Exact and approximate solutions to the minimum of $1 + x + \cdots + x^{2n}$

Aaron Hendrickson
ahendr16@jh.edu

Claude F. Leibovici
cfl-consultant@club-internet.fr

September 16, 2021

Abstract

The polynomial $f_{2n}(x) = 1 + x + \cdots + x^{2n}$ and its minimizer on the real line $x_{2n} = \arg \inf f_{2n}(x)$ for $n \in \mathbb{N}$ are studied. Results show that x_{2n} exists, is unique, corresponds to $\partial_x f_{2n}(x) = 0$, and resides on the interval $[-1, -1/2]$ for all n. It is further shown that $\inf f_{2n}(x) = (1 + 2n)/(1 + 2n(1 - x_{2n}))$ and $\inf f_{2n}(x) \in [1/2, 3/4]$ for all n with an exact solution for x_{2n} given in the form of a finite sum of hypergeometric functions of unity argument. Perturbation theory is applied to generate rapidly converging and asymptotically exact approximations to x_{2n}. Numerical studies are carried out to show how many terms of the perturbation expansion for x_{2n} are needed to obtain suitably accurate approximations to the exact value.

1 Introduction

The inspiration for this work came from a question posted by Wang [11] on the Mathematics Stack Exchange discussion board March 13, 2021, which sought a solution to the minimum of the polynomial $1 + x + \cdots + x^{2n}$ for $n \in \mathbb{N}$. In the question it was noted that the minimum appeared to correspond to a vanishing derivative and thus could be found by solving for the real roots of $\partial_x (1 + x + \cdots + x^{2n})$. When $n = 1, 2$ these roots are algebraic with their exact forms being recovered using the standard formulae for linear and cubic equations. However for $n \geq 3$, the work of Abel and Galois shows no general algebraic solution exists; hence, motivating the need for more powerful methods [1].

Keywords: Lagrange inversion, Tschirnhaus transformation, perturbation series, transcendental roots, hypergeometric function.

2010 Mathematics Subject Classification: Primary 65H04, Secondary 65Q30.
the broad and pervasive applications of geometric sums in the literature, further
study of this polynomial and its minimum is a worthwhile venture.

2 Preliminaries
Throughout this work we define \(\mathbb{N} = \{1, 2, \ldots\} \), \(\mathbb{N}_0 = \mathbb{N} \cup \{0\} \), and \(\mathbb{E} = \{2, 4, \ldots\} \) to be the sets of positive integers, nonnegative integers, and positive even integers, respectively. For the sake of brevity we shall denote \(m = 2n \) so that the the polynomial of interest and its minimizer becomes

\[
f_m(x) := 1 + x + \cdots + x^m, \quad m \in \mathbb{E}
\]

and

\[
x_m := \arg \inf_{x \in \mathbb{R}} f_m(x).
\]

The following definitions and relations will also be used.

Definition 1 (Gamma function).

\[
\Gamma(s) := \int_0^\infty t^{s-1} e^{-t} \, dt, \quad \Re s > 0
\]

Definition 2 (Factorial power (falling factorial)).

\[
(s)^{(n)} := \frac{\Gamma(s + 1)}{\Gamma(s - n + 1)}
\]

Definition 3 (Pochhammer symbol (rising factorial)).

\[
(s)_n := \frac{\Gamma(s + n)}{\Gamma(s)}
\]

Definition 4 (Generalized hypergeometric series).

\[
\!p\! \!\! F_q \left(a_1, \ldots, a_p ; b_1, \ldots, b_q ; z \right) := \sum_{k=0}^\infty \frac{(a_1)_k \cdots (a_p)_k}{(b_1)_k \cdots (b_q)_k} \, \frac{z^k}{k!}
\]

Definition 5 (k-gamma function and Pochhammer k-symbol [2]). The k-gamma function and Pochhammer k-symbol are given by

\[
\Gamma_k(x) := k^{x-1} \Gamma \left(\frac{x}{k} \right)
\]

and

\[
(x)_{n,k} := \frac{\Gamma_k(x + nk)}{\Gamma_k(x)},
\]

respectively.

Relation 1. If \(n \in \mathbb{N}_0 \) then \((\alpha)_{n,k} = k^n (\alpha/k)_n \) [7, Prop. 3.1].

With these definitions at hand we are ready to begin studying the properties of \(f_m \) and \(x_m \).
3 Properties of \(f_m \) and \(x_m \)

Our first goal is to establish the existence and uniqueness of \(x_m \). To accomplish this it will be helpful to use the closed-form for geometric sums and write \(f_m \) in the form

\[
f_m(x) = \frac{1 - x^{m+1}}{1 - x}.
\]

Lemma 1. The polynomial \(f_m(x) \) is strictly convex on \(x \in \mathbb{R} \) for all \(m \in \mathbb{E} \).

Proof. To establish strict convexity it is sufficient to show \(f_m''(x) > 0 \) everywhere on \(x \in \mathbb{R} \). It is trivial to show \(f_m''(x) > 0 \) holds for \(x \geq 0 \) so all that is left to do is to consider the complementary case \(x < 0 \). Equating the second derivative with zero we find \(f_m''(x) = 0 \implies h_m(x) = 0 \), where

\[
h_m(x) = (m - 1)mx^{m+1} - 2(m^2 - 1)x^m + m(m + 1)x^{m-1} - 2.
\]

The signs of the coefficients of \(h_m(-x) \) in order of descending variable exponent yields the sequence \((-1, -1, -1, -1)\), which are all negative. It follows from Descartes’ rule of signs that \(f_m''(x) \) has zero roots on the interval \(x \in (-\infty, 0) \). But, \(f_m''(-1) = \frac{1}{2}m^2 > 0 \); thus, we conclude \(f_m''(x) > 0 \) also holds for all \(x < 0 \). The proof is now complete. \(\square \)

Theorem 1. The minimizer \(x_m \) exists, is unique, and resides on the interval \([-1, -1/2]\) for all \(m \in \mathbb{E} \).

Proof. We begin by establishing that \(f_m'(x) \) has exactly one real root. It is immediately obvious that \(f_m'(x) > 0 \) for all \(x \geq 0 \). Now assuming \(x < 0 \), we deduce \(f_m'(x) = 0 \iff g_m(x) = 0 \), where \(g_m(x) = mx^{m+1} - (m+1)x^m + 1 \). The signs of the coefficients of \(g_m(-x) \) in order of descending variable exponent gives the sequence \((-1, -1, +1)\); revealing a single variation in sign. Again appealing to Descartes’ rule of signs we conclude \(f_m'(x) \) must have exactly one real root on the interval \(x \in (-\infty, 0) \). However, \(f_m'(-1) = -\frac{1}{2}m \) and \(f_m'(-1/2) = \frac{1}{2}2^{1-m}(2m+1 - 3m - 2) \geq 0 \) with the latter inequality following from induction on \(m \in \mathbb{E} \). Consequently, \(f_m'(x) \) has a single root on the real line contained in the interval \([-1, -1/2]\) for all \(m \in \mathbb{E} \). Furthermore, the strict convexity of \(f_m \) proven in Lemma 1 implies that the solution to \(f_m'(x) = 0 \) also corresponds to the unique global minimum of \(f_m \), which completes the proof. \(\square \)

With the existence and uniqueness of \(x_m \) established, we turn to finding a simple formula for the minimum of \(f_m \) as a function of \(x_m \).

Lemma 2. Let \(x_m \in [-1, -1/2] \) denote the unique minimizer of \(f_m \) such that \(f_m(x_m) = \inf_{x \in \mathbb{R}} f_m(x) \). Then,

\[
f_m(x_m) = \frac{1 + m}{1 + m(1 - x_m)}
\]

and \(f_m(x_m) \in [1/2, 3/4] \) for all \(m \in \mathbb{E} \) with \(f_2(x_2) = 3/4 \) and \(\lim_{m \to \infty} f_m(x_m) = 1/2 \).
Proof. From Theorem 1 we know that x_m satisfies $mx_m^{m+1} - (m+1)x_m^m + 1 = 0$, which can be rewritten as $x_m^{m+1} = x_m/(1 + m(1 - x_m))$. Substituting this expression for x_m^{m+1} into (1) yields the desired form for $f_m(x_m)$. The bounds on $f_m(x_m)$ are then found by minimizing and maximizing $f(m, x) = (1 + m)/(1 + m(1 - x))$ on $(m, x) \in \mathbb{E} \times [-1, -1/2]$. We find $\inf f(m, x) = \lim_{m \to \infty} f(m, -1) = 1/2$ and $\sup f(m, x) = f(2, -1/2) = 3/4$, which are equivalent to $\lim_{m \to \infty} f_m(x_m)$ and $f_2(x_2)$, respectively. The proof is now complete.

\[4\] Explicit expression for x_m

In the previous section we showed that the minimizer x_m exists, is unique, and resides on the interval $[-1, -1/2]$ for all $m \in \mathbb{E}$. Furthermore, we were able to establish a very simple expression for $\inf f_m$ as a function of this minimizer so that the problem of evaluating $\inf f_m$ is equivalent to finding x_m. For $m = 2, 4$ we may apply the standard equations for roots of linear and cubic equations to derive exact algebraic expressions for x_m. Furthermore, as $m \to \infty$ we find for $|x| < 1$: $f_{m}(x) \to (1 - x)^{-1}$, which is strictly increasing on $x \in (-1, -1/2]$. Bringing these observations together we have

\[
\begin{align*}
x_2 &= -\frac{1}{2} \\
x_4 &= -\frac{1}{4} \left(1 + \sqrt[3]{\frac{5}{9}} \left(\sqrt[3]{9 + 4\sqrt{6}} - \sqrt[3]{9 - 4\sqrt{6}}\right)\right) \\
&\vdots \\
x_\infty &= -1.
\end{align*}
\]

While a general algebraic solution for x_m with $m \geq 6$ does not exist, methods for expressing exact solutions to higher-order polynomial roots have been thoroughly studied [10]. For example, the work of Hermite shows that x_6 can be solved exactly in terms of nonelementary functions [5]. One way this is accomplished is by reducing the quintic equation $\partial_x f_6(x) = 0$ to its Bring–Jerrard normal form and then using series reversion to express x_6 in terms of hypergeometric functions. Using this approach as a clue, Theorem 2 presents an exact and general solution for x_m based on an adaptation of the method used for solving trinomial equations [4, 3, 8].

Theorem 2. For all $m \in \mathbb{E}$

\[
x_m = \sum_{k=1}^{m} \frac{(-m)^{k-2}}{(1 + m)x_m^{k}} \frac{\Gamma\left(\frac{m+k}{m} - 1\right)}{(\Gamma\left(\frac{m+k}{m}\right)\Gamma(k))^{m+2}} F_{m+1}^{1} \left(1, \left\{ \frac{k}{m} + \frac{\ell - 1}{m+1} \right\}\frac{m}{m+k} ; \left\{ \frac{k+\ell}{m} \right\}_{\ell=0}^{m} ; 1 \right).
\]

Proof. From Theorem 1 we know x_m satisfies $mx_m^{m+1} - (m+1)x_m^m + 1 = 0$, $m \in \mathbb{E}$.
Performing the substitution \(x_m \mapsto -\zeta^{-\frac{m}{m}} \) we obtain the transformed expression

\[
\zeta = 1 + m + m\phi(\zeta),
\]

(2)

with \(\phi(\zeta) = \zeta^{-\frac{m}{m}} \). By Lagrange’s inversion theorem it follows for a function \(F \) analytic in a neighborhood of the root of (2) that

\[
F(\zeta) = F(1 + m) + \sum_{n=1}^{\infty} \frac{m^n}{n!} \left[\frac{\partial^{n-1} F(w)}{\partial w^{n-1}} \right]_{w = 1+m}.
\]

Choosing \(F(\zeta) = -\zeta^{-\frac{m}{m}} \) we subsequently obtain

\[
x_m = -(1 + m)^{-\frac{1}{m}} + \sum_{n=1}^{\infty} \frac{m^{n-1}}{n!} \left[\frac{\partial^{n-1} w^{-m}}{\partial w^{n-1}} \right]_{w = 1+m},
\]

which upon further noting that \(\partial^{n-1} w^{-s} = (-1)^{n-1} (s)_{n-1} w^{-s-n+1} \) yields after some algebraic manipulation

\[
x_m = -(1 + m)^{-\frac{1}{m}} \sum_{n=0}^{\infty} \frac{\Gamma\left(\frac{mn+n+1}{m}\right)}{\Gamma\left(\frac{m+n+1}{m}\right)} \frac{(-m(1+m)^{-\frac{m+1}{m}})^n}{n!}.
\]

(3)

To evaluate the series (3) we write \(x_m = \sum_{n=0}^{\infty} c_n = \sum_{k=1}^{n} \sum_{r=0}^{\infty} c_{mn+k-1} \) resulting in \(m \) new series containing Pochhammer symbols of the form \((\cdot)_{(m+1)n}\) and \((\cdot)_{mn}\). Then using the identity [7, Eq. 2.13]

\[
(\alpha)_r = r^n \prod_{j=0}^{r-1} \left(\frac{\alpha + j}{r} \right), \quad r \in \mathbb{N}
\]

we arrive at

\[
x_m = \sum_{k=1}^{m} \frac{(-m)^{k-2}}{(1 + m)^{\frac{mk+k}{m} - 1}} \frac{\Gamma\left(\frac{mk+k}{m}\right)}{\Gamma\left(\frac{m+k}{m}\right)} \frac{\Gamma(k)}{\Gamma(\frac{m+k}{m})} \sum_{n=0}^{\infty} \frac{(1)_n \prod_{\ell=0}^{m} \left(\frac{k+\ell}{m}\right)_{n} 1}{n!}
\]

which is the desired result.

To demonstrate the validity of the closed-form for \(x_m \) given by Theorem 2 we substitute \(m = 2 \) and find

\[
x_2 = \frac{1}{9} \sum_{k=0}^{m} \frac{(-2)^{k-2}}{(1 + 2)^{\frac{mk+k}{2} - 1}} \frac{\Gamma\left(\frac{mk+k}{2}\right)}{\Gamma\left(\frac{m+k}{2}\right)} \frac{\Gamma(k)}{\Gamma(\frac{m+k}{2})} \sum_{n=0}^{\infty} \frac{(1)_n \prod_{\ell=0}^{m} \left(\frac{k+\ell}{2}\right)_{n} 1}{n!}
\]

The \(_3F_2(\cdot) \) term is reduced to \(_2F_1(\cdot) \) by way of [6, Eq. 07.27.03.0120.01]

\[
_3F_2\left(\begin{array}{c}1, 2, \gamma; \\ \beta, \gamma \end{array}; z\right) = \frac{\epsilon - 1}{(\beta - 1)(\gamma - 1)z} _2F_1\left(\begin{array}{c}\beta - 1, \gamma - 1; \\ \epsilon - 1 \end{array}; z\right) - 1.
\]
Gauss’s hypergeometric summation theorem

\[_2F_1 \left(\alpha, \beta; \gamma, 1 \right) = \frac{\Gamma(\gamma)\Gamma(\gamma - \alpha - \beta)}{\Gamma(\gamma - \alpha)\Gamma(\gamma - \beta)} \quad \Re(\gamma - \alpha - \beta) > 0 \]

then permits us to write the remaining \(_2F_1(\cdot) \) terms as ratios of gamma functions. After some simplification we find

\[x_2 = -\frac{1}{2}, \]

which is the exact value of \(x_2 \).

For \(m \geq 4 \), reducing the closed-form for \(x_m \) to more elementary functions in this manner becomes very cumbersome if not impossible. Without the ability to reduce the hypergeometric functions present in \(x_m \), this expression also becomes difficult to implement numerically, especially as \(m \) becomes large. To obtain approximations we could turn to the series given by (3); however, the slow convergence of this series renders it impractical. For example, substituting \(m = 2 \) and adding up the first one-hundred terms of (3) we obtain \(x_2 \approx -0.499885 \), which corresponds to an absolute relative error of \(2.3 \times 10^{-4} \). Given that numerical root finding methods can achieve more accurate approximations in just a few iterations we find this means of approximation to be less than satisfactory.

5 Perturbation series expansion of \(x_m \)

In the previous section we were able to find an exact expression for \(x_m \) but this expression was not useful for the purpose of computing numerical approximations. Here, we apply the methods of perturbation theory to obtain a faster converging series expansion for this purpose.

We begin by recalling from Theorem 1 that \(x_m \) satisfies

\[g_m(x_m) = 0, \quad \text{with} \quad g_m(x) = x^m \left(1 - x + \frac{1}{m} \right) - \frac{1}{m} \]

and \(x_m \to -1 \) as \(m \to \infty \). The fact that \(x_m + 1 \) vanishes as \(m \) becomes large suggests we instead study the perturbed problem

\[g_{m,\epsilon}(x_m, \epsilon) = 0, \quad \text{with} \quad g_{m,\epsilon}(x) = x^m \left(2 - (1 + x)\epsilon + \frac{1}{m} \right) - \frac{1}{m}, \]

where

\[x_m, \epsilon = \sum_{k=0}^{\infty} a_k \epsilon^k. \quad (4) \]

Upon inspection we observe \(g_{m,1}(x) = g_m(x) \) and so it follows that \(x_m \) can be recovered by evaluating the perturbation series (4) at \(\epsilon = 1 \). To determine the coefficients \(a_k \) we first consider the well-known result for integer powers of series to express powers of \(x_{m,\epsilon} \) as

\[x_{m,\epsilon}^p = \sum_{k=0}^{\infty} c_{k,p} \epsilon^k, \quad p \in \mathbb{N} \]
with
\[c_{0,p} = a_0^p \]
\[c_{k,p} = \frac{1}{a_0^k} \sum_{\ell=1}^k ((p + 1)\ell - k)a_{\ell}c_{k-\ell,p}. \]

Using Faà di Bruno’s formula we may also obtain a closed-form for the coefficients \(c_{k,p} \) as
\[c_{k,p} = \frac{1}{k!} \sum_{\ell=1}^k (p)^{\ell} \frac{B_{k,\ell}(1!\ldots,(k-\ell+1)!)}{a_1\ldots a_\ell}a_{p-\ell}c_{k-\ell+1,p}, \]
where \(B_{n,k}(x_1,\ldots,x_{n-k+1}) \) is the partial Bell-polynomial. Using these results we substitute \(x_{m,\epsilon} \) into \(g_{m,\epsilon} \) and collect terms by powers of \(\epsilon \) yielding
\[g_{m,\epsilon}(x_{m,\epsilon}) = \left(2 + \frac{1}{m}\right)a_0^m - \frac{1}{m} + \sum_{k=1}^{\infty} \left[(2 + \frac{1}{m})c_{k,m} - c_{k-1,m} - c_{k-1,m+1}\right] \epsilon^k. \]

Since \(g_{m,\epsilon}(x_{m,\epsilon}) = 0 \) we equate the coefficients of \(\epsilon^k \) to zero to yield an infinite system of equations that recover the coefficients \(a_k \). Setting the constant term equal to zero gives
\[a_0 = -(1 + 2m)^{-\frac{1}{m}}, \quad (1 + 2m)c_{k,m} - c_{k-1,m} - c_{k-1,m+1} = 0. \] \((5) \)
Evaluating the first several coefficients we are able to conjecture a closed-form for \(a_k \), which leads to the following result.

Theorem 3. For all \(m \in \mathbb{E} \)
\[x_m = \sum_{k=0}^{\infty} a_k, \]
where
\[a_0 = -(1 + 2m)^{-\frac{1}{m}}, \]
\[a_k = \sum_{\ell=0}^{k} \frac{(\ell + m + 1)_{k-1,m}a_{m\ell+1}^k}{\ell!(k-\ell)!}. \]

Proof. We begin by considering the closed-form for \(x_m \) claimed in the statement of Theorem 2, which consists of a sum of \(m \) hypergeometric functions. Denoting \(\{a_{j,k}\}_{j=1}^{m+2} \) as the top parameters and \(\{b_{j,k}\}_{j=1}^{m+1} \) as the bottom parameters of the hypergeometric function in the \(k \)th term we find \(\gamma_k = (b_1 + \cdots + b_{m+1}) - (a_1 + \cdots + a_{m+2}) = \frac{1}{2} \) for all \(k = 1,\ldots,m \). Since \(\gamma_k > 0 \), each of the \(m \)-terms of \(x_m \) can be written as an absolutely convergent series; hence, the entire expression representing \(x_m \) must also be absolutely convergent. Now using the conjectured closed-form for \(a_k \) we write
\[x_m = \sum_{k=0}^{\infty} \sum_{\ell=0}^{k} \frac{m^{k-1}}{\ell!(k-\ell)!} \frac{\Gamma(\ell + \frac{\ell+1}{m})\Gamma(k + \frac{\ell+1}{m})}{\ell!(k-\ell)!} a_{m\ell+1}^k. \]
If this expression is equal to that given in the statement of Theorem 2, then it is also absolutely convergent and permits rearrangement of its terms. Inter-
changing the order of summation we find after some simplification
\[
x_m = a_0 \sum_{\ell=0}^{\infty} \frac{\Gamma\left(\frac{m\ell+\ell+1}{m}\right)}{\Gamma\left(\frac{1}{m}\ell+1\right)} \left(\frac{ma_0^{n+1}}{m}\right)^{k} \frac{(ma_0^{n})^{k}}{k!}.
\]
The interior sum over \(k\) can now be evaluated in terms of \(_{1}F_{0}(\alpha; -; z) = (1 - z)^{-\alpha}\). Reintroducing \(a_0\) yields
\[
x_m = -\frac{(1 + m)^{-\frac{1}{m}}}{m} \sum_{\ell=0}^{\infty} \frac{\Gamma\left(\frac{m\ell+\ell+1}{m}\right)}{\Gamma\left(\frac{m+\ell+1}{m}\right)} \left(-m(1 + m)^{-\frac{m+1}{m}}\right)^{\ell},
\]
which is the series expansion for \(x_m\) given in (3). By the uniqueness of Taylor series it follows that the conjectured form for \(a_k\) must be correct.

So does the perturbation series for \(x_m\) converge faster than that given by (3)? Substituting \(m = 2\) and adding the first one-hundred terms we find for the absolute relative error \(5.6 \times 10^{-64}\), which is a significant improvement on the absolute relative error of \(2.3 \times 10^{-4}\) obtained from the first one hundred terms of (3).

We conclude this section with an important property of approximations for \(x_m\) obtained via the perturbation series of Theorem 3.

Corollary 1. If \(\tilde{x}_{m,n} = \sum_{k=0}^{n} a_k\), then \(x_m \sim \tilde{x}_{m,n}\) as \(m \to \infty\).

Proof. Using the expression for \(a_k\) given in Theorem 3 we have \(\lim_{m \to \infty} a_0 = -1\) and \(\lim_{m \to \infty} a_k = 0\) for all \(k \geq 1\); thus, \(\lim_{m \to \infty} \tilde{x}_{m,n} = -1\) for all \(n \in \mathbb{N}_0\). Since \(\lim_{m \to \infty} x_m = -1\) the result follows.

6 Numerical results

From Corollary 1 we know \(x_m \sim \tilde{x}_{m,n}\) as \(m \to \infty\) and so we expect the number \(n\) needed to guarantee \(|x_m - \tilde{x}_{m,n}| < \epsilon\) should decrease as \(m\) increases. Since we have closed-forms for \(x_2\) and \(x_4\), which can be computed to arbitrary precision, our first task will be to study the convergence of \(\tilde{x}_{m,n} \to x_m\) as a function of \(n\) for \(m = 2, 4\). Given that we expect less terms will be needed for larger values of \(m\), the results of this exercise should give us a worst case scenario for how large \(n\) must be to obtain the desired accuracy in our approximation.

Using *Mathematica* software, we evaluated \(\tilde{x}_{m,n}\) for \(m = 2, 4\) and \(n = 0, 1, \ldots, 100\). To compare the approximation to the exact values we used the absolute relative error
\[
R_m(n) = \left| \frac{\tilde{x}_{m,n}}{x_m} - 1 \right|
\]
the results of which are plotted in Figure 1. From the figure we see the error decreases exponentially with \(n\) and that \(R_4(n) < R_2(n)\) for each value of \(n\).
Working with the data for $R_4(n)$ we further determined

$$R_4(n) < 5 \times 10^{-(2+0.759n)},$$

which suggests setting n equal to

$$n^* = \max \{0, \left\lceil \frac{\sigma-2}{0.759} \right\rceil \}$$

is sufficient to guarantee $\tilde{x}_{m,n}^*$ agrees with x_m to at least q significant digits for all $m \geq 4$.

To test this hypothesis we first note that $x_m \in (-1, -1/2]$ for all finite $m \in \mathbb{E}$. Since the leading exponent in the decimal expansion of x_m is always negative one it follows that $\tilde{x}_{m,n}$ has p significant digits of x_m if $|x_m - \tilde{x}_{m,n}| \leq 5 \times 10^{-(p+1)}$. Furthermore, we know x_m is the unique real root of $g_m(x) = x^m(1-x+\frac{1}{m}) - \frac{1}{m}$ with $g_m(x_m - \epsilon)$ and $g_m(x_m + \epsilon)$ differing in sign; hence a lower bound on the number of significant digits obtained by $\tilde{x}_{m,n}$ is found by determining the largest nonnegative integer p such that

$$g_m(\tilde{x}_{m,n} - 5 \times 10^{-(p+1)})g_m(\tilde{x}_{m,n} + 5 \times 10^{-(p+1)}) \leq 0.$$

For the sake of example we chose $q = 10$ for the number of desired significant digits resulting in $n^* = 11$. Using the above mentioned procedure, the value p was computed for $m = 4, 6, \ldots, 100$ with the results presented in Figure 2. From the figure we observe $p > q$ for each value of m as is expected. Finally, Table 1 presents numerical values for x_m and $f_m(x_m)$ computed using $\tilde{x}_{m,n}$ and the formula in Lemma 2.

$$R_m(n) \text{ versus } n \text{ for } m = 2, 4$$

![Figure 1: Absolute relative error incurred from the approximation $\tilde{x}_{m,n}$ versus n for $m = 2, 4$. Plot produced with matlab2tikz [9].](image-url)
Significant figures obtained by $\tilde{x}_{m,n^{*}}(q)$

Figure 2: Number of significant figures obtained by the approximation $\tilde{x}_{m,n^{*}}(q)$ for $q = 10$ versus m.

7 Conclusions

In this note, we were able to establish many useful facts about the polynomial $f_{m}(x) = 1 + x + \cdots + x^{m}$ and its minimum value on the real line. In particular, we were able to show $\arg \inf f_{m}(x) \in [-1, -1/2]$ and $\inf f_{m}(x) \in [1/2, 3/4]$ for all $m \in \mathbb{E}$ as well as provide a very simple formula for the minimum as a function of the minimizer x_{m}. Lagrange inversion and perturbation theory were applied to derive two different series expansions for x_{m}, which lead to a closed-form in terms of hypergeometric functions. Furthermore, numerical studies were conducted which gave a rule of thumb for how large n must be to achieve a desired accuracy in approximating x_{m} with $\tilde{x}_{m,n}$.

References

[1] N. H. Abel. Beweis der Unmöglichkeit, algebraische Gleichungen von höheren Graden als dem vierten allgemein aufzulösen. *J. Reine Angew. Math.*, 1:65–84, 1826.

[2] Rafael Díaz and Eddy Pariguan. On hypergeometric functions and Pochhammer k-symbol. *Divulgaciones Matemáticas*, 15(2), 2007.

[3] Albert Eagle. Series for all the roots of a trinomial equation. *The American Mathematical Monthly*, 46(7):422–425, 1939.

[4] M.L. Glasser. Hypergeometric functions and the trinomial equation. *Journal of Computational and Applied Mathematics*, 118(1):169–173, 2000.
[5] Charles Hermite. Sur la résolution de l’équation du cinquieme degré. *Comptes rendus de l’Académie des Sciences*, 46(1858):508–515, 1858.

[6] Wolfram Research Inc. The Wolfram functions site. Visited on 2021-04-28.

[7] Shahid Mubeen and Abdur Rehman. A note on k-gamma function and pochhammer k-symbol. *Journal of Informatics and Mathematical Sciences*, 6(2), 2014.

[8] Daniele Ritelli and Giulia Spaletta. Trinomial equation: the hypergeometric way. *Open Journal of Mathematical Sciences*, 5(1):236–247, 2021.

[9] Nico Schlömer. matlab2tikz: A script to convert MATLAB/Octave into TikZ figures for easy and consistent inclusion into LaTeX. GitHub. URL: https://github.com/matlab2tikz/matlab2tikz (retrieved May 8, 2021).

[10] Hiroshi Umemura. *Resolution of algebraic equations by theta constants*, pages 261–270. Birkhäuser Boston, Boston, MA, 2007.

[11] Yiwei Wang. The minimum of $f(x) = 1 + x + \cdots + x^{2n}$. Mathematics Stack Exchange. URL: https://math.stackexchange.com/q/4060608 (version: 2021-04-30).
Table 1: Numerical values for x_m and $f_m(x_m)$.

m	x_m	$f_m(x_m)$
2	-0.5000000000	0.7500000000
4	-0.6058295862	0.6735532235
6	-0.670320476	0.6350938940
8	-0.7145377272	0.61566906
10	-0.7470540749	0.5955429324
12	-0.7728416355	0.588576922
14	-0.7921778546	0.5749221276
16	-0.8086048979	0.5678463037
18	-0.823534102	0.5532669587
20	-0.8340533676	0.5498010211
22	-0.8441478047	0.5458943966
24	-0.8529581644	0.541823146
26	-0.8607238146	0.537876878
28	-0.8676269763	0.533831483
30	-0.8738090154	0.529928364
32	-0.879314184	0.526123456
34	-0.884333818	0.522546897
36	-0.889037183	0.519137476
38	-0.893520563	0.515932069
40	-0.897127025	0.512946888
42	-0.9007031162	0.510137456
44	-0.9040147981	0.507519654
46	-0.907013919	0.505082537
48	-0.909995531	0.502803624
50	-0.912636053	0.500674662
52	-0.915142114	0.498696877
54	-0.917487896	0.496869237
56	-0.919713922	0.495192475
58	-0.9218020367	0.493671387
60	-0.9237741513	0.492314536
62	-0.9256399896	0.491024357
64	-0.9274082062	0.489802435
66	-0.929086524	0.488638877
68	-0.9306818591	0.487541835
70	-0.9322004214	0.486499441
72	-0.9336478047	0.485499441
74	-0.9350290699	0.484541835
76	-0.9363487901	0.483638877

∞ -1.0000000000 0.5000000000