Systematic review of classification systems for locally recurrent rectal cancer

Z. Rokan 1,2,3,*, C. Simillis 4,5, C. Kontovounios 6,7, B. J. Moran 3,4, P. Tekkis 4,5,6 and G. Brown 14

1Department of Radiology, Royal Marsden Hospital, London, UK
2Pelican Cancer Foundation, Basingstoke, UK
3Cambridge Colorectal Unit, Addenbrookes Hospital, Cambridge, UK
4Department of Surgery & Cancer, Imperial College, London, UK
5Department of Colorectal Surgery, Royal Marsden Hospital, London, UK
6Department of Colorectal Surgery, Chelsea & Westminster Hospital, London, UK
7Department of Peritoneal Malignancy, Basingstoke & North Hampshire Hospital, Basingstoke, UK

*Correspondence to: Radiology Department, Royal Marsden Hospital, Downs Road, Sutton, Surrey SM2 5PT, UK (e-mail: Zena.rokan@doctors.org.uk)

Abstract

Background: Classification of pelvic local recurrence (LR) after surgery for primary rectal cancer is not currently standardized and optimal imaging is required to categorize anatomical site and plan treatment in patients with LR. The aim of this review was to evaluate the systems used to classify locally recurrent rectal cancer (LRRC) and the relevant published outcomes.

Methods: A systematic review of the literature prior to April 2020 was performed through electronic searches of the Science Citation Expanded, EMBASE, MEDLINE and CENTRAL databases. The primary outcome was to review the classifications currently in use; the secondary outcome was the extraction of relevant information provided by these classification systems including prognosis, anatomy and prediction of R0 after surgery.

Results: A total of 21 out of 58 eligible studies, classifying LR in 2086 patients, were reviewed. Studies used at least one of the following eight classification systems proposed by institutions or institutional groups (Mayo Clinic, Memorial Sloan-Kettering – original and modified, Royal Marsden and Leeds) or authors (Yamada, Hruby and Kusters). Negative survival outcomes were associated with increased pelvic fixity, associated symptoms of LR, lateral compared with central LR and involvement of three or more pelvic compartments. A total of seven studies used MRI with specifically defined anatomical compartments to classify LR.

Conclusion: This review highlights the various imaging systems in use to classify LRRC and some of the prognostic indicators for survival and oncological clearance based on these systems. Implementation of an agreed classification system to document pelvic LR consistently should provide more detailed information on anatomical site of recurrence, burden of disease and standards for comparative outcome assessment.

Introduction

Rectal cancer remains a globally significant problem, with approximately 8000–9000 new patients diagnosed each year in the UK1. Surgical resection is still the best chance of cure for patients with resectable rectal cancer, however, despite the introduction of selective neoadjuvant chemoradiotherapy and ‘watch-and-wait’ strategies, local recurrence (LR) rates remain between 5 and 18 per cent2–4. This is a significant issue and it can lead to significant morbidity, with symptoms including persistent pain, tenesmus, malodourous discharge and bleeding, ultimately resulting in death2,5.

Development of surgical techniques, including resection beyond total mesorectal excision (TME) and pelvic exenteration, in conjunction with chemoradiotherapy, have revolutionized the treatment of patients with locally recurrent rectal cancer (LRRC). Radical resection can achieve complete oncological clearance (R0) in 55 per cent of patients5. Reported survival rates following R0 resection of LRRC indicates a 3-year disease-free survival to be approximately 57 per cent6 with 3-year overall survival between 48 and 65 per cent2–4. This complex, often multivisceral surgery, may also significantly impact a patient’s quality of life5,6, so careful use of imaging for treatment planning is crucial.

Treatment is predominantly guided by MRI in combination with CT and clinical examination. Currently there is no single imaging system classifying LRRC, which has been validated against survival and oncological outcomes, although multiple anatomical and operative classification systems have been proposed7–15. As a result, patient selection and information on selection methodology, neoadjuvant treatment and surgical planning are largely heterogeneous between centres.

The aim of this study was to review the most frequently used classification systems in describing LRRC and quantify the prognostic information provided by each system, with respect to the outcome measures described above.

Methods

Search strategy

This systematic review was based on a written protocol and was reported in line with Preferred Reporting Items for Systematic
Reviews and Meta-Analyses (PRISMA)\cite{16} and Assessing the Methodological Quality of Systematic Reviews (AMSTAR) guidelines\cite{17}. A comprehensive literature search was performed using a combination of free-text terms and controlled vocabulary of the following databases: PubMed MEDLINE, Embase, Science Citation Index Expanded, and Cochrane Central Register of Controlled Trials (CENTRAL) in The Cochrane Library. The detailed search strategy is provided in Table S1.

All abstracts, studies and citations identified were reviewed, and the references of the identified studies were also searched. No restrictions were made based on language, publication year, or publication status. The literature search was complete up to 28 April 2020.

Selection criteria

Prospective and retrospective studies were considered for this systematic review if studies met the following criteria:

- Reported on patients with LRRC or rectosigmoid cancer who underwent previous ‘curative’ surgery.
- Reported on patients where the anatomical location of LR or a defined classification system for describing LRRC was documented.

Outcome of interest

The primary outcome was to evaluate which classification systems have been previously or are currently being used to describe the location of a locally recurrent tumour within the pelvis, following surgery for primary rectal/rectosigmoid adenocarcinoma. The secondary outcome was to assess the relevant information provided by these classification systems with respect to prognostic/survival information and prediction of R0 resection. Two review authors independently determined the eligibility of all retrieved studies and extracted the required data from the included studies.

Results

Studies

A total of 3908 references were identified through systematic electronic searches of Science Citation Index Expanded (1140 references), EMBASE (1091), MEDLINE (1563) and CENTRAL (114). A further 29 studies were identified from the references of the above studies. There were 1891 duplicates between databases and duplicates were excluded. A further 1816 clearly irrelevant references were excluded through screening titles and reading abstracts. The remaining 230 studies were investigated in full-text detail and a further 172 studies were excluded. Figure 1 shows the study flow diagram. Fifty-eight cohort studies fulfilled the inclusion criteria of this systematic review\cite{7,8,10–15,18–68}. Of these, thirty-seven did not classify LR according to a defined system, ten included studies, including demographic information, primary tumour staging, treatment received and relevant outcomes, are summarized in Table 1.

These 21 studies, including six prospective and 15 retrospective series, comprised 2086 patients who developed LR following surgery for primary rectal/rectosigmoid adenocarcinoma. One study also included 19 patients following surgery for sigmoid colon adenocarcinoma.\cite{32} LRs within these studies were classified according to a previously defined system proposed by institutions or institutional groups (Mayo Clinic, Memorial Sloan-Kettering – original and modified, Royal Marsden and Leeds) or authors (Yamada, Hruby and Kusters), and are outlined in Table 2\cite{7,8,10–13,15,38}. Each system describes LR either according to a compartmentalized anatomical site of pelvic invasion, examples including axial, central, lateral or posterior; the presence or absence of associated symptoms; or, finally, fixation to adjacent structures within the pelvis. Within each study these categorizations have enabled evaluation of oncological outcomes, predominantly resection (R) status and prognostic information according to the sites of LR. Table 3 summarizes the relevant results from each of the eight defined classification systems in use, focusing on prediction of R0 resection and survival outcomes.

Mayo Clinic

The Mayo Clinic system was used in four studies to report on LR\cite{12,30,54}, with two of these studies combining an additional anatomical classification. The Mayo Clinic system classifies LR according to the degree of fixation to surrounding structures within the pelvis and symptoms associated with the recurrence\cite{7,70}. Fixity is graded from no sites of fixation, F0, to F3 (3 to 4 sites of fixation) and from asymptomatic (S0), to symptoms of LR including pain (S2). Using this system, it has been demonstrated that patients undergoing surgery for LRRC had an increasing risk of severe complications as the degree of fixation increased, from 14 per cent in F0 patients, to 44 per cent in F3 patients\cite{7}. The Leeds group slightly modified the classification system, where an F2 grade represented tumour fixation at two or more sites. When reporting on patients following surgery for LRRC, using this modified system, 37 per cent of patients with F0/F1 LR suffered postoperative complications compared to 54.5 per cent in those with F2 disease\cite{12}. Survival rates were also shown to be impacted by pelvic fixation and symptoms. The 3- and 5-year survival rates were 68.4 and 37.3 per cent respectively for patients without pain (S0/S1), compared with 31.6 and 26.3 per cent respectively for those with pain (S2). The 3- and 5-year survival rates were 61.3 and 50 per cent respectively for those patients with no disease fixation (F0) and 35.7 and 31.2 per cent respectively for those with some degree of disease fixation (F1–3). It was demonstrated that surgical complication rates were significantly associated with the number of sites of fixation of the locally recurrent tumour, 20 per cent in those with F0/F1 tumours, 35 per cent in F2 tumours and 32 per cent in F3+ tumours (P = 0.050). The same study also affirmed that increasing the number of points of pelvic fixation significantly reduced survival at both 3 and 5 years (P < 0.0001)\cite{54}. Another author also modified the Mayo Clinic system as follows: F0, no evidence of contact with the pelvic sidewall; F1, extent of contact less than quarter of the pelvic sidewall; F2, contact extends to between quarter and half of the circumference of the pelvic sidewall; F3, contact with more than half of the circumference of the pelvic sidewall; and F4, infiltration of bony structures or the small bowel.\cite{34} This author reported that patients with F0/F1 LR tumours had a 5-year survival rate of 100 per cent compared with 0–14 per cent in those with tumours graded F2+ (P < 0.008) and that experiencing pain was significantly correlated with the ‘F’ grading (P = 0.01)\cite{34}.

Yamada and colleagues

Out of 21 studies, three studies\cite{8,22,33} used the Yamada system\cite{8} to report on LR. This categorizes LR according to the pattern of invasion within the pelvis: local, lateral invasive or sacral invasive. Another author when reporting LR used this system, but in
addition, documented the anatomical ‘site’ of LR22. Another modification of Yamada classification was further proposed, dividing the level of sacral invasion into two compartments and classifying anastomotic recurrence as a separate entity33. Yamada and colleagues demonstrated a significant difference in 5-year survival rates according to the pattern of pelvic invasion following surgery for LRRC. The following 5-year survival rates were observed: 0 versus 10 versus 38 per cent for those with lateral invasive versus sacral invasive versus localized invasion, respectively8. This was validated and a poorer progression-free survival in patients with lateral invasive or sacral invasive LRs (P < 0.05) was also reported22. In a different experience, the pattern of pelvic invasion affected the likelihood of R0 resection (P = 0.005) and local disease-free survival following surgery for LR (P = 0.028)33.

Memorial Sloan-Kettering (original and modified)

Pilipshen from the Memorial Sloan-Kettering group first described a classification system for LRRC in 1984, which was later refined by Moore 20 years later, categorizing tumour involvement into intrapelvic compartments: axial, anterior, posterior or lateral. The Memorial Sloan-Kettering classifications were used in eight studies10,15,32,51,54,56,62,63 when reporting LR. The modified classification established that if the pelvic sidewall was not involved by recurrent tumour on imaging, this resulted in R0 resection in 60 per cent of patients. When the axial compartment alone was occupied by tumour intraoperatively, this resulted in an R0 resection rate of 70 per cent, compared with 43 per cent when other compartments were involved (P < 0.001). When both the axial and anterior compartments were occupied by recurrent tumour, this resulted in R0 resection in 72 per cent compared with 42 per cent when tumour occupied other intrapelvic compartments (P = 0.003)10. The rate of R0 resection was greater if the lateral compartment was not involved intraoperatively and in comparison with patients with an involved lateral compartment (65 versus 36 per cent, P = 0.002), which was also reported by Iversen and co-workers (90 versus 63 per cent, P = 0.004)32. Finally, involvement of the iliac vessels resulted in R0 resection in 17 per cent, compared with 55 per cent when the iliac vessels were not involved (P = 0.01)10. Another manuscript remarked on ‘resectability’ of a tumour dependent on its pelvic location. It was reported that resectability was maximal in axial tumours compared with lateral tumours, 88.9 versus 21.7 per cent respectively (P < 0.001), demonstrating also that the location of recurrent tumour within the pelvis also had a significant impact on R0 resection: axial, 85.2 per cent; anterior, 33.3 per cent; posterior, 25 per cent; and lateral, 4.3 per cent (P < 0.001)62.

Royal Marsden group

There was a single assessable study67 using the Royal Marsden system to report on LR. This classification divides the pelvis into seven compartments according to fascial boundaries: central, anterior above the peritoneal reflection, anterior below the peritoneal reflection, posterior, lateral, infralevator and anterior urogenital triangle (Figs 2 and 3). The Royal Marsden
Study	Country	Years of study	Type of cohort study	Male: female (TP or R)	Mean or median age (years)	Stage of primary tumours (TP or R)	Lymph node status (TP or R)	Perioperative treatment of primary tumour	Operation performed for primary cancer leading to recurrence (TP or R)	No. of local recurrences included	Imaging used to diagnose recurrence	Classification system used	Reurrences classified	Relevant outcomes highlighted
Bird et al. 2018¹²	Australia	19	Prospective	(R): 63 (M: 37F)	(R): 98	TNM (R): T1-T2 N0 = 14 T3N0 = 26 T2N+ve = 2 T3N+ve = 21 T4N0 = 9 T4N+ = 6 Unknown = 20	(R): N+ve = 49 N+ve = 29 Unknown = 20	(R): Adjuvant chemotherapy: Yes = 48 No = 48 Unknown = 5 Chemotherapy: Neoadjuvant = 34 Adjuvant = 6 None = 57 Unknown = 1	(R): Sphincter-preserving = 79 Non-sphincter-preserving = 19	98	MRV/CT/PE-CT	Yamada et al.⁸ and regional anatomical	Localized = 9Sacral invasive = 6Lateral invasive = 15Unknown = 9Anastomosis only = 30Presacrum = 24Genitoourinary = 24Lateral = 14Lymph nodes = 1Unknown = 9Central = 23Sacral = 10Sidewall = 21Composite = 10FO = 22F1 = 28F2 = 14 37% of patients with FO/F1 LR suffered postoperative complications compared with 54.5% in those with F2 disease.	Poorer PFS in patients with sacral and lateral invasive LR (< 0.05)
Boyle et al. 2005¹²	UK	7	Retrospective	(R): 56 (M: 26F)	(R): 64	Dukes (R): A = 8 B = 19 C = 26 Unknown = 11	Not reported	Not reported	(R): AR = 35 APER = 22 Proctectomy with end colostomy = 5 Total colectomy and end ileostomy = 1 Resection of rectal stump = 1	(R): Sphincter-preserving = 200 Stoma = 104	64	MR/PE/CT	Regional anatomical (Leeds group)¹¹ and Symptoms and fixity (Mayo clinic)¹²	F0 = 103F1 = 84F2 = 66F3 = 51 Complication rates significantly associated no. of sites of fixation of the LR. 20% in FO/F1 tumours, 35% in F2 tumours and 32% in F3 + tumours (P < 0.05). Increasing the number of points of pelvic fixation significantly reduced survival at both 3 and 5 years (< 0.0001). Primary T4 rectal cancers most frequently occurred in the anterior central compartment (P < 0.01) and perineal LR occurred following an APER (P < 0.01).
Hahnloser et al. 2003¹⁰	USA	15	Retrospective	(R): 60F	(R): 304	Astler-Coller (R): A = 15 B1 = 54 B2 = 76 B3 = 15 C1 = 19 C2 = 72 C3 = 15 Unknown = 38	Not reported	Not reported	(R): Sphincter-preserving = 200 Stoma = 104	304	CT/MRI	Symptoms and fixity (Mayo Clinic)¹²	F0 = 103F1 = 84F2 = 66F3 = 51	
Hruby et al. 2003¹⁴	NZ	13	Retrospective	(R): 70 (M: 119F)	(R): 269	TNM (R): T1 = 4 T2 = 20 T3 = 198 T4 = 23 Unknown = 15	(R): N+ve = 129 N+ve = 140	(R): No radiotherapy = 269 Adjuvant chemotherapy = 36	(R): APER = 100 LE = 8 LAR = 154 Other = 6 Unknown = 1	268	Not stated	Regional anatomical (Hruby et al.)¹³	Anterior central = 29Posterior central = 127Sidewall = 30Anastomosis = 57Perineum = 15Perineum and pelvis = 9Unknown = 1Lateral = 46Axial = 67Anterior = 40Posterior = 31	Rate of R0 resection greater if lateral compartment not involved intraoperatively in comparison with
Iversen et al. 2018¹²	Sweden	10	Retrospective	(R): 65 (M: 38F)	(R): 95	Not reported	Not reported	(R): Neoadjuvant radiotherapy = 54	Primary operative procedure not stated	184	MRI	Regional anatomical (Memorial Sloan-Kettering)¹⁸		
Study	Country	Years of study	Type of cohort study	Mean or median age (years)	No. of patients followed/included in study	Male: female	Stage of primary tumours (TP or R)	Perioperative treatment of primary tumour	Operation performed for primary cancer leading to recurrence (TP or R)	No. of local recurrences included	Imaging used to diagnose recurrence	Classification system used	Recurrences classified	Relevant outcomes highlighted
-------	--------------	----------------	---------------------	----------------------------	--	--------------	-----------------------------------	---	---	-------------------------------	---------------------------------	-----------------------------	---------------------------	-------------------------------
Kanemitsu et al. 2010¹⁴	Japan	25	Retrospective	(R): 57	101	(R): 57M: 44F	Dukes (R): A = 18 B = 21 C = 52 D = 5 Unknown = 5	(R): N-ve = 39 N+ve = 52 Unknown = 10	(R): Adjuvant treatment: Chemotherapy = 33 Radiotherapy = 3	(R): LE = 4 HAR = 15 LAR = 46 APR = 32 Hartmann’s = 4	101	CT/MRI	Regional anatomical Modified Yamada et al.	Anastomotic = 18 Visceral/lower sacral invasive = 41 Upper sacral/lateral invasive = 27 Known = 15 Presacral = 2 Lateral = 8 Anterior = 1 Anastomosis = 5 Perineum = 5 Unknown = 2
Kusters M et al. 2009¹⁴ and The Netherlands	9	Retrospective	(TP): 58	324	(TP): 215M: 109F	TNM (TP): pT1 = 52 pT2 = 107 pT3 = 160 pT4 = 5	(TP): pN0 = 192 pN1 = 80 pN2 = 52	(TP): Neoadjuvant therapy: Adjuvant therapy: Radiotherapy = 5 Chemotherapy = 23 None = 297	(TP): APER = 113 Hartmann’s = 3 LAR = 193 PE = 13 LLND: Standard TME = 134 Unilateral LLND = 69 Bilateral LLND = 121	23	Not stated	Regional anatomical (Kusters et al. and Roels)	N/A	
Kusters et al. 2009¹⁴	The Netherlands	12	Prospective	(TP): 63	290 (247 with previous R0 resection)	(TP): 179M: 111F cT3 = 113 cT4 = 177	Not reported	(TP): Neoadjuvant treatment: RT only = 96 Chemoradiotherapy = 204 IORT = 290	Adjuvant chemotherapy = 39	Out of 247 patients with R0 resection: 18	Not stated	Regional anatomical (Kusters et al.)	Presacral = 8 Posterior lateral = 1 Lateral = 2 Anterior = 4 Anastomotic = 1 Perineal = 2	
Kusters et al. 2010¹⁴	The Netherlands	Not stated	Prospective	(R): 65	1417	(R): 69M: 45F	TNM (R): pT2 = 15 pT3 = 90 pT4 = 9	(R): pN0 = 29 pN1 = 46 pN2 = 39	(R): Neoadjuvant radiotherapy: Yes = 36 No = 78	(R): APER = 47 Hartmann’s = 4 LAR = 61	114	Not stated	Regional anatomical (Kusters et al.)	Presacral = 40 Lateral = 23 Anterior = 20 Anastomosis = 24 Perineum = 6 Unknown = 3
Moore et al. 2004¹⁹	USA	6	Retrospective	(TP): 59	119	(TP): 64M: 55F	TNM (TP): T0 = 2 = 17	(TP): N0 = 66	(TP): In 101 pelvic CT/MRI	Regional anatomical Axial = 38 Lateral = 47	If pelvic sidewall not involved by recurrence	(continued)		

¹Prospective (R): Hartmann = 137 Abdomino-transverse resection = 123 LAR = 128 PE = 36 LLND: Standard TME = 137 Unilateral LLND = 69 Bilateral LLND = 121

²Adjuvant therapy: Chemotherapy = 33 Radiotherapy = 3

³Regional anatomical (Kusters et al. and Roels)

⁴Regional anatomical (Kusters et al.)

⁵Presacral = 8 Posterior lateral = 1 Lateral = 2 Anterior = 4 Anastomotic = 1 Perineal = 2

⁶Regional anatomical (Kusters et al.)

⁷Presacral = 40 Lateral = 23 Anterior = 20 Anastomosis = 24 Perineum = 6 Unknown = 3

⁸Regional anatomical Axial = 38 Lateral = 47

⁹Pattern of pelvic invasion affected likelihood of R0 resection (P = 0.005) and local DFS following surgery for LR (P = 0.028)

¹⁰Patients with an involved lateral compartment (90 versus 63%, P = 0.004)
Study	Country	Years	Type of cohort study	Mean or median age (years)	No. of patients followed/included in study	Male: female (TP or R)	Stage of primary tumours (TP or R)	Lymph node status (TP or R)	Perioperative treatment of primary tumour	Operation performed for primary cancer leading to recurrence (TP or R)	No. of local recurrences included	Imaging used to diagnose recurrence	Classification system used	Recurrences classified	Relevant outcomes highlighted	
Pilipshen et al. 1984	USA	8	Prospective (TP): 62	(FP): 243M : 169F	Dukes (R): A = 18 B = 32 C = 55	(R): N=50 N=55	T3-4 = 71	N1-2 = 46	Adjuvant radiotherapy - chemotherapy = 59	In 101 pelvic recurrence of rectal cancer: APER = 15 LAR = 77 TAE = 8 Kraeke = 1	recessions of rectal cancer: 174	APER	(Memorial Sloan-Kettering)	Anterior = 47 Posterior = 42	tumour on imaging - R0 resection in 60% of patients. When axial compartment alone occupied by tumour intraoperatively - R0 resection rate of 70% compared with 43% when other compartments were involved (P < 0.001). When both the axial and anterior compartments occupied by recurrent tumour - R0 resection in 72% compared with 42% when tumour occupied other intrapelvic compartments (P = 0.003). Iliac vessel involvement - R0 resection in 17% compared with 55% when not involved (P = 0.01).	(continued)
Roodbeen et al. 2020	The Netherlands	7	Retrospective (TP): 64	(FP): 767	(R): 21M : 3F	TNM (TP): T1 = 23 T2 = 196 T3 = 421 T4 = 52	(FP): N0 = 214 N1 = 313 N2 = 175 N3 = 4	Unknown = 71	Not reported	Preoperative neoadjuvant treatment = 17 Unknown = 71	TaTME: APER/ELAPE = 91 Hartmann’s = 5 LAR = 659 Proctocolectomy = 12	MRI	Regional anatomical and anastomotic	Axial = 19 Lateral = 6 Anterior = 14 Posterior = 13 Other = 13 (pelvic floor = 7, sciatic nerve = 2, obturator nerve = 1, perineum = 1, N/A)	(continued)	
Sinaei et al. 2013	Canada	11	Retrospective (R): 61	(R): 42	(R): 26M : 16F	Unknown = 71 Not reported	Not reported	Not reported	Not reported	APER = 16 Rectal anastomosis = 26	MRI	Regional anatomical (Memorial Sloan-Kettering) and anastomotic	Axial = 19 Lateral = 6 Anterior = 14 Posterior = 13 Other = 13 (pelvic floor = 7, sciatic nerve = 2, obturator nerve = 1, perineum = 1, N/A)	(continued)		
Study	Country	Years of cohort study	Type of study	No. of patients followed/included in study	Male: female	Stage of primary tumours (TP or R)	Lymph node status (TP or R)	Perioperative treatment of primary tumour	Operation performed for primary cancer leading to recurrence (TP or R)	No. of local recurrences included	Imaging used to diagnose recurrence	Classification system used	Recurrences classified	Relevant outcomes highlighted		
-------	---------	----------------------	---------------	---	-------------	-------------------------------------	---------------------------	---	---	---------------------------------	----------------------------	-----------------------------	-----------------	-----------------------------		
Suzuki et al. USA 1996	7	Prospective	(R): 62	65	(R): 38M : 27F	Astler-Coller (R): A = 6	N-ve = 36	N+ve = 21	Unknown = 8	Not reported	(R): LAR = 34	F0 = 43	F1 = 13	F2 = 8	F3 = 1	Following surgery for LRRC increasing risk of severe complications as the degree of fixation increased, from 14% in F0 patients, to 44% in F3 patients
Uehara et al. Japan 2015	7	Retrospective	(R): 66	35	(R): 27M : 8F	UKCC (R): I = 5	N-ve = 20	N+ve = 14	Unknown = 1	Not reported	(R): Previous radiotherapy: For primary tumour = 2	Anatomic = 5 N/A	Posterior = 18	Perineal = 7	Lateral = 5	
Valentini et al. Italy 1999	8	Prospective	(R): 62	47	(R): 29M: 18F	Not reported	Not reported	(R): External beam RT: Neoadjuvant = 7	Adjuvant = 6	Adjuvant chemotherapy = 6	Regional anatomical (Hruby)	Anatomic = 26	Pelvic = 21	F0 = 2	F1 = 11	F2 = 13
Westberg et al. Sweden 2017	7	Retrospective	(TP): 72	149	(R): 80M : 69F	Stage (R): I = 26	N-ve = 78	N+ve = 68	Unknown = 3	(R): Neoadjuvant treatment: None = 91	Chemoradiotherapy = 56	Regional anatomical combination of Leeds and Memorial Sloan-Kettering	Central = 89	Non-central = 60		
Yamada et al. Japan 2001	16	Retrospective	Not reported	60	(R): 38M : 22F	Dukes (R): A = 7	N-ve = 23	N+ve = 37	(R): Most patients received adjuvant chemotherapy	(R): APER = 28	Sacral invasive = 16	Lateral invasive = 17	Significant difference in 5-year survival rates according to pattern of pelvic invasion following surgery for LRRC			

Table 1.
Study	Country	Years of cohort study	Type of study	No. of patients followed/included in study	Mean or median age (years)	No. of local recurrences to diagnose recurrence (TP or R)	Stage of primary tumours (TP or R)	Lymph node status (TP or R)	Perioperative treatment of primary tumour	Operation performed for primary cancer leading to recurrence (TP or R)	No. of local recurrences included in study	Imaging used to diagnose recurrence	Classification system used	Recurrences classified	Relevant outcomes highlighted
Yun et al 2016	Korea	14	Retrospective	(R): 2050	(TP): 1233M: 817F (R): 84M: 63F	(R): T0 = 2 T1 = 3 T2 = 22 T3 = 111 T4 = 9	(R): N0 = 62 N1 = 44 N2 = 41	(R): Neoadjuvant treatment CCRT = 29 Adjuvant chemotherapy Yes = 84 No = 34 Adjuvant radiotherapy: Yes = 67 No = 51	(R): TME–sphincter-preserving = 108 Non-sphincter-preserving = 39	147	PET CT/CT/MRI/ EUS	Regional anatomical (Kusters et al)	80.5%	LRRC: 0 versus 10% for those with lateral invasive versus sacral invasive versus localized invasion, respectively	
Zhao et al 2012	Japan	8	Retrospective	(R): 1079	(TP): 54M: 36F	(R): Stage (R): I = 6 II A = 8 II B = 11 II A = 10 II B = 20 II C = 26 Unknown = 9	(R): N-ve = 25 N-ve = 56 Unknown = 9	(R): Neoadjuvant chemotherapy Yes = 18 No = 72	(R): APER = 32 AR = 54 Hartmann’s s = 2 LE = 2	79	CT/MRI	Regional anatomical (Memorial Sloan-Kettering)	80.5%	Axial = 27 Anterior = 21 Posterior = 23 Lateral = 23	Resectability maximal in axial tumours compared to lateral tumours, 88.9% versus 21.7% respectively (P < 0.001)
Zhu et al 2016	Japan	5	Retrospective	(R): 135	(TP): 73M: 62F	(R): T1 = 2 T2 = 35 T3 = 68 T4 = 30	(R): N0 = 62 N1 = 62 N2 = 62	(R): Radiotherapy: Neoadjuvant = 19 Adjuvant = 6	(R): APER = 78 LAR = 57	135	PET CT/CT/MRI/ EUS	Regional anatomical based on Kusters et al and Memorial Sloan-Kettering	80.5%	Presacral = 33 Lateral = 30 Anterior = 26 Anastomosis = 31 Perineum = 7 Internal/lateral lymph node = 8	Patients with anastomotic LR had superior 5-year survival rate of 80.5% compared with 57.7% versus 44.5% for anterior versus ‘other’ LR respectively (P = 0.037)

Japanese patients only included here as Dutch TME trial patients included below. Data unavailable for all patients. Includes 27 patients who had R1 resection at primary surgery. APR/APER: abdominoperineal excision of rectum; AR, anterior resection; CAPR, combined abdomino-perineal resection; CCRT, concurrent chemoradiotherapy; DFS, disease-free survival; EUS, endoscopic ultrasound; HAR, high anterior resection; IORT, Intra-operative radiotherapy; JSSCR, Japanese Society for Cancer of the Colon and Rectum; Lap, laparoscopic; LAR, low anterior resection; LE, local excision; LLND, lateral lymph node dissection; LR, local recurrence; N/A, not applicable; pCR, pathological complete response; PE, pelvic exenteration; PSD, pelvic sidewall dissection; R, recurrences; RT, radiotherapy; TaTME, transanal TME; TME, total mesorectal excision; TP, total population; TRUS, transrectal ultrasound; UICC, Union for International Cancer Control.
Table 2: Defined classification systems included

Study group	Classification	Definition
Mayo Clinic7	Symptoms	S0: asymptomatic
	Fixation to surrounding structures (within the pelvis)	S1: symptomatic without pain
		S2: symptomatic with pain
		F0: no sites of fixation
		F1: 1 site of fixation
		F2: 2 sites of fixation
		F3: 3 or 4 sites of fixation
Yamada et al.8	Pattern of pelvic invasion	Sacral invasive: tumour invades the lower sacrum (S3/S4/S5), coccyx or periosteum
		Lateral invasive: tumour invades the sciatic nerve, greater sciatic foramen, lateral pelvic sidewall or upper sacrum (S1/S2)
Memorial Sloan-Kettering Updated (Moore et al.10)	Tumour involvement (often ≥1 compartment)	Anterior: tumour involving urinary bladder, vagina, uterus, seminal vesicles or prostate
		Posterior: tumour involving the sacrum or coccyx
		Lateral: tumour involving the bony pelvic sidewall or its structures includng: iliac vessels/rectal/ureteral/lateral lymph nodes/pelvic autonomic nerves/sidewall musculature
Royal Marsden group11	Pattern of pelvic invasion (structures within each compartment)	Anterior above peritoneal reflection: ureters, iliac vessels above peritoneal reflection, sigmoid colon, small bowel, lateral pelvic sidewall fascia (peritoneal surface)
		Anterior below peritoneal reflection: genitourinary system (seminal vesicles, prostate, uterus, vagina, ovaries, bladder/vesicoureteric junction, proximal urethra), pubic symphysis
Leeds group12	Pattern of pelvic invasion	Central: rectum/neorectum (intra/extraluminal), perirectal fat or mesorectal recurrence
		Posterior: coccyx, presacral fascia, retrosacral space, sacrum, sciatic nerve, sciatic notch, S1 and S2 nerve roots
		Lateral: internal and external iliac vessels, lateral pelvic lymph nodes, perforant muscle, internal obturator muscle
Hruby et al.13	Pattern of pelvic invasion	Infralevator: levator ani muscles, external sphincter complex, ischioanal fossa
		Anterior urogenital triangle: perineal body/perineal scar (if previous abdominoperineal resection of rectum), vaginal introitus, distal urethra, crus penis
Kusters et al.14	Pattern of pelvic invasion	Central: tumour confined to pelvic organs or connective tissue without contact onto, or invasion into, bone
		Sacral: tumour present in the presacral space and abuts onto or invades the sacrum
Kusters et al.14	Pattern of pelvic invasion	Sidewall: tumour involving lateral pelvic sidewall structures includng greater sciatic foramen and sciatic nerve through to piriforms and the gluteal region
Memorial Sloan-Kettering Original (Pilipshen et al.15)	Pattern of pelvic invasion	Composite: sacral and sidewall combined
		Anterior pelvic: anterior pelvic organs including bladder/prostate/vagina
		Posterior central: including presacral space
		Pelvic sidewall
		Anastomotic: involving/abutting the anastomosis
		Perianal
		Presacral: predominantly midline, in contact with sacral bone
		Anterior: predominantly midline, involving bladder/uterus/vagina/ seminal vesicles or prostate
		Anastomotic: recurrence after low anterior resection or Hartmann’s procedure at the staple line
		Lateral: pelvic sidewall, immediately behind posterior ischial spine, in the obturator lymph node compartment or along iliac vessels
		Perianal: anal sphincter complex with surrounding perianal and ischiorectal space
		Anastomotic: a suture-line local recurrence with histological verifica-
		tion and no clinically apparent contiguous extramural disease
		Periananastomotic: limited extramural recurrence at the approximate level of the anastomosis without pelvic fixation, i.e., potentially resectable
		Pelvic disease with sacral or sidewall and anterior fixation precluding resection
		Pelvic disease (with or without fixation) presenting through the anastomosis
classification was the single system within this review accompanied by an illustration of the pelvic compartments. Use of this system has demonstrated that patients with tumour within the 'anterior above peritoneal reflection' compartment on MRI had a poorer overall survival compared with patients where this compartment was not involved (P = 0.012). It was also reported that

Table 3: Summary of outcomes

Study group	Studies using this classification system	Summary of results
Mayo Clinic	Suzuki et al., Boyle et al., Hahnloser et al., Valentini et al.	Increasing risk of severe complications with increasing degree of fixation – F0 = 14% versus F3 = 44%. Following surgery for LRRC 37% of patients with F0/F1 LR suffered post-operative complications versus 54.5% for F2 disease. Surgical complication rates significantly associated with the number of sites of fixation – 20% in F0/F1 tumours, 35% in F2 tumours and 52% in F3+ tumours (P = 0.05). 3- and 5-year survival rates: S0/S1 patients, 68.4 and 37.3%, S2 patients, 31.6 and 26.3%. 3- and 5-year survival rates: F0 patients, 61.3 and 50%, F1–F3, 35.7 and 31.2%. Increasing points of pelvic fixation significantly reduced survival at both 3 and 5 years (P < 0.0001). FO/F1 LR – 5-year survival rate 100% versus 0–14% in F2+LR (P < 0.008). Experiencing pain was significantly correlated with the ‘F’ grading (P = 0.01). 5-year survival rates: 0 versus 10 versus 38% for those with lateral invasive versus sacral invasive versus localized invasion, respectively. Poorer progression-free survival in patients with lateral invasive or sacral invasive LR (P < 0.05). Pattern of pelvic invasion affected the likelihood of R0 resection (P = 0.005) and local disease-free survival following surgery for LR (P = 0.028). Pelvic sidewall involvement demonstrated on imaging – R0 resection in 60% of patients. Axial compartment alone occupied by tumour intraoperatively – R0 resection rate of 70 versus 43% when other compartments involved (P < 0.001). Axial and anterior compartments both occupied by recurrent tumour – R0 resection in 72 versus 42% when tumour occupied other intrapelvic compartments (P = 0.003). R0 resection rate greater if lateral compartment not involved intraoperatively in comparison to an involved lateral compartment (65 versus 36%, P = 0.002) also reported by Iversen et al. (90 versus 63%, P = 0.004). Iliac vessel involvement – R0 resection rate 17 versus 55% when not involved (P = 0.01). Resectability maximal in axial tumours versus lateral tumours, 88.9 versus 21.7% respectively (P < 0.001). Location of recurrent tumour had a significant impact on R0 resection rate: axial = 85.2%, anterior = 33.3%, posterior = 25% and lateral = 43% (P < 0.001). Poorer overall survival if tumour within the ‘anterior above peritoneal reflection’ compartment on MRI versus if this compartment not involved (P = 0.012). Patients with tumour within the lateral and posterior compartments, or within three or more compartments had a reduced disease-free survival.

| Memorial Sloan-Kettering | Moore et al., Pilipshen et al., Iversen et al., Sinai et al., Valentini et al., Westberg et al., Zhao et al., Zhu et al. | Pelvic sidewall involvement demonstrated on imaging – R0 resection in 60% of patients. Axial compartment alone occupied by tumour intraoperatively – R0 resection rate of 70 versus 43% when other compartments involved (P < 0.001). Axial and anterior compartments both occupied by recurrent tumour – R0 resection in 72 versus 42% when tumour occupied other intrapelvic compartments (P = 0.003). R0 resection rate greater if lateral compartment not involved intraoperatively in comparison to an involved lateral compartment (65 versus 36%, P = 0.002) also reported by Iversen et al. (90 versus 63%, P = 0.004). Iliac vessel involvement – R0 resection rate 17 versus 55% when not involved (P = 0.01). Resectability maximal in axial tumours versus lateral tumours, 88.9 versus 21.7% respectively (P < 0.001). Location of recurrent tumour had a significant impact on R0 resection rate: axial = 85.2%, anterior = 33.3%, posterior = 25% and lateral = 43% (P < 0.001). Poorer overall survival if tumour within the ‘anterior above peritoneal reflection’ compartment on MRI versus if this compartment not involved (P = 0.012). Patients with tumour within the lateral and posterior compartments, or within three or more compartments had a reduced disease-free survival.

| Royal Marsden Group | Roodbeen et al. | LR in a ‘non-central’ pelvic location – significant increase in death (P = 0.014). Primary T4 rectal cancers most frequently recurred in the anterior central compartment (P < 0.01). LR following an APER most frequent in perineal location (P < 0.01). 5-year LR rate in anterior compartment: TME + radiotherapy for primary rectal adenocarcinoma 0.7 versus 2.7% in patients undergoing TME surgery alone (P = 0.003). APER for primary rectal adenocarcinoma – 5-year LR rate 11.7%, usually occurring in the presacral compartment (45%). LAR 5-year LR rate 7.8% usually resulted in anastomotic (36%) and presacral (28%) LR. The site of LR did not affect subsequent prognosis (P = 0.146). Patients with ‘anastomotic’ LR – 5-year survival rate 80.5% versus 57.7% versus 44.5% for anterior versus ‘other’ LR respectively (P = 0.037).

| Leeds Group | Boyle et al., Westberg et al., Hruby et al., Uehara et al. | Summary of results |

| Hruby et al. | Kusters et al., Yun et al., Zhu et al. | LR, local recurrence; APER, abdominoperineal excision of rectum; TME, total mesorectal excision; LAR, low anterior resection.
patients with tumour within the lateral and posterior compartments, or within three or more compartments, had a reduced disease-free survival 69.

Leeds group

This system, classifying tumour within the pelvis according to the patterns of pelvic invasion (central, sacral, sidewall and composite (sidewall and sacral combined)), was implemented by two studies to report on LR 12,56. The most recent, in 2017, combined the Memorial Sloan-Kettering system along with the Leeds group system to report on LR within the categories of: axial/anterior (central), posterior/lateral (posterolateral) and multifocal, demonstrating a significant increase in death of patients whose LR was in a ‘non-central’ pelvic location (P = 0.014) 56. The Leeds group did not report on LRs or outcomes using their system alone, but in conjunction with the Mayo clinic classification, as reviewed above, in relation to tumour fixation.

Hruby and colleagues

Hruby and colleagues categorize the pelvis into five compartments: anterior pelvic, posterior central, anastomotic, pelvic sidewall and perineal, and this system was used in two studies to report on LR 13,53. The compartment categories were revised in 2015, however the two systems are largely similar. Hruby and co-workers did not demonstrate any significant effect on survival dependent on the location of LR, but that primary T4 rectal cancers most frequently recurred in the anterior central compartment (P < 0.01) and that abdominoperineal excision of the rectum (APER) resulted most commonly in perineal LR (P < 0.01)13.

Kusters and colleagues

This system, compartmentalizing the pelvic regions into presacral, anastomotic, anterior, lateral and perineal involvement, was used in five studies 14,37,38,61,63. The system was implemented in the Dutch TME trial in over 1400 patients to report on LR. They demonstrated that patients undergoing TME with radiotherapy for primary rectal adenocarcinoma had a 5-year LR rate of 0.7 per cent in the anterior compartment compared with 2.7 per cent in those patients undergoing TME surgery alone (P = 0.003). It was also reported that patients undergoing APER for primary rectal adenocarcinoma had a 5-year LR rate of 11.7 per cent, usually occurring in the presacral compartment (45 per cent), compared with a 5-year LR rate of 7.8 per cent in those undergoing low anterior resection (LAR), which usually resulted in anastomotic (36 per cent) and presacral (28 per cent) LR 38. Another author amalgamated categories within this system into axial and non-axial LR and reported that the site of LR did not affect subsequent prognosis (P = 0.146)61. In a different report, authors also modified this system to combine anastomotic and perineal recurrences with a separate category for ‘lymph node’ LR. They showed that patients with ‘anastomotic’ LR had a superior 5-year survival rate of 80.5 per cent compared with 57.7 versus 44.5 per cent for anterior versus ‘other’ LR respectively (P = 0.037)63.

Discussion

There is currently no single standardized classification system used to describe LRRC, however, the systems reviewed provide valuable information focusing on three main areas: disease ‘extent’ within the pelvis, symptoms associated with LR and finally more detailed anatomical information on disease location. The majority of classification systems have not been validated preoperatively against oncological outcomes. Describing pelvic LR is based predominantly on the anatomical location and therefore aetiology of the recurrence. Consequently, imaging is the only method of defining and describing recurrences objectively. Although MRI is the optimal imaging modality for the assessment of LR 71, this was stated as the main diagnostic tool in only five evaluated studies; however, many of these classification systems were described prior to the development of, widespread use of and increasing accuracy of MRI.

The Mayo Clinic system provides an indication of disease extent by outlining the number of points of fixation within the pelvis, and consequently its use has provided beneficial prognostic information that can assist decision making regarding treatment, for example the required surgical procedure or neoadjuvant therapy. Experienced symptoms are also suggestive of disease...
burden, however this is less specific, as pain may not be experienced unless tumour is involving adjacent nerves. The system is limited in that no anatomical detail regarding tumour site is specified.

The system outlined by Yamada and colleagues provides more general information on LR, with sacral and lateral invasion being self-explanatory as more advanced pathology. A ‘localised’ tumour is non-specific and not indicative of which ‘adjacent’ pelvic organs are involved or may require resection. Involvement of the posterior prostatic wall versus the anal sphincter complex, may have significantly different consequences for the patient. Implementing this system alone, without the precise location of LR would make targeting perioperative radiotherapy and surgical planning considerably challenging.

The Memorial Sloan-Kettering, Royal Marsden, Kusters et al. and Hruby et al. systems are somewhat similar and provide detailed information on the tumour with regards to its location in relation to surrounding pelvic viscera. This is informative for the operating surgeon as an indication of potential structures which may require resection, and also for the oncologist as to which areas may require targeting with radiotherapy. The Royal Marsden system separates pelvic compartments along fascial boundaries and therefore highlights the anatomical planes required to be entered, or excised, in order to remove the tumour. This is the most detailed anatomical system within the studies reviewed, categorising LR ‘above the peritoneal reflection’ as a separate anterior entity, and tumour within this compartment was previously shown to have poorer survival outcomes.11. The Kusters et al. system, which is based on the same boundaries as described by Roels et al., also divides the pelvis according to its fascial boundaries but anterior structures above and below the peritoneal reflection are encompassed within the same compartment, and the inferior structures (levator muscles, anal-sphincter complex, ischiorectal fossa and perineum) are also within another single compartment.

Memorial Sloan-Kettering does not specify the boundaries of each compartment and therefore tumour assessment intraoperatively may be difficult if not directly involving or in between structures.

The Leeds group system is an informative system as, like the Mayo Clinic and Yamada et al. systems, it focuses on the pattern of more advanced tumour invasion within the pelvis. Central involvement is non-specific as to which anterior pelvic viscera may be involved or require resection, but the system highlights sacral and lateral involvement, which are potentially more problematic tumours to treat. As the Leeds group classification system was not used to report on outcomes other than in conjunction with the Mayo Clinic system, it is difficult to quantify its prognostic or operative benefit.

A limitation of this review and introduction of potential selection bias, is that, although the method of diagnosing LR is stated usually as a combination of imaging, biochemical tests and endoscopy, the method of classification is not implicitly stated in the majority of studies. Therefore, outcomes may differ dependent on the imaging method used (i.e., CT/MRI). An additional source of potential selection bias is that some of the study cohorts were patients with ‘advanced’ T3+ primary tumours only, whereas other studies did not select for T-stage.

R0 resection is the best predictor of survival in patients with LRRC5 and currently improvements in R0 resection rates are largely attributed to optimal preoperative imaging in surgical planning. This facilitates appropriate preoperative therapy, planning radicality of an operation and selecting out patients unlikely to benefit from pelvic exenteration. Uniformity of the language used to describe LR and its classification is required to optimize R0 resection rates and subsequently provide prognostic information to patients in the future. Each defined classification system, as discussed in this review, has potential benefits and a standardized system would enable oncological and survival outcomes to be compared internationally, improving the standard of care for patients with this pathology. Each system has a distinctive method, and terminology, for describing LR and, as a result of the outcomes illustrated, standard surgical techniques may be reconsidered, for example, modification of resection margins.

In order to predict the likelihood of R0 resection correctly in this complex cohort of patients it is therefore important to use the gold standard technique of MRI to classify LR and ensure accurate assessment of the intrapelvic structures. CT and PET-CT are also important, to be used in conjunction with MRI, most often to try to exclude distant metastases. This is fundamental in the overall assessment of the patient and as an indicator of available treatment options, if appropriate. Whatever the adopted system, maximizing the anatomical detail provided by the imaging assessing recurrence, will optimize therapeutic planning and oncological outcomes.

Disclosure. The authors declare no conflict of interest.

Supplementary material

Supplementary material is available at BJS Open online.

References

1. National Bowel Cancer Audit. Annual Report 2019. https://www.nboca.org.uk/content/upload/2020/01/NBOCA-2019-V2.0.pdf. Accessed 28th April 2020.
2. PelvEx Collaborative. Factors affecting outcomes following pelvic exenteration for locally recurrent rectal cancer. Br J Surg 2018;105:650-657
3. Jayne DG, Thorpe HC, Copeland J, Quirke P, Brown JM, Guillou PJ. Five-year follow-up of the Medical Research Council CLASICC trial of laparoscopically assisted versus open surgery for colorectal cancer. Br J Surg 2010;97:1638–1645
4. Bhangar A, Ali SM, Brown G, Nicholls RJ, Tekkis P. Indications and outcome of pelvic exenteration for locally advanced primary and recurrent rectal cancer. Ann Surg 2014;259:315–322
5. Sagar PM, Pemberton JH. Surgical management of locally recurrent rectal cancer. Br J Surg 1996;83:293–304
6. Harji DP, Griffiths B, Velikova G, Sagar PM, Brown J. Systematic review of health-related quality of life in patients undergoing pelvic exenteration. Eur J Surg Oncol 2016;42:1132–1145
7. Suzuki K, Dozois RR, Devine RM, Nelson H, Weaver AL, Gunderson LL et al. Curative reoperations for locally recurrent rectal cancer. Dis Colon Rectum 1996;39:730–736
8. Yamada K, Ishizawa T, Niwa K, Chuman Y, Akiba S, Aikou T. Patterns of pelvic invasion are prognostic in the treatment of locally recurrent rectal cancer. Br J Surg 2001;88:988–993
9. Wanebo HJ, Antoniuk F, Koness RJ, Levy A, Vezeridis M, Cohen SI et al. Pelvic resection of recurrent rectal cancer: technical considerations and outcomes. Dis Colon Rectum 1999;42:1438–1448
10. Moore HG, Shoup M, Riedel E, Minsky BD, Alektiar KM, Ercolani M et al. Colorectal cancer pelvic recurrences: determinants of resectability. Dis Colon Rectum 2004;47:1599–1606
11. Georgiou PA, Tekkis PP, Constantinides VA, Patel UJ, Goldin RD, Darzi AW et al. Diagnostic accuracy and value of magnetic...
resonance imaging (MRI) in planning exenterative pelvic surgery for advanced colorectal cancer. *Eur J Surg Oncol* 2013;49:72–81

12. Boyle KM, Sagar PM, Chalmers AG, Sebag-Montefiore D, Cairns A, Eardley I. Surgery for locally recurrent rectal cancer. *Dis Colon Rectum* 2005;48:929–937

13. Hruby G, Barton M, Miles S, Carroll S, Nasser E, Stevens G. Sites of local recurrence after surgery, with or without chemotherapy, for rectal cancer: implications for radiotherapy field design. *Int J Radiat Oncol Biol Phys* 2003;55:138–143

14. Kusters M, Beets GL, van de Velde CJ, Beets-Tan RG, Marijnen CA, Rutten HJ et al. A comparison between the treatment of low rectal cancer in Japan and the Netherlands, focusing on the patterns of local recurrence. *Ann Surg Oncol* 2009;24:229–235

15. Filipshen SJ, Heilweil M, Quan SH, Stermens S, Enker WE. Patterns of pelvic recurrence following definitive resections of rectal cancer. *Cancer* 1984;53:1354–1362

16. Moher D, Shamseer L, Clarke M, Ghersi D, Liberati A, Petticrew M et al. PRISMA-P Group. Preferred reporting items for systematic review and meta-analysis protocols (PRISMA-P) 2015 statement. *Syst Rev* 2015;4:1

17. Shea BJ, Reeves BC, Wells G, Thuku M, Hamel C, Moran J et al. AMSTAR 2: a critical appraisal tool for systematic reviews that include randomised or non-randomised studies of healthcare interventions, or both. *BMJ* 2017;358:j4008

18. Adachi N, Watsabe H, Igarashi J, Yazawa K, Nimura Y et al. Resection for local recurrence of rectal cancer. *Surg Today* 1999;29:999–1003

19. Adloff M, Arnaud JP, Schloegel M, Thibaud D. Factors influencing local recurrence after abdominoperineal resection for cancer of the rectum. *Dis Colon Rectum* 1985;28:413–415

20. Beppu N, Kimura F, Aihara T, Doi H, Tomita N, Yanagi H et al. Patterns of local recurrence and oncologic outcomes in T3 low rectal cancer (<5 cm from the anal verge) treated with short-course radiotherapy with delayed surgery. *Ann Surg Oncol* 2017;24:219–226

21. Bikhchandani J, Ong GK, Dozois EJ, Mathis KL. Outcomes of salvage surgery for cure in patients with locally recurrent disease after local excision of rectal cancer. *Dis Colon Rectum* 2015;58:283–287

22. Bird TG, Ngan SY, Chu J, Kroon R, Lynch AC, Heriot AG. Outcomes and prognostic factors of multimodality treatment for locally recurrent rectal cancer with curative intent. *Int J Colorectal Dis* 2018;33:395–401

23. Brown WE, Koh CE, Badgey-Parker T, Solomon MJ. Validation of MRI and surgical decision making to predict a complete resection in pelvic exenteration for recurrent rectal cancer. *Dis Colon Rectum* 2017;60:144–151

24. Choi SH, Chang JS, Yoon HI, Jang DS, Kim NK, Lim JS et al. Mapping of lateral pelvic lymph node recurrences in rectal cancer: a radiation oncologist’s perspective. *J Cancer Res Clin Oncol* 2018;144:1119–1128

25. Even-Sapir E, Parag Y, Lerman H, Gutman M, Levine C, Rabau M et al. Detection of recurrence in patients with rectal cancer: PET/CT after abdominoperineal or anterior resection. *Radiology* 2004;232:815–822

26. Fuji S, Shimada H, Yamagishi S, Ota M, Ichikawa Y, Kunisaki C et al. Surgical strategy for local recurrence after resection of rectal cancer. *Hepatogastroenterology* 2009;56:667–671

27. Gilbertsen VA. Adenocarcinoma of the rectum: incidence and locations of recurrent tumor following present-day operations performed for cure. *Ann Surg* 1960;151:340–348

28. Dresen RC, Peters EE, Rutten HJ, Nieuwenhuijzen GA, Demeyere TB, van den Brule AJ et al. Local recurrence in rectal cancer can be predicted by histopathological factors. *Eur J Surg Oncol* 2009;35:1071–1077

29. Gleeson FC, Larson DW, Dozois EJ, Boardman LA, Clain JE, Rajan E et al. Local recurrence detection following transanal excision facilitated by EUS-FNA. *Hepatogastroenterology* 2012;59:1102–1107

30. Hahnloser D, Nelson H, Gunderson LL, Hassan I, Haddock MG, O’Connell MJ et al. Curative potential of multimodality therapy for locally recurrent rectal cancer. *Ann Surg Oncol* 2003;10:502–508

31. Hasegawa S, Takahashi R, Hida K, Kawada K, Sakai Y. Revisiting the treatment strategy for rectal cancer through the pattern of local recurrence. *Eur J Surg Oncol* 2016;42:1674–1679

32. Iversen H, Martling A, Johansson H, Nilsson PJ, Holm T. Pelvic local recurrence from colorectal cancer: surgical challenge with changing preconditions. *Colorectal Dis* 2018;20:399–406

33. Kanemitsu Y, Hirai T, Komori K, Kato T. Prediction of residual disease or distant metastasis after resection of locally recurrent rectal cancer. *Dis Colon Rectum* 2010;53:779–789

34. Killingback M, Barron P, Dent OF. Local recurrence after curative resection of the rectum without total mesorectal excision. *Dis Colon Rectum* 2001;44:473–483

35. Kim TH, Jeong SY, Choi DH, Kim DY, Jung KH, Moon SH et al. Lateral lymph node metastasis is a major cause of locoregional recurrence in rectal cancer treated with preoperative chemoradiotherapy and curative resection. *Ann Surg Oncol* 2008;15:729–737

36. Kim TG, Park W, Choi DH, Park HC, Kim SH, Cho YB et al. Factors associated with lateral pelvic recurrence after curative resection following neoadjuvant chemoradiotherapy in rectal cancer patients. *Int J Colorectal Dis* 2014;29:193–200

37. Kusters M, Holman FA, Martijn H, Nieuwenhuijzen GA, Creemers GJ, Daniels-Gooszen AW et al. Patterns of local recurrence in locally advanced rectal cancer after intra-operative radiotherapy containing multimodality treatment. *Radiother Oncol* 2009;92:221–225

38. Kusters M, Marijnen CA, van de Velde CJ, Rutten HJ, Lahaye MJ, Kim JH et al. Patterns of local recurrence in rectal cancer, a study of the Dutch TME trial. *Eur J Surg Oncol* 2010;36:470–476

39. Lambregts DM, Cappendijk VC, Maas M, Beets GL, Beets-Tan RG. Value of MRI and diffusion-weighted MRI for the diagnosis of locally recurrent rectal cancer. *Eur Radiol* 2011;21:1250–1258

40. Luna-Perez P, Rodriguez-Ramirez S, Gonzalez-Macouzet J, Rodriguez-Coria DOF, Delgado SN, Lopez MJ. The influence of pre-operative radiation therapy on the patterns of recurrence in rectal adenocarcinoma. *Semin Surg Oncol* 1999;17:199–205

41. McDermott FT, Hughes ES, Pihl E, Johnson WR, Price AB. Local recurrence after potentially curative resection for rectal cancer in a series of 1008 patients. *Br J Surg* 1985;72:34–37

42. Mendenhall WM, Million RR, Pfaff WW. Patterns of recurrence in adenocarcinoma of the rectum and rectosigmoid treated with surgery alone: implications in treatment planning with adjuvant radiation therapy. *Int J Radiat Oncol Biol Phys* 1983;9:977–985

43. Messiou C, Chalmers AG, Boyle K, Wilson D, Sagar P. Pre-operative MR assessment of recurrent rectal cancer. *Br J Radiol* 2008;81:468–473

44. Nagasaki T, Akiyoshi T, Ueno M, Fukunaga Y, Nagayama S, Fujimoto Y et al. Laparoscopic salvage surgery for locally recurrent rectal cancer. *J Gastrointest Surg* 2014;18:1319–1326

45. Novell F, Pascual S, Viella P, Trias M. Endorectal ultrasonography in the follow-up of rectal cancer. Is it a better way to detect early local recurrence? *Int J Colorectal Dis* 1997;12:78–81
46. Pergolizzi S, Settineri N, Santacaterina A, Maisano R, Frosina P, Loria F et al. Prognostic factors in ambulatory patients with inoperable locoregionally recurrent rectal cancer following curative surgery. Anticancer Res 1999;19:1383–1390
47. Rahbari NN, Ulrich AB, Bruckner T, Munter M, Nickles A, Contin P et al. Surgery for locally recurrent rectal cancer in the era of total mesorectal excision: is there still a chance for cure? Ann Surg 2011;253:522–533
48. Rich T, Gunderson LL, Lew R, Galdibini JJ, Cohen AM, Donaldson AR et al. Patterns and signal intensity characteristics of pelvic recurrence from rectal cancer treated with short-course hyperfractionated accelerated chemoradiotherapy with delayed surgery. Acta Oncol 2018;57:1723–1727
49. Sañoles MC, Moukalakis KG, Stamatakos M, Kountouras J, Dalla Palma F. Rectal carcinoma: preoperative staging and detection of postoperative local recurrence with transrectal and transvaginal ultrasound. Abdom Imaging 1993;18:381–389
50. Scialpi M, Andreata R, Agugiaro S, Zottele F, Niccolini M, Dalla Uehara K, Ito Z, Yoshino Y, Arimoto A, Kato T, Nakamura H et al. Patterns and signal intensity characteristics of pelvic recurrence of rectal cancer at MR imaging. Radiographics 2013;33:E171–187
51. Sinaei M, Swallow C, Milot L, Moghaddam PA, Smith A, Atri M. Patterns and signal intensity characteristics of pelvic recurrence of rectal cancer at MR imaging. Radiographics 2013;33:E171–187
52. Syk E, Torkzad MR, Blomqvist L, Nilsson PJ, Glimelius B. Locally recurrent rectal cancer: anatomic localization and effect on radiation target. Int J Radiat Oncol Biol Phys 2008;72:658–664
53. Vigliotti A, Rich TA, Romsahl MM, Withers HR, Oswald MJ. Postoperative adjuvant radiotherapy for adenocarcinoma of the rectum and rectosigmoid. Int J Radiat Oncol Biol Phys 1987;13:999–1006
54. Vigliotti A, Rich TA, Romsahl MM, Withers HR, Oswald MJ. Postoperative adjuvant radiotherapy for adenocarcinoma of the rectum and rectosigmoid. Int J Radiat Oncol Biol Phys 1987;13:999–1006
55. Westberg K, Palmer G, Hjern F, Nordinvall C, Johansson H, Holm T et al. Population-based study of factors predicting treatment intention in patients with locally recurrent rectal cancer. Br J Surg 2017;104:1866–1873
56. Wigström, Wolff PA, Tveit KM, Giercksky KE. Location of pelvic recurrence after ‘curative’ low anterior resection for rectal cancer. Eur J Surg Oncol 1999;25:590–594
57. Wong CS, Cummings BJ, Brierley JD, Catton CN, McLean M, Catton P et al. Treatment of locally recurrent rectal carcinoma – results and prognostic factors. Int J Radiat Oncol Biol Phys 1998;40:427–435
58. You YN, Roses RE, Chang GJ, Rodriguez-Bigas MA, Feig BW, Slack R et al. Multimodality salvage of recurrent disease after local excision for rectal cancer. Dis Colon Rectum 2012;55:1213–1219
59. Yu TK, Bhosale PR, Crane CH, Iyer RB, Skibber JM, Rodriguez-Bigas MA et al. Patterns of locoregional recurrence after surgery and radiotherapy or chemoradiation for rectal cancer. Int J Radiat Oncol Biol Phys 2008;71:1175–1180
60. Yun JA, Huh JW, Kim HC, Park YA, Cho YB, Yun SH et al. Local recurrence after curative resection for rectal carcinoma: the role of surgical resection. Medicine (Baltimore) 2016;95:e5942
61. Zhao J, Du CZ, Sun YS, Gu J. Patterns and prognosis of locally recurrent rectal cancer following multidisciplinary treatment. World J Gastroenterol 2012;18:7015–7020
62. Zhu XG, Li YH, Li XF, Cai Y. Intensity-modulated radiation therapy for pelvic oligo-recurrence from rectal cancer: long-term results from a single institution. Am J Transl Res 2016;8:1265–1272
63. Beppu N, Okamoto R, Nakamoto Y, Kimura F, Ikeda M, Tomita N et al. Risk factors and patterns of local recurrence in T3 rectal cancer treated with short-course hyperfractionated accelerated chemoradiotherapy with delayed surgery. Acta Oncol 2018;57:1723–1727
64. Baek JY, Yu JI, Park HC, Choi DH, Yoo GS, Cho WK et al. Risk factors for locoregional recurrence in patients with pathologic T3N0 rectal cancer with negative resection margin treated by surgery alone. Radiol Oncol 2019;37:110–116
65. Igle P, Bal M, Engineer R, Ostwal V, Desouza A, Saklani A. Does acellular mucin pools in resection margins for rectal cancer influence outcomes? Indian J Surg Oncol 2019;10:515–519
66. Roodbeen SX, Spinelli A, Berelman WA, Di Candido F, Cardeport M, Denotst Q et al. Local recurrence after transanal total mesorectal excision for rectal cancer: a multicenter cohort study. Ann Surg 2020; e-published ahead of print
67. Wieldraaijer T, Bruin P, Duineveld LAM, Tanis PJ, Smits AB, van Weert H et al. Clinical pattern of recurrent disease during the follow-up of rectal carcinoma. Dig Surg 2018;35:35–41
68. Georgiou PA, Tekkis PP, Brown G. Pelvic colorectal recurrence: crucial role of radiologists in oncologic and surgical treatment options. Cancer Imaging 2011;11:S103–11
69. Suzuki K, Devine RM, Dozois RR, Gunderson LL, Martenson JA, Weaver AL et al. Intraoperative irradiation after palliative surgery for locally recurrent rectal cancer. Cancer 1995;75:939–952
70. Beyond TME Collaborative. Consensus statement on the multidisciplinary management of patients with recurrent and primary rectal cancer beyond total mesorectal excision planes. Br J Surg 2013;100:1009–1014
71. Roels S, Duthoy W, Haustermans K, Penninckx F, Vandecaveye V, Boterberg T et al. Definition and delineation of the clinical target volume for rectal cancer. Int J Radiat Oncol Biol Phys 2006;65:1129–1142