 CYLINDERS OVER AFFINE SURFACES

T. Bandman and L. Makar-Limanov

For an affine variety S we consider the ring $AK(S)$, which is the intersection of the rings of constants of all locally-nilpotent derivations of the ring $\mathcal{O}(S)$. We show that $AK(S \times \mathbb{C}^n) = AK(S)$ for a smooth affine surface S with $H^2(S, \mathbb{Z}) = \{0\}$.

Introduction.

In this paper we are trying to understand better a ring invariant, which was introduced in [ML1], (see also [KML]). This invariant was used in order to show that non of the Dimca-Koras-Russell threefolds, which are related to the linearizing question, is isomorphic to \mathbb{C}^3 ([ML2], [KML], [KKMLR]). It also helped to describe the automorphisms of a surface $x^n y = f(z)$ (see [ML3]) and to give a new proof of the theorem of S. Abhyankar, P. Eakin, W. Heinzer [AEH] on cancelations for curves (in characteristic zero case) and some generalizations of this theorem ([ML4]).

Let us start with necessary algebraic notions in the generality which corresponds to our intended setting.

Let R be an algebra over a field \mathbb{C}. Then a \mathbb{C}-homomorphism ∂ of R is called a derivation of R if it satisfies the Leibniz rule: $\partial(ab) = \partial(a)b + a\partial(b)$.

Any derivation ∂ determines two subalgebras of R. One is the kernel of ∂, which is usually denoted by R^∂ and is called the ring of ∂-constants, by analogy with the ordinary derivative. The other is $nil(\partial)$, the ring of nilpotency of ∂. It is
determined by $\text{nil}(\partial) = \{ a \in R | \partial^n(a) = 0, n >> 1 \}$. In other words $a \in \text{nil}(\partial)$ if for a sufficiently large natural number n we have $\partial^n(a) = 0$.

Both R^∂ and $\text{nil}(\partial)$ are subalgebras of R because of the Leibniz rule.

Let us call a derivation \textit{locally nilpotent} if $\text{nil}(\partial) = R$. Let us denote by $\text{ln}(R)$ the set of all locally nilpotent derivations.

The best examples of locally nilpotent derivations are the partial derivatives on the rings of polynomials $\mathbb{C}[x_1, \ldots, x_n]$.

The intersection of the rings of constants of all locally nilpotent derivations of R is the invariant mentioned above. It will be called the \textit{ring of absolute constants} and denoted by $AK(R)$.

If V is a complex affine variety and $\mathcal{O}(V)$ is the ring of regular functions on V, let us denote $AK(\mathcal{O}(V))$ by $AK(V)$. A locally nilpotent derivation of $\mathcal{O}(V)$ corresponds via exponentiation to a \mathbb{C} action on V (see [S]). It follows, that if $AK(V) \neq \mathcal{O}(V)$, variety V, as we see later, is ruled or “cylinderlike,” which means that it contains an open subset which is a product of affine variety and a complex line \mathbb{C}. It seems that the invariant $AK(V)$ is especially helpful when one tries to compare a variety with \mathbb{C}^n. E.g. M. Miyanishi ([Mi1]) showed that an affine surface V with factorial ring $\mathcal{O}(V) \neq AK(V)$, is isomorphic to \mathbb{C}^2, provided $\mathcal{O}(V) = \mathbb{C}$. So, we think it is rather important to learn to compute this invariant.

One of the approaches to this is to find a connection between $AK(V \times W)$, $AK(V)$, and $AK(W)$ where V and W are affine varieties. E.g. it is known (see [ML4]), that if V is a curve which is not an affine line, then $AK(V \times W) = AK(V) \otimes_{\mathbb{C}} AK(W)$. It is also known (see [ML1]) that if $AK(V) = \mathcal{O}(V)$, then $AK(V \times \mathbb{C}^1) = AK(V) \otimes_{\mathbb{C}} \mathbb{C} = AK(V)$. Any locally nilpotent derivation ∂ of $\mathcal{O}(V)$ or of $\mathcal{O}(W)$ can be extended to a locally nilpotent derivation of $\mathcal{O}(V \times W)$ by $\partial(f) = 0$ for any $f \in \mathcal{O}(W)$ (of $f \in \mathcal{O}(V)$ correspondingly). So it is clear that $AK(V \times W) \subset AK(V) \otimes AK(W)$. In geometric terms it is the following obvious observation. If $f \in \mathcal{O}(V \times W)$ is invariant under all \mathbb{C}-actions it is also invariant under all \mathbb{C} actions which are “lifted” from the components.
Unfortunately, it is not true in general even when \(W = \mathbb{C}^1 \), that \(AK(V \times W) = AK(V) \otimes AK(W) \), which is demonstrated by the following example.

Let surfaces \(S_1 \) and \(S_2 \) be defined in \(\mathbb{C}^3 \) by equations \(xy = z^2 - 1 \) and \(x^2y = z^2 - 1 \). Danielewski ([D], [K]) showed that the cylinders over these surfaces are isomorphic and Fieseler ([F]) proved that the surfaces themselves are not isomorphic.

These surfaces were suggested by Danielewski as a counterexample to the generalized Zariski cancelation conjecture.

In our setting they provide an example of a situation when \(AK(R) \subsetneq AK(R[x]) \).

Let \(R_1 \) and \(R_2 \) be the rings of regular functions on \(S_1 \) and \(S_2 \) correspondingly. It is easy to find two locally nilpotent derivations on \(R_1 \) such that the intersection of their kernels is just \(\mathbb{C} \). Say, take \(\partial_1 \) defined by \(\partial_1(x) = 0, \partial_1(y) = 2z, \partial_1(z) = x \), and \(\partial_2 \) defined by \(\partial_2(x) = 2z, \partial_2(y) = 0, \partial_2(z) = y \).

On the other hand it is possible to show that any locally nilpotent derivation of \(R_2 \) has \(x \) in the kernel and that \(AK(R_2) = \mathbb{C}[x] ([ML3]) \). Thus \(AK(R_2) = \mathbb{C}[x] \neq AK(R_2[x]) = AK(R_1[x]) = \mathbb{C} \).

So it seems rather natural to find conditions on a variety which ensure the equality \(AK(V) = AK(V \times \mathbb{C}^n) \).

The goal of this paper is to show that if \(S \) is a smooth surface and \(H^2(S, \mathbb{Z}) = 0 \), then \(AK(S \times \mathbb{C}^n) = AK(S) \).

We also would like to state the following

Conjecture. \(AK(V) = AK(V \times \mathbb{C}^n) \) if \(O(V) \) is a factorial ring.

If this, indeed, is true it will advance rather substantially an understanding of Zariski cancelation conjecture and the linearizing question for \(\mathbb{C}^* - \) action on \(\mathbb{C}^n \).

Acknowledgements. It is our pleasure to thank Sh.Kaliman for reading the manuscript and for his very important remarks.

1. Auxiliary Facts
Assume that a group G, possibly infinite dimensional, is generated by a finite number of C-actions $\{\varphi_i\}$, which act algebraically on a n-dimensional irreducible reduced affine variety X. This means that for any i there is a regular rational map $\varphi_i : C \times X \to X$ such that

a) $\varphi_i(z_0, x) = \varphi_i^{z_0}(x)$ is an algebraic regular automorphism of X;

b) $\varphi_i^{z_0 + z_1}(x) = \varphi_i^{z_0} \circ \varphi_i^{z_1}(x)$.

If the group G is algebraic, then, due to the Rozenlicht Theorem (see, for example, [P-V]), there are two possibilities: either the a general orbit is Zariski dense in X, or there exists a G-invariant rational function on X.

The following proposition is a generalization of this fact for a non-algebraic group.

Proposition 1.1. If the G-orbit $G_{x_0} = \{y : y = g(x_0), g \in G\}$ of a general point x_0 is not dense in X, then there exists a G-invariant rational map $\pi : X \to X_G$ of the variety X into an irreducible algebraic variety X_G with $\dim X_G < \dim X$.

We need two Lemmas to prove the Proposition.

Lemma 1.2. The graph $D_G = \{(x, y) \in X \times X : y = g(x), g \in G\}$ is a dense subset of a closed algebraic subset of $X \times X$. Moreover, the orbit of a general point x_0 is a dense subset of an algebraic subset of X.

Proof of Lemma 1.2. Let word $I = \{i_1 \ldots i_s\}$ be a word of length s, where i_k are natural numbers. Let us define a regular algebraic map $F_I : C^s \times X \to X$ by

$$F_I(z, x) = \varphi_{i_1}^{z_1} \circ \cdots \circ \varphi_{i_s}^{z_s}(x),$$

where $z = (z_1 \ldots z_s) \in C^s$ and $x \in X$.

For a multiindex $I = \{i_1, \ldots i_s\}$ the graph of this map $\Gamma_I = \{(z, x, y) : y = F_I(z, x)\}$ is a closed subset of $C^s \times X \times X$. Since this graph is isomorphic to $C^s \times X$, it is irreducible.

1Further on we shall say that a set W is dense in the algebraic set V, if W contains a Zariski open subset of V.
Denote by Γ_I its closure in the product $\mathbb{P}^s \times \overline{X} \times \overline{X}$ of closures $\mathbb{P}^s, \overline{X}$ of \mathbb{C}^s and X respectively. It is irreducible because Γ_I is irreducible. Hence its projection $Z_I \subset \overline{X} \times \overline{X}$ into $\overline{X} \times \overline{X}$ is an irreducible closed subset of $\overline{X} \times \overline{X}$, containing the projection W_I of Γ_I as a dense subset (since Γ_I is dense in $\overline{\Gamma}_I$). Let $Z_I = \overline{Z}_I \cap (X \times X)$. Then $W_I \subset Z_I \subset \overline{Z}_I$, where Z_I is an irreducible closed subset of $X \times X$ and W_I is its dense subset. For any two words I and J, such that J contains I, $W_I \subset W_J$ and $\overline{Z}_I \subset \overline{Z}_J$. Now from the irreducibility of both \overline{Z}_I and \overline{Z}_J follows that either $\overline{Z}_J = \overline{Z}_I$ or $\dim \overline{Z}_J > \dim \overline{Z}_I$. Since $\dim Z_I \leq 2n$, it is possible to chose a word I such that $k = \dim \overline{Z}_I$ is maximal among all indices I.

Consider two cases.

1. Let $k = 2n$. Then $Z_I = \overline{X}$ and for a general point $x_0 \in X$ we have $\dim Z_I \cap \{x_0 \times X\} = n$. Thus its projection together with projection of W_I into second factor X is dense in X. But the projection of W_I is precisely the orbit of a point x_0, which shows that in this case the general orbit is dense in X.

2. Let k be less then $2n$. Since $\overline{Z}_J \subset \overline{Z}_I \cup E$ and by the choice of I, $\overline{Z}_J \subset \overline{Z}_I$ for any word J. So, $W_J \subset \overline{Z}_I$, for any such word J, and $D_G = \cup W_J$ is contained in \overline{Z}_I as well. On the other hand, D_G contains W_I, and the last is dense in \overline{Z}_I. Moreover by definition $D_G \subset X \times X$. Thus, D_G is a dense subset of a closed subset Z_I of the product $X \times X$. The orbit of a general point x_0 is a projection of $D_G \cap (x_0 \times X)$ into X, which is a dense subset of the intersection of the projection of $\overline{Z}_I \cap (x_0 \times \overline{X})$ into \overline{X} and X.

Lemma 1.3. If the general G-orbit G_{x_0} is not dense in X, then there are rational functions on the variety X, invariant under the action of the group G.

Proof of Lemma 1.3.

Let K be an ideal of the functions in, which are equal to zero on the closure $\overline{D}_G \subset X \times X$ in $X \times X$ of the set D_G. Any such function $f(x, y)$ has the form

$$f(x, y) = \sum_{i=1}^{n_f} p_i(x)q_i(y),$$

where (x, y) are the points of $X \times X$ and $q_i(y) \in \mathcal{O}(X)$, $p_i(x) \in \mathcal{O}(X)$. If for all functions $f(x, y) \in K$ all $p_i(x) = 0$, then any pair $(x, y) \in X \times X$ belongs to \overline{D}_G.

\[\square\]
i.e. D_G is dense in $X \times X$, and the general orbit $D_G \cap \{x_0 \times X\}$ is dense in X for a general point $x_0 \in X$, which contradicts the assumptions of the Lemma. Thus, K contains non-zero functions.

Let f_0 be a function in $K \setminus \{0\}$, such that $\nu = n_{f_0} = \min \{n_f | f \in K \setminus \{0\} \}$:

$$f_0 = \sum_{i=1}^{\nu} p_i(x)q_i(y).$$

Once more two cases are possible.

1) $\nu = 1$ and $f_0(x, y) = p_1(x)q_1(y)$.

Then D_G is contained in $\{(X \times N) \cup (M \times X)\}$, where $N = \{y | q_1(y) = 0\}$ and $M = \{x | p_1(x) = 0\}$. For any point x_0 the pair $(x_0, x_0) \in D_G \subset (X \times N) \cup (M \times X)$ which is impossible, if $x_0 \notin N \cap M$. Thus, $\nu \geq 2$.

2) $f_0(x, y) = p_1(x)q_1(y) + \sum_{i=2}^{\nu} p_i(x)q_i(y)$, where $p_1(x) \neq 0$. Then for $(x, y) \in D_G$ and $g \in G$ two equalities hold:

$$p_1(x)q_1(y) + \sum_{i=2}^{\nu} p_i(x)q_i(y) = f_0(x, y) = 0.$$

(2)

$$p_1(gx)q_1(y) + \sum_{i=2}^{\nu} p_i(gx)q_i(y) = f_0(gx, y) = 0.$$

Therefore

$$p_1(gx)f_0(x, y) - p_1(x)f_0(gx, y) = \sum_{i=2}^{\nu} (p_1(gx)p_i(x) - p_1(x)p_i(gx))q_i(y) \in K$$

and is “shorter” then f_0. Since ν was minimal by the choice of f_0, it means that

$$p_1(gx)p_i(x) - p_1(x)p_i(gx) \equiv 0 \text{ for } i = 2, ..., \nu.$$

Thus $\frac{p_i(x)}{p_1(x)}$ are G–invariant rational functions. They cannot be constant: if, say, $\frac{p_2(x)}{p_1(x)} = c$, then f_0 could have been written in a “shorter “ way:

$$f_0 = p_1(x)(q_1(y) + cq_2(y)) + \sum_{i=3}^{\nu} p_i(x)q_i(y).$$

Hence $\frac{p_i(x)}{p_1(x)}$ are the needed G-invariant rational functions. □
Proof of the Proposition 1.1.

Let \(f_0(x, y) = p_1(x)q_1(y) + \sum_{i=2}^{\nu} p_i(x)q_i(y) \). Then the map

\[
\pi : x \mapsto (p_1(x) : p_2(x) : \cdots : p_\nu(x))
\]

is a rational map of \(\overline{X} \) into a projective space \(\mathbb{P}^{\nu-1} \). Since there always exists a resolution \(X' \) of the map \(\pi \), (i.e. an irreducible projective variety birationally equivalent to \(\overline{X} \), such that the induced map \(\pi' : X' \to \pi(\overline{X}) \) is regular), the set \(\pi(\overline{X}) \subseteq \mathbb{P}^{\nu-1} \) is an image of an irreducible projective set under a regular map. Thus, \(\pi(\overline{X}) \) is projective and irreducible ([Shi2], 5.2) and contains \(\pi(X) \) as a dense subset. Since the general orbit \(G_x \) is dense in a closed subset \(\overline{G}_x \) of \(X \), \(\dim \pi(\overline{X}) \leq \dim(\overline{X}) - \dim \overline{G}_x < \dim(\overline{X}) \), which completes the proof. \(\square \)

The next Lemma is a particular case of Lemma 2.2 in a paper of M. Miyanishi [Mi2].

Lemma 1.4. (see [Mi2]) Let \(R \) be a finitely generated ring. Then it has a non-zero locally nilpotent derivation if and only if there exists an element \(t \in R \), such that \(R[t^{-1}] \) is isomorphic to a polynomial ring \(S[x] \).

Proof of Lemma 1.4. See [Mi2]. \(\square \)

Corollary 1.5. Let \(X \) be an affine normal variety and \(\pi : X \to Y \) be a regular map into a normal affine variety \(Y \). Let \(t \in \mathcal{O}(Y) \) and let \(D \) be divisor of its zeros. Assume that \(V = X \setminus \pi^{-1}(D) \cong (Y \setminus D) \times \mathbb{C} \). Then there is a \(\mathbb{C} \)-action on \(X \), such that its general orbit is a fiber of the map \(\pi \).

Proof of Corollary 1.5. Let \(S = \mathcal{O}(Y \setminus D) \). Then \(\mathcal{O}(V) = \mathcal{O}((Y \setminus D) \times \mathbb{C}) = S[x] \). On the other hand \(\mathcal{O}(V) = \mathcal{O}(X)[t^{-1}] \), since for any function \(r \in \mathcal{O}(V) \) there is such positive integer \(k \) that \(t^kr \in \mathcal{O}(X) \). So, according to Lemma 1.4 there is a locally nilpotent derivation \(\partial \) on \(R \), such that \(S \subset R^\partial \). Since variety \(Y \) is affine, the functions \(s \in S \) divide points in \(Y \). That means that a general fiber of \(\pi \) may be described as \(s_1 = \text{const}, \ldots, s_n = \text{const} \) for some \(s_1, \ldots, s_n \in S \). Since all \(s \) are \(\partial \)-constants, it means that the general fiber is invariant under \(\mathbb{C} \)-action.
corresponding to ∂. On the other hand, a general fiber is isomorphic to \mathbb{C} and consequently is an orbit. \square

2. Invariant of product.

In this section we prove the following

Theorem 2.1. Let S be a smooth surface with $H^2(S, \mathbb{Z}) = \{0\}$. Then $AK(S \times \mathbb{C}^n) = AK(S)$.

Remark. The condition $H^2(S, \mathbb{Z}) = \{0\}$ is essential. In the introduction an example is given of a surface with $H^2(S, \mathbb{Z}) \neq \{0\}$, and such that $AK(S \times \mathbb{C}^n) \neq AK(S)$.

Let S be a smooth affine surface, $X = S \times \mathbb{C}^n$ and $\pi : X \to S$ the natural projection. Assume that there is a \mathbb{C}–action φ_λ on X such that the orbit $\Gamma_{x_0} = \{\varphi_\lambda(x_0), \lambda \in \mathbb{C}\}$ of a general point x_0 is not contained in $\pi^{-1}(\pi(x_0))$. Denote by $\psi_{1,\lambda}, ..., \psi_{n,\lambda}$ the standard actions acting along the fibers of a projection π and by G the automorphisms group of X generated by $\varphi_\lambda, \psi_{1,\lambda}, ..., \psi_{n,\lambda}$. In Lemma 1.2 we proved that the orbit G_{x_0} of a general point x_0 is a dense subset of a closed subset $\overline{G_{x_0}}$ of X.

If $\dim \overline{G_{x_0}} = n+1$ then by Proposition 1.1 there exists a dominant G–invariant rational map $p : X \to \mathbb{P}^1$.

The fibers of this map contain G–orbits.

Since the map p is G–invariant, it induces the map $p_1 : S \to \mathbb{P}^1$, such that the following diagram is commutative:

\[
\begin{array}{ccc}
X & \xrightarrow{\pi} & \mathbb{P}^1 \\
\downarrow \pi & & \\
S & \xrightarrow{p_1} & \mathbb{P}^1
\end{array}
\]

We consider two different cases.
Case 1. The map \(p_1 \) is regular (i.e. it is everywhere defined).

Case 2. For any \(G \)-invariant rational map \(p \) the map \(p_1 : S \to \mathbb{P}^1 \) is not regular.

Lemma 2.2. In case 1 there is a \(\mathbb{C} \)-action \(\theta_\lambda \) on the surface \(S \), such that a general orbit \(\gamma_{s_0} = \{ \theta_\lambda(s_0), \lambda \in \mathbb{C} \} = \pi(G_{x_0}) \), where \(\pi(x_0) = s_0 \).

Proof of Lemma 2.2.

In this case both maps \(p_1 \) and \(p \) are regular.

Choose a closure \(\tilde{S} \) of \(S \) in such a way that the map \(p_1 \) may be extended to a regular map \(\tilde{p}_1 : \tilde{S} \to \mathbb{P}^1 \).

Let \(\tilde{C} \) be the normalization of the Stein factorization of a map \(\tilde{p}_1 \). By definition (see, e.g, [B], p.66) that means, that \(\tilde{C} \) is a smooth curve included into the following commutative diagram:

\[
\begin{array}{c}
\tilde{S} & \xrightarrow{\tilde{p}_1} & \mathbb{P}^1 \\
 \downarrow h & & \downarrow q \\
 \tilde{C}
\end{array}
\]

where all the maps are regular, \(h \) has connected fibers and \(q \) is finite. Let \(F_c = h^{-1}(c) \subset \tilde{S} \) be a fiber over a general point \(c \in \tilde{C} \). Take points \(s \in F_c \cap S \) and \(x \in \pi^{-1}(s) \). The orbit \(\Gamma_x = \{ \varphi_\lambda(x), \lambda \in \mathbb{C} \} \subset X \) is a rational curve with a single puncture, because it is an image of a complex plane. It follows, that \(\pi(\Gamma_x) \subset S \) is a rational curve with a single puncture as well. Since \(F_c \) is a closed connected curve, containing \(\pi(\Gamma_x) \), \(F_c \) has to be the closure of \(\pi(\Gamma_x) \). Moreover, it has to be smooth (for general \(c \)), since it is a fiber of a regular map of a smooth surface onto a smooth curve (see, for example, [Sh1], §4). Thus, the restriction of \(h \) onto \(S \) has a general fiber \(h^{-1}(c) \cap S = \pi(\Gamma_x) \), which is isomorphic to the complex plane, and a general fiber \(h^{-1}(c) \) is an irreducible smooth rational curve. Hence, \(\tilde{S} \) is a ruled surface, (see [Sh1], Theorem 2, chapter 4). Moreover, the divisor \(D = \tilde{S} \setminus S \) has precisely one irreducible component \(D_0 \), which is mapped by \(h \) isomorphically.
onto \tilde{C}, since a general fiber of $h|_S$ is isomorphic to \mathbb{C}^1. All other components of the divisor D do not intersect with a general fiber of h, which is irreducible. Consider the reducible fibers $F_i, i = 1, \ldots, s$. Since intersection $(F_i, D_0) = 1$, they have the following structure: $F_i = C_i + \sum_{j=1}^{n_i} \alpha_j E_{ij}$, where C_i, E_{ij} are irreducible components, $(C_i, D_0) = 1, (E_{ij}, D_0) = 0$. According to [Mi3], 4.4.1, every reducible fiber contains at least one exceptional curve of the first type.

Since $H^2(S) = \{0\}$, the inclusion $D \to \tilde{S}$ induces the epimorphism $H_2(D) \to H_2(\tilde{S})$.

The group $H_2(\tilde{S}, \mathbb{Z})$ may be described as follows. Let S_0 be a surface obtained by blowing down all the exceptional curves of the first type in all the fibers of the map h. We may repeat this procedure till we obtain the surface S_n, the map $t : \tilde{S} \to S_n$, and the regular map $h_n : S_n \to \tilde{C}$ with irreducible fibers. Thus, it will be geometrically ruled surface. The group $H_2(S_n, \mathbb{Z})$ is a direct sum $d_0.\mathbb{Z} \oplus f.\mathbb{Z}$, where d_0 and f are the homology classes of D_0 and a general fiber respectively ([B],III.18). Let E_{ij} be all the irreducible curves in \tilde{S}, which are contracted by t, and e_{ij} their homology classes (there is precisely n_i of such curves in reducible fiber F_i). Then $H_2(\tilde{S}, \mathbb{Z}) = H_2(S_n) \oplus \sum_i \sum_j e_{ij}.\mathbb{Z}$. Thus, $H_2(D) \to H(\tilde{S})$ may be an epimorphism only in case when D contains at least one fiber F and other fibers have only one irreducible component in S.

There are two important consequences of this fact.

1) $p_1(S)$ is an affine subset of \tilde{C}. Indeed, a point $c = h(F) \in (\tilde{C} \setminus h(S))$.

2) S has a “cylinderlike” subset. Indeed, since \tilde{S} is ruled, by taking away the finite number of points c_1, c_2, \ldots, c_N from \tilde{C} we obtain the Zariski open subset $\tilde{U} \subset \tilde{S}$, which is isomorphic to $(\tilde{C} \setminus \{c_1, \ldots, c_N\}) \times \mathbb{P}^1$, ([B], p. 26) and $\tilde{U} \cap S$ is isomorphic to $(\tilde{C} \setminus \{c_1, \ldots, c_N\}) \times \mathbb{C}$.

Adding, if needed, some other points, we may assume that $c_1 + \ldots + c_N$ is the zero-divisor of a regular function on $\tilde{C} \setminus h^{-1}(c)$.

By Corollary 1.5 there is a \mathbb{C}^*-action $\theta(c)$ on S such that an orbit $\gamma_c = \{\theta_t(c) : t \in \mathbb{C}^*\}$ is a cylinder in $\tilde{U} \cap S$.

\{\theta_\lambda(s), \lambda \in \mathbb{C}\} of a general point \(s\) coincides with \(h^{-1}(h(s)) = \pi(\Gamma_x) = \pi(G_x)\) for a point \(x \in X\), such that \(\pi(x) = s\). □

Lemma 2.3. In Case 2 all the units in the ring \(\mathcal{O}(S)\) are constants.

Proof of Lemma 2.3. Assume that the Lemma is not true. Let \(t \in \mathcal{O}(S)\) be a non-constant unit in \(\mathcal{O}(S)\) and \(t^*\) be its lift into \(\mathcal{O}(X)\). Since there exists a dominant regular map \(F_i\) (see Lemma 1.2) of \(\mathbb{C}^*\) into any \(G\) orbit, \(t^*\) has to be constant along any \(G\)-orbit, hence, it has to be \(G\)-invariant and provides a \(G\)-invariant regular function \(p\), which is constant over every point \(s \in S\). Hence, it generates a regular function \(p_1\) on \(S\), which is impossible in Case 2. □

Lemma 2.4. In case 2 \(\mathcal{O}(S)\) is factorial.

Proof of Lemma 2.4. It is enough to show that any effective divisor \(A\) in \(S\) may be defined as \(f = 0\) for some \(f \in \mathcal{O}(S)\). Consider once more diagrams (3) and (4), where \(\tilde{S}\) is any compactification of \(S\). In case 2 map \(p_1\) is not regular and \(\tilde{p}_1\) is a rational non-regular map of \(\tilde{S}\) onto \(\mathbb{P}^1\).

At first we are going to prove that \(\tilde{S}\) is rational.

Let \((S', \alpha)\) a resolution of \(\tilde{S}\), such that the lift \(p_1' : S' \to \mathbb{P}^1\) of \(\tilde{p}_1\) onto \(S'\) is regular. Let \(B'\) be a normal Stein factorization of \(p_1'\). We obtain the following commutative diagram.

\[
\begin{array}{c}
S' \xrightarrow{q} B' \\
\downarrow \alpha \quad \downarrow \tau \\
\tilde{S} \xrightarrow{\tilde{p}_1} \mathbb{P}^1
\end{array}
\]

In this diagram the maps \(p_1', q, \alpha, \tau\) are regular, \(\tau\) is finite and \(\alpha\) is a blowing down of finite number of exceptional curves ([Sh1],[Sh2]).

The map \(p_1'\) is not constant on the exceptional divisor of the map \(\alpha\). That means that there is an irreducible component \(E\) of this divisor, which is mapped
by p'_1 onto \mathbb{P}^1, and, hence, $q(E) = B'$. Since E is exceptional, it has to be rational, and B' is rational as well.

Consider now the fiber $F_{b'} = q^{-1}(b')$ over a general point $b' \in B'$. We have:

$$\alpha(F_{b'}) \cap S = \pi(\Gamma_x),$$

where Γ_x is an orbit of any point $x \in X$, such that $\pi(x) \in \alpha(F_{b'})$. Since $\Gamma_x \cong \mathbb{C}$ and $\alpha|_{F_{b'}}$ is birational, it follows that $F_{b'}$ is a rational curve.

We obtained that S' is a ruled surface with rational base. Therefore, S' is a rational surface and $H^1(S', \mathbb{Z}) = 0$. Since the group H^1 is invariant under the blowing-downs, it means that $H^1(\tilde{S}, \mathbb{Z}) = 0$.

Let $D = \sum D_i = \tilde{S} \setminus S$. Let A be any irreducible curve in S, and \tilde{A} be its closure in \tilde{S}. Since $H^2(S, \mathbb{Z}) = 0$, the map $H_2(D, \mathbb{Z}) \to H_2(\tilde{S}, \mathbb{Z})$ is an epimorphism, hence $\tilde{A} = \sum a_iD_i$ in $H_2(\tilde{S}, \mathbb{Z})$. But since $H^1(\tilde{S}, \mathbb{Z}) = 0$, from the topological equivalence follows the linear equivalence (see, e.g. [B], p. 7), hence $\tilde{A} = \sum a_iD_i$ as a divisor, and there exist a function in $\mathcal{O}(S)$, such that A is its zero divisor. □

Thus, in Case 2, S is a smooth affine surface with factorial $\mathcal{O}(S)$ without non-constant units, and $H^2(S, \mathbb{Z}) = \{0\}$. Moreover, the logarithmic Kodaira dimension $k(S) = k(\tilde{S} \setminus D) = k(S' \setminus \alpha^{-1}(D)) = -\infty$, since the fiber of the restriction of q onto $S' \setminus \alpha^{-1}(D)$ is isomorphic to \mathbb{C}. By the Miyanishi-Sugie Theorem ([M-S], [Su]), S is isomorphic to \mathbb{C}^2.

Lemma 2.5. If $\dim \overline{G_x} = n + 2$ for a general point $x \in X$, then S is isomorphic to \mathbb{C}^2.

Proof of Lemma 2.5. By virtue of Proposition 1.1 in this case the general orbit contains an image of \mathbb{C}^k under a regular rational map F_I for some $k \geq n + 2$ as a dense subset. Let $\overline{S, X} = \overline{S} \times \mathbb{P}^n$ be the closures of S, X respectively, and $\overline{F_I} : \mathbb{P}^k \to \overline{X}$ be an extension of F_I. Then $\overline{\pi} \cdot \overline{F_I}$ will be a rational map of \mathbb{P}^k onto \overline{S}. Since any unirational surface is rational ([Sh2], ch 3), \overline{S} has to be rational. That means that, as in Lemma 2.4, from $H^2(S, \mathbb{Z}) = \{0\}$ follows that $\mathcal{O}(S)$ is factorial.
Moreover, \(\mathcal{O}(S) \) has no non constant units and \(k(S) = -\infty \), since \(S \) is dominated by \(\mathbb{C}^k \). By the Miyanishi-Sugie Theorem ([M-S], [Su]), \(S \) is a plane. □

Proof of Theorem 2.1.

Let function \(f \in \mathcal{O}(S) \) be invariant under all \(\mathbb{C}^- \) actions on \(S \). We have to prove that its lift \(f^* \) onto the product \(X \) is invariant under any \(\mathbb{C}^- \) action \(X \). If a general \(G^- \) orbit is contained in a fiber of projection \(\pi \), (lies over one point of \(S \)) then it is obviously true. If \(\dim G_x = n + 2 \) for a general point \(x \in X \), by Lemma 2.5 \(AK(S) = \mathbb{C} \) and the statement of Theorem is valid as well.

Thus, we may assume, that \(\dim G_x = n + 1 \) for an orbit \(G_x \) of a general point \(x \in X \). Let \(f \in AK(S), f \not= const \), and let \(f^* \) be its lift into \(\mathcal{O}(X) \). Let \(x_1, x_2 \) be two points in \(X \) belonging to the same \(G^- \) orbit, then \(\pi(x_1), \pi(x_2) \), by Lemma 2.2, belong to the same orbit of a \(\mathbb{C}^- \) action on \(S \), thus \(f(\pi(x_1)) = f(\pi(x_2)) \). But the lift is invariant under the actions along the fibers of \(\pi \), hence \(f^*(x_1) = f^*(x_2) \). □.

Remark. In the proof of the Theorem 2.1 the fiber \(\mathbb{C}^n \) of the product \(X = S \times \mathbb{C}^n \) may be replaced by any other affine variety such that the group of its \(\mathbb{C}^- \) actions has a dense orbit. This is the only property of the fiber used in the proof.

References

[AEH] S. Abhyankar, P. Eakin, W. Heinzer, *On the uniqueness of the coefficient ring in a polynomial ring*, J. Algebra 23 (1972), 310–342.

[B] A. Beauville, *Complex algebraic surfaces* London Math. Soc. Lecture notes, vol. 66.

[D] W. Danielewski, *On the cancelation problem and automorphism groups of affine algebraic varieties*, preprint Warsaw, 1989.

[F] K.-H. Fieseler, *On complex affine surfaces with \(\mathbb{C}^+ \)-action*, Comment. Math. Helvetici 69 (1994), 5-27.

[KKMLR] S. Kaliman, M. Koras, L. Makar-Limanov, P. Russell, *\(\mathbb{C}^- \)actions on \(\mathbb{C}^3 \) are linearizable*, ERA-AMS 3 (1997), 63-71.

[KML] S. Kaliman, L. Makar-Limanov, *On the Russell-Koras contractible threefolds*, Journ. of the Algebraic Geometry 6(2) (1997), 247-268.

[K] H. Kraft, *Algebraic automorphisms of affine space*, Topological methods in Algebraic Transformation groups Progress in Math., vol. 80., pp. 81-107.

[ML1] L. Makar-Limanov, *Locally nilpotent derivations, a new ring invariant and applications, preprint*.

[ML2] L. Makar-Limanov, *On the hypersurface \(x + x^2y + z^2 + t^3 = 0 \) in \(\mathbb{C}^4 \) or a \(\mathbb{C}^3 \)like threefold which is not \(\mathbb{C}^3 \), Israel Math. J. 96 (1996), 419-429.

[ML3] L. Makar-Limanov, *On the group of automorphisms of a surface \(x^n y = P(z) \), preprint*.

[ML4] L. Makar-Limanov, *Cancellation for curve preprint*.
[Mi1] M. Miyanishi, *Vector fields on factorial schemes*, J. Algebra **173** (1995), 144–165.

[Mi2] M. Miyanishi, *On algebro-topological characterization of the affine space of dimension 3*, Amer. Math. Jour. **106** (1984), 1469-1485.

[Mi3] M. Miyanishi, *Non-complete algebraic surfaces*, Lecture Notes in Math., vol. 857, Springer-Verlag, 1981.

[M-S] M. Miyanishi, T. Sugie, *Affine surfaces containing cylinderlike open set*, J. Math. Univ. Kyoto **20**, 11-42.

[P-V] V. Popov, E. Vinberg, *Invariant Theory*, Algebraic Geometry, 4, Encyclopedia of Math. Sci., vol. 55, Berlin, Springer.

[S] M. Snow, *Unipotent actions on affine space*, Topological methods in Algebraic Transformation groups Progress in Math., vol. 80., pp. 165-177.

[Sh1] I. Safarevic, *Algebraic surfaces*, Proceedings Steclov Institute in Mathematics, vol. 75 AMS,

[Sh2] I. Shafarevich, *Basic algebraic geometry*, Berlin, Springer.

[Su] T. Sugie, *Algebraic characterization of the affine plane and the affine 3-space*, Topological methods in Algebraic Transformation groups Progress in Math., vol. 80., pp. 177-190.

Tatiana M. Bandman, Dept. of Mathematics & CS, Bar-Ilan University, Ramat-Gan, 52900, Israel, e-mail: bandman@macs.biu.ac.il.

Leonid Makar-Limanov, Dept. of Mathematics & CS, Bar-Ilan University, Ramat-Gan, 52900, Israel, e-mail: lml@macs.biu.ac.il; Dept. of Mathematics, Wayne State University, Detroit, MI 48202, USA, e-mail: lml@math.wayne.edu.