Prevalence and Clinical Phenotype of the Triplicated α-Globin Genes and its Ethnic and Geographical Distribution in Guizhou of China

Xi Luo
Affiliated Hospital of Zunyi Medical University

Shi-ping Chen
BGI-Shenzhen

Xiang-mei Zhang
Affiliated Hospital of Zunyi Medical University

Liu-song Wu
Affiliated Hospital of Zunyi Medical University

Zhi-yu Peng
BGI-Shenzhen

Yan Chen
Affiliated Hospital of Zunyi Medical University

Jindong Chen (✉ jindong_chen@hotmail.com)
University of Rochester https://orcid.org/0000-0003-4253-6850

Research article

Keywords: Population genetics, epidemiology, prevalence, triplicated α-globin genes, α-globin triplication, β-thalassemia, anemia

DOI: https://doi.org/10.21203/rs.3.rs-48399/v1

License: ☒ ❽ This work is licensed under a Creative Commons Attribution 4.0 International License.
Read Full License
Abstract

Background: Thalassemia is relatively epidemic in Guizhou province of southwestern China. To predict the clinical manifestations of α-globin gene aberration for genetic counseling, we examined the prevalence of the α-globin triplication and the genotype-phenotype correlation in this subpopulation.

Methods: A cohort of 7644 subjects was collected from nine ethnicities covering four regions in Guizhou province of China. Peripheral blood was collected from each participant for routine blood testing and hemoglobin electrophoresis. PCR-DNA sequencing and Gap-PCR were used to identify the thalassemia gene mutations. Chi-square tests and one-way analysis of variance (ANOVA) were used to statistically analyze the data.

Results: We found that the frequency of α-globin triplication in Guizhou province was 0.759% (58/7644). Genotypically, the $\alpha_\alpha\alpha\alpha\alpha\alpha$/aa accounted for 0.523% (40/7644), the $\alpha_\alpha\alpha\alpha\alpha\alpha$/aa for 0.235% (18/7644). The $\alpha_\alpha\alpha\alpha\alpha\alpha$/aa is more prevalent than the $\alpha_\alpha\alpha\alpha\alpha\alpha$/aa in Guizhou. In addition, the frequency of the $\alpha_\alpha\alpha\alpha\alpha\alpha$/$\alpha^3.7$ (HK aa) was 0.235% (18/7644), and the $\alpha_\alpha\alpha\alpha\alpha\alpha$/$\alpha^3.7$–SEA was 0.013% (1/7644). Ethnically, the Tujia group presented the highest prevalence (2.47%) of α-globin triplication. Geographically, the highest frequency of the α-globin triplication was identified in Qiannan region (2.23%). Of the triplicated α-globin cases, 5 co-inherited with heterozygote β-thalassemia and presented various clinical manifestations of anemia.

Conclusions: These data will be used to update the triplicated α-globin thalassemia database and provide insights into the pathogenesis of thalassemia. These findings will be helpful for the diagnosis of thalassemia and future genetic counseling in those regions.

Background

Thalassemia is a hereditary hemoglobin disease caused by defects in the globin genes, including deletions and mutations [1]. Based on the gene defects, thalassemia is usually classified into α-thalassemia and β-thalassemia [2, 3]. While a deletion of one or both α-globin genes leads to α-Thalassemia, the α-globin genes (ααα) triplication rarely causes detectable clinical symptoms because the clinical blood parameters and manifestations appear normal [4-6]. However, when in co-inherited with β-globin gene mutation(s), the triplicated α-globin genes play a considerable role in pathophysiology of thalassemia [7, 8], mild to severe thalassemia is often observed in the affected subjects due to the imbalance of α- and β-globin [8-10]. Patients with severe thalassemia usually rely on lifelong blood transfusion therapy, which is a heavy healthcare burden for their families and society. There are two types of triplicated α-globin genes: $\alpha_\alpha\alpha\alpha\alpha\alpha\alpha$ and $\alpha_\alpha\alpha\alpha\alpha\alpha\alpha$ [11, 12]. The $\alpha_\alpha\alpha\alpha\alpha\alpha\alpha$ is commonly observed in Asians while the $\alpha_\alpha\alpha\alpha\alpha\alpha\alpha$ is more prevalent in Africans, Middle Eastern, and Mediterranean populations [7, 11-13].
Guizhou province, located in southwestern China, is one of the regions with the highest rate of thalassemia in Asia [14]. The population consists of several ethnic groups including many minorities such as Yao, Miao, Buyi, Dong, Tujia, Zhuang, Shui and Gelao. Although thalassemia patients with β-globin gene defects and triplicated α-globin genes had been reported worldwide [9, 15, 16], the frequency of triplicated α-globin genes in this population has never been investigated. Thus, we conducted an epidemiological study to elucidate the frequency and clinical features of triplicated α-globin genes in this population and region.

Methods

Subjects

Guizhou province contains 4 regions. Two representative counties/cities from each region were taken for study. Inclusion criteria: subjects whose residence in these regions exceeded 3 years at the time of recruitment, regardless of age, gender, and ethnicity. In total, 7866 participants were recruited by simple random sampling method from 8 counties/cities (Congjiang, Liping, Tongren, Libo, Liupanshui, Kaili, Zunyi, and Anshun) in four regions (Qiannan, Qiandongnan, Qianbei and Qianxi) of Guizhou province in China from February 2014 to June 2016. Eventually, blood samples and health information were collected from 7644 qualified people for investigation based on the inclusion criteria (see Fig. 1).

Blood analysis

Approximately 5 ml peripheral blood was collected from each participant for routine blood testing (Sysmex hematology analyzer, K-1000, Sysmex Corporation, Kobe, Japan) and hemoglobin electrophoresis (Bio-Rad Laboratories, Hercules, CA, USA).

DNA sequencing and genotyping

Approximately 3 ml of peripheral blood was collected from each subject. DNA extraction was conducted by using the Magen nucleic acid extraction kit (Magen, Guangzhou, China). Four pairs of globin gene specific PCR primers (HBA1, HBA2, HBB-1, and HBB-2) were designed and synthesized by the Beijing Genome Institute (BGI)-Shenzhen. PCR was carried out in a volume of 25 μl with an amplification reaction system containing 1 pair of tag primers, 50–200 ng DNA, and 2× Gold Star Taq Master Mix (Kangwei century). The PCR amplification was performed using the ABI9700 (Perkin-Elmer Applied Biosystems Inc., Foster City, CA). The PCR conditions: 95 °C 10 min; 95 °C 30 s, 60 °C 30 s, 72 °C 50 s, 35 cycles; 72 °C 5 min, 15 °C hold; PCR conditions for copy number variations: 95 °C 10 min; 95 °C 30 s, 60 °C 60 s, 24 cycle; 15 °C hold. Whole genome DNA sequencing was performed to detect globin gene defects by the Beijing Genome Institute (BGI)-Shenzhen through next-generation sequencing technology [17]. Gap-PCR was used to detect some α deletion genotypes, as described previously [17]. Information from subjects with triplicated α-globin genes combined with β-thalassemia clinical manifestations were collected for further analysis.
Statistical analysis

Continuous variables are summarized by descriptive statistics, including the mean and range or standard deviation. Categorical variables are presented as number and percentage, and the comparisons of frequencies and mean were completed by using the Chi-square test and one-way analysis of variance (ANOVA). A statistically significant difference was defined as a p<0.05. Statistical analyses were performed with SPSS 17.0 (SPSS Inc., Chicago, IL, USA).

Results

Population samples

Of the 7644 qualified participants, 3817 were males and 3827 were females, the participants’ ages ranged from 5 to 68 (average age 25 ±3.4) years, 1027 (13.44%) were minors, and 6617 (86.56%) were adults. The geographical residence pattern of the subjects was as follows: Qianbei (Zunyi, Tongren) region, 2904 (37.99%); Qiannan (Kaili, libo), 491 (6.42%); Qianxi (Liupanshui, Anshun), 952 (12.45%); and Qiandongnan (Congjiang, Liping), 3297 (43.13%). There were nine ethnicities inhabiting those regions: Han, 4475 (58.5%); Dong, 890 (11.6%); Miao, 737 (9.6%); Buyi, 486 (6.4%); Shui, 325 (4.3%); Tujia, 243 (3.2%); Yao, 151 (2%); Gelao, 141 (1.8%); and Zhuang 196 (2.6%).

Prevalence of triplicated α-globin genes and other α-globin gene rearrangements

As listed in Table 1, among the 7644 subjects examined, 58 carried triplicated α-globin genes. The prevalence of the triplicated α-globin genes was 0.759% or 759/100,000 in this subpopulation. The αααanti4.2/αα accounted for 0.523% (40/7644), and the αααanti3.7/αα for 0.235% (18/7644). Of the 58 triplicated α-globin gene carriers, the αααanti4.2/αα carriers accounted for 51.9% (40/77), the αααanti3.7/αα carriers accounted for 23.4% (18/77). Thus, the αααanti4.2/αα is more prevalent than the αααanti3.7/αα in Guizhou province (p<0.05). In addition, we identified 18 cases of the HKαα (αααanti4.2/-α3.7) carriers, accounting for 0.235% (18/7644); and 1 subject carried the αααanti3.7 / - SEA, accounting for 0.013% (1/7644).

The ethnic distribution of the triplicated α-globin genes

As listed in Table 2, there are 6 ethnic groups inhabiting these regions. Except for the Han ethnic group, the other ethnic groups are minorities in China. In this investigation, the highest frequency of the αααanti4.2/αα was identified in the Tujia ethnic group (1.65%), followed by the Han, Dong, Shui, Buyi, and Miao. The frequency of the αααanti4.2/αα in the Tujia group was significantly higher than in the Miao (p = 0.015), Dong (p = 0.022), and Buyi (p = 0.045). For the αααanti 3.7/αα genotype, the highest rate was observed in the Tujia group as well, followed by the Dong, Han, Buyi, and Miao. No αααanti 3.7/αα carrier was observed in the Shui group. No triplicated α-globin genes were detected in the Zhuang, Yao, and Gelao groups.
The geographical distribution of the triplicated α-globin genes

As listed in Table 3, the highest prevalence of the α-globin gene triplication was observed in Qiannan region (2.23%), followed by Qiandongnan, Qianbei, and Qianxi. The frequency in Qiannan was significantly higher than in any other regions including Qiandongnan (p = 0.03), Qianbei (p = 0.001), and Qianxi (p = 0.0045). There was no significant difference observed between the other regions. While the prevalence of the $\alpha^{\text{anti}4.2}/\alpha$ genotype was significantly higher in Qiannan region than in other regions, the $\alpha^{\text{anti}3.7}/\alpha$ was commonly found in Qiannan and Qiandongnan regions. However, although the frequency of the $\alpha^{\text{anti}3.7}/\alpha$ was higher in Qiandongnan, there was no statistically significant distribution difference between those regions (p> 0.05). In addition, the HKα (ααα-α3.7) was mainly distributed in the Qiandongnan and Qiannan regions, but its distribution had no statistically significant difference between those regions (p>0.05). The $\alpha^{\text{anti}3.7} / -\text{SEA}$ was quite rare in those regions, and only one case was detected in Qiandongnan.

Genotype-phenotype associations of α-globin gene rearrangements

The frequency of thalassemia-gene carriers in Guizhou is 11.03%, with 7.41% of a-thalassemia-gene frequency and 3.23% of b-thalassemia-gene frequency (unpublished data). Therefore, the frequency of a-thalassemia is higher than b-thalassemia in Guizhou province, China. While deletion of α-globin genes causes a-thalassemia, the triplicated α-globin genes alone rarely cause obvious clinical symptoms. All 58 carriers of the triplicated α-globin genes, 18 cases of the HK αα, and 1 case of the $\alpha^{\text{anti}3.7}/-\alpha$SEA did not presented any clinical manifestations such as anemia at the time of examination. The blood parameters including the red blood cells (RBC), hemoglobin (HGB), mean corpuscular volume (MCV), mean corpuscular hemoglobin (MCH), HbA, HbA2, and HbF were measured and statistically analyzed through ANOVA. No significant parameter difference was identified among the three different genotype groups (p> 0.05) (Tables 4 and 5). All of the hematological parameters appeared within the normal range. However, when triplicated α-globin genes coinhere with b-globin gene mutation(s), the affected subjects present various clinical manifestations from no symptoms to severe anemia. In this study, we identified 5 subjects who were cocarriers of the β-globin gene alterations and the α-globin gene triplication. All 5 affected subjects were of Han ethnicity. Mut-01 was a boy who suffered from severe anemia when he was 7 years old and was treated at a local hospital in 2006, when he was diagnosed with β-thalassemia. Our DNA sequencing demonstrated that he was a carrier of codons 41/42 (-TTCT) β^0 and αα/αα4.2 (Table 6, Fig. 2A). Mut-02 and Mut-03 did not present with severe symptoms but exhibited visible paleness. No abnormalities were observed in their hearts, lungs, and nervous systems. The blood tests indicated that all three boys suffered from moderate hypochromic microcytic anemia without detectable iron deficiency or other related abnormalities. Mut-04 had the identical b-globin mutation as Mut-01, and his disease manifestation was similar to that of Mut-01. Mut-04’s father was also a β-thalassemia sufferer (HGB, 83 g/L; MCV, 62.2 fL; MCH, 19.6). DNA sequencing indicated that they were all carriers of the β-globin gene alterations and the α-globin gene triplication (Table 6, Fig. 2B-2D). Mut-05 was an adult
woman. She had no detectable symptoms at the time of examination, although she carried a codon 17 (AAG>TAG) beta+ and the αα/αα^4.2.

Discussion

To date, at least two genotypes of α-globin triplication have been described: αα^anti4.2/αα, αα^anti3.7/αα. Although the HKαα (αα^anti4.2/αα^anti3.7) and the αα^anti3.7/−SEA carry αα^anti4.2 and/or αα^anti3.7, they are not considered as α-globin triplication. Observations have indicated that α-globin triplication alone does not cause detectable clinical manifestations [18]. However, when an α-globin triplication coinherits with β-globin gene mutation(s), the combined defects usually lead to the emergence of variable clinical phenotype including asymptomatic presentation, significant anemia, ineffectual erythropoiesis, and mild to severe clinical symptoms. Thus, it is essential to determine the prevalence of the triplicated α-globin genes because the α-globin triplication usually exacerbates β-thalassemia when it is coinherited with β-globin defects because the extra copy of the α-globin chain leads to an unbalanced ratio between the α- and β-globin chains. In this study, we randomly collected a cohort of 7644 subjects in four regions of Guizhou province, China. These participants’ ethnicities included Han and eight ethnic minorities. Our study demonstrated that the population prevalence of the α-globin triplication in Guizhou province was 1.01%. This figure was slightly lower than that identified in Guangdong (1.2%), a province in southeastern China [15], and in the Dutch population (approximately 1.2%) [7]. In addition, the ratio of αα^anti3.7 and αα^anti4.2 was different between the two subpopulations. In our study, the ratio of αα^anti3.7/αα^anti4.2 was 0.45 (0.235% αα^anti3.7/0.523% αα^anti4.2) in Guizhou province, while it was 3.0 (0.9% αα^anti3.7/0.3% αα^anti4.2) in Guangdong province. This finding suggests that the αα^anti4.2 triplication is rather common in Guizhou, while the αα^anti3.7 is prevalent in Guangdong region.

Ethnically, the Tujia group presented the highest prevalence (2.47%) of the α-globin triplication. In particular, the prevalence of αα^anti4.2 in Tujia was significantly higher (1.65%) than in any other ethnic group. This is the first report that Tujia have a higher frequency of α-globin triplication. Whether this higher rate of α-globin triplication is caused by a founder effect or not requires further investigation. Although previous studies have reported that the frequencies of α-globin defects in the Zhuang and Yao ethnic groups were significantly higher than that in the Han ethnic group in Guangxi, another province in southwestern China [19], we did not observe any carrier of α-globin triplication in Zhuang and Yao minorities, probably due to the small size of the ethnic groups or that they were not affected by the α-globin triplication in those regions. The high frequency of α-globin triplication identified in those two ethnic groups in Guangxi province might be caused by a founder effect initiated by genetic drift and particular lifestyles, inhabitation density, and endogamous marriage.

Geographically, the highest frequency of the α-globin triplication was identified in Qiannan region (2.23%). The frequency difference of the α-globin triplication between Qiannan and any other region was statistically significant. Moreover, the frequency of αα^anti4.2 in Qiannan was also higher than in other regions. The other types of α-globin triplication such as αα^anti3.7 and HKαα had no significant
geographical differences. In addition, we did not identify any anti-HKαα, although we found that the frequency of HKαα was 0.235%, significantly higher than previously reported. The HKαα genotype was first described by Wang [20]; then, Shang et al. first reported that the population prevalence of HKαα was 0.07% and that of anti-HKαα was 0.02% in Guangxi province of China [21]. Afterwards, the population prevalence of HKαα was determined to be 0.07% and that of anti-HKαα to be 0.003% in Guangdong province [22]. The differences between our findings and the previously reported data could be due to geographical pattern differences and population diversity [23].

In our study, the hematological parameters and hemoglobin electrophoresis data of the HKαα, ααanti4.2, and ααanti3.7 carriers were all within the normal range, which is consistent with previous reports [20, 21]. Therefore, carriers of the HKαα, ααanti4.2, and ααanti3.7 will not present clinical manifestations such as anemia. Of note, although the HKαα carriers presented a normal range of hematological parameters, their RBC, hemoglobin, MCH, and MCV were all slightly lower than the ααanti4.2 and ααanti3.7 carriers, indicating that lack of an alpha gene may slightly influence their hematology parameters.

As mentioned above, the triplicated α-globin genes alone barely lead to detectable clinical phenotypes. In this study, of the 58 cases of α-globin genes triplication, except the 5 cases coinherited with β-globin gene mutation(s), the other 53 subjects did not present any clinical symptoms. Although many reports have stated that α-globin triplication can exacerbate the symptoms of β-thalassemia, the issue is still controversial because the expected worsened anemia has not occurred in all cases [7, 16]. In our subjects, the first four carriers presented with β-thalassemia from mild to severe. In the case of Mut-05, the α-globin triplication combined with the b-globin gene mutation (CD17 (AAG > TAG)) apparently failed to cause thalassemia, suggesting that other mechanism(s) must exist and meriting further investigation. In addition, 18 cases of the HK αα, and 1 case of the ααanti3.7/--SEA did not presented any clinical manifestations such as anemia at the time of examination, which is consisted with previous reports [21, 22].

Currently, Gap-PCR and PCR combined with RDB (reverse dot blot) methods are commonly used to detect α-globin gene deletions and the β-globin gene defects, but they usually miss the triplicated α-globin genes. In this study, whole genome NGS combined with Gap-PCR was adopted to screen for all types of α-globin and β-globin gene alterations, including α-globin gene deletion, triplication, splicing mutations, which would be expected to increase the detection sensitivity and improve the diagnosis of β-thalassemia.

Conclusions

This epidemiological study has identified the current α-triplication genotypes and their prevalence and distribution in Guizhou province, which will be used to update the triplicated α-globin thalassemia database, provide insights into the pathogenesis of thalassemia and shed light on the diagnosis of thalassemia in southwestern China.
Abbreviations

Abbreviation	Description
RBC	Red blood cells
HGB	Hemoglobin
MCV	Mean corpuscular volume
MCH	Mean corpuscular hemoglobin
RDB	Reverse dot blot
ANOVA	One-way analysis of variance
PCR	Polymerase chain reaction

Declarations

Ethics approval and consent to participate

This study was approved by the Research Ethics Committee at Zunyi Medical University. Written informed consent was obtained from all participants. For participants under 16 years old, written informed consent was obtained from a parent or guardian.

Consent for publication

Written informed consent for publication of identifying images or other personal or clinical details was obtained from all of the participants included in the study. For participants under 18 years old, written informed consent was obtained from a parent or legal guardian.

Availability of data and materials

All data and materials are included in this article.

Competing interests

The authors have no declaration of conflicts of interest. All the experiments undertaken in this study comply with the current laws of China, where the research was performed.

Funding

This study was financially supported by the Department of Science and Technology in Guizhou (No. [2019]2806).

Authors’ contributions
YC and JC designed the experiments and drafted the manuscript; YC supervised the experiments; XL completed most of the experiments; SC, XZ, and LW performed some parts of the experiments; ZP performed and analyzed the NGS sequencing; SC, XZ, and LW conducted the data analysis; YC and JC reviewed the data analysis. All authors approved the final manuscript.

Acknowledgements

We thank all the individuals who participated in this study.

References

1. Higgs DR, Engel JD, Stamatoyannopoulos G: Thalassaemia. Lancet 2012, 379(9813):373-383.
2. Muncie HL, Jr., Campbell J: Alpha and beta thalassemia. American family physician 2009, 80(4):339-344.
3. Su Q, Chen S, Wu L, Tian R, Yang X, Huang X, Chen Y, Peng Z, Chen J: Severe Thalassemia Caused by Hb Zunyi [beta147(HC3)Stop-->Gln; HBB: c.442T>C] on the beta-Globin Gene. Hemoglobin 2019, 43(1):7-11.
4. Propper RD: Hemolytic anemia: thalassemia syndromes. Pediatric annals 1980, 9(8):300-307.
5. Weatherall DJ: The thalassemia syndromes. Texas reports on biology and medicine 1980, 40:323-333.
6. Vichinsky E: Advances in the treatment of alpha-thalassemia. Blood reviews 2012, 26 Suppl 1:S31-34.
7. Giordano PC, Bakker-Verwij M, Harteveld CL: Frequency of alpha-globin gene triplications and their interaction with beta-thalassemia mutations. Hemoglobin 2009, 33(2):124-131.
8. Abedini SS, Forouzesh Pour F, Karimi K, Ghaderi Z, Farashi S, Tavakoli Koudehi A, Javadi Pirouz H, Mobini Nejad SB, Azarkeivan A, Najmabadi H: Frequency of alpha-Globin Gene Triplications and Coinheritance with beta-Globin Gene Mutations in the Iranian Population. Hemoglobin 2018, 42(4):252-256.
9. Farashi S, Bayat N, Faramarzi Garous N, Ashki M, Montajabi Niat M, Vakili S, Imanian H, Zeinali S, Najmabadi H, Azarkeivan A: Interaction of an alpha-Globin Gene Triplication with beta-Globin Gene Mutations in Iranian Patients with beta-Thalassemia Intermedia. Hemoglobin 2015, 39(3):201-206.
10. Yus Cebrian F, Recasens Flores Mdel V, Izquierdo Alvarez S, Parra Salinas I, Rodriguez-Vigil Iturrate C: Combination of a triple alpha-globin gene with beta-thalassemia in a gypsy family: importance of the genetic testing in the diagnosis and search for a donor for bone marrow transplantation for one of their children. BMC research notes 2016, 9:220.
11. Lie-Injo LE, Herrera AR, Kan YW: Two types of triplicated alpha-globin loci in humans. Nucleic acids research 1981, 9(15):3707-3717.
12. Trent RJ, Higgs DR, Clegg JB, Weatherall DJ: A new triplicated alpha-globin gene arrangement in man. British journal of haematology 1981, 49(1):149-152.
13. Camaschella C, Kattamis AC, Petroni D, Roetto A, Sivera P, Sbaiz L, Cohen A, Ohene-Frempong K, Trifillis P, Surrey S et al: Different hematological phenotypes caused by the interaction of triplicated alpha-globin genes and heterozygous beta-thalassemia. American journal of hematology 1997, 55(2):83-88.

14. Yu F, Zhong C, Zhou Q, Yang Y, Li W, Liu B, Pan S, Tang K, Fang R, Jin W: [Genetic analysis of beta-thalassemia mutations in the minority populations of Guizhou province]. Zhonghua yi xue yi chuan xue za zhi = Zhonghua yixue yichuanxue zazhi = Chinese journal of medical genetics 2010, 27(6):700-703.

15. Xie XM, Wu MY, Li DZ: Evidence of Selection for the alpha-Globin Gene Deletions and Triplications in a Southern Chinese Population. Hemoglobin 2015, 39(6):442-444.

16. Mehta PR, Upadhye DS, Sawant PM, Gorivale MS, Nadkarni AH, Shanmukhaiah C, Ghosh K, Colah RB: Diverse phenotypes and transfusion requirements due to interaction of beta-thalassemias with triplicated alpha-globin genes. Annals of hematology 2015, 94(12):1953-1958.

17. Tan M, Lu S, Wu L, Jin D, Peng Z, Chen Y: [Application of Next Generation Sequencing to Screen the Neonatal Thalassemia Genes]. Chin J Exp Hematol 2015, 23(5):1404-1409.

18. Goossens M, Dozy AM, Embury SH, Zachariades Z, Hadjiminas MG, Stamatoyannopoulos G, Kan YW: Triplicated alpha-globin loci in humans. Proceedings of the National Academy of Sciences of the United States of America 1980, 77(1):518-521.

19. Xiong F, Sun M, Zhang X, Cai R, Zhou Y, Lou J, Zeng L, Sun Q, Xiao Q, Shang X et al: Molecular epidemiological survey of haemoglobinopathies in the Guangxi Zhuang Autonomous Region of southern China. Clinical genetics 2010, 78(2):139-148.

20. Wang W, Chan AY, Chan LC, Ma ES, Chong SS: Unusual rearrangement of the alpha-globin gene cluster containing both the -alpha3.7 and alphaalphaalphaanti-4.2 crossover junctions: clinical diagnostic implications and possible mechanisms. Clinical chemistry 2005, 51(11):2167-2170.

21. Shang X, Li Q, Cai R, Huang J, Wei X, Xu X: Molecular characterization and clinical presentation of HKalphaalpha and anti-HKalphaalpha alleles in southern Chinese subjects. Clinical genetics 2013, 83(5):472-476.

22. Wu MY, Li J, Li SC, Li Y, Li DZ: Frequencies of HKalphaalpha and anti-HKalphaalpha Alleles in Chinese Carriers of Silent Deletional alpha-Thalassemia. Hemoglobin 2015, 39(6):407-411.

23. Jin L, Su B: Natives or immigrants: modern human origin in east Asia. Nature reviews Genetics 2000, 1(2):126-133.

Tables

Table 1 Prevalence of each type of the α-globin gene triplication in 7644 subjects
Genotype	Triplicated α-globin gene carriers (%)	Total (%)	
	Male	Female	
aα^{anti 4.2}/aα	22 (0.288)	18 (0.235)	40 (0.523)
aα^{anti 3.7}/aα	10 (0.13)	8 (0.105)	18 (0.235)
HKaα/aα	5 (0.065)	13 (0.17)	18 (0.235)
aα^{anti 3.7}/−SEA	1 (0.02)		1 (0.02)

Table 2. The ethnic distribution of the triplicated α-globin genes in Southwestern Guizhou

Ethnicity (number)	aα^{anti 4.2}/aα (%)	aα^{anti 3.7}/aα (%)	HKaα/aα (%)	aα^{anti 3.7}/−SEA (%)	Total (%)
Han (n=4475)	31 (0.69)	11 (0.25)	12 (0.27)	1 (0.022)	55 (1.23)
Dong (n=890)	2 (0.22)	3 (0.34)	3 (0.34)	0	8 (0.90)
Miao (n=737)	1 (0.14)	1 (0.14)	1 (0.14)	0	3 (0.42)
Buyi (n=486)	1 (0.21)	1 (0.21)	1 (0.21)	0	3 (0.63)
Shui (n=325)	1 (0.31)	0	1 (0.31)	0	2 (0.62)
Tujia (n=243)	4 (1.65)	2 (0.82)	0	0	6 (2.47)
Zhuang (n=196)	0	0	0	0	0
Yao (n=151)	0	0	0	0	0
Gelao (n=141)	0	0	0	0	0
Table 3 The geographical distribution of the triplicated α-globin genes in Southwestern Guizhou

Regions (number)	aαanti 4.2/αα (%)	aαanti 3.7/αα (%)	HKαα/αα (%)	aαanti3.7/-SEA (%)	Total (%)
Qiandongnan (n=3296)	16 (0.49)	11 (0.33)	16 (0.49)	1 (0.03)	44 (1.34)
Qianbei (n=2904)	12 (0.41)	6 (0.21)	0	0	18 (0.62)
Qiannan (n=492)	9 (1.83)	1 (0.2)	1 (0.2)	0	11 (2.23)
Qianxi (n=952)	3 (0.32)	0	1 (0.11)	0	4 (0.43)

Note: %, percentage, the number of a specific genotype carriers divided by the participants examined in a specific region.

Table 4 The blood parameters of the three α-globin gene triplication genotype groups

Genotypes	Number	RBC (×10^{12}/L)	HGB (g/L)	MCV (fL)	MCH (pg)
aαanti3.7/αα	16	5±0.27	138±9.8	93±7.7	31±2.7
HKαα	18	4.6±0.31	125.9±12.7	88.6±8.37	28.51±2.28
aαanti4.2/αα	37	5±0.46	133.9±13	93±9.5	30±1.7
aαanti3.7/-SEA	1	4.9	135	86.5	29.8

Note: RBC, red blood cells (normal range: 4-5×10^{12}/L); HGB, hemoglobin (normal range: male, 120–170 g/L; female, 110–160 g/L); MCV, mean corpuscular volume (normal range: 80-100 fL); MCH, mean corpuscular hemoglobin (normal range: 27-32 pg).

Table 5 The hemoglobin electrophoresis data of the three α-globin gene triplication genotypes
Genotypes	Number	HbA (%)	HbA2 (%)	HbF (%)
α α α anti3.7/aa	16	97±0.21	3±0.21	–
HKαα	18	96.9±1.0	2.89±0.37	0.7±0.2
α α α anti4.2/aa	37	97±0.44	3±0.31	0.8±0.2

Note: --, no data.

Table 6 Hematological parameters of the 5 cocarriers of the β-globin gene mutation and the α-globin gene triplication

Subject ID	Mut-01	Mut-02	Mut-03	Mut-04	Mut-05
β-gene defects	Cds 41/42 (-TTCT) beta⁰	Cds 71/72 (+A) beta⁰	IV-II-654 (C>T) beta⁺	Cds 41/42 (-TTCT) beta⁰	Cd17 (AAG>TAG) beta⁺
α genotypes	aa/aaa^{4.2}	aa/aaa^{3.7}	aa/aaa^{3.7}	aa/aaa^{4.2}	aa/aaa^{4.2}
Anemia	severe	mild	mild	mild	no
Gender	M	M	M	M	F
Age (years)	14	5	7	7	19
HGB (g/L)	59	80	85	78	134
MCV (fL)	58	68	73	59.6	97.5
MCH	17	25	24	18.5	30.9
HbA	–	97.7	90	91.9	97.5
HbA2	–	4.3	3.7	5.8	2.5
HbF	–	–	–	–	2.3
Hepatosplenomegaly	–	–	–	splenomegaly	–
Transfusion	Y	N	N	N	N
Treatment & prognosis	b	a	a	c	a

Note: Cd, codon; M, male; F, female; Y, yes; N, no; a, no treatment and occasional follow-up; b, transfusion treatment (HGB<80g/L, transfused with washed red blood cells) and regular follow-up; c, transfusion
treatment (HGB<80g/L, transfused with washed red blood cells) and occasional follow-up.

Figures

Figure 1

Map of the sampling location. (A) Guizhou province is located in southwestern China; (B) Blood samples were randomly collected from 8 counties/cities in four regions of Guizhou province, covering nine ethnic groups. Map images were made by ourselves. Note: The designations employed and the presentation of the material on this map do not imply the expression of any opinion whatsoever on the part of Research Square concerning the legal status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries. This map has been provided by the authors.
Figure 2

Beta-globin gene mutations co-inherited with the δ-globin gene triplication identified by DNA sequencing. (A) Codons 41/42 (-TTCT) beta0; (B) Codons 71/72 (+A) beta0; (C) IV-II-654 (C>T) beta+ mutation; and (D) Codon 17 (AAG>TAG).