On αrw continuous and αrw-Irresolute Maps in Topological Spaces

BASAVARAJ M. ITTANAGI and MOHAN V*

Department of Mathematics, Siddaganga Institute of Technology, Tumakuru-03, Affiliated to VTU, Belagavi, Karnataka state (India)
* Department of Mathematics, Gopalan College of Engineering and Management, Bangalore-48, Affiliated to VTU, Belagavi, Karnataka state (India)
Corresponding author E-mail: vengatachalam.mohan@gmail.com
http://dx.doi.org/10.22147/jusps-A/300108

Acceptance Date 16 December, 2017, Online Publication Date 2nd January, 2018

Abstract

In this paper, a new class of continuous maps called αrw-continuous maps in topological spaces are introduced and studied. Also some of their properties have been investigated. We also introduce αrw-irresolute maps, strongly αrw-continuous maps, perfectly αrw-continuous maps and discuss some properties.

Key words: αrw-closed sets, αrw-open sets, αrw-continuous maps, αrw-irresolute maps, strongly αrw-continuous maps and perfectly αrw-continuous maps.

2010 Mathematics Classification: 54A05, 54A10

1. Introduction

The concept of continuous functions plays a very important role in general topology. The regular continuous and completely continuous functions are introduced and studied by Arya S P. Later, R S Walli et al. introduced and investigated αrw-continuous functions in topological space. Recently, Basavaraj M Ittanagi et al. introduced and studied the basic properties of αrw-closed sets in topological space. The aim of this paper is to introduce αrw-continuous and αrw-irresolute maps in topological space. Also, we study some of their basic properties of αrw-continuous functions.

2. Preliminaries:

Throughout this paper, (X, τ) and (Y, σ) (or simply X and Y) represent a topological spaces on which no
separation axioms are assumed unless otherwise mentioned. For a subset A of a space X, cl (A) and int (A) denote the closure of A and the interior of A respectively. X-A or A^c denotes the complement of A in X.

We recall the following definitions and results.

Definition 2.1: A subset A of a topological space (X, τ) is called,

1) Semi-open set if A \(\subseteq\) cl (int (A)) and semi-closed set if int (cl (A)) \(\subseteq\) A.
2) Pre-open set if A \(\subseteq\) int (cl (A)) and pre-closed set if cl (int (A)) \(\supseteq\) A.
3) \(\alpha\)-open set if A \(\subseteq\) int (cl (int A)) and \(\alpha\)-closed set if cl (int (cl (A))) \(\subseteq\) A.
4) Semi-preopen set (\(\beta\)-open if A \(\subseteq\) cl (int (cl (A)))) and a semi-pre closed set (= \(\beta\)-closed) if int (cl (int (A))) \(\subseteq\) A.
5) Regular open set if A = int (cl (A)) and a regular closed set if A = cl (int (A)).
6) Regular semi open set if there is a regular open set U such that U \(\subseteq\) A \(\subseteq\) cl (U).
7) Regular \(\alpha\)-open set (briefly \(\alpha\)-open) if there is a regular open set U s.t U \(\subseteq\) A \(\subseteq\) \(\alpha\)-cl (U).

Definition 2.2: A subset A of a topological space (X, τ) is called

1) Semi \(\alpha\) regular weakly closed (briefly s\(\alpha\)r\(\omega\)-closed) set if scl (A) \(\subseteq\) U whenever A \(\subseteq\) U and U is \(\alpha\)rw-open in X.
2) Generalized pre regular closed set (briefly gpr-closed) if pcl (A) \(\subseteq\) U whenever A \(\subseteq\) U and U is regular open in X.
3) \(w\)-\(\alpha\)-closed set if \(\alpha\)-cl (A) \(\subseteq\) U whenever A \(\subseteq\) U and U is \(w\)-open in X.
4) \(\alpha\)-regular \(\alpha\)-closed set (briefly \(\alpha\r\alpha\)-closed) set if \(\alpha\)-cl (A) \(\subseteq\) U whenever A \(\subseteq\) U and U is \(\alpha\)-open in X.
5) Generalized closed set (briefly g-closed) if cl (A) \(\subseteq\) U whenever A \(\subseteq\) U and U is open in X.
6) Generalized semi-closed set (briefly gs-closed) if scl (A) \(\subseteq\) U whenever A \(\subseteq\) U and U is \(w\)-open in X.
7) Generalized semi pre regular closed (briefly gspr-closed) set if spcl (A) \(\subseteq\) U whenever A \(\subseteq\) U and U is regular open in X.
8) Strongly generalized closed set (briefly g*-closed) if cl (A) \(\subseteq\) U whenever A \(\subseteq\) U and U is g-open in X.
9) \(\alpha\)-generalized closed set (briefly \(\alpha\)-g-closed) if \(\alpha\)-cl (A) \(\subseteq\) U whenever A \(\subseteq\) U and U is \(g\)-open in X.
10) \(\alpha\)-regular weakly \(\alpha\)-closed set (briefly rw\(\alpha\)-g-closed) if \(\alpha\)-cl (A) \(\subseteq\) U whenever A \(\subseteq\) U and U is regular \(w\)-open in X.
11) Weakly generalized closed set (briefly \(w\)-g-closed) if cl (int (A)) \(\subseteq\) U whenever A \(\subseteq\) U and U is \(w\)-open in X.
12) Regular weakly generalized closed set (briefly rwg-closed) if cl (int (A)) \(\subseteq\) U whenever A \(\subseteq\) U and U is regular open in X.
13) Semi weakly generalized closed set (briefly swg-closed) if cl (int (A)) \(\subseteq\) U whenever A \(\subseteq\) U and U is regular semi-open in X.
14) Regular generalized weak (briefly rg\(w\)-g-closed) set if cl (int (A)) \(\subseteq\) U whenever A \(\subseteq\) U and U is regular semi open in X.
20) weak generalized regular–α closed (briefly wgrα-closed) set\(^{15}\) if \(\text{cl}(\text{int}(A)) \subseteq U\) whenever \(A \subseteq U\) and \(U\) is regular α-open in \(X\).
21) regular pre semi–closed (briefly rps-closed) set\(^{22}\) if \(\text{spcl}(A) \subseteq U\) whenever \(A \subseteq U\) and \(U\) is regular α-open in \(X\).
22) generalized pre regular weakly closed (briefly gprw-closed) set\(^{16}\) if \(\text{pcl}(A) \subseteq U\) whenever \(A \subseteq U\) and \(U\) is regular semi-open in \(X\).
23) α-generalized regular closed (briefly αgr-closed) set\(^{30}\) if \(\alpha\text{cl}(A) \subseteq U\) whenever \(A \subseteq U\) and \(U\) is regular in \(X\).
24) R*-closed set\(^{13}\) if \(rcl(A) \subseteq U\) whenever \(A \subseteq U\) and \(U\) is regular semi-open in \(X\).

The compliment of the above mentioned closed sets are their open sets respectively.

Definition 2.3: A map \(f: (X,\tau) \to (Y,\sigma)\) is said to be
1) regular-continuous (r-continuous)\(^{3}\) if \(f^{-1}(V)\) is r-closed in \(X\) for every closed subset \(V\) of \(Y\).
2) Completely–continuous\(^{3}\) if \(f^{-1}(V)\) is regular closed in \(X\) for every closed subset \(V\) of \(Y\).
3) Strongly–continuous\(^{26}\) if \(f^{-1}(V)\) is clopen (both open and closed) in \(X\) for every subset \(V\) of \(Y\).
4) \(\alpha\)-continuous\(^{14}\) if \(f^{-1}(V)\) is \(\alpha\)-closed in \(X\) for every closed subset \(V\) of \(Y\).
5) Strongly \(\alpha\)-continuous\(^{32}\) if \(f^{-1}(V)\) is \(\alpha\)-closed in \(X\) for every semi-closed subset \(V\) of \(Y\).
6) \(\alpha\text{gr}\)-continuous\(^{19}\) if \(f^{-1}(V)\) is \(\alpha\text{gr}\)-closed in \(X\) for every closed subset \(V\) of \(Y\).
7) \(\alpha\text{gr}\)-continuous\(^{30}\) if \(f^{-1}(V)\) is \(\alpha\text{gr}\)-closed in \(X\) for every closed subset \(V\) of \(Y\).
8) \(\alpha\text{gr}\)-continuous\(^{15}\) if \(f^{-1}(V)\) is \(\alpha\text{gr}\)-closed in \(X\) for every closed subset \(V\) of \(Y\).
9) \(\alpha\text{gr}\)-continuous\(^{16}\) if \(f^{-1}(V)\) is \(\alpha\text{gr}\)-closed in \(X\) for every closed subset \(V\) of \(Y\).
10) \(\alpha\text{gr}\)-continuous\(^{22}\) if \(f^{-1}(V)\) is \(\alpha\text{gr}\)-closed in \(X\) for every closed subset \(V\) of \(Y\).

Definition 2.4: A map \(f: (X,\tau) \to (Y,\sigma)\) is said to be
1) \(\alpha\)-irresolute\(^{14}\) if \(f^{-1}(V)\) is \(\alpha\)-closed in \(X\) for every \(\alpha\)-closed subset \(V\) of \(Y\).
2) irresolute if $f^{-1}(V)$ is semi-closed in X for every semi-closed subset V of Y.
3) contra-o–irresolute if $f^{-1}(V)$ is ω-open in X for every ω-closed subset V of Y.
4) contra irresolute if $f^{-1}(V)$ is semi-open in X for every semi-closed subset V of Y.
5) contra r–irresolute if $f^{-1}(V)$ is regular-open in X for every regular-closed subset V of Y.
6) contra continuous if $f^{-1}(V)$ is open in X for every closed subset V of Y.
7) $r\omega$*-open (resp $r\omega$*-closed) map if $f(U)$ is $r\omega$-open (resp $r\omega$-closed) in Y for every $r\omega$-open (resp $r\omega$-closed) subset U of X.

Lemma 2.5:
1) Every closed (resp regular-closed, α-closed) set is αrw-closed set in X.
2) Every $s\alpha$rw-closed set is gs-closed set
3) Every $s\alpha$rw-closed set is sg-closed (resp gsp-closed, rps-closed, gspr-closed) set in X.

Lemma 2.6:
If a subset A of a topological space X and
1) If A is regular open and $s\alpha$rw-closed then A is α-closed set in X.
2) If A is open and ag-closed then A is $s\alpha$rw-closed set in X.
3) If A is open and gp-closed then A is $s\alpha$rw-closed set in X.
4) If A is regular open and gpr-closed then A is $s\alpha$rw-closed set in X.
5) If A is open and wg-closed then A is $s\alpha$rw-closed set in X.
6) If A is regular open and rgw-closed then A is $s\alpha$rw-closed set in X.
7) If A is regular open and agr-closed then A is $s\alpha$rw-closed set in X.
8) If A is ω-open and $\omega\alpha$-closed then A is $s\alpha$rw-closed set in X.

Lemma 2.7:
If a subset A of a topological space X, and
1) If A is semi-open and sg-closed then it is $s\alpha$rw-closed.
2) If A is semi-open and w-closed then it is $s\alpha$rw-closed.
3) A is $s\alpha$rw-open iff $U \subseteq \alpha$int (A), whenever U is rx-closed and $U \subseteq A$.

Definition 2.8: A topological space (X, τ) is called α-space if every α-closed subset of X is closed in X.

3. Sarw continuous Maps in Topological Spaces:

Definition 3.1: A function $f: X \rightarrow Y$ is called semi α regular weakly continuous ($s\alpha$rw–continuous) if $f^{-1}(V)$ is $s\alpha$rw–closed set in X for every closed set V in Y.

Theorem 3.2: Every continuous function is $s\alpha$rw–continuous but not conversely.

Proof: Let $f: X \rightarrow Y$ be continuous. Let F be any closed set in Y. Then the inverse image $f^{-1}(F)$ is closed set in X. Since every closed set is $s\alpha$rw–closed by Lemma 2.5, $f^{-1}(F)$ is $s\alpha$rw–closed in X. Therefore f is $s\alpha$rw–continuous.

Example 3.3: Let $X=\{a,b,c\}$, $\tau = \{X, \phi, \{a\}, \{b\}, \{a,b\}\}$ and $\sigma = \{Y, \phi, \{a\}, \{b\}, \{a,b\}, \{a,c\}\}$ Let $f: X \rightarrow Y$ defined by $f(a)=b$, $f(b)=c$, $f(c)=c$, then f is $s\alpha$rw–continuous but not continuous, as closed set $F=\{b\}$ in Y, then, $f^{-1}(F)=\{a\}$ in X which is not closed set in X.

Theorem 3.4: Every α–continuous function is $s\alpha$rw–continuous but not conversely.
Proof: Let $f: X \to Y$ be α–continuous. Let F be any closed set in Y. Then the inverse image $f^{-1}(F)$ is α–closed set in X. Since every α–closed set is sarw–closed by Lemma 2.5, $f^{-1}(F)$ is sarw–closed in X. Therefore f is sarw–continuous.

Example 3.5: Let $X = \{a, b, c\}$, $\tau = \{X, \phi, \{a\}, \{b\}, \{a, b\}\}$ and $\sigma = \{Y, \phi, \{a\}, \{b\}, \{a, b\}, \{a, c\}\}$ Let $f: X \to Y$ defined by $f(a)=b$, $f(b)=c$, $f(c)=c$, then f is sarw–continuous but not α–continuous, as closed set $F= \{b\}$ in Y, then $f^{-1}(F)= \{a\}$ in X which is not α–closed set in X.

Theorem 3.6: Every sarw–continuous function is gs–continuous but not conversely.

Proof: Let F be sarw–continuous. Let F be any closed set in Y. Then the inverse image $f^{-1}(F)$ is sarw–closed set in X. Since every sarw–closed set is gsp–closed by Lemma 2.5, $f^{-1}(F)$ is gsp–closed in X. Therefore f is gsp–continuous.

Example 3.7: Let $X= \{a, b, c, d\}$, $Y= \{a, b, c\}$, $\tau = \{X, \phi, \{a\}, \{b\}, \{a, b\}, \{a, c\}\}$ and $\sigma = \{Y, \phi, \{a\}, \{b\}, \{a, b\}, \{a, c\}\}$. Let $f: X \to Y$ defined by $f(a)=b$, $f(b)=c$, $f(c)=a$, then f is gsp–continuous but not sarw–continuous, as closed set $F= \{c\}$ in Y, then, $f^{-1}(F)= \{b\}$ in X which is not sarw–closed set in X.

Theorem 3.8: Every sarw–continuous function is gsp–continuous but not conversely.

Proof: The proof follows from the fact that every sarw–closed set is gsp–closed set.

Example 3.9: Let $X= \{a, b, c, d\}$, $Y= \{a, b, c\}$, $\tau = \{X, \phi, \{a\}, \{b\}, \{a, b\}, \{a, c\}\}$ and $\sigma = \{Y, \phi, \{a\}, \{b\}, \{a, b\}, \{a, c\}\}$. Let $f: X \to Y$ defined by $f(a)=b$, $f(b)=c$, $f(c)=a$, then f is gsp–continuous but not sarw–continuous, as closed set $F= \{c\}$ in Y, then, $f^{-1}(F)= \{b\}$ in X which is not sarw–closed set in X.

Theorem 3.10: Every sarw–continuous function is gspr–continuous but not conversely.

Proof: The proof follows from the fact that every sarw–closed set is gspr–closed set.

Example 3.11: Let $X= \{a, b, c, d\}$, $Y= \{a, b, c\}$, $\tau = \{X, \phi, \{a\}, \{b\}, \{a, b\}, \{a, c\}\}$ and $\sigma = \{Y, \phi, \{a\}, \{b\}, \{a, b\}, \{a, c\}\}$. Let $f: X \to Y$ defined by $f(a)=b$, $f(b)=c$, $f(c)=a$, then f is gspr–continuous but not sarw–continuous, as closed set $F= \{c\}$ in Y, then, $f^{-1}(F)= \{b\}$ in X which is not sarw–closed set in X.

Theorem 3.12: Every sarw–continuous function is gspr–continuous but not conversely.

Proof: The proof follows from the fact that every sarw–closed set is gspr–closed set.

Example 3.13: Let $X= \{a, b, c, d\}$, $Y= \{a, b, c\}$, $\tau = \{X, \phi, \{a\}, \{b\}, \{a, b\}, \{a, c\}\}$ and $\sigma = \{Y, \phi, \{a\}, \{b\}, \{a, b\}, \{a, c\}\}$. Let $f: X \to Y$ defined by $f(a)=b$, $f(b)=c$, $f(c)=a$, then f is s–continuous, but not sarw–continuous, as closed set $F= \{c\}$ in Y, then, $f^{-1}(F)= \{b\}$ in X which is not sarw–closed set in X.

Theorem 3.14: Every sarw–continuous function is rps–continuous but not conversely.

Proof: The proof follows from the fact that every sarw–closed set is rps–closed set.

Example 3.15: Let $X= \{a, b, c, d\}$, $Y= \{a, b, c\}$, $\tau = \{X, \phi, \{a\}, \{b\}, \{a, b\}, \{a, c\}\}$ and $\sigma = \{Y, \phi, \{a\}, \{b\}, \{a, b\}, \{a, c\}\}$. Let $f: X \to Y$ defined by $f(a)=b$, $f(b)=c$, $f(c)=a$, then f is rps–continuous. but not sarw–continuous, as closed set $F= \{c\}$ in Y, then, $f^{-1}(F)= \{b\}$ in X which is not sarw–closed set in X.

Remark 3.16: The following examples shows that sarw–continuous maps are independent of pre–continuous, β–continuous, gp–continuous, gpr–continuous, swg–continuous, rwg–continuous, wg–continuous, gprw–continuous, , rgw–continuous, pgpr–continuous.

Example 3.17: Let $X= \{a, b, c\}$, $Y= \{a, b, c\}$, $\tau = \{X, \phi, \{a\}, \{b\}, \{a, b\}, \{a, c\}\}$ and $\sigma = \{Y, \phi, \{a\}, \{b\}, \{a, b\}, \{a, c\}\}$. Let $f: X \to Y$ defined by $f(a)=b$, $f(b)=c$, $f(c)=a$, then f is pre–continuous, β–continuous, gp–continuous, gpr–continuous, swg–continuous, rwg–continuous, wg–continuous, gprw–continuous, , rgw–continuous, pgpr–continuous. But not sarw–continuous, as closed set $F= \{c\}$ in Y, then, $f^{-1}(F)= \{b\}$ in X which is not sarw–closed set in X.

70 Basavaraj M. Ittanagi, et al., JUSPS-A Vol. 30(1), (2018).
Remark 3.18: From the above discussion and know results we have the following implications.

Theorem 3.19: Let \(f: X \rightarrow Y \) be a map. Then the following statements are equivalent:

i) \(f \) is sarw–continuous.

ii) the inverse image of each open set in \(Y \) is sarw–open in \(X \)

Proof:

i) Assume that \(f: X \rightarrow Y \) is sarw–continuous. Let \(U \) be open in \(Y \). The \(U^c \) is closed in \(Y \). Since \(f \) is sarw–continuous, \(f^{-1}(U^c) \) is sarw–closed in \(X \). But \(f^{-1}(U^c) = X - f^{-1}(U) \). Thus \(f^{-1}(U) \) is sarw–open in \(X \).

ii) Assume that the inverse image of each open set in \(Y \) is sarw–open in \(X \). Let \(F \) be any closed set in \(Y \). By assumption \(f^{-1}(F^c) \) is sarw–open in \(X \). But \(f^{-1}(F^c) = X - f^{-1}(F) \). Thus \(X - f^{-1}(F) \) is sarw–open in \(X \) and so \(f^{-1}(F) \) is sarw–closed in \(X \). Therefore \(f \) is sarw–continuous.

Hence (i) and (ii) are equivalent.

Theorem 3.20: If \(f: (X, \tau) \rightarrow (Y, \sigma) \) is map. Then the following holds.

i) \(f \) is sarw–continuous and contra \(r \)–irresolute map then \(f \) is \(\alpha \)–continuous

ii) \(f \) is ag–continuous and contra continuous map then \(f \) is sarw–continuous.

iii) \(f \) is gp–continuous and contra continuous map then \(f \) is sarw–continuous

iv) \(f \) is gpr–continuous and contra \(r \)–irresolute map then \(f \) is sarw–continuous.

v) \(f \) is wg–continuous and contra continuous map then \(f \) is sarw–continuous

vi) \(f \) is rwg–continuous and contra \(r \)–irresolute map then \(f \) is sarw–continuous

vii) \(f \) is agr–continuous and contra \(r \)–irresolute map then \(f \) is sarw–continuous

viii) \(f \) is wa–continuous and contra \(w \)–irresolute map then \(f \) is sarw–continuous

Proof:

i) Let \(V \) be regular closed set of \(Y \) as every regular closed set is closed, \(V \) is closed set in \(Y \). Since \(f \) is sarw–continuous and contra \(r \)–irresolute map, \(f^{-1}(V) \) is sarw–closed and regular open in \(X \). Now by
Lemma 2.6, $f^{-1}(V)$ is α-closed in X. Thus f is α-continuous.

ii) Let V be closed set of Y. Since f is αg-continuous and contra continuous map, $f^{-1}(V)$ is αg-closed and open in X. Now by Lemma 2.6, $f^{-1}(V)$ is αrw-closed in X. Thus f is αrw-continuous. Similarly, we can prove (iii),(iv),(v),(vi),(vii).

Theorem 3.21: If $f: (X, \tau) \to (Y, \sigma)$ is map. Then the following holds.

i) f is sg-continuous and contra irresolute map then f is αrw-continuous.

Proof: Let V be closed set of Y. Since f is sg-continuous and contra irresolute map, $f^{-1}(V)$ is sg-closed and semi-open in X. Now by Lemma 2.7, $f^{-1}(V)$ is αrw-closed in X. Thus f is αrw-continuous.

ii) The proof is in the similar manner.

Theorem 3.22: Let A be a subset of a topological space X. Then $x \in \operatorname{srwcl}(A)$ if and only if for any srw-open set U containing x, $A \cap U \neq \emptyset$.

Proof: Let $x \in \operatorname{srwcl}(A)$ and suppose that, there is a srw-open set U in X such that $x \in U$ and $A \cap U \neq \emptyset$ implies that $A \subseteq U^c$ which is srw-closed in X implies $\operatorname{srwcl}(A) \subseteq \operatorname{srwcl}(U^c) = U^c$. Since $x \in U$ implies that $x \notin U^c$ implies that $x \notin \operatorname{srwcl}(A)$, this is a contradiction. Conversely,

For any srw-open set U containing x, $A \cap U \neq \emptyset$. To prove that $x \in \operatorname{srwcl}(A)$. Suppose that $x \notin \operatorname{srwcl}(A)$, then there is srw-closed set F in X such that $x \notin F$ and $A \subseteq F$. Since $x \notin F$ implies that $x \in F^c$ which is srw-open in X. Since $A \subseteq F$ implies that $A \cap F^c = \emptyset$, This is a contradiction. Thus $x \in \operatorname{srwcl}(A)$.

Theorem 3.23: Let $f: X \to Y$ be a function from a topological space X into a topological space Y. If $f: X \to Y$ is αrw-continuous, then $f(\operatorname{srwcl}(A)) \subseteq \operatorname{cl}(f(A))$ for every subset A of X.

Proof: Since $f(A) \subseteq \operatorname{cl}(f(A))$ implies that $A \subseteq f^{-1}(\operatorname{cl}(f(A)))$. Since $\operatorname{cl}(f(A))$ is a closed set in Y and f is αrw-continuous, then by definition $f^{-1}(\operatorname{cl}(f(A)))$ is a αrw-closed set in X containing A. Hence $\operatorname{srwcl}(A) \subseteq f^{-1}(\operatorname{cl}(f(A)))$. Therefore $f(\operatorname{srwcl}(A)) \subseteq \operatorname{cl}(f(A))$.

Theorem 3.24: Let $f: X \to Y$ be a function from a topological space X into a topological space Y. Then the following statements are equivalent:

i) For each point x in X and each open set V in Y with $f(x) \in V$, there is a srw-open set U in X such that $x \in U$ and $f(U) \subseteq V$.

ii) For each subset A of X, $f(\operatorname{srwcl}(A)) \subseteq \operatorname{cl}(f(A))$.

iii) For each subset B of Y, $\operatorname{srwcl}(f^{-1}(B)) \subseteq f^{-1}(\operatorname{cl}(B))$.

iv) For each subset B of Y, $f^{-1}(\operatorname{int}(B)) \subseteq \operatorname{srwint}(f^{-1}(B))$.

Proof:

(i) \Rightarrow (ii) Suppose that (i) hold and let $y \in f(\operatorname{srwcl}(A))$ and let V be any open set of Y.

Since $y \in f(\operatorname{srwcl}(A))$ implies that there exists $x \in \operatorname{srwcl}(A)$ such that $f(x) = y$. Since $f(x) \in V$, then by (i) there exists a srw-open set U in X such that $x \in U$ and $f(U) \subseteq V$.

Since $x \in f(\operatorname{srwcl}(A))$, then by theorem 3.22 $U \cap A \neq \emptyset$. $\phi \neq f(U \cap A) \subseteq f(U) \cap f(A) \subseteq V \cap f(A)$, then $V \cap f(A) \neq \emptyset$. Therefore we have $y = f(x) \in \operatorname{cl}(f(A))$. Hence $f(\operatorname{srwcl}(A)) \subseteq \operatorname{cl}(f(A))$.

(ii) \Rightarrow (i) Let if (ii) holds and let $x \in X$ and V be any open set in Y containing $f(x)$. Let $A = f^{-1}(V^c)$ this implies that $x \notin A$. Since $f(\operatorname{srwcl}(A)) \subseteq \operatorname{cl}(f(A)) \subseteq V^c$ this implies that $\operatorname{srwcl}(A) \subseteq f^{-1}(V^c) = A$. Since $x \notin A$ implies that $x \notin \operatorname{srwcl}(A)$ and by theorem 3.22 there exists a srw-open
A space \((X, \mathcal{T})\) is called s\(\alpha\)rw-space if every s\(\alpha\)rw–open set is semi-closed.

Definition 3.25: Let \((X, \tau)\) be topological space and \(\tau_{s\alpha rw} = \{V \subseteq X : s\alpha rw-cl(V^c) = V^c\}\). \(\tau_{s\alpha rw}\) is topology on \(X\).

Definition 3.26:

1) A space \((X, \tau)\) is called Ts\(\alpha\)rw-space if every s\(\alpha\)rw–closed set is closed.
2) A space \((X, \tau)\) is called s\(\alpha\)rwTsc – space if every s\(\alpha\)rw–closed set is semi-closed set.

Remark 3.27: The Composition of two s\(\alpha\)rw–continuous maps need not be s\(\alpha\)rw–continuous map

Example 3.28: Let \(X=Y=Z=\{a, b, c\}\). Let \(\tau = \{X, \emptyset, \{a\}, \{b\}, \{a, b\}, \{a, c\}\}\) be a topology on \(X,\)
\(\sigma = \{Y, \emptyset, \{a\}, \{b\}, \{a,b\}\}\) be a topology on \(Y\) and \(\eta = \{Z, \emptyset, \{a\}, \{b, c\}\}\) be a topology on \(Z\). Define \(f: (X, \tau) \rightarrow (Y, \sigma)\) by \(f(a) = a, f(b) = c, f(c) = b\) and \(g: (Y, \sigma) \rightarrow (Z, \eta)\) be the identity map. Both \(f\) and \(g\) are s\(\alpha\)rw-continuous but their composition \(g \circ f: (X, \tau) \rightarrow (Z, \eta)\) is not a s\(\alpha\)rw -continuous map as the closed set \(F = \{a\}\) in \((Z, \eta)\), but \((g \circ f)^{-1}(F) = \{a\}\) is not s\(\alpha\)rw-closed set in \(X\).

Theorem 3.29: Let \(f: X \rightarrow Y\) is s\(\alpha\)rw–continuous function and \(g: Y \rightarrow Z\) is continuous function then \(g \circ f: X \rightarrow Z\) is s\(\alpha\)rw–continuous.

Proof: Let \(g\) be continuous function and \(V\) be any open set in \(Z\) then \(g^{-1}(V)\) is open in \(Y\). Since \(f\) is s\(\alpha\)rw–continuous, \(f^{-1}(g^{-1}(V)) = (g \circ f)^{-1}(V)\) is s\(\alpha\)rw–open in \(X\). Hence \(g \circ f\) is s\(\alpha\)rw–continuous.

Theorem 3.30: Let \(f: X \rightarrow Y\) is s\(\alpha\)rw–continuous function and \(g: Y \rightarrow Z\) is s\(\alpha\)rw–continuous function and \(Y\) is T s\(\alpha\)rw–space, then \(g \circ f: X \rightarrow Z\) is s\(\alpha\)rw–continuous.

Proof: Let \(g\) be s\(\alpha\)rw–continuous function and \(V\) is any open set in \(Z\) then \(g^{-1}(V)\) is s\(\alpha\)rw–open in \(Y\) and \(Y\) is T s\(\alpha\)rw–space, thus \(g^{-1}(V)\) is open in \(Y\). Since \(f\) is s\(\alpha\)rw–continuous, \(f^{-1}(g^{-1}(V)) = (g \circ f)^{-1}(V)\) is s\(\alpha\)rw–open in \(X\). Hence \(g \circ f\) is s\(\alpha\)rw–continuous.

Theorem 3.31: If a map \(f: X \rightarrow Y\) is completely-continuous, then it is s\(\alpha\)rw–continuous.

Proof: Suppose that a map \(f: (X, \tau) \rightarrow (Y, \sigma)\) is completely-continuous. Let \(F\) closed set in \(Y\). Then \(f^{-1}(F)\) is regular closed in \(X\) and hence \(f^{-1}(F)\) is s\(\alpha\)rw–closed in \(X\). Thus \(f\) is s\(\alpha\)rw–continuous.

Definition 3.32: A function \(f\) from a topological space \(X\) into a topological space \(Y\) is called perfectly semi regular weakly continuous (briefly perfectly s\(\alpha\)rw–Continous) if \(f^{-1}(V)\) is clopen (closed and open) set in \(X\) for every s\(\alpha\)rw–open set \(V\) in \(Y\).

Theorem 3.33: If a map \(f: X \rightarrow Y\) is continuous, then the following holds.

i) If \(f\) is perfectly s\(\alpha\)rw–continuous, then \(f\) is s\(\alpha\)rw–continuous.

ii) If \(f\) is perfectly s\(\alpha\)rw–continuous, then \(f\) is gs–continuous.

iii) If \(f\) is perfectly s\(\alpha\)rw–continuous, then \(f\) is gsp–continuous (resp gs–continuous, gspr–continuous, rps–continuous).
Proof:

i) Let \(F \) be open set in \(Y \), as every open is sarw–open in \(Y \) since \(F \) is perfectly sarw–continuous then \(f^{-1}(F) \) is both closed and open in \(X \), as every open is sarw–open, \(f^{-1}(F) \) is sarw–open in \(X \). Hence \(f \) is sarw–continuous.

ii) Let \(F \) be open set in \(Y \), as every open is sarw–open in \(Y \), since \(F \) is perfectly sarw–continuous, then \(f^{-1}(F) \) is both closed and open in \(X \), as every open is sarw–open that implies is gs–open, then \(f^{-1}(F) \) is gs–open in \(X \). Hence \(f \) is gs–continuous.

Similarly we can prove (iii).

Definition 3.34: A function \(f \) from a topological space \(X \) into a topological space \(Y \) is called semi \(\alpha \) regular weakly*- continuous (briefly sarw*-continuous) if \(f^{-1}(V) \) is sarw*-closed set in \(X \) for every semi-closed set \(V \) in \(Y \).

Theorem 3.35: If a map \(f: (X, \tau) \rightarrow (Y, \sigma) \) is

i) \(f \) is sarw–irresolute then it is sarw*-continuous.

ii) \(f \) is sarw*-continuous then it is sarw–continuous.

Proof:

i) Let \(f: X \rightarrow Y \) be sarw–irresolute. Let \(F \) be any semi-closed set in \(Y \). Then \(F \) is sarw–closed in \(Y \). Since \(f \) is sarw–irresolute, the inverse image \(f^{-1}(F) \) is sarw–closed set in \(X \). Therefore \(f \) is sarw–continuous.

The converse of the above theorem need not be true as seen from the following example.

Example 4.4: Let \(X=Y=\{a, b, c\} \). Let \(\tau=\{X, \phi, \{a\}, \{b\}, \{a, b\}\} \) be a topology on \(X \), \(\sigma=\{Y, \phi, \{a\}, \{b, c\}\} \) be a topology on \(Y \). Then the identity map \(f: (X, \tau) \rightarrow (Y, \sigma) \) is sarw–continuous but not sarw–irresolute, as the inverse image of sarw–closed set \(\{a, b\} \) in \(Y \) is \(\{a, b\} \) which is not sarw–closed set in \(X \).

Theorem 4.5: If a map \(f: (X, \tau) \rightarrow (Y, \sigma) \) is sarw–irresolute, if and only if the inverse image \(f^{-1}(V) \) is sarw–
open set in X for every sarw–open set V in Y.

Proof: Assume that f: X→Y is sarw–irresolute. Let G be sarw–open in Y. The G^c is sarw–closed in Y. Since f is sarw–irresolute, f^(-1)(G^c) is sarw–closed in X. But f^(-1)(G^c) = X–f^(-1)(G). Thus f^(-1)(G) is sarw–open in X. Conversely, Assume that the inverse image of each open set in Y is sarw–open in X. Let F be any sarw–closed set in Y. By assumption f^(-1)(F) is sarw–open in X. But f^(-1)(F) = X–f^(-1)(F).

Thus X–f^(-1)(F) is sarw–open in X and so f^(-1)(F) is sarw–closed in X. Therefore f is sarw– irreolute.

Example 4.9: Let X=Y= {a, b, c}. Let τ = {X, φ, {a}, {b}, {a, b}, {a, c}} be a topology on X, σ = {Y, φ, {a}, {b, c}} be a topology on Y. Then the map f: (X, τ) → (Y, σ) defined by f(a)=b, f(b)=a, f(c)=c, is sarw–continuous but not strongly sarw–continuous, as the inverse image of sarw–closed set {b} in Y is {a} which is not α–closed set in X.
Theorem 4.12: Let \(f: (X, \tau) \rightarrow (Y, \sigma) \) is strongly sarw–continuous if and only if \(f^{-1}(G) \) is open set in \(X \) for every sarw–open set \(G \) in \(Y \).

Proof: Assume that \(f: X \rightarrow Y \) is strongly sarw–continuous. Let \(G \) be sarw–open in \(Y \). The \(G^c \) is sarw–closed in \(Y \). Since \(f \) is strongly sarw–continuous, \(f^{-1}(G^c) \) is closed in \(X \).

But \(f^{-1}(G^c) = X - f^{-1}(G) \). Thus \(f^{-1}(G) \) is open in \(X \). Conversely, Assume that the inverse image of each open set in \(Y \) is sarw–open in \(X \). Let \(G \) be any sarw–closed set in \(Y \). By assumption \(G^c \) is sarw–open in \(X \). But \(f^{-1}(F^c) = X - f^{-1}(F) \). Thus \(X - f^{-1}(F) \) is open in \(X \) and so \(f^{-1}(F) \) is closed in \(X \). Therefore \(f \) is strongly sarw–continuous.

Theorem 4.13: Let \(f: (X, \tau) \rightarrow (Y, \sigma) \) is strongly sarw–continuous then it is strongly sarw–continuous

Proof: Assume that \(f: X \rightarrow Y \) is strongly sarw–open and also it is any subset of \(Y \) since \(f \) is strongly sarw–continuous, \(f^{-1}(G) \) is open (and also closed) in \(X \). Therefore \(f \) is strongly sarw–continuous.

Theorem 4.14: Let \(f: (X, \tau) \rightarrow (Y, \sigma) \) is strongly sarw–continuous then it is sarw–continuous.

Proof: Let \(G \) be open in \(Y \), every open is sarw–open and \(G \) is sarw–open in \(Y \), since \(f \) is strongly sarw–continuous, \(f^{-1}(G) \) is open in \(X \). Therefore \(f \) is strongly sarw–continuous.

Example 4.15: Let \(X=Y= \{a, b, c\} \). Let \(\tau= \{X, \phi, \{a\}, \{b\}, \{a, b\}, \{a, c\}\} \) be a topology on \(X \), \(\sigma= \{Y, \phi, \{a\}, \{b, c\}\} \) be a topology on \(Y \). Then the map \(f: (X, \tau) \rightarrow (Y, \sigma) \) defined by \(f(a)=b, f(b)=a, f(c)=c \), is sarw–continuous but not strongly sarw–continuous, as the inverse image of sarw–closed set \(\{b\} \) in \(Y \) is \(\{a\} \) which is not closed set in \(X \).

Theorem 4.16: In discrete space, a map \(f: (X, \tau) \rightarrow (Y, \sigma) \) is strongly sarw–continuous then it is strongly continuous.

Proof: Any subset of \(Y \), in discrete space, Every subset \(F \) in \(Y \) is both open and closed, then subset \(F \) is both sarw–open or sarw–closed, i) let \(F \) is sarw–open in \(Y \), since \(f \) is strongly sarw–continuous, \(f^{-1}(F) \) is open in \(X \). ii) let \(F \) is sarw–open in \(Y \), since \(f \) is strongly sarw–continuous, \(f^{-1}(F) \) is open in \(X \). Therefore \(f^{-1}(F) \) is closed and open in \(X \). Hence \(f \) is strongly continuous.

Theorem 4.17: Let \(f: (X, \tau) \rightarrow (Y, \sigma) \) and \(g: (Y, \sigma) \rightarrow (Z, \eta) \) be any two functions. Then

i) \(g \circ f: (X, \tau) \rightarrow (Z, \eta) \) is strongly sarw–continuous if \(g \) is strongly sarw–continuous and \(f \) is strongly sarw–continuous.

ii) \(g \circ f: (X, \tau) \rightarrow (Z, \eta) \) is strongly sarw–continuous if \(g \) is strongly sarw–continuous and \(f \) is continuous.

iii) \(g \circ f: (X, \tau) \rightarrow (Z, \eta) \) is sarw–irresolute if \(g \) is strongly sarw–continuous and \(f \) is sarw–continuous.

iv) \(g \circ f: (X, \tau) \rightarrow (Z, \eta) \) is continuous if \(g \) is sarw–continuous and \(f \) is strongly sarw–continuous.

Proof:

i) Let \(U \) be a sarw–open set in \((Z, \eta) \). Since \(g \) is strongly sarw–continuous, \(g^{-1}(U) \) is open set in \((Y, \sigma) \). As every open set is sarw–open, \(g^{-1}(U) \) is sarw–open set in \((Y, \sigma) \). Since \(f \) is strongly sarw–continuous \(f^{-1}(g^{-1}(U)) \) is an open set in \((X, \tau) \).

Thus \((g \circ f)^{-1}(U) = f^{-1}(g^{-1}(U)) \) is an open set in \((X, \tau) \) and hence \(g \circ f \) is strongly sarw–continuous.

ii) Let \(U \) be a sarw–open set in \((Z, \eta) \). Since \(g \) is strongly sarw–continuous, \(g^{-1}(U) \) is open set in \((Y, \sigma) \).

Since \(f \) is continuous \(f^{-1}(g^{-1}(U)) \) is an open set in \((X, \tau) \).

Thus \((g \circ f)^{-1}(U) = f^{-1}(g^{-1}(U)) \) is an open set in \((X, \tau) \) and hence \(g \circ f \) is strongly sarw–continuous.

iii) Let \(U \) be a sarw–open set in \((Z, \eta) \). Since \(g \) is strongly sarw–continuous, \(g^{-1}(U) \) is open set in \((Y, \sigma) \).

Since \(f \) is sarw–continuous \(f^{-1}(g^{-1}(U)) \) is an sarw–open set in \((X, \tau) \).

Thus \((g \circ f)^{-1}(U) = f^{-1}(g^{-1}(U)) \) is an sarw–open set in \((X, \tau) \) and hence \(g \circ f \) is sarw–irresolute.

iv) Let \(U \) be open set in \((Z, \eta) \). Since \(g \) is sarw–continuous, \(g^{-1}(U) \) is sarw–open set in \((Y, \sigma) \). Since \(f \) is strongly sarw–continuous \(f^{-1}(g^{-1}(U)) \) is an open set in \((X, \tau) \).
Thus \((g \circ f)^{-1}(U) = f^{-1}(g^{-1}(U))\) is an open set in \((X, \tau)\) and hence \(g \circ f\) is continuous.

Theorem 4.18: Let \(f: (X, \tau) \rightarrow (Y, \sigma)\) and \(g: (Y, \sigma) \rightarrow (Z, \eta)\) be any two functions. Then

i) \(g \circ f: (X, \tau) \rightarrow (Z, \eta)\) is strongly sarw–continuous if \(g\) is perfectly sarw–continuous and \(f\) is continuous.

ii) \(g \circ f: (X, \tau) \rightarrow (Z, \eta)\) is perfectly sarw–continuous if \(g\) is strongly sarw–continuous and \(f\) is perfectly sarw–continuous.

Proof:

i) Let \(U\) be a sarw–open set in \((Z, \eta)\). Since \(g\) is perfectly sarw–continuous, \(g^{-1}(U)\) is clopen set in \((Y, \sigma)\). \(g^{-1}(U)\) is open set in \((Y, \sigma)\). Since \(f\) is continuous \(f^{-1}(g^{-1}(U))\) is an open set in \((X, \tau)\). Thus \((g \circ f)^{-1}(U) = f^{-1}(g^{-1}(U))\) is an open set in \((X, \tau)\) and hence \(g \circ f\) is strongly sarw–continuous.

ii) Let \(U\) be a sarw–open set in \((Z, \eta)\). Since \(g\) is strongly sarw–continuous, \(g^{-1}(U)\) is open set in \((Y, \sigma)\). \(g^{-1}(U)\) is open set in \((Y, \sigma)\). Since \(f\) is perfectly sarw–continuous, \(f^{-1}(g^{-1}(U))\) is a clopen set in \((X, \tau)\). Thus \((g \circ f)^{-1}(U) = f^{-1}(g^{-1}(U))\) is a clopen set in \((X, \tau)\) and hence \(g \circ f\) is perfectly sarw–continuous.

Theorem 4.19: Let \((X, \tau)\) be any topological space and \((Y, \sigma)\) be a Tsarw -space and \(f: (X, \tau) \rightarrow (Y, \sigma)\) be a map. Then the following are equivalent:

i) \(f\) is strongly sarw–continuous.

ii) \(f\) is continuous.

Proof:

(i) \(\Rightarrow\) (ii) Let \(U\) be any open set in \((Y, \sigma)\). Since every open set is sarw-open, \(U\) is sarw-open in \((Y, \sigma)\). Then \(f^{-1}(U)\) is open in \((X, \tau)\). Hence \(f\) is continuous.

(ii) \(\Rightarrow\) (i) Let \(U\) be any sarw-open set in \((Y, \sigma)\). Since \((Y, \sigma)\) is a Tsarw-space, \(U\) is open in \((Y, \sigma)\). Since \(f\) is continuous. Then \(f^{-1}(U)\) is open in \((X, \tau)\). Hence \(f\) is strongly sarw–continuous.

Theorem 4.20: Let \((X, \tau)\) be a discrete topological space and \((Y, \sigma)\) be any topological space. Let \(f: (X, \tau) \rightarrow (Y, \sigma)\) be a map. Then the following statements are equivalent:

i) \(f\) is strongly sarw–continuous.

ii) \(f\) is perfectly sarw–continuous.

Proof:

(i) \(\Rightarrow\) (ii) Let \(U\) be any sarw-open set in \((Y, \sigma)\). By hypothesis \(f^{-1}(U)\) is open in \((X, \tau)\). Since \((X, \tau)\) is a discrete space, \(f^{-1}(U)\) is also closed in \((X, \tau)\). \(f^{-1}(U)\) is both open and closed in \((X, \tau)\). Hence \(f\) is perfectly sarw–continuous.

(ii) \(\Rightarrow\) (i) Let \(U\) be any sarw-open set in \((Y, \sigma)\). Then \(f^{-1}(U)\) is both open and closed in \((X, \tau)\). Hence \(f\) is strongly sarw–continuous.

Theorem 4.21: Let \(f: (X, \tau) \rightarrow (Y, \sigma)\) be a map. Both \((X, \tau)\) and \((Y, \sigma)\) are Tsarw-space. Then the following are equivalent:

i) \(f\) is sarw-irresolute.

ii) \(f\) is strongly sarw-continuous

iii) \(f\) is continuous.

iv) \(f\) is sarw-continuous.

Proof: Straight forward.

Theorem 4.22: Let \(X\) and \(Y\) be sarwTsc-spaces, then for a function \(f: (X, \tau) \rightarrow (Y, \sigma)\), the following are equivalent:

i) \(f\) is sc-irresolute.

ii) \(f\) is sarw-irresolute.

Proof:

(i) \(\Rightarrow\) (ii): Let \(f: (X, \tau) \rightarrow (Y, \sigma)\) be a sc-irresolute. Let \(V\) be a sarw -closed set in \(Y\). As \(Y\) sarwTsc-space, \(V\) is a semi-closed set in \(Y\). Since \(f\) is sc-irresolute, \(f^{-1}(V)\) is semi-closed in \(X\). But every semi-closed set is sarw-closed in \(X\) and hence \(f^{-1}(V)\) is a sarw-closed in \(X\). Therefore, \(f\) is sarw-irresolute.

(ii) \(\Rightarrow\) (i): Let \(f: (X, \tau) \rightarrow (Y, \sigma)\) be a sarw -irresolute. Let \(V\) be a semi-closed set in \(Y\). But every semi-closed set is sarw-closed set and hence \(V\) is sarw-closed set in \(Y\) and \(f\) is sarw-irresolute.
implies $f^{-1}(V)$ is s_{arw}-closed in X. But X is s_{arw}-Tsc-space and hence $f^{-1}(V)$ is semi-closed set in X. Thus, f is sc-irresolute.

Future work:

The extension of the paper will be carried as the future work with s_{arw}-closed and open maps, homeomorphism in topological spaces.

Acknowledgement

I Dr. Basavaraj M. Ittanagi, Asst. prof, Department of Mathematics, Siddaganga Institute of Technology, Bangalore, acknowledge for his intensive help for pursuing and publishing this research article.

References

1. M. E. Abd El-Monsef, S.N. El-Deeb and R.A.Mahmoud, β-open sets and β-continuous mappings, Bull. Fac. Sci. Assiut Univ., 12, 77-90 (1983).
2. D. Andrijevic, Semi-preopen sets, Mat. Vesnik., 38(1), 24-32 (1986).
3. S. P. Arya and R. Gupta, On strongly continuous functions, Kyungpook Math. J. 14, 131-143 (1974).
4. S. P. Arya and T.M. Nour, Characterizations of s-normal spaces, Indian J. Pure Appl. Math 21, 717-719 (1990).
5. Basavaraj M Ittanagi and Mohan V, On semi α-regular weakly closed set in Topological spaces, Int J. of Math Archive, 8(7), 197-204 (2017).
6. Basavaraj M Ittanagi and Mohan V, On semi α- regular weakly open set in Topological spaces Journal of computer and Math Sciences 8(11), 568-575 (2017).
7. S. S. Benchalli, P. G. Patil and T. D. Rayanagaudar, $o\alpha$-Closed sets is Topological Spaces, The Global. J. Appl. Math. and Math. Sci., 2, 53-63 (2009).
8. S. S. Benchalli and R.S Wali on ro- Closed sets is Topological Spaces, Bull, Malays, Math, sci, soc-30, 99-110 (2007).
9. S. Bhattacharya, on generalized regular closed sets, Int J. Contemp .Math science Vol.6, 145-152 (2011).
10. D.E. Cameron, Properties of s-closed spaces, prac Amer Math, soc 72,581-586 (1978).
11. J Dontchev,Contra continuous functions and strongly S-closed spaces, Int.J. Math. Sci, 19, 15-31 (1996).
12. Y. Gnanambal, On generalized pre regular closed sets in topological spaces, Indian J. Pure. Appl. Math., 28(3), 351-360 (1997).
13. C. Janaki & Renu Thomas , on R^α-Closed sets in Topological Spaces, Int J of Math Archive 3(8), 3067-3074 (2012).
14. O. N. Jastad, On some classes of nearly open sets, Pacific J. Math., 15, 961-970 (1965).
15. A. Jayalakshmi & C. Janaki, on ogα-closed sets in Topological Spaces, Int J of maths 3(6), 2386-2392 (2012).
16. V. Joshi, S.Gupta, N. Bhawdaj, R. kumar, on Generalised pre Regular weakly(gpro)-closed set in sets in Topological Spaces, int math foruro Vol(7) (40),1981-1992 (2012).
17. N. Levine, Semi-open sets and semi-continuity in topological spaces, 70, 36-41 (1963).
18. N. Levine, Generalized closed sets in topology, Rend. Circ Mat. Palermo-19(2), 89-96 (1970).
19. H. Maki, R. Devi and K. Balachandran, Associated topologies of generalized α- closed sets and α-generalized
closed sets, Mem. Fac. Sci. Kochi Univ. Ser. A. Math., 15, 51-63 (1994).
20. H. Maki, J. Umehara and T. Noiri, Every Topological space is pre $T^{1/2}$ mem Fac sci, Kochi univ, Math, 17, 33-42 (1996).
21. A.S. Mashhour, M.E. Abd El-Monsef and S.N. El-Deeb, On pre-continuous and weak pre continuous mappings, Proc. Math. Phys. Soc. Egypt, 53, 47-53 (1982).
22. S. Mishra, et al., On regular generalized weakly (rgw) closed sets in topological spaces, Int. J. of Math Analysis Vol 6, no.(30), 1939-1952 (2012).
23. N. Nagaveni, Studies on Generalizations of Homeomorphisms in Topological Spaces, Ph.D. Thesis, Bharathiar University, Coimbatore, (1999).
24. A. Pushpalatha, Studies on generalizations of mapping in topological spaces, PhD Thesis, Bharathiar university, Coimbatore, (2000).
25. T. Shlya Isac Mary & P. Thangavel, on Regular pre-semi closed sets in topological spaces, KBM J. of Math Sc & comp Applications (1), 9-17 (2010).
26. M. Stone, Application of the theory of Boolean rings to general topology, Trans. Amer. Math. Soc. 41, 374-481 (1937).
27. P. Sundaram and M. Sheik John, On w-closed sets in topology, Acta Ciencia Indica 4, 389–399 (2000).
28. A. Vadivel & K. vairamamaniackam, rga-Closed sets& rgα-open sets in Topological Spaces, Int J of math, Analysis Vol 3, 37, 1803-1819 (2009).
29. M. K. R. S. Veera Kumar, g^*-pre-closed sets, Acts Ciencia indica, 28(1), 51-60 (2002).
30. M.K.R.S. Veerakumar, On α-generalized regular closed sets, Indian J. of Math, 44(2), 165-181 (2002).
31. R.S Wali and Prabhavati S Mandalgeri, On α regular ω-closed sets in Topological spaces, Int. J. of Math Archive 5(10), 68-76 (2014).
32. Yasuf Becerem, On strongly α-continuous functions far east J Math. Sci 1:50 (2000)