Glutaminergic signaling in the nucleus accumbens modulates the behavioral response to acute and chronic methylphenidate

Nicholas King, Thomas Ming, Natasha Kharas and Nachum Dafny*
Department of Neurobiology and Anatomy, University of Texas Health at the McGovern Medical School 6431 Fannin Street, Houston TX 77030, USA

Abstract
Methylphenidate (MPD) is a psychostimulant that acts on the CNS to produce behavioral effects. The nucleus accumbens (NAc) is involved in this, however the role of the NAc's glutaminergic system in the behavioral response to MPD has not been studied. Three groups of animals were used: control, sham NAc lesions, and glutaminergic-specific (ibotenic acid toxin) NAc lesion groups. On experimental day (ED) 1, all groups received saline. On ED 2, NAc surgeries took place, followed by a 5-day recovery period (ED 3-7). On ED 8 a post-surgical baseline recording was obtained. Groups then received six daily MPD 2.5 mg/kg injections (ED 9-14) to produce a chronic effect of MPD exposure, behavioral sensitization, then three days of washout (ED 15-17), followed by a re-challenge with 2.5 mg/kg MPD on ED 18. Locomotive activity was recorded for 60 minutes after each injection. All groups showed an increase in behavioral activity following acute MPD exposure, and developed behavioral sensitization following chronic MPD exposure that was maintained after washout. Compared to NAc intact controls and sham lesions, glutaminergic selective ibotenic acid lesions to the NAc significantly (P<0.05) attenuated the horizontal activity response to both acute and chronic MPD. Glutaminergic selective ibotenic acid lesions to the NAc also resulted in further significant (P<0.05) augmentation of stereotypic activity above the control group. The glutaminergic lesion failed to modulate total distance traveled. This indicates that glutaminergic signaling in the NAc modulates behavioral activity circuits in the NAc differently, and suggests a role in the volitional response to MPD.

Introduction
Methylphenidate (MPD), more commonly known at Ritalin® or Concerta®, is a psychostimulant that is prescribed to treat behavioral disorders such as attention deficit hyperactivity disorder (ADHD) but is increasingly being misused and abused as a cognitive performance enhancer or recreational stimulant in normal individuals [1-5]. This has been driven by the rapid increase in patients diagnosed with Attention Deficit Hyperactivity Disorder (ADHD) for which MPD is the drug of choice [6-10], as well as the rise in non-prescription use of MPD for academic enhancement and recreation [7,11-15].

This is of concern as MPD shares pharmacologic characteristics with other addictive psychostimulants such as amphetamine and cocaine, and could thus share similar addictive potential [6,16-20]. MPD, like amphetamine and cocaine, acts as an indirect dopamine agonist by inhibiting the dopamine reuptake at the pre-synaptic terminal, leading to increased dopamine within the synaptic cleft [21-23]. Acute MPD exposure produces an increase in behavioral locomotor activity; chronic use elicits sensitization, tolerance, and/or withdrawal which are behavioral markers indicating a substance has the potential to elicit dependence [17,26-29]. Sensitization is a sustained increase in behavioral activity beyond the acute effect following chronic administration of a substance [30,31].

The central nervous system's (CNS) reward system is known to participate in the long-term changes associated with substance abuse [31-37]. The circuit consists of multiple CNS structures, however the core pathway is the mesolimbic pathway in which dopaminergic neurons from the ventral tegmental area (VTA) project to the nucleus accumbens (NAc) and the ventral striatum, then onwards to the prefrontal cortex (PFC). The Nucleus Accumbens (NAc) is part of the reward circuit that is critical for motivation, emotion, limbic functions, and motor execution [30, 38-43]. Non-specific and dopaminergic specific lesions to the NAc have shown it to be critical to regulating the response to MPD [44, 45], however the role of the glutaminergic system remains uninvestigated. Glutaminergic signaling has been shown to modulate the long-term response between other reward/motive circuit nuclei [26,28,29,36,44,46-60], and it known to participate in inputs to the NAc, however its role in the acute and chronic response to MPD is unknown.

This study set out to determine if the glutaminergic system of the NAc participates in the response to MPD. To do this, 3 groups of animals were used: NAc intact controls, sham lesions, and specific glutaminergic chemical lesions. Animals were exposed to acute and chronic (repetitive) MPD and the response was monitored with a computerized monitoring system in an open field assay.

Materials and methods
Animals
Twenty-four male Sprague-Dawley rats weighing 170-180g were obtained from Harlan Labs (Indianapolis, IN, USA). Animals were...
individually placed in plexiglass cages (40.5x40.5x31.5 cm in dimension) in a soundproof room without disturbance to the experimental environment for 4-5 days to acclimate prior to experimentation. These cages served as the home and test cage. Animals were maintained on a 12-hour light/dark cycle that began at 06:00. Food and water were provided ad libitum throughout the experiment, and the temperature was kept at 21 ± 2°C with a relative humidity of 37-42%. At the beginning of the experimental phase, the rats were weighed and randomly divided into three groups: NAc-intact controls (n=8), sham operation (n=8), and ibotenic acid chemical ablation of the glutaminergic system (n=8).

This protocol was approved by our Animal Welfare Committee and carried out in accordance with the National Institute of Health Guide for Care and Use of Laboratory Animals.

Experimental procedure

Rats were given 4-5 days to acclimate in their home cage before experimentation. On experimental day 1 (ED 1-Sal) animals were weighed and 0.8 mL of 0.9% saline was administered intra-peritoneal (ip). All animals weighed 200-220g at that time. Locomotive behavioral activity was recorded for 120 minutes post-injection to establish a baseline prior to surgical manipulation. On experimental day 2 (ED 2), the lesion and sham groups underwent surgery and were then allowed to recover for approximately 5 days (ED 3-7). On experimental day 8, saline was re-administered (ED 8-Sal) and post-surgical locomotor activity was recorded for 120 minutes to compare with the pre-surgical baseline (ED 1-Sal). Starting on experimental day 9 (ED 9-MPD), daily injections of 2.5 mg/kg MPD (Mallinckrodt, Hazelwood MO) dissolved in 0.8 mL of 0.9% saline were administered for 6 consecutive days (ED 9-MPD to ED 14-MPD), and activity recorded for 120 minutes post-injection. This dose of 2.5 mg/kg MPD has been shown to be sufficient to elicit behavioral sensitization in rats in previous dose-response experiments [27-29,49,52,61-68]. For the next 3 days (ED 15-17), animals received no injections (the washout period). After the washout period (ED 18-MPD), the rats were re-challenged with MPD at the previous dose of 2.5 mg/kg and behavioral activity was observed for 60 minutes (the expression phase). All boluses were given at approximately 07:30 in the morning in 0.8 mL volumes (Table 1).

Surgical procedure (ED 2)

On ED 2, the sham operation group, the 6-OHDA group, and the ibotenic acid group animals were anesthetized with 60 mg/ kg sodium pentobarbital and placed in the stereotactic apparatus. An incision was to expose the skull. For surgery, holes were drilled in the skull 1.7 mm anterior from the bregma and 1.6 mm lateral to the midline bilaterally based on the co-ordinates derived from Paxinos and Watson rat Brain Atlas [69].

Sham operation: For the sham group, the animal was anesthetized, the skin opened, holes drilled in the skull, and a 27G cannula was inserted bilaterally to a depth of 6.8 mm but no agent administered. The cannulas were then removed, and the incision closed with wound staples.

NAc Glutaminergic system ablation: For the glutaminergic ablation group, ibotenic acid, a glutaminergic toxin, was employed [70-74]. A 27G cannula was inserted bilaterally to a depth of 6.8 mm. 5 µg of ibotenic acid was dissolved in 5 µl of 0.9% normal saline was slowly infused then the cannula left in place for 6 minutes to allow for full diffusion. The cannulas were then removed, and the incision closed with wound staples.

Apparatus

Behavioral locomotive activity was recorded using the open field computerized animal activity monitoring system (CAAM, AccuScan Instruments, Inc., Columbus OH). The CAAM system consists of 2 arrays of 16 infrared light beams with sensors on the opposite side, spaced every 2.5 cm that cross orthogonally through the plexiglass cage. Sensor polling frequency was set at 100 Hz. Movement of the rats interrupted the infrared light beams, and each beam-break detected by a sensor was collected as an event by the AccuScan Analyzer and transferred to a computer. Events over a 5-minute period were summed, giving 12 5-minute bins for each hour of observation. These bins were transferred to the OASIS data collecting software and three indices of behavioral locomotion were compiled for each collection period: total travelling distance (TD)- all forward locomotion in cm, horizontal activity (HA)- the overall movement in the lower level of the cage, and the number of stereotypic movements (NOS)- episodes of purposeless, repetitive movement in the upper level of the sensors separated by at least 1 second.

Histology

At the conclusion of the experiment, animals were overdosed with sodium pentobarbital and perfused with 10% formaldehyde. The brains were removed stored in 10% formaldehyde. 60 µm thickness coronal sections were cut, stained, and scanned with a high-resolution scanner to identify lesion size and location correlated to the NAc using the Paxinos and Watson rat brain atlas [69].

Data analysis

Rat behavioral locomotive activity was quantified by three compiled indices of movement (HA, TD, NOS) obtained in twelve 5-minute bins collected the hour after injections for each rat were averaged across each experimental group based on the experimental day to allow for comparisons. Post-surgical manipulation effects on baseline behavioral locomotor activity were determined by comparing the animal’s activity after a saline injection before and after the surgical intervention (ED 8-Sal vs. ED 1-Sal). The acute effects of MPD were determined by comparing the first day of MPD administration to the post-surgical baseline (ED 9-MPD vs. ED 8-Sal). The effects of repetitive (chronic) MPD exposure over 6 consecutive days on behavioral locomotor activity were determined by comparing the final day of administration to the first, i.e. the induction phase (ED 14-MPD vs. ED 9-MPD). The effects of chronic MPD exposure following a washout period on behavioral locomotor activity were determined by comparing MPD re-challenge to the initial administration, i.e. the expression phase (ED 18-MPD vs. ED 9-MPD) (Table 1). Significance of change among these within-group comparisons was determined by ANOVA, with repeated measures with

Group	Experimental Schedule						
	ED 1*	ED 2	ED 3-7	ED 8*	ED 9* -14*	ED 5-17	ED 18*
Control	Saline	Saline	Recovery	Saline	MPD	Washout	MPD re-challenge
Sham	Saline	Surgery	Recovery	Saline	MPD	Washout	MPD re-challenge
Ibotenic acid lesion	Saline	Surgery	Recovery	Saline	MPD	Washout	MPD re-challenge

Table 1. Methylphenidate administration schedule. The table shows the experimental treatment protocol for the 3 groups of rats used. Each group consisted of N=8 rats. Displayed are the experimental days (ED’s) and the intervention performed (surgery, washout, normal saline or methylphenidate (MPD) 2.5 mg/kg Ip injection in 0.8 mL at 07:30). * indicates day rat behaviors were immediately recorded post-injection. The experiment lasted 18 experimental days. The experimental schedule began after several days of acclimatization of the rats to their home/experimental cages.

King N (2020) Glutaminergic signaling in the nucleus accumbens modulates the behavioral response to acute and chronic methylphenidate.
adjustments for correlation among measurements within each animal. Post
ad hoc comparisons were used to estimate changes between days
within groups. A p-value<0.05 was considered statistically significant.
The effects of the ibotenic acid lesion were determined by comparing the
ibotenic acid lesion group to both the control and sham groups on each
of the recording days (ED 1-Sal, ED 8-Sal, ED 9-MPD, ED 14-MPD, and
ED 18-MPD). For these between-group comparison, rat locomotive
activity was interpreted as the percent change from baseline for each of
the indices. Baseline activity was defined as the average movement of an
experimental group on the first experimental day post saline injection
(ED1-Sal) for each locomotive index and thus experimental day 1
(ED1-Sal) had no percent change. Each of the locomotive behavior
indices for each study-relevant day were calculated as a percent change
from that baseline. Significance of change among the between-group
comparisons was determined with the Critical Ratio (C.R.) test. A C.R.
of greater than 1.96 or less than -1.96, corresponding to p<0.05, was
considered statistically significant [64,75-77].

Results

Overall effect of MPD on activity (Figure 1)

Figure 1 shows the effect of the MPD administration on total
distance (TD) traveled on the five recording days (ED 1-Sal, ED 8-Sal,
ED 9-MPD, ED 14-MPD, and ED 18-MPD) for the NAc control, sham,
and ibotenic acid lesion groups. Surgery with or without chemical
treatment to the NAc (ED 8-Sal vs. ED 1-Sal) did not lead to a
statistically significant change in TD for the sham and ibotenic acid
lesion groups as compared to the control group (Figure 1). Similar
results were seen in horizontal activity (HA) and number of stereotypic
movements (NOS). This observation indicates that animal handling,
injection volume, and injection procedure were consistent, and that
the surgical intervention did not modulate baseline activity. The
administration of 2.5 mg/kg MPD yielded a statistically significant (*)
(p<0.05) increase in TD following MPD exposure for all groups relative
to their post-surgical baseline (ED 9-MPD vs. ED 8-Sal) (Figure 1).
Similar results were seen in HA and NOS. Administration of a repetitive
2.5 mg/kg MPD dose for an additional five consecutive days resulted in
a further statistically significant († p<0.05) increase in TD beyond the
acute effect of MPD for all groups (ED 14-MPD vs. ED 9-MPD) (Figure
1). Similar results were seen in HA and NOS. This further augmentation
in locomotive behavior following repeated exposure to MPD confirms
that 2.5 mg/kg MPD induces behavioral sensitization. Re-challenge
with the same 2.5 mg/kg MPD dose after a three-day washout period
following chronic MPD exposure (six days of MPD administration)
caused all groups to again show a further statistically significant (‡
p<0.05) increase in TD as compared to acute MPD administration
(ED 18-MPD vs. ED 9-MPD) (Figure 1). Similar results were seen in
HA and NOS. This continued augmentation of the response to MPD
even after drug washout is the continued expression of sensitization to
chronic psychostimulant use, i.e. the expression phase.

Effect of ibotenic acid lesion on total distance traveled (Figure 2)

Figure 2 shows the percent change in behavioral activity as measured
by total distance (TD) traveled following both ibotenic acid lesions to
the NAc and acute and chronic MPD exposure, and compares each
group (control, sham, and ibotenic acid lesion) to the other two groups
on each experimental day. A statistically significant (p<0.05) difference
is seen between the ibotenic acid lesion group and the control group
only on ED 9-MPD following acute MPD exposure. A statistically
significant (p<0.05) difference is also seen between the sham lesion
group and the control group only on ED 18-MPD following MPD re-
challenge after a 3-day washout period. No significant difference was
seen between the ibotenic acid lesion group and the sham lesion group.
The similar overall response to MPD and the inconsistent differences
between the ibotenic acid lesion, sham, and control groups indicates
that glutaminergic signaling does not participate in the TD traveled in
response to MPD.

Effect of ibotenic acid lesion on horizontal activity (Figure 3)

Figure 3 shows the percent change in behavioral activity as measured
by forward motion traveled, i.e. horizontal activity (HA),
following ibotenic acid lesions to the NAc and acute and chronic MPD
exposure, and compares each group (control, sham, and ibotenic acid
lesion) to the other two groups on each experimental day. Compared to
the control and sham groups, the group that received bilateral ibotenic
acid lesions to the NAc showed a significant difference between the

Figure 1. Total Distance traveled (activity count). This figure shows the mean total distance (TD) traveled and standard error in mm/hour for each of the groups on experimental day (ED) 1, 8, 9, 14, and 18. Each group consists of n=8 rats. ED’s within each group were compared using ANOVA. * indicates statistically significant (p<0.05) difference between ED 9-MPD and
ED 8-Sal. † indicates statistically significant (p<0.05) difference between ED 14-MPD and ED 9-MPD. ‡ indicates statistically significant (p<0.05) difference between ED 18-MPD and ED 9-MPD.
control († p<0.05) and the sham (* p<0.05) groups in response to MPD both acutely (ED 9-MPD) and chronically (ED 14-MPD and ED 18-MPD). This significant decrease in forward locomotion following glutaminergic lesion to the NAc indicates that this circuit facilitates the excitatory effect of MPD on HA and forward movement behavior.

Effect of ibotenic acid lesion on stereotypic behavior (number of stereotypic movements, NOS) (Figure 4)

Figure 4 shows the percent change in behavioral activity as measured by stereotypic behavior, i.e. the number of stereotypic (NOS) movements, following ibotenic acid lesions to the NAc and acute and chronic MPD exposure, and compares each group (control, sham, and ibotenic acid lesion) to the other two groups on each experimental day. The group that received bilateral ibotenic acid lesions to the NAc showed a significant difference (‡ p<0.05) between the control group following both acute (ED 9-MPD) and chronic (ED 14-MPD and ED 18-MPD) MPD exposure. The ibotenic acid lesion group also showed a significant difference (‡ p<0.05) between the sham lesion group only following acute MPD exposure on ED 9-MPD. A significant difference (♣ p<0.05) was seen between the sham lesion and control groups only on ED 18-MPD. This consistent increase in NOS between the control and lesion group suggests that glutaminergic signaling in the NAc plays an inhibitory role in the NOS behavioral response.

Discussion

This experiment was conducted to determine the role of glutaminergic signaling in the nucleus accumbens (NAc) in the response to acute and chronic methylphenidate (MPD). The findings of this work...
show that in NAc intact animals, 2.5 mg/kg MPD results in an acute increase in activity in all locomotor indices studied (TD, HA, NOS, Figure 1), and that chronic repetitive exposure results in behavioral sensitization- the further significant increase above the acute effect (Figure 1). This effect is clearly modulated following a specific bilateral glutaminergic lesion to the NAc with ibotenic acid, with HA showing a consistent significant difference from the NAc intact control and sham groups following both acute and chronic 2.5mg/kg MPD exposure (Figure 3), and NOS showing a consistent significant difference from the NAc intact control group following both acute and chronic 2.5mg/kg MPD exposure (Figure 4). Inconsistent differences were seen in TD traveled (Figure 2). These findings indicate that distinct glutaminergic circuits in the NAc modulate different behavioral responses to MPD.

The NAc is a structure located near the anterior commissure that is critical for the motivation and reward-seeking behavior. It is composed primarily of dopaminergic medium spiny neurons (MSN’s) and is divided into a shell and a core that mediate different functions [78-83]. The NAc receives input primarily from the VTA, in addition to inputs from the substantia nigra, the amygdala, the hippocampus, and the PFC. The NAc outputs ascend to various basal ganglia and midbrain structures including the substantia nigra, the VTA, the ventral pallidum, the thalamus, the subpallidus, and the stria terminalis [81,84-87].

Previously reported lesions to the NAc have confirmed its role in mediating the behavioral response to MPD [44,45]. Psychostimulants such as MPD cause an increase in dopaminergic transmission from the VTA to the NAc, and increased dopamine within the NAc leads to increased locomotion [88-90]. Direct chronic microinjection of other addictive substances such as amphetamine, cocaine, or morphine into the NAc can induce behavioral sensitization [38,91-99], suggesting that the NAc is involved in the induction of behavioral sensitization. Non-specific lesions to the NAc have been shown to lead to an enhanced acute effect of MPD, but absent long-term behavioral changes such as sensitization following chronic exposure [44]. This is also seen with amphetamine, cocaine, and nicotine [100-106]. Dopaminergic lesions to the NAc have produced more complex behavioral changes, with some animals exhibiting no increase in locomotor activity following acute MPD exposure and others showing a significantly elevated locomotor activity following MPD exposure [45]. Animals that responded to MPD acutely did not develop behavioral sensitization, while those that showed no behavioral change following the dopaminergic lesion did show behavioral sensitization [45]. This work was noted to not determine lesion accuracy which could explain the dichotomy of animal responses, however it still indicated that accumal dopaminergic signaling is critical for the response to psychostimulants.

Glutaminergic signaling in the NAc has been unexplored till this present study, but has been shown to be critical in other reward circuit nuclei [26,28,29,36,44,46-60]. This study found that following specific glutaminergic ablation of the NAc by ibotenic acid, animals in general showed the same characteristic response to acute and chronic MPD exposure as the control and sham NAc lesion groups, with an acute increase in behavioral activity following MPD and then further significant augmentation with chronic exposure (Figure 1). However, when the different behavioral expressions (HA, TD, NOS) to MPD exposure were compared between groups, a significant attenuation in the behavioral activity comprising forward motion as measured by HA was seen following glutaminergic-specific lesions to the NAc, while a significant augmentation is seen in stereotyped behavior as measured by NOS (Figures 2, 3, & 4). This attenuation of HA and augmentation of NOS indicates that glutaminergic signaling in the NAc is critical in modulating behavior and plays differing roles in different behavioral signaling pathways. This fits with the current knowledge that glutaminergic inputs to the NAc come from other reward circuit nuclei [107,108], and with other work showing that glutaminergic signaling is responsible for modulating the core effect of MPD at other reward circuit nuclei [26,28,29,36,44,46-60]. It also seems to indicate that different subcortical circuits govern different behavioral responses, as animals with glutaminergic lesions to the NAc, HA exhibited significantly less behavioral activity in response to both acute and chronic MPD exposure. HA is a measure of forward motion and can be regarded as a goal-directed behavior which would seem to imply that glutaminergic signaling specifically modulates motivational circuits versus generalized motor modulation, which would involve TD. This fits with the observation that purposeless stereotypic movements as measured by NOS are increased following glutaminergic lesions to the NAc, further confirming the loss of volitional behavioral activity.
Further work to explore this volitional role of glutaminergic signaling in the NAc could utilize other behavioral assays of goal-directed behavior such as lever pulling or maze running.

Previous work initially determined the NAc shell to be critical for the excitatory response to psychostimulants, as it showed the greatest response in response to their administration [93,98,109,110]. However it is increasingly being recognized that the NAc core also participates in the response to psychostimulants [111–114], and that both play a role in motivation and behavioral actions [115–117]. The results seen here agree with emerging work showing that while the NAc core and shell are anatomically distinct, distinct circuits between them govern different behavioral responses [111–117]. Targeting a spherical shell structure with a chemical lesion presents a substantial technical problem and further interrogation of these distinctions will require further work.

In conclusion, the NAc is a component of the rewards circuit that is critical for the response to MPD. It is divided into a shell and core that serve distinct roles in the response to psychostimulants such as MPD. Three different locomotive behaviors were studied, and it was found that lesions to the glutaminergic signaling pathways of the NAc resulted in significant attenuation of forward motion HA compared to control and sham groups while significant augmentation was seen in stereotypic movement, NOS, as compared to controls. This difference indicates that different NAc circuits govern specific behavioral expressions to acute and chronic MPD and the glutaminergic circuit likely modulates volitional responses to psychostimulants.

Funding and disclosures

This study was supported by a National Institute of Health grant (NIH DA-027220). The authors have no relevant disclosures.

Acknowledgements

None.

Author contributions

N. King assisted in data preparation, statistical analysis, and was the principle draver of the manuscript. T. Ming performed the experiment and assisted in statistical analysis. N. Kharas assisted in statistical analysis. N. Dafny designed the experimental protocol, assisted in conducting the experiment, assisted in manuscript preparation, and approved the final draft seen here.

References

1. Dalsgaard S, Nielsen HS, Simonsen M (2012) Five-fold increase in national prevalence rates of attention-deficit/hyperactivity disorder medications for children and adolescents with autism spectrum disorder, attention-deficit/hyperactivity disorder, and other psychiatric disorders: a Danish register-based study. J Adolesc Psycho Pharmacol 23: 432-439.
2. Frauer E, Amaslidou D, Spadari M, Allaria-Lapiere V, Braunein D, et al. (2016) Patterns of Methylphenidate Use and Assessment of Its Abuse among the General Population and Individuals with Drug Dependence. Eur Addict Res 22: 119-126.
3. King N, Floren S, Kharas N, Thomas M, Dafny N (2019) Glutaminergic signaling in the caudate nucleus is required for behavioral sensitization to methylphenidate. Pharmacol Biochem Behav 184: 172737. doi: 10.1016/j.phbb.2019.172737
4. Pauly V, Frauer E, Lepelley M, Mallaret M, Boucherie Q, et al. (2018) Patterns and profiles of methylphenidate use in both children and adults. Br J Clin Pharmacol 84: 1215-1227.
5. Visser S, Danielsen M, Biskov R, Holtbrok J, Kogan M, et al. (2014) Trends in the Parent-Report of Health Care Provider-Diagnosed and Medicated Attention-Deficit/ Hyperactivity Disorder: United States, 2003-2011. JAACAP 2014 53: 34-46.
6. Accardo P, Blondis TA (2001) What’s all the fuss about Ritalin? J Pediatr 138: 6-9.
7. Fong G, Gavaret M, Vidal C, Brunel L, Riveline JP, et al. (2016) Misuse of Prescribed Stimulants in the Medical Student Community: Motives and Behaviors: A Population-Based Cross-Sectional Study. Medicine 95: e3366.
8. Freethlich TE, Lamphere BP, Epstein JN, Barbareis WJ, Katasus SK, et al. (2007) Prevalence, recognition, and treatment of attention-deficit/hyperactivity disorder in a national sample of US children. Arch Pediatr Adolesc Med 161: 857-864.
9. Stanford C, Tannock R (2012) Behavioral Neuroscience of Attention Deficit Hyperactivity Disorder and Its Treatment. Berlin, Heidelberg: Springer Berlin Heidelberg. pp: 379-380.
10. Storebo OJ, Simonsen E, Gulstad C (2016) “Methylphenidate for Attention-Deficit/ Hyperactivity Disorder in Children and Adolescents.” JAMA 315: 2009-2010.
11. Bogle KE, Smith BH (2019). Methylphenidate Use: A Review of Prevalence, Availability, Pharmacology, and Consequences. Curr Drug Abuse Rev 2: 157-176.
12. Cox ER, Mothear BR, Henderson RR, Mager D (2003) Geographic variation in the prevalence of stimulant medication use among children 5 to 14 years old: results from a commercially insured US sample. Pediatrics 111: 237-243.
13. Djezzar S, Cournie MA, Richard N (2014) “EPA-0748-Methylphenidate Abuse: Results of a French Survey.” Europ Psychiatry 29: 1-1.
King N (2020) Glutaminergic signaling in the nucleus accumbens modulates the behavioral response to acute and chronic methylphenidate

77. Kharaas N, Reyes-Vazquez C, Dafny N (2017) Locus coeruleus neuronal activity correlates with behavioral response to acute and chronic doses of methylphenidate (Ritalin) in adolescent rats. Journal of Neural Transmission 124: 1239-1250.

78. Kim Y, Teylan MA, Baron M, Sands A, Naim AC, et al. (2009) Methylphenidate-induced dendritic spine formation and DeltaFosB expression in nucleus accumbens. Proc Natl Acad Sci USA 106: 2915-2920.

79. McGinty VB, Grace AA (2009) Timing-dependent regulation of evoked spiking in nucleus accumbens neurons by integration of limbic and prefrontal cortical inputs. J Neurophysiol 101: 1823-1835.

80. Perez MF, Ford KA, Goussakov I, Stutzmann GE, Hu XT (2011) Repeated cocaine exposure decreases dopamine D-like receptor modulation of Ca(2+) homeostasis in rat nucleus accumbens neurons. Synapse 65: 168-180.

81. Salgado S, Kaplitt M (2015) The Nucleus Accumbens: A Comprehensive Review. Stereotactic and Functional Neurosurgery 93: 75-93.

82. Zaborszky L, Alheid GF, Beinfield MC, Eiden LE, Heimer L, et al. (1985) Cholecystokinin innervation of the ventral striatum: a morphological and radioimmunological study. Neuroscience 14: 427-453.

83. Zahn DS, Brog JS (1992) On the significance of subterritories in the 'accumbens' part of the rat ventral striatum. Neuroscience 50: 751-767.

84. Brog JS, Salaçpsong A, Deutch AY, Zahn DS (1993) The patterns of apparent innervation of the core and shell in the 'accumbens' part of the rat ventral striatum: immunohistochemical detection of retrogradely transported fluoro-gold. J Comp Neurol 338: 255-278.

85. Groenewegen HJ, Wright CI, Stuttman P, Voorn P (1999) Convergence and segregation of ventral striatal inputs and outputs. Ann N Y Acad Sci 877: 49-63.

86. Phillipson OT, Griffiths AC (1985) The topographic order of inputs to nucleus accumbens in the rat. Neuroscience 16: 275-296.

87. Williams DJ, Crossman AR, Slater P (1977) The efferent projections of the nucleus accumbens in the rat. Brain Res 150: 217-227.

88. Andén NE, DM Jackson (1975) Locomotor activity stimulation in rats produced by dopamine in the nucleus accumbens: potentiation by caffeine. J Pharmacol Pharmacol 27: 666-670.

89. Austin MC, PW Kalivas (1991) Dopaminergic involvement in locomotion elicited from the ventral pallidum / substantia innominata. Brain Res 542: 123-131.

90. Boye SM, Grant RJ, Clarke PBS (2001) Disruption of dopaminergic neurotransmission in nucleus accumbens core inhibits the locomotor stimulant effects of nicotine and D-amphetamine in rats. Neuropharmacology 40: 792-805.

91. Cadoni C, Solinas M, Chiara GD (2000) Psychostimulant sensitzation: differential changes in accumbal shell and core dopamine. Euro Journal Pharmacol 388: 69-76.

92. Cornish JL, Kalivas PW (2001) Repeated cocaine administration into the rat ventral tegmental area produces behavioral sensitization to a systemic cocaine challenge. Behav Brain Res 126: 205-209.

93. Heidbreder C, J Feldon (1998) Amphetamine-induced neurochemical and locomotor responses are expressed differentially across the anteroposterior axis of the core and shell subterritories of the nucleus accumbens. Synapse 29: 310-322.

94. Hoeks MS, Jones GH, Lien BJ, Justice JB Jr (1992) Sensitization and individual differences to IP amphetamine, cocaine, or caffeine following repeated intracranial amphetamine infusions. Pharmacol Biochem Behav 43: 815-823.

95. Kalivas PW, Weber B (1988) Amphetamine injection into the ventral mesencephalon sensitizes rats to peripheral amphetamine and cocaine. J Pharmacol Exp Ther 245: 1095-1102.

96. Paulson PE, Robinson TE (1991) Sensitization to systemic amphetamine produces an enhanced locomotor response to a subsequent intra-accumbens amphetamine challenge in rats. Psychopharmacol 104: 140-141.

97. Perugini M, Vezina P (1994) Amphetamine administered to the ventral tegmental area sensitizes rats to the locomotor effects of nucleus accumbens amphetamine. J Pharmacol Exp Ther 270: 690-696.

98. Swanson CJ, S Heath, TR Stratford, AE Kelley (1997) Differential behavioral responses to dopaminergic stimulation of nucleus accumbens subregions in the rat. Pharmacol Biochem Behav 58: 933-945.

99. Vezina P, Stewart J (1990) Amphetamine administered to the ventral tegmental area but not to the nucleus accumbens sensitizes rats to systemic morphine: lack of conditioned effects. Brain Res 516: 99-106.

100. Joyce EM, Stinus L, Iversen SD (1983) Effect of injections of 6-OHDA into either nucleus accumbens septi or frontal cortex on spontaneous and drug-induced activity. Neuropharmacology 22: 1141-1145.

101. Kelly PH, Iversen SD (1976) Selective 6OHDA-induced destruction of mesolimbic dopamine neurons: abolition of psychostimulant-induced locomotor activity in rats. Eur J Pharmacol 40: 45-56.

102. Kelsey JE, Willmore EJ (2006) Electrolytic Lesions of the Nucleus Accumbens Enhance Locomotor Sensitization to Nicotine in Rats. Behavioral Neuroscience 120: 600-611.

103. Koo B, Stinus L, Moal ML (1981) Hyperactivity and hyperactivity produced by lesions to the mesolimbic dopamine system. Behav Brain Res 3: 341-359.

104. Sellings LHL, Clarke PBS (2003) Segregation of amphetamine reward and locomotor stimulation between nucleus accumbens medial shell and core. J Neurosci 23: 6295-6303.

105. Todenkopf MS, Carneira R, Melloni RH Jr, Stellar JB (2002) The dorsomedial shell of the nucleus accumbens facilitates cocaine-induced locomotor activity during the induction of behavioral sensitization. Behav Brain Res 131: 9-16.

106. Weiner I, Gal G, Rawlins JN, Feldon J (1996) Differential involvement of the shell and core subterritories of the nucleus accumbens in latent inhibition and amphetamine-induced activity. Behav Brain Res 81: 123-133.

107. Garcia-Keller C, Martinez S, Eparzar M, Bollati F, Kalivas P, et al. (2013) Cross-sensitization between cocaine and acute restraint stress is associated with sensitized dopamine but not glutamate release in the nucleus accumbens. Eur J Neurosci 37: 982-995.

108. Shin J, Adrover M, Wess J, Alvarez V, Shin J (2015) Correction for Shin et al., Muscarinic regulation of dopamine and glutamate transmission in the nucleus accumbens. Proc Natl Acad Sci USA 112: 8124-8129.

109. Sellings LHL, Clarke PBS (2006) 6-Hydroxydopamine lesions of nucleus accumbens core abolish amphetamine-induced conditioned activity. Synapse 59: 374-377.

110. Zahn DS (2006) Functional-anatomical Implications of the Nucleus Accumbens Core and Shell Subterritories. Ann N Y Acad Sci 877: 113-128.

111. Baracz S, Rourke P, Pardey M, Hunt G, McGregor I, et al. (2012) Oxytocin directly administered into the nucleus accumbens core or subcortical nucleus attenuates methamphetamine-induced conditioned place preference. Behav Brain Res 228: 185-193.

112. Jang J, Kim W, Cho B, Lee J, Kim J (2013) Microinjection of ghrelin in the nucleus accumbens core enhances locomotor activity induced by cocaine. Behav Brain Res 248: 7-11.

113. Hu A, Lai M, Wei J, Wang L, Mao H, et al. (2012) The effect of electroacupuncture on extinction responding of heroin-seeking behavior and Fos-like expression in the nucleus accumbens core. Neurosci Lett 534: 252-257.

114. Waselus M, Flagel S, Jедynak J, Akil H, Robinson T, et al. (2013) Long-term effects of cocaine experience on neuroplasticity in the nucleus accumbens core of addiction-prone rats. Neuroscience 248: 571-584.

115. Feja M, Hayn L, Koch M (2014) Nucleus accumbens core and shell inactivation differentially affects impulsive behaviours in rats. Preg Neuropharmacol Biol Psychiatry 54: 31-42.

116. West E, Carelli R, West E (2016) Nucleus Accumbens Core and Shell Differentially Encode Reward-Associated Cues after Reinforer Devaluation. J Neurosci 36: 1128-1139.

117. Yee J, Famous K, Hopkins T, Memulien M, Pierce R, et al. (2011) Muscarinic acetylcholine receptors in the nucleus accumbens core and shell contribute to cocaine priming-induced reinstatement of drug seeking. Eur J Pharmacol 650: 596-604.