Inflammatory plasma biomarkers in subjects with preclinical Alzheimer’s disease

Samantha Prins1,2, Marieke L. de Kam1, Charlotte E. Teunissen3 and Geert Jan Groeneveld1,2*

Abstract

Background: This study investigated plasma biomarkers for neuroinflammation associated with Alzheimer’s disease (AD) in subjects with preclinical AD compared to healthy elderly. How these biomarkers behave in patients with AD, compared to healthy elderly is well known, but determining these in subjects with preclinical AD is not and will add information related to the onset of AD. When found to be different in preclinical AD, these inflammatory biomarkers may be used to select preclinical AD subjects who are most likely to develop AD, to participate in clinical trials with new disease-modifying drugs.

Methods: Healthy elderly (n = 50; age 71.9; MMSE >24) and subjects with preclinical AD (n=50; age 73.4; MMSE >24) defined by CSF Aβ1-42 levels < 1000 pg/mL were included. Four neuroinflammatory biomarkers were determined in plasma, GFAP, YKL-40, MCP-1, and eotaxin-1. Differences in biomarker outcomes were compared using ANCOVA. Subject characteristics age, gender, and APOE ε4 status were reported per group and were covariates in the ANCOVA. Least square means were calculated for all 4 inflammatory biomarkers using both the Aβ+ / Aβ− cutoff and Ptau / Aβ1-42 ratio.

Results: The mean (standard deviation, SD) age of the subjects (n=100) was 72.6 (4.6) years old with 62 male and 38 female subjects. Mean (SD) overall MMSE score was 28.7 (0.49) and 32 subjects were APOE ε4 carriers. The number of subjects in the different APOE ε4 status categories differed significantly between the Aβ+ and Aβ− groups. Plasma GFAP concentration was significantly higher in the Aβ+ group compared to the Aβ− group with significant covariates age and sex, variables that also correlated significantly with GFAP.

Conclusion: GFAP was significantly higher in subjects with preclinical AD compared to healthy elderly which agrees with previous studies. When defining preclinical AD based on the Ptau181/Aβ1-42 ratio, YKL-40 was also significantly different between groups. This could indicate that GFAP and YKL-40 are more sensitive markers of the inflammatory process in response to the Aβ misfolding and aggregation that is ongoing as indicated by the lowered Aβ1-42 levels in the CSF. Characterizing subjects with preclinical AD using neuroinflammatory biomarkers is important for subject selection in new disease-modifying clinical trials.

Trial registration: ISRCTN.org identifier: ISRCTN79036545 (retrospectively registered).

Keywords: Preclinical Alzheimer’s disease, Neuroinflammation, GFAP, YKL-40, MCP-1, Eotaxin-1
important as clinical trials of new drugs shift to disease prevention in the still cognitively normal elderly. Biomarker changes may present itself as early as 20 years prior to disease onset and therefore early intervention is important. Selecting subjects with preclinical AD for clinical trials may aid in demonstrating modification is important. Selecting subjects with preclinical AD prior to disease onset and therefore early intervention is of the utmost importance. Preferably minimally invasive methods are used to identify AD pathology, especially in otherwise healthy subjects.

The accumulation of amyloid plaques and intracellular neurofibrillary tangles consisting of misfolded phosphorylated tau (Ptau) protein during the development of AD eventually leads to synaptic dysfunction after which axonal damage occurs and cognitive changes can be observed. While this protein-related process is ongoing, the immune system is also responsive.

GFAP is a marker for astrocytes and has been reported to be increased post-mortem in brains of patients with AD and in CSF of patients with AD. Verberk et al., (2021) found GFAP to be associated with in increased risk of dementia and a sleeper rate of cognitive decline and they conclude that GFAP has the potential to be a prognostic blood-based biomarker for AD in their cohort of cognitively normal older people. Another recent study showed elevated plasma GFAP levels in subjects with preclinical AD which could mean that astrocytic damage or activation starts in the preclinical phase of AD.

Chemokines are a family of chemoattractants, which play a vital role in cell migration from blood into tissue and vice versa, and in the induction of cell movement in response to a chemical (chemokine) gradient by a process known as chemotaxis. In addition, chemokines have recently been shown to have a function in the nervous system as neuromodulators. Two chemokines (monocyte chemoattractant protein-1 [MCP-1] and eotaxin-1) have been previously been reported to be correlated with greater memory impairment in MCI and AD.

In the current study, we aimed to investigate plasma biomarkers related to neuroinflammation associated with AD in a cohort of subjects with preclinical AD and to compare these to healthy elderly. Using a preclinical subject population will add valuable information to the body of literature on the onset of AD.

Methods
This was an exploratory sub-study of a previously performed study registered in the international trial register with ID number: ISRCTN79036545. All study participants provided written consent for exploratory analyses of material obtained during study execution.

The main study was approved by the ethics committee of the Leiden University Medical Center (LUMC), the Netherlands. The study was conducted according to the Dutch act on Medical Research Involving Human Subjects (WMO) and in compliance with Good Clinical Practice (ICH-GCP) and the Declaration of Helsinki.

Participants
Samples of 100 healthy male and female participants of 65 years of age and older were selected from the main study in health elderly. All subjects were healthy volunteers without cognitive complaints who registered for participation voluntarily. Of these 100 subjects, 50 subjects were selected with a CSF Aβ1-42 profile consistent with Alzheimer’s disease and were classified as subjects with probable brain amyloidosis, referred to as preclinical AD. A healthy control group of 50 subjects was selected based on subjects having high levels of CSF Aβ1-42. Aβ1-42 was measured in CSF using the fully
information was known from the main study and deter-
subjects” (Aβ+ = < 1000 pg/ml) and “Aβ negative subjects” (Aβ− = > 1000 pg/ml). All the subjects vis-
Lumbar punctures were performed by a trained phy-
procedures for analyses of YKL-40, GFAP, MCP-1, and eotaxin-1
−80°C. All blood sam-
all aliquots were divided into 0.5mL aliquots in Sarstedt
 aliquots were divided into 0.5mL aliquots in Sarstedt
plasma samples using the CHI3L1 Human ELISA Kit
YKL-40 was measured in
Measurement of YKL-40, GFAP, MCP-1, and eotaxin-1

Blood sampling

Approximately 10mL of blood was collected via an
i.v. catheter placed in an antecubital vein in the arm in
appropriate K2EDTA tubes (BD, USA) at the predefined
time points mentioned above. Following blood centrifu-
gation within 1 h at 2000g for 10 min at 4°C, the plasma
aliquots were divided into 0.5mL aliquots in Sarstedt
polypropylene tubes and stored at −80°C [26].

Apolipoprotein E genotyping

Apolipoprotein E (APOE) genotyping was performed
after isolating DNA from EDTA blood by the labora-
tory of human genetics (department of human genetics
and endocrinology, Leiden University Medical Center
LUMC). DNA was isolated using a QIAamp DNA
Blood MINI kit after which a polymerase chain reac-
tion (PCR) technique was applied on the clean DNA.
A sequential analysis (according to the Sanger method)
then determined the APOE genotype. One or 2 APOE e4
alleles classified subjects as APOE e4 carriers, when no
APOE e4 alleles were present a subject was classified as
noncarrier.

Statistical methodology

Visual checks on the ranges of biomarker and clinical
characteristic test scores for each group based on
CSF amyloid beta status were done using scatter plots,
as well as Tukey boxplots. Independent T-test, Pearson
chi-square test, and Mann-Whitney tests were applied as
appropriate.

To establish differences between subject groups in bio-
markers, data is analyzed using an ANCOVA, where age,
sex, and E4 status are added to the model as covariates.
After including all covariates, the analysis was repeated
with only the significant covariates added to the model.
Variables were Log transformed where applicable. Least
square means were calculated for all 4 inflammatory
biomarkers using both the Aβ+/Aβ− cutoff and Ptau/
Aβ1-42 ratio. All analyses were carried out using SAS for
Results

Demographic and clinical characteristics

The mean age of the total group of study participants ($n=100$) was 72.6 (4.6) years old with 62 male and 38 female subjects. Mean overall MMSE score was 28.7 (0.49) and 32 subjects were APOE ε4 carriers. All subjects had a CDR score of 0.

Comparison of plasma YKL-40, GFAP, MCP-1, and eotaxin-1 between Aβ+ and Aβ− subjects

Table 1 presents the cross-sectional demographics and clinical characteristics of the studied population based on Aβ+/Aβ− groups. The APOE ε4 status was significantly different between Aβ+ and Aβ− subjects. All other clinical characteristics do not differ significantly between the Aβ+ and Aβ− groups. Plasma GFAP concentration was significantly higher in the Aβ+ group compared to the Aβ− group before and after adjusting for covariates age and sex, variables that also correlated significantly with GFAP, see Fig. 1. YKL-40, MCP-1, and eotaxin-1 were not significantly different between the Aβ+ and Aβ− group None of the biomarkers correlated with the MMSE score.

Comparison of plasma YKL-40, GFAP, MCP-1, and eotaxin-1 between subjects divided based on Ptau/Aβ42 ratio

Table 2 presents the cross-sectional demographics and clinical characteristics of the studied population based on the Ptau/Aβ1-42 ratio score. The APOE ε4 status was significantly different between the two groups divided by Ptau/Aβ1-42 ratio score. The APoE ε4 status was significantly different between the two groups divided by Ptau/Aβ1-42 ratio score. All other clinical characteristics do not differ significantly in groups. Plasma GFAP and plasma YKL-40 concentration were significantly higher in the preclinical AD group based on the Ptau/Aβ1-42 ratio before and after adjusting for covariates age, sex, and APOE ε4 status as these variables also correlated with GFAP, see Fig. 2. YKL-40 was significantly different between APOE ε4 carriers versus non-carriers. Eotaxin-1 was significantly different between the sexes. MCP-1 did not show any difference.

Correlation between biomarkers

Figure 3 represents a heatmap with p-values calculated for all inflammatory biomarkers plus Aβ42, Ptau/Aβ42 ratio, and age. Plasma YKL-40, GFAP, Aβ42, and Ptau/Aβ42 ratio correlated with age. YKL-40 also correlated with GFAP and Ptau/Aβ42 ratio. GFAP correlated with Ptau/Aβ42 ratio. MCP-1 is positively correlated with eotaxin-1 and Aβ42. Aβ42 and Ptau/Aβ42 ratio are strongly correlated. $N=121$ for Aβ, which are the samples of all original subjects included in the main study except the subjects with a CSF Aβ42 concentration of >1700 as no exact concentrations are available.

Discussion

In the current exploratory study, we aimed to investigate plasma biomarkers related to neuroinflammation associated with AD in a cohort of subjects with preclinical AD and to compare these to healthy elderly, both defined by Aβ1-42 CSF status. Of the four inflammatory plasma biomarkers investigated in this study, only GFAP was significantly higher in subjects with preclinical AD compared to healthy elderly. When defining preclinical AD based on the Ptau181/Aβ1-42 ratio, GFAP and YKL-40

Aβ+ (n=50)	Aβ− (n=50)	p	
Aβ level (mean, SD)	706.0 (174.36)	>1700	0.41
Sex (male/female)	33/17	29/21	0.225
BMI (mean, SD)	26.07 (3.95)	25.17 (3.44)	0.101
Age (years, mean, SD)	73.40 (4.72)	71.88 (4.45)	0.003
APOE ε4 carrier (n, %)	25 (50%)	7 (14.6%)	0.431
MMSE (mean, SD)	28.60 (1.41)	28.82 (1.37)	0.397
CDR (mean, SD)	0 (0)	0 (0)	0.358
GFAP pg/mL (mean, SD)	195.1 ± 87.13	1340 ± 50.71	<0.001
YKL-40 pg/mL (mean, SD)	54,662.3 ± 39,697.31	82,947.1 ± 83,418.38	0.397
MCP-1 pg/mL (mean, SD)	91.74 ± 16.72	97.98 ± 34.01	0.783
Eotaxin-1 pg/mL (mean, SD)	195.0 ± 57.87	2040 ± 94.80	0.358

P values in bold font were considered significant ($p<0.05$). Independent T-test and Pearson chi-square test were applied as appropriate.
were significantly different between groups. This could indicate that GFAP and YKL-40 are more sensitive markers of the incipient inflammatory process that occurs in response to the beta-amyloid misfolding and aggregation that is ongoing as indicated by the lowered Aβ1-42 protein levels in the CSF.

With the increasing prevalence of AD [27], it would be interesting to look at “biomarker-positive” subjects, 50% of whom will develop AD [24], and further investigate the course over time of the inflammatory biomarkers described here. As we found in the current study, evidence of astrogliosis as demonstrated by elevated GFAP was already increased in healthy subjects positive for CSF Aβ1-42. If we can further characterize these subjects, we may be able to define a group of healthy subjects more likely to develop AD and treat these subjects in early (neuroinflammatory or CSF Aβ1-42 lowering) clinical trials. Measurement of GFAP and YKL-40 in plasma is useful in healthy subjects with preclinical AD as it allows to determine the level of neuroinflammation in subjects possibly developing AD and can provide more information on the relationship between neuroinflammation and the development of AD. Disease-modifying treatments targeting neuro-inflammation early in the preclinical disease process of AD may delay disease progression and

![Significant violin plot for GFAP among healthy elderly subjects with a CSF profile consistent with Alzheimer’s disease, n=50 (Aβ+ [CSF Aβ42 <1000]) versus healthy elderly subjects with normal CSF Aβ—, n=50 (CSF Aβ42>1000)](image)

Table 2 Cross-sectional demographics and clinical characteristics of the studied population based on the Ptau/Aβ1-42 ratio score

Ptau/Aβ + (n=36)	Ptau/Aβ – (n=64)	p	
Ptau/Aβ level (mean, SD)	685.2 (163.7)	1494.2 (401.9)	0.338
Sex (male/female)	26/10	36/28	0.166
BMI (mean, SD)	26.2 (3.8)	25.3 (3.7)	0.338
Age (years, mean, SD)	73.8 (4.9)	72.0 (4.4)	0.039
APOE ε4 carrier (n, %)	18 (50%)	14 (22.6%)	0.001
MMSE (mean, SD)	28.5 (1.5)	28.8 (1.4)	0.314
CDR (mean, SD)	0 (0)	0 (0)	0.602
GFAP pg/mL (mean, SD)	211.8 ± 97.6	138.8 ± 49.9	<0.001
YKL-40 pg/mL (mean, SD)	87038.7 ± 74252.3	60583.7 ± 54067.1	0.012
MCP-1 pg/mL (mean, SD)	92.6 ± 18.4	96.4 ± 30.7	0.602
Eotaxin-1 pg/mL (mean, SD)	193.6 ± 62.9	202.5 ± 86.7	0.630

P values in bold font were considered significant (p<0.05). Independent T-test, Pearson chi-square test, and Mann-Whitney tests were applied as appropriate.
Fig. 2 Significant violin plots for GFAP and YKL-40 compared to Ptau/Aβ42 ratio
prevent or delay cognitive decline as inflammation can be expected to influence cognitive performance independently from Aβ pathology [28].

Our results showing an increase in GFAP in the preclinical stage are in line with Verberk et al., (2021) who studied a similar population of cognitively healthy elderly and found GFAP to be associated with increased risk of progression to dementia and steeper cognitive decline [18]. Aβ measured in plasma by Chatterjee et al. (2021) [19] in cognitively normal older adults resulted in two groups, Aβ+ and Aβ− subjects comparable to our studied population. This study also found that GFAP was elevated in subjects with preclinical AD. Our study therefore reproduces these study results, demonstrating that these findings are real and independent of the specific samples used by Chatterjee or by us. Pereira et al. (2021) [28] mention that plasma GFAP might be specific to AD as it correlated with Aβ pathology in their study with comparable cognitive normal subjects, which is supported by the differences found in our study but not the correlation with Aβ itself. Alternatively, this could be the result of a smaller sample size. Further research is needed to determine if GFAP can be used as a CSF-independent marker for (preclinical) AD.

When YKL-40 is measured in CSF, this could indicate that microglial activation is taking place, even though YKL-40 concentrations are already measurable in subjects without lowered Aβ measured in CSF [29]. Several associations have been found between CSF YKL-40 and neurodegenerative biomarkers in CSF namely total tau protein and significant differences have been found between AD patients, healthy elderly, and subjects with preclinical AD [30]. Demonstrating differences in plasma levels of YKL-40 between healthy elderly and subjects with preclinical AD could help to identify inflammatory processes in a less invasive manner. In our study, plasma YKL-40 did not correlate with CSF Aβ1-42 and was not different between subjects with preclinical AD and healthy controls. Thus, no conclusion can be drawn about glial activation by YKL-40 in response to the accumulation of Aβ in this particular sample of healthy subjects, perhaps because it is too early in the disease process to identify differences in YKL-40 concentrations in plasma. When redefining the subjects based on CSF Ptau181/ Aβ1-42 ratio scores, plasma YKL-40 concentration was found to differ between groups. This comparison was performed post hoc, however. As plasma YKL-40 was not previously reported to be different between subjects with preclinical AD and healthy controls, this finding is of interest and a reason to further investigate this and confirm it in a properly powered study aimed at replication. Comparable to GFAP, YKL-40 levels increase with age, in CSF, and also in plasma. When measured in plasma, higher plasma YKL-40 concentrations seem to be correlated with male sex, older age, APOE ε4 status, and cerebral accumulation of Aβ measured with PET [31]. Our sample did not find YKL-40 to be correlated with age, sex, APOE ε4 status and Aβ measured in CSF. GFAP showed to be correlated with sex, age, and Aβ status in our sample. GFAP and YKL-40 can be found in a vast range of peripheral cells expressing it and might therefore be measurable in plasma. Previous studies, however, conclude that measuring GFAP in plasma is related to CNS inflammation and severity of disease [32, 33]. YKL-40 has been found to be increased in subjects with streptococcal pneumonia and could therefore have a peripheral origin and confound to the measurability in plasma which should be taken into account when interpreting YKL-40 results in plasma [34].

The subjects investigated in the current study were part of a larger observational study; therefore, information on cognitive status was measured using a computerized cognitive test battery and several paper and pencil tasks were available. Our two groups, preclinical AD and healthy elderly, were specifically different regarding Abeta1-42 measured in CSF. We divided GFAP and YKL-40 scores into “high” levels and “low” levels of inflammation by using the median and compared these groups with the total group of subjects. None of the cognitive domains (e.g., memory, attention, overall cognitive performance measured with MMSE and CDR) differed significantly between groups and therefore there was no indication of early cognitive decline in the otherwise healthy subjects with elevated neuroinflammatory markers. This is in contrast to other, longitudinal studies, which have found that
plasma (and CSF) GFAP could predict global cognitive decline [18] even though plasma GFAP was not always measured longitudinally [28].

Limitations
The correlation that we found between CSF Aβ42 and CSF Ptau/Aβ42 ratio is inherently based on the use of CSF Aβ42 in the latter ratio. YKL-40 being significantly different in the Ptau/Aβ42 ratio condition and not being different based on Aβ alone could be a result of this.

GFAP correlated significantly with CSF Ptau/Aβ42 ratio but not with CSF Aβ42, which could possibly be explained by differences in sample size. The calculation of GFAP in correlation with Aβ only includes the Aβ+ subjects as these are continuous values (n=50), the Aβ− subjects all had Aβ levels of >1700 (no exact value). For calculating the ratio score Ptau/Aβ42 the whole data set could be used (n=98) with Aβ= 1700. When including a larger N, also including the 50 Aβ− subjects, the correlation between GFAP and CSF Aβ42 could have been significant as we have established a difference between groups on GFAP and Aβ+/Aβ− subjects. For the calculation of the correlation between Aβ42 and age, the original data set of 200 subjects was used, of which 121 subjects had exact Aβ42 values. The subjects with Aβ42 concentrations of >1700 pg/mL were not included as no exact concentrations were known; it was only indicated that levels were >1700 pg/mL. It is, however, unlikely that the correlation found between Aβ42, and age would be non-significant if exact values for all subjects with levels >1700 pg/mL were available.

The subjects included in this study were not referred to a memory clinic but voluntarily participated in this study. No subjects with proof of (subjective) memory complaints participated, demonstrated by a MMSE of >24 during prescreening, and during the study confirmed by a CDR of 0 and IADL of 0. However, subjects with insecurities about their cognitive performance might be more likely to participate in observational studies.

This study was exploratory and further research is needed to confirm the results. Data in this study was not corrected for multiple comparisons.

Conclusions
Measuring GFAP and YKL-40 in plasma of subjects with preclinical AD could be of added value to further differentiate subjects with lowered CSF Aβ42 from otherwise healthy elderly to better define the preclinical AD status. However, this study was cross-sectional and subject discrimination needs further analyses. If further research shows that these inflammatory plasma biomarkers are specific for (preclinical) AD, measuring these can be an important step forward in characterizing otherwise healthy elderly with preclinical AD in a less invasive manner.

Abbreviations
A β: Amyloid beta; AD: Alzheimer’s disease; AUC: Area under the curve; CHI2L1: Chitinase-3-like protein-1; CI: Confidence interval; CSF: Cerebrospinal fluid; FTD: Frontotemporal dementia; GFAP: Glial fibrillary acidic protein; LBD: Lewy body dementia; MCI: Mild cognitive impairment; MCP-1: Monocyte chemoattractant protein-1; MMSE: Mini-Mental State Examination; PD: Parkinson’s disease; PET: Positron emission tomography; Ptau: Phosphorylated Tau; ROC: Receiver operating characteristics; WHO: World Health Organization.

Acknowledgements
We would like to thank the staff for the help in the collection of the data and the analyses of the data.

Authors’ contributions
The study design, collection of data, and analysis and interpretation of the data have been a mutual effort of the authors. The authors read and approved the final manuscript.

Funding
This study was investigator-initiated and funded by CHDR.

Availability of data and materials
The datasets generated during this study are not available by request.

Declarations
Ethics approval and consent to participate
The study was approved by the ethics committee of the Leiden University Hospital, the Netherlands. The study was conducted according to the Dutch act on Medical Research Involving Human Subjects (WMO) and in compliance with Good Clinical Practice (ICH-GCP) and the Declaration of Helsinki. The trial was retrospectively registered in the international trial register (RCTN79036545).

Written and informed consent was obtained from all the included participants.

Consent for publication
All authors consent to the publication of this study.

Competing interests
The authors declare that they have no competing interests.

Author details
1. Centre for Human Drug Research, Leiden, the Netherlands. 2. Leiden University Medical Center, Leiden, the Netherlands. 3. Neurochemistry Laboratory, Department of Clinical Chemistry, Amsterdam Neuroscience, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands.

Received: 23 November 2021 Accepted: 21 July 2022 Published online: 03 August 2022

References
1. Blennow K, Zetterberg H. Biomarkers for Alzheimer’s disease: current status and prospects for the future. J Intern Med. 2018;284(6):643–63.
2. Zetterberg H, Bendlin BB. Biomarkers for Alzheimer’s disease—preparing for a new era of disease-modifying therapies. Mol Psychiatry. 2021;26(1):296–308.
3. Budelier MM, Bateman RJ. Biomarkers of Alzheimer disease. J Appl Lab Med. 20195(1):194–208.
4. Bjorkl C, Sandvig A, Sandvig I. Bridging the gap between fluid biomarkers for Alzheimer’s disease, model systems, and patients. Frontiers in aging Neuroscience. 2020;12(272). https://www.frontiersin.org/articles/10.3389/fnagi.2020.00272/full.
5. Olsson B, et al. CSF and blood biomarkers for the diagnosis for Alzheimer’s disease: a systematic review and meta-analysis. Lancet Neurol. 2016;15(7):675–84.
6. Huang LK, Chao SP, Hu CJ. Clinical trials of new drugs for Alzheimer disease. J Biomed Sci. 2020;27(1):18.
7. Dunn B, Stein P, Cavazzoni P. Approval of Aducanumab for Alzheimer disease—the FDA’s perspective. JAMA Intern Med. 2021;181(10):1276–8.
8. Jansen WJ, et al. Prevalence of cerebral amyloid pathology in persons without dementia: a meta-analysis. JAMA. 2015;313(19):1924–38.

9. Saigareeva AR, et al. The role of microglia in the development of neurodegeneration. Neurou Sci. 2020;41(12):3609–15.

10. Heneka MT, et al. Neuroinflammation in Alzheimer’s disease. Lancet Neurol. 2015;14(4):388–405.

11. Bettcher BM, et al. MCP-1 and eotaxin-1 selectively and negatively associate with memory in MCI and Alzheimer’s disease dementia phenotypes. Alzheimers Dement (Amst). 2016;3:91–7.

12. Haas D. Chapter 15 - biomarker for Alzheimer’s disease. In: Deigner H-P, Kohl M, editors. Precision medicine: Academic; 2018. p. 333–49.

13. Morgan AR, et al. Inflammatory biomarkers in Alzheimer’s disease plasma. Alzheimers Dement. 2019;15(6):776–87.

14. Oechl P, et al. Giall Fibrillary acidic protein in serum is increased in Alzheimer’s disease and correlates with cognitive impairment. J Alzheimers Dis. 2019;67(2):481–8.

15. Villar-Pique A, et al. Plasma YKL-40 in the spectrum of neurodegenerative dementia. J Neuroinflammation. 2019;16(1):145.

16. Muramori F, Kobayashi K, Nakamura I. A quantitative study of neurofibrillary tangles, senile plaques and astrocytes in the hippocampal subdivisions and entorhinal cortex in Alzheimer’s disease, normal controls and non-Alzheimer neuropsychiatric diseases. Psychiatry Clin Neurosci. 1998;52(6):593–9.

17. Jesse S, et al. Giall Fibrillary acidic protein and protein S-100B: different concentration pattern of giall proteins in cerebrospinal fluid of patients with Alzheimer’s disease and Creutzfeldt-Jakob disease. J Alzheimers Dis. 2009;17(3):541–51.

18. Verberk IMW, et al. Serum markers giall fibrillary acidic protein and neurofilament light for prognosis and monitoring in cognitively normal older people: a prospective memory clinic-based cohort study. Lancet Healthy Longevity. 2021;2(2):e87–95.

19. Chatterjee P, et al. Plasma giall fibrillary acidic protein is elevated in cognitively normal older adults at risk of Alzheimer’s disease. Transl Psychiatry. 2021;11(1):27.

20. Mackay CR. Chemokines: immunology’s high impact factors. Nat Immunol. 2001;2(2):95–101.

21. Prins S, et al. A cross-sectional study in healthy elderly subjects aimed at development of an algorithm to increase identification of Alzheimer pathology for the purpose of clinical trial participation. Alzheimers Res Ther. 2021;13(1):132.

22. Lewczuk P, et al. Biomarkers of Alzheimer’s disease and mild cognitive impairment: a current perspective. Adv Med Sci. 2015;60(1):76–82.

23. Willemse EAJ, et al. Comparing CSF amyloid-beta biomarker ratios for two automated immunoassays, Elecsys and Lumipulse, with amyloid PET status. Alzheimer’s Dement (Amsterdam, Netherlands). 2021;13(1):e12182.

24. Blennow K, et al. Predicting clinical decline and conversion to Alzheimer’s disease or dementia using novel Elecsys Abeta(1-42), pTau and tTau CSF immunoassays. Sci Rep. 2019;9(1):19024.

25. Campbell MR, et al. P-tau/Aβ42 and Aβ42/40 ratios in CSF are equally predictive of amyloid PET status. Alzheimers Dement (Amst). 2021;13(1):e12190.

26. Teunissen CE, et al. A consensus protocol for the standardization of cerebrospinal fluid collection and biobanking. Neurology. 2009;73(22):1914–22.

27. WHO. https://www.who.int/news-room/fact-sheets/detail/dementia. https://www.who.int/news-room/fact-sheets/detail/dementia 21 September 2020 [cited 2021 18Aug2021]. 2020

28. Pereira JB, et al. Plasma GFAP is an early marker of amyloid-β but not tau pathology in Alzheimer’s disease. Brain. 2021.

29. Hellwig K, et al. Neurogranin and YKL-40: independent markers of synaptic degeneration and neuroinflammation in Alzheimer’s disease. Alzheimers Res Ther. 2015;7:74.

30. Baldacci F, et al. Diagnostic function of the neuroinflamatory biomarker YKL-40 in Alzheimer’s disease and other neurodegenerative diseases. Expert Rev Proteom. 2017;14(4):285–99.

31. Vergallo A, et al. Association of plasma YKL-40 with brain amyloid-β levels, memory performance, and sex in subjective memory complainers. Neurobiol Aging. 2020;96:22–32.

32. Högel H, et al. Serum giall fibrillary acidic protein correlates with multiple sclerosis disease severity. Mult Scler. 2020;26(2):210–9.

33. Wu L, et al. Serum giall fibrillary acidic protein and ubiquitin C-terminal hydrolase-L1 for diagnosis of sepsis-associated encephalopathy and outcome prognostication. J Crit Care. 2019;52:172–9.

34. Kronborg G, et al. Serum level of YKL-40 is elevated in patients with Stenotococcus pneumoniae bacteremia and is associated with the outcome of the disease. Scand J Infect Dis. 2002;34(5):323–6.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.