Comparative study of geohydraulic estimation: a case study of Kertajati, Majalengka, Indonesia

G U Nugraha¹*, A A Nur², B Y C S S Alam², R F Lubis¹, H Bakti¹

¹ Research Center for Geotechnology, Indonesian Institute of Sciences, Indonesia
² Faculty of Geological Engineering, Padjadjaran University, Indonesia

*Corresponding author: g.utamas.n@gmail.com

Abstract. The declining quality of surface water resources leads to groundwater exploitation as a source of fresh water. The developing urban environment also increases the need for groundwater resources as freshwater. Each rock in a geology formation has a different ability to transmit groundwater. There are various ways to obtain parameters of hydraulic conductivity and groundwater transmissivity. The common method were time and cost consuming. The new method for estimation of geohydraulic parameter were needed. This paper aims to estimate geohydraulic parameter using different techniques and approaches and compares them. Geohydraulic parameter based on Heigold approach show the value of transmissivity at the study area in the range of 22.8 - 1307 m²/day. Geohydraulic parameter based on Niwas and Singhal approach indicate the value of transmissivity at the study area in the range of 32.55 - 30245 m²/day. The highest hydraulic conductivity and transmissivity values were in the southern and northern parts of the study area. In general, the estimation approach was able to estimate the geohydraulic value at the study area.

1. Introduction

Water is a basic human need [1], [2]. The declining quality of surface water resources leads to groundwater exploitation as a source of fresh water [3], [4]. The developing urban environment also increases the need for groundwater resources as freshwater [5]. Groundwater flows through the grains, fractures, and fissures of rock formation [4]. Groundwater flows below the surface at different flow rates depending on the geological conditions [6]. Each rock in a geological formation has a different ability to transmit groundwater [7]. Parameters or measurements that can describe the ability of the geological formation to transmit water are called hydraulic conductivity [8].

There are various ways to obtain parameters of hydraulic conductivity and groundwater transmissivity [7], [9]–[11]. Hydraulic conductivity and groundwater transmissivity can be obtained in both the field and laboratory. One method commonly used to determine hydraulic conductivity and transmissivity in the field is the pumping test method [12]–[16]. However, this method is very time consuming and requires a very high cost. Some researchers try to overcome this difficulty by using the Geohydraulic parameter approach [17]. Geohydraulic parameters are the parameters of rock hydraulics (hydraulic conductivity, transmissivity & storativity), which are derived through the geoelectric approach [18], [19].

Geoelectric methods for groundwater studies have been carried out by researchers [14], [20], [21]. This method utilizes resistivity parameters to determine subsurface conditions [22] where rocks that are saturated with groundwater will have a lower resistivity value than the same rocks that are not saturated with groundwater [23].
Many researchers have utilized the resistivity value to obtain hydraulic conductivity and transmissivity [14], [24], [25]. However, determining the geohydraulic parameters using a conventional field study time consuming and waste a lot of cost. Therefore, an approach is needed that can estimate the geohydraulic value that is close to the conventional geohydraulic value. This paper presents the results of geoelectric method to estimate the hydraulic conductivity and transmissivity in the Kertajati Aerocity construction site and to compare the results with pumping test data [26].

Kertajati area is projected to become a new economic and business center by the West Java Provincial Government. This region will develop into Kertajati Aerocity, where the Kertajati International Airport is an important part of the project. Geologically, the Kertajati area has a unique formation composed of volcanic rocks (Qos) and alluvium (Qa). These two formations have different groundwater characteristics. According to [35], the research area can be classified as an area with medium aquifer productivity.

2. Material and Methods

Table 1. Vertical Electrical Sounding (VES) Point

VES Points	Lon	Lat	Easting	Northing	Z (m)
MJL1	108.1786	-6.62436	188005	9266890	69
MJL2	108.1297	-6.6795	182632	9260756	66
MJL3	108.1781	-6.5405	187904	9276171	40
MJL4	108.1586	-6.62777	185793	9266500	69
MJL5	108.1817	-6.64369	188368	9264752	66
MJL6	108.1987	-6.65247	190249	9263791	68
MJL7	108.1067	-6.64422	180059	9264646	74
MJL8	108.1259	-6.6592	182193	9263000	66
MJL9	108.1483	-6.66887	184677	9261944	66
MJL10	108.1677	-6.68682	186837	9259970	66
MJL11	108.0999	-6.59537	179275	9270048	40
MJL12	108.169	-6.73927	187017	9254166	65

There are twelve VES measurement points as presented in Table 1. VES measurement points are located around the Kertajati aerocity area. Geoelectric measurements were made on Tuffaceous sandstone and alluvium rock formations. Measurements were made using the GL-4200 Earth Resistivity meter geoelectric device. Schlumberger array configuration was used to obtain resistivity with a spacing electrode from 1.5 meters to 150 meters [20], [27], [28]. Field measurement data in the form of potential difference (V) and current (I) were then recorded on the measurement datasheet. The coordinates of the measurement points were recorded using the Garmin 64s GPS. The apparent resistivity value was calculated using the following equation (1) [21]:

\[\rho_a = K \frac{\Delta V}{I} \]

, where \(\rho_a \) is the apparent resistivity, \(K \) is the configuration factor, \(\Delta V \) is the potential and \(I \) is the current.

Because the apparent resistivity value is still dependent on the value of the resistivity layer above it, it is necessary to use inversion techniques to obtain the value of true resistivity. In this study, IPI2Win developed by Moscow University [20], [29], was used to get the value of true resistivity of each layer. Lithology interpretation is done by using literature study in previous research. The resume of inversion and interpretation results are presented in Table 3.
2.1. Estimation of hydraulic conductivity

[32] obtained hydraulic parameters using the Dar Zarrouk approach. The results of that approach produce transmissivity values of:

\[1.55 \times R \] \hspace{1cm} (2)

where \(R \) is the value of the transverse resistance that can be obtained through the following equation:

\[R = h \rho \] \hspace{1cm} (3)

where \(h \) is the aquifer thickness, and \(\rho \) is the aquifer resistivity. The hydraulic conductivity of aquifer \((K) \) obtained with:

\[K = \frac{T}{h} \] \hspace{1cm} (4)

where \(K \) is the hydraulic conductivity, \(T \) is the transmissivity of the aquifer, and \(h \) is the thickness of the aquifer.

According to [31], the hydraulic conductivity value can be obtained using equation (5):

\[K = 386.40 R_{rw}^{-0.93283} \] \hspace{1cm} (5)

where \(K \) is the hydraulic conductivity and \(R_{rw} \) is the resistivity of the water-saturated aquifer.

2.2. Hydraulic conductivity maps

To visualize the hydraulic conductivity of the calculation results, Arcgis Pro 2.6 was used with the Inverse Distance Weighted (IDW) gridding technique [30], [31]. The IDW method has been widely used by researchers because of its reliability in interpolating a calculation result. Comparison is done qualitatively. There is a value of transmissivity in the study area in previous studies (Table 2).

Table 2. Transmissivity values from the previous studies

Well ID	Longitude	Latitude	Transmissivity (m²/day)
			Waspodo (2002) [34]
TW-01	108.1386	-6.67356	99
TW-88	108.1797	-6.61515	26.4
TW-107	108.1044	-6.65392	613
TW-108	108.1722	-6.6841	141.9
TW-116	108.1303	-6.68755	99
TW-132	108.131	-6.63342	1320
TW-133	108.165	-6.62466	25.4
TW-135	108.1394	-6.66103	689.7
TW-136	108.1065	-6.65949	135
TW-137	108.109	-6.68791	224.4
			Gemulus (2016) [33]
			1346.4

3. Results and Discussions

Table 3 shows the results of geoelectric inversion modeling. The resistivity layer model varies from four to seven resistivity layers consisting of topsoil, sand, and clay with various resistivity values.

In general, resistivity values in the study area can be divided into five resistivity zones: very low resistivity zone, low resistivity zone, medium resistivity zone, high resistivity zone, and very high resistivity zone. Very low resistivity zones have a range of resistivity values from 1 Ωm to 10 Ωm, for low resistivity zones it has a range of resistivity values from 10 Ωm to 50 Ωm, for medium resistivity zones has a range of resistivity values from 50 Ωm to 100 Ωm, for high resistivity zones, has a range of resistivity values from 100 Ωm to 200 Ωm, for very high resistivity zones having resistivity values > 200 Ωm [32]. The study area is dominated by a low resistivity zone associated with clay layers.
Table 3. Vertical Electrical Sounding interpretation

VES No.	No of Layers	Resistivity (Ohm-m)	Thickness (m)	Depth (m)	Inferred Lithology
MJL1	Layer 1	141	1	1	Top Soil
	Layer 2	14	1	2	Top Soil
	Layer 3	31	3	5	Sand
	Layer 4	14	9	14	Clay
	Layer 5	34	24	38	Sand
	Layer 6	5	64	102	Clay
	Layer 7	233	48	150	Sand
MJL2	Layer 1	1	3	3	Top Soil
	Layer 2	5	3	6	Clay
	Layer 3	1	7	13	Clay
	Layer 4	133	27	40	Sand
MJL3	Layer 1	45	1	1	Top Soil
	Layer 2	8	2	2	Top Soil
	Layer 3	13	69	71	Clay
	Layer 4	2474	79	150	Sand
MJL4	Layer 1	22	3	3	Top Soil
	Layer 2	82	2	5	Clay
	Layer 3	8	5	9	Clay
	Layer 4	298	12	22	Sand
	Layer 5	1	98	120	Clay
MJL5	Layer 1	54	1	1	Top Soil
	Layer 2	1	1	2	Sand
	Layer 3	15	3	4	Clay
	Layer 4	1	9	13	Clay
	Layer 5	7	137	150	Sand
MJL6	Layer 1	1	1	0.75	Top Soil
	Layer 2	13	1	1.95	Top Soil
	Layer 3	1	18	19.9	Clay
	Layer 4	6	130	150	Sand
MJL7	Layer 1	1	0.75	0.75	Top Soil
	Layer 2	4	4.24	4.99	Clay
	Layer 3	2	18.1	23.1	Clay
	Layer 4	7	126.9	150	Sand
MJL8	Layer 1	42	1	1	Top Soil
	Layer 2	9	8	9	Clay
	Layer 3	41	91	100	Sand
MJL9	Layer 1	3	1	1	Top Soil
	Layer 2	19	1	2	Top Soil
	Layer 3	1	3	5	Clay
	Layer 4	27	12	17	Clay
	Layer 5	1	83	100	Sand
The calculated geohydraulic parameters show varying values (Table 4). The detail about the interpretation in the study area can be found in [32]. The geohydraulic value estimation using the Heigold’s approach [33] shows quite different values when compared to the estimated using the Niwas and Singhal approach [34] (Figure 1 and 2). According to [26], the transmissivity value in the study area is in the range of 80.2 - 1346 m^2/day, while according to [35], the transmissivity value in the study area is in the range of 26.4 - 1320 m^2/day. The results of calculations using the Heigold approach [31] show the value of transmissivity at the study area is in the range of values 22.8 - 1307 m^2/day. The results of calculations using the Niwas and Singhal approach [32] indicate the value of transmittance at the study area is in the range of values 32.55 - 30245 m^2/day. Thus, the Niwas and Singhal approaches [32] produced over-estimated values compared to the field measurement values [33, 34].

Table 4. Geohydraulic estimation

ID	Longitude	Latitude	h (ohm.m)	ρ	Heigold [31] K = $386.40R_{tr}^{0.93283}$	Heigold [31] T = $K \cdot h$	Transverse Resistance (TR)	Niwas and Singhal [32] K = $1.55 \cdot T$	Niwas and Singhal [32] T = T/h
MJL 1	108.17	-6.62	3	31	15.69 47.09 93.00 144.15 48.05				
MJL 2	108.12	-6.67	27	133	4.03 108.94 3591.00 5566.05 206.15				
MJL 3	108.17	-6.54	79	247	2.26 178.93 19513.00 30245.15 382.85				
MJL 4	108.15	-6.62	12	298	1.90 22.81367 3576.00 5542.80 461.9				
MJL 5	108.18	-6.64	9	7	62.91 566.17 63.00 97.65 10.85				
MJL 6	108.19	-6.65	18	6	72.63 1307.45 108.00 167.40 9.30				
MJL 7	108.10	-6.64	18	7	62.90 1132.34 126.00 195.30 10.85				
MJL 8	108.12	-6.65	8	41	12.09 96.75 328.00 508.40 63.55				
MJL 9	108.14	-6.66	21	1	386.40 8114.40 21.00 32.55 1.55				
MJL 10	108.1677	-6.68682	21	258	2.174733 45.66939 5418 8397.9 399.9				
MJL 11	108.0999	-6.59537	15	33	14.80886 222.133 495 767.25 51.15				
MJL 12	108.169	-6.73927	10	33	14.80886 148.0886 330 511.5 51.15				
The value of hydraulic conductivity and transmissivity shows the difference between estimates using the Heigold and Niwas and Singhal approaches [31, 32]. Based on the calculation using the approach[31], the hydraulic conductivity values at the study area are in the range of 1.9 - 72.6 m/day. The largest hydraulic conductivity and transmissivity value is in the middle of the study area. Based on the Niwas and Singhal approach [32], the highest hydraulic conductivity and transmissivity values were in the southern and northern parts of the study area (Figure 1).

Figure 1. Hydraulic Conductivity value using (a) Heigold et al.(1979) and (b) Niwas and Singhal (1980) approach
The difference in geohydraulic parameter values is due to the simplification of estimations in the Heigold and Niwas and Singhal approaches [31, 32]. The field hydraulic conductivity and transmissivity are strongly influenced by porosity, permeability, and rock age. Because both approaches are simplifications, the difference in values is common. In general, both approaches were able to estimate the geohydraulic value in the study area. There are many things that cause the high value of the estimation using the two methods, but the most dominant is the geological conditions at the study area.

![Figure 2. Transmissivity value (a) using [34] approach (b) [33] approach (c) using [31] approach (d) using [32] approach](image)

4. Conclusions
The geoelectric results show that the study area is dominated by a low resistivity zone associated with the presence of a clay layer. Although the estimated values tend to be overestimated, these methods can be used to estimate hydraulic parameters regionally. Both methods can estimate geohydraulic values of well. However, overestimated the Niwas and Singhal method [32]. Generally, the highest hydraulic conductivity and transmissivity values are in the middle of the study area. Because both methods are simplified, overestimation is possible.

Acknowledgment
We would like to thank Director of Research Center for Geotechnology LIPI, Dr.Eko Yulianto, for constructive discussion and suggestion.
References
[1] K. M. Hiscock, M. O. Rivett, and R. M. Davison, “Sustainable groundwater development,” Geol. Soc. Spec. Publ., 2002, doi: 10.1144/GSL.SP.2002.193.01.01.
[2] A. Neshat, R. Pradhan, and M. Dadras, “Groundwater vulnerability assessment using an improved DRASTIC method in GIS,” Resour. Conserv. Recycl., vol. 86, pp. 74–86, 2014, doi: 10.1016/j.resconrec.2014.02.008.
[3] H. El-Kaliouby, “Mapping sea water intrusion in coastal area using time-domain electromagnetic method with different loop dimensions,” J. Appl. Geophys., vol. 175, p. 103963, 2020, doi: 10.1016/j.jappgeo.2020.103963.
[4] B. B. S. Singhal and R. P. Gupta, “Applied hydrogeology of fractured rocks: Second edition,” Appl. Hydrogeol. Fract. Rocks Second Ed., pp. 1–408, 2010, doi: 10.1007/978-90-481-7.
[5] N. B. Basu and K. Van Meter, “Sustainability of Groundwater Resources,” in Comprehensive Water Quality and Purification, 2014.
[6] C. W. Fetter, Applied Hydrogeology. 2001.
[7] R. A. Freeze, B. James, J. Massmann, T. Sperling, and L. Smith, “Hydrogeological Decision Analysis: 4. The Concept of Data Worth and Its Use in the Development of Site Investigation Strategies,” Groundwater, 1992, doi: 10.1111/j.1745-6584.1992.tb01534.x.
[8] B. B. S. Singhal and R. P. Gupta, Applied Hydrogeology of Fractured Rocks. 1999.
[9] D. N. Obiora and J. C. Ibuot, “Geophysical assessment of aquifer vulnerability and management: a case study of University of Nigeria, Nsukka, Enugu State,” Appl. Water Sci., vol. 10, no. 1, pp. 1–11, 2020, doi: 10.1007/s13201-019-1113-7.
[10] P. Juntakut, D. D. Snow, E. M. K. Haacker, and C. Ray, “The long term effect of agricultural, vadose zone and climatic factors on nitrate contamination in the Nebraska’s groundwater system,” J. Contam. Hydrol., vol. 220, no. November 2018, pp. 33–48, 2019, doi: 10.1016/j.jconhyd.2018.11.007.
[11] A. A. Farrag, M. O. Ebraheem, R. Sawires, H. A. Ibrahim, and A. L. Khalil, “Petrophysical and aquifer parameters estimation using geophysical well logging and hydrogeological data, Wadi El-Assiut, Eastern Desert, Egypt,” J. African Earth Sci., vol. 149, no. November 2017, pp. 42–54, 2019, doi: 10.1016/j.jafrearsci.2018.07.023.
[12] A. Revil, D. Mao, A. K. Haas, M. Karaoulis, and L. Frash, “Passive electrical monitoring and localization of fluid leakages from wells,” J. Hydrol., vol. 521, pp. 286–301, 2015, doi: 10.1016/j.jhydrol.2014.12.003.
[13] B. U. Wiese, F. M. Wagner, B. Norden, H. Maurer, and C. Schmidt-Hattenberger, “Fully coupled inversion on a multi-physical reservoir model – Part I: Theory and concept,” Int. J. Greenh. Gas Control, vol. 75, no. October 2017, pp. 262–272, 2018, doi: 10.1016/j.ijggc.2018.05.013.
[14] H. H. Mahmoud and S. Y. Ghoubachi, “Geophysical and hydrogeological investigation to study groundwater occurrences in the Taref Formation, south Mut area – Dakhla Oasis - Egypt,” J. African Earth Sci., vol. 129, pp. 610–622, 2017, doi: 10.1016/j.jafrearsci.2017.02.009.
[15] H. Kupfersberger and G. Blöschl, “Estimating aquifer transmissivities - on the value of auxiliary data,” J. Hydrol., vol. 165, no. 1–4, pp. 85–99, 1995, doi: 10.1016/0022-1694(94)02582-V.
[16] J. G. Ferris, D. B. Knowles, R. H. Brown, and R. W. Stallman, “Theory of aquifer tests,” Geol. Surv. Water-Supply Pap. 1536-E, no. WSP 1536-E, pp. 69–174, 1962.
[17] E. D. Ebong, A. E. Akpan, and A. A. Onwuegbuche, “Estimation of geohydraulic parameters from fractured shales and sandstone aquifers of Abi (Nigeria) using electrical resistivity and hydrogeologic measurements,” J. African Earth Sci., vol. 96, pp. 99–109, 2014, doi: 10.1016/j.jafrearsci.2014.03.026.
[18] O. Anomohanran, “Hydrogeophysical investigation of aquifer properties and lithological strata in Abraka, Nigeria,” J. African Earth Sci., vol. 102, pp. 247–253, 2015, doi: 10.1016/j.jafrearsci.2014.10.006.
[19] N. Kazakis, G. Vargemezis, and K. S. Voudouris, “Estimation of hydraulic parameters in a
complex porous aquifer system using geoelectrical methods,” *Sci. Total Environ.*, vol. 550, pp. 742–750, 2016, doi: 10.1016/j.scitotenv.2016.01.133.

[20] N. Jamal and N. P. Singh, “Identification of fracture zones for groundwater exploration using very low frequency electromagnetic (VLF-EM) and electrical resistivity (ER) methods in hard rock area of Sangod Block, Kota District, Rajasthan, India,” *Groundw. Sustain. Dev.*, vol. 7, no. December 2017, pp. 195–203, 2018, doi: 10.1016/j.gsd.2018.05.003.

[21] M. Zarroca, J. Bach, R. Linares, and X. M. Pellicer, “Electrical methods (VES and ERT) for identifying, mapping and monitoring different saline domains in a coastal plain region (Alt Empordà, Northern Spain),” *J. Hydrol.*, vol. 409, no. 1–2, pp. 407–422, 2011, doi: 10.1016/j.jhydrol.2011.08.052.

[22] A. E. Mussett, M. A. Khan, and S. Button, *Looking into the Earth: An introduction to geological geophysics*. 2000.

[23] J. M. Reynolds, *An introduction to applied and environmental geophysics*. 1997.

[24] S. M. Haque *et al.*, “Identification of groundwater resource zone in the active tectonic region of Himalaya through earth observatory techniques,” *Groundw. Sustain. Dev.*, vol. 10, no. January, p. 100337, 2020, doi: 10.1016/j.gsd.2020.100337.

[25] V. Gholami, K. W. Chau, F. Fadaee, J. Torkaman, and A. Ghaffari, “Modeling of groundwater level fluctuations using dendrochronology in alluvial aquifers,” *J. Hydrol.*, vol. 529, pp. 1060–1069, 2015, doi: 10.1016/j.jhydrol.2015.09.028.

[26] L. M. Gemulus, Y. Ashari, and N. Usman, “Study of Groundwater Potential in Kertajati District, Majalengka Regency to Support Water Needs at West Java International Airport (Bijb) and Kerajati Aerocity in 2010 concerning Spatial Planning of West Java Province in 2009-2029,” pp. 277–286, 2008.

[27] R. Martorana, P. Capizzi, A. D’Alessandro, and D. Luzio, “Comparison of different sets of array configurations for multichannel 2D ERT acquisition,” *J. Appl. Geophys.*, vol. 137, pp. 34–48, 2017, doi: 10.1016/j.jappgeo.2016.12.012.

[28] N. J. George, J. G. Atat, E. B. Umoren, and I. Etebong, “Geophysical exploration to estimate the surface conductivity of residual argillaceous bands in the groundwater repositories of coastal sediments of EOLGA, Nigeria,” *NRIAG J. Astron. Geophys.*, vol. 6, no. 1, pp. 174–183, 2017, doi: 10.1016/j.nrjag.2017.02.001.

[29] M. I. Mohamaden, A. Wahaballa, and H. M. El-Sayed, “Application of electrical resistivity prospecting in waste water management: A case study (Kharga Oasis, Egypt),” *Egypt. J. Aquat. Res.*, vol. 42, no. 1, pp. 33–39, 2016, doi: 10.1016/j.ejar.2016.01.001.

[30] A. Setianto and T. Triandini, “Comparison Of Kriging And Inverse Distance Weighted (IDW) Interpolation Methods In Lineament Extraction And Analysis,” *J. Appl. Geol.*, 2015, doi: 10.22146/jag.7204.

[31] G. Y. Lu and D. W. Wong, “An adaptive inverse-distance weighting spatial interpolation technique,” *Comput. Geosci.*. 2008, doi: 10.1016/j.cageo.2007.07.010.

[32] Nugraha G U, Andi Agus Nur, Boy Yoseph CSSSA, “Aquifer Potential Layers Based on Geoelectric Analysis of Schlumberger Configurations in Kertajati, Majalengka,” *Tek. Geol. Univ. Padjadjaran*, vol. 3, no. 1, pp. 211–222, 2015.

[33] P. C. Heigold, R. H. Gilkeson, K. Cartwright, and P. C. Reed, “Aquifer Transmissivity from Surficial Electrical Methods,” *Groundwater*, 1979, doi: 10.1111/j.1745-6584.1979.tb03326.x.

[34] S. Niwas and D. C. Singhal, “Estimation of aquifer transmissivity from Dar-Zarrouk parameters in porous media,” *J. Hydrol.*, 1981, doi: 10.1016/0022-1694(81)90082-2.

[35] R. Waspodo, “Groundwater Flow Modeling in Distressed Aquifers Using the Finite Difference Method in Kertajati District, Majalengka Regency,” *J. Keteknikan Pertan.*, vol. 16, no. 1, p. 21874, 2002.