MULTIPLICATION CONDITIONAL EXPECTATION TYPE OPERATORS ON ORLICZ SPACES

Y. ESTAREMI

Abstract. In this paper we consider a generalized conditional-type H"older-inequality and investigate some classic properties of multiplication conditional expectation type operators on Orlicz-spaces.

1. Introduction

Let (Ω, Σ, μ) be a measure space and $\mathcal{A} \subseteq \Sigma$ be sub $\sigma-$algebra. For a sub-σ-finite algebra $\mathcal{A} \subseteq \Sigma$, the conditional expectation operator associated with \mathcal{A} is the mapping $f \mapsto E^{A}f$, defined for all non-negative f as well as for all $f \in L^1(\Sigma)$ and $f \in L^\infty(\Sigma)$, where $E^A f$, by the Radon-Nikodym theorem, is the unique $\mathcal{A}-$measurable function satisfying

$$\int_A f d\mu = \int_A E^A f d\mu, \quad \forall A \in \mathcal{A}.$$

As an operator on $L^1(\Sigma)$ and $L^\infty(\Sigma)$, E^A is idempotent and $E^A(L^\infty(\Sigma)) = L^\infty(\mathcal{A})$ and $E^A(L^1(\Sigma)) = L^1(\mathcal{A})$. Thus it can be defined on all interpolation spaces of L^1 and L^∞ such as, Orlicz spaces. If there is no possibility of confusion, we write $E(f)$ in place of $E^A(f)$. This operator will play a major role in our work and we list here some of its useful properties:

- If g is \mathcal{A}-measurable, then $E(fg) = E(f)g$.
- $\varphi(E(f)) \leq E(\varphi(f))$, where φ is a convex function.
- If $f \geq 0$, then $E(f) \geq 0$; if $f > 0$, then $E(f) > 0$.
- For each $f \geq 0$, $\sigma(f) \subseteq \sigma(E(f))$.

A detailed discussion and verification of most of these properties may be found in [21]. We recall that an \mathcal{A}-atom of the measure μ is an element $A \in \mathcal{A}$ with $\mu(A) > 0$ such that for each $F \in \mathcal{A}$, if $F \subseteq A$, then either $\mu(F) = 0$ or $\mu(F) = \mu(A)$. A measure space (X, Σ, μ) with no atoms is called non-atomic measure space.

Let (Ω, Σ, μ) be a measure space and $\mathcal{A} \subseteq \Sigma$ be sub $\sigma-$algebra, such that $(\Omega, \mathcal{A}, \mu)$ has finite subset property. $E^A = E$ is conditional expectation with respect to \mathcal{A}. It is well-known fact that every σ-finite measure space (Ω, Σ, μ) can be partitioned uniquely as $\Omega = \bigcup_{n \in \mathbb{N}} C_n \cup B$, where $\{C_n\}_{n \in \mathbb{N}}$ is a countable collection of pairwise disjoint Σ-atoms and B, being disjoint from each C_n, is non-atomic.

1991 Mathematics Subject Classification. 47B47.
Key words and phrases. Conditional expectation- Orlicz space- Holder-inequality- Compact operator- Essential norm.

This work has been done under supervision of Professor Ben De Pagter, when the author has been in Delft University of Technology for a six month visit.
Operators in function spaces defined by conditional expectations were first studied, among others, by S. T.C. Moy [19], Z. Sidak [22] and H.D. Brunk [5] in the setting of L^p spaces. Conditional expectation operators on various function spaces exhibit a number of remarkable properties related to the underlying structure of the given function space or to the metric structure when the function space is equipped with a norm. P.G. Dodds, C.B. Huijsmans and B. de Pagter [7] linked these operators to averaging operators defined on abstract spaces earlier by J.L. Kelley [15], while A. Lambert [16] studied their link to classes of multiplication operators which form Hilbert C^*-modules. J.J. Grobler and B. de Pagter [11] showed that the classes of partial integral operators, studied by A.S. Kalitvin and others [1, 2, 3, 6, 14], were a special case of conditional expectation operators. Recently, J. Herron studied operators E_{M_u} on L^p spaces in [12].

Also, in [9, 10] we investigate some classic properties of multiplication conditional expectation operators $M_uE_{M_u}$ on L^p spaces. In the present paper we continue the investigation of some classic properties of the operator E_{M_u} on Orlicz spaces by considering Generalized conditional-type Holder inequality.

Let us now introduce the definition of convexity for functions of n variables and later some particular criteria for convex functions of 2 variables.

Definition

Let be $f : \mathbb{R}^n \to \mathbb{R}$ and $x = (x_1, ..., x_n) \in \mathbb{R}^n$, we say that the function $f(x)$ is convex in \mathbb{R}^n (or in a subset of \mathbb{R}^n) if

$$f(\lambda x + (1 - \lambda)y) \leq \lambda f(x) + (1 - \lambda)f(y),$$

for any $x = (x_1, ..., x_n)$ and $y = (x_1, ..., x_n)$ and for any $0 \leq \lambda \leq 1$.

It is well known fact that:

Given a nice function f of 2 variables in a set in the plane, the function f is convex if and only if both the following properties are true in such set:

1. $f_{x,x}(x, y) - f_{x,y}(x, y) - f_{y,y}(x, y) \geq 0$,
2. $f_{x,x}(x, y) \geq 0$ and $f_{y,y}(x, y) \geq 0$.

Let $\Phi : \mathbb{R} \to \mathbb{R}^+$ be a continuous convex function such that

1. $\Phi(x) = 0$ if and only if $x = 0$.
2. $\Phi(x) = \Phi(-x)$.
3. $\lim_{x \to \infty} \frac{\Phi(x)}{x} = \infty$, $\lim_{x \to \infty} \Phi(x) = \infty$.

The function Φ is called Young’s function. With each Young’s function Φ, one can associate another convex function $\Psi : \mathbb{R} \to \mathbb{R}^+$ having similar properties, which is defined by

$$\Psi(y) = \sup\{x|y - \Phi(x) : x \geq 0\}, \quad y \in \mathbb{R}.$$

Then Ψ is called complementary Young function to Φ. A Young function Φ is said to satisfy the \triangle_2 condition (globally) if $\Phi(2x) \leq k\Phi(x), \quad x \geq x_0 \geq 0(x_0 = 0)$ for
some constant $k > 0$. Also, Φ is said to satisfy the $\triangle'(<\triangle')$ condition, in symbols $\Phi \in \triangle'(<\triangle')$, if $\exists c > 0 (b > 0)$ such that
$$\Phi(xy) \leq c\Phi(x)\Phi(y), \quad x, y \geq x_0 \geq 0$$
(and
$$\Phi(bxy) \geq \Phi(x)\Phi(y), \quad x, y \geq y_0 \geq 0).$$
If $x_0 = 0(y_0 = 0)$, then these conditions are said to hold globally. If $\Phi \in \triangle'$, then $\Phi \in \triangle_2$.

Let Φ_1, Φ_2 be two Young functions, then Φ_1 is stronger than Φ_2, $\Phi_1 \succ \Phi_2$ [or $\Phi_2 \prec \Phi_1$] if
$$\Phi_2(x) \leq \Phi_1(ax), \quad x \geq x_0 \geq 0$$
for some $a_0 \geq 0$ and x_0, if $x_0 = 0$ then this condition is said to hold globally.

Let Φ be a Young function, then the set of $\Sigma-$measurable functions

$$L^\Phi(\Sigma) = \{f : \Omega \to \mathbb{C} : \exists k > 0, \int \Omega \Phi(kf)d\mu < \infty\}$$

is a Banach space, with respect to the norm $N_\Phi(f) = \inf\{k > 0 : \int \Omega \Phi(\frac{f}{k})d\mu \leq 1\}. (L^\Phi(\Sigma), N_\Phi(.))$ is called Orlicz space.

Let Φ be a Young function and $f \in L^\Phi(\Sigma)$. Since Φ is convex, by Jensen’s inequality $\Phi(E(|f|)) \leq E(\Phi(|f|))$ so
$$\int \Omega \Phi(\frac{E(f)}{N_\Phi(f)})d\mu = \int \Omega \Phi(\frac{f}{N_\Phi(f)})d\mu \leq \int \Omega \Phi(\frac{f}{N_\Phi(f)})d\mu \leq 1.$$ This implies that $N_\Phi(E(|f|)) \leq N_\Phi(f)$ i.e, E is a contraction on Orlicz spaces.

We say that (E, Φ) satisfies in Generalized conditional- type Holder inequality, if there exist some positive constant C such that for all $f \in L^\Phi(\Omega, \Sigma, \mu)$ and $g \in L^\Psi(\Omega, \Sigma, \mu)$ we have
$$E(|fg|) \leq C\Phi^{-1}(E(\Phi(|f|)))\Psi^{-1}(E(\Psi(|g|))),$$
where Ψ is complementary Young function to Φ.

In the sequel as Lemma 1.2, Lemma 1.3 and Lemma 1.5 we give some conditions for E or Φ or Ψ or jointly to get Generalized conditional- type Holder inequality.

Lemma 1.1

Let Φ and Ψ be complementary Young functions. If there exist $C_1, C_2 > 0$ such that
$$E(\Phi(\frac{f}{\Phi^{-1}(E(\Phi(|f|))})) \leq C_1, \quad E(\Psi(\frac{g}{\Psi^{-1}(E(\Psi(|g|))))) \leq C_2.$$ Then (E, Φ) satisfies in Generalized conditional-type Holder inequality.

Proof Let $f \in L^\Phi(\Omega, \Sigma, \mu)$ and $g \in L^\Psi(\Omega, \Sigma, \mu)$. By Young inequality we have $fg \leq \Phi(f) + \Psi(g)$. If we replace f to $\frac{f}{\Phi^{-1}(E(\Phi(|f|)))}$ and g to $\frac{g}{\Psi^{-1}(E(\Psi(|g|)))}$. We have
\[\frac{fg}{\Phi^{-1}(E(\Phi(f)))\Psi^{-1}(E(\Psi(g)))} \leq \Phi\left(\frac{f}{\Phi^{-1}(E(\Phi(f)))}\right) + \Psi\left(\frac{g}{\Psi^{-1}(E(\Psi(g)))}\right). \]

By taking \(E \) we have

\[\frac{E(fg)}{\Phi^{-1}(E(\Phi(f)))\Psi^{-1}(E(\Psi(g)))} \leq E\left(\Phi\left(\frac{f}{\Phi^{-1}(E(\Phi(f)))}\right)\right) + E\left(\Psi\left(\frac{g}{\Psi^{-1}(E(\Psi(g)))}\right)\right) \leq C_1 + C_2. \]

This implies that

\[E(|fg|) \leq C\Phi^{-1}(E(|f|))\Psi^{-1}(E(|g|)), \]

where \(C = C_1 + C_2 \).

By using some basic facts about closed convex sets in Banach spaces in section I.2 and I.3 of [S] we have the following lemma.

Lemma 1.2

A mapping \(F: \mathbb{R}^n \to [0, \infty) \) can be written in the form

\[F(x_1, x_2, ..., x_n) = \inf_{a \in A} \sum_{i=1}^{n} a_i x_i \]

for some countable set \(A \subseteq \mathbb{R}^n \) if and only if \(F \) is concave, lower semicontinuous and positive homogeneous.

Also, we recall a generalization of Jensen-inequality that is proved by Markus Haase in [17].

Theorem 1.3

Let \((\Omega, \Sigma, \mu)\) and \((\Omega', \Sigma', \mu')\) be measure spaces, let \(C \subseteq M(\Omega, \Sigma, \mu)_+ \) be a subcone and let \(T : C \to M(\Omega', \Sigma', \mu')_+ \) be a monotone, subadditive and positively homogeneous operator. Let \(F: \mathbb{R}^n_+ \to [0, \infty) \) be given by

\[F(x_1, x_2, ..., x_n) = \inf_{a \in A} \sum_{i=1}^{n} a_i x_i \]

for some countable set \(A \subseteq \mathbb{R}^n_+ \). Then if \(f_1, f_2, ..., f_n \in C \) such that \(F(f_1, ..., f_n) \) is in \(C \), one has

\[T[F(f_1, ..., f_n)] \leq F(T f_1, ..., T f_n) \]

as an inequality in \(M(\Omega', \Sigma', \mu') \).

Corollary 1.4

Let \(\Phi \) and \(\Psi \) be complementary Young functions such that \(\Phi''(x)\Psi''(y)\Phi(x)\Psi(y) - (\Phi'(x)\Psi'(y))^2 \geq 0 \) and the function \(F(x, y) = \Phi^{-1}(x)\Psi^{-1}(y) \) is positively homogeneous on \(\mathbb{R}^2_+ \). Then \((E, \Phi)\) satisfies in Generalized conditional-type Holder inequality, for every conditional expectation operator \(E \).

Proof Since \(\Phi \) and \(\Psi \) are continuous, then the map \(F(x, y) = \Phi^{-1}(x)\Psi^{-1}(y) \) is also continuous. By assumptions the map \(F \) is concave, lower semicontinuous and
positive homogeneous. By replacing T with conditional expectation operator E in Theorem 1.3 we have

$$E(\Phi^{-1}(f)\Psi^{-1}(g)) \leq \Phi^{-1}(E(f))\Psi^{-1}(E(g))$$

for all nonnegative measurable function on measure space (Ω, Σ, μ). Direct computation shows that for all $f \in L^p(\Omega, \Sigma, \mu)$ and $g \in L^q(\Omega, \Sigma, \mu)$,

$$E(|fg|) \leq \Phi^{-1}(E(|f|))\Psi^{-1}(E(|g|)).$$

Lemma 1.5

Let E be the conditional expectation operator and Φ and Ψ be complementary Young functions. If there exists positive constant C such that $E(|fg|) \leq CE(f)E(g)$, for positive measurable functions $f \in L^p(\Omega, \Sigma, \mu)$ and $g \in L^q(\Omega, \Sigma, \mu)$. Then (E, Φ) satisfies in Generalized conditional type Holder inequality.

Proof Let $f \in L^p(\Omega, \Sigma, \mu)$ and $g \in L^q(\Omega, \Sigma, \mu)$ such that $f > 0, g > 0$. Since Φ^{-1} and Ψ^{-1} are concave, then

$$E(f) = E(\Phi^{-1}(f)) \leq \Phi^{-1}(E(f)), \quad E(g) = E(\Psi^{-1}(g)) \leq \Psi^{-1}(E(g)).$$

This implies that

$$E(fg) \leq CE(f)E(g) \leq C\Phi^{-1}(E(f))\Psi^{-1}(E(g)).$$

So for all $f \in L^p(\Omega, \Sigma, \mu)$ and $g \in L^q(\Omega, \Sigma, \mu)$ we have

$$E(|fg|) \leq C\Phi^{-1}(E(|f|))\Psi^{-1}(E(|g|)).$$

Example 1.6

(a) If $\Phi(x) = \frac{x^p}{p}$, $1 \leq p < \infty$. Then for all $f \in L^p(\Omega, \Sigma, \mu) = L^p(\Sigma)$ and $g \in L^q(\Omega, \Sigma, \mu) = L^q(\Sigma)$, where $\frac{1}{p} + \frac{1}{q} = 1$, we have

$$E(|fg|) \leq (E(|f|^p))^{\frac{1}{p}}(E(|g|^q))^{\frac{1}{q}}.$$

(b) Let $\Omega = [-1, 1]$, $d\mu = \frac{1}{2}dx$ and $A = \sigma \{(-a, a) : 0 \leq a \leq 1\}$ (Sigma algebra generated by symmetric intervals). Then

$$E^A(f)(x) = \frac{f(x) + f(-x)}{2}, \quad x \in \Omega,$$

where $E^A(f)$ is defined. Thus $E^A(|f|) \geq \frac{|f|}{2}$. Hence $|f| \leq 2E(|f|)$. Let Φ be a Young function. For each $f \in L^p(\Omega, \Sigma, \mu)$ we have $\Phi(|f|) \leq 2E(\Phi(|f|))$. Since Φ^{-1} is also increasing and concave

$$|f| = \Phi^{-1}(\Phi(|f|)) \leq \Phi^{-1}(2E(\Phi(|f|))) \leq 2\Phi^{-1}(E(\Phi(|f|))),$$

so $|f| \leq 2\Phi^{-1}(E(\Phi(|f|)))$. Similarly for $g \in L^q(\Omega, \Sigma, \mu)$ we have $|g| \leq 2\Phi^{-1}(E(\Phi(|g|)))$. Thus

$$|fg| \leq 4\Phi^{-1}(E(\Phi(|f|)))\Psi^{-1}(E(\Phi(|g|))).$$

By taking E we have

$$E(|fg|) \leq 4\Phi^{-1}(E(\Phi(|f|)))\Psi^{-1}(E(\Phi(|g|))).$$
Also, by lemma 1.1 we have \(C_1 = \Phi(2) \), \(C_2 = \Psi(2) \) and \(C = \Phi(2) + \Psi(2) \).

(c) Let \(dA(z) \) be the normalized Lebesgue measure on open unit disc \(\mathbb{D} \). Recall that for \(1 \leq p < \infty \) the Bergman space \(L^p_0(\mathbb{D}) \) is the collection of all functions \(f \in H(\mathbb{D}) \), holomorphic functions on \(\mathbb{D} \), for which \(\int_{\mathbb{D}} |f(z)|^p dA(z) < \infty \). Let \(\mathcal{A} \) be the \(\sigma \)-algebra generated by \(\{ (z^n)^{-1}(U) : U \subseteq \mathbb{C} \text{ is open} \} \). Then

\[
E(u)(\xi) = \frac{1}{n} \sum_{\zeta^n = \xi} u(\zeta), \quad u \in H(\mathbb{D}), \quad \xi \in \mathbb{D} \setminus \{0\},
\]

(see [3]). Note that \(|u| \leq nE(|u|) \). By the same method of part(b), for every Young function \(\Phi \), \((E, \Phi) \) satisfies in Generalized conditional-type Holder inequality.

(d) Let \(X = [0, 1], \Sigma = \text{sigma algebra of Lebesgue measurable subset of } X, \mu = \text{Lebesgue measure on } X \). Fix \(n \in \{2, 3, 4, \ldots \} \) and let \(s : [0, 1] \to [0, 1] \) be defined by \(s(x) = x + \frac{1}{n}(\text{mod } 1) \). Let \(\mathcal{B} = \{ E \in \Sigma : s^{-1}(E) = E \} \). In this case

\[
E^B(f)(x) = \sum_{j=0}^{n-1} f(s^j(x)),
\]

where \(s^j \) denotes the \(j \)-th iteration of \(s \). The functions \(f \) in the range of \(E^B \) are those for which the \(n \)-graphs of \(f \) restricted to the intervals \(\left[\frac{j-1}{n}, \frac{j}{n} \right], 1 \leq j \leq n \), are all congruent. Also, \(|f| \leq nE^B(|f|) \) a.e. By the same method of part(b), for every Young function \(\Phi \), \((E, \Phi) \) satisfies in Generalized conditional-type Holder inequality.

(e) Let \((\Omega, \Sigma, \mu)\) be a measure space and \(\mathcal{A} \subseteq \Sigma \) be sub \(\sigma \)-algebra. If there exists \(C_0 > 0 \) such that \(|f| \leq C_0E^A(|f|) \). Then \((E^A, \Phi)\) satisfies in Generalized conditional-type Holder inequality, for every Young function \(\Phi \).

The part (e) of the last example and proposition 2.2 of [18] show that there are many conditional expectation operators \(E \) such that the Generalized conditional-type Holder inequality holds for \((E, \Phi)\).

2. BOUNDEDNESS AND COMPACTNESS OF \(EM_u \) ON ORLICZ SPACES

Theorem 2.1. Let \(T = EM_u : L^p(\Omega, \Sigma, \mu) \to L^0(\Omega, \Sigma, \mu) \) such that \(T(f) = E(u,f) \) for \(f \in L^p(\Omega, \Sigma, \mu) \) is well defined, then the followings hold.

(a) If \(T \) is bounded on \(L^p(\Omega, \Sigma, \mu) \), then \(E(u) \in L^\infty(\Omega, \mathcal{A}, \mu) \).

(b) If \(\Phi \in \Delta'\text{(globally)} \) and \(T \) is bounded on \(L^p(\Omega, \Sigma, \mu) \), then \(\Psi^{-1}(E(\Psi(u))) \in L^\infty(\mathcal{A}) \).

(c) If \((E, \Phi)\) satisfies in Generalized conditional-type Holder inequality and \(\Psi^{-1}(E(\Psi(u))) \in L^\infty(\mathcal{A}) \), then \(T \) is bounded.

In this case, \(\|T\| \leq C\|\Psi^{-1}(E(\Psi(u)))\|_\infty \).

Proof. (a) Suppose that \(E(u) \notin L^\infty(\Omega, \mathcal{A}, \mu) \). If we set \(E_n = \{ x \in \Omega : |E(u)(x)| > n \} \), for all \(n \in \mathbb{N} \), then \(E_n \in \mathcal{A} \) and \(\mu(E_n) > 0 \).
Since \((\Omega, \mathcal{A}, \mu)\) has finite subset property, we can assume that \(0 < \mu(E_n) < \infty\), for all \(n \in \mathbb{N}\). By definition of \(E_n\) we have

\[
T(\chi_{E_n}) = E(u\chi_{E_n}) = E(u)\chi_{E_n} > n\chi_{E_n}.
\]

Since Orlicz’s norm is monotone, then

\[
\|T(\chi_{E_n})\|_\Phi > \|n\chi_{E_n}\|_\Phi = n\|\chi_{E_n}\|_\Phi.
\]

This implies that \(T\) isn’t bounded.

(b) If \(\Psi^{-1}(E(\Psi(u))) \notin L^\infty(\mathcal{A})\), then \(\mu(E_n) > 0\). Where

\[
E_n = \{x \in \Omega : \Psi^{-1}(E(\Psi(u)))(x) > n\}
\]

and so \(E_n \in \mathcal{A}\). Since \(\Phi \in \Delta_2\), then \(\Psi \in \nabla'\), i.e., \(\exists b > 0\) such that

\[
\Psi(bxy) \geq \Psi(x)\Psi(y), \quad x, y \geq 0.
\]

Also, \(\Phi \in \Delta_2\). Thus \((L^\Phi)^* = L^\Phi\) and so \(T^* = M_\Phi : L^\Phi(\mathcal{A}) \to L^\Phi(\Sigma)\), is also bounded. Hence for each \(k > 0\) we have

\[
\int_\Omega \Psi\left(\frac{k\mu\chi_{E_n}}{N\Phi(\chi_{E_n})}\right) d\mu = \int_\Omega \Psi(k\mu\chi_{E_n}\Psi^{-1}\left(\frac{1}{\mu(E_n)}\right)) d\mu = \int_\Omega \Psi(k\mu\Psi^{-1}\left(\frac{1}{\mu(E_n)}\right))\chi_{E_n} d\mu
\]

\[
\geq \int_{E_n} \Psi(u)\Psi\left(\frac{k\Psi^{-1}\left(\frac{1}{\mu(E_n)}\right)}{b}\right) d\mu \geq \left(\int_{E_n} E(\Psi(u)) d\mu\right) \left(\Psi\left(\frac{k}{b^2}\right)\Psi^{-1}\left(\frac{1}{\mu(E_n)}\right)\right)
\]

\[
\geq \Psi(n\mu(E_n))\frac{1}{\mu(E_n)} \Psi\left(\frac{k}{b^2}\right) = \Psi(n)\Psi\left(\frac{k}{b^2}\right).
\]

Thus

\[
\int_\Omega \Psi\left(\frac{k\mu\chi_{E_n}}{N\Phi(\chi_{E_n})}\right) d\mu = \int_\Omega \Psi(kM_u(f_n)) d\mu \geq \Psi(n)\Psi\left(\frac{k}{b^2}\right) \to \infty
\]

as \(n \to \infty\), where \(f_n = \frac{\chi_{E_n}}{N\Phi(\chi_{E_n})}\). Thus \(N\Phi(M_u(f_n)) \to \infty\), as \(n \to \infty\). This is a contradiction, since \(M_u\) is bounded.

(c) Put \(M = \|\Psi^{-1}(E(\Psi(u)))\|_\infty\). For \(f \in L^\Phi(\Omega, \Sigma, \mu)\) and \(g \in L^\Phi(\Omega, \Sigma, \mu)\) we have

\[
\int_\Omega \Phi\left(\frac{E(uf)}{CMN\Phi(f)}\right) d\mu = \int_\Omega \Phi\left(\frac{E(u \frac{f}{\Phi(f)})}{CM}\right) d\mu
\]

\[
\leq \int_\Omega \Phi\left(\frac{C\Phi^{-1}(E(\Phi(|\frac{f}{\Phi(f)}|)))\Psi^{-1}(E(\Psi(|u|)))}{CM}\right) d\mu
\]

\[
\leq \int_\Omega \Phi\left(\Phi^{-1}(E(\Phi(|\frac{f}{\Phi(f)}|)))\right) d\mu \leq \int_\Omega \Phi\left(\frac{f}{\Phi(f)}\right) d\mu \leq 1.
\]

So \(N\Phi(E(uf)) \leq CMN\Phi(f)\). Thus \(T = EM_u\) is bounded and \(\|T\| \leq C\|\Psi^{-1}(E(\Psi(u)))\|_\infty\).

Corollary 2.2.

(a) If \((E, \Phi)\) satisfies in Generalized conditional-type Holder inequality and \(\Phi \in\)
\(\Delta'(\text{globally}) \), then \(T \) is bounded if and only if \(\Psi^{-1}(E(\Psi(u))) \in L^\infty(\mathcal{A}) \).

(b) If \(\Psi \prec x \) and \((E, \Phi) \) satisfies in Generalized conditional-type Holder inequality, then \(T \) is bounded if and only if \(\Psi^{-1}(E(\Psi(u))) \in L^\infty(\mathcal{A}) \).

Proof. (b) Since \(\Psi \prec x \) then \(EM_{\Psi(u)} \leq KEM_u \) for some \(K > 0 \). If \(\Psi^{-1}(E(\Psi(u))) \notin L^\infty(\mathcal{A}) \), then the operator \(EM_{\Psi(u)} \) is not bounded and so \(T = EM_u \) is not bounded.

Theorem 2.3. Let \(T = EM_u \) be bounded on \(L^\Phi(\Sigma) \), then the following hold.

(a) If \(T \) is compact, then
\[
N_\varepsilon(E(u)) = \{ x \in \Omega : E(u)(x) \geq \varepsilon \}
\]

consists of finitely many \(\mathcal{A} \)-atoms, for all \(\varepsilon > 0 \).

(b) If \(T \) is compact and \(\Phi \in \Delta'(\text{globally}) \), then \(N_\varepsilon(\Psi^{-1}(E(\Psi(u)))) \)

consists of finitely many \(\mathcal{A} \)-atoms, for all \(\varepsilon > 0 \), where
\[
N_\varepsilon(\Psi^{-1}(E(\Psi(u)))) = \{ x \in \Omega : \Psi^{-1}(E(\Psi(u))(x) \geq \varepsilon \}.
\]

(c) If \((E, \Phi) \) satisfies in Generalized conditional-type Holder inequality and \(N_\varepsilon(\Psi^{-1}(E(\Psi(u)))) \)

consists of finitely many \(\mathcal{A} \)-atoms, for all \(\varepsilon > 0 \), then \(T \) is compact.

Proof. (a) If there exists \(\varepsilon_0 > 0 \), such that \(N_{\varepsilon_0}(E(u)) \) consists of infinitely many \(\mathcal{A} \)-atoms or a non-atomic subset of positive measure. Since \((\Omega, \mathcal{A}, \mu) \) has finite subset property. In both cases, we can find a sequence of disjoint \(\mathcal{A} \)-measurable subsets \(\{A_n\}_{n \in \mathbb{N}} \) of \(N_{\varepsilon_0}(E(u)) \) with \(0 < \mu(A_n) < \infty \). Let \(f_n = \frac{\chi_{A_n}}{N_{\Phi}(\chi_{A_n})} \). Hence
\[
|f_n - f_m| = |f_n + f_m| = |f_n| + |f_m|
\]

for \(n \neq m \). Also, \(E(uf_n) = E(u)f_n \geq \varepsilon_0 f_n \). By monotonicity of \(N_{\Phi}(\cdot) \) we have
\[
N_{\Phi}(|E(uf_n) - E(uf_m)|) = N_{\Phi}(|E(u)(f_n - f_m)|)
\]

= \(N_{\Phi}(|E(u)|(|f_n| + |f_m|)) \geq N_{\Phi}(|E(u)|f_n) \geq \varepsilon_0 N_{\Phi}(f_n) = \varepsilon_0 \).

Thus \(N_{\Phi}(|E(uf_n) - E(uf_m)|) \geq \varepsilon_0 \). This implies that \(T \) cannot be compact.

(b) Suppose that there exists \(\varepsilon_0 > 0 \), such that \(N_\varepsilon(\Psi^{-1}(E(\Psi(u)))) \) doesn’t consist finitely many \(\mathcal{A} \)-atoms. Since \(T \) is compact, so \(T^* = M_u \) is compact from \(L^\Phi(\mathcal{A}) \) into \(L^\Phi(\Sigma) \). By the same method of (a) and theorem 2.1 (b), we can find the sequence \(\{f_n\}_{n \in \mathbb{N}} \) in \(L^\Phi(\mathcal{A}) \), such that \(N_{\Phi}(f_n) = 1 \), and
\[
\int \Omega \Psi(uf_n) d\mu = \int \Omega \Psi(M_u(f_n)) d\mu \geq \Psi(\varepsilon_0)\Psi\left(\frac{1}{\varepsilon^2}\right).
\]

Since \(\Psi \) is increasing and \(|f_n - f_m| = |f_n| + |f_m| \), then
\[
\int \Omega \Psi(|uf_n - uf_m|) d\mu = \int \Omega \Psi(|M_u(|f_n| + |f_m|)|) d\mu \geq \Psi(\varepsilon_0)\Psi\left(\frac{1}{\varepsilon^2}\right).
\]

Thus \(\{uf_n\}_{n \in \mathbb{N}} \) has no convergence subsequence in \(\Psi \)-mean convergence. So \(\{uf_n\}_{n \in \mathbb{N}} \) has no convergence subsequence in norm. This is a contradiction.

(c) Let \(\varepsilon > 0 \) and \(N_\varepsilon = N_\varepsilon(\Psi^{-1}(E(\Psi(u)))) \). By assumption, there exist finitely many disjoint \(\mathcal{A} \)-atoms \(\{A_i\}_{i=1}^n \), such that \(N_\varepsilon = \cup_{i=1}^n A_i \). Define the operator \(T_\varepsilon \).
on $L^\Phi(\Sigma)$, such that $T_\varepsilon(f) = E(uf\chi_{N_\varepsilon})$, for $f \in L^\Phi(\Sigma)$. Since $N_\varepsilon \in \mathcal{A}$, $E(uf)$ is \mathcal{A}–measurable and \mathcal{A}–measurable functions are constant on \mathcal{A}–atoms, we have

$$T_\varepsilon(f) = E(uf)\chi_{N_\varepsilon} = \sum_{i=1}^n E(uf)(A_i)\chi_{A_i} \in L^\Phi(N_\varepsilon).$$

So T_ε is finite rank.

For $f \in L^\Phi(\Sigma)$,

$$T(f) - T_\varepsilon(f) = E(uf) - E(uf)\chi_{N_\varepsilon} = E(uf)\chi_{\Omega \setminus N_\varepsilon}.$$

Thus

$$\int_{\Omega} \Phi\left(\frac{T(f) - T_\varepsilon(f)}{C\varepsilon N_\Phi(f)}\right) d\mu = \int_{\Omega} \Phi\left(\frac{E(uf)\chi_{\Omega \setminus N_\varepsilon}}{C\varepsilon N_\Phi(f)}\right) d\mu = \int_{\Omega} \Phi\left(\frac{C\Phi^{-1}(E(\Phi(\frac{f}{N_\Phi(f)})))\Psi^{-1}(E(\Psi(u)))}{C\varepsilon}\right) d\mu \leq \int_{\Omega} \Phi\left(\frac{f}{N_\Phi(f)}\right) d\mu \leq \int_{\Omega} \Phi\left(\frac{f}{N_\Phi(f)}\right) d\mu = \int_{\Omega} \Phi\left(\frac{f}{N_\Phi(f)}\right) d\mu = 1.$$

This implies that $N_\Phi(T(f) - T_\varepsilon(f)) \leq C\varepsilon N_\Phi(f)$, and so $\|T - T_\varepsilon\| < C\varepsilon$. This means that, T is limit of a sequence of finite rank operators. So T is compact.

Corollary 2.4.

(a) If (E, Φ) satisfies in Generalized conditional-type Holder inequality and $\Phi \in \Delta'(\text{globally})$, then T is compact if and only if $N_\varepsilon(\Psi^{-1}(E(\Psi(u))))$ consists of finitely many \mathcal{A}–atoms, for all $\varepsilon > 0$.

(b) If $\Psi \prec x(\text{globally})$ and (E, Φ) satisfies in Generalized conditional-type Holder inequality, then then T is compact if and only if $N_\varepsilon(\Psi^{-1}(E(\Psi(u))))$ consists of finitely many \mathcal{A}–atoms, for all $\varepsilon > 0$.

(c) If $(\Omega, \mathcal{A}, \mu)$ is non-atomic measure space, (E, Φ) satisfies in Generalized conditional-type Holder inequality and $\Phi \in \Delta'(\text{globally})$. Then $T = EM_u$ is a compact operator on $L^\Phi(\Sigma)$ if and only if $T = 0$.

Proof (b) Since $\Psi \prec x$ then $\Psi(u) \leq Ku$ for some $K > 0$. Suppose that, there exists $\varepsilon_0 > 0$, such that $N_\varepsilon(\Psi^{-1}(E(\Psi(u))))$ doesn’t consist finitely many \mathcal{A}–atoms. By the same method of (a) and theorem 2.1 (b), we can find the sequence $\{f_n\}_{n \in \mathbb{N}}$ in $L^\Phi(\mathcal{A})$, such that $N_\Phi(f_n) = 1$, and

$$\int_{\Omega} \Phi(Kuf_n) d\mu \geq \int_{\Omega} \Phi(\Psi(u)Kf_n) d\mu = \int_{\Omega} E(\Phi(\Psi(u)Kf_n)) d\mu \geq \int_{\Omega} E(\Phi(\Psi(u))) d\mu \geq \varepsilon_0 K,$$

where $K\varepsilon_0 > 1$. Since Φ is increasing and $|f_n - f_m| = |f_n| + |f_m|$, then
\[
\int_{\Omega} \Phi(|Ku_n - Kf_n|) d\mu = \int_{\Omega} \Phi(|KM_uf_n|) d\mu \geq K\varepsilon_0.
\]

Thus \(\{KM_uf_n\}\) has no convergence subsequence in \(\Phi\)-mean convergence. So \(\{M_uf_n\}\) has no convergence subsequence in norm. This is a contradiction.

In the next theorem we use the method that is used in [12].

Theorem 2.5. If \(A \neq \Sigma\), then \(\sigma(T) = essrange(E(u)) \cup \{0\}\).

Proof. Since \(A \neq \Sigma\), \(L^b(A) \not\subset L^b(\Sigma)\). Hence \(T = EM_u\) isn’t surjective and so \(0 \in \sigma(T)\). Let \(\lambda \notin essrange(E(u)), \lambda \neq 0\). We show that \(T - \lambda I\) is invertible. If \(Tf - \lambda f = 0\), then \(Euf = \lambda f\). So \(f\) is \(A\)-measurable. Thus \((E(u) - \lambda)f = E(uf) - \lambda f = 0\). Since \(\lambda \notin essrange(E(u))\), then \(E(u) - \lambda \geq \varepsilon\ a.e\) for some \(\varepsilon > 0\). So \(f = 0\ a.e\). This implies that \(T - \lambda I\) is injective. Now we show that \(T - \lambda I\) is surjective. Let \(g \in L^b(\Sigma)\). We can write

\[
g = g - E(g) + E(g), \quad g_1 = g - E(g), \quad g_2 = E(g).
\]

Since \(N_\Phi(E(g)) \leq N_\Phi(g)\), then \(g_2 \in L^b(A)\) and \(g_1 \in L^b(\Sigma)\), \((E(g_1) = 0\). Let

\[
f_1 = \frac{\lambda g_1 + T(g_2)}{\lambda (E(u) - \lambda)}, \quad f_2 = \frac{-g_2}{\lambda}.
\]

Since \(\lambda \notin essrange(E(u))\), then \(E(u) - \lambda \geq \varepsilon\ a.e\) for some \(\varepsilon > 0\). So \(\left\|\frac{1}{E(u) - \lambda}\right\|_\infty \leq \frac{1}{\varepsilon}\). Thus \(f_2 \in L^b(A), f_1 \in L^b(\Sigma)\) and \(f = f_1 + f_2 \in L^b(\Sigma)\). Direct computation shows that \(T(f) - \lambda f = g\). This implies that \(T - \lambda I\) is invertible and so \(\lambda \notin \sigma(T)\).

Conversely, let \(\lambda \notin \sigma(T)\). Define linear transformation \(S\) on \(L^b(\Sigma)\) as follows

\[
Sf = \frac{Tf - f(E(u) - \lambda)}{\lambda (E(u) - \lambda)}, \quad f \in L^b(\Sigma).
\]

If \(\lambda \notin essrange(E(u))\), then \(\left\|\frac{1}{E(u) - \lambda}\right\|_\infty \leq \frac{1}{\varepsilon}\) for some \(\varepsilon > 0\). So

\[
N_\Phi(Sf) \leq N_\Phi\left(\frac{Tf}{\lambda (E(u) - \lambda)}\right) + N_\Phi\left(\frac{f}{\lambda}\right)
\]

\[
\leq \left(\frac{\|T\|}{\lambda \varepsilon} + \frac{1}{\varepsilon}\right)N_\Phi(f).
\]

Thus \(S\) is bounded \(L^b(\Sigma)\). If \(S\) is bounded on \(L^b(\Sigma)\), then for \(f \in L^b(A)\) \(Sf = \alpha f = M_\alpha f\), where \(\alpha = \frac{1}{\lambda \varepsilon f}\). Thus multiplication operator \(M_\alpha\) is bounded on \(L^b(A)\). This implies that \(\alpha \in L_\infty(A)\) and so there exist some \(\varepsilon > 0\) such that \(E(u) - \lambda = \frac{1}{\alpha} \geq \varepsilon\ a.e\). This mean’s that \(\lambda \notin essrange(E(u))\). Also, we have

\[
S \circ (T - \lambda I) = (T - \lambda I) \circ S = I.
\]

Thus \((T - \lambda I)^{-1} = S\) and so \(\sigma(T) = essrange(E(u)) \cup \{0\}\).

Let \(\mathfrak{B}\) be a Banach space and \(K\) be the set of all compact operators on \(\mathfrak{B}\). For \(T \in L(\mathfrak{B})\), the Banach algebra of all bounded linear operators on \(\mathfrak{B}\) into itself, the essential norm of \(T\) means the distance from \(T\) to \(K\) in the operator norm, namely

\[
\|T\|_e = \inf\{\|T - S\| : S \in K\}.
\]

Clearly, \(T\) is compact if and only if \(\|T\|_e = 0\).
Let X and Y be reflexive Banach spaces and $T \in L(X,Y)$. It is easy to see that $\|T\|_e = \|T^*\|_e$. As is seen in [20], the essential norm plays an interesting role in the compact problem of concrete operators.

In the sequel we present an upper bound for essential norm of EM_u on Orlicz space $L^\Phi(\Sigma)$.

Theorem 2.6. Let $EM_u : L^\Phi(\Omega, \Sigma, \mu) \to L^\Phi(\Omega, \Sigma, \mu)$ is bounded and (E, Φ) satisfies in Generalized conditional-type Holder inequality. Let $\beta = \inf \{ \varepsilon > 0 : N_\varepsilon \text{ consists of finitely many } A\text{-atoms} \}$, where $N_\varepsilon = N_\varepsilon(E(\phi(u)))$. Then

$$\|EM_u\|_e \leq \beta.$$

Proof Let $\varepsilon > 0$. Then $N_{\varepsilon + \beta}$ consist of finitely many A-atoms. Put $u_{\varepsilon + \beta} = u\chi_{N_{\varepsilon + \beta}}$ and $EM_{u_{\varepsilon + \beta}}$ is finite rank and so compact. By the same method that is used in theorem 2.3(c) we have

$$\|EM_u\|_e \leq \|EM_u - EM_{u_{\varepsilon + \beta}}\| \leq \beta + \varepsilon.$$

This implies that $\|EM_u\|_e \leq \beta$.

References

[1] J. Appell, E. V. Frovola, A. S. Kalitvin and P. P. Zabrejko, Partial intergal operators on $C([a, b] \times [c, d])$, Integral Equations and Operator Theory 27 (1997), 125 - 140.
[2] J. Appell, A.S. Kalitvin, and M.Z. Nashed, On some partial integral equations arising in the mechanics of solids, Journal of Applied Mathematics and Mechanics 79 (1999), 703 - 713.
[3] J. Appell, A.S. Kalitvin, and P.P. Zabrejko, Partial integral operators in Orlicz spaces with mixed norm, Collo. Math. 78 (1998), 293 - 306.
[4] C. Bennett and R. Sharpley, Interpolation of operators, Academic Press, INC, 1988.
[5] H. D. Brunk, On an extension of the concept conditional expectation, Proc. Amer. Math. Soc. 14 (1963), 298-304.
[6] R. G. Douglas, Contractive projections on an L_1 space, Pacific J. Math. 15 (1965), 443-462.
[7] P.G. Dodds, C.B. Huijsmans and B. De Pagter, characterizations of conditional expectation-type operators, Pacific J. Math. 141(1) (1990), 55-77.
[8] I, Ekeland and R, Temam, Convex analysis and variational problems, North-Holland Publishing Co., Amsterdam, 1976. Translated from the French, Studies in Mathematics and its Applications, Vol. 1.
[9] Y. Estaremi, Essential norm of weighted conditional type operators on L^p-spaces, to appear in positivity.
[10] Y. Estaremi and M.R. Jabbarzadeh, Weighted lambert type operators on L^p-spaces, to appear in Operators and Matrices.
[11] J. J. Grobler and B. de Pagter, Operators representable as multiplication-conditional expectation operators, J. Operator Theory 48 (2002), 15-40.
[12] J. Herron, Weighted conditional expectation operators, Oper. Matrices 1 (2011), 107-118.
[13] William E. Hornor and James E. Jamison, Properties of isometry-inducing maps of the unit disc, Complex Variables Theory Appl. 38 (1999), 69-84.
[14] A.S. Kalitvin and P.P. Zabrejko, On the theory of partial integral operators, J. Integral Equations and Appl. 3 (1991), 351 - 382.
[15] J.L. Kelley, Averaging operators on $C_\infty(X)$, Illinois J. Math. 2 (1958), 214 - 223.
[16] A. Lambert, A Hilbert C^*-module view of some spaces related to probabilistic conditional expectation, Questiones Mathematicae 22 (1999), 165 - 170.
[17] M. Haase, Convexity inequalities for positive operators, Positivity 11 (2007), 57-68.
[18] A. Lambert, L^p multipliers and nested sigma-algebras, Oper. Theory Adv. Appl. 104 (1998), 147-153.
[19] Shu-Teh Chen, Moy, Characterizations of conditional expectation as a transformation on function spaces, Pacific J. Math. 4 (1954), 47-63.
[20] J. H. Shapiro, The essential norm of a composition operator, Annals of Math. 125 (1987), 375-404.
[21] M. M. Rao, Conditional measure and applications, Marcel Dekker, New York, 1993.
[22] S. Sidak, On relations between strict sense and wide sense conditional expectation, Theory of Probability and Applications 2 (1957), 267 - 271.
[23] A. C. Zaanen, Integration, 2nd ed., North-Holland, Amsterdam, 1967.

Department of Mathematics, Payame Noor University, P. O. Box: 19395-3697, Tehran, Iran.

E-mail address: estaremi@gmail.com, yestaremi@pnu.ac.ir