ON THE FUNDAMENTAL GROUP AND TRIPLE MASSEY’S PRODUCT

GRIGORI RYBNIKOV

INTRODUCTION

We study the relations between the fundamental group and the homological operations on integer homology. For the “rational” fundamental group (Malcev completion) see [4, 5, 11, 16, 17].

This work is an attempt to understand the invariant of the fundamental group of the complement of a complex hyperplane arrangement that was used in [13]. Note that this invariant necessarily vanishes over \mathbb{Q} (see [5]).

All homology and cohomology groups are with integer coefficients. By $|X|$ we denote the geometric realization of a simplicial set X.

1. PSEUDO-ISOMORPHISMS AND PSEUDO-HOMEOMORPHISMS

Theorem 1. Suppose an arcwise connected topological space U has the homotopy type of a CW complex. Let $G = \pi_1(U, u)$, and let $Y = BG$ be the nerve of G. Then there is a continuous map $U \to BG$ inducing the natural isomorphism $\pi_1(U, u) = G \cong \pi_1(BG, (u))$ (hence, also an isomorphism $H_1(U) \to H_1(BG)$) and an epimorphism $H_2(U) \to H_2(BG)$.

Proof. Since U has the homotopy type of a CW complex, U is homotopy equivalent to $|S(U)|$, where $S(U)$ denotes the simplicial set of all singular simplices in U. Since U is arcwise connected, $|S(U)|$ is homotopy equivalent to $|S_u(U)|$, where $u \in U$ is an arbitrary point and $S_u(U)$ denotes the simplicial set of all singular simplices in U with all vertices equal to u. Therefore, it suffices to prove the theorem for $U = |X|$, where X is a simplicial set with single vertex x, $u = x$.

In fact, we will construct a simplicial map $X \to BG$ inducing the natural isomorphism $\pi_1(|X|, x) = G \cong \pi_1(BG, (x))$ and an epimorphism $H_2(|X|) \to H_2(BG)$.

Let X_k denote the set of non-degenerate k-simplices in X. Consider the free group $F = F(\hat{X}_1)$ and its nerve BF. It is well known that $H_0(BF) = \mathbb{Z}$, $H_1(BF) = \mathbb{Z}^{|X_1|}$, and $H_i(BF) = 0$ for $i > 1$. Denote by X^1 the minimal simplicial subset of X containing \hat{X}_1. We identify X^1 with the corresponding simplicial subset of BF and glue $|X|$ and BF via this identification. Denote the resulting simplicial set by Y.

It is clear that $|X^1|$ is a union of 1-dimensional spheres, hence the inclusion $|X^1| \hookrightarrow BF$ induces isomorphism $H_i(|X^1|) \cong H_i(BF)$ for any i. Hence, from the long homological exact sequence of the pair $(BF, |X^1|)$ we see that $H_i(BF, |X^1|) = 0$ for any i. But $H_i(|Y|, |X|) = H_i(BF, |X^1|)$. From the long homological exact sequence of the pair $(|Y|, |X|)$ we see that the natural map $H_i(|X|) \to H_i(|Y|)$ is

Research was supported in part by Grant M8H000/M8H300 from the International Science Foundation and Russian Government and by INTAS Grant 94-4720.
The fundamental group of σ if it gives rise to an isomorphism e_Z algebra variant of topological space w.r.t. pseudo-homeomorphisms is an invariant of its fundamental groups. Thus we can use Y instead of X.

Let us define a simplicial map $\varphi : Y \to BG$. We have a natural homomorphism $F \to G$ that maps each element $a \in X$ to the corresponding element g_a of the fundamental group $\pi_1(X, x) = G$. We put $\varphi((a_1, \ldots, a_n)) = (g_{a_1}, \ldots, g_{a_n})$ for each $(a_1, \ldots, a_n) \in B_n F$. Suppose σ is a k-simplex in X. Let a_k be 1-face of σ corresponding to the inclusion $f_k : [0, 1] \to [0, m]$ given by $f_k(j) = j + k$. We put $\varphi(\sigma) = (g_{a_1}, \ldots, g_{a_k})$. It is obvious that φ is a simplicial map. Besides, it is clear that the map $\varphi_* : \pi_1(\{Y\}, x) \to \pi_1(BG, (\))$ is an isomorphism.

Note that the map $\varphi_* : C(Y) \to C(BG)$ is surjective. Denote by K the kernel of this map. We have $K_0 = 0$ and $K_1 = \langle (gn) - (g) \rangle_{n \in N}$, where N is the kernel of the natural homomorphism $F \to G$. From the long exact sequence

$$\cdots \to H_2(Y) \to H_2(BG) \to H_1(K) \to \cdots$$

we see that it suffices to show that $H_1(K) = 0$.

It is clear that for any $g_1, g_2, h \in F$ such that $(g_1) - (g_2) \in \partial K_2$ we have $(h g_1) - (h g_2) \in \partial K_2$ and $(g_1 h) - (g_2 h) \in \partial K_2$. It follows that for any $g, h, f \in F$ such that $(g) - (1) \in \partial K_2$ we have $(h^{-1}g h) - (1) \in \partial K_2$ and for any $g, h, f \in F$ such that $(g) - (1) \in \partial K_2$ and $(h) - (1) \in \partial K_2$ we have $(g h) - (1) = (g h) - (h) + (h) - (1) \in \partial K_2$.

Let us consider arbitrary element $\sigma \in X_2$ and let $a = d_2 \sigma$, $b = d_0 \sigma$, and $c = d_1 \sigma$. Denote the corresponding elements of F by g_a, g_b, and g_c. We have $(g_a g_b) - (g_c) = \partial((g_a, g_b) - \sigma) \in \partial K_2$. Hence $(g_a g_b g_c^{-1}) - (1) \in \partial K_2$. The elements of the form $g_a g_b g_c^{-1}$ and their conjugates generate the subgroup N. Therefore for any $n \in N$ we have $(n) - (1) \in \partial K_2$. It follows that $(g n) - (g) \in \partial K_2$ for any $n \in N, g \in F$, thus $K_1 = \partial K_2$. Hence $H_1(K) = 0$ and the map $\varphi_* : H_2(\{Y\}) \to H_2(BG)$ is an epimorphism.

Let us consider only arcwise connected topological spaces that have the homotopy type of CW complex. Any continuous map inducing isomorphism of H_1 and epimorphism of H_2 will be called a pseudo-homeomorphism. We see that any invariant of topological space w.r.t. pseudo-homeomorphisms is an invariant of its fundamental group.

Now we want to know what information about the fundamental group can be contained in such invariants.

Definition 1. Let G be a group. Denote by I the augmentation ideal of the group algebra $\mathbb{Z}G$ (that is, I is generated by all elements of the form $g - e$, where $g \in G$ and e is the identity element of G). We put $D^{(k)}(G) = \mathbb{Z}G/I^k$. Denote by $D(G)$ the projective system of \mathbb{Z}-algebras

$$\to D^{(k+1)}(G) \to D^{(k)}(G) \to D^{(k-1)}(G) \to \cdots \to D^{(1)}(G) = \mathbb{Z}.$$

Suppose $\varphi : G_1 \to G_2$ is a group homomorphism. We say that it is a pseudo-isomorphism if it gives rise to an isomorphism $D(G_1) \to D(G_2)$.

Let $X = (X_n)_{n \in \mathbb{N}}$ be a simplicial set with single vertex (that is, $X_0 = \{x\}$). The fundamental group of $|X|$ can be described as the group with generators g_a ($a \in X_1$) and relations $g_d \sigma g_{d \sigma} = g_{d_1 \sigma}$ for any $\sigma \in X_2$, where $d_1 \sigma$ means i-th face of σ (with i-th vertex missing).
Let \(C = C(X) \) be the chain complex of \(X \) over \(\mathbb{Z} \). It has the standard structure of coalgebra: for any \(n \)-simplex \(\sigma \) we have
\[
\Delta \sigma = \sum_{i+j=n} (i) \sigma \otimes (j),
\]
where \((i) \sigma \) is the front \(i \)-dimensional face and \((j) \sigma \) is the back \(j \)-dimensional face of \(\sigma \). Let \(\overline{\mathcal{C}} = C/C_0 \); since \(C_0 = \mathbb{Z}x \) is subcoalgebra of \(C \), we obtain comultiplication \(\Delta : \overline{\mathcal{C}} \to \overline{\mathcal{C}} \otimes \overline{\mathcal{C}} \). Denote by \(\mathcal{F}(\mathcal{C}) \) the tensor algebra \(T(s^{-1}\overline{\mathcal{C}}) \) (cobar construction \[\square \]). Note that \(\mathcal{F}(\mathcal{C})_0 \) is a free associative algebra generated by \(X_1 \). We write \([c_1,c_2,\ldots,c_k] \) instead of \(s^{-1}c_1 \otimes s^{-1}c_2 \otimes \cdots \otimes s^{-1}c_k \). The differential in \(\mathcal{F}(\mathcal{C}) \) is a derivation of the tensor algebra defined on generators as
\[
\partial[c] = [-\delta c] + \sum (-1)^{\deg a_i} [a_i] b_i,
\]
where \(\overline{\Delta} = \sum a_i \otimes b_i \) and \(\delta \) is the differential in \(\overline{\mathcal{C}} \).

Let \(\mathcal{F}^k(\mathcal{C}) = \mathcal{F}(\mathcal{C})/(T^k(s^{-1}\overline{\mathcal{C}})) \). It is clear that the ideal \((T^k(s^{-1}\overline{\mathcal{C}})) = \bigoplus_{r \geq k} T^r(s^{-1}\overline{\mathcal{C}}) \) is a subcomplex of \(\mathcal{F}(\mathcal{C}) \); hence \(\mathcal{F}^k(\mathcal{C}) \) is a complex. Denote \(H_0(\mathcal{F}^k(\mathcal{C})) \) by \(A^k = A^k(X) \).

Proposition 2. Let \(G = \pi_1([X],v) \). Then there is an isomorphism \(D^k(G) \to A^k(X) \) such that for each \(a \in X_1 \) the image of \(g_a \) in \(D^k(G) \) corresponds to the image of \(1 + [a] \) in \(A^k(X) \).

Proof. Denote \(1 + [a] \in \mathcal{F}(\mathcal{C})_0 \) by \(\tilde{g}_a \). Let \(\sigma \) be a 2-simplex and let \(a = d_2 \sigma, b = d_0 \sigma, \) and \(c = d_1 \sigma \). Then \(\tilde{g}_a \tilde{g}_b - \tilde{g}_c = [a] + [b] + [a][b] - [c] = -\partial[\sigma] \), thus the corresponding element in \(A^k(X) \) is zero. Hence there is a homomorphism \(\mathbb{Z}G \to A^k \) sending each generator \(g_a \) to the image of \(\tilde{g}_a \) in \(A^k(X) \). From the definitions it is clear that its kernel is \(P^k \). \(\square \)

Theorem 3. Let \(U \) and \(V \) be arcwise connected topological spaces having the homotopy types of CW complexes. Suppose \(f : U \to V \) is a pseudo-homeomorphism. Then
\[
f_* : \pi_1(U,u) \to \pi_1(V,f(u))
\]
is a pseudo-isomorphism.

Proof. As in the proof of Theorem \[\square \] we assume that \(U = [X] \) and \(V = [Y] \), where \(X \) and \(Y \) are simplicial spaces with single vertices \(x \) and \(y \) respectively. Besides, we assume that \(f = |F| \), where \(F : X \to Y \) is a simplicial map, \(u = x \) and, thus, \(f(u) = y \).

By Proposition \[\square \] it suffices to show that the natural map \(A^k(X) \to A^k(Y) \) is an isomorphism for any \(k \in \mathbb{N} \). Consider the filtration of the complex \(\mathcal{F}^k(\mathcal{C}) \) for both \(C = C(X) \) and \(C = C(Y) \)
\[
\mathcal{F}^k(C) = \mathcal{F}^k_0(C) \supset \mathcal{F}^k_{-1}(C) \supset \cdots \supset \mathcal{F}^k_{-k+1}(C) \supset \mathcal{F}^k_{-k}(C) = \{0\}
\]
where \(\mathcal{F}^k_p(C) = (T^{-p}(s^{-1}\overline{\mathcal{C}})/T^k(s^{-1}\overline{\mathcal{C}})) \). We have a natural map of the corresponding spectral sequences \(E_{p,q}(X) \to E_{p,q}(Y) \).

Note that \(E_{p,q}(X) = H_{q-p}(s^{-1}\overline{\mathcal{C}})^{\otimes r} \).

Lemma 3.1. Let \(K, L, \) and \(M \) be chain complexes of free \(\mathbb{Z} \)-modules and let \(f : K \to L \) be a map of complexes such that \(f_* : H_i(K) \to H_i(L) \) is an isomorphism for \(i = 1,\ldots,k \) and an epimorphism for \(i = k+1 \). Then \((f \otimes \text{id}_M)_* : H_i(K \otimes M) \to H_i(L \otimes M) \) is an isomorphism for \(i = 1,\ldots,k \) and an epimorphism for \(i = k+1 \).
Proof. The condition of the Lemma is equivalent to the fact that Cone(\(f \)) is acyclic in dimensions 0, 1, \ldots, \(k \). But Cone(\(f \otimes \text{id}_M \)) \(\simeq \) Cone(\(f \)) \(\otimes M \), therefore it is also acyclic in dimensions 0, 1, \ldots, \(k \).

Let us continue the proof of the Theorem. Repeatedly applying the Lemma we see that the natural map \(E^r_{p,q}(X) \to E^r_{p,q}(Y) \) is an isomorphism for \(p + q = 0 \) and an epimorphism for \(p + q = 1 \). It follows that it is also true for \(E^\infty_{r,p,q} \) for any \(r > 0 \), therefore it is true for \(E^\infty_{r,p,q} \) and hence for \(H_1(\mathcal{F}^k(C)) \).

2. **Triplet Massey’s product**

From theorem it follows that the invariants of a topological space w.r.t. pseudo-homeomorphisms distinguish fundamental groups (at least) up to a pseudo-isomorphism.

Clearly, in our study of such invariants it suffices to consider simplicial sets with single vertex. A simplicial map \(f : X \to Y \) of simplicial sets with single vertex will be called a simplicial pseudo-homeomorphism, if its geometric realization \(|f| : |X| \to |Y| \) is a pseudo-homeomorphism.

Proposition 4. Let \(f : X \to Y \) be a simplicial pseudo-homeomorphism. Then the map \(f^* : H^i(Y) \to H^i(X) \) is an isomorphism for \(i = 1 \) and a monomorphism for \(i = 2 \).

Proof. Let us consider the map \(\varphi : C(X) \to C(Y) \) of chain complexes. We put \(C = C(X), K_0 = C(Y) \). Thus \(C_0 \simeq \mathbb{Z}, K_0 \simeq \mathbb{Z}, \partial_{C_1} = 0, \partial_{K_1} = 0 \). We have

\[
\begin{align*}
K_1 &= \varphi C_1 + \partial K_2, \\
\varphi^{-1}(\partial K_2) &= \partial C_2, \\
\text{Ker} \partial K_2 &= \varphi \text{Ker} \partial C_2 + \partial K_3.
\end{align*}
\]

Let \(C = \text{Hom}(C, \mathbb{Z}) \) and \(K^\ast = \text{Hom}(K, \mathbb{Z}) \). From the first equation in \((\text{I}) \) we get \(\text{Ker} \varphi^* \cap \text{Ker} \partial_{K_1} = 0 \), combining the first and the second equations in \((\text{I}) \) we get \(\text{Ker} \partial_{C_1} = \varphi^* \text{Ker} \partial_{K_1}, \) and with the help of all \((\text{I}) \) we get \(\varphi^* \partial_{C_2} \cap \text{Ker} \partial_{K_2} = \partial K_3 \). This is just what we need.

Let \(X \) be a simplicial set. We write \(H^i \) instead of \(H^i(X) \) and use standard notations \(C^i, Z^i, \) and \(B^i \) for \(\mathbb{Z} \)-modules of \(i \)-cochains, \(i \)-cocycles, and \(i \)-coboundaries respectively. Let us denote by \(\mu \) the map of cup-product \(C^i \otimes C^j \to C^{i+j} \) (the map \(\mu : C^i \otimes C^j \to C^{i+j} \)) is the adjoint operator to comultiplication \(\Delta : C^1 \to C^1 \otimes C^1 \). The cup-product in cohomology \(H^i \otimes H^j \to H^{i+j} \) is denoted by \(\bar{\mu} \).

Now we will construct an invariant of pseudo-homeomorphisms that is closely related to the triple Massey product. Let us recall its definition. Suppose \(\theta_1, \theta_2, \theta_3 \in H^1 \) satisfy the conditions \(\theta_1 \cdot \theta_2 = 0 \) and \(\theta_2 \cdot \theta_3 = 0 \). Choose \(\omega_i \in Z^1 \) such that \(\theta_i = [\omega_i] (i = 1, 2, 3); \) then there exist \(\omega_{12}, \omega_{23} \in C^1 \) such that \(\omega_1 \cdot \omega_2 = d \omega_{12} \) and \(\omega_2 \cdot \omega_3 = d \omega_{23} \). Consider the cochain \(\omega_{12} \cdot \omega_3 + \omega_{23} \cdot \omega_1; \) clearly, it is a cocycle; its class in \(H^2 \) is denoted by \(\langle \theta_1, \theta_2, \theta_3 \rangle \) and is called triple Massey product of \(\theta_1, \theta_2, \theta_3 \). This product is not defined uniquely: only the set \(\langle \theta_1, \theta_2, \theta_3 \rangle + H^1 \cdot \theta_3 + \theta_1 \cdot H^1 \) has an invariant sense.

Denote by \(\eta_2 \) the natural projection \(H^1 \otimes H^1 \to \Lambda^2 H^1; \) choose a homomorphism of \(\mathbb{Z} \)-modules \(\chi_2 : \Lambda^2 H^1 \to H^1 \otimes H^1 \) such that \(\eta_2 \circ \chi_2 = \text{id} \) (in other words, \(\chi_2 \) is right inverse to \(\eta_2 \)). Since \(H^1 \) is a free Abelian group, we can fix a homomorphism \(\chi : H^1 \to Z^1 \) right inverse to the canonical projection.

Proposition 5. There is a natural (non-linear) map \(\zeta : Z^1 \to C^1 \) such that \(\omega \cdot \omega = d \zeta(\omega) \) for any \(\omega \in Z^1 \).
Proof. The map ζ may be defined as follows: $\zeta(\omega)(a) = (\omega(a) - \omega(a^2))/2$ for any 1-simplex a. It is clear that this map is natural; the equality $\omega \sim \omega = d\zeta(\omega)$ is easy to check.

From Proposition 3 it follows that the map $\bar{\mu} : H^1 \otimes H^1 \to H^2$ may be factored through $\Lambda^2 H^1$; it means that there is a map $\bar{\mu} : \Lambda^2 H^1 \to H^2$ such that $\bar{\mu} \circ \eta_2 = \bar{\mu}$. Let $R^2 = \text{Ker} \, \bar{\mu}$, $\bar{R}^2 = \text{Ker} \, \bar{\mu}$. Clearly, $S(2) H^1 \subset R^2$, where $S(2) H^1 \subset H^1 \otimes H^1$ is the set of symmetric tensors.

Denote $R^2 \otimes H^1 \cap H^1 \otimes R^2 \subset H^1 \otimes H^1 \otimes H^1$ by Q^3. Let us choose a homomorphism of Abelian groups $\nu : R^2 \to C^1$ such that $\mu \circ (\sigma \otimes \sigma)(r) = d\nu(r)$ for any $r \in R^2$.

Now define $\lambda : Q^3 \to C^2$ as $\lambda = \mu \circ (\nu \otimes \sigma + \sigma \otimes \nu)$. We have $d \circ \lambda = \mu \circ ((d \circ \nu) \otimes \sigma - \sigma \otimes (d \circ \nu)) = \mu \circ (d \circ (\nu \otimes \sigma) \otimes \sigma - \sigma \otimes (d \circ \sigma \otimes \sigma)) = 0$ by associativity of the cup-product. For any $q \in Q^3$ we denote the image of $\lambda(q)$ in H^2 by $\lambda(q)$.

Let θ_1, θ_2, and θ_3 be as in the definition of the triple Massey product. Then $q = \theta_1 \otimes \theta_2 \otimes \theta_3 \in Q^3$ and $(\theta_1, \theta_2, \theta_3) = \lambda(q)$. Thus, the homomorphism $\bar{\lambda} : Q^3 \to H^2$ can be viewed as a form of the triple Massey product.

Clearly, $\bar{\lambda}$ depends on the choices of σ and ν. If we change σ to $\sigma' = \sigma + d \circ \varepsilon$, where $\varepsilon : H^1 \to C^0$ is an arbitrary homomorphism, then $\nu' = \nu + \mu \circ (\sigma' \otimes \varepsilon) + \mu \circ (\varepsilon \otimes \sigma')$ satisfies the condition $\mu \circ (\sigma' \otimes \sigma') = d \circ \nu'(r)$ and gives rise to the same λ. On the other hand, if we change ν to $\nu' = \nu + \rho$, where $\rho : R^2 \to Z^1$ is an arbitrary homomorphism, then $\bar{\lambda}$ changes to $\bar{\lambda} + \bar{\mu} \circ (\text{id} \otimes \bar{\rho} + \bar{\rho} \otimes \text{id})$, where $\bar{\rho}$ is the composition of ρ with the canonical projection $Z^1 \to H^1$. Denote by δ the map from $\text{Hom}(R^2, H^1)$ to $\text{Hom}(Q^3, H^2)$ sending $f \in \text{Hom}(R^2, H^1)$ to $\bar{\mu} \circ (\text{id} \otimes f + f \otimes \text{id})$.

We see that the class of $\bar{\lambda}$ in $\text{Hom}(Q^3, H^2)/\delta \text{Hom}(R^2, H^1)$ is well-defined. Clearly, it is an invariant of pseudo-homeomorphisms.

We can further reduce λ with the help of Proposition 3.

Let us fix a basis (ξ_1, \ldots, ξ_n) of H^1. We choose ν so that $\nu(\xi_i \otimes \xi_i) = \zeta(\sigma(\xi_i))$ for $i = 1, \ldots, n$ and $\nu(\xi_i \otimes \xi_j + \xi_j \otimes \xi_i) = \zeta(\sigma(\xi_i + \xi_j)) - \zeta(\sigma(\xi_j))$ for $i \neq j$.

Let δ be the map from $\text{Hom}(R^2, H^1)$ to $\text{Hom}(Q^3, H^2)$ sending $f \in \text{Hom}(R^2, H^1)$ to $\delta(f \circ \eta_2)$. Clearly, the class of $\bar{\lambda}$ in $\text{Hom}(Q^3, H^2)/\delta \text{Hom}(R^2, H^1)$ is a well-defined invariant of pseudo-homeomorphisms.

Now consider the map $l : H^1 \otimes R^2 \to \Lambda^3 H^1$ arising from the wedge product in $\Lambda^* H^1$. We set $Q^3 = \text{Ker} \, l$.

Proposition 6. The image of the map $(\text{id}_{H^1} \otimes \eta_2) \circ (\text{id} - s_{(123)}) : Q^3 \to H^1 \otimes R^2$ is Q^3.

Proof. Clearly, the image of this map belongs to Q^3. Let us construct a map $p : Q^3 \to Q^3$ right inverse to the map under consideration.

Let $t = \sum_j \xi_j \otimes r_j \in Q^3$, $r_j = \sum_{i < k} \alpha_{ijk} \xi_j \wedge \xi_k$. We put
\[
pt = \sum_{i < j < k} (\alpha_{ijk}(\xi_i \otimes \xi_j \otimes \xi_k + \xi_j \otimes \xi_i \otimes \xi_k) + \alpha_{kj}(\xi_i \otimes \xi_k \otimes \xi_j + \xi_k \otimes \xi_i \otimes \xi_j)) \\
+ \sum_{i < j} (\alpha_{ij}(\xi_i \otimes \xi_j \otimes \xi_j - \alpha_{iij}(\xi_j \otimes \xi_j \otimes \xi_j)).
\]

Since $\alpha_{ijk} - \alpha_{ikj} + \alpha_{kij} = 0$ for $i < j < k$, we have $pt \in H^1 \otimes R^2 \cap S(2) H^1 \otimes H^1$ and $(\text{id}_{H^1} \otimes \eta_2) \circ (\text{id} - s_{(123)})pt = t$. \qed
Let us fix the map p constructed above.
Let now $t \in H^1 \otimes \bar{R}^2$, $t = \sum \xi_i \otimes r_i$, $r_i = \sum_{j<k} \alpha_{ijk} \xi_j \wedge \xi_k$. We put
\[
qt = \sum_i \sum_{j<k} \alpha_{ijk} (\xi_i \otimes \xi_j \otimes \xi_k + \xi_j \otimes \xi_i \otimes \xi_k + \xi_j \otimes \xi_k \otimes \xi_i).
\]
Clearly, q is the map $H^1 \otimes \bar{R}^2 \to Q^3$ satisfying the conditions $(\text{id}_{H^1} \otimes \eta_2) \circ q = \text{id}$ and $(\text{id}_{H^1} \otimes \eta_2) \circ s_{(123)} \circ q = \text{id}.

Proposition 7. We have $Q^3 = p\bar{Q}^3 \oplus q(H^1 \otimes \bar{R}^2) \oplus S^{(3)}H^1$.

Proof. Clear.

Now let $\bar{\lambda} : Q^3 \to H^2$ be as above.

Proposition 8. We have $\bar{\lambda}(t) = 0$ for any $t \in S^{(3)}H^1$ and $\bar{\lambda}(qt) = \sum_{i<j} (\alpha_{iij} + \alpha_{ijj}) \xi_i \wedge \xi_j$ for $t = \sum_i \xi_i \otimes \sum_{j<k} \alpha_{ijk} \xi_j \wedge \xi_k \in H^1 \otimes \bar{R}^2$.

Proof. Let $h \in H^1$, $\tilde{h} = \varepsilon h$. We define $f \in C^1$ by the formula $f(a) = \tilde{h}(a)(\tilde{h}(a) - 1)(\tilde{h}(a) - 2)/6$ for all $a \in X_1$. It is easy to check that $\lambda(h \otimes h \otimes h) = df$. Therefore, $\bar{\lambda}$ vanishes on $S^{(3)}H^1$.

To prove the second assertion of the proposition we recall that there is a natural map $\mu_1 : C_n \otimes C_n \to C_{n+1}$ of degree -1 such that for any $f \in C_n \otimes C_n$ one has
\[
\mu(f - sf) = d\mu_1 f + \mu_1 df,
\]
where $s(a \otimes b) = (-1)^{\deg a \deg b} a \otimes b$ for homogeneous $a, b \in C^*_n$. (This is a part of the structure of E_∞-algebra on C_*, see [13].) The map μ_1 is adjoint to the map $\Delta_1 : C_n \to C_n \otimes C_n$ of degree 1. For the standard simplices of dimensions 1 and 2 the map Δ_1 is given by the formulas $\Delta_1[01] = [01] \otimes [01]$ and $\Delta_1[012] = [012] \otimes [02] + ([01] + [12]) \otimes [012]$.

For $t = \sum \xi_i \otimes \sum_{j<k} \alpha_{ijk} \xi_j \wedge \xi_k \in H^1 \otimes \bar{R}^2$ we have
\[
\lambda(qt) = \mu_1 \circ (\mu \otimes \varepsilon - \varepsilon \circ (\mu \otimes \varepsilon) + (\varpi \otimes \mu) \circ (\text{id} - s_{(123)}))(qt)
= d \circ \mu_1 \circ (\mu \otimes \varepsilon)(qt) + \mu_1 \circ (\mu \otimes \text{id})(\varepsilon \otimes \varepsilon)(qt) + (\varpi \otimes \mu) \circ (\text{id} - s_{(123)})(qt).
\]
Note that $(\text{id} - s_{(123)})$ is symmetric w.r.t. the last two indices. Now it is easy to check that
\[
\mu_1 \circ (\mu \otimes \text{id}) \circ (\varpi \otimes \varepsilon)(qt) + (\varpi \otimes \mu) \circ (\text{id} - s_{(123)})(qt) = -d \sum \sum \alpha_{ijk} \xi_i \xi_j \xi_k + \sum \sum \alpha_{ijij} \xi_i \xi_j + \alpha_{ijji} \xi_i \xi_j,
\]
where $\tilde{h} = \varepsilon h$ and $\tilde{\xi}_i \xi_j \xi_k$ is a cochain in C^1 given by
\[
\tilde{\xi}_i \xi_j \xi_k(a) = \tilde{\xi}_i(a) \xi_j(a) \xi_k(a)
\]
for all $a \in X_1$.

We see that $\bar{\lambda}$ is determined by $\bar{\lambda} = \lambda \circ p : \bar{Q}^3 \to H^2$. Denote by $\bar{\delta}$ the map $\text{Hom}(\bar{R}^2, H^1) \to \text{Hom}(\bar{Q}^3, H_2)$ sending $f \in \text{Hom}(\bar{R}^2, H^1)$ to $\bar{\delta}(f) \circ p$. Clearly, the class $[\lambda] \in \text{Hom}(\bar{Q}^3, H^2)/\bar{\delta} \text{Hom}(\bar{R}^2, H^1)$ of $\bar{\lambda}$ is a well-defined invariant of pseudo-homeomorphisms. More precisely, we have

Theorem 9. Let X and Y be simplicial sets and let $\varphi : X \to Y$ be simplicial pseudo-homeomorphism. Suppose that the map $\lambda^{(X)} : \Lambda^2 H^1(X) \to H^1(X) \otimes H^1(X)$ and the basis of $H^1(X)$ are chosen as above. Let us transfer these structures to
3. \[Q\]

Proof. This is obvious since we have used only natural constructions to define \(\overline{F}\), \(\bar{Q}\), and \(\lambda\).

3. THE INVARIANT OF FUNDAMENTAL GROUP

Our next goal is to interpret the invariant \(\lambda\) in terms of the fundamental group. It is possible due to theorem \([\text{10}]\), but we want to produce an explicit construction.

Let \(G = \pi_1(U, u)\), where \(U\) is an arcwise connected topological space having the homotopy type of a CW-complex. Suppose the following conditions hold:

1. \(G \to G'\) is a free Abelian group of rank \(n\) (that is, \(H_1(U) \cong \mathbb{Z}^n\));
2. \(G\) is generated with \(n\) generators, thus \(G \cong F/R\), where \(F = F(w_1, \ldots, w_n)\) is a free group with generators \(w_1, \ldots, w_n\) and \(R\) is a normal subgroup of \(F\);
3. the comultiplication in \(C(U)\) gives rise to an injective homomorphism \(H_2(U) \to H_1(U) \otimes H_1(U)\).

Remark. These conditions are satisfied for the complement of a complex hyperplane arrangement (see \([10]\)).

By Theorem \([\text{10}]\), there is a pseudo-homeomorphism \(U \to BG\). Hence, by Theorem \([\text{10}]\) the invariants \(\overline{R}\), \(\overline{Q}\), and \(\lambda\) may be computed for the simplicial set \(X = BG\) with single vertex \(x = (\cdot)\).

Denote by \(g_1, \ldots, g_n\) the generators of \(G\) (i. e., the images of \(w_1, \ldots, w_n\)). Let \(h_1, \ldots, h_n\) be the corresponding elements in \(H_1 = H_1(X) \cong G/G' \cong F/F'\). Clearly, \((h_1, \ldots, h_n)\) is a basis of \(H_1\). Since \(H_2 = H_2(X)\) is imbedded into \(H_1 \otimes H_1\), it is also a free \(\mathbb{Z}\)-module. Hence \(H_1 \cong \text{Hom}_\mathbb{Z}(H^1, \mathbb{Z})\) and \(H_2 \cong \text{Hom}_\mathbb{Z}(H^2, \mathbb{Z})\). Denote by \((\xi_1, \ldots, \xi_n)\) the basis of \(H^1\) dual to \((h_1, \ldots, h_n)\).

As usual, denote by \(\gamma_k G\) the \(k\)-th term of the lower central series of \(G\) (that is, \(\gamma_1 G = G\) and \(\gamma_{k+1} G = \langle G, \gamma_k G \rangle = \langle g^{-1} f^{-1} g f \mid g \in G, f \in \gamma_k G \rangle\)). It is well known that \(\mathfrak{g} = \bigoplus_{k=1}^\infty \mathfrak{g}_k\), where \(\mathfrak{g}_k = \gamma_k G/\gamma_{k+1} G\), has the structure of the graded Lie algebra with the Lie commutator \([\cdot, \cdot] : \mathfrak{g}_k \times \mathfrak{g}_m \to \mathfrak{g}_{k+m}\) in \(\mathfrak{g}\) corresponding to the group commutator \((\cdot, \cdot) : \gamma_k G \times \gamma_m G \to \gamma_{k+m} G\). Note also that for the free group \(F\) the corresponding Lie algebra \(\mathfrak{f}\) is the free Lie algebra with generators \(x_i = w_i \gamma_i F \in \mathfrak{f}_1\) (see \([\text{13}]\)).

By the Magnus Theorem \([\text{13}]\) the subgroup \(\gamma_k F\) is the set of all \(w \in F\) such that \(w - 1\) belongs to the \(k\)-th power of the augmentation ideal \(I \in \mathbb{Z}F\). This is not generally true for an arbitrary group (see \([\text{14}]\)). But in our case we have the following

Proposition 10. For \(k = 1, 2, 3, 4\) the subgroup \(\gamma_k G\) is the set of all \(g \in G\) such that \(g - 1\) belongs to the \(k\)-th power of the augmentation ideal \(I \in \mathbb{Z}G\).
Proof. For \(k = 1 \) there is nothing to prove. The case \(k = 2 \) is not much harder.

Since \(G = F/R \), we have \(\gamma_k G = \gamma_k F/R \cap \gamma_k F \); thus, \(g = f/\tau \), where \(\tau = \bigoplus \tau_k \), \(\tau_k = R \cap \gamma_k F/R \cap \gamma_{k+1} F \).

Consider the graded algebra \(A = \sum_{k=0}^{\infty} I^k/I^{k+1} \). Clearly, it is a free associative algebra with the generators \(x_1, \ldots, x_n \), where \(x_i = (w_i - 1) + J_2 \); \(A \) is isomorphic to the universal enveloping algebra of \(f \). Let us compare the algebra \(A/(\tau) \) (it is isomorphic to the universal enveloping algebra of \(g \)) and the algebra \(B = \sum_{k=0}^{\infty} I^k/I^{k+1} \).

Since \(R \in \gamma_2 F \), it is readily seen that \(B_2 = A_2/(\tau)_2 \) and \(B_3 = A_3/(\tau)_3 \). By the Poincaré-Birkhoff-Witt theorem (which is valid over \(\mathbb{Z} \), see [1]), \(g \) is imbedded in \(A/(\tau) \). Therefore, \(g_2 \) is imbedded in \(B_2 \) and \(g_3 \) is imbedded in \(B_3 \). The proposition for \(k = 3 \) and 4 follows.

Consider the algebra \(B = \sum_{k=0}^{\infty} I^k/I^{k+1} \). Note that \(B_0 = \mathbb{Z} \) and \(B_1 = H_1 \). Using Proposition 2, it is easily shown that \(B_2 = H_1 \otimes H_1/\Delta(H_2) \) and \(B_3 = H_1 \otimes H_1 \otimes H_1/(\Delta(H_2) \otimes H_1 + H_1 \otimes \Delta(H_2)) \). Denote by \(P_2 \) (resp. \(P_3 \)) the image of \([H_1, H_1] \subset H_1 \otimes H_1 \) (resp. \([H_1, [H_1, H_1]] \subset H_1 \otimes H_1 \otimes H_1 \)) under the canonical projection \(H_1 \otimes H_1 \to H_1 \otimes H_1/\Delta(H_2) \) (resp. \(H_1 \otimes H_1 \otimes H_1 \to H_1 \otimes H_1 \otimes H_1/(\Delta(H_2) \otimes H_1 + H_1 \otimes \Delta(H_2)) \)). By Proposition 3, the natural homomorphisms \(\gamma_2 G/\gamma_3 G \to B_2 \) and \(\gamma_3 G/\gamma_4 G \to B_2 \) are injective. Therefore, \(\gamma_2 G/\gamma_3 G \) is isomorphic to \(P_2 \), and \(\gamma_3 G/\gamma_4 G \) is isomorphic to \(P_3 \).

Let \(w \) be an element of \(H_2 \). We have \(\Delta(w) = \sum_{i \neq j} \alpha_{ij}[h_i, h_j] \). Let

\[
\tau(w) = \prod_{i=1}^{n-1} \prod_{j=i+1}^{n} (g_i g_j g_i^{-1} g_j^{-1})^{\alpha_{ij}} \in G.
\]

Clearly, \(\tau(w) \in \gamma_3 G \). Denote by \(\tau(w) \) the corresponding element of \(\gamma_3 G/\gamma_4 G \). Thus, we get a homomorphism of Abelian groups \(\tilde{\tau} : H_2 \to P_3 \).

Note that

\[
R^2 \simeq \text{Hom}_\mathbb{Z}(H_1 \otimes H_1/\Delta(H_2), \mathbb{Z})
\]

and

\[
Q_3 = \text{Hom}_\mathbb{Z}(H_1 \otimes H_1 \otimes H_1/\Delta(H_2) \otimes H_1 + H_1 \otimes \Delta(H_2), \mathbb{Z}).
\]

We have \(P_2 \simeq [H_1, H_1]/\Delta(H_2) \). Let \(j : \Lambda^3 H_1 \to P_2 \otimes H_1 \) be given by \(j(x \wedge y \wedge z) = [x, y] \otimes z + [y, z] \otimes x + [z, x] \otimes y \). We have \(P_3 = (P_2 \otimes H_1)/j(\Lambda^3 H_1) \). Clearly, \(R^2 = \text{Hom}_\mathbb{Z}(P_2, \mathbb{Z}) \) and \(Q_3 = \text{Hom}_\mathbb{Z}(P_3, \mathbb{Z}) \).

Since \(X = B G \) is a simplicial set with single vertex, we see that the map \(x : H^1 \to Z^1 \) right inverse to the canonical projection is unique. It is readily seen that there is a unique map \(i : C_1 \to H_1 \otimes H_1/\Delta(H_2) \) such that \(i(g_i) = 0 \) for \(i = 1, \ldots, n \) and the diagram

\[
\begin{array}{ccc}
C_2 & \xrightarrow{\Delta} & C_1 \otimes C_1 \\
\downarrow i & & \downarrow \\
C_1 & \xrightarrow{i} & H_1 \otimes H_1/\Delta(H_2)
\end{array}
\]

is commutative. We set \(\nu : R^2 \to C^1 \) to be the conjugate of \(i \).

Note that \(\nu(\xi_i \otimes \xi_i) = \zeta(\omega(\xi_i)) \) for \(i = 1, \ldots, n \) and \(\nu(\xi_i \otimes \xi_j + \xi_j \otimes \xi_i) = \zeta(\omega(\xi_i + \xi_j)) - \zeta(\omega(\xi_i)) - \zeta(\omega(\xi_j)) \) for \(i \neq j \) (where \(\zeta(\omega)(a) = (\omega(a) - \omega(a)^2)/2 \) for any 1-simplex \(a \)). Indeed, for any \(r \in R^2 \), the condition \(d\nu(r) = \mu \circ (\omega \otimes \omega)(r) \) means that \(\nu(r) \) is determined uniquely by its values on 1-cycles \((g_1), \ldots, (g_n) \).
By the definition of \(\nu \), these values are zero for any \(r \in \mathbb{R}^2 \). But \(\zeta(\nu(g_i))(g_j) = (\nu(g_i))(g_j) - \nu(g_i)(g_j)^2)/2 = 0 \) for any \(i, j \), since
\[
\nu(g_i) = \begin{cases}
1, & \text{for } i = j, \\
0, & \text{for } i \neq j.
\end{cases}
\]
Similarly, \(\zeta(\nu(g_i) + \nu(g_j))(g_k) = 0 \) for any \(i, j, k, i \neq j \).

Thus, we can construct the map \(\tilde{\lambda} : \tilde{Q}^3 \rightarrow \tilde{H}^2 \) as above.

Proposition 11. The map \(\tilde{\lambda} : \tilde{Q}^3 \rightarrow \tilde{H}^2 \) is conjugate to the map \(\tilde{\tau} : \tilde{H}_2 \rightarrow \tilde{P}_3 \).

Proof. Let \(w \in \tilde{H}_2 \); \(\tilde{\Delta}(w) = \sum_{i<j} \alpha_{ij}[h_i, h_j] \). We want to describe \(\tilde{\tau}(w) \in \tilde{P}_3 \subset \tilde{B}_3 \) in terms of comultiplication in the chain complex of \(X \).

Note that \(\tilde{B}_3 \) is isomorphic to the kernel of the projection \(D^{(4)}(G) \rightarrow D^{(3)}(G) \). We identify \(D^{(4)}(G) \) with \(A^{(4)}(X) \) (by Proposition 2). Denote the image of \((g_i) \in X_1 \) in \(A^{(4)}(G) \) by \(a_i \). Then the image of \(\tau(w) \) in \(A^{(4)}(G) \) is equal to
\[
\prod_{i<j}(1 + a_i)(1 + a_j)(1 - a_i + a_i^2 - a_i^3)(1 - a_j + a_j^2 - a_j^3) = 1 + \sum_{i<j} \alpha_{ij}(a_i a_j - a_j a_i)(1 - a_i - a_j).
\]

Let us consider \(\tilde{\tau} \) as the map \(H_2 \rightarrow \tilde{B}_3 \). We see that it is the sum of two maps—\(\tilde{\tau}_1 \) and \(\tilde{\tau}_2 \)—where
\[
\tilde{\tau}_1(w) = -\sum_{i<j} \alpha_{ij}(h_i \otimes h_j - h_j \otimes h_i) \otimes (h_i + h_j) + (\tilde{\Delta}(H_2) \otimes H_1 + H_1 \otimes \tilde{\Delta}(H_2))
\]
and \(\tilde{\tau}_2(w) \) is the preimage of \(\sum_{i<j} \alpha_{ij}(a_i a_j - a_j a_i) \in A^{(4)}(G) \) under the injection \(\tilde{B}_3 \rightarrow A^{(4)}(G) \).

The element \(\tilde{\tau}_2(w) \) can be described as follows. Let \(c \in \mathbb{Z}_2 \) be a representative of the class \(w \). The image of \(\Delta c \in C_1 \otimes C_1 \) in \(A^{(4)}(X) \) equals zero. Therefore, in the definition of \(\tilde{\tau}_2(w) \) we can use the image of the element \(t = -\Delta c + \sum_{i<j} \alpha_{ij}(g_i) \otimes (g_j) - (g_j) \otimes (g_i) \in C_1 \otimes C_1 \) in \(A^{(4)}(X) \) instead of \(\sum_{i<j} \alpha_{ij}(a_i a_j - a_j a_i) \) (which is the image of \(\sum_{i<j} \alpha_{ij}(g_i) \otimes (g_j) - (g_j) \otimes (g_i) \in C_1 \otimes C_1 \)). Clearly, \(t \) is the projection of \(-\Delta c \) to \(C_1 \otimes B_1 + B_1 \otimes C_1 \) along the linear span of \((g_i) \otimes (g_j) \). Hence, there is an element \(\tilde{t} \in C_2 \otimes C_1 \otimes C_1 \) such that \(t = (\partial \otimes \text{id} \oplus \text{id} \otimes \partial)\tilde{t} \). From the definition of \(A^{(4)}(X) \) it follows that \(\tilde{\tau}_2(w) \) is the image of \(-\Delta \otimes \text{id} \oplus \text{id} \otimes \Delta)\tilde{t} \). Hence, \(\tilde{\tau}_2(w) = \varphi(\tilde{\nu} + pr \otimes \nu)\Delta c \), where \(pr \) is the canonical projection \(C_1 \rightarrow H_1 \) and \(\varphi \) is the natural map \((H_1 \otimes H_1/\Delta(H_2)) \otimes H_1 \oplus H_1 \otimes (H_1 \otimes H_1/\Delta(H_2)) \rightarrow B_3 \).

Thus, we see that \(\tilde{\lambda} \) is the conjugate of \(\tilde{\tau}_2 \). Note that \(\tilde{\tau}_1(w) \) is orthogonal to \(p\tilde{Q}^3 \).

On the other hand, the injections \(p : \tilde{Q}^3 \rightarrow \tilde{Q}^3 \) and \(p_3 \rightarrow \tilde{P}_3 \) preserve the natural pairing. Since the image of \(\tilde{\tau} = \tilde{\tau}_1 + \tilde{\tau}_2 \) belongs to \(\tilde{P}_3 \), the theorem follows. \(\square \)

Theorem 12. Suppose that the the groups \(G_a = \pi_1(U_a, u_a) \) and \(G_b = \pi_1(U_b, u_b) \) satisfy conditions \((1)–(3)\). We identify \(H_1(U_a) \) with \(G_a/\gamma_2 G_a \) and \(H_1(U_b) \) with \(G_b/\gamma_2 G_b \). Let \(f : H_1(U_a) \rightarrow H_1(U_b) \) be any isomorphism and let \(\varphi : H^1(U_b) \rightarrow H^1(U_a) \) be its conjugate. Then we claim the following.
1. The isomorphism f can be extended to an isomorphism

$$G_a/\gamma_3 G_a \to G_b/\gamma_3 G_b$$

if and only if $\Lambda^2 \varphi(\overline{R}_a^2) = \overline{R}_a^2$.

2. Suppose that the previous condition hold and $P_3^{(a)} \cong P_3^{(b)}$ is a free Abelian group. Then the isomorphism f can be extended to an isomorphism

$$G_a/\gamma_4 G_a \to G_b/\gamma_4 G_b$$

if and only if $[\lambda_a]$ corresponds to $[\lambda_b]$, i.e., there is a commutative diagram

![Diagram](https://example.com/diagram.png)

Proof. Clear.

Remark. It is readily seen that $[\lambda]$ is just the invariant used in [13] to distinguish fundamental groups of combinatorially equivalent complex hyperplane arrangements.

References

[1] J. F. Adams, *On the cobar construction*, Colloque de topologie algébrique (Louvain, 1956), George Thone, 1957, pp. 81–87.

[2] K.-T. Chen, *Iterated integrals, fundamental groups, and covering spaces*, Trans. Amer. Math. Soc., 206 (1975), pp. 83–98.

[3] K.-T. Chen, *Extensions of C^∞ function algebra by integrals and Malcev completion of π_1*, Advances in Math., 23 (1977), pp. 181–210.

[4] P. A. Griffiths and J. W. Morgan, *Rational Homotopy Theory and Differential Forms*, Progress in Math., 16 (1981).

[5] T. Kohno, *On the holonomy Lie algebra and the nilpotent completion of the fundamental group of the complement of hypersurfaces*, Nagoya J. Math. 92 (1983), 21–37.

[6] M. Lazard, *Sur les algèbres enveloppantes universelles de certaines algèbres de Lie*, C. R., 235 (1952), pp. 788–791.

[7] A. Lundell and S. Weingram, *The topology of CW complexes*, NY, 1969.

[8] W. Magnus, *Über Beziehungen zwischen höheren Kommutatoren*, J. Reine Angew. Math., 177 (1937), pp. 105–115.

[9] W. Magnus, A. Karrass and D. Solitar, *Combinatorial group theory*, Interscience, New York etc., 1966.

[10] P. Orlik and H. Terao, *Arrangements of hyperplanes*, Springer-Verlag, Berlin etc., 1992.

[11] D. Quillen, *Rational homotopy theory*, Ann. Math. (2), 90 (1969), pp. 205–295.

[12] I. A. Rips, *On the fourth integer dimension subgroup*, Israel J. Math. 12 (1972), pp. 342–346.

[13] G. Rybnikov, *On the fundamental group of the complement of a complex hyperplane arrangement*, DIMACS Tech. Report 94-13 (1994), pp. 33–50 (math.AG/9805056).

[14] R. Sandling, *The dimension subgroup problem*, J. Algebra 21 (1972), pp. 216–231.

[15] V. A. Smirnov, *On the cochain complex of topological spaces*, Matem. Sbornik (Russian) 115 (1981), pp. 146–158.

[16] D. Sullivan, *Topology of manifolds and differential forms*, Proceedings of conference on manifolds, Tokio, 1973.

[17] D. Sullivan, *Infinitesimal computations in topology*, Publications de IHES, 47 (1977), pp. 269–331.

¹This diagram is typeset with the help of X-pic package.
INDEPENDENT UNIVERSITY OF MOSCOW, DEPARTMENT OF MATHEMATICS, 11 B. VLAS'EVS'KII, MOSCOW 121002, RUSSIA

E-mail address: gr@ium.ips.ras.ru