Comparison of clustering approaches with application to dual colour protein data

Sabrina Siebert1, Katja Ickstadt1, Martin Schäfer2, Yvonne Radon3, Peter J. Verveer3

1Faculty of Statistics, TU Dortmund University, Dortmund, Germany
2Chair of Mathematical Optimization, Mathematical Institute, Heinrich Heine University, Düsseldorf, Germany
3Max-Planck-Institute Dortmund, Dortmund, Germany

E-mail: siebert@statistik.tu-dortmund.de

Abstract: Cells communicate with their environment via proteins, located at the plasma membrane separating the interior of a cell from its surroundings. The spatial distribution of these proteins in the plasma membrane under different physiological conditions is of importance, since this may influence their signal transmission properties. In this study, the authors compare different methods such as hierarchical clustering, extensible Markov models and the gammics method for analysing such a spatial distribution. The methods are examined in a simulation study to determine their optimal use. Afterwards, they analyse experimental imaging data and extend these methods to simulate dual colour data.

1 Introduction

Cluster analysis is a widely used approach for many types of data and applications. This is also represented by the high number of available literature. For example, the PubMed Health [1] search finds 111,848 articles with the keyword cluster analysis.

One application field is genomic data. Here, the aim of the cluster analysis is finding genes with similar functions or genes also which cause the same type of disease. Often gene expression data is employed to find these groups, as described, e.g. in Eisen et al. [2] and Sunaga et al.[3]. Here, we analyse clusters (and their behaviour) of similar proteins located in the cell membrane, which is also of high interest, see, e.g. Arnau et al.[4] or Manley et al. [5].

In mammalian cells, the plasma membrane separates the interior from the cell's environment. The cell communicates with the environment via proteins that are embedded in, or attached to, the plasma membrane. The spatial distribution of these proteins is thought to play an important role in signal transmission via the plasma membrane. For instance, the small GTPase Ras forms clusters of about seven molecules with a diameter of around 20 nm, which are thought to be important for the robust transduction of signals into the cell. However, not all proteins form clusters, only a part and the remaining proteins form the background. Therefore, it is of considerable interest to be able to analyse the spatial distribution of such signalling molecules under different physiological conditions, for instance in the presence or absence of hormones that might stimulate a cellular response such as migration or cell division. In recent years, fluorescence microscopy has developed to the point that individual molecules can be imaged in the plasma membrane of cells growing on a glass surface. There are different super-resolution microscopy techniques such as universal Point Accumulation for Imaging in Nanoscale Topography (uPAINT) (Greg and Hossy [6]) or binding activated localization microscopy (BaLM) (Burnette et al. [7]). Furthermore, there is mCherry which can also be used for two-colour fluorescence microscopy, see, e.g. Subach et al. [8]. Here, we will use data which is obtained by photo-activated localisation light microscopy (PALM) (Betzig et al. [9]) and Stochastic Optical Reconstruction Microscopy (STORM) (Huang et al. [10]). When using PALM, proteins can be localised by using rapidSTORM (a preprocessing algorithm) with an accuracy of around 20 nm at the bottom plasma membrane of the cell. The result is a list of protein localisations that can be analysed employing clustering or spatial statistical approaches, with the aim of finding and quantifying clusters.

To detect these protein clusters, one can choose different methods of the extensive toolbox of cluster methods, where some are standard methods for such data and some are common cluster methods. One standard method is Ripley’s K-function including all transformations such as the L-function (Ripley [11]) which estimates the cluster radius. Another method based on the K-function is the Getis–Franklin method (see, e.g. Rubin-Delanchy et al. [12]). Other standard methods are, for example, pair- or cross-correlation (Sengupta et al. [13]), the SR-Tesseler method which uses Voronoi diagrams (Levet et al. [14]) or the density-based spatial clustering of applications with noise (DBSCAN) (Ester et al. [15]). These methods are more for cluster identification. However though standard, non-spatial cluster methods could be used to find these protein clusters, e.g. hierarchical clustering (see, e.g. Hartigan [16], Jain et al. [17] or Kaufman and Rousseeuw [18]). In this paper, we will focus on the proportion of proteins in clusters and will show that standard methods as well as cluster methods will estimate that proportion well, but there can be differences in computation time or simplicity of application (due to parameter choices).

Therefore, we will compare the following five methods for the analysis of PALM data of Ras proteins: the standard hierarchical clustering, a graphical method named average-shifted histogram (ASH, see Scott and Sain [19]), the model-based extensible Markov models (EMMs, see Dunham et al. [20]), the standard clustering method DBSCAN (Ester et al. [15]) as well as the gammics methods (Schäfer et al., [21]). We chose these five methods to get a survey of different methods, thus we use a standard cluster method (hierarchical clustering), a graphical method (ASH), a Bayesian method (EMM), a standard method for spatial clustering of microscopic data (DBSCAN) and a new approach especially developed for this application field (the gammics method). Finally, we will propose in this paper a new approach on how to combine the different (known) methods in an efficient way and develop a scheme for this procedure. Owing to this scheme, one first choose regions of interest (ROI) for finding suitable parameter estimates, then applying faster methods for the whole cell or even larger regions. This leads to a considerable reduction of computation time. In addition, we not only adapt this new approach to experimental data but also to (simulated) dual colour data.
Table 1: Simulation parameters

Parameter	Values	
overall proportion of points in clusters	\(p \)	0.4, 0.8
mean cluster size	\(\mu \)	4, 8
mean cluster radius	\(r \)	15, 30
overall point density	\(\lambda \)	125
proportion of points in metaclusters	\(\overline{p} \)	0
detection error	\(\sigma \)	20

This paper is structured as follows: in Section 2, we introduce the simulation study as well as the experimental data, concluding with a short description of the different methods. In Section 3, we will compare the different methods on simulated single colour data and develop a new approach on how to combine the different methods to analyse such protein data. In Section 4, we will employ the new approach to experimental single colour data as well as in a dual colour simulation study. Finally, Section 5 contains concluding remarks including a short outlook.

2 Material and methods

In this section, an introduction to the simulation study as well as a description of the experimental data are given. Furthermore, we shortly describe the methods.

2.1 Simulation study

We conduct a simulation study similar to the one described in Schäfer et al. [21], which is based on a generalisation of a Matérn cluster process. We adapted this approach to simulate dual colour data.

In these simulations not all points (corresponding to proteins) are clustered, but a given fraction of the points are the so-called monomers or singletons. In a first step, parent points are created using a Poisson process. Normally, in a Matérn cluster process, each parent point would be replaced by a cluster of radius \(r \), but here only a fraction of parent points is replaced. Thus, we create an image of points, where some of which are in a cluster and some not.

For a single colour simulation, we create only one data set with the parameters given in Table 1. An example for such a simulation is shown in Fig. 2. For a simulation of dual colour data, we create two of these data sets, one for each protein. The first one contains the green proteins and the second one the red ones, where the two different colours are a result of the different tagging. These two data sets are merged into a single one considering three different scenarios:

1. The proteins tagged with the two colours are independent: the two data sets are simulated separately.
2. The cluster centres of the two proteins are correlated: the cluster centres of the first data set will be shifted and used as cluster centres for the second data set. The monomers are simulated separately.
3. The clustered proteins are correlated: the clustered points are translated and the monomers are again simulated separately.

2.2 Experimental data

The cell communicates via the cell membrane and signalling proteins with its environment. To understand the communication of a cell, it is important to analyse the signalling proteins, e.g. Ras one important signalling protein, which can be located (amongst others) in the cell membrane. For measuring these proteins in the cell membrane, the experimental set-up is shown in Fig. 1. Here, images of a cell expressing Ras tagged with mEos2 (Ras-mEos2) in the basal plasma membrane (see Figs. 1a–c) were obtained by total internal reflection fluorescence (TIRF) microscopy. The TIRF microscopy ensures that only the proteins located in the cell membrane are measured. The data of the Ras-mEos proteins are obtained by photo-activated localisation microscopy (PALM, Betzig et al. [9]), an imaging method that can be summarised as follows: the fluorescent tag mEos2 (see Fig. 1b) is green in its native state, but can be converted to a red form by ultraviolet (UV) light (see Fig. 1h). Using an UV laser, a sparse subset of the mEos2 fluorophores can be converted to the red form, which can then be imaged using TIRF microscopy as individual spots. The spots result from reflected light bundles from the fluorophore. Thereby, the light reflects in all directions, but only the light which is caught by the objective is seen on the image (see Fig. 1g). These spots then can be localised with a precision of around 20 nm by fitting a two-dimensional (2D) Gaussian profile to each spot in the image. Prolonged imaging of the red form of mEos2 leads to bleaching of the red fluorophores, and eventually these spots are not visible anymore. At this point, a new set of fluorophores is photoconverted and localised by the same procedure. This is done repeatedly until all proteins are imaged, resulting in a list of protein localisations.

2.3 Statistical methods

As mentioned in Section 1, we will compare and combine five different methods, where some of them are spatial and/or model based. Table 2 only gives a short overview of the methods we use to analyse the simulated as well as the experimental data. A detailed description is given in the supplement in Appendix 1.

3 Results of a first simulation study

In this section, we will employ the methods first for one setting of the single colour simulation study. More precisely, in a first step we will have a look at the method performance for one simulated single colour image and the estimation of the proportion of clustered points for the single colour simulation study. In a second step, we will investigate the performance of methods and their parameters, which worked well for the first simulated setting, on a pool of different settings. Here, we can see if the methods also work well for other proportions of clustered proteins as well as other setting parameters. Finally, we will discuss the results and develop a new approach for analysing spatial protein data. Most computations run on R [22] with the packages cluster, ash, rEMM, spatstat and fpc [23–28], only the gamics method operates on MATLAB (7.10.0 [29]).

3.1 Method performance

In a first step, we will consider the performance of the methods we introduced in Section 2.3 for a single colour data set. The data set was simulated with an overall proportion of points in clusters of 40%, a mean cluster size of 4 points, a mean cluster radius of 15 nm, an overall point density of 125 points/μm² and a detection error...
error of 20 nm. The resulting distribution is shown in Fig. 2. The
data contain 195 clusters (mean proportion of clustered points of
c. 39.2%) and 1976 points altogether. First, we employ classical
hierarchical clustering with average linkage. To find the optimal
number of clusters, the silhouette width is used. The resulting
dendrogram and curve of the silhouette width is shown in Fig. 3. It
can be seen that the optimal number of clusters is 451. If we cut the
dendrogram such that the resulting number of clusters is 451, we
only get 34 singletons and an estimated proportion of proteins in
clusters of 98.3%, much higher than the true value of 40%. If we
assume that all clusters with at most five points are a singleton, we
achieve 331 singletons and an estimated proportion of 83.2%,
which is still too high. To solve this problem, we tried to get prior
information about the number of clusters by the use of ASHs. The
resulting plot of ASH is shown in Fig. 4. With this plot in mind, we
 guessed that there are round about 150 clusters in this data set. If
we assume that the average number of proteins in a cluster is 5
(received as prior information), there are 1976 – (150×5) = 1226
singletons. With these prior information the estimated proportion is
ca. 37.9%. The resulting clustering is shown in Fig. 1 in the
supplement Appendix 2. In summary, it is difficult for hierarchical
clustering to distinguish between singletons and clustered proteins,
though the proportion is fitted well. Note that hierarchical
clustering is mainly used for classification of the points into the
clusters here, and that the estimation of the proportion is computed
without using hierarchical clustering. We just use the prior
knowledge of an average number of 5 points in a cluster and 150
(300) clusters for 40% (80%) points in clusters, estimated by ASH.

For the EMM, a threshold has to be chosen which refers to the
dissimilarity and determines if a point is associated to a cluster or
not. Thus, here it represents some kind of size of the clusters and
we decided to use two different thresholds: 25 and 55 (small and
medium cluster sizes). The estimated proportion of singletons for
the EMM is the number of singletons divided by the total number
of points, thus the proportion of clustered proteins is one minus the
proportion of singletons. For a threshold of 25, the estimated
proportions of clustered proteins are ca. 35.2% and for a threshold
of 55, the estimated proportion is ca. 70.9%. Hence, a threshold of
25 works better than 55 and is roughly the diameter. In Fig. 2, in
the supplement Appendix 2 the resulting clustering is shown. It can
be seen that it is also difficult for EMM to differentiate between
singletons and clustered proteins by EMM. However, the clustering
with a threshold of 25 fits the data better than the clustering with a
threshold of 55. In summary, EMM depends on prior information
of the value of the threshold and when knowing the radius or the
diameter we can choose a good value for the threshold.

To obtain prior information about the radius, one can employ
Ripley’s K-function. For our data the K-function overestimated the
radius, such as we did not pursue this approach.

Table 2 Short description of the used methods and specification of the corresponding literature; detailed description is given in the supplement Appendix 1

Method	Literature	Short description		
hierarchical	Hartigan [16]	• groups data into homogenous groups		
clustering		• puts similar objects into one cluster, where similarity is defined by a distance measure		
		• e.g. silhouette width may be used to get optimal number of clusters		
ASH	Scott and Sain [19]	• data divided into k bins $B_k = [t_k, t_{k+1})$, where c_k indicates number of observations in B_k and n is number of total observations		
		• if all bins are equally spaced with width ω_k, density histogram is given by $f(x) = \frac{c_k}{m}$		
		• how to choose t_k and ω_k? \rightarrow assume t_k as a nuisance parameter		
		$\rightarrow m$ SHs, which are all shifted by distance $\delta = \frac{\delta_k}{m}$		
		$\Rightarrow B_k' = [t_k + \delta_k, t_k + (k + 1)\delta]$ with corresponding c_k’s		
		• then ASH is given by $\tilde{f}_{ASH} = \frac{1}{m} \sum_{i=1}^{m-1} \left(1 - \frac{	B_i	}{m}\right) f_{B_i'}$ $\forall x \in B_k'$
EMM	Dunham et al. [20]	• EMM is a Markov chain which can vary over time \rightarrow can be interpreted as a directed graph		
		• for every point of time, the EMM consists of Markov chain with nodes N_i, and algorithm that alters the Markov chain \rightarrow algorithm consists of the following three steps: EMMCluster (matching incoming data to existing cluster, EMMIncrement (updating Markov chain, e.g. adding nodes) and EMMDecrement (removing nodes if necessary)		
DBSCAN	Ester et al. [15]	• algorithm for finding clusters in a data set $\{x_0, ..., x_n\}$ using a key parameter based on distances between two points $\rightarrow e$ and MinPts		
		• to that end: Ester et al. introduced the theory of density-reachability and density connection w.r.t. two parameters $\rightarrow e$ and MinPts		
gammics	Schäfer et al. [21]	• finding clusters in point patterns via a model-based algorithm \rightarrow the gammics method models squared distances between points and their second-nearest neighbour based on a mixture of two gamma distributions, not point pattern itself		
		• hierarchical Bayesian model and MCMC methods are employed to compute mean size, mean radius and proportion of clustered proteins		

Fig. 2 Simulated image with overall proportion of points in clusters of 40%, a mean cluster size of 4 points, a mean cluster radius of 15 nm, an overall point density of 125 points/μm² and a detection error of 20 nm (the black points are clustered ones)
Furthermore, we analyse the simulated data using the DBSCAN method. Analogue to the EMM we have to choose again parameters, here ϵ and MinPts. Here, we use the default for MinPts which is 5, whereas choose four different values for the parameter ϵ which determines whether two points are in one neighbourhood (see also Section 8.4 of Appendix 1): 25, 50, 75 and 100. Owing to the default value for MinPts, we decided to use also higher values for ϵ than the threshold of the EMM. The resulting clustering is shown in Fig. 3 in the supplement Appendix 2. As one can see, it fits best for $\epsilon = 50$ which is similar to the estimated proportion of clustered proteins, see Table 3.

Finally, we apply the gammics method for analysing the simulated data. Here, three characteristics: the proportion, the mean radius and the mean size of clusters can be estimated simultaneously. For this example, we get an estimated proportion of points in clusters of ca. 41.5%, a mean radius of 9.9 and a mean size of 3.7. Considering the given simulation adjustment values for the proportion of 40%, for the radius of 15 (where the simulation resulted in a mean cluster radius of 9.9) and a cluster size of 4, the gammics method works well.

3.2 Proportion of clustered points for different simulation parameter settings

Now, all methods with a good performance and good working parameters are adopted for different simulation settings. Therefore, the DBSCAN method with $\epsilon = 25$ is excluded.

For each simulation setting, we simulate four images, where only three parameters (left column) are variable, p, μ, and r. In Table 4, the average estimated proportions of points in clusters for the different methods and parameter settings of all simulations are shown.

The remaining columns contain the following estimators:

- p_{prior}: The estimated proportion of clustered points, where we assume 150 clusters for $p = 0.4$ and 300 for $p = 0.8$.
- p_{db}: The estimated proportion of clustered points for hierarchical clustering, where we determine the number of clusters by using ASH.
- p_{EMM}: The estimated proportion of points in clusters by using the EMM with a threshold of 25.
- p_{EMM}: The estimated proportion of points in clusters by using the EMM with a threshold of 55.
- p_{ASD}: Estimated proportion of clustered points using DBSCAN with $\epsilon = 50$.
- p_{ASD}: The estimated proportion of clustered points using DBSCAN with $\epsilon = 75$.
- p_{ASD}: The estimated proportion of clustered points using DBSCAN with $\epsilon = 100$.
- p_{gammics}: The estimated proportion of clustered points using the gammics method.

Again, note that DBSCAN with $\epsilon = 25$ did not work well in the example before.

The estimated proportions p_{prior} are near the true values if we use 150 and 300 clusters as prior knowledge, respectively. For a low proportion of points in clusters (here 40%) the ‘hierarchical clustering’ also works well, if prior information is provided by using ASH (i.e. the estimated number of clusters). However, it can be difficult to estimate the number of clusters for a higher proportion of points in clusters (Table 1 in supplement Appendix 3 contains all estimates by ASH). In Fig. 4, in the supplement Appendix 2 the resulting plot for a setting with proportion of 40% on the left and with 80% on the right is shown. One can see that the number of clusters on the right seems to be at most as high as on the left. In case of the EMM method, the estimated values are close to the true proportions for a good choice of the threshold, e.g. for settings with a proportion of clustered points of 40%, the estimated values fit well for a threshold of 25, whereas the estimated proportions fit well in settings with 80% points in clusters for a threshold of 55.

The DBSCAN method works well, but depends on the choice of the parameter ϵ. For example, DBSCAN with $\epsilon = 50$ works well for all settings with $p = 0.4$, with the exception of setting $p = 0.4$, $\mu = 4$, $r = 30$. For a simulated proportion of 80% points in clusters, $\epsilon = 75$ works well (just as well as $\epsilon = 50$ for the settings with $p = 0.8$ and $\mu = 8$).

Furthermore, note that there is a change in the estimated proportion for the DBSCAN method with $\epsilon = 50$ whether the mean size is 4 or 8.

The gammics method estimates the proportion of points in clusters very well. Also, the evaluated values of the mean radius and the mean size are similar to the realised values in the simulations.

3.3 Discussion and new approach

We analyse simulated data and as a result one can say that ASH, the EMM and DBSCAN work well for estimating the proportion of points in clusters if provided prior information (e.g. total number of clusters) is available, or if the (tuning) parameters of the procedure are chosen properly, whereas the gammics method works well even when these assumptions are not fulfilled.

Table 3

Value of ϵ	Estimated proportion of points in clusters, %
25	2.6
50	30.6
75	60.9
100	83.8

Fig. 3 Left: dendrogram of the hierarchical clustering with average linkage and right: curve of the average silhouette width values.

Fig. 4 Upper left: simulated cell image (same as in Fig. 2 with clustered points (black dots) and background points (grey dots); upper right: contour plot of the ASH for the simulated data; bottom left: contour plot of the ASH for part 1, the marked rectangle (top left) in the upper right contour plot; bottom right: contour plot of the ASH for part 2, the marked rectangle (down right) in the upper right contour plot.
in absence of prior knowledge. Table 5 gives an overview of the methods in terms of computing time, stability and number of stages.

Generally, ASH is a (useful) method to obtain prior information. For example, ASH is a good method to get an overview over the data, e.g. where the clusters or ROIs are. Furthermore, one can estimate the proportion of points in clusters employing ASH and obtain prior information about the average number of proteins in one cluster.

The EMM, DBSCAN and the gammics method work well for estimating the proportion of points in clusters. For the EMM, one has to define a threshold which is approximately the mean diameter of the clusters. DBSCAN also needs a parameter which has to be determined by the user. Only the gammics method needs no special prior information, though this still could be helpful. A disadvantage of the gammics method is its high demands in terms of computation time. Please note that we classified the computation time in three classes, because the computation time depends on the complexity of the data. We here just wanted to give a first impression of the computation time in our settings.

Hence, our advice is to first analyse the data by using ASH to find small ROIs which can then be analysed with the gammics method. If one has prior information how to choose ROIs, one can skip the ASH step and start directly with the gammics method. Note that the size of the first ROIs depend on the complexity of the data [in the simulation settings, we used an overall point density (points/μm²) of 125]. Afterwards, the whole cell can be analysed using again ASH (if not used yet), EMM or DBSCAN, where for the DBSCAN, different choices for ϵ can be carried out because of its low computing time. This is also shown in Fig. 5.

4 Results of the new approach

In this section, we will employ the new approach to real single colour data as well as a dual colour simulation study. Again, most computations run on R [22] with the packages cluster, ash, rEMM, spatstat and fpc, only the gammics method operates on MATLAB (7.10.0 [29]).

4.1 Application of the new approach to real single colour data

In this section, we analyse the experimental data as shown in Fig. 6 on the left, which is also used in Schäfer et al. [21]. We first analyse four arbitrary chosen ROIs using the gammics method. The results are shown in Table 6, where the mean estimator is marked by a bar and the median estimator is marked by a tilde. The estimated values for the radius and the average size can be used as

Simulation parameter	p^prior	p^ash	p^EMM	p^EMM	p^DBS	p^DBS	p^gammics	
$p = 0.4, \mu = 4, r = 15$	0.37	0.35	0.37	0.74	0.34	0.64	0.86	0.41
$p = 0.4, \mu = 4, r = 30$	0.37	0.32	0.37	0.73	0.32	0.64	0.85	0.47
$p = 0.4, \mu = 8, r = 15$	0.37	0.23	0.43	0.73	0.47	0.62	0.81	0.40
$p = 0.4, \mu = 8, r = 30$	0.37	0.21	0.42	0.72	0.47	0.63	0.82	0.42
$p = 0.8, \mu = 4, r = 15$	0.73	0.27	0.53	0.85	0.53	0.79	0.89	0.79
$p = 0.8, \mu = 4, r = 30$	0.72	0.31	0.48	0.84	0.50	0.77	0.91	0.80
$p = 0.8, \mu = 8, r = 15$	0.71	0.29	0.67	0.86	0.83	0.88	0.92	0.81
$p = 0.8, \mu = 8, r = 30$	0.72	0.34	0.62	0.84	0.78	0.87	0.92	0.80
input for other methods, e.g. the EMM. To get a first overview of the data and regions with high density of points, we analyse the data employing ASH. The resulting density plot is shown on the right-hand side in Fig. 6. One can see that the four chosen ROIs do have different point densities and reflect (mainly all) different parts of the cell. For EMM, we showed in Section 3 that the threshold parameter is nearly equal to the diameter. As can be seen in Table 6, the average mean of the radius varies between 17 and 22 nm, thus we use 30, 35 and 40 for this parameter since it should be roughly the diameter. Owing to memory constraints we split the spatial distribution of the cell in four parts, as shown in Fig. 5 in the supplement Appendix 2. The estimated values of the proportion for the four parts are shown in Table 7. As one can see, the estimated values are all similar, but much higher than the estimated values of the different ROIs employing the gammics method. The DBSCAN method works well for a good choice of parameter. The ones below are the two different depending ‘red’ settings, such that images (a) and (c) create setting 2 and (a) and (d) represent setting 3, as described in Section 2.1.

The results for the gammics method are shown in 2 in the supplement. Note that the estimators work as well as for the single simulation in chapter 3. In summary, the results are similar to those in Section 3 for the three settings. Hence, to get prior information the gammics method is a valid method. However, note that for setting 2, the mean radius of the ‘red’ proteins is underestimated for all simulations (mostly between 1 and 5 nm instead of 15 and 30 nm). In case of setting 1, the estimated values are similar to those for the ‘green’ proteins, the estimated values in setting 3 tend to overestimate the mean radius in cases of $r = 15$ nm and underestimate in cases of $r = 30$ nm. The estimated values for the proportion of points in clusters using the other methods are shown in Tables 3–5 in the supplement Appendix 3 for all three settings. In summary, the EMM and DBSCAN work well for a good choice of parameter. To get the locations of proteins, fluorescence microscopy can be used, e.g. TRIF microscopy. Here, we analysed simulated data as well as a real data set.

We compared five different methods for analysing such data sets: hierarchical clustering, ASH, EMM, DBSCAN and the gammics method. Hierarchical clustering did not work well, but we showed that ASH is a good method to get a first overview of the data and also for estimating the proportion of points in clusters if prior information is available. For estimating the proportion of proteins in clusters, we employed a standard method (DBSCAN) as well as new methods (EMM and the gammics method). All three methods worked well. EMM and DBSCAN require the specification of an additional parameter, but run very fast. In contrast, the gammics method needs higher running time, but additionally estimates the mean radius and the mean size.

Thus our advice is to apply the new ‘feedback analysis’. After getting an overview of the data and perhaps prior information, employing ASH and/or the gammics method analyse the whole cell to estimate the proportion of clustered points, e.g. adopting EMM and DBSCAN, respectively. The scheme of this proposed new approach is shown in Fig. 5.

Table 6 Average (labelled by \cdot) and median (labelled by $\cdot\bar{\cdot}$) estimators for real data analysed by the gammics method

ROI	$\hat{p}(\cdot)$	$\hat{p}(\cdot)$	$\hat{r}(\cdot)$
1	0.7528 (0.7573)	4.6297 (4.8022)	21.9653 (23.3396)
2	0.6831 (0.6621)	4.4658 (4.3965)	19.6638 (19.2250)
3	0.6583 (0.6580)	5.1815 (5.4357)	17.4426 (18.7699)
4	0.5944 (0.5923)	4.3179 (4.4116)	16.4657 (18.0482)
overall	0.6072 (0.6674)	4.6487 (4.7615)	18.8844 (19.6457)

Table 7 Estimated proportions of points in clusters using EMM

Part of the cell	$p_{\bar{30}}$	$p_{\bar{55}}$	$p_{\bar{40}}$
a	0.8001	0.8369	0.8636
b	0.8131	0.8481	0.8742
c	0.8232	0.8561	0.8808
d	0.8056	0.8417	0.8694

5 Conclusion and outlook

Proteins are an important component of the cell. They can regulate different mechanisms and also the transfer of other molecules through cells. For these reasons, it is important to understand the behaviour of proteins. Here, we concentrate on the clustering behaviour of proteins and the corresponding cluster characteristics.

To get the locations of proteins, fluorescence microscopy can be used, e.g. TRIF microscopy. Here, we analysed simulated data as well as a real data set.
For future research, the identification of points in clusters is an interesting starting point and should be the next step. We showed that the estimation of the proportion of points in clusters employing EMM (and also hierarchical clustering) works well, but the identification of the points in clusters needs to be improved. If we can identify the points in clusters, we can compare the clusters and corresponding points for dual colour data. This would open up the possibility to have a closer look at the points in neighbouring clusters with different colours and draw conclusions of the (spatial) correlation of the two proteins.

Furthermore, we did not have a look at the robustness of our new approach or the applicability to other application fields. This should be done in a next step to analyse the performance of the flowchart for other types of data and settings.

6 Acknowledgments
The financial support of the Deutsche Forschungsgemeinschaft (grant no. IC 53-1 to Katja Ickstadt, grant no. VE 579/3-1 to Peter Verveer and grant no. SCHW 1508/3-1 to Holger Schwender) and the German Ministry of Education and Research (BMBF; FORSYS initiative, grant no. 0315257 to Peter Verveer) is gratefully acknowledged.

7 References
[1] PubMed Help [Internet]. Bethesda (MD): ‘National Center for Biotechnology Information’, 2005. PubMed Help. Available at: https://www.ncbi.nlm.nih.gov/books/NBK3827/, accessed May 2017
[2] Eisen, M.B., Spellman, P.T., Brown, P.O., et al.: ‘Cluster analysis and display of genome-wide expression patterns’. PNAS, 1998, 95, (25), pp. 14863–14868
[3] Subach, F.V., Patterson, G.H., Manley, S., et al.: ‘Bleaching/blinking assisted localization microscopy for super-resolution imaging using standard fluorescent molecules’. Proc. Natl. Acad. Sci. USA, 2010, 107, (5), pp. 11740–11745
[4] Argiento, R., Cremaschi, A., Guiglini, A.: ‘A ‘density-based’ algorithm for cluster analysis using species sampling Gaussian mixture models’. J. Comput. Stat., 2014, 23, (4), pp. 1126–1142

8 Appendix 1: Methods
In this section, a detailed description of the clustering methods we used is given.

8.1 Hierarchical clustering
To find clusters using hierarchical clustering, there are two possible approaches: the agglomerative one and the divisive one. The agglomerative approach starts with the finest partition, i.e. each object forms one cluster. In the following iterations, the two ‘nearest’ clusters are merged until there is only one big cluster. The divisive approach starts with one cluster containing all observations and iteratively splits the most homogenous cluster.

The distance of two clusters and the homogeneity of a cluster, respectively, can be computed in different ways as described in Hartigan [16], e.g. based on the average-linkage approach.

To find the optimal number of clusters, one can use the silhouette width. It represents the goodness of fit for each observation for a given clustering. The silhouette width for observation \(x_i \) is given by

\[
s(i) = \frac{b(i) - a(i)}{\max\{a(i), b(i)\}},
\]

where \(a(i) \) is the average distance between \(x_i \) and all other observations in the same cluster and \(b(i) \) is the minimum of all distances of \(x_i \) and all other clusters. Thus, the silhouette width \(s(i) \) takes a value between \(-1\) and \(1\). Observations with a silhouette width value near 1 are represented well, and observations with \(s(i) \leq 0 \) are not.

Now, the average silhouette width for all observations for a given numbers of clusters can be computed. The optimal number of clusters \(k_{opt} \) is the number of clusters that maximises the average silhouette width.
8.2 Average SH

Assume the data to be divided into \(k^*\) bins, labelled 0, ..., \(k^* - 1\). Let the \(k\)th bin be defined by the interval \(B_k = (\tau_{k-1}, \tau_k]\) and \(c_k\) is the corresponding number of observations in this interval. Then, the density histogram is given by \(f(x) = (c_k/n)\), where \(n\) is the total number of observations. Often the bins are equally spaced, thus \(\omega = \tau_{k-1} - \tau_k\) \(\forall k\) and \(\tau_0 = 0\). The density histogram then results in \(f(x) = (c_k/n\omega)\). In this case, there is only one unknown parameter \(\omega\). That is why it is often called ‘non-parametric’ (Scott and Sain [19]).

If \(\tau_k\) is unknown, there is the unknown parameter pair \((\omega, \tau_k)\). In this case, \(\tau_k\) can be seen as a ‘nuisance’ parameter which can be purged by \(m\) ASH, where each histogram is shifted by a factor \(\delta = (\omega/m)\) from the previous histogram.

Let the intervals \(B'_k = [\tau_0 + k\delta, \tau_0 + (k + 1)\delta]\) all be equal spaced with width \(\delta\) and \(c_k\) the corresponding counts. Then the ASH is constant over all intervals and

\[
\hat{f}_{\text{ASH}} = \frac{1}{m\omega} \sum_{i=1}^{m-1} (1 - \frac{i}{m})c_{i+1}, \quad \text{for } x \in B'_k. \tag{2}
\]

In addition to equal weights for the SHs, any other choices for \(\hat{f}_{\text{ASH}} = (1/n\omega)\sum_{i=1}^{m} wa_i c_{i+1}\), for \(x \in B'_k\) is possible, e.g. a weight defined by a kernel \(\ker(x)\). Since \(m \to \infty\) the ASH approximates the ‘kernel estimator’

\[
\hat{f}_{\ker} = \frac{1}{n\omega} \sum_{i=1}^{m} \ker\left(\frac{x - x_i}{\omega}\right) = \frac{1}{n} \sum_{i=1}^{m} \ker\left(x - x_i\right), \tag{3}
\]

where \(\ker\left(x\right) = (1/\omega)\ker\left(x/\omega \right)\).

For vector-valuated data, the extension of ASH estimators is straightforward. An alternative to these estimators are mixture models, which are fitted using the expectation-maximization (EM) algorithm. More information can be found in Scott and Sain [19].

8.3 Extensible MMs

An EMM is a Markov chain which is varying in time. This Markov chain can be interpreted as a directed graph (with fixed structure). The EMM has the following properties.

The EMM is built up of a Markov chain with nodes \(N\) at every point in time and an algorithm which alters the Markov Chain. This algorithm consists of the three parts: EMMCluster, EMMIncrement and EMMDecrement.

Thereby EMMCluster assigns an object to a cluster at a given time \(t\) which is represented by the nodes. If the object is not close enough to the other clusters, this object is assigned to a new cluster. Whether the object is close enough to an existing cluster is determined by a threshold defined by the user. This step can be described as a kind of ‘nearest-neighbour’ algorithm. EMMIncrement computes transition probabilities of the Markov chain by retaining the counts as an indicator how many ‘visitors’ the node has. Moreover finally, EMMDecrement can reduce the size of the EMM if it gets too large.

The EMM still learns during the application phase and is ‘generic incremented model whose nodes can have any kind of representative’ (Dunham et al. [20]). It is possible to match states during clustering. Furthermore, it is allowed to add new nodes and also delete present nodes. Finally, the EMM can be applied to online data.

Detailed information of the EMM can be found in Dunham et al. [20].

8.4 DBSCAN

DBSCAN is a commonly adopted algorithm for finding clusters in a data set \(\{x_1, ..., x_n\}\) and employs the distance between two points as a key number for indicating a cluster. The distance function is arbitrary, but it defines the shape of the neighbourhood, e.g. in 2D with a Manhattan distance, the shape is rectangular. Therefore, Ester et al. [15] introduced the theory of density-reachability w.r.t. two key parameters, \(\epsilon\) and \(MinPts\). A point \(x_i\) is density-reachable for \(x_j\) if the distance between \(x_i\) and \(x_j\) is at most \(\epsilon\) and if there are at least \(MinPts\) points in the \(\epsilon\) neighbourhood of \(x_i\), i.e. within a distance of \(\epsilon\) of \(x_j\).

Furthermore, a set of points \(x_1, ..., x_m\) is density connected, if for each pair of points \(x_i\) and \(x_j\), \(i, j \in \{1, ..., m\}\), there is a permutation \(x_1' = x_i, ..., x_m' = x_j\) a set of density-collected points (i.e. a set in which \(x_i'\), is directly density-reachable from \(x_j\)).

Accordingly, if the two parameters \(\epsilon\) and \(MinPts\) are given (or, ideally, known) the algorithm can start with an arbitrary point \(x\), and search for all density-reachable points of \(x\), w.r.t. to parameters \(\epsilon\) and \(MinPts\). If \(x_i\) is a kernel point (of a cluster), DBSCAN finds a cluster w.r.t. the parameter \(\epsilon\) and \(MinPts\). Is the point a boundary point, i.e. \(x_i\) lies on the boundary of a cluster, then there are no density-reachable points of \(x_i\), and the algorithm chooses another point.

Since \(\epsilon\) and \(MinPts\) are global parameters, several problems can occur, e.g. two ‘near’ clusters with different densities can be merged or a boundary point can belong to two different clusters. On account of such problems, another run of DBSCAN can be necessary. Moreover, there are also modifications of the DBSCAN algorithm such as the ordering points to identify the clustering structure (OPTICS) method or Bayesian DBSCAN (bDBSCAN) (Ankerst et al. [31] and Argiento et al. [32]). However, in this paper we will use the original DBSCAN algorithm.

8.5 Gammmics

The gammmics method (Schäfer et al. [21]) is another method for finding clusters in a point pattern, where a cluster has to consist of at least two objects. A nice feature of this method is the possibility of estimating the proportion, the cluster size and the cluster radius simultaneously.

To achieve this, the gammmics method does not model the point pattern itself, but rather the squared distances between a point and its nth nearest neighbour, here we use \(k = 2\). The cluster radius and size are then estimated algorithmically.

Assume the data to be realisations of a random variable \(X_i\), \(i = 1, ..., n\), in which they are random point coordinates in an endless region \(P \subset \mathbb{R}^d\). Let \(D_i\) be the distance between the point \(X_i\) and its nearest neighbour \(X_j\) with realisations \(d_i = d(x_i, x_j)\). The approach is to model a function of \(D_i\) which indicates if a point \(X_i\) is clustered or not, because the squared distances obviously differ between clustered and non-clustered points. This function is given by

\[
Y_i(D_i) = \begin{cases} 1 & X_i \text{ is part of a cluster} \\ 0 & X_i \text{ is not part of a cluster} \end{cases}. \tag{4}
\]

For \(D_i\), we fit two gamma distributions (with density \(p(x) = [1/\Gamma(a)]x^{a-1}e^{-\gamma x}\), one representing the clustered points and one the non-clustered. Thus, we can write

\[
\begin{align*}
D_i|Y_i = k &\sim \text{gamma}(\alpha_k, \beta_k) \quad k = 0, 1 \\
Y_i|X_i = k &\sim \text{gamma}(\alpha_k, \beta_k) \quad k = 0, 1 \quad \text{and} \\
\frac{1}{\beta_k}Y_i|X_i = k &\sim \text{gamma}(\alpha_k, \beta_k) \quad k = 0, 1.
\end{align*} \tag{5-6}
\]

Furthermore, ‘the implicit allocation of points to one of the distributions is carried out by means of \(Y = (Y_1, ..., Y_n)\)’ (Schäfer et al. [21]) and we assume the \(Y_i\) to be Bernoulli distributed. The mixture proportion is then given by the following beta distribution:

\[
Y_i \sim \text{Bernoulli}(p_i). \tag{7}
\]
The mixture model underlying the gammics method is given by (4)–(8). The hyperparameters $a_0, a_1, b_0, b_1, c_0, c_1, d_0, d_1, e$ and f have to be defined by the user. In our application, we use $a_0 = 3, a_1 = 2, b_0 = 1, b_1 = 1, c_0 = 1, c_1 = 4, d_0 = 0.5, d_1 = 1$ and $e = f = 1$.

The estimation of mean cluster radius and mean cluster size depends on the allocations as well as on the basic group, i.e. clustered versus non-clustered.

\[p_c \sim \text{Beta}(e, f). \]

(8)

The cluster structure is then derived from the fit of the two gamma distributions algorithmically, where first the intersection L_c between the densities is calculated. It can be written as

\[L_c = \{ x \mid p_c \cdot p(x|\alpha_y, 1, \beta_y, 1) = (1 - p_c) \cdot p(x|\alpha_y, 0, \beta_y, 0) \}. \]

(9)

where p is the density of the gamma distribution. Second, the distance D_q of a point X_q to its nearest neighbour is determined by $q = \text{argmin}_{i \neq q} D_i^2$. Thus, two points are clustered in the same group (even) if the distance is higher than L_c, but there exist other points between those two, such that no distance between ‘nearest neighbours’ is more than L_c.

The model is finally fitted by a Gibbs sampling Markov chain Monte Carlo (MCMC) approach including a Metropolis step for updating the shape parameters of the gamma distribution.

9 Appendix 2

See Figs. 7–12.

10 Appendix 3

See Tables 8–12.
Fig. 12 Dual colour simulation with parameter settings $p = 0.4$, $\mu = 4$, $r = 15$ and all three settings analysed by ASH
(a) Green proteins, (b) Red proteins for setting 1, (c) Red proteins for setting 2, (d) Red proteins for setting 3

Simulation parameter	Green Ash	Red 1 Ash	Red 2 Ash	Red 3 Ash	All 1 Ash	All 2 Ash	All 3 Ash					
$p = 0.4$, $\mu = 4$, $r = 15$	202 150 207 150 202 130 202 120 409 400 404 350 404 300	194 120 222 130 194 120 194 130 416 300 388 300 388 250										
$p = 0.4$, $\mu = 4$, $r = 15$	195 150 208 150 195 180 195 150 403 400 390 350 390 300	196 150 183 100 196 180 196 150 379 350 392 350 392 300										
$p = 0.4$, $\mu = 4$, $r = 30$	205 150 210 150 205 120 205 150 415 400 410 400 410 350	194 120 205 150 194 150 194 120 399 400 388 300 388 300										
$p = 0.4$, $\mu = 4$, $r = 30$	193 130 211 100 205 150 205 130 416 300 410 280 410 350	210 130 204 150 210 150 210 200 414 300 420 280 420 300										
$p = 0.4$, $\mu = 8$, $r = 15$	92 80 102 100 92 100 92 120 194 200 184 180 184 180	114 100 121 100 114 130 114 120 235 200 228 250 228 200										
$p = 0.4$, $\mu = 8$, $r = 15$	102 90 106 120 102 120 102 120 208 200 204 180 204 180											
$p = 0.4$, $\mu = 8$, $r = 30$	89 80 98 90 89 80 89 90 187 200 178 180 178 180	101 90 102 100 101 90 101 90 203 200 202 180 202 180										
$p = 0.4$, $\mu = 8$, $r = 30$	96 80 89 90 96 100 96 100 185 200 192 200 192 200	103 90 108 90 103 100 103 120 211 180 206 200 206 200										
$p = 0.8$, $\mu = 4$, $r = 15$	444 100 405 120 444 120 444 120 444 130 849 300 888 350 888 300	424 90 468 120 424 120 424 120 892 250 848 250 848 250										
$p = 0.8$, $\mu = 4$, $r = 15$	402 150 454 170 405 120 150 150 856 300 804 400 804 300	432 100 416 120 432 150 432 120 848 400 864 350 864 400										
$p = 0.8$, $\mu = 4$, $r = 30$	441 120 426 180 441 150 441 150 867 200 882 250 882 250	428 150 418 150 428 180 428 180 846 350 856 300 856 300										
$p = 0.8$, $\mu = 4$, $r = 30$	396 150 428 200 396 150 396 180 824 300 792 350 792 350	427 100 411 100 427 150 427 150 838 250 854 200 854 200										
$p = 0.8$, $\mu = 8$, $r = 15$	211 120 183 130 211 150 211 130 394 300 422 350 422 300	217 100 200 100 217 100 217 130 417 250 434 250 434 250										
$p = 0.8$, $\mu = 8$, $r = 15$	203 150 188 170 203 150 203 150 391 400 406 350 406 300	211 120 233 130 211 150 211 130 444 300 422 250 422 300										
$p = 0.8$, $\mu = 8$, $r = 15$	180 150 196 150 180 180 180 170 376 320 360 300 360 300	192 150 214 120 192 120 192 120 406 300 384 280 384 300										
$p = 0.8$, $\mu = 8$, $r = 30$	197 150 198 120 197 150 197 130 395 300 394 300 394 300	210 120 210 150 210 150 210 130 420 300 420 300 420 280										
Simulation parameter	Simulation of red proteins and setting 1, red2	Simulation of red proteins and setting 2, red3	Simulation of red proteins and setting 3	Simulation of red proteins and setting 4								
----------------------	---	---	---	---								
$p = 0.4, \mu = 4, r = 15$	9.16	3.74	0.43	9.08	6.82	0.43	8.48	3.57	0.78	9.39	7.08	0.82
$p = 0.4, \mu = 4, r = 30$	8.98	3.73	0.46	8.61	6.89	0.42	8.31	3.64	0.81	8.76	6.63	0.81
$p = 0.4, \mu = 8, r = 15$	9.80	3.84	0.43	9.60	6.85	0.42	8.45	3.68	0.81	8.94	6.67	0.81
$p = 0.4, \mu = 8, r = 30$	8.43	3.74	0.44	8.40	6.59	0.44	8.24	3.62	0.81	8.17	6.68	0.84
$p = 0.8, \mu = 4, r = 15$	14.71	3.68	0.50	12.80	6.13	0.45	12.84	3.60	0.80	13.27	6.36	0.81
$p = 0.8, \mu = 4, r = 30$	15.20	3.81	0.49	11.61	5.93	0.45	13.07	3.50	0.79	11.95	6.01	0.81
$p = 0.8, \mu = 8, r = 15$	15.01	3.81	0.48	12.87	5.95	0.42	13.34	3.72	0.80	12.31	6.00	0.81
$p = 0.8, \mu = 8, r = 30$	15.34	3.69	0.54	12.78	5.80	0.45	13.44	3.75	0.81	11.92	5.87	0.82

Table 9: Average estimators obtained using the gammics method for all parameter choices for the simulations, where \hat{r} is the average estimator for the radius, $\hat{\mu}$ is the average estimator for the size and \hat{p} is the average estimator for the proportion of points in clusters and also green \equiv simulation of green proteins, red1 \equiv simulation of red proteins and setting 1, red2 \equiv simulation of red proteins and setting 2, red3 \equiv simulation of red proteins and setting 3.

Table 10: Average estimations of the proportion of points in clusters for red proteins of dual colour data set, setting 1 (independent proteins).

Table 11: Average estimations of the proportion of points in clusters for red proteins of dual colour data set, setting 2 (correlated cluster centres).

Table 12: Average estimations of the proportion of points in clusters for red proteins of dual colour image, setting 3 (correlated points).