Here we show how to design phase-shifting algorithms (PSAs) for nonuniform phase-shifted fringe patterns using their frequency transfer function (FTF). Assuming that the nonuniform/nonlinear (NL) phase-steps are known, we introduce the desired zeroes in the FTF to obtain the specific NL-PSA formula. The advantage of designing NL-PSAs based on their FTF is that one can reject many distorting harmonics of the fringes. We can also estimate the signal-to-noise ratio (SNR) for interferograms corrupted by additive white Gaussian noise (AWGN). Finally, for non-distorted noiseless fringes, the proposed NL-PSA retrieves the modulating phase error-free, just as standard/linear PSAs do.

Our contribution. Here we present explicitly N-step NL-PSA formulas with a desired FTF spectral response. The NL-PSA's FTF reject the highest number of fringe harmonics for a given number of phase steps. For noiseless, non-distorted data, our NL-PSA formulas give the exact modulating phase, not just a good approximation (as other NL-PSAs do [6-10]). In simple terms, the phase recovered with our NL-PSA equals the error-free phase obtained by standard/linear PSAs for noiseless fringes [11]. Moreover, using the designed FTF, one can easily estimate the SNR from basic stochastic process theory [11,12]. This contrasts with G-PSA, AIA, and PCA-PSA which do not give any SNR figure-of-merit [1-10]. For amplitude-distorted fringes, our NL-PSA gives much better results than G-PSA, AIA, or PCA-PSA because our NL-PSA explicitly rejects many harmonics. The only constrain to our FTF-based NL-PSA design is that one needs a previous estimate of the nonlinear phase-steps. But this is not difficult for spatial linear-carrier fringes, for which the Fourier method can be used, or by the use of the Carré nonlinear phase-step formula for temporal fringes with no spatial carrier [11].

Linear phase-step PSAs. Before going to the main contribution of this work, we briefly review the concept of the FTF for spectral analysis of linear phase-step PSAs. Let us start by the standard mathematical form for continuous phase-shifted fringes,

\[I(t; \varphi_{x,y}) = a_{x,y} + b_{x,y} \cos \left(\varphi_{x,y} + \omega_0 t \right). \] \hspace{1cm} (1)

The measuring phase is \(\varphi_{x,y} \); the background of the fringes is \(a_{x,y} \); the contrast is \(b_{x,y} \), and the angular frequency is \(\omega_0 \). For notation economy, we will use \((\varphi, a, b) \) instead of \((\varphi_{x,y}, a_{x,y}, b_{x,y}) \). If our interferograms have amplitude distortion, then one must include the fringe harmonics as,

\[I(t; \varphi) = a + \sum_{k=1}^{\infty} b_k \cos \left(k \left(\varphi + \omega_0 t \right) \right). \] \hspace{1cm} (2)

It is usual to express the \(n \)th sample \(I(n; \varphi) \) as,

\[I(n; \varphi) = \int_{-\infty}^{\infty} I(t; \varphi) \delta(t-n) \, dt; \quad n \in \{0,1,\ldots,N-1\}. \] \hspace{1cm} (3)
Using $\delta(t-n)$ the sampling Dirac delta function. Then a linear phase-stepped PSA may be written as,

$$Ae^{\phi} = \sum_{n=0}^{N-1} c_n^* I(n; \phi); \quad (c_n \in \mathbb{C}); \quad i = \sqrt{-1}. \quad (4)$$

The asterisk denotes the complex conjugate. This system has the following impulse response,

$$h(t) = \sum_{n=0}^{N-1} c_n \delta(t-n). \quad (5)$$

Taking the Fourier transform of $h(t)$ one obtains the spectral response of the PSA (the FTF) as,

$$H(\omega) = F[h(t)] = \sum_{n=0}^{N-1} c_n e^{-i\omega n}. \quad (6)$$

If the fringe data is corrupted by AWGN, the SNR-gain (G_{SNR}) for a linear N-step PSAs is given by [11],

$$G_{\text{SNR}} = \frac{\left| \sum_{n=0}^{N-1} c_n e^{-i\omega_0 n} \right|^2}{\sum_{n=0}^{N-1} |c_n|^2} \leq N. \quad (7)$$

The G_{SNR} numerator is proportional to the energy of the demodulated signal at $\omega = \omega_0$, while the denominator is proportional to the filtered noise energy. The highest G_{SNR} is obtained only for LS-PSA in which $\omega_0 = 2\pi / N$; otherwise $G_{\text{SNR}} < N$ [11]. For example, the 7-step linear least-squares PSA (LS-PSA) has the following FTF [11],

$$H(\omega) = \sum_{n=0}^{6} e^{i\omega n} e^{-i\omega_0 n}; \quad (\omega_0 = 2\pi / 7). \quad (8)$$

And the plot of the periodic $|H(\omega)|$ is shown in Fig. 1.

Nonlinear phase-steps PSA. We describe nonuniform temporal samples from Eq. (1) as,

$$I(t_n; \phi) = \int_I \left[a + b \cos(\phi + \omega t) \right] \delta(t-t_n) dt. \quad (9)$$

Being t_n nonuniform sampling times. It is common practice to label the fringe samples by their nonlinear phase-steps as,

$$I(\theta_n; \varphi) = a + b \cos(\varphi + \theta_n); \quad (\theta_n = \omega t_n). \quad (10)$$

Note that the angular frequency and sampling times are irrelevant. Therefore, from now on we will work with normalized frequency $\omega_0=1.0$ (radians/second). We then use θ_n instead of ($\omega t_n / 1.0$). We remark that θ_n are known. Figure 2 shows a possible realization of 9 nonuniform sampled fringe (red dots), and the Fourier spectra of the continuous-time fringe.

FFT for nonuniform phase-stepped PSAs. Our specific goal is to find a NL-PSA as a linear combination of the nonuniform phase-stepped interferograms as,

$$Ae^{\phi} = \sum_{n=0}^{N-1} c_n^* I(\theta_n; \varphi); \quad (c_n \in \mathbb{C}). \quad (11)$$

Following the same receipt as linear PSAs [11], the NL-PSA’s impulse response is given by,

$$h(t) = \sum_{n=0}^{N-1} c_n \delta(t-\theta_n / 1.0). \quad (12)$$

And its FTF is given by,

$$H(\omega) = F[h(t)] = \sum_{n=0}^{N-1} c_n e^{-i\omega \theta_n}. \quad (13)$$

If the fringe data is corrupted by AWGN, the SNR-gain (G_{SNR}) for a N-step NL-PSAs is given by,

$$G_{\text{SNR}} = \frac{\left| \sum_{n=0}^{N-1} c_n e^{-i\omega \theta_n} \right|^2}{\sum_{n=0}^{N-1} |c_n|^2} \leq N. \quad (14)$$

The equality is obtained if, and only if, $\theta_n = 2\pi n / N$; reducing to the standard linear LS-PSA (see Eq. (7)).

Three step NL-PSA. The minimum (normalized) quadrature conditions are,

$$H(-1) = 0; \quad H(0) = 0; \quad H(1) = 1. \quad (15)$$

According to these $H(\omega)$ constraints, one needs to solve for (c_0,c_1,c_2), for the known phase-steps ($\theta_n = 0, \theta_1, \theta_2$) as,
\[\sum_{n=0}^{2} c_n e^{i \theta_n} = 0; \quad \sum_{n=0}^{2} c_n = 0; \quad \sum_{n=0}^{2} c_n e^{-i \theta_n} = 1. \]

(16)

Which can be rewritten in matrix form as,

\[
\begin{bmatrix}
1 & e^{i \theta_1} & e^{i \theta_2} \\
1 & e^{i \theta_1} & e^{i \theta_2} \\
1 & e^{-i \theta_1} & e^{-i \theta_2}
\end{bmatrix}
\begin{bmatrix}
c_0 \\
c_1 \\
c_2
\end{bmatrix}
= \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}. \]

(17)

For \(\theta_1 \neq \theta_2 \), this 3-by-3 matrix is nonsingular, and one finds \((c_0, c_1, c_2)^T\). The explicit NL-PSA formula is then,

\[A e^{i \hat{\varphi}} = c_0^2 I(\theta_0; \varphi) + c_1^2 I(\theta_1; \varphi) + c_2^2 I(\theta_2; \varphi). \]

(18)

This 3-step NL-PSA is error-free \((\hat{\varphi} = \varphi)\) for noiseless, non-distorted, temporal fringes. Figure 3(a) shows 3 nonuniform phase samples, and the FTF which phase demodulate them.

Five phase-steps NL-PSA

With more than 3 nonuniform phase-stopped fringes, one may reject more fringe harmonics. For example if we want the FTF to have the following constraints,

\[H(-2) = 0; H(-1) = 0; H(0) = 0; H(1) = 1; H(2) = 0. \]

(19)

One would need 5 coefficients \((c_n)\) as,

\[
\begin{bmatrix}
1 & e^{i \theta_1} & e^{i \theta_2} & e^{i \theta_3} & e^{i \theta_4} \\
1 & e^{i \theta_1} & e^{i \theta_2} & e^{i \theta_3} & e^{i \theta_4} \\
1 & e^{-i \theta_1} & e^{-i \theta_2} & e^{-i \theta_3} & e^{-i \theta_4} \\
1 & e^{-i \theta_1} & e^{-i \theta_2} & e^{-i \theta_3} & e^{-i \theta_4} \\
1 & e^{-2i \theta_1} & e^{-2i \theta_2} & e^{-2i \theta_3} & e^{-2i \theta_4}
\end{bmatrix}
\begin{bmatrix}
c_0 \\
c_1 \\
c_2 \\
c_3 \\
c_4
\end{bmatrix}
= \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 1 \end{bmatrix}. \]

(20)

One may also change the desired FTF’s constraints to,

\[H(-1) = 0; H(0) = 0; H(1) = 1; H(2) = 0; H(3) = 0. \]

(21)

Then the five coefficients \((c_n)\) change to,

\[
\begin{bmatrix}
1 & e^{i \theta_1} & e^{i \theta_2} & e^{i \theta_3} & e^{i \theta_4} \\
1 & e^{i \theta_1} & e^{i \theta_2} & e^{i \theta_3} & e^{i \theta_4} \\
1 & e^{2i \theta_1} & e^{2i \theta_2} & e^{2i \theta_3} & e^{2i \theta_4} \\
1 & e^{2i \theta_1} & e^{2i \theta_2} & e^{2i \theta_3} & e^{2i \theta_4} \\
1 & e^{3i \theta_1} & e^{3i \theta_2} & e^{3i \theta_3} & e^{3i \theta_4}
\end{bmatrix}
\begin{bmatrix}
c_0 \\
c_1 \\
c_2 \\
c_3 \\
c_4
\end{bmatrix}
= \begin{bmatrix} 0 \\ 0 \\ 1 \\ 0 \\ 0 \end{bmatrix}. \]

(22)

Figures 3(b) and 3(c) show 5 nonuniform samples of a phase-shifted fringe, and two different FTFs which phase-demodulate the 5 fringe-samples. The resulting 5-sample NL-PSA formula is given by,

\[A e^{i \hat{\varphi}} = \sum_{n=0}^{4} c_n^2 I(\theta_n; \varphi). \]

(23)

These two 5-step NL-PSAs are also error-free \((\hat{\varphi} = \varphi)\) for noiseless, non-distorted, fringes.
worst the AIA and the PCA-PSA must pre-filter its background signal at \(\omega = 0 \) [5,9,10].

Computer simulation. We simulated 7 fringe patterns with the aforementioned phase-steps \((\theta_i) = (0, 0.78, 1.81, 3.11, 4.54, 5.93, 7.24)\) and designing the FTF to have the zeroes in Eq. (24). The resulting FTF’s complex coefficients are \(c_i = (-0.06, 0.21-0.21i, -0.05-0.2i, -0.22, -0.04-0.22i, 0.23+0.08i, -0.07-0.1i)\). The resulting NL-PSA is then,

\[
Ae^{i\phi} = \sum_{n=0}^{6} c_n f \left(\theta_n; \phi \right). \tag{24}
\]

The first sample has the lowest weight \(|c_0|=0.06\), meaning that its information is taken less into account. Two out of seven noiseless fringes, and its demodulated phase are shown in Fig. 5.

![Fig. 5](image)

Panels (a)-(b) show 2 out of 7 noiseless, nonlinear phase-stopped fringes. Panel (c) shows the error-free estimated phase.

We remark that the estimated phase for our FTF based NL-PSAs, is mathematically error-free \((\phi = \phi)\), whenever the phase-steps \((\theta_i)\) among the interferograms are known accurately. However, error-free phase estimation is not mathematically guaranteed in PCA-PSA [10]. In the case of AIA and noiseless fringes, it normally takes many iterations to reach an error-free phase estimation [10]. In other words, for noiseless fringes, the estimated phase recovered by our NL-PSAs is as good as the one obtained by standard linear PSAs [11]. Of course, for fringes corrupted by AWGN and harmonics, we obtain a distorted demodulated phase, as it is the case for standard linear PSAs [11].

SNR gain for our specific NL-PSA. For our specific case with \((\theta_i) = (0, 0.78, 1.81, 3.11, 4.54, 5.93, 7.24)\), the SNR-gain is given by,

\[
G_{SNR} = \left(\frac{\sum_{n=0}^{6} |c_n|^2}{\sum_{n=0}^{6} |c_n|^2} \right) = 5.142. \tag{25}
\]

Resulting in a 27% SNR-gain reduction with respect to a 7 samples linear LS-PSA \((G_{SNR}=7)\).

Comparison against PCA-PSA. Before concluding we show a comparison of our FTF based NL-PSA and the PCA-PSA. It is well known that the PCA-PSA does not give, in general, an error-free phase estimation, even for noiseless nonlinear phase-stopped fringes [9,10]; this can be seen in Fig. 6. However the approximate PCA-PSA’s solution may be used as initial condition for the AIA. Then the AIA, after several iterations, converges to an almost error-free phase estimation, for noiseless fringes [10].

![Fig. 6](image)

Panel (a) shows the PCA-PSA’s estimated phase from the noiseless fringe-data in Fig. 5. Panel (b) shows the phase estimation error. Panel (c) shows a central cut of the phase estimation error in radians. The phase error of our NL-PSA is about \(10^{-15}\) (a numerical zero).

Conclusions. The herein proposed NL-PSA theory is a key contribution to nonlinear phase-steps interferometry in the sense that:

1) As far as we know, the spectral response (the FTF) for NL-PSAs was obtained for the first time. This FTF is in turn used to find the corresponding \(N\)-step NL-PSA formula.

2) For a given number of nonlinear phase-steps \((\theta_i)\), our NL-PSA has the highest fringe harmonics rejection. In contrast, the G-PSA, AIA or PCA-PSA do not reject, by design, higher order harmonics of the fringe data [1-10].

3) Our FTF-based NL-PSA give us as a bonus, the signal-to-noise ratio gain \((G_{SNR})\) for fringes corrupted by AWGN. This contrast with G-PSA, AIA, and PCA-PSA which do not give a SNR estimate [1-10] from basic stochastic process theory [11,12].

4) Finally, our FTF-based NL-PSA design recovers the demodulated phase error-free for noiseless, non-distorted fringes. This not being the case for PCA-PSA [9,10].

References

1. J. E. Greivenkamp, Opt. Eng. 23, 350 (1984).
2. K. Okada, A. Sato, and J. Tsujuchi, Opt. Comm. 34, 118 (1991).
3. I. Kong and S. Kim, Opt. Eng. 34, 183 (1995).
4. S. Tang, in Proc. SPIE, Laser Interferometry VIII, 2860, 34 (1996).
5. Z. Wang and B. Han, Opt. Lett. 29, 1671 (2004).
6. K. Hibino, B. F. Oreb, D. I. Farrant, and K. G. Larkin, J. Opt. Soc. Am. A 4, 918 (1997).
7. R. Langouj, A. Patil, and P. Rastogi, Opt. Lett. 31, 1058 (2006).
8. G. A. Ayubi, C. D. Perciante, J. L. Flores, J. M. Di Martino, and J. A. Ferrari, Appl. Opt., 53, 7168 (2014).
9. J. Vargas, J. A. Quiroga, and T. Belenguer, Opt. Lett. 36, 1328 (2011).
10. J. Vargas, C. O. S. Sorzano, J. C. Estrada, and J. M. Carazo, Opt. Comm. 286, 130 (2013).
11. M. Servin, J. A. Quiroga, and M. Padilla, Fringe Pattern Analysis for Optical Metrology. Wiley-VCH (2014).
12. A. Papoulis, Probability, Random Variables, and Stochastic Processes, McGraw-Hill (1991).
Full References

1. J. E. Greivenkamp, "Generalized data reduction for heterodyne interferometry," Opt. Eng. 23(4), 350-352 (1984).
2. K. Okada, A. Sato, and J. Tsujiuchi, "Simultaneous calculation of phase distribution and scanning phase shift in phase shifting interferometer," Opt. Comm. 34(3), 118-124 (1991).
3. I. Kong and S. Kim, "General algorithm of phase-shifting interferometry by iterative least-squares fitting," Opt. Eng. 34(1), 183-188 (1995).
4. S. Tang, "Generalized algorithm for phase shifting interferometry," Proc. SPIE, Laser Interferometry VIII: Techniques and Analysis, 2860, 34-44 (1996).
5. Z. Wang and B. Han, "Advanced iterative algorithm for phase extraction of randomly phase-shifted interferograms," Opt. Lett. 29(14), 1671-1673 (2004).
6. K. Hibino, B. F. Oreb, D. I. Farrant, and K. G. Larkin, J. Opt. Soc. Am. A 4, 918 (1997).
7. R. Langoju, A. Patil, and P. Rastogi, "Phase-shifting interferometry in the presence of nonlinear phase steps, harmonics, and noise," Opt. Lett. 31(8), 1058-1060 (2006).
8. G. A. Ayubi, C. D. Perciante, J. L. Flores, J. M. Di Martino, and J. A. Ferrari, "Generation of phase-shifting algorithms with N arbitrarily spaced phase-steps," Appl. Opt., 53(30), 7168-7176 (2014).
9. J. Vargas, J. A. Quiroga, and T. Belenguer, "Phase-shifting interferometry based on principal component analysis," Opt. Lett. 36(8), 1326-1328 (2011).
10. J. Vargas, C. O. S. Sorzano, J. C. Estrada, and J. M. Carazo, "Generalization of the Principal Component Analysis algorithm for interferometry," Opt. Comm., 286, 130-134 (2013).
11. M. Servin, J. A. Quiroga, and M. Padilla. Fringe Pattern Analysis for Optical Metrology, Theory, Algorithms, and Applications. Wiley-VCH (Weinheim, Germany 2014).
12. A. Papoulis, Probability, Random Variables, and Stochastic Processes, McGraw-Hill (Singapore 1991).