The experience of canakinumab in renal amyloidosis secondary to Familial Mediterranean fever

Betul Sozeri¹*, Nesrin Gulez², Malik Ergin³ and Erkin Serdaroglu⁴

Introduction: Familial Mediterranean fever (FMF) is an autosomal recessive disease characterized by self-limited recurrent attacks of fever and serositis. Patients may develop renal amyloidosis. Colchicine prevents attacks and renal amyloidosis. Five to 10 % of the patients with FMF are resistant or intolerant to colchicine.

Case description: Herein, we reported our experience with clinical-laboratory features and treatment responses of a pediatric FMF patient with amyloidosis treated with canakinumab. We observed a significant decrease in proteinuria and increase growth in the patient.

Discussion and evaluation: The most serious complication of FMF is the development of AA type amyloidosis which is characterized by proteinuria. Colchicine is the prototype drug that decreases production of amyloidogenic precursor protein. Occasionally, colchicine inadequate patient is observed, as in our case. Canakinumab is a human anti-IL-1β monoclonal antibody. Previously, canakinumab efficacy were shown in a limited number of studies.

Conclusions: Our data, though limited to only one patient, emphasize that therapeutic intervention with canakinumab seems to be improve kidney function in colchicine-resistant FMF with renal amyloidosis.

Keywords: Familial Mediterranean fever, Amyloidosis, Child, Canakinumab
4–6 months [9]. Several studies showed that the patients with FMF were successfully treated with agents blocking interleukin (IL)-1 activity due to the critical role of IL-1 in the pathogenesis FMF [10–14].

Canakinumab is a high-affinity human anti-IL1β monoclonal antibody of the IgG1/k isotype developed for the treatment of immune disorders, and it is highly specific for IL-1β and does not interfere with other IL-1-activated pathways.

We would like to share our experience of a patient with colchicine-resistant FMF and renal amyloidosis, whose treatment with canakinumab substantially improved renal functions and reduced proteinuria over a period of 26 months.

Case presentation
A 14-year-old male with colchicine-resistant FMF and amyloidosis was admitted for the first time in May 2013. He was born to parents of second-degree consanguineous marriage. He had taken regular colchicine therapy (2 g/day) and ramipril (5 mg/day) for proteinuria for a year. From his history, he had recurrent FMF attacks associated with severe abdominal pain, joint pain, and fever, which had begun at the age of four. However, he was hospitalized for the first time at the age of 7 years because of intermittent febrile episodes with chills, abdominal pain, and arthritis involving ankle joints. Splenomegaly was found a year later. His attacks continued once a month until he was diagnosed with FMF at 13 years old. At that time, he had proteinuria, splenomegaly, and growth retardation. He was homozygous for the M694V mutation in MEFV gene. Also, microhematuria and proteinuria (38 mg/m2/h) was found at his urinalysis. Serum creatinine level was 1.1 mg/dl, and creatinine clearance was 89 mL/min. Diagnosis of chronic kidney disease (CKD) with AA amyloidosis was established via renal biopsy (Fig. 1). Severe glomerular amyloidosis plus mild vascular and mild interstitial amyloidosis was found in his kidney biopsy. Colchicine therapy was started with a dose of 1 mg/day. In the first month of treatment, he was clinically normal and his C-reactive protein (CRP) level was within normal limits. At his 6-month follow up, the dose of colchicine had to be increased (2 g/day) due to an increased attack rate (5 attacks per 6 months) despite the regular use of drugs.

The laboratory findings on admission revealed an elevated CRP (184 mg/dL) and SAA (645 mg/dL) levels. Nephrotic range proteinuria was found in urine analysis (43 mg/m2/h). Because of his poor response to colchicine, severe growth retardation, and severe proteinuria due to amyloidosis, we decided to start canakinumab treatment (150 mg/month/sc) in June 2013. Informed consent about the potential side effects and the empirical aspects of the therapy was obtained. One month later, the patient was symptom-free and the inflammatory parameters almost normalized. After 26 months of follow-up, with canakinumab treatment, his complaints, inflammatory parameters (CRP; 0.03 mg/dl and SAA; 3.81 mg/dl) and proteinuria were decreased. Splenomegaly was decreased and also his growth rate returned to normal (Fig. 2), after canakinumab therapy. The mean height SDS before therapy was significantly lower than after canakinumab (−2.12 ± 0.11 vs −1.71 ± 0.14, P = 0.009) (Fig. 3). He was kept on 2 mg of colchicine daily. No side effects were noted.

Discussion and evaluation
The most serious complication of FMF is the development of AA type amyloidosis which is characterized by proteinuria and is typically progressive and leads to end-
stage vital organ involvement, first diagnosed by Mamou and Cattan in 1952 [15]. Renal amyloidosis has been shown to cause mortality in FMF patients [16]. In the series reported by the Turkish FMF study group, the presenting clinical features of the patients with amyloidosis secondary to FMF were as follows: 32% proteinuria, 40% nephrotic syndrome, and 28% chronic renal failure [17]. The M694V mutation has been shown to be a strong risk factor of developing amyloidosis in different ethnic groups [17]. The production of the precursor to SAA is the main step in the pathogenesis of amyloidosis, which is produced by inflammatory signals, IL-1β, tumor necrosis factor (TNF)-α, and IL-6 [18]. The “gold standard” for the diagnosis of amyloidosis remains a tissue biopsy demonstrating characteristic hematoxylin and eosin changes and Congo red birefringence or metachromatic pink-violet staining with methyl violet or crystal violet [19].

The patient’s renal biopsy was evaluated with the scoring system defined for renal amyloidosis and was found as severe glomerular amyloidosis plus mild vascular and mild interstitial amyloidosis. The scoring system proposed by Sen S et al. [20] in 2010 and compared to clinical parameters by Castano et al. [21]. They have demonstrated that the severity of glomerular amyloid deposition was correlated with the risk of developing end-stage renal disease and increase the risk for premature death [21]. Also, they have reported proteinuria, and serum albumin and serum creatinine levels were correlated with degree of amyloidosis [21]. Also, the degree of amyloidosis was measured through parameters such as SAA protein and serum amyloid P (SAP) scintigraphy [18, 22].

Herein, we reported a FMF patient with biopsy-proven renal amyloidosis and growth retardation. He had various risk factors for amyloidosis including carrying the M694V allele, family history, and late diagnosis.

Pro-inflammatory cytokines may modulate growth patterns in children with inflammatory diseases through both systemic and local effects of the GH/IGF-1 axes [23]. It has been shown that FMF patients catch up to their growth with an effective colchicine treatment [24–26].

The aim of treatment in AA amyloidosis is the suppression, as complete as possible, of the inflammatory process responsible for the overwhelming SAA production. Colchicine is the prototype drug that decreases production of amyloidogenic precursor protein. Occasionally, colchicine inadequate patient is observed, as in our case. In such circumstances, anti IL-1 treatment options come into play. Anti IL-1 drugs impact on amyloidosis is still unknown. Previously, there were reports of some adult cases with successful use of anti IL-1 therapy (anakinra) in renal transplant recipients [11, 12]. There are few data from pediatric patients in literature. Bilginer Y et al. [27] reported a patient who was diagnosed with FMF and Behçet’s disease and proteinuria, with normal kidney function after 18 months of anakinra treatment. Recently, Ozcakar et al. [28] showed one child patient with nephrotic syndrome in whom partial remission had been observed after 12 months of anakinra therapy.

Canakinumab is a human anti-IL-1β monoclonal antibody. Its mode of action is based on the neutralization of IL-1β signaling which may result in the suppression of the inflammation process. To the best of our knowledge, about de novo canakinumab treatment in FMF patients with AA amyloidosis is limited. Topaloglu R et al. [29] reported a patient diagnosed amyloidosis was successful treated with canakinumab.
Cetin P et al. [12] reported experience in 20 cases of adult and pediatric FMF colchicine-resistant patients who were treated with anti-IL-1 agents. Twelve patients were receiving anakinra, and eight patients were treated with canakinumab. The number of monthly and yearly attacks after IL-1 treatment significantly decreased after the biologic agent (p < 0.05). Hashkes P et al. [13] conducted an open-label, single-arm study in seven children with colchicine-resistant FMF. Six participants met the primary outcome with ≥50 % reduction (range 76–100 %) in the FMF attack rate. The median 28-day time-adjusted attack rate decreased from 2.7 to 0.3 (89 %). Canakinumab was shown to be effective in treating pediatric patients with colchicine-resistant FMF in this study. Another study reported that in children with colchicine-resistant FMF, monthly canakinumab 150 mg subcutaneous injections prevented FMF attacks in patients with frequent attacks, and only one of nine patients experienced an attack during the treatment period [14].

Conclusions
Canakinumab has demonstrated a sustained clinical response in the patient affected by colchicine-resistant FMF and biopsy-proven renal amyloid deposits, blocking and significantly reducing renal damage progression. Also, we observed the normalization of the markers of inflammation inc. SAA, and the reduction of proteinuria in an overall period. Moreover, his growth pattern was improved with therapy. No adverse events, namely infectious episodes, were reported in our patient during treatment with canakinumab. We did not consider making a repeat biopsy for proteinuria completely regressed.

Our report emphasizes that the therapeutic intervention with canakinumab can treat colchicine-resistant FMF by suppressing inflammation and to prevent its most life-threatening complication, amyloidosis-related proteinuria. Further evaluations are needed in order to confirm the positive effect of canakinumab.

Abbreviations
CRD, chronic kidney disease; CRP, C-reactive protein; FMF, Familial Mediterranean fever; IL, interleukin; SAA, serum amyloid A protein; TNF, tumor necrosis factor.

Authors’ contributions
BS and NG were in charge of the patient’s treatment and care in hospital and drafted the manuscript. BS also supervised the management of patient and revised the final manuscript for submission. ME diagnosed the patient’s kidney biopsy. SE was in charge of the diagnosis of renal biopsy and helped in drafting the manuscript. All authors read and approved the final manuscript.

Competing interests
The authors declare that they have no competing interests.

Ethics approval and consent to participate
Written informed consent was obtained from the patient for publication of this Case report and any accompanying images. A copy of the written consent is available for review by the Editor of this journal.

Author details
1Department of Pediatric Rheumatology, Ege University Faculty of Medicine, Izmir, Turkey. 2Dr. Behcet Uz Children Diseases Teaching and Research Hospital Pediatric Immunology and Rheumatology, Izmir, Turkey. 3Dr. Behcet Uz Children Diseases Teaching and Research Hospital Pathology, Izmir, Turkey. 4Dr. Behcet Uz Children Diseases Teaching and Research Hospital Pediatric Nephrology, Izmir, Turkey.

Received: 13 December 2015 Accepted: 19 July 2016
Published online: 15 August 2016

References
1. Ben-Zvi I, Livneh A (2011) Chronic inflammation in FMF: markers, risk factors, outcomes and therapy. Nat Rev Rheumatol 7:105–112
2. The International FMF Consortium (1997) Ancient missense mutations in a new member of the Ro/SSA gene family are likely to cause familial Mediterranean fever. Cell 90:797
3. French FMF Consortium (1997) A candidate gene for familial Mediterranean fever. Nat Genet 17:25
4. Grataglione I, Bonfrate L, Ruggiero V, Scaccianoce G, Palasciano G, Portincasa P (2014) Novel therapeutics for the treatment of familial Mediterranean fever: from colchicine to biologics. Clin Pharmacol Ther 95:89–97
5. Ozen S, Bilginer Y (2014) A clinical guide to autoinflammatory diseases: Familial Mediterranean fever and next-of-kin. Nat Rev Rheumatol 10:135–147
6. Merlini G, Bellotti V (2003) Molecular mechanisms of amyloidosis. N Engl J Med 349:583–596
7. Hentgen V, Grateau G, Kone-Paut I, Livneh A, Padeh S, Rezzenbaum M, Amsalem S, Gererhi-Baruch R, Toustou I, Ben-Chetrit E (2013) Evidence-based recommendations for the practical management of Familial Mediterranean fever. Semin Arthritis Rheum 43:387–391
8. Har Haar N, Lachmann H, Ozen S, Woo P, Uziel Y, Modesto C, Koné-Paut I, Cantarini L, Insalaco A, Neven B, Hofer M, Rigante D, Al-Mayouf S, Toustou I, Gallizzi R, Papadopoulou-Alatikis E, Martino S, Kuemmerle-Deschner J, Obici L, Lagara N, Simon A, Nielsen S, Marietti A, Ruperto N, Gattorno M, Frenkel J, Paediatric Rheumatology International Trials Organisation (PRINTO) and the Eurofever/Eurotraps Projects (2013) Treatment of autoimmune diseases: results from the Eurofever Registry and a literature review. Ann Rheum Dis 72:675–685
9. Lidor M, Schermann JM, Shinar Y, Chetrit A, Niel E, Gererhi-Baruch R, Langevitz P, Livneh A (2004) Colchicine nonresponsiveness in familial Mediterranean fever: clinical, genetic, pharmacokinetic, and socioeconomic characterization. Semin Arthritis Rheum 33:273–282
10. Mitroulis I, Stenos P, Rits K (2010) Targeting IL-1beta in disease; the expanding role of NLRP3 inflammasome. Eur J Intern Med 21:157–163
11. Moser C, Pohli G, Haslinger I, Knapp S, Rowczno D, Russel T, Lachman HI, Lang U, Kovarik J (2009) Successful treatment of familial Mediterranean fever with Anakinra and outcome after renal transplantation. Nephrol Dial Transplant 24:676–678
12. Cetin P, Sari I, Soveri B, Cam O, Birlik M, Akko C, Ozen F, Akar S (2015) Efficacy of interleukin-1 targeting treatments in patients with familial Mediterranean fever. Inflammation 38:27–31
13. Hashkes P, Butbul Aviel Y, Lubin S, Ben-Dayan E, Tseang L, Birik R (2014) A76: long-term efficacy of canakinumab in childhood colchicine resistant familial Mediterranean Fever. Arthritis Rheumatol 66:188
14. Gül A, Ozdogan H, Erer B, Urguru S, Kasapcopur O, Davis N, Sevgi S (2015) Efficacy and safety of canakinumab in adolescents and adults with colchicine-resistant familial Mediterranean fever. Inflammation 38:27–31
15. Mamou H, Cattan R (1952) La maladie periodique sur 14 cas personnes dont 8 compliques de nephepathies. Semaine hop Paris 28:1062
16. Togli G, Livneh A, Vaante A, Alex A, Shamiss A, Derazy E, Tzur D, Ben-Zvi I, Tirosh A, Barchana M, Shohat T, Colan E, Amiral H (2014) Mortality risk factors associated with Familial Mediterranean fever among a cohort of 1.25 million adolescents. Ann Rheum Dis 73:704–709
17. Tunca M, Akar S, Ozen F, Ozdogan H, Kasapcopur O, Yalcinkaya F, Tutar E, Ozen S, Topaloglu R, Yilmaz E, Ari M, Bakaloglu A, Besbes N, Akpolat T, Ornc A, Erken E, Turkish FMF Study Group (2005) Familial Mediterranean fever (FMF) in Turkey: results of a nationwide multicenter study. Medicine (Baltimore) 84:1–11
18. Lachmann HJ, Goodman HJ, Gilberston JA, Gallimore JR, Sabin CA, Gilmore JD, Hawkins PN (2007) Natural history and outcome in systemic AA amyloidosis. N Engl J Med 356:2361–2379
19. Bennhold H (1922) spezifische Amyloidfarbung mit Kongorot. Munch Med Wochenschr 69:1537–1538
20. Sen S, Sarsik B (2010) A proposed histopathologic classification, scoring, and grading system for renal amyloidosis: standardization of renal amyloid biopsy report. Arch Pathol Lab Med 134:532–544
21. Castano E, Palmer MB, Vigneault C, Luciano R, Wong S, Moeckel G (2015) Comparison of amyloid deposition in human kidney biopsies as predictor of poor patient outcome. BMC Nephrol 16:64
22. Oner A, Erdogan O, Demircin G, Bulbul M, Memis L (2003) Efficacy of colchicine therapy in amyloid nephropathy of familial Mediterranean fever. Pediatr Nephrol 18:521–526
23. MacRae VE, Wong SC, Fanpharison C, Ahmed SF (2006) Cytokine actions in growth disorders associated with pediatric chronic inflammatory diseases (review). Int J Mol Med 18:1011–1018
24. Zung A, Barash G, Zadik Z, Barash J (2006) Familial Mediterranean fever and growth: effect of disease severity and colchicine treatment. J Pediatr Endocrinol 19:15
25. Türkmen M, Soylu OB, Kasap B, Güneş S, Tufekçi O, Soylu A, Erçal D, Karakuş O (2008) Growth in Familial Mediterranean fever: effect of attack rate, genotype and colchicine treatment. J Pediatr Endocrinol Metab 21:789–792
26. Sozeri B, Yilmaz E, Mir S, Berdeki A (2011) Effect of colchicine-resistant Familial Mediterranean fever on growth parameters. Archives of Rheum 26:1–5
27. Bilginer Y, Ayaz NA, Ozen S, Besbas N (2015) Anti-interleukin 1 treatment in secondary amyloidosis associated with autoinflammatory diseases. Pediatr Nephrol 31:633–640