Honeycomb-Lattice Mott insulator on Tantalum Disulphide

Jinwon Lee,1,2 Kyung-Hwan Jin,1,3 Andrei Catuneanu,4 Ara Go,5 Jiwon Jung,1,2 Choongjae Won,6,7 Sang-Wook Cheong,6,7 Jaeyoung Kim,1 Feng Liu,3 Hae-Young Kee,4,8 and Han Woong Yeom1,2,∗

1Center for Artificial Low Dimensional Electronic Systems, Institute for Basic Science (IBS), Pohang 37673, Republic of Korea
2Department of Physics, Pohang University of Science and Technology, Pohang 37673, Republic of Korea
3Department of Materials Science and Engineering, University of Utah, Salt Lake City, Utah 84112, United States
4Department of Physics, University of Toronto, Toronto M5S 1A7, Canada
5Center for Theoretical Physics of Complex Systems, Institute for Basic Science (IBS), Daejeon 34126, Republic of Korea
6Laboratory for Pohang Emergent Materials, Pohang University of Science and Technology, Pohang 37673, Republic of Korea
7Rutgers Center for Emergent Materials and Department of Physics and Astronomy, Rutgers University, Piscataway, NJ 08854, United States
8Canadian Institute for Advanced Research, CIFAR Program in Quantum Materials, Toronto, ON M5G 1M1, Canada

Effects of electron many-body interactions amplify in an electronic system with a narrow bandwidth opening a way to exotic physics. A narrow band in a two-dimensional (2D) honeycomb lattice is particularly intriguing as combined with Dirac bands and topological properties but the material realization of a strongly interacting honeycomb lattice described by the Kane-Mele-Hubbard model has not been identified. Here we report a novel approach to realize a 2D honeycomb-lattice narrow-band system with strongly interacting 5d electrons. We engineer a well-known triangular lattice 2D Mott insulator 1T-TaS2 into a honeycomb lattice utilizing an adsorbate superstructure. Potassium (K) adatoms at an optimum coverage deplete one-third of the unpaired d electrons and the remaining electrons form a honeycomb lattice with a very small hopping. \textit{Ab initio} calculations show extremely narrow Z2 topological bands mimicking the Kane-Mele model. Electron spectroscopy detects an order of magnitude bigger charge gap confirming the substantial electron correlation as confirmed by dynamical mean field theory. It could be the first artificial Mott insulator with a finite spin Chern number.

Introduction—An electronic system with an extremely narrow bandwidth has recently attracted huge renewed interests, as it offers a playground to discover exotic quantum phases due to much stronger electron interaction relative to its kinetic energy [11] [12]. A narrow band in a two-dimensional (2D) honeycomb lattice is particularly intriguing, as it hosts Dirac electrons with a linear low-energy dispersion as in graphene [3] [4], and when the spin-orbit coupling is introduced, a gap opens at Dirac points, leading to a quantum spin Hall state [5]. A sufficiently strong on-site Coulomb repulsion (U) can induce a Mott insulator phase, as described by the Kane-Mele-Hubbard model [6], and various exotic phases have been proposed to emerge such as topologically non-trivial states [7] [8], quantum spin liquids [9], charge density waves [10], and superconductivity [11] at or near the half filling, and magnetic Chern insulator at a quarter filling [11]. However, the realization of a 2D honeycomb lattice with strong electron correlation has been challenging since Dirac electrons usually have high kinetic energy. A breakthrough in this challenge was recently achieved by making the Dirac band very flat by twisting two graphene sheets by a magic angle [12] [13]. In this system, a correlated insulator and superconductivity [12] [13] and more recently a ferromagnetic insulator with a finite Hall conductivity were reported [14] [15]. Despite the rapid progress of the research on twisted-bilayer-graphene with very small Coulomb energy, the material realization of a Kane-Mele-Hubbard system has been elusive.

In this letter, we report a unique approach to realize a 2D honeycomb-lattice narrow-band system with a strongly-interacting 5d transition metal. We start from a triangular lattice with a substantial Coulomb interaction and devise a way to manipulate the electron hopping into the honeycomb symmetry. The system is based on a well-known 2D Mott insulator 1T-TaS2 and alkali metal adsorbates are utilized as the lattice modifier. 1T-polytype TaS2 undergoes a series of spontaneous transitions into various charge-density-wave (CDW) phases [19]. The common unit cell of the CDW phases, known as a David-star cluster, is composed of 13 distorted Ta atoms in a $\sqrt{13} \times \sqrt{13}$ triangular superlattice (Fig. 1(a)). Each cluster contains 13 Ta 5d electrons, twelve of which pair to form insulating CDW bands and to leave one unpaired electron in a half-filled metallic band. The latter is very flat since the hopping to neighboring David stars is limited by a large distance of ~ 1.2 nm between them. As a result, a moderate electron correlation U introduces a Mott gap of about 0.2-0.4 eV at low temperature [20] [34]. The superconductivity emerging from this insulating state by pressure [35] or chemical doping [36] [35] was reported and a quantum spin liquid phase was suggested recently [39] [41].
FIG. 1. Honeycomb-lattice correlated phase arising from K adsorption on 1T-TaS$_2$. (a) Atomic structure of K-adsorbed 1T-TaS$_2$. Blue stars indicate CDW superstructures (David stars) and a green rhombus is a unit cell of K-adsorbed 1T-TaS$_2$. (b) A schematic for the honeycomb-lattice correlated phase. Every circle indicates each David star. K-adsorption sites (fully filled states) and bare David stars (half-filled states) are illustrated with gray and yellow color, respectively. Note that a half of (a) is overlaid with the schematic of (b). (c) 3D illustration of the STM topography of K-adsorbed 1T-TaS$_2$ (height map) with the local density of the upper Hubbard states (UHS, color map).

As shown in Fig. 1(b), one can convert a triangular lattice into a honeycomb by eliminating 1/3 of the lattice sites periodically. Fig. 1(c) shows a scanning tunneling microscopy (STM) topograph combined with a map of local density of states (LDOS, represented by color) for a 1T-TaS$_2$ surface with potassium (K) adatoms of an optimal coverage. At this coverage, K atoms (highly protruded in topograph and blue in the LDOS map) sit selectively at the center of a David-star cluster and form a ($\sqrt{3} \times \sqrt{3}$)R30$^\circ$ superstructure with respect to the CDW lattice (green rhombuses in Fig. 1(b)). K atoms indeed deplete the unpaired d electron states within a David-star cluster on which it sits as shown in the LDOS map (Fig. 1(c)). The remaining unpaired electrons in neighboring clusters are little affected by K adatoms and form a honeycomb lattice as illustrated in Figs. 1(b) and 1(c). The Dirac electrons with extremely narrow dispersions are David-star clusters with K adsorbate have even number of electrons due to the electron donation from K, leading to a simple one-electron gap. The local suppression of the presumed upper and lower Hubbard states (UHS and LHS) by K adatoms is well visualized in the corresponding LDOS maps, or normalized dI/dV maps, of Figs. 2(d) and 2(e), respectively. These LDOS maps further tell us that the charge gap, one can clearly see the prominent peaks at -90 and 150 mV on a bare David-star cluster (red data), which are absent in the clusters with K adatoms (green data). Note that the gaps on two different sites have totally different origin. A bare David star has odd number of electrons and its energy gap must originate from a correlated insulating phase as detailed below. The spectral features on a bare David-star cluster are consistent with those of the pristine 1T-TaS$_2$, which is established as an Mott insulator (see SFig. 2 in the Supplemental Material [42]). On the other hand, a David star with a K adsorbate has even number of electrons due to the electron donation from K, leading to a simple one-electron gap. The local suppression of the presumed upper and lower Hubbard states (UHS and LHS) by K adatoms is well visualized in the corresponding LDOS maps, or normalized dI/dV maps, of Figs. 2(d) and 2(e), respectively. These LDOS maps further tell us that the correlated states seem to survive in a honeycomb hopping lattice. Note also that the LDOS maps corresponding to CDW bands (Figs. 2(b) and 2(f)) are the same as those in the adsorbate-free area or a pristine sample (see SFig. 2 in the Supplemental Material [42]), telling us that the backbone CDW structure is intact even after the K adsorption.

By passing, we comment further on the adsorption behavior of K atoms. First of all, K atoms are not intercalated but adsorbed on top of the surface S layer as confirmed by the layer spacing (597 pm) (Figs. 2(i) and...
FIG. 2. Local electronic states of K-adsorbed 1T-TaS$_2$. (a) STM topographic image of the K-adsorbed 1T-TaS$_2$ surface. (b)-(f) Corresponding normalized dI/dV images for $V = -450$, -240, -90, and 150, and 400 mV (see vertical bars in (h)). Note that the features at -90 and 150 mV correspond to correlated Dirac states. (g) A wide-area STM image of 1T-TaS$_2$ and its Fourier transform in the inset. 1x1 and $\sqrt{3}x\sqrt{3}$ stand for the structures with respect to the CDW unit cell. (h) Normalized (dI/dV) spectra at fixed positions. Green and red plots are obtained on the K-adsorption site (green rhombus) and the bare David star (red hexagon), respectively. (i) STM image at a step edge in 1T-TaS$_2$ after K deposition. (j) Height (Z) profile along the red dashed line in (i).

2(j)). DFT calculates the adsorption energy of a K atom on various possible sites within a CDW unit cell (see Supplementary Note 3, STable I, and SFig. 3 in the Supplemental Material [42]) and finds the center of the David star to be the most energetically favorable. The 4s valence electron of a K adatom is almost completely transferred to the substrate to make the adatom ionic (Fig. 3(a)). It is highly localized on a single David-star cluster, leaving neighboring clusters intact and forming a local dipole. The dipole-dipole interaction explains the repulsion between adatoms to form the ordered superstructure with a domain size up to 30x50 nm2 (Fig. 2(g)). Given the short-range repulsion, K atoms adsorb rather randomly avoiding the nearest-neighbor David stars below the optimum coverage (see SFig. 4 in the Supplemental Material [42] for more details of the growth behavior). These calculations agree well with the STM and STS observations.

Electronic structures and topology—The DFT calculation for 1T-TaS$_2$ with K adatoms in a $(\sqrt{3}x\sqrt{3})$R30° superstructure predicts two extremely narrow bands at the Fermi energy within the CDW gap as shown in Fig. 3(b). While the two bands are expected from effectively two orphan electrons in a honeycomb supercell with two David-star clusters, the narrow bandwidth with almost linear crossing shown in Figs. 3(c) and 3(d) is notable. The small bandwidth of \sim 20 meV is due to the d_{z^2} orbital character of those orphan electrons and the huge size of the supercell (see SFig. 5 in the Supplemental Material [42]). The direct hopping integrals between d orbitals in the honeycomb plane are significantly reduced, and the hopping paths are mainly achieved via p orbitals of S atoms. Given that the inversion symmetry is broken, a finite spin-orbit coupling (SOC) including the Rashba effect splits these bands into four with a tiny gap of \sim 0.5 meV at K point. Due to time-reversal symmetry, the bands are degenerate at the time-reversal-invariant-momentum points of Γ and M. In addition, a fully occupied band below the Fermi level appears at adsorption sites (marked with a green color in Fig. 3(b)) as originates from the Ta 5d level doped with K 4s electrons. Its extremely narrow dispersion is due to the strong localization of donated electrons (Fig. 3(a)). The spatial distributions of two distinct types of electrons are visualized in Figs. 3(e) and 3(f), nicely matching the experimental results (Figs. 2(c)-2(e)).

We investigate the topology of these flat bands by a tight binding model. Indeed, the tight binding model
FIG. 3. Electronic band structure of K-adsorbed 1T-TaS$_2$. (a) Charge transfer from the K adsorbate. Red and blue colors represent accumulation and depletion of electron, respectively. Note that electron transferred from K adatom is highly localized at the adsorption site. (b) DFT band structure with a paramagnetic constraint. (c) and (d) Enlargement of the band structure near the Fermi level with the tight binding (TB) fitting, and the maximally localized Wannier functions fitting, respectively. (e) A spatial distribution of the metallic Dirac bands (marked with red in (b)), and (f) that of a fully occupied band at ~ -0.2 eV (marked with green in (b)). (g) Evolution of Wannier charge centers by varying the pumping parameter k. The evolution curves have an odd-number crossing with respect to an arbitrary horizontal line. (h) Band structure after considering the electron correlation and the electronic density of states (DOS). The metallic Dirac bands at the Fermi level split with a large charge gap. The extra gap like feature below each Dirac point is an artifact of the present single-site DMFT calculation.

Electron correlation and honeycomb-lattice Mott insulator—While the DFT results capture the narrow Ta 5d bands, its tiny gap is inconsistent with the 200 meV gap observed (see Fig. 2(g) and SFig. 8 in the Supplemental Material [42]). This suggests a crucial role of electron-electron interactions. The electron correlation is considered by performing DMFT calculation using the above Wannier-function tight-binding parameters. As shown in Fig. 3(h), this calculation yields the fully gaped band structure even with a fairly small Coulomb interaction of 0.25 eV due to the very small hopping integrals or the narrow bands. This unambiguously indicates the strongly correlated, Mott insulating, nature of the present system. The occupied and unoccupied bands around -0.1 and 0.1 eV form the LHB and UHB, respectively. The band gap and the narrow LHB band agree

obtained through the Wannier function [45], by projecting the Bloch states from the DFT calculation onto the Ta d_{z^2} orbital (see Note 4, SFigs. 5, and 6 in the Supplemental Material [42]), becomes a characteristic Kane-Mele type Hamiltonian.

$$
H = \sum_{i,j,s} t_{i,j,s}^c c_{i,s}^\dagger c_{j,s} + i\lambda_R \sum_{\langle ij \rangle} c_{i,s}^\dagger (\vec{\sigma} \times \hat{d}_{ij}) z_{s,s'} c_{j,s'} + i\lambda_{soc} \sum_{\langle\langle ij \rangle\rangle} c_{i,s}^\dagger \nu_{ij} \sigma_{s,s'}^z c_{j,s'},
$$

where $c_{i,s}^\dagger$ represents a creation of Wannier state at a cluster i with spin s, and $\vec{\sigma}$ is a Pauli matrix for spin-1/2. $n_{i,s} = c_{i,s}^\dagger c_{i,s}$. \hat{d}_{ij} is the unit vector from site j to site i introduced due to the broken inversion symmetry and $\nu_{ij} = \pm1$ depends on whether the electron hoping from i to j makes a right (+1) or a left (-1) turn. $\langle i,j \rangle$ and $\langle\langle i,j \rangle\rangle$ refer to first and second nearest neighbor (n.n.) respectively, and hopping parameters t_i up to 5th n.n. are used to fit the band dispersion. λ_{soc} and λ_R denote strengths of spin-dependent and Rashba spin-flip SOC, respectively. Tight binding parameters are listed in Table I which fit the DFT bands well (Fig. 3(c)). The calculated Wannier charge center [46] indicates clearly an odd number of crossing via the pumping parameter, a hallmark of nontrivial topology of $Z_2=1$ (Fig. 3(g)). The nontrivial order can also be manifested by the presence of helical edge states (see SFig. 7 in the Supplemental Material [42]).

TABLE I. Parameters of the tight binding Hamiltonian of K-adsorbed 1T-TaS$_2$ at the optimal coverage.

Parameter	Value (meV)	Parameter	Value (meV)
t_1	-0.67	t_2	-1.06
t_3	-1.32	t_4	0.26
t_5	0.62	λ_R	0.07
λ_{soc}	0.06		

Electron correlation and honeycomb-lattice Mott insulator—While the DFT results capture the narrow Ta 5d bands, its tiny gap is inconsistent with the 200 meV gap observed (see Fig. 2(g) and SFig. 8 in the Supplemental Material [42]). This suggests a crucial role of electron-electron interactions. The electron correlation is considered by performing DMFT calculation using the above Wannier-function tight-binding parameters. As shown in Fig. 3(h), this calculation yields the fully gaped band structure even with a fairly small Coulomb interaction of 0.25 eV due to the very small hopping integrals or the narrow bands. This unambiguously indicates the strongly correlated, Mott insulating, nature of the present system. The occupied and unoccupied bands around -0.1 and 0.1 eV form the LHB and UHB, respectively. The band gap and the narrow LHB band agree
well with the above STS results and our angle-resolved photoemission spectroscopy measurements (see SFig. 8 in the Supplemental Material [42]). The topological character of DFT metallic bands (Fig. 2(b)) is preserved here. For example, the LHB and UHB are made of two bands with opposite Chern numbers. When the system is half filled as in the current system, it is a Mott insulator with zero Chern number because two Chern numbers cancel out. On the other hand, at 1/4 and 3/4 fillings, it becomes a quantum spin Hall insulator. This is apparently a Kane-Mele-Hubbard system.

Another possible origin of the insulating phase in our system is a magnetic ordering. Any magnetic orderings in a honeycomb lattice drive the insulating phase due to the time-reversal-symmetry breaking. We also considered various magnetic orderings through DFT and spin model calculations but the transition temperature is extremely small (∼O(mK)) [12]. Therefore, the experimentally observed charge gap, persisting well above such a low transition temperature (see SFig. 8 in the Supplemental Material [42]), is a strong evidence of the insulating phase without any symmetry breaking, that is the Mott insulator.

We note that the direct experimental confirmation of the topological property itself is missing in the parent work. Given that two propagating edge states have different Chern numbers, there is no edge states in half-filled system. The verification of the topological character, thus, requires doping the system to either 1/4 or 3/4 filling, or removing one of edge states by applying magnetic field to induce a finite Hall conductivity originating from the left-over edge state. The quantized Hall conductivity and STS in a magnetic field to induce a finite Hall conductivity originating from the left-over edge state. The quantized Hall conductivity and STS in a magnetic field to induce a finite Hall conductivity originating from the left-over edge state. The quantized Hall conductivity and STS in a magnetic field to induce a finite Hall conductivity originating from the left-over edge state. The quantized Hall conductivity and STS in a magnetic field to induce a finite Hall conductivity originating from the left-over edge state. The quantized Hall conductivity and STS in a magnetic field to induce a finite Hall conductivity originating from the left-over edge state. The quantized Hall conductivity and STS in a magnetic field to induce a finite Hall conductivity originating from the left-over edge state. The quantized Hall conductivity and STS in a magnetic field to induce a finite Hall conductivity originating from the left-over edge state. The quantized Hall conductivity and STS in a magnetic field to induce a finite Hall conductivity originating from the left-over edge state. The quantized Hall conductivity and STS in a magnetic field to induce a finite Hall conductivity originating from the left-over edge state. The quantized Hall conductivity and STS in a magnetic field to induce a finite Hall conductivity originating from the left-over edge state. The quantized Hall conductivity and STS in a magnetic field to induce a finite Hall conductivity originating from the left-over edge state. The quantized Hall conductivity and STS in a magnetic field to induce a finite Hall conductivity originating from the left-over edge state.

Conclusion—In this work, we create a honeycomb lattice of half-filled d electrons on a 1T-TaS2 surface, which is decorated with ordered K adsorbates. The STS and ARPES data and theoretical considerations indicate unambiguously that the finite-temperature insulating phase of the present system is a honeycomb-lattice Mott insulator described by a supercell Kane-Mele-Hubbard model with a finite spin Chern number for lower and upper Hubbard bands. The lattice manipulation by adsorbate superstructures can widely be exploited in various other 2D materials, in addition to moire superstructures, in order to search and create an exotic electronic system.

Acknowledgments.—This work was supported by the Institute for Basic Science (Grant No. IBS-R014-D1). K.-H. Jin and F. Liu acknowledge financial support from DOE-BES (No. DE-FG02-04ER46148). K.-H. Jin is supported by the Institute for Basic Science (Grant No. IBS-R014-Y1). A. Go thanks financial support from the Institute for Basic Science (Grant No. IBS-R024-D1). H.-Y. Kee is supported by Natural Science and Engineering Research Council of Canada.

yeom@postech.ac.kr

[1] Emil J. Bergholtz and Zhao Liu, Int. J. Mod. Phys. B 27, 1330017 (2013).
[2] Oleg Derzhko, Johannes Richter, and Mykola Maksymenko, Int. J. Mod. Phys. B 29, 1530007 (2015).
[3] K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, S. V. Dubonos, and A. A. Firsov, Nature 438, 197 (2005).
[4] Yuanbo Zhang, Yan-Wen Tan, Horst L. Stormer, and Philip Kim, Nature 438, 201 (2005).
[5] C. L. Kane and E. J. Mele, Phys. Rev. Lett. 95, 146802 (2005).
[6] M. Hohenadler, Z. Y. Meng, T. C. Lang, S. Wessel, A. Muramatsu, and F. F. Assaad, Phys. Rev. B 85, 115132 (2012).
[7] S. Raghu, Xiao-Liang Qi, C. Honerkamp, and Shou-Cheng Zhang, Phys. Rev. Lett. 100, 156401 (2008).
[8] Manuel Laubach, Johannes Reuther, Ronny Thomale, and Stephan Rachel, Phys. Rev. B 90, 165136 (2014).
[9] Sung-Sik Lee and Patrick A. Lee, Phys. Rev. Lett. 95, 036403 (2005).
[10] Bruno Uchoa and A. H. Castro Neto, Phys. Rev. Lett. 98, 146801 (2007).
[11] Archana Mishra and SungBin Lee, Sci. Rep. 8, 799 (2018).
[12] Yuan Cao, Valla Fatemi, Ahmet Demir, Shiang Fang, Spencer L. Tomarken, Jason Y. Luo, Javier D. Sanchez-Yamagishi, Kenji Watanabe, Takashi Taniguchi, Efthimios Kaxiras, Ray C. Ashoori, and Pablo Jarillo-Herrero, Nature 556, 80 (2018).
[13] Yuan Cao, Valla Fatemi, Shiang Fang, Kenji Watanabe, Takashi Taniguchi, Efthimios Kaxiras, and Pablo Jarillo-Herrero, Nature 556, 43 (2018).
[14] Jian Kang and Oskar Vafek, Phys. Rev. Lett. 122, 246401 (2019).
[15] Kangjun Seo, Valeri N. Kotov, and Bruno Uchoa, Phys. Rev. Lett. 122, 246402 (2019).
[16] Aaron L. Sharpe, Eli J. Fox, Arthur W. Barnard, Joe Finney, Kenji Watanabe, Takashi Taniguchi, M. A. Kastner, and David Goldhaber-Gordon, Science 365, 605 (2019).
[17] M. Serlin, C. L. Tschirhart, H. Polshyn, Y. Zhang, J. Zhu, K. Watanabe, T. Taniguchi, L. Balents, and A. F. Young, Science 367, 900 (2020).
[18] C. Repellin, Z. Dong, Y.-H. Zhang, and T. Senthil, Phys. Rev. Lett. 124, 187601 (2020).
[19] J. A. Wilson, F. T. Di Salvo, and S. Mahajan, Adv. Phys. 24, 117 (1975).
[20] A. S. Barker, J. A. Ditzenberger, and F. J. DiSalvo, Phys. Rev. B 12, 2049 (1975).
[21] L. V. Gasparr, K. G. Brown, A. C. Wint, D. B. Tanner, H. Berger, G. Margaritondo, R. Gaàd, and L. Forró, Phys. Rev. B 66, 094301 (2002).
[22] F. Zwick, H. Berger, I. Vobornik, G. Margaritondo, L. Forró, C. Beeli, M. Onellion, G. Panaccione, A. Talebi-Ibrahim, and M. Grioni, Phys. Rev. Lett. 81, 1058 (1998).
[23] F. Clerc, C. Battaglia, M. Bovet, L. Despont, C. Monney, H. Cercellier, M. G. Garnier, P. Aebi, H. Berger, and L. Forró, Phys. Rev. B 74, 155114 (2006).
[24] L. Perfetti, P. A. Loukakos, M. Lisowski, U. Bovensiepen, M. Wolf, H. Berger, S. Biermann, and A. Georges, New. J. Phys. 10, 053019 (2008).
[25] Hitoshi Sato, Masashi Arita, Yuki Utsumi, Yutaka Mukaegawa, Minoru Sasaki, Akimasa Ohnishi, Mamoru Kitaura, Hirofumi Namatame, and Masaki Taniguchi, Phys. Rev. B 89, 155137 (2014).
[26] T. Ritschel, J. Trinckauf, K. Koepernik, B. Büchner, M. v. Zimmermann, H. Berger, Y. I. Joe, P. Abbamonte, and J. Geck, Nat. Phys. 11, 328 (2015).
[27] I. Lutsyk, M. Rogala, P. Dabrowski, P. Krukowski, P. J. Kowalczyk, A. Busiakiewicz, D. A. Kowalczyk, E. J. Binder, N. Olszowska, M. Kopciuszynski, K. Szałowski, M. Gmitra, R. Stepniewski, M. Jalochowski, J. J. Kolodziej, A. Wysmolek, and Z. Klusek, Phys. Rev. B 98, 195425 (2018).
[28] Ju-Jin Kim, W. Yamaguchi, T. Hasegawa, and K. Kitaoka, Phys. Rev. Lett. 73, 2103 (1994).
[29] Ju-Jin Kim, Inger Ekvall, and Håkan Olin, Phys. Rev. B 54, 2244 (1996).
[30] Dohee Cho, Yong-Heum Cho, Sang-Wook Cheong, Ki-Seok Kim, and Han Woong Yeom, Phys. Rev. B 92, 085132 (2015).
[31] Dohee Cho, Sangmo Cheon, Ki-Seok Kim, Sung-Hoon Lee, Yong-Heum Cho, Sang-Wook Cheong, and Han Woong Yeom, Nat. Commun. 7, 10453 (2016).
[32] Liguang Ma, Cun Ye, Yijun Yu, Xiufang Lu, Xiaohai Niu, Sejoong Kim, Donglai Feng, David Tománek, Young-Woo Son, Xian Hui Chen, and Yuanbo Zhang, Nat. Commun. 7, 10956 (2016).
[33] Dohee Cho, Gyeongcheol Gye, Jinwon Lee, Sung-Hoon Lee, Lihai Wang, Sang-Wook Cheong, and Han Woong Yeom, Nat. Commun. 8, 392 (2017).
[34] C. J. Butler, M. Yoshida, T. Hanaguri, and Y. Iwasa, Phys. Rev. Lett. 11, 2477 (2020).
[35] B. Sipos, A. F. Kusmartseva, A. Akrap, H. Berger, L. Forró, and E. Tutiš, Nat. Mater. 7, 960 (2008).
[36] P. Xu, J. O. Piatek, P.-H. Lin, B. Sipos, H. Berger, L. Forró, H. M. Rønnow, and M. Grioni, Phys. Rev. B 81, 172503 (2010).
[37] L. J. Li, W. J. Lu, X. D. Zhu, Z. Qu, and Y. P. Sun, Europhys. Lett. 97, 67005 (2012).
[38] Y. Liu, R. Ang, W. J. Lu, W. H. Song, L. J. Li, and Y. P. Sun, Appl. Phys. Lett. 102, 192602 (2013).
[39] K. T. Law and Patrick A. Lee, Proc. Natl. Acad. Sci. 114, 6996 (2017).
[40] A. Ribak, I. Silber, C. Baines, K. Chashka, Z. Salman, Y. Dagan, and A. Kanigel, Phys. Rev. B 96, 195131 (2017).
[41] Martin Klanjšek, Andrej Zorko, Rok Žitko, Jernej Mravlje, Zvonko Jagličič, Pabitra Kumar Biswas, Peter Prelovšek, Dragan Mihailovic, and Denis Arton, Nat. Phys. 13, 1130 (2017).
[42] See Supplemental Material at [URL will be inserted by publisher] for the details.
[43] B. Giambattista, C. G. Slough, W. W. McNairy, and R. V. Coleman, Phys. Rev. B 41, 10082 (1990).
[44] P. Schumidt, B. Murphy, J. Kröger, H. Jensen, and R. Berndt, Phys. Rev. B 74, 193407 (2006).
[45] Arash A. Mostofi, Jonathan R. Yates, Giovanni Pizzi, Young-Su Lee, Ivo Souza, David Vanderbilt, and Nicola Marzari, Comput. Phys. Commun. 185, 2309 (2014).
[46] Alexey A. Soluyanov and David Vanderbilt, Phys. Rev. B 83, 235401 (2011).
[47] J. M. Pizarro, S. Adler, K. Zantout, T. Mertz, P. Barone, R. Valentí, G. Sangiovanni, and T. O. Wehling, arxiv:2001.04102v1.