Wirelessly Powered Communication Networks With Short Packets

Talha Ahmed Khan, Student Member, IEEE, Robert W. Heath, Jr., Fellow, IEEE, and Petar Popovski, Fellow, IEEE

Abstract—Wirelessly powered communications will entail short packets due to naturally small payloads, low-latency requirements, and/or insufficient energy resources to support longer transmissions. In this paper, a wireless-powered communication system is investigated, where an energy harvesting transmitter, charged by power beacons via wireless energy transfer, attempts to communicate with a receiver over a noisy channel. Under a save-then-transmit protocol, the system performance is characterized using metrics, such as the energy supply probability at the transmitter, and the achievable rate at the receiver for the case of short packets. The analytical treatment is provided for two cases: a three-node setup with a single power beacon and a large-scale network with multiple power beacons. Leveraging finite-length information theory, tractable analytical expressions are derived for the considered metrics in terms of the harvest blocklength, the transmit blocklength, the harvested power, the transmit power, and the network density. The analysis provides several useful design guidelines. Though using a small transmit power or a small transmit blocklength helps avoid energy outages, the consequently smaller signal-to-noise ratio or the fewer coding opportunities may cause a data decoding error. Scaling laws are derived to capture this inherent tradeoff between the harvest and transmit blocklengths. Numerical results reveal that power control is essential for improving the achievable rate of the considered system. The asymptotically optimal transmit power yields nearly optimal performance in the finite blocklength regime.

Index Terms—Energy harvesting, wireless information and power transfer, energy supply probability, wireless power transfer, power control, finite-length information theory, non-asymptotic achievable rate, stochastic geometry.

I. INTRODUCTION

W ITH wireless devices getting smaller and more energy-efficient, energy harvesting is emerging as a potential technology for powering such miniature devices [2]–[6]. This is attractive for future paradigms such as the Internet of Things (IoT), where powering a massive number of devices will be a major challenge [7]. Many IoT applications will entail sensors with sporadic sensing and communication activity, resulting in an average power requirement on the order of microwatts to milliwatts. Depending on the application, the sensor may harvest energy from ambient sources such as solar, thermal, kinetic, or RF (radio frequency) waves [2]–[6]. Of interest to this work is RF or wireless energy harvesting, where a harvesting node extracts energy from the incident RF signals. This is a suitable option for ultra low-power applications because i) wireless signals are available anywhere and anytime, ii) the harvesting operation relies on a simple circuit consisting of a rectifying antenna which can be integrated with the communication circuitry in small form factors [8], and iii) the energy delivered to the harvester can be controlled by leveraging the wireless infrastructure [4], [8]. In contrast to most wireless systems designed for Internet access, the energy harvesting communication systems used in IoT applications will likely feature short packets. This is due to intrinsically small data payloads, low-latency requirements, and/or lack of energy resources to support longer transmissions [2], [9]–[11].

For an energy harvesting system with short packets, the capacity analysis conducted in the asymptotic blocklength regime could be misleading. This has spurred research characterizing the performance of an energy harvesting communication system in the non-asymptotic or finite blocklength regime [10]–[15]. This line of research leverages the finite-blocklength information theoretic framework proposed in [12] (see [16] for an overview). The work in [10] was first to investigate energy harvesting channels in the finite blocklength regime. In [10], the non-asymptotic achievable rate was characterized for a noiseless binary communications channel with an energy harvesting transmitter. This work was extended to the case of an additive white Gaussian noise (AWGN) channel and to more general discrete memoryless channels in [11]. For an energy harvesting transmitter operating under a save-then-transmit protocol (first proposed in [17]), a lower bound on the achievable rate at the receiver was derived in the finite blocklength regime [11]. For the setup considered in [11], the work in [13] provided tighter bounds on the non-asymptotic achievable rate for an AWGN energy harvesting channel. The authors in [14] investigated the mean delay of an energy harvesting channel in the finite blocklength regime. Unlike the work in [10], [11], [13], and [14] which assume an infinite battery at the energy harvester, [15] conducted a finite-blocklength analysis for a battery-less energy harvesting channel.

The capacity analysis of energy harvesting channels in the asymptotic blocklength regime has also received considerable attention [17]–[22]. The capacity of an energy harvesting AWGN channel under stochastic energy arrivals was derived in [17] assuming an infinite battery at the energy harvester.
For a similar setup, the capacity analysis for a battery-less energy harvester was conducted in [18]. An energy harvesting transmitter with a finite battery was considered in [19], and the capacity was analyzed using Shannon strategies for discrete memoryless channels. The capacity of an energy harvesting AWGN channel with a finite battery was considered in [20] for the case of deterministic energy arrivals. Also assuming a finite battery, the approximate capacity of an energy harvesting AWGN channel with Bernoulli energy arrivals was derived in [21]. A comprehensive review of the capacity of energy harvesting channels is provided in [22].

In this paper, we characterize the performance of a wireless-powered communication system where an RF energy harvesting node, charged by wireless power beacons via wireless energy transfer, attempts to communicate with a receiver over an AWGN channel. We conduct the analysis for two cases. We first provide an analytical treatment for the case of a single power beacon. We then extend the analysis to a large-scale Poisson network with multiple power beacons. Using the framework of finite-length information theory [12], we derive the energy supply probability and the achievable rate of the considered system with short packets, i.e., in the non-asymptotic or finite blocklength regime. Leveraging the analytical results, we expose the interplay between key system parameters such as the harvest and transmit blocklengths, the average harvested power, and the transmit power. We analytically characterize the scaling laws for the harvest and transmit blocklengths in terms of the transmitted-to-harvested power ratio and the target error probability. We also provide closed-form analytical expressions for the asymptotically optimal transmit power. Numerical results reveal that the asymptotically optimal transmit power yields nearly optimal performance in the finite blocklength regime. We also examine how the power beacon transmit power and density impacts the overall performance.

Our work differs from the existing literature on several accounts. The prior work [10], [11], [13]–[15] on energy harvesting systems in the finite blocklength regime falls short of characterizing the performance for the case of wireless energy harvesting. Moreover, most prior work [10], [11], [13]–[15], [17] implicitly assumes concurrent harvest and transmit operation, which may be infeasible in practice. For example, a power beacon may remain silent during the communication phase to avoid interfering with the communication link [8]. Furthermore, none of these finite-blocklength analyses treats the case of multiple power beacons. This paper is an extension of our conference paper [1], where limited analytical results were provided for the case of a single power beacon.

The rest of this paper is organized as follows. The system model is described in Section II. The analytical characterization of the energy supply probability and the achievable rate for the case of a single power beacon is presented in Section III. Section IV extends the analysis to include multiple power beacons. Simulation results are provided in Section V. The paper is concluded in Section VI.

Notation: We let \(F_X(x) = \Pr [X \leq x] \) denote the cumulative distribution function (CDF) of a random variable \(X \).

We use \(X \sim \text{Exp}(\varrho) \) to indicate that \(X \) is an Exponential random variable with mean \(\mathbb{E}[X] = \varrho^{-1} \). Similarly, \(X \sim \text{Ga}(\varrho_1, \varrho_2) \) means that \(X \) is a Gamma random variable with shape \(\varrho_1 \) and scale \(\varrho_2 \). We define \(\mathcal{L}_X(s) \triangleq \mathbb{E} \left[e^{-sX} \right] \) as the Laplace transform of a random variable \(X \). We define \(\gamma(K, \varrho) = \int_{0}^{\varrho} t^{K-1} e^{-t}dt \) as the lower incomplete Gamma function, \(\Gamma(K, \varrho) = \int_{\varrho}^{\infty} t^{K-1} e^{-t}dt \) as the upper incomplete Gamma function, \(\Gamma(K) = \int_{0}^{\infty} t^{K-1} e^{-t}dt \) as the (complete) Gamma function, \(\mathcal{P}(K, \varrho) = \frac{\gamma(K, \varrho)}{\Gamma(K)} \) as the regularized lower incomplete Gamma function, and \(Q(K, \varrho) = \frac{\Gamma(K)}{\Gamma(K)} \) as the regularized upper incomplete Gamma function. We use \(\log(x) \) to denote the natural logarithm of \(x \). The function \(\lceil x \rceil \) (or \(\lceil x \rceil \)) returns the smallest integer (or even integer) not smaller than \(x \).

II. SYSTEM MODEL

We consider a wireless-powered communication system where one or more wireless power beacons (PBs) use wireless energy transfer to charge an energy harvester (EH) node, which then attempts to communicate with another receiver (RX) using the harvested energy (see Fig. 1). The nodes are assumed to be equipped with a single antenna each. We present an analytical treatment for two cases: i) the energy harvesting node is powered by a single power beacon, and ii) the energy harvesting node is powered by a large-scale network consisting of multiple power beacons. We now describe the system model for the case of a single power beacon. Any additional description for the case of multiple power beacons will be provided in Section IV. We assume that the energy harvester uses a save-then-transmit protocol [17] to enable wireless-powered communications. The considered protocol divides the communication frame consisting of \(S \) channel uses (or slots) into an energy harvesting phase having \(m \) channel uses, and an information transmission phase having \(n \) channel uses. The first \(m \) channel uses are used for harvesting energy from the RF signals transmitted by the power beacon. This is followed by an information transmission phase consisting of \(n \) channel uses, where the transmitter uses the harvested energy to transmit information to the receiver. We assume that any left-over energy at the end of the transmission is stored in a dedicated battery for system-level energy supply. For example, this dedicated battery may support other functions like sensing and computation, which an EH node
often needs to perform. This implies that the energy accumulated in a harvesting phase is independent of the previous harvesting phases. We leave the case where left-over energy supports subsequent transmissions for future work. We call \(m \) the harvest blocklength, \(n \) the transmit blocklength, and \(S = m + n \) the total blocklength or frame size. We will conduct the subsequent analysis for the non-asymptotic blocklength regime, i.e., for the practical case of short packets where the total blocklength is finite.

A. Energy Harvesting Phase

The signal transmitted by a power beacon experiences distance-dependent path loss and channel fading before reaching the energy harvesting node. The harvested energy is, therefore, a random quantity due to the underlying randomness of the wireless link. We let random variable \(Z_i \) model the energy harvested in slot \(i \) \((i = 1, \ldots, m) \), where \(\mu \in (0, 1) \) denotes the EH conversion efficiency, \(\eta_{PB} \) is the PB transmit power (i.e., energy per PB symbol), \(\ell(r, \eta) \) gives the average large-scale path loss given a PB-EH link distance \(r \) and a path loss exponent \(\eta > 2 \), while the random variable \(H_i \) denotes the small-scale channel gain. We let \(Z_{tot} = \sum_{i=1}^{m} Z_i \) denote the total harvested energy during a harvesting phase. Note that we have ignored the energy due to noise since it is negligibly small. We assume the PB-EH link undergoes IID Rayleigh fading such that \(H_i \) is exponentially distributed with unit mean, i.e., \(H_i \sim \text{Exp}(1) \) and \(Z_i \sim \text{Exp}(\eta_{PB}) \) where \(\eta_{PB} = \frac{\mu}{\ell(r, \eta)} \). We consider two fading scenarios for the PB-EH link: i) quasi-static block flat fading where the channel remains constant over (the harvesting phase of) a frame, and randomly changes to a new value for the next frame, and ii) IID fading where the link sees an independent channel realization in each slot of the harvesting phase. For the former, the energy arrivals within a harvesting phase are fully correlated, i.e., \(Z_i = Z_1 \) \(\triangleq \) \(Z, \forall i = 1, 2, \ldots, m \) such that \(Z_{tot} \sim \text{Ga}(1, m \eta_{PB}) \). This is motivated by the observation that the harvest blocklength in a short-packet communication system may be smaller than the channel coherence time. For the latter, the energy arrivals are uncorrelated such that \(Z_{tot} \sim \text{Ga}(m, \eta_{PB}) \). This caters to the other extreme where the link is subjected to fast fading.

B. Information Transmission Phase

The energy harvesting phase is followed by an information transmission phase where the EH node attempts to communicate with a destination RX node over an unreliable AWGN channel. The AWGN channel abstracts a scenario where the EH-RX channel remains fairly static, for example, due to a small link distance. Contrary to the harvesting operation, here noise plays a significant role. We assume that the EH node uses a Gaussian codebook for signal transmission (see Section II-C). We let \(X_{\ell} \) be the signal intended for transmission in slot \(\ell \) with an average power \(P_{EH} \), where \(\ell = 1, \ldots, n \), and \(n \) is fixed. In the ensuing analysis, we assume \(P_{EH} \) to be fixed before evaluating the considered metrics. The resulting (intended) sequence \(X^n = (X_1, \ldots, X_n) \) consists of independent and identically distributed (IID) Gaussian random variables such that \(X_{\ell} \sim \mathcal{N}(0, P_{EH}) \). To transmit the intended sequence \(X^n \) over the transmit block, the EH node needs to satisfy the following energy constraints:

\[
\sum_{\ell=1}^{k} X_{\ell}^2 \leq \sum_{i=1}^{m} Z_i \quad k = 1, 2, \ldots, n.
\]

The following lemma simplifies the multiple energy constraints into a single constraint.

Lemma 1: For a random sequence \(\{X_{\ell}\}_{\ell=1}^{n} \) for the transmit phase, and a random energy sequence \(\{Z_i\}_{i=1}^{m} \) for the harvest phase, the probability of violating the energy constraints in (1) is given by

\[
\Pr \left[\bigcap_{k=1}^{n} \left\{ \sum_{\ell=1}^{k} X_{\ell}^2 \leq m \sum_{i=1}^{m} Z_i \right\} \right] = 1 - \Pr \left[\bigcap_{\ell=1}^{m} \left\{ \sum_{i=1}^{m} X_{\ell}^2 \leq \sum_{i=1}^{m} Z_i \right\} \right].
\]

Proof: The result follows by noting that

\[
\Pr \left[\bigcap_{k=1}^{n} \left\{ \sum_{\ell=1}^{k} X_{\ell}^2 \leq \sum_{i=1}^{m} Z_i \right\} \right] = \Pr \left[\bigcap_{\ell=1}^{m} \left\{ \sum_{i=1}^{m} X_{\ell}^2 \leq \sum_{i=1}^{m} Z_i \right\} \right] \times \Pr \left[\bigcap_{k=1}^{n} \left\{ \sum_{\ell=1}^{k} X_{\ell}^2 \leq \sum_{i=1}^{m} Z_i \right\} \right].
\]

The constraints in (1), which need to be satisfied to transmit the intended codeword, simplify to \(\sum_{\ell=1}^{k} X_{\ell}^2 \leq Z_{tot} \) due to Lemma 1. We let \(\tilde{X}^n = (\tilde{X}_1, \ldots, \tilde{X}_n) \) be the transmitted sequence. Note that \(\tilde{X}^n \neq X^n \) when the energy constraints are violated as the EH node lacks sufficient energy to put the intended symbols on the channel. The signal received at the destination node in slot \(\ell \) is given by \(Y_{\ell} = X_{\ell} + V_{\ell} \), where \(V^n = (V_1, \ldots, V_n) \) is an IID sequence modeling the receiver noise such that \(V_{\ell} \sim \mathcal{N}(0, \sigma^2) \) is a zero-mean Gaussian random variable with variance \(\sigma^2 \). We note that any deterministic channel gain (attenuation) \(\zeta \in (0, 1) \) for the EH-RX link can be equivalently tackled by scaling the noise variance by a factor \(\zeta \) (as the equivalent channel is still AWGN). Similarly, we define \(Y^n = (Y_1, \ldots, Y_n) \) as the received sequence.

C. Information Theoretic Preliminaries

We now describe the information theoretic preliminaries for the EH-RX link. Let us assume that the EH node transmits a message \(W \in \mathcal{W} \) over \(n \) channel uses. Assuming \(W \) is drawn uniformly from \(\mathcal{W} = \{1, 2, \ldots, M\} \), we define an \((n, M)\)-code having the following features: It uses a set of encoding functions \(\{\mathcal{f}_{\ell}\}_{\ell=1}^{n} \) for encoding the source message \(W \in \mathcal{W} \) given the energy harvesting constraints, i.e., the source node uses \(\mathcal{f}_{\ell} : \mathcal{W} \times \mathbb{R}_+ \rightarrow \mathbb{R} \) for transmission slot \(\ell \), where \(\mathcal{f}_{\ell}(W, Z_{tot}) = \tilde{X}_{\ell} \) given \(Z_{tot} \) such that the energy harvesting constraints in (1) are satisfied. Specifically, \(\tilde{X}_{\ell} = X_{\ell} \) where \(X_{\ell} \sim \mathcal{N}(0, P_{EH}) \) is drawn IID from a Gaussian codebook when (1) is satisfied, and \(\tilde{X}_{\ell} = 0 \) otherwise. It uses a decoding function \(\mathcal{g} : \mathbb{R}^n \rightarrow \mathcal{W} \) that produces the output \(\mathcal{g}(Y^n) = \hat{W} \), where \(Y^n = (Y_1, \ldots, Y_n) \) is the sequence received at the destination node.
We let $\epsilon \in [0, 1)$ denote the target error probability for the noisy communication link. For $\epsilon \in [0, 1)$, an (n, M, ϵ)-code for an AWGN EH channel is defined as the (n, M)-code for an AWGN channel such that the average probability of decoding error $\Pr(\hat{W} \neq W)$ does not exceed ϵ. A rate R is ϵ-achievable for an AWGN EH channel if there exists a sequence of (n, M_n, ϵ_n)-codes such that $\lim \inf_{n \to \infty} \frac{1}{n} \log(M_n) \geq R$ and $\lim \sup \epsilon_n \leq \epsilon$. The ϵ-capacity C_ϵ for an AWGN EH channel is defined as $C_\epsilon = \sup \{R : R$ is ϵ-achievable$\}$.

D. Performance Metrics

We now introduce the metrics used for characterizing the performance of the considered short-packet wireless-powered communications system. Note that the overall performance is marred by two key events. First, due to lack of sufficient energy, the EH node may not be able to transmit the intended codewords during the information transmission phase, possibly causing a decoding error at the receiver. Second, due to a noisy EH-RX channel, the received signal may not be correctly decoded. For the former, we define a metric called the energy supply probability, namely, the probability $\Pr(\sum_{i=1}^{m} X_i^2 \leq Z_{\text{tot}})$ that an EH node can support the intended transmission. For the latter, we define and characterize the ϵ-achievable rate in the finite blocklength regime.

III. SINGLE POWER BEACON

In this section, we characterize the energy supply probability and the achievable rate in the finite blocklength regime for an energy harvester powered by a single power beacon. We also provide closed-form analytical expressions for the optimal transmit power.

A. Energy Supply Probability

We define the energy supply probability $P_{es}(m, n, a)$ as the probability that an EH node has sufficient energy to transmit the intended codeword, namely,

$$P_{es}(m, n, a) = \Pr(\sum_{i=1}^{n} X_i^2 \leq Z_{\text{tot}})$$ \hspace{1cm} (3)

for a harvest blocklength m, a transmit blocklength n, and a power ratio $a = \frac{P_{\text{EH}}}{P_{\text{th}}}$. Similarly, we define $P_{oa}(m, n, a) = 1 - P_{es}(m, n, a)$ as the energy outage probability at the EH node.

1) Correlated Energy Arrivals: In this subsection, we treat the energy supply probability for the case of correlated energy arrivals.

Proposition 1: Assuming the intended transmit symbols $\{X_i\}_{i=1}^{n}$ are drawn IID from $\mathcal{N}(0, P_{\text{EH}})$, the energy sequence $\{Z_i\}_{i=1}^{m} = Z$ is fully correlated, and Z follows an exponential law with mean P_{th}, the energy supply probability is given by

$$P_{es}(m, n, a) = \frac{1}{(1 + \frac{2a}{m})^\frac{m}{2}}$$ \hspace{1cm} (4)

for $m > 2a$ where $a = \frac{P_{\text{EH}}}{P_{\text{th}}}$, while m and n denote the blocklengths for the harvest and the transmit phase.

Proof: The proof follows by leveraging the statistical properties of the random variables. Consider

$$P_{es}(m, n, a) = \Pr(\sum_{i=1}^{n} X_i^2 \leq mZ) \overset{(a)}{=} \Pr(\varphi \leq \frac{mZ}{P_{\text{EH}}})$$

$$\overset{(b)}{=} \mathbb{E}_{\varphi} \left[e^{-\frac{\varphi Z}{P_{\text{th}}} m} \right] = \frac{1}{(1 + \frac{2a}{m})^\frac{m}{2}}$$ \hspace{1cm} (5)

where (a) follows from the substitution $\varphi = \sum_{i=1}^{m} X_i^2$ where φ is a Chi-squared random variable with n degrees of freedom. Equality (b) is obtained by conditioning on the random variable φ, and by further noting that $Z \sim \text{Exp}(P_{\text{th}}^{-1})$. Assuming $m > 2a$, the last equation follows from the definition of the moment generating function of a Chi-squared random variable. When $m \leq 2a$, we can evaluate the energy supply probability using the form in (b).

While the representation in (4) is valid for $m > 2a$, we note that this is the case of practical interest since it is desirable to operate at $a < 1$, as evident from Section V. Further, the expression in (4) makes intuitive sense as the energy outages would increase with the transmit blocklength n for a given m, and decrease with the harvest blocklength m for a given n. Let us fix P_{EH} and P_{th}. For a given m, we may improve the reliability of the EH-RX communication link by increasing the blocklength n, albeit at the expense of the energy supply probability. With a smaller transmit power P_{EH}, the energy harvester is less likely to run out of energy during an ongoing transmission. Therefore, when $m + n$ is fixed, we may reduce P_{EH} to meet the energy supply constraint, but this would reduce the channel signal-to-noise ratio (SNR). This underlying tension between the energy availability and the communication reliability will be highlighted throughout the rest of this paper. The following discussion relates the transmit power to the harvest and transmit blocklengths, illustrating some of the key tradeoffs.

Remark 1: The energy supply probability is more sensitive to the length of the transmit phase compared to that of the harvest phase. This observation also manifests itself in terms of the energy requirements at the transmitter. For instance, to maintain an energy supply probability p, it follows from (4) that the power ratio satisfies $a \leq \frac{m}{2} \left(p - \frac{1}{2} \right)$. Note that the power ratio varies only linearly with the harvest blocklength m, but superlinearly with the transmit blocklength n. This further implies that for a fixed n, doubling the harvest blocklength relaxes the transmit power budget by the same amount. That is, the energy harvester can double its transmit power P_{EH} (and therefore the channel SNR) without violating the required energy constraints. In contrast, reducing the transmit blocklength for a given m brings about an exponential increase in the transmit power budget at the energy harvester.

The following corollary treats the scaling behavior of the energy supply probability as the blocklength becomes large.

Corollary 1: When the harvest blocklength m scales in proportion to the transmit blocklength n such that $m = cn$ for some constant $c > 0$, the energy supply probability $P_{es}(m, n, a)$ converges to a limit as m and n become asymptotically large. In other words, $\lim_{m,n \to \infty} P_{es}(m, n, a) = e^{-\frac{c}{2}} < 1$.
such that the limit only depends on the power ratio \(a > 0 \) and the proportionality constant \(c > 0 \). Further, under proportional blocklength scaling, this limit also serves as an upper bound on the energy supply probability for finite blocklengths, i.e., \(P_{\text{es}}(m, n, a) \leq e^{-\frac{\epsilon^2}{2}} < 1 \).

The previous corollary also shows that energy outage is a fundamental bottleneck regardless of the blocklength, assuming at best linear scaling.

2) IID Energy Arrivals: We now characterize the energy supply probability for the case of IID energy arrivals.

Proposition 2: Assuming the intended transmit symbols \(\{X_i\}_{i=1}^n \) and the energy arrivals \(\{Z_i\}_{i=1}^m \) are drawn IID from \(\mathcal{N}(0, P_{\text{EH}}) \) and \(\text{Exp}(P_{\text{H}}^{-1}) \) respectively, the energy supply probability is given by

\[
P_{\text{es}}(m, n, a) = \int_0^\infty \frac{t^{m-1}e^{-t}}{(m-1)!} P_{\text{H}}^{-1} \left(\frac{n}{2}, 2at\right) \text{d}t, \tag{6}
\]

where \(P_{\text{H}}(\cdot, \cdot) \) is the regularized lower incomplete Gamma function.

Proof: Consider \(P_{\text{es}}(m, n, a) = \Pr \left[\sum_{i=1}^n X_i^2 \leq Z_{\text{tot}} \right] = \Pr \left[\varphi - \frac{Z_{\text{tot}}}{P_{\text{EH}}} \leq 0 \right] \), where \(\varphi = \sum_{i=1}^n Z_i^2 \) such that \(\varphi \sim \text{Ga}(\frac{n}{2}, 2) \), while \(\frac{Z_{\text{tot}}}{P_{\text{EH}}} \sim \text{Ga}(m, \frac{1}{2}) \). This means that \(U = \varphi - \frac{Z_{\text{tot}}}{P_{\text{EH}}} \) follows a Gamma difference distribution [23]. The final result follows by evaluating \(\Pr[U \leq 0] \).

Compared to (4), the analytical expression in (6) is more involved as it requires integration over mathematical functions. To simplify the analysis, we propose the following approximation for the energy supply probability.

Corollary 2: The energy supply probability for IID energy arrivals can be tightly approximated as \(P_{\text{es}}(m, n, a) \approx Q(m, an) \), where \(Q(\cdot, \cdot) \) is the regularized lower incomplete Gamma function.

Proof: The proposed expression follows by plugging \(\varphi \approx \mathbb{E}[\varphi] = n \) in the proof of Proposition 2.

We note that the proposed approximation results in only a minor loss in accuracy for the parameter range considered in this paper.

B. Achievable Rate

In this section, we characterize the \(\epsilon \)-achievable rate of the considered wireless-powered communication system in the finite blocklength regime.

1) Correlated Energy Arrivals: We first consider the case of correlated energy arrivals.

Theorem 1: Given a target error probability \(\epsilon \in [0, 1) \) for the noisy channel, the \(\epsilon \)-achievable rate \(R_{\text{EH}}(\epsilon, m, n, a, \gamma) \) of the considered system with harvest blocklength \(m \), transmit blocklength \(n \), power ratio \(a \) (where \(2a < m \)), and the SNR \(\gamma = \frac{P_{\text{H}}}{\sigma^2} \) is given by

\[
R_{\text{EH}}(\epsilon, m, n, a, \gamma) = \frac{n \log(1+\gamma) - \sqrt{2 + \frac{\epsilon}{1+0.5\epsilon} \gamma + n} - (n)^{\frac{1}{2}} - 1}{n + m}, \tag{7}
\]

for all tuples \((m, n)\) satisfying

\[
m \geq \frac{2a}{\exp\left[\frac{2\log(1+0.5\epsilon)}{\log(\frac{2+\epsilon}{\epsilon})}\right] - 1}
\]

and

\[
n \leq \frac{2 \log (1 + 0.5\epsilon)}{\log\left(1 + \frac{2a}{m}\right)}.
\tag{9}
\]

Proof: See Appendix A.

For a given target error probability \(\epsilon \), a harvest blocklength \(m \) can support a transmit blocklength only as large as in (9). Moreover, a sufficiently large \(m \), as given in (8), is required for a sufficiently large \(n \) to meet the target error probability \(\epsilon \). The constraints in (8) and (9) can be equivalently written as

\[
n \geq \left[\log \left(\frac{2 + \epsilon}{\epsilon^2} \right) \right]^4 \tag{10}
\]

and

\[
m \geq \frac{2a}{(1+0.5\epsilon)^{\frac{5}{2}} - 1} \tag{11}
\]

A sufficiently long transmit codeword is required to meet the reliability requirements of the communication link. Similarly, a sufficiently long harvest blocklength is required to replenish the energy supply. In latency-constrained systems where the total blocklength is fixed, this interplay between the transmit and harvest blocklength results in a trade-off between the energy supply probability and the communication reliability. For the rest of the analysis, we assume that minimum possible blocklengths are selected to satisfy the constraints in (10) and (11), i.e., we set \(n = \left[\log \left(\frac{2 + \epsilon}{\epsilon^2} \right) \right]^4 \) and \(m = \frac{2a}{(1+0.5\epsilon)^{\frac{5}{2}} - 1} \). We call it the minimum latency approach. The following remark illustrates the scaling behavior of the harvest and transmit blocklengths.

Remark 2: Under the minimum latency approach, the harvest blocklength scales almost linearly with the transmit blocklength according to the law \(m \approx \frac{2a}{\epsilon} n \). This follows from the constraint in (11) where \(m = \frac{2a}{(1+0.5\epsilon)^{\frac{5}{2}} - 1} \approx \frac{2a}{\epsilon} n \) when \(\epsilon \) is small. Further, the scaling rate \(\frac{2a}{\epsilon} \) is directly proportional to the power ratio \(a \) and inversely proportional to the error \(\epsilon \).

For example, fix \(n \) and \(a \). A \(k \)-fold reduction in \(\epsilon \) requires a \(k \)-fold increase in the harvest blocklength to attain the corresponding \(\epsilon \)-achievable rate. This increase in reliability, however, comes at the expense of a reduced rate and an increased latency since the harvesting overhead is \(1 + \frac{2a}{\epsilon} \) and the total blocklength grows as \((1 + \frac{2a}{\epsilon}) n \). This further suggests that we may overcome the rate (and latency) loss by a \(k \)-fold increase in \(a \), i.e., by increasing \(P_{\text{H}} \) for a fixed \(P_{\text{EH}} \). This could be achieved by increasing the PB transmit power and/or improving the rectifier efficiency.

The following proposition provides an analytical expression for the achievable rate in the asymptotic blocklength regime. We note that the asymptotic results provide a useful analytical handle for the non-asymptotic case as well.
Proposition 3: Let $R_{EH}^\infty(\epsilon, a, \gamma)$ denote the asymptotic achievable rate as the transmit blocklength $n \to \infty$ (and consequently the harvest blocklength $m \to \infty$ following (11)), i.e., $R_{EH}^\infty(\epsilon, a, \gamma) = \lim_{n \to \infty} R_{EH}(\epsilon, m, n, a, \gamma)$. It is given by

$$R_{EH}^\infty(\epsilon, a, \gamma) = L(a, \epsilon)C_{AWGN}(\gamma)$$

where

$$C_{AWGN}(\gamma) = \frac{1}{2} \log(1 + \gamma), \quad \gamma \geq 0$$

denotes the capacity of an AWGN channel without the energy harvesting constraints, whereas

$$L(a, \epsilon) = \frac{1}{1 + \frac{a}{\log(1 + 0.5\epsilon)}} - \frac{1}{2} \log(1 + \gamma), \quad a \geq 0, \quad \epsilon \in [0, 1)$$

where $L(a, \epsilon) \in [0, 1]$ such that $1 - L(a, \epsilon)$ gives the (fractional) loss in capacity due to energy harvesting constraints.

Proof: Using (7), $R_{EH}^\infty(\epsilon, a, \gamma)$ can be expressed as

$$R_{EH}^\infty(\epsilon, a, \gamma) = \lim_{n \to \infty} \frac{n \log(1 + \nu)}{n + m} - \frac{\sqrt{2n^2 + \frac{2}{\epsilon} n^{1 - \frac{1}{a}} + (n)^{\frac{2}{a}} - 1}}{n + m}$$

where (a) follows since the higher order terms in (7) vanish as $n \to \infty$. Note that for a given ϵ and a, m and n should satisfy (10) and (11). Equality (b) is obtained by substituting the minimum harvest blocklength $m = \frac{1}{a} \log(1 + 0.5\epsilon)$ from (11), and by further assuming that $n \geq \left(\log \left(\frac{2}{\epsilon} a\right)^{\frac{1}{a}}\right)$. Finally, (c) follows by noting that $\lim_{n \to \infty} \left(1 + \frac{1}{n}\right)^{\frac{n}{x}} = 1$. The proof is similar to that of Proposition 1.

Remark 4: Proposition 3 reveals a fundamental communications limit of the considered wireless-powered system. To guarantee an ϵ-reliable communication over n channel uses, the node first needs to accumulate sufficient energy during the initial harvesting phase. A sufficiently large m helps improve the energy availability at the transmitter. This harvesting overhead, however, causes a rate loss (versus a non-energy harvesting system) as the first m channel uses are reserved for harvesting. Moreover, as the transmit blocklength n grows, so does the length of the initial harvesting phase m, resulting in an inescapable performance limit on the communication system. This limit depends on i) the power ratio a, and ii) the required reliability ϵ, and is captured by the prelog term $L(a, \epsilon)$ in (14) for a given γ. Moreover, this behavior is more visible for latency-constrained systems where the total blocklength is fixed.

Remark 5: In the asymptotic blocklength regime, the harvest blocklength should be scaled proportionally to the transmit blocklength with a scaling rate $\frac{a}{\log(1 + 0.5\epsilon)}$ to attain the corresponding asymptotic ϵ-achievable rate. Note that this scaling rate approximately equals $\frac{2a}{\epsilon}$ (when ϵ is small), which is similar to the non-asymptotic scaling rate discussed in Remark 2. Moreover, this remark also justifies the linear blocklength scaling assumed in Corollary 1.

Remark 6: With P_{EH} fixed, decreasing a (by increasing P_H) improves the energy availability at the EH node during the information transmission phase. As a is decreased, a smaller harvest blocklength is required to support a certain transmit blocklength and ϵ. As a result, in the limit $a \to 0$, the harvesting overhead as well as the energy outage probability vanish as the transmit blocklength goes to infinity. Therefore, the system effectively reduces to a traditionally-powered communication system.

Corollary 4: In the high-reliability regime (when $\epsilon \in [0, 1)$ is small), the asymptotic achievable rate $R_{EH}^\infty(\epsilon, a, \gamma)$ in (12) can be approximated as

$$R_{EH}^\infty(\epsilon, a, \gamma) \approx \frac{1}{1 + \frac{a}{\epsilon}} C_{AWGN}(\gamma) = \frac{1}{1 + \frac{a}{\epsilon}} C_{AWGN}(\gamma)$$

which follows since $\log(1 + x) \approx x$ when x is small.

Remark 7: The previous corollary illustrates an interesting interplay between the key design parameters. For a given target rate, the error probability ϵ scales inversely with the average harvested power P_H in the high-reliability regime. This implies that increasing P_H (e.g., by increasing the PB transmit power) reduces the communication unreliability by the same factor.

2) IID Energy Arrivals: We now provide the achievable rate for the case of IID energy arrivals.

Theorem 2: The ϵ-achievable rate of the considered system for the case of IID energy arrivals is given by (7) for all tuples (m, n) satisfying

$$n \geq \left\lceil \log \left(\frac{2 + \epsilon}{\epsilon^2}\right)^{\frac{1}{m}} \right\rceil$$

and

$$\int_0^\infty \frac{t^{m-1} e^{-t}}{(m-1)!} \left(\frac{n}{2}, \frac{2at}{\epsilon}\right) dt \geq \frac{2}{2 + \epsilon}.$$

Proof: The proof is similar to the case of correlated energy arrivals.

Theorem 2 differs from Theorem 1 in that it is governed by a different constraint (21) on the blocklength. This is because the energy supply probability with IID energy arrivals is different from that achieved with correlated arrivals.

C. Optimal Power Control

For optimal performance, the energy harvesting node needs to use the right amount of transmit power. On the one hand, reducing P_{EH} helps improve the energy supply probability as a packet transmission is less likely to face an energy outage.
On the other hand, it is detrimental for the communication link as it reduces the SNR. We now quantify the optimal transmit power that maximizes the asymptotic achievable rate for a given set of parameters. We note that many of the analytical insights obtained for the asymptotic regime are also useful for the non-asymptotic regime (see Remark 8). In this subsection, we limit our attention to the case of correlated energy arrivals.

Corollary 5: For a given ϵ and P_H, there exists an optimal transmit power that maximizes the achievable rate. We let $P_{EH,\infty}^*$ be the rate-maximizing transmit power in the asymptotic blocklength regime. It follows that

$$P_{EH,\infty}^*(\epsilon, P_H, \sigma^2) = \sigma^2 \left(\frac{P_H}{\sigma^2} \log \left(1 + 0.5\epsilon \right) - 1 \right) \left(\frac{1}{W\left(\frac{P_H}{\sigma^2} \log \left(1 + 0.5\epsilon \right) - 1 \right)e^{-1}} - 1 \right), \quad (22)$$

where $W[\cdot]$ is the Lambert W-function [24].

Proof: See Appendix A.

Note that $W[x]$ is a real increasing function of x for $x \geq -\frac{1}{e}$ [24]. As $\frac{P_H}{\sigma^2} \log \left(1 + 0.5\epsilon \right) > 0$ in practice, this ensures that the function $W\left(\frac{P_H}{\sigma^2} \log \left(1 + 0.5\epsilon \right) - 1 \right)e^{-1}$ is real, resulting in a nonnegative transmit power. Also, plugging $P_{EH} = P_{EH,\infty}^*$ in Proposition 3 gives the optimal achievable rate in the asymptotic blocklength regime. Furthermore, when P_{EH} is fixed, the achievable rate improves monotonically with P_H due to an increase in the energy supply probability.

Remark 8: The optimal transmit power for the asymptotic case serves as a conservative estimate for the optimal transmit power for the non-asymptotic case (Fig. 5). Moreover, the achievable rate in the non-asymptotic regime obtained using the asymptotically optimal transmit power, gives a tight lower bound for the optimal achievable rate in the non-asymptotic regime (Fig. 4). This suggests that Corollary 5 provides a useful analytical handle for transmit power selection even for the finite blocklength regime (despite the fact that the resulting rate for the non-asymptotic case could be much smaller than that for the asymptotic case).

Corollary 6: With ϵ and σ^2 fixed, the asymptotically optimal transmit power $P_{EH,\infty}^*(\epsilon, P_H, \sigma^2)$ increases with P_H with a slope

$$\frac{\log \left(1 + 0.5\epsilon \right)}{1 + W\left(\frac{P_H}{\sigma^2} \log \left(1 + 0.5\epsilon \right) - 1 \right)e^{-1}}. \quad (23)$$

The slope is a non-negative decreasing function of the P_H, suggesting that i) the optimal transmit power increases monotonically with P_H, and ii) it is more sensitive to P_H when P_H is small. In addition, the optimal transmit power scales sublinearly with P_H.

Proof: It follows by differentiating the optimal transmit power with respect to P_H.

Though the transmit power increases with P_H, the optimal power ratio $a^* = \frac{P_{EH,\infty}^*(P_H)}{P_H}$ is a monotonically decreasing function of P_H. This is because $P_{EH,\infty}^*$ varies sublinearly with P_H.

IV. MULTIPLE POWER BEACONS

In this section, we extend the analysis to the case of a large-scale network consisting of power beacons, wireless-powered transmitters, and their dedicated receivers. We assume that the power beacons are distributed on a two-dimensional plane according to a homogeneous Poisson point process (PPP) $\Phi_{PB} = \{x_k\}_{k=1}^\infty$ with density (intensity) λ_{PB}, where x_k denotes the location of a node k in Φ_{PB}. The energy harvesting transmitters are drawn from another homogeneous PPP $\Phi_{EH} = \{y_k\}_{k=1}^\infty$ of density λ_{EH} independently of the power beacons. Similar to the case of a single power beacon, each energy harvesting transmitter is assumed to have a dedicated receiver located a fixed distance away. Leveraging Slivnyak’s theorem [25], we consider a typical energy harvesting node located at the origin. It exploits the energy harvested from the transmissions of multiple power beacons to communicate with its dedicated receiver amid interference and noise. We let h_k model the small-scale fading coefficient for the PB-EH link originating at x_k. We assume IID Rayleigh fading for the PB-EH links such that $H_k = |h_k|^2 \sim \text{Exp}(1)$. As defined previously, $\ell(|x_k|, \eta)$ models the distance-dependent path loss for the link from x_k. The energy harvested in an arbitrary channel use for the case of multiple power beacons is given by $Z = P_{PB} \mu Z$, where $Z = \sum_{x_k \in \Phi_{PB}} h_k$. In this section, we limit our attention to case of correlated energy arrivals. We derive tractable analytical expressions for the energy supply probability and the non-asymptotic achievable rate in a network setting.

A. Energy Supply Probability

We first characterize the energy supply probability in a general form. We then specialize it to the scenario considered in this paper.

Proposition 4: For the case of multiple power beacons with PB density λ_{PB}, the energy supply probability at a typical EH node is given by

$$P_{E_{ES}}(m, n, a, \lambda_{PB}, \eta) = 1 - \sum_{i=0}^{\frac{d}{a}} \left((-1)^i \frac{m!}{(2a)^i!d^i} e^{-\lambda_{PB}^2\eta d}} \right) \quad (24)$$

where the power ratio $a = \frac{P_{PB}}{P_{EH}}$; η is the path loss exponent, while $L_2(s) = \mathbb{E}[e^{-sY}]$ is the Laplace transform of Y, which is a function of λ_{PB} and η.

Proof: See Appendix B.

Note that the power ratio a is defined here slightly differently from the case of a single power beacon (Proposition 1). Here, it is defined as the ratio of the transmit power at an energy harvester to that at a power beacon (scaled by the rectifier efficiency). Previously, it was defined as the ratio of the EH transmit power to the harvested power, i.e., the large-scale fading term, being deterministic, was absorbed in the power ratio. For generality, we have expressed Proposition 4 in terms of the Laplace transform of the harvested energy. Depending on the propagation and network model, this could be evaluated in closed form. For example, the following lemma analytically...
characterizes the Laplace transform for the scenario relevant to this paper.

Lemma 2: Let us assume the PBs are drawn from a homogeneous PPP of density λ_{PB}, the PB-EH links are IID Rayleigh fading, and follow a bounded path loss model $\ell(r, \eta) = \max(1, r^p)$ where $\eta > 2$ is the path loss exponent while r is the PB-EH link distance. The Laplace transform $L_{Z}(s)$ of the per-slot harvested energy Z is analytically characterized by

$$L_{Z}(s) = e^{-\pi s \lambda_{PB} \mu P_{PB} \mu s} e^{-\pi \lambda_{PB} \mu s},$$

where the function $F(x_1, x_2)$ for $x_1 \geq 0, x_2 > 2$ is defined as

$$F(x_1, x_2) = \frac{2x_1}{x_2 - 2} \gen{2}{F}{1}{1, 1 - \frac{2}{x_2}; 2 - \frac{2}{x_2}; -x_1}{(28)}$$

in terms of the Gauss’s hypergeometric function $\gen{2}{F}{1}{c_1, c_2; c_3; z}$ [26]. The Laplace transform $L_{Z}(s)$ is a special case of (25), which is obtained by plugging $P_{PB} \mu = 1$.

Proof: See Appendix B.

We note that the Laplace transform is expressed in terms of tractable mathematical functions, which can be evaluated using most numerical toolboxes. We now characterize the mean harvested energy in terms of the network density and the path loss exponent.

Lemma 3: The average per-slot harvested energy for the case of multiple power beacons is given by $\mathbb{E}[Z] = \lambda_{PB} \pi \frac{2}{\pi s} \mu P_{PB}$. This shows that the λ_{PB} and P_{PB} have the same effect on the mean harvested energy.

Proof: See Appendix B.

The following lemmas treat the partial derivatives of the functions involved in the Laplace transform. We will apply them in the analytical characterization of the energy supply probability for the propagation model considered in this paper.

Lemma 4: We let $\gen{2}{F}{1}{k}{1, 1 - \frac{2}{x_2}; 2 - \frac{2}{x_2}; -x_1}$ denote the kth-order partial derivative of the function $\gen{2}{F}{1}{1, 1 - \frac{2}{x_2}; 2 - \frac{2}{x_2}; -x_1}$ with respect to the variable x_1, where $k = 0$ refers to the original function. Using the properties of the hypergeometric function [26], it follows that

$$\gen{2}{F}{1}{k}{1, 1 - \frac{2}{x_2}; 2 - \frac{2}{x_2}; -x_1} = (-1)^k k! \left(\frac{1 - \frac{2}{x_2}}{\frac{2}{x_2}}\right)^{(k)} \times \gen{2}{F}{1}{0}{k + 1, k + 1 - \frac{2}{x_2}; k + 2 - \frac{2}{x_2}; -x_1},$$

where $(x)_k = \frac{\Gamma(x + k)}{\Gamma(x)}$ is the Pochhammer symbol, while $\Gamma(\cdot)$ is the Gamma function [26].

Lemma 5: We let $g(k)(x_1, x_2)$ denote the kth order partial derivative of the function $\mathcal{F}(x_1, x_2)$ with respect to the variable x_1. It follows that

$$g^{(k)}(x_1, x_2) = \frac{2k}{x_2 - 2} \gen{2}{F}{1}{k-1}{1, 1 - \frac{2}{x_2}; 2 - \frac{2}{x_2}; -x_1} + \frac{2x_1}{x_2 - 2} \gen{2}{F}{1}{k}{1, 1 - \frac{2}{x_2}; 2 - \frac{2}{x_2}; -x_1},$$

where $g^{(0)}(x_1, x_2) = \mathcal{F}(x_1, x_2)$.

Proof: The result follows by successive differentiation of (26) with respect to x_1, invoking Lemma 4, and recursively expressing the result in terms of the lower-order derivatives of the original function.

Leveraging Lemma 2 and Faà di Bruno formula [27], we now specialize Proposition 4 to the scenario considered in this paper.

Proposition 5: The energy supply probability for the bounded path loss model considered in Lemma 2 can be expressed as

$$P_{es}(m, n, a, \lambda_{PB}, \eta) = e^{-\pi \lambda_{PB} \mu P_{PB} \mu (s)} \times \sum_{i=0}^{\#-1} (-1)^i B_i \left(g^{(i)}(s), \ldots, g^{(i)}(s) \right) \bigg|_{s = \frac{\pi}{\mu}} = 0,$$

where $B_i(u_1, \ldots, u_i)$ is the complete Bell polynomial of the second kind [27], and

$$g^{(i)}(s) = -\pi \lambda_{PB} \left(\frac{1}{1 + s} \right)^{i+1} + \frac{s}{\mathcal{Y}(i - 1, \eta) g^{(i-1)}(s, \eta)} + \mathcal{Y}(i, \eta) g^{(i)}(s, \eta),$$

where $g^{(i)}(x_1, x_2)$ is given in Lemma 5 and $\mathcal{Y}(i, x_2) = (-1)^i i! \left(\frac{1 - \frac{2}{x_2}}{\frac{2}{x_2}}\right)^{(i)}$.

Proof: The proof follows by invoking Faà di Bruno formula [27] to calculate the partial derivatives of the Laplace transform in Lemma 2, and applying Lemma 4 and 5.

The energy supply probability in Proposition 5 is expressed in terms of numerically tractable mathematical functions, which can be evaluated using numerical toolboxes. We further note that the exact characterization of the energy supply probability is rather unwieldy since it involves evaluating higher order derivatives of the Laplace transform. In the following proposition, we propose an approximate expression to simplify the computation of the energy supply probability.

Proposition 6: The energy supply probability for the case of multiple power beacons can be approximated as

$$P_{es}(m, n, a, \lambda_{PB}, \eta) \approx 1 - F_Z \left(\frac{1}{m a} \right),$$

where $F_Z(\cdot)$ can be evaluated using the numerical inversion technique of Lemma 6, aided by the Laplace transform characterization of Lemma 2.

Proof: The proof follows by substituting $\varphi = \mathbb{E}[\varphi] = n$ in the proof of Lemma 4.
We now present an analytical expression to evaluate $F_{\hat{Z}}(\cdot)$ using numerical inversion.

Lemma 6: Let us define positive constants A, B and C. We can evaluate $F_{\hat{Z}}(x)$ using

$$F_{\hat{Z}}(x) = \frac{2^{-B} e^{\frac{1}{x}}}{x} \sum_{b=0}^{B} \left(B \sum_{c=0}^{C+b} \frac{(-1)^c}{D_c} \text{Re} \left[\frac{L_2(s)}{s} \right] \right), \quad (32)$$

where $s = \frac{A+j2\pi x}{D_c}$. $D_c = 2$ when $c = 0$ and $D_c = 1$ when $c \in \{1, 2, \ldots, C+b\}$. Re[$\cdot$] denotes the real part, and $L_2(s)$ follows from Lemma 2.

Proof: See [28],[29].

With parameters A, B and C chosen carefully, the finite summation in (32) yields stable numerical inversion with a bounded estimation error. To obtain a solution correct to $q-1$ decimal places, these parameters should satisfy $A \geq q \log(10)$, $B \geq 1.243q - 1$ and $C \geq 1.467q$ [28]–[30].

B. Achievable Rate

We leverage the results from the previous sections to characterize the ergodic achievable rate for the case of multiple power beacons. We also account for the network interference due to other EH transmitters. Let us consider a typical receiver at the origin, which receives useful signal from its dedicated EH transmitter over an AWGN channel, and interference from the other EH nodes over possibly fading links. This is a potential transmitter over an AWGN channel, and interference from the origin, which receives useful signal from its dedicated EH link originating from the EH transmitter at s. We define g_k as the small-scale fading coefficient for the link originating from the EH transmitter at y_k. We assume IID Rayleigh fading for the interfering links such that $G_k = |g_k|^2 \sim \text{Exp}(1)$. Similar to the serving EH, an interfering EH transmits independent symbols from a Gaussian codebook with an average transmit power P_{EH} during the transmit phase. We define $I = \sum_{y_k \in \Phi_{EH}} P_{EH} G_k 1_{(|y_k| \in \Phi_{EH})}$ as the aggregate interference power and $\gamma = \frac{P_{EH}}{\sigma^2}$ as a signal-to-interference-plus-noise ratio (SINR) at the typical receiver, where the constant $\zeta \in (0, 1]$ models any (deterministic) attenuation for the serving link, known to the transmitter and receiver. We further assume that interference is treated as noise for the purpose of decoding. We first characterize the Laplace transform of I, which is then used for evaluating the CDF $F_I(\cdot)$ using numerical inversion.

Lemma 7: The Laplace transform $L_I(s)$ of the interference I is analytically characterized by

$$L_I(s) = e^{-\pi \frac{P_{EH}}{\tau^{2}} \sum_{y_k} \frac{1}{|y_k|^2}} e^{-\pi \frac{P_{EH}}{\tau^{2}} \sum_{y_k} \frac{1}{|y_k|^2}} \mathcal{F}(P_{EH}, \zeta), \quad (33)$$

where $\mathcal{F}(\cdot, \cdot)$ follows from (26).

Proof: The proof is similar to that of Lemma 2.

Theorem 3: In a large-scale network with PB density λ_{PB}, EH density λ_{EH}, PB transmit power P_{PB}, EH transmit power P_{EH}, the ergodic non-asymptotic ϵ-achievable rate at a typical receiver is characterized by

$$R_{EH}^{MP}(\epsilon, a, P_{PB}, P_{EH}, m, n, \lambda_{PB}, \lambda_{EH}) = \frac{2^{-\frac{1}{n+m}} \sum_{n+m} \mathbb{E}_I \left[\log(1 + \frac{1}{\gamma}) \right] - \sqrt{\frac{2 \epsilon}{m+n}} \sum_{n+m} \left(\mathbb{E}_I \left[\sqrt{\frac{\gamma}{\gamma+1}} - (n)\right] - 1 \right), \quad (34)$$

where

$$\mathbb{E}_I \left[\log(1 + \frac{1}{\gamma}) \right] = \int_0^\tau F_I \left(\frac{\zeta P_{EH}}{\epsilon t - 1} - \sigma^2 \right) dt \quad (35)$$

for $\tau = \log(1 + \zeta \gamma)$,

$$\mathbb{E}_I \left[\sqrt{\frac{\gamma}{\gamma+1}} \right] = \int_0^\tau F_I \left(\frac{1}{\epsilon t^2} - 1 \right) dt \quad (36)$$

for $\tau = \frac{1}{\sqrt{1+\frac{1}{\epsilon \gamma^2}}}$, and $F_I(\cdot)$ can be evaluated using Lemma 6.

The expression in (34) holds for all tuples (m, n) satisfying the constraints in (37) and (38), i.e.,

$$n \geq \log \left(\frac{2+\epsilon}{\epsilon^2} \right)^4 \quad (37)$$

and

$$\sum_{i=0}^{n-1} (-1)^i \frac{m^i}{(2a)^{2i+1}} \frac{d^i}{ds^i} L_2(s) \bigg|_{s=\frac{\epsilon}{2+\epsilon}} \leq \frac{\epsilon}{2+\epsilon} \quad (38)$$

where $L_2(s)$ follows from Lemma 2.

Proof: See Appendix B.

The achievable rate expression for the case of multiple power beacons can be interpreted similar to the case of a single power beacon. For example, (37) specifies the minimum transmit blocklength required for the target ϵ. Similarly, given n and a, (38) ensures that the harvest blocklength is large enough such that the energy outage probability is bounded by $\frac{1}{\epsilon \tau^2}$ (and the target error probability by ϵ). The impact of other parameters such as the PB density and the path loss exponent is captured by $L_2(s)$. Eq. (38), expressed in terms of the Laplace transform for generality, can be evaluated using Proposition 5. We note that the Poisson network of PBs impacts the energy outage probability, which is captured in (38). The Poisson network of EHs generates interference hurting the communication link, which is accounted for in (34). Further, the ergodic achievable rate in (34) is obtained by averaging over the aggregate interference, i.e., interferer locations and small-scale fading.

Remark 9: Theorem 3 assumes all EH interferes to be active. This is pessimistic since a fraction $1 - P_{EH}^{MP}(\cdot)$ of the EHs may be inactive due to insufficient energy. We ignore this distinction as $P_{EH}^{MP}(\cdot)$ is at least $\frac{2}{\epsilon + \tau}$ due to (38), which is close to unity for various values of ϵ. A less pessimistic approach entails independently thinning the PPP Φ_{EH} with thinning probability $P_{EH}^{MP}(\cdot)$. This means replacing the density λ_{EH} in Lemma 7 by a reduced density $P_{EH}^{MP}(\cdot) \lambda_{EH}$.
correlated arrivals when \(n \) is small.

V. NUMERICAL RESULTS

We now present the simulation results for the energy supply probability and the achievable rate based on the analyses in Section III and IV. We assume that the noise power \(\sigma^2 = 1 \), the rectifier efficiency \(\mu = 1 \), and path loss exponent \(\eta = 3.6 \). We assume the EH-RX distance is set to 1 m such that \(\zeta = 1 \). We do not specify the units of \(P_{EH}, P_{PB} \), or \(P_H \) since the results are valid for any choice of the units (say joules/symbol).

A. Single Power Beacon

We first present the results for the case of a single power beacon treated in Section III. In the following plots, we adopt the minimum latency approach where the minimum possible blocklength is selected for the given set of parameters, based on the constraints in (10) and (11). That is, for a given \(\epsilon \), we select the minimum required \(n \) using \(n = \lceil \log \left(\frac{2+\epsilon}{\epsilon} \right)^4 \rceil \). We then choose the minimum required \(m \) using (11).

1) Energy Supply Probability: IID vs. Correlated Arrivals: In Fig. 2, we plot the energy supply probability versus the transmit blocklength for a fixed harvest blocklength \(m \) and power ratio \(a \). We include the plots for IID as well as correlated energy arrivals. For the correlated case, we invoke Proposition 1. For the IID case, we obtain the plot using Corollary 2 as well as Monte Carlo simulations. We observe that the energy supply probability for the IID case exhibits a sharp decay compared to the correlated case. With IID arrivals, the total harvested energy hardens to its mean \(mP_H \) when \(m \) is large, and has a variance that is \(m \) times smaller than the correlated case. This explains the sharp decay of the IID curve. Moreover, when \(n \) is small, IID energy arrivals yield a higher energy supply probability compared to correlated arrivals. As the blocklength is increased, the roles are reversed. The simulation (sim) results validate the analytical (anl) approximation proposed in Corollary 2 for IID arrivals. In the following subsections, we focus on the case of correlated energy arrivals.

2) Achievable Rate vs. Power Ratio: In Fig. 3, we use Theorem 1 and Proposition 3 to plot the achievable rate versus the power ratio \(a \) for a given \(\epsilon \) and \(P_H \). The plot reflects the underlying tension between the energy supply probability and the channel SNR, resulting in an optimal transmit power (or power ratio) that maximizes the achievable rate. We also observe that the EH node can transmit at a higher rate as the target error probability is increased.

3) Achievable Rate vs. Target Error Probability: In Fig. 4, we plot the achievable rate versus the target error probability \(\epsilon \) for a given power ratio \(a \). We first consider the (fixed power) case where we fix the transmit power \(P_{EH} = 1.1554 \) and the power ratio \(a = 0.0012 \) (these values are asymptotically optimal for \(P_H = 10^3 \) and \(\epsilon = 10^{-3} \)). As \(\epsilon \) increases, the achievable rate tends to increase until a limit, beyond which the rate tends to decrease. This is because as we allow for more error (\(\epsilon \uparrow \)), the required total blocklength decreases. This means a possible increase in the energy supply probability (as the power ratio is fixed), and a larger backoff from capacity due to a shorter transmit blocklength. Beyond a certain \(\epsilon \), further reduction in blocklength pronounces the higher order backoff terms, eventually reducing the rate. For a fixed total blocklength, however, the achievable rate indeed increases with \(\epsilon \). We note that these trends differ from the asymptotic case where the rate monotonically increases with \(\epsilon \). We then consider the case where we adapt the transmit power using Corollary 5. In Fig. 4, we observe a substantial increase in the rate by optimally adjusting the transmit power in terms of the system parameters. Moreover, using the asymptotically optimal transmit power \(P_{EH,\infty}^\epsilon \) (from Corollary 5) in the finite blocklength regime results in only a minor loss in performance. As evident from Fig. 4, the optimal rate in the finite blocklength regime (obtained by numerically optimizing over \(P_{EH} \)) is almost indistinguishable from the lower bound obtained using the asymptotically optimal power \(P_{EH,\infty}^\epsilon \).

4) Optimal Transmit Power: In Fig. 5, we plot the optimal transmit power versus the average harvested power for...
Fig. 4. The achievable rate (bits/channel use) vs. the target error probability ϵ for a given power ratio $a = 0.0012$. While the asymptotic rate increases as we allow for more error, the non-asymptotic rate behaves differently. Moreover, power control is essential for improving the achievable rate.

Fig. 5. Optimal transmit power P_{EH} vs. average harvested power P_{H} in the asymptotic and non-asymptotic blocklength regimes. The asymptotically optimal transmit power is a conservative estimate of the non-asymptotic transmit power.

Fig. 6. Optimal power ratio a^* vs. average harvested power P_{H} in asymptotic and non-asymptotic blocklength regimes. The optimal power ratio decays as the average harvested power is increased.

Fig. 7. The energy supply probability $P_{es}(m, n, a, \lambda_{PB}, \eta)$ vs. the average harvested power for $m = 1500, n = 1000, P_{EH} = 1$. For the same mean harvested power, increasing the PB density is more beneficial than increasing the PB transmit power.

$\epsilon = 0.05$ and the transmit blocklength $n = \lceil \log \left(\frac{2+\epsilon}{\epsilon^2} \right) \rceil_{ev} = 2026$. For each P_{H}, the harvest blocklength is selected to satisfy the constraint in (11). We observe that the asymptotically optimal transmit power is a conservative estimate of the optimal transmit power for the finite case (Remark 8). In Fig. 6, we plot the optimal power ratio against the average harvested power. Even though the optimal transmit power increases with P_{H}, we note that the optimal power ratio still decreases as P_{H} is increased. In other words, while it is optimal to increase P_{EH} with P_{H}, the scaling is sublinear in P_{H} (Corollary 6).

B. Multiple Power Beacons

We now consider the case of multiple power beacons treated in Section IV. We plot the results obtained via Monte Carlo simulation (sim) as well as using analytical (anl) expressions. The simulations are conducted for 10^4 runs, where each run consists of generating PB and EH node locations according to the respective PPP intensities. The fading coefficients are generated according to independent Rayleigh distribution for each link. The distance between an EH and its dedicated RX is set to 1 m such that $\zeta = 1$. While applying Lemma 6, we set $A = 8 \log(10)$, $B = 11$, and $C = 14$ to achieve a stable numerical inversion correct to 7 decimal places.

1) Energy Supply Probability: In Fig. 7, we plot the energy supply probability versus the mean harvested power for a fixed total blocklength and EH transmit power. The average harvested power is increased by increasing either the PB transmit power P_{PB} or the PB density λ_{PB}, according to Lemma 3. We consider two cases: i) λ_{PB} is fixed and P_{EH} is increased, and ii) P_{PB} is fixed and λ_{PB} is increased. For the former, we obtain
the transmit blocklength in order to maintain the \(\epsilon \)-achievable rate. The rate of growth is characterized by the power ratio as well as the target error probability. Moreover, we derived closed-form expression for the optimal transmit power in the asymptotic blocklength regime. Numerical results show that using the asymptotically optimal transmit power can substantially improve the achievable rate even in the finite blocklength regime. We also extended the analysis to a large-scale network with Poisson-distributed power beacons. Numerical results reveal that the performance is sensitive to the blocklength, confirming that the asymptotic analyses of wireless-powered systems fail to capture the behavior in the short packet regime.

APPENDIX A

SINGLE POWER BEACON

A. Proof of Theorem 1

The following proof is modified from the proof provided in [11]. The key steps are similar to [11], except for a different expression for the energy supply probability, which leads to different blocklength constraints. The proof leverages the fact that the communication link failure mainly results from two events: energy outages at the transmitter or decoding error at the receiver. The first step of the proof involves bounding the decoding errors due to energy outages and channel noise in terms of the target error probability. The second step uses conventional information theoretic arguments to derive an expression for the non-asymptotic achievable rate for the considered wireless-powered channel. Let us first bound the energy outage probability as

\[
\Pr \left[\bigcup_{k=1}^{n} \left\{ \sum_{l=1}^{k} X_n^l > \sum_{i=1}^{m} Z_i \right\} \right] \leq 1 - \frac{2}{2 + \epsilon} \tag{39}
\]

for \(\epsilon \in [0, 1) \). Using Lemma 1, the constraint in (39) can be equivalently expressed in terms of the energy supply probability as \(\Pr \left[\sum_{i=1}^{n} X_n^i \leq \sum_{i=1}^{m} Z_i \right] \geq \frac{1}{2 + \epsilon} \). We let \(X^n(W) \) and \(Y^n \) denote the intended codeword sequence for a message \(W \) in \(\mathcal{W} \), and the received sequence. The decoder \(\hat{g}(Y^n) \) employs the following threshold decoding rule [11] to decode the received signal: \(\hat{g}(Y^n) = i \) if there exists a unique integer \(i \) in \(\mathcal{W} \) that satisfies

\[
\log \left(\frac{p_{Y^n|X^n}(Y^n|X^n(i))}{p_{Y^n}(Y^n)} \right) > \log(M) + n^\frac{1}{2}, \tag{40}
\]

otherwise \(\hat{g}(Y^n) = w \), where \(w \) is drawn uniformly at random from \(\mathcal{W} \). Here, the notation \(p_{Y^n|X^n}(\cdot) \) denotes the joint conditional distribution of random sequence \(Y^n \) given \(X^n \). We express the probability of decoding error \(\Pr [\hat{g}(Y^n) \neq W] \) in (41).

\[
\Pr [\hat{g}(Y^n) \neq W] = \Pr [\hat{g}(Y^n) \neq W, Y^n = X^n(W) + V^n] + \Pr [\hat{g}(Y^n) \neq W, Y^n \neq X^n(W) + V^n] \\
\leq \Pr [\hat{g}(X^n(W) + V^n) \neq W] + \frac{\epsilon}{2 + \epsilon}, \tag{41}
\]

where the inequality results from (39), and because the term \(\Pr [\hat{g}(Y^n) \neq W, Y^n = X^n(W) + V^n] = \)

Fig. 8. The ergodic \(\epsilon \)-achievable rate versus transmit blocklength at a typical harvester powered by multiple power beacons (\(\lambda_{PB} = 0.005 \text{ nodes per m}^2 \), \(\lambda_{EH} = 0.01 \text{ nodes per m}^2 \)). The achievable rate improves as the blocklength is increased, confirming that the non-asymptotic rate is substantially smaller than the asymptotic rate.
Further tighten the inequality in (41) by using the exact Khán rate (especially when \(\epsilon\) is small), we do not follow this approach to keep the analysis simple. Moreover, we assume the decoding error probability to be unity when a codeword is impacted by an energy outage. When an EH node finds the harvested energy insufficient to transmit the intended codeword, it may not transmit any symbol, and donate the harvested energy to the system-level battery. This is consistent with our assumption about the left-over energy in Section II. To calculate \(\Pr[G(X^n(W) + V^n) \neq W]\), we define \(\mathcal{A}_{ij}\) as the event that \(i \in \mathcal{W}\) satisfies the threshold decoding rule of (40) when \(j \in \mathcal{W}\) is transmitted, i.e.,

\[
\mathcal{A}_{ij} = \left\{ \frac{p_{Y|X}(X^n(j) + V^n|X^n(i))}{p_{Y}(X^n(j) + V^n)} > \log(M) + n^\frac{1}{2} \right\},
\]

(42)

and \(\mathcal{A}_{ij}^c\) denotes its complement. As the message \(W\) is uniform on \(\mathcal{W}\), it follows that the decoding error probability

\[
\Pr[G(X^n(W) + V^n) \neq W] \\
= \frac{1}{M} \sum_{w=1}^{M} \Pr[\mathcal{A}_{w|w} \cup \cup_{i \neq w, i \in \mathcal{W}} \mathcal{A}_{i|w} | W = w] \\
\leq \Pr[\bigcup_{i=2}^{M} \mathcal{A}_{i|1}] + \sum_{i=1}^{M} \Pr[\mathcal{A}_{i|1}] \\
= \Pr[\bigcup_{i=2}^{M} \mathcal{A}_{i|1}] + \log(M) + n^\frac{1}{2} + \epsilon^2
\]

(43)

where (b) follows from the symmetry in random codebook construction, (c) results from applying the Union bound, and (d) is obtained by invoking Lemma 3 from [11]. Finally, (e) follows by assuming that \(n \geq \left(\log\left(\frac{2+\epsilon}{\epsilon}\right)\right)^4\), which is the constraint in (10). Before proceeding further, let us assume that \(M\) is a unique integer that satisfies (44).

\[
\log(M + 1) \geq nE\left[\log\left(\frac{p_{Y|X}(Y|X)}{p_{Y}(Y)}\right)\right] - \left(\frac{2 + \epsilon}{\epsilon}\right)nVar\left[\log\left(\frac{p_{Y|X}(Y|X)}{p_{Y}(Y)}\right)\right] > \log(M)
\]

(44)

To find a bound for \(\Pr[\mathcal{A}_{i|1}]\), consider the following set of inequalities in (45).

\[
\Pr[\mathcal{A}_{i|1}] \\
\leq \Pr[\log\left(\frac{p_{Y|X}(X^n(1) + V^n|X^n(1))}{p_{Y}(X^n(1) + V^n)}\right) \leq \log(M) + n^\frac{1}{2}] \\
= \Pr[\sum_{k=1}^{n} \log\left(\frac{p_{Y|X}(X_k(1) + V_k|X_k(1))}{p_{Y}(X_k(1) + V_k)}\right) \leq \log(M) + n^\frac{1}{2}]
\]

(45)

where (a) follows from the definition of \(\mathcal{A}_{i|1}\) in (42), while the bound in (b) results from (44). Finally, (c) is obtained by applying Chebychev’s inequality. From (42) and (45), it follows that \(\Pr[G(X^n(W) + V^n) \neq W] = \frac{\epsilon^2}{2\epsilon^2}\); and further using (41), we conclude that \(\Pr[G(Y^n) \neq W] = \epsilon\), where \(W\) is the transmitted message. Therefore, we conclude that the constructed code is an \((n + m, M, \epsilon)\)-code that satisfies the following equations (46)-(48).

\[
\log(M + 1) \geq nE\left[\log\left(\frac{p_{Y|X}(Y|X)}{p_{Y}(Y)}\right)\right] - \left(\frac{2 + \epsilon}{\epsilon}\right)nVar\left[\log\left(\frac{p_{Y|X}(Y|X)}{p_{Y}(Y)}\right)\right] > n^\frac{1}{2}
\]

(46)

\[
\log(M + 1) \geq \frac{n}{2}(1 + \gamma) - \sqrt{\frac{2 + \epsilon}{\gamma}}\left(1 + \frac{n^\frac{1}{2}}{2 + \epsilon}\right)
\]

(47)

\[
\log(M) \geq \frac{n}{2}(1 + \gamma) - \sqrt{\frac{2 + \epsilon}{\gamma}}\left(1 + \frac{n^\frac{1}{2}}{2 + \epsilon}\right)
\]

(48)

Here, (47) is obtained by noting that the mutual information \(E\left[\log\left(\frac{p_{Y|X}(Y|X)}{p_{Y}(Y)}\right)\right] = \frac{1}{2}\log(1 + \gamma)\), while the variance \(\text{Var}\left[\log\left(\frac{p_{Y|X}(Y|X)}{p_{Y}(Y)}\right)\right] = \frac{\gamma}{1 + \gamma}\). The last equation follows by noting that \(\log(M + 1) - \log(M) < 1\). Using (48) with the constraints in (8) and (9) completes the proof.

B. Proof of Corollary 5

The proof follows by differentiating (12) with respect to \(P_{EH}\) and setting \(\frac{\partial P_{EH}}{\partial P_{EH}} = 0\). This leads to the following equation after simplification.

\[
(P_{EH} + \sigma^2) \log(P_{EH} + \sigma^2) = (1 + \log(\sigma^2))\left(P_{EH} + \sigma^2\right) + P_{H} \log(1 + 0.5\epsilon) - \sigma^2
\]

(49)

With the following change of variables \(x = P_{EH} + \sigma^2\), \(c_1 = P_{H} \log(1 + 0.5\epsilon) - \sigma^2\), and \(c_2 = 1 + \log(\sigma^2)\), (49) can be written as \(x \log(x) = c_1 + c_2x\) which has the solution
x = \frac{c_1}{\sqrt{\pi} \exp(-c_2)}}. Back substituting x, c_1, and c_2 in the solution yields (22).

APPENDIX B

MULTIPLE POWER BEACONS

A. Energy Supply Probability

We now derive an exact expression for the energy supply probability in a Poisson network with multiple power beacons. Recall that the harvested energy in a given slot is $Z = \sum_{x_k \in \Phi_{PB}} P_{PB,\mu} H_k$. From the definition of the energy supply probability, it follows that

$$P_{ES}^{MP} (m, n, a, \lambda_{PB}, \eta) = \Pr \left[\sum_{i=1}^{n} X_i^2 \leq mZ \right]$$

(a) $= \Pr \left[\varphi \leq \frac{mZ}{\Phi_{EH}} \right]$

(b) $= 1 - \mathbb{E} \left[\sum_{i=0}^{n-1} \frac{(mZ)^i}{(2\Phi_{EH}!)^i} e^{-mZ} \right]$

(c) $= 1 - \sum_{i=0}^{n-1} (-1)^i \frac{m^i}{(2a!)^i} \frac{d^i}{dx^i} \mathbb{E}[X^i e^{-x}] = (-1)^i \frac{d^i}{dx^i} \mathbb{E}[X^i]$

(50)

where (a) follows by the substitution $\varphi = \frac{n \cdot \chi^2}{\Phi_{EH}}$ such that φ is a Chi-squared random variable with n degrees of freedom, i.e., $\varphi \sim \text{Ga} \left(\frac{n}{2}, 2 \right)$. Equality (b) is obtained by conditioning on the random variable Z, and by using the CDF of φ. Finally, (c) follows by the definition of a Laplace transform of a random variable X, namely, $L_X(s) = \mathbb{E}[e^{-sx}]$, and by invoking the property $\mathbb{E}[X^i e^{-x}] = (-1)^i \frac{d^i}{dx^i} L_X(s)$. Note that we substitute $Z = P_{PB,\mu} Z$ to obtain (c).

B. Proof of Lemma 2

We now derive the Laplace transform $L_Z(s)$ for the bounded path loss model $\ell (r, \eta)$ considered in Lemma 2.

$$\mathbb{E}[e^{-sZ}]$$

(a) $= \mathbb{E} \left[\prod_{x_k \in \Phi_{PB}} e^{-sP_{PB,\mu} \frac{\eta_k}{\ell(\|x_k\|, \eta)}} \right]$}

(b) $= \mathbb{E}_{\Phi_{PB}} \left[\prod_{x_k \in \Phi_{PB}} \mathbb{E}_{H_k} \left[e^{-sP_{PB,\mu} \frac{\eta_k}{\ell(\|x_k\|, \eta)}} \right] \right]$}

(c) $= \mathbb{E}_{\Phi_{PB}} \left[\prod_{x_k \in \Phi_{PB}} \frac{1}{1 + sP_{PB,\mu} \frac{\ell(\|x_k\|, \eta)}{1}} \right]$}

(51)

where (a) follows from the independence of the small-scale fading gain $\{H_k\}_k$ across the PB-EH links, and by further conditioning on the locations of the PB nodes. Equality (b) is obtained by accounting for the bounded path loss model while invoking the probability generating functional (PGFL) of the PPP Φ_{PB} [25]. Finally, (c) results by expressing the integrals in terms of the hypergeometric function as defined in (26).

C. Proof of Lemma 3

The proof follows by noting that $\mathbb{E}[H_k] = 1$, and by applying Campbell’s theorem [25] to obtain $\mathbb{E}[Z] = P_{PB,\mu} \pi \lambda_{PB} \int_0^\infty r dr + \int_1^\infty r^{-\eta} dr = P_{PB,\mu} \pi \frac{\lambda_{PB}}{\eta - 2}$.

D. Achievable Rate

The ergodic achievable rate for the case of multiple power beacons can be derived following the procedure in Appendix A. We first adapt the upper bound on the energy outage probability in (39) to the case of multiple power beacons as

$$\Pr \left[\sum_{i=1}^{n} \frac{k}{m} \geq \frac{mZ_i}{\Phi_{EH}} \frac{d^i}{dx^i} L_Z(s) \right]$$

$$= \sum_{i=0}^{n-1} (-1)^i \frac{m^i}{(2a!)^i} \frac{d^i}{dx^i} \mathbb{E}[X^i]$$

(52)

where we have used the expression (and the notation) from Proposition 4. We then condition on the interference I, and treat the communication link as an AWGN channel with SNR γ_1 [32]. Following steps similar to (40)-(47), we can derive the achievable rate (conditioned on I) for the AWGN channel with SNR γ_1. The next step is to decondition with respect to I to recover the result in (34). To this end, we calculate $\mathbb{E}_I \left[\log (1 + \gamma_1) \right]$ and $\mathbb{E}_I \left[\frac{1}{\sqrt{1 + \tau}} \right]$ as follows.

$$\mathbb{E}_I \left[\log (1 + \gamma_1) \right] = \int_0^\tau \Pr \left[\log (1 + \gamma_1) > t \right] dt$$

(b) $= \int_0^\tau \Pr \left[\gamma_1 > e^t - 1 \right] dt$

(c) $= \int_0^\tau F_t \left(\frac{c_{PB}}{e^{t-1} - 1} - \frac{\sigma^2}{2} \right) dt$

(53)

where (a) follows by noting that $\log (1 + \gamma_1)$ is a non-negative random variable with support in $[0, \tau]$, and $\tau = \log (1 + \gamma)$ since the SINR $\gamma_1 = \frac{c_{PB}}{e^{t-1} - 1}$ has support in $[0, \tau]$. By simple algebraic steps, we express the expectation in terms of the interference distribution as in (c). Similarly, we can express $\mathbb{E}_I \left[\frac{1}{\sqrt{1 + \tau}} \right]$ in the form given in (36). This completes the proof of Theorem 3.

REFERENCES

[1] T. A. Khan, R. W. Heath, Jr., and P. Popovski, “On wirelessly powered communications with short packets,” in Proc. IEEE Globecom Workshops, Dec. 2016, pp. 1–6.

[2] S. Ulukus et al., “Energy harvesting wireless communications: A review of recent advances,” IEEE J. Sel. Areas Commun., vol. 33, no. 3, pp. 360–381, Mar. 2015.

[3] M. Pinuela, P. D. Mitcheson, and S. Lucyiszyn, “Ambient RF energy harvesting in urban and semi-urban environments,” IEEE Trans. Microw. Theory Techn., vol. 61, no. 7, pp. 2715–2726, Jul. 2013.
[4] V. Talla, B. Kellogg, B. Ransford, S. Naderiparizi, S. Gollakota, and J. R. Smith, “Powering the next billion devices with Wi-Fi,” in Proc. 11th ACM Conf. Emerg. Netw. Experim. Technol. (CoNEXT), 2015, pp. 4–1–4–13.

[5] S. Gollakota, M. Reynolds, J. Smith, and D. Wetherall, “The emergence of RF-powered computing,” Computer, vol. 47, pp. 32–39, Jan. 2014.

[6] R. J. M. Vullers, R. van Schaikj, J. Doms, C. van Hoof, and R. Mertens, “Micropower energy harvesting,” Solid-State Electron., vol. 53, no. 7, pp. 684–693, 2009.

[7] A. Zanella, N. Bui, A. Castellani, L. Vangelista, and M. Zorzi, “Internet of Things for smart cities,” IEEE Internet Things J., vol. 1, no. 1, pp. 22–32, Feb. 2014.

[8] K. Baiocchi and X. Zhou, “Cutting the last wires for mobile communications by microwave power transfer,” IEEE Commun. Mag., vol. 53, no. 6, pp. 86–93, Jun. 2015.

[9] G. Durisi, T. Koch, and P. Popovski, “Toward massive, ultrareliable, and low-latency wireless communication with short packets,” Proc. IEEE, vol. 104, no. 9, pp. 1711–1726, Sep. 2016.

[10] J. Yang, “Achievable rate for energy harvesting channel with finite blocklength,” in Proc. IEEE Int. Symp. Inf. Theory, Jun. 2014, pp. 811–815.

[11] S. L. Fong, V. Y. F. Tan, and J. Yang, “Non-asymptotic achievable rates for energy-harvesting channels using save-and-transmit,” IEEE J. Sel. Areas Commun., vol. 34, no. 12, pp. 3499–3511, Dec. 2016.

[12] Y. Polyaniskiy, H. V. Poor, and S. Verdú, “Channel coding rate in the finite blocklength regime,” IEEE Trans. Inf. Theory, vol. 56, no. 5, pp. 2307–2359, May 2010.

[13] K. G. Shenoy and V. Sharma, “Finite blocklength achievable rates for energy harvesting AWGN channels with infinite buffer,” in Proc. IEEE Int. Symp. Inf. Theory, Jul. 2016, pp. 464–469.

[14] A. Guo, H. Yin, and W. Wang, “Performance analysis of energy harvesting wireless communication system with finite blocklength,” IEEE Commun. Lett., vol. 20, no. 2, pp. 324–327, Feb. 2016.

[15] E. MolavianJazi and A. Yener, “Low-latency communications over zero-battery energy harvesting channels,” in Proc. IEEE Global Commun. Conf., Dec. 2015, pp. 1–6.

[16] V. Y. F. Tan, “Asymptotic estimates in information theory with non-vanishing error probabilities,” Found. Trends Commun. Inf. Theory, vol. 11, nos. 1–2, pp. 1–184, Sep. 2014.

[17] O. Ozel and S. Ulukus, “Achieving AWGN capacity under stochastic energy harvesting,” IEEE Trans. Inf. Theory, vol. 58, no. 10, pp. 6471–6483, Oct. 2012.

[18] O. Ozel and S. Ulukus, “AWGN channel under time-varying amplitude constraints with causal information at the transmitter,” in Proc. Conf. Rec., 45th Asilomar Conf. Signals, Syst. Comput., Nov. 2011, pp. 373–377.

[19] W. Mao and B. Hassibi, “On the capacity of a communication system with energy harvesting and a limited battery,” in Proc. IEEE Int. Symp. Inf. Theory, Jul. 2013, pp. 1789–1793.

[20] V. J. V. Chandrasekhar, T. Poor, and A. Goldsmith, “Energy harvesting for wireless communications,” in Proc. IEEE Int. Symp. Inf. Theory, Jun. 2014, pp. 806–810.

[21] Y. Dong, F. Farnia, and A. Özgür, “Near optimal energy control and approximate capacity of energy harvesting communication,” IEEE J. Sel. Areas Commun., vol. 33, no. 3, pp. 540–557, Mar. 2015.

[22] O. Ozel, K. Tutuncuoglu, S. Ulukus, and A. Yener, “Fundamental limits of energy harvesting communications,” IEEE Commun. Mag., vol. 53, no. 1, pp. 126–132, Apr. 2015.

[23] B. Klar, “A note on gamma difference distributions,” J. Stat. Comput. Simul., vol. 85, no. 18, pp. 3708–3715, 2015.

[24] R. M. Corless, G. H. Gonnet, D. E. Hare, D. J. Jeffrey, and D. E. Knuth, “On the lambert W function,” Adv. Comput. Math., vol. 5, no. 1, pp. 329–359, 1996.

[25] M. Haenggi, Stochastic Geometry for Wireless Networks. Cambridge, U.K.: Cambridge Univ. Press, 2012.

[26] A. Prudnikov, Integrals Series: More Special Functions. Boca Raton, FL, USA: CRC Press, 1992.

[27] S. Noschese and P. E. Ricci, “Differentiation of multivariable composite functions and bell polynomials,” J. Comput. Anal. Appl., vol. 5, no. 3, pp. 333–340, 2003.

[28] J. Abate and W. Whitt, “Numerical inversion of Laplace transforms of probability distributions,” ORSA J. Comput., vol. 7, no. 1, pp. 36–43, 1995.

[29] Y.-C. Ko, M. S. Alouini, and M. K. Simon, “Outage probability of diversity systems over generalized fading channels,” IEEE Trans. Commun., vol. 48, no. 11, pp. 1783–1787, Nov. 2000.

[30] J. Guo, S. Durran, and X. Zhou, “Outage probability in arbitrarily-shaped finite wireless networks,” IEEE Trans. Commun., vol. 62, no. 2, pp. 699–712, Feb. 2014.

[31] T. A. Khan, R. W. Heath, Jr., and P. Popovski. (Oct. 2016). “Wirelessly powered communication networks with short packets.” Online. Available: https://arxiv.org/abs/1610.07672

[32] H. Elsawy, A. Sultan-Salem, M. S. Alouini, and M. Z. Win, "Modeling and analysis of cellular networks using stochastic geometry: A tutorial," IEEE Commun. Surveys Tuts., vol. 19, no. 1, pp. 167–203, 1st Quart. 2017.

Talha Ahmed Khan (S’10) received the B.Sc. degree in electrical engineering from the University of Engineering and Technology, Lahore, Pakistan. He received the M.S. degree in Wireless Communications by microwave power transfer, and the Ph.D. degree from the University of Texas at Austin, where he is currently pursuing the Ph.D. degree. He has held summer internship positions at Broadcom in 2013, Mitsubishi Electric Research Labs in 2014, and the Connectivity Lab, Facebook, in 2016. His research interests include wireless communications, stochastic geometry applications, millimeter wave communications, and energy harvesting.

Robert W. Heath, Jr., (S’96–M’01–SM’06–F’11) received the B.S. and M.S. degrees from the University of Virginia, Charlottesville, VA, USA, in 1996 and 1997, respectively, and the Ph.D. from Stanford University, Stanford, CA, USA, in 2002, all in electrical engineering. From 1998 to 2001, he was a Senior Member of the Technical Staff then a Senior Consultant with Iospan Wireless Inc., San Jose, CA, USA, where he was involved in the design and implementation of the physical and link layers of the first commercial MIMO-OFDM communication system. Since 2002, he has been with the Department of Electrical and Computer Engineering, The University of Texas at Austin, where he is currently a Cullen Trust for Higher Education Endowed Professor and also a member of the Wireless Networking and Communications Group. He is also the President and the CEO of MIMO Wireless Inc. He has authored Introduction to Wireless Digital Communication (Prentice Hall, 2017) and Digital Wireless Communication: Physical Layer Exploration Lab Using the NI USRP (National Technology and Science Press, 2012), and co-authored Millimeter Wave Wireless Communications (Prentice Hall, 2014).

Dr. Heath has been a co-author of 15 award winning conference and journal papers, including the 2010 and 2013 EURASIP Journal on Wireless Communications and Networking Best Paper Awards, the 2012 Signal Processing Magazine Best Paper Award, the 2013 Signal Processing Society Best Paper Award, the 2014 EURASIP Journal on Advances in Signal Processing Best Paper Award, the 2014 Journal of Communications and Networks Best Paper Award, the 2016 IEEE Communications Society Fred W. Ellersick Prize, the 2016 IEEE Communications and Information Theory Societies Joint Paper Award, and the 2017 Marconi Prize Paper Award. He received the 2017 EURASIP Technical Achievement award. He is an ISI Highly Cited Researcher. He was a Distinguished Lecturer of the IEEE Signal Processing Society. He is an elected member of the Board of Governors for the IEEE Signal Processing Society, a licensed amateur radio operator, a private pilot, and a registered Professional Engineer in Texas.

Petar Popovski (S’97–A’98–M’04–SM’10–F’16) received the Dipl.Ing. degree in electrical engineering and the M.ing. degree in communication engineering from the Sts. Cyril and Methodius University of Skopje, Skopje, Macedonia, in 1997 and 2000, respectively, and the Ph.D. degree from Aalborg University, Denmark, in 2004. He is currently a Professor of wireless communications with Aalborg University. He has over 300 publications in journals, conference proceedings, and books. He holds over 30 patents and patent applications. His research interests are in the area of wireless communication and networking, and communication information theory. He is a member of the Danish Academy for Technical Sciences (ATV). He is a holder of a Consolidator Grant from the European Research Council and a recipient of the Danish Elite Researcher Award. He has served as a Steering Committee Member of the IEEE INTERNET OF THINGS JOURNAL. He is currently a Steering Committee Member of the IEEE SmartGridComm. He is currently an Area Editor of the IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS.