Computational models of long term plasticity and memory *

Stefano Fusi
Center for Theoretical Neuroscience, College of Physicians and Surgeons, Columbia University
Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University
Kavli Institute for Brain Sciences, Columbia University

June 16, 2017

1 Introduction

Memory is often defined as the mental capacity of retaining information about facts, events, procedures and more generally about any type of previous experience. Memories are remembered as long as they influence our thoughts, feelings, and behavior at the present time. Memory is also one of the fundamental components of learning, our ability to acquire any type of knowledge or skills.

In the brain it is not easy to identify the physical substrate of memory. Basically, any long-lasting alteration of a biochemical process can be considered a form of memory, although some of these alterations last only a few milliseconds, and most of them, if taken individually, cannot influence our behavior. However, if we want to understand memory, we need to keep in mind that memory is not a unitary phenomenon, and it certainly involves several distinct mechanisms that operate at different spatial and temporal levels.

One of the goals of theoretical neuroscience is to try to understand how these processes are orchestrated to store memories rapidly and preserve them over a lifetime. Theorists have mostly focused on synaptic plasticity, as it is one of the most studied memory mechanisms in experimental neuroscience and it is known to be highly effective in training artificial neural networks to perform real world tasks. Some of the synaptic plasticity models are purely phenomenological and they have proved to be important for describing quantitatively the complex and rich observations in experiments on synaptic plasticity. Some other models have been designed to solve computational problems, like pattern classification, or simply to maximize the memory capacity in standard benchmarks. Finally, there are models that are inspired by biology, but then find an application to a computational problem, or vice versa, there are models that solve complex computational problems that then are discovered to be biologically plausible. In this article I will review some of these models and I will try to identify computational principles that underlie memory storage and preservation (see also [Chaudhuri and Fiete, 2016] for a recent review that focuses on similar issues).

2 Long term synaptic plasticity

2.1 Abstract learning rules and synaptic plasticity

Artificial neural networks are typically trained by changing the parameters that represent the neuronal activation thresholds and the synaptic weights that connect pairs of neurons. The algorithms used to

*draft of an article that is being considered for publication by Oxford University Press in the forthcoming book "Oxford Research Encyclopedia of Neuroscience", Editor S. Murray Sherman, due for publication in 2017.
train them can be divided into three main groups (see e.g. a classic textbook like [Hertz et al., 1991])

1) networks that are able to create representations of the statistics of the world in an autonomous way
(unsupervised learning) 2) networks that can learn to perform a particular task when instructed by a
teacher (supervised learning) 3) networks that can learn by a trial and error procedure (reinforcement
learning). These categories can have a different meaning and different nomenclature depending on
the community (machine learning or theoretical neuroscience). For all these algorithms, memory is a
fundamental component which typically resides in the pattern of synaptic weights and in the activation
thresholds. Every time these parameters are modified, the memory is updated.

2.1.1 The perceptron

Rosenblatt [Rosenblatt, 1958] [Rosenblatt, 1962] introduced in the 60’s one of the fundamental algo-
rithms for training neural networks. He studied in detail what is probably the simplest feed-forward
neural 'network', and the fundamental building block of more complex networks. He called it the
perceptron. The perceptron is just one output neuron that is connected to N input neurons. For a
given input pattern \(x^\mu \) (\(x^\mu \) is a vector, and its components \(x^\mu_i \)s are the activation states of specific
neurons), the total current into the output neuron is a weighted sum of the inputs:

\[
I^\mu = \sum_{i=1}^{N} w_i x^\mu_i
\]

The output neuron can be either active or inactive. It is activated by the input only when \(I \) is
above an activation threshold \(\theta \).

The learning algorithm is supervised and it can be used to train the perceptron to classify input
patterns into two distinct categories. During learning, the synaptic weights and the activation threshold
are tuned so that the output neuron responds to each input as prescribed by the supervisor. For
example, consider the classification problem in which the inputs represent images of handwritten
digits and the perceptron has to decide whether a digit is odd or even. During training the perceptron
is shown a large number of samples of odd and even digits, and the output neuron is set by the
supervisor to the activation state corresponding to the class to which the input belongs (e.g. the
neuron is activated when the digit is odd, inactivated when it is even).

The learning procedure ensures that after learning the perceptron responds to an input as prescribed
by the supervisor, even in its absence. The input can be one of the samples used for training, or a
new sample from a test set. In the second case the perceptron is required to generalize and classify
correctly also the new inputs (e.g. a new handwritten digit).

The proper weights and the threshold are found using an iterative algorithm: for each input pattern,
there is a desired output provided by the supervisor, which is \(y^\mu \) (\(y^\mu = -1 \) for input patterns that
should inactivate the output neuron and \(y^\mu = 1 \) for input patterns that should activate the output
neuron), and each synapse \(w_i \), connecting input neuron \(i \) to the output is updated as follows:

\[
w_i \rightarrow w_i + \alpha x^\mu_i y^\mu
\]

where \(\alpha \) is a constant that represents the learning rate. The threshold \(\theta \) for the activation of the
output neuron is modified in a similar way:

\[
\theta \rightarrow \theta - \alpha y^\mu
\]

The synapses are not modified if the output neuron already responds as desired. In other words,
the synapse is updated only if the total synaptic current \(I^\mu \) is below the activation threshold \(\theta \) when
the desired output \(y^\mu = +1 \) (and analogously when \(I^\mu > \theta \) and \(y^\mu = -1 \)). The synapses are updated
for all input patterns, repeatedly, until all the conditions on the output are satisfied. These synaptic updates are a simple form of synaptic plasticity.

The importance of the perceptron algorithm resides in the fact that it can be proved to converge if the patterns are linearly separable (i.e., if there exists a \(w_i \) and a threshold \(\theta \) such that \(I^\mu > \theta \) for all \(\mu \) such that \(y^\mu = 1 \) and \(I^\mu < \theta \) for all \(\mu \) such that \(y^\mu = -1 \)). In other words, if a solution to the classification problem exists, the algorithm is guaranteed to find one in a finite number of iterations. The convergence proof is probably one of the earliest elegant results of computational neuroscience.

2.1.2 Hebb’s principle

The perceptron algorithm is also considered one of the early implementations of Hebb’s principle [Hebb, 1949]. The principle reflects an important intuition of Donald Hebb about a basic mechanism for synaptic plasticity. It states:

“When an axon of cell A is near enough to excite a cell B and repeatedly or persistently takes part in firing it, some growth process or metabolic change takes place in one or both cells such that A’s efficiency, as one of the cells firing B, is increased.”

The efficiency he refers to can be interpreted as the synaptic efficacy, or the weight \(w_i \) that we defined above. The product of the activities of pre and post-synaptic neurons that appear in the synaptic update equation Eq. is often considered an expression of the Hebbian principle: when the input and the output neuron (pre and post-synaptic, respectively) are simultaneously active, the synapse is potentiated. In the case of the perceptron, the output neuron is activated by the supervisor during training and it reflects the desired activity.

2.1.3 Extensions of the perceptron algorithm

Synaptic models that are biologically plausible implementations of the perceptron algorithms have been proposed in the last decades (see e.g. [Brader et al., 2007, Legenstein et al., 2005a]). In these models the neuronal activity is often expressed as the mean firing rate, but there are models that consider the timing of individual spikes. An interesting class of spike driven synaptic models solves the computational problem of how to train neurons to classify spatio-temporal patterns of spikes. For example, the tempotron algorithm, introduced by Gutig and Sompolinsky in 2006 [Gutig and Sompolinsky, 2006], can be used to train a spiking neuron to respond to a specific class of input patterns by firing at least once during a given time interval. The neuron remains silent in response to all the other input patterns. A recent extension of the model can be trained to detect a particular clue (basically a specific spatio-temporal pattern) simply by training it to fire in proportion to the clue’s number of occurrences during a particular time interval [Gutig, 2016].

Besides the perceptron, there are other learning algorithms that are based on similar principles and often the synaptic weights are modified on the basis of the covariance between the pre and post synaptic activity (see e.g. [Sejnowski, 1977, Hopfield, 1982]). Many of these algorithms can be derived from first principles, for example by minimizing the error of the output.

Error minimization is also the basic principle of a broad class of learning algorithms that can train artificial neural networks that are significantly more complex than the perceptron. For example feedforward networks with multiple layers (deep) can be trained by computing the error at the output and backpropagating it to all the synapses of the network. This algorithm, called backpropagation [Rumelhart et al., 1986], has recently revolutionized machine vision, and is extremely popular in artificial intelligence [LeCun et al., 2015]. Although it is difficult to imagine how backpropagation can be implemented in a biological system, several groups are working on versions of the algorithm which are more biological plausible (see e.g. [Lillicrap et al., 2016, Scellier and Bengio, 2016]). In the future
These models will certainly play an important role in understanding synaptic dynamics and learning in the biological brain.

2.2 Phenomenological synaptic models

The synaptic models mentioned in the previous section were designed to implement a specific learning algorithm. However, there are also several models that were initially conceived to describe the rich phenomenology observed in experiments on synaptic plasticity.

A popular class of models was inspired by the experimental observations that long term synaptic modifications depend on the precise timing of pre- and post-synaptic spikes [Levy and Steward, 1983, Markram et al., 1997, Bi and Poo, 1998, Sjöström et al., 2001]. These models are usually described using the acronym STDP (Spike Timing Dependent Plasticity), introduced by Larry Abbott and colleagues to designate a specific model [Song et al., 2000]. In the simplest version of STDP, when the presynaptic spike precedes a postsynaptic spike within a time window of 10-20 ms, the synapse is potentiated and for the reverse order of occurrence of pre and postsynaptic spikes, the synapse is depressed. Phenomenological models can describe accurately many other aspects of the experimental observations [Senn et al., 2001, Pfister and Gerstner, 2006, Morrison et al., 2008, Clopath et al., 2010]. Several theoretical studies describe the dynamics of neural circuits whose synapses are continuously updated using STDP [Song et al., 2000, Song and Abbott, 2001, Babadi and Abbott, 2010, Babadi and Abbott, 2013]. The role of STDP in learning has also been investigated in many computational studies (see e.g. [Gerstner et al., 1996, Legenstein et al., 2005b, Gutig and Sompolinsky, 2006, Izhikevich, 2007, Legenstein et al., 2008, Nessler et al., 2013, Pecevski and Maass, 2016]). One of the theoretical works [Gerstner et al., 1996] preceded the experimental papers on STDP and hence predicted the STDP observations.

Although the computational principles behind STDP are probably general and important, experiments on synaptic plasticity show that STDP is only one of the aspects of the mechanisms for the induction of long term changes (see e.g. [Shouval et al., 2010]). The direction and the extent of a synaptic modification depend on various types of ‘activity’ of the pre and postsynaptic neurons (not only on spike timing), on the location of the synapses on the dendrite [Sjöström and Häusser, 2006], on neuromodulators [Squire and Kandel, 1999, Sjöström et al., 2008], on the timescales that are considered in the experiment (e.g. homeostatic plasticity occurs on timescales that are significantly longer than those of long term synaptic plasticity [Turrigiano and Nelson, 2004]) and, most importantly, on the history of previous synaptic modifications, a phenomenon called meta-plasticity [Abraham, 2008] (see also below).

A recent synaptic model can reproduce part of the rich STDP phenomenology observed in multiple experiments using a surprisingly small number of dynamical variables which include calcium concentration [Graupner and Brunel, 2011] (see Fig. 2.2 for a description of the model and an explanation of how it can reproduce STDP).

3 Memory

The synaptic plasticity models described in the previous section can predict to some extent the sign of the synaptic modification. However, these models focus on one of the early phases of synaptic plasticity. The consolidation and the maintenance of synaptic modifications require a complex molecular machinery that typically involves cascades of biochemical processes that operate on different timescales. Typically the process of induction of long term synaptic modifications starts with an alteration of some of the molecules that are locally present at the synapse. For example, in Fig. 2.2 we described a model in which calcium concentration increases at the synapse at the arrival of either the pre-synaptic spike or the post-synaptic back propagating action potential. The entry of calcium then induces an alteration of the state of some relatively complex molecules that are locally present, like the calcium/calmodulin (see also [Abraham, 2008]).
dependent protein kinase II (CaMKII). In the case of CaMKII, each molecule can be either phosphorylated (activated) or unphosphorylated (inactivated) and hence it can then be considered as a simple memory switch. The population of the few (5-30) CaMKII molecules that are present and immobilized in a dendritic spine are a basic example of a molecular memory. Their state modulates the strength of the synaptic connection.

One of the problems of molecular memories is related to their stability. Because of molecular turnover (see e.g. [Crick, 1984]), the memory molecules are gradually destroyed and replaced by newly synthesized ones. To preserve the stored memories, the state of the old molecules should be copied to the incoming naive ones. If not, the memory lifetime is limited by the lifetime of the molecule, which, in the case of CaMKII is of the order of 30 hours. Other molecules can last longer, but none of them can survive a lifetime. One possible explanation for long memory lifetimes is bistability, which was already proposed by Francis Crick [Crick, 1984]. For example, in the case of CaMKII one can imagine that the populations of all molecules has two stable points: one in which none of the molecules is active, and another one in which a large proportion is active. The dynamics of models describing this form of bistability have been studied in detail [Lisman, 1985] [Lisman and Zhabotinsky, 2001] [Miller et al., 2005a]. When a new inactivated protein comes in, it remains unaltered if the majority of the existing CaMKII
molecules are inactivated, and it is activated if they are in the active state. As a consequence, the new molecules can acquire the state of the existing ones, preserving the molecular memory at the level of the population of CaMKII molecules.

CaMKII is only one of the numerous molecules that are involved in synaptic plasticity: more than 1000 different proteins have been identified in the post synaptic proteome of mammalian brain excitatory synapses (see e.g. [Emes and Grant, 2012]). Interestingly, less than 10% of these proteins are neurotransmitter receptors, which suggests that the majority of proteins are not directly involved in electrophysiological functions and instead have signaling and regulatory roles. CaMKII is known to be important in the early phases of the induction of long term synaptic potentiation (L-LTP). The molecules involved in E-LTP activate a cascade of biochemical processes that eventually regulate gene transcription and protein synthesis, leading to permanent changes in the morphology of the synaptic connections or to persistent molecular mechanisms that are known to underlie late long term potentiation (L-LTP) maintenance. The foundational work on these cascades of biochemical processes of Eric Kandel and colleagues is summarized in [Squire and Kandel, 1999].

To understand the computational role of these highly organized protein networks, it is necessary to review more than 30 years of theoretical studies. The next sections summarize some of the important results of these studies that show that biological complexity plays a fundamental role in maximizing memory capacity.

3.1 Memory models and synaptic plasticity

For many years, research on the synaptic basis of memory focused on the long-term potentiation of synapses which, at least by the modeling community, was represented as a simple switch-like change in synaptic state. Memory models studied in the 1980s (i.e. [Hopfield, 1982]) suggested that networks of neurons connected by such switch-like synapses could maintain huge numbers of memories virtually indefinitely. Although it becomes progressively more difficult to retrieve memories in these models as time passes and additional memories are stored, the memory traces of old experiences never fade away completely (see e.g. [Amit, 1989, Hertz et al., 1991]). Memory capacity, which was computed to be proportional to network size, was only limited by interference from multiple stored memories, which can hamper memory retrieval. This work made it appear that extensive memory performance could arise from a relatively simple mechanism of synaptic plasticity. However, it was already clear from the experimental works summarized above that synaptic plasticity is anything but simple. If, as the theoretical work suggested, this complexity is not needed for memory storage, what is there for?

The key to answering this question arose from work done at the beginning of the 90s. This work arose from a project led by D. Amit aimed at implementing an associative neural network in an electronic chip using the physics of transistors to emulate neurons and synapses, as originally proposed by Carver Mead [Mead, 1990]. The main problem encountered in this project was related to memory. The problem was not how to preserve the states of synapses over long times, but how to prevent memories from being overwritten by other memories. Memories were overwritten by other memories so rapidly that it was practically impossible for the neural network to store any information. Subsequent theoretical analysis of this problem [Amit and Fusi, 1992, Amit and Fusi, 1994, Fusi, 2002, Fusi and Abbott, 2007] showed that what had appeared to be a simple approximation made in the theoretical calculations of the 80s was actually a fatal flaw. The unfortunate approximation was ignoring the limits on synaptic strength imposed on any real physical or biological device. When these limits are included, the memory capacity grows only logarithmically rather than linearly with network size, and the models could no longer account for actual biological memory performance.
Figure 2: Memory trace (signal to noise ratio, or SNR) as a function of time (i.e. the age of the tracked memory) for four different models. The dashed line is an arbitrary threshold for memory retrieval: memories are basically forgotten when SNR drops below this threshold. Dark red line: fast simple bistable synapses (all synapses have q near 1). The initial memory trace is large, but the decay is rapid. Light red line: slow simple bistable synapses (all synapses have small $q \sim 1/\sqrt{N}$): long memory lifetime but small initial memory trace. Purple: cascade model, with a large initial memory trace, power law decay ($1/t$), and long memory lifetimes. Black: bidirectional cascade model: power law decay ($1/\sqrt{t}$) and the initial memory trace is as large as for the cascade model. Light and dark green: heterogeneous population of simple bistable synapses. Light green: synapses are divided in 20 equal size subpopulations, each characterized by a different value of the learning rate q ($q = 0.6^{(k-1)}, k = 1, ..., 20$). The SNR decays as $1/t$ and the scaling properties are the same as for the cascade model. Dark green: same number of subpopulations, but now their size increases as q becomes smaller (the size is proportional to $1/\sqrt{q}$). The decay is slower ($1/\sqrt{t}$) compared to the heterogeneous model with equal size subpopulations, however the initial SNR is strongly reduced as it scales as $N^{1/4}$. For this model the memory lifetime scales as \sqrt{N}. To give an idea of the timescales that might be involved, for all curves we assumed that new uncorrelated memories are stored at the arbitrary rate of one every minute.
3.2 The plasticity-stability tradeoff

In discussing the capacity limitations of any memory model, it is important to appreciate a tradeoff between two desirable properties, plasticity and stability [Carpenter and Grossberg, 1991]. To reflect this tradeoff, we characterize memory performance by two quantities [Fusi et al., 2005, Fusi and Abbott, 2007, Benna and Fusi, 2016, Arbib and Bonaiuto, 2016]. One is the strength of the memory trace right after a memory is stored. This quantity reflects the degree of plasticity in the system, that is its ability to store new memories. The other quantity is memory lifetime, which reflects the stability of the system for storing memories over long times.

To better understand the trade-off it is important to define more precisely what we mean by memory strength. In the standard memory benchmark, the strength of a particular memory trace is estimated in a particular situation in which memories are assumed to be random and uncorrelated. One of the reasons behind this assumption is that it allowed theorists to perform analytic calculations. However, it is a reasonable assumption even when more complex memories are considered. Indeed, storage of new memories is likely to exploit similarities with previously stored information (consider e.g. semantic memories). Hence the information contained in a memory is likely to be preprocessed, so that only its components that are not correlated with previously stored memories are actually stored. In other words, it is more efficient to store only the information that is not already present in our memory. As a consequence, it is not unreasonable to consider memories that are unstructured (random) and do not have any correlations with previously stored information (uncorrelated).

3.2.1 Memory traces: signal and noise

Consider now an ensemble of N synapses which is exposed to an ongoing stream of random and uncorrelated modifications, each leading to the storage of a new memory defined by the pattern of N synaptic modifications potentially induced by it. One can then select arbitrarily one of these memories and track it over time. The selected memory is not different or special in any way, so that the results for this particular memory apply equally to all the memories being stored.

To track the selected memory one can take the point of view of an ideal observer that knows the strengths of all the synapses relevant to a particular memory trace [Fusi, 2002, Fusi et al., 2005]. In the brain the readout is implemented by complex neural circuitry, and the strength of the memory trace based on the ideal observer approach may be significantly larger than the memory trace that is actually usable by the neural circuits. However, given the remarkable memory capacity of biological systems, it is not unreasonable to assume that the readout circuits perform almost optimally. Moreover, there are situations in which the ideal observer approach predicts the correct scaling properties of the memory capacity of simple neural circuits that actually perform memory retrieval.

More formally we define the memory signal of a particular memory that was stored at time t^μ as the overlap (or similarity) between the pattern of synaptic modifications Δw_i imposed by the event and the current state of the synaptic weights w_i at time t:

$$S^\mu(t) \equiv \frac{1}{N} \left\langle \sum_{i=1}^{N} w_i(t) \Delta w_i(t^\mu) \right\rangle.$$

Angle brackets indicate an average over the random uncorrelated patterns that represent the other memories and that make the trace of the tracked memory noisy. The noise is just the standard deviation of the overlap that defines the signal:

$$N^\mu(t) \equiv \sqrt{\frac{1}{N^2} \left\langle \left(\sum_{i=1}^{N} w_i(t) \Delta w_i(t^\mu) \right)^2 \right\rangle - S^\mu(t)^2}.$$
The quantity gives the strength of the trace of memory μ will then be S/N, the signal to noise ratio (SNR) of a memory.

3.2.2 The initial signal to noise ratio: plasticity

The initial SNR is then the SNR of a memory immediately after it has been stored, when it is most vivid. Highly plastic synapses allow for large initial SNR. Typically, in many realistic models, the SNR decreases with the memory age, so the initial SNR is often the largest SNR. It is desirable to have a large SNR (and hence a large initial SNR) because the SNR is related to the ability to retrieve a memory from a potentially noisy cue (see e.g. [Hopfield, 1982] [Amit and Fusi, 1994]). Typically there is a threshold above which a memory becomes retrievable. This threshold depends on the architecture and the dynamics of the neural circuits that store the memory, but also on the nature of the cue that triggers memory retrieval. Highly effective cues can retrieve easily the right memory, whereas small retrieval cues might lead to the recall of the wrong memory. In the case of random uncorrelated memories it is possible to define more precisely what an effective cue is. For example, it is possible to train a perceptron to classify random input patterns and then retrieve memories by imposing on the input neurons degraded versions of the stored patterns. Degraded inputs can be obtained, for example, by changing randomly the activation state of a certain fraction of input neurons. The input patterns that are most similar to those used during training and hence stored in memory are the most effective retrieval cues. They are more likely to be classified correctly than highly degraded inputs. Higher SNR means a better ability to tolerate degradation. More quantitatively, the minimum overlap between the input and the memory to be retrieved that can be tolerated (i.e. that produces the same response as the stored memory) is inversely proportional to the SNR [Krauth et al., 1988] [Benna and Fusi, 2016]. This dependence demonstrates the importance of large SNRs: classifiers whose memory SNR is just above retrieval threshold can correctly recognize the inputs that have been used for training, but they will not necessarily generalize to degraded inputs. For generalization higher SNRs are needed.

3.2.3 Memory lifetime and stability

Now that we have introduced a quantity that reasonably represents memory strength, we can also define more precisely what an effective cue is. For example, it is possible to train a perceptron to classify random input patterns and then retrieve memories by imposing on the input neurons degraded versions of the stored patterns. Degraded inputs can be obtained, for example, by changing randomly the activation state of a certain fraction of input neurons. The input patterns that are most similar to those used during training and hence stored in memory are the most effective retrieval cues. They are more likely to be classified correctly than highly degraded inputs. Higher SNR means a better ability to tolerate degradation. More quantitatively, the minimum overlap between the input and the memory to be retrieved that can be tolerated (i.e. that produces the same response as the stored memory) is inversely proportional to the SNR [Krauth et al., 1988] [Benna and Fusi, 2016]. This dependence demonstrates the importance of large SNRs: classifiers whose memory SNR is just above retrieval threshold can correctly recognize the inputs that have been used for training, but they will not necessarily generalize to degraded inputs. For generalization higher SNRs are needed.

3.2.4 Unbounded synapses

In the case of the models of the 80’s, like the Hopfield model [Hopfield, 1982], the memory signal is constant over time, despite the storage of new uncorrelated memories. Memories become irretrievable only because the memory noise becomes too large (the noise increases as \sqrt{t}) due to the interference between too many random memories. The SNR also increases with the size of the network. More specifically it is proportional to \sqrt{N}, where N is the number of independent synapses. This means
that the SNR crosses the retrieval threshold at a time t that is proportional to N, which is a long memory lifetime if one considers that N can be very large in biological brains (in the human brain the number of synapses can be of the order of 10^{15}). This huge memory capacity is due to peculiar dependence of the memory signal on the number of stored memories: as new memories are stored, the signal always remains constant. This peculiarity comes from the assumption that the synaptic weights can grow unboundedly over time, which is clearly unrealistic for any biological system. When reasonable bounds are imposed (biological synapses are estimated to have no more than 26 distinguishable states [Bartol Jr et al., 2015]), then the situation is very different, and the memory signal decays very rapidly with time, as discussed in the next section.

3.2.5 Bounded synapses

Consider a switch-like synapse whose weight has only two values (i.e. the synapse is bistable as it can be either potentiated or depressed). This might sound like a pathological case, but it is actually representative of what happens in a large class of realistic synaptic models (see below). Suppose that a particular pattern of pre- and postsynaptic activity modifies a synapse if it is repeated over a sufficient number of trials. The parameter q, which we use to characterize how labile a synapse is to change, is the probability that this pattern of activity produces a change in a synapse on any single trial. Because synapses with large q values change rapidly, we call them fast, and likewise synapses with small q are termed slow. This maps a range of q values to a range of synaptic timescales. For a population of synapses with a particular value of q, the strength of the memory trace (i.e. the SNR) at the time of storage is proportional to q. The memory signal decays exponentially with time, with a time constant that is proportional to $1/q$. Hence the memory lifetime goes as $1/q$. This inverse dependence is a mathematical indication of the plasticity-stability tradeoff. In non-mathematical terms, synapses that are highly labile quickly create memory traces that are vivid right after they are stored but that fade rapidly (Fig. 2 - fast bistable synapses). Synapses that resist change and are therefore slow are good at retaining old memories, but bad at representing new ones (Fig. 2 - slow bistable synapses). In Fig. 2 we plotted the memory SNR in these two cases. Notice that the horizontal and vertical scales in the figure are both logarithmic so all the differences seen are large. For example, fast synapses have an initial memory strength that is orders of magnitude larger than slow synapses. For fast synapses it is proportional to \sqrt{N}, where N is the number of independent synapses, whereas for slow synapses it does not scale at all with N. However, the memory lifetime is orders of magnitude smaller for fast synapses (it scales as $\log N$, compared to the \sqrt{N} scaling of slow synapses). Here we discussed the case of bistable synapses, but the plasticity stability trade-off is very general and it basically applies to any reasonably realistic synaptic model. For example, for synapses that have to traverse m states before they reach the bounds, the memory capacity increases at most by a factor m^2, but it is still logarithmic in N [Fusi and Abbott, 2007]. The logarithmic dependence is preserved also when soft bounds are considered [Fusi and Abbott, 2007] (see also [Van Rossum et al., 2012] for an interesting comparison between hard and soft bound synapses). Given the generality of the plasticity-stability trade-off, how can we rapidly memorize so many details about new experiences and then remember them for years?

3.3 Cascade model of synaptic plasticity: the importance of the complexity of synaptic dynamics

The solution proposed in [Fusi et al., 2005] is based on the idea that if we want the desirable features of both the fast and the slow synapses, we need synaptic dynamics that operates on both fast and slow timescales. Inspired by the range of molecular and cellular mechanism operating at the synaptic level, in the model proposed in [Fusi et al., 2005], called the "cascade model", q depended on the history of synaptic modifications. Although all the synapses in this model are described by the same
	Time dep. of S	Initial S/N	Memory lifetime	Max. # of states per var.	# of vars
Unbounded	const.	n/a	N	N	1
Large bounds	$e^{-t/\tau}$	$\leq \sqrt{N}$	N	\sqrt{N}	1
Bistable (fast)	e^{-qt}	\sqrt{N}	$\log(N)$	2	1
Bistable (slow)	e^{-qt}	$O(1)$	\sqrt{N}	2	1
Heterogeneous I	$1/t$	$\sqrt{N}/\log N$	$\sqrt{N}/\log N$	2	1
Heterogeneous II	$1/\sqrt{t}$	$N^{1/4}$	\sqrt{N}	2	1
Multistage	$1/t$	$\sqrt{N}/\log N$	$\sqrt{N}/\log N$	2	1
Multistate (hard bounds)	$e^{-t/m}$	\sqrt{N}/m	$m^2 \log N$	m	1
Multistate (soft bounds)	$e^{-t/m}$	\sqrt{N}/m	$m \log N$	$\sim m$	1
Cascade model	$1/t$	$\sqrt{N}/\log N$	$\sqrt{N}/\log N$	$\log(N)$	1
Bidirectional cascade model	$1/\sqrt{t}$	$\sqrt{N}/\log N$	$\sqrt{N}/\log N$	$\sqrt{\log(N)}$	1

Table 1: Approximate scaling properties of different synaptic models. S is the memory signal, the initial S/N is the memory strength immediately after a memory is stored, and memory lifetime is defined as the time at which the SNR goes below the memory retrieval threshold. The ‘Unbounded’ refers to models in which the synaptic variables can vary in an unlimited range, as in the Hopfield model [Hopfield, 1982]. In the case of the Hopfield model, there is no steady state, so the initial signal to noise ratio is large (as given in the table) really only for the first few memories. As more memories are stored, the noise increases, and the SNR decreases as $1/\sqrt{t}$, where t is the total number of stored memories. The large bound case refers to the case in which the dynamical range of each synapse is at least of order \sqrt{N} [Parisi, 1986]. τ is of the order of N, and hence very large. Bistable synapses have two stable synaptic values and the transitions between them are stochastic [Tsodyks, 1990, Amit and Fusi, 1992, Amit and Fusi, 1994, Ostojic and Fusi, 2013]. Fast synapses exhibit a large learning rate q (i.e. a transition probability of $O(1)$), whereas slow synapses are characterized by the slowest possible learning rate (i.e. the smallest transition probability that keeps the initial signal to noise ratio above threshold, which is $q = O(1/\sqrt{N})$). In the heterogeneous models I and II [Fusi et al., 2005, Roxin and Fusi, 2013, Benna and Fusi, 2016] the synapses have different learning rates, see Figure 2 for more details. The multistage model is a heterogenous model in which the information about memories is progressively transferred from fast to slow synapses [Roxin and Fusi, 2013]. The multistate models are described in [Fusi and Abbott, 2007]. The cascade model is described in [Fusi et al., 2005] and the bidirectional cascade model in [Benna and Fusi, 2016] (see also the main text). Although the approximate scaling of the heterogeneous model is the same as for the cascade, the latter performs significantly better [Fusi et al., 2005]. It is important to remember that two models with the same scaling behavior may not work equally well, as the coefficients in front of the factors reported in the table might be quite different. However, it is unlikely that a model with a better scaling behavior would perform worse, as N is assumed to be very large.
equations, at any given time their properties are heterogeneous because their different histories give them different values of \(q \) (metaplasticity). This improves the performance of the model dramatically and it suggests why synaptic plasticity is such a complex and multi-faceted phenomenon. The cascade model is characterized by a memory signal that decays as \(1/t \). Both the initial SNR and the maximum memory lifetime scale as \(\sqrt{N} \), where \(N \) is the number of synapses.

The cascade model is an example of a complex synapse that does significantly better than simple synapses. However, its scaling properties are not different from those of a heterogeneous population of simple synapses in which different synapses are characterized by different values of \(q \) [Fusi et al., 2005, Roxin and Fusi, 2013] (Fig 2, see heterogenous models with \(1/t \) decay). The interactions between fast and slow components increase significantly the numerical value of the SNR, but not its scaling properties. It is only with the recent bidirectional cascade model described below that one can improve scalability.

3.4 The bidirectional cascade model of synaptic plasticity: complexity is even more important

Bidirectional cascade models are actually a class of functionally equivalent models that are described in [Benna and Fusi, 2016]. Fig. 3 shows one possible implementation, a simple chain model that is characterized by multiple dynamical variables, each representing a different biochemical process. The first variable, which is the most plastic one, represents the strength of the synaptic weight. It is rapidly modified every time the conditions for synaptic potentiation or depression are met. For example, in the case of STDP, the synapse is potentiated when there is a presynaptic spike that precedes a postsynaptic action potential. The other dynamical variables are hidden (i.e. not directly coupled to neural activity) and represent other biochemical processes that are affected by changes in the first variable. In the simplest configuration, these variables are arranged in a linear chain, and each variable interacts with its two nearest neighbors. These hidden variables tend to equilibrate around the weighted average of the neighboring variables. When the first variable is modified, the second variable tends to follow it. In this way a potentiation/depression is propagated downstream, through the chain of all variables. Importantly, the downstream variables also affect the upstream variables as the interactions are bidirectional. The dynamics of different variables are characterized by different timescales, which are determined in the simple example of Fig. 3 by the \(q \) and \(C \) parameters. More specifically, the variables at the left end of the chain are the fastest, and the others are progressively slower. When the parameters are properly tuned, the initial SNR scales as \(\sqrt{N} \), as in the cascade model previously discussed, but the memory lifetime scales as \(N \), which, in a large neural system, is a huge improvement over the \(\sqrt{N} \) scaling of previous models. The memory decay is approximately \(1/\sqrt{t} \), as shown in Fig. 2. The model requires a number of dynamical variables that grows only logarithmically with \(N \) and it is robust to discretization and to many forms of parameter perturbations. The model is significantly less robust to biases in the input statistics. When the synaptic modifications are imbalanced the decay remains almost unaltered, but the SNR curves are shifted downwards. The memory system is clearly sensitive to imbalances in the effective rates of potentiation and depression.

In the bidirectional cascade model the interactions between fast and slow variables are significantly more important than in previous models. Indeed, it is possible to build a system with non-interacting variables that exhibits a \(1/\sqrt{t} \) decay. However, this requires disproportionately large populations of slow variables, which greatly reduce the initial SNR, which would scale only as \(N^{1/4} \). This leads to memory lifetimes that scale only like \(\sqrt{N} \).

3.5 Biological interpretations of computational models of complex synapses

One possible interpretation of the dynamical variables \(u_k \) is that they represent the deviations from equilibrium of chemical concentrations. The timescales on which these variables change would then be
The bidirectional cascade model: The dynamical variables u_k represent different biochemical processes that are responsible for memory consolidation ($k = 1, \ldots, m$, where m is the total number of processes). They are arranged in a linear chain and interact only with their two nearest neighbors (see differential equation), except for the first and the last variable. The first one interacts only with the second one (and is also coupled to the input), while the last one interacts only with the penultimate one. Moreover, the last variable u_m has a leakage term that is proportional to its value (obtained by setting $u_{m+1} = 0$). The parameters $g_{k,k+1}$ are the strengths of the bidirectional interactions (double arrows). Together with the parameters C_k they determine the timescales on which each process operates. The first variable u_1 represents the strength of the synaptic weight.

Figure 3: The bidirectional cascade model:

\[C_k \frac{du_k}{dt} = g_{k,k+1}(u_{k+1} - u_k) - g_{k-1,k}(u_k - u_{k-1}) \]

determined by the equilibrium rates (and concentrations) of reversible chemical reactions. However, for the slowest variables, which vary on timescales of the order of years, it is probably necessary to consider biological implementations in which the u_k correspond to multistable processes. For example, the slowest variable could be discretized, sometimes with only two levels [Benna and Fusi, 2016], and hence they could be implemented by a bistable process, which would allow for very long timescales [Crick, 1984, Miller et al., 2005b]. For a small number of levels that is larger than two, one could combine multiple bistable processes or use slightly more complicated mechanisms [Shouval, 2005]. These biochemical processes could be localized in individual synapses, and recent phenomenological models indicate that at least three such variables are needed to describe experimental findings [Ziegler et al., 2015].

However, these processes could also be distributed across different neurons in the same local circuit or even across multiple brain areas. The interaction between two coupled u_k variables could be mediated by neuronal activity, such as the widely observed replay activity (see e.g. [Roxin and Fusi, 2013]). In the case of different brain areas, the synapses containing the fastest variables might be in the medial temporal lobe, e.g. in the hippocampus, and the synapses with the slowest variables could reside in the long-range connections in the cortex.

Several experimental studies on long term synaptic modifications have revealed that synaptic consolidation is not a unitary phenomenon, but consists of multiple phases. One particularly relevant example is related to studies on hippocampal plasticity and more specifically to what is known as the synaptic tagging and capture (STC) hypothesis, which explains several experimental observations. According to the STC hypothesis, LTP consists of at least four steps [Reymann and Frey, 2007, Redondo and Morris, 2011]: first, the expression of synaptic potentiation with the setting of a local synaptic tag; second, the synthesis and distribution of plasticity related proteins (PrPs); third, the capture of these proteins by tagged synapses; and forth, the final stabilization of synaptic strength. Phenomenological models [Clopath et al., 2008, Barrett et al., 2009, Ziegler et al., 2015] of STC comprise all four steps, and can explain experiments on the induction of protein synthesis dependent late LTP. The model dynamics of [Clopath et al., 2008, Barrett et al., 2009] are characterized by four dynamical variables: the first two are tag variables, one for LTP and one for LTD. They could correspond to two variables that are modified to induce LTP and LTD. The authors of [Clopath et al., 2008] hypothesized that a candidate molecule involved in the tag signaling could be CaMKII. The third variable describes the process that triggers the synthesis of PrPs and the fourth one the stabilization of the synaptic mod-
ification. A candidate protein involved in the maintenance of potentiated hippocampal synapses is the protein kinase \(\text{PKM}_\zeta \). The PrPs that are known to be implicated in learning and plasticity include at least activity regulated cytoskeleton-associated protein (ArC), Homer1a and the AMPAr (\(\alpha \)-amino-3-hydroxy-5-methyl-4-isoxazole-propionate receptor) subunit Glur1 [Redondo and Morris, 2011]. This means that the variables of these phenomenological models should not be interpreted as concentrations of single molecules, but should be viewed as “reporters” indicating important changes in the molecular configuration of the synapse (see the Discussion of [Ziegler et al., 2015]).

3.6 Optimality

The approximate \(1/\sqrt{t} \) decay of the memory trace exhibited by the model in [Benna and Fusi, 2016] is the slowest allowed among power-law decays. Slower decays lead to synaptic efficacies that accumulate changes too rapidly and grow without bound. Interestingly, one can prove (see Suppl. Info. of [Benna and Fusi, 2016]) that the \(1/\sqrt{t} \) decay maximizes the area between the log-log plot of the SNR and the threshold for memory retrieval (Fig. 2).

This statement is true not only when one restricts the analysis to power laws, but also when all possible decay functions are considered. The rationale for maximizing the area under the log-log plot of the SNR can be summarized as follows: while we want to have a large SNR to be able to retrieve a memory from a small cue (see Krauth et al., 1988, Benna and Fusi, 2016 and the discussion above about the importance of large initial SNR), we do not want to spend all our resources making an already large SNR even larger. Thus we discount very large values by taking a logarithm. Similarly, while we want to achieve long memory lifetimes, we do not focus exclusively on this at the expense of severely diminishing the SNR, and therefore we also discount very long memory lifetimes by taking a logarithm. While putting less emphasis on extremely large signal to noise ratios and extremely long memory lifetimes is very plausible, the use of the logarithm as a discounting function is of course arbitrary. It is interesting to consider also the case in which the SNR is not discounted logarithmically, i.e. when one wants to maximize the area under the log-linear plot of the SNR. In this situation, the optimal decay is faster, namely \(1/t \), as in some synaptic models [Roxin and Fusi, 2013, Fusi et al., 2005].

3.7 Best realistic models

As discussed above, some of the synaptic models studied in the 80’s exhibited a huge memory capacity because of the unrealistic assumption that the synaptic weights could vary in an unlimited range. For any reasonably realistic model all the dynamic variables should vary in a limited range and they cannot be modified with arbitrary precision. In Lahiri and Ganguli, 2013 the authors considered a very broad class of realistic models with binary synaptic weights and multiple discrete internal states. They used an elegant approach to derive an envelope for the SNR that no realistic model can exceed. More specifically, they considered synaptic dynamics that can be described as a Markov chain. They assumed that the number of states \(M \) of this Markov chain is finite, as required for any realistic model. The envelope they derived starts at an initial SNR of order \(\sqrt{N} \), where \(N \) is the number of independent synapses, and from there slowly decays as an exponential \(\sim \exp(-t/M) \) up to a number of memories of order \(M \), after which it decays as a power law \(\sim t^{-1} \). The envelope was derived by determining the maximal SNR for every particular memory age. Hence it is not guaranteed that there exists a model that has this envelope as its SNR curve. The memory lifetime of a Markov chain model with \(M \) internal states cannot exceed \(O(\sqrt{NM}) \).

These results indicate that one possible way to achieve a large SNR is to take advantage of biological complexity as in the bidirectional cascade model [Benna and Fusi, 2016]. Indeed when these models are discretized and described as Markov chains, the number of states \(M \) can grow exponentially with the number of dynamical variables. Large \(Ms \) can then be achieved even when each individual variable has a relatively small number of states (i.e. a realistically low precision). In the case of the bidirectional
cascade model the number of variables and the number of states of each variable are required to grow with \(N \), but very slowly (the number of variables should scale as \(\log N \) and the number of states per variable scales at most as \(\sqrt{\log N} \)).

3.8 The role of sparseness

The estimates discussed in the previous sections are based on the assumption that the patterns of desirable synaptic modifications induced by stimulation are dense and most synapses are affected. This could be a reasonable assumption when relatively small neural circuits are considered, but in large networks it is likely that only a small fraction of the synapses are significantly modified to store a new memory. Sparse patterns of synaptic modifications can strongly reduce the interference between different memories, and hence lead to extended memory lifetimes. It is interesting to consider the case of random uncorrelated memories whose neural representations are sparse, i.e. with a small fraction \(f \) of active neurons \[\text{[Willshaw et al., 1969, Tsodyks and Feigel’man, 1988, Treves, 1990, Treves and Rolls, 1991, Amit and Fusi, 1994, Brunel et al., 1998, Amit and Mongillo, 2002, Ben Dayan Rubin and Fusi, 2007, Leibold and Kempter, 2006, Leibold and Kempter, 2008, George and Hawkins, 2009, Dubreuil et al., 2014, Benna and Fusi, 2016].}\] For many reasonable learning rules, these neural representations imply that the pattern of synaptic modifications is also sparse (e.g. if the synapses connecting two active neurons are potentiated, then only a fraction \(f^2 \) of the synapses is modified). There are also situations in which sparseness can be achieved at the dendritic level \[\text{[Wu and Mel, 2009 and it does not require sparseness at the neural level.}\]

In all these cases the memory lifetime can scale almost quadratically with the number \(N_n \) of neurons when the representations are sparse enough (i.e. when \(f \), the average fraction of active neurons, scales approximately as \(1/N_n \)). This is a significant improvement over the linear scaling obtained for dense representations. However, this capacity increase entails a reduction in the amount of information stored per memory and in the initial SNR. Scaling properties of different models are summarized in Table 2.

The beneficial effects of sparseness that led to this improvement in memory performance are at least threefold: the first one is a reduction in the noise, which occurs under the assumption that during retrieval the pattern of activity imposed on the network reads out only the \(f N_n \) synapses (selected by the \(f N_n \) active neurons) that were potentially modified during the storage of the memory to be retrieved. The second one is the sparsification of the synaptic modifications, as for some learning rules it is possible to greatly reduce the number of synapses that are modified by the storage of each memory (the average fraction of modified synapses could be as low as \(f^2 \)). This sparsification is almost equivalent to changing the learning rate, or to rescaling forgetting times by a factor of \(1/f^2 \).

The third one is a reduction in the correlations between different synapses. This third benefit can be extremely important given that in many situations the synapses are correlated even when the neural patterns representing the memories are uncorrelated (e.g. the synapses on the same dendritic tree could be correlated simply because they share the same post-synaptic neuron \[\text{[Amit and Fusi, 1994, Savin et al., 2014].}\] These correlations can be highly disruptive and can compromise the favorable scaling properties discussed above.

It is important to remember that \(f \) has to scale with the number of neurons of the circuit in order to achieve a superlinear scaling of the capacity. While \(f \sim 1/N_n \) may be a reasonable assumption which is compatible with electrophysiological data when \(N_n \) is the number of neurons of the local circuit, this is no longer true when we consider neural circuits of a significantly larger size. Moreover, sparseness can also be beneficial in terms of generalization (see e.g. \[\text{[Olshausen and Field, 2004].}\] but only if \(f \) is not too small \[\text{[Barak et al., 2013].}\] For these reasons, sparse representations are unlikely to be the sole solution to the memory problem. Nevertheless, plausible levels of sparsity can certainly increase the number of memories that can be stored, and this advantage can be combined with those of synaptic complexity.
Spariness is typically assumed to be a property of the random uncorrelated neural representations that are considered for the estimates of memory capacity. However, it might also be the result of a pre-processing procedure that extracts a sparse uncorrelated component of memories which have a dense representation. In our everyday experiences, most of the new memories are similar to previously stored ones. This is the typical situation in the case of semantic memories, which contain information about categorical and functional relationships between familiar objects. For this type of memories we can utilize our previous knowledge about the objects so that we can store only the information about the relations between them (see e.g. [McClelland et al., 1995]). In other words, we can clearly take advantage of the correlations between the new memory and the previously stored ones that encode the relevant objects. An efficient way of storing these memories is to exploit all possible correlations of this type, and then store only the memory component whose information is incompressible. This component, containing less information than the whole memory, can probably be represented with a significantly sparser neural representation. Memories are probably actively and passively reorganized to separate the correlated and the sparse incompressible part of the storable information. Modeling this process of reorganization is of fundamental importance and it has been subject of several theoretical studies [McClelland et al., 1995] [O’Reilly and Frank, 2006] [Kali and Dayan, 2004] [Battaglia and Pennartz, 2011].

Time dep. of S	Initial S/N	Min. f	Memory lifetime	Tot. info.	Unbounded	const.	n/a	$1/N$	N^2	N
Bistable ±1	e^{-t/f^2}	$f\sqrt{N}$	$1/\sqrt{N}$	N	\sqrt{N}					
Bistable 0, 1	e^{-t/f^2}	\sqrt{Nf}	$1/\sqrt{N}$	N^2	N					
Cascade model 0, 1	$1/(tf^2)$	\sqrt{Nf}	$1/N$	N^2	N					
Bidirectional cascade model	$1/t$	\sqrt{Nf}	$1/N$	N^2	N					

Table 2: Approximate scaling properties of different synaptic models in the case of sparse neural representations (f is the average fraction of active neurons). In addition to the quantities described in Table 1, the last column describes the total amount of information that is storable (the information per memory scales as fN). Min. f indicates what is the smallest f that allows for an initial SNR that is larger than 1. The memory lifetime and the total storable information are computed for the minimal f. Unbounded refers to model proposed in [Tsodyks and Feigel’man, 1988] in which the synaptic variables can vary in an unlimited range. As in the case of the Hopfield model, there is no steady state, so we do not report an initial SNR. Bistable synapses have two stable synaptic values and the transitions between them are stochastic [Amit and Fusi, 1994]. Synapses are fast for potentiation (the transition probability is order 1) and relatively slow for depression (the transition probability scales as f). The cascade model is described in [Ben Dayan Rubin and Fusi, 2007] for the sparse case. The bidirectional cascade model in [Benna and Fusi, 2016].
4 Conclusions

Memory is a complex phenomenon and synaptic plasticity is only one of the numerous mechanisms that the brain employs to store memories and learn. However, even when one considers only synaptic plasticity, it is now clear that it involves highly diverse interacting processes that operate on a multitude of temporal and spatial scales. Currently, there are only a few models that explain how these processes are integrated to allow the nervous system to take full advantage of the diversity of its components. All these models predict that the synaptic dynamics depends on a number of variables that can be as large as the number of biochemical processes that are directly or indirectly involved in memory consolidation. In particular, the theory shows that history dependence, which is a natural consequence of the complex network of interactions between biochemical processes, is a component of synaptic dynamics that is fundamentally important for storing memories efficiently. This greatly complicates both the theoretical and the experimental studies on synaptic plasticity because the same long term change induction protocol might lead to completely different outcomes in different experiments. A low dimensional phenomenological model that describes faithfully a series of experiments might fail in describing important observations in a different situation. For this reason, we need a new approach to the study of synaptic plasticity, in which we try to consider situations in the induction protocols imitate as much as possible the long and complex series of modifications that are caused by the storage of real world memories. Theoretical models that are based on computational principles can greatly help to design and analyze these new experiments. This is probably one of the main challenges of the next years.

5 Acknowledgements

I am very grateful to M. Benna for many fundamental discussions, comments and corrections that greatly improved the quality of the article. SF is supported by the Gatsby Charitable Foundation, the Simons Foundation, the Schwartz foundation, the Kavli foundation, the Grossman Foundation and the Neuronex NSF program.

References

[Abraham, 2008] Abraham, W. C. (2008). Metaplasticity: tuning synapses and networks for plasticity. *Nature Reviews Neuroscience*, 9(5):387–387.

[Amit, 1989] Amit, D. (1989). *Modeling Brain Function*. Cambridge University Press, NY.

[Amit and Mongillo, 2002] Amit, D. and Mongillo, G. (2002). Spike-driven synaptic dynamics generating working memory states. *Neural Computation*. in press (preprint available at http://titanus.roma1.infn.it).

[Amit and Fusi, 1992] Amit, D. J. and Fusi, S. (1992). Constraints on learning in dynamic synapses. *Network*, 3:443.

[Amit and Fusi, 1994] Amit, D. J. and Fusi, S. (1994). Learning in neural networks with material synapses. *Neural Computation*, 6(5):957–982.

[Amit and Huang, 2010] Amit, Y. and Huang, Y. (2010). Precise capacity analysis in binary networks with multiple coding level inputs. *Neural computation*, 22(3):660–688.

[Arbib and Bonaiuto, 2016] Arbib, M. A. and Bonaiuto, J. J. (2016). *From Neuron to Cognition via Computational Neuroscience*. MIT Press.
Babadi, B. and Abbott, L. F. (2010). Intrinsic stability of temporally shifted spike-timing dependent plasticity. *PLoS Comput. Biol.*, 6:e1000961.

Babadi, B. and Abbott, L. F. (2013). Pairwise analysis can account for network structures arising from spike-timing dependent plasticity. *PLoS Comput Biol*, 9(2):e1002906.

Barak, O., Rigotti, M., and Fusi, S. (2013). The sparseness of mixed selectivity neurons controls the generalization–discrimination trade-off. *The Journal of Neuroscience*, 33(9):3844–3856.

Barrett, A. B., Billings, G. O., Morris, R. G., and Van Rossum, M. C. (2009). State based model of long-term potentiation and synaptic tagging and capture. *PLoS Comput Biol*, 5(1):e1000259.

Bartol Jr, T. M., Bromer, C., Kinney, J., Chirillo, M. A., Bourne, J. N., Harris, K. M., and Sejnowski, T. J. (2015). Nanoconnectomic upper bound on the variability of synaptic plasticity. *Elife*, 4:e10778.

Battaglia, F. P. and Pennartz, C. M. A. (2011). The construction of semantic memory: grammar-based representations learned from relational episodic information. *Front Comput Neurosci*, 5:36.

Ben Dayan Rubin, D. D. and Fusi, S. (2007). Long memory lifetimes require complex synapses and limited sparseness. *Front Comput Neurosci*, 1:7.

Benna, M. K. and Fusi, S. (2016). Computational principles of synaptic memory consolidation. *Nature neuroscience*.

Bi, G. Q. and Poo, M. M. (1998). Synaptic modifications in cultured hippocampal neurons: dependence on spike timing, synaptic strength, and postsynaptic cell type. *J. Neurosci.*, 18:10464–10472.

Block, H.-D. (1962). The perceptron: A model for brain functioning. i. *Reviews of Modern Physics*, 34(1):123.

Brader, J. M., Senn, W., and Fusi, S. (2007). Learning real-world stimuli in a neural network with spike-driven synaptic dynamics. *Neural computation*, 19(11):2881–2912.

Brunel et al., 1998 Brunel, N., Carusi, F., and Fusi, S. (1998). Slow stochastic Hebbian learning of classes of stimuli in a recurrent neural network. *Network*, 9(1):123–152.

Carpenter, G. and Grossberg, S. (1991). *Pattern Recognition by Self-Organizing Neural Networks*. MIT Press.

Chaudhuri, R. and Fiete, I. (2016). Computational principles of memory. *Nature Neuroscience*.

Clopath, C., Büssing, L., Vasilaki, E., and Gerstner, W. (2010). Connectivity reflects coding: a model of voltage-based stdp with homeostasis. *Nature neuroscience*, 13(3):344–352.

Clopath, C., Ziegler, L., Vasilaki, E., Busing, L., and Gerstner, W. (2008). Tag-trigger-consolidation: a model of early and late long-term-potentiation and depression. *PLoS Comput. Biol.*, 4:e1000248.
[Crick, 1984] Crick, F. (1984). Memory and molecular turnover. *Nature*, 312:101.

[Dubreuil et al., 2014] Dubreuil, A. M., Amit, Y., and Brunel, N. (2014). Memory capacity of networks with stochastic binary synapses. *PLoS Comput Biol*, 10(8):e1003727.

[Emes and Grant, 2012] Emes, R. D. and Grant, S. G. (2012). Evolution of synapse complexity and diversity. *Annual review of neuroscience*, 35:111–131.

[Fusi, 2002] Fusi, S. (2002). Hebbian spike-driven synaptic plasticity for learning patterns of mean firing rates. *Biol Cybern*, 87(5-6):459–470.

[Fusi and Abbott, 2007] Fusi, S. and Abbott, L. F. (2007). Limits on the memory storage capacity of bounded synapses. *Nat. Neurosci.*, 10:485–493.

[Fusi et al., 2005] Fusi, S., Drew, P., and Abbott, L. F. (2005). Cascade models of synaptically stored memories. *Neuron*, 45(4):599–611.

[George and Hawkins, 2009] George, D. and Hawkins, J. (2009). Towards a mathematical theory of cortical micro-circuits. *PLoS Comput Biol*, 5(10):e1000532.

[Gerstner et al., 1996] Gerstner, W., Kempter, R., van Hemmen, J., and W¨agner, H. (1996). A neuronal learning rule for sub-millisecond temporal coding. *Nature*, 383:76–78.

[Graupner and Brunel, 2011] Graupner, M. and Brunel, N. (2011). Spike-timing and firing-rate dependent plasticity in a calcium-based synaptic plasticity model. *submitted*.

[Güttig, 2016] Güttig, R. (2016). Spiking neurons can discover predictive features by aggregate-label learning. *Science*, 351(6277):aab4113.

[Gutig and Sompolinsky, 2006] Gutig, R. and Sompolinsky, H. (2006). The tempotron: a neuron that learns spike timing-based decisions. *Nat. Neurosci.*, 9:420–428.

[Hebb, 1949] Hebb, D. O. (1949). *Organization of behavior*. New York: Wiley.

[Hertz et al., 1991] Hertz, J., Krogh, A., and Palmer, R. (1991). *Introduction to the Theory of neural computation*. Addison Wesley.

[Hopfield, 1982] Hopfield, J. J. (1982). Neural networks and physical systems with emergent selective computational abilities. *Proc. Natl. Acad. Sci. USA*, 79:2554.

[Izhikevich, 2007] Izhikevich, E. M. (2007). Solving the distal reward problem through linkage of stdp and dopamine signaling. *Cerebral cortex*, 17(10):2443–2452.

[Kali and Dayan, 2004] Kali, S. and Dayan, P. (2004). Off-line replay maintains declarative memories in a model of hippocampal-neocortical interactions. *Nat Neurosci*, 7(3):286–294.

[Krauth et al., 1988] Krauth, W., M´ezard, M., and Nadal, J.-P. (1988). basins of attraction in a perceptron-like neural network. *Complex Systems*, 2(4):387–408.

[Lahiri and Ganguli, 2013] Lahiri, S. and Ganguli, S. (2013). A memory frontier for complex synapses. In *Advances in Neural Information Processing Systems*, pages 1034–1042.

[LeCun et al., 2015] LeCun, Y., Bengio, Y., and Hinton, G. (2015). Deep learning. *Nature*, 521(7553):436–444.
[Legenstein et al., 2005a] Legenstein, R., Naeger, C., and Maass, W. (2005a). What can a neuron learn with spike-timing-dependent plasticity? _Neural computation_, 17(11):2337–2382.

[Legenstein et al., 2005b] Legenstein, R., Naeger, C., and Maass, W. (2005b). What can a neuron learn with spike-timing-dependent plasticity? _Neural Comput_, 17:2337–2382.

[Legenstein et al., 2008] Legenstein, R., Pecevski, D., and Maass, W. (2008). A learning theory for reward-modulated spike-timing-dependent plasticity with application to biofeedback. _PLoS Comput Biol_, 4(10):e1000180.

[Leibold and Kempter, 2006] Leibold, C. and Kempter, R. (2006). Memory capacity for sequences in a recurrent network with biological constraints. _Neural computation_, 18(4):904–941.

[Leibold and Kempter, 2008] Leibold, C. and Kempter, R. (2008). Sparseness constrains the prolongation of memory lifetime via synaptic metaplasticity. _Cereb. Cortex_, 18:67–77.

[Levy and Steward, 1983] Levy, W. B. and Steward, O. (1983). Temporal contiguity requirements for long-term associative potentiation/depression in the hippocampus. _Neuroscience_, 8:791–797.

[Lillicrap et al., 2016] Lillicrap, T. P., Cownden, D., Tweed, D. B., and Akerman, C. J. (2016). Random synaptic feedback weights support error backpropagation for deep learning. _Nature Communications_, 7.

[Lisman, 1985] Lisman, J. E. (1985). A mechanism for memory storage insensitive to molecular turnover: a bistable autophosphorylating kinase. _Proc. Natl. Acad. Sci. U.S.A._, 82(9):3055–3057.

[Lisman and Zhabotinsky, 2001] Lisman, J. E. and Zhabotinsky, A. M. (2001). A model of synaptic memory: a CaMKII/PP1 switch that potentiates transmission by organizing an AMPA receptor anchoring assembly. _Neuron_, 31:191–201.

[Markram et al., 1997] Markram, H., Lubke, J., Frotscher, M., and Sakmann, B. (1997). Regulation of synaptic efficacy by coincidence of postsynaptic APs and EPSPs. _Science_, 275:213–215.

[McClelland et al., 1995] McClelland, J. L., McNaughton, B. L., and O’Reilly, R. C. (1995). Why there are complementary learning systems in the hippocampus and neocortex: insights from the successes and failures of connectionist models of learning and memory. _Psychol Rev_, 102:419–457.

[Mead, 1990] Mead, C. (1990). Neuromorphic electronic systems. _Proceedings of the IEEE_, 78(10):1629–1636.

[Miller et al., 2005a] Miller, P., Zhabotinsky, A. M., Lisman, J. E., and Wang, X. J. (2005a). The stability of a stochastic CaMKII switch: dependence on the number of enzyme molecules and protein turnover. _PLoS Biol._, 3:e107.

[Miller et al., 2005b] Miller, P., Zhabotinsky, A. M., Lisman, J. E., and Wang, X.-J. (2005b). The stability of a stochastic CaMKII switch: dependence on the number of enzyme molecules and protein turnover. _PLoS Biol_, 3:e107.

[Morrison et al., 2008] Morrison, A., Diesmann, M., and Gerstner, W. (2008). Phenomenological models of synaptic plasticity based on spike timing. _Biological cybernetics_, 98(6):459–478.

[Nessler et al., 2013] Nessler, B., Pfeiffer, M., Buesing, L., and Maass, W. (2013). Bayesian computation emerges in generic cortical microcircuits through spike-timing-dependent plasticity. _PLoS Comput Biol_, 9(4):e1003037.
Olshausen and Field, 2004 Olshausen, B. A. and Field, D. J. (2004). Sparse coding of sensory inputs. *Current opinion in neurobiology*, 14(4):481–487.

O’Reilly and Frank, 2006 O’Reilly, R. C. and Frank, M. J. (2006). Making working memory work: a computational model of learning in the prefrontal cortex and basal ganglia. *Neural Comput*, 18(2):283–328.

Ostojic and Fusi, 2013 Ostojic, S. and Fusi, S. (2013). Synaptic encoding of temporal contiguity. *Frontiers in computational neuroscience*, 7:32.

Parisi, 1986 Parisi, G. (1986). A memory which forgets. *J.Phys.A.*, 19:L617.

Pecevski and Maass, 2016 Pecevski, D. and Maass, W. (2016). Learning probabilistic inference through spike-timing-dependent plasticity. *euro*, 3(2):ENEURO–0048.

Pfister and Gerstner, 2006 Pfister, J.-P. and Gerstner, W. (2006). Triplets of spikes in a model of spike timing-dependent plasticity. *Journal of Neuroscience*, 26(38):9673–9682.

Redondo and Morris, 2011 Redondo, R. L. and Morris, R. G. (2011). Making memories last: the synaptic tagging and capture hypothesis. *Nature Reviews Neuroscience*, 12(1):17–30.

Reymann and Frey, 2007 Reymann, K. G. and Frey, J. U. (2007). The late maintenance of hippocampal ltp: requirements, phases,synaptic tagging,late-associativityand implications. *Neuropharmacology*, 52(1):24–40.

Rosenblatt, 1958 Rosenblatt, F. (1958). The perceptron: a probabilistic model for information storage and organization in the brain. *Psychological Review*, 65:386–408. Reprinted in: Anderson and Rosenfeld (eds.), *Neurocomputing: Foundations of Research*.

Rosenblatt, 1962 Rosenblatt, F. (1962). *Principles of Neurodynamics*. Spartan Books, New York.

Roxin and Fusi, 2013 Roxin, A. and Fusi, S. (2013). Efficient partitioning of memory systems and its importance for memory consolidation. *PLoS Comput Biol*, 9(7):e1003146.

Rumelhart et al., 1986 Rumelhart, D. E., Hinton, G. E., and Williams, R. J. (1986). Learning representations by back-propagating errors. *Nature*, 323:533–536.

Savin et al., 2014 Savin, C., Dayan, P., and Lengyel, M. (2014). Optimal recall from bounded metaplastic synapses: predicting functional adaptations in hippocampal area ca3. *PLoS Comput Biol*, 10(2):e1003489.

Scellier and Bengio, 2016 Scellier, B. and Bengio, Y. (2016). Towards a biologically plausible back-prop. *arXiv preprint arXiv:1602.05179*.

Sejnowski, 1977 Sejnowski, T. J. (1977). Storing covariance with nonlinearily interacting neurons. *J. Math. Biol.*, 4:303–.

Senn et al., 2001 Senn, W., Markram, H., and Tsodyks, M. (2001). An algorithm for modifying neurotransmitter release probability based on pre-and postsynaptic spike timing. *Neural Computation*, 13(1):35–67.

Shouval, 2005 Shouval, H. Z. (2005). Clusters of interacting receptors can stabilize synaptic efficacies. *Proceedings of the National Academy of Sciences of the United States of America*, 102(40):14440–14445.
[Shouval et al., 2010] Shouval, H. Z., Wang, S. S., and Wittenberg, G. M. (2010). Spike timing dependent plasticity: a consequence of more fundamental learning rules. *Front Comput Neurosci*, 4.

[Sjöström and Häusser, 2006] Sjöström, P. J. and Häusser, M. (2006). A cooperative switch determines the sign of synaptic plasticity in distal dendrites of neocortical pyramidal neurons. *Neuron*, 51(2):227–238.

[Sjöström et al., 2008] Sjöström, P. J., Rancz, E. A., Roth, A., and Häusser, M. (2008). Dendritic excitability and synaptic plasticity. *Physiological reviews*, 88(2):769–840.

[Sjostrom et al., 2001] Sjostrom, P. J., Turrigiano, G. G., and Nelson, S. B. (2001). Rate, timing, and cooperativity jointly determine cortical synaptic plasticity. *Neuron*, 32:1149–1164.

[Song and Abbott, 2001] Song, S. and Abbott, L. F. (2001). Cortical development and remapping through spike timing-dependent plasticity. *Neuron*, 32:339–350.

[Song et al., 2000] Song, S., Miller, K. D., and Abbott, L. F. (2000). Competitive Hebbian learning through spike-timing-dependent synaptic plasticity. *Nat. Neurosci.*, 3:919–926.

[Squire and Kandel, 1999] Squire, L. and Kandel, E. (1999). *Memory: from mind to molecules*. Scientific American Library.

[Treves, 1990] Treves, A. (1990). Graded-response neurons and information encodings in autoassociative memories. *Physical Review A*, 42(4):2418.

[Treves and Rolls, 1991] Treves, A. and Rolls, E. T. (1991). What determines the capacity of autoassociative memories in the brain? *Network: Computation in Neural Systems*, 2(4):371–397.

[Tsodyks, 1990] Tsodyks, M. (1990). Associative memory in neural networks with binary synapses. *Mod. Phys. Lett.*, B4:713–716.

[Tsodyks and Feigel’man, 1988] Tsodyks, M. and Feigel’man, M. V. (1988). The enhanced storage capacity in neural networks with low activity level. *Europhys. Lett.*, 46:101–106.

[Turrigiano and Nelson, 2004] Turrigiano, G. G. and Nelson, S. B. (2004). Homeostatic plasticity in the developing nervous system. *Nature Reviews Neuroscience*, 5(2):97–107.

[Van Rossum et al., 2012] Van Rossum, M. C., Shippi, M., and Barrett, A. B. (2012). Soft-bound synaptic plasticity increases storage capacity. *PLoS Comput Biol*, 8(12):e1002836.

[Willshaw et al., 1969] Willshaw, D. J., Buneman, O. P., and Longuet-Higgins, H. C. (1969). Non-holographic associative memory. *Nature*.

[Wu and Mel, 2009] Wu, X. E. and Mel, B. W. (2009). Capacity-enhancing synaptic learning rules in a medial temporal lobe online learning model. *Neuron*, 62(1):31–41.

[Ziegler et al., 2015] Ziegler, L., Zenke, F., Kastner, D. B., and Gerstner, W. (2015). Synaptic consolidation: from synapses to behavioral modeling. *The Journal of Neuroscience*, 35(3):1319–1334.