Is 20s too young to have triple coronary vessel disease?

M. Umair Bakhsh, Hassan Alkhawam, Feras Zaiem, Jasprit Takher, Anirudh Pareek, Mohammed El-hunjul, Robert Sogomonian, Neil Vyas

ABSTRACT

Introduction: Coronary artery disease (CAD) remains the leading cause of death in the US in both men and women. This is less frequent in younger population, however, when present CAD can have devastating consequences on the patient and the family.

Case Report: We reported a case of a 28-year-old smoker male with a family history of CAD who presented with dyspnea on exertion. Laboratory examinations were normal for cardiac enzymes and negative for D-Dimer. On admission ECG showed sinus rhythm at 71 bpm, RSR’ in V1, S wave in I, Q wave in III, T wave inversion in III. Echocardiogram showed right ventricular systolic function reduced mid portion, preserved at apex and base (McConnell’s sign) consistent with acute pulmonary embolism. Patient was started on anticoagulation. Computed tomography angiography (CTA) was also done which was negative for any acute pulmonary embolism, and anticoagulation was discontinued in the light of negative CTA. The patient was discharged from hospital with follow-up in outpatient department. However, the patient came back to emergency department with worsening dyspnea. Lab work was significant for elevated troponin I and ECG on admission showed normal sinus rhythm and S1Q3T3 pattern. Patient had coronary angiography which showed three vessel disease.

Conclusion: Smoking is conventionally recognized as the most common risk factor for heart disease. The CAD in young adults has a poor long-term prognosis. Smoking cessation remains a significant challenge in younger population. More awareness and cessation measures are required to address this emerging situation. Given lack of warning signs in these patients, physicians need to be more aggressive in managing risk factors as CAD in younger patient can have adverse outcomes.
Is 20s too young to have triple coronary vessel disease?

M. Umair Bakhsh, Hassan Alkhawam, Feras Zaiem, Jaspirit Takher, Anirudh Pareek, Mohammed El-hunjul, Robert Sogomonian, Neil Vyas

ABSTRACT

Introduction: Coronary artery disease (CAD) remains the leading cause of death in the US in both men and women. This is less frequent in younger population, however, when present CAD can have devastating consequences on the patient and the family. Case Report: We reported a case of a 28-year-old smoker male with a family history of CAD who presented with dyspnea on exertion. Laboratory examinations were normal for cardiac enzymes and negative for D-Dimer. On admission ECG showed sinus rhythm at 71 bpm, RSR' in V1, S wave in I, Q wave in III, T wave inversion in III. Echocardiogram showed right ventricular systolic function reduced mid portion, preserved at apex and base (McConnell's sign) consistent with acute pulmonary embolism. Patient was started on anticoagulation. Computed tomography angiography (CTA) was also done which was negative for any acute pulmonary embolism, and anticoagulation was discontinued in the light of negative CTA. The patient was discharged from hospital with follow-up in outpatient department. However, the patient came back to emergency department with worsening dyspnea. Lab work was significant for elevated troponin I and ECG on admission showed normal sinus rhythm and S1Q3T3 pattern. Patient had coronary angiography which showed three vessel disease. Conclusion: Smoking is conventionally recognized as the most common risk factor for heart disease. The CAD in young adults has a poor long-term prognosis. Smoking cessation remains a significant challenge in younger population. More awareness and cessation measures are required to address this emerging situation. Given lack of warning signs in these patients, physicians need to be more aggressive in managing risk factors as CAD in younger patient can have adverse outcomes.

Keywords: Acute coronary syndrome, Coronary artery disease, Vessel disease, Young population

INRODUCTION

Coronary artery disease (CAD) is the leading cause of death in both men and women. In United States about 600,000 people die of heart disease every year [1]. Coronary artery disease is the most common type of heart disease, killing close to 380,000 people annually. Every year about 720,000 Americans have heart attack, out of these, 515,000 experience their first while 205,000 already had a heart attack [2]. The burden of coronary artery disease is significant; it costs $108.9 billion dollars annually [3]. African American men are 30% more likely
to die from heart disease than non-Hispanic white men [4]. In men, the risk for CAD increases after age 45 while in women, the risk for CAD increases after age 55. The CAD is less frequent in younger population, however, when present this can have devastating consequences on the patient and the family. Younger men with myocardial infarction, less than 40 years old were found to be heavy smokers with a high incidence of angiographically normal coronaries. As opposed to traditional risk factors for CAD, younger patient have a lower prevalence of hypertension, diabetes mellitus and hyperlipidemia. Smoking is recognized as the most common risk factor for CAD in younger men and is associated with myocardial infarction. A positive family history of premature CAD was significantly more prevalent in younger men. The re-admission rate is high and it is associated with smoking and decreased ejection fraction.

CASE REPORT

A 28-year-old male, South Asian descent, active smoker with no prior medical history presented to the emergency department with dyspnea on exertion. Family history was significant for premature coronary arterial disease and dyslipidemia in her mother. The patient denies any recreational drug and was not on any medications.

Three months ago the patient arrived to USA and since then he had been having dyspnea on exertion, progressively getting worse. Three months ago he used to run two mile without any complaints, however soon after returning back from his country he started to get short of breath.

In the emergency department, the patient was afebrile with normotensive and stable vitals. ECG on admission showed sinus rhythm at 71 bpm, RSR’ in V1, S wave in I, Q wave in III, T wave inversion in III (Figure 1). Examination unremarkable for any murmur or lower extremity swelling. Laboratory studies revealed normal troponin I and normal CK–MB levels. His D-dimer was normal <0.150 ug/mL (0–0.223). Echocardiogram showed normal left ventricular systolic function – EF 60%, RV dilatation, right ventricular systolic function reduced mid portion, preserved at apex and base (McConnell’s sign) consistent with acute pulmonary embolism. Patient was started on anticoagulation—Lovenox 1 mg/kg BID. Computed tomography angiography (CTA) was negative for any acute pulmonary embolism and anticoagulation was discontinued in the light of negative CTA. The patient was discharged with outpatient follow up with primary care clinic.

Three weeks after being discharged patient presented to the emergency department with worsening dyspnea on minimal activity, exercise tolerance limited to less than one block and one flight of stairs. Denied any chest pain, palpitations, lower extremity swelling. Patient was afebrile, normotensive and vital signs stable.

The ECG on admission showed normal sinus rhythm. S1Q3T3 pattern (Figure 2). He was given 81 mg x 4 aspirin and admitted to medicine service for further management. His lab work was significant for elevated troponin I to 0.217 ng/mL (0.00–0.10 ng/mL), however negative CK–MB. Cardiologist was consulted and patient was upgraded to CCU. His troponins I peaked to 1.884 ng/mL. Patient was started on heparin drip and eptifibatide drip for non-STEMI. Lipid panel showed cholesterol 342 mg/dL (0–200 mg/dL), triglyceride 460 mg/dL (0–150 mg/dL), HDL 25 mg/dL (23–92 mg/dL), LDL 190 mg/dL (0–100). HbA1C was 5.2%.

Given ECG findings with worsening dyspnea and elevated troponins patient had D-Dimer done which was negative (<0.150, normal 0–0.223 ug/mL) concern for pulmonary embolism. Patient had echo done which showed normal LV function, mild MR, RV dilatation and McConnell sign seen on prior Echo was no longer seen.

Given elevated troponin with worsening dyspnea cardiology team performed coronary angiography which showed three vessel disease, minimal LV dysfunction, no MR or AS. Successful PCI of LAD/D1 and OM1. Cardiology team recommended Aspirin, Plavix with staged PCI of AV continuation.

The patient was admitted to cardiology in November 14 for staged PCI of AV continuation. The patient was discharged home with successful PCI of AV continuation, angiography further showed patent stent in LAD and OM1.

Figure 1: ECG on admission showed sinus rhythm at 71 bpm, RSR’ in V1, S wave in I, Q wave in III, T wave inversion in III.

Figure 2: ECG on admission showed normal sinus rhythm. S1Q3T3 pattern.
He was discharged home on aspirin, plavix and statin. His symptoms improved after PCI and continues to follow-up with cardiology as outpatient.

DISCUSSION

Coronary artery disease remains the leading cause of death in the US in both men and women [1]. This is less frequent in younger population however when present CAD can have devastating consequences on the patient and the family [5]. Younger men with myocardial infarction, less than 40 years old were found to be heavy smokers with a high incidence of angiographically normal coronaries [6]. As opposed to traditional risk factors for CAD, younger patient have a lower prevalence of hypertension, diabetes mellitus and hyperlipidemia. Smoking is recognized as the most common risk factor for CAD in younger men and is associated with myocardial infarction [7, 8]. A positive family history of premature CAD was significantly more prevalent in younger men [9, 10, 11]. The re-admission rate is high and it is associated with smoking and decreased ejection fraction [12].

Echo done also showed McConnell sign. McConnell sign has been reported to have high sensitivity and specificity for diagnosing acute pulmonary embolism, however, recent reports have shown a poor predictive value for diagnosis of acute pulmonary embolism [13]. ECG showed S1Q3T3 which is not neither sensitive nor specific for pulmonary embolism with the most common finding being sinus tachycardia.

Stable angina and multivessel disease is uncommon in the young [14]. Younger patients denied any history of chest pain prior to MI [15]. Older patient frequently have triple vessel disease [10, 16–20]. The long-term prognosis of the patient depends upon the number of vessels involved and the degree of LV dysfunction [11, 21, 22].

CONCLUSION

Smoking and family history of premature coronary artery disease (CAD) is seen more commonly in younger patients. The CAD in young adults has a poor long-term prognosis. Smoking cessation remains a significant challenge in younger population. More awareness and cessation measures are required to address this emerging situation. Given lack of warning signs in these patients, physicians need to be more aggressive in managing risk factors as CAD in younger patient can have adverse outcomes.

Author Contributions

M. Umair Bakhsh – Substantial contributions to conception and design, Acquisition of data, Analysis and interpretation of data, Drafting the article, Revising it critically for important intellectual content, Final approval of the version to be published

Hassan Alkhawam – Substantial contributions to conception and design, Acquisition of data, Analysis and interpretation of data, Drafting the article, Revising it critically for important intellectual content, Final approval of the version to be published

Feras Zaiem – Acquisition of data, Revising it critically for important intellectual content, Final approval of the version to be published

Jaspirt Takher– Analysis and interpretation of data, Revising it critically for important intellectual content, Final approval of the version to be published

Anirudh Pareek– Analysis and interpretation of data, Revising it critically for important intellectual content, Final approval of the version to be published

Mohammed El-Hunjul – Substantial contributions to conception and design, Acquisition of data, Revising it critically for important intellectual content, Final approval of the version to be published

Rober Sogomonian– Substantial contributions to conception and design, Acquisition of data, Revising it critically for important intellectual content, Final approval of the version to be published

Neil Vyas – Substantial contributions to conception and design, Acquisition of data, Revising it critically for important intellectual content, Final approval of the version to be published

Guarantor

The corresponding author is the guarantor of submission.

Conflict of Interest

Authors declare no conflict of interest.

Copyright

© 2015 M. Umair Bakhsh et al. This article is distributed under the terms of Creative Commons Attribution License which permits unrestricted use, distribution and reproduction in any medium provided the original author(s) and original publisher are properly credited. Please see the copyright policy on the journal website for more information.

REFERENCES

1. Murphy SL, Xu J, Kochanek KD. Deaths: final data for 2010. Natl Vital Stat Rep 2013 May 8;61(4):1–117.
2. Go AS, Mozaffarian D, Roger VL, et al. Heart disease and stroke statistics–2014 update: a report from the American Heart Association. Circulation 2014 Jan 21;129(5):e28–e292.
3. Heidenreich PA, Trogdon JG, Khavjou OA, et al. Forecasting the future of cardiovascular disease in the United States: a policy statement from the American Heart Association.Circulation 2011 Mar 1;123(8):933–44.
4. Graham G, Gracia JN. Health disparities in boys and men. Am Public Health 2012 May;102 Suppl 2:S167.

5. Cole JH, Sperling LS. Premature coronary artery disease: clinical risk factors and prognosis. Curr Atheroscler Rep 2004 Mar;6(2):121–5.

6. Fournier JA, Sánchez A, Quero J, Fernández-Cortacero JA, González-Barrero A. Myocardial infarction in men aged 40 years or less: a prospective clinical-angiographic study. Clin Cardiol 1996 Aug;19(8):631–6.

7. Hoit BD, Gilpin EA, Henning H, et al. Myocardial infarction in young patients: an analysis by age subsets. Circulation 1986 Oct;74(4):712–21.

8. Kennelly BM. Aetiology and risk factors in young patients with recent acute myocardial infarction. S Afr Med J 1982 Apr 3;61(14):503–7.

9. Zimmerman FH, Cameron A, Fisher LD, Ng G. Myocardial infarction in young adults: angiographic characterization, risk factors and prognosis (Coronary Artery Surgery Study Registry). J Am Coll Cardiol 1995 Sep;26(3):654–61.

10. Wolfe MW, Vacek JL. Myocardial infarction in the young. Angiographic features and risk factor analysis of patients with myocardial infarction at or before the age of 35 years. Chest 1988 Nov;94(5):926–30.

11. Cole JH, Miller JI 3rd, Sperling LS, Weintraub WS. Long-term follow-up of coronary artery disease presenting in young adults. J Am Coll Cardiol 2003 Feb 19;41(4):521–8.

12. Esteban MR, Montero SM, Sánchez JJ, et al. Acute coronary syndrome in the young: clinical characteristics, risk factors and prognosis. Open Cardiovasc Med J 2014 Jul 25;8:61–7.

13. Dresden S, Mitchell P, Rahimi L, et al. Right ventricular dilatation on bedside echocardiography performed by emergency physicians aids in the diagnosis of pulmonary embolism. Ann Emerg Med 2014 Jan;63(1):16–24.

14. Chen L, Chester M, Kaski JC. Clinical factors and angiographic features associated with premature coronary artery disease. Chest 1995 Aug;108(2):364–9.

15. Butler R, Webster MW, Davies G, et al. Spontaneous dissection of native coronary arteries. Heart 2005 Feb;91(2):223–4.

16. Gohlke H, Sturzenhofecker P, Thilo A, Droste C, Gornandt L, Roskamm H. Coronary angiographic findings and risk factors in postinfarction patients under the age of 40. In: Roskamm H. (ed.). Myocardial Infarction at Young Age. Berlin Heidelberg: Springer-Verlag; 1981. p. 61–77.

17. Burkart F, Salzmann C. Angiographic findings in postinfarction patients under the age of 35. In: Roskamm H. (ed.). Myocardial Infarction at Young Age. Berlin Heidelberg: Springer-Verlag; 1981. p. 56–60.

18. Sheldon WC, Razavi M, Lim YJ. Coronary arteriographic findings in younger survivors of acute myocardial infarction including those with normal coronary arteries. In: Roskamm H. (ed.). Myocardial Infarction at Young Age. Berlin Heidelberg: Springer-Verlag; 1981. p. 47–55.

19. Roubin GS, Harris PJ, Bernstein L, Kelly DT. Coronary anatomy and prognosis after myocardial infarction in patients 60 years of age and younger. Circulation 1983 Apr;67(4):743–9.

20. Virmani R, McAllister HA. Myocardial infarction in patients under the age of 40: autopsy findings. In: Roskamm H. (ed.). Myocardial Infarction at Young Age. Berlin Heidelberg: Springer-Verlag; 1981. p. 92–103.

21. Moccetti T, Malacrida R, Pasotti E, et al. Epidemiologic variables and outcome of 1972 young patients with acute myocardial infarction. Data from the GISSI-2 database. Investigators of the Gruppo Italiano per lo Studio della Sopravvivenza nell’Infarto Miocardico (GISSI-2). Arch Intern Med 1997 Apr 28;157(8):865–9.

22. Porter A, Wurzel M, Ben-Gal T, Sulkes J, Sagie A. Long-term prognosis of 210 patients who underwent coronary angiography before 40 years of age. Am J Cardiol 1998 May 1;81(9):1168–70.
Edorium Journals: An introduction

Edorium Journals Team

About Edorium Journals
Edorium Journals is a publisher of high-quality, open access, international scholarly journals covering subjects in basic sciences and clinical specialties and subspecialties.

Our Commitment

Six weeks
You will get first decision on your manuscript within six weeks (42 days) of submission. If we fail to honor this by even one day, we will publish your manuscript free of charge.

Four weeks
After we receive page proofs, your manuscript will be published in the journal within four weeks (31 days). If we fail to honor this by even one day, we will publish your manuscript free of charge and refund you the full article publication charges you paid for your manuscript.

But why should you publish with Edorium Journals?
In less than 10 words - we give you what no one does.

Vision of being the best
We have the vision of making our journals the best and the most authoritative journals in their respective specialties. We are working towards this goal every day of every week of every month of every year.

Exceptional services
We care for you, your work and your time. Our efficient, personalized and courteous services are a testimony to this.

Editorial Review
All manuscripts submitted to Edorium Journals undergo pre-processing review, first editorial review, peer review, second editorial review and finally third editorial review.

Peer Review
All manuscripts submitted to Edorium Journals undergo anonymous, double-blind, external peer review.

Early View version
Early View version of your manuscript will be published in the journal within 72 hours of final acceptance.

Manuscript status
From submission to publication of your article you will get regular updates (minimum six times) about status of your manuscripts directly in your email.

Our Commitment

Most Favored Author program
Join this program and publish any number of articles free of charge for one to five years.

Favored Author program
One email is all it takes to become our favored author. You will not only get fee waivers but also get information and insights about scholarly publishing.

Institutional Membership program
Join our Institutional Memberships program and help scholars from your institute make their research accessible to all and save thousands of dollars in fees make their research accessible to all.

Our presence
We have some of the best designed publication formats. Our websites are very user friendly and enable you to do your work very easily with no hassle.

Something more...
We request you to have a look at our website to know more about us and our services.

We welcome you to interact with us, share with us, join us and of course publish with us.

CONNECT WITH US

Edorium Journals: On Web

Browse Journals