CASE REPORT

Rhombencephalitis caused by *Listeria monocytogenes* with hydrocephalus and intracranial hemorrhage: A case report and review of the literature

Jing-Jing Liang, Xiao-Yan He, Hong Ye

Abstract

BACKGROUND

Listeria monocytogenes (L. monocytogenes), a Gram-positive facultatively intracellular bacterium, is the causative agent of human listeriosis. *Listeria* infection is usually found in immunocompromised patients, including elderly people, pregnant women, and newborns, whereas it is rare in healthy people. *L. monocytogenes* may cause meningitis, meningoencephalitis, and some very rare and severe complications, such as hydrocephalus and intracranial hemorrhage, which cause high mortality and morbidity worldwide. Up to now, reports on hydrocephalus and intracranial hemorrhage due to *L. monocytogenes* are few.

CASE SUMMARY

We herein report a case of rhombencephalitis caused by *L. monocytogenes* in a 29-year-old man. He was admitted to the hospital with a 2-d history of headache and fever. He consumed unpasteurized cooked beef two days before appearance. His medical history included type 2 diabetes mellitus, and contaminated beef intake 2 d before onset. Cerebrospinal fluid analysis revealed Gram-positive rod infection, and blood culture was positive for *L. monocytogenes*. Magnetic resonance imaging findings suggested rhombencephalitis and hydrocephalus. Treatment was started empirically and then modified according to the blood culture results. Repeated CT images were suggestive of intracranial hemorrhage. Although the patient underwent aggressive external ventricular drainage, he died of a continuing deterioration of intracranial conditions.
CONCLUSION

Hydrocephalus, intracranial hemorrhage, and inappropriate antimicrobial treatment are the determinants of unfavorable outcomes.

Key words: Rhombencephalitis; Listeria monocytogenes; Central nervous system infections; Hydrocephalus; Intracranial hemorrhage; Case report

INTRODUCTION

Listeria monocytogenes (L. monocytogenes) is one of the very few bacteria that can infect neurons to produce a serious and often fatal disease, with a mortality of 20%-50%[1-4]. L. monocytogenes infection occurs predominantly in the following populations: elderly people, pregnant women, newborns, and immunodeficient patients; patients with chronic liver disease, malignant hemopathies, and diabetes; patients on chronic hemodialysis; and, less frequently, healthy individuals[5,6]. The main routes of transmission are confirmed to be through the consumption of contaminated food and via vertical transmission from mother to child[7]. Penetration of the intestinal, blood-brain, blood-choroid, and fetoplacental barriers is one of the most important virulence factors of L. monocytogenes[8]. Therefore, the manifestations of listeriosis are varied, such as gastroenteritis, septicemia, meningitis, and other conditions.

Neurolisteriosis, a central nervous system (CNS) infection caused by L. monocytogenes, represents 5%-10% of listeriosis cases and is less common in the world, especially rhombencephalitis[9-11]. Hydrocephalus and intracranial hemorrhage are rare complications of listeriosis, occurring in 10%-15% and 3% of neurolisteriosis cases, respectively[12,13]. In this paper, we present a young patient with L. monocytogenes rhombencephalitis who presented with persistent alteration of consciousness, hydrocephalus, and intracranial hemorrhage. This case is rare due to the occurrence of hydrocephalus and intracranial hemorrhage. Cases published between 1985 and 2018 that are related to Listeria hydrocephalus are reviewed in Tables 1 and 2.

CASE PRESENTATION

Chief complaints

A 29-year-old Chinese man was admitted to the hospital with a 2-d history of intermittent fevers of up to 39 °C, and forehead headache without nausea.

History of present illness

Two days prior to onset, he had consumed unpasteurized cooked beef that was stored in the refrigerator for a few days.

History of past illness

His medical history included type 2 diabetes mellitus, which was poorly controlled, fatty liver, smoking, and drinking.

Personal and family history
He denied a family history of hypertension and stroke.

Physical examination upon admission
The physical examination was unremarkable, except for nuchal rigidity.

Laboratory examinations
The blood laboratory findings showed that glucose, C-reactive protein, and erythrocyte sedimentation rate were high, while white blood cells (WBCs), red blood cells, hemoglobin, urea, creatinine, serum minerals, and autoimmune antibodies were normal. The first lumbar puncture on admission revealed a turbid cerebrospinal fluid (CSF) with 2090 leukocytes/mm3 (30% neutrophils, 70% monocytes), 233.85 mg/dL protein, 1.4 mmol/L glucose (serum glucose 9 mmol/L), and pressure > 33 cmH$_2$O. CSF Gram stain showed Gram-positive rods and was negative for fungi and acid-fast bacilli (Table 3). On the 8th day, the blood cultures yielded *L. monocytogenes*, which was susceptible to ampicillin, erythrocin, meropenem, and penicillin but resistant to sulfamethoxazole. CSF and urine cultures were negative. Repeated CSF examination on the 14th and 28th day showed a greater decrease in WBCs and protein (Table 3).

Imaging examinations
The initial brain CT was unremarkable, and chest CT showed bilateral bronchopneumonia. On the 4th day of admission, magnetic resonance imaging (MRI) of the brain showed an abnormally high T2 flow attenuated inversion recovery (FLAIR) signal in the right pons and prominent temporal horns with enlargement of the ventricles (Figure 1). On the 14th day, brain CT showed hemorrhage of the right pons and hydrocephalus (bilateral lateral ventricular and the third ventricle hydrocephalus) (Figure 2). The 3rd cerebral CT was performed on the day after extraventricular drainage, revealed significant dilatation of fourth ventricle, and no remission in lateral ventricles (Figure 3). The 4th brain CT on the 29th day showed rehaemorrhagia of the lateral ventricle and a larger ventricular system (Figure 4).

FINAL DIAGNOSIS
The patient was finally diagnosed with *Listeria* rhombencephalitis, hydrocephalus, and intracranial hemorrhage.

TREATMENT
Although empiric antibiotic therapy for bacterial meningitis (Ceftriaxone 2 g, every 12 h for 2 d, followed by meropenem 1 g, every 8 h for 2 d) and all other supportive symptomatic treatments were administered after performing blood cultures, the patient developed new symptoms with fever, sinus tachycardia, tachypnea, confusion [Glasgow Coma Scale (GCS) score 12/15], bilateral horizontal nystagmus, bilateral abducens nerve palsy, dysarthria, and weakness of all four limbs. He was transferred to the intensive care unit (ICU) on the 5th day. On the 8th day, he went into coma (GCS score 5/15), and was intubated and ventilated without autonomous respiration. According to blood cultures, new antibiotic therapy with ampicillin, etimicin and...
Ref.	Age/gender	Immune-competent	CT on admission	Time to diagnosis of hydrocephalus	Other complications	Intervention	Outcome
Ulloa-Gutierrez et al [6], 2004	10 Y/M	Yes	Not done	8 d	None	VPD	Recovery
Ulloa-Gutierrez et al [6], 2004	3½ Y/M	Yes	Normal	5 d	None	VPD	Died
Ulloa-Gutierrez et al [6], 2004	6½ Y/M	Yes	Not done	5 d	None	VPD	Died
Kasamoentálib et al [11], 2010	57 Y/M	Yes	Not done	5 d	Tracheoesophageal fistula	EVD	Severe cognitive slowness, improvement, remained confused and disoriented
Ito et al [15], 2007	6 Y/M/F	No	Normal	14 d	Ventriculitis	EVD	Near-complete recovery
McCaffrey et al [20], 2012	57 Y/M	No	Yes, hydrocephalus	1 d	Ventriculitis	EVD	NA
Dhiwkatar et al [21], 2007	40 Y/F	No	Not done	2 mo	Seizures, ventriculitis, basal arachnoiditis, cerebellar, tonsillar herniation	VPD, VAD	Died
Chan et al [24], 2001	42 Y/M	Yes	Yes, hydrocephalus	4 d	Subdural collection, extensive; cerebritis and ventriculitis	EVD	Died
Lee et al [28], 2010	7 Y/F	Yes	Not done	10 d	None	EVD, VPD	Recovery
Platnaris et al [29], 2009	7 M/M	Yes	Normal	10 d	Seizures	EVD	Normal development having achieved skills according to his age at 22 mo of age
Papandreou et al [30], 2015	3 Y/F	Yes	Normal	8 d	Cerebellar tonsillar herniation, ventriculitis, and AIDP	EVD, VPD	Incomplete recovery
Gaini et al [31], 2015	74 Y/M	Yes	Normal	6 d	Brain abscess	EVD	Severe sequelae, died 1 yr later
Ruggieri et al [32], 2014	27 Y/F	Yes	Yes, hindbrain multifocal lesions	9 d	None	EVD	Only a motor deficit of the right arm remained
Cunha et al [35], 2004	50 Y/M	Yes	Yes, hydrocephalus	1 d	None	EVD, VPD	Died 10 d after admission
Frat et al [36], 2001	72 Y/F	Yes	Normal	12 d	Seizures	VPD	Recovery after 5 mo of rehabilitative care
Raps et al [37], 1989	47 Y/F	No	Not done	Several weeks	Cervical cord compression	EVD, VPD	No significant deficit 6 mo later
Yang et al [38], 2006	42 Y/M	No	Normal	9 d	Seizures	ORI	Recovery
Rana et al [39], 2014	75 Y/M	No	Not done	5 d	None	VPD	Gradual recovery

M: Male; Y: Years; M: Months; F: Female; EVD: External ventricular drain; VPD: Ventriculoperitoneal drain; VAD: Ventriculo-atrial drain; ORI: Ommaya reservoir implantation; AIDP: Acute inflammatory demyelinating polyneuropathy; NA: Not available.
CSF test	On the 2nd d	On the 14th d	On the 28th d
Color	Turbid	Turbid	Mildly turbid
Pressure (cm H₂O)	> 33	12.5	NA
Erythrocyte count (/mm³)	0	13198	3313
WBC count (/mm³)	2090	782	85
WBC distribution (L/N)	70/30	3/97	17/68
Protein (mg/dL)	233.85	441	119
CSF glucose (mmol/L)	1.40	5.42	5.60
Plasma glucose (mmol/L)	9.00	11.05	10.0
Gram stain	Gram-positive rods	Normal	Normal

1CSF from brain ventricular draining. WBC: White blood cell; CSF: Cerebrospinal fluid; L: Lymphocytes; N: Neutrophils; NA: No data available.

OUTCOME AND FOLLOW-UP

The patient died on the 31st day. Autopsy could not be performed.

DISCUSSION

Although *L. monocytogenes* has been reported to be the third most common cause of community-acquired bacterial meningitis, following pneumococcal and meningococcal meningitis in adults, its occurrence is relatively rare, accounting for only 5% of encephalitis cases in metropolitan France[14]. *Listeria* has an important impact on public health, with high hospitalization and mortality rates despite antibiotic treatment[14]. As listeriosis is not incorporated into the national monitoring system for cases, epidemiological data on *Listeria* are scarce in China[7,16]. In a study published in 2013, Feng et al[16] reviewed 147 cases of listeriosis in China from 1964 to 2010, with neurolisteriosis accounting for 31% of cases. The overall case-fatality rate was 26%, highest among neonatal cases (46%) and lowest among pregnant cases (4%)[16]. In a study conducted by Wang et al[7], 38 cases of listeriosis, including 5 neonatal, 8 maternal, and 25 nonmaternal cases, were reviewed in China between 1999 and 2011, and the case-fatality rates for neonatal, maternal, and nonmaternal cases were 20%, 0%, and 26%, respectively[7].

CSF and blood cultures are the most specific for diagnosis. Early diagnosis of neurolisteriosis is difficult not only because the presentation of CSF is similar to the manifestations of other bacterial encephalitis and meningitis (pleocytosis, hyperproteinorrachia, and hypoglycorrhachia) but also because approximately 50% of CSF Gram stains are negative[17]. Jubelt et al[18] reported that approximately three-quarters of patients have CSF pleocytosis, with approximately equal percentages of mononuclear and polymorphonuclear cells. In our case, there was an initial predominance of lymphocytic cells, which then turned to mononuclear cell predominance; this change might be related to pathological processes and the application of antibiotics. *Listeria* is usually revealed first on blood cultures, which are positive in 62% of encephalitis cases[19]. Therefore, early before antibiotic administration, repeated blood and CSF cultures are necessary and helpful for early and differential diagnoses.

L. monocytogenes infection most frequently presents as acute bacterial meningitis, less commonly as meningoencephalitis, and least commonly as rhombencephalitis and meningitis (pleocytosis, hyperproteinorrachia, and hypoglycorrhachia) but also because approximately 50% of CSF Gram stains are negative[17]. Jubelt et al[18] reported that approximately three-quarters of patients have CSF pleocytosis, with approximately equal percentages of mononuclear and polymorphonuclear cells. In our case, there was an initial predominance of lymphocytic cells, which then turned to mononuclear cell predominance; this change might be related to pathological processes and the application of antibiotics. *Listeria* is usually revealed first on blood cultures, which are positive in 62% of encephalitis cases[19]. Therefore, early before antibiotic administration, repeated blood and CSF cultures are necessary and helpful for early and differential diagnoses.

L. monocytogenes infection most frequently presents as acute bacterial meningitis, less commonly as meningoencephalitis, and least commonly as rhombencephalitis and meningitis (pleocytosis, hyperproteinorrachia, and hypoglycorrhachia) but also because approximately 50% of CSF Gram stains are negative[17]. Jubelt et al[18] reported that approximately three-quarters of patients have CSF pleocytosis, with approximately equal percentages of mononuclear and polymorphonuclear cells. In our case, there was an initial predominance of lymphocytic cells, which then turned to mononuclear cell predominance; this change might be related to pathological processes and the application of antibiotics. *Listeria* is usually revealed first on blood cultures, which are positive in 62% of encephalitis cases[19]. Therefore, early before antibiotic administration, repeated blood and CSF cultures are necessary and helpful for early and differential diagnoses.

L. monocytogenes infection most frequently presents as acute bacterial meningitis, less commonly as meningoencephalitis, and least commonly as rhombencephalitis and meningitis (pleocytosis, hyperproteinorrachia, and hypoglycorrhachia) but also because approximately 50% of CSF Gram stains are negative[17]. Jubelt et al[18] reported that approximately three-quarters of patients have CSF pleocytosis, with approximately equal percentages of mononuclear and polymorphonuclear cells. In our case, there was an initial predominance of lymphocytic cells, which then turned to mononuclear cell predominance; this change might be related to pathological processes and the application of antibiotics. *Listeria* is usually revealed first on blood cultures, which are positive in 62% of encephalitis cases[19]. Therefore, early before antibiotic administration, repeated blood and CSF cultures are necessary and helpful for early and differential diagnoses.

L. monocytogenes infection most frequently presents as acute bacterial meningitis, less commonly as meningoencephalitis, and least commonly as rhombencephalitis and meningitis (pleocytosis, hyperproteinorrachia, and hypoglycorrhachia) but also because approximately 50% of CSF Gram stains are negative[17]. Jubelt et al[18] reported that approximately three-quarters of patients have CSF pleocytosis, with approximately equal percentages of mononuclear and polymorphonuclear cells. In our case, there was an initial predominance of lymphocytic cells, which then turned to mononuclear cell predominance; this change might be related to pathological processes and the application of antibiotics. *Listeria* is usually revealed first on blood cultures, which are positive in 62% of encephalitis cases[19]. Therefore, early before antibiotic administration, repeated blood and CSF cultures are necessary and helpful for early and differential diagnoses.

L. monocytogenes infection most frequently presents as acute bacterial meningitis, less commonly as meningoencephalitis, and least commonly as rhombencephalitis and meningitis (pleocytosis, hyperproteinorrachia, and hypoglycorrhachia) but also because approximately 50% of CSF Gram stains are negative[17]. Jubelt et al[18] reported that approximately three-quarters of patients have CSF pleocytosis, with approximately equal percentages of mononuclear and polymorphonuclear cells. In our case, there was an initial predominance of lymphocytic cells, which then turned to mononuclear cell predominance; this change might be related to pathological processes and the application of antibiotics. *Listeria* is usually revealed first on blood cultures, which are positive in 62% of encephalitis cases[19]. Therefore, early before antibiotic administration, repeated blood and CSF cultures are necessary and helpful for early and differential diagnoses.

L. monocytogenes infection most frequently presents as acute bacterial meningitis, less commonly as meningoencephalitis, and least commonly as rhombencephalitis and meningitis (pleocytosis, hyperproteinorrachia, and hypoglycorrhachia) but also because approximately 50% of CSF Gram stains are negative[17]. Jubelt et al[18] reported that approximately three-quarters of patients have CSF pleocytosis, with approximately equal percentages of mononuclear and polymorphonuclear cells. In our case, there was an initial predominance of lymphocytic cells, which then turned to mononuclear cell predominance; this change might be related to pathological processes and the application of antibiotics. *Listeria* is usually revealed first on blood cultures, which are positive in 62% of encephalitis cases[19]. Therefore, early before antibiotic administration, repeated blood and CSF cultures are necessary and helpful for early and differential diagnoses.
incidence of *L. monocytogenes* meningoencephalitis in adults[13]. The exact mechanism of hydrocephalus remains unclear. The development of meningitis-associated hydrocephalus may be due to several mechanisms, such as a high level of CSF protein, impaired CSF absorption due to the obliteration of the subarachnoid space by meningeal exudates, and/or blockade of the CSF pathway by leptomeningeal inflammation[20].

Retrospective analysis of hydrocephalus due to listeriosis is scarce at present, and most of the literature consists of case reports. The time to onset of hydrocephalus varies greatly, ranging from 1 d to 9 wk[20-21]. Ventricular drainage may not be an effective way to relieve hydrocephalus and improve survival[12,14]. A study from the Netherlands reviewed 26 hydrocephalus cases in 577 bacterial meningitis patients (4.5%), including four cases of *L. monocytogenes* (15%), all of whom underwent placement of an external ventricular drain catheter[14]. None of these patients improved clinically after catheter placement, and all had poor outcomes for hydrocephalus, with three deaths (75%) and one case of serious sequela (25%), thus indicating that patients with hydrocephalus were at a high risk for unfavorable outcomes and that hydrocephalus was an independent risk factor for death[14]. In our case, the patient underwent ventricular drainage, but a continuous improvement in cognitive function was not obvious.

Another rare complication of *Listeria* meningitis is intracranial hemorrhage, which is also one of the determinants of unfavorable outcomes[2]. Most reported cases of intracranial hemorrhage occur in infants and young children, while the condition is quite rare in adults. Svarea et al[22] reported a case of maternal listeriosis resulting in preterm delivery and intraventricular hemorrhage, which was diagnosed by an ultrasound scan. In a prospective study of 860 episodes with bacterial meningitis in the Netherlands, 24 (2.79%) were diagnosed with intracranial hemorrhage, with *S. pneumoniae* accounting for 67% and *L. monocytogenes* accounting for 4%[2]. The underlying pathophysiology of intraventricular hemorrhage in *L. monocytogenes* infection is still unknown and may be related to dysregulation of both the coagulation and fibrinolytic pathways and to vascular endothelial cell swelling and activation[2].

An empirical therapy for bacterial meningitis, generally third-generation cephalosporins, is always applied at an early stage when bacterial meningitis is suspected. However, this treatment option does not cover *L. monocytogenes*. Former publications have demonstrated that inappropriate empirical antibiotic therapy leads to unfavorable outcomes[23]. Therefore, it is very important to adjust the appropriate antibiotic therapy as soon as possible once *Listeria* is highly suspected or confirmed.

Listeria is known to be difficult to treat, not only because *L. monocytogenes* has an intracellular life cycle but also because only a few antibiotics demonstrate activity against *Listeria*[24]. Due to the lack of multicenter clinical controlled studies, the optimal antibiotic regimen and duration for neurolisteriosis have not been definitively defined. However, amoxicillin, ampicillin, and penicillin G are generally considered effective regimens in the treatment of listeriosis[24]. The addition of aminoglycosides (such as gentamicin) could be considered a treatment regimen for *L. monocytogenes* meningitis, but its use remains controversial due to the occurrence of kidney damage[24]. The drugs should be applied at high doses, and the duration of this treatment should be extended to 21 d or longer, until complete eradication, to prevent relapse[24]. Furthermore, cotrimoxazole, rifampin, meropenem, linezolid, tetracyclines, and moxifloxacin should also be considered active against *Listeria*[24]. In our patient, the combination of ampicillin, etimicin, and meropenem was used for *Listeria*, and it
was proven effective by repeated CSF examinations (Table 3).

CONCLUSION
We report a case of acute hydrocephalus and intracranial hemorrhage due to complications from \textit{L. monocytogenes} rhombencephalitis. The pathogenesis of complications has been reviewed. \textit{L. monocytogenes} may be prone to entering the brainstem through the trigeminal nerve; hydrocephalus may be close with a high level of CSF protein and impaired CSF absorption and circulation; the occurrence of intracranial hemorrhage may be related to dysregulation of both the coagulation and fibrinolytic pathways and to vascular endothelial cell swelling and activation. Hydrocephalus, intracranial hemorrhage, and inappropriate antimicrobial treatment are the determinations of unfavorable outcomes.
Figure 3 Axial brain computed tomography shows no improvement of hydrocephalus in the lateral ventricle on the 22nd d of administration (A and B). The ventriculostomy tube is also shown (B, white arrow).

Figure 4 Axial brain computed tomography shows rehaemorrhagia of the lateral ventricle and a larger ventricular system (A and B) on the 29th d of administration.

REFERENCES

1. Cossart P. Interactions of the bacterial pathogen Listeria monocytogenes with mammalian cells: bacterial factors, cellular ligands, and signaling. Folia Microbiol (Praha) 1998; 43: 291-303 [PMID: 9717257 DOI: 10.1007/BF02818615]

2. Mook-Kanamori BB, Fritz D, Brouwer MC, van der Ende A, van de Beek D. Intracerebral hemorrhages in adults with community associated bacterial meningitis in adults: should we reconsider anticoagulant therapy? PloS One 2012; 7: e45271 [PMID: 23028808 DOI: 10.1371/journal.pone.0045271]

3. Goulenok T, Burel R, Duval X, Bruned F, Stahl JP, Fantin B. Management of adult infectious encephalitis in metropolitan France. Med Mal Infect 2017; 47: 206-220 [PMID: 28336304 DOI: 10.1016/j.medmal.2017.01.006]

4. Dons L, Jin Y, Kristensson K, Rottenberg ME. Axonal transport of Listeria monocytogenes and nerve-cell-induced bacterial killing. J Neurosci Res 2007; 85: 2529-2537 [PMID: 17387705 DOI: 10.1002/jnr.21256]

5. Ben Shimol S, Einhorn M, Greenberg D. Listeria meningitis and ventriculitis in an immunocompetent child: case report and literature review. Infection 2012; 40: 207-211 [PMID: 21877182 DOI: 10.1007/s11256-010-0177-6]

6. Ullosa-Gutierrez R, Avila-Agüero ML, Huertas E, Falmanit Listeria monocytogenes meningitis complicated with acute hydrocephalus in healthy children beyond the newborn period. Pediatr Emerg Care 2004; 20: 233-237 [PMID: 15057178 DOI: 10.1097/01pec.0000121243.99242.a9]

7. Wang HL, Ghannem KG, Wang P, Yang S, Li TS. Listeriosis at a tertiary care hospital in beijing, china: high prevalence of nonclustered healthcare-associated cases among adult patients. Clin Infect Dis 2013; 56: 666-676 [PMID: 23172565 DOI: 10.1093/cid/cis943]

8. Disson O, Lecuit M. Targeting of the central nervous system by Listeria monocytogenes. Virulence 2012; 3: 213-221 [PMID: 22460636 DOI: 10.4161/viru.19586]

9. Karlsson WK, Harboc ZB, Roed C, Monrad JB, Lindelof M, Larsen VA, Kondziella D. Early trigeminal nerve involvement in Listeria monocytogenes rhombencephalitis: case series and systematic review. J Neurol 2017; 264: 1875-1884 [PMID: 28730571 DOI: 10.1007/s00415-017-8572-2]

10. Antal EA, Dietrichs I, Loberg EM, Melby KK, Maehlen J. Brain stem encephalitis in listeriosis. Scand J Infect Dis 2005; 37: 190-194 [PMID: 15849051 DOI: 10.1080/00365540410020938]

11. Charlier C, Perrodeau É, Leclercq A, Cazenave B, Pilmis B, Henry B, Lopes A, Maury MM, Mouza A, Goffinet F, Dieye HB, Thouvenot P, Ungheuer MN, Tourdjman M, Goulet Y, de Valk H, Lortholary O, Ravaud P, Lecuit M; MONALISA study group. Clinical features and prognostic factors of listeriosis: the MONALISA national prospective cohort study. Lancet Infect Dis 2017; 17: 510-519 [PMID: 28139432 DOI: 10.1016/S1473-3099(16)30521-7]
Kasanamoentallah ES, Brouwer MC, van der Ende A, van de Beek D. Hydrocephalus in adults with community-acquired bacterial meningitis. Neurology 2010; 75: 918-923 [PMID: 20820003 DOI: 10.1223/WNL.200133.31811/e10]

Ito H, Kobayashi S, Iino M, Kami M, Takanashi Y. Listeria monocytogenes meningoencephalitis presenting with hydrocephalus and ventriculitis. Intern Med 2008; 47: 323-324 [PMID: 18277040 DOI: 10.2169/internalmedicine.47.0590]

Pelegriñ I, Moragas M, Suárez C, Ribera A, Verduguer R, Martínez-Yelamos S, Rubio-Borrego F, Ariza J, Viladrich PJ, Cabellos C. Listeria monocytogenes meningoencephalitis in adults: analysis of factors related to unfavourable outcome. Infection 2014; 42: 817-827 [PMID: 24025522 DOI: 10.1007/s10152-014-0636-y]

Mailles A, Lecuit M, Goulet V, Leclercq A, Stahl JP; National Study on Listeriosis Encephalitis Steering Committee. Listeria monocytogenes encephalitis in France. Med Mal Infect 2011; 41: 594-601 [PMID: 2226519 DOI: 10.1016/j.medmal.2011.07.009]

Feng Y, Wu S, Varma JK, Klena JD, Angulo FJ, Ran L. Systematic review of human listeriosis in China, 1964-2010. Trop Med Int Health 2013; 18: 1248-1256 [PMID: 24016031 DOI: 10.1111/tmi.12173]

Cunha BA, Fatehpuria R, Eisenstein LE. Listeria monocytogenes encephalitis mimicking Herpes Simplex virus encephalitis: the differential diagnostic importance of cerebrospinal fluid lactic acid levels. Heart Lung 2007; 36: 226-231 [PMID: 17599438 DOI: 10.1016/j.hrtlng.2007.01.001]

Jubbelt B, Mihai C, Li TM, Veerapaneni P. Rhombencephalitis / brainstem encephalitis. Curr Neurol Neurosci Rep 2011; 11: 534-552 [PMID: 21956758 DOI: 10.1007/s11910-011-0228-5]

Reynaud L, Graf M, Gentile I, Cerini R, Ciampi R, Noce S, Borrelli F, Viola C, Gentile F, Briganti F, Borgia G. A rare case of brainstem encephalitis by Listeria monocytogenes with isolated mesencephalic localization. Case report and review. Diagn Microbiol Infect Dis 2007; 58: 121-123 [PMID: 17409892 DOI: 10.1016/j.diagmicrobio.2006.11.001]

McCaffrey LM, Petelin A, Cunha BA. Systemic lupus erythematosus (SLE) cerebritis versus Listeria monocytogenes meningoencephalitis in a patient with systemic lupus erythematosus on chronic corticosteroid therapy: the diagnostic importance of cerebrospinal fluid (CSF) of lactic acid levels. Heart Lung 2012; 41: 394-397 [PMID: 2177759 DOI: 10.1016/j.hrtlng.2011.07.006]

Dhiwakar M, Basu S, Ramaswamy R, Mallucci C. Neuroleishseriosis causing hydrocephalus, trapped fourth ventricle, hindbrain herniation and syringomyelia. Br J Neurosurg 2004; 18: 367-370 [PMID: 15702836 DOI: 10.1080/02688690400005081]

Savage J, Andersen LF, Langhoff-Roos J, Madsen H, Bruun B. Maternal-fetal listeriosis: 2 case reports. Gynecol Obstet Invest 1991; 31: 179-181 [PMID: 2071059 DOI: 10.1159/0001023148]

Hof H. An update on the medical management of listeriosis. Expert Opin Pharmacother 2004; 5: 1727-1735 [PMID: 15264987 DOI: 10.1517/1465665.5.8.1727]

van de Beek D, Cabellos C, Drapova O, Esposito S, Klein M, Kloeck AT, Leib SL, Mourvillier B, Ostergaard C, Pfister HW, Read RC, Sipahi OR, Brouwer MC; ESCMID Study Group for Infections of the Brain (ESGIB). ESCMID guideline: diagnosis and treatment of acute bacterial meningitis. Clin Microbiol Infect 2016; 22 Suppl 3: S37-S62 [PMID: 27062097 DOI: 10.1016/j.cmi.2016.01.007]

Mallinger AG, Krauss JK. Intramedullary brain stem cyst and trapped IV ventricle after infection with Listeria monocytogenes. Childs Nerv Syst 1998; 14: 747-750 [PMID: 9881629 DOI: 10.1007/s003810050309]

Chan YC, Ho KH, Tambyah PA, Lee KH, Ong BK. Listeria meningoenephhalitis: two cases and a review of the literature. Ann Acad Med Singapore 2001; 30: 659-663 [PMID: 11817300 DOI: 10.1097/00000441-200110000-00012]

Laclar AL, Vaca Ruiz ML, Le Monnier A. Neonatal Listeria-meningitis in San Luis, Argentina: a three-case report. Rev Argent Microbiol 2011; 43: 45-47 [PMID: 21491067 DOI: 10.5195/S0325.75412010010010]

Lee JE, Cho WK, Nam CH, Jung MH, Kang JH, Suh BK. A case of meningoencephalitis caused by Listeria monocytogenes in a healthy child. Ann Acad Med Singapore 2001; 30: 659-663 [PMID: 11817300 DOI: 10.1097/00000441-200110000-00012]

Platnaris A, Hatzimichail A, Klenidou-Kartali S, Kontoyiannides K, Kollios K, Anagnostopoulos J, Roilides E. A case of Listeria meningoenephhalitis complicated by hydrocephalus in an immunocompetent infant. Eur J Pediatr 2009; 168: 343-346 [PMID: 18463893 DOI: 10.1007/s00431-008-0739-5]

Papandreou A, Hedrera-Fernandez A, Kaliakatsos M, Chong WK, Blake S. An unusual presentation of paediatric Listeria meningitis with selective spinal grey matter involvement and acute demyelinating polyneuropathy. Eur J Paediatr Neurol 2016; 20: 196-199 [PMID: 26371981 DOI: 10.1016/j.ejpn.2015.08.004]

Gaini S, Karlsen GH, Nandy A, Madsen H, Christiansen DH, Å Borg S. Culture Negative Listeria monocytogenes Meningitis Resulting in Hydrocephalus and Severe Neurological Sequelae in a Previously Healthy Immunocompetent Man with Penicillin Allergy. Case Rep Neurol Med 2015 DOI: 10.1155/2015/248302

Ruggieri F, Cerri M, Beretta L. Infective rhomboencephalitis and inverted Takotsubo: neurogenic-stunned myocardiun or myocarditis? J Microbiol Immunol Infect 2014; 47: 9-12 [PMID: 2557381 DOI: 10.1111/tmi.12173]

Frat JP, Veinstein A, Wager M, Burucoa C, Robert R. Reversible acute hydrocephalus complicating Listeria monocytogenes meningitis. Eur J Clin Microbiol Infect Dis 2001; 20: 512-514 [PMID: 11561813 DOI: 10.1007/PL.00011296]

Raps EC, Gutmann DH, Bronson JR, O'Connor M, Hurtig HS. Symptomatic hydrocephalus and reversible spinal cord compression in Listeria meningitis patients. Case report. J Neurosurg 1989; 71: 620-622 [PMID: 2795184 DOI: 10.3171/jn.1989.71.6.0620]

Yang CC, Yeh CH, Tsai TC, Yu WL. Acute symptomatic hydrocephalus in Listeria monocytogenes meningitis. J Microbiol Immunol Infect 2006; 39: 255-258 [PMID: 16902399 DOI: 10.1016/S1684-1182(06)74023-8]

Rana F, Shaikh MM, Bowles J. Listeria meningitis and resultant symptomatic hydrocephalus complicating infliximab treatment for ulcerative colitis. JRSM Open 2014; 5: 2054270414522223 [PMID: 25057381 DOI: 10.1177/2054270414522223]

P- Reviewer: Bhalla AS, Chowdhury FH, Vauo G S- Editor: Ji FF L- Editor: Wang TQ E- Editor: Tan WW
Liang JJ et al. *Listeria* rhombencephalitis, hydrocephalus and intracranial hemorrhage
