Spatial evolutionary public goods game on complete graph and dense complex networks

Jinho Kim, Huiseung Chae, Soon-Hyung Yook & Yup Kim

Department of Physics and Research Institute for Basic Sciences, Kyung Hee University, Seoul 130-701, Korea.

We study the spatial evolutionary public goods game (SEPGG) with voluntary or optional participation on a complete graph (CG) and on dense networks. Based on analyses of the SEPGG rate equation on finite CG, we find that SEPGG has two stable states depending on the value of multiplication factor \(r \), illustrating how the "tragedy of the commons" and "an anonymous state without any active participants" occurs in real-life situations. When \(r \) is low \((r < r^*)\), the state with only loners is stable, and the state with only defectors is stable when \(r \) is high \((r > r^*)\). We also derive the exact scaling relation for \(r^* \). All of the results are confirmed by numerical simulation. Furthermore, we find that a cooperator-dominant state emerges when the number of participants or the mean degree, \(\langle k \rangle \), decreases. We also investigate the scaling dependence of the emergence of cooperation on \(r \) and \(\langle k \rangle \). These results show how "tragedy of the commons" disappears when cooperation between egoistic individuals without any additional socioeconomic punishment increases.

The emergence and evolution of cooperation is central to understanding the evolution and human activity-associated dynamics. One of the most popular theoretical frameworks that is used to shed light on such issues is evolutionary game theory. Game theory has also been successfully applied in diverse fields such as evolutionary biology and psychology, computer science and operations research, political science and military strategy, cultural anthropology, ethics and moral philosophy, economics, traffic flow research and public health. When preferences and goals of participating agents are in conflict, game theory can explain and predict interactive decisions. The central aim of game theory research is to determine conditions needed for cooperation to emerge between egoistic individuals. Two of the most famous models for game theory include the prisoner's dilemma (PD) and public goods game (PGG). While the PD for a pairwise interaction attracted the attention of biologists and social scientists, PGG for group interactions was the focus of studies in experimental economics. The PGG was often studied to identify effects of collective action arising from joint group decisions. Although sometimes the group interactions can be modeled as repeated simple pair interactions as with the PD, the most fundamental unit of the game is irreducible multi-agent nature. The PGG offers valuable insight into prevailing socioeconomic problems such as pollution, deforestation, mining, fishing, climate control and environmental protection. In identifying potential solutions to these issues, PGGs with various strategies have been suggested and studied. Economists have mainly studied PGG with two strategies, C and D, in which all agents participate and share a single common pool.

In this report, we focus on a PGG with voluntary participation in which three strategic players (cooperators \(C \), defectors \(D \) and loners \(L \)) are considered. Each \(C \) contributes \(c \) to the common pool, whereas \(D \) attempts to exploit the resource at no cost. Then, each \(C \) gets the payoff \(P_C \) as \(P_C = r c n_C / (n_C + n_D) - c \), whereas each \(D \) obtains \(P_D \) as \(P_D = r c n_D / (n_C + n_D) \). Here, \(n_C(n_D) \) denotes the number of \(C \)'s (\(D \)'s) participating in the game, and \(r > 1 \) is the multiplication factor, which describes synergistic effects of cooperation. In contrast, \(L \) refuses to participate in the game and relies only on private payoff \(\sigma \). In this report the condition, \(0 < \sigma < c(r - 1) \), is imposed.

Recently, the spatial evolutionary PGG (SEPGG) has been intensively studied to understand how steady-state strategies emerge on various structures and to identify characteristic features of such steady-state strategies. In the SEPGG, each agent is assigned to a node on a lattice or network. In a unit game of the SEPGG, only a randomly selected agent and its linked neighbors participate. In each update of the SEPGG, a randomly selected agent adopts the strategy of a randomly selected neighbor \(j \) of \(i \) with a transition probability \(f_{ij} \) that depends on payoffs \(P_i \) and \(P_j \). The SEPGG studies have revealed interesting results such as cyclic dominance, transition nature, and payoff distribution. The effects of underlying topology on the...
SEPPG properties17,28-33 have also been found, such as the spatial reciprocity on diluted networks34 and multiplex networks35-40.

Since the SEPPG on regular lattices and sparse networks has considered only local interactions, the number of participants in a unit game centered at a node i cannot exceed $k_i + 1$, where k_i is the degree (or coordination number) of i. Thus, the SEPPG on sparse networks is hardly a theoretical model of real-life examples with very large participants such as taxes, provision levels, tolls, user fees, etc.34 Such cases involving public resources which anyone can overuse can be mapped into "tragedy of the commons" problem39,40. However, SEPPG in which all agents participate in a unit game has been rarely studied. Thus, we focus on SEPPG with very large participants.

In this report, the SEPPG with three strategies on a complete graph (CG) and dense complex networks is considered to understand the SEPPG with large participants. The CG is a simple undirected graph in which any node on the graph is linked to all other nodes. Thus, the number of links on the CG is $N(N - 1)/2$, where N is the number of nodes. In the SEPPG on the CG, all agents participate in a unit game. From analytically exact rate equations of the SEPPG on the CG, two stationary states depending on r and N are found. The state with only L agents (or L-state) is stable for low $r(\ll r^*)$. The state with only D agents (or D-state) is stable for high $r(>r^*)$. r^* at which the crossover from the L-state to the D-state occurs is analytically obtained and also confirmed by numerical simulation. In the SEPPG on the CG, a C-dominant state cannot be stable even for very high r. These stationary states on the CG are very peculiar compared to the C-dominant state (or C-state) on regular lattices and sparse networks for very high r30,33. The L-state on the CG is also very peculiar in the sense that the L-state occurs only for $\sigma > c(r - 1)$ in the PGG game with the well-mixed population26, whereas the L-state on the CG occurs even when $0 < \sigma < c(r - 1)$ or r is quite high.

More specifically, the time evolution of the SEPPG on the CG for high r is shown to have the following stages. In early time, the numbers of both C and L agents decrease, whereas the number of D agents hardly varies. Eventually, the D-state becomes stable. Hence, the time evolution of the SEPPG for high r describes key processes to the "tragedy of the commons" very well39,40, because the key processes are the following processes: First, the most of agents overuse the public resource in the commons as defector. Then, the overuse of the public resource will ruin it.

Ref.26 revealed that the dominant state on sparse networks for high r is the C-state. Hence, we investigate crossover behaviors of the L-state or the D-state on dense networks such as the CG to a C-state on sparse networks by numerical simulation. For low r, first the crossover from the L-state to a D-state occurs, and the D-state successively crosses over to a C-state as mean-degree $\langle k \rangle$ decreases. Furthermore, the D-state for moderate $\langle k \rangle$ remains even in the limit $N \to \infty$. We also quantitatively find that cooperation gradually increases as the number of participants or $\langle k \rangle$ decreases, which is the origin of two crossovers. Hence, the crossovers for low r describe how the enhanced cooperation on sparse networks with low $\langle k \rangle$ overcomes "tragedy of the commons", resulting in the C-state. For high r the direct crossover from the D-state to the C-state occurs. This direct crossover is nearly the same as that from the D-state to the C-state for low r.

Results

SEPPG on the complete graph. From f_d in Eq. (11) using $[P]$ on the CG, exact rate equations of densities on the CG are written as

\[
\dot{p}_C = \rho_C p_D \tanh \left(-\frac{\beta}{2} \right) + \rho_C p_L \tanh \left(\frac{\beta}{2} \left(\frac{\rho_C}{1 - \rho_L} - c - \sigma \right) \right),
\]

\[
\dot{p}_D = \rho_D p_D \tanh \left(\frac{\beta}{2} \right) + \rho_D p_L \tanh \left(\frac{\beta}{2} \left(\frac{\rho_D}{1 - \rho_L} - \sigma \right) \right),
\]

and

\[
\dot{p}_L = \rho_C p_C \tanh \left[\frac{\beta}{2} \left(c + \sigma - \frac{\rho_C}{1 - \rho_L} \right) \right] + \rho_D p_L \tanh \left[\frac{\beta}{2} \left(\frac{\rho_D}{1 - \rho_L} - \sigma \right) \right],
\]

where $\dot{p}_C = d p_C / dt$, etc.

To obtain stationary states from general initial configurations with $p_C = p_D(t = 0) > 0$, $p_L > 0$ and ρ_C, early time behaviors of ρ_C, p_D, and p_L must be considered. Early time behaviors of ρ_C, p_D, and p_L are determined based on competition between two terms of Eqs. (1)–(3), respectively. As $\rho_C p_D \tanh(\frac{-\beta C}{2}) \ll$ 0 in Eq. (1) and $\rho_D p_L \tanh(\beta C) \gg$ 0 in Eq. (2) for any non-negative ρ_C, p_D, β and c, two distinctive steady states are achievable depending on the value of ρ_C. When $\rho_C > (c + \sigma) \frac{1 - \rho_L}{c} \tanh \left(\frac{\beta}{2} \left(\frac{\rho_C}{1 - \rho_L} - c - \sigma \right) \right) > 0$ in Eq. (1), $\tanh \left(\frac{\beta}{2} \left(\frac{\rho_C}{1 - \rho_L} - c - \sigma \right) \right) > 0$ in Eq. (2), and $\tanh \left(-\frac{\beta}{2} \right) < 0$ in Eq. (3). Thus, $\dot{p}_D > 0$ and $\dot{p}_L < 0$, which make $\rho_C p_L \tanh \left(\frac{\beta}{2} \left(\frac{\rho_C}{1 - \rho_L} - c - \sigma \right) \right) \ll 1$ in Eq. (1) and $\dot{\rho}_C < 0$ after some time. From these relations we find that the state of $\{ \rho_D \approx 1, \rho_L \ll 1 \}$ appears when $\rho_C > (c + \sigma) \frac{1 - \rho_L}{c}$. Similarly, when $(c + \sigma) \frac{1 - \rho_L}{c} > \rho_C > \sigma \frac{1 - \rho_L}{c}$, $\dot{p}_D > 0$ and $\dot{p}_L < 0$, which also make $\rho_C p_L \tanh \left(-\frac{\beta}{2} \left(\frac{\rho_C}{1 - \rho_L} - c - \sigma \right) \right) \ll 1$ in Eq. (3) and $\dot{\rho}_L < 0$ after some time. As a result, when $\rho_C > \sigma \frac{1 - \rho_L}{c}$, the state of $\{ \rho_D \approx 1, \rho_C \ll 1, \rho_L \ll 1 \}$ appears. We call this state the D-state. In contrast, when $\rho_C < \sigma \frac{1 - \rho_L}{c}$, $\dot{p}_L > 0$ and $\dot{\rho}_C < 0$, which make $\rho_C p_L \tanh \left(\frac{\beta C}{2} \right) \ll 1$ in Eq. (2) and $\dot{p}_D < 0$ after some time. Thus, the state of $\{ \rho_D \approx 1, \rho_L \ll 1, \rho_C \ll 1 \}$ appears. We call this state the L-state. As the D-state or the L-state appears depending on the condition $\rho_C < \sigma \frac{1 - \rho_L}{c}$, we now examine the stability of the D-state based on rate equations (1)–(3). If the D-state is unstable, the L-state should be stable.

In the D-state with $\{ \rho_D \approx 1, \rho_C \ll 1, \rho_L \ll 1 \}$, the rate equation (1) becomes

\[
\dot{p}_C \approx \rho_C \tanh \left(-\frac{\beta}{2} \right),
\]

because $\dot{p}_L \ll \dot{p}_D$. By solving Eq. (4) for time t, we obtain

\[
\rho_C(t) \sim \exp \left[-\tanh \left(\frac{\beta}{2} \right) t \right].
\]

Similarly, the rate equation (3) also becomes

\[
\dot{\rho}_L \approx -\rho_L \tanh \left(\frac{\beta}{2} \left(\frac{\rho_C}{1 - \rho_L} - \sigma \right) \right). \tag{6}
\]

When $\rho_C \gg \sigma \frac{1 - \rho_L}{c}$, $\tanh \left(\frac{\beta}{2} \left(\frac{\rho_C}{1 - \rho_L} - \sigma \right) \right) \approx 1$ and

\[
\rho_L(t) \sim \exp(-t). \tag{7}
\]

As ρ_C decreases with t, the condition $\rho_C > \sigma \frac{1 - \rho_L}{c}$ for the D-state breaks down for $t > t^*$. From the Eq. (5) and the condition $\rho_C \approx \sigma \frac{1 - \rho_L}{c}$ with $\rho_L \ll 1$, $t^* \sim \frac{\ln \rho_C}{\beta C} \tanh \left(\frac{\beta C}{2} \right)$. Therefore, on
the CG with $N \to \infty$, the L-state is the only stationary state. However, on the CG with finite N, the non-zero-minimum of ρ_C is $1/N$ and thus $\rho_L = 0$ if $\rho_L(t) < 1/N$. Therefore, if $\rho_L(t) \sim (\frac{N}{\sigma})^{-1/\text{tanh}(\frac{1}{2})} < 1/N$, then $\rho_L(t \to t^*) = 0$ and the D-state is still the stationary state. These results mean that the SEPGG on the CG with finite N has the following stationary state. For $r > r^*$, the D-state becomes stable, where

$$r^* \sim \frac{\sigma}{c} \frac{N^{\text{tanh}(\frac{1}{2})}}{.}$$

More specifically, this D-state for high r or $r \gg r^*$ has never been found on regular lattices and sparse networks. As emphasized in our introductory remarks, this state also describes "tragedy of the commons" very well. In contrast, for $r \ll r^*$, the L-state becomes stable. This L-state for $r < r^*$ has never been found on regular lattices and sparse networks either. The L-state is also anomalous and surprising, because no body remains as an active participant in the PGG for $r < r^*$. No C-dominant stationary state is found on the CG even for high r. Compared to the C-dominant stationary states on a square lattice17,26 and on sparse networks$^{28,30-32}$ for high r, the stationary states on the CG are unique and anomalous.

In Fig. 1, $\rho_C(t)$, $\rho_D(t)$, and $\rho_L(t)$ from a single run of simulation on the CG with $N = 10^3$ are plotted. $\rho_C(t)$ and $\rho_L(t)$ decay exponentially in the early time regardless of the r value. For $r > \frac{\sigma}{c} N^{\text{tanh}(\frac{1}{2})}$, the time dependences of $\rho_C(t)$ and $\rho_D(t)$ are sustained throughout, and the stationary D-state eventually appears as shown in Fig. 1(a) ($r = 2000$). In contrast, when $r < \frac{\sigma}{c} N^{\text{tanh}(\frac{1}{2})}$, $\rho_L(t)$ increases after some time or for $t > t^*$ and the L-state eventually appears as shown in Fig. 1(b) ($r = 60$). Hence, simulation data presented in Fig. 1 exactly reproduce the analytical results of rate equations (1)-(3). More specifically, early time behaviors of $\rho_C \sim \exp(-t)$ and $\rho_C \sim \exp\left[-\frac{\text{tanh}}{1/2} t \right]$ are confirmed by fittings to simulation data as shown in Figs. 1(a) and 1(b). Furthermore, the crossover time t^* for $r = 60$ is $t^* = 8.86$ in Fig. 1(b), which is nearly identical to t^* obtained from $t^* \sim \left(\frac{\frac{N}{\sigma}}{c} \right) \tanh(\frac{1}{2})$.

When $r < \frac{\sigma}{c} N^{\text{tanh}(\frac{1}{2})}$ and in the limit of $N \to \infty$, the time dependences of ρ_C, ρ_D, and ρ_L on the CG shown in Fig. 1(b) effectively present the process to the anomalous L-state with no active participants. The process means the following three steps. First, most agents defect one another. C then changes his strategy to D, and $\rho_C(t)$ decreases. Thus, D cannot receive enough payoff$,^8$ causing $\rho_D(t)$ to decrease and $\rho_L(t)$ to increase. Finally, most agents become L, as no one remains in the commons. Consequently, the stationary L-state eventually appears for $r < \frac{\sigma}{c} N^{\text{tanh}(\frac{1}{2})}$.

To analyze the dependence of stationary states on the multiplication factor r, $\rho_C^*(r = \rho_C(t \to \infty)$, $\rho_D^*(r = \rho_D(t \to \infty)$, and $\rho_L^*(r = \rho_L(t \to \infty)$ are obtained from simulations for various N and r by averaging over 1,000 realizations. Simulation results of ρ_C^*, ρ_D^*, and ρ_L^* for various r and N are shown in the insets of Fig. 2. As shown in insets of Fig. 2, the crossover value of r, i.e., r^*, from the stationary L-state to the stationary D-state increases with N as expected from Eq. (9). More specifically, $\rho_C^*(N, r)$ and $\rho_D^*(N, r)$ in Fig. 2 exactly depend on the single scaling parameter r_0 defined as $r_0 \equiv \frac{rc}{\sigma} N^{\text{tanh}(\frac{1}{2})}$. The scaling behaviors confirm that the L-state crosses over to the D-state at $r = r^* \simeq \frac{\sigma}{c} N^{\text{tanh}(\frac{1}{2})}$ as Eq. (9).

Crossover from the behavior on dense networks to that on sparse networks. A dense network is a network in which the mean-degree $\langle k \rangle$ satisfies $\langle k \rangle \sim N^{a_l}$. For example, the CG is a typical dense network, as $\langle k \rangle = N - 1$ in the CG. In a sparse network, $\langle k \rangle = \text{finite}^{a_l}$. In the SEPGG on the CG, either the L-state or the D-state is stable depending on r and N and the C-dominant state cannot be stable. In contrast, the C-dominant state is stable for relatively high r in the SEPGG on sparse networks such as random networks$^{30-33}$ and two dimensional square lattices17,26. Therefore, it is interesting to study how crossover from the L-state and the D-state on dense networks to the C-dominant state on sparse networks occurs for given values of r and N.

We first investigate how the L-state on dense networks crosses over to the C-dominant state on sparse networks. Since the L-state is stable for low r_0 on the CG as shown in Fig. 2, the crossover behaviors for low r_0 are studied by simulations on random networks with $\langle k \rangle$. For a given N and $\langle k \rangle$, ρ_C^*, ρ_D^*, and ρ_L^* are obtained by averaging over 2,000 realizations. Typical crossover behaviors for
studied using the following methods. From simulation data of quite high or if there are enough \(\sigma \) s and \(\sigma \) s for various low \(r_0(<1) \) are obtained as shown in Fig. 4. Because \(v_1 > v_2 \) in Fig. 4, the D-state for moderate \(k \) and low \(r_0(<1) \) is stable in the limit \(N \to \infty \).

Furthermore, the dependences of \(\rho_D^0(\langle k \rangle,N) \) and \(\rho_D(\langle k \rangle) \) on \(k \) for low \(r_0 \) in Fig. 3(a) are quite similar to the time dependences of \(\rho_C(t), \rho_D(t), \) and \(\rho_L(t) \) on the CG for low \(r_0 \) shown in Fig. 1(b). In Fig. 1(b), initially there are enough \(c \). As \(t \) increases, \(D \) governs the system. Finally \(L \) dominates, because \(D \) cannot receive enough payoff. Likewise, in Fig. 3(a), for low \(k \) there are also enough \(L \). For moderate \(k \) \(D \) governs the system. When \(k \) becomes high enough, \(L \) dominates. Hence, it is very interesting to compare dynamical behaviors on the CG to static crossover behaviors depending on \(k \).

We thus now focus on the time dependence of \(\rho_C(t), \rho_D(t), \) and \(\rho_L(t) \) for various \(k \) to understand crossover behaviors for low \(r_0 \) in Fig. 3(a). The time dependences of \(\rho_C, \rho_D, \) and \(\rho_L \) for moderate \(k \) are shown in Fig. 5(a), and those for low \(k \) are shown in Fig. 5(b). For high \(k \), the time dependence is nearly identical to that on the CG shown in Fig. 1(b). For moderate \(k \) and high \(k \), \(\rho_C, \rho_D, \) and \(\rho_L \) decrease, but \(\rho_L \) increases in early time. However, the stationary state is strongly affected by the subsequent time dependence of \(\rho_C \). If \(k \) is quite high or if \(k \) is \(k \), \(\rho_C \) decays quickly and \(D \) cannot receive enough payoff. As a result, \(\rho_L \) increases for \(t > \theta^* \) and the stationary state appears as explained in Fig. 1(b). In contrast, for moderate \(k \) or \(k \), \(\rho_L(\langle k \rangle) \) decreases relatively slowly, and \(\rho_L(t) \) never has a chance to increase reversely before the time at which \(\rho_L(t) \leq 1/N \) [see Fig. 5(a)]. This means that the cooperation is effectively enhanced for moderate \(k \) and \(D \) receives enough payoff until \(L \) disappears due to the enhanced cooperation. This first crossover is quite similar to the crossover from the L-state to the D-state in Fig. 1(b) to D-state in Fig. 1(a) on the CG. For low \(k \) or \(k \), \(\rho_C(t) \) never decreases as on sparse networks [28,30–33] [see Figs. 5(b), and \(\rho_D > \rho_D \). Hence, the crossover from the D-state to the C-state (or C-dominant state) occurs for \(k \) as \(k \) decreases.

The two crossovers for low \(r_0 \) thus derive from a gradual increase of cooperation as the number of participants (or \(k \)) decreases. Therefore, the crossovers that describe the disappearance of both the anomalous state with no active participants and "tragedy of the

\[r_0 = 0.3(\ll 1) \] are shown in Fig. 3. As shown in Fig. 3(a), two crossovers occur successively as \(k \) decreases. The L-state is stable when \(k \) is quite high. The C-state of \(\rho_C^0(1,0,0) = 0 \) is stable when \(k \) is low enough. For moderate \(k \) the D-state is stable. Therefore, for low \(r_0 \), the stationary state is first changed from the L-state to a D-state and crossover from the D-state to a C-state occurs as \(k \) decreases.

The stability of the D-state for moderate \(k \) in the limit \(N \to \infty \) is studied using the following methods. From simulation data of \(\rho_C^0(\langle k \rangle,N), \rho_D^0(\langle k \rangle,N), \) and \(\rho_L^0(\langle k \rangle,N) \) as in Figs. 3(a) and 3(b), we first obtain \(\langle k \rangle \) at which relations \(\rho_C^0(\langle k \rangle,N) = 1/2 \) and \(\rho_D^0(\langle k \rangle,N) = 1/2 \) hold simultaneously. We also obtain \(\langle k \rangle \) at which \(\rho_C^0(\langle k \rangle,N) = 1/2 \) and \(\rho_D^0(\langle k \rangle,N) = 1/2 \) hold. For example, dependences of \(\langle k \rangle \) and \(\langle k \rangle \) on \(N \) for \(r_0 = 0.3 \) are shown in Fig. 3(c). The dependence of \(\Delta(k) \) (see Fig. 3(d)). \(\Delta(k) \) increases monotonically with \(N \), guaranteeing the stability of the D-state for moderate \(k \) in the limit \(N \to \infty \). Furthermore, as shown in Fig. 3(c), \(\langle k \rangle \) and \(\langle k \rangle \) satisfy power laws (\(\langle k \rangle \) \(\simeq N^{\sigma} \)) and (\(\langle k \rangle \) \(\simeq N^{\sigma} \)). By fitting these power laws to data presented in Fig. 3(c), crossover exponents are obtained as \(v_1 = 0.898(2), v_2 = 0.520(2) \). The result \(v_1 > v_2 \) also guarantees the stability of the D-state for moderate \(k \). The crossover property from the L-state to the D-state presented in Fig. 3(b) is adequately described by the single exponent \(v_1 \) obtained in Fig. 3(c).

\[\rho_C^0(\langle k \rangle,N) \]s for higher \(k \) and various \(N \) are plotted against the scaling variable \(\langle k \rangle/N \) with the obtained \(v_1 \) as in Fig. 3(e), which shows that \(\rho_C^0(\langle k \rangle,N) \) for higher \(k \) is a function of the single scaling variable \(\langle k \rangle/N \) as shown in Fig. 3(f), crossover from the D-state to the C-state also satisfies the scaling property that \(\rho_C^0(\langle k \rangle,N) \) for lower \(k \) is a function of the single scaling variable \(\langle k \rangle/N \) with the obtained exponent \(v_2 \).

![Figure 3](https://www.nature.com/scientificreports/images/3748619803.png)

Figure 3 | Simulation results of the SEPGG on random networks for \(r_0 = 0.3(\ll 1) \). (a) Plots of \(\rho_D^0, \rho_D^0, \) and \(\rho_D^0 \) against \(k \) for \(N = 16000, c = 1, \sigma = 1, \) and \(\beta = 1 \) are used. (b) Plots of \(\rho_D^0, \rho_D^0, \) and \(\rho_D^0 \) against \(k \) for \(N = 4000, 8000, 16000, \) and \(32000 \). Here, \(\rho_D^0 \) and \(\rho_D^0 \) are not shown, because \(\rho_D^0 = 1 - \rho_D^0 \) for high \(k \) and \(\rho_D^0 = 1 - \rho_D^0 \) for low \(k \). (c) Plots of \(\rho_D^0 \) and \(\rho_D^0 \) against \(N \). The straight lines denotes fittings of \(\rho_D^0(\langle k \rangle_{1}) = a_1N^{\sigma} \) with \(v_1 = 0.898(2) \) and \(\rho_D^0(\langle k \rangle_{2}) = a_2N^{\sigma} \) with \(v_2 = 0.520(2) \) to corresponding data. (d) Plot of \(\Delta(k) \) (see Fig. 3(c), \(\langle k \rangle \) and \(\langle k \rangle \) satisfy power laws \(\langle k \rangle \simeq N^{\sigma} \) and \(\langle k \rangle \simeq N^{\sigma} \)). By fitting these power laws to data}

![Figure 4](https://www.nature.com/scientificreports/images/3748619803.png)

Figure 4 | Plots of exponents \(v_1 \) and \(v_2 \) against \(r_0 \). \(c = 1, \sigma = 1, \) and \(\beta = 1 \) are used. In the limit \(N \to \infty \), the D-state for moderate \(k \) is stable, because \(v_1 > v_2 \).
Discussion

In summary, we have studied the SEPGG on the CG and complex dense networks to understand behaviors of the SEPGG with very large participants. By analyses of the rate equations, we have shown that the L-state of \(\{ \rho_C \ll 1, \rho_D \ll 1, \rho_1 \approx 1 \} \) is stable on the CG for \(r < r^* \) with \(r^* \sim \frac{\alpha}{c} N^{\text{tanh}(\Delta)} \). In contrast, the D-state of \(\{ \rho_C \ll 1, \rho_D \approx 1, \rho_1 \ll 1 \} \), representing "tragedy of the commons", is stable for \(r > r^* \). These analytic results on the CG have been confirmed by simulation.

We have also studied crossover behaviors from the L-state or the D-state on dense networks to the C-dominate state on sparse networks by numerical simulation on random networks with a mean degree \(k \). For \(r < r^* \), the L-state first crosses over to a D-state, and successively this D-state crosses over to a C-state as \(k \) decreases. We have investigated the dependence of the crossovers on \(N \) for low \(r_0 \) using the ansatz \(\langle k \rangle \sim N^{s_1} \) and \(\langle k \rangle \sim N^{s_2} \), where the L-state is stable for \(\langle k \rangle \gg \langle k \rangle \), the D-state is stable for \(\langle k \rangle \ll \langle k \rangle \), and the C-state is stable for \(\langle k \rangle \approx \langle k \rangle \). From the numerical simulations, \(v_1 \) and \(v_2 \) have been obtained. Since \(v_1 > v_2 \) for \(r < r^* \), we have found that the D-state for moderate \(k \) is stable even in the limit \(N \rightarrow \infty \). We have also studied the time dependences of \(\rho_C, \rho_D, \) and \(\rho_1 \) on random networks with \(k \) to understand the crossover behaviors for \(r > r^* \). For moderate \(k \), the D-state is stable, because \(\rho_D \) decreases relatively slowly. For low \(k \), cooperation is enhanced and the C-state is stable. The two crossovers for \(r < r^* \) derive from a gradual increase of cooperation as the number of participants (or \(k \)) decreases. The crossovers thus show how the enhanced cooperation on sparse networks with low \(k \) produces the C-state, overcoming both the anomalous state with no active participants and "tragedy of the commons" for low \(r_0 \).

C-state is stable for \(\langle k \rangle \sim \langle k \rangle \). From the numerical simulations, \(v_1 \) and \(v_2 \) have been obtained. Since \(v_1 > v_2 \) for \(r < r^* \), we have found that the D-state for moderate \(k \) is stable even in the limit \(N \rightarrow \infty \). We have also studied the time dependences of \(\rho_C, \rho_D, \) and \(\rho_1 \) on random networks with \(k \) to understand the crossover behaviors for \(r > r^* \). For moderate \(k \), the D-state is stable, because \(\rho_D \) decreases relatively slowly. For low \(k \), cooperation is enhanced and the C-state is stable. The two crossovers for \(r < r^* \) derive from a gradual increase of cooperation as the number of participants (or \(k \)) decreases. The crossovers thus show how the enhanced cooperation on sparse networks with low \(k \) produces the C-state, overcoming both the anomalous state with no active participants and "tragedy of the commons" for low \(r_0 \).

Finally, the cyclic dominance in Ref. 25 can also be found for very low \(r \) and \(k \). For example, for \(r_0 = 0.1 \), the crossover from the C-state to the cyclic dominance occurs at \(k \sim 10 \) on the network with the size \(N = 10^4 \). This crossover behavior is not explained quantitatively here, because the crossover occurs only on sparse networks.

Methods

Let us define the SEPGG model on a given graph or network in detail. Each agent is assigned to a node on the network. Variable \(s_i \) of the agent on node \(i \) represents the

Figure 5 | Time dependence of \(\rho_C(t), \rho_D(t), \) and \(\rho_1(t) \) on random networks with \(N = 16000 \) for \(r_0 = 0.3 \). Plots of \(\rho_C(t), \rho_D(t), \) and \(\rho_1(t) \) (a) for moderate \(k \) \((\approx 30)\) and (b) for low \(k \) \((\approx 10)\). (a) For moderate \(k \) \((\approx 30)\), \(\rho_D \) increases with \(t \), whereas \(\rho_C \) and \(\rho_1 \) decreases. Finally, the stationary D-state emerges. (b) For low \(k \) \((\approx 10)\), \(\rho_C \) increases with \(t \), whereas \(\rho_D \) and \(\rho_1 \) decreases. Finally, the stationary C-state appears. The time dependences for high \(k \) are not shown, because they are nearly the same as those shown in Fig. 1(b). commons" quantitatively show that agents in the larger group hardly cooperate relative to those in the smaller group. Therefore, this dependence on the group size is not necessarily accurate, because a recent study on PGG44 reported that increasing the group size does not necessarily lead to mean-field behaviors.

Finally, we study the crossover from the D-state to a C-state for high \(r_0(>1) \). Typical crossover behaviors for high \(r_0 \) are shown in Fig. 6(a). As shown in Fig. 6(a), for high \(r_0(=10) \), the D-state is stable when \(k \) is quite high. The C-state is stable when \(k \) is low enough. Therefore, for high \(r_0 \), the direct crossover from the D-state to the C-state occurs as \(k \) decreases. To analyze the dependence of this direct crossover on \(N, \rho_0^D(k,N) \)'s for various \(N \) are obtained by simulation as shown in Fig. 6(b). The dependence of the direct crossover on \(N \) can be obtained by the ansatz \(\langle k \rangle \sim N^{s_1} \), where at \(k \), both \(\rho_D^S(k,N) = 1/2 \) and \(\rho_C^S(k,N) = 1/2 \) hold. From the dependence of \(\langle k \rangle \approx \rho_0^S(k) = 0.51(1) \) is obtained for \(r_0 = 10 \). This direct crossover satisfies the scaling property that \(\rho_D^S(k) \) is a function of the single scaling variable \(\langle k \rangle \sim N^{s_1} \). As shown in Fig. 6(d), \(v_3 \)'s for various high \(r_0(>1) \) are obtained using the same method. The data in Fig. 6(d) show that the value of \(v_3 \) increases as \(r_0 \) increases. As the D-state is always stable on the CG or dense networks with \(k \) \(N \), the upper bound of \(v_3 \) should be equal to 1. We also confirm that the time dependences of \(\rho_C(t), \rho_D(t), \) and \(\rho_1(t) \) for high \(k_0 \) are nearly the same as those in Fig. 1(a) for high \(k_0 \) and as those in Fig. 5(b) for low \(k_0 \). Hence, this direct crossover is nearly identical to the second crossover from the D-state to the C-state for low \(r_0 \).

Figure 6 | Simulation results of the SEPGG on random networks for \(r_0 = 10(\gg 1) \). (a) Plots of \(\rho_C, \rho_D, \) and \(\rho_1 \) against \(k \) for \(N = 16000, c = 1, \sigma = 1, \) and \(\beta = 1 \) are used. The stationary state is changed from the D-state to a C-state as \(k \) decreases. \(\rho_C^S = 0 \) for any \(k \). (b) Plots of \(\rho_D^S \) against \(k \) for \(N = 4000, 8000, 16000, \) and \(32000 \). (c) Plot of \(\rho_D^S \) against \(\langle k \rangle / N^{0.51} \) with \(v_3 \approx 0.51 \). (d) Plot of \(v_3 \) against \(1/r_0 \).
strategy of \(f \). The \(s_j \) is a cooperater (\(C \)), defector (\(D \)) or loner (\(I \)). The number of agents with a given strategy is denoted as \(N_C = \sum_{i=1}^{N} \delta_{iC} \), \(N_D = \sum_{i=1}^{N} \delta_{iD} \), and \(N_I = \sum_{i=1}^{N} \delta_{iI} \), where \(N \) is the size of the network.

In each update of SEPGG on the network, an agent is randomly selected. Then, the payoff \(P_i \) of depends on the strategies of \(k_i + 1 \) participants, where \(k_i \) is the degree of \(i \).

If \(n_{xj} \) is the number of agents with \(C \), \(n_{ij} \) is the number of agents with \(D \), and \(n_{ik} \) is the number of agents with \(I \) among the \(k_i + 1 \) participants, \(n_{xj} + n_{ij} + n_{ik} = k_i + 1 \). \(P_i \) is thus given by

\[
P_i = \begin{cases}
\frac{c_{xj}}{n_{xj}} - c & \text{if } s_i = C \\
\frac{c_{ij}}{n_{ij}} & \text{if } s_i = D \\
\frac{c_{ik}}{n_{ik}} & \text{if } s_i = I
\end{cases}
\]

Here, \(c \) is the cost contributed by a \(C \) to the common pool, \(r(\geq 1) \) is the multiplication factor and \(\sigma \) is the fixed payoff of a \(D \). We impose the condition \(0 < c < r(\sigma - 1) \) as in Ref. 25. Even if only one active participant remains, the payoff of the agent still follows Eq. \(\text{(10)} \). Then, the strategy of \(i \) is updated through the comparison of \(P_i \) with \(f \) of a randomly selected neighbor \(j \) among \(k_i \) neighbors in order to select a better strategy. If \(s_i \neq s_j \), the agent \(i \) stochastically adopts the strategy \(s_j \) of the neighbor \(j \) with transition probability \(f_{ij} \).

We use

\[
f_{ij} = \frac{\exp(\beta P_i)}{\exp(\beta P_i) + \exp(\beta P_j)},
\]

as in Ref. 17. Here \(\beta(\geq 0) \) controls the amount of noise. In each update of SEPGG, the payoffs in \(f_{ij} \) of Eq. \(\text{(11)} \) on regular lattices and sparse networks depend on the configuration of all the agents at the time. In contrast, \(P_i \) in \(f_{ij} \) on the CG depends only on \(s_i \) and \(N_{s_i}, N_{C}, N_{D}, N_{I} \) of the strategies on the entire graph, because all agents participate in each unit game. The payoff \(P_i \) on the CG is thus written as

\[
P_i(s_i = C) = P_0 + \frac{c_{xj}}{n_{xj}} - c
\]

\[
P_i(s_i = D) = P_0 + \frac{c_{ij}}{n_{ij}}
\]

\[
P_i(s_i = I) = P_0 + \sigma
\]

where the densities \(p_{C}(=N_{C}/N), p_{D}(=N_{D}/N), \) and \(p_{I}(=N_{I}/N) \) are used. To confirm the analytic results, simulations are performed for various \(N \) and \(r \). Here, we mainly report the results of simulations with \(P_0 = \frac{c_{xj}}{n_{xj}} = 1/3, c = 1, \sigma = 1 \) and \(\beta = 1 \). Simulations with various combinations of \(P_0, c_{xj}, c_{ij}, \sigma \) and \(\beta \) are tested and nearly identical results are obtained.
goods game on complete graph and dense complex networks. Sci. Rep. 5, 9381; DOI:10.1038/srep09381 (2015).

This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder in order to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/