A Cross Sectional Study on Prevalence of Anaemia and its Determinant Factors among Pregnant Mothers in a Rural Community

A. Abiselvi¹*

¹Department of Community Medicine Sree Balaji Medical College & Hospital, Chennai, 600044, India.

Author’s contribution

The sole author designed, analyzed, interpreted and prepared the manuscript.

Article Information

DOI: 10.9734/JPRI/2021/v33i41B32345

Editor(s):
(1) Dr. Syed A. A. Rizvi, Nova Southeastern University, USA.

Reviewers:
(1) Dhanya VJ, SOA University, India.
(2) Harmileni, Politeknik Teknologi Kimia Industri Medan, Indonesia.

Complete Peer review History: https://www.sdiarticle4.com/review-history/72106

ABSTRACT

Anemia is the greatest common nutritional deficiency disorders affecting the pregnant women in the developing countries and determine the prevalence of anaemia among pregnant women in a rural community and determine the socio demographic factors and obstetric factors associated with anaemia. The objective of the study was to evaluation the prevalence of anemia between pregnant women and to regulate its association with maternal and fetal consequences. The care given by the health care provider to a pregnant woman during her pregnancy period (a period of 280 days) is known as antenatal care. This research was carried out in rural field practicing area, Sripuram Kanchepuram district of Tamilnadu. The pregnant mothers residing in this area were taken as the study subject. This study was conducted for a period of four month from June 2014 to September 2014. Anaemia is considered a severe public health problem by World Health Organization when anaemia prevalence is equal to or greater than 40% in the population. Iron deficiency is highest population subgroups that are at peak growth rates that is infant, children and pregnant mothers. Anaemia in pregnancy, the most common micro nutritional deficiency (disorder). It is estimated that more than 50% of pregnant women are anaemic and majority (90%) belongs to iron deficiency. The great incidence of anemia in pregnant women speciously increases the maternal and fetal risks. To increase maternal and fetal effect, it is suggested that the primary health care has to be strengthened, prevention, initial diagnosis, and treatment of anemia in pregnancy to be given priority.
Keywords: Pregnancy; anaemia; infants; children; disorder.

1. INTRODUCTION

Anemia is the second most common cause of maternal death in India and contributes to about 80% of the maternal deaths caused by anemia in South East Asia. Anemia is also an established risk factor for intrauterine growth retardation, leading to poor neonatal health and perinatal death. The inability to meet the required level for these substances either due to dietary deficiencies, inadequate absorption or infection in conjunction with blood loss during pregnancy gives rise to anemia. Numerous factors influence the causes of anemia among pregnant women. In place of occurrence, geo-helminth infections throughout pregnancy may be associated with maternal anaemia. Hookworm is known to be causes of anaemia among pregnant women and hookworm infection essentially aggravates anaemia in pregnant women [1-3]. Infections by geo-helminthes lead to malnutrition, iron deficiency anaemia, and increased susceptibility to other infections in infected pregnant women. The prevalence of anaemia varies widely in different settings and accurate data are often lacking. In the millennium development goal five the target is to reduce the maternal mortality rate to three quarters by the year 2015. Those living in Asia and Africa are at greater risk. In developing countries every second pregnant women are estimated anaemic [4].

Anemia is multifactorial in etiology; the disease is assumed to be generally caused by iron absence in developing countries. In sub-Saharan Africa where iron deficiency is common, the prevalence of anemia has often been used as a substitution for iron deficiency anemia (IDA) [10-14]. Further micronutrient insufficiency (vitamins A and B12, riboflavin, and folic acid) has also been a cause of anemia through pregnancy deaths due to anaemia in South Asia. In the early nineties the attempt to reduce the prevalence of anaemia in India was much lower than the neighbouring South and South East Asian countries. It is estimated that about 20%-40% of maternal deaths in India are due to anaemia, India contributes to about 50% of global maternal deaths due to anaemia [15]. According to NFHS 3 (2005-2006) about 56 percent of pregnant women in south India were anaemic. Karnataka being 62.6 percent followed by Andhra Pradesh (58.5 percent) and Tamil Nadu (57.8 percent) prevalence of anemia was least in Kerala (35.2 percent) [16].

Anaemia is a major public health problem, in spite of many interventional programs. About one third of the global population is anaemic (WHO 2010). Early detection and effective management of anaemia in pregnancy can lead to reduction in under nutrition in childhood, adolescence and improvement in adult health that is the future progeny will be a healthy citizen, thus improving the family and countries socio economic status. In spite of the extensive knowledge on the epidemiology of anemia, its control and prevention still it continues to be a major public health problem. Therefore a unique approach has to be redefined to bring down the prevalence of anemia among pregnant mothers [16,17].

2. MATERIALS AND METHODS

Study design: This is a population based cross sectional study in rural field practicing area, Sripuram Kancheepuram district of Tamilnadu. The pregnant mothers residing in this area were taken as the study subject. This study was conducted for a period of four month from June 2014 to September 2014.

2.1 Sampling Method

Pregnant women who were registered during the period of 1st September 2013 till 30th June 2014 were listed out from the antenatal register available at RHTC Sripuram attached to Sree Balaji Medical College and Hospital (SBMCH). By using simple random technique, sample (270) was identified.

2.2 Pilot Study

Pre-testing was carried out on thirty subjects for standardizing the questionnaire. Based on the observations made during the pilot testing, necessary changes were made in the questionnaire. The results of the pilot test were not included in the final analysis.

2.3 Tool for Data Collection

A structured questionnaire was prepared based on the questionnaire used in the studies done in...
the past. The questions were related to socio
demographic and obstetric factors associated
with anaemia and data related to haemoglobin
level were recorded from the mother child
protection card.

2.3.1 Inclusion criteria

All pregnant mothers residing in the rural
field practice area (Sripuram) of the medical
college at the time of survey were included in
the study.

2.3.2 Exclusion criteria

Those who were not willing to participate and
those who were not having their mother child
protection card at the time of survey were
excluded.

2.4 Data Collection Methods

The data were collected from 270 pregnant
mothers. By making house to house visits all the
selected subject were interviewed. The purpose
of the study was clearly explained to them.
Inform consent was obtained in local (Tamil)
language before administering the questionnaire.
A semi structured questionnaire was
administered and the questions related to socio-
demographic and obstetric factors were collected
from the mother and the haemoglobin values
were recorded from the mother child protection
card.

2.5 Statistical Analysis

The data was collected and entered in an excel
sheet. Then data was analysed using SPSS
version 16. Prevalence of anaemia was
expressed in frequencies. Various factors
associated with anaemic status of the
pregnant mothers were analysed using chi
square for significance at 95% Confidence
interval.

3. RESULTS AND DISCUSSION

This study is a community based cross sectional
study carried out in a rural field practicing area of
Sree Balaji Medical College and Hospital of
Kancheipuram district among 270 antenatal
women and the study period is from June
2014 to August 2014. Table 1 illustrates the
demographic information of the respondent. The
study participants were between the age group of
15 to 35 years. Majority of the respondent
belonged to the age group of 15 to 24 years
(48.5%) 131 and about 89.9% of them belonged
to Hindu religion.

Majority of the respondent (40.4%) have
completed their middle school. About 98.9% of
the study participants are home worker. About
56.7% of them were from nuclear family and
78.9% lived in pucca house. Majority of the study
participants were belong to the social class upper
middle (54.4%). Majority 70.7% of them had their
own toilet facility and 19.6% of them had open
sullage drainage system.

About 24.8% of them attained menarche less
than 13 years of age and 35.2% of them got
married less than their legal age for marriage.
Multi gravid were about 33%. The total abortions
were only 3.7%. Out of the total abortion
2.6% was spontaneously aborted and 2.2% was
induced legal and there is no illegal abortion.
Majority 90% of them were passive smoker.
80% of them have dewormed only 3% received
parenteral iron. 93.3% (252) did not have any
complication with only 2 of them having
PIH, fever, 6 were malpresentation and 7 having
gestational diabetic (Table 2).

Prevalence of anaemia in the participant
Prevalence of anaemia in the current study is 41.5%
as depicted in Table 3.

3.1 Association of Socio Demographic
Factors with Anaemia

The prevalence of anaemia in the study
population is likely to be influenced by various
socio demographic factors described. In this
section the association of anaemia with various
socio demographic factors has been brought
out. In this study, pregnant women who have
been exposed to passive smoking are 0.4 times
at risk of getting anaemia (p< 0.004 and X 2 a.
8.2). Study participants those who were
vegetarians are 62times more prone for anaemia
than non-vegetarians (p<0.009 and X 2-6.8). (Table 5)
Table 1. Demographic characteristics' of the respondent

S.no	Characteristic's	Frequency(N=270)	Percentage ± 1-3
1	Age		
	15-24	131	48.5
	25-29	108	40.0
	>=30	31	11.5
2	Religion		
	Hindu	242	89.9
	Muslim	8	3.0
	Christian	20	7.4
3	Education		
	Graduate/pg	42	15.6
	Intermediate/post high school diploma	12	4.4
	HSC	85	31.5
	Middle school	109	40.4
	Primary	21	7.8
	Illiterate	1	0.4
4	Occupation,		
	Professional	1	0.4
	Semiprofessional	1	0.4
	Unskilled worker	1	0.4
	Unemployed	267	98.9
5	Family		
	Nuclear	153	56.7
	Joint	116	43.0
	Three generation	1	0.4
6	Personal history		
	Passive smoking and beetel-nut chewer	134	49.6
7	Diet history		
	Vegetarian	11	4.1
	Mixed diet	243	90.0
	Eggeterian	16	5.9

Table 2. Obstetric characteristics' of the respondent

S.no	Characteristics	Frequency (N=270)	Percentage ± 1-3
1	Menarche age		
	<13 yrs	67	24.8
	>=13 yrs	203	75.2
2	Period cycle		
	Regular	263	97.4
	Irregular	7	2.6
3	Flow pattern		
	<3 days	4	1.5
	3-5 days	248	91.9
	>5 days	18	6.7
4	Number of days		
	<21 days	2	0.7
	21-35 days	265	98.1
	>=36 days	3	1.1
S.no	Characteristics	Frequency (N=270)	Percentage
------	--	------------------	------------
5	Marriage age		
	<21 yrs	95	35.2
	>=21 yrs	175	64.8
6	Gravidity		
	Primi	181	67.0
	Multi	89	33.0
7	Number of live children (n=89)		
	No children	4	4.5
	One child	84	94.4
	Two child	1	1.1
8	Number of abortion		
	No abortion	257	95.2
	1 abortion	10	3.7
	2 abortion	3	1.1
9	Abortion type		
	Spontaneous	7	2.6
	Legally induced	6	2.2
	Illegally induced	0	0
	not applicable	257	95.2
10	Personal history		
	Passive smoking and betelnut chewer	134	49.6
11	Diet history		
	Vegetarian	11	4.1
	Mixed diet	243	90.0
	Eggetarian	16	5.9
12	Early registered		
	Yes	270	100.0
	No	0	0
13	Number IronFolicAcid (IFA) tablet received		
	100 tablet	218	80.7
	200 tablet	52	19.3
14	Regular intake of IFA tablet		
	Yes	218	80.7
	No	52	19.3
15	Deworming done		
	Yes	216	80.0
	No	54	20.0
16	Parenteral iron received		
	Yes	35	13.0
	No	235	87
17	Any pregnancy complication		
	No complication	252	93.3
	Pregnancy Induced Hypertension	2	0.7
	Fever	2	0.7
	Gestational diabetic	7	2.6
	Mal presentation	6	2.2
	Multiple pregnancy	1	0.4
Table 3. Illustrates the prevalence of anaemia among the study participant

S no.	Disease	Frequency	Percent [± 1-3]
1	Anaemia	112	41.5

Table 4. Anaemia in relationship to gravidity in the study participants

Gravidity	Number	Anaemia	Frequency [± 1-3]
Primigravida	183	76	41.5%
Multigravida	87	36	41.4%

Table 5. Association of obstetric factors with anaemia

S. NO.	Factors	N	Anemia	XL	OR	95%CI	P Value	
1	Parity							
	Multigravida	87	36	41.4	0.0	0.994	0.5-1.6	0.981
	Primigravida	183	76	41.5	53.9	0.7	0.03-0.1	0.001
2	IFA current							
	Irregular	218	67	30.7	12.4	0.3	0.14-0.6	0.001
	Regular	52	45	86.5				
3	DEWORMING							
	Not done	54	11	20.4				
	Done	2.IG	101	46.8				

The collected data were analysed using SPSS software version 16. A total number of 270 pregnant women residing in the Sripuram area have been interviewed with a predesigned, pretested proforma. A detailed demographic and obstetric profile of the women along with the haemoglobin level in their each visit was taken from their mother child protection card. Karin Gross et al., in his study used similar technique and obtained data from mother child protection card. As defined by this study the age distribution of the study participant were between 15 to 35 years, majority belong between 15 to 24 years (48.5%). In this study proved that mothers who have short monthly family income were three times more likely to be anemic as associated to those with high monthly family income. This is in agreement with some studies and contradicted to other reports. According to the 2007 Ethiopian central statistical agency household income ingestion and expenditure survey, more than 57% of the total expenditure is spent on food [18]. Similar studies done by Meseret Alem et al. , 21 Ethiopia 2013, 49.5% of the participant were in the age group 18-25. In another study done by L.H.Madhavi, Karnataka, India, 2011 reported that Maximum percentage (37.61 %) of women was in the age group of 20-24 years. Furthermore, in this study, 80% of study participants were from south east area suggesting that they are food net buyers. As income is low, the expenditure for food becomes low. Also, due to food price inflation, the obtaining power of income is low. So, low income groups did not get acceptable nutrition and thereby low family income groups were at risk of anemia. In this study, supplementation of iron sulphate, folic acid, and multivitamin throughout the present-day pregnancy period organized not expressively diminish the incidence of anemia as compared to those who did not take these supplementations. Finally, outcome was in contradiction with other studies [19-23].

4. CONCLUSION

The prevalence of anaemia among pregnant mothers carried out in rural field practising area of Sree Balaji medical college was 41.5%. The
prevalence of anaemia among primigravida (41.5%) and multi gravid (41.4%) was almost equal. About 50% of the participants were anaemic in the first trimester, 38% in the second trimester and 42.9% of them were anaemic in the third trimester. In this study passive smoking (0.004), diet (0.009), consumption of iron folic acid (p 0.0001) and deworming (p 0.0001) were found to be significantly associated with anaemia. Factors like age (p 0.190), education (p 0.132), type of family (p 0.539), toilet facility (p 0.221) and parity (0.981) were not significantly associated with anaemia.

CONSENT

Informed consent in the local language (Tamil) was obtained from the study participants before administering the questionnaire.

ETHICAL APPROVAL

The study w) 1: approved by institutional ethics committee of Sree Balaji Medical College dated 28/06/2014. (Reference No. 002/SBMC/IHEC/2014-88)

COMPETING INTERESTS

Author has declared that no competing interests exist.

REFERENCES

1. Park K. Park’s Text book of Preventive and Social Medicine. M/S Banarsidas Bhanot Publishers, 22nd edition, 2013;480-83.
2. WHO/CDC, Worldwide Prevalence of Anemia 1993–2005: WHO Global Database on Anemia, WHO Press, Geneva, Switzerland; 2008.
3. Balarajan Y, Ramakrishnan U, Özaltın E, Shankar AH, Subramanian SV. Anaemia in low-income and middle-income countries. The Lancet. 2011;378(9809):2123–2135.
4. Salhan S, Tripathi V, Singh R, Gaikwad HS. Evaluation of Hematological Parameters in partial exchange and packed cell transfusion in treatment of severe anemia in pregnancy. Anemia. 2012;7.
5. Esmat B, Mohammad R, Behnam S, et al. Prevalence of iron deficiency anaemia among iranian pregnant women; A systematic review and meta-analysis. Journal of Reproduction and Infertility. 2010;11(1):17–24.
6. Balg-Ansari N, Badruddin SH, Karmaliani R, et al. Anemia prevalence and risk factors in pregnant women in an urban area of Pakistan. Food and Nutrition Bulletin. 2008;29(2):132–139.
7. Aikawa R, Khan NC, Sasaki S, Binns CW. Risk factors for iron-deficiency anaemia among pregnant women living in rural Vietnam. Public Health Nutrition. 2006; 9(4):443–448.
8. Khalafallah AA, Dennis AE. Iron deficiency anaemia in pregnancy and postpartum: pathophysiology and effect of oral versus intravenous iron therapy. Journal of Pregnancy. 2012;10. Article ID 630519
9. Haidar J. Prevalence of anaemia, deficiencies of iron and folic acid and their determinants in ethiopian women. Journal of Health, Population and Nutrition. 2010;28(4):359–368.
10. Akhtar M, Hassan I. Severe Anemia during late pregnancy,” Case Reports in Obstetrics and Gynecology. 2012;10. Article ID 485452.
11. Vivek RG, Halappanavar AB, Vivek PR, Halki SB, Maled VS, Deshpande PS. Prevalence of Anemia and its epidemiological. Determinants in Pregnant Women. 2012;5(3):216–223 2012.
12. Elzahrani SS. Prevalence of iron deficiency anaemia among pregnant women attending antenatal clinics at Al-Hada Hospital,” Canadian Journal on Medicine, vol. 3, no. 1, pp. 10–14, 2012.
13. Raza N, Sarwar I, Munazza B, Ayub M, Suleman M. Assessment of iron deficiency in pregnant women by determining iron status,” Journal of Ayub Medical College Abbottabad. 2011;23(2):36–40, 2011.
14. Brooker S, Hotez PJ, Bundy DAP. Hookworm-related anaemia among pregnant women: a systematic review. PLoS Neglected Tropical Diseases 2008;2(9):article e291.
15. Baker SJ, DeMaeyen EM. Nutritional anaemia: Its understanding and control with special reference to the work of the world.
health organization,” American Journal of Clinical Nutrition. 1979;32(2):368–417.
16. Toteja GS, Singh P, Dhillon BS, et al. Prevalence of anemia among pregnant women and adolescent girls in 16 districts of India. Food and Nutrition Bulletin. 2006; 27(4):311–315.
17. Ethiopia, Demographic and Health Survey, Central Statistics Agency, Addis Ababa, Ethiopia; 2011.
18. Federal Democratic Republic of Ethiopia Population Census Commission, The 2007 Population and Housing census of Ethiopia Results for Somali Region Statistical Report, Central Statistical Agency, Addis Ababa, Ethiopia; 2010.
19. Makhoul Z, Taren D, Duncan B, et al. Risk factors associated with anemia, iron deficiency and iron deficiency anemia in rural Nepali pregnant women. Southeast Asian Journal of Tropical Medicine and Public Health. 2012;43(3):735–745.
20. Mudaliyar, Menon ’s. Clinical obstetrics 10th edition 2005.Orientlongmanpvtltd 17th chapter: 147.
21. Desoye G, Hauguel-De Mouzon S. The Human Placenta in Gestational Diabetes Mellitus, Diabetes Care. 2007;30 (suppl 2):120-126.
22. Verma R, Mishra S, Kaul JM, Ultrastructural changes in the placental membrane in pregnancies associated with diabetes. Int. J. Morphol. 2011;29(4):1398-1407.
23. Leach L, Taylor A, Sciota F. Vascular dysfunction in the diabetic placenta-causes and consequences. Journal: J Anat. 2009; 215(1):69–76.

© 2021 Abiselvi; This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Peer-review history:
The peer review history for this paper can be accessed here:
https://www.sdiarticle4.com/review-history/72106