Novel synthesis of nanosilver particles using plant active principle aloin and evaluation of their cytotoxic effect against *Staphylococcus aureus*

Thota Venkata Chaitanya Kumar¹, Tollamadugu Naga Venkata Krishna Vara Prasad²*, K Adilaxmamma³, Mekapogu Alpharaj³, Yagireddy Muralidhar³, Pagadala Eswara Prasad¹

¹Department of Veterinary Biochemistry, College of Veterinary Science, Tirupati
²Department of Soil Science, S.V. Agricultural College, Acharya N G Ranga Agricultural, University, Tirupati
³Department of Pharmacology & Toxicology, College of Veterinary Science, Proddatur

1. Introduction

Silver nanoparticles owing to the characteristics like reduced size and increased surface area[11] provide enormous hope for use in biological systems by virtue of broad spectrum antimicrobial activity[2–4] which includes bactericidal action against both Gram positive and Gram negative bacteria including multidrug resistant strains[5–9]. Further, the development of bacterial resistance has not been reported against silver nanoparticles[10,11] making it a good choice for therapeutic consideration in most of the livestock diseases. The additional advantage with silver nanoparticles resides in the fact that they are relatively non–toxic and safe antibacterial agents[12] requiring much smaller concentrations for antimicrobial effect[6,13]. Further, the biological synthesis of nanoparticles using plant...
sources (phytogenic) is advantageous over other methods of synthesis in being cost effective, practically non-toxic and eco friendly\cite{14,15}.

Aloin, the major constituent of Aloe vera species was reported to have anti-microbial\cite{16}. It is also reported to have anti-inflammatory\cite{17,18}, anticancer and anti-tumor activity\cite{19}. Staphylococcus aureus (S. aureus) was reported to be the leading cause of mastitis worldwide\cite{20} and also for nosocomial and community acquired infections. The annual economical loss caused by staphylococcal bovine mastitis globally was estimated to be USD 2 billion\cite{21}. Further, S. aureus was reported to be the main reason for the use of antibiotics in dairy cows\cite{22}.

In the present study, synthesis and characterization of nanoparticles phytogenically derived by the reduction of silver nitrate using aloin were carried out and the antimicrobial activity of the compound was investigated on S. aureus which is a major cause of most of the livestock diseases of economic importance. Further, the safety level of the compound is determined.

2. Materials and methods

2.1. Synthesis of aloin mediated silver nanoparticles (ANS)

The aloin (Sigma Aldrich) was purchased and was stored in the refrigerator at \(-4 \, ^\circ\)C. Two percent aloin solution was prepared with the dissolution of appropriate quantities in the distilled water and made up to 100 mL. About 0.1 mol/1 silver nitrate solution was prepared and 90 mL of which was added to 10 mL of 2 percent aloin solution at 95 \(^\circ \)C with vigorous stirring. Then change in colour of the solution was observed from pale yellow to brown which indicates the formation of ANS. The prepared solution was cooled to the room temperature normally and finally particles were allowed to settle for 24 h. The solution was then changed to a plastic container for further characterization.

2.2. Characterisation of silver nanoparticles

2.2.1. UV–visible spectra analysis

The reduction of pure Ag\(^+\) ions was monitored by measuring the UV–visible spectrum of the reaction medium at 5 h after diluting a small aliquot of the sample into distilled water. UV–visible spectral analysis was done by using UV–vis spectrophotometer UV–2450 (Shimadzu).

2.2.2. SEM analysis of silver nanoparticles

SEM (Scanning electron microscope) analysis was done using Hitachi S–4500 SEM machine. Thin films of the sample were prepared on a carbon coated copper grid by just dropping a very small amount of the sample on the grid, extra solution was removed using a blotting paper and then the film on the SEM grid was allowed to dry by putting it under a mercury lamp for 5 min.

2.2.3. DLS technique–particle size measurement

DLS (Dynamic light scattering) analyzes the velocity distribution of particle movement by measuring dynamic fluctuations of light–scattering intensity caused by the brownian motion of the particle. This technique yields a hydrodynamic radius or diameter, which is calculated using the Stokes–Einstein equation from the above mentioned measurements. The measurements were carried out using the instrument Nanopartica SZ–100 (HORIBA).

2.2.4. Fourier transform infrared spectroscopy (FT–IR analysis) measurements

FT–IR analysis was carried out on TENSOR–27 (BRUCKER) in the diffuse reflectance mode operated at a resolution of 4 cm\(^{-1}\) in the range of 400 to 4000 cm\(^{-1}\) to evaluate the functional groups that might be involved in nanoparticle formation.

2.3. Anti-bacterial activity

Tube dilution method was adopted to determine the minimum inhibitory concentration (MIC) of the test compound against S. aureus. S. aureus isolated from cases of bovine mastitis which was subjected to cultural, biochemical and molecular characterization at Department of Veterinary Microbiology, N.T.R. College of Veterinary Science, Gannavaram was used for the study. A total of 10 sterile test tubes were taken. About 1 mL of the test compound was added to first and second tubes and to the rest of tubes 1 mL of sterile normal saline was added. Two fold serial dilution of the test compound was made from the second tube and 1 mL was discarded from the last tube. About 5 mL sterile nutrient broth was added to all the test tubes. Then 50 \(\mu\)L of standardized (0.5 McFarland unit) overnight broth culture was added to all the tubes. The tubes were incubated for 18 h at 37 \(^\circ\)C. The end point was defined as the lowest concentration of the test compound at which there was no visible growth. The lowest concentration of the test compound inhibiting the growth of the organisms is recorded as MIC.

2.4. Cytotoxicity study (MTT assay)

MTT is water soluble, yellow coloured tetrazolium salt that enters the cells and passes into mitochondria, where it is reduced to an insoluble purple formazan. The cells are then solubilized with an organic solvent and the released formazan is measured spectrophotometrically. Since the reduction of MTT occurs in metabolically active cells, the level of activity is a measure of cell viability.

3. Results

3.1. UV–visible spectra analysis

UV–visible absorption spectrum of ANS is shown in Figure 1. The spectra of ANS showed absorption maximum at 200 nm.
corresponds to the surface plasmon resonance of the formed silver nanoparticles.

3.2. SEM analysis of silver nanoparticles

The SEM image analysis of ANS is depicted in Figure 2. It showed that the particles are cubical, rectangular, triangular and spherical in shape with uniform distribution. However, in most of the occasions agglomeration of the particles was observed. The measured sizes of the agglomerated nanoparticles are in the range of 287.5 to 293.2 nm; however the average size of an individual particle is estimated to be 70 nm.

3.3. DLS technique–particle size measurement

The size of the aloin mediated silver nanoparticles was measured using DLS technique and the size was recorded as 67.8 nm which is in good agreement with the SEM analysis (70 nm). DLS particle size measurement of ANS is shown in Figure 3.

3.4. FT–IR analysis

The result of FT–IR analysis for ANS is depicted in Figure 4. Spectra of ANS showed transmission peaks at 3355, 1636 and 1507 cm⁻¹. The peak at 1636 cm⁻¹ indicates primary amines, the peak at 3355 cm⁻¹ corresponds to O–H, as also H–bonded phenols and alcohols in ANS while the peak at 1507 cm⁻¹ in ANS corresponds to involvement of nitriles (–C=\(\text{N}\)) groups.

3.5. Antibacterial activity

The MIC of the test compounds against *S. aureus* was depicted in Figure 5. The MIC obtained by tube dilution method was 21.8 ng of ANS/mL.

Figure 1. UV–visible spectrum of aloin mediated silver nanoparticles.

Figure 2. SEM image of aloin mediated nanosilver.

Figure 3. DLS technique–particle size measurement of ANS.

Figure 4. FT–IR spectrum of aloin mediated silver nanoparticles.

Figure 5. Determination of MIC: Tube dilution assay.
3.6. Cytotoxicity study (MTT assay)

The MTT assay results were represented graphically in Figure 6. In the MTT assay, the spleenocytes maintained a survivability of above 80% at a concentration of 87.5 mg/L of the compound and was above 80% at all lower concentrations.

![Figure 6. Cytotoxicity of nanoparticles.](image)

4. Discussion

Green synthesis of nanosilver using plant extracts was reported to be superior to chemical synthesis in that, the former compounds offer better advantages as they are widely distributed, safe to handle, easily available with a range of metabolities[23]. In the present study, silver nanoparticles were synthesised using phyto-compound aloin and the formed silver nanoparticles were characterized using UV–visible spectroscopy, SEM, DLS technique and FT-IR analysis. The production of silver nanoparticles is demonstrated by the sharp peak around 200 nm for aloin mediated silver nanoparticles in UV–vis spectrum, which indicates the availability of reducing biomolecules in aloin. Analysis of SEM image shows the formation of silver nanoparticles and indicates the agglomerated appearance with cubical, rectangular, triangular shape and size varying from 287.5 to 293.2 nm. The average size of an individual particle is estimated to be approximately 70 nm. The results of DLS technique used for the measurement of size of ANS in solution form showed a size of 67.8 nm which is in good agreement with the SEM analysis (70 nm). The results of the FT–IR studies indicated the involvement of hydroxyl, carboxyl and primary amine functional groups of aloin in the synthesis of silver nanoparticles. ANS showed better antibacterial properties against S. aureus as evidenced by MIC value 21.8 ng/mL when compared to the phytocompound aloin alone which showed a MIC value of 62.5 µg/mL[16]. The enhanced effect of ANS might be due to the bactericidal properties of silver nanoparticles[24]. Cytotoxicity studies revealed that ANS showed no toxicity at the doses studied i.e., between 1.36–87.5 mg/L in mouse spleenocytes. Synthesis of nanosilver using phytogenic compound aloin made it more safer when compared to chemical synthesized nanosilver which is reported to be toxic by Sommayeh et al.[25] who conducted toxicity study of chemical mediated nanosilver on osteoblast cancer cell line and demonstrated concentration–dependent toxicity and IC50 value of 3.42 µg/mL.

In conclusion, ANS were found to possess powerful antibacterial effect and were also found to be safe. Hence, keeping in view of the economics of production, safety and efficacy of the compound, ANS could provide a promising alternative to the use of traditional antibiotics.

Conflict of interest statement

We declare that we have no conflict of interest.

Comments

Background

Plant mediated synthesized nanoparticles, silver in particular has gaining lot of importance in biological applications. Novel antimicrobial properties of silver nanoparticles have attracting many researchers to search new avenues to production of the same. Aloin is known from the ancient times, as an antimicrobial and anti–inflammatory agent. If these properties of aloin are coupled with the silver nanoparticles, then a conjunctive effect of both may be observed and this is the background of the work proposed in the present manuscript.

Research frontiers

Production of phytogenic silver nanoparticles through easy and cost–effective methods is the order of the day in recent scientific research. Novel coating of aloin on the silver nanoparticles has many advantages interns of enhanced antimicrobial properties and thereafter, for commercialization.

Related reports

There are a number of reports available on the synthesis and application of phytogenic silver nanoparticles. But the reports on coating the silver nanoparticles with the novel compounds like aloin are scarce.

Innovations & breakthroughs

Aloin coated silver nanoparticles were prepared and were
tested for their novel antimicrobial properties. This may be the first report on this kind of preparation of silver nanoparticles with aloin coating.

Applications
This is the first report of it’s kind and promising lot of scope for commercialization to apply them in animal science for disease control.

Peer review
The paper was well written with good English. The results were well presented. The results pointed to the commercialization of aloin coated silver nanoparticles.

References

[1] Yeo SY, Lee HJ, Jeong SH. Preparation of nanocomposite fibers for permanent antibacterial effect. J Mater Sci 2003; 38: 2143–2147.

[2] Lok CN, Ho CM, Chen R, He QY, Yu WY, Sun H, et al. Proteomic analysis of the mode of antibacterial action of silver nanoparticles. J Proteome Res 2006; 5: 916–924.

[3] Gogoi SK, Gopinath P, Paul A, Ramesh A, Ghosh SS, Chattopadhyay A. Green fluorescent protein–expressing Escherichia coli as a model system for investigating the antimicrobial activities of silver nanoparticles. Langmuir 2006; 22: 9322–9328.

[4] Sap–Jam NC, Hornklinchan C, Larudomlert R, Warisnoichareon W, Sereemaspun A, Dubas ST. UV irradiation–induced silver nanoparticles as mosquito larvicides. J Appl Sci Res 2010; 6: 3132–3136.

[5] Alt V, Bechert T, Steinrücke P, Wagener M, Seidel P, Dingeldstein E, et al. Nanoparticulate silver. A new antimicrobial substance for bone Cement. Orthopade 2004; 33(8): 885–892.

[6] Panacek A, Kvitek L, Vanickova M, Panacek A, Soukupova J, Dittrich M, Valentova E, et al. Initial study on the toxicity of silver nanoparticles (NPs) against Paramecium caudatum. J Phys Chem 2009; 113: 4296–4300.

[7] Aymonier C, Schlatterbeck U, Antonietti L, Zacharias P, Thomann R, Tiller JC, et al. Hybrids of silver nanoparticles with amphiphilic hyperbranched macromolecules exhibiting antimicrobial properties. Chem Commun 2002; 24: 3018–3019.

[8] Morones JR, Elechiguerra JL, Camacho A, Holt K, Kouri JB, Ramirez JT, et al. The bactericidal effect of silver nanoparticles. Nanotechnol 2005; 16: 2346–2353.

[9] Ip M, Lui SL, Poon VK, Lung I, Burd A. Antimicrobial activities of silver dressings: an in vitro comparison. J Med Microbiol 2006; 55: 59–63

[10] Neu HC. The crisis in antibiotic resistance. Science 1992; 257: 1064–1073.

[11] Stewart PS, Costerton JW. Antibiotic resistance of bacteria in biofilms. Lancet 2001; 358: 135–138.

[12] Dowling DP, Betts AJ, Pope C, McConnell ML, Eloy R, Arnaud MN. Anti–bacterial silver coatings exhibiting enhanced activity through the addition of platinum. Surf Coat Technol 2003; 163–164: 637–640.

[13] Kvitk L, Vanickova M, Panacek A, Soukupova J, Dittrich M, Valentova E, et al. Initial study on the toxicity of silver nanoparticles (NPs) against Paramecium caudatum. J Phys Chem 2009; 113: 4296–4300.

[14] Aymonier C, Schlatterbeck U, Antonietti L, Zacharias P, Thomann R, Tiller JC, et al. Hybrids of silver nanoparticles with amphiphilic hyperbranched macromolecules exhibiting antimicrobial properties. Chem Commun 2002; 24: 3018–3019.

[15] Sun Y, Xia Y. Shape–controlled synthesis of gold and silver nanoparticles. Science 2002; 298: 2176–2179.

[16] Coopoosamy RM, Magwa ML. Antibacterial activity of aloe emodin and aloin A isolated from Aloe excels. Afr J Biotechnol 2006; 5: 1092–1094.

[17] Park MY, Kwon HJ, Sung MK. Evaluation of aloin and aloe–emodin as anti–inflammatory agents in aloe by using murine macrophages. Biosci Biotechnol Biochem 2009; 23: 828–832.

[18] Park MY, Kwon HJ, Sung MK. Dietary aloin, aloesin, or aloe–gel exerts anti–inflammatory activity in a rat colitis model. Life Sci 2011; 88: 486–492.

[19] Matharasi DSP, Abu–Yousef IA, Gopi SKS, Vijayakumar B. Synthesis and antibacterial activity of aloin schiff’s bases. Eur J Sci Res 2010; 433: 297–306.

[20] Ruegg PL. Investigation of mastitis problems on farms. Vet Clin North Am Food Anim Pract 2003; 19: 47–74.

[21] Schmelcher M, Powell AM, Becker SC, Camp MJ, Donovan DM. Chimeric phage lysins act synergistically with lysostaphin to kill mastitis–causing Staphylococcus aureus in murine mammary glands. Appl Environ Microbiol 2012; 78: 2297–2305.

[22] Mitchell JM, Griffiths MW, McEwen SA, McNab WB, Yee AJ. Antimicrobial drug residues in milk and meat: causes, concerns, prevalence, regulations, tests, and test performance. J Food Prot 1998; 61: 742–756.

[23] Kulkarni AP, Srivastava AA, Nagalgaon RK, Zunjarrao RS. Antibacterial activity of aloe and its extracts against Staphylococcus aureus. J Phys Chem B 2006; 109(22): 1092–1094.

[24] Park MY, Kwon HJ, Sung MK. Evaluation of aloin and aloe–emodin as anti–inflammatory agents in aloe by using murine macrophages. Biosci Biotechnol Biochem 2009; 23: 828–832.

[25] Schmelcher M, Powell AM, Becker SC, Camp MJ, Donovan DM. Chimeric phage lysins act synergistically with lysostaphin to kill mastitis–causing Staphylococcus aureus in murine mammary glands. Appl Environ Microbiol 2012; 78: 2297–2305.