Structural and Mechanical Preparation of Rolled Products for Fasteners

G V Pachurin1a, M V Mukhina2b, G A Gevorgyan3c

1Nizhny Novgorod State Technical University named after R.A. Alekseev, Minin Street, 24, Nizhny Novgorod, 603950, Russia
2Minin Nizhny Novgorod State Pedagogical University, Chelyuskintsev street, 9, Nizhny Novgorod, 603138, Russia
3Nizhny Novgorod State Technical University named after R.A. Alekseev, Minin Street, 24, Nizhny Novgorod, 603950, Russia

E-mail: pachuringv@mail.ru, mariyamuhina@yandex.ru (corresponding author), borecgore77777@gmail.com

Abstract. Based on the analysis of quality factors of calibrated rolled products, the structural and mechanical properties of steel 20Mn2Si for cold heading of hardware products are formed. The balance is established during the preparation of gauged bars to manufacture fasteners from it. To produce gauged bars with a diameter of 7.75 mm, a new technological flow is proposed using hot rolled products with a diameter of 8.5 mm. The proposed resource-saving technology for preparing rolled steel 20Mn2Si excludes spheroidize annealing, which reduces labor and energy costs, increases the environmental friendliness of production and operational reliability of fasteners. This eliminates the possibility of quenching cracks, the need for straightening products, the risk of thread defects and reduces the cost of manufacturing long bolts. This makes it possible to significantly reduce the process chain, reduce the cost of manufacturing fasteners and meet regulatory requirements for their mechanical properties.

1. Introduction
Over the past three decades, world mechanical engineering has undergone significant changes related to reducing production costs, the negative impact on the environment, improving product quality and developing new types of products [1, 2].

The mechanical engineering state is one of the most important indicators of the economy state. Therefore, the problems of mechanical engineering are problems of the economy as a whole. No state can have an efficient economy without a modern, competitive machine-building industry.

In many branches of mechanical engineering that consume metal products, significant technical progress has been achieved in recent years [3-5]. In this regard, metals, as the main structural materials, are subject to increasing requirements in terms of strength, plastic and viscosity characteristics, stampability, corrosion resistance, durability, as well as new functional properties [6-8]. At the same time, there is a growing need to reduce costs, save material and energy resources, use them in the interests of the economy and solve increasingly major environmental problems [9, 10].
2. Immediacy of the problem
An important task is not only to ensure the metal production that meet the modern requirements of consumers [11, 12], but also to produce highly-competitive materials with better characteristics and stimulate the development of the Russian economy. This is particularly relevant for restructuring of machine-building industries, because these days much needs to be done in short time, with limited resources. Therefore, it is vital to determine the use of products, on the base of which market and technologies it is most likely to create a globally competitive production [13, 14].

3. Problem statement
One of the most important parts in mechanical engineering is fasteners made by cold heading from calibrated rolled products [15-17]. As a rule, structural carbon steels with a carbon content of up to 0.5% are used for the manufacture of fasteners produced by cold heading. All mechanical properties, chemical composition of this steel type and heading are regulated by GOST 10702-78, and deviations from dimensions by GOST 2590-88. The dimensions and mechanical properties of the initial hot-rolled products have a significant impact on the production of high-quality calibrated rolled products with certain specifications [18, 19]. These requirements include: the optimal quality level of finished rolled products in terms of mechanical properties, profile accuracy, surface quality condition, coil mass, high yield of the material during processing, and much more.

The existing technology for manufacturing calibrated rolled products includes a greater number of alternating operations of cold plastic deformation, heat treatment (recrystallization annealing) and preparatory (related to deformation) operations. Long-term manufacturing technology of calibrated rolled products increases its cost, and in some cases reduces the quality of products (increases the grain size, the depth of the decarbonized layer of medium and high-carbon steel qualities, reduces the level of mechanical properties).

The implementation of a resource-saving technology for obtaining long steel products for cold-heading production of automobile plants, spheroidized directly from the rolling heating in the conditions of mill 350 of OAO “Oskolsky electrometallurgical work”, allows to obtain rolled products with a fine pseudo-spheroidized structure. In terms of mechanical properties, it does not differ from rolled metal subjected to traditional furnace spheroidizing annealing. The use of high-quality hot-rolled products with specified mechanical properties and high accuracy of rolled products allows to provide metal savings and reduces the cost of calibrated rolled products by 13% [20].

4. Study materials
All metallurgical plants produce hot-rolled products mainly according to dimensions in accordance with GOST 2590-88 standard rolling accuracy. This standard regulates the deviation of the usual accuracy in the range of 0.3...0.5 mm. The ovality of rolled products should not exceed 50% of the maximum deviations in diameter. At a number of metallurgical plants and industries, such as OAO “Beloretsky metallurgical plant” in Beloretsk, RUE “Belorussky metallurgical plant” in the Republic of Belarus, OAO “Magnitogorsk iron and steel works” in Magnitogorsk, OAO "Oskol electrometallurgical combine” in Stary Oskol, the mills are equipped with multistand finishing blocks and two-stage cooling lines for wire rod. This allows one to get a ready-made profile with a size accuracy of ±0.15 mm with an ovality of up to 0.2 mm. Rolled metal is characterized by a high quality level.

In some metallurgical plants, controlled rolling is used to produce wire rods on wire mills from structural steels with improved mechanical properties. Controlled rolling allows to produce hot rolled products with optimal strength and viscosity indicators. Accelerated cooling of the wire rod up to 650°C after the finishing stand of the rolling mill provides this. The use of this rolled product type allows to exclude subsequent heat treatment during further technological conversion of the wire rod.

The existing production technology of calibrated rolled steel 20Mn2Si with a diameter of 7.75 mm² involves drawing a wire rod with a diameter of 9.0 mm on mill VS-16, spheroidizing annealing in a furnace with a shielding atmosphere and final drawing. The preparation procedure of wire rod before
the first drawing and after annealing before the second drawing includes etching, washing and phosphate treatment.

The heat treatment before cold deformation is aimed at creating a certain structure that can perceive large plastic shifts. In this case, the microstructure of the metal reaches the proportion of granular perlite up to 80-90%. Although the required technological plasticity is provided by having the granular perlite more than 60%.

Obtaining a wire rod with highly precise specified mechanical properties from metallurgical enterprises allows to solve the problem of the manufactured hardware quality and expand production opportunities [21-23]. This allows us to create resource-saving technologies for the production of metal products.

Practical significance. A new technology using hot rolled steel with a diameter of 8.5 mm has been proposed to produce calibrated rolled steel 20Mn2Si with a diameter of 7.75 mm. The original rod was produced with size precision for diameter ±0.2 mm, the ovality of 0.25 mm, upsetting group 1-66, there could be cracks not more than 0.1 mm deep, the rupture strength of not more than 550 MPa, relative narrowing of not less than 60%.

The chemical composition of hot rolled products is presented in table 1.

Table 1. Chemical composition of hot rolled steel 20Mn2Si Ø8.5 mm

| Chemical composition of hot rolled steel, % |
|-------------------------------|-------------------------------|-------------------------------|-------------------------------|-------------------------------|-------------------------------|-------------------------------|-------------------------------|-------------------------------|-------------------------------|
| C | Si | Mn | S | P | Cr | Mo | Cu | Al | B | N |
| 0.20-0.23 | 0.10 | 0.85-0.10 | 0.015 | 0.015 | 0.10 | 0.20 | 0.10 | 0.02-0.20 | 0.002-0.005 | 0.01 max |

Current technology

- Hot-rolled steel Ø9.0 mm
- Surface preparation for calibration
- Calibration Ø8.10 mm
- Spheroidize annealing
- Surface preparation for calibration
- Calibration Ø7.75 mm
- Quality control test

Proposed technology

- Hot-rolled steel Ø8.5 mm
- Surface preparation for calibration
- Calibration Ø7.75 mm
- Quality control test

Figure 1. The current and proposed manufacturing technology for calibrated rolled steel 20Mn2Si Ø7.75mm.
Figure 1 shows the current and proposed manufacturing technology for calibrated rolled steel 20Mn2Si.

Hot rolled steel 20Mn2Si, which was used for simplified manufacturing technology of calibrated rolled products, passed a thorough input control for mechanical parameters and dimensions, sample upsetting up to 1/3H, and the values were put in table 2. All values were compared to the acceptable values of GOST 10702-78.

After calibration for the size of 7.75 mm in diameter, the calibrated rolled products were also checked for mechanical properties, sample upsetting up to 1/3H, and the values obtained were also put in table 2. The results were compared to acceptable values of GOST10702-78.

Table 2. Quality characteristics of the hot rolled steel Ø8,5 mm and calibrated rolled steel Ø7.75 mm 20Mn2Si.

No	Temporary tear resistance of hot rolling Ø 8,5 mm, kgf/mm²	Relative reduction of hot rolling Ø 8,5 mm, %	Temporary tear resistance of a calibrated rolling Ø 7,75 mm, kgf/mm²	Relative narrowing of a calibrated rolling Ø 7,75 mm, %	Upsetting up to 1/3H of hot rolled products Ø 8,5 mm	Upsetting up to 1/3H of gauged bars GOST 10702-78 Ø 7,75 mm	Temporary tear resistance of hot rolled products Ø 8,5 mm, kgf/mm²	Relative narrowing of hot rolled products Ø 8,5 mm, %	Temporary tear resistance of a calibrated rolling stock Ø 7,75 mm, kgf/mm²	Relative narrowing of the calibrated rolling stock Ø7,75 mm, % according to GOST 10702-78
1	52,3	63,8	64,4	59,3	pass	pass	55	60	70	55
2	51,6	64,2	62,9	59,3	pass	pass	55	60	70	55
3	51,7	66,8	63,1	59,9	pass	pass	55	60	70	55
4	49,8	65,5	63,2	59,5	pass	pass	55	60	70	55
5	50,3	65,9	64,0	57,8	pass	pass	55	60	70	55
6	56,0	59,9	69,2	54,8	pass	pass	55	60	70	55
7	49,8	63,1	64,7	55,2	pass	pass	55	60	70	55
8	51,2	65,8	65,1	59,5	pass	pass	55	60	70	55
9	50,0	65,6	63,6	59,6	pass	pass	55	60	70	55
10	50,3	64,5	64,3	56,3	pass	pass	55	60	70	55
11	50,1	62,9	62,4	58,0	pass	pass	55	60	70	55
12	51,3	64,1	64,9	58,3	pass	pass	55	60	70	55
13	52,8	63,0	66,8	56,6	pass	pass	55	60	70	55
14	53,8	59,7	68,7	57,7	pass	pass	55	60	70	55
15	53,4	64,3	68,3	56,3	pass	pass	55	60	70	55
16	53,6	64,4	66,3	58,3	pass	pass	55	60	70	55
17	50,4	64,4	63,6	58,3	pass	pass	55	60	70	55
18	53,9	62,9	66,9	54,7	pass	pass	55	60	70	55
19	53,7	64,4	68,7	58,3	pass	pass	55	60	70	55
20	54,0	63,3	65,5	58,3	pass	pass	55	60	70	55
21	53,1	65,8	66,6	58,3	pass	pass	55	60	70	55
22	50,6	64,5	64,3	58,3	pass	pass	55	60	70	55
5. Conclusions
All samples of hot rolled steel 20Mn2Si made according to the proposed technology, after calibration Ø7.75 mm, passed the test for an upsetting of up to 1/3H and were recognized as suitable.

The mechanical properties of the calibrated rolled steel Ø7.75 mm correspond to GOST 10702-78. Hot rolled steel 20Mn2Si Ø8.5 mm is suitable for the production of calibrated rolled steel Ø7.75 mm according to the proposed technology.

6. References
[1] Filippov A A, Pachurin G V, Kuzmin N A, Matveev Yu I 2018 Method for forming structural and mechanical properties of rolled steel for heading rod products *Ferrous metals* 4 pp 36-40
[2] Pachurin G V, Goncharova D A, Gevorgyan G, Filippov A A, Mukhina M V, Trunova I G, Koniukhova N 2020 Fatigue of the automobile structural materials in corrosive environment E3S Web of Conferences (2020) 164 03039 DOI: 10.1051/e3sconf/202016403039
[3] Filippov A A, Pachurin G V, Kuzmin N A, Nuzhdina T V, Goncharova D A 2019 Preparation of pearlite steels for cold stamping *Repair. Recovery. Modernization* 11 pp 38-42
[4] Filippov A A, Pachurin G V, Kuzmin N A, Matveev Y I, Deev V B 2018 Quality of rolled steel for cold bulk stamping *Steel in Translation* T 48 7 pp 430-434
[5] Pachurin G V, Shevchenko S M, Mukhina M V 2018 Rolled metal structure resource saving preparation for long-length hardened bolt upsetting *Solid State Phenomena* Vol 284 SSP pp 662-666
[6] Pachurin G V, Filippov A A 2008 Choice of rational compression degree of hot-rolled steel 40X before cold heading *University News. Ferrous metallurgy* 7 pp 23-25
[7] Pachurin G V, Filippov A A 2008 Economical technology of steel preparation 40X for cold heading of fasteners *Vestnik mashinostroeniya* 7 pp 53-56
[8] Pachurin G V, Filippov A A 2008 Economical preparation of 40X steel for cold heading of bolts *Russian Engineering Research* T 28 7 pp 670-673
[9] Pachurin G V, Filippov A A 2008 Rational reduction of hot-rolled 40X steel before cold heading *Steel in Translation* T 38 7 pp 522-524
[10] Pachurin G V, Filippov A A, Naumov V I, Kuzmin N A 2015 Economical preparation of rolled products for long reinforced bolts *Metallurg* 9 pp 66-71
[11] Pachurin G V, Filippov A A, Naumov V I, Kuzmin N A 2016 Low-cost Treatment of Rolled Products Used to Make Long High-Strength Bolts *Metallurgist* Vol 59 Nos 9-10 pp 810-815
[12] Pachurin G V, Filippov A A, Shevchenko S M, Mukhina M V, Kuzmin N A 2018 Defining rolled metal performance for cold bolt upsetting (bolt head) IOP Conf. Series: Materials Science and Engineering 327 032040 DOI:10.1088/1757-899X/327/3/032040
[13] Pachurin G V, Filippov A A, Kuzmin N A, Nuzhdina T V, Goncharova D A 2019 Experience in preparing the qualitative structure and surface properties of rolled steel for cold heading *Metallurgical science and heat treatment of metals* 8 pp 58-61
[14] Pachurin G V, Filippov A A, Goncharova D A, Nuzhdina T V, Deev V B 2019 Investigation of the fatigue process of automotive materials *University news. Ferrous metallurgy* 9 pp 732-738 DOI: 10.17073/0368-2019-9-732-738
[15] Pachurin G V, Filippov A A, Goncharova D A, Smirnova J V, Tsapina T N 2019 Resource efficient preparation of high quality rolled stock for motor vehicles' fastening IOP Conf. Series: Materials Science and Engineering 560 012078IOP Publishing DOI:10.1088/1757-899X/560/1/012078
[16] Pachurin G V, Filippov A A, Goncharova D A, Nuzhdina T V, Mukhina M V, Katkova O V, Matveev U I, Tsapina T N 2019 Structural and mechanical maintenance of quality of the rolled stock for cold upsetting of metal articles IOP Conf. Series: Materials Science and Engineering 632 012010 IOP Publishing DOI:10.1088/1757-899X/632/1/012010
[17] Pachurin G V, Filippov A A, Nuzhdina T V, Mukhina M V, Matveev U I Rolled stock structure and surface condition factor for quality of automobile fasteners insurance IOP Publishing Journal of Physics: Conference Series 1353 012087 DOI:10.1088/1742-6596/1353/1/012087

[18] Pachurin G V, Filippov A A, Kuzmin N A, Goncharova D A, Nuzhdina T V 2019 Experience of Preparation of Quality Structure and Properties of the Surface of Rolled Bars for Cold Heading Met Sci Heat Treat 61(7) 517-520 https://DOI.org/10.1007/s11041-019-00455-6

[19] Kuzmin N A, Pachurin G V, Filippov A A, Goncharova D A 2019 Optimization of pearlite steels mechanical properties for car fasteners stamping AAE IOP Conf. Series: Materials Science and Engineering 695 012030 IOP Publishing DOI:10.1088/1757-899X/695/1/012030

[20] Filippov A A, Pachurin G V, Trunova I G, Gevorgyan G A, Mukhina M V 2019 Environmentally friendly and resource saving treatment of rolled products made of pearlitic steel prior to metal ware upsetting Proceedings of the Seventh International Environmental Congress "Ecology and Life Protection of Industrial-Transport Complexes" ELPIT 2019, 25-28 September (Samara Togliatti) Russia: Edition ELPIT pp 115-123 (ISBN 978-5-93424-849-0)

[21] Filippov A A, Pachurin G V 2008 Resource-saving and eco-friendly surface treatment of rolled metal before cold heading Ecology of industry in Russia pp 13-15

[22] Filippov A A, Pachurin G V, Kuzmin N A, Matveev Y I, Deev V B 2018 Evaluation of the quality of rolled steel for cold bulk stamping News of higher educational institutions Ferrous metallurgy Vol 61 7 pp 551-556

[23] Sevastianov A A, Korovin K V, Zotova O P, Solovev D B 2018 Features of the Geological Structure and Estimation of the Extraction Potential of the Sediments of the Bazhenov Formation in the Territory of Khanty-Mansiysk Autonomous Okrug IOP Conference Series: Materials Science and Engineering 463 Paper № 022004. [Online]. Available: https://doi.org/10.1088/1757-899X/463/2/022004