DEVELOPMENT AND CHARACTERIZATION OF MICROSATELLITE MARKERS FOR VERATRUM MAACKII (MELANTHIACEAE)

Yue Li1,2,4, Satoshi Iijima3, and Masayuki Maki2

1Manuscript received 21 March 2015; revision accepted 2 April 2015.

This study was partly supported by a Grant-in-Aid to M.M. from the Japan Society for the Promotion of Science. The authors thank Dr. S. Horie and T. Kimura for data analyses and technical assistance.

2Botanical Gardens, Tohoku University, Aoba, Sendai 980-0862, Japan; and 3Division of Ecology and Evolutionary Biology, Graduate School of Sciences, Tohoku University, Aoba, Sendai 980-8578, Japan

4Author for correspondence: yueli@life.biology.tohoku.ac.jp
doi:10.3732/apps.1500030

PRIMER NOTE

Veratrum maackii Regel (Melanthiaceae) is distributed widely in Japan, Korea, northern China, and eastern Siberia. The species is a polymorphic perennial, and many infraspecific taxa have been described. In Japan, three varieties, namely, var. *maackii*, var. *japonicum* (Baker) T. Shimizu, and var. *parviflorum* (Miq.) Hara & Mizushima, and two forms, var. *japonicum f. atropurpureum* (Honda) Kitam. and var. *parviflora f. alpinum* (Nakai) Kitam., are recognized (Satake, 1982). These infraspecific taxa are distinguished based on perianth color, leaf shape, and capsule size, although these characteristics are continuous, and delimitation among taxa is difficult. Takada and Kawanobe (1996) examined variations in perianth colors and leaf shapes in populations of *V. maackii* in the Japanese Archipelago, reporting clinal variations in leaf shape. Individuals with green perianths were found in the northern part of Honshu Island, those with dark purple perianths were observed in other areas, and those with intermediate color perianths were observed in the zones where green and dark purple perianth individuals were sympatric. They inferred that these character variations reflect the distribution contraction and expansion of the species in the past. To obtain phylogeographic inferences regarding the species, molecular genetic data are indispensable but have not been available to date. In this study, we developed microsatellite markers for *V. maackii* to investigate its genetic diversity and population structure in Japan and surrounding areas. Furthermore, we explored cross-amplification of the developed markers in closely related taxa.

METHODS AND RESULTS

The genomic DNA of one individual of *V. maackii* from a population located in Sendai, Japan (Appendix 1), was used for the development of microsatellites. Genomic DNA was extracted from frozen leaf tissues using a modified cetyltrimethylammonium bromide (CTAB) method (Maki and Horie, 1999). The GS Junior Titanium Series Kit (Roche 454 Life Sciences, Branford, Connecticut, USA) was used to generate a shotgun library of genomic DNA. A 500-ng aliquot of genomic DNA was nebulized at 0.21 MPa for 1 min. The DNA fragments were purified using the MinElute PCR Purification Kit (QIAGEN, Hilden, Germany). The purified fragments were end-repaired, A-tailed, ligated to the Rapid Library Adapter, and suitably sized by removing small fragments (<350 bp) using the GS FLX Titanium Rapid Library Preparation Kit (Roche 454 Life Sciences). The fragments were then mixed with capture beads and amplified through emulsion PCR (empPCR) using the GS Junior Titanium empPCR Kit (Roche 454 Life Sciences). After empPCR, beads capturing the DNA library were enriched with sufficient amounts of template DNA for sequencing. The enriched beads were annealed with sequencing primers, and the amplified fragments were pyrosequenced on the GS Junior 454 System (Roche 454 Life Sciences).

A total of 33,542 sequences with an average read length of 450 bp were obtained and further screened for putative microsatellites using the MISA Perl script (Thieli et al., 2003). A total of 1158 microsatellite repeats were identified, including 1064 di-, 40 tri-, 27 tetra-, seven penta-, and 15 hexanucleotide repeat motifs, with minimum contiguous repeat units of eight, eight, five, and five, respectively. The most common motifs were AG/CT, AT, AC/GT, and ACC/GGT. We additionally developed and sequenced a microsatellite-enriched library using a modified biotin-capture method (Fischer and Bachmann, 1998). The detailed library construction procedure was presented in Li and Maki (2013). We obtained 30 sequences containing microsatellite repeats using the biotin-capture method.

Fifty sequences containing microsatellite repeats with sufficient flanking regions were chosen for primer design. Of the 50 primers, 44 came from the 454 sequencing and six came from the modified biotin-capture method. Primer pairs were designed with an expected product size ranging from 120 to 350 bp using Primer3 version 2.0 (Rozen and Skalsetsky, 2000). For the loci, the forward primer was ligated to a 454A adapter primer sequence (5'-GCTCTCCCTGCGCCATTG-3'; Margulies et al., 2005), and the reverse was tagged with a PIG-tail (5'-GTCTCCTTGTTT-3'; Brownstein et al., 1996). To evaluate amplifications of the primer pairs and polymorphisms at each locus, a panel of six individuals (two individuals from each population) collected from three natural populations located across the *V. maackii* range
distribution in Japan (see Appendix 1: a northern population: Tanesashi; a central population: Mitsuke; and a southern population: Kirishima-dake) were used. PCR reactions were performed separately for each locus in 3-μL volumes containing approximately 60 ng of genomic DNA, 1× Type-it Multiplex PCR Master Mix (QIAGEN), 0.075 μM of each forward and reverse primer, and 0.25 μM of a central population: Mitsuke (maackii-056) (Table 2). No significant departures from HWE were detected in loci among populations Tanesashi and Mitsuke of *V. maackii* (*P* > 0.01) (Table 2). One combination of loci was in LD (*P* > 0.01) (Table 2). No significant deviation from HWE was detected in the population Kirishima-dake (maackii-056) (Table 2). No combination of loci was in LD (*P* > 0.01) from HWE was detected in the population Kirishima-dake (maackii-056) (Table 2). No significant departure from HWE were detected in loci among populations Tanesashi and Mitsuke of *V. maackii* (*P* > 0.01) (Table 2). One significant deviation (*P* < 0.01) from HWE was detected in the population Kirishima-dake (maackii-056) (Table 2). No combination of loci was in LD after Bonferroni correction (*P* > 0.05) (Rice, 1989). Of the 10 microsatellite markers developed for *V. maackii*, three, two, and three were successfully amplified for samples in each of three congeneric taxa, namely, *V. album* subsp. *oxysepalum*, *V. stamineum* var. *stamineum*, and *V. stamineum* var. *micranthum* Satake (Appendix 1). Multiple PCRs were performed in 3-μL volumes containing approximately 30 ng of genomic DNA, 1× Type-it Multiplex PCR Master Mix (QIAGEN), and 0.2 μM forward and reverse primer, respectively. The reaction parameters were an initial denaturation step at 95°C for 5 min; followed by 28 cycles at 95°C for 30 s, 60°C for 90 s, and 72°C for 30 s; and a final step at 60°C for 30 min. PCR products were run with a GeneScan 600 LIZ internal size standard (Applied Biosystems) on an ABI 3100 Genetic Analyzer (Applied Biosystems). Allele sizes were scored using Genemapper version 3.7 software (Applied Biosystems).

The number of alleles per locus ranged from three to 19. The observed heterozygosity and expected heterozygosity ranged from 0.143 to 0.929 and 0.269 to 0.904, respectively (Table 2). The tests for deviation from Hardy–Weinberg equilibrium (HWE) at each locus and the linkage disequilibrium (LD) of all combinations of loci were conducted using GENEPOP 4.2 (Rousset, 2006). No significant departures from HWE were detected in loci among populations Tanesashi and Mitsuke of *V. maackii* (*P* > 0.01) (Table 2). One significant deviation (*P* < 0.01) from HWE was detected in the population Kirishima-dake (maackii-056) (Table 2). No combination of loci was in LD after Bonferroni correction (*P* > 0.05) (Rice, 1989). Of the 10 microsatellite markers developed for *V. maackii*, three, two, and three were successfully amplified for samples in each of three congeneric taxa, namely, *V. album* subsp. *oxysepalum*, *V. stamineum* var. *stamineum*, and *V. stamineum* var. *micranthum*, respectively (Table 3).

Table 1. Sequence and multiplex characteristics of the 10 microsatellites developed for *Veratrum maackii*.

Locus	Primer sequences (5’–3’)	Repeat motif	Fluorescent dye	Multiplex set	GenBank accession no.
maackii-003	F: CTTCAGCTACGCTTCTGCTCCACCATC	(GA)14	VIC	1	LC020526
	R: CTTCCTATGCTCTACGACTTCTC	(CT)12	NED	3	LC020527
maackii-011	F: TGGCGAGGGACAGAAGGTGCTGTCCAT	(CT)12	NED	3	LC020527
	R: CGAGAAGGAATGCTCAGATACAACTCG	(GA)16	NED	1	LC020534
maackii-015	F: CGAGAAGCTTGCCCTGAAATCCACACCTG	(GA)16	NED	1	LC020534
	R: TGCCCGGATTCACAGGTCCCTC	(AG)17	PET	1	LC020528
maackii-027	F: GCATGTACCTGGCTGATGGTTGGAAGA	(AG)17	PET	1	LC020528
	R: AATTCCGACTTATTACCCAACTCAGAG	(CTT)18	PET	3	LC020530
maackii-044	F: GAGGGTAGAAAGGTAGGTGTG	(CTT)18	PET	2	LC020530
	R: AGGCCGTAGACACCCAGGATTTCC	(CTT)18	PET	3	LC020530
maackii-088	F: GGTGACTAGGCTGCTAGGTTGTT	(AG)12	VIC	3	LC020531
	R: GGAGATGAGGCTGTGATCGAGGG	(AG)12	VIC	3	LC020531
maackii-135	F: AGCTCGAGGCGCTGTCATCAATGG	(GA)13	VIC	3	LC020532
	R: GACCTCTTGAGACCCGACCAAGTC	(GA)13	VIC	3	LC020532
maackii-148	F: CGATGTACCTGGCTCAGATACAACTG	(GA)14	VIC	3	LC020532
	R: GGAGATGAGGCTGTGATCGAGGG	(AG)14	VIC	3	LC020532
maackii-340	F: GCCACGATGAAAGGTAGGTGTG	(CTT)10	VIC	2	LC020535
	R: CTTCCTCTGCGATACAGACTTGGAT	(CTT)10	VIC	2	LC020535

Annealing temperature (T_a) for all loci was 60°C.

Table 2. Characteristics of the 10 polymorphic microsatellite markers for *Veratrum maackii*.

Locus	Allele size range (bp)	Allele size range (bp)	Allele size range (bp)
maackii-003	8–282–308	8–282–308	8–282–308
maackii-011	10–204–229	10–204–229	10–204–229
maackii-015	9–207–233	9–207–233	9–207–233
maackii-027	9–233–339	9–233–339	9–233–339
maackii-044	4–176–185	4–176–185	4–176–185
maackii-056	9–276–309	9–276–309	9–276–309
maackii-088	12–287–300	12–287–300	12–287–300
maackii-135	13–209–228	13–209–228	13–209–228
maackii-148	15–222–234	15–222–234	15–222–234
maackii-340	10–219–267	10–219–267	10–219–267

Note: A = number of alleles per locus; H_e = expected heterozygosity; H_o = observed heterozygosity; n = number of individuals genotyped; P = probability of departure from Hardy–Weinberg equilibrium.
Table 3. Cross-species amplifications of 10 microsatellite markers in three congeneric species of *Veratrum maackii*.

Locus	*V. album subsp. oxysepalum (n = 20)*	*V. stamineum var. stamineum (n = 20)*	*V. stamineum var. micranthum (n = 20)*									
	A	*H*_e	*H*_e	Allele size range (bp)	A	*H*_e	*H*_e	Allele size range (bp)	A	*H*_e	*H*_e	Allele size range (bp)
maackii-003	—	—	—	—	—	—	—	—	—	—	—	—
maackii-011	4	0.600	0.651	216–232	10	0.750	0.845	223–249	6	0.850	0.763	226–240
maackii-015	4	0.353	0.625	232–272	—	—	—	—	8	0.550	0.796	227–250
maackii-027	—	—	—	—	—	—	—	—	—	—	—	—
maackii-044	4	0.250	0.423	173–190	7	0.471	0.671	176–191	4	0.450	0.536	176–188
maackii-056	—	—	—	—	—	—	—	—	—	—	—	—
maackii-088	—	—	—	—	—	—	—	—	—	—	—	—
maackii-135	—	—	—	—	—	—	—	—	—	—	—	—
maackii-148	—	—	—	—	—	—	—	—	—	—	—	—
maackii-340	—	—	—	—	—	—	—	—	—	—	—	—

Note: A = number of alleles per locus; *H*_e = expected heterozygosity; *H*_e = observed heterozygosity; n = number of individuals genotyped.

CONCLUSIONS

The novel microsatellite markers showed high levels of polymorphism and will be useful for describing the genetic diversity, population structure, and demographic history of *V. maackii* across its distribution range.

LITERATURE CITED

BROWNSTEIN, M. J., J. D. CARPTEN, AND J. R. SMITH. 1996. Modulation of non-templated nucleotide addition by Taq DNA polymerase: Primer modifications that facilitate genotyping. *BioTechniques* 20: 1004–1006, 1008–1010.

FISCHER, D., AND K. BACHMANN. 1998. Microsatellite enrichment in organisms with large genomes (Allium cepa L.). *BioTechniques* 24: 796–802.

HOLLELEY, C. E., AND P. G. GEERTS. 2009. Multiplex Manager 1.0: A cross-platform computer program that plans and optimizes multiplex PCR. *BioTechniques* 46: 511–517.

LI, Y., AND M. MAKI. 2013. Development of microsatellite markers for *Leucoceptrum japonicum* and *L. stellipilum* (Lamiaceae). *Applications in Plant Sciences* 1: 1300038.

MAKI, M., AND S. HORIE. 1999. Random amplified polymorphic DNA (RAPD) markers reveal less genetic variation in the endangered plant *Cerastium fischerianum var. molle* than in the widespread conspecific *C. fischerianum var. fischerianum* (Caryophyllaceae). *Molecular Ecology* 8: 145–150.

MARGULIES, M., M. EGHOLM, W. E. ALTMAN, S. ATTIYA, J. S. BADER, L. A. BEMBERN, J. BERKA, ET AL. 2005. Genome sequencing in microfabricated high-density picolitre reactors. *Nature* 437: 376–380.

RICE, W. R. 1989. Analyzing tables of statistical tests. *Evolution* 43: 223–225.

ROZEN, S., AND H. SKALETSKY. 2000. Primer3 on the WWW for general users and for biologist programmers. *Methods in Molecular Biology* 132: 365–386.

SAKAI, Y. 1982. Liliaceae. In Y. Satake, J. Ohwi, S. Kitamura, S. Watari, and T. Tominari [eds.], Wild flowers of Japan I. Herbaceous plants—Monocotyledoneae, 11–48. Heibonsha, Tokyo, Japan (in Japanese).

TAKADA, J., AND H. KAWANOBE. 1996. Distribution and variation of *Veratrum maackii* in Japan. *Journal of Japanese Botany* 71: 11–28 (in Japanese).

THIEL, T., W. MICHALEK, R. K. VARSHEIY, AND A. GRANER. 2003. Exploiting EST databases for the development and characterization of gene-derived SSR-markers in barley (*Hordeum vulgare* L.). *Theoretical and Applied Genetics* 106: 411–422.

APPENDIX 1. Voucher and locality information of *Veratrum* samples used in this study.

Taxon	Locality	Geographic coordinates	Voucher no.
V. maackii Regal	Sendai, Miyagi, Japan	38°16′49″N, 140°48′49″E	Maki 14073*
V. maackii Regal	Tanesashi, Iwate, Japan	40°33′7″N, 141°35′56″E	—
V. maackii Regal	Mitsuke, Niigata, Japan	37°31′1″N, 138°57′22″E	—
V. maackii Regal	Kirishima-dake, Kagoshima, Japan	31°54′0″N, 130°53′24″E	—
V. album subsp. *oxysepalum* (Turcz.) Hultén	Tsurugi-san, Tokushima, Japan	33°51′13″N, 134°06′41″E	—
V. stamineum Maxim. var. *stamineum*	Amou-shitsugen, Gifu, Japan	36°15′36″N, 136°57′47″E	—
V. stamineum Maxim. var. *micranthum* Satake	Tomika, Gifu, Japan	35°30′32″N, 136°58′15″E	—

*Voucher specimen deposited at the herbarium of Tohoku University (TUS), Sendai, Japan.

http://www.bioone.org/loi/apps