On $W_{1+\infty}$ 3-algebra and integrable system

Min-Ru Chena,b, Shi-Kun Wangc, Xiao-Li Wanga,c,d, Ke Wua,e,f and Wei-Zhong Zhaoa,e,f

aSchool of Mathematical Sciences, Capital Normal University, Beijing 100048, China
bCollege of Mathematics and Information Sciences, Henan University, Kaifeng 475001, China
cInstitute of Applied Mathematics, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing 100190, China
dSchool of Science, Qilu University of Technology, Jinan 250353, China
eBeijing Center for Mathematics and Information Interdisciplinary Sciences, Beijing 100048, China
fInstitute of Mathematics and Interdisciplinary Science, Capital Normal University, Beijing 100048, China

Abstract

We construct the $W_{1+\infty}$ 3-algebra and investigate the relation between this infinite-dimensional 3-algebra and the integrable systems. Since the $W_{1+\infty}$ 3-algebra with a fixed generator W_0^0 in the operator Nambu 3-bracket recovers the $W_{1+\infty}$ algebra, it is natural to derive the KP hierarchy from the Nambu-Poisson evolution equation. For the general case of the $W_{1+\infty}$ 3-algebra, we directly derive the KP and KdV equations from the Nambu-Poisson evolution equation with the different Hamiltonian pairs. We also discuss the connection between the $W_{1+\infty}$ 3-algebra and the dispersionless KdV equations. Due to the Nambu-Poisson evolution equation involves two Hamiltonians, the deep relationship between the Hamiltonian pairs of KP hierarchy is revealed. Furthermore we give a realization of $W_{1+\infty}$ 3-algebra in terms of a complex bosonic field. Based on the Nambu 3-brackets of the complex bosonic field, we derive the (generalized) nonlinear Schrödinger equation and give an application in optical soliton.

KEYWORDS: Integrable Equations in Physics, Conformal and W Symmetry, Integrable Hierarchies

PACS numbers: 02.30.Ik, 02.20.Sv, 11.25.Hf

1cmr@henu.edu.cn
2wsk@amss.ac.cn
3wxldllg_2001@163.com
4wuke@mail.cnu.edu.cn
5Corresponding author: zhaowz100@163.com
1 Introduction

The infinite-dimensional algebras play a very important role in the study of integrable systems. This is due to the fact that they have a deep intrinsic connection to the integrable systems. The Virasoro algebra is an important infinite-dimensional algebra which has been turned out to be a universal symmetry algebra in two-dimensional conformal field theory. Gervais and Neveu [1, 2] found that this infinite-dimensional algebra is intrinsically related to the Korteweg-de Vries (KdV) equation where the Poisson bracket of the KdV equation is indeed the classical Virasoro algebra. The lattice Virasoro algebra appears in the study of the Toda field theory and Toda integrable systems [3, 4]. Furthermore the intrinsic connection between the super Virasoro algebra and super KdV equation has been studied in [5]-[10]. As a higher-spin extension of the Virasoro algebra, the W_N algebra has been found to be associated to the generalized KdV hierarchies [11]-[12].

The KP hierarchy is an integrable system consisting of an infinite number of non-linear differential equations. This hierarchy has proven to be bi-Hamiltonian and to possess an infinite number of conserved quantities. All the (generalized) KdV hierarchies can be incorporated into the KP hierarchy. The $W_{1+\infty}$ algebra [13] can be regards as a linear deformation of the W_N algebras in the large N limit [14]. It has very important applications in physics, such as quantum Hall effect [15], topological string [16], Alday-Gaiotto-Tachikawa (AGT) relation [17], 2-dimensional quantum gravity [18] and crystal melting [19]. In the context of integrable systems, it was shown that the $W_{1+\infty}$ algebra is intrinsically related to the first Hamiltonian structure of the KP hierarchy [20, 21]. The second Hamiltonian structure of the KP hierarchy was then shown to be isomorphic to \hat{W}_∞ [22], a centerless deformation of W_∞.

Nambu mechanics [23] is a generalization of classical Hamiltonian mechanics in which the usual binary Poisson bracket is replaced by the Nambu bracket. Based on the Nambu bracket, a notion of a Nambu 3-algebra was introduced in [24] as a natural generalization of a Lie algebra for higher-order algebraic operations. Recently 3-algebras have been paid great attention due to a world-volume description of multiple M2-branes proposed by Bagger and Lambert [25], and Gustavsson [26] (BLG). There has been an increasing interest in the applications of 3-algebras to the string/M-theory [27]-[34]. The properties of various 3-algebras especially the infinite-dimensional cases have been widely investigated, such as Virasoro-Witt 3-algebra [25]-[37], Kac-Moody 3-algebra [38] and w_∞ 3-algebra [39, 40]. Furthermore the q-deformation of Virasoro-Witt 3-algebra has also been investigated. The nontrivial q-deformed Virasoro-Witt 3-algebra constructed in [41] is the so-called sh-3-Lie algebra.

More recently, the relation between the infinite-dimensional 3-algebras and the integrable systems has been investigated. Chen er al. [42] investigated the classical Heisenberg and w_∞ 3-algebras and established the relation between the dispersionless KdV hierarchy and these two
infinite-dimensional 3-algebras. They found that the dispersionless KdV system is not only a bi-Hamiltonian system, but also a bi-Nambu-Hamiltonian system. It should be pointed out that the dispersionless KdV hierarchy is a very simple integrable system. An interesting open question is whether we can derive other integrable nonlinear evolution equations from the infinite-dimensional 3-algebras. We have mentioned that the first Hamiltonian structure of the KP hierarchy is indeed corresponding to the $W_{1+\infty}$ algebra. In this paper, we shall construct the $W_{1+\infty}$ 3-algebra and discuss the relation between this infinite-dimensional 3-algebra and the integrable systems.

This paper is organized as follows. In section 2, we construct the $W_{1+\infty}$ 3-algebra. In section 3, we establish the relation between the $W_{1+\infty}$ 3-algebra and the KP hierarchy in the framework of Nambu mechanics. In section 4, By means of the $W_{1+\infty}$ 3-algebra, We derive the KP and KdV equations from the Nambu-Poisson (N-P) evolution equation with the different Hamiltonian pairs. In section 5, we establish the connections between the $W_{1+\infty}$ 3-algebra and the dispersionless KdV equations. A conjecture is presented. In section 6, we give a realization of $W_{1+\infty}$ 3-algebra and investigate the (generalized) nonlinear Schrödinger equation. Moreover, we give an application of the generalized nonlinear Schrödinger equation derived from the N-P evolution equation. We end this paper with the concluding remarks in section 7.

2 $W_{1+\infty}$ 3-algebra

2.1 $W_{1+\infty}$ algebra

Let us take $\{W_m^r = (-1)^re^{imx}\frac{d^r}{dx^r}m, r \in \mathbb{Z}, r \geq 0, i = \sqrt{-1}\}$. We then obtain the algebra

$$[W_m^r, W_n^s] = \left(\sum_{p=0}^{r} C_r^p (-im)^p - \sum_{p=0}^{s} C_s^p (-im)^p\right)W_{m+n}^{r+s-p},$$ (1)

where $C_r^p = \frac{r(r-1)\cdots(r-p+1)}{p!}$. The first few brackets read

$$[W_m^0, W_n^0] = 0,$$

$$[W_m^0, W_n^1] = i(m-n)W_{m+n}^1,$$

$$[W_m^1, W_n^1] = i(m-n)W_{m+n}^1,$$

$$[W_m^0, W_n^2] = 2imW_{m+n}^1 + m^2W_{m+n}^0,$$

$$[W_m^0, W_n^3] = 3imW_{m+n}^2 + 3m^2W_{m+n}^1 - im^3W_{m+n}^0,$$

$$[W_m^1, W_n^2] = i(2m-n)W_{m+n}^2 + m^2W_{m+n}^1,$$

$$[W_m^2, W_n^2] = i(2m-2n)W_{m+n}^3 + (m^2 - n^2)W_{m+n}^2,$$

$$[W_m^2, W_n^3] = i(3m-2n)W_{m+n}^4 + (3m^2 - n^2)W_{m+n}^3 - im^3W_{m+n}^2.$$ (2)
The first three commutators can be recognized as the semidirect product of the Witt algebra with an abelian current algebra.

Taking the Fourier transformation field (FTF)

$$v_r(x) = \frac{-i}{2\pi} \sum_{m=-\infty}^{\infty} W_m^r e^{-inx}$$

and defining \{,\} = \{-1[,]\}, we may rewrite (1) as the following Poisson bracket algebra derived in [20]:

$$\{ v_r(x), v_s(y) \} = \sum_{p=0}^{s} C_p^s (-1)^p v_{r+s-p}(y) \partial_y^p \delta(x - y) - \sum_{p=0}^{r} C_p^r (-1)^p v_{r+s-p}(x) \partial_x^p \delta(x - y)$$

$$= \sum_{p=0}^{s} \sum_{l=0}^{p} C_p^s C_p^l v_{r+s-p}(x) (\partial_x^{-l} \delta(x - y)) - \sum_{p=0}^{r} C_p^r (-1)^p v_{r+s-p}(x) \partial_x^p \delta(x - y).$$

The $W_{1+\infty}$ algebra is an infinite-dimensional higher-spin algebra with generators having all integer conformal spins $s \geq 1$ [13]. It is worth noting that the Poisson bracket algebra (4) has been proved to be isomorphic to the $W_{1+\infty}$ algebra [20]. Thus we call (1) the $W_{1+\infty}$ algebra.

Another important infinite-dimensional algebra which should be mentioned is the higher-order Virasoro algebra (HOVA). By investigating the higher-order differential neighbourhoods in holomorphic mappings of S^1 a vector space, Zha [13] first constructed this infinite-dimensional algebra. Its generators are \{$L_r^m = (-1)^r z^{m+r} \frac{d^r}{dz^r} | m, r \in \mathbb{Z}, r \geq 0 \}$. Taking $z = e^{ix}$, we find that the generators of HOVA and $W_{1+\infty}$ algebra can be linearly expressed reciprocally. It implies that the $W_{1+\infty}$ algebra (1) is also indeed isomorphic to the HOVA.

2.2 $W_{1+\infty}$ 3-algebra

The operator Nambu 3-bracket was defined to be a sum of commutators of two operators multiplying the remaining one [23], i.e.,

$$[A, B, C] = [A, B]C + [B, C]A + [C, A]B,$$

where $[A, B] = AB - BA$.

Based on the operator Nambu 3-bracket [15] and the commutation relation (1), after a straightforward calculation we obtain the $W_{1+\infty}$ 3-algebra

$$[W^r_m, W^s_n, W^h_k] = \sum_{p=0}^{r} (-i)^p C^r_p n^p - \sum_{p=0}^{s} (-i)^p C^s_p m^p \sum_{q=0}^{r+s-p} (-i)^q C^{r+s-p}_{r+s-p} h^q W^{r+s-p}_{m+n+k}$$

$$+ \sum_{p=0}^{h} (-i)^p C^h_p n^p - \sum_{p=0}^{s} (-i)^p C^s_h n^p \sum_{q=0}^{s+h-p} (-i)^q C^{s+h-p}_{s+h-p} m^q W^{s+h-p}_{m+n+k}$$

$$+ \sum_{p=0}^{s} (-i)^p C^s_p m^p - \sum_{p=0}^{r} (-i)^p C^r_p m^p \sum_{q=0}^{r+s-p} (-i)^q C^{r+s-p}_{r+s-p} h^q W^{r+s-p}_{m+n+k},$$

(6)
Taking \(k = h = 0 \) in (3), we note that the Nambu 3-bracket \([W_m^r, W_n^s, W_0^0]\) can be regarded as the parametrized bracket relation \([W_m^r, W_n^s]_{W_0^0}\) which satisfies the Jacobi identity. This parametrized bracket relation gives rise to the \(W_{1+\infty} \) algebra (11)

\[
[W_m^r, W_n^s]_{W_0^0} \equiv [W_m^r, W_n^s, W_0^0] = [W_m^r, W_n^s].
\] (7)

It is known that all three types of 3-brackets do satisfy a 3-on-3-on-3 multiple bracket relation, i.e., so-called BI condition (44, 36)

\[
e^{i_1i_2\cdots i_6}[[A, [B_{i_1}, B_{i_2}, B_{i_3}], B_{i_4}], B_{i_5}, B_{i_6}] = e^{i_1i_2\cdots i_6}[[A, B_{i_1}, B_{i_2}], [B_{i_3}, B_{i_4}, B_{i_5}], B_{i_6}],
\] (8)

where \(i_1, \cdots, i_6 \) are implicitly summed from 1 to 6. Thus the BI may be confirmed to hold for the ternary algebra (3).

It is worthwhile to mention another condition, i.e., Filippov condition or fundamental identity (FI) condition (45)

\[
[A, B, [C, D, E]] = [[A, B, C], D, E] + [C, [A, B, D], E] + [C, D, [A, B, E]].
\] (9)

The FI condition (9) is not an operator identity. It holds only in special circumstances. For the \(W_{1+\infty} \) 3-algebra (6), we find that it does not satisfy the FI condition (8).

In order to achieve a better understanding of the \(W_{1+\infty} \) 3-algebra (6), we list the first few brackets as follows:

\[
\begin{align*}
[W_0^0, W_n^0, W_k^0] & = 0, \\
[W_m^1, W_n^0, W_k^0] & = i(k - n)W_{m+n+k}^0, \\
[W_m^1, W_n^1, W_k^0] & = i(m - n)W_{m+n+k}^1 + (km - kn)W_{m+n+k}^0, \\
[W_m^1, W_n^1, W_k^1] & = 0, \\
[W_m^2, W_n^0, W_k^0] & = i(2k - 2n)W_{m+n+k}^1 + (k^2 - n^2)W_{m+n+k}^0, \\
[W_m^3, W_n^0, W_k^0] & = i(3k - 3n)W_{m+n+k}^2 + (3k^2 - 3n^2)W_{m+n+k}^1 + i(n^3 - k^3)W_{m+n+k}^0, \\
[W_m^1, W_n^2, W_k^0] & = i(2m - n - k)W_{m+n+k}^2 + (m^2 - k^2 + 2km - 2kn)W_{m+n+k}^1 \\
& \quad + i(3k - 2k^2 - m^2)W_{m+n+k}^0, \\
[W_m^2, W_n^2, W_k^0] & = i(2m - n)W_{m+n+k}^3 + (m^2 - n^2 + 4km - 4kn)W_{m+n+k}^2 \\
& \quad + i(2kn^2 - 2km^2 + 6nk^2 - 6mk^2)W_{m+n+k}^1 \\
& \quad + (k^2n^2 - 2k^2m^2 + 2nk^3 - 2k^3m)W_{m+n+k}^0, \\
[W_m^1, W_n^1, W_k^2] & = i(n - m)W_{m+n+k}^3 + (n^2 - m^2 - kn - km)W_{m+n+k}^3 \\
& \quad + i(km^2 - kn^2 - m^2n + mn^2)W_{m+n+k}^1.
\end{align*}
\]
where z-bracket (5) with respect to the generators W general Virasoro-Witt 3-algebra is given by Curtright et al. [35] for the case of the KP hierarchy is a paradigm of the hierarchies of integrable systems. It is defined as an infinite system of equations given in Lax form by

$$[W^1_m, W^2_n, W^2_k] = i(n-k)W^4_{m+n+k} + (n^2 - k^2 + 2mn - 2mk)W^3_{m+n+k}$$

$$+ i(5km^2 - 5nm^2 + k^2 - kn^2)W^2_{m+n+k}$$

$$+ (k^2m^2 - m^2n^2 + 2km^3 - 2m^3n)W^1_{m+n+k},$$

$$[W^2_m, W^2_n, W^2_k] = 2(k^3n - k^n3m + m^3n - m^3n + n^3m - n^3k)W^2_{m+n+k}$$

$$+ 4i(k^2n - k^2m + m^2k - m^2n + n^2m - n^2k)W^1_{m+n+k}. \quad (10)$$

We observe that these brackets do not close except for the generators $W^i_m, i = 0, 1$. The Nambu 3-bracket [5] with respect to the generators W^0_m and W^1_n indeed give the so-called the Virasoro-Witt 3-algebra [35, 37]. However, this 3-algebra does not satisfy the FI condition (9). The general Virasoro-Witt 3-algebra is given by Curtright et al. [35]

$$[R_p, R_q, R_k] = 0,$$

$$[Q_p, R_q, R_k] = (k - q)R_{k+p+q},$$

$$[Q_p, Q_q, R_k] = (p - q)(Q_{k+p+q} + zkR_{k+p+q}),$$

$$[Q_k, Q_m, Q_n] = (k - m)(m - n)(k - n)R_{k+m+n}, \quad (11)$$

where z is a parameter. They showed that the Virasoro-Witt 3-algebra (11) does not satisfy the FI condition (9), except when $z = \pm 2i$.

In order to derive the classical $w_{1+\infty}$ 3-algebra, we take the generators to be \{ \(W^r_m = (-i\hbar)^re^{imx}x^r/dx^r \mid m, r \in \mathbb{Z}, r \geq 0 \)}, where \hbar is introduced into the generators. By means of (6) and classical limit relation \{ \(\{, \} = \lim_{\hbar \to 0} 1/\hbar[\{, \}] \)}, we have the classical $w_{1+\infty}$ 3-algebra as follows:

$$\{W^r_m, W^s_n, W^h_k\} = \lim_{\hbar \to 0} 1/\hbar [W^r_m, W^s_n, W^h_k]$$

$$= i(r(k - n) + s(m - k) + h(n - m))W^{r+s+h-1}_{m+n+k}. \quad (12)$$

Not as the case of $W_{1+\infty}$ 3-algebra, we find that the classical $w_{1+\infty}$ 3-algebra (12) satisfies the FI condition.

3 $W_{1+\infty}$ 3-algebra and KP hierarchy

The KP hierarchy is a paradigm of the hierarchies of integrable systems. It is defined as an infinite system of equations given in Lax form by

$$\frac{\partial L}{\partial t_n} = [B_n, L], \quad n = 1, 2, \ldots, \quad (13)$$

under the compatible condition, (13) is equivalent to the Zakharov-Shabat (ZS) equation

$$\frac{\partial B_m}{\partial t_n} - \frac{\partial B_n}{\partial t_m} + [B_m, B_n] = 0, \quad (14)$$

\[5\]
where the pseudo-differential operator L is given by
\[L = \partial + \sum_{i=0}^{+\infty} v_i \partial^{-i-1}, \]
and $B_n = (L)^n_+$ is the differential part of L^n.

The Hamiltonians of the KP Hierarchy are given by the general expression
\[H_n = Tr \frac{L^{n+1}}{n+1} = \frac{1}{n+1} \int Res L^{n+1} dx. \]
The first few members are

\[
\begin{align*}
H_0 &= \int v_0 dx, \\
H_1 &= \int v_1 dx, \\
H_2 &= \int (v_2 + v_0^2) dx, \\
H_3 &= \int (v_3 + 3v_0 v_1) dx, \\
H_4 &= \int (v_4 + 4v_0 v_2 + 2v_1^2 + 2v_0^3 + 2v_0 v_{1,x} + v_0 v_{0,xx}) dx, \\
H_5 &= \int (v_5 + 5v_0 v_3 + 5v_1 v_2 + 10v_1 v_0^2 - 5v_2 v_{0,x} + 4v_1 v_{0,xx} - v_0 v_{0,xxx} + v_0 v_{1,xx}) dx, \\
H_6 &= \int (v_6 + 6v_0 v_4 + 6v_1 v_3 + 3v_2^2 + 5v_0^4 + 15v_0^2 v_2 + 9v_0 v_3, x + 3v_1 v_2, x + 15v_0 v_1^2 + 15v_0 v_{0,x} v_1 + 13v_0 v_{2,xx} + 2v_0, x v_2, x + 4v_1 v_{1,xxx} + 7v_0 v_{1,xxxx} + 3v_1 v_{0,xxx} + 15v_0^2 v_{1,xxx} + 5v_0^3 v_{0,xxx} + v_0^2 v_{0,xxx}) dx, \\
H_7 &= \int (v_7 + 7v_0 v_5 + 7v_1 v_4 + 7v_2 v_3 + 21v_0^2 v_3 + 7v_1^3 + 42v_0 v_1 v_2 + 14v_0 v_4, x + 7v_1 v_3, x + 7v_0 v_3, x + 14v_{0,xx} v_3 + 14v_1 v_{2,xx} + \frac{77}{4} v_0 v_{2,xxx} + \frac{21}{4} v_2 v_{0,xxx} + \frac{7}{4} v_{0,xxx} v_1, x + \frac{35}{4} v_0 v_{1,xxxx} + 42v_0 v_{0,xxx} v_1 + \frac{7}{2} v_0^2 v_{1,xxx} + 21v_0^2 v_{2,xx} + 21v_0 v_1 v_{1,xxx} + 21v_0^2 v_{1,xxx} + 35v_0^3 v_1) dx, \\
\vdots
\end{align*}
\]

where the subscript x denotes the derivative with respect to the variable x.

It is known that the Poisson bracket \[4\] leads to the Hamiltonian description of the KP flow equations \[20\] \[21\]. Substituting the Hamiltonians \[16\] into the Poisson evolution equation
\[\frac{\partial v_i(t,x)}{\partial t} = \{v_i, H_n\}, \]
and using the Poisson bracket \[4\], we may derive the KP hierarchy.

In order to establish the relation between the $W_{1+\infty}$ 3-algebra and integrable systems, let us introduce the FTF as follows:
\[v_r(x) = \frac{1 + i}{2\sqrt{2\pi}} \sum_{m=-\infty}^{\infty} W_r^m e^{-imx}, \]
and define the classical Nambu bracket \(\{ , , \} = -i[, ,] \). Then we can rewrite the \(W_{1+\infty} \) 3-algebra as the following Nambu 3-bracket relation:

\[
\{ v_r(x), v_s(y), v_h(z) \} = \sum_{p=0}^{s} \sum_{q=0}^{r+s-p} (-1)^{p+q} C_p^q C_{r+s-p} v_{r+s-p} v_r v_s \partial^p \delta(x-y) \partial^q \delta(x-z)
\]

\[
= \sum_{p=0}^{s} \sum_{q=0}^{r+s-p} (-1)^{p+q} C_p^q C_{r+s-p} v_{r+s-p} v_r v_s \partial^p \delta(y-y) \partial^q \delta(y-z)
\]

\[
+ \sum_{p=0}^{h} \sum_{q=0}^{s+h-p} (-1)^{p+q} C_p^q C_{s+h-p} v_{s+h-p} v_s v_h \partial^p \delta(y-z) \partial^q \delta(z-x)
\]

\[
- \sum_{p=0}^{h} \sum_{q=0}^{r+h-p} (-1)^{p+q} C_p^q C_{r+h-p} v_{r+h-p} v_r v_h \partial^p \delta(z-y) \partial^q \delta(z-x)
\]

Not as the Poisson evolution equation, the N-P evolution equation involves two Hamiltonians. It is given by

\[
\partial v_i \partial_{mn} = \{ v_i, H_m, H_n \}. \tag{21}
\]

In terms of the Nambu 3-bracket relation (20), we have

\[
\{ v_r, H_0, v_s \} = \sum_{p=0}^{s} C_p^q (-1)^p v_{r+s-p}(y) \partial^p \delta(x-y) - \sum_{p=0}^{r} C_p^q (-1)^p v_{r+s-p}(x) \partial^p \delta(x-y). \tag{22}
\]

Comparing (22) with (21), it gives the equivalent relation

\[
\{ v_r, H_0, v_s \} \cong \{ v_r, v_s \}, \tag{23}
\]

where the FTFs in Nambu 3-bracket and Poisson bracket are given by (19) and (3), respectively. This equivalent relation is indeed corresponding to the relation (4) with \(\{ , , \} = -i[, ,] \) and \(\{ , , \} = -i[, ,] \). Due to (4), it can be verified that the triple Hamiltonians \((H_0, H_n, H_m) \) satisfy \(\{ H_0, H_n, H_m \} = 0 \). But for the triple Hamiltonians \((H_l, H_n, H_m) \), \(l, n, m \in \mathbb{Z}_+ \), by means of (20), we note that they are not in involution with the Nambu 3-bracket structure, i.e., \(\{ H_1, H_n, H_m \} \neq 0 \).

For the Hamiltonian pairs \((H_0, H_n) \), by means of (23), it is not difficult to show that

\[
\{ v_i, H_0, H_n \} \cong \{ v_i, H_n \}. \tag{24}
\]
Thus based on (25b) and (25c), we obtain

\[\frac{\partial y}{\partial t} = \{v_0, H_0, H_2\} = v_1, x + v_0, xx, \]

and

\[\frac{\partial y}{\partial v_0} = \{v_1, H_0, H_2\} = 2v_2, x + v_1, xx + 2v_0, v_0, x. \]

From (25b) and (25c), we obtain

\[y = t_02 \text{ and } t = t_{03}. \]

The KP hierarchy can also be obtained from (14). It is easy to derive the KP equation (27) from (14) by taking \(m = 2 \) and \(n = 3 \).

Let us consider the following equations:

\[\frac{\partial v_0}{\partial t_{03}} = \{v_0, H_0, H_3\} = 3v_2, x + 3v_1, xx + v_0, xxx + 6v_0, v_0, x, \]

(25a)

\[\frac{\partial v_0}{\partial t_{02}} = \{v_0, H_0, H_2\} = 2v_1, x + v_0, xx, \]

(25b)

\[\frac{\partial v_1}{\partial t_{02}} = \{v_1, H_0, H_2\} = 2v_2, x + v_1, xx + 2v_0, v_0, x. \]

(25c)

Substituting (26) into (25a), we obtain the usual KP equation

\[3v_{0,yy} = (4v_{0,t} - v_{0,xxx} - 12v_0, v_0, x)_x, \]

(27)

where \(y = t_02 \) and \(t = t_{03}. \) The KP hierarchy can also be obtained from (14). It is easy to derive the KP equation (27) from (14) by taking \(m = 2 \) and \(n = 3 \).

To give the integrable equation corresponding to the case of \(m = 2 \) and \(n = 4 \) in (14), we consider the following equations:

\[\frac{\partial v_0}{\partial t_{04}} = \{v_0, H_0, H_4\} = 4v_3, x + 6v_2, xx + 4v_1, xxx + v_0, xxxx \]

\[+ 6(v_0, x)^2 + 6v_0, v_0, xx + 12v_0, v_1, x + 12v_1, v_0, x, \]

(28a)

\[\frac{\partial v_0}{\partial t_{02}} = \{v_0, H_0, H_2\} = 2v_1, x + v_0, xx, \]

(28b)

\[\frac{\partial v_1}{\partial t_{02}} = \{v_1, H_0, H_2\} = 2v_2, x + v_1, xx + 2v_0, v_0, x, \]

(28c)

\[\frac{\partial v_2}{\partial t_{02}} = \{v_2, H_0, H_2\} = 2v_3, x + v_2, xx - 2v_0, v_0, xx + 4v_1, v_0, x. \]

(28d)

From (25b), (25c) and (25d), we may give the expressions of \(v_1, v_2 \) and \(v_3 \) with respect to \(v_0, \) respectively. Then substituting them into (28a), we obtain

\[\frac{\partial^3 v_0}{\partial y \partial x^2} - 2\frac{\partial^3 v_0}{\partial t^2} + \frac{\partial^3 v_0}{\partial y^3} + 4v_0, x \frac{\partial v_0}{\partial y} + 8v_0, v_0, v_0, x = 0, \]

(29)

where \(y = t_02 \) and \(t = t_{04}. \)

The integrable equation corresponding to the case of \(m = 2 \) and \(n = 5 \) in (14) can be derived from the following equations:

\[\frac{\partial v_0}{\partial t_{05}} = \{v_0, H_0, H_5\}, \quad \frac{\partial v_0}{\partial t_{02}} = \{v_0, H_0, H_2\}, \quad \frac{\partial v_1}{\partial t_{02}} = \{v_1, H_0, H_2\}, \]

\[\frac{\partial v_2}{\partial t_{02}} = \{v_2, H_0, H_2\}, \quad \frac{\partial v_3}{\partial t_{02}} = \{v_3, H_0, H_2\}. \]

(30)
The integrable equation is
\[
\frac{\partial v_0}{\partial t} = \frac{5}{16} \partial_x^3 v_{0,yyyyy} + \frac{5}{8} v_{0,xyy} + \frac{5}{2} v_{0,y} \partial_x^{-1} v_{0,y} + \frac{5}{2} v_{0,xx} v_{0,xx} + \frac{5}{4} v_{0,v_{0,xxx}} + \frac{1}{16} v_{0,v_{0,xxxx}} + \frac{5}{2} v_0 \partial_x^{-1} v_{0,yy} + \frac{5}{4} \partial_x^{-1} (v_{0,yy})^2 + \frac{5}{4} v_{0,x} \partial_x^{-2} v_{0,yy} + \frac{15}{2} v_0^2 v_{0,x},
\]
where \(y = t_{02} \) and \(t = t_{05} \).

- The integrable equation corresponding to the case of \(m = 2 \) and \(n = 6 \) in (13) can be derived from the following equations:
\[
\frac{\partial v_0}{\partial t_{06}} = \{v_0, H_0, H_6\}, \quad \frac{\partial v_0}{\partial t_{02}} = \{v_0, H_0, H_2\}, \quad \frac{\partial v_1}{\partial t_{02}} = \{v_1, H_0, H_2\}, \quad \frac{\partial v_2}{\partial t_{02}} = \{v_2, H_0, H_2\}, \quad \frac{\partial v_3}{\partial t_{02}} = \{v_3, H_0, H_2\}, \quad \frac{\partial v_4}{\partial t_{02}} = \{v_4, H_0, H_2\}.
\]
The integrable equation is
\[
\frac{\partial v_0}{\partial t} = 3(v_{0,y})^2 + 9v_0 v_{0,x} \partial_x^{-1} v_{0,y} + 6 \partial_x^{-1} (v_{0,x} v_{0,yy}) + 12v_0^2 v_{0,y} + 3v_{0,x} \partial_x^{-1} (v_{0,y})^2
\]
\[
- \frac{21}{4} \partial_x^{-1} (v_{0,xxx})^2 + \frac{3}{4} \partial_x^{-2} (v_{0,yyyy}) + \frac{15}{4} \partial_x^{-2} (v_{0,yy}) v_0 + \frac{15}{4} v_0 \partial_x^{-2} (v_{0,yyyy})
\]
\[
+ 6 \partial_x^{-1} (v_{0,xy} \partial_x^{-1} v_{0,y}) + 6 \partial_x^{-1} (v_{0,xx} \partial_x^{-1} v_{0,yy}) - \frac{3}{2} \partial_x^{-1} (v_0 \partial_x^{-1} v_{0,yyyy}) - \frac{3}{2} v_{0,x} v_{0,xy}
\]
\[
+ \frac{33}{4} v_{0,xxx} v_0 + \frac{33}{4} v_{0,xy} v_{0,yy} - 6v_{0,xy} \partial_x^{-1} v_{0,y} + 3 \frac{1}{4} v_{0,xxx} \partial_x^{-1} v_{0,y} - 6v_{0,x} \partial_x^{-1} v_{0,yy}
\]
\[
+ \frac{3}{4} v_{0,x} \partial_x^{-3} v_{0,yyyy} + \frac{9}{4} \partial_x^{-2} (v_{0,y} v_{0,yy}) - \frac{3}{2} \partial_x^{-1} (v_{0,y} \partial_x^{-1} v_{0,yy}) + \frac{3}{16} \partial_x^{-4} (v_{0,yyyy})
\]
\[
+ \frac{5}{8} v_{0,yyyy} - \frac{21}{4} \partial_x^{-1} (v_{0,y} v_{0,xxx}) - \frac{9}{4} \partial_x^{-1} (v_{0,x} \partial_x^{-2} v_{0,yy}) + \frac{3}{16} v_{0,xxxx}
\]
\[
- \frac{9}{4} \partial_x^{-1} (v_{0,xy} \partial_x^{-2} v_{0,yy}) + \frac{9}{4} (\partial_x^{-1} v_{0,yyyy})(\partial_x^{-1} v_{0,y}),
\]
where \(y = t_{02} \) and \(t = t_{06} \).

4 KP equation, KdV equation and \(W_{1+\infty} 3 \)-algebra

One has already known that the \(W_{1+\infty} \) algebra is related to the KP hierarchy. Since the \(W_{1+\infty} \) 3-algebra with a fixed generator \(W_0^0 \) in the operator Nambu 3-bracket (6) recovers the \(W_{1+\infty} \) algebra, it is natural to derive the KP hierarchy from the \(W_{1+\infty} \) 3-algebra. To explore the deep connection between the \(W_{1+\infty} \) 3-algebra and the integrable equations, we need to deal with new case studies. Hereafter we focus on the general case of the \(W_{1+\infty} \) 3-algebra. Due to the N-P evolution equation involving two Hamiltonians, this may hide some still unknown relations between these Hamiltonians. Thus it would be quite interesting to understand these Hamiltonians from the N-P evolution equation.

To start with let us assign the weights as follows:
\[
[x] = -1, [\partial_x] = 1, [v_i] = i + 2, [\partial_{mn}] = m + n.
\]
Theorem For any Hamiltonian pair \((H_m, H_n)\) of the KP hierarchy, \(0 \leq m < n\), from the N-P evolution equations

\[
\frac{\partial v_0}{\partial t_{mn}} = \{v_0, H_m, H_n\}, \quad (35a)
\]

\[
\frac{\partial v_i}{\partial t_{02}} = \{v_i, H_0, H_2\}, \quad (35b)
\]

where \(i = 0, 1, \cdots, s - 2\) and \(s = m + n \geq 1\), it gives the evolution equation with respect to \(v_0\). The weight of equation is \(s\).

Proof By weight counting, it is easy to see that the pseudo-differential operator \(L\) is homogeneous of weight 1, from which we conclude that the weight of \(L^{n+1}\) is \([L^{n+1}] = n + 1\). For any Hamiltonian \(H_n\), due to the weight \([ResL^{n+1}] = n + 2\), it implies that there are only finite \(v_i, i = 0, 1, 2, \cdots, n\) being permitted to emerge in \(H_n\). Note that for these finite \(v_i, v_n\) has the highest weight \(n + 2\). Thus to determine how many \(v_i\) appearing in (35a), let us consider \(\int \int \{v_0(x), v_m(y), v_n(z)\} dydz\). By a direct calculation, we have

\[
\int \int \{v_0(x), v_m(y), v_n(z)\} dydz = \sum_{p=1}^{n} C_n^p \partial_x^p v_{s-p} - \sum_{p=1}^{m} C_m^p \partial_x^p v_{s-p}. \quad (36)
\]

In terms of (36), we find that there are only finite \(v_i, i = 0, 1, 2, \cdots, s - 1\) being permitted to emerge in the evolution equation of \(v_0\) (35a).

After a straightforward calculation, (35b) gives its final form

\[
\frac{\partial v_i}{\partial t_{02}} = \{v_i, H_0, H_2\} = 2v_{i+1,x} + v_{i,xx} + 2v_i v_0 - 2 \sum_{p=0}^{i} (-1)^p C_i^p v_{i-p} \partial_x^p v_0, \quad i = 0, 1, \cdots, s - 2. \quad (37)
\]

Thus we have a recursion relation from (37)

\[
v_{i+1}(x) = \frac{1}{2} \partial_x^{-1} (v_{i,t_{02}} - v_{i,xx} - 2v_i v_0 + 2 \sum_{p=0}^{i} (-1)^p C_i^p v_{i-p} \partial_x^p v_0). \quad (38)
\]

By means of the recursion relation (38), we may express \(v_i, i = 1, 2, \cdots, s - 1\) as the function of \(v_0\). Then substituting these \(v_i\) into (35a), we obtain the evolution equation with respect to \(v_0\). Since the Nambu 3-bracket relation (20) and the Hamiltonian (16) are homogeneous of weight, in terms of (35), it immediately gives the weight \(s + 2\) of the evolution equation with respect to \(v_0\).

According to above theorem, we know that there are \(\frac{m+n+1}{2}\) different Hamiltonian pairs \((H_{\frac{m+n}{2}-1-i}, H_{\frac{m+n}{2}+1+1})\), \(i = 0, 1, \cdots, \frac{m+n}{2}\) such that (35a) gives the evolution equations of \(v_0\) with the same weight \(m + n + 2\).

Now let us turn our attention to the KP equation. Taking the Hamiltonian pairs \((H_m, H_n)\) to be \((H_0, H_3)\) and \((H_1, H_2)\), respectively, we may derive the evolution equations of \(v_0\) with the
same weight from \((35) \). For the case of \((H_0, H_3)\), we have derived the KP equation from \((25) \). Let us replace the Hamiltonian pair \((H_0, H_3)\) in \((25a) \) by \((H_1, H_2)\), thus we have

\[
\frac{\partial v_0}{\partial t_12} = \{v_0, H_1, H_2\} = v_{2,x} + v_{1,xx} - 6 v_0 v_{0,x}.
\]

(39)

Substituting \((26) \) into \((39) \), we obtain

\[
v_{0,yy} = (-4 v_{0,t} + v_{0,xxx} + 28 v_0 v_{0,x})_x,
\]

(40)

where \(y = t_{02} \) and \(t = t_{12} \). Under the scaling transformations \(y \to \frac{1}{\sqrt{3}} y \) and \(v_0 \to \frac{3}{7} v_0 \), \((40) \) becomes the usual KP equation \((2.7) \). What is surprising here is that we derive the KP equation from the N-P evolution equation with the different Hamiltonian pairs. This is an intriguing nontrivial result, since there is not such kind of remarkable property in the framework of Poisson evolution equation. It is worth to emphasize that the \(W_{1+\infty} 3 \)-algebra plays a pivotal role in deriving the KP equation here. Due to the N-P evolution equation involving two Hamiltonians, our analysis indicates that there is the deep relationship between the Hamiltonians of KP hierarchy.

Comparing \((39) \) with \((25a) \), we note that the coefficients of fields \(v_1 \) and \(v_2 \) in \((25a) \) are three times that of \((39) \). To explore more relationship between the Hamiltonian pairs \((H_0, H_3)\) and \((H_1, H_2)\), we consider the following evolution equation:

\[
\frac{\partial v_0}{\partial t_{03}} - 3 \frac{\partial v_0}{\partial t_{12}} = \{v_0, H_0, H_3\} - 3 \{v_0, H_1, H_2\}.
\]

(41)

Substituting the expressions of \((25a) \) and \((39) \) into \((41) \), we obtain

\[
-2 \frac{\partial v_0}{\partial t} = v_{0,xxx} + 24 v_0 v_{0,x},
\]

(42)

where \(t = t_{03} = t_{12} \). Under the scaling transformations \(t \to -2t \) and \(v_0 \to \frac{1}{7} v_0 \), \((42) \) becomes the well-known KdV equation

\[
\frac{\partial v_0}{\partial t} = v_{0,xxx} + 6 v_0 v_{0,x}.
\]

(43)

The connection between the KdV equation and the Virasoro algebra was first pointed out by Gervais and Neveu [1,2]. The KdV equation is a bi-hamiltonian system. It makes contact with the Virasoro algebra via the second hamiltonian structure. We have derived the KP equation from the N-P evolution equation with the different Hamiltonian pairs. It is well-known that the KP hierarchy is introduced as a generalization of KdV hierarchies. Under the low dimensional reduction, the KP equation reduces to the KdV equation. As one of intriguing results in this paper, we find that the KdV equation may be obtained from the N-P evolution equation \((41) \) without taking the low dimensional reduction. More precisely, we may directly derive the KdV equation from \((41) \) by means of \(W_{1+\infty} 3 \)-algebra, where the Hamiltonians \(H_i, i = 0, 1, 2, 3 \) are the Hamiltonians of KP hierarchy. It should also be stressed that without the condition of low
dimensional reduction, this result can not be achieved from the Poisson evolution equation with the Hamiltonians of KP hierarchy. Therefore our investigation provides new insight into the KdV equation.

Let us turn to consider the case of the Hamiltonian pairs \((H_m, H_n)\) with \(m + n = 4\). For the case of \((H_0, H_4)\), we have derived the integrable equation (29) from (28). If the first equation in (28) is replaced by

\[
\frac{\partial v_0}{\partial t_{13}} = \{v_0, H_1, H_3\} = 2v_{3,x} + 3v_{2,xx} + v_{1,xxx} - 6v_1v_{0,x} - 6v_0v_{1,x} - 3v_0v_{0,xx} - 3(v_{0,x})^2,
\]

then from (44) and the last three equations in (28), we obtain

\[
\frac{\partial^3 v_0}{\partial y \partial x^2} + 4 \frac{\partial v_0}{\partial t} - \partial_x^{-2} \frac{\partial^3 v_0}{\partial y^3} + 20v_{0,x} \partial_x^{-1} \frac{\partial v_0}{\partial y} + 16v_0 \frac{\partial v_0}{\partial y} = 0,
\]

where \(y = t_{02}\) and \(t = t_{13}\). Its single soliton solution is

\[
v_0 = \frac{k^2}{12} \text{sech}^2 \frac{\xi}{2},
\]

where

\[
\xi = k(\omega t + x + y) + c,
\]

in which \(\omega = \frac{1}{4}(-k^2 + 1)\), \(k\) and \(c\) are the constants. Although (45) has the single soliton solution, by performing a Painlevé analysis of this equation, we note that it does not pass the test. Hence (45) does not have the Painlevé integrable property. In spite of this negative result it is instructive to pursue the analysis of (45). Taking the reduction \(x = y\), it is interesting to note that (45) may reduce to the KdV equation (43) with the appropriate scaling transformations.

Under the low dimensional reduction, we may also derive the KdV equation from the following N-P evolution equations with respect to \(v_0\):

\[
\frac{\partial v_0}{\partial t_{04}} - 2 \frac{\partial v_0}{\partial t_{13}} = \{v_0, H_0, H_4\} - 2\{v_0, H_1, H_3\} = 2v_{1,xxx} + v_{0,xxxx} + 12(v_{0,x})^2 + 12v_0v_{0,xx} + 24v_0v_{1,x} + 24v_1v_{0,x},
\]

\[
\frac{\partial v_0}{\partial t_{02}} = \{v_0, H_0, H_2\} = 2v_{1,x} + v_{0,xx}.
\]

Comparing (48a) with (28a), we observe that there are not the fields \(v_2\) and \(v_3\) in (48a). Thus not as the case of (28), we do not need the evolution equations of \(v_1\) and \(v_2\) here. Eliminating \(v_1\) via the evolution equations of \(v_0\) (48a), we can rewrite (48a) as

\[
- \frac{\partial v_0}{\partial t} = \frac{\partial^3 v_0}{\partial y \partial x^2} + 12v_0 \frac{\partial v_0}{\partial y} + 12v_0(x^{-1} \frac{\partial v_0}{\partial y}),
\]
where $t = t_{04} = t_{13}$ and $y = t_{02}$. Its single soliton solution is

$$v_0 = \frac{k^2}{8} \text{sech}^2 \frac{\xi}{2},$$ \hfill (50)

where $\xi = k(-k^2t + x + y) + c$, k and c are the constants. By performing a Painlevé analysis of this equation, we note that it does not pass the test. Taking the reduction $x = y$ and the scaling transformations $t \to -t$ and $v_0 \to \frac{1}{4}v_0$, (49) reduces to the KdV equation (43).

5 $W_{1+\infty}$ 3-algebra and dispersionless KdV hierarchy

In the previous section, we derived the (2+1)-dimensional equation (45) by means of the $W_{1+\infty}$ 3-algebra. Even though this equation is not integrable, nevertheless it still admits a single soliton solution and reduces to the KdV equation under the low dimensional reduction. In order to achieve a better understanding of the relation between $W_{1+\infty}$ 3-algebra and (1+1)-dimensional integrable equations, we have to proceed to the detailed analysis. Based on the theorem in the previous section, let us first give several examples of reduction.

- Hamiltonian pairs (H_m, H_n) with $m + n = 5$.

For this case, substituting the Hamiltonian pairs (H_0, H_5), (H_1, H_4) and (H_2, H_3) into (35), respectively, we may derive the evolution equations of v_0 with the same weight 7. We have given the integrable equation (51) from (30) with the Hamiltonian pair (H_0, H_5). Let us now replace the first equation in (30) by

$$\frac{\partial v_0}{\partial t_{14}} = \{v_0, H_1, H_4\} = 3v_{4,x} + 6v_{3,xx} + 4v_{2,xxx} + v_{1,xxxx} - 4v_2v_{0,x} - 4v_0v_{2,x} - 4v_1v_{1,x} - 6v_0v_{1,x} - 4v_0v_{1,xx} - 2v_1v_{0,xx} - 12v_0v_{0,xxx} - 6v_0v_{0,xxxx} - 30v_0^2v_{0,x},$$ \hfill (51)

then from (51) and the last four equations in (30), we obtain

$$\frac{\partial v_0}{\partial t} = \frac{3}{16} v_{0,yyyy} - \frac{1}{8} v_{0,yy} - \frac{5}{2} v_{0,y} v_{0,yy} - \frac{17}{2} v_{0,xxx} v_{0,xxx} - \frac{21}{4} v_{0,yyyy} - \frac{1}{16} v_{0,xxxx} - \frac{5}{2} v_{0} v_{0,yyyy} + \frac{3}{4} v_{0,y} v_{0,yyyy} + \frac{13}{4} v_{0,x} v_{0,yyyy} - \frac{39}{2} v_{0,x} v_{0,yyyy},$$ \hfill (52)

where $y = t_{02}$ and $t = t_{14}$. Its single soliton solution is

$$v_0 = \frac{1}{78} (3790 - 110\sqrt{1249}) k^2 + 531 - 15\sqrt{1249} - (11370 - 330\sqrt{1249}) k^2 \text{sech}^2 \frac{\xi}{2},$$ \hfill (53)

where ξ is given by (17) with $\omega = -\frac{1}{624} (144441304\sqrt{1249} - 4998879128) k^4 + 134406117 - 3805749\sqrt{1249} - 265077 + 4541\sqrt{1249}$. To test the integrability of this equation, we perform the Painlevé analysis of (52). Unfortunately it does not pass the test.
If the first equation in (30) is replaced by
\[
\frac{\partial v_0}{\partial t_{23}} = \{v_0, H_2, H_3\} = v_{4,x} + 2v_{3,xx} + v_{2,xxx} + 3v_2 v_{0,x} + 3v_0 v_{2,x} - 18 v_1 v_{1,x} - 6v_{0,x} v_{1,x} + 3v_0 v_{1,xx} - 9v_1 v_{0,xx} - 3v_0 v_{0,xxx} + 3v_0 v_{0,xxx} + 24v_0^2 v_{0,x},
\]
we can derive the following equation:
\[
\frac{\partial v_0}{\partial t} = \frac{1}{16} \partial_x^{-3} v_{0,yyyy} - \frac{1}{8} v_{0,yyy} - 5v_{0,y} \partial_x^{-1} v_{0,y} + \frac{9}{4} v_{0,x} v_{0,xx} + \frac{5}{2} v_0 v_{0,xxx} + \frac{1}{16} v_{0,xxxx} + \frac{1}{4} v_0 \partial_x^{-1} v_{0,yy} + \frac{1}{4} \partial_x^{-1} (v_0 v_{0,yy})^2 + \frac{1}{4} \partial_x^{-1} (v_0 v_{0,yy}) + 21 v_0^2 v_{0,x},
\]
where \(y = t_{02} \) and \(t = t_{23} \). By applying the Painlevé analysis to (55), we find that it does not pass the test. As the case of (52), (55) has the single soliton solution as follows:
\[
v_0 = \frac{31}{140} - \frac{5}{14} k^2 + \frac{15}{14} k^2 \text{sech}^2 \xi,
\]
where \(\xi \) is given by (47) with \(\omega = \frac{3}{2} k^4 + \frac{67}{280} \).

Under the reduction \(y = 0 \), (51), (52) and (55) reduce to the following equations:
\[
\frac{\partial v_0}{\partial t} = \frac{1}{16} v_{0,xxxx} + \frac{5}{4} v_0 v_{0,xxx} + \frac{5}{2} v_{0,x} v_{0,xx} + \frac{15}{2} v_0^2 v_{0,x},
\]
\[
\frac{\partial v_0}{\partial t} = -\frac{1}{16} v_{0,xxxx} - \frac{21}{4} v_0 v_{0,xxx} - \frac{17}{2} v_{0,x} v_{0,xx} - \frac{39}{2} v_0^2 v_{0,x}
\]
and
\[
\frac{\partial v_0}{\partial t} = \frac{1}{16} v_{0,xxxx} + \frac{5}{2} v_0 v_{0,xxx} + \frac{9}{4} v_{0,x} v_{0,xx} + 21 v_0^2 v_{0,x},
\]
respectively. In the dispersionless limit \(\partial_t \to \epsilon \partial_t \) and \(\partial_x \to \epsilon \partial_x \) with \(\epsilon \to 0 \), (57), (58) and (59) reduce to the following dispersionless KdV equation with the appropriate scaling transformations:
\[
v_{0,t} = \frac{15}{8} v_0^2 v_{0,x}.
\]
Note that (57) is the completely integrable Lax’s fifth order KdV equation [46], but (58) and (59) are not integrable. The fifth order KdV equations describe motions of long waves in shallow water under gravity and in a one-dimensional nonlinear lattice and has wide applications in quantum mechanics and nonlinear optics. Thus a great deal of research work has been invested for the study of the fifth order KdV equations. Recently the following general fifth order KdV equation has been investigated [47]:
\[
\frac{\partial v}{\partial t} = \omega v_{xxxxx} + \alpha v v_{xxx} + \beta v_x v_{xx} + \gamma v^2 v_x,
\]
(61)
where α, β, γ and ω are the arbitrary real parameters. By using the exp function method, the solutions of (61) have also been presented. It can be very easily seen that (58) and (59) are the special cases of (61).

- Hamiltonian pairs (H_m, H_n) with $m + n = 7$.

The integrable equation corresponding to the case of $m = 2$ and $n = 7$ in (14) can be derived from the following equations:

\[
\begin{align*}
\frac{\partial v_0}{\partial t} &= \{v_0, H_0, H_7\}, \\
\frac{\partial v_0}{\partial y} &= \{v_0, H_0, H_2\}, \\
\frac{\partial v_2}{\partial y} &= \{v_2, H_0, H_2\}, \\
\frac{\partial v_3}{\partial y} &= \{v_3, H_0, H_2\}, \\
\frac{\partial v_4}{\partial y} &= \{v_4, H_0, H_2\}, \\
\frac{\partial v_5}{\partial y} &= \{v_5, H_0, H_2\}.
\end{align*}
\]

(62)

Due to too many terms in this integrable equation, we do not exhibit its explicit expression here. Let us replace the first equation in (62) by

\[
\begin{align*}
\frac{\partial v_0}{\partial t} &= \{v_0, H_1, H_6\}, \\
\frac{\partial v_0}{\partial y} &= \{v_0, H_2, H_5\}, \\
\frac{\partial v_0}{\partial t} &= \{v_0, H_3, H_4\},
\end{align*}
\]

(63)

respectively. We may also derive three non-integrable equations. Taking the reduction $y = 0$ and the dispersionless limit, these four equations reduce to the following dispersionless KdV equation with the appropriate scaling transformations:

\[
v_{0,t} = \frac{35}{16} v_{0,x}^3 v_{0,x}.
\]

(64)

The dispersionless KdV hierarchy is a well studied integrable system \[48-49\]. It is given by

\[
\frac{\partial u(t, x)}{\partial t} = A_{n-1} u^{n-1} u_x
\]

\[
\begin{align*}
&= \left\{ \begin{array}{ll}
 u_x, & n = 1, \\
 \frac{3}{2} u u_x, & n = 2, \\
 \frac{15}{8} u^2 u_x, & n = 3, \\
 \frac{35}{10} u^3 u_x, & n = 4, \\
 \vdots &
\end{array} \right.
\end{align*}
\]

(65)

where A_n is given by

\[
A_n = \frac{(2n + 1)!!}{(2n)!!}.
\]

(66)
We have derived the third and fourth order dispersionless KdV equations from the N-P evolution equation. For the second order dispersionless KdV equation in (65), it is easy to obtain from (27) and (40) under the low dimensional reduction with the dispersionless limit, respectively. From above several examples, it is of interest to note that for a higher-order dispersionless KdV equation, we may derive it from the N-P evolution equation with the different Hamiltonian pairs. It indicates that there is the intrinsic equivalent relation between the Hamiltonian pairs. We call this intrinsic relation between the Hamiltonian pairs "degeneration". Based on above analysis, we present a conjecture as follows:

Conjecture For any Hamiltonian pair \((H_m, H_n)\) of the KP hierarchy, \(0 \leq m < n\), when \(s = m + n\) is odd, we may choose \(\frac{s+1}{2}\) different Hamiltonian pairs \((H_{s-1}, H_{s+1})\), \(i = 0, 1, \cdots, \frac{s-1}{2}\). Based on the theorem in the previous section, we can derive \(\frac{s+1}{2}\) different evolution equations with respect to \(v_0\) with odd weight \(s + 2\). Under the low dimensional reduction \(t_{02} = 0\) and the dispersionless limitation, i.e., \(\partial_{t_{mn}} \to \epsilon \partial_{t_{mn}}\) and \(\partial_x \to \epsilon \partial_x\) with \(\epsilon \to 0\), all higher derivation terms of \(v_0\) in the evolution equations are vanishing. Thus we have the following equation with the weight \(s + 2\):

\[
\frac{\partial v_0}{\partial t_{mn}} = \alpha_{mn} v_0^{s+1}_0 v_{0,x},
\]

where \(\alpha_{mn}\) is a constant. When \(\alpha_{mn} \neq 0\), by taking the appropriate scaling transformation, \(68\) leads to the dispersionless KdV hierarchy. However, how to prove \(\alpha_{mn} \neq 0\) is the most challenging problem.

6 \(W_{1+\infty}\) 3-algebra and non-linear Schrödinger equations

6.1 Non-linear Schrödinger equation

The non-linear Schrödinger equation is given by

\[
\frac{i}{2} \frac{\partial \psi}{\partial t} + \frac{\partial^2 \psi}{\partial x^2} + 2|\psi|^2 \psi = 0,
\]

where \(\psi\) is a complex bosonic field.
The non-linear Schrödinger equation possesses an infinite set of conserved quantities \hat{H}_n, given by the formula
\[
\hat{H}_n = -(-i)^n \int \psi \Gamma_n(\psi, \psi^*) dx,
\]
where
\[
\Gamma_0 = \psi^*, \quad \Gamma_1 = \Gamma_{0,x}, \quad \Gamma_{n+1} = \Gamma_{n,x} + \int \psi \sum_{p=0}^{n-1} \Gamma_p \Gamma_{n-1-p}, \quad n \geq 1.
\]

The first few such Hamiltonians are
\[
\begin{align*}
\hat{H}_0 &= - \int \psi^* \psi dx, \\
\hat{H}_1 &= -i \int \psi^* \psi_x dx, \\
\hat{H}_2 &= \int (\psi^* \psi_{xx} + \psi^* \psi_x^2) dx, \\
\hat{H}_3 &= i \int (\psi^* \psi_{xxx} + 3 \psi^* \psi_x \psi_x^2 - 2 \psi^* \psi \psi_x^2) dx, \\
\hat{H}_4 &= - \int (\psi^* \psi_{xxxx} + 4 \psi^* \psi_x \psi_{xx} + 2 \psi^* \psi_x^2 - 2 \psi^* \psi \psi_x^2) dx, \\
&\quad + \psi^* \psi (\psi^* \psi_{xx}) + 2 (\psi^* \psi)^3 dx, \\
&\vdots.
\end{align*}
\]

The non-linear Schrödinger equation \[\text{(69)}\] can be obtained from
\[
\frac{\partial \psi}{\partial t} = \{\psi(x), \hat{H}_2\},
\]
where the Poisson brackets of the complex bosonic field are given by \[\text{(50)}\]
\[
\{\psi^*(x), \psi(y)\} = -i(x - y), \quad \{\psi(x), \psi(y)\} = \{\psi^*(x), \psi^*(y)\} = 0.
\]

It is known that there is a realization of $W_{1+\infty}$ algebra in terms of a complex bosonic field with Poisson brackets \[\text{(74)}\]. Taking
\[
v_r(x) = i(-1)^r \psi^*(x) \psi^{(r)}(x),
\]
where $\psi^{(r)}(x) = \frac{d^r \psi(x)}{dx^r}$, by means of \[\text{(74)}\], it is easy to verify that the generators \[\text{(75)}\] satisfy \[\text{(4)}\]. Due to this kind of realization of $W_{1+\infty}$ algebra, the connection between the non-linear Schrödinger equation and the KP hierarchy has been established by Freeman and West \[\text{(50)}\].

For the case of $W_{1+\infty}$ 3-algebra \[\text{(20)}\], we find that its realization can be achieved in terms of a complex bosonic field with Nambu 3-brackets given by
\[
\{\psi^{(r)}(x), \psi^*(y) \psi^{(s)}(y), \psi^*(z)\} = -i \partial_x^r \delta(x - y) \partial_y^s \delta(y - z),
\]
\[
\{\psi^*(x), \psi^*(y) \psi^{(s)}(y), \psi^*(z)\} = \{\psi^{(r)}(x), \psi^*(y) \psi^{(s)}(y), \psi^{(h)}(z)\} = 0.
\]

17
The proof is straightforward. One can confirm the $W_{1+\infty}^3$-algebra (20) by substituting $v_r(x) = \frac{\sqrt{2}}{2}(1 + i)(-1)^r \psi^*(x)\psi^{(r)}(x)$ and using the Nambu 3-brackets (76).

As the cases of (23) and (24), in terms of the Nambu 3-bracket relations (76), we have also the similar equivalent relations

$$\{\psi, \hat{H}_0, \psi^*\} \cong \{\psi, \psi^*\}, \quad \{\psi, \hat{H}_0, \hat{H}_n\} \cong \{\psi, \hat{H}_n\}. \quad (77)$$

Thus we may also derive the non-linear Schrödinger equation from the N-P evolution equation

$$\frac{\partial \psi}{\partial t} = \{\psi, \hat{H}_0, \hat{H}_2\} = i\left(\frac{\partial^2 \psi}{\partial x^2} + 2|\psi|^2 \frac{\partial \psi}{\partial x}\right). \quad (78)$$

Based on the $W_{1+\infty}^3$-algebra (20), we have derived the KP and KdV equations from the N-P evolution equation with the first few Hamiltonian pairs of KP hierarchy. Note that the $W_{1+\infty}^3$-algebra (20) can be realized in terms of the complex bosonic field with the Nambu 3-bracket relations (76). Based on (76), let us focus on investigating the N-P evolution equations with the first few Hamiltonian pairs of non-linear Schrödinger equation. A list of the corresponding nonlinear evolution equations is given as follows:

- Hamiltonian pair (\hat{H}_0, \hat{H}_3)

$$\frac{\partial \psi}{\partial t} = \{\psi, \hat{H}_0, \hat{H}_3\} = -(\frac{\partial^3 \psi}{\partial x^3} + 6|\psi|^2 \frac{\partial \psi}{\partial x}), \quad (79)$$

This equation is the so-called integrable complex mKdV equation.

- Hamiltonian pair (\hat{H}_1, \hat{H}_2)

$$\frac{\partial \psi}{\partial t} = \{\psi, \hat{H}_1, \hat{H}_2\} = -(\frac{\partial^3 \psi}{\partial x^3} + 2|\psi|^2 \frac{\partial \psi}{\partial x}). \quad (80)$$

Its single soliton solution is $\psi = k_1 \text{sech}(k_1 x - k_2^3 t)e^{ik_2 t}$, where k_1 and k_2 are the real constants.

- Hamiltonian pair (\hat{H}_1, \hat{H}_3)

$$\frac{\partial \psi}{\partial t} = \{\psi, \hat{H}_1, \hat{H}_3\} = -i\left(\frac{\partial^4 \psi}{\partial x^4} + 6 \frac{\partial}{\partial x}(|\psi|^2 \frac{\partial \psi}{\partial x})\right). \quad (81)$$

Its single soliton solution is $\psi = k \text{sech}(kx - \frac{8\sqrt{3}k^3}{9}t)e^{i(\frac{\sqrt{3}}{3}x + \frac{4\sqrt{3}k^3}{9}t)}$, where k is a real constant.

To test the integrability of (80) and (81), we perform the Painlevé analysis and find that they do not have the Painlevé integrable property.

For the Hamiltonian pairs (\hat{H}_0, \hat{H}_3) and (\hat{H}_1, \hat{H}_2) of KP hierarchy, we have found that there is the deep relationship between them. For the case of the Hamiltonian pairs of non-linear Schrödinger equation, as done in that of case (41), let us consider the following evolution equation:

$$\frac{\partial \psi}{\partial t} = \{\psi, \hat{H}_0, \hat{H}_3\} + 3\{\psi, \hat{H}_1, \hat{H}_2\}. \quad (82)$$

Substituting the expressions of (79) and (80) into (82), we obtain

$$\frac{\partial \psi}{\partial t} = -\frac{i\partial^3 \psi}{\partial x^3} - 12|\psi|^2 \frac{\partial \psi}{\partial x} - 6\psi \frac{\partial |\psi|^2}{\partial x}. \quad (83)$$
Under the scaling transformations $\psi \rightarrow \sqrt{2}\psi$ and $t \rightarrow \frac{1}{4}t$, we may rewrite (83) as

$$\frac{\partial \psi}{\partial t} + \frac{\partial^3 \psi}{\partial x^3} + 6|\psi|^2 \frac{\partial \psi}{\partial x} + 3\psi \frac{\partial |\psi|^2}{\partial x} = 0.$$ \hspace{1cm} (84)

We immediately recognize that (84) is nothing but the integrable Sasa-Satsuma equation [51].

6.2 An application in optical soliton

It is well-known that the nonlinear Schrödinger equation plays a critical role in the study of optical solitons for optical fiber communications. To describe a large number of nonlinear effects in optical fibers, the effects of the higher-order terms on the nonlinear Schrödinger equation have been paid more attention. The propagation of optical field in a monomode optical fiber may be described by the following generalized nonlinear Schrödinger equation [52]:

$$\frac{\partial A}{\partial Z} + \alpha A + i\beta_2 \frac{\partial^2 A}{\partial T^2} - \beta_3 \frac{\partial^3 A}{\partial T^3} = i\gamma(|A|^2 A + \frac{i}{\omega_0} \frac{\partial |A|^2 A}{\partial T} - T_R A \frac{\partial |A|^2}{\partial T}),$$ \hspace{1cm} (85)

where Z is the normalized propagation distance, T is the normalized retarded time, i.e., time in the frame of reference moving with the wave packet, $A(Z,T)$ denotes the normalized slowly varying complex wave packet envelope in the electric field, and $|A|^2$ represents the optical power. (85) is an important nonlinear equation for studying higher-order nonlinear effects in optical fibers. The second and third terms on the left side of (85) describe the effects of fiber loss and chromatic dispersion, respectively. The term proportional to β_3 governs the effects of third-order dispersion and becomes important for ultrashort pulses because of their wide bandwidth. The first term on the right side of (85) describes the nonlinear effects of self-phase modulation. The terms proportional to ω_0^{-1} and T_R are responsible for the phenomenon of self-steepening and the Raman-induced frequency shift, respectively.

Based on the results in the previous subsection, let us turn to derive generalized nonlinear Schrödinger equation in the framework of Nambu mechanics. For the Hamiltonian pairs (\hat{H}_0, \hat{H}_2) and (\hat{H}_1, \hat{H}_2), we consider the following N-P evolution equation:

$$\frac{\partial \psi}{\partial \ell} = -\frac{\beta_2}{2} \{\psi, \hat{H}_0, \hat{H}_2\} - \frac{\beta_3}{6} \{\psi, \hat{H}_1, \hat{H}_2\},$$ \hspace{1cm} (86)

where the parameters β_2 and β_3 in (85) are introduced into (86).

By means of (78) and (80), (86) leads to

$$\frac{\partial \psi}{\partial t} = -\frac{i\beta_2}{2} \frac{\partial^2 \psi}{\partial x^2} + \frac{\beta_3}{6} \frac{\partial^3 \psi}{\partial x^3} - \frac{i\beta_2}{6} |\psi|^2 \psi + \frac{\beta_3}{3} \frac{\partial |\psi|^2}{\partial x} \psi.$$ \hspace{1cm} (87)

Its single soliton solution is

$$\psi = k \text{sech}(kx + \frac{\beta_3}{6} k^3 t) e^{-\frac{1}{2}i\beta_2 k^2 t},$$ \hspace{1cm} (88)

where k is a real constant.
Comparing (85) with (87), we observe that in absence of the fiber loss and Raman-induced frequency shift terms, i.e., \(\alpha = T_R = 0 \), (85) reduces to (87) with \(\gamma = -\beta_2 \), and \(\omega_0 = \frac{3\beta_2}{2\beta_3} \).

We have already seen that the generalized nonlinear Schrödinger equation can be derived in terms of the Hamiltonian pairs \((\hat{H}_0, \hat{H}_2)\) and \((\hat{H}_1, \hat{H}_2)\). It should be pointed out that we may also derive the similar result just from the N-P evolution equation with the Hamiltonian pair \((\hat{H}_1, \hat{H}_2)\) under the appropriate variable transformations. For the Hamiltonian pair \((\hat{H}_1, \hat{H}_2)\), the corresponding N-P evolution equation is given by (80). Let us take the variable transformations as follows:

\[
\begin{align*}
t & = \frac{\gamma \beta_3}{2\beta_2} \sqrt{-\frac{3\gamma}{\beta_2}} Z, \\
x & = \frac{1}{2\beta_3} \sqrt{-\frac{3\gamma}{\beta_2}} (2\beta_3 T + \beta_2^2 Z), \\
A & = \psi(t, x) \exp iB, \\
B & = \frac{\beta_2}{\beta_3} (T + \frac{\beta_2^2}{3\beta_3} Z) + \frac{\alpha}{2} iZ.
\end{align*}
\]

It is not difficult to prove that under the variable transformations (89), (80) becomes (85) with \(T_R = 0 \) and \(\omega_0 = \frac{\beta_2}{\beta_3} \).

7 Concluding Remarks

The KP hierarchy is an important integrable system which can be regarded as the generalization of KdV hierarchies. It is well-known that there is a remarkable connection between the integrable systems and the infinite-dimensional conformal algebra and its extensions. For the KP hierarchy, one has known that its first Hamiltonian structure is related to the \(W_{1+\infty} \) algebra. To discuss the relation between the infinite-dimensional 3-algebra and the KP hierarchy, we constructed the \(W_{1+\infty} \) 3-algebra which does not satisfy the FI condition, but the BI condition holds for this ternary algebra. By introducing the FTF, we rewrote the \(W_{1+\infty} \) 3-algebra as the Nambu 3-bracket structure of the FTF. We noted that when there is a fixed generator \(W_0^0 \) in the operator Nambu 3-bracket, the \(W_{1+\infty} \) 3-algebra may reduce to the \(W_{1+\infty} \) algebra. Thus based on this special \(W_{1+\infty} \) 3-algebra, we derived the KP hierarchy from the N-P evolution equation with the Hamiltonian pairs \((H_0, H_i)\).

To explore the relation between the general case of the \(W_{1+\infty} \) 3-algebra and integrable equations, we replaced the Hamiltonian pair \((H_0, H_3)\) by \((H_1, H_2)\) in the N-P evolution equation (25). An intriguing feature is that it still leads to the KP equation. Moreover without taking the low dimensional reduction, we directly derived the KdV equation by means of the N-P evolution equation with the Hamiltonian pairs \((H_0, H_3)\) and \((H_1, H_2)\). It did provide new insight into the KP and KdV equations. Furthermore we investigated the N-P evolution equation (35) with the different Hamiltonian pairs and established the connections between the \(W_{1+\infty} \) 3-algebra and
the dispersionless KdV equations. We pointed out that there is an intrinsic equivalent relation between the Hamiltonian pairs of KP hierarchy, i.e., "degeneration". We also presented a conjecture with respect to the "degeneration". For the Hamiltonians of KP hierarchy, one did only know that these Hamiltonians are in involution. Our investigation turned out that the intrinsic relationship between these Hamiltonians is actually more complicated than has been previously recognized.

For the $W_{1+\infty}^3$-algebra, we also presented its realization in terms of a complex bosonic field with Nambu 3-brackets \((76)\). Based on \((76)\), we derived the (generalized) nonlinear Schrödinger equation, complex mKdV equation and Sasa-Satsuma equation in the framework of Nambu mechanics. Moreover an application in optical soliton has been given for the generalized nonlinear Schrödinger equation derived from N-P evolution equation. It is worthwhile to mention the \((2+1)\)-dimensional non-integrable equations presented in this paper, which are derived from N-P evolution equation with the Hamiltonian pairs of KP hierarchy and have the single soliton solutions. Since the (higher-order) KP and KdV equations have been widely used in various fields such as fluid physics, plasma physics and quantum field theory, the applications of the \((2+1)\)-dimensional evolution equations mentioned above might be of interest in these fields.

Although the $W_{1+\infty}^3$-algebra does not satisfy the so-called FI condition, our analysis suggests that there still exist the much deeper connections between the $W_{1+\infty}^3$-algebra and the integrable equations. More properties with respect to their relations still deserve further study. We believe that the infinite-dimensional 3-algebras may shed new light on the integrable systems.

Acknowledgements

The authors are indebted to Profs. S.Y. Lou and Q.P. Liu, Drs. D.S. Wang, J.P. Cheng and M.X. Zhang for their valuable discussions. The authors are grateful to Morningside Center of Chinese Academy of Sciences for providing excellent research environment and financial support to our seminar in mathematical physics. This work is partially supported by NSF projects (11375119, 11031005 and 11171329), KZ201210028032.

References

[1] J.L. Gervais and A. Neveu, Dual string spectrum in Polyakov's quantization (II). Mode separation, Nucl. Phys. B 209 (1982) 125.

[2] J.L. Gervais, Infinite family of polynomial functions of the Virasoro generators with vanishing Poisson brackets, Phys. Lett. B 160 (1985) 277.
[3] L.D. Faddeev and L.A. Takhtajan, Liouville model on the lattice, Lecture Notes in Physics, vol. 246, Springer, Berlin-Heidelberg, 1986, 166-179.

[4] R. Inoue, The lattice Toda field theory for simple Lie algebras, integrable Systems, Topology, and Physics, Contemp. Math., vol. 309, AMS, 2002, 115-128.

[5] B. A. Kupershmidt, A super Korteweg-de Vries equation: An integrable system, Phys. Lett. A 102 (1984) 213.

[6] M. Chaichian and P. Kulish, Superconformal algebras and their relation to integrable non-linear systems, Phys. Lett. B 183 (1987) 169.

[7] A. Bilal and J.L. Gervais, Superconformal algebra and super-kdv equation: two infinite families of polynomial functions with vanishing poisson brackets, Phys. Lett. B 211 (1988) 95.

[8] Q. Ho-Kim, (Super) Korteweg de Vries equation as a (super) conformal field theory, Phys. Rev. D 36 (1987) 3829.

[9] P. Mathieu, Superconformal algebra and supersymmetric Korteweg-de Vries equation, Phys. Lett. B 203 (1988) 287.

[10] K. Tanaka, Solvable two-dimensional supersymmetric models and the supersymmetric Virasoro algebra, Phys. Rev. D 42 (1990) 2745.

[11] P. Mathieu, Extended classical conformal algebras and the second hamiltonian structure of Lax equations, Phys. Lett. B 208 (1988) 101.

[12] K. Yamagishi, The KP hierarchy and extended Virasoro algebras, Phys. Lett. B 205 (1988) 466.

[13] C.N. Pope, L.J. Romans and X. Shen, The complete structure of W_{∞}, Phys. Lett. B 236 (1990) 173; A new higher-spin algebra and the lone-star product, Phys. Lett. B 242 (1990) 401; Ideals of Kac-Moody algebras and realisations of W_{∞}, Phys. Lett. B 245 (1990) 72.

[14] I. Bakas, The large-N limit of extended conformal symmetries, Phys. Lett B 228 (1989) 57.

[15] A. Capelli, C. Trugenberger and G. Zemba, Infinite symmetry in the quantum Hall effect, Nucl. Phys. B 396 (1993) 465; Classification of Quantum Hall Universality Classes by $W_{1+\infty}$ Symmetry, Phys. Rev. Lett. 72 (1994) 1902.

[16] R. Dijkgraaf, Chiral deformations of conformal field theories, Nucl. Phys. B 493 (1997) 588 [hep-th/9609022].
[17] S. Kanno, Y. Matsuo, and S. Shiba, $W_{1+\infty}$ algebra as a symmetry behind the Alday-Gaiotto-Tachikawa relation, Phys. Rev. D 84 (2011) 026007 [arXiv:1105.1667].

[18] H. Itoyama and Y. Matsuo, $W_{1+\infty}$-type constraints in matrix models at finite N, Phys. Lett. B 262 (1991) 233.

[19] J.J. Heckman and C. Vafa, Crystal melting and black holes, JHEP 09 (2007) 011 [hep-th/0610005].

[20] F. Yu and Y.S. Wu, Hamiltonian structure, (anti-)self-adjoint flows in the KP hierarchy and the $W_{1+\infty}$ and W_{∞} algebras, Phys. Lett. B 263 (1991) 220.

[21] K. Yamagishi, A hamiltonian structure of KP hierarchy, $W_{1+\infty}$ algebra, and self-dual gravity, Phys. Lett. B 259 (1991) 436.

[22] J.M. Figueroa-O’Farrill, J. Mas and E. Ramos, Bihamiltonian structure of the KP hierarchy and the W_{KP} algebra, Phys. Lett. B 266 (1991) 298.

[23] Y. Nambu, Generalized Hamiltonian dynamics, Phys. Rev. D 7 (1973) 2405.

[24] L. Takhtajan, On foundation of the generalized Nambu mechanics, Commun. Math. Phys. 160 (1994) 295 [hep-th/9301111].

[25] J. Bagger and N. Lambert, Modeling multiple M2’s, Phys. Rev. D 75 (2007) 045020 [hep-th/0611108]; Gauge symmetry and supersymmetry of multiple M2-branes, Phys. Rev. D 77 (2008) 065008 [arXiv:0711.0955]; Comments on multiple M2-branes, JHEP 02 (2008) 105 [arXiv:0712.3738].

[26] A. Gustavsson, Algebraic structures on parallel M2-branes, Nucl. Phys. B 811 (2009) 66 [arXiv:0709.1260].

[27] S.A. Cherkis and C. Sämann, Multiple M2-branes and Generalized 3-Lie algebras, Phys. Rev. D 78 (2008) 066019 [arXiv:0807.0808].

[28] G. Papadopoulos, M2-branes, 3-Lie algebras and Plücker relations, JHEP 05 (2008) 054 [arXiv:0804.2662].

[29] S. Mukhi and C. Papageorgakis, M2 to D2, JHEP 05 (2008) 085 [arXiv:0803.3218].

[30] M. Van Raamsdonk, Comments on the Bagger-Lambert theory and multiple M2-branes, JHEP 05 (2008) 105 [arXiv:0803.3803].

[31] J. Gomis, G. Milanesi and J.G. Russo, Bagger-Lambert theory for general Lie algebras, JHEP 06 (2008) 075 [arXiv:0805.1012].
[32] P.M. Ho and Y. Matsuo, M5 from M2, JHEP 06 (2008) 105 [arXiv:0804.3629].

[33] P.M. Ho, Y. Imamura, Y. Matsuo and S. Shiba, M5-brane in three-form flux and multiple M2-branes, JHEP 08 (2008) 014 [arXiv:0805.2898].

[34] C.H. Chen, K. Furuuchi, P.M. Ho and T. Takimi, More on the Nambu-Poisson M5-brane theory: scaling limit, background independence and an all order solution to the Seiberg-Witten map, JHEP 10 (2010) 100 [arXiv:1006.5291].

[35] T.L. Curtright, D.B. Fairlie and C.K. Zachos, Ternary Virasoro-Witt algebra, Phys. Lett. B 666 (2008) 386 [arXiv:0806.3515].

[36] T. Curtright, D. Fairlie, X. Jin, L. Mezincescu and C. Zachos, Classical and quantal ternary algebras, Phys. Lett. B 675 (2009) 387 [arXiv:0903.4889].

[37] T.A. Larsson, Virasoro 3-algebra from scalar densities, arXiv:0806.4039.

[38] H. Lin, Kac-Moody extensions of 3-algebras and M2-branes, JHEP 07 (2008) 136 [arXiv:0805.4003].

[39] S. Chakrabortty, A. Kumar and S. Jain, w_∞ 3-algebra, JHEP 09 (2008) 091 [arXiv:0807.0284].

[40] M.R. Chen, K. Wu and W.Z. Zhao, Super w_∞ 3-algebra, JHEP 09 (2011) 090 [arXiv:1107.3295].

[41] L. Ding, X.Y. Jia, K. Wu, Z.W. Yan and W.Z. Zhao, On q-deformed Virasoro-Witt n-algebra, arXiv:1404.0464.

[42] M.R. Chen, S.K. Wang, K. Wu and W.Z. Zhao, Infinite-dimensional 3-algebra and integrable system, JHEP 12 (2012) 030 [arXiv:1201.0417].

[43] C.Z. Zha, High order differential neighbourhoods in holomorphic mappings, Phys. Lett. B 288 (1992) 269.

[44] M.R. Brenner and L.A. Peresi, Ternary analogues of Lie and Malcev algebras, Linear Algebra Appl. 414 (2006) 1.

[45] V.T. Filippov, n-Lie algebras, Sib. Math. J. 26 (1985) 879.

[46] P.D. Lax, Integrals of nonlinear equations of evolution and solitary waves, Commun. Pure Appl. Math. 21 (1968) 467.

[47] A.H. Salas, Exact solutions for the general fifth KdV equation by the exp function method, Appl. Math. Comput. 205 (2008) 291.
[48] A. Choudhuri, B. Talukdar and U. Das, Lagrangian Approach to Dispersionless KdV Hierarchy, SIGMA 3 (2007) 096 [arXiv:0706.0314].

[49] J.C. Brunelli, Hamiltonian Structures for the Generalized Dispersionless KdV Hierarchy, Rev. Math. Phys. 8 (1996) 1041 [solv-int/9601001].

[50] M.D. Freeman and P. West, On the relation between integrability and infinite-dimensional algebra, [hep-th/9303119]

[51] N. Sasa and J. Satsuma, New type of soliton solutions for a higher-order nonlinear Schrödinger equation, J. Phys. Soc. Japan 60 (1991) 409.

[52] G.P. Agrawal, Nonlinear Fiber Optics, Academic Press, New York 2007.