S,O-ligand-promoted palladium-catalyzed C–H olefination of arenes with allylic substrates

Naksomboon, K.; Álvarez-Casao, Y.; Uiterweerd, M.; Westerveld, N.; Maciá, B.; Fernández-Ibáñez, M.A.

DOI
10.1016/j.tetlet.2017.12.047

Publication date
2018

Document Version
Final published version

Published in
Tetrahedron Letters

License
CC BY

Citation for published version (APA):
Naksomboon, K., Álvarez-Casao, Y., Uiterweerd, M., Westerveld, N., Maciá, B., & Fernández-Ibáñez, M. A. (2018). S,O-ligand-promoted palladium-catalyzed C–H olefination of arenes with allylic substrates. Tetrahedron Letters, 59(4), 379-382. https://doi.org/10.1016/j.tetlet.2017.12.047
S,O-ligand-promoted palladium-catalyzed C–H olefination of arenes with allylic substrates

Kananat Nak som boon a, Yolanda Álvarez-Casao a, Michiel Uiterweerd a, Nick Westerveld a, Beatriz Maciá b, M. Ángeles Fernández-Ibáñez a,⇑

a Van’t Hoff Institute for Molecular Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
b Division of Chemistry & Environmental Science, Manchester Metropolitan University, Oxford Road, M1 5GD, Manchester, UK

Article info

Article history:
Received 1 November 2017
Revised 10 December 2017
Accepted 12 December 2017
Available online 13 December 2017

Keywords:
C–H activation
S,O-ligand
Palladium
Allylation
Arenes

Abstract

An efficient catalytic system for the C–H olefination of arenes with different allylic substrates is reported. The catalytic system is based on Pd(OAc)2 and a readily accessible bidentate S,O-ligand. The methodology shows high activity with a wide range of arenes, including bulky and, electron-rich and -poor arenes. The applicability of this catalyst is demonstrated in the late-stage functionalization of the complex molecule 0-methylestrone.

© 2018 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

In recent years, metal-catalyzed C–H functionalization reactions have become an attractive strategy to introduce complexity to organic molecules since no pre-functionalization of the starting materials is required.1 Many elegant and efficient methodologies have been described for the direct functionalization of C–H bonds, but the vast majority of these examples require the presence of a directing group to enhance the reactivity and selectivity of the process.2 Reports of the direct C–H functionalization of simple arenes, without a directing group, are still scarce.3 An attractive alternative to the use of directing groups is the use of suitable ligands capable of promoting these transformations.4 We recently reported a new type of bidentate S,O-ligand, namely 2-i-propyl-2′(phenylthio)acetic acid (L1), that enables the non-directed Pd-catalyzed C–H olefination5 of arenes with activated olefins.6 The methodology is scalable and applicable to the late-stage functionalization of complex molecules. Although our standard reaction conditions (Pd(OAc)2/L1; PhCO2Bu; AcOH) provided poor yields and did not accelerate the reaction with non-activated alkenes, the use of AgOAc in DCE was observed to have a beneficial effect in promoting the olefination of benzene with allylbenzene when L1 was present in the reaction mixture (Scheme 1).7

Inspired by this preliminary result, we decided to explore the scope of the new catalytic system in the C–H olefination of arenes with allylic substrates, including allyl acetate and N-allylphthalimide. Herein, we report the S,O-ligand promoted palladium(II)-catalyzed C–H olefination of arenes with allylic substrates. The new methodology is suitable for a wide range of arenes and allylic substrates and its applicability is demonstrated in the late-stage functionalization of a complex molecule.

We started our investigation optimizing the reaction conditions by testing several solvents, oxidants and palladium sources (see ESI for further details). However, no improvement was observed in comparison with the original conditions (10 mol% Pd(OAc)2, 10 mol% L1, 1.5 equiv. AgOAc, DCE, 80 °C). With the optimized conditions in hand, we then explored the scope of the reaction with respect to the arene and allyl partners (Table 1). The reaction of naphthalene with allylbenzene provided the desired allylated products 2 in high yield (89%) (Entry 1). Similarly, the reaction with o-xylene and anisole furnished the allylated products 3 and 4 in good isolated yields, 62% and 68%, respectively (Entries 2 and 3). We also studied the generality of this reaction using other allylic substrates such as allyl acetate and N-allylphthalimide. These allyl substrates have been scarcely used in coupling reactions due to the low selectivities regarding the Pd insertion (internal vs terminal) and the β elimination (β-H vs β-OAc or β-NPhth and styrenyl vs allylic).8 Using our method, the reaction of allyl acetate with benzene, naphthalene or arenes with allyl substituents, such as o-xylene, m-xylene and mesitylene, provided the desired allylated products in good isolated yields (53–75%,
Entries 4–8). Other arenes with different electronic properties, such as anisole, 4-chloroanisole, 4-methoxyanisole and 1,3,5-trifluorobenzene were also evaluated in the reaction with allyl acetate. In all cases, the allylated products were obtained in good isolated yields (40–88%, Entries 9–12). In addition, we tested the reaction of N-allylphthalimide with mesitylene and 1,3,5-trimethoxybenzene. In both cases, the allylated products were isolated in good yields (73% and 61%, respectively, Entries 13–14). Importantly, in all cases, the reaction was accelerated in the presence of L_1 and low yields were obtained without the ligand after 20–24 h (Table 1, Entries 1–14). It is worth highlighting the effect of the ligand L_1 in

![Scheme 1](image)

Table 1
Scope of the L_1-promoted palladium-catalyzed C–H olefination with allyl substrates.

Entry	Product	Yield (%) a with L_1	Yield (%) a or b without L_1	α/β or $o/m/p$ (%)	a'/a' or b'/b' or c'/c' (%)	E/Z (%)
1	2a/a'	89	50a	64/36	42/58	
2	3a/a'	62	37a	38/62	50/50	
3	4a/a'	68	37a	62/4/34	65/35	
4	5b/b'	65	36b	–	92/8	90/10
5	6b/b'	75	55b	60/40	95/5	
6	7b/b'	74	38b	36/64	91/9	
7	8b/b'	53	36b	13/65/22 (o/o'/m)	85/15	
8	9b/b'	67	12b	–	71/29	86/14
9	10b/b'	78	38b	68/0/32	93/7	
the reactivity with the bulky mesitylene. The reaction of mesitylene with allyl acetate or N-allylphthalimide in the absence of L1 proceeded with conversions lower than 20%. In contrast, the allylated products 9 and 14 were obtained in 67% and 73% isolated yield, respectively, in the presence of L1 (Entries 8 and 13). In general, the new catalytic system promoted the allylation of a wide variety of arenes including bulky, electron-rich and electron-poor arenes, providing a broader substrate scope than the majority of the reported examples.7–9 With respect to other arenes, we found that the reaction of different dichlorobenzene derivatives provided the corresponding allylated products in low yields, with and without L1. Regarding the site-selectivity of the process, the allylation reaction takes place, preferentially, at the most electron-rich position in the arene (see α/β or o/m/p values in Table 1). Similar behaviour was observed in our previous work using activated olefins.6 Concerning the selectivity of β-hydride elimination in the reaction with allylbenzene, a c.a. 1:1 mixture of isomers was observed (Entries 1–3).6 For the olefination reactions with allyl acetate or N-allylphthalimide, more complex mixtures of products can be formed.5 However, in all of the examples evaluated, we observed only the products from internal carbopalladation (Entries 4–14). After the carbopalladation step, β-OAc [or β-(NPhth)] elimination or β-hydride elimination can take place. However, under our reaction conditions, we did not detect the products derived from β-OAc [or β-(NPhth)] elimination. Furthermore, with respect to the β-hydride elimination pathway, although two possible products can be formed, we observed mainly the products from the β-hydride elimination that leads to the double bond in conjugation with the arene. This high regioselectivity has been previously attributed to chelation between the O and the Pd atom.7,8a,b This chelation impedes rotation around the C–C bond and therefore, hinders the syn relationship between the Pd and Hb (Scheme 2).

To this general trend, we found that the reaction with mesitylene and 1,3,5-trifluorobenzene afforded the allylated products 9, 13 and 14 with moderate regioselectivity (71/29 for mesitylene and 62/38 for 1,3,5-trifluorobenzene; Entries 8, 12 and 13, respectively). In addition, some isomerization of double bond to the Z isomer occurred in the reaction of these arenes with allyl acetate (Entries 8 and 12). The low regioselectivity observed can be explained by the steric hindrance of the arene, which hampers rotation around the C–C bond, disfavouring the syn relationship between the Pd and Hb.10

Scheme 2. Source of the high observed regioselectivity.

Scheme 3. Late-stage C–H olefination of Estrone.

Table 1 (continued)

Entry	Product	Yield (%) with L1	Yield (%) a or b without L1	α/β or o/m/p (%)c	a/a’ or b/b’ or c/c’ (%)d	E/Z (%)e	
10	![Image](image1.png)	82	30a	17/83	91/9		
11	![Image](image2.png)	88	47a	–	94/6d	95/5d	
12	![Image](image3.png)	13b/b’	40	25a	–	62/38	69/31
13	![Image](image4.png)	73		–	71/29	93/7	
14	![Image](image5.png)	61		–	98/2		

Reagents and conditions: arene (33 or 66 equiv.), olefin (1.0 equiv.), Pd(OAc)2/S,O-Ligand (10 mol%), AgOAc (1.5 equiv.), DCE, 80–100 ºC, 20–24 h.

a Isolated yield.
b Calculated yield based on 1H-NMR yield using dibromomethane as an internal standard.
c Determined by 1H-NMR analysis of the isolated mixture.
d Determined by GC analysis.
e No Z isomer detected.
f Traces of Z isomer detected.
g Ratio measured from the b isomer.
To further prove the generality of the new catalytic system, we applied the new developed methodology to the late-stage functionalization of a complex molecule (Scheme 3). The reaction of O-methylestrone (1 equiv.) with allyl acetate (1.5 equiv.) and Pd (OAc)2 (10 mol%) provided the desired product in only 10% 1H functionalization of a complex molecule (Scheme 3). The reaction of O-ligand L1, furnished the olefinated product 16 in 55% isolated yield as a mixture of ortho-olefinated isomers (a:b = 60:40).

In summary, the combination of Pd(OAc)2 and the bidentate S, O-ligand L1, was found to promote the C–H olefination of arenes with different allyl substrates, providing the desired allylated products in good yields. This transformation tolerates a wide range of arenes, including bulky, electron-rich and electron-poor arenes. The olefination reaction occurs preferentially at the most electron-rich position of the arene. Regarding the regioselectivity of the Pd-hydride elimination, mixtures of isomers were obtained in the reaction with allyl benzene and mainly one isomer in the reaction with allyl acetate and N-allylphthalimide; these results are in line with the general outcome of the Heck reaction. The applicability of the new catalytic system has been demonstrated in the late-stage functionalization of O-methylestrone.

Acknowledgments

We acknowledge financial support from NWO through a VIDI grant (723.013.006). We acknowledge Simone Sozzi for the synthesis of some reference compounds. B.M. and M.A.F.I. thank the R.S. for a travel grant.

Notes

The authors declare no competing financial interest.

A. Supplementary data

Supplementary data associated with this article can be found, in the online version, at https://doi.org/10.1016/j.tetlet.2017.12.047.

References

1. For general reviews on C–H functionalization, see: (a) Andtzen BA, Bergman TA, Mobley TA, Peterson TH. Acc Chem Res. 1995;28:154–162; (b) Godula K, James D. Science. 2006;312:67–72; (c) Bergman RG. Nature. 2007;446:391–394; (d) Alberico D, Scott ME, Lautens M. Chem Rev. 2007;107:174–238; (e) Yu J-Q, Shi Z. Chem Asian J. 2010;5:1090–1093; (f) Mikhail IAI, Barnard JH, Marder TB, Murphy JM, Hartwig JF. Chem Rev. 2010;110:980–931; (g) Yeung CS, Dong VM. Chem Rev. 2011;111:1215–1292; (h) McMurray L, O’Hara F, Gaunt MJ. Chem Soc Rev. 2011;40:1885–1898; (i) Hartwig JF. J Am Chem Soc. 2016;138:2–24; (j) Davies HML, Morton D. J Org Chem. 2016;81:343–350; (k) Yang Y, Lan J. J Chem Rev. 2017;117:8787–8863; for a special issue dedicated to this topic, see: (l) Acc Chem Res. 2012;45:777–958. 2. (a) Lyons TW, Sanford MS. Chem Rev. 2010;110:1147–1169; (b) Chen Z, Wang B, Zhang J, Yu W, Liu Z, Zhang Y. Org Chem Front. 2015;2:1107–1295; (c) Daugulis O, Roane J. Tran LD. Acc Chem Res. 2015;48:1053–1064; (d) Maes J, Maes B. Adv Heterocycl Chem. 2016;120:137–194; (e) Zhu R-Y, Farmer ME, Chen Y-Q, Yu J-Q. Angew Chem Int Ed. 2016;55:10578–10599; (f) Potschning C, Maulide N, Schnürch M. Chem Eur J. 2017;23:9206–9232; (g) Ma W, Gandeevan P, Li J, Ackermann L. Org Chem Front. 2017;4:1435–1467; 3. For a review on C–H functionalization of substrates that do not bear directing groups, see: (a) Kuhl N, Hopkinson MN, Wencel-Delord J, Glorius F. Angew Chem Int Ed. 2012;51:10236–10254; 4. For selected examples, see: (b) Robbins DW, Hartwig JF. Angew Chem Int Ed. 2013;52:933–977; (c) Shrestha R, Mukherjee P, Tan Y, Litman ZC, Hartwig JF. J Am Chem Soc. 2013;135:8480–8483; (d) Ricci P, Krämer K, Larroca I. J Am Chem Soc. 2014;136:18082–18086; (e) Cheng C, Hartwig JF. J Am Chem Soc. 2015;137:592–595; (f) Larsen MA, Wilson CV, Hartwig JF, J Am Chem Soc. 2015;137:8633–8643; (g) Paudyal MP, Adesesi AM, Burt SR, et al. Science. 2016;353:1144–1147; (h) Lu J-Y, Zhang T, Yao W-W, et al. J Am Chem Soc. 2017;139:1786–1788.

For selected examples on the use of ligands for Pd-catalyzed C–H functionalization reactions, see: (i) Zhang Y-H, Shi B-F, Yu J-Q, J Am Chem Soc. 2009;131:5072–5074; (j) Iwasa Y, Stahl SS. Adv Synth Catal. 2010;352:3223–3229; 5. For selected examples, see: (d) Wang C, Rakshit S, Glorius F. J Am Chem Soc. 2010;132:14006–14008; (e) Emmert MH, Cook AK, Xie YJ, Sanford MS. Angew Chem Int Ed. 2011;50:9409–9412; (f) Cook AK, Emmert MH, Sanford MS. Org Lett. 2013;15:5428–5431; (g) Li G, Lew W, Wan L, Yu J-Q. Angew Chem Int Ed. 2013;52:1245–1247; (h) Gary JB, Cook AK, Sanford MS. ACS Catal. 2011;1:700–703; (i) Gao D-W, Shi Y-C, Gu Q, Zhao Z-L, You S-L. J Am Chem Soc. 2013;135:86–89; (j) Cheng X-F, Li Y, Yu S-Y, et al. J Am Chem Soc. 2013;135:1236–1239; (k) Dai H-X, Li G, Zhang X-G, Stepan AF, Yu J-Q. J Am Chem Soc. 2013;135:7567–7571; (l) Cook AK, Sanford MS. J Am Chem Soc. 2015;137:3109–3118; (m) Valderas C, Naksomboon K, Fernández-Ibáñez MÁ. ChemCatChem. 2016;8:3213–3217; (n) Chen G, Gou W, Zhuang Z, et al. Science. 2016;353:1023–1027; (o) He J, Shao Q, Wu Q, Yu J-Q. J Am Chem Soc. 2017;139:3344–3347; 6. For selected examples, see: (b) Robbins DW, Hartwig JF. Angew Chem Int Ed. 2013;52:3102–3104; (c) Iwasa Y, Stahl SS. Adv Synth Catal. 2010;352:3223–3229; (d) Wang C, Rakshit S, Glorius F. J Am Chem Soc. 2010;132:14006–14008; (e) Emmert MH, Cook AK, Xie YJ, Sanford MS. Angew Chem Int Ed. 2011;50:9409–9412; 7. For selected examples, see: (d) Wang C, Rakshit S, Glorius F. J Am Chem Soc. 2010;132:14006–14008; (e) Emmert MH, Cook AK, Xie YJ, Sanford MS. Angew Chem Int Ed. 2011;50:9409–9412; (f) Cook AK, Emmert MH, Sanford MS. Org Lett. 2013;15:5428–5431; (g) Li G, Lew W, Wan L, Yu J-Q. Angew Chem Int Ed. 2013;52:1245–1247; (h) Gary JB, Cook AK, Sanford MS. ACS Catal. 2011;1:700–703; 8. For selected examples, see: (d) Wang C, Rakshit S, Glorius F. J Am Chem Soc. 2010;132:14006–14008; (e) Emmert MH, Cook AK, Xie YJ, Sanford MS. Angew Chem Int Ed. 2011;50:9409–9412; 9. For a selected example of direct oxidative coupling with allylamines, see: (e) Lei M, Yu M, Chen W, Ning J. ChemCatChem. 2010;2:1090–1093; (f) Lei M, Yu M, Chen W, Ning J. ChemCatChem. 2010;2:1090–1093; for a special issue dedicated to this topic, see: (l).