Simulation Analysis of Polymer Electrolyte Membrane Fuel Cell Using Aspen Plus

Sinurat F K¹, Sitorus T B¹,², Taufik Bin Nur¹,²,* and Susilo H¹

¹Department of Mechanical engineering, Faculty of Engineering, Universitas Sumatera Utara, Padang Bulan, Medan 20155, Indonesia
²Sustainable Energy and Biomaterial Center of Excellence, Universitas Sumatera Utara, Padang Bulan, Medan 20155, Indonesia

*E-mail: taufiq.bin_nur@usu.ac.id

Abstract. We present a simulation of proton exchange membrane fuel cell (PEMFC) system to convert the chemical energy stored in hydrogen into electrical power. The PEMFC model was developed using Aspen Plus and then analyzed to find the electricity generated. In the PEMFC system simulated in this study, hydrogen gas enters the heat exchanger prior to entering the anode to increase its temperature up to 80 °C. Around 80% of hydrogen used during electrochemical reactions with the oxygen, which entered from the cathode side. The proton and electron of the hydrogen combine, react with the oxygen provided, and produce water and heat. Based on the analysis, the power generated by the PEMFC system is 0.23 kW with current density of 1×10^{-3} A/m² and MEA area of 3×10^{-2} m², and the number of cells in stack is 135 cells.

1. Introduction

Indonesia is the country with the largest energy consumption in Southeast Asia and fifth in the Asia Pacific in primary energy consumption, placed after China, India, Japan, and South Korea [1]. An increase in energy consumption that results from human-related activities causes the depletion of fossil fuels and the global warming problem [2]. Currently, fuel cell has received much due to their high efficiencies and low emission [3]. The fuel cell is electrochemical devices that directly convert chemical energy stored in fuels such as hydrogen to electrical power. The efficiency for fuel cell can reach as high as 60% in electrical energy conversion, with an overall 80% in co-generation of electrical and thermal energies, and high in reduction emissions [4]. Five categories of fuel cell have received major efforts of research, namely, polymer electrolyte membrane (PEM) fuel cells or PEMFCs, solid oxide fuel cells (SOFCs), Alkaline fuel cells (AFCs), phosphoric acid fuel cells (PAFCs), and molten carbonate fuel cells (MCFCs). PEM fuel cells are constructed using polymer electrolyte membrane as proton conductor and Platinum (Pt)-based material as the catalyst. The PEMFCs are considered as a possible answer to environment and energy problems and are expected to be a promising energy conversion device for automotive, stationary, and portable applications, because of their high-energy density at low temperatures, quick start-up and zero emissions [5-12], and high durability [13,14].

The primary application of PEMC is on transportation due to their potential impact on the environment, e.g. the control of emission of greenhouse gases. Other forms included distributed/stationary and portable power generation. Another promising area is portable power supply, considering that limited energy capacity of batteries unlikely meets the fast-growing energy
demand of modern mobile electric devices such as laptops, cell phones, and military radio/communication devices. PEM fuel cells provide continuous power as long as hydrogen fuel is available, and they can be fabricated in a small size without efficiency loss. Major electronics companies, such as Toshiba, Sony, Motorolla, LG, and Samsung, have in-house R&D units for portable fuel cells.

Hydrogen is an ideal fuel for PEMFC[20]. Hydrogen has the highest energy content per unit weight of any known fuel (142 kJ.g⁻¹) [21] more energy density than other existing biofuels such as methane, methanol, and ethanol [22]. In a traditional PEMFC system, hydrogen flows through the anode, and the un-reacted hydrogen is directly exhausted into the atmosphere, which reduces the efficiency of hydrogen utilization significantly[15]. The typical efficiency of hydrogen utilization for flow-through anode PEMFC is in the range of 65% - 95%, depending on the design of the stack and control strategy according to the PEMFC system [16]. To address this question, the additional fuel circulation system is often introduced to the PEMFC system, with which the un-reacted hydrogen is pump back from the outlet to the upstream region of the stack and is again supplied to the inlet with fresh hydrogen [17-19].

2. Description systems

2.1. The Basic of Fuel cell

The fuel cell works based on the concept of electrochemical reaction, and thus, it is considered to be more efficient then because of the maximum amount of chemical reaction is directly transformed into electrical energy instead of conversion to mechanical work through combustion (i.e., internal combustion engines) causing further loss of efficiency. The fuel used in operating in the fuel cell is hydrogen utilized to achieve the best possible electrochemical reaction [6]. The power and heat produced can be utilized for any cogeneration. Hydrogen flows in from the anode side plate and comes in contact with membrane coated with a catalyst. Upon contact with the membrane, hydrogen splits into electrons and protons. Electron is taken out from the plate with the help of circuit. These electrons go through a circuit, give out power and return to the cathode side flow plate to have a closed-loop. The protons that are left behind are allowed to pass through the membrane onto the cathode side of the cell. At the cathode side, oxygen is supplied through the cathode side flow plate. The proton and electron of the hydrogen combine, react with the oxygen provided, and produce water and heat.

2.2. Design of PEMFC model system

Hydrogen enters the blower with discharge pressure 1.2 Bars then enters the heat exchanger to increase the temperature needed of 80 °C. Hydrogen enters the anode and is utilized, and 80% of hydrogen used enters the cathode, and the rest one comes to the burner. On the other side, air enters the blower with discharge pressure 1.2 Bars and enters the heat exchanger to increase temperature needed, 80 °C, and then air enters the separator to separate between oxygen and nitrogen. 32.5% of Oxygen comes the cathode, and the rest one plus nitrogen enters the burner. The heat produced in the burner distributes to the heat exchanger to increase temperature hydrogen and oxygen. In the cathode, electrochemical reaction takes place to provide water, heat, electrical energy.

In the preceding study [23], the PEMFC was modeled using Aspen Plus and analyzed in the working temperature of 120 °C. In this analysis, the system developed in Aspen plus simulation is shown Figure 1, with the working temperature of 80 °. The electrochemical model used to describe the electrical characteristic of the PEMFC is derived [7] under the following assumptions: steady-state and isothermal condition, ideal gas behavior, and no membrane swelling. Anode losses in the fuel cell are not considered due to the fast kinetics of the hydrogen oxidation reaction [8]. PEMFC using pure oxygen as oxidant is particular interest for specific application including aerospace and submarine application [9] for which the efficiency of fuel usage is required as high as possible. The overall voltage is obtained by determining the reversible cell potential and then subtracting the voltage losses, such as the kinetic voltage losses at the cathode and the ohmic resistance of membrane and electrodes [20].
2.3. Analysis of PEMFC stack module

The present PEMFC stack module is simplified from the previous three-dimensional HT-PEMFC CFD models developed by other researchers [17, 22, 24-25]. The output voltage of a single cell (V_{cell}) can be obtained by considering all the irreversible voltage losses from the thermodynamic equilibrium potential[26] as follows.

$$V_{cell} = U_O - \eta_{act} - \eta_{ohm} - \eta_{con}$$ \hspace{1cm} (1)

Where η_{act}, η_{ohm}, and η_{con} represent the activation, ohmic, and concentration polarizations, respectively. The expression of E_{Nernst} is given by Chippar and Ju[27]:

$$U_O = 1,1669 - 0,24 \times 10^{-3} (T_{cell} - 373,15)$$ \hspace{1cm} (2)

The activation overvoltage in Equation above, η_{act}, is calculated using the Bulter-Volmer equation for the hydrogen oxidation reaction (HOR) in the anode and oxygen reduction reaction (ORR) in the cathode [27] as determining as follows:

$$\eta_{act, a} = \frac{i_{ref}}{i_{0, a}^ref} \left(\frac{C_{H_2}^ref}{C_{H_2}} \right)^{1/2}$$ \hspace{1cm} (3)

$$\eta_{act, c} = \frac{i_{ref}}{i_{0, c}^ref} \ln \left(\frac{C_{O_2}^ref}{C_{O_2}} \right)^{3/4}$$ \hspace{1cm} (4)

where, C_j and α represent the molar concentration and transfer coefficient, respectively. Also $i_{0, a}^ref$ and $i_{0, c}^ref$ denote the exchange current density of HOR and ORR, respectively. Their expression was driven by Chippar and Ju [26] as a function of temperature as follows:

$$i_{0, a}^{ref} (T) = i_{0, a}^{ref} (353,15K). \exp \left[-1400 \left(\frac{1}{T} - \frac{1}{353,15} \right) \right]$$ \hspace{1cm} (5)

$$i_{0, c}^{ref} (T) = i_{0, a}^{ref} (353,15K). \exp \left[-7900 \left(\frac{1}{T} - \frac{1}{353,15} \right) \right]$$ \hspace{1cm} (6)
The ohmic loss, η_{ohm} is due to both proton and electron charge transport through various PEMFC stack components [27].

$$\eta_{ohm} = i \left(R_{H^+} + R_{elec} \right) \quad (7)$$

In equation above, the area-specific resistance due to the proton transport, R_{H^+} was obtained by considering the membrane and catalyst layer properties as follows [27]:

$$R_{H^+} = \frac{\delta_{mem}}{K} + \frac{0.5 \delta_{ACL}}{V_{ACL} K} + \frac{0.5 \delta_{CL}}{V_{CL} K} \quad (8)$$

In equation above, V_{ACL} and V_{CL} denote the volume fractions of the electrolyte in the anode and cathode catalyst layer, respectively. The number 0.5 appearing in the number of the second and third terms is due to the assumption that the average proton transport path through the catalyst layer is half of its thickness. Finally, the concentration polarization, η_{con} is expressed as follows [27]:

$$\eta_{con} = \frac{RT}{4F} \ln \left(\frac{i_{lim}}{i_{lim}-i} \right) \quad (9)$$

In equation above, i_{lim} represent the limiting current density that is determined by the interfacial oxygen concentration between the cathode gas channel and gas diffusion layer (GDL), and porosity and thickness of cathode GDL, which can be expressed as [27]:

$$i_{lim} = V_{GDL}^{1.5} D_{O_2} \frac{c_{O_2}}{\delta_{GDL}} \quad (10)$$

Once the single cell voltage, V_{cell}, is calculated from the equation above, the stack voltage, V_{stack}, and stack power, P_{stack}, can be estimated depending on stack configuration. If the cells are connected in series, V_{stack} and P_{stack} are as follows [27].

$$V_{stack} = n_{cell} V_{cell} \quad (11)$$

$$P_{stack} = n_{cell} V_{cell} \cdot i \cdot A_{MEA} \quad (12)$$

where n_{cell} and A_{MEA} are the number of cells in the PEMFC stack and the area of the membrane electrode assembly (MEA) for each cell, respectively.

The electrical efficiency of the PEMFC system, ϵ_e, is defined as the ratio of the net output electrical power produced by the PEMFC system to the low heating value of the fuel supplied as follows [27].

$$\epsilon_e = \frac{P_{stack} - \sum_i bh_{pi}}{m_{fuel} x LHV_{fuel}} \quad (13)$$

Table 1. Input parameters and geometric/operating condition [26].

Parameter	Value	Ref.
MEA area, A_{MEA}	300 cm2	-
Operating Temperature, T_{cell}	165 °C	-
Number of cell in a stack, n_{cell}	135	-
Anode/cathode stoichiometry, ξ	1.2/2.0	-
Thickness of anode/cathode GDLs, CLs, $\delta_{GDL}, \delta_{CL}$	0.35/0.015 mm	-
Thickness of anode/cathode membrane, δ_{MEM}	0.07 mm	-
3. Results and Discussion
The influences of current density to cell voltage and cell power are shown in figure 2. The cell voltage decreased along with the incremental values of current density. The Nernst voltage value is around 1.172 Volt. The voltage drop during operation due to activation losses, ohmic losses, and concentration losses. From Figure 2, the cell power increase along with increasing the current density.

![Figure 2. Graphic of cell voltage, cell power, and current density.](image)

The influences of various temperature conditions towards the cell voltage and current density are shown in Figure 2. It showed that the graphs trend tend linear among cell voltage at the working temperature of 80°C, 90°C, 100°C, 110°C, and 120°C. Meanwhile, the incremental temperature influences the performance of cell voltage, which causesthe cell voltage drops. Thus, The PEMFC is proper to work at low-temperature conditions.
4. Conclusion
The operational characteristic of proton exchange membrane fuel cell has been investigated under various operating conditions. The incremental temperature influences the performance of cell voltage, which causes the cell voltage drops. By utilizing of 80% hydrogen, during electrochemical reactions in the processes, the PEMFC can produce 1.172 Volt. Several experimental under simulation conditions are under processing to investigate the effect of different fuel utilization and air utilization to the PEMFC performance.

5. Acknowledgements
This work has been supported by Directorate of Research and Community Service, Directorate General Strengthening Research and Development Ministry of Research, Technology and Higher Education Republic of Indonesia, by the funding agreement and community service for fiscal year 2018.

References
[1] BPPT. 2018. Outlook Energi Indonesia 2018. Jakarta: BPPT.
[2] Suthida A, Paunyaporn A, Yaneeporn P, Amornchai A 2014 Theoretical analysis of biogas-fed PEMFC system with different hydrogen purification: conventional and membrane-based water-gas shift processes 2014;86:60-69
[3] Yun W, Ken SC, Jeffrey M, Sung CC, Xavier CA. A review of polymer electrolyte membrane fuel cell: technology, application, and needs on fundamental research. Energy 2011;88: 1981-1007
[4] Papageorgopoulus D 2010 Fuel cell technology program overview and introduction to the 2010 fuel cell pre-solicitation workshop in DOE fuel cell pre-solicitation workshop Department of Energy Colorado 2010
[5] Han IS, Jeong J, Shin HK. 2013. PEM fuel-cell stack design for improved fuel utilization. Int J Hydrogen Energy 2013; 38:11996-2006
Tahir AHR, Ameen H, El-sinawi, Mohamed AG, Ahmad A 2012 Performance analysis of new designed PEM fuel cell 2012;36:1121-1132

Spinger T, Zawodzinski T, Gottesfeld S 1991 Polymer electrolyte fuel cell model Journal of the electrochemical society 1991;138:2234-42

Liu RS, Zhang L, Sun X, Lui H, Zhang J 2012 Electrochemical technologies for energy storage and conversion Singapore: Wiley;2012

Psoma A, Sattler G, 2012 Fuel cell system for submarines: from the first idea to serial production Energy 2012; 106:381-3

Kariya T, Yanagimoto K, Funakubo H, Shudo T 2015. Effects of porous flow field type separators using sintered Ni-based alloy powders on interfacial contact resistances and fuel cell performance. Energy 2015; 87: 134-41

Huang ZM, Su A, Liu YC, 2014 Development and testing of hybrid system with a sub-kW open cathode type PEM (proton exchange membrane) fuel cell stack. Energy 2014;72:547-53

Kim J, Kim M, Kang T, Sohn YJ, Song T, Choi KH 2014 Degradation modeling and operational optimization for improving the lifetime of high temperature PEM (proton exchange membrane) fuel cell. Energy 2014;66:41-9

Fereira RB, Falco DS, Oliveira VB, Pinto AMFR, 2015 Numerical simulation of two phase flow in an anode gas channel of proton exchange membrane fuel cells. Energy 2015;82:619-28

Wan ZM, Liu J, Tu ZK, Liu ZC, Liu W, 2013 Evaluation of self-water-removal in a dead-ended proton exchange membrane fuel cell. Energy 2015;104:751-7

Kim J, Kim M, Kang T, Sohn YJ, Song T, Choi KH 2014 Degradation modeling and operational optimization for improving the lifetime of high temperature PEM (proton exchange membrane) fuel cell. Energy 2015; 66: 41-9

Han IS, Jeong J, Shin HK, 2013 PEM fuel-cell stack design for improved fuel utilization. Int J Hydrogen Energy 38:11996-2006

Brunner DA, Marks S, Bajpai M, Prasad AK, Advani SG, 2012 Design and characterization of an electronically controlled variable flow rate ejector for fuel cell applications. Int J Hydrogen Energy 37:4457-66

Zhu Y, Li Y, 2009 New theoretical model for convergent nozzle ejector in proton exchange membrane fuel cell system. J Power sources 191:510-9

Kim M, Sohn YJ, Cho CW, Lee WY, Kim CS, 2018 Customized design for ejector to circulate a humidified hydrogen fuel in a submarine PEMFC, 176:529-33

Chutichai B, Authayanun S, Assabumrungrat S, Arpornwichanop A, 2013 Performance analysis of an integrated biomass gasification and PEMFC (proton exchange membrane fuel cell) system: Hydrogen and power generation. Energy 55:98-106

Argun H, Kargi F, Kapdan I, Oztekin R, 2008 Biohydrogen production by dark fermentation of wheat powder solution: effects of C/N and C/P ratio on hydrogen yield and formation rate. Int J Hydrogen Energy 33:137-162

Rahman SNA, Masdar MS, Rosli MI, Majlan EH, Husaini T, Kamaruddin SK, Daud WRW, 2016 Overview biohydrogen technologies and application in fuel cell technology. Renewable and sustainable energy reviews 66:1813-9

Nur TB, Pane Z, Wibowo RP, Nurhayati, 2013 Simulation of polymer membrane fuel cell utilizing empty fruit bunch pyrolysis using Aspen Plus. (submitted to International Conference of Science, Technology, Engineering, Environmental and Ramification Researches ICOSTEERR, 2018), Universitas Sumatera Utara.

Arsalis A, Nielsen MP, Kaer SK, 2013 Application of an improved operational strategy on a PBI fuel cell based residential system for Danish single-family household. Appl therm Eng 2013;50(1):704-13

Jannellia E, Minutiloa M, Pernab A 2005 Analyzing microcogeneration system based on PEMFC and HT-PEMFC by energy balances. Amp Control Conf 2005;108:82-91S
[26] Amphlett JC, Mann RF, Pepley BA, Roberge PR, Rodrigues A, Salvador JP. 1998. Simulation of a 250kW diesel fuel processor/PEM fuel cell system. *J Power Sources* 71:179-84

[27] Ahrae JO, Kyeongmin OH, Junhee L, Donghee HD, Dawan K, Jinwook K, Bonggyu K, Jaedong K, Dalryung P, Minjim K, Young-Jun S, Duhee K, Hosuk K, Hyunchul J. 2017. Modeling and analysis of 5kWe HT-PEMFC system for residential heat and power generation. *Int J Hydrog Energy* 42:16983-1714