Down-regulation of \textit{OPA1} in patients with primary open angle glaucoma

Thomas M. Bosley,1,2 Ali Hellani,3 George L. Spaeth,4 Jonathan Myers,4 L. Jay Katz,4 Marlene R. Moster,4 Barry Milcarek,3 Khaled K. Abu-Amero1,6

1Ophthalmic Genetics Laboratory and Department of Ophthalmology, College of Medicine, King Saud University, Riyadh, Saudi Arabia; 2Division of Neurology, Cooper University Hospital, Camden, NJ; 3PGD Laboratory, Saad Specialist Hospital, Al-Khobar, Saudi Arabia; 4William and Anna Goldberg Glaucoma Service, Wills Eye Hospital, Thomas Jefferson University, Philadelphia, PA; 5Research Department, Cooper University Hospital, Camden, NJ; 6Department of Ophthalmology, University of Florida-College of Medicine, Jacksonville, FL

\textbf{Purpose:} Heterozygous optic atrophy type1 (\textit{OPA1}) mutations are responsible for dominant optic atrophy, and the down regulation of \textit{OPA1} expression in patients with Leber hereditary optic neuropathy may imply that Opal protein levels in mitochondria play a role in other spontaneous optic neuropathies as well. Mitochondrial and metabolic abnormalities may put the optic nerve at risk in primary open angle glaucoma (POAG), and this preliminary study was designed to investigate whether altered \textit{OPA1} expression might be present in the progressive optic neuropathy of POAG.

\textbf{Methods:} Patients were eligible for inclusion if they met standard clinical criteria for POAG, including age greater than 40 years, intraocular pressure \(\geq 21\) mmHg in at least one eye before treatment, normal-appearing anterior chamber angles bilaterally on gonioscopy, and optic nerve injury characteristic of POAG. RNA was extracted from leukocytes and converted to cDNA by reverse transcriptase enzyme, and real time PCR was used to assess expression levels of \textit{OPA1} and the \(\beta\)-globulin (\textit{HBB}) housekeeping gene. The ratio of \textit{OPA1} expression to \textit{HBB} expression (\textit{OPA1}/\textit{HBB}) for POAG patients was compared to that of controls and to clinical characteristics of POAG patients.

\textbf{Results:} Forty-three POAG patients and 27 controls were completely phenotyped with a full ophthalmologic examination and static perimetry. Mean age (POAG 67.9 years; controls 61.8 years) and sex (POAG 26 males/17 females; controls 11/16) were similar for the two groups. Mean \textit{OPA1}/\textit{HBB} of POAG patients (1.16, SD 0.26) was 18\% lower than controls (1.41, SD 0.50), and this difference was statistically significant (\(p\leq0.021\)). \textit{OPA1} expression differed between the groups (\(p\leq0.037\)), but \textit{HBB} expression did not differ (\(p\leq0.24\)). \textit{OPA1}/\textit{HBB} was not correlated with any clinical feature of POAG patients.

\textbf{Conclusions:} Transcriptional analysis of peripheral blood leukocytes is a limited model system for studying the consequences of mitochondrial abnormalities in the optic nerve. Nevertheless, \textit{OPA1} is known to affect mitochondrial stability and has now been implicated in several spontaneous optic neuropathies. Decreased \textit{OPA1} expression in POAG patients is another indication that mitochondrial function, and possibly mitochondrially-induced apoptosis, may play a role in the development of POAG.

Glucoma is one of the leading causes of blindness worldwide [1] with a prevalence of over 2\% in individuals older than 40 years [2]. Primary open angle glaucoma (POAG) is the most common type of glaucoma in Western countries and has risk factors that include elevated intraocular pressure (IOP) and age [3], but these factors do not predict the presence or degree of visual loss [4]. Up to half of all patients with POAG have a positive family history, and the risk of POAG is increased 3–9 times in first-degree relatives of POAG patients [2,5]. In addition, a maternal family history of POAG is 6–8 times more likely than a paternal family history [6-8]. These observations suggest that genetic factors may contribute to POAG, with a mitochondrial component being particularly likely [1,9-11].

Mutations in the optic atrophy type1 (\textit{OPA1}) gene are unequivocally involved in the neuropathology of dominant optic atrophy (DOA) [12,13]. The phenotype of DOA differs from that of POAG, but DOA is sometimes misdiagnosed as normal tension glaucoma in clinical practice [14]. In addition, certain \textit{OPA1} polymorphisms have been linked to an increased risk of POAG in some, but not all, ethnic populations [15-18] and with the normal tension variant of POAG [17,19]. Considered together, these observations suggest that \textit{OPA1} may be involved in the development of POAG.

\textbf{METHODS}

Patients were evaluated in the Glaucoma Service at the Wills Eye Institute and enrolled after examination by a glaucoma specialist. Patients were eligible for inclusion if they met the following clinical criteria for POAG [20-23]: age greater than
Annealing temperature (°C) expression of

stopped by heating at 95 °C for 5 min. The cDNA stock was

Reverse Transcriptase were added for a total volume of

dithiothreitol, and 200 U Moloney Murine Leukemia Virus

RNA (1 μg) was combined with 0.5 μg primers, 200 μM

were used as primers in the first step of cDNA synthesis. Total

POAG patients and controls. Random hexameres

OU, and no prior history of glaucoma. All controls had static

had IOPs that were below 21 mmHg and symmetric in the two

eyes before initiation of glaucoma treatment; normal-

appearing, open anterior chamber angles bilaterally by

gonioscopy; optic nerve appearance characteristic of the optic

discs typically observed in primary open-angle glaucoma (with localized narrowing or absence of the neuro- retinal rim, with the amount of cupping exceeding the amount of pallor of the rim, and with asymmetric cupping of the optic discs in the two eyes); and static visual field (Humphrey Field Analyzer II, Carl Zeiss Meditec, Inc., Dublin, CA; using a full threshold 24–2 program) abnormalities typical of glaucoma (as per Advanced Glaucoma Intervention Study criteria [24]). There

had to be good agreement between the appearance of the optic disc and the visual field. Exclusion criteria included historical, neuroimaging, or biochemical evidence of another possible optic neuropathic process affecting either eye, significant visual loss in both eyes not associated with glaucoma, or

choosing not to participate. This research adhered to the tenets

of the Declaration of Helsinki, and all patients and controls

signed an informed consent approved by the Wills Eye

Institute institutional review board.

All control subjects (frequently spouses of patients) had

full ophthalmologic examinations and static perimetry. Each

had IOPs that were below 21 mmHg and symmetric in the two

eyes, normal anterior chambers, optic discs that were normal

and symmetric in appearance, entirely normal static perimetry

OU, and no prior history of glaucoma. All controls had static

perimetry in the same fashion as POAG patients.

A two-step semi-quantitative RT–PCR method was used

to measure gene expression levels of \(\text{OPA1} \) and \(\beta \)-globulin (\(\text{HBB} \)) in POAG patients and controls. Random hexameres were used as primers in the first step of cDNA synthesis. Total RNA (1 μg) was combined with 0.5 μg primers, 200 μM dNTPs, and sterile Milli-Q water and preheated at 65 °C for 2 min to denature secondary structures. The mixture was then

cooled rapidly to 20 °C and then 10 μl 5× RT Buffer, 10 mM
dithiothreitol, and 200 U Moloney Murine Leukemia Virus

Reverse Transcriptase were added for a total volume of

50 μl. The RT mix was incubated at 37 °C for 90 min then

stopped by heating at 95 °C for 5 min. The cDNA stock was

stored at −20 °C.

Relative RT–PCR was performed to measure gene

expression of \(\text{OPA1} \) and \(\text{HBB} \) according to standard
guidelines [25]. Primer sequences and optimal PCR annealing temperatures (\(t_a \)) are listed in Table 1. Primer sequences were
designed to span intron regions to insure that no false positive

PCR fragments would be generated from pseudogenes and

contaminate genomic DNA. In addition, all forward PCR

primers were labeled with fluorescein (6-FAM), making

quantitation more accurate. Polymerase chain reactions were

performed using 100 ng of cDNA, 5 pmoles of each

oligonucleotide primer, 200 μM of each dNTP, 1 unit of

HotStar Taq-polymerase (Qiagen, Valencia, CA) and 1× PCR

buffer in a 20 μl volume. The PCR program initially started

with a 95 °C denaturation for 5 min, followed by 25 cycles of

95 °C for 1 min, \(t_a \) °C for 45 s, and 72 °C for 1 min. Linear

amplification range for each gene was tested on the adjusted

cDNA, and 25 cycles were found to be optimal for both

\(\text{OPA1} \) and \(\text{HBB} \). The PCR samples were electrophoresed on

the 3130xl Genetic Analyzer (Applied Biosystems, Foster

City, CA). Figure 1 shows representative chromatograms for

a POAG patient and a control individual in which the size and

the intensity of the fluorescence peaks are illustrated for

\(\text{OPA1} \) and \(\text{HBB} \) amplification.

The promoter region of the \(\text{OPA1} \) gene was screened for

polymorphisms in all patients and controls using the forward

(5′-CCT TTC CCA TCT GAT CCT CA-3′) and reverse (5′-

CAG GAA TGA CCC AGG AAG TG-3′) primers to amplify

a region extending almost 700 bp immediately upstream of

the transcription initiation site, where the promoter region of

\(\text{OPA1} \) is believed to be located [13].

Statistical analysis: Absolute RT–PCR values were used to
calculate a ratio of the \(\text{OPA1} \) peak area in the selected linear

amplification cycle divided by that of \(\text{HBB} \), creating an \(\text{OPA1}/ \text{HBB} \) ratio. All clinical and genetic data were analyzed using

SPSS v 16.02 (IBM Corporation, Somers, NY) and SAS v 9.2

(SAS Corporation, Cary, NC).

RESULTS

Age (POAG patients 67.0 years; controls 61.8 years; \(p \leq 0.06 \))

and sex (POAG 26 males/17 females; controls 11/16; \(p \leq 0.11 \))

of the 43 unrelated POAG patients were similar to the control

individuals, but ethnicity differed between the POAG group

(21 Caucasian/22 African American) and the control group

(23 Caucasian/4 African American; \(p \leq 0.002 \)).

Table 1. Primer sequences and annealing temperatures.

Primer name	Primer sequence	Annealing temperature (°C)
\(\text{HBB-F} \)	(6-FAM) AGC CTC GCC TTT GCC GA	57
\(\text{HBB-R} \)	CTG GTG CCT GGG GCG	
\(\text{OPA1-F} \)	(6-FAM) TGT GAG GTC TGC CAG TCT TTA	58
\(\text{OPA1-R} \)	TGT CCT TAA TTG GGG TCG TTG	

F=forward; R=reverse.
Mean OPA1 expression values were significantly lower in POAG patients than in controls (p≤0.037) but HBB expression did not differ between the groups (p≤0.34; Table 2). The OPA1/HBB ratio was also significantly lower, by 18%, in POAG patients than in controls (p≤0.021).

Differences in the OPA1/HBB ratio persisted even when the evaluated groups were restricted to Caucasian patients and controls (p≤0.04) to remove the potential effect of ethnic bias. Similarly, mean OPA1 expression values were significantly lower in Caucasian POAG patients than in Caucasian controls (p=0.04), but HBB expression did not significantly differ between these groups (p≤0.34; Table 2).

Within the POAG group, the OPA1/HBB ratio was not significantly associated with age, sex, ethnicity, visual acuity, maximum intraocular pressure, vertical cup-to-disc ratio, static perimeter mean deviation, or static perimeter pattern standard deviation (Table 3). However, power calculations indicate power ≤80% on these tests, leaving open the possibility of false negative type II statistical errors.

Neither POAG patients nor controls had polymorphisms in the promoter region after reading and aligning all sequences with the OPA1 promoter reference sequence described previously [13].

DISCUSSION

The 43 patients reported here met rigorous clinical criteria for POAG [20-23] with elevated IOP, normal anterior chamber, and evidence on funduscopic exam and visual fields of glaucomatous optic nerve damage. They did not have evidence by clinical criteria of other types of glaucoma or alternative causes of optic nerve injury. None had dysmorphism or an obvious genetic syndrome. They were compared to 27 control individuals in whom POAG and other evidence of optic nerve damage were carefully excluded.

POAG/HBB expression in Caucasians; mean (SD) 1.12 (0.25) 1.37 (0.50) 0.04

TABLE 2. GENE Expression in POAG Patients and Controls.

Measurement	POAG mean	Control mean	p≤
OPA1 expression; mean (SD)	116714 (22220)	137761 (47076)	0.04
HBB expression; mean (SD)	104489 (33188)	98164 (7707)	0.24
OPA1/HBB; mean (SD)	1.16 (0.26)	1.41 (0.50)	0.02
OPA1 expression in Caucasians; mean (SD)	112979 (15699)	133460 (45261)	0.04
HBB expression in Caucasians; mean (SD)	108507 (47291)	98462 (7931)	0.34
OPA1/HBB in Caucasians; mean (SD)	1.12 (0.25)	1.37 (0.50)	0.04

POAG=primary open angle glaucoma; SD=standard deviation.

Figure 1. Fluorescent PCR amplification. Capillary electrophoresis showing fluorescent PCR amplification of (A) the OPA1 gene (140 bp; blue peak) and (B) the HBB gene (175 bp) for a POAG patient. Similarly, (C) shows OPA1 amplification and (D) shows HBB amplification for a control individual. The x-axis represents peak size in base pairs (bp) and the y-axis the signal intensity. The area under the peak (not shown here) corresponds to gene expression levels and was measured by the GeneMapper software (Applied Biosystems). Sizing of the peaks was done by running the 500 pb LIZ size-ladder (peaks in orange) with the samples.
the OPA1 gene or the OPA1 promoter region that might explain an alteration of expression.

Across all POAG patients, the OPA1/HBB ratio was not correlated with any demographic measure (e.g., age, sex, ethnicity, or age at diagnosis) or any standard measure of POAG severity (e.g., visual acuity, vertical cup-to-disk ratio, or measures of static perimetry abnormality; Table 3). The results of this study, therefore, imply that decreased OPA1 expression, and possibly decreased Opa1 protein levels, may contribute to the occurrence of POAG. They do not suggest that OPA1 expression is related to POAG severity, although this point may only be proven definitely by evaluating larger numbers of patients for longer periods of time.

The OPA1 gene was first identified as the gene responsible for DOA [12,13] a decade ago. It codes for a dynamin-like GTPase protein (Opa1 protein) found in a polymeric structure in the inner mitochondrial membrane that has multiple distinct roles [26,27] primarily related to maintaining a highly interconnected mitochondrial network [28], regulating mitochondrial bioenergetic output through a possible effect on the assembly and stability of Complex I and IV subunits [29,30], and sequestering pro-apoptotic small molecules within the mitochondrial cristae spaces [31,32]. Maintenance of mitochondrial DNA (mtDNA), at least in certain settings [33], is a more recently recognized role.

OPA1 abnormalities are now recognized in several spontaneous optic neuropathies. Heterozygous mutations in OPA1 are responsible for approximately 60% of DOA cases [34,35], and it is possible that another 20% of DOA cases are associated with large-scale rearrangements of the entire OPA1 coding region [36]. We reported previously that OPA1 expression was decreased in patients with LHON and the 11778 primary LHON mutation [37]. Certain OPA1 polymorphisms have been described in association with an increased risk of developing POAG or normal tension glaucoma in some, but not all, populations studied [15-17].

The results of this study raise the possibility that decreased OPA1 expression may play a role in the occurrence of POAG in several ways. Down-regulation of OPA1 in HeLa cells using specific small interfering RNA molecules caused fragmentation of the mitochondrial network with dissipation of the mitochondrial membrane potential and a drastic disorganization of the cristae [38]. These changes were followed by cytochrome c release and caspase-dependent apoptotic nuclear events. Mitochondria in this setting likely do not produce energy optimally and may either cause or be vulnerable to oxidative stress [39]. Decreased OPA1 expression in POAG patients may contribute to retinal ganglion cell apoptosis as one primary mechanism of optic nerve damage. Decreased ATP production and/or increased oxidative stress may contribute to this process, particularly as mitochondria work less well in an aging individual.

This study has several practical limitations. The number of individuals studied was adequate to confirm statistically significant differences in OPA1 expression and OPA1/HBB ratio between POAG patients and controls. However, the lack of correlation between OPA1/HBB ratio and various clinical parameters within the POAG group may be subject to type II statistical errors because of inadequate power. Transcriptional analysis of peripheral blood leucocytes is not an ideal model system for evaluating nuclear gene expression in optic nerve tissue, which will rarely be available in glaucoma patients. However, peripheral blood cells inherit the same genetic information as retinal ganglion cells, and leukocyte gene expression reflects pathologically important gene expression.

Table 3. Correlation between OPA1/HBB and Clinical Parameters

Parameter	Value	p≤
Age in years; mean (SD)	67.93 (10.55)	0.90
Sex (M:F)	26:17	0.10
Ethnicity (C:AA)	21:22	0.27
Visual acuity OD (mean)	~20/40	0.74
Visual acuity OS (mean)	~20/30	0.56
Maximum IOP OD (mmHg)	29.4 (6.3)	0.07
Maximum IOP OS (mmHg)	29.7 (6.9)	0.13
Vertical c/d ratio OD; mean (SD)	0.78 (0.21)	0.84
Vertical c/d ratio OS; mean (SD)	0.76 (0.20)	0.99
MD OD; mean (SD)	−15.46 (10.28)	0.28
MD OS; mean (SD)	−13.27 (10.37)	0.33
PSD OD; mean (SD)	7.52 (4.51)	0.74
PSD OS; mean (SD)	7.01 (4.33)	0.92

SD=standard deviation; M=male; F=female; C=Caucasian; AA=African American; OD=right eye; OS=left eye; IOP=intracocular pressure; mmHg=mm mercury; c/d=cup to disk; MD=Humphrey visual field mean deviation; PSD=Humphrey visual field pattern standard deviation.

Molecular Vision 2011; 17:1074-1079 <http://www.molvis.org/molvis/v17/a121> © 2011 Molecular Vision
changes in certain other neurologic diseases [40-42]. The population studied was predominantly Caucasian and African-American, and different results might be obtained in other ethnicities.

The patients reported here have clinically definite POAG with a modest, statistically significant decrease in OPA1 expression even after normalization for expression of HBB, a housekeeping gene. OPA1 plays an important role in mitochondrial structure and function, including mitochondrially-induced apoptosis. It has been implicated in the pathogenesis of several other spontaneous optic neuropathies, and this study suggests that OPA1 expression may also play a role in the development of POAG. If these results are confirmed in additional patient groups and other ethnicities, it is possible that methods might be found to interfere with POAG development by manipulation of OPA1 expression or other mitochondrial parameters.

ACKNOWLEDGMENTS

We like to acknowledge the technical help of Mr. Mohd T. Azad.

REFERENCES

1. Quigley HA. Number of people with glaucoma worldwide. Br J Ophthalmol 1996; 80:389-93. [PMID: 8695555]
2. Tielsch JM, Sommer A, Katz J, Royall RM, Quigley HA, Javitt JC. J. Racial variations in the prevalence of primary open-angle glaucoma. The Baltimore Eye Survey. JAMA 1991; 266:369-74. [PMID: 2056646]
3. Gherghel D, Hosking SL, Orgul S. Autonomic nervous system, circadian rhythms, and primary open-angle glaucoma. Surv Ophthalmol 2004; 49:491-508. [PMID: 15325194]
4. Spaeth GL. A new classification of glaucoma including focal glaucoma. Surv Ophthalmol 1994; 38:S9-17. [PMID: 7940153]
5. Wilson MR, Hertzmark E, Walker AM, Childs-Shaw K, Epstein DL. A case-control study of risk factors in open angle glaucoma. Arch Ophthalmol 1987; 105:1066-71. [PMID: 3632414]
6. Morgan RW, Drance SM. Chronic open-angle glaucoma and ocular hypertension. An epidemiological study. Br J Ophthalmol 1975; 59:211-5. [PMID: 1138846]
7. Shin DH, Becker B, Koller AE. Family history in primary open-angle glaucoma. Arch Ophthalmol 1984; 102:935-42. [PMID: 6703439]
8. Morgan RW, Drance SM. Chronic open-angle glaucoma and ocular hypertension. An epidemiological study. Br J Ophthalmol 1975; 59:211-5. [PMID: 1138846]
9. Charlati G, Jolly D, Blanchard F. Genetic risk factor in primary open-angle glaucoma: a case-control study. Ophthalmic Epidemiol 1994; 1:131-8. [PMID: 8790619]
10. Tielsch JM, Katz J, Sommer A, Quigley HA, Javitt JC. Family history and risk of primary open angle glaucoma. The Baltimore Eye Survey. Arch Ophthalmol 1994; 112:69-73. [PMID: 8285897]
11. Quigley HA, Broman AT. The number of people with glaucoma worldwide in 2010 and 2020. Br J Ophthalmol 2006; 90:262-7. [PMID: 16488940]
12. Abu-Amero KK, Morales J, Bosley TM. Mitochondrial abnormalities in patients with primary open-angle glaucoma.

Molecular Vision 2011; 17:1074-1079 <http://www.molvis.org/molvis/v17/a121> © 2011 Molecular Vision

Invest Ophthal mol Vis Sci 2006; 47:2533-41. [PMID: 16723467]
13. Alexander C, Votruba M, Pesch UE, Thiselton DL, Mayer S, Moore A, Rodriguez M, Kellner U, Leo-Kottler B, Auberger G, Bhattacharya SS, Wissinger B. OPA1, encoding a dynamin-related GTPase, is mutated in autosomal dominant optic atrophy linked to chromosome 3q28. Nat Genet 2000; 26:211-5. [PMID: 11017080]
14. Delettre C, Lenaers G, Griffoin JM, Gigarel N, Lorenzo C, Belenguer P, Pelloquin L, Grossegeorge J, Turc-Carel C, Perret E, Astarie-Dequeker C, Lasquellec L, Arnaud B, Ducommun B, Kaplan J, Hamel CP. Nuclear gene OPA1, encoding a mitochondrial dynamin-related protein, is mutated in dominant optic atrophy. Nat Genet 2000; 26:207-10. [PMID: 11017079]
15. Aung T, Ocaka L, Ebenezer ND, Morris AG, Krawczak M, Thiselton DL, Alexander C, Votruba M, Brice G, Child AH, Francis PJ, Hitchings RA, Lehmann OJ, Bhattacharya SS. A major marker for normal tension glaucoma: association with polymorphisms in the OPA1 gene. Hum Genet 2002; 110:52-6. [PMID: 11810296]
16. Aung T, Ocaka L, Ebenezer ND, Morris AG, Brice G, Child AH, Hitchings RA, Lehmann OJ, Bhattacharya SS. Investigating the association between OPA1 polymorphisms and glaucoma: comparison between normal tension and high tension primary open angle glaucoma. Hum Genet 2002; 110:513-4. [PMID: 12073024]
17. Powell BL, Toomes C, Scott S, Yeung A, Marchbank NJ, Spry PG, Lumb R, Inglehearn CF, Churchill AJ. Polymorphisms in OPA1 are associated with normal tension glaucoma. Mol Vis 2003; 9:460-4. [PMID: 14551537]
18. Woo SJ, Kim DM, Kim JY, Park SS, Ko HS, Yoo T. Investigation of the association between OPA1 polymorphisms and normal-tension glaucoma in Korea. J Glaucoma 2004; 13:492-5. [PMID: 15534475]
19. Yu-Wai-Man P, Stewart JD, Hudson G, Andrews RM, Griffiths PG, Birch MK, Chinnery PF. OPA1 increases the risk of normal but not high tension glaucoma. J Med Genet 2010; 47:102-5. [PMID: 19581274]
20. Spaeth GL. Prognostic factors for progression of visual field damage in patients with normal-tension glaucoma. Jpn J Ophthalmol 2007; 51:156-7. [PMID: 17401633]
21. Eid TM, Spaeth GL, Bitterman A, Steinmann WC. Rate and amount of visual loss in 102 patients with open-angle glaucoma followed up for at least 15 years. Ophthalmology 2003; 110:900-7. [PMID: 12750078]
22. Bayer A, Harasymowycz P, Henderer JD, Steinmann WG, Spaeth GL. Validity of a new disk grading scale for estimating glaucomatous damage: correlation with visual field damage. Am J Ophthalmol 2002; 133:758-63. [PMID: 12036666]
23. Read R, Spaeth G. The natural history of cup progression and some specific disc field correlations. Trans Am Acad Ophthalmol Otolaryngol 1974; 78:OP255-74. [PMID: 4825055]
24. Kim J, Dally LG, Ederer F, Gaasterland DE, VanVeldhuisen PC, Blackwell B, Sullivan EK, Prum B, Shafirnov G, Beck
25. Bustin SA, Beaulieu JF, Huggett J, Jaggi R, Kibenge FS, Olsvik PA, Penning LC, Toegel S. MIQE precis: Practical implementation of minimum standard guidelines for fluorescence-based quantitative real-time PCR experiments. BMC Mol Biol 2010; 11:74-81. [PMID: 20858237]

26. Davies V, Votruba M. Focus on molecules: the OPA1 protein. Exp Eye Res 2006; 83:1003-4. [PMID: 16563384]

27. Lenaers G, Reynier P, Elachouri G, Soukkarieh C, Olichon A, Belenguer P, Baricault L, Ducommun B, Hamel C, Delettre C. OPA1 functions in mitochondria and dysfunctions in optic nerve. Int J Biochem Cell Biol 2009; 41:1866-74. [PMID: 19389483]

28. Chan DC. Mitochondrial dynamics in disease. N Engl J Med 2007; 356:1707-9. [PMID: 17460225]

29. Chevrollier A, Guillet V, Loiseau D, Gueguen N, de Crescenzo MA, Verny C, Ferre M, Dollfus H, Odent S, Milea D, Goizet C, Amati-Bonneau P, Procaccio V, Bonneau D, Reynier P. Hereditary optic neuropathies share a common mitochondrial coupling defect. Ann Neurol 2008; 63:794-8. [PMID: 18496845]

30. Zanna C, Ghelli A, Porcelli AM, Karbowksi M, Youle RJ, Schimpf S, Wissinger B, Pinti M, Cossarizza A, Vidoni S, Valentino ML, Rugolo M, Carelli V. OPA1 mutations cause cytochrome c oxidase deficiency due to loss of wild-type mtDNA molecules. Hum Mol Genet 2010; 19:3043-52. [PMID: 20484224]

31. Yu-Wai-Man P, Sitarz KS, Samuels DC, Griffiths PG, Reeve AK, Bindoff LA, Horvath R, Chinnery PF. OPA1 mutations cause cytochrome c oxidase deficiency due to loss of wild-type mtDNA molecules. Hum Mol Genet 2010; 19:3043-52. [PMID: 20484224]

32. Newman NJ, Biousse V. Hereditary optic neuropathies. Eye (Lond) 2004; 18:1144-60. [PMID: 15534600]

33. Yu-Wai-Man P, Griffiths PG, Hudson G, Chinnery PF. Inherited mitochondrial optic neuropathies. J Med Genet 2009; 46:145-56. [PMID: 1901017]

34. Fuhrmann N, Alavi MV, Bitoun P, Woernle S, Auburger G, Leo-Kottler B, Yu-Wai-Man P, Chinnery P, Wissinger B. Genomic rearrangements in OPA1 are frequent in patients with autosomal dominant optic atrophy. J Med Genet 2009; 46:136-44. [PMID: 19181907]

35. Abu-Amero KK, Jaber M, Hellani A, Bosley TM. Genome-wide expression profile of LHON patients with the 11778 mutation. Br J Ophthalmol 2010; 94:256-9. [PMID: 19726426]

36. Olichon A, Baricault L, Gas N, Guillou E, Valette A, Belenguer P, Lenaers G. Loss of OPA1 perturbates the mitochondrial inner membrane structure and integrity, leading to cytochrome c release and apoptosis. J Biol Chem 2003; 278:7743-6. [PMID: 12509422]

37. Tezel G. Oxidative stress in glaucomatous neurodegeneration: mechanisms and consequences. Prog Retin Eye Res 2006; 25:490-513. [PMID: 16962364]

38. Stamova B, Xu H, Jickling G, Bushnell C, Tian Y, Ander BP, Zhan X, Liu D, Turner R, Adamczyk P, Khoury JC, Picioli A, Jauch E, Broderick JP, Sharp FR. Gene expression profiling of blood for the prediction of ischemic stroke. Stroke 2010; 41:2171-7. [PMID: 20798371]

39. Liao IH, Sharp FR. Tourette syndrome: gene expression as a tool to discover drug targets. Neurotherapeutics 2010; 7:302-6. [PMID: 20643383]

40. Tang Y, Gilbert DL, Glauser TA, Hershey AD, Sharp FR. Blood gene expression profiling of neurologic diseases: a pilot microarray study. Arch Neurol 2005; 62:210-5. [PMID: 15710849]