Natriuretic Peptides to Predict Short-Term Mortality in Patients With Sepsis: A Systematic Review and Meta-analysis

Saarwaani Vallabhajosyula, MBBS; Zhen Wang, PhD; M. Hassan Murad, MD, MPH; Shashaank Vallabhajosyula, MBBS; Pranathi R. Sundaragiri, MBBS; Kianoush Kashani, MD, MS; Wayne L. Miller, MD, PhD; Allan S. Jaffe, MD; and Saraschandra Vallabhajosyula, MD

Abstract

Data are conflicting regarding the optimal cutoffs of B-type natriuretic peptide (BNP) and N-terminal pro-B-type natriuretic peptide (NT-proBNP) to predict short-term mortality in patients with sepsis. We conducted a comprehensive search of several databases (MEDLINE, EMBASE, Cochrane Central Register of Controlled Trials, Cochrane Database of Systematic Reviews, and Scopus) for English-language reports of studies evaluating adult patients with sepsis, severe sepsis, and septic shock with BNP/NT-proBNP levels and short-term mortality (intensive care unit, in-hospital, 28-day, or 30-day) published from January 1, 2000, to September 5, 2017. The average values in survivors and nonsurvivors were used to estimate the receiver operating characteristic curve (ROC) using a parametric regression model. Thirty-five observational studies (3508 patients) were included (median age, 51-75 years; 12%-74% males; cumulative mortality, 34.2%). A BNP of 622 pg/mL had the greatest discrimination for mortality (sensitivity, 0.695 [95% CI, 0.659-0.729]; specificity, 0.907 [95% CI, 0.810-1.003]; area under the ROC, 0.766 [95% CI, 0.734-0.797]). An NT-proBNP of 4000 pg/mL had the greatest discrimination for mortality (sensitivity, 0.728 [95% CI, 0.703-0.753]; specificity, 0.789 [95% CI, 0.710-0.867]; area under the ROC, 0.787 [95% CI, 0.766-0.809]). In prespecified subgroup analyses, identified BNP/NT-proBNP cutoffs had higher discrimination if specimens were obtained 24 hours or less after admission, in patients with severe sepsis/septic shock, in patients enrolled after 2010, and in studies performed in the United States and Europe. There was inconsistent adjustment for renal function. In this hypothesis-generating analysis, BNP and NT-proBNP cutoffs of 622 pg/mL and 4000 pg/mL optimally predicted short-term mortality in patients with sepsis. The applicability of these results is limited by the heterogeneity of included patient populations.

Sepsis continues to be a leading cause of mortality and morbidity in the United States and accounts for nearly $17 billion in annual health care expenditure.1 Sepsis is associated with multiorgan dysfunction, prominent among which are injury and dysfunction of the cardiovascular and renal systems.2,3 Cardiac dysfunction in patients with sepsis can manifest as a combination of circulatory failure, septic cardiomyopathy, and myocardial injury and refractory shock.1,4,13 With the development of sensitive laboratory technology, there is a renewed interest in the use of biomarkers for early and targeted treatment of cardiac dysfunction in patients with sepsis and septic shock.1 Cardiac biomarkers, such as cardiac troponin T, troponin I, B-type natriuretic peptide (BNP), and N-terminal pro-BNP (NT-proBNP), have been studied previously in patients with sepsis and septic shock.14,15 Prior studies have associated cardiac troponins with the degree of myocardial injury, hypotension, cardiomyopathy, and extent of vasopressor support.1,16 We previously reported that admission troponin T, but not serial troponin T, levels have been associated with in-hospital and long-term mortality in patients with sepsis.1

© 2020 THE AUTHORS. Published by Elsevier Inc on behalf of Mayo Foundation for Medical Education and Research. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
meta-analysis evaluating troponins, Bessière et al14 documented that troponin levels correlated with shock severity and short-term and long-term mortality.

B-type natriuretic peptide is synthesized as a precursor protein (proBNP) in response to increased myocardial wall stress due to volume or pressure overload. Most of it is subsequently cleaved into active peptide BNP 1-32 and biologically inert NT-proBNP.17 Typically, NT-proBNP levels are higher than BNP levels.17,18 A 2012 meta-analysis found BNP as a predictor of mortality in patients with sepsis with pooled sensitivity and specificity of 79% and 60%; there was significant heterogeneity \(I^2 = 64\% \) among the evaluated studies.15 In this systematic analysis, BNP assays, clinical end points, and vasopressor use varied markedly among the enrolled studies.15 In other critically ill patients with pulmonary embolism, chronic obstructive pulmonary disease, and congestive heart failure, BNP has been strongly associated with clinical outcomes and has been incorporated into risk stratification.19-21 In patients with sepsis, however, there are conflicting data on the role of BNP/NT-proBNP as a risk-stratification and prognostication tool. Some investigators have considered BNP as a marker of severity, whereas others have reported it as an independent prognostic test. In light of the multiple recent studies with contrasting results, we sought to undertake a systematic review and meta-analysis of natriuretic peptide levels in the prognostication of patients with sepsis and septic shock.22-29 These discrepant results may be partly due to the heterogeneity of sepsis, differences in timing of BNP measurement, types of assays used, small sample sizes, and lack of control for septic cardiomyopathy.28,29 The primary outcome was to develop a summative value of BNP and NT-proBNP that is associated with mortality in this population.

PATIENTS AND METHODS

Data: Sources, Strategies, and Inclusion

We conducted a comprehensive search of several databases for articles published from January 1, 2000, to September 5, 2017. The databases included Ovid MEDLINE Epub Ahead of Print, Ovid MEDLINE In-Process & Other Non-Indexed Citations, Ovid MEDLINE, Ovid EMBASE, Ovid Cochrane Central Register of Controlled Trials, Ovid Cochrane Database of Systematic Reviews, and Scopus. The search strategy was designed and conducted by a medical librarian with input from the authors. Controlled vocabulary supplemented with keywords was used to search for mortality prediction in patients with sepsis using BNP or NT-proBNP in adults (Supplemental Appendix 1, available online at http://mcpiqournal.org). The abstracts were screened by 2 independent reviewers (Saarwaani Vallabhajosyula, Shashaank Vallabhajosyula). All references of included studies were evaluated for additional studies. Study inclusion was based on the consensus of the 2 reviewers. A third independent reviewer (P.R.S.) served as the referee in cases of disagreement between the first 2 reviewers. The search strategy and reporting were performed following the Strengthening the Reporting of Observational Studies in Epidemiology guidelines.31 This protocol has not been registered previously in available systematic review databases. Corresponding authors of included studies were not contacted for patient-level data, and all analyses performed in this study were based on the summative publicly available data. A subsequent updated search was performed between September 5, 2017, and June 25, 2019, and the results are presented in Supplemental Appendix 2 and Supplemental Table 1 (available online at http://mcpiqojournal.org). These studies were not included in the final meta-analysis for this study.

English-language studies evaluating adult patients (>18 years) with sepsis, severe sepsis, or septic shock defined using either the 2001 International Sepsis Definitions or Sepsis-3

ARTICLE HIGHLIGHTS

- B-type natriuretic peptide (BNP)/N-terminal pro-BNP (NT-proBNP) levels are often elevated in patients with sepsis.
- The optimal cutoffs for mortality prediction remain incompletely understood.
- BNP and NT-proBNP levels of 622 pg/mL and 4000 pg/mL predicted short-term mortality.
(Third International Consensus Definitions for Sepsis and Septic Shock)³³ criteria were included. Human studies of case-control, cohort, and randomized trial study designs were included. Short-term mortality was defined as intensive care unit mortality, in-hospital mortality, 28-day mortality, or 30-day mortality. In studies evaluating unselected critically ill patients, only studies for which a 2×2 table could be constructed between BNP/NT-proBNP levels and mortality were included. Abstracts that were not published in full text were excluded. Studies designed as case reports/series, systematic or narrative reviews, pediatric or animal studies, and studies without relevant outcomes were excluded. If multiple studies were published by the same group of authors over the same study duration, only a single study with relevant outcomes was included. Data abstracted included study year, population, location, type of study, comorbidities, and clinical outcomes. The clinical outcome of interest was BNP/NT-proBNP level that was associated with mortality.

Evidence Synthesis
The methodological quality of the included studies was assessed using the Newcastle-Ottawa Scale for nonrandomized studies by 2 independent reviewers (Saarwaani Vallabha-josyula, Shashaank Vallabhajosyula) (Supplemental Table 2, available online at http://mcpiqojournal.org) (Cohen κ statistic for agreement between reviewers, 0.82).³⁴ This scale involves evaluation based on 3 areas: (1) selection of the study groups, (2) comparability among groups, and (3) the assessment of outcome between the groups. We extracted or calculated the average values of BNP and NT-proBNP tests for those who survived and those who died. We then estimated the receiver operating characteristic curve (ROC) using the parametric ROC.
Natriuretic peptide	Reference, year	Country	Setting	Study design	Inclusion criteria	Exclusion criteria
BNP	Charpentier et al., 2004	France	Single ICU & center	Prospective cohort	Sepsis	Pregnancy, CHF, HTN, LVH, CP, COPD, CKD
BNP	Cuthbertson et al., 2005	Scotland	Single ICU & center	Prospective cohort	Sepsis	Severe neurologic injury
BNP	Issa et al., 2008	Brazil	Single ICU & center	Prospective cohort	Severe sepsis and septic shock	ICH, hemodialysis, heart disease, ACS
BNP	Klouche et al., 2014	France	Single ICU & center	Prospective cohort	Severe sepsis and septic shock	Pregnancy, age < 18 y, CHF, RWMA, CKD, acute VTE
BNP	Li et al., 2016	China	Single ICU & center	Prospective cohort	Severe sepsis and septic shock	Age < 18 y, CHF, CKD, ICU stay < 24 h, immunosuppression
BNP	Liu et al., 2016	China	Single ICU & center	Prospective cohort	Surgical sepsis	Transplant, cardiac surgery, immunosuppression
BNP	McCormack et al., 2007	Australia	Single ED & center	Retrospective cohort	Sepsis	NA
BNP	McLean et al., 2007	France	Single ICU & center	Prospective cohort	Severe sepsis and septic shock	Negative cultures, poor echo windows
BNP	Papanikolaou et al., 2014	Greece	Single ICU & center	Prospective cohort	Severe sepsis/septic shock, IMV	CHF, CKD, PH, CNS disease, inotropes use
BNP	Post et al., 2008	Germany	Single ICU & center	Prospective cohort	Septic shock	CHF
BNP	Ryoo et al., 2015	Korea	Single ICU & center	Prospective cohort	Septic shock	MI, CHF
BNP	Salim et al., 2015	Egypt	Single ICU & center	Prospective cohort	Sepsis, severe sepsis, septic shock	Coronary artery disease, CHF, atrial fibrillation
BNP	Shor et al., 2006	Israel	Single ICU & center	Prospective cohort	Sepsis, septic shock	CHF, ACS, CKD, VTE, COPD, cancer
BNP	Sturgess et al., 2010	Australia	Single ICU & center	Prospective cohort	Septic shock	VHD
BNP	Turner et al., 2011	US	Single ICU & center	Prospective cohort	Sepsis, severe sepsis, septic shock	Organ transplant
BNP	Yucel et al., 2008	Turkey	Single ICU & center	Prospective cohort	Sepsis	Cardiogenic shock, trauma, burns
NT-proBNP	Balcan et al., 2012	Turkey	Single ICU & center	Prospective cohort	Sepsis	CKD, AKI
NT-proBNP	Balcan et al., 2015	Turkey	Single ICU & center	Prospective cohort	Sepsis	NA
NT-proBNP	Brueckmann et al., 2005	Germany	Multiple ICUs & centers	Prospective cohort	Sepsis	DCM, CP, VHD, CKD, ACS
NT-proBNP	Cheng et al., 2015	China	Single ICU & center	Prospective cohort	Sepsis	Age < 65 y, ICU stay < 4 h, ACS, VHD, COPD, CKD, immunosuppression
NT-proBNP	García Villalba et al., 2017	Spain	Single ICU & center	Prospective cohort	Sepsis	NA

Continued on next page
Natriuretic peptide	Reference, year	Country	Setting	Study design	Inclusion criteria	Exclusion criteria
NT-proBNP	Guaricci et al, 2015	Italy	Single ICU & center	Prospective cohort	Sepsis	LVEF <50%, DCM, CP, VHD, CKD, TBI, death <72 h
NT-proBNP	Ju et al, 2012	China	Single ICU & center	Prospective cohort	Sepsis	Pregnancy, CHF, age <18 y, CKD
NT-proBNP	Landesberg et al, 2012	Israel	Single ICU & center	Prospective cohort	Severe sepsis and septic shock	VHD, RWMA, MI, poor echo images
NT-proBNP	Li et al, 2014	China	Single ICU & center	Prospective cohort	Sepsis	Age <18 y, cancer, ACS, CKD, ICU stay <24 h
NT-proBNP	Mokart et al, 2007	France	Single ICU & center	Prospective cohort	Sepsis	CHF, CKD, COPD, brain disorders
NT-proBNP	Park et al, 2011	Korea	Single ICU & center	Prospective cohort	Septic shock, ARDS	CNS disease, pregnancy, MI, CHF, CKD, VTE
NT-proBNP	Roch et al, 2005	France	Single ICU & center	Prospective cohort	Septic shock, IMV	CHF, COPD, CKD, CNS disease
NT-proBNP	Sasko et al, 2015	Germany	Single ICU & center	Prospective cohort	Septic shock	ARDS
NT-proBNP	Sekino et al, 2017	Japan	Single ICU & center	Prospective cohort	Septic shock	Intestinal ischemia/resection
NT-proBNP	Sturgess et al, 2010	Australia	Single ICU & center	Prospective cohort	Septic shock	VHD
NT-proBNP	Varpula et al, 2007	Finland	Multiple ICUs & centers	Prospective cohort	Sepsis, septic shock	CHF, CAD, prior MI, HTN, diabetes mellitus
NT-proBNP	Wang et al, 2016	China	Single ICU & center	Prospective cohort	Sepsis	ACS, CHF, CAD, hepatic/renal failure
NT-proBNP	Wang et al, 2015	China	Single ICU & center	Prospective cohort	Septic shock	Stay <72 h, prior MI, CNS disease
NT-proBNP	Zhang et al, 2013	China	Single ED & center	Prospective cohort	Sepsis	CHF, DCM, VHD, ACS, CKD

ACS = acute coronary syndrome; AKI = acute kidney injury; ARDS = acute respiratory distress syndrome; BNP = B-type natriuretic peptide; CAD = coronary artery disease; CHF = congestive heart failure; CKD = chronic kidney disease; CNS = central nervous system; COPD = chronic obstructive pulmonary disease; CP = cor pulmonale; DCM = dilated cardiomyopathy; echo = echocardiography; ED = emergency department; HTN = hypertension; ICH = intracranial hemorrhage; ICU = intensive care unit; IMV = invasive mechanical ventilation; LVEF = left ventricular ejection fraction; LVH = left ventricular hypertrophy; MI = myocardial infarction; NA = not available; NT-proBNP = N-terminal pro-B-type natriuretic peptide; PH = pulmonary hypertension; RWMA = regional wall motion abnormalities; TBI = traumatic brain injury; US = United States; VHD = valvular heart disease; VTE = venous thromboembolism.
Natriuretic peptide	Author/Year	Total patients	Age (years)	Male sex	BNP/NT-proBNP assay	BNP/NT-proBNP timing
BNP	Charpentier 2004	34	56 (2.7)	16 (47.1)	Shionora-BNP immunoradiometric assay	Days 1, 2, 3, 4, 8
BNP	Cuthbertson 2005	35	66 (55-74)	20 (57)	Bayer ADVIA Immunoassay	ICU admission
BNP	Issa 2008	23	51.3 (18.6)	14 (60.9)	Microparticle Immunoassay (MEIA-Abbott)	ICU admission
BNP	Klouche 2014	47	60 (16)	27 (57.5)	Immunochemiluminescent Access 2 analyzer	Day 5
BNP	Li 2016	84	NA	56 (66.7)	Elecsys 2010 Roche Diagnostics	Days 1, 3, 5
BNP	Liu 2016	156	61 (40-76)	100 (64.4)	NA	ICU admission
BNP	McCormack 2016	37	NA	NA	NA	ED admission
BNP	McLean 2007	40	NA	NA	Triage BNP detector	Days 1-10
BNP	Papanikolaou 2014	42	NA	26	Biosite Triage BNP meter	Days 1, 2, 3, 4, 5
BNP	Post 2008	93	65 (53-73.5)	51 (55)	Biosite Triage BNP meter	Day 5
BNP	Ryoo 2015	290	63.9 (13)	170 (58.6)	ADVIA Centaur; Bayer Diagnostics	ICU admission
BNP	Salim 2015	40	NA	22	Enzyme immunoassay	Days 1, 3
BNP	Shor 2006	21	79.3 (9.15)	NA	Axsym Abbott immunoassay	ICU admission
BNP	Sturgess 2010	21	53.5 (19.6)	13 (61.9)	Biosite Triage BNP analyzer	<72 hours
BNP	Turner 2011	231	59 (3)	100 (43)	—	—
BNP	Yucel 2008	40	NA	NA	Shionora-BNP assay, Cisbio International	Days 1, 2, 28
BNP	Zhang 2012	73	59 (16)	43 (64.2)	Biosite Triage BNP analyzer	ICU admission
NT-proBNP	Balcan 2016	48	66.8 (17.9)	74 (52.5)	NA	ICU admission
NT-proBNP	Balcan 2015	141	61.5 (12.4)	20 (42)	NA	<24 hours
NT-proBNP	Brueckmann 2005	57	55 (16.3)	42 (74)	Biozol, Enzyme Immunoassay	Day 2
NT-proBNP	Cheng 2015	430	74.15 (14)	219 (50.8)	NA	ICU admission
NT-proBNP	Garcia 2017	174	73 (16)	102 (58.6)	LOCI Chemiluminescent Immunoassay	ICU admission
NT-proBNP	Guaricci 2015	40	64 (48.75-72)	22 (55)	Biozol, Enzyme Immunoassay	6, 72 hours
NT-proBNP	Ju 2012	100	65.97 (13.95)	74 (74)	Cobase 411, Roche Diagnostics	ICU admission
NT-proBNP	Landesberg 2012	262	NA	159 (60.7)	Elecsys 2010 Roche Diagnostics	ICU admission
NT-proBNP	Li 2014	102	63 (21)	49 (48)	Elecsys 2010 Roche Diagnostics	Days 1, 3, 5
NT-proBNP	Mokart 2007	51	56 (50-68)	32 (62)	Roche Elecsys 2010	Day 1, 2
NT-proBNP	Park 2011	49	64 (15)	28 (57.1)	Elecsys 2010 Roche Diagnostics	Days 1, 2, 3
NT-proBNP	Roch 2005	39	63 (12)	NA	Elecsys 2010 Roche Diagnostics	ICU admission
NT-proBNP	Sasko 2015	52	71.4 (8.5)	31 (59.6)	NA	ICU admission
NT-proBNP	Sekino 2017	57	71 (62-79)	35 (61)	Elecsys 2010 Roche Diagnostics	ICU admission
NT-proBNP	Sturgess 2010	21	53.5 (19.6)	13 (61.9)	Elecsys 2010 Roche Diagnostics	<72 hours

TABLE 2. Study Population and Natriuretic Peptide Characteristics

Continued on next page
regression model proposed by Alonzo and Pepe. Each study was weighted by the number of patients. We used the area under the ROC (AUROC) as a measure of test performance for mortality prediction. Optimal sensitivity (Sn) and specificity (Sp) and corresponding cutoffs were estimated using the Youden index. Multiple subgroup analyses were performed to confirm the primary findings and to understand the predictive capacity of BNP/NT-proBNP. Subgroups were stratified by timing of BNP/NT-proBNP measurement (≤24 hours/>24 hours after hospital admission), study era (≤2010/>2010), studies performed in the United States and Europe vs other countries, and studies evaluating all types of sepsis vs only severe sepsis and septic shock. All statistical analyses were conducted using Stata statistical software, version 15.1 (StataCorp).

RESULTS
A total of 452 unique studies were identified by the initial search strategy. Abstracts and subsequently full texts of selected articles were screened, and 35 studies, with a total of 3508 patients, were selected for data extraction (Figure 1). All the studies were of moderate methodological quality. Detailed study characteristics and populations are highlighted in Table 1. Concomitant heart failure, cor pulmonale, valvular heart disease, acute coronary syndrome, intracranial hemorrhage, and chronic kidney disease were the most common reasons for exclusion of patients across the 36 studies. The median age across the studies varied from 51 to 75 years, and 12% to 74% of patients were male. Most studies measured BNP/NT-proBNP at emergency department or intensive care unit admission or within the first 24 hours after admission (Table 2).

Absolute mortality rate was not reported in one study. Cumulative short-term mortality was 34.2% (1188/3471) in the 35 studies.
Natriuretic peptide	Reference, year	Total patients	Patients alive	Patients dead	Mortality prediction
	No. Mean ± SD or median (IQR)		No. Mean ± SD or median (IQR)		Cutoff Sn/Sp (%) AUROC
BNP	Charpentier et al, 2004	34 24	181±46	246	190 70/67 0.66
BNP	Cuthbertson et al, 2005	35 25	651 (242-1023)	377 (85-683)	100 NA NA
BNP	Issa et al, 2008	23 8	173±1.8	195.5±2.7	NA NA NA
BNP	Klouche et al, 2014	47 34	836±859	2605±1957	NA NA NA
BNP	Li et al, 2016	84 40	216 (110-689)	456.7 (211-1024.2)	NA NA NA
BNP	Liu et al, 2016	156 110	500 (171-1689)	3763 (628-23,382)	NA NA NA
BNP	McCormack et al, 2016	37 NA	767.1±315.37	1294±946.84	NA NA NA
BNP	McLean et al, 2007	40 31	603±708	788±904	NA NA NA
BNP	Papanikolaou et al, 2014	42 22	732±122.5	1099.5±133.8	800 65/64 0.7
BNP	Post et al, 2008	93 55	119 (79.5-652)	672 (122-779.3)	121 76/52.7 0.65
BNP	Ryoo et al, 2015	290 227	469±761.8	1156±1425.3	NA NA NA
BNP	Salm et al, 2015	40 23	326±199.1	622±157.4	449 94/79 0.88
BNP	Shor et al, 2006	21 13	121±368.9	201±301.6	NA NA NA
BNP	Sturgess et al, 2010	21 15	448±607	1289±1155	254 83/60 0.76
BNP	Tucker et al, 2011	231 160	309±61	986±312	NA NA NA
BNP	Yucel et al, 2008	40 20	13.72±12.95	254.78±308.62	32.1 100/95 0.99
BNP	Zhang et al, 2012	73 40	550 (331-788)	738 (596-937)	816 48/87.5 0.71
BNP	Balcan et al, 2016	48 33	1882±1652.29	12,202±12,567.84	3736 NA 0.703
BNP	Balcan et al, 2015	141 69	3726	10,428	NA NA NA
NT-proBNP	Brueckmann et al, 2005	57 41	493 (314-1126)	1431 (712-1920)	1400 50/90.2 0.68
NT-proBNP	Cheng et al, 2015	430 294	2170±625.28	5873±1768.37	4542 68/95 0.62
NT-proBNP	García Villalba et al, 2017	174 157	1112 (379-2570)	6187 (1780-9949)	1330 NA 0.793
NT-proBNP	Guaricci et al, 2015	40 18	6586 (3281-9573)	12,743 (8352-14,289)	1000 NA 0.73
NT-proBNP	Ju et al, 2012	100 67	2902.23±506.08	3239±2687.31	NA NA NA
NT-proBNP	Landesberg et al, 2012	262 167	2275 (567-9426)	13,980 (5877-34,718)	NA NA NA
NT-proBNP	Li et al, 2014	102 60	360.4 (178-15-1204.5)	539 (314.5-785.4)	NA NA NA
NT-proBNP	Mokart et al, 2007	51 19	3414 (754-9005)	7939 (4495-33,662)	6624 86/77 0.87
NT-proBNP	Park et al, 2011	49 18	4000 (1614-11,233)	2819 (937-12,256)	NA 82/81 0.82
NT-proBNP	Roch et al, 2005	39 17	7856 (1291-12972)	34,028 (11,735-49,320)	13,600 73/83 0.8
NT-proBNP	Sasaki et al, 2015	52 24	1177±1854	8623±34,296	NA NA NA
NT-proBNP	Sekino et al, 2017	57 44	8710 (1903-17,930)	34,820 (5432-65,122)	NA NA NA
NT-proBNP	Sturgess et al, 2010	21 15	841±818	1801±853	400 83/40 0.67

Continued on next page
that reported mortality rates. Detailed mortality rates and BNP/NT-proBNP values based on the vital status of patients in each study are reported in Table 3. As noted in Table 3, studies reported varying cutoffs of BNP/NT-proBNP in estimating mortality in patients with sepsis and septic shock. These cutoffs had varying AUROCs of 0.62 to 0.99 in the studies that reported these statistics. Using the parametric ROC regression model, we estimated the AUROC for BNP and NT-proBNP individually (Figures 2A and B). A BNP value of 622 pg/mL (to convert to ng/L, multiply by 1.0) had the greatest discrimination for short-term mortality prediction in patients with sepsis—Sn, 0.695 (95% CI, 0.659-0.729); Sp, 0.907 (95% CI, 0.810-1.003); and AUROC, 0.766 (95% CI, 0.734-0.797). An NT-proBNP value of 4000 pg/mL (1 pg/mL = 0.118 pmol/L) had the greatest discrimination for short-term mortality prediction in patients with sepsis—Sn, 0.728 (95% CI, 0.703-0.753); Sp, 0.789 (95% CI, 0.710-0.867); and AUROC, 0.787 (95% CI, 0.766-0.809). In the prespecified subgroup analyses, the BNP cutoff had greater discrimination for in-hospital mortality when measured 24 hours or less after hospital admission—AUROC, 0.920 (95% CI, 0.889-0.951); Sn, 0.779 (95% CI, 0.723-0.834); and Sp, 0.986 (95% CI, 0.966-1.000), as compared to more than 24 hours after hospital admission—AUROC, 0.725 (95% CI, 0.684-0.766); Sn, 0.644 (95% CI, 0.599-0.688); and Sp, 0.964 (95% CI, 0.892-1.000). Because only a limited number of studies measured NT-proBNP during the first 24 hours, this subgroup analysis was restricted to more than 24 hours after hospital admission. The NT-proBNP values measured at more than 24 hours after hospital admission had an AUROC of 0.790 (95% CI, 0.768-0.812), Sn of 0.736 (95% CI, 0.711-0.761), and Sp of 0.773 (95% CI, 0.690-0.857). When stratified by year, BNP (≤2010—AUROC of 0.77 [95% CI, 0.73-0.80], Sn of 0.67 [95% CI, 0.58-0.75], and Sp of 0.59 [95% CI, 0.50-0.67]; >2010—AUROC of 0.82 [95% CI, 0.78-0.85], Sn of 0.76 [95% CI, 0.73-0.80], and Sp 0.93 [95% CI, 0.82-1.00]) and NT-proBNP (≤2010—AUROC of 0.78 [95% CI, 0.63-0.84], Sn of 0.64 [95% CI, 0.57-0.71], and Sp of 0.99 [95% CI, 0.99-1.00];
>2010—AUROC of 0.81 [95% CI, 0.78-0.83], Sn of 0.73 [95% CI, 0.70-0.76], and Sp 0.83 [95% CI, 0.76-0.89]) had greater accuracy for studies performed after 2010. When restricted to only patients with severe sepsis/septic shock, BNP had higher discrimination (severe sepsis/septic shock—AUROC of 0.79 [95% CI, 0.75-0.84], Sn of 0.70 [95% CI, 0.65-0.73], and Sp of 0.83 [95% CI, 0.73-0.94]; all sepsis—AUROC of 0.77 [95% CI, 0.72-0.82], Sn of 0.71 [95% CI, 0.66-0.76], and Sp of 0.92 [95% CI, 0.74-1.00]), but NT-proBNP had lower discrimination (severe sepsis/septic shock—AUROC of 0.80 [95% CI, 0.77-0.84], Sn of 0.66 [95% CI, 0.62-0.71], and Sp of 0.93 [95% CI, 0.87-0.98]; all sepsis—AUROC of 0.84 [95% CI, 0.82-0.87], Sn of 0.74 [95% CI, 0.70-0.77], and Sp of 0.87 [95% CI, 0.82-0.87]).

When stratified by country, studies performed in the United States and Europe had greater accuracy for mortality prediction for both BNP (United States/Europe—AUROC of 0.82 [95% CI, 0.77-0.87], Sn of 0.70 [95% CI, 0.64-0.77], and Sp of 0.86 [95% CI, 0.77-0.95]; other countries—AUROC of 0.75 [95% CI, 0.71-0.79], Sn of 0.70 [95% CI, 0.65-0.74], and Sp of 0.92 [95% CI, 0.75-1.00]) and NT-proBNP (United States/Europe—AUROC of 0.83 [95% CI, 0.78-0.87], Sn of 0.70 [95% CI, 0.65-0.76], and Sp of 0.98 [95% CI, 0.94-1.00]; other countries—AUROC of 0.78 [95% CI, 0.76-0.81], Sn of 0.71 [95% CI, 0.68-0.74], and Sp of 0.79 [95% CI, 0.71-0.87]).

DISCUSSION

In this systematic review and meta-analysis of 36 studies and 3508 patients, we noted that (1) sepsis continues to be associated with a high mortality of 34.2%, (2) BNP and NT-proBNP are frequently elevated in patients with sepsis and are prognostic in this population, and (3) optimal cutoffs for BNP and NT-proBNP were calculated at 622 pg/mL and 4000 pg/mL for prediction of short-term mortality in patients with sepsis and septic shock. In prespecified subgroup analyses, identified BNP/NT-proBNP cutoffs had higher discrimination if specimens were obtained 24 hours or less after admission, in patients with severe sepsis/septic shock, in patients enrolled after 2010, and in studies performed in the United States and Europe.

The release of BNP and NT-proBNP in patients with sepsis is stimulated by myocytic stretch with ventricular dysfunction and proinflammatory molecules such as lipopolysaccharide, interleukin 1, C-reactive protein, and cardiotrophin 1 promoting BNP gene expression and release. Furthermore, concomitant renal failure and processes of care such as catecholamine infusions and volume resuscitation lead to an elevation in BNP/NT-proBNP levels independent of ventricular function. Importantly, the timing of BNP
release and therefore the optimal timing of measurement in this critically ill population remains debatable. As noted in this meta-analysis, there was wide variation in the timing of BNP measurement. Most studies measured it at admission or within the first 24 hours, which is reflective of contemporary clinical practice. It is important to note that in patients with sepsis, adequate fluid resuscitation and hemodynamic restoration can result in unmasking of left ventricular systolic dysfunction as manifested by a decrease in ejection fraction within the first 72 hours. Serial BNP testing may have greater clinical utility in prognostication for patients with sepsis than a 1-time measurement. Papanikolou et al recently reported that a persistently elevated BNP level of greater than 500 pg/mL was a better predictor of 28-day mortality than isolated BNP values. Inability to reduce BNP to less than 500 pg/mL predicted 28-day mortality with an AUROC of 0.74 (95% CI, 0.55-0.93; P=.03). In our meta-analysis, we were unable to assess the utility of serial BNP testing in mortality prediction because of high heterogeneity in the timing and frequency of sampling.

The use of natriuretic peptides to evaluate cardiac function in patients with sepsis has been studied extensively in multiple studies, including studies included in this meta-analysis. However, the evaluation of cardiac function with BNP has to be balanced against the potential confounding from respiratory pathology and renal failure. Pulmonary pathology such as acute respiratory distress syndrome and chronic obstructive pulmonary disease and interventions such as mechanical ventilation influence the BNP levels in this population. As noted in this meta-analysis, studies variably exclude preexisting chronic kidney disease and inconsistently adjust for acute kidney injury in their analyses. In patients with sepsis, studies have found conflicting results regarding correlations between BNP and serum creatinine levels. In an updated search incorporating studies from 2017-2019, there were no changes in the profile or outcome prediction using BNP/NT-proBNP. Further studies are needed to develop clinically relevant BNP cutoffs stratified by renal function in patients with sepsis to more usefully define ranges of BNP in these patients. Lastly, BNP/NT-proBNP needs to be contextualized to age and sex. Cutoffs based on age and sex have been suggested in primary care patients and heart failure populations but have not been validated in patients with sepsis at the current time.

It is important to note that unlike in patients with heart failure, there are no current cutoffs for BNP/NT-proBNP in patients with sepsis. Using a large sepsis population, we were able to develop cutoffs for mortality prediction in this population. It is important that biomarkers be considered in prognosticating modeling and early prediction of outcomes. A combination of early measurement of cardiac biomarkers has been postulated to differentiate Takotsubo cardiomyopathy from acute myocardial infarction. Similar paradigms might be useful in predicting the extent of reversible myocardial dysfunction and long-term risk for heart failure in patients with sepsis and septic cardiomyopathy. Furthermore, the use of cardiac biomarkers in risk scoring systems is worthy of further study. Khoury et al found the BNP level at admission to be more predictive of short-term mortality than the Sequential Organ Failure Assessment score. In contrast, Ryoo et al reported that the combination of BNP with the Sequential Organ Failure Assessment score resulted in better prognostication in patients with sepsis than either method alone. The use of cardiac biomarkers, including BNP/NT-proBNP, may be of incremental benefit in improving the accuracy of cardiovascular dysfunction in this population that may aid in personalized therapies for sepsis. The BNP and NT-proBNP levels of 622 pg/mL and 4000 pg/mL noted in our study need further validation in carefully designed prospective studies. Given the subgroup analyses performed in our study, inclusion of pertinent enriched populations might aid in development of studies with a pragmatic sample size.

This study has important limitations. The selection of all types of sepsis can cause substantial heterogeneity in the assessment of clinical outcomes. Importantly, sepsis and septic shock may be fundamentally different in their etiology and clinical course. Furthermore, most studies did not systematically evaluate cardiac dysfunction. As we have reported previously, cardiac
dysfunction and injury as measured by echocardiography or cardiac troponin T levels are associated with worse outcomes.1,3-5,7,9 Fluid balance, prior heart failure, use of inotropic medications, and acute septic cardiomyopathy are closely associated with BNP release, and age, sex, and renal function are associated with varying BNP degradation.74 However, these factors were not systematically assessed in the individual studies included in our analyses, limiting the generalizability of our findings. Our study consisted primarily of observational studies, which have their own limitations. Observational studies are prone to confounding by indication and heterogeneity. This meta-analysis was performed in a study-level population, and thus, despite best attempts, crucial differences in patient characteristics across studies may have contributed to the results we observed. In addition, it is clear that natriuretic peptide assays vary substantially in their dynamic ranges. Thus, different assays may provide different numerical results in studies. Unfortunately, the data did not allow us to separate out those studies. It is clear, for this reason alone but likely for others as well, that a heterogeneity analysis would not have been productive.17,25 Finally, this study evaluated short-term mortality only, with limited insight into long-term survival and functional recovery, both of which remain a challenge in patients with sepsis and cardiac dysfunction.4

CONCLUSION

In this hypothesis-generating meta-analysis of 3508 patients, BNP and NT-proBNP levels of 622 pg/mL and 4000 pg/mL were noted to predict short-term mortality with an AUROC of 0.766 and 0.787, respectively. Further dedicated research into the incorporation of these biomarkers into prognostic models and structured evaluation of cardiovascular dysfunction in patients with sepsis are needed to understand the clinical implications of these findings.

ACKNOWLEDGMENTS

The contents of this work are solely the responsibility of the authors and do not necessarily represent the official view of the National Institutes of Health.

We thank Larry J. Prokop, MLS, from the Mayo Clinic Libraries for assistance with the literature search.

Author Contributions: Dr Saarwaani Vallabhajosyula—study design, literature review, study selection, data management, data analysis, manuscript drafting, revision, and final approval; Dr Wang—data management, data analysis, manuscript drafting, revision, and final approval; Dr Murad—study design, literature review, data analysis, manuscript revision, intellectual revisions, mentorship, and final approval; Dr Shashaank Vallabhajosyula—study design, literature review, study selection, data management, data analysis, manuscript drafting, revision, and final approval; Dr Sundaragiri—study design, literature review, study selection, data management, data analysis, manuscript drafting, revision, and final approval; Dr Kashani—manuscript revision, intellectual revisions, mentorship, and final approval; Dr Miller—manuscript revision, intellectual revisions, mentorship, and final approval; Dr Jaffe—manuscript revision, intellectual revisions, mentorship, and final approval; Dr Sarashandra Vallabhajosyula—study design, literature review, study selection, data management, data analysis, manuscript drafting, revision, and final approval.

SUPPLEMENTAL ONLINE MATERIAL

Supplemental material can be found online at http://mcpiqojournal.org. Supplemental material attached to journal articles has not been edited, and the authors take responsibility for the accuracy of all data.

Abbreviations and Acronyms: AUROC = area under the receiver operating characteristic curve; BNP = B-type natriuretic peptide; NT-proBNP = N-terminal pro-B-type natriuretic peptide; ROC = receiver operating characteristic curve; Sn = sensitivity; Sp = specificity

Affiliations (Continued from the first page of this article.) Vallabhajosyula, KK, Sarashandra Vallabhajosyula), Division of Hospital Internal Medicine (P.R.S.), and Division of Nephrology and Hypertension (KK), Department of Medicine; Division of Clinical Core Laboratory Services, Department of Laboratory Medicine and Pathology (A.S.J.); and Center for Clinical and Translational Science, Mayo Clinic Graduate School of Biomedical Sciences (Saraschandra Vallabhajosyula), Mayo Clinic, Rochester, MN.
Grant Support: Dr Sarasandra Vallabhajosyula is supported by a Clinical and Translational Science Award (grant UL1 TR000135) from the National Center for Advancing Translational Sciences, a component of the National Institutes of Health.

Potential Competing Interests: Dr Jaffe has been a consultant for Beckman Coulter, Inc; Abbott, Siemens, F. Hoffmann-La Roche Ltd, ET Healthcare, Inc, SphingoTec GmbH, Quidel Corporation, Brava Diagnostics, Bärme, and Novartis AG. The other authors report no competing interests.

Publication dates: Received for publication April 17, 2019; revised October 7, 2019; accepted for publication October 15, 2019.

Correspondence: Address to Dr Sarasandra Vallabhajosyula, MD, Department of Cardiovascular Medicine, Mayo Clinic, 200 First St SW, Rochester, MN 55905 (Vallabhajosyula.Sarasandra@mayo.edu; Twitter: @SaraVallabhMD).
28. Cuthbertson BH, Patel RR, Croal BL, Barclay J, Hills GS. B-type natriuretic peptide and the prediction of outcome in patients admitted to intensive care. Anaesthesia. 2005;60(1):16-21.
29. Jefic D, Lee JW, Jefic D, Savay-Moore RT, Rosman HS. Utility of B-type natriuretic peptide and N-terminal pro-B-type natriuretic peptide in evaluation of respiratory failure in critically ill patients. Oest. 2005;128(1):288-295.
30. McLean AS, Huang SJ. Brain not processing is finding a role for BNP in sepsis like fitting a square peg into a round hole? Crit Care. 2014;18(4):161.
31. Vandenbroucke JP, van Elm E, Altman DG, et al. STROBE Initiative. Strengthening the Reporting of Observational Studies in Epidemiology (STROBE): explanation and elaboration. PLoS Med. 2007;4(10):e297.
32. Levy MM, Fink MP, Marshall JC, et al. 2001 Sepsis Definitions Conference. Crit Care Med. 2003;31(3):1250-1256.
33. Singer M, Deutschman CS, Seymour CW, et al. The Third International Consensus Definitions for Severe Sepsis and Septic Shock (Sepsis-3). JAMA. 2016;315(8):801-810.
34. Wells GA, Shea B, O’Connell D, et al. The Newcastle-Ottawa Scale (NOS) for assessing the quality of nonrandomised studies in meta-analyses. Ottawa Hospital Research Institute website. http://www.ohri.ca/programs/clinical_epidemiology/oxford.asp. Accessed May 7, 2019.
35. Alonzo TA, Pepe MS. Distribution-free ROC analysis using binary regression techniques. Biostatistics. 2002;3(3):412-432.
36. Youden WJ. Index for rating diagnostic tests. Cancer. 1950;3(1):32-35.
37. Charpentier J, Luyt C-E, Fullo D, Lee JW, Jeong J, Cho WH, De Backer D, et al. Brain natriuretic peptide: a marker of myocardial dysfunction and prognosis during severe sepsis. Crit Care Med. 2004;32(5):660-665.
38. Issa VS, Taniguchi LU, Park M, et al. Positive end-expiratory pressure and renal function influence B-type natriuretic peptide in patients with severe sepsis and septic shock. Am J Respir Crit Care Med. 2008;179(2):107-112.
39. Khouche K, Pommet S, Amigues L, et al. Plasma brain natriuretic peptide and troponin levels in severe sepsis and septic shock: relationships with systolic myocardial dysfunction and intensive care unit mortality. J Intensive Care Med. 2014;29(4):229-237.
40. Li Z, Zhang E, Hu Y, Liu J, Chen B. High serum sTREM-1 correlated with sepsis severity in patients with severe sepsis and septic shock. Crit Care. 2007;11(4):R106.
41. Liu Z, Chen J, Liu Y, et al. A simple bioscore improves diagnostic accuracy of sepsis after surgery. J Surg Res. 2016;200(1):290-297.
42. McCormack D, Ruderman A, Kulkarni M, Keller SE. Elevated cardiac biomarkers are not associated with mortality in low-risk cardiac patients with severe sepsis [letter]. J Emerg Med. 2016;53(9):1899-1900.
43. McLean AS, Huang SJ, Hyams S, et al. Prognostic values of B-type natriuretic peptide in severe sepsis and septic shock. Crit Care Med. 2007;35(4):1019-1026.
44. Papanikolaou J, Makris D, Mpaka M, Palli E, Zygoulis P, Zakynthinos E. New insights into the mechanisms involved in B-type natriuretic peptide elevation and its prognostic value in septic patients. Crit Care. 2014;18(3):R94.
45. Post F, Weitemann LS, Plessow CM, Sinning C, Müenzel T. B-type natriuretic peptide as a marker for sepsis-induced myocardial depression in intensive care patients. Crit Care Med. 2008;36(11):3030-3037.
46. Ryoo SM, Kim WY, Huh JW, et al. Prognostic value of B-type natriuretic peptide with the sequential organ failure assessment score in septic shock. J Am Soc Nephrol. 2011;22(4):287-291.
47. Salm MB, Elasar H, El Damarawy M, Wadee A, Ashour A, Nasr PHI. Atrial natriuretic factor and brain natriuretic peptide as markers for mortality in sepsis. Egyptians J Crit Care Med. 2015;3(1):29-35.
48. Shor P, Rozenman Y, Bolshinsky A, et al. BNP in septic patients without systolic myocardial dysfunction. Eur J Intern Med. 2006;17(8):536-540.
49. Sturgess D, Warwick T, Joyce C, et al. Diastolic dysfunction in septic shock is an independent predictor of elevated B-type natriuretic peptide and hospital mortality. Crit Care. 2010;14(suppl 1):P394.
50. Turner KL, Moore LJ, Todd SR, et al. Identification of cardiac dysfunction in sepsis with B-type natriuretic peptide. J Am Coll Surg. 2011;213(1):139-146.
51. Zhang Z, Zhang Z, Xue Y, Xu X, Ni H. Prognostic value of B-type natriuretic peptide (BNP) and its potential role in guiding fluid therapy in critically ill septic patients. Scand J Trauma Resusc Emerg Med. 2012;2086.
52. Balcan B, Olguin S, Akgun T, Eryüksel E, Karakurt S. Level of adrenomedullin in cases with adrenal deficiency and its relation to mortality in patients with sepsis. Turk Toksikol. 2016;66(3):191-197.
53. Balcan B, Olguin S, Toltak F, Salgnet SB, Eryüksel E, Karakurt S. Determination of factors affecting mortality of patients with sepsis in a tertiary intensive care unit. Turk Thorac J. 2015;16(3):128-132.
54. Brueckmann M, Huhle G, Lang S, et al. Prognostic value of plasma N-terminal pro-b-natriuretic peptide in patients with severe sepsis. Circulation. 2005;112(4):527-534.
55. Cheng H, Fan VWZ, Wang S-C, et al. N-terminal pro-brain natriuretic peptide and cardiac troponin I for the prognostic utility in elderly patients with severe sepsis or septic shock in intensive care unit: a retrospective study. J Crit Care. 2015;30(3):654.e9-654.e14.
56. García Villalba E, Bernal Morell E, Egea MP, et al. The N-terminal pro brain natriuretic peptide is the best predictor of mortality during hospitalization in patients with low risk of sepsis-related organ failure. Med Clin (Barc). 2017;149(5):189-195.
57. Guaracci AI, Santoro F, Paoletti Perini A, et al. Correlations between NT-proBNP, outcome and haemodynamics in patients with septic shock. Acta Cardiol. 2015;70(5):545-552.
58. Ju M, Zhu D, Tu G, et al. Predictive value of N-terminal pro-brain natriuretic peptide in combination with the sequential organ failure assessment score in sepsis. Chin Med J (Engl). 2012;125(1):1893-1898.
59. Landeberg G, Gilon D, Meroz Y, et al. Diastolic dysfunction and mortality in severe sepsis and septic shock. Eur Heart J. 2011;32(7):895-903.
60. Li Z, Wang H, Liu J, Chen B, Li G. Serum soluble triggering receptor expressed on myeloid Cells 1 and permeolipin can reflect sepsis severity and predict prognosis: a prospective cohort study. Mediators Inflamm. 2014;2014:641039.
61. Mokart D, Sannini A, Brun JP, et al. N-terminal pro-brain natriuretic peptide as an early prognostic factor in cancer patients developing septic shock. Crit Care. 2007;11(2):R37.
62. Park BH, Park MS, Kim YS, et al. Prognostic utility of changes in N-terminal pro-brain natriuretic peptide combined with sequential organ failure assessment scores in patients with acute lung injury/acute respiratory distress syndrome concomitant with septic shock. Shock. 2011;36(2):109-114.
63. Saksio B, Butz T, Prull MW, Liebeton J, Trappe H-J. Earliest bedside assessment of hemodynamic parameters and cardiac biomarkers: their role as predictors of adverse outcome in patients with septic shock. Int J Med Sci. 2015;12(9):680-688.
64. Sekino M, Funakoshi H, Sato S, et al. Intestinal fatty acid-binding protein level as a predictor of 28-day mortality and bowel ischemia in patients with septic shock: a preliminary study. J Crit Care. 2017;32:92-100.
65. Varpula M, Pulkki K, Karlsson S, Ruokonen E. Pettäli V. FINN-SEPSS Study Group. Predictive value of N-terminal pro-brain natriuretic peptide in severe sepsis and septic shock. Crit Care Med. 2007;35(5):1277-1283.
66. Wang J, X, Xu Z, Pan T. Clinical significance of plasma levels of brain natriuretic peptide and cardiac troponin T in patients with sepsis. *Exp Ther Med*. 2016;11(1):154-156.

67. Wang H, Li Z, Yin M, et al. Combination of Acute Physiology and Chronic Health Evaluation II score, early lactate area, and N-terminal prohormone of brain natriuretic peptide levels as a predictor of mortality in geriatric patients with septic shock. *J Crit Care*. 2015;30(2):304-309.

68. Zhang XH, Dong Y, Chen YD, Zhou P, Wang JD, Wen FQ. Serum N-terminal pro-brain natriuretic peptide level is a significant prognostic factor in patients with severe sepsis among Southwest Chinese population. *Eur Rev Med Pharmacol Sci*. 2013;17(4):517-521.

69. Ueda S, Nishio K, Akai Y, et al. Prognostic value of increased plasma levels of brain natriuretic peptide in patients with septic shock. *Shock*. 2006;26(2):134-139.

70. Keyzer JM, Hoffmann J, Ringoir L, Nabbe KC, Widdershoven JW, Paep VJ. Age- and gender-specific brain natriuretic peptide (BNP) reference ranges in primary care. *Clin Chem Lab Med*. 2014;52(9):1341-1346.

71. Randhawa MS, Dhillon AS, Taylor HC, Sun Z, Desai MY. Diagnostic utility of cardiac biomarkers in discriminating Takotsubo cardiomyopathy from acute myocardial infarction. *J Card Fail*. 2014;20(5):377.e25-377.e31.

72. Khoury J, Arow M, Elias A, et al. The prognostic value of brain natriuretic peptide (BNP) in non-cardiac patients with sepsis, ultra-long follow-up. *J Crit Care*. 2017;42:117-122.

73. Yadav H, Harrison AM, Hanson AC, Gajic O, Kor DJ, Cartin-Ceba R. Improving the accuracy of cardiovascular component of the Sequential Organ Failure Assessment score [published correction appears in *Crit Care Med*. 2016;44(5):e315-e316]. *Crit Care Med*. 2015;43(7):1449-1457.

74. Pandopatam G, Kashani K, Vallabhajosyula S. The role of natriuretic peptides in the management, outcomes and prognosis of sepsis and septic shock. *Rev Bras Ter Intensiva*. 2019;31(3):368-378.

75. Vasile VC, Jaffe AS. Natriuretic peptides and analytical barriers. *Clin Chem*. 2017;63(1):50-58.