Estimating persistence for irregularly spaced historical data

Philip Hans Franses

Accepted: 29 January 2021 / Published online: 17 February 2021
© The Author(s) 2021

Abstract
This paper introduces to the literature on Economic History a measure of persistence which is particularly useful when the data are irregularly spaced. An illustration to ten historical unevenly spaced data series for Holland of 1738 to 1779 shows the merits of the methodology. It is found that the weight of slave-based contribution in that period has grown with a deterministic trend pattern.

Keywords Irregularly spaced time series · Economic history · Slave trade · First order autoregression · Persistence

JEL Code C32 · N01

1 Introduction and motivation

One way to study economic history amounts to the construction and analysis of historical time series data, see for example van Zanden and van Leeuwen (2012) amongst many others. A particularly interesting period to study concerns the times of the Atlantic slave trade. One of the aspects of frequent examination concerns the contribution of slave trade to the size of an economy. Recent important studies are Eltis and Engerman (2000). Fatah-Black and van Rossum (2015) and Eltis et al. (2016). Another recent study is Brandon and Bosma (2019) who shows that 5 to 10% of Gross Domestic Product (GDP) in Holland around 1770 was based on slave trade, see Table 1.

An important feature to study concerns the trends in the data. Did the contribution to GDP of slave trade grow with a steady pace, like with a deterministic trend? Or, did that contribution jump to plateaus due to structural breaks, perhaps caused by technological developments? If it would be along a deterministic trend, then shocks to the data were not persistent. If the growth patterns followed sequences of structural breaks, then those shocks were persistent. Hence, it is of interest to study the persistence properties of the historical data.
Ideally, the constructed historical data are equally spaced, like per year or per ten years, as then basic time series analytical tools can be used to study the properties of the data. In the present paper the focus is on the analysis of unequally spaced data, which can also occur in historical research, as will be evident below.

2 Introductory remarks

An important property of time series data is, what is called, the persistence of shocks. Such persistence is perhaps best illustrated when we consider the following simple time series model for a variable y_t, which is observed for a sequence of T years, $t = 1, 2, \ldots, T$, that is,

$$y_t = \alpha y_{t-1} + \epsilon_t$$

This model is called a first order autoregression, with acronym AR(1). The ϵ_t is a series of shocks (or news) that drives the data over time, and these shocks have mean 0 and common variance σ^2, and over time these shocks are uncorrelated. In other words, future shocks or news cannot be predicted from past shocks or news. The α is an unknown parameter that needs to be estimated from the data. Usually one relies on the ordinary least squares (OLS) method to estimate this parameter, see for example Franses et al. (2014, Chapter 3) for details.

In anAR(1) model,\(^1\) the persistence of shocks to y_t is reflected by (functions of) the parameter α. This is best understood by explicitly writing down all the observations on y_t when the AR(1) is the model for these data. The first observation is then

$$y_1 = \alpha y_0 + \epsilon_1$$

\(^1\) If one were to consider an autoregression of higher order, then the measure of persistence is the sum of the autoregressive coefficients. One may also want to consider so-called fractionally integrated time series models, where the degree of differencing d is a measure of persistence. Nonparametric methods to measure persistence also exist, like the number of times a time series crosses its mean value.
where y_0 is some known starting value, that can be equal to 0 or not. In practice this starting value is usually taken as the first available observation, and then the estimation sample runs from $t = 2, 3, 4 \ldots, T$. The second observation is

$$y_2 = \alpha y_1 + \epsilon_2 = \alpha^2 y_0 + \epsilon_2 + \alpha \epsilon_1$$

where the expression on the right-hand side now incorporates the expression for y_1. When this recursive inclusion of past observations is continued, we have for any y_t observation that

$$y_t = \alpha^t y_0 + \epsilon_t + \alpha \epsilon_{t-1} + \alpha^2 \epsilon_{t-2} + \alpha^3 \epsilon_{t-3} + \ldots + \alpha^{t-1} \epsilon_1$$

This expression shows that the immediate impact of a shock ϵ_t is equal to 1. The impact of a shock one period ago (which is ϵ_{t-1}) is α and the impact of a shock j periods ago is α^j. The total effect of a shock if $t \to \infty$ is thus

$$1 + \alpha + \alpha^2 + \alpha^3 + \ldots = \frac{1}{1 - \alpha}$$

when $|\alpha| < 1$. So, when $\alpha = 0.5$, the total effect of a shock is 2. When $\alpha = 0.9$, the total effect is 10. So, when α approaches 1, the impact gets larger. When $\alpha = 1$, the total effect is infinite. At the same time, when $\alpha = 1$, each shock in the past has the same permanent effect 1, as $1^j = 1$. In that case, shocks are said to have a permanent effect.

One may also be interested in, what is called, a duration interval. For example, a 95% duration interval is the time period $\tau_{0.95}$ within which 95% of the cumulative or total effect of a shock has occurred. It is defined by

$$\tau_{0.95} = \frac{\log(1 - 0.95)}{\log(\alpha)}$$

![GDP](image-url)
where log denotes the natural logarithm. When $\alpha = 0.5$, the $\tau_{0.95} = 4.32$, and when $\alpha = 0.9$, the $\tau_{0.95} = 28.4$. These persistence measures are informative about how many years (or periods) shocks last.

3 Motivation of this paper

In this paper the focus is on persistence measures in case the data do not involve a connected sequence of years but instead concern data with missing data at irregular intervals. Consider for example the data on Gross Domestic Product (GDP) in Holland for the sample 1738–1779 in Fig. 1. In principle the sample size is 42, but it is clear that various years with data are missing, and hence the sample effectively covers 24 years. Take for example the data in the final column of Table 2, which concern the Weights of slave-based activities in GDP Holland, for the sample 1738–1779. The data are in Fig. 2. The issue is now how we can construct persistence measures, that is, functions of α like above, when the data follow a first order autoregression for such irregularly spaced data.

The paper proceeds as follows. The next section presents a useful model for unevenly spaced data. It also deals with a step-by-step illustration of how to implement this method, which can be done using any statistical package. The empirical section implements this method for ten variables with irregularly spaced data, all of which appeared in a recent study of Brandon and Bosma (2019) on the economic impact of the Atlantic slave trade. The final section concludes.

4 Methodology

The starting point of our analysis is the representation of an AR(1) process given in Robinson (1977) (see also for example Schulz and Mudelsee, 2002). Suppose an AR(1) process is observed at times t_i where $i = 1, 2, 3, \ldots, N$. A general expression for an AR(1) process with arbitrary time intervals is

$$y_{ti} = \alpha_i y_{t_{i-1}} + \epsilon_{ti}$$

with

$$\alpha_i = \exp\left(-\frac{t_i - t_{i-1}}{\tau}\right)$$

where τ is scaling the memory, see Robinson (1977). For easy of analysis, it is assumed here that ϵ_{ti} is a white noise uncorrelated process with mean 0 but with time-variation in the variance.2 This means that in practice, one should correct for this heteroskedasticity by using the Newey West (1987) HAC estimator.

One may continue with (1) and (2), but it may be easier to define

2 In Robinson (1977) it is assumed that the variance of the error process is.

$$\sigma^2 = 1 - \exp\left(-\frac{2(t_i - t_{i-1})}{\tau}\right)$$

so that the variance of y_{ti} is equal to 1. Here there is no need to make this assumption.
Table 2 The data

Year	IT	IS	DP	SB	SR	NO	AN	VA	GDP	PGDP
1738	3065	836	722	309	1208	220	274	6634	132,494	5
1739	2807	771	661	273	959	220	278	5969	133,983	4.5
1740	NA									
1741	4281	1192	1008	352	1281	222	327	8663	145,374	6
1742	NA									
1743	2936	826	691	271	748	222	445	6139	141,094	4.4
1744	4318	1187	1016	331	1022	222	530	8626	154,306	5.6
1745	4705	1309	1108	616	938	223	610	9509	141,286	6.7
1746	NA									
1747	6723	1875	1583	1071	990	223	780	13,245	191,910	6.9
1748	5578	1562	1313	679	1239	226	1187	11,784	176,145	6.7
1749	NA									
1750	5042	1314	1187	465	2017	225	542	10,793	144,076	7.5
1751	NA									
1752	NA									
1753	NA									
1754	NA									
1755	NA									
1756	NA									
1757	NA									
1758	NA									
1759	NA									
1760	NA									
1761	12,644	3549	2976	1231	1474	221	352	22,548	155,733	14.5
1762	13,501	3793	3178	1720	1336	221	344	24,193	161,720	15
1763	NA									
1764	9131	2401	2149	996	1550	221	324	17,152	171,071	10
1765	9824	2544	2313	1111	1384	220	309	18,264	183,898	9.9
1766	6707	1880	1579	714	1151	222	306	12,720	172,727	7.4
1767	10,290	2714	2422	897	907	221	299	18,022	167,985	10.7
1768	10,538	2826	2481	1202	890	224	328	18,711	170,075	11
1769	11,909	3169	2804	1268	1005	222	319	20,947	182,748	11.5
1770	10,620	2710	2500	975	682	222	334	18,340	177,069	10.4
1771	14,558	3972	3427	1605	996	221	343	25,332	214,067	11.8
1772	NA									
1773	NA									
1774	NA									
1775	11,144	2904	2623	1256	961	226	334	19,448	185,987	10.5
1776	13,078	3239	3079	1203	822	226	363	22,009	181,702	12.1
1777	15,174	3768	3572	1569	893	224	406	25,626	185,981	13.8
1778	16,173	4239	3807	1837	621	246	407	27,330	184,359	14.8
1779	20,060	5578	4722	1878	692	250	373	33,554	171,710	19.5
This makes that the general AR (1) model can be written as
\[y_t = \alpha^{-1} y_{t-1} \epsilon_t \]

When the data would be regularly spaced, then \(t_i - t_{i-1} = 1 \) and this model collapses into
\[y_t = \alpha y_{t-1} + \epsilon_t \]

which is the standard AR(1) model above. Or, suppose the data would be unequally spaced because of selective sampling each even observation, and all the odd observations would be called as missing, then \(t_i - t_{i-1} = 2 \), and then the model reads as
\[y_t = \alpha^2 y_{t-2} + \epsilon_t \]

Before one proceeds with estimating the parameter in (3), one first needs to demean and detrend the data, see Robinson (1977).

5 Estimation

Given a sample \(\{ t_i, y_t \} \), one can use Nonlinear Least Squares (NLS) to estimate \(\alpha \) (and hence \(\tau \)). Table 3 provides the key variables relevant for estimation concerning the variable in Fig. 2. The first column gives the demeaned and detrended irregularly spaced time series, that is \(x_{i-t} \), where this variable follows from the OLS regression
\[y_t = \mu + \delta t + x_{i-t} \]
Table 3 Numerical example. PGDPDMDT means Weight of slave-based activities in GDP Holland, after demeaning (DM) and detrending (DT). DIFT is $t_i - t_{i-1}$

Year	PGDPDMDT	DIFT	PGDPDMDT(-DIFT)
1738	0.075744	1	NA
1739	−0.736111	1	0.075744
1740	NA	1	−0.736111
1741	0.446689	2	−0.736111
1742	NA	1	0.446689
1743	−1.632230	2	0.446689
1744	−0.682778	1	−1.632230
1745	0.333192	1	−0.682778
1746	NA	1	0.333192
1747	0.072340	2	0.333192
1748	−0.388786	1	0.072340
1749	NA	1	−0.388786
1750	0.039440	2	−0.388786
1751	NA	1	0.039440
1752	NA	2	0.039440
1753	NA	3	0.039440
1754	NA	4	0.039440
1755	NA	5	0.039440
1756	NA	6	0.039440
1757	NA	7	0.039440
1758	NA	8	0.039440
1759	NA	9	0.039440
1760	NA	10	0.039440
1761	4.721054	11	0.039440
1762	5.723825	1	4.721054
1763	NA	1	5.723825
1764	−0.422644	2	5.723825
1765	−0.824347	1	−0.422644
1766	−3.920984	1	−0.824347
1767	−0.391753	1	−3.920984
1768	−0.289695	1	−0.391753
1769	0.040840	1	−0.289695
1770	−1.456449	1	0.040840
1771	−0.097761	1	−1.456449
1772	NA	1	−0.097761
1773	NA	2	−0.097761
1774	NA	3	−0.097761
1775	−2.231562	4	−0.097761
1776	−0.958341	1	−2.231562
1777	0.743064	1	−0.958341
1778	1.644795	1	0.743064
1779	NA	1	1.644795
where \(t = 1, 2, 3, \ldots, T \) with \(T = 42 \) here. The demeaned and detrended data are in Fig. 3. The next column in Table 3 contains the \(t_i - t_{i-1} \) with acronym DIFT. The last column of Table 3 reflects the new variable \(x_{t_i-1} \). With this new variable, one can apply NLS to

\[
x_{t_i} = \alpha^{t_i-t_{i-1}}x_{t_{i-1}} + u_{t_i}
\]

and obtain an estimate of \(\alpha \) and an associated HAC standard error.
6 Illustration

Let us see how this works out for the ten historical series in Table 2, which are taken from Brandon and Bosma (2019, Annex page XXX). Table 4 reports the estimation results for the auxiliary regression for demeaning and detrending. Two series do not seem to have a trend as the associated parameter is not significant at the 5% level, and these are Sugar refinery and Army and Navy. However, we do use the residuals of the auxiliary regressions in the subsequent analysis.

Table 5 reports on the estimated \(\alpha \) parameters. The estimates range from 0.278 (Total size GDP of Holland) to 0.907 (Sugar refinery). Comparing the estimated parameters with their associated HAC standard errors, we see that 0 is included in the 95% confidence interval only for Total size GDP of Holland. So, this variable fully follows a deterministic trend.

Table 6 presents the estimated persistence of shocks (news), measured the 95% duration interval \(\tau_{0.95} \) and by \(\tau \). Clearly, persistence is largest for Sugar refinery and Notaries. The parameter for Notaries is 0.862 (Table 5) is very close to 1, given its HAC standard error, so one might even claim that shocks to this sector in the observed period were permanent.

Table 5 Estimate of persistence (with estimated HAC standard errors in parentheses, Newey and West, 1987) using NLS to the regression model \(x_t = \alpha t^{-\kappa} x_{t-1} + u_t \)

Variable	\(\hat{\alpha} \)	HAC standard error
International trade	0.416 (0.165)	
International shipping	0.437 (0.181)	
Domestic production, trade and shipping	0.416 (0.165)	
Shipbuilding	0.348 (0.171)	
Sugar refinery	0.907 (0.033)	
Notaries	0.862 (0.099)	
Army and Navy	0.675 (0.198)	
Total slave-based value added	0.404 (0.167)	
Total size GDP of Holland	0.278 (0.149)	
Weight of slave-based activities in GDP Holland	0.536 (0.152)	

Table 6 Measures of persistence, measured in years

Variable	\(\tau_{0.95} \)	\(\tau \)
International trade	3.42	1.14
International shipping	3.62	1.21
Domestic production, trade and shipping	3.42	1.14
Shipbuilding	2.84	0.947
Sugar refinery	30.7	10.2
Notaries	20.2	6.73
Army and Navy	7.62	2.54
Total slave-based value added	3.31	1.10
Total size GDP of Holland	2.34	0.781
Weight of slave-based activities in GDP Holland	4.80	1.60
7 Conclusion

This paper has introduced to the literature on Economic History a measure of persistence which is particularly useful if the data are irregularly spaced. An illustration to ten historical series for the impact and contribution of slave trade in Holland of 1738–1779 showed the merits of the methodology.

When the question is addressed whether the contribution to GDP of slave trade has grown with a steady pace, like with a deterministic trend, or whether that contribution jumped to plateaus due to structural breaks, perhaps caused by technological developments, the following conclusion can be drawn. The persistence in the variables “Weight of slave-based activities in GDP Holland”, as measured by the parameters in an AR (1) regression, is equal to 0.536 with HAC standard error 0.214. This persistence is not equal to 1, meaning that there is no sign of occasional structural breaks with a long-lasting effect. Hence, in the considered period, the contribution to GDP has steadily grown with a deterministic pattern.

Further applications should emphasize the practical relevance of the method. Also, an extension to an autoregressive process of higher order could be relevant, in order to provide additional measures of persistence. An extension to fractionally integrated processes is also relevant. Finally, and this a further technical issue, that is, one may want to formally test if $\alpha = 1$. This amounts to a so-called test for a unit root, for which the asymptotic theory is different than standard, see for example Chapter 4 of Franses et al. (2014).

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

Brandon, P., Bosma, U.: Calculating the weight of slave-based activities in the GDP of Holland and the Dutch Republic–Underlying methods, data and assumptions. Low Ctries. J. Soc. Econ. Hist. 16(2), 5–45 (2019). https://doi.org/10.18352/tseg.1082

Eltis, D., Engerman, S.L.: The importance of slavery and the slave trade to industrializing Britain. J. Econ. Hist. 60(1), 123–144 (2000)

Eltis, D., Emmer, P.C., Lewis, F.D.: More than profits? The contribution of the slave trade to the Dutch economy: assessing Fatah-Black and Van Rossum. Slavery Abolit. 37(4), 724–735 (2016)

Fatah-Black, K., van Rossum, M.: Beyond profitability: The Dutch transatlantic slave trade and its economic impact. Slavery Abolit. 36(1), 63–83 (2015)

Franses, P.H., van Dijk, D.J., Opschoor, A.: Time Series Models for Business and Economic Forecasting. Cambridge University Press, Cambridge UK (2014)

Newey, W.K., West, K.D.: A simple, positive semi-definite, heteroskedasticity and autocorrelation consistent covariance matrix. Econometrica 55(3), 703–708 (1987)

Robinson, P.M.: Estimation of a time series model from unequally spaced data. Stoch. Process. Appl. 6, 9–24 (1977)

Schulz, M., Mudelsee, M.: REDFIT: estimating red-noise spectra directly from unevenly spaced paleoclimatic time series. Comput. Geosci. 28, 421–426 (2002)
Van Zanden, J.L., van Leeuwen, B.: Persistent but not consistent. The growth of national income in Holland, 1347–1807. Explor. Econ. Hist. 49, 119–130 (2012)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.