A customized metal guide for controllable modification of anterior teeth contour prior to minimally invasive preparation

Carlos Alberto Jurado a, Saad AlResayes b,*, Mohammed Edrees Sayed c, Jose Villalobos-Tinoco d, Nayely Llanes-Urias e, Akimasa Tsujimoto f

a Texas Tech University Health Sciences Center El Paso Woody L Hunt School of Dental Medicine, El Paso, Texas, USA
b Department of Prosthetic Dental Sciences, King Saud University College of Dentistry, Riyadh, Saudi Arabia
c Department of Prosthetic Dental Sciences, Jazan University College of Dentistry, Jazan, Saudi Arabia
d Department of Oral Rehabilitation, Autonomous University of Queretaro School of Dentistry, Queretaro, Mexico
e Culiacan, Mexico
f Department of Operative Dentistry, University of Iowa College of Dentistry, Iowa City, Iowa, USA

Keywords Veneers; Prosthodontics; Esthetic dentistry; Tooth preparation

Objective: Optimal tooth reduction is a key requirement for aesthetics, function, and the longevity of fixed restorations. Research has demonstrated that controlled and conservative tooth preparation is crucial for the long-term success of adhesive restorations. Different techniques of fabricating reduction guides have been previously reported in literature. The present technical note describes the fabrication technique and clinical application of a customized metal preparation reduction guide.

Material and method: Patient presented with tilted maxillary left central incisor. The flared-out part of the tooth was modified prior to veneer restoration preparation. Resin pattern reduction guide was fabricated on the diagnostic cast with a window on the tilted mesial portion of the tooth. After intraoral evaluation, resin pattern guide was casted. Metal reduction guide was place intraorally and reduction was provided on the exposed surface of the tooth. After the removal of the tilted portion, a harmonious arch form allowed the clinician to provide adequate evaluation and preparation for veneer restorations.

* Corresponding author at: Department of Prosthetic Dental Sciences, College of Dentistry, King Saud University, P.O. Box 60169, Riyadh 11545, Saudi Arabia.
E-mail addresses: carlosjurado@atsu.edu (C.A. Jurado), salresayes@ksu.edu.sa (S. AlResayes), drsayed203@gmail.com (M.E. Sayed), jostv_7@hotmail.com (J. Villalobos-Tinoco), njllu@hotmail.com (N. Llanes-Urias), akimasa-tsujimoto@uiowa.edu (A. Tsujimoto).
Peer review under responsibility of King Saud University.

https://doi.org/10.1016/j.sdentj.2020.09.004

1013-9052 © 2020 The Authors. Production and hosting by Elsevier B.V. on behalf of King Saud University.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Ideal tooth preparation ensures a uniform and sufficient reduction of tooth structure, without affecting the periodontal health, aesthetics, and structural durability of the restoration (Chen and Raigrodski, 2008). It is widely accepted that extensive tooth preparation can cause hypersensitivity and pulpal damage (Cheung et al., 2005; Foster, 1990; Saito et al., 2013; Schwartz et al., 1970; Wisithphrom et al., 2006). The ability to retreat restored teeth is an important consideration of the restorative dentist when selecting a conservative or aggressive treatment option; this factor is especially important for young adult patients (Holm et al., 2003). Ideally, the most conservative strategy should always be adopted (Libby et al., 1997). Furthermore, introduction of new ceramic materials and advanced adhesive techniques have increased the popularity of all ceramic restorations and facilitated the development of innovative and conservative preparation designs for single and multiple restorations (Doyle et al., 1990; Faunce and Myer, 1976; Fradeani and Aquilano, 1997; Lehner et al., 1993; Pospiech et al., 1996; Scherrer and de Rijk, 1993; Sorensen et al., 1998). The high reliability of the enamel bond, achievable with the adhesive systems, has significantly impacted the design of tooth preparation, which targets maximal preservation of tooth structure (Buonocore, 1963). In general, as bonding to enamel yields higher bond strengths than that obtained for dentin, conservation of enamel has become an important consideration in the design of tooth preparation (Crispin, 1993a).

Veneers have emerged as a common and conservative fixed restorative technique; veneers require less than half the amount of tooth reduction in comparison to complete coverage crowns (Edelhoff and Sorensen, 2002). Nevertheless, adequate facial reduction is necessary to guarantee optimal adhesion. Excessive facial reduction can lead to compromised bond strength because of the penetration into the dentinal structure (Ozturk et al., 2013). Dr. Charles Pincus was the first to describe porcelain veneers in the late 1920s. These veneers were retained by a denture adhesive during cinematic filming (Pincus, 1938). However, adhesion proved to be unreliable, and the veneers had to be removed after filming (Pincus, 1938). Aristidis and Dimitra (2002) reported a 98.4% success rate of 184 veneers placed over a period of 5 years, while Friedman (1998) reported a 91% success rate of 191 veneers after 10 years. Veneers were initially indicated for the restoration of fractured, malformed, and discolored teeth (Crispin, 1993b; Wei and Tang, 1989). However, veneers today are included in more complex treatment scenarios, such as full mouth rehabilitation and restoration of endodontically treated teeth and worn dentition (Christensen, 1985; Ferrari et al., 1992; Tjan et al., 1989).

Tooth reduction guides are endorsed by the dental community as valuable tools that ensure sufficient space for the restorative material after tooth preparation, which protect against undesirable outcomes (Livaditis, 2002; Magne and Douglas, 1999). Use of a diagnostic wax-up is fundamental in the preparation of a tooth reduction guide and attainment of the final, desired prosthetic contours (Fareed and Solaihim, 1989). Conventional reduction guides are fabricated with either polyvinylsloxiane (PVS) putty impression material, acrylic resin, or a vacuum-formed thermoplastic sheet (Bluche et al., 1997; Gardner et al., 1990; Moskowitz et al., 1984). The reduction guide is seated intraorally, and clearance for the future restoration is evaluated visually and quantified. Despite extensive knowledge around these conventional tooth guides, very little is known about customized cast metal preparation reduction guides.

In the present report, a patient presented with slightly tilted and rotated anterior teeth and requested veneers. Limited orthodontic treatment was offered to the patient; however, the patient declined this option. Diagnostic casts were evaluated to quantify the amount of tooth structure that needed to be removed to establish harmonic maxillary arch contours. The present technical note describes the fabrication technique and clinical application of a customized metal reduction guide for minimally invasive veneer preparation.

2. Materials and methods

A 30-year-old female patient presented to the Autonomous University of Queretaro school of dentistry graduate prosthodontics clinic, with the chief complaint of disliking her front teeth. On clinical examination, the following findings were noted: the patient was diagnosed with incisal wear on the maxillary six anterior teeth, non-ideal gingival contours, anterior labial flaring of maxillary left central incisor, multiple diastemata between maxillary central and lateral incisors, and stained composite restorations (Fig. 1). A multidisciplinary approach that included orthodontic treatment and periodontal surgery was offered to the patient. However, she refused any surgical intervention or prolonged treatment plan. Porcelain veneers were the treatment option that the patient consented to. To address the aesthetic concerns of the patient, the flared-out (labial) aspect of maxillary left central incisor had to be reduced on the diagnostic dental cast prior to wax-up, mock-up, minimal intraoral guided teeth preparation, and cementation of the veneers. The following steps were followed:

Results: The device demonstrated good practical value, allowing for selective and controlled reduction of tooth structure, and definitive protection of adjacent tooth surfaces from iatrogenic damage. The clinical outcome successfully addressed the patient’s restorative and aesthetic needs, and the veneer was stable 2 years postoperatively.

Conclusion: Use of a metal guide assists clinicians to provide a more predictable reduction of a desired tooth surface, while decreasing the risk of compromising the other/adjacent tooth surfaces.

© 2020 The Authors. Production and hosting by Elsevier B.V. on behalf of King Saud University. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0).
1. Diagnostic casts of type 4 dental stone (Fujirock, GC America) were fabricated.

2. A Self-cure acrylic resin reduction guide (Pattern Resin LS, GC America) was manufactured on the diagnostic cast with a window over the flared-out aspect of maxillary left central incisor; this part of the stone cast was then removed with a cylindrical diamond bur (ZR6881, Komet USA), followed by diagnostic wax-up/build-up (Wax GEO Classic Renfert) (Fig. 2).

3. The resin pattern reduction guide was smoothed using an acrylic bur (K79ACR, Komet USA) and used intraorally to evaluate the fit (Fig. 3).

4. This resin pattern reduction guide was used to cast a Chromium Cobalt metal alloy guide. At the tooth preparation appointment, the metal reduction guide was positioned intraorally, and the flared-out aspect was removed using a cylindrical diamond bur (ZR6881, Komet USA) (Fig. 4).

5. An intraoral diagnostic mock-up of the final, intended result was created using temporary bis-acryl resin material (Structur Premium, VOCO) (Fig. 5A). To ensure an accurate and conservative reduction, the anterior teeth were prepared directly through the diagnostic mark-up using reductions grooves (Fig. 5B) and a putty reduction guide (Platinum 85, Zhermack) (Fig. 5C). The prepared surfaces were finalized using coarse, medium, and fine polishing discs (Sof-Lex XT Disc, 3 M).

6. A double-cord impression technique was used. A size #00 retraction cord was packed deep in the sulcus followed by #0 retraction cord (Retraction Cord Plain Knitted, Ultrapak), and final impressions were taken (Fig. 5D).

7. The final master cast was fabricated using a type IV dental stone (Fujirock, GC America). A refractory cast was then produced on which the feldspathic porcelain (Nori-take Super porcelain EX-3, Kuraray Dental) veneers were handcrafted.

8. The line angles were carefully defined during the finishing of the ceramic veneers (Fig. 6A).

Fig. 1 (A) Initial smile. (B) Initial clinical presentation.

Fig. 2 (A) Diagnostic cast. (B) Modified cast and wax-up.

Fig. 3 Intraoral evaluation of the resin reduction guide prior to metal casting.

Fig. 4 (A) Metal reduction cast; lateral view depicting the window. (B) Metal reduction cast; frontal view.
9. A rubber dam (Dental Dam, Nic Tone) was placed from the second premolar to the second premolar and held with clamps (Clamp #00, Hu-Friedy) to achieve complete isolation.

10. The ceramic restorations were cemented using a composite bonding agent, Variolink Esthetic LC (Ivoclar Vivadent), and in accordance with the manufacturer’s instructions.

11. The occlusion was checked and adjusted, and the restorations were polished using polishing points (Dialite Feather Lite, Brasseler) and a polishing paste (Dialite Intra-Oral Polishing Paste, Brasseler) (Fig. 6B and C). At the 2-year follow-up visit, the patient was still satisfied with the clinical outcome (Fig. 6D).

3. Discussion

Improvements in adhesive dentistry have enabled more conservative approaches in aesthetic dentistry. Currently, patients seek aesthetic care to improve health, appearance, dentofacial harmony, and certain physical conditions (Brunton et al., 2000; Manos, 1993; Theobald et al., 2006). Small abnormalities or discrepancies in the anterior teeth may result in a compromised appearance and drive some individuals to seek corrective aesthetic procedures (Brunton et al., 2000). As dental clinicians cannot guarantee the longevity of any restoration, conservative tooth preparation that preserves most of the tooth structure will allow for placement of a second
The customized metal guide protects the adjacent tooth surfaces from iatrogenic damage and enables the clinician to precisely remove the selected surfaces. Once the specific areas have been reduced, the clinician can proceed with traditional mock-up and tooth preparation.

Funding

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

CRediT authorship contribution statement

Carlos Jurado: Conceptualization, Methodology, Writing - original draft. Saad AlResayes: Methodology, Writing - review & editing. Mohammed Sayed: Methodology, Writing - review & editing. Jose Villalobos-Tinoco: Resources, Writing - review & editing, Supervision. Nayely Llanes-Urias: Conceptualization, Methodology, Supervision. Akimasa Tsujimoto: Writing - original draft, Resources.

Declaration of Competing Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Acknowledgments

The authors would like to thank Heriberto Ureta Valenzuela, a certified dental technician (CDT) for ceramic restorations.

References

Aristidis, G., Dimitra, B., 2002. Five-year clinical performance of porcelain laminate veneers. Quintessence Int. 33, 185–189.

Bluche, I., Bluche, P., Morgano, S., 1997. Vacuum-formed matrix as a guide for the fabrication of multiple direct patterns for cast post and cores. J. Prosthet. Dent. 77, 326–327.

Brunton, P.A., Aminian, A., Wilson, N.H., 2000. Tooth preparation techniques for porcelain laminate veneers. Br. Dent. J. 189, 260–262.

Buonocore, M.G., 1963. Principles of adhesive retention and adhesive materials. J. Am. Dent. Assoc. 67, 382–391.

Chen, Y., Raigrodski, A., 2008. A conservative approach for treating young adult patients with porcelain laminate veneers. J. Esthet. Restor. Dent. 20, 223–238.

Cheung, G.S., Lai, S.C., Ng, R.P., 2005. Fate of vital pulps beneath a metal-ceramic crown or a bridge retainer. Int. Endod. J. 38, 521–530.

Christensen, G., 1985. Veneering of teeth. State of the art. Dent. Clin. North Am. 29, 372–391.

Crispin, B.J., 1993a. Enamel thickness. J. Esthet. Dent. 5, 37.

Crispin, B.J., 1993b. Expanding the application of facial ceramic veneers. J. Calif. Dent. Assoc. 21, 43–46.

Doyle, M.G., Goodacre, C.J., Munoz, C.A., Andres, C.J., 1990. The effect of tooth preparation design on the breaking strength of Dicor crowns 3. Int. J. Prosthodont. 3, 327–340.

Edelhoff, D., Sorensen, J., 2002. Tooth structure removal associated with various preparation designs for anterior teeth. J. Prosthet. Dent. 87, 503–509.

Fareed, K., Solaithim, A., 1989. Making a fixed restoration contour guide. J. of Prosthodont. Dent. 61, 112–114.
Faunce, F.R., Myer, D.R., 1976. Laminate veneer restoration of permanent incisors. J. Am. Dent. Assoc. 93, 790–792.
Ferrari, M., Patroni, S., Balleri, P., 1992. Measurement of enamel thickness in relation to reduction for etched laminate veneers. Int. J. Periodontics Restor. Dent. 12, 407–413.
Foster, L.V., 1990. Failed conventional bridge work from general dental practice: clinical aspects and treatment needs of 142 cases. Br. Dent. J. 168, 199–201.
Fradeani, M., Aquilano, A., 1997. Clinical experience with Empress crowns. Int. J. Prosthodont. 10, 241–247.
Friedman, M.A., 1998. A 15-year review of porcelain failure: a clinician’s observations. Compend. Contin. Educ. Dent. 19, 625–628.
Gardner, L., Rahn, A., Parr, G., 1990. Using a tooth-reduction guide for modifying natural teeth. J. Prosthet. Dent. 63, 637–639.
Holm, C., Tidehag, P., Tillberg, A., Molin, M., 2003. Longevity and quality of FDPs: a retrospective study of restorations, 30, 20 and 10 years after insertion. Int. J. Prosthodont. 16, 283–289.
Jurado, C.A., 2019. Optimal tooth reduction for veneer restorations: a case report. Int. J. Prosthodont. Restor. 9, 99–103.
Jurado, C.A., Villalobos-Tinoco, J., Tsujimoto, A., Castro, P., Torrealba, Y., 2020. The art of minimal tooth reduction for veneer restorations. Eur. J. Gen. Dent. 9, 45–52.
Lehner, C., Studer, S., Brodebeck, U., Scharer, P., 1993. Short-term results of IPS-Empress full porcelain crowns. J. Prosthodont. 6, 462–467.
Libby, G., Arcuri, M.R., LaVelle, W.E., Hebl, L., 1997. Longevity of fixed partial dentures. J. Prosthet. Dent. 78, 127–131.
Livaditis, G., 2002. Indirectly formed matrix for multiple composite core restorations: two clinical treatments illustrating an expanded technique. J. Prosthet. Dent. 88, 245–251.
Magne, P., Douglas, W., 1999. Additive contour of porcelain veneers: a key element in enamel preservation, adhesion and esthetics for aging dentition. J. Adhes. Dent. 1, 81–92.
Manos, D., 1993. Cosmetic dentistry: patients’ perspectives. Gen. Dent. 41, 468–470.
Moskowitz, M., Loft, G., Reynolds, J., 1984. Using irreversible hydrocolloid to evaluate preparations and fabricate temporary immediate provisional restorations. J. Prosthet. Dent. 51, 330–333.
Ozturk, E., Bolay, S., Hickel, R., Hie, N., 2013. Shear bond strength of porcelain laminate veneers to enamel, dentine and enamel-dentine complex bonded with different adhesive luting systems. J. Dent. 41, 97–105.
Pincus, C.R., 1938. Building mouth personality. J. South California Dent. Assoc. 14, 125–129.
Pospiech, P., Rammelsberg, P., Unsold, F., 1996. A new design for all-ceramic resin-bonded fixed partial dentures. Quintessence Int. 27, 753–758.
Saito, K., Nakatomi, M., Ohshima, H., 2013. Dynamics of bromodeoxyuridine label-retaining dental pulp cells during healing after cavity preparation in mice. J. Endod. 39, 1250–1255.
Savi, A., Crescini, A., Tinti, C., Manfredi, M., 2015. Ultra-thin veneers without tooth preparation in extensive oligodontia. Int. J. Periodontics Restor. Dent. 35, e97–e103.
Scherrera, S.S., de Rijk, W.G., 1993. The fracture resistance of all-ceramic crowns on supporting structures with different elastic moduli. Int. J. Prosthet. Dent. 6, 462–467.
Schwartz, N.L., Whitsett, L.D., Berry, T.G., Stewart, J.L., 1970. Unserviceable crowns and fixed partial dentures: life-span and causes for loss of serviceability. J. Am. Dent. Assoc. 81, 1395–1401.
Sorensen, J.A., Choi, C., Fanuscu, M.I., Mito, W.T., 1998. IPS Empress crown system: three-year clinical trial results. J. Calif Dent. Assoc. 26, 130–136.
Stanley, M., Paz, A.G., Miguel, I., Coachman, C., 2018. Fully digital workflow, integrating dental scan, smile design and CAD-CAM: case report. BMC Oral Health 18, 134.
Theobald, A.H., Wong, B.K., Quick, A.N., Thomson, W.M., 2006. The impact of the popular media on cosmetic dentistry. N. Z. Dent. J. 102, 58–63.
Tjan, A., Dunn, J., Sanderson, I., 1989. Microleakage patterns of porcelain and castable ceramic laminate veneers. J. Prosthet. Dent. 61, 276–282.
Wei, S.H., Tang, E., 1989. Laminate veneers for the aesthetic restoration of anterior teeth. Ann. R. Australas. Coll. Dent. Surg. 10, 148–159.
Wisithphrom, K., Murray, P.E., About, I., Windsor, L.J., 2006. Interactions between cavity preparation and restoration events and their effects on pulp vitality. Int. J. Periodontics Restor. Dent. 26, 596–605.

A customized metal guide for controllable modification of anterior teeth contour prior to minimally invasive preparation 523