The maximum of the Gaussian $1/f^\alpha$-noise in the case $\alpha < 1$

Zakhar Kabluchko

October 12, 2010

Abstract

We prove that the appropriately normalized maximum of the Gaussian $1/f^\alpha$-noise with $\alpha < 1$ converges in distribution to the Gumbel double-exponential law.

Keywords: $1/f^\alpha$-noise, Extremes, Gaussian processes, Gumbel distribution

AMS 2000 Subject Classification: Primary, 60G15; Secondary, 60G70, 60F05

1 Introduction and statement of the result

$1/f^\alpha$-noise is usually described as a stochastic process whose spectral density is inverse proportional to some power of the frequency. $1/f^\alpha$-noises have been observed experimentally in a huge variety of physical, biological, economic systems and are believed to be ubiquitous in nature. We refer to [7] for a list of references. The aim of the present paper is to find the limiting distribution of the maximum of the $1/f^\alpha$-noise in the case $\alpha < 1$.

Let us be more precise. We define $1/f^\alpha$-noise to be a Gaussian process $\{X_n(t), t \in [-\pi, \pi]\}$ given by a finite random Fourier series

$$X_n(t) = \sum_{k=1}^{n} \sqrt{R(k)}(U_k \sin(kt) + V_k \cos(kt)),$$

where U_k, V_k are independent real-valued standard Gaussian random variables and R is some function regularly varying at $+\infty$ with index $-\alpha$. We will recall necessary facts about regularly varying functions in Section 3 the main example to keep in mind being $R(t) = ct^{-\alpha}$, where $c > 0$. Here we will be interested in the case $\alpha < 1$. In this case, for every $t \in [-\pi, \pi]$ the series on the right-hand side of (1) diverges as $n \to \infty$ with probability 1. The next theorem is our main result.

Theorem 1.1. Let X_n be the $1/f^\alpha$-noise defined by (1), where $R : (0, \infty) \to [0, \infty)$ is an eventually monotone, regularly varying function with index $-\alpha$,.
where \(-\infty < \alpha < 1\). Let \(\sigma_n^2 = \text{Var} X_n(0)\) and \(c = 2\pi^{\frac{1}{2}} \frac{\alpha c}{1 - \alpha}\). Then, for every \(z \in \mathbb{R}\),

\[
\lim_{n \to \infty} \mathbb{P} \left[\frac{1}{\sigma_n} \sup_{t \in [-\pi, \pi]} X_n(t) \leq \sqrt{2 \log n} + \frac{1}{\sqrt{2 \log n}} \left(\log \frac{\sqrt{c}}{\sqrt{2\pi}} + z \right) \right] = e^{-e^{-z}}.
\]

Example 1.1. Taking \(R(t) = 1\), we obtain a limit theorem for the maximum of a random trigonometric polynomial \(X_n(t) = \sum_{k=1}^{n} (U_k \sin(kt) + V_k \cos(kt))\).

Remark 1.1. The assumption \(\alpha < 1\) is crucial for the validity of Theorem 1.1. The case \(\alpha > 1\) is not interesting since in this case the series on the right-hand side of (1) converges uniformly with probability 1; see [5, Ch. VII, §1.2]. This immediately implies that the maximum of \(X_n\) converges weakly (without any normalization) to the maximum of the corresponding infinite series. Much more interesting is the case \(\alpha = 1\). A non-Gumbel limiting distribution for the maximum of the \(1/f\)-noise has been derived by non-rigorous methods in the physical literature [3]. The maximum of the \(1/f\)-noise is believed to behave similarly to the maxima of other “logarithmically correlated” fields including the two-dimensional discrete Gaussian Free Field and the Branching Brownian Motion. It has been shown recently that the maximum of the two-dimensional Gaussian Free Field recentered by its mean is tight [2]. It seems that the methods of [2] can be applied to the \(1/f\)-noise, but we will not do this here.

The rest of the paper is devoted to the proof of Theorem 1.1. Throughout, \(C\) is a large positive constant whose value may change from line to line.

2 Method of the proof

The idea of our proof of Theorem 1.1 is to rescale the \(1/f\alpha\)-noise in time in such a way that it becomes close to a stationary Gaussian process with differentiable sample paths. The limiting distribution for the maximum of such processes is recalled in the next theorem, see [6, Thm. 8.2.7].

Theorem 2.1 ([6]). Let \(\{\xi(t), t \in \mathbb{R}\}\) be a stationary zero-mean, unit-variance Gaussian process with a.s. continuous paths. Suppose that the covariance function \(\rho(t) = \text{E}[\xi(0)\xi(t)]\) satisfies the following three conditions:

1. For some \(c > 0\), \(\rho(t) = 1 - ct^2 + o(t^2)\) as \(t \to 0\).
2. \(\lim_{t \to \infty} \rho(t) \log t = 0\).
3. \(\rho(t) < 1\) for \(t \neq 0\).

Then, for every \(z \in \mathbb{R}\),

\[
\lim_{n \to \infty} \mathbb{P} \left[\sup_{t \in [0, n]} \xi(t) \leq \sqrt{2 \log n} + \frac{1}{\sqrt{2 \log n}} \left(\log \frac{\sqrt{c}}{\sqrt{2\pi}} + z \right) \right] = e^{-e^{-z}}.
\]
The following generalization of the above result to sequences of stationary Gaussian processes is due to Seleznjev [8].

Theorem 2.2 ([8]). For every \(n \in \mathbb{N} \) let \(\{ \xi_n(t), t \in [-\frac{n}{2}, \frac{n}{2}] \} \) be a stationary zero-mean, unit-variance Gaussian process with a.s. continuous paths and covariance function \(\rho_n(t) = \mathbb{E}[\xi_n(0)\xi_n(t)] \). Suppose that

1. \(\rho_n(t) = 1 - c_n t^2 + \varepsilon_n(t) \), where \(c_n \) is a sequence satisfying \(\lim_{n \to \infty} c_n = c > 0 \) and \(\varepsilon_n(t) \) is a sequence of functions satisfying \(\lim_{t \to 0} \varepsilon_n(t)/t^2 = 0 \) uniformly in \(n \in \mathbb{N} \).
2. For every \(\varepsilon > 0 \) there is \(T = T(\varepsilon) \) such that \(\rho_n(t) \log t < \varepsilon \) for every \(n \in \mathbb{N} \), \(t \in [T(\varepsilon), \frac{n}{2}] \).
3. For some \(n_0 \in \mathbb{N} \) and every \(\varepsilon > 0 \) we have \(\sup_{n>n_0, t \in [\varepsilon, \frac{n}{2}]} \rho_n(t) < 1 \).

Then, for every \(z \in \mathbb{R} \),

\[
\lim_{n \to \infty} \mathbb{P} \left[\sup_{t \in [-\frac{n}{2}, \frac{n}{2}]} \xi_n(t) \leq \sqrt{2 \log n + \frac{1}{\sqrt{2 \log n}} \left(\log \frac{\sqrt{c}}{2\sqrt{\pi}} + z \right)} \right] = e^{-e^{-z}}.
\]

Note that the conditions of Theorem 2.2 are just uniform versions of the conditions of Theorem 2.1. An application of Theorem 2.2 can be found in [4].

3 Facts about regularly varying functions

We need to recall some facts from the theory of regular variation; see [1]. A positive measurable function \(f \) defined on the positive half-axis is called *regularly varying at* \(+\infty\) with index \(\alpha \in \mathbb{R} \) (notation: \(f \in \text{RV}_\alpha \)) if for every \(\lambda > 0 \),

\[
\lim_{x \to +\infty} \frac{f(\lambda x)}{f(x)} = \lambda^\alpha.
\] \((2) \)

For example, the function \(f(t) = ct^\alpha \), where \(c > 0 \), is regularly varying with index \(\alpha \). A regularly varying function with index \(\alpha = 0 \) is called *slowly varying*. Any function \(f \in \text{RV}_\alpha \) can be written in the form \(f(t) = L(t)t^\alpha \), where \(L \) is slowly varying.

We will several times need the following result of Karamata [1, Prop. 1.5.8]: if \(f \in \text{RV}_\alpha \) with \(\alpha > -1 \), then

\[
\sum_{k=1}^n f(k) \sim \frac{n f(n)}{(1+\alpha)}, \quad n \to \infty.
\] \((3) \)

(Note that Karamata’s theorem is usually stated for the integral \(\int_1^n f(t)dt \), but the discrete version given above is also true). Also, we will need an estimate called Potter bound [1, Thm. 1.5.6]: if \(L \) is slowly varying and bounded away from 0 and \(\infty \) on every compact subset, then for every \(\delta > 0 \) there is a \(C > 0 \) such that

\[
\frac{L(x)}{L(y)} \leq C \max \left(\left(\frac{x}{y} \right)^\delta, \left(\frac{y}{x} \right)^\delta \right), \quad x, y > 0.
\] \((4) \)
4 Proof of the main result

Let X_n be a $1/f^\alpha$-noise as in Theorem 1.1. We represent the regularly varying function R in the form $R(t) = L(t)t^{-\alpha}$, where L is slowly varying. The covariance function $r_n(t, s) = \mathbb{E}[X_n(t)X_n(s)]$ of the process X_n is given by

$$r_n(t, s) = \sum_{k=1}^{n} R(k) \cos(k(t-s)), \quad t, s \in [-\pi, \pi].$$ \hfill (5)

In particular, for the variance $\sigma_n^2 = \text{Var} X_n(0)$ we have

$$\sigma_n^2 = \sum_{k=1}^{n} R(k) \sim \frac{nR(n)}{(1-\alpha)}, \quad n \to \infty,$$ \hfill (6)

where the last step is a consequence of (3) and the assumption $R \in \text{RV}_{-\alpha}$ with $\alpha < 1$. For every $n \in \mathbb{N}$ consider a rescaled process ξ_n defined by

$$\xi_n(t) = \frac{1}{\sigma_n} X_n\left(\frac{2\pi t}{n}\right), \quad t \in \left[-\frac{n}{2}, \frac{n}{2}\right].$$ \hfill (7)

Note that ξ_n is a stationary Gaussian process with zero-mean, unit-variance margins. Its covariance function $\rho_n(t) = \mathbb{E}[\xi_n(t)\xi_n(t)]$ is given by

$$\rho_n(t) = \frac{1}{\sigma_n^2} \sum_{k=1}^{n} R(k) \cos \frac{2\pi kt}{n}, \quad t \in \left[-\frac{n}{2}, \frac{n}{2}\right].$$ \hfill (8)

We claim that the sequence ξ_n, $n \in \mathbb{N}$, satisfies the assumptions of Theorem 2.2. We start by verifying condition 1. Write

$$\delta_{k,n}(t) = \cos\left(\frac{2\pi kt}{n}\right) - \left(1 - \frac{2\pi^2 k^2 t^2}{n^2}\right).$$ \hfill (9)

Then,

$$\rho_n(t) = 1 - \frac{2\pi^2 t^2}{n^2 \sigma_n^2} \sum_{k=1}^{n} k^2 R(k) \rho_n(t) + \frac{1}{\sigma_n^2} \sum_{k=1}^{n} R(k) \delta_{k,n}(t).$$ \hfill (10)

Note that the function $t^2 R(t)$ is regularly varying with index $2-\alpha > -1$. By (3) and (6) we have

$$c_n := \frac{2\pi^2}{n^2 \sigma_n^2} \sum_{k=1}^{n} k^2 R(k) \sim \frac{2\pi^2}{3-\alpha}, \quad n \to \infty.$$ \hfill (11)

Let us estimate the third term on the right-hand side of (10). By Taylor’s expansion, for every $\varepsilon > 0$ there exists a $\delta > 0$ such that $|\delta_{k,n}(t)| < \varepsilon t^2$ for every $n \in \mathbb{N}$, $1 \leq k \leq n$ and $|t| < \delta$. It follows that

$$|\varepsilon_n(t)| := \left|\frac{1}{\sigma_n^2} \sum_{k=1}^{n} R(k) \delta_{k,n}(t)\right| \leq \frac{\varepsilon t^2}{\sigma_n^2} \sum_{k=1}^{n} R(k) = \varepsilon t^2$$ \hfill (12)
uniformly over \(n \in \mathbb{N}, |t| < \delta \). Together with (10) and (11), this proves that condition 1 of Theorem 2.2 holds with \(c = 2\pi^2 \frac{1 - \alpha}{3 - \alpha} \).

Let us now show that condition 2 of Theorem 2.2 is satisfied. To estimate \(\rho_n(t) \) for large \(t \) we need to take into account the oscillating character of the terms on the right-hand side of (8), which suggests performing Abel’s summation. However, it can be shown that a direct application of Abel’s summation leads to a satisfactory estimate for \(\alpha < 0 \) only. So, we need a somewhat more accurate argument.

First of all, we may redefine the function \(R \) on an interval of the form \((0, A)\) to make it monotone on the whole positive half-line and bounded away from 0 on any compact set. Indeed, such a modification changes \(\rho_n(t) \) by at most \(C/\sigma_n^2 \) which is smaller than \(\varepsilon/(2 \log t) \) uniformly in \(t \). So, the modification has no influence on the validity of condition 2 of Theorem 2.2.

Let \(1 \leq t \leq n^2 \). We will split the sum defining \(\rho_n(t) \) as follows:

\[
\rho_n(t) = \frac{1}{\sigma_n^2} \sum_{k=1}^{[n/t]-1} R(k) \cos \frac{2\pi kt}{n} + \frac{1}{\sigma_n^2} \sum_{k=\lceil n/t \rceil}^{n} R(k) \cos \frac{2\pi kt}{n} =: S_1 + S_2.
\]

(13)

The sum \(S_1 \) can be estimated in a trivial way: using the inequality \(|\cos x| \leq 1 \) and (6), we obtain

\[
|S_1| \leq \frac{1}{\sigma_n^2} \sum_{k=1}^{[n/t]} R(k) = \frac{\sigma_n^2 [n/t]}{\sigma_n^2} \leq C \frac{(n/t) R(n/t)}{R(n)} = C t^{\alpha - 1} \frac{L(n/t)}{L(n)}.
\]

(14)

The sum \(S_2 \) will be estimated by Abel’s summation. We need the Dirichlet kernel

\[
D_k(t) = \sum_{j=1}^{k} \cos(2\pi j t) = \frac{1}{2} \left(\frac{\sin((2k + 1)\pi t)}{\sin(\pi t)} - 1 \right).
\]

(15)

Since \(|t| \leq \frac{\delta}{2} \), we have \(|\sin \frac{2k \pi}{n}| \geq \kappa \frac{n}{t} \) for some \(\kappa > 0 \). It follows that for every \(k \in \mathbb{N} \),

\[
\left| D_k \left(\frac{t}{n} \right) \right| \leq \frac{1}{2} + \frac{1}{\kappa} \frac{n}{t} \leq C \frac{n}{t}.
\]

(16)

Applying Abel’s summation formula to the sum \(S_2 \) we obtain

\[
S_2 = \frac{1}{\sigma_n^2} \sum_{k=\lceil n/t \rceil}^{n-1} D_k \left(\frac{t}{n} \right) (R(k) - R(k + 1)) + \frac{1}{\sigma_n^2} D_{\lceil n/t \rceil - 1} \left(\frac{t}{n} \right) R([n/t]).
\]

(17)
Utilizing (16) and (6) we get that $|S_2|$ can be estimated from above by

$$|S_2| \leq \frac{1}{\sigma_n^2} \sum_{k=[n/t]}^{n-1} \left| D_k \left(\frac{t}{n} \right) \right| |R(k) - R(k + 1)|$$

$$+ \frac{1}{\sigma_n^2} \left| D_n \left(\frac{t}{n} \right) \right| R(n) + \frac{1}{\sigma_n^2} \left| D_{[n/t]-1} \left(\frac{t}{n} \right) \right| R([n/t])$$

$$\leq \frac{C}{tR(n)} \left(\sum_{k=[n/t]}^{n-1} |R(k) - R(k + 1)| + R(n) + R(n/t) \right).$$ \hspace{1cm} (18)

Recall that R is assumed to be monotone. Depending on whether R is decreasing or increasing, the expression in the brackets in (18) can be estimated from above by $2R(n/t)$ or $2R(n)$. Thus,

$$|S_2| \leq C \max \left(\frac{R(n/t)}{tR(n)} \frac{1}{t} \right) = C \max \left(t^{\alpha - 1}L(n/t) \frac{1}{L(n)} \frac{1}{t} \right).$$ \hspace{1cm} (19)

Bringing (13), (14), (19) together and employing Potter’s bound (4) we obtain that for every $\delta > 0$ there is $C > 0$ such that for all $n \in \mathbb{N}$ and $t \in [1, \frac{4}{T}]$,

$$|\rho_n(t)| \leq C \max \left(t^{\alpha - 1}L(n/t) \frac{1}{L(n)} \frac{1}{t} \right) \leq C \max \left(t^{\alpha - 1 + \delta} \frac{1}{t} \right).$$ \hspace{1cm} (20)

Recall that we assume that $\alpha < 1$. Choose $\delta > 0$ so small that $\alpha - 1 + \delta < 0$. The verification of condition 2 is completed.

Let us finally verify condition 3 of Theorem 2.2. Fix $\varepsilon > 0$. By condition 2 there is $T > 0$ such that for all $n \in \mathbb{N}$, $t \in [T, \frac{4}{T}]$ we have $\rho_n(t) < 1/2$. Thus, we have to show that for some $n_0 \in \mathbb{N}$,

$$\sup_{n > n_0, t \in [\varepsilon, T]} \rho_n(t) < 1.$$ \hspace{1cm} (21)

We can find sufficiently small $a > 0$ and $\eta > 0$ such that $|\cos \frac{2\pi kt}{n}| < 1 - \eta$ for all $n \in \mathbb{N}$, $k \in [an, 2an]$, $t \in [\varepsilon, T]$. Recalling (8) we have

$$\rho_n(t) = \frac{1}{\sigma_n^2} \sum_{k=[an, 2an]} R(k) \cos \frac{2\pi kt}{n} + \frac{1}{\sigma_n^2} \sum_{1 \leq k \leq n \atop k \not\in [an, 2an]} R(k) \cos \frac{2\pi kt}{n}.$$ \hspace{1cm} (22)

It follows that for all $n \in \mathbb{N}$ and $t \in [\varepsilon, T]$,

$$|\rho_n(t)| \leq \frac{1}{\sigma_n^2} \sum_{k=[an, 2an]} (1 - \eta)R(k) + \frac{1}{\sigma_n^2} \sum_{1 \leq k \leq n \atop k \not\in [an, 2an]} R(k) = 1 - \frac{\eta}{\sigma_n^2} \sum_{k \in [an, 2an]} R(k).$$ \hspace{1cm} (23)

Applying (8) and (11), we obtain that uniformly in $t \in [\varepsilon, T]$,

$$\limsup_{n \to \infty} |\rho_n(t)| \leq 1 - \eta \lim_{n \to \infty} \frac{2anR(2an) - anR(an)}{nR(n)} = 1 - (2^{1-\alpha} - 1)a^{1-\alpha}\eta < 1.$$ \hspace{1cm} (24)
Hence, there is \(n_0 \in \mathbb{N} \) such that (21) holds. This verifies condition 3 of Theorem 2.2.

To complete the proof of Theorem 1.1, note that \(\sigma_n^{-1} \sup_{t \in [-\pi,\pi]} X_n(t) \) has the same law as \(\sup_{t \in [-\frac{n}{2}, \frac{n}{2}]} \xi_n(t) \) and apply Theorem 2.2.

References

[1] N. H. Bingham, C. M. Goldie, and J. L. Teugels. *Regular variation*, volume 27 of *Encyclopedia of Mathematics and its Applications*. Cambridge University Press, 1987.

[2] M. Bramson and O. Zeitouni. Tightness of the recentered maximum of the two-dimensional discrete Gaussian Free Field. *Preprint, available at http://arxiv.org/abs/1009.3443*, 2010.

[3] Y. V. Fyodorov and J.-P. Bouchaud. Freezing and extreme-value statistics in a random energy model with logarithmically correlated potential. *J. Phys. A: Math. Theor.*, 41:372001, 2008.

[4] Z. Kabluchko. Limiting distribution of the continuity modulus for Gaussian processes with stationary increments. *Statist. Probab. Lett.*, 79(7):953–956, 2009.

[5] J.-P. Kahane. *Some random series of functions*. D. C. Heath and Co., Lexington, Massachusetts, 1968.

[6] M. R. Leadbetter, G. Lindgren, and H. Rootzén. *Extremes and related properties of random sequences and processes*. Springer Series in Statistics. Springer-Verlag, New York, 1983.

[7] W. Li. A bibliography on 1/f noise. Available online at *http://www.nslilj-genetics.org/wli/1fnoise/*, 1996–present.

[8] O. V. Seleznjev. Limit theorems for maxima and crossings of a sequence of Gaussian processes and approximation of random processes. *J. Appl. Probab.*, 28(1):17–32, 1991.