RISK FACTORS ASSOCIATED WITH HEPATIC ARTERY THROMBOSIS: ANALYSIS OF 1050 LIVER TRANSPLANTS

Fatores de risco associados à trombose de artéria hepática: Análise de 1050 transplantes de fígado

Luis Eduardo Veras **PINTO**®, Gustavo Rego **COELO**®, Madalena Maria Silva **COUTINHO**®, Orlando Jorge Martins **TORRES**®, Plinio Cunha **LEAL**®, Ciro Bezerra **VIEIRA**®, José Huygens Parente **GARCIA**®

ABSTRACT - Background: Hepatic artery thrombosis is an important cause of graft loss and ischemic biliary complications. The risk factors have been related to technical aspects of arterial anastomosis and non-surgical ones. **Aim:** To evaluate the risk factors for the development of hepatic artery thrombosis. **Methods:** The sample consisted of 1050 cases of liver transplant. A retrospective and cross-sectional study was carried out, and the variables studied in both donor and recipient. **Results:** Univariate analysis indicated that the variables related to hepatic artery thrombosis are: MELD (p=0.04) and warm time ischemia (p=0.005). In the multivariate analysis MELD=14.5 and warm ischemia time =35 min were independent risk factors for hepatic artery thrombosis. In the prevalence ratio test for analysis of the anastomosis as a variable, it was observed that patients with continuous suture had an increase in thrombosis when compared to interrupted suture. **Conclusions:** Prolonged warm ischemia time, calculated MELD and recipient age were independent risk factors for hepatic artery thrombosis after liver transplantation in adults. Transplanted patients with continuous suture had an increase in thrombosis when compared to interrupted suture. Re-transplantation due to hepatic artery thrombosis was associated with higher recipient mortality.

HEADINGS: Risk factors. Thrombosis. Hepatic artery. Transplant.

RESUMO - Raciona: Trombose de artéria hepática é importante causa de falência de enxerto e complicações biliares. Fatores de risco para trombose estão relacionados aos aspectos técnicos da anastomose arterial e fatores não cirúrgicos. **Objetivo:** Avaliar os fatores de risco para o desenvolvimento de trombose de artéria hepática. **Métodos:** A amostra consta de 1050 casos de transplante hepático. Foi realizado estudo retrospectivo e transversal, e as variáveis foram avaliadas em doadores e receptores. **Resultados:** A análise univariada mostrou que as variáveis relacionadas a trombose de artéria hepática são: MELD e tempo de isquemia quente. Na análise multivariada, o MELD=14.5 e tempo de isquemia quente =35 min foram fatores de risco independentes para trombose de artéria hepática. No teste de prevalência para avaliação do tipo de anastomose como variável, foi observado que a sutura contínua tem maior risco de trombose quando comparada com aquela em pontos separados. **Conclusão:** Tempo de isquemia quente prolongado, MELD calculado e idade do recipiente foram fatores de risco independentes para trombose de artéria hepática após transplante de fígado em adultos. Pacientes submetidos à anastomose com sutura contínua apresentaram mais trombose quando comparados com a em pontos separados. Re-transplante por trombose está associado com maior mortalidade.

DESCRITORES: Trombose. Fatores de risco. Artéria hepática. Transplante.
INTRODUCTION

Hepatic artery thrombosis (HAT) is the most frequent and severe vascular complication of liver transplantation, being a major cause of primary dysfunction and graft loss. The incidence of this disease varies from 2-9% in adults, and may reach 20% in some literatures. Mortality rates range from 11-35% in adults and around 50% in pediatric transplants.

The symptoms in HAT can be acute or chronic and it can be scored as early (<4 weeks) or late (>4 weeks). The most dramatic acute manifestation is fulminant ischemic hepatic necrosis, in which usually the patient develops fever, sepsis, altered mental status, hypotension and coagulopathy. Factors associated with HAT may be non-surgical and surgical. Among the non-surgical, the donor’s age (>60 years), recipients in hypercoagulable state, cases of rejection and cytomegalovirus infection are found. Among the main surgical factors, dissection of the hepatic artery wall and technical issues in the anastomosis are found. The diagnosis of this condition is carried out by using Doppler ultrasonography as a postoperative screening and confirmed by celiac angiography or angioitomography. The treatment is eminently surgical, with vast majority of patients requiring re-transplantation. In asymptomatic patients, non-surgical alternatives may be attempted, such as intra-arterial thrombolysis, with or without angioplasty, or stents. Morbidity and mortality due to early HAT, although extensively shown in the international literature when associating non-surgical factors causing HAT, have not effectively altered its incidence. The need to avoid this condition makes it necessary to assess the possibility of non-surgical factors influencing this estimate.

This study aims to analyze surgical and non-surgical risk factors of donors and recipients, associated with hepatic artery thrombosis in 1050 liver transplants in a single center and mortality after re-transplantation.

METHODS

This work was approved by the Research Ethics Committee of the University Hospital o Walter Cantídio of the Universidade Federal do Ceará, CE, Brazil (HUWC-UFC process no. 2.438.986).

A retrospective and cross-sectional study was carried out, based on a review of medical records of 1050 patients who underwent liver transplantation per deceased donor in the Liver Transplantation Service at HUWC-UFC from May 2002 to August 2014. The inclusion criteria were all 1050 consecutive cases of liver transplantation should be carried out at this hospital. No patients were excluded from the sample.

The information obtained from the donor were: age, gender, blood type, cause of death, degree of steatosis. The recipient data: age, gender, blood type, etiology of liver disease, Model for end-stage liver disease (MELD), CHILD, calculated MELD, adjusted MELD, warm ischemia time (WIT) and cold ischemia time (CIT).

The MELD system is based on a score that predicts severity and mortality related to end-stage liver disease. It uses serum values of total bilirubin, creatinine and INR (International Normalized Ratio). MELD sodium is a modified score that adds the value of natremia in the calculation of the prediction of mortality. The Child-Turcotte-Pugh classification was created to, through the evaluation of clinical and laboratory elements, establish a score that evaluates the primary liver function. Calculated MELD is the absolute value obtained by the mathematical equation. Adjusted MELD is the value assigned to the MELD of patients with special situation. It starts with 20 points, after three months, 24 points and six months later, 29 points. The special situation was granted to patients according to Ordinance 2.600 published on October 21, 2009 by the Ministry of Health, Brazil.

The cutoff point for differentiating the anastomosis technique from the hepatic artery started from the transplant number 105; all transplants prior to this one were performed with 7-0 polypropylene continuous suture. After this number, the transplants were performed with interrupted suture using 2.5x magnification loup and 7-0 polypropylene suture. Hepatic transplantation was performed in a universally accepted manner, divided into four stages: donor surgery, back table surgery, recipient hepatectomy and liver graft implantation. We did not use aspirin or heparin of any kind for post-transplant prophylaxis.

STATISTICAL ANALYSIS

The data were assessed by the software IBM SPSS Statistics 20 (2011). The difference of means of these same numerical variables was assessed through the parametric independent student T-test in relation to the presence or absence of thrombosis in the recipient group. Subsequently, the association of the scoring variables with respect to the donor groups was assessed through the Chi-square test of independence. The same was applied in relation to the group of recipients (there was or not thrombosis). In order to assess the risk factors, the article of the Brazilian Medical Association Guidelines was used as reference which set the following risk factors for liver donors: Age > 55 years; steatosis level >30% and cold ischemia time >12 h. The other numerical variables that did not have a reference value, the ROC (Receiver Operating Characteristic) curve analysis was used to set some cut-off points for later use in multivariate logistic regression analysis. In order to assess the risk factors for the dependent variables (risk factors for thrombosis in the recipients), multivariate logistic regression was applied. The backward stepwise conditional method was used. A value of p<0.05 was considered statistically significant.

RESULTS

The sample consisted of 1050 cases of liver transplantation from May 2002 to December 2014. Patients submitted to re-transplantation were also included in the sample. Of the total number of patients, 30 presented hepatic artery thrombosis, representing 2.8% of thrombosis in this sample.

Regarding the characteristics of donors, the majority was male (68.3%); aged between 35.8±16.1 years; blood type (ABO), types O (52.8%) and A (35.0%); degree of steatosis
<30% of steatosis (74.5%); and the cause of donor death was more related to traumatic brain injury (57.3%) and stroke (33.5%, Table 1).

TABLE 1 – Frequency distribution of the scoring variables of liver donors

Donor gender	n	%
Male	718	68.3
Female	333	31.7
Donor age range		
< 10	16	1.5
10-19	169	16.1
20-29	259	24.6
30-39	183	17.4
40-49	180	17.1
50-59	148	14.1
≥ 70	75	7.1
Ignorado	3	0.3

Donor blood type	n	%
A	368	35.0
AB	29	2.8
B	96	9.1
O	556	52.8
Ignorado	3	0.3

Cause of death (n=1050)

TBI	Stroke	FAP	CNS Tumor	Organophosphorus	Cerebral edema	Subarachnoid hemorrhage	Hyponic encephalopathy	In blank	Hydrocephaly	Aneurysm	Hyposia	Intoxication	Other causes with one case	
602	352	17	11	10	5	0.5	4	3	2	4	0.4	2	30	2.9

TBI= trauma brain injury; FAP=firearm projectile; CNS=central nervous system

In the assessment of the recipients, there was also a greater male representation (70.4%), aged between 48.8±14.6 years, with a higher concentration ranging 50-59 years (34.4%), and the most prevalent liver diseases were cirrhosis due to hepatitis C (30.1%) and alcoholic liver cirrhosis (21.2%, Table 2).

Regarding the Child-Turcotte-Pugh score, 48.6% of the recipients were Child B, 31.3% Child C and 9.5% Child A; the calculated MELD and adjusted MELD values were, respectively, 19.6±7.0 and 21.5±8.1; and cold ischemia and warm ischemia times in the recipients were 343.1±113.6 min and 36.9±11.5 min. A significant difference (p<0.05) was found in the means of the calculated MELD and WIT variables in relation to the recipients group (with and without thrombosis, Table 3).

In the present study it was observed that only the WIT variable presented a ROC curve with a good area (65.9%), very close to the ideal (≥70%) and that was significant (p<0.05), indicating that it has good values to discriminate when donor thrombosis may or may not be present. In the other variables the ROC curve area was very low, although the calculated MELD presented significant (p<0.05). Those values were used to define cutoff points for following analysis.

TABLE 2 – Frequency distribution of the scoring variables of liver recipients

Variable	n	%
Recipient age range		
< 10	5	0.5
10-19	58	5.5
20-29	80	7.6
30-39	92	8.7
40-49	201	19.1
50-59	361	34.3
60-69	234	22.2
≥ 70	21	2.0

Recipient blood type	n	%
A	377	35.8
AB	37	3.5
B	117	11.1
O	521	49.5

Etiology

- HCV: 317 (30.1)
- Alcoholic cirrhosis: 223 (21.2)
- Cryptogenic: 116 (11.0)
- HBV: 115 (10.9)
- AIH: 65 (6.2)
- Fulminant hepatitis: 37 (3.5)
- Graft disfunction retx: 10 (1.0)
- PSC: 17 (1.6)
- Wilson’s disease: 16 (1.5)
- HAT: 30 (2.8)
- Buddhihari: 15 (1.4)
- Secondary biliary cirrhosis: 11 (1.0)
- HCC: 11 (1.0)
- PBC: 10 (1.0)
- Other etiologies with one case: 34 (3.2)

TABLE 3 – Cutoff points of independent variables

Variable	Positive if greater than or equal to	Sensitivity	1 – Specificity
Calculated MELD	12.50	0.828	0.866
	13.50	0.759	0.829
	14.50	0.655	0.780
	15.50	0.552	0.723
	16.50	0.483	0.679
	17.50	0.483	0.631
	18.50	0.714	0.807
	19.50	0.714	0.765
	20.50	0.643	0.690
	21.50	0.536	0.651
	22.50	0.214	0.419
	23.50	0.724	0.585
	24.50	0.690	0.550
	25.50	0.690	0.527
	26.50	0.690	0.407
	27.50	0.655	0.391
	28.50	0.621	0.364
	29.50	0.621	0.333

TABLE 4 - T student test: univariate analysis for presence of recipient thrombosis

Variable	Recipient thrombosis	n	Mean	SD	p
Donor age	No	1018	35.8	16.2	0.773
	Yes	31	36.6	14.7	0.369
Recipient age	No	1021	48.8	14.6	0.369
	Yes	31	46.4	14.8	0.043
Calculated MELD	No	982	19.7	7.0	0.043
	Yes	30	17.1	6.4	0.297
Adjusted MELD	No	972	21.5	8.2	0.043
	Yes	31	17.1	6.4	0.297
WIT	No	991	34.2	113.2	0.428
	Yes	31	35.9	127.6	0.005
CIT	No	991	36.7	11.4	0.005
	Yes	31	44.0	13.4	0.005
Interrupted et al. Upper

The prevalence of thrombosis in patients with continuous suture was 6.7%; by switching to interrupted suture this prevalence fell to 2.5%. Interrupted suture significantly reduced the likelihood of thrombosis in liver recipients - all of them risk factors for thrombosis (OR>1).

TABLE 5 - Multivariate logistic regression of the recipient thrombosis

Variable in the equation	p	OR	IC95% OR Lower	IC95% OR Upper
Recipient gender (male)	0.183	0.57	0.25	1.30
Recipient age (=42 years)	0.001	4.96	2.26	10.93
Recipient age (=55 years)	0.004	6.29	1.78	22.20
Recipient blood type (A, AB or B)	0.863	0.93	0.41	2.11
Calculated MELD (=14.5)	0.034	2.35	1.07	5.18
Adjusted MELD (=19)	0.374	0.67	0.27	1.629
Cold ischemia time (=5 h)	0.290	0.63	0.266	1.485
Warm ischemia time (=35)	0.008	3.85	1.43	10.38
Constant	0.363	0.27		

The prevalence of thrombosis in patients with continuous suture was 6.7%; by switching to interrupted suture this prevalence fell to 2.5%. Interrupted suture significantly reduced the likelihood of thrombosis (Table 3). Patients with continuous suture had an increase in thrombosis when compared to interrupted suture. When the prevalence ratio test was carried out, it was observed that in transplants recipients with thrombosis there was a higher death rate.

TABLE 6 - Association of anastomosis type and thrombosis in liver transplant recipients

Recipient thrombosis	Anastomosis	Continuous suture	Interrupted suture	Total	RP	p
Yes	7	6.7	24	2.5	31	2.63
No	98	93.3	923	97.5	1021	1052
Total	105	1000	947	1000	1052	0.018

DISCUSSION

Despite its low incidence, hepatic artery thrombosis is usually a devastating issue that requires re-transplantation and is associated with significant morbidity and mortality. In this study, prolonged WIT, calculated MELD and recipient age were independent risk factors for HAT after liver transplantation in adults. Piscaglia et al.11 in a study with 255 patients, presented via logistic regression the age >60 as a risk factor for HAT (OR for age >60 years; p=0.017). In addition, Marudanayagan et al.11 also showed that MELD =23 and age =55 years are associated with a better outcome after liver transplantation.

Despite the scarce literature showing the recipient age as a risk factor, this study revealed an influence of age >42 years as an independent risk factor for thrombosis. It is suggested that this fact is probably associated with a higher risk of systemic arterial disease (atherosclerosis) and increased comorbidities that are more common in patients with greater age.

MELD is a variable highly assessed but has not been linked to the risk of HAT directly and is usually related to graft loss and increased morbidity and mortality of patients. Grat et al.11 showed in a study of 786 recipients that high MELD is an independent risk factor for lower graft survival and may indirectly contribute to late HAT. Dudek et al.8 also showed lower graft survival in patients with high MELD.

In this study, calculated MELD was an independent risk factor for hepatic artery thrombosis, and although not directly associated with HAT, some publications seem to confirm the findings. Bonney et al.4 showed in 1090 transplants performed that MELD >30 associated with a high donor risk index (DRI) increased 2-fold the risk of vascular complications when compared to low-DRI donors. This probable relation identified in the study may be related to a greater severity of the recipient cirrhosis, since a higher MELD is directly associated with the degree of recipient worsening clinical condition, therefore with a greater risk of graft dysfunction, increased arterial resistance, and secondary hepatic artery thrombosis.

In this series, the cold ischemia time showed no relation to HAT; on the other hand, the warm ischemia time was a risk factor for thrombosis in the univariate analysis and confirmed in the multivariate analysis. The literature has already shown that increased surgical time, prolonged cold ischemia time and prolonged warm ischemia increase the risk of early HAT.

Although often cited, WIT is not extensively evaluated and to our knowledge, there are no publications showing it as a risk factor. The WIT average showed in this study was 36.5 min, which may be associated with intercurrences that increase this time intraoperatively, such as portal vein thrombosis not previously identified or the need of hemostasis of caval anastomosis bleeding, both conditions that could increase WIT.

In this study, surgical factors related to HAT were also assessed. The first transplants performed, more specifically from 1 to 105, were carried out by using continuous suture using 7-0 or 8-0 polypropylene wire. This type of anastomosis presented a prevalence of 6.5% of hepatic artery thrombosis. Zhao et al.19 in 72 consecutive cases of liver transplantation using a microvascular surgery technique, with arterial interrupted suture and using a 3.5x loupe, presented only 1.4% of HAT. From the transplant number 106 to 1050, we opted for a technical modification in the arterial anastomosis. The interrupted suture was performed by using 7-0 or 8-0 polypropylene surgical thread, using loupes between 2.5x and 4.0x, based on the preference of the main surgeon and first assistant.

Starzl et al.26 inferred in their publication, over 25 years ago, the importance of meticulous arterial reconstruction and the use of microsurgical techniques. Mori et al.27 introduced the concept of microsurgery for reconstruction of hepatic artery anastomosis; their publication emphasizes the use of the microvascular technique with the advent of microscopes and loupes and the use of interrupted suture showing superiority over the conventional technique.

Arterial anastomoses in this service are preferably performed after widening the artery extremity to increase...
its diameter. The preparation of the arterial anastomosis is painstaking, avoiding direct clamping of the arterial wall, delicately handling it. The anastomosis is maintained as rectified as possible in order to prevent kinking (Figure 3).

The importance of increasing the arteries diameter and the use of loups was demonstrated in the study by Li et al., with a sample of 187 recipients in interventricular transplants, increasing the arteries diameter, which were on average 2.5 mm, which doubled in size by obliquely sectioning them; also showed that the use of loupe with 4.5x magnification presents results similar to the use of the microscope.

In this sample, when comparing the types of anastomosis, it was observed an incidence of thrombosis of 2.5% in patients with interrupted suture. It was concluded that recipients who have anastomosis in continuous suture have 263% more thrombosis when compared to interrupted suture.

FIGURE 3 - Final aspect of the hepatic artery anastomosis with interrupted suture

Albeit other surgical variables were not addressed in the present study, local and technical factors in the anastomosis have great influence on the results. Tzeng, Hsieh, and Chen have published a minor study showing benefits of interrupted suture in cases of arterial wall dissection, increasing surgical time in only 20 min when compared to continuous suture. Zheng et al., in a publication with 198 patients, compared interrupted suture with continuous suture, showing an incidence of HAT at 1% and 6.3%, respectively. Rela et al. in a published technical modification similar to the one used in this service, showed an incidence of only 1.3%. In our study, even in cases of anatomical variation with arterial reconstruction and vascular grafts, anastomosis with the arterial stump of the aortohepatic graft was performed at separate points, not considering these factors.

We also analyzed the rate of re-transplantation for thrombosis and the mortality in cases of re-transplantation. Regarding the re-transplantation rate for thrombosis, all HAT, whether early or late, were treated at re-transplantation. Of the patients re-transplanted via HAT, 40% died, showing that in transplants recipients with thrombosis there was a higher rate, with a 559% increase in mortality. Liver transplantation is also associated with the emergence of sarpicenic obesity; however, similarly to the study by Anastácio et al., this relationship was not observed in our study.

As already reported by Stange et al. and Oh et al., regardless of the measures performed to prevent hepatic artery thrombosis with the use of anticoagulants or antiplatelet drugs, the literature shows a mortality of early HAT around 11-56%, and the rate of re-transplantation is 83%. It must be justified that our high rate of re-transplantation is due to the low accessibility and experience of the interventional radiology/vascular surgery team in endovascular procedures, which could benefit patients with non-surgical HAT. Non-surgical risk factors suggest better prevention or screening to try decreasing the risk of thrombosis in patients with the variables found.

Thus, the interrupted suture seems to be superior from the technical standpoint, as it reduces the risk of local complications, there is a greater accuracy at each suture and with the use of microsurgery techniques there is a greater care with the handling of the artery causing less injury and dissection of the arterial wall. However, the literature shows that other technical variables, such as number of anastomoses, anatomical variation and complex reconstructions, are risk factors for HAT, requiring technical and randomized studies, in order to compare the influence of the surgical technique on the HAT development.

CONCLUSION

Prolonged warm ischemia time, calculated MELD and recipient age were independent risk factors for HAT after liver transplantation in adults. Interrupted suture significantly reduced the likelihood of thrombosis. Transplanted patients with continuous suture had an increase in thrombosis when compared to interrupted suture. Re-transplantation due to hepatic artery thrombosis was associated with higher recipient mortality.

REFERENCES

1. Abou El-Ella K, Al Sebayel M, Ramirez C, et al. Outcome and risk factors of hepatic artery thrombosis after orthotopic liver transplantation in adults. Transplant Proc. 2001;33: 2712.
2. Anastácio LR, Ferreira LG, Ribeiro HS, et al. Sarcopenia, obesity and sarcopenicobesity in liver transplantation: abody composition prospective study. Arq Bras Cir Dig. 2019;32(2):e1434.
3. Beekier JM, Ploem S, De Jong KP. Early hepatic artery thrombosis after liver transplantation: a systematic review of the incidence, outcome and risk factors. Am J Transplant. 2009; 9: 746-57.
4. Bonney GK, Aldersley MA, Asthana S, et al. Donor Risk Index and MELD Interactions in Predicting Long-Term Graft Survival: A Single-Centre Experience. Transplantation. 2009; 87:1858-1863.
5. Boyvat F, Aytekin C, Harman A, et al. Endovascular stent placement in patients with hepatic artery stenoses or thromboses after liver transplant. Transplant Proc. 2008; 40: 22-26.
6. Calne RY. Williams R. Liver transplantation in man. I. Observations on technique and organization in five cases. Br Med J. 1968; 4:535-540.
7. Castro MCR, Bernardo WM, Wrochawski ER, et al. Doadores Limítrofes no Transplante de Fígado. Projeto Diretrizes, Associação Médica Brasileira e Conselho Federal de Medicina; 2008.
8. Drazan K, Shaked A, Olthoff KM, et al. Etiology and management of symptomatic adult hepatic artery thrombosis after orthotopic liver transplantation (OLT). Am Surg. 1995; 62: 237-40.
9. Dudek K, Kornasiewicz O, Remiszewski P, et al. Results of liver transplantation from old donors. Transplant Proc. 2014; 46:2762-5. 2014.
10. Freitas ACT, Rampim AT, Nunes CP, Coelho JC. Impact of MELD sodium on liver transplantation waitinglist. ABCD_Equilibrio amongst MELD. 2019;32(2):e1460.
11. Grat M, Kornsiewicz O, Grat K, et al. Short and long-term outcomes after primary liver transplantation in elderly patients. Pol Prz Chir. 2013; 85:581-588.
12. Gunsar F, Rolando N, Pastacalci S, et al. Latehepaticartery thrombosis after orthotopic liver transplantation. Livertransplantation. 2003;9(6):605-611.
13. Li PC, Jeng LB, Yang HR, et al. Hepatic Artery Reconstruction in Living Donor Liver Transplantation: Running Suture Under Surgical Loupes by Cardiovascular Surgeons in 180 Recipients. Transplantation Proceedings. 2012;44:448-450.
14. Lismam T, Porte RJ. Hepatic artery thrombosis after liver transplantation: more than just a surgical complication? Transpl Int.2009;22:162-164.
15. Marudanayagam R, Shanmugam V, Sandhu B, et al. Liver retransplantation in adults: a single-centre, 25-year experience. HPB. 2010;12:217-224.
16. Wiklund, R.A. Preoperative preparation of patients with advanced liver disease. Crit Care Med. 32:106-15. 2004.
17. Mori K, Nagata I, Yamagata S, et al. The introduction of microvascular surgery to hepatic artery reconstruction in living-donor liver transplantation—its surgical advantages compared with conventional procedures. Transplantation. 1992; 54:263-268.
18. Oh CK, Pelletier SJ, Sawyer RG, et al. Uni- and multi-variate analysis of risk factors for early and late hepatic artery thrombosis after liver transplant. Transplantation. 2001;71(6):767-772.
19. Piscaglia F, Vivarelli M, La Barba G, et al. Analysis of risk factors for early hepatic artery thrombosis after liver transplantation. Possible contribution of reperfusion in the early morning. Dig Liver Dis. 2007;39:52-59.
20. Rela M, Heaton ND, Muiesan P, et al. A technique for hepatic artery anastomosis during orthotopic liver transplantation. Tranplint. 1995;8:244-245.
21. Reyes-Corona J, Gonzales-Huezo MS, Zee-Medina MV, et al. Paclitaxel coated-stent for early-onset thrombosis after liver transplantation. Ann Hepatol. 2007;6:272-275.
22. Sevmos S, Karakayali H, Tutar N, et al. Management of early hepatic arterial thrombosis after pediatric living-donor liver transplantation. Transplant Proc. 2011;43: 605-608.
23. Shaked A, McDiarmid SV, Harrison RE, et al. Hepatic artery thrombosis resulting in gas gangrene of the transplanted liver. Surgery. 1992;111:462-5.
24. Singhal A, Stokes K, Sebastian K, et al. Endovascular treatment of hepatic artery thrombosis following liver transplantation. Transpl Int. 2010;23:245-256.
25. Stange BJ, Glanemann M, Nussler NC, et al. Hepatic Artery Thrombosis After Adult Liver Transplantation. Liver Transplantation. 2003;9(6):612-620.
26. Starzl TE, Porter KA, Putnam CW, et al. Orthotopic liver transplantation in ninety-three patients. Surg Gynecol Obstet. 1976;142:487-505.
27. Tzeng YS, Hsieh CB, Chen SG. Continuous versus interrupted suture for hepatic artery reconstruction using a loupe in living-donor liver transplantation. Ann Transplant. 2011;16:12-5.
28. Varotti G, Grazi GL, Vetrone G, et al. Causes of early acute graft failure after liver transplantation; analysis of a 17-year single-centre experience. Clin Transpl. 2005;19:492-500.
29. Zhao JC, Lu SC, Yan LN, et al. Incidence and treatment of hepatic artery complications after orthotopic liver transplantation. World J Gastroenterol. 2003;9:2853-2855.
30. Zheng SS, Yu ZY, Liang TB, et al. Prevention and treatment of hepatic artery thrombosis after liver transplantation. Hepatobiliary Pancreat Dis Int. 2004;3:21-25.