Molecular catalysis of CO₂ reduction: recent advances and perspectives in electrochemical and light-driven processes with selected Fe, Ni and Co aza macrocyclic and polypyridine complexes

E. Boutin, L. Merakeb, B. Ma, B. Boudy, M. Wang, J. Bonin, E. Anxolabéhère-Mallart and M. Robert* a Université de Paris, Laboratoire d’Electrochimie Moléculaire, CNRS, F-75006 Paris, France. E-mail: robert@u-paris.fr b Institut Universitaire de France (IUF), F-75005 Paris, France

Received 9th March 2020
DOI: 10.1039/d0cs00218f
rsc.li/chem-soc-rev

Introduction

CO₂ may become the renewable feedstock for making fuels and commodity and pharmaceutical chemicals we need to sustain our societies. If we manage to solve the challenges in reaching this goal, we would achieve a circular economy based on the use of renewable energies and CO₂. This goal remains elusive even in the most developed countries, and chemistry is poised to play a central role in addressing the key scientific challenges. A primary task is to develop selective, fast and efficient reduction processes of CO₂ into valuable products, such as carbon monoxide (CO), formic acid (HCOOH), methanol (CH₃OH), methane (CH₄), ethanol (CH₃CH₂OH) and ethylene (C₂H₄), in a sustainable manner. Catalyst development is of key importance for this purpose, and various approaches, both by homogeneous and heterogeneous chemistry, are widely pursued. Achieving electrochemically or photochemically driven conversion of CO₂ remains a grand challenge, especially if one considers that only abundant materials should be used in view of future large scale applications. Among various advantages, the use of molecular catalysts such as defined transition metal–ligand complexes allows for fine-tuning the chelating abilities and the steric, electronic and electrostatic effects of the ligands, thus opening a wide door towards thorough mechanistic and spectroscopic studies. Notably, abundant transition metals such as iron, manganese, cobalt, copper or nickel with activity for CO₂ catalytic reduction were already investigated in the early 1970s, starting with phthalocyanines and porphyrins. The revival of these studies in the last 15 years has led to an enormous body of work and stimulating new results, even if molecular catalysts able to go beyond the 2-electron 2-proton traditional reduction products (CO and formic acid) remain scarce. Aza macrocycle ligands such as porphyrins and phthalocyanines, as well as polypyridine ligands are extensively investigated and show good results both under electrochemical and photochemical conditions. A number of comprehensive and high level reviews have been published over the years notably concerning the use of abundant, cheap metals under electrochemical conditions. Less emphasis has been put on photochemically induced reduction of CO₂ but related approaches are developing fast. Why publishing another review...
on the topic? Not only because the field is rapidly evolving, with more efficient and selective systems, but also because new perspectives are emerging, at the interfaces of homogeneous and heterogeneous catalysis, or of electrochemistry and photochemistry (molecular photoelectrodes, self-standing hybrid materials, etc.), as well as regarding mechanistic studies with in situ and in operando analytical methods. Moreover, the recent implementation of molecular catalysts into electrolyzers operating at large current densities (>150 mA cm⁻²) has opened new possibilities for the design of real devices that may be able to reach the market. Finally, first examples of molecular catalysts able to produce highly reduced products such as methanol and methane have recently been launched, opening also stimulating perspectives toward new chemistry. We have chosen to focus on compounds including mainly Co, Fe, and Ni porphyrin, phthalocyanine and polypyrrole complexes so as to illustrate, discuss and highlight the above-mentioned electrochemical and light-driven processes for carbon dioxide catalytic reduction. Regarding electrochemical approaches, we have further focused the scope on typical examples rather than on an exhaustive description. In some cases, mechanistic studies have helped in designing the most efficient catalysts on a rational basis, and such examples will be described in more detail. Regarding visible-light-driven catalytic processes, mechanistic and spectroscopic in-depth studies are less numerous and we have rather chosen to give a more comprehensive overview of the field.

1. Electrochemical approaches

1.1 Introduction to the electrochemical reduction of CO₂.

One-electron reduction of CO₂ to form the CO₂⁺ radical anion requires a large negative potential due to solvent and internal reorganization (E° = −1.90 V vs. NHE in aqueous media). Catalysis is necessary to overcome kinetic barriers and to efficiently and selectively reduce CO₂. Multi-proton coupled electron transfers may afford various products as illustrated below for C₁ products (eqn (1)–(6)), where the E°’s are the apparent (pH dependent) standard redox potentials vs. NHE at pH 7.

\[
\begin{align*}
\text{CO}_2 + e^- & \rightarrow \text{CO}_2^+^+, \quad E^{0i} = -1.90 \text{ V} \\
\text{CO}_2 + 2\text{H}^+ + 2e^- & \rightarrow \text{HCOOH}, \quad E^{0i} = -0.61 \text{ V} \\
\text{CO}_2 + 2\text{H}^+ + 2e^- & \rightarrow \text{CO} + \text{H}_2\text{O}, \quad E^{0i} = -0.53 \text{ V} \\
\text{CO}_2 + 4\text{H}^+ + 4e^- & \rightarrow \text{CO} + \text{H}_2\text{O}, \quad E^{0i} = -0.48 \text{ V} \\
\text{CO}_2 + 6\text{H}^+ + 6e^- & \rightarrow \text{CH}_3\text{OH} + \text{H}_2\text{O}, \quad E^{0i} = -0.38 \text{ V} \\
\text{CO}_2 + 8\text{H}^+ + 8e^- & \rightarrow \text{CH}_4 + 2\text{H}_2\text{O}, \quad E^{0i} = -0.24 \text{ V}
\end{align*}
\]

Ideally a proper understanding of the reaction pathways may lead to rational catalyst optimization. This is probably a definitive advantage of the above-mentioned catalysts, which are well-defined single metal catalytic sites, for which the tools of electrochemistry and spectroscopy, including in situ and in operando, are well established.

Etienne Boutin and Ming Wang obtained their PhD from Université de Paris in 2019 working on the heterogenization of molecular catalysts onto carbon materials for the CO₂RR and the electrochemical conversion of CO₂ into methanol, respectively. Benjamin Boudy and Bing Ma are currently working on the insertion of molecular CO₂ reduction catalysts into flow cell electrolyzers and the design of hybrid systems for light-driven reduction of CO₂ respectively, while Lydia Merakeb is developing new molecular catalysts for the electrochemical reduction of N₂. All three are expected to defend their PhD by the end of the year 2020. Julien Bonin received his PhD in Physical Chemistry from the Université Paris-Sud XI in 2005. He then joined the Radiation Laboratory at the University of Notre Dame as a Postdoctoral Research Associate. Since fall 2006, he has been an Associate Professor of Chemistry at the Université Paris Diderot, now Université de Paris. His current research interests are related to CO₂ reduction and photocatalysis.

Elodie Anxolabéhére-Mallart received her PhD in Molecular Electrochemistry from the Université Paris Diderot in 1991. In 1992 she was appointed CNRS researcher at the Université Paris-Sud, where she first got interested in artificial photosynthesis. She was a visiting researcher at Stanford University (1998–1999) and Lawrence Berkeley National Laboratory (1997–1999) to study both natural and model systems using X-ray Absorption Spectroscopy. In 2008 she joined the Laboratoire d’Electrochimie Moléculaire (LEM), focusing her research on O₂ and CO₂ activation using transition metal complexes.

Marc Robert obtained his PhD in 1995 from the Université Paris Diderot under the guidance of Jean-Michel Savéant and Claude Andrieux. Following a postdoctoral stay at Ohio State University with Matthew Platz, he started his academic career at the Université Paris Diderot in 1997. He is currently a Professor of Chemistry at the Université de Paris and a Senior fellow at the Institut Universitaire de France (IUF). His interests include electrochemical and photochemical approaches of electron transfer processes and catalytic activation of small molecules, mainly CO₂ and N₂.

Top row, from the left: Etienne Boutin, Lydia Merakeb, Bing Ma and Benjamin Boudy, Bottom row, from the left: Min Wang, Julien Bonin, Elodie Anxolabéhére-Mallart and Marc Robert

Etienne Boutin and Ming Wang obtained their PhD from Université de Paris in 2019 working on the heterogenization of molecular catalysts onto carbon materials for the CO₂RR and the electrochemical conversion of CO₂ into methanol, respectively. Benjamin Boudy and Bing Ma are currently working on the insertion of molecular CO₂ reduction catalysts into flow cell electrolyzers and the design of hybrid systems for light-driven reduction of CO₂ respectively, while Lydia Merakeb is developing new molecular catalysts for the electrochemical reduction of N₂. All three are expected to defend their PhD by the end of the year 2020. Julien Bonin received his PhD in Physical Chemistry from the Université Paris-Sud XI in 2005. He then joined the Radiation Laboratory at the University of Notre Dame as a Postdoctoral Research Associate. Since fall 2006, he has been an Associate Professor of Chemistry at the Université Paris Diderot, now Université de Paris. His current research interests are related to CO₂ reduction and photocatalysis.

Elodie Anxolabéhére-Mallart received her PhD in Molecular Electrochemistry from the Université Paris Diderot in 1991. In 1992 she was appointed CNRS researcher at the Université Paris-Sud, where she first got interested in artificial photosynthesis. She was a visiting researcher at Stanford University (1998–1999) and Lawrence Berkeley National Laboratory (1997–1999) to study both natural and model systems using X-ray Absorption Spectroscopy. In 2008 she joined the Laboratoire d’Electrochimie Moléculaire (LEM), focusing her research on O₂ and CO₂ activation using transition metal complexes.

Marc Robert obtained his PhD in 1995 from the Université Paris Diderot under the guidance of Jean-Michel Savéant and Claude Andrieux. Following a postdoctoral stay at Ohio State University with Matthew Platz, he started his academic career at the Université Paris Diderot in 1997. He is currently a Professor of Chemistry at the Université de Paris and a Senior fellow at the Institut Universitaire de France (IUF). His interests include electrochemical and photochemical approaches of electron transfer processes and catalytic activation of small molecules, mainly CO₂ and N₂.

This journal is © The Royal Society of Chemistry 2020
In most cases, the initially inactive form of the catalyst P is reduced to a low-valent oxidation state metal by outer sphere electron transfer at an electrode. In homogeneous catalysis, both substrate and catalyst are dissolved in the electrolyte solution and the chemical reactions take place within the reaction layer, a small fraction of the diffusion layer within which the concentration of the active catalyst Q is significant. Catalysis may be limited by diffusion of the substrate, concentration of the catalyst, or the product (inhibition) or by the intrinsic properties of the catalyst such as slow electron transfer kinetics or a chemical step of the catalytic process. The metrics for assessing catalyst performances include the selectivity for the target reaction (in electrochemistry, faradaic efficiency FE is also used to measure the fraction of electrons used for the target reaction), the rate or turnover frequency (TOF, s⁻¹) which is defined by the mole amount of product formed divided by the mole amount of active catalysts per unit of time. The durability of the catalyst is measured through the turnover number (TON) given by the final mole amount of product once the catalysis has stopped because of the degradation of the catalytic system, divided by the initial mole amount of catalyst. Finally the overpotential, the thermodynamic cost for catalysis, is given by η = E_tr - E, where E is the applied potential and E_tr the apparent standard potential of the target reaction.

The intrinsic activity of a given catalyst may be represented by plotting the TOF as a function of the applied overpotential η (catalytic Tafel plot), as sketched in Fig. 1. The TOF is indeed dependent on η since the amount of active catalysts in the reaction layer increases when η increases, reaching a plateau value equal to k_cat, the pseudo-first-order rate constant of the limiting step of the catalytic process (provided the experimental conditions allow reaching the pure kinetic regime; see the next section for details).

Great care should be taken when estimating the TON (electrolysis experiment). In several publications, values are overestimated by orders of magnitude since authors use the mole amount of catalyst confined in the reaction layer, forgetting that the catalyst degrades over time and is progressively replaced by molecules from the bulk. As a consequence, the mole amount of product should be divided by the total mole amount of catalysts in the electrochemical reactor, once the reaction has ceased. This is the proper way to evaluate the turnover number.

Under supported conditions, the catalyst is immobilized at the electrode surface by various means, such as covalent linkage, non-covalent interactions such as electrostatic or π–π interactions or simply adsorption, or within periodic structures such as porous coordination polymers and metal–organic frameworks. The reaction then takes place within the electrode surface. The major benefits of heterogeneous catalysts are the low amount of catalyst needed and, the possibility of by-passing diffusion limitations when using micro-fluidic cells or gas diffusion electrodes and natural separation of catalyst and products (liquid or gaseous).

1.2 Mechanistic studies and spectroscopic tools

1.2.1 Cyclic voltammetry. Cyclic voltammetry (CV) can be used for mechanistic studies of systems in which electron transfer processes are coupled to chemical reactions. Advances in the studies of mechanisms, including catalytic multi-electron-multi-step ones, involved in homogeneous molecular catalysis of electrochemical reactions have been recently reviewed.

Homogeneous catalysis. In the absence of catalyst, a substrate A can be reduced directly at the surface of an electrode upon applying a sufficiently negative potential (blue line in Fig. 2). When a catalyst P/Q is present in the medium, the reduced form Q of the catalyst reacts with the substrate A, giving B and thus regenerating the P form of the catalyst, which results in an increase of the recorded P-to-Q reduction current in cyclic voltammetry (red line in Fig. 2) and a loss in reversibility that is observed in the absence of substrate (green line in Fig. 2). In this case, transformation of A into B can be achieved at a more positive potential. The shape of the voltammogram depends on two dimensionless factors, the excess factor between substrate and catalyst concentration γ = C_A/C_P, and the kinetic parameter (k = (RT/P) × k_cat/v) which accounts for the competition between

![Fig. 1 Benchmarking of molecular catalyst intrinsic properties for the CO₂-to-CO reduction through the catalytic Tafel plot [TOF = f(η)].](image)

![Fig. 2 Canonical cyclic voltammograms for the molecular catalysis of a one-electron catalytic electrochemical reaction (blue: direct reduction of A; green: reversible one-electron reduction of P in the absence of A; red: catalytic reduction of A triggered by the reduced form of the catalyst Q). Adapted from ref. 15 with permission from Wiley. Copyright 2006.](image)
kinetics of the catalytic reaction (rate constant \(k \)) and the diffusion rates (scan rate \(v \)), as illustrated in the catalytic zone diagram (Fig. 3). Analysis applies in the case of fast electron transfer to the catalyst and selective catalytic reaction.

When the homogeneous catalytic reaction (rate constant \(k \)) is fast as compared to diffusion and concentration of the substrate is large enough to be constant (pure kinetic regime), a classical S-shaped CV is obtained as can be seen in the upper right part of Fig. 3. In this case, the rate constant \(k \) can be derived from the plateau current \(i_{\text{plateau}} \) which is independent of scan rate \(v \) (eqn (7)):

\[
i = \frac{i_{\text{plateau}}}{1 + \exp \left(\frac{F(E - E_{p/q}^0)}{RT} \right)} \quad \text{and} \quad i_{\text{plateau}} = \frac{FSC_A}{2\sqrt{D_P}} \sqrt{kC_A^0} \quad (7)
\]

By dividing the current by the peak current \(i_0 \), obtained in the absence of a substrate (eqn (8)), the diffusion constant \(D_P \) and the electrode surface area \(S \) cancel (eqn (9)).

\[
i_0 = 0.446FSC_A^{0.5}D_P^{0.5} \frac{Fv}{RT} \quad (8)
\]

\[
i = \frac{2.24 \sqrt{kC_A^0}}{1 + \exp \left(\frac{F(E - E_{p/q}^0)}{RT} \right)} \quad (9)
\]

Special care should be taken when using these equations that are developed for the simple case of a one-electron reduction process. The number of exchanged electrons should be taken into account for more complex processes and different mechanisms will lead to different \(i/i_0 \) values. 16

Since depletion of the substrate in the reaction layer may occur for fast reactions and low substrate concentrations (e.g. in the case of efficient catalysis for \(\text{CO}_2 \) reduction in water), the reduction current may be limited by substrate diffusion itself. Then the CV shape changes from a plateau one to a peak one (such as “total” catalysis (KT zone, Fig. 3) regime, obtained when the reaction layer is depleted from the substrate, while the remaining oxidized catalyst \(P \) is reduced at a more negative potential than the catalytic wave). Other phenomena can lead to a peak shaped CV, such as deactivation of the catalyst or inhibition by a product. In these latter cases, the above mentioned equations (7)–(9) do not apply anymore, but other strategies may be used in order to extract kinetic information from the voltammograms.

The first and most efficient strategy is to increase the scan rate (as long as the reaction rate allows it) so as to obtain the putative plateau-shaped CV. This strategy was followed by Azcarate et al. in the case of \(\text{CO}_2 \)-to-CO conversion using Fe porphyrins. 17 Upon increasing the acid concentration, catalysis becomes stronger and the CV response changes from an S-shape to a peak-shape due to the interference of secondary phenomena (substrate consumption and/or partial inhibition of the electrode surface by gas bubbles). Increasing the scan rate (smaller charge transferred at the electrode surface) led back to plateau-shaped CVs and the rate constant for catalysis could be derived from the plateau current. It allowed studying the effect of successive phenyl perfluorination and of \(\text{o,} \text{p'-methoxy} \) substitution of Fe tetraphenylporphyrin (Fe1, Fe6–Fe9, Chart 3).

Another example is provided by Co quaterpyridine (Co20, Chart 1). The 2-electron reduction of the Co10 complex in CH3CN generates a radical anion (ligand centered reduction). The reduced complex is then adsorbed onto the electrode surface, rendering the CV analysis and quantitative data collection difficult. However, by increasing the scan rate (Fig. 4), the amount of charge passing being smaller, this phenomenon was minimized and proper diffusion-controlled waves were obtained. This further allowed identification and characterization (from plateau current values) of two catalytic pathways for the electrochemical reduction of \(\text{CO}_2 \) to CO mediated by cobalt quaterpyridine. 18, 19 The first one originates from the 2-electron reduction of the catalyst (at 3 M phenol concentration) while at lower acid concentration (1 M phenol) catalysis is triggered after 3-electron reduction of the catalyst, as illustrated in Fig. 4.

The impact of side phenomena on CVs increases as the passed charge increases. Analyzing the foot of the wave (FOWA), where the current is small (small charge), is another strategy minimizing these effects with \(i/i_0 \) values being then again proportional to \(1 + \exp \left(\frac{F(E - E_{p/q}^0)}{RT} \right) \)^{-1} as shown from eqn (9). 8 As an example, FOWA has allowed for the derivation of reaction orders toward various acid co-substrates in the reduction of \(\text{CO}_2 \) to CO mediated by the electrogenerated Fe9 tetraphenylporphyrin in the presence of phenol as a co-substrate. 20 It was further revealed that after the binding of \(\text{CO}_2 \) to Fe9, catalysis involves an electron transfer from the Fe center concerted with proton transfer and C-O bond cleavage. In another example, using FOWA analysis, various Co terpyridine based complexes featuring different substituents on the ancillary ligand (Co21 and derivatives, Chart 1), were prepared, and studied as catalysts for \(\text{CO}_2 \) reduction. It was shown that ligand modifications have a small effect on the kinetics of \(\text{CO}_2 \) reduction while stronger
effects were observed for the competitive proton reduction (HER). Higher rate constants for HER were measured with more electron rich ancillary ligand fields. Thus, slowing down the HER by carefully choosing the catalyst electronic properties resulted in improved selectivity for CO₂ reduction.²¹

The above cases assume a fast electron transfer from the electrode to the oxidized form P of the catalyst. When electron transfer is in contrast slow (or if the follow up reaction is so fast that the initial electron transfer should be viewed as slow), foot of the wave analysis (FOWA) still applies but one should plot

\[
FIT \left(E - E^0_{P/Q} \right) = \frac{i}{i_0} \left(1 - 0.446 \frac{i}{i_0} \frac{\sqrt{D_P}}{k_s} \sqrt{\frac{F \nu}{RT}} \exp \left[\frac{F}{RT} \left(E - E^0_{P/Q} \right) \right] \right)
\]

\[
= \frac{2.24 \sqrt{k_e C^4_A}}{1 + \exp \left[\frac{F}{RT} \left(E - E^0_{P/Q} \right) \right]} \quad (10)
\]

In the case of Fe₂, a complete strategy combining analysis of all segments of the CVs has led to the full characterization of

Chart 1 Cobalt complexes.
the catalytic cycle for CO$_2$ reduction as shown in Fig. 5 (see Section 1.3 for a complete mechanistic discussion).

Regarding the total catalysis regime (KT zone, Fig. 3), a formal kinetic analysis has been developed in the case of 2-electron/2-step processes, allowing extraction of kinetic parameters and distinguishing between different mechanisms.23

Supported molecular catalysts. As convenient as homogeneous molecular catalysts are for mechanistic studies, it is difficult to conceive their implementation in devices since only a small fraction of catalyst close to the electrode surface is active. Attaching these molecular catalysts to an electrode may be a good strategy for efficient use while still benefiting from their good selectivity.24,25 While rotating disk electrode voltammetry (RDEV) has been widely used for the study of catalyst-containing films, CV is a good alternative when RDEV is hardly applicable (for example when using porous conductive materials as supporting electrodes). With an electrode surface coated with a porous film containing attached molecular catalysts (Fig. 6, top scheme), maximum current density for a fast catalytic reaction will be

\[I = nFk_{\text{cat}}G_{\text{cat}} \]

where \(n \) is the number of electrons involved (\(n = 2 \) for CO or formate production), \(k_{\text{cat}} \) the catalytic rate constant (assumed to be first order toward CO$_2$), \(k_{\text{cat}} = k_A[A^0] \) and \(G_{\text{cat}} \) the surface concentration of the catalyst (\(G_{\text{cat}} = C_0pDf \)). Knowledge of the film thickness \(d_f \) and catalyst concentration can then lead to the value of \(k_{\text{cat}} \).

Such a determination may be hampered by slow charge transport through the film (either in the context of a non-conductive support with charge hopping between catalytic redox sites, or of an electronically conductive support connecting the molecular catalysts).26,27

In the framework of fast charge transport and assuming that the molecular catalysts behave as molecular sites (i.e. with no...

\[k_{\text{app}} = k_f(k_2, k_3, k_2) \]

Fig. 5 Molecular catalysis mechanism of CO$_2$ reduction into CO with Fe$^2+$ in the presence of phenol (PhOH) as a co-substrate. Left: Mechanism for the catalysis obtained from CVs analysis. Right: Catalytic CVs as a function of increasing scan rate, with plateau current at high scan rate. Main kinetic parameters were obtained from the one-electron pre-catalytic wave peak position (\(k_1 \)), the rise of the current function (\(k_f^{2nd,ET} \)) and from the plateau current value (\(k_{\text{app}} \)), respectively. Adapted with permission from ref. 14. Copyright 2017, Elsevier.
strong conjugation of the catalyst molecular orbitals with the conductive support), the current density response for a fast one-electron catalytic reaction will depend on three parameters: the value of \(k \) (limiting current density \(I_k = FkC_A^0A_{\text{cat}} = FkC_A^0A_{\text{d}} \)), the diffusion rate of the substrate in the film (limiting current density \(I_S = FkC_A^0A_{\text{d}} \)), and the diffusion rate of the substrate outside the film (current density \(I_A = FC_A^0A_{\text{inf}} \)), as illustrated in Fig. 6. This kinetic zone diagram may be extended to multielectron/multistep processes. An appropriate stoichiometric factor should then be introduced.28,29 The rapid development of hybrid materials with immobilization of molecular catalysts into thin films at electrode surfaces calls for performing thorough mechanistic studies with the above tools. Such studies are currently missing.

1.2.2 Spectroelectrochemistry. Spectroscopic techniques can be used as non-invasive (non-destructive) complementary tools to identify reaction intermediates and/or products. In this regard, the combination of “reaction oriented electrochemistry” and “species-focused spectroscopy” gives rise to spectroelectrochemistry (SEC), a technique aiming at the spectroscopic (UV-vis, IR, X-ray, etc.) detection of reaction intermediates generated \(\textit{in situ} \) by application of a controlled potential at an electrode.30 While UV-vis, EPR and XAS spectroscopies can probe the redox state of catalysts, IR and Raman spectroscopies can monitor evolution of carbonyl groups involved in \(\text{CO}_2 \) reduction. Additionally, labelled experiments are potentially fruitful since bond stretching and vibration are atom weight dependent. Although no standard setup exists, a suitable thin layer cell design is required for SEC experiments. Fig. 9 shows examples of UV-vis and IR-SEC cells.

One of the very first studies regarding SEC studies in the context of \(\text{CO}_2 \) reduction identified the free anion radical \(\text{CO}_2^- \) to be the intermediate \(\text{CO}_2 \) reduction on lead in water and in some aprotic solvent using UV-vis reflectance spectroscopy.31 It was also shown that oxalate was produced through the coupling of \(\text{CO}_2^- \) with \(\text{CO}_2 \) rather than through dimerization of the radical anion.31 Later, \(\text{CO}_2 \) and \(\text{CO}_2^- \)-adsorbates on platinum and in acetonitrile were identified using polarization modulation Fourier transform infrared reflection absorption spectroscopy.32 Reduction of \(\text{CO}_2 \) under these conditions was shown to yield oxalate.33

Focusing on Fe porphyrins, \(\text{Fe}^0 \) species was detected using \(\textit{in situ} \) UV-vis and Raman SEC characterization.34 It was shown that the two-electron reduction of iron\(^{11} \) tetraphenylporphyrin...
occurs on the metal center rather than on the porphyrin ring by comparison with data obtained for zinc tetraphenylporphyrin, which is known to yield a diradical anion porphyrin ring (ligand centered reduction). Such a description is still subject to extensive discussion as recent work suggests that reduction of iron tetraphenylporphyrin is not metal- but ligand-centered. Such a conclusion was supported by Mössbauer and X-ray absorption spectroscopy, with additional insight from computational methods. It was also supported by a resonance Raman spectroscopy study of reduced teraphenylporphyrin coupled with quantum chemistry calculations. However, these results do not account for the reactivity of the reduced porphyrin with CO2 at Fe and for the absence of ligand carboxylation. Additionally, stabilization of the reduced form of the ligand (diradical anion) is not comparable under the conditions usually reported in CO2 reduction studies (in DMF) and in spectroscopic studies, where much less polar solvents than DMF are used (ethers). Results obtained under these conditions are thus not directly comparable. This underlines the importance of performing in situ and in operando studies.

Illustrative examples include an iron porphyrin containing triazole substituents (Fe20, Chart 3) that facilitate H-bonding. Chemical reduction of the iron porphyrin in the presence of CO2 and various proton sources was performed at low temperature and some reaction intermediates were trapped and probed by Raman spectroscopy, as illustrated in Fig. 7. It was shown that the chemically generated Fe0 porphyrin gets oxidized by CO2, forming a Fe4CO3−adduct, which is rapidly protonated to form a Fe−COOH species. At this point, introduction of a new pathway for the CO2-to-CO conversion was identified, as evidenced by the fact that the IR signature of the C−OH bond and another intermediate was detected, which was shown to be FeII−CO. In the absence of acid, formate was produced by hydrolysis of the protonated intermediate. These results were qualitatively supported by density functional theory modelling of the Fe−C adducts.

Keeping with iron catalysts, IR-SEC was performed on an iron Schiff base complex (Fe21). It was shown that the formation of stable Fe–CO species with one or two CO molecules coordinated to the Fe center limits the activity of the complex under both protic and aprotic conditions and led to decomposition of the catalyst. This was also the case when Fe13 was used as a catalyst. In this case, the formation of the Fe6−CO adduct has been identified as a deactivation pathway, again using IR-SEC.

The IR-SEC has been proven to be beneficial in the study of a binuclear Co complex bearing a bi-quaterpyridine (Co3, Chart 6) photo- and electrocatalyst for the reduction of CO2 to formate or CO selectively depending on the composition of the reaction medium (see Section 4, Fig. 14). A stable adduct between CO2 and the four-electron-reduced complex was evidenced by a band at 1635 cm−1 upon scanning the potential applied to the Pt grid working electrode from −0.35 to −0.85 V vs. Ag pseudo-reference. The configuration of this adduct was shown to involve C atom bonding (of CO2) to one of the Co centers and one of the O atoms binding to the other Co center. Such a configuration with the CO2 molecule in between the 2 metal centers was supported by computational results. Upon setting the potential at the value of the catalytic wave, a signature related to the formation of a formato-complex or free formate was observed, in agreement with the fact that this complex’s selectivity towards formate can be obtained with an appropriate reaction medium composition.

In the case of a cobalt aminopyridine catalyst (Co27, Chart 1), a new pathway for the CO2-to-CO conversion was identified, involving the non-catalytic CoIII/Co0 redox wave. Upon electrochemical generation of the Co0 species in the presence of CO2, in situ IR-SEC shows a signal characteristic of a Co2−CO adduct. Labelled experiment as well as theoretical modelling confirmed the formation of the Co2−CO species. It was postulated that CO release is a key limiting step which prevents fast recovery of the catalytically relevant Co0 species. Overall, this study has shown that Co0 is nucleophilic enough to bind CO0 and that C−O cleavage occurs subsequently with no added protons, as represented in Fig. 8. This is not the case with Co porphyrins, for which it has been shown that the Co0 complex is unreactive with CO2 and that the active species towards CO2 reduction is instead the formal Co0.

An in operando fast-scan FT-IR study of a cobalt catalyst reducing CO2 to CO under photochemical conditions (Co10, Chart 1) has shown that the ability of the one-electron reduced Co0 complex to bind with CO2 plays a critical role. After injection of a second electron to the adduct, a new intermediate (Co−CO2)−1 is formed, as evidenced by the fact that the IR signature of the macrocyclic ligand does not change, meaning that the second electron mainly resides on the bound CO2. The adduct then cleaves (rate-limiting step) to form CO and the Co0 catalyst. Spectro-electrochemistry has also been used with supported catalysts, e.g. with cobalt porphyrin-based metal–organic frameworks (MOFs). In this case, UV-visible spectroscopy was used...
to probe the Co redox state during catalysis of CO₂ reduction. The MOF was directly grown on a transparent electrode and it was shown that the majority of the Co centers were electrically addressed as the Co⁺ active catalytic species was observed.

With Ni complexes (Chart 2), IR-SEC played a key role in the identification of nickel carbonyl species during CO₂ reduction mediated by Ni(cyclam)²⁻ (Ni1) at a glassy carbon electrode.⁵⁰ The detection of species such as [Ni(cyclam)(CO)]⁺ and Ni(CO)₄ helped confirming that catalyst deactivation is caused by carbon monoxide. This was further confirmed by in situ observation of [Ni(TMC)(CO)]⁺ (Ni6) (TMC = 1,4,8,11-tetramethyl-1,4,8,11-tetraazacyclotetradecane) when [Ni(TMC)]²⁺ (Ni6) was used as a CO scavenger, allowing the catalyst to remain active. The same conclusions were drawn when a [Ni(TPEN)]²⁺ (Ni13) was studied.⁵¹ Furthermore, the use of optical resonance Raman and electron paramagnetic resonance spectroscopies under catalytic conditions has led to the identification of different pathways for CO₂ and proton reduction with Ni¹, suggesting that a careful catalyst design can suppress the competing hydrogen evolution reaction and may thus lead to more selective catalysts.⁵²

Fig. 8 Proposed mechanism of CO₂ reduction with Co²⁺. During CPE at the Co²⁺/Co⁺ wave, trace amounts of CO were released. A formal oxidation state is given for the different Co species. Reprinted with permission from ref. 41. Copyright (2020) American Chemical Society.

Fig. 9 Examples of spectro-electrochemical cells. (1) IR specular reflectance – SEC cell: 1. tightening brass cap (threaded inside); 2. brass ring required to tighten the cell; 3. WE; 4. CE; 5. pseudo-RE; 6 and 7. injection ports; 8. cell body, top part aluminum, lower part Teflon; 9. Teflon spacer; 10. CaF₂ window; 11. rubber gasket; 12. hollow brass cell body with threaded inlet and outlet ports (Swagelock) for connecting to the circulating bath; 13. mirrors; 14. two-mirror reflectance accessory; A: disassembled view, B: cross-sectional drawing of the cell.⁴⁵ Reproduced with permission from ref. 49. Copyright (2014) American Chemical Society. (2) IR transmission – SEC cell;⁴⁶,⁴⁷ (3) UV-Vis-SEC quartz cell.⁴⁸
1.2.3 X-ray absorption spectroscopy. X-ray absorption spectroscopy methods have recently emerged as a powerful source of information for investigating the redox state of the metal center as well as its coordination environment and geometry.\(^\text{53}^\) For example, X-ray absorption near-edge spectroscopy (XANES) has shown that \([\text{Co}^{1+}\text{HMD}]^+\) and \([\text{Co}^{2+}\text{HMD}]^{2+}\) (Co14, Chart 1) have a square planar geometry. It changes to a square pyramidal geometry upon axial coordination of CO to \([\text{Co}^{1+}\text{HMD}]^+\). The resulting \(\text{Co}^{3+}\)–carboxylate species was identified and indicated charge transfer from the Co center to CO. Binding of a solvent molecule to the metal center was also evidenced.\(^\text{54}^\) Binding of CO to an iron porphyrin (Fe10, Chart 3) has also been studied by XANES. The porphyrin was immobilized on a carbon material and analyzed in situ. Introduction of CO to the electrolyte solution resulted in binding to electrogenerated \(\text{Fe}^{\text{II}}\) porphyrin and formation of an L–Fe–CO adduct, L most probably being a water molecule. Charge transfer from iron to CO was further postulated to explain the shift of the Fe K-edge to higher energy values.\(^\text{55}^\)

Similar information has been obtained with Ni containing tetraazamacrocycles.\(^\text{56}^\) The one-electron reduction/oxidation of the \(\text{Ni}^{\text{II}}\) starting complexes resulted in an energy shift of the absorption edge in XANES spectra. Moreover, the intensity of the pre-edge peak yielded information on the coordination environment. It was found that the starting \(\text{Ni}^{\text{II}}\) species is hexa-coordinated to the macrocycle and two solvent molecules that are lost upon reduction to \(\text{Ni}^{\text{I}}\). After binding of CO as an axial ligand to \(\text{Ni}^{\text{I}}\), the absorption edge is shifted to higher energy, showing that some charge transfer occurs from the metal center to the CO ligand.

Regarding catalytic studies, these techniques were used for the study of oxygen reduction catalysts.\(^\text{57}^\text{-}^\text{61}^\) CO\(_2\) reduction studies with in situ XAS are now developing rapidly.\(^\text{41}^\text{,}^\text{62}^\text{,}^\text{63}^\) Ex situ XAS is a valuable complementary tool for analyzing immobilized molecular catalysts and their stability after performing CO\(_2\) reduction.\(^\text{64}^\text{,}^\text{65}^\) Recently, catalysis with a cobalt aminopyridine \((\text{Co}27)\) was investigated by combination of XAS, IR and UV-vis SEC experiments. Formation of a \(\text{Co}^{1}\) species (from one-electron reduction of the starting complex) under an inert atmosphere was first evidenced, upon performing an electrolysis at a potential slightly more negative than the \(\text{Co}^{\text{II}}/\text{I}\) redox wave in anhydrous deuterated acetonitrile at \(-40\,^\circ\text{C}\). The frozen sample was then analyzed by XANES and EXAFS. Under a CO\(_2\) atmosphere, formation of a \(\text{Co}^{\text{II}}\)–carbonate complex was evidenced by both XANES and EXAFS, upon comparing spectra with those of the chemically produced species upon mixing the starting \(\text{Co}^{\text{II}}\) complex with tetrabutylammonium hydrogenocarbonate. However, the key \(\text{Co}^{1}\)–CO species was not observed under these conditions. Nevertheless, these experiments helped identifying one of the key bottleneck intermediates for CO\(_2\) reduction. It was indeed confirmed by cyclic voltammetry that the \(\text{Co}^{\text{II}}\)–carbonate species disfavors the catalytic reduction of CO\(_2\) at the \(\text{Co}^{\text{II}}/\text{I}\) wave.\(^\text{41}^\)

It should also be emphasized that XAS experiments remain tedious and include selecting suitable synchrotron/beamline for a given experiment.\(^\text{66}^\) As for the more practical side, and similarly to UV-vis and IR SEC, no standard setup exists. Using a thin layer cell comprising windows transparent to the incident light is mandatory, and experiments can be performed either in

Chart 2 Nickel complexes.
transmittance or fluorescence mode, although the latter is usually preferred. Fig. 10 shows examples of typical XAS-SEC cells. Although X-ray absorption spectroscopy is not a routine technique, the field of electrocatalytic transformations using molecular complexes under homogeneous conditions and supported catalysts might strongly benefit from information it can provide. In operando studies with time-resolved techniques would be a valuable asset in the deciphering of reaction mechanisms.
It may lead to a better understanding of catalytic systems and to their improvement. It may lead to a better understanding of catalytic systems and to their improvement.

1.2.4 Differential electrochemical mass spectrometry. Differential electrochemical mass spectroscopy (DEMS) is an analytical technique combining in situ coupling of mass spectrometry to electrode processes. Gaseous and volatile compounds produced at an electrode by application of a controlled potential can be sampled through a microporous (mostly PTFE) membrane to a mass detection chamber upon application of high vacuum (Fig. 11). This technique allows for the fast characterization of reaction products as a function of the applied potential and it may be an interesting alternative to the tedious job of performing electrolysis at various potentials. Two cell setups have been mainly used in the context of CO₂ electrochemical reduction: thin layer flow cells and cells using a capillary inlet, usually referred to as on line electrochemical mass spectrometry (OLEMS). The DEMS cell architecture has evolved over time. The technique was first demonstrated using a design where the electrode material was directly deposited onto a PTFE membrane that was supported on a stainless steel grid connected to vacuum for MS analysis. The rest of the electrochemical cell was rather conventional and was assembled by pressing the body of the cell on the working electrode. Although this design shows good collection efficiency and a fast spectrometer response, the choice of electrode materials that can be used is rather limited, and the study of bulk materials such as Cu electrodes is not allowed. Additionally, the electrode surface is positioned very close to the membrane (hence to the vacuum system). As a consequence, the concentration of volatile species at the electrode surface decreases, leading to depletion of CO₂.

The thin layer design was first introduced in 1990, allowing processes occurring on smooth electrodes to be studied. In this design, the working electrode is separated from the PTFE membrane by a thin solvent layer. As a result, species produced at the electrode have to diffuse to the membrane. Consequently, slower spectrometry responses were observed. When the cell is under continuous flow, it results in low collection efficiency as diffusion of analytes to the membrane competes with the solvent flow.
A number of these flaws were addressed more recently with the design of a new DEMS cell. This design features parallel working and counter electrodes to ensure uniform potential distribution across the surface of the electrodes and a reference electrode located outside the working electrode chamber to prevent the formation of gaseous product bubbles that may affect potential referencing. Again, the working electrode is an electrode located outside the working electrode chamber to prevent the formation of gaseous product bubbles that may affect potential referencing. In other words, DEMS should be a complementary experimental method.

1.3 Homogeneous molecular catalysts. Molecular metal-based electrocatalysts including Fe, Ni or Co have been extensively studied and reviews may be consulted. Although general structure–reactivity relationships are difficult to establish (even for the reduction of CO₂ to CO and formulate), rational functionalization of the ligands in order to modulate electron density at the metal and to provide a favorable environment for proton relay and proton transfer has progressively led to excellent performances. Such guided design is a cornerstone for getting even better performances and triggering new reactivity. Illustrative and historical examples are detailed below and most efficient catalysts are summarized in Table 1. Scheme 3 at the end of the section summarizes the 2-electron reduction mechanisms.

1.3.1 Cobalt complexes. The use of Earth abundant metal complexes for the electrochemical reduction of CO₂ under homogeneous conditions was reported as early as 1974, when cobalt and nickel phthalocyanine catalytic activity was reported by cyclic voltammetry. They were shown to be active for the CO₂-to-CO conversion. Co porphyrins were identified as effective catalysts in 1979 but no catalytic activity was noticed at that time for Fe and Cu porphyrins. In aqueous buffered solutions catalytic reduction of CO₂ with Co (Chart 1) at a potential $E = -1.3$ V vs. NHE leads to formic acid. Catalytic activity was also observed with Co₃ (Chart 1) but the products were not identified. It was suggested that both metal center and ligand structure played an important role in the catalytic process.

Cyclam Co₁₄ (Chart 1) was also identified very early as a good CO₂ catalyst with a faradaic efficiency of 46.5% for CO production in a mixture of water and acetonitrile (2 : 1, v : v) at a potential $E = -1.60$ V vs. SCE (mercury pool electrode). Related complex Co₁₈ (Chart 1) shows good catalytic activity with 82% FE for CO production at -1.5 V vs. SCE in DMF (Table 1).

Co₁₉ (Chart 1) is less selective with 30% FE for CO at a potential of -1.4 V vs. SCE in acetonitrile (pyrolytic graphite electrode, 0.5 h). A methylated analog of Co₁₉ was also reported to reduce CO₂ to CO (45% FE) in wet CH₃CN, as well as under photochemical conditions when associated with Ru(bpy)₃ as a sensitizer.

Aminopyridyl macrocycle Co₅ (Chart 1) is in contrast highly selective, with 98% of FE for CO production at $E = -2.46$ V vs. Fe/C/Fc and a TOF of 16900 s⁻¹. The catalyst was suggested to undergo a two-electron metal-based reduction, Co⁰ being the catalytically active species. The N–H groups on the ring structure of the ligand were shown to provide assistance for creating...
an efficient H-bond network with the acid co-substrate, further accelerating the rate-determining C–O bond cleavage. Cobalt polypyridines are also highly active catalysts. Quarterpyridine Co20 (Chart 1) proved to be a very active catalyst for CO2 to CO reduction in acetonitrile solution, once doubly reduced at an electrode. In the presence of 3 M phenol as a weak acid co-substrate, high product selectivity (96%) and FE (90%) for CO were obtained at a very low overpotential of 140 mV.18 Moreover, Co20 proved to be among the most active molecular catalysts for CO2 reduction with a maximum TOF of 3.3 × 104 s−1, obtained at only 300 mV overpotential. Co21 (Chart 1) was reported to yield CO with 20% FE (E = −1.93 V vs. Fe+/Fec) in a DMF/H2O mixture (95/5, v:v) at a glassy carbon electrode. 97

Table 1 Performances of typical Fe, Ni and Co molecular catalysts under homogeneous conditions for the 2-electron reduction of CO2

Catalyst	Concentration (mM)	Conditions	Duration (h)	Potential (V)	TOF or TOFmax (overpotential, method)	Product	FE (%)	Ref.
Fe1	1	DMF, 0.1 M PhOH, Hg pool	1	−1.46 vs. NHE	TOFmax = 10^4 s⁻¹ (η = 800 mV; CV)	CO	100	20
Fe1	1	DMF, 40 mM PrOH, 40 mM NEt₃	4	−2.4 vs. Fe⁺⁺/Fe	Formate	72	112	
Fe2	1	DMF, 2 M PhOH, Hg pool	4	−1.16 vs. NHE	TOFmax = 10^3 s⁻¹ (η = 800 mV; CV)	CO	95	22 and 109
Fe3	1	DMF, 3 M PhOH	3	−1.28 vs. NHE	TOFmax = 100 s⁻¹ (η = 800 mV; CV)	CO	95	110
Fe4	0.5	H2O, pH 6.7	72	−0.86 vs. NHE	TOFmax = 10^4 s⁻¹ (η = 500 mV; CV)	CO	98	109
Fe5	0.5	DMF, 0.1 M H2O, 3 M PhOH	84	−1.2 vs. SCE	TOFmax = 10^6 s⁻¹ (η = 220 mV; CV)	CO	100	111
Ni1	0.17	H2O, pH 4.1, Hg pool	4	−1.05 vs. NHE	TOF = 32 h⁻¹ (η = 700 mV; CPE)	Formate	96	100
Ni1	0.4	DMF, 0.1 M NaClO₄, Hg pool	5	−1.4 vs. SCE	TOF = 7.8 h⁻¹ (η = 360 mV; CPE)	CO	65.3	90
Ni2	1.2	H2O/CH3CN 2 : 1 (v:v), 0.1 M LiClO₄	1	−1.6 vs. SCE	TOF = 6 h⁻¹ (η = 640 mV; CPE)	CO	18	22
Ni14	Nr	DMF/H2O 95 : 5 (v:v)	3	−1.71 to −2.14 vs. Fe⁺⁺/Fe	TOF = 533 s⁻¹ (η = 140 mV; CPE)	CO	90	18
Co20	0.5	CH3CN, 3 M PhOH, GC	3	−1.1 vs. SCE	TOFmax = 3.3 × 10³ s⁻¹ (η = 300 mV; CV)	CO	90	18
Co13	1.2	H2O/CH3CN 2 : 1 (v:v), 0.1 M KNO₃, Hg pool	1	−1.6 vs. SCE	TOFmax = 3.3 × 10³ s⁻¹ (η = 300 mV; CV)	CO	46.5	90
Co18	1	DMF	1	−1.5 vs. SCE	TOF = 170 s⁻¹ (η = 850 mV; CPE)	CO	98	93 and 95
Co19	1	CH3CN, pyrolytic graphite	0.5	−1.4 vs. SCE	TOFmax = 1.7 × 10³ s⁻¹ (η = 510 mV; CV)	CO	20	97
Co21	2	DMF/H2O 95 : 5 (v:v)	3	−1.93 vs. Fe⁺⁺/Fe	—	—	—	

* Triethylamine.

1.3.2 Nickel complexes. Ni cyclams such as Ni1–9 (Chart 2) were demonstrated to be catalytically active for CO2 reduction very early and were extensively studied since then.96,98 Initially, methylated Ni cyclam Ni2 was shown to yield CO and H2 in a 2/1 ratio (with a total FE of 98%) with a TOF of 6 h⁻¹, at a potential of −1.6 V vs. SCE (mercury pool) in a CH3CN/H2O mixture (2 : 1). A few years later, the simplest Ni cyclam Ni1 was shown to be a highly efficient catalyst.99–101 The ability of the Ni cyclam ring to stabilize the Ni complexation and the acidic character of the N–H proton of the ligand were recognized as key factors to explain the remarkable reactivity. In acidic water (pH 4–5), high TON (116) and FE were obtained at an Hg electrode, with a TOF of 32 h⁻¹ and a selective conversion of CO2 to CO with only 0.03% of H2 at the relatively negative potential of −1.05 V vs. NHE, corresponding to 700 mV overpotential.

A mechanism was proposed from these studies for the CO2 conversion to CO in water (Scheme 1), which accounts for the adsorption of the catalyst at the electrode surface and for the formation of a Ni⁺–CO adduct. Further reduction of this adduct may lead to Ni⁰ species and deactivation of the catalyst.
Following investigations confirmed that the negatively charged mercury surface can adsorb the NiI complex and may favor a trans-I structure (with N-H groups being all oriented toward the same axial coordination site) which can then effectively bind CO\textsubscript{2} and catalyze its reduction at the electrode surface.102-104 Further DFT calculations suggested that the trans-III isomer, which possesses a chair like conformation (it accounts for 85\% of NiI), is in fact more strongly adsorbed at mercury. It leads to a NiI-CO adduct which is higher in energy, accelerating the CO loss and thus the catalysis.105,106 Recent studies at an inert glassy carbon electrode confirmed the formation of the NiI-CO species, as well as the CO loss as the rate limiting step.50,105 Remarkably, Ni\textsubscript{6} could be used as a CO scavenger (stronger affinity for CO than NiI) while having at the same time a lower reactivity towards CO\textsubscript{2} reduction. In a CH\textsubscript{3}CN/water mixture (1/4, v:v), CO was then produced with 90\% FE at −1.21 V vs. NHE (470 mV overpotential, 1 h electrolysis).

CO\textsubscript{2} reduction with NiI in DMF solution leads to the formation of formate with high selectivity. A typical electrolysis experiment showed 75\% FE at \(E = −1.4\) V vs. SCE, CO being the by-product.101 This change of product selectivity as compared to aqueous solutions was ascribed to preferred protonation on the carbon atom of CO\textsubscript{2} and formation of a nickel-formato intermediate NiI-OCHO, and it was suggested that no hydride was formed. A related uncommon mechanism for formate production has been recently evidenced with Fe porphyrin (see below and Scheme 3). In contrast, nickel tetraaza macrocycles bearing pyridine functional groups (Ni\textsubscript{10-12}) were also carefully investigated but such systems have weak activity toward CO\textsubscript{2} reduction.92

Finally, Ni bis-terpyridine Ni\textsubscript{14} was also investigated in a range of potentials (from −1.71 to −2.14 V vs. Fe3+/Fe2+) in a DMF/H\textsubscript{2}O mixture (95/5, v:v) and led to only CO\textsubscript{2} and formic acid.97 Nevertheless, the FE for CO does not exceed 18\% with most of the charge passed during electrolysis not related to CO\textsubscript{2} reduction products. As in the case of the related cobalt compound Co\textsubscript{21}, the doubly reduced catalyst led to the loss of one tpy ligand, promoting side reactions and leading to limited efficiency.

1.3.3 Iron complexes

Variously substituted Fe tetraphenyl porphyrins (Chart 3) have shown to be among the most active molecular catalysts for the CO\textsubscript{2}-to-CO conversion. Under some experimental conditions, they have also been able to produce formate.2,112 Reactivity is triggered by electrogeneration of the Fe(0) active species, which can bind to CO\textsubscript{2} efficiently, leading to an intermediate −FeI-CO\textsubscript{2} ↔ FeII-CO\textsubscript{2} adduct which upon protonation will lead to CO bond cleavage and formation of an FeII-CO adduct that releases CO upon a one-electron reduction.

Weak Brønsted acids accelerate the catalysis107 and it was first observed that addition of CF\textsubscript{3}CH\textsubscript{2}OH to a solution of Fe\textsubscript{1} led to 94\% FE and a TOF of 40 h−1 in electrolysis experiments in DMF at a mercury pool (\(E = −1.70\) V vs. SCE). The role of these weak acid co-substrates is to stabilize the Fe–CO\textsubscript{2} adduct and promote bond cleavage. The use of a slightly more acidic acid such as Et\textsubscript{3}NH+ (pK\textsubscript{a} = 9.2 in DMF) promotes the formation of H\textsubscript{2}, demonstrating the importance of pK\textsubscript{a} control for such assisted catalysis. Lewis acids such as Ca2+ or Mg2+ also accelerate the CO\textsubscript{2}-to-CO conversion, again upon stabilization of the adduct Fe–CO\textsubscript{2}. CO cleavage is then fostered by a second CO\textsubscript{2} molecule leading to CO\textsubscript{2} and CO as reaction products.108 Installing the acid function directly on the phenyl ring of the porphyrin with phenol groups in ortho positions (Fe\textsubscript{2}) ensured proton availability (both for H-bonding stabilization properties of the Fe–CO adduct and proton relay assistance for protonation steps) and fast kinetics, with a TOF of 105.8 s−1 at an overpotential of 0.56 V in DMF solution as determined by cyclic voltammetry.22

The crucial role of the OH groups was further demonstrated upon comparison with Fe\textsubscript{9} (substituted with methoxy groups in all ortho positions), which led to a TOF of only 101.3 s−1 at 1.04 V overpotential. Conversely, introduction of electron withdrawing fluoroarenes moieties on the phenyl rings of the ligand (Fe\textsubscript{6}, Fe\textsubscript{7} and Fe\textsubscript{8}) allowed decreasing the overpotential, but at the expense of a lower activity. This lower activity is the effect of a smaller electron density on the Fe(0) center produced by the fluorine withdrawing group and hence a less stabilized metal–CO\textsubscript{2} adduct. Such an through-structure effect reflects a trade-off between activity and overpotential, and it has been the object of a thorough investigation.39 When the through-structure effect (electronic withdrawing groups on the ligand) was combined...
with the through-space effect of OH groups in the ortho position of the phenyl (Fe3), the catalytically active Fe0 species was generated at 200 mV less cathodic potential than Fe2, keeping the high activity and high selectivity of the Fe2 catalyst (maximum TOF at large overpotential in the range of 10^4 s⁻¹, see Table 1, entries 3 and 4). With both Fe2 and Fe3, a mono-electronic pre-wave was observed at the foot of the catalytic wave and it was ascribed to the signature of an Fe0–CO2 adduct, which after protonation, requires a second electron reduction for the C–O bond cleavage to occur (concerted dissociative electron and proton transfer). It stands in contrast to the mechanism followed by Fe1, for which the second electron transfer occurs after bond breaking, and leads to CO release from the FeH–CO adduct.

Water soluble porphyrins Fe4 and Fe5 bearing four positive charges (trimethylammonium groups) at the para- and ortho-positions of the phenyl rings respectively show high activity at very low overpotential. Both Fe4 and Fe5 show FE close to 100% for CO during electrolysis performed in DMF (0.1 M NBu4PF6, 0.1 M H2O) under 1 atm CO2 in the presence of 3 M PhOH. Mechanistic studies by cyclic voltammetry in DMF have shown a TOF max = 10^4.2 s⁻¹ at 500 mV overpotential for Fe4 and TOF max = 10^6 s⁻¹ at 220 mV overpotential for Fe5.

A comparison with a series of porphyrins variously substituted at the phenyl rings showed positive effects on both thermodynamics (smaller overpotential) and simultaneously on kinetics (large rate constant) of the positive charges borne by Fe4 and Fe5, which was assigned to through-space stabilization of the Fe0–CO2 adduct (Scheme 2). This effect brought by positive charges allowed overcoming the intrinsic trade-off of the through structure effect. However, a full mechanistic picture is still missing in both aprotic and protic solvents.

It was recently discovered that product selectivity for CO2 reduction with Fe1 as a catalyst could be tuned and changed to formate in DMF, upon addition of a tertiary amine such as triethylamine, with up to 72% FE. Upon careful mechanistic investigation by cyclic voltammetry, formation of an iron hydride intermediate could be ruled out and the proposed mechanism instead suggests that the amine acts as an axial trans ligand that enhances the basicity of the carbon atom of the Fe–CO2, directing the reaction toward formate (Scheme 3b). This new mechanism shed light on the under-investigated role of trans ligand in CO2 reduction with nitrogen containing macrocyclic complexes and will certainly lead to further developments.

1.4 Supported molecular catalysts. Various supports such as metal oxides and carbon materials have been used. Porous
Co9 14.4 −0.676 NaHCO3 0.5 M 18.1 6.8 93 H cell 115
Co6 23.3 −0.676 NaHCO3 0.5 M 13.1 4.1 92 H cell 115
Co7 590 −0.63 KHC03 0.1 M 14.7 4.1 98 H cell 116
Co6 440 −0.61 NaHCO3 0.5 M 18 1.4 90 H cell 64
Co20 8.5 −0.58 NaHCO3 0.5 M 19.9 12 99 H cell 24
Co26 — −0.60 NaHCO3 0.5 M 24.7 1.9 98 H cell 121
Co9 1.5 −0.92 KOH 1 M 165 1.67 94 Flow cell 115
Co6 7 2.52 V [cell voltage] KOH 3 M 176 0.24 88 Gas diffusion cell 118
Fe4 1.3 −0.6 KOH 3 M 152 0.57 98.1 Flow cell 119

*Polymerized at carbon nanotubes.

Table 2 Recent performances for some Co and Fe aza macrocycles and porphyrine catalysts supported at carbon electrodes.

2. Molecular catalysts in electrochemical reactors

Electrochemical reactors employing gas diffusing electrodes have been developed to improve CO2 electrocatalytic reduction with the goal of reaching high efficiency and high durability at current densities in the range of several hundreds of mA cm⁻² (geometric surface electrode area) which is not possible in typical H-cells due to mass transport limitations. Until recently, such performances were deemed to be only possible with solid state materials, precious metals such as Au and Ag being the two most investigated metals. For example, silver sputtered at PTFE or an anion exchange membrane onto a GDE can provide CO with about 90% FE and at a current density of about 200 mA cm⁻². Using non-precious Ni single atoms at porous carbon membranes recently led to an impressive partial current density of 308 mA cm⁻² for CO production. The progress achieved for the electrolytic catalytic reduction of CO2 with molecular catalysts have stimulated the insertion of these catalysts into lab-scale cell devices, in particular flow cells. Some examples for CO2-to-CO conversion have shown promising results, especially in terms of current densities and selectivity, opening new perspectives toward up-scaling and development of industrial devices. It is to be noted that pioneering studies have been done in the late 1980s and 1990s, in particular with the use of phthalocyanines and porphyrins (M = Co, Fe, Ni, Mn, Cu).
It led to partial current densities for CO production in water solutions in the range of a few tens of mA cm\(^{-2}\), with values up to 55 mA cm\(^{-2}\) for Fe tetraphenyl porphin in 0.5 M KHCO\(_3\) solution\(^{132}\) and 53 mA cm\(^{-2}\) with Co phthalocyanine.\(^{131}\) Another interesting facet of using a GDE is the possibility of performing mechanistic studies with molecular catalysts at surfaces, without being limited by mass transport of the reactant. Such studies, which are extremely tedious as with solid state catalysts, are still in their infancy but they are a key to improve performances.

Recently, a micro-flow electrochemical cell including a GDE at which a modified phthalocyanine (Co7) mixed with multi-walled carbon nanotubes was deposited led to a maximum CO current density of 82 mA cm\(^{-2}\) (with ca. 60% FE for CO, full cell voltage 2.3 V) in 1 M KOH flowing electrolyte.\(^{133}\) Long term electrolysis (10 h) at 40 mA cm\(^{-2}\) could be sustained at about 90% CO selectivity. CO\(_2\) reduction selectivity and activity for CO production can be further improved even with commercially available compounds such as cobalt phthalocyanine Co6.

This catalyst, when mixed with porous carbon black and deposited at an electrode surface can mediate CO\(_2\)-to-CO conversion in a zero-gap membrane flow reactor with selectivities > 95% at 150 mA cm\(^{-2}\).\(^{118}\) As shown in Fig. 12, comparison with other molecular catalyst based systems (in H-cell or flow cell) illustrates the high performances of Co6 in terms of FE\(_{CO}\) and current density. It closely matches performances obtained with the most active noble metal-based, such as Au\(^{129}\) and Ag\(^{127}\) nanocatalysts both for cell voltage, energy efficiency and current density.

Tuning the ligand structure is a powerful approach to improve the activity of molecular catalysts, through electronic, steric and second sphere substituent effects, as already described in this review. Following this strategy, introducing a trimethylammonium group and three tert-butyl groups onto cobalt phthalocyanine (Co9) led to high activity toward CO\(_2\)-to-CO conversion in water over a broad pH range (from 4 to 14).\(^{115}\) In that case, a flow cell electrolyzer operating under basic conditions was developed. Typical CO production with ca. 95% selectivity and good stability was obtained, with a maximum partial current density of 165 mA cm\(^{-2}\) (at an overpotential of 810 mV). Following a similar strategy for catalyst optimization, modified tetraphenyl iron porphyrin Fe4 was shown to achieve fast and selective electrocatalytic CO\(_2\) conversion to CO in a flow cell.\(^{119}\) The catalyst was mixed with carbon paper electrode (GDE). A current density for CO production as high as 152 mA cm\(^{-2}\) (> 98% selectivity) was obtained at 470 mV overpotential in a basic solution (pH 14). Under the same conditions, \(j_{CO} = 27\) mA cm\(^{-2}\) was maintained for 24 h at only 50 mV overpotential and with close to perfect 99.7% selectivity. A maximum current density of 83.7 mA cm\(^{-2}\) was obtained at pH 7.3, with selectivity close to 98%. Very recently, a nickel catalyst (Ni1) was inserted in a continuous non-aqueous flow cell, giving CO with a selectivity close to 80% and a maximum current density of 50 mA cm\(^{-2}\) in CH\(_3\)CN with NH\(_4^+\) as a co-substrate.\(^{134}\) Examples described above illustrate the rich potentiality of using highly active catalysts into an electrolyzer comprising a GDE. As already mentioned, various set-ups may be used. In flow cells, a liquid electrolyte circulates on both sides of the membrane separator, which is usually a polymer electrolyte membrane type such as a cation-exchange membrane (CEM), anion-exchange membrane (AEM) and bipolar membrane (BPM). The designed cell architecture used for catalysts Co9 and Fe4 consists of a sandwich of flow frames, electrodes, gaskets and an AEM membrane as illustrated in Fig. 13a and b. The anode and cathode are assembled on both sides of the membrane. The CO\(_2\) gas flow is delivered from the back side of the cathodic compartment and flows through the GDE, while the catholyte solution is circulated in between the GDE and the anion exchange membrane (AEM). On the other side of the AEM, an anolyte electrolyte circulates between the AEM and the anode. Fig. 13c schematically illustrates the zero-gap membrane reactor (no electrolyte is flowing in the cathodic compartment) where the catalyst is directly sandwiched between the GDE and the membrane (MEA assembly type).

There is still a lot of work to be conducted before molecular catalysts may be used in flow cell CO\(_2\) electrolyzers at an industrial scale. Long term stability remains an issue (as it is currently the case with solid catalysts too), which calls for vigorous efforts to decipher the catalytic mechanisms involving molecular catalysts inserted into thin films deposited at electrode surfaces, and to better identify possible degradation.
pathways for the catalysts. Theoretical tools have been recently devised and should be used.26,28 The understanding of local environment effects is also of prime importance. Such effects may manifest for example by high local pH due to fast proton consumption and may result in crystal growth at the GDE118 and/or membrane cross-over of ionic species during long term operation. Beneficial effects such as temperature and electrolyte cation optimization have also been identified. For example, it was observed for iron catalyst Fe_4 that reaction kinetics could be boosted upon changing the temperature.119 Raising the temperature from 24 °C to 40 °C led to a 300 mV overpotential decrease at 50 mA cm$^{-2}$ current density ($pH \sim 7$, 0.5 M NaHCO$_3$). Remarkably, it was also shown with the same iron molecular catalyst, as previously observed with solid electrocatalysts,135 that larger size cations could lead to better performance. At a fixed current density of 50 mA cm$^{-2}$, a significant lowering of the overpotential (390 mV) was observed upon increasing cation size going from Na$^+$ to K$^+$ and finally Cs$^+$. Such an effect may be ascribed to higher surface charge density and consequently increased affinity between CO$_2$ and the cathode surface.135 Finally, optimization of the cell architecture (optimization of the membrane, of the catalytic film formulation, decrease of the cell resistance, etc.) is an additional challenge toward real devices. Further studies will certainly soon burgeon using related catalysts and approaches.

3. Light-driven and assisted approaches

3.1 Introduction to light-driven reduction of CO$_2$. Inspired by natural photosynthesis which achieves conversion of solar energy into chemical energy (chemical bonds in carbohydrates), many studies have been and are currently devoted to the direct conversion of solar energy into chemical fuels via photo- or photoelectro-catalysis, giving birth to artificial photosynthesis and solar fuels fields. Current works are focused on water splitting, CO$_2$ reduction, nitrogen fixation and oxygen reduction to produce hydrogen peroxide or water. An artificial photosynthesis system requires the combination and synchronization in time and space of four steps: photon absorption (through semi-conductors or photosensitizers), charge separation, transfer of electrons from the photo-absorber to the catalytic center and catalytic reaction transforming the substrate (possibly associated with a co-substrate such as a protonating agent) into the product or a mix of products.

Photocatalytic molecular systems for CO$_2$ reduction comprise three components, i.e. a catalyst (CAT), a redox photosensitizer (PS) and a sacrificial electron donor (SD). The metal complex serves as a catalyst capable of accumulating multiple electrons needed to reduce CO$_2$. Light-driven electron transfers can be classified as oxidative (Scheme 4a) or reductive quenching (Scheme 4b) according to the quenching reaction of the photosensitizer. In the first case, after excitation (Scheme 4a, step (1)), the lowest excited state of the PS (PS*) is a strong reductant and gives an electron to the electron acceptor (EA, being the CAT or an electron mediator). Emission of PS* (Scheme 4a, step (2)) is

![Scheme 4](image-url)
oxidatively quenched to give rise to the corresponding one-electron-oxidized form PS$^+$ (Scheme 4a, step (3)). When the standard redox potential of SD$^{+/SD}$ is more negative than that of PS$/PS$, one electron can be donated to PS$^+$ (Scheme 4a, step (4)) to recover PS. Alternative possibility involves the reductive quenching of PS$^+$ (Scheme 4b). In this case, PS$^+$ accepts an electron directly from SD (Scheme 4b, step (3)). The one-electron-reduced form PS$^{−}$ is thus produced. PS is regenerated through electron transfer from PS$^{−}$ to EA (Scheme 4b, step (4)). Favorable conditions for oxidative quenching include long lifetime and high reducing power of PS$^+$ as well as high concentration of EA because electron transfer between PS$^+$ (PS$^{−}$) and EA is a bimolecular reaction.

Back electron transfer (BET) is a drawback that may lower, sometimes dramatically, the reaction quantum yield. For example, in the case of oxidative quenching of PS$^+$ (Scheme 4a), the reduced acceptor EA$^{−}$ may quickly transfer back an electron to the oxidized sensitizer (PS$^+$) since the reaction is endowed with a large driving force.

Besides back electron transfer, many factors can affect the product yield, including light intensity, irradiation volume, concentration of CO$_2$, photocatalysts and SD, as well as standard redox potential values of the photosensitizer and the sacrificial donor. Quantum yield (IQY) and turnover number (TON) are typically employed to evaluate CO$_2$ reduction efficiency. Quantum yield is a crucial parameter for assessing the performance of a photocatalyst or photocatalytic system. The internal quantum yield (IQY) and apparent quantum yield (AQY) are defined by eqn (11) and (12), respectively. IQY is calculated as the ratio of the number of product multiplied by the number of electrons necessary for the product formation over the mole amount of absorbed photons, as shown in eqn (11), while AQY is calculated relatively to the number of incident protons (eqn 12). TON is defined, as under electrochemical conditions, by the ratio between the mole amount of product and the mole amount of catalyst once the reaction has stopped. Care should be taken when comparing data between studies since catalyst concentrations may vary in between a few tens of nM and a few hundreds of μM. In some cases, very high turnover numbers have been obtained but at very low concentration of catalyst (nM range), leading to small absolute quantities of CO$_2$ reduction products and overstatement regarding the catalytic performances.

$$\text{IQY} \quad \% = \frac{\text{mol number of product} \times \text{number of electrons per product}}{\text{mol number of absorbed photons}} \times 100 \quad (11)$$

$$\text{AQY} \quad \% = \frac{\text{mol number of product} \times \text{number of electrons per product}}{\text{mol number of incident photons}} \times 100 \quad (12)$$

When evaluating the catalytic efficiency, the number of active catalytic sites is thus a crucial parameter but is difficult to evaluate in the case of supported systems. It indeed depends on the catalyst loading but also on active site accessibility. A determination of the catalyst content in supported systems can be made by calculating the amount of catalyst used in the synthesis process. Control of the remaining catalyst left in solution after preparation (through UV-Vis spectroscopy for example) can help in refining the previous estimation. More precise quantification can be obtained by using inductively coupled plasma atomic emission spectroscopy (ICP-AES, after treatment of the material with a strong acid solution) and X-ray photoelectron spectroscopy (XPS). Possibly, if the material is conductive and can be deposited at an electrode, electrochemical methods can also be employed to quantify the number of electrochemically active sites.

3.2 Photoelectrochemical processes

A first approach consists in combining light excitation of a semi-conductive electrode to an electric bias to activate molecular catalysts. One drawback is that metal complexes may absorb light and decompose upon long time irradiation. UV-light should be filtered to avoid such photodegradation. And if a fraction of visible light is absorbed, even weakly, it will also lead to a significant decrease of the light to chemical energy conversion. Some molecular catalysts are also prone to photodecomposition under visible light which adds another hurdle when selecting a suitable catalyst. Despite these adverse drawbacks, strategies to overcome these issues, such as UV-light absorption by a photoanode positioned upstream or irradiation of the photocathode from the back of the device, have been explored.

Molecular catalysts may be implemented at photoelectrodes following three strategies as depicted in Scheme 5. Each one can be deployed in various configurations (with a grafted or freely diffusing catalyst, irradiation from the front or from the back of the electrode, addition of protective layers on the semi-conductive material, etc.) and combination of several strategies in series can also be envisioned. For example, the p–n junction pictured in configuration b is usually protected from electrolyte corrosion by several layers with various doping and thickness that would in principle allow for optimizing the stability and the efficiency (e.g. charge transfer to the catalytic sites) of the device. This buried junction could eventually be doubled or tripled. In the following, we will not detail photoelectrode underlayer preparation.

Regarding CO$_2$ photoelectrochemical reduction with molecular catalysts, the three strategies a–c (Scheme 5) have been reported. Examples employing b–c type strategies are restricted to the last 10 years and early examples exclusively involved strategy a. The latter a was first reported in 1993, with the use of Ni and Co tetra-azamacrocyclic complexes (Co$_{23}$Ni$_{12}$Ni$_{8}$ and Ni$_9$) in a CH$_3$CN/water (1:1, v:v) electrolyte at a p-Si electrode. Upon photo-electrolysis at −1.00 V vs. SCE, which corresponds to a negative overpotential of 50 mV estimated from $E^{0}_{CO_2/CO}$ in acetonitrile/water (1:1, v:v) solvent, catalyst Ni$_{12}$ showed a 64% FE for CO with H$_2$ as the only by-product for more than 24 h. However, the absence of reported current density does not allow assessing the rate and efficiency of
this process. The other three catalysts (Co23, Ni8 and Ni9) were mentioned to be less selective and required more negative potentials.

Several reports followed in the subsequent years where p-Si but also p-GaP, p-GaAs,141–143 p-CdTe,144 p-WSe2145 were used as semi-conductive electrodes associated with nickel cyclam (Ni1)141–143 or phthalocyanines (MPc, with M being Co, Ni and Fe but also Zn, Mn, Cu and V)144 as molecular catalysts. Interestingly, upon associating Ni1 with p-GaAs, photo-electrolysis was performed in aqueous media (pH 4.5, 0.1 M KClO4) for more than 15 hours with FE for CO slightly below 50% at a quite negative potential $E = -0.95$ vs. NHE and gave 4 TON for CO.141 This low selectivity was attributed to catalysis of water reduction by p-GaAs itself. Replacement of this semiconductor by p-GaP enabled enhancement of CO faradaic efficiency up to 85% in a 0.1 M NaClO4 aqueous solution and at a potential between -0.75 V and -0.2 V vs. NHE, although no turnover number was given and the photo-electrolysis duration time was also not specified.143,146 Interestingly nickel cyclam Ni1 could be employed without filtering the UV-light and catalytic activity was maintained for several hours. In terms of selectivity and activity, p-CdTe based electrodes coated with MPc were able to reach current density as high as 10 mA cm$^{-2}$ in DMF (5% H2O) although such a current density does not match with the reported transient data.144 Selectivity for CO was high, close to 100% for CoPc, 92% for FePc and 77% for NiPc. Formate was systematically obtained with FE between 2 and 6%. At that time, only one other publication was using a precious complex, with Re(CO)3(bpy)Cl at p-Si and p-WSe2 electrodes, also showing good selectivity.145

The field remained almost unattended for about 20 years until Kubiak et al. published a Re(CO)3(bpy)Cl catalyst at a p-Si electrode,147 attaining high selectivity for CO (up to 97%) at -1.35 V vs. Ag/AgCl (which corresponds to 500 mV overpotential relatively to $E^0_{CoO/Co}$ in CH3CN).24 Large current density, up to 31 mA cm$^{-2}$, was reported under transient conditions (at a scan rate of 100 mV s$^{-1}$), but the steady-state current density over photo-electrolysis was not specified. Estimation of the latter from the mole amount of electrons (7×10^{-5}) passed for 3 hours at a 0.27 cm2 electrode yields a current density close to 2.3 mA cm$^{-2}$. A few weeks later, Arai, Sato et al. published a study in which a ruthenium complex was used as a CO2 reduction catalyst at an InP photoelectrode.148 Contributions from various groups were then focused on precious metal complexes or other transition metals such as manganese.153 Concerning Fe and Co azamacrocycles, Fe porphyrins (Fe1 and Fe19) have been associated with p-Si in acetoni-trite, with 650 mV photovoltage that allowed catalytic activity at only -1.1 V vs. SCE bias (210 mV overpotential).154 Under these conditions, 90% FE for CO was obtained, with a current density of 3 mA cm$^{-2}$. Cobalt tris([2-pyridylmethyl]amine)Cl (Co24) was also used at a p-Si nanowire electrode in CH3CN solution, but with a lower current density of 1 mA cm$^{-2}$ and 69% FE for CO at -1.57 V vs. Fe+/Fc, corresponding to a large 520 mV overpotential.155 Recently, strategy a has been much less investigated, likely because of the instability of narrow bandgap semiconductors under irradiation and the fast conversion of the p-Si interface with electrolyte into SiO2 with only traces of oxygen.147,154,156,157 Such instability has also been noticed as a limiting factor for p-GaAs materials.158 These drawbacks lead to a tedious experimental methodology for electrode preparation that is not compatible with technological upscale.141,147

Strategy b offers an answer to the instability of narrow bandgap semiconductors, by adding protective layers on top of the semi-conductive surface and forming at the same time a complete p–n junction. The first report for such an approach for CO2 reduction with molecular catalyst is recent137 and involved the use of copper oxide Cu2O, known for its instability under irradiation,159 as a light harvesting material with protective layers made of AZO (aluminum doped zinc oxide) and TiO2. In this, the classical Re(CO)3(bpy)Cl catalyst was used, first in solution and then attached through phosphonate groups to the top TiO2 oxide layer.159 A current density as high as 2.5 mA cm$^{-2}$ was obtained in chopped light experiments (light being turned on and off at short regular intervals in order to distinguish photocurrent from background dark current). Photoelectrolysis was performed for 1.5 h with FE for CO decreasing from 93% to 80%, at a very large overpotential (1000 mV, $E = -2.05$ V vs. Fe+/Fc). This publication was followed by reports using precious metal complexes such as Ru complex grafted at a Fe2O3 cathode.160 The first studies using Co, Ni and Fe azamacrocycles only appeared in 2019, with a phosphonated Co bis(terpyridine) catalyst (Co25) grafted onto a TiO2 layer covering a p-Si cathode. At a bias potential of -1.0 V vs. Fe+/Fc (negative overpotential of -200 mV),140 CO2 was catalytically reduced into CO in CH3CN:water mixtures, with a low current.

Scheme 5 Possible photoelectrode configurations including molecular catalysts. (a) Catalyst at a p-type photocathode, (b) catalyst at a p–n photocathode, and (c) association between a catalyst and a sensitizer (PS) at a dark electrode surface.
density of ca. 100 µA cm⁻² and an optimal FE for CO of 48%.¹⁶¹ The photocathode was also operated in water (pH 6.7, 0.1 M KHCO₃), producing a small amount of CO (9.5% FE, partial current density of ca. 29 µA cm⁻²) but also HCOO⁻ (13% FE, partial current density of ca. 40 µA cm⁻²) at \(E = 0 \) V vs. RHE (−115 and +110 mV overpotential for CO and HCOO⁻, respectively).

Strategy c was first reported in 2013 with a molecular Re catalyst¹⁶² and was followed by several studies involving noble metal based catalysts and sensitizers.¹⁶³–¹⁶⁷ This strategy has also been associated in series with strategy b. For example, a Ru–Re molecular dyad anchored at a CuGaO₂ photocathode through a phosphonate linkage allowed reaching 72 and 81% FE for CO at −0.3 and −0.1 V vs. Ag/AgCl respectively (over-potential of −400 to −600 mV respectively) under illumination with visible light (\(\lambda > 460 \) nm).¹⁶⁶ However current densities remained low, typically in the range of a few tens of µA cm⁻². More recently higher current densities were obtained for CO₂ reduction with a Ru catalyst and a Ru catalyst assembled at a Si|GaN|NiO photocathode.¹⁶⁷ This approach is certainly worth being further investigated upon employing earth abundant metal complexes and cheap sensitizers, such as organic dyes (see Chart 4 for examples).

Considerations on relative energy levels between the semiconductor, photosensitizer, electron relays and catalyst are of major importance to better understand the different approaches. In strategy a, and for an ideal case, the energy at which the catalyst is reduced to the catalytically active species has to lie below the conduction band (CB) of the illuminated semiconductor.¹⁵⁷ Nevertheless, due to surface states that pin the Fermi level at the interface, the semiconductor/electrolyte interface may rather be considered as a semi-conductor/metal/electrolyte interface so that the photovoltage is determined by the difference in work function between the semi-conductor and the surface state.¹⁶⁸ Consequently, photovoltages have been obtained even for catalysts with redox energy levels lying above the conduction band of the semi-conductor.¹⁴¹ Such considerations do not apply for configuration c since the energy levels of the photosensitizer and the catalyst have to be adjusted to enable electron transfer from the former to the latter. But contrary to configuration a, excited electrons in the photosensitizer are not driven toward the catalyst by an internal electric field. It usually results in higher electron–hole recombination efficiency and it may explain the low current density typically reported with strategy c. A larger current density may be obtained by increasing the driving force between the photosensitizer and the catalyst, but at the expense of a reduced photovoltage.¹⁶⁷ In strategy b, a key factor is the energy difference between p- and n-type semiconductors which will define the maximum photovoltage similarly to a PV cell. Such a device, where the p-n junction is buried may be regarded as a photovoltaic cell in series with an electrochemical electrode.¹⁶⁹ Consequently, meaningful comparison could be made with other systems, for example when a (photo)-cathode is coupled with a photoanode,¹⁵⁰,¹⁶⁵,¹⁶⁶,¹⁷⁰ or when both the anode and the cathode are two sides of a multiple-junction cell¹³⁸ or either when the cathode includes both configurations b and c in series.¹⁶⁶,¹⁶⁷

In the cases of buried junctions, the interfacial layer could be conductive.¹⁶⁹ However, to enable the passage of light the use of such conductive layer is precluded and large band gap material with high electron conductivity are instead preferred. These layers also need to be stable under reduction and to allow for molecular functionalization. So far only TiO₂, which complies with these requirements, has been employed as a top-cathode layer. Nevertheless, this metal oxide is electrochemically active,¹⁷¹,¹⁷² and FE for CO₂ reduction is significantly

Chart 4 Typical molecular photosensitizers including metal-based (Ru, Ir) complexes and organic aromatic molecules.

Chem. Soc. Rev., 2020, 49, 5772-5809 | 5793
below unity. Anchoring strategies also deserve special attention, especially regarding pH range stability.6,173 Finally, a different strategy would be to cover the buried junction by a conductive and electrochemically inert material while back irradiating the photocathode.169,174,175 Catalytic performances obtained with Co, Fe, and Ni azacyclic complexes are summarized in Table 4.

Ni, Co and Fe azacyclic complexes have not been investigated under photovoltaic conditions as much as precious metal complexes, despite some early promising performances. CO\textsubscript{2} reduction products have been almost restricted to CO, in fewer cases to formate, while no example with more reduced compounds has yet been reported. Looking at the most recent investigations, it seems that strategies b–c are favored over a, and that aqueous electrolytes are systematically targeted despite CO\textsubscript{2} lower solubility. It should however be kept in mind that due to intrinsic limitations of photovoltaic devices under more concentrated sunlight, a current density of a few tens of mA cm–2 is likely to be an upper limit, so that a first priority should be put on stability of both the catalyst and the anchoring groups so as to get robust photocathodes. Fundamental challenges further include control of the proton environment at the catalytic sites and synchronization of the various steps of the process (charge separation and transport to the active sites, substrate and co-substrate diffusion, catalytic reaction). Finally, the future of photoelectrochemistry may not only rely on the performances of the catalyst, but will also depend on advances in photovoltaics and photoanodes.

3.3 Homogeneous molecular catalysts.

A second approach consists in using fully homogeneous systems. Ni and Co cyclams (Co\textsubscript{10}, Co\textsubscript{11} and NiI) were first used as catalysts for the visible-light driven CO\textsubscript{2} reduction by Tinnemans et al. in 1984. With Ru[bpy]\textsubscript{3}2+ (PS1) as a photosensitizer, CO was produced in an ascorbic acid containing aqueous solution with selectivity below 50% (Table 3, entries 1–4).158,176 NiII cyclam (Ni7) was reported to be a moderately selective (57%) catalyst for CO under similar conditions, while its corresponding dimer (Ni\textsubscript{2}I) showed 89% selectivity and a TON 6 times higher than the monomer (Table 3, entry 5).176

Co and Fe cyclams and polypyridines have shown interesting performances (Chart 1). This has led to mechanistic studies, notably with the identification of some reaction intermediates involved in the processes. In order to avoid the use of noble metal-based sensitizers, some light-absorbing aromatic organic molecules have also been used. The main catalytic product is CO with p-terphenyl (PS2, Chart 4 and Table 3, entries 6–13)177,178 while it changes to formate with phenazine (PS3, Table 3, entry 14).177 It was shown that phenazine is able to donate both electron and proton during catalysis. In that latter case, a Co–H hydride species, whose formation is enhanced by proton transfer from the sensitizer, was proposed to lead to formate upon CO\textsubscript{2} insertion. Note that in all these examples, catalytic activity is moderate with a low TON. Brunschwig, Fujita et al. have investigated several Co cyclams (Co\textsubscript{12–14}, Co\textsubscript{16}) to unveil possible intermediates under photocatalytic conditions.180–182 Using a combination of transient absorption, Fourier-transform infrared spectroscopy (FTIR) and X-ray absorption near edge structure (XANES) analysis, a 5-coordinated CO\textsubscript{2} adduct intermediate [CoIIIL(CO\textsubscript{2}–)]2– (in which L stands for the cyclam type) was identified for the four studied cyclams. In this adduct, CO\textsubscript{2} is stabilized by the NH protons in the macrocycle ligand. A solvent molecule (CH\textsubscript{3}CN in this case) can also coordinate the metal center to lead to a more stable six-coordinated intermediate [(CH\textsubscript{3}CN)CoIIIL(CO\textsubscript{2}–)]2– by internal charge transfer from the metal center to the CO\textsubscript{2}. The latter intermediate is then further reduced, with assistance of a proton or another CO\textsubscript{2} molecule, to afford CO.5,418 Lau and Robert have reported two cobalt and iron complexes (Co\textsubscript{18}, Fe\textsubscript{22}) exhibiting different selectivity with CO and formate production respectively (Table 3, entries 15–17 and 18–20).91,258 Such a difference was ascribed to slower C–O bond cleavage with the iron catalyst and concomitant higher basicity of the bound carbon atom, facilitating formate production at the expense of CO (no hydride was postulated on the reaction pathway). Recently a robust Fe-based quinquepyridine complex [Fe(qnpy)(H\textsubscript{2}O)\textsubscript{2}]2– (Fe23) that can reduce CO\textsubscript{2} to CO in aqueous acetonitrile solution was reported. Using Ru(phen)\textsubscript{3}Cl\textsubscript{2} (phen = 1,10-phenanthroline) as the photosensitizer and BH\textsubscript{4} as the sacrificial reductant, CO was produced with a TON of 14,095 and a high selectivity of 98% under visible light irradiation (Table 3, entry 43).184

During the same period, Co porphyrin CoI\textsubscript{22} and its derivative Co4,185 as well as the iron analogue FeI\textsubscript{16}–\textsubscript{26} were found to be active CO\textsubscript{2} catalysts (Table 3, entries 21–23). Fe-porphyrin Fe1 was first used for the photoreduction of CO\textsubscript{2} in 1997 (Table 3, entries 24 and 25).187,188 In a DMF/TEA solution of Fe1, photoinduced ligand-to-metal charge transfer generated FeII from the initial FeIII species. FeII was further converted to FeI upon light excitation and reductive quenching by TEA. Finally, the catalytically active species Fe0 was proposed to be formed by disproportionation of two Fe2 species. Fe and Co phthalocyanines (Fe14, Co8, Table 3, entries 26–28)189 and corroles (Co22, Fe15, Fe16, Table 3, entries 29–31)190 were also investigated for photocatalytic reduction of CO\textsubscript{2}. In the presence of p-terphenyl, TONS for CO of Fe and Co phthalocyanines are comparable to those of porphyrin analogs, such as Fe1 and Co1.185

Earth-abundant metal complexes were again put on the spotlight ten years later. A simple modified Fe tetraphenylporphyrin with OH groups in all ortho, ortho’ positions of the four phenyl groups (Fe2, Table 3, entry 32) was investigated under photochemical conditions.188 As demonstrated in electrochemistry,110 the OH groups have a dual role, first providing an H-bonding pattern to stabilize the Fe–CO\textsubscript{2} adduct and then playing the role of proton relay to boost the C–O bond cleavage. In the absence of an external sensitizer, good selectivity was already obtained for CO (85%), significantly higher than with Fe1. Higher CO selectivity was further obtained, reaching 93% and 100%, upon using an organic sensitizer (PS5, 9-CNA) and a strongly reducing Ir complex (PS6, Ir(ppy)\textsubscript{3})31 respectively (Table 3, entries 33 and 34).191

Self-sensitized CO\textsubscript{2} reduction was also investigated with Fe4, the porphyrin bearing four positively charged trimethylammonium groups at all para positions of each phenyl ring (Table 3, entry 35).192 Both the catalyst efficiency and selectivity were increased as compared to Fe2 under similar conditions.
Entry	Catalyst	PS	SD	Solvent	Light source	Irrad. time	Product (TON)	Selectivity	Ref.			
1	Co10	0.08 mM	[Ru(bpy)]₃²⁺	0.5/0.5 M	H₂O (pH = 4)	Daylight lamp	18 h	CO (1.2)	<1% (CO)	—	158	
2	Co11	0.08 mM	[Ru(bpy)]₃²⁺	0.5/0.5 M	H₂O (pH = 4)	Daylight lamp	18 h	CO (28.7)	71% (CO)	—	158	
3	Ni1	2 mM	[Ru(bpy)]₃²⁺	H₂A	H₂O (pH = 5)	Xe lamp	1000 W	CO (0.1)	—	0.06% [CO] 0.003% [HCOO⁻]	176	
4	Ni1	0.1 mM	[Ru(bpy)]₃²⁺	H₂A	H₂O (pH = 4)	Xe lamp	1000 W	CO (4.8)	12% (CO) 88% [H₂]	—	176	
5	Ni₃	0.25 mM	[Ru(bpy)]₃²⁺	H₂A	H₂O (pH = 4)	Hg lamp 60 W,	1 h	CO (4.4)	89%	—	176	
6	Co12	1.7 mM	p-Terphenyl	2 mM	CH₃CN/CH₃OH	Hg lamp	500 W	CO (10.2)	15 (CO)	177 and 10 (HCOO⁻)	178	
7	Co3	1.7 mM	p-Terphenyl	2 mM	CH₃CN/CH₃OH	Hg lamp	500 W	CO (4.7)	60.5% (CO) 31.8% (HCOO⁻)	—	177 and 178	
8	Co13	1.7 mM	p-Terphenyl	2 mM	CH₃CN/CH₃OH	Hg lamp	500 W	CO (5.3)	51.6% (CO) 34.4% (HCOO⁻)	—	177 and 178	
9	Co14	1.7 mM	p-Terphenyl	2 mM	CH₃CN/CH₃OH	Hg lamp	500 W	CO (2.0)	30.4% (HCOO⁻)	—	177 and 178	
10	Co15	1.7 mM	p-Terphenyl	2 mM	CH₃CN/CH₃OH	Hg lamp	500 W	CO (4.9)	58.5% (CO) 44% (CO)	—	178	
11	Co11	1.7 mM	p-Terphenyl	2 mM	CH₃CN/CH₃OH	Hg lamp	500 W	CO (1.0)	44% (CO)	—	178	
12	Co16	1.7 mM	p-Terphenyl	2 mM	CH₃CN/CH₃OH	Hg lamp	500 W	CO (2.7)	30.3% (CO) 4.8% (HCOO⁻)	—	178	
13	Co17	1.7 mM	p-Terphenyl	2 mM	CH₃CN/CH₃OH	Hg lamp	500 W	—	—	—	178	
14	Co12	10 mM	Phenazine	TEA	CH₃CN/CH₃OH/	Hg lamp	500 W	CO (0.08)	92.2% (HCOO⁻) 7.12% (CO)	98% (CO)	—	179
15	Co20	0.005 mM	[Ru(bpy)]₃²⁺	0.3 mM	CH₃CN/0.5 M	LED λ = 460 nm	80 min	HCOO⁻ (1.1) CO (2660)	98% (CO)	—	258	
16	Co20	0.05 mM	[Ru(bpy)]₃²⁺	CH₃CN/0.5 M	TEOA	LED λ = 460 nm	80 min	CO (497) HCOO⁻ (5)	98% (CO) 2.8 (CO)	258		
17	Co20	0.005 mM	Purpurin	2 mM	TEOA	LED λ = 460 nm	11 h	H₂ (3)	95% (CO) 0.8 (CO)	258		
18	Fe13	0.005 mM	[Ru(bpy)]₃²⁺	0.2 mM	CH₃CN/TEOA (4:1:1, v:v:v)	LED λ = 460 nm	3 h	CO (3844) HCOO⁻ (534)	83% (CO) 1.45 (CO)	—	258	
19	Fe13	0.05 mM	[Ru(bpy)]₃²⁺	CH₃CN/0.5 M	TEOA	LED λ = 460 nm	3 h	CO (1879) HCOO⁻ (48)	97% (CO) 8.8 (CO)	258		
20	Fe13	0.005 mM	Purpurin	2 mM	DMF	LED λ = 460 nm	12 h	CO (1363) HCOO⁻ (115)	92% (CO) 1.1 (CO)	258		
21	Co1	10 mM	—	TEA	CH₃CN	Xe lamp	λ > 320 nm	20 h	HCOO⁻	—	—	42
22	Co4	0.05 mM	p-Terphenyl	3 mM	CH₃CN	Xe lamp	λ > 300 nm	20 h	CO (62)	—	—	185
23	Fe11	0.034 mM	p-Terphenyl	3 mM	CH₃CN	Xe lamp	300 W, λ > 300 nm	20 h	CO (61.8)	—	—	186
24	Fe1	0.01 mM	—	TEOA	CH₃CN	VISIBLE light (BG40-type optical filter)	15 min	CO (70)	5	187		
25	Fe1	0.01 mM	—	TEOA	CH₃CN	Xe lamp	300 W	10 h	CO (17) 8% (CO)	188		
26	Fe14	0.15 mM	—	TEA	CH₃CN	Xe lamp	λ > 310 nm	6 h	CO (9)	—	—	189
Fe4 could indeed achieve 100% selectivity using BHI as a sacrificial agent in CH3CN. Moreover, the catalyst was able to perform CO2 reduction in aqueous solutions (acetonitrile/water 1:9, v/v) with PS4 as an organic photosensitizer, showing 95% selectivity (Table 3, entry 36). Moreover, it has been found that Fe4 can achieve CH4 production in a CH3CN solution containing up to 70% H2O (Table 3, entry 38). Fe-carboxyl complexes are also active catalysts for CO2 reduction to CO and formate. The commercially available Fe(II)(CO)12 (Fe1) was reported to reduce CO2 in (N-methyl-2-pyrrolidone) NMP solvent, affording a 50% selectivity and TON ca. 100 for CO (Table 3, entry 39). (Cyclopentadienone)irontricarbonyl (Fe(cpd)(CO)3, Fe17) was reported by the same group and could accomplish CO2 reduction with a TON of...
600 in 1 hour (Table 3, entry 40).196 Together with a Cu complex as a sensitizer and BIH as a sacrificial donor, the selectivity for CO could reach 99\% with a high quantum yield of 13.3\% (Table 3, entry 41).197 Similarly, Ishitani \textit{et al.} have reported an efficient photocatalytic system using a Fe complex as a catalyst in which the metal is chelated by two di-methyl 1,10-phenanthroline molecules [Fe(dmp)\textsubscript{2}(NCS)\textsubscript{2}, \textbf{Fe18}] and a Cu-based complex as PS that can convert CO\textsubscript{2} to CO under visible light with a TON of 273 and a quantum yield of 6.7\% (Table 3, entry 42).198

Supramolecular assemblies (often called dyads, see Chart 5), formed by the covalent linkage of the catalyst and the photosensitizer units via bridging ligands, also showed interesting performances, by potentially facilitating energy/electron transfers between subunits. A first structure was reported in 1992 by Kimura \textit{et al.} (Ru(phen)\textsubscript{2}[phen-Ni(cyclam)](ClO\textsubscript{4})\textsubscript{4}, \textbf{RuNi1}). It included a Ru(phen)3+ (phen = 1,10-phenanthroline) as a sensitizer unit and [Ni(cyclam)]2+ as a catalyst but CO\textsubscript{2} reduction was not catalytic (TON < 1). Improved performance for CO production was obtained with a mixed system of Ni(cyclam)2+ and Ru(phen)3+ (Table 6, entry 4).199 Aukauloo \textit{et al.} reported the supramolecular assembly \textbf{RuNi2}, including a ruthenium trisbipyridyl-like unit covalently attached to a nickel cyclam via a triazole ring. \textbf{RuNi2} was able to convert CO\textsubscript{2} to CO in aqueous solution with ascorbate as a sacrificial donor under 450 nm illumination with a few TON (Table 6, entry 5).200 Cobalt catalysts were also linked to a ruthenium photosensitizer for CO\textsubscript{2} reduction (\textbf{RuCo1} and \textbf{RuCo2}, Chart 5). After 29 hours of visible light irradiation in the mixed DMF : H\textsubscript{2}O : triethanolamine (3 : 1 : 1) solution, the selectivity is improved (TON\textsubscript{CO} = 3, TON\textsubscript{formate} = 31, TON\textsubscript{H\textsubscript{2}} = 1 for \textbf{RuCo1}, TON\textsubscript{CO} = 5, TON\textsubscript{formate} = 34, TON\textsubscript{H\textsubscript{2}} = 1 for \textbf{RuCo2}, Table 6, entries 6 and 7). The yields for CO\textsubscript{2} were comparable with those obtained with [Co-tris(bpy)]3+- simply mixed with [Ru(bpy)\textsubscript{3}]2+ (TON\textsubscript{CO} = 9, TON\textsubscript{formate} = 28, TON\textsubscript{H\textsubscript{2}} = 16) (Table 6, entry 8), although the selectivity was slightly better.201 Performances could be significantly enhanced upon introducing conjugation in the linkage between the PS center and catalyst, and thus better electronic interactions between the

Chart 5 Molecular structures of sensitizer–catalyst molecular dyads.
subunits. Using this strategy, selectivity for CO₂ reduction and stability of the systems were improved. With the three catalysts RuCo3, RuCo4, RuCo5, TON values for CO production in the range of 50 were obtained with selectivity ranging from 67% to 87% in CH₃CN/TEOA (5:1 v:v) using BIH as a sacrificial donor under Xe lamp irradiation (λ > 415 nm, Table 6, entries 9–11).

3.4 Supported molecular catalysts.

A third, hybrid approach, consists in supporting catalysts at inorganic light-absorbing materials. Indeed, although many homogeneous light-stimulated catalytic systems have been investigated in detail with good catalytic performance for CO₂ reduction, the relatively poor durability is a limiting factor for practical applications. Appending homogeneous photocatalysts at inorganic matrices has been developed to tackle some of these issues. In this section, we discuss CO₂ light stimulated reduction with hybrid molecule–material heterogeneous systems. Molecular catalysts associated with electrodes are briefly presented in Section 1.4.

3.4.1 Inorganic bulk materials as scaffolds.

Adsorbing or grafting molecules onto inorganic materials, such as silicon, zeolite and kaolin is the simplest approach. Hybrids consisting of CoIII cyclam (1,4,8,11-tetraaza-cyclotetradecane) complexes and silica SBA-15 via a refluxing and microwaving method have been prepared. By associating Co cyclam and SBA-15, higher catalytic activity (TONCO = 160) and selectivity were obtained than free cyclam molecules (TONCO = 142). Further grafting of the Co-cyclam onto silica by a microwave-assisted process afforded a uniform distribution of the CoIII active sites in the silica mesopores, boosting the activity for CO₂ reduction with TON values for CO production in the range of 50 were obtained with selectivity ranging from 67% to 87% in CH₃CN/TEOA (5:1 v:v) using BIH as a sacrificial donor under Xe lamp irradiation (λ > 415 nm, Table 6, entries 9–11).

A cobalt-based zeolitic imidazolate framework (Co-ZIF-9) led to a TON of 52.2 for CO in photoreduction of CO₂ employing TEOA as the sacrificial agent under visible light illumination. Unfortunately, the weak coordination bonds in the framework commonly result in poor stability of the hybrid which may lead active species to leach out. Overcoming these limitations may lead to new breakthrough in this rapidly emerging topic.

3.4.2 Particulate semi-conductors as supports.

Semi-conductors including carbon-based materials (graphene, carbon nitride, carbon nanotube and their derivatives) as well as inorganic metal sulfides (MoS₂, CdS, CdSe) and metal oxides (TiO₂ and ZrO₂) have been extensively used in constructing heterogeneous electro- and photocatalysts. In these catalytic systems, the semiconductor works as a photosensitizer, as co-catalyst and/or as an electronic channel.

Niu et al. have reported a thin film photocatalyst constructed by merging Co tetrahydroxyphenyl porphyrin (CoTHPP) and graphene. The hybrid film was suggested to reduce CO₂ to hydrocarbons under visible light, affording CH₄ and C₂H₂ through switching the electrons transfer direction from graphene–H₂O to graphene–CO₂, albeit no ¹³C labelled experiments were shown to confirm the origin of the products. By providing spatially and temporally separated centers for electrons and protons, the...
iron tetra(4-carboxyphenyl) porphyrin chloride molecular catalyst (Fe12) assembled with a carbon nitride nanosheet reduced CO2 into CO at a rate of 6.52 mmol g$^{-1}$ in 6 h with a selectivity of 98%. Mesoporous graphitic carbon nitride (mpg-C3N4) has also been employed as a redox photosensitizer in association with iron quaterpyridine (Fe13), thus forming a hybrid system fully made of abundant elements. It was shown that under visible light irradiation ($\lambda \geq 400$ nm), in a mixed CH3CN/triethanolamine (4:1, v:v) solvent, CO was obtained with 97% selectivity, reaching a TON of 155 after 17 h, and with an apparent quantum yield of ca. 4.2%. A polymeric cobalt phthalocyanine (Co6) catalyst (CoPpe) coupled with mesoporous carbon nitride was also developed. Photocatalytic activity was observed to be highly dependent on the catalyst loading and also on irradiation conditions. In CH3CN solution with TEOA as an electron donor, CO was obtained with TONCO = 84 and a selectivity of 85% under full solar spectrum irradiation (>300 nm), whereas under visible light, TONCO = 51 and selectivity decreased to 76% with identical catalyst loading. Recently, Co quaterpyridine (Co20) modified with an acid carboxylic group was covalently attached to the NH2 pendant groups of a mesoporous C3N4 material through an amide linkage. It led to enhanced stability and selectivity for CO production, thanks to the robust connection and efficient charge transfer between the material and the catalyst. In acetonitrile as a solvent with BIH as a sacrificial donor and phenol as a co-substrate, a 98% selectivity for CO was maintained over 4 days of irradiation with a TON of ca. 500.

In a similar approach, Reisner et al. also explored the association of molecular catalysts with semi-conducting materials. In a first example, they reported the immobilization of nickel terpyridines (Ni14 and derivatives) previously employed as CO2-to-CO electrocatalysts, adsorbed onto CdS quantum dots. These hybrids showed moderate photochemical activity under visible light in aqueous solutions for the reduction of CO2 into CO with a selectivity of above 90% for the thiol derivative (terpS). They later reported the association of a phosphonic acid-functionalized Ni(cyclam) (Ni11) catalyst with ZnSe quantum dots. The hybrid photocatalyst reduced CO2 to CO (Ni-based TONCO = 121, selectivity 8% after 20 h) in aqueous solution with ascorbic acid as the sacrificial agent. Interestingly, ZnSe surface modification with 2-(dimethylamino)ethanethiol (MEDA) resulted in the partial suppression of H2 generation and thus enhanced CO production (Ni-based TONCO = 283, selectivity 33%). Recently, Ni terpyridine (Ni14) was associated with halide perovskite nanocrystals (CsPbBr3) and the light-driven CO2 was studied in ethyl acetate as a solvent. Although no sacrificial donor was mentioned, CO was produced along with a small amount of methane, whose origin will likely be further investigated.

Weiss et al. employed CuInS2/ZnS quantum dots in colloidal DMSO solution to photosensitize the catalytic conversion of CO2 to CO with Fe1 as a homogeneous catalyst under visible laser light (450 nm). Efficient sensitization was ascribed to ultrafast (<200 fs) electron transfer between the quantum dot and Fe1, enabled by the formation of QD/catalyst complexes. The CO2 reduction to CO was achieved with a selectivity for CO of 84% (16% for H2) and a TON of ca. 50.

Further studies led to combining the negatively charged CuInS2/ZnS quantum dots with the positively charged Fe4 thus creating a strong electrostatic assembly. The photochemical reduction of CO2 to CO was then achieved in water, under 450 nm irradiation, reaching a TONCO of 450 after 30 h, with a selectivity of 99%.

These examples illustrate the remarkable potential of combining molecular catalysts to well defined semi-conductive nanomaterials and quantum dots. Controlling electronic interactions between the two sub-units and properly adjusting the catalyst choice may lead to high catalytic activity. Further development of complete Z-scheme systems, upon association of two sub-systems, one for CO2 reduction and one for water oxidation, may soon lead to stimulating discoveries.

4. Bi-metallic systems with synergy between metals

If molecular catalysts mainly involve monometallic species, both natural and synthetic ones may also include two metals in close proximity, which may lead to a beneficial effect on CO2RR through synergy (cooperativity) between the metals. Ni–Fe carbon monoxide dehydrogenase (CODH) is a natural metalloenzyme that can reversibly convert CO2 into CO. CO2 binds to both metal centers, with the C atom interacting with the Ni4 nucleophilic site and one of the O atoms bound to the Fe4electrophilic site. Thus the two metals work synergistically to facilitate the cleavage of the C–O bond and achieve high selectivity. Many efforts have been made to mimic this sophisticated catalytic process. But regarding synthetic catalysts, only a few bimetallic centers have been shown to act in concert to reduce the CO2 in molecular catalysts.

Solar-driven CO2 reduction with dinuclear bimetallic complexes have attracted quite intensive research efforts. In 1996, Mochizuki et al. reported two dimerized Ni-cyclam complexes. Compared to monometallic macrocyclic complex Ni7 (Table 6, entry 1), the dimerized Ni-cyclam Ni2 (Chart 6) shows enhanced efficiency and selectivity in CO2 to CO conversion with a TON of 4.4 in aqueous solution at pH 4 (Table 6, entry 2). When the Ni-cyclam dimer Ni1 (Chart 6) without methyl groups on the ligand was employed, the yield for CO was smaller than that for Ni2. Zhu et al. synthesized a dinuclear Co complex Co21 (Chart 6) containing an oxygen atom at the cis-coordination site.

In CH3CN/H2O (5:1) solution with TEA as a sacrificial donor, Co21 can achieve photocatalytic CO2 reduction to both CO and formate under 450 nm irradiation, with TON values of 57 and 64 respectively (Table 6, entry 3). In that case however, the major product obtained was H2 (TON 182). However, for all the above cases, geometry constraints likely prevent cooperativity effects between the metal atoms. One recent example related to photocatalytic reduction of CO2 was obtained with a dinuclear cobalt cryptate catalyst [Co2(OH)L]ClO4$_3$ (L = N[CH$_2$$_2$NHCH$_2$$_2$(CH$_2$)$_2$NH(CH$_2$)$_2$]N$_2$, Co2, Chart 6). It affords CO with a TON of 16896 and TOF of 0.47 s$^{-1}$ under 450 nm LED light irradiation for 10 hours (Table 6, entry 2), while the corresponding monomer gave a TON$_{CO}$ = 1600 with selectivity for CO of 85% in 10 hours. Based on experimental data and DFT calculations, authors
concluded that during the photocatalytic process, the two cobalt atoms work synergistically, with the CO₂ molecule bound to the 2 Co atoms. After replacing one of the Co centers by Zn (CoZn1, Chart 6), the photocatalytic performance of the heterobi-metallic complex [CoZn(OH)L](ClO₄)₃ (CoZn1) was largely boosted to a TON of 65 000 and a TOF of 1.8 s⁻¹ (Table 6, entry 13).²⁴⁰ The improved catalytic efficiency can be ascribed to the enhanced dinuclear metal synergistic catalysis effect between CoII and ZnII. ZnII plays the role of a Lewis acid center, helping C–O bond cleavage from an O=C–OH intermediate, thus significantly decreasing the activation barrier of the catalysis rate-determining step.

Recently, a binuclear Co complex (Co₂, Chart 6) bearing a bi-quaterpyridine ligand was shown to selectively reduce CO₂ to formate or CO under visible light.⁴⁰ Formate was produced selectively (maximum of 97%) in basic acetonitrile solution with a TON of up to 821 (Table 6, entry 14). Conversely, in the presence of a weak acid, CO₂ reduction affords CO with high selectivity (maximum of 99%) and a maximum TON of 829 (Table 6, entry 15). Spectro-electrochemistry (SEC) in the infrared region revealed an absorption band at 1635 cm⁻¹ (Fig. 14), which was assigned to the formation of a stable adduct between CO₂ and the four-electron-reduced complex. Together with DFT calculations, these results indicate that CO₂ was sandwiched by the two cobalt atoms of the binuclear complex with the C atom from CO₂ binding to one Co atom, and one O atom interacting with the second Co atom. The catalytic process is controlled by the synergistic action of the 2 Co atoms, each playing a different, complementary role, and the selectivity can be oriented towards one or the other product by simply changing...
the acidity of the co-substrate to form different active intermediates. Upon protonation at the oxygen atom, CO is evolved while protonation at the C atom furnishes formate.

Going to electrochemical experiments, it was found that linking two Ni monomers to form a Ni21 dimer can lead CO2 to HCOOH conversion while the monomer complexes get CO. Potentiostatic polarization at −1.4 V vs. SCE in DMF containing 0.1 M H2O led to the formation of formate with a good selectivity of 81% and FE of 68% after 5 hours (Table 5, entry 2). In such a case however and due to geometry constraints there is likely no cooperation between metal sites, as noted previously in the case of light-driven processes. Such cooperation was triggered upon using copper-based catalysts. A remarkable example is given by binuclear copper complex Cu12 (Chart 6) possessing two tripodal tris(2-pyridylmethyl)amine ligands, able to reduce CO2 into oxalate spontaneously. Upon CPE (7 h) at −0.03 V vs. NHE in CH3CN containing LiClO4 (to precipitate Li2C2O4), oxalate was obtained with an FE of 96% and a TON of 6 (Table 5, entry 3). The related complex Cu22 (Chart 6) gave similar results. A CuCu1 species was formed after reduction with sodium ascorbate in DMF, which further combined with two CO2 molecules, resulting in C2O42− generation (Table 5, entry 4). In these two cases, appropriate complex geometry and cooperativity between the two metal centers allowed for C–C bond formation.

Dinuclear Fe porphyrin molecule Fe21 with a Fe–Fe distance of 3.4–4.0 Å (Chart 6) was used to reduce CO2 in DMF solution. It was shown that the CO2 likely binds to the FeIIFeII species. Catalytic reduction is further triggered upon generating a FeIIFe0 species, at a potential ca. 100 mV more positive (−1.25 V vs. NHE in DMF) than for the monomeric Fe1. Upon adding 10% H2O, the catalytic current was increased by a factor 6 as compared to the monomer catalyst under similar conditions. Ten hours of electrolysis at −1.55 V vs. Ag/AgCl yielded 88% FE for CO with H2 as a by-product (Table 5, entry 1). The conversion of CO2 to formate has also been reported using an iron cluster Fe12. By using organic acids with different pKa, the selectivity of the reaction to formate or hydrogen can be controlled, with strong acids favoring hydrogen generation. CV and IR-SEC allowed identifying [Fe2Ni(CO)12]2− as a catalytic species. Formate was produced in aqueous solution after electrolysis at −1.20 V vs. SCE with 98% selectivity, with a postulated bridging hydride between two Fe centers. This selectivity remained above 85% for pH between 5 and 13, and no CO was detected (Table 5, entry 5). Replacing one CO ligand with PPh3 (Fe22) led to lower selectivity with formate as the main product still (Table 5, entry 6). Finally, upon replacing one CO ligand with PPh3CH2CH2OH (Fe23) almost no formate was obtained, with mainly H2 as a product (Table 5, entry 7).

Examples of synthetic homo or hetero bi(multi)-metallic molecular catalysts displaying increasing performances and/or specific reactivity, thanks to the synergistic effects exerted by the metal centers, remain scarce. It may however be an interesting pathway to precisely control the distance between the metals and the environment of each center so as to trigger new reactions, such as C–C bond coupling. Such a strategy is briefly described in the next section.

5. Beyond 2e− reduction of CO2

A growing number of articles have recently reported the reduction of CO2 beyond two electrons using molecular electro- or photo-catalysts, starting directly from the gas or sometimes using CO or HCOOH as a reactant. Such stimulating studies may reveal completely new catalytic pathways. A first mandatory requirement is to track for the carbon source, which necessitates careful labeled studies. Looking at reports in this area indicates that many studies using metal-based complex catalysts for the (photo)electrochemical reduction of CO2 to HCHO, CH3OH, and CH4, or even C2H4, do not yet confirm their origin. It is an even more critical issue when molecular catalysts lead to stoichiometric or sub-stoichiometric processes. Another hurdle lies in the fact that reporting on labeled experiments may lead to ambiguous conclusions regarding the origin of the catalysis products. An illustrative example is provided in Fig. 15. In this contribution, the authors have employed Co corroles deposited on carbon electrodes for the electrochemical reduction of CO2 into CH3OH in aqueous solution at pH 6. They compared GC/MS data under 12CO2 and 13CO2 to assess the carbon source for the observed methanol. The fragmentation pattern for CH3OH displayed m/z peaks shifted up by one unit under 13CO2, as expected; however, the relative intensity of the various peaks drastically changed upon labeling the carbon dioxide, casting doubt on the conclusion that the methanol is issued from CO2.

Table 5 Electrochemical CO2 reduction using bi(multi)metallic complexes

Entry	Catalyst	Solvent	Electrode	Time	TON product	TOF product	Potential (V)	overpotential η (V)	FE% product	Ref.
1	Fe21 0.5 mM DMF: H2O (9:1)	GC	10 h	188 CO	—	—	−1.55 V vs. Ag/AgCl η = 0.66 V	88 CO	235	
2	Ni21 0.2 mM DMF + 0.1 M H2O	HME (Hg)	5 h	3.2 HCOO−	—	—	−1.4 V vs. SCE	68 HCOO−	101	
3	Cu21 0.5 mM CH3CN + LiClO4	GC	7 h	0.76 CO	—	0.03 V vs. NHE	96 C2O4H2	234		
4	Cu22 0.3 mM DMF + Na2A	—	—	C2O42−	—	—	—	—	241	
5	Fe21 0.01 mM H2O (pH 7)	GC	50 min	28 HCOO−	—	−1.20 V vs. SCE	98 HCOO−	233		
6	Fe22 0.1 mM CH3CN:H2O (95:5)	GC	50 min	3.3 H2	—	−1.40 V vs. SCE	61 HCOO−	236		
7	Fe23 0.1 mM CH3CN:H2O (95:5)	GC	50 min	40 H2	—	−1.40 V vs. SCE	<3 HCOO−	236		
Another example concerns the electrochemical reduction of CO$_2$ with cobalt protoporphyrin using on-line mass spectroscopy detection (OLEMS). Labeled experiments are obscured by the presence of a mixture of products, solvent and electrolyte in the fragmentation pattern. Mass peak at m/z 17 could not be used to assess 13CH$_4$ formation from 12CO$_2$ as a reactant in water since the corresponding peak is dominated by the solvent signature. The authors instead used the peak at m/z 21 to track for the formation of 13CD$_4$ using 13CO$_2$ as a reactant in D$_2$O solvent. A blank experiment using 12CO$_2$ as a reactant for which no m/z = 21 signal would have been detected was however missing in the study, leaving the proof incomplete. In the following, we will focus our survey to cases where the source for products has been demonstrated without any ambiguity.

The first evidence of molecular electrochemical reduction of CO$_2$ beyond 2e$^-$ was recently obtained using cobalt phthalocyanine Co6 as a catalyst. The complex was mixed with multiwalled carbon nanotubes and deposited as a thin film onto carbon paper. Upon electrochemical reduction of CO$_2$ and CO intermediate, in neutral or basic solutions, formaldehyde was formed and further reduced into methanol with a maximum 14% FE at pH 13 and a partial current density for methanol of 0.68 mA cm$^{-2}$ ($E = -0.64$ V vs. RHE). The origin for methanol and the molecular nature of the catalysis were demonstrated by 1H NMR and XANES analysis respectively. Interestingly in this catalytic process, no methane was formed. Shortly after this publication, highly dispersed Co6 on MWCNTs has been shown to improve the catalytic activity of this catalyst for methanol, starting from CO$_2$, with up to 44% FE at -0.94 V vs. RHE (pH 6.8). It should be noted that it was not proved in this work that methanol is formed from CO$_2$ reduction; however, similarity to the previous paper makes the case consistent. It may also be noted that reduction of CO$_2$ and CO into methanol involving molecular complexes, such Fe, Ni and Co porphyrins, has been reported by Ogura et al. in a series of papers published in the 1980s. However, these systems involve the use of Everitt’s salt on a platinum electrode with the initial introduction of a primary alcohol and the molecular complex rather played the role of a co-catalyst.

The eight-electron-eight-proton reduction of CO$_2$ to methane has rarely been achieved. Under photochemical conditions, some iron porphyrins (Fe2 and Fe4, Table 3, entries 37, 38, 44) have been reported to convert CO$_2$ into CH$_4$ in acetonitrile or DMF solution containing an appropriate sensitizer and an amine as a sacrificial electron donor. Both highly reducing Ir complex PS6 and phenoxazine PS7 were
employed as sensitizers with visible light above 420 nm and 435 nm respectively. A TON of ca. 80 was typically obtained using CO₂ as a reactant with a selectivity for CH₄ around 17%. CO has been identified as a key intermediate in this process and could even be used as a starting reactant, leading to a maximum value of 160 for methane with a selectivity in the range of 82–85% (H₂ being the sole by-product) and an apparent quantum yield of up to 0.47%. A full mechanistic picture is still missing, although the bottleneck for the process is likely the reduction of the FeIICO species formed upon reduction of CO₂ to CO.

Another approach to get such a highly reduced product is to use metal complexes as pre-catalysts for in situ electrodeposition of highly active material catalysts. For example, starting from Fe₁₃, Fe nanoparticles (NPs) can be formed upon electrolysis in CH₃CN at a glassy carbon electrode in the presence of TEOA. These Fe NPs are able to achieve up to 2.6% FE for methane, being more active than particles electrodeposited from an iron salt or an iron based electrode. In this study, proper proof for the carbon source was brought about by the observation of an m/z 17 peak in GC/MS for methane when ¹³CO₂ was used as the reactant, along with correct fragmentation pattern and retention time as shown in Fig. 16.

The same phenomena were observed for copper based porphyrin and phthalocyanine Cu₁ and Cu₂ catalysts (Chart 7) that decompose into Cu NPs upon electrolysis in water (0.5 M KHCO₃) when deposited as thin films on carbon paper electrode or carbon electrodes. The nano-catalysts have higher activity for CH₄ and C₂H₄ than a bare Cu surface, with partial current density in the range of ca. 8.5 and 13 mA cm⁻² respectively, at a potential close to −1 V vs. RHE. These spectacular cases call for extreme vigilance not only about the carbon source but also about the actual state of the catalyst. For Cu₁, catalysis was indeed originally claimed to be a molecular process. In all these above reported examples (Fe₁₃, Cu₁, Cu₂) the ligand might have an effect on NPs shaping upon decomposition.

Overall, these molecular pre-catalysts certainly deserve to be vigorously investigated since it may lead to unexpected catalytic properties and high activity.

The next challenge will be to design molecular catalysts able to create C–C bonds so as to produce highly reduced compounds such as alkenes and alcohols. It probably comes with no surprise that all examples investigated so far for multi-electron multi-proton (n > 2) CO₂ reduction, involving monometallic complexes under homogeneous conditions or deposited in thin films, have not led to dimerization or coupling of partially reduced substrates (e.g. CO, HCOOH) bound at the two closely spaced metal centers. Such coupling has indeed been shown to be a key step in heterogeneous catalysis, for example at copper materials. The development of multimetallic molecular complexes able to bind several CO₂ molecules at a time in a controlled environment may open interesting perspectives toward this challenge.

Concluding remarks

Multi-facet mechanistic and spectroscopic studies have allowed making progress in the understanding of catalytic processes involved during CO₂ reduction with molecular complexes.
Much remains to be done, both in electrochemical and light-driven catalysis. Further progress will certainly emerge from advanced mechanistic and in situ/in operando spectroscopic studies allowing not only deciphering the elementary steps of the processes but also clear identification of the degradation pathway(s). It will then open a path toward rational tuning of the next generation of catalysts. Nevertheless, Co, Fe and Ni coordinated by azamacrocycles and polypyridine ligands have led to high reactivity towards electrochemical and visible-light driven CO$_2$ reduction to CO and formate, both in organic solvents and in water. Robust catalysts, once immobilized onto conductive supports, have shown remarkable stability, extending over a day. The achievement of high current densities in electrochemical cells has opened a door to the design of devices at the industrial scale. Progress has also been made recently with hybrid materials in which molecular catalysts are connected to semi-conductive particles or bulk electrodes. Studies of such materials are certainly an area that could strongly benefit from the synergistic combination of homogeneous and heterogeneous catalysis. Finally, the ability of molecular catalysts to drive the multi-electron multi-proton reduction of CO$_2$ beyond CO and formate, even if still limited to a few examples, opens new exciting perspectives for the synthesis of more complex molecules, with the creation of carbon–carbon bonds. Development of such processes using well defined metal complexes will lead to a breakthrough in CO$_2$ reduction chemistry.

Abbreviations

- **P**: Oxidized form of the catalyst (inactive)
- **Q**: Reduced form of the catalyst (active)
- **A**: Substrate
- **B**: Product
- **i**: Catalytic current
- **i$_0$**: Peak current in the absence of substrate
- **i$_{\text{plateau}}$**: Scan rate independent catalytic plateau current
- **F**: Faraday constant
- **S**: Electrode geometric surface area
- c_A^0: Substrate concentration in the bulk solution
- **C$_P^0$**: Catalyst concentration in the bulk solution
- **D$_P$**: Catalyst diffusion coefficient
- **D$_A$**: Substrate diffusion coefficient in solution
- **D$_S$**: Substrate diffusion coefficient in a film
- **d$_f$**: Catalytic film thickness
- k_A: Substrate partition coefficient in a film
- **v**: Scan rate
- **R**: Gas constant
- **T**: Temperature
- **E**: Applied potential
- **$E^\circ_{P/Q}$**: Standard potential of the P/Q redox couple
- **k$_s$**: Standard electron transfer rate constant
- **k$_\text{cat}$**: (Pseudo first order) rate constant of the catalytic process
- **η**: Overpotential
- **TOF**: Turnover frequency
- **TON**: Turnover number
- **NHE**: Normal hydrogen electrode
- **RHE**: Reversible hydrogen electrode
- **SCE**: Standard calomel electrode
- **GC**: Glassy carbon (electrode)
- **GDE**: Gas diffusion electrode
- **CPE**: Controlled potential electrolysis
- **CV**: Cyclic voltammetry/cyclic voltammogram
- **QP**: Quantum dot
- **MWCNT**: Multiwalled carbon nanotube
- **EA**: Electron acceptor
- **SD**: Sacrificial electron donor
- **PS**: Photosensitizer

Conflicts of interest

The authors declare no conflicts of interest.

Acknowledgements

This work was financially supported by Université de Paris, CNRS, Air Liquide, SATT Erganeo and the French National Agency for Research (ANR-16-CE05-0010-01). M. W. and B. M. thank the China Scholarship Council for their PhD fellowship (CSC student number 201606220034 and 201707040042, respectively) and partial financial support to M. R. from the Institut Universitaire de France (IUF) is also gratefully acknowledged.

References

1. S. Meshitsuka, M. Ichikawa and K. Tamaru, *J. Chem. Soc., Chem. Commun.*, 1974, 158–159.
2. J.-M. Saveant, *Chem. Rev.*, 2008, 108, 2348–2378.
3. E. E. Benson, C. P. Kubiak, A. J. Sathrum and J. M. Smieja, *Chem. Soc. Rev.*, 2009, 38, 89–99.
4. C. Costentin, M. Robert and J. M. Savéant, *Chem. Soc. Rev.*, 2013, 42, 2423–2436.
5. R. Francke, B. Schille and M. Roemelt, *Chem. Rev.*, 2018, 118, 4631–4701.
6. K. E. Dalle, J. Warnan, J. J. Leung, B. Reuillard, I. S. Karmel and E. Reisner, *Chem. Rev.*, 2019, 119, 2752–2875.
7. C. Jiang, A. W. Nichols and C. W. Machan, *Dalton Trans.*, 2019, 48, 9454–9468.
8. C. Costentin, S. Drouet, M. Robert and J. M. Savéant, *J. Am. Chem. Soc.*, 2012, 134, 11235–11242.
9. B. M. L. Dioos, I. F. J. Vankelecom and P. A. Jacobs, *Adv. Synth. Catal.*, 2006, 348, 1413–1446.
10. D. M. Chisholm and J. Scott McIndoe, *Dalton Trans.*, 2008, 3933–3945.
11. X.-M. Hu, S. U. Pedersen and K. Daasbjerg, *Curr. Opin. Electrochem.*, 2019, 15, 148–154.
12. L. Sun, V. Reddu, A. C. Fisher and X. Wang, *Energy Environ. Sci.*, 2020, 13, 374–403.
13. J.-P. Jones, G. K. S. Prakash and G. A. Olah, *Isr. J. Chem.*, 2014, 54, 1451–1466.
T. Masuda, Top. Catal., 2016, 64, 3968–3976.
N. Han, Y. Wang, L. Ma, J. Wen, J. Li, H. Zheng, K. Nie, X. Wang, F. Zhao, Y. Li, J. Fan, J. Zhong, T. Wu, D. J. Miller, J. Lu, S.-T. Lee and Y. Li, Chem., 2017, 3, 652–664.
E. Boutin, M. Wang, J. C. Lin, M. Mesnage, D. Mendoza, B. Lassalle-Kaiser, C. Hahn, T. Jaramillo and M. Robert, Angew. Chem., Int. Ed., 2019, 58, 16172–16176.
D. Gianolo, X-Ray Absorption and X-Ray Emission Spectroscopy, Wiley, 2016, ch. 5, pp. 99–124, DOI: 10.1002/9781118844243.ch5.
T. Masuda, Top. Catal., 2018, 61, 2103–2113.
B. Lassalle-Kaiser, S. Gul, J. Kern, V. K. Yachandra and J. Yano, J. Electroanal. Spectrosc. Relat. Phenom., 2017, 221, 18–27.
Y. Gorlin, B. Lassalle-Kaiser, J. D. Benck, S. Gul, S. M. Webb, V. K. Yachandra, J. Yano and T. F. Jaramillo, J. Am. Chem. Soc., 2013, 135, 8525–8534.
K. Cheaib, B. Maurice, T. Mateo, Z. Halime and B. Lassalle-Kaiser, J. Synchrotron Radiat., 2019, 26, 1980–1985.
S. Best, A. Levina, C. Glover, B. Johannessen, P. Kappen and P. A. Lay, J. Synchrotron Radiat., 2016, 23, 743–750.
O. Wolter and J. Heitbaum, Ber. Bunsenges. Phys. Chem., 1984, 88, 2–6.
P. Dubé and G. M. Brisard, J. Electroanal. Chem., 2005, 582, 230–240.
E. L. Clark, M. R. Singh, Y. Kwon and A. T. Bell, Anal. Chem., 2015, 87, 8013–8020.
E. L. Clark and A. T. Bell, J. Am. Chem. Soc., 2018, 140, 7012–7020.
Y. Lai, R. J. R. Jones, Y. Wang, L. Zhou and J. M. Gregoire, ACS Comb. Sci., 2019, 21, 692–704.
R. Kortlever, C. Balemans, Y. Kwon and M. T. M. Koper, Catal. Today, 2015, 244, 58–62.
A. H. Wonders, T. H. M. Housmans, V. Rosca and M. T. M. Koper, J. Appl. Electrochem., 2006, 36, 1215–1221.
K. J. P. Schouten, Y. Kwon, C. J. M. van der Ham, Z. Qin and M. T. M. Koper, Chem. Sci., 2011, 2, 1902–1909.
R. Kortlever, K. H. Tan, Y. Kwon and M. T. M. Koper, J. Solid State Electrochem., 2013, 17, 1843–1849.
R. Kas, R. Kortlever, A. Milbrat, M. T. Koper, G. Mul and J. Baltrusaitis, Phys. Chem. Chem. Phys., 2014, 16, 12194–12201.
J. Shen, R. Kortlever, R. Kas, Y. Y. Birdja, O. Diaz-Morales, Y. Kwon, I. Ledezma-Yanez, K. J. P. Schouten, G. Mul and M. T. M. Koper, Nat. Commun., 2015, 6, 8177.
H. Baltruschat, J. Am. Soc. Mass Spectrom., 2004, 15, 1693–1706.
T. Hartung and H. Baltruschat, Langmuir, 1990, 6, 953–957.
Y. Gao, H. Tsuji, H. Hattori and H. Kita, J. Electroanal. Chem., 1994, 392, 195–200.
K. Jambunathan, S. Jayaraman and A. C. Hillier, Langmuir, 2004, 20, 1856–1863.
Y. Hirata, K. Suga and M. Fujihira, Chem. Lett., 1990, 1155–1158.
H. Kazuya, T. Katsuhiko, S. Hideo and T. Shinobu, Chem. Lett., 1977, 1137–1140.
H. Kazuya, T. Katsuhiko, S. Hideo and T. Shinobu, Chem. Lett., 1979, 305–308.
B. J. Fisher and R. Eisenberg, J. Am. Chem. Soc., 1980, 102, 7361–7363.
L. Chen, Z. Guo, X.-G. Wei, C. Gallenkamp, J. Bonin, E. Anxolabéhère-Mallart, K.-C. Lau, T.-C. Lau and M. Robert, J. Am. Chem. Soc., 2015, 137, 10918–10921.
K.-W. Fung and T. C. W. Mak, J. Chem. Soc., Dalton Trans., 1988, 2153–2159.
D. C. Lacy, C. C. L. McCrory and J. C. Peters, Inorg. Chem., 2014, 53, 4980–4988.
M. Zhang, M. El-Roz, H. Frei, J. L. Mendoza-Cortes, M. Head-Gordon, D. C. Lacy and J. C. Peters, J. Phys. Chem. C, 2015, 119, 4645–4654.
A. Chapovetsky, T. H. Do, R. Haiges, M. K. Takase and S. C. Marinescu, J. Am. Chem. Soc., 2016, 138, 5765–5768.
A. Chapovetsky, M. Welborn, J. M. Luna, R. Haiges, T. F. Miller and S. C. Marinescu, ACS Cent. Sci., 2018, 4, 397–404.
N. Elgrishi, M. B. Chambers, V. Artero and M. Fontecave, Phys. Chem. Chem. Phys., 2014, 16, 13635–13644.
J. Schneider, H. Jia, K. Kobi, D. E. Cabello, J. T. Muckerman and E. Fujita, Energy Environ. Sci., 2012, 5, 9502–9510.
M. Beley, J.-P. Collin, R. Ruppert and J.-P. Sauvage, J. Chem. Soc., Chem. Commun., 1984, 1315–1316.
M. Beley, J.-P. Collin, R. Ruppert and J.-P. Sauvage, J. Am. Chem. Soc., 1986, 108, 7461–7467.
J. P. Collin, A. Jouaiti and J. P. Sauvage, Inorg. Chem., 1988, 27, 1986–1990.
G. B. Balazs and F. C. Anson, J. Electroanal. Chem., 1992, 325, 325–335.
K. Bujno, R. Bilewicz, L. Siegfries and T. A. Kaden, J. Electroanal. Chem., 1998, 445, 47–53.
S. Sakaki, J. Am. Chem. Soc., 1992, 114, 2055–2062.
J. D. Froehlich and C. P. Kubiak, Inorg. Chem., 2012, 51, 3932–3934.
Y. Wu, B. Rudshuteyn, A. Zhanaidarova, J. D. Froehlich, W. Ding, C. P. Kubiak and V. S. Batista, ACS Catal., 2017, 7, 5282–5288.
I. Bhugun, D. Lexa and J.-M. Savéant, J. Am. Chem. Soc., 1994, 116, 5015–5016.
I. Bhugun, D. Lexa and J.-M. Savéant, J. Phys. Chem., 1996, 100, 19981–19985.
C. Costentin, M. Robert, J. M. Saveant and A. Tatin, Proc. Natl. Acad. U. S. A., 2015, 112, 6882–6886.
C. Costentin, G. Passard, M. Robert and J. M. Saveant, J. Am. Chem. Soc., 2014, 136, 11821–11829.
I. Azcarate, C. Costentin, M. Robert and J. M. Saveant, J. Am. Chem. Soc., 2016, 138, 16639–16644.
C. G. Margarit, N. G. Asimow, C. Costentin and D. G. Nocera, ACS Energy Lett., 2020, 5, 72–78.
M. N. Mahmood, D. Massheder and C. J. Harty, J. Appl. Electrochem., 1987, 17, 1223–1227.
N. Furuya and K. Matsu, J. Electroanal. Chem., 1989, 271, 181–190.
M. Wang, K. Torbensen, D. Salvatore, S. Ren, D. Joulié, F. Dumoulin, D. Mendoza, B. Lassalle-Kaiser, U. Isci, C. P. Berlinguette and M. Robert, Nat. Commun., 2019, 10, 3602.
