Between allopatty and secondary contact: differentiation and hybridization among three sympatric *Gentiana* species in the Qinghai-Tibet Plateau

Pengcheng Fu¹, Adrien Favre², Rui Wang¹, Yizhuo Huang¹ and Shanshan Sun¹*

Abstract

Background Mountains of the world host a significant portion of all terrestrial biodiversity, and the region of the Qinghai-Tibet Plateau (QTP) stands as one of the most remarkable mountain regions on Earth. Because many explosive radiations occurred there, the QTP is a natural laboratory which is ideal to investigate patterns and processes linked to speciation and diversification. Indeed, understanding how closely related and sympatric species diverged is vital to explore drivers fostering speciation, a topic only rarely investigated in the QTP. By combining genomic and environmental data, we explored the speciation process among three closely related and sympatric species, *Gentiana hexaphylla*, *G. lawrencei* and *G. veitchiorum* in the QTP region.

Results Combining genome sizes and cytological data, our results showed that *G. hexaphylla* and *G. veitchiorum* are diploid, whereas *G. lawrencei* is tetraploid. Genetic clustering and phylogenetic reconstruction based on genomic SNPs indicated a clear divergence among the three species. Bayesian clustering, migrant, and *D*-statistic analyses all showed an obvious signature of hybridization among the three species, in particular between *G. lawrencei* and both *G. hexaphylla* and *G. veitchiorum* in almost all populations. Environmental variables related to precipitation and particularly temperature showed significant differences among the three gentians, and in fact a redundancy analysis confirmed that temperature and precipitation were the major climatic factors explaining the genetic differentiation among the three species.

Conclusion Our study suggested that ancient hybridization, polyploidization, geological isolation and the evolution of different climatic preferences were all likely to be involved in the divergence of the three *Gentiana* species, as may be the case for many other taxa in the QTP region.

Keywords Climatic preference, Divergence, Genomic SNPs, *Gentiana*, Hybridization
Introduction

Several major mountain systems of the world are remarkable centres of species diversity, and many of them are classified as hotspots of biodiversity [1–4]. The accumulation of biodiversity in mountains, over evolutionary times, is usually associated with geological processes (e.g., uplift, erosion) and climatic changes (e.g., climate fluctuations) because they combine to generate a complex topography on which a plethora of highly heterogeneous environments co-exist along altitudinal gradients [2, 5, 6]. This heterogeneity fosters for example divergent natural selection and adaptive radiation [7, 8], which were shown to partly explain the uneven distribution of biodiversity in species richness on Earth [9, 10]. Furthermore, diversification may be promoted by climate-driven cycles modifications of distribution ranges, via a so-called species pump effect [3]. Indeed, depending on the climate state (e.g., Last Inter Glacial (LIG) or Last Glacial Maximum (LGM)), mountain ranges may act either as barriers or facilitators of dispersal, causing distribution ranges of organisms to alternate between fragmentation (isolation; allopatric speciation) [2, 11] and expansion (leading to secondary contact; hybridization) [12, 13].

The highest and largest mountain region of the world, the Qinghai-Tibet Plateau (QTP) region, includes the QTP platform, the Himalayas and particularly the Hengduan Mountains (HM) [14], harbours a rich and probably old alpine flora [15]. The HM, also known as the hotspot of biodiversity “Mountains of Southwest China”, are characterized by deep valleys and a warm and seasonally wet climate [16, 17], while the QTP platform is uniformly high and less rugged with a dry climate. It has been shown that the QTP is home to different species assemblages - or motifs - than the HM [18]. Each species of these assemblages is expected to react individually to climate modifications according to its own ecological preferences. Therefore, numerous case studies are needed to unveil and document the most common phylogeographical patterns as well as processes leading up to speciation and diversification in this topographically and climatically dynamic area. Several studies have tackled the phylogeography of a suite of QTP organisms (e.g., [19, 20]), but this necessary work is still ongoing (e.g., reviewed in Muellner-Riehl [6]).

Geological and climatic dynamics are viewed as major factors fostering intra-specific divergence, speciation and ultimately diversification [14, 21], and only little is known about how biological processes (e.g., adaptation to environment, hybridization) contributed to shape biodiversity in the highly heterogenous environment of the QTP region. For example, in Circeaaster agrestis, isolation both by distance and by local adaptation (via adaptive loci related to stress resistance) have been found [20], and in Pinus densata, isolation-by-environment explained a significant portion of the genetic structure of the species [22]. These two examples highlight the role of environmental heterogeneity in shaping genetic structure. It was also shown that the molecular signatures of adaptive divergence were similar across two closely related genera in Betulaceae [23], hinting at a parallel effect of habitat heterogeneity on the evolution of reproductive isolation and speciation. Furthermore, a few studies pointed out the crucial role of hybridization in shaping the flora of the QTP region [24], but overall, its extent is probably vastly underestimated there [25]. For example, in the genus Saxifraga, the occurrence of hybridization has been reported numerous times in all European clades, whereas it remains almost undetected in the QTP region [26] despite the much larger number of species in the latter area.

The alpine biome of the QTP region is the centre of diversity and the biogeographical origin of many species-rich taxa, including Gentiana (Gentianaceae) which is distributed in almost all temperate areas of the world [27, 28]. Gentiana is composed of 13 sections [29], some of which being endemic or near endemic to the region of the QTP. This is for example the case of G. section Kudoa (Masam.) Satake & Toyok. ex Toyok with 25 out of 26 species occurring there [27, 29]. Section Kudoa continuously attracted biologists’ attention due to its horticultural and medicinal value [27], its taxonomic complexity [29] and its relevance for evolutionary studies [30]. Previous phylogenetic studies showed a relatively rapid diversification of section Kudoa since the Pliocene [30, 31]. Although ploidy levels are not known for all species in this section, five of them are known to be diploids and two are tetraploids [32–35]. In this study, we focused on three closely related species in G. section Kudoa, namely G. hexaphylla Maxim., G. veitchiorum Hemsl. and G. lawrencei Burkill of which distribution ranges are largely sympatric (Fig. 1)[27]. The three gentians are used in traditional Chinese and Tibetan Medicine and domesticated for horticultural use. The three species can be distinguished by morphological traits such as the shape and arrangement of their leaves (e.g., opposite or in whorls), and the color and shape of their corolla [36]. All three species are perennials and characterized by little prezygotic isolation with most visitations being from generalists such as bumblebees [37; personal observations]. Spatial genetic structures were investigated in all three species, unveiling a north-western and south-eastern clade in both G. veitchiorum and G. lawrencei [19], as well as a northern and southern clade in G. hexaphylla [38]. These spatial genetic structures at least partly derive from a combination of climate-driven range displacement and geological barriers [19, 38], but it remains unclear whether their respective environmental preferences also contributed to the genetic patterns observed. In addition,
at least one clade of *G. lawrencei* is likely to have experienced hybridization with *G. veitchiorum* in one refugium shared between the two species [19]. Indeed, as in *Saxifraga*, hybridization may be more common than previously thought in the QTP region for *Gentiana* [39–41] given the number of cases of hybridization detected in Europe [e.g., 25, 42, 43] and the much larger number of closely-related species in the QTP region [27].

Here, to better understand the mechanisms at work in the process of speciation in *Gentiana*, we combined genomic and climatic data to detect the factors that may have contributed to the divergence among *G. hexaphylla*, *G. veitchiorum* and *G. lawrencei* by sampling across known and spatially structured populations. We specifically aimed to answer (1) Did geographical isolation and climate preferences foster differentiation among the three *Gentiana* species? (2) How did hybridization affect their divergence?

Results

Genome size

For genome size estimation, four replications were performed for *G. hexaphylla* and *G. veitchiorum*, and three for *G. lawrencei*. The mean values of the genome size of *G. hexaphylla*, *G. veitchiorum* and *G. lawrencei* were 3.18 G, 3.25 G and 5.00 G, respectively. The standard deviation in the three species ranged from 0.058 to 0.100 (Table S1).

Data preprocessing and SNP calling

Individuals of *G. veitchiorum* and *G. lawrencei* were newly sequenced in this study, and the raw data of 35 individuals of *G. hexaphylla* were retrieved from Fu et al. [38]. After quality filtering, the number of reads retained per sample varied from 4.45×10^6 to 3.18×10^7, with a median value of 1.04×10^7 (Table S2). The depth per sample varied from 5.76 \times to 26.97 ×, averaged at 12.53 ×. After filtering for MAF, linkage-disequilibrium (LD) and missing data, the total number of unlinked SNPs obtained for all samples was 143,611. When the outgroup was included, 144,402 SNPs were kept for downstream analysis.

Population genetic structure and genetic divergence

Genomic SNPs showed that *G. lawrencei* had a slightly higher genetic diversity (e.g., A_r, H_o) than *G. hexaphylla* and *G. veitchiorum* (Table 1). The mean A_r vs. H_o in *G. lawrencei*, *G. hexaphylla* and *G. veitchiorum* were 1.1839 vs. 0.1626, 1.1633 vs. 0.1545 and 1.1542 vs. 0.1228, respectively. The Mantel test showed no significant negative correlations between altitude and A_r ($r^2=0.042$, $p=0.402$) and H_o ($r^2=0.042$, $p=0.399$), respectively. The

![Fig. 1](distribution-ranges-of-three-gentiana-species-based-on-locality-data-retrieved-from-GBIF-and-fieldwork-by-the-authors-e.g.-Fu-et-al-19.png)
CV errors from Admixture analyses showed lowest value at K=3 (Fig. S1), indicating the three species shall be clustering into three groups, so the inferred three genetic clusters corresponded to the three species included in this study (Fig. 2B). Based on the clustering analyses, introgression was detected from G. lawrencei to G. hexaphylla and G. veitchiorum, and from G. veitchiorum to G. lawrencei. One individual in a population (Fu2016087) of G. hexaphylla contained almost equal genetic composition of G. hexaphylla and G. lawrencei, respectively. From the PCA plot, the first principal component (PC1), which explained 20.46% of all genetic variance, differentiated the three species; the second principal component (PC2), which explained 13.25% of all genetic variance, differentiated the three species as well (Fig. 2 A). Generally, the pairwise F_{ST} values were much higher among species than within species (Fig. 3 A). Detailed pairwise F_{ST} values between populations were showed in Table S3. The weighted F_{ST} values between G. hexaphylla and G. veitchiorum, G. hexaphylla and G. lawrencei, and G. veitchiorum and G. lawrencei were 0.237, 0.187, 0.149, respectively. Plotting $F_{ST} / (1-F_{ST})$ and geographic distances among populations in the three Gentiana species showed a significant positive correlation in both within species ($r^2=0.624$, $p<2.2e^{-16}$) and between species ($r^2=0.089$, $p=0.0007$) (Fig. 3B). Phylegetic relationship and hybridization among species

Genomic SNPs data resulted in a well-supported tree (Fig. 4). In general, samples clustered together according to the species they were attributed to, except for one population (Fu2016070) of G. lawrencei, which was sister to G. veitchiorum. Gentiana hexaphylla diverged first, and thus was the sister lineages to both G. lawrencei and G. veitchiorum (Fig. 4).

Patterson's D-statistic revealed strong signals of introgression between G. lawrencei and the other two Gentiana species (Fig. 5). The D_{BRAA} values between G. lawrencei and G. hexaphylla showed that introgression was detected in most population pairs between the two species with $p<1 \times 10^{-6}$ (below a Bonferroni-adjusted P-value threshold of 0.001). The signal of introgression between most population pairs was also detected in populations of G. lawrencei and G. veitchiorum (Fig. 5). Week signal of introgression was observed between G. hexaphylla and G. veitchiorum (Fig. 5).

Relationship between genomic differentiation and environmental variables

When all the 19 climate variables were analyzed, 16 out of 19 variables (except bio5, bio10 and bio14) showed significant differences between at least two of the three Gentiana species (Fig. 6). The 16 variables could be grouped into two categories related to temperature (bio1–bio4, bio6-bio9, bio11) and precipitation (bio12–bio13, bio15–bio19).

Table 1 Genetic statistics for three Gentiana species in the region of the Qinghai-Tibet Plateau. Abbreviations: No., sample size; Ar, allelic richness; Hs, mean observed gene diversities within population; Ho, mean observed heterozygosity within population; Fis, mean inbreeding coefficient. Abbreviations after localities indicates provinces as follows: QH, Qinghai; SC, Sichuan; SX, Shaanxi; T, Tibet; YN, Yunnan.

Species	Voucher no.	Location	Latitude (N)	Longitude (E)	Altitude (m/a.s.l)	No.	Ar	is	Ho	is
G. lawrencei	Fu2016025	Aba, SC	32.92	101.81	3500	6	1.1917	0.1748	0.1692	0.0319
	Fu2016039	Seda, SC	32.30	100.28	3926	3	1.1882	0.1615	0.1830	-0.1331
	Fu2016070	Daofu, SC	31.00	101.15	3548	6	1.2140	0.1938	0.1983	-0.0236
	Fu2016089	Kangding, SC	30.08	101.80	4224	6	1.1959	0.1777	0.1731	0.0261
	Fu2016158	Xiangcheng, SC	28.82	100.05	4628	4	1.1393	0.1394	0.1274	0.0862
	Fu2017022	Chenduo, QH	33.20	97.48	4422	6	1.1600	0.1516	0.1351	0.1090
	Fu2017076	Nangqian, QH	31.97	96.51	4317	6	1.1913	0.1710	0.1642	0.0395
	Fu2017264	Gande, QH	34.00	99.94	4045	6	1.1912	0.1739	0.1502	0.1363
G. veitchiorum	Fu2017300	Zeku, QH	34.86	100.92	4002	5	1.1599	0.1603	0.1224	0.2366
	Fu2016026	Aba, SC	32.92	101.81	3500	4	1.1455	0.1409	0.1271	0.0981
	Fu2017037	Yushu, QH	33.16	96.65	4287	6	1.1554	0.1563	0.1200	0.2319
	Fu2017096	Dingqing, QH	31.33	95.72	3706	4	1.1579	0.1533	0.1337	0.1281
	Fu2016191	Linzhi, T	29.62	94.67	4434	5	1.1523	0.1562	0.1107	0.2908
G. hexaphylla	Fu2019001	Taiba, SX	33.96	107.97	3520	6	1.1511	0.1460	0.1240	0.1508
	Fu2017202	Hongyuan, SC	32.65	102.23	3731	6	1.1655	0.1552	0.1647	-0.0609
	Fu2016087	Kangding, SC	30.07	101.78	4224	6	1.1876	0.1714	0.1784	-0.0406
	Fu2016046	Seda, SC	31.82	100.10	4483	6	1.1637	0.1536	0.1562	-0.0171
	Fu2018052	Deqin, YN	28.33	99.07	4326	6	1.1592	0.1498	0.1557	-0.0390
	Fu2018064	Gongshan, YN	28.07	98.75	3900	6	1.1526	0.1480	0.1479	0.0007
Gentiana lawrencei showed significant differences with the other two gentians in bio1, bio4, bio6–bio9, bio11, bio12, bio17 and bio19. One variable (bio12; Annual Precipitation) showed significant difference among the three gentians, namely *G. hexaphylla*, *G. veitchiorum* and *G. lawrencei* preferred higher, intermediate, and relatively lower annual mean precipitation, respectively (Fig. 6).

After the Pearson correlation analysis, 10 climatic variables (bio1-bio6, bio12, bio14, bio15, bio17) were kept for the analysis. The results of RDA analysis showed that the 10 combined bioclimatic variables had variables contribution in the first two principal components (Fig. 7). Seven variables, bio2 (Mean Diurnal Range), bio3 (Isothermality), bio4 (Temperature Seasonality), bio6 (Min Temperature of Coldest Month), bio14 (Precipitation of Driest Month), bio15 (Precipitation Seasonality) and bio17 (Precipitation of Driest Quarter) had a more substantial contribution on the first principal component (PC1, 25.06%), and the remaining variables on the second principal component (PC2, 15.05%). Among

Fig. 2 Genetic clustering of three *Gentiana* species based on genomic SNPs. (A) Results of principal coordinate analysis. (B) Bar plots showing probabilities of ancestral clusters of each sample with K=3 in Admixture
the variables, bio3, bio4, bio6, bio12 (Annual Precipitation), bio14, bio15 and bio17 were significantly differed ($P<0.05$, Table 2). *Gentiana hexaphylla* differed with *G. veitchiorum* and *G. lawrencei* along PC1, and the latter two species differed along PC2. For *G. hexaphylla* and the another two gentians, the variables that explained
this differentiation were related to temperature and precipitation in months outside of the growing season, for example bio6 (Min Temperature of Coldest Month), bio14 (Precipitation of Driest Month) and bio17 (Precipitation of Driest Quarter) (Fig. 7). For *G. veitchiorum* and *G. lawrencei*, the variables that explained the differentiation were mainly related to bio5 (Max Temperature of Warmest Month).

Discussion

Genetic divergence among the three *Gentiana* species.

By sampling *G. hexaphylla*, *G. veitchiorum* and *G. lawrencei* across populations known to be spatially structured and thus building upon previous studies [19, 38, 44], our genomic data showed clear genetic divergence among the three sympatric gentians (Fig. 2). The three species are distinct genetic entities, as supported by
several morphological traits such as opposite or whorl leaves, shape of leaves, corolla and calyx lobes, as well as corolla color [27, 36]. Nevertheless, the differentiation among the three species was not very strong as the F_{ST} value between species ranged from 0.149 to 0.243. We observed that the genetic divergence within species was sometimes larger than that between species and was sometimes associated with geographical distances (Fig. 3). Interestingly, a weak but significant positive correlation was detected between interspecific genetic distance and geological distance (Fig. 3B), rather than the expected negative correlation [45, 46]. This shows the impact of geographical scale on interspecific divergence in the three gentians. Our findings suggest that both physical barriers and heterogeneous environments may have caused isolation and strengthened differentiation among the three Gentiana species. Indeed, previous studies showed that intra-species genetic geographical patterns in G. veitchiorum and G. lawrencei were shaped by isolation in a southeastern and a northwestern refugia [19, 44], whereas the pattern in G. hexaphylla was mainly shaped by geological features at the center of the HM [38]. Genomic data showed that adaption to heterogeneous environments in the QTP region could have produced a high intraspecific divergence [F_{ST}=0.89, 20] and a parallel adaptive divergence in a number plants taxa [23]. Therefore, we suggest that geographical isolation as well as adaption to heterogeneous environments could have fostered the differentiation among the three Gentiana species, and thus had a profound impact in their divergence.

Ancient hybridization and polyploidization versus divergence

With a remarkable number of radiations occurring in the alpine biome of the region of the QTP [6], of which many closely related species are sympatric, it is now crucial to gather more evidence on the role of hybridization and introgression for adaptation, speciation and ultimately diversification. Our analyses showed obvious gene flow among the three gentians (Figs. 2 and 5), which should come as no surprise since hybridization

Fig. 5 Gene flow detected in the three Gentiana species. Heatmap summarizing the D-statistic ($D_{	ext{MAX}}$) estimates and their P-values. Taxa P2 and P3 are displayed on the x- and y-axes. Each square represents the highest estimate of each combination of P2 and P3 population. The colour of each square signifies the D-statistic estimate. D-statistic tests for which $p<1 \times 10^{-6}$ (i.e. were below a Bonferroni-adjusted P-value threshold of 0.001) are marked with a black asterisk. The white squares in the matrix indicate no data.
appears to be more common than previously thought in *Gentiana*. Indeed, it was observed in at least two regions of the world, including the QTP region [e.g., 38–40] and Europe (listed in Favre et al. [25]), as well as in different sections of *Gentiana* (e.g., sect. *Ciminalis*, sect. *Gentiana*, sect. *Cruciata*, etc.). A more frequent occurrence of hybridization in *Gentiana* would also explain some major challenges encountered in taxonomical work and species identification within the genus, as for example in section *Chondrophyllae*. This is also the case for several taxa of *G. section Kudoa*, where continuous values for some morphological diagnostic traits were observed [27, 36]. In this section, hybridization may even occur among more species, in this case suggesting a reticulate evolution in its infancy.

In our study, signatures of gene flow were detected especially between *G. lawrencei* towards both *G. hexaphylla* and *G. veitchiorum* in almost all populations (Fig. 5), indicating that their history of hybridization could date back to the origin of these species. Supporting this fact is for example the higher genetic diversity index in *G. lawrencei*, and the lower F_{ST} value between

Fig. 6 Comparison of climate variables among three *Gentiana* species. Climate variables had no significant difference were not shown. ***, $P < 0.001$; **, $P < 0.01$; *, $P < 0.05$; NS, no significant. Bio1, annual mean temperature; Bio2, Mean Diurnal Range; Bio3, isothermality; Bio4, Temperature Seasonality; Bio6, min temperature of coldest month; Bio7, Temperature Annual Range; Bio8, Mean Temperature of Wettest Quarter; Bio9, Mean Temperature of Coldest Quarter; Bio11, Mean Temperature of Coldest Quarter; Bio12, annual precipitation; Bio13, Precipitation of Wettest Month; Bio15, Precipitation Seasonality; Bio16, Precipitation of Wettest Quarter; Bio17, Precipitation of Driest Quarter; Bio18, Precipitation of Warmest Quarter; Bio19, Precipitation of Coldest Quarter.
G. lawrencei and the other two species. In fact, previous studies have already detected some cases of hybridization between G. lawrencei and G. veitchiorum in a refugium shared by the two species [19]. Furthermore, species distribution models showed that the three species have had a large overlap of potential distribution through time, which increased since the LIG [19, 38], rendering hybridization and introgression progressively more likely in the last few thousand years.

Hybridization may be followed by allopolyploidization, sometimes setting up the base for the emergence of new taxa, as seen for example in birch trees [47]. Whether this has been the case in section Kudoa or elsewhere in the genus is still difficult to verify, but it is possible since 30.43% of Gentiana species (28 out of 92) for which karyological data are available are fact polyploids. For the hybridizing species investigated here, karyological studies showed that G. veitchiorum is diploid (2n=2x=24, [32, 34]), whereas G. lawrencei is tetraploid (2n=4x=48, [33, 34]). In this study, we estimated that the respective genome sizes of G. veitchiorum, G. lawrencei and G. hexaphylla are 3.25 G, 5.00 G and 3.18 G. These results thus suggest that G. hexaphylla – of which ploidy level is still technically unknown - is likely to be a diploid, possibly with ca. 24 chromosomes. Including G. hexaphylla, two out of six species in section Kudoa are tetraploids [32–35]. Taking their background of hybridization into account, it is not impossible that allopolyploidization participated in the divergence of the three Kudoa species investigated in this study. Yet, a more complete investigation on hybridization and allopolyploidization including all species of that section may be needed.

Did climatic preferences contribute to divergence?

When comparing climatic preferences of G. hexaphylla, G. veitchiorum and G. lawrencei, we found significant differences regarding some components of precipitation and temperature. For example, G. hexaphylla and G. veitchiorum appear to occur in areas with more precipitation, higher temperature, and smaller temperature annual range than G. lawrencei (Fig. 6). In particular, G. hexaphylla prefers habitats with more precipitation than the other two species, consistent with its range limited to the HM, which are characterized by a wetter climate than other areas in the QTP region. Our phylogenetic analysis showed that G. veitchiorum and G. lawrencei diverged from G. hexaphylla (Fig. 4), and that divergence among G. hexaphylla, G. veitchiorum and G. lawrencei occurred in the Pleistocene [31], in parallel with the local climate becoming progressively cooler and drier [15, 48, 49]. These results showed that divergence among the three gentians shall be correlated to the evolution of climate preferences and corresponding habitat shifts under past climate modifications.

When associating environmental variables with genetic structure to evaluate the impact of environmental heterogeneity on genetic divergence in the three gentians, we indeed found association between species divergence and environmental variables. In this study, we found a significant association between genetic variation and temperature variables (bio3, bio4, bio6) as well as precipitation (bio14, bio15, bio17) (Fig. 7; Table 2). The results suggested that temperature and precipitation were the important drivers of genetic variation among G. hexaphylla, G. veitchiorum and G. lawrencei, as detected in several plants in different continents [20, 50, 51]. Due to elevation-dependent warming, high-mountain environments experienced more rapid changes in temperature than environments at lower elevations [52]. Therefore, considering the ongoing climate warming, temperature appears to be a key driver for adaptation of the three gentians in the future. Studies about trees in the QTP region showed that altitude, rather than other environmental factors, was the key factor affecting genetic diversity (e.g. [53, 54]), but it is not the scenario we observe in the three herbaceous gentians, although a limited number of populations were tested in this study. Finally, since our analysis did not include other environmental variables, such as soil characteristics, composition and structure, we cannot rule out that habitat adaptation to these environmental variables played a significant role in promoting genetic divergence in the three gentians, as was probably the case.

Environmental variables	Constrained proportion (%)	P
Bio1	1.20	0.087
Bio2	2.40	0.097
Bio3	1.51	0.011
Bio4	1.48	0.009
Bio5	1.24	0.051
Bio6	1.94	0.001
Bio12	1.42	0.010
Bio14	3.36	0.001
Bio15	2.61	0.001
Bio17	3.23	0.001

Bio1, annual mean temperature; Bio2, Mean Diurnal Range; Bio3, isothermality; Bio4, Temperature Seasonality; Bio5, max temperature of warmest month; Bio6, min temperature of coldest month; Bio12, annual precipitation; Bio14, precipitation of driest month. Bio15, Precipitation Seasonality; Bio17, Precipitation of Driest Quarter. *, P<0.05; **, P<0.01; ***, P<0.001
in European gentians [25]. Considering soil characteristics would now be necessary to investigate speciation and diversification further in the QTP region, especially since rudimentary knowledge on edaphic preferences of QTP species remains vastly unavailable in *Gentiana* and many other genera.

Materials and methods

Studying species and sampling

We chose six, five and eight populations of *Gentiana hexaphylla*, *G. veitchiorum* and *G. lawrencei*, respectively, to represent their ranges and the main genetic clades found in two earlier studies [19, 38]. In total, this study included 35, 24 and 42 individuals of *G. hexaphylla*, *G. veitchiorum* and *G. lawrencei*, respectively. Information about geographical locations and voucher specimens are listed in Table 1. All voucher specimens were deposited in the herbarium of Luoyang Normal University.

Genome size estimation

We used flow cytometry to estimate the genome size of each of the target species using dry material and following the procedure described in Doležel et al. [55]. We used a LB01 lysis buffer to isolate the nuclei for the dried material. One individual of each species was measured three to four times in order to estimate the genome sizes. The cotton (*Gossypium hirsutum*, TM-1, 2.5 G)
or tobacco (Nicotiana tabacum, Yanyan 97, 4.5 G) were used as standards.

Library construction, sequencing and SNP calling

Total genomic DNA was extracted from dry leaves using a Dzup plant genomic DNA extraction kit (Sangon, Shanghai, China). For RAD library construction and sequencing [56], each sample was digested with the restriction enzyme EcoRI, followed by ligation, purification and size selection as described in Fu et al. [38]. Paired-end reads 150 bp in length were generated using the Illumina Novaseq 6000 (Tianjin, China). Raw reads were filtered and trimmed with Trimmomatic v0.32 [57] with default parameters to remove adaptor sequences and low-quality reads and sites, and then checked for quality with FastQC v0.11.2.

Since RAD-seq study employing reference-based approaches was recommended [58], we mapped the raw reads against the chromosome-level genome of Gentiana dahurica (PRJNA799480; [59]), the closest available genome, with bwa-mem v2.2.1 [60], and produced the sequence alignment/map format files with SAMtools v1.9 [61]. We marked the PCR duplications with sambamba v0.8.1 [62], and called variations with freebayes v0.9.21 [63] with default parameters. Only SNPs were retained in vcf tools 0.1.13 [64] for downstream analysis. SNPs with a minor allele frequency (MAF, less than 5%) and missing frequency of more than 0.8 among individuals were removed using vcf tools v0.1.13 [64]. Linkage-disequilibrium SNP pruning was performed in vcftools to exclude variants from each pair closer than 100 bp. We used PGDSpider v2.1.1.5 [65] to convert the final VCF file into different formats to perform further analyses.

Genetic diversity and population genetic structure

We computed allelic richness (Ar), observed heterozygosity (Ho), gene diversity (Hd), and Wright’s inbreeding coefficient (Fis) using the R package hierfstat [66]. To assess the levels of genetic differentiation among populations, we estimated pairwise Fst among populations using the Weir and Cockerham method [67] in R package hierfstat [66]. A Mantel test was performed in R v. 4.0.1 [68] to check the correlation between genetic diversity (Ar and Ho) and altitude in each species. The pairwise Fst was graphically displayed with package pheatmap (https://cran.r-project.org/web/packages/pheatmap/) using R. We plotted Fst/(1−Fst) against pairwise geographic distances among populations to illustrate the range-wide isolation by distance (IBD) pattern in R.

For exploring the genetic clusters, we used a Bayesian clustering method implemented in Admixture [69] based on the identified SNPs, with assumed clusters (K) from 1 to 20. The cross-validation (CV) procedure performed 10-fold CV (--cv=10). The CV errors were plotted in R to assess the model complexity for the data. Graphical representation of individual cluster assignments was performed using STRUCTURE v1.1 [70]. The same data set was used to perform a principal component analysis (PCA), with ten main principal components (PC) extracted in PLINK v1.90 [71], and visualized using R.

Phylogenetic analysis

We constructed a phylogenetic tree based on the genomic SNPs using maximum likelihood (ML) in IQ-TREE v1.6.8 [72] with 1000 ultrafast bootstraps [73]. The best-fitted substitution model was chosen in ModelFinder v2 [74]. The Python script ‘vcf2phylip’ (https://github.com/edgardomortiz/vcf2phylip) was used to transfer the SNPs data for tree building. Gentiana waltonii (specimen no. Fu2020030) was served as the outgroup.

Hybridization analysis

We tested for introgression among the three Gentiana species using Patterson’s D-statistic [75]. The D-statistic uses asymmetry in gene tree topologies to quantify introgression between either of two lineages which share a common ancestor (P1 and P2) and one other lineage (P3) that diverged from the common ancestor of P1 and P2 earlier. We calculated Patterson’s D-statistic for all possible population trios using the Dtrios function of Dsuite v0.5.44 [76] with default parameters. We fixed G. waltonii as the outgroup. We assessed significance of each test using 100 jackknife resampling runs, and visualized the D-statistic estimates in R.

Environmental data analysis

We obtained 19 climate variables based on the average values from 1950 to 2000 for G. hexaphylla, G. veitchiorum and G. lawrencei from WorldClim (https://www.worldclim.org) using the R package raster [77] at 30 arc-second resolutions. Significant differences among the three species for these environmental factors were visualized in R.

Highly correlated variables (Pearson’s correlation coefficient>0.8, p<0.01) were detected in SPSS and removed to reduce the number of predictors. We used the function rda from the R package vegan [78] to perform the redundancy analysis (RDA) in order to identify potential environmental factors driving genomic differentiation. We used the function anova.cca from the R package vegan to check the significance of each predictor.

Supplementary Information

The online version contains supplementary material available at https://doi.org/10.1186/s12870-022-03879-0.

Supplementary Material 1
Supplementary Material 2
Acknowledgements
We are grateful to Zhizhong Li of Wuhan Botanical Garden, Chinese Academy of Sciences for help in data analysis, and to Shulin Zhang of Henan University to offer cotton seeds in genome size estimation.

Authors’ contributions
PF designed the experiments, collected the samples, analysed the data and wrote the main manuscript; A.F. revised the manuscript; R.W and Y.H. participated in the bioinformatic analysis; S.S. designed the experiments, analysed the data and revised the manuscript. All the authors have read and approved the final manuscript.

Funding
This work was financially supported by the Foundation of Educational Commission of Henan Province [223A1401024] to S.S., the National Natural Science Foundation of China [31600296] to PF.

Data availability
The dataset supporting the conclusions of this article is available in the Figshare (doi: https://doi.org/10.6084/m9.figshare.20445879). The raw sequence data were deposited in the National Genomics Data Center [80]. China National Center for Bioinformation/Beijing Institute of Genomics, Chinese Academy of Sciences (GSA: CRA008165) that are publicly accessible at https://ngdc.cnbc.ac.cn/gsa.

Declarations
Ethics approval and consent to participate
We comply with the IUCN Policy Statement: Research Involving Species at Risk of Extinction and the Convention on the Trade in Endangered Species of Wild Fauna and Flora and confirm that all methods were performed in accordance with the relevant guidelines/regulations/legislation. These wild species samples in this study have not been included in the list of key protected plants. The sampling of wild species in this study was met local policy requirements and did not affect the survival or reproduction of the species. The planting material were identified by Dr. Pengcheng Fu. Voucher specimens were deposited in the herbarium of Luoyang Normal University.

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Received: 9 August 2022 / Accepted: 4 October 2022

Published online: 28 October 2022

References
1. Myers N, Mitteermeier RA, Mittermeier CG, Da Fonseca GA, Kent J. Biodiversity hotspots for conservation priorities. Nature. 2000;403(6772):853–8. https://doi.org/10.1038/3502501.
2. Antonelli A, Kissling WD, Flantua SG, Bermúdez MA, Mulch A, Mueller-Riehl AN, et al. Geographical and climatic influences on species distribution: Nat Geosci. 2018;11(7):718–25. https://doi.org/10.1038/s41561-018-0236-2.
3. Mosbrugger V, Favre A, Mueller-Riehl AN, Packert M, Mulch A. Genomic evolution of geo-biodiversity in the Tibet-Himalayan region. In: Hoorn C, Perrigo A, Antonelli A. Mountains, Climate, and Biodiversity. Hoboken: John Wiley & Sons; 2018. pp. 429–48.
4. Noroozi J, Talebi A, Doostmohammadi M, Rumpf SB, Linder HP, Sun H, et al. Biodiversity and topographic complexity: modern and geohistorical perspectives. Trends Ecol Evol. 2017;32(3):211–26. https://doi.org/10.1016/j.tree.2016.12.010.
5. Mueller-Riehl AN, Schmitzler J, Kissling WD, Mosbrugger V, Rijndijk KF, Sejmonsbergen AC, et al. Origins of global mountain plant biodiversity: Testing the mountain – geo-biodiversity hypothesis. J Biogeogr. 2019;46(12):2826–38. https://doi.org/10.1111/jbi.13715.
6. Darwin C. On the origin of species by means of natural selection, or the preservation of favoured races in the struggle for life. London: John Murray; 1859.
7. Savolainen O, Lascoux M, Merila J. Ecological genomics of local adaptation. Nat Rev Genet. 2013;14(11):807–20. https://doi.org/10.1038/nrg3522.
8. Hawkins BA, Field R, Consigliere D, Currie DJ, Currie HC, Kaufman DM, et al. Energy, water, and broad-scale geographic patterns of species richness. Ecol Process. 2003;4(6):310–17. https://doi.org/10.1007/s11060-003-0057-1.
9. Kreft H, Jetz W. Global patterns and determinants of vascular plant diversity. P Natl A Sci. 2007;104(14):5925–30. https://doi.org/10.1176/pnas.0608361104.
10. Hewitt G. The genetic legacy of the Quaternary ice ages. Nature. 2000;405(6799):907–13. https://doi.org/10.1038/35016000.
11. Spith P. Gene flow and genetic differentiation. Genetics. 1974;78:961.
12. Spieth PT. Gene flow and genetic differentiation. Genetics. 1974;78:961.
13. Abbott R, Albach D, Ansell S, Amrten JW, Baird SJ, Bierne N, et al. Hybridization and speciation. J Evol Biol. 2013;26(2):229–46. https://doi.org/10.1111/jeb.12099.
14. Sun H, Zhang J, Deng T, Boufford DE. Origins and evolution of plant diversity in the Hengduan Mountains, China. Plant Divers. 2017;39(4):161. https://doi.org/10.1007/s12335-017-0227-6.
15. Ding WN, Ree RH, Spicer RA, Xing YW. Ancient orogenic and monsoon-driven assembly of the world’s richest temperate alpine flora. Science. 2020;369(6503):578–81. https://doi.org/10.1126/science.abg4484.
16. Tang H, Michoels A, Eronen JT, Aherne B, Fortellus M. Asynchronous responses of East Asian and Indian summer monsoons to mountain uplift shown by regional climate modelling experiments. Clim Dynam. 2013;40:1531–49. https://doi.org/10.1007/s00382-012-1603-x.
17. Favre A, Packert M, Pauls SJU, Jahng SC, Uhl D, Michalak L, et al. The role of the uplift of the Qinghai-Tibetan Plateau for the evolution of Tibetan biotas. Biol Rev. 2015;90:236–53. https://doi.org/10.1111/brv.12107.
18. Li Q, Sun H, BouffordDE, Bartholomew B, FritschPW, Chen J, et al. Grade of Membership models reveal geographical and environmental correlates of florigenic structure in a temperate biodiversity hotspot. New Phyol. 2021;232:1424–35. https://doi.org/10.1111/nph.17443.
19. Fu PC, Sun SS, Khan G, Dong XY, Tan J, Favre A, et al. Population subdivision and hybridization in a species complex of Gentiana in the Qinghai-Tibetan Plateau. Ann Bot. 2020;125:677–90. https://doi.org/10.1093/aob/mca003.
20. Zhang X, Sun Y, Landis JB, Zhang J, Yang L, Lin N, et al. Genomic insights into adaptation to heterogeneous environments for the ancient relic Circaeaster agrestis (Circaeasteraceae, Ranunculales). New Phyol. 2020;228(1):285–301. https://doi.org/10.1111/nph.16669.
21. Liu JQ, Duan YW, Hao G, Ge XJ, Sun H. Evolutionary history and underlying adaptation of alpine plants on the Qinghai-Tibetan Plateau. J Syst Evol. 2014;52:241–9. https://doi.org/10.1111/jse.12094.
22. Zhao W, Sun YQ, Pan J, Sullivan AR, Arnold ML, Mao JF, Wang XR. Effects of landscapes and range expansion on population structure and local adaptation. New Phyol. 2020;228(1):330–43. https://doi.org/10.1111/nph.16619.
23. Wang Z, Jiang Y, Yang X, Bi H, Li J, Mao X, et al. Molecular signatures of parallel adaptive divergence causing reproductive isolation and speciation across two genera. Innovation. 2022;3(3):100247. https://doi.org/10.1016/j.innov.2022.100247.
24. Wu S, Wang Y, Wang Z, Shrestha N, Liu J. Species divergence with gene flow and hybrid speciation on the Qinghai-Tibetan Plateau. New Phyol. 2022;234(2):392–404. https://doi.org/10.1111/nph.17956.
25. Favre A, Paule J, Eberbach J. Incongruences between nuclear and plastid phylogenies challenge the identification of correlates of diversification in Gentiana in the European alpine system. Alp Bot. 2021;132:29–50. https://doi.org/10.1111/1864-4295.12094.
26. Eberbach J, Tkach N, Röser M, Favre A. The role of hybridization in the making of the species-rich alpine-crevice genus Saxifraga (Saxifragaceae). Diversity. 2020;2(11):440. https://doi.org/10.3390/d21101040.
27. Ho TN, Liu SW. A worldwide monograph of Gentiana: Beijing: Science Press; 2001.
28. Favre A, Michalak I, Chen CH, Wang JC, Pringle JS, Matsuoka S, et al. Out-of-Tibet: the spatio-temporal evolution of Gentiana. (Gentianaceae). J Biogeogr. 2016;43:1967–78. https://doi.org/10.1111/jbi.12840.
29. Pringle JS, Heckenhauer J, Kozuharová E, Gao Q, Lemmon EM, et al. Phylogenetic relationships and sectional delineation within Gentiana (Gentianaceae). Taxon. 2020;69(6):1221–1238. https://doi.org/10.1111/tax.12405.
30. Sun SS, Fu PC, Zhou XL, Cheng YW, Zhang FQ, Chen SL, et al. The complete plastome sequences of seven species in Gentiana sect. Kudoa (Gentianaceae):
insights into plastid gene loss and molecular evolution. Front Plant Sci. 2018;9:493. https://doi.org/10.3389/fpls.2018.00499.

31. Fu PC, Sun SS, Tseyfrod AD, Li BB, Zhou RQ, Chen SL, et al. Lineage-specific plastid degradation in subtribe Gentianinae (Gentianaceae). Ecol Evol. 2021;11:3286–99. https://doi.org/10.1002/eco.37281.

32. Yuan YM. Karyological studies on Gentiana section Cruciato Gaudin (Gentianaceae) from China. Caryologia. 1993;46(2–3):99–114.

33. Yuan YM, Kuper R. Karyological studies of Gentianopsis Ma and some related genera of Gentianaceae from China. Cytolgia. 1998;58(2):115–23.

34. Chen SL, He TN, Li QJ. The chromosome number of eight species in Gentiana (Gentianaceae) from alpine mountains of the western China. Acta Bot Boreali-Occident Sin. 1997;17(4):57–50.

35. Ho TN, Liu JQ, Chen SL. Contribution to the karyomorphology of 7 species in Gentiana (Gentianaceae). Acta Biochim Biophys Sin. 2002;15:67–73.

36. Ho TN, Pringle JS, Gentiana. In: Wu ZY, Raven PH, eds. Flora of China. vol. 16. Beijing: Science Press; St. Louis: Missouri Botanical Garden. 1995.95–97.

37. Hou QZ, Duan YW, Si QW, Yang HL. Pollination ecology of Gentiana lawrencei var. farreri, a late-flowering Qinghai-Tibet Plateau species. Chin J Plant Ecol. 2019;33(6):1156. https://doi.org/10.13773/jissn.1005-264x.2009.06.016.

38. Fu PC, Sun SS, Hollingsworth PM, Chen SL, Favre A, Tseyfrod AD. Population genetic evidence of divergence and strong geographical structuring in the Hengduan Mountains. Front Plant Sci. 2022. https://doi.org/10.3389/fpls.2022.936761.

39. Hu Q, Peng H, Bi H, Lu Z, Wan D, Wang Q, Mao KS. Genetic homogenization of the nuclear ITS loci across two morphologically distinct gentians in their overlapping distributions in the Qinghai-Tibetan Plateau. Sce Rep. 2016;6:34244. https://doi.org/10.1038/srep34244.

40. Fu PC, Tseyfrod AD, Sun SS, Wang HY, Xia MZ, Tan CX, et al. Recurrent hybridization underlies the evolution of novelty in Gentiana (Gentianaceae) in the Qinghai-Tibetan Plateau. AoB Plants. 2021;3:pla068. https://doi.org/10.1093/aobpla/plaa068.

41. Sun SS, Guo HL, Favre A, Fu PC. Genetic differentiation and evolutionary history of two medicinal gentians (Gentiana scabra Edgew. and Gentiana szechewii Kanitz) in the Qinghai-Tibetan Plateau. J Appl Res Med Arom. 2022;30:100375. https://doi.org/10.1016/j.jarmap.2022.100375.

42. Haemmerli M. Molecular aspects in systematics of “Gentiana” sect. “Calathiana”eae Froel. Université de Neuchâtel. 2007.

43. Christe C, Caetano S, Aeschimann D, Kropp M, Diadema K, Naciri Y. The intraspecific genetic variability of siliceous and calcareous Gentiana species is shaped by contrasting demographic and re-colonization processes. Mol Phlogenet Evol. 2014;70:323–36. https://doi.org/10.1007/j.ympev.2013.09.022.

44. Fu PC, Ya HY, Liu QW, Cai HM, Chen SL. Out of refugia: population genetic structure and evolutionary history of the alpine medicinal plant Gentiana lawrencei var. farreri (Gentianaceae). Front Genet. 2018;9:564. https://doi.org/10.3389/fgene.2018.00564.

45. Bergsten J, Bilton DT, Fujisawa T, Elliott M, Monaghan MT, Balke M, et al. The effect of geographical scale of sampling on DNA barcoding. Syst Biol. 2012;61(5):851–69. https://doi.org/10.1093/sysbio/sys037.

46. Chen W, Hubert N, Li Y, Xiang D, Cai X, Zhu S, et al. Large scale DNA barcoding of the subfamily Culterinae (Cypriniformes: Xenocyprididae) in East Asia unveils geographic scale effect, taxonomic warnings and cryptic diversity. Mol Ecol. 2022;31(14):3871–87. https://doi.org/10.1111/mec.15092.

47. Wang N, Kelly LJ, McAllister HA, Zohren J, Buggs RJ. Resolving phylogeny and species distribution of the subfamily Culterinae (Cypriniformes: Xenocyprididae) in East Asia and its implications for conservation. AoB Plants. 2021;567:110241. https://doi.org/10.1093/aobpla/plaa068.

48. Deng T, Wu F, Yuan JR, Li QJ, Liu JY. Evidence of genus-adaptation to climate in Eucalyptus microcarpa: Implications for adaptive potential to projected climate change. Mol Ecol. 2017;26(21):6002–20. https://doi.org/10.1111/mec.14541.

49. Jordan R, Hoffmann AA, Dillon SK, Prober SM. Evidence of genomic adaptation to climate in Eucalyptus microcarpa: Implications for adaptive potential to projected climate change. Mol Ecol. 2017;26(21):6002–20. https://doi.org/10.1111/mec.14541.

50. Purcell S, Neale B, O’brien SM, Visscher MP, Maier RV, Trong RD, et al. PLINK2: fast and effective tools for analyzing population genetics and complex traits using summarized genome-wide DNA variation data. Nat Rev Genet. 2016;17(5):346–58. https://doi.org/10.1038/nrg.2015.23.

51. Robertson NE. DISTRUCT: a program for the graphical display of population structure. Mol Ecol. 2001;10:928–35. https://doi.org/10.1046/j.1365-294X.2001.01194.x.

52. Li T, Yu X, Ren Y, Kang M, Yang W, Feng L, et al. The chromosome-level DNA genome of Gentiana farreri, a late-flowering Qinghai-Tibet Plateau species. Chin J Plant Ecol. 2017;21:154–65. https://doi.org/10.1093/oxfordhb/9780190525712.x1207.

53. Wu ZY, Raven PH, eds. Flora of China. vol. 16. Beijing: Science Press; St. Louis: Missouri Botanical Garden. 1995;15–97.

54. Fu et al. BMC Plant Biology. 2022;22:504. https://doi.org/10.1186/s12235-022-02811-7.
74. Kalyaanamoorthy S, Minh BQ, Wong TK, von Haeseler A, Jermiin LS. ModelFinder: fast model selection for accurate phylogenetic estimates. Nat Methods. 2017;14:587. https://doi.org/10.1038/nmeth.4285.

75. Durand EY, Patterson N, Reich D, Slatkin M. Testing for ancient admixture between closely related populations. Mol Biol Evol. 2011;28:2239–52. https://doi.org/10.1093/molbev/msr048.

76. Malinsky M, Matschiner M, Svardal H. Dsuite-fast D-statistics and related admixture evidence from VCF files. Mol Ecol Resour. 2021;21(2):584–95. https://doi.org/10.1111/1755-0998.13265.

77. Hijmans RJ, Van Etten J, Cheng J, Mattiuzzi M, Sumner M, Greenberg JA, et al. Package ‘raster’. R package, 2015;734.

78. Oksanen J, Blanchet FG, Kindt R, Legendre P, Minchin PR, O’Hara RB, et al. Package ‘vegan’. Community Ecology Package, version, 2.0. 2013.

79. The Genome Sequence Archive Family: Toward Explosive Data Growth and Diverse Data Types. Genom Proteom Bioinf. 2021;19(4):578–83. https://doi.org/10.1016/j.gpb.2021.08.001.

80. Database Resources of the National Genomics Data Center. China National Center for Bioinformation in 2022. Nucleic Acids Res. 2022;50(D1):D27–38. https://doi.org/10.1093/nar/gkab951.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.