Molecular Determinants Regulating the Plasticity of the MHC Class II Immunopeptidome

Laura Santambrogio1,2,3*

1 Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY, United States, 2 Department of Radiation Oncology, Weill Cornell Medicine, New York, NY, United States, 3 Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY, United States

In the last few years, advancement in the analysis of the MHC class II (MHC-II) ligandome in several mouse and human haplotypes has increased our understanding of the molecular components that regulate the range and selection of the MHC-II presented peptides, from MHC class II molecule polymorphisms to the recognition of different conformers, functional differences in endosomal processing along the endocytic tract, and the interplay between the MHC class II chaperones DM and DO. The sum of all these variables contributes, qualitatively and quantitatively, to the composition of the MHC II ligandome, altogether ensuring that the immunopeptidome landscape is highly sensitive to any changes in the composition of the intra- and extracellular proteome for a comprehensive survey of the microenvironment for MHC II presentation to CD4 T cells.

Keywords: MHC class II, antigen processing and presentation, dendritic cells, HLA-DM, HLA-DO

MHC CLASS II POLYMORPHISM

The gene clusters encoding MHC-II proteins are among the most polymorphic genes in the genome. They are closely linked in all species (on chromosome 2 in humans and chromosome 17 in mice) and therefore inherited together. Most of our knowledge of the immunological relevance of MHC-II proteins derives from the analysis of patients with MHC II deficiency due to a failure in MHC-II transcription (1). Lack of MHC-II expression results in severe compromise of CD4+ T cell development and a consequent fatal immunodeficiency (bare lymphocyte syndrome) (1). Similarly, mice lacking MHC-II experience a near-complete elimination of CD4+ T cells from secondary lymphatic organs, and the thymus is populated by immature CD4+ thymocytes (2). Even a less severe MHC-II deficiency (eightfold reduction in MHC class II expression) leads to a suboptimal T cell response, increased autoimmunity, and altered cytokine inducibility (3). The major “classical” MHC-II proteins are designated as HLA-DR (DR), HLA-DP (DP), and HLA-DQ (DQ) in humans and H2-A and E in mice. Each of the HLA and H2 loci contains genes coding for the alpha (DPA, DRA, or DQA in humans and A-alpha E-alpha in mice) and beta chain (DPB, DRB, or DQB in humans and A-beta E-beta in mice) proteins (4–6). Additionally, each of the classical MHC-II genes contains several alternate alleles; the combination of alleles on a given chromosome is called a haplotype, and currently, human alleles/haplotypes have been mapped in the thousands (http://hla.alleles.org/nomenclature/index.html), underscoring the diversity of MHC-II proteins across individuals and establishing the molecular basis for the differences in
immune response across the population. Both MHC alleles in any one individual are co-dominantly expressed without allelic exclusion and inherited in a Mendelian fashion from each parent; as such, each individual, will express both maternally and paternally derived haplotypes.

Each MHC class II molecule assembles as a dimeric protein pairing one alpha and one beta chain, which form an open-ended groove capable of binding peptides of 13–25 amino acids in length (7). Professional antigen presenting cells (APCs; dendritic cells, macrophages) will express two unique DP, DQ, and DR isoforms (IA and IE in mice), albeit some individuals express additional DR alleles. The MHC-II polymorphism is mostly clustered in the peptide-binding cleft (5, 6), where conserved amino acid residues located at key positions of the peptides act as anchoring residues in the MHC-II-binding groove determining the peptide-binding specificity of each MHC-II haplotype (8).

Besides affecting peptide selection/binding, the MHC-II polymorphism also affects interaction with its chaperone invariant chain (II). Invariant Chain, assemble in the endoplasmic reticulum (ER), with the MHC II α and β chains to prevent binding of ER-derived peptides and, through its Leucine/Isoleucin endosomal targeting signals, facilitate MHC II endosomal traffic, via de plasma membrane (9–11). The Invariant Chain, prevents ER-peptides binding by inserting one of a nested set of peptides, known as CLIPs (class II-associated Ii peptides), into the MHC II binding groove (10). The presence of at least three CLIP peptides, comprising the Ii sequence between aa 87 and 107, and their ability to bind in different registers, allows the promiscuity of CLIPs binding to various MHC II molecules.

Analysis of MHC-II trafficking in mice has shown that in the absence of Ii, the I-Ab haplotype aggregates in the ER, and surface MHC-II complexes have an unstable conformation. On the other hand, the I-Ak and I-Ad haplotypes assemble more efficiently and are more conformationally similar to mature wild-type MHC (12–14). Additionally, although Ii-lacking cells are generally defective in presenting intact antigens, they can efficiently load peptides at the cell surface (15).

In humans, analysis of different haplotypes has also shown heterogeneity in response to the absence of Ii. From the DR1 (DRA, DRB1*0101) haplotype which is highly dependent on Ii for MHC II trafficking and assembly, to the HLA-DR alleles carrying the 84Gly beta chain polymorphism, which fail to bind CLIP, and can assemble as empty molecules, and still bind exogenously derived peptides at the cell surface (16). Analysis of CLIP stability also indicated that some haplotypes (DR*0401 and DR*0404) are less stable than others (DR*0402), and the haplotypes with reduced CLIP stability are more prone to autoimmune (17).

Quantitative differences in expression and translation of MHC-II proteins is also accountable for the unequal expression among the different alleles, with DR in humans and I-A in mice being the most abundant as compared with DP, DQ, and IE, respectively (18).

Additionally, CIITA, the master regulator of constitutive and inducible MHC-II expression, is controlled by different promoters in different professional and nonprofessional APCs, with promoter I being the most represented in DCs and macrophages, promoter III constitutively expressed in B cells and pDCs, and promoter IV being induced by IFN-γ in both hematopoietic and non-hematopoietic cells (19–21). Additionally, CIITA variants with reduced transactivation function have been reported, altogether further expanding the quantitative differences in MHC-II expression among APCs.

Finally, MHC-II molecules can also exist in two distinct conformational states due to duplicate GXXXG motifs in the alpha chain transmembrane region, which enable alternative pairing with the single motif in the beta chain, generating one of two possible conformations (M1 or M2). M1 is the less represented conformation; however, it is uniquely linked to B cell activation and presentation of peptides derived from the processing of B cell receptor (BCR)-bound cognate antigens. On the other hand, antigens phagocytosed by fluid phase endocytosis are loaded on both M1 and M2 conformations (22, 23).

Finally, a previously unidentified variant of mouse I-Aα (Pro vs Ala) at residue 58 induces changes to MHC-II structure and conformational stability, skewing peptide binding/recognition via alternate docking modes (24).

In sum, the level of MHC-II expression on professional and nonprofessional APCs, as controlled by CIITA variants and the pro-inflammatory environment; unequal expression of different alleles; M1 and M2 conformations; and, most importantly, the MHC- II intrinsic polymorphism all contribute to the quantitative and qualitative differences in MHC-II-restricted presentation.

SOURCES OF MHC II PEPTIDES

There are two main sources of proteins entering the MHC-II compartments: extracellular and cytosolic (25–27) (Figure 1). Exogenous proteins are continuously acquired through phagocytosis, macro/micropinocytosis, and receptor-mediated endocytosis, particularly in APCs with high phagocytic activity, such as DCs and macrophages (27). B cells mostly rely on BCR-mediated endocytosis (28), although they can internalize extracellular antigens by fluid phase endocytosis when present at high concentrations (29).

Cytosolic proteins enter endosomal compartments through different forms of autophagy, macroautophagy (MA), endosomal microautophagy (eMI), and chaperone-mediated autophagy (CMA) (25, 30, 31) (Figure 1). Additional antigen-acquisition routes include preprocessed cytosolic proteasome-generated peptides (32, 33), as well as acquisition of extracellular peptides present in biological fluids loaded on plasma membrane and recycling of MHC-II molecules (34–37) (Figure 1). Indeed, using experimental protease databases, it was determined that MHC-II-eluted self-peptides presented by immature conventional DCs (cDCs) derived from a variety of processing pathways including cathepsins (cysteine, aspartate and serine proteases), and other endopeptidase such as asparagine endopeptidase (AEP), caspases, complements, and matrix metalloproteases, among many others (38) (Figure 1).
Any pathological conditions that change protein synthesis rate or protein afflux to the endosomal compartments will, by default, change the immunopeptidome composition.

For example, in chronic metabolic conditions, such as type II diabetes, the number of MHC-II presented peptides derived from stress-related proteins, metabolic enzymes, and lipoproteins was found to be greatly enhanced (39). Among those, the increase in Apo-B epitope copy number contributed to tilting the immune response from tolerance to immunity with several autoreactive, anti-diabetes, the number of MHC-II presented peptides derived from autoimmunity, or in vivo infection models has clearly mapped peptides related to the autoimmune process, as well as map pathogen-specific peptides, respectively (41–46). Finally, conditions that increase autophagic flux to the endosomes or increase rate of phagocytosis have been shown to skew the presented immunopeptidome toward the incoming protein source (25, 30, 47, 48).

Altogether, with the advancement in sensitivity and reproducibility of mass spectrometry peptide mapping, it has been possible to quantify changes in MHC-II peptidome, as well as detect peptides represented at low copy number, better than ever before. This technical advancement has allowed for a more comprehensive view of the MHC-II ligandome and shown that the immunopeptidome landscape is a balance between intra- and extracellular sources, and it is highly sensitive, and mirrors changes in the cellular proteome. Overall, this ensures that APCs perform a comprehensive survey of the environment for MHC-II presentation to CD4 T cells (38, 49).

HETEROGENICITY IN THE MHC CLASS II ENDOSONAL PROCESSING COMPARTMENTS

An additional component that influences the composition of the MHC-II immunopeptidome in professional APCs is the anatomical and molecular organization of the endocytic compartments. Early/recycling endosomes, multivesicular late endosomes, and unilamellar or multilamellar lysosomal compartments are endosomal organelles progressively located along the endocytic tract. The early endosomes, directly derive from the invagination of the plasma membrane, the multivesicular endosomes, are late endosomal compartments, and the lysosomes have been morphologically described as either uni- or multilamellar (50). All these compartments have been shown to be enriched in MHC-II molecules (51). Ultrastructural analysis of these organelles has indicated a variability in their number and morphology among the various types of murine and human APCs and under different cytokine/growth factor conditions. In both human and murine DCs, the major MHC-II compartments have been grouped as either late endosomal multivesicular bodies (MVBs), which may contain few to several internal vesicles, or as multilamellar bodies (MLBs) (50–52), which are formed by onion-like concentric lamellae (50, 52). In immature murine DCs, the most prominent organelle is the multivesicular type (50), whereas in monocyte-derived human DCs, differentiated in granulocyte-macrophage colony-stimulating factor (GM-CSF) and IL-4, both MVBs and MLBs are present, although a bias toward the MLB type has been observed (52). In B cells and macrophages, the MVBs are the most represented MHC-II organelle, and in human monocytes, electrodense unilamellar endosomes and MVBs have been described (53). Additionally, early endosomes, directly deriving from plasma membrane invagination, have also been described as antigen-processing compartments (46, 54–57).
All these compartments contain an array of endo/lysosomal hydrolases including proteases, lipases, phosphatases, glycosidases, and nucleases (58). Although the specific and unique contribution of each compartment to antigen processing and MHC-II loading is yet to be fully characterized, important differences are already known. For example, proximal compartments such as early endosomes are enriched in neutral proteases such as cathepsins H, Z and C, (Figure 2A) (58, 59) and in these compartments MHC II molecules can exchange Ii for peptide complexes and recycle back the cell surface (60, 61). On the other hand, endosomal and lysosomal compartments are enriched in acid active enzymes such as cathepsins S, B, and D (58, 59, 62, 63) (Figure 2A). Other cathepsins, most notably cathepsin L, have been shown to be secreted and function at neutral pH (64).

Additional differences in the protease composition exist among different APCs, with cathepsin F being expressed mostly in macrophages (65) and cathepsins S and L in DCs (63, 66). Exposure to different inflammatory stimuli controls cysteine protease expression at the transcriptional level; for example, pro-inflammatory stimuli have been shown to decrease or increase cathepsin S, L, and B mRNA according to the examined cell type (58). Furthermore, alternative splicing for aspartic and cysteine proteases has also been reported, controlling protein translation, stability, and route of transport, which favor either extracellular secretion or endosomal transport (67). Finally, it has also been reported that cathepsin B, L, and S activities shift from endosomal to lysosomal localization upon IFN-γ treatment (68), likely to avoid extracellular egress of
processing activity and pH, all contribute to the location along the endocytic tract, from recycling endosomes (55) to the endosomal tract, from late endosomes (49, 75) to the plasma membrane (82, 86). However, DM activity is controlled by the non-polymorphic MHC-II-like molecule HLA-DO (DO). DM and DO associate in the ER and traffic together to the endosomes; more importantly, their interaction is of very high affinity and exceptionally stable, as opposed to the weak DM-MHC class II interaction (87–90). Biochemical studies indicated that DO blocks DM catalyzing activity (90), as later confirmed by crystallographic studies (87). The DO-dependent inhibition of DM activity is developmentally controlled in APCs such as DCs, B cells, and thymic epithelial cells (90). Indeed, DO activity is high in naive B cells and immature DCs, which could explain the presence of CLIP-loaded MHC class II on immature DCs (80), as well as empty MHC-II molecules (34, 35, 52, 91) (Figure 2B). On the other hand, upon B and DC maturation, DO is downregulated, as are surface MHC-II-CLIP and empty molecules (80, 92) (Figure 2B).

Overall, a broad peptide repertoire, with a limited copy number of each epitope, decreases the possibility of T cell activation. On the other hand, upon B cell and DC activation/maturation, DO downregulation will favor DM catalytic activity and presentation of high-stability peptides is conducive to immunity. Developmentally, this mechanism would favor the MHC-II presentation of a tolerogenic immunopeptidome in immature DC and a more “focused” immunity-inducing peptide upon DC maturation (Figure 2B). This theory has been proven at both the cellular and the MHC-II immunopeptidome level. Early work indicated that HLA-DRI-restricted T cell clones raised against fully competent APCs (DRI+ Ii+ DM+) failed to respond to APCs lacking DM (DR+ Ii- DM- APC) (93, 94). Later on, immunological studies indicated that mice overexpressing DO selected an altered self-peptide repertoire preventing the activation of diabetogenic T cells and subsequent diabetes development (95). At the MHC-II peptidome level, DO-mediated DM inhibition has been suggested to favor immunological tolerance by increasing surface MHC-II-CLIP, as well as to broaden the peptide repertoire by allowing low-stability peptides to be presented. Indeed, characterization of the MHC II peptidome in DO-deficient and DO-deficient APC, pointed to a set of peptides uniquely present when DO is expressed (96). The same peptides were sensitive to DM-mediated exchange, suggesting that decreased DM editing was responsible for the increased diversity (96). Similarly, analysis of the peptides enriched upon DM expression indicated a higher affinity for the overall peptidome, as compared to the one isolated from low DM expression samples (97).
dynamic changes of the cellular and extracellular proteome composition, the heterogeneity of the processing compartments, and the interplay of the MHC-II molecular chaperones, DO and DM. Altogether, the orchestrated fine-tuning of all the components in the antigen processing and presentation molecular machinery insure the immunosurveillance role of MHC-II molecules.

However, although much progress has been achieved, several open questions remain, for example, how conformational changes in MHC-II structures, related to alpha beta alternative pairing, amino acid variants, or open and empty conformers, contribute to the immune response, or how domains outside the peptide-binding groove drive structural changes and potentially different peptide selection. Additionally, the discovery of the subcellular overlapping between MHC I and MHC II presentation pathways still needs to address how this could change peptide selection. Finally, how the amount of MHC class II epitope copy number influenced by the DO/DM ratio changes the immune response is still open to investigation. Discoveries in these areas will further contribute to our understanding of how MHC II influences both health and disease.

AUTHOR CONTRIBUTIONS

The author confirms being the sole contributor of this work and has approved it for publication.

FUNDING

This work was supported by the National Institutes of Health (NIH), grant numbers R01AI137198 and R01AI146180.

REFERENCES

1. Reith W, Mach B. The Bare Lymphocyte Syndrome and the Regulation of MHC Expression. *Annu Rev Immunol* (2001) 19:331–73. doi: 10.1146/annurev.immunol.19.1.331

2. Cosgrove D, Gray D, Dierich A, Kaufman J, Leuner M, Benoist C, et al. Mice Lacking MHC Class II Molecules. *Cell* (1991) 66:1051–66. doi: 10.1016/0028-6819(91)90448-8

3. Chen YT, Su YC, Chang ML, Tsai PF, Kung JT. Low-Level MHC Class II Expression Leads to Suboptimal Th Cell Response, Increased Autoaggression, and Heightened Cytokine Inducibility. *J Immunol* (2017) 198:1928–43. doi: 10.4049/jimmunol.1600967

4. Terasaki PI. A Brief History of HLA. *Immunol Res* (2007) 38:139–48. doi: 10.1007/s12026-007-0020-4

5. Klein J, Sato A. The HLA System. Second of two parts. *N Engl J Med* (2000) 343:782–6. doi: 10.1056/NEJM2000091434331016

6. Klein J, Sato A. The HLA System. First of two parts. *N Engl J Med* (2000) 343:702–9. doi: 10.1056/NEJM2000090734331006

7. Brown JH, Jardetzky TS, Gorga JC, Stern LJ, Urban RG, Strominger JL, et al. Three-Dimensional Structure of the Human Class II Histocompatibility Antigen HLA-Dr1. *Nature* (1993) 364:343–9. doi: 10.1036/3640343a0

8. Fulk K, Rotzsche K, Stevanovic S, Jung G, Rammensee HG. Allele-Specific Motifs Revealed by Sequencing of Self-Peptides Eluted From MHC Molecules. *Nature* (1991) 351:290–6. doi: 10.1038/351290a0

9. Roche PA, Teletski CL, Stang E, Bakke O, Long EO. Cell Surface HLA-DR-Invariant Chain Complexes Are Targeted to Endosomes by Rapid Internalization. *Proc Natl Acad Sci USA* (1993) 90:8581–5. doi: 10.1073/pnas.90.18.8581

10. Roche PA, Cresswell P. Invariant Chain Association With HLA-DR Molecules Inhibits Immunogenic Peptide Binding. *Nature* (1990) 345:615–8. doi: 10.1038/345615a0

11. Roche PA, Marks MS, Cresswell P. Formation of a Nine-Subunit Complex by HLA Class II Glycoproteins and the Invariant Chain. *Nature* (1991) 354:392–4. doi: 10.1038/354392a0

12. Bikoff EK, Germain RN, Robertson EJ. Allelic Differences Affecting Invariant Chain Dependency of MHC Class II Subunit Assembly. *Immunity* (1995) 2:301–10. doi: 10.1016/1074-7613(95)90054-3

13. Takaseu NT, Lower JA, Robertson EJ, Bikoff EK. Major Histocompatibility Class II Peptide Occupancy, Antigen Presentation, and CD4+ T Cell Function in Mice Lacking the P41 Isoform of Invariant Chain. *Immunity* (1995) 3:385–96. doi: 10.1016/1074-7613(95)00122-1

14. Viville S, Neefjes J, Lotteau V, Dierich A, Leumer M, Ploegh H, et al. Mice Lacking the MHC Class II-Associated Invariant Chain. *Cell* (1993) 72:635–48. doi: 10.1016/0092-8674(93)90081-Z

15. Bikoff EK, Huang LY, Episkopou V, van Meerwijk J, Germain RN, Robertson EJ. Defective Major Histocompatibility Complex Class II Assembly, Transport, Peptide Acquisition, and CD4+ T Cell Selection in Mice Lacking Invariant Chain Expression. *J Exp Med* (1993) 177:1699–712. doi: 10.1084/jem.177.6.1699

16. Yashima Y, Anzuorowski M, Nakatsugawa M, Tanaka M, Kagoya Y, Sinha A, et al. HLA-DP(84Gly) Constitutively Presents Endogenous Peptides Generated by the Class I Antigen Processing Pathway. *Nat Commun* (2017) 8:15244. doi: 10.1038/ncomms15244

17. Patil NS, Pashine A, Belmares MP, Liu W, Kaneshiro B, Rabinowitw J, et al. Rheumatoid Arthritis (RA)-Associated HLA-DR Alleles Form Less Stable Complexes With Class II-Associated Invariant Chain Peptide Than non-RA-Associated HLA-DR Alleles. *J Immunol* (2001) 167:7157–68. doi: 10.4049/jimmunol.167.12.7157

18. Shina T, Hosomichi K, Inoko H, Kulsik JK. The HLA Genomic Loci Map: Expression, Interaction, Diversity and Disease. *J Hum Genet* (2009) 54:15–39. doi: 10.1038/jbg.2008.5

19. Bradley MB, Fernandez JM, Ungers G, Diaz-Barrientos T, Steimle V, Mach B, et al. Correction of Defective Expression in MHC Class II Deficiency (Bare Lymphocyte Syndrome) Cells by Retroviral Transduction of CIITA. *J Immunol* (1997) 159:1086–95.

20. Kern I, Steimle V, Siegrist CA, Mach B. The Two Novel MHC Class II Transactivators RFXS and CIITA Both Control Expression of HLA-DM Genes. *Int Immunol* (1995) 7:1295–9. doi: 10.1093/immunol/7.8.1295

21. Steimle V, Siegrist CA, Mottet A, Lisowska-Grosier B, Mach B. Regulation of MHC Class II Expression by Interferon-Gamma Mediated by the Transactivator Gene CIITA. *Science* (1994) 265:106–9. doi: 10.1126/science.801643

22. Drake LA, Drake JR. A Triad of Molecular Regions Contribute to the Formation of Two Distinct MHC Class II Conformers. *Mol Immunol* (2016) 74:59–70. doi: 10.1016/j.molimm.2016.04.010

23. King G, Dixon AM. Evidence for Role of Transmembrane Helix-Helix Interactions in the Assembly of the Class II Major Histocompatibility Complex. *Biochemistry* (2010) 6:1650–61. doi: 10.1039/c002241a

24. Richards KA, Lavery C, Keller GLJ, Miller J, Baker BM, Sant AJ. A Previously Unappreciated Polymorphism in the Beta Chain of I-A(s) Expressed in Autoimmunity-Prone SJL Mice: Combined Impact on Antibody, CD4 T Cell Recognition and MHC Class II Dimer Structural Stability. *Mol Immunol* (2022) 143:17–26. doi: 10.1016/j.molimm.2021.12.022

25. Munz C. Enhancing Immunity Through Autophagy. *Annu Rev Immunol* (2009) 27:423–49. doi: 10.1146/annurev.immunol.021908.132537

26. Schmid D, Munz C. Innate and Adaptive Immunity Through Autophagy. *Immunity* (2007) 27:11–21. doi: 10.1016/j.jmms.2007.07.004

27. Savina A, Amigorena S. Phagocytosis and Antigen Presentation in Dendritic Cells. *Immunity* (2007) 219:143–56. doi: 10.1111/j.1600-065X.2007.00552.x

28. Barroso M, Tucker H, Drake L, Nichol K, Drake JR. Antigen-B Cell Receptor Complexes Associate With Intracellular Major Histocompatibility Complex (MHC) Class II Molecules. *J Biol Chem* (2015) 290:27101–12. doi: 10.1074/jbc.M115.649582
83. Doebele RC, Busch R, Scott HM, Pashine A, Mellins ED, et al. HLA-DO Acts as a Substrate Mimic to Inhibit HLA-DM by a Competitive Mechanism. *Nat Struct Mol Biol* (2013) 20:90–8. doi: 10.1038/nsmb.2460

84. Yoon T, Macmillan H, Mortimer SE, Jiang W, Rinderknecht CH, Stern LJ, et al. Mapping the HLA-DO/HLA-DM Complex by FRET and Matutogenesis. *Proc Natl Acad Sci USA* (2012) 109:11276–81. doi: 10.1073/pnas.1113966109

85. Mellins ED, Stern LJ. HLA-DM and HLA-DO, Key Regulators of MHC-II Processing and Presentation. *Curr Opin Immunol* (2014) 26:115–22. doi: 10.1016/j.coi.2013.11.005

86. Denzin LK. Inhibition of HLA-DM Mediated MHC Class II Peptide Loading by HLA-DO Promotes Self Tolerance. *Front Immunol* (2013) 4:465. doi: 10.3389/fimmu.2013.00485

87. Guce AI, Mortimer SE, Yoon T, Painter CA, Jiang W, Mellins ED, et al. HLA-DO Controls Phagosomal pH to Regulate Processing During Crosspresentation by Dendritic Cells. *Cell* (2006) 126:205–18. doi: 10.1016/j.cell.2006.05.035

88. Yoon T, Macmillan H, Mortimer SE, Jiang W, Rinderknecht CH, Stern LJ, et al. Mapping the HLA-DO/HLA-DM Complex by FRET and Matutogenesis. *Proc Natl Acad Sci USA* (2012) 109:11276–81. doi: 10.1073/pnas.1113966109

89. Mellins ED, Stern LJ. HLA-DM and HLA-DO, Key Regulators of MHC-II Processing and Presentation. *Curr Opin Immunol* (2014) 26:115–22. doi: 10.1016/j.coi.2013.11.005

90. Denzin LK. Inhibition of HLA-DM Mediated MHC Class II Peptide Loading by HLA-DO Promotes Self Tolerance. *Front Immunol* (2013) 4:465. doi: 10.3389/fimmu.2013.00485

91. Carven GJ, Chitta S, Hilgert I, Rushe MM, Baggio RF, Palmer M, et al. Monoclonal Antibodies Specific for the Empty Conformation of HLA-DR1 Reveal Aspects of the Conformational Change Associated With Peptide Binding. *J Immunol* (2004) 279:16571–70. doi: 10.1074/jbc.M11315200

92. Draghi NA, Denzin LK. H2-O, A MHC Class II-Like Protein, Sets a Threshold for B-Cell Entry Into Germinal Centers. *Proc Natl Acad Sci USA* (2010) 107:16607–12. doi: 10.1073/pnas.1006461107

93. Lightstone L, Hargreaves R, Bobek G, Peterson M, Aichinger G, Lombardi G, et al. In the Absence of the Invariant Chain, HLA-DR Molecules Display a Distinct Array of Peptides Which is Influenced by the Presence or Absence of HLA-DM. *Proc Natl Acad Sci USA* (1997) 94:5772–7. doi: 10.1073/pnas.94.11.5772

94. Razzarizani L, Bono E, Vogt AB, Kropshofer H, Gallazzi F, Stuniolo T, et al. Identification of Destabilizing Residues in HLA Class II-Selected Bacteriophage Display Libraries Edited by HLA-Dm. *Eur J Immunol* (1999) 29:660–8. doi: 10.1002/(SICI)1521-4141(199902)29:02<660::AID-EJIM1660-3.0.CO2-I

95. Yi W, Seth NP, Martillotti T, Wucherpfennig KW, Sant’angelo DB, Denzin LK. Targeted Regulation of Self-Peptide Presentation Prevents Type 1 Diabetes in Mice Without Disrupting General Immunocompetence. *J Clin Invest* (2010) 120:1324–36. doi: 10.1172/JCI40220

96. Nanaware PP, Jurewicz MM, Leszyk JD, Shaffer SA, Stern LJ. HLA-DO Modulates the Diversity of the MHC-II Self-Peptide. *Mol Cell Proteomics* (2019) 18:490–503. doi: 10.1074/mcp.RA118.000956

97. Alvaro-Benito M, Morrison E, Abualrus ET, Kurokpa B, Freund C. Quantification of HLA-DM-Dependent Major Histocompatibility Complex of Class II Immunopeptidome by the Peptide Landscape Antigenic Epitope Alignment Utility. *Front Immunol* (2018) 9:872. doi: 10.3389/fimmu.2018.00872

Conflict of Interest: The author declares that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.

Copyright © 2022 Santambrogio. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.