Sample Size for Concurrent Species Detection in a Species-Rich Assemblage

Ali T. Haidar1, Abbas Al-Hakim2, and Zhiyi Zhang3

1Department of Geography, Faculty of Humanities, First Section, Beirut, Lebanon. Corresponding author. E-mail address: altahldr@gmail.com

2Department of Mathematics, American University of Beirut (AUB), Beirut, Lebanon.

3Department of Mathematics and Statistics, University of N. Carolina at Charlotte (UNCC), N. Carolina, USA.

KEYWORDS
Alpha, binomial distribution, biodiversity, biostratigraphy, biozone, calcareous nannofossils, confidence level, species count, diversity, ecology, evolution, geography, geologic time, geology, independent and identically distributed sample, law of inclusion and exclusion, marker species, microfossils, micropaleontology, minimum sample size, multinomial distribution, multiple species detection, oceanography, paleoceanography, paleoecology, percentage, probability of failure, sampling effort, sediment, species proportion, relative abundance, stratigraphic correlation, stratigraphic markers, stratigraphy, subset, taxon.

ABSTRACT
Monitoring the distribution of microfossils in stratigraphic successions is an essential tool for biostratigraphic, evolutionary and paleoecologic/paleoceanographic studies. To estimate the relative abundance (%) of a given species, it is necessary to estimate in advance the minimum number of specimens to be used in the count (n). This requires an \textit{a priori} assumption about a specified level of confidence, and about the species population proportion (p). It is common use to apply the binomial distribution to determine n to detect the presence of \textit{more} than one species in the same sample, although the multinomial distribution should necessarily be used instead. The mathematical theory of sample size computation using the multinomial distribution is adapted to the computation of n for any number of species to be detected together (K) at any level of confidence. Easy-to-use extensive tables show n, for a combination of K and p. These tables indicate a large difference for n between that indicated by the binomial and those by the multinomial distribution when many species are to be detected simultaneously. Counting only 300 specimens (with 95% confidence level) or 500 (99%) is not enough to detect more than one taxon. The reconstructed history of the micro-biosphere may therefore, in many instances, need to be
largely revised. This revision should affect our understanding of the ecological and evolutionary relationships between the past changes in the biosphere and the other major reservoirs (hydrosphere, geosphere and atmosphere). In biostratigraphy and biochronology, using a much larger sample size, when more than one marker species is to be detected in the neighborhood of the same biozone boundary, may help clarifying the nature of the apparent inconsistencies given by the observed reversals in the ordinal (rank) biostratigraphic data shown as intersections of the correlation lines.

1 GEOLOGICAL AND ECOLOGICAL BACKGROUND

1.1 Introduction

Statistical techniques are used to compensate for sampling effects (for a review, see Hayek and Buzas, 1997; Moore et al., 2007). The relative abundances of species (or taxa in general) and/or their remains based on sample counts are used to estimate their original proportion in the living communities and the fossil assemblages, hence the necessity to compute n to be used in the estimate of the abundance of a given species at a specified level of confidence. Obviously, the higher the number of species to be contemporaneously detected in a sample, the larger the required value of n, implying a larger sampling effort. Determining precisely this minimum sample size is particularly relevant in ecological, evolutionary and stratigraphic studies. For the detection of the position of a stratigraphic event, micropaleontologists analyze a short geologic (stratigraphic) time interval rather than a single point in geologic time. In other words, biostratigraphic events are detected over a number of samples in the stratigraphic succession, and more than one marker species may appear (or disappear) during the time interval represented by these samples, thus the recurrent need for monitoring precisely the relative abundance of all of these marker species (usually attempting to detect them together) in the same sample, at a given levels of confidence. Hereafter we use “together” to indicate that the species were detected using the same count rather than by repeating the count to detect another species in the same sample.

1.2 Current Practice to Determine Sample Size

1.2.1 Binomial Distribution

Micropaleontologists are usually interested in detecting co-occurring species mainly at 3 confidence levels (90, 95 and 99%). It may seem contradictory (circular thinking) to assume a certain population proportion for the determination of n, if this sample will in turn be used to estimate this (originally given) population proportion (see this reasoning in Moore et al., 2007). However, since the original definition of most biostratigraphic events (definition of a biozone boundary) requires a priori a change through time of the species proportion in the population so that it becomes either larger (or smaller) than a pre-determined value (e.g., an event is identified when the proportion of a given stratigraphic marker exceeds 5%, see Backman et al., 2012 as an example) at a given stratigraphic level (e.g., first or last appearance, etc.), then there is a necessity to determine n using the species proportion (i.e., searching this size in a table by choosing the assumed population proportion) as indicated by the original biostratigraphic definition of the event in order to check for the possible presence of such an event. In other words, there is a need to perform the taxonomic analysis by knowing in advance how many specimens to count in any sample. To estimate the sample size (n) for given species abundances, found in a species-rich assemblage, both binomial (e.g., Dennison and Hay, 1967; Fatela and Taborda, 2002) and multinomial (e.g., Moore et al., 2007) distributions are used. The use of the binomial distribution model is based on the assumption that the underlying population is a homogeneous random mixture (Agterberg, 1990). Using binomial
distributions, the required n is estimated in order to detect a given species chosen a priori, present in the population at a certain proportion, with a given degree of confidence (1 - probability of failure). The probability of failure (fail to detect a species in the sample even when this is present in the population = incorrectly rejecting the null hypothesis) is denoted with P, whereas the species proportion in the population is denoted with p. A standard procedure in micropaleontology was therefore to count 299 specimens per sample - usually used as 300 specimens - for the confidence level of 95%, in order to detect a species present in the population at 1% (or 459 specimens with 99% confidence - usually used as 500 specimens). Note that these values of n, extracted from the graph of Dennison and Hay (1967), are approximate. In the sedimentary record, to detect the presence of a given taxon, a minimum relative abundance of it should be observed. In other words, it is not enough to observe only one specimen of this taxon to confirm its presence. This is due to a variety of factors (see discussion in Agterberg, 1990), including for example either the (random) vertical mixing of pelagic sediments (Guinasso and Schink, 1975), or its discrete vertical shuffling (Haidar, 2015).

1.2.2 The Paradox Given by the Use of the Multinomial Distribution is only Apparent

How could a count be valid for the detection of a given species alone, and the same count be valid for the detection of another given species alone, but the same count cannot be used for the detection of both species together? For two biostratigraphers looking at the results of a count at the same time, it may seem that one of them would have the “right“ to interpret the results as valid for the detection of the first species, whereas the other would interpret the same results for the detection of the second species. This paradox is however only apparent, and the use of the multinomial distribution implies that the same count cannot be valid for the detection of both species together. Indeed, it is possible to clarify how using the same count is misleading by applying an (opposite) example on half of the count. Two biostratigraphers looking, at the same time, at the results of only half of a count (counting only the half of the total number of individuals required following the binomial distribution - to detect only one species). One of them would think s/he has the “right“ to interpret the results as representing the first half of the count, whereas the other would interpret the same results as valid for the second half. Clearly, counting only half of the required total number of individuals is not enough to detect the presence of a species.

1.2.3 Binomial Distribution Leads to a Down-sized Sample

Values of n were commonly and erroneously applied, by relying on a binomial distribution, regardless of how many species were to be detected together. Computing n, using Dennison and Hay (1967), to detect concurrent (multiple) species (together) leads obviously to a down-sized sample. In biodiversity studies, this error in the estimate of n implies the detection of any species at a confidence level lower than that required. In biostratigraphy, species are most of the time rare around their times of origination and extinction. A down-sized sample may therefore lead to an error in the determination of the position of a biostratigraphic event. In chronostratigraphy, this error would show, on average, an apparent lowest (highest) occurrence of a stratigraphic marker later (earlier) than what it could be detected using an appropriate n. This is may be, in part, the reason for which an apparent inconsistency is (commonly) observed as reversals in the ranking of biostratigraphic events. This change of the time-order relationships of the biostratigraphic events between different stratigraphic successions appears in the form of intersections of the correlation lines (see examples in Hills and Thierstein, 1989).
1.2.4 Previously Available Multinomial Sample Sizes Are Neither Applicable to Biostratigraphy Nor to Biodiversity

In a multinomial distribution (see e.g., Degroot and Schervish, 2012), several categories or species are considered with proportions $p_1, \ldots; p_K$, where K is the number of categories. Moore et al. (2007) used a multinomial model to compute n necessary to detect a species at a given confidence level. However, they required to estimate all the relative species abundances ($p_1, \ldots; p_K$) at a fixed confidence level when a degree of similarity d is predetermined. This degree of similarity is not the species proportion in the population, but rather a predetermined margin of error identical for the estimate of all the species proportions. As this is not the major concern in biostratigraphy, our approach is rather similar to that used by Dennison and Hay (1967), in terms of setting in advance both the original species proportion and the confidence level, but applied to a multinomial (rather than to a binomial) distribution, by seeking the n needed to detect K species in the same sample (i.e., simultaneously).

1.3 Sample Size Based on a Multinomial Distribution

1.3.1 Practical Estimate of Sample Size

This paper uses a binomial distribution only if $K = 1$ (only one pre-determined species to be detected in a sample). The distribution becomes multinomial for $K > 1$, with more than one pre-determined species to be detected together, and with the original individual proportions $p_1, p_2, \ldots, p_K, p_{K+1}$ all pre-determined. The multinomial model computes n to detect all of the species of interest together, rather than any (particular subset) of them, each of them being present at a possibly different relative abundance in the population. The multinomial distribution gives precise values of n. Although the full mathematical derivation is provided (see below), this does not need to be understood in order to apply the method, as detailed and easy-to-use statistical tables are also provided. Due to space limitation, our tables cannot provide values of n for every possible combination of confidence level, species proportion in the population, and number of concurrent species of interest. The theoretical background provided compensates for the missed computation of any possible combination of these parameters. The computation of n can be done by solving the inequality provided (see below) using standard mathematical software Mathematica®, Matlab®, Maple®, or the open source Maxima® (descendent of Macsyma®), etc. In other words, there is no need to solve it by hand in any practical situation. Furthermore, if one needs to skip the computation, and still get a useful estimate of n for a combination of the above-mentioned parameters that is not available in any table, it is recommended to use a sample size (value) available in a table corresponding to a slightly more confidence (i.e., choosing a confidence level slightly larger than that required or a slightly smaller value of α), to a slightly smaller species proportion (a slightly smaller value of p than that required), and/or to a slightly larger number of concurrent species of interest to be detected simultaneously (a slightly larger value of K). Although this procedure will have the disadvantage of giving sample sizes (slightly) larger than those that would be precisely calculated (larger counting effort), it will have the advantage of providing an additional gain in the accuracy of the estimate of the species proportion (conservative estimate).

1.3.2 Example and Practice

Persico et al. (2012) counted at least 500 specimens per sample. In one stratigraphic interval (at around 40 mbsf) of an investigated succession (ODP Hole 738B, Southern Kerguelen Plateau in the Southern Indian Ocean), they attempted to detect 4 species ($C. reticulatum$, $C. eoaltus$, $I. recurvus$, and $R. oamaraensis$) together (their Fig. 2). It is may be recommended to consider that the neighborhood of the
biozone boundary - the stratigraphic interval useful for the detection of the lowest (or highest) occurrence of a species - is not only the indicated depth, but expanded to cover also the stratigraphic distance including at least a couple of samples lying immediately below (a couple above) the position of this occurrence.

It is worth noting that the species were anyway detected in the stratigraphic succession even using the binomial distribution. The focus here is rather on whether the binomial distribution allowed for the detection of the lowest (common) or the highest occurrence for each of the 4 investigated species in the proper stratigraphic position at the required level of confidence.

Based on the previous way of thinking that was leading to the use of the binomial distribution, a count of 500 (it should actually be of only 459) specimens should have been enough to detect any of these species present in the population at 1% or more, with 99% confidence. However, based on the interpretation of the multinomial distribution provided in this paper, and in order to detect all of the 4 species together, each of them being present at 1% and with 99% confidence, at least 599 specimens (Table 4, column 2, row 3, with $K = 4$, $p_1 = p_2 = p_3 = p_4 = 0.01$, and probability of failure = 0.01) should have been counted in every sample of this stratigraphic interval. Based on Table 4, a count of only 500 specimens in these 3 samples would still be enough to detect these species, but at 95% confidence (column 2, row 2, with $K = 4$, $p_1 = p_2 = p_3 = p_4 = 0.01$, and probability of failure = 0.05 gives a minimum of 437 specimens).

Persico et al. (2012) were indirectly able to largely overcome this problem (of not counting the extra needed 599 - 500 = 99 specimens per sample) by additionally scanning 2 long traverses (80 mm2). However, by counting traverses, it is not possible to quantitatively assess neither the minimum percentage of the detected species in the population, nor the degree of confidence reached during the analysis.

In another stratigraphic interval (at around 100 mbsf), Persico et al. (2012) monitored together the lowest occurrence of C. reticulatum and the highest occurrence of R. clatrata. According to the multinomial distribution, a minimum of 527 specimens per sample (Table 2 (with $K = 2$), column 3, row 14, $p_1 = p_2 = 0.01$, and probability of failure = 0.01) is required to detect both species together, each of them being present in the population at 1%, and with 99% confidence level. A count of only 500 specimens in these 3 samples (the sample where the species is detected, and the adjacent 2 samples where the species is not detected in the count) would theoretically be enough to detect both of these 2 species at 99% confidence, when one of these 2 species is present at 1% (or at a higher proportion) in the population, but this count will allow for the detection of the remaining species only if this is present at 5% (or at a higher proportion) in the population (Table 2, column 3, row 9, $p_1 = 0.01$, $p_2 = 0.05$, and probability of failure = 0.01, gives a sample size of 459 specimens). Conversely, a count of only 500 specimens in these 3 samples would be theoretically enough, when both of the species are present at 1% (or at a higher proportion) in the population, to detect both of the species only at 95% confidence (Table 2, column 2, row 14, $p_1 = p_2 = 0.01$, and probability of failure = 0.05, gives a sample size of 366 specimens).

When searching in the Tables 2 and 3, if the required proportion p_1, p_2 or p_3 of the first species is not found in the first column of the appropriate table, then the user should try to find the proportion of this first species in the second column (if not, then in the third, and so on). To avoid redundancy, Tables 2 and 3 contain all the possible combinations for the selected p and n, but not in any possible order. Obviously, this order doesn't influence the computation of the sample size.
1.3.3 Count Method

The procedure of species count using the multinomial distribution could be made in two steps. Since, prior to the microscopic investigations, the biostratigrapher cannot know the sample stratigraphic position with respect to the standard biozonations, it is not clear a priori which definition of a biostratigraphic event is to be used (i.e., not clear how many are the predetermined stratigraphic markers to investigate together, and at which proportions these marker species need to be detected). A preliminary count should therefore be made, using a sample size based on a binomial distribution. This is equivalent to trying to detect only one species \(K = 1 \) per count. The results of this preliminary count are used to approximately identify the position of the stratigraphic event. Only then, it would be possible to make a preliminary identification of all the concurrent marker species possibly present at the given stratigraphic interval. After this preliminary identification, the correction of the sample size could be made based on the multinomial distribution.

The number of the marker species \(K \) is not determined for a single sample, but rather for a short geologic time interval, corresponding to the neighborhood of the biozone boundary. This stratigraphic interval might be covered by few samples (not only one), with \(K \) that applies to each sample in this interval. To determine \(K \) for each sample, there is a need to detect the total number of marker species present in the whole stratigraphic interval, rather than in the specific single sample.

Consider for example a biostratigraphic event (a lowest occurrence of a marker species) that is usually identified (by going upward in the stratigraphic succession) when its relative abundance exceeds 1\%. If, during the identification of this stratigraphic event, the count based on a sample size relative to a binomial distribution revealed the presence of one additional marker species in the same stratigraphic interval, then an additional count should be made on the remaining individuals of the same sample to increase \(n \) from that based on a binomial distribution into that based on a multinomial distribution having \(K = 2 \). If, using the binomial distribution, 2 additional marker species were detected during the count (instead of only 1), then the remaining needed part of the count should increase the sample size so that the total number of species counted would correspond to that given by a multinomial distribution with \(K = 3 \). In other words, the additional counts should be made using the remaining part of the sample, with the difference between binomial and multinomial sample size to be added to those of the previous count that was based on a sample size relative to the binomial distribution. This is to reach a total sample size computed according to that given by the multinomial distribution, after the definite value of \(K \) has been determined.

Only in rare cases, it would be necessary to repeat this procedure. This would be equivalent to making more than one count on (the remaining individuals of) the same sample. This repetition practically leads to a repetitive increase of the value of \(n \) (i.e., increase of \(n \) more than once). This is necessary when more than one additional count reveals an increase the in number of marker species (of interest). In this case, the total number of species revealed with all of the counts together (original count based on a binomial distribution, and all of the additional counts based on multinomial distributions) would have to be used to select the appropriate multinomial table and compute \(n \) accordingly.

A similar count procedure could be used while estimating the diversity of an assemblage, although in some diversity studies there could be more interest in time slices rather than in stratigraphic intervals. A preliminary count could be made, based on a binomial distribution, to roughly estimate the number of species to be detected simultaneously \(K \), and their corresponding approximate proportion in the population \((p_n) \), before determining precise values of \(n \) based on the multinomial distribution.
The number of times an additional count must be made is quite limited, despite the fact that the continuous increase of \(n \) gives more chance to reveal the presence of additional rare species of interest (increase of \(K \)). This is because, in stratigraphy for example, in most cases, the extremely rare species are usually not used in the standard biozonations.

Using this count method for the multinomial distribution, it becomes easy to correct both the position of stratigraphic events and the diversity estimates previously established using counts based on the binomial distribution. Indeed, once the correction of the sample size is revealed to be necessary, it would be easier to rely on the results of any previous count (rather than to repeat the count on any sample from the beginning), and only add to these results those of a new count using a newly prepared part of the same sample in order to reach a value of \(n \) suitable according the multinomial distribution.

2 STATISTICAL FOUNDATIONS

Consider a population with multiple species and their proportions \(\{p_k^*; k \geq 1\} \), where \(k = 1, \ldots \), is an index for species and there could be infinitely many species in the population. Suppose a micropaleontologist would like to take an independent and identically distributed sample of size \(n \) to include \(K \geq 1 \) pre-determined markers simultaneously with probability \(1 - \alpha \). How large should the sample size be?

Say that a micropaleontologist or a biodiversity specialist considers \(K \) marker species, then the rest of the species can be lumped into one group. Consequently, we have a multinomial distribution \(\{p_k; k = 1, \ldots, K, K + 1\} \) with \(K \) parameters, \(p_k = p_k^* \), for \(k = 1, \ldots, K \), and \(p_{K+1} = \sum_{k \geq K+1} p_k^* \). Clearly \(\sum_{k=1}^{K+1} p_k = \sum_{k \geq 1} p_k^* = 1 \). We want for some small \(\alpha \in (0, 1) \)

\[
P(Y_1 \geq 1 & Y_2 \geq 1 & \cdots & Y_K \geq 1) \geq 1 - \alpha;
\]

where \(Y_k \) is the observed sample frequency of the \(k^{th} \) marker in the sample, or equivalently by using the complement and then applying the law of inclusion and exclusion

\[
\alpha \geq P(Y_1 = 0 \text{ or } Y_2 = 0 \text{ or } \cdots \text{ or } Y_K = 0) \\
= \sum_{k=1}^{K} P(Y_k = 0) \\
+ (-1)^{2-1} \sum_{1 \leq k_1 < k_2 \leq K} P(Y_{k_1} = 0 \text{ & } Y_{k_2} = 0) \\
+ (-1)^{3-1} \sum_{1 \leq k_1 < k_2 < k_3 \leq K} P(Y_{k_1} = 0 \text{ & } Y_{k_2} = 0 \text{ & } Y_{k_3} = 0) \\
+ \cdots \\
+ (-1)^{K-1} P(Y_1 = 0 \text{ & } Y_2 = 0 \text{ & } \cdots \text{ & } Y_K = 0).
\]

Provided \(\{p_k\} \) and \(\alpha \) are known, the last expression in (1) is a function of the sample size \(n \), which therefore can be in principle solved in that inequality, \textit{i.e.}, the smallest integer value of \(n \) satisfying (1).
However, when K is large, solving that inequality could be a bit tedious by hand. Zooming in on any additive term of the last expression of (1) and ignoring the sign, by symmetry we have the term involving m ($m \leq K$) indices, k_1, \ldots, k_m,

$$\sum_{1 \leq k_1 < k_2 < \cdots < k_m \leq K} P(Y_{k_1} \& \cdots \& Y_{k_m} = 0) = \sum (1 - p_{k_1} - p_{k_2} - \cdots - p_{k_m})^n$$

where the second \sum is over the same index set as the first \sum. Therefore the general form of the inequality in (1) is

$$(a_1^n + a_2^n + \cdots + a_I^n) - (b_1^n + b_2^n + \cdots + b_J^n) \leq \alpha$$

where I and J are some (possibly very large) positive integers. The objective is to find the smallest integer value n satisfying the inequality in (2).

Since in the practice of micropaleontology, and in some biodiversity studies, it is most common that, for an anticipated sample, one would only work with a few particular marker species, we will first reduce the general problem to a few special cases and solve the inequality for $K=1$, 2, and 3. Then we will proceed with the calculation for $K=4$ or more only under specific assumptions.

2.1 $K = 1$.

For illustration purpose, let us work out the case of $K = 1$. In this case, (1) becomes

$$P(Y_1 = 0) = (1 - p_1)^n \leq \alpha.$$

or equivalently

$$n = \begin{cases} \left\lfloor \frac{\ln(\alpha)}{\ln(1 - p_1)} \right\rfloor, & \text{if } \left\lfloor \frac{\ln(\alpha)}{\ln(1 - p_1)} \right\rfloor \text{ is a positive integer,} \\ \left\lfloor \frac{\ln(\alpha)}{\ln(1 - p_1)} \right\rfloor + 1, & \text{otherwise,} \end{cases}$$

where $\lfloor \cdot \rfloor$ is the floor of a real number. The formula in (3) gives the precise value of the minimum sample size required to cover at least $K = 1$ specimen in a sample with probability α. The figure of Dennison and Hay (1967) is essentially an approximation of this simple formula. Let us write $p_1 = p$. Table 1 below gives the required sample size for various values of p, and various values of $1 - \alpha$.

Table 1. Minimum sample sizes required for detecting $K = 1$ marker species.

$1 - \alpha$	$p = 0.001$	$p = 0.005$	$p = 0.010$	$p = 0.050$	$p = 0.100$
0.90	2302	460	230	45	22
0.95	2995	598	299	59	29
0.99	4603	919	459	90	44

The readers may wish to compare Table 1 to the values extracted from the figure of Dennison and Hay (1967). Note that the commonly used value $n = 500$ is highly approximate as this should be $n = 459$.
2.2 \(K = 2. \)

When \(K = 2, \) based on (1) we want to find the minimum integer value of \(n \) such that

\[
(1 - p_1)^n + (1 - p_2)^n - (1 - p_1 - p_2)^n \leq \alpha.
\]

(4)

The formula in (4) is for any set of values of \(p_1 \in (0, 1) \) and \(p_2 \in (0, 1) \) subject to \(p_1 + p_2 \in (0, 1). \) For illustration, we produce the Table 2 for various values of \(p_1 \) and \(p_2. \)

2.3 \(K = 3. \)

When \(K = 3, \) based on (1) we want to find the minimum integer value of \(n \) such that

\[
(1 - p_1)^n + (1 - p_2)^n + (1 - p_3)^n - (1 - p_1 - p_2)^n - (1 - p_1 - p_3)^n - (1 - p_2 - p_3)^n + (1 - p_1 - p_2 - p_3)^n \leq \alpha.
\]

(5)

The formula in (5) is for any set of values of \(p_1 \in (0, 1), \) \(p_2 \in (0, 1) \) and \(p_3 \in (0, 1) \) subject to \(p_1 + p_2 + p_3 \in (0, 1). \) For illustration, we produce the Table 3 for various values of \(p_1, p_2, \) and \(p_3. \)

2.4 \(K = 4 \) or more.

Table 4 indicates the minimum integer value of \(n \) when many species are to be detected together. The use of this table requires that all of the species should be present at the same original proportion in the population. This table is also essential in biodiversity studies. It is based on a formula that applies properly only for large values of \(K. \) For small values of \(K, \) the formula in (6) becomes approximate (the formula in (7) is used to calculate table 4). The error due to the approximation given by this table, when present, is conservative (always an overestimate) of the sample size. In other words, by using Table 4, the biostratigrapher is in reality counting only very few specimens more than required by the minimum sample size necessary.

\[
\sum_{i=0}^{K} \binom{K}{i} (-1)^{i} (1 - ip)^n \gtrsim 1 - \alpha
\]

\[
\sum_{i=0}^{K} \binom{K}{i} (-1)^{i} (1 - \frac{i}{1/p})^{np} \gtrsim 1 - \alpha
\]

\[
\sum_{i=0}^{K} \binom{K}{i} (-e^{-np})^i \gtrsim 1 - \alpha
\]

\[
(1 - e^{-np})^K \gtrsim 1 - \alpha
\]

\[
1 - e^{-np} \gtrsim (1 - \alpha)^\frac{1}{K}
\]

\[
e^{-np} \lesssim 1 - (1 - \alpha)^\frac{1}{K}
\]

\[
-np \lesssim \ln|1 - (1 - \alpha)^\frac{1}{K}|
\]
\[n \gtrsim \frac{1}{p} \ln \left[\frac{1}{1 - (1 - \alpha) \frac{1}{K}} \right] \]
\[n \approx \left[\frac{1}{p} \ln \left(\frac{1}{1 - (1 - \alpha) \frac{1}{K}} \right) \right] - 2 \]

Table 2. Minimum sample sizes required for detecting \(K = 2 \) marker species together showing some possible combinations of \(\alpha \) (0.1, 0.05, 0.01, 0.005, 0.001, 0.0005, and 0.0001) with \(p \) (0.1, 0.05, 0.01, 0.005, 0.001, 0.0005, and 0.0001). Example: 598 specimens (individuals) are to be counted (see row 4, column 2, header rows and header columns not included) in order to detect 2 species together (using the same count), with one of the species being present at 0.5% (0.005) in the population and the other at 10% (0.1), with a confidence level of 95% (\(\alpha = 0.05 \)).
Table 3. Minimum sample sizes required for detecting $K = 3$ marker species together showing some possible combinations of α (0.1, 0.05, 0.01, 0.005, 0.001, 0.0005, and 0.0001) with p (0.1, 0.05, 0.01, 0.005, 0.001, 0.0005, and 0.0001). Example: 4603 specimens (individuals) are to be counted (see row 11, column 3, header rows and header columns not included) in order to detect 3 species together (using the same count), with one species being present at 0.1% (0.001) in the population, another species at 5% (0.05), and the remaining at 10% (0.1), with a confidence level of 99% ($\alpha = 0.01$).

p_1	p_2	p_3	α	0.1	0.05	0.01	0.005	0.001	0.0005	0.0001	
0.1	0.1	0.1	33	39	55	61	76	83	98		
0.05	0.1	0.1	48	60	91	104	135	149	180		
0.01	0.1	0.1	230	299	459	528	688	757	917		
0.005	0.1	0.1	460	598	919	1058	1379	1517	1838		
0.001	0.1	0.1	2302	2995	4603	5296	6905	7598	9206		
0.0005	0.1	0.1	4605	6905	7598	8293	9899				
0.0001	0.1	0.1	23025	29956	46050	52981	69075	76006	92099		
0.05	0.05	0.1	59	71	104	117	149	162	194		
0.01	0.05	0.1	230	299	459	528	688	757	917		
0.005	0.05	0.1	460	598	919	1058	1379	1517	1838		
0.001	0.05	0.1	2302	2995	4603	5296	6905	7598	9206		
0.0005	0.05	0.1	4605	6905	7598	8293	9899				
0.0001	0.05	0.1	23025	29956	46050	52981	69075	76006	92099		
0.1	0.01	0.1	296	366	527	597	757	826	986		
0.05	0.01	0.1	476	607	921	1058	1379	1517	1838		
0.01	0.01	0.1	2302	2995	4603	5296	6905	7598	9206		
0.005	0.01	0.1	460	690	759	826	986	125	170	201	
0.05	0.05	0.05	230	299	459	528	688	757	917		
0.01	0.05	0.05	460	598	919	1058	1379	1517	1838		
0.005	0.05	0.05	4605	6905	7598	8293	9899				
0.0005	0.05	0.05	23025	29956	46050	52981	69075	76006	92099		
0.05	0.05	0.05	296	366	527	597	757	826	986		
0.01	0.01	0.05	460	607	921	1058	1379	1517	1838		
0.005	0.01	0.05	4605	6905	7598	8293	9899				
0.0005	0.01	0.05	23025	29956	46050	52981	69075	76006	92099		
p_1	p_2	p_3	0.1	0.05	0.01	0.005	0.001	0.0005	0.0001	0.00005	0.00001
--------	--------	-------	------	-------	-------	-------	-------	--------	--------	---------	---------
0.0001	0.01	0.05	23025	29956	46050	52981	69075	76006	92099		
0.005	0.005	0.05	593	734	1057	1196	1517	1655	1976		
0.001	0.005	0.05	2302	2995	4603	5296	6905	7598	9206		
0.0005	0.005	0.05	4605	5990	9209	10594	13813	15199	18417		
0.001	0.005	0.05	23025	29956	46050	52981	69075	76006	92099		
0.001	0.001	0.05	2969	3675	5294	5988	7597	8290	9899		
0.0005	0.001	0.05	4765	6079	9228	10604	13815	15199	18417		
0.001	0.001	0.05	23025	29956	46050	52981	69075	76006	92099		
0.005	0.0005	0.05	5939	7351	10589	11978	15198	16584	19802		
0.001	0.005	0.05	23026	29956	46050	52981	69075	76006	92099		
0.001	0.0001	0.05	29696	36760	52956	59900	76003	82936	99030		
0.01	0.01	0.01	336	406	568	637	797	866	1026		
0.005	0.01	0.01	489	615	923	1059	1379	1517	1838		
0.001	0.01	0.01	2302	2995	4603	5296	6905	7598	9206		
0.0005	0.01	0.01	4605	5990	9209	10594	13813	15199	18417		
0.001	0.01	0.01	23025	29956	46050	52981	69075	76006	92099		
0.005	0.005	0.01	598	736	1058	1196	1517	1655	1976		
0.001	0.005	0.01	2302	2995	4603	5296	6905	7598	9206		
0.0005	0.005	0.01	4605	5990	9209	10594	13813	15199	18417		
0.001	0.005	0.01	23025	29956	46050	52981	69075	76006	92099		
0.001	0.001	0.01	2969	3675	5294	5988	7597	8290	9899		
0.005	0.001	0.01	4765	6079	9228	10604	13815	15199	18417		
0.001	0.001	0.01	23025	29956	46050	52981	69075	76006	92099		
0.005	0.0005	0.01	5939	7351	10589	11978	15198	16584	19802		
0.001	0.0005	0.01	23026	29956	46050	52981	69075	76006	92099		
0.001	0.0001	0.01	29696	36760	5295	59900	76003	82936	99030		
0.005	0.005	0.005	672	814	1138	1276	1598	1736	2057		
0.001	0.005	0.005	2302	2995	4603	5296	6905	7598	9206		
0.0005	0.005	0.005	4605	5990	9209	10594	13813	15199	18417		
0.001	0.005	0.005	23025	29956	46050	52981	69075	76006	92099		
0.005	0.005	0.005	4765	6079	9228	10604	13815	15199	18417		
0.001	0.0005	0.005	23025	29956	46050	52981	69075	76006	92099		
0.001	0.0005	0.005	29696	36760	5295	59900	76003	82936	99030		
0.005	0.005	0.005	33664	40772	57002	63950	80057	86990	100001		
Table 4. Minimum sample sizes required to detect $K = 4$, 5, ..., 30 marker species together (using the same count), at the confidence levels of 90% ($\alpha = 0.1$), 95% ($\alpha = 0.05$), 99% ($\alpha = 0.01$), and 99.9% ($\alpha = 0.001$). This table shows the sample size when this original proportion is either 5% (0.05), or 1% (0.01), or 0.5% (0.005), or 0.1% (0.001) or 0.05% (0.0005), or 0.01% (0.0001). Example: 477 (instead of only 300) specimens (individuals) are to be counted (see row 10, column 2, header rows and header columns not included) in order to detect 6 species together, with each of these species being present at 1% (0.01) in the population, with a confidence level of 95% ($\alpha = 0.05$). Note that the error in this case would be significant (actually huge), as more than 40% of the specimens would be missed in the count if the binomial distribution was applied.

K	α	0.05	0.01	0.005	0.001	0.0005	0.0001
4	0.1	73	365	730	3650	7300	36499
4	0.05	88	437	873	4363	8726	43629
4	0.01	120	599	1198	5988	11976	59877
4	0.001	166	830	1659	8294	16588	82937
5	0.1	78	388	775	3871	7741	38704
5	0.05	92	459	917	4585	9170	45848
5	0.01	125	622	1243	6211	12422	62106
5	0.001	171	852	1704	8517	17034	85168
6	0.1	82	406	811	4051	8102	40509
6	0.05	96	477	954	4767	9533	47663
6	0.01	128	640	1279	6393	12786	63928
6	0.001	174	870	1740	8700	17399	86991
7	0.1	85	421	841	4204	8408	42038
7	0.05	99	492	984	4920	9840	49198
7	0.01	131	655	1310	6547	13094	65468
7	0.001	178	886	1771	8854	17707	88533
8	0.1	87	434	868	4337	8673	43364
8	0.05	102	506	1011	5053	10106	50529
8	0.01	134	669	1337	6681	13361	66803
8	0.001	180	899	1798	8987	17974	89868
9	0.1	90	446	891	4454	8907	44535
9	0.05	104	518	1035	5171	10341	51703
9	0.01	136	680	1360	6798	13596	67980
9	0.001	183	911	1821	9105	18210	91046
10	0.1	92	456	912	4559	9117	45583
10	0.05	106	528	1056	5276	10551	52754
10	0.01	139	691	1381	6904	13807	69033
10	0.001	185	921	1842	9210	18420	92099
11	0.1	94	466	931	4654	9307	46531
11	0.05	108	538	1075	5371	10741	53705
K	α	0.05	0.01	0.005	0.001	0.0005	0.0001
-----	--------	------	------	-------	-------	--------	--------
11	0.01	140	700	1400	6999	13998	69986
11	0.001	187	931	1862	9306	18611	93052
12	0.1	95	474	948	4740	9480	47397
12	0.05	110	546	1092	5458	10915	54573
12	0.01	142	709	1418	7086	14171	70855
12	0.001	188	940	1879	9393	18785	93923
13	0.1	97	482	964	4820	9639	48194
13	0.05	111	554	1108	5538	11075	55372
13	0.01	144	717	1434	7166	14331	71655
13	0.001	187	940	1879	9393	18785	93923
14	0.1	98	490	979	4894	9787	48932
14	0.05	113	562	1123	5612	11223	56111
14	0.01	145	724	1448	7240	14480	72396
14	0.001	190	955	1910	9547	19093	95464
15	0.1	100	497	993	4962	9924	49620
15	0.05	114	568	1136	5680	11360	56800
15	0.01	147	731	1462	7309	14618	73086
15	0.001	193	962	1924	9616	19231	96154
16	0.1	102	509	1018	5087	10174	50867
16	0.05	115	575	1149	5745	11489	57444
16	0.01	148	738	1475	7374	14747	73731
16	0.001	194	968	1936	9680	19360	96799
17	0.1	102	509	1018	5087	10174	50867
17	0.05	117	581	1161	5805	11610	58050
17	0.01	149	744	1487	7434	14868	74337
17	0.001	195	975	1949	9741	19481	97405
18	0.1	103	515	1029	5144	10288	51437
18	0.05	118	587	1173	5862	11724	58620
18	0.01	150	750	1499	7491	14982	74909
18	0.001	196	980	1960	9798	19596	97977
19	0.1	104	520	1040	5198	10396	51976
19	0.05	119	592	1184	5916	11832	59160
19	0.01	151	755	1509	7545	15090	75449
19	0.001	198	986	1971	9852	19704	98518
20	0.1	105	525	1050	5249	10498	52488
20	0.05	120	597	1194	5968	11935	59673
20	0.01	152	760	1520	7597	15193	75962
20	0.001	199	991	1981	9904	19807	99031
21	0.1	106	530	1060	5298	10595	52974
21	0.05	121	602	1204	6016	12032	60160
K	α	0.05	0.01	0.005	0.001	0.0005	0.0001
-----	---------	------	------	-------	-------	--------	--------
21	0.01	153	765	1529	7645	15290	76450
21	0.001	200	996	1991	9952	19904	99519
22	0.1	107	535	1069	5344	10688	53439
22	0.05	123	607	1213	6063	12125	60625
22	0.01	154	770	1539	7692	15383	76915
22	0.001	200	1000	2000	9999	19997	99984
23	0.1	108	539	1078	5389	10777	53882
23	0.05	123	611	1222	6107	12214	61069
23	0.01	155	774	1548	7736	15472	77359
23	0.001	201	1005	2009	10043	20086	100428
24	0.1	109	544	1087	5431	10862	54307
24	0.05	123	615	1230	6150	12299	61494
24	0.01	156	778	1556	7779	1557	77785
24	0.001	202	1009	2018	10086	20171	100854
25	0.1	110	548	1095	5472	10943	54714
25	0.05	124	620	1239	6191	12381	61901
25	0.01	157	782	1564	7820	15639	78193
25	0.001	203	1013	2026	10127	20253	101262
26	0.1	111	552	1103	5511	11021	55105
26	0.05	125	623	1246	6230	12459	62293
26	0.01	158	786	1572	7859	15717	78585
26	0.001	204	1017	2034	10166	20331	101654
27	0.1	111	555	1110	5549	11097	55482
27	0.05	126	627	1254	6267	12534	62670
27	0.01	158	790	1580	7897	15793	78962
27	0.001	205	1021	2041	10204	20407	102032
28	0.1	112	559	1117	5585	11169	55845
28	0.05	127	631	1261	6304	12607	63034
28	0.01	159	794	1587	7933	15866	79326
28	0.001	205	1024	2048	10240	20479	102395
29	0.1	113	562	1124	5620	11239	56195
29	0.05	127	634	1268	6339	12677	63384
29	0.01	160	797	1594	7968	15936	79677
29	0.001	206	1028	2055	10275	20550	102746
30	0.1	114	566	1131	5654	11307	56534
30	0.05	128	638	1275	6373	12745	63723
30	0.01	161	801	1601	8002	16004	80016
30	0.001	207	1031	2062	10309	20617	103085
3 CONCLUDING REMARKS

We have provided tables that include several selected values of sample sizes that relate to typical values of relative abundances of a variety of marker species.

The reader can notice that Tables 2 and 3 include repeated sample sizes which correspond to distinct combinations of species proportions. This is explained by the fact that when one proportion is much smaller than the other, the sample size is essentially determined by this small proportion. For example, the sixth, the twelfth, and the twenty-first rows of Table 3 display the same sample sizes even though the values of p_2 are different. This is exactly because the smallest of the three p_2 values ($p_2 = 0.005$) is still an order of magnitude larger than $p_1 = 0.0005$. In other words, when one uses a third marker whose proportion is essentially higher than the other two proportions, it is enough to consider the first two proportions only in order to get a good assessment of n.

Since the task of multiple species detection with high likelihood within a short geologic time interval is recurrent in biodiversity and biostratigraphic studies, this paper provides the theoretical framework for the computation of the sample size, together with applied tables, when more than one pre-determined species is to be detected in the same sample, given the required confidence level for each species, and a priori assumptions of species proportions in the population.

Acknowledgements

This research was supported by a former URB Long-Term Development Grant to Ali T. Haidar. The authors would like to thank Jason Moore (University of New Mexico), Bill Haneberg, as well as many anonymous reviewers for providing precious comments to review an early draft of the manuscript. Special thanks are due to G. Villa (University of Parma, Italy) for indentifying the utility of the database of nannofossil count by Persico et al. (2012). She kindly recommended the use of this nannofossil database to emphasize the difference between the sample sizes given by the binomial and those by the multinomial distributions. Mr. Ali Khiyami helped with merging the separate parts of the manuscript into a single latex file, and with some editing of the manuscript.

References

Agterberg, F.P., 1990. Automated Stratigraphic Correlation. Developments in Palaeontology and Stratigraphy, 13. Elsevier. Amsterdam. 424 p.

Backman, J., Raffi, I., Rio, D., Fornaciari, E., and Plike, H., 2012. Biozonation and biochronology of Miocene through Pleistocene calcareous nannofossils from low and middle latitudes. Newsletters on Stratigraphy 45(3), pp. 221-244.

Dennison, J.M., and Hay, W.W., 1967. Estimating the needed sampling area for subaquatic ecological studies. Journal of Paleontology 41(3), pp. 706-708.

Degroot, M.H., and Schervish, M.J., 2012. Probability and Statistics. Addison-Wesley, Amsterdam, The Netherlands, 4th edition. 912 p.

Fatela, F., and Taborda, R., 2002. Confidence limits of species proportions in microfossil assemblages. Marine Micropaleontology 45, pp. 174-196.
Guinasso Jr., N.L., and Schink, D.R., 1975. Quantitative estimates of biological mixing rates in abyssal sediments. *Journal of Geophysical Research* 80, pp. 3032-3043.

Haidar, A.T., 2015. Entropy Estimate of Superpositional Stratigraphic Time for Shuffled Sediment. *Hannon* 27, pp. 7-34.

Hayek, L.C., and Buzas, M.A., 1997. *Surveying Natural Populations. Quantitative Tools for Assessing Biodiversity.* Columbia University Press, New York, USA, 2nd edition, 590 p.

Hills, S.J., and Thierstein, H., 1989. Plio-Pleistocene Calcareous Plankton Biochronology. *Marine Micropaleontology* 14, pp. 7-96.

Moore, J.R., Norman, D.B., and Upchurch, P., 2007. Assessing relative abundances in fossil assemblages *Palaeogeography, Palaeoclimatology, Palaeoecology* 253(34), pp. 317-322.

Persico, D., Fioroni, C., and Villa, G., 2012. A refined calcareous nannofossil biostratigraphy for the middle Eocene-early Oligocene Southern Ocean ODP sites. *Palaeogeography, Palaeoclimatology, Palaeoecology* 335-336, pp. 12-23.