Research Article

Radosława Kranz*, Aleksandra Rzepka, and Ewa Sylwestrzak-Maślanka

Degrees of the approximations by some special matrix means of conjugate Fourier series

https://doi.org/10.1515/dema-2019-0014
Received October 3, 2018; accepted January 29, 2019

Abstract: In this paper we will present the pointwise and normwise estimations of the deviations considered by W. Łenski, B. Szal, [Acta Comment. Univ. Tartu. Math., 2009, 13, 11-24] and S. Saini, U. Singh, [Boll. Unione Mat. Ital., 2016, 9, 495-504] under general assumptions on the class considered sequences defining the method of the summability. We show that the obtained estimations are the best possible for some subclasses of L^p by constructing the suitable type of functions.

Keywords: degree of approximation, Fourier series, matrix means

MSC: 42A24

1 Introduction

Let L^p ($1 \leq p < \infty$) be the class of all 2π-periodic real-valued functions, integrable in the Lebesgue sense, with p-th power over $Q = [-\pi, \pi]$ with the norm

$$
\|f\| = \|f\|_{L^p} = \left(\int_Q |f(t)|^p \, dt \right)^{1/p}
$$

when $1 \leq p < \infty$. (1)

Consider the trigonometric Fourier series

$$
S_f(x) := \frac{a_0(f)}{2} + \sum_{\nu=1}^{\infty} \left(a_\nu(f) \cos \nu x + b_\nu(f) \sin \nu x \right)
$$

and its conjugate

$$
\tilde{S}_f(x) := \sum_{\nu=1}^{\infty} \left(b_\nu(f) \cos \nu x - a_\nu(f) \sin \nu x \right)
$$

with the partial sums \tilde{S}_k. We know that if $f \in L^p$ then

$$
\tilde{f}(x) := -\frac{1}{\pi} \int_0^\pi \psi_k(t) \frac{1}{2} \cot \frac{t}{2} dt = \lim_{\epsilon \to 0} \tilde{f}(x, \epsilon),
$$

*Corresponding Author: Radosława Kranz: University of Zielona Góra, Faculty of Mathematics, Computer Science and Econometrics, 65-516 Zielona Góra, ul. Szafrana 4a, Poland; E-mail: R.Kranz@wmie.uz.zgora.pl
Aleksandra Rzepka: University of Zielona Góra, Faculty of Mathematics, Computr Science and Econometrics, 65-516 Zielona Góra, ul. Szafrana 4a, Poland; E-mail: A.Rzepka@wmie.uz.zgora.pl
Ewa Sylwestrzak-Maślanka: University of Zielona Góra, Faculty of Mathematics, Computer Science and Econometrics, 65-516 Zielona Góra, ul. Szafrana 4a, Poland; E-mail: E.Sylwestrzak@wmie.uz.zgora.pl

Open Access. © 2019 Radosława Kranz et al., published by De Gruyter. This work is licensed under the Creative Commons Attribution alone 4.0 License.
where
\[\tilde{f}(x, \epsilon) := -\frac{1}{\pi} \int_{0}^{\pi} \psi_\epsilon(t) \frac{1}{2} \cot \frac{t}{2} dt \]
with
\[\psi_\epsilon(t) := f(x + t) - f(x - t), \]
which exists for almost all \(x \) [1, Theorem (3.1)IV].

Let \(A := (a_{n,k}) \) be an infinite lower triangular matrix of real numbers such that
\[a_{n,k} \geq 0 \text{ when } k = 0, 1, 2, \ldots, n, \quad a_{n,k} = 0 \text{ when } k > n, \]
and let, for \(m = 0, 1, 2, \ldots, n, \)
\[A_{n,m} = \sum_{k=0}^{m} a_{n,k} \quad \text{and} \quad \overline{A}_{n,m} = \sum_{k=m}^{n} a_{n,k}. \]

Let the \(A \)-transformation of \(\tilde{S}_kf \) be given by
\[\overline{f}_{n,A}(x) := \sum_{k=0}^{n} a_{n,k} \tilde{S}_k f(x) \quad (n = 0, 1, 2, \ldots,). \]

Following Leindler [2] (see also [3]), we assume that for every \(n \) and \(0 \leq m < n \)
\[\sum_{k=m+1}^{n} \left| a_{n,r} - a_{n,r+1} \right| \leq K \frac{1}{m + 1} \sum_{r=0}^{m} a_{n,r} \]
or
\[\sum_{r=0}^{n-m-1} \left| a_{n,r} - a_{n,r+1} \right| \leq K \frac{1}{m + 1} \sum_{r=m+1}^{n} a_{n,r} \]
hold if \((a_{n,r})_{r=0}^{n} \) belongs to \(MRBVS \) (Mean Rest Bounded Variation Sequence) or \(MHBVS \) (Mean Head Bounded Variation Sequence), for \(n = 1, 2, \ldots, \) respectively, and let
\[|A|_{n,m} = \begin{cases} A_{n,m}, & \text{when } (a_{n,r})_{r=0}^{n} \in MRBVS, \\ \overline{A}_{n,m-n}, & \text{when } (a_{n,r})_{r=0}^{n} \in MHBVS. \end{cases} \]

As a measure of approximation, we will use the generalized modulus of continuity of function \(f \) in the space \(L^p \) defined for \(\beta \geq 0 \) by the formula
\[\overline{\omega}_{\beta f}(\delta)_{L^p} := \sup_{0 < |t| < \delta} \left\{ \left| \frac{1}{\pi} \int_{0}^{\pi} \left| \psi_\epsilon(t) \delta \right|^p dx \right|^\frac{1}{p} \right. \]
It is clear that for \(\beta > \alpha \geq 0 \)
\[\overline{\omega}_{\beta f}(\delta)_{L^p} \leq \overline{\omega}_{\alpha f}(\delta)_{L^p}, \]
and it is easily seen that \(\overline{\omega}_{0 f}(\cdot)_{L^p} = \overline{\omega}_f(\cdot)_{L^p} \) is the classical modulus of continuity.

Let us consider a function \(\overline{\omega} \) of modulus of continuity type on the interval \([0, 2\pi] \), i.e. a nondecreasing continuous function having the following properties: \(\overline{\omega}(0) = 0, \quad \overline{\omega}(\delta_1 + \delta_2) \leq \overline{\omega}(\delta_1) + \overline{\omega}(\delta_2) \) for any \(0 \leq \delta_1 \leq \delta_2 \leq \delta_1 + \delta_2 \leq 2\pi. \) It is easy to conclude that the function \(\delta^{-1}\overline{\omega}(\delta) \) is a quasi nonincreasing function of \(\delta \).

Namely the subadditivity implies \(\overline{\omega}(\lambda \delta) \leq \lambda \overline{\omega}(\delta) \), whence \(\overline{\omega}(\lambda \delta) \leq (\lambda + 1) \overline{\omega}(\delta) \) and therefore \(\frac{\overline{\omega}(\delta)}{\delta_2} \leq 2 \frac{\overline{\omega}(\delta_1)}{\delta_1} \) since
\[\overline{\omega}(\delta_2) = \left(\frac{\delta_2}{\delta_1} + 1 \right) \overline{\omega}(\delta_1) \leq 2 \frac{\delta_2}{\delta_1} \overline{\omega}(\delta_1), \]
where \(n \in \mathbb{N}_0, \lambda \geq 0 \) and \(0 \leq \delta_1 \leq \delta_2 \).

Let
\[
L^p(\omega)_\beta = \{ f \in L^p : \tilde{\omega}_\beta f(\delta)_{L^p} \leq \omega(\delta) \},
\]
where \(\tilde{\omega} \) is a function of modulus of continuity type. It is clear that for \(\beta > \alpha \geq 0 \)
\[
L^p(\omega)_\alpha \subset L^p(\omega)_\beta.
\]

The deviation \(\tilde{T}_{n,A}f - \tilde{f} \) was estimated by Qureshi [4] (with a special matrix \(A \)), the norm estimates we can find in the works of Lal and Nigam [5], Dhakal [6], Lal and Singh [7], Mishra, Khari et al. [8], Mishra and Mishra [9], Nigam and Sharma [10], Rhoades [11], Sonker and Singh [12] and Qureshi [13]. The next generalization was obtained by Łenski and Szal [14] in the following form:

Theorem A. Let \(f \in L^p(\omega)_\beta \) with \(\beta < 1 - \frac{1}{p} \), \((a_{n,k})_{k=0}^n \in HBVS \) (Head Bounded Variation Sequence) or \((a_{n,k})_{k=0}^n \in RBVS \) (Rest Bounded Variation Sequence), respectively, and let \(\tilde{\omega} \) be such that

\[
\left\{ \int_0^{\pi} \left(\frac{t|\psi_x(t)|}{\omega(t)} \right)^p \sin^{\frac{\beta p}{2}} \frac{t}{2} dt \right\}^{1/p} = O_x \left((n+1)^{-1} \right),
\]
and

\[
\left\{ \int_{\pi}^{2\pi} \left(\frac{t^{-\gamma}|\psi_x(t)|}{\omega(t)} \right)^p \sin^{\frac{\beta p}{2}} \frac{t}{2} dt \right\}^{1/p} = O_x \left((n+1)^{-1} \right).
\]

hold with \(0 < \gamma < \beta + \frac{1}{p} \). Then

\[
\left| \tilde{T}_{n,A}f(x) - \tilde{f}(x, \frac{\pi}{n+1}) \right| = O_x \left((n+1)^{\frac{\beta}{2}+\frac{1}{2} \frac{1}{n+1}} a_n(n+1)\tilde{\omega}\left(\frac{\pi}{n+1}\right) \right)
\]
for all \(x \), where

\[
a_n = \begin{cases} a_{n,0}, & \text{when } (a_{n,k})_{k=0}^n \in RBVS, \\ a_{n,n}, & \text{when } (a_{n,k})_{k=0}^n \in HBVS. \end{cases}
\]

Theorem B. Let \(f \in L^p(\omega)_\beta \) with \(\beta < 1 - \frac{1}{p} \), \((a_{n,k})_{k=0}^n \in HBVS \) (or \((a_{n,k})_{k=0}^n \in RBVS \)) and let \(\tilde{\omega} \) satisfy (3) with \(0 < \gamma < \beta + \frac{1}{p} \),

\[
\left\{ \int_0^{\pi} \left(\frac{|\psi_x(t)|}{\omega(t)} \right)^p \sin^{\frac{\beta p}{2}} \frac{t}{2} dt \right\}^{1/p} = O_x \left((n+1)^{-\frac{1}{2}} \right),
\]
and

\[
\left\{ \int_0^{\pi} \left(\frac{\tilde{\omega}(t)}{t \sin^{\frac{\beta p}{2}} \frac{t}{2}} \right)^q dt \right\}^{1/q} = O_x \left((n+1)^{\frac{\beta}{2}+\frac{1}{2} \frac{1}{n+1}} \tilde{\omega}\left(\frac{\pi}{n+1}\right) \right)
\]
where \(q = p(p-1)^{-1} \). Then

\[
\left| \tilde{T}_{n,A}f(x) - \tilde{f}(x) \right| = O_x \left((n+1)^{\frac{\beta}{2}+\frac{1}{2} \frac{1}{n+1}} a_n(n+1)\tilde{\omega}\left(\frac{\pi}{n+1}\right) \right)
\]
for all \(x \) such that \(\tilde{f}(x) \) exists, where

\[
a_n = \begin{cases} a_{n,0}, & \text{when } (a_{n,k})_{k=0}^n \in RBVS, \\ a_{n,n}, & \text{when } (a_{n,k})_{k=0}^n \in HBVS. \end{cases}
\]

Recently, Saini and Singh [15] have proved the following theorem:
Theorem C. Let \(f \) be a periodic function belonging to \(Lip(\partial \omega(t), p) \) class with \(p \geq 1 \) and let \(A = (a_{n,k}) \) be a lower triangular regular matrix with nonnegative and nondecreasing (with respect to \(0 \leq k \leq n \)) entries and \(A_{n,0} = 1 \). Then the degree of approximation of \(\tilde{f} \), conjugate of \(f \), by matrix means of its conjugate Fourier series is given by

\[
\left\| \tilde{T}_n(f; x) - \tilde{f}(x) \right\|_p = O \left(\frac{1}{n+1} \int_{\frac{1}{n+1}}^{\pi} \tilde{\omega}(t) \frac{dt}{t^{1+1/p}} \right),
\]

provided \(\tilde{\omega}(t) \) is a positive increasing function satisfying the condition

\[
\int_0^v \frac{\tilde{\omega}(t)}{t^{1+1/p}} dt = O \left(\frac{\tilde{\omega}(v)}{v^{1/p}} \right),
\]

where \(0 < v < \pi \).

We shall write \(J_1 \ll J_2 \), if there exists a positive constant \(C \), depending on some parameters, such that \(J_1 \leq CJ_2 \).

2 Statement of the results

In this paper, we will present the estimations of the deviations \(\tilde{T}_{n,A} f(\cdot) - \tilde{f}(\cdot) \) and \(\tilde{T}_n \omega f(\cdot) - \tilde{f}(\cdot, \frac{\pi}{n+1}) \) under general assumptions and we will show that the obtained degrees of approximations are the best for some subclasses of \(L^p \).

Theorem 1. Let \((a_{n,k})_{k=0}^n \in MHBVS \cup MRBVS \) with the condition \(|A|_{n,\tau} = O \left(\frac{1}{n+1} \right) \), where \(\tau = [\pi/t] \), \((\frac{\pi}{n+1} \leq t \leq \pi) \). Let \(f \in L^p \) and let \(\tilde{\omega} \) be such that

\[
\left\{ \frac{1}{n+1} \int_0^{\pi} \left(\frac{t |\psi_x(t)|}{\tilde{\omega}(t)} \right)^p \sin^{\beta_p} t \frac{dt}{2} \right\}^{1/p} = O \left((n+1)^{-\gamma} \right) \quad (6)
\]

and

\[
\left\{ \frac{1}{n+1} \int_{\pi}^{\pi} \left(\frac{t^{-\gamma} |\psi_x(t)|}{\tilde{\omega}(t)} \right)^p \sin^{\beta_p} t \frac{dt}{2} \right\}^{1/p} = O \left((n+1)^{-\gamma} \right) \quad (7)
\]

hold with \(0 < \gamma < \beta + \frac{1}{p} \). Then

\[
\left| \tilde{T}_{n,A} f(x) - \tilde{f} \left(x, \frac{\pi}{n+1} \right) \right| = O \left((n+1)^{\beta} \tilde{\omega} \left(\frac{\pi}{n+1} \right) \right) \quad (8)
\]

holds for all \(x \).

Theorem 2. Let \((a_{n,k})_{k=0}^n \in MHBVS \cup MRBVS \) with the condition \(|A|_{n,\tau} = O \left(\frac{1}{n+1} \right) \), where \(\tau = [\pi/t] \), \((\frac{\pi}{n+1} \leq t \leq \pi) \). Let \(f \in L^p \) and let \(\tilde{\omega} \) be such that (7) and

\[
\left\{ \frac{1}{n+1} \int_0^{\pi} \left(\frac{|\psi_x(t)|}{\tilde{\omega}(t)} \right)^p \sin^{\beta_p} t \frac{dt}{2} \right\}^{1/p} = O \left((n+1)^{-\frac{1}{2}} \right), \quad (9)
\]

\[
\left\{ \frac{1}{n+1} \int_0^{\pi} \left(\frac{\tilde{\omega}(t)}{t^{\beta+1}} \right)^q dt \right\}^{1/q} = O \left((n+1)^{\beta+1} \tilde{\omega} \left(\frac{\pi}{n+1} \right) \right), \quad (10)
\]
hold with $0 < \gamma < \beta + \frac{1}{p}$. Then
\[|\tilde{T}_{n,Af}(x) - \tilde{f}(x)| = O_x \left((n + 1)^\beta \tilde{\omega} \left(\frac{\pi}{n + 1} \right) \right) \] (11)
holds for all x such that $\tilde{f}(x)$ exists.

Theorem 3. Let $(a_{n,k})_{k=0}^n \in \text{MHBVS} \cup \text{MRBVS}$ with the condition $|A|_{n,\tau} = O \left(\frac{\tau}{n^{1/2}} \right)$, where $\tau = \lceil \pi/t \rceil$, $(\frac{\pi}{n+1} \leq t \leq \pi)$ and let $\tilde{\omega}$ satisfy the conditions (6) and (7) with $0 < \beta < \beta + \frac{1}{p}$. If the function $t^{-\beta} \tilde{\omega}(t)$ is nonincreasing, then
\[(n + 1)^\beta \tilde{\omega} \left(\frac{\pi}{n + 1} \right) \leq \sup_{f \in L^p(\omega)_\beta} |\tilde{T}_{n,Af}(x) - \tilde{f}(x)| = O_x(1)(n + 1)^\beta \tilde{\omega} \left(\frac{\pi}{n + 1} \right) \] (12)
with $0 < \beta < 1 - \frac{1}{p}$ for all x.

Theorem 4. Let $(a_{n,k})_{k=0}^n \in \text{MHBVS} \cup \text{MRBVS}$ with the condition $|A|_{n,\tau} = O \left(\frac{\tau}{n^{1/2}} \right)$, where $\tau = \lceil \pi/t \rceil$, $(\frac{\pi}{n+1} \leq t \leq \pi)$ and let $\tilde{\omega}$ satisfy the conditions (7), (9) and (10) with $0 < \beta < \beta + \frac{1}{p}$.

If the function $t^{-\beta} \tilde{\omega}(t)$ is nondecreasing and concave then
\[(n + 1)^\beta \tilde{\omega} \left(\frac{\pi}{n + 1} \right) \leq \sup_{f \in L^p(\omega)_\beta} |\tilde{T}_{n,Af}(x) - \tilde{f}(x)| = O_x(1)(n + 1)^\beta \tilde{\omega} \left(\frac{\pi}{n + 1} \right) \] (13)
with $\beta > 0$, for all x such that $\tilde{f}(x)$ exists.

Remark 1. If we consider $\tilde{\omega}(t) = t^\alpha$ with $\beta < \alpha < 1 + \beta$, then $t^{-\beta} \tilde{\omega}(t)$ is a nondecreasing and concave function of t.

Theorem 5. Let $(a_{n,k})_{k=0}^n \in \text{MHBVS} \cup \text{MRBVS}$ with the condition $|A|_{n,\tau} = O \left(\frac{\tau}{n^{1/2}} \right)$, where $\tau = \lceil \pi/t \rceil$, $(\frac{\pi}{n+1} \leq t \leq \pi)$. Let $f \in L^p(\omega)_\beta$, where $\beta < 1 - \frac{1}{p}$ and $0 < \gamma < \beta + \frac{1}{p}$. Then
\[\left| \frac{\tilde{T}_{n,Af}(\cdot)}{\tilde{T}_{n,Af}(\cdot)} - \tilde{f}(\cdot) \right|_{L^p} = O \left((n + 1)^{\beta} \tilde{\omega} \left(\frac{\pi}{n + 1} \right) \right). \] (14)

Theorem 6. Let $(a_{n,k})_{k=0}^n \in \text{MHBVS} \cup \text{MRBVS}$ with the condition $|A|_{n,\tau} = O \left(\frac{\tau}{n^{1/2}} \right)$, where $\tau = \lceil \pi/t \rceil$, $(\frac{\pi}{n+1} \leq t \leq \pi)$. Let $f \in L^p(\omega)_\beta$ and $\tilde{\omega}$ be such that (10) holds with $0 < \gamma < \beta + \frac{1}{p}$. Then
\[\left| \frac{\tilde{T}_{n,Af}(\cdot)}{\tilde{T}_{n,Af}(\cdot)} - \tilde{f}(\cdot) \right|_{L^p} = O \left((n + 1)^{\beta} \tilde{\omega} \left(\frac{\pi}{n + 1} \right) \right). \] (15)

Remark 2. If $f \in L^p(\omega)_\beta$, where $\tilde{\omega}(t) = t_\alpha$ with $\beta < \alpha \leq 1 + \beta$, $\beta > 0$, then the conditions of our theorems are satisfied. Putting $A_0 = (a_{n,k})$, where $a_{n,k} = \frac{1}{n^{1/2}}$, when $k = 0, 1, 2, \ldots, n$ and $a_{n,k} = 0$, when $k > n$, in our theorems, we obtain the following degree of approximation $\pi^\alpha (n + 1)^{\beta - \alpha}$.

3 Corollaries

Finally, we give some corollaries as an application of our results.

Corollary 1. Under the assumptions of Theorems 1 and 2 we can obtain better orders of approximations than these in Theorems A and B.

Corollary 2. From Theorems 5 and 6 the result of Saini and Singh follows with more general assumptions on the matrix A.

4 Auxiliary results

We begin this section with some notation following Zygmund [1, Section 5 of Chapter II]. It is clear that

\[
\widetilde{S}_k f(x) = -\frac{1}{\pi} \int_{-\pi}^{\pi} f(x + t) \tilde{D}_k(t) \, dt
\]

and

\[
\widetilde{T}_{n,A} f(x) = -\frac{1}{\pi} \int_{-\pi}^{\pi} f(x + t) \sum_{k=0}^{n} a_{n,k} \tilde{D}_k(t) \, dt,
\]

where

\[
\tilde{D}_k(t) = \frac{1}{\pi} \int_{0}^{\pi} \psi_\chi(t) \sum_{k=0}^{n} a_{n,k} \tilde{D}_k(t) \, dt + \frac{1}{\pi} \int_{0}^{\pi} \psi_\chi(t) \sum_{k=0}^{n} a_{n,k} \tilde{D}_\circ_k(t) \, dt.
\]

Hence

\[
\widetilde{T}_{n,A} f(x) - \tilde{f}(x, \frac{\pi}{n + 1}) = -\frac{1}{\pi} \int_{0}^{\pi} \psi_\chi(t) \sum_{k=0}^{n} a_{n,k} \tilde{D}_k(t) \, dt + \frac{1}{\pi} \int_{0}^{\pi} \psi_\chi(t) \sum_{k=0}^{n} a_{n,k} \tilde{D}_\circ_k(t) \, dt.
\]

Now, we formulate some estimates of the considered kernel.

Lemma 1. (see [1]) If \(0 < |t| \leq \pi/2\), then

\[
|\tilde{D}_k(t)| \leq \frac{\pi}{2 |t|}
\]

and for any real \(t\), we have

\[
|\tilde{D}_k(t)| \leq \frac{1}{2} k(k + 1) |t| \quad \text{and} \quad |\tilde{D}_\circ_k(t)| \leq k + 1.
\]

Lemma 2. (see [16]) If \((a_{n,k})_{n,k=0}^n \in \text{MHBVS}\), then

\[
\left| \sum_{k=0}^{n} a_{n,k} \tilde{D}_\circ_k(t) \right| = O \left(t^{-1} A_{n,2} \right)
\]

and if \((a_{n,k})_{n,k=0}^n \in \text{MRBVS}\), then

\[
\left| \sum_{k=0}^{\infty} a_{n,k} \tilde{D}_\circ_k(t) \right| = O \left(t^{-1} A_{n,\tau} \right),
\]

for \(\frac{2\pi}{\omega} \leq t \leq \pi (n = 2, 3, \ldots)\), where \(\tau = \lfloor \pi/|t| \rfloor\).

Lemma 3. If \(t^{-\beta} \omega(t)\) is a concave and nondecreasing function of \(t\), then the function

\[
f_0(x) = \sum_{k=2}^{\infty} \left[k^{\beta} \omega \left(\frac{1}{k} \right) - (k-1)^{\beta} \omega \left(\frac{1}{k-1} \right) \right] \sin kx, \quad (x \in [0,\pi])
\]

belongs to \(L^p(\omega)_{\beta}\).
Proof. Let \(k = 2, 3, \ldots \) and

\[
a_k := k^{\beta} \omega \left(\frac{1}{k} \right) - (k-1)^{\beta} k \frac{k-1}{k} \omega \left(\frac{1}{k-1} \right).
\]

First, we show that \(a_k \geq a_{k+1} \), i.e.

\[
k^{\beta} \omega \left(\frac{1}{k} \right) - (k-1)^{\beta} k \frac{k-1}{k} \omega \left(\frac{1}{k-1} \right) \geq (k+1)^{\beta} \omega \left(\frac{1}{k+1} \right) - k^{\beta} k \frac{k}{k+1} \omega \left(\frac{1}{k} \right) \tag{16}
\]

and \(0 \leq k a_k \leq k^{\beta} \omega \left(\frac{k}{k+1} \right) \), i.e.

\[
0 \leq k \left[k^{\beta} \omega \left(\frac{1}{k} \right) - (k-1)^{\beta} k \frac{k-1}{k} \omega \left(\frac{1}{k-1} \right) \right] \leq k^{\beta} \omega \left(\frac{1}{k} \right). \tag{17}
\]

From the relations (see equation [17])

\[
\frac{1}{k} = \frac{k+1}{2k+1} \frac{1}{k+1} + \frac{(k+1)(k-1)}{k(2k+1)} \frac{1}{k-1},
\]

and using the concavity of the function \(t^{-\beta} \omega(t) \), we obtain

\[
k^{\beta} \omega \left(\frac{1}{k} \right) = \frac{k+1}{2k+1} (k+1)^{\beta} \omega \left(\frac{1}{k+1} \right) + \frac{(k+1)(k-1)}{k(2k+1)} (k-1)^{\beta} \omega \left(\frac{1}{k-1} \right), \tag{18}
\]

i.e.

\[
2k + 1 \frac{k}{k+1} k^{\beta} \omega \left(\frac{1}{k} \right) \geq (k+1)^{\beta} \omega \left(\frac{1}{k+1} \right) + k \frac{1}{k} (k-1)^{\beta} \omega \left(\frac{1}{k-1} \right).
\]

Thus, we get

\[
k^{\beta} \omega \left(\frac{1}{k} \right) + \frac{k}{k+1} k^{\beta} \omega \left(\frac{1}{k} \right) \geq (k+1)^{\beta} \omega \left(\frac{1}{k+1} \right) + k \frac{1}{k} (k-1)^{\beta} \omega \left(\frac{1}{k-1} \right).
\]

Hence, we finally obtain estimation (16).

We know (see inequality [17]) that from the concavity of the function \(t^{-\beta} \omega(t) \), we have

\[
kk^{\beta} \omega \left(\frac{1}{k} \right) \geq (k-1)(k-1)^{\beta} \omega \left(\frac{1}{k-1} \right),
\]

which implies immediately the left side of inequality (17). Using the monotonicity of the function \(t^{-\beta} \omega(t) \) we get

\[
k^{\beta} \omega \left(\frac{1}{k} \right) - (k-1)^{\beta} k \frac{k-1}{k} \omega \left(\frac{1}{k-1} \right) \leq k^{\beta} \omega \left(\frac{1}{k} \right) - k^{\beta} k \frac{k}{k+1} \omega \left(\frac{1}{k} \right) = \frac{1}{k} k^{\beta} \omega \left(\frac{1}{k} \right),
\]

which gives the right side of inequality (17).

Let us denote

\[
\psi_x^0(t) = f_0(x+t) - f_0(x) - f_0(x-t) = f_0(x) = S_x(t) - S_x(-t).
\]

Hence, we get

\[
\bar{\omega}_{\beta} f_0(\delta)_{L^p} := \sup_{0 \leq \delta \leq r} \left\{ \left| \frac{t}{2} \right| \int_0^\pi |\psi_x^0(t)|^p \, dx \right\}^{\frac{1}{p}} \leq \sup_{0 \leq \delta \leq r} \left[\left\{ \frac{t}{2} \right\}^\beta \int_0^\pi |f_0(x+t) - f_0(x)|^p \, dx \right]^{\frac{1}{p}} + \left\{ \frac{t}{2} \right\}^\beta \int_0^\pi |f_0(x-t) - f_0(x)|^p \, dx \right\}^{\frac{1}{p}} \leq 2 \sup_{0 \leq \delta \leq r} \left\{ \left\{ \frac{t}{2} \right\}^\beta \int_0^\pi |S_x(t)|^p \, dx \right\}^{\frac{1}{p}}.
\]
Let \(\frac{\pi}{m} < t < \frac{\pi}{m-1}, \ t \leq x \leq \pi - t \). We have

\[
|S_x(t)| = \left| \sum_{k=2}^{\infty} k^{\beta} \bar{\omega} \left(\frac{1}{k} \right) - (k-1)^{\beta} \frac{k-1}{k} \bar{\omega} \left(\frac{1}{k-1} \right) \right| (\sin k(x+t) - \sin kx) \\
\leq \sum_{k=2}^{m} k^{\beta} \bar{\omega} \left(\frac{1}{k} \right) - (k-1)^{\beta} \frac{k-1}{k} \bar{\omega} \left(\frac{1}{k-1} \right) \right| (\sin k(x+t) - \sin kx) \\
+ \sum_{k=m+1}^{\infty} k^{\beta} \bar{\omega} \left(\frac{1}{k} \right) - (k-1)^{\beta} \frac{k-1}{k} \bar{\omega} \left(\frac{1}{k-1} \right) \right| \sin kx =: |s_1| + |s_2| + |s_3|.
\]

Using the mean value theorem and the left side of inequality (17), we get for \(x < z < x + t \)

\[
|s_1| \leq |t| \sum_{k=2}^{m} k^{\beta} \bar{\omega} \left(\frac{1}{k} \right) - (k-1)^{\beta} \frac{k-1}{k} \bar{\omega} \left(\frac{1}{k-1} \right) \right| |\cos kz| \\
\leq |t| \sum_{k=2}^{m} k^{\beta} \bar{\omega} \left(\frac{1}{k} \right) - (k-1)^{\beta} \frac{k-1}{k} \bar{\omega} \left(\frac{1}{k-1} \right) \right| .
\]

Thus by summation, we obtain the estimate

\[
|s_1| \leq |t| m \sum_{k=2}^{m} k^{\beta} \bar{\omega} \left(\frac{1}{m} \right) \leq |t|^{-\beta} \bar{\omega} (|t|).
\]

For the terms \(|s_2| \) and \(|s_3| \), with \(x \neq 0 \), we get using the left side of inequality (17) and following Totik (see estimation [17])

\[
|s_2| \leq \sum_{k=m+1}^{\infty} k^{\beta} \bar{\omega} \left(\frac{1}{k} \right) - (k-1)^{\beta} \frac{k-1}{k} \bar{\omega} \left(\frac{1}{k-1} \right) \right| |\sin k(x+t)| \\
\leq \frac{4}{x+t} \left[(m+1)^{\beta} \bar{\omega} \left(\frac{1}{m+1} \right) - m^{\beta} \frac{m}{m+1} \bar{\omega} \left(\frac{1}{m} \right) \right],
\]

\[
|s_3| \leq \sum_{k=m+1}^{\infty} k^{\beta} \bar{\omega} \left(\frac{1}{k} \right) - (k-1)^{\beta} \frac{k-1}{k} \bar{\omega} \left(\frac{1}{k-1} \right) \right| |\sin kx| \\
\leq \frac{4}{x} \left[(m+1)^{\beta} \bar{\omega} \left(\frac{1}{m+1} \right) - m^{\beta} \frac{m}{m+1} \bar{\omega} \left(\frac{1}{m} \right) \right].
\]

Thus by inequalities (16) and (17), we obtain

\[
|s_2| \leq 4m \left[(m+1)^{\beta} \bar{\omega} \left(\frac{1}{m+1} \right) - m^{\beta} \frac{m}{m+1} \bar{\omega} \left(\frac{1}{m} \right) \right] \\
\leq 4m \left[m^{\beta} \bar{\omega} \left(\frac{1}{m} \right) - (m-1)^{\beta} \frac{m-1}{m} \bar{\omega} \left(\frac{1}{m-1} \right) \right] \\
\leq 4m^{\beta} \bar{\omega} \left(\frac{1}{m} \right) \leq 4|t|^{-\beta} \bar{\omega} (|t|)
\]

and analogously

\[
|s_3| \leq 4|t|^{-\beta} \bar{\omega} (|t|).
\]

If \(x = 0 \), then we can prove that \(|s_1| \ll t^{-\beta} \bar{\omega} (|t|) \), \(|s_2| \ll t^{-\beta} \bar{\omega} (|t|) \) and \(|s_3| = 0 \). Collecting these estimates, we get \(|S_x(t)| \ll |t|^{-\beta} \bar{\omega} (|t|) \). Hence

\[
\bar{\omega}_\beta f_0(x) \in L^p (\bar{\omega})_\beta.
\]

Thus we have proved that \(f_0 \) belongs to \(L^p (\bar{\omega})_\beta \).
Lemma 4. If $t^\beta \omega(t)$ is a nondecreasing function of t, then the function

$$f_1(x) = (n + 1)^\beta \omega\left(\frac{\pi}{n + 1}\right) \sin x, \quad (x \in [0, \pi])$$

belongs to $L^p(\omega)_\beta$.

Proof. We have

$$\tilde{\omega}_\beta f_1(\delta)_{L^p} := \sup_{0 \leq |t| \leq \delta} \left\{ \left| \sin \frac{t}{2} \right|^\beta \cdot \left(\int_0^1 |\psi_1(t)|^p \, dt \right)^{\frac{1}{p}} \right\}.$$

Let $\frac{n}{n+1} < t < \frac{n}{n+1}, \ t \leq x \leq \pi - t$. We have

$$\int_0^1 |\psi_1(t)|^p \, dt = \int_0^1 |f_1(x + t) - f_1(x)|^p \, dx = \int_0^1 \left[(n + 1)^\beta \omega\left(\frac{\pi}{n + 1}\right) \right]^p |2 \sin t \cos|^p \, dx$$

$$\ll \left[(n + 1)^\beta \omega\left(\frac{\pi}{n + 1}\right) \right]^p \ll |t|^{-\beta} \omega(|t|)^p.$$

Hence, we get

$$\tilde{\omega}_\beta f_1(\delta)_{L^p} \ll \sup_{0 \leq |t| \leq \delta} \left\{ |t|^{\beta p} \cdot |t|^{-\beta p} \omega(|t|)^p \right\}^{\frac{1}{p}} \ll \tilde{\omega}(\delta).$$

Thus, we have proved that f_1 belongs to $L^p(\omega)_\beta$.

5 Proofs of the results

5.1 Proof of Theorem 1

Let us start with the obvious relations

$$\tilde{T}_{n,a} f(x) - \tilde{f}(x, \frac{\pi}{n + 1}) = -\frac{1}{n} \int_0^\pi \psi(t) \sum_{k=0}^{n-1} a_k \delta_k(t) \, dt + \frac{1}{n} \int_0^\pi \psi(t) \sum_{k=0}^{n-1} a_k \delta_k(t) \, dt =: \tilde{I}_1 + \tilde{I}_2$$

and

$$|\tilde{T}_{n,a} f(x) - \tilde{f}(x, \frac{\pi}{n + 1})| \leq |\tilde{I}_1| + |\tilde{I}_2|.$$

By the Hölder inequality $\left(\frac{1}{p} + \frac{1}{q} = 1 \right)$, Lemma 1 and equation (6)

$$|\tilde{I}_1| \leq (n + 1)^2 \int_0^\pi \frac{t |\psi(t)|}{\omega(t)} \, dt$$

$$\leq (n + 1)^2 \left\{ \int_0^\pi \left[\frac{t |\psi(t)|}{\omega(t)} \right]^p \sin^\beta \frac{t}{2} \, dt \right\}^{\frac{1}{p}} \left\{ \int_0^\pi \left[\sin^\beta \frac{t}{2} \right]^q \, dt \right\}^{\frac{1}{q}} \ll (n + 1)^{1-\frac{1}{p}} \left\{ \int_0^\pi \left[\omega(t) \right]^q \, dt \right\}^{\frac{1}{q}} \ll (n + 1)^{\frac{1}{p}} \omega\left(\frac{\pi}{n + 1}\right),$$

for $\beta < 1 - \frac{1}{p}$.
By the Hölder inequality \(\left(\frac{1}{p} + \frac{1}{q} = 1 \right) \), Lemma 2, monotonicity of the function \(t^{-1} \tilde{\omega}(t) \) and equation (7)

\[
\left| \tilde{I}_2 \right| \leq \frac{1}{\pi} \int_0^{\pi} \frac{\left| \psi_x(t) \right| |A_{n,r}| dt}{t^2} \leq (n+1)^{-1} \int_0^{\pi} \left| \frac{\psi_x(t)}{t} \right| dt \left(n+1 \right)^{1-\frac{\gamma}{p}} \leq \left(n+1 \right)^{1-\frac{\gamma}{p}} \left(\frac{\pi}{n+1} \right) \tilde{\omega}
\]

\[
\ll (n+1)^{-\frac{\gamma}{p}} \left(\frac{\pi}{n+1} \right) \tilde{\omega} \leq (n+1)^{\beta} \left(\frac{\pi}{n+1} \right) \tilde{\omega}
\]

for \(0 < \gamma < \beta + \frac{1}{p} \).

Collecting these estimates, we obtain the desired result. \(\Box \)

5.2 Proof of Theorem 2

As usual, let us start with the obvious relations

\[
\tilde{T}_{n,Af}(x) - \tilde{f}(x) = \frac{1}{\pi} \int_0^{\pi} \psi_x(t) \sum_{k=0}^{n} a_{n,k} \hat{f}_k(t) dt + \frac{1}{\pi} \int_0^{\pi} \psi_x(t) \sum_{k=0}^{n} a_{n,k} \hat{f}_k(t) dt =: \tilde{I}_1 + \tilde{I}_2
\]

and

\[
\left| \tilde{T}_{n,Af}(x) - \tilde{f}(x) \right| \leq \left| \tilde{I}_1 \right| + \left| \tilde{I}_2 \right|.
\]

By the Hölder inequality \(\left(\frac{1}{p} + \frac{1}{q} = 1 \right) \), Lemma 1, equations (9) and (10),

\[
\left| \tilde{I}_1 \right| \leq \frac{1}{\pi} \int_0^{\pi} \frac{\left| \psi_x(t) \right| dt}{t} = \frac{1}{\pi} \left\{ \int_0^{\pi} \left| \frac{\psi_x(t)}{\omega(t)} \right| \frac{\sin^{\beta} \frac{t}{2}}{t} \right\}^{\frac{1}{p}} \left\{ \int_0^{\pi} \left(\frac{\omega(t)}{t \sin^{\beta} \frac{t}{2}} \right)^q dt \right\}^{\frac{1}{q}} \ll (n+1)^{\frac{\gamma}{p}} \tilde{\omega} \left(\frac{\pi}{n+1} \right) \tilde{\omega} \ll (n+1)^{\beta} \left(\frac{\pi}{n+1} \right) \tilde{\omega}
\]

By the previous proof

\[
\left| \tilde{I}_2 \right| \ll (n+1)^{\beta} \tilde{\omega} \left(\frac{\pi}{n+1} \right)
\]

for \(0 < \gamma < \beta + \frac{1}{p} \).

Collecting these estimates, we obtain the desired result. \(\Box \)

5.3 Proof of Theorem 3

Let us fix a point \(x \) and let us consider the class \(L^p(\tilde{\omega}), \beta \), with \(\beta > 0 \), of all functions \(f \in L^p \) such that

\[
\tilde{\omega}_\beta f(\delta)_{L^p} \leq \tilde{\omega}(\delta), \quad (0 \leq \delta \leq 2\pi).
\]
Then Theorem 1 implies the following estimate
\[
\sup_{f \in L^p(\Omega)_{\beta}} \left| \tilde{T}_{n,Af} (x) - \tilde{f} \left(x, \frac{\pi}{n+1} \right) \right| \ll (n+1)^{\beta} \left(\frac{\pi}{n+1} \right)
\]
for $\beta < 1 - \frac{1}{p}$.

On the other hand, the function
\[
f_1(x) = (n+1)^{\beta} \left(\frac{\pi}{n+1} \right) \sin x
\]
by Lemma 4 belongs to class $L^p(\Omega)_{\beta}$, if $t^{1-\beta} (\tilde{f})$ is a nondecreasing function of t, and f_1 satisfies the conditions (6) and (7) of Theorem 1. Indeed, we have
\[
\left\{ \int_0^{\pi} \left(\frac{t | \psi^1_x(t) |}{\omega(t)} \right)^p \sin^{\alpha p} t dt \right\}^{1/p} \ll \left\{ \int_0^{\pi} \left(\frac{t^{1-\beta} \omega(t)}{\omega(t)} \right)^p \sin^{\alpha p} t dt \right\}^{1/p} = O(n+1)^{-\frac{1-\beta}{p}}.
\]
Moreover, there exists γ such that $\frac{1}{p} < \gamma < \beta + \frac{1}{p}$ and
\[
\left\{ \int_0^{\frac{\pi}{n\pi}} \left(\frac{t^{-\gamma} | \psi^1_x(t) |}{\omega(t)} \right)^p \sin^{\alpha p} t dt \right\}^{1/p} \ll \left\{ \int_0^{\frac{\pi}{n\pi}} \left(\frac{t^{-\gamma} \omega(t)}{\omega(t)} \right)^p \sin^{\alpha p} t dt \right\}^{1/p} = O(n+1)^{-\gamma \frac{1}{p}}.
\]

Let $\frac{\pi}{n} < t < \frac{\pi}{n+1}$. We have
\[
\tilde{f}_1 \left(x, \frac{\pi}{n+1} \right) = -\frac{1}{\pi} \int_0^{\pi} \left[f_1(x+t) - f_1(x-t) \right] \frac{\cos \frac{t}{2}}{2 \sin \frac{t}{2}} dt
\]
\[
= -\frac{1}{\pi} (1 + n)^{\beta} \left(\frac{\pi}{n+1} \right) \int_0^{\pi} 2 \sin t \cos x \frac{\cos \frac{t}{2}}{2 \sin \frac{t}{2}} dt
\]
\[
= -\frac{2}{\pi} (1 + n)^{\beta} \left(\frac{\pi}{n+1} \right) \cos x \int_0^{\pi} \frac{\cos^2 \frac{t}{2}}{2} dt
\]
\[
= -\frac{2}{\pi} (1 + n)^{\beta} \left(\frac{\pi}{n+1} \right) \cos x \left[\frac{\pi}{2} - \frac{\pi}{2} \frac{1}{2n+1} - \frac{1}{2} \sin \frac{\pi}{n+1} \right].
\]

We get
\[
\sup_{f \in L^p(\Omega)_{\beta}} \left| \tilde{T}_{n,Af} (x) - \tilde{f} \left(x, \frac{\pi}{n+1} \right) \right| \geq \left| \tilde{T}_{n,Af_1} (x) - \tilde{f}_1 \left(x, \frac{\pi}{n+1} \right) \right|
\]
\[
= \left[\sum_{k=2}^{n} a_{n,k} (1 + n)^{\beta} \left(\frac{\pi}{n+1} \right) \cos x + n(n+1)^{\beta-1} \left(\frac{\pi}{n+1} \right) \cos x \right.
\]
\[
- \frac{1}{\pi} (1 + n)^{\beta} \left(\frac{\pi}{n+1} \right) \cos x \sin \frac{\pi}{n+1} \left[\right].
\]
Thus in a special case, for $x = 0$, we get
\[
\left| (1 + n)^{\beta} \left(\frac{\pi}{n+1} \right) \left[1 + \frac{\pi}{2} - \frac{\pi}{2n+1} - \frac{1}{2} \sin \frac{\pi}{n+1} \right] \right| \gg (1 + n)^{\beta} \left(\frac{\pi}{n+1} \right).
\]

Hence, we finally obtain equation (12).

When $x = x_0$, we can consider the function $f_{x_0}(\cdot) = f_1(\cdot - x_0)$ instead of $f_1(\cdot)$. Thus our proof is complete.

\[\square\]
5.4 Proof of Theorem 4

Let us fix a point x and let us consider the class $L^p(\tilde{\omega})_\beta$, with $\beta < 1 - \frac{1}{p}$, of all functions $f \in L^p$ such that

$$
\tilde{\omega}_f(\delta)_L \leq \tilde{\omega}(\delta), \quad 0 \leq \delta \leq 2\pi.
$$

The Theorem 2 implies the estimate

$$
\sup_{f \in L^p(\tilde{\omega})_{\beta}} \left| \tilde{T}_nAf(x) - \tilde{f}(x) \right| \ll (n + 1)^{\beta} \tilde{\omega} \left(\frac{\pi}{n + 1} \right).
$$

On the other hand, the function

$$
f_0(x) = \sum_{k=1}^{\infty} \left[k^{\beta} \tilde{\omega} \left(\frac{1}{k} \right) - (k - 1)^{\beta} \frac{k - 1}{k} \tilde{\omega} \left(\frac{1}{k - 1} \right) \right] \sin kx,
$$

by Lemma 3 belongs to class $L^p(\tilde{\omega})_\beta$, if $t^{\beta} \tilde{\omega}(t)$ is a concave and nondecreasing function of t.

We can see that the function f_0 satisfies the condition (7) with $\frac{1}{p} < \gamma < \beta + \frac{1}{p}$ and the condition (9).

Indeed, using the estimation (18) obtained in the proof of Lemma 3, we have

$$
|\tilde{T}_nA\phi(t)| = |f_0(x + t) - f_0(x - t)| \ll |t|^{\beta} \tilde{\omega}(|t|).
$$

Thus, we easily get

$$
\left\{ \frac{\pi}{p} \left(\frac{t^{-\gamma} \psi_0(t)}{\tilde{\omega}(|t|)} \right)^p \sin^{\beta p} \frac{t}{2} dt \right\}^{1/p} \ll \left\{ \frac{\pi}{p} \left(\frac{t^{-\gamma} \tilde{\omega}(|t|)}{\tilde{\omega}(|t|)} \right)^p \sin^{\beta p} \frac{t}{2} dt \right\}^{1/p}
$$

and

$$
\left\{ \frac{\pi}{p} \left(\frac{\psi_0(t)}{\tilde{\omega}(|t|)} \right)^p \sin^{\beta p} \frac{t}{2} dt \right\}^{1/p} \ll \left\{ \frac{\pi}{p} \left(\frac{t^{-\beta} \tilde{\omega}(|t|)}{\tilde{\omega}(|t|)} \right)^p t^{\beta p} dt \right\}^{1/p} = O(n + 1)^{\gamma - \frac{1}{2}}
$$

Hence, by Theorem 2 the estimation (11) holds for the function f_0.

On the other hand using the fact

$$
\tilde{f}_0(x) = \sum_{k=2}^{\infty} \left[k^{\beta} \tilde{\omega} \left(\frac{1}{k} \right) - (k - 1)^{\beta} \frac{k - 1}{k} \tilde{\omega} \left(\frac{1}{k - 1} \right) \right] \cos kx
$$

we get

$$
\sup_{f \in L^p(\tilde{\omega})_{\beta}} \left| \tilde{T}_nAf(x) - \tilde{f}(x) \right| \geq \left| \tilde{T}_nAf_0(x) - \tilde{f}_0(x) \right| = \left| \sum_{k=2}^{\infty} \sum_{l=k+1}^{\infty} \left[l^{\beta} \tilde{\omega} \left(\frac{1}{l} \right) - (l - 1)^{\beta} \frac{l - 1}{l} \tilde{\omega} \left(\frac{1}{l - 1} \right) \right] \cos lx \right|.
$$

Thus in a special case, for $x = 0$, we get

$$
\left| \sum_{k=2}^{n} \sum_{l=k+1}^{\infty} \left[l^{\beta} \tilde{\omega} \left(\frac{1}{l} \right) - (l - 1)^{\beta} \frac{l - 1}{l} \tilde{\omega} \left(\frac{1}{l - 1} \right) \right] \cos lx \right|.
$$

Using the inequality (18), we have

$$
k^{\beta} \tilde{\omega} \left(\frac{1}{k} \right) \geq \frac{k + 1}{2k + 1} (k + 1)^{\beta} \tilde{\omega} \left(\frac{1}{k + 1} \right) + \frac{k + 1}{k(2k + 1)} (k - 1)^{\beta} \tilde{\omega} \left(\frac{1}{k - 1} \right)
$$

and

$$
\frac{1}{2} (k + 1)^{\beta} \tilde{\omega} \left(\frac{1}{k + 1} \right).
$$
which implies
\[
\sup_{f \in L^p(\omega)} \left| \tilde{T}_{n,A} f(x) - \tilde{f}(x) \right| \geq \frac{1}{q} \sum_{k=2}^{n} a_{n,k} (k+1)^\beta \tilde{\omega} \left(\frac{1}{k+1} \right) \gg (n+1)^\beta \tilde{\omega} \left(\frac{1}{n+1} \right).
\]
Hence, we finally obtain (13).

When \(x = x_0 \), we can consider the function \(f_{x_0}(\cdot) = f_0(\cdot - x_0) \) instead of \(f_0(\cdot). \) Thus our proof is complete.

\[\square\]

5.5 Proof of Theorem 5

Note that if \(f \in L^p(\omega)_\beta \), then Theorem 1 implies
\[
\left| \tilde{T}_{n,A} f(x) - \tilde{f}(x, \frac{\pi}{n+1}) \right| \ll (n+1)^\beta \tilde{\omega} \left(\frac{\pi}{n+1} \right).
\]

Thus, we easily get
\[
\left\| \tilde{T}_{n,A} f(\cdot) - \tilde{f}(\cdot, \frac{\pi}{n+1}) \right\|_{L^p} = \left\{ \int_0^\pi \left| \tilde{T}_{n,A} f(x) - \tilde{f}(x, \frac{\pi}{n+1}) \right|^p dx \right\}^{1/p} \ll (n+1)^\beta \tilde{\omega} \left(\frac{\pi}{n+1} \right) = O \left((n+1)^\beta \tilde{\omega} \left(\frac{\pi}{n+1} \right) \right).
\]

The conditions (6) and (7) from Theorem 1 are satisfied in the following form
\[
\left\| \left\{ \int_0^\pi \left(\frac{t}{\omega(t)} \right) \sin^{\beta p} \frac{t}{2} dt \right\}^{1/p} \right\|_{L^p} \leq \left\{ \int_0^\pi \left(\frac{t}{\omega(t)} \right) \sin^{\beta p} \frac{t}{2} dt \right\}^{1/p} = O \left((n+1)^{-\frac{1}{p}} \right)
\]
\[
\left\| \left\{ \int_0^{\pi/n} \left(\frac{t}{\omega(t)} \right) \sin^{\beta p} \frac{t}{2} dt \right\}^{1/p} \right\|_{L^p} \leq \left\{ \int_0^{\pi/n} \left(\frac{t}{\omega(t)} \right) \sin^{\beta p} \frac{t}{2} dt \right\}^{1/p} = O \left((n+1)^{-\frac{1}{p}} \right).\]

Hence our proof is complete.

\[\square\]

5.6 Proof of Theorem 6

Similarly to the previous proof, note that if \(f \in L^p(\omega)_\beta \), then Theorem 2 implies
\[
\left| \tilde{T}_{n,A} f(x) - \tilde{f}(x) \right| \ll (n+1)^\beta \tilde{\omega} \left(\frac{\pi}{n+1} \right).
\]

Thus, we easily get
\[
\left\| \tilde{T}_{n,A} f(\cdot) - \tilde{f}(\cdot) \right\|_{L^p} = \left\{ \int_0^\pi \left| \tilde{T}_{n,A} f(x) - \tilde{f}(x) \right|^p dx \right\}^{1/p} \ll (n+1)^\beta \tilde{\omega} \left(\frac{\pi}{n+1} \right) = O \left((n+1)^\beta \tilde{\omega} \left(\frac{\pi}{n+1} \right) \right).
\]

We know by the previous proof that the condition (7) is satisfied and the condition (9), from Theorem 2, is satisfied in the following form
\[
\left\| \left\{ \int_0^\pi \left(\frac{t}{\omega(t)} \right) \sin^{\beta p} \frac{t}{2} dt \right\}^{1/p} \right\|_{L^p} \leq \left\{ \int_0^\pi \left(\frac{t}{\omega(t)} \right) \sin^{\beta p} \frac{t}{2} dt \right\}^{1/p} = O \left((n+1)^{-\frac{1}{p}} \right).
\]

Hence, our proof is complete.

\[\square\]
References

[1] Zygmund A., Trigonometric series, Cambridge, 2002
[2] Leindler L., On the degree of approximation of continuous functions, Acta Math. Hungar., 2004, 104 (1-2), 105-113
[3] Szal B., A note on the uniform convergence and boundedness a generalized class of sine series, Commentat. Math., 2008, 48(1), 85-94
[4] Qureshi K., On the degree of approximation of functions belonging to the Lipschitz class by means of a conjugate series, Indian J. Pure Appl. Math., 1981, 12(9), 1120-1123
[5] Lal S., Nigam H. K., Degree of approximation of conjugate of a function belonging to Lip (ξ (t), p) class by matrix summability means of conjugate Fourier series, Int. J. Math. Math. Sci., 2001, 27(9), 555-563
[6] Dhakal B. P., Approximation of the conjugate of function belonging to Lip α class by (E, 1)(C, 1) means of the conjugate series of it's Fourier series, Int. J. Innov. Res. Sci. Eng. Technol., 2013, 2(3), 836-840
[7] Lal S., Singh G. K., Degree of approximation of conjugate of Lip α class function by K-summability means of conjugate series of a Fourier series, Tamkang J. Math., 2003, 34(4), 387-394
[8] Mishra V. N., Khan H. H., Khatri K., Degree of approximation of conjugate of signals (functions) by lower triangular matrix operator, App. Math., 2011, 2, 1448-1652
[9] Mishra L. N., Mishra V. N., Sonavane V., Trigonometric approximation of functions belonging to Lipschitz class by matrix (C1, Nq) operator of conjugate series of Fourier series, Adv. Difference Equ., 2013, 2013:127, 1-10
[10] Nigam H. K., Sharma A., On approximation of conjugate of functions belonging to different classes by product means, Int. J. Pure Appl. Math., 2012, 76(2), 303-316
[11] Rhoades B. E., The degree of approximation of functions, and their conjugates, belonging to several general Lipschitz classes by Hausdorff matrix means of the Fourier series and conjugate series of a Fourier series, Tamkang J. Math., 2014, 45(4), 389-395
[12] Sonker S., Singh U., Degree of approximation of the conjugate of signals (functions) belonging to Lip(α, r)-class by (C, 1)(E, q) means of conjugate trigonometric Fourier series, J. Inequal. Appl., 2012, 2012:278, 1-7
[13] Qureshi K., On the degree of approximation of functions belonging to the class Lip (α, p) by means of a conjugate series, Indian J. Pure Appl. Math., 1982, 13(5), 560-563
[14] Łenski W., Szal B., Approximation of functions belonging to the class Lp (ω), by linear operators, Acta Comment. Univ. Tartu. Math., 2009, 13, 11-24
[15] Sain S., Singh U., Degree of approximation of function belonging to Lip (ω(t), p)-class by linear operators based on Fourier series, Boll. Unione Mat. Ital., 2016, 9, 495-504
[16] Łenski W., Szal B., Approximation of functions from Lp (ω), by linear operators of conjugate Fourier series, Banach Center Publications, 2011, 92, 237-247
[17] Totik V., On the strong approximation by the means of Fourier series I, Anal. Math., 1980, 6, 57-85