Dynamic Biasing for Improved On-Orbit Total-Dose Lifetimes of Commercial Electronic Devices

MAXIMILLIAN HOLLIDAY
Stanford University, Stanford, USA

THOMAS A. HEUSER
Stanford University, Stanford, USA

ZACHARY MANCHESTER
Carnegie Mellon University, Pittsburgh, USA

DEBBIE G. SENESKY
Stanford University, Stanford, USA

Abstract—The survivability of microelectronic devices in ionizing radiation environments drives spacecraft design, capability, mission scope, and cost. This work exploits the periodic nature of many space radiation environments to extend device lifetimes without additional shielding or modifications to the semiconductor architecture. We propose a technique for improving component lifetimes through reduced total-dose accumulation by modulating device bias during periods of intense irradiation. Simulation of this “dynamic biasing” technique applied to single-transistor devices in a typical low-Earth orbit results in an increase of component life from 114 days to 477 days (318% improvement) at the expense of 5% down time (95% duty cycle). The biasing technique is also experimentally demonstrated using gamma radiation to study three commercial devices spanning a range of integrated circuit complexity in 109 rad/min and 256 rad/min dose rate conditions. The demonstrated improvements in device lifetimes using the proposed dynamic biasing technique lays a foundation for more effective use of modern microelectronics for space applications. Analogous to the role real-time temperature monitoring plays in maximizing modern processor performance, the proposed dynamic biasing technique is a means of intelligently responding to the radiation environment and capable of becoming an integral tool in optimizing component lifetimes in space.

I. INTRODUCTION

For aerospace applications exposed to harsh radiation environments, the radiation-induced degradation of the microelectronics dictates mission scope, cost, and lifetime [1]. Historically, spacecraft shielding and use of radiation-hardened semiconductor products were two techniques for mitigating the degradation of electronic systems. However, as modern aerospace developers face growing competitiveness and decreased funding, it becomes harder to justify the cost and antiquated features that space-grade microelectronics impose on the mission [2]. Ideally, commercial off-the-shelf (COTS) products could be used to meet the competitive demand for more processing and sensing capabilities, but the increased risk from environmental reliability and quality assurance of COTS products has historically limited their use in these applications [3]. Thus, more mechanisms for enabling the use of COTS are needed.

This work proposes a device-agnostic technique for improving the reliability of COTS electronics in radiation environments without requiring additional shielding or device-level modifications. The proposed “dynamic biasing” technique modulates system power in response to the real-time radiation environment to actively minimize radiation-induced degradation of microelectronic devices. Viewed as one of multiple possible tools for extending device lifetimes in space, this technique can be used in combination with shielding, redundancy, error-code correction, or any other techniques necessary to achieve mission-specific radiation tolerances. By readily extending operational lifetimes of existing devices, the proposed dynamic biasing technique enables the use of more COTS products and capabilities for space applications.

A. Motivation and Scope

The bias condition of microelectronics during irradiation is known to play a significant role in the impact total ionizing dose (TID) has on device lifetime [4], [5]. However, aside from niche work investigating optimal device-specific bias states [6], [7], literature is lacking a fundamental study into using active device bias configuration to proactively mitigate device degradation due to TID, thereby extending device lifetimes in radiation environments.

The usefulness of dynamically changing device bias to extend component lifetimes is well illustrated in the context of Earth’s orbital radiation environment. To aid in visualizing the periodic nature of ionizing dose accumulation in satellites, the total dose inside a simple spacecraft occupying a common low-Earth orbit (LEO) has been modeled in Fig. 1. As shown, a typical LEO satellite orbiting at an altitude similar to the International Space Station (408 km) will experience brief but intense moments of high dose rate irradiation that are separated by longer periods of little-to-no trapped-particle activity. These transient high dose rate events occur on intervals equal to a typical orbital period for LEO objects (about 90 minutes) and frequently last for minutes, making the transient radiation environment ideal for potential dynamic biasing benefits.

In this article, we propose the dynamic biasing scheme as a tool for improving the reliability of COTS electronics in
radiation environments and use both simulation and gamma radiation testing of commercial devices to demonstrate feasibility of the technique. This work focuses on evaluating the efficacy of the proposed technique’s underlying device physics as an active method of mitigating radiation-induced degradation during periods of intense irradiation. Existing device physics models are integrated into modern trapped particle simulations to generate performance predictions, then experimentally verified for three commercial devices that span a range of integrated circuit complexity. In-situ measurements collected during radiation testing are presented for a variety of bias conditions to illustrate the effectiveness of the proposed technique at mitigating device degradation.

B. Contributions
The key contributions of this work are as follows.
1) A “dynamic biasing” technique for extending component lifetimes in harsh radiation environments without additional shielding or modifications to the semiconductor architecture is proposed and limitations are discussed.
2) Simulation capturing the periodic nature of Earth’s orbital radiation environment using AE9/AP9 particle models is constructed and used to evaluate the proposed dynamic biasing technique for an ideal single-transistor device.
3) Gamma radiation testing is performed to validate fundamental device physics behavior and on-orbit simulation results. Irradiation is further used to observe the impact of the biasing technique when applied to integrated device architectures beyond modeling capabilities.
4) An open-source data logging platform is presented for in-situ device monitoring during irradiation, enabling real-time measurement of MOSFET threshold voltages during radiation testing.
5) Radiation test data for three commercial products: N-channel and P-channel power MOSFETs and a heavily-integrated switching regulator is reported.

II. BACKGROUND INFORMATION
This section provides an overview of the effects ionizing radiation has on modern microelectronics and the resulting device physics necessary for understanding the role of device bias and how it is utilized in the proposed dynamic biasing technique.

A. Radiation Effects on Microelectronics
There are two primary types of damage used to describe the effects ionizing radiation has on semiconductor devices.
1) Total Ionizing Dose (TID) is the gradual accumulation of dose (i.e. energy per unit mass), inside a device caused by photon or particle induced ionization of semiconducting and insulating materials. The resulting trapped charges induce long term, sometimes permanent, changes to the electrical behavior of the device [8].
2) **Single Event Effects (SEE)** describes the localized disruption of a semiconducting device as a result of discrete high-energy particle interaction [8]. Although transient SEE can cause temporary disruptions (e.g. bit flips) or permanent damage to a device (e.g. single-event latch-up), it is TID that ultimately dictates the lifetime of many devices in space [9]. For metal-oxide-semiconductor (MOS) architectures, especially field-effect devices, the materials and transistor design will dictate the finite amount of trapped charges that can accumulate before the device is unable to function as designed [10]. This work focuses on extending device lifetimes by reducing the accumulation of trapped charges during irradiation.

B. Device Physics and Bias Condition

The relationship between device bias and radiation-induced degradation is well-studied, and can be briefly summarized as an electrostatic potential across a dielectric region causing less recombination of radiation-induced electron/hole (e/h) pairs [11]. The electrostatic forces combined with vast differences in oxide carrier mobilities results in an increase of trapped charges that is directly dependent on the electric field, oxide type, and oxide thickness [12]. It is an accumulation of these trapped charges inside microelectronics that causes the gradual degradation of device performance as a function of TID, ultimately resulting in permanent failure of the device.

For field-effect transistors, TID degradation commonly manifests as positive or negative shifts in threshold voltage (ΔV_{TH}) as a result of charge trapping [13]. The ΔV_{TH} formed by radiation-induced trapped charges has many similarities to traditional MOS aging mechanisms such as hot-electron-induced (HIT) and positive/negative bias temperature instability (PBTI, NBTI) [14], [15]. In both cases, sensitive oxide regions, such as those located at the gate, isolation, and below the substrate are the primary contributors to the ΔV_{TH}. However, the regions of oxide vulnerable to charge trapping and the rate at which charge accumulation occurs helps distinguish radiation-induced degradation from those of physical aging. In the case of TID degradation, the magnitude of ΔV_{TH} can be estimated by the accumulated dose inside sensitive oxide regions [5]. Beginning with a simple approximation of MOSFET device behavior, the threshold voltage (V_{TH}) can be described as proportional to the charge of the gate oxide (Q_{ox}), and inversely proportional to gate oxide capacitance (C_{ox}). This relationship between V_{TH} and oxide charge allows for an estimation of ΔV_{TH} as a function of radiation dose as described by Krantz [10]

$$\Delta V_{TH} = V_{TH}^0 - \frac{1}{C_{ox}} \int_0^{t_{ox}} f(E_{ox})Dg_0t_{ox} \left(1 - \frac{x}{t_{ox}}\right) dx$$

where V_{TH}^0 is the threshold voltage before irradiation, t_{ox} is the thickness of the gate oxide, $f(E_{ox})$ is the hole yield, D is the dose (rad) deposited into the material, g_0 is the e/h pair per rad (pairs/cm2), and x is the distance in to the oxide. Device bias influences the hole yield term in (1) according to the relationship

$$f(E_{ox}) = \left(1 + \frac{0.55}{E}\right)^{-0.7}$$

where E is the electric field in MV/cm across the gate dielectric.

III. EXPERIMENTAL DETAILS

A. On-Orbit Simulation Parameters

The proposed dynamic biasing technique was modeled for a simple metal oxide field effect transistor geometry in a typical low-Earth orbit. The simulated radiation environment was constructed using AE9, AP9 models (software version 1.50.001) for specifying the trapped energetic particle and space plasma environment [19]. The simulated orbit was propagated using the Kepler J2 model for a nominal 408 km orbit using the following orbital elements: an inclination of 97.06°, a right ascension of the ascending node of 130.53°, an apogee and perigee altitude of 480 km, and an argument of latitude of 180° for a one year duration occurring from January 1, 2015 to January 1, 2016. The SHIELDOSE-2Q model was then used to calculate dose rates from the simulated orbit for an SiO$_2$ point detector centered inside a solid aluminum sphere of radius 1 mm [20]. Resulting dose rates from the 95th percentile were integrated on five second intervals to produce a time series of total dose data for the simulated mission. Equations (1) and (2) were used to calculate an estimated ΔV_{TH} for a simple P-channel MOSFET with 100 nm thick SiO$_2$ gate oxide for the simulated total dose values at various bias conditions. The gate oxide thickness was chosen to be
representative of a typical power MOSFET [21]. To model a dynamically biased device, a dose rate of 0.001 mrad/s was arbitrarily chosen as the cutoff value from which device state and resulting ΔV_{TH} was determined for each time point. The device was considered biased ($V_{DS} = -3.3V$) for all dose rates below 0.001 mrad/s, and immediately transitioned to unbiased ($V_{DS} = 0V$) for rates greater than or equal to the cutoff. Optimization of the dose rate cutoff value was not performed.

B. Device Selection

Device functionality as a function of bias condition during irradiation was studied across two levels of commercial VLSI integration complexity. Table I outlines each device category with relevant fabrication technology used, the approximate number of transistors in the device, and the performance metric used when reporting radiation tolerance. The specific IRLML5103 and IRLML2803 MOSFET devices were selected for their existing radiation effects literature [22] which allowed validation of the test setup through TID lifetime comparisons.

General device architecture, fabrication details, and estimated transistor counts were collected using visible-light spectroscopy to examine representative samples from each device group. Spectroscopy samples were prepared via chemical decapsulation following common failure analysis techniques [23]. Devices were submerged in 96% sulfuric acid at 150°C for 20 minutes, then rinsed with acetone and again with deionized water before collecting micrographs on an Olympus stereo microscope.

Part Number	Description	Architecture, # Transistors	Performance Metric
IRLML2803 (Infineon) MOSFET (N-Channel)	“HexFET”	1 Transistor	ΔV_{TH}
IRLML5103 (Infineon) MOSFET (P-Channel)	“HexFET”	1 Transistor	ΔV_{TH}
TPS82740 (TI) Switching Regulator	SOI	> 1000 Transistors	Output Voltage

C. Radiation Test Environment and Setup

TID testing was performed under constant gamma irradiation conditions to achieve total dose accumulations that meet or exceed TID values simple spacecraft might experience after a multi-year mission in LEO. Testing was conducted following MIL-STD-883 Method 1019.8 [24] with the exception of a Cs-137 source used in place of Co-60 due to availability. A J.L. Shepherd and Associates Mark I model gamma radiation chamber (similar to the instrument shown in Fig. 2 from Brookhaven National Laboratory) was used at the NASA Ames Research Center radiation facilities with configurable dose rates of 109 and 256 rad/min [17], [18]. Solid-state dosimeters from Varadis (Part Number: VT01, “RADFETS”) were used for in-situ dose characterization.

Separate electrical measurements were necessary to monitor the performance metrics of each device during radiation exposure. Aside from the devices under test, all data logging equipment was housed inside the shielded enclosure shown in Fig. 2 and constructed of layered aluminum, lead, and polyethylene terephlate glycol (PETG) with thicknesses of 1.6 mm, 6.4 mm, and 2 mm, respectively. Attenuation performance of the shielded enclosure was monitored using a VT01 RADFET located in the center of the shielded volume which verified the cumulative dose remained below 100 rad throughout the duration of each experiment.

Figure 3 depicts the open-source data acquisition hardware developed and used to conduct the in-situ electrical measurements during irradiation. The modular hardware design enabled operation and monitoring of the simple transistor devices and dosimeters as well as the highly integrated switching regulators while maintaining a form factor suitable for the shielded enclosure. Shown in Fig. 3 is the primary computing module (middle) utilizing a 32-bit ARM microcontroller (Part Number: Microchip ATSAMD51J20A) with on-board microSD socket and external power management, as well as a mezzanine board (top) containing an array of four MOSFET switches and power monitoring capability. Illustrated at the bottom of Fig. 3, is a carrier board capable of housing bare die wirebonded to pads (not used in this study) as well as common surface mount packages (SOT-23, SOT-363) while utilizing a versatile 28-bit analog-to-digital converter (Part Number: TI ADS124S08) to drive devices under test.
via the on-chip programmable current sources, voltage references, temperature sensor, and general purpose I/O. Power to the acquisition hardware was supplied from lithium ion cells (Part Number: LG INR1860 MJ1 3500 mAh) housed inside the shielded enclosure. Schematics, design files, and manufacturing materials are available on the author’s GitHub for the processing module: https://github.com/maholli/SAM32, and ADC module: https://github.com/maholli/XTB.

D. Device Operation and V_{TH} Measurement Technique

Threshold voltage was monitored during irradiation for commercial single-transistor P-channel and N-channel devices using the direct V_{TH} readout circuit shown in Fig. 4. The V_{TH} readout method used is similar to the method described by Andjelković et al. for using MOSFETs as dosimeters [25]. Rather than using Andjelković’s method of driving current into the bulk of the device, which is not always feasible with commercially packaged devices, Fig. 4 illustrates our adaptation that allows current to be driven into the source (internally shorted to the bulk) for PMOS devices, or the drain for NMOS devices. Additionally, our adaptation includes a 1 MΩ resistor connected between the gate contact and ground (PMOS) or the gate contact and drain (NMOS) in order to achieve proper V_{GS} bias with limited gate leakage. Principal of operation for the simple circuits shown in Fig. 4 as direct V_{TH} measurement tools relies on the inherent nature of the current source to continuously adjust the voltage necessary to drive the desired current. As configured, the supplied current must flow through the channel of the MOSFET which is only possible once the device’s V_{TH} has been met and the transistor turns on. For the circuits shown in Fig. 4, V_{TH} is met as soon as the current source reaches a voltage adequate to achieve the 100 µA output, thereby turning on the transistor Q1 or Q2 and also providing a convenient location for direct measurement of the the potential (shown in red). Using this technique, biased MOSFET samples were continuously driven at constant current throughout irradiation with voltage measurements performed at a frequency of 0.1 Hz. Unbiased MOSFET samples had source and drain contacts grounded during irradiation aside from a 0.5 second configuration and measurement routine performed at a frequency of 0.1 Hz. In both sample groups, the current source within the V_{TH} readout circuit was configured to drive 100 µA during measurement collection.

The performance of the heavily-integrated TPS82740 switching regulator was quantified by measuring the voltage output under a constant load of 10 mA during irradiation. The regulated output voltage is a result of the integrated step down converter circuit comprised of thousands of transistors providing device features such as control logic, comparators, and voltage references. The devices under test were configured to output 2.1 V and an array of shielded MOSFET switches were used to control regulator input supply according to the relevant duty cycle (75%, 50%, 25%) with a period of 0.016 Hz (60 sec).

E. Real-time Dosimetry

A key aspect of the proposed dynamic biasing technique relies on real-time monitoring of the radiation environment to determine when and how to modulate the power of the system. Since this article focuses on evaluating the efficacy of power modulation for improved TID lifetimes, the need for real-time dosimetry was decoupled from simulations and experimental tests. For on-orbit simulations, dose rate information was pre-computed and acted upon immediately. For gamma radiation testing, dose rate was held constant for the duration of the exposure, thereby allowing the desired bias state for each device to be pre-determined and also held constant.

Although engineering an autonomous, radiation tolerant, real-time dose monitoring solution is beyond the scope of this paper, it is certainly achievable using low cost and available dosimeter products. For example, using the V_{TH} measurement technique described above with commercially available Varadis VT01 RADFET devices can readily provide sub-µrad dose measurements (provided a suitable ADC is used) at a rate of at least 5 Hz. This dosimeter performance more than satisfies the 0.001 µrad/s dose rate sensitivity necessary to reproduce the on-orbit simulation results.

IV. RESULTS AND DISCUSSION

A. On-Orbit Simulation Results

Simulated dose rates as a function of orbit time are shown in Fig. 1 (top) for a 24 hour period. The transient dose rate spikes are not an artifact of the particle models; rather, the sudden rise in dose rate is caused by localized regions of trapped electrons and protons present in Earth’s orbit [26]. The simulated orbit encounters dose rate spikes on 90-minute intervals that typically last less than 10 minutes. The resulting ΔV_{TH} for the simulated P-channel device are illustrated in Fig. 1 (bottom) for three bias conditions: always biased (blue), never biased (yellow), and dynamically biased (black). The total ΔV_{TH} for the 24 hour period are 4.46 mV, 0.89 mV, and 1.07 mV, respectively. The simulated dynamically biased case was powered off for dose rates exceeding 0.001 µrad/s, resulting in a 318% reduction in ΔV_{TH} as compared to the always-biased case, at the expense of an 5% reduction in duty cycle (95% time on) for the 24 hour period.
The simulated 24 hour on-orbit dose rate behavior shown in Fig. 1 (top) is representative of an average day, allowing functional lifetimes of the PMOS device to be estimated. If an operational tolerance of 30% is assumed, the simulated PMOS device would stop functioning as designed at a ∆V_{TH} of 0.051 V. Given this scenario, the model predicts device failure after 114 days for an always-biased PMOS device, whereas the dynamically biased device would extend circuit lifetime to 477 days (a 318% improvement).

TABLE II: Summary of Experimentally Determined MOSFET and Regulator Radiation Performance

Description	Part Number	Duty Cycle	Dose Limit	Lifetime Improvement
Switching Regulator	TPS82740	25%	22 krad	57%
	TPS82740	50%	22 krad	75%
	TPS82740	75%	14 krad	
N-Channel MOSFET	IRLML2803	0%	[34 krad]	13%
	IRLML2803	100%	[30 krad]	
P-Channel MOSFET	IRLML5103	0%	[39 krad]	44%
	IRLML5103	100%	[27 krad]	

*Functional dose limits without brackets are experimentally observed, values with brackets are extrapolated from experimental results.

The dose rate cutoff threshold, chosen as 0.001 mrad/s for the above simulation, is a powerful means of tuning the dynamically biased electronic system to balance radiation-induced degradation with the needs of the mission. For example, consider extending the operational lifetime of a satellite by adjusting these cutoff thresholds at the system or even subsystem level to achieve the desired effective dose for components or subsystems with known lifetime-limiting TID performance.

B. Experimental Results: MOSFETS

Figure 5 summarizes the in-situ V_{TH} measurements collected for biased and unbiased IRLML2803 and IRLML5104 devices as a function of total dose. A line through (X0,Y0) following a least-squares fit is shown for each sample to quantify the differential V_{TH} (units of $\Delta V_{TH}/rad$). Samples exposed at a rate of 256 rad/min to a total dose of 25 krad exhibit differential V_{TH} of $2.213 \times 10^{-5} \Delta V_{TH}/rad$ for PMOS and $1.967 \times 10^{-5} \Delta V_{TH}/rad$ for NMOS if biased continuously during irradiation, whereas the differential V_{TH} for unbiased devices were found to be $1.526 \times 10^{-5} \Delta V_{TH}/rad$ for PMOS and $1.749 \times 10^{-5} \Delta V_{TH}/rad$ for NMOS. The functional dose limits are summarized in Table II and estimated using the differential V_{TH} to determine the dose necessary to exceed a ΔV_{TH} of 0.54 V (a tolerance of ± 30% shift in the specified V_{TH} of 1.8 V) for each respective device.

As expected, experimental results show device bias during irradiation has a significant impact on the threshold voltage for simple single-transistor devices such as the IRLML2803 and IRLML5103 MOSFETs. In-situ monitoring of the devices shows PMOS devices failing “off” and NMOS failing “on,” which is congruent with the simple device physics model discussed earlier. The 44% lifetime improvement extrapolated from the PMOS results is substantially less than the 318% improvement that was estimated during the on-orbit simulation. One explanation for this discrepancy is a different IRLML5103 gate oxide thickness than the representative 100 nm used in the model. Using the experimentally determined differential V_{TH} of $1.526 \times 10^{-5} \Delta V_{TH}/rad$, (1) can be used to estimate a gate oxide thickness of about 69 nm for the IRLML5103 devices, which is well within reasonable power MOSFET parameters.

The significant difference in estimated lifetime improvements between NMOS and PMOS devices is also to be ex-
expected. As discussed earlier, gamma-induced TID degradation in SiO$_2$ can be quantified as the number of uncombined holes persisting in relevant oxide layers such as gate and isolation regions. Recalling that NMOS devices rely on electrons as the primary charge-carrier, these devices have inherently more opportunities for e/h recombination, especially during operation, than their PMOS counterparts [13]. The result of increased e/h recombination manifests as smaller lifetime improvements for dynamically biased NMOS devices as compared to PMOS. Interface trap concentrations and device architecture are two parameters that directly influence this behavior.

The impact of dose rate was studied in more detail for PMOS by irradiating sets of IRLML2803 devices to 6 krad, as illustrated in Fig. 6, at a rate of 256 (blue) and 109 (yellow) rad/min. The slower dose rate samples exhibit lower differential V_{TH} values: 1.800x10^{-5} for biased, and 1.328x10^{-5} for unbiased, whereas the faster dose rate samples are consistent with behavior shown previously: 2.424x10^{-5} biased, and 1.667x10^{-5} unbiased. The observed differential V_{TH} dependency on dose rate is believed to be the result of inherent thermal recombination of e/h pairs as described by Oldham [27]. Given the constant exposure environment used for this dynamic biasing work, the 45% lifetime improvement for PMOS and 12% improvement for NMOS are expected to increase in periodic radiation environments such as LEO. These dose rate findings should be an important parameter for future real-time implementations of the dynamic biasing technique.

Fig. 6: Experimentally measured V_{TH} shifts for biased (blue, $V_{DS} = \pm 3.3$V) and unbiased (yellow, $V_{DS} = 0$V) commercial P-channel MOSFETs irradiated at 256 rad/min (squares) and 109 rad/min (triangles) to a total dose of 6 krad.

Extrapolating the linear relationship between threshold voltage and dose for the 109 rad/min rate illustrated in Fig. 6, it can be estimated that the IRLML2803 will no longer meet the specified V_{TH} of 1.8 V \pm 30% at an approximate total dose of 30 krad (biased) and 40 krad (unbiased). This is in strong agreement with TID performance reported by O’Bryan [22] of 35 krad for the IRLML2803.

C. Experimental Results: Switching Regulators

Figure 7 illustrates the output voltage performance of the TPS82740 switching regulator under constant 10 mA load as measured during irradiation at a rate of 256 rad/min. The complex output behavior observed in Fig. 7 as a result of the irradiation is broken down into three regions and interpreted below.

1) The first observed event is a jump in output voltage from 2.1 V to 2.3 V seen at about 6.5 krad for all devices. The TPS82740 regulators use an internal feedback divider network to configure the output voltage to be one of eight possible values: 1.8 V to 2.6 V in 0.1 V increments. Therefore, the observed jump in output voltage is believed to be a result of a V_{TH} shift in the error amplifier and/or main comparator of the feedback loop to yield a new set-point to the control logic. Possible issues with the data acquisition circuit were ruled out after confirming all internal health checks were valid for the duration of the experiment and verifying the new output voltage was an intentional feature of the device. The change in output voltage at 6.5 krad was not considered device failure since it is within the operating parameters of the device.

2) The second event is a sudden drop-out and subsequent recovery (with overshoot) of output voltage beginning at 14 krad for the 75% duty cycled device. Although there is partial recovery, the drop in output voltage at 14 krad was considered to be device failure for this sample. One possible explanation for the interesting recovery behavior after about 2.4 krad (9.3 minutes at the dose rate of 256 rad/min) is a result of the 1.7 MHz switching frequency of the regulator design. Rapidly changing bias conditions have been shown to improve recombination rates [28]. At the 14 krad point of failure, once the output voltage has dropped to 1.3 V it is feasible a localized net-gain of e/h recombination could form as a result of...
the lower bias. The annihilation of these TID induced trapped charges is one method for the comparator to recover after a period of time.

3) Finally, the staggered and abrupt failure mode of all three devices is observed from 19 krad to 22 krad. The sudden and precise drop in output voltage from 2.3 V to 0 V suggests this failure mode to be a result of triggering one or more of the protection features present in TPS82740 regulator design. For example, radiation induced V_{TH} shifts in the input control and comparator subsystems could readily engage the TPS82740’s under-voltage lockout or logic-controlled enable/disable feature, resulting in the observed voltage cutoff behavior. Separate testing of each functional block comprising the TPS82740 regulator would be necessary, and outside the scope of this work, to conclude root cause of the observed regulator behavior.

Intermittent failures, as seen in the 75% duty cycle case, and non-linear component lifetimes as function of TID are expected for highly integrated devices with many subsystems such as the TPS82740 regulator. However, with a better understanding of the complex in-situ behavior during irradiation, it’s clear that bias condition continues to impact overall component lifetime of the heavily integrated switching regulator resulting in an observed 57% improvement for the 50% duty cycle case as compared to the 75% case.

V. FUTURE WORK AND CONSIDERATIONS

Having demonstrated the dynamic biasing technique for single devices with low transistor counts, this section discusses the limitations of the technique as well as key engineering and scientific details to be considered for large-scale implementation.

A. Limitations of Dynamic Biasing

As with any engineering challenge, there are trade-offs and limitations of the proposed dynamic biasing technique. Most importantly, intermittent system and sub-system operation is an inherent aspect of the technique that must be accounted for during mission and system design. However, this design challenge continues to lessen as the field of intermittent computing matures their techniques for productive embedded systems [29] despite sudden and even unpredictable loss of power [30], [31].

Furthermore, dynamic biasing does not eliminate the need for device-specific radiation testing. In most cases, especially for COTS products with proprietary architecture and fabrication processes, modern radiation effects modeling is insufficient in accurately estimating failure modes and total-dose thresholds [32]. For these scenarios, design philosophies such as “careful COTS” [33] provide a framework for quantifying and reducing risk, and are an ideal situation to apply dynamic biasing. For example, when determining TID thresholds of critical systems during the careful COTS process, dynamic biasing can be used to achieve necessary margins or bolster system-limiting devices during experimental characterization and qualification of these parts.

B. Heavily Integrated and Multi-Device Systems

As dynamic biasing is evaluated for more devices, the ideal bias condition (i.e. the state that minimizes radiation-induced degradation) will not always be as simple as removing power to the device(s). When applied to electronic systems comprised of many devices, an effective dynamic biasing implementation will require knowledge of each device’s ideal biasing condition to best minimize degradation, whether it be biased, unbiased, or even alternating bias [34]. Determining the appropriate bias condition is further complicated by the complex response of bipolar devices [35], including components found to exhibit enhanced low dose rate sensitivities (ELDRS) [36].

The dynamic biasing technique has been demonstrated as a promising tool for targeted lifetime improvements of single devices, but future work is necessary to evaluate this technique in broader system-level applications. Continued research is planned to study the impact dynamic biasing has on the lifetimes of multi-component systems requiring complex biasing states across common power domains. A separate effort is needed to mature the discussed solid state dosimeter into a concise and reliable means of monitoring and responding to volatile radiation environments.

VI. CONCLUSION

This work establishes the feasibility of using the proposed “dynamic biasing” technique as a means of improving TID lifetimes for commercially available microelectronic devices with low transistor counts. Trapped particle models were used to simulate a 318% improvement in on-orbit transistor lifetimes using the technique. Simulated results were demonstrated experimentally via in-situ device monitoring during gamma irradiation for two levels of commercial IC complexity under various dose rate conditions. The proposed technique is found to improve single-transistor commercial device lifetimes by 44% for PMOS and 13% for NMOS, whereas the lifetime for a heavily integrated switching regulator was improved by 57%. These demonstrated improvements in device lifetimes using the proposed dynamic biasing method establishes a foundation for more effective use of modern microelectronics for space applications.

VII. ACKNOWLEDGMENT

The authors would like to thank Sharmila Bhattacharya and Sergio R. Santa Maria from NASA Ames Research Center, Moffett Field, California, for access to their radiation facilities.

REFERENCES

[1] G. F. Derbenwick and B. L. Gregory, “Process Optimization of Radiation-Hardened CMOS Integrated Circuits,” IEEE Transactions on Nuclear Science, vol. 22, no. 6, pp. 2151–2156, 1975.
[2] J. Hall and R. Naff, “The cost of COTS,” IEEE Aerospace and Electronic Systems Magazine, vol. 16, no. 8, pp. 20–24, Aug. 2001.
[3] M. Pignol, “COTS-based applications in space avionics,” in 2010 Design, Automation Test in Europe Conference Exhibition (DATE 2010), Mar. 2010, pp. 1213–1219.
[4] James R. Schwank, “Basic Mechanisms of Radiation Effects in the Natural Space Radiation Environment,” Tech. Rep., 1994.
[5] D. M. Fleetwood, “Total Ionizing Dose Effects in MOS and Low-Dose-Rate-Sensitive Linear-Bipolar Devices,” IEEE Transactions on Nuclear Science, vol. 60, no. 3, pp. 1706–1730, Jun. 2013.
