Time-Continuous Bell Measurements

Sebastian G. Hofer,1,2,* Denis V. Vasilyev,2 Markus Aspelmeyer,1 and Klemens Hammerer2

1Vienna Center for Quantum Science and Technology (VCQ), Faculty of Physics, University of Vienna, Boltzmanngasse 5, 1090 Vienna, Austria
2Institute for Theoretical Physics, Institute for Gravitational Physics (Albert Einstein Institute), Leibniz University Hannover, Callinstraße 38, 30167 Hannover, Germany

We combine the concept of Bell measurements, in which two systems are projected into maximally entangled states, with the concept of continuous measurements, which concerns the evolution of a continuously monitored quantum system. For time-continuous Bell measurements based on homodyne detection of light we derive the corresponding stochastic Schrödinger equations, as well as the unconditional feedback master equations. Our results cover in particular the two scenarios of time-continuous quantum teleportation and entanglement swapping. We apply our results to show that (i) two two-level systems can be deterministically entangled via homodyne detection of light, even including photon loss approaching the fundamental limit of 50%, and (ii) a quantum state of light can be continuously teleported to a mechanical oscillator. This time-continuous remote quantum state preparation works under the same conditions as are required for optomechanical ground state cooling.

Introduction.— The quantum theory of time-continuous measurements provides profound insight into the intricate connection between decoherence, measurement and the transition from quantum to classical physics [1–12, see also [13–16]. In conjunction with continuous feedback control it builds the basis for an increasing scope of quantum physics experiments, ranging from single atoms [17–19], cavity modes [20, 21], via atomic ensembles [22–24], up to massive mechanical oscillators [25–30], demonstrating continuous measurement and control at the quantum limit.

In such experiments the system to be measured and controlled (e.g., the ion, cavity, mechanical oscillator) continuously interacts with an environment serving as a ‘meter system’ (e.g., an optical field) which in turn is continuously measured. The corresponding measurement results are fed back to the primary system as a continuous control in order to achieve the desired quantum state or dynamics. The impressive experimental progress [17–30] opens up the possibility to combine several of these setups, and to perform a continuous nonseparable measurement on the environments, i.e., the meter systems. Such a strategy was shown to be advantageous in the control of entanglement of parametrically interacting oscillators [31, 32]. In the extreme limit such a measurement can correspond to a continuous projection of the environments on maximally entangled states, that is, to a continuous Bell measurement.

In this article we introduce and study continuous Bell measurements realized via continuous homodyne detection of light [5, 6]. We derive the constitutive equations of motion—the conditional stochastic Schrödinger equation and the unconditional feedback master equation—for the monitored systems. Two scenarios are studied (Fig. 1): In the first one a single system couples to a field A, which is subject to a Bell homodyne detection after interference with a second field B prepared in a general state of Gaussian (possibly squeezed) white noise. In the second setup the Bell measurement is performed on the fields emitted by two systems. Provided the system-field interactions create entanglement, the feedback master equations for the two setups cover in particular the cases of time-continuous quantum teleportation and time-continuous entanglement swapping.

We illustrate the latter process for two two-level systems, and show that they can be continuously and deterministically driven to an entangled state, ideally a Bell state. Entanglement is generated even for light losses up to 50% when the quantum capacity of the optical communication channel drops to zero [33]. This deterministic scheme for distributing long distance entanglement can provide the basis for a dissipative quantum repeater architecture [34]. Furthermore, time-continuous quantum teleportation is exemplified for an optomechanical system where the quantum state of continuous-wave light is continuously transferred to a moving mirror. We show that the experimental requirements are essentially the same as for optomechanical ground-state cooling [35, 36], the

* sebastian.hofer@univie.ac.at

* sebastian.hofer@univie.ac.at
where \(\xi_{\pm}(t) = dW_{\pm}(t)/dt \) is zero-mean, Gaussian, white noise with corresponding Wiener increments \(dW_{\pm} \) \[40\]. The (co-)variances of \(dW_{\pm} \) are given by

\[
\begin{align*}
 w_1 dt :&= (dW_+)^2 = [N + 1 + (M + M^*)/2] dt, \\
 w_2 dt :&= (dW_-)^2 = [N + 1 - (M + M^*)/2] dt, \\
 w_3 dt :&= dW_+ dW_- = -i(M - M^*) dt,
\end{align*}
\]

as follows essentially from the initial mean values with respect to the optical fields \((\langle X_+^2 \rangle_{\phi(0)} \langle (P_+)^2 \rangle_{\phi(0)}\), \etc. As expected, we in general find non-zero cross-correlations between \(I_+\) and \(I_-\), which depend on the squeezing properties of the input field \(B\). Using Itô rules \[40\] we can construct the corresponding stochastic master equation (in Itô form) for the system state conditioned on the Bell measurement result,

\[
\tilde{d}\rho_c = \mathcal{L}\rho_c dt + \frac{1}{\sqrt{2}} \{ [H_{sys}, \rho] + \mathcal{D}[s] \rho, dW_+ + [H_{sys}, \rho] + \mathcal{D}[s] \rho, dW_- \},
\]

where we defined \(\mathcal{L}\rho = -i[H_{sys}, \rho] + \mathcal{D}[s] \rho\), the Lindblad operator \(\mathcal{D}[s] \rho = (s s^\dagger - 1/2 s^\dagger s 1^\dagger s^\dagger s^\dagger)\), and \(\mathcal{H}[s] \rho = (s - \langle s \rangle) \rho + \rho (s - \langle s \rangle)^\dagger\).

We now apply Hamiltonian feedback proportional to the homodyne photocurrents to the system, a scenario which covers in particular the case of continuous quantum teleportation of the state of field \(B\) to the system \(S\). We follow \[41\] in order to derive the corresponding unconditional feedback master equation. Hamiltonian feedback is described by a term \([\rho_c, h] = \sqrt{1/2} (I_+ K_+ + I_- K_-) \rho_c\), where we define \(K_+ \rho = -i[F_+ \rho, F_- \rho]\), and Hermitian operators \(F_{\pm}\). After incorporating this feedback term into the SME (6) (see supplemental information), and taking the classical average over all possible measurement outcomes, \(\rho = E[\rho_c]\), we arrive at the unconditional feedback master equation

\[
\dot{\rho} = -i [H_{sys} + (1/4) \{ (F_+ + i F_-) s + s^\dagger (F_+ - i F_-) \}, \rho] + (1/2) \{ [D [s], \rho] + [D [s], \rho] \rho + w_3 D [F_+, F_-] \rho + (w_1 - w_3 - 1) D [F_+] \rho + (w_2 - w_3 - 1) D [F_-] \rho \}.
\]

This is the main result of this section. The evolution of the system \(S\) thus effectively depends on the state of the field \(B\) (via \(w_i\) which has never interacted with \(S\), and which can in principle even change (adiabatically) in time. Eq. (7) can thus be viewed as a continuous “remote preparation” of quantum states.

In order to illustrate this point we consider the case where the target system \(S\) is a bosonic mode. For a system to be amenable to continuous teleportation the system-field interaction must enable entanglement creation. We thus set \(s = c + c^\dagger\), with \(c\) a bosonic annihilation operator, and therefore obtain \(H_{int} \propto c a(t) + c^\dagger a^\dagger(t)\), an interaction commonly known as two-mode-squeezing interaction. Additionally we choose \(F_+ = i(c - c^\dagger)\) and \(F_- = (c + c^\dagger)\), which means that the photocurrents \(I_+, I_-\) will be fed-back to the \(x\) and \(p\) quadrature, respectively. The resulting equation can brought into the form

\[
\dot{\rho} = -i[H_{sys}, \rho] + (2N + 1) K[J] \rho,
\]
where the jump operator J is determined by $J \propto -i(2N + 1 - M - M^*)p$ (with an appropriate normalization). For $H_{\text{sys}} = 0$ equation (8) has the steady-state solution $\rho_{\text{ss}} = |\psi\rangle\langle\psi|$, where $J|\psi\rangle = 0$. Up to a trivial transformation this state is identical to the input state $|M\rangle\langle M|$. Note that for the vacuum case $N = M = 0$ we find $J = c$, which means that, devoid of other decoherence terms, the system will be driven to its ground state.

Below, we will come back to this scenario, and discuss its implementation on the basis of an optomechanical system in more detail. First, however, we consider the second realization of quantum dynamics conditioned on a continuous Bell measurement, namely continuous entanglement swapping, as depicted in Fig. 1(b).

Continuous Entanglement Swapping.— We now replace the Gaussian input state in mode B with a field state emitted by a second system, which couples to the field B via $H_{\text{int}} = i[s_2b(t) - s_2^b(t)]$. Using the same logic as before we can derive the linear stochastic Schrödinger equation for the bipartite state $|\tilde{\psi}\rangle$ (comprising $S_1 + S_2$)

$$d|\tilde{\psi}\rangle = [-iH_{\text{eff}}dt + s_+ I_+(t)dt + is_- I_-(t)dt]|\tilde{\psi}\rangle,$$

where now $H_{\text{eff}} = H_{\text{sys}}^{(1)} + H_{\text{sys}}^{(2)} - \frac{i}{2} \sum_{i=1,2} s_i J_i$ and $s_\pm = s_1 \pm s_2$. Accordingly, the homodyne currents read

$$I_+(t) = \sqrt{1/2} (s_+ + s_1^\dagger)_{\psi(t)} + \xi_+(t),$$

$$I_-(t) = i\sqrt{1/2} (s_- - s_1^\dagger)_{\psi(t)} + \xi_-(t),$$

and the corresponding conditional master equation is

$$d\rho_c = L\rho_c dt + \sqrt{1/2} \{H[s_+],\rho_c dW_+ + H[is_-],\rho_c dW_-\},$$

with $L\rho = -i[H_{\text{sys}}^{(1)} + H_{\text{sys}}^{(2)},\rho] + D[s_1]\rho + D[s_2]\rho$. Here, the Wiener increments are uncorrelated and have unit variance, i.e., $(dW_+)^2 = (dW_-)^2 = dt$, $dW_+ dW_- = 0$. Applying Hamiltonian feedback to either or both of the two systems in the same way as before gives rise to

$$\dot{\rho} = -i[H,\rho] - i(1/4) \{F_+ + iF_- s_1 + \text{h.c.},\rho\}$$

$$- i(1/4) \{F_+ - iF_- s_2 + \text{h.c.},\rho\}$$

$$+ (1/2) \{D[s_+ - iF_+]|\rho + D[s_- - F_-]|\rho\}.$$

This is the desired feedback master equation for continuous entanglement swapping. In a simple generalization of the continuous teleportation example considered above, one can check that the analogous strategy applied to two bosonic modes with $s_i = e_i$, will indeed drive the two systems to an Einstein–Podolsky–Rosen entangled stationary state. In view of Fig. 1(b) the resulting topology comes close to a Michelson interferometer, for which a similar scheme was discussed in [43]. Note, however, that the central equations (6), (7) and (9), (12) are general, and also apply to non-Gaussian systems. As a rather surprising application we will show, that a pure entangled state of two two-level systems (TLS) can be created deterministically.

Consider two TLS which couple to a 1D field via operators $s_i = \sqrt{2(z+1)}\sigma_i^+ - \sqrt{2(z-1)}\sigma_i^-$ ($i = 1, 2; z \in [0,1]$). The fields are subject to a continuous Bell measurement as depicted in Fig. 1(b). The homodyne photocurrents $I_{\pm}(t)$ are used in a Hamiltonian feedback scheme to generate rotations of the TLS about their x and y axes according to $F_+ = G_+\sigma_+^z + G_+\sigma_2^z$ and $F_- = G_-\sigma_-^z - G_-\sigma_2^z$, with gain coefficients $G_\pm = \sqrt{z/(1 + z)}(1 \pm \sqrt{z(1+z)/(1-z)})$. For this choice of s_i and F_\pm, and assuming that the levels in each TLS are degenerate (such that $H_{\text{sys}}^{(i)} = 0$), the jump operators in Eq. (12), become $J_+ = s_+ - iF_+ \propto j_1 - j_2 j_1$ and $J_- = s_- - F_- \propto j_2 + \lambda j_1$, where $j_1 = \sigma_1^+ + \sigma_2^z$ and $j_2 = \sigma_2^+ + \sigma_2^z$, and λ is a real coefficient. The common dark state of the jump operators $J_{1,2}^{\pm} = j_{1,2}^{\pm}|\Phi\rangle = 0$ is the pure entangled $|\Phi\rangle \propto |00 \rangle - |11 \rangle$ which becomes a maximally entangled Bell state for $z \rightarrow 1$ [34]. The particular linear combination of $j_{1,2}$ in J_{sys} is chosen such, that the state $|\Phi\rangle$ is also an eigenstate of the effective Hamiltonian $H_{\text{eff}} = \frac{1}{4}[(F_+ + iF_-)s_1 + (F_+ - iF_-)s_2 + \text{h.c.}] - \frac{1}{4}(J_+^J J_+ + J_-^J J_-)$ of Eq. (12), i.e., $H_{\text{eff}}|\Phi\rangle = 0$. Together, these properties guarantee that the stationary state of Eq. (12) is the pure entangled state $|\Phi\rangle$ [44]. Note that in this way entanglement is generated deterministically, in contrast to conditional schemes based on photon counting [45-50]. Moreover, the present protocol does not require to couple nonclassical light, such as squeezed or single photon states, into cavities or to the TLS, in contrast to previous schemes [51-58].

The ideal limit of Bell state entanglement ($z \rightarrow 1$ [59]) is achieved only in the limit of infinite feedback gains G_\pm, as is to be expected for the present treatment. More sophisticated descriptions of feedback, might relieve this restriction [15]. However, in the relevant case including losses, the optimal feedback gains stay finite even

FIG. 2. (Color online) Performance of continuous entanglement swapping: (a) Entanglement (logarithmic negativity [42]) of the stationary state versus η parameterizing the light-matter interaction $\propto i(\sqrt{\frac{1}{2} + z})\sigma^+ - \sqrt{1 - z}\sigma^-$ as depicted in Fig. 1(b). (b) Entanglement versus transmissivity for optimized gains. (c) Entanglement versus transmissivity for optimized z. Nonzero entanglement can be achieved even for losses approaching 50%.
in the present description. Assuming that all passive photon losses, such as finite transmission and detector efficiency, are combined in one transmissivity/efficiency parameter η, we have to apply the generalized feedback master equation from the supplemental information instead of Eq. (12). For given η and light matter interaction, i.e., fixed z, we optimize the feedback gains G_{\pm} in order to maximize the entanglement of the stationary state ρ_{st}. We keep the particular form of the feedback Hamiltonians F_{\pm} as it preserves the Bell diagonal structure of ρ_{st}. Fig. 2 shows that entanglement can be achieved even for losses approaching 50%, which is where the quantum capacity of the lossy bosonic channel drops to zero [33].

The necessary strong coupling of TLS to a 1D optical field can be achieved in a variety of physical systems, such as cavities [21, 60–65] or atomic ensembles [24, 66, 67].

![Diagram](image)

FIG. 3. (Color online) Mechanical squeezing ζ against cooperativity C for varying mechanical bath occupation $\bar{n} = 0, 1/10, 1/2, \infty$ (represented by different colors) and sideband resolution $\kappa/\omega_m = 1$ (10) [solid (dashed) lines]. The solid black line at $\zeta = -6$dB shows the squeezing level of the input light, (corresponding to $N \approx 0.56$). The dashed vertical line shows the value of $C_{crit} = 1/\sqrt{N(N+1) - N} \approx 2.7$ above which mechanical squeezing is achievable for any \bar{n}.

Application to optomechanical systems.—In the remainder of this article we will show how continuous quantum teleportation can be implemented in an optomechanical system in the form of a strongly-driven Fabry–Pérot cavity with one oscillating mirror [Fig. 1(c)]. Here the system Hamiltonian (in the laser frame at ω_l) is $H_{sys} = H_0 + H_{om} = (\omega_m c_m^+ c_m + \Delta c_c^+ c_c) + g (c_m + c_m^+)(c_c + c_c^+)$, where ω_m is the mechanical frequency, $\Delta \omega = \omega_c - \omega_0$ is the detuning of the driving laser (at ω_l) with respect to the cavity (at ω_c), and g is the optomechanical coupling strength.

The decay rate of the cavity we denote by κ, while the coupling of the mechanical oscillator to a thermal bath (with a mean occupation number \bar{n}) we call γ. c_m and c_c are bosonic annihilation operators of the mechanical and the optical mode respectively.

In order to successfully implement continuous teleportation in this system we need to make several adaptations to the generic case presented above. To understand this we first need a clear picture of the system’s dynamics: In the regime $g \ll \kappa \ll \omega_m$ and for $\Delta \omega = -\omega_0$, the optomechanical interaction is $H_{om} \approx g (c_m c_c + c_m^+ c_c^+)$. Under the weak-coupling condition ($g \ll \kappa$) the cavity follows the mechanical mode adiabatically, and we effectively obtain the required entangling interaction between the mirror and the outgoing field. Moreover, the mechanical oscillator resonantly scatters photons into the lower sideband at ω_c. Spectrally, the photons which are correlated with the mechanical motion are therefore located at the sideband frequency ω_c. Consequently, we have to modify the previous measurement setup in two ways: Firstly, we choose the center frequency of the squeezed input light to sit at the sideband frequency ω_c. Secondly, we now use heterodyne detection to measure quadratures on the same sideband. These two modifications, together with the adiabatic elimination of the cavity (a perturbative expansion in g/κ [8]) and a rotating-wave approximation (an effective coarse-graining in time [40]), allow us to write the SME for the mechanical system, in the rotating frame at ω_m, as

$$
d\hat{\rho} = \gamma_- D[c_m] \hat{\rho} dt + \gamma_+ D[c_m^+] \hat{\rho} dt + \sqrt{\gamma^2 \kappa/2} \left\{ \mathcal{H}[-i\mu c_m^+ c_m^\dagger \hat{\rho}] dW_+ + \mathcal{H}[i\nu c_m^+ c_m^\dagger \hat{\rho}] dW_+ \right\},
$$

where $\eta_{\pm} = [\kappa/2 + (i \Delta \omega \pm \omega_m)]^{-1}$. The first two terms describe passive cooling and heating effects via the optomechanical interaction with cooling and heating rates $\gamma_- = \gamma (\bar{n} + 1) + 2g^2 \text{Re}(\eta_-)$ and $\gamma_+ = \gamma \bar{n} + 2g^2 \text{Re}(\eta_+)$, as was derived before in the quantum theory of optomechanical sideband cooling [68, 69]. The last two terms in (13) describe the continuous measurement in the sideband resolved regime for arbitrary laser detuning $\Delta \omega$. This is an extension of the conditional master equation for optomechanical systems usually considered in the literature which concerns a resonant drive and the bad-cavity limit [10, 70] (see however [71]).

For simplicity we assume here that we can apply feedback directly to the mechanical oscillator. More realistic feedback, for example optical feedback through the cavity, will be considered elsewhere. Under this premise we can adopt the same choice of F_{\pm} as before, and arrive at a feedback master equation similar to (8),

$$
\delta = \gamma (\bar{n} + 1) D[c_m] \delta + \gamma \eta D[c_m^+ c_m^\dagger] \delta + (4g^2/\kappa) \left\{ \lambda_1 \epsilon D[J_1(\epsilon)] + \lambda_2 \epsilon D[J_2(\epsilon)] \right\} \delta, \epsilon = \left[1 \pm (4\omega_m/\kappa)^2 \right]^{-1}.
$$

For details on how to derive λ_i and J_i refer to the supplemental information.) The protocol’s performance is degraded by mechanical decoherence effects and counter-rotating terms of the optomechanical coupling, which are suppressed by ϵ. For fixed input squeezing (determined by N) it is possible to describe the dynamics in terms of the mechanical bath occupation \bar{n}, the sideband resolution κ/ω_m and the so-called cooperativity parameter $C = g^2/(\bar{n} + 1) \gamma \kappa$. To illustrate the performance of the protocol we plot the mechanical squeezing ζ, and compare it to the squeezing of the optical input state (Fig. 3). As is evident from the figure there exists a crit-
ical value $C_{\text{crit}}(N) = 1/[\sqrt{N(N+1)} - N]$ determined by the level of input squeezing, above which mechanical squeezing can be achieved for any thermal occupation \tilde{n}. We emphasize that this condition on the optomechanical cooperativity is essentially the same as for the recently observed ground-state cooling [35, 36], back-action noise [37], or ponderomotive squeezing [38].

Conclusion.— In this article we present a generalization of the standard continuous-variable Bell measurement based on homodyne detection to a continuous measurement setting. We show how this concept, together with continuous feedback, can be applied to extend existing schemes for teleportation and entanglement swapping. We specifically apply these protocols to optomechanical and two-level systems, and remarkably find, that in addition to EPR entanglement, we can also generate qubit entanglement in a deterministic fashion. We suggest that the formalism developed here can serve as a basis for continuous measurement based quantum communication and information processing with both discrete and continuous variables.

ACKNOWLEDGMENTS

We acknowledge helpful discussions with G. Giedke and J.I. Cirac. We thank support provided by the European Commission (MALICIA, Q-ESSENCE), the European Research Council (ERC QOM), the Austrian Science Fund (FWF) (START, SFBOFOQUS), and the Centre for Quantum Engineering and Space-Time Research (QUEST) for support. S.G. H. is a member of the FWF Doctoral Programme CoQuS (W1210).

Appendix A: Bell measurement master equations

We first treat the case of continuous teleportation. Note that due to their definition, the Itô increments commute with the unitary evolution operator at all times. It thus holds that $dA(t)\phi(t) = dA(t)\phi(0) = dA(t)|\text{vac}\rangle_A = 0$, and by the same reasoning $[\{N + M^* + 1\}dB(t) - (N + M)dB^\dagger(t)]|\phi(t)\rangle = 0$, for the initial state $|\phi(0)\rangle = |\psi(0)\rangle_S|\text{vac}\rangle_A |M\rangle_B$. Inserting these terms into (1) with appropriate prefactors yields

$$d|\phi\rangle = \left\{-iH_{\text{eff}}dt + s_1(dA^\dagger + \alpha dA + dB - \alpha dB^\dagger)\right\}|\phi\rangle,$$

where $\alpha = (N + M)/(N + M^* + 1)$. Rearranging this leads to Eq. (2). The probability distribution of the measurement results I_{\pm} is given by $P(I_{\pm}(t), I_\perp(t)) = |\langle I_{\pm}I_\perp|\phi(t + dt)\rangle|^2$ [6, 15], which, to first order in dt, is a Gaussian with first and second moments given by (4) and (5) respectively.

To find the SME corresponding to (3) we define $\tilde{\rho}_c(t + dt) = \tilde{\psi}_c(t + dt)\tilde{\psi}_c^\dagger(t + dt)$ and note that $|\tilde{\psi}_c(t + dt)\rangle = |\psi_c(t)\rangle + d|\tilde{\psi}_c\rangle$, where $|\tilde{\psi}_c\rangle$ and $\tilde{\rho}_c$ are unnormalized. After normalizing $\rho_c(t + dt) = \rho_c(t + dt)/\text{tr}[\rho_c(t + dt)]$ we expand the resulting equation to second order in the noise increments dW_{\pm} and apply the Itô rules (5) (see [40]). With the definition $d\rho_c(t) = \rho_c(t + dt) - \rho_c(t)$ we find (6).

We follow the procedure developed in [41] to add the feedback term $[\rho_c|n\rangle = \sqrt{1/2} (I_+K_+ + I_-K_-) \rho_c$ to the conditional master equation. Note that this term must be interpreted in the Stratonovich sense [41]. To reconcile it with equation (6) we thus have to convert (6) to Stratonovich form, add $[\rho_c|n\rangle$, and convert to result back to Itô form. This yields

$$d\rho_c = \mathcal{L}\rho_c dt + \frac{1}{2} [dX_+K_+ + dP_-K_-]^2 \rho_c + \frac{1}{4} [dW_+\mathcal{H}[u|s\rangle + dW_-\mathcal{H}[iv|s\rangle]\rho_c + \frac{1}{4} [dX_+K_+ + dP_-K_-] \rho_c,$$

where the operator ordering $K\mathcal{H}$ was used in order to get a trace-preserving master equation [41]. Using the fact that $dX_t dX_j = dX_t dW_j = dWtdW_j$ together with (5) and taking the average with respect to the measurement outcomes $\rho = E[\rho_c]$ this equation can be brought into the form (7).

The case for entanglement swapping can be treated analogously. For the full system we can write

$$d|\phi\rangle = \left\{-iH_{\text{eff}}dt + s_1(dA^\dagger + \alpha dA + dB - \alpha dB^\dagger)\right\}|\phi\rangle,$$

which, by projection onto the EPR basis, leads to (9). Note that the initial state here is assumed to be $|\phi(0)\rangle = |\psi(0)\rangle_S|\text{vac}\rangle_A |M\rangle_B$. The corresponding feedback equation is derived as for continuous teleportation, using the multiplication table $(dW_+)^2 = (dW_-)^2 = dt$, $dW_+dW_- = 0$.

Appendix B: Bell measurement for non-unit detector efficiency

Passive losses due to inefficient detectors or imperfect transmission can be accounted for by introducing a combined transmissivity/efficiency $0 \leq \eta \leq 1$. The equations in the main text can be generalized in a straight-forward manner [15]. In particular we find for the case of continuous teleportation the conditional master equation

$$d\rho_c = \mathcal{L}\rho_c dt + \sqrt{\eta/2} [\mathcal{H}[u|s\rangle \rho_c dW_+ + \mathcal{H}[iv|s\rangle \rho_c dW_-],$$

and corresponding photocurrents

$$I_+(t) = \sqrt{\eta/2} (s + s^\dagger) \psi(t) + \xi_+(t),$$

$$I_-(t) = i\sqrt{\eta/2} (s - s^\dagger) \psi(t) + \xi_-(t).$$
Including feedback as $[\hat{p}_c]_b = \sqrt{1/2}\eta (I_c K_+ + I_c K_-) \rho_c$ gives rise to the feedback master equation

$$\dot{\rho} = -i[H_{\text{sys}} + (1/4) \left((F_+ + iF_-)s + s^\dagger(F_+ - iF_-) \right), \rho] + \frac{1}{2} \left\{ \mathcal{D}[s - iF_+]\rho + \mathcal{D}[s - F_-] + \frac{w_3}{\eta}\mathcal{D}[F_+] + F_-] \right\} \rho$$

Applying the same considerations to the case of entanglement swapping leads to

$$d\rho_c = L_c, d\rho_c + \sqrt{\eta/2} \left\{ \mathcal{H}[s_+]\rho_c dW_+ + \mathcal{H}[i s_-]\rho_c dW_- \right\},$$

and

$$\dot{\rho} = -i[H, \rho] - i(1/4) \left((F_+ + iF_-)s_1 + \text{h.c.}, \rho \right) + i(1/4) \left((F_+ - iF_-) s_2 + \text{h.c.}, \rho \right) + \frac{1}{2} \left\{ \mathcal{D}[s_+ - iF_+]\rho + \mathcal{D}[s_+ - F_+]\rho \right\} + (1 - \eta)/\eta \left\{ \mathcal{D}[F_+]\rho + \mathcal{D}[F_-] \right\},$$

replacing Eq. (11) and (12) respectively.

Appendix C: Diagonalization of non-Lindblad terms

In general the feedback master equations (7) and (12) are not in Lindblad form as the prefactors of the operators D can be negative. To cure this we can rewrite the non-unitary part of the evolution in terms of $R = (x, \rho)^T$ as $\dot{\rho} = \sum_{ij} \Lambda_{ij} (R_i \rho R_j - \frac{1}{2} \rho R_j R_i - \frac{1}{2} R_j \rho R_i)$, where Λ is a Hermitian matrix. By virtue of the eigenvalue decomposition of Λ we can write $\dot{\rho} = \sum \lambda_i D[J_i] \rho$ with $J_i = v_i \cdot R$, where λ_i and v_i ($i = 1, 2$) are the eigenvalues and eigenvectors of Λ respectively.

Appendix D: Continuous optomechanical teleportation

To derive Eq. (13) we start from the SME describing heterodyne detection of the optomechanical cavity’s output light. It can be obtained from equation (6) by replacing $s \rightarrow c_+ e^{i\Delta_{\text{det}}}$, where Δ_{det} is the local oscillator detuning, and adding decoherence terms for the mechanical subsystem, which are due to its coupling to a thermal bath. After going into an interaction picture with $H_0 = \omega_m c_+ \dagger c_m + \Delta c_+ \dagger c_c$, we can adiabatically eliminate the cavity mode, by expanding the equations in the small parameter g/κ up to first order [8, 72]. Under this approximation and after setting $\Delta_{\text{det}} = \omega_m$ the SME takes the form

$$d\rho_c = \mathcal{L}_c, d\rho_c - g^2 \left\{ c_m + c_m^\dagger, y_\rho_c - \rho_c y_\dagger \right\} dt + \frac{\sqrt{g^2 \kappa/2} \left\{ \mathcal{H}[i \mu e^{i\omega_m} y] \rho_c dW_+ + \mathcal{H}[y e^{-i\omega_m} y] \rho_c dW_- \right\}}{\sqrt{g^2 \kappa/2} \left\{ \mathcal{H}[i \mu e^{i\omega_m} y] \rho_c dW_+ + \mathcal{H}[y e^{-i\omega_m} y] \rho_c dW_- \right\}},$$

where $L_m \rho = -i[\omega_m c_m + \rho, \rho] + (\gamma (\bar{n} + 1) \mathcal{D}[c_m^\dagger] + \gamma \mathcal{D}[c_m] \rho$, and $\bar{n} = n_c + n_c^\dagger$. The steady-state mean amplitude of the intracavity field is $\langle c_c \rangle = -i \gamma \langle y \rangle$. The heterodyne photocurrents can thus be obtained from (4) by the replacement $\langle s \rangle \rightarrow -i \gamma \langle y \rangle e^{i\omega_m t}$, thus

$$I_+ = -i \sqrt{g^2 \kappa/2} \left\{ (\gamma e^{i\omega_m t} - \text{h.c.}) \langle t \rangle + \xi_+(t) \right\}$$

$$I_- = \sqrt{g^2 \kappa/2} \left\{ (\gamma e^{i\omega_m t} + \text{h.c.}) \langle t \rangle + \xi_-(t) \right\}$$

To apply the rotating wave approximation we go to the rotating frame of the mechanical oscillator (in the following denoted by $\hat{\rho}_c$) [73] and take an average over an interval dt, which comprises many mechanical periods, but is short on the system timescales in the rotating frame, i.e., $1/\gamma \gg dt \gg 1/\omega_m$. Under this assumption we can pull $\hat{\rho}_c$ out from under the integral and drop terms rotating at a frequency ω_m. At the same time we treat dt as infinitesimal on the system’s timescale and therefore replace $dt \rightarrow d t$. This leaves us with the equation

$$d\hat{\rho}_c = \Gamma \mathcal{D}[c_m^\dagger] \hat{\rho}_c dW_+ + \gamma_+ \mathcal{D}^\dagger[c_m^\dagger] \hat{\rho}_c dW_- + \frac{\sqrt{g^2 \kappa/2} \left\{ \mathcal{H}[i \eta \mu c_m^\dagger] \hat{\rho}_c dW_+ + \mathcal{H}[\eta \mu c_m] \hat{\rho}_c dW_- \right\}}{\sqrt{g^2 \kappa/2} \left\{ \mathcal{H}[i \mu e^{i\omega_m} y] \rho_c dW_+ + \mathcal{H}[y e^{-i\omega_m} y] \rho_c dW_- \right\}}.$$

We also introduced the time-averaged Wiener increments $dW_{0\pm} = \int dW_{\pm}$, which approximately fulfill (5), as far as $\hat{\rho}_c$ is concerned. In principle this equation contains additional measurement terms corresponding to sideband modes at frequencies $\pm 2\omega_m$, which in a RWA are not correlated to the DC modes $dW_{0\pm}$ and were therefore neglected. By renaming $dW_{0+} \rightarrow dW_c$ we arrive at (13). Note that by applying the RWA to the decoherence and the measurement terms consistently we assure that the resulting equation is a valid Belavkin equation [74].

To do feedback we do the same coarse-graining procedure for the photocurrents $I_{0\pm} = \int I_d dt$, and find

$$I_{0+} = -i \sqrt{g^2 \kappa/2} \left\{ (\eta + \text{c.c.}) \langle t \rangle + \xi_+(t) \right\},$$

$$I_{0-} = \sqrt{g^2 \kappa/2} \left\{ \eta + \text{c.c.} \langle t \rangle + \xi_-(t) \right\}.$$

Within these approximations the system is equivalent to the generic case in the main text. Applying the same feedback procedure we obtain

$$\hat{\rho}_m = \left\{ \gamma (\bar{n} + 1) \mathcal{D}[c_m^\dagger] + \gamma \mathcal{D}[c_m] \right\} \hat{\rho}_m + (4g^2/\kappa) \left\{ (1 + \epsilon) \mathcal{D}[c_m] + w_3 \mathcal{D}[x_m + p_m] \right\} + (w_1 - w_3 - 1) \mathcal{D}[x_m] \hat{\rho}_m,$$

In view of the previous section we can diagonalize this equation to obtain

$$\hat{\rho} = \left\{ \gamma (\bar{n} + 1) \mathcal{D}[c_m] + \gamma \mathcal{D}[c_m^\dagger] \right\} \hat{\rho} + (4g^2/\kappa) \left\{ \lambda_1 (\epsilon) \mathcal{D}[J_1 (\epsilon)] + \lambda_2 (\epsilon) \mathcal{D}[J_2 (\epsilon)] \right\} \hat{\rho},$$

where λ_1 and J_1 are obtained from the eigenvalue decomposition of

$$\Lambda = \begin{pmatrix} w_2 - \frac{1}{2} (1 + \epsilon) & -w_3 + \frac{i}{2} (1 + \epsilon) \\ -w_3 - \frac{i}{2} (1 + \epsilon) & w_1 - \frac{1}{2} (1 + \epsilon) \end{pmatrix},$$
\[
\epsilon = \left[1 + (4\omega_m/\kappa)^2\right]^{-1}. \quad \text{In the limit } \epsilon \to 0 \text{ Eq. (D1) reduces to (8), apart from the decoherence terms of the mechanical subsystem, which counteract the squeezing of the mechanical mode by driving it towards a thermal state. Operating the protocol in a regime of strong cooperativity } g^2/\kappa \gg \gamma (\bar{n} + 1) \text{ suppresses these perturbative effects.}
\]

[1] V. Belavkin, Radio Eng Electron Physics 25, 1445–1453 (1980).
[2] R. L. Hudson and K. R. Parthasarathy, Communications in Mathematical Physics 93, 301 (1984).
[3] C. W. Gardiner and M. J. Collett, Physical Review A 31, 3761 (1985).
[4] C. W. Gardiner, A. S. Parkins, and P. Zoller, Physical Review A 46, 4363 (1992).
[5] H. M. Wiseman and G. J. Milburn, Physical Review A 47, 642 (1993).
[6] P. Goetsch and R. Graham, Physical Review A 50, 5242 (1994).
[7] H. M. Wiseman, Physical Review A 49, 2133 (1994).
[8] A. C. Doherty and K. Jacobs, Physical Review A 60, 2700 (1999).
[9] A. C. Doherty, S. Habib, K. Jacobs, H. Mabuchi, and S. M. Tan, Physical Review A 62, 012105 (2000).
[10] A. Hopkins, K. Jacobs, S. Habib, and K. Schwab, Physical Review B 68, 235328 (2003).
[11] K. Jacobs and D. A. Steck, Contemporary Physics 47, 279 (2006).
[12] L. Bouten, R. Van Handel, and M. R. James, SIAM Journal on Control and Optimization 46, 2199 (2007).
[13] K. R. Parthasarathy, An Introduction to Quantum Stochastic Calculus (Springer, 1992).
[14] H. Carmichael, An open systems approach to quantum optics (Springer-Verlag, 1993).
[15] H. M. Wiseman and G. J. Milburn, Quantum Measurement and Control (Cambridge University Press, 2009).
[16] A. Barchielli and M. Gregoratti, Quantum Trajectories and Measurements in Continuous Time: The Diffusive Case (Springer, 2009).
[17] P. Bushev, D. Rotter, A. Wilson, F. Dubin, C. Becher, J. Escher, R. Blatt, V. Steixner, P. Rabl, and P. Zoller, Physical Review Letters 96, 043003 (2006).
[18] A. Kubanek, M. Koch, C. Sames, A. Ourjoumtsev, P. W. H. Pinkse, K. Murr, and G. Rempe, Nature 462, 898 (2009).
[19] M. Koch, C. Sames, A. Kubanek, M. Apel, M. Balbach, A. Ourjoumtsev, P. W. H. Pinkse, and G. Rempe, Physical Review Letters 105, 173003 (2010).
[20] C. Sayrin, I. Dotsenko, X. Zhou, B. Peaudecerf, T. Rybarczyk, S. Gleyzes, P. Rouochon, M. Mirrahimi, H. Amini, M. Brune, J.-M. Raimond, and S. Haroche, Nature 477, 73 (2011).
[21] S. Haroche and J.-M. Raimond, Exploring the Quantum: Atoms, Cavities, and Photons (OUP Oxford, 2006).
[22] G. A. Smith, A. Silberfarb, I. H. Deutsch, and P. S. Jessen, Physical Review Letters 97, 180403 (2006).
[23] S. Chaudhury, S. Merkel, T. Herr, A. Silberfarb, I. H. Deutsch, and P. S. Jessen, Physical Review Letters 99, 163002 (2007).
[24] H. Krauter, C. A. Muschik, K. Jensen, W. Wasilewski, J. M. Petersen, J. I. Cirac, and E. S. Polzik, Physical Review Letters 107, 080503 (2011).
[25] O. Arcizet, P.-F. Cohadon, T. Briant, M. Pinard, A. Heidmann, J.-M. Mackowski, C. Michel, L. Pinard, O. Francais, and L. Rousseau, Physical Review Letters 97, 133601 (2006).
[26] M. Poggio, C. L. Degen, H. J. Mamin, and D. Rugar, Physical Review Letters 99, 017201 (2007).
[27] M. Montinaro, A. Mehl, H. S. Solanki, P. Peddibhotla, S. Mack, D.Awschalom, and M. Poggio, Applied Physics Letters 101, 133104 (2012).
[28] T. Corbitt, C. Wipf, T. Bodiya, D. Ottaway, D. Sig, N. Smith, S. Whitcomb, and N. Mavalvala, Physical Review Letters 99, 160801 (2007).
[29] C. M. Mow-Lowry, A. J. Mullavey, S. Gokler, M. B. Gray, and D. E. McClelland, Physical Review Letters 100, 010801 (2008).
[30] B. Abbott, R. Abbott, R. Adhikari, P. Ajith, B. Allen, G. Allen, R. Amin, S. B. Anderson, W. G. Anderson, and M. A. Arain, New Journal of Physics 11, 073032 (2009).
[31] S. Mancini and H. M. Wiseman, Physical Review A 75, 012330 (2007).
[32] A. R. R. Carvalho and M. F. Santos, New Journal of Physics 13, 013010 (2011).
[33] M. M. Wolf, D. Perez-Garcia, and G. Giedke, Physical Review Letters 98, 130501 (2007).
[34] K. G. H. Vollbrecht, C. A. Muschik, and J. I. Cirac, Physical Review Letters 107, 120502 (2011).
[35] J. Chan, T. P. M. Alegre, A. H. Safavi-Naeini, J. T. Hill, A. Krause, S. Groblacher, M. Aspelmeyer, and O. Painter, Nature 478, 89 (2011).
[36] J. D. Teufel, T. Donner, D. Li, J. W. Harlow, M. S. Allman, K. Cicak, A. J. Sirois, J. D. Whitaker, K. L. Kehnert, and R. W. Simmonds, Nature 475, 359 (2011).
[37] T. P. Purdy, R. W. Peterson, and C. A. Regal, Science 339, 801 (2013).
[38] A. H. Safavi-Naeini, S. Groebler, J. T. Hill, J. Chan, M. Aspelmeyer, and O. Painter, arXiv:1302.6179 (2013).
[39] P. Zoller and C. W. Gardiner, Quantum Fluctuations, Volume 63, 1st ed., edited by S. Reynaud, E. Giacobino, and F. David (North Holland, 1997).
[40] C. W. Gardiner and P. Zoller, Quantum noise, 3rd ed. (Springer, 2004).
[41] H. M. Wiseman and G. J. Milburn, Physical Review Letters 70, 548 (1993).
[42] G. Vidal and R. F. Werner, Physical Review A 65, 032314 (2002).
[43] Y. Chen, arXiv:1302.1924 (2013).
[44] B. Kraus, H. P. Büchler, S. Diehl, A. Kantian, A. Micheli, and P. Zoller, Physical Review A 78, 042307 (2008).
[45] S. Bose, P. L. Knight, M. B. Plenio, and V. Vedral, Physical Review Letters 83, 5158 (1999).
[46] L.-M. Duan and H. J. Kimble, Physical Review Letters 70, 253601 (2003).
[47] C. Simon and W. T. M. Irvine, Physical Review Letters 91, 110405 (2003).
[48] D. E. Browne, M. B. Plenio, and S. F. Huelga, Physical
[49] E. T. Campbell and S. C. Benjamin, Physical Review Letters 101, 130502 (2008).
[50] M. F. Santos, M. Terra Cunha, R. Chaves, and A. R. R. Carvalho, Physical Review Letters 108, 170501 (2012).
[51] J. I. Cirac, P. Zoller, H. J. Kimble, and H. Mabuchi, Physical Review Letters 78, 3221 (1997).
[52] T. Pellizzari, Physical Review Letters 79, 5242 (1997).
[53] S. J. van Enk, J. I. Cirac, and P. Zoller, Physical Review Letters 78, 4293 (1997).
[54] A. S. Parkins and H. J. Kimble, Physical Review A 61, 052104 (2000).
[55] S. Mancini and S. Bose, Physical Review A 64, 032308 (2001).
[56] S. Clark, A. Peng, M. Gu, and S. Parkins, Physical Review Letters 91, 177901 (2003).
[57] B. Kraus and J. I. Cirac, Physical Review Letters 92, 013602 (2004).
[58] S. Mancini and S. Bose, Physical Review A 70, 022307 (2004).
[59] With appropriate feedback a Bell state is also achieved in the limit $z \rightarrow 0$.
[60] J. M. Raimond, M. Brune, and S. Haroche, Reviews of Modern Physics 73, 565 (2001).
[61] R. Miller, T. E. Northup, K. M. Birnbaum, A. Boca, A. D. Boozer, and H. J. Kimble, Journal of Physics B: Atomic, Molecular and Optical Physics 38, S551 (2005).
[62] H. Walther, B. T. H. Varcoe, B.-G. Englert, and T. Becker, Reports on Progress in Physics 69, 1325 (2006).
[63] S. M. Girvin, M. H. Devoret, and R. J. Schoelkopf, Physica Scripta T137, 014012 (2009).
[64] E. Vetsch, D. Reitz, G. Sagué, R. Schmidt, S. T. Dawkins, and A. Rauschenbeutel, Physical Review Letters 104, 203603 (2010).
[65] A. Goban, K. S. Choi, D. J. Alton, D. Ding, C. Lacroûte, M. Pototschnig, T. Thiele, N. P. Stern, and H. J. Kimble, Physical Review Letters 109, 033603 (2012).
[66] K. Hammerer, A. S. Sørensen, and E. S. Polzik, Reviews of Modern Physics 82, 1041 (2010).
[67] M. Saffman, T. G. Walker, and K. Mølmer, Reviews of Modern Physics 82, 2313 (2010).
[68] I. Wilson-Rae, N. Nooshi, W. Zwerger, and T. J. Kippenberg, Physical Review Letters 99, 093901 (2007).
[69] F. Marquardt, J. P. Chen, A. A. Clerk, and S. M. Girvin, Physical Review Letters 99, 093902 (2007).
[70] V. Belavkin, Reports on Mathematical Physics 43, A405 (1999).
[71] A. A. Demchenko and S. P. Vyatchanin, arXiv:1303.4188 (2013).
[72] I. Wilson-Rae, N. Nooshi, J. Dobrindt, T. J. Kippenberg, and W. Zwerger, New Journal of Physics 10, 095007 (2008).
[73] Note that the mechanical resonance frequency shifts due to the optical spring effect. The rotating frame will therefore rotate at a frequency ω_{eff}.
[74] V. P. Belavkin, Journal of Multivariate Analysis 42, 171 (1992).