کارگاه‌های آموزشی مرکز اطلاعات علمی

مقاله نویسی علوم انسانی

اصول تنظیم قراردادها

آموزش مهارت های کاربردی در تدوین و چاپ مقاله
Cytotoxic Effect of Some 1, 4-Dihydropyridine Derivatives Containing Nitroimidazole Moiety

Ramin Miri, Katayoun Javidnia, Zahra Amirghofran, Seyyed Hossein Salimi, Zahra Sabetghadam, Savis Meili and Ahmad Reza Mehdipour

Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz, Iran. Department of Medicinal Chemistry, Faculty of Pharmacy, Shiraz University of Medical Sciences, Iran. Department of Immunology, Faculty of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran.

Abstract

The 1,4-dihydropyridine (DHP) derivatives are a known class of calcium channel blockers. Some derivatives of DHP showed significant cytotoxicity. It was shown that this effect may not be the result of interaction with Ca2+ channels. In this study, we performed an investigation about the intrinsic cytotoxicity of some derivatives of DHP containing nitroimidazole moiety on their C4 position on four different cancer cell lines (Raji, K562, Fen and HeLa). The result showed that these compounds had moderate-good cytotoxic activity. In addition, QSAR model shows the importance of N atom in cytotoxicity; Ca2+ channels.

Keywords: 1, 4-Dihydropyridines; Cytotoxicity; MTT assay; Nitroimidazole.

Introduction

The 1,4-dihydropyridine (DHP) derivatives, known as calcium channel antagonists, are used for treatment of cardiovascular diseases such as hypertension and angina pectoris (1-4). It has been discovered that DHPs possess a wide range of other beneficial biological activities such as anticonvulsant analgesic and are also used as a chemical drug delivery systems especially in brain delivery (5-8). Recently, it has been proved that these compounds make a new class of multidrug resistance (MDR) reversals in cancer treatment. Therefore, extensive investigations were made in order to find new DHP derivatives as MDR reversal agents (9-11).

Beside the reversing activity of DHPs, there are several reports about their intrinsic Cytotoxicity. Particularly, some derivatives showed significant cytotoxicity such as dexniguldipine and some dibenzoyl derivatives (12-15). In addition, there are some reports on the effects of DHPs on potentiation of antitumoral and antimetastatic activity of some common cytotoxic drugs (16). Mechanistic investigations were proved that cytotoxicity of DHPs may not be the result of interaction with Ca2+ channels although it might be related to other pathways in which calcium is involved such as calcium/calmodulin pathway or other cellular pathways like inhibition of topoisomerase I (12, 17, 18).

In this study, we performed an investigation about the intrinsic cytotoxicity of some derivatives of DHP which were bearing a nitroimidazole group on the C4 position.
Cytotoxic Effect of Some 1, 4-Dihydropyridine Derivatives

Table 1. Structure of DHP derivatives used in this study and their calcium channel antagonist activity.

Compound	R1	R2	IC50 (µM)
A1	CH3	CH	9.03×10^{-11}
A2	CH3(CH)2	CH3(CH)2	8.78×10^{-11}
A3	CH3(CH)2	CH3(CH)2	5.11×10^{-11}
A4	CH3(CH)2	CH3(CH)2	4.38×10^{-10}
A5	CH3(cyclopropyl)	CH3(cyclopropyl)	2.81×10^{-4}
A6	CH3	CH(CH3NO3)	3.86×10^{-11}
A7	CH3(CH)2	CH3(CH)2OOC(l-methyl-pyrrolidin)	Isolate
A8	CH3	1-ethyl-4-(4-fluorophenyl)piperazine	2.61×10^{-15}
A9	CH3	CH3(CH)2OOC(l-methyl-pyrrolidin)	Isolate
A10	CH3(CH)2	CH3(CH)2	1.09×10^{-10}
A11	CH3(CH)2	CN	2.1×10^{-11}
A12	CH3(CH)2	CH3(CH)3NO2	4.87×10^{-11}
A13	CH3(CH)2	CN	5.4×10^{-9}
A14	CH3	CH3CN	6.86×10^{-12}
A15	CH3(CH)2	1-ethyl-4-(4-fluorophenyl)piperazine	2.13×10^{-11}
A16	CH3(CH)2	1-ethyl-4-(4-fluorophenyl)piperazine	4.88×10^{-11}
A17	CH3	CH3(CH)3NO2	9.03×10^{-11}

Table 2. Cell growth inhibitory activity of compounds a-e in vitro (IC30).

Compound	Raji	K562	Fen	HeLa
A1	<1	>1	<1	<1
A2	<1	>1	<1	<1
A3	<1	>1	<1	<1
A4	<1	>1	<1	<1
A5	<1	<1	<1	<1
A6	<1	<1	<1	<1
A7	<1	<1	<1	<1
A8	<1	<1	<1	<1
A9	<1	<1	<1	<1
A10	<1	<1	<1	<1
A11	>100	52.5	51.5	53.5
A12	<1	<1	<1	<1
A13	<1	<1	<1	<1
A14	<1	<1	<1	<1
A15	<1	<1	<1	<1
A16	<1	<1	<1	<1
A17	22.4	44.4	44.7	35.5
DMSO	92.4	80.4	71.4	81.1

α, IC30 is the molar concentration causing 30% growth inhibition of tumor cells.

Table 3. Cell growth inhibitory activity of compounds a-e in vitro (IC15).

Compound	Raji	K562	Fen	HeLa
A1	<1	>1	<1	<1
A2	<1	>1	<1	<1
A3	<1	>1	<1	<1
A4	<1	>1	<1	<1
A5	<1	<1	<1	<1
A6	<1	<1	<1	<1
A7	<1	<1	<1	<1
A8	<1	<1	<1	<1
A9	<1	<1	<1	<1
A10	<1	<1	<1	<1
A11	>100	52.5	51.5	53.5
A12	<1	<1	<1	<1
A13	<1	<1	<1	<1
A14	<1	<1	<1	<1
A15	<1	<1	<1	<1
A16	<1	<1	<1	<1
A17	22.4	44.4	44.7	35.5
DMSO	92.4	80.4	71.4	81.1

α, IC15 is the molar concentration causing 15% growth inhibition of tumor cells.

Experimental

Dihydropyridine compounds

All compounds used in this study have been synthesized in our chemistry lab and their synthesis process and their Ca2+ blocking activity were previously reported (8, 19-23). Structures of compounds and their Ca channel blocking activity are presented in Table 1.

Cell lines and reagents

Five cell lines including K-562 (chronic myelogenous leukemia), HeLa (carcinoma of the cervix), Raji (Human, B cell Lymphoma), and Fen (bladder carcinoma cell line) were all obtained from the Iran Pasteur Institute, Tehran, Iran. Cells were cultured in RPMI-1640 (Sigma, USA) supplemented with 10% fetal bovine serum (Gibco, USA), 100 IU/mL penicillin and 100 µg/mL streptomycin (Biosera, England). Cells were cultured in 50 cm² flask (Nunc, Denmark) with 5 mL of culture medium in humidified 5% CO2 incubator at 37°C.

Cytotoxicity evaluation

Appropriate amount of compounds was mixed with DMSO (dimethyl sulfoxide). Then, four concentration (10, 100, 50, 1000 µM) were made with serial dilution by RPMI-1640. DMSO, as the negative control, was diluted with the same method. For positive control, doxorubicin was mixed with RPMI-1640 to make similar concentrations. MTT [3-(4, 5-dimethylthiazole-2-yl)-2, 5-diphenyl tetrazolium bromide] (Sigma, USA), was dissolved in PBS (phosphate buffered saline) at 5 mg/mL. Each well of the plate was filled with 1-5×10⁴ cells (depending on the cell line) in 90 µL cultured medium. Then, 10 µL from the stock solutions of compounds, negative controls and positive controls, was added as triplicate to the wells to reach the final concentration of 1, 10, 50, 100 µM. Three wells containing only the same number of cells left in each plate. Plates were kept in a humidified incubator for 48 h. After the incubation period, MTT assay was carried out by the procedure described by Jabbar et al. (24).

QSAR studies

Chemical structure of the molecules was built using HyperChem software (Version 7, Hypercube Inc., http://www.hyper.com, USA) for the structural chemistry. Gaussian98 was operated to optimize the molecular structure. The structures were optimized by Ab initio calculations at the level of RHF/STO-3G. No molecular symmetry constraint was applied; rather full optimization of all bond lengths and angles was carried out. Highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) energies, molecular polarizability (MP) and molecular dipole moment (MDP) were all calculated using Gaussian98. Local charges (LC) at each atom were calculated according to both Mulliken and Hypercube Inc.) and DRAGON (http://www.talete.mi.it/dragon_exp.htm, Italia) software.

Results and Discussion

The data of cytotoxicity is shown in Tables 2, 3 and 4. IC_{50}, IC_{10} and IC_{100} were calculated for each compound. The most cytotoxic effect was seen on Raji cell line while the lowest activity was observed in K562 and HeLa, since at least 7 compounds had IC_{50} and IC_{100} of higher than 100 µM. However, synthesized compounds had moderate cytotoxicity. It was obvious that symmetric compounds are significantly less potent since all of them have IC_{50} greater than 100 µM. On the other hand, the asymmetric derivatives had good cytotoxicity. Among them, compound A13 showed the best activity since its IC_{50} in all cell lines were lower than 1 µM which was comparable with the reference drug (doxorubicin).

QSAR studies

MLR analysis with the stepwise selection and elimination of variables was utilized to model the structure-activity relationships with diverse set of descriptors.

In the first step, it was tried to find an appropriate model for cytotoxic activity of all compounds in Raji. The obtained equation is as follows:

log IC_{50} = 5.966 - 0.551 (±0.097) nN - 0.897 (±0.242) C-040

N = 17, R_s = 0.812, Q_{LOO}^2 = 0.772, F = 30.1, SE = 0.311

In this equation, the values in the parenthesis stand for the standard deviation of the coefficients, nN, R_s, SE, and F are number of components, correlation coefficient, standard error of regression, and Fisher’s F-ratio, respectively. Noticeably, this equation has a good statistical feature, which can explain and predict 82% of variances in the cytotoxic activity data. Q_{LOO}^2 represents acceptable correlation coefficient, which is close to that of calibration.

Therefore, this equation is able to predict 82% of variances in the cytotoxic activity of the resulted model. This two-parametric equation, holding the number of nitrogen atoms (nN) and an atom center fragment parameters (C-040), implies the importance of constitutional parameters in their activity.

The next equation was obtained for cytotoxicity of K562 cell line:

log IC_{50} = 6.002 - 0.571 (±0.142) nN - 0.878 (±0.353)

C = 0.40

N = 17, R_s = 0.680, Q_{LOO}^2 = 0.600, F = 14.88, SE = 0.453

It is obvious that cytotoxic activity K562 cell line has a great similarity with the activity in Raji cell line, though statistical quality of latter equation is much lower than the first one. This might imply the similar mechanism of cytotoxicity in both cell lines.

The next equation was obtained for the cytotoxicity of Fen cell line:

log IC_{50} = 4.147 - 0.689 (±0.117) nN - 0.367 (±0.140) MLOGP

N = 17, R_s = 0.812, Q_{LOO}^2 = 0.636, F = 19.1, SE = 0.383

In this equation as well, the number of nitrogen is the most important factor while, dissimilar to the former equation, the second parameter is MLOGP which octanol-water partition coefficient. This may suggest that transversing of biological membranes is a key factor in cytotoxic activity in this cell lines, since it was proved that log P is a crucial factor in crossing the biological membrane (26).

Finally, an equation for HeLa cell line was obtained as described below:

log IC_{50} = 7.238 - 1.641 (±0.290) nCN - 0.565 (±0.036) SLCDHP + 9.123 (±2.91) eHAcc

N = 17, R_s = 0.855, Q_{LOO}^2 = 0.644, F = 25.8, SE = 0.257

This three-parametric equation containing the holding number of nitro groups (nCN), sum of local charge on DHP ring (SLCDHP) and the number of acceptor atoms for hydrogen bonding (eHAcc), shows that cytotoxic activity of DHP derivatives in this cell line probably is slightly different from other cell lines, while the presence of nitrogen (here in nitro form) is a key factor.

Overall, it can be concluded that presence of nitrogen has a crucial importance in the cytotoxicity DHP derivatives in both total number of nitrogen and also groups containing nitrogen (i.e. nitro group).

On the other hand, modeling the Ca^{2+} channel blocking activity of these compounds gives the following equation:

log IC_{50} = 9.74 ± 3.60 SLCN1 - 1.562 (±0.352)

H = 0.46 ± 1.459 (±0.569)MV

N = 15, R_s = 0.852, Q_{LOO}^2 = 0.701, F = 19.1, SE = 0.49

Where SLCN1 is the sum of local charge on nitroimidazole ring, H-046 is an atom-centered fragment (H attached to C0 (sp3)) and MV is the mean atomic van der Waals volume. This equation shows the importance of changes in C4 position while volume of molecules has negative effect on Ca^{2+} channel blocking activity.

Conclusion

DHPs are one of the major classes of Ca^{2+} channel blockers. Recently, their MDR reversing activity attracted many researchers. In this way, a large set of new derivatives of DHP were synthesized as MDR reversals, some of which have reached to the upper stage of studies.

In addition, some derivatives showed intrinsic cytotoxicity on cancer cell lines. As a remarkable example, dexniguldipine, a potent MDR reversal, exhibited strong cytotoxicity on various cell lines. On the other hand, it was shown that nitroimidazole and its derivatives possessed appropriate cytotoxic properties (27-29). Therefore, it seems that DHP compounds including nitroimidazole moiety at C4 position may have strong cytotoxicity due to the simultaneous presence of DHP base structure and nitroimidazole substituent. In the present study, cytotoxic activity of some DHP derivatives was evaluated on four different cancer cell lines. Asymmetric derivatives showed good
cytotoxicity while symmetric ones were less potent.

In addition, QSAR studies revealed the significance of N atom and group containing it in cytotoxic activity. This is compatible with previous findings about MDR reversing activity of DHPs which demonstrated the good association of amine groups with MDR reversing effect. For example, Ford’s findings showed that tautomeric and cyclic amine groups are decisive for MDR reversing activity (30) and in recent years, in most synthesized DHP derivatives as MDR reversing activity and cytotoxic effect might be the sign of possible similarities mechanism interfering between both phenomena.

On the other hand, QSAR model of Ca2+ channel blocking activity confirms that key factors in this activity are to some extent different from cytotoxic activity. For example, while local charges of DHP is an important feature in cytotoxic effect, the significant part for MDR reversing activity of DHPs which demonstrated the good significance of N atom and group containing it in QSAR model is in agreement with previous works which highlighted the importance of C4 position (32).

Acknowledgments

The financial support of the Research Council of Shiraz University of Medical Sciences is acknowledged. This project is a part of Pharm. D theses of SH Salimi and Z. Sabetghadam (Theses Number: 284 and 341).

References

(1) Coburn RA, Wierzb M, Suto MJ, Solo AJ, Trigg AM and Trigg DL. 1, 4-Dihydropyridine antagonist activities at the calcium channel: a quantitative structure-activity relationship approach. J. Med. Chem. (1983) 26: 1220-1228.
(2) Shekarchi M, Binehs Marvasti M, Sharifzadeh M and Shafiei A. Anticonvulsant activities of 7-phenyl-SH-thiazolo[5, 4-e][1, 2, 3, 4]tetraazolo[5, 1-a][1, 4]pyrimid-2-yl[1, 4]diazepines. Iranian J. Pharm. Res. (2005) 4: 33-36.
(3) Miri R, Javidnia K, K. Sarkarzadeh H and Hemmatnejad B. Synthesis, study of 3D structures, and pharmacological activities of lipophilic nitroimidazolyl-1, 4-dihydropyridines as calcium channel antagonist. Bioorg. Med. Chem. (2006) 14: 4842-4849.
(4) Velazquez C and Knaus EE. Synthesis and biological evaluation of 1, 4-dihydropyridine calcium channel modulators having a diuret-1-im-1-sul-2-dionate nitric oxide donor moiety for the potential treatment of congestive heart failure. Bioorg. Med. Chem. (2004) 12: 3381-3400.
(5) Bodeo N. Rodent drug delivery systems for targeting drugs to the brain. Ann. NY. Acad. Sci. (1987) 507: 289-306.
(6) Mortazavi SM. Advances in targeted drug delivery. Iranian J. Pharm. Res. (2007) 6) 149-150.
(7) Kayma AA, Tan H, Altug T and Buyukavdis RM. The effects of calcium channel blockers, verapamil, nifedipine and diltiazem, on metabolic control in diabetic rats. Diabetes Res. Clin. Pract. (1995) 28: 201-205.
(8) Miri R, Javidnia K, Kerbiane-Zadeh A, Niknahad H, Shargi S, Sarafraz K, Hemmatnejad B and Dehpour AR. Synthesis and calcium channel antagonist effects of new derivatives of 1, 4-dihydropyridine containing nitroimidazolyl channel antagonist effects. Eur. J. Med. Chem. (2008) 43: 263-270.
(9) Miri R, Javidnia K, Kerbiane-Zadeh A, Niknahad H, Shargi S, Sarafraz K, Hemmatnejad B and Dehpour AR. Synthesis and calcium channel antagonist activity of some 2-nitroimidazolyl compounds. Br. J. Pharmacol. (2005) 142: 541-549.
(10) Takashita S, Ohmori H, Gomi N, Lino M, Machida T, Wager T, Whiteley L and Zhang Y. Physiobiochemical drug properties associated with in-vivo toxicological outcomes. Bioorg. Med. Chem. Lett. (2008) 18: 4872-4875.
(11) Brezden CB, Horn L, McClelland RA and Rauth AM. Oxidative stress and 1-methyl-2-nitroimidazole cytotoxicity. Biochem. Pharmacol. (1998) 56: 335-344.
(12) Lee HH, Palmer BD, Wilson WR and Denny WA. Synthesis and hypoxia-selective cytotoxicity of 2-nitroimidazole mustard. Bioorg. Med. Chem. Lett. (1996) 6: 1741-1744.
(13) Moselen JW, Hay MP, Denny WA and Wilson WR. N-[2-(2-methyl-5-nitroimidazolyl) ethyl]-l-(2-nitroimidazolyl) (Brotaxene) (NES 619862), a bisnitroimidazole with enhanced selectivity as a bioreductive drug. Cancer Res. (1995) 55: 574-580.
(14) Ford JM and Hurt WW. Pharmacology of drugs that alter multidrug resistance in cancer. Pharmacol. Rev. (1990) 42: 155-199.
(15) Tanaka S, Ohmori H, Gomi N, Lino M, Machida T, Kise A, Natio S and Kuwano M. Synthesis and structure-activity analysis of novel dihydropyridine derivatives to overcome multidrug resistance. Bioorg. Med. Chem. Lett. (2001) 11: 275-277.
(16) Mohajeri A, Hemmatnejad B, Mehdipour A and Miri R. Modelling calcium channel antagonistic activity of dihydropyridine derivatives using QM3-S indices analyzed by GA-PLS and PC-GA-PLS. J. Mol. Graph. Model. (2008) 20: 1057-1065.

This article is available online at http://www.ipjr.ir
کارگاه‌های آموزشی مرکز اطلاعات علمی

مقاله نویسی علوم انسانی

اصول تنظیم قراردادها

آموزش مهارت های کاربردی در تدوین و چاپ مقاله