Glioblastoma is the most common primary brain tumor in adults, which is associated with an extremely poor prognosis, with a median survival following diagnosis of 15 months. Glioblastoma are aggressive tumors, characterized by areas of rapid cell proliferation, angiogenesis, and necrosis, reflecting the aggressive nature of this disease. To date, standard treatment for glioblastoma involves surgical resection of as much of the tumor bulk as possible, followed by radiotherapy and chemotherapy to eliminate the remaining cells. However, these treatments are palliative in nature, and tumors fatally relapse within 7 to 10 months. As such, long-term survival rates for glioblastoma patients have not significantly improved over the past decade.

Glioblastoma are associated with significant inter- and intratumoral heterogeneity. Within glioblastoma exists a population of tumor-initiating cells also named as glioblastoma stem-like cells (GSCs) that have a proposed role in tumor initiation, resistance to current therapies, invasion, and angiogenesis. Although some debates on the origin and definition of GSCs remain, the presence of these cells within specific niches within tumors is unknown. Our laboratory conclusively demonstrated that brain endothelial cells positively control the expansion of GSCs. Notably, we found that GSCs are addicted to the hormonal peptide apelin (APLNR) secreted by surrounding endothelial cells, and identified the APLN/APLNR nexus as a promising druggable network in glioblastoma.

ABSTRACT: Glioblastoma multiforme are mortifying brain tumors that contain a subpopulation of tumor cells with stem-like properties, termed as glioblastoma stem-like cells (GSCs). These GSCs constitute an autonomous reservoir of aberrant cells able to initiate, maintain, and repopulate the tumor mass. A new approach to brain tumor therapy consists of targeting the GSC population. The GSCs are situated in perivascular niches, closely associated with brain microvascular endothelial cells thereby involved in bidirectional molecular and cellular interactions. In this scenario, the endothelium not only supplies oxygen and necessary nutrients but also seeds a protective microenvironment for tumor growth. Although GSC fate, plasticity, and survival are regulated by external cues emanating from endothelial cells, the nature of such angiocrine signals remains unknown. Our laboratory conclusively demonstrated that brain endothelial cells positively control the expansion of GSCs. Notably, we found that GSCs are addicted to the hormonal peptide apelin (APLNR) secreted by surrounding endothelial cells, and identified the APLN/APLNR nexus as a promoting druggable network in glioblastoma.

KEYWORDS: Glioblastoma, apelin, GPCR, endothelium

RECEIVED: January 24, 2018. ACCEPTED: January 26, 2018.

TYPE: Commentary

FUNDING: The author(s) disclosed receipt of the following financial support for the research, authorship, and/or publication of this article: This research was funded by Ligue nationale contre le cancer comité de Loire-Atlantique et Vendée (J.G) and Region Pays de la Loire et Nantes Métropole under Connect Talent Grant (J.G).

DECLARATION OF CONFLICTING INTERESTS: The author(s) declared no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.

CORRESPONDING AUTHOR: Julie Gavard, CRCINA, Team SOAP, Inserm, CNRS, Université de Nantes, Université d’Angers, 8 quai Moncousu, Nantes, F-44000, France. Email: julie.gavard@inserm.fr

COMMENT ON: Harford-Wright E, Andre-Gregoire G, Jacobs KA, Treps L, Le Gonidec S, Leclerc HM, Gonzalez-Diést O, Roux G, Guillemann F, Louisouaum D, Oliver L, Valette FM, Foutelle F, Valet P, Davenport AP, Glen RC, Bidere N, Gavard J. Pharmacological targeting of apelin impairs glioblastoma growth. Brain. 2017 Nov 1;140(11):2939-2954. doi: 10.1093/brain/awx253. PubMed PMID: 29053791.
An alternate argument is that the observed reduction in tumor volume associated with MM54 administration may be due to a reduction in angiogenesis. Apelin has previously been implicated in angiogenesis and is reported to induce vessel sprouting and stabilization of contacts between endothelial cells.15,16 Indeed, apelin has a proposed role in tumor angiogenesis and response to anti-angiogenic therapies, with apelin messenger RNA reported to be elevated in patients who do not respond to anti-angiogenic therapy.19 Moreover, apelin expression has been positively correlated with increased microvessel densities and subsequent tumor growth in human non–small-cell lung carcinoma.20 It is well established that tumors rely heavily on neo-angiogenesis to receive the nutrients they require to survive.21 Consequently, the observed effect on tumor growth by blocking apelin in vivo may also be associated with an anti-angiogenic effect rather than by directly targeting the GSCs. However, the weight of the in vitro data suggests that endothelial–derived apelin has a clear role in the maintenance of these human GSCs.1 Moreover, implantation of GSCs in which the apelin receptor has been silenced while left intact in host endothelial cells demonstrated a reduction in tumor size compared with shRNA control groups, a result which cannot be explained by apelin-mediated changes toward angiogenesis.

Although impressive results were obtained with the MM54 compound in xenografted mice, it is important to note that both genetic and pharmacological evidence for the role of APJ in glioma growth were established in immuno-compromised animals. In keeping with this idea, recent published data suggest that in melanoma, point mutations of the \textit{APLNR} gene are associated with a failure of targeted immunotherapies22 indicating that the interaction between APLNR and the immune system may warrant further investigation. Nonetheless, tumor growth in vivo is a complicated and multifaceted process that is rarely due to one factor or mechanism alone, and compounds that target multiple aspects of tumorigenesis may prove extremely beneficial. Together, the results of this study highlight the potential of endothelial–derived apelin as an exciting target for glioma growth (Figure 1).

Acknowledgements

The authors thank the members of the SOAP team (Nantes, France).

Author Contributions

EHW wrote the manuscript; JG edited the text and prepared the figure.

ORCID iD

Julie Gavard https://orcid.org/0000-0002-7985-9007

REFERENCES

1. Harford-Wright E, Andre-Gregoire G, Jacobs KA, et al. Pharmacological targeting of apelin impairs glioblastoma growth. \textit{Brain}. 2017;140:2939–2954.
2. Stupp R, Hegi ME, Mason WP, et al. Effects of radiotherapy with concomitant and adjuvant temozolomide versus radiotherapy alone on survival in glioblastoma in a randomised phase III study: 5-year analysis of the EORTC-NCIC trial. *Lancet Oncol*. 2009;10:459–466.

3. Stupp R, Taillibert S, Kanner AA, et al. Maintenance therapy with tumor-treating fields plus temozolomide vs temozolomide alone for glioblastoma: a randomised clinical trial. *JAMA*. 2015;314:2535–2543.

4. Lathia JD, Mack SC, Mulkarnis-Hubert EE, Valentim CL, Rich JN. Cancer stem cells in glioblastoma. *Genes Dev*. 2015;29:1203–1217.

5. Hale JS, Sinyuk M, Rich JN, Lathia JD. Decoding the cancer stem cell hypothesis in glioblastoma. *CNS Oncol*. 2015;2:319–330.

6. Yan K, Yang K, Rich JN. The evolving landscape of glioblastoma stem cells. *Curr Opin Neurol*. 2013;26:701–707.

7. Calabrese C, Poppleton H, Kokc M, et al. A perivascular niche for brain tumor stem cells. *Cancer Cell*. 2007;11:69–82.

8. Galan-Moya EM, Le Guelte A, Lima Fernandes E, et al. Secreted factors from brain endothelial cells maintain glioblastoma stem-like cell expansion through the mTOR pathway. *EMBO Rep*. 2011;12:470–476.

9. Jacobs KA, Harford-Wright E, Gavard J. Neutralizing gp130 interferes with endothelial-mediated effects on glioblastoma stem-like cells. *Cell Death Differ*. 2017;24:384.

10. Jin X, Kim LJY, Wu Q, et al. Targeting glial stem cells through combined BM11 and EZH2 inhibition. *Nat Med*. 2017;23:1352–1361.

11. Ding BS, Nolan DJ, Butler JM, et al. Inductive angiocrine signals from sinusoidal endothelium are required for liver regeneration. *Nature*. 2010;468:310–315.

12. Cao Z, Ye T, Sun Y, et al. Targeting the vascular and perivascular niches as a regenerative therapy for lung and liver fibrosis. *Sci Transl Med*. 2017;9:eaai8710.