Lack of Association between the IL6R Gene Asp358Ala Variant (rs2228145), IL-6 Plasma Levels, and Treatment Resistance in Chilean Schizophrenic Patients Treated with Clozapine

Alvaro Cavieres,1 Carolina Campos-Estrada,2,3 Yanneth Moya,2 Rocío Maldonado,1 René González-Vargas,4 María Leonor Bustamante,5 and Pablo R. Moya4,6

1Departamento de Psiquiatría, Escuela de Medicina, Universidad de Valparaíso, Chile
2Escuela de Química y Farmacia, Facultad de Farmacia, Universidad de Valparaíso, Chile
3Centro de Investigación Farmacopea Chilena, Universidad de Valparaíso, Chile
4Instituto de Fisiología, Facultad de Ciencias, Universidad de Valparaíso, Chile
5Departamento de Psiquiatría y Salud Mental Norte, Programa de Genética Humana, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Chile
6Centro Interdisciplinario de Neurociencia de Valparaíso CINV, Universidad de Valparaíso, Chile

Correspondence should be addressed to Alvaro Cavieres; cavieres.alvaro@gmail.com and Pablo R. Moya; pablo.moya@uv.cl

Received 27 March 2019; Revised 4 June 2019; Accepted 8 June 2019; Published 25 June 2019

1. Introduction

Schizophrenia (SZ) may be etiologically related to a chronic neuroinflammatory process, with greater inflammatory activity in affected individuals with active psychosis as well as in treatment-resistant cases [1–3]. In this regard, most evidence comes from the observed higher risk of presenting SZ in subjects whose mothers suffered infections during pregnancy, with activation of the maternal immune response [4], and from findings of elevated levels of immune system components in SZ-affected individuals [5]. Variations in complement activity, in turn, have been linked to changes in synaptic pruning in mice, providing an explanatory mechanism for the role of inflammation in SZ [6].

Several inflammatory mediators have been proposed to be implicated in SZ, including interleukin 6 (IL-6) [7, 8]. IL-6 exerts its proinflammatory effects via trans-signaling, binding to the soluble form of the IL-6 receptor (sIL-6R), which is generated by mRNA alternative splicing and partial proteolysis [9]. The coding single nucleotide polymorphism (SNP) rs2228145 of IL-6R gene leads to a substitution of aspartic acid to alanine in position 358 (Asp358Ala variant). The minor allele of rs2228145 (Ala) has been associated with higher sIL-6R levels and circulating/plasma IL-6 levels [9–11].
Response status was established according to the classification, as remitted or resistant, using the Spanish version of the Brief Psychotic Rating Scale (BPRS). Subjects were considered to be in remission if they had scores of mild or less in all the following BPRS items: 4,7,8,11,12,15,16. On the other hand, resistance to clozapine treatment was defined as an overall score ≥ 45 on the BPRS scale and/or ≥ 4 (moderate) on two or more items of psychotic symptoms, after at least six months of treatment, with doses ≥ 300 mg of clozapine. Subjects whose score was intermediate between these two extremes were not considered in the analysis.

A control group of 48 subjects was also recruited to serve as a general comparison at the Clinical Hospital of Universidad de Chile. Mental disorders were ruled out using the Spanish version of the MINI International Neuropsychiatric Interview (MINI) interview [13]. A posteriori calculation based on the guidelines established by Hong and Park [20] shows that our sample has an 80% power to detect differences with an Odds Ratio of 2.

2.2. Methods. Genomic DNA was extracted using a commercial Blood DNA kit (Qiagen, USA). Concentration and purity were determined by spectrophotometry; DNA integrity was confirmed with beta-actin PCR amplification. DNA samples were stored at -80°C until their use. Allelic determination of rs2228145 was carried out using real-time TaqMan SNP genotyping (ID assay: C_16170766_10; Thermo Scientific, MA, USA) using 10 ng of genomic DNA. IL-6 plasma levels of IL-6 were determined from peripheral venous blood samples (forearm vein) by standard venipuncture. Blood samples were collected between 7:00 and 9.00 h into vacuum blood-collecting tubes containing EDTA 1 mg/mL; plasma samples were obtained by centrifugation immediately for 10 minutes at 3500 rpm. The plasma was then stored frozen until further analysis. Quantitative determination of IL-6 was performed through quantitative enzyme-linked immunosorbent assay using a commercially available kit (R&D Systems USA, Minneapolis) according to manufacturer’s instructions. 100 μL of standards or plasma sample was added to each well and incubated for 2 hr at room temperature. A calibration curve was made using Human IL-6 Standard (in Assay buffer IX) at 300, 100, 50, 25, 12.5, 6.25, 3.13, and 0 pg/mL. After washing, 200 μL of human IL-6 conjugate (enzyme-linked polyclonal antibody specific for human IL-6) was added to the wells followed by a 2 hr incubation at room temperature. The reaction was stopped with 50 μL of stop solution and the colour intensity was measured. Absorbance was interpolated from the calibration curve. The sensitivity was 0.7 pg/mL in a range of 0-300 pg/mL with intra-assay and interassay coefficients of 4.2% to 7%, respectively. There were no undetectable values. All samples were over the detection limit.

2.3. Statistical Analysis. Quantitative results are described with measures of central tendency and dispersion; frequency and proportions are used for qualitative data. Statistically significant differences in the allelic and genomic frequency
between groups were determined with Chi² Test or Fisher’s Exact Test. Hardy-Weinberg equilibrium was assessed using the “Genhw” function of the STATA software, considering p < 0.05 as not consistent with equilibrium.

A histogram showed that the clinical data of this study do not follow a normal distribution; therefore Mann-Whitney U test was used to determine differences in IL-6 values between groups; correlations between variables were analysed with Spearman test. Association between genotypes and IL-6 value was determined with the Kruskal Wallis test.

All analyses were performed with Stata 15 SE software; statistical significance was set at 0.05.

3. Results

Blood samples were obtained from 100 SZ patients (mean age= 42.67, SD 11.46, 65% male gender) and 48 control subjects (mean age= 26.16 years, SD 15.32, 48% male gender).

All genomic DNA samples were successfully genotyped. Allelic and genotyping frequencies of both SZ patients and controls were consistent with Hardy-Weinberg equilibrium. We found no differences in genotypic or allelic frequencies of rs2228145 between the SZ patients and controls (see Table 1). Next, we compared patients with BPRS scores on the extreme high (“resistant to clozapine,” n=41) and extreme low (“remitted,” n=24) ranges. Patients with intermediate scores in BPRS (n=35) were excluded from the following analysis. Table 1 depicts genotypic and allelic frequencies for these two groups, as well as their median IL-6 levels, and the genotypic and allelic frequencies of controls. No significant differences were found in the frequencies of resistant vs. remitted patients, or in the frequencies of resistant patients vs. controls.

A correlation analysis between IL-6 plasma levels and scores in the positive and negative subscales and total scores in the BPRS of the total sample of patients did not yield statistically significant results either (data not shown). Further, as shown in Table 2, IL-6 plasma levels were found similar for all rs2228145 genotypes.

4. Discussion

Our results do not confirm the initial hypothesis of a higher frequency of the rs2228145 Ala allele in our sample of SZ subjects, or increased IL-6 levels in the clozapine treatment-resistant subgroup subjects, although there was a trend to a higher frequency of the A allele in clozapine treatment resistant individuals. Due to safety concerns, clozapine is not considered a first-line treatment, and according to most guidelines for SZ, all patients must undergo two trials of different antipsychotics before starting clozapine. Thus, it is possible that our sample represents a subpopulation among SZ patients that is more severe (and more homogeneous) than the general population of patients.

Our sample has adequate statistical power to detect differences in variants with a moderate effect on the phenotype. However, our sample size is limited for detecting small effects, and this could be an explanation of the lack of association reported here. Nevertheless, since we selected the extreme cases of response to clozapine for comparison, we expect that genetic variants influencing this trait would have an effect large enough to be detected by our design. Furthermore, because antipsychotic resistance is a significant clinical problem and our country has a network of health care specifically for these patients, our study highlights the need to integrate data from the national networks of clozapine and atypical antipsychotics pharmacovigilance protocols in our country.

Future studies should also consider the impact of additional relevant IL6R gene polymorphisms to further investigate possible haplotype associations, as well as to search for genetic variation and circulating levels of IL-6R. To the best

\[\text{Table 1: IL-6 plasma levels and rs2228145 genotypic and allelic frequencies for SZ patients and controls. p: } p \text{ value for the comparison of each group resistance vs. remission and resistance vs. control.} \]

Genotypic frequencies n (%)	Allelic frequencies n (%)		
Genotype	Resistance	Remission	Control
CC	8 (34.8)	14 (36.1)	20 (42)
AC	11 (43.5)	23 (55.6)	21 (44)
AA	5 (21.7)	4 (8.3)	7 (15)
p	0.35	0.35	0.71
C	19 (47.5)	51 (62)	61 (63.5)
A	21 (52.5)	31 (38)	35 (36.4)
p	0.17		0.12

\[\text{Table 2: IL-6 plasma levels according to rs2228145 genotype.} \]

Genotype	Median IL-6 plasma levels (pg/ml) [Interquartile range]		
	AA	AC	CC
	1.833 [1.132-3.28]	2.395 [1.605-3.197]	1.497 [1.017-3.28]
p	0.46*		
of our knowledge, this is the first study in Chilean population addressing genetic factors affecting IL-6 levels and treatment resistance in SZ individuals. Ancestry genetic factors that could be specific to our population should also be included in future studies, to allow proper comparison with studies performed worldwide.

Likewise, important factors affecting plasma IL-6 levels that were not controlled in this study should be considered, especially those of metabolic origin, frequently altered in people with SZ [21]. Also, it is known that clozapine administration may indeed affect circulating interleukin levels, which could nullify an initial elevation of interleukin [22]. Similarly, it has also been reported that treatment with other neuroleptics may decrease the levels of sIL-6R [23].

In conclusion, our study does not provide support to a role for the IL-6R rs2228145 (Asp358Ala) variant of the IL6R gene in the responsiveness to clozapine in SZ affected individuals. Efforts should be made to increase our sample size and control additional factors affecting interleukin levels, as discussed above.

Data Availability
IL-6 plasma levels, rs2228145 genotype, and BPRS status data can be requested from the corresponding authors.

Conflicts of Interest
The authors declare that they have no conflicts of interest.

Acknowledgments
This work was supported by Millennium Nucleus NuMIND (ICM MINECOM NCI100011) and Millennium Institute CINV (ICM MINECOM P09-022F), grants from the Millennium Scientific Initiative of the Ministry of Economy, Development and Tourism (Chile) (Pablo R. Moya), by grant PMI UVA-1402 from the Ministry of Education Mineduc (Chile) (Pablo R. Moya), and by Hospital Clínico de la Universidad de Chile, grant INCL04 (Mária Leonor Bustamante).

References
[1] B. Kirkpatrick and B. J. Miller, "Inflammation and schizophrenia," Schizophrenia Bulletin, vol. 39, no. 6, pp. 1174–1179, 2013.
[2] G. M. Khandaker, L. Cousins, J. Deakin, B. R. Lennox, R. Yolken, and P. B. Jones, "Inflammation and immunity in schizophrenia: Implications for pathophysiology and treatment," The Lancet Psychiatry, vol. 2, no. 3, pp. 258–270, 2015.
[3] K.-S. Na, H.-Y. Jung, and Y.-K. Kim, "The role of pro-inflammatory cytokines in the neuroinflammation and neurogenesis of schizophrenia," Progress in Neuro-Psychopharmacology & Biological Psychiatry, vol. 48, pp. 277–286, 2014.
[4] A. S. Brown, "Epidemiologic studies of exposure to prenatal infection and risk of schizophrenia and autism," Developmental Neurobiology, vol. 72, no. 10, pp. 1272–1276, 2012.
[5] B. J. Miller, P. Buckley, W. Seabolt, A. Mellor, and B. Kirkpatrick, "Meta-analysis of cytokine alterations in schizophrenia: clinical status and antipsychotic effects," Biological Psychiatry, vol. 70, no. 7, pp. 663–671, 2011.
[6] A. Sekar, A. R. Bialas, H. De Rivera et al., "Schizophrenia risk from complex variation of complement component 4," Nature, vol. 530, no. 7589, pp. 177–183, 2016.
[7] J. Tomask, H. Rahmoune, P. C. Guest, and S. Bahn, "Neuroimmune biomarkers in schizophrenia," Schizophrenia Research, vol. 176, no. 1, pp. 3–13, 2016.
[8] Y. Luo, H. He, J. Zhang et al., "Changes in serum TNF-alpha, IL-18, and IL-6 concentrations in patients with chronic schizophrenia at admission and at discharge," Comprehensive Psychiatry, vol. 90, pp. 82–87, 2019.
[9] M. Rothaug, C. Becker-Pauly, and S. Rose-John, "The role of interleukin-6 signaling in nervous tissue," Biochimica et Biophysica Acta (BBA) - Molecular Cell Research, vol. 1863, no. 6, pp. 1218–1227, 2016.
[10] C. Garber, N. Monhasery, S. Aparicio-Siegmund et al., "The interleukin-6 receptor Asp358Ala single nucleotide polymorphism rs2228145 confers increased proteolytic conversion rates by ADAM proteases," Biochimica et Biophysica Acta (BBA) - Molecular Basis of Disease, vol. 1842, no. 9, pp. 1485–1494, 2014.
[11] S. Rafiq, T. M. Frayling, A. Murray et al., "A common variant of the interleukin 6 receptor (IL-6r) gene increases IL-6r and IL-6 levels, without other inflammatory effects," Genes & Immunity, vol. 8, no. 7, pp. 552–559, 2007.
[12] S. Sun, F. Wang, L. Cao et al., "Association between interleukin-6 receptor polymorphism and patients with schizophrenia," Schizophrenia Research, vol. 102, no. 1-3, pp. 346–347, 2008.
[13] D. Sasayama, C. Wakabayashi, H. Hori et al., "Association of plasma IL-6 and soluble IL-6 receptor levels with the Asp358Ala polymorphism of the IL-6 receptor gene in schizophrenic patients," Journal of Psychiatric Research, vol. 45, no. 11, pp. 1439–1444, 2011.
[14] S. Potvin, E. Stip, A. A. Sepehry, A. Gendron, R. Bah, and E. Kouassi, "Inflammatory cytokine alterations in schizophrenia: a systematic quantitative review," Biological Psychiatry, vol. 65, no. 8, pp. 801–808, 2008.
[15] L. Paternoster et al., "Multi-ancestry genome-wide association study of 21,000 cases and 95,000 controls identifies new risk loci for atopic dermatitis," Nature Genetics, vol. 47, no. 12, pp. 1449–1456, 2015.
[16] M. A. Ferreira, J. M. Vonk, and H. Baurecht, "Shared genetic origin of asthma, hay fever and eczema elucidates allergic disease biology," Nature Genetics, vol. 49, no. 2, pp. 1752–1757, 2017.
[17] S. Eyre, J. Bowes, D. Diogo et al., "High-density genetic mapping identifies new susceptibility loci for rheumatoid arthritis," Nature Genetics, vol. 44, no. 12, pp. 1336–1340, 2012.
[18] V. Emilsson, "Co-regulatory networks of human serum proteins link genetics to disease," Science, vol. 361, no. 6404, pp. 769–773, 2018.
[19] G. Fond, O. Godin, L. Boyer et al., "Chronic low-grade peripheral inflammation is associated with ultra resistant schizophrenia. Results from the FACE-SZ cohort," European Archives of Psychiatry and Clinical Neurosciences, 2018.
[20] E. P. Hong and J. W. Park, "Sample size and statistical power calculation in genetic association studies," Genomics & Informatics, vol. 10, no. 2, pp. 117–122, 2012.
[21] E. E. Lee, S. Hong, A. S. Martin, L. T. Eyler, and D. V. Jeste, "Inflammation in schizophrenia: cytokine levels and their relationships to demographic and clinical variables," The American Journal of Geriatric Psychiatry, vol. 25, no. 1, pp. 50–61, 2017.
[22] M. Maes, H. Y. Meltzer, and E. Bosmans, "Immune-inflammatory markers in schizophrenia: comparison to normal controls and effects of clozapine," *Acta Psychiatrica Scandinavica*, vol. 89, no. 5, pp. 346–351, 1994.

[23] N. Müller, M. Empl, M. Riedel, M. Schwarz, and M. Ackenheil, "Neuroleptic treatment increases soluble IL-2 receptors and decreases soluble IL-6 receptors in schizophrenia," *European Archives of Psychiatry and Clinical Neurosciences*, vol. 247, no. 6, pp. 308–313, 1997.