Species diversity, host preference and arbovirus detection of *Culicoides* (Diptera: Ceratopogonidae) in south-eastern Serbia

Ana Vasić¹,²†, Nemanja Zdravković²,³†, Dragoș Aniță⁴, Jovan Bojkovski¹, Mihai Marinov⁵, Alexander Mathis⁶, Marius Niculău⁷, Elena Luanda Oșlobanu⁴, Ivan Pavlović³, Dušan Petrić⁸, Valentin Pflüger⁹, Dubravka Pudar⁸, Gheorghe Savuța⁴, Predrag Simeunović¹, Eva Veronesi⁶, Cornelia Silaghi²,⁶,¹⁰* and the SCOPES AMSAR training group

Abstract

Background: *Culicoides* (Diptera: Ceratopogonidae) is a genus of small biting midges (also known as “no-see ums”) that currently includes 1368 described species. They are proven or suspected vectors for important pathogens affecting animals such as bluetongue virus (BTV) and Schmallenberg virus (SBV). Currently little information is available on the species of *Culicoides* present in Serbia. Thus, the aim of this study was to examine species diversity, host preference and the presence of BTV and SBV RNA in *Culicoides* from the Stara Planina Nature Park in south-eastern Serbia.

Results: In total 19,887 individual *Culicoides* were collected during three nights of trapping at two farm sites and pooled into six groups (Obsoletus group, Pulicaris group, “Others” group and further each group according to the blood-feeding status to freshly engorged and non-engorged). Species identification was done on subsamples of 592 individual *Culicoides* specimens by morphological and molecular methods (MALDI-TOF mass spectrometry and PCR/sequencing). At least 22 *Culicoides* species were detected. Four animal species (cow, sheep, goat and common blackbird) as well as humans were identified as hosts of *Culicoides* biting midges. The screening of 8291 *Culicoides* specimens in 99 pools for the presence of BTV and SBV RNA by reverse-transcription quantitative PCR were negative.

Conclusions: The biodiversity of *Culicoides* species in the natural reserve Stara Planina was high with at least 22 species present. The presence of *C. imicola* Kieffer was not recorded in this area. *Culicoides* showed opportunistic feeding behaviour as determined by host preference. The absence of SBV and BTV viral RNA correlates with the absence of clinical disease in the field during the time of sampling. These data are the direct outcome of a training programme within the Institutional Partnership Project "AMSAR: Arbovirus monitoring, research and surveillance-capacity building on mosquitoes and biting midges" funded by the programme SCOPES of the Swiss National Science Foundation.

Keywords: *Culicoides* spp., BTV, SBV, Host preference, Serbia, Capacity building, Train the trainers concept

* Correspondence: cornelia.silaghi@fli.de
† Ana Vasić and Nemanja Zdravković contributed equally to this work.
¹Institute of Infectology, Friedrich-Loeffler-Institute, Insel Riems, Germany
²National Centre for Vector Entomology, Institute of Parasitology, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
Full list of author information is available at the end of the article

© The Author(s). 2019 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.
Background

Culicoides (Diptera: Ceratopogonidae) is a genus of small biting midges (also known as “no-see ums”) that currently includes 1368 described species [1] in 32 subgenera [2]. They are important vectors of arboviruses of veterinary (bluetongue virus (BTV) [3, 4], Schmallenberg virus (SBV) [5], African horse sickness virus (AHSV) [3], epizootic haemorrhagic disease virus (EHDV) [6]) and medical importance (Oropouche virus) [7, 8]. _Culicoides_ tend to blood-feed on and breed near domestic livestock and humans [9]. _Culicoides_-borne virus transmission in Europe is especially important for BTV which causes significant economic losses [10]. Even though _Culicoides imicola_ Kieffer, one of the major BTV and AHSV vectors in Africa, southern Europe and Southeast Asia, seems to increase its distribution northwards in Africa, southern Europe and Southeast Asia, seems to Kieffer, one of the major BTV and AHSV vectors imicola Europe is especially important for BTV which causes regions in Africa [15, 16]. It is also described that containers or by transport of live animals from endemic individuals were introduced by transport within ship-con-2006 [15]. It was postulated that infected _Culicoides_ introduction can occur via meteorological conditions (such as wind) [17]. In 2011, SBV has been reported for the first time in Europe in cattle from Germany and the Netherlands, causing disease with fever, decreased milk production, diarrhea and malformed newborn animals [5]. It rapidly spread through Europe in 2012 and 2013 [18], and re-emerged in Germany in 2014 with high sequence identity of the isolated virus genome to the first SBV sample implicating possible persistence of virus within the insect vectors [19].

The investigation of species occurrence, diversity, and abundance of the genus _Culicoides_ in south-eastern Europe and the Balkan Peninsula started after the first introduction of BTV into Bulgaria in 1999 revealing the presence of Obsoletus complex specimens (75%) followed by Pulicaris complex (16%) [20]. Subsequent outbreaks of BTV occurred and entomological studies were done in Albania [21], Bosnia and Herzegovina [22], Croatia [23], the former Yugoslav Republic of Macedonia (FYROM), Montenegro and Serbia [21, 24]. _Culicoides imicola_ was not captured or reported in any of the above-mentioned studies.

Since the outbreak of BTV serotype 9 in Serbia in 2002, the country was free of BTV until August 2014 when a new outbreak of BTV serotype 4 occurred [25]. The state monitoring programme in 2015 consisted of insect trapping, identification and detection of viral genome in _Culicoides_ samples [25].

To contribute further to the knowledge on _Culicoides_ in Serbia, the aims of our study were: (i) to identify _Culicoides_ species present in the area of Stara Planina Nature Park (south-east Serbia); (ii) to identify host species for the local _Culicoides_ population by DNA characterization; and (iii) to screen for BTV and SBV RNA in the collected _Culicoides_ specimens.

Methods

AMSR project concept

The Swiss National Science Foundation provided funding for the SCOPES (Scientific co-operation between eastern Europe and Switzerland) project No. 160429, “Arbovirus Monitoring, Surveillance and Research-capacity building on mosquitoes and biting midges (AMSRAR)” project. This project was a bilateral institutional partnership aiming at capacity building and spreading knowledge between partner institutions from Switzerland, Romania and Serbia during 2015–2017. The goal of the project was to provide training to young scientists in Romania and Serbia who would be able to continue working in the field of medical and veterinary entomology. The innovative “train the trainers” concept was used for the first time in this field and as a result, knowledge was widely shared and disseminated [Sila-ghi C. AMSAR: a capacity building project based on the “Train the trainers” concept. ESOVE 2016, 2 –7.10.2016, Lisbon, Portugal]. Thus, the authors of this paper were participants of the project involved in practical field and laboratory investigations.

Study area and description of stables

Stara Planina, located is south-eastern Serbia, is a nature reserve of the Ia protection category, i.e. strictly protected areas set aside to protect biodiversity and also possibly geological/geomorphical features, where human visitation, use and impacts are strictly controlled and limited to ensure protection of the conservation values according to the International Union for Conservation of Nature (IUCN).

The Stara Planina Nature Park is remote mountainous terrain (highest elevation Midzor peak, altitude 2169 m) with a high biodiversity of 1200 plant species (including 115 endemic, 100 strictly protected by State and 50 on the list of endangered species in Europe) and several animal species (116 butterflies, 46 amphibians and reptiles, 26 fish, 203 birds and 30 mammals) [26]. The autochthonous cattle breed “Busa” (approx. n = 100) is kept indoors at location A, in the area of Gornji Krivodol at an altitude of 886 m above sea level (43°6′37″N, 22°57′14″E) while location B is a private farm with two separate animal breeding locations for up to 50 goats indoors and up to 50 sheep outdoors in the village Kamenica at an altitude of 811 m (43°28′28″N, 22°21′21″).
Insect collection
Insects were collected overnight in 70% ethanol using Onderstepoort Veterinary Institute (OVI) traps with UV light as source of attraction [27]. At each location, two traps were placed, one inside and the other outside of the stable. At location A, two overnight samplings (4th and 6th July 2016) were done, and at location B there was one night of sampling (5th July 2016). At the time of sampling, the morning temperatures at 6:00 h on 4th, 5th and 6th July 2016 were 14 °C, 16 °C and 16 °C and the maximum daily temperatures at 16:00 h were 26 °C, 29 °C and 32 °C, respectively. There was no atmospheric precipitation, the average relative humidity was 60% and wind velocity was up to 7.5 km/h [28].

Insect identification and sorting
All collected insects were separated into Culicoides specimens and other insects, which were discarded. From each trap, approximately 100 Culicoides individuals were randomly taken for morphological identification to the species level under a stereomicroscope with 10x and 20x magnification using the Interactive IIKC key [29, 30]. From the morphologically identified Culicoides specimens, the ones belonging to a species with an existing MALDI-TOF MS (Matrix Assisted Laser Desorption Ionization-Time of Flight Mass Spectrometry) spectrum were species confirmed by MALDI-TOF MS. Most of the remaining morphologically identified Culicoides specimens were identified by PCR followed by sequencing in order to obtain final species identifications. Additionally, some of the Culicoides specimens were tested with both MALDI-TOF MS and sequencing.

All remaining Culicoides specimens from each night of trapping were separated into three groups (Obsoletus group, Pulicaris group and “Others” group) and further into freshly engorged and non-engorged forming a total of six groups. From each of the six groups from the six traps, up to 5 pools with up to 100 individuals each (depending on availability) were formed. The final total was 99 pools with altogether 8291 individual Culicoides (see below).

Identification of Culicoides species using molecular methods
DNA was extracted from the abdomens of the Culicoides with the GeneJET whole blood genomic DNA purification mini kit (Thermo Fisher Scientific, Waltham, USA) according to the manufacturer’s instructions for blood with the modification that insects were disrupted in phosphate-buffered saline (PBS) in a Tissue Lyser II (Qiagen, Hombrechtikon, Switzerland) with a 5 mm stainless steel bead at 30 Hz for one minute twice before 20 μl proteinase K was added to a total volume of 200 μl. The incubation at 56 °C was done overnight.

The quality and quantity of the obtained DNA was measured with Nanodrop ND-1000 spectrophotometer (Thermo Fisher Scientific, Waltham, USA).

PCR was performed targeting a 585 bp region of the mitochondrial cox1 gene to identify the insect species. The multiplex PCR kit (Qiagen, Hombrechtikon, Switzerland) was used with the following primers: 0.5 μl of 100 μM C1-J-1718 mod (5’-GGA GGA TTT GGA AAT TGA TTTG-3’) and 0.5 μl of 100 μM C1-N-2191 mod (5’-GTA AAA TTA AAA TAT AAA CTT CTGG-3’) in final reaction volumes of 50 μl. A plasmid containing the target sequence of C. imicola was used as positive control and sterile water as a negative control [31].

The Qiagen MinElute kit (Qiagen, Hombrechtikon, Switzerland) was used to purify amplicons, and sequencing was done at Synergene (Schlieren, Switzerland). Chromatograms were quality checked and edited with Finch TV (finchtv.software.informer.com) and compared against the GenBank database using BLASTn [32] and BOLD [33]. Similarities higher than 97% were considered as a species match.

For MALDI-TOF mass spectrometry, head and thorax of insects were prepared as previously described [34]. Identification of specimens was done on a Mass Spectrometry Axima™ Confidence machine (Shimadzu-Biotech Corp., Kyoto, Japan) and the spectra were compared to the existing database [34].

Blood-meal identification
A two-step approach was used for host identification in blood-fed individuals. First, all samples were screened with a multiplex PCR approach based on cyt b polymorphisms using 0.5 μl of 100 μM of primers UNIV2 (5’-TGAG GGA CAA ATA TCA TTY TGA GGR GC-3’), CAPRA (5’-TTA GAA CAA GAA TTA GTA GCA TGG CG-3’), OVIS (5’-GGC GTG AAT AGT ACT AGT AGC ATG AGG ATG A-3’) and BOVIS (5’-TTA GAT GTC CTT AAT GGT ATA GTA G-3’) [35] in final volumes of 50 μl to detect blood meals on cow, goat and sheep. In the case of negative samples, these were tested with a generic PCR targeting the cyt b gene (primers Cytfb 5’-GAG GMC AAA TAT CAT TCT GAG G-3’ and Cytbr 5’-TAG GGC VAG GAC TCC TCC TAG T-3’) followed by sequencing with the sequencing primer 5’-GGA CTC CTC CTA GTT TGT T3G G-3’ as previously described [36]. Products were purified, sequenced and analysed as described above.

Pathogen detection by molecular methods
In order to determine RNA presence of SBV and BTV, RNA extraction was done from 99 pools of up to 100 Culicoides specimens the Gene JET RNA Purification kit (Thermo Fisher Scientific, Waltham, USA) following the manufacturer’s instructions. Insect tissue was disrupted
in 300 μl lysis buffer with 3 mm bead in the Tissue Lyser II for 20–40 s at 30 Hz. Quality and quantity of RNA was measured with the Nanodrop ND-1000 spectrophotometer (Thermo Fisher Scientific, Waltham, USA). No sample was excluded because of low RNA quantity or quality (quantity ranged from 1.03 ng/μl to 665.75 ng/μl; quality (A260/280 ratio) from 1.62 to 2.45).

For BTV RNA detection, the iTaq universal probes one-step kit (Bio-Rad, Hercules, USA) was used with primers BTV_IVL_F (5’-TGG AYA AAG CRA TGT CAA A-3’), BTV_IVL_R (5’-ACR TCA TCA CGA AAC GCT TC-3’), and the probe BTV_IVL_P (FAM-5’-ARG CAA A-3’), BTV_IVI_R (5’-ACR TCA TCA CGA AAC GCT TC-3’), and the fluorogenic probe was FAM-5’TGA AGG GAT GCA CCT GGG CCG ATG GT-3’-BHQ1 [5].

Results

Insect trapping

A total of 19,887 individual Culicoides specimens were collected during three nights of trapping in a total of six traps at two different locations (A and B). The total number of collected individuals per trap/night, their morphological grouping and blood-feeding status are shown in Table 1. Altogether, 6396 specimens (32.2%) were from location A and 3869 at location B.

Blood-feeding status

Overall 5921 (29.8%) individual Culicoides were classified as Engorged because group specific features were missing. Some specimens were identified with more than one method.

Out of 152 sequences of Culicoides spp. Alltogether 5 blood host species were identified only at location A, while Culicoides Edwards was present only at location B. Culicoides acharyi Kettle & Lawson, C. circumscriptus Kieffer, C. elastieri Callot, Kieffer & Deduit, C. picturatus Kremer & Deducit, C. pulicaris Linnaeus, C. scoticus and C. simulat Edwards, were present on both the cow farm (location A) and the sheep/goat farm (location B). Culicoides obsoletus Kieffer were present only at location A, while goats were identified as hosts at location A (n = 96) and blackbird (n = 1) were identified only at location B.

Pathogen detection

A total of 8291 Culicoides were screened for BTV and SBV RNA presence. The number of individual Culicoides per group and feeding status is shown in Table 4. Out of 99 pools, of six different groups in total (Obsoletus group, n = 36; Pulicaris group, n = 20; “Others” group, n = 43) of which engorged (Obsoletus group, 14 pools; Pulicaris group, 5 pools; “Others” group, 17 pools) and non-engorged (Obsoletus group, 22 pools; Pulicaris group, 15 pools; “Others” group, 26 pools). Among the tested samples there were no positive results for BTV and SBV viral RNA by RT-qPCR (Table 4).
Location	Day of collection	Trap placement	Total no. of Culicoides collected	Obsoletus group	Pulicaris group	"Others" group	Culicoides spp.a
A: cattle	04.07.2016	Inside stable	187 (100)	18 (9.63)	169 (90.37)	1 (0.53)	10 (0.53)
A: cattle	04.07.2016	Outside stable	3394 (100)	869 (25.60)	2525 (74.4)	131 (3.86)	1124 (33.12)
A: cattle	06.07.2016	Inside stable	774 (100)	101 (13.05)	673 (86.95)	6 (0.78)	6 (0.78)
A: cattle	06.07.2016	Outside stable	10,435 (100)	3705 (35.5)	6730 (64.5)	411 (3.94)	113 (1.08)
Subtotal A			14,790 (100)	4693 (31.73)	10,097 (68.27)	549 (3.71)	163 (1.10)
B: sheep and goats	05.07.2016	Inside stable	2694 (100)	1169 (43.39)	1525 (56.61)	648 (24.05)	99 (3.67)
B: sheep and goats	05.07.2016	Outside stable	2403 (100)	59 (2.45)	2344 (97.55)	26 (1.08)	25 (1.04)
Subtotal B			5097 (100)	1228 (24.09)	3869 (75.91)	674 (13.22)	107 (2.10)
Total			19,887 (100)	5921 (29.77)	13,966 (70.23)	1223 (61.5)	4425 (22.25)

aCulicoides spp.: grouping was not possible because group specific features were missing due to samples damage
Discussion

In the past decade the Balkan Peninsula has encountered several outbreaks of BTV [24], and SBV activity was reported in 2013 [38]. Following these events, several studies were conducted in Bulgaria and Croatia to determine the abundance and species composition of Culicoides vectors [20, 23]. Even though there is a Culicoides monitoring programme [25] in Serbia, the data on abundance and species composition are scarce. The results of the Serbian Culicoides monitoring programme in 2015/2016 revealed the presence of Culicoides spp. from spring (April) to late autumn (December) [39]. Results of the present study showed that on both locations at Stara Planina Nature Park, Culicoides were present in large numbers, which is in correlation with the results of Culicoides collections in the neighbouring Bulgaria [20, 40]. The variation in number of collected Culicoides between two sampling dates at location A might have influence on the likelihood of collection of SBV- and BTV-positive specimens. This variation in numbers might have occurred due to altered microclimatic conditions between two sampling nights. Among the collected Culicoides, the morphological group “Others” was the most abundant (n = 11,649), followed by the Obsoletus group (n = 6396) and Pulicaris group (n = 1833). The highest number of individuals belonging to the Obsoletus group was recorded in Bosnia and Herzegovina [22], Croatia [23] and Romania [41]; however, this was not the case in our study. Since our study was completed in geographically close locations, we cannot generalize the group composition of Culicoides to larger territories in Serbia. Furthermore, in a study from Switzerland the group composition changed with different altitudes, revealing a higher abundance of Culicoides species that belong to “Others” at high altitudes [42].

Table 2

Species	No. of identified individuals	Location A	Location B	Culicoides group	No. of identifications by MALDI-TOF	No. of identifications by sequencing
C. achrayi	2	2	0	“Others”	0	2
C. circumscriptus	3	3	0	“Others”	1	2
C. clastrieri	1	1	0	“Others”	0	1
C. deltus	5	2	3	“Others”	3	2
C. dewulfi	1	1	0	Obsoletus	0	1
C. fagineus	1	0	1	“Others”	0	1
C. fascipennis	71	49	22	“Others”	16	64
C. festivipennis	11	11	0	“Others”	7	4
C. furcillatus	11	3	8	“Others”	1	10
C. kibunensis	1	1	0	“Others”	0	1
C. lupicaris	31	21	10	Pulicaris	22	14
C. newsteadi	7	7	0	Pulicaris	1	6
C. obsoletus/scoticus	7	2	5	Obsoletus	0	0
C. obsoletus	69	39	30	Obsoletus	61	17
C. pallidicornis	4	4	0	“Others”	2	4
C. parotti	2	2	0	“Others”	0	2
C. picturatus	19	18	1	“Others”	0	19
C. pulicaris	3	2	1	Pulicaris	3	1
C. punctatus	11	11	0	Pulicaris	5	6
C. salinarius	2	2	0	“Others”	0	2
C. scoticus	150	61	89	Obsoletus	142	15
C. simulator	15	12	3	“Others”	0	15
C. subfascipennis	10	10	0	“Others”	0	10
Culicoides spp.*	155	129	26		0	10
Total	592	393	199		264	209

*Identification to Culicoides spp. done as a combination of morphological identification result, indefinite sequencing results (poor identity or ambivalent result) and MALDI-TOF mass spectrometry results. Specimens defined as C. obsoletus/scoticus were identified by morphological identification, while C. obsoletus and C. scoticus were confirmed by molecular methods which enables species identification.
Table 3 Identified blood hosts per Culicoides species and location

Culicoides species	Cow	Goat	Sheep	Blackbird	Human
C. achrayi	1	–	–	–	–
C. circumscriptus	–	–	–	–	–
C. fascipennis	31	7	1	–	–
C. festivipennis	1	–	–	–	–
C. furcillatus	–	2	–	–	1
C. lupicaris	4	2	–	–	–
C. newsteadi	1	–	–	–	–
C. obsoletus	5	7	1	–	–
C. obsoletus/scoticus	0	2	–	–	1
C. pallidicornis	2	–	–	–	–
C. pictatus	7	–	–	–	1
C. punctatus	4	–	–	–	–
C. salinarius	1	–	–	–	–
C. scoticus	1	18	–	–	2
C. subfascipennis	5	–	–	–	1
Culicoides spp.a	33	9	–	1	–
Total	96	47	2	1	6
Total per location A	96	2	–	1	4
Total per location B	0	45	2	–	2

*aIndividual insects which were morphologically confirmed to be Culicoides, but species identification could not be concluded by MALDI-TOF mass spectrometry and/or PCR/sequencing.

We identified 22 Culicoides species. To our knowledge, there are no published data from neighboring countries (Greece, Croatia, and Bosnia and Herzegovina) on the presence of C. clastieri, C. deltus, C. lupicaris, C. picturatus, C. salinarius, C. simulator and C. subfascipennis, and C. clastieri, C. lupicaris and C. picturatus were not recorded in Bulgaria. High Culicoides species diversity was recorded in Bulgaria with differences observed in species composition between two studies. This is probably due to habitat characteristics or availability of preferred blood hosts [20, 40]. In Croatia [23], the presence of C. circunscriptus, C. fascipennis, C. fagi-neus, C. haranti Rioux, Descous & Pech, C. obsoletus, C. paolae Boorman, C. pulicaris, C. punctatus, C. scoticus and C. seavanicus Kieffer was determined and these results partially correlate with our findings. In Greece, 39 Culicoides species were found, and the findings differed according to the geographical area of the country [43]. Among these species, only 15 were found in our study, and 24 species detected in a study from Greece were not present in the sampled locations of Stara Planina Nature Park. Interestingly, C. impunctatus Goetghebuer was found in Bulgaria and Greece, but not in our study, possibly due to the sampling period. Our results did not show the presence of C. imicola, the main BTV vector in the Mediterranean basin, which is in agreement with findings in Albania [21], Bosnia and Herzegovina [22] and Bulgaria [20]. This implies the role of species other than C. imicola in the transmission cycle of BTV in the investigated locations in Serbia. Another study in northern Europe also identified that not a single specimen of C. imicola was detected amongst 100,000 Culicoides collected in France, Belgium and Luxemburg [44].

To the best of our knowledge, we describe the first data of host analysis for Culicoides in Serbia. Our results suggest for most species identified in this study have a mammophilic feeding behaviour, but interestingly, blood of a bird was recorded in one of the samples. Other domestic animals such as dogs and cats were also present at the sampling locations. The choice of animal host depends on intrinsic host preference of the insect species and host availability [45]. Opportunistic feeding tendencies in mammophilic biting midges for animals nearby were previously reported [35], which is also the observation in our study (location A - cow, location B - sheep and goat, as well as human hosts at both locations).

None of the tested Culicoides pools was positive for RNA of BTV and SBV. This finding is in relation with the absence of clinical cases in 2016 in the area of Stara Planina Nature Park (www.oie.int).

Table 4 Culicoides used for detection of BTV and SBV RNA in pools

Location, date and trap position	Total N (n)	Obsoletus group	Pulicaris group	“Others” group	SBV RT-qPCR	BTV RT-qPCR			
A: 04.07.2016 inside	5 (86)	1 (1)	1 (40)	0 (0)	1 (12)	Negative	Negative		
A: 04.07.2016 outside	21 (1887)	2 (105)	5 (500)	1 (38)	3 (244)	5 (500)	5 (500)	Negative	Negative
A: 06.07.2016 inside	11 (665)	1 (5)	1 (54)	1 (3)	1 (39)	1 (56)	6 (508)	Negative	Negative
A: 06.07.2016 outside	25 (2403)	4 (306)	5 (500)	1 (97)	5 (500)	5 (500)	5 (500)	Negative	Negative
B: 05.07.2016 inside	22 (1134)	5 (500)	5 (500)	1 (96)	2 (132)	4 (399)	5 (489)	Negative	Negative
B: 05.07.2016 outside	15 (2116)	1 (13)	5 (500)	1 (4)	3 (219)	1 (7)	4 (391)	Negative	Negative
Total	99 (8291)	14 (930)	22 (2094)	5 (238)	15 (1146)	17 (1468)	26 (2415)	Negative	Negative

Abbreviations: N Total number of pools, n number of individual Culicoides
All results, discussions and conclusions presented here are a direct outcome from the capacity building project AMSAR based on the multiplying effect by “training-the-trainers” concept which has thus proven to be a successful scheme of capacity building in vector entomology.

Conclusions
The biodiversity of Culicoides species in Stara Planina Nature Park is high and at least 22 species are present. Culicoides imicola was not recorded in this area. Culicoides showed opportunistic feeding behaviour as determined by host preference. The absence of SBV and BTV viral RNA correlates with the absence of clinical disease in the field during the time of sampling.

Acknowledgments
We thank Jeannine Hauri, Anca Paslaruc, Dr Felix Grimm (Institute of Parasitology, VetSuisse Faculty, Zurich, Switzerland) for technical assistance and training. We are also very thankful to Dr Samuel Furrer (Zoo Zürich, Switzerland) and Dr Andrea Vogtlin (Institute for Virology und Immunology (IVI), Bern, Switzerland) for scientific cooperation and to Dr Jolene Karlson (FLI, Greifswald, Germany) for thorough revision of the English language. SCOPES AMSAR training group: 1Adriana Aniță, 2Ioana Alexandra Anton, 3Andrei Cimpan, 4Lavinia Ciuc, 4Andrei-Cristian Lupu, 4Daniela Cojkić, 2Andra Cristian Lupu, 4Daniela Porea, 5Raduța Prodanović, 6Olivier Radanović, 4Cristian Râileanu, 4Stefan Râileanu, 7Marko Răstanić, 8Constantin Roman, 7Ljubodrag Stanišić, 9Slavica Vaselek, 1Miljko Durić.

Funding
The project was financed by the SCOPES programme of the Swiss National Science Foundation (SNSF) and the Swiss Agency for Development and Cooperation (SDC).

Availability of data and materials
Data supporting the conclusions of this article are provided within the article. The datasets used and/or analysed during this study are available from the corresponding author upon reasonable request.

Authors’ contributions
CS designed and coordinated the project. JB, IP, GS and MM coordinated the implementation of the project in Serbia and Romania. CS and EV were trainers in Switzerland. AV, PS, ELO and DA were trainee-trainers in Switzerland. AV, NZ, DA, JB, MM, ELO, IP, DPu, PS, EV and CS were trainers in the training schools and participated in field trapping and laboratory examinations. DPe and DPu contributed to morphological identification of collected Culicoides. AV and NZ performed the RNA extractions and real-time PCRs. MN and VP performed MALDI-TOF data analysis. SCOPES AMSAR training group participated in all practical aspects of the study. AV and CS drafted the manuscript. All authors critically revised the manuscript. All authors read and approved the final manuscript.

Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Author details
1Faculty of Veterinary Medicine, University of Belgrade, Belgrade, Serbia. 2Institute of Infectology, Friedrich-Loeffler-Institute, Insel Riems, Germany. 3Scientific Veterinary Institute of Serbia, Belgrade, Serbia. 4Faculty of Veterinary Medicine of Iaşi, Iaşi, Romania. 5Danube Delta National Institute for Research and Development, Tulcea, Romania. 6National Centre for Vector Entomology, Institute of Parasitology, Vetsuisse Faculty, University of Zürich, Zürich, Switzerland. 7Research Centre for Oenology Iaşi, Iaşi, Romania. 8Faculty for Agriculture, University of Novi Sad, Novi Sad, Serbia. 9Mabritec AG, Riehen, Switzerland. 10Ernst-Moritz-Arndt-Universität, Greifswald, Germany.

Received: 7 September 2018 Accepted: 7 January 2019
Published online: 25 January 2019

References
1. Borkent A. Numbers of extant and fossil species of Ceratopogonidae. 2016. https://wwv.inhs.illinois.edu/files/4014/6785/5847/WorldCatalogtaxa.pdf. Accessed 2 Nov 2018.
2. Augot D, Mathieu B, Hadji-Henni I, Barriel V, Zapata Mena S, Smolis S, et al. Molecular phylogeny of 42 species of Culicoides (Diptera, Ceratopogonidae) from three continents. Parasite. 2017;24:23.
3. Carpenter S, Veronesi E, Mullens B, Venter G. Vector competence of Culicoides for arboviruses: three major periods of research, their influence on current studies and future directions. Rev Sci Tech. 2015;34:97–112.
4. Mellor PS. Replication of arboviruses in insect vectors. J Comp Pathol. 2000;123:231–47.
5. Hoffmann B, Scheuch M, Hóper D, Jungblut R, Holsteg M, Schirmeier H, et al. Novel orthobunyavirus in cattle, Europe, 2011. Emerg Infect Dis. 2012;18:469–72.
6. Maclachlan NJ, Zientara S, Savini G, Daniels PW. Epstein-Barr virus: emerging opportunistic disease. Rev Sci Tech. 2015;34:341–51.
7. Romero-Alvarez D, Escobar LE. Oropouche fever, and emergent disease from the Americas. Microbes Infect. 2018;20:125–46.
8. Roberts DR, Hooij AK, Dixon KE, Llewellyn OH. Oropouche virus. Ill. Entomological observations from three epidemics in Para, Brazil, 1975. Am J Trop Med Hyg. 1981;30:616–71.
9. Tabachnik WJ. Culicoides and the global epidemiology of bluetongue virus infection. Vet Ital. 2004;40:145–50.
10. Wilson A, Mellor P. Bluetongue in Europe: vectors, epidemiology and climate change. Parasitol Res. 2008;103:69–77.
11. Guichard S, Guis H, Tran A, Garros C, Balenghien T, Kriticos DJ. Worldwide niche and future potential distribution of Culicoides imicola, a major vector of bluetongue and African horse sickness viruses. PLoS One. 2014;9:e12491.
12. Wilson A, Mellor P. Bluetongue in Europe: past, present and future. Philos Trans R Soc Lond B Biol Sci. 2009;364:2669–81.
13. Caracappa S, Torina A, Guercio A, Vitale F, Calabro A, Purpari G, et al. Identification of a novel bluetongue virus vector species of Culicoides in Sicily. Vet Rec. 2003;153:71–4.
14. De Libero C, Scavia G, Lorenzozetti R, Scaramozzino P, Amaddeo D, Cardeti G, et al. Identification of Culicoides obsolitus (Diptera: Ceratopogonidae) a vector of bluetongue virus in central Italy. Vet Rec. 2005;156:301–4.
15. Carpenter S, Wilson A, Mellor PS. Culicoides and the emergence of Bluetongue virus in northern Europe. Trends Microbiol. 2009;17:172–8.
16. Mehlhorn H, Waldorf V, Klimpf S, Schmahl G. Outbreak of bluetongue disease (BTD) in Germany and the danger for Europe. Parasitol Res. 2008;103(Supp 1):S79–86.
17. Jacquet S, Huber K, Pages N, Talavera S, Burgin LE, Carpenter S, et al. Range expansion of the bluetongue vector, Culicoides imicola, in continental France likely due to rare wind-transport events. Sci Rep. 2016;6:27247.
18. Afonso A, Abrantes JC, Conraths F, Veldhuis A, Elbers A, Roberts H, et al. The Schmallenberg virus epidemic in Europe - 2011–2013. Prev Vet Med. 2014;112:391–403.
19. Wernike K, Hoffmann B, Conraths FJ, Beer M. Schmallenberg virus recurrence, France likely due to rare wind-transport events. Sci Rep. 2016;6:27247.
20. Purse BV, Nedelchev N, Georgiev G, Veleva E, Boorman J, Denison E, et al. Spatial and temporal distribution of bluetongue and its Culicoides vectors in Bulgaria. Med Vet Entomol. 2006;20:335–44.
21. Lika A, Mersini K, Crilly J. Note on the distribution and abundance of Obsoletus Complex and Pulicaris Complex (Diptera: Ceratopogonidae) in southern Albania. XVIII International Congress of Mediterranean Federation
of Health and Production of Ruminants, Perugia: FeMeSPRum-Mediterranean Federation of Health and Production of Ruminants; 2009.
22. Omeragic J, Vejzagic N, Zuko A, Jazic A. Culicoides obsoletus (Diptera: Ceratopogonidae) in Bosnia and Herzegovina-first report. Parasitol Res. 2000; 105:563–5.
23. Listes E, Bosnic M, Logić M, Cas Z, Cvetic Z, Madic I, et al. Serological evidence of bluetongue and a preliminary entomological study in southern Croatia. Vet. Ital. 2004;40:221–5.
24. Djuricic B, Nedic D, Lausevic D, Pavlovic M. The epizootiological occurrence of bluetongue in the central Balkans. Vet. Ital. 2004;40:105–7.
25. Maksimovic Zoric J, Milicivoj V, Veljovic L, Pavlovic I, Radiosavljevic V, Valcic M, et al. Bluetongue disease-epizootiology situation in Serbia in 2015, diagnosis and differential diagnosis. Archiv Vet Med. 2016;1:13–22.
26. Zavod za zaštitu prirode Srbije. Park prirode Stara Planina, Pirot: Institute for nature conservation of Serbia; 2016. www.zzps.rs
27. Venter GJ, Meiswinkel R. The virtual absence of Culicoides imicola (Diptera: Ceratopogonidae) in a light-trap survey of the colder, high-lying area of the eastern Orange Free State, South Africa, and implications for the transmission of arboviruses. Onderstepoort J Vet Res. 1994;61:327–40.
28. https://www.accuweather.com/en/rs/stara-planina/102842_poi/july-weather/102842_poi. Accessed 02 Nov 2018.
29. Mathieu B, Cêtre-Sossah C, Garros C, Chavernac D, Balenghien T, Carpenter S, et al. Development and validation of IIKC: an interactive identification key for Culicoides (Diptera: Ceratopogonidae) females from the Western Palaearctic region. Parasit Vectors. 2012;5:137.
30. Mathieu B, Cêtre-Sossah C, Garros C, Chavernac D, Balenghien T, Vignes-Lebbe R, et al. IIKC: An Interactive Identification Key for female Culicoides (Diptera: Ceratopogonidae) from the West Palaearctic region. In: Nimis PL, Vignes R, editors. Proceedings of the International congress Tools for Identifying Biodiversity: Progress and Problems. 20–22 September 2010. Paris, Trieste: EUT Edizioni Università di Trieste; 2010. p. 201–5.
31. Wenk CE, Kaufmann C, Schaffner F, Mathis A. Molecular characterization of Culicoides (Diptera: Ceratopogonidae) spp. in Serbia in the period 2015–2016. Archiv Vet Med. 2017;1:103–12.
32. Ratnasingham S, Hebert PD. BOLD: The Barcode of Life Data System (http://www.barcodinglife.org). Mol Ecol Notes. 2007;7:355–6.
33. Kaufmann C, Schaffner F, Ziegler D, Pfluger V, Mathis A. Identification of field-caught Culicoides biting midges using matrix-assisted laser desorption/ ionization time of flight mass spectrometry. Parasitology. 2012;139:248–58.
34. Garros C, Gardes L, Allene X, Rakotoarivony I, Viennet E, Rossi S, et al. Identification of Culicoides biting midges. Vet Parasitol. 2012;184:258–66.
35. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local alignment search tool. J Mol Biol. 1990;215:403–10.
36. Hofmann MA, Renzullo S, Mader M, Chaignat V, Worwa G, Thuer B. Genetic characterization of Toggenburg orbivirus, a new bluetongue virus, from goats, Switzerland. Emerg Inf Dis. 2008;14:1855–61.
37. Lieveart-Peterson K, Luttikholt S, Peperkamp K, Van den Brom R. P V. Genetic characterization of Culicoides spp. in Serbia in the period 2015–2016. Archiv Vet Med. 2017;1:103–12.
38. Bodeva A, Zhtindjiev P, Bensch S, Radrova J. A survey of biting midges of the genus Culicoides Latreille, 1809 (Diptera: Ceratopogonidae) in NE Bulgaria, with respect to transmission of avian haemosporidians. Acta Parasitol. 2013;58:858–91.
39. Ionoiţ M, Mitrea IL, Buzatu MC, Dascălu L, Ionescu A. Seasonal dynamics of haematophag arthropod populations (ticks and Culicoides spp.) - vectors of pathogens in animals and humans, in different areas of Romania. Lucrări Stiintifice Medicină Veterinară. 2009;52:269–36 (in Romanian).
40. Kaufmann C, Steinmann IC, Heggen D, Schaffner F, Mathis A. Spatio-temporal occurrence of Culicoides biting midges in the climatic regions of Switzerland, along with large scale species identification by MALDI-TOF mass spectrometry. Parasit Vectors. 2012;5:246.
41. Patakakis MJ, Papazahariadou M, Wilson A, Mellor PS, Frydas S, Papadopoulos O. Distribution of Culicoides in Greece. J Vector Ecol. 2009;34:234–51.
42. Meiswinkel R, Baldet T, de Deken R, Takken W, Delecolle JC, Mellor PS. The 2006 outbreak of bluetongue in northern Europe-the entomological perspective. Prev Vet Med. 2008;85:57–63.
43. Burkot TR. Non-random host selection by anopheline mosquitoes. Parasitol Today. 1988;4:156–62.

Ready to submit your research? Choose BMC and benefit from:
- fast, convenient online submission
- thorough peer review by experienced researchers in your field
- rapid publication on acceptance
- support for research data, including large and complex data types
- gold Open Access which fosters wider collaboration and increased citations
- maximum visibility for your research: over 100M website views per year

At BMC, research is always in progress.
Learn more biomedcentral.com/submissions