FERMI SURFACES AND EFFECTIVE Masses IN \(\text{LnB}_6 \), \(\text{Ln} \equiv \text{La, Ce AND Pr}^* \)

A. P. J. VAN DEURSEN, R. E. POLS and A. R. DE VROOMEN

Research Institute for Materials, Katholieke Universiteit, Toernooiveld, 6525 ED Nijmegen (The Netherlands)

Z. FISK

Los Alamos National Laboratory, Los Alamos, NM 87545 (U.S.A.)

(Received March 29, 1985)

Summary

The Fermi surface has been compared for the three compounds \(\text{LnB}_6 \) (\(\text{Ln} \equiv \text{La, Ce and Pr} \)) by measurement of the de Haas–van Alphen effect. The major part is observed to be similar in each compound, most likely consisting of X-centred ellipsoids with a total effective volume of about 1 electron per formula unit. Differences occur in the details of the shape of the FS, clearly seen for \(\text{PrB}_6 \).

Large effective masses, \(m^* \), are observed for \(\text{CeB}_6 \) and \(\text{PrB}_6 \), \(m^* = 6 \) and about 1.8, respectively. These have to be compared with \(m^* = 0.6 \) for \(\text{LaB}_6 \).

Introduction

In metallic lanthanide systems many questions arise around the character of the 4f electrons, being localised on the ion core or assuming an itinerant character, through the formation of bands hybridised with the s and d states. From the experiments direct information can be obtained by studying Fermi surfaces (FS), their shape and derived properties, and comparing the FS for several Ln compounds of similar nature. When hybridisation takes place one expects to find large dissimilarities.

One such system has been investigated earlier by Johanson et al. [1]. From data obtained by the de Haas–van Alphen effect (dHvA) they concluded on large differences between the FS of \(\text{LaSn}_3 \) and \(\text{CeSn}_3 \). In both compounds orbits are observed which belong to parts of the FS enclosing a substantial part of the Brillouin zone (BZ) volume, i.e., containing a large number of electrons. From the very observation of such orbits they conclude

*Paper presented at the International Rare Earth Conference, ETH Zurich, Switzerland, March 4–8, 1985.

© Elsevier Sequoia/Printed in The Netherlands
that the behaviour of the electron states is coherent over several hundreds of unit cells.

The FS of LaB$_6$ has been the subject of earlier investigations [2, 3]. Experiment (dHvA) and band theory agree on an FS having a total volume of one electron per formula unit, consisting of large, X-centred electron ellipsoids. The ellipsoids are interconnected by necks along the X–X directions; orbits around the necks and on the ellipsoids crossing the necks are observed over a limited angular range for directions around [100].

Results and Discussion

Here we report data on the shape of the FS for other LnB$_6$ compounds. The experimental procedure has been described elsewhere [4, 5]. The dHvA oscillations are detected in high magnetic fields, between 10 and 21 T for LaB$_6$ and PrB$_6$, respectively, 25 and 33 T for CeB$_6$, at temperatures between 1.3 and 4.2 K.

CeB$_6$ shows several magnetic phases as functions of temperature and field [6, 7]; one infers from the magnetisation data that in the region where dHvA is measured, a ferromagnetic ordering is imposed by the magnetic field. For PrB$_6$ the situation is less clear. From neutron scattering it was found [8] that two magnetic structures exist in zero field, a commensurate antiferromagnetic for $T < 4.2$ K and an incommensurate for 4.2 K $< T < 6.9$ K. The moment at $T = 1.74$ K is $1.77 \mu_B$. We measured the magnetisation on a sample consisting of a large number of single crystals. At a temperature of 4.2 K it varies approximately linearly with magnetic field up to 15 T; at 15 T one finds $0.7 \mu_B$ per Pr atom.

For LaB$_6$, dHvA frequencies are obtained as given earlier by Arko et al. [2]. Our results for the Ce and Pr compound are given in Fig. 1. For PrB$_6$ the labels are given based on the merging of branches at high symmetry directions, indicating that the corresponding surfaces are connected through symmetry. For CeB$_6$ the labels are attributed based on the similarity to PrB$_6$.

In all three compounds dHvA orbits are observed with frequencies ranging from 8 to 10×10^3 T, labeled “a” in Fig. 1. For LaB$_6$ they are the belly orbits on the X-centred ellipsoids, χ in the notation of ref. 2. In a comparison of the a-branches in Fig. 1 with the data for LaB$_6$ (ref. 2), a striking similarity is seen. For PrB$_6$ and LaB$_6$ the frequencies are nearly equal; for CeB$_6$ they are 5 - 10% larger. The data for the Ce compound do not extend over the full (110) plane for experimental reasons rather than for the non-existence of dHvA orbits near [110].

For PrB$_6$ two other sets of branches, labeled “b” and “c” are observed. Most of them are detected over the full (110) plane, indicating that the corresponding FS sheets are closed. This is in contrast to the LaB$_6$ case, where the lower frequencies are due to orbits involving the X–X necks. The three-fold degeneracy of the b branches for the [111] orientation may have two causes; it can be due to a non-symmetry position in the BZ of the centre of
Fig. 1. Observed de Haas–van Alphen orbits in the (001) and (110) planes for CeB$_6$ and PrB$_6$. The ordinate is in units of 10^3 Tesla. The orientation dependence of the high-frequency branches labeled a is similar to the one observed for LaB$_6$. The labels a, b, and c, are used with suffixes, based on the merging of the branches at the high-symmetry orientations only.

Conclusion

A direct interpretation of the FS data in terms of a band structure is not yet possible due to the lack of a sufficiently detailed calculation, allowing
for the magnetic structure of the materials. A nonmagnetic calculation has been carried out, treating the 4f electrons as itinerant for CeB$_6$ [10] and for CeB$_6$ and PrB$_6$ [11]. Both calculations indicate 4f states close to E_F and strongly mixed with the boron-derived band that is responsible for the Fermi surface of LaB$_6$. The FS derived for the heavier Ln compounds do not resemble the one for LaB$_6$ at all. It is made up of sheets centred at Γ and R; their size is of the correct order of magnitude when compared with the a-branches. In this case the similarity between the three compounds is incidental. A comparison with the refined calculation will provide a better answer.

References
1 W. R. Johanson, G. W. Crabtree, D. D. Koelling, A. S. Edelstein and O. D. McMasters, J. Appl. Phys., 52 (1981) 2134.
2 A. J. Arko, G. Crabtree, D. Karim, F. M. Mueller, L. R. Windmiller, J. B. Ketterson and Z. Fisk, Phys. Rev. B, 13 (1976) 5240.
3 A. Hasegawa and A. Yanase, J. Phys. F, 7 (1977) 1245.
4 A. P. J. van Deursen, Z. Fisk and A. R. de Vroomen, Solid State Commun., 44 (1982) 609.
5 A. P. J. van Deursen and A. R. de Vroomen, J. Phys. E, 17 (1985) 155.
6 T. Komatsubara, N. Sato, S. Kunii, I. Oguro, Y. Furukawa, Y. Onuki and T. Kasuya, J. Magn. Magn. Mater., 31 34 (1983) 368.
7 S. Horn, F. Steglich, M. Loewenhaupt, H. Scheuer, W. Felsch and K. Winzer, Z. Phys. B, 42 (1981) 125.
8 C. M. McCarthy, C. W. Thompson, R. J. Graves, H. W. White, Z. Fisk and H. R. Ott, Solid State Commun., 36 (1980) 861.
9 A. V. Gold, in J. F. Cochran and R. R. Hearing, Solid State Physics, The Simon Fraser University Lectures 1: Electrons in Metals, Gordon and Breach, New York, 1968.
10 A. Yanase, J. Magn. Magn. Mater., 31 34 (1982) 453.
11 R. W. ten Cate and R. A. de Groot, personal communication.