Electronic properties of multi-ablooms flower-like quantum dots: a 2-D finite element study

Mehrzad Ghorbani

Received: 30 October 2020 / Accepted: 20 April 2021 / Published online: 10 June 2021
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021

Abstract
In this paper, we investigate the electronic properties of two-dimensional multi-abloom nanoflower. Also, we approximate a typical form of the Schrödinger equation through an appropriate 2-D finite element approach, and then, we investigate the effects of different parameters such as number of ablooms, number of rose, variety geometric domain shape and systems size on the energy levels, eigenfunctions, and dipole matrix elements.

Keywords 2-D multi-abloom nanoflower · 2-D finite element and bilinear method · Galerkin method · Electronic properties

1 Introduction
Because of vast applications in science and technologies, during last few years, quantum dots (QDs) have been an appealing field study. During last few years, a wide variety of shapes, such as quantum dots arrays (García et al. 2013), conical (Melnik and Willatzen 2004), rectangular (Zhou and Li 2005), cylindrical (Bester and Zunger 2005), disc-shaped (Wei and Xie 2010), elliptical (Sadeghi et al. 2013), lens-shaped (Rodrıguez and Ramıirez 2008), pyramidal (Hwang et al. 2004), spherical (Bose 1998), T-shaped (Wu and Cao 2006), Y-shaped (Fang and Wang 2007), etc., for the quantum dot systems have been studied. But as we know up to now, the electronic inter-sub-band structures of nanoflower systems (Zhao et al. 2012) has not so far been addressed. It is clear that due to the complicated form of the quantum dot shapes, the calculation of energy levels and wave functions, analytically, are a nontrivial task (Fang and Wang 2015).

In order to study these quantum dots different methods such as variational method (Nenashev and Dvurechenskii 2020; Finlayson 1972), 1/N expansion method (El-Said 2000), quantum cellular automata (Governale et al. 1999), density functional calculations...
(Nomura and Aoyagi 2003), exact diagonalization (Güçlü et al. 2002), finite difference technique (Deyasi et al. 2013; Shuvayev et al. 2006; Ames 1992), self-consistent Hartree method (Deyasi et al. 2013; Shuvayev et al. 2006), k.p theory (Stier et al. 1999), Monte Carlo (Güçlü and Umrigar 2005), molecular dynamics (Golubnychiy et al. 2006), Green’s functions (Naser et al. 2007; Chattopadhyay 1990), Nikiforov–Uvarov method (Ikhdair and Hamzavi 2012), Transfer matrix method (Mardaania et al. 2005) etc. have so far been used.

The finite element method (FEM) are a numerical technique for solving PDEs and were originally applied to problems in engineering, structural mechanics applied sciences and are effective for problems with nonregular and complicated domain geometry. In this method, there is a natural variational approach to the numerical solution of elliptic boundary value problems (BVP) such as Helmholtz form of the Schrodinger, which minimize residual over some suitable finite-dimensional subspace defined on the elements.

The FEM involves four basic steps: first, we must partition the solution region of the PDE into a finite number of nonoverlap elements which the rectangular or triangular shapes and $h$ or $p$ refining are most common for planar and 2-D problems. The collection of all regular or congruent elements should cover and resemble the original region as closely as possible. In the second step, we derive interpolation and governing equations for a typical element by defining a complete polynomial on an element. The smooth degree of assembling elements, determine continuity of global approximation. This step, determine blocks and entries of the problem coefficient stiffness matrix. In the third step, we need assemble all partition elements of the solution region to obtain the global coefficient matrix. Finally, the resulting sparse system of equations will be solved.

Here and in our study, the given polygon region divided into 361 uniform rectangular elements (Šolín 2005; Braess 2007; Marti 1986; Mitchell and Wait 1985; Reddy 2005; Brenner and Scott 2007).

In the present work, we solve a typical 2-D Schrodinger equation by means of the FEM and we evaluate the energy eigenvalues and corresponding eigenfunctions of a multi-abloom nano-flower. Then we compute the corresponding dipole matrix elements $M_{12}$ that is an important parameter in evaluation of optical properties of the semiconductor system through density matrix approach.

### 2 Finite Element Solution of the 2-D Schrödinger Equation

In the envelope function approach, we assume a 2-D Schrödinger equation as,

$$H\psi(x, y) = \frac{\hbar^2}{2m^*} \left( \frac{d^2}{dx^2} + \frac{d^2}{dy^2} \right) \psi(x, y) + V(x, y)\psi(x, y)$$

$$= \frac{\hbar^2}{2m^*} \Delta \psi(x, y) + V(x, y)\psi(x, y)$$

$$= a\Delta \psi(x, y) + V(x, y)\psi(x, y)$$

$$= E\psi(x, y)$$

In fact, this 2-D time-independent Schrödinger equation is a linear eigenvalue problem with Dirichlet boundary conditions (BCs). The problem domain is rectangular $\Omega = [a_x, b_x] \times [a_y, b_y]$ where in the normalized case, this domain can be scaled and transformed to the form $\Omega = [0, 1] \times [0, 1]$. In Eq. (1), $\hbar$, $m^*$ and $V(x, y)$ are the Plank constant, effective mass and geometrical confining potential respectively and also set $a = \frac{\hbar^2}{2m^*}$. 

Springer
As explained, in the FEM, we discretize domain space into some rectangular element subdomains and build bilinear base functions. If we assume \( n_x \) and \( n_y \) number of discretization points along \( x \) and \( y \) direction axes, the steps along the \( x \) and \( y \) directions will be \( h_x = \frac{1}{n_x} \), \( h_y = \frac{1}{n_y} \). Then, we have \( 0 = x_0 < x_1 < ... < x_{n_x} = 1 \), \( 0 = y_0 < y_1 < ... < y_{n_y} = 1 \), \( x_i = a_i + ih_x \), \( y_j = a_j + jh_y \). The bilinear polynomial basis functions defined on the rectangular element can be written as,

\[
\varphi_{ij}(x, y) = \begin{cases} 
\frac{x_{i+1} - x}{x_{i+1} - x_i} \frac{y_{j+1} - y}{y_{j+1} - y_j}, & x_i \leq x \leq x_{i+1}, y_j \leq y \leq y_{j+1} \\
\frac{x_{i+1} - x}{x_{i+1} - x_i} \frac{y_{j+1} - y}{y_{j+1} - y_j}, & x_{i-1} \leq x \leq x_i, y_j \leq y \leq y_{j+1} \\
\frac{x_i - x}{x_{i-1} - x_i} \frac{y_{j+1} - y}{y_{j+1} - y_j}, & x_{i-1} \leq x \leq x_i, y_j \leq y \leq y_{j-1} \\
\frac{x_i - x}{x_{i-1} - x_i} \frac{y_{j+1} - y}{y_{j+1} - y_j}, & x_i \leq x \leq x_{i+1}, y_{j-1} \leq y \leq y_j \\
0, & \text{Otherwise}
\end{cases}
\]

where \( i = 0, 1, 2, ..., n_x \) and \( j = 0, 1, 2, ..., n_y \). The total number of points are equal \((1 + n_x)(1 + n_y)\). Since the wave functions degenerate on the boundaries, the boundary nodes delete from computing and are not necessary. Therefore, the number of unknown variables (and hence the number of algebraic equations) are equal to the number of internal discretization points \((n_x - 1)(n_y - 1)\).

Now, we construct the finite element approximation of the wave-function through linear combination of basis functions Eq. (2) on all internal nodes,

\[
\tilde{\psi}(x, y) = \sum_{i=1,j=1}^{n_x-1,n_y-1} u_{ij}\varphi_{ij}(x, y)
\]

where \( u_{ij} \) are unknowns. For simplicity, we use normalized and iso-parametric elements by scaling \( \xi = \frac{x - x_i}{h_x} \) and \( \eta = \frac{y - y_j}{h_y} \). Therefore, we can rewrite the Eq. (2) as an alternative,

\[
\varphi_{ij}(\xi, \eta) = \begin{cases} 
(1 - \xi)(1 - \eta), & 0 \leq \xi \leq 1, 0 \leq \eta \leq 1 \\
(1 + \xi)(1 - \eta), & -1 \leq \xi \leq 0, 0 \leq \eta \leq 1 \\
(1 + \xi)(1 + \eta), & -1 \leq \xi \leq 0, -1 \leq \eta \leq 0 \\
(1 - \xi)(1 + \eta), & 0 \leq \xi \leq 1, -1 \leq \eta \leq 0 \\
0, & \text{Otherwise}
\end{cases}
\]

Since, in the vicinity of the point \((x_i, y_j)\) there are only 9 neighborhood points and naturally 4 proper related elements, thus in matrix form of the Hamiltonian, there are only 9 non-zero diagonal layers of elements and we will have a resulting tri-diagonal block Hamiltonian matrix. Each of these blocks is 3 by 3 and they are symmetric. Now, we define residual through substituting the linear expansion (3) into the Eq. (1),

\[
R(x, y) = a \Delta \tilde{\psi}(x, y) + V(x, y)\tilde{\psi}(x, y) - E\tilde{\psi}(x, y), \quad x \in \Omega
\]

The approximated wave-function \( \tilde{\psi}(x, y) \) is in the generalized and distributional form (Marti 1986), thus we can use the Galerkin weighted residual method as,
\[ \int \int_{\Omega} R(x, y) \varphi_{ij}(x, y) dx dy = 0, \quad \text{(6-a)} \]

where, in a more precise manner we have,

\[ \int_{y_{i+1}}^{y_i} \int_{x_{j+1}}^{x_{j-1}} R(x, y) \varphi_{ij}(x, y) dx dy = 0, \quad \text{(6-b)} \]

And in the normalized space we have,

\[ \int_{-1}^{1} \int_{-1}^{1} R(\xi, \eta) \varphi_{ij}(\xi, \eta) d\xi d\eta = 0, \quad \text{(6-c)} \]

In order to evaluate the Eq. (6), we need to use green theorem of second kind as (Marti 1986; Brenner and Scott 2007),

\[ \int \int_{\Omega} \Phi \Delta U d\Omega + \int \int_{\Omega} \nabla \Phi \cdot \nabla U d\Omega = \int \int_{\Gamma} \Phi \frac{\partial U}{\partial n} d\Gamma, \quad \text{(7)} \]

Due to homogeneous Dirichlet boundary condition, this equation can be simplified into,

\[ \int \int_{\Omega} \Phi \Delta U d\Omega = - \int \int_{\Omega} \nabla \Phi \cdot \nabla U d\Omega, \quad \text{(8)} \]

The Fig. 1 represents a simple description about the relating basis functions in the neighborhood of the point \((x_i, y_j)\).

Now, through integral (6), we have three types of blocked tri-diagonal matrices. For the matrix \(M_1\) we have the matrix elements as Fig. 2.

\begin{tabular}{|c|c|c|c|}
\hline
\(j+1\) & \(-\eta \xi\) & \(\eta(1+\xi)\) & \(\eta(1-\xi)\) & \(\eta \xi\) \\
\hline
\(j\) & \\
\hline
\(-\xi(1-\eta)\) & \((1+\xi)(1-\eta)\) & \((1-\xi)(1-\eta)\) & \(\xi(1-\eta)\) \\
\hline
\(-\xi(1+\eta)\) & \((1+\xi)(1+\eta)\) & \((1-\xi)(1+\eta)\) & \(\xi(1+\eta)\) \\
\hline
\(j-1\) & \(\eta \xi\) & \(-\eta(1+\xi)\) & \(-\eta(1-\xi)\) & \(-\eta \xi\) \\
\hline
\end{tabular}

Fig. 1 4 neighborhood normalized elements of arbitrary internal point \((x_i, y_j)\)
Electronic properties of multi-ablooms flower-like quantum...

and $M_3$ matrix elements are as Fig. 3. And $M_3$ matrix elements are as Fig. 4.
When we evaluate the above mentioned sub-matrices, we will have the following eigenvalue equation system,

\[-\alpha M_1 \psi + M_2 \psi = E M_3 \psi, \quad (9)\]

where $E$ are the energy eigenvalues.

### 3 Numerical results and discussions

By using a finite element method and compact density matrix formalism, we have investigated the electronic properties of multi-abloom nano-flowers. Figure 5 shows the few multi abloom potential profile.

In the Fig. 6 we have presented the variation of the first 20 lowest eigen-energies of a 5-abloom nano-flower as a function of the domain size. In this figure, we see that, as the domain size increases the energies decreases.

![Fig. 5](image-url) Confining potential of the systems with 2 to 8 number of ablooms. ($r' = \cos(2\theta)$ for 2 ablooms, $r = \cos(3\theta)$ for 3 ablooms, $r = \cos(2\theta)$ for 4 ablooms, and so on.)
Fig. 6 Variation of the first 20 lowest eigen-energies as a function of the domain size

Fig. 7 Variation of the first 20 lowest eigen-energies as a function of the number of ablooms
Also, in the Fig. 7, we have given the variation of the first 20 lowest eigen-energies of a 5-abloom nano-flower as a function of the number of ablooms. Here, we see a non-linear behavior in the energy values when the number of ablooms increases.

In the next four Fig. 8a–d, we have presented the 9 eigen-functions of the system with 2, 3, 5, and 8 number of ablooms. These figures indicate the distribution of the probability densities inside the quantum structure. This probabilities show the probability of finding an electron in an assumed structures and therefore can provide us information about the free careers distribution.

Fig. 8 a First 9 eigen-functions of the system with 2 ablooms. (the 2 ablooms rose can be depicted by \( r^2 = \cos(2\theta) \)). b First 9 eigen-functions of the system with 3 ablooms. (the 3 ablooms rose can be found by \( r = \cos(3\theta) \) or \( r = \sin(3\theta) \)). c First 9 eigen-functions of the system with 5 ablooms. d First 9 eigen-functions of the system with 8 ablooms.
The Figs. 9 and 10 also show the effects of the system length and number of ablooms on the dipole matrix elements $M_{21} = \int \int |x|\psi_1(x,y)\psi_2(x,y)dx dy$, respectively. As Fig. 9 shows, when the system length increases, the dipole matrix elements $M_{21}$ also increases. However, the Fig. 10 indicates that the variation of the dipole matrix elements $M_{21}$ as a function of the number of ablooms is an oscillatory function.

### 4 Conclusion

In this work, we investigated the electronic properties of multi-abloom nanoflower. By using detailed finite element method, we showed that as the domain size increased, the energies decreased. A nonlinear behavior in the energy values observed when the number of ablooms increased. When the system length increased, the dipole matrix elements $M_{21}$ also increased. The variation of the dipole matrix elements $M_{21}$ as a function of the number of ablooms was an oscillatory function.
Fig. 8 (continued)
Fig. 8 (continued)

Fig. 9 Variation of the dipole matrix elements $M_{21}$ as a function of the system length
Fig. 10 Variation of the dipole matrix elements $M_{21}$ as a function of the number of ablooms

References

Ames, W.F.: Numerical Methods for Partial Differential Equations, 3rd edn. Academic Press, New York (1992)

Bester, G., Zunger, A.: Cylindrically shaped zinc-blende semiconductor quantum dots do not have cylindrical symmetry: Atomic symmetry, atomic relaxation, and piezoelectric effects. Phys. Rev. B 71, 045318 (2005)

Bose, C.: Binding energy of impurity states in spherical quantum dots with parabolic confinement. J. Appl. Phys. 83, 3089–3091 (1998)

Braess, D.: Finite Elements, Theory, Fast Solvers, and Applications in Elasticity Theory. Cambridge University Press, Cambridge (2007)

Brenner, S., Scott, R.: The Mathematical Theory of Finite Element Methods. Springer, Berlin (2007)

Chattopadhyay, P.K.: Mathematical Physics. New Age Int. (P) Ltd., New Delhi (1990)

Cunha, D.M., Souza, F.L.: Facile synthetic route for producing one-dimensional zinc oxide nanoflowers and characterization of their optical properties. J. Alloys Compd. 577, 158–164 (2013)

Deyasi, A., Bhattacharyya, S., Das, N.R.: Computation of intersubband transition energy in normal and inverted core–shell quantum dots using finite difference technique. Superlattices Microstruct. 60, 414–425 (2013)

El-Said, M.: Spectroscopic structure of two interacting electrons in a quantum dot by the shifted 1/N expansion method. Phys. Rev. B 61, 13026 (2000)

Fang, T.-F., Wang, S.-J.: Cross correlations and shot noise in a Y-shaped quantum dot. Journal of Physics: Condensed Matter 19(2), 026204 (2007)

Fang, T.-F., Wang, S.-J.: Cross correlations and shot noise in a Y-shaped quantum dot. Phys. E. 66, 107 (2015)

Finlayson, B.A.: The Method of Weighted Residuals and Variational Principles, with application in fluid mechanics, heat and mass transfer. Academic Press, New York (1972)

García, T., Gómez-Campos, F.M., Rodríguez-Bolívar, S.: Influence on miniband structure of size variations in regimented InAs/GaAs quantum dots arrays. J. Appl. Phys. 114, 064311 (2013)

Golubnychy, V., Baumgartner, H., Bonitz, M., Filinov, A., Fehske, H.: Screened Coulomb balls—structural properties and melting behavior. J. Phys. A Math. Gen. 39, 4527–4531 (2006)

Governale, M., Macucci, M., Iannaccone, G., Ungarelli, C., Martorell, J.: Modeling and manufacturability assessment of bistable quantum-dot cells. J. Appl. Phys. 85, 2962–2971 (1999)

Güçlü, A.D., Umrigar, C.J.: Maximum-density droplet to lower-density droplet transition in quantum dots. Phys. Rev. B 72, 045309 (2005)

Güçlü, A.D., Sun, Q.F., Guo, H., Harris, R.: Geometric blockade in a quantum dot: transport properties by exact diagonalization. Phys. Rev. B 66, 195327 (2002)

Hwang, T.-M., Lin, W.-W., Wang, W.-C., Wang, W.: Numerical simulation of three dimensional pyramid quantum dot. J. Comput. Phys. 196, 208–232 (2004)

Ikhdair, S.M., Hamzavi, M.: A quantum pseudodot system with two-dimensional pseudoharmonic oscillator in external magnetic and Aharonov-Bohm fields. Phys. B 407, 4198–4207 (2012)
Khordad, R., Bahramiyan, H.: Impurity position effect on optical properties of various quantum dots. Phys. E Low-dimens. Syst. Nanostruc. 66, 107–115 (2015)
Kim, Y.-J., Yoo, J., Kwon, B.-H., Hong, Y.J., Lee, C.-H., Yi, G.-C.: Position-controlled ZnO nanoflower arrays grown on glass substrates for electron emitter application. Nanotechnology 19(31), 315202 (2008)
Mardaania, M., Shokri, A.A., Esfarjani, K.: Analytical results on coherent conductance in a general periodic quantum dot: Transfer matrix method. Phys. E. 28, 150 (2005)
Marti, J.T.: Introduction to Sobolev spaces and finite element solution of elliptic boundary value problems. Academic Press, New York (1986)
Melnik, R.V.N., Willatzen, M.: Bandstructures of conical quantum dots with wetting layers. Nanotechnology 15, 1–8 (2003)
Mitchell, A.R., Wait, R.: Finite Element Analysis and Applications. Wiley, New York (1985)
Naser, M.A., Deen, M.J., Thompson, D.A.: Spectral function and responsibility of resonant tunneling and superlattice quantum dot infrared photodetectors using Green’s function. J. Appl. Phys. 102, 083108 (2007)
Nenashev, A.V., Dvurechenskii, A.V.: Variational method of energy level calculation in pyramidal quantum dots. J. Appl. Phys. 127, 154301 (2020)
Nomura, S., Aoyagi, Y.: Density of states of a quantum dot array probed by photoluminescence spectra. Surf. Sci. 529, 171–179 (2003)
Reddy, J.N.: An Introduction to the Finite Element Method. Mc Graw-Hill, New York (2005)
Rodriguez, A.H., Ramirez, H.Y.: Analytical calculation of eigen-energies for lens-shaped quantum dot with finite barriers. Eur. Phys. J. B 66, 235–238 (2008)
Sadeghi, E., Vahdatnejad, F., Moradi, L.M.: Effect of polarization charges on impurity binding energy in elliptical quantum wire. Superlattices Microstruct. 58, 165–170 (2013)
Shuvayev, V.A., Deych, L.I., Ponomarev, I.V., Lisyansky, A.A.: Self-consistent Hartree method for calculations of exciton binding energy in quantum wells. Superlattices Microstruct. 40, 77–92 (2006)
Šolín, P.: Partial Differential Equations and the Finite Element Method. Wiley, New York (2005)
Song, L., Lukianov, A., Butenko, D., Li, H., Zhang, J., Feng, M., Liu, L., Chen, D., Klyui, N.I.: Facile synthesis of hierarchical tin oxide nanoflowers with ultra-high methanol gas sensing at low working temperature. Nanoscale Res. Lett. 14(1), 84 (2019)
Stier, O., Grundmann, M., Bimberg, D.: Electronic and optical properties of strained quantum dots modeled by 8-band k.p theory. Phys. Rev. B 59, 5688–5701 (1999)
Wei, R., Xie, W.: Optical absorption of a hydrogenic impurity in a disc-shaped quantum dot. Curr. Appl. Phys. 10, 757–760 (2010)
Wu, B.H., Cao, J.C.: Interference of conductance and shot noise properties of photon-assisted transport through a T-shaped double quantum dot. Phys. Rev. B 73, 205318 (2006)
Zhao, C., Yifeng, E., Fan, L.: Enhanced electrochemical evolution of oxygen by using nanoflowers made from a gold and iridium oxide composite. Microchim Acta 178, 107–114 (2012)
Zhou, G., Li, Y.: Electromagnetic-field-induced resonant structures for an open rectangular quantum dot. The European Physical Journal B-CondensedMatter and Complex Systems 46, 127–132 (2005)

Publisher's Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.