Protein kinases are versatile signaling molecules that are involved in the regulation most physiological responses. The p21-activated kinases (PAKs) can be activated directly by the small GTPases Rac and Cdc42 and are among the best characterized downstream effectors of these Rho proteins. The structure, substrate specificity and functional role of PAKs are evolutionarily conserved from protozoa to mammals. Vertebrate PAKs are particularly important for cytoskeletal remodeling and focal adhesion assembly, thereby contributing to dynamic processes such as cell migration and synaptic plasticity. This issue of *Cellular Logistics* focuses on the PAK family of kinases, with ten reviews written by researchers currently working in the field. Here in this introductory overview we highlight some of the most interesting recent discoveries regarding PAK biochemistry and biology. The reviews in this issue cover a range of topics including the atomic structures of PAK1 and PAK4, their role in animals as assessed by knockout studies, and how PAKs are likely to contribute to cancer and neurodegenerative diseases. The promise remains that PAK inhibitors will emerge that validate current pre-clinical studies suggesting that blocking PAK activity will positively contribute to human health.

Focus on PAK Kinases

PAKs were first discovered in 1994 in a screen for proteins that interact with the small G-proteins Rac1 and Cdc42.1 It turned out that PAKs are a prototype target in that their Cdc42/Rac interaction-binding (CRIB) domain is found not only across the family but also in non-kinase effectors such as Wiskott-Aldrich syndrome protein (WASP).2 PAKs are found in all eukaryotes, with budding yeast Ste20 kinase the first in its class to be described.3 The biology of these diverse PAKs from protozoa to man are described in the article by Manser and Zhao in this issue.4 Early genetic and biochemical studies of Ste20 showed that this PAK signals from Cdc42 to the pheromone-responsive MAP kinase pathway in budding yeast.5 In both budding and fission yeasts the PAKs play an important negative feedback role to limit Cdc42 activation at the growing tip (or tips in the case of bipolar cells).6

Although PAK signaling does stimulate MAP kinase activation in mammalian cells, the mechanisms are somewhat different to those described in yeast, in that PAK primarily feeds into the canonical pathway through Raf-1, a major target of mammalian Ras not found in yeast. Raf1 can be activated by PAKs through Ser338 phosphorylation (as outlined in this issue by Ye and Field7). One interesting new target for mammalian PAKs is the atypical MAPK ERK3, which has an unusual activation loop. The vertebrate MAP kinases ERK1/ERK2, JNK, p38 and ERK5 all contain the conserved T-x-Y motif in their activation loop which is dually phosphorylated by members of the MAP kinase kinases family. PAK1/2/3 modifies ERK3 Ser-189 (or ERK4 on equivalent Ser-186)—the single site needed for kinase activation.8 The role of ERK3/4 in cell proliferation is not yet resolved, but one well studied downstream target is MAP kinase-activated protein kinase 5 (MK5).

PAKs come in two flavors, which are denoted group I and II: the group I kinases in man comprise PAK1–3. The PAK1 (rat PAKα) is the best studied isoform, but is not found in all cell types or tissues.9 The ubiquitous PAK2(γ) is under-studied as it is extremely toxic in *E. coli*, even in the context of mammalian expression vectors.9 PAK3(B) exists as four alternate spliced forms in neurons.10 The presence of PAK3 exons (b and c) renders the kinase constitutively active and decreases interaction with GTPases, and may promote heterodimerization with PAK1.12 Curiously the PAK3 gene locus has been massively amplified in human PAK4 (termed PAK4b) was identified that contains only 68 residues of N-terminal regulatory sequence.13 This sequence nonetheless contains a functional CRIB and auto-inhibitory domain (AID) also found in the larger PAK4a, and that is related the PAK1 AID. Thus PAK4 has finally lived up to its billing as a “p21-activated kinase.” Interestingly there appears to be no auto-phosphorylation event associated with Cdc42-driven PAK4...
as well as all-atom in silico molecular dynamic (MD) simulations.

Pioneering studies on protein kinases were performed in muscle extracts. The regulation of smooth muscle contraction is activated by phosphorylation at Ser-19 of the regulatory light chain subunits of myosin II (MLC2). PAK1 has been shown to input on this pathway, attenuating the contraction of skinned smooth muscle by inhibiting the calcium regulated myosin light chain kinase (MLCK). Myosin II is also important in controlling cell contractility in most non-muscle cells. The RhoA effector Rho-associated kinase (ROCK) and Cdc42 effector myotonin-related Cdc42-binding kinase (MRCK) are key MLC2 kinases in this context. In C. elegans ROCK, PAK1 and MRCK homologs act redundantly to promote proper embryonic elongation via epidermal and muscle cells. A constitutively active form of CeMLC only rescues loss of MRCK, indicating that ROCK and PAK1 have other targets in this process. PAK1 is part of the mechanosensory signaling module that responds to tension in these cells.

The cardiac muscle of PAK1-knockout mice are superficially normal; however, PAK1 KO hearts show reduced MLC2 phosphorylation after ischemia and reperfusion. The specific defects in cardiac development and function due to loss of PAK1 function are described by Ke and coworkers in this issue.

The immuno-localization of PAKs in cultured cells, being a static picture, can be rather uninteresting. In reality these kinases move between different cellular compartments, and can be found at the plasma membrane, in cell adhesions and in the nucleus. The dynamic targeting of PAKs probably contribute significantly to their ability to act on substrates. Parrini’s article in this issue provides some insight into the design of biosensors that can be used to visualize PAK1 localization and activation in live cells.

These tools are valuable probes to study PAKs in cells, and ultimately in model organisms. In cultured cells group I PAKs are targeted to cell adhesions via the PAK-interacting exchange factor PIX. In an important proteomic paper describing the complex of focal adhesions, PIX emerged as a protein that interacts with PIX targeted adhesions. The mechanism of Ras GTP hydrolysis, and indeed other Ras-like proteins. The utility of this technique is illustrated with lapatinib a high affinity inhibitor of EGFR and HER2, with weak affinity for ErbB4. Although the crystallographic contacts of lapatinib are essentially identical with these three kinases, MD simulations correctly trace the higher affinity of EGFR vs. ErbB4 for lapatinib to water molecules interacting with EGFR Cys775.

Similarly the conformational behavior of the active phosphorylated PAK1 catalytic domain has been modeled by MD simulation. The simulations demonstrate how the key activation loop phosphate is oriented to PAK1 Lys308, at the end of the αC helix, thus holding this helix in an active conformation; the model correctly predicts why the commonly used PAK1(T423E) phoshpo-mimetic is not active, as it lacks this Lys308 interaction.

In the past four years these computationally taxing simulations have moved from the realm of super-computers to the desktop. In 1992 such solution-based MD simulations were first used to explain how the coordination of water molecules was key to the mechanism of Ras GTP hydrolysis, and indeed other Ras-like proteins. The utility of this technique is illustrated with lapatinib a high affinity inhibitor of EGFR and HER2, with weak affinity for ErbB4. Although the crystallographic contacts of lapatinib are essentially identical with these three kinases, MD simulations correctly trace the higher affinity of EGFR vs. ErbB4 for lapatinib to water molecules interacting with EGFR Cys775.

Similarly the conformational behavior of the active phosphorylated PAK1 catalytic domain has been modeled by MD simulation. The simulations demonstrate how the key activation loop phosphate is oriented to PAK1 Lys308, at the end of the αC helix, thus holding this helix in an active conformation; the model correctly predicts why the commonly used PAK1(T423E) phoshpo-mimetic is not active, as it lacks this Lys308 interaction. The MD-optimized structure of PAK1 in complex with the pan-PAK inhibitor PF-3758309 developed by Pfizer is illustrated in Figure 1. The kinase is in a “closed” conformation and the binding of the drug in the ATP binding pocket closely resembles interactions seen for PAK4 in complex with PF-3758309 (pdb 2X42).

Much of the interest in PAKs centers on their role in cancer, and the possibility that PAK inhibitors may be useful in clinic. The article by Ye and Field in this issue discusses the ways that...
PAKs are amplified, overexpressed or activated in many cancers to drive the growth of tumors. PAKs, most often PAK1 and PAK4, are overexpressed in certain cancers in which they promote the growth and maintenance of tumors. This review also addresses some of the targets and signaling pathways that PAKs are using to drive tumor growth, reviewing studies primarily on PAK1. However, PAK4 may be the most important isoform in human cancer as it is the only isoform that will reliably cause tumors when ectopically expressed. The links between PAK4 function and cancer is reviewed by Minden, also in this issue.

Since blocking PAK was anticipated to selectively affect cancer cells, a number of academic labs and pharmaceutical companies have developed small molecule PAK inhibitors. Most compounds are ATP competitive, but IPA-3 is an unusual allosteric inhibitor that prevents PAK activation by Cdc42. Such compounds provide the first small molecule probes to study PAK function, although the PAN AID peptide is the gold standard in cell culture. The pan PAK inhibitor PF-3758309 developed by Pfizer is in clinical trials for cancer, although it may not proceed due to poor bioavailability. The range of PAK inhibitors under development are described in this volume by Coleman and Kissil in this issue. It is becoming clear that there is essential cross-talk between tumor cells, the vasculature, and immune cells during tumor progression. In this context PAK inhibitors might be able to simultaneously modulate all three cell types for a positive outcome. There have been a number of recent successes with protein kinase inhibitors to treat cancer, most notably against the prototype Ras-target BRaf, the development of suitable PAK inhibitors may add to this list.

Inhibiting PAKs may also be a route to modulate host-pathogen responses. An emerging area is the role of these kinases in pathogen responses. For example PAKs have long been suspected to be required for efficient HIV infection. One of the most interesting recent findings of PAK function regards the enterohemorrhagic E. coli O157:H7. In the infection process, this strain uses the type III effector EspG protein to interfere with membrane trafficking at the level of the Golgi apparatus. In a yeast two-hybrid screen, PAKs (isoforms 1, 2 and 3) were found as its relevant host substrates. The structure of EspG with a small region of the PAK AID (the region that also binds to fragile-X retardation protein FMR1), which coordinates activity-dependent protein translation in spines. Based on studies in flies and mice it is suggested that drugs that inhibit group I PAKs would...
be able to reverse some of the behavioral and physical defects associated with fragile X syndrome. In addition, PAKs have been implicated in the neurodegenerative disorders of Alzheimer and Huntington diseases. These important findings are reviewed by Ma et al. in this issue.48

As can be judged from the timing of this special focus, it has taken us a good many years to grasp how these kinases contribute to cell function, with the underlying PAK biochemistry still open to unexpected findings. For example, recent evidence points to PAK4 being constitutively phosphorylated on the activation loop Ser474;35 this explains why antibodies directed toward pS474 should fail to detect changes in PAK4 activity. There remains a plethora of discoveries ahead since the number of well-defined (PAK) kinase targets are limited (an updated list of published targets is in the review by Ye and Field). Three important facts emerge from the seminal report describing PF-3758309.39 First that PAK inhibition is well tolerated by cells and animals; second, PAK inhibitors can block many more tumors than would be predicted from expression studies and third, surveys of signaling pathways perturbed by PF-3758309 identified almost all known PAK pathways, as well as several new ones not typically associated with PAK. No doubt the availability of small molecule probes and knockout mice to explore PAK signaling will reveal new PAK targets, pathways and functions.

Acknowledgments

We are particularly grateful to the many contributors to this issue. A special thanks to Hiroshi Maruta, who initiated this issue, but was unable to continue with the project. J.F. is supported by GM048241 and E.M is supported by the Singapore Agency for Science Technology and Research (A-star).
33. Qiu C, Tarrant MK, Choi SH, Sathyamurthy A, Bose R, Banjade S, et al. Mechanism of activation and inhibition of the HER4/ErbB4 kinase. Structure 2008; 16:460-7; PMID:18334220; http://dx.doi.org/10.1016/j.str.2007.12.016.

34. Huang Y, Rizzo RC. A water-based mechanism of specificity and resistance for lapatinib with ErbB family kinases. Biochemistry 2012; 51:2390-406; PMID:22352796; http://dx.doi.org/10.1021/bi2016553.

35. Whale A, Hashim FN, Fram S, Jones GE, Wells CM. Signalling to cancer cell invasion through PAK family kinases. Front Biosci 2011; 16:849-64; PMID:21196207; http://dx.doi.org/10.2741/3724.

36. Liu Y, Chen N, Cui X, Zheng X, Deng L, Price S, et al. The protein kinase Pak4 disrupts mammary acinar architecture and promotes mammary tumorigenesis. Oncogene 2010; 29:5883-94; PMID:20697354; http://dx.doi.org/10.1038/onc.2010.329.

37. Viaud J, Peterson JR. An allosteric kinase inhibitor binds the p21-activated kinase autoregulatory domain covalently. Mol Cancer Ther 2009; 8:2559-65; PMID:19723886; http://dx.doi.org/10.1158/1535-7163.MCT-09-0102.

38. Zhao ZS, Manser E, Chen XQ, Chong C, Leung T, Lim L. A conserved negative regulatory region in alphaPAK: inhibition of PAK kinases reveals their morphological roles downstream of Cdc42 and Rac1. Mol Cell Biol 1998; 18:2153-63; PMID:9528787.

39. Murray BW, Guo C, Pitroino J, Westwick JK, Zhang C, Lamerding J, et al. Small-molecule p21-activated kinase inhibitor PF-3758309 is a potent inhibitor of oncogenic signaling and tumor growth. Proc Natl Acad Sci U S A 2010; 107:9446-51; PMID:20439741; http://dx.doi.org/10.1073/pnas.0911863107.

40. Coleman N, Kisiel J. Recent advances in the development of p21-activated kinase inhibitors. Cell Logist 2012; 2:132-5; http://dx.doi.org/10.4161/cl.21667.

41. Röring M, Brummer T. Aberrant B-Raf signaling in human cancer – 10 years from bench to bedside. Crit Rev Oncog 2012; 17:97-121; PMID:22471666; http://dx.doi.org/10.1615/CritRevOncog.v17.i1.70.

42. Foster JL, Garcia JV. HIV-1 Nef: at the crossroads. Retrovirology 2008; 5:84; PMID:18808677; http://dx.doi.org/10.1186/1742-4690-5-84.

43. Selyunin AS, Alto NM. Activation of PAK by a bacterial type III effector EspG reveals alternative mechanisms of GTPase pathway regulation. Small GTPases 2011; 2:217-21; PMID:22145094; http://dx.doi.org/10.4161/sgtp.2.4.16704.

44. Semblat JP, Doerig C. PAK in pathogen-host interactions. Cell Logist 2012; 2:126-31; http://dx.doi.org/10.4161/cl.20222.

45. Allen KM, Gleeson JG, Bagrodia S, Partridge MW, MacMillan JC, Cerione RA, et al. PAK3 mutation in nonsyndromic X-linked mental retardation. Nat Genet 1998; 20:25-30; PMID:9731525; http://dx.doi.org/10.1038/1675.

46. Say E, Tay FG, Zhao ZS, Baskaran Y, Li R, Lim L, et al. A functional requirement for PAK1 binding to the KH(2) domain of the fragile X protein-related FXR1. Mol Cell 2010; 38:236-49; PMID:20417602; http://dx.doi.org/10.1016/j.molcel.2010.04.004.

47. de Ruiseis S, Fernández E, Buzzi A, Di Marino D, Bagni C. Molecular and cellular aspects of mental retardation in the Fragile X syndrome: from gene mutation/s to spine dysmorphogenesis. Adv Exp Med Biol 2012; 700:517-51; PMID:22351071; http://dx.doi.org/10.1007/978-3-7983-0392-8_23.

48. Ma QL, Yang F, Frautschy SA, Cole GM. PAK in Alzheimer diseases, Huntington disease and X-linked mental retardation. Cell Logist 2012; 2:117-25; http://dx.doi.org/10.4161/cl.21602.