On path factors of (3, 4)-biregular bigraphs

Armen S. Asratian*, Carl Johan Casselgren†

Abstract. A (3, 4)-biregular bigraph G is a bipartite graph where all vertices in one part have degree 3 and all vertices in the other part have degree 4. A path factor of G is a spanning subgraph whose components are nontrivial paths. We prove that a simple (3, 4)-biregular bigraph always has a path factor such that the endpoints of each path have degree three. Moreover we suggest a polynomial algorithm for the construction of such a path factor.

Keywords: path factor, biregular bigraph, interval edge coloring

1 Introduction

We use [9] and [7] for terminology and notation not defined here and consider finite loop-free graphs only. $V(G)$ and $E(G)$ denote the sets of vertices and edges of a graph G, respectively. A proper edge coloring of a graph G with colors $1, 2, 3, \ldots$ is a mapping $f : E(G) \rightarrow \{1, 2, 3, \ldots\}$ such that $f(e_1) \neq f(e_2)$ for every pair of adjacent edges e_1 and e_2. A bipartite graph with bipartition (Y, X) is called an (a, b)-biregular bigraph if every vertex in Y has degree a and every vertex in X has degree b. A path factor of a graph G is a spanning subgraph whose components are nontrivial paths. Some results on different types of path factors can be found in [1, 2, 17, 18, 20, 23]. In particular, Ando et al [2] showed that a claw-free graph with minimum degree d has a path factor whose components are paths of length at least d. Kaneko [17] showed that every cubic graph has a path factor such that each component is a path of length 2, 3 or 4. It was shown in [18] that a 2-connected cubic graph has a path factor whose components are paths of length 2 or 3.

In this paper we investigate the existence of path factors of (3, 4)-biregular bigraphs such that the endpoints of each path have degree three. Our investigation is motivated by a problem on interval colorings. A proper edge coloring of a graph G with colors $1, 2, 3, \ldots$ is called an interval (or consecutive) coloring if the colors received by the edges incident with each vertex of G form an interval of integers. The notion of interval colorings was introduced in 1987 by Asratian and Kamalian [5] (available in English as [6]). Generally, it is an NP-complete problem to determine whether a given bipartite graph has an interval coloring [22]. Nevertheless, trees, regular and

*Linköping University, Linköping Sweden, arasr@mai.liu.se.
†Umeå University, Umeå, Sweden, carl-johan.casselgren@math.umu.se.
complete bigraphs [13, 16], doubly convex bigraphs [16], grids [12] and all outerplanar bigraphs [8, 11] have interval colorings. Hansen [13] proved that every \((2, \beta)\)-biregular bigraph admits an interval coloring if \(\beta\) is an even integer. A similar result for \((2, \beta)\)-biregular bigraphs for odd \(\beta\) was given in [14, 19]. Only a little is known about \((3, \beta)\)-biregular bigraphs. It follows from the result of Hanson and Loten [15] that no such a graph has an interval coloring with fewer than \(3 + b - \gcd(3, b)\) colors, where \(\gcd\) denotes the greatest common divisor. We showed in [3] that the problem to determine whether a \((3, \beta)\)-biregular bigraph has an interval coloring is \(\text{NP}\)-complete in the case when 3 divides \(\beta\).

It is unknown whether all \((3, 4)\)-biregular bigraphs have interval colorings. Pyatkin [21] showed that such a graph \(G\) has an interval coloring if \(G\) has a 3-regular subgraph covering the vertices of degree four. Another sufficient condition for the existence of an interval coloring of a \((3, 4)\)-biregular bigraph \(G\) was obtained in [4, 10]: \(G\) admits an interval coloring if it has a path factor where every component is a path of length not exceeding 8 and the endpoints of each path have degree three. It was conjectured in [4] that every simple \((3, 4)\)-biregular bigraph has such a path factor. However this seems difficult to prove.

In this note we prove a little weaker result. We show that a simple \((3, 4)\)-biregular bigraph always has a path factor such that the endpoints of each path have degree three. Moreover, we suggest a polynomial algorithm for the construction of such a path factor.

Note that \((3, 4)\)-biregular bigraphs with multiple edges need not have path factors with the required property. For example, consider the graph \(G\) formed from three triple-edges by adding a claw; that is, the pairs \(x_iy_i\) have multiplicity three for \(i \in \{1, 2, 3\}\), and there is an additional vertex \(y_0\) with neighborhood \(\{x_1, x_2, x_3\}\). Clearly, there is no path factor of \(G\) such that the endpoints of each path have degree 3.

2 The result

A **pseudo path factor** of a \((3, 4)\)-biregular bigraph \(G\) with bipartition \((Y, X)\) is a subgraph \(F\) of \(G\), such that every component of \(F\) is a path of even length and \(d_F(x) = 2\) for every \(x \in X\). Let \(V_F = \{y \in Y : d_F(y) > 0\}\).

Theorem 1. Every simple \((3, 4)\)-biregular bigraph has a pseudo path factor.

Proof. Let \(G\) be a simple \((3, 4)\)-biregular bigraph with bipartition \((Y, X)\). The algorithm below constructs a sequence of subgraphs \(F_0, F_1, F_2, \ldots\) of \(G\), where \(V(F_0) = V(G), \emptyset = E(F_0) \subset E(F_1) \subset E(F_2) \subset \cdots\) and each component of \(F_j\) is a path, for every \(j \geq 0\). At each step \(i \geq 1\) the algorithm constructs \(F_i\) by adding to \(F_{i-1}\) one or two edges until the condition \(d_{F_i}(x) = 2\) holds for all \(x \in X\), where \(j \geq 1\). Then \(F = F_j\) is a pseudo path factor of \(G\). Parallelly the algorithm constructs a sequence of subgraphs \(U_0, U_1, U_2, \ldots\) of \(G\), where \(V(U_0) = V(G), \emptyset = E(U_0) \subset E(U_1) \subset E(U_2) \subset \cdots \subset E(U_j)\). The edges of each \(U_i\) will not be in the final pseudo
path factor F. The algorithm is based on Properties 1-4. During the algorithm the vertices in the set Y are considered to be unscanned or scanned. Initially all vertices in Y are unscanned. At the beginning of each step $i \geq 1$ we have a current vertex x_i. The algorithm selects an unscanned vertex y_i, adjacent to x_i, and determines which edges incident with y_i will be in F_i and which ones in U_i. If $d_{F_i}(v) = 2$ for each $v \in X$, the algorithm stops. Otherwise the algorithm selects a new current vertex and goes to the next step.

Algorithm

Initially $F_0 = (V(G), \emptyset)$, $U_0 = (V(G), \emptyset)$ and all vertices in Y are unscanned.

Step 0. Select a vertex $y_0 \in Y$. Let x_0, x_1, w be the vertices in X adjacent to y_0 in G. Put $F_1 = F_0 + \{wy_0, y_0x_0\}$ and $U_1 = U_0 + y_0x_1$. Consider the vertex y_0 to be scanned. Go to step 1 and consider the vertex x_1 as the current vertex for step 1.

Step i ($i \geq 1$). Suppose that a vertex x_i with $d_{F_{i-1}}(x_i) \leq 1$ was selected at step $(i - 1)$ as the current vertex. By Property 4 (see below), $d_{U_{i-1}}(x_i) \leq 2$. Therefore there is an edge x_iy_i with $y_i \in Y$ which neither belongs to F_{i-1}, nor to U_{i-1}. Then, by Property 3, the vertex y_i is an unscanned vertex and therefore the subgraph $F_{i-1} + x_iy_i$ does not contain a cycle. Since $d_G(y_i) = 3$, the vertex y_i, besides x_i, is adjacent to two other vertices, $w_1^{(i)}$ and $w_2^{(i)}$.

Case 1. $d_{F_{i-1}}(w_1^{(i)}) = 2 = d_{F_{i-1}}(w_2^{(i)})$.

Put $F_i = F_{i-1} + x_iy_i$ and $U_i = U_{i-1} + \{y_iw_1^{(i)}, y_iw_2^{(i)}\}$. Consider the vertex y_i to be scanned. If $d_{F_i}(v) = 2$ for every vertex $v \in X$ then Stop. Otherwise select an arbitrary vertex $x_{i+1} \in X$ with $d_{F_i}(x_{i+1}) \leq 1$, go to step $(i + 1)$ and consider x_{i+1} as the current vertex for step $(i + 1)$.

Case 2. $d_{F_{i-1}}(w_1^{(i)}) = 2$ and $d_{F_{i-1}}(w_2^{(i)}) \leq 1$.

Put $F_i = F_{i-1} + x_iy_i$, $U_i = U_{i-1} + \{y_iw_1^{(i)}, y_iw_2^{(i)}\}$ and consider the vertex y_i to be scanned. Furthermore put $x_{i+1} = w_2^{(i)}$, go to step $(i + 1)$ and consider the vertex x_{i+1} as the current vertex for step $(i + 1)$.

Case 3. $d_{F_{i-1}}(w_1^{(i)}) \leq 1$ and $d_{F_{i-1}}(w_2^{(i)}) \leq 1$.

Subcase 3a. $d_{F_{i-1}}(w_1^{(i)}) = 0$ or $d_{F_{i-1}}(w_2^{(i)}) = 0$.
We assume that $d_{F_{i-1}}(w_1^{(i)}) = 0$. Put $F_i = F_{i-1} + \{x_iy_i, y_iw_1^{(i)}\}$, $U_i = U_{i-1} + y_iw_2^{(i)}$ and consider the vertex y_i to be scanned. Furthermore put $x_{i+1} = w_2^{(i)}$, go to step $(i + 1)$ and consider the vertex x_{i+1} as the current vertex for step $(i + 1)$.

Subcase 3b. $d_{F_{i-1}}(w_1^{(i)}) = 1 = d_{F_{i-1}}(w_2^{(i)})$.
Since y_i is an unscanned vertex and $F_{i-1} + x_iy_i$ does not contain a cycle, the vertex y_i is an endvertex of only one path in $F_{i-1} + x_iy_i$. Then at least one of the graphs $F_{i-1} + \{x_iy_i, y_iw_1^{(i)}\}$ and $F_{i-1} + \{x_iy_i, y_iw_2^{(i)}\}$ does not contain a cycle. Assume, for example, that $F_{i-1} + \{x_iy_i, y_iw_1^{(i)}\}$ does not contain a cycle. Then put $F_i = F_{i-1} + \{x_iy_i, y_iw_1^{(i)}\}$, $U_i = U_{i-1} + y_iw_2^{(i)}$ and consider the vertex y_i to be scanned. Furthermore put $x_{i+1} = w_2^{(i)}$, go to step $(i + 1)$ and consider the vertex x_{i+1} as
the current vertex for step \((i + 1)\).

Now we will prove the correctness of the algorithm. At the beginning of step \(i\) we have that \(x_i\) is the current vertex, \(y_i\) is an unscanned vertex adjacent to \(x_i\) and \(w_1^{(i)}, w_2^{(i)}\) are the two other vertices adjacent to \(y_i\). The following two properties are evident.

Property 1. The algorithm determines which edges incident with \(y_i\) will be in \(F_i\) and which edges will be in \(U_i\). The vertex \(y_i\) is then considered to be scanned and the algorithm will never consider \(y_i\) again.

Property 2. The current vertex \(x_{i+1}\) for step \((i + 1)\) is selected among the vertices \(w_1^{(i)}\) and \(w_2^{(i)}\), except the case \(d_{F_i}(w_1^{(i)}) = d_{F_i}(w_2^{(i)}) = 2\) when an arbitrary vertex \(x_{i+1} \in X\) with \(d_{F_i}(x_{i+1}) \leq 1\) is selected as the current vertex.

Properties 1 and 2 imply the next property:

Property 3. If \(x \in X\), \(y \in Y\) and the edge \(xy\) neither belongs to \(F_{i-1}\), nor to \(U_{i-1}\), then the vertex \(y\) is unscanned at the beginning of step \(i\).

Property 4. If \(x \in X\) and \(d_{F_{i-1}}(x) \leq 1\) then \(d_{U_{i-1}}(x) \leq 2\).

Proof. The statement is evident if \(d_{U_{i-1}}(x) = 0\). Suppose that \(d_{U_{i-1}}(x) \geq 1\) and \(j\) is the minimum number such that \(j < i\) and an edge incident with \(x\) was included in \(U_{j-1}\) at step \((j - 1)\). Then the statement of Property 4 is evident if \(j = i - 1\).

Now we consider the case \(j < i - 1\). Clearly, \(d_{F_{j-1}}(x) \leq 1\) because \(F_{j-1} \subseteq F_{i-1}\) and \(d_{F_{j-1}}(x) \leq d_{F_{i-1}}(x) \leq 1\). Let \(xy_{j-1}\) be the edge included in \(U_{j-1}\) at step \((j - 1)\). Since \(d_{U_{j-1}}(x) = 1\) and \(d_{U_{j-1}}(x) \leq 1\), there is an edge \(xy_j\) with \(y_j \in Y\) which neither belongs to \(F_{j-1}\), nor to \(U_{j-1}\). Then, by Property 3, the vertex \(y_j\) is an unscanned vertex and therefore the subgraph \(F_{j-1} + xy_j\) does not contain a cycle. According to the description of the algorithm, the edge \(xy_j\) will be in any case included in \(F_j\) at step \(j\), that is, \(d_{F_j}(x) \geq 1\). Then \(d_{F_k}(x) = 1\) for every \(k\), \(j \leq k \leq i - 1\), because \(F_j \subseteq F_k \subseteq F_{i-1}\) and \(1 \leq d_{F_j}(x) \leq d_{F_k}(x) \leq d_{F_{i-1}}(x) \leq 1\). Now we will show that \(d_{U_{k-1}}(x) = 1\) for each \(k\), \(j \leq k < i - 1\). Suppose to the contrary that \(d_{U_{k-2}}(x) = 1\) and \(d_{U_{k-1}}(x) = 2\) for some \(k\), \(j < k < i - 1\), that is, another edge incident with \(x\) was included in \(U_{k-1}\) at step \((k - 1)\). Then the conditions \(d_{U_{k-1}}(x) = 2\) and \(d_{F_{k-1}}(x) = 1\) imply that there is an edge \(e \neq y_jx\) incident with \(x\) which neither belongs to \(F_{k-1}\), nor to \(U_{k-1}\). Using a similar argument as above we obtain that the edge \(e\) should be included in \(F_k\) at step \(k\). But then \(d_{F_{i-1}}(x) \geq d_{F_k}(x) = 2\), which contradicts our assumption \(d_{F_{i-1}}(x) \leq 1\). Thus \(d_{U_{k-1}}(x) = 1\) for each \(k\), \(j \leq k < i - 1\). It is possible that an edge incident with \(x\) will be included in \(U_{i-1}\) at step \((i - 1)\). Therefore \(d_{U_{i-1}}(x) \leq 2\).

The description of the algorithm and Properties 1-4 show that the algorithm will stop at step \(i\) only when \(d_{F_i}(x) = 2\) for every \(x \in X\), that is, when \(F_i\) is a pseudo path factor of \(G\). The proof of Theorem \(\text{II}\) is complete.
Now we will prove that every pseudo path factor of a (3,4)-biregular bigraph G can be transformed into a path factor of G, such that the endpoints of each path have degree 3.

Lemma 2. Let G be a (3,4)-biregular bigraph with bipartition (Y, X). Then $|X| = 3k$ and $|Y| = 4k$, for some positive integer k.

This is evident because $|E(G)| = 4|X| = 3|Y|$.

Lemma 3. Let F be a pseudo path factor of a (3,4)-biregular bigraph G with bipartition (Y, X).

Then F has a component which is a path of length at least four.

Proof. By Lemma 2 we have that $|X| = 3k$ and $|Y| = 4k$ for some integer k. We also have that $d_F(x) = 2$ for each vertex $x \in X$. If the length of all paths in F is two, then $|Y| \geq 2|X| = 6k$ which contradicts $|Y| = 4k$. Therefore F has a component which is a path of length at least four.

Theorem 4. Let F be a pseudo path factor of a simple (3,4)-biregular bigraph G with bipartition (Y, X). If $V_F \neq Y$ and y_0 is a vertex with $d_F(y_0) = 0$, then there is a pseudo path factor F' with $V_{F'} = V_F \cup \{y_0\}$, such that no path in F' is longer than the longest path in F.

Proof. Let $y_0 \in Y$ and $d_F(y_0) = 0$. We will describe an algorithm which will construct a special trail T with origin y_0.

Step 1. Select an edge $y_0x_1 \notin E(F)$. Since $d_F(x_1) = 2$, there are two edges of F, x_1y_1 and x_1u_1, which are incident with x_1.

Case 1. $d_F(y_1) = 2$ or $d_F(u_1) = 2$.

Suppose, for example, that $d_F(y_1) = 2$. Then put $T = y_0 \rightarrow x_1 \rightarrow y_1$ and Stop.

Case 2. $d_F(y_1) = 1 = d_F(u_1)$.

Put $T = y_0 \rightarrow x_1 \rightarrow y_1$ and go to Step 2.

Step i ($i \geq 1$). Suppose that we have already constructed a trail $T = y_0 \rightarrow x_1 \rightarrow y_1 \rightarrow \cdots \rightarrow x_i \rightarrow y_i$ which satisfies the following conditions:

(a) All edges in T are distinct and $y_{j-1}x_j \notin E(F)$, $x_jy_j \in E(F)$ for $j = 1,\ldots, i$.

(b) The vertices y_1,\ldots,y_i are distinct.

(c) A component of F containing the vertex x_j is a path of length 2, for $j = 1,\ldots,i$.

Select an edge $e \in E(G) \setminus E(F)$ which is incident with y_i. The existence of such an edge follows from the conditions (a), (b) and (c). Moreover, the condition (b) implies that $e \notin T$. Let $e = y_ix_{i+1}$. Then $d_F(x_{i+1}) = 2$ because F is a pseudo path factor of G. Since $e \notin E(T)$, the conditions (a), (b) and (c) imply that at least one of the edges of F incident with x_{i+1}, does not belong to T.

Case 1. x_{i+1} lies on a component of F which is a path of length two.

Select a vertex y_{i+1} such that $x_{i+1}y_{i+1} \in E(F) \setminus E(T)$, add the edge $x_{i+1}y_{i+1}$ and the vertex y_{i+1} to T and go to step $(i+1)$. Now $T = y_0 \rightarrow x_1 \rightarrow y_1 \rightarrow \cdots \rightarrow x_{i+1} \rightarrow y_{i+1}$.
Case 2. x_{i+1} lies on a component of F which is a path of length at least four.

There is a vertex y_{i+1} such that $x_{i+1}y_{i+1} \in E(F) \setminus E(T)$ and $d_F(y_{i+1}) = 2$. Add the edge $x_{i+1}y_{i+1}$ and the vertex y_{i+1} to T and Stop. We have now that $T = y_0 \to x_1 \to y_1 \to \cdots \to x_{i+1} \to y_{i+1}$.

By Lemma 3, F has a component which is a path of length at least four. Therefore the algorithm will stop after a finite number of steps. Let the trail $T = y_0 \to x_1 \to y_1 \to \cdots \to x_{i+1} \to y_{i+1}$ be the result of the algorithm, where $i \geq 0$, the vertex x_j lies on a component of F which is a path of length two for each $j \leq i$, the vertex x_{i+1} lies on a component of F which is a path of length at least 4, and $d_F(y_{i+1}) = 2$. We define a new pseudo path factor F' by setting $V(F') = V(F)$ and $E(F') = (E(F) \setminus \{x_jy_j : j = 1, \ldots, i, i+1\}) \cup \{y_{j-1}x_j : j = 1, \ldots, i, i+1\}$.

Clearly, $V_{F'} = V_F \cup \{y_0\}$ and the proof of Theorem 4 is complete.

Theorems 1 and 4 imply the following theorem:

Theorem 5. Every simple $(3, 4)$-biregular bigraph has a path factor such that the endpoints of each path have degree 3.

References

[1] J. Akiyama, M. Kano, Factors and factorizations of graphs— a survey, J. Graph Theory, 9 (1985) 1-42.

[2] K. Ando, Y. Egawa, A. Kaneko, K. Kawarabayashi, H. Matsuba, Path factors in claw-free graphs, Discrete Mathematics 243 (2002) 195-2000

[3] A. S. Asratian and C. J. Casselgren, On interval edge colorings of (α, β)-biregular bipartite graphs, Discrete Math. 307 (2006) 1951-1956.

[4] A. S. Asratian, C. J. Casselgren, J. Vandenbussche and D.B. West, Proper path-factors and interval edge-colorings of $(3, 4)$-biregular bigraphs, arXiv:0704.2650v1.

[5] A. S. Asratian and R. R. Kamalian, Interval coloring of the edges of a multigraph (in Russian), Applied mathematics, 5 (1987), 25-34, Erevan University.

[6] A. S. Asratian and R. R. Kamalian, Investigation of interval edge-colorings of graphs, Journal of Combinatorial Theory. Series B 62 (1994), no. 1, 34-43.

[7] A. S. Asratian, T. M. J. Denley, R. Häggkvist, Bipartite graphs and their applications, Cambridge University Press, Cambridge, 1998.
[8] M. A. Axenovich, On interval colorings of planar graphs. Proc. 33rd Southeastern Intl. Conf. Combin., Graph Theory and Computing (Boca Raton, FL, 2002). Congr. Numer. 159 (2002), 77–94.

[9] J. A. Bondy, U. S. R. Murty, Graph theory with applications, American Elsevier Publishing Co., Inc., New York, 1976.

[10] C. J. Casselgren, Some results on interval edge colorings of bipartite graphs, Master’s Thesis, Linköping University, Linköping, Sweden, 2005.

[11] K. Giaro, M. Kubale, Compact scheduling of zero-one time operations in multi-stage systems, Discrete Appl. Math. 145 (2004) 95-103.

[12] K. Giaro, M. Kubale, Consecutive edge-colorings of complete and incomplete Cartesian products of graphs, Congr. Numer. 128 (1997) 143-149.

[13] H. M. Hansen, Scheduling with minimum waiting periods (in Danish), Master Thesis, Odense University, Odense, Denmark, 1992.

[14] D. Hanson, C. O. M. Loten, B. Toft, On interval colourings of bi-regular bigraphs, Ars Combin. 50 (1998), 23-32.

[15] D. Hanson, C. O. M. Loten, A lower bound for interval colouring bi-regular bigraphs, Bulletin of the ICA 18 (1996), 69-74.

[16] R. R. Kamalian, Interval edge-colorings of graphs, Doctoral thesis, Novosibirsk, 1990.

[17] A. Kaneko, A necessary and sufficient condition for the existence of a path factor every component of which is a path of length at least 2, J. Comb. Theory B 88 (2003) 195-218.

[18] K. Kawarabayashi, H. Matsuba, Y. Oda, K. Ota, Path factors in cubic graphs, J. Graph Theory, 39 (2002) 188-193.

[19] A.V. Kostochka, Unpublished manuscript, 1995.

[20] M.D. Plummer, Graph factors and factorization: 1985-2003: A survey, Discrete Mathematics, 307 (2007) 791-821.

[21] A. V. Pyatkin, Interval coloring of (3,4)-biregular bigraphs having large cubic subgraphs, Journal of Graph Theory 47 (2004), 122-128.

[22] S. V. Sevastjanov, Interval colorability of the edges of a bigraph (in Russian), Metody Diskretnogo Analiza, 50 (1990), 61-72.

[23] H. Wang, Path factors of bipartite graphs J. Graph Theory 18 (1994) 161–167.