Baryon Modes of B Meson Decays

Fayyazuddin
National Centre for Physics and Department of Physics
Quaid-i-Azam University
Islamabad, Pakistan.

February 5, 2008

Abstract

The baryon decay modes of $B, \bar{B} \to N_1 \bar{N}_2(\bar{f}), \bar{N}_1 N_2(f)$ provide a framework to test CP-invariance in baryon sector. It is shown that in the rest frame of B, N_1 and \bar{N}_2 come out with longitudinal polarization $\lambda_1 = \lambda_2 = \pm 1$ with decay width $\Gamma_f = \Gamma^{++}_f + \Gamma^{--}_f$ and the asymmetry parameter $\alpha_f = \Delta \Gamma_f = \Gamma^{++}_f - \Gamma^{--}_f$. It is shown that CP invariance prediction $\alpha_f = -\bar{\alpha}_f$ can be tested in these decay modes; especially in the time dependent decays of $B_0^0 \to B_0^0$ complex. Apart from this, it is shown that decay modes $B(\bar{B}) \to N_1 \bar{N}_2(N_1 \bar{N}_2)$ and subsequent non-leptonic decays of N_2, \bar{N}_2 or (N_1, \bar{N}_1) into hyperon (anti-hyperon) also provide a framework to study CP-odd observables in hyperon decays.

1 Introduction

The CP-violation in kaon and $B_q^0 - \bar{B}_q^0$ systems has been extensively studied \cite{1}. There is thus a need to study CP-violation outside these systems. In hyperon decays, the observables are the decay rate Γ, asymmetry parameter α, the transverse polarization β and longitudinal polarization γ \cite{2}. CP asymmetry predicts $\bar{\Gamma} = \Gamma, \bar{\alpha} = -\alpha, \bar{\beta} = -\beta$, where these observables correspond to non-leptonic hyperon decays $N \to N'\pi$ and $\bar{N} \to \bar{N}'\pi$. Thus
to leading order CP-odd observables are \[3\]

\[\delta \Gamma = \frac{\Gamma - \bar{\Gamma}}{\Gamma + \bar{\Gamma}}, \quad \delta \alpha = \frac{\alpha + \bar{\alpha}}{\alpha - \bar{\alpha}}, \quad \delta \beta = \frac{\beta + \bar{\beta}}{\beta - \bar{\beta}} \]

(1)

The decays of $B(\bar{B})$ mesons to baryon-antibaryon pair $N_1 \bar{N}_2$ ($\bar{N}_1 N_2$) and subsequent decays of N_2, \bar{N}_2 or (N_1, \bar{N}_1) to a lighter hyperon (antihyperon) plus a meson provide a means to study CP-odd observables as for example in the process

\[e^- e^+ \rightarrow B, \bar{B} \rightarrow N_1\bar{N}_2 \rightarrow N_1\bar{N}_2'\pi, \quad \bar{N}_1 N_2 \rightarrow \bar{N}_1 N_2'\pi \]

Apart from the above motivation, the baryon decay modes of B-mesons are of intrinsic interest by themselves as we discuss below. The baryon decay modes of $B^0_d - \bar{B}^0_d$ have also been discussed in a different context in \[4\].

In the rest frame of B, N_1 and \bar{N}_2 come out longitudinally polarized with polarization

\[\left(\lambda_1 \equiv \frac{E_1}{m_1} n \cdot s_1 \right) = \left(\lambda_2 \equiv \frac{E_2}{m_2} (-n \cdot s_2) \right) = \pm 1, \]

where

\[p_1 = |p| n, p_2 = -|p| n, s_1 = \frac{m_1}{E_1} n \]

\[s_2 = -\frac{m_2}{E_2} n \]

s_1^μ, s_2^μ are polarization vectors of N_1 and \bar{N}_2 respectively ($p_1 \cdot s_1 = 0, p_2 \cdot s_2 = 0, s_1^2 = -1 = s_2^2$). The decay $B \rightarrow N_1\bar{N}_2(f)$ is described by the matrix element

\[M_f = F_q e^{+i\phi} [\bar{u}(p_1)(A_f + \gamma_5 B_f)v(p_2)] \]

(2)

where F_q is a constant containing CKM factor, ϕ is the weak phase. The amplitude A_f and B_f are in general complex in the sense that they incorporate the final state phases δ_p^f and δ_s^f. Note that A_f is the parity violating amplitude (p-wave) whereas B_f is parity conserving amplitude (s-wave). The CPT invariance gives the matrix elements for the decay $\bar{B} \rightarrow \bar{N}_1 N_2(\bar{f})$:

\[\bar{M}_f = F_q e^{-i\phi} [\bar{u}(p_2)(-A_f + \gamma_5 B_f)v(p_1)] \]

(3)

If the decays are described by a single matrix element M_f, then CPT and CP invariance give the same prediction viz

\[\bar{\Gamma}_f = \Gamma_f, \quad \bar{\alpha}_f = -\alpha_f, \quad \bar{\beta}_f = -\beta_f, \quad \bar{\gamma}_f = \gamma_f \]

(4)

2
2 Decay Rate and Asymmetry Parameters:

The decay width for the mode $B \rightarrow N_1\bar{N}_2(f)$ is given by

$$\Gamma_f = \frac{m_1 m_2}{2\pi m_B^2} |p| |M_f|^2$$

$$= \frac{F_q^2}{2\pi m_B^2} |p| [(p_1 \cdot p_2 - m_1 m_2) |A_f|^2 + (p_1 \cdot p_2 + m_1 m_2) |B_f|^2] \quad (5)$$

In order to take into account the polarization of N_1 and \bar{N}_2, we give the general expression for $|M_f|^2$

$$|M_f|^2 = \frac{F_q^2}{16m_1 m_2} \text{Tr} \left[(\not{p}_1 + m_1)(1 + \gamma_5 \gamma \cdot s_1)(A_f + \gamma_5 B_f)(\not{p}_2 - m_2) \times (1 + \gamma_5 \gamma \cdot s_2)(A_f^* - \gamma_5 B_f^*) \right]$$

$$= \frac{4F_q^2}{16m_1 m_2} \left[|A_f|^2 (p_1 \cdot p_2 - m_1 m_2) + |B_f|^2 (p_1 \cdot p_2 + m_1 m_2) - (A_f B_f^* + B_f A_f^*)(m_2 p_1 \cdot s_2 + m_1 p_2 \cdot s_1) - i(A_f B_f^* - B_f A_f^*)(e^{i\nu\phi_\alpha} p_{\mu\nu\rho\lambda} s_1^\alpha s_2^\beta s_3^\gamma s_4^\delta) \right. \right.$$

$$\left. \left. + m_1 m_2 (|A_f|^2 + |B_f|^2) s_1 \cdot s_2 \right) \right]$$

$$+ (|A_f|^2 - |B_f|^2) (-p_1 \cdot p_2 s_1 \cdot s_2 + (p_1 \cdot s_2)(p_2 \cdot s_1)) \quad (6)$$

It is clear that Eqs. (5) follows from Eqs. (2) and (6). In the rest frame of B, we get from Eqs. (5) and (6)

$$|M_f|^2 = F_q^2 \frac{2E_1 E_2}{4m_1 m_2} \left[|a_s|^2 + |a_p|^2 \right] \left\{ 1 + \alpha_f \left(\frac{m_1}{E_1} n \cdot s_1 - \frac{m_2}{E_2} n \cdot s_2 \right) \right. \right.$$

$$\left. \left. + \beta f n \cdot (s_1 \times s_2) + \gamma_f \left[(n \cdot s_1)(n \cdot s_2) - s_1 \cdot s_2 \right] \right) \right. \right.$$

$$\left. - \frac{m_1 m_2}{E_1 E_2} (n \cdot s_1)(n \cdot s_2) \right\} \quad (7)$$

where

$$a_s = \sqrt{\frac{p_1 \cdot p_2 + m_1 m_2}{2E_1 E_2}} B, \quad a_p = -\sqrt{\frac{p_1 \cdot p_2 - m_1 m_2}{2E_1 E_2}} A \quad (8)$$

$$\alpha_f = \frac{2S_f P_f \cos(\delta_f^l - \delta_f^p)}{S_f^2 + P_f^2}, \quad \beta_f = \frac{2S_f P_f \sin(\delta_f^l - \delta_f^p)}{S_f^2 + P_f^2}$$

$$\gamma_f = \frac{S_f^2 - P_f^2}{S_f^2 + P_f^2}, \quad a_s = S_f e^{i\delta_f^l}, a_p = P_f e^{i\delta_f^p} \quad (9)$$

However in the rest frame of B, due to spin conservation

$$\frac{E_1}{m_1} n \cdot s_1 = \frac{E_2}{m_2} (-n \cdot s_2) = \pm 1 \quad (10)$$
Thus invariants multiplying β_f and γ_f vanish. Hence we have

$$|M_f|^2 = \left(\frac{2E_1E_2}{m_1m_2}\right) F^2_q (S^2_f + P^2_f) [(1 + \lambda_1\lambda_2) + \alpha_f(\lambda_1 + \lambda_2)] \quad (11)$$

$$\Gamma_f = \Gamma_f^+ + \Gamma_f^- = \frac{2E_1E_2}{2\pi m^4_B} |\vec{p}| F^2_q [S^2_f + P^2_f] = \bar{\Gamma}_f \quad (12)$$

$$\Delta \Gamma_f = \frac{\Gamma_f^{++} - \Gamma_f^{--}}{\Gamma_f^+ + \Gamma_f^-} = \alpha_f \quad \Delta \bar{\Gamma}_f = -\alpha_f \quad (13)$$

Eqs. (12) and (13) follow from CP or CPT invariance. It will be of interest to test these equations.

In this paper, we confine ourselves to decays $B \to N_1 \bar{N}_2 (\bar{B} \to \bar{N}_1 N_2)$ described by a single matrix element M_f (\bar{M}_f) i.e. to the effective Lagrangians

$$L = V_{cb} V^*_{ub} [\bar{q}u]_{V-A} [\bar{c}b]_{V-A} + h.c. \quad (14)$$

$$L = V_{ub} V^*_{cq} [\bar{q}c]_{V-A} [\bar{u}b]_{V-A} + h.c. \quad (15)$$

where $q = d$ or s. For the decay modes described by the above Lagrangians, there are no contributions from the penguin diagrams. The Lagrangian given in Eq. (14) is relevant for the decays

\begin{itemize}
 \item[i)] $B_q^0 \to N_1 \bar{N}_2 (f); \quad \bar{B}_q^0 \to \bar{N}_1 N_2 (\bar{f})$
 \item[ii)] $B^+ \to N_1 \bar{N}_2 : \quad n\bar{\Lambda}_-, \quad \frac{1}{\sqrt{6}} \Lambda \bar{\Xi}^- - \frac{1}{\sqrt{2}} \Sigma^0 \bar{\Xi}^- (q = d)$
\end{itemize}

For the decay modes (i), the weak phase $\phi = 0$ and the decay matrix elements M_f and \bar{M}_f are given by Eqs. (2) and (3). For the Lagrangian given in Eq. (15), the relevant decay modes are

\begin{itemize}
 \item[ii)] $\bar{B}_q^0 \to N_1 \bar{N}_2 (f); \quad B_q^0 \to \bar{N}_1 N_2 (\bar{f})$
 \item[ii)] $B^- \to N_1 \bar{N}_2 : \quad n\bar{\Lambda}_-, \quad \frac{1}{\sqrt{6}} \Lambda \bar{\Xi}^- - \frac{1}{\sqrt{2}} \Sigma^0 \bar{\Xi}^- (q = d)$
 \item[ii)] $B^- \to N_1 \bar{N}_2 : \quad n\bar{\Lambda}_-, \quad \frac{1}{\sqrt{6}} \Lambda \bar{\Xi}^- - \frac{1}{\sqrt{2}} \Sigma^0 \bar{\Xi}^- (q = d)$
\end{itemize}

For various decay channels (i) and (ii), we have explicitly shown the $SU(3)$ factors. For the decay modes (ii), the weak phase $\phi = \phi_3/\gamma$, which arises
from $V_{ub} = |V_{ub}| e^{-i\gamma}$. For the decay modes (ii), the matrix elements \bar{M}'_f and M'_f are given by

$$\bar{M}'_f = e^{-i\phi_3} F'_q[\bar{u}(p_1)(A'_f + \gamma_5 B'_f)v(p_2)]$$

$$(16)$$

$$M'_f = e^{i\phi_3} F'_q[\bar{u}(p_2)(-A'_f + \gamma_5 B'_f)v(p_1)]$$

$$(17)$$

Hence the decay widths and CP-asymmetry parameters are given by

$$\bar{\Gamma}'_f = \Gamma'_f = \frac{2E_1 E_2}{8\pi m^2} |p| F'^2_q(S'^2_f + P'^2_f)$$

$$(18)$$

$$\bar{\alpha}'_f = -\alpha'_f = \frac{2S'_f P'_f \cos(\delta'_s - \delta'_p)}{(S'^2_f + P'^2_f)}$$

$$(19)$$

Now

$$F_q = \frac{G_F}{\sqrt{2}} (a_2, a_1) V_{cb} V_{ub}$$

$$(20)$$

$$F'_q = \frac{G_F}{\sqrt{2}} (a_2, a_1) |V_{ub}| V_{cq}$$

$$(21)$$

Define

$$r = \frac{F'_q}{F_q} = \frac{|V_{ub}| V_{cq}}{V_{cb} V_{ub}} = -\lambda^2 \sqrt{\bar{\rho}^2 + \bar{\eta}^2} \text{ for } q = d$$

$$= \sqrt{\bar{\rho}^2 + \bar{\eta}^2} \text{ for } q = s$$

$$(22)$$

a_2 (a_1) are factors which account for color suppressed (without color supressed) matrix elements. From Eqs. (12), (20), we get

$$\frac{\Gamma(B^0_q \to p\bar{\Lambda}_c^{-})}{\Gamma(B^0_q \to p\bar{\Lambda}^{-}_c)} = \lambda^2 \left(\frac{m_{B_d}}{m_{B_s}}\right)^2 \left|\frac{E_1 E_2}{E_1 E_2} \bar{p}\right|_{B_d} \xi^2$$

$$\approx \lambda^2 \xi^2$$

$$(23)$$

where ξ is a measure of $SU(3)$ violation.

Now B^0_q, \bar{B}^0_q annihilate into baryon-antibaryon pair $N_1\bar{N}_2$ through W-exchange as depicted in Figs (1a) and (1b). $B^- \to N_1\bar{N}_2$ through annihilation diagram is shown in Fig (2). It is clear from Fig (1a) and (1b), that we have the same final state configuration for $B^0_q, \bar{B}^0_q \to N_1\bar{N}_2$. Thus one would expect

$$S'_f = S_f, P'_f = P_f$$

$$\delta'_s = \delta'_s, \delta'_p = \delta'_p$$

$$(24)$$
Hence we have

\[\Gamma'_f = \bar{\Gamma}_f = r^2 \Gamma_f \]

\[\bar{\alpha}'_f = -\alpha'_f = \alpha_f = -\bar{\alpha}_f \]

\[\frac{\Gamma(B^0_s \rightarrow p\bar{\Lambda}^-)}{\Gamma(B^0_s \rightarrow p\Lambda^-)} = (\bar{\rho}^2 + \bar{\eta}^2) \]

\[\frac{\Gamma(B^- \rightarrow \Lambda\bar{\Lambda}^-)}{\Gamma(B^0_d \rightarrow p\Lambda^-)} \approx \frac{2}{3} \left(\frac{\lambda a_1}{a_2} \right)^2 (\bar{\rho}^2 + \bar{\eta}^2) \]

Eq.(28) is valid in SU(3) limit, but SU(3) breaking effects can be taken into account by using physical masses for proton and Λ hyperon in the kinematical factors.

Above predictions can be tested in future experiments on baryon decay modes of B-mesons. In particular \(\bar{\alpha}'_f = \alpha_f \) would give direct confirmation of Eqs.(24).

Finally, we discuss \(B^0_d \rightarrow p\bar{\Lambda}^- \) decay. For this decay mode the experimental branching ratio is \((2.2 \pm 0.8) \times 10^{-5} \) \(^5\). Using the experimental value for \(\tau_{B^0_d} \), we obtain

\[\Gamma(B^0_d \rightarrow p\bar{\Lambda}^-) = (9.46 \pm 3.44) \times 10^{-15} \text{ MeV} \]

The decay width in terms of \([S^2_f + P^2_f]\) is given by

\[\Gamma_f = \frac{G^2_F}{2} |V_{cb}|^2 |V_{ud}|^2 a_2 \left(S^2_f + P^2_f \right) \left[\frac{2E_1E_2}{2m_B^2} |\mathbf{p}| \right] \]

Using \(|V_{cb}| = 41.6 \times 10^{-3} \), \(|V_{ud}| = 0.97378 \) \(^5\), \(a_2 = 0.226 \) and noting that \(\frac{2E_1E_2}{2m_B^2} |\mathbf{p}| \approx 1.01 \text{ GeV} \)

we get

\[\Gamma_f = [9.09 \times 10^{-25} \text{MeV}^{-3}] [S^2_f + P^2_f] \]

Using Eq.(29), we get

\[(S^2_f + P^2_f) = (1.04 \pm 0.38) \times 10^{10} \text{MeV}^4 \]

In order to express \((S^2_f + P^2_f)\) in terms of dimensionless form factors, we use \(B^- \rightarrow l^-\bar{\nu}_l \) decay as a guide, which also occurs through a diagram similar to Fig 2.
For the decay $B^- \rightarrow l^- \bar{\nu}_l$,

$$\Gamma(B^- \rightarrow l^- \bar{\nu}_l) = \frac{G_F^2}{2} |V_{ub}|^2 \left(\frac{2E_1E_2}{2\pi m_B^2} \right) |p| \left[S^2 + P^2 \right]$$

$$= \frac{G_F^2}{2} |V_{ub}|^2 \left(\frac{2E_1E_2}{2\pi m_B^2} \right) |p| 2(m_l^2 + m_{\nu_l}) f_B^2$$

(33)

Noting that

$$\frac{2E_1E_2 |p|}{m_B^2} \approx \frac{1}{4} m_B$$

we get

$$\Gamma(B^- \rightarrow l^- \bar{\nu}_l) \approx \frac{G_F^2}{8\pi} |V_{ub}|^2 m_B m_l^2 f_B^2$$

(34)

Thus we see that for this decay

$$S^2 + P^2 = 2(m_l^2 + m_{\nu_l}) f_B^2$$

(35)

Hence we can parametrize $(S_l^2 + P_l^2)$ in terms of two form factors $F_V^{\Lambda_c - p}(s)$ and $F_A^{\Lambda_c - p}(s)$:

$$P_l^2 = f_B^2 (m_{\Lambda_c} + m_p)^2 \left[\left(\frac{m_{\Lambda_c} - m_p}{m_{\Lambda_c} + m_p} \right) F_V^{\Lambda_c - p}(s) \right]_{s=m_B^2}^2$$

$$S_l^2 = f_B^2 (m_{\Lambda_c} + m_p)^2 \left[F_A^{\Lambda_c - p}(s) \right]_{s=m_B^2}^2$$

(36)

It is easy to see that for $F_V = 1$ and $F_A = 1$, it reduces to form of Eq.(35). Using the experimental values for the masses and $f_B \approx 180$ MeV, we get from Eq.(33)

$$(0.175)[F_V^{\Lambda_c - p}(m_B^2)]^2 + [F_A^{\Lambda_c - p}(m_B^2)]^2 = (3.1 \pm 1.1) \times 10^{-2}$$

(37)

The dominant contribution comes from the axial vector form factor. The decay $B_c^- \rightarrow n\bar{p}$ would give information for nucleon form factors:

$$P_f^2 = f_{Bc}^2 (m_n + m_p)^2 \left[\frac{m_n - m_p}{m_n + m_p} F_V(s) \right]_{s=m_{B_c}^2}^2 \approx 0$$

$$S_f^2 = f_{Bc}^2 (m_n + m_p)^2 \left[F_A^2(s) \right]_{s=m_{B_c}^2}^2$$

(38)

The baryon decay modes of B-mesons also provide the means to explore the baryon form factors at high s. Finally, we note that Eq.(36) give the $SU(3)$ breaking factor $\xi = \frac{f_{Bc}}{f_B}$ in Eq.(23).
3 Time-Dependent Baryon Decay Modes of B_q^0

Define the amplitudes

$$A_{\lambda_1\lambda_2}(t) = \frac{\left[\Gamma(B_q^0(t) \to f) - \Gamma(\bar{B}_q^0(t) \to \bar{f}) \right]_{\lambda_1\lambda_2} + \left[\Gamma(B_q^0(t) \to \bar{f}) - \Gamma(\bar{B}_q^0(t) \to f) \right]_{\lambda_1\lambda_2}}{\sum_{\lambda_1\lambda_2} \left[\Gamma(B_q^0(t) \to f, f) + \Gamma(\bar{B}_q^0(t) \to \bar{f}, \bar{f}) \right]_{\lambda_1\lambda_2}}$$

$$= \frac{-2 \sin \Delta m t \left[\Im e^{2i\phi_M} (M_f^* \bar{M}_f + M_{f'}^* \bar{M}_{f'}) \right]}{\sum_{\lambda_1\lambda_2} \left[|M_f^2| + |\bar{M}_f^2| + |M_{f'}^2| + |\bar{M}_{f'}^2| \right]}$$

$$F_{\lambda_1\lambda_2}(t) = \frac{\left[\Gamma(B_q^0(t) \to f) - \Gamma(\bar{B}_q^0(t) \to \bar{f}) \right]_{\lambda_1\lambda_2} - \left[\Gamma(B_q^0(t) \to \bar{f}) - \Gamma(\bar{B}_q^0(t) \to f) \right]_{\lambda_1\lambda_2}}{\sum_{\lambda_1\lambda_2} \left[\Gamma(B_q^0(t) \to f, f) + \Gamma(\bar{B}_q^0(t) \to \bar{f}, \bar{f}) \right]_{\lambda_1\lambda_2}}$$

$$= \frac{\cos \Delta m t \left[|M_f^2| + |\bar{M}_f^2| - |M_{f'}^2| - |\bar{M}_{f'}^2| \right] - 2 \sin \Delta m t \left[\Im e^{2i\phi_M} (M_f^* \bar{M}_f - M_{f'}^* \bar{M}_{f'}) \right]}{\sum_{\lambda_1\lambda_2} \left[|M_f^2| + |\bar{M}_f^2| + |M_{f'}^2| + |\bar{M}_{f'}^2| \right]}$$

Thus

$$8 \left[(S_f^2 + P_f^2) + r^2(S_{f'}^2 + P_{f'}^2) \right] A_{\lambda_1\lambda_2}(t)$$

$$= 2 \sin \Delta m t \begin{cases} \sin(\phi_M - \gamma) \left[2r(1 + \lambda_1\lambda_2)(S_f S_{f'} \cos(\delta_f - \delta_{f'}) + P_f P_{f'} \cos(\delta_f - \delta_{f'})) \right] \\
- \cos(2\phi_M - \gamma) \left[2r(\lambda_1 + \lambda_2)(S_f P_{f'} \sin(\delta_f - \delta_{f'}) + S_{f'} P_f \sin(\delta_f - \delta_{f'})) \right] \end{cases}$$

(41)
These are general expressions for the time-dependent decay modes in the rest frame of B_q^0. From Eqs. (41) and (42), the even and odd time-dependent
decay amplitudes are given by

$$A(t) \equiv (A^{++}(t) + A^{--}(t))$$

$$= \frac{2r \sin \Delta mt \sin(2\phi_M - \gamma) \left[S_f S_f' \cos(\delta_s^f - \delta_s^f) + P_f P_f' \cos(\delta_p^f - \delta_p^f) \right]}{(S_f^2 + P_f^2) + r^2(S_f^2 + P_f^2)}$$

$$\Delta A(t) \equiv A^{++}(t) - A^{--}(t)$$

$$= -2r \sin \Delta mt \cos(2\phi_M - \gamma) \frac{\left[S_f P_f' \sin(\delta_s^f - \delta_s^f) + S_f' P_f \sin(\delta_p^f - \delta_p^f) \right]}{(S_f^2 + P_f^2) + r^2(S_f^2 + P_f^2)}$$

$$F(t) = F^{++}(t) + F^{--}(t)$$

$$= \cos \Delta mt \left[(S_f^2 + P_f^2) - r^2(S_f^2 + P_f^2) \right] + 2r \sin \Delta mt \cos(2\phi_M - \gamma) \frac{\left[S_f S_f' \sin(\delta_s^f - \delta_s^f) + P_f P_f' \sin(\delta_p^f - \delta_p^f) \right]}{2 \left[(S_f^2 + P_f^2) + r^2(S_f^2 + P_f^2) \right]}$$

$$\Delta F(t) \equiv F^{++}(t) - F^{--}(t)$$

$$= \cos \Delta mt \left[(S_f^2 + P_f^2)(\alpha_f + \bar{\alpha}_f) - r^2(S_f^2 + P_f^2)(\bar{\alpha}_f' + \alpha_f') \right]$$

$$- 2r \sin \Delta mt \cos(2\phi_M - \gamma) \left[S_f P_f' \cos(\delta_s^f - \delta_s^f) + P_f S_f' \cos(\delta_p^f - \delta_p^f) \right]$$

$$\frac{2 \left[(S_f^2 + P_f^2) + r^2(S_f^2 + P_f^2) \right]}{(S_f^2 + P_f^2) + r^2(S_f^2 + P_f^2)}$$

For B_d^0, $r = -\lambda^2 \sqrt{\rho^2 + \eta^2} \approx -(0.02 \pm 0.006)$ [4], $\phi_M = -\beta$; for B_s^0, $r = -\sqrt{\rho^2 + \eta^2} \approx -(0.40 \pm 0.13)$ [4], $\phi_M = 0$. First term of Eq. (46) has an important implication: This term is zero, if $\alpha_f = -\bar{\alpha}_f$; $\bar{\alpha}_f' = -\alpha_f'$ as implied by CP-conservation. The finite value of this term would imply CP violation in baryon decay. The above equations are simplified if we assume the validity.
of Eq. (24). In that case we have

\[A(t) = \frac{2r \sin \Delta mt \sin(2\phi_M - \gamma)}{1 + r^2} \] (47)

\[\Delta A(t) = 0 \] (48)

\[F(t) = \frac{1 - r^2}{1 + r^2} \cos \Delta mt \] (49)

\[\Delta F(t) = \frac{1 - r^2}{2(1 + r^2)} (\alpha_f + \bar{\alpha}_f) \cos \Delta mt \]
\[- \frac{4r \sin \Delta mt \sin(2\phi_M - \gamma) S_f P_f}{(1 + r^2)(S_f^2 + P_f^2)} \] (50)

Eq. (47) gives a means to determine the weak phase \(2\beta + \gamma\) or \(\gamma\) in the baryon decay modes of \(B^0_d\) and \(B^0_s\) respectively. Non-zero \(\cos \Delta mt\) term in \(\Delta F(t)\) would give clear indication of \(CP\) violation especially for baryon decay modes of \(B^0_d\), for which \(r^2 \leq 1\), so that \(\frac{1 - r^2}{1 + r^2} \approx 1\). Assuming \(CP\)-invariance, we get from Eqs. (47) and (50)

\[- 2S_f P_f = (S_f^2 + P_f^2) \frac{\Delta F(t)}{A(t)} \]
\[= \{(1.04 \pm 0.38) \times 10^{10} \text{MeV}^4\} \frac{\Delta F(t)}{A(t)} \] (51)

The \(S_f P_f\) can be determined from the experimental value of \(\frac{\Delta F(t)}{A(t)}\) in future experiments.

The baryon decay modes of \(B\)-mesons not only provide a means to test prediction of \(CP\) asymmetry viz \(\alpha_f + \bar{\alpha}_f = 0\) for charmed baryons (discussed above) but also to test the \(CP\)-asymmetry in hyperon (antihyperon) decays viz absence of \(CP\)-odd observables \(\Delta \Gamma, \Delta \alpha, \Delta \beta\) discussed in [3]. Consider for example the decays

\[B^0_q \rightarrow p\Lambda_c^- \rightarrow p\bar{p}K^0(p\Lambda\pi^- \rightarrow p\bar{p}\pi^+\pi^-), \]
\[\bar{B}^0_q \rightarrow \bar{p}\Lambda_c^+ \rightarrow \bar{p}p\bar{K}^0(\bar{p}\Lambda\pi^+ \rightarrow \bar{p}p\bar{\pi}^-\pi^+). \]

By analyzing the final state \(\bar{p}p\bar{K}^0, ppK^0\), one may test \(\alpha_f = -\bar{\alpha}_f\) for the charmed hyperon. We note that for \(\Lambda_c^+\), \(c\tau = 59.9 \mu m\), whereas \(c\tau = 7.8 cm\) for \(\Lambda^-\)hyperon [4], so that the decays of \(\Lambda_c^+\) and \(\Lambda\) would not interfere with each other. By analysing the final state \(\bar{p}p\pi^-\pi^+\) and \(pp\pi^+\pi^-\), one may
check CP-violation for hyperon decays. One may also note that for (B^0_d, \bar{B}^0_d) complex, the competing channels viz $B^0_d \to \bar{p}\Lambda^+_c, \bar{B}^0_d \to p\bar{\Lambda}^-_c$ are doubly Cabibbo supressed by $r^2 = \lambda^4 (\bar{\rho}^2 + \bar{\eta}^2)$ unlike $(B^0_s - \bar{B}^0_s)$ complex where the competing channels are supressed by a factor of $(\bar{\rho}^2 + \bar{\eta}^2)$. Hence $B^0_d(~\bar{B}^0_d)$ decays are more suitable for this type of analysis. Other decays of intrest are

\begin{align*}
B^- & \to \Lambda\bar{\Lambda}^- \to \Lambda\bar{\Lambda}\pi^- \to p\pi^- \bar{p}\pi^+ \\
B^+ & \to \bar{\Lambda}\Lambda^+ \to \bar{\Lambda}\Lambda\pi^+ \to \bar{p}\pi^+ p\pi^- \\
B^-_c & \to \bar{p}\Lambda \to \bar{p}p\pi^- \\
B^+_c & \to p\bar{\Lambda} \to p\bar{p}\pi^+
\end{align*}

The non-leptonic hyperon (antihyperon) decays $N \to N'\pi (\bar{N} \to \bar{N}'\bar{\pi})$ are related to each other by CPT

\begin{equation*}
a_t(I) = \langle f_{\text{out}} | H_W | N \rangle = \eta_f e^{2i\delta_l(I)} \langle \bar{f}_{\text{out}} | H_W | \bar{N} \rangle = \eta_f e^{2i\delta_l(I)} \bar{a}^*_t(I)
\end{equation*}

Hence

\begin{equation*}
\bar{a}_t(I) = \eta_f e^{2i\delta_l(I)} a^*_t(I) = (-1)^{l+1} e^{i\delta_l(I)} e^{-i\phi} |a_t|
\end{equation*}

where we selected the phase $\eta_f = (-1)^{l+1}$. Here I is the isospin of the final state and ϕ is the weak phase. Thus necessary condition for non-zero CP odd observables is that the weak phase for each partial wave amplitude should be different [see ref [3] for details; for a review see first ref in [1]].

Acknowledgments

The author acknowledges a research grant provided by the Higher Education Commission of Pakistan to him as a Distinguished National Professor.

References

[1] For a review see for example “A Modern Introduction to Particle Physics”, Fayyazuddin and Riazuddin Second Edition 2000, World Scientific Singapore; “B Physics and CP violation” Halen Quinn; [hep-ph/0111177]; “Thought on CP violation” R.D. Peccei [hep-ph/0209245] “CP violation”: The past as pologue, L. Wolfenstein, [hep-ph/0210025] CP violation” (Editor: C.Jarlskog) World Scientific (1989); I.I-Bigi and A.I. Sanda Nucl. Phys. B 193,85 (1981), B 281, 41 (41); L. Wolfenstein, Nucl. Phys. B 246, 45 (1984).
[2] See for example first reference in [1]

[3] J.F. Donoghue, X.G. He and S. Pakvsad Phys. Rev. D 43, 833 (1986); J.F. Donoghue, B.R. Holstein and G. Valencia, Phys. Lett. B 178, 319 (1986).

[4] M. Jarfi et al. Phys. Lett. B 237:513, (1990).

[5] Particle Data Group: W.M. Yao et al. Journal of Physics G 33,1 (2006)

Figure Captions

Figure1a: W-exchange diagram for $B^0_q \rightarrow N_1 \bar{N}_2 (M_f)$

Figure1b: W-exchange diagram for $\bar{B}^0_q \rightarrow N_1 \bar{N}_2 (\bar{M}_f)$

Figure2: Annihilation diagram for $B^- \rightarrow N_1 \bar{N}_2$
This figure "Figur1a.jpg" is available in "jpg" format from:

http://arXiv.org/ps/0709.3364v1
This figure "Figure1b.jpg" is available in "jpg" format from:

http://arXiv.org/ps/0709.3364v1
This figure "Figure2.jpg" is available in "jpg" format from:

http://arXiv.org/ps/0709.3364v1