New biological findings of ethanol and chloroform extracts of fungi Suillellus rubrosanguineus and Tylopilus felleus

Ivana ŠUŠANÍKOVÁ, Adriána KVASNICOVÁ, Žofia BRZKOVÁ, Ondrej DURIŠKA, Pavel MUČAJI
Department of Pharmacognosy and Botany, Faculty of Pharmacy, Comenius University in Bratislava, Odbojárov 10, 83232 Bratislava, Slovakia

ABSTRACT
The aim of the research was to determine some basic biological activities of less biomedically studied but commonly known two fungi from the Boletaceae family Suillellus rubrosanguineus and Tylopilus felleus, which grow in the forests of Middle Europe. The cytotoxicity tests of the ethanol and chloroform extracts were carried out using NIH-3T3 and MCF-7 cell lines. The presence of alkaloids in the extracts was assessed by the reaction with Dragendorff reagent. In all of the extracts the positive reaction with the reagent was observed. In general, the extracts from Suillellus rubrosanguineus were more cytotoxic than the extracts from Tylopilus felleus and exhibited no selectivity of activities on healthy and cancer cell lines. However, the extracts from Tylopilus felleus proved to be selectively cytotoxic for cancer cell line. Tylopilus extracts or their isolated bioactive compounds could be considered for further study in pre-clinical experiments.

KEY WORDS: Suillellus rubrosanguineus; Tylopilus felleus; alkaloids; cytotoxicity; fungi

ABBREVIATIONS
DMEM: Dulbecco’s Modified Eagle’s Medium; DMSO: dimethyl sulfoxide; FBS: fetal bovine serum; MTT: 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide; PBS: phosphate-buffered saline; TylEtCap: ethanol Tylopilus extract from the caps and stipes; TylEtTub: ethanol Tylopilus extract from the tubes; TylChCap: chloroform Tylopilus extract from the caps and stipes; TylChTub: chloroform Tylopilus extract from the tubes; SuiEtCap: ethanol Suillellus extract from the caps and stipes; SuiEtTub: ethanol Suillellus extract from the tubes; SuiChTub: chloroform Suillellus extract from the tubes

Introduction
There are only few studies focusing on the two members of the fungi family Boletace: Suillellus rubrosanguineus and Tylopilus felleus (Figure 1), commonly known as bitter bolete or bitter tylopilus. In the presented study we thus decided to investigate basic biological activities of these two fungus species. Tylopilus felleus grows in the whole Northern hemisphere and is common also in Slovakia, where it grows mainly in coniferous forests. Tylopilus felleus is typical for its bitter taste and pinkish hymenium. Due to the bitter taste, it is considered not edible (Šutara et al., 2009). Only few studies about biological activities of Tylopilus felleus have been done (Grzybek et al., 1994). This mushroom is also known in traditional Chinese medicine (Antonin et al., 2013).

Suillellus rubrosanguineus (syn. Boletus rubrosanguineus, Rubroboletus rubrosanguineus) is a rare species, considered to be poisonous, which grows in middle and east Europe and on the Caucasus. In the Czech Republic it is included in the Red List of fungi in the category of critically endangered (Holec & Beran 2006). In Slovakia this mushroom grows rarely in higher altitudes in coniferous forests under Picea abies and Abies alba. Its occurrence differs from similar species such as Boletus legalie, Boletus rhodoxanthus and Boletus satanas (Šutara et al., 2009). Suillellus rubrosanguineus is characteristic by its bright carmine colors on stipe and cap.

In this paper we focused on cytotoxicity profile of different extract preparations from S. rubrosanguineus and T. felleus in healthy and cancer cell lines and their analysis for the presence of alkaloids.
Materials and methods

Materials
The Dulbecco’s Modified Eagle’s Medium (DMEM), penicillin-streptomycin mixture, phosphate-buffered saline (PBS), fetal bovine serum (FBS), dimethyl sulfoxide (DMSO), and 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) were purchased from Sigma-Aldrich (Darmstadt, Germany). Dragendorff reagent, chloroform, ethanol, sulfuric acid, hydrochloric acid, ammonium, ether were obtained from Centralchem (Bratislava, Slovakia).

Specimens used in the study
Tylopilus felleus: Slovakia, Záhorská nížina, Holubičky, in coniferous forest, grass under Pinus trees; 19th of June, 2016; Leg. Drahoňim Ďuriška et Det. Ondrej Ďuriška. Suillellus rubrosanguineus: Slovakia, Veľká Fatra, Valča; in mixed forest, under Picea abies trees; 3rd of July, 2016; Leg. et Det. Ondrej Ďuriška. Dr. Ondrej Ďuriška (co-author) made the photos of both collected fungi (Figure 1).

Extract preparations
Dried mushrooms samples were powdered in a blender before the extraction process. Mushroom samples were extracted by 96% ethanol or by concentrated chloroform for two weeks at occasional shaking. After evaporation of the solvents under reduced pressure, dry extracts were dissolved in DMSO and stored at –20 °C and used as mother liquor for all experiments. Separate extracts were prepared from stipes and caps (TylEtCap, TylChCap, TylEtTub, TylChTub), and from hymenium (tubes) (TylEtTub, TylChTub, SuiEtTub, SuiChTub).

Cell cultures
NIH-3T3 (mouse embryonic fibroblast cells) were obtained as a gift from dr. Diana Vavrincová (Department of Pharmacology and Toxicology, Faculty of Pharmacy, Comenius University in Bratislava, Slovakia). MCF-7 (human breast adenocarcinoma cells) were donated by dr. Peter Gál (Department of Pharmacology, Faculty of Medicine, Pavol Jozef Šafárik University in Košice, Slovakia). Cells were grown at 37 °C in humidified atmosphere with 5% CO₂ in DMEM supplemented with 10% FBS, 100 IU/ml penicillin and 100 µg/ml streptomycin. Cells were subcultured twice a week.

Results
Because of few data about cytotoxicity of two Boletaceae species, we provided MTT cytotoxicity tests on healthy mouse fibroblasts NIH-3T3 and on human cancer cell line MCF-7. We used the concentration range 6.25–100 µg/mL for Suillellus rubrosanguineus extracts and Tylopilus felleus extracts as well. The well-studied flavonoid quercetin was used as a reference with the concentrations from 6.25 to 50 µg/mL. The generation of formazan correlates directly with the number of viable cells with active mitochondrial reductases. The results are shown in Figure 2 (A, B, C).

Almost all higher concentrations of the four Tylopilus extracts caused significant decrease of the MTT reduction by cancer cells MCF-7 (p<0.05; p<0.01) (Figure 2 A). On...
Figure 2. Comparison of viability/proliferation (assessed by mitochondrial reduction of MTT) of MCF-7 cells (dark gray) and 3T3 cells (light gray) after 24-h treatment with *Tylopilus* extracts (A), *Suillellus* extracts (B) and well-studied flavonoid quercetin used as a reference for set up the model (C) expressed as the percentage of control. *p < 0.05, **p < 0.01, ***p < 0.001 vs. control. TylEtCap – ethanol *Tylopilus* extract from the caps and stipes; TylEtTub – ethanol *Tylopilus* extract from the tubes; TylChCap – chloroform *Tylopilus* extract from the caps and stipes; TylChTub – chloroform *Tylopilus* extract from the tubes; SuiEtCap – ethanol *Suillellus* extract from the caps and stipes; SuiEtTub – ethanol *Suillellus* extract from the tubes; SuiChTub – chloroform *Suillellus* extract from the tubes.
the contrary, higher concentrations of the chloroform and ethanol extracts of the tubes caused significant increase of the viability of NIH-3T3 (p<0.05; p<0.01) and extracts from the caps and stipes caused mild enhancement of the viability and/or proliferation of the NIH-3T3 cells.

In general, the extracts from *Suillellus rubrosanguineus* are significantly more cytotoxic than the extracts from *Tylopilus felleus*. All three *Suillellus* extracts in the concentrations used significantly decreased the metabolic activity or/and proliferation of both used cell lines (p<0.05; p<0.01; p<0.001) (Figure 2 B). The chloroform extract from the tubes of *Suillellus rubrosanguineus* is more toxic than the two ethanol extracts tested. There is no significant difference in the effects of the three extracts of *Suillellus rubrosanguineus* on NIH-3T3 compared to MCF-7.

The flavonoid quercetin used as a reference (Figure 2 C) showed higher cytotoxicity to healthy NIH-3T3 than to cancer cell line MCF-7. Our results for quercetin cytotoxicity are in accordance with previous *in vitro* studies (Chou et al., 2010; Danihelova et al., 2013). These results serve to ensure that this method is set correctly.

In our study we detected the presence of alkaloids by alkaloid-specific Dragendorff reagent, which creates red-orange precipitates with them (Table 1). All extracts from both fungi reacted positively with the Dragendorff reagent, the ethanol extracts showed stronger reactions than the chloroform extracts. The alkaloids are localized in the tissues of caps as well as tubes of fungi.

Discussion

So far, only a few studies concerning biological activities of the two fungi of Boletaceae family *Suillellus rubrosanguineus* and *Tylopilus felleus*, which grow in the forests of Middle Europe, were done.

For this reason we focused on this topic. Our research includes basal cytotoxicity test on healthy and cancer cell lines and qualitative determination of the presence of alkaloids.

In general, the high selectivity of the plant extracts or synthetic compounds for cancer cell lines is preferred. Well-known cytostatics paclitaxel, doxorubicin, tamoxifen have inhibition concentrations IC₅₀ more times lower for cancer cell lines than for normal cells (Hasanpourghadi et al., 2017). Presumably, no studies about the cytotoxicity on the healthy or cancer cell lines of the extracts from the mentioned two fungi have been done. Only some cytotoxicity studies of the β-glucan tylopilan isolated from *Tylopilus felleus* were provided. Tyloplian showed antitumor activity on 180-TG Crocker cells in the concentration range 300–37.5 μg/mL (Grzybek et al., 1994). In general, β-glucans are natural polysaccharides present in plants, fungi, yeast, bacteria and algae. Several studies indicate that β-glucans could activate cells of the immune system against pathogens or against cancer cells, as well as exert direct cytostatic, antibacterial and antiviral activities and regenerative effects (Browder et al., 1990; Markova et al., 2003; Baldwin et al., 2015).

Table 1. Response of the tested extracts to specific alkaloid indicator.

Extracts	Reaction with Dragendorff reagent
TylEtCap	***
TylEtTub	***
TylChCap	**
TylChTub	**
SuiEtCap	***
SuiEtTub	***
SuiChTub	**

From the extracts the alkaloid cations were released and they could make positive reaction with Dragendorff reagent as a red precipitate.*** intense reaction; ** moderate reaction; * weak reaction; – no reaction (range inspired by Furr & Mahlberg, 1981). Our results demonstrate that only *Tylopilus* extracts exhibit selective cytotoxicity to cancer cells over healthy non-tumorigenic cells in pharmacological concentrations. Similar results have been seen by Jafaar et al. (2014) with β-glucan, which at higher concentrations acted toxic to breast cancer cells but promoting proliferation to healthy cells. Lentinan, β-glucan isolated form the mushroom *Lentinus edodes*, selectively inhibited proliferation of breast cancer cells and showed good safety profile in normal cells (Xu et al., 2017). This shows the worth of continuing in the following cytotoxicity tests. Precisely because our experiments proved only mild toxicity of extracts to cancer cells, further tests could be done with higher concentrations of extracts, or with extract isolates to achieve higher toxicity to cancer cells while preserving the preferred selectivity.

The extracts from *Suillellus rubrosanguineus* have proven to be significantly more cytotoxic than extracts from *Tylopilus felleus* to both cell lines in the concentration range used. These results could contribute to the knowledge about known poisonousness of the mushroom *S. rubrosanguineus*. The mushroom *Tylopilus felleus* is generally considered to be non-edible due to its bitter taste.

The presence of alkaloids in the fungi could contribute to the whole image of toxicity. Alkaloids are naturally occurring organic nitrogen-containing bases of plants as well as fungi. They have diverse biological effects on humans and animals in very low concentrations and toxic effects with the higher concentrations (Nugroho et al., 2015; Bun et al., 2008).

Probably no data are known about quantitative or qualitative characterization of alkaloids in fungi *Suillellus rubrosanguineus* and *Tylopilus felleus*. Some alkaloids have been identified in some species of the Boletaceae family (Mahmood et al., 2010).

In the present study, we provided some novel additional data concerning the biological profile of less biomidentally studied but commonly known two fungi species of the Boletaceae family *Suillellus rubrosanguineus* and *Tylopilus felleus*. The results show beneficial specificity
of cytotoxicity of the four different *Tylopilus* extract preparations. They are cytotoxic for human breast cancer cells MCF-7 and they caused slightly enhanced proliferation/metabolic activity in mouse fibroblasts NIH-3T3 in pharmacological concentrations. The *Suillellus* extracts showed greater cytotoxicity than *Tylopilus* extracts, however, with a comparable extent in both cell lines. The presence of alkaloids was found in all extracts, which could contribute to their cytotoxicity. The extracts of *Tylopilus felleus* showed biological activities, which could open a perspective for future detailed study focusing, for instance, on their potential use in adjuvant therapy of cancer.

Acknowledgments

The work was supported by the grants: VEGA 1/0290/16, APVV-15-0308 and APVV-16-0207. Kind acknowledgments belong to doctor Veronika Lachová for helping with the English language.

REFERENCES

Antonín V., Jablonský I., Šašek V., Vančulíková Z. (2013). *Huby ako liek*. Ottovo nakladateľstvo, Martin.

Baldwin K. T., Carbajal K. S., Segal B. M., Giger R. J. (2015). Neuroinflammation triggered by β-glucan/dectin-1 signaling enables CNS axon regeneration. *Proc Natl Acad Sci USA* 112(8): 2581–6.

Browder W., Williams D., Pretus H., Olivero G., Enrichens F., Mao P., Franchello A. (1990). Beneficial effect of enhanced macrophage function in the trauma patient. *Ann Surg* 1: 605–613.

Bun S., Laget M., Chea A., Bun H., Ollivier E., Elias R. (2008). Cytotoxic activity of alkaloids isolated from *Stephania rotunda* in vitro, cytotoxic activity of cepharanthine. *Phytother Res* 23(4): 587–590.

Danilheva M., Veverka M., Sturdik E., Jantova S. (2013). Antioxidant action and cytotoxicity on HeLa and NIH-3T3 cells of new quercitin derivatives. *Interdisc Toxicol* 6(4): 209–216.

Furr M., Mahlberg P. G. (1981). Histochemical analyses of laticifers and glandular trichomes in *Cannabis sativa*. *J Nat Prod* 44(2): 153–159.

Grzybek J., Zgorniak-Novosielska I., Kasprowicza A., Zawilinska B., Kohlmunzer S. (1994). Antitumor activity of a fungal glucan tylopilin and Propionibacterium acnes preparation. *Acta Soc Bot Pol* 63: 3–4.

Hasanpourghadi M., Pandurangan AK., Karthikeyan C., Trivedi P., Mustafa MR. (2017). Mechanisms of the anti-tumor activity of Methyl 2-[1S-fluoro-2-hydroxyphenyl]-1H-benz[d]imidazole-5-carboxylate against breast cancer in vitro and in vivo. *Oncotarget* 8(17): 28840–28853.

Holec J., Beran M., et al. (2006). *Červený seznam hub (makromycetů) České republiky*. Příroda, Praha.

Chou Ch., Yang J., Lu H., et al. (2010). Quercetin-mediated Cell Cycle Arrest and Apoptosis Involving Activation of a Caspase Cascade through the Mitochondrial Pathway in Human Breast Cancer MCF-7 Cells. *Arch Pharm Res* 33: 1181–1191.

Jafaar Z., Litchfield L. M., Ivanova M. M., Radde B. N., Al-Rayyan N., Klinge C. M. (2014). β-D-glucan inhibits endocrine-resistant breast cancer cell proliferation and alters gene expression. *Int J Oncol* 44(4): 1365–1375.

Mahmood Z. A., Ahmed S. W., Azhar I., Sualeh M., Baig M. T., Zoha S. (2010). Bioactive alkaloids produces by fungi I. Updates on alkaloids from the species of the genera Boletus, Fusarium and Psilocybe. *Pak J Pharm* 23(3): 349–357.

Markova N., Kussovski V., Drandarska S. N., Georgieva N., Radoucheva T. (2003). Protective activity of lentinan in experimental tuberculosis. *Int Immunopharmacology* 3: 1557–1562.

Nugroho A. E., Akbar F., Wyiani A., Sudarsono. (2015). Cytotoxic Effect and Constituent Profile of Alkaloid Fractions from Ethanolic Extract of *Ficus septica* Burm. *J. leaves on T47D Breast Cancer Cells. Asian Pac J Cancer Prev* 16(76): 7337–7342.

Šutara j., Mikšík M., Janda V. (2009). *Hřibovité huby*. Academia, Praha.

Xu H., Zou S., Xu X. (2017). The β-glucan from Lentinus edodes suppresses cell proliferation and promotes apoptosis in estrogen receptor positive breast cancer. *Oncotarget* 8(49): 86693–86709.