1),
\]

with \(D_\mu \equiv \partial_\mu - i(A_\mu + \hat{\theta}_\mu A T) \).
and hence \[\text{(det } [\mathcal{M}(\mu, A_\mu)])^* = \text{det } [\mathcal{M}(\mu^*, A^*_\mu)] \]
\[= \text{det } (C^t)^{-1} \text{det } [\mathcal{M}(\mu^*, A^*_\mu)] \text{det } C^t \]
\[= \text{det } [(C^t)^{-1} \mathcal{M}(\mu^*, A^*_\mu) C^t]^t \]
\[= \text{det } [\mathcal{M}(\mu^*, -A^*_\mu)]. \] (27)

In QCD with real \(\mu \) and \(A^\mu_\mu \), the relation \(A^\mu_\mu = A^\mu' \) leads to
\[(\text{det } [\mathcal{M}(\mu, A_\mu)])^* = \text{det } [\mathcal{M}(\mu, -A^\mu'_\mu)], \] (28)
where \((A^\mu_\mu T^\alpha)^t = A^\mu_\mu T^\alpha \) for \(a = 1, 3, 4, 6, 8 \) and \((A^\mu_\mu T^\alpha)^t = -A^\mu_\mu T^\alpha \) for \(a = 2, 5, 7 \). Noting the relation \[(A_\mu A_\mu')^t = -A^\mu_\mu T_a = - \left(\sum_{a=1}^{8} A^a_\mu T_a \right)^t = -A^t_\mu, \] (29)
where \(A^a_\mu \) for \(a = 1, 3, 4, 6, 8 \) and \(A^a_\mu' = A^a_\mu \) for \(a = 2, 5, 7 \). The gauge action \(S_G \) and the Haar measure are invariant under the transformation \(A_\mu \rightarrow A'_\mu = -A^t_\mu \), since this transformation is nothing but charge conjugation for the gauge field. In fact, after this transformation, \(F_{\mu\nu} \) is transformed into
\[F_{\mu\nu'} = - \partial_\mu (A_{\nu'}) + \partial_\nu (A_{\mu'}) - i g [(A_{\mu'})^t, (A_{\nu'})^t] \]
\[= - [F_{\mu\nu}]^t, \] (30)
where \(^t \) denotes the transpose operation only on the color index. Hence, the gauge action \(S_G \) is invariant under this transformation.

In QCD with real \(\mu \), we then obtain
\[(\text{det } [\mathcal{M}(\mu, A_\mu)])^* = \text{det } [\mathcal{M}(\mu, -A^\mu_\mu)] \]
\[= \text{det } [\mathcal{M}(\mu, A^\mu_\mu)]. \] (31)

Averaging the integrand of \(Z(\mu) \) over the two configurations \(A_\mu \) and \(A'_\mu \), one can get
\[\frac{1}{2} \left(\text{det } [\mathcal{M}(\mu, A_\mu)] e^{-S_G} + \text{det } [\mathcal{M}(\mu, A'_\mu)] e^{-S_G} \right) \]
\[= \frac{1}{2} \left(\text{det } [\mathcal{M}(\mu, A_\mu)] + (\text{det } [\mathcal{M}(\mu, A_\mu)])^* \right) e^{-S_G} \]
\[= \text{Re } \left(\text{det } [\mathcal{M}(\mu, A_\mu)] e^{-S_G} \right). \] (32)

This ensures that the integrand of \(Z(\mu) \) becomes real.

Now we consider \(Z_3 \)-QCD. The theory tends to QCD with symmetric three flavor quarks in the \(T = 0 \) limit, since the difference between the two theories comes only from the temporal fermion boundary condition that has no contribution in the limit. Equation \[(28) \] is modified by the charge conjugation matrix as
\[\prod_{f=-1,0,1} \text{det } [\mathcal{M}(\mu + i 2\pi f/3, A_\mu)]^* \]
\[= \prod_{f=-1,0,1} \text{det } [\mathcal{M}(\mu - i 2\pi f/3, -A^*_\mu)] \]
\[= \prod_{f=1,0,-1} \text{det } [\mathcal{M}(\mu + i 2\pi f/3, -A^*_\mu)]. \] (33)

In \(Z_3 \)-QCD, the integrand of the partition function thus becomes real after the averaging procedure mentioned above. Even if the integrand of the partition function becomes real, it does not mean that the sign problem is solvable. This will be discussed later in Sec. \[IV \].

IV. SIGN PROBLEM IN 3-D 3-STATE Potts Model

We first construct a \(Z_3 \)-symmetric Potts model to investigate the interplay between the sign problem and \(Z_3 \) symmetry. The standard 3-d 3-state Potts model is not \(Z_3 \)-symmetric and has a sign problem, as shown below. Here we use the 3-d 3-state Potts model presented in Ref. \[[38] \]. The partition function of the 3-d 3-state Potts model is defined by \[(37), (38) \]
\[Z(\kappa, h) = \int D\Phi e^{-S} = \int D\Phi e^{-S_0} e^{-S_1}; \] (34)
\[S_0[\Phi_x, \kappa] = -\kappa \sum_{x,i} \delta_{\Phi_x, \Phi_{x+i}}; \] (35)
\[S_1[\Phi_x, h] = - \sum_x \{ h_+ \Phi_x + h_- \Phi_{\bar{x}} \}, \] (36)
\[h_+ = \exp(-\beta(M - \mu)), \quad h_- = \exp(-\beta(M + \mu)) \] (37)
for the parameter \(\kappa \) and the unit vector \(\hat{i} \) in 3-d space, where \(M \) and \(\mu \) correspond to the mass and the chemical potential of heavy quark, respectively. In Eq. \[(34), \Phi_x \] represents a \(Z_3 \) element on site \(x \) and plays a role of the Polyakov loop operator in the Potts model, as already mentioned in Sec. \[I \].

The \(\Phi_x \) can be averaged over \(x \) as
\[\bar{\Phi} = \frac{1}{V} \sum_x \Phi_x = \frac{1}{V} \sum_x \Phi_{x,R} + \frac{1}{V} \sum_x \Phi_{1,x} = \bar{\Phi}_{R} + i \bar{\Phi}_{I}, \] (38)
where \(\Phi_{x,R} (\bar{\Phi}_{I}) \) and \(\Phi_{1,x} (\bar{\Phi}_{I}) \) mean the real and imaginary parts of \(\Phi_x (\bar{\Phi}) \), respectively, and \(V \) is the lattice volume. We can regard the expectation value \(\langle \bar{\Phi} \rangle \) as a "Polyakov loop" in the Potts model, since \(\langle \bar{\Phi} \rangle \) has a property similar to the Polyakov loop \(\langle L(x) \rangle \) in QCD \[[38] \]. Obviously, \(S_0 \) is \(Z_3 \)-invariant, but \(S_1 \) is not. In addition, \(S_1 \) can be complex for finite \(\mu \).
In the Potts model, the sign problem is originated in the fact that the effective chemical potential is complex. If we denote the phase of Φ_x as $\hat{\phi}_x$, Eq. (36) is rewritten as

$$S_1[\Phi_x, h] = -2e^{-\beta M} \sum_x |\Phi_x| \cosh(\hat{\beta} \hat{\phi}_x)$$ \hspace{1cm} (39)$$

with the complex effective chemical potential $\hat{\mu}_x = \mu + i \phi_x$. When $\hat{\phi}_x$ is complex, it makes $\cosh(\hat{\beta} \hat{\phi}_x)$ complex in S_1 and consequently induces the sign problem. In this sense, the entanglement between μ and $i \phi_x$ is an origin of the sign problem in the Potts model. When μ is purely imaginary, so is $\hat{\mu}$: namely $S_1^* = S_1$. This make the model free from the sign problem.

The Potts model is constructed by simplifying the heavy-dense model of QCD in the limit of $M \rightarrow \infty$ and $\mu \rightarrow \infty$ with $M - \mu$ fixed at a finite value. Therefore, the Potts model should be considered for large M and μ. The term having h_{μ} is occasionally neglected, but is retained in the present paper. In the Potts model, Z_3 elements are taken as three states at each site on a 3-d lattice. Considering the Z_3 elements as a substitute for the Polyakov-loop operator $L(x)$ in QCD, one can discuss the deconfinement transition through the 3-d Potts model. The operator $L(x)$ depends on both x and T, but information on T is eliminated in the Potts model as a result of the substitution. Furthermore, in the 3-d Potts model, there is no temporal direction and the average over spatial volume should be taken on the Polyakov-loop. However, the Potts model has a parameter κ in S_0. It was found in Ref. [16] that κ dependence of $\langle \hat{\phi} \rangle$ in the Potts model is similar to T dependence of $(L(x))$ in QCD. Although the relation between κ and T is not simple, we assume that larger (smaller) κ in the Potts model corresponds to higher (lower) T in QCD and β is just a parameter having the same dimension as M and μ. Below, we mainly use dimensionless parameters $\bar{M} = M$ and $\bar{\mu} = \beta \mu$ instead of dimensionful ones M and μ.

The factor e^{-S_1} in (34) can be rewritten as $e^{-iS_1 - S_{\bar{h}}}$ with

$$S_{\bar{R}}[\Phi_x, \bar{M}, \bar{\mu}] = -2e^{-\bar{M}} \cosh(\bar{\mu}) V \Phi_{\bar{R}},$$ \hspace{1cm} (40)$$

$$S_1[\Phi_x, \bar{M}, \bar{\mu}] = -2e^{-\bar{M}} \sinh(\bar{\mu}) V \Phi_1.$$ \hspace{1cm} (41)$$

Since Φ_x takes any value of Z_3 elements, $e^{2\pi ik/3} (k = -1, 0, 1)$, S_1 becomes complex in general when $\mu \neq 0$. Hence, we take the configuration average over Φ_x and $\Phi_x' = \Phi_x^*$, following the discussion in the previous section:

$$\frac{1}{2} \left\{ e^{-S_0[\Phi_x, \kappa]} e^{-S_1[\Phi_x, h_1]} + e^{-S_0[\Phi_x', \kappa]} e^{-S_1[\Phi_x', h_1]} \right\} = \cos \left(S_1[\Phi_x, 1, \bar{M}, \bar{\mu}] \right) e^{(-S_0[\Phi_x, \kappa] - S_0[\Phi_x', \kappa])}$$ \hspace{1cm} (42)$$

The integrand of the partition function (34) thus becomes real, but the cosine function becomes negative when

$$\frac{\pi}{2} \leq 2e^{-\bar{M}} \sinh(\bar{\mu}) V \Phi_1 \leq \frac{3\pi}{2} \pmod{2\pi},$$ \hspace{1cm} (43)$$

Hence, the sign problem appears even after the averaging procedure and it becomes stronger as V increases.

It is known that, although the Potts model has a sign problem in its path integral formulation, the model can be transformed into a “flux model” that has no complex action problem [18, 19]. However, it is not clear that such a transformation is possible or not in the case of full LQCD simulations. Since we are interested in the sign problem itself, we treat the 3-d Potts model in the formulation where the sign problem is obvious.

Since the 3-d 3-state Potts model has a sign problem in our formulation, namely, $F(\Phi_x) = e^{-S}$ becomes complex in general. Hence, we consider the following phase quenched approximation:

$$\langle O \rangle' = \frac{\int D\Phi O(\Phi_x) F'(\Phi_x)}{Z'},$$ \hspace{1cm} (44)$$

$$F'(\Phi_x) = e^{-S_0 - S_{\bar{h}}}, Z' = \int D\Phi F'(\Phi_x).$$ \hspace{1cm} (45)$$

The phase factor $\langle F/F' \rangle$ and the true average $\langle O \rangle$ are then given by

$$\langle F/F' \rangle' = \langle e^{-iS_1} \rangle' = \frac{\int D\Phi [e^{-iS_1}] F'(\Phi_x)}{Z'},$$ \hspace{1cm} (46)$$

$$\langle O \rangle = \frac{\int D\Phi \langle O \rangle F(\Phi_x)}{Z} = \frac{\langle O \rangle [F(\Phi_x)] e^{-iS_1} \rangle'}{\langle F/F' \rangle'},$$ \hspace{1cm} (47)$$

Since Φ_x can be complex in general, the calculation of the expectation value of the Polyakov-loop itself is somewhat complicated when the sign problem appears. Hence, for convenience, we calculate the absolute value $\langle \phi \rangle$ instead of Φ itself by using Monte Carlo simulations. To calculate physical quantities in a wide region of κ-μ plane, we took a rather small lattice with spatial volume $V = 6^3$. For this reason, in this paper we postpone the determination of the order of the deconfinement transition and simply define the transition point with the point where $\langle \phi \rangle \sim 0.5$. We also put $M = 10$ below.

Figure 1 shows the results of the phase factor $\langle \cos S_1 \rangle'$ calculated with the quenched approximation in the κ-μ plane. The sign problem is serious in a “triangle” area composed of three points $(\mu/M, \kappa) \approx (0.8, 0.4), (1.1, 0.4), (1, 0.6)$, since $\langle \cos S_1 \rangle'$ is small or negative there. Figure 2 shows the results of $\langle \phi \rangle$ calculated with the reweighting method in the κ-μ plane. The line where $\langle \phi \rangle$ rapidly changes can be regarded as a “critical line” $\kappa = \kappa_c(\mu/M)$. The value of $\kappa_c(\mu/M)$ is about 0.55 for $\mu/M < 0.5$, but rapidly decreases from 0.55 to 0.4 as μ/M increases from 0.5 to 0.75.

Comparing Fig. 1 with Fig. 2 we can see, as an interesting property, that $\langle \cos S_1 \rangle'$ tends to be small on the critical line particularly in $0.4 < \mu/M < 0.75$. In the triangle area composed of three points $(\mu/M, \kappa) \approx (0.8, 0.4), (1.1, 0.4), (1, 0.6)$, the value of $\langle \phi \rangle$ is larger than 1 or negative, since $\langle \cos S_1 \rangle'$ is small or negative. The unnatural behavior of $\langle \phi \rangle$ is caused by that of $\langle \cos S_1 \rangle'$. Therefore, physical discussion cannot be made in the triangle region.
The action replacing μ/M method in ordinary 3-d 3-state Potts model as a function of μ/M while, but will increase the number of states later in which some states do not belong to the group Z_3.

The pure gauge and first-order terms, S_{0,Z_3} and S_{1,Z_3}, of S_{Z_3} are then defined as

$$S_{0,Z_3}[\Phi_x,\kappa] = -\kappa \sum_{x,i} |\Phi_x||\Phi_{x+i}| \delta_{\Phi_x,\Phi_{x+i}},$$

$$S_{1,Z_3}[\Phi_x, h_\pm] = -\sum_{f=-1,0,1} \sum_x (h_{+,f}\Phi_x + h_{-,f}\Phi^*_x).$$

Here, S_{0,Z_3} is Z_3-invariant, but S_{1,Z_3} is Z_3-variant. Note that S_{0,Z_3} is reduced to S_0 when the values of Φ_x are restricted to Z_3 elements only. If the f summation is taken in S_{1,Z_3}, the term vanishes as follows:

$$S_{1,Z_3}[\Phi_x, h_\pm] = -\sum_{f=-1,0,1} \sum_x (h_{+,f}\Phi_x + h_{-,f}\Phi^*_x)$$

$$= \sum_x (h_{+,\Phi_x} + h_{-}\Phi^*_x) \sum_{f=-1,0,1} e^{2\pi f/3} = 0.$$

Similarly, any Z_3-variant terms vanish after the f summation. Considering the power series of S_{Z_3} up to the third order of Φ_x and Φ^*_x, we can construct a Z_3-symmetric Potts model as

$$Z(\kappa, h_M, h_{\pm}) = \int D\Phi e^{-S_{Z_3}} = \int D\Phi e^{-S_{0,Z_3}} e^{-S_{2+3,Z_3}},$$

where $h_M = e^{-\hat{M}}$ and

$$S_{2+3,Z_3}[\Phi_x, h_M, h_{\pm}] = S_{2,Z_3}[\Phi_x, h_M] + S_{3,Z_3}[\Phi_x, h_{\pm}];$$

$$S_{2,Z_3}[\Phi_x, h_M] = -g_2 h_M^2 \Phi_x \Phi^*_x,$$

$$S_{3,Z_3}[\Phi_x, h_{\pm}] = -g_3 \left(h_{+}\Phi^*_x + h_{-}\Phi^*_x\right)^3.$$

with the coupling parameters g_2 and g_3. For simplicity, we take $g_2 = g_3 = 1$. Note that, e.g., the third-order terms of Φ_x can appear when the logarithmic Fermionic effective Lagrangian is expanded by Φ_x as

$$\sum_{f=-1,0,1} \log \left(1 + 3h_{+,f}\Phi_x + 3h^{2}_{+,f}\Phi^*_x + (h_{+,f})^3\right)$$

$$+ \sum_{f=-1,0,1} \log \left(1 + 3h_{-,f}\Phi^*_x + 3h^{2}_{-,f}\Phi_x + (h_{-,f})^3\right)$$

$$= \log \left[\prod_{f=-1,0,1} \left(1 + 3h_{+,f}\Phi_x + 3h^{2}_{+,f}\Phi^*_x + (h_{+,f})^3\right) \right]$$

$$+ \log \left[\prod_{f=-1,0,1} \left(1 + 3h_{-,f}\Phi^*_x + 3h^{2}_{-,f}\Phi_x + (h_{-,f})^3\right) \right]$$

$$= \log \left[\left(a + 27(h_{+})^3\Phi^*_x + 27(h_{+})^6\Phi^*_x^3 + \cdots \right) \right]$$

$$+ \log \left[\left(b + 27(h_{-})^3\Phi^*_x + 27(h_{-})^6\Phi^*_x^3 + \cdots \right) \right].$$

where a and b are Φ_x-independent real quantities. On the other hand, the terms proportional to $\Phi_x\Phi^*_x$ is expected to
appear if the mesonic contribution in the effective Lagrangian is expanded.

The factor $e^{-S_{2+3, z_3}}$ can be rewritten into

$$e^{-S_{2, z_3} - S_{3, z_3}} = e^{-iS_{1, z_3}} e^{-S_{0, z_3}} e^{-S_{2, z_3}}$$

with

$$S_{R, z_3}[\Phi_x, \Phi, \Phi] = -2e^{-3M} \cosh (3\mu) \sum_x (\Phi_x^3)_R,$$

$$S_{L, z_3}[\Phi_x, \Phi, \Phi] = -2e^{-3M} \sinh (3\mu) \sum_x (\Phi_x^3)_L$$

for the real and imaginary parts, $(\Phi_x^3)_R$ and $(\Phi_x^3)_L$, of Φ_x^3. When the values of Φ_x are restricted to Z_3 elements, both S_{0, z_3} and S_{2+3, z_3} are real, indicating that no sign problem takes place. This model is referred to as “Z_3-symmetric 3-state Potts model” in the present paper.

Meanwhile, the Z_3-symmetric heavy-dense model of QCD has the sign problem, since the Polyakov-loop operator $L(x)$ can take not only Z_3 elements but also ones not belonging to the group Z_3. In the model, $L(x)$ can be parameterized as

$$L(x) = \frac{1}{3} \left(e^{i\phi_1(x)} + e^{i\phi_2(x)} + e^{-i(\phi_1(x) + \phi_2(x))} \right),$$

and the region that $L(x)$ can take is illustrated in Fig. 3(a). The region has a hyperbolic-triangle-like shape. Three vertices of the triangle correspond to Z_3 elements, and the other points in the region do not belong to the group Z_3. Figure 3(b) corresponds to the region that $L^3(x)$ is allowed to take. The allowed region of $L^3(x)$ is well localized near the real axis compared with that of $L(x)$. This suggests that the sign problem is less serious in Z_3-QCD than in QCD [27]. Since it is not easy to confirm this suggestion directly in QCD, we will compare three types of models: (i) the original Potts model, (ii) Z_3-symmetric 3-state Potts model defined above, and (iii) Z_3-symmetric several-state Potts models, each with different number of states larger than 3. Z_3-symmetric several-state Potts models is an extension of Z_3-symmetric 3-state Potts model and is not free from the sign problem in general.

Before constructing Z_3-symmetric several-state Potts models explicitly, we make the following preparation. When the Φ_x are allowed to take values not belonging to the group Z_3 just as the heavy quark model, the term S_{2+3, z_3} can be complex. In that case, we take the average of Φ_x and $\Phi_x^\prime = \Phi_x^\prime$ configurations to make the partition function real, following the discussion in the previous section. This leads to

$$e^{-S_{0, z_3}[\Phi_x]e^{-S_{2+3, z_3}[\Phi_x]} + e^{-S_{0, z_3}[\Phi_x]^\prime e^{-S_{2+3, z_3}[\Phi_x]^\prime}} \frac{2}{2} = \cos \left(S_{I, z_3}[\Phi_x] \right) e^{-S_{0, z_3}[\Phi_x] - S_{2, z_3}[\Phi_x] - S_{0, z_3}[\Phi_x]^\prime}.$$}

The integrand of the partition function Z_3 thus becomes real.
VI. SIGN PROBLEM IN Z_3-SYMMETRIC POTTS MODEL

In this section, we perform numerical simulations for Z_3-symmetric Potts models (A)-(D) and compare the results with those of the original Potts model. In particular, the expectation value $\langle |\Phi| \rangle$ of the absolute value $|\Phi|$ is calculated to determine the confinement-deconfinement transition line. The purposes of this analyses are to (1) to clarify the interplay between Z_3 symmetry and the sign problem, and (2) to see how the deconfinement transition line changes in κ-μ plane when the value of Φ_1 is extended bit by bit. As mentioned in Sec. [V], the standard Metropolis algorithm is taken for the simulations.

A. Z_3-symmetric 3-d 3-state Potts model

Figure 5 shows the expectation value $\langle |\Phi| \rangle$ in the κ-μ plane for model (A). Note that the reweighting is not necessary for this model, since the model has no sign problem. There appears a rapid change of $\langle |\Phi| \rangle$ at $\kappa = 0.55$, independently of μ. The μ independence comes from the fact that the μ-dependent term $S_{2+3,3}$ becomes constant because of $\Phi_1(\Phi_2)^3 = \Phi_3^3 = \Phi_2^3 = 1$. In fact, $\langle |\Phi| \rangle$ can be rewritten as

$$\langle |\Phi| \rangle = \frac{\int D\Phi |\Phi| e^{-S_0(x)}S_{2+3,3}}{\int D\Phi e^{-S_0(x)}S_{2+3,3}}$$

where r is taken to be 0.4. Equation (67) is denoted by three solid triangles, a solid circle, three solid squares and six crosses in Fig. 4. Note that, except for the origin, the other twelve values are chosen to lie on the boundary of the region where the value of $L(x)$ can be taken in Fig. 3(a). The sign problem comes from six crosses $\{\Phi_1\} = \{r e^{\pm i\pi/6}, r e^{\pm i\pi/2}, r e^{\pm 3i\pi/6}\}$, since $(\Phi_1)^3$ has a finite phase in this case.

Properties of the four Z_3-symmetric Potts models (A)-(D) are summarized in Table II together with those of the original 3-d 3-state Potts model.

Before closing this section, we add one more comment. If we denote $\Phi = r_x e^{i \phi_x}$, where r_x and ϕ_x are the absolute value and the phase of Φ_x, respectively, $(\Phi_x)^3 = r_x^3 \exp(3i\phi_x) = r_x^3 (\cos(3\phi_x) + i \sin(3\phi_x))$. Therefore, if r_x is small, the sign problem is not severe. Hence, it can be expected that, for fixed ϕ_x, larger r_x configurations dominate the sign problem. So we choose our simulation points on the boundary of the hyperbolic-triangle in Fig. 4 except for the origin, the special point for confinement. Furthermore, to keep the Z_3 symmetry, we use the configurations of Φ_x with the discrete phase $\phi_x = 2\pi j/(3n)$ ($j = 0, 1, 2, \ldots, n - 1$), where n is a positive integer. In principle, the calculation is possible by using the other points on the boundary with larger $n > 4$, but it requires huge computing time. We postpone estimation of the contributions of other points is open question in future.
has μ-dependence, as shown in Fig. 6. (Note that \(68\) is true only in the 3-d 3 state Z_3-symmetric Potts model, whereas \(69\) is true for all Z_3-symmetric Potts model.) The quark number density n can be regarded as an order parameter for the onset phase transition that is located at $\mu/M = 1$ and $T = 0$. Below we will see how the two transitions entangle each other and the sign problem appears when the value region of Φ_3 is extended bit by bit. Note that the second term in the second line of \(69\) vanishes when $(\Phi_3^3)_t = 0$ and the sign problem does not appear.

\[
\text{Fig. 6: The expectation value } \langle |\Phi| \rangle \text{ in } Z_3 \text{-symmetric 3-d 3-state Potts model as a function of } \kappa \text{ and } \mu/M.
\]

In Fig. \(7\) μ-dependence of n is shown at $\kappa = 0.65$ for three Z_3-symmetric Potts models. When $\kappa = 0.65$, in Z_3-symmetric 3-state Potts model, the onset of n is smooth and n is proportional to $e^{-3\kappa} \sinh 3\hat{\mu}$ in the model, since $(\Phi_3^3)_R = 1$ and $(\Phi_3^3)_t = 0$ in \(69\).

\[
\text{Fig. 7: } \mu\text{-dependence of } n \text{ at } \kappa = 0.65 \text{ in } Z_3\text{-symmetric 3-d Potts model. The boxes, the crosses and the circles represent the results in 3, 7 and 13-state Potts model.}
\]

It is interesting that, in Z_3-symmetric 3-d 3-state Potts model, the resulting deconfinement transition line then becomes a horizontal line in the μ-κ plane. Similar property is also seen in $SU(N)$ gauge theory in the large N limit \(42, 43\), where the contribution of the fermion with N degrees of freedom to the thermodynamic potential is negligible compared with that of gauge field with $N^2 - 1$ degrees of freedom. In the case of Z_3-symmetric theory, Z_3 symmetry suppresses the fermion contribution and weakens the μ-dependence of the critical temperature of deconfinement transition \(24\).

\[\text{B. } Z_3\text{-symmetric 3-d 4-state Potts model}\]

In this case, the model has no sign problem as is the previous one. Figure \(8\) shows the expectation value $\langle |\Phi| \rangle$ in the κ-μ plane. The deconfinement transition line $\kappa = \kappa_c(\mu/M)$ defined by a rapid change of $\langle |\Phi| \rangle$ is located at $\kappa = 0.60$ for $\mu/M < 1$, but goes down to $\kappa = 0.55$ at $\mu/M \approx 1$, and keeps $\kappa = 0.55$ for $\mu/M > 1$.

Thus, the deconfinement transition is beginning to have μ-dependence.

\[\text{C. } Z_3\text{-symmetric 3-d 7-state Potts model}\]

In this case, the model has no sign problem as is in the previous two cases. Figure \(9\) shows the expectation value $\langle |\Phi| \rangle$ in the κ-μ plane. The deconfinement transition line $\kappa = \kappa_c(\mu/M)$ is located at $\kappa = 0.70$ for $\mu/M < 1$, but goes down to $\kappa = 0.55$ at $\mu/M \approx 1$, and keeps $\kappa = 0.55$ for $\mu/M > 1$. The deconfinement transition line thus has stronger μ-dependence in model (C) than in model (B). Figure \(10\) shows μ-dependence of $\langle |\Phi| \rangle$ with κ fixed at 0.65. We
can see that $\langle |\bar{\Phi}| \rangle$ suddenly increases at $\mu/M \approx 1$. In Fig. 7, μ-dependence of n is shown. In this model, n also rapidly increases at $\mu/M \approx 1$.

D. Z_3-symmetric 3-d 13-state Potts model

In model (D), when $S_{2+3,Z}$ becomes complex, $F'(\Phi_x) = e^{-S}$ also does, so that the sign problem appears. We then use the following phase quenched approximation:

$$
\langle O \rangle' = \frac{\int D\Phi O(\Phi_x) F'(\Phi_x)}{Z'};
$$

$$
F'(\Phi_x) = e^{-S_{0,x} - S_{9,x} - S_{8,x}}, \quad Z' = \int D\Phi F'(\Phi_x). \quad (70)
$$

The phase factor is then given by

$$
\langle F/F' \rangle' = \langle e^{-iS_{1,x1}} \rangle' = \frac{\int D\Phi [e^{-iS_{1,x1}}] F'(\Phi_x)}{Z'}
$$

$$
= \frac{\int D\Phi [\cos S_{1,z3}] F'(\Phi_x)}{Z'} = \frac{\langle \cos S_{1,z3} \rangle'}{Z'}, \quad (72)
$$

and the true average $\langle O \rangle$ is by

$$
\langle O \rangle = \frac{\int D\Phi O(\Phi_x) F'(\Phi_x)}{Z} = \frac{\langle O(\Phi)e^{-iS_{1,z3}} \rangle'}{Z'} \quad (73)
$$

Figure 11 shows the phase factor (72) in κ-μ plane. As an important result, the sign problem is serious only in the narrow region of $\mu/M \sim 1$ and $\kappa < 0.9$.

Figure 12 shows the expectation value of $\langle |\bar{\Phi}| \rangle'$ in the κ-μ plane. The result was obtained by using the quenched approximated probability function and the reweighting method. The deconfinement transition line $\kappa = \kappa_c(\mu/M)$ is located at $\kappa = 0.87$ for $\mu/M < 1$, but goes down to $\kappa = 0.55$ at $\mu/M \approx 1$, and keeps $\kappa = 0.55$ for $\mu/M > 1$. Thus, μ-dependence of $\kappa = \kappa_c(\mu/M)$ becomes strong as the number of states on each site increases. Eventually, the transition line of model (D) is rather similar to that of the original Potts model. Nevertheless, as for seriousness of the sign problem there is a big difference between the two models. Comparing Fig. 11 with Fig. 1 we can conclude that the sign problem is almost cured by Z_3 symmetry, even if the value region of Φ_x is extended.

It is interesting that, in Fig. 11 the narrow dark region (where the phase factor is small) lies on the line $\mu/M \approx 1$ where the onset transition takes place. In fact, as shown in Fig. 7, n rapidly increases at $\mu/M \approx 1$. Of course, this dark region may be only an artifact due to the sign problem, but may imply that a physical sharp transition occurs on the line and the partition function $Z(\mu)$ becomes small around the line. Hence, Lee-Yang zeros analyses may be valid.
as a function of κ and μ/M. This may be caused by the fact that the lattice size is small in our simulations and the deconfinement transition does not induce any singular behavior in the partition function. This is an interesting question to be solved in future.

VII. SUMMARY

In summary, we have constructed four versions of Z_3-symmetric 3-d Potts models, each with different number of states, in order to investigate (1) the interplay between Z_3 symmetry and the sign problem and (2) the relation between the number of states and the deconfinement transition line in the μ-κ plane. Properties of the four Z_3-symmetric Potts models (A)-(D) are summarized in Table I, together with those of the original 3-d 3-state Potts model.

As for subject (1), we have found from the comparison between the Potts model and model (D) that the sign problem is almost cured by imposing Z_3 symmetry. The Z_3-symmetric Potts models are described by a power series of the Polyakov-loop operator Φ_0 and its complex conjugate Φ_0^\ast. Z_3 symmetry eliminates the linear term, so that the imaginary part of the model action starts with the terms of $(\Phi_0^\ast)^2$ and $(\Phi_0^\ast)^3$. This makes the sign problem less serious, because of $|\Phi_0^\ast| < 1$; note that only Z_3 elements satisfy $|\Phi_0^\ast| = 1$ but they do not contribute to the imaginary part. This mechanism may happen in Z_3-QCD. Therefore, there is a possibility that the sign problem is circumvented by the Taylor-expansion method of Ref. [27] to derive QCD results from Z_3-QCD ones, even if $T \neq 0$.

Subject (2) was clarified by changing the number of states from 3 of model (A) to 13 of model (D). Comparing the results of model (A)-(D), we have found that μ-dependence of the deconfinement transition line becomes stronger with respect to increasing the number of states.

The lattice size we used is not so enough, so that there is possibility that the sign problem becomes more serious as the lattice volume becomes larger. We also postponed the determination of the order of the deconfinement transition for the same reason. The study based on larger lattice is needed as a future work.

There is a possibility that, as the original Potts model [18], the Z_3 symmetric Potts model can be also transformed into the flux model that has no sign problem. In Ref. [19], the effective model based on the Polyakov-loop, the values of which are not restricted to Z_3 element, was transformed into the flux model. However, except for pure gauge term, only the linear terms of Φ_0 are considered in that formalism. The extension of the formalism to the Z_3-symmetric Potts model is nontrivial, because the extension to the case with higher Φ_0 terms is nontrivial. Therefore, we postpone the extension as a future problem.

In the Potts models, chiral symmetry and its dynamical breaking cannot be discussed, since these models consider the case of large quark mass and thereby chiral symmetry is largely broken from the beginning. In QCD with light quark masses, when the phase quenched approximation is used, chiral dynamics induces the problem of early onset of quark number density [45] (or the baryon Silver Blaze problem [46]). The problem may happen also in Z_3-QCD with light quark masses. Analyses beyond the phase quenched approximation may be important as a future problem.

Acknowledgments

The authors are thankful especially to Hiroshi Suzuki and Hiroshi Yoneyama for crucial discussions on the realization of the QCD partition function. The authors also thank Atsushi

Fig. 11: The expectation value $\langle \cos S_{1, Z_3} \rangle$ calculated with the phase quenched approximation in Z_3-symmetric 3-d 13-state Potts model as a function of κ and μ/M.

Fig. 12: The expectation value $\langle |\Phi_0| \rangle$ calculated with the reweighting method in Z_3-symmetric 3-d 13-state Potts model as a function of κ and μ/M.
Nakamura, Etsuko Itou, Masahiro Ishii, Junpei Sugano, Akihisa Miyahara, Shuichi Togawa and Yuhei Torigoe for fruitful discussions. H. K. also thanks Motoi Tachibana, Tatsumiho Misumi, Yuya Tanizaki and Koju Kashiwa for useful discussions. H. K. and M. Y. are supported by Grant-in-Aid for Scientific Research (No.26400279 and No.26400278) from Japan Society for the Promotion of Science (JSPS). The numerical calculations were partially performed by using SX-ACE at CMC, Osaka University.