Air Quality Index Monitoring Based on Profile-MEWMA Control Chart

Yingjie Liu¹*, Xuemin Zi²

¹School of science, Tianjin University of Technology and Education, Tianjin, Tianjin, 300222, China
²School of science, Tianjin University of Technology and Education, Tianjin, Tianjin, 300222, China

*E-mail: rkchp@zhobk.cn

Abstract. At present, due to the rapid development of domestic economy, the environmental pollution problems are becoming increasingly serious, especially the pollution problems such as PM2.5 and PM10 caused by industrial emissions and waste gas pollution are most urgent. The general linear profile model and multivariate exponential weighted moving average control chart (MEWMA) is designed to perform monitoring and evaluating the air quality index (AQI) in Tianjin, so as to provide some statistical information for the relevant departments. Six main pollutants SO_2, NO_2, PM_{10}, $PM_{2.5}$, O_3, CO in Tianjin were collected which taken as factors affecting AQI under consider establish a general linear profile model where AQI was taken as the response variable. The coefficients of the model are monitoring by an MEWMA control chart.

1. Introduction
In the past, there are many different ways in which change monitoring can be performed. The functional relationship between a response variable and one or more predictor variables used to describe the quality of a process called a profile. Some general issues about profile monitoring profile monitoring arises in Woodall et al. (2004) [1]. For the purpose of calibration that has been considered apply profile model in the relevant literatures, for example, Mestek et al. (1994) [2], Kang and Albin (2000) [3], Ajmani (2003) [4] and Mahmoud and Woodall (2004) [5].

All of the above-mentioned applications can be separated into Phase I control and Phase II monitoring. In-control values of the process parameters were estimated in phase I which can evaluate the stability of the process and in order to quickly and exactly detect any shift in the Phase II process can be considered to monitor future observations. In this paper, we introduce establishing a practical control chart based on the profile model which are a large class of statistical models for relating responses to linear combinations of predictor variables to monitor the AQI in Tianjin. Basically, the same algorithms can be used to estimate, inference, and evaluate the adequacy of the model for all general linear models (GLMs) which provides a general theoretical framework for many common statistical models and simplifies the implementation of these models in statistical software. In fact, most of the studies mentioned above can be regarded as special cases of the GLM profile. A GLM method based on log-linear model for the first time proposed Qiu (2008) [6] who suggested a methodology relied on the log-linear mode for estimating the in-control multivariate measurement distribution and then used a multivariate CUSUM procedure for detecting shifts in the location parameter vector of the measurement distribution for phase II when a set of in-control data is available. Yeh et al. (2009) [7]
performed several Hotelling T^2 charts so that monitoring the parameters in phase I used a logistic regression. In this study, they used a real data from aircraft industry in which a binary regression model was designed between the total number of alloy fasteners that failed check at a certain load and loading strength which regard as response variable and predictor variable, respectively. Furthermore studied about a control chart in this problem to phase II process were proposed for the parameters of a logistic regression model by integrating a likelihood-ratio test and an EWMA scheme described by Shang et al. (2011) [8].

EWMA has been widely concerned and studied by scholars since as soon as it was first proposed by Robert (1959) and developed rapidly in the following years. Lucas and Saccucci (1990) [9] showed that the EWMA control chart is more effective for small shift when the λ (weight parameter) is smaller, and more valid for large shift when the λ is larger. This method was widely used in industrial production over the next few years, Lowry (1992) [10] introduced the multi-EWMA series (MEWMA) which filled the gap in the multivariate control chart. This paper adopts the combination of generalized linear profile model and MEWMA control chart to monitoring and evaluating the AQI in Tianjin, which has certain practical significance.

2. Methodology

2.1. Profile model

Assume the observed value (X_j, Y_j) are obtained at the j^{th} sample point, where Y_j is an n_j dimensional response variable and X_j is an $n_j \times q$ ($n_j > q$) matrix. When the process is in-control, we have profile model as follows:

$$Y_j = X_j \beta + \varepsilon_j$$ \hspace{1cm} (1)

where $\beta = (\beta^{(1)}, \beta^{(2)}, \ldots, \beta^{(q)})$, ε is a multivariate normal random variable defined as $E(\varepsilon) = 0$, $\text{var}(\varepsilon) = \sigma^2 I$. In the above equation, $X_j = (1, X_j')$, where X_j' and 1 are orthogonal, 1 represents the 1-dimension vector in which the elements are all 1. In our case, n_j denotes as n and X_j' is regard as X which is supposed to be the same for different j in the application of profile. There are $q+1$ coefficients and standard deviations σ that need to be monitored simultaneously for a general linear profile model [11]. Define the following formula:

$$Z_j(\beta) = (\beta_j - \beta) / \sigma$$ \hspace{1cm} (2)

$$Z_j(\sigma) = \Phi^{-1}\{F((n - p)\hat{\sigma}_j^2 / \sigma^2; n - p)\}$$ \hspace{1cm} (3)

where

$$\hat{\beta}_j = (X^TX)^{-1}X^TY_j$$ \hspace{1cm} (4)

$$\hat{\sigma}_j^2 = \frac{1}{n-p}(Y_j - X\hat{\beta}_j)^T(Y_j - X\hat{\beta}_j)$$ \hspace{1cm} (5)

In the above equation, $\Phi^{-1}(\cdot)$ is the inverse normal distribution, $F(\cdot; v)$ is the distribution function of the Chi Square distribution with v degree of freedom. Such a change has the following excellent properties:

1) $Z_j(\sigma)$ is independent of the sample size n when the process is in-control which is convenient for our design.

2) Making the control chart sensitive to a reduction in the variance of the profile because of the distribution of $Z_j(\sigma)$ is symmetric.

Define $Z_j = (Z_j(\beta), Z_j(\sigma))^T$ is a multivariate normal random variable with the $E(Z_j) = 0$ and covariance matrix is $\Sigma = \begin{pmatrix} (X^TX)^{-1} & 0 \\ 0 & 1 \end{pmatrix}$ while the process is in-control.

2.2. MEWMA control chart

A monitoring method based on a sequence of MEWMA control charts can be defined as follows:
\[W_j = \lambda Z_j + (1 - \lambda)W_{j-1}, \quad j = 1, 2, \ldots \]

in which \(W_0 = 0 \) is the initial vector of \(p+1 \) dimension, \(0 < \lambda \leq 1 \) is the weight parameter, and the MEWMA control chart alarms when

\[U_j = W_j^T \Sigma^{-1} W_j > UCL \]

where the UCL is the control limit which leads to an estimate given by the in control average running length (ARL0) that obtained through the quantile of in-control process statistics after determining other parameters. Generally, the larger \(\lambda \) is sensitive to large shift, while the smaller \(\lambda \) is favor to small shift. The coefficients obtained by general linear profile of the model were monitored using a MEWMA control chart.

3. Real-Data
To further illustrate the performance of the proposed control chart, we consider provide the guideline on how to apply the Profile-MEWMA control chart to real data and show the performances of monitoring efficiency. The parameters of the profile model are monitoring by using MEWMA control chart while a profile model is constructed by least square calculation to estimate the controlled coefficients. For this we sequentially collect six indicators and AQI from January 1, 2019 to December 31, 2020 in Tianjin while AQI below 100 is set as in-control data. In addition, the data from 0:00 on January 1, 2021 to 24:00 on January 31, 2021 are collected by the hour as monitoring data where the \(PM_{2.5}, PM_{10}, SO_2, CO, NO_2, O_3 \) are taken as the factors affecting AQI (regardless of their interaction).

To simplified the notations, we can write:

\[X = (X_1, X_2, X_3, X_4, X_5, X_6) \]

let \(X \) is a vector the entries represent the concentrations of \(PM_{2.5}, PM_{10}, SO_2, CO, NO_2, O_3 \) respectively and \(Y \) denotes AQI. The estimations of the coefficients of the profile model are given in Table 1 which gives the coefficient estimates, standard error, p-value, t-value and significance for the six variables that demonstrates there is no significant correlation between \(SO_2 \) and AQI. Five factors are taken as explanatory variables by using step regression methods to reestimate in-control coefficients.

Table 2 shows numerical characteristics of \(PM_{2.5}, PM_{10}, CO, NO_2, O_3 \) data in Tianjin. From Table 2, it seems, that a simple summary of the data has been achieved which makes it easy to see what conclusions can be drawn. According to the correlation analysis shows that \(PM_{2.5} \) and \(PM_{10} \) are important factors affecting the AQI (as shown in Figure 1). And the three variables with the largest variances are \(PM_{10}, AQI, PM_{2.5} \) in order which indicating that those data fluctuates greatly, while the distributions of these three variables are all have the characteristics of sharp peaks and thick tails, therefore the distribution of \(CO, NO_2 \) and \(O_3 \) is close to the normal distribution based on the kurtosis values. Each skewness of all variables is greater than 0 that reflects the distribution of data is skewed to the right.

Table 1: Least square fitting results.

| Time | Estimate | Std. Error | t value | Pr (>|t|) | Significance |
|--------|----------|------------|---------|----------|--------------|
| Intercept | 4.28239 | 1.23149 | 3.477 | 0.000532 | *** |
| X1 | 0.48239 | 0.03125 | 15.436 | <2e-16 | *** |
| X2 | 0.37180 | 0.01954 | 19.027 | <2e-16 | *** |
| X3 | -0.01066 | 0.08974 | -0.119 | 0.905504 | |
| X4 | 5.11546 | 1.20388 | 4.249 | 2.38e-05 | *** |
| X5 | 0.05969 | 0.01184 | 5.042 | 5.63e-07 | *** |
| X6 | 0.18961 | 0.01022 | 18.550 | <2e-16 | *** |

Figure 1 is the diagram of PM2.5 concentration, PM10 concentration and AQI. The upper triangle shows the correlation coefficient, the main diagonal is the histogram, the lower triangle is the scatter.
plot and the fitting curve between PM2.5, PM10 and AQI respectively. According to the figures we notice that both PM2.5 and PM10 have significant effects on AQI that showed a strong positive linear correlation. Intuitively higher concentrations of PM2.5 and PM10 lead to the higher AQI value, that is, the worse air quality. Recall from Section 2 some parameters can be calculated in which $\sigma = 9.171$, $\beta = (4.24, 0.48, 0.37, 5.07, 0.06, 0.19)$, $UCL = 148785.8$ and $UCL = 155794.8$ under $\lambda = 0.1$ and $\lambda = 0.2$ from the in-control data. A more complete outline of the in-control limit algorithm is detailed in Table 3. The results for statistic U are summarized in Table 4. Figure 2 and Figure 3 show the plot of U and real data of AQI respectively.

Table 2: Characteristics of PM2.5, PM10, CO, NO2, O3 data in Tianjin.

Variable	min	quantile (0.25)	median	mean	quantile (0.75)	max	variance	skewness	kurtosis
AQI	15	49.75	76	86.0579	118	334	2562.127	1.0544	1.4091
PM2.5	3	20	45	54.4748	82.25	186	1637.358	0.82699	0.0394
PM10	3	46	83	90.9033	120	447	3829.03	1.6467	5.3629
CO	4	0.6	0.9	0.989942	1.3	2.8	0.2348153	0.4830	-0.3735
NO2	0.2	25	46	44.6427	62	112	525.7761	0.1234	-0.6530
O3	1	13	34	36.7557	57	128	636.7318	0.5642	-0.3716

We report the following performance measures by combining the real AQI in Figure 2 with the results in Figure 3. The dashed line is the in-control limit. For $\lambda = 0.1$ and $\lambda = 0.2$ it can be seen that the control chart sent out an alarm signal on the January 31, 2021 from Figure 3 (a) and (b) which indicating the air quality drop to a lower level that is consistent with the actual situation. The result means that the monitoring model in this paper has practical significance and can be applied to air quality monitoring. By comparing the real situation in Figure 3 (a) and (b) from January 15, 2021 to January 19, 2021, it also shows that when the data shift occurs, the smaller λ has a better effect on monitoring change points.

![Figure 1: Correlation diagram of PM2.5 concentration, PM10 concentration and AQI.](image)
Table 3: In-control limit algorithm

Algorithm1: Outline of the in-control limit

Inputs: Observed statistic X_p, Y_p, an initial $W=0$

Outputs: U, in-control limit UCL
- Estimated in-control coefficient by using the least square estimation based on observed statistic
- Obtain in-control coefficient, standard deviation
- Generate 24000 in-control data, each 24 data is used as a profile sample

for $i \in \{1:1000\}$
 - Update Y_j
 - Re-estimate in-control coefficients using least squares estimation.
end for

for $j \in \{1:1000\}$
 - Calculate statistic Z_j, W_j according to formula (2), (3), (6)
 - Calculate and store U_j according to formula (7)
end for

Return Calculate the quantile of U_j as the in-control limit UCL, U_j

Table 4: The calculation result of statistic

Time	U ($\lambda=0.1$)	U ($\lambda=0.2$)						
01-01	2211	8847	01-09	53331	92597	01-17	138869	174100
01-02	10301	37484	01-10	62924	107003	01-18	140367	170160
01-03	25222	84037	01-11	64863	102013	01-19	143926	172652
01-04	35609	105003	01-12	166591	380337	01-20	147139	172652

Figure 2: Real AQI in January 2021 in Tianjin.
4. Conclusion
In this article, we use a general theoretical framework for monitoring the changes in parameters and standard deviation for the profile models in the process. In fact, the profile model is considered to describe the relationship between response variables and one or more predictors. Based on this theoretical, we establish a linear profile model with AQI as the response variable and five major factors affecting air quality as the predictive variables that combine with MEWMA control chart to monitoring the air quality in Tianjin. The results show that the model can accurately detect the change of AQI and reflect the change of air quality, which has a certain guiding significance for air quality monitoring. Next, we can further study extend the method when consider the interaction between influencing factors, so as to achieve better monitoring effect.

Acknowledgments
This paper was supported by the NNSF of China, grants No. 11771d332 and 11771220.

References
[1] Woodall, W. H., Spitzner, D. J., Montgomery, D. C., and Gupta, S. (2004). Using Control Charts to Monitor Process and Product Quality Profiles. Journal of Quality Technology 36:309–320.
[2] Mestek, O., Pavlik, J., and Suchánek, M. (1994). Multivariate Control Charts: Control Charts for Calibration Curves. Fresenius’ Journal of Analytical Chemistry 350:344–351.
[3] Kang, L., and Albin, S. L. (2000). On-Line Monitoring When the Process Yields a Linear Profile. Journal of Quality Technology 32:418–426.
[4] Ajmani, V. (2003). Using EWMA Control Charts to Monitor Linear Relationships in Semiconductor Manufacturing. Joint Statistical Meetings, San Francisco, CA.

[5] Mahmoud, M. A. and Woodall, W. H. (2004). Phase I Analysis of Linear Profiles with Calibration Applications. Technometrics 46:380–391.

[6] Qiu, P. (2008). Distribution-free multivariate process control based on log-linear modeling. IIE Transactions 40:664–677.

[7] Yeh, A. B., Huwang, L., and Li, Y. M. (2009). Profile Monitoring for a Binary Response. IIE Transactions 41:931–941.

[8] Shang, Y., Tsung, F., and Zou, C. (2011). Phase-II Profile Monitoring with Binary Data and Random Predictors. Journal of Quality Technology 43:196-208.

[9] Lucas, J. M. and Saccucci, M. S. (1990). Exponentially Weighted Moving Average Control Scheme Properties and Enhancements. Technometrics 32:1–29.

[10] Lowry, C. A., Woodall, W. H., Champ, C. W., and Rigdon, S. E. (1992). Multivariate Exponentially Weighted Moving Average Control Chart. Technometrics 34:46–53.

[11] Kim, K., Mahmoud, M. A., and Woodall, W. H. (2003). On the Monitoring of Linear Profiles. Journal of Quality Technology 35:317-328.