Local density matrices of many-body states
in the constant weight subspaces

Jianxin Chen1, Muxin Han2,3, Youning Li4, Bei Zeng5,6, Jie Zhou7

1. Joint Center for Quantum Information and Computer Science, University of Maryland, College Park, Maryland, USA
2. Department of Physics, Florida Atlantic University, FL 33431, USA
3. Institut für Quantengravitation, Universität Erlangen-Nürnberg, Staudtstr. 7/B2, 91058 Erlangen, Germany
4. Department of Physics and Collaborative Innovation Center of Quantum Matter, Tsinghua University, Beijing, China
5. Department of Mathematics & Statistics, University of Guelph, Guelph, Ontario, Canada
6. Institute for Quantum Computing, University of Waterloo, Waterloo, Ontario, Canada
7. Perimeter Institute for Theoretical Physics, Waterloo, Ontario, Canada

April 28, 2017

Abstract

Let $V = \bigotimes_{k=1}^{N} V_k$ be the N spin-j Hilbert space with $d = 2j + 1$-dimensional single particle space. We fix an orthonormal basis $\{ |m_i\rangle \}$ for each V_k, with weight $m_i \in \{-j, \ldots, j\}$. Let $V(w)$ be the subspace of V with a constant weight w, with an orthonormal basis $\{|m_1, \ldots, m_N\rangle\}$ subject to $\sum_k m_k = w$. We show that the combinatorial properties of the constant weight condition imposes strong constraints on the reduced density matrices for any vector $|\psi\rangle$ in the constant weight subspace, which limits the possible entanglement structures of $|\psi\rangle$. Our results find applications in the overlapping quantum marginal problems, quantum error-correcting codes, and the spin-network structures in quantum gravity.

1 Introduction

Consider a system of N spins, each with spin j. The Hilbert space of the system is then $V = \bigotimes_{k=1}^{N} V_k$, each V_k with dimension $d = 2j + 1$. For any vector $\psi \in V$, its entanglement structure can be analyzed by the reduced density matrices (RDMs) of $\psi \otimes \psi^* \in V \otimes V^*$ \cite{22, 12}. There are, however, always restrictions on these RDMs, given by, e.g. the principle of entanglement monogamy \cite{22, 12}. In a more general setting, the quantum marginal problem considers the conditions for the consistency of given local density matrices, which turn out to be a hard problem even with the existence of quantum computers. On the other hand, generic states are always highly entangled, in the large j limit \cite{10}.

Besides those general analysis, there are also physical considerations that may restrict the form of ψ, hence the entanglement structures of ψ. For instance, ground states of local Hamiltonians would satisfy the entanglement area law, hence may be well-approximated by the tensor network representation \cite{25, 5, 23}. States with special symmetry are also discussed such as the Dicke states and their generalizations \cite{22, 24}. Stabilizer/graph states are considered in the scenario of quantum error correction and one-way quantum computing \cite{11, 7, 19, 11}. Very recently, states that may be represented by (restricted) Boltzmann machine are considered to apply machine learning techniques to study many-body ground states \cite{2}.

In this work, we consider a restriction of constant weight. A state ψ in V with a constant weight w, if it is in a subspace with where an orthonormal basis $\{|m_1, \ldots, m_N\rangle\}$ satisfying $\sum_i m_i = w$. In the
spin language, the states has a fixed J_z-component of the total spin. These subspaces arise naturally as decoherence free subspaces under collective dephasing of the system \cite{15} – that is, since each qubit gets a same phase factor that only depends on its weight, any constant weight state obtains a global phase for the collective dephasing. In this sense, a constant weight state is invariant under the collective dephasing noise, hence is decoherence free. Also, constant weight states are discussed in many other contexts, such as the atomic Dicke states and its generalizations. When $w = 0$, this subspace contains the invariant subspace of zero angular momentum, which is called invariant subspace that is widely discussed in loop quantum gravity. Despite that the constant-weight condition arise naturally in these many places, the entanglement structure of these spaces has not been studied systematically.

We discuss the properties of the RDMs of constant weight states in a very general setting. We show that there exist linear conditions between the elements of RDMs, for any j, N and ω, which can be written down explicitly. Our key idea is that the combinatorics properties given by the constant weight constraint, which is mathematically a partition of w, lead to such a linear structure of reduced density matrices. These conditions find many applications. For instance, it implies that there is no perfect tensors in a constant weight subspace, for any j when $N \geq 4$, which is a concept recently received attentions from understanding quantum gravity from the quantum information viewpoint \cite{16,14}. Also, given the intimate connections between perfect tensors and quantum error-correcting codes, our results give restrictions on the achievable distance on constant-weight quantum codes. In practice, our conditions can also be used as good certificates for decoherence-free subspaces.

We organize our paper as follows: in Sec. 2 we define our notions and provide background information on constant weight subspaces in the SU(2) case. In Sec. 3.1 we discuss the combinatorical structure of the constant weight condition that leads to our main theorem on linear relations of RDMs. In Sec. 3.2 we discuss further the relationships between these linear structures. In Sec. 4 we discuss the application of our main results to the quantum marginal problem and the nonexistence of perfect tensors. In Sec. 5.1 we discuss the generalization to the SU(n) case. Finally, in Sec. 5.2 we discuss the generalization for relaxing the constant weight condition by introducing the notion of frequency matrix.

2 Preliminaries

According to the standard representation theory \cite{6}, the study of representations of the Lie group SU(2) is essentially equivalent to that of the Lie algebra $\mathfrak{su}(2)$. In this work, we shall use the language of the latter for simplicity.

The Lie algebra $\mathfrak{su}(2)$ is generated by the Chevalley-Serre basis

\[
H = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}, \quad X = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, \quad Y = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix},
\]

whose Lie algebra structure is given by

\[
[H, X] = 2X, \quad [H, Y] = -2Y, \quad [X, Y] = H.
\]

They are related to the Pauli matrices

\[
J_z = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}, \quad J_x = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \quad J_y = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}
\]

by

\[
X = \frac{1}{2}(J_x + iJ_y) = J_+ , \quad Y = \frac{1}{2}(J_x - iJ_y) = J_-, \quad H = J_z = J_3.
\]

The finite dimensional irreducible representations of $\mathfrak{su}(2)$ are classified by the dimension $d \in \mathbb{Z}_+$. One has for each $d \in \mathbb{Z}_+$ an irreducible representation $\text{Sym}^{\otimes 2j} \mathbb{C}^2$ of dimension $d = 2j + 1$, where \mathbb{C}^2 is the
Each representation W of dimension D, not necessarily irreducible, can be decomposed into a direct sum of irreducible representations. Moreover, there exists a Hermitian metric $\langle - , - \rangle$ on W such that the decomposition is orthogonal. We shall denote the dual of W with respect to the Hermitian metric by W^*, and the dual of a vector $v \in W$ by v^*.

According to the weight decomposition of irreducible representations, one can then find an orthonormal basis of W

$$\mathcal{B} = \{ e_1, e_2, \cdots , e_D \}$$

whose weights, the eigenvalues under the action of H, are

$$\alpha_1, \alpha_2, \cdots , \alpha_D ,$$

respectively. Note that here the weight is 2 times the usual notion of spin. See Figure. 1 for an illustration.

Figure 1: The decomposition into direct sum of irreducible representations. Each disk/square represents a one-dimensional eigenspace of H with integer/half integer spins, respectively. The vector spaces aligned in the vertical direction, which are connected by actions by X and Y, constitute an irreducible representation.

We label such an basis by order, then each of the vectors in the basis \mathcal{B} for W is represented by its sub-index $r, r = 1, 2 \cdots D$, and vice versa. We shall adapt this convenient convention throughout this work.

We consider in this work the tensor product

$$V = \bigotimes_{k=1}^{N} V_k ,$$

where all of the components V_k are identical to some given representation, not necessarily irreducible, say W. In our following discussion, we shall consider the non-trivial case $N \geq 2$.

3
A basis of V is then provided by $B \otimes N$, which are indexed by the multi-indices $I = (i_1, i_2, \cdots, i_N)$ corresponding to the vector
\begin{equation}
e_I := e_{i_1} \otimes e_{i_2} \cdots \otimes e_{i_N}.
\end{equation}
The weight of this vector is easily seen to be
\begin{equation}
\text{weight}(I) := \alpha_{i_1} + \alpha_{i_2} + \cdots + \alpha_{i_N}.
\end{equation}
Any vector ψ in V is then represented by
\begin{equation}
\psi = \sum_{e_I \in B \otimes N} a_I e_I, \quad a_I \in \mathbb{C}.
\end{equation}

We now discuss the partial trace. Choose a subset of components Λ from the one \{1, 2, ..., N\} for V, and define
\begin{equation}
V_{\Lambda} = \bigotimes_{k \in \Lambda} V_k, \quad V_{\Lambda^c} = \bigotimes_{k \notin \Lambda} V_k.
\end{equation}
The identity operator $I_{V_{\Lambda}} \in \text{End}(V_{\Lambda})$ is equivalently represented by the tensor
\begin{equation}
\Delta_{V_{\Lambda}} \in V_{\Lambda} \otimes \bar{V}_{\Lambda},
\end{equation}
or alternatively the tensor
\begin{equation}
\Delta_{V_{\Lambda}} \in \bar{V}_{\Lambda} \otimes V_{\Lambda},
\end{equation}
where the notation $\bar{\cdot}$ means the linear dual in the category of vector spaces.

The Hermitian metric gives an identification V^* with \bar{V} which will be used frequently in this work. The element $\psi \otimes \psi^* \in V \otimes V^*$ then determines an element in $\text{End}(V)$. Thus one can contract it with the tensor $\Delta_{V_{\Lambda}}$. This is equivalent to the following pairing using the Hermitian metric
\begin{equation}
\langle \Delta_{V_{\Lambda}}, \psi \otimes \psi^* \rangle \in \text{End}(V_{\Lambda^c}).
\end{equation}

Definition 1 (Partial trace) The partial trace of $\psi \otimes \psi^*$ over the vector space V_{Λ} is defined to be
\begin{equation}
\text{Tr}_{V_{\Lambda}}(\psi \otimes \psi^*) := \langle \Delta_{V_{\Lambda}}, \psi \otimes \psi^* \rangle.
\end{equation}
The above definition can be applied to a general element in $V \otimes V^*$ which is not necessarily of the form $\psi \otimes \psi^*$.

Writing $I = (L; K)$, where K runs over the index set for the orthonormal basis $B^{\otimes \Lambda} = \{e_K\}$ of V_{Λ} and L over that for V_{Λ^c}, we then have
\begin{equation}
\Delta_{V_{\Lambda}} = \sum_{e_K \in B^{\otimes \Lambda}} e_K \otimes e_K^*,
\end{equation}
and hence (hereafter $\Theta_D := \{1, 2, \cdots, D\}$)
\begin{equation}
\text{Tr}_{V_{\Lambda}}(\psi \otimes \psi^*) = \sum_{L, L'} \sum_{K \in \Theta_D^{\otimes \Lambda}} a_{(L; K)} a^*_{(L'; K)} e_L \otimes e_{L'}^* \in \text{End}(V_{\Lambda^c}).
\end{equation}

With respect to the basis we have chosen, this tensor is naturally represented by its entries
\begin{equation}
(\text{Tr}_{V_{\Lambda}}(\psi \otimes \psi^*))_{L, L'} = \sum_{K \in \Theta_D^{\otimes \Lambda}} a_{(L; K)} a^*_{(L'; K)}, \quad L, L' \in \Theta_D^{\otimes \Lambda^c}.
\end{equation}
The tensor $\psi \otimes \psi^* \in \text{End}(V_\Lambda \otimes V_\Lambda)$ has rank one, hence the dimensional of its kernel is $\dim(V_\Lambda \otimes V_\Lambda) - 1$. Taking the partial trace over V_Λ would at most increase the rank of the resulting partial trace by $\dim V_\Lambda$: forgetting about the component V_Λ in $V_\Lambda^c \otimes V_\Lambda$ would at most decrease the dimensional of the kernel by $\dim V_\Lambda$. Therefore, the rank of $\text{Tr}_{V_\Lambda}(\psi \otimes \psi^*)$ has an upper bound

$$\text{rank}(\text{Tr}_{V_\Lambda}(\psi \otimes \psi^*)) \leq 1 + \dim V_\Lambda.$$ \hfill (2.19)

In order that the partial trace, as an element in $V_\Lambda^c \otimes V_\Lambda^c$, has full rank, the following condition has to be met

$$\dim V_\Lambda^c \leq 1 + \dim V_\Lambda.$$ \hfill (2.20)

In the present case, all of the components are isomorphic representations. Hence the above condition reduces to

$$|\Lambda| \geq \left\lceil \frac{N}{2} \right\rceil,$$ \hfill (2.21)

here $|\Lambda|$ stands for the cardinality of Λ. Intuitively, one must contract enough components in order for the resulting partial trace to have possibly maximal rank.

3 Combinatorics in partial trace on the constant weight subspace

We shall discuss in this section some combinatorial structure of partial trace and of the constant weight space, basing on which we shall discuss some applications in Section 4.

Among the entries in the partial trace (2.18), of particular interest are the diagonal ones

$$\rho^\Lambda_{L^c} := \sum_{K \in \Theta^\Lambda_{D}} |a_{(L,K)}|^2, \quad L \in \Theta^\Lambda_{D^c}.$$ \hfill (3.1)

We fix $\Lambda^c = \{1, 2, \cdots, M, M + 1\}$ for some $0 \leq M \leq N - 1$. Writing the index set L as $(I_0; r)$, then the diagonal pieces of the partial trace over V_Λ are represented by the entries

$$\rho^\Lambda_{(I_0; r)} = \sum_{K \in \Theta^\Lambda_{D^c}} |a_{(L,K)}|^2, \quad \forall (I_0; r) \in \Theta^\Lambda_{D^c^c}.$$ \hfill (3.2)

By moving the position of r, symbolically denoted by \ast, inside the set $\{M + 1, M + 2, \cdots, N\}$, we get similarly the quantities $\rho^\Lambda_{(I_0; r)}$. Next we shall consider

$$\sum_{r=1}^{D} \sum_{* \in \{M + 1, M + 2, \cdots, N\}} \rho^\Lambda_{(I_0; r^*)}.$$ \hfill (3.3)

The indices appearing in the above sum (3.3) are parametrized by the set

$$\Theta^\Lambda_{D^{(N-M)}} = \{(K_1, r, K_2)\},$$ \hfill (3.4)

where as before the position of r is given by $* \in \{M + 1, M + 2, \cdots, N\}$. Here (K_1, r, K_2) is the ”K” + ”r” part in the previous notation.
3.1 Combinatorial identity in the constant weight subspace

After restricting to the constant weight subspace $V(w)$ of V consisting of vectors of weight w, this set is then in one-to-one correspondence with the set X of solutions to the equation

$$\sum_{k=M+1}^{N} x_k = -\text{weight}(I_0) + w, \quad x_k \in \{\alpha_1, \alpha_2, \cdots, \alpha_D\}. \quad (3.5)$$

For simplicity we shall denote such a solution collectively by x.

Modulo the action of the symmetry group S_{N-M}, the set of cosets X/S_{N-M} is then in one-to-one correspondence with the set of partitions of (with values in $\{\alpha_1, \alpha_2, \cdots, \alpha_D\}$)

$$S := S(\text{weight}(I_0), w) = -\text{weight}(I_0) + w. \quad (3.6)$$

To be more precise, any element, denoted by $[x]$, in the space X/S_{N-M} is represented by a partition

$$\alpha_1 \cdot n_1([x]) + \alpha_2 \cdot n_2([x]) + \cdots + \alpha_D n_D([x]). \quad (3.7)$$

Here $n_r([x]), r = 1, 2, \cdots, D$ is the frequency of α_r in the partition $[x]$, which is independent of the choice of the representative. They are subject to the conditions that

$$\sum_{r=1}^{D} \alpha_r n_r([x]) = S, \quad \sum_{r=1}^{D} n_r([x]) = N - M. \quad (3.8)$$

Therefore, we get the following result.

Lemma 2 There exists a nonzero solution $\{b_r\}_{r=1}^{D}$ to the equation

$$\sum_{r=1}^{D} b_r n_r([x]) = 0, \quad \forall [x] \in X/S_{N-M}. \quad (3.9)$$

One explicit one is given by

$$b_r = \alpha_r - \frac{S}{N-M}, \quad r = 1, 2, \cdots, D. \quad (3.10)$$

Remark 3 A natural question is about the uniqueness of the solution. This will be adressed in Section 5.2 below using the notion of frequency matrix.

Example 4 Take $N = 5, j = 1$. Then $D = 3$ and $\alpha_r/2 \in \{-1,0,1\}$ for $r = 1, 2, D = 3$. Consider the case $M = 1, w = 0$. Labelling the basis by the spin which is half of the eigenvalue of H, we then have the following

I_0	$[1,0,0,0]$	$[1,0,0,-1]$	$b = (b_r)'$
-1	$[1,0,0,0]$	$[1,0,0,0]$	$[0,3,1]$
	$[1,0,0,-1]$	$[1,0,0,1]$	$[1,1,2]$
0	$[1,-1,1,-1]$	$[1,-1,1,0]$	$[2,0,2]$
	$[1,-1,0,0]$	$[1,0,0,0]$	$[1,2,1]$
	$[0,0,0,0]$	$[0,0,0,0]$	$[0,4,0]$
1	$[1,-1,0,-1]$	$[1,-1,0,0]$	$[2,1,1]$
	$[1,-1,0,0]$	$[1,3,0]$	$[1,3,0]$
			$[-3/4, 1/4, 5/4]$

We can now prove the following theorem.
Theorem 5 Fixing \(w, M, I_0 \), then there exists a nonzero solution \(\{ b_r \}_{r=1}^D \) to the equation

\[
\sum_{r=1}^D b_r \sum_{r \in V} \rho_{(I_0;r)}^{\{1,2,\cdots,M,\ast\}} = 0 . \tag{3.11}
\]

Proof. Straightforward computation shows that

\[
\sum_{r=1}^D \sum_{x \in X} b_r n_r([x]) |a_{(I_0;x)}|^2
\]

\[
= \sum_{r=1}^D \sum_{x \in X} b_r n_r([x]) |a_{(I_0;x)}|^2
\]

\[
= \sum_{[x] \in X/\mathcal{G}_N} \sum_{r \in [x]} b_r n_r([x]) \sum_{x \in [x]} |a_{(I_0;x)}|^2
\]

\[
= \sum_{[x] \in X/\mathcal{G}_N} \left(\sum_{r \in [x]} b_r n_r([x]) \right) \left(\sum_{x \in [x]} |a_{(I_0;x)}|^2 \right) .
\]

This is vanishing due to the equation \(\sum_{r=1}^D b_r n_r([x]) = 0 \) for any \([x] \in X/\mathcal{G}_N\), as proved in Lemma 2.

The above results exhibit only part of the combinatorial properties in partial trace. The actual combinatorial structure in partial trace is much richer. For example, the quantity considered in (3.3) is closely related to

\[
\text{Tr}_{V_1 \oplus V_\Lambda} (\psi \otimes \psi^*) , \quad \Lambda \cup \{\ast\} = \{M + 1, M + 2, \cdots, N\} ,
\]

whose \((I_0, I_0)\)-diagonal entry is

\[
\sum_{r=1}^D \sum_{r \in V} \rho_{(I_0;r)}^{\{1,2,\cdots,M,\ast\}} . \tag{3.13}
\]

In particular, if we take \(M = 1 \), then \(\text{Tr}_{V_1 \oplus V_\Lambda} \) defines an element in \(\text{End}(V_1) \) and we have

\[
\sum_{* \in \{2,3,\cdots, N\}} \sum_{r=1}^D \rho_{(I_0;r)}^{\{1,\ast\}} = (N - 1) \cdot (\text{Tr}_{V_1 \oplus V_\Lambda} (\psi \otimes \psi^*))_{(I_0,I_0)} . \tag{3.14}
\]

The summation of the above over \(I_0 \) gives the further trace over \(V_1 \). We therefore have

\[
\sum_{I_0} \sum_{* \in \{2,3,\cdots,N\}} \sum_{r=1}^D \rho_{(I_0;r)}^{\{1,\ast\}} = (N - 1) \cdot \text{Tr}_V (\psi \otimes \psi^*) . \tag{3.15}
\]

This when combined with Theorem 5 will be useful in the applications discussed in Section 4 below where we shall prove that the converse statement is also true.
3.2 The relation between different $M' < M$

For different choices of V_Λ, the patterns in the combinatorics of the partial trace shown in Lemma 2 in fact only depends on the cardinality $N - M - 1$ of Λ.

For different values of M, one has different sets of relations. We shall show in this section that the most informative one is the one with largest possible M subject to the condition $M + 1 \leq \left\lfloor \frac{N}{2} \right\rfloor$ (the least possible number of components being traced according to (2.21)), the others are its consequences.

Fixing M, consider another value M' such that $M' < M$. Our argument is by induction. Hence we shall assume for now that $M' = M - 1$. We single out the component in $M - M'$. Assume it is the first component, by permutation or relabelling if necessary.

Recall that the relations in Lemma 2 is about the combinatorics of X'/S_{N-M}. We now show that the solution $\{b_r\}$ given in (3.10) implies the solution $\{b'_r\}$. We start with the fact that each of the partitions $[x]$ satisfies

$$
\sum b_r n_r([x]) = 0, \quad \sum n_r([x]) = N - M, \quad \sum \alpha_r n_r([x]) = S. \quad (3.16)
$$

Here the existence of $\{b_r\}$ is guarantted by induction. Later we shall see that the solution given in (3.10) is a natural one consistent with the induction procedure.

The goal is then to prove the existence of $\{b'_r\}$ such that the 'version of the above equations are satisfied, for any $[x']$.

Choosing a value s for the first component in the process of taking partial trace over the $N - M'$ components. We can then classify x' into two sets: one involves s and the other one does not. For those not involving the specified s, it must involve some other value \tilde{s}. Then we apply the following same reasoning to $[x'] = [x] + s$.

If we can prove the result for any possible value of s, then by exhausting all the possible values for s, we are done with the checking for any $[x]'$, as any x' must be of the form $[x'] = [x] + s$ for some s.

Hence it suffices to consider those involving any fixed value s, for which we have $[x'] = [x] + s, [x] \in X'/S_{N-M},$ with

$$
\sum n_r([x']) = N - M' = N - M + 1, \quad \sum \alpha_r n_r([x']) = S'. \quad (3.17)
$$

We set

$$
b'_r = b_r + \delta, \quad (3.18)
$$

for some δ. We want it to depend only on the numbers $S \leq S'$ being partitioned and $M = M' + 1$ so that we can proceed by induction.

Now we compute

$$
\sum_{r=1}^D b'_r n_r([x']) = \sum_{r=1}^D b_r n_r([x]) + \sum_{r=1}^D \delta n_r([x]) + b_s + \delta,
$$

$$
= (N - M)\delta + b_s + \delta
$$

$$
= b_s + (N - M + 1)\delta
$$

$$
= b_s + (N - M')\delta.
$$

We set

$$
b_r = \alpha_r - \frac{S}{N - M}, \quad \forall r = 1, 2, \ldots, D, \quad (3.19)
$$

and

$$
\delta = \frac{S}{N - M} - \frac{S'}{N - M'}. \quad (3.20)
$$

8
This then does the job $\sum_{r=1}^{D} b'_r n_r([x']) = 0$. Furthermore, one has from the above and (3.18) that

$$b'_r = \alpha_r - \frac{S'}{N - M}.$$ (3.21)

Hence it keeps the pattern for b_r shown in (3.19) unchanged. Therefore, one can proceed by induction.

4 Applications

Theorem 5 is a strong structural condition on the partial traces $\text{Tr}_{V_\Lambda} (\psi \otimes \psi^*) \in \text{End}(V_\Lambda)$. One immediate application is for the overlapping quantum marginal problem when restricting to the constant weight subspace. For overlapping quantum marginal problem, very few results were known [3, 4] and most of them can only be applied to small systems. To the best of our knowledge, no further conditions are known if we restrict the pre-image lies in a given subspace.

To make things precise, we first give the definitions of density operator and density matrix, which are the practical notions in talking about distributions in probability theory.

Definition 6 (Density operator and density matrix) Suppose E is a Hermitian vector space. A density operator ϱ is an element in $\text{End}(E)$ satisfying

- It is normalized in the sense that $\text{Tr} \varrho = 1$.
- It is a self-adjoint, positive definite operator.

Fixing an orthonormal basis $\{f_L\}_L$ for E, then the density operator ϱ is represented by a matrix $(\varrho_{LL'})$ called the density matrix. The self-adjoint property translates into the property that the density matrix is Hermitian. We denote its diagonal entries by $\rho_L := \varrho_{LL}$. (4.1)

For example, for any unit norm vector $v \in E$, the operator $v \otimes v^*$ gives a density operator.

4.1 Quantum marginal problem

The quantum marginal problem is formulated in the following way. Consider the Hermitian vector space $V = \bigotimes_{k=1}^{N} V_k$. For each subset $\{i, j\} \subseteq \{1, 2, \cdots, N\}$, define

$$\Lambda^c_{ij} := \{i, j\}, \quad \Lambda_{ij} := \{1, 2, \cdots, N\} - \{i, j\}. $$ (4.2)

Given a collection of density operators $\{\varrho^{\Lambda^c_{ij}}\}$, consisting of one density operator (called two-body below) $\varrho^{\Lambda^c_{ij}}$ for each Λ^c_{ij}. We want to ask whether there exists a density operator $\varrho^{(1, 2, \cdots, N)} = \psi \otimes \psi^*$ on V, supported on the subspace $V_{(w)}$ of constant weight w, such that its partial trace over $V_{\Lambda_{ij}}$ satisfies the following relation

$$\text{Tr}_{\Lambda_{ij}} \varrho^{(1, 2, \cdots, N)} = \varrho^{\Lambda^c_{ij}}, \quad \forall \{i, j\} \subseteq \{1, 2, \cdots, N\}. $$ (4.3)

When there exists such an $\varrho^{(1, 2, \cdots, N)}$, then ψ is a state in the constant weight subspace $V_{(w)}$.

If not, then there could be two possibilities:
1. there does not exist $\varrho^{(1, 2, \cdots, N)}$ at all, either on the constant weight subspace or not;
2. there exist some global states but none of them is in a constant weight subspace.

Our results of Theorem 5 directly give necessary conditions for this problem. With respect to some given orthonormal basis of V of the form (2.8), which is induced by those on the components, the diagonal entries
of \(\varrho^{N \downarrow} \) are given by \(\{ \rho^{N \downarrow}_L \}_L \). If (4.3) is true, then these diagonal entries \(\{ \rho^{N \downarrow}_L \}_L \) must coincide with the ones defined in (3.1) in Section 3. Hence one must have, for the solution \(\{ b_r \} \) given in (3.10) (which in particular depends on \(I_0 \)), the following relations provided in (3.11):

\[
\sum_{r=1}^{D} b_r \sum_{r \in V_r} \rho^{1,2,\cdots,M,s}_{(I_0,r)} = 0, \quad \forall I_0,
\]

(4.4)

as well as the relations obtained by moving the index set \(\{ 1,2,\cdots,M \} \) inside \(\{ 1,2,\cdots,N \} \).

For instance, we can take \(M = 1 \), our result then leads to a new necessary condition for the set of the densities \((\varrho^{1,2}, \varrho^{1,3}, \cdots, \varrho^{1,N}) \) having a lift into a constant weight subspace:

\[
\sum_{r=1}^{D} b_r \sum_{r \in V_r} \rho^{1,s}_{(I_0,r)} = 0, \quad \forall I_0.
\]

(4.5)

These linear constraints can not be obtained from the trivial conditions

\[
\text{Tr}_{V_r}(\varrho^{1,p}) = \text{Tr}_{V_r}(\varrho^{1,q}), \quad \forall 2 \leq p < q \leq N.
\]

(4.6)

Here is a closely related problem. Assume that \(\{ \varrho^{N \downarrow} \} \) indeed descends from some density \(\varrho^{1,2,\cdots,N} = \psi \otimes \psi^* \), we want to know to what extent can we know the property of \(\psi \) (e.g., deviation from being supported on a constant weight space) from the condition (4.5) and its permutations. We now argue that the necessary condition (4.5) provided by Theorem 5 is actually sufficient, provided that the above assumption that \(\{ \varrho^{N \downarrow} \} \) descends from some density \(\varrho^{1,2,\cdots,N} = \psi \otimes \psi^* \) is met. Note that the condition (4.5) is much weaker than the set of relations obtained in permuting (4.4).

To see this, we assume that (4.5) and its permutations are met for a set of \(\{ b_r \} \) given by (3.10) for some \(w_0 \),

\[
b_r = \alpha_r - \frac{-\text{weight}(I_0) + w_0}{N - 1}, \quad r = 1,2,\cdots,D.
\]

(4.7)

Then we get

\[
\sum_{r=1}^{D} \left(\alpha_r - \frac{-\text{weight}(I_0) + w_0}{N - 1} \right) \sum_{r \in (2,\cdots,N)} \rho^{1,s}_{(I_0,r)} = 0, \quad \forall I_0.
\]

(4.8)

We first decompose \(\psi \) into a sum of its projections \(\psi_w \) to the constant weight spaces \(V_w \)

\[
\psi = \sum_w \sum_{e_j \in V_w} a_j e_j := \sum_w \psi_w, \quad a_j \in \mathbb{C}.
\]

(4.9)

Then since different \(V_w \)'s are orthogonal, we have

\[
\text{Tr}_{V_{1,1}}(\psi \otimes \psi^*) = \sum_w \text{Tr}_{V_{1,1}}(\psi_w \otimes \psi_w^*).
\]

(4.10)

Denote the diagonal matrices of \(\text{Tr}_{V_{1,1}}(\psi_w \otimes \psi_w^*) \) by \(\rho^{1,s}_{(I_0,r)}(w) \). Then we have for the diagonal entries that

\[
\rho^{1,s}_{(I_0,r)} = \sum_w \rho^{1,s}_{(I_0,r)}(w).
\]

(4.11)

Applying Theorem 5 to each component \(\psi_w \), we get

\[
\sum_{r=1}^{D} \left(\alpha_r - \frac{-\text{weight}(I_0) + w_0}{N - 1} \right) \sum_{r \in (2,\cdots,N)} \rho^{1,s}_{(I_0,r)}(w) = 0, \quad \forall I_0.
\]

(4.12)
This gives

\[\sum_r \sum_w \left(\alpha_r - \frac{-\text{weight}(I_0) + w}{N - 1} \right) \sum_{\ast \in \{2, \ldots, N\}} \rho^{(1, \ast)}_{(I_0, r)}(w) = 0, \ \forall I_0. \tag{4.13} \]

On the other hand, from (4.8), (4.11), we also have

\[\sum_r \sum_w \left(\alpha_r - \frac{-\text{weight}(I_0) + w_0}{N - 1} \right) \sum_{\ast \in \{2, \ldots, N\}} \rho^{(1, \ast)}_{(I_0, r)}(w) = 0, \ \forall I_0. \tag{4.14} \]

One can change the order of summation on \(r \) and \(w \) and get

\[\sum_w \sum_r \left(\alpha_r - \frac{-\text{weight}(I_0) + w_0}{N - 1} \right) \sum_{\ast \in \{2, \ldots, N\}} \rho^{(1, \ast)}_{(I_0, r)}(w) = 0, \ \forall I_0. \tag{4.15} \]

Taking the difference between (4.13) and (4.15), we obtain

\[\sum_w \sum_r \frac{w - w_0}{N - 1} \sum_{\ast \in \{2, \ldots, N\}} \rho^{(1, \ast)}_{(I_0, r)}(w) = 0, \ \forall I_0. \tag{4.16} \]

Simplifying this relation a little further, we get

\[\sum_w \frac{w - w_0}{N - 1} \sum_{\ast \in \{2, \ldots, N\}} \left(\sum_r \rho^{(1, \ast)}_{(I_0, r)}(w) \right) = 0, \ \forall I_0. \tag{4.17} \]

The combinatorics in (3.14) tells that

\[\sum_{r = 1}^D \sum_{r \in V_r} \rho^{(1, \ast)}_{(I_0, r)}(w) = \left(\text{Tr}_{V_r \oplus V_0 \oplus \cdots} \left(\psi_w \otimes \psi_w^* \right) \right)_{(I_0, I_0)}, \tag{4.18} \]

\[\sum_{\ast \in \{2, \ldots, N\}} \sum_{r = 1}^D \sum_{r \in V_r} \rho^{(1, \ast)}_{(I_0, r)}(w) = (N - 1) \left(\text{Tr}_{V_2 \oplus \cdots \oplus V_N} \left(\psi_w \otimes \psi_w^* \right) \right)_{(I_0, I_0)}. \tag{4.19} \]

Then it follows from (4.17) that

\[\sum_w \frac{w - w_0}{N - 1} \left(\text{Tr}_{V_2 \oplus \cdots \oplus V_N} \left(\psi_w \otimes \psi_w^* \right) \right)_{(I_0, I_0)} = 0, \ \forall I_0. \tag{4.20} \]

In particular, a consequence of this says that the expectation value of the operator \(H \) (which must be diagonal since \(H \) is in the Cartan) on the density \(\rho^{(1)} \) is the same as that of the constant operator \(w_0 \). That is,

\begin{align*}
0 & = \sum_{I_0} \sum_w \left(w - w_0 \right) \left(\text{Tr}_{V_2 \oplus \cdots \oplus V_N} \left(\psi_w \otimes \psi_w^* \right) \right)_{(I_0, I_0)} \\
& = \sum_{I_0} \sum_w \left(\text{Tr}_{V_2 \oplus \cdots \oplus V_N} \left(\psi_w \otimes \psi_w^* \right) \right)_{(I_0, I_0)} - \sum_{I_0} \sum_w w_0 \left(\text{Tr}_{V_2 \oplus \cdots \oplus V_N} \left(\psi_w \otimes \psi_w^* \right) \right)_{(I_0, I_0)} \\
& = \sum_w \left(\sum_{I_0} \text{Tr}_{V_2 \oplus \cdots \oplus V_N} \left(\psi_w \otimes \psi_w^* \right) \right)_{(I_0, I_0)} - w_0 \sum_w \left(\sum_{I_0} \text{Tr}_{V_2 \oplus \cdots \oplus V_N} \left(\psi_w \otimes \psi_w^* \right) \right)_{(I_0, I_0)} \\
& = \sum_w \text{Tr}_{V} \left(\psi_w \otimes \psi_w^* \right) - w_0 \sum_w \text{Tr}_{V} \left(\psi_w \otimes \psi_w^* \right) \\
& = \text{Tr}_{V} \left(H \rho^{(1, \ast \cdots \ast)} \right) - w_0 \cdot \text{Tr}_V \left(\rho^{(1, \ast \cdots \ast)} \right). \tag{4.21}
\end{align*}
We remark that (4.20) is in fact stronger than this. From (2.18) we can see that \(\text{Tr}_{V(2,3, \ldots, N)}(\psi_w \otimes \psi^*_w) \) only have diagonal terms: this is special as the leftover after the partial trace has only one component. Therefore, (4.20) actually means that the following two are equivalent operators (contrasted with (4.6))
\[
\sum_w w(\text{Tr}_{V(2,3, \ldots, N)}(\psi_w \otimes \psi^*_w)) = \sum_w w_0(\text{Tr}_{V(2,3, \ldots, N)}(\psi_w \otimes \psi^*_w)) .
\]
(4.22)
Taking further the partial trace over \(V_1 \) then yields (4.21).

Recall that the operator \(H \) acts on \(V = \otimes_{k=1}^N V_k \) by \(\sum_k I \otimes \cdots \otimes \exp(H) \otimes \cdots I \), where in the summand \(H \) only acts on the component \(V_k \) nontrivially. We denote for simplicity that
\[
H = \sum_k H_k .
\]
(4.23)

We have shown in (4.22) that
\[
\text{Tr}_{V(2,3, \ldots, N)}(H - H_1)\psi \otimes \psi^* + (H_1 - w_0)\text{Tr}_{V(2,3, \ldots, N)}\psi \otimes \psi^* = 0 .
\]
(4.24)
Permuting the index from 1 to \(k \) gives
\[
\text{Tr}_{V(1,2,3, \ldots, N)-(k)}(H - H_k)\psi \otimes \psi^* + (H_k - w_0)\text{Tr}_{V(1,2,3, \ldots, N)-(k)}\psi \otimes \psi^* = 0, \quad \forall k = 1, 2, \ldots, N .
\]
(4.25)
Multiplying this by a polynomial operator \(f(H_k) \), and summing over \(k \), we then get
\[
\text{Tr}_{V(1,2,3, \ldots, N)}\sum_{k=1}^N ((H - w_0)f(H_k))\psi \otimes \psi^* = 0 .
\]
(4.26)
Taking \(f(H_k) = w_0 \) gives
\[
\text{Tr}_{V(1,2,3, \ldots, N)}(NHw_0 - Nw_0^2)\psi \otimes \psi^* = 0 .
\]
(4.27)
Taking \(f(H_k) = H_k \) yields
\[
\text{Tr}_{V(1,2,3, \ldots, N)}(H^2 - Hw_0)\psi \otimes \psi^* = 0 .
\]
(4.28)
Combining the above two, we get
\[
\text{Tr}_{V(1,2,3, \ldots, N)}(H - w_0)^2\psi \otimes \psi^* = \sum_w \text{Tr}_{V(w)}(w - w_0)^2\psi_w \otimes \psi^*_w = 0 .
\]
(4.29)
This can be true only when \(\psi \otimes \psi^* \) is supported on the constant weight space \(V(w_0) \).

Hence we have shown that one can determine whether a state is supported on a constant weight subspace by all of its two-body local information. The proof above also shows that the vanishing of fluctuation of \(H \) would give another necessary and sufficient condition to this problem. However, in the case leakage exists, our method gives a more practical and powerful criteria than the mean and fluctuation method.

4.2 Perfect tensor

As another concrete example of our applications, we now use our conditions to study the notion of perfect tensor, which is recently widely studied in the theory of AdS/CFT, and is understood as an interesting proposal to realize the holographic principle in many-body quantum system. Perfect tensors can build tensor network state exhibiting interesting holographic correspondence \[16\]. In particular, the tensor network made by perfect tensors derives the Ryu-Takayanagi formula of holographic entanglement entropy, namely, the entanglement entropy of the boundary quantum system equals the minimal surface area in the bulk.

Furthermore, recently it has been shown that perfect tensors can represent quantum channels which are of strongest quantum chaos \[13\]. The quantum transition defined by perfect tensors turns out to maximally scramble the quantum information such that the initial state cannot be recovered by local measurements. It has also been suggested that a perfect tensor should represent the holographic quantum system dual to the bulk quantum gravity with a black hole.
Definition 7 (Perfect tensor) A vector $\psi \in V$ is called a perfect tensor if for all possible choices Λ satisfying $|\Lambda| \geq \frac{N}{2}$, the condition
$$\text{Tr}_{V}(\psi \otimes \psi^*) = c_{|\Lambda|} \cdot I_{V_{\Lambda^c}}$$
is satisfied for some non-vanishing constant $c_{|\Lambda|}$.

The following result follows from Theorem 5.

Theorem 8 Fix $N \geq 4$. Then for any w, there does not exist a perfect tensor in the constant weight space with weight w.

Proof. We prove by contradiction. Suppose there exists a perfect tensor ψ. We can then take Λ^c with cardinality $M + 1$ such that the condition in (2.21) is fulfilled. That is,
$$M + 1 \leq N - \left\lfloor \frac{N + 1}{2} \right\rfloor = \left\lfloor \frac{N}{2} \right\rfloor. \quad (4.31)$$
Then according to Definition 7 one must have
$$\text{Tr}_{V}(\psi \otimes \psi^*) = c_{|\Lambda|} \cdot I_{V_{\Lambda^c}}, \quad (4.32)$$
for some nonvanishing constant $c_{|\Lambda^c|}$. It is easy to see that $c_{|\Lambda|}$ only depends on the cardinality of Λ: the further trace over V_{Λ^c} should give a multiple of the identity endomorphism which is independent of the choice of Λ.

We now consider the entries $\rho_{(I_0; r)}^{\Lambda^c}$ constructed in (3.2). All of them are equal to $c_{|\Lambda|}$ which without loss of generality can be normalized to 1. Then we have
$$\rho_{(I_0; r)}^{\Lambda^c} = 1, \quad \forall (I_0; r) \in \Theta_{D}^{\Lambda^c}. \quad (4.33)$$
We now show that if $M \neq 0$, that is, the set I_0 is nonempty, then there always exists I_0 such that
$$\sum_{r=1}^{D} b_r \neq 0. \quad (4.34)$$
The condition $M \geq 1$ requires $N \geq 4$ according to (4.31). To check the condition (4.34), we compute
$$\sum_{r=1}^{D} b_r = \sum_{r=1}^{D} \alpha_r - D \cdot \frac{S}{N - M}. \quad (4.35)$$
Due to the structure theory of representations, one has $\sum_{r=1}^{D} \alpha_r = 0$. Hence the condition boils down to
$$S = -\text{weight}(I_0) + w \neq 0. \quad (4.36)$$
This can always be satisfied by choosing a suitable I_0, which is contradictory with the claim in Theorem. Hence there does not exist such a perfect tensor.

Perfect tensors also have an intimate connection to quantum error-correcting codes [18]. An N-spin perfect tensor can be equivalently viewed as an length-N quantum error-correcting code encoding a single quantum state, with the code distance $\delta = \left\lfloor \frac{N}{2} \right\rfloor + 1$. Our results hence indicates in the constant weight subspace, there is no such code exist.

We will now use our results to further understand the existence of invariant perfect tensors. Invariant tensors are the tensors in V with vanishing total angular momentum. They play an important role in the theory of loop quantum gravity [8, 20], and particularly the structure of Spin-Networks [17, 21]. Spin-network states, as quantum states of gravity, are networks of invariant tensors, and represents the quantization of geometry at the Planck scale. Classically an arbitrary three-dimensional geometry can be discretized and
built piece by piece by gluing polyhedral geometries. The spin-network state built by invariant tensors quantizes the geometry made by polyhedra. As the building block of spin-network, the \(n \)-valent invariant tensor represents the quantum geometry of a polyhedron with \(n \) faces. The reason in brief is that the quantum constraint equation \(\sum_{i=1}^{n} J_i \psi = 0 \) (vanishing total angular momentum) is a quantum analog of the polyhedron closure condition \(\sum_{i=1}^{n} \vec{A}_i = 0 \) in three-dimensional space (see e.g. Appendix A in [14] for details).

Given that both invariant tensors and perfect tensors relate to quantum gravity from different perspectives, it is interesting to incorporate the idea of perfect tensors with that of invariant tensors, and define a new concept that we call it Invariant Perfect Tensor.

Definition 9 (Invariant perfect tensor) A nonzero vector \(\psi \in V \) is called an invariant tensor if
\[
H \psi = 0, \quad X \psi = 0, \quad Y \psi = 0.
\]
(4.37)

A nonzero vector \(\psi \in V \) is called an invariant perfect tensor if it is both perfect and invariant.

A partial study of invariant perfect tensors has been carried out in [14], which shows that at \(N = 2, 3 \) invariant tensors are always perfect, but restrictedly there is no invariant perfect tensor at \(N = 4 \), although invariant tensors generically approximate perfect tensors asymptotically in large \(j \).

The result in Theorem 8 generalizes the conclusion for perfect invariant tensor to arbitrary \(N \geq 4 \). Because invariant tensors live in the constant weight \(w = 0 \) subspace. Therefore

Corollary 10 There does not exists perfect invariant tensor for any \(j \), for \(N \geq 4 \).

\(N = 3 \) invariant tensors are employed in spin-network states for 2+1 dimensional gravity, while \(N \geq 4 \) invariant tensors build spin-network states for 3+1 dimensional gravity. The above results shows that the entanglement exhibited by the local building block of quantum gravity (at Planck scale) is not as much as a perfect tensor. So the holographic property of quantum states is obscure at the Planck scale. The holography displayed by quantum gravity at semiclassical level then suggests that in order to understand quantum gravity using tensor networks, the entanglement of perfect tensor, as being important to understand holography, should be a large scale effect coming from coarse-graining the Planck scale microstates. Namely although the perfect tensor is missing at the Planck scale, but it may emerge approximately at the larger scale, and makes tensor networks to demonstrate holography. This idea is very much consistent with the recent proposal in [9], which shows the spin-network states in 3+1 dimensions can indeed give tensor networks exhibiting holographic duality at the larger scale. Then it is interesting to understand how (approximate) perfect tensors emerge from non-perfect invariant tensors via coarse-graining from the Planck scale to larger scale. The research in this perspective will be reported in the future publication.

5 Generalizations and extensions

5.1 Generalization to \(SU(n) \)

We have considered in the above the case where \(V \) is the tensor product of \(N \) copies of a not necessarily irreducible representation \(W \) of \(SU(2) \). We now generalize this to the \(SU(n) \) case.

Consider \(V = \bigotimes_{k=1}^{N} V_k \), where all of the \(V_k \)’s are given by the same irreducible representation \(W \) of \(SU(n) \) of dimension \(D \). Suppose a basis of the Cartan of \(SU(n) \) is given by \(H^{(1)}, H^{(2)}, \cdots, H^{(n-1)} \). One then has the weight space decomposition
\[
W = \bigoplus_{\vec{\alpha}} W_{\vec{\alpha}},
\]
(5.1)

where \(\Delta \) is the weight space and \(W_{\vec{\alpha}} \) is the eigenspace with the weight vector \(\vec{\alpha} \), that is
\[
W_{\vec{\alpha}} = \{ v \in W \mid H^{(i)} v = \alpha^{(i)} v, \forall i = 1, 2, \cdots, n - 1 \}.
\]
(5.2)
In particular, the action of any element in the Cartan, symbolically denoted by \(H^{(\ast)} \), is diagonal on \(W_\alpha \) and hence on \(W \).

The above decomposition is orthogonal. We choose an orthonormal basis \(e_1, e_2, \ldots, e_D \) whose eigenvalues under \(H^{(\ast)} \) are given by \(\alpha^{(\ast)}_1, \alpha^{(\ast)}_2, \ldots, \alpha^{(\ast)}_D \).

The constant-weight condition becomes the condition that under the action of the Cartan subalgebra generated by \(H^{(1)}, H^{(2)}, \ldots, H^{(n-1)} \), the weight vector is constant, say \(\vec{w} = (w^{(1)}, w^{(2)}, \ldots, w^{(n-1)}) \). In particular, the weight under \(H^{(\ast)} \) is the fixed number \(w^{(\ast)} \).

Then everything discussed in the SU(2) case follows. The same reasoning also works when \(W \) is not irreducible, in which case a similar orthogonal decomposition in (5.1) still exists, thanks to the structure theory for finite dimensional representations of the Lie group SU(2).

This then shows that there is no perfect tensor in a constant weight space for the group \(G = SU(n) \) when \(N \geq 4 \).

5.2 Relaxing the constant weight space condition

We now discuss to what extent one can relax the constant weight condition.

Recall that the combinatorics in partial trace allows one to pass from the space \(X \) to its quotient \(X/\mathfrak{S}_{N-M} \). What makes the proof in Theorem 8 work is the relation (3.9) in Lemma 2

\[
\sum_{r=1}^{D} b_r n_r([x]) = 0, \quad \forall [x] \in X/\mathfrak{S}_{N-M},
\]

with the condition in (4.34)

\[
\sum_{r=1}^{D} b_r \neq 0.
\]

The condition

\[
\sum_{r=1}^{D} n_r([x]) = N - M, \quad \forall [x] \in X/\mathfrak{S}_{N-M}
\]

is automatically satisfied, according to (3.8) which follows from the definition of \(X \).

Suppose we impose a certain constraint which is not necessarily the constant weight condition. Assume that the set of vectors satisfying this constraint, required to be independent of the ordering of the \(N \) components, is indexed by the set \(Y \). Denote the cardinality of the quotient \(Y/\mathfrak{S}_{N-M} \) by \(P \). Then the non-existence of perfect tensors in the space \(Y \) would follow if the following conditions are satisfied

\[
\sum_{r=1}^{D} b_r n_r([y]) = 0, \quad \sum_{r=1}^{D} b_r \neq 0, \quad \forall [y] \in Y/\mathfrak{S}_{N-M}. \tag{5.6}
\]

We fix a set of representatives \(\{[y_i], i = 1, 2, \ldots, P\} \) for \(Y/\mathfrak{S}_{N-M} \), and denote the matrix of frequencies by

\[
A = (A_{ir}) = (n_r([y_i]))_{i=1,2,\ldots,P;r=1,2,\ldots,D}. \tag{5.7}
\]

Then the above two equations become the conditions for the vector \(b = (b_1, \ldots, b_D)^t \)

\[
Ab = 0, \quad (1, 1, \ldots, 1)b \neq 0. \tag{5.8}
\]

We denote \(\tilde{A} \) to be the matrix obtained by adding a row of 1’s below the \(P \)-th row of \(A \). The existence of such a vector \(b \) is equivalent to the condition that

\[
\text{rank } A < D, \quad \text{rank } \tilde{A} = \text{rank } A + 1. \tag{5.9}
\]
Example 11 Consider the case where each V_k in $V = \bigotimes_{k=1}^N V_k$ is the irreducible representation $SU(2)$ of dimension $D = 2j + 1$. We put the constant weight condition. This is the main interest in this work. In this case, it is straightforward to show that the cardinality P of $\mathcal{X}/\mathfrak{S}_{N-M}$ is

$$P = \text{Coeff}_{S+D(N-M)} \prod_{r=1}^D \frac{1}{1-t_r},$$

(5.10)

where $t_r, r = 1, 2, \cdots, D$ are formal parameters of degree $2r - 1$, respectively. Lemma 2 applies to this case.

The existence of a non-trivial solutions tells that rank $A \leq D - 1$. In fact, more is known and we can show that rank $A = D - 1$ for generic D and $N - M$. For simplicity we consider the case where each V_k in $V = \bigotimes_{k=1}^D V_k$ is the irreducible representation $SU(2)$ of dimension $D = 2j + 1$. The general case where V_k is not irreducible is similar.

Now according to (3.8), we see that if $[x]$ is a certain partition in $\mathcal{X}/\mathfrak{S}_{N-M}$, then the following is also a partition if $N - M \geq 2$

$$[x] + \alpha_a \cdot 1 + \alpha_b \cdot 1,$$

(5.11)

where α_a, α_b are subject to the condition that $\alpha_a + \alpha_b = 0$. Furthermore, one also has the combinations

$$[x] + \alpha_a \cdot 2 + \alpha_{b-1} \cdot 1 + \alpha_{b+1} \cdot 1, \quad [x] + \alpha_{a-1} \cdot 1 + \alpha_{a+1} \cdot 1 + \alpha_b \cdot 2.$$

(5.12)

The former gives a genuine partition provided the relation $1 \leq b - 1, b + 1 \leq D$ can be satisfied, which is the case when $D \geq 3, N - M \geq 3$. The latter is similar. We shall refer to the case $D \geq 3, N - M \geq 3$ the generic case, the others are isolated cases which can be dealt with easily.

We then take the frequency vectors corresponding to the partitions in the set

$$[x], \quad [x] + \alpha_a \cdot 1 + \alpha_b \cdot 1, \quad [x] + \alpha_a \cdot 2 + \alpha_{b-1} \cdot 1 + \alpha_{b+1} \cdot 1, \quad \text{for } b \leq D - 1, \quad [x] + \alpha_1 \cdot 1 + \alpha_3 \cdot 1 + \alpha_{D-1} \cdot 2.$$

(5.13)

By computing the determinants inductively, it is easy to see that the corresponding frequency vectors span a vector space of dimension at least $D - 1$. Combing the relation rank $A \leq D - 1$ implied by Lemma 2, we are then led to the conclusion that rank $A = D - 1$ for generic $D, N - M$.

Example 12 As another example, we put the constraint

$$\sum_{r=1}^D \alpha_r^2 n_r = S,$$

(5.14)

where $\alpha_r, r = 1, 2, \cdots, D$, are the weights of the basis $B = \{e_1, e_2, \cdots, e_D\}$. The solution $\{b_r\}_{r=1}^D$ to (5.6) then exists if we choose I_0, S suitably.

Acknowledgments

We thank Markus Grassl for helpful discussions. J. C. was supported by the Department of Defence. M. H. acknowledges support from the US National Science Foundation through grant PHY-1602867, and Start-up Grant at Florida Atlantic University, USA. B. Z. is supported by NSERC and CIFAR. J. Z. was supported in part by Perimeter Institute for Theoretical Physics. Research at Perimeter Institute is supported by the Government of Canada through Innovation, Science and Economic Development Canada and by the Province of Ontario through the Ministry of Research, Innovation and Science.

References

[1] A Robert Calderbank, Eric M Rains, PM Shor, and Neil JA Sloane. Quantum error correction via codes over gf (4). IEEE Transactions on Information Theory, 44(4):1369–1387, 1998.
[2] Giuseppe Carleo and Matthias Troyer. Solving the quantum many-body problem with artificial neural networks. *arXiv preprint arXiv:1606.02318*, 2016.

[3] Jianxin Chen, Zhengfeng Ji, David Kribs, Norbert Lütkenhaus, and Bei Zeng. Symmetric extension of two-qubit states. *Phys. Rev. A*, 90:032318, Sep 2014.

[4] Jianxin Chen, Zhengfeng Ji, Nengkun Yu, and Bei Zeng. Detecting consistency of overlapping quantum marginals by separability. *Phys. Rev. A*, 93:032105, Mar 2016.

[5] Jens Eisert, Marcus Cramer, and Martin B Plenio. Colloquium: Area laws for the entanglement entropy. *Reviews of Modern Physics*, 82(1):277, 2010.

[6] William Fulton and Joe Harris. *Representation Theory: A First Course*. Graduate Texts in Mathematics. Springer New York, 1991.

[7] Daniel Gottesman. Stabilizer codes and quantum error correction. *arXiv preprint quant-ph/9705052*, 1997.

[8] Muxin Han, Weiming Huang, and Yongge Ma. Fundamental structure of loop quantum gravity. *Int. J. Mod. Phys.*, D16:1397–1474, 2007.

[9] Muxin Han and Ling-Yan Hung. Loop Quantum Gravity, Exact Holographic Mapping, and Holographic Entanglement Entropy. *Phys. Rev.*, D95(2):024011, 2017.

[10] Patrick Hayden, Debbie W Leung, and Andreas Winter. Aspects of generic entanglement. *Communications in Mathematical Physics*, 265(1):95–117, 2006.

[11] Marc Hein, Jens Eisert, and Hans J Briegel. Multiparty entanglement in graph states. *Physical Review A*, 69(6):062311, 2004.

[12] Ryszard Horodecki, Pawel Horodecki, Michal Horodecki, and Karol Horodecki. Quantum entanglement. *Reviews of modern physics*, 81(2):865, 2009.

[13] Pavan Hosur, Xiao-Liang Qi, Daniel A. Roberts, and Beni Yoshida. Chaos in quantum channels. *JHEP*, 02:004, 2016.

[14] Youning Li, Muxin Han, Markus Grassl, and Bei Zeng. Invariant Perfect Tensors. 2016.

[15] Daniel A Lidar, Isaac L Chuang, and K Birgitta Whaley. Decoherence-free subspaces for quantum computation. *Physical Review Letters*, 81(12):2594, 1998.

[16] Fernando Pastawski, Beni Yoshida, Daniel Harlow, and John Preskill. Holographic quantum error-correcting codes: Toy models for the bulk/boundary correspondence. *JHEP*, 06:149, 2015.

[17] Roger Penrose. Angular momentum: an approach to combinatorial space-time. In T. Bastin, editor, *Quantum Theory and Beyond*. Cambridge University Press, Cambridge, 1971.

[18] Zahra Raissi, Christian Gogolin, Arnau Riera, and Antonio Acin. Constructing absolute maximally entangled states and optimal quantum error correcting codes. *arXiv preprint arXiv:1701.03359*, 2017.

[19] Robert Raussendorf and Hans J Briegel. A one-way quantum computer. *Physical Review Letters*, 86(22):5188, 2001.

[20] C. Rovelli and F. Vidotto. *Covariant Loop Quantum Gravity: An Elementary Introduction to Quantum Gravity and Spinfoam Theory*. Cambridge Monographs on Mathematical Physics. Cambridge University Press, 2014.

[21] Carlo Rovelli and Lee Smolin. Spin networks and quantum gravity. *Phys. Rev.*, D52:5743–5759, 1995.
[22] Géza Tóth. Detection of multipartite entanglement in the vicinity of symmetric dicke states. *JOSA B*, 24(2):275–282, 2007.

[23] Frank Verstraete, Michael M Wolf, David Perez-Garcia, and J Ignacio Cirac. Criticality, the area law, and the computational power of projected entangled pair states. *Physical review letters*, 96(22):220601, 2006.

[24] Witlef Wieczorek, Roland Krischek, Nikolai Kiesel, Patrick Michelberger, Géza Tóth, and Harald Weinfurter. Experimental entanglement of a six-photon symmetric dicke state. *Physical review letters*, 103(2):020504, 2009.

[25] Bei Zeng, Xie Chen, Duan-Lu Zhou, and Xiao-Gang Wen. Quantum information meets quantum matter–from quantum entanglement to topological phase in many-body systems. *arXiv preprint arXiv:1508.02595*, 2015.