A TORELLI THEOREM FOR MODULI SPACES OF PRINCIPAL BUNDLES ON CURVES DEFINED OVER \mathbb{R}

INDRANIL BISWAS AND OLIVIER SERMAN

Abstract. Let X be a geometrically irreducible smooth projective curve, of genus at least three, defined over the field of real numbers. Let G be a connected reductive affine algebraic group, defined over \mathbb{R}, such that G is nonabelian and has one simple factor. We prove that the isomorphism class of the moduli space of principal G–bundles on X determine uniquely the isomorphism class of X.

1. Introduction

Let X be a geometrically irreducible smooth projective curve defined over the field of real numbers, of genus g, with $g \geq 3$. Let $L \in \text{Pic}^d(X)$ be a point defined over \mathbb{R}. We note that L need not correspond to a line bundle over X. For example, the unique \mathbb{R}–point of Pic^1 of the anisotropic conic does not correspond to a line bundle over the anisotropic conic. Let $\mathcal{N}_X(r, L)$ denote the moduli space of semistable vector bundles on X of rank r and determinant L, where $r \geq 2$.

We prove that the isomorphism class of the variety $\mathcal{N}_X(r, L)$ uniquely determines the isomorphism class of the real curve X (Theorem 2.1).

When the base field is complex numbers, this was proved in [MN] for rank two, and in [Tj], [KP, p. 229, Theorem E] for general r and d.

Let $X_{\mathbb{C}}$ be the complexification of X. Let $G_{\mathbb{C}}$ be a connected reductive affine algebraic group defined over \mathbb{C}, and let G be a real form of $G_{\mathbb{C}}$. We assume that $G_{\mathbb{C}}$ is nonabelian and it has exactly one simple factor. The anti-holomorphic involution of $G_{\mathbb{C}}$ corresponding to G will be denoted by σ_G. Let $\mathcal{M}_{X_{\mathbb{C}}}(G_{\mathbb{C}})$ denote the moduli space of topologically trivial semistable principal $G_{\mathbb{C}}$–bundles on $X_{\mathbb{C}}$. The variety $\mathcal{M}_{X_{\mathbb{C}}}(G_{\mathbb{C}})$ is the complexification of the component of the moduli space of principal G–bundles on X that contains the trivial G–bundle. The involution σ_G and the anti-holomorphic involution of $X_{\mathbb{C}}$ together produce the anti-holomorphic involution σ_M of $\mathcal{M}_{X_{\mathbb{C}}}(G_{\mathbb{C}})$.

We prove that the isomorphism class of the real variety $(\mathcal{M}_{X_{\mathbb{C}}}(G_{\mathbb{C}}), \sigma_M)$ uniquely determines the isomorphism class of X (Theorem 3.4).

The proof of Theorem 3.4 crucially uses a result of [BHo] which says that the isomorphism class of $\mathcal{M}_{X_{\mathbb{C}}}(G_{\mathbb{C}})$ uniquely determines the isomorphism class of $X_{\mathbb{C}}$.

2010 Mathematics Subject Classification. 14D20, 14P99, 14C34.
Key words and phrases. Curve over \mathbb{R}, principal bundle, moduli space, semistability, Torelli theorem.
2. Moduli spaces of vector bundles

Let X be a geometrically irreducible smooth projective curve defined over \mathbb{R}. Let g denote the genus of X. We will assume that $g \geq 3$. For any $d \in \mathbb{Z}$ and any integer $r \geq 2$, let $\mathcal{M}_X(r, d)$ be the moduli space of semistable vector bundles on X of rank r and degree d; see [BH], [BG], [BHH], [Sc1], [Sc2], [Sc3] for moduli spaces of bundles over X. Let

$$\det : \mathcal{M}_X(r, d) \to \text{Pic}^d(X)$$

be the morphism defined by $E \mapsto \bigwedge^r E$. Take any \mathbb{R}–point $\mathcal{L} \in \text{Pic}^d(X)$. Define

$$N_X(r, \mathcal{L}) := \det^{-1}(\mathcal{L}) \subset \mathcal{M}_X(r, d).$$

This $N_X(r, \mathcal{L})$ is a geometrically irreducible normal projective variety defined over \mathbb{R}, of dimension $(r^2 - 1)(g - 1)$.

Let $X_{\mathbb{C}} := X_{\mathbb{C}} = X \times_{\mathbb{R}} \mathbb{C}$ be the complex projective curve obtained from X by extending the base field to \mathbb{C}. Let $\mathcal{L}_{\mathbb{C}} \in \text{Pic}^d(X_{\mathbb{C}})$ be the pull-back of \mathcal{L} to $X_{\mathbb{C}}$ by the natural morphism $\xi : X_{\mathbb{C}} \to X$. The nontrivial element of the Galois group $\text{Gal}(\xi) = \text{Gal}(\mathbb{C}/\mathbb{R}) = \mathbb{Z}/2\mathbb{Z}$ produces an antiholomorphic involution

$$\sigma : X_{\mathbb{C}} \to X_{\mathbb{C}}.$$

The conjugate vector bundle of a holomorphic vector bundle E on $X_{\mathbb{C}}$ will be denoted by \overline{E}. We recall that the underlying real vector bundle for \overline{E} is identified with that of E, while the multiplication on \overline{E} by any $c \in \mathbb{C}$ coincides with the multiplication by \overline{c} on E. The C^∞ vector bundle $\sigma^*\overline{E}$ has a natural holomorphic structure which is uniquely determined by the condition that the natural \mathbb{R}–linear identification of it with E is anti-holomorphic. Note that we have a commutative diagram

$$
\begin{array}{ccc}
E & \xrightarrow{\sim} & \sigma^*\overline{E} \\
\downarrow & & \downarrow \\
X & \xrightarrow{\sigma} & X
\end{array}
$$

It is easy to see that E is semistable (respectively, stable) if and only if $\sigma^*\overline{E}$ is semistable (respectively, stable). Similarly, E is polystable if and only if $\sigma^*\overline{E}$ is polystable.

The above hypothesis that $\mathcal{L} \in \text{Pic}^d(X)$ means that the line bundle $\mathcal{L}_{\mathbb{C}}$ is holomorphically isomorphic to the line bundle $\sigma^*\overline{\mathcal{L}}_{\mathbb{C}}$.

Let $N_{X_{\mathbb{C}}}(r, \mathcal{L}_{\mathbb{C}})$ be the moduli space of semistable vector bundles on $X_{\mathbb{C}}$ of rank r and determinant $\mathcal{L}_{\mathbb{C}}$. The complex variety $N_{X_{\mathbb{C}}}(r, \mathcal{L}_{\mathbb{C}})$ coincides with the complexification $N_X(r, \mathcal{L}) \times_{\mathbb{R}} \mathbb{C}$ of $N_X(r, \mathcal{L})$; the resulting antiholomorphic involution

$$\sigma_N : N_{X_{\mathbb{C}}}(r, \mathcal{L}_{\mathbb{C}}) \to N_{X_{\mathbb{C}}}(r, \mathcal{L}_{\mathbb{C}})$$

sends a vector bundle E on $X_{\mathbb{C}}$ to the vector bundle $\sigma^*\overline{E}$.

Theorem 2.1. The isomorphism class of the \mathbb{R}–variety $N_X(r, \mathcal{L})$ uniquely determines the isomorphism class of the real curve X.
Proof. First note that the isomorphism class of the complex variety $N_{X_C}(r, L_C)$ uniquely
determines the complex curve X_C \[\{7\}, \{KP\} \text{ p. 229, Theorem E}\]. We have to prove that
the antiholomorphic involution σ_N determines σ.

Let τ be an antiholomorphic involution of X_C such that the involution
$E \mapsto \tau^*E$ preserves $N_{X_C}(r, L_C)$. The resulting antiholomorphic involution of $N_{X_C}(r, L_C)$ will be
denoted by τ_N. The two real varieties $(N_{X_C}(r, L_C), \tau_N)$ and $(N_{X_C}(r, L_C), \sigma_N)$ are isomorphic
if and only if there exists a complex algebraic automorphism f of $N_{X_C}(r, L_C)$ such that

$$
\tau_N = f^{-1} \sigma_N f. \tag{2.2}
$$

Assume that the two real varieties $(N_{X_C}(r, L_C), \tau_N)$ and $(N_{X_C}(r, L_C), \sigma_N)$ are isomorphic.
Fix an automorphism f of $N_{X_C}(r, L_C)$ satisfying \[\{2.2\}\].

The dual a vector bundle E will be denoted by E^\vee; the dual of a line bundle ν will also
be denoted by ν^{-1}.

Take any algebraic automorphism h of $N_{X_C}(r, L_C)$. It follows from \[\{KP\} \text{ p. 228, Theorem B}\] and \[\{KP\} \text{ p. 228, remark 0.1}\] that h is either of the form $E \mapsto H^*E \otimes \nu$ or $E \mapsto H^*E^\vee \otimes \nu_1$, where H is an automorphism of X_C uniquely determined by h while
ν a line bundle on X_C with $\nu^{\sigma r} = \mathcal{O}_X$ and ν_1 a line bundle on X_C with $\nu_1^{\sigma r} = L_C^{\sigma 2}$; it
should be clarified both ν and ν_1 are independent of E. Therefore, we get a map

$$
\Psi : \text{Aut}(N_{X_C}(r, L_C)) \rightarrow \text{Aut}(X_C), \ h \mapsto H^{-1}. \tag{2.3}
$$

It is straight-forward to check that Ψ is a homomorphism of groups.

We will denote $\Psi(f) \in \text{Aut}(X_C)$ by φ, where Ψ is defined in \[\{2.3\}\] and f is the
automorphism in \[\{2.2\}\]. First assume that

$$
f(V) = A \otimes \varphi^*V,
$$

where A is a line bundle on X_C. Therefore, we have

$$
f^{-1}(V) = ((\varphi^{-1})^* A^{-1}) \otimes (\varphi^{-1})^* V.
$$

Hence the automorphism $\tau_N^{-1} \circ f^{-1} \circ \sigma_N \circ f$ of $N_{X_C}(r, L_C)$ is the morphism defined by

$$
V \mapsto \tau^*((\varphi^{-1})^* A^{-1}) \otimes (\varphi^{-1})^*((\sigma^* A) \otimes (\sigma^* \varphi^* V))
= B \otimes \tau^*(\varphi^{-1})^* \sigma^* \varphi^* V = B \otimes (\varphi \circ \sigma \circ \varphi^{-1} \circ \tau)^* V,
$$

where B is a line bundle which does not depend on V. This implies that

$$
\eta := \Psi(\tau_N^{-1} \circ f^{-1} \circ \sigma_N \circ f) = \varphi \circ \sigma \circ \varphi^{-1} \circ \tau. \tag{2.4}
$$

Now from \[\{2.2\}\] we conclude that $\eta = \text{Id}_{X_C}$. So from \[\{2.4\}\] we have

$$
\tau = \varphi \circ \sigma \circ \varphi^{-1}.
$$

Therefore, φ produces an isomorphism between the two curves (X_C, σ) and (X_C, τ).

Next assume that

$$
f(V) = A \otimes \varphi^* V^\vee,
$$

where A is a line bundle on X_C. Then

$$
f^{-1}(V) = ((\varphi^{-1})^* A) \otimes (\varphi^{-1})^* V^\vee.
$$
Therefore, the automorphism \(\tau_N^{-1} \circ f^{-1} \circ \sigma_N \circ f \) of \(\mathcal{N}_{X_C}(r, L) \) is the morphism defined by

\[
V \mapsto \tau^*((\varphi^{-1})^*A) \otimes ((\varphi^{-1})^*(\sigma^*A) \otimes (\sigma^*\varphi^*V)^\vee)) = B \otimes \tau^*(\varphi^{-1})^*A \otimes (\varphi^{-1})^*(\sigma^*\varphi^*V),
\]

where \(B \) is a line bundle which does not depend on \(V \). This implies that

\[
\Psi(\tau_N^{-1} \circ f^{-1} \circ \sigma_N \circ f) = \varphi \circ \sigma \circ \varphi^{-1} \circ \tau.
\]

Hence, as before, \(\tau = \varphi \circ \sigma \circ \varphi^{-1} \). This completes the proof of the theorem. \(\square \)

3. Moduli spaces of principal bundles

Let \(G_C \) be a connected nonabelian reductive group over \(C \) with only one simple factor and let

\[
\sigma_G : G_C \rightarrow G_C
\]

be an antiholomorphic automorphism of order two. We denote by \(G \) the real form of \(G_C \) corresponding to \(\sigma_G \).

Let \(\mathcal{M}_{X_C}(G_C) \) denote the moduli space of topologically trivial semistable principal \(G_C \)-bundles on \(X_C \). It is an irreducible normal projective variety defined over \(C \). For any holomorphic principal \(G_C \)-bundle \(E \) on \(X_C \), let

\[
\overline{E} = E(\sigma_G) = E \times^\sigma G_C \rightarrow X_C
\]

be the \(C^\infty \) principal \(G_C \)-bundle obtained by twisting the action of \(G_C \) using the homomorphism \(\sigma_G \). So the total space of \(\overline{E} \) is identified with that of \(E \), but the action of any \(y \in G_C \) on \(\overline{E} \) is the action of \(\sigma_G(y) \) on \(E \) in terms of the identification of \(E \) with \(\overline{E} \). The pullback \(\sigma^*\overline{E} \) has a holomorphic structure uniquely determined by the condition that the above identification between the total spaces of \(E \) and \(\sigma^*\overline{E} \) is anti-holomorphic; since the total spaces of \(E \) and \(\sigma^*\overline{E} \) are naturally identified, the above identification between the total spaces of \(E \) and \(\overline{E} \) produces an identification of the total spaces of \(E \) and \(\sigma^*\overline{E} \). The complex projective variety \(\mathcal{M}_{X_C}(G_C) \) carries a real structure associated to the antiholomorphic involution

\[
\sigma_M : \mathcal{M}_{X_C}(G_C) \rightarrow \mathcal{M}_{X_C}(G_C), \ E \mapsto \sigma^*\overline{E}.
\]

Let \(\mathcal{M}_X(G) \) denote the variety over \(\mathbb{R} \) defined by the above pair \((\mathcal{M}_{G_C}(X_C), \sigma_M) \).

A Zariski closed connected subgroup \(P \subset G_C \) is called a parabolic subgroup if \(G_C/P \) is a complete variety. A Levi subgroup of \(P \) is a maximal connected reductive subgroup of \(P \) containing a maximal torus. Any two Levi subgroups of \(P \) are conjugate by some element of \(P \). A proper parabolic subgroup \(P \subset G_C \) is called maximal if there is no proper parabolic subgroup of \(G_C \) containing \(P \).

Lemma 3.1. There exists a maximal parabolic subgroup \(P \subset G_C \) and a Levi subgroup \(L \subset P \), such that the two subgroups \(\sigma_G(L) \) and \(L \) are conjugate by some element of \(G_C \).
Proof. For any parabolic subgroup $P \subset G_C$, the image $\sigma_G(P)$ is also a parabolic subgroup of G_C. Since $\sigma_G(y^{-1}Py) = \sigma_G(y)^{-1}\sigma_G(P)\sigma_G(y)$, we get a self-map of the conjugacy classes of parabolic subgroups of G_C that sends the conjugacy class of any P to the conjugacy class of $\sigma_G(P)$. Therefore, the involution σ_G also acts on the Dynkin diagram D of G_C as an involution τ. Examining the Dynkin diagrams we observe that an involution of the Dynkin diagram of G_C must have a fixed point unless G_C is of type A_n for n even.

If G_C is not of type A_n, let P be a maximal parabolic subgroup corresponding to a vertex of D fixed by the above constructed involution τ. Then P and $\sigma_G(P)$ are conjugate in G_C. Let $y \in G_C$ be such that $\sigma_G(P) = y^{-1}Py$. Then for any Levi subgroup L of P,

$$y^{-1}Ly \subset y^{-1}Py = \sigma_G(P)$$

is a Levi subgroup of $\sigma_G(P)$.

If G_C is of type A_n, then $\sigma_G(L)$ and L are conjugate for every Levi subgroup of every maximal parabolic subgroup of G_C. It is enough to check this for $G_C = \text{SL}(n+1, \mathbb{C})$, in which case this is obvious. □

Remark 3.2. We can be more precise as follows. The two subgroups $\sigma_G(L)$ and L are conjugate for every Levi subgroup of every maximal parabolic subgroup of G_C. It is enough to check this for $G_C = \text{SL}(n+1, \mathbb{C})$, in which case this is obvious.

Lemma 3.3. Let L be any Levi subgroup of a parabolic subgroup P of G_C, and let

$$L' = [L, L]$$

be its derived subgroup. Then the homomorphism

$$\pi_1(L') \rightarrow \pi_1(G_C)$$

induced by the inclusion $L' \hookrightarrow G_C$ is injective.

Proof. Consider the fibration $L' \rightarrow G_C \rightarrow G_C/L'$. Let

$$\pi_2(G_C) \rightarrow 0 \rightarrow \pi_2(G_C/L') \rightarrow \pi_1(L') \rightarrow \pi_1(G_C)$$

be the long exact sequence of homotopy groups associated to it. From (3.2) we conclude that the homomorphism in (3.1) is injective if

$$\pi_2(G_C/L') = 0.$$

(3.3)

Since $\pi_2(G_C) = 0$ and $\pi_1(L')$ is a finite group (recall that L' is semisimple), from (3.2) it follows that $\pi_2(G_C/L')$ is a finite group.

Now consider the fibration $P/L' \rightarrow G_C/L' \rightarrow G_C/P$. Let

$$\pi_2(P/L') \rightarrow \pi_2(G_C/L') \rightarrow \pi_2(G_C/P) \rightarrow \pi_1(G_C)$$

be the long exact sequence of homotopy groups associated to it. Since G_C/P is simply connected, the second homotopy group $\pi_2(G_C/P)$ is isomorphic to $H_2(G_C/P, \mathbb{Z})$, which is a free abelian group. Therefore, there is no nonzero homomorphism from the finite group $\pi_2(G_C/L')$ to $\pi_2(G_C/P)$. Hence, the homomorphism

$$\pi_2(P/L') \rightarrow \pi_2(G_C/L')$$

(3.5)
in (3.4) is surjective.

Finally, consider the long exact sequence of homotopy groups

$$\pi_2(L/L') \to \pi_2(P/L') \to \pi_2(P/L)$$

(3.6)

associated to the fibration

$$L/L' \to P/L' \to P/L.$$

Since P/L is diffeomorphic to the unipotent radical of P, which is contractible, we have $\pi_2(P/L) = 0$. Also, $\pi_2(L/L') = 0$ because L/L' is a Lie group. Hence from (3.6) it follows that $\pi_2(P/L') = 0$. This implies that (3.3) holds because the homomorphism in (3.5) is surjective. □

Theorem 3.4. The real variety $M_X(G)$ uniquely determines the real curve X.

Proof. We already know that the complex variety $M_{X_C}(G_C) = M_X(G) \times_R \mathbb{C}$ determines the complex curve X_C [BHo].

Let $\text{Sing}(M_{X_C}(G_C))$ denote the singular locus of the variety $M_{X_C}(G_C)$. Recall from [BHo] that the strictly semi–stable locus $\Delta_G \subset M_{X_C}(G_C)$ is the Zariski closure of the set of closed points $[E] \in \text{Sing}(M_{X_C}(G_C))$ with the property that every Euclidean neighborhood U of $[E]$ contains an open neighborhood $U' \ni [E]$ such that $U' \setminus (U' \cap \text{Sing}(M_{X_C}(G_C)))$ is connected and simply connected. Moreover, this closed subset Δ_G is the union of irreducible components corresponding to the conjugacy classes of Levi subgroups of maximal parabolic subgroups of G_C. More precisely, the decomposition of Δ_G into irreducible components is the union

$$\Delta_G = \bigcup_L M_L$$

where L ranges over conjugacy classes of Levi subgroups of maximal parabolic subgroups of G_C, and M_L is the image of the morphism $M_{X_C}(L) \to M_{X_C}(G_C)$ given by the inclusion of L in G_C. This can be deduced from [BHo, Proposition 3.1] and Lemma 3.3. Indeed, every closed point in Δ_G is defined by a principal G_C–bundle E admitting a reduction of structure group E_L to a Levi subgroup L of a maximal parabolic subgroup of G_C. Moreover, this L–bundle E_L is semistable and its topological type $\delta \in \pi_1(L)$ is torsion, which means that δ belongs to $\pi_1([L, L])$; this is because $\pi_1(L/[L, L])$ is free abelian. Now, since E is topologically trivial, δ must be trivial (follows from Lemma 3.3), i.e., $[E] \in M_{X_C}(G_C)$ belongs to M_L.

Moreover, M_L is never empty, since there always exist semi-stable principal L–bundles which are topologically trivial, for example the trivial holomorphic principal L–bundle. The fact that the subvarieties M_{L_1} and M_{L_2} of $M_{X_C}(G_C)$ are distinct when L_1 and L_2 are not conjugate by some element of G_C is contained in the last part of the proof of [BHo, Proposition 3.1].
The antiholomorphic involution σ_M maps the strictly semi–stable locus Δ_G into itself, permuting its irreducible components. It follows from Lemma 3.1 that there exists at least one component M_L which is fixed by σ_M. The restriction of σ_M to this component M_L has at least one fixed point, namely the closed point corresponding to the trivial bundle.

We now proceed as in the proof of [BHo, Theorem 4.1] to recover the involution σ defining the real curve X.

First, one can assume G_C to be semi–simple. To see this, let $Z^0_{G_C}$ be the connected component of the center of G_C containing the identity element. Let us denote by G' the quotient $G_C/Z^0_{G_C}$ of G_C. Note that σ_G preserves $Z^0_{G_C}$, so it produces a real structure on the quotient G'. The canonical line bundle of $\calm_{X_C}(G_C)$ (respectively, $\calm_{X_C}(G')$) will be denoted by $\omega_{\calm_{X_C}(G_C)}$ (respectively, $\omega_{\calm_{X_C}(G')}$. We note that $\omega_{\calm_{X_C}(G')}$ pulls back to $\omega_{\calm_{X_C}(G_C)}$ under the morphism $\calm_{X_C}(G_C) \to \calm_{X_C}(G')$ given by the quotient map $G_C \to G'$. There exists an integer m such that the pluri–anti–canonical system $|-m\omega_{\calm_{X_C}(G_C)}|$ factors into the natural map $\calm_{X_C}(G_C) \to \calm_{X_C}(G')$ followed by the embedding

$$\calm_{X_C}(G') \hookrightarrow |-m\omega_{\calm_{X_C}(G_C)}|^* = |-m\omega_{\calm_{X_C}(G')}|^*.$$

Since the dualizing sheaves are defined over the reals, we have real structures on $|-m\omega_{\calm_{X_C}(G_C)}|^*$ and $|-m\omega_{\calm_{X_C}(G')}|^*$. All the maps above are defined over \mathbb{R}. Therefore, it is enough to prove the theorem for G'.

So let us assume that G_C is semi–simple. We have seen above that $\Delta_G \subset \calm_{X_C}(G_C)$ contains at least one irreducible component fixed by σ_M, which is equal to the variety M_L associated to a Levi subgroup L of a maximal parabolic subgroup of G_C. Let

$$\alpha: \tilde{M}_L \to M_L$$

be the normalization of M_L, and let σ_L be the antiholomorphic involution of M_L. Since normalization commutes with the base change of field of definition, the variety \tilde{M}_L is also defined over \mathbb{R}, and the morphism α is also defined over \mathbb{R}. Hence the antiholomorphic involution σ_L of M_L lifts to \tilde{M}_L. Moreover, \tilde{M}_L is isomorphic to the quotient $\calm_{X_C}(L)/\Gamma_L$, where Γ_L is the image of $N_{G_C}(L)$ in $\text{Out}(L)$, which is either trivial or $\mathbb{Z}/2\mathbb{Z}$ (see [BHo]), and this quotient map is compatible with the real structures on $\calm_{X_C}(L)$ and \tilde{M}_L.

Let Z^0_L be the connected component of the center of L containing the identity element. Let us denote by L' the quotient L/Z^0_L. Then the above group Γ_L also acts on $\calm_{X_C}(L')$, and the morphism (defined over the real numbers)

$$\theta: \tilde{M}_L \simeq \calm_{X_C}(L)/\Gamma_L \to \calm_{X_C}(L')/\Gamma_L \quad (3.7)$$

can be recovered from the second tensor power of the canonical line bundle on the smooth locus of \tilde{M}_L. Indeed, this second tensor power extends to a line bundle on the whole variety, and a sufficiently negative power of it gives the morphism θ (see [BHo]).

Let $\beta: \calm_{X_C}(L') \to \calm_{X_C}(L')/\Gamma_L$ be the quotient map. Consider θ in (3.7). For any point $y \in \calm_{X_C}(L')/\Gamma_L$, the fiber $\theta^{-1}(y)$ is J_{X_C} (respectively, $J_{X_C}/(\mathbb{Z}/2\mathbb{Z})$ if $\#\beta^{-1}(y) = 2$ (respectively, $\#\beta^{-1}(y) = 1$).
Now take any smooth point
\[y \in \mathcal{M}_{X_C}(L')/\Gamma_L \]
fixed by the antiholomorphic involution. As noted above, the fiber \(\theta^{-1}(y) \) is isomorphic to either \(J_{X_C} \) or the singular Kummer variety \(J_{X_C}/(\mathbb{Z}/2\mathbb{Z}) \). The real structure on \(\theta^{-1}(y) \) induced by that of \(\tilde{M}_L \) comes from the real structure on the Jacobian associated to the curve. So in both cases we recover the Jacobian variety together with its natural real structure: when \(\theta^{-1}(y) \) is isomorphic to \(J_{X_C}/(\mathbb{Z}/2\mathbb{Z}) \), then \(J_X \) is obtained from the two-sheeted cover of the smooth locus of the Kummer variety defined by the unique maximal torsion-free subgroup in its fundamental group. The antiholomorphic involution can be lifted to this cover, and this lift extends to \(J_{X_C} \) because its construction is over \(\mathbb{R} \).

Finally, the class of the canonical principal polarization on \(J_{X_C} \) is determined as in [BHo]. Now the theorem follows from the real analog of Torelli theorem [GH, Theorem 9.4].

\[\square \]

Acknowledgements

We thank the referee for helpful comments. The first author acknowledges support of a J. C. Bose Fellowship.

References

[BHo] I. Biswas and N. Hoffmann, A Torelli theorem for moduli spaces of principal bundles over a curve, *Ann. Inst. Fourier* 62 (2012), 87–106.

[BHu] I. Biswas and J. Hurtubise, Principal bundles over a real algebraic curve, *Comm. Anal. Geom.* 20 (2012), 957–988.

[BGH] I. Biswas, O. García-Prada and J. Hurtubise, Pseudo-real principal Higgs bundles on compact Kähler manifolds, *Ann. Inst. Fourier* 64 (2014), 2527–2562.

[BHH] I. Biswas, J. Huisman and J. Hurtubise, The moduli space of stable vector bundles over a real algebraic curve, *Math. Ann.* 347 (2010), 201–233.

[GH] B. H. Gross and J. Harris, Real algebraic curves, *Ann. Sci. École Norm. Sup.* 14 (1981), no. 2, 157–182.

[KP] A. Kouvidakis and T. Pantev, The automorphism group of the moduli space of semistable vector bundles, *Math. Ann.* 302 (1995), 225–268.

[MN] D. Mumford and P. E. Newstead, Periods of a moduli space of bundles on curves, *Amer. J. Math.* 90 (1968) 1200–1208.

[Sc1] F. Schaffhauser, Moduli spaces of vector bundles over a Klein surface, *Geom. Dedicata* 151 (2011), 187–206.

[Sc2] F. Schaffhauser, Real points of coarse moduli schemes of vector bundles on a real algebraic curve, *Jour. Symp. Geom.* 10 (2012), 503–534.

[Sc3] F. Schaffhauser, On the Narasimhan-Seshadri correspondence for real and quaternionic vector bundles, *Jour. Diff. Geom.* 105 (2017), 119–162.

[Tj] A. N. Tjurin, Analogues of Torelli’s theorem for multidimensional vector bundles over an arbitrary algebraic curve, *Izv. Akad. Nauk SSSR* 34 (1970), 338–365.
School of Mathematics, Tata Institute of Fundamental Research, Homi Bhabha Road, Mumbai 400005, India

E-mail address: indranil@math.tifr.res.in

Univ. Lille, CNRS, UMR 8524 - Laboratoire Paul Painlevé, F-59000 Lille, France

E-mail address: Olivier.Serman@math.univ-lille1.fr