EXISTENCE AND UNIQUENESS OF BOUNDARY VALUE
PROBLEMS FOR HILFER-HADAMARD-TYPE FRACTIONAL
DIFFERENTIAL EQUATIONS

AHMAD Y. A. SALAMOONI, D. D. PAWAR

ABSTRACT. In this paper, we used some theorems of fixed point for studying
the results of existence and uniqueness for Hilfer-Hadamard-Type fractional
differential equations,
\[H^{\alpha,\beta} x(t) + f(t, x(t)) = 0, \text{ on the interval } J := (1, e] \]
with boundary value problems
\[x(1 + \epsilon) = 0, \quad H^{1,1} x(e) = \nu H^{1,1} x(\zeta) \]

AMS Classification- 34A08, 35R11

1. Introduction.

The fractional differential equations give proofs of the more appropriate models
for describing real world problems. Indeed, these problems cannot be described
using classical integer order differential equations. In the past years the theory
of fractional differential equations has received much attention from the authors,
and has become an important field of investigation due to existence applications
in engineering, biology, chemistry, economics and numerous branches of physics
sciences\[1,2,5,10,11\]. Fractional differential equations have a several kinds of frac-
tional differential equations. One of them is the Hadamard fractional derivative
innovated by Hadamard in 1892\[3\], which differs from the Riemann-Liouville and Ca-
puto type fractional derivative\[10\], the preceding ones in the sense that the kernel of
the integral contains logarithmic function of arbitrary exponent. The properties of
Hadamard Fractional integral and derivative can be found in\[2,26\]. Recently, the au-
thors studied the Hadamard-type, Caputo-Hadamard-type and Hilfer-Hadamard-
type fractional derivative by using the fixed point theorems with the boundary
value problems and give the results of existence and uniqueness\[15-22,25\]. In this
paper, we studied the existence and uniqueness result of solutions for boundary
value problems for Hilfer-Hadamard-Type fractional differential equations of the
form
\[H^{\alpha,\beta} x(t) + f(t, x(t)) = 0, \quad t \in J := (1, e], \quad 1 < \alpha \leq 2, \quad 0 \leq \beta \leq 1 \]
\[x(1 + \epsilon) = 0, \quad H^{1,1} x(e) = \nu H^{1,1} x(\zeta) \] (1.1)

Key words and phrases. Existence, uniqueness, boundary value problems, Hilfer-Hadamard
type, fractional differential equation and fractional calculus.
where $H D^{\alpha, \beta}$ is the Hilfer-Hadamard fractional derivative of order $1 < \alpha \leq 2$ and type $\beta \in [0, 1]$, $0 \leq \nu < 1$, $\zeta \in (1, \epsilon)$, $0 < \epsilon < 1$, $H D^{1,1} = \frac{d}{dt}$ and $f : J \rightarrow \mathbb{R}^+$.

2. Preliminaries

In this section, we introduce some notations and definitions of Hilfer-Hadamard-Type fractional calculus.

Definition 2.1. ([2,11]) (Riemann-Liouville fractional integral). The Riemann-Liouville integral of order $\alpha > 0$ of a function $\varphi : [1, \infty) \rightarrow \mathbb{R}$ is defined by

$$(I^{\alpha} \varphi)(t) = \frac{1}{\Gamma(\alpha)} \int_{1}^{t} \frac{\varphi(\tau)d\tau}{(t - \tau)^{1-\alpha}}, \quad (t > 1),$$

Here $\Gamma(\alpha)$ is the Euler's Gamma function.

Definition 2.2. ([2,11]) (Riemann-Liouville fractional derivative). The Riemann-Liouville fractional derivative of order $\alpha > 0$ of a function $\varphi : [1, \infty) \rightarrow \mathbb{R}$ is defined by

$$(D^{\alpha} \varphi)(t) := \left(\frac{d}{dt}\right)^{n} (I^{n-\alpha} \varphi)(t) = \frac{1}{\Gamma(n-\alpha)} \frac{d^{n}}{dt^{n}} \int_{1}^{t} \frac{\varphi(\tau)d\tau}{(t - \tau)^{n-\alpha+1}}, \quad (n = [\alpha] + 1; t > 1),$$

Here $[\alpha]$ is the integer part of α.

Definition 2.3. ([2]) (Hadamard Fractional integral). The Hadamard Fractional integral of order $\alpha \in \mathbb{R}^+$ for a function $\varphi : [1, \infty) \rightarrow \mathbb{R}$ is defined as

$$H I^{\alpha} \varphi(t) = \frac{1}{\Gamma(\alpha)} \int_{1}^{t} \frac{\varphi(\tau)(\log \frac{t}{\tau})^{\alpha-1}d\tau}{\tau^{\alpha+1}}, \quad (t > 1)$$

where $\log(.) = \log_{e}(.)$.

Definition 2.4. ([2]) (Hadamard Fractional derivative). The Hadamard Fractional derivative of order α applied to the function $\varphi : [1, \infty) \rightarrow \mathbb{R}$ is defined as

$$H D^{\alpha} \varphi(t) = \delta^{n}(H I^{n-\alpha} \varphi(t)), \quad n - 1 < \alpha < n, \quad n = [\alpha] + 1,$$

where $\delta^{n} = (t \frac{d}{dt})^{n}$ and $[\alpha]$ denotes the integer part of the real number α.

Definition 2.5. ([3,13]) (Caputo-Hadamard Fractional derivative). The Caputo-Hadamard Fractional derivative of order α applied to the function $\varphi \in AC^{n}([a, b])$ is defined as

$$HC D^{\alpha} \varphi(t) = (H I^{n-\alpha} \delta^{n} \varphi)(t)$$

where $n = [\alpha] + 1$, and $\varphi \in AC^{n}([a, b]) = \left\{\varphi : [a, b] \rightarrow \mathbb{C} : \delta^{(n-1)} \varphi \in AC([a, b]), \delta = t \frac{d}{dt}\right\}$

Definition 2.6. ([5,21]) (Hilfer Fractional derivative). Let $n - 1 < \alpha < n$, $0 \leq \beta \leq 1$, $\varphi \in L^{1}(a, b)$. The Hilfer Fractional derivative $D^{\alpha, \beta}$ of order α and type β of φ is defined as

$$(D^{\alpha, \beta} \varphi)(t) = (I^{(n-\alpha)} \left(\frac{d}{dt}\right)^{n} I^{(n-\alpha)(1-\beta)} \varphi)(t)$$
\[
(I^{\beta(n-\alpha)} \frac{d}{dt})^{n} I^{\alpha+\gamma} \varphi(t); \quad \gamma = \alpha + n\beta - \alpha\beta.
\]

\[
= (I^{\beta(n-\alpha)} D^{\gamma} \varphi)(t),
\]

Where \(I^{(\cdot)} \) and \(D^{(\cdot)} \) is the Riemann-Liouville fractional integral and derivative defined by (2.1) and (2.2), respectively.

In particular, if \(0 < \alpha < 1 \), then
\[
(D^{\alpha,\beta} \varphi)(t) = (I^{\beta(1-\alpha)} \frac{d}{dt} I^{(1-\alpha)(1-\beta)} \varphi)(t)
\]
\[
= (I^{\beta(1-\alpha)} \frac{d}{dt} I^{1-\gamma} \varphi)(t); \quad \gamma = \alpha + \beta - \alpha\beta.
\]
\[
= (I^{\beta(1-\alpha)} D^{\gamma} \varphi)(t).
\]

Properties 2.7.[21,22].

Let \(0 < \alpha < 1, \ 0 \leq \beta \leq 1, \ \gamma = \alpha + \beta - \alpha\beta \), and \(\varphi \in L^{1}(a, b) \). If \(D^{\gamma} \varphi \) exists and in \(L^{1}(a, b) \), then
\[
I_{a+}^{\gamma} (D_{a+}^{\alpha,\beta} \varphi)(t) = I_{a+}^{\gamma} (D_{a+}^{\gamma} \varphi)(t) = \varphi(t) - \frac{(I_{a+}^{1-\gamma} \varphi)(a)}{\Gamma(\gamma)} (t - a)^{-1}.
\]

Definition 2.8.[21,22] (Hilfer-Hadamard Fractional derivative).

Let \(0 < \alpha < 1, \ 0 \leq \beta \leq 1, \ \varphi \in L^{1}(a, b) \). The Hilfer-Hadamard Fractional derivative \(H D^{\alpha,\beta} \) of order \(\alpha \) and type \(\beta \) of \(\varphi \) is defined as
\[
(H D^{\alpha,\beta} \varphi)(t) = (H I^{\beta(1-\alpha)} \delta H I^{(1-\alpha)(1-\beta)} \varphi)(t)
\]
\[
= (H I^{\beta(1-\alpha)} \delta H I^{1-\gamma} \varphi)(t); \quad \gamma = \alpha + \beta - \alpha\beta.
\]
\[
= (H I^{\beta(1-\alpha)} H D^{\gamma} \varphi)(t).
\]

Where \(H I^{(\cdot)} \) and \(H D^{(\cdot)} \) is the Hadamard fractional integral and derivative defined by (2.3) and (2.4), respectively.

Theorem 2.9.[3,23].

Let \(\Re(\alpha) > 0, \ n = \lfloor \Re(\alpha) \rfloor + 1 \) and \(0 < a < b < \infty \). if \(\varphi \in L^{1}(a, b) \) and
\[
(H I_{a+}^{\alpha} \varphi)(t) \in AC_{\alpha}^{n}[a, b], \text{ then}
\]
\[
(H I_{a+}^{\alpha} H D_{a+}^{\alpha} \varphi)(t) = \varphi(t) - \sum_{j=0}^{n-1} \frac{(\delta^{(n-j-1)}(H I_{a+}^{\alpha} \varphi))(a)}{\Gamma(\alpha - j)} (\log \frac{t}{a})^{\alpha - j - 1}
\]

Theorem 2.10.[3,13]

Let \(\varphi(t) \in AC_{\alpha}^{n}[a, b] \) or \(\varphi(t) \in C_{\alpha}^{n}[a, b] \), and \(\alpha \in \mathbb{C} \), then
\[
(H I_{a+}^{\alpha} H C D_{a+}^{\alpha} \varphi)(t) = \varphi(t) - \sum_{k=0}^{n-1} \frac{\delta^{K} \varphi(a)}{\Gamma(K + 1)} (\log \frac{t}{a})^{K}
\]

Theorem 2.11.[23,24] (Leray- Schauder alternative).

Let \(E \) be a Banach space. Suppose that \(T : E \to E \) is completely continuous operator and the set \(V = \{ v \in E \mid v = \lambda T v, 0 < \lambda < 1 \} \) is bounded. Then \(T \) has a fixed point in \(E \).

Theorem 2.12.[23,24]

Let \(E \) be a Banach space and \(V \) is an open bounded subset of \(E \) with \(0 \in V \).
Suppose that $\Psi : \mathcal{V} \rightarrow E$ be a completely continuous operator such that $\|\Psi v\| \leq \|v\|, \forall v \in \partial E$. Then Ψ has a fixed point in \mathcal{V}.

Lemma 2.13.[25]

For $1 < \alpha \leq 2$ and $\varphi \in C([1, e], \mathbb{R})$ the problem for Caputo-Hadamard-type,

$$H_{C} D^{\alpha} x(t) + \varphi(t) = 0, \quad t \in [1, e] \quad 1 < \alpha \leq 2,$$

$x(1) = 0, \quad H_{C} D x(e) = \nu H_{C} D x(\zeta)$

has a unique solution it giving in the formulae

$$x(t) = -\frac{1}{\Gamma(\alpha)} \int_{1}^{t} \left(\log \frac{t}{\tau} \right)^{\alpha - 1} \varphi(\tau) d\tau$$

$$+ \frac{\log t}{1 - \nu} \left[\frac{1}{\Gamma(\alpha - 1)} \int_{1}^{e} \left(\log \frac{e}{\tau} \right)^{\alpha - 2} \varphi(\tau) d\tau \right]$$

$$- \frac{\nu}{\Gamma(\alpha - 1)} \int_{1}^{e} \left(\log \frac{\xi}{\tau} \right)^{\alpha - 2} \varphi(\tau) d\tau$$

3. Main Results

Definition 3.1 (Hilfer-Hadamard Fractional derivative).

Let $n - 1 < \alpha < n$, $0 \leq \beta \leq 1$, $\varphi \in L^{1}(a, b)$. The Hilfer-Hadamard Fractional derivative $H_{D}^{\alpha, \beta}$ of order α and type β of φ is defined as

$$(H D_{a}^{\alpha, \beta} \varphi)(t) = H \left[I_{a}^{\beta(n-\alpha)}(\delta) \right] n H \left(I_{a}^{(n-\alpha)(1-\beta)} \varphi \right)(t)$$

$$= \left(H \left[I_{a}^{\beta(n-\alpha)}(\delta) \right] n H \right) I_{a}^{\gamma} \varphi(t); \quad \gamma = \alpha + n\beta - \alpha\beta,$$

$$= (I_{a}^{\beta(n-\alpha)} D_{\gamma} \varphi)(t),$$

Where $H I^{(\cdot)}$ and $H D^{(\cdot)}$ is the Hadamard fractional integral and derivative defined by (2.3) and (2.4), respectively.

Lemma 3.2.

Let $\Re(\alpha) > 0$, $0 \leq \beta \leq 1$, $\gamma = \alpha + n\beta - \alpha\beta$, $n - 1 < \gamma \leq n$, $n = [\Re(\alpha)] + 1$ and $0 < a < b < \infty$. if $\varphi \in L^{1}(a, b)$ and $(H I_{a+}^{\beta} \varphi)(t) \in AC_{\gamma}[a, b]$, then

$$H I_{a+}^{\alpha} (H D_{a+}^{\alpha, \beta} \varphi)(t) = H I_{a+}^{\gamma} (H D_{a+}^{\gamma} \varphi)(t) = \varphi(t) - \sum_{j=0}^{n-1} \frac{(\delta^{(n-j-1)}(H I_{a+}^{\gamma} \varphi))(a)}{\Gamma(\gamma-j)} (\log \frac{t}{a})^{\gamma-j-1}$$

From this Lemma, we notice that if $\beta = 0$ the formulae reduces to the formulae in the theorem 2.9, and if the $\beta = 1$ the formulae reduces to the formulae in the theorem 2.10.

Proof. We have

$$H I_{a+}^{\alpha} (H D_{a+}^{\alpha, \beta} \varphi)(t) = H I_{a+}^{\gamma} (H D_{a+}^{\gamma} \varphi)(t)$$

$$= \frac{1}{\Gamma(\gamma)} \int_{a}^{t} \left(\log \frac{t}{\tau} \right)^{\gamma-1} (H D_{a+}^{\gamma} \varphi(\tau)) d\tau$$

$$= \frac{d}{dt} \left\{ \frac{1}{\Gamma(\gamma+1)} \int_{a}^{t} \left(\log \frac{t}{\tau} \right)^{\gamma} (H D_{a+}^{\gamma} \varphi(\tau)) d\tau \right\}$$
On the hand, repeatedly integrating by parts and then using
$H P_{a^+} \cdot H I_q^+ = H P_{a^+} \cdot H I_q^+ = H P_{a^+}^q$, we obtain

$$
\begin{align*}
\frac{1}{\Gamma(\gamma + 1)} & \int_0^t (\log \frac{t}{\tau})^{\gamma} (H D_0^\gamma \varphi(\tau)) \frac{d\tau}{\tau} \\
& = \frac{1}{\Gamma(\gamma + 1)} \int_0^t (\log \frac{t}{\tau})^{\gamma} (H I_{a^+}^{\gamma - 1} \varphi(\tau)) \frac{d\tau}{\tau} \\
& = - \frac{1}{\Gamma(\gamma + 1)} (\log \frac{t}{\tau})^{\gamma - 1} (H I_{a^+}^{\gamma - 1} \varphi(\tau)) + \frac{1}{\Gamma(\gamma)} \int_0^t (\log \frac{t}{\tau})^{\gamma - 1} (H I_{a^+}^{\gamma - 2} \varphi(\tau)) \frac{d\tau}{\tau} \\
& = - \frac{1}{\Gamma(\gamma + 1)} (\log \frac{t}{\tau})^{\gamma - 1} (H I_{a^+}^{\gamma - 1} \varphi(\tau)) - \frac{1}{\Gamma(\gamma)} (\log \frac{t}{\tau})^{\gamma - 1} (H I_{a^+}^{\gamma - 2} (H I_{a^+}^{\gamma - 1} \varphi(\tau)) \frac{d\tau}{\tau} \\
& = \frac{1}{\Gamma(\gamma - 2)} \int_0^t (\log \frac{t}{\tau})^{\gamma - 2} \frac{d\tau}{\tau} - \sum_{j=1}^{n-1} \frac{\delta^n (H I_{a^+}^{\gamma - (2 + \gamma - j)} \varphi(\tau)) (\log \frac{t}{\tau})^{\gamma - j + 1}}{\Gamma(2 + \gamma - j)} \\
& = \frac{1}{\Gamma(\gamma - n + 1)} \int_0^t (\log \frac{t}{\tau})^{\gamma - n} (H I_{a^+}^{\gamma - \varphi(\tau)}) \frac{d\tau}{\tau} - \sum_{j=1}^{n-1} \frac{\delta^n (H I_{a^+}^{\gamma - (2 + \gamma - j)} \varphi(\tau)) (\log \frac{t}{\tau})^{\gamma - j + 1}}{\Gamma(2 + \gamma - j)} \\
\end{align*}
$$

Therefore,

$$
\begin{align*}
H I_{a^+}^{\alpha} (H D_{a^+}^{\alpha, \beta} \varphi)(t) = H I_{a^+}^{\alpha} (H D_{a^+}^{\alpha, \beta} \varphi)(t) \\
& = \frac{d}{dt} \left\{ (H I_{a^+}^{\alpha} \varphi)(t) - \sum_{j=1}^{n-1} \frac{\delta^n (H I_{a^+}^{\gamma - (2 + \gamma - j)} \varphi(\tau)) (\log \frac{t}{\tau})^{\gamma - j + 1}}{\Gamma(2 + \gamma - j)} \right\} \\
& = \varphi(t) - n \int_0^{t} \frac{\delta^{n-1} (H I_{a^+}^{\gamma - \varphi(\tau)}) (\log \frac{t}{\tau})^{\gamma - j + 1}}{\Gamma(\gamma - j)} d\tau \\
\end{align*}
$$

Lemma 3.3.
For $1 < \alpha \leq 2$, $0 \leq \beta \leq 1$ and $\varphi \in C([1, e], \mathbb{R})$,
$\gamma = \alpha + 2\beta - \alpha\beta$, $\gamma \in (1, 2]$

the problem

$H D^{\alpha, \beta} x(t) + \varphi(t) = 0$, $t \in J$, $1 < \alpha \leq 2$, $0 \leq \beta \leq 1$

$x(1 + e) = 0$, $H D^{1,1} x(e) = \nu H D^{1,1} x(\zeta)$

has a unique solution it giving in the formulae

$$
x(t) = - \frac{1}{\Gamma(\alpha + 1)} \int_0^t (\log \frac{t}{\tau})^{\alpha - 1} \frac{\varphi(\tau)}{\tau} d\tau
$$
\[+ \left(\frac{\log t}{\log(1 + \epsilon)} \right)^{\gamma - 1} \frac{1}{\Gamma(\alpha) \Gamma(\alpha - 1)} \int_0^t \frac{1 + \epsilon}{\tau} \left[\frac{1}{\Gamma(\alpha - 1)} \int_0^\tau \frac{\varphi(\tau)}{\tau} d\tau \right] d\tau \]

\[+ \left[\frac{1}{\log(1 + \epsilon)} \right]^{-1} \frac{1}{\log(1 + \epsilon)} \sum_{i=0}^{1} \eta_i \left[\frac{1}{\Gamma(\alpha - 1)} \int_0^e \frac{e^{-\gamma} \varphi(\tau)}{\tau} d\tau \right] \]

\[- \frac{\nu}{\Gamma(\alpha - 1)} \int_\eta ^{\epsilon} \left[\log \frac{\eta}{\tau} \right]^{-1} \varphi(\tau) \frac{d\tau}{\tau} + \varepsilon[1 - \nu(\log \zeta)^{\gamma - 2}] \]

Where

\[\sum_{i=0}^{1} \eta_i = \sum_{i=0}^{1} (-1)^i (\log(1 + \epsilon))^{i-1} (\gamma - i) \left[1 - \nu(\log \zeta)^{\gamma - 1} \right] \]

\[\varepsilon = (1 - \gamma)(\log(1 + \epsilon))^{1-\gamma} \]

Proof. In the view of the Lemma(3.2), the solution of the Hilfer-Hadamard differential equation (3.1) can be written as

\[x(t) = -H I^{\alpha} \varphi(t) + c_0 \log(t)^{\gamma - 1} + c_1 \log(t) \gamma \] (3.2)

and

\[H D^{1,1} x(t) = -H I^{\alpha - 1} \varphi(t) + (\gamma - 1) c_0 \log(t)^{\gamma - 2} + (\gamma - 2) c_1 \log(t)^{\gamma - 3} \] (3.3)

The boundary condition \(x(1 + \epsilon) = 0 \) gives

\[c_0 = (\log(1 + \epsilon))^{1-\gamma} H I^{\alpha} \varphi(1 + \epsilon) \]

In view of the boundary condition \(H D^{1,1} x(\epsilon) = \nu H D^{1,1} x(\zeta) \), and by (3.3), and (3.4), we have

\[c_1 = \frac{1}{\sum_{i=0}^{1} \eta_i} \left[-H I^{\alpha - 1} \varphi(\epsilon) + \nu H I^{\alpha - 1} \varphi(\zeta) + \varepsilon[1 - \nu(\log \zeta)^{\gamma - 2}] \right] \]

Where

\[\eta_i = (-1)^i (\log(1 + \epsilon))^{i-1} (\gamma - i - 1) \left[1 - \nu(\log \zeta)^{\gamma - 1} \right] \]

\[\varepsilon = (1 - \gamma)(\log(1 + \epsilon))^{1-\gamma} \]

Substituting the value of \(c_1 \) in (3.4) we have

\[c_0 = (\log(1 + \epsilon))^{1-\gamma} H I^{\alpha} \varphi(1 + \epsilon) \]

\[- \frac{1}{\sum_{i=0}^{1} \eta_i \log(1 + \epsilon)} \left[-H I^{\alpha - 1} \varphi(\epsilon) \right] \]

\[+ \nu H I^{\alpha - 1} \varphi(\zeta) + \varepsilon[1 - \nu(\log \zeta)^{\gamma - 2}] \]

Now substituting the values of \(c_0 \) and \(c_1 \) in (3.2) we obtain the solution of the problem(3.1).

Results of Existence.

Suppose that

\[K = C([1, e], \mathbb{R}) \] (3.5)
For any $t \in [1, e]$ is a Banach space of all continuous functions from $[1, e]$ into \mathbb{R} talented with the norm $\|x\| = \sup_{t \in J} |x(t)|$.

From the Lemma 3.1, we get an operator $\rho : K \to K$ defined as

$$ (\rho x)(t) = -\frac{1}{\Gamma(\alpha)} \int_1^t \frac{(\log \frac{t}{\tau})^{\alpha-1} f(\tau, x(\tau))}{\tau} \, d\tau $$

$$ + \left(\frac{\log t}{\log(1+\epsilon)} \right)^{\gamma-1} \frac{1}{\Gamma(\alpha)} \int_1^{1+\epsilon} \frac{(\log \frac{1+\epsilon}{\tau})^{\alpha-1} f(\tau, x(\tau))}{\tau} \, d\tau $$

$$ + \left[\frac{1}{\log(1+\epsilon)} - \frac{1}{\log t} \right] \left(\frac{\log t}{\log(1+\epsilon)} \right)^{\gamma-1} \frac{1}{\Gamma(\alpha)} \sum_{i=0}^1 \eta_i \int_1^{e} \frac{(\log \frac{e}{\tau})^{\alpha-2} f(\tau, x(\tau))}{\tau} \, d\tau $$

$$ - \frac{\nu}{\Gamma(\alpha-1)} \int_1^{e} \frac{(\log \frac{e}{\tau})^{\alpha-2} f(\tau, x(\tau))}{\tau} \, d\tau + \epsilon |1 - \nu(\log \zeta)^{\gamma-2}| \right], \quad t \in J $$

(3.6)

It must be noticed that the problem (1.1) has solutions if and only if the operator ρ has fixed points. The result of existence and uniqueness is based on the Banach Principle of contraction.

Theorem 3.4 Suppose that there exists a constant $C > 0$ such that

$$ | f(t, x(t)) - f(t, y(t)) | \leq C |x - y|, \quad \forall t \in J, \quad C \geq 0, x, y \in \mathbb{R}. $$

If Φ satisfies the condition $C \Phi < 1$, where

$$ \Phi = \left\{ \frac{1 + (\log(1+\epsilon))^{1-\gamma+\alpha}}{\Gamma(\alpha+1)} \right\} $$

$$ + \left[\frac{1 - (\log(1+\epsilon))}{\log(1+\epsilon) \Gamma(\alpha) \sum_{i=0}^1 \eta_i} \left\{ \frac{1 + \nu(\log \zeta)^{\alpha-1}}{\Gamma(\alpha)} \right. \right.$$

$$ + \frac{(1 - \gamma)(\log(1+\epsilon))^{1-\gamma+\alpha}}{\Gamma(\alpha-1)} \left[1 - \nu(\log \zeta)^{\gamma-2} \right] \right. \} $$

(3.7)

Then the problem (1.1) has a unique solution.

Proof. We put $\sup_{t \in J} |f(\tau, 0)| = P < \infty$ and choose $r \geq \frac{\Phi \rho}{C}$. Now, assume that $B_r = \{ x \in K : \|x\| \leq r \}$, then we show that $\rho B_r \subset B_r$.

For any $x \in B_r$, we have

$$ \| (\rho x)(t) \| $$

$$ = \sup_{t \in J} \left\{ \frac{1}{\Gamma(\alpha)} \int_1^t \frac{(\log \frac{t}{\tau})^{\alpha-1} f(\tau, x(\tau))}{\tau} \, d\tau $$

$$ + \left(\frac{\log t}{\log(1+\epsilon)} \right)^{\gamma-1} \frac{1}{\Gamma(\alpha)} \int_1^{1+\epsilon} \frac{(\log \frac{1+\epsilon}{\tau})^{\alpha-1} f(\tau, x(\tau))}{\tau} \, d\tau $$

$$ + \left[\frac{1}{\log(1+\epsilon)} - \frac{1}{\log t} \right] \left(\frac{\log t}{\log(1+\epsilon)} \right)^{\gamma-1} \frac{1}{\Gamma(\alpha)} \sum_{i=0}^1 \eta_i \int_1^{e} \frac{(\log \frac{e}{\tau})^{\alpha-2} f(\tau, x(\tau))}{\tau} \, d\tau $$

$$ - \frac{\nu}{\Gamma(\alpha-1)} \int_1^{e} \frac{(\log \frac{e}{\tau})^{\alpha-2} f(\tau, x(\tau))}{\tau} \, d\tau $$

$$ + \frac{(1 - \gamma)(\log(1+\epsilon))^{1-\gamma}[1 - \nu(\log \zeta)^{\gamma-2}]}{\Gamma(\alpha)} \int_1^{1+\epsilon} \frac{(\log \frac{1+\epsilon}{\tau})^{\alpha-1} f(\tau, x(\tau))}{\tau} \, d\tau \right\} \right.$$}

$$ \leq \frac{1}{\Gamma(\alpha)} \int_1^t \frac{(\log \frac{t}{\tau})^{\alpha-1} \left(|f(\tau, x(\tau)) - f(\tau, 0)| + |f(\tau, 0)| \right)}{\tau} \, d\tau $$

$$ + \epsilon |1 - \nu(\log \zeta)^{\gamma-2}|$$
\[
\begin{align*}
&+ \left(\frac{\log t}{\log(1+\epsilon)} \right)^{\gamma-1} \frac{1}{\Gamma(\alpha)} \int_1^{1+\epsilon} (\log \frac{1+\epsilon}{\tau})^{\alpha-1} \left(| f(\tau, x(\tau)) - f(\tau, y(\tau)) | + | f(\tau, y(\tau)) | \right) \frac{d\tau}{\tau} \\
&+ \left[\frac{1}{\log(1+\epsilon)} - \frac{1}{\log t} \right] \sum_{j=0}^{\ell} \eta_i \left[\frac{1}{\Gamma(\alpha-1)} \int_1^e (\log \frac{e}{\tau})^{\alpha-2} \left(| f(\tau, x(\tau)) - f(\tau, y(\tau)) | + | f(\tau, y(\tau)) | \right) \frac{d\tau}{\tau} \\
&+ \frac{\nu}{\Gamma(\alpha-1)} \int_1^e (\log \frac{e}{\tau})^{\alpha-2} \left(| f(\tau, x(\tau)) - f(\tau, y(\tau)) | + | f(\tau, y(\tau)) | \right) \frac{d\tau}{\tau} \\
&+ \frac{(1-\gamma)(\log(1+\epsilon))^{1-\gamma}(1-\nu(\log(\log(1+\epsilon))^\gamma-2])}{\Gamma(\alpha)} \int_1^{1+\epsilon} (\log \frac{1+\epsilon}{\tau})^{\alpha-1} \left(| f(\tau, x(\tau)) - f(\tau, y(\tau)) | + | f(\tau, y(\tau)) | \right) \frac{d\tau}{\tau} \right] \\
\leq (Cr + P) \left\{ \frac{[1 + (\log(1+\epsilon))^{1-\gamma}]^{\alpha}}{\Gamma(\alpha+1)} + \frac{[1 - (\log(1+\epsilon))]^{\alpha}}{\log(1+\epsilon)\Gamma(\alpha) \sum_{t=0}^{\ell} \eta_i} \left[1 + \nu(\log(\log(1+\epsilon))^\gamma-1 \right) \\
&+ \frac{(1-\gamma)(\log(1+\epsilon))^{1-\gamma+\alpha}[1 - \nu(\log(\log(1+\epsilon))^\gamma-2) \right] \right\} \\
\leq (Cr + P) \Phi \leq r
\end{align*}
\]

Thus we shown \(\rho B_r \subset B_r \).

Now, For \(x, y \in K \) and \(\forall t \in J \), we have

\[
\left. | (\rho x)(t) - (\rho y)(t) | \right. \\
= \left. -\frac{1}{\Gamma(\alpha)} \int_t^1 (\log \frac{t}{\tau})^{\alpha-1} \left(f(\tau, x(\tau)) - f(\tau, y(\tau)) \right) \frac{d\tau}{\tau} \right. \\
+ \left. \left(\frac{\log t}{\log(1+\epsilon)} \right)^{\gamma-1} \frac{1}{\Gamma(\alpha)} \int_1^{1+\epsilon} (\log \frac{1+\epsilon}{\tau})^{\alpha-1} \left(f(\tau, x(\tau)) - f(\tau, y(\tau)) \right) \frac{d\tau}{\tau} \right. \\
+ \left. \left[\frac{1}{\log(1+\epsilon)} - \frac{1}{\log t} \right] \sum_{j=0}^{\ell} \eta_i \left[\frac{1}{\Gamma(\alpha-1)} \int_1^e (\log \frac{e}{\tau})^{\alpha-2} \left(f(\tau, x(\tau)) - f(\tau, y(\tau)) \right) \frac{d\tau}{\tau} \right. \\
- \left. \frac{\nu}{\Gamma(\alpha-1)} \int_1^e (\log \frac{e}{\tau})^{\alpha-2} \left(f(\tau, x(\tau)) - f(\tau, y(\tau)) \right) \frac{d\tau}{\tau} \right. \\
+ \left. \frac{(1-\gamma)(\log(1+\epsilon))^{1-\gamma}[1 - \nu(\log(\log(1+\epsilon))^\gamma-2) \right] \right\} \int_1^{1+\epsilon} (\log \frac{1+\epsilon}{\tau})^{\alpha-1} \left(f(\tau, x(\tau)) - f(\tau, y(\tau)) \right) \frac{d\tau}{\tau} \right. \\
\leq \left. \frac{1}{\Gamma(\alpha)} \int_t^1 (\log \frac{t}{\tau})^{\alpha-1} \left| f(\tau, x(\tau)) - f(\tau, y(\tau)) \right| \frac{d\tau}{\tau} \right. \\
+ \left. \left(\frac{\log t}{\log(1+\epsilon)} \right)^{\gamma-1} \frac{1}{\Gamma(\alpha)} \int_1^{1+\epsilon} (\log \frac{1+\epsilon}{\tau})^{\alpha-1} \left| f(\tau, x(\tau)) - f(\tau, y(\tau)) \right| \frac{d\tau}{\tau} \right. \\
By the supposition that
Proof.

Assume that
that the operator \(\rho \)
Hence
Therefore it shown that
\((1 - \gamma)(\log(1 + \epsilon))^{1 - \gamma}[1 - \nu(\log(\zeta)^{\gamma - 2}] \)
\(\alpha \)
\(\| x - y \| \)

Therefore it shown that \(\| (\rho x)(t) - (\rho y)(t) \| \leq C \Phi \| x - y \| \), where \(C \Phi < 1 \).
Hence \(\rho \) is a contraction. Thus by the mapping of contraction principle the problem (1.1) has a uniqueness solution.

Theorem 3.5 suppose that there exists a constant \(C_1 > 0 \) such that
\(| f(t, x(t)) | \leq C_1 \) for each \(t \in J, x \in \mathbb{R} \). Then the problem (1.1) has at least one solution.

Proof. The proof of this theorem will be given in several steps, firstly, we will show that the operator \(\rho \) is completely continuous for this, in the view of the continuity of \(f \), we note that the operator \(\rho \) is continuous.

Now, Assume that \(\rho \subseteq \rho \) be a bounded set.
By the supposition that \(| f(t, x(t)) | \leq C_1 \), for each \(t \in J, x \in \mathbb{R} \), we get
\[
| (\rho x)(t) |
\]
\[
= \left\{ \begin{array}{cl}
\left[\frac{1}{\log(1 + \epsilon)} \right] & \\
\frac{1}{\log(1 + \epsilon)} & \\
\end{array} \right.
\]
\[
+ \left[\frac{1}{\log(1 + \epsilon)} \right] \frac{1}{\log(1 + \epsilon)} \int_{1}^{t} \frac{1}{\log(1 + \epsilon)} \int_{1}^{t} f(\tau, x(\tau)) \, d\tau
\]
\[
\frac{1}{\log(1 + \epsilon)} \int_{1}^{t} \frac{1}{\log(1 + \epsilon)} \int_{1}^{t} f(\tau, x(\tau)) \, d\tau
\]
\[
\left[\frac{1}{\log(1 + \epsilon)} \right] \frac{1}{\log(1 + \epsilon)} \int_{1}^{t} \frac{1}{\log(1 + \epsilon)} \int_{1}^{t} f(\tau, x(\tau)) \, d\tau
\]
\[
| (\rho x)(t) |
\]
\[
\leq \frac{1}{\log(1 + \epsilon)} \int_{1}^{t} \frac{1}{\log(1 + \epsilon)} \int_{1}^{t} f(\tau, x(\tau)) \, d\tau
\]
\[
\frac{1}{\log(1 + \epsilon)} \int_{1}^{t} \frac{1}{\log(1 + \epsilon)} \int_{1}^{t} f(\tau, x(\tau)) \, d\tau
\]
\[
\left[\frac{1}{\log(1 + \epsilon)} \right] \frac{1}{\log(1 + \epsilon)} \int_{1}^{t} \frac{1}{\log(1 + \epsilon)} \int_{1}^{t} f(\tau, x(\tau)) \, d\tau
\]
\[+ \frac{\nu}{\Gamma(\alpha - 1)} \int_{1}^{\epsilon} (\log \frac{\zeta}{\tau})^{\alpha - 2} \frac{d\tau}{\tau} \]
\[+ \frac{(1 - \gamma)(\log(1 + \epsilon))^{1 - \gamma} [1 - \nu(\log \zeta)^{\gamma - 2}]}{\Gamma(\alpha)} \int_{1}^{1 + \epsilon} \frac{d\tau}{\tau} \]
\[\leq C_1 \left\{ \frac{[1 + (\log(1 + \epsilon))^{1 - \gamma + \alpha}]}{\Gamma(\alpha + 1)} \right\} \]
\[+ \frac{[1 + (\log(1 + \epsilon))^{1 - \gamma + \alpha}]}{\Gamma(\alpha + 1)} \]
\[+ \frac{[1 - (\log(1 + \epsilon))]}{\Gamma(\alpha)} \sum_{i=0}^{1} \eta_i \left[1 + \nu(\log \zeta)^{\alpha - 1} \right] \]
\[+ \frac{(1 - \gamma)(\log(1 + \epsilon))^{1 - \gamma + \alpha} [1 - \nu(\log \zeta)^{\gamma - 2}]}{\Gamma(\alpha)} \right\} = C_2 \] (3.10)

this implies that \(\| (\rho x)(t) \| \leq C_2 \). Moreover,

\[|_{H} D_{1}^{1,1}(\rho x)(t) | \]
\[= \left| - \frac{1}{\Gamma(\alpha - 1)} \int_{1}^{\epsilon} (\log \frac{t}{\tau})^{\alpha - 2} f(\tau, x(\tau)) \frac{d\tau}{\tau} \]
\[- \frac{(1 - \gamma)(\log(1 + \epsilon))^{1 - \gamma} \frac{1}{\Gamma(\alpha)} \int_{1}^{1 + \epsilon} \frac{d\tau}{\tau} \right| \]
\[+ \frac{[\gamma - 1]}{\log(1 + \epsilon)} + \frac{[\gamma - 2]}{\log(1 + \epsilon)} \log(1 + \epsilon) \sum_{i=0}^{1} \eta_i \left[1 + \nu(\log \zeta)^{\alpha - 1} \right] \]
\[- \frac{\nu}{\Gamma(\alpha - 1)} \int_{1}^{\epsilon} (\log \frac{\zeta}{\tau})^{\alpha - 2} f(\tau, x(\tau)) \frac{d\tau}{\tau} \]
\[+ \frac{(1 - \gamma)(\log(1 + \epsilon))^{1 - \gamma} [1 - \nu(\log \zeta)^{\gamma - 2}]}{\Gamma(\alpha)} \int_{1}^{1 + \epsilon} \frac{d\tau}{\tau} \right| \]
\[\leq C_1 \left\{ \frac{1}{\Gamma(\alpha)} + \frac{(1 - \gamma)(\log(1 + \epsilon))^{1 - \gamma + \alpha}}{\Gamma(\alpha + 1)} \right\} \]
\[+ \frac{(\gamma - 1)[1 - \log(1 + \epsilon)] + \log(1 + \epsilon) \sum_{i=0}^{1} \eta_i \left[1 + \nu(\log \zeta)^{\alpha - 1} \right]}{\Gamma(\alpha)} \]
\[+ \frac{(1 - \gamma)(\log(1 + \epsilon))^{1 - \gamma + \alpha} [1 - \nu(\log \zeta)^{\gamma - 2}]}{\Gamma(\alpha + 1)} \right\} = C_3 \] (3.11)
Finally, consider the set \(\partial B \) which implies that \(\rho \) is completely continuous, (by the Arzela-Ascoli theorem).

Finally, consider the set \(U = \{ v \in K \mid x = \lambda T x, 0 < \lambda < 1 \} \), we show that the set \(U \) is bounded. Assume that \(x \in U \), then \(x = \lambda \rho x, \quad 0 < \lambda < 1 \).

Now for any \(t \in J \), we get

\[
\| x(t) \| = \lambda \| (\rho x)(t) \| \quad \leq \frac{1}{\Gamma(\alpha)} \int_0^t (\log \frac{t}{\tau})^{\alpha-1} |f(\tau, x(\tau))| \frac{d\tau}{\tau} + \left(\frac{1}{1 + \epsilon} \right)^{\gamma - 1} \frac{1}{\Gamma(\alpha)} \int_0^t (\log \frac{1 + \epsilon}{\tau})^{\alpha-1} |f(\tau, x(\tau))| \frac{d\tau}{\tau} + \left(\frac{1}{1 + \epsilon} \right)^{\gamma - 1} \frac{1}{\Gamma(\alpha)} \int_0^t (\log \frac{1 + \epsilon}{\tau})^{\alpha-1} |f(\tau, x(\tau))| \frac{d\tau}{\tau} + \left(\frac{1}{1 + \epsilon} \right)^{\gamma - 1} \frac{1}{\Gamma(\alpha)} \int_0^t (\log \frac{1 + \epsilon}{\tau})^{\alpha-1} |f(\tau, x(\tau))| \frac{d\tau}{\tau} \leq C_1 \left\{ \frac{1}{\Gamma(\alpha + 1)} + \left(\frac{1}{\Gamma(\alpha + 1)} \right)^{\gamma + \alpha} + \left(\frac{1}{\Gamma(\alpha + 1)} \right)^{\gamma + \alpha} + \left(\frac{1}{\Gamma(\alpha + 1)} \right)^{\gamma + \alpha} \right\} = M \tag{3.13} \]

Therefore, \(\| x(t) \| \leq M \) for any \(t \in J \). Hence, the set \(U \) is bounded. So, from the above and by the Theorem 2.11, the operator \(\rho \) has at least one fixed point, that implies to the problem (1.1) has at least one solution.

Theorem 3.6 Assume that there exist a small positive number \(\tilde{r} \) and \(0 < \mu < \frac{1}{\Phi} \), such that

\[
|f(t, x)| \leq \mu |x| \quad \text{for } 0 < |x| < \tilde{r}, \quad \text{where } \Phi \text{ is defined by (3.7)}.
\]

Then the problem (1.1) has at least one solution.

Proof. Firstly, let \(K \) be a Banach space defined by (3.5), and define \(B_\tilde{r} = \{ x \in K : \| x \| \leq \tilde{r} \} \) and put \(x \in K \) such that \(\| x \| = \tilde{r} \), that is, \(x \in \partial B_\tilde{r} \).

Now, with the same argument of proof in the previous theorem, we can shown that \(\rho \) is completely continuous and we have

\[
\| (\rho x)(t) \| = \sup_{t \in J} \left\{ \left| \frac{1}{\Gamma(\alpha)} \int_0^t (\log \frac{t}{\tau})^{\alpha-1} f(\tau, x(\tau)) \frac{d\tau}{\tau} + \left(\frac{1}{\Gamma(\alpha)} \right)^{\gamma - 1} \frac{1}{\Gamma(\alpha)} \int_0^t (\log \frac{1 + \epsilon}{\tau})^{\alpha-1} f(\tau, x(\tau)) \frac{d\tau}{\tau} \right| \right\}
\]

Thus, for each \(t_1, t_2 \in J \), we get

\[
| (\rho x)(t_1) - (\rho x)(t_2) | \leq \epsilon \int_{t_1}^{t_2} H D^{1,1}(\rho x)(\tau) \frac{d\tau}{\tau} \leq C_3 (t_2 - t_1) \tag{3.12}
\]

which implies that \(\rho \) is continuous over \(J \). Hence, the operator \(\rho : K \to K \) is completely continuous, (by the Arzela-Ascoli theorem).
\[
+ \left\{ \frac{1}{\log(1+\epsilon)} - \frac{1}{\log t} \sum_{i=0}^{\eta} \frac{1}{\Gamma(\alpha-1)} \int_{e}^{t} \frac{(\log \frac{\epsilon}{\tau})^{\alpha-2} f(\tau, x(\tau)) d\tau}{\tau} \right. \\
- \frac{\nu}{\Gamma(\alpha-1)} \int_{e}^{t} \frac{(\log \frac{\zeta}{\tau})^{\alpha-2} f(\tau, x(\tau)) d\tau}{\tau} \\
+ (1-\gamma)(\log(1+\epsilon))^{1-\gamma}[1-\nu(\log \frac{\zeta}{\tau})^{\gamma-2}] \Gamma(\alpha) \left\{ \int_{1+\epsilon}^{1+\epsilon} \frac{(\log \frac{1+\epsilon}{\tau})^{\alpha-1} f(\tau, x(\tau)) d\tau}{\tau} \right\} \right\}
\]

\[\leq \mu \Phi \| x \| \tag{3.14}\]

Hence, \(\| (\rho x)(t) \| \leq \| x \| \), with \(x \in \partial B_{\rho} \). Then by applied the theorem 2.12, \(\rho \) has at least one fixed point. Therefore, the problem (1.1) has at least one solution on \(J \).

Example.

Consider the following boundary value problem for Hilfer-Hadamard-type fractional differential equation:

\[
_{H}D^{3/2,1/2} x(t) + f(t, x(t)) = 0, \quad t \in J := (1, e] \\
x(1.2) = 0, \quad _{H}D^{1,1} x(e) = (1/2) _{H}D^{1,1} x(3/2).
\]

Here,

\[\alpha = 3/2, \quad \beta = 1/2, \quad \gamma = 7/4, \quad \nu = 1/2, \quad \zeta = 3/2, \quad \epsilon = 0.2, \quad 1+\epsilon = 1.2\]

and

\[f(t, x(t)) = \frac{1}{32}(\sqrt{t} + \log t)(\frac{|x|}{2+|x|}).\]

Clearly,

\[|f(t, x)| \leq \frac{1}{32}(\sqrt{t} + 1)(|x| + 1)\]

and

\[|f(t, x) - f(t, y)| \leq \frac{1}{32}(\sqrt{t} + 1)(|x - y|) \leq \frac{1}{16} |x - y| \]

Therefore, by Theorem 3.4, the boundary value problem (3.15) has a unique solution on \((1, e] \) with \(C = \frac{1}{16} = 0.0625 \). We can show that \(\Phi = 1.404, \quad C\Phi = 0.0876 < 1 \).

REFERENCES

[1] N. Heymans, I. Podlubny; *Physical interpretation of initial conditions for fractional differential equations with Riemann-Liouville fractional derivatives*. Rheologica Acta 45 (5) (2006), 765–771.

[2] A. A. Kilbas, H. M. Srivastava, J. J. Trujillo; *Theory and Applications of Fractional Differential Equations*. Elsevier, Amsterdam (2006).

[3] Y. Y. Gambo, F. Jarad, D. Baleanu, T. Abdeljawad, *On Caputo modification of the Hadamard fractional derivatives, Advances in Difference Equations, 2014* (2014), no.1,1-12. http://dx.doi.org/10.1186/1687-1847-2014-10

[4] V. Keyantuo, C. Lizama, M. Warma; *Asymptotic behavior of fractional order semilinear evolution equations*. Differential and Integral Equations, 26 (7/8) (2013), 757–780.

[5] R. Hilfer; *Applications of Fractional Calculus in Physics*. World Scientific Publ. Co., Singapore, 2000.

[6] F. Liu, M. M. Meerschaert, R. J. McGough, P. Zhuang, Q. Liu; *Numerical methods for solving the multi-term time-fractional wave-diffusion equation*. Fract. Calc. Appl. Anal. 16(1) (2013), 9–25.

[7] C. Lizama; *Solutions of two-term fractional order differential equations with nonlocal initial conditions*. Electron. J. Qual. Theory Differ. Equat. 82 (2012), 1–9.
C.-G. Li, M. Kostic, M. Li, S. Piskarev; *On a class of time-fractional differential equations.* Fractional Calculus and Applied Analysis **15** (4) (2012), 639–668.

Y. Luchko; *Initial-boundary problems for the generalized multi-term time-fractional diffusion equation.* J. Math. Anal. Appl. **374**(2) (2011), 538–548.

I. Podlubny; *Fractional Differential Equations.* Academic Press, San Diego, 1999

S. G. Samko, A. A. Kilbas, O. I. Marichev; *Fractional Integrals and Derivatives: Theory and Applications.* Gordon and Breach, New York (1993). [Translation from the Russian edition, Nauka i Tekhnika, Minsk (1987)]

T. Zhu, C. Song, G. Li; *Existence of mild solutions for abstract semilinear evolution equations in Banach spaces.* Nonlinear Analysis **75** (2012), 177–181.

F. Jarad, T. Abdeljawad, D. Baleanu, *Caputo-type modification of the Hadamard fractional derivatives.* Advances in Difference Equations, **2012** (2012), no. 1, 1–8. http://dx.doi.org/10.1186/1687-1847-2012-142

B. Ahmad, S. K. Ntouyas, *An existence theorem for fractional hybrid differential inclusions of Hadamard type with Dirichlet boundary conditions.* Abstract and Applied Analysis, **2014** (2014). http://dx.doi.org/10.1155/2014/902054

B. Ahmad, S. K. Ntouyas, *A fully Hadamard type integral boundary value problem of a coupled system of fractional differential equations.* Fractional Calculus and Applied Analysis, **17** (2014), no. 2, 348–360. http://dx.doi.org/10.2478/s13540-014-0173-5

B. Ahmad, S. K. Ntouyas, T. Jessada, *Existence results for mixed Hadamard and Riemann-Liouville fractional integro-differential equations.* Advances in Difference Equations, **2015** (2015), no. 1, 1–8. http://dx.doi.org/10.1186/s13662-015-0625-1

B. Ahmad, S. K. Ntouyas, A. Alsaedi, *New results for boundary value problems of Hadamard-type fractional differential equations with integral boundary conditions.* Boundary Value Problems, **2013** (2013), 1–14. http://dx.doi.org/10.1186/1687-2770-2013-275

B. Ahmad and S. K. Ntouyas, *On Hadamard fractional integro-differential boundary value problems.* Journal of Applied Mathematics and Computing, 2014.

J. Tariboon, S. K. Ntouyas, S. Weerawat, *Nonlocal Hadamard fractional integral conditions for nonlinear Riemann-Liouville fractional differential equations.* Boundary Value Problems, **2014** (2014), no. 1, 1–16. http://dx.doi.org/10.1186/s13661-014-0253-9

Hilfer R., *Threefold introduction to fractional derivatives.* In: Anomalous transport: foundations and applications.; 2008. p. 1773

Qassim MD, Furati KM, Tatar N-e., *On a differential equation involving Hilfer-Hadamard fractional derivative.* Abstract and Applied Analysis 2012;2012:17. Article ID 391062

Smart D.R., *Fixed point theorems,* Cambridge University Press, 1980

Granas A., Dugundji J., *Fixed point theory,* Springer-Verlag, New York, 2003

Wafa Shammakh, *Existence and Uniqueness Results for Three-Point Boundary Value Problems for Caputo-Hadamard Type Fractional Differential Equations.* Nonlinear Analysis and Differential Equations, Vol. 4, 2016, no. 5, 207 - 217 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/10.12988/nade.2016.627

A. A. Kilbas, *Hadamard-type fractional calculus,* J. Korean Math. Soc., **38** (2001), no. 6, 1191–1204.

Sabri T.M. Thabet*, Machindra B. Dhakne, *On boundary value problems of higher order abstract fractional integro-differential equations.* Int. J. Nonlinear Anal. Appl. 7 (2016) No. 2, 165–184 ISSN: 2008-6822 (electronic). http://www.ijnaa.semnan.ac.ir

AHMAD Y. A. SALAMOONI

School of Mathematical Sciences, Swami Ramanand Teerth Marathwada University, Nanded-431606, India

E-mail address: ayousss83@gmail.com

D. D. PAWAR

School of Mathematical Sciences, Swami Ramanand Teerth Marathwada University, Nanded-431606, India

E-mail address: dypawar@yahoo.com