Water absorption of cellular concretes made on the basis of technogenic raw materials

A Baranova¹ and V Chernykh¹

¹Department of Industrial and Civil Engineering, Angarsk State Technical University, Tchaikovsky str., 60, Angarsk, 665835, Russia

E:mail: baranova2012aa@mail.ru

Abstract. The article presents a comparative analysis of water absorption of non-autoclaved foam concretes based on microsilica and autoclaved aerated concretes based on fly ash. It is experimentally established that the water absorption by mass of foam concrete the grade D500 is 19.6 % higher than that of aerated concrete of the same grade. Open porosity, which is numerically equal to water absorption by volume, is also higher for non-autoclaved foam concrete by 30.1 %. Closed porosity for autoclaved aerated concretes based on fly ash the grade D500 is 53.9 % higher compared to non-autoclaved foam concrete of the same grade. The dependences of open and closed porosity of cellular concretes based on technogenic raw materials on their average density are experimentally derived. In the course of research, it was determined that water absorption, open and closed porosity of cellular concretes at the same average density depends on the type of aggregate and on the hardening conditions.

Cellular concretes due to its porous structure are belonging to be energy-efficient building materials. The use of man-made waste in their production allows not only to improve the mechanical characteristics and reduce the cost of production, but also to solve a number of environmental problems.

For cellular concretes, average density and porosity are important indicators. The decrease in density due to the increase in porosity leads to increased water absorption of the material (40÷50 % by volume or more), which increases the thermal conductivity and reduce the thermal insulating abilities. And from the ability of the enclosing structure to absorb and retain humidity depends on its strength and frost resistance. The smaller the amount of humidity it can absorb a block from the cellular concrete is, the better his performance.

Depending on the porosity formation method, cellular concretes are divided into aerated concretes obtained by introducing gas-forming agents into the solution mixture, and foam concretes produced using pre-prepared foam.

Under the conditions of hardening, cellular concretes is divided into autoclaved and non-autoclaved. Autoclaved cellular concretes gain strength under saturated steam conditions in autoclaves at a temperature of 175±195 °C and a pressure of 0.8÷1.2 MPa for 10÷12 hours. Non-autoclaved cellular concretes hardens in natural conditions at a temperature of 20±2 °C and a humidity of 95÷100 % for 28 days [1].

Many works of Russian and foreign authors have been devoted to the study of concretes water absorption [2÷21]. The properties of cellular concretes depend on many factors: the structure (pore content, uniformity of their distribution), the method of pore formation and their size, the type of binders.
and other components of the composition, and the conditions of hardening. It is known that aerated concrete has both closed and open pores, and foam concrete has mostly closed porosity.

The aim of the work was to determine and compare water absorption, open and closed porosity of autoclaved aerated concretes based on fly ash and non-autoclaved foam concretes based on microsilica.

The following materials were used in the research:
- Portland cement of the grade CEM I 42.5 H produced by JSC «Angarskcement»;
- microsilica from filters of dust collectors of JSC «Kremniy»;
- hyperplasticizer based on polycarboxylates «MC-Power-Flow-3100»;
- synthetic foaming agent Penta Pav 430 (grade A).
- blocks of autoclaved aerated concretes based on fly ash of the grades on average density D500 and D600 produced by CJSC «Stroikompleks».

The research methodology was as follows. Samples of non-autoclaved foam concrete based on microsilica of the grades D500 and D700 with dimensions of 100x100x100 mm were manufactured in a laboratory using classical technology and gained strength for 28 days in chamber of normal hardening [22, 23].

Samples of 50x100x100 mm in size were cut from blocks of autoclaved aerated concretes based on fly ash [24].

Then all samples of cellular concrete were dried to a constant mass at a temperature of 105±5 °C and tested for water absorption in accordance with GOST 12730.3 Concretes. Method of determination of water absorption.

The test results are presented in tables 1÷2 and shown in figures 1÷4.

Table 1. Water absorption of cellular concrete samples.

Parameter	The grade of foam concrete	The grade of aerated concrete		
	D500	D700	D500	D600
The average density, \(\rho_{\text{m}} \), kg/m³	531	660	490	603
Water absorption by mass, \(W_{\text{m}} \), %, after				
1 day	70.3	42.5	63.6	56.4
7 days	75.8	49.0	69.8	59.5
14 days	82.3	53.2	75.5	62.8
21 days	88	57.0	76.7	65.8
28 days	92.6	60.4	77.8	66.8
35 days	96.5	62.5	81.3	70.3
42 days	99.5	63.9	83.0	71.1
49 days	100.9	64.3	84.4	72.0
Water absorption by volume, \(W_{\text{v}} \), %, after				
1 day	37.3	28.0	31.1	34.0
7 days	40.3	32.4	34.1	35.9
14 days	43.7	35.1	36.9	37.9
21 days	46.7	37.6	37.6	39.7
28 days	49.2	39.8	38.7	40.3
35 days	51.3	41.2	39.8	42.4
42 days	52.8	42.2	40.5	42.8
49 days	53.6	42.4	41.2	43.4
The values of water absorption by mass and volume, as well as the total, open and closed porosity of autoclaved aerated concretes based on fly ash and non-autoclaved foam concretes based on microsilica after seven weeks of testing are presented in Table 2 and shown in Figures 3-4.

Table 2 shows that water absorption by mass in non-autoclaved foam concrete based on microsilica the grade D500 is 19.6 % higher than in autoclaved aerated concrete based on fly ash of the same grade. Open porosity, which is numerically equal to water absorption by volume, is also higher for non-autoclaved foam concrete by 30.1 %. Closed porosity of autoclaved aerated concrete based on fly ash the grade D500 is 53.9 % higher compared to non-autoclaved foam concrete of the same grade.

Table 2. Water absorption and porosity of cellular concretes.
Parameter	The grade of foam concrete	The grade of aerated concrete		
	D500	D700	D500	D600
The average density, ρ_{m}, kg/m3	531	660	490	603
Water absorption by mass, W_{m}, %	100.9	64.3	84.4	72.0
Water absorption by volume, W_{v}, %	53.6	42.4	41.2	43.4
Total porosity, P_{tot}, %	79.6	74.6	81.2	76.8
Open porosity, P_{op}, %	53.6	42.4	41.2	43.4
Closed porosity, P_{cl}, %	26.0	32.2	40.0	33.4

Figure 3. Dependence of open porosity from the average density of cellular concretes.

Figure 4. Dependence of closed porosity from the average density of cellular concretes.
Changes in the open and closed porosity of cellular concretes depending on their average density (figures 3, 4) are described by the following equations.

For autoclaved aerated concrete based on fly ash:

\[
P_{op} = 31.66 + 0.0195 \cdot x, \tag{1}
\]

\[
P_{cl} = 68.619 - 0.0584 \cdot x. \tag{2}
\]

For non-autoclaved foam concrete based on microsilica:

\[
P_{op} = 99.702 - 0.0868 \cdot x, \tag{3}
\]

\[
P_{cl} = 0.4791 + 0.0481 \cdot x, \tag{4}
\]

where \(x\) – is the average density of cellular concretes, kg/m\(^3\).

Thus, it is experimentally established that:

- the water absorption by mass of non-autoclaved foam concrete based on microsilica the grade D500 is 19.6 % higher than that of autoclaved aerated concrete based on fly ash of the same grade;
- open porosity, numerically equal to water absorption by volume, is also higher for non-autoclaved foam concrete by 30.1 %;
- closed porosity of autoclaved aerated concrete based on fly ash the grade D500 is higher by 53.9 % compared to non-autoclaved foam concrete of the same grade.

The dependence of open and closed porosity of cellular concretes based on technogenic raw materials from their average density has been established experimentally. A comparative analysis of water absorption of autoclaved aerated concrete based on fly ash with non-autoclaved foam concrete based on microsilica is performed. In the course of research, it was determined that water absorption, open and closed porosities of cellular concretes at the same average density depends on the type of aggregate and on the hardening conditions.

References
[1] Bygajchuk V A and Baranova A A 2020 Comparative analysis of water absorption and closed porosity of cellular concrete MTaSTP (STINTP) 1 pp 153-154
[2] Savvinova M E 2019 Investigation of water absorption of modified "skinny" concrete for the construction of road pavement bases PSR.eppd (V sbornik: PNI:oppr) pp 51-54
[3] Shishkanova V N and Nikitina K V 2019 Investigation of the influence of metakaolin on water absorption and strength of concrete IaPoYPiR (V sbornik: PNI:oppr) pp 56-64
[4] Andreeva A V and Savvinova M E 2017 Water absorption of fine-grained concrete (Vodopogloschenie melkozernistogo betona) XIX ISR in memory of A. A. UKHTOMSKY pp 19-20
[5] Eroshkina N A, Korovkin M O and Urazova A A 2016 Study of water absorption kinetics of geopolymer concrete ESMTW.I 4 pp 158-164
[6] Sobolev V I and Chernigovskaya T N 2020 Research into the dynamics of radio telescope foundations using laser vibration measuring equipment Proceedings of Universities. Investment. Construction. Real estate 10(3) pp 420–427
[7] Komarov A K, Ivanov I A and Lundenbazar B 2019 Theory and practice of the use of gabions for forming protective structures Proceedings of Universities. Investment. Construction. Real estate 9(1) pp 78–89 DOI: 10.21285/2227-2917-2019-1-78-89
[8] Korovkin M O, Eroshkina N A, Teplova M F and Korovchenko I V 2015 Research on the kinetics of water absorption of fine-grained concrete YS (MU) 13 (93) pp 132-135
[9] Hvastunov V L, Kalashnikov V I, Hvastunov A V and Pausk V V 2014 Parameters of water absorption and porosity of powder-activated high-strength concrete with low specific consumption of cement per unit of strength RAC (RAS) 4 pp 45-51
[10] Fedyuk R S 2016 Investigation of water absorption of fine-grained fiber concrete on a composite binder BR (FI) 2-2 pp 303-307
[11] Merzlyakov A O 2019 Study of the traceability of sodium formate additive and its effect on water absorption of concrete concrete IS (IN) 1 (24) pp 289-291
[12] Zhengyu, Pan Changsheng and Lijian 2014 The influence of different hydrophobic agent on the
water absorptivity of foam concrete AMSEM 665 pp 192-195
[13] Liu C, Luo J and Li Q 2019 Water-resistance properties of high-belite sulfoaluminate cement-based ultra-light foamed concrete treated with different water repellents CBM 228 116798
[14] Nambiar E, Kunhanandan K and Ramamurthy K 2007 Sorption characteristics of foam concrete CCR 37 (9) pp 1341-47
[15] Ioannou I, Hamilton A and Hall C 2008 Capillary absorption of water and n-decane by autoclaved aerated concrete CCR 38 (6) pp 766-771
[16] Kumar E Muthu and Ramamurthy K 2017 Influence of production on the strength, density and water absorption of aerated geopolymer paste and mortar using Class F fly ash CBM 156 pp 1137-49
[17] Namsone E, Sahmenko G and Namsone E 2017 Reduction of the capillary water absorption of foamed concrete by using the porous aggregate IMST IOP CS 251 UNSP 012030
[18] Lin K-L, Lee T-C and Chang J-C 2013 Water absorption and retention of porous ceramics cosintered from waste diatomite and catalyst EP&SE 32 (3) pp 640-648
[19] Raj A, Sathyana D and Mini K M 2019 Physical and functional characteristics of foam concrete: A review CBM 221 pp 787-799
[20] Abd Elrahman M, Chung S-Y and Stephan D 2019 Effect of different expanded aggregates on the properties of lightweight concrete MCR 71 (2) pp 95-107
[21] Karolina R and Sianipar Y G C 2018 The utilization of stone ash on cellular lightweight concrete TALEN TA-CEST IOP CS 309 UNSP 012084
[22] Guimaraes A S, Ribeiro I M and de Freitas V P 2017 A tool to predict water absorption in porous building materials JPM 20 (2) pp 127-141
[23] Jitchatayaphum K, Sinsiri T and Jaturapitakkul C 2013 Cellular lightweight concrete containing high-calcium fly ash and natural zeolite LIMMM 20 (5) pp 462-471
[24] Baranova A and Bygajchuk V 2020 Investigation of water absorption of non-autoclaved foam concretes based on microsilica IOP CS: MSaE 880 doi:10.1088/1757-899X/880/1/012003
[25] Bygajchuk V A and Baranova A A 2020 Water absorption of non-autoclaved foam concretes based on microsilica MTaSTP (STiNTP) 1 pp 149-150
[26] Bygajchuk V A and Baranova A A 2020 Water absorption of autoclaved aerated concrete made with the use of fly ash MTaSTP (STiNTP) 1 pp 151-152