The Limiting Distribution of the Number of Block Pairs in Type B Set Partitions

David G. L. Wang
Beijing International Center for Mathematical Research
Peking University, Beijing 100871, P. R. China
wgl@math.pku.edu.cn

Abstract

It is a classical result of Harper that the limiting distribution of the number of blocks in partitions of the set \{1, 2, \ldots, n\} is normal. In this paper, using the saddle point method we prove the normality of the limiting distribution of the number of block pairs in set partitions of type B_n. Moreover, we obtain that the limiting distribution of the number of block pairs in B_n-partitions without zero-block is also normal.

1 Introduction

This paper is concerned with the limiting distribution of the number of block pairs of type B_n set partitions. For ordinary set partitions, Harper [11] has established the normality of the limiting distribution of the number of blocks in partitions of the set \{1, 2, \ldots, n\}. For the asymptotic behavior concerning with the ordinary set partitions, see [6,9,10,14,17,18]. For the study on the limiting distribution of other combinatorial objects, see Flajolet and Sedgewick’s book [7] for instance.

The lattice of ordinary set partitions can be regarded as the intersection lattice for the hyperplane arrangement corresponding to the root system of type A, see Björner and Brenti [3] or Humphreys [13]. From this point of view, type B set partitions are a generalization of ordinary partitions, see Reiner [19]. To be more precise, ordinary set partitions encode the intersections of hyperplanes in the hyperplane arrangement for the type A root system, while the intersections of subsets of hyperplanes from the type B hyperplane arrangement can be encoded by type B set partitions, see Björner and Wachs [4]. A type B_n set partition is a partition π of the set

$$\{1, 2, \ldots, n, -1, -2, \ldots, -n\}$$

such that for any block B of π, $-B$ is also a block of π, and there is at most one block, called zero-block, satisfying $B = -B$. We call $(B, -B)$ a block pair of π if B is not a zero-block.

Let $M_{n,k}$ be the number of B_n-partitions with k block pairs. It is easy to deduce the recurrence relation

$$M_{n,k} = M_{n-1,k-1} + (2k + 1)M_{n-1,k}.$$ (1.1)
The main result of this paper is to derive the limiting distribution of the number of block pairs in \(B_n \)-partitions based on the above recurrence formula. Let \(\xi_n \) be the random variable of the number of block pairs in \(B_n \)-partitions. We shall prove that the limiting distribution of \(\xi_n \) is normal by using the saddle point method, which was introduced by Schrödinger [21], see also [2][5][8][16].

This paper is organized as follows. In Section 2, we present some facts about the saddle point of the generating function of the number of \(B_n \)-partitions. Section 3 is devoted to deduce the normality of the limiting distribution of \(\xi_n \). Using the same technique, we obtain the normality of the limiting distribution of the number of block-pairs in \(B_n \)-partitions without zero-block.

2 Preliminary lemmas

Let \(M_n \) be the number of \(B_n \)-partitions. In this section, we give some lemmas which will be used to derive an approximate formula for \(M_n \).

Let \(N_{n,k} \) be the number of \(B_n \)-partitions with \(k \) block pairs but with no zero-block. Denote by \(N_n \) the number of \(B_n \)-partitions without zero-block. It is easy to see that

\[
N_{n,k} = 2^{n-k}S(n,k).
\]

Since

\[
\sum_n S(n,k) \frac{x^n}{n!} = \frac{1}{k!} (e^x - 1)^k,
\]

see Stanley [22, page 34], we find that

\[
F_N(z) = \sum_{n \geq 0} N_n \frac{z^n}{n!} = \exp\left(\frac{e^{2z} - 1}{2}\right).
\]

It is also easy to see that

\[
M_n = \sum_{k} \binom{n}{k} N_k.
\]

It follows from (2.2) that

\[
F_M(z) = \sum_{n \geq 0} M_n \frac{z^n}{n!} = \exp\left(\frac{e^{2z} - 1}{2} + z\right).
\]

The saddle point of \(F_M(z) \) is defined to be the value \(z \) that minimizes \(z^{-n} F_M(z) \), i.e., the unique positive solution \(r_1 \) of the equation

\[
r_1 (e^{2r_1} + 1) = n.
\]
Similarly, the saddle point of $F_N(z)$ is the unique positive solution r_0 of the equation
\[r_0 e^{2r_0} = n. \] (2.5)

For convenience, we consider the equation
\[r \left(e^{2r} + c \right) = n. \] (2.6)

It reduces to (2.4) when $c = 1$, and to (2.5) when $c = 0$. It is easy to deduce the following approximation for the unique positive solution r of (2.6).

Lemma 2.1. Let c be a nonnegative integer. Let $r > 0$ be the unique positive solution of equation (2.6). Then we have
\[r = \frac{\log n}{2} \left(1 + O \left(\frac{\log \log n}{\log n} \right) \right), \]
\[e^{2r} = \frac{2n}{\log n} \left(1 + O \left(\frac{\log \log n}{\log n} \right) \right). \]

We will also need the following lemma.

Lemma 2.2. Let $h(x)$ be a continuous function defined on the closed interval $[a, b]$. Suppose that $h''(x)$ exists in the open interval (a, b). Then for any $c \in (a, b)$, there exists $s \in (a, b)$ such that
\[\frac{h(a)}{(a - b)(a - c)} + \frac{h(b)}{(b - a)(b - c)} + \frac{h(c)}{(c - a)(c - b)} = \frac{h''(s)}{2}. \] (2.7)

Proof. Let
\[f_1(x) = (a - b)h(x) + (b - x)h(a) + (x - a)h(b), \]
\[g_1(x) = (a - b)(b - x)(x - a). \]

Then the left hand side of (2.7) becomes $f_1(c)/g_1(c)$. Note that $f_1(a) = g_1(a) = 0$. By Cauchy’s mean value theorem, there exists $s_1 \in (a, c)$ such that
\[\frac{f_1(c)}{g_1(c)} = \frac{f_1'(s_1)}{g_1'(s_1)} = \frac{f_2(a) - f_2(b)}{g_2(a) - g_2(b)}, \]
where $f_2(x) = h'(s_1)x - h(x)$ and $g_2(x) = x^2 - 2s_1x$. Again, by Cauchy’s mean value theorem, there exist $s_2 \in (a, b)$ and $s \in (a, b)$ such that
\[\frac{f_1(c)}{g_1(c)} = \frac{f_2'(s_2)}{g_2'(s_2)} = \frac{h'(s_1) - h'(s_2)}{2s_1 - 2s_2} = \frac{h''(s)}{2}. \]

This completes the proof. □
Lemma 2.3. Let c be a nonnegative integer, and $f(x) = x(e^{2x} + c)$. Suppose that t_i ($i = 0, 1, 2$) is the unique positive number such that $f(t_i) = n + i$. Then we have

\begin{align*}
 t_1 - t_0 &= \frac{1}{2n} - \frac{1}{4nt_0} + O\left(\frac{1}{n \log^2 n}\right); \\
 t_2 - t_1 &= \frac{1}{2n} - \frac{1}{4nt_0} + O\left(\frac{1}{n \log^2 n}\right); \\
 2t_1 - t_0 - t_2 &= \frac{1}{n^2} + O\left(\frac{1}{n^2 \log n}\right), \\
 \frac{1}{t_0} + \frac{1}{t_2} - \frac{2}{t_1} &= O\left(\frac{1}{n^2 \log^2 n}\right).
\end{align*}

Proof. We first consider (2.8). By Cauchy’s mean value theorem, there exists t such that $t_0 < t < t_1$ and

$$f(t_1) - f(t_0) = (t_1 - t_0)f'(t).$$

Since $f(t_1) - f(t_0) = 1$ and $f'(t) = (2t + 1)e^{2t} + c$, we have

$$\frac{1}{(2t_1 + 1)e^{2t_1} + c} \leq t_1 - t_0 \leq \frac{1}{(2t_0 + 1)e^{2t_0} + c}.$$ \hspace{1cm} (2.10)

It can be seen that both $\frac{1}{(2t_1 + 1)e^{2t_1} + c}$ and $\frac{1}{(2t_0 + 1)e^{2t_0} + c}$ have the same estimate

$$\frac{1}{2n} - \frac{1}{4nt_0} + O\left(\frac{1}{n \log^2 n}\right).$$

It follows that $t_1 - t_0$ also has the above estimate. Similarly, one can prove (2.9). The last two approximations are consequences of Lemma 2.2.

3 The limiting distribution

Recall that ξ_n is the random variable of the number of block pairs in a B_n-partition. Denote by $E(\xi_n)$ the expectation of ξ_n, and $V(\xi_n)$ the variance of ξ_n. Below is the main result of this paper.

Theorem 3.1. The limiting distribution of the random variable ξ_n is normal. In other words, the random variable

$$\frac{\xi_n - E(\xi_n)}{\sqrt{V(\xi_n)}}$$

has an asymptotically standard normal distribution as n tends to infinity.
There are various sufficient conditions on a random variable which ensures a normal limiting distribution, see Sachkov [20]. Let η_n be a random variable of certain statistic of some combinatorial objects on a set A_n. Let $a_n(k)$ be the number of elements of A_n with the statistic equal to k. Consider the polynomial

$$P_n(x) = \sum_k a_n(k)x^k.$$

The following criterion was used by Harper [11], see also Bender [1].

Proposition 3.2. The limiting distribution of η_n is normal, if the $P_n(x)$ distinct real roots and the variance of $a_n(k)$ tends to infinity as $n \to \infty$.

We shall prove Theorem 3.1 with the aid of Proposition 3.2. Recall that $M_{n,k}$ is the number of B_n-partitions with k block pairs. Consider the polynomial

$$M_n(x) = \sum_k M_{n,k}x^k.$$ (3.1)

For example,

$$M_1(x) = 1 + x,$$

$$M_2(x) = 1 + 4x + x^2,$$

$$M_3(x) = 1 + 13x + 9x^2 + x^3.$$

Theorem 3.3. For any $n \geq 1$, the polynomial $M_n(x)$ has n distinct real roots.

Proof. The proof is similar to the proof of Harper for ordinary partitions. We prove it by induction on n. It is clear that the theorem holds for $n = 1, 2$. We assume that it holds for all $n \leq m - 1$, where $m \geq 3$. Let

$$G_n(x) = \sqrt{x} e^{\frac{x}{2}} M_n(x).$$ (3.2)

Differentiating $M_n(x)$ with respect to x and using the recurrence (1.1), we obtain that

$$M_n(x) = (1 + x)M_{n-1}(x) + 2xM'_{n-1}(x).$$ (3.3)

Multiplying both sides of (3.3) by $\sqrt{x} e^{\frac{x}{2}}$ yields

$$G_n(x) = 2xG'_{n-1}(x).$$ (3.4)

By the induction hypothesis, we may assume that $M_{m-1}(x)$ has roots $x_1, x_2, \ldots, x_{m-1}$ where $x_1 < x_2 < \cdots < x_{m-1} < 0$. Observe that

$$\lim_{x \to -\infty} G_n(x) = 0.$$
From (3.2) it can be seen that $G_{m-1}(x)$ has $m+1$ roots
\[-\infty, x_1, x_2, \ldots, x_{m-1}, 0.\]

By Rolle’s theorem, in each of the m open intervals
\[(-\infty, x_1), (x_1, x_2), \ldots, (x_{m-1}, 0),\]
there exists a point y such that $G'_{m-1}(y) = 0$. Suppose that
\[G'_{m-1}(y_1) = G'_{m-1}(y_2) = \cdots = G'_{m-1}(y_m) = 0,\]
where $y_1 < y_2 < \cdots < y_m < 0$. By (3.4), the function $G_m(x)$ has $m+2$ roots
\[-\infty, y_1, y_2, \ldots, y_m, 0.\]

Because of (3.2), we see that y_1, y_2, \ldots, y_m are m distinct negative roots of $M_m(x)$. This completes the proof.

It should be mentioned that Theorem 3.3 can also be deduced from the criteria of Liu and Wang [15]. The following theorem gives an estimate of M_n.

Theorem 3.4. We have
\[M_n = \frac{1}{\sqrt{2\pi r_1 + 1}} \exp\left(2nr_1 - n + \frac{n}{2r_1} + 2r_1 - 1\right)\left[1 + O\left(\frac{\log^{7/2} n}{\sqrt{n}}\right)\right],\] (3.5)
where r_1 is the unique positive solution of the equation $r_1(e^{2r_1} + 1) = n$.

Proof. Let $r = r_1$. Applying Cauchy’s formula and the generating function (2.3), we have
\[\frac{M_n}{n!} = \frac{1}{2\pi i} \int_{|z|=r} \frac{F(z)}{z^{n+1}} dz = \frac{1}{2\pi r^n \sqrt{e}} \int_{|\theta|\leq\pi} e^A d\theta,\] (3.6)
where
\[A = \frac{1}{2} e^{2r \cos \theta} + r e^{i\theta} - n\theta i.\] (3.7)

We divide the integral in (3.6) into two parts as
\[\int_{|\theta|\leq\pi} e^A d\theta = \int_{|\theta|\leq\theta_0} e^A d\theta + \int_{\theta_0 \leq |\theta| \leq \pi} e^A d\theta,\] (3.8)
where
\[\theta_0 = \sqrt{\frac{2\log n}{n}}.\]

Let $\Re(A)$ denote the real part of A, and $\Im(A)$ the imaginary part. It follows from (3.7) that
\[\Re(A) = \frac{1}{2} e^{2r \cos \theta} \cos(2r \sin \theta) + r \cos \theta,\] (3.9)
\[\Im(A) = \frac{1}{2} e^{2r \cos \theta} \sin(2r \sin \theta) + r \sin \theta - n\theta.\]
For the part $\int_{|\theta| \leq \theta_0} e^A d\theta$, we have

$$\Re(A) = \frac{e^{2r} + 2r}{2} - \frac{n(2r + 1)}{2} \theta^2 + O\left(n r^2 \theta_0^4\right), \quad (3.10)$$

$$\Im(A) = O\left(n r^2 \theta_0^3\right).$$

Substituting them into $e^A = e^{\Re(A) + i \Im(A)}$, we get

$$\int_{|\theta| \leq \theta_0} e^A d\theta = \exp\left(\frac{e^{2r} + 2r}{2}\right) \int_{|\theta| \leq \theta_0} e^{-m\theta^2} d\theta \left(1 + O\left(n r^2 \theta_0^3\right)\right), \quad (3.11)$$

where $m = (2r + 1)n/2$. Note that

$$\int_{-\infty}^{\infty} x e^{-t^2} dt = o\left(e^{-x^2}\right), \quad \text{as} \quad x \to \infty.$$

The integral in (3.11) can be estimated as follows

$$\int_{|\theta| \leq \theta_0} e^{-m\theta^2} d\theta = \frac{1}{\sqrt{m}} \left(\sqrt{\pi} - 2 \int_{\sqrt{m/n}}^{\infty} e^{-t^2} dt\right) = \frac{\sqrt{\pi}}{m} \left(1 + o\left(e^{-r}\right)\right). \quad (3.12)$$

By (3.11) and (3.12), we find

$$\int_{|\theta| \leq \theta_0} e^A d\theta = \exp\left(\frac{e^{2r} + 2r}{2}\right) \sqrt{\frac{2\pi}{(2r + 1)n}} \left(1 + O\left(n r^2 \theta_0^3\right)\right). \quad (3.13)$$

Now we estimate the integration $\int_{|\theta| \leq \pi} e^A d\theta$. By (3.9), we have

$$\int_{\theta_0 \leq |\theta| \leq \pi} e^A d\theta \leq 2\pi \max_{\theta_0 \leq \theta \leq \pi} e^{\Re(A)} \leq 2\pi \exp\left(\frac{1}{2}e^{2r \cos \theta_0} + r\right).$$

Since

$$2r \cos \theta_0 = 2r - r \theta_0^2 + O\left(r \theta_0^4\right),$$

we get

$$\int_{\theta_0 \leq |\theta| \leq \pi} e^A d\theta = O\left(\exp\left(\frac{e^{2r}}{2} - \frac{n \theta_0^2}{2} + r\right)\right).$$

It is easy to check that

$$\lim_{n \to \infty} \frac{\exp\left(\frac{e^{2r}}{2} - \frac{n \theta_0^2}{2} + r\right)}{\exp\left(\frac{e^{2r} + 2r}{2}\right) \sqrt{\frac{2\pi}{(2r + 1)n}}} n r^2 \theta_0^3 = 0. \quad (3.14)$$

Namely, the remainder of $\left|\int_{\theta_0 \leq |\theta| \leq \pi} e^A d\theta\right|$ is smaller than the remainder of $\left|\int_{|\theta| \leq \theta_0} e^A d\theta\right|$. By (3.13), we have

$$\int_{|\theta| \leq \pi} e^A d\theta = \exp\left(\frac{e^{2r} + 2r}{2}\right) \sqrt{\frac{2\pi}{(2r + 1)n}} \left(1 + O\left(n r^2 \theta_0^3\right)\right).$$
Hence by (3.6) and Stirling’s formula
\[
 n! = \frac{\sqrt{2\pi n} n^n}{e^n} \left(1 + O\left(n^{-1} \right) \right),
\]
we have
\[
 M_n = \frac{1}{\sqrt{2r+1}} \left(\frac{n}{r} \right)^n \exp\left(\frac{n}{2r} - n + r - 1 \right) \left[1 + O\left(\frac{\log \frac{7}{2} n}{\sqrt{n}} \right) \right]. \tag{3.15}
\]
By Equation (2.4) and Lemma 2.1 we find
\[
 \left(\frac{n}{r} \right)^n = e^{2nr + r} \left(1 + O\left(\frac{\log^2 n}{n} \right) \right).
\]
Together with (3.15), we arrive at (3.5). This completes the proof. \(\Box \)

As will be seen in the next theorem, the remainder \(O\left(\frac{\log^2 n}{\sqrt{n}} \right) \) plays an essential role in estimating the variance \(V(\xi_n) \).

Theorem 3.5. We have
\[
 E(\xi_n) = \frac{M_{n+1}}{2M_n} - 1 \sim \frac{n}{\log n}, \tag{3.16}
\]
\[
 V(\xi_n) = \frac{M_{n+2}}{4M_n} - \frac{M_{n+1}^2}{4M_n^2} - \frac{1}{2} \sim \frac{n}{\log^2 n}. \tag{3.17}
\]

Proof. It can be easily checked that the expectation and the variance of \(\xi_n \) can be expressed by
\[
 E(\xi_n) = \frac{M'_n(1)}{M_n},
\]
\[
 V(\xi_n) = E(\xi_n) - E(\xi_n)^2 + \frac{M''_n(1)}{M_n}.
\]
Thus we can deduce the exact formulas in (3.16) and (3.17). In view of Theorem 3.4, Lemma 2.1 and Lemma 2.3 we find
\[
 \frac{M_{n+1}}{2M_n} - 1 \sim \frac{n}{\log n}.
\]

We now proceed to derive the approximation in (3.17). Suppose that
\[
 t_i(e^{2t_i} + 1) = n + i,
\]
for \(i = 0, 1, 2 \). By Theorem 3.4 we have
\[
 \frac{M_{n+2}}{M_n} - \frac{M_{n+1}^2}{M_n^2} = \left(\sqrt{\frac{2t_0 + 1}{2t_2 + 1}} e^{A} - \frac{2t_0 + 1}{2t_1 + 1} e^{B} \right) \left(1 + O\left(\frac{\log^{7/2} n}{\sqrt{n}} \right) \right). \tag{3.18}
\]
where
\[A = 4t_2 + \left(2nt_2 - 2nt_0 - 2 + \frac{1}{t_2} \right) - \left(\frac{n}{2t_0} - \frac{n}{2t_2} \right) + (2t_2 - 2t_0), \]
\[B = 4t_1 + \left(4nt_1 - 4nt_0 - 2 + \frac{1}{t_1} \right) - \left(\frac{n}{t_0} - \frac{n}{t_1} \right) + (4t_1 - 4t_0). \]

By Lemma 2.1, both \(\sqrt{\frac{2t_0 + 1}{2t_1 + 1}} \) and \(\frac{2t_0 + 1}{2t_1 + 1} \) can be estimated by \(1 + O\left(\frac{1}{n \log n} \right) \). Because of the estimates in Lemma 2.3, (3.18) simplifies to
\[\frac{M_{n+2}}{M_n} - \frac{M_{n+1}^2}{M_n^2} = \left(e^A - e^B \right) \left(1 + O\left(\frac{\log^{7/2} n}{\sqrt{n}} \right) \right). \] (3.19)

By Cauchy’s mean value theorem, there exists a constant \(C \) such that \(B < C < A \) and
\[e^A - e^B = (A - B)e^C. \] (3.20)

On one hand, Lemma 2.3 yields
\[A - B = \left(4t_2 - 4t_1 + \frac{1}{t_2} - \frac{1}{t_1} \right) - (2n + 2)(2t_1 - t_0 - t_2) + \frac{n}{2} \left(\frac{1}{t_0} + \frac{1}{t_2} - \frac{2}{t_1} \right) \]
\[= \frac{1}{n} \left(1 + O\left(\frac{1}{n^2 \log n} \right) \right). \] (3.21)

On the other hand, by Lemma 2.1 we find that
\[e^C = \frac{4n^2}{\log^2 n} \left(1 + O\left(\frac{\log \log n}{\log n} \right) \right). \] (3.22)

Substituting (3.22) and (3.21) into (3.20), we deduce that
\[e^A - e^B = \frac{4n^2}{\log^2 n} \left(1 + O\left(\frac{\log \log n}{\log n} \right) \right). \] (3.23)

Substituting (3.23) into (3.19), we obtain the approximation of \(V(\xi_n) \). This completes the proof. \qed

By (3.17), we see that \(V(\xi_n) \) tends to infinity as \(n \to \infty \). Hence Theorem 3.1 follows from Theorem 3.3 and Proposition 3.2.

For \(B_n \)-partitions without zero-block, we have an analogous limiting distribution. Using the saddle point method as in the proof of Theorem 3.4, we obtain the following estimates of \(N_n \).

Theorem 3.6. We have
\[N_n = \frac{1}{\sqrt{(2r_0 + 1)}} \exp\left(2nr_0 - n + \frac{n}{2r_0} - \frac{1}{2} \right) \left(1 + O\left(\frac{\log^{7/2} n}{\sqrt{n}} \right) \right) \quad (3.24) \]
\[\sim \frac{1}{\sqrt{\log n}} \exp\left(2nr_0 - n + \frac{n}{2r_0} - \frac{1}{2} \right), \quad (3.25) \]
where \(r_0 \) is the unique positive solution of the equation \(r_0 e^{2r_0} = n \).
We remark that the approximation (3.25) can also be proved by Hayman’s theorem [12].

Corollary 3.7. We have

\[
\frac{N_n}{M_n} \sim \sqrt{\frac{\log n}{2n}}. \tag{3.26}
\]

Proof. Let \(r_0 e^{2r_0} = n \) and \(r_1 (e^{2r_1} + 1) = n \). By Theorem 3.4 and Lemma 2.1, we obtain that

\[
M_n \sim \frac{2n}{\log^{3/2} n} \exp\left(2nr_1 - n + \frac{n}{2r_1} - 1\right).
\]

Using (3.25), we get

\[
\frac{N_n}{M_n} \sim \frac{\log n}{2n} \exp\left(2n(r_0 - r_1) - n\frac{r_0 - r_1}{2r_0 r_1} + 1\right). \tag{3.27}
\]

By Cauchy’s mean value theorem, we have

\[
n(r_0 - r_1) = \frac{r_0}{2} - \frac{1}{4} + O\left(\frac{1}{\log n}\right). \tag{3.28}
\]

Thus (3.26) follows from (3.27) and (3.28). This completes the proof.

Recall that \(N_{n, k} \) is the number of \(B_n \)-partitions without zero-block having \(k \) block pairs. It can be verified that for any \(n \geq 1 \), the polynomial

\[
N_n(x) = \sum_k N_{n, k} x^k
\]

has \(n \) distinct real roots. Let \(\xi'_n \) be the random variable of the number of block pairs in \(B_n \)-partitions without zero-block. Using the same argument as that for \(\xi_n \), we find

\[
E(\xi'_n) = \frac{N_{n+1}}{2N_n} - 1 \sim \frac{n}{\log n},
\]

\[
V(\xi'_n) = \frac{N_{n+2}}{4N_n} - \frac{N_{n+1}^2}{4N_n^2} - \frac{1}{2} \sim \frac{n}{\log^2 n}.
\]

Hence \(V(\xi'_n) \) tends to infinity as \(n \) does. By Proposition 3.2, we are led to the following assertion.

Theorem 3.8. The limiting distribution of the random variable \(\xi'_n \) is normal.

References

[1] E. A. Bender, Central and local limit theorems applied to asymptotic enumeration, J. Combin. Theory Ser. A 15 (1973), 91–111.
[2] E. A. Bender, Asymptotic methods in enumeration, SIAM Rev. 16 (1974), 485–515.

[3] A. Björner and F. Brenti, Combinatorics of Coxeter Groups, Springer, 2005.

[4] A. Björner and M. L. Wachs, Geometrically constructed bases for homology of partitions lattices of types A, B and D, Electron. J. Combin. 11 (2004), #R3.

[5] N. G. de Bruijn, Asymptotic Methods in Analysis, North-Holland, Amsterdam, 1958.

[6] J. M. DeLaurentis and B. G. Pittel, Counting subsets of the random partition and the “Brownian Bridge” process, Stochastic Process. Appl. 15 (1983), 115–167.

[7] P. Flajolet and R. Sedgewick, Analytic Combinatorics, Cambridge Univ. Press, 2009.

[8] D. H. Greene and D. E. Knuth, Mathematics for the Analysis of Algorithms, 2nd ed. Birkhauser, Boston, 1982.

[9] W. M. Y. Goh and E. Schmutz, Gap-free set partitions, Random Structures Algorithms 3 (1992), 9–18.

[10] W. M. Y. Goh and E. Schmutz, Random set partitions, SIAM J. Discrete Math. 7 (1994), 419–436.

[11] L. H. Harper, Stirling behavior is asymptotically normal, Ann. Math. Statist. 38 (1967), 410–414.

[12] W. K. Hayman, A generalisation of Stirling’s formula, J. Reine Angew. Math. 196 (1956), 67–95.

[13] J. E. Humphreys, Reflection Groups and Coxeter Groups, Cambridge Stud. Adv. Math. 29, Cambridge Univ. Press, 1992.

[14] A. Knopfmacher, A. M. Odlyzko, B. G. Pittel, L. B. Richmond, D. Stark, G. Szekeres, and N. C. Wormald, The asymptotic number of set partitions with unequal block sizes, Electron. J. Combin. 6 (1999), #R2.

[15] L. L. Liu and Y. Wang, A unified approach to polynomial sequences with only real zeros, Adv. Appl. Math. 38 (2007), 542–560.

[16] A. M. Odlyzko, Asymptotic enumeration methods, in Handb. Combin., vol. 2, R.L. Graham, M. Groetschel, and L. Lovász eds., Elsevier, 1995, 1063–1229.

[17] A. M. Odlyzko and L. B. Richmond, On the number of distinct block sizes in partitions of a set, J. Combin. Theory Ser. A 38 (1985), 170–181.

[18] B. G. Pittel, Random set partitions: asymptotics of subset counts, J. Combin. Theory Ser. A 79 (1997), 326–359.
[19] V. Reiner, Non-crossing partitions for classical reflection groups, Discrete Math. 177 (1997), 195–222.

[20] V. N. Sachkov, Probabilistic Methods in Combinatorial Analysis, Cambridge Univ. Press, New York, NY, 1997.

[21] E. Schrödinger, Statistical thermodynamics, A course of seminar lectures delivered in 1944, at the School of Theoretical Physics, Dublin Institute for Advanced Studies, 2nd ed. reprinted, Cambridge Univ. Press, 1962.

[22] R. P. Stanley, Enumerative Combinatorics 1, 2nd ed., Cambridge, New York, Cambridge Univ. Press, 1997.