IRAS 05436−0007 AND THE EMERGENCE OF McNEIL’S NEBULA

Bo Reipurth and Colin Aspin

Received 2004 February 18; accepted 2004 March 29; published 2004 April 15

ABSTRACT

We present a study of McNeil’s Nebula, a newly appeared reflection nebula in the L1630 cloud, together with photometry and spectroscopy of its source. New IR photometry compared with earlier Two Micron All Sky Survey data shows that the star has brightened by about 3 mag in the near-infrared, changing its location in a J−H/H−K diagram precisely along a reddening vector. A Gemini Near InfraRed Imager K-band spectrum shows strong CO band head emission, and Brγ is in emission, indicative of strong accretion. A Gemini Multi-Object Spectrograph optical spectrum shows only a red, heavily veiled continuum, with Hα strongly in emission and displaying a pronounced P Cygni profile, with an absorption trough reaching velocities up to 600 km s⁻¹. This implies significant mass loss in a powerful wind. However, no evidence is found for any shocks, as commonly seen in collimated outflows from young stars. Apparently the eruption has dispersed a layer of extinction, and this, together with the intrinsic brightening of the IRAS source, has allowed an earlier outflow cavity to be flooded with light, thus creating McNeil’s Nebula.

Subject headings: ISM: individual (McNeil’s Nebula) — reflection nebulae — stars: formation — stars: pre–main-sequence — stars: variables: other

1. INTRODUCTION

Wide-field photographic and CCD images have documented the presence of numerous small compact reflection nebulae in star-forming dark clouds. Such nebulae may possibly represent a transitional stage in which a young star goes from being an embedded infrared source to a visible T Tauri star or a Herbig Ae/Be star. This process is widely believed to involve powerful bipolar outflow activity, as reflected in the morphology of the nebulae, which are often cometary, with the partially embedded star illuminating an outflow cavity. When observed over longer timescales, such small reflection nebulae are often found to vary in brightness and occasionally in illumination pattern. Perhaps the earliest known example is NGC 2261, which re−emerged the variability of the fan-shaped nebula emanating from PV Cephei.

At some stage, the outflow activity of a star for the first time punches a hole in its surroundings, suddenly allowing a beam of light to sweep across the surroundings. Subsequent eruptions in the source will again flood the outflow channel with light. The emergence of the nebula Re 50 in the Lynds 1641 cloud near the embedded source IRAS 05380−0728 was documented by Reipurth & Bally (1986). Another case may have been the nebula IC 430 in L1641, which at present is quite small but at the end of the 19th century appears to have been a very large and much brighter object (Pickering 1890; Strom & Strom 1993).

In this Letter, we present optical and infrared imaging, photometry, and spectroscopy of a newly emerged nebula in L1630, now known as McNeil’s Nebula, and the young star associated with it, and we speculate that the illuminating source may have erupted in an EXor event.

2. OBSERVATIONS

The observations presented below were taken on the “Fredrick C. Gillett” Gemini North Telescope, on Mauna Kea, Hawaii, on UT dates 2004 February 3 (near-IR) and 14 (optical). The near-IR imaging and spectroscopy were acquired with the facility imager/spectrometer, the Near InfraRed Imager (NIRI), using the f/6 camera giving an image scale on the Aladdin InSb 1024 × 1024 detector of 0.116 pixel⁻¹. Images in J, H, and K′ were obtained in total on-source integration times of 3.6 s (0.18 s, 10 co-adds, two spatial positions) in each filter. The data were calibrated using similar observations of the United Kingdom Infrared Telescope faint standard stars FS 113, 119, and 135. The spectroscopic data were acquired using a 0.5 wide long slit and a K-band grism with a total on-source integration time of 60 s (30 s, 1 co-add, two spatial positions) resulting in a spectrum with a resolving power of ~780 covering the wavelength range of 2.05−2.45 μm. Telluric feature correction was performed using observations of the A0 V star HIP 28056.

The optical data were acquired using the facility optical multi-object spectrometer, the Gemini Multi-Object Spectrograph North (GMOS-N). Images in the GMOS Sloan g′, r′, i′, and z′ filters were obtained with exposure times of 60 and 10 s, the shorter exposure time being used to give unsaturated images of the young star. The GMOS spectrum was a 5 minute exposure obtained using the R831 grating, a 0.5 wide long slit, and a central wavelength of 5800 Å resulting in a spectrum covering the wavelength range 4800−6800 Å at a resolving power of R ~ 4500.

Infrared images were obtained of the eruptive star at the University of Hawaii 2.2 m telescope through an R-band filter (5 minute exposure) on 2004 February 1 and through a nar-
rowband H$_2$ 2.12 μm filter (20 minute exposure) on 2004 February 14 UT.

3. PREOUTBURST OBSERVATIONS

On 2004 January 23, McNeil (2004)4 discovered the presence of a bright nebula more than an arcminute in extent southwest of M78 in the L1630 cloud, a nebula that was not seen on any of the blue or red POSS-I, POSS-II, and UKSTU sky atlas plates taken between 1951 and 1991. McNeil’s Nebula is clearly cometary-shaped, with a highly reddened, dust-obscured star at its apex. Subsequent examination of recent images obtained in the fall of 2003 suggests that McNeil’s Nebula first appeared in early November 2003 (Briceño et al. 2004; J. W. McNeil 2003, private communication). However, J. Welch of Phoenix, Arizona, kindly brought our attention to a photograph of the M78 region that it represents the illuminated outflow cavity carved at some point in time in the past by LMZ 12 into the L1630 cloud. Proper motions, and images obtained with GMOS at the Gemini-N 8 m telescope.

We here summarize what is known about this star prior to the current eruption of the illuminating star is not the first one. (Mallas & Kreimer 1978). This offers the important insight that the star lies within the error ellipse (45” \times 7” at P.A. = 88°) of the source IRAS 05436−0007, which is detected only at 12 and 25 μm with fluxes of 0.53 and 1.19 Jy, respectively, with a flag that indicates an 80% probability that the star also coincides with the source 2MASS 05461313−0006048, which is located at $\alpha_{2000} = 05^h46^m13.1^s$, $\delta_{2000} = -00°06'05''$. The Two Micron All Sky Survey (2MASS) photometry is listed in Table 1. A faint optical counterpart to this 2MASS source is visible on an I-band image obtained by Eisloeffel & Mundt (1997).

In the submillimeter, the source was detected as a compact, isolated dust continuum source at 350 and 1300 μm by Lis, Menten, & Zylka (1999), their source LMZ 12, a designation we will use for the source in the following until a variable star name is assigned in the General Catalogue of Variable Stars. Subsequently, the same source was detected at 850 μm by Mitchell et al. (2001) and Johnstone et al. (2001), their source OriBsmm 55. Lis et al. (1999) suggested a preoutburst bolometric luminosity for LMZ 12 of 2.7 L_\odot. These submillimeter observations additionally detected extended, diffuse emission about 40° north of LMZ 12, coinciding with part of McNeil’s Nebula. Limited millimeter observations by Lis et al. (1999) did not reveal any molecular outflow from the source, and only a small core in HCO$^+$. The nebula is seen at virtually the same brightness as at discovery.

![Fig. 1.—Color image of McNeil’s Nebula obtained by combining broadband g^\prime, r^\prime, and i^\prime images taken with GMOS at the Gemini-N 8 m telescope. LMZ 12 is at the bottom of the nebula, and HH 22 is the bluish curved object on the northeastern edge of McNeil’s Nebula. The height of the figure is about 80°. North is up, and east is left.](image-url)

4. OBSERVATIONAL RESULTS

We present in Figure 1 a color image of McNeil’s Nebula based on g^\prime, r^\prime, and i^\prime images taken with GMOS at the Gemini-N telescope in 0.5 seeing. The nebula has approximate dimensions of 30° \times 60° and shows considerable structure, with a very bright patch of illumination near the source. Photometry of LMZ 12 at its apex is given in Table 1. Note that because of the bright nebulosity, the stellar magnitudes are very sensitive to the aperture size employed, and we used a small aperture of 0.79 radius.

The nebula encompasses the Herbig-Haro object HH 22 (Herbig 1974). However, the detection of a collimated jet associated with HH 22 emanating from a source farther to the east suggested to Eisloeffel & Mundt (1997) that there is no connection between this HH object and LMZ 12. Another HH object, HH 23, is located farther to the north. It consists of two knots on an axis that passes close to LMZ 12, and Eisloeffel & Mundt (1997) suggested that the faint optical source coincident with LMZ 12 is the driving source. McNeil’s Nebula opens up in the approximate direction toward HH 23, and we suggest that it represents the illuminated outflow cavity carved at some time in the past by LMZ 12 into the L1630 cloud. Proper-

Table 1

Date	g^\prime	r^\prime	i^\prime	J	H	K$^\prime$	Telescope
1998 Oct 7	…	…	…	14.74 ± 0.03	12.16 ± 0.03	10.27 ± 0.02	2MASS
2004 Feb 3a	…	…	…	11.1 ± 0.1	9.0 ± 0.1	7.4 ± 0.1	Gemini
2004 Feb 14b	22.8	17.4	15.6	…	…	…	Gemini

a We list large and conservative error estimates for the Gemini IR photometry since this object is very bright for an 8 m telescope, requiring very brief integrations.

b GMOS photometry is obtained in an aperture with radius 0.9" in order to avoid bright nearby nebulosity. It is quoted to one decimal place only since we use standard zero points from the Gemini GMOS Web site.
motion measurements of HH 23 are needed to establish a firmer link with LMZ 12.

Infrared JHK' photometry of the source obtained on 2004 February 03 is listed in Table 1. It is evident that the source is much brighter now than when the 2MASS data were obtained on 1998 October 7. At the time of our observations, LMZ 12 had brightened by $\Delta J = 3.6$, $\Delta H = 3.2$, and $\Delta K' = 2.9$ mag. When plotted in a $J-H/H-K'$ diagram, it is evident that it displays a substantial infrared excess (Fig. 2). It is noteworthy that in its current high state, LMZ 12 shows considerably less reddening than at the time of the 2MASS observation in 1998.

In Figure 3, we show a contour diagram of LMZ 12 as seen in our K'-band images. It is immediately obvious that the star is surrounded by a compact reflection nebulosity and that, in particular, this nebula shows a curved tail characteristic of many stars undergoing high-accretion events (e.g., Herbig 1977). In Figure 4, we show a K-band spectrum of LMZ 12, which displays a red continuum with strong CO band head emission, and the Br$_\gamma$ and Na i lines are in emission. Our optical spectrum of LMZ 12 shows a red continuum with a prominent Hα line in emission but no other emission or absorption lines, suggesting the presence of heavy veiling. The Hα line, shown in Figure 5, has an equivalent width of -32 Å and displays a characteristic P Cygni profile. The absorption component has an equivalent width of 5.6 Å.

5. DISCUSSION

The two major classes of eruptive variable stars among pre–main-sequence stars are the FUors and the EXors (Herbig 1966, 1977, 1989). In the following, we discuss whether or not LMZ 12 can be linked to one of these two categories.

FUors are characterized by large-amplitude ($\Delta V \sim 5–6$ mag) brightenings lasting several or many decades, and in the optical they show F- or G-type spectra without emission lines. In the K-band region, FUors display deep CO band head absorption

Fig. 2.—$J-H/H-K'$ diagram showing the location of LMZ 12 as observed with 2MASS (1) on 1998 October 7 and with Gemini-N (2) on 2004 February 3. The dashed line is the T Tauri locus, and the solid straight lines and dot-dashed line are reddening vectors of $A_v = 15$ mag.

Fig. 3.—Compact nebula seen around the illuminating star of McNeil’s Nebula in this K'-band image obtained with NIRI at the Gemini-N 8 m telescope.

Fig. 4.—K-band spectrum of LMZ 12 obtained with NIRI at the Gemini-N 8 m telescope.

Fig. 5.—Hα line in LMZ 12 showing a pronounced P Cygni profile. The rest velocity of the star is indicated.
Although LMZ 12 has about the right amplitude, it remains to be seen how long it stays bright. Spectroscopically, however, LMZ 12 looks very different from mature FUors both in the optical and in the infrared. The prominent Hα emission and the strong CO emission that are presently seen do not suggest a classification as a FUor as we currently understand the phenomenon. On the other hand, Briceño et al. (2004) emphasize that the earliest optical spectrum after outburst of the FUor V1057 Cyg had some similarities to that of LMZ 12. Further photometric and spectroscopic monitoring of the star is required to settle this.

EXor eruptions, which may occur repeatedly in a given star, have amplitudes that can be comparable to those of FUors, but they have durations that are much shorter, from a few months to a few years. Spectroscopic studies of EXors are limited because of the rarity and shorter durations of these eruptions. The few such studies that have been made (e.g., Lehmann, Reipurth, & Brandner 1995; Herbig et al. 2001; Parsamian, Mujica, & Corral 2002) all show that EXors in eruption have at least the lower Balmer lines in emission, together with emission lines of He i and other lines characteristic of the most active T Tauri stars (Herbig 1962). A high-resolution spectrum of the Hα line of SVS 13 in outburst (Eislöffel et al. 1991) shows a P Cygni profile rather similar to the one seen in Figure 5. However, we do not see any other emission lines than Hα in the spectral range observed (4800–6800 Å) in LMZ 12. Infrared spectra of EXors are even more limited; one case is the eruption of SVS 13, for which a K-band spectrum shows the CO band heads strongly in emission as well as Brγ in emission (Carr & Tokunaga 1992). However, a similar spectrum of EX Lup shows Brγ in emission but the CO band heads and Na i in absorption (Herbig et al. 2001). It thus does not seem that EXors have a unique infrared spectral signature. Based on a comparison with these somewhat limited observations of EXors, we conclude that LMZ 12 does have a certain resemblance to EXors.

The spectroscopic data give us some insight into the physical processes behind the observed eruption. The detection of Brγ in emission testifies to a region of hot gas. Brγ emission has been shown to correlate tightly with accretion luminosity, so its presence indicates that the eruption is linked to an episode of accretion (Najita, Carr, & Tokunaga 1996; Muzerolle, Hartmann, & Calvet 1998; Folha & Emerson 2001). The pronounced P Cygni profile seen at Hα in the optical spectrum is likely to be formed in a strong wind that has sufficient optical depth to produce the deep blueshifted absorption trough (e.g., Muzerolle, Calvet, & Hartmann 2001). Only few T Tauri stars show such well-developed P Cygni profiles at Hα. The well-defined blue edge of the absorption trough indicates wind velocities of up to 600 km s⁻¹, even more than the extreme wind that emanates from FU Orions (e.g., Herbig, Petrov, & Dzemmler 2003).

It is noteworthy that we see no spectral features indicative of shocks: the infrared spectrum shows no evidence of H2 emission, and the optical spectrum does not display the [S ii] λλ6717, 6731 lines characteristic of Herbig-Haro jets. Our H2 2.122 μm image of LMZ 12 shows no presence of any extended jet flow. It thus appears that LMZ 12, in common with most FUors and EXors, has powerful mass loss, but apparently not in the well-collimated fashion that enables shocked HH jets.

One final insight into the LMZ 12 EXor event comes from the changes of the infrared colors from before to after the eruption. The pre- and postoutburst colors show that LMZ 12 has moved precisely along a reddening vector, indicating that the star has brightened partly because its visual extinction diminished by about 4.5 mag. Using the reddening curve of Rieke & Lebofsky (1985), we find that this corresponds to A_v = 1.26, A_g = 0.81, and A_r = 0.50. Since we know that the infrared colors changed by ΔJ = 3.64, ΔH = 3.16, and ΔK = 2.87, we see that the intrinsic brightening of the star corrected for the change in extinction is 2.4 mag in each of the J, H, and K filters. Through a combination of this intrinsic brightening and the clearing away of an obscuring layer, the star has been able to illuminate its outflow channel, thus creating McNeil’s Nebula.

We are grateful to Nuria Calvet for helpful comments, Mike Connelley for taking an infrared H2 image, George Herbig for illuminating discussions, Inger Jorgensen and Kathy Roth for a GMOS spectrum, Jay McNeil for alerting us to the outburst, Karen Meech and Yan Fernandez for a CCD image, Peter Michaud and Kirk Pu’uohau-Pummill for preparing the color images, Jean-René Roy for approving all the Gemini 8 m Target of Opportunity observations, Brian Skiff for information about both recent and prediscovery images, John Welch for information about the 1966 outburst, and an anonymous referee for helpful comments.

REFERENCES

Bricé, C., et al. 2004, ApJ, 606, L123
Carr, J. S., & Tokunaga, A. T. 1992, ApJ, 393, L67
Cohen, M., Kuih, L. V., Harlan, E. A., & Spinrad, H. 1981, ApJ, 245, 920
Eislöffel, J., Günter, E., Hessman, F. V., Mundt, R., Poetzel, R., Carr, J. S., Beckwith, S., & Ray, T. P. 1991, ApJ, 383, L19
Eislöffel, J., & Mundt, R. 1997, AJ, 114, 280
Folha, D. F. M., & Emerson, J. P. 2001, A&A, 365, 90
Herbig, G. H. 1962, Adv. Astron. Astrophys., 1, 47
———. 1966, Vistas Astron., 8, 109
———. 1974, Lick Obs. Bull., 658, 1
———. 1977, ApJ, 217, 693
———. 1989, in Proc. ESO Workshop on Low Mass Star Formation and Pre-Main Sequence Objects, ed. B. Reipurth (Garching: ESO), 233
Herbig, G. H., Aspin, C., Gilmore, A. C., Imhoff, C. L., & Jones, A. F. 2001, PASR 113, 1547
Herbig, G. H., Petrov, P. P., & Dzemmler, R. 2003, ApJ, 595, 384
Hubble, E. P. 1916, ApJ, 44, 190
Johnstone, D., Fich, M., Mitchell, G. F., & Moriarty-Schieven, G. 2001, ApJ, 559, 307
Lehmann, T., Reipurth, B., & Brandner, W. 1995, A&A, 300, L9
Lis, D. C., Menten, K. M., & Zylka, R. 1999, ApJ, 527, 856
Mallas, J. H., & Kreimer, E. 1978, The Messier Album (Cambridge: Sky Publ. Corp.)
McNeil, J. W. 2004, IAU Circ. 8284
Mitchell, G. F., Johnstone, D., Moriarty-Schieven, G., Fich, M., & Tothill, N. F. H. 2001, ApJ, 556, 215
Muzerolle, J., Calvet, N., & Hartmann, L. 2001, ApJ, 550, 944
Muzerolle, J., Hartmann, L., & Calvet, N. 1998, AJ, 116, 2965
Najita, J., Carr, J. S., & Tokunaga, A. T. 1996, ApJ, 456, 292
Parsamian, E. S., Mujica, R., & Corral, L. 2002, Astrophysics, 45, 393
Pickering, E. C. 1890, Ann. Astron. Obs. Harvard Coll., 18, 113
Reipurth, B., & Aspin, C. 1997, AJ, 114, 2700
Reipurth, B., & Bally, J. 1986, Nature, 320, 336
Rieke, G. H., & Lebofsky, M. J. 1985, ApJ, 288, 618
Strom, K. M., & Strom, S. E. 1993, ApJ, 412, L63