De Philippis, Guido; Palmieri, Luca; Rindler, Filip
On the two-state problem for general differential operators. (English)
Zbl 1403.35335
Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 177, Part B, 387-396 (2018).

In [Arch. Ration. Mech. Anal. 100, No. 1, 13–52 (1987; Zbl 0629.49020)], J. M. Ball and R. D. James proved the following:

Theorem. Let $\Omega \subseteq \mathbb{R}^d$ be an open, bounded and connected set and let A, B be $m \times d$ matrices with rank $(A - B) \geq 2$. Then,

(i) If $u \in W^{1,\infty}(\Omega; \mathbb{R}^m)$ satisfies the differential inclusion

$$Du(x) \in \{A, B\} \text{ for almost all } x \in \Omega,$$

then either $Du \equiv A$ or $Du \equiv B$.

(ii) Let $\{u_j\}_{j=1}^\infty \subseteq W^{1,\infty}(\Omega; \mathbb{R}^m)$ be a uniformly norm-bounded sequence such that

$$\text{dist}(Du_j, \{A, B\}) \to 0 \text{ in measure}.$$

Then, there is a subsequence such that either

$$\int_{\Omega} |Du_j(x) - A| \, dx \to 0 \text{ or } \int_{\Omega} |Du_j(x) - B| \, dx \to 0,$$

where D denotes the gradient.

Property (i) is known as rigidity for exact solutions of (1), while (ii) is known as rigidity for approximate solutions of (1). The goal of this paper is to extend this result (and some related results) to more general operators A where

$$Av \equiv \sum_{|\alpha|=k} A_\alpha \partial^\alpha v$$

where the sum is over all multi-indices $\alpha \in (\mathbb{N} \cup \{0\})^d$ and $A_\alpha \in \mathbb{R}^n \otimes \mathbb{R}^l$.

The authors note three reasons for this generalization: 1) it extends known results to general operators of any order, 2) the result allows the case of maps that are only bounded in L^1 and 3) the authors believe that this proof is more natural than ones currently in the literature. The proof makes use of ideas from [G. De Philippis and F. Rindler, Ann. Math. (2) 184, No. 3, 1017–1039 (2016; Zbl 1352.49050)]. The authors note that the proof can be modified to work for non-homogeneous operators and non-zero (but asymptotically vanishing) right-hand sides.

Reviewer: Daniel C. Biles (Nashville)

MSC:

35R70 PDEs with multivalued right-hand sides
47F05 General theory of partial differential operators

Keywords:

differential inclusions; rigidity; two-state problem; gradient; approximate solutions; compensated compactness

Full Text: DOI arXiv Link

References:

[1] Ambrosio, L.; Fusco, N.; Pallara, D., (Functions of Bounded Variation and Free-Discontinuity Problems, Oxford Mathematical Monographs, (2000), Oxford University Press) · Zbl 0957.49001
Ball, J. M.; James, R. D., Fine phase mixtures as minimizers of energy, Arch. Ration. Mech. Anal., 100, 13-52, (1987) - Zbl 0629.49020

Barchiesi, M., Inclusioni differenziali per EDP: rigidità e mancanza di rigidità, (2003), Università di Roma “La Sapienza”, (Master’s thesis)

Capella, A.; Otto, F., A rigidity result for a perturbation of the geometrically linear three-well problem, Comm. Pure Appl. Math., 62, 1632-1669, (2009) - Zbl 1331.82064

Capella, A.; Otto, F., A quantitative rigidity result for the cubic-to-tetragonal phase transition in the geometrically linear theory with interfacial energy, Proc. Roy. Soc. Edinburgh Sect. A, 142, 273-327, (2012) - Zbl 1251.82049

De Philippis, G.; De Rosa, A.; Ghiraldin, F., Rectifiability of varifolds with locally bounded first variation with respect to anisotropic surface energies, Comm. Pure Appl. Math., (2016), (in press), arxiv: https://arxiv.org/abs/1609.04908 - Zbl 1396.49044

De Philippis, G.; Rindler, F., On the structure of \mathcal{A}-free measures and applications, Ann. of Math., 184, 1017-1039, (2016) - Zbl 1352.49050

Dolzmann, G.; Müller, S., The influence of surface energy on stress-free microstructures in shape memory alloys, Meccanica, 30, 527-539, (1995), Microstructure and phase transitions in solids (Udine, 1994). MR 1360969 - Zbl 0835.73061

Fonseca, I.; Müller, S., \mathcal{A}-quasiconvexity, lower semicontinuity, and Young measures, SIAM J. Math. Anal., 30, 6, 1355-1390, (1999) - Zbl 0940.49014

Garroni, A.; Nesi, V., Rigidity and lack of rigidity for solenoidal matrix fields, Proc. R. Soc. Lond. Ser. A. Math. Phys. Eng. Sci., 460, 2046, 1789-1806, (2004), MR 2067561 - Zbl 1108.74050

Müller, S., Variational models for microstructure and phase transitions, (Calculus of Variations and Geometric Evolution Problems (Cetraro, 1996), Lecture Notes in Mathematics, vol. 1713, (1999), Springer), 85-210 - Zbl 0968.74050

Rindler, F., Lower semicontinuity for integral functionals in the space of functions of bounded deformation via rigidity and Young measures, Arch. Ration. Mech. Anal., 202, 63-113, (2011) - Zbl 1258.49014

Rindler, F., (Real Analysis, Pure and Applied Mathematics, (1999), Wiley)

Stein, E. M., Harmonic analysis, (1993), Princeton University Press