Designer Benzodiazepines: A Review of Toxicology and Public Health Risks

Pietro Brunetti
Marche Polytechnic University of Ancona

Raffaele Giorgetti
Marche Polytechnic University of Ancona

Adriano Tagliabracci
Marche Polytechnic University of Ancona

Marilyn A. Huestis
Thomas Jefferson University

Francesco Paolo Busardò
Marche Polytechnic University of Ancona

Follow this and additional works at: https://jdc.jefferson.edu/iehpfp

Part of the International Public Health Commons

Let us know how access to this document benefits you

Recommended Citation
Brunetti, Pietro; Giorgetti, Raffaele; Tagliabracci, Adriano; Huestis, Marilyn A.; and Busardò, Francesco Paolo, "Designer Benzodiazepines: A Review of Toxicology and Public Health Risks" (2021). Institute of Emerging Health Professions Faculty Papers. Paper 11.
https://jdc.jefferson.edu/iehpfp/11

This Article is brought to you for free and open access by the Jefferson Digital Commons. The Jefferson Digital Commons is a service of Thomas Jefferson University's Center for Teaching and Learning (CTL). The Commons is a showcase for Jefferson books and journals, peer-reviewed scholarly publications, unique historical collections from the University archives, and teaching tools. The Jefferson Digital Commons allows researchers and interested readers anywhere in the world to learn about and keep up to date with Jefferson scholarship. This article has been accepted for inclusion in Institute of Emerging Health Professions Faculty Papers by an authorized administrator of the Jefferson Digital Commons. For more information, please contact: JeffersonDigitalCommons@jefferson.edu.
Designer Benzodiazepines: A Review of Toxicology and Public Health Risks

Pietro Brunetti 1, Raffaele Giorgetti 1, Adriano Tagliabracci 1, Marilyn A. Huestis 2,* and Francesco Paolo Busardo 1

1 Department of Excellence of Biomedical Sciences and Public Health, Marche Polytechnic University of Ancona, Via Tronto 10, 60126 Ancona, Italy; pietrobrunetti40@gmail.com (P.B.); r.giorgetti@univpm.it (R.G.); a.tagliabracci@univpm.it (A.T.); fra.busardo@libero.it (F.P.B.)
2 Institute of Emerging Health Professions, Thomas Jefferson University, 1020 Walnut St., Philadelphia, PA 19144, USA
* Correspondence: marilyn.huestis@gmail.com

Abstract: The rising use of designer benzodiazepines (DBZD) is a cat-and-mouse game between organized crime and law enforcement. Non-prohibited benzodiazepines are introduced onto the global drug market and scheduled as rapidly as possible by international authorities. In response, DBZD are continuously modified to avoid legal sanctions and drug seizures and generally to increase the abuse potential of the DBZD. This results in an unpredictable fluctuation between the appearance and disappearance of DBZD in the illicit market. Thirty-one DBZD were considered for review after consulting the international early warning database, but only 3-hydroxyphenazepam, adinazolam, clonazolam, etizolam, flubromazepam, flubromazolam, meclonazepam, phenazepam and pyrazolam had sufficient data to contribute to this scoping review. A total of 49 reports describing 1 drug offense, 2 self-administration studies, 3 outpatient department admissions, 44 emergency department (ED) admissions, 63 driving under the influence of drugs (DUID) and 141 deaths reported between 2008 and 2021 are included in this study. Etizolam, flubromazolam, flubromazolam and phenazepam were implicated in the majority of adverse events, drug offenses and deaths. However, due to a general lack of knowledge of DBZD pharmacokinetics and toxicity, and due to a lack of validated analytical methods, total cases are much likely higher. Between 2019 and April 2020, DBZD were identified in 48% and 83% of postmortem and DUID cases reported to the UNODC, respectively, with flubromazolam, flubromazolam and etizolam as the most frequently detected substances. DBZD toxicology, public health risks and adverse events are reported.

Keywords: benzodiazepine; designer; NPS; intoxication; poisoning; impairment; death

1. Introduction

Benzodiazepines (BZD), important forensic and clinical toxicology drugs, are widely prescribed for neurological and psychiatric disorders and are also highly abused [1–3]. Discovered in the mid-1950s, BZD were designed as pharmacotherapies for anxiety, panic attacks, sleep disorders and epilepsy, and they have been used as myorelaxants during surgical and orthopedic procedures [4,5]. BZD are positive allosteric modulators that enhance the binding affinity of the inotropic γ-aminobutyric acid-A receptor (GABA_A) for GABA, the major central nervous system (CNS) inhibitory neurotransmitter [6,7]. Unlike GABA_A agonists that work directly on the receptor, BZD increase the frequency of GABA_A channel opening, depending only on the endogenously available GABA [8–10]. Due to controlled neuronal inhibition and lower CNS depression risk, BZD rapidly replaced older medications such as barbiturates, meprobamate and chloral hydrate, becoming the most prescribed drug class in the world during the 1970s [11,12]. Although they possess a high therapeutic index, BZD also come with several side effects, such as drowsiness, dizziness,
fatigue, dysarthria, loss of coordination, headache and amnesia, and they have the potential of being addictive [5]. Their use was recommended for a short treatment, i.e., 4–6 weeks for insomnia, but physicians prescribed BZD for months or years, with patients finding it difficult to stop taking these medications because of withdrawal symptoms [13–16]. Controlled clinical trials confirmed that long-term administration produced tolerance and dependence [17,18]. Due to this considerable risk of abuse, in February 1984, the United Nations Commission on Narcotic Drugs placed 33 commercially available BZD under Schedule IV of the 1971 Convention on Psychotropic Substances [19–23]. BZD are abused at supratherapeutic doses to reinforce opioid euphoric effects and to alleviate the “crash” following stimulant abuse, or they are administrated to perpetrate drug-facilitated sexual assault, exploiting their hypnotic and amnestic side effects [16,24–26]. High BZD doses in combination with opioids or other CNS depressants increase the risk of death by suppression of medullary respiratory centers [27–29]. According to the United Nations Office of Drugs and Crime (UNODC) and the European Monitoring Centre for Drugs and Drug Addiction (EMCDDA), the concomitant non-medical use of opioids and BZD was further exacerbated by the increasing emergence of designer BZD (DBZD) [30,31].

The term “DBZD” is a misnomer, as the class also includes BZD marketed in only some countries, metabolites of registered BZD and structural analogues of therapeutically approved BZD [32,33]. These new psychoactive substances (NPS) have the same chemical structure as legal BZD, with an aromatic ring fused to a 1,4-diazepine ring and an aryl group in position R5 [34–37]. Slight alterations of the BZD core at different positions generated a large number of designer compounds, mainly 1,4-benzodiazepines, triazolobenzodiazepines and thienotriazolodiazepines. [6,38,39]. The newest DBZD have a triazolo ring fused to the 1,4 diazepine core and electron-withdrawing groups (bromine, chlorine, nitro etc.) in position R8 that increase the affinity for the GABA\textsubscript{A} receptor [40,41]. Compared with classical BZD, these compounds produce strong sedation and amnesia, and they increase the risk of respiratory depression and death when used in combination with other CNS depressants [41,42]. However, they are illicit, with a relatively short life cycle in the NPS market, the majority of DBZD have not undergone clinical trials and our knowledge of their pharmacokinetics and toxicity is lacking and limited to self-reported experiences [43,44]. These substances are illegally manufactured, sometimes mimic legal medicines’ appearance, and are purchased inexpensively on the underground drug market through online platforms that facilitate anonymous trading and bypass regulatory systems [45,46]. Phenazepam and nimetazepam were the first DBZD identified in Europe on the internet in 2007, followed by etizolam in 2011 [47]. They are not strictly considered DBZD since they are approved for medical use in certain countries, but they have been implicated in several drug-related deaths in the United Kingdom between 2012 and 2013 [39,47]. In 2012 in Finland, pyrazolam, the first true DBZD not approved in any jurisdiction, was identified [48]. About thirty different DBZD have been reported to date to the UNODC Early Warning Advisory (EWA), with the majority of notifications received from European Countries [30,49–53]. According to the UNODC, bulk materials from India and China are brought into Europe where they are further processed and sold as fake alprazolam or diazepam [54]. Counterfeit Xanax (alprazolam) and erimin-5 (nimetazepam) tablets containing etizolam, flualprazolam and phenazepam were also seized in the United States (US), Australia, Singapore and Malaysia [30,55,56].

The misuse of DBZD in conjunction with other drug use is a growing and widespread world health and safety concern [47,57,58]. The number of DBZD seizures and undercover purchases increased in the US from 2391 in 2018 to 6194 in 2019 according to the US National Forensic Laboratory Information System [59–62]. In 2020 amid shortages of classic drugs of abuse following COVID-19 restrictions, some drug users shifted from prescription sedatives to DBZD and novel synthetic opioids (NSO) [63–66]. Produced in clandestine laboratories, DBZD do not meet the same strict approval requirements as legal pharmaceuticals and may contain variable amounts of active ingredients or contaminants, i.e., NSO and other NPS [54]. Users generally are unaware of the presence of
contaminants in a product, resulting in an increasing number of adverse health events for DBZD, including emergency room admissions and death investigations [67–69]. There is also increasing DBDZ prevalence in driving impairment and road traffic crashes [70,71]. According to the UNODC, between 2019 and April 2020, DBZD were identified in 48% and 83% of post-mortem and Driving Under the Influence of Drug (DUID) cases, respectively, with flualprazolam, flubromazolam and etizolam as the most frequently detected substances [54,72].

Due to the high abuse potential and life-threatening consequences of DBZD use, between 2020 and 2021 clonazolam, diclazepam, etizolam, flualprazolam and flubromazolam were listed in Schedule IV of the Convention of Psychotropic Substances of 1971 [73]. Based on this public health risk, this scoping review reports the most recent emergency department (ED) admissions, DUID and postmortem investigations involving DBZD, with the objective of providing useful and updated toxicology and epidemiology data about DBZD intake to improve public health and safety efforts.

2. Results

Of 372 potentially relevant reports, 324 were excluded because they did not describe ED admissions, DUID or fatalities associated with DBZD use. No relevant reports were found for 4-chlorodiazepam, alprazolam triazolobenzophenone derivate, benzazepam, bromazolam, cinazepam, clobromazolam, cloniprazepam, difludiazepam, fluclofilizolam, flunitrazolam, fonazepam, methylclonazepam, nifoxipam, nimetazepam, nitrazolam, norfludiazepam, tofisopam or thionordazepam, which were therefore excluded from the results. In 49 reports 3-hydroxyphenazepam, adinazolam, clonazolam, etizolam, deschloroetizolam, diclazepam, flualprazolam, flubromazolam, flubromazolam, meclonazepam, phenazepam and pyrazolam were the sole or explicit contributory cause of poisoning, driving-impairment and death. These DBZD were included in this study (Figure 1).

A total of 254 cases describing 1 drug offense, 2 self-administration studies, 3 outpatient department admissions, 44 ED admissions, 63 DUID and 141 deaths, reported between 2008 and 2021, are summarized in Table 1. Age, sex, observations (i.e., symptoms, death scene information etc.), detected concentrations in biological matrices and co-exposure concentrations are also displayed.
Most patients and victims were young individuals of both sexes, often with a previous history of substance abuse and mental illness. Acute intoxications and deaths related to DBZD, alone or in combination with other drugs of abuse, were reported in Finland, Germany, Japan, Norway, Poland, Sweden, UK and USA. DBZD were screened using LC-HRMS (LC-QTOF-MS and LC-Orbitrap-MS) and quantified with LC-MS, LC-MS/MS, LC-DAD, GC-MS or GC-MS/MS.
Table 1. Designer benzodiazepine (DBZD) case reports.

Compound	Study	Age; Sex	Observations	Concentration †/Dose	Co-Exposure Concentration(s) ‡	Ref.
3-Hydroxyphenazepam	ED	29; M	Tremor	Urine screen +	-	[74]
Adinazolam	Death	24; F	Multiple drugs	Blood 18	U-47700 blood 1470, urine 3940	[75]
				Urine 82.1	SRT blood 89.5, urine 32.5	
					N-Ethylhexedrone blood 58.1, urine 14	
					4-CIC blood 8, urine 130	
					4-CMC blood 1.7, urine 417	
Clonazolam	ED	25; M	Agitation, Aggressivity	100 mg	BZD urine screen + THC urine screen +	[76]
		28; M	Lethargy	≥15 mL of a 0.4 mg/mL solution	-	[77]
		26; M	Respiratory depression, Unconscious	Serum 6	MDZ urine screen + U-47700 serum 351	[78]
					THC serum 3.3, urine screen +	
					THCCOOH serum 121.6, urine screen +	
					CIT urine screen +	
	34; M		Confusion, Lethargy	Serum 10.2	Etizolam serum 281	[79]
	20; M		Ataxia	Urine screen +	MXE urine screen +	[74]
	26; F		Coma	Blood 77 (4 h)	LMZ urine 258	[81]
				Blood 15 (8 h)	LZP urine 115	
				Blood 9 (12 h)	OXZ urine 17.4	
					THC urine screen +	
Deschloroetizolam	Death	31; M	Multi-organ congestion	Blood 11		[81]
				Urine screen +		
	Self-administration	56; M	Dizziness, Fatigue, Language disorder, Difficulty concentrating; Took 6 mg	Oral Fluid 6.5 (30 min)	-	[82]
Table 1. Cont.

Compound	Study	Age; Sex	Observations	Concentration †/Dose	Co-Exposure Concentration(s) ‡	Ref.
Diclazepam	ED	30; M	Agitation, Confusion, Disorientation, Inability to communicate, Muscular rigidity, Myosis, Tachycardia, Tachypnoea	Plasma 3.5	DIP plasma 308, urine 631 MPH plasma 3 THCCOOH urine 120	[83]
					3,4-CTMP	
		39; M	Agitation, Dilated pupils, Tachycardia	Urine screen +	3,4-CTMP	[74]
		30; M	Mydriasis, Respiratory depression, Unconscious, Withdrawal syndrome. 240 mg	240 mg	-	[84]
	DUID	18; M	Considerable impairment	Blood 57	-	
		27 *; Not reported	Blood 61	EtOH blood 0.053 g/L		
		32 *; Not reported	Blood 45	EtOH blood 0.084 g/L		
		22 *; Not reported	Blood 32	-		
		<20; Not reported	Blood 19	-		
		47 *; Not reported	Blood 16	LZP blood 63		[86]
		52 *; Not reported	Blood 11	NZP blood 17		
		22 *; Not reported	Blood 35	LZP blood 14		
		22 *; Not reported	Blood 7.7	THC blood 0.7		
		22 *; Not reported	Blood 5.1	-		
		37 *; Not reported	Blood 48	-		
		27 *; Not reported	Blood 35	THC blood 1.1		
		32 *; Not reported	Blood 14	-		
Death		28; M	Multiple drugs	Blood 70	Flubromazepam blood 10 U-47700 blood 330 MAMP blood 290 AMP blood 150 DOC blood screen +	[87]
Table 1. Cont.

Compound	Study	Age; Sex	Observations	Concentration †/Dose	Co-Exposure Concentration(s) ‡	Ref.
	ED	31; M	Bradypnea, Unresponsive	Serum 103	6-AM urine 272 MOR urine 1000 COD urine 322	[88]
		6; M	-	Serum -	MOR urine 1000 COD urine 322	[89]
		9; M	Ataxia, Drowsiness, Mydriasis	Serum -	MOR urine 1000 COD urine 322	[90]
		10; M	Urine screen +	Serum -	MOR urine 1000 COD urine 322	[91]
	OD	23; M	Tolerance, Withdrawal syndrome	2.5 mg/day for 1 month	MOR urine 1000 COD urine 322	[92]
		32; M	Catatonia, Withdrawal syndrome	4 mg/day for 2 months, abruptly stopped	MOR urine 1000 COD urine 322	[93]
Etizolam		30; M	Bradypnea, Loss of consciousness, Seizures, Withdrawal syndrome	Took 50 mg/day to 100 mg/day for several months Urine screen +	MOR urine 1000 COD urine 322	[94]
	DUID	27 *; Not reported	Mild impairment	Blood 210	MOR urine 1000 COD urine 322	[95]
		<20; Not reported	-	Blood 120	MOR urine 1000 COD urine 322	[96]
		42 *; Not reported	Considerable impairment	Blood 210	MOR urine 1000 COD urine 322	[97]
		37; M	Delayed comprehension and reaction time, Impairment, Incoordination, Lethargy	Blood 40	MOR urine 1000 COD urine 322	[98]
		20; F	-	Blood 88	MOR urine 1000 COD urine 322	[99]
		35; M	Blood 330	-	MOR urine 1000 COD urine 322	[100]
Death		59; F	Suicide	Blood 264	αOH-Etizolam blood 9.4 8OH-Etizolam blood 9.3	[101]
		42; M	Multiple drugs	Blood 86	PB blood 5082, urine 1736 PMZ blood 107, urine 806 CPZ blood 144, urine 1437	[102]
Compound	Study	Age; Sex	Observations	Concentration †/Dose	Co-Exposure Concentration(s) ‡	Ref.
----------	-------	----------	--------------	----------------------	-------------------------------	-----
42; M	Multiple drugs	Blood 300, Urine 100	MDVP blood 46, urine 1300, PEN blood 160, urine 1200, EPH blood 68, OLZ blood 4200, MIR blood 570	[94]		
48; M	Serum 4	Serum 4, MTD serum 381, EDDP serum 86, MOR serum 290, COD serum 47, PGB serum 14, PAR serum screen +	[94]			
40; M	Serum 17	Serum 17, MOR serum 44, COD serum 7, COC serum screen +, BE serum 1536	[94]			
29; M	Accidental death, Multiple drugs	Serum 40, DZP serum screen +, Nor-DZP serum 18, OXZ serum screen +, MTD serum 133, EDDP serum 7, THC serum 2.4, THCCOOH serum 17, PGB serum 19, CYC serum 78	[95]			
38; M	Serum 44	Serum 44, DZP serum 55, Nor-DZP serum 131, OXZ serum 11, MTD serum 886, EDDP serum 121, SRT serum 6, PMZ serum 57, PGB serum 13000	[95]			
Table 1. Cont.

Compound	Study	Age; Sex	Observations	Concentration †/Dose	Co-Exposure Concentration(s) ‡	Ref.
		48; M	Blood 4		DZP blood 99	
					Nor-DZP blood 316	
					TMZ blood 15	
					OXZ blood 29	
					MOR blood 6	
					COD blood 83	
					AMP blood 394	
					AMI blood 307	
					NTP blood 283	
					PAR blood screen +	
		34; M	Blood 8		Diclofenac blood 2	
					COD blood 108	
					CIT blood 423	
					Nor-CIT blood 93	
		23; M	Blood 8		EtOH blood 0.77 g/L	
					ALP blood 300	
					Nor-DZP blood 5	
					MOR blood 5	
					COD blood 16	
					BE blood screen +	
					SRT blood 19	
					PPL blood 8	
		55; M	Blood 7		DHC blood 1681	
					COC blood 317	
					BE blood 5135	
					AMI blood 1859	
					NTP blood 582	
					PGB blood 22300	
		39; M	Blood 45		MTD blood 377	
					COC blood 18	
					AMI blood 885	
					PGB blood 6500000	
Table 1. Cont.

Compound	Study	Age; Sex	Observations	Concentration †/Dose	Co-Exposure Concentration(s) ‡	Ref.
					DZP blood 6	
					Nor-DZP blood 22	
					LZP blood screen +	
					MTD blood 1233	
					EDDP blood 129	
					MOR blood 16	
					COD blood screen +	
					COC blood 10	
					BE blood 299	
					THCCOOH blood 11.2	
					MIR blood 27	
					PGB blood 35900	
38; M		Blood 172				
					DZP blood 6	
					Nor-DZP blood 22	
					LZP blood screen +	
					MTD blood 1233	
					EDDP blood 129	
					MOR blood 16	
					COD blood screen +	
					COC blood 10	
					BE blood 299	
					THCCOOH blood 11.2	
					MIR blood 27	
					PGB blood 35900	
32; F		Blood 9				
					DZP blood 306	
					MTD blood 86	
					MOR blood 1292	
					COC blood 7	
					MIR blood 6	
					PAR blood 22000	
43; M		Blood 93				
					DZP blood screen +	
					ZPC blood 65	
					MTD blood 2297	
					COC blood screen +	
					MIR blood 8	
					PGB blood 3700	
42; M		Blood 85				
					DZP blood 16	
					MOR blood 880	
37; M		Blood 85				
					MTD blood 189	
					PGB blood 8500	
Compound	Study	Age; Sex	Observations	Concentration †/Dose	Co-Exposure Concentration(s) ‡	Ref.
----------	-------	----------	--------------	----------------------	-------------------------------	------
		32; M	Blood 4		DZP blood 107	
					MOR blood 273	
					AMP blood 859	
					CPA blood screen +	
					GBP blood 2600	
					PGB blood 10300	
					PAR blood screen +	
		35; M	Blood 16		MOR blood 269	
					COC blood screen +	
					SRT blood 24	
					CBZ blood 2300	
					PGB blood 23,500	
		39; F	Blood 1		DZP blood 431	
					MTD v blood 634	
					PMZ blood 56	
					MIR blood 61	
					QTP blood 26	
					VPA blood screen +	
					PGB blood 22,800	
					PAR blood screen +	
		32; M	Blood 18		DZP blood 131	
					MOR blood 34	
					DHC blood 6413	
					HCOD blood 96	
					AMI blood 310	
					PGB blood 10,200	
		49; M	Blood 1.5		Flubromazepam blood 33	
					DZP blood 89	
					MTD blood 685	
					MOR blood 44	
					MIR blood 12	
					PGB blood 38,100	
Table 1. Cont.

Compound	Study	Age; Sex	Observations	Concentration †/Dose	Co-Exposure Concentration(s) ‡	Ref.
				DZP blood 90		
				MTD blood 973		
				TMD blood screen +		
				COC blood 12		
				AMI blood 67		
				MIR blood 280		
				PGB blood 12,900		
54; F		Blood 12		EtOH blood 0.24 g/L		
				DZP blood 68		
				MOR blood 1076		
				COC blood 184		
				CE blood 22		
				MIR blood 121		
				QTP blood 16		
				PAR blood screen +		
39; M		Blood 4		CZP blood screen +		
				TAP blood 500		
				MOR blood 331		
				PGB blood 15,200		
				MIR blood screen +		
49; M		Blood 12		EtOH blood 1.1 g/L		
				DZP blood 16		
28; M		Blood 29		THC blood 57.5		
				MIR blood 39		
				PGB blood 2900		
				DZP blood 238		
				LZP blood 10		
				MOR blood 75		
39; M		Blood 3		SRT blood 92		
				GBP blood 6700		
				PRO blood 598		
				PAR blood 15,700		
Table 1. Cont.

Compound	Study	Age; Sex	Observations	Concentration †/Dose	Co-Exposure Concentration(s) ‡	Ref.
33; M		Blood 14	Blood 14	Flubromazolam blood 1 DZP blood screen + MOR blood 56 COC v blood 46 PRO blood 186 CLO blood 2060 Nor-CLO blood 1629 MIR blood 257 LTG blood 5800 GBP blood 24,600 PAR blood screen +		
49; M	Accidental death, Multiple drugs	Blood 770 Central blood 2820 Hair 0.107	Blood 770 Central blood 2820 Hair 0.107	EtOH blood 0.19 g/L THCCOOH urine 192 THC hair 0.19 ng/mg AMP hair 3.37 ng/mg CAF blood 190,000 COC hair 0.22 ng/mg BE hair 0.068 ng/mg	[96]	
29; M	Accidental death, Multiple drugs	Central blood 45 Urine 13 Vitreous humor screen +	Central blood 45 Urine 13 Vitreous humor screen +	EtOH c blood 0.023 g/L, vitreous humor 0.014 g/L ALP c blood 228, urine 238, vitreous humor 17 α-OH-ALP c blood and urine screen + Nor-DZP c blood, urine and vitreous humor screen + FEN c blood 6, urine and vitreous humor screen + Nor-FEN c blood and urine screen + CDP c blood screen + DOX urine and vitreous humor screen +	[97]	
Table 1. Cont.

Compound	Study	Age; Sex	Observations	Concentration †/Dose	Co-Exposure Concentration(s) ‡	Ref.
		34; M	Blood 9	Central blood screen +	EtOH blood 0.023 g/L, vitreous humor 0.028 g/L	
			Urine screen +		Nor-DZP blood and urine screen +	
			Vitreous humor screen +		Desalkyl-FZP blood, urine and vitreous humor screen +	
					6-AM blood 11, c blood, urine and vitreous humor screen +	
					MOR blood 185, c blood, urine and vitreous humor screen +	
					COD p and c blood and vitreous humor screen +	
					HCOD c blood and vitreous humor screen +	
					CIT p and c blood, urine and vitreous humor screen +	
					DPH p and c blood, urine and vitreous humor screen +	
		36; M	Blood 10	Urine 8	Flubromazolam urine and vitreous humor screen +	
				Vitreous humor screen +	ALP blood 27, urine and vitreous humor screen +	
					α-OH-ALP urine and vitreous humor screen +	
					7-Amino-CZP urine screen +	
					FEN blood 31, vitreous humor screen +	
					Nor-FEN blood and vitreous humor screen +	
					MTD blood and vitreous humor screen +	
					EDDP blood and vitreous humor screen +	
					MAMP blood 1212, vitreous humor screen +	
					AMP blood and vitreous humor screen +	
Table 1. Cont.

Compound	Study	Age; Sex	Observations	Concentration †/Dose	Co-Exposure Concentration(s) ‡	Ref.
		28; M	Blood 15	ALP blood 179, c blood 235, urine screen +, vitreous humor 92	DZP p and c blood, urine and vitreous humor screen +	
			Central blood 15	Nor-DZP p and c blood, urine and vitreous humor screen +	TMZ c blood and urine screen +	
			Urine 20	Nor-FEN c blood and vitreous humor screen +	HCOD urine screen +	
				AMP c blood, urine and vitreous humor screen +	MAMP p and c blood, urine and vitreous humor screen +	
				BE urine screen +	AMF p and c blood, urine and vitreous humor screen +	
				DOX p and c blood, urine and vitreous humor screen +	PMZ c blood and urine screen +	
				CPA p and c blood, urine and vitreous humor screen +		
Table 1. Cont.

Compound	Study	Age; Sex	Observations	Concentration †/Dose	Co-Exposure Concentration(s) ‡	Ref.				
Flualprazolam	ED	30; M	Blood 187, Central blood 214, Urine 64, Vitreous humor 33	EtOH blood 0.002 g/L, vitreous humor 0.003 g/L, Flualprazolam p and c blood, urine and vitreous humor screen +, Flubromazolam blood 619, c blood 878, urine 552, vitreous humor screen +, ALP p and c blood, urine and vitreous humor screen +, DLP p and c blood, urine and vitreous humor screen +, Lzp p and c blood and urine screen +, 7-Amino-CZP urine screen +, FEN blood 17, Nor-FEN p and c blood, urine and vitreous humor screen +, MAMP p and c blood, urine and vitreous humor screen +, AMP p and c blood, urine and vitreous humor screen +	[98]					
		16; M	Lethargy, Slurred speech	72.1	Nor-DZP urine screen +, THC-COOH urine screen	[98]				
		16; F		3	Nor-DZP urine screen +					
		16; M	CNS depression, Mild respiratory depression	14.6, 19.4	Nor-DZP urine screen +					
		18; M	Unconscious	8	COC blood screen +, THC blood screen +	[99]				
Compound	Study	Age; Sex	Observations	Concentration /Dose	Co-Exposure Concentration(s)	Ref.				
----------	-------	----------	--------------	---------------------	------------------------------	------				
DUID		37 *; Not reported	Considerable impairment	Blood 15	TMD blood 65	[86]				
Not reported	Considerable impairment	Blood 4.3	DZP blood 25	BRP blood 1	FEN blood 6.2	[100]				
	31; M	Blood 4.4	THC-COOH blood screen +	LEV blood screen +						
	22; M	Blood 8.3	EtOH blood 0.01 g/L							
DUID		31; M	Blood 8.9	Etizolam blood screen +	ALP blood screen +	DLP blood screen +	Nor-BUP blood screen +	THC blood screen +		
	51; M	Blood 10	OXY blood screen +	OXM blood screen +						[101]
	47; M	Blood 11	CFN blood screen +	FEN blood screen +	MTD blood screen +	COC blood screen +				
	24; M	Blood 13								
	30; M	Blood 39	BE blood screen +		MTG blood screen +					
	20; M	Blood 46	EtOH blood 0.003 g/L							
	40; M	Blood 46	BPP blood screen +							
	20; M	Blood 65	THC blood screen +							
	26; M	Blood 68	Etizolam blood screen +	MTD blood screen +						
Compound	Study	Age; Sex	Observations	Concentration †/Dose	Co-Exposure Concentration(s) ‡	Ref.				
------------------	-------	--------------	----------------------------------	----------------------	---------------------------------	------				
			Suicide							
				Blood 28 ng/g	MIR blood 200 ng/g					
					VEN blood 520 ng/g					
				Blood 68 ng/g	EtOH blood 0.04 g/L					
					BUP blood 0.94 ng/g, urine 17 ng/g					
					Nor-BUP blood 0.83 ng/g, urine 15 ng/g					
Death	28 *;	Not reported	Suspected overdose, Multiple drugs			[102]				
				Blood 4 ng/g	VEN blood 1300 ng/g					
					PGB blood 16000 ng/g					
				Blood 18 ng/g	MTD blood 150 ng/g					
				Blood 17 ng/g	EtOH blood 0.67 g/L, urine 1.33 g/L					
					BUP blood 2.8 ng/g, urine 90					
				Blood 19 ng/g	-					
				Blood 14 ng/g	LPM blood 60 ng/g					
				Blood 21 ng/g	-					
				Blood 11 ng/g	BUP blood 0.9 ng/g, urine 40					
					NBUP blood 0.2 ng/g					
				Blood 36 ng/g	BUP urine 120 ng/g					
					NBUP urine 7.4 ng/g					
					PGB blood 1700 ng/g					
				Blood 30 ng/g	EtOH blood 0.68 g/L					
					BUP blood 1.1 ng/g, urine 200 ng/g					
					3F-AMP blood 10 ng/g					
					MAMP blood 190 ng/g					
					AMP blood 1000 ng/g					
				Blood 13 ng/g	EtOH blood 1.9 g/L					
				Blood 33 ng/g	N-ethyl-3F-AMP blood screen +					
					3F-AMP blood screen +					
Table 1. Cont.

Compound	Study	Age; Sex	Observations	Concentration †/Dose	Co-Exposure Concentration(s) ‡	Ref.
		53; M	Blood 50		FEN blood 3.4	
					Nor-FEN blood 0.36	
					4-ANPP blood screen +	
					ITZ blood screen +	
					BRP blood 10, urine 23	
					6-AM blood 1.5	
					MOR blood 66	
					COD blood 6.6	
					CIT/ESC blood 76	
		45; M	Blood 2.5		FEN blood 5	
					4-ANPP blood screen +	
					TMD blood 33	
					BRP blood 1, urine 1.9	
					THC blood 0.62	
			Suspected overdose, Multiple drugs		CZP blood screen +	[100]
		48; M	Blood 5.4		FEN blood 4.7	
					Nor-FEN blood 1.6	
					Acetyl-FEN blood 1.2	
					4-ANPP blood screen +	
					BRP blood 0.1, urine 0.2	
					MOR blood 8	
					DPH blood 190	
		47; F	Blood 13		FEN blood 190	
					Nor-FEN blood 5.4	
					Acetyl-FEN 0.15	
					4-ANPP blood screen +	
					BRP blood 6.7, urine 2.1	
					6-AM blood 12	
					MOR blood 85	
					COD blood 7	
					MAMP blood 580	
					AMP blood 55	
					XYL blood 170	
Compound	Study	Age; Sex	Observations	Concentration /Dose	Co-Exposure Concentration(s)	Ref.
----------	-------	----------	--------------	---------------------	-------------------------------	------
		53; M	Blood 20		FEN blood 19	
					Nor-FEN blood 4.2	
					4-ANPP blood screen +	
					BRP blood 0.2	
					MOR blood 15	
					XYL blood 30	
		29; M	Blood 3.6		7-Amino-CZP blood 5.2	
					FEN blood 37	
					Nor-FEN blood 1.3	
					4-ANPP blood screen +	
					TMD blood 70	
					BRP blood 1.1, urine 0.8	
					MAMP blood 42	
					AMP blood 10	
					DPH blood 490	
		22; M	Blood 3.2	EtOH blood 0.017		
				Desmethyl-LPM blood screen +		
		53; M	Blood 2.1		FEN blood screen +	[101]
					MTD blood screen +	
					COC blood screen +	
					GBP blood screen +	
			Suspected overdose, Multiple drugs		BE blood screen +	
		32; M	Blood 2.2		THC blood screen +	
					MTG blood screen +	
					CBP blood screen +	
					HYZ blood screen +	
		29; M	Blood 4.1		ITZ blood screen +	
					MAMP blood screen +	
					AMP blood screen +	
Compound	Study	Age; Sex	Observations	Concentration †/Dose	Co-Exposure Concentration(s) ‡	Ref.
----------	-------	----------	--------------	---------------------	---------------------------------	-----
35; F		Blood 5.2		EtoH blood 0.008 g/L	BE blood screen + THC blood screen +	
					ITZ blood screen + FEN blood screen +	
38; M		Blood 6.2			MAMP blood screen + AMP blood screen + HYZ blood screen +	
23; F		Blood 9.9			FEN blood screen + 4-ANPP blood screen + BE blood screen + THC blood screen + MAMP blood screen + AMP blood screen +	
23; M		Blood 15			FEN blood screen + 4-ANPP blood screen +	
21; M		Blood 29			FEN blood screen + MAMP blood screen + AMP blood screen + THC blood screen +	
36; M		Blood 63			MTD blood screen +	
40; M	Suicide	Blood 26.5			DZP blood 9 Nor-DZP blood 4 MTD blood 736 EDDP blood 149 PGB blood 1900	[103]
Table 1. Cont.

Compound	Study	Age; Sex	Observations	Concentration†/Dose	Co-Exposure Concentration(s)†	Ref.
		30; M	Suspected overdose, Multiple drugs	Blood 3	DZP blood screen +	
					6-AM blood screen +	
					MOR blood 196	
					COD blood 11	
					THC blood screen +	
					MIR blood screen +	
					PGB blood 12000	
		44; M		Blood 35	DZP blood screen +	
					MTD blood 549	
					MOR blood screen +	
					COC blood screen +	
					BE blood screen +	
					MDMA blood 29	
					MDA blood screen +	
					MIR blood 58	
					GBP blood screen +	
					PGB blood 18,100	
		40; F		Blood 14.5	MTD blood 711	
					EDDP blood 67	
					4F-MDMB-BINACA blood screen +	
					MDMB-4en-PINACA blood screen +	
					MIR blood 3229	
					PGB blood 7900	
		37; M		Blood 14.1	Etizolam blood 85	
					CBZ metabolites blood screen +	
					MTD blood 189	
					5F-AMB metabolites blood screen +	
					THC metabolites blood screen +	
					PGB blood 8500	
Compound	Study Age; Sex	Observations	Concentration †/Dose	Co-Exposure Concentration(s) ‡	Ref.	
----------	----------------	--------------	---------------------	---------------------------------	------	
	51; M	Blood 3.1	ALP blood 68	DZP blood 367		
			Nor-DZP blood 364	OXZ blood 45		
			TMZ blood 19	MTD blood 694		
			EDDP blood 365	MOR blood 62		
			COD blood 14	BE blood screen +		
			SRT blood 31	PGB blood 47,000		
			MTD blood 694	RSP blood 35		
	57; M	Blood 5.7	COC blood 41	BE blood 718		
			CIT blood 707			
	42; F	Blood 15.1	MOR blood 410	COD blood 19		
			PGB blood 9900			
	42; M	Blood 9	ALP blood 35	DZP blood 61		
			Nor-DZP blood 82	NZP blood 16		
			BEP blood 0.5	MIR blood 23		
			MOR blood 197	COD blood 11		
			BE blood screen +	PGB blood 900		
Compound	Study	Age; Sex	Observations	Concentration †/Dose	Co-Exposure Concentration(s) ‡	Ref.
----------------	-------	----------	---	--------------------------------------	---	------
Flubromazepam	ED	25; M	Agitation, Aphasia, Ataxia, Confusion, Dysarthria, Hypertension, Hypothenia	Blood 411	BZD urine screen + THC urine screen + MXP blood 247	[104]
		24; M	Agitation, Coma, Delirium, Mydriasis, Rigidity, Tachycardia, Tremor	Urine screen +	-	[74]
		47; M		Urine screen + 3OH-Flubromazepam urine screen +		
		45; M		Urine screen + 3OH-Flubromazepam urine screen +		
	DUID	37; M	Mild impairment	Blood 600	-	[85]
	Death	24; M	Apnea, Coma, Rattling breath, Hypothermia, Myosis, Tachycardia, Unconscious	Plasma 830	U-4770 plasma 370	[105]
		27; M	Coma, Cyanosis, Hypotension, Unconscious, Respiratory depression, Tachycardia	Serum 59 Urine 105	-	[106]
		20; M		Urine screen +	-	
		18; F		Urine screen +	-	
		65; M		Urine screen +	-	
		26; M		Urine screen + Meclonazepam urine screen +		
Flubromazolam	ED	15; F	Ataxia, Coma, Disorientation, Lethargy, Hallucinations, Hypotension, Miosis, Mydriasis, Seizures, Slurred speech, Tremor, Unconscious	Urine screen +	-	[74]
		23; M		Urine screen +	-	
		49; M		Urine screen +	-	
		27; M		Urine screen +	-	
		20; F		Urine screen +	-	
		17; F		Urine screen +	-	
		17; F		Urine screen +	-	
		19; F		Urine screen +	-	
		23; M		Urine screen +	-	
Table 1. Cont.

Compound	Study	Age; Sex	Observations	Concentration †/Dose	Co-Exposure Concentration(s) ‡	Ref.
		18; M	Urine screen +	Meclonazepam urine screen +		
		35; M	Urine screen +	-		
		18; M	Urine screen +	-		
		18; M	Urine screen +	-		
		20, M	Mild impairment	Blood 0.48	-	[85]
		19; M	Considerable impairment	Blood 100	-	
		17; M	Blood 17	THC blood 6.1		
		18; M	Blood 18	THC blood 2.2		
		21; M	Blood 19	BE blood 348	THC blood 1.5	
		17; F	Blood 14	EtOH blood 0.014 g/L		
DUID		19; F	Driving impairment, Lethargy, Lack of balance, Slurred speech	Blood 21	COC blood screen + BE blood 749	[71]
		19; M	Blood 7	7-Amino-CZP blood 26	THC blood 27	
		22; F	Blood 12	THC blood 2.9		
		35; F	Blood 31	THC blood 4.1		
		21; F	Blood 8.2	BE blood 356	THC blood 1	
Table 1. Cont.

Compound	Study	Age; Sex	Observations	Concentration †/Dose	Co-Exposure Concentration(s) ‡	Ref.
		34; M	Multiple drugs	Blood screen +	DZP blood 200	
					Nor-DZP blood 180	
					TMZ blood 11	
					MAMP blood screen +	
					AMP blood 70	
					3-FPM blood 2.4, central blood 2.6	[107]
					AMI blood 440	
					NTP blood 290	
Death	39; M		Blood 70		EtOH blood 0.24 g/L	
					Etizolam blood 4	
					DZP blood 68	
					Nor-DZP blood 365	
					TMZ blood 6	
					OXZ blood 22	
					6-AM blood screen +	
					MOR blood 1149	
					COD blood 289	[108]
					COC blood 184	
					BE blood 525	
					CE blood 22	
					QTP blood 16	
					MIR blood 121	
	49; M		Blood 33		Etizolam blood 1.5	
					DZP blood 89	
					Nor-DZP blood 575	
					OXZ blood 13	
					TMZ blood 5	
					MTD blood 685	
					EDDP blood 100	
					6-AM blood screen +	
					MOR blood 73	
					COD blood 18	
					MIR blood 12	
					PGB blood 38.1	
Compound	Study	Age; Sex	Observations	Concentration †/Dose	Co-Exposure Concentration(s) ‡	Ref.
--------------	-------	----------	--	--	---------------------------------	------
Etizolam	ED	33; F	Blood 1	Considerable impairment, delayed		
				comprehension and reaction time, lethargy, muscle relaxation, partial amnesia, sedation		
7-Amino-CZP	ED	44; M	Blood 1	0.5 mg oral ingestion		
				Serum 7.4 (5 h)		
				Serum 8.6 (8 h)		
				Serum 5.2 (30 h)		
				Hair 0.44 pg/mg (2 w)		
				Hair 0.60 pg/mg (4 w)		
MOR	ED	42; M	Blood 1	Considerable impairment, delayed		
				comprehension and reaction time, lethargy, muscle relaxation, partial amnesia, sedation		
COC	ED	29; M	Blood 1	Confusion, Disorientation, Mydriasis		
GBP	ED	22 *;	Unresponsiveness, Tachycardia	Moderate motor impairment		
		Not reported				
Meclonazepam	ED	31; M	Blood 1	Agitation, Non-reactive pupils		[74]
				Urine screen +		
Phenazepam	ED	26; M	Blood 1	Ataxia, Lack of balance, Memory		[109]
				impairment, Slurred speech		
		42; M	Blood 1	Considerable impairment, delayed		[109]
				comprehension and reaction time, lethargy, muscle relaxation, partial amnesia, sedation		
		29; M	Blood 1	Unresponsiveness, Tachycardia		[109]
				Moderate motor impairment		
		22 *;	Blood 1	Considerable impairment, delayed		[109]
		Not reported		comprehension and reaction time, lethargy, muscle relaxation, partial amnesia, sedation		
		50; F	Blood 1	Considerable impairment, delayed		[109]
	DUID	27; M	Blood 1	Behavioral aberrations, Moderate/considerable functional disorders		[109]
		21; M	Blood 1	Considerable impairment, delayed		[109]
		47; F	Blood 1	Behavioral aberrations, Moderate/		[109]
		47; M	Blood 1	considerable functional disorders		[109]
				Considerable impairment, delayed		[109]
				comprehension and reaction time, lethargy, muscle relaxation, partial amnesia, sedation		
Table 1. Cont.

Compound	Study	Age; Sex	Observations	Concentration †/Dose	Co-Exposure Concentration(s) ‡	Ref.					
18; M				Blood 180	THCCOOH blood 28						
27; M				Blood 500	CBP blood 6.1						
22; M				Blood 750	TZD blood screen +						
29; F		Agitation, Amnesia, Disorientation, Lack of balance, Lethargy, Mydriasis, Myosis, Non-reactive pupils, Sedation, Slurred speech, Slow reactivity, Tachycardia	Blood 310	AMP blood 190	QTP blood screen +	[114]					
39; M		Blood 170	THCCOOH urine screen +								
23; M		Blood 140	GBP blood screen +			[114]					
22; M		Blood 3200	-								
40; M		Blood 40	-								
24; F		Blood 50	-								
29; M		Blood 120	-								
21; M		Blood 80	-								
24; M		Slurred speech, Lack of balance	Blood 76	BZD blood screen +							
22 *; Not reported		Moderate impairment	Blood 170	-		[115]					
42 *; Not reported		Mild impairment	Blood 12	-		[86]					
42; M		Accidental death complicated by obesity and asthma, Multiple drugs	Blood 386	MOR blood 116	COD blood 85, blood screen +	HCOD urine screen +	[116]				
35; M		Multiple drugs	Blood 220	DZP blood 100	Nor-DZP blood 210	OXZ blood screen +	TMZ blood screen +	MTD blood 650, urine screen +	EDDP blood screen +	IBP blood screen +	[117]
Compound	Study	Age; Sex	Observations	Concentration †/Dose	Co-Exposure Concentration(s) ‡	Ref.					
-------------------	------------------	----------	---------------------------	-------------------------------	--------------------------------	------					
35; M Blood	2520	Blood	2520		EtOH blood 0.06 g/L BZD blood and urine screen + MOR blood 360, urine screen + COD blood 380, urine screen + PAR blood and urine screen +						
Multiple drugs	Blood 960			3OH-Penazepam blood 230 DZP blood screen + Nor-DZP blood screen + TMZ blood screen + MOR blood 10 MOR-3-glucuronide blood 30 MOR-6-glucuronide blood 10 PRZ blood 500	[118]						
Not reported											
Accidental overdose, Multiple drugs	Blood 960			3OH-Penazepam blood 270 DZP blood screen + Nor-DZP blood screen + DHC blood screen + DHC-6-glucuronide blood screen + NIC blood screen +	[118]						
46; M Phena.	Blood 1200			EtOH blood 0.22 g/L							
26; M Blood	1600			DZP blood 160 DHC blood 160							
Not reported						[119]					
Blood screen +											
Blood screen +											
Blood screen +											
Blood screen +											
Blood screen +											
Blood screen +											
Blood screen +											
Blood screen +											
Blood screen +											
Blood screen +											
Blood screen +											
Compound	Study	Age; Sex	Observations	Concentration †/Dose	Co-Exposure Concentration(s) ‡	Ref.					
--------------	-------	----------	--------------	----------------------	-------------------------------	------					
Blood screen +				DZP blood 240							
				MTD blood 890							
				MOR blood 30							
				DHC blood 170							
				GBP blood 26,000							
				MIR blood 100							
				FLX blood 140							
Blood screen +				EtOH blood 3 g/L							
				DZP blood 70							
				AMP blood 1500							
Blood 10				MTD blood 770							
Blood 140				EtOH blood 0.56							
Blood 20				MTD blood 1300							
Blood 20				EtOH blood 1.4	DZP blood screen +						
Blood 24				Etizolam blood 120	MTD blood 950						
				COD blood 60	AMI blood 990						
Blood 38				DHC blood 1100							
Blood 40				MTD blood 700							
				MOR blood 50							
				AMI blood 570							
Blood 40				MTD blood 340							
				DZP blood 350							
Blood 40				MTD blood 390							
Table 1. *Cont.*

Compound	Study	Age; Sex	Observations	Concentration †/Dose	Co-Exposure Concentration(s) ‡	Ref.
Blood 43				DZP blood 510	MTD blood 900	
					MOR blood screen +	
					MIR blood 580	
Blood 45				Etizolam blood 73	DHC blood 300	
					GBP blood 42000	
Blood 50				DZP blood 450	MOR blood 450	
Blood 60				EtOH blood 0.79 g/L	BUP blood 5	
					AMI blood 70	
Blood 60				MTD blood 410		
Blood 67				Etizolam blood 380	MOR blood 170	
Blood 80				MTD blood 290		
Blood 80				Etizolam blood screen +	DZP blood screen +	
					MOR blood 590	
Blood 80				MTD blood 770	MOR blood 10	
Blood 80				Etizolam blood screen +	DZP blood screen +	
					MOR blood 590	
Blood 90				MOR blood 310		
Blood 90				MOR blood 560		
Blood 100				MTD blood 590	MOR blood 40	
Compound	Study	Age; Sex	Observations	Concentration †/Dose	Co-Exposure Concentration(s) ‡	Ref.
----------	-------	----------	--------------	----------------------	---------------------------------	-----
Blood 100				MTD blood 130	DOT blood 580	
Blood 100				MTD blood 1200	BEG v blood screen +	
Blood 100				MTD blood 280	DHC blood 1600	
Blood 110				MTD blood 540	MOR blood 40	
Blood 110					BEG blood screen +	
Blood 110					OLZ blood 420	
Blood 110					ZPC blood 10	
Blood 110					EtOH blood 1.6 g/L	
Blood 110					BUP blood screen +	
Blood 120					FEN blood 55	
Blood 160					DZP blood 980	
Blood 200					MOR blood 430	
Blood 210					GBP blood 25,000	
Blood 240					DHC blood 990	
Blood 210					MTD blood 180	
Blood 240					MTD blood 390	
Blood 240					MIR blood 60	
Table 1. Cont.

Compound	Study	Age; Sex	Observations	Concentration †/Dose	Co-Exposure Concentration(s) ‡	Ref.
Blood 240	DZP blood 350	MTD blood 340				
Blood 240	MTD blood 510	AMI blood 840				
Blood 260	MTD blood 240	COD blood 1100				
Blood 280	EtOH blood 3.1 g/L					
Blood 280	MTD blood 250	PGB blood 8000				
Blood 330	MTD blood 750	MOR blood 330	GBP blood 103000			
Blood 330	EtOH blood 2.5 g/L	Nor-BUP blood 13				
Blood 460	MTD blood screen +					
Blood 550	EtOH blood 3.3 g/L					
Blood 640	MTD blood 1100					
Blood 820	MTD blood 470					
Blood 900	DZP blood 120	MTD blood 380	DHC blood 730	AMP blood 110		
Blood 1700	DHC blood 4400					
Blood 1700	MOR blood 50					
Blood screen +	DZP blood 170	TMD blood 7800	DHC blood 220			
Table 1. Cont.

Compound	Study	Age; Sex	Observations	Concentration †/Dose	Co-Exposure Concentration(s) ‡	Ref.
Pyrazolam	Death	27; M	Multiple drugs	Blood 28	Diclozepam blood 1, central blood 1, urine 1	[120]
				Central blood 28	DLP blood 100, central blood 250, urine 570	
				Urine 500	LMZ blood 6, central blood 4, urine 810	
				3-FPM blood 10	LZP blood 22, 22, urine 22, 802	

† Concentrations are expressed as ng/mL unless specified; + Positive; * Median age; 3F-AMP—3-Fluoroamphetamine; 3-FPM—3-Fluorophenmetrazine; 3,4-CTMP—3,4-dichloromethylphenidate; 4-ANPP—N-Phenethyl-4-piperidinone; 4-CIC—4-chloro-N-isopropylcathinone; 4-CMC—4-chloromethcathinone; 4F-MDMB-BINACA—Methyl 2-[1-(4-fluorobutyl)-1H-indazole-3-carboxamido]-3,3-dimethylbutanoate; 5F-AMB—N-[1-(5-fluoropentyl)-1H-indazol-3-yl][carboxyl]-L-valine, methyl ester; 6-AM—6-Acetylmorphine; ALP—Alprazolam; AMI—Amitriptyline; AMP—Amphetamine; BE—Benzoylcygonine; BPP—Bupropion; BRT—Bromine; BZD—Benzodiazepine; CBP—Cyclobenzaprine; CBZ Carbamazepine; CDP—Chlordiazepoxide; CE—Cocaethylene; CFN—Carfentanil; CIT—Citalopram; CLO—Clazapine; COC—Cocaine; COD—Codeine; CPA—Chlorpheniramine; CPZ—Chlorpromazine; CYC—Cyclizine; CZP—Clonazepam; DFP—Drug-facilitated Sexual Assault; DIP—Diphenidol; DHC—Dihydrocodeine; DLP—Delorazepam; DOC—2,5-dimethoxy-4-chloroamphetamine; DOX—Doxylamine; DPH—Diphenhydramine; DOT—Dothiepin; DUID—Driving Under the Influence of Drug; DZP—Diazepam; ED—Emergency Department; EDP—2-Ethylidene-1,5-dimethyl-3,3-diphenylpyrrolidine; EPH—Ephedrine; ESC—Escitalopram; EIOH—Ethanol; F—Female; FEN—Fentanyl; FLX—Fluoxetine; FZP—Flurazepam; GBP—Gabapentin; HCOD—Hydrocodone; HYZ—Hydroxyzine; IBP—Ibuprofen; ITZ—Isotizazene; LEV—Levetiracetam; LMZ—Lormetazepam; LPM—Loperamide; LTG—Lamotrigine; LZP—Lorazepam; M—Male; MDA—Methylenedioxoamphetamine; MDMB-4en-PINACA—3-Methyl-N-[1-(4-penten-1-yl)-1H-indazol-3-yl][carboxyl]-L-valine, methyl ester; MDMA—Methylenedioxymethamphetamine; MAMP—Methamphetamine; MDPV—3,4-Methylenedioxyypyrovalerone; MDZ—Midazolam; MIR—Mirtizapine; MOR—Morphine; MPA—Methiopropamine; MPH—Methylenidate; MT—Methadone; MTG—Mitragynine; MXE—methoxetamine; N—Nicoine; NXP—Methoxphenidine; NT—Nortriptyline; NZP—Nitrazepam; OLZ—Olanzapine; OD—Outpatient Department; OXY—Oxycodone; OXM—Oxymorphone; OXZ—Oxazepam; PAR—Paracetamol; PB—Phenobarbital; PEN—Pentadroned; PGB—Pregabalin; PMZ—Promethazine; PPL—Propranolol; PRO—Procyclidine; PRZ—Promazine; QTP—Quetiapine; RSP—Risperidone; SRT—Sertaline; TAP—Tapentadol; THC—Δ⁹-Tetrahydrocannabinol (Cannabis); THCCOOH—11-Nor-9-carboxy-THC; TMD—Tramadol; TMZ—Temazepam; TRZ—Trazodone; U-4770—trans-3,4-dichloro-N-[2-(dimethylamino)cyclohexyl]-N-methyl-benzamide; VEN—Venlafaxine; XYL—Xylazine; ZPC—Zopiclone.
2.1. Adinazolam

Adinazolam or 1-(8-chloro-6-phenyl-4H-[1,2,4]triazolo[4,3-a][1,4]benzodiazepin-1-yl)-N,N-dimethylmethanamine is a short acting triazolo-BZD with anxiolytic, antidepressant, anticonvulsant and sedative properties [121,122]. Clinical studies revealed that drowsiness and dizziness are commonly observed after oral administration of adinazolam up to 70 mg, resulting in significant amnestic and psychomotor effects at higher doses [123–125]. Adinazolam was never FDA approved and never introduced onto the public market; however, it started to emerge as an illegal designer drug in 2015 [126,127]. The first reported adinazolam-related death concerned a young woman found dead in her apartment next to five resealable bags with unidentified powders/crystals. In the US, since April 2020, adinazolam was identified in at least three toxicology cases in association with etizolam, fentanyl and flualprazolam [128]. One male, one female and one unknown sex individual, all of whom were aged 20–40 years and each either from Michigan, Mississippi or Rhode Island, were the decedents. Adinazolam was identified in postmortem blood samples but was neither quantified nor listed as the cause of death.

2.2. Clonazolam

6-(2-Chlorophenyl)-1-methyl-8-nitro-4H-[1,2,4]triazolo[4,3-a][1,4]benzodiazepine, also known as clonitrazolam, is the triazolo-analogue of clonazepam [1,129]. Clonazolam is described as “insanely powerful”, producing strong sedation and amnesia at oral doses as low as 0.5 mg, resulting in easy accidental overdose [78]. It was found for the first time in seized yellow capsules by Swedish police on October 2014 and reported to the EMCDDA on January 2015 [51]. Two patients were admitted to ED after consuming clonazolam bought on the Internet. Clonazolam was not confirmed, and the dose was estimated based on the patient’s self-report. In the other four cases, clonazolam or clonazolam and etizolam (one case) were identified. The primary adverse effect was CNS depression.

2.3. Deschloroetizolam

Deschloroetizolam is a short-acting thienotriazolodiazepine that differs from etizolam by the absence of a chlorine on the benzene ring with consequent reduced potency [1]. On 1 September 2014, the UK Focal Point reported that the substance was confirmed after analysis of a blue seized tablet [50]. There are few data available on deschloroetizolam. In a self-administration study, one of the authors ingested one-half pink tablet of deschloroetizolam, about 6 mg, bought on the Internet [79]. After 15 min, the subject’s overall behavior changed rapidly; both physical and cognitive effects were described. Oral fluid was collected after 30 min. Deschloroetizolam and diclazepam’s metabolites, lorazepam and lormetazepam, were detected in a young male. The subject was found dead with injection materials and several small plastic bags labelled with different DBZD [81].

2.4. Diclazepam

Diclazepam, or 2-Chlorodiazepam, is the 2'-chloro derivative of diazepam and the positional isomer of 4-chlorodiazepam [84]. It was reported to EMCDDA by Germany in August 2013 [49]. In two of three cases displayed, subjects were admitted to the ED in a severe state of agitation and disorientation; diclazepam was detected along with stimulants and dissociatives. In the third ED admission, diclazepam was the sole drug reported. Symptoms of intoxication were mainly characterized by CNS depression and a withdrawal syndrome. The patient reported having ingested two 30 mL vials of 4 mg/mL diclazepam (240 mg) purchased online. Again, 13 drivers apprehended for DUID submitted to a clinical test of impairment (CTI). The level of impairment was assessed based on the single test results and the individual’s general condition. Common signs of impairment were found for alertness, appearance, cognitive function, motor coordination and vestibular function. Heide et al. report four additional DUID cases. Subjects were aged between 30 and 39 years; sex was not specified, and diclazepam was found in blood at concentration ranging from 5.4 ng/mL to 32 ng/mL [86]. The subjects did not show impairment. The only death
reported involved a young man with a history of methamphetamine use found deceased at home. He previously told a friend that at times he took etizolam. Retrospective quantitative analysis revealed the presence of diclazepam and flubromazolam, along with opioids and stimulants. In addition, in 2013, a French patient was admitted to the ED after ingestion of two pills labelled “diclazepam” and “2-aminoindane” bought on the Internet. Upon clinical examination, the patient was anxious, but the anxiety resolved, and the patient was discharged the same day [130]. Diclazepam was neither confirmed nor quantified.

2.5. Etizolam

Etizolam, or 4-(2-chlorophenyl)-2-ethyl-9-methyl-6H-thieno[3,2-f][1,2,4]triazolo[4,3-α][1,4]diazepine, is a short-acting thienotriazoldiazepine introduced in 1983 under the trade name Depas® [131,132]. It is currently used in India, Italy, Japan and Korea for the short-term treatment of insomnia, anxiety and panic attacks, but it is not approved for medical use elsewhere [55,71]. It was reported to EMCDDA in December 2011 by UK [133]. Three intoxications required ED admission. Three children were found drowsy and wobbly after eating colored pills thought to be candies. Etizolam was confirmed in one patient’s urine. In addition, a subject was found unconscious next to a syringe of heroin. He had previously ingested a large quantity of etizolam tablets. Three patients with psychiatric disorders presented at an outpatient department for etizolam detoxification after exhibiting tolerance and withdrawal. Etizolam was prescribed or illegally obtained in one case and was taken at supratherapeutic doses. For six DUID cases, three were apprehended drivers undergoing CTI, while three drivers were stopped for impaired driving and underwent a standardized field sobriety test (SFST). These results supported the diagnosis of motor and functional impairment. The other two males, ages 34 and 19 years, underwent CTI [85]. Etizolam was found in blood at concentrations of 31 ng/mL and 120 ng/mL, respectively; however, impairment was impossible to determinate or not reported. A total of 34 deaths were reported. In five cases, etizolam was found in association with diclazepam, (one case), flubromazepam (one case), flubromazolam (two cases) and flualprazolam and flubromazolam in one case. In 33 cases the cause of death was listed as accidental overdose due to polydrug toxicity; subjects were known drug users or had a history of mental disorders. In the remaining case [92], the subject was found dead in the bathroom with a suicide note in her diary. In these nine cases [92,95,97], etizolam was detected in peripheral blood at concentrations of 1–237 ng/mL. Subjects were seven males and two females between 22 and 61 years of age, residing in Japan, the UK or the US. However, etizolam was not listed as the cause of death.

2.6. Flualprazolam

Flualprazolam is the ortho fluorine analogue of alprazolam that was reported to the EMCDDA by Swedish police in January 2018 [99]. Seven young patients were transported to the ED after ingesting a BZD thought to be alprazolam. Three patients exhibited sedation and verbal impairment, two CNS depression, and two were asymptomatic. In three cases the presence of flualprazolam was not confirmed. Another thirteen DUID cases were reported. One individual was subjected to the CTI while twelve other drivers underwent SFSTs. Considerable motor and functional impairment were observed. Two biological samples screened positive for etizolam. Furthermore, Papsun et al. reported an additional 11 DUID [101]; however, demographic information and flualprazolam blood concentrations were not available. A total of 38 deaths were reported. All cases had multiple drugs; one was also positive for etizolam. In 36, the cause of death was listed as accidental overdose due to multiple drug toxicity, while in 2 cases they were ruled intentional flualprazolam poisonings. Furthermore, there were 28 additional deaths in which flualprazolam was not listed as the cause of death; these include 5 decedents from Finland, 13 from Sweden and 10 from the US. Flualprazolam blood concentrations ranged from 3 ng/mL to 620 ng/mL [101,102].
2.7. Flubromazepam

7-Bromo-5-(2-fluorophenyl)-1,3-dihydro-2H-1,4-benzodiazepin-2-one, well known as flubromazepam, was detected for the first time in ten seized capsules in Germany and reported to the EMCDDA in March 2013 [49]. Four subjects were admitted to the ED in a profound state of agitation and delirium, followed by rigidity and CNS depression. In one case, flubromazepam’s depressant effect was mitigated by the presence of methoxyphenidine. Only one DUID was reported. The driver was mildly impaired based on the CTI. Another apprehended, a 22-year-old driver, had a flubromazepam blood concentration of 7 ng/mL but did not show impairment on his CTI [86]. Only a single death case is included for flubromazepam. This young man was admitted to the ED in a severe state of CNS depression requiring resuscitation and mechanical ventilation; he died after six days of hospitalization. Flubromazolam and U-47700, which was also detected, were listed as the cause of death.

2.8. Flubromazolam

Flubromazolam is the triazolo-derivative of flubromazepam. It was identified in Sweden in 10 seized white tablets labelled “XANAX” and reported to EMCDDA in October 2014 [50]. It possesses strong and long-lasting depressive effect on the CNS. Eighteen patients were admitted to the ED in a severe state of CNS depression with functional and motor impairment. In 16 cases, flubromazolam was the sole drug detected, while in 2 cases subjects were also positive for meclonazepam. One patient required three days of hospitalization. After logical verbal contact was established, he admitted that he bought flubromazolam on the Internet and consumed about 3 mg approximately 19 h before ED admission [106]. Eleven flubromazolam DUID cases were reported; in two, driving impairment was assessed by CTI, while in the remaining nine, a SFST was performed by officers. Motor and functional impairment was evident in all subjects. Flubromazolam was listed as a contributory cause of death in four cases. Abdul et al. reported two additional deaths in which flubromazolam was found in femoral blood at concentrations of 8 and 16 ng/mL [108]. The two male decedents were 32 years old and 46 years old. The cause of death was not flubromazolam toxicity. Flubromazolam pharmacokinetics were assessed in a self-administration study. One of the authors ingested a 0.5 mg capsule of flubromazolam. During the following 24 h, the author observed strong sedation and considerable memory impairment.

2.9. Meclonazepam

Meclonazepam is structurally related to clonazepam and was reported for the first time to EMCDDA in August 2014 after identification in 145 seized capsules in Sweden [50]. A young man was admitted to the ED in December 2014 after ingesting approximately 100 tablets (600 mg) of meclonazepam. The subject was awake but not completely lucid.

2.10. Phenazepam and 3-Hydroxyphenazepam

Phenazepam, also known as “Bonsai”, “Zannie” or “Supersleep”, is a long-acting benzodiazepine developed in the 1970s and currently used as an anxiolytic, hypnotic and for the treatment of Alcohol Withdrawal Syndrome in the former USSR [134]. Phenazepam was reported to EMCDDA in July 2011 by Germany and UK. It is metabolized to the active metabolite 3-hydroxyphenazepam by different isoforms of CYP450 [114,135]. 3-Hydroxyphenazepam was identified in a seized white tablet and reported in October 2016 by Denmark. Three subjects were admitted to the ED after ingesting illicit phenazepam purchased on the Internet. Patients exhibited both motor and functional impairment and depressant effects. One patient had Asperger’s syndrome [110]. In May 2016, a patient was admitted to the ED after ingesting four tablets of 3-hydroxyphenazepam. There also are 19 DUID and a drug offense cases included in Table 1. Of these, 11 underwent SFST, 5 had roadside drug tests, 3 CTI, while 1 driver refused to perform SFST, and symptoms of impairment were provided by the officer’s observations. Moderate to considerable
motor and functional impairments were evident in all drivers. Heide et al. reported one additional DUID of a young driver submitted for CTI [86] who also had a phenazepam blood concentration of 120 ng/mL. The driver passed his CTI and was declared not impaired. Of sixty deaths reported, phenazepam alone was listed as the sole cause of death in two cases, while the remaining were attributed to accidental overdose due to polydrug toxicity.

2.11. Pyrazolam

Pyrazolam is the triazolo analogue of bromazepam that was identified in Finland in 10 white tablets and notified to EMCDDA in August 2012 [136]. In February 2016, a young man was found dead in an advanced state of putrefaction next to five plastic bags labelled pyrazolam, diclazepam, 3F-phenmetrazine, 1-(2-fluorophenyl) propan-2-amine and diphenhydramine hydrochloride, as well as one unlabelled bag. Asphyxia promoted by polydrug intoxication was listed as the cause of death.

3. Discussion

Seventy percent of the new DBZD were introduced into the European Union (EU), representing about thirteen percent of worldwide NPS seizures [137]. The EU market is dominated by a handful of these, most notably clonazolam, diclazepam, etizolam, flualprazolam, flubromazolam and phenazepam [31,58,64,138–140]. Etizolam, in particular, is the “street” BZD that is most often implicated in drug related deaths. In Scotland, its numbers grew from 223 in 2016 to 752 in 2019 [141]. DBZD are a worldwide growing public health concern. In the US, more than 5000 cases regarding clonazolam, etizolam and flualprazolam were reported in the US NFLIS from Federal, State and local laboratories between October and December 2020 [142]. The Center for Forensic Sciences Research and Education confirmed this trend for the first quarter of 2021, underlining the popularity of flubromazolam [143]. Etizolam, flualprazolam and flubromazolam were recently identified in counterfeit Xanax tablets in Canada, and their use is increasing also in Central and South America, mainly in Brazil, Chile and Paraguay [54,144]. Surprisingly, no updated data on DBZD are available from Asia, although most NPS are synthesized in this area of the world. However, a small number of DBZD may be sourced from companies in India, typically as finished medicinal products [54,145–147].

According to the UNODC, the highest public health risk around the world is from etizolam, flualprazolam, flubromazolam and phenazepam [54,72]. DBZD are widely available on the Internet in different forms, i.e., blotters, liquids, pills, powders and tablets, and sold at low prices [148]. Etizolam and phenazepam are further diverted from the regulated market and illegally imported from those countries where they are licensed therapeutic drugs [138,149]. For most NPS placed under international control, the number of reports decreased rapidly the year after the scheduling decision [150]. However, for flualprazolam, phenazepam, flubromazolam and etizolam, enforcement was delayed two, five, seven and nine years, respectively, after formal notification [73]. The social harms produced by these drugs’ long residence on the illicit market are characterized by an increasing rate of DBZD-related deaths, involvement of criminal activity, violence, risk-taking behavior, suicide attempts and concurrent substance use disorders [151,152].

Only cases in which DBZD were the sole or a contributory cause of intoxication, impairment or death are included in Table 1, which evaluates global DBZD intake. This facilitates review of the biological concentrations in the different types of cases. Clinicians are unaware of DBZD and their contribution to drug overdoses and deaths, sometimes leading to incorrect interpretations of cause of death. Clinicians should be asking patients about substance abuse including NPS and DBZD during routine preventive care and ED visits. The patients may not be aware of the identity or concentration of DBZD in a drug product before suffering symptoms of intoxication [135]. When a DBZD is the only drug identified, it provides the opportunity to characterize its associated sedative-hypnotic toxidrome as seen in cases [45,74,77,79,80,82,84–86,89–91,98,106,109,111,113,115].
However, since few pharmacokinetics studies were performed [82, 109], it is currently hard to associate concentrations in biological matrices with presumable related adverse effects. To date, correlations between dose and response, duration of action, metabolism, and onset of action are still poorly understood, making it harder for users to accurately dose the compound they purchased, increasing the prospect of potential intoxication. The slow elimination and the hepatic transformation in active metabolites of certain DBZD (i.e., flubromazolam and phenazepam) are responsible of their accumulation in lipid-based tissues, which can lead to a delayed overdose in cases of repeated consumption [44, 82, 91, 152, 153]. There was overlap between diclazepam, etizolam and phenazepam blood concentrations in impaired and non-impaired drivers [85, 86]. Similarly, blood etizolam and flualprazolam concentrations were similar in DUID cases and deaths [86, 92, 101, 102]. This may reflect differences in tolerance that appear after frequent drug exposure. In other cases, there is too little information or analytical data to improve our knowledge about the DBZD [74, 83, 104], and in many cases, because polypharmacy is the rule rather than the exception, it is not possible to assign causation to a single drug because the death is due to the drug combination [78, 86, 88, 100, 101, 112]. On the other hand, it is also possible that many individuals exposed to DBZD never developed significant adverse events [154]. However, a major problem is knowing that in many cases the DBZD will never be detected due to a lack of analytical method capability or even just to unawareness of the presence of this class of NPS. Furthermore, the newest DBDZ may have high cross-reactivity with common BZD immunoassays, which often do not distinguish between designer and prescribed BZD. Metabolism to licensed BZD, the sale of metabolites of prescribed BZD and the unavailability of confirmatory testing in health care centers pose the risk of an incorrect interpretation of analytical findings [5, 127, 155–157]. The roles DBZD play in deaths remains poorly understood, and how different pathologists and toxicologists attribute and interpret cause of death is largely unknown. For attributing the cause of death, each case must be assessed individually, taking into account the circumstances surrounding the death, drug tolerance and postmortem redistribution. [119, 158, 159]. The present data should inform interpretation of DBZD-related deaths and apprise law enforcement, clinicians and ED personnel on the dangers of DBZD.

4. Materials and Methods

31 DBZD were selected after consulting the UNODC Early Warning Advisory on NPS portal, the European Database on New Drugs, the US National Poison Data System and the Japanese Data Search System for NPS. Thereafter, a comprehensive literature search was performed using PubMed, Scopus, Google Scholar and Web of Science bibliographic databases to identify scientific reports on ED admissions, DUID and fatalities associated with DBZD use. Database-specific search features with truncations (represented by an asterisk) and multiple keywords (represented by quotation marks) were employed. The search terms employed were: acute, abuse, “access* to emergency department”, “adverse effect*”, diversion, “driving under the influence of drug*”, DUID, fatal, “illegal market”, intoxication*, lethal, misuse, overdose*, prescription, poison*, report*, schedule*, seizure* or traffic in combination with 3-hydroxyphenazepam, 4-chlorodiazepam, adinazolam, alprazolam triazolobenzophenone derivative, bentazepam, bromazolam, cinazepam, clonazolam, cloniprazepam, clonazolam, deschloroetizolam, diclazepam, etizolam, flualprazolam, flubromazepam, flubromazolam, fluclozolizolam, flunitrazolam, fonazepam, meclonazepam, metizolam, methylicitazol, nimezepanz, nifoxipam, nitrazolam, norfludiazepam, norflunitrazepam, phenazepam, pyrazolam, thionordazepam or tofisopam. Further studies were retrieved from the reference list of selected articles and from reports from international institutions such as the World Health Organization (WHO), the EMCDDA, the US Drug Enforcement Administration (DEA) and the US Food and Drug Administration (FDA). Articles written in English and only one in Swedish were included. Databases were screened through March 2021 and references were independently reviewed by one of the authors to determine their relevance to the present article.
5. Conclusions

The outbreak of DBZD is a rising health and social concern. Clinical and forensic toxicologists are on the front line, in cooperation with public health safety institutions, to identify emerging DBZD in cases of intoxication, drug offenses and unexplained deaths. In order to decrease the availability of these substances in the global illicit drug market, more effort is needed by early warning agencies to reduce the timing between formal notifications and scheduling decisions. Further studies, professional training and analytical development are required to reduce the undercounting and underreporting of the cases in order to obtain robust and consistent epidemiological data.

Author Contributions: Conceptualization, M.A.H. and F.P.B.; investigation, P.B.; data curation, P.B. and M.A.H.; writing—original draft preparation, P.B.; writing—review and editing, P.B., M.A.H. and F.P.B.; supervision, R.G. and A.T. All authors have read and agreed to the published version of the manuscript.

Funding: This review was partially funded by the Italian Presidency of Ministers Council, Department of Antidrug Policy.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: No new data were created or analyzed in this study. Data sharing is not applicable to this article.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Huppertz, L.M.; Bisel, P.; Westphal, F.; Franz, F.; Auwärter, V.; Moosmann, B. Characterization of the four designer benzodiazepines clonazolam, deschloroetizolam, flubromazolam, and meclonazepam, and identification of their in vitro metabolites. Forensic Toxicol. 2015, 33, 388–395. [CrossRef]

2. Álvarez-Freire, I.; Brunetti, P.; Cabarcos-Fernández, P.; Fernández-Liste, A.; Tabernero-Duque, M.J.; Bermejo-Barrera, A.M. Determination of benzodiazepines in pericardial fluid by gas chromatography–mass spectrometry. J. Pharm. Biomed. Anal. 2018, 159, 45–52. [CrossRef]

3. Pichini, S.; Papaseit, E.; Joya, X.; Vall, O.; Farré, M.; Garcia-Algar, O.; De Latorre, R. Pharmacokinetics and therapeutic drug monitoring of psychotropic drugs in pediatrics. Ther. Drug Monit. 2009, 31, 283–318. [CrossRef] [PubMed]

4. Ansseau, M.; Doumont, A.; Thirty, D.; von Frencell, R.; Collard, J. Initial study of methylclonazepam in generalized anxiety disorder—Evidence for greater power in the cross-over design. Psychopharmacology 1985, 87, 130–135. [CrossRef] [PubMed]

5. Katselou, M.; Papoutsis, I.; Nikolaou, P.; Spiliopoulou, C.; Athanaselis, S. Metabolites replace the parent drug in the drug arena. The cases of fonazepam and nifoxipam. Forensic Toxicol. 2017, 35, 1–10. [CrossRef]

6. Tamama, K.; Lynch, M.J. Newly emerging drugs of abuse. Handb. Exp. Pharmacol. 2020, 258, 463–502. [CrossRef]

7. Hayhoe, B.; Lee-Davey, J. Tackling benzodiazepine misuse. BMJ 2018, 362, k3208. [CrossRef] [PubMed]

8. Twyman, R.E.; Rogers, C.J.; Macdonald, R.L. Differential regulation of γ-aminobutyric acid receptor channels by diazepam and phenobarbital. Ann. Neurol. 1989, 25, 213–220. [CrossRef] [PubMed]

9. Sigel, E.; Ernst, M. The Benzodiazepine Binding Sites of GABAA Receptors. Trends Pharmacol. Sci. 2018, 39, 659–671. [CrossRef] [PubMed]

10. Kim, J.J.; Gharpure, A.; Teng, J.; Zhuang, Y.; Howard, R.J.; Zhu, S.; Noviello, C.M.; Walsh, R.M.; Lindahl, E.; Hibbs, R.E. Shared structural mechanisms of general anaesthetics and benzodiazepines. Nature 2020, 585, 303–308. [CrossRef]

11. Guina, J.; Merrill, B. Benzodiazepines I: Upping the Care on Downers: The Evidence of Risks, Benefits and Alternatives. J. Clin. Med. 2018, 7, 17. [CrossRef] [PubMed]

12. Battile, E.; Lizano, E.; Viñas, M.; Dolors Pujol, M. 1,4-Benzodiazepines and New Derivatives: Description, Analysis, and Organic Synthesis. In Medicinal Chemistry; Vašková, J., Vaško, L., Eds.; IntechOpen: London, UK, 2019; pp. 63–90.

13. Bliding, Å. The abuse potential of benzodiazepines with special reference to oxazepam. Acta Psychiatr. Scand. 1978, 58, 111–116. [CrossRef]

14. Kaufmann, C.N.; Spira, A.P.; Depp, C.A.; Mojtabai, R. Long-term use of benzodiazepines and non-benzodiazepine hypnotics, 1999–2014. Psychiatr. Serv. 2018, 69, 235–238. [CrossRef]

15. Ayd, F.J., Jr. Benzodiazepines: Dependence and withdrawal. JAMA 1979, 242, 1401–1402. [CrossRef]

16. Lader, M.H. Limitations on the use of benzodiazepines in anxiety and insomnia: Are they justified? Eur. Neuropsychopharmacol. 1999, 9, S399–S405. [CrossRef]

17. Mehdi, T. Benzodiazepines revisited. BJMP 2012, 5, a501.
18. Ashton, H. The diagnosis and management of benzodiazepine dependence. *Curr. Opin. Psychiatry* 2005, 18, 249–255. [CrossRef] [PubMed]

19. Wick, J.Y. The history of benzodiazepines. *Consult. Pharm.* 2013, 28, 538–548. [CrossRef]

20. Khan, I. International regulation of benzodiazepine. *Prog. Neuro Psychopharmacol. Biol. Psychiatry* 1992, 16, 9–16. [CrossRef]

21. Pond, S.M.; Tong, T.G.; Benowitz, N.L.; Jacob, P., 3rd. Lack of effect of diazepam on methadone metabolism in methadone-maintained addicts. *Clin. Psychopharmacol. Ther.* 1982, 31, 139–143. [CrossRef]

22. Woody, G.E.; O’brien, C.P.; Greenstein, R. Misuse and abuse of diazepam: An increasingly common medical problem. *Int. J. Addict.* 1975, 10, 843–848. [CrossRef]

23. Lader, M. History of benzodiazepine dependence. *J. Subst. Abuse Treat.* 1991, 8, 53–59. [CrossRef]

24. Barnas, C.; Rossmann, M.; Roessler, H.; Riemer, Y.; Fleischhacker, W. Benzodiazepines and other psychotropic drugs abused by patients in a methadone maintenance program: Familiarity and preference. *Clin. Neuropsychopharmacol.* 1992, 15 (Suppl. 1), 110A–111A. [CrossRef]

25. Forsyth, A.J.M.; Farquhar, D.; Gemell, M.; Shewan, D.; Davies, J.B. The dual use of opioids and temazepam by drug injectors in Glasgow (Scotland). *Drug Alcohol Depend.* 1993, 32, 277–280. [CrossRef]

26. Gautam, L.; Sharratt, S.D.; Cole, M.D. Drug facilitated sexual assault: Detection and stability of benzodiazepines in spiked drinks using gas chromatography-mass spectrometry. *PLoS ONE* 2014, 9, e89031. [CrossRef]

27. Agarwal, S.D.; Landon, B.E. Patterns in Outpatient Benzodiazepine Prescribing in the United States. *Addiction* 2012, 107, 1159–1168. [CrossRef] [PubMed]

28. Schmitz, A. Benzodiazepines: The time for systematic change is now. *Addiction* 2021, 116, 219–221. [CrossRef]

29. UNODC. Global SMART Update Volume 18. Non-Medical Use of Benzodiazepines: A Growing Threat to Public Health? Available online: https://www.unodc.org/documents/scientific/Global_SMART_Update_2017_Vol_18.pdf (accessed on 8 December 2020).

30. EMCDDA. The Misuse of Benzodiazepines among High-Risk Opioid Users in Europe. Available online: http://www.emcdda.europa.eu/system/files/publications/2733/Misuseofbenzos.Pod2015.pdf (accessed on 1 December 2020).

31. Zawilska, J.B.; Wojcieszak, J. An expanding world of new psychoactive substances-designer benzodiazepines. *Neurotoxicology* 2019, 73, 8–16. [CrossRef]

32. Vårdal, L.; Wong, G.; Øiestad, Å.M.L.; Pedersen-Bjergaard, S.; Gjelstad, A.; Øiestad, E.L. Rapid determination of designer benzodiazepines, benzodiazepines, and Z-hypnotics in whole blood using parallel artificial liquid membrane extraction and UHPLC-MS/MS. *Anal. Bioanal. Chem.* 2018, 410, 4967–4978. [CrossRef]

33. Gheddar, L.; Ricaut, F.X.; Ameline, A.; Brucato, N.; Tsang, R.; Leavesley, M.; Raul, J.S.; Kintz, P. Testing for Betel Nut Alkaloids in Hair of Papuans Abusers using UPLC-MS and UPLC-Q-ToF-MS. *J. Anal. Toxicol.* 2020, 44, 41–48. [CrossRef]

34. Fryer, R.I.; Schmidt, R.A.; Sternbach, L.H. Quinazolines and 1,4-Benzodiazepines. XVII. Synthesis of 1,3-dihydro-5-pyridyl-2H-1,4-benzodiazepines derivatives. *J. Pharm. Sci.* 1964, 53, 264–268. [CrossRef] [PubMed]

35. Sternbach, L.H.; Fryer, R.I.; Keller, O.; Metlesics, W.; Sach, G.; Steiger, N. Quinazolines and 1,4-Benzodiazepines. X.’ Nitro-Substituted 5-Phenyl-1,4-benzodiazepine Derivatives. *J. Med. Chem.* 1963, 6, 261–265. [CrossRef] [PubMed]

36. Olkkola, K.T.; Ahonen, J. Midazolam and other benzodiazepines. *Handb. Exp. Pharmacol.* 2008, 182, 335–360. [CrossRef]

37. Atkin, T.; Comai, S.; Gobbi, G. Drugs for insomnia beyond benzodiazepines: Pharmacology, clinical applications, and discovery. *Pharmacol. Rev.* 2018, 70, 197–245. [CrossRef]

38. Greenblatt, H.K.; Greenblatt, D.J. Designer Benzodiazepines: A Review of Published Data and Public Health Significance. *Clin. Pharmacol. Drug Dev.* 2019, 8, 266–269. [CrossRef]

39. Waters, L.; Manchester, K.R.; Maskell, P.D.; Haegeman, C.; Haider, S. The use of a quantitative structure-activity relationship (QSAR) model to predict GABA-A receptor binding of newly emerging benzodiazepines. *Sci. Justice* 2018, 58, 219–225. [CrossRef]

40. El Balkhi, S.; Monchaud, C.; Gé, F. ‘New/Designer Benzodiazepines’: An Analysis of the Literature and Psychonauts’ Trip Reports. *Clin. Neuropharmacol.* 2020, 43, 809–837. [CrossRef]

41. Shapiro, A.P.; Krew, T.S.; Vazirian, M.; Jerry, J.; Sola, C. Novel Ways to Acquire Designer Benzodiazepines: A Case Report and Discussion of the Changing Role of the Internet. *Psychosomatics* 2019, 60, 625–629. [CrossRef]

42. Benesch, M.G.K.; Iqbal, S.J. Novel psychoactive substances: Overdose of 3-fluorophenmetrazine (3-FPM) and etizolam in a 33-year-old man. *BMJ Case Rep.* 2018, 2018, bcr2018224995. [CrossRef]
75. Nowak, K.; Szpot, P.; Zawadzki, M. Fatal intoxication with U-47700 in combination with other NPS (N-ethylhexedrone, adinazolam, 4-CIC, 4-CMC) confirmed by identification and quantification in autopsy specimens and evidences. Forensic Toxicol. 2021. [CrossRef]

76. Ghazi, M.A.; Mohmand, M. Co-occurring Addiction of Synthetic Benzodiazepine Clonazolam and Propylhexedrine presenting as Acute Brief Psychosis. J. Addict. Med. Ther. 2017, 5, 1037. [CrossRef]

77. Murphy, L.; Melamed, J.; Gerona, R.; Hendricksson, R.G. Clonazolam: A novel liquid benzodiazepine. Toxicol. Commun. 2019, 3, 75–78. [CrossRef]

78. Židková, M.; Horsley, R.; Hloch, O.; Hložek, T. Near-fatal Intoxication with the “New” Synthetic Opioid U-47700: The First Reported Case in the Czech Republic. J. Forensic Sci. 2019, 64, 647–650. [CrossRef] [PubMed]

79. Van Wijk, X.M.R.; Yun, C.; Hooshfar, S.; Arens, A.M.; Lung, D.; Wu, A.H.B.; Lynch, K.L. A liquid-chromatography high-resolution mass spectrometry method for non-FDA approved benzodiazepines. J. Anal. Toxicol. 2019, 43, 316–320. [CrossRef]

80. Sommerfeld-Klatta, K.; Łukasik-Głębocka, M.; Teżyk, A.; Panierński, P. Clonazolam a new designer benzodiazepine intoxication confirmed by blood concentration. Forensic Sci. Int. 2020, 310, 110237. [CrossRef]

81. El Balkhi, S.; Chaslot, M.; Picard, N.; Dulaurent, S.; Delage, M.; Mathieu, O.; Saint-Marcoux, F. Characterization and identification of eight designer benzodiazepine metabolites by incubation with human liver microsomes and analysis by a triple quadrupole mass spectrometer. Int. J. Legal Med. 2017, 131, 979–988. [CrossRef] [PubMed]

82. Ameline, A.; Arbouche, N.; Raul, J.S.; Kintz, P. Documentation of a little-studied designer benzodiazepine after a controlled single administration: II. Concentration profile of deschloroetizolam in Saliva. Ther. Drug Monit. 2018, 40, 759–761. [CrossRef]

83. Gevorkyan, J.; Kinyua, J.; Pearring, S.; Rodda, L.N. A Case Series of Etizolam in Opioid Related Deaths. QJM 2020, 113, 122–124. [CrossRef]

84. Heidest, G.; Tuv, S.S.; Karinen, R. Blood concentrations of new designer benzodiazepines in forensic cases. Forensic Sci. Int. 2016, 268, 35–38. [CrossRef]

85. Høiseth, G.; Tuv, S.S.; Karinen, R. Blood concentrations of new designer benzodiazepines in forensic cases. J. Anal. Toxicol. 2020, 44, 905–914. [CrossRef]

86. Heide, G.; Høiseth, G.; Middelkoop, G.; Øiestad, Å.M.L. Blood concentrations of designer benzodiazepines: Relation to impairment and findings in forensic cases. J. Anal. Toxicol. 2020, 44, 665–670. [CrossRef]

87. Partridge, E.; Trebbiani, S.; Stockham, P.; Charlwood, C.; Kostakis, C. A Case Study Involving U-47700, Diclapem and Flubromazepam—Application of Retrospective Analysis of HRMS Data. J. Anal. Toxicol. 2018, 42, 655–660. [CrossRef]

88. Krotulski, A.J.; Papsun, D.M.; Noble, C.; Kacinko, S.L.; Logan, B.K. Brorphine-Investigation and quantitation of a new potent benzodiazepine analog. Ann. Emerg. Med. 2015, 65, 465–466. [CrossRef] [PubMed]

89. Love, J.S.; Thompson, J.A.; Horowitz, B.Z. “Pressed” Etizolam. J. Addict. Med. Ther. 2021, 32, 459–460. [CrossRef]

90. Gupta, S.; Garg, B. A case of etizolam dependence. Indian J. Pharmacol. 2014, 46, 655–656. [CrossRef]

91. Banerjee, D. Etizolam withdrawal catatonia: The first case report. Asian J. Psychiatr. 2018, 37, 32–33. [CrossRef]

92. Nakamae, T.; Shinozuka, T.; Sasaki, C.; Ogama, A.; Murakami-Hashimoto, C.; Irie, W.; Terada, M.; Nakamura, S.; Furukawa, M.; Kurihara, K. Case report: Etizolam and its major metabolites in two unnatural death cases. Forensic Sci. Int. 2008, 182, e1–e6. [CrossRef]

93. Tanaka, N.; Kinoshita, H.; Nishiguchi, M.; Jamal, M.; Kumihiashi, M.; Takahashi, M.; Nishio, H.; Ameno, K. An autopsy case of multiple psychotropic drug poisoning. Soud. Lek. 2011, 56, 38–39.

94. Liveri, K.; Constantinou, M.A.; Afxentiou, G.; Kanari, P. A fatal intoxication related to MDPV and pentedrone combined with antipsychotic and antidepressant substances in Cyprus. Forensic Sci. Int. 2016, 265, 160–165. [CrossRef]

95. Hikin, L.J.; Smith, P.R.; Maskell, P.D.; Kurimbokos, H.; Ashong, E.; Couchman, L.; Morley, S.R. Femoral blood concentrations of the designer benzodiazepine etizolam in post-mortem cases. Med. Sci. Law 2021, 61, 122–129. [CrossRef]

96. Kolbe, V.; Rentsch, D.; Boy, D.; Schmidt, B.; Kegler, R.; Bütter, A. The adulterated XANAX pill: A fatal intoxication with etizolam and caffeine. Int. J. Legal Med. 2020, 134, 1727–1731. [CrossRef]

97. Gevorkyan, J.; Kinyua, J.; Pearring, S.; Rodda, L.N. A Case Series of Etizolam in Opioid Related Deaths. J. Anal. Toxicol. 2020, 44, e20192953. [CrossRef]

98. Blumenberg, A.; Hughes, A.; Reckers, A.; Ellison, R.; Gerona, R. Flualprazolam: Report of an outbreak of a new psychoactive substance in adolescents. Pediatrics 2020, 146, e20192953. [CrossRef] [PubMed]

99. Wagmann, L.; Manier, S.K.; Bambauer, T.P.; Felske, C.; Eckstein, N.; Flockerzi, V.; Meyer, M.R. Toxicokinetics and analytical toxicology of flualprazolam: Metabolic fate, isozyme mapping, human plasma concentration and main urinary excretion products. J. Anal. Toxicol. 2020, 44, 549–558. [CrossRef] [PubMed]

100. Krotulski, A.J.; Papsun, D.M.; Noble, C.; Kacinko, S.L.; Logan, B.K. Brorphine-Investigation and quantitation of a new potent synthetic opioid in forensic toxicology casework using liquid chromatography–mass spectrometry. J. Forensic Sci. 2021, 66, 664–676. [CrossRef] [PubMed]

101. Papsun, D.M.; Krotulski, A.J.; Homann, J.; Temporal, K.D.H.; Logan, B.K. Flualprazolam Blood Concentrations in 197 Forensic Investigation Cases. J. Anal. Toxicol. 2021, 45, 226–232. [CrossRef] [PubMed]

102. Krikku, P.; Rasainen, I.; Öjärnerå, I.; Thelander, G.; Kronstrand, R.; Vikingsson, S. Femoral blood concentrations of flualprazolam in 33 postmortem cases. Forensic Sci. Int. 2020, 307, 110101. [CrossRef]
103. Rice, K.; Hikin, L.; Lawson, A.; Smith, P.R.; Morley, S. Quantification of Flualprazolam in Blood by LC-MS-MS: A Case Series of Nine Deaths. J. Anal. Toxicol. 2021, 45, 410–416. [CrossRef]

104. Valli, A.; Lonati, D.; Locatelli, C.A.; Buscaglia, E.; Di Tuccio, M.; Papa, P. Analytically diagnosed intoxication by 2-methoxphenidine and flubromazepam mimicking an ischemic cerebral disease. Clin. Toxicol. 2017, 55, 611–612. [CrossRef]

105. Koch, K.; Auwärter, V.; Hermanns-Clausen, M.; Wilde, M.; Neukamm, M.A. Mixed intoxication by the synthetic opioid U-47700 and the benzodiazepine flubromazepam with lethal outcome: Pharmacokinetic data. Drug Test. Anal. 2018, 10, 1336–1341. [CrossRef]

106. Łukasik-Głębocka, M.; Sommerfeld, K.; Tezky, A.; Zielińska-Psuja, B.; Panierński, P.; Zaba, C. Flubromazepam—A new life-threatening designer benzodiazepine. Clin. Toxicol. 2016, 54, 66–68. [CrossRef]

107. Moosmann, B.; Bisel, P.; Franz, F.; Huppertz, L.M.; Auwärter, V. Characterization and in vitro phase I microsomal metabolism of flubromazepam—Basic pharmacokinetic evaluation of a highly potent designer benzodiazepine. Drug Test. Anal. 2018, 10, 206–211. [CrossRef]

108. Abdul, K.; Hikin, L.; Smith, P.; Kurimbokus, H.; Couchman, L.; Morley, S.R. Flubromazolam: Detection in five post-mortem cases. Med. Sci. Law 2020, 60, 266–269. [CrossRef]

109. Huppertz, L.M.; Moosmann, B.; Auwärter, V. Flubromazolam—A new life-threatening designer benzodiazepine. Drug Test. Anal. 2018, 10, 206–211. [CrossRef]

110. Mrozkowska, J.; Borna, C.; Vinge, E. Missbruk av fenazepam—Ny färreelse i Sverige. Bensodiazepinderivat från Ryssland gav svår intoxikation. Lakartidningen 2009, 106, 516–517. [PubMed]

111. Dargan, P.I.; Davies, S.; Puchnarewicz, M.; Johnston, A.; Wood, D.M. First reported case in the UK of acute prolonged neuropsychiatric toxicity associated with analytically confirmed recreational use of phenazepam. Eur. J. Clin. Pharmacol. 2013, 69, 361–363. [PubMed]

112. Vo, K.T.; van Wijk, X.M.R.; Wu, A.H.B.; Lynch, K.L.; Ho, R.Y. Synthetic agents off the darknet: A case of U-47700 and phenazepam abuse in Finland: Findings from apprehended drivers, post-mortem cases and clinical confinements. Forensic Sci. Int. 2012, 220, 111–117. [CrossRef] [PubMed]

113. Kriikku, P.; Wilhelm, L.; Rintatalo, J.; Hurme, J.; Kramer, J.; Ojanperä, I. Phenazepam abuse in Finland: Findings from apprehended drivers, post-mortem cases and clinical confinements. Forensic Sci. Int. 2012, 220, 111–117. [CrossRef] [PubMed]

114. Stephenson, J.B.; Golz, D.E.; Brasher, M.J. Phenazepam and its effects on driving. J. Anal. Toxicol. 2013, 37, 25–29. [CrossRef]

115. Kerrigan, S.; Mellon, M.B.; Hinners, P. Detection of phenazepam in impaired driving. J. Anal. Toxicol. 2013, 37, 605–610. [CrossRef] [PubMed]

116. Bailey, K.; Richards-Waugh, L.; Clay, D.; Gebhardt, M.; Mahmoud, H.; Kramer, J.C. Fatality involving the ingestion of phenazepam and poppy seed tea. J. Anal. Toxicol. 2010, 34, 527–532. [CrossRef]

117. Corkery, J.M.; Schíano, F.; Ghodse, A.H. Phenazepam abuse in the UK: An emerging problem causing serious adverse health problems, including death. Hum. Psychopharmacol. 2012, 27, 254–261. [CrossRef]

118. Crichton, M.L.; Shenton, C.F.; Drummond, G.; Beer, L.J.; Seetohul, L.N.; Maskell, P.D. Analysis of phenazepam and 3-hydroxophenazepam in post-mortem fluids and tissues. Drug Test. Anal. 2015, 7, 926–936. [CrossRef] [PubMed]

119. Shearer, K.; Bryce, C.; Parsons, M.; Torrance, H. Phenazepam: A review of medico-legal deaths in South Scotland between 2010 and 2014. Forensic Sci. Int. 2015, 254, 197–204. [CrossRef]

120. Lehmann, S.; Szczyslo, A.; Froch-Cortis, J.; Rothschild, M.A.; Thevis, M.;Andresen-Streichert, H.; Mercer-Chalmers-Bender, K. Organ distribution of diclazepam, pyrazolam and 3-fluorophenmetrazine. Forensic Sci. Int. 2019, 303, 109959. [CrossRef]

121. Venkatakrishnan, K.; Culm, K.E.; Ehrenberg, B.L.; Harmatz, J.S.; Corbett, K.E.; Fleishaker, J.C.; Greenblatt, D.J. Kinetics and dynamics of intravenous adinazolam, N-desmethyl adinazolam, and alprazolam in healthy volunteers. J. Clin. Pharmacol. 2005, 45, 529–537. [CrossRef] [PubMed]

122. Cornett, E.M.; Novitch, M.B.; Brunk, A.J.; Davidson, K.S.; Menard, B.L.; Urman, R.D.; Kaye, A.D. New benzodiazepines for depression. Psychiatry Res. 1988, 23, 221–227. [CrossRef]

123. Hicks, F.; Robins, E.; Murphy, G.E. Comparison of adinazolam, amitryptiline, and placebo in the treatment of melancholic depression. Psychiatry Res. 1989, 6, 379–386. [CrossRef] [PubMed]

124. Fleishaker, J.C.; Phillips, J.P.; Smith, T.C.; Smith, R.B. Multiple-dose pharmacokinetics and pharmacodynamics of adinazolam in elderly subjects. Pharm. Res. 1989, 6, 379–386. [CrossRef] [PubMed]

125. Fleishaker, J.C.; Phillips, J.P. Adinazolam pharmacokinetics and behavioral effects following administration of 20-60 mg oral doses of its mesylate salt in healthy volunteers. Psychopharmacology 1989, 99, 34–39. [CrossRef]

126. EMCDDA. New benzodiazepines in Europe—A review. Available online: https://www.emcdda.europa.eu/system/files/publications/13759/TO0221596ENN_002.pdf (accessed on 10 June 2021).

127. Moosmann, B.; Bisel, P.; Franz, F.; Huppertz, L.M.; Auwärter, V. Characterization and in vitro phase I microsomal metabolism of designer benzodiazepines—An update comprising adinazolam, cloniprazepam, fonazepam, 3-hydroxyphenazepam, metizolam and nitrazolam. J. Mass Spectrom. 2016, 51, 1080–1089. [CrossRef]

128. CFSRE. Adinazolam Monograph. Available online: https://www.npsdiscovery.org/wp-content/uploads/2020/08/Adinazolam_081120_CFSRE-Toxicology_Report.pdf (accessed on 20 March 2021).

129. Maskell, P.D.; Parks, C.; Button, J.; Liu, H.; McKeown, D.A. Clarification of the Correct Nomenclature of the Amino Metabolite of Clonazolam: 8-Aminoclonazolam. J. Anal. Toxicol. 2021, 45, e1–e2. [CrossRef]

130. Grossenbacher, F.; Souille, J.; Djerrada, Z.; Passouant, O.; Gibaja, V. Exposure to 5f-P22, 5 IAI and diclazepam: A case report. Clin. Toxicol. 2014, 52, 365.
156. Moosmann, B.; Bisel, P.; Westphal, F.; Wilde, M.; Kempf, J.; Angerer, V.; Auwärter, V. Characterization and in vitro phase I microsomal metabolism of designer benzodiazepines: An update comprising flunitrazolam, norflurazepam, and 4′-chlorodiazepam (Ro5–4864). *Drug Test. Anal.* 2019, 11, 541–549. [CrossRef] [PubMed]

157. Moosmann, B.; Auwärter, V. Designer benzodiazepines: Another class of new psychoactive substances. *Handb. Exp. Pharmacol.* 2018, 252, 383–410. [CrossRef]

158. McAuley, A.; Hecht, G.; Barnsdale, L.; Thomson, C.S.; Graham, L.; Priyadarshi, S.; Robertson, J.R. Mortality related to novel psychoactive substances in Scotland, 2012: An exploratory study. *Int. J. Drug Policy* 2015, 26, 461–467. [CrossRef]

159. Giaginis, C.; Tsantili-Kakoulidou, A.; Theocharis, S. Applying quantitative structure-activity relationship (QSAR) methodology for modeling postmortem redistribution of benzodiazepines and tricyclic antidepressants. *J. Anal. Toxicol.* 2014, 38, 242–248. [CrossRef]