Tumor Necrosis Factor Alpha Extended Haplotypes and Risk of Gastric Carcinoma

Paulo Canedo,1,2 Cecília Durães,2 Fábio Pereira,1 Gonçalo Regalo,1,2 Nuno Lunte,3 Henrique Barros,3 Fátima Carneiro,1,2 Raquel Seruca,1,2 Jorge Rocha,1,4 and José C. Machado1,2

1IPATIMUP - Institute of Molecular Pathology and Immunology, Faculty of Medicine, 2Faculty of Medicine, 3Department of Hygiene and Epidemiology, Faculty of Medicine, and 4Faculty of Sciences, University of Porto, Porto, Portugal

Abstract

The tumor necrosis factor α (TNFA)-308*A allele has been found to confer an increased risk of gastric carcinoma. Inconsistency in risk estimates across populations lead us to hypothesize about the presence of an alternative causal locus in the same chromosomal region. A suitable approach is to determine the tumor necrosis factor haplotypic structure in order to clarify whether the association between the *A allele and the increased risk of gastric carcinoma is etiologic or secondary to linkage disequilibrium. Firstly, we assessed the association between the TNFA-308G>A polymorphism and the risk of gastric carcinoma in a population from Northern Portugal (508 gastric carcinoma patients, 713 controls); secondly, we genotyped five microsatellite loci (TNFa, b, c, d, e) flanking the TNFA-308G>A locus to establish the haplotypic structure associated with this single-nucleotide polymorphism in cases (122 patients) and controls (169 individuals). We found a significant association between the *A allele and increased risk of gastric carcinoma (odds ratio, 1.7; 95% confidence interval, 1.3-2.2) confirming previous results in our population. Regarding the *A allele–associated haplotypes, the most relevant difference was found for the H1A haplotype present in 33.1% of the cases and 12.5% of the controls. We also observed haplotypes associated with the *A allele that were found only in cases or controls. A population differentiation test showed that the gastric carcinoma and the control groups were significantly different for the *A allele haplotypic structure. This suggests that the association between the TNFA-308G>A polymorphism and increased risk of gastric carcinoma is dependent on linkage disequilibrium with an as yet unidentified locus. (Cancer Epidemiol Biomarkers Prev 2008;17(9):2416–20)

Introduction

Gastric carcinoma is one of the most common malignancies worldwide. Although decreasing in incidence in the past 50 years, it remains the second most common cause of cancer-related death. Estimates predict 1.1 million new cases in the year 2010 (1, 2). The Helicobacter pylori bacterium colonizes the human stomach and is the most recognized and well-known etiologic risk factor for gastric carcinoma (3). It possesses a unique array of features that makes it highly adapted to this ecological niche and causes a long-term infection of the gastric mucosa. The strong inflammatory response by the human host usually does not eradicate the bacteria then causing damage on the gastric epithelial cells (4). The infection first induces chronic superficial (non-atrophic) gastritis, which can progress through chronic atrophic gastritis, intestinal metaplasia, and dysplasia towards gastric carcinoma (5).

The tumor necrosis factor (TNF) α is a pleiotropic cytokine mostly produced by activated monocytes and macrophages, which play a key role in the inflammatory response (6, 7). Thus, it is a strong candidate for mediating the risk of developing immunologically related malignant disease. The TNFA gene, which encodes the TNFα cytokine, is located within the human leukocyte antigen class III region of the major histocompatibility complex on chromosome 6 (section 6p21). This region is highly polymorphic and contains a number of immune response genes such as lymphotoxin α (also known as TNFB) and the lymphotoxin β (also known as TNFC).

Several single-nucleotide polymorphisms (SNP) have been identified in the TNFA gene, mainly in the 5′-promoter region. Five microsatellites (TNFa, b, c, d, and e), occurring together with those SNPs in extended haplotypes, have also been described (8-10). Many studies have investigated the relation between TNF polymorphisms and the susceptibility to or outcome of various infectious (11, 12), inflammatory (13, 14), and neoplastic diseases (15-17). Although several promoter polymorphisms have been analyzed, most studies have focused on the TNFA-308G>A (rs1800629). Since the first reports of TNFA association with gastric carcinoma (18-22), the TNFA-308*A allele has emerged as an

Received 5/6/08; revised 5/30/08; accepted 6/16/08.

Grant support: Fundação para a Ciência e Tecnologia (REEQ/218/SAU/2005, POCTI/SAU-ESP/56126/2004 and POCTI/SAU-ESP/64685/2004), by Programa Operacional Ciência, Tecnologia e Inovação (POCTI), by Fundo Comunitário Europeu (FEDER), by Programa Operacional de Saúde/SAUDE XXI by Associação Portuguesa da Indústria Farmacêutica (APIFARMA) and by Sixth Research Framework Programme of the European Union, Project INCA (LSHC-CT-2005-018704).

Note: P. Canedo and C. Durães contributed equally to this work.

Requests for reprints: José Carlos Machado, IPATIMUP, Rua Dr. Roberto Frias s/n, 4201-465 Porto, Portugal, Phone: 351-225570708; Fax: 351-225570799.
E-mail: josem@ipatimp.pt

Copyright © 2008 American Association for Cancer Research.
doi:10.1158/1055-9965.EPI-08-0413
important candidate accounting for the increased risk of gastric carcinoma development (23, 24). Nevertheless, outcomes of the numerous studies on whether polymorphisms in or near TNF genes do underlie these associations are conflicting. While TNFA alleles have been associated with the genetic predisposition to differential secretion of TNFa, the functional assays described in the literature remain contradictory (25, 26).

Numerous association studies of disease susceptibility target candidate genes based only on their putative functionality. The polymorphisms are then analyzed independently of the genetic structure of the chromosome where they are located. An alternative strategy is the establishment of the haplotypic structure inferred from allelic variants at several loci. The main advantage of this alternative is that, with this genetic information, gene-disease association studies can be performed without prior assumptions on the functional relevance of specific variants.

Several studies have described associations between TNF microsatellites and infectious diseases as well as cancer. However, none have studied TNF microsatellites extended haplotypes and the risk of gastric carcinoma. In the present investigation, we performed a case-control study for the TNFA-308G>A polymorphism in order to determine the association with the risk of gastric carcinoma development. The subsequent aim was to establish the haplotypic structure associated with the TNFA-308G>A polymorphism in both cases and controls by genotyping five polymorphic microsatellite loci (TNFa, b, c, d, and e) flanking the TNFA gene over a 20 kb region. Our results indicate that the detected association between the pro-inflammatory TNFA gene and the increased risk of gastric carcinoma is at least partially influenced by linkage disequilibrium with an as yet unidentified locus.

Materials and Methods

Study Population

A total of 1,221 subjects from the North of Portugal were enrolled in this study, comprising gastric carcinoma patients (n = 508) and controls (n = 713). The control group consisted of healthy blood donors (n = 318) and a representative sample of the non-institutionalized adult population of Porto (n = 395), Portugal, selected during the assembling of the Epipoporto cohort (mean age, 37 y; median age, 35 y; range, 18-64 y; male:female ratio, 1.7:1). A detailed description of the selection procedures and participants was published previously (27). Patients with gastric carcinoma (mean age, 56 y; median age, 58 y; range, 26-90 y; male:female ratio, 1.4:1) had been diagnosed and treated by tumor resection at Hospital S. João, Porto, Portugal.

Genotyping

Genomic DNA from the blood samples of control individuals and from gastric carcinoma patients was isolated using standard proteinase K digestion and phenol/chloroform extraction. Genotyping of the TNFA-308G>A SNP was done by the 5' nuclelease PCR assay (TaqMan). TaqMan (SNP Genotyping Assays) primers, probes, and amplification conditions are available upon request. In a subset of 50 samples, the genotypes were confirmed by direct sequencing. The five TNF-linked microsatellites (TNFa, b, c, d, and e; Fig. 1) were genotyped using PCR and GeneScan in a total of 291 individuals (169 controls and 122 gastric carcinoma patients randomly selected from the total sample) and following methods previously described (28).

Statistical Analysis

Evidence for deviation from Hardy-Weinberg equilibrium of alleles at individual loci was assessed by exact tests using GENEPOP (ref. 29; ftp://ftp.cefe.cnrs.mop.fr/pub/pc/msdos/genepop/). Differences in the proportion of the TNFA-308G>A genotype between cases and controls was assessed using the x² test. Crude odds ratios (OR) with 95% confidence intervals (95% CI) were estimated by unconditional logistic regression analysis using SPSS (SPSS for Windows, Rel. 14.0.0. 2005, SPSS Inc.). Differences were considered to be significant at a P < 0.05. All statistical tests were two-sided. Haplotypes defined by the association of alleles from the TNFA-308G>A SNP and the five microsatellite loci were inferred by the maximum likelihood approach implemented in the ARLEQUIN v.2.0. software package (30). Population differentiation was tested using ARLEQUIN v.2.0. Haplotypes associated with the TNFA-308G allele were designated as follows: H1G-TNFa1b1c2-308*Gd5e1; H2G-TNFa6b5c1-308*Gd4e3; H3G-TNFa10b4c1-308*Gd4e3; H4G-TNFa11b4c1-308*Gd4e3; H5G-TNFa2b1c2-308*Gd4e1; H6G-TNFa7b4c1-308*Gd4e3; haplotypes associated with the TNFA-308A allele were designated as follows: H1A-TNFa2b3c1-308*A d2e3; H2A-TNFa4b5c1-308*Ad4e3; H3A-TNFa2b3c1-308*Ad1e3; H4A-TNFa4b5c1-308*Ad3e3; H5A-TNFa5b7c1-308*Ad5e3; H6A-TNFa3b5c1-308*Ad4e3; H7A-TNFa4b7c1-308*Ad4e3; H8A-TNFa2b1c2-308*Ad5e3.

Results

TNFA-308G>A SNP Case-Control Study. Genotype frequencies of the TNFA-308G>A polymorphism in the control group did not deviate significantly from those

![Figure 1](Image 112x147 to 465x161)

Figure 1. TNF gene cluster region with the location of the five microsatellites and the TNFA-308G>A polymorphism (adapted from Hajeer AH & Hutchinson IV 2001). Black blocks represent exons, thin longitudinal lines represent polymorphisms, and arrows represent the direction of transcription.
Table 1. Observed allelic frequencies of the TNFA–308*G>A SNP and TNF microsatellites in gastric carcinoma cases and healthy controls

Polymorphism	Alleles	Cases n = 508	Controls n = 713
TNFA–308	G	0.748	0.811
	A	0.252	0.189
TNF microsatellites			
TNFa	a1	0.024	0.018
	a2	0.260	0.225
	a3	0.032	0.036
	a4	0.132	0.118
	a5	0.112	0.098
	a6	0.072	0.112
	a7	0.064	0.086
	a8	0.004	0.015
	a9	0.024	0.027
	a10	0.140	0.166
	a11	0.076	0.071
	a12	0.012	0.003
	a13	0.048	0.027
TNFB	b1	0.136	0.157
	b2	0.152	0.107
	b3	0.268	0.352
	b4	0.360	0.320
	b5	0.084	0.065
TNFC	c0	0.004	0.000
	c1	0.680	0.657
	c2	0.316	0.343
TNFD	d1	0.004	0.044
	d2	0.112	0.047
	d3	0.024	0.124
	d4	0.456	0.432
	d5	0.276	0.278
	d6	0.108	0.056
	d7	0.020	0.018
TNFE	e0	0.008	0.0
	e1	0.140	0.130
	e2	0.072	0.047
	e3	0.780	0.822

expected under Hardy-Weinberg equilibrium (Table 1). In this group, the -308*G allele had a frequency of 0.811 and the -308*A allele had a frequency of 0.189. In the gastric carcinoma group, the frequencies of the -308*G allele and the -308*A alleles were, respectively, 0.748 and 0.252. Genotype frequencies among the gastric carcinoma cases and controls are summarized in Table 2. Both control groups have similar TNFA–308G>A genotype frequencies. The comparison of TNFA–308G>A genotype frequencies between cases and controls confirmed the existence of a significant association of the TNFA–308*G allele and the increased risk of gastric carcinoma with an OR of 1.7 (95% CI, 1.3-2.2; Table 1).

TNF Microsatellite Frequencies and Haplotypic Structure. The observed distributions for the TNFa, b, c, d, and e microsatellites are similar to those previously reported (13, 31). The TNFa microsatellite is the most polymorphic with 13 out of 14 known alleles present in our study population. TNFB, c, d, and e exhibited, respectively, 5, 3, 7, and 4 alleles. Table 1 shows the allelic frequencies at the five TNF microsatellite loci. TNF microsatellite alleles and the TNFA–308G>A SNP were phased into haplotypes by maximum likelihood. Haplotype inference disclosed a higher number of haplotypes associated with the TNFA–308*G allele than with the TNFA–308*A allele in both cases (75 and 22, respectively) and controls (84 and 19, respectively). This result supports the hypothesis that the TNFA–308*A allele is the most recent one. The frequencies of the TNFA–308*A–associated haplotypes are represented in Fig. 2. No significant differences could be observed relatively to the TNFA–308*G–associated haplotypes (designated H1G to H6G, Fig. 2). Regarding the TNFA–308*A allele–associated haplotypes (designated H1A to H8A), the most prominent difference was that found for the H1A haplotype, which was observed in 33.1% of the cases and in 12.5% of the controls. We have also found two other haplotypes (H7A and H8A) associated with the TNFA–308*A allele that are present only in the cases (although in very low frequencies) and three haplotypes present only in the control population (H3A, H4A, and H6A). A population differentiation test was performed showing that the control and the gastric carcinoma groups are significantly different (P < 0.005).

Discussion

It is well established that gastric carcinoma depends on the combined effects of H. pylori infection, environmental factors, and host susceptibility. The TNFA–308G>A promoter SNP is one of the most frequently reported candidate host factors associated with the risk for gastric carcinoma. However, the increasing number of published studies has revealed a conspicuous lack of reproducibility among the various populations (23, 24). So far, it is not known whether the TNFA–308G>A SNP is acting as an etiologic susceptibility locus or if it is associated in linkage disequilibrium with a causal sequence variant that has not yet been identified. In order to help clarify the association between the TNFA–308G>A polymorphism and the risk of gastric carcinoma, we used a haplotype-based approach by genotyping five microsatellites surrounding that SNP.

Although a similar strategy using the same markers has been used for the study of susceptibility to a number of conditions like Chagas’ disease (12), pancreatitis (32), Crohn’s disease (13), Alzheimer’s disease (33), and rheumatoid arthritis (14), this study provides the first description of TNF microsatellite allele frequencies and derived haplotypes in the study of gastric carcinoma susceptibility. Moreover, our TNFA–308G>A SNP association study was based on a larger sample size than any of the previously published studies. Relatively to this SNP, we have confirmed the established association (22) between individuals carrying the TNFA–308*A allele and increased risk for developing gastric carcinoma (OR, 1.7; 95% CI, 1.3-2.2). In fact, two recent meta-analyses (23, 24) identify the -308G>A as the single TNFA SNP displaying

Table 2. Genotype distribution of the TNFA–308G>A polymorphism in gastric carcinoma cases and healthy controls

Genotypes	Cases n = 508	Controls n = 713	OR (95% CI)
GG	330 (65.0%)	544 (76.3%)	1 (referent)
A carrier	178 (35.0%)	169 (23.7%)	1.7 (1.3-2.2)

NOTE: P-value Hardy-Weinberg Equilibrium control population = 0.91.
a statistically significant association with increased risk of gastric carcinoma. In those reports, evaluations of association with gastric carcinoma risk limited to anatomic and histologic subtypes or populations in Hardy-Weinberg equilibrium did not yield heterogeneous results and remained consistently strong. However, when studies considered Caucasian and Asian populations separately, the association was statistically significant only for the Caucasian. In their overall analysis, these studies did not rule out counter-examples in Caucasian populations like those reported by García-González et al. 2007 (34) and Kamangar et al. 2006 (35). The present understanding of the role of the TNFA-308G>A polymorphism on susceptibility to disease only emphasizes the importance of extending single-SNP association studies to haplotype-based approaches.

Our study shows that the TNFA-308*A-associated haplotypic structure is significantly different between cases and controls. Although the haplotype inference disclosed a higher number of haplotypes associated with the *G allele than with the *A allele in both cases and controls, no significant differences between groups could be observed in the TNFA-308G haplotypic structure. In contrast, a population differentiation test showed that the control and gastric carcinoma groups are significantly different for the TNFA-308*G haplotypic structure as opposed to that of the TNFA-308*G. The most prominent difference was found for the H1A (TNFa2b3c1-308*Ad2e3) haplotype that showed a 3-fold increase in cases. We have also observed haplotypes associated with the TNFA-308*A allele that were found only in cases or controls. Taken together, these results suggest that the association between the promoter polymorphism and increased risk of gastric carcinoma is dependent on linkage disequilibrium. Thus, we cannot rule out the possibility that the TNF chromosomal region may contain a stronger genetic causal factor for gastric carcinoma development than any of the TNFA analyzed polymorphisms. The studies referred to above as using the TNF microsatellite haplotype-based approach have also found haplotypes that are more frequent in affected individuals than in controls, but none of those matched our susceptibility haplotypes.

In our search for a more suitable candidate gene and/or locus, we also did a TNF microsatellite single-allele association study (data not shown). Approximately 60% of the observed microsatellite alleles showed a higher frequency in the gastric carcinoma group than in the control group. Microsatellite markers were considered individually, and the association with gastric carcinoma risk was determined. We found higher magnitude associations between the TNF microsatellite markers and the increased risk of gastric carcinoma than that observed for the TNFA-308*A allele; however, only the TNFd2 allele was found to be significantly associated with the development of gastric carcinoma with an OR of 2.9 (95% CI, 1.4-5.7). We can conclude that the allele 2 of the TNFd microsatellite is also dependent on linkage disequilibrium and may be a better marker for increased risk of development of gastric carcinoma in our studied population.

In summary, the TNFA-308*A allele is associated with increased risk of gastric carcinoma development in our population. Additionally, we reported that this allele is in linkage disequilibrium with TNF microsatellite alleles and that a possible gastric carcinoma causal sequence variant is present in the same chromosomal region. This might represent a fundamental finding as it highlights the relevance of using haplotype-based approaches to provide a better understanding of susceptibility to gastric carcinoma and the consequent differences in incidence among populations.

Disclosure of Potential Conflicts of Interest
No potential conflicts of interest were disclosed.

Acknowledgments
The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked advertisement in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.
References
1. Parkin DM, Bray F, Ferlay J, Pisani P. Global cancer statistics, 2002. CA Cancer J Clin 2003;55:74–108.
2. Parkin DM, International variation. Oncogene 2004;23:629–40.
3. Marshall B. Helicobacter pylori: 20 years on. Clin Med 2002;2:147–52.
4. Macarthur M, Hold GL, El-Omar EM. Inflammation and Cancer II. Role of chronic inflammation and cytokine gene polymorphisms in the pathogenesis of gastrointestinal malignancy. Am J Physiol Gastrointest Liver Physiol 2004;286:C2515–20.
5. Correa P. Human gastric carcinogenesis: a multistep and multifactorial process-First American Cancer Society Award Lecture on Cancer Epidemiology and Prevention. Cancer Res 1992;52:6735–40.
6. Hajee AH, Hutchinson IV. Influence of TNFalpha gene polymorphisms on TNFalpha production and disease. Hum Immunol 2001;62:1191–9.
7. Aggarwal BB, Shishodia S, Sandur SK, Pandey MK, Sethi G. Inflammation and cancer: how hot is the link? Biochem Pharmacol 2006;72:1605–21.
8. Nedsospasov SA, Udalova IA, Kuprash DV, Turetskaya RL. DNA sequence polymorphism at the human tumor necrosis factor (TNF) locus. Numerous TNF/lymphotoxin alleles tagged by two closely linked microsatellites in the upstream region of the lymphotoxin (TNF-beta) gene. J Immunol 1991;147:1053–9.
9. Jongeneel CV, Briant L, Udalova IA, Sevin A, Nedsospasov SA, Cambon-Thomsen A. Extensive genetic polymorphism in the human tumor necrosis factor region and relation to extended HLA haplotypes. Proc Natl Acad Sci U S A 1991;88:9717–21.
10. Udalova IA, Nedsospasov SA, Webb GC, Chaplin DD, Turetskaya. Highly informative typing of the human TNF locus using six adjacent polymorphic markers. Genomics 1993;16:180–6.
11. McGuire W, Knight JC, Hill AV, Alsopp CE, Greenwood BM, Kwiatkowski D. Severe malarial anemia and cerebral malaria are associated with different tumor necrosis factor promoter alleles. J Infect Dis 1999;179:287–90.
12. Campelo V, Danzas RO, Simoes RT et al. TNF Microsatellites Alleles in Brazilian Chagasic Patients. Dig Dis Sci 2007;52:3334–9.
13. Plevy SE, Targan SR, Yang H, Fernandez D, Rotter JI, Toyoda H. Tumor necrosis factor microsatellites define a Crohn’s disease-associated haplotype on chromosome 6. Gastroenterology 1996;110:1053–5.
14. Mulcahy B, Waldron-Lynch F, McDermott MF, et al. Genetic variability in the tumor necrosis factor-lymphotoxin region influences susceptibility to rheumatoid arthritis. Am J Hum Genet 1996;59:676–83.
15. Ghaderi M, Nikitina L, Peacock CS, et al. Tumor necrosis factor a-11 and DRB5-6 (B*0602) haplotype increase the risk for cervical intraepithelial neoplasia in human papillomavirus 16 seropositive women in Northern Sweden. Cancer Epidemiol Biomarkers Prev 2000;9:1067–70.
16. Morgan GJ, Adamson PJ, Mensah FK, et al. Haplotypes in the tumour necrosis factor region and myeloma. Br J Haematol 2005;129:358–65.
17. Duarte I, Santos A, Sousa H, et al. G-308A TNF-alpha polymorphism is associated with an increased risk of invasive cervical cancer. Biochem Biophys Res Commun 2005;334:588–92.
18. Jang WH, Yang YI, Yea SS, et al. The -238 tumor necrosis factor-alpha promoter polymorphism is associated with decreased susceptibility to cancers. Cancer Lett 2001;166:41–6.
19. Wu MS, Huang SP, Chang YT, et al. Tumor necrosis factor-alpha and interleukin-10 promoter polymorphisms in Epstein-Barr virus– associated gastric carcinoma. J Infect Dis 2002;185:106–9.
20. El-Omar EM, Rabkin CS, Gammon MD, et al. Increased risk of noncardia gastric cancer associated with proinflammatory cytokine gene polymorphisms. Gastroenterology 2003;124:1193–201.
21. Figueiredo C, Machado JC, Pharoah P, et al. Helicobacter pylori and interleukin 1 genotyping: an opportunity to identify high-risk individuals for gastric carcinoma. J Natl Cancer Inst 2002;94:1680–7.
22. Machado JC, Figueiredo C, Caneiro P, et al. A proinflammatory genetic profile increases the risk for chronic atrophic gastritis and gastric carcinoma. Gastroenterology 2003;125:364–71.
23. Gorouhi F, Ismaili F, Bahrami H, Kamangar F. Tumour-necrosis factor-A polymorphisms and gastric cancer risk: a meta-analysis. Br J Cancer 2008;98:1443–51.
24. Zhang J, Dou C, Song Y, et al. Polymorphisms of tumor necrosis factor-alpha are associated with increased susceptibility to gastric cancer: a meta-analysis. J Hum Genet 2008;53(6):479–89. [Epub ahead of print Mar 19].
25. Wilson AG, Symons JA, McDowell TL, McDevitt HO, Duff GW. Effects of a polymorphism in the human tumor necrosis factor alpha promoter on transcriptional activation. Proc Natl Acad Sci U S A 1997;94:3195–9.
26. Kroeger KM, Steer JH, Joyce DA, Abraham LJ. Effects of stimulus and cell type on the expression of the -308 tumour necrosis factor promoter polymorphism. Cytokine 2000;12:110–9.
27. Ramos E, Lopes C, Barros H. Investigating the effect of nonparticipation using a population-based case-control study on myocardial infarction. Ann Epidemiol 2004;14:437–41.
28. Udalova IA, Nedsospasov SA, Webb GC, Chaplin DD, Turetskaya RL. Highly informative typing of the human TNF locus using six adjacent polymorphic markers. Genomics 1993;16:180–6.
29. Raymond M, Rousset F. GENEPOP (version 2.0): a population genetics software for exact tests and ecumenicism. J Heredity 1998;89:165–6. [available on the internet at http://wbiomed.CRM.univ-mrs.fr/GENEPOP].
30. Schneider S, Roessli D, Excoffier L. ARLEQUIN (version 2.0): a software for population genetics data analysis. Geneva (Switzerland): Genetics and Biometry Laboratory, University of Geneva; 2000.
31. Gallagher G, Eskdale J, Oh HH, Richards SD, Campbell DA, Field M. Polymorphisms in the TNF gene cluster and MHC serotypes in the West of Scotland. Immunogenetics 1997;45:188–94.
32. O’Reilly DA, Dunlop S, Sargent K, Demaine A, Wilkinson S, Kingsnorth AN. Tumour necrosis factor microsatellite haplotypes are associated with chronic pancreatitis. J Pancreas (Online) 2006;7:14–26.
33. Culpan D, MacGowan SH, Ford JM, et al. Tumour necrosis factor-alpha gene polymorphisms and Alzheimer’s disease. Neurosci Lett 2003;350:61–5.
34. Garcia-Gonzalez MA, Laras A, Quintero E, et al. Gastric cancer susceptibility is not linked to pro- and anti-inflammatory cytokine gene polymorphisms in whites: a nationwide multicenter study in Spain. Am J Gastroenterol 2007;102:1878–92.
35. Kamangar F, Abnet CC, Hutchinson AA, et al. Polymorphisms in inflammation-related genes and risk of gastric cancer (Finland). Cancer Causes Control 2006;17:117–25.