Complement activation in the context of stem cells and tissue repair

Ingrid U Schraufstatter, Sophia K Khaldoyanidi, Richard G DiScipio

Ingrid U Schraufstatter, Sophia K Khaldoyanidi, Richard G DiScipio, Torrey Pines Institute for Molecular Studies, San Diego, CA 92121, United States

Ingrid U Schraufstatter, Richard G DiScipio, Sanford Burnham Medical Research Institute, La Jolla, CA 92037, United States

Author contributions: Schraufstatter IU, Khaldoyanidi SK, and DiScipio RG all wrote the manuscript.

Supported by The grants R21 HL094878 and R21AI10950 to IUS and RGD.

Conflict-of-interest statement: None of the authors have any financial interest to declare.

Open-Access: This article is an open-access article which was selected by an in-house editor and fully peer-reviewed by external reviewers. It is distributed in accordance with the Creative Commons Attribution Non Commercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited and the use is non-commercial. See: http://creativecommons.org/licenses/by-nc/4.0/

Correspondence to: Ingrid U Schraufstatter, MD, Torrey Pines Institute for Molecular Studies, 3550 General Atomics Court, San Diego, CA 92121,
United States. ischraufstatter@tpims.org
Telephone: +1-858-5973898
Fax: +1-858-5973898

Received: November 27, 2014
Peer-review started: November 29, 2014
First decision: January 20, 2015
Revised: July 3, 2015
Accepted: July 24, 2015
Article in press: July 27, 2015
Published online: September 26, 2015

Abstract
The complement pathway is best known for its role in immune surveillance and inflammation. However, its ability of opsonizing and removing not only pathogens, but also necrotic and apoptotic cells, is a phylogenetically ancient means of initiating tissue repair. The means and mechanisms of complement-mediated tissue repair are discussed in this review. There is increasing evidence that complement activation contributes to tissue repair at several levels. These range from the chemo-attraction of stem and progenitor cells to areas of complement activation, to increased survival of various cell types in the presence of split products of complement, and to the production of trophic factors by cells activated by the anaphylatoxins C3a and C5a. This repair aspect of complement biology has not found sufficient appreciation until recently. The following will examine this aspect of complement biology with an emphasis on the anaphylatoxins C3a and C5a.

Key words: Complement activation; Embryonic and adult stem cells; C3a; C5a; Tissue repair

© The Author(s) 2015. Published by Baishideng Publishing Group Inc. All rights reserved.

Core tip: This review article provides an overview over the scenarios, where complement activation contributes to tissue repair and regeneration through its effect on stem and progenitor cells, which is an area that needs further investigation.

Schraufstatter IU, Khaldoyanidi SK, DiScipio RG. Complement activation in the context of stem cells and tissue repair. World J Stem Cells 2015; 7(8): 1090-1108 Available from: URL: http://www.wjgnet.com/1948-0210/full/v7/i8/1090.htm DOI: http://dx.doi.org/10.4252/wjsc.v7.i8.1090

INTRODUCTION

Complement activation cascade
Complement is an effector system present in blood
consisting of about 30 soluble proteins and 15 cellular receptors. Although it has been known for over a century that complement is a participant in host immunity, it has recently become generally realized that complement is a contributor to a variety of non-immune functions inclusive of resolution of inflammation, clearance of apoptotic cells, angiogenesis, wound healing, stem cell recruitment and activation, as well as repair processes.

There are three routes of complement activation, the alternative pathway, the lectin pathway, and the classical pathway (Figure 1). All of these converge on the cleavage by complex enzymes referred to as C3 convertases of component C3 (Mr: about 195000) to C3a (Mr: about 85000) and C3b (Mr: about 185000). As a consequence of C3b deposition on C3 convertase, C5 convertase is created that acts similarly producing from component C5 (Mr: about 196000) the activation peptide C5a (Mr: about 11000) and C5b (Mr: about 185000). The anaphylatoxins, C3a and C5a, are important for elaboration of mechanisms of wound healing and regeneration. These small mediators are recognized by their cognate receptors: C3aR and C5aR/CSL2 that are GPCRs found on a diversity of cells inclusive of immune cells, endothelial cells, differentiated repair cells, and stem cells. In addition C3b and its split product iC3b, C3d are recognized by receptors inclusive of CR1-4 that assist clearance of microorganisms, cellular debris, immune complexes, and apoptotic cells. The ultimate outcome of complement activation is the formation of the MAC that is a transmembrane pore (100 Å) assembly that embeds in target cell membranes. In the absence of proximal phospholipid membranes, the terminal components of complement associate into complexes referred to as SC5b-9. These are probable heterogeneous and contain multiple copies of vitronectin and clusterin (apolipoprotein J). Because vitronectin in an oligomeric state can present the canonical tripeptide, Arg-Gly-Asp, to integrins on a variety of restorative cells, such as fibroblasts and keratinocytes, SC5b-9 may have a wound healing function. MAC: Membrane attack complex; MSC: Mesenchymal stem cells; HSC: Hematopoietic stem cells; PMNs: Polymorphonuclear cells.
immunoglobulins, the collectin, C1q, links to these, along with C1r and C1s to evoke the cleavage of C4 and C2 resulting in the assembly of a C3 convertase (C4b, C2a), which has the same composition as that formed by the lectin pathway[15].

Additional C3b deposition onto either the alternative or classical pathway C3 convertases changes these into C5 convertases (C3b, B6, P or C4b, C3b, C2a)[16,17]. These complex enzymes are now competent to process component C5 (Mr: about 196000) into C5a (Mr: about 11000) and C5b (Mr: about 185000)[18].

Basic biology of C3a and C5a
The small activation peptides, C3a and C5a, Figure 1 are in inflammation and germane to this review in wound healing and regeneration[19]. Both C3a and C5a, collectively referred to as anaphylatoxins, cause vasodilation, smooth muscle contraction, and increase vascular permeability[20-22]. Although C3a can be generated in greater abundance than C5a, the latter has greater specific inflammatory potential[21,23]. C5a especially is known for its ability to evoke chemotaxis of immune cells such as neutrophils and eosinophils[24,25]. Both C3a[22,26-28] and C5a[21,24,26,29-31] can stimulate an oxidant burst in granulocytes, but the response of these cells to C3a is considerably weaker and more transient than that to C5a[24,25,30,31]. In particular C3a fails to chemotactically attract circulating leukocytes in vivo[25]. Apart from the weak response of leukocytic C3aRs, the response to C3a in vivo would be expected to be limited largely to the interstitial space, since C3a is inactivated by serum carboxypeptidase N (CPN)[32].

The anaphylatoxins are recognized on target cells by G-protein coupled receptors (GPCRs)[33-35] coupled primarily to Gi. Unusually, C3aR has a long second extracellular loop that is important for binding C3a[33,34].

C5a is recognized by two distinct GPCRs, C5aR (CD88) and C5L2, but only the former is coupled to Gi proteins, whereas the latter is enigmatic because it is not connected to a signal transduction pathway, and its biological role has not been established[36]. Several investigations have assigned roles for C5L2 inclusive of an anti-inflammatory function[37] and as a decoy-scavenger receptor[38], but it has also been argued from studies using C5L2 knockout mice that this receptor is important for C5a-mediated signal transduction in neutrophils, macrophages and fibroblasts[39]. Thus the true biological roles of C5L2 to date are not established[40].

The receptors for the anaphylatoxins are not restricted to immune cells as C3aR and C5aR are found on a variety of non-immune cells[44]. These include differentiated cells that can be important for wound healing and regeneration: mast cells[45], benocytes[46,47], chondrocytes[48,49], synoviocytes[50], smooth muscle cells[51], endothelial cells[52-54], alveolar epithelial cells[55], mesangial cells[56,57], and regenerating hepatocytes[58]. In addition various stem and progenitor cells express the C3aR and C5aR[2,59-61] including HSC, mesenchymal stem cells (MSC)[61], NSC[2], and dental pulp progenitor cells[62]. Table 1 shows a list of the cell types that express C3aR and C5aR and their function.

Late-acting components of the complement system
While the C3b portion of C3 binds to the surface of pathogens leading to greater internalization by phagocytic cells, C5b, the remaining split product of C5, assembles with complement C6, C7, C8, and polymeric C9 to form the membrane-spanning membrane attack complex (MAC), which lyses bacteria, but which can also damage eukaryotic cells. Finally, a C3b cleavage product, iC3b can bind to the β2-integrins CR3 (CD11b/CD18) and CR4 (CD11c/CD18) on phagocytic cells facilitates the clearance of apoptotic cells.

There are multiple modalities which inhibit complement activation or the formation of the MAC; these include the plasma proteins factor H and C4b-binding protein and the membrane-anchored complement receptor 1 (CR1/CD35), membrane cofactor protein (CD46), decay accelerating factor or CD55, and MAC-inhibitory protein (CD59). As the plethora of inhibiting factors indicates complement activation has to be fine-tuned to provide optimal protection from infection without causing inflammatory tissue injury.

Sites of complement synthesis and activation
While complement proteins in the circulation are primarily produced by the liver except for the late acting complement components in particular C7 which are produced by monocytes/macrophages[63,64], it has become apparent that production and activation of complement proteins can happen in a localized fashion in many different parts of the body[65-68], and one would expect prolonged activation by the anaphylatoxins C3a and C5a under such conditions because of the absence of CPN in the interstitial space.

Role of complement activation in inflammation
The important role of complement in the defense against infection comes, however at a price: excessive complement activation plays a role in numerous disease processes ranging from ischemic reperfusion injury[69-71] to asthma[69], acute lung injury[72,73], glomerulonephritis[74], rheumatoid arthritis[75], Alzheimer's disease[76], multiple sclerosis and demyelination in general[77,79], and age-related and genetic macular degeneration[80-83]. In some instances the specific injurious complement pathway components have not been distinguished[75,76], in others C5a[69-71,77,80] or the MAC are the clear culprits[79].
Table 1 Cell types expressing the C3aR and the C5aR and their function

Cells expressing C3aR	Function of C3aR	Cells expressing C5aR	Function of C5aR
Neutrophils[39]	Respiratory burst[23], bone marrow retention in vivo[19]	Neutrophils[28]	Respiratory burst[23], chemotaxis[28], enzyme release[20]
Eosinophils[44]	Chemotaxis[61], in vivo but not in vivo[27]	Eosinophils[26]	Respiratory burst[27], chemotaxis
Monocytes/macrophages[51]	Chemotaxis[47], cytokine/chemokine production[14]	Monocytes/macrophages	Chemotaxis[61,62], cytokine/chemokine production[94]
Mast cell	Mediator release[101], chemokine production[100], chemotaxis	Mast cell	Mediator release[100], chemokine production[94], chemotaxis[91,101]
Small fraction of lymphocytes[20,20,21]	Complex in vivo functions[52]	Small fraction of lymphocytes[20,20]	Complex in vivo functions
Osteoblasts[20,172,254]	Chemotaxis, accelerated osteogenesis, improved bone healing in vivo[174]	Osteoblasts[90,271]	Chemotaxis[90], accelerated osteogenesis[270], improved bone healing in vivo[274]
Chondrocytes[87]	Osteogenic differentiation (?)	Chondrocytes[72]	Osteogenic differentiation (?)
Tenocytes[86]	Not clear	Tenocytes[86]	Not clear
Smooth muscle cells[51]	Increased mediator release from mast cells[205]	Smooth muscle cells[181,81]	Not clear
Endothelial cells[52]	Transient ERK and rho activation[22], cytokine production[51]	Endothelial cells[52]	Chemotaxis[52], increased permeability[52], cytokine production[52], proliferation[126]
Hepatocytes[96]	Protection from apoptosis[96], liver regeneration in vivo[52,94]	Hepatocytes[94]	Proliferation[94], protection from apoptosis liver regeneration in vivo[94]
Renal epithelial cells[204]	Chemokine production[205], EMT under stress conditions[206]	Renal epithelial cells	EMT under stress conditions[209]
Neurons[94]	Protection from cell death[141,198], indirect neuroprotection[97], NGF expression[198]	Neurons[294]	Protection from cell death[141,145], Cytokine and NGF expression[18,82,26]
Astrocytes[202]	Indirect neuroprotection[97], production of angiogenic factors[91]	Astrocytes[261]	Chemotaxis[91], protection from apoptosis[91], production of angiogenic factors[91]
MSC[20,86]	Chemotaxis[91], protection from apoptosis[91], production of angiogenic factors[91]	MSC[91,92]	Chemotaxis[91], protection from apoptosis[91], production of angiogenic factors[91]
HSPC[52]	Enhanced effects of SDF-1α[192], improved bone marrow engraftment[208,209]	Not expressed	Indirect: decreased mobilization[192]; direct: improved bone marrow engraftment[208,209]
CSPC[152]	Chemotaxis[91], proliferation[159]	CSPC[152]	Chemotaxis[91], proliferation[159], cardiac dysfunction in C5/C5aR-/- mice[184]
NSPC[2]	Increased neurogenesis[5], chemotaxis and differentiation[9]	NSPC[2]	Increased neurogenesis[5]
ESC	Not expressed	ESC	Prevents differentiation[94]

ERK: Extracellular signal-regulated kinase; EMT: Epithelial-to-mesenchymal transformation; NGF: Nerve growth factor; MSC: Mesenchymal stem cells; SDF: Stromal-cell derived factor; HSPC: Hematopoietic stem and progenitor cells; CSPC: Cardiac stem and progenitor cells; NSPC: Neural stem and progenitor cells; ESC: Embryonic stem cells; MAC: Membrane attack complex.

for C3a was only seen in a mouse asthma model[22] and a mouse model of laser-induced macular degeneration, where the presence of the C3aR was associated with increased angiogenesis[90], which is detrimental in the retina, but which could support repair following ischemic insults in other tissues.

It should be noted here that C5a appears to be a major culprit responsible for most of the observed pathologies, and that specific C5/C5a inhibition preserving the early steps of complement activation could be highly advantageous in some circumstances.

ROLE OF COMPLEMENT ACTIVATION IN TISSUE REPAIR

Complement mediated inflammation leading to resolution and clearance

While the inflammatory aspect of complement activation has long been emphasized, it has been largely ignored that complement activation contributes also to resolution of inflammation and tissue repair with few reviews covering this aspect[4,84-86].

In particular, C3a has anti-inflammatory and regenerative effects[21,57,90-91]. In fact the regenerative potential of C3/C3a dates way back phylogenetically, as its expression is prominently up-regulated in mesenchymal cells in the regeneration zone in amphibians undergoing limb regeneration[92]. Furthermore, recent findings indicate that the C3aR on mesenchymal cells plays an important migration-directing role during early vertebrate development in zebrafish[93]. Neural crest cells mutually attract each other via C3a and the C3aR forming clusters of migratory mesenchymal cells. Such collective cell migration is a phenomenon crucial for morphogenesis. It remains to be seen, whether C3a and the C3aR play the same role during mammalian embryonic development.

While C5a also has regenerative effects for instance by its effects on the liver[88,99], neurons[88], osteoblasts[97], and dental pulp progenitors[82], these properties are often overshadowed by the strong inflammatory reaction caused by the activation of leukocytic C5a receptors,
which are involved in most of the pathologic conditions described above.

However, it should also be considered that inflammation itself constitutes a first step in wound healing. C3a and C5a can lead to an increase in vascular permeability[21,98], which is important for wound healing as it aids the flow of chemical and cellular entities necessary for repair and regeneration while facilitating waste removal[99].

Although swelling is traditionally seen as a characteristic of inflammation, edema is also necessary for the resolution of inflammation and restoration of functional tissue because an increase in vascular permeability facilitates entry of repair and restorative cells. Specific to this theme is the function of histamine. C3a and C5a both are chemotactic for mast cells and both are inducers from these cells of histamine release[100-102]. Histamine due to its potent vasodilatation activity can induce swelling, but histamine is also required for skin wound healing as demonstrated using Kit mutant mice that are mast cell deficient. These animals are unable to secrete mast cell derived histamine, and the animals were found to have a defective response to cutaneous wound healing[103].

The increase in vascular permeability facilitates the recruitment of monocytes that can respond to C5a mediated chemotaxis gradients[104], and these cells are crucial for “cleanup” functions. Today it is understood that clearance of debris and apoptotic cells is an important activity necessary for subsequent wound healing, and complement along with pentraxins have been shown to participate in this activity[105,106]. Indeed the clearance function was probably the original function of the complement system dating all the way back to metazoans[107].

The collects C1q and MBL are important for enhanced phagocytosis by monocytes and macrophages of modified lipoprotein complexes, immune complexes, and apoptotic cells[108-111]. Apoptotic cells present exteriorized phosphatidyl serine that can be recognized at an early stage by the lectin domains of members of the collectin family[112-114]. Apoptotic cells, debris or immune complexes tagged by C1q or MBL are identified by monocytes and macrophages bearing CD91 that can be in complex with a collectin receptor, calreticulin[115-117]. The facilitated uptake of these “disposables” has been referred to as macropinocytosis[118].

In addition to recognition of pathogens, debris and dead cells by members of the collectin family, fragments of C3 are important for clearance functions. C3b is susceptible to processing by Factor H and I to iC3b that can be cleaved further into C3d and C3c[119]. C3 fragments are recognized by receptors such as CR1 (CD35), CR2 (CD21), CR3 (CD11b/CD18), CR4 (CD11c/CD18), and CR1G found on Kupffer cells, monocytes and macrophages, which are immune adherence receptors that facilitate removal of opsonized microorganisms, immune complexes and apoptotic cells[120,121].

Complement and angiogenesis

The importance of angiogenesis in wound healing and regeneration has been clearly understood[122]. The process has been categorized in three continuous overlapping phases: inflammatory, proliferative, and remodeling[122].

Some aspects of participation in inflammation inclusive of increase in vascular permeability induced by C3a and C5a have already been discussed, but these mediators have additional functions that indirectly support angiogenesis. C5a but not C3a has been shown to induce an upregulation of gene expression on endothelial cells for adhesion molecules E-selectin, ICAM-1, and VCAM-1[123,124]; the upregulation of these adhesion molecules facilitates extravasation of immune cells inclusive of monocytes that are important for debridement, remodeling and angiogenic mediator secretion[125]. Angiogenesis requires restructuring of the extracellular matrix by controlled proteolysis, and the anaphylatoxins were reported to increase the levels of MMP-1 and MMP-9 in monocytes[126] and to be secretagogues of MMP-9 from granulocytes[127].

Both C3aR and C5aR are found on cultured endothelial cells, but these mediators use different signal transduction pathways and the response to C3a is more transient[127]. Both the anaphylatoxins up-regulates chemokine production in endothelial cells[53], but only C5a is chemotactic for human umbilical vein endothelial cells (HUVECs)[52] and microvascular endothelial cells[54]. Moreover, it was reported that C5a could induce not only migration of cultured microvascular endothelial cells but proliferation and ring formation as well[128].

C3a and C5a were found to increase vascular endothelial cell growth factor (VEGF) in human culture retinal pigment epithelial cells, and when the anaphylatoxins were injected intravitreously into normal mice, an increase in VEGF within the retinal pigment epithelial-choroid layer of the retina was observed[80]. Others found that C5a but not C3a induced VEGF synthesis and secretion from a retinal pigment epithelial cell line[129]. Furthermore, both C3a and C5a were reported to induce production and secretion of VEGF from MSC[91]. Although there is no in vitro evidence that C3a and C5a are directly angiogenic, they have been shown to be angiogenic in in vivo situations[80,130,131], perhaps in response to angiogenic factors that the anaphylatoxins induce in cells in the proximity as just described.

In summary, C3a and C5a can contribute to the inflammatory and proliferative phases of angiogenesis, and thus the anaphylatoxins can be viewed as factors with indirect angiogenic potential; however, it is necessary to mention that one publication is in apparent contradiction to this view, namely investigators studying experimental retinal neovascularization published that C5a is anti-angiogenic[132]; however, these investigators were examining murine models of retinopathy of prematurity and hypoxia induced retinal vascularization, and these observations though correct may not be of a
general nature.

ROLE OF COMPLEMENT ACTIVATION IN SPECIFIC REPAIR PROCESSES

Role of complement activation in liver regeneration

Although tissue regeneration is very limited in mammals, the mammalian liver has retained an amazing capacity for regeneration following viral infection, exposure to toxins or surgical resection. This regeneration can occur at the hepatocyte level in cases of acute liver injury, although liver stem and progenitor cells appear to contribute in more chronic conditions.

The complement activation products C3a and C5a play an essential role in regeneration of the liver parenchyma\[^{87,95}\]. After experimental CCl\textsubscript{4} induced liver toxicity or partial hepatectomy, mice deficient in C3 or C5 exhibited defective regeneration and a higher frequency of mortality\[^{87}\]. Furthermore, C5a was demonstrated to be a growth factor for regenerating hepatocytes, and blockade of the C5aR in experimental liver regeneration experiments resulted in the inability of hepatocytes to proliferate leading to defective liver restoration\[^{50,94}\].

However, the role of complement activation is a double-sided sword in hepatic regeneration and the MAC was found to be the principle mediator of hepatic ischemia reperfusion injury\[^{133}\], which creates a dilemma, since the early components of complement activation, C3a, and C5a are necessary for liver regeneration. However, targeted inhibition of MAC formation with CR2-CD59 significantly improved survival after partial hepatectomy in mice\[^{133}\], while retaining the benefit of complement activation and anaphylatoxin production.

EFFECTS OF COMPLEMENT ACTIVATION ON MSC AND OTHER MESENCHYMA L CELLS

MSC and tissue repair

MSC are rare, often perivascular cells found in all tissues that are able to differentiate into all types of connective tissue lineages including osteoblasts, adipocytes and chondrocytes. Furthermore, these cells produce a variety of angiogenic and trophic factors\[^{134,135}\] and possess anti-inflammatory properties\[^{136-138}\]. Owing to the immune-evasive properties of MSC, allogeneic MSC transplantation is generally accepted. Because of all these properties MSC have started to find clinical application in a variety of diseases ranging from myocardial infarction\[^{139}\] to graft vs host disease\[^{140}\] and have found attention in the context of acute lung injury\[^{141}\].

Limitations of MSC therapies as used today

However, in the rush to the clinic, survival of the transplanted MSC has not been sufficiently considered, and there have been failed clinical trials using MSC - in spite of promising results in animal models\[^{142-146}\], and the full regenerative potential of these cells has not been harnessed due to poor tissue homing and limited cell survival following transplantation. Successful clinical trials will require additional information about the mechanisms by which MSC repair injured tissues, about the optimal route of administration, and about means of increasing their survival at a site of tissue injury. It is surprising, how little there is known about MSC recruitment and survival in vivo for a cell type that is being investigated in numerous clinical trials. Various means of improving MSC homing\[^{147}\], growth factor production\[^{148,149}\] and survival\[^{150}\] are being pursued as ways to improve the therapeutic efficacy of MSC, but usually different means are used to achieve each one of these goals. It is hypothesized here that C3a can improve all of these functions, since we postulate that the C3a-dependent regenerative capacity of MSC seen in amphibians\[^{92}\] has been preserved in mammalian tissue repair.

MSC and complement activation

Although MSC have various anti-inflammatory and immune-evasive properties\[^{151}\] - including the ability to inhibit the proliferation of allogeneic T cells, low levels of expression of MHC class I and II proteins, the ability to convert inflammatory M1-type macrophages to repair-type M2 macrophages, and secretion of the complement-inhibitory factor H\[^{152}\] - they are not fully protected from complement induced injury themselves, and complement activation appears to be involved in the demise of MSC following allogeneic transplantation\[^{151,153}\]. One would wish that such basic complement biology had been considered before using allogeneic MSC in clinical trials. Incubation of MSC with complement active human plasma resulted in the deposition of C3c and iC3b on the cell surface of the MSC and C3a and soluble C5b-9 detection in the supernatant\[^{150}\], indicative of complement activation, which could be prevented by various means of complement inhibition.

In addition, MSC as well as osteoblasts express components of the complement cascade themselves\[^{154}\] including C3, C5\[^{155}\], the C3aR and C5aR\[^{161}\] and the cell surface complement regulators CD46, CD55, and CD59\[^{155}\]. Furthermore, MSC engineered to up-regulate CD46, CD55, and CD59 protected these cells from complement-mediated cell lysis in vitro and in vivo\[^{156}\].

Effect of C3a and C5a on MSCs

MSC show tropism for areas of tissue damage\[^{157,158}\], but it is controversial which chemotactic factors are responsible for this. In leukocytes a large degree of cell recruitment to an area of tissue injury depends on chemokines and C5a, but the role of chemokines in trafficking of MSC is unclear with widely contradictory findings\[^{158-162}\]. Since MSC are chemo-attracted by C3a and C5a in vitro\[^{61}\], we hypothesize that complement activation is an important player in attracting MSC to an area of tissue damage in vivo. C3a and C5a can be locally generated at the surface of MSC which contact serum\[^{90}\].

Schaufstatter IU et al. Complement system, tissue repair
Role of complement activation on bone formation

Consistent with the role of complement activation during limb regeneration in amphibians\cite{172}, described above, it has been suggested some time ago that complement activation may be important in cartilage-bone transformation during fracture healing and that the alternate complement activation pathway may be involved\cite{172}. Like their MSC precursors, osteoblasts are able to express the key complement proteins C3 and C5\cite{173} and express the C3aR and C5aR, which both mediate osteoblast migration\cite{173}. Expression of the C5aR was highly up-regulated during osteogenic differentiation\cite{173}, but later during osteoblast to osteocyte differentiation complement genes were greatly down-regulated\cite{173}.

Although osteogenic differentiation of MSC can occur in the absence of C3a or C5a, it is accelerated in the presence of C3a or C5a in a C3aR and C5aR-specific fashion as shown with receptor-specific inhibitors in Figure 2A: After two weeks of osteogenic differentiation in the presence of fetal calf serum (FCS) that was not heat-inactivated, i.e., complement proteins had not been inactivated, Alizarin red staining of calcium salt deposits indicated moderate staining in FCS, which was significantly augmented, when C3a or C5a had been added to the media. However, by 3 wk the difference between these groups was largely diminished (results not shown). If heat-inactivated FCS (FCS) replaced the FCS, osteogenic differentiation was still further delayed but the addition of C3 or C5 partially substituted for the presence of serum complement components (Figure 2B) indicating that the differentiating cells themselves must have provided the necessary complement components.

Consistent with these in vitro findings, delayed fracture healing was observed in C3 or C5-deficient mice which received a standardized femur osteotomy\cite{174,175}, C5-deficiency also resulted in poor quality bone\cite{174}, indicating that complement activation plays an important role in fracture healing. However, under chronic conditions the osteogenic effect of complement activation is a double-edged sword, because it can also result in vascular calcification during the atherosclerotic process, where MSC-derived C5aR participation has been shown recently\cite{175}.

Role of complement activation in cardiac repair

Following cardiac infarction extensive necrosis of ischemic cardiomyocytes activates complement. The ensuing infiltration of the infarct zone with neutrophils and monocytes serves to clear the injured site from dead cells and debris, and initiates reparative pathways.

However, there is little doubt that complement activation plays an injurious role in the acute phase of myocardial infarction mostly in the context of C5a-mediated reperfusion injury and neutrophil influx\cite{176-178} but clinical trials inhibiting at the level of C5 have been unsuccessful\cite{179} indicating that even in this early phase, complement activation is not all deleterious.
Furthermore, even C5a appears to be protective in several models of cardiac hypertrophy, where C5/C5aR knockout mice fared worse than wild type mice. The beneficial effect of complement activation becomes more apparent in the more chronic situation, where complement activation contributes to tissue repair. C3-deficiency in C3 knockout mice exacerbated myocardial dysfunction four weeks after coronary artery ligation showing more scar tissue, and decreased cardiac stem/progenitor cells (CSPC) in the infarct zone. Both murine and human CSPC express C3aR and C5aR, are chemo-attracted by C3a...
and C5a, and show greater proliferation in the presence of the anaphylatoxins\(^{182}\). It remains to be seen, whether they also produce more angiogenic factors as described above for MSC stimulated with C3a or C5a, which would be a further advantage in the context of cardiac repair. In CSPC C3a or C5a also induced several genes associated with - unwanted - myofibroblast differentiation \textit{in vitro} \(^{182}\), but it remains to be seen, whether this is relevant \textit{in vivo}.

Effect of complement activation on HSC

Like any tissue damage, myeloablation by radiation or chemotherapy activates complement resulting in the generation of the complement activation peptides C3a and C5a \(^{59,60}\). Following bone marrow transplantation fast and efficient homing to and engraftment in the bone marrow is important. In this scenario SDF-1 is the most important chemotactic factor, which chemo-attracts hematopoietic stem and progenitor cells (HSPC) to the bone marrow and retains them there through the CXC chemokine receptor 4 on these cells \(^{183,184}\).

While HSPC express the C3αR, C3α itself does not appear to be a direct chemo-attractant, but it augments the chemotactic responsiveness of HSPC to gradients of SDF-1 as well as to sphingosine-1-phosphat and ceramide-1-phosphate \(^{59,60,185,186}\). \textit{In vivo}, mice deficient in complement C3 exhibited delayed engraftment of HSPC \(^{96}\). This effect was specifically mediated by the C3αR as shown when HSPC from C3αR-/- mice were injected into irradiated wild type mice, which resulted in a significant delay in recovery of leukocytes and platelets and decreased committed progenitors in the bone marrow \(^{187}\). Similarly, engraftment of human CD34\(^+\) cells treated with a C3αR inhibitor showed impeded engraftment in nonobese diabetic/severe combined immune deficiency mice \(^{187}\).

C3α also contributes to the retention of HSPC in the bone-marrow as C3α-/- or C3αR-/- mice showed accelerated mobilization of HSPC into the peripheral blood following administration of granulocyte colony-stimulating factor (G-CSF) \(^{188}\). This retention mechanism is not limited to HSPC, but also applies to their neutrophil progeny, and indeed the C3αR protects from ischemic intestinal injury due to reduced neutrophil mobilization, and increased neutrophil accumulation causes exacerbated injury in C3αR deficient mice \(^{189}\). Indeed, decreased neutrophil mobilization in wild type vs C3αR-/- mice may explain the increased mortality observed in C3αR-/- mice in an endotoxin shock model \(^{190}\), although the mechanism was not reported for this model.

C5-deficient mice also exhibited impaired HSPC engraftment: In this scenario the role of C5 cleavage leading to the formation of soluble MAC resulted in increased adhesion of HSPC to bone marrow stromal cells and augmented secretion of SDF-1 by the bone marrow stroma \(^{191}\). However, HSPC do not express the C5αR themselves, and C5 deficient mice show reduced HSPC mobilization following the administration of G-CSF \(^{192}\), which causes complement activation. Apparently, granulocytes, which are released into the circulation in response to C5α formation, pave the way for HSPC to egress from the bone marrow perhaps due to MMP9 release, which facilitates HSPC mobilization \(^{192}\).

Effect of complement activation on neurons, neural stem and progenitor cells

It has been known for some time that neurons express both C3αR \(^{193}\) and C5αR \(^{194}\), and that these two receptors protect from neural cell death \(^{190-195}\). This protective effect is not limited to differentiated neurons, but already functions in neural stem and progenitor cells, which express both C3αR and C5αR. C3α-deficient mice showed deficits in both basal and ischemia-induced neurogenesis \(^{2}\), and C3αR expression was essential for basal neurogenesis \(^{2}\), while C5αR expression made no difference in this respect \(^{196}\). Consistent with these results, C3α protected from ischemic insult-induced memory impairment in neonatal mice \(^{197}\).

\textit{In vitro}, C3α could induce neuronal differentiation of neural progenitor cells \(^{99}\), and increased the chemotactic response to low concentrations of SDF-1 \(^{99}\) similar to the situation with HSPC. In addition, C3α protected from NMDA neurotoxicity, but only in the presence of astrocytes \(^{198}\), which suggests that C3α-stimulated astrocytes, which express the C3αR \(^{199}\), were the primary target, and that they in turn protected through the production of NGF and other neurotrophic factors \(^{200}\). However, in a mouse model of ischemic reperfusion injury, C3αR inhibition had the opposite effect resulting in increased neuroprogenitor proliferation and suppressed T cell infiltration \(^{201}\). The reasons for such opposing results are not clear; although it is possible that the last model includes a larger inflammatory response that may cancel out any direct effect of C3α on neuronal progenitors and/or astrocytes. Specific pathways by which complement activation protect neural stem and progenitor cells await further elucidation.

Interestingly complement C1q, - in the absence of other components of the complement cascade - increased neuron viability and neurite outgrowth and prevented \(\alpha\)-amyloid-induced neuronal death \textit{in vitro} \(^{202}\) and \textit{in vivo} \(^{203}\). Neuroprotection was promoted by activation of the transcription factor cAMP responsive element binding protein and by increasing LRP1B and GPR6 expression \(^{203}\). Furthermore, in retinal neurons, TGF-β signaling regulates C1q expression, which in turn is necessary for synaptic pruning \(^{204}\). Indeed, complement activation plays a role during a process called synaptic elimination in new-born mice \(^{205}\), where either C1q or C3 deficiency resulted in failure of synaptic elimination \(^{205}\), implying the classical complement cascade in this process. Interestingly, C1q/-/- mice presented with signs of epilepsy due to increased excitatory synaptic connectivity \(^{206}\).
Complement involvement during embryonic development

ESC only express a limited number of proteins of the complement cascade including C6, C7, C8, C9, factor I, H, properdin/factor D, and complement component 1r, s and q receptor, and beta polypeptide\(^{207,208}\). However, a recent report indicates that they may also express C5 and the C5a receptor\(^{168}\) and more importantly that C5a promotes survival and maintenance of the pluripotent state of ESC in the absence of bFGF\(^{168}\), the standard addition to maintain human ESC in the undifferentiated state. While this report awaits further validation, it highly suggests that complement activation presumptively with the support of maternal complement components plays a role in embryonic development from the very beginning.

It is known that the maternal complement system plays a crucial role starting early on during fetal development and that it is essential for the maintenance of fetomaternal tolerance. In mice Cr1l/Crry (complement regulatory protein) deficiency is embryonically lethal, but the embryos are rescued in C3/-/- mothers\(^{209}\). Indeed, ESC are more susceptible to complement mediated cell lysis than differentiated cells, and this pathway may contribute protection from teratocarcinoma formation during pregnancy\(^{210}\). Complement activation has, however, to be finely regulated during pregnancy, since excessive activation of this pathway in later pregnancy is associated with miscarriage\(^{211}\) and preeclampsia\(^{212-215}\).

There is limited knowledge about the role of complement in early vertebrate development with much of the information derived from lower vertebrates. While further investigation using mammalian models is surely required, the existence of these complement pathways during amphibian development indicates that complement activation is a phylogenetically preserved ancient process during embryogenesis. In xenopus complement components are extensively expressed during development starting during the gastrula/early neurula stage\(^{216}\) with organ-specific expression patterns during early organogenesis. C1q,A, C3 and C9 are strongly expressed in the early neural plate, while C1qR and C6 are expressed at the periphery of the neural plate presumably in the neural crest\(^{216,217}\) preceding the development of hematopoiesis. At this point C3 and C3aR show a predominantly mesodermal expression. Interestingly, neural crest cells, a multipotent embryonic cell population undergo epithelial to mesenchymal transition (EMT) in xenopus and zebrafish in a fashion reminiscent of metastasizing cancer cells and it is following this EMT transition that they express both C3 and the C3aR\(^{93}\). These cells form cohesive clusters of migrating cells that are co-attracted via C3a and the C3aR and this process is necessary for collective migration of these cells\(^{93}\) suggesting that C3aR/C3a contribute to the intricate mass cell movements of the developing embryo.

In rats C3 derived from the visceral yolk sac is an embryotrophic factor between days 9.5 to 11.5 post conception\(^{218}\), - however no further details have been elucidated.

Evidence for a role of C3a in fetal tissue regeneration comes from studies on embryonic chick retina regeneration. In this model C3a can induce complete regeneration of the ablated chick retina from stem/progenitor cells via Stat3 mediated up-regulation of IL-6, IL-8, and TNF-α\(^{219}\). However, there was an optimal concentration of C3a that induced regeneration, while very high concentrations caused apoptosis, indicating that fine-tuning of the C3a/C3aR axis is necessary, perhaps not surprising since the cytokines produced by C3a stimulation may serve as growth factors at low concentrations, but become highly inflammatory at higher concentrations.

Beyond the early effect of C5a stimulation on ESCs mentioned above, C5a and the C5aR play a continued important role during mammalian development: They are both expressed during the period of neuralulation in mice and humans\(^{220}\), and while C5aR knockout mice show no congenital defects under normal pregnancy conditions, they present with a wide variety of congenital malfunctions due to neural tube defects ranging from anencephaly to scoliosis and anophthalmia, if the mothers are folate deficient\(^{220}\).

Soluble complement C5b to 9: Possible roles for vitronectin and clusterin in wound healing and stem cell biology

Complement evolved to destroy microorganisms, and one effector outcome of complement activation is the assembly within target cell membranes of a multiprotein complex referred to as the MAC. This consists of one molecule each of C5b, C6, C7, C8 and multiple copies of C9 (6 or more). In its complete form the MAC creates a transmembrane pore of 100 Å that destroys the functional integrity of cellular membranes\(^{221,222}\).

In the absence of proximal phospholipid membranes the terminal components of complement form a soluble complex referred to as Soluble complement C5b to 9 (SC5b-9), which was initially described as having a composition of one molecule each of C5b through C8 and three units of C9 and vitronectin\(^{223}\). Later it was also shown to contain clusterin (apolipoprotein J)\(^{224}\), which is known to be a component of a subclass of high-density lipo-protein (HDL) particles\(^{225}\). Although the term “SC5b-9”, as originally conceived designated a soluble form of the terminal complement complexes, it is probable that these assemblies are heterogeneous with some containing vitronectin and others clusterin presumably associated with HDLs. Whether heterogeneous or not, indications exist that these macromolecular composites may be adaptive for recovery from injury.

Vitronectin, a known matrix and adhesive protein, circulates in human plasma in an inactive state in which its heparin linkage region and integrin binding site, containing the canonical Arg-Gly-Asp sequence, are buried\(^{226,227}\); however, as a consequence of
oligomerization and conformational change these regions on the protein can interact with glycosaminoglycans (GAG) and integrins\(^{228,229}\). GAGs are a fundamental constituent of the extracellular matrix that will necessarily become exposed upon tissue damage. Furthermore, vitronectin binding integrins, \(\alpha_\text{IIb}\beta_3\) and \(\alpha_\text{IIb}\beta_1\), are found on a variety of cells responsive to injury inclusive of platelets, fibroblasts, myoblasts, vascular smooth muscle cells, and endothelial cells\(^{220-223}\).

Thus incorporation of plasma derived vitronectin into damaged ECM can be seen as a beneficial response that facilitates wound healing because this arrangement can help dock and anchor restorative cells. Furthermore, because vitronectin is known to bind growth factors such as insulin like growth factor\(^{223}\), it may be speculated that vitronectin in context of SCSb-9 could deliver the growth mediators to a wound site.

It is also conceivable that complexes of SCSb-9 containing clusterin may also contribute to host recovery from injury. Clusterin is found in HDL containing apolipoprotein A-I but not apolipoprotein A-II\(^{222,234-237}\). HDL particles are highly heterogeneous, and whereas HDLs were originally ascribed to function for reverse cholesterol transport, it is now realized that these operate for a diversity of biological roles inclusive of transport of hormones and bioactive lipids, inflammation regulation, clearance, and immune defense against parasites and microorganisms\(^{238-241}\).

Although investigations about the interface of HDLs and stem/progenitor cell biology are just commencing, a few publications suggest that this will be a fruitful topic for future research. For example HDL can promote MSC proliferation by interaction with Scavenger receptor class B member 1\(^{242}\). Also HDL have been shown to advance endothelial cell precursor migration and proliferation\(^{243}\).

We leave it an open question as to whether HDL-associated SCSb-9 can facilitate wound healing through influence on stem and progenitor cells.

CONCLUSION

Although complement is best known for its role in inflammation, increasing evidence has accumulated that emphasizes that complement activation and in particular the complement split products C3a and C5a play a role in many scenarios of tissue repair. Table 1 shows a compilation of cell types expressing C3aR and C5aR and the function of these receptors on any particular cell. However there are still many gaps in our understanding of the role of complement activation outside the inflammatory axis. A more complete understanding of the effects of complement activation in stem cell biology will contribute to improve the therapeutic potential of these cells.

ACKNOWLEDGMENTS

The human mesenchymal stem cells employed in this work were provided by the Tulane Center for Regenerative Medicine, now the Texas A and M Health Science Center College of Medicine Institute for Regenerative Medicine at Scott and White through a grant from National Center for Research Resources of the National Institute of Health, Grant # P40RR017447.

REFERENCES

1. Carroll MV, Sim RB. Complement in health and disease. Adv Drug Deliv Rev 2011; 63: 965-975 [PMID: 21704094 DOI: 10.1016/j.addr.2011.06.005]
2. Raphpeynai Y, Hietala MA, Wilhelmsson U, Fotheringham A, Davies I, Nilsson AK, Zwirner J, Wetsal RA, Gerard C, Pekny M, Pekna M. Complement: a novel factor in basal and ischaemia-induced neurogenesis. EMBO J 2006; 25: 1364-1374 [PMID: 16498410 DOI: 10.1038/sj.emboj.7600104]
3. Rutkowski MJ, Sughrue ME, Kane AJ, Mills SA, Fang S, Parsa AT. Complement and the central nervous system: emerging roles in development, protection and regeneration. Immunol Cell Biol 2010; 88: 781-786 [PMID: 20404838 DOI: 10.1038/icb.2010.48]
4. Mastellos DC, Deangeli LA, Lambiris JD. Complement-triggered pathways orchestrate regenerative responses throughout phagophagy. Semin Immunol 2013; 25: 29-38 [PMID: 23864626 DOI: 10.1016/j.smim.2013.04.002]
5. Mastellos DI, Lambiris JD. Complement: more than a ‘guard’ against invading pathogens? Trends Immunol 2002; 23: 485-491 [PMID: 12297420 DOI: 10.1016/S1471-4909(02)02287-1]
6. Ricklin D, Hajishengallis G, Yang K, Lambiris JD. Complement: a key system for immune surveillance and homeostasis. Nat Immunol 2010; 11: 785-797 [PMID: 20720586 DOI: 10.1038/ni.1923]
7. Fearon DT, Austen KF. Activation of the alternative complement pathway due to resistance of zymosan-bound amplification convertase to endogenous regulatory mechanisms. Proc Natl Acad Sci USA 1977; 74: 1683-1687 [PMID: 266208 DOI: 10.1073/pnas.74.4.1683]
8. Kouser L, Abdul-Aziz M, Nayak A, Stover CM, Sim RB, Kishore U. Properdin and factor h: opposing players on the alternative complement pathway “see-saw”. Front Immunol 2013; 4: 93 [PMID: 23630525 DOI: 10.3389/fimmu.2013.00093]
9. Spitzer D, Mitchell LM, Atkinson JP, Hourcade DE. Properdin can initiate complement activation by binding specific target surfaces and providing a platform for de novo convertase assembly. J Immunol 2007; 179: 2600-2608 [PMID: 17675523 DOI: 10.4049/jimmunol.179.4.2600]
10. Ferreira VP, Cortes C, Pangburn MK. Native polymorphic forms of properdin selectively bind to targets and promote activation of the alternative pathway of complement. Immunobiology 2010; 215: 932-940 [PMID: 20382442 DOI: 10.1016/j.imbio.2010.02.002]
11. Nilsson B, Nilsson Ekdahl K. The tick-over theory revisited: is C3 a contact-activated protein? Immunobiology 2012; 217: 1106-1110 [PMID: 22964236 DOI: 10.1016/j.imbio.2012.07.008]
12. Fearon DT, Austen KF. Properdin: initiation of alternative complement pathway. Proc Natl Acad Sci USA 1975; 72: 3220-3224 [PMID: 1059108 DOI: 10.1073/pnas.72.8.3220]
13. Bohlsen SS, Fraser DA, Tenner AJ. Complement proteins C1q and MBL are pattern recognition molecules that signal immediate and long-term protective immune functions. Mol Immunol 2007; 44: 33-43 [PMID: 16908067 DOI: 10.1016/j.molimm.2006.06.021]
14. Walls R, Mitchell DA, Schmid R, Schwaebel WJ, Keeble AH. Paths reunited: Initiation of the classical and lectin pathways of complement activation. Immunobiology 2010; 215: 1-11 [PMID: 19783065 DOI: 10.1016/j.imbio.2009.08.006]
15. Reid KB, Colomb MG, Loos M. Complement component C1 and the collectins: parallels between routes of acquired and innate immunity. Immunol Today 1998; 19: 56-59 [PMID: 9509758 DOI: 10.1016/s0167-5699(97)01207-3]
16. Kinoshita T, Takata Y, Kozono H, Takeda J, Hong KS, Inoue K. CS convertase of the alternative complement pathway: covalent linkage
between two C3b molecules within the trimolecular complex enzyme. J Immunol 1988; 141: 3895-3901 [PMID: 3183384]

Takata Y, Kinoshita T, Kozono H, Takeda J, Tanaka E, Hong K, Inoue K. Covalent association of C3b with C4b within C5 convertase of classical complement pathway. J Exp Med 1987; 165: 1494-1507 [PMID: 3495629 DOI: 10.1084/jem.165.6.1494]

Cooper NR, Müller-Eberhard HJ. The reaction mechanism of human C5 in immune hemolysis. J Exp Med 1970; 132: 775-793 [PMID: 5508377 DOI: 10.1084/jem.132.4.775]

Klos A, Tenner AJ, Johowich KO, Ager RR, Reis ES, Köhl J. The role of the anaphylatoxins in health and disease. Mol Immunol 2009; 46: 2753-2766 [PMID: 19477527 DOI: 10.1016/j.molimm.2009.04.027]

Hugi TE. Structure and function of C3a anaphylatoxin. Curr Top Microbiol Immunol 1990; 153: 181-208 [PMID: 2404694 DOI: 10.1007/978-3-642-74977-3_10]

Guo RF, Ward PA. Role of C5a in inflammatory responses. Annu Rev Immunol 2005; 23: 821-852 [PMID: 15771587 DOI: 10.1146/annurev.immunol.23.021704.115835]

Björk J, Hugi TE, Smedegård G. Microvascular effects of anaphylatoxins C3a and C5a. J Immunol 1985; 134: 1115-1119 [PMID: 3871207]

Ehrengruber MU, Geiser T, Deranleau DA. Activation of human neutrophils by C3a and C5a. Comparison of the effects on shape changes, chemotaxis, secretion, and respiratory burst. FBS Lett 1994; 277: 181-184 [PMID: 8013630 DOI: 10014-5793(94)00463-3]

Fernandez IH, Henson PM, Otani A, Hugi TE. Chemotactic response to human C3a and C5a anaphylatoxins. I. Evaluation of C3a and C5a leukotaxis in vitro and under stimulated in vivo conditions. J Immunol 1978; 120: 109-115 [PMID: 3426011]

DiScipio RG, Daffner PJ, Jagals MA, Broide DH, Srimaranapu R. A comparison of C3a and C5a-mediated stable adherence of rolling eosinophils in postcapillary venules and transendothelial migration in vitro and in vivo. J Immunol 1999; 162: 1127-1136 [PMID: 9916743]

Elsner J, Oppermann M, Czech W, Kapp A. C3a activates the respiratory burst in human polymorphonuclear neutrophilic leukocytes via pertussis-toxin-sensitive G-proteins. Blood 1994; 83: 3324-3331 [PMID: 8193368]

Elsner J, Oppermann M, Czech W, Dobos G, Schöpf E, Norgauer J, Kapp A. C3a activates reactive oxygen radicals species production and intracellular calcium transients in human eosinophils. Eur J Immunol 1994; 24: 518-522 [PMID: 8125125 DOI: 10.1002/eji.18032040345]

McPhail LC, Snyderman R. Activation of the respiratory burst enzyme in human polymorphonuclear leukocytes by chemotactants and other soluble stimuli. Evidence that the same oxidase is activated by different transductional mechanisms. J Clin Invest 1983; 72: 192-200 [PMID: 6409928 DOI: 10.1172/JCI110957]

Norgauer J, Dobos G, Kowatzki E, Dahinden C, Burger R, Kupper R, Gierschik P. Complement fragment C3a stimulates Ca2+- influx in neutrophils via a pertussis-toxin-sensitive G-protein. Eur J Biochem 1993; 217: 289-294 [PMID: 8223566 DOI: 10.1111/j.1432-1033.1993.tb02845.x]

Daffner PJ, Pfeifer PH, Ember JA, Hugli TE. Anaphylatoxin inactivator of human plasma: its isolation and characterization as a carboxypeptidase. J Clin Invest 1970; 49: 2427-2436 [PMID: 4098172 DOI: 10.1172/JCI106462]

Bokisch VA, Müller-Eberhard HJ. Anaphylatoxin inactivator of human plasma: its isolation and characterization as a carboxypeptidase. J Clin Invest 1970; 49: 2427-2436 [PMID: 4098172 DOI: 10.1172/JCI106462]

Roglic A, Prossnitz ER, Cavanagh SL, Pan Z, Zou A, Ye RD. cDNA cloning of a novel G protein-coupled receptor with a large extracellular loop structure. Biochim Biophys Acta 1996; 1305: 39-43 [PMID: 8605247 DOI: 10.1016/0167-4781(95)00299-X]

Ames RS, Li Y, Lee J, Nishitani T, Foley J, Ellis C, Zeng Z, Su K, Jurewicz AJ, Hertzberg RP, Bergsma DJ, Kumar C. Molecular cloning and characterization of the human anaphylatoxin C3a receptor. J Biol Chem 1996; 271: 20231-20234 [PMID: 8702752 DOI: 10.1074/jbc.271.34.20231]

Gerard NP, Gerard C. The chemotactic receptor for human C5a anaphylatoxin. Nature 1991; 349: 614-617 [PMID: 1847994]

Okinaga S, Slattery D, Humbles A, Zsengeller Z, Morotea O, Kinrade MB, Brobeck RM, Kruse JE, Choe HR, Gerard NP, Gerard C. C5L2, a nonsignaling C5a binding protein. Biochemistry 2003; 42: 9406-9415 [PMID: 12899627 DOI: 10.1021/bi034488v]

Plummer TH, Hurwitz MY. Human plasma carboxypeptidase N. Isolation and characterization. J Biol Chem 1978; 253: 3907-3912 [PMID: 148463]

Levin Y, Skidgel RA, Erdös EG. Isolation and characterization of the subunits of human plasma carboxypeptidase N (kininase i). Proc Natl Acad Sci USA 1982; 79: 4618-4622 [PMID: 6750606]

Wilken HC, Götte O, Werfel T, Zwirner J. C3a(desArg) does not bind to and signal through the human C3a receptor. J Immunol 1999; 164: 141-145 [PMID: 10232396 DOI: 10.1086/322050]

Wetzel RA. Expression of the complement C5a anaphylatoxin receptor (C5ar) on non-myeloid cells. Immunol Lett 1995; 44: 183-187 [PMID: 7797249]

Erdei A, Kerekés P, Pecht I. Role of C5a and C5a in the activation of mast cells. Exp Clin Immunogenet 1997; 14: 16-18 [PMID: 9187918]

Girke G, Kohl B, Busch C, John T, Godkin O, Ertel W, Schulze-Tanzil G. Tenocyte activation and regulation of complement factors in response to in vitro cell injury. Mol Immunol 2014; 60: 14-22 [PMID: 24732065 DOI: 10.1016/j.molimm.2014.03.008]

Busch C, Girke G, Kohl B, Stoll C, Lemke M, Krasnici S, Ertel W, Silawal S, John T, Schulze-Tanzil G. Complement gene expression is regulated by pro-inflammatory cytokines and the anaphylatoxin C3a in human tenocytes. Mol Immunol 2013; 53: 363-373 [PMID: 23070120 DOI: 10.1016/j.molimm.2012.09.001]

Schulze-Tanzil G, Kohl B, El Sayed K, Arees S, Ertel W, Stödzel K, John T. Anaphylatoxin receptors and complement regulatory proteins in human articular and non-articular chondrocytes: interrelation with cytokines. Cell tissue Res 2012; 350: 465-475 [PMID: 23053049 DOI: 10.1007/s00441-012-1497-7]

Onuma H, Masuko-Hongo K, Yuan G, Sakata M, Nakamura H, Kato T, Aoki H, Nishikawa K. Expression of the anaphylatoxin receptor C5ar (CDB8) by human articular chondrocytes. Rheumatol Int 2002; 22: 52-55 [PMID: 12706765 DOI: 10.1007/s00296-002-0199-6]

Yuan G, Wei J, Zhou J, Hu H, Tang Z, Zhang G. Expression of C5ar (CDB8) of synoviocytes isolated from patients with rheumatoid arthritis and osteoarthritis. Chin Med J (Engl) 2003; 116: 1408-1412 [PMID: 14527377]

Drouin SM, Kildsgaard J, Haviland J, Zabner J, Jia HP, McCray
Schaufelstatter IJ et al. Complement system, tissue repair

PB, Tack BF, Wetsel RA. Expression of the complement anaphylatoxins C3a and C5a receptors on bronchial epithelial and smooth muscle cells in models of sepsis and asthma. J Immunol 2001; 166: 2025-2032 [PMID: 11610252 DOI: 10.4049/jimmunol.166.2.2025]

Schaufelstatter IJ, Trieu K, Sikora L, Sfiramarou P, DiScipio R. Complement c3a and c5a induce different signal transduction cascades in endothelial cells. J Immunol 2002; 169: 2102-2110 [PMID: 12165538 DOI: 10.4049/jimmunol.169.4.2102]

Monsinjon T, Gasphe P, Chan P, Ischenko A, Brady JJ, Fontaine MC. Regulation by complement C3a and C5a anaphylatoxins of cytotoxic production in human umbilical vein endothelial cells. FASEB J 2003; 17: 1003-1014 [PMID: 12773483 DOI: 10.1096/fj.02-0737coma]

Laudes IJ, Chu JC, Huber-Lang M, Guo RF, Riedemann NC, Zhang X, Feng B, Sun H, Suzuki M, Ichim T, Kubo 2014; 64: 58

Høgåsen AK, Scand J Immunol.0803055

Immunol

C3a and C5a are chemotactic factors for human mesenchymal stem cells. Argentina 2014; 20: 1482-1490 [PMID: 15284858 DOI: 10.1038/sj.leu.2403446]

Schaufelstatter IJ, Discipio RG, Zhao M, Khalidoyanidi SK. C3a and C5a are chemotactic factors for human mesenchymal stem cells, which cause prolonged ERK1/2 phosphorylation. J Immunol 2009; 182: 3827-3836 [PMID: 19265162 DOI: 10.4049/jimmunol.0803055]

Chmielewsky F, Jeanneau C, Laurent P, About I. Pulp fibroblasts synthesize functional complement proteins in initiating dentin-pulp regeneration. Am J Pathol 2014; 184: 1991-2000 [PMID: 24814102 DOI: 10.1016/j.ajpath.2014.04.003]

Pettersen HB, Johnson E, Hefland G. Human alveolar macrophages synthesize active complement components C6, C7, and C8 in vitro. Scand J Immunol 1987; 25: 507-570 [PMID: 3602933]

Högskén AK, Wärnert R, Abrahamsen TG, Dierich MP. Human polymorphonuclear leukocytes store large amounts of terminal complement components C7 and C6, which may be released on stimulation. J Immunol 1995; 154: 4734-4740 [PMID: 7722325]

Tu Z, Bu H, Dennis JE, Lin F. Efficient osteoclast differentiation requires local complement activation. Blood 2010; 116: 4456-4463 [PMID: 20709903 DOI: 10.1182/blood-2010-01-263590]

Arend WP, Mehta G, Antonioli AH, Takahashi M, Takahashi K, Stahl GL, Holeser VM, Banda NK. Roles of adipocytes and fibroblasts in activation of the alternative pathway of complement in inflammatory arthritis in mice. J Immunol 2013; 190: 6423-6433 [PMID: 23650618 DOI: 10.4049/jimmunol.1300580]

Di Paolo NC, Baldwin LK, Iorns EE, Papayannopoulou T, Tomlinson S, Shayakhmetov DM. IL-1α and complement cooperate in triggering local neutrophilic inflammation in response to adenovirus and eliminating virus-containing cells. PLoS Pathog 2014; 10: e1004035 [PMID: 24651866 DOI: 10.1371/journal.ppat.1004035]

Rutar M, Valer K, Nato R, Provis JM. Synthesis and propagation of complement C3 by microglia/monocytes in the aging retina. PLoS One 2014; 9: e93343 [PMID: 24705166 DOI: 10.1371/journal.pone.0093343]

de Vries B, Köhl J, Leclercq WK, Wolfs TG, van Bijnen AA, Heeringa P, Buurman WA. Complement factor C5a mediates renal ischemia-reperfusion injury independent from neutrophils. J Immunol 2003; 170: 3883-3889 [PMID: 12646657]

Zheng X, Zhang X, Feng B, Sun H, Suzuki M, Ichim T, Kabo N, Wong A, Min LR, Budohn ME, Garcia B, Jevnikar AM, Min WP. Gene silencing of complement C5a receptor using siRNA for preventing ischemia/reperfusion injury. Am J Pathol 2008; 173: 973-980 [PMID: 18772341 DOI: 10.2353/ajpath.2008.800103]

Durcuet AF, Hassid BG, Mack WJ, Josunav SA, Otten ML, Fusco DJ, Hickman ZL, Kim GH, Komoriart RJ, Mocco J, Connolly ES. C3a receptor modulation of granulocyte infiltration after murine focal cerebral ischemia is reperfusion dependent. J Cereb Blood Flow Metab 2008; 28: 1048-1058 [PMID: 18197178 DOI: 10.1038/jcbfm.9608608]

Humbles AA, Ly B, Nilsson CA, Lilly C, Israel E, Fujiwara Y, Gerard NP, Gerard C. A role for the C3a anaphylatoxin receptor in the effector phase of asthma. Nature 2000; 406: 998-1001 [PMID: 10984054 DOI: 10.1038/sj.jcbfm.9808564]

Hammerschmidt DE, Weaver LJ, Hudson LD, Caddock PR, Jacob HS. Association of complement activation and elevated plasma C3a with adult respiratory distress syndrome. Pathophysiological relevance and possible prognostic value. Lancet 1980; 1: 947-949 [PMID: 6103300 DOI: 10.1016/0140-6736(80)91403-8]

Zilow G, Sturm JA, Rother U, Kirschfink M. Complement activation and the prognostic value of C3a in patients at risk of adult respiratory distress syndrome. Clin Exp Immunol 1990; 79: 151-157 [PMID: 2311295 DOI: 10.1111/j.1365-2249.1990.tb05171.x]

Vallotta EH, Götze O, Spiegelberg HL, Forristal J, West CD, Müller-Eberhard HJ. A serum factor in chronic hypocomplementemic glomerulonephritis distinct from immunoglobulins and activating the alternative pathway of complement. J Immunol 1995; 154: 973-980 [PMID: 7722325]

Wagele J, Siewerdt H, Aspelin P, Billstrom S, Nilsson L, Svedmyhr A, Varnum A, Asplund R, Chua LH, Revsbech A, Würzner R. Complement C3a and C5a receptors on rat Schwann cells: susceptibility to cytolysis reflects Schwann cell phenotype. J Neuroimmunol 2001; 1249-1261 [PMID: 1207623]

Moxley G, Dewey C, Siewerdt H, Aspelin P, Billstrom S, Nilsson L, Svedmyhr A, Varnum A, Asplund R, Chua LH, Revsbech A, Würzner R. Complement C3a and C5a receptors on rat Schwann cells: susceptibility to cytolysis reflects Schwann cell phenotype. J Neuroimmunol 2001; 1249-1261 [PMID: 18772341 DOI: 10.2353/ajpath.2008.800103]

Zilow G, Sturm JA, Rother U, Kirschfink M. Complement activation and the prognostic value of C3a in patients at risk of adult respiratory distress syndrome. Clin Exp Immunol 1990; 79: 151-157 [PMID: 2311295 DOI: 10.1111/j.1365-2249.1990.tb05171.x]

Fonseca MI, Ager RR, Chu SH, Yazon O, Sanderson SD, Laferla FM, Taylor SM, Woodruff TM, Tenner AJ. Treatment with a C5aR antagonist decreases pathology and enhances behavioral performance in murine models of Alzheimer's disease. J Immunol 2009; 183: 1375-1383 [PMID: 19561098 DOI: 10.4049/jimmunol.0901005]

Sawant-Mane S, Este A, Koski CL. Antibody of patients with Guillain-Barré syndrome mediates complement-dependent cytolysis of rat Schwann cells: susceptibility to cytolysis reflects Schwann cell phenotype. J Neuroimmunol 1994; 49: 145-152 [PMID: 8294552]

Meudt RJ, Singhardo SK, Neal JW, Lassmann H, Morgan BP. The membrane attack complex of complement causes severe demyelination associated with acute axonal injury. J Immunol 2002; 168: 458-465 [PMID: 11751993 DOI: 10.4049/jimmunol.168.1.458]

Nokazi M, Raisler BJ, Sakurai E, Sarva J, Bannun SR, Lambris JD, Chen Y, Zhang K, Ambati BK, Baffi JZ, Ambati J. Drusen complement components C3a and C5a promote choroidal neovascularization. Proc Natl Acad Sci U S A 2006; 103: 2328-2333
Schoengraf P, Lambris JD, Neckagel S, Kreja L, Liedert A, Brenner RE, Huber-Lang M, Ignatius A. Does complement play a role in bone development and regeneration? *Immunobiology* 2013; 218: 1-9 [PMID: 22464814 DOI: 10.1016/j.imbio.2012.01.020]

Leslie JD. Mayor. Complement in animal development: unexpected roles of a highly conserved pathway. *Semin Immunol* 2013; 25: 39-46 [PMID: 23665279 DOI: 10.1016/j.smim.2013.0.4005]

Rutkowski MJ, Sughrue ME, Kane AJ, Ahn BJ, Fang S, Parsa 2003; 170: 2824-2832 [PMID: 19785034 DOI: 10.1002/stem.225]

Moll G, Jitschin R, von Bahr L, Rasmusson-Duprez I, Sundberg B, Madhavan M, Call MK, Santiago W, Tsonis PA, Fernandez-Godino R, Kaur I, Speicher KD, Harnly J, Ignatius A. The complement-derived anaphylatoxin C5a regulates in vitro differentiation and migration of neural progenitor cells. *Stem Cells* 2009; 27: 2824-2832 [PMID: 19785034 DOI: 10.1002/stem.225]

DiSipio RG, Khaldoyanidi SK, Moya-Castro R, Schraufstatter IU. Complement C3α signaling mediates production of angiogenic chemotaxins for human mast cells and act through distinct receptors via a pertussis toxin-sensitive signal transduction pathway. *J Immunol* 1996; 157: 1693-1698 [PMID: 8579575]

Johnson AR, Hugli TE, Müller-Eberhard HJ. Release of histamine from rat mast cells by the complement peptides C3a and C5a. *Immunology* 1975; 28: 1067-1080 [PMID: 48505]

Weller K, Fotizk K, Paas R, Syska W, Maurer P. Mast cells are required for normal healing of skin wounds in mice. *FASEB J* 2006; 20: 2366-2368 [PMID: 16966487 DOI: 10.1096/fj.06-5837fe]

Marder SR, Chenoweth DE, Goldstein IM, Perez HD. Chemotactic responses of human peripheral blood monocytes to the complement-derived peptides C5a and C5α of the Arg. *J Immunol* 1985; 134: 3325-3331 [PMID: 3884790]

Nauta AJ, Daha MR, van Kooten C, Roos A. Recognition and clearance of apoptotic cells: a role for complement and pentraxins. *Trends Immunol* 2003; 24: 148-154 [PMID: 12651121 DOI: 10.1016/S1471-4906(03)00134-0]

Franchi N, Ballarin L. Preliminary characterization of complement in a colonial tunicate: C3, Bf and inhibition of C3 opsonic activity by compstatin. *Immunobiology* 2007; 212: 363-370 [PMID: 17544821 DOI: 10.1016/j.imbio.2006.11.005]

Franchi N, Ballarin L. Preliminary characterization of complement in a colonial tunicate: C3, Bf and inhibition of C3 opsonic activity by compstatin. *Immunobiology* 2007; 212: 363-370 [PMID: 17544821 DOI: 10.1016/j.imbio.2006.11.005]

Fraser DA, Tenner AJ. Innate immune proteins C1q and mannann-binding lectin elicit enhancement clearance of atherogenic lipoproteins by human monocytes and macrophages. *J Immunol* 2010; 185: 3932-3939 [PMID: 20833388 DOI: 10.4049/jimmunol.1002080]

Stienstra R, Dijk W, van Beek L, Jansen H, Heemskerk M, Houtkooper RH, Denis S, van Harnen V, Willems van Dijk K, Tak CJ, Kersten S. Mannose-binding lectin enhance clearance of atherogenic lipoproteins after spinal cord injury in mice. *J Immunol* 2013; 184: 426-434 [PMID: 24557008 DOI: 10.1159/000358834]

Paidassi H, Tenner-Delorme P, Garlatti V, Darnault C, Ghebrehiwet B, Gaboriaud C, Arlaud GJ, Brachtel P. Relative contribution of C1q and apoptotic cell-surface calreticulin to macrophage phagocytosis. *J Innate Immun* 2014; 6: 426-434 [PMID: 24557008 DOI: 10.1159/000358834]
Introna M, Dander E, Rovelli A, Balduzzi A, Moretta L, Pistoia V. Immunoregulatory function of C1q and its modulators CD91 and CD93. *Crit Rev Immunol* 2005; 25: 305-330 [PMID: 16167883 DOI: 10.1615/CritRevImmunol.v25.i4.40]

Eggleton P, Tenner AJ, Reid KB. C1q receptors. *Clin Exp Immunol* 2000; 120: 406-412 [PMID: 10844516 DOI: 10.1046/j.1365-2249.2000.01218.x]

Ogden CA, deCathelineau A, Hoffmann PR, Bratton D, Ghebrehiwet B, Fadok VA, Henson PM. C1q and mannose binding lectin engagement of cell surface carciulin and CD91 initiates macrophagocytosis and uptake of apoptotic cells. *J Exp Med* 2001; 194: 781-795 [PMID: 11560994 DOI: 10.1084/jem.194.6.781]

Sim E, Wood AB, Hsiang LM, Sim RB. Pattern of degradation of human complement fragment, C3b. *FEBS Lett* 1981; 132: 55-60 [PMID: 6457754]

Helmy KY, Katschke JK, Gorgani NN, Kijavian NM, Elliott JM, Diehl L, Scales SJ, Ghildari N, van Lookeren Campagne M. CR1g: a macrophage complement receptor required for phagocytosis of phagocytosing pathogens. *Cell* 2006; 124: 915-927 [PMID: 16530400 DOI: 10.1016/j.cell.2005.12.039]

Takizawa F, Tsuji S, Nagasawa S. Enhancement of macrophage phagocytosis upon iC3b deposition on apoptotic cells. *FEBS Lett* 1996; 397: 269-272 [PMID: 8955361 DOI: 10.1016/s0014-5793(96)01197-0]

Li J, Zhang YP, Kirns R. Angiogenesis in wound repair: angiogenic growth factors and the extracellular matrix. *Microsc Res Tech* 2003; 60: 107-114 [PMID: 12502676 DOI: 10.1002/jemt.10249]

Albrecht EA, Chinnaiyan AM, Varambally S, Kumar-Sinha C, Barrette RT, Sarma JV, Ward PA. C5a-induced gene expression in human umbilical vein endothelial cells. *J Pathol* 2004; 164: 849-859 [PMID: 14982839 DOI: 10.1002/jen.10173-2]

Saeidie S, Keshk R, Desai RP, Ameen SB, Shams T, Alami M, Fazli A, Newaz M, Hamid S, Madani M. Complement component C5a activates ICAM-1 expression on human chorioidi endothelial cells. *Invest Ophthalmol Vis Sci* 2010; 51: 5336-5342 [PMID: 20848595 DOI: 10.1167/iovs.10-3322]

Jaipersad AS, Lip GY, Silverman S, Shantsila E. The role of monocytosis in angiogenesis and atherosclerosis. *J Am Coll Cardiol* 2013; 62: 89-97 [PMID: 23558567 DOI: 10.1016/j.jacc.2013.07.009]

Seppi LW, Kastl SP, Hutter R, Katsaros KM, Kaun C, Bauriedel P, Scheidler IM, Buhler GP, Wagner R, Reischauer J. Monocyte chemoattractant protein 3 (MCP-3) in human macrophages in vitro. *EASEB J* 2011; 25: 35-44 [PMID: 20831982 DOI: 10.1096/jem.10-156083]

DiSclippo RG, Schrauffer IU, Sikora L, Zuraw BL, Srimaran P. C5a mediates secretion and activation of matrix metalloproteinase 9 from human eosinophils and neutrophils. *Int Immunopharmacol* 2006; 6: 1109-1118 [PMID: 16714214 DOI: 10.1016/j.intimp.2006.02.006]

Kurinitha R, Yamaoka K, Sawamura N, Shimajiri S, Oshita K, Yuraku S, Tokunaga M, Iwata S, Saito K, Chiba K, Tanaka Y. C5a promotes migration, proliferation, and vessel formation in endothelial cells. *Inflamm Res* 2010; 59: 659-666 [PMID: 20217457 DOI: 10.1007/s00011-010-01784]

Cortwright DN, Meade R, Waters SM, Chenard BL, Krause JE. C5a, but not C3a, increases VEGF secretion in ARPE-19 human retinal pigment epithelial cells. *Curr Eye Res* 2009; 34: 57-61 [PMID: 19172471 DOI: 10.1080/02713680802546658]
cells protect from lethal irradiation. Plasone 2011; 6: e14486 [PMID: 21245929 DOI: 10.1371/journal.pone.0014486]

145 Chen L, Tredget EE, Wu PY, Wu V. Paracrine factors of mesenchymal stem cells recruit macrophages and endothelial lineage cells and enhance wound healing. Plasone 2008; 3: e1886 [PMID: 18382669 DOI: 10.1371/journal.pone.001886]

146 Ohtaki H, Ylostalo JH, Foraker JE, Robinson AP, Reger RL, Shioda S, Prokop DJ. Stem/progenitor cells from bone marrow decrease neuronal death in global ischemia by modulation of inflammatory/inflammatory response. Proc Nat Acad Sci USA 2008; 105: 14638-14643 [PMID: 18794523 DOI: 10.1073/pnas.0803670105]

147 Sackstein R, Merzaban JS, Cain DW, Dagia NM, Spencer JA, Lin CP. Wohlgemuth R. Ex vivo glycogen engineering of CD44 programs human multipotent mesenchymal stromal cell trafficking to bone. Nat Med 2008; 14: 181-187 [PMID: 18193058 DOI: 10.1038/ nm1703]

148 Bartunek J, Croissant JD, Wijns W, Golloff S, de Lavareille A, Vanderheyden M, Kaluzny Y, Mazouz N, Willemsen P, Penicka M, Mathieu M, Homy C, De Bruyne B, McIntee K, Lee JW, Heyndrickx GR. Pretreatment of adult bone marrow mesenchymal stem cells with cardiomyogenic growth factors and repair of the chronically infarcted myocardium. Am J Physiol Heart Circ Physiol 2007; 292: H1095-H1104 [PMID: 17056665 DOI: 10.1152/ apjheart.01009.2005]

149 Herrmann JL, Wang Y, Abbaranell AM, Weil BR, Tan J, Meldrum DR. Preconditioning mesenchymal stem cells with transforming growth factor-alpha improves mesenchymal stem-cell mediated cardioprotection. Shock 2010; 33: 24-30 [PMID: 19996173 DOI: 10.1097/SHK.0b013e3181b7d137]

150 Pons J, Huang Y, Arakawa-Hoyt J, Washko D, Takagawa J, Ye J, Grossman W, Su H. VEGF improves survival of mesenchymal stem cells in infarcted hearts. Biochem Biophys Res Commun 2008; 376: 419-422 [PMID: 18788991 DOI: 10.1016/j.bbrc.2008.09.003]

151 Schu S, Nosov M, O’Flynn L, Shaw G, Treacy O, Barry F, Murphy M, O’Brien T, Jarrett E, Ritter T. Immunogenicity of allogeneic mesenchymal stem cells. Mol Immunol 2008; 45: 54-61 [PMID: 18578077 DOI: 10.1016/j.molimm.2007.10.003]

152 Tu Z, Li Q, Bu H, Lin F. Mesenchymal stem cells inhibit complement activation by secreting factor H. Stem Cells Dev 2010; 19: 1803-1809 [PMID: 20163251 DOI: 10.1089/scd.2009.0418]

153 Li Y, Lin F. Mesenchymal stem cells are injured by complement after their contact with serum. Blood 2012; 120: 3436-3443 [PMID: 22966167 DOI: 10.1182/blood-2012-03-420612]

154 Lee BS, Yi TG, Lee HH, Kim SN, Park S, Jeon MS, Song SU. Mesenchymal stem cells infected with Mycoplasma arginini express C5a and C3a induce nuclear factor kappaB activation in human peripheral blood monocytes. Biochim Biophys Acta 1998; 1443: 90-98 [PMID: 9838061]

155 Qin Y, Marquez-Curtis LA, Janowska-Wieczorek A. Mesenchymal stem cells derived from umbilical cord blood migrate in response to complement C1q. Cytotherapy 2012; 14: 285-295 [PMID: 22264191 DOI: 10.1016/j.cytod.2011.06.015]

156 Cai K, Wang Y, Wang Z, Wang Y, Zhao X, Bao X. C5a promotes the proliferation of human nasopharyngeal carcinoma cells through C5aR-mediated STAT3 acetylation. Oncol Rep 2014; 32: 2260-2266 [PMID: 25174320 DOI: 10.3892/or.2014.3420]

157 Hawksworth OA, Coulthard LG, Taylor SM, Wolvengaj EJ, Woodruff TM. Brief report: complement C5a promotes human embryonic stem cell pluriptency in the absence of FGF2. Stem Cells 2014; 32: 3278-3284 [PMID: 25132103 DOI: 10.1002/ stem.1801]

158 Leegooe J, Gasque P, Jeanne JF, Fontaine M. Expression of the complement alternative pathway by human myoblasts in vitro: biosynthesis of C3, factor B, factor H and factor I. Eur J Immunol 1995; 25: 3460-3466 [PMID: 8566038 DOI: 10.1002/ ej.1830251238]

159 Leegooe J, Gasque P, Jeanne JF, Scottt M, Fontaine M. Complement classical pathway expression by human skeletal myoblasts in vitro. Mol Immunol 1997; 34: 735-741 [PMID: 9430201 DOI: 10.1016/S0161-5890(97)00093-X]

160 Gasque P, Morgan BP, Leegooe J, Chan P, Fontaine M. Human skeletal myoblasts spontaneously activate allogeneic complement but are resistant to killing. J Immunol 1996; 156: 3402-3411 [PMID: 8617966]

161 Andradas JA, Nimmi ME, Becerra J, Eisenstein R, Davis M, Sorgente N. Complement proteins are present in developing endochondral bone and may mediate cartilage cell death and vascularization. Exp Cell Res 1996; 227: 208-213 [PMID: 8831558 DOI: 10.1006/excr.1996.0269]

162 Billiard J, Moran RA, Whitley MZ, Chatterjee-Kishore M, Gillis K, Brown EL, Koom BS, Bodine PV. Transcriptional profiling of human osteoblast differentiation. J Cell Biochem 2003; 89: 389-400 [PMID: 12708802 DOI: 10.1002/jcb.10154]

163 Ehrnhaller C, Huber-Lang M, Nilsson P, Bindl R, Redeker S, Recknagel S, Rapp A, Molines T, Ameling M, Gebhard F, Ignatius A. Complement C3 and C5 deficiency affects fracture healing. Plasone 2013; 8: e81341 [PMID: 24260573 DOI: 10.1371/journal. pone.0081341]
calcification via the complement C5a receptor. Stem Cells Dev 2014; 23: 352-362 [PMID: 24192237 DOI: 10.1089/scl.2013.0318]

176 Distelmaier K, Adbrecht C, Jakowitsch J, Winkler S, Dunkler D, Gerner C, Wagner O, Lang JM, Kubiecik M. Local complement activation triggered neutrophil recruitment site of thrombus formation in acute myocardial infarction. Thromb Haemost 2009; 102: 564-572 [PMID: 19178478 DOI: 10.1160/TH09-02-0103]

177 Ivey CL, Williams FM, Collins PD, Jose PJ, Williams TJ. Neutrophil chemotactants generated in two phases during reperfusion of ischemic myocardium in the rabbit. Evidence for a role for C5a and interleukin-8. J Clin Invest 1995; 95: 2720-2728 [PMID: 7769111 DOI: 10.1172/JCI117974]

178 De Hoog VC, Timmers L, Van Duijvenvoorde A, De Jager SC, Timmers L, Van Duijvenvoorde A, De Jager SC, Tenner AJ. Complement protein C1q-mediated protection against amyloid-β neurotoxicity. Early in Alzheimer disease mouse models, are essential for the survival of hippocampal neurons. J Biol Chem 2001; 276: 2071-2078 [PMID: 11460496 DOI: 10.1074/jbc.M404124200]

179 Syriga M, Mavroidis M. Complement system activation in cardiac and skeletal muscle pathology. friend or foe? Adv Exp Med Biol 2009; 735: 207-218 [PMID: 23402029]

180 Mullick A, Tremblay J, Leon Z, Gros P. A novel role for the fifth component of complement (C5) in cardiac function. PLoS One 2011; 6: e22919 [PMID: 21829669]

181 Wysoczynski M, Solanki M, Borkowska S, van Hoeve P, Brittain KR, Prabhu SD, Ratajczak MZ, Rokosh G. Complement component 3 is necessary to preserve myocardium and myocardial function in chronic myocardial infarction. Stem Cells 2014; 32: 2502-2515 [PMID: 24806427 DOI: 10.1002/stem.1743]

182 Lara-Astiaso D, Izarra A, Estrada JC, Albo C, Moscoso I, Samper E, Moncoy J, Solano A, Bernard A, Diez-Juan A. Complement anaphylatoxins C3a and C5a induce a failing regenerative program in cardiac resident cells. Evidence of a role for cardiac resident stem cells other than cardiomyocyte renewal. Springerplus 2012; 1: 63 [PMID: 23487597 DOI: 10.1186/2193-1801-1-63]

183 Wright DE, Bowman EP, Wagers AJ, Butcher EC, Weissman IL. Hematopoietic stem cells are uniquely selective in their migratory response to chemokines. J Exp Med 2002; 195: 1145-1154 [PMID: 11994419 DOI: 10.1084/jem.20011284]

184 Dar A, Kollet O, Lapidot T. Mutual, reciprocal SDF-1/CXCR4 interactions between hematopoietic and bone marrow stromal cells regulate stem cell migration and development in NOD/SCID chimeric mice. Exp Hematol 2006; 34: 967-975 [PMID: 16863903 DOI: 10.1016/j.exphem.2006.04.002]

185 Reca R, Wysoczynski M, Van J, Lambris JD, Ratajczak MZ. The role of third complement component (C3) in homing of hematopoietic stem/progenitor cells into bone marrow. Adv Exp Med Biol 2006; 586: 35-51 [PMID: 16993063 DOI: 10.1007/0-387-34134-x_3]

186 Ratajczak MZ, Borkowska S, Ratajczak J. An emerging link in stem cell mobilization by activation of the complement cascade and the chemotactic gradient of sphingosine-1-phosphate. Prostaglandins Other Lipid Mediat 2013; 104-105: 122-129 [PMID: 22981511 DOI: 10.1016/j.prostaglandins.2012.07.003]

187 Wysoczynski M, Reca R, Lee H, Wu W, Ratajczak J, Ratajczak MZ. Defective engraftment of C5AR-/- hematopoietic stem progenitor cells shows a novel role of the C3a-C3AR axis in bone marrow homing. Leukemia 2009; 23: 1455-1461 [PMID: 19357704 DOI: 10.1038/lea.2009.73]

188 Ratajczak J, Reca R, Kucia M, Majka M, Allendorf DJ, Baran JT, Janowska-Wieczorek A, Wetsel RA, Ross GD, Ratajczak MZ. Mobilization studies in mice deficient either in C3 or C3a receptor (C3ar) reveal a novel role for complement in retention of hematopoietic stem/progenitor cells in bone marrow. Blood 2004; 103: 2071-2078 [PMID: 14604969 DOI: 10.1182/blood-2003-0 6-2099]

189 Wu MC, Brennan FH, Lynch JP, Mantovani S, Phipps S, Wetsel RA, Ruitenberg MJ, Taylor SM, Woodruff TM. The receptor for complement component C3a mediates protection from intestinal ischemia-reperfusion injuries by inhibiting neutrophil mobilization.
Chem 2013; 288: 654-665 [PMID: 23150673 DOI: 10.1074/jbc.M111.290168]

204 Biasal AR, Stevens B. TGF-β signaling regulates neuronal C1q expression and developmental synaptic refinement. Nat Neurosci 2013; 16: 1773-1782 [PMID: 24626655 DOI: 10.1038/nn.3560]

205 Stevens B, Allen NJ, Vázquez LE, Howell GR, Christopherson KS, Nouri N, Miecha KD, Melahow AK, Huberman AD, Stafford B, Sher A, Litke AM, Lambris JD, Smith SJ, John SW, Barres BA. The classical complement cascade mediates CNS synapse elimination. Cell 2007; 131: 1164-1178 [PMID: 18083105 DOI: 10.1016/j.cell.2007.10.036]

206 Chu Y, Jin X, Parada J, Pesie A, Stevens B, Barres B, Prince DA. Enhanced synaptic connectivity and epilepsy in C1q knockout mice. Proc Natl Acad Sci USA 2010; 107: 7975-7980 [PMID: 20537258 DOI: 10.1073/pnas.0913449107]

207 Spenger JM, Chen X, Draper JS, Antosiewicz JE, Chon CH, Jones SB, Brooks JD, Andrews PW, Brown PO, Thomson JA. Gene expression patterns in human embryonic stem cells and human pluripotent germ cell tumors. Proc Natl Acad Sci USA 2003; 100: 13350-13355 [PMID: 14595015 DOI: 10.1073/pnas.225735100]

208 Abeyta MJ, Clark AT, Rodriguez RT, Bodnar MS, Per A, Firpo MT. Unique gene expression signatures of independently-derived human embryonic stem cell lines. Hum Mol Genet 2004; 13: 601-608 [PMID: 14794308 DOI: 10.1093/hmg/ddh068]

209 Xu C, Mao D, Holers VM, Palanca B, Cheng AM, Molina H. A critical role for murine complement regulator cry in fetomaternal tolerance. Science 2000; 287: 498-501 [PMID: 10642554 DOI: 10.1126/science.287.5452.498]

210 Koch CA, Jordan CE, Platt JL. Complement-dependent control of teratoma formation by embryonic stem cells. J Immunol 2006; 177: 4803-4809 [PMID: 16982921 DOI: 10.4049/jimmunol.177.7.4803]

211 Girardi G, Yariii D, Thurman JM, Holers VM, Salmon JE. Complement activation induces dysregulation of angiogenic factors and causes fetal rejection and growth restriction. J Exp Med 2006; 203: 2165-2175 [PMID: 16923853 DOI: 10.1084/jem.20060122]

212 Haeger M, Bengtson A, Karlsson K, Heidenman M. Complement activation and anaphylatoxin (C3a and C5a) formation in human plasma high density lipoproteins. J Biol Chem 1990; 265: 13240-13247 [PMID: 2376594]

213 Seiffert D, Smith JW. The cell adhesion domain in plasma vitronectin is cryptic. J Biol Chem 1997; 272: 13705-13710 [PMID: 9153222 DOI: 10.1074/jbc.272.21.13705]

214 Høgåsen K, Molnes TE, Barhoee M. Heparin-binding properties of vitronectin are linked to complex formation as illustrated by in vitro polymerization and binding to the terminal complement complex. J Biol Chem 1992; 267: 23076-23082 [PMID: 1385412]

215 Plow EF. Vitronectin: back into the spotlight. J Thromb Haemost 2005; 3: 873-874 [PMID: 15869580]

216 Schwartz I, Seger D, Shaltiel S. Vitronectin. Int J Biochem Cell Biol 1999; 31: 539-544 [PMID: 10399314]

217 Preissner KT, Reuing U. Vitronec tin in vascular context: facets of a multitalented matricellular protein. Semin Thromb Hemost 2011; 37: 408-424 [PMID: 21805447 DOI: 10.1055/s-0031-1276590]

218 Felding-Habermann B, Cheresh DA. Vitronectin and its receptors. Curr Opin Cell Biol 1993; 5: 864-868 [PMID: 7694604]

219 Rusoalive E, RGD and other recognition sequences for integrins. Annu Rev Cell Dev Biol 1996; 12: 697-715 [PMID: 8970741]

220 Upton Z, Webb H, Hale K, Yandell CA, McMurphy JP, Francis GL, Ballard FJ. Identification of vitronectin as a novel insulin-like growth factor-II binding protein. Endocrinology 1999; 140: 2928-2931 [PMID: 1034287]

221 Kirsbaum L, Sharpe JA, Murphy B, d’Apeic AJ, Classon B, Hudson P, Walker D. Molecular cloning and expression analysis of the novel, human complement-associated protein, SP-40,40: a link between the complement and reproductive systems. EMBO J 1989; 8: 711-718 [PMID: 2721499]

222 O’Bryan MK, Baker HW, Saunders JR, Kirsbaurn L, Walker D, Hudson P, Liu DY, Glew MD, d’Apeic AJ, Murphy BF. Human seminal clusterin (SP-40,40). Isolation and characterization. J Clin Invest 1990; 85: 1477-1486 [PMID: 2185274 DOI: 10.1172/JCI114949]

223 Choi-Miura NH, Sakamoto T, Tobe T, Nakano Y, Tomita M. The role of vitronectin in human sperm capacitation. J Androl 2002; 23: 408-424 [PMID: 11362532 DOI: 10.1089/jend.2002.23.408]

224 Denny MA, Costello LG, James A, Liso S, Simmons DG, Callaway KL, Wlodarczyk B, Finnell RH, Woodruff TM, Taylor SM. C5a receptor signaling prevents folate deficiency-induced neural tube defects in mice. J Immunol 2013; 190: 3493-3499 [PMID: 23420882 DOI: 10.4049/jimmunol.1203072]

225 Tschopp J. Ultrastructure of the membrane attack complex of complement. Heterogeneity of the complex caused by different degree of C9 polymerization. J Biol Chem 1984; 259: 7857-7863 [PMID: 6736027]

226 Podack ER, Esser AF, Biesecker G, Müller-Eberhard HJ. Membrane attack complex of complement: a structural analysis of its assembly. J Exp Med 1980; 151: 301-313 [PMID: 7356725]

227 Kolb WP, Muller-Eberhard HJ. The membrane attack mechanism of complement. Isolation and subunit composition of the C5b-9 complex. J Exp Med 1975; 141: 724-735 [PMID: 47885]

228 Murphy BF, Kirsbaurn L, Walker D, d’Apeic AJ. SP-40,40, a newly identified normal human serum protein found in the SC5b-9 complex of complement and in the immune deposits in glomerulonephritis. J Clin Invest 1988; 81: 1858-1864 [PMID: 2454950]

229 de Silva HV, Stuart WD, Dubre CR, Wetterau JR, Ray MJ, Ferguson DG, Albers HW, Smith WR, Harmony JA. A 70-kDa apolipoprotein designated ApoJ is a marker for subclasses of human plasma high density lipoproteins. J Biol Chem 1990; 265: 601-608 [PMID: 10701232 DOI: 10.1074/jbc.265.1.601]

230 Esquivel E, Tzekou A, Tsonis PA, Lambris JD, Del Rio-Tsonis K. Complement anaphylatoxin C3a is a potent inducer of embryonic chick retina regeneration. Nat Commun 2013; 4: 2312 [PMID: 23924427 DOI: 10.1038/ncomms3312]

231 Kirszbaum L, Agger AW, Guéguinou N, Guerard LG, Atkinson JP. Mutations in complement regulatory proteins in early postimplantation rat embryos. J Thromb Haemost 2011; 9: 1332-1337 [PMID: 21672461 DOI: 10.1111/j.1538-7836.2010.03418.x]

232 Huin-Schohn C, Ouzren-Zarhloul N, Ghislin S, Fripiat JP. Molecular cloning and expression analysis of seminal clusterin (SP-40,40). Isolation and characterization. J Androl 2002; 23: 408-424 [PMID: 11362532 DOI: 10.1089/jend.2002.23.408]

233 Vickers KC, Remaley AT. HDL and cholesterol: life after the
Schraufstatter IU et al. Complement system, tissue repair

divorce? J Lipid Res 2014; 55: 4-12 [PMID: 23151282 DOI: 10.1194/jlr.R035964]

Kaji H. High-density lipoproteins and the immune system. J Lipids 2013; 2013: 684903 [PMID: 23431458 DOI: 10.1155/2013/684903]

Zhu X, Parks JS. New roles of HDL in inflammation and hematopoiesis. Annu Rev Nutr 2012; 32: 161-182 [PMID: 22402555 DOI: 10.1146/annurev-nutr-071811-150709]

Heinecke JW. The protein cargo of HDL: implications for vascular wall biology and therapeutics. J Clin Lipidol 2010; 4: 371-375 [PMID: 20975842 DOI: 10.1016/j.jacl.2010.08.005]

Xu J, Qian J, Xie X, Lin L, Ma J, Huang Z, Fu M, Zou Y, Ge J. High density lipoprotein cholesterol promotes the proliferation of bone-derived mesenchymal stem cells via binding scavenger receptor-B type I and activation of PI3K/Akt, MAPK/ERK1/2 pathways. Mol Cell Biochem 2012; 371: 55-64 [PMID: 22886428 DOI: 10.1007/s11010-012-1422-8]

Zhang Q, Yin H, Liu P, Zhang H, She M. Essential role of HDL on endothelial progenitor cell proliferation with PI3K/Akt/cyclin D1 as the signal pathway. Exp Biol Med (Maywood) 2010; 235: 1082-1092 [PMID: 20724534 DOI: 10.1258/ebm.2010.010060]

Klos A, Bank S, Gietz C, Bautsch W, Köhl J, Burg M, Kretzschmar D1 as the signal pathway. J Immunol 1992; 135: 2063-2068 [PMID: 4020139]

Gerard NP, Hodges MK, Drazen JM, Weller PF, Gerard C. Characterization of a receptor for C5a anaphylatoxin on human eosinophils. J Biol Chem 1989; 264: 1760-1766 [PMID: 2912983]

Zwirner J, Werfel T, Wilken HC, Theile E, Götz R. Expression of cytokines by human astrocytomas following stimulation by C3a and C5a anaphylatoxins: specific increase in interleukin-8 and FMLP by human astrocytes and microglia. J Immunol 1995; 155: 92-100 [PMID: 22565852 DOI: 10.1007/s11010-012-9545-2]

Boor P, Konieczny A, Villa L, Schult AL, Bücher E, Rong S, Kunter U, van Roeyen CR, Polakowski T, Hawlisch H, Hillebrandt S, Lammett F, Eiterin F, Floege J, Ostendorf T. Complement C5 mediates experimental tubulointerstitial fibrosis. J Am Soc Nephrol 2007; 18: 1508-1515 [PMID: 17389734 DOI: 10.1681/asn.2006121343]

Gasque P, Singhrao SK, Neal JW, Wang P, Sayah S, Fontaine M, Morgan BP. The receptor for complement anaphylatoxin C3a is expressed by myeloid cells and nonmyeloid cells in inflamed human central nervous system: analysis in multiple sclerosis and bacterial meningitis. J Immunol 1998; 160: 3543-3554 [PMID: 9531137]

Lacy M, Jones J, Whittimore SR, Haviland DL, Wetzel RA, Barnum SR. Expression of the receptors for the C5a anaphylatoxin, interleukin-8 and FMLP by human astrocytes and microglia. J Neuroimmunol 1995; 51: 71-78 [PMID: 7560015]

Sayah S, Ishchenko AM, Zhakhov A, Bonnard AS, Fontaine M. Expression of cytokines by human astrocytomas following stimulation by C3a and C5a anaphylatoxins: specific increase in interleukin-6 mRNA expression. J Neurochem 1999; 72: 2426-2436 [PMID: 10349852 DOI: 10.1046/j.1471-4159.1999.0722426.x]

Ratajczak MZ, Reca R, Wysoczynski M, Yan J, Ratajczak J. Modulation of the SDF-1-CXCR4 axis by the third complement component (C3)–implications for trafficking of CXCR4+ stem cells. Exp Hematol 2006; 34: 986-995 [PMID: 16863905]
