Interactions between *Borrelia burgdorferi* and ticks

Cheyne Kurokawa1,6, Geoffrey E. Lynn1,6, Joao H. F. Pedra2, Utpal Pal3,4, Sukanya Narasimhan1 and Erol Fikrig1,5✉

Abstract | *Borrelia burgdorferi* is the causative agent of Lyme disease and is transmitted to vertebrate hosts by *Ixodes* spp. ticks. The spirochaete relies heavily on its arthropod host for basic metabolic functions and has developed complex interactions with ticks to successfully colonize, persist and, at the optimal time, exit the tick. For example, proteins shield spirochaetes from immune factors in the bloodmeal and facilitate the transition between vertebrate and arthropod environments. On infection, *B. burgdorferi* induces selected tick proteins that modulate the vector gut microbiota towards an environment that favours colonization by the spirochaete. Additionally, the recent sequencing of the *Ixodes scapularis* genome and characterization of tick immune defence pathways, such as the JAK–STAT, immune deficiency and cross-species interferon-γ pathways, have advanced our understanding of factors that are important for *B. burgdorferi* persistence in the tick. In this Review, we summarize interactions between *B. burgdorferi* and *I. scapularis* during infection, as well as interactions with tick gut and salivary gland proteins important for establishing infection and transmission to the vertebrate host.

Lyme disease is a tick-borne disease caused by the spirochaete *Borrelia burgdorferi*, which is transmitted enzootically between ticks and their hosts, resulting in approximately 300,000 cases annually in the United States1–2. Globally, several species within the *B. burgdorferi* sensu lato complex have been identified as human pathogens, however, in the United States, nearly all Lyme disease is caused by *B. burgdorferi* sensu stricto (referred to as *B. burgdorferi* in this Review). Erythema migrans, the characteristic expanding rash, is an indicator of early acute infection, although the disease can also present with a variety of non-specific clinical signs. Spirochaetes enter the human skin at the tick bite site and then use internal periplasmic flagella to migrate to distal tissues, including the heart and joints3. Untreated infections can progress to multisystemic manifestations including rheumatologic, neurologic and cardiac disease. Similar versions of Lyme disease occur throughout the Northern Hemisphere, where *Ixodes* tick species are present. In Europe, Lyme borreliosis is caused by *B. burgdorferi* sensu lato complex spirochaetes [Box 1], which may infect as many as 85,000 persons annually, while in Asia fewer epidemiological studies have been reported, and it is likely that the true incidence is not well understood.

The genome of *B. burgdorferi* consists of an approximately 1-Mb linear chromosome and at least 17 circular and linear plasmids, many of which are highly stable and contain genes that are crucial for survival1,3 (Box 2). Gene expression is highly regulated to enable the spirochaete to adapt to different environments as it cycles between an arthropod host and a vertebrate host3. External cues from the host, such as temperature, pH, CO2 levels and other biotic factors, as well as host species are important factors that regulate gene expression in *B. burgdorferi*1,3–10. *B. burgdorferi* undergoes several changes during transmission from the tick to the host to adapt to the new conditions. At the bite site, the spirochaete must evade the immune defences of the mammalian host to extravasate and establish infection in other tissues. Although *B. burgdorferi* genome encodes several proteins to facilitate these functions, it also relies heavily on interactions with tick salivary proteins injected into the bite site during the initial stage of vertebrate infection. Understanding how the spirochaetes and the tick host interact is crucial to better understand infection, pathogen transmission and potential targeted therapies.

In the United States, most tick-borne infections are transmitted by the bite of the blacklegged tick, *Ixodes scapularis*, including infections with *B. burgdorferi*, *Borrelia miyamotoi*, *Borrelia mayonii*, *Babesia microti*, *Ehrlichia muris eauclairensis*, *Anaplasma phagocytophilum* and Powassan virus. This three-host tick species is the primary vector for Lyme disease-causing *B. burgdorferi* spirochaetes. The life cycle of *I. scapularis* spans 2–4 years and includes egg, larval, nymphal and adult stages.
Tick vectors

In the United States, *Ixodes scapularis* is the primary tick species associated with human transmission except for the West Coast, where *Ixodes pacificus* is the most important vector. In Europe, *Ixodes ricinus* is the primary vector for human transmission, although *Ixodes persulcatus* is also a source of infections in certain regions. In Asia, *I. persulcatus* as well as various other *Ixodes* species and *Haemaphysalis* species are vectors for *Borrelia burgdorferi*.

Borrelia genospecies

In the United States, *B. burgdorferi sensu stricto* is the aetiological agent of Lyme disease. A more recently discovered species, *Borrelia mayonii*, is also present in the North Central region of the United States, where it can overlap in clinical presentation with Lyme disease caused by *B. burgdorferi sensu stricto*, yet accounts for a much smaller number of reported human infections. In Europe, most cases of Lyme borreliosis are caused by *Borrelia afzelii*, *Borrelia garinii* and to a much lesser extent *B. burgdorferi sensu stricto* and *Borrelia bavariensis*.

Estimated annual infections

In the United States ~33,000 cases were reported in 2018, although the number of estimated annual infections is closer to 300,000 (REFS 12,202). In Europe, Lyme borreliosis is not a mandatory reportable disease in many countries. However, ~85,000 cases are reported annually, which is likely to be a severe underestimate.

Geographic distribution

Lyme disease incidence is highest in the Northeast and North Central regions of the United States, although infections can be acquired in the West Coast and South as well. In Europe, *I. ricinus* is widely distributed throughout the continent, and human cases are likely to be closely associated with the distribution of the vector.

Hosts

In both the United States and Europe, small mammals, especially rodents, are reservoirs for *Borrelia* spp. infections and are important hosts for immature *Ixodes* spp. stages. Deer have minimal importance as reservoirs for spirochaetes that cause Lyme disease, but as the primary hosts for adult stages, they are crucial for tick reproduction. Some birds, similarly to deer, are important sources for tick dispersal and seeding in new populations, as well as transmission of spirochaetes.

Clinical presentation

Lyme disease (in the United States) and Lyme borreliosis (in Europe) are highly similar in their primary clinical features and may include multisystemic disease of the skin, joints, heart and nervous system. However, in the United States, systemic disease, including a rapid advancement of erythema migrans, is more common (approximately 70% of infected individuals), and in the absence of antibiotic treatments, Lyme arthritis seems to be a more likely outcome than in Europe. In Europe, neuroborreliosis is more common, *acrodermatitis chronica atrophicans* and *neuroborreliosis* are reported more frequently and erythema migrans expands more slowly with greater central clearing relative to the typical presentation in the United States. The clinical features of Lyme borreliosis seem to be associated with distinct genotypes and tissue tropisms of specific species of *B. burgdorferi sensu latu*.

Enzootically

Describe a pathogen that is maintained through transmission among non-human animal reservoirs.

Three-host tick species

Ticks that leave the host after feeding during each stage of development. This is in contrast to single-host tick species, which remain attached to the same host from larva to adults.

Most tick-borne pathogens, including *B. burgdorferi*, are acquired during the larval or nymphal feed and are transmitted by nymphs or adults (FIG. 1), with the exception of transovarially acquired pathogens. Immature *I. scapularis* ticks are generalist feeders, parasitizing small mammals, medium-sized mammals, birds and reptiles. Aduls also feed on medium-sized mammals, although the primary host for this stage is the white-tailed deer, *Odocoileus virginianus*.

I. scapularis activity patterns are highly seasonal and vary by geography. Tick phenology is therefore an important factor in the epidemiology of tick-borne pathogens. In the North Central region of the United States, larvae are most active during June and July, whereas larval emergence is bimodal in the Northeast, with peaks in the spring and late summer. Nymphs are most active in June and July, and although adults can be active year-round under ideal conditions, they are encountered most often in spring and in autumn. The incidence of Lyme disease is greatest during the months when nymphs are most active.

Box 1 | Lyme disease and Lyme borreliosis in the United States and Europe

Tick vectors

In the United States, *Ixodes scapularis* is the primary tick species associated with human transmission except for the West Coast, where *Ixodes pacificus* is the most important vector. In Europe, *Ixodes ricinus* is the primary vector for human transmission, although *Ixodes persulcatus* is also a source of infections in certain regions. In Asia, *I. persulcatus* as well as various other *Ixodes* species and *Haemaphysalis* species are vectors for *Borrelia burgdorferi*.

Borrelia genospecies

In the United States, *B. burgdorferi sensu stricto* is the aetiological agent of Lyme disease. A more recently discovered species, *Borrelia mayonii*, is also present in the North Central region of the United States, where it can overlap in clinical presentation with Lyme disease caused by *B. burgdorferi sensu stricto*, yet accounts for a much smaller number of reported human infections. In Europe, most cases of Lyme borreliosis are caused by *Borrelia afzelii*, *Borrelia garinii* and to a much lesser extent *B. burgdorferi sensu stricto* and *Borrelia bavariensis*.

Estimated annual infections

In the United States ~33,000 cases were reported in 2018, although the number of estimated annual infections is closer to 300,000 (REFS 12,202). In Europe, Lyme borreliosis is not a mandatory reportable disease in many countries. However, ~85,000 cases are reported annually, which is likely to be a severe underestimate.

Geographic distribution

Lyme disease incidence is highest in the Northeast and North Central regions of the United States, although infections can be acquired in the West Coast and South as well. In Europe, *I. ricinus* is widely distributed throughout the continent, and human cases are likely to be closely associated with the distribution of the vector.

Hosts

In both the United States and Europe, small mammals, especially rodents, are reservoirs for *Borrelia* spp. infections and are important hosts for immature *Ixodes* spp. stages. Deer have minimal importance as reservoirs for spirochaetes that cause Lyme disease, but as the primary hosts for adult stages, they are crucial for tick reproduction. Some birds, similarly to deer, are important sources for tick dispersal and seeding in new populations, as well as transmission of spirochaetes.

Clinical presentation

Lyme disease (in the United States) and Lyme borreliosis (in Europe) are highly similar in their primary clinical features and may include multisystemic disease of the skin, joints, heart and nervous system. However, in the United States, systemic disease, including a rapid advancement of erythema migrans, is more common (approximately 70% of infected individuals), and in the absence of antibiotic treatments, Lyme arthritis seems to be a more likely outcome than in Europe. In Europe, neuroborreliosis is more common, *acrodermatitis chronica atrophicans* and *neuroborreliosis* are reported more frequently and erythema migrans expands more slowly with greater central clearing relative to the typical presentation in the United States. The clinical features of Lyme borreliosis seem to be associated with distinct genotypes and tissue tropisms of specific species of *B. burgdorferi sensu latu*.

Most tick-borne pathogens, including *B. burgdorferi*, are acquired during the larval or nymphal feed and are transmitted by nymphs or adults (FIG. 1), with the exception of transovarially acquired pathogens. Immature *I. scapularis* ticks are generalist feeders, parasitizing small mammals, medium-sized mammals, birds and reptiles. Aduls also feed on medium-sized mammals, although the primary host for this stage is the white-tailed deer, *Odocoileus virginianus*. *I. scapularis* activity patterns are highly seasonal and vary by geography. Tick phenology is therefore an important factor in the epidemiology of tick-borne pathogens. In the North Central region of the United States, larvae are most active during June and July, whereas larval emergence is bimodal in the Northeast, with peaks in the spring and late summer. Nymphs are most active in June and July, and although adults can be active year-round under ideal conditions, they are encountered most often in spring and in autumn. The incidence of Lyme disease is greatest during the months when nymphs are most active (BOX 1). Although *I. scapularis* is also present in regions of the United States other than the North Central and Northeast regions, several factors, including disparate host-seeking behaviour of immature stages, result in a lower prevalence of *B. burgdorferi* in ticks and a lower risk of Lyme disease in these other regions.

Whereas much of the ecology and epidemiology of *B. burgdorferi* and Lyme disease have been understood for decades, the sequencing of the *I. scapularis* genome in 2016 as well as studies examining the tick transcriptome and proteome have greatly advanced the current understanding of the tick immune defence pathways. In this Review, we focus on these findings and how they have enabled researchers to better understand interactions between *B. burgdorferi* and *I. scapularis*. We describe key interactions specific to the tick gut and highlight the influence of the tick gut microbiota, as well as mechanisms that the spirochaete uses to alter the microbiota. Lastly, we highlight tick-*B. burgdorferi* interactions in the salivary glands that are important for transmission to mammalian hosts.

Interactions in the gut

B. burgdorferi spirochaetes are highly motile and use periplasmic flagella to propel themselves through host fluids and tissues. When a tick feeds on an infected vertebrate host, spirochaetes are attracted to the tick feeding site by chemotactic signals where they are ingested during the feeding process and avoiding endocytic digestion in tick gut epithelial cells.

Most spirochaetes remain in the lumen of the tick for the duration of the moult to establish infection in the tick. As evading tick immune defences and avoiding endocytic digestion in tick gut epithelial cells.

To facilitate colonization and persistence in the gut, *B. burgdorferi* has evolved elaborate mechanisms to modulate the gut environment. Importantly, *B. burgdorferi* accomplishes these processes with minimal fitness cost to the tick. Here we discuss interactions between *B. burgdorferi* and the tick in the gut environment, the tick immune response to infection with *B. burgdorferi* and the mechanisms that *B. burgdorferi* uses to establish infection in the tick.

Outer surface protein interactions in the gut

The presence of spirochaetes in tick salivary glands is essential for transmission to a new vertebrate host. However, the gut is the principal tissue of residence for *B. burgdorferi* during most of its arthropod phase and is therefore also a key site for its interactions with the tick. In an infected tick, *B. burgdorferi* is found closely associated with the gut epithelial cells. As blood flow and temperature shift during the tick bloodmeal, spirochaetes must adjust to a reduction in pH from 7.4 to 6.8. Rapidly adapt to changes encountered in hostile and physiologically dissimilar host environments.
Acrodermatitis chronica atrophicans
A late manifestation of chronic Borrelia burgdorferi infection characterized by blue-red skin lesions and swelling, typically on the extremities.

Box 2 | Biology of Borrelia burgdorferi

Borrelia burgdorferi belongs to the phylum Spirochaetes and the spirochaetes have a distinct spiral shape with a flat-wave morphology. *B. burgdorferi* spirochaetes lack classic lipopolysaccharide in the outer membrane and are described as Gram-negative-like. The spirochaetes contain both an outer lipid bilayer and an inner lipid bilayer, a compositionally distinct peptidoglycan layer with flagella in the periplasmic space between the two membranes, which protects from recognition by the host immune system. Approximately 7 to 11 flagella are located at both ends of the spirochaete and form a ribbon that wraps around the spirochaete. The flagella give *B. burgdorferi* its structural shape and enable motility in environments such as tick saliva and the highly viscous extracellular matrix network in the dermis of mammals. In the skin, several immune signalling pathways, including those signalling through MyD88, have a role in controlling the initial colonization; however, spirochaetes that can evade innate immunity and recognition disseminate to secondary infection sites, such as the heart, joint tissues, urinary bladder and nervous system. As *B. burgdorferi* lacks classic bacterial secretion apparatus and toxins, the carditis, arthritis and neuritis observed in persistently infected patients is likely caused by the inflammatory immune response at the site of infection, which can be induced by certain spirochaete antigens, including lipoproteins.

The genome of *B. burgdorferi* is composed of an approximately 1-Mb linear chromosome and at least 17 circular and linear plasmids. Although the chromosome encodes many bacterial orthologues with known or housekeeping functions, the vast majority of plasmid-encoded genes are unique to *Borrelia* spp. and are unrelated to known proteins. The genome encodes relatively few genes involved in response to oxidative and nitrosative stress. Additionally, *B. burgdorferi* encodes limited genes involved in metabolic pathways; therefore, it relies heavily on the host and uses transport systems to scavenge nutrients from the environment, such as the manganese transporter *bb0219* (*BB0219*), which maintains the metabolic flexibility needed to use the different nutrients available in arthropod and vertebrate environments. In mammals, glucose is the primary source of carbon in blood, whereas glycerol and, to a lesser extent, chitobiose are available to spirochaetes in the tick environment.

The second messenger c-di-GMP upregulates genes and induces an effector protein that enables spirochaetes to use alternative pathways of carbon metabolism. Moreover, *B. burgdorferi* mutants lacking the ability to use glycerol could infect mice normally yet were present at much lower levels in experimentally infected nymphs than in wild-type spirochaetes. The genome also does not encode components of the tricarboxylic acid cycle or enzymes required for nucleotide and fatty acid synthesis.

Much of the research on *B. burgdorferi* biology has focused on lipoproteins on the outer membrane, referred to as *outer surface proteins*, because of their important role in spirochaete survival, including adaptation to and navigation of physiologically and immunologically hostile host environments. Several studies have documented antigenic variation in outer surface protein expression as *B. burgdorferi* transitions between the tick host and the mammalian host. In the mammalian host, certain outer surface proteins can activate neutrophils, B cells, T cells and dendritic cells, whereas others inhibit neutrophils, natural killer cells and complement activation. Recent evidence demonstrated that *B. burgdorferi* can shield itself from immunogenic proteins with the highly variable VlsE surface protein. The VlsE antigen is essential for persistence in the mammalian host and undergoes robust antigenic switching through recombination events in the vlsE locus and 15 silent vls cassettes. Importantly, the high degree of heterogeneity, as well as the shielding and antigenic switching, complicates the development of an effective vaccine.
gut and transition to a form that is infectious for mammalian hosts. In addition, BadR (Borrelia host adaptation regulator) represses the transcription of rpoS, whereas BosR activates rpoS transcription and represses ospA and ospB. BadR-deficient spirochaetes cannot infect mice, presumably because they lack the ability to repress RpoS and lack the subsequent ability to transition from expression of tick-phase genes to mammalian phase genes.

BBE31 is another outer surface lipoprotein with a recognized role in Borrelia-vector interactions. Peak expression of BBE31 occurs in the gut of nymphs on days 2 and 3 after feeding, suggesting an effective role during the period when transmission of spirochaetes occurs. Antibody fragments to BBE31 introduced during this period did not affect B. burgdorferi burden in the gut, yet reduced spirochaete presence in haemolymph and salivary glands, presumably though interference with migration out of the gut. TRE31 is a secreted tick protein and a specific binding partner of BBE31. B. burgdorferi infection induces TRE31 expression; it is expressed in the gut of fed and unfed I. scapularis but not in the salivary glands. Blocking expression of TRE31 in feeding ticks had no effect on the presence of spirochaetes in the gut; however, there was a clear reduction of the bacterial burdens in haemolymph and salivary glands, indicating that BBE31–TRE31 interaction is important for transmission to new hosts.

Another important factor in the vector stage of B. burgdorferi is the outer membrane surface protein BBA52, which is upregulated early during tick feeding. A mutant lacking functional bba52 was able to establish infection in needle-inoculated mice; however, tick-to-mouse transmission of spirochaetes was inhibited, and tick acquisition of mutants from hosts was also reduced. Although the specific function of this gene is not well understood, it is clearly essential to the entry of spirochaetes to and their exit from the tick.

Recently, a yeast surface display library encoding tick gut proteins was used to identify interactions between whole B. burgdorferi spirochaetes and tick gut proteins. In this study, the authors identified two proteins, Ixofin3D and ISDLF, as potential B. burgdorferi interactants. Ixofin3D is a fibronectin III domain-containing gut protein.
protein and binds *B. burgdorferi*, facilitating its congregation towards epithelial cells. Although the *B. burgdorferi* genome encodes at least two proteins that bind host fibronectin, BBK32 (REF. 74) and RevA 75, they are associated with infection in mice 76,77 but they are not essential in the tick phase78, and neither protein bound Ixofin3D. Therefore, the specific mechanism of interaction of this protein with *B. burgdorferi* remains unclear; however from a functional perspective, it was suggested that the aforementioned congregation would help direct the spirochaete away from the gut lumen and promote its exit from the gut73. ISDLP is a dystroglycan-like tick protein and is expressed abundantly on the surface of gut epithelial cells. It bound to *B. burgdorferi* and facilitated spirochaete migration from the gut by mechanisms that also remain to be determined79.
Similarly to many zoonotic pathogens, B. burgdorferi lacks certain metabolic pathways and depends on its hosts for essential nutrients. Because I. scapularis feeds only once per life stage, during much of the tick lifespan, available nutrients are limited, and B. burgdorferi must compete with the tick and its microbiota for nutrients. However, to assist with this, B. burgdorferi uses a transport system to scavenge nutrients from its hosts and maintain metabolic flexibility to use the different nutrients available in arthropod and vertebrate environments. This includes acquisition of carbon, where during infection of mammals, glucose is the primary source of carbon in blood, whereas glycerol and, to a lesser extent, chitobiose are available to spirochaetes in the tick environment. This was demonstrated by the observation that B. burgdorferi mutants lacking a gene necessary for glycerol metabolism could infect mice yet demonstrated a reduced capacity to replicate in ticks.

Influence of the tick microbiota. All multicellular eukaryotes coexist with a collection of commensal microorganisms primarily in the gut. This mutualistic partnership provides important benefits for overall gut health, immune responses, pathogen sensing and metabolic functions. Although most microbiota research has been performed in vertebrates, the importance of the microbiota in arthropods has become an exciting topic recently. Similarly to the microbiota of other metazoans, the tick microbiota is likely composed of bacteria, archaea, fungi and viruses, but bacteria are the predominant members. Several recent studies and reviews have characterized microbiota diversity in ticks. There are differing opinions on the extent of the diversity of the tick microbiota. Although several studies have suggested that hundreds of bacterial genera are associated with Ixodes ticks, it is becoming apparent that the abundance and diversity of the tick microbiota may be inflated by spurious contamination due potentially to the low biomass of tick samples. There is growing evidence that the tick microbiota is likely less complex than initially thought, composed predominantly of the endosymbiont Rickettsia buchneri and other bacterial genera, such as Enterococcus, Pseudomonas, Staphylococcus, Lysinibacillus and Bacillus, at much lower abundance. The rickettsial endosymbiont of Ixodes pacificus has been suggested to provide folate, a key vitamin absent in the bloodmeal, to the tick. Thus, it is likely that rickettsial endosymbionts are preferred and vital inhabitants of the tick. Although the tick microbiota might be unstable, with the exception of R. buchneri, the bacterial members that associate with the tick, even if transiently, may impact the tick and its interactions with the pathogens it harbours. Differences in findings are in part due to the development of technologies and approaches to study the microbiota, in addition to technical issues, such as geography, sex, temperature, stage of development and wild versus laboratory-grownticks. Here we focus on several studies that have associated microbiota composition in ticks with susceptibility to B. burgdorferi infection. A study in 2014 demonstrated that the microbiota has an important role in facilitating B. burgdorferi colonization. In this study, the authors produced dysbiosed I. scapularis larvae by placing surface-sterilized female progenitors in sterile containers, thus limiting the exposure of eggs and hatching larval ticks to the normal environmental microbiota. Larval ticks raised in sterile containers harboured decreased relative abundance of Acinetobacter spp., Brevibacterium spp., Lysinibacillus spp. and Staphylococcus spp. compared with ticks grown in normal laboratory conditions. Dysbiosis resulted in decreased B. burgdorferi colonization when the larvae were allowed to feed on infected mice, suggesting that the microbiota impedes effective B. burgdorferi colonization. While the state of the microbiota can influence colonization efficiency, B. burgdorferi can also actively alter the microbiota during the course of infection to generate an environment that is conducive for colonization. When I. scapularis ticks fed on B. burgdorferi-infected mice, spirochaete presence increased gene expression of several tick genes in the gut such as the gene encoding PIXR (protein of I. scapularis with a reeler domain). PIXR inhibits biofilm formation, and RNA interference-mediated knockdown of PIXR decreased B. burgdorferi colonization, suggesting that B. burgdorferi induces PIXR expression to enhance colonization in the tick. Changes to biofilm formation could impact the ability of B. burgdorferi to adhere to the gut epithelium and traverse intercellular junctions in order to access the haemocoel and migrate to the salivary glands.

The microbiota could impact B. burgdorferi colonization through various mechanisms. The genome of B. burgdorferi lacks several genes important for different metabolic pathways, such as synthesis of nucleotides, fatty acids and thiamine; therefore, spirochaetes rely on the arthropod host and the bloodmeal to acquire these essential nutrients and metabolic products. Endosymbionts have an important nutritional role for arthropods; therefore, alterations to the microbiota could impact B. burgdorferi infection. A study queried the genomes of several Borrelia species, including B. burgdorferi and B. afzelii, and showed that Borrelia spp. lack interbacterial effector and immunity genes that would be crucial for survival in a polymicrobial milieu. Consistent with this rationale, the abundance of Pseudomonas, Bacillus or Enterobacteriaceae was negatively correlated with B. burgdorferi abundance. Additional studies are required for a mechanistic understanding of the impact of the microbiota on B. burgdorferi survival in the tick.

Alterations to the tick microbiota also disrupt the structural integrity of the peritrophic matrix, which provides a barrier between the incoming bloodmeal and the gut epithelium. Changes to the microbiota decreased expression of peritrophin, a key structural component, and disruption of the peritrophic membrane, which reduced B. burgdorferi colonization and adherence to the gut lumen. These alterations to the microbiota were accompanied by decreased immune activation through the JAK–STAT pathway (Fig. 5). Demonstrating a functional link between STAT and the integrity of the peritrophic membrane, the study showed that STAT was a transcriptional activator of several members of the plasminogen activator.
the peritrophin family of genes on the basis of the presence of canonical STAT-binding sites in their promoter regions\(^\text{22}\). Differential STAT activation could also potentially impact the tick immune responses towards the spirochaetes, as discussed in the next subsection\(^\text{24}\).

The tick immune system. Ticks, like arthropods, have an immune system to detect and control potential pathogens. Therefore, *B. burgdorferi* has evolved strategies to evade tick immune defences. Most of our knowledge of the arthropod immune system comes from research in *Drosophila melanogaster*\(^{112,113}\). The arthropod immune system consists of the immune deficiency (IMD) pathway, the JAK–STAT pathway and Toll receptor signalling\(^{113-117}\). Activation of these pathways can occur through various mechanisms, including recognition of pathogen-associated molecular patterns and activation of the Toll receptor ligand Spaetzle, or induction of cytokine-like molecules\(^{118}\). In *Drosophila*, activation of these pathways triggers the production of several effector molecules, including antimicrobial peptides, which contributes to controlling infection by invading bacteria, viruses or fungi\(^{119}\). Unlike *Drosophila*, in which specific antimicrobial peptides are activated by specific immune pathways, relatively limited information is available in ticks. Several recent computational studies have characterized the immune system in ticks and identified key similarities and differences with *Drosophila*\(^{20,26,119}\). Initial studies to characterize the *I. scapularis* immune system identified 234 genes that were categorized into nine immune pathways: gut–microorganism homeostasis, agglutination, leucine-rich repeat proteins, proteases, coagulation, non-self recognition and transduction via Toll, IMD pathway and JAK–STAT pathways, free radical defence, phagocytosis and antimicrobial peptides\(^{119}\). The recent sequencing of the *I. scapularis* genome expanded on these findings and identified additional components encoded in the IMD, JAK–STAT and Toll signalling pathways\(^{26}\). Despite missing several components of the immune signalling pathways, ticks maintain a functional immune response against invading pathogens\(^{20,26,119-122}\).

The IMD pathway in *Drosophila* has been well characterized and is primarily important for resistance to Gram-negative bacteria\(^{20,26,119-122}\). The IMD pathway is activated by diaminopimelic peptidoglycans binding to a receptor, resulting in phosphorylation of Relish and transcription of antimicrobial peptides (AMPs). Uninfected *I. scapularis* can ingest mouse interferon-γ (IFNγ) along with the bloodmeal when feeding on *B. burgdorferi* infected mice. Mouse IFNγ signals in the tick gut through an unknown receptor, resulting in STAT-mediated activation of a Rho-like GTPase (IGTPase) and production of the AMP Dae2. Certain microbiota compositions enable activation of the JAK–STAT pathway by an unknown molecular signal and in turn induce the expression of peritrophin genes. Peritrophins are crucial for the formation of a structurally intact peritrophic matrix. *B. burgdorferi* uses the peritrophic matrix as a shield or barrier protecting it from toxic contents during colonization of the gut epithelium. STAT-induced immune effectors, as well as environmental changes, can alter the microbiota composition. Certain changes in the microbiota composition impair JAK–STAT signalling, and this results in decreased expression of peritrophins, leading to a thinner and compromised peritrophic matrix. A compromised peritrophic matrix no longer functions as a protective shield and thus impairs *B. burgdorferi* colonization of the gut epithelium.

Fig. 3 | **Tick immune defences against Borrelia burgdorferi infection**. | Activates the immune deficiency (IMD) pathway in *Ixodes scapularis*. On activation, p47 is polyubiquitylated by X-linked inhibitor of apoptosis (XIAP) in complex with the Bendless–Uev1a heterodimer. Downstream signalling through Kenny results in phosphorylation of Relish and transcription of antimicrobial peptides (AMPs). | Uninfected *I. scapularis* can ingest mouse interferon-γ (IFNγ) along with the bloodmeal when feeding on *B. burgdorferi* infected mice. Mouse IFNγ signals in the tick gut through an unknown receptor, resulting in STAT-mediated activation of a Rho-like GTPase (IGTPase) and production of the AMP Dae2. | Certain microbiota compositions enable activation of the JAK–STAT pathway by an unknown molecular signal and in turn induce the expression of peritrophin genes. Peritrophins are crucial for the formation of a structurally intact peritrophic matrix. *B. burgdorferi* uses the peritrophic matrix as a shield or barrier protecting it from toxic contents during colonization of the gut epithelium. STAT-induced immune effectors, as well as environmental changes, can alter the microbiota composition. Certain changes in the microbiota composition impair JAK–STAT signalling, and this results in decreased expression of peritrophins, leading to a thinner and compromised peritrophic matrix. A compromised peritrophic matrix no longer functions as a protective shield and thus impairs *B. burgdorferi* colonization of the gut epithelium.
to peptidoglycan recognition proteins, resulting in the production of antimicrobial peptides11,12,16. \textit{I. scapularis} encodes several genes involved in IMD pathway activation, such as \textit{caudal}, \textit{relish}, \textit{tak1}, \textit{posh} and \textit{caspar}; however, several signalling components are absent11,12,26,27. Although ticks are missing various proteins involved in the IMD pathway signalling cascade, several important proteins have been identified that are involved in the activation of the IMD pathway on infection with \textit{B. burgdorferi}, as well as \textit{A. phagocytophilum}21,12,25,26. On infection and pathogen detection, the tick E3 ubiquitin ligase \textit{X-linked inhibitor of apoptosis} (XIAP) ubiquitylates p47, allowing p47 to activate the NF-κB regulator Kenny29 (Fig. 3). This interaction between XIAP and p47 is critical for IMD pathway activation and nuclear translocation of the NF-κB homologue Relish, which is important for antimicrobial peptide expression26,12. \textit{B. burgdorferi} does not contain diaminopimelic peptidoglycans in its envelope12. Instead, lipids that make up the bacterial membrane, 1-palmitoyl-2-oleoyl-sn-glyero-3-phosphoglycerol and 1-palmitoyl-2-oleoyl diacylglycerol, activate the IMD pathway22. Additionally, RNAi knockdown of several tick genes involved in IMD signalling, such as \textit{caspar}, \textit{relish}, \textit{uev1a} and \textit{bendless}, resulted in increased \textit{B. burgdorferi} burden in ticks allowed to feed on infected mice25. Overall, these results clearly demonstrate activation of the IMD pathway on infection with \textit{B. burgdorferi}; however, additional studies to identify the effector antimicrobial peptides involved in killing and/or inhibiting \textit{B. burgdorferi} are still needed.

Several recent studies have identified a role for the JAK–STAT pathway in controlling \textit{B. burgdorferi} infection in ticks. The JAK–STAT pathway is conserved between \textit{Drosophila} and ticks11,16, and \textit{I. scapularis} maintains several components of the JAK–STAT pathway, such as \textit{stat}, \textit{hop}, \textit{dome}, \textit{pias} and \textit{soc}34. \textit{I. scapularis} does not encode the canonical ligand Upd, a secreted protein in \textit{Drosophila}, which binds and activates the JAK receptor Dome21,25. Nevertheless, despite lacking \textit{upd}, ticks maintain a functional JAK–STAT pathway and use this pathway to control pathogen burden35,11. A recent study identified cross-species cytokine signalling between mice and ticks36. In this study, when \textit{I. scapularis} ticks were allowed to feed on \textit{B. burgdorferi}-infected mice, interferon-γ (IFNγ) was also ingested with the bloodmeal. Murine-derived IFNγ activated \textit{I. scapularis} STAT in the gut through an unknown receptor36. Activated STAT induced activation of a tick-encoded Rho-like GTPase (IGTPase) and production of the antimicrobial peptide Dae2 (Fig. 3). Dae2 is suggested to be an important antimicrobial peptide for controlling \textit{B. burgdorferi} during acquisition, although a direct effect of Dae2 on \textit{B. burgdorferi} remains to be demonstrated22. Knockdown of Dae2 in \textit{I. scapularis} resulted in increased \textit{B. burgdorferi} burden after feeding on infected mice. Importantly, activation of the JAK–STAT pathway has also been observed on infection with \textit{A. phagocytophilum}21,22. \textit{A. phagocytophilum} infection activated the JAK–STAT pathway, resulting in expression of a 5.3-kDa antimicrobial peptide. RNAi knockdown of STAT increased \textit{A. phagocytophilum} burden in salivary glands and increased transmission22.

The Toll signalling pathway has been well studied in \textit{Drosophila} and has an important role in defence against Gram-positive bacteria15,38,51,52. Activation of the Toll pathway occurs through the Toll receptor ligand Spaetzle, which is secreted in an inactive form and cleaved on extracellular detection of bacterial components, such as lysine-type peptidoglycan. Spaetzle binding activates the Toll receptor, resulting in binding to the adaptor protein MyD88 and downstream signalling132. \textit{I. scapularis} encodes several components of the Toll signalling cascade, such as \textit{toll}, \textit{myd88}, \textit{spaetzle}, \textit{tube}, \textit{pelle}, \textit{cactus} and \textit{dorsal}31. Additionally, expression of several \textit{toll} genes and \textit{myd88} is upregulated on infection with \textit{B. burgdorferi}20. However, the role of Toll activation in controlling \textit{B. burgdorferi} infection has not been determined and is an important area of future research.

The previously described studies demonstrate that the JAK–STAT and IMD pathways have important roles in controlling \textit{B. burgdorferi} infection21,25,26,27. However, although \textit{B. burgdorferi} infection activates the JAK–STAT and IMD pathways, these defence systems are not able to eliminate the spirochaete from the tick. Little is known regarding how \textit{B. burgdorferi} can circumvent restriction by the IMD and JAK–STAT pathways in the tick gut.

The \textit{B. burgdorferi} genome encodes several proteins to control immune activation in mammals during transmission, such as BBA57, which dampens interferon activation11,12. Whether the \textit{B. burgdorferi} genome encodes proteins that impair tick immune activation pathways through direct protein–protein interactions is unknown and requires further investigation. A possible mechanism to dampen activation of tick immune defences could be through the formation of a molecular barrier that surrounds the gut epithelial layer, termed the ‘dityrosine net’ (DTN)135. In mosquitoes, formation of the DTN limits immune activation during a bloodmeal, which could potentially disrupt the beneficial gut microbiota34. Similarly to other arthropods, \textit{I. scapularis} encodes a dual oxidase (\textit{duox}) and a peroxidase (ISCW017368) involved in DTN formation135. Knockdown of \textit{duox} or the peroxidase impaired DTN formation, resulting in activation of tick immunity and reduced \textit{B. burgdorferi} colonization132. Silencing of \textit{duox} also increased nitric oxide synthase activity. Production of reactive nitrogen species is an additional protective mechanism that ticks use to control pathogens, such as \textit{B. burgdorferi}, by targeting DNA136,137. However, \textit{B. burgdorferi} can counter the nitrosative stress through expression of the nucleotide excision repair gene \textit{uvrB}137. Alternatively, as \textit{B. burgdorferi} infection persists through multiple life stages of the tick, \textit{B. burgdorferi} has evolved strategies to minimize fitness costs to the tick. It is possible that \textit{I. scapularis} becomes tolerant of \textit{B. burgdorferi} infection because immune activation could be detrimental to the host.

Interactions in the salivary gland

Once at the salivary gland, \textit{B. burgdorferi} is transmitted with the tick saliva during feeding. Tick feeding is a dynamic process that involves penetrating the epidermis, digesting tissue, dilating capillaries, preventing coagulation and dampening immune responses at the...
Type 2 T helper cell response
Immune response by effector CD4+ T cells characterized by production of cytokines promoting B cell proliferation and antibody production.

Type 1 T helper cell response
Immune response by effector CD4+ T cells characterized by production of proinflammatory cytokines involved in the killing intracellular pathogens.

Hypostome
A component of a tick’s mouthpart apparatus that serves to anchor the tick in the host’s skin during feeding.

Salivary proteins important for tick feeding. Innate defences in the skin are a major hurdle for ticks to overcome to obtain a complete bloodmeal. In short, ticks digest tissue, insert their hypostome and take in blood, which pools at the wound. Injury to skin normally triggers wound healing, which consists of three overlapping phases — inflammation, tissue formation and tissue repair. Wound healing could be detrimental to tick feeding; therefore, ticks have evolved strategies to modulate host response. Initial damage to the skin disrupts blood vessels, resulting in release of extracellular they can also benefit *B. burgdorferi* transmission. For example, the immune response against *B. burgdorferi* is highly dependent on tick salivary proteins. Mice infected with *B. burgdorferi* developed a type 2 T helper cell response, whereas mice inoculated with a syringe developed a mixed type 2 T helper cell and type 1 T helper cell response. These differences are likely mediated, at least in part, by the proteins in saliva. Saliva and salivary gland extract can downregulate IFNγ and IL-2 production in T cells stimulated with concanavalin A and inhibit T cell proliferation. By contrast, *B. burgdorferi* alone induces IFNγ production. In the following subsections, we will discuss key salivary proteins that facilitate a successful bloodmeal and how they impact *B. burgdorferi* transmission and/or acquisition.

Salivary proteins important for tick feeding. A component of a tick’s mouthpart apparatus that serves to anchor the tick in the host’s skin during feeding. These processes are mediated by proteins injected into the host through the tick saliva. Tick saliva contains at least several hundred proteins, possibly thousands. Saliva composition varies between life stages of the tick, the type of host it is feeding on and to obtain a complete bloodmeal. These proteins also assist *B. burgdorferi* transmission. Complement is an important immune defence mechanism that restricts *B. burgdorferi*, as well as tick feeding. The tick salivary proteins ISAC, SALP20 and TSLPI inhibit activation of complement and increase *B. burgdorferi* transmission. Sialostatin L2 also modulates the immune response against the tick bite by impairing cytokine secretion by dendritic cells on exposure to *B. burgdorferi*. Tick histamine release factor (tHRF) is a salivary protein secreted during the late stage of tick feeding and triggers the release of histamine, presumably from mast cells or basophils. The best studied salivary protein is SALP15, which enhances *B. burgdorferi* transmission. *B. burgdorferi* expresses OspC on its surface during migration from the gut to the salivary glands. SALP15 binds OspC and can shield the spirochaete from antibody-mediated killing. Additionally, SALP15 suppresses CD4+ T cell function and IL-2 secretion.
adeno sine triphosphate and adenosine diphosphate, which stimulates platelet aggregation and inhibits blood flow15. Ticks use several strategies to maintain blood flow. The saliva of *Ixodes* spp. ticks contains an apyrase enzyme that degrades adenosine diphosphate to adenosine monophosphate and thus inhibits platelet aggregation14. Similarly, saliva proteins in *I. scapularis* such as SALP14, TIX, Ixolaris, and Penthalaris have anticoagulation properties152–154. Knockdown of SALP14 by RNAi reduced the anticoagulation activity of saliva, as measured by the activity of complement factor Xa, which is important for thrombin activation. SALP14 knockdown also inhibited tick feeding and reduced engorgement by 50–70% (REF153). Several additional proteins, such as ISL 929, and metalloproteinases also have important roles in controlling wound healing in response to the tick bite155–158.

Skin contains several resident immune cells, such as macrophages, mast cells, dendritic cells, Langerhans cells and T cells, that are important for protection against invading pathogens159. Evasion of the immune response is crucial for the tick as feeding involves injection of foreign proteins into the host over the course of several days. Ticks have evolved several strategies to control recruitment of inflammatory cells and cells involved in tissue repair. Tick saliva and salivary gland extract inhibit angiogenesis at the bite site159,160. Additionally, saliva dampens the inflammatory immune response by directly targeting immune cells and complement activation at the tick bite site159,160. Several proteins in saliva inhibit T cell proliferation and decrease type I T helper cell cytokine production161,162. For example, saliostatin L2 suppresses the immune response by interfering with activation of the JAK–STAT pathway and IFN\textgreek{g} production in murine dendritic cells163. In addition to controlling inflammation at the bite site, sialostatin L2 has an important role during pathogen transmission158,164. Sialostatin L2 inhibits the formation of the NLRC4 inflammasome during transmission of *A. phagocytophilum* by binding annexin A2, which is required for NLRC4 oligomerization and inflammasome formation164,165. Immunization of guinea pigs against sialostatin L2 resulted in decreased engorgement, suggesting that the immunosuppressive function of sialostatin L2 is important for tick feeding161.

Salivary proteins that facilitate Borrelia transmission.

The complement system is an important component of the innate immune system involved in clearance of invading pathogens. There are three major pathways, lectin, classical and alternative, that can activate complement172. On activation, effector pathways result in opsonization and phagocytosis, generation of proinflammatory anaphylatoxins or direct lysis of the pathogen by the formation of membrane attack complexes172. Complement activation has an important role in controlling *B. burgdorferi* dissemination in mice175,176; therefore, *B. burgdorferi* has evolved mechanisms to counter the effects of the complement cascade through expression of complement inhibitor proteins on the outer membrane, such as complement regulatory-acquiring surface proteins (CRASPS), which directly interfere with complement activation175–177. Several studies have reported that tick salivary proteins can be important in controlling complement activation to enhance *B. burgdorferi* transmission151,181. Multiple salivary proteins from *I. scapularis* can inhibit the complement pathway, such as Isac, TSLPI and SALP20 (REF152,153,154,178,179). For example, SALP20 from *I. scapularis* inhibits the alternative complement pathway by preventing cleavage of C3 to C3a and C3b178. Furthermore, SALP20 partially protected *B. burgdorferi* from complement mediated lysis180.

Knockdown of TSLPI in ticks impaired *B. burgdorferi* transmission to mice181. Similarly, injected ticks initiated less pathogen transmission to mice immunized against TSLPI than non-immunized mice. In vitro, *B. burgdorferi* was resistant to complement-mediated killing in the presence of recombinant TSLPI. TSLPI binds mannose-binding lectin, a pattern recognition protein involved in activation of the lectin pathway, and thereby TSLPI inhibits the lectin–complement cascade164,181. Additionally, mannose-binding lectin is involved in controlling *B. burgdorferi* infection in the skin182.

Controlling the host’s immune response during the different phases of tick feeding is critical for obtaining a successful bloodmeal. Histamine released from degranulated basophils and mast cells has a negative impact on tick feeding within the first 24 hours from attachment183,184. Therefore, ticks secrete several histamine-binding proteins to reduce the detrimental effects of histamine on feeding and attachment; however, ticks also encode proteins to stimulate degranulation during the late phase of tick feeding185. Tick histamine release factor (tHRF) is upregulated in the salivary glands of infected *I. scapularis* nymphs during the late stages of feeding186. tHRF stimulates the release of histamine from basophils in mice, possibly as a mechanism to increase blood flow and pooling. Knockdown of tHRF impaired tick feeding on mice, and mice that received passive transfer of tHRF antiseraum also showed decreased *B. burgdorferi* transmission.

Neutrophils are the first cells to be recruited to the site of acute inflammation. SALP25D is a secreted salivary protein important for combating neutrophils at the bite site187. Recombinant SALP25D protected spirochaetes from activated neutrophils compared with control protein. Knockdown of SALP25D in *I. scapularis* impaired *B. burgdorferi* acquisition in ticks187. Additionally, the study authors demonstrated that SALP25D is an antioxidant protein that quenches reactive oxygen species generated by activated neutrophils. Although the *B. burgdorferi* genome encodes enzymes that remove reactive oxygen species, SALP25D is a clear example of *B. burgdorferi* co-opting a vector protein to help maintain its life cycle188. Furthermore, two secreted salivary proteins, ISL929 and ISL1373, which belong to a family of disintegrin-like proteins, reduced neutrophil recruitment in vivo189, and this function provided a substantial advantage for *B. burgdorferi* at the vector–host interface, representing yet another example of saliva-assisted transmission188. SALP15 is a unique example of a salivary protein that promotes *B. burgdorferi* transmission by binding to the spirochaete. SALP15 also binds to CD4+ T cells and inhibits T cell activation and IL-2 signalling164,180. SALP15 interacts directly with...
B. burgdorferi during migration out of the tick, and is able to enhance transmission to naive mice. Mice inoculated with spirochetes preincubated with recombinant SALP15 had a higher B. burgdorferi burden compared with mice preincubated with a control protein. SALP15 binds directly to OspC on the spirochetes, protecting them from antibody-mediated killing. Knockdown of SALP15 in ticks strongly reduced transmission to mice. Mice actively immunized with SALP15 were also partially protected against infection with tick-borne B. burgdorferi.

Conclusions

B. burgdorferi has evolved complex mechanisms to infect both vertebrates and arthropods. An expanding set of research tools is facilitating an increasingly deeper understanding of these features. The recent sequencing of the I. scapularis genome and bioinformatics work has improved our understanding of Borrelia–tick interactions. These studies have helped to expand our understanding of the tick innate immune defence pathways and interactions with B. burgdorferi. This work has also provided a useful resource for comparative genomics and arthropod evolutionary biology. Additionally, development of tick cell lines has led to major advances in our ability to study tick–pathogen interactions for I. scapularis in vitro, including isolation of tick-borne pathogens, expression of RNA and proteins, genetic manipulation and knockout studies.

As described herein, B. burgdorferi relies on interactions with the tick for successful colonization, persistence and transmission. With the recent advancements in our understanding of the tick immune system and microbiota, further analysis is required to identify how gene expression changes in B. burgdorferi help to modulate the tick environment. Several recent studies clearly demonstrate that the tick IMD and JAK–STAT pathways have roles in controlling infection. However, further studies are required to determine how B. burgdorferi can avoid clearance and identify the proteins involved. Additionally, studies to restore components of the JAK–STAT, IMD and Toll signalling pathways absent in ticks would be an interesting research direction to explore. Similarly, studies are required to examine how the tick microbiota can impact metabolic functions of the tick and B. burgdorferi. Further characterization of these interactions, as well as interactions at the tick bite site, could help to identify potentially druggable targets to disrupt infection and transmission. For example, salivary proteins enhance transmission of B. burgdorferi and A. phagocytophilum to the vertebrate host. Targeting these interactions in the salivary glands has become an exciting approach for vaccine development.

Developing immunity against tick salivary proteins can be a strategy to prevent tick bites, as well as infection with the pathogens they transmit.

Published online 10 July 2020
39. De Silva, A. M. & Flavell, R. A. OspB antibody prevents Borrelia burgdorferi colonization of ixodes scapularis. Infect. Immun. 100, 561–569 (2020).

40. Fikrig, E., Pal, U., Chen, M., Anderson, J. F. & Flavell, R. A. OspB antibody prevents Borrelia burgdorferi colonization of ixodes scapularis. Infect. Immun. 72, 1755–1759 (2004).

41. Yang, X. F., Pal, U., Stanisic, S. M., Fikrig, E. & Pal, U. et al. Attachment of Borrelia burgdorferi within ixodes scapularis mediated by outer surface protein A. J. Clin. Invest. 106, 561–569 (2000).

42. Nordic, S. D. & Borrelia burgdorferi proteins whose expression is similarly affected by culture temperature and pH. Infect. Immun. 69, 2159–2172 (2001).

43. Yang, X. et al. The effect of environmental factors influencing reciprocal patterns of gene expression in virulent Borrelia burgdorferi. Mol. Microbiol. 57, e64–e85 (2005).

44. Pal, U. et al. Attachment of Borrelia burgdorferi within ixodes scapularis mediated by outer surface protein A. J. Clin. Invest. 106, 561–569 (2000).

45. Tilly, K. et al. Borrelia burgdorferi OspC protein required exclusively in a crucial early stage of mammalian infection. Infect. Immun. 74, 3554–3564 (2006).

46. Neelakanta, G. et al. Borrelia burgdorferi lacking DsbA exhibits an early survival defect during experimental infection. Infect. Immun. 76, 5694–5706 (2008).

47. Kung, F. & Pal, U. The Lyme disease agent Borrelia burgdorferi core cellular functions. PLoS Pathog. 7, e1001272 (2011).

48. Narasimhan, S. et al. A tick gut protein with tick reproductive potential and vector function is required for mammalian infection and vector transmission but not for tick colonization. Proc. Natl Acad. Sci. USA 102, 5162–5167 (2005).

49. Landesman, W. J., Pal, U. & Fikrig, E. Tick microbiome: the force within. Trends Parasitol. 31, 315–325 (2015).

50. Diaz-Sanchez, S., Estrada-Pena, A., Cabezas-Cruz, A. & de la Fuente, J. Evolutionary insights into the tick–host interaction. Trends Parasitol. 25, 17–25 (2019).

51. Swei, A. & Kwan, J. Y. Tick microbiome and pathogen acquisition altered by host blood meal. ISME J. 11, 813–816 (2017).

52. Kwan, J. Y., Griggs, R., Chichana, M., Miller, C. & Swei, A. Vertical vs. horizontal transmission of the microbiome in a tick-borne disease vector, Ixodes pacificus. Mol. Ecol. 26, 6578–6589 (2017).

53. Rynkiewicz, E. C., Hammeirich, C., Rush, D. B., Fuster, G. & Clay, K. Concordance of bacterial communities of two tick species and blood of their shared rodent host. Mol. Ecol. 24, 2556–2579 (2015).

54. Cooper, L. & Swei, A. Tick microbiome characterization by next-generation 16S rRNA amplicon sequencing. J. Exp. Inf. https://doi.org/10.3731/jvls.2019 (2019).

55. Kurtti, T. J. et al. Rickettsia endosymbiont of the blacklegged tick, Ixodes scapularis. Int. J. Syst. Evol. Microbiol. 65, 965–970 (2015).

56. Hunter, D. J. et al. The Rickettsia endosymbiont of ixodes pacificus contains all the genes of bleo folate biosynthesis. PLoS ONE 10, e0144552 (2015).

57. Moreno, C. X., Muy, F., Daniels, T. J., Godfrey, H. P. & Cabell, C. F. Molecular analysis of microbial communities identified in different developmental stages of ixodes scapularis ticks from Westchester and Dutchess Counties, New York. Appl. Environ. Microbiol. 86, 761–772 (2020).

58. Shah, S. J., Derendorf, C. F., Cabezas-Cruz, A. & Hernandez-Jarguin, A. M. Sex-specific linkages between microbial communities and tick engorgement in the tick–mammal enzootic cycle. Front. Cell Microbiol. 10, 106 (2019).

59. Bonnet, S. I., Binetruy, F., Hernandez-Jarguin, A. M. & Cabezas-Cruz, A. Specific links between taxonomic and functional profiles of tick gut microbiomes. Front. Cell Microbiol. 9, 298 (2019).

60. Gai, C. L. et al. The bacterial microbiome of Dermacentor andersoni and its effect on tick development and tick–mammal susceptibility. ISME J. 10, 1846–1855 (2016).

61. Coronado, A. & Schwartz, I. Borrelia burgdorferi: carbon metabolism and the tick–viral enzootic cycle. Microbiol. Spectr. 3, 8 (2015).

62. Bonnet, S. I., Binetruy, F. & Hernandez-Jarguin, A. M. & Duron, O. The tick microbiome: why no pathogenic microorganisms matter in tick biology and pathogen transmission. Front. Cell Microbiol. 7, 256 (2017).

63. Levy, R. E. & Fikrig, E. Evolution of mammals and their gut microbes. Science 320, 1647–1651 (2008).

64. Kolodziejczyk, A. A., Thais, C. A. & Elia, N. Dysbiosis and the immune system. Nat. Rev. Immunol. 17, 219–232 (2017).

65. Clemente, J. C., Ursell, L. K., Parfrey, L. W. & Knight, R. The impact of the gut microbiota on human health: an ecosystem perspective. Science 341, 1254–1259 (2013).
Sonenshine, D. E., Ceraul, S. M., Hynes, W. E., Erturk-Hasdemir, D. et al. Two roles for the Drosophila M. Palmer, W. J. & Jiggins, F. M. Comparative genomics in the Drosophila host defense. Valanne, S., Wang, J. H. & Ramet, M. The Drosophila Hoffmann, J. A., Kafatos, F. C., Janeway, C. A. & Souza-Neto, J. A., Sim, S. & Dimopoulos, G. Hoffmann, J. A. & Reichhart, J. M. Drosophila innate pathway in anti-dengue defense.

Annu. Rev. Entomol. 4, 100-009 (2008).

Infect. Dis. Clin. North Am. 22, 195–215 (2008).

Valanne, S., Wang, J. H. & Ramet, M. The Drosophila Hoffmann, J. A., Kafatos, F. C., Janeway, C. A. & Souza-Neto, J. A., Sim, S. & Dimopoulos, G. Hoffmann, J. A. & Reichhart, J. M. Drosophila innate pathway in anti-dengue defense.

Annu. Rev. Entomol. 4, 100-009 (2008).

Valanne, S., Wang, J. H. & Ramet, M. The Drosophila Hoffmann, J. A., Kafatos, F. C., Janeway, C. A. & Souza-Neto, J. A., Sim, S. & Dimopoulos, G. Hoffmann, J. A. & Reichhart, J. M. Drosophila innate pathway in anti-dengue defense.

Annu. Rev. Entomol. 4, 100-009 (2008).

Valanne, S., Wang, J. H. & Ramet, M. The Drosophila Hoffmann, J. A., Kafatos, F. C., Janeway, C. A. & Souza-Neto, J. A., Sim, S. & Dimopoulos, G. Hoffmann, J. A. & Reichhart, J. M. Drosophila innate pathway in anti-dengue defense.

Annu. Rev. Entomol. 4, 100-009 (2008).

Valanne, S., Wang, J. H. & Ramet, M. The Drosophila Hoffmann, J. A., Kafatos, F. C., Janeway, C. A. & Souza-Neto, J. A., Sim, S. & Dimopoulos, G. Hoffmann, J. A. & Reichhart, J. M. Drosophila innate pathway in anti-dengue defense.

Annu. Rev. Entomol. 4, 100-009 (2008).

Valanne, S., Wang, J. H. & Ramet, M. The Drosophila Hoffmann, J. A., Kafatos, F. C., Janeway, C. A. & Souza-Neto, J. A., Sim, S. & Dimopoulos, G. Hoffmann, J. A. & Reichhart, J. M. Drosophila innate pathway in anti-dengue defense.

Annu. Rev. Entomol. 4, 100-009 (2008).

Valanne, S., Wang, J. H. & Ramet, M. The Drosophila Hoffmann, J. A., Kafatos, F. C., Janeway, C. A. & Souza-Neto, J. A., Sim, S. & Dimopoulos, G. Hoffmann, J. A. & Reichhart, J. M. Drosophila innate pathway in anti-dengue defense.

Annu. Rev. Entomol. 4, 100-009 (2008).

Valanne, S., Wang, J. H. & Ramet, M. The Drosophila Hoffmann, J. A., Kafatos, F. C., Janeway, C. A. & Souza-Neto, J. A., Sim, S. & Dimopoulos, G. Hoffmann, J. A. & Reichhart, J. M. Drosophila innate pathway in anti-dengue defense.

Annu. Rev. Entomol. 4, 100-009 (2008).

Valanne, S., Wang, J. H. & Ramet, M. The Drosophila Hoffmann, J. A., Kafatos, F. C., Janeway, C. A. & Souza-Neto, J. A., Sim, S. & Dimopoulos, G. Hoffmann, J. A. & Reichhart, J. M. Drosophila innate pathway in anti-dengue defense.

Annu. Rev. Entomol. 4, 100-009 (2008).

Valanne, S., Wang, J. H. & Ramet, M. The Drosophila Hoffmann, J. A., Kafatos, F. C., Janeway, C. A. & Souza-Neto, J. A., Sim, S. & Dimopoulos, G. Hoffmann, J. A. & Reichhart, J. M. Drosophila innate pathway in anti-dengue defense.

Annu. Rev. Entomol. 4, 100-009 (2008).
181. Ip, W. K., Takahashi, K., Ezekowitz, R. A. & Stuart, L. M. Mannose-binding lectin and innate immunity. *Immunol. Rev.* 230, 9–21 (2009).

182. Coumou, J. et al. The role of mannose binding lectin in the immune response against *Boorrelia burgdorferi* sensu lato. *Sci. Rep.* 9, 1431 (2019).

183. Kemp, D. H. & Bourne, A. Boophilus microplus: the effect of histamine on the attachment of cattle-tick larvae—studies in vivo and in vitro. *Parasitology* 80, 487–496 (1980).

184. Tabakawa, Y. et al. Histamine released from skin-infiltrating basophils but not mast cells is crucial for acquired tick resistance in mice. *Front. Immunol.* 9, 1540 (2018).

185. Dey, J. et al. Tick histamine release factor is critical for *Ixodes scapularis* engorgement and transmission of the Lyme disease agent. *PLoS Pathog.* 6, e1001205 (2010).

186. Das, S. et al. Salp25D, an *Ixodes scapularis* antioxidant, is 1 of 14 immunodominant antigens in engorged tick salivary glands. *J. Infect. Dis.* 184, 1056–1064 (2001).

187. Narasimhan, S. et al. A tick antioxidant facilitates the Lyme disease agent’s successful migration from the mammalian host to the arthropod vector. *Cell Host Microbe* 2, 7–18 (2007).

188. Nuttall, P. A. & Labuda, M. Tick-host interactions: saliva-activated transmission. *Parasitology* 129, S177–S189 (2004).

189. Garg, R. et al. Cutting edge: CD4 is the receptor for the tick saliva immunosuppressor, Salp15. *J. Immunol.* 177, 6579–6583 (2006).

190. Ramamoorthi, N. et al. The Lyme disease agent exploits a tick protein to infect the mammalian host. *Nature* 436, 573–577 (2005).

191. Dey, J. et al. Antibodies against a tick protein, Salp15, protect mice from the Lyme disease agent. *Cell Host Microbe* 6, 482–492 (2009).

192. Munderlich, U. G., Liu, Y., Wang, M., Chen, C. & Kurtti, T. J. Establishment, maintenance and description of cell lines from the tick *Ixodes scapularis*. *J. Parasitol.* 80, 553–543 (1994).

193. Kurtti, T. J., Munderlich, U. G., Andreasis, T. G., Magnarelli, L. A. & Mathur, T. N. Tick cell culture isolation of an intracellular prokaryote from the tick *Ixodes scapularis*. *J. Invertebr. Pathol.* 67, 518–321 (1996).

194. Oliver, J. D., Chavez, A. S., Felsheim, R. F., Kurtti, T. J. & Munderlich, U. G. An *Ixodes scapularis* cell line with a predominantly neuron-like phenotype. *Exp. Appl. Acarol.* 66, 427–442 (2015).

195. Narasimhan, S. et al. *Ixodes scapularis* saliva components that elicit responses associated with acquired tick-resistance. *Ticks Tick Borne Dis.* 11, 101369 (2020).

196. Bensaci, M., Bhattacharya, D., Clark, R. & Hu, L. T. Oral vaccination with vaccinia virus expressing the tick antigen subolesin inhibits tick feeding and transmission of *Boorrelia burgdorferi*. *Vaccine* 30, 6040–6046 (2012).

197. Grim, D. et al. Experimental assessment of the roles of linear plasmin (P25 and P28-1 of *Boorrelia burgdorferi* throughout the infectious cycle. *Infect. Immun.* 72, 5938–5946 (2004).

198. Stanek, C., Wormser, G. P., Gray, J. & Strel F. Lyme trehalosis. *Lancet* 379, 461–473 (2012).

199. Pritt, B. S. et al. *Boorrelia mayonii* sp. nov., a member of the *Boorrelia burgdorferi* sensu lato complex, detected in patients and ticks in the upper midwestern United States. *Int. J. Syst. Evol. Microbiol.* 66, 4878–4880 (2016).

200. Stanek, G. et al. Lyme borreliosis: clinical case definitions for diagnosis and management in Europe. *Clin. Microbiol. Infect.* 17, 69–79 (2011).

201. Margos, G. et al. *Boorrelia bavariensis* sp. nov. is widely distributed in Europe and Asia. *Int. J. Syst. Evol. Microbiol.* 63, 4284–4288 (2013).

202. Centers for Disease Control and Prevention. Lyme disease data tables: most recent year (2018). https://www.cdc.gov/lyme/datasurveillance/tables-recent.html (2018).

203. Lindgren, E., T. G. T. Jaenson. & Menne, B. Lyme borreliosis. *Lancet* 6, 4284–4288 (2013).

204. Stanek, G. et al. Lyme Borreliosis: clinical case definitions for diagnosis and management in Europe. *Clin. Microbiol. Infect.* 17, 69–79 (2011).

205. Margos, G. et al. *Boorrelia bavariensis* sp. nov. is widely distributed in Europe and Asia. *Int. J. Syst. Evol. Microbiol.* 63, 4284–4288 (2013).

206. Centers for Disease Control and Prevention. Lyme disease data tables: most recent year (2018). https://www.cdc.gov/lyme/datasurveillance/tables-recent.html (2018).

207. Stanek, G., Wormser, G. P., Gray, J. & Strel, F. Lyme borreliosis. *Lancet* 6, 4284–4288 (2013).

208. Christodoulides, A., Baidyanan, A. & Keselidis, T. Spirochetal lipoproteins and immune evasion. *Front. Immunol.* 8, 364 (2017).

209. Lone, A. G. & Bankhead, T. The *Boorrelia burgdorferi* Vsp lipoprotein prevents antibody binding to an arthritis-related surface antigen. *Cell Rep.* 30, 5663–5670.e5 (2020).

210. Verhey, T. B., Castelanos, M. & Chaconas, G. Antigenic variation in the Lyme spirochete: insights into recombinational switching with a suggested role for error-prone repair. *Cell Rep.* 23, 2505–2508 (2018).

Acknowledgements
This work was supported by grants from the NIH (AI126033 and AI138949) and the Steven and Alexandra Cohen Foundation. E.F. is an investigator with the Howard Hughes Medical Institute. C.K. is supported by an NIH immunohematopathology research training grant (T32HL007974).

Author contributions
E.F., C.K., G.E.L. and S.N. researched data for the article and wrote the article. All authors contributed to discussion of the content and reviewed and edited the manuscript before submission.

Competing interests
The authors declare no competing interests.

Publisher’s note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

© Springer Nature Limited 2020