1. INTRODUCTION

This paper studies the steady-state performance of load balancing algorithms in many-server systems. We consider a system with N identical servers with buffer size $b - 1$ such that $b = o\left(\sqrt{\log N}\right)$, in other words, each server can hold at most b jobs, one job in service and $b - 1$ jobs in buffer. We assume jobs arrive according to a Poisson process with rate λN, where $\lambda = 1 - N^{-\alpha}$ for $0 < \alpha < 0.5$, and have exponential service times with mean one. We call the traffic regime sub-Halfin-Whitt regime because $\alpha = 0.5$ is the so-called the Halfin-Whitt regime [9]. When a job arrives, the load balancer immediately routes the job to one of the servers. If the server’s buffer is full, the job is discarded. We study a class of load balancing algorithms, which includes join-the-shortest-queue (JSQ), idle-one-first (I1F) [8], join-the-idle-queue (JIQ) [11, 13] and power-of-d-choices (Pod) with $d = N^\alpha \log N$ [12, 15], and establish an upper bound on the mean queue length. From the queue-length bound, we further show that under JSQ, I1F, and Pod with $d = N^\alpha \log N$, the probability that a job is routed to a non-idle server and the expected waiting time per job are both $O\left(\log^2 N / \sqrt{N}\right)$, which means only $O\left(\log N / \sqrt{N}\right)$ fraction of jobs experience non-zero waiting or are discarded. For JIQ, we show that the probability of waiting is $O\left(\frac{b}{N^{0.5 - \alpha} \log N}\right)$.

Let S_i denote the fraction of servers with at least i jobs at steady state. In this paper, we prove that

$$E\left[\max_{1 \leq i \leq b} \left(\sum_{i=1}^{b} S_i - \lambda - \frac{k \log N}{\sqrt{N}}\right)\right] \leq \frac{29b}{\sqrt{N} \log N},$$

with $k = 1 + \frac{1}{2(\alpha - 1)}$, for a class of load balancing algorithms that route an incoming job to an idle server with probability at least $1 - \frac{1}{\sqrt{N}}$ when $S_1 \leq \lambda + \frac{k \log N}{\sqrt{N}}$. This result implies that (i) $E\left[\sum_{i=1}^{b} S_i\right] \leq \lambda + \frac{k \log N}{\sqrt{N}} + \frac{29b}{\sqrt{N} \log N}$, i.e. the average queue length per server exceeds λ by at most $O\left(\frac{\log N}{\sqrt{N}}\right)$; and (ii) under JSQ, I1F, JIQ and Pod ($d = N^\alpha \log N$), the probability that an incoming job is routed to a non-idle server is asymptotically zero.

From the best of our knowledge, there are only a few papers that deal with the steady-state analysis of many-server systems with distributed queues [3, 1, 10]. [3, 1] analyze the steady-state distribution of JSQ in the Halfin-Whitt regime and [10] studies the Pod with $\alpha < 1/6$. This paper complements [3, 1, 10], as it applies to a class of load balancing algorithms and to any sub-Halfin-Whitt regime.

Similar to [3, 10], the result of this paper is proved using the mean-field approximation (fluid-limit approximation) based on Stein’s method. The execution of Stein’s method in this paper, however, is quite different from [3, 10]. In our proof, a simple mean-field model (fluid-limit) model $\sum_{i=1}^{b} S_i = \frac{\log N}{\sqrt{N}}$ is used to partially approximate the evolution of the stochastic system when the system is away from the mean-field equilibrium. This is because in this paper, we are interested in bounding

$$E\left[\max_{1 \leq i \leq b} \left(\sum_{i=1}^{b} S_i - \lambda - \frac{k \log N}{\sqrt{N}}\right)\right],$$

i.e. when $\sum_{i=1}^{b} S_i \geq \lambda + \frac{k \log N}{\sqrt{N}} > \lambda$. Note that this simple mean-field model is not even accurate when $\sum_{i=1}^{b} S_i \geq \lambda + \frac{k \log N}{\sqrt{N}}$. However, using state-space collapse (SSC) approach based on the tail bound in [2], we show that the generator difference is small. In the literature, SSC has been used to show that the approximation error of using a low-dimensional system is order-wise smaller than the queue length (or some function of the queue length). Instead in this paper, we show that the error is a fraction of the term (1), but not negligible, with a high probability. We then deal with this error by subtracting it from the term (1) without bounding it explicitly. Furthermore, SSC is proved only in the regime $\sum_{i=1}^{b} S_i \geq \lambda + \frac{k \log N}{\sqrt{N}}$, which turns out to be sufficient and easy to prove. Pioneered in [14] (called drift-based-fluid-limits (DFL) method) for fluid-limit analysis and in [5, 4] for steady-state diffusion approximation, the power of Stein’s method for steady-state approximations has been recognized in a number of recent papers [14, 5, 17, 4, 18, 6, 7, 3]. This paper is another example that demonstrates the power of Stein’s method for analyzing complex queueing systems.

2. MODEL AND MAIN RESULTS

Consider a many-server system with N homogeneous servers, where job arrival follows a Poisson process with rate λN and service times are i.i.d. exponential random variables with rate one. We consider the sub-Halfin-Whitt regime such that $\lambda = 1 - N^{-\alpha}$ for $0 < \alpha < 0.5$. As shown in Figure
1, each server maintains a separate queue and we assume buffer size \(b - 1 \) (i.e., each server can have one job in service and \(b - 1 \) jobs in queue).

![Load Balancing Diagram](image)

Figure 1: Load Balancing in Many-Server Systems.

We study a class of load balancing algorithms which route each incoming job to a server upon its arrival. Denote by \(S_i(t) \) the fraction of servers with queue length at least \(i \) at time \(t \). Under the finite buffer assumption with buffer size \(b \), \(S_i = 0, \forall i \geq b + 1 \). Define \(S \) to be

\[
S = \{ s | 1 \geq s_1 \geq \cdots \geq s_b \geq 0 \},
\]

and \(S(t) = [S_1(t), S_2(t), \ldots, S_b(t)] \). We consider load balancing algorithms such that \(S(t) \in S \) is a continuous-time Markov chain (CTMC) and has a unique stationary distribution, denoted by \(S \), for any \(\lambda \). Note \(\lambda, S(t) \) and \(S \) all depend on \(N \), the number of servers in the system. Let \(A_1(S) \) denote the probability that an incoming job is routed to a busy server when the state of the system is \(S \). Our main result of this paper is the following theorem.

Theorem 1. Assume \(\lambda = 1 - N^{-\alpha} \), \(0 < \alpha < 0.5 \), and \(b = o(\sqrt{\log N}) \). Under any load balancing algorithm such that \(A_1(S) \leq \frac{1}{\sqrt{N}} \) when \(S_1 \leq \lambda + \frac{k \log N}{\sqrt{N}} \) with \(k = 1 + \frac{1}{4\alpha - 1} \), the following bound holds when \(N \) is sufficiently large:

\[
E \left[\max \left\{ \sum_{i=1}^{b} S_i - \lambda - \frac{k \log N}{\sqrt{N}}, 0 \right\} \right] \leq \frac{29b}{\sqrt{N} \log N}.
\]

Note that the condition \(A_1(S) \leq \frac{1}{\sqrt{N}} \) when \(S_1 \leq \lambda + \frac{k \log N}{\sqrt{N}} \) implies that an incoming job should be routed to an idle server with probability at least \(1 - \frac{1}{\sqrt{N}} \) when at least \(\frac{1}{N} - \frac{k \log N}{\sqrt{N}} \) fraction of servers are idle. There are several well-known policies that satisfy this condition.

- **Join-the-Shortest-Queue (JSQ):** JSQ routes an incoming job to the least loaded server in the system, so \(A_1(S) = 0 \) when \(S_1 \leq \lambda + \frac{k \log N}{\sqrt{N}} \).
- **Idle-One-First (I1F):** I1F routes an incoming job to an idle server if available and else to a server with one job if available. Otherwise, the job is routed to a randomly selected server. Therefore, \(A_1(S) = 0 \) when \(S_1 \leq \lambda + \frac{k \log N}{\sqrt{N}} \).
- **Join-the-Idle-Queue (JIQ):** JIQ routes an incoming job to an idle server if possible and otherwise, routes the job to server chosen uniformly at random. Therefore, \(A_1(S) = 0 \) when \(S_1 \leq \lambda + \frac{k \log N}{\sqrt{N}} \).

- **Power-of-d-Choices (Pod):** Pod samples \(d \) servers uniformly at random and dispatches the job to the least loaded server among the \(d \) servers. Ties are broken uniformly at random. When \(d = N^\alpha \log N \), \(A_1(S) \leq \frac{1}{\sqrt{N}} \) when \(S_1 \leq \lambda + \frac{k \log N}{\sqrt{N}} \).

A direct consequence of Theorem 1 is asymptotic zero waiting. Let \(W_N \) denote the event that an incoming job is routed to a busy server in a system with \(N \) servers, and \(p_{W_N} \) denote the probability of this event at the steady-state. Let \(B_N \) denote the event that an incoming job is blocked (discarded) and \(p_{B_N} \) denote the probability of this event at the steady-state. Furthermore, let \(W_N \) denote the waiting time of a job (when the job is not dropped). We have the following results based on the main theorem.

Corollary 1. Assume \(\lambda = 1 - N^{-\alpha} \), \(0 < \alpha < 0.5 \), and \(b = o(\sqrt{\log N}) \). For sufficiently large \(N \), we have

- Under JSQ, I1F, and Pod with \(d = N^\alpha \log N \),
 \[
 E[W_N] \leq \frac{3 \log N}{\sqrt{N}}, \quad \text{and} \quad p_{W_N} \leq \frac{4 \log N}{\sqrt{N}}.
 \]
- Under JIQ,
 \[
 p_{B_N} \leq \frac{30b}{N^{0.5 - \alpha} \log N}.
 \]

The proof of this lemma is a simple application of the Markov inequality, which can be found in [10].

We next provide an overview of the proof of our main theorem. The details are presented in [10]. The proof is based on Stein’s method. As modularized in [4], this approach includes three key ingredients: generator approximation, gradient bounds and state space collapse (SSC).

Define \(e_i \) to be a \(b \)-dimensional vector such that the \(i \)th entry is \(1/N \) and all other entries are zero. Furthermore, define \(A_i(S) \) to be the probability that an incoming job is routed to a server with at least \(i \) jobs. For convenience, define \(A_0(S) = 1 \) and \(A_{i+1}(S) = B_i(S) \), where \(B_i(S) \) is the probability that an incoming job is discarded. Let \(G \) be the generator of CTMC \(S(t) \). Given function \(g : S \to R \), we have

\[
Gg(S) = \sum_{i=1}^{b} \lambda N(A_{i-1}(S) - A_i(S))(g(S + e_i) - g(S))
+ N(S_i - S_{i+1})(g(S - e_i) - g(S)).
\]

For a bounded function \(g : S \to R \), we have

\[
E[Gg(S)] = 0.
\]

Following the framework of Stein’s method, the first step of our proof is generator approximation. We propose a simple, almost trivial, generator \(L \) such that

\[
Lg(s) = g'(s) \left(-\frac{\log N}{\sqrt{N}} \right),
\]

and assume \(g(s) \) is the solution of the following Stein’s equation (also called Poisson equation):

\[
Lg(s) = g'(s) \left(-\frac{\log N}{\sqrt{N}} \right) = h(s).
\]
Following Stein’s method, we bound $E[h(s)]$ by studying generator difference between L and G:

$$E[h(S)] = E[Lg(S) - Gg(S)] = E[g'(S) \left(- \frac{\log N}{\sqrt{N}} \right) - Gg(S)]$$

$$= E \left[g'(S) \left(\lambda B(S) - \lambda - \frac{\log N}{\sqrt{N}} + S_1 \right) + \frac{c}{N} g''(S) \right]$$

for some constant $c > 0$. The second term can be bounded by using the gradient bound on $g''(s)$, which has a very simple form and is almost trivial to calculate. The first term is bounded based on SSC in the regime $\sum_{i=1}^{n} S_i \geq \lambda + \lambda N^{1/2}$, where a key step is to show that

$$\frac{\lambda + \frac{\log N}{\sqrt{N}} - S_1}{\sum_{i=1}^{b} S_i > \lambda + \frac{k \log N}{\sqrt{N}} + \frac{1}{\sqrt{N}}}$$

is $O \left(\frac{\log N}{\sqrt{N}} \right)$. The intuition is that when the average number of jobs per server ($\sum_{i=1}^{b} S_i$) exceeds λ by $k \log N / \sqrt{N} + 1 / \sqrt{N}$, the fraction of busy servers should be close to or exceed λ under a good load balancing algorithm. We prove this result by using the following Lyapunov function

$$V(s) = \min \left\{ \sum_{i=2}^{b} s_i, \lambda + \frac{k \log N}{\sqrt{N}} - s_1 \right\},$$

and establishing the following Lemma

Lemma 1. For sufficient large N, we have

$$\nabla V(s) \leq -\frac{1}{2(b-1)} \log N \frac{1}{\sqrt{N}} + \frac{1}{\sqrt{N}},$$

for any s such that $V(s) \geq \frac{\log N}{\sqrt{N}}$.

Based on the lemma above, we can obtain a tail bound on $V(S)$ by applying the result in [2, 16], which results in an upper bound on (2) and further prove the main theorem. Readers can find the details in [10].

3. CONCLUSION

In this paper, we studied the steady-state performance of a class of load balancing algorithms for many-server (N servers) systems in the sub-Halfin-Whitt regime. We established an upper bound on the expected queue length with Stein’s method and studied the probability that an incoming job is routed to a busy server under JSQ, I1F, JIQ, and Pod.

Acknowledgment

This work was supported in part by NSF ECCS-1547294, ECCS-1609202, ECCS-1739344 and the U.S. Office of Naval Research (ONR Grant No. N00014-15-1-2169).

4. REFERENCES

[1] S. Banerjee and D. Mukherjee. Join-the-shortest queue diffusion limit in halfin-whitt regime: tail asymptotics and scaling of extrema. arXiv preprint arXiv:1803.03306, 2018.

[2] D. Bertsimas, D. Gamarnik, and J. N. Tsitsiklis. Performance of multiclass Markovian queueing networks via piecewise linear Lyapunov functions. Adv. in Appl. Probab., 2001.

[3] A. Braverman. Steady-state analysis of the join the shortest queue model in the halfin-whitt regime. arXiv preprint arXiv:1801.05121, 2018.

[4] A. Braverman and J. G. Dai. Steins method for steady-state diffusion approximations of m/Ph/n + m systems. Ann. Appl. Probab., 27(1):550–581, 02 2017.

[5] A. Braverman, J. G. Dai, and J. Feng. Steins method for steady-state diffusion approximations: An introduction through the erlang-a and erlang-c models. Stoch. Syst., 6(2):301–366, 2016.

[6] N. Gast. Expected values estimated via mean-field approximation are 1/n-accurate. Proc. ACM Meas. Anal. Comput. Syst., 1(1):17:1–17:26, June 2017.

[7] N. Gast and B. Van Houdt. A refined mean field approximation. In Proc. Ann. ACM SIGMETRICS Conf., Irivence, CA, 2018.

[8] V. Gupta and N. Walton. Load Balancing in the Non-Degenerate Slowdown Regime. arXiv preprint arXiv:1707.01969, July 2017.

[9] S. Halfin and W. Whitt. Heavy-traffic limits for queues with many exponential servers. Operations Research, 29(3):567–588, 1981.

[10] X. Liu and L. Ying. A simple steady-state analysis of load balancing algorithms in the sub-halfin-whitt regime. arXiv preprint arXiv:1804.02622, 2018.

[11] Y. Lu, Q. Xie, G. Kliot, A. Geller, J. R. Luras, and A. Greenberg. Join-Idle-Queue: A novel load balancing algorithm for dynamically scalable web services. Performance Evaluation, 68(11):1056–1071, 2011.

[12] M. Mitzenmacher. The Power of Two Choices in Randomized Load Balancing. PhD thesis, University of California at Berkeley, 1996.

[13] A. Stolyar. Pull-based load distribution in large-scale heterogeneous service systems. Queueing Syst., 80(4):341–361, 2015.

[14] A. Stolyar. Tightness of stationary distributions of a flexible-server system in the Halfin-Whitt asymptotic regime. Stoch. Syst., 5(2):239–267, 2015.

[15] N. D. Vvedenskaya, R. L. Dobrushin, and F. I. Karpelevich. Queueing system with selection of the shortest of two queues: An asymptotic approach. Problemy Peredachi Informatsii, 32(1):20–34, 1996.

[16] W. Wang, S. T. Maguluri, R. Srikant, and L. Ying. Heavy-traffic delay insensitivity in connection-level models of data transfer with proportionally fair bandwidth sharing. In IFIP Performance, New York City, Nov. 2017.

[17] L. Ying. On the approximation error of mean-field models. In Proc. Ann. ACM SIGMETRICS Conf., Antibes Juan-les-Pins, France, 2016.

[18] L. Ying. Stein’s method for mean field approximations in light and heavy traffic regimes. Proc. ACM Meas. Anal. Comput. Syst., 1(1):12:1–12:27, June 2017.