Encoding of reinforcement along the hippocampal long axis and the transition from exploration to exploitation

Alexandre Y. Dombrovski¹, Beatriz Luna¹, Michael N. Hallquist*²,³

¹ Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, 15213, USA
² Department of Psychology, Penn State University, University Park, PA 16801, USA
³ Lead contact
* A.Y.D. and M.N.H. contributed equally.

Correspondence: Michael Hallquist, Department of Psychology, 140 Moore Building, University Park, PA 16802. Email: michael.hallquist@gmail.com

Character count excluding STAR Methods and References: 44,979
SUMMARY

Hippocampal maps incorporate reward information, yet the functional contributions of the anterior and posterior hippocampal divisions (AH and PH) to reinforcement learning remain unclear. Here, we examined exploration and exploitation of a continuous unidimensional task with a basis function reinforcement learning model. In model-based fMRI analyses, we found doubly dissociated representations along the hippocampal long axis: state-wise reward prediction error signals in the PH (tail) and global value maximum signals in the AH (anterior body). PH prediction error signals predicted exploration whereas AH global value maximum signals predicted exploitation. AH-mediated exploitation depended on value representations compressed across episodes and options. PH responses to reinforcement were early and phasic while AH responses were delayed and evolved throughout learning. During choice, AH (head) displayed goal cell-like responses to the global value maximum. In summary, granular reinforcement representations in PH facilitate exploration and compressed representations of the value maximum in AH facilitate exploitation.

Keywords: exploration, exploitation, reinforcement learning, prediction error, hippocampus, fMRI, entropy, decision making, memory, reinforcement, cognition
INTRODUCTION

Decisions under uncertainty often involve a difficult tradeoff between exploiting familiar valuable options and exploring unfamiliar and potentially superior ones (Sutton and Barto, 1998). Many studies of exploration have used reinforcement learning (RL) models to examine decision-making on discrete choice multi-armed bandit tasks (Gershman, 2018; Payzan-LeNestour and Bossaerts, 2011). These experiments have provided insights into the neural correlates of exploration, including the prefrontal and cingulate cortex (Badre et al., 2012; Beharelle et al., 2015; Blanchard and Gershman, 2018; Daw et al., 2006), as well as the striatum and amygdala (Costa et al., 2019). Unlike simple discrete choice tasks, most real world environments have a complex spatial, temporal, or abstract structure (Liu et al., 2019). To learn such environments efficiently, we need to bind spatially and temporally coincident elements of experience into a cognitive map. Map representations found in the hippocampus help us link reinforcers to preceding actions, thereby revealing the best paths through the environment (Lisman et al., 2017). Hippocampal contributions to resolving the explore/exploit dilemma, however, have not been investigated using RL.

The hippocampus displays a functional long-axis gradient (Fig. 2A), dorsal-ventral in rodents and posterior-anterior in primates (hereafter: posterior and anterior hippocampus; PH and AH). This domain-general gradient was initially thought of as cognitive-motivational (Moser and Moser, 1998) and more recently, as fine-coarse (Jung et al., 1994; Poppenk et al., 2013; Strange et al., 2014). For example, consistent with a fine-coarse gradient from PH to AH, spatial navigation studies have found that the size of place field representations increases along the long axis (e.g., Kjelstrup et al., 2008). Furthermore, while dorsal hippocampus (PH in primates) rapidly develops representations of specific objects and locations, ventral (anterior) hippocampus gradually learns to identify relationships among objects, locations, and contexts that predict rewards (Komorowski et al., 2013). This rich literature, however, does not formally distinguish between hippocampal substrates of exploitative, reward-guided actions and those of exploratory actions that forego short-term rewards.

RL researchers have sought to explain how the hippocampus maps rewards using models that rely on reward prediction error (RPE) signals to back-propagate reinforcement to previous states and actions (Mattar and Daw, 2018; Stachenfeld et al., 2017). Empirical studies have found that PH is required for this process (Corbit and Balleine, 2000; Miller et al., 2017; Vikbladh et al., 2019), supporting ‘model-based’ learning. RPEs are reported by the dopaminergic mesostriatal pathway, and indeed dopaminergic inputs into the dorsal hippocampus from the midbrain (McNamara et al., 2014) and the locus coeruleus (Kempadoo et al., 2016) enhance spatial memory for rewarded and salient locations and promote exploratory behavior (Kheirbek et al., 2013). RPEs have also been found in rat dorsal CA1 (Lee et al., 2012). Likewise, a handful of human imaging studies (Dickerson et al., 2011; Mulej Bratec et al., 2015) find RPEs in the PH, though PH is not prominent in imaging meta-analyses (see Fig. S1; Chase et al., 2015; Garrison et al., 2013). In summary, PH binds states to each other and to downstream rewards, likely relies on state-wise RPE signals, and supports exploration.

AH, on the other hand, responds to global features of reinforcement: whether the environment is aversive (Adhikari et al., 2010), whether one is approaching the goal (Burgess et al., 1994; Royer et al., 2010; Viard et al., 2011), and whether one is at the location of the preferred reward in the environment (Rolls and Xiang, 2005). In addition, the AH is preferentially connected with ventromedial prefrontal cortex (rodent prelimbic cortex), which represents abstract reward value, and this connectivity is important for motivated behavior (Adhikari et al., 2010). One efficient way to map the global value maximum or goal is to compress value representations by maintaining values of preferred actions and forgetting inferior alternatives. We have found that this compression strategy facilitates the transition from exploration to exploitation (Hallquist and Dombrovski, 2019). AH, which has access to values of remote states and carries coarse representations, may implement such compression to track global statistics of the environment.
Altogether, theoretical insights and empirical evidence suggest that PH and AH play functionally dissociable roles in exploration and exploitation, respectively. PH holds detailed, concrete representations of specific states and may promote exploratory behavior (Kheirbek et al., 2013). AH encodes more global value information (Fanselow and Dong, 2010; Komorowski et al., 2013) and may guide exploitation by means of an information-compressing strategy. In order to test whether the contribution of the hippocampus to reward learning varies along the long axis, we examined the contributions of PH and AH to exploration and exploitation in a continuous action space that requires mapping. We used the ‘clock task,’ where action values vary along an interval marked by time and visuospatial cues (Moustafa et al., 2008). Participants need to explore this interval extensively to discover the most rewarding options (Badre et al., 2012). Critically, on discrete-choice tasks (e.g. multi-armed bandits), it is hard to judge how exploratory a given choice is. In contrast, in continuous space we can define exploration in terms of the distance between consecutive choices, a spatial metric encoded in the human hippocampus (Theves et al., 2019), corresponding to trial-by-trial response time (RT) swings on the clock task.

Our RL model uses a basis function representation to map the global value maximum, allowing us to quantify its prominence as the reverse of Shannon’s entropy (information content) of the value representation (Hallquist and Dombrovski, 2019). We can thus dissociate this global reinforcement statistic from state-wise RPEs. As detailed below, we observed a double dissociation wherein PH encodes local reinforcement (trial- and location-specific RPEs) whereas AH responds to the prominence of the global value maximum (low entropy). Furthermore, by comparing the neural fit of our selective maintenance model to that of its full maintenance counterpart, we demonstrate value information compression in AH. Consistent with functionally separable roles in resolving the exploration-exploitation dilemma, PH responses predicted further exploration whereas AH responses predicted convergence on the global value maximum. Furthermore, AH displayed goal cell-like responses as one traversed the space and approached the learned value maximum. Finally, responses to reinforcement were immediate and phasic in the PH, consistent with local processing and delayed and sustained in AH, consistent with integrative processing.

RESULTS

Clock task: RT swings capture exploration

On the clock task (Fig. 1A), participants explore and learn reward contingencies in a challenging unidimensional environment, namely a four-second time interval. The passage of time is marked by the rotation of a dot around a clock face, reducing demands on internal timing. They were told to find the “best” response time based on reinforcement provided in the form of points. In each of the eight 50-trial blocks, one of the four contingencies with varying probability/magnitude tradeoffs determined the rewards. Two contingencies were learnable (increasing and decreasing expected value, IEV and DEV) and two were unlearnable (constant expected value, CEV, and constant expected value-reversed, CEVR, with a reversed probability-magnitude tradeoff). The task encourages extensive exploration and trial-by-trial learning. While people’s responses shifted toward value maxima in learnable contingencies (Fig. 1C), even the more successful participants tended not to respond as early as possible in DEV. Likewise, most participants rarely responded as late as possible in IEV, where the value maximum has low probability. Thus, participants did not grasp that contingencies were monotonic, instead converging on a perceived value maximum in each block. Trial-wise changes of response times (aka ‘RT swings’) reflect the magnitude of exploration. Early in learning, better-performing participants displayed very high RT swings followed by a decline as they shift to exploiting the subjective value maximum. Less successful participants keep exploring stochastically, with moderately high RT swings throughout, and never settle on a clear value maximum. Curiously, successful participants transition from early exploration to later exploitation even in unlearnable contingencies where no objective value maximum
exists, as we have reported previously (Fig. 1D; Hallquist and Dombrovski, 2019). As detailed in the next section, these results reflect how participants adaptively maintain value information.

The SCEPTIC reinforcement learning model captures local and global reinforcement (Fig. 1E-G)

Our SCEPTIC reinforcement learning model (Hallquist and Dombrovski, 2019) estimates local reinforcement (state-wise reward prediction errors) and global reinforcement (global value maximum). SCEPTIC approximates the expected value function along the time-varying reward contingency with a set of learning elements whose temporal receptive fields cover the four-second trial interval (Ludvig et al., 2008, 2012). Each element learns from temporally proximal rewards, updating its predicted reward (weight) by reward prediction errors (RPEs), which reflect the discrepancy between model-predicted reward at the chosen RT and the obtained reward (Fig. 1E). The location of the global maximum (aka RT_{vmax}) is defined as highest-valued RT within model-estimated value function (Fig. 1F). The prominence of the global value maximum relative to alternatives is quantified by Shannon’s entropy of the normalized element weights, a log measure of the number of advantageous actions. Early in learning, the values of all actions are similar, entropy is high, and no clear global maximum exists. Later in learning, a subset of high-valued actions – or the global maximum – dominates, and the entropy declines. We have shown that selective maintenance of favored actions accelerates the entropy decline later in learning, accentuating the global maximum, decreasing the amount of information held online, and facilitating the transition from exploration to exploitation (Hallquist and Dombrovski, 2019).

Figure 1. The clock paradigm, typical human behavior, and the SCEPTIC model.

(A) The clock paradigm consists of decision and feedback phases. During the decision phase, a dot revolves 360° around a central stimulus over the course of four seconds. Participants press a button to stop the revolution and receive a
probabilistic outcome.

(B) Rewards are drawn from one of four monotonically time-varying contingencies: increasing expected value (IEV), decreasing expected value (DEV), constant expected value (CEV), or constant expected value–reversed (CEVR). CEV and CEVR thus represent unlearnable contingencies with no true value maximum. Reward probabilities and magnitudes vary independently.

(C) Evolution of subjects’ response times (RT) by contingency and performance. Panels represent participants whose total earnings were above or below the sample median.

(D) Evolution of subjects’ response time swings (RT swings) by contingency and performance.

(E) When all response times have similar expected values, the entropy of the value distribution is high, promoting entropy-guided exploration in the SCEPTIC model. A better-than-expected reward generates a positive reward prediction error (RPE+), which updates the value distribution.

(F) Participants often respond near the response time of the global value maximum, \(RT_{\text{max}} \). However, on this trial the participant explores a later response time and receives a large unexpected reward, shifting the global value maximum, \(\Delta RT_{\text{max}} \), to a later time.

(G) Late in learning, participants tend to converge on a perceived \(RT_{\text{max}} \) and to select response times near this ‘bump.’ Under the SCEPTIC model, values of preferred options are selectively maintained whereas values of non-preferred alternatives decay toward zero. The resulting value distribution has a prominent bump and lower entropy, promoting exploitative choices of high value response times.

Posterior hippocampus responds to local reinforcement (reward prediction errors), whereas anterior hippocampus responds to the global value maximum (low entropy)

We first examined neural encoding of local reinforcement in model-based whole-brain fMRI analyses. As expected, RPE signals were found in a canonical network encompassing the ventral striatum, thalamus, midbrain, and the cingulo-opercular (salience) network (see Table S1). Activation in the bilateral PH was also detected at the whole-brain threshold (FWE-corrected \(p < .05 \); Fig. 2C, blue voxels). Responses to a prominent global value maximum (low entropy) were seen in the AH and the ventromedial prefrontal cortex (FWE-corrected \(p < .05 \); Fig. 2C, orange voxels; Table S2).

Furthermore, a double dissociation emerged within the hippocampus, with PH selectively responding to RPEs and AH selectively responding to the global value maximum (Fig. 2B), anteroposterior location \(\times \) signal \(\chi^2(11) = 3235.36, p < 10^{-16} \). The posterior third of the hippocampus (four slices) was modulated by RPEs (adj. \(ps < .01 \), corrected for multiple comparisons using the method of Hothorn and colleagues, 2008). Conversely, the anterior two-thirds of the hippocampus (eight slices) was positively modulated by low entropy (quantified by the SCEPTIC selective maintenance model), adj. \(ps < .01 \).

One important question is whether RPEs in PH are indeed location-specific and do not simply signal changes in the overall reward rate. Supporting the former account, PH was more weakly modulated by RPEs from a standard delta rule learning model that lacked a detailed representation of expected value across the interval (cf. Moustafa et al., 2008) compared to the SCEPTIC selective maintenance model, RPE type \(\chi^2(1) = 13.78, p < .0002 \). SCEPTIC RPE modulation was particularly stronger than trial-level RPE modulation in the posterior quarter of the hippocampus (RPE type \(\times \) anteroposterior location interaction \(\chi^2(11) = 29.76, p < .001 \), post-hoc: adj. \(ps < .01 \) in posterior three slices).

The SCEPTIC selective maintenance model further predicts that the mapping of the global value maximum depends on information compression whereby values of less preferred options are forgotten and preferred option values are selectively maintained (detailed in Hallquist and Dombrovski, 2019). Consistent with this prediction, AH responses to low entropy were only detected using estimates from the SCEPTIC selective maintenance model and not from its full-maintenance counterpart (Fig. 2D), anteroposterior location \(\times \) SCEPTIC variant \(\chi^2(11) = 187.27, p < 10^{-16} \). Entropy-related modulation was nonsignificant in all slices of the long axis according to the full-maintenance model (adj. \(ps > .2 \)). These findings suggest that value representations in AH are compressed by selective maintenance.
Separability of hippocampal responses from other cortico-striatal activation

Given that we initially identified RPE and low entropy activity using whole-brain analyses, we sought to examine whether individual differences in hippocampal responses to these signals were distinct from responses in other regions significant at the whole-brain level (Tables S1 and S2). More specifically, in exploratory factor analyses, we examined whether mean regression coefficients within the significant hippocampal clusters loaded onto the same latent factors as other cortico-striatal coefficients. Individual differences in PH RPE responses loaded on a factor distinct from all other whole-brain-significant RPE-sensitive regions (factor 1, 43% variance, encompassing the bilateral striatum, opercular-insular and frontoparietal regions; factor 2, 20% variance, encompassing the bilateral PH; Table S3). Analyses of entropy coefficients, however, revealed that low-entropy AH responses were on the same factor as ventromedial prefrontal cortex (vmPFC) and ventral stream responses, suggesting shared representations (factor 1, 31% variance, encompassing high-entropy responsive dorsal attention network regions; factor 2, 28% variance, encompassing the left AH, vmPFC, fusiform gyrus, right operculum and left precentral gyrus; Table S4). Thus, for our analyses of behavioral relevance, we used PH RPE factor scores and the mean regression coefficient from the significant AH cluster as predictors.

Posterior hippocampal responses to local reinforcement (prediction errors) promote exploration

If the PH binds states together, its activity should promote visits to remote states, or exploration. Indeed, individuals whose PH was more responsive to RPEs explored more, as indicated by larger RT swings (RTt−1 × PH: t = -11.31, p < 10^-15, Fig. 2E; complete model statistics: Table S5). Furthermore, these individuals were relatively more likely to short RT swings post-reward, abandoning a just-rewarded location in favor of exploration (RTt−1 × last outcome × PH: t = 5.71, p < 10^-7). Confirming that these RT swings represented true exploration rather than a return to previously sampled high-value options, individuals with stronger PH RPEs chose lower-valued RTs following greater swings in learnable contingencies (RT swing × PH: t = 2.28, p = .034, RT swing × contingency × PH: t = 2.73, p < .001). Continual exploration on the clock task is predominantly stochastic, due to the difficulty of learning the values of the best RTs (high entropy); indeed, poorly performing participants exhibit persistently high RT swings (Fig. 1D). Interestingly, the effects of PH activity on exploration were not explained by poor task performance as reflected in high subject-level entropy or low subject-level maximum available value, ruling out the trivial explanation that people who responded randomly (e.g. from being off-task) experienced more surprising feedback, triggering PH responses (Table S5). Furthermore, participants with stronger PH responses did not win fewer points in the learnable conditions (PH: t = -0.18, p = .86, PH × trial: t = 0.05, p = .96).

Participants completed two sessions of the clock task in counterbalanced order, one in the MR scanner and one during magnetoencephalography recording (MEG; only behavioral results are reported in this study). This allowed us to test whether hippocampal signals recorded with fMRI predicted behavior during the MEG session. The effect of PH RPE responses on RT swings replicated out of session (RTt−1 × PH: t = -5.80, p < 10^-8, RTt−1 × last outcome × PH: t = 3.97, p < 10^-4; Fig. 2E, Table S6), suggesting that exploration-related PH responses did not merely encode visits to various states during the fMRI session, but reflected one’s relatively stable tendency to explore.
Figure 2. Encoding of reinforcement along the A-P axis and its behavioral relevance.

(A) Long axis of the hippocampus. The coloration along the axis denotes the transition from more posterior (blue) to more anterior (yellow) portions. This color scheme is used throughout the paper to indicate how representation and effects on behavior vary along the long axis. The hippocampal mask is based on the Harvard-Oxford subcortical atlas.

(B) Double dissociation of signals along the A-P axis: RPE responses predominate in PH and global value maximum responses, in AH. The light gray vertical lines denote the standard error from of the estimated mean from a multilevel
regression model.
(C) Prediction error responses in the PH and responses to low entropy (prominent global value maximum) in the AH, whole-brain FWE-corrected $p < .05$.
(D) The AH only tracks the prominence of the global value maximum as predicted by the information-compression selective maintenance SCEPTIC model, but not its full maintenance counterpart. The light gray vertical lines denote the standard error from of the estimated mean from a multilevel regression model.

E-H. Double dissociation of behavioral correlates of PH vs. AH response. Full model statistics are presented in Table S5.
(E) PH RPE responses predict greater exploration, particularly after rewards. The ordinate axis in (E) and (F) denotes the autocorrelation between previous choice and the current choice, with higher values indicating greater RT swings.
(F) AH global value maximum responses had no consistent relationship with exploration.
(G) PH responses had no effect on exploitation.
(H) AH responses predict greater exploitation, particularly late in learning. The ordinate axis in (G) and (H) denotes the effect of the $R_{T_{\text{Vmax}}}$ on RT. Error bars depict 95% CI.

Anterior hippocampal encoding of the global value maximum promotes exploitation

Stronger neural encoding of the global value maximum in the AH should promote exploitation. Indeed, people with the strongest AH responses to the global value maximum were more likely to choose RTs near it ($R_{T_{\text{Vmax}}}$ \times AH: $t = 3.39$, $p < 0.001$). As expected, this convergence was strongest late in learning (-1/trial \times $R_{T_{\text{Vmax}}}$ \times AH: $t = 2.86$, $p = 0.004$, Fig. 2H). AH responses had no significant effect on exploration (RT$_{t-1}$ \times AH: $t = 0.91$, $p = .36$, RT$_{t-1}$ \times last outcome \times AH: $t = 1.85$, $p = .064$; Fig. 2F, Table S5).

In the replication session, RTs in people with the strongest AH responses to the global value maximum in fMRI were also more likely to converge on the global maximum ($R_{T_{\text{Vmax}}}$ \times AH: $t = 2.31$, $p = 0.021$, Fig. 2H), particularly late in learning (-1/trial \times $R_{T_{\text{Vmax}}}$ \times AH: $t = 3.11$, $p = 0.002$; details in Table S6).

PH/AH effects on exploration/exploitation are not explained by behavioral confounds, differences in performance, modeling choices, or effects of responses in other regions

In sensitivity analyses, we ascertained that the effects of PH vs. AH responses on exploration vs. exploitation were unchanged after controlling for behavioral variables (trial, contingency, maximum available value, uncertainty, and their interactions), subject-level performance (mean entropy and value) and for interactions between these potential confounds and hippocampal responses (Table S5). Since we used the SCEPTIC RL model to generate RPE and entropy estimates, we further verified that our brain-behavior findings were not tautologically explained by other model-derived covariates (e.g. maximum available value) into statistical models predicting behavior. Finally, given the established role of cortico-striatal networks in reward learning, we ascertained that hippocampal signals predicted behavior above and beyond cortico-striatal signals identified in the literature and our study (Tables S1-S4). Details of these analyses are provided in the Supplemental Results.

AH promotes uncertainty aversion while PH does not modify uncertainty preferences

Our previous behavioral analysis of these data revealed that humans are uncertainty-averse in the large continuous space of the clock task, even after controlling for the value confound (Hallquist and Dombrovski, 2019). This was in part because they selectively remembered the values of preferred response times, allowing the rest to decay, a form of information compression. At the same time, since PH responses were associated with exploratory RT swings, we sought to test whether they also predicted choosing relatively uncertain response times. To test for uncertainty effects, we used a Kalman filter variant of SCEPTIC that estimated local uncertainty for each 0.1s bin on each trial (see Methods for details). To test how hippocampal responses modified the influence of uncertainty, we predicted the hazard (i.e., momentary response probability conditional on not responding earlier) of
making a response during the decision phase in a mixed-effects continuous-time Cox survival model, treating uncertainty and value as time-varying covariates. This more nuanced analysis also accounts for censoring of later parts of the interval by earlier responses. Since individual SCEPTIC model parameters may influence the scaling of value and uncertainty estimates (Lebreton and Palminteri, 2016), we rescaled value and uncertainty within participants to eliminate this confound. Our survival analyses confirmed that AH facilitated exploitation (AH × value: z = 8.14, p < 10^{-15}, see Table S7 for full model statistics) and PH facilitated true exploration, i.e. a relative preference for lower-valued response times (PH × RT_{t1}; z = 6.12, p < 10^{-9}, PH × value: z = -3.95, p < .0001). The hypothesis of uncertainty-directed PH-driven exploration was not supported (PH × uncertainty: z = -1.11, p = .27). AH promoted uncertainty aversion (AH × uncertainty: z = -2.60, p < .009), supporting the hypothesis of AH information compression. Participants may miss the opportunity to respond early in the interval and also avoid the end of the interval to avoid forfeiting a reward for reasons unrelated to value or uncertainty. We censored these no-go zones, and the results remained qualitatively unchanged (AH × value: z = 4.64, p < 10^{-5}, PH × value: z = -2.39, p = .017, PH × uncertainty: z = -0.26, p = .79, AH × uncertainty: z = -2.43, p < .015). Confirming that these findings were not an artifact of predictor rescaling, the relevant effects remained and became stronger without the within-subject scaling of value and uncertainty (|z| ≥ 5.71, p < 10^{-7}).

On-off ramps of AH activity upon approach and departure from the global maximum

The preceding analyses show that AH session-level encoding of the global maximum location facilitates behavioral convergence on it (i.e., exploitation), but tell us little about real-time activity in the AH that may guide this convergence. Indeed, if AH represented the location of the global value maximum in a goal cell-like manner, we would expect its activity to increase on approach, as the most valuable action becomes available, and decrease when moving away. Whereas our model-based fMRI general linear model analyses captured the average magnitude of responses in the AH across trials, they could not reveal the temporal dynamics of AH activity with respect to the global value maximum. To investigate these dynamics, we estimated real-time voxelwise hippocampal activity with a deconvolution algorithm (Bush and Cisler, 2013), then event-locked the responses to the global value maximum (most advantageous response time in a given trial), resulting in a time course of activity for each trial. We examined these trial-wise hippocampal responses in multilevel models vis-à-vis behavioral variables (additional details in Methods). This analysis gives us a more direct view of hippocampal activity, overcoming the assumptions of the standard GLM, and it does not depend on predictions of the SCEPTIC model for decoding the BOLD signal.

In analyses of online responses (i.e., during the decision-making phase) activity in the AH but not PH ramped up toward the global maximum (RT_{Vmax}) and ramped down as the clock advanced past it (Fig. 3). We would expect such inverted-U ramps to scale with the prominence of the global maximum relative to alternative response times and this was the effect we observed. Specifically, inspection of smoothed raw data suggested the presence of inverted-U ramps aligned with the RT_{Vmax} (Fig. 3A), particularly when entropy was low. A multilevel model with completely general time (i.e., treating time as an unordered factor to avoid parametric assumptions) revealed a time × anteroposterior location interaction (χ^2[5] = 43.8, p < 10^{-9}) indicating more prominent ramps in AH than in PH (Fig. 3B), and a time × entropy interaction (χ^2[5] = 20.0, p = .001), indicating more prominent ramps on low-entropy trials (the time × location × entropy interaction was not significant in this model). The activity in AH seemed highest one second before RT_{Vmax}, suggesting anticipation or response preparation. Furthermore, a more parsimonious model specifically testing linear and quadratic effects of time revealed a significant time^2 × location × entropy interaction (χ^2[1] = 5.4, p = .02), in addition to the time^2 × anteroposterior location (χ^2[1] = 23.3, p < 10^{-5}) and time^2 × entropy (χ^2[1] = 24.1, p < 10^{-6}) interactions. This analysis suggested that activity ramps specifically in AH (vs. PH) were more prominent on low-entropy trials. Ramps were modulated by entropy, but not by preceding reward (time^2
× reward $\chi^2[1] = 0.1, \text{ns}$; time × location × reward $\chi^2[1] = 0.01, \text{ns}$), indicating that they reflected global reinforcement aggregated over multiple episodes rather than the immediately preceding episode.

Figure 3. Online hippocampal responses time-locked to RT$_{V_{\text{max}}}$ (white dashed line), analysis of deconvolved BOLD signal.

(A) Raw data, GAM smoothing with 3 knots, voxel-wise responses shown in 24 long-axis bins
(B) Multilevel model, completely general time effect. The vertical gray lines denote standard errors from the multilevel model. NB: since voxel-wise timeseries are normalized, only differences in the shape, but not intercept, of response can be interpreted.

Responses to reinforcement in PH are early and phasic; delayed and sustained responses in AH encode the shifting global maximum

Once the subject traverses the space obtaining a reward or omission, this reinforcement needs to be bound to the cognitive map, both across states (possible response times) and learning episodes (trials). In order to examine how hippocampal activity during the post-feedback period may support integration of reinforcement into a structured representation, we aligned deconvolved hippocampal time series to the feedback period using the approach described above and detailed in Methods. If PH bound recent rewards to local states, we would expect relatively early responses following feedback. Conversely, if AH integrated rewards across distant states and learning episodes, its responses might be later and slower. Indeed, PH exhibited rapid, on-off responses to reinforcement, whereas responses in AH were delayed and sustained (smoothed data: Fig. 4A, multilevel model: Fig. 4B). These differences were most pronounced after a reward (vs. omission, time point × anteroposterior location × reward: $\chi^2[9] = 23.7, p < .005$).
Figure 4. Real-time responses to reinforcement along the hippocampal long axis.

(A) Responses during the ITI time-locked to feedback, raw data with GAM smoothing, 3 knots.

(B) Responses during the ITI time-locked to feedback, multilevel general linear model with completely general time and bin location (12 bins) as predictors.

(C) Evolution of hippocampal responses to reinforcement across trials, raw data with GAM smoothing, 3 knots.

(D) Evolution of hippocampal responses to reinforcement across trials, multilevel general linear model with completely general...
Notably

stronger PH RPE responses did not preferentially sample guided by uncertainty: participants generally avoided more uncertain parts of the interval and those with lower We found that the huma.

exploitation in the PH dissociated dilemma striatum and amygdala

DISCUSSION

Time courses of post-feedback responses throughout learning also differed across the long axis. An analysis treating trial and location as completely general (i.e. unordered factors avoiding the parametric assumption that responses scale linearly with trial or location) revealed that AH responses increased more markedly than PH responses throughout the first 20 trials. As with responses to low entropy, this pattern was weaker in the anterior-most part of the head and in the PH (trial [5 bins] × anteroposterior location [6 bins]: $\chi^2(20) = 99.5, p < 10^{-11}$; Fig. 4C-D), suggesting greater integration of reinforcement across episodes in the anterior body.

Building on these descriptive results, we explored how the hippocampus encoded the location of the global value maximum ($RT_{V_{max}}$) in the post-outcome time interval and across the long axis. To check the power of this analysis to detect the encoding of behavioral variables, we first examined the trivial effect of preceding trial’s RT on voxelwise deconvolved signals, which was robust and positive throughout the long axis in the first 2s after the outcome (Fig. S2). Thus, our post-outcome analyses included preceding RT as a covariate to control for this possible confound. As an additional check, we reproduced our conventional whole-brain analysis finding of entropy signals in AH (Fig. 4E). Finally, our substantive analysis revealed that the $RT_{V_{max}}$ location on the current trial was signaled throughout the long axis before and during feedback (Fig. 4F), while the shift in $RT_{V_{max}}$ (cf. Fig. 1F) was signaled early in PH and then later and more prominently, in AH (Fig. 4G). Thus, when the global value maximum shifted closer (earlier in the interval) compared to the preceding trial due to reinforcement, AH activity increased.

Whereas previous studies of the explore/exploit dilemma have primarily focused on the neocortex, striatum and amygdala (Badre et al., 2012; Beharelle et al., 2015; Blanchard and Gershman, 2018; Costa et al., 2019; Daw et al., 2006), we show that the hippocampus plays a key role in resolving this dilemma when values are organized spatially. Capturing this organization with a basis function RL model of exploration/exploitation in a unidimensional continuous space, we observed doubly dissociated representations of reinforcement along the hippocampal long axis: state-wise RPE signals in the PH facilitating exploration and global value maximum signals in the AH driving the transition to exploitation.

We found that the human PH represented RPEs and guided exploration, as indicated by shifts toward lower-valued options and costly win-shift responses. While immediately disadvantageous, these exploratory responses did not hinder performance in the long run, indicating that exploration was rewarded by the discovery of high-value actions. Importantly, exploratory shifts in choices were not guided by uncertainty: participants generally avoided more uncertain parts of the interval and those with stronger PH RPE responses did not preferentially sample uncertain options. This involvement of PH in undirected exploration is consistent with the finding that optogenetic stimulation of the rodent dorsal dentate gyrus (DG) granule cells elicits exploration of novel environments (Kheirbek et al., 2013). Notably, dorsal DG-mediated exploration depends on dopaminergic input (Kheirbek et al., 2013),

learning epoch (five 10-trial bins) and bin location (12 bins) as predictors.

(E) Unfolding hippocampal responses to prior entropy (before current reinforcement) time-locked to current reinforcement, multilevel model. Negative regression coefficients indicate stronger responses to low entropy (prominent global value maximum).

(F) Unfolding hippocampal responses to prior global value maximum location (before current reinforcement) time-locked to current reinforcement, multilevel model. Negative regression coefficients indicate stronger responses to a more proximal (earlier) global value maximum.

(G) Unfolding hippocampal responses to prior the shift in the global value maximum location following current reinforcement time-locked to current reinforcement, multilevel model. Negative regression coefficients indicate stronger responses when the global value maximum moves closer (earlier in the interval).
supporting the idea that exploration is triggered by dopaminergic RPE signals. The presence of RPEs in the PH is moreover biologically plausible given the dopaminergic inputs from the VTA (McNamara et al., 2014) and the locus coeruleus (LC; Kempadoo et al., 2016), which enhance memories for novel events (Takeuchi et al., 2016). Curiously, dorsal hippocampal lesions do not disrupt information acquisition during maze exploration without conditioning (Gaskin et al., 2005), suggesting that the dorsal hippocampus mediates exploration specifically in the presence of reinforcement. Our findings are broadly consistent with prior evidence (Corbit and Balleine, 2000; Miller et al., 2017; Vikbladh et al., 2019) and theoretical proposals (Mattar and Daw, 2018; Stachenfeld et al., 2017) for the role of PH in assigning credit for rewards to upstream states and actions.

Previous imaging studies have generally not detected RPE signals in human PH (Fig. S1; Chase et al., 2015; Garrison et al., 2013), although de-activations to error (Chevrier and Schachar, 2010) and activations to reward biasing stimulus values (Wimmer and Shohamy, 2012) have been reported. Most earlier experiments, however, did not consider continuous state spaces amenable to place cell representation. Our findings, on the other hand, agree with electrophysiological studies of dorsal hippocampal place fields, which revealed RPEs (Lee et al., 2012), reward representations in general (Ambrose et al., 2016; Hollup et al., 2001), functional connections with reward-sensitive ventral striatal neurons (Lansink et al., 2009), and dopaminergic inputs (Kempadoo et al., 2016; McNamara et al., 2014). Furthermore, theoretical proposals for hippocampally mediated reinforcement learning include a basis function representation of continuous states or actions (Johnson and Redish, 2005; Strosslin and Gerstner, 2003). Given that dopaminergic LC projections into PH (Kempadoo et al., 2016) facilitate novelty-driven memory enhancement (Takeuchi et al., 2016), PH RPEs could represent a special case of state prediction errors, updating the probability of transition to the terminal reward state (Stachenfeld et al., 2017). Additional experiments are be needed to rule out this possibility, although two human imaging studies of reward learning in discrete spaces did not detect hippocampal state prediction error signals (Chumbley et al., 2014; Gläscher et al., 2010).

Whereas the PH promoted exploratory shifts, stronger AH responses to low entropy drove the convergence of choices on the value maximum. During online navigation, AH responses ramped up in anticipation of the global value maximum in a manner reminiscent of dopamine ramps in the meso-striatal circuit (Fiorillo et al., 2008; Howe et al., 2013). Our SCEPTIC model predicts that value information across the action space is compressed late in successful learning (Hallquist and Dombrovski, 2019). Indeed, only the information-compressing selective maintenance model and not its full maintenance counterpart accurately predicted AH responses (Fig. 2D), indicating that a fine-grained representation of values in the environment is compressed to summary statistics of a single global maximum or ‘value bump’. The functional co-activation of the vmPFC and AH to low entropy suggests that their interactions (Adhikari et al., 2010; Campbell et al., 2018; DeVito and Eichenbaum, 2011; Gerraty et al., 2014) may facilitate the binding of compressed value representations into a spatial hippocampal map and the retrieval of resulting spatial value representations (McCormick et al., 2018; Preston and Eichenbaum, 2013).

After the space was traversed and the outcome was obtained, PH displayed early, on-off reward-modulated responses. AH reward-modulated responses, on the other hand, were delayed and sustained. Furthermore, AH encoded directional shifts of the global maximum: its activity increased as the global maximum drew nearer. These responses could reflect diverging replay patterns in the PH vs. AH, with PH replaying actual and counterfactual trajectories toward recently obtained rewards and AH replaying trajectories leading to value maxima in a goal cell-like pattern (Ambrose et al., 2016; Johnson and Redish, 2005; Liu et al., 2019). Responses within the AH were heterogenous: reinforcement encoding was strongest in the anterior body whereas the online goal cell-like responses were strongest in the head. This heterogeneity may not be a function of long axis location per se but simply reflect the folding of human AH, with the anterior-most portion of the head being comprised mostly of CA3/CA1 and lacking the dentate gyrus (DG; Hrybouski et al., 2019). Thus, the goal-cell like responses in the
hippocampal head likely originate in the CA3/CA1 or the subiculum and not in the DG. More speculatively, the post-feedback responses to the global maximum location in the anterior body may originate in the early nodes (DG, CA3) of the trisynaptic pathway or specifically in the DG. It is thus interesting to consider the possibility that the global maximum is encoded in the DG and that its location and prominence are signaled in the hippocampal output from CA1 during online navigation (Basu and Siegelbaum, 2015).

We cannot know how hippocampal BOLD activity relates to theta power, since the coupling between the two is not linear and sometimes even inverse (Ekstrom et al., 2009; Fellner et al., 2017; Kaplan et al., 2012). Nevertheless, the delay between PH and AH in both overall responses to reinforcement and specifically in responses to the advancing global maximum matches the postero-anterior (in rodents: dorso-ventral) direction of traveling theta waves (Lubenov and Siapas, 2009; Patel et al., 2012). Our observations are thus consistent with a unidirectional spread of information from PH to AH, with AH integrating reinforcement across states and episodes.

Among the strengths of our study are the task and computational model that give us access to a spatially structured value vector and enable us to quantify the spatial location and prominence of the global value maximum, dissociating these variables from local RPEs. Our results could not have been obtained with a spatially unstructured task such as a multi-armed bandit or with an RL model that lacks a representation of a structured value function. A central insight from our SCEPTIC model is that the entropy of the value representation quantifies both the prominence of the global maximum and information compression during learning (Hallquist and Dombrovski, 2019), matching the dynamics of BOLD response in AH. Our novel multilevel analysis of deconvolved BOLD signals revealed the within-trial temporal dynamics of hippocampal responses and allowed us to test the hypothesis of goal cell-like activity in the AH. This approach may prove useful for testing strong hypotheses about functional gradients in regional activation, especially for event-related designs where trials are sampled at multiple TRs and jittered ITIs offer a window into post-stimulus processing. State-of-the-art fMRI methods including high spatial (2.3 mm^2) and temporal (TR = 1s) resolution, a large number of trials (n = 400), and a reasonably large sample (n = 70) allowed us to detect hippocampal reward signals generally not observed in earlier studies (Fig. S1). Finally, out-of-session replication of brain-behavior relationships strengthens the case for hippocampal contributions to exploration and exploitation.

Within the spatiotemporal constraints of fMRI, our design and analyses provide excellent resolution on coordinated neural activity, yet the inherent limitations of fMRI preclude us from addressing more detailed questions about cell-level representations in the hippocampus. Furthermore, our whole-brain analyses revealed distributed responses to both RPEs and entropy across frontostriatal circuits. Yet we did not further investigate the interactions between the hippocampus and regions such as vmPFC, which may be important for anticipating upcoming rewards (Iigaya et al., 2019). We also note that because our experiment involved timing, participants always traversed the environment in a single direction. Future experiments with two-dimensional spaces could test for goal-like AH responses more robustly by controlling participants’ movement toward or away from the goal. Further, it remains unclear whether our findings generalize to environments with rewards distributed less smoothly and even discontinuously. Such “Easter egg” environments in which multiple sparse value maxima are hidden among reward-poor areas are harder to capture by a coarse representation, making value information less compressible. Our computational experiments using the SCEPTIC model, however, are reassuring in this respect, showing that even value functions that contain discontinuous local maxima can be effectively compressed (Hallquist and Dombrovski, 2019).

Altogether, our findings revealed that PH and AH exert competing influences on value-guided choices, with PH supporting continual exploration that ‘freshens’ value estimates of alternative actions and AH promoting exploitative choices of the action perceived to be the best. Combined, PH-guided exploration and AH-guided exploitation amount to reinforcement-guided navigation by map, in contrast to win-
stay/lose-shift responses supported by the amygdala (Chau et al., 2015) or learning of spatially unstructured values in the meso-striatal circuit (Parker et al., 2016).

STAR METHODS

LEAD CONTACT AND MATERIALS AVAILABILITY

Further information and requests for resources should be directed to and will be fulfilled by the Lead Contact, Michael Hallquist (michael.hallquist@gmail.com).

Materials Availability Statement

There are no restrictions to the availability of the behavioral or neuroimaging dataset reported here.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Participants

Participants were 70 typically developing adolescents and young adults aged 14–30 (M = 21.4, SD = 5.1). Thirty-seven (52.8%) participants were female and 33 were male. Prior to enrollment, participants were interviewed to verify that they had no history of neurological disorder, brain injury, pervasive developmental disorder, or psychiatric disorder (in self or first-degree relatives). Participants and/or their legal guardians provided informed consent or assent prior to participation in this study. Experimental procedures for this study complied with Code of Ethics of the World Medical Association (1964 Declaration of Helsinki) and the Institutional Review Board at the University of Pittsburgh (protocol PRO10090478). Participants were compensated $75 for completing the experiment.

METHOD DETAILS

Behavioral task

Participants completed eight runs of the exploration and learning task (aka the “clock task,” based on Moustafa et al., 2008) during an fMRI scan. Runs consisted of 50 trials in which a green dot revolved 360° around a central stimulus over the course of 4s (see Figure 1A). Participants pressed a button to stop the dot, which ended the trial. They then received a probabilistic reward for the chosen response time (RT) according to one of four time-varying contingencies, two learnable (increasing and decreasing expected value) and two unlearnable. All contingencies were monotonic but featured reward probability/magnitude tradeoffs that made learning difficult. RT swings were the index of exploration (Badre et al., 2011). After each response, participants saw the probabilistic reward feedback for 0.9s. If participants failed to respond within 4s, they received zero points. Each trial was followed by an intertrial interval (ITI) that varied in length according to an exponential distribution. To maximize fMRI detection power, the sequence and distribution ITIs were derived using a Monte Carlo approach implemented by the optseq2 command in FreeSurfer 5.3. More specifically, we simulated five million possible ITI sequences consisting of 50 trials each and retained the top 320 orders based on their estimation efficiency. For each subject, the experiment software randomly sampled 8 of these efficient ITI sequences, which were used for the durations of ITIs in the task.

The central stimulus was a face with a happy expression or fearful expression, or a phase-scrambled version of face images intended to produce an abstract visual stimulus with equal luminance and coloration. Faces were selected from the NimStim database (Tottenham et al., 2009). All four contingencies were collected with scrambled images, whereas only IEV and DEV were also collected with happy and fearful faces. The effects of the emotion manipulation will be reported in a separate
manuscript because they are not central for the examination of the neural substrates of exploration and exploitation on this task. Likewise, age-related effects will be reported separately.

As part of a larger study, participants also completed this task during a separate magnetoencephalography (MEG) session. The order of the fMRI and MEG sessions was counterbalanced (fMRI first \(n = 34 \), MEG first \(n = 36 \)) and the sessions were separated by 3.71 weeks on average (SD = 1.59 weeks). The behavioral data from the MEG session were used for out-of-session replication tests in which we examined how brain activity during the fMRI scan predicted behavior during the MEG session. (Neural data for the MEG study will be reported separately.) This enabled us to establish whether individual differences in hippocampal activity and exploration/exploitation represented stable tendencies vs. patterns incidental to a single experimental session.

Neuroimaging acquisition

Neuroimaging data during the clock task were acquired in a Siemens Tim Trio 3T scanner at the Magnetic Resonance Research Center, University of Pittsburgh. Due to the varying response times produced by participants as they learned the task, each fMRI run varied in length from 3.15 to 5.87 minutes (\(M = 4.57 \) minutes, \(SD = 0.52 \)). Imaging data for each run were acquired using a simultaneous multislice sequence sensitive to BOLD contrast, TR = 1.0s, TE = 30ms, flip angle = 55°, multiband acceleration factor = 5, voxel size = 2.3mm\(^3\). We also obtained a sagittal MPRAJE T1 scan, voxel size = 1mm\(^3\), TR = 2.2s, TE = 3.58ms, GRAPPA 2x acceleration. The anatomical scan was used for coregistration and nonlinear transformation to functional and stereotaxic templates. We also acquired gradient echo fieldmap images (TEs = 4.93ms and 7.39ms) for each subject to quantify and mitigate inhomogeneity of the magnetic field across the brain.

Preprocessing of neuroimaging data

Anatomical scans were registered to the MNI152 template (Fonov et al., 2009) using both affine (ANTS SyN) and nonlinear (FSL FNIRT) transformations. Functional images were preprocessed using tools from NiPy (Millman and Brett, 2007), AFNI (version 19.0.26; Cox, 1996), and the FMRIB software library (FSL version 6.0.1; Smith et al., 2004). First, slice timing and motion coregistration were performed simultaneously using a four-dimensional registration algorithm implemented in NiPy (Roche, 2011). Non-brain voxels were removed from functional images by masking voxels with low intensity and by a brain extraction algorithm implemented in the program ROBEX (Iglesias et al., 2011). We reduced distortion due to susceptibility artifacts using fieldmap correction implemented in FSL FUGUE.

The participants’ functional images were aligned to their anatomical scan using the white matter segmentation of each image and a boundary-based registration algorithm (Greve and Fischl, 2009), augmented by fieldmap unwarping coefficients. Given the low contrast between gray and white matter in echoplanar scans with fast repetition times, we first aligned functional scans to a single-band fMRI reference image with better contrast. The reference image was acquired using the same scanning parameters, but without multiband acceleration. Functional scans were then warped into MNI152 template space (2.3mm resolution) in one step using the concatenation of functional-reference, fieldmap unwarping, reference-structural, and structural-MNI152 transforms. Images were spatially smoothed using a 5mm full-width at half maximum (FWHM) kernel using a nonlinear smoother implemented in FSL SUSAN. Whereas all voxels were spatially smoothed in our whole-brain analyses, our detailed analyses of hippocampal timecourses used a 5mm FWHM smoother within the anatomical mask to reduce partial volume effects (details below). To reduce head motion artifacts, we then conducted an independent component analysis for each run using FSL MELODIC. The spatiotemporal components were then passed to a classification algorithm, ICA-AROMA, validated to identify and remove motion-related artifacts (Pruim et al., 2015). Components identified as noise were regressed...
out of the data using FSL regfilt (non-aggressive regression approach). ICA-AROMA has performed very well in head-to-head comparisons of alternative strategies for reducing head motion artifacts (Ciric et al., 2017). We then applied a .008Hz temporal high-pass filter to remove slow-frequency signal changes (Woolrich et al., 2001); the same filter was applied to all regressors in GLM analyses. Finally, we renormalized each voxel time series to have a mean of 100 to provide similar scaling of voxelwise regression coefficients across runs and participants.

Computational modeling of behavior

Behavior was fitted with the SCEPTIC (StrategiC Exploration/Exploitation of Temporal Instrumental Contingencies) reinforcement learning model (Hallquist and Dombrovski, 2019). Building on models of Pavlovian conditioning of Ludvig and colleagues (2008), SCEPTIC uses Gaussian temporal basis functions (TBFS) to approximate the time-varying instrumental contingency. Each function has a temporal receptive field with a mean and variance defining its point of maximal sensitivity and the range of times to which it is sensitive. The weights of each TBF are updated according to a delta learning rule. While in temporal difference models, learning and choice take place on a moment-to-moment basis, humans tend to strategically consider the decision space as a whole (Moustafa et al., 2008). Accordingly, SCEPTIC applies updates and makes choices at the trial level. Crucially, SCEPTIC maintains action values selectively, allowing for forgetting of action values not selected on the current trial. Selective maintenance facilitates the transition from exploration to exploitation in computational experiments and accounts for uncertainty aversion in humans (Hallquist and Dombrovski, 2019).

Model parameters were fitted to individual choices using an empirical Bayesian version of the Variational Bayesian Approach (Daunizeau et al., 2014). The empirical Bayes approach relied on a mixed-effects model in which individual-level parameters are assumed to be sampled from a normally distributed population. The group’s summary statistics, in turn, are inferred from individual-level posterior parameter estimates using an iterative variational Bayesian algorithm in which the algorithm alternates between estimating the population parameters and the individual subject parameters. Over algorithm iterations, individual-level priors are shrunk toward the inferred parent population distribution, as in standard multilevel regression. Furthermore, to reduce the possibility that individual differences in voxelwise estimates from model-based fMRI analyses reflected differences in the scaling of SCEPTIC parameters, we refit the SCEPTIC model to participant data at the group mean parameter values. This approach supports comparisons of regression coefficients across subjects and also reduces the confounding of brain-behavior analyses by the individual fits of the computational model to a participant’s behavior. We note, however, that our fMRI results were qualitatively the same when model parameters were free to vary across people (additional details available from the lead contact upon request).

To examine the emergence of the global value maximum that guides the transition from initial exploration to exploitation, we estimated Shannon’s entropy (or information content) of the normalized vector of TBF weights (action values). Entropy provides a log measure of the number of good actions (in this case, temporal segments). Entropy is high during the initial exploration, when action values are close and decreases as one action begins to dominate, corresponding to the perceived global value maximum. These entropy dynamics are only observed under selective maintenance, which compresses the amount of information retained later in learning and accentuates the global value maximum (Hallquist and Dombrovski, 2019).

Core architecture of SCEPTIC model

The SCEPTIC model represents time using a set of unnormalized Gaussian radial basis functions (RBFs) spaced evenly over an interval T in which each function has a temporal receptive field with a mean and variance defining its point of maximal sensitivity and the range of times to which it is
The primary quantity tracked by the basis is the expected value of a given choice (response time). To represent time-varying value, the heights of each basis function are scaled according to a set of weights, \(\mathbf{w} = [w_1, w_2, ..., w_b] \). The contribution of each basis function to the integrated value representation at the chosen response time, \(t \), depends on its temporal receptive field:

\[
\varphi_b(t) = \exp \left[-\frac{(t - \mu_b)^2}{2s_b^2} \right]
\]

(1)

where \(\mu_b \) is the center (mean) of the RBF and \(s_b^2 \) is its variance. And more generally, the temporally varying expected value function on a trial \(i \) is obtained by the multiplication of the weights with the basis:

\[
V(i) = \mathbf{w}(i)\varphi
\]

(2)

In order to represent decision-making during the clock task, where the probability and magnitude of rewards varied over the course of four-second trials, we spaced the centers of 24 Gaussian RBFs evenly across the discrete interval and chose a fixed width, \(s_0^2 \), to represent the temporal variance (width) of each basis function. More specifically, \(s_b^2 \) was chosen such that the distribution of adjacent RBFs overlapped by approximately 50% (for additional details and consideration of alternatives, see Hallquist and Dombrovski, 2019).

The model updates the learned values of different response times by updating each basis function \(b \) according to the equation:

\[
w_b(i + 1) = w_b(i) + e_b(i|t)\alpha[\text{reward}(i|t) - w_b(i)]
\]

(3)

where \(i \) is the current trial in the task, \(t \) is the observed response time, and \(\text{reward}(i|t) \) is the reinforcement obtained on trial \(i \) given the choice \(t \). The effect of prediction error is scaled according to the learning rate \(\alpha \) and the temporal generalization function \(e_b \). To avoid tracking separate value estimates for each possible moment, it is crucial that feedback obtained at a given response time \(t \) is propagated to adjacent times. Thus, to represent temporal generalization of expected value updates, we used a Gaussian RBF centered on the response time \(t \), having width \(s_M^2 \) and normalized to have an area under the curve of unity. The eligibility of a basis function \(\varphi_b \) to be updated by prediction error is defined by the area under the curve of its product with the temporal generalization function:

\[
e_b(i|t) = \int_{0}^{T} \mathcal{N}(t, s_B^2)\varphi_b dt
\]

(4)

This parameterization leads to a scalar value for each RBF between zero and one representing the proportion of overlap between the temporal generalization function and the receptive field of the RBF. In the case of perfect overlap, where the response time is perfectly centered on a given basis function and the width of the generalization function matches the basis (i.e., \(s_B^2 = s_b^2 \)), \(e_b \) will reach unity, resulting a maximal weight update according to the learning rule above. Conversely, if there is no overlap between an RBF and the temporal generalization function \(e_b \) will be zero and no learning will occur in the receptive field of that RBF.

The SCEPTIC model selects an action based on a softmax choice rule, analogous to simpler reinforcement learning problems (e.g., two-armed bandit tasks; Sutton and Barto, 1998). For computational speed, we arbitrarily discretized the interval into 100ms time bins such that the agent selected among 40 potential responses. The agent chose responses in proportion to their expected...
value:

\[p(rt(i + 1) = j \mid V(i)) = \frac{\exp(V(i)_j / \beta)}{\sum_{t=0}^{T} \exp(V(i)_t / \beta)} \]

(5)

where \(j \) is a specific response time and the temperature parameter, \(\beta \), controls the sharpness of the decision function (at higher values, actions become more similar in selection probability).

Importantly, as described extensively in our earlier behavioral and computational paper, a model that selectively maintained frequently chosen high-value actions far outperformed model alternative models. More specifically, in the selective maintenance model, basis weights revert toward zero in inverse proportion to the temporal generalization function:

\[w_b(i + 1) = w_b(i) + e_b(i \mid t) \alpha [\text{reward}(i \mid t) - w_b(i)] - \gamma (1 - e_b(i \mid t))(w_b(i) - h) \]

(6)

where \(\gamma \) is a selective maintenance parameter between zero and one that scales the degree of reversion toward a point \(h \), which is taken to be zero here, but could be replaced with an alternative, such as a prior expectation. All of our primary fMRI analyses were based on signals derived from fitting the selective maintenance SCEPTIC model to participants’ behavior.

As noted in the Results, we sought to examine whether anterior hippocampal responses to low entropy were specific to the selective maintenance model, consistent with information compression. To test the specificity, we compared entropy representation from the SCEPTIC selective maintenance mode to a full-maintenance counterpart that did not decay the values of the unchosen response times (more detailed model comparisons provided in Hallquist and Dombrovski, 2019). More specifically, the learning rule for the full maintenance model was:

\[w_b(i + 1) = w_b(i) + e_b(i \mid t) \alpha [\text{reward}(i \mid t) - w_b(i)] \]

(7)

Quantification of uncertainty

In our earlier computational modeling and behavioral analyses of these data (Hallquist and Dombrovski, 2019), we tested a number of alternative models, including those that explicitly represented sampling uncertainty about alternative actions. More specifically, these models implemented variants of a Kalman filter for each temporal basis function such that the basis approximated both the posterior expectation (i.e., mean) and uncertainty (i.e., standard deviation) for each possible response time. Although uncertainty-tracking models were inferior in behavioral Bayesian model comparisons, for our neural analyses, we nevertheless wished to examine whether the hippocampus may be involved in promoting or discouraging actions based on their uncertainty.

Therefore, we estimated a Kalman filter variant (hereafter called Fixed U+V) in which a fixed learning rate was used for updating the expected value, whereas the posterior uncertainty estimates were updated according to the Kalman gain. The learning rule for Fixed U+V was:

\[\mu_b(i + 1) = \mu_b(i) + e_b(i \mid t) \alpha [\text{reward}(i \mid t) - \mu_b(i)] \]

(8)

where \(\mu_b(i) \) represents the expected value of basis function \(b \) on trial \(i \), and \(\alpha \) represents the learning rate. The gain for a given basis function, \(k_b(i) \) is defined as

\[k_b(i) = \frac{\sigma_b(i)^2}{\sigma_b(i)^2 + \sigma_{\text{rew}}^2} \]

(9)
where σ^2_{rew} represents the expected volatility (measurement noise) of the environment. Here, we provide the model the variance of returns from a typical run of the experiment as an initial estimate of measurement noise, although other priors lead to similar model performance. We also initialize prior estimates of uncertainty for each basis function to be equal to the measurement noise, $\sigma^2_{p0} = \sigma^2_{\text{rew}}$, leading to a gain of 0.5 on the first trial (as in Frank et al., 2009).

Under the KF, uncertainty about expected value for each basis function is represented as the standard deviation of its Gaussian distribution. Likewise, posterior estimates of uncertainty about responses proximate to the basis function b decay in inverse proportion to the gain according to the following update rule:

$$\sigma_b(i + 1) = [1 - e_b(i|t)k_b(i)]\sigma_b(i)$$ \hspace{1cm} (10)

Estimates of the time-varying value and uncertainty functions are provided by the evaluation of the basis over time:

$$V(i) = \mu(i)\varphi$$ \hspace{1cm} (11)
$$U(i) = \sigma(i)\varphi$$ \hspace{1cm} (12)

The Fixed U + V policy represents a decision function, $Q(i)$, as a weighted sum of the value and uncertainty functions according to a free parameter, τ. As uncertainty decreases with sampling and expected value increases with learning, value-related information will begin to dominate over uncertainty. Positive values of τ promote uncertainty-directed exploration, whereas negative values yield uncertainty aversion.

$$Q(i) = V(i) + \tau U(i)$$ \hspace{1cm} (13)

For the purpose of fMRI analysis, we fit the Fixed U+V model to participants’ behavior, then extracted trial-wise estimates of uncertainty. More specifically, we obtained the model-estimated uncertainty of the chosen action for each trial. Given that uncertainty for a given process decays exponentially under a KF approach, we computed the percentile of the uncertainty of the chosen action relative to the alternative actions on the same trial. This trial-wise normalization ensured that the fMRI analyses of uncertainty were not confounded by slower changes in overall uncertainty over the entire learning episode.

Trial-level alternative model of reinforcement learning

The SCEPTIC model is based on a temporal basis function architecture that provides a state-wise representation of value and RPEs (i.e., the model estimates these quantities at every response time within each trial). A simpler alternative is that participants represent value and RPEs at the whole-trial level, instead tracking the expected value of responding during the trial and not discriminating among alternative response times. This alternative model was considered primarily to test whether posterior hippocampal RPE responses were more consistent with SCEPTIC state-wise RPEs or simpler trial-level RPEs. More specifically, the alternative model was a variant of the Rescorla-Wagner delta rule:

$$V(i + 1) = V(i) + \alpha[\text{reward}(i) - V(i)]$$ \hspace{1cm} (14)

where i denotes the trial and α is the learning rate. For simplicity, we fixed the learning rate to 0.1.
QUANTIFICATION AND STATISTICAL ANALYSIS

Voxelwise general linear model analyses

Voxelwise general linear model (GLM) analyses of fMRI data were performed using FSL version 6.0.1 (Smith et al., 2004). Single-run analyses were conducted using FSL FEAT v6.0, which implements an enhanced version of the GLM that corrects for temporal autocorrelation by prewhitening voxelwise time series and regressors in the design matrix (Woolrich et al., 2001). For each design effect, we convolved a duration-modulated unit-height boxcar regressor with a canonical double-gamma hemodynamic response function (HRF) to yield the model-predicted BOLD response. All models included convolved regressors for the clock and feedback phases of the task.

Moreover, GLM analyses included parametric regressors derived from SCEPTIC. For each whole-brain analysis, we added a single model-based regressor from SCEPTIC alongside the clock and feedback regressors. Results were qualitatively unchanged, however, when all SCEPTIC signals were included as simultaneous predictors, given the relatively low correlation among these signals (additional details available from the lead contact upon request). For each model-based regressor, the SCEPTIC-derived signal was mean-centered prior to convolution with the HRF. The reward prediction error signal was aligned with the feedback, whereas entropy and uncertainty were aligned with the clock (decision) phase. Furthermore, for regressors aligned with the clock phase, which varied in duration, we sought to unconfound the height of the predicted BOLD response due to decision time from the parametric influence of the SCEPTIC signal. Toward this end, for each trial, we convolved a duration-modulated boxcar with the HRF, renormalized the peak to 1.0, multiplied the regressor by the SCEPTIC signal on that trial, then summed across trials to derive a single model-based regressor (cf. processing time versus intensity of activation in Poldrack, 2015). This approach is equivalent to the dmUBLOCK(1) parameterization provided by AFNI for duration-modulated regressors in GLM analyses.

Parameter estimates from each run were combined using a weighted fixed effects model in FEAT that propagated error variances from the individual runs. The contrasts from the second-level analyses were then analyzed at the group level using a mixed effects approach implemented in FSL FLAME. Specifically, we used the FLAME 1+2 approach with automatic outlier deweighting (Woolrich, 2008), which implements Bayesian mixed effects estimation of the group parameter estimates including full Markov Chain Monte Carlo-based estimation for near-threshold voxels (Woolrich et al., 2004). In order to identify statistical parametric maps that best represented the average response, all group analyses included age and sex as covariates of no interest (esp. given the developmental sample).

To correct for familywise error at the whole-brain level, we computed the voxelwise residuals of a one-sample t-test for each contrast of interest in the group analysis, then generated 10,000 null datasets by randomizing the sign of the residuals (implemented by AFNI 3dttest++ -Clustsim). These null datasets were then analyzed to identify the threshold for clusters that were significant at a whole-brain level at \(p < .05 \) (implemented by AFNI 3dClustsim). For these calculations, we used a voxelwise threshold of \(p < .001 \) (Woo et al., 2014). Importantly, the sign randomization approach does not assume any parametric form for the spatial autocorrelation of the data, overcoming concerns about high false positive rates for cluster thresholding methods that assume a Gaussian autocorrelation function (Eklund et al., 2016). Cluster thresholds were 107 voxels for reward prediction error analyses and 117 voxels for entropy analyses.

Treatment of head motion

In addition to mitigating head motion-related artifacts using ICA-AROMA, we excluded runs in which more than 10% of volumes had a framewise displacement (FD) of 0.9mm or greater, as well as runs in which head movement exceeded 5mm at any point in the acquisition. This led to the exclusion of 11
runs total, yielding 549 total usable runs across participants. Furthermore, in voxelwise GLMs, we included the mean time series from deep cerebral white matter and the ventricles, as well as first derivatives of these signals, as confound regressors (Ciric et al., 2017).

Analyses of hippocampal responses

Definition of hippocampal mask and long axis

We used a hippocampal parcellation from the Harvard-Oxford subcortical atlas to define bilateral masks for the hippocampus in the MNI152 space. The atlas was resampled to 2.3mm voxels to match the functional data, then thresholded at 0.5 probability, yielding masks of 393 voxels in the left hemisphere and 401 voxels in the right hemisphere. To define the long axis, we identified the 10 most antero-inferior and postero-superior voxels in each hemisphere mask. We then took the centroid of these voxels and computed the slope of a regression line that connected these coordinates. We averaged the slopes for the left and right hemispheres to compute the optimal rotation of the coordinate space along the long axis of the hippocampus. We computed the slope difference of this average line relative to the anterior commissure-posterior commissure (AC-PC) axis, which has a zero slope in the sagittal plane. This yielded a rotation of 42.9° clockwise relative to the AC-PC axis. Finally, we verified this transformation by eye (gradient depicted in Figure 2A).

While we view the inclusive Harvard-Oxford mask as more appropriate given the spatial smoothness of BOLD data and coregistration noise, in supplementary analyses, we also considered a more restrictive hippocampal mask derived using a detailed anatomical segmentation approach developed by Winterburn and colleagues (2013). Briefly, this segmentation approach was applied to the original anatomical scans forming the MNI152 template set, yielding a detailed parcellation already in the MNI152 space (publicly available here: https://github.com/CoBrALab/atlases/tree/master/mni_models/nifti). We retained the following regions from the parcellation in the mask: CA1, CA4/dentate gyrus, CA2/CA3, subiculum, and stratum. These masks (265 voxels in the left hippocampus, 273 in the right) were approximately one third smaller than the Harvard-Oxford masks. The results using were qualitatively the same regardless of the mask (see Supplement for details).

Session-level estimates of hippocampal responses to reinforcement: regression coefficients from model-based fMRI GLM analyses

To examine how individual differences in hippocampal responses along the long axis relate to behavior, we extracted regression coefficients (aka ‘betas’) from model-based whole-brain fMRI GLM analyses. We first extracted betas from clusters surviving whole-brain thresholding. For each signal — entropy, expected value, RPE — clusters were subjected to between-subject exploratory factor analysis (principal axis factoring with oblimin oblique rotation) to identify separable components representing each signal. We evaluated the number of factors based on Very Simply Solution and Velicer’s Minimum Average Partial criteria (Revelle and Rocklin, 1979). These analyses were largely motivated to examine whether hippocampal responses were separable from other cortico-striatal regions.

To relate hippocampal betas to exploratory and exploitative choices on the task, we regressed trial-wise response times on trial-level signals such as previous outcome, RT_{Vmax}, and previous response time, as well as subject-level signals, particularly betas from the posterior and anterior hippocampal clusters identified in whole-brain analyses. Testing cross-level interactions, we examined how hippocampal responses moderated the effects of behavioral variables, such as the tendency to explore or convergence on RT_{Vmax}. We fitted multilevel regression models using restricted maximum likelihood estimation in the *lme4* package (Bates et al., 2015) in *R* (R Core Team, 2017), allowing for a random intercept of subject and run nested within subject.
Building on our whole brain voxelwise analyses, we examined representations of decision signals along the hippocampal long axis. To support these analyses, we extracted voxelwise z-statistics within the hippocampal mask for RPEs, entropy of the value distribution, and relative uncertainty of the chosen action. We note that using normalized betas in these analyses yielded identical results; we preferred z-statistics because they better accommodate within-run variation in the precision of effects within the GLM framework. To analyze z-statistics along the long axis, we binned voxelwise statistics into 12 quantiles of even size (i.e., approximately equal numbers of voxels per bin) along the long axis. Aggregating the voxels of each bin, we computed the mean z statistic for relevant decision signals and analyzed responses to entropy and RPEs along the long axis (Fig. 2B, 2D).

Analyses of real-time hippocampal responses using voxelwise deconvolution

Although betas from fMRI GLMs provide a useful window into how decision signals from SCEPTIC relate to behavior at the level of an entire session, the GLM approach makes a number of assumptions: a) that one correctly specifies when in time a signal derived from a computational model modulates neural activity, b) that there is a linear relationship between the model signal and BOLD activity, and c) that a canonical HRF describes the BOLD activity corresponding to a given model-based signal. Furthermore, a conventional model-based fMRI GLM does not allow one to interrogate whether the representation of a given cognitive process varies in time over the course of a trial. For these reasons, we conducted additional analyses that could provide a detailed view of how hippocampal activity changes both during and following each trial on the clock task. These analyses also attempted to overcome statistical and conceptual limitations of the GLM and to provide an index of within-trial neural activity that was independent of our computational model.

We first applied a leading hemodynamic deconvolution algorithm to estimate neural activity from BOLD data (Bush and Cisler, 2013). This algorithm has performed better than alternatives in simulated and real fMRI data, and it is reasonably robust to variations in the timing of neural events and the sampling frequency of the scan (Bush et al., 2015). Within our anatomical mask of the bilateral hippocampus, we deconvolved the BOLD activity for each voxel time series and retained these as a voxels x time matrix for each run of fMRI data. Additionally, to reduce the possibility that activity estimates reflected the influence of voxels outside of the hippocampus, for deconvolution, we used fMRI data in which spatial smoothing was applied only within the anatomical mask. More specifically, we applied a 5mm FWHM smoothing kernel within the hippocampal mask using the AFNI 3dBlurInMask program. The fMRI data for deconvolution analyses were otherwise preprocessed using the same pipeline described above.

Then, to estimate hippocampal activity for each trial in the experiment, we extracted the deconvolved signal in two epochs: 1) online (clock onset to RT) responses time-locked to \(RT_{\text{max}} \), (±3s) censoring feedback and ITI periods, and 2) feedback onset and ITI (-1 to +10 seconds; the second preceding feedback was included for reference). This windowing approach allowed us to examine hippocampal activity during online decision-making in the clock task, as well as offline activity during the intertrial interval. Given the fast event-related design, however, the onset of the next trial in the experiment may have occurred before 10 seconds post-feedback had elapsed. In these cases, trial-wise estimates of post-feedback activity were treated as missing for all times after the onset of the next trial. The exponential distribution of intertrial interval times yielded more data for activity proximate to the onset of feedback, but there were still several trials per subject with intertrial intervals of 10s or greater. Finally, to ensure that discrete-time models of neural activity could be easily applied, we resampled deconvolved neural activity onto an evenly spaced 1s grid aligned to the event of interest using linear interpolation. The sampling frequency of the fMRI scan was also 1s. Thus, this interpolation was a form of resampling, but did not upsample or downsample the data in the time domain.

To link real-time hippocampal responses with behavior and decision signals from the SCEPTIC model, we divided hippocampal voxels into 12 even bins along the long axis, mirroring the regression beta
analyses described above (illustrations of smoothed raw data use 24 bins for within-trial time courses and six bins for across-trials time courses to aid readability). For each trial and timepoint within trial, we averaged voxels within each long axis bin. For each subject, this yielded a 400 trial x 11 time point (0-10s) x 12 bin matrix for the feedback-aligned data. We then concatenated these matrices across participants for group analysis. Within each time x bin combination, we regressed trial-wise neural activity on key decision variables in a multilevel regression framework implemented in lmer in R, allowing for crossed random intercepts of subject and side (right/left).

To examine the temporal dynamics of hippocampal reinforcement representations in even greater detail, we considered treating both time and bin as unordered factors in a combined multilevel regression model, rather than running separate models by time and bin. Although statistically estimable, these models were unwieldy because of the number of higher-order interactions. Instead, to adjust for multiple comparisons in non-independent models separately examining each time point and bin, we applied the Benjamini–Yekutieli correction across models to maintain a false discovery rate of .05.

Analyses of behavior using frequentist multilevel models

Multilevel regression models

Since our behavioral observations had a clustered structure (e.g., trials nested within subjects), we used multilevel regression models to estimate the effects of interest. Multilevel models were estimated using restricted maximum likelihood in the lme4 package (Bates et al., 2015) in R 3.4.0 (R Core Team, 2017). Estimated p-values for predictors in the model were computed using Wald chi-square tests and degrees of freedom were based on the Kenward-Roger approximation. Most multilevel regressions were run on trial-level data in order to capture the temporal dynamics of learning and performance. To test temporal precedence in trial-level data (e.g., previous reward predicting a change in current RT swing), relevant predictors were lagged by one trial. For trial-level analyses, subject and run were treated as random effects. In particular, many models examined whether a given decision signal from the SCEPTIC model moderated the influence of previous choice (RT_{t-1}) on current choice (RT_{t}). Variables associated with a weaker autocorrelation promoted shifts in response times (aka ’RT swings’).

Within-trial mixed-effects survival analyses of behavior with time-varying value and uncertainty estimates

We also performed survival analyses predicting the temporal occurrence of response. These mixed-effects Cox models (R coxme package; Therneau, 2018) aimed to examine the effects of model-predicted expected value and uncertainty on the likelihood of response, and the impact of session-level hippocampal responses on value- and uncertainty-sensitivity. This survival analysis does not assume that the subject pre-commits to a given response time, instead modeling the within-trial response hazard function in real, continuous time (Singer and Willett, 2003). The survival approach accounts for censoring of later within-trial time points by early responses. Most importantly, it assumes a completely general baseline hazard function, allowed to vary randomly across participants. We thus avoid assumptions about the statistical distribution of response times and account for trial-invariant influences such as urgency, processing speed constraints or opportunity cost. We also modeled only the 1000 – 3500 ms interval, excluding early response times that may be shorter than the deliberation and motor planning period and the end of the interval which one may avoid in order to not miss responding on a trial. We included learned value from the selective maintenance model and uncertainty from the Kalman filter uncertainty + value model as time-varying covariates, sampled every 100 ms. Subject-specific intercept was included as a random effect.
DATA AND CODE AVAILABILITY

The code generated during this study is available at: https://github.com/PennStateDEPENdLab/clock_analysis. This repository also includes key datasets for extracted fMRI regression coefficients and voxelwise hippocampal time course analyses. Full voxelwise statistical parametric maps are available from the lead contact upon request.

KEY RESOURCES TABLE

REAGENT or RESOURCE	SOURCE	IDENTIFIER
Software and Algorithms		
SCEPTIC Reinforcement Learning Model	Hallquist & Dombrovski, 2019	https://github.com/DecisionNeuroSciencePsychopathology/temporal_instrumental_agent
Acknowledgements

This work was funded by K01 MH097091, R01 MH067924, and R01MH10095 from the National Institute of Mental Health.

The authors thank Jiazhou Chen (data processing) and Rajpreet Chahal (data collection). The authors also thank Vishnu Murty and Brad Wyble for helpful comments on an earlier draft of the manuscript.

Author Contributions

Conceptualization: MNH, BL, AYD. Software: MNH, AYD. Formal Analysis: AYD, MNH. Investigation: MNH, BL. Resources: MNH, BL. Data Curation: MNH. Writing – Original Draft: AYD, MNH. Writing – Review & Editing: MNH, BL, AYD. Project Administration: MNH, BL. Funding Acquisition: BL, MNH, AYD.

Declaration of Interests

The authors declare no competing interests.
REFERENCES

Adhikari, A., Topiwala, M.A., and Gordon, J.A. (2010). Synchronized Activity between the Ventral Hippocampus and the Medial Prefrontal Cortex during Anxiety. Neuron 65, 257–269.

Ambrose, R.E., Pfeiffer, B.E., and Foster, D.J. (2016). Reverse Replay of Hippocampal Place Cells Is Uniquely Modulated by Changing Reward. Neuron 91, 1124–1136.

Badre, D., Doll, B.B., Long, N.M., and Frank, M.J. (2012). Rostrolateral prefrontal cortex and individual differences in uncertainty-driven exploration. Neuron 73, 595–607.

Basu, J., and Siegelbaum, S.A. (2015). The Corticohippocampal Circuit, Synaptic Plasticity, and Memory. Cold Spring Harb. Perspect. Biol. 7, a021733.

Bates, D., Mächler, M., Bolker, B., and Walker, S. (2015). Fitting Linear Mixed-Effects Models Using lme4. J. Stat. Softw. 67, 1–48.

Beharelle, A.R., Polania, R., Hare, T.A., and Ruff, C.C. (2015). Transcranial Stimulation over Frontopolar Cortex Elucidates the Choice Attributes and Neural Mechanisms Used to Resolve Exploration–Exploitation Trade-Offs. J. Neurosci. 35, 14544–14556.

Blanchard, T.C., and Gershman, S.J. (2018). Pure correlates of exploration and exploitation in the human brain. Cogn. Affect. Behav. Neurosci. 18, 117–126.

Burgess, N., Recce, M., and O'Keefe, J. (1994). A model of hippocampal function. Neural Netw. 7, 1065–1081.

Bush, K., and Cisler, J. (2013). Decoding neural events from fMRI BOLD signal: A comparison of existing approaches and development of a new algorithm. Magn. Reson. Imaging 31, 976–989.

Bush, K., Cisler, J., Bian, J., Hazaroglu, G., Hazaroglu, O., and Kilts, C. (2015). Improving the precision of fMRI BOLD signal deconvolution with implications for connectivity analysis. Magn. Reson. Imaging 33, 1314–1323.

Campbell, K.L., Madore, K.P., Benoit, R.G., Thakral, P.P., and Schacter, D.L. (2018). Increased hippocampus to ventromedial prefrontal connectivity during the construction of episodic future events. Hippocampus 28, 76–80.

Chase, H.W., Kumar, P., Eickhoff, S.B., and Dombrovski, A.Y. (2015). Reinforcement learning models and their neural correlates: An activation likelihood estimation meta-analysis. Cogn. Affect. Behav. Neurosci.

Chau, B.K.H., Sallet, J., Papageorgiou, G.K., Noonan, M.P., Bell, A.H., Walton, M.E., and Rushworth, M.F.S. (2015). Contrasting Roles for Orbitofrontal Cortex and Amygdala in Credit Assignment and Learning in Macaques. Neuron 87, 1106–1118.

Chevrier, A., and Schachar, R.J. (2010). Error detection in the stop signal task. NeuroImage 53, 664–673.

Chumbley, J.R., Burke, C.J., Stephan, K.E., Friston, K.J., Tobler, P.N., and Fehr, E. (2014). Surprise beyond prediction error. Hum. Brain Mapp. 35, 4805–4814.

Ciric, R., Wolf, D.H., Power, J.D., Roalf, D.R., Baum, G.L., Ruparel, K., Shinohara, R.T., Elliott, M.A., Eickhoff, S.B., Davatzikos, C., et al. (2017). Benchmarking of participant-level confound regression strategies for the control of motion artifact in studies of functional connectivity. NeuroImage 154, 174–187.
Corbit, L.H., and Balleine, B.W. (2000). The Role of the Hippocampus in Instrumental Conditioning. J. Neurosci. 20, 4233–4239.

Costa, V.D., Mitz, A.R., and Averbeck, B.B. (2019). Subcortical Substrates of Explore-Exploit Decisions in Primates. Neuron 103, 533-545.e5.

Cox, R.W. (1996). AFNI: Software for Analysis and Visualization of Functional Magnetic Resonance Neuroimages. Comput. Biomed. Res. 29, 162–173.

Daunizeau, J., Adam, V., and Rigoux, L. (2014). VBA: A Probabilistic Treatment of Nonlinear Models for Neurobiological and Behavioural Data. PLOS Comput Biol 10, e1003441.

Daw, N.D., O'Doherty, J.P., Dayan, P., Seymour, B., and Dolan, R.J. (2006). Cortical substrates for exploratory decisions in humans. Nature 441, 876–879.

DeVito, L.M., and Eichenbaum, H. (2011). Memory for the Order of Events in Specific Sequences: Contributions of the Hippocampus and Medial Prefrontal Cortex. J. Neurosci. 31, 3169–3175.

Dickerson, K.C., Li, J., and Delgado, M.R. (2011). Parallel contributions of distinct human memory systems during probabilistic learning. NeuroImage 55, 266–276.

Eklund, A., Nichols, T.E., and Knutsson, H. (2016). Cluster failure: Why fMRI inferences for spatial extent have inflated false-positive rates. Proc. Natl. Acad. Sci. 201602413.

Ekstrom, A., Suthana, N., Millett, D., Fried, I., and Bookheimer, S. (2009). Correlation Between BOLD fMRI and Theta-Band Local Field Potentials in the Human Hippocampal Area. J. Neurophysiol. 101, 2668–2678.

Fanselow, M.S., and Dong, H.-W. (2010). Are the Dorsal and Ventral Hippocampus Functionally Distinct Structures? Neuron 65, 7–19.

Fellner, M.-C., Volberg, G., Wimber, M., Goldhacker, M., Greenlee, M.W., and Hanslmayr, S. (2017). Spatial Mnemonic Encoding: Theta Power Decreases and Medial Temporal Lobe BOLD Increases Co-Occur during the Usage of the Method of Loci. ENeuro 3.

Fiorillo, C.D., Newsome, W.T., and Schultz, W. (2008). The temporal precision of reward prediction in dopamine neurons. Nat. Neurosci. 11, 966–973.

Fonov, V., Evans, A., McKinstry, R., Almli, C., and Collins, D. (2009). Unbiased nonlinear average age-appropriate brain templates from birth to adulthood. NeuroImage 47, S102.

Frank, M.J., Doll, B.B., Oas-Terpstra, J., and Moreno, F. (2009). Prefrontal and striatal dopaminergic genes predict individual differences in exploration and exploitation. Nat. Neurosci. 12, 1062–1068.

Garrison, J., Erdeniz, B., and Done, J. (2013). Prediction error in reinforcement learning: A meta-analysis of neuroimaging studies. Neurosci Biobehav Rev 37, 1297–1310.

Gaskin, S., Chai, S.-C., and White, N.M. (2005). Inactivation of the dorsal hippocampus does not affect learning during exploration of a novel environment. Hippocampus 15, 1085–1093.

Gerraty, R.T., Davidow, J.Y., Wimmer, G.E., Kahn, I., and Shohamy, D. (2014). Transfer of Learning Relates to Intrinsic Connectivity between Hippocampus, Ventromedial Prefrontal Cortex, and Large-Scale Networks. J. Neurosci. 34, 11297–11303.

Gershman, S.J. (2018). Deconstructing the human algorithms for exploration. Cognition 173, 34–42.
Gläscher, J., Daw, N., Dayan, P., and O’Doherty, J.P. (2010). States versus Rewards: Dissociable Neural Prediction Error Signals Underlying Model-Based and Model-Free Reinforcement Learning. Neuron 66, 585–595.

Greve, D.N., and Fischl, B. (2009). Accurate and robust brain image alignment using boundary-based registration. NeuroImage 48, 63–72.

Hallquist, M.N., and Dombrovski, A.Y. (2019). Selective maintenance of value information helps resolve the exploration/exploitation dilemma. Cognition 183, 226–243.

Hollup, S.A., Molden, S., Donnett, J.G., Moser, M.-B., and Moser, E.I. (2001). Accumulation of Hippocampal Place Fields at the Goal Location in an Annular Watermaze Task. J. Neurosci. 21, 1635–1644.

Hothorn, T., Bretz, F., and Westfall, P. (2008). Simultaneous inference in general parametric models. Biom. J. 50, 346–363.

Howe, M.W., Tierney, P.L., Sandberg, S.G., Phillips, P.E.M., and Graybiel, A.M. (2013). Prolonged dopamine signalling in striatum signals proximity and value of distant rewards. Nature 500, 575–579.

Hrybouski, S., MacGillivray, M., Huang, Y., Madan, C.R., Carter, R., Seres, P., and Malakhin, N.V. (2019). Involvement of hippocampal subfields and anterior-posterior subregions in encoding and retrieval of item, spatial, and associative memories: Longitudinal versus transverse axis. NeuroImage 191, 568–586.

Iglesias, J.E., Cheng-Yi Liu, Thompson, P.M., and Zhuowen Tu (2011). Robust Brain Extraction Across Datasets and Comparison With Publicly Available Methods. IEEE Trans. Med. Imaging 30, 1617–1634.

Iigaya, K., Hauser, T.U., Kurth-Nelson, Z., O’Doherty, J.P., Dayan, P., and Dolan, R.J. (2019). The value of what’s to come: neural mechanisms coupling prediction error and reward anticipation. BioRxiv 588699.

Johnson, A., and Redish, A.D. (2005). Hippocampal replay contributes to within session learning in a temporal difference reinforcement learning model. Neural Netw. 18, 1163–1171.

Jung, M., Wiener, S., and McNaughton, B. (1994). Comparison of spatial firing characteristics of units in dorsal and ventral hippocampus of the rat. J. Neurosci. 14, 7347–7356.

Kaplan, R., Doeller, C.F., Barnes, G.R., Litvak, V., Düzel, E., Bandettini, P.A., and Burgess, N. (2012). Movement-Related Theta Rhythm in Humans: Coordinating Self-Directed Hippocampal Learning. PLOS Biol. 10, e1001267.

Kempadoo, K.A., Mosharov, E.V., Choi, S.J., Sulzer, D., and Kandel, E.R. (2016). Dopamine release from the locus coeruleus to the dorsal hippocampus promotes spatial learning and memory. Proc. Natl. Acad. Sci. 113, 14835–14840.

Kheirbek, M.A., Drew, L.J., Burghardt, N.S., Costantini, D.O., Tannenholz, L., Ahmari, S.E., Zeng, H., Fenton, A.A., and Hen, R. (2013). Differential Control of Learning and Anxiety along the Dorsoventral Axis of the Dentate Gyrus. Neuron 77, 955–968.

Kjelstrup, K.B., Solstad, T., Brun, V.H., Hafting, T., Leutgeb, S., Witter, M.P., Moser, E.I., and Moser, M.-B. (2008). Finite Scale of Spatial Representation in the Hippocampus. Science 321, 140–143.

Komorowski, R.W., Garcia, C.G., Wilson, A., Hattori, S., Howard, M.W., and Eichenbaum, H. (2013). Ventral Hippocampal Neurons Are Shaped by Experience to Represent Behaviorally Relevant Contexts. J. Neurosci. 33, 8079–8087.
Lansink, C.S., Goltstein, P.M., Lankelma, J.V., McNaughton, B.L., and Pennartz, C.M.A. (2009). Hippocampus Leads Ventral Striatum in Replay of Place-Reward Information. PLOS Biol. 7, e1000173.

Lebreton, M., and Palminteri, S. (2016). When are inter-individual brain-behavior correlations informative? BioRxiv 036772.

Lee, H., Ghim, J.-W., Kim, H., Lee, D., and Jung, M. (2012). Hippocampal Neural Correlates for Values of Experienced Events. J. Neurosci. 32, 15053–15065.

Lisman, J., Buzsáki, G., Eichenbaum, H., Nadel, L., Rangananth, C., and Redish, A.D. (2017). Viewpoints: how the hippocampus contributes to memory, navigation and cognition. Nat. Neurosci. 20, 1434–1447.

Liu, Y., Dolan, R.J., Kurth-Nelson, Z., and Behrens, T.E.J. (2019). Human Replay Spontaneously Reorganizes Experience. Cell 178, 640-652.e14.

Lubenov, E.V., and Siapas, A.G. (2009). Hippocampal theta oscillations are travelling waves. Nature 459, 534–539.

Ludvig, E.A., Sutton, R.S., and Kehoe, E.J. (2008). Stimulus Representation and the Timing of Reward-Prediction Errors in Models of the Dopamine System. Neural Comput. 20, 3034–3054.

Ludvig, E.A., Sutton, R.S., and Kehoe, E.J. (2012). Evaluating the TD model of classical conditioning. Learn. Behav. 40, 305–319.

Mattar, M.G., and Daw, N.D. (2018). Prioritized memory access explains planning and hippocampal replay. Nat. Neurosci. 21, 1609–1617.

McCormick, C., Ciaramelli, E., De Luca, F., and Maguire, E.A. (2018). Comparing and Contrasting the Cognitive Effects of Hippocampal and Ventromedial Prefrontal Cortex Damage: A Review of Human Lesion Studies. Neuroscience 374, 295–318.

McNamara, C.G., Tejero-Cantero, Á., Trouche, S., Campo-Urriza, N., and Dupret, D. (2014). Dopaminergic neurons promote hippocampal reactivation and spatial memory persistence. Nat. Neurosci. 17, 1658–1660.

Miller, K.J., Botvinick, M.M., and Brody, C.D. (2017). Dorsal hippocampus contributes to model-based planning. Nat. Neurosci. 20, 1269–1276.

Millman, K.J., and Brett, M. (2007). Analysis of functional magnetic resonance imaging in Python. Comput. Sci. Eng. 9, 52–55.

Moser, M.-B., and Moser, E.I. (1998). Functional differentiation in the hippocampus. Hippocampus 8, 608–619.

Moustafa, A.A., Cohen, M.X., Sherman, S.J., and Frank, M.J. (2008). A role for dopamine in temporal decision making and reward maximization in Parkinsonism. J. Neurosci. 28, 12294–12304.

Mulej Bratec, S., Xie, X., Schmid, G., Doll, A., Schilbach, L., Zimmer, C., Wohlschläger, A., Riedl, V., and Sorg, C. (2015). Cognitive emotion regulation enhances aversive prediction error activity while reducing emotional responses. NeuroImage 123, 138–148.

Parker, N.F., Cameron, C.M., Taliaferro, J.P., Lee, J., Choi, J.Y., Davidson, T.J., Daw, N.D., and Witten, I.B. (2016). Reward and choice encoding in terminals of midbrain dopamine neurons depends on striatal target. Nat. Neurosci. 19, 845–854.
Patel, J., Fujisawa, S., Berényi, A., Royer, S., and Buzsáki, G. (2012). Traveling Theta Waves along the Entire Septotemporal Axis of the Hippocampus. Neuron 75, 410–417.

Payzan-LeNestour, E., and Bossaerts, P. (2011). Risk, Unexpected Uncertainty, and Estimation Uncertainty: Bayesian Learning in Unstable Settings. PLoS Comput Biol 7, e1001048.

Poldrack, R.A. (2015). Is “efficiency” a useful concept in cognitive neuroscience? Dev. Cogn. Neurosci. 11, 12–17.

Poppenk, J., Evensmoen, H.R., Moscovitch, M., and Nadel, L. (2013). Long-axis specialization of the human hippocampus. Trends Cogn. Sci. 17, 230–240.

Preston, A.R., and Eichenbaum, H. (2013). Interplay of Hippocampus and Prefrontal Cortex in Memory. Curr. Biol. 23, R764–R773.

Pruim, R.H.R., Mennes, M., van Rooij, D., Llera, A., Buitelaar, J.K., and Beckmann, C.F. (2015). ICA-AROMA: A robust ICA-based strategy for removing motion artifacts from fMRI data. NeuroImage 112, 267–277.

R Core Team (2017). R: A language and environment for statistical computing (Vienna, Austria: R Foundation for Statistical Computing).

Revelle, W., and Rocklin, T. (1979). Very Simple Structure: An Alternative Procedure For Estimating The Optimal Number Of Interpretable Factors. Multivar. Behav. Res. 14, 403–414.

Roche, A. (2011). A Four-Dimensional Registration Algorithm With Application to Joint Correction of Motion and Slice Timing in fMRI. IEEE Trans. Med. Imaging 30, 1546–1554.

Rolls, E.T., and Xiang, J.-Z. (2005). Reward-Spatial View Representations and Learning in the Primate Hippocampus. J. Neurosci. 25, 6167–6174.

Royer, S., Sirota, A., Patel, J., and Buzsáki, G. (2010). Distinct Representations and Theta Dynamics in Dorsal and Ventral Hippocampus. J. Neurosci. 30, 1777–1787.

Singer, J.D., and Willett, J.B. (2003). Applied Longitudinal Data Analysis: Modeling Change and Event Occurrence (Oxford University Press).

Smith, S.M., Jenkinson, M., Woolrich, M.W., Beckmann, C.F., Behrens, T.E.J., Johansen-Berg, H., Bannister, P.R., De Luca, M., Drobnjak, I., Flitney, D.E., et al. (2004). Advances in functional and structural MR image analysis and implementation as FSL. NeuroImage 23 Suppl 1, S208-S219.

Stachenfeld, K.L., Botvinick, M.M., and Gershman, S.J. (2017). The hippocampus as a predictive map. Nat. Neurosci. 20, 1643–1653.

Strange, B.A., Witter, M.P., Lein, E.S., and Moser, E.I. (2014). Functional organization of the hippocampal longitudinal axis. Nat. Rev. Neurosci. 15, 655–669.

Strosslin, T., and Gerstner, W. (2003). Reinforcement Learning in Continuous State and Action Space. 4.

Sutton, R.S., and Barto, A.G. (1998). Reinforcement learning: An introduction (Cambridge, MA: MIT Press).

Takeuchi, T., Duszkiewicz, A.J., Sonneborn, A., Spooner, P.A., Yamasaki, M., Watanabe, M., Smith, C.C., Fernández, G., Deisseroth, K., Greene, R.W., et al. (2016). Locus coeruleus and dopaminergic consolidation of everyday memory. Nature 537, 357–362.
Therneau, T.M. (2018). coxme: Mixed Effects Cox Models.

Theves, S., Fernandez, G., and Doeller, C.F. (2019). The Hippocampus Encodes Distances in Multidimensional Feature Space. Curr. Biol. CB 29, 1226-1231.e3.

Tottenham, N., Tanaka, J.W., Leon, A.C., McCary, T., Nurse, M., Hare, T.A., Marcus, D.J., Westerlund, A., Casey, B., and Nelson, C. (2009). The NimStim set of facial expressions: judgments from untrained research participants. Psychiatry Res. 168, 242–249.

Viard, A., Doeller, C.F., Hartley, T., Bird, C.M., and Burgess, N. (2011). Anterior Hippocampus and Goal-Directed Spatial Decision Making. J. Neurosci. 31, 4613–4621.

Vikbladh, O.M., Meager, M.R., King, J., Blackmon, K., Devinsky, O., Shohamy, D., Burgess, N., and Daw, N.D. (2019). Hippocampal Contributions to Model-Based Planning and Spatial Memory. Neuron.

Wimmer, G.E., and Shohamy, D. (2012). Preference by Association: How Memory Mechanisms in the Hippocampus Bias Decisions. Science 338, 270–273.

Winterburn, J.L., Pruessner, J.C., Chavez, S., Schira, M.M., Lobaugh, N.J., Voineskos, A.N., and Chakravarty, M.M. (2013). A novel in vivo atlas of human hippocampal subfields using high-resolution 3T magnetic resonance imaging. NeuroImage 74, 254–265.

Woo, C.-W., Krishnan, A., and Wager, T.D. (2014). Cluster-extent based thresholding in fMRI analyses: Pitfalls and recommendations. NeuroImage 91, 412–419.

Woolrich, M. (2008). Robust group analysis using outlier inference. NeuroImage 41, 286–301.

Woolrich, M.W., Ripley, B.D., Brady, M., and Smith, S.M. (2001). Temporal autocorrelation in univariate linear modeling of FMRI data. NeuroImage 14, 1370–1386.

Woolrich, M.W., Behrens, T.E.J., Beckmann, C.F., Jenkinson, M., and Smith, S.M. (2004). Multilevel linear modelling for FMRI group analysis using Bayesian inference. NeuroImage 21, 1732–1747.