Multipartite entanglement indicators based on monogamy relations of n-qubit symmetric states

Feng Liu1,2, Fei Gao1, Su-Juan Qin1, Shu-Cui Xie3 & Qiao-Yan Wen1

Constructed from Bai-Xu-Wang-class monogamy relations, multipartite entanglement indicators can detect the entanglement not stored in pairs of the focus particle and the other subset of particles. We investigate the k-partite entanglement indicators related to the αth power of entanglement of formation (αEoF) for $k \leq n$, $\alpha \in [\sqrt{2}, 2]$ and n-qubit symmetric states. We then show that (1) The indicator based on αEoF is a monotonically increasing function of k. (2) When n is large enough, the indicator based on αEoF is a monotonically decreasing function of α, and then the n-partite indicator based on $\sqrt{2}$EoF works best. However, the indicator based on 2EoF works better when n is small enough.

Quantum correlations that comprise and go beyond entanglement are not monogamous. Only entanglement can be strictly monogamous1, that is, they obey strong constraints on how they can be shared among multipartite systems. This is one of the most important properties for multipartite quantum systems2. So these monogamy relations can be used to characterize the entanglement structure in multipartite systems3, and concretely the difference between the left- and right-hand side of them can be defined as indicators to detect multipartite entanglement not stored in pairs of the focus particle (e.g., the first particle) and the other subset of particles4.

For the squared concurrence, the indicator named three-tangle3 can be used to detect genuine multipartite entanglement (which are entangled states being not decomposable into convex combinations of states separable across any partition) in three-qubit pure states. However, for three-qubit mixed states, there exist some entangled states that have neither two-qubit concurrence nor three-tangle5. To reveal this critical entanglement structure, some multipartite entanglement indicators based on Bai-Xu-Wang-class monogamy relations for the entanglement of formation (EoF) have been proposed4,6,7. In this paper, we will study which multipartite entanglement indicator for EoF works better. By “work better” we mean that is larger than the other8.

We resolve the above problem in the following ways. Firstly, we prove that the αth power of EoF (αEoF, $\alpha \geq \sqrt{2}$) obeys a set of hierarchy k-partite monogamy relations for $\alpha \in [\sqrt{2}, 2]$ and any n-qubit states. In the third subsection, we construct the entanglement indicators on n-qubit symmetric states, and show their monotonic properties. Two examples are given in the forth subsection to verify these results.

Results

This section is organized as follows. In the first subsection, we review the monogamy relations for 2EoF in n-qubit systems. We then prove in the second subsection that the αEoF obeys hierarchy k-partite monogamy relations for $k \in [3, n]$ and any n-qubit states. In the third subsection, we construct the entanglement indicators on n-qubit symmetric states, and show their monotonic properties. Two examples are given in the forth subsection to verify these results.

1State Key Laboratory of Networking and Switching Technology, Beijing University of Posts and Telecommunications, Beijing, 100876, China. 2School of Mathematics and Statistics Science, Ludong University, Yantai, 264025, China. 3School of Science, Xi’an University of Posts and Telecommunications, Xi’an, 710121, China. Correspondence and requests for materials should be addressed to F.G. (email: gaofei_bupt@hotmail.com)
Review of monogamy relations for EoF. Coffman, Kundu, and Wootters\(^1\) proved the first monogamy relation for the squared concurrence in three-qubit states. Then, Osborne and Verstraete\(^6\) proved a set of hierarchy \(k\)-partite monogamy relations for the squared concurrence in \(n\)-qubit states \(\rho_{A_1 A_2 \cdots A_n}\), which have the form

\[
C^2(\rho_{A_1 | A_2 \cdots A_n}) \geq \sum_{i=2}^{k-1} C^2(\rho_{A_i | A_2 \cdots A_n}) + C^2(\rho_{A_1 | A_2 \cdots A_{i-1} A_{i+1} \cdots A_n}),
\]

(1)

where \(A_1\) is the focus qubit, \(\rho_{A_1} = \text{Tr}_{A_2 \cdots A_{k-1} A_{k+1} \cdots A_n} \rho_{A_1 A_2 \cdots A_n}\) is the concurrence with the decreasing nonnegative. (In fact, Eq. (5) obviously satisfies for \(k\) and \(n\) from Eqs (3–5) can be obtained and can characterize multipartite entangled. Here, \(\tau_{k,\alpha} \rho \geq 0\) can be calculated via quantum discord\(^13,14\), the entanglement measure is the squared concurrence. These indicators can detect the entanglement not stored in pairs of \(A_1\) and any other \(k-1\) party (i.e., \(A_2,\ldots, A_{k-1}\) and \(A_k\)). Moreover, there exists a special kind of entangled state\(^10\) which has zero entanglement indicator. Moreover, the calculation of multiqubit concurrence is extremely hard due to the convex roof extension. Therefore, it is natural to ask whether other monogamy relations beyond the squared concurrence exist.

Recently, Bai et al.\(^4\) and Oliveira et al.\(^11\) respectively proved that 2 EoF is monogamous in \(n\)-qubit states, as follows

\[
E^2_F(\rho_{A_1 | A_2 \cdots A_n}) \geq E^2_F(\rho_{A_1 A_2}) + \cdots + E^2_F(\rho_{A_1 A_n}).
\]

(3)

Moreover, Bai et al.\(^6\) exactly showed that there are a set of hierarchy \(k\)-partite monogamy relations for 2 EoF in an arbitrary \(n\)-qubit states, which obey the relation

\[
E^2_F(\rho_{A_1 | A_2 \cdots A_n}) \geq \sum_{i=2}^{k-1} E^2_F(\rho_{A_i | A_2 \cdots A_n}) + E^2_F(\rho_{A_1 | A_2 \cdots A_{i-1} A_{i+1} \cdots A_n}).
\]

(4)

Generally, Zhu and Fei\(^7\) proved that \(\alpha\)-EoF obeys the following monogamy relation in \(n\)-qubit states,

\[
E^\alpha_F(\rho_{A_1 A_2 \cdots A_n}) \geq E^\alpha_F(\rho_{A_1 A_2}) + \cdots + E^\alpha_F(\rho_{A_1 A_n}),
\]

(5)

where \(\alpha \in [\sqrt{2}, 2]\). (In fact, Eq. (5) obviously satisfies for \(\alpha > 2\) which can be obtained from Eq. (4) and ref. 12.)

Because some bipartite multiqubit EoF of \(E^\alpha_F(\rho_{A_1 A_2 \cdots A_n})\) can be calculated via quantum discord\(^13,14\), the entanglement indicator \(\tau_{k,\alpha} \rho \geq 0\) from Eqs (3–5) can be obtained and can characterize multiqubit entangled states in some \(n\)-qubit states\(^4,6,7\). In these entanglement indicators, how to choose a better indicator to detect that there exists multipartite entanglement is a problem. In the following subsections, we will try to resolve the problem.

Hierarchy \(k\)-partite monogamy relations for \(\alpha\)-EoF. In this subsection, we firstly summary of some existing conclusions, and then get the hierarchy \(k\)-partite monogamy relations for \(\alpha\)-EoF.

As we know, EoF is a well defined measure of entanglement for bipartite states. For any two-qubit state \(\rho_{AB}\), an analytical formula was given by Wootters\(^15\) as follows

\[
E_F(\rho_{AB}) = f(\sqrt{C^2(\rho_{AB})}) = \frac{1}{2} \left(1 + \sqrt{1 - C^2(\rho_{AB})} \right),
\]

(6)

where \(C(\rho_{AB}) = \max(0, \sqrt{\lambda_1 - \sqrt{\lambda_2 - \sqrt{\lambda_3 - \sqrt{\lambda_4}}}})\) is the concurrence with the decreasing nonnegative \(\lambda_i\) being the eigenvalues of the matrix \(\rho_{AB} \otimes \sigma_y \otimes \sigma_y \rho_{AB}^{\dagger} \otimes \sigma_y \otimes \sigma_y\). Here, \(f(x) = h(x) = \frac{1 - \sqrt{1 - x}}{2}\), and \(h(x) = -x \log_2 x - (1 - x) \log_2 (1 - x)\) is the binary Shannon entropy. Recently, Bai et al.\(^6\) proved that \(f(x)\) is a monotonic and concave function of \(x\). Moreover, Zhu and Fei\(^7\) proved that \(f(x)\) satisfies the following relation

\[
f^\alpha(x^2 + y^2) \geq f^\alpha(x^2) + f^\alpha(y^2),
\]

(7)

where \(\alpha \geq \frac{\sqrt{2}}{2}, x \) and \(y \in [0, 1]\). They also proved that EoF obeys the following relation

\[
E_F(\rho_{A_1 | A_2 \cdots A_n}) \geq \frac{f(\sqrt{C^2(\rho_{A_1 | A_2 \cdots A_n})})}{1 + \sqrt{1 - C^2(\rho_{A_1 | A_2 \cdots A_n})}}.
\]

(8)

for the bipartite quantum state \(\rho_{A_1 | A_2 \cdots A_n}\) in \(2 \otimes 2^{n-1}\) systems. Because a 2 \(\otimes 2^{n-1}\) pure state \(\ket{\psi}_{A_1 A_2 \cdots A_n}\) is equivalent to a two-qubit state under the Schmidt decomposition\(^16\), we have
From Eqs (1) and (6–9) for n-qubit systems, we can easily obtain that the following hierarchy k-partite monogamy relation holds.

Theorem 1 For any n-qubit state \(\rho_{A_1A_2...A_n} \), EoF satisfies the following monogamy relation

\[
E_F^n(\rho_{A_1A_2...A_n}) \geq \sum_{i=2}^{k-1} E_F^i(\rho_{A_iA}) + E_F^k(\rho_{A_1A_i...A_n}),
\]

where \(k = \{3, 4, ..., n\} \) and \(\alpha \geq \sqrt{2} \).

The \(\alpha \)EoF satisfies the hierarchy monogamy inequality (10) for any \(\alpha \geq \sqrt{2} \), while the \(\alpha \)th power of concurrence satisfies hierarchy monogamy inequalities for any \(\alpha \geq 2^{k-1} \). This phenomenon shows a difference between the two kinds of entanglement measures. On the other hand, the inequality (10) is a generalization of Eq. (5) in ref. 6 and Eq. (19) in ref. 7. More specifically, Eq. (10) equals to Eq. (4) when \(\alpha = 2 \), and is the same as Eq. (5) when \(k = n \).

Properties of hierarchy entanglement indicators. For any n-qubit state \(\rho_{A_1A_2...A_n} \) and \(\alpha \)EoF \((\alpha \in [\sqrt{2}, 2]) \), we can define a hierarchy entanglement indicator based on the corresponding monogamy relation in Eq. (10) as follows

\[
\tau_{k}^\alpha(\rho_{A_1A_2...A_n}) = \min \left\{ \tau_{k=1}^{A_1}_{E_{F_{k=1}}}^{\alpha_{k=1}}, \tau_{k=2}^{A_2}_{E_{F_{k=2}}}^{\alpha_{k=2}}, ..., \tau_{k=n}^{A_n}_{E_{F_{k=n}}}^{\alpha_{k=n}} \right\},
\]

where

\[
\tau_{k=1}^{A_1}_{E_{F_{k=1}}}^{\alpha_{k=1}}(\rho_{A_1A_2...A_n}) = E_F^1(\rho_{A_1A_2...A_n}) - \sum_{i=2}^{k-1} E_F^i(\rho_{A_iA}) - E_F^k(\rho_{A_1A_i...A_n}).
\]

It can be used to detect the entanglement for the k-partite case of an n-qubit system not stored in pairs of \(A_1 \) and any other \(k-1 \) party.

Here it should be noted that, different from the hierarchy entanglement indicator of the concurrence, the indicator of EoF depends on which qubit is chosen to be the focus qubit. Fortunately, the indicators of the concurrence and EoF are all focus-independent in symmetric quantum systems. In the following, we give some properties about the indicators of EoF only for n-qubit symmetric states.

Theorem 2 For any n-qubit symmetric state \(\rho_{A_1A_2...A_n} \), the hierarchy entanglement indicator satisfies

\[
\tau_{k}^\alpha(\rho_{A_1A_2...A_n}) = \tau_{k, E_{F_{k=1}}}^{A_1}_{E_{F_{k=1}}}^{\alpha_{k=1}}(\rho_{A_1A_2...A_n}),
\]

and it is a monotonically increasing function of \(k \), where \(k = \{3, 4, ..., n\} \) and \(\alpha \in [\sqrt{2}, 2] \).

Proof. When \(\rho_{A_1A_2...A_n} \) is a symmetric state, it is permutation invariant. Then, \(\forall i, j \in \{1, 2, ..., n\} \) and \(i \neq j \), we have \(E_F(\rho_{A_1A}) = E_F(\rho_{A_2A}) \) and

\[
E_F(\rho_{A_1|A_2...A_i...A_j...A_n}) = E_F(\rho_{A_2|A_1A_i...A_j...A_n}).
\]

Combining with Eq. (11), we have

\[
\tau_{k}^\alpha(\rho_{A_1A_2...A_n}) = \tau_{k=1}^{A_1}_{E_{F_{k=1}}}^{\alpha_{k=1}}(\rho_{A_1A_2...A_n}).
\]

Moreover, according to Eq. (5), we have

\[
E_F^k(\rho_{A_1|A_2...A_n}) \geq E_F^k(\rho_{A_1|A_2...A_n}) + E_F^k(\rho_{A_1|A_2...A_n}).
\]

Then we can derive

\[
\tau_{k+1}^\alpha(\rho_{A_1A_2...A_n}) = E_F^k(\rho_{A_1|A_2...A_n}) - \sum_{i=2}^{k-1} E_F^i(\rho_{A_iA}) - E_F^k(\rho_{A_1A_i...A_n})
\]

\[
geq E_F^k(\rho_{A_1|A_2...A_n}) - \sum_{i=2}^{k-1} E_F^i(\rho_{A_iA}) - E_F^k(\rho_{A_1A_i...A_n})
\]

\[
= \tau_{k}^\alpha(\rho_{A_1A_2...A_n}).
\]

where the inequality holds because of Eq. (16). Therefore, the entanglement indicator \(\tau_{k}^\alpha(\rho_{A_1A_2...A_n}) \) is a monotonically increasing function of \(k \).

In symmetrical quantum systems, the k-partite n-qubit monogamy relations of \(\alpha \)EoF in Eq. (10) can be a monogamy equality (e.g., the corresponding results in the next subsection), and thus the corresponding entanglement indicator \(\tau_{k}^\alpha(\rho_{A_1A_2...A_n}) \) can not work. However, we can choose an appropriate indicator.
to represent a better entanglement indicator which comes from the following result.

Theorem 3 For any n-qubit symmetric state \(\rho_{A_1A_2...A_n} \), the entanglement indicator obeys the following relation

\[
g(\alpha, n) = b^\alpha - (n - 1) c^\alpha,
\]

where \(\alpha \in [\sqrt{2}, 2] \), \(b = E_F(\rho_{A_1A_2...A_n}) \) and \(c = E_F(\rho_{A_1A_n}) \). For any \(n \), we have the following results

1. When \(c = 0 \), \(g(\alpha, n) \) is a monotonically decreasing function of \(\alpha \).
2. When \(c > 0 \) and \(b < 1 \), \(g(\alpha, n) \) is a monotonically decreasing function of \(\alpha \) if and only if

\[
\alpha \geq \frac{\ln(n - 1) \ln c}{\ln b}.
\]

and \(g(\alpha, n) \) is a monotonically increasing function of \(\alpha \) if and only if

\[
\alpha \leq \frac{\ln(n - 1) \ln c}{\ln b}.
\]

When \(c > 0 \) and \(b = 1 \), \(g(\alpha, n) \) is also a monotonically increasing function of \(\alpha \).

Proof. From Eqs (10), (12) and (15), we have

\[
g(\alpha, n) = E_F(\rho_{A_1A_2...A_n}) - \sum_{i=2}^{n} E_F(\rho_{A_iA_n}) = b^\alpha - (n - 1) c^\alpha.
\]

According to the definition of \(b \) and \(c \) and the monogamy inequality (5), we get 0 \(\leq c < b \leq 1 \).

For any \(n \), we will analytically prove the two necessary and sufficient conditions.

1. When \(c = 0 \), we have \(g(\alpha, n) = b^\alpha \). Because 0 \(\leq b < 1 \), \(g(\alpha, n) \) is a monotonically decreasing function of \(\alpha \).
2. When \(c \in (0, b) \), we have

\[
\frac{\partial g(\alpha, n)}{\partial \alpha} = b^\alpha \ln b - (n - 1) c^\alpha \ln c.
\]

The monotonically decreasing property of \(g(\alpha, n) \) is satisfied if and only if the first-order partial derivative \(\partial g(\alpha, n)/\partial \alpha \leq 0 \), which is equivalent to Eq. (20).

Furthermore, the monotonically increasing property of \(g(\alpha, n) \) is satisfied if and only if the first-order partial derivative \(\partial g(\alpha, n)/\partial \alpha \geq 0 \), which is equivalent to Eq. (21).

From Theorem 3, we can obtain that the necessary and sufficient condition for the unit indicator is \(E_F(\rho_{A_1A_2...A_n}) = 1 \) and \(E_F(\rho_{A_1A_n}) = 0 \). For any n-qubit symmetrical state, we can numerically compute the corresponding bounds to determine which is better, \(\sqrt{2} \) EoF indicator or the 2 EoF, as follows:

After some deduction, we numerically obtain two bounds \(N_1 \) and \(N_2 \) with Eqs (20) and (21). When \(n \geq N_1 \), the \(\sqrt{2} \) EoF indicator is better than the 2 EoF indicator which comes from Eq. (20). The 2 EoF indicator is better than the \(\sqrt{2} \) EoF indicator when \(n \leq N_2 \), which comes from Eq. (21).

These results can be verified via two n-qubit symmetrical states in the next subsection.

Analytical examples. We will investigate the above results on permutationally invariant states, which are the W state, the superposition of the W state and the Greenberger-Horne-Zeilinger (GHZ) state of \(n \) qubits respectively.

For the W state. In this part, we analyze the \(n \)-qubit W state which has the form

\[
|W\rangle_{A_1A_2...A_n} = \frac{1}{\sqrt{n}}(|00...01\rangle + |00...10\rangle + \cdots + |01...00\rangle + |10...00\rangle).
\]

For this quantum state, the \(n \)-partite \(n \)-qubit monogamy relations of \(\alpha \)th power of concurrence as shown in ref. 7 are saturated, and thus these concurrence-based entanglement indicators can not work. However, we will show that the \(\alpha \) EoF-based indicator can be used to represent the entanglement in the \(n \)-partite \(n \)-qubit systems.

Using the symmetry of qubit permutations in the W state, \(C^2(|W\rangle_{A_1A_2...A_n}) = 4(n - 1)/n^2 \), and \(C^2(\rho_{A_1A_n}) = 4/n^2 \), we have
\[\tau_n^\alpha \left(|W\rangle_{A_1A_2\ldots A_n} \right) = E_F^\alpha \left[C^2 \left(|W\rangle_{A_1A_2\ldots A_n} \right) \right] - (n-1)E_F^\alpha \left[C^2 \left(\rho_{A_1A_2} \right) \right] = f^\alpha \left(\frac{4(n-1)}{n^2} \right) - (n-1)f^\alpha \left(\frac{4}{n^2} \right) = b^\alpha |p(n)| - (n-1)c^\alpha |q(n)|, \]

where \(p(n) = 4(n-1)/n^2 \) and \(q(n) = 4/n^2 \). This set of \(\tau_n^\alpha \left(|W\rangle_{A_1A_2\ldots A_n} \right) \) are positive since the \(\alpha \text{EoF} \) is monogamous as shown in Eqs (5) and (10).

In order to study the properties of \(g(\alpha, n) \), we firstly prove the function \(M(n) \), with

\[M(n) = \ln \left(\frac{n-1}{\ln \left(\frac{c|q(n)|}{b|p(n)|} \right)} \right) \]

in Eqs (20) and (21), is a monotonically decreasing function of \(n \). The details for illustrating the monotonic property are presented in Methods.

Let

\[g(\alpha, n) = \tau_n^\alpha \left(|W\rangle_{A_1A_2\ldots A_n} \right). \]

After some deduction, we can derive

\[M(77) \approx 1.4134 < \sqrt{2} < M(76) \approx 1.4149, \]

when \(\alpha = \sqrt{2} \). Thus, combining with the monotonically decreasing property of \(M(n) \), we prove that \(\alpha \geq M(n) \) when \(n \geq 77 \), while \(\alpha \leq M(n) \) when \(n \leq 76 \). When \(\alpha = 2 \), we get

\[M(10) \approx 1.9394 < 2 < M(9) \approx 2.0055, \]

which means \(\alpha \geq M(n) \) when \(n \geq 10 \), while \(\alpha \leq M(n) \) when \(n \leq 9 \). Combining the above two inequations with Eqs (20) and (21), we obtain the two bounds \(N_1 = \max(77, 10) = 77 \) and \(N_2 = \min(76, 9) = 9 \). And, we know that \(\tau_n^{\sqrt{2}} \left(|W\rangle_{A_1A_2\ldots A_n} \right) > \tau_n^{2} \left(|W\rangle_{A_1A_2\ldots A_n} \right) \) when \(n \geq N_1 \), and \(\tau_n^{2} \left(|W\rangle_{A_1A_2\ldots A_n} \right) < \tau_n^{\sqrt{2}} \left(|W\rangle_{A_1A_2\ldots A_n} \right) \) when \(n \leq N_2 \). Then we complete the proof that \(g(\alpha, n) \) obeys these properties.

In Fig. 1, we plot these indicators as functions of \(n \), and then these properties can be verified from the figure. From the Fig. 1, we numerically find that \(g(\alpha, n) \) is a monotonically decreasing function of \(n \) when \(\alpha \in [\sqrt{2}, 2] \) and \(n \geq 10 \). How to exactly prove the result is an open problem.

These results still hold for symmetric \(n \)-qubit mixed states as shown in the next part.

For the superpositions of the GHZ state and the W state. When an \(n \)-qubit mixed state is a superpositions of the GHZ state and the W state, it has the form

\[\rho_{A_1A_2\ldots A_n} = p|GHZ\rangle \langle GHZ| + (1 - p)|W\rangle \langle W|. \]
where \(|\text{GHZ}\rangle = (|00\cdots00\rangle + |11\cdots11\rangle) / \sqrt{2}\) and \(\rho \in (0,1)\). For \(n = 3\), Lohmayer et al.\(^5\) found that, when \(p \in (0.292,0.627)\), it is entangled but without two-qubit concurrence and three-tangle. It is still an unsolved problem of how to characterize the entanglement structure in this kind of states for large \(n\).

In Eq. (18), the \(n\)-partite entanglement indicators have the forms

\[
\tau_n^\alpha (\rho_{A_1 A_2 \cdots A_n}) = E_F^\alpha (\rho_{A_1 A_2 \cdots A_n}) - (n - 1) E_F^\alpha (\rho_{A_1 A_2}), \quad (31)
\]

Then, the calculations of \(E_F(\rho_{A_1 A_2 \cdots A_n})\) and \(E_F(\rho_{A_1 A_2})\) are key steps.

Any reduced two-qubit states of \(\rho_{A_1 A_2 \cdots A_n}\) has the same form

\[
\rho_{A_1 A_2} = \left[\frac{p}{2} + \frac{(n - 2)(1 - p)}{n}\right]|00\rangle\langle 00| + \frac{1 - p}{n} (|01\rangle\langle 01| + |01\rangle\langle 10| + |10\rangle\langle 01| + |10\rangle\langle 10|) + \frac{2}{n} |11\rangle\langle 11|. \quad (32)
\]

Using the effective method for calculating concurrence in ref. 15 and after some calculations, we have

\[
C(\rho_{A_1 A_2}) \equiv 0, \quad \forall p \in (p_L, p_R) \quad (33)
\]

where \(n \geq 6\) and \(p_{L,R} = \frac{(2n^2 + 8n - 9)}{2(3n^2 + 4n - 5)}\). Then, according to Eq. (6), we obtain \(E_F^\alpha (\rho_{A_1 A_2}) \equiv 0\).

In the following, we will calculate \(E_F(\rho_{A_1 A_2 \cdots A_n})\). Through introducing a system \(B\) which has the same state space as the composite system \(A_1 A_2 \cdots A_n\), \(\rho_{A_1 A_2 \cdots A_n}\) can be purified as

\[
|\Psi\rangle_{A_1 A_2 \cdots A_n B} = \sqrt{p} |\text{GHZ}\rangle_{A_1 A_2 \cdots A_n} |0\rangle_B + \sqrt{1 - p} |\text{W}\rangle_{A_1 A_2 \cdots A_n} |1\rangle_B. \quad (34)
\]

According to the Koashi-Winter formula\(^4,18\), the bipartite multiqubit EoF can be calculated by the purified state \(|\Psi\rangle_{A_1 A_2 \cdots A_n B}\) with \(\rho_{A_1 A_2 \cdots A_n} = tr_B|\Psi\rangle\langle \Psi|\)

\[
E_F(\rho_{A_1 A_2 \cdots A_n}) = D_B(\rho_{A_1 A_2}) + S(A_1 |B), \quad (35)
\]

where \(S(A_1 |B)\) is the quantum conditional von Neumann entropy, and the quantum discord \(D_B(\rho_{A_1 A_2})\) is defined as\(^3\)

\[
D_B(\rho_{A_1 A_2}) = \min_{|\Pi_B\rangle} \sum_r \rho S(A_1 |\Pi_{B,r}^\alpha) - S(A_1 |B) \quad (36)
\]

with the minimum running over all the positive operator-valued measures on the subsystem \(B\). The details for proving Eq. (35) are presented in Methods. Chen et al.\(^3\) presented an effective method for choosing an optimal measurement over \(B\) and then calculating the quantum discord of two-qubit \(X\) states, which can be used to quantify the multipartite entanglement indicator in Eq. (19). After some analysis, we can obtain the optimal measurement for the quantum discord \(D_B(\rho_{A_1 A_2})\) is \(\sigma_7\) when \(n \geq 6\) and \(p \in (p_L, p_R)\). Then, after some deduction, we get

\[
E_F(\rho_{A_1 A_2 \cdots A_n}) = p + (1 - p) h\left(\frac{1}{n}\right). \quad (37)
\]

From Eqs (19), (31) and (33), the indicator has the form

\[
g(\alpha, n) = \tau_n^\alpha (\rho_{A_1 A_2 \cdots A_n}) = \left[p + (1 - p) h\left(\frac{1}{n}\right) \right]^\alpha. \quad (38)
\]

The distribution of \(\tau_n^\alpha (\rho_{A_1 A_2 \cdots A_n})\) has been shown in Fig. 2 for \(\alpha = \sqrt{2}\) and \(\alpha = 2\) respectively. Furthermore, \(\tau_n^\alpha (\rho_{A_1 A_2 \cdots A_n})\) and \(\tau_n^{\alpha\alpha} (\rho_{A_1 A_2 \cdots A_n})\) have some properties as follows.

1. For any \(\alpha\), \(g(\alpha, n)\) is a monotonically decreasing function of \(n\). The monotonically decreasing property of \(g(\alpha, n)\) holds because the first-order partial derivative satisfies

\[
\frac{\partial g(\alpha, n)}{\partial n} = \left[p + (1 - p) h\left(\frac{1}{n}\right) \right]^{\alpha - 1} \cdot \frac{1}{\sqrt{1 - \frac{1}{n}}} \ln \frac{1 + \sqrt{1 - \frac{1}{n}}}{1 - \sqrt{1 - \frac{1}{n}}} \left(-\frac{1}{n^2} \right) < 0. \quad (39)
\]

2. Combining with Theorem 3 and Eqs (33) and (38), we have \(\tau_n^{\alpha\alpha} (\rho_{A_1 A_2 \cdots A_n}) > \tau_n^\alpha (\rho_{A_1 A_2 \cdots A_n})\).
From the above two properties, we know that the nonzero $\tau_n^{\sigma}(\rho_{A_1A_2\ldots A_n})$ can indicate the existence of the n-qubit entanglement. These results can also be understood as the fact that $\tau_n^{\sigma}(\rho_{A_1A_2\ldots A_n})$ can detect as many as possible n-qubit entangled states for large n.

Conclusion

Entanglement monogamy is a fundamental property of multipartite entangled states. Based on our established monogamy relations Eq. (10), we obtain a set of useful tools for characterizing the multipartite entanglement not stored in pairs of the focus particle and the other subset of particles, which overcome some flaws of the concurrence. For any n-qubit symmetric state, we prove that the $2E_{oF}$ indicator work best when n is large enough, while the $2E_{oF}$ indicator works better than the $\sqrt{2}E_{oF}$ indicator for smaller n.

Methods

The monotonic property of the function in Eqs (20) and (21). In order to determine the monotonic property of $M(n)$, with

$$M(n) = \frac{\ln \left((n-1) \frac{\ln c}{\ln p} \right)}{\ln \frac{b}{c}},$$

in Eqs (20) and (21), we analyze the sign of the first-order derivative $dM(n)/dn$.

After some deduction, we can obtain

$$\frac{dM(n)}{dn} = \left(\frac{1}{\ln \frac{b}{c}} \right) \left(\frac{1}{n-1} + \frac{1}{c} \ln \left(\frac{c}{dn} \right) - \frac{1}{b} \ln \left(\frac{b}{dn} \right) \right) \ln \frac{b}{c}$$

$$- \left(\frac{1}{b} \ln \left(\frac{b}{dn} \right) \ln \frac{b}{c} - \frac{1}{c} \ln \left(\frac{c}{dn} \right) \ln \frac{c}{ln} \left((n-1) \frac{\ln c}{\ln b} \right) \right).$$

Then, $dM(n)/dn < 0$ when

$$\ln \left((n-1) \frac{\ln c}{\ln b} \right) > \ln \frac{b}{c},$$

and

$$\frac{\ln b}{b} \ln \frac{b}{dn} - \frac{\ln c}{c} \ln \left(\frac{c}{dn} \right) > \frac{1}{n-1} + \frac{1}{c} \ln \left(\frac{c}{dn} \right) - \frac{1}{b} \ln \left(\frac{b}{dn} \right).$$

Eq. (42) holds if and only if

$$\ln \left(\frac{(n-1)c}{b \ln b} \right) > 0,$$

i.e.,

$$H(b) = b \ln b > (n-1)c \ln c = (n-1)H(c).$$

![Figure 2. The multipartite entanglement indicators for the superposition state as functions of n and p, where $n \in [6, 60]$, $\alpha = 2$ and $\sqrt{2}$ respectively.](image-url)
The inequality (45) holds because \(H[x(n)] = x(n) \ln x(n) \) is a concave function of \(n \) with \(x(n) \in \{ b(n), c(n) \} \).

Similarly, we have Eq. (43) holds when

\[
F(\ln b) > F(n-1) + F(\ln c).
\]

where

\[
F[t(n)] = (1 + t(n)) \cdot \frac{d \ln[t(n)]}{dn}
\]

and then \(F(n-1) > 1/(n-1) \). From ref. 9, we easily get that \(d(t(n))/dn < 0 \) where \(t(n) \in \{ b, c \} \).

In the following, we will prove Eq. (46). Let \(K[t(n)] = t(n) + \ln[t(n)] \) where \(t(n) \in \{ b, c \} \).

Using the definition of the partial derivative, it is not difficult to verify that \(\frac{\partial K[t(n)]}{\partial n} = \frac{\partial K[t(n)]}{\partial t} + \frac{\partial K[t(n)]}{\partial t(n)} \) and \(\frac{\partial K[t(n)]}{\partial t(n)} \) are all continuous functions. Combining with the exchange order theorem of two second-order mixed partial derivative, we have

\[
\frac{d^2 F(t)}{dt^2} = \frac{\partial^2 K[t(n)]}{\partial n \partial t} = \frac{\partial^2 K[t(n)]}{\partial t \partial n} = \frac{1}{t^2} \frac{dt}{dn} > 0, \\
\frac{d^3 F(t)}{dt^3} = \frac{\partial^2 K[t(n)]}{\partial n \partial t^2} = \frac{\partial^2 K[t(n)]}{\partial t^2 \partial n} = \frac{2}{t^3} \frac{dt}{dn} < 0.
\]

According to Eq. (47), we get that \(F(t) \) is monotonic and concave as a function of \(t \).

Combining with Eq. (19), we have

\[
F(\ln b) \geq F(\ln[(n-1)c]) \geq F((n-1)\ln c) \geq F(n-1) + F(\ln c).
\]

Here, the first inequality holds because \(f \) is a concave function of \(n \), and the monotonically increasing property of \(F(t) \) in Eq. (48). The second inequality is satisfied because \(F(t) \) is a monotonically increasing function in Eq. (48) and \(\ln x \) is a concave function of \(x \). And the last inequality holds because \(F(t) \) is a concave function as proved in Eq. (48).

Then, we complete the proof that \(M(n) \) is a monotonically decreasing function of \(n \).

Proof of the Eq. (35) in the Main Text. Purification can be done for any state \(\rho_{A_1A_2\ldots A_n} \) because we can introduce a system \(B \) which has the same state space as system \(A_1A_2\ldots A_n \) and define a pure state\(^{20}\) for the combined system

\[
|\Psi\rangle_{A_1A_2\ldots A_nB} = \sqrt{p} |G\rangle_{A_1A_2\ldots A_n}|0\rangle_B + \sqrt{1-p} |W\rangle_{A_1A_2\ldots A_n}|1\rangle_B.
\]

From ref. 21, we know

\[
I^{\rightarrow}(\rho_{A_nB}) + D_B(\rho_{A_nB}) = I(\rho_{A_nB}).
\]

Combining with \(I(\rho_{A_nB}) = S(\rho_{A_n}) - S(A_n|B) \), we can find that Eq. (35) is just Eq. (2) in ref. 17. More specifically,

\[
E_F(\rho_{A_1A_2\ldots A_n}) = S(\rho_{A_n}) - I^{\rightarrow}(\rho_{A_nB}) = S(\rho_{A_n}) - I(\rho_{A_nB}) - D_B(\rho_{A_nB}) + S(A_n|B).
\]

Then, we complete the proof of the Eq. (35) in the Main Text.

References

1. Streitsov, A., Adesso, G., Piani, M. & Bruß, D. Are general quantum correlations monogamous? *Phys. Rev. Lett.* **109**, 050503 (2012).
2. Horodecki, R., Horodecki, P., Horodecki, M. & Horodecki, K. Quantum entanglement. *Rev. Mod. Phys.* **81**, 865 (2009).
3. Coffman, V., Kundu, J. & Wootters, W. K. Distributed entanglement. *Phys. Rev. A* **61**, 052306 (2000).
4. Bai, Y.-K., Xu, X.-F. & Wang, Z. D. General monogamy relation for the entanglement of formation in multipartitite systems. *Phys. Rev. Lett.* **113**, 100503 (2014).
5. Lohmayer, R., Osterloh, A., Siewert, J. & Uhlmann, A. Entangled three-qubit systems without concurrence and three-tangle. *Phys. Rev. Lett.* **97**, 260502 (2006).
6. Bai, Y.-K., Xu, X.-F. & Wang, Z. D. Hierarchical monogamy relations for the squared entanglement of formation in multipartite systems. *Phys. Rev. A* **90**, 062343 (2014).
7. Zhu, X.-N. & Fei, S.-M. Entanglement monogamy relations of qubit systems. *Phys. Rev. A* **90**, 024304 (2014).
8. Maccione, L., Bruß, D. & Macchiavello, C. Complementarity and correlations. *Phys. Rev. Lett.* **114**, 130401 (2015).
9. Osborne, T. J. & Verstraete, F. General monogamy inequality for bipartite qubit entanglement. *Phys. Rev. Lett.* **96**, 220503 (2006).
10. Bai, Y.-K., Ye, M.-Y. & Wang, Z. D. Entanglement in a class of multipartite mixed states without multipartite tangles. *Phys. Rev. A* **78**, 062325 (2008).
11. de Oliveira, T. R., Cornelio, M. F. & Fanchini, F. F. Monogamy of entanglement of formation. *Phys. Rev. A* **89**, 034303 (2014).
12. Salimia, K., Prabhub, R., Sen(De), A. & Sen, U. Monotonically increasing functions of any quantum correlation can make all multipartite states monogamous. *Ann. Phys.* **348**, 297 (2014).
13. Ollivier, H. & Zurek, W. H. Quantum discord: A measure of the quantumness of correlations. *Phys. Rev. Lett.* **88**, 017901 (2001).
14. Henderson, L. & Vedral, V. Classical, quantum and total correlations. *J. Phys. A* **34**, 6899 (2001).
15. Wootters, W. K. Entanglement of formation of an arbitrary state of two qubits. *Phys. Rev. Lett.* **80**, 2245 (1998).
16. Peres, A. Higher order schmidt decompositions. *Phys. Lett. A* **202**, 16 (1995).
17. Kim, J. S. & Sanders, B. C. Generalized W-class state and its monogamy relation. *J. Phys. A: Math. Gen.* **41**, 495301 (2008).
18. Koashi, M. & Winter, A. Monogamy of quantum entanglement and other correlations. *Phys. Rev. A* **69**, 022309 (2004).
19. Chen, Q., Zhang, C., Yu, S., Yi, X. X. & Oh, C. H. Quantum discord of two-qubit X states. *Phys. Rev. A* **84**, 042313 (2011).
20. Horodecki, M. & Horodecki, P. Reduction criterion of separability and limits for a class of distillation protocols. *Phys. Rev. A* **59**, 4206 (1999).
21. Modi, K., Brodutch, A., Cable, H., Paterek, T. & Vedral, V. The classical-quantum boundary for correlations: Discord and related measures. *Rev. Mod. Phys.* **84**, 1655 (2012).

Acknowledgements

This work is supported by NSFC (Grant Nos 61272057, 61170270), Beijing Higher Education Young Elite Teacher Project (Grant Nos YETP0475, YETP0477), the Natural Science Foundation of Shaanxi Province of China (Grant No. 2015JM6263) and Shandong Provincial Natural Science Foundation, China (Grant No. ZR2015FQ006).

Author Contributions

F.L. and F.G. contributed the idea. F.L. performed the calculations and wrote the main manuscript. S.-J.Q. checked the calculations. S.-C.X. and Q.-Y.W. made an improvement of the manuscript. All authors contributed to discussion and reviewed the manuscript.

Additional Information

Competing financial interests: The authors declare no competing financial interests.

How to cite this article: Liu, F. et al. Multipartite entanglement indicators based on monogamy relations of n-qubit symmetric states. *Sci. Rep.* **6**, 20302 (2016).

This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/