Efficient Discovery of Large Synchronous Events in Neural Spike Streams

V. Raajay
Indian Institute of Science
Bangalore, India. 560025
raajay.v@gmail.com

P. S. Sastry
Indian Institute of Science
Bangalore, India. 560025
sastry@ee.iisc.ernet.in

K. P. Unnikrishnan
University of Michigan
Ann Arbor, USA.
kpuk@umich.edu

ABSTRACT

We address the problem of finding patterns from multi-neuronal spike trains that give us insights into the multi-neuronal codes used in the brain and help us design better brain computer interfaces. We focus on the synchronous firings of groups of neurons as these have been shown to play a major role in coding and communication [6]. With large electrode arrays, it is now possible to simultaneously record the spiking activity of hundreds of neurons over large periods of time. Recently, techniques have been developed to efficiently count the frequency of synchronous firing patterns. However, when the number of neurons being observed grows they suffer from the combinatorial explosion in the number of possible patterns and do not scale well. In this paper, we present a temporal data mining scheme that overcomes many of these problems. It generates a set of candidate patterns from frequent patterns of smaller size; all possible patterns are not counted. Also we count only a certain well defined subset of occurrences and this makes the process more efficient. We highlight the computational advantage that this approach offers over the existing methods through simulations.

We also propose methods for assessing the statistical significance of the discovered patterns. We detect only those patterns that repeat often enough to be significant and thus be able to automatically fix the threshold for the data-mining application. Finally we discuss the usefulness of these methods for brain computer interfaces [11].

Keywords

multi-neuronal spike trains, Data mining, Neural code, Frequent Episodes, Synchrony

1. INTRODUCTION

Neurons form the basic computing elements of brain and hence, gaining the understanding of the coordinated behavior of groups of neurons is essential for gaining a principled understanding of the brain function. Thus, one of the important problems in neuroscience is that of understanding the functioning of a neural tissue in terms of interactions among its neurons.

The neurons communicate with one another by means of voltage fluctuations called action potential or spikes. We can study the activity of a specific neural tissue by gathering data in the form of sequences of action potentials or spikes generated by each of a group of potentially interconnected neurons. Recent techniques, like Micro Electrode Array (MEA), imaging of ionic concentrations etc., have enabled us in recording the activity of hundreds of neurons simultaneously. Such recorded data, known as multi-neuronal spike train data, is a mixture of the stochastic spiking of activities of individual neurons as well as correlated spiking activity due to interactions or connections among neurons.

One way to find out the interactions among neurons is to find patterns from the spike train data [2]. The patterns help in understanding the relation between the spiking times of neurons which in turn can throw light on the interaction among neurons performing a specific function.

Various algorithms have been developed to find interesting patterns in spike train data. All the algorithms essentially find frequent (or less-frequent) occurrences of specific patterns and try to establish the significance of their occurrence in the data, that is, statistically show that these patterns have not occurred by chance and have occurred because of interaction among the constituent neurons.

Predominantly, two kinds of patterns have been explored, namely, 1. Sequential firing patterns 2. Synchronous firing patterns. Sequential firing patterns are used to represent a chain of neurons firing one after the other after a certain amount of delay in time. Such patterns have been found in data recorded from the hippocampus circuit.

Synchronous firing patterns, on the other hand, represent a group of neurons firing very close to each other in time. The difference in the their spiking times is in the order of milliseconds. Some algorithms [5] use time binning technique to find such patterns. The spiking times of neurons are binned into time intervals equal to time span of interest. Then the occurrence of every possible pattern is checked in each time bin. Such binning techniques affect the time resolution of the spike times. Also some patterns that occur across time bins will be missed. Recently techniques [13] have been developed that avoid time-binning and count the frequency of patterns more efficiently. However, these algorithms are all essentially correlation based and also count the frequency of all possible patterns. When the number of
neurons being observed grows they suffer from the combinatorial explosion in the number of possible patterns and do not scale well.

In this paper, we view this problem of finding synchronous patterns from a temporal datamining perspective. The patterns are represented as parallel episodes (with expiry times) discussed in the frequent episode discovery framework [12]. We use the parallel mining algorithm to discover frequent patterns whose frequency in the data is above a user specified threshold. The algorithm is apriori based. It generates a set of candidate patterns from frequent patterns of smaller size. All possible patterns are not counted. Also we count only a certain well defined subset of occurrences and this makes the process more efficient. We highlight the computational advantage that this approach offers over the existing methods through simulations.

We also develop statistical techniques to establish the significance of the discovered patterns.

The rest of the paper is organised as follows. Section 2 describes the parallel episode mining algorithm that we use to discover synchronous patterns. Section 3 presents a significance test for the parallel episodes. In Section 4 we present simulation results that shows the effectiveness of our method. Concluding remarks are provided in Section 5.

2. FREQUENT EPISODE FRAMEWORK FOR DISCOVERY OF SYNCHRONOUS PATTERNS

Temporal datamining is concerned with analyzing symbolic time series data to discover ‘interesting’ patterns of temporal dependencies ([7, 10]). Recently we have proposed that some datamining techniques, based on the so called frequent episodes framework, are well suited for analyzing multi-neuronal spike train data [12, 3, 14]. Patterns of interest in spike data such as synchronous firings by groups of neurons, the sequential patterns, and synfire chains which are a combination of synchrony and ordered firings, can be efficiently discovered from the data using these datamining techniques. In this section we first briefly outline the frequent episodes framework and then qualitatively describe this datamining technique for discovering frequently occurring synchronous patterns.

In the frequent episodes framework of temporal datamining, the data to be analyzed is a sequence of events denoted by $\langle E_1, t_1 \rangle, \langle E_2, t_2 \rangle, \ldots$. Here E_i represents an event type and t_i the time of occurrence of the ith event. E_i’s are drawn from a finite set of event types, \mathcal{C}. The sequence is ordered with respect to time of occurrences of the events so that, $t_i \leq t_{i+1}$, $\forall i$. The following is an example event sequence containing 11 events with 5 event types.

\[\langle (A, 1), (B, 3), (D, 5), (A, 5), (C, 6), (A, 10), (E, 15), (B, 15), (B, 17), (C, 18), (C, 19) \rangle\] \hspace{1cm} (1)

A parallel episode is an ordered tuple of event types. For example, $\langle A, B, C \rangle$ is a 3-node parallel episode. Such an episode is said to occur in an event sequence if there are corresponding events in the data sequence. In sequence (1), the events $\{ (A, 1), (B, 3), (C, 6) \}$ and $\{ (B, 3), (C, 6), (A, 10) \}$ constitute an occurrence of the parallel episode $\langle A, B, C \rangle$. We note here that occurrence of an episode does not require the associated event types to occur consecutively; there can be other intervening events between them.

The objective in frequent episode discovery is to detect all frequent episodes (of different lengths) from the data. A frequent episode is one whose frequency exceeds a (user specified) frequency threshold. The frequency of an episode can be defined in many ways. It is intended to capture some measure of how often an episode occurs in an event sequence. One chooses a measure of frequency so that frequent episode discovery is computationally efficient and, at the same time, higher frequency would imply that an episode is occurring often. In our algorithm we use the maximum non-overlapped occurrences as the frequency measure. This definition of frequency results in very efficient counting algorithms with some interesting theoretical properties ([3, 9]).

In analyzing neuronal spike data, it is useful to consider methods, where, while counting the frequency, we include only those occurrences which satisfy some additional temporal constraints. Here we are interested in what we call expiry time constraint which is specified by giving a time span τ. The constraint requires that span of occurrence of the parallel episode is less that τ. For example in sequence (1), with an expiry time $\tau = 5$, the occurrence of parallel episode $\{ (A, 1), (B, 3), (C, 6) \}$ is valid where as the occurrence $\{ (B, 3), (C, 6), (A, 10) \}$ is not. As is easy to see, a parallel episode with expiry time constraints corresponds to what we called a synchronous pattern in the previous section. These are the temporal patterns of interest in this paper. To represent a parallel episode $\langle A, B, C \rangle$ with expiry time τ we use the notation $\langle A, B, C \rangle_{\tau}$.

Efficient algorithm to count such episodes exist ([12]). The algorithm counts the non-overlapped occurrence of an episode (say, $\langle A, B, C \rangle_{\tau}$) as follows. While going down the data stream it remembers the latest time of occurrence of all its constituent events. Once all the events are seen at least once, it checks if the span of the latest occurrences of all the events is less than τ. If the expiry time constraint is satisfied, then frequency counter is incremented and all the events are marked as not seen. The algorithm then proceeds further to look for more occurrences. It is easy to see that such a method counts only non-overlapped occurrences of the parallel episodes.

However, an efficient counting algorithms alone is not sufficient. This is because at higher levels the number of parallel episodes to be counted increases exponentially. The problem of exploding number of candidates is tackled through the classic apriori method that is popular in datamining. At each level, the number of parallel episodes that have to be counted is generated from the frequent candidates at lower levels.

Based on this idea, we have the following structure for the algorithm. We first get frequent 1-node episodes which are then used to make candidate 2-node episodes. Then, by one more pass over data, we find frequent 2-node episodes which are then used to make candidate 3-node episodes and so on. Such a technique is quite effective in controlling combinatorial explosion and the number of candidates comes down drastically as the size increases. This is because, as the size increases, many of the combinatorially possible parallel episodes of that size would not be frequent. This allows the algorithm to find large size frequent episodes efficiently. At each stage of this process, we count frequencies of not one but a whole set of candidate episodes (of a given size) through one sequential pass over the data. We do not actu-
ally traverse the time axis in time ticks once for each pattern whose occurrences we want to count. We traverse the time-ordered data stream. As we traverse the data we remember enough from the data stream to correctly take care of all the occurrence possibilities of all episodes in the candidate set and thus compute all the frequent episodes of a given size through one pass over the data. The complete details of the algorithm are available in [12].

3. SIGNIFICANCE OF DISCOVERED SYNCHRONOUS FIRING PATTERNS

In the previous section we discussed effective algorithms to discover synchronous patterns. Here, we present significance tests to show that the obtained patterns are significant and have not occurred by chance.

There have been many approaches for assessing the significance of detected firing patterns [1113]. In the current analytical approaches, one generally employs a Null hypothesis that the different spike trains are generated by independent processes. In many cases one also assumes (possibly inhomogeneous) Bernoulli or Poisson processes. Then one can calculate the probability of observing the given number of repetitions of the pattern (or of any other statistic derived from such counts) under the null hypothesis of independent processes and hence calculate a minimum number of repetitions needed to conclude that a pattern is significant in the sense of being able to reject the null hypothesis. There are also some empirical approaches, which may be called the jitter methods, suggested for assessing significance. Here one creates many surrogate data streams from the experimentally observed data by perturbing (or jittering) the individual spikes while keeping certain statistics same. Then, by calculating the empirical distribution of pattern counts on the sample of surrogate data, one assesses the significance of the observed patterns.

Recently, significance tests for sequential patterns had been developed [14]. These tests involve estimating the expected frequency of serial episodes under a given null hypothesis by modelling the counting process of the algorithm. We also take a similar approach and modify the method to suit synchronous patterns. The Null hypothesis we assume is that all the neurons fire independently of each other.

3.1 Modelling the counting process

Suppose, we are operating at a time resolution of \(\Delta T\). (That is, the times of events or spikes are recorded to a resolution of \(\Delta T\)). Then we discretize the time axis into intervals of length \(\Delta T\). For a parallel episode with expiry times, the span of any occurrence should be less than the expiry time, \(T\) (in steps of \(\Delta T\)). But initially let us assume that the span of each occurrence of a parallel episode is exactly \(T\) time steps. (We can modify the counting to skip \(T\) time units once an occurrence is found.) Now the counting process explained in the previous section can be viewed in the following way. For each episode (say \((A B C)_T\)) whose frequency we want to find, we do the following. We start at time instant 1. We check to see whether there is an occurrence of the episode starting from the current instant. If we find an occurrence we increment the counter and move ahead by \(T\) steps and again start looking for another occurrence. If we do not find an occurrence we move ahead one step. We do this since we reach the end of the data stream of length \(L\).

Let \(p\) be the probability that we find an occurrence of an episode at any given time instant. Then from the above description of counting we can say that, from any given time instant we move ahead by \(T\) time units with a probability \(p\) and move ahead by one time unit with probability \(1 - p\). This leads to the recurrence relation,

\[
F(L, T, p) = (1 - p)F(L - 1, T, p) + p(1 + F(L - T, L, p)) \quad (2)
\]

where, \(F(L, T, p)\) is the expected frequency of a episode. The notation \(F(L, T, p)\) denotes that the mean is a function of \(L, T\) and \(p\).

The boundary conditions for this recurrence are:

\[
F(x, y, p) = 0, \quad \text{if} \quad x < y \quad \text{and} \quad \forall p. \quad (3)
\]

Similarly, the mean of the square of the frequency, \(G(L, T, p)\), of the episode can be obtained as

\[
G(L, T, p) = (1 - p)G(L - 1, T, p) + p(1 + G(L - T, T, p) + 2F(L - T, T, p)) \quad (4)
\]

Hence, the variance \(V(L, T, p)\) is,

\[
V(L, T, p) = G(L, T, p) - (F(L, T, p))^2 \quad (5)
\]

Since the neurons fire independently of each other the probability of an occurrence of an episode at any time instant is given by,

\[
p = \rho^n(\Delta T)^n \sum_{i=0}^{n-1} (T - 1)^{n-1-i}T^i \quad (6)
\]

where, \(\rho\) be the unconditional probability that a neuron fires at any given time instant. We obtain \(\rho\) by estimating the average rate of firing for this neuron from the data (or we may know it from other prior knowledge). Using the value of \(\rho\), we can calculate values of \(F(L, T, p)\) and \(V(L, T, p)\) from equations (2), (3) and (5). For a given type-I error \(\epsilon\), using the Chebyshev inequality, the frequency threshold can then be obtained as \(F(L, T, p) + k\sqrt{V(L, T, p)}\), where \(k\) is the smallest integer such that \(k^2 \geq \frac{\epsilon}{\rho}\). We use this frequency threshold for mining significant parallel episodes (synchronous firing patterns).

By using this frequency threshold, we ensure that the chances of a random episode being reported as frequent is less than \(\epsilon\). So for low values of \(\epsilon\), we can confidentially say that the patterns reported as frequent are not random patterns.

4. SIMULATION RESULTS

In this section we compare the parallel episode mining algorithm with a popular existing tool, NeuroXidence, in terms of running times, scalability and false positive rates. NeuroXidence [19] is used to detect an excess or a lack of synchronous firing in spike train data. This is done by counting the number of occurrences of synchronous firing patterns satisfying a given expiry time. Unlike our non-overlapped counts, NeuroXidence counts all occurrences of a pattern. For example, for the pattern, \((A B C)_T\) any set of spikes of \(A, B\) and \(C\) that satisfy the time constraint is considered as an occurrence. NeuroXidence counts the frequency of all patterns that occur at least once in the data. The counting process is essentially a correlation based technique.
Table 1: Comparison of NeuroXidence (NX) and Parallel Episode Mining Algorithm (PE): Average running time (in seconds) and False Positive Rates (F.P.R.) comparison for varying data lengths \((L) \). (Parameters: \(\rho = 5 \text{ Hz}, T = 5, \text{Number of Neurons} = 20.\))

\(L\)	\(\text{Avg. Run Time (s)}\)	\(\text{F.P.R.}\)		
	\(\text{PE}\)	\(\text{NX}\)	\(\text{PE}\)	\(\text{NX}\)
50000	0.2	51	15%	31%
100000	0.375	134	21%	47%
200000	0.8	270	48%	79%

NeuroXidence employs a non-parametric method to assess the significance of the observed counts. The Null hypothesis is that the patterns occur by chance. The estimate of the chance frequency under null hypothesis is obtained by generating surrogate data. Surrogate data is created by jittering the spikes of the neurons independently of one another. This way the temporal cross structure in the data is destroyed while retaining the auto-structure of the spike trains. For every trial of the data obtained, around 25 surrogates are created. The patterns frequencies are found out in the surrogate data set. From the values so obtained, we get an empirical distribution of the chance frequencies. Using that the significance of the observed frequency counts are obtained.

NeuroXidence is found to be very effective in finding synchronous firing patterns [13].

For the results provided in this section we use spike train data generated by using the Poisson simulator described in [14]. Each neuron is modelled as an inhomogenous poisson process. Strong interactions among neurons can be input to the simulator by means of conditional probabilities. For example, if we want the spiking of \(A \) at any time \(t \) to affect the spiking of \(B \) at time \(t + \tau \), we represent it by a conditional probability \(P(B/(A, \tau)) = p \). Since our null hypothesis is of independence no strong connections are embedded into the simulator. The neurons fire independently of one another. We include correlated firing in the data by means of external stimulation, that is, we embed synchronous firing in the data generated by the simulator. Different sized patterns (upto 7 nodes) with various expiry times are embedded in the data.

Effectiveness of both the methods are assessed with respect to the running times and false positive rates. The methods are tested for varying parameters like random firing rate, different expiry times, different number of neurons. The running times and false positives rate reported for the parallel episode algorithm are average values obtained from 100 realizations of the data. In case of NeuroXidence, the values are averaged over 20 iterations. The results are reported in Tables 2-4.

NeuroXidence requires input data from various trials. For our experiments we split a single long data into 20 portions and give it as an input. For better statistical analysis, the number of surrogates for determining the empirical probability distribution is set at 25.

Both the methods were found to be very effective in mining the embedded patterns. All the patterns that are embedded in that data were discovered by the both the methods. However, the parallel episode mining algorithm has huge computational advantage over NeuroXidence (refer Table 1).

Such difference in times are because the NeuroXidence calculates the frequencies of all possible patterns in the data. But the parallel episode mining algorithms uses an efficient level wise procedure to count candidates generated out of frequent sub-episodes. Also, the statistical test required for NeuroXidence requires it to find the frequencies of pattern in the surrogate data. If the number of surrogates is 25, then effectively NeuroXidence has to calculate the frequencies in data that is 25 times longer than the input data. This is the reason for the marked difference in running times of the algorithms.

The change in expiry time of mining does not affect the running times of the episodes mining algorithms (see Table 3).

Table 2: Comparison of NeuroXidence (NX) and Parallel Episode Mining Algorithm (PE): Average running time (in seconds) and False Positive Rates (F.P.R.) comparison for varying random firing frequency \((\rho) \). (Parameters: \(L = 50000, T = 5, \text{Number of Neurons} = 20.\))

\(\rho\)	\(\text{Avg. Run Time (s)}\)	\(\text{F.P.R.}\)		
	\(\text{PE}\)	\(\text{NX}\)	\(\text{PE}\)	\(\text{NX}\)
5	0.38	51	22%	31%
10	0.50	309	22%	49%

Table 3: Comparison of NeuroXidence (NX) and Parallel Episode Mining Algorithm (PE): Average running time (in seconds) and False Positive Rates (F.P.R.) comparison for varying number of participation neurons \((M) \). (Parameters: \(\rho = 5 \text{ Hz}, T = 5, L = 50000\))

\(M\)	\(\text{Avg. Run Time (s)}\)	\(\text{F.P.R.}\)		
	\(\text{PE}\)	\(\text{NX}\)	\(\text{PE}\)	\(\text{NX}\)
20	0.38	51	22%	31%
30	0.44	233	27%	49%
40	0.54	1193	40%	59%

Table 4: Comparison of NeuroXidence (NX) and Parallel Episode Mining Algorithm (PE): Average running time (in seconds) and False Positive Rates (F.P.R.) comparison for varying expiry times \((T) \). (Parameters: \(\rho = 5 \text{ Hz}, L = 50000, \text{Number of Neurons} = 20.\))

\(T\)	\(\text{Avg. Run Time (s)}\)	\(\text{F.P.R.}\)		
	\(\text{PE}\)	\(\text{NX}\)	\(\text{PE}\)	\(\text{NX}\)
3	0.38	21	29%	23%
5	0.38	51	22%	31%
8	0.37	122	15%	51%
10	0.37	189	14%	54%

The running time of NeuroXidence increases drastically with expiry times. Similar effects can also be seen because of increase in background firing rates (see Table 2). The number of false positives increase because more and more patterns start occurring more than once.

The increase in number of neurons has a huge effect on
the running times of NeuroXidence (see Table 3). In fact, for a network with 40 neurons the running time is as high as 20 minutes for only 50 sec data at 5 Hz. This is because of the exponential increase in the number of patterns to be counted.

From Tables 2 and 1, it is clear that change in random firing frequency and expiry times does not affect the running times very much. The algorithm will be able to scale up for longer data with many interacting neurons.

5. CONCLUSIONS

Fast decoding of information-bearing patterns are critical to the success of brain-computer interfaces. Data mining approaches, combined with statistical significance tests that does not require a huge amount of surrogate data, may provide some of the answers. In this paper we have presented an approach that significantly more efficient than existing methods and should lay the foundations for more efficient decoding of neural signals and hence achieve better brain-computer interfaces.

6. ACKNOWLEDGEMENTS

Unnikrishnan’s work was supported in part by NIH grant U54DA021519.

7. REFERENCES

[1] M. Abeles and I. Gat. Detecting precise firing sequences in experimental data. Journal of Neuroscience Methods, 107:141–154, May 2001.
[2] E. N. Brown, R. E. Kass, and P. P. Mitra. Multiple neural spike train data analysis: state-of-the-art and future challenges. Nature Neuroscience, 7:456–461, May 2004.
[3] C. Diekman, P. S. Sastry, and K. P. Unnikrishnan. Statistical significance of sequential firing patterns in multi-neuronal spike trains. Journal of Neuroscience Methods, 182.
[4] J. P. Donoghue. Bridging the brain to the world: A perspective on neural interface systems. Neuron, 60:511.
[5] S. Grün, M. Diesmann, and A. Aertsen. Unitary events in multiple single-neuron spiking activity: I. detection and significance. Neural Computation, 14.
[6] S. Grun. Data-driven significance estimation for precise spike correlation. Journal of Neurophysiology, 101:1126.
[7] S. Laxman and P. S. Sastry. A survey of temporal data mining. SADHANA, Academy Proceedings in Engineering Sciences, 31(2):173–198, 2006.
[8] S. Laxman, P. S. Sastry, and K. P. Unnikrishnan. Discovering frequent episodes and learning hidden markov models: A formal connection. IEEE Transactions on Knowledge and Data Engineering, 17(11):1505–1517, 2005.
[9] S. Laxman, P. S. Sastry, and K. P. Unnikrishnan. A fast algorithm for finding frequent episodes in event streams. In Proc. ACM SIGKDD International Conference on Knowledge Discovery and Datamining, San Jose, USA, August 2007.
[10] F. Morchen. Unsupervised pattern mining from symbolic temporal data. SIGKDD Exploration, 9:41–55, 2007.