Switchable sensitizers stepwise lighting up lanthanide emissions

Yan Zhang1,2, Peng-Chong Jiao1,2, Hai-Bing Xu1,2, Ming-Jing Tang1,2, Xiao-Ping Yang3, Shaoming Huang3 & Jian-Guo Deng1,2

1New Materials R&D Center, Institute of Chemical Materials, China Academy of Engineering Physics, Mianyang, Sichuan, 621900, China, 2Key Laboratory of Science and Technology on High Energy Laser, Sichuan Research Center of New Materials, Chengdu, Sichuan 610207, China, 3College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, Zhejiang 325035, China.

Analagous to a long-ranged rocket equipped with multi-stage engines, a luminescent compound with consistent emission signals across a large range of concentrations from two stages of sensitizers can be designed. In this approach, ACQ, aggregation-caused quenching effect of sensitizers, would stimulate lanthanide emission below 10^{-2} M, and then at concentrations higher than 10^{-3} M, the “aggregation-induced emission” (AIE) effect of luminophores would be activated with the next set of sensitizers for lanthanide emission. Simultaneously, the concentration of the molecules could be monitored digitally by the maximal excitation wavelengths, due to the good linear relationship between the maximal excitation wavelengths and the concentrations (lg(M)). This model, wherein molecules are assembled with two stages (both AIE and ACQ effect) of sensitizers, may provide a practicable strategy for design and construction of smart lanthanide bioprobes, which are suitable in complicated bioassay systems in which concentration is variable.

Single-molecule fluorescence techniques are crucial for numerous applications, such as cell biology and early diagnosis1–3. With the development of bioprobes, ratiometric probes with high sensitivity to the changes in the concentration of a range of analytes have been exploited4–5. However, the ubiquitous “aggregation-caused quenching” (ACQ) effect has hampered the detection of individual fluorescent molecules in solution at high concentrations6–8. Ideally, it is desirable that the output signals from bioprobes in any concentrations possess high sensitivity and resolution so that consistent signals from the bioprobes could still be obtained in complicated bioassay systems, as the bioprobes may accumulate on the surfaces of the biomacromolecules with different concentrations9.

Inspired by the fact that multistage propulsion systems propel a rocket stepwise across a route, consistent lanthanide emissions of high sensitivity and resolution across a wide range of concentrations could likewise be achieved by employing a strategy, in which different kinds of sensitizers are activated stepwise for efficient lanthanide emission at different concentrations.

Recently, a cyclic lanthanide complex with reversible “walkable dual emissions”, whose emission is dependent on concentration and temperature by a vibronic mechanism, has been demonstrated by our group10. This technique is a promising concept model for signal exchanging and dispatching. Herein, a new type of luminescent lanthanide complex [TPE-TPY-Eu(hfac)3] (1, hfac^- = hexafluoroacetylacetonate; TPE-TPY = 4’-(4-(1,2,2-triphenylvinyl)phenyl)-2,2’:6’,2”-terpyridine) is reported (Scheme 1 and Figure S1(SI)). It is equipped with two types of chromophores: one is TPE-TPY (1HN M Rand 13CN M R(Figures S2–S3, SI) which has a “bladed” structure with multiple aryl groups and can provide “aggregation-induced emission” (AIE) effect11; the other one is a planar luminogen12 of hfac^- which has the “aggregation-caused quenching” (ACQ) effect at high concentrations13. Photophysical behaviour show that hfac^- mainly acts as the sensitizer to cause the EuIII-based emission at a very low concentration (≤10^{-5} M). With the concentration climbing to the 10^{-4} M to 10^{-3} M range, both hfac^- and TPE-TPY pump their energies into the EuIII excited states. Once the concentration surpasses 10^{-3} M, TPE-TPY is activated as the sole energy donor by aggregation effect. It is believed that this is the first example in which different types of chromophores are stepwise-activated to act as sensitizers for efficient lanthanide emission with the concentrations of the complex as the variable.
Results

Energy transfer procedures. The photophysical properties of 1, as well as related complexes [TPE-TPY-Gd(hfac)$_3$], TPE-TPY, Eu(hfac)$_3$-2H$_2$O, [TPY-Eu(NO$_3$)$_3$] and [TPE-TPY-Eu(NO$_3$)$_3$], were studied. The reference [TPE-TPY-Gd(hfac)$_3$], which lacks energy transfer from the TPE-TPY antenna triplet states, exhibits ligand phosphorescence as two vibronic shoulders at λ_{max} = 452 and 475 nm, corresponding to the vibrational stretching frequency of the pyridyl groups (Figure S4, SI). The calculated triplet-state energy level (21100 cm$^{-1}$) is favourable for energy transfer into that of Eu$^{3+}$ ($^5D_0 \rightarrow ^7F_g$ at 21300 cm$^{-1}$).† However, the excitation spectrum of 1 (Figure 1, λ_{max} = 310 nm, gray line) with a concentration of 10^{-5} M only resembles the profile of the absorption spectrum of the precursor Eu(hfac)$_3$-2H$_2$O rather than that of [TPY-Eu(NO$_3$)$_3$], indicating an energy transfer pathway is mainly from the hfac$^{-}$ instead of TPY to the Eu$^{3+}$ ion (the quantum efficiency (η) is ca. 42.5%) in very dilute solutions ($\leq 10^{-7}$ M). Additionally, the emission intensity (λ_{em} = 360 nm) of [TPE-TPY-Eu(NO$_3$)$_3$] is very weak and much lower than that of [TPY-Eu(NO$_3$)$_3$] (Figure S5, SI). These facts indicate that the intramolecular rotations of TPE consume the energies of the excited states of TPY, markedly reducing the efficiency of the energy transfer from TPY to Eu$^{3+}$ ion. Consequently, hfac$^{-}$ acts as the main sensitizer for Eu$^{3+}$-based emission in 1 at low concentration.

When the concentration climbs up to 10^{-4} M, the excitation spectrum of 1 is a hybrid of the profiles of the absorption spectra of Eu(hfac)$_3$-2H$_2$O and TPE-TPY, and the excitation window red shifts from 310 nm to 336 nm (Figure 1, black line). These facts indicate that hfac$^{-}$ and TPE-TPY are all activated as the sensitizers for the Eu$^{3+}$-based emission. When the concentration is higher than 10^{-3} M, since only the absorption spectrum of TPE-TPY appears within the regions of the excitation window (Figure 1, λ_{max} = 380 nm, red line), the TPE-TPY solely contributes to the Eu$^{3+}$-based emission. This conclusion also can be verified by two facts: i) Eu(hfac)$_3$-2H$_2$O or [TPY-Eu(NO$_3$)$_3$] without TPE does not show lanthanide luminescence at excitation wavelength $\lambda_{\text{ex}} > 350$ nm (Figure 1); ii) a related compound [TPE-TPY-Eu(NO$_3$)$_3$] without hfac$^{-}$ exhibits a typical Eu$^{3+}$-based emission (Figure S6, SI) at higher concentration (10^{-3} M) with λ_{ex} = 380 nm, while no such emission is found at lower concentration (10^{-5} M).

Photophysical properties. Photophysical properties of TPE-TPY.

The free TPE-TPY can show obvious AIE phenomenon in different concentrations. As shown in Figure 2, the pyridyl and phenyl rings in free TPE-TPY are not coplanar; instead, they are twisted with respect to each other, and consequently they induce rapid intramolecular rotations in an isolated state. Since the intramolecular rotations effectively consume the energies of the excited states of TPY, markedly reducing the efficiency of the energy transfer from TPY to Eu$^{3+}$ ion. Consequently, hfac$^{-}$ acts as the main sensitizer for Eu$^{3+}$-based emission in 1 at low concentration.

As a typical AIE compound, the free TPE-TPY has the following interesting photophysical behaviours. (1) With increasing concentration, the emission intensities are progressively enhanced, and the central emission bands experience little red shifts (10 nm). When the concentration reaches its highest value in the solid state, the emission intensities climb markedly to the highest one, and the area of the emission profiles is 3500 times larger than that of the lowest one with the concentration of 10^{-3} M in dichloromethane solutions (Figure S7, SI). (2) The addition of large amounts of n-hexane solvent (a poor solvent of TPE-TPY), which causes the molecules of TPE-TPY to aggregate, can enhance their emission performances (Figure S8, SI). Once the n-hexane contents in the solvent mixtures (dichloromethane/n-hexane) exceed 50%, the emission progressively intensifies as the n-hexane content increased. Meanwhile, the emission spectra exhibit slightly bathochromic-shifts.17

AIE phenomena of 1. In our case, as shown in Figure 3, when the initial concentration of 1 is more than 10^{-4} M, the Eu$^{3+}$-based emission is largely improved by increasing the poor solvent n-hexane contents in the mixed solvents (starting from 70% content of n-hexane). This may be due to the fact that the addition of n-hexane causes the aggregation of 1, resulting in the formation of nanoparticles in the mixed solvents.17 With larger size and more population of the nanoparticles of 1, the Eu$^{3+}$-based emission in 99% n-hexane is about three times as strong as that in 70% n-hexane. It is noticeable that the addition of n-hexane results in the enhancement of the absorption intensities of 1 (Figure S9, SI), due to the light scattering of the nanoparticles formed in the mixed solvents.18

Monitored the concentration online. The energy transfer procedures could be simply viewed as this: there are two kinds of fuels attached to a rocket. Once the first fuel is about to run out, the second one would immediately work to push the rocket into the sky. As the quantity of the fuel is the key point to start the second one, monitoring the concentration realtime is very important. As shown in Figure 4, different sensitizers are activated for Eu$^{3+}$-based emission by increasing the concentrations; the maximal excitation wavelengths extend from ca. 310 nm to 426 nm, indicating that small
molecules with variable concentrations could be stimulated to emit by different excitation wavelengths. Surprisingly, there is a good linear relationship between the maximal excitation wavelength and the concentration \(\{\lg(M)\}\) (Figure 4, \(R^2 = 0.97\)) of 1; thus not only high-resolution lanthanide signals could be obtained, but also the varying concentrations of the molecules could be evaluated realtime by the maximal excitation wavelength.

Discussions

Tendency of the emission efficiency. We were naturally interested in the influence of different sensitizers in the EuIII-based emission intensities of 1 at different concentrations. It has been demonstrated that \(\beta\)-diketones are one of the best sensitizers for EuIII-based emission in dilute solutions15,20,25. With hfac\(^-\) acting as the main sensitizer for lanthanide emission in dilute solution (10-3 M), the quantum yield \(\Phi_{\text{em}}\) of EuIII in 1 is 3.95 \(\pm\) 0.15\% (Figure 5). When the concentration climbs to 10-2 M, both hfac\(^-\) and TPE-TPY are all activated as the sensitizers for the EuIII-based emission. However, the EuIII-based emission intensity is lower than that at 10-3 M, with a quantum yield of 0.645 \(\pm\) 0.015\%. This may be due to the fact that the ACQ effect on hfac\(^-\) decreases its sensitizer performance and the AIE effect on TPE-TPY is not activated at this concentration (Figure S7, SI). When the concentration exceeds 10-2 M, the emission performance of the TPE-TPY is just activated due to the AIE effect (Figure S7, SI), and only TPE-TPY serves as the sensitizer (Figure 1).

Consequently the EuIII-based emission intensity of 1 becomes the lowest one \(\Phi_{\text{em}} = 0.160 \pm 0.001\%\) at 10-1 M. Once the AIE effect further promotes the emission performance of TPE-TPY, the EuIII-based emission intensity of 1 becomes higher and higher with the increase of concentrations (Figure 5). And the quantum yield of EuIII is 0.99 \(\pm\) 0.04\% when the concentration of 1 is 10-1 M. So when the concentrations of 1 change from low to high, the emission intensities of EuIII change in the order: high-low-high (Figure 5). In return, upon diluting the solution from high concentration such as 10-1 M, the same phenomena will happen due to the non-destructive physical cycles.

An inferential mechanism of 1. Due to the forbidden Laporte rule and low molar absorption coefficient, the lanthanide ions could only be efficiently populated by adjacent absorbing light harvesting, which act as the sensitizers to pump their energies into the lanthanide excited states by antenna effect26. Since the f-f transitions in lanthanide ion are invert2, the pumped excited energies from the sensitizer could be employed to modulate the performance of the sensitized lanthanide emissions20–21.

In this case, as shown in Figure S10 (SI), hfac\(^-\) mainly acts as the first sensitizer to light up the EuIII-based emission at very low concentrations. When the concentrations increase, the ACQ effect on hfac\(^-\) decreases the sensitizer performance, so as to weaken the intensity of the EuIII-based emission. Then the RIR processes is activated on TPE-TPY by aggregation (\(\geq\)10-3 M), switching the energy transfer pathway from TPE-TPY instead of hfac\(^-\) to the EuIII subunit, thus the AIE effect on TPE-TPY improves the efficiency of the EuIII-based emission. Consequently, as depicted in Figure 6, hfac\(^-\), hfac\(^-\)/TPE-TPY, and TPE-TPY are activated stepwise to act as the dominated sensitizers for the efficient EuIII-based emission at different concentrations, moreover the excitation wavelength (Figure 1) and luminescence quantum yields (Figure 5) of EuIII complex can be easily tuned by the ACQ/AIE process of the sensitizers.

Although the AIE has been reported for many years22, it is still challenging to achieve the AIE effect on organometallic complexes by the antenna effect23. Since the electronic transitions of organometallic luminogens and AIE functional groups originate from the outer shells, their excitation energies are all susceptible to the external stimulations. Interestingly, as shown in above, in 1 the excited energies induced by aggregation in TPE-TPY are efficiently transferred to the EuIII-subunit. Thus we firstly accomplish to introduce the AIE in lanthanide complex systems, thanks to the shielding effect and the inner f-f electronic transitions in lanthanide(III) ions. Based on the above possible mechanism, besides from acting as bioprobe and
sensors, such kind of lanthanide may be promising in other relative applications, such as in solid-state emitters and so on.14

In summary, a new type of lanthanide complex 1 equipped with both the AIE and ACQ effects of antenna, which can be stepwise-activated to act as sensitizers for efficient lanthanide emission, has been prepared. Due to "dual sensitization pathways" in 1, that is, using a planar structure of sensitizer with ACQ effect to light up LnIII-based emission within low concentrations, then a "bladed" structure of antenna with AIE effect to simulate the lanthanide(III) emission at high concentrations, consistent signals of Eu III-based structure of antenna with AIE effect to simulate the lanthanide(III) emission were of spectroscopic grade. Hexafluoroacetylacetone (Hf) was dried, distilled, and degassed prior to use, except those for spectroscopic measurements. The solutions used for luminescence determination were prepared after rigorous removal of oxygen by three successive freeze-pump-thaw cycles. For example, for #TPY-Eu(hfac)3 in CH2Cl2 possess approximate absorption coefficient within 0.38 at λ = 380 nm and 0.31 at λ = 430 nm. Similarly, they have approximate absorption coefficient within 0.005 at 356 nm with the concentration of TPE-TPY-Eu(hfac)3 at 10−3 M. The energy emission from the 5D0 emission spectrum with respect to the integrated area of the magnetic dipole transition 5D0 → F1. The other hand, AEmax, and 5D0 is equal to 1/λmax, where 5D0 can be determined from an exponential fitting of the lifetime decay curve.28

Crystal Structural Determination. Single crystal of TPE-EuTPY (CCDC 958336) for X-ray diffraction was grown by layering n-hexane onto the corresponding dichloromethane solutions. Crystals coated with epoxy resin or sealed in capillaries with mother liquors were measured on a SIEMENS SMART CCD diffractometer by ω scan technique at room temperature using graphite-monochromated Mo-Kα radiation (λ = 0.71073 Å). Lp corrections were carried out in the reflection reflection program (X-RED32) by structure was solved by direct method. The remaining non-hydrogen atoms were determined from the successive difference Fourier syntheses. The hydrogen atoms were refined anisotropically except for the F atoms, and the hydrogen atoms were generated geometrically with isotropic thermal parameters. The structures were refined on F2 by full-matrix least-squares methods using the SHELXTL-97 program package. Crystallographic data of TPE-TPY for 1 was summarized in Table S1.

Physical Measurements. Elemental analyses (C, H, N) were carried out on a Perkin-Elmer model 240C elemental analyzer. Electrospay ion mass spectra (ESI—MS) were performed on a Finnigan LCQ mass spectrometer using dichloromethane-methanol mixture as mobile phases. UV–vis absorption spectra were measured on a Perkin-Elmer Lambda 35 UV–vis spectrophotometer. Infrared (IR) spectra were recorded on a Magna750 FT-IR spectrophotometer with KBr pellet. Emission, excitation spectra and emission lifetimes were recorded on an Edinburgh Instrument (FLS 920 spectrometer, the ratio between signal to noise ca. 6000 : 1 by using the Roman peak of water) with the same slit (1.9890 mm) and (10, the largest one is 100) in our experiments. The emission spectra (Figure S6, SI) for concentrations less than 10−3 M are not operative, due to instrument limitation. The quantum yields of 1 with different concentrations in degassed dichloromethane were determined relative to that of [Ru(bpy)3]2+ (Φ = 0.028) in H2O.28 All the quantum yields were calculated by Φ = Φr(λ) (λ/ (λ), where the subscript r and s denote reference standard and the sample solution, respectively; and A, I, l, D and Φ are the absorbance of a sample at excitation wavelength λ, the refractive index of the solvents, the relative intensity of excitation light at wavelength λ, the integrated intensity and the luminescence quantum yield, respectively. All the solutions used for the determination of emission lifetimes and quantum yields were prepared under vacuum (<10−3 torr) in a 10 cm2 round-bottom flask equipped with a sidearm and fluorescence cuvette and sealed from the atmosphere by a quick-release Teflon stopper. Solutions used for luminescence determination were prepared after rigorous removal of oxygen by three successive freeze-pump-thaw cycles. For example, for Ru(bpy)3Cl2 in H2O and TPE-TPY-Eu(hfac)3 in CH2Cl2 possess approximate absorption coefficient within 0.38 at λ = 380 nm and 0.31 at λ = 430 nm. Similarly, they have approximate absorption coefficient within 0.005 at 356 nm with the concentration of TPE-TPY-Eu(hfac)3 at 10−3 M, and 380 nm at 10−3 M. Meantime, the slit (1.9890 mm) and (10, the same for excitation and emission operation for all compounds in measurements.

Energy transfer pathway in isolate state (≤10−4 M) Energy transfer pathway in aggregate state (>10−4 M)
Xu, H.-B. et al. Walkable dual emissions. Sci. Rep. 3, 2199 (2013).
10. Hong, Y., Lam, J. W. Y. & Tang, B. Z. Aggregation-induced emission. Chem. Soc. Rev. 40, 5361–5388 (2011).
11. Xu, H.-B. et al. Modulation of Pt → Ln Energy Transfer in PtLn₂ (Ln = Nd, Er, Yb) Complexes with 2,2'-Bipyridyl/2,2'-6',2'-Terpyridyl Ethynyl Ligands. Cryst. Growth & Des. 9, 569–576 (2009).
12. Zhao, Z. et al. Creation of highly efficient solid emitter by decorating pyrene core with AIE-active tetraphenylethene peripheries. Chem. Commun. 46, 2221–2223 (2010).
13. Xu, H.-B. et al. Conformation Changes and Luminescence of Au³⁻Ln²⁺ (Ln = Nd, Eu, Er, Yb) Arrays with 5-Ethynyl-2,2'-Bipyridine. Inorg. Chem. 47, 10744–10752 (2008).
14. Chen, Z. & Xu, H. [Near-Infrared (NIR) Luminescence from Lanthanide(III) Complexes] Rare Earth Coordination Chemistry: Fundamentals and Applications [Huang, C. (ed.)] [473–527] (John Wiley & Sons, Ltd, Chichester, UK. 2010).
15. Xu, L., Xu, G. & Chen, Z.-N. Recent advances in lanthanide luminescence with metal-organic chromophores as sensitizers. Coord. Chem. Rev. 273–274, 47–62 (2014).
16. Chen, J. et al. Synthesis, Light Emission, Nanoaggregation, and Restricted Intramolecular Rotation of 1,1-Substituted 2,3,4,5-Tetraphenylsiloles. Chem. Mater. 15, 1535–1546 (2003).
17. Trivedi, E. R. et al. Highly Emitting Near-Infrared Lanthanide ”Encapsulated Sandwich” Metallacrown Complexes with Excitation Shifted Toward Lower Energy. J. Am. Chem. Soc. 136, 1526–1534 (2014).
18. Hong, Y., Lam, J. W. Y. & Tang, B. Z. Aggregation-induced emission: phenomenon, mechanism and applications. Chem. Commun. 45, 4332–4353 (2009).
19. Huang, S. et al. Europium complexes with high total photoluminescence quantum yields: Review. J. Phys. Chem. 75, 991–1024 (1971).
20. Xu, H.-B. et al. Preparation, Characterization and Photophysical Properties of cis-or trans-PtL₂ (Ln = Nd, Eu, Yb) Arrays with 5-Ethynyl–2,2’-bipyridine. Inorganometallics 27, 5665–5671 (2008).
21. Constance, E. C. & Ward, M. D. Synthesis and co-ordination behaviour of 6’6’-bis(2-pyridyl)-2’-4’,2”,6”,2”’-quaterpyridine; ‘back-to-back’ 2’-6’,2”-terpyridine. J. Chem. Soc. Dalton Trans. 1405–1409(1990), DOI:10.1039/DT9900001405.
22. Lewis, D. J., Glover, P. B., Solomons, M. C. & Pikramenou, Z. Purely Heterometallic Lanthanide(III) Macrocycles through Controlled Assembly of Disulfide Bonds for Dual Color Emission. J. Am. Chem. Soc. 133, 1033–1043 (2011).
23. Demas, J. N. & Crosby, G. A. Measurement of photoluminescence quantum yields. Review. J. Phys. Chem. 75, 991–1024 (1971).
24. Vyas, V. S. & Rathore, R. Preparation of a tetraphenylethylene-based emitter: Synthesis, structure and optoelectronic properties of tetrakis(pentaphenylphenyl)ethylene. Chem. Commun. 46, 1065–1067 (2010).
25. Vigato, P. A., Peruzzo, V. & Tamburini, S. The evolution of β-diketone or β-diketophenol ligands and related complexes. Coord. Chem. Rev. 253, 1099–1201 (2009).