Physicochemical stability of compounded midazolam capsules over a one-year storage period

Abstract

Objectives: In patients suffering from chronic liver disease, the hepatic metabolism of drugs is perturbed and the metabolic capacity is difficult to assess. Midazolam could be used as a phenotypical probe to predict the metabolic capacity of CYP3A to adjust dosages of drug substrates of this cytochrome. In this context, a prospective clinical trial is going to be conducted in our institution and a hospital preparation of midazolam capsules suitable for the clinical trial was developed. The objective of the present work was to assess the physicochemical stability of the formulation over 12 months to set shelf life.

Methods: Three batches of 1 mg capsules were prepared using midazolam hydrochloride and microcrystalline cellulose as a diluent. The capsules were stored at ambient temperature and protected from light. To measure the evolution of the capsules content, a stability-indicating high-performance liquid chromatography (HPLC) method was developed with ultraviolet (UV) detection at 254 nm. Data were confirmed using a liquid chromatography-tandem mass spectrometry (LC-MS/MS) analytical method.

Results: After one year, midazolam hydrochloride content remained higher than 95% of the initial concentration in capsules.

Conclusions: The results show that 1 mg midazolam capsules are stable for 12 months at room temperature and under dark conditions.

Keywords: CYP3A; hepatic failure; midazolam capsules; personalized medicine; phenotypic probe.

Introduction

The liver plays an important role in the metabolism of most drugs. Also, liver failure following chronic hepatic disease is a major source of pharmacokinetic variability. This inter- and intra-individual variability is difficult to predict and lead to drug-related iatrogenic. An inadequate dosage could lead to adverse events in 30% of cirrhotic patients [1]. Biological markers may help to evaluate the secretion and synthesis functions of the liver. However, these markers may assess hardly its ability to metabolize drugs that appears crucial to minimize the iatrogenic risk during treatments because of the role of the liver in detoxifying drugs. Thus, the assessment of the metabolic capacity in patients could prevent iatrogenic events in this population particularly sensitive to drug toxicity [2].

Midazolam, a benzodiazepine, is selectively metabolized by cytochrome P450 (CYP) 3A4/5, so it is the gold-standard phenotypical probe of the CYP3A4/5 activity. CYP phenotyping consists of measuring in blood the ratios between the concentrations of midazolam and its metabolite (1-hydroxymidazolam). It can be administered by oral route or by intravenous route [3–6]. The most common practice is to use a low oral dose of midazolam to assess the CYP3A activity [7]. However, midazolam as a probe is not suitable for routine use because pharmaceutical products are not adapted for this indication.

To better assess metabolic capacity in patients with liver failure, pharmacologists and physicians in our institution are going to conduct a clinical trial. The subjects, divided into three groups (healthy volunteers and patients with Child-Pugh grade A or B hepatic impairment) will receive a low dose of midazolam (1 mg as free base).

In this context, the department of pharmacy was solicited to help with the study design. To reduce inter-subject variability and to minimize the pharmacologic effect, an oral liquid formulation was not selected. Indeed, midazolam can pass rapidly across the oral mucosal, with an upper bioavailability than by oral route and a lower first-pass effect [8]. Moreover, midazolam has a bitter taste hardly to mask [9]. Oral formulations masking its taste such as a tablet (e.g. Dormicum®) or syrup exist but there are not available in our
country [10, 11]. For these reasons, it was decided to compound midazolam capsules.

The study aimed to prepare 1 mg midazolam capsules and to assess their stability during one year by combining two analytical methods.

Materials and methods

Chemicals and reagents

Midazolam hydrochloride (Figure 1) powder and microcrystalline cellulose PH 102 powder were provided by INRESA (Bartenheim, France). Lactose monohydrate was purchased from Fagron (Thiais, France). Hard gelatin capsules (size 4, ivory color) were bought from LGA (La Seyne-sur-Mer, France).

Midazolam certified standard (purity >99.9%) was obtained from LGC Standards (Molsheim, France) and was used for analytical validation to ensure the identity of the active pharmaceutical ingredient (API). Acetonitrile and water were of high-performance liquid chromatography (HPLC) or liquid chromatography-mass spectrometry (LC-MS) grade and were purchased from EMD Millipore (Molsheim, France) and Fisher Scientific (Illkirch-Graffenstaden, France). Ammonium acetate and glacial acetic acid were respectively bought from Merck Millipore (Molsheim, France) and Fisher Scientific (Illkirch-Graffenstaden, France). Hydrochloric acid (HCl) 0.1 and 1 M, sodium hydroxide (NaOH) 0.1 and 1 M were procured from VWR (Fontenay-sous-Bois, France) and hydrogen peroxide solutions (H2O2)3 (%) were respectively acquired from Gifrer (Decines-Charpieu, France) and Cooper (Melun, France).

Development of a solid oral formulation

To select the excipient to use for midazolam capsules (size 4), a preliminary test was performed by comparing properties of two powder mixtures: midazolam hydrochloride and lactose monohydrate vs. midazolam hydrochloride and microcrystalline cellulose. The mass of powder required for capsule filling was firstly assessed. The visual aspect, the chemical stability of the mixture for 70 days, and the safety of the excipient were criteria taken into account to select the excipient for the finished product.

Preparation of midazolam hydrochloride capsules

Midazolam hydrochloride capsules were compounded and quality controlled according to good manufacturing guidelines [12].

The API and excipient powders were mixed with a mortar and a pestle gradually to homogenize the mixture. The powder mixture was conditioned in hard gelatin capsules (size 4) using a capsule-filling machine with a loader from LGA (La Seyne-sur-Mer, France). Each unit contained 1.11 mg of midazolam hydrochloride with 85 mg of microcrystalline cellulose as diluent.

After batch release, the capsules were next packaged in an individual blister made of polyvinyl chloride (PVC) film with aluminum foil. The primary packaging was ultraviolet (UV) resistant to prevent photodegradation because midazolam is photosensitive [13, 14]. The units were also stored in a safe local at ambient temperature (23 ± 2°C). This parameter and relative humidity (RH) were continuously monitored with a datalogger 0172SI (IHM Moineau Instruments, Chef-Boutonne, France). The RH of the local was about 45 ± 15%.

Quality control of midazolam hydrochloride capsules

According to the European Pharmacopoeia (EP), uniformity of mass (Monograph 2.9.5) was checked. Then, uniformity of content (Monograph 2.9.6) and uniformity of dosage units tests (Monograph 2.9.40) were performed for batch release [15].

Analytical method development

Separate methods like Liquid Chromatography must be preferred to perform a stability study to differentiate the analytes of a mixture. A stability-indicating HPLC-UV method was developed, on the one hand, to assess the uniformity of content of batches of midazolam capsules prepared, and on the other hand, to perform the stability study of midazolam capsules. The peak purity analysis was not perfect because the detection was not done with a Diode Array Detector (DAD). Thereby, a liquid chromatography-tandem mass spectrometry (LC-MS/MS) method was developed and validated to get additional data for the stability study [16].

Instrumentation and chromatographic conditions

HPLC method with UV detection: Midazolam concentrations of each sample were determined by HPLC with UV detection. The system included an HPLC 515 pump, a 717 plus autosampler, and a 2487 UV detector (Waters Corporation, Milford, MA, USA).

Contrary to midazolam, midazolam hydrochloride has no monograph in EP although German Drug Codex (DAC) has one [14, 15]. The midazolam hydrochloride assay described in the DAC was similar to the midazolam assay in EP. However, it was not appropriate for this present work regarding the retention time too long of the drug in this assay (17 min), chromatographic conditions from the DAC were adapted.

Chromatographic separation was performed with an RPL18 Xterra column (150 x 4.6 mm, 5 μm) (Waters Corporation, Milford, MA, USA). The mobile phase consisted of a mixture of 10 mM ammonium acetate buffer, adjusted to pH 5.4 with glacial acetic acid, with acetonitrile (55:45, v/v). The flow rate was adjusted at 1 mL/min and the run time was 12 min. The injection volume was 10 μL and detection was done at 254 nm. The autosampler and the oven temperature was kept at 25 °C. Data were acquired and processed using EMPOWER Software (Waters Corporation, Milford, MA, USA).

After each analysis, all samples were frozen and stored at −20 °C.
HPLC method with MS/MS detection: An Ultimate 3000 HPLC system (Thermo Fisher Scientific, San Jose, CA, USA) was used. The autosampler was set at 15 °C during analysis. Separation of the analyte was realized by a C18 Hypersil Gold column (50 mm × 2.1 mm, 3 μm) fitted with a guard column (10 mm × 2.1 mm × 3 μm) (Thermo Fisher Scientific, Dreieich, Germany) maintained at a constant temperature of 40 °C. The mobile phase composition was the same as used for the HPLC-UV method and the flow rate was kept at 0.4 mL/min. The run time was 2 min. The volume injection of the sample was 2 μL.

The chromatographic system was connected with an ENDURA® triple quadrupole mass spectrometer system (Thermo Fisher Scientific, San Jose, CA, USA). Positive electrospray ionization interface parameters were as follows: spray voltage 3.5 kV, sheath gas and auxiliary gas (N2) 20 and 2 arbitrary units respectively, ion transfer tube temperature 325 °C and vaporizer temperature 275 °C. A mass range from m/z (0–1000) was covered to see the mass spectrum of midazolam and to detect degradation products.

The MS run was also performed in selected reaction monitoring (SRM) scan mode to confirm midazolam concentrations in samples. Midazolam was monitored by the transition of quantification m/z 326.1 → 291.1 [M+H]+→[M−Cl]− [17] (collision energy at 28.6 eV and RF lens value at 167 V) and by the transition of confirmation 326.1 → 269.1 (collision energy at 39.6 eV and RF lens value at 167 V).

Data acquisition and analysis were performed with Xcalibur and LCQuan Software (Thermo Fisher Scientific, San Jose, CA, USA).

Preparation of stock and working solutions: Calibration and quality control (QC) stock solutions were independently prepared in 20 mL volumetric flasks by dissolving 22.2 mg of midazolam hydrochloride powder with the mobile phase to obtain a concentration of midazolam of 1 mg/mL (as free base). Each calibration solution and each QC solutions were next diluted with the mobile phase to obtain working solutions at five concentration levels (30, 40, 50, 60, and 70 μg/mL) and three concentration levels (30, 50, and 70 μg/mL) for calibration samples and QC samples respectively. An additional QC sample was prepared at 50 μg/mL with the certified standard solution from LGC.

Extraction procedure of midazolam from capsules: The powder of each capsule was transferred to a 10 mL volumetric flask and dissolved in and dilute with the mobile phase. The sample was ultrasonicated for 10 min and centrifuged at 4000 rpm for 5 min to sediment microcrystalline cellulose. A final dilution (1:2 v/v) of supernatant with mobile phase was performed to obtain a solution having a concentration of 50 μg/mL. Then, the samples were analyzed by HPLC-UV and after each analysis, all samples were stored at −20 °C before analysis by HPLC-MS/MS. For LC-MS analysis, samples were thawed and diluted with the mobile phase (1:50 v/v) before injection to prevent signal saturation. Thus, the final concentration was about 1000 ng/mL for LC-MS/MS analysis.

Analytical method validation

The HPLC method was validated according to the International Conference on Harmonization (ICH) guidelines (Q2R1) [18]. Also, the stability-indicating capacity of the HPLC-UV method was assessed according to the Group of Evaluation and Research for Protection in Areas under Control (GERPAC) guidelines [16].

System suitability testing: The system suitability testing is an essential element that ensures the performance of the chromatographic method. This test was performed by using fives replicates of a standard solution. Several factors like injection repeatability, retention time of the midazolam, capacity factor (k'), number of theoretical plates, and symmetry factor (As) were assessed [19]. For As, the value had to be between 0.8 and 1.5 [15]. The data of peak area from replicate injections of the analyte were used to calculate the relative standard deviation (RSD), and the threshold value for acceptability was 2% [20].

Linearity: The linearity was evaluated by three calibration curves performed on three different days with calibration samples. The assay range was set at 60–140% of the target concentration (50 μg/mL). A final dilution (1:2 v/v) of supernatant with mobile phase was performed to obtain samples ranging from 30 to 70 μg/mL. The method was considered as linear if: (i) the coefficient of determination (R²) was over 0.99 for the mean standard curve, (ii) the variances on each concentration were uniformed and, (iii) the slope was significantly different than 0 [16, 18].

Matrix effect: The matrix effect was assessed by preparing two types of calibration ranges samples: the first containing API alone and the other one composed of API reconstituted with excipient [16]. To perform that, microcrystalline cellulose suspension at 8.5 mg/mL was added in calibration samples to reproduce the composition of the finished pharmaceutical form. Then, samples were ultrasonicated for 10 min and centrifuged at 4000 rpm for 5 min to sediment microcrystalline cellulose.

Accuracy: The accuracy was assessed using nine determinations of the QC samples (realized in triplicate each day, for three days). For each QC, the accuracy was determined by calculating the bias between theoretical and calculated concentrations. This bias, for each concentration, had to be less than 5% to be accepted.

Precision: The repeatability was studied by measuring a 50 μg/mL QC solution six times (100% of the sample preparation). The intermediate precision was checked by measuring six times this concentration each day, for three days. Repeatability and intermediate precision were performed by two operators over three days and were determined using RSD and the threshold value for acceptability was 5%.

Stability of the processed samples: In order to check whether samples could be re-analyzed after the first analysis, the stability of the processed samples was carried out. Sample stability in the autosampler was also performed in triplicate at room temperature for 12 h. Moreover, analyte stability was assessed in triplicate on calibration samples stored at −20 °C for two months after one freeze/thaw cycle.

Stability-indicating capacity: To study the stability-indicating capacity of the HPLC-UV method, working solutions at a concentration corresponding to four times the concentration of the middle of the calibration range (200 μg/mL) were prepared with or without the presence of the excipient. There were next exposed to forced degradation under several conditions: dry heat, acid, base, and oxidative conditions [16]. The percentage of degradation of the midazolam was quantified and the degradation products were observed.
Thermal, acid, base, and oxidative degradation were assessed with midazolam solutions exposed in a water-bath heated to 60 °C for 3 h. Acid hydrolysis was studied by adding 1 mL of HCl solutions at 0.1 and 1 M in 1 mL of midazolam solution. After exposure time, the reaction was stopped and neutralization was performed with 1 mL of NaOH solutions at 0.1 and 1 M respectively. The alkaline hydrolysis was assessed by adding 1 mL of NaOH solutions at 0.1 or 1 M and neutralization with 1 mL of HCl at the same concentration after exposure time. Finally, the oxidative degradation was carried out by adding 3 mL of H₂O₂ 3 or 30% in 1 mL of midazolam solution.

Blank samples of HCl, NaOH, and H₂O₂ solutions without midazolam hydrochloride were also prepared and analyzed to identify their signal.

Degradation products were researched at 254 nm using the UV detector. Moreover, they were highlighted in the mass spectrum after infusion of the solutions from degradation studies in the MS detector. Beforehand, they were diluted with the mobile phase (1:20 v/v) to prevent signal saturation.

LC-MS/MS method validation: All samples of midazolam solution with the excipient used in HPLC-UV method validation were next used for LC-MS method validation. To perform that, samples were diluted with the mobile phase (1:50 v/v) before injection. Thereby, the calibration curves included five concentrations of midazolam (600, 800, 1000, 1200, and 1400 ng/mL) and QC solutions were at 600, 1000, and 1400 ng/mL. System suitability parameters, repeatability, accuracy, and precision were also assessed.

Stability study of midazolam hydrochloride capsules

Three batches of hundred capsules were prepared at day 0. At each time point of the study (days 0, 15, 90, 180, and 360), physical and chemical parameters were observed on the three batches according to the ICH guidelines [21].

Physical stability: The physical stability was evaluated by organoleptic examination to detect a color change of the shell or the content and other macroscopic manifestations (e.g. smell change). The preparation was considered physically stable if those characteristics were not changed throughout the study.

Chemical stability: At each analysis time and for each batch, 10 units of midazolam hydrochloride capsules were weighted full, then opened and emptied of their content. The content extracted from the capsules was also weighted before preparing samples to avoid uncertainty on the capsules filling.

The chemical stability was assessed by calculating the percentage of the nominal value remaining at each time point. Midazolam capsules were considered stable if API contents were more than 95% of the initial value with a 95% confidence interval around that mean (95% CI) and if no degradation product appeared.

Statistical analysis

Statistical analysis was performed by Excel® software (Microsoft Office, USA, 2019). All statistical tests were undertaken with an authorized risk α of 5% [16].

Results

Development of a solid oral formulation

The mass of excipients powder required for capsule filling was about 100 mg for lactose monohydrate and 85 mg for microcrystalline cellulose. The compatibility of the two excipients powder, lactose monohydrate, and microcrystalline cellulose, with midazolam hydrochloride, was acceptable for at least 70 days (Table 1). Eventually, microcrystalline cellulose was the excipient chosen.

Quality control of midazolam hydrochloride capsules

The capsules, which had an average mass lower than 300 mg, were uniform in weight. The percentage of deviation of all units was less than 10% (RSD < 5%).

Midazolam content was within the limits of 85–115% of the average content. Furthermore, for the test of uniformity of dosage units, the acceptance value for each batch was less than 15 (14.3, 11.7, and 11.1) [15]. Thereby, the batches were released, which meant the beginning of the stability study.

Analytical method validation

System suitability testing

The test showed that the retention time of midazolam was approximately 4.9 min. After five injections of the standard solution, the mean peak area was about 1,191,509 µV·s with RSD of 0.4%. Capacity factor k′ was assessed to 2.2 and the number of theoretical plates was estimated to 8057. The peak was well defined and the symmetry factor was calculated to 1.07.

Table 1: Evolution of relative midazolam content (%) in the two mixtures.

	Mixture of midazolam hydrochloride (1.11 mg) + lactose monohydrate (100 mg)	Mixture of midazolam hydrochloride (1.11 mg) + microcrystalline cellulose (100 mg)	
Residual concentration % (n=3)	RSD %	Residual concentration % (n=3)	RSD %
Day 0	100.0	100.0	3.3
Day 35	93.0	96.0	3.3
Day 70	96.2	96.9	0.5
Linearity

The results showed that the method was linear (Table 2). There is a linear relationship between concentration \(x \) and the detected signal \(y \) (area under the curve): \(y = 23,686.8x + 997.9 \). The coefficient of determination was higher than 0.99.

Matrix effect

No excipient effect was observed between curves with and without microcrystalline cellulose. The slopes and intercepts did not show significant differences between calibration ranges sample set composed of API alone and the one composed of midazolam reconstituted in excipient \(p=0.991 \). Moreover, the method was linear in both sample sets (Table 2). These results allow furthering preparing calibration range samples with API diluted only with the mobile phase with no need to add excipient.

Accuracy

The method was accurate since the bias between the observed and the theoretical value were 2.4, 1.5, and 1.5% for the 30, 50, and 70 \(\mu \)g/mL QC levels respectively.

Table 2: Linearity data of HPLC-UV method.
API
Coefficient of determination \(R^2 \) (mean, \(n=3 \))
Slope (mean, \(n=3 \))
Standard deviation of the slope (mean, \(n=3 \))
Intercept (mean, \(n=3 \))
Standard deviation of the intercept (mean, \(n=3 \))
Homogeneity of variances
Cochrane test \((a=5\%\), \(k=5\), \(df=2 \))
Slope significance
Student test \((a=5\%\), \(df=13 \))

Precision

The RSD of repeatability and the intermediate precision were inferior to 5% and were estimated to 0.5 and 2.9% respectively.

Stability of the processed samples

As shown in Table 3, at room temperature, the samples stored in the automatic injector remained stable for 12 h. Moreover, after storage at \(-20^\circ C\) for two months and one freeze/thaw cycle, the concentrations of the samples remained within \(\pm 5\% \) of the nominal value.

Stability-indicating capacity

The chromatogram of midazolam solution which was not exposed under stressed conditions is presented in Figure 2A. No thermal degradation was observed at 60 \(^\circ\)C (Figure 2B). In this method, acidic, alkaline, and oxidative conditions lead to the emerging of degradation products observed in chromatograms (Figure 2C–F). The degradation products were well-resolved from the midazolam peak. For acid degradation, the percentage of degradation obtained was 16%. After \(\text{NaOH} 1\text{M} \) and \(\text{H}_2\text{O}_2 3\% \) exposure, the percentage of degradation was 7 and 9% respectively. Midazolam was almost completely degraded when it was exposed in presence of \(\text{H}_2\text{O}_2 30\% \).

Regarding the MS detection, the mass spectrum of a reference solution showed a top peak (\(m/z 326 \)) that corresponded to the midazolam ion and its isotopic species \([M+H]^+ \) (Figure 3A). The signal of the MS spectrum and its interpretation were consistent with the theoretical value and with the chemical formula respectively. Degradation products formed after oxidation were detected. The parent ion was reduced in several degradation product ions.

Table 3: Stability of midazolam processed samples at room temperature and after one freeze/thaw cycle.
Concentration levels
30 \(\mu \)g/mL
40 \(\mu \)g/mL
50 \(\mu \)g/mL
60 \(\mu \)g/mL
70 \(\mu \)g/mL

\(a \) Recovery compared to standard samples freshly prepared.
including the m/z 273, m/z 289, m/z 305, m/z 342, and m/z 383 (Figure 3B, C).

LC-MS/MS method validation

This method was validated in terms of linearity, precision, and accuracy. The data regarding LC-MS method validation are summarized in Table 4. The retention time of midazolam was approximately 0.6 min (Figure 4).

Stability study of midazolam hydrochloride capsules

Physical stability

No variation of the color neither odor of the content nor capsules was observed in the three batches. Moreover, the capsule shells did not show brittleness throughout the stability study.

Chemical stability

Regarding chemical stability, midazolam concentrations were within ±5% of the nominal value (Table 5). Moreover, no degradation products were detected in capsules regardless of the types of the detector (UV or MS/MS).

Discussion

In the present study, we assessed the stability of midazolam hydrochloride- microcrystalline cellulose mixture in compounded capsules.

Microcrystalline cellulose was chosen as diluent for several reasons such as safety and lack of metabolism activity.
Indeed, in opposition to the lactose, this is not an excipient known to have a recognized action or effect [22]. Moreover, like lactose, it is present in midazolam tablets marketed that suggested physicochemical compatibility with the API [10].

The pharmaceutical excipients are frequently considered to be pharmacologically inert, and they are often chosen for their safety and their physicochemical compatibility with the APIs. However, many studies had demonstrated that they may affect the pharmacokinetics by influencing absorption, disposition, metabolism, or elimination of the drugs [23–25]. Their effects on pharmacodynamics and pharmacokinetics of drugs must therefore be evaluated to avoid health situations like the “Australian Phenytoin Disaster” that occurred in the sixties where the change of the excipient in the capsules brought the modification of the pharmacokinetics in phenytoin and generated an outbreak [26].

It is well known that some excipients may affect the CYP and interfere with the metabolism of midazolam [25, 27]. For the formulation to be suitable for the clinical study intended, the chosen excipient had to be effect-less on CYP. Microcrystalline cellulose is not absorbed in humans following oral administration, and its potential for hepatic metabolism is low [28]. Moreover, its potential effects on the expression of CYP3A4 in colon and liver cells were investigated in vitro and no modulation of the CYP3A4 mRNA and protein expression was evidenced [29].

Eventually, all these arguments emphasize that cellulose was the best choice that lactose to formulate midazolam capsules.

Regarding HPLC-UV method validation, all the parameters fulfilled the acceptance criteria. Linear regression of the model was validated because the coefficient of determination of the mean was over 0.99, the variances on each concentration were similar and statistical verification of the regression showed a relationship between concentration and detected signal. Moreover, no interference of the microcrystalline cellulose was observed. The accuracy, the repeatability, and the intermediate precision were validated because values were inferior to 5%. The method is stability-indicating, and reliable to detect potential degradation products. Other stability-indicating HPLC methods were reported in the literature.

Figure 3: Positive ion mass spectrum of midazolam hydrochloride reference solution at 10 µg/mL (as free base) obtained in full scan mode (0–1000 m/z range) without degradation (A) and after exposure to H₂O₂ 30% for 3 h (0–1000 m/z range (B) and 275–425 m/z range (C)).
but their mobile-phase were composed of orthophosphoric acid or sodium buffer which is not LC-MS compatible [30].

In this work, degradation products were found in acid, base, and oxidative conditions with UV detection. Under oxidative conditions, midazolam may be hydroxylated in 1-hydroxymidazolam, 4-hydroxymidazolam, or 1,4-dihydroxymidazolam; which are the metabolites of midazolam [17, 31]. With MS detection, only degradation products were found after H₂O₂ exposure. The product ions at \(m/z\) 273; \(m/z\) 289 and \(m/z\) 342 could be the impurities H, F, and D described in the midazolam monograph [14, 15]. The product ion \(m/z\) 342 could also be the 1'-hydroxymidazolam or the 4-hydroxymidazolam, which are the metabolites of midazolam [17]. However, additional experiments should be realized to confirm this hypothesis.

Table 4: Data of LC-MS/MS method validation.

Parameters assessed	Values (RF)
System suitability test	
Injection repeatability	Average peak area
	33,136,086
RSD %	0.4%
Capacity factor \(k'\)	1.4
Number of theoretical plates	573
Symmetry factor	1.06
Signal to noise ratio	4,333
Linearity	
Coefficient of determination \(R^{2}\) (mean, \(n=3\))	0.997
Slope (mean, \(n=3\))	5,330.1
Standard deviation of the slope	121.8
Intercept (mean, \(n=3\))	162,719.7
Standard deviation of the intercept	126,530.6
Homogeneity of variances	Confirmed
Cochrane test (\(a=5\%), \(k=5\), \(df=2\))	\(< C \text{ calculated} = 0.61 < C \text{ critical value} = 0.68\)
Slope significance	Significant
Student test (\(a=5\%), \(df=13\))	\((t \text{ calculated} = 43.78 > t \text{ critical value} = 2.16)\)
Accuracy	
QC1: 600 ng/mL (bias, %)	2.7%
QC2: 1000 ng/mL (bias, %)	1.4%
QC3: 1400 ng/mL (bias, %)	1.4%
Precision	
Repeatability (RSD %)	2.1%
Intermediate precision (RSD %)	3.3%

Figure 4: Representative LC-MS/MS chromatograms of midazolam hydrochloride solution at 1,000 ng/mL (as free base); transition of confirmation (\(m/z\) 326 → 249) and transition of quantification (\(m/z\) 326 → 291).

Table 5: Evolution of relative midazolam content (%) over time, expressed as 95% CI of the mean (\(n=3\), 10 units per batch).

Analysis time (Days)	HPLC-UV quantification	LC-MS/MS quantification
D0	\(99.7 < X < 100.3\)	\(97.6 < X < 102.4\)
D15	\(97.1 < X < 100.5\)	\(98.4 < X < 102.8\)
D45	\(96.0 < X < 98.6\)	\(99.1 < X < 103.1\)
D90	\(99.9 < X < 103.1\)	\(101.2 < X < 105.9\)
D180	\(97.3 < X < 101.6\)	\(98.6 < X < 108.9\)
D290	\(99.8 < X < 101.7\)	\(99.1 < X < 105.6\)
D365	\(98.3 < X < 101.8\)	\(98.6 < X < 105.2\)

Day 0 corresponds to the day of production.
De Diego et al. reported degradation products after acid exposure but none after alkaline exposure [32]. This peak could be the open-ring benzophenone form of midazolam [32–34]. Geiger et al. described stability of midazolam after acid, heat, and oxidation exposure but a slight degradation in alkaline conditions while Costa et al. showed that midazolam was not stable after exposition to stress conditions (acid, alkaline, neutral hydrolysis, oxidation, UV light) during a few days [35, 36]. In alkaline conditions, midazolam precipitated. After neutralization, the peak of the degradation product observed had a retention time of 8.4 min, which meant it was more apolar than midazolam. We tried to identify the product with the mass-to-charge ratio with the LC-MS/MS method without success. The base-mediated degradation mechanism may be due to the fixation of OH- ions on the benzodiazepine cycle [16, 37].

Otherwise, midazolam is a photosensitive drug that produces degradation products when it was exposed to UV [13, 35, 36]. However, because of a shortage of equipment, no photodegradation assay could be performed in our work. To prevent photosensitivity, capsule shells contained titanium dioxide, which is an opacifier agent [38]. Moreover, they were packaged in amber blister and stored under dark conditions.

Besides, the UV detector used in the study was not a DAD which means that the peak purity was not fully accessed [16]. Indeed, degradation products that do not absorb at the chosen wavelength could be present in the preparation. For this reason, an LC-MS/MS method was developed and validated to improve the specificity of the study and to quantify content in midazolam capsules. Several methods with LC-MS/MS technology were developed for midazolam quantification in patients [5, 31, 39–42]. However, to our knowledge, there are no published data about the use of the LC-MS/MS technique in pharmaceutical formulations except for the degradation mechanisms and the studies of new carriers like cyclodextrins [13, 34, 43]. In the stability studies, DAD and even better mass spectrometer permit the assessment of the peak purity [16]. Moreover, mass spectrometry uses a universal detector that enables to detect and characterize the degradation products [44]. Tandem mass spectrometry increases even greater the specificity by fragmenting the precursor ion (midazolam) into fragment ions. In our study, the sensibility and the specificity of the method were correct with two product ions (m/z 291.1 and 249.1).

After one year, no variation of the midazolam content in capsules was observed with the two quantification methods. This content was higher than 95% of the initial value and no macroscopic changes have been detected. These results are in agreement with the absence of degradation products which could be seen in the chromatograms. For the LC-MS method, the concentrations of the analyte seemed higher than those measured by HPLC-UV. This slight difference between the two results could have been reduced if an internal standard was added to the samples.

Disintegration and dissolution testing could not be carried out according to the EP (Monographs 2.9.1 and 2.9.3 respectively) because no apparatus was not yet available in our department. Midazolam is a biopharmaceutical classification system (BCS) class I drug that is soluble in water (10.3 mg at pH 3.4) [45, 46]. Moreover, the certificate of analysis of the empty capsules indicated their conformity to the Japanese Pharmacopeia monograph for capsules, which reports a dissolution time within 10 min [47]. In summary, the dissolution testing should be acceptable despite it must be checked in the future.

In the absence of a climate chamber in our department, the stability study could not be performed in the conditions as recommended by the ICH guidelines (25 ± 2 °C, RH 60 ± 5%) [21]. The capsules were thus kept in an environmentally controlled room, which is the storage local for clinical trial material.

Conclusion

Midazolam capsules were compounded in this study using excipient free of potentially harmful effects. A rapid and accurate HPLC-UV stability-indicating method was developed and validated for the quality control of the batches and the stability study. To increase the specificity and to confirm the results, MS detection was coupled with UV detection.

The results show that 1 mg midazolam capsules are stable for one year at room temperature and under dark conditions. Thus, this preparation of midazolam capsule is suitable for the clinical trial. These data will be included in the Investigational Medicinal Product Dossier (IMPD) of the clinical trial.

Acknowledgments: We thank the pharmaceutical technicians of our pharmaceutical technology department for manufacturing the batches for stability study. We also thank Dr. Camille Tron from the pharmacology department of our hospital for her help in mass spectrometry analysis.

Research funding: This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Author contributions: All authors have accepted responsibility for the entire content of this manuscript and approved its submission.
Competing interests: The authors state no conflict of interest. The authors have read the journal’s publication ethics and publication malpractice statement available at the journal’s website and hereby confirm that they comply with all its parts applicable to the present scientific work.

Informed consent: Not applicable.

Ethical approval: Not applicable.

References

1. Franz CC, Hildbrand C, Born C, Egger S, Rätz Bravo AE, Krähenbühl S. Dose adjustment in patients with liver cirrhosis: impact on adverse drug reactions and hospitalizations. Eur J Clin Pharmacol 2013;69:1565–73.
2. Verbeeck RK. Pharmacokinetics and dosage adjustment in patients with hepatic dysfunction. Eur J Clin Pharmacol 2008;64:1147–61.
3. Albarmawi A, Czock D, Gauss A, Ehehalt R, Lorenzo Bermejo J, Burhenne J, et al. CYP3A activity in severe liver cirrhosis correlates with Child–Pugh model for end-stage liver disease (MELD) scores. Br J Clin Pharmacol 2014;77:160–9.
4. De Kesel PMM, Lambert WE, Stove CP. Alternative sampling strategies for cytochrome P450 phenotyping. Clin Pharmacokinet 2016;55:169–84.
5. Donzelli M, Derungs A, Serratore M-G, Noppen C, Nezic L, Krähenbühl S, et al. The basal cocktail for simultaneous phenotyping of human cytochrome P450 isoforms in plasma, saliva and dried blood spots. Clin Pharmacokinet 2014;53:271–82.
6. Lenuzza N, Duval X, Nicolas G, Thévenot E, Job S, Videau O, et al. Safety and pharmacokinetics of the CIME combination of drugs and their metabolites after a single oral dosing in healthy volunteers. Eur J Drug Metab Pharmacokinet 2016;41:125–38.
7. Eap CB, Buclin T, Cucchia G, Zullino D, Hustert E, Bleiber G, et al. Oral administration of a low dose of midazolam (75 μg) as an in vivo probe for CYP3A activity. Eur J Clin Pharmacol 2004;60:237–46.

8. Summary of Product Characteristics. Buccolam® oromucosal solution [Internet]; 2011. [About 47 p] Available at: https://www.euma.europa.eu/en/documents/assessment-report/buccolam-epar-public-assessment-report_en.pdf [Accessed 2 Dec 2020].
9. Salmon S, Tang EKY, Cheung LC, Nguyen MN, Sommerfeld D, Slevin L, et al. A novel, palatable paediatric oral formulation of midazolam: pharmacokinetics, tolerability, efficacy and safety. Anaesthesia 2018;73:1469–77.
10. Summary of Product Characteristics. Dormicum® tablet [Internet]; 2018. [About 12 p] Available from: https://www.medicine.com/mrx/2536/html/fr?Platform=Desktop#7050 [Accessed 2 Dec 2020].
11. Summary of Product Characteristics. Midazolam hydrochloride syrup [Internet]; 2019. [About 30 p] Available from: https://www.rxlist.com/midazolam-hydrochloride-syrup-drug.htm [Accessed 2 Dec 2020].
12. ANSM (Agence national de sécurité du médicament et des produits de santé). Bonnes pratiques de préparation [Internet]; 2007. Available from: https://www.anssante.fr/Activites/Elaboration-de-bonnes-pratiques/Boissier-dosage-midazolam/2536/html/FR
13. Andersson R. Photochemical decomposition of midazolam IV. Study of pH-dependent stability by high-performance liquid chromatography. Int J Pharm 1995;123:229–35.
14. Federal Union of German. Associations of Pharmacists. Deutscher arzneimittel codex (German drug codex) midazolam HYDROCHLORID. M-135. Stuttgart, Germany: Deutscher Apotheker-Verlag; Published; 2015.
15. European pharmacopoeia, 10th ed. Strasbourg: EDQM Council of Europe; Published; 2020.
16. Sautou V, Bossard D, Chedru-Legros V, Crauste-Manciet S, Fleury-Souverain S, Lagarde F, et al. Methodological guidelines for stability studies of hospital pharmaceutical preparations. 2013, 1st ed. SFPC and GERPAC; 2013:75 p. Available from: https://www.gerpac.eu/IMG/pdf/guide_stabilite_anglais.pdf [Accessed 2 Dec 2020].
17. Jian W, Shou W, Edom R W, Weng N, Zhu M. LC-MS in drug metabolism and pharmacokinetics: a pharmaceutical industry perspective. In: Lee Mike S, editor. Mass Spectrometry Handbook. Hoboken: John Wiley & Sons; 2012:119–70 pp.
18. International Conference on Harmonisation. Validation of analytical procedures: text and methodology Q2 (R1). Guideline 2005. Available from: https://database.ich.org/sites/default/files/Q2_R1__Guideline.pdf [Accessed 2 Dec 2020].
19. Deodhe ST, Dhabarde DM, Kamble MA, Mahapatra DK. Development and validation of a novel stability indicating RP-HPLC method for the estimation of Entecavir in tablet formulation. Eurasian J Anal Chem 2016;12:223–35.
20. US Pharmacopeia Convention (USP). Chromatography <621> 42nd revision. Rockville: United States Pharmacopeial Convention; Published 2019.
21. International Conference on Harmonisation. Stability testing of new drug substances and products Q1A (R2). Guideline 2003. Available from: https://database.ich.org/sites/default/files/Q1A_R2_Guideline.pdf [Accessed 2 Dec 2020].
22. EMA. Annex to the European Commission guideline on excipients in the labelling and package leaflet of medicinal products for human use [Internet]; 2017. Available from: https://www.ema.europa.eu/en/documents/scientific-guideline/annex-european-commission-guideline-excipients-labelling-package-leaflet-medicinal-products-human_en.pdf [Accessed 2 Dec 2020].
23. Gerber W, Hamman JH, Steyn JD. Excipient-drug pharmacokinetic interactions: effect of disintegrants on efflux across excised pig intestinal tissues. J Food Drug Anal 2018;26:S115-24.
24. Patel R, Barker J, EIShaer A. Pharmaceutical excipients and drug metabolism: a mini-review. Int J Mol Sci 2020;21:8722A.
25. Ren X, Mao X, Si L, Cao L, Xiong H, Qiu J, et al. Pharmaceutical excipients inhibit cytochrome P450 activity in cell free systems and after systemic administration. Eur J Pharm Biopharm 2008;70:279–88.
26. Tyrer JH, Eadie MJ, Sutherland JM, Hooper WD. Outbreak of anticonvulsant intoxication in an Australian city. Br Med J 1970;4:271–3.
27. Bravo González RC, Huwyler J, Boess F, Walter I, Bittner B. In vitro investigation on the impact of the surface-active excipients Cremophor EL, Tween 80 and Solutol HS 15 on the metabolism of midazolam. Biopharm Drug Dispos 2004;25:37–49.
28. Cellulose, microcrystalline. In: Rowe RC, Sheskey PJ, Quinn ME, editors. Handbook of pharmaceutical excipients, 6th ed. London, Washington: APhA, (PhP) Pharmaceutical Press; 2009:129–3 pp.

29. Tompkins L, Lynch C, Haidar S, Polli J, Wang H. Effects of commonly used excipients on the expression of CYP3A4 in colon and liver cells. Pharm Res 2010;27:1703–12.

30. Dolan J. A guide to HPLC and LC-MS buffer selection. Aberdeen, United Kingdom: ACE; 2009.

31. Pentikäinen PJ, Välisalmi L, Himberg J-J, Crevoisier C. Pharmacokinetics of midazolam following intravenous and oral administration in patients with chronic liver disease and in healthy subjects. J Clin Pharmacol 1989;29:272–7.

32. De Diego M, Godoy G, Mennickent S. Chemical stability of midazolam injection by high performance liquid chromatography. J Separ Sci 2007;30:1833–8.

33. Feng X, Du G, Hou T, Liu X, Chao R. Characterization of degradation products of midazolam maleate by UHPLC-HR-IT-MSn and NMR. Pharm Res 2017;72:73–80.

34. Andersin R. Solubility and acid–base behaviour of midazolam in media of different pH, studied by ultraviolet spectrophotometry with multicomponent software. J Pharmaceut Biomed Anal 1991;9:451–5.

35. Geiger CM, Sorenson B, Whaley PA. Stability of midazolam in SyrSpend SF and SyrSpend SF cherry. Int J Pharm Compd 2013;17:344–6.

36. Costa BRD, Bertol CD, Anzilaggo D, Stulzer HK, Rossatto-Grando LG. Stability-indicating LC method for the quantification of midazolam active pharmaceutical ingredient and in pharmaceutical formulations. Drug Anal Res 2019;2:44–8.

37. Stability indicating RP-HPLC method for the simultaneous estimation of ivabradine and metoprolol in bulk and tablet formulation. J Appl Pharmaceut Sci 2019;9:137–44.

38. Titanium dioxide. In: Rowe RC, Sheskey PJ, Quinn ME, editors. Handbook of pharmaceutical excipients, 6th ed. London, Washington: APhA, (PhP) Pharmaceutical Press; 2009:741–3 pp.

39. Ghassabian S, Moosavi SM, Valero YG, Shekar K, Fraser JF, Smith MT. High-throughput assay for simultaneous quantification of the plasma concentrations of morphine, fentanyl, midazolam and their major metabolites using automated SPE coupled to LC–MS/MS. J Chromatogr B 2012;909:126–33.

40. Jabor VAP, Coelho EB, Dos Santos NAG, Bonato PS, Lanchote VL. A highly sensitive LC-MS-MS assay for analysis of midazolam and its major metabolite in human plasma: applications to drug metabolism. J Chromatogr B Analyt Technol Biomed Life Sci 2005;822:27–32.

41. Zhang W, Han F, Guo P, Zhao H, Lin ZJ, Huang M-Q, et al. Simultaneous determination of tobutamide, omeprazole, midazolam and dextromethorphan in human plasma by LC–MS–MS—a high throughput approach to evaluate drug–drug interactions. J Chromatogr B 2010;878:1169–77.

42. Moorby GS, Jorgia H, Vedar C, Zuppa AF. Development and validation of a sensitive assay for analysis of midazolam, free and conjugated 1-hydroxymidazolam and 4-hydroxymidazolam in pediatric plasma: application to Pediatric Pharmacokinetic Study. J Chromatogr B Analyt Technol Biomed Life Sci 2017;1067:1–9.

43. Agatonović- Kustrin S, Lebete M, Brown ME, Morton DW, Glass B. Chemical characterization of the photodegradation products of midazolam complexes with randomly methylated-β-cyclodextrin by HPLC and LC–MS/MS. J Serb Chem Soc 2016;81:1037–53.

44. Venkataraman S, Manasa M. Forced degradation studies: regulatory guidance, characterization of drugs, and their degradation products - a review. Drug Invent Today 2018;10:10.

45. Wu C-Y, Benet LZ. Predicting drug disposition via application of BCS: transport/absorption/elimination interplay and development of a biopharmaceutics drug disposition classification system. Pharm Res 2005;22:11–23.

46. N.I.H, U.S National Library of Medicine, National Center for Biotechnology Information. PubChem Compound Database, Midazolam [Internet]; 2005. Available from: https://pubchem.ncbi.nlm.nih.gov/compound/4192 [Accessed 2 Dec 2020].

47. Japanese pharmacopeia, 17th ed. Tokyo: Pharmaceuticals and Medical Devices Agency; Published 2016.