A new species, *Pythium subutonaiense*, isolated from aquatic environments (lake) in China is being described based on morphological characters and molecular evidence. The isolates grew at temperatures between 5°C and 38°C, and the optimum temperature was 30°C, with a radial growth rate of 17.6 mm at 25°C per day. It is homothallic and characterized by globose to sub-globose shaped and mostly terminal or sometimes catenulate hyphal swellings, filamentous non-inflated sporangia, and smooth oogonia with hypogynous and monochlinous antheridia that contained one plerotic oospore. In phylogenetic analysis, inferred based on the internal transcribed spacer region of the ribosomal RNA gene and mitochondrial cytochrome c oxidase subunit 1 gene, the new species formed a distinct lineage in *Pythium* clade B. Differences between the new species and phylogenetically related and/or morphologically similar species are discussed.

ARTICLE HISTORY
Received 13 April 2019
Revised 24 June 2019
Accepted 6 July 2019

KEYWORDS
Oomycete; phylogenetic analysis; *Pythium* clade B; taxonomy

1. Introduction

Pythium [1] (Pythiaceae, Pythiales), typified with *P. monospermum* Pringsh., is characterized by hyaline and coenocytic hyphae without septa, various shaped sporangia, and the development of zoospores in a vesicle which is formed at the tip of a discharge tube derived from a sporangium [2]. *Pythium* spp. are cosmopolitan and represent a range of functional groups, such as saprophyses in natural environments, plant and animal pathogens, and biological control agents protecting against pathogenic fungi [3]. Following recent taxonomic revisions [4,5] and discoveries (e.g., Refs. [6–11]), more than 140 species are currently recorded in the genus *Pythium* [11].

During studies on *Pythium* species diversity in southern China, one new species of *Pythium*, *P. subutonaiense* was isolated. Phylogenetic analysis was performed using the internal transcribed spacer (ITS) regions of the ribosomal RNA and mitochondrial cytochrome c oxidase subunit 1 (COI) genes. Combined with the morphological characters, a new species is described in this study. Differences between the new species and phylogenetically related and/or morphologically similar species are also provided.

2. Materials and methods

2.1. Isolation

The samples were recovered from surface water of the lake in Nanjing, Jiangsu Province of China using flowers of *Bougainvillea glabra* Choisy as baits to isolate *Pythium* species [12]. The isolation procedure followed the method described by Benard and Punja [13]. Pieces of tissue 5–10 mm were cut from the baits, washed in tap water and superficially dried on a paper towel, and plated on V8 juice agar (V8A) containing rifampicin (50 mg L⁻¹), phenamacril (5 mg L⁻¹), ampicillin (50 mg L⁻¹), and pentachloronitrobenzene (50 mg L⁻¹) and incubated at 25°C for 2–3 days. When mycelial growth was observed, purification was carried out twice by transferring a single hyphal tip of colonies onto V8A. Two isolates (Chen 220 and Chen 229) of undescribed *Pythium* species were recovered and deposited in the herbarium of the College of Plant Protection, Nanjing Agricultural University (NJAU).

2.2. Morphology and growth rate

Colony patterns of two *P. subutonaiense* isolates were examined after incubation for 3 days at 25°C.
in corn meal agar (CMA), potato carrot agar (PCA), and V8A media. Sporulation was induced using a modification of the method described by Chang [14]. Agar blocks (8 mm × 8 mm × 3 mm) were cut from the mycelia fronts of 3-day-old V8A cultures and placed in 10% clarified and sterile V8 juice (one block per dish) and incubated in darkness at 25°C for 48–72 h. Once the mycelium has reached 4–5 cm in diameter, the V8 juice was pipetted out and the mycelia mats were then rinsed with sterile distilled water (SDW) three times at 20 min intervals. The rinsed mycelia mats were then submerged in SDW. The plates containing SDW were incubated at 25°C for 24–48 h prior to examining for release of zoospores. Fifty measurements were taken for each incubation for each isolate at 5°C. The PCR procedure for ITS was as follows: initial denaturation at 94°C for 3 min, followed by 35 cycles at 94°C for 40 s, 54°C for 45 s and 72°C for 1 min, and a final extension of 72°C for 10 min. The PCR procedure for COI was as follows: initial denaturation at 94°C for 2–5 min, followed by 35 cycles at 94°C for 30 s, 52°C for 30 s and 72°C for 1–2 min, and a final extension of 72°C for 5–10 min [18]. The PCR products were purified and sequenced in Genscript Company (Nanjing, China) with the same primers.

2.4. Phylogenetic analysis

Sequences generated in this study were aligned with additional sequences downloaded from GenBank (Table 1) using ClustalX [19] and BioEdit [20].

Table 1. A list of species, cultures, and GenBank accession numbers of sequences used in this study.

Species name	Sample no.	Locality	GenBank accession no.
Pythium adhaerens	CBS 520.74	The Netherlands	HQ643415 HQ708462
P. aderite	Lev 2066	Canada	HQ643416 HQ708463
P. angustatum	CBS 522.74	The Netherlands	HQ643437 HQ708484
P. apergiforme	CBS 772.81	The Netherlands	HQ643444 HQ708491
P. aquatile	CBS 215.80	United Kingdom	HQ643445 HQ708492
P. aristonosporum	CBS 263.38	Canada	HQ643447 HQ708494
P. arthromenales	CBS 324.62	USA	HQ643452 HQ708499
P. biforme	UZ00796	Japan	KJ995584 KJ995590
P. brachiatum	UZ00736	Japan	KJ995581 KJ995596
P. capillus	CBS 222.94	France	HQ643483 HQ708529
P. catenulatum	CBS 226.94	France	HQ643490 HQ708536
P. chondricola	CBS 203.85	The Netherlands	HQ643496 HQ708544
P. chondricola	CBS 154.64	Australia	HQ643501 HQ708547
P. conidiophorum	CBS 233.88	United Kingdom	HQ643509 HQ708555
P. contiguanum	CBS 221.94	Algeria	HQ643514 HQ708560
P. didinum	CBS 526.74	The Netherlands	HQ643523 HQ708569
P. dissimile	CBS 155.64	Australia	HQ643526 HQ708572
P. dissipatum	CBS 166.68	USA	HQ643528 HQ708581
P. flexovense	CBS 234.72	The Netherlands	HQ643538 HQ708582
P. folliculosum	CBS 220.94	Switzerland	HQ643540 HQ708584
P. graminicola	CBS 327.62	Jamaica	HQ643545 HQ708589
P. inflatum	CBS 168.68	USA	HQ643556 HQ708610
P. kashmirensense	CBS 122908	India	HQ643671 HQ708715
P. lactarium	CBS 222.88	United Kingdom	HQ643682 HQ708726
P. mattei	CBS 254.70	Israel	HQ643701 HQ708745
P. oospapillum	BR 632	Japan	FJ655174 FJ655178
P. pachycaule	CBS22494	France	HQ643726 HQ708767
P. peculentolycum	CBS 122463	France	HQ643739 HQ708780
P. penilum	CBS 169.68	USA	HQ643740 HQ708781
P. phragmitis	CBS 117104	Germany	HQ643746 HQ708787
P. prunioporum	CBS 100530	USA	HQ643749 HQ708790
P. pseudogumulatum	CBS 158.64	Australia	HQ643755 HQ708792
P. rhiz-o-eryzae	CBS 119169	India	HQ643757 HQ708798
P. salpingophorophum	BR 1024	United Kingdom	HQ643770 HQ708811
P. scirotechium	CBS 294.37	USA	HQ643771 HQ708812
P. subbionanoides	Chen 220°	China	MG674703 MG674716
P. subbionanoides	Chen 220°	China	MG674704 MG674717
P. sulkawansense	CBS 110030	Taiwan	HQ643836 HQ708877
P. sulcatum	CBS 607.33	USA	HQ643837 HQ708878
P. tardicrescens	Lev 1534	USA	HQ643855 HQ708896
P. torulosum	CBS 316.33	The Netherlands	HQ643859 HQ708900
P. tracheiphilum	CBS 323.65	Italy	HQ643862 HQ708903
P. utonaniense	UZ00758	Japan	KJ995586 KJ995588
P. utonaniense	UZ00769	Japan	KJ995587 KJ995589
P. vanterpodii	CBS 295.37	The Netherlands	HQ643952 HQ708993
P. volutum	CBS 699.83	Japan	HQ643971 HQ709012
P. zingiberis	CBS 216.82	Japan	HQ643973 HQ709014

New sequences determined in the present study.
Sequence alignment was deposited at TreeBase (http://purl.org/phylo/treebase; submission ID S22483).

Phylogenetic analysis was done as in the study by Chen and Cui [15]. Maximum parsimony (MP) analysis was applied to the combined dataset of ITS and COI sequences. *Pythium adhaerens* Sparrow and *P. chondricola* De Cock were used as outgroups [7]. The tree construction procedure was performed in PAUP* version 4.0b10 [21]. All characters were equally weighted and gaps were treated as missing data. Trees were inferred using the heuristic search option with TBR branch swapping and 1000 random sequence additions. Max-trees were set to 5000, branches of zero length were collapsed and all parsimonious trees were saved. Clade robustness was assessed using a bootstrap analysis with 1000 replicates [22]. Descriptive tree statistics tree length (TL), consistency index (CI), retention index (RI), rescaled consistency index (RC), and homoplasy index (HI) were calculated for each maximum parsimonious tree generated.

MrModeltest 2.3 [23] was used to determine the best-fit evolution model for the dataset for Bayesian inference (BI). BI was calculated with MrBayes3.1.2 [24] with a general time reversible (GTR) model of DNA substitution and an invgamma distribution rate variation across sites. Four Markov chains were run for 2 million generations until the split deviation frequency value <0.01, and sampled every 100th generations. The burn-in was set to discard the first 25% of the trees. A majority rule consensus tree of all remaining trees was calculated. Phylogenetic trees were visualized using Treeview [25]. Branches that received bootstrap support for maximum likelihood (BS), maximum parsimony (MP), and Bayesian posterior probabilities (BPP) greater than or equal to 75% (MP) and 0.95 (BPP) were considered as significantly supported, respectively.

3. Results

3.1. Isolation

Water samples were collected from two lakes, respectively in Zixiahu Park and Soul Valley Temple in China in 2016. The two lakes are located in national park of Dr. Sun Yat-sen’s mausoleum of southern China. Two surface water samples were collected at the edge of the lake. Two isolates of the new species, *P. subutonaiense*, were respectively obtained from two water samples and isolated from flowers of *Bougainvillea glabra* as bait on V8A.

3.2. Morphology and growth rate

Both two isolates of *P. subutonaiense* showed similar colony patterns and growth temperature results (Figure 1). They were rosette pattern on PCA, stellate pattern on V8A, and without a special pattern on CMA. The isolates showed maximum growth at 30 °C, and no growth at 5 °C and 38 °C. The growth rate was 17.6 mm per day at 25 °C.

The morphology of asexual and sexual structures was also similar between the two isolates. Hyphal swellings were frequently observed, and zospores were rarely observed in both isolates. The sexual structures were abundantly produced on V8A. Oogonia were smooth-walled, but sometimes had one outstanding slender projection. Antheridia were hypogynous and monoclinous, produced one or two per oogonium. Oospores were one per oogonium.

P. subutonaiense differs other *Pythium* species from homothallic sexuality, globose to sub-globose shaped, mostly terminal or sometimes catenulate hyphal swellings, filamentous non-inflated sporangia, and smooth oogonia, hypogynous, and monoclinous antheridia with slender antheridial cells and plerotic oospores.

Further differences between the new species and other related ones are listed in Table 2.

3.3. Molecular phylogeny

Two ITS and two COI sequences were newly generated for this study and their accession numbers are available in GenBank (Table 1). BLAST analyses of ITS and COI sequences of the two isolates, described here as *P. subutonaiense*, showed the best phylogenetic matches were with species of *Pythium* clade B.

The combined ITS+COI dataset included sequences from 48 oomycetes representing 45 taxa. The dataset had an aligned length of 1563 characters, of which 1111 characters are constant, 64 are variable and parsimony-uninformative, and 388 are
parsimony-informative. Maximum parsimony analysis yielded three equally parsimonious trees (TL = 1369, CI = 0.455, RI = 0.757, RC = 0.344, HI = 0.545). Best model for the combined ITS + COI sequences dataset estimated and applied in the Bayesian analysis: GTR + I + G, lset nst = 6, rates = invgamma; prset statefreqpr = dirichlet (1,1,1,1). Bayesian analysis resulted in the same topology with an average standard deviation of split frequencies = 0.006409. The sequences of Pythium species in clade B clustered together with strong supports (100% ML, 1 BPP, Figure 2). The phylogeny inferred from the ITS + COI dataset showed that the two newly sequenced isolates formed a lineage within Pythium subclade B2 with full statistical supports (100% MP, 1 BPP) and clustered with P. utonaiense [7].

3.4. Taxonomy

P. subutonaiense: Jia J. Chen and X.B. Zheng, sp. nov. (Figure 3).

Mycobank no.: MB 824731.

Type.—China. Jiangsu Prov., Nanjing, Zixiahu Park, from lake water, November 1, 2016, J.J. Chen, Chen 220 (NJAU, holotype).

Etymology—Subutonaiense (Lat.) referring to the species is somewhat similar to P. utonaiense [7].

Cardinal temperatures: minimum 5°C, optimum 30°C, maximum 38°C. Main hyphae hyaline, aseptate, up to 5.0 μm wide. Hyphal swellings globose to sub-globose, mostly terminal or sometimes catenulate, 20–37.5 (mean 26.5) μm in diameter. Sporangia filamentous non-inflated, rarely giving rise to vesicles containing zoospores. Zoospores formed in SDW at room temperature, and encysted zoospores 5–7.5 μm (mean 6.5 μm) in diameter. Homothallic; oogonia globose, smooth or with one outstanding slender projection, intercalary, rarely terminal, 17.5–22.5 μm (mean 20.8 μm) in diameter. Antheridia hypogynous and monoclinous; antheridial stalks unbranched; antheridial cells slender. Oospore one per oogonium, plerotic, globose, 15.5–20.5 μm (mean 18.3 μm) in diameter, wall up to 0.5–2 (mean 1.6) μm thick.

Additional specimens examined.—China. Jiangsu Prov., Nanjing, Soul Valley Temple, from lake water, November 1, 2016, J.J. Chen, Chen 229 (paratype, NJAU).

4. Discussion

P. subutonaiense is characterized by aquatic habit, homothallic sexuality, globose to sub-globose shaped, mostly terminal or sometimes catenulate hyphal swellings, filamentous non-inflated sporangia, and smooth oogonia, hypogynous, and
monoclinous antheridia with slender antheridial cells, and plerotic oospores.

According to Lévesque and de Cock [26], *Pythium* could be split into 11 clades (A–K), of which the species in subclade B2 are characterized by filamentous non-inflated to slightly inflated sporangia, smooth oogonia mostly smaller than 30 mm in diameter, and a moderate growth rate (mostly 10–20 mm per day). Phylogenetic analysis based on ITS and COI sequences indicated *P. subutonaiense* belongs to *Pythium* subclade B2 with full statistical supports. *P. subutonaiense* shares several morphological characteristics with other *Pythium* subclade B2 species, such as filamentous sporangia, smooth oogonia, and moderate growth rate. However, *P. subutonaiense* can be readily distinguished in having globose to sub-globose shaped and mostly terminal or sometimes catenulate hyphal swellings.

P. subutonaiense has a closer relationship with *P. utonaiense* according to the ITS and COI-based phylogeny (Figure 2). *P. utonaiense* resembles *P. subutonaiense* in having aquatic habit, filamentous

Figure 2. Phylogeny of *Pythium* clade B species inferred from ITS + COI dataset.
non-inflated sporangia, and plerotic oospores, but it is distinguished in its absence of hyphal swellings, faster growth rate, and the lack of antheridia [7] (Table 2).

P. brachiatum [7] is similar to P. subutonaiense by sharing aquatic habit and the formation of projections on oogonia, but the former species has slightly slower growth rate, lower optimum growth temperature, filamentous slightly inflated sporangia, and catenulate oogonia (Table 2). In addition, P. brachiatum is distant from P. subutonaiense in the ITS + COI sequence-based phylogeny [7] (Figure 2).

Both P. capillosum [27] and P. flevoense [28] have oogonia with a finger-like projection, and they somehow resemble P. subutonaiense; however, except for the lack of hyphal swellings, the two species can be distinguished from P. subutonaiense by slower growth rate, and thicker oospore wall [28] (Table 2). Besides, these three species clustered in different lineages in the phylogenetic analysis.

Figure 3. Asexual and sexual reproductive bodies of P. subutonaiense (Chen 220). (A) Mycelia; (B,C) Globose, terminal hyphal swellings; (D) Catenulate hyphal swellings; (E) A vesicle with zoospores; (F,G) Germinated encysted zoospore; (H) Terminal oogonium with plerotic oospore; (I) Intercalary oogonium with a plerotic oospore; (J,K) Terminal oogonia with a projection; (L) Plerotic oospore and a hypogynous antheridium. Arrows indicate antheridia are hypogynous. Bars A–F = 10 μm, G–L = 5 μm.

Disclosure statement
No potential conflict of interest was reported by the authors.

Funding
The research was supported by the National Natural Science Foundation of China (31601618), and the Fundamental Research Funds for the Central Universities (KJQN201738) and the Natural Science Foundation of Jiangsu Province (BK20160737).

References
[1] Pringsheim N. Beiträge zur Morphology and Systematik der Algen. 2. Die Saprolegnien. Jb Wiss Bot. 1858;1:284–306.
[2] van der Plaat-Kreij N. Monograph of the genus Pythium. Stud Mycol. 1981;21:1–242.
[3] Ali-Shtayeh MS, Saleh ASF. Isolation of Pythium acanthicum, P. oligandrum, and P. periplocum from soil and evaluation of their mycoparasitic
activity and biocontrol efficacy against selected phytopathogenic Pythium species. Mycopathologia. 1999;145:143–153.

[4] Bala K, Robideau GP, Lévesque CA, et al. Phytophthriae sindhium Lodhi. Shahzad & Lévesque, sp. nov. Persoonia. 2010;24:136–137.

[5] Uzuhashi S, Tojo M, Kakishima M. Phylogeny of the genus Pythium and description of new genera. Mycoscience. 2010;51:337–365.

[6] Bouket AC, Arzanlou M, Tojo M, et al. Pythium kandovanense sp. nov., a fungus-like eukaryotic micro-organism (Stramenopila, Pythiales) isolated from snow-covered ryegrass leaves. Int J Syst Evol Microbiol. 2015;65:2500–2506.

[7] Uzuhashi S, Okada G, Ohkuma M. Four new Pythium species from aquatic environments in Japan. Antonie Van Leeuwenhoek. 2015;107:375–391.

[8] Abrinibana M, Badali F, Abdollahzadeh J. Molecular and morphological characterization of three new species of Pythium from Iran: P. ershadii, P. pyriooosporum, and P. urmianum. Mycologia. 2016;108:1175–1188.

[9] Chen J-J, Li LI, Ye W-W, et al. Pythium cedri sp. nov. (Pythiaceae, Pythiales) from southern China based on morphological and molecular characters. Phytotaxa. 2017;309:135–142.

[10] Chen J-J, Li LI, Ye W-W, et al. Pythium cedri sp. nov. (Pythiaceae, Pythiales) from southern China based on morphological and molecular characters. Mycota. 2016;57:11–19.

[11] Chen J-J, Li LI, Ye W-W, et al. Pythium cedri sp. nov. (Pythiaceae, Pythiales) from southern China based on morphological and molecular characters. Mycota. 2016;57:11–19.

[12] Chen J-J, Cui BK. Studies on hWrightoporia from China 3. Wrightoporia subavellanea sp. nov. based on morphological characters and rDNA sequence data. Phytotaxa. 2014;175:225–234.

[13] White TJ, Bruns T, Lee S, et al. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis MA, editor. PCR protocols: a guide to methods and applications. San Diego: Academic Press; 1990. p. 315–322.

[14] Robideau GP, de Cock AWAM, Coffey MD, et al. DNA barcoding of oomycetes with cytochrome c oxidase subunit I and internal transcribed spacer. Mol Ecol Resour. 2011;11:1002–1011.

[15] Blair JE, Coffey MD, Park SY, et al. A multi-locus phylogeny for Phytophthora utilizing markers derived from genome sequences. Fungal Genet Biol. 2008;45:266–277.

[16] Thompson JD, Gibson TJ, Plewniak F, et al. The Clustal_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res. 1997;25:4876–4882.

[17] Hall TA. BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser. 1999;41:95–98.

[18] Swoford DL, PAUP*: phylogenetic analysis using parsimony (*and other methods), version 4.0b10. Sunderland: Sinauer Associates; 2002.

[19] Felsenstein J. Confidence limits on phylogenies: an approach using the bootstrap. Evolution. 1985;39: 783–791.

[20] Nylander JAA. MrModeltest v2. Program distributed by the author. Uppsala, Sweden: Evolutionary Biology Centre, Uppsala University; 2004.

[21] Ronquist F, Huelsenbeck JP. MRBAYES 3: Bayesian phylogenetic inference under mixed models. Bioinformatics. 2003;19:1572–1574.

[22] Page RMD. Treeview: an application to display phylogenetic trees on personal computers. Comput Appl Biosci. 1996;12:357–358.

[23] Lévesque CA, de Cock AWAM. Molecular phylogeny and taxonomy of the genus Pythium. Mycol Res. 2004;108:1363–1383.

[24] van der Plaats-Niterink AJ. The occurrence of Pythium in the Netherlands: III. Pythium flevoense sp.nov. Acta Bot Neerl. 1972;21:633–639.

[25] Paul B. A new species of Pythium with filamentous sporangia from Algeria. Trans Br Mycol Soc. 1987; 89:195–198.