Updated threshold dose-distribution data for sesame

To the Editor,

Sesame is classified as a "major" food allergen for which mandatory disclosure is required. Understanding reaction thresholds and how these vary within the allergic population is crucial in providing appropriate dietary advice to patients, providing guidance to the food industry, and informing dosing regimens for oral food challenges (FC). However, the largest data series used to derive a threshold dose-distribution for sesame included blinded challenge data from just 40 individuals. Data from low-dose, open FC can be used to supplement that from blinded FC, reducing uncertainty in estimating threshold dose-distributions for allergenic foods which otherwise lack sufficient data. We, therefore, undertook a systematic search of the literature and performed dose-distribution modelling of individual patient FC data (including open FC) to update estimated eliciting doses for sesame.

Eleven studies were included (Table S1), representing data from 246 positive FC. The discrete and cumulative eliciting dose predicted to provoke reactions in 5% of the sesame-allergic population (ED_{05}) were 2.4 (95% CI 1.0–7.7) and 2.5 (95% CI 0.9–9.5) mg sesame protein, respectively. Dose-distributions are shown in Figure 1 and Table S1. These estimates are reassuringly similar to those previously reported, only with much greater precision reflecting the increased number of datapoints (Table 1). Furthermore, these estimates were robust at sensitivity analyses when excluding data from unblinded food challenges or studies with a significant proportion of "first dose reactors" (Table 1).

With this analysis, the dataset for sesame is now similar to that used to inform eliciting doses for other food allergens, and sufficient to inform public policy despite the potential limitations of analyses using FC data. The CODEX committee of the Food and Agricultural Organization of the United Nations and the World Health Organization recently commissioned an Expert Consultation which recommended the inclusion of sesame as a global "priority" allergen. The data presented here will be used to inform a reference dose which might be recommended to guide the use of precautionary allergen ("may contain") labelling. Given that ED values remain robust at sensitivity analysis when limited to blinded FC in the ED_{01}-ED_{10} range, we recommend using ED values based on the blinded FC dataset for risk assessment and risk management purposes, to maintain consistency with approaches for other food allergens.

A strength of this dataset is the inclusion of cohorts spanning four of the six global CODEX regions. These data were mostly generated from FC using ground sesame or tahini and may not be directly

Figure 1 Eliciting dose curves from the model averaged population threshold dose-distributions for sesame, based on (A) discrete and (B) cumulative dose datasets. Doses are expressed in mg sesame seed protein, and are compared to equivalent data reported by Houben et al. used to inform VITAL 3.0 reference doses.

Abbreviations: 95% CI, 95% confidence interval; DBPCFC, Double-blind placebo-controlled food challenge; ED, Eliciting dose; FC, Food challenge; LOAEL, Lowest-observed adverse effect level; NOAEL, No observed adverse effect level.

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.

© 2022 The Authors. Allergy published by European Academy of Allergy and Clinical Immunology and John Wiley & Sons Ltd.
Ovadia et al. recently reported a cohort of 51 sesame-allergic endosperm proteins, resulting in a much lower exposure to sesame al-
mastication, and thus, swallowed whole; this prevents the release of
baked into the surface of bread rolls are frequently not broken during
commonly used in food preparation. For example, sesame seeds when
extrapolated to the consumption of whole sesame seeds which are
~exposure, implying tolerance in
a top dose of 1 g protein (around 4 g of tahini paste,
strong taste can create difficulties, particularly in younger children. Our
commonly used for the higher doses used at sesame- FC; however, the
(as recommended by PRACTALL) is appropriate for sesame. Tahini is
It is, therefore, unclear whether baked sesame seeds are tolerated
due to the low level of allergen exposure, the lower bioavailability of
sesame seed protein with this form of consumption, or both.
Finally, these data confirm that a semi-log dosing regimen for FC
(this analysis (limited to
DBPCFC only, n = 67)
This analysis (excluding studies with significant left-
censoring a, n = 172)
Note: Discrete dosing schemes are reported as the mg protein amount of each separate dose within a food challenge when determining the individual
NOAEL and LOAEL. Cumulative dosing schemes are reported as the cumulative sum of all prior doses within a food challenge when calculating the individual NOAEL and LOAEL. Population dose-distributions were determined using “Stacked Model Averaging” as previously described.12
aLeft-censoring of data occurs when participants react to the first dose of the challenge protocol, and is more likely to occur in those studies with a
higher initial challenge dose. All doses are presented as mg sesame protein.
extrapolated to the consumption of whole sesame seeds which are
commonly used in food preparation. For example, sesame seeds when
baked into the surface of bread rolls are frequently not broken during
mastication, and thus, swallowed whole; this prevents the release of
endosperm proteins, resulting in a much lower exposure to sesame al-
lergens. Ovadia et al. recently reported a cohort of 51 sesame-allergic
children, of whom 41 (80%) were able to tolerate 3 pretzels with
sesame seeds (total exposure approximately 36 mg sesame protein)
baked into the surface.6 This would be equivalent to an ED25 level of
objective symptoms in someone unable to ingest a higher dose at FC.

Data that support the findings of this study are available from
the corresponding author upon reasonable request, but may be sub-
ject to non-disclosure agreements.
Paul J. Turner1, Magdalena Gretzinger1, Nandinee Patel1, Helen A. Brough2,3, R. Sharon Chinthrajah4, Motohiro Ebisawa5, Arnon Elizur6,7, Jennifer J. Koplin8,9, Rachel L. Peters8,9, Natasha Purington10, Anna Nowak-Wegrzyn11,12, Sarah Saf13,14, Hugh A. Sampson13, Joost Westerhout15, W. Marty Blom15, Joseph L. Baumert16, Geert F. Houben15, Benjamin C. Remington16

1National Heart & Lung Institute, Imperial College London, London, UK
2Children’s Allergy Service, Evelina Children’s Hospital, Guy’s and St. Thomas’ NHS Foundation Hospital, London, UK
3Department of Paediatric Allergy, King’s College London, London, UK
4Sean N. Parker Center for Allergy and Asthma Research, Stanford University School of Medicine, Stanford, CA, USA
5Clinical Research Center for Allergy and Rheumatology, National Hospital Organization Sagamihara National Hospital, Sagamihara, Japan
6Institute of Allergy, Immunology and Pediatric Pulmonology, Yitzhak Shamir Medical Center, Zerifin, Israel
7Department of Pediatrics, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
8Population Health, The Murdoch Children’s Research Institute, Melbourne, Victoria, Australia
9Department of Paediatrics, University of Melbourne, Melbourne, Victoria, Australia
10Department of Medicine, Quantitative Sciences Unit, Stanford University School of Medicine, Stanford, CA, USA
11Allergy and Immunology, Department of Pediatrics, New York University Langone Health, New York, NY, USA
12Department of Pediatrics, Gastroenterology and Nutrition, Collegium Medicum, University of Warmia and Mazury, Olsztyn, Poland
13Division of Pediatric Allergy and Immunology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
14Department of Allergology-Centre de l’Asthme et des Allergies, Hôpital d’Enfants Armand Trousseau, Paris, France
15TNO, The Netherlands Organisation of Applied Scientific Research, Utrecht, The Netherlands
16Food Allergy Research and Resource Program, University of Nebraska, Lincoln, Nebraska, USA

Correspondence
Paul Turner, National Heart & Lung Institute, Imperial College London, Norfolk Place, London, W2 1PG, UK.
Email: p.turner@imperial.ac.uk

ORCID
Paul J. Turner https://orcid.org/0000-0001-9862-5161
Helen A. Brough https://orcid.org/0000-0001-7203-0813
R. Sharon Chinthrajah https://orcid.org/0000-0003-2467-4256
Motohiro Ebisawa https://orcid.org/0000-0003-4117-558X
Arnon Elizur https://orcid.org/0000-0001-8157-8143
Jennifer J. Koplin https://orcid.org/0000-0002-7576-5142
Anna Nowak-Wegrzyn https://orcid.org/0000-0002-0960-9854
Benjamin C. Remington https://orcid.org/0000-0001-5450-8334

REFERENCES
1. Remington BC, Westerhout J, Meima MY, et al. Updated population minimal eliciting dose distributions for use in risk assessment of 14 priority food allergens. Food Chem Toxicol. 2020;139:111259.
2. Remington BC, Westerhout J, Dubois AEJ, et al. Suitability of low-dose, open food challenge data to supplement double-blind, placebo-controlled data in generation of food allergen threshold dose distributions. Clin Exp Allergy. 2021;51(1):151-154.
3. Klein Entink RH, Remington BC, Blom WM, et al. Food allergy population thresholds: an evaluation of the number of oral food challenges and dosing schemes on the accuracy of threshold dose distribution modeling. Food Chem Toxicol. 2014;70:134-143.
4. Ad hoc joint FAO/WHO expert consultation on risk assessment of food allergens part 1: summary and conclusions of the review and validation of codex priority allergen list through risk assessment. Issued on 10 May 2021. Available at fao.org/3/cb4653en/cb4653en.pdf (accessed 20 March 2022).
5. Houben GF, Baumert JL, Blom WM, et al. Full range of population eliciting dose values for 14 priority allergenic foods and recommendations for use in risk characterization. Food Chem Toxicol. 2020;146:111831.3
6. Ovadia A, Yoffe S, Orr YB, Tasher D, Dalal I. Sesame-allergic patients can tolerate intact sesame seeds food challenge. J Allergy Clin Immunol Pract. 2022;10(1):336-338.

SUPPORTING INFORMATION
Additional supporting information may be found in the online version of the article at the publisher’s website.