Optimizing Question Answering Accuracy by Maximizing Log-Likelihood

Matthias H. Heie, Edward W. D. Whittaker and Sadaoki Furui
Department of Computer Science
Tokyo Institute of Technology
Tokyo 152-8552, Japan
{heie, edw, furui}@furui.cs.titech.ac.jp

Abstract

In this paper we demonstrate that there is a strong correlation between the Question Answering (QA) accuracy and the log-likelihood of the answer typing component of our statistical QA model. We exploit this observation in a clustering algorithm which optimizes QA accuracy by maximizing the log-likelihood of a set of question-and-answer pairs. Experimental results show that we achieve better QA accuracy using the resulting clusters than by using manually derived clusters.

1 Introduction

Question Answering (QA) distinguishes itself from other information retrieval tasks in that the system tries to return accurate answers to queries posed in natural language. Factoid QA limits itself to questions that can usually be answered with a few words. Typically factoid QA systems employ some form of question type analysis, so that a question such as What is the capital of Japan? will be answered with a geographical term. While many QA systems use hand-crafted rules for this task, such an approach is time-consuming and doesn’t generalize well to other languages. Machine learning methods have been proposed, such as question classification using support vector machines (Zhang and Lee, 2003) and language modeling (Merkel and Klakow, 2007). In these approaches, question categories are predefined and a classifier is trained on manually labeled data. This is an example of supervised learning. In this paper we present an unsupervised method, where we attempt to cluster question-and-answer (q-a) pairs without any predefined question categories, hence no manually class-labeled questions are used.

We use a statistical QA framework, described in Section 2, where the system is trained with clusters of q-a pairs. This framework was used in several TREC evaluations where it placed in the top 10 of participating systems (Whittaker et al., 2006). In Section 3 we show that answer accuracy is strongly correlated with the log-likelihood of the q-a pairs computed by this statistical model. In Section 4 we propose an algorithm to cluster q-a pairs by maximizing the log-likelihood of a disjoint set of q-a pairs. In Section 5 we evaluate the QA accuracy by training the QA system with the resulting clusters.

2 QA system

In our QA framework we choose to model only the probability of an answer A given a question Q, and assume that the answer A depends on two sets of features: W = W(Q) and X = X(Q):

\[P(A|Q) = P(A|W, X), \]

where W represents a set of \(|W|\) features describing the question-type part of Q such as who, when, where, which, etc., and X is a set of features which describes the “information-bearing” part of Q, i.e. what the question is actually about and what it refers to. For example, in the questions Where is Mount Fuji? and How high is Mount Fuji?, the question type features W differ, while the information-bearing features X are identical. Finding the best answer \(\hat{A}\) involves a search over all A for the one which maximizes the probability of the above model, i.e.:

\[\hat{A} = \arg \max_A P(A|W, X). \]

Given the correct probability distribution, this will give us the optimal answer in a maximum likelihood sense. Using Bayes’ rule, assuming uniform \(P(A)\) and that W and X are independent of each other given A, in addition to ignoring \(P(W, X)\) since it is independent of A, enables us to rewrite Eq. (2) as
\[\hat{A} = \arg \max_A P(A | X) \cdot P(W | A). \tag{3} \]

2.1 Retrieval Model

The retrieval model \(P(A|X) \) is essentially a language model which models the probability of an answer sequence \(A \) given a set of information-bearing features \(X = \{x_1, \ldots, x_{|X|}\} \). This set is constructed by extracting single-word features from \(Q \) that are not present in a stop-list of high-frequency words. The implementation of the retrieval model used for the experiments described in this paper, models the proximity of \(A \) to features in \(X \). It is not examined further here; see (Whittaker et al., 2005) for more details.

2.2 Filter Model

The question-type feature set \(W = \{w_1, \ldots, w_{|W|}\} \) is constructed by extracting \(n \)-tuples \((n = 1, 2, \ldots) \) such as where, in what and when were from the input question \(Q \). We limit ourselves to extracting single-word features. The 2522 most frequent words in a collection of example questions are considered in-vocabulary words; all other words are out-of-vocabulary words, and substituted with \(\langle \text{UNK} \rangle \).

Modeling the complex relationship between \(W \) and \(A \) directly is non-trivial. We therefore introduce an intermediate variable \(C_E = \{c_1, \ldots, c_{|C_E|}\} \), representing a set of classes of example q-a pairs. In order to construct these classes, given a set \(E = \{t_1, \ldots, t_{|E|}\} \) of example q-a pairs, we define a mapping function \(f : E \mapsto C_E \) which maps each example q-a pair \(t_j \) for \(j = 1, \ldots, |E| \) into a particular class \(f(t_j) = c_e \). Thus each class \(c_e \) may be defined as the union of all component q-a features from each \(t_j \) satisfying \(f(t_j) = c_e \). Hence each class \(c_e \) constitutes a cluster of q-a pairs. Finally, to facilitate modeling we say that \(W \) is conditionally independent of \(A \) given \(c_e \) so that,

\[P(W | A) = \sum_{e=1}^{|C_E|} P(W | c_W^e) \cdot P(c_A^e | A), \tag{4} \]

where \(c_W^e \) and \(c_A^e \) refer to the subsets of question-type features and example answers for the class \(c_e \), respectively.

\(P(W \mid c_W^e) \) is implemented as trigram language models with backoff smoothing using absolute discounting (Huang et al., 2001).

Due to data sparsity, our set of example q-a pairs cannot be expected to cover all the possible answers to questions that may ever be asked. We therefore employ answer class modeling rather than answer word modeling by expanding Eq. (4) as follows:

\[P(W \mid A) = \sum_{e=1}^{|C_E|} P(W \mid c_W^e) \cdot \sum_{a=1}^{|K_A|} P(c_A^e \mid k_a) P(k_a \mid A), \tag{5} \]

where \(k_a \) is a concrete class in the set of \(|K_A| \) answer classes \(K_A \). These classes are generated using the Kneser-Ney clustering algorithm, commonly used for generating class definitions for class language models (Kneser and Ney, 1993).

In this paper we restrict ourselves to single-word answers; see (Whittaker et al., 2005) for the modeling of multi-word answers. We estimate \(P(c_A^e \mid k_a) \) as

\[P(c_A^e \mid k_a) = \frac{f(k_a, c_A^e)}{\sum_{g=1}^{|C_E|} f(k_a, c_A^g)}, \tag{6} \]

where

\[f(k_a, c_A^e) = \sum_{\forall i : i \in c_A^e} \delta(i \in k_a) \frac{\delta(A \in j)}{|c_A^e|}, \tag{7} \]

and \(\delta(\cdot) \) is a discrete indicator function which equals 1 if its argument evaluates true and 0 if false.

\(P(k_a \mid A) \) is estimated as

\[P(k_a \mid A) = \frac{1}{\sum_{\forall j : j \in K_a} \delta(A \in j)}. \tag{8} \]

3 The Relationship between Mean Reciprocal Rank and Log-Likelihood

We use Mean Reciprocal Rank (MRR) as our metric when evaluating the QA accuracy on a set of questions \(G = \{g_1 \ldots g_{|G|}\} \):

\[MRR = \frac{\sum_{i=1}^{|G|} 1/R_i}{|G|}, \tag{9} \]

237
where \(R_i \) is the rank of the highest ranking correct candidate answer for \(g_i \).

For our data sets, we restrict ourselves to questions who or where. Furthermore, we only use q-a pairs which can be answered with a single word. As training data we use questions and answers from the Knowledge-Master collection\(^1\). Development/evaluation questions are the questions from TREC QA evaluations from TREC 2002 to TREC 2006, the answers to which are to be retrieved from the AQUAINT corpus. In total we have 2016 q-a pairs for training and 568 questions from TREC QA evaluations from TREC 2002 to TREC 2006, the answers to which are to be retrieved from the AQUAINT corpus. In total we have 2016 q-a pairs for training and 568 questions for development/evaluation. We are able to retrieve the correct answer for 317 of the development/evaluation questions, thus the theoretical upper bound for our experiments is an answer accuracy of \(MRR = 0.558 \).

\(^1\)http://www.greatauk.com/

5 Experiments

5.1 Experimental Setup

For our data sets, we restrict ourselves to questions that start with who, when or where. Furthermore, we only use q-a pairs which can be answered with a single word. As training data we use questions and answers from the Knowledge-Master collection\(^1\). Development/evaluation questions are the questions from TREC QA evaluations from TREC 2002 to TREC 2006, the answers to which are to be retrieved from the AQUAINT corpus. In total we have 2016 q-a pairs for training and 568 questions for development/evaluation. We are able to retrieve the correct answer for 317 of the development/evaluation questions, thus the theoretical upper bound for our experiments is an answer accuracy of \(MRR = 0.558 \).

Accuracy is evaluated using 5-fold (rotating) cross-validation, where in each fold the TREC QA data is partitioned into a development set of

\[LLL \]

\[\rho = 0.86 \]

Figure 1: \(MRR \) vs. \(LL \) (average per q-a pair) for 100 random cluster configurations.

To examine the relationship between \(MRR \) and \(LL \), we randomly generate configurations \(C_E \), with a fixed cluster size of 4, and plot the resulting \(MRR \) and \(LL \), computed on the same data set \(D \), as data points in a scatter plot, as seen in Figure 1. We find that \(LL \) and \(MRR \) are strongly correlated, with a correlation coefficient \(\rho = 0.86 \).

This observation indicates that we should be able to improve the answer accuracy of the QA system by optimizing the \(LL \) of the filter model in isolation, similar to how, in automatic speech recognition, the \(LL \) of the language model can be optimized in isolation to improve the speech recognition accuracy (Huang et al., 2001).

4 Clustering algorithm

Using the observation that \(LL \) is correlated with \(MRR \) on the same data set, we expect that optimizing \(LL \) on a development set (\(LL_{dev} \)) will also improve \(MRR \) on an evaluation set (\(MRR_{eval} \)). Hence we propose the following greedy algorithm to maximize \(LL_{dev} \):

init: \(c_1 \in C_E \) contains all training pairs \(|E| \)

while improvement > threshold **do**

\(best_{LL_{dev}} \leftarrow -\infty \)

for all \(j = 1...|E| \) **do**

original_cluster = \(f(t_j) \)

Take \(t_j \) out of \(f(t_j) \)

for \(e = -1, 1...|C_E|, |C_E| + 1 \) **do**

Put \(t_j \) in \(c_e \)

Calculate \(LL_{dev} \)

if \(LL_{dev} > best_{LL_{dev}} \) **then**

\(best_{LL_{dev}} \leftarrow LL_{dev} \)

\(best_{cluster} \leftarrow e \)

\(best_{pair} \leftarrow j \)

end if

Take \(t_j \) out of \(c_e \)

end for

Put \(t_{best_pair} \) in \(c_{best_cluster} \)

end while

In this algorithm, \(c_{-1} \) indicates the set of training pairs outside the cluster configuration, thus every training pair will not necessarily be included in the final configuration. \(c_{|C|+1} \) refers to a new, empty cluster, hence this algorithm automatically finds the optimal number of clusters as well as the optimal configuration of them.
Table 1: \(LL_{eval} \) (average per q-a pair) and \(MRR_{eval} \) (over all held-out TREC years), and number of clusters (median of the cross-evaluation folds) for the various configurations.

Configuration	\(LL_{eval} \)	\(MRR_{eval} \)	#clusters
manual	-1.18	0.262	3
all-in-one	-1.32	0.183	1
one-in-each	-0.87	0.263	2016
automatic	-0.24	0.281	4

4 years’ data and an evaluation set of one year’s data. For each TREC question the top 50 documents from the AQUAINT corpus are retrieved using Lucene\(^2\). We use the QA system described in Section 2 for QA evaluation. Our evaluation metric is \(MRR_{eval} \), and \(LL_{dev} \) is our optimization criterion, as motivated in Section 3.

Our baseline system uses manual clusters. These clusters are obtained by putting all \textit{who} q-a pairs in one cluster, all \textit{when} pairs in a second and all \textit{where} pairs in a third. We compare this baseline with using clusters resulting from the algorithm described in Section 4. We run this algorithm until there are no further improvements in \(LL_{dev} \). Two other cluster configurations are also investigated: all q-a pairs in one cluster (all-in-one), and each q-a pair in its own cluster (one-in-each). The all-in-one configuration is equivalent to not using the filter model, i.e. answer candidates are ranked solely by the retrieval model. The one-in-each configuration was shown to perform well in the TREC 2006 QA evaluation (Whittaker et al., 2006), where it ranked 9th among 27 participants on the factoid QA task.

5.2 Results

In Table 1, we see that the manual clusters (baseline) achieves an \(MRR_{eval} \) of 0.262, while the clusters resulting from the clustering algorithm give an \(MRR_{eval} \) of 0.281, which is a relative improvement of 7%. This improvement is statistically significant at the 0.01 level using the Wilcoxon signed-rank test. The one-in-each cluster configuration achieves an \(MRR_{eval} \) of 0.263, which is not a statistically significant improvement over the baseline. The all-in-one cluster configuration (i.e. no filter model) has the lowest accuracy, with an \(MRR_{eval} \) of 0.183.

\(^2\)http://lucene.apache.org/
tion 4. It can clearly be seen that the optimization of LL_{dev} leads to improvement in MRR_{eval}, and that LL_{eval} is also well correlated with MRR_{eval}.

7 Conclusions and Future Work

In this paper we have shown that the log-likelihood of our statistical model is strongly correlated with answer accuracy. Using this information, we have clustered training q-a pairs by maximizing log-likelihood on a disjoint development set of q-a pairs. The experiments show that with these clusters we achieve better QA accuracy than using manually clustered training q-a pairs.

In future work we will extend the types of questions that we consider, and also allow for multiword answers.

Acknowledgements

The authors wish to thank Dietrich Klakow for his discussion at the concept stage of this work. The anonymous reviewers are also thanked for their constructive feedback.

References

[Huang et al.2001] Xuedong Huang, Alex Acero and Hsiao-Wuen Hon. 2001. Spoken Language Processing. Prentice-Hall, Upper Saddle River, NJ, USA.

[Kneser and Ney1993] Reinhard Kneser and Hermann Ney. 1993. Improved Clustering Techniques for Class-based Statistical Language Modelling. Proceedings of the European Conference on Speech Communication and Technology (EUROSPEECH).

[Merkel and Klakow2007] Andreas Merkel and Dietrich Klakow. 2007. Language Model Based Query Classification. Proceedings of the European Conference on Information Retrieval (ECIR).

[Whittaker et al.2005] Edward Whittaker, Sadaoki Furui and Dietrich Klakow. 2005. A Statistical Classification Approach to Question Answering using Web Data. Proceedings of the International Conference on Cyberworlds.

[Whittaker et al.2006] Edward Whittaker, Josef Novak, Pierre Chatain and Sadaoki Furui. 2006. TREC 2006 Question Answering Experiments at Tokyo Institute of Technology. Proceedings of The Fifteenth Text REtrieval Conference (TREC).

[Zhang and Lee2003] Dell Zhang and Wee Sun Lee. 2003. Question Classification using Support Vector Machines. Proceedings of the Special Interest Group on Information Retrieval (SIGIR).