Precise measurement of the CP violation parameter $\sin 2\phi_1$ in $B^0 \rightarrow (c\bar{c})K^0$ decays

I. Adachi,9 H. Aihara,49 D. M. Asner,37 V. Aulchenko,1 T. Azhev,14 T. Aziz,44 A. M. Bakich,43 A. Bay,21 V. Bhardwaj,29 B. Bhuyan,10 M. Bischofberger,29 A. Bondar,1 A. Bozek,32 M. Bračko,24,15 T. E. Browder,8 P. Chen,31 B. G. Cheon,7 K. Chilikin,14 R. Chistov,14 K. Cho,18 S.-K. Choi,6 Y. Choi,42 J. Dalseno,25,45 M. Danilov,14 Z. Doležal,2 Z. Drášal,2 E. Eidelman,1 D. Epifanov,1 J. E. Fast,37 V. Gaur,44 N. Gabyshëv,1 A. Garmash,1 Y. M. Goh,9 B. Golob,22,15 J. Haba,9 K. Hara,9 T. Hara,9 K. Hayasaka,28 H. Hayashi,29 T. Higuchi,9 Y. Horii,28 Y. Hoshi,47 W.-S. Hou,31 Y. B. Hsiung,31 H. J. Hyun,29 T. Iijima,28,27 A. Ishikawa,48 R. Itoh,9 M. Iwabuchi,55 Y. Iwasaki,9 T. Iwashita,29 T. Julius,26 P. Kapusta,32 N. Katayama,9 T. Kawasaki,34 H. Kichimi,9 C. Kiesling,25 H. J. Kim,20 H. O. Kim,20 J. B. Kim,19 J. H. Kim,18 K. T. Kim,19 Y. J. Kim,18 K. Kinoshita,3 B. R. Ko,19 S. Kobritz,25 P. Kodyš,2 S. Korpar,24,15 P. Križan,22,15 P. Krokovny,1 T. Kuhr,17 R. Kumar,38 T. Kuma,51 A. Kuzmin,1 Y.-J. Kwon,55 J. S. Lange,4 S.-H. Lee,19 J. Li,41 Y. Li,53 C. Liu,40 Y. Liu,31 Z. Q. Liu,13 D. Liventsev,14 R. Louvot,21 D. Matvienko,1 S. McOnie,43 K. Miyabayashi,29 H. Miyata,34 Y. Miyazaki,27 R. Mizuk,14 G. B. Mohanty,44 T. Mori,27 N. Muramatsu,39 E. Nakano,36 M. Nakao,9 H. Nakazawa,56 S. Neubauer,17 S. Nishida,9 K. Nishimura,8 O. Nito,52 S. Ogawa,46 T. Ohshima,27 S. Okuno,16 S. L. Olsen,41,8 Y. Onuki,49 H. Ozaki,9 P. Pakhlov,14 G. Pakhlova,14 H. K. Park,20 K. S. Park,42 T. K. Pedlar,23 R. Pestotnik,15 M. Petrič,15 L. E. Piilonen,53 A. Poluektov,1 M. Röhrken,17 M. Rozanska,32 H. Saooh,8 K. Sakai,9 Y. Sakai,9 T. Sanuki,48 Y. Sato,48 O. Schneider,21 C. Schwanda,12 A. J. Schwartz,3 K. Senyo,54 V. Shebalin,1 C. P. Shen,27 T.-A. Shibata,50 J.-G. Shiu,31 B. Shwartz,1 A. Sibidanov,43 F. Simon,25,45 J. B. Singh,38 P. Smerkol,15 Y.-S. Sohn,55 A. Sokolov,13 E. Solovieva,14 S. Stanic,35 M. Starić,15 M. Sumihama,5 K. Sumisawa,9 T. Sumiyoshi,51 S. Tanaka,49 G. Tatishvili,37 Y. Teramoto,36 I. Tikhomirov,14 K. Trabelsi,9 T. Tsuboyama,9 M. Uchida,50 S. Uehara,9 T. Uglow,14 Y. Unno,7 S. Uno,9 Y. Usihira,9 S. E. Vahsen,8 G. Varner,8 K. E. Varvell,49 A. Vinokurova,1 V. Vorobyev,1 C. H. Wang,30 M.-Z. Wang,31 P. Wang,11 M. Watanabe,34 Y. Watanabe,49 K. M. Williams,53 E. Won,19 B. D. Yabsley,43 H. Yamamoto,48 Y. Yamashita,33 M. Yamauchi,9 Y. Yusa,34 Z. P. Zhang,40 V. Zhilich,1 A. Zupanc,17 and O. Zyukova1

(The Belle Collaboration)

1Badger Institute of Nuclear Physics SB RAS and Novosibirsk State University, Novosibirsk 630090
2Faculty of Mathematics and Physics, Charles University, Prague
3University of Cincinnati, Cincinnati, Ohio 45221
4Justus-Liebig-Universität Gießen, Gießen
5Gifu University, Gifu
6Gyeongsang National University, Chinju
7Hanyang University, Seoul
8University of Hawaii, Honolulu, Hawaii 96822
9High Energy Accelerator Research Organization (KEK), Tsukuba
10Indian Institute of Technology Guwahati, Guwahati
11Institute of High Energy Physics, Chinese Academy of Sciences, Beijing
12Institute of High Energy Physics, Vienna
13Institute of High Energy Physics, Protvino
14Institute for Theoretical and Experimental Physics, Moscow
15J. Stefan Institute, Ljubljana
16Kanagawa University, Yokohama
17Institut für Experimentelle Kernphysik, Karlsruher Institut für Technologie, Karlsruhe
18Korea Institute of Science and Technology Information, Daejeon
19Korea University, Seoul
20Kyungpook National University, Taegu
21École Polytechnique Fédérale de Lausanne (EPFL), Lausanne
22Faculty of Mathematics and Physics, University of Ljubljana, Ljubljana
23Luther College, Decorah, Iowa 52101
24University of Maribor, Maribor
25Max-Planck-Institut für Physik, München
26University of Melbourne, School of Physics, Victoria 3010
27Graduate School of Science, Nagoya University, Nagoya
28Kobayashi-Maskawa Institute, Nagoya University, Nagoya
29Nara Women’s University, Nara
30National United University, Miaoli Li
31Department of Physics, National Taiwan University, Taipei
32H. Niewodniczanski Institute of Nuclear Physics, Krakow
33Gyeongsang National University, Chinju
34Institute of High Energy Physics, Protvino
35Indian Institute of Technology Guwahati, Guwahati
36Justus-Liebig-Universität Gießen, Gießen
37University of Cincinnati, Cincinnati, Ohio 45221
38Institute of High Energy Physics, Vienna
39Indian Institute of Technology Guwahati, Guwahati
40University of Hawaii, Honolulu, Hawaii 96822
41Justus-Liebig-Universität Gießen, Gießen
42Institute for Theoretical and Experimental Physics, Moscow
43Korea Institute of Science and Technology Information, Daejeon
44Korea University, Seoul
45Indian Institute of Technology Guwahati, Guwahati
46University of Hawaii, Honolulu, Hawaii 96822
47Institute of High Energy Physics, Vienna
48Korea Institute of Science and Technology Information, Daejeon
49Korea University, Seoul
50Indian Institute of Technology Guwahati, Guwahati
51Institute of High Energy Physics, Protvino
52University of Hawaii, Honolulu, Hawaii 96822
53Korea Institute of Science and Technology Information, Daejeon
54Korea University, Seoul
55Institute of High Energy Physics, Vienna
56Indian Institute of Technology Guwahati, Guwahati
57Korea Institute of Science and Technology Information, Daejeon
58Korea University, Seoul
We present a precise measurement of the CP violation parameter \(\sin 2\phi_1 \) and the direct CP violation parameter \(A_f \) using the final data sample of 772 \(\times 10^6 \) \(B\bar{B} \) pairs collected at the \(\Upsilon(4S) \) resonance with the Belle detector at the KEKB asymmetric-energy \(e^+e^- \) collider. One neutral \(B \) meson is reconstructed in a \(J/\psi K_S^0, \psi(2S)K_S^0, \chi_{c1} K_S^0 \) or \(J/\psi K_L^0 \) CP-eigenstate and its flavor is identified from the decay products of the accompanying \(B \) meson. From the distribution of proper time intervals between the two \(B \) decays, we obtain the following CP violation parameters:
\[
\sin 2\phi_1 = 0.667 \pm 0.023(\text{stat}) \pm 0.012(\text{syst}) \quad \text{and} \quad A_f = 0.006 \pm 0.016(\text{stat}) \pm 0.012(\text{syst}).
\]

PACS numbers: 11.30.Er, 12.15.Hh, 13.25.Hw

In the standard model (SM), CP violation in the quark sector is described by the Kobayashi-Maskawa (KM) theory \([1]\) in which the quark-mixing matrix has a single irreducible complex phase that gives rise to all CP-violating asymmetries. In the decay chain \(\Upsilon(4S) \to B^0 \bar{B}^0 \to f_{CP} f_{\text{tag}} \), where one of the \(B \) mesons decays at time \(t_{CP} \) to a \(CP \)-eigenstate \(f_{CP} \) and the other \(B \) meson decays at time \(t_{\text{tag}} \) to a final state \(f_{\text{tag}} \) that distinguishes between \(B^0 \) and \(\bar{B}^0 \), the decay rate has a time dependence in the \(\Upsilon(4S) \) rest frame \([2]\) given by
\[
\mathcal{P}(\Delta t) = \frac{e^{-|\Delta t|/\tau_{B^0}}}{4\tau_{B^0}} \left\{ 1 + q \left[S_f \sin(\Delta m_d \Delta t) + A_f \cos(\Delta m_d \Delta t) \right] \right\}.
\] (1)

Here \(S_f \) and \(A_f \) are CP violation parameters, \(\tau_{B^0} \) is the \(B^0 \) lifetime, \(\Delta m_d \) is the mass difference between the two neutral \(B \) mass eigenstates, \(\Delta t \equiv t_{CP} - t_{\text{tag}} \), and the \(b \)-flavor charge \(q = +1 \) (\(-1\)) when the tagging \(B \) meson is a \(B^0 \) (\(\bar{B}^0 \)). With very small theoretical uncertainty \([2]\), the SM predicts \(S_f = -\xi_f \sin 2\phi_1 \) and \(A_f = 0 \) for the \(b \to c\bar{c}s \) transition, where \(\xi_f = +1 \) (\(-1\)) corresponds to \(CP \)-even (\(-odd\)) final states and \(\phi_1 \) is an interior angle of the KM unitarity triangle, defined as \(\phi_1 \equiv \arg(-V_{cb}V_{cb}^*/V_{td}V_{td}^*) \) \([3]\). The BaBar and Belle collaborations have published several determinations of \(\sin 2\phi_1 \) since the first observation \([4, 5]\); previous results used \(465 \times 10^6 \) \([6]\) and \(535 \times 10^6 \) \([7]\) \(B\bar{B} \) pairs, respectively.

With recently available experimental results, not only \(\sin 2\phi_1 \) but also other measurements of the sides of the unitarity triangle and other CP violation measurements make it possible to test the consistency of the KM scheme. The indirect determination of the angle \(\phi_1 \) deviates by \(2.7\sigma \) from the current world average for the direct determination of \(\sin 2\phi_1 \) \([8]\). Equivalently, the \(B^\pm \to \tau^\pm\nu_\tau \) branching fraction and the resulting value of \(|V_{ub}| \) differ by \(2.8\sigma \) from the prediction of the global fit \([9]\), where the \(\sin 2\phi_1 \) value gives the most stringent constraint on the indirect measurement. Furthermore, time-dependent CP violation in the neutral \(B \) meson decays mediated by flavor-changing \(b \to s \) transitions may deviate from CP violation in the \(b \to c\bar{c}s \) case because of possible additional quantum loops \([10]\). To clarify whether new physics contributes to \(CP \)-violating phenomena or \(B^\pm \to \tau^\pm\nu_\tau \) decays, it is very important to determine \(\sin 2\phi_1 \), the SM reference, as precisely as possible.

In this Letter, we describe the final Belle measurement of \(\sin 2\phi_1 \) and \(A_f \) in \(b \to c\bar{c}s \) induced \(B \) decays to \(f_{CP} \). The \(B \) decays to the \(CP \)-odd eigenstates, \(f_{CP} = J/\psi K_S^0, \psi(2S)K_S^0, \) or \(\chi_{c1} K_S^0 \), and the \(CP \)-even eigenstate, \(f_{CP} = J/\psi K_L^0 \), are reconstructed using \(772 \times 10^6 \)

For the \(B\bar{B} \) pairs, the entire data sample accumulated on the \(\Upsilon(4S) \) resonance with the Belle detector \([10]\) at the KEKB asymmetric-energy e+e− collider \([11]\). Two inner detector configurations were used. A 2.0 cm radius beampipe and a 3-layer silicon vertex detector (SVD) were used for the first data sample that contains \(152 \times 10^6 \) \(B\bar{B} \) pairs. The remaining \(620 \times 10^6 \) \(B\bar{B} \) pairs were accumulated with a 1.5 cm radius beampipe, a 4-layer silicon vertex detector and a small-cell inner drift chamber. The latter data sample has been recently reprocessed using a new charged track reconstruction algorithm, which significantly increased the reconstruction efficiency for the \(B^0 \to (c\bar{c})K^0_S \) decay modes. In particular, the gain for the \(B^0 \to J/\psi K^0_S \) decay mode is 18\%.

The \(\Upsilon(4S) \) produces with a Lorentz boost of \(\beta\gamma = 0.425 \) nearly along the z-axis, which is antiparallel to the positron beam direction. Since the \(B^0 \) and \(B^0 \) mesons are approximately at rest in the \(\Upsilon(4S) \) center-of-mass system (CM), \(\Delta t \) can be determined from the displacement in z between the \(f_{CP} \) and \(f_{\text{tag}} \) decay vertices: \(\Delta t \approx (s_{CP} - z_{\text{tag}})/(\beta\gamma c) \equiv \Delta z/(\beta\gamma c) \).

Charged tracks reconstructed in the central drift chamber (CDC), except for tracks from \(K^0_S \to \pi^+\pi^- \) decays, are required to originate from the interaction point (IP). We distinguish charged kaons from pions based on a kaon (pion) likelihood \(L_{K(p)} \) derived from the time-of-flight scintillation counters, aerogel threshold Cherenkov counters (ACC), and \(dE/dx \) measurements in the CDC. Electron identification is based on the ratio of the electromagnetic calorimeter (ECL) cluster energy to the particle momentum as well as a combination of \(dE/dx \) measurements in the CDC, the ACC response, and the position and shape of the electromagnetic shower. Muons are identified by track penetration depth and hit scatter in the muon detector (KLM). Photons are identified as isolated ECL clusters that are not matched to any charged track.

For the \(J/\psi K^0_S \), \(J/\psi K^0_L \) and \(\psi(2S) K^0_S \) modes, event selection is the same as in our previous analyses \([7,12]\), where \(J/\psi \) mesons are reconstructed via their decays to \(\ell^+\ell^- \) (\(\ell = e, \mu \)) and the \(\psi(2S) \) mesons to \(\ell^+\ell^- \) or \(J/\psi \pi^+\pi^- \). For the modes \(J/\psi K^0_L \) and \(\chi_c K^0_S \), in which the \(\chi_c \) is reconstructed in the \(J/\psi \gamma \) final state, both \(J/\psi \) daughter tracks must be positively identified as leptons, whereas for the \(J/\psi K^0_S \) and \(\psi(2S) K^0_S \) modes, at least one daughter must satisfy this requirement. Any other track having an ECL energy deposit consistent with a minimum ionizing particle is accepted as a muon candidate and any track satisfying either the \(dE/dx \) or the ECL shower energy requirements is retained as an electron candidate. For \(J/\psi \to e^+e^- \) decays, the \(e^\pm \) charmonium daughters are combined with photons found within 50 mrad of the \(e^+ \) or \(e^- \) direction in order to account partially for final-state radiation and bremsstrahlung. In order to accommodate the remaining radiative tails, an asymmetric invariant mass requirement is used to select \(J/\psi \) and \(\psi(2S) \) decays in dilepton modes, \(-150 \text{ MeV}/c^2 < M_{e^+e^-} - M_{\psi} < 36 \text{ MeV}/c^2 \) and \(-60 \text{ MeV}/c^2 < M_{\mu^+\mu^-} - M_{\psi} < 36 \text{ MeV}/c^2 \), where \(M_{\psi} \) denotes either the nominal \(J/\psi \) or \(\psi(2S) \) mass. For \(\psi(2S) \to J/\psi \pi^+\pi^- \) candidates, we require a mass difference of \(580 \text{ MeV}/c^2 < M_{e^+e^-} - M_{\psi} < 600 \text{ MeV}/c^2 \), and \(\chi_c \) to \(J/\psi \gamma \) candidates are required to have a mass difference of \(385.0 \text{ MeV}/c^2 < M_{e^+e^-} - M_{\psi} < 430.5 \text{ MeV}/c^2 \). For each charmonium candidate, vertex-constrained and mass-constrained fits are applied to improve its momentum resolution.

Candidate \(K^0_S \to \pi^+\pi^- \) decays are selected by requirements on their invariant mass, flight length and consistency between the \(K^0_S \) momentum direction and vertex position. Candidate \(K^0_L \) mesons are selected from ECL and/or KLM hit patterns that are consistent with the presence of a shower induced by a \(K^0_L \) meson. The centroid of the \(K^0_L \) candidate shower is required to be within a 45° cone centered on the \(K^0_L \) direction calculated from the two-body \(B \) decay kinematics and the momentum of the reconstructed \(J/\psi \) meson.

For \(B \to f_{CP} \) candidate reconstruction in modes other than \(J/\psi K^0_S \), \(B \) candidates are identified by two kinematic variables: the energy difference \(\Delta E \equiv E_B^\prime - E_B^{\text{beam}} \) and the beam-energy constrained mass \(M_{\text{bc}} \equiv \sqrt{(E_{\text{beam}})^2 - (p_B^\prime)^2} \), where \(E_{\text{beam}} \) is the CM beam energy, and \(E_B^\prime, p_B^\prime \) is the CM energy (momentum) of the reconstructed \(B \) candidate. The \(B^0 \to J/\psi K^0_S \) candidates are identified by the value of \(p_B^\prime \) calculated using a two-body decay kinematic assumption.

The \(f_{CP} \)-flavor of the accompanying \(B \) meson is identified from inclusive properties of particles that are not associated with the reconstructed \(B^0 \to f_{CP} \) decay \([13]\). The tagging information is represented by two parameters, the \(f_{CP} \)-flavor charge \(q \) and purity \(r \). The parameter \(r \) is an event-by-event, MC-determined flavor-tagging dilution factor that ranges from \(r = 0 \) for no flavor discrimination to \(r = 1 \) for unambiguous flavor assignment. The data are sorted into seven intervals of \(r \). For events with \(r > 0.1 \), the wrong tag fractions for six \(r \) intervals, \(w_l(l = 1, 6) \), and their differences between \(B^0 \) and \(B^0 \) decays, \(\Delta w_l \), are determined from semileptonic and hadronic \(b \to c \) decays \([12,14]\). If \(r \leq 0.1 \), the wrong tag fraction is set to 0.5, and therefore the tagging information is not used. The total effective tagging efficiency, \(\Sigma_f (1 - \Delta w_l)^2 \), is determined to be \(0.298 \pm 0.004 \), where \(f_i \) is the fraction of events in the category \(l \).

The vertex position for the \(f_{CP} \) decay is reconstructed using \(J/\psi \) or \(\psi(2S) \) daughter tracks that have a minimum number of SVD hits, while the \(f_{\text{tag}} \) vertex is determined from well-reconstructed tracks that are not assigned to \(f_{CP} \) \([14]\). A constraint on the IP profile in the plane perpendicular to the \(z \)-axis is used with the selected tracks. With this procedure, we are able to determine a vertex even in the case where only one track has sufficient associated SVD hits. The fractions of the single track vertices for \(f_{CP} \) and \(f_{\text{tag}} \) are about 12\% and 23\%, respectively.

For a single track vertex, the estimated error of the \(z \) coordinate, \(\sigma_z \), is the indicator of the vertex fit quality and is required to be less than 500 \(\mu \)m. On the
other hand, a vertex reconstructed using two or more tracks is characterized by a more robust goodness-of-fit indicator. In the previous analysis [1], the value of χ^2 of the vertex calculated solely along the z direction was used. This is now replaced by h, the value of χ^2 in three-dimensional space calculated using the charged tracks without using the interaction-region profile’s constraint [15]. A detailed MC study indicates that h is a superior indicator of the vertex goodness-of-fit because it is less sensitive to the specific B decay mode; in particular, h shows a smaller mode dependence for the vertices reconstructed from $B \to J/\psi X$ and $B \to D^{(*)} \chi$ decays, which are used as control samples to determine the vertex resolution parameters. In the multiple-track vertex case, $h < 50$ and $\sigma_z < 200$ μm are required. For candidate events in which both B vertices are reconstructed, we retain only those events where the B vertices satisfy $|\Delta t| < 70$ ps for further analysis.

For the candidate events in which both flavor tagging and vertex reconstruction succeed, the signal yield and purity for each mode are obtained from an unbinned maximum-likelihood fit to the observed ΔE for M_{bc} distribution for f_{CP} modes with a K_S^0 meson, and to the p^b_B distribution for $J/\psi K_L^0$. The background mainly comes from BB events in which one of the B meson decays into a final state containing a correctly reconstructed J/ψ, i.e., the $B \to J/\psi X$ process. In order to determine this background distribution, a $B \to J/\psi X$ MC sample corresponding to 100 times the integrated luminosity of data is used. An estimate of other combinatorial backgrounds is obtained from the $M_{f+\ell^-}$ sideband. For CP-odd modes, the signal distribution is modeled with a Gaussian function in M_{bc} and a double Gaussian function in ΔE. The fits to determine signal yields for these modes are performed in the region 5.2 GeV/$c^2 < M_{bc} < 5.3$ GeV/c^2 and -0.1 GeV $< \Delta E < 0.2$ GeV. The p^b_B signal shape for $J/\psi K_L^0$ is determined from MC events. The requirement $p^b_B < 2.0$ GeV/c is used in the fit to estimate the signal yield as well as the contribution of three categories of background: those with a real (those that are correctly reconstructed) J/ψ and a real K_L^0, those with a real J/ψ and a fake K_L^0 (those that are incorrectly reconstructed from electronic noise or electro-magnetic showers), and events with a fake J/ψ (those that are background combinations). The M_{bc} distribution for a stringent ΔE requirement ($|\Delta E| < 40$ MeV for $J/\psi K_S^0$, $|\Delta E| < 30$ MeV for $\psi(2S)K_S^0$ and $|\Delta E| < 25$ MeV for $\chi_c K_S^0$) as well as the p^b_B distribution for $J/\psi K_L^0$ candidates are shown in Fig. 1. We require 5.27 GeV/$c^2 < M_{bc} < 5.29$ GeV/c^2 for f_{CP} modes with a K_S^0 and 0.20 GeV/$c < p^b_B < 0.45$ GeV/c for $J/\psi K_L^0$ for the fit to the CP violation parameters. For the candidates passing all the criteria mentioned above, the signal yield and purity are estimated for each CP-eigenstate and listed in Table I.

We determine S_f and A_f for each mode by performing an unbinned maximum-likelihood fit to the observed Δt distribution. The probability density function (PDF) for the signal distribution, $P_s(w; S_f, A_f, q, w_1, \Delta w_1)$, is given by Eq. (1), fixing τ_{B_S} and Δm_q at their world average values [16] and including modifications to take the effect of incorrect flavor assignment (parameterized by w_1 and Δw_1) into account. The distribution is convolved with the proper-time interval resolution function, $R_{\text{bg}}(\Delta t)$, formed by convolving four components: the detector resolutions for x_{CP} and z_{tag}, the shift of the z_{tag} vertex position due to secondary tracks from charmed particle decays, and the kinematic approximation that the B mesons are at rest in the CM frame [17]. Because we now use h to characterize the vertex goodness-of-fit, each of these resolution function components in Ref. [17] is reformulated as a function of h and σ_z.

Using the M_{bc} sideband events, the background PDF, $P_{\text{bg}}(\Delta t)$, for each of the CP-odd modes is modeled as a sum of exponential and prompt components, and is convolved with $R_{\text{bg}}(\Delta t)$ expressed as a double Gaussian function. In the $J/\psi K_L^0$ mode, there are CP violating modes among the $B \to J/\psi X$ backgrounds, which are included in the background PDF. The Δt PDFs for the remaining $B \to J/\psi X$ and other combinatorial backgrounds are estimated from the corresponding large MC sample and $M_{f+\ell^-}$ sideband events, respectively. The construction of these PDFs follows the same procedure.
as in our previous analyses \[7, 12\].

We determine the following likelihood for the i-th event:

$$
P_i = (1 - f_{\text{fail}}) \sum_k f_k \int [P_k(\Delta t')R_k(\Delta t_i - \Delta t')] d(\Delta t') + f_{\text{fail}}f_{\text{bad}}(\Delta t_i),
$$

(2)

where the index k labels each signal or background component. The fraction f_k depends on the r region and is calculated on an event-by-event basis as a function of ΔE and M_{bc} for the CP-odd modes and p_T^r for the CP-even mode. The term $P_{\text{bad}}(\Delta t)$ is a broad Gaussian function that represents an outlier component f_{bad} which has a fractional normalization of order 0.5\% \[17\]. The only free parameters in the fits are S_f and A_f, which are determined by maximizing the likelihood function $L = \prod_i P_i(\Delta t_i; S_f, A_f)$. This likelihood is maximized for each f_{CP} mode individually, as well as for all modes combined taking into account their CP-eigenstate values; the results are shown in Table III. Figure 2 shows the Δt distributions and asymmetries for good tag quality ($r > 0.5$) events. We define the background-subtracted asymmetry in each Δt bin by $(N_+ - N_-)/(N_+ + N_-)$, where $N_+(N_-)$ is the signal yield with $q = +1(-1)$.

TABLE II: CP violation parameters for each $B^0 \rightarrow f_{CP}$ mode and from the simultaneous fit for all modes together. The first and second errors are statistical and systematic uncertainties, respectively.

Decay mode	$2\phi_1 \equiv -\xi f S_f$	A_f
$J/\psi K^0_S$	$+0.670 \pm 0.029 \pm 0.013$	$-0.015 \pm 0.021 ^{+0.045}_{-0.023}$
$\psi(2S) K^0_S$	$+0.738 \pm 0.079 \pm 0.036$	$+0.104 \pm 0.055 ^{+0.047}_{-0.037}$
$\chi_c K^0_S$	$+0.640 \pm 0.117 \pm 0.040$	$-0.017 \pm 0.038 ^{+0.026}_{-0.010}$
$J/\psi K^0_L$	$+0.642 \pm 0.047 \pm 0.021$	$+0.019 \pm 0.026 ^{+0.017}_{-0.014}$
All modes	$+0.667 \pm 0.023 \pm 0.012$	$+0.006 \pm 0.016 \pm 0.012$

Uncertainties originating from the vertex reconstruction algorithm are a significant part of the systematic error for both $\sin 2\phi_1$ and A_f. These uncertainties are reduced by almost a factor of two compared to the previous analysis \[8\] by using h for the vertex-reconstruction goodness-of-fit parameter, as described above. In particular, the effect of the vertex quality cut is estimated by changing the requirement to either $h < 25$ or $h > 100$; the systematic error due to the IP constraint in the vertex reconstruction is estimated by varying the IP profile size in the plane perpendicular to the z-axis; the effect of the criterion for the selection of tracks used in the f_{tag} vertex is estimated by changing the requirement on the distance of closest approach with respect to the reconstructed vertex by $\pm 100 \mu m$ from the nominal maximum value of $500 \mu m$. Systematic errors due to imperfect SVD alignment are estimated from MC samples that have artificial misalignment effects. Small biases in the Δz measurement are observed in $e^+ e^- \rightarrow \mu^+ \mu^-$ and other control samples: to account for these, a special correction function is applied and the variation with respect to the nominal results is included as a systematic error. We also vary the $|\Delta t|$ range by ± 30 ps to estimate the systematic uncertainty due to the $|\Delta t|$ fit range. The vertex resolution function

FIG. 2: (Color online) The background-subtracted Δt distribution (top) for $q = +1$ (red) and $q = -1$ (blue) events and asymmetry (bottom) for good tag quality ($r > 0.5$) events for all CP-odd modes combined (left) and the CP-even mode (right).

TABLE III: Systematic errors in S_f and A_f in each f_{CP} mode and for the sum of all modes.

	$J/\psi K^0_S$	$\psi(2S) K^0_S$	$\chi_c K^0_S$	$J/\psi K^0_L$	All
Vertexing S_f	± 0.008	± 0.007	± 0.005	± 0.007	± 0.002
A_f	± 0.022	± 0.026	± 0.021	± 0.015	± 0.007
Δt S_f	± 0.007	± 0.007	± 0.005	± 0.007	± 0.001
resolution A_f	± 0.004	± 0.003	± 0.004	± 0.003	± 0.001
Tag-side S_f	± 0.002	± 0.002	± 0.002	± 0.001	± 0.001
A_f	± 0.006	± 0.006	± 0.006	± 0.006	± 0.005
Flavor S_f	± 0.003	± 0.003	± 0.004	± 0.003	± 0.004
tagging A_f	± 0.003				
Possible S_f	± 0.004				
fit bias A_f	± 0.005				
Signal S_f	± 0.004	± 0.016	± 0.001	± 0.016	± 0.004
fraction A_f	± 0.002	± 0.006	± 0.006	± 0.006	± 0.002
Background S_f	< 0.001	± 0.002	± 0.030	± 0.002	± 0.001
Δt PDFs A_f	< 0.001	± 0.001	± 0.014	± 0.001	± 0.001
Physics S_f	± 0.001				
parameters A_f	< 0.001	± 0.001	± 0.001	± 0.001	± 0.001
Total S_f	± 0.013	± 0.036	± 0.040	± 0.021	± 0.012
A_f	± 0.023	± 0.027	± 0.026	± 0.041	± 0.012
is another major source of $\sin 2\phi_1$ and A_f uncertainty. This effect is estimated by varying each resolution function parameter obtained from data (MC) by $\pm 1\sigma$ ($\pm 2\sigma$) and repeating the fit to add each variation in quadrature. The uncertainty in the estimated errors of the parameters of reconstructed charged tracks is also taken into account. The largest contribution to the systematic uncertainty in A_f is the effect of the tag-side interference (TSI), which is described in detail in [18]. Since the effect of TSI has opposite sign for different CP-eigenstates, there is a partial cancellation in the combined result. Hence the combined TSI systematic is smaller than the systematic in each individual mode. Systematic errors due to uncertainties in the wrong-tag fractions are studied by varying the wrong-tag fraction individually in each r region. A possible fit bias is examined by fitting a large number of MC events. Other contributions come from uncertainties in the signal fractions, the background Δf, $\tau_{\beta\gamma}$, and Δm_d. Each contribution is summarized in Table III. We add them in quadrature to obtain the total systematic uncertainty.

In summary, we present the final $\sin 2\phi_1$ measurement using the entire Belle $\Upsilon(4S)$ data sample containing $772 \times 10^6 B \bar{B}$ pairs. We have reconstructed $b \to c \bar{s}s$ induced B meson decays in three CP-odd modes ($J/\psi K_S^0$, $\psi(2S)K_S^0$, and $\chi_{c1}K_S^0$) and one CP-even mode ($J/\psi K^0_S$). The fit, using common CP-sensitive parameters for all four modes, yields the values $\sin 2\phi_1 = 0.667 \pm 0.023\text{(stat)} \pm 0.012\text{(syst)}$ and $A_f = 0.006 \pm 0.016\text{(stat)} \pm 0.012\text{(syst)}$. The results are consistent with previous measurements [4, 5]. These are the most precise determination of these parameters and solidify the SM reference value used to test for evidence of new physics beyond the SM.

We thank the KEKB group for excellent operation of the accelerator; the KEK cryogenics group for efficient solenoid operations; and the KEK computer group, the NII, and PNNL/EMSL for valuable computing and SINET4 network support. We acknowledge support from MEXT, JSPS and Nagoya’s TLPRC (Japan); ARC and DIISR (Australia); NSFC (China); MSMT (Czechia); DST (India); INFN (Italy); MEST, NRF, GSDC of KISTI, and WCU (Korea); MNiSW (Poland); MES and RFAAE (Russia); ARRS (Slovenia); SNSF (Switzerland); NSC and MOE (Taiwan); and DOE and NSF (USA).

[1] M. Kobayashi and T. Maskawa, Prog. Theor. Phys. 49, 652 (1973).
[2] A. B. Carter and A. I. Sanda, Phys. Rev. D 23, 1567 (1981); I. I. Bigi and A. I. Sanda, Nucl. Phys. B 193, 85 (1981).
[3] Another naming convention $\beta(\equiv \phi_1)$ is also used in the literature.
[4] B. Aubert et al. (BaBar Collaboration), Phys. Rev. Lett. 87, 091801 (2001).
[5] K. Abe et al. (Belle Collaboration), Phys. Rev. Lett. 87, 091802 (2001).
[6] B. Aubert et al. (BaBar Collaboration), Phys. Rev. D 79, 072009 (2009).
[7] K. F. Chen et al. (Belle Collaboration), Phys. Rev. Lett. 98, 031802 (2007).
[8] J. Charles et al. (CKMfitter group), Phys. Rev. D 84, 033005 (2011).
[9] Y. Grossman and M. P. Worah, Phys. Lett. B 395, 241 (1997); D. London and A. Soni, Phys. Lett. B 407, 61 (1997); T. Moroi, Phys. Lett. B 493, 366 (2000); D. Chang, A. Masiero and H. Murayama, Phys. Rev. D 67, 075013 (2003); S. Baek, T. Goto, Y. Okada and K.I. Okumura, Phys. Rev. D 64, 095001 (2001).
[10] A. Abashian et al. (Belle Collaboration), Nucl. Instrum. Methods Phys. Res., Sect. A 499, 1 (2003), and other papers included in this volume.
[11] S. Kurokawa and E. Kikutani, Nucl. Instrum. Methods Phys. Res., Sect. A 119, 367 (2001).
[12] K. Nakamura et al. (Particle Data Group), J. Phys. G 37, 075021 (2010).
[13] H. Tajima et al., Nucl. Instrum. Methods Phys. Res., Sect. A 533, 370 (2004).
[14] O. Long, M. Baak, R.N. Cahn and D. Kirkby, Phys. Rev. D 68, 034010 (2003).