Pancreatitis is the most common complication of post-endoscopic retrograde cholangiopancreatography (post-ERCP).1 The incidence of post-ERCP pancreatitis (PEP) varies widely from 1% to 7%. It is usually mild, but some severe cases (0.3% to 0.6%) result in pancreatic necrosis, multiorgan failure, and death. Many studies have used pharmacologic agents such as nonsteroidal anti-inflammatory drugs and protease inhibitors. These agents have shown preventive effects in some trials, but the optimal agents to prevent PEP have not been established. Improvement of equipment and experience has led to the development of advanced endoscopic techniques, and many recent studies have demonstrated that endoscopic techniques can effectively reduce the risk of PEP.

Key Words: Endoscopic retrograde cholangiopancreatography; Post-ERCP pancreatitis; Guide wire-assisted cannulation; Pancreatic stent

INTRODUCTION

Pancreatitis is the most common complication of post-endoscopic retrograde cholangiopancreatography (post-ERCP).1 The incidence of post-ERCP pancreatitis (PEP) varies widely from 1% to 7%. It is usually mild, but some severe cases (0.3% to 0.6%) result in pancreatic necrosis, multiorgan failure, and death. Many studies have used pharmacologic agents such as nonsteroidal anti-inflammatory drugs and protease inhibitors. These agents have shown preventive effects in some trials, but the optimal agents to prevent PEP have not been established. Improvement of equipment and experience has led to the development of advanced endoscopic techniques, and many recent studies have demonstrated that endoscopic techniques can effectively reduce the risk of PEP.

GENERAL CONSIDERATIONS ABOUT THE ENDOSCOPIC TECHNIQUE

Difficult cannulation, defined as 10 to 15 attempts at the procedure for >10 minutes, or five unintentional cannulations, indicates failure to perform selective deep biliary or pancreatic cannulation.2 Papillary trauma caused by difficult cannulation is an important, independent factor for PEP. Therefore, the number of cannulation attempts should be minimized to prevent PEP. In a large meta-analysis, pancreatic duct injection was found to be an independent predictor of PEP, although pancreatic duct injection was not found to be a significant risk factor for PEP in two more recent studies.3,5 Therefore, every effort should be made to reduce the number of injections and volume of contrast media as much as possible. Moreover, a movable catheter for biliary cannulation has been prospectively compared with the standard catheter in several randomized trials. All of these studies showed higher biliary cannulation success rates in the movable catheter group than in the conventional cannula. However, there was no difference in PEP rates.6

Sphincterotomy

The risk of PEP is generally similar for diagnostic and therapeutic ERCP. Biliary sphincterotomy, however, is not associ-
ated with an elevated risk of PEP. Although pancreatic sphincterotomy is generally known to be a significant risk factor for PEP, the incidence of severe pancreatitis is very low. The notion that the precut technique increases the risk of PEP is controversial because other factors such as the experience of the endoscopist and number of cannulation attempts may influence this risk. Precut techniques, including the standard needle-knife technique, fistulotomy, the use of a pull type sphincterotome, and the transpapillary precut approach that involve the risk of pancreatic sphincter injury have been independently associated with an increased risk of PEP. However, a recent meta-analysis showed that pancreatitis developed in 2.5% of patients with an early precut compared with 5.3% of patients who underwent persistent cannulation attempts prior to the precut. Another meta-analysis similarly showed that an early precut with the needle-knife technique reduced the PEP rate. Moreover, a retrospective study showed that the PEP rate was lower when the precut technique was employed with <10 cannulation attempts than when precut technique is not used with ≥10 cannulation attempts. The decisions related to precut sphincterotomy concerning the timing and technique should be based on a patient's anatomy, indications, and the preference of the endoscopist. Early precutting should be considered the first alternative in patients with difficult cannulation, especially by experienced endoscopists.

Electrosurgical current

Thermal injury is thought to play a role in causing pancreatitis after sphincterotomy. A pure-cut current results in lesser edema than a blended current; therefore, a pure-cut current might reduce the incidence of PEP. A meta-analysis reported no significant difference in the incidence of PEP between pure-cut and blended currents, and the incidence of PEP does not seem to be influenced by the type of electrosurgical current used.

Endoscopic papillary balloon dilation

Endoscopic papillary balloon dilation (EPBD) is a technique used to dilate the biliary sphincter while avoiding sphincterotomy to facilitate the removal of biliary stones. A randomized controlled trial (RCT) demonstrated that the technique was associated with a significantly increased risk of PEP, with two deaths occurring during the trial due to pancreatitis. In addition, a meta-analysis showed that PEP occurred more commonly in the EPBD group than in the sphincterotomy group (7.4% vs. 4.3%, p=0.05). Therefore, EPBD with <10-mm diameter balloons is generally in patients with a bleeding tendency or altered anatomy (such as Billroth II anastomosis) when sphincterotomy is difficult. Recently, several studies have demonstrated that large balloon dilation (12 to 20 mm) of the distal common bile duct and ampulla after sphincterotomy is a well-tolerated and effective technique for the removal of biliary stones without increasing the PEP rate. However, the size of the balloon should be selected according to the sizes of the ampulla, bile duct, and stone.

Sphincter of Oddi manometry

To reduce the risk of perfusion-related hydrostatic pancreatic injury, alternative catheters such as a modified triple-lumen perfusion catheter with simultaneous aspiration or a microtransducer catheter have been developed. Two RCTs showed a significantly lower incidence of PEP with the modified catheter than with the standard perfusion catheter (3.0% vs. 23.5%, p=0.01; 3.1% vs. 13.8%, p<0.05), and another RCT

Fig. 1. The double-guide wire technique was performed successfully in a case of difficult biliary cannulation. (A) Fluoroscopic image of each guidewire placed in the bile and pancreatic duct, respectively. (B) Endoscopic view of endoscopic sphincterotomy knife insertion into the bile duct alongside a guidewire placed into the pancreatic duct.
showed no episodes of PEP.18-20

SPECIFIC ENDOSCOPIC TECHNIQUES

Guide wire-assisted cannulation

The use of a guide wire as a primary cannulation device, either by pushing the wire directly into the papilla or by inserting the catheter into the papilla and then advancing the guide wire, has been increasing. Guide wire-assisted cannulation allows dye-free access. As the wires do not produce hydrostatic overpressure, careful guide wire entry into the pancreas during attempts at biliary cannulation does not increase the risk of pancreatitis. In an RCT, guide wire-assisted cannulation showed no PEP with a cannulation rate of 98.5%.21 A retrospective study also reported that guide wire-assisted cannulation can be performed with a success rate of 97% and a PEP rate of 1%.22 In a meta-analysis, guide wire-assisted cannulation also showed a reduction in PEP compared with contrast-assisted cannulation (3.2% vs. 8.7%).23 In two meta-analyses, the odds ratios for the prevention of PEP were lower in the guide wire-assisted cannulation group in compared with the standard contrast cannulation group: 0.38 (95% confidence interval [CI], 0.19 to 0.76) and 0.23 (95% CI, 0.13 to 0.41), respectively.23,24 However, in another meta-analysis, no significant statistical difference in the incidence of PEP was observed between the two techniques (p=0.09).25 The most common methods involve the use of a single-guide wire technique (SGT) or a double-guide wire technique (DGT), in which a wire is inserted into the pancreatic duct and the cannulation device is passed alongside the guide wire (Fig. 1). In the first RCT, no cases of PEP occurred.26 However, another RCT showed a higher rate of PEP in patients undergoing DGT as opposed to SGT (17% vs. 8%).27 On the other hand, a retrospective study did not show a significant difference in the rate of PEP.

Table 1. Randomized Controlled Trials Reporting the Efficacy of Pancreatic Stent (PS) versus Non-PS Placement

Author	Year	Country	Number (PS/non-PS)	Procedures	Patients	PEP prevalence PS/non-PS, %
Smithline et al.26	1993	USA	93 (43/50)	Biliary ES	SOD, precut ES	14/18
Sherman et al.31	1996	USA	104 (46/58)	Precut biliary ES	NR	2.2/10.3
Tarnasky et al.32	1998	USA	80 (41/39)	Biliary ES	SOD	7/26
Patel et al.33	1999	USA	36 (18/18)	Pancreatic ES	SOD	11/28
Fazel et al.34	2003	USA	74 (38/36)	ERCP	Difficult cannulation, SOD, ES	5/28
Harewood et al.35	2005	USA	19 (11/8)	Endoscopic ampullectomy	Ampullary adenoma	0/33
Sofuni et al.36	2007	Japan	201 (98/103)	Variable procedures	Any	3.2/13.6
Tsuchiya et al.37	2007	Japan	64 (32/32)	Variable procedures	Any	3.1/12.5
Ito et al.38	2010	Japan	70 (35/35)	Variable procedures	High-risk patients	2.9/23
Pan et al.39	2011	China	40 (20/20)	ERCP	High-risk patients	20/70
Sofuni et al.39	2011	Japan	426 (213/213)	Variable procedures	High-risk patients	7.9/15.2
Kawaguchi et al.40	2012	Japan	120 (60/60)	Variable procedures	High-risk patients	1.7/13.3
Lee et al.41	2012	South Korea	101 (50/51)	Variable procedures	Difficult cannulation	12/29.4
Cha et al.42	2013	USA	104 (46/58)	Precut biliary ES	Difficult cannulation	4.3/13.8

Variable procedures includes ERCP, ES, precut, endoscopic papillary balloon dilation, intraductal ultrasonography, peroral cholangioscopy, aspiration of pancreatic juice.

PEP, post-ERCP pancreatitis; ES, endoscopic sphincterotomy; SOD, sphincter of Oddi dysfunction; NR, not reported; ERCP, endoscopic retrograde cholangiopancreatography.
between the two techniques (5.3% vs. 6.1%). In an RCT, the incidence of PEP was lower in a 5-Fr pancreatic stent (PS) placement group than in a non-PS placement group after DGT (2.9% vs. 23%). Therefore, prophylactic PS placement should be considered when DGT is used in patients with difficult cannulation. Nowadays, many experienced endoscopists use a hybrid guide wire-assisted cannulation and standard contrast-assisted cannulation technique with minimal contrast medium to outline the distal ducts with wire probes. This type of hybrid technique may avoid pancreatic ductal injury, but has not been formally evaluated.

Pancreatic duct stent placement

PS placement decreases the incidence of PEP by promoting the drainage of the pancreatic duct and reducing pancreatic intraductal pressure resulting from papillary edema (Fig. 2). PS placement in biliary sphincterotomy for sphincter of Oddi dysfunction, pancreatic sphincterotomy, precut, balloon dilation, endoscopic papillectomy, DGT, and after difficult cannulation. Several RCTs have demonstrated the efficacy of PS placement (Table 1). Moreover, several meta-analyses have demonstrated its effect on PEP risk reduction compared with non-PS placement. In a recent meta-analysis that included six additional RCTs that were published since 2010, the incidence of PEP decreased from 19% in the control group to 7%. Despite the good efficacy of PS placement, pancreatic duct injury has been a major complication of PS placement. The reported overall complication rate is 4.4%. Ductal and parenchymal injury has been reported to occur when conventional 5-Fr or larger-caliber plastic stents have been used. Although such injuries have been assumed to resolve spontaneously, permanent stenosis and relapsing pancreatitis have been reported. Precautionary measures to avoid this complication include the use of smaller-caliber (<5 Fr) and softer plastic stents. However, one RCT concluded that wider 5 Fr stents were easier to place (9.2 minutes vs. 11.1 minutes) and required fewer guide wires than 3 Fr stents, with no difference in PEP rates. PS placement after ERCP is recommended for the prevention of PEP in high-risk patients. However, PS should be documented as acceptable by radiography or removed within a few weeks to reduce the possibility of complications. In addition, there are many issues concerning the efficacy of PS placement for low-risk patients, risk assessments, adverse events, optimal sizes and materials, and the timing of removal.

CONCLUSIONS

Minimal cannulation attempts and injections as well as a small volume of contrast medium are important for preventing PEP. Furthermore, specific ERCP cannulation and sphincterotomy techniques must be performed according to individualized risk assessments. Despite some debates, both guide wire-assisted cannulation and PS placement are useful endoscopic techniques that reduce the incidence of PEP in high-risk patients. The appropriate endoscopic technique can increase safety of ERCP. In the future, well-designed and well-executed studies with a large sample size that focus on each endoscopic technique and newly developed approaches should be performed.

Conflicts of Interest

The authors have no financial conflicts of interest.

REFERENCES

1. Cooper ST, Slivka A. Incidence, risk factors, and prevention of post-ERCP pancreatitis. Gastrointestol Clin North Am 2007;36:259-276.
2. Kaffes AJ, Siriram PV, Rao GV, Santosh D, Reddy DN. Early institution of pre-cutting for difficult biliary cannulation: a prospective study comparing conventional vs. a modified technique. Gastrointest Endosc 2005;62:669-674.
3. Masci E, Mariani A, Curioni S, Testoni PA. Risk factors for pancreatitis following endoscopic retrograde cholangiopancreatography: a meta-analysis. Endoscopy 2003;35:830-834.
4. Vandervoort J, Sotnikov RM, Tham TC, et al. Risk factors for complications after performance of ERCP. Gastrointest Endosc 2002;56:652-656.
5. George S, Kulkarni AA, Stevens G, Forosmke CE, Dragans P. Role of osmolality of contrast media in the development of post-ERCP pancreatitis: a metaanalysis. Dig Dis Sci 2004;49:503-508.
6. Freeman ML, Guda NM. ERCP cannulation: a review of reported techniques. Gastrointest Endosc 2005;61:112-125.
7. Freeman ML, DiSario JA, Nelson DB, et al. Risk factors for post-ERCP pancreatitis: a prospective, multicenter study. Gastrointest Endosc 2001;54:425-434.
8. Masci E, Totti G, Mariani A, et al. Complications of diagnostic and therapeutic ERCP: a prospective multicenter study. Am J Gastroenterol 2001;96:417-423.
9. Cennamo V, Fuccio L, Zagari RM, et al. Can early precut implementation reduce endoscopic retrograde cholangiopancreatography-related complication risk? Meta-analysis of randomized controlled trials. Endoscopy 2010;42:381-388.
10. Gong B, Hao L, Bie L, Sun B, Wang M. Does precut technique improve selective bile duct cannulation or increase post-ERCP pancreatitis rate? A meta-analysis of randomized controlled trials. Surg Endosc 2010;24:2670-2680.
11. Testoni PA, Giussani A, Vallati C, Testoni S, Di Leo M, Mariani A. Precut sphincterotomy, repeated cannulation and post-ERCP pancreatitis in patients with bile duct stone disease. Dig Liver Dis 2011;43:792-796.
12. Verma D, Kapadia A, Adler DG. Pure versus mixed electrosurgical current for endoscopic biliary sphincterotomy: a meta-analysis of adverse outcomes. Gastrointest Endosc 2007;66:283-290.
13. Maple JT, Keswani RN, Hovis RM, et al. Carbon dioxide insufflation during ERCP for reduction of postprocedure pain: a randomized, double-blind, controlled trial. Gastrointest Endosc 2009;70:278-283.
14. Diasiero JA, Freeman ML, Bjorkman DJ, et al. Endoscopic balloon dilation compared with sphincterotomy for extraction of bile duct stones. Gastroenterology 2004;127:1291-1299.
15. Baron TH, Harewood GC. Endoscopic balloon dilation of the biliary sphincter compared to endoscopic biliary sphincterotomy for removal of common bile duct stones during ERCP: a metaanalysis of randomized, controlled trials. Am J Gastroenterol 2004;99:1455-1460.
18. Sherman S, Troiano FP, Hawes RH, Lehman GA. Sphincter of Oddi manometry: decreased risk of clinical pancreatitis with use of a modified aspirating catheter. Gastrointest Endosc 1990;36:462-466.

19. Wehrmann T, Stergiou N, Schmitt T, Dietrich CF, Seifert H. Reduced risk for pancreatitis after endoscopic microtransducer manometry of the sphincter of Oddi: a randomized comparison with the perfusion manometry technique. Endoscopy 2003;35:472-477.

20. Sherman S, Hawes RH, Troiano FP, Lehman GA. Pancreatitis following bile duct sphincter of Oddi manometry: utility of the aspirating catheter. Gastrointest Endosc 1992;38:367-370.

21. Lella E, Bagnolo E, Colombo E, Bonassi U. A simple way of avoiding post-ERCP pancreatitis. Gastrointest Endosc 2004;59:830-834.

22. Adler DG, Verma D, Hilden K, Chadha R, Thomas K. Dye-free wire-guided cannulation of the biliary tree during ERCP is associated with high success and low complication rates: outcomes in a single operator experience of 822 cases. J Clin Gastroenterol 2010;44:617-632.

23. Cheung J, Tsui KK, Quan WL, Lau JY, Sung JJ. Guidewire versus conventional contrast cannulation of the common bile duct for the prevention of post-ERCP pancreatitis: a systematic review and meta-analysis. Gastroenterology 2009;70:1211-1219.

24. Cennameo V, Fuccio L, Zagari RM, et al. Can a wire-guided cannulation technique increase bile duct cannulation rate and prevent post-ERCP pancreatitis? A meta-analysis of randomized controlled trials. Am J Gastroenterol 2009;104:2343-2350.

25. Shao LM, Chen QY, Chen MY, Cai JT. Can wire-guided cannulation reduce the risk of post-endoscopic retrograde cholangiopancreatography pancreatitis? A meta-analysis of randomized controlled trials. J Gastroenterol Hepatol 2009;24:1710-1715.

26. Maeda S, Hayashi H, Hosokawa O, et al. Prospective randomized pilot trial of selective biliary cannulation using pancreatic guide-wire placement. Endoscopy 2003;35:721-724.

27. Herreros de Tejada A, Callara JL, Díaz G, et al. Double-guidewire technique for difficult bile duct cannulation: a multicenter randomized, controlled trial. Gastrointest Endosc 2009;70:700-709.

28. Xinopoulos D, Bassioukas SP, Kypreos D, et al. Pancreatic duct guidewire placement for biliary cannulation in a single-session therapeutic ERCP. World J Gastroenterol 2011;17:1989-1995.

29. Ito K, Fujita N, Noda Y, et al. Can pancreatic duct stenting prevent post-ERCP pancreatitis in patients who undergo pancreatic duct guidewire placement for achieving selective biliary cannulation? A prospective randomized controlled trial. J Gastroenterol 2010;45:1183-1191.

30. Smithline A, Silverman W, Rogers D, et al. Effect of prophylactic main pancreatic duct stenting on the incidence of biliary endoscopic sphincterotomy-induced pancreatitis in high-risk patients. Gastrointest Endosc 1993;39:652-657.

31. Sherman S, Buckosel EL, Ebster E, et al. Does leaving a main pancreatic duct stent in place reduce the incidence of precut biliary sphincterotomy-induced pancreatitis? Randomized prospective study (abstract). Am J Gastroenterol 1995;90:241.

32. Tarnasky PR, Palesch YY, Cunningham JT, Mauldin PD, Cotton PB, Hawes RH. Pancreatic stenting prevents pancreatitis after biliary sphincterotomy in patients with sphincter of Oddi dysfunction. Gastroenterology 1998;115:1518-1524.

33. Patel R, Tarnasky PR, Hennessey WS, et al. Does stenting after pancreatic sphincterotomy reduce post-ERCP pancreatitis in patients with prior biliary sphincterotomy? Preliminary results of a prospective randomized study (abstract). Gastrointest Endosc 1999;49(4 Pt 2):A880.

34. Fazel A, Quadri A, Catalano ME, Meyerson SM, Geenen JE. Does a pancreatic duct stent prevent post-ERCP pancreatitis? A prospective randomized study. Gastrointest Endosc 2003;57:291-294.

35. Harewood GC, Pochron NL, Goustou PJ. Prospective, randomized, controlled trial of prophylactic pancreatic stent placement for endoscopic snare excision of the duodenal ampulla. Gastrointest Endosc 2005;62:367-370.

36. Sofuni A, Maguchi H, Itoi T, et al. Prophylaxis of post-endoscopic retrograde cholangiopancreatography pancreatitis by an endoscopic pancreatic stent. Am J Gastroenterol 2007;102:1339-1346.

37. Tsuchiya T, Itoi T, Sofuni A, et al. Temporary pancreatic stent to prevent post-ERCP retrograde cholangiopancreatography pancreatitis: a preliminary, single-center, randomized controlled trial. J Hepatobiliary Pancreat Surg 2007;14:302-307.

38. Pan XP, Dang T, Meng XM, Xue KC, Chang ZH, Zhang YP. Clinical study on the prevention of post-ERCP pancreatitis by pancreatic duct stenting. Cell Biochem Biophys 2011;61:473-479.

39. Sofuni A, Maguchi H, Mukai T, et al. Endoscopic pancreatic duct stents reduce the incidence of post-endoscopic retrograde cholangiopancreatography pancreatitis in high-risk patients. Clin Gastroenterol Hepatol 2011;9:851-858.

40. Kawaguchi Y, Ogawa M, Onuma F, Itô H, Shimosegawa T, Mine T. Randomized controlled trial of pancreatic stenting to prevent pancreatitis after endoscopic retrograde cholangiopancreatography: World J Gastroenterol 2012;18:1635-1641.

41. Lee TH, Moon JH, Choi HI, et al. Prophylactic temporary 3F pancreatic duct stent to prevent post-ERCP pancreatitis in patients with a difficult biliary cannulation: a multicenter, prospective, randomized study. Gastrointest Endosc 2012;76:578-585.

42. Cha SW, Leung WD, Lehman GA, et al. Does leaving a main pancreatic duct stent in place reduce the incidence of precut biliary sphincterotomy-associated pancreatitis? A randomized, prospective study. Gastrointest Endosc 2013;77:209-216.

43. Andriulli A, Forlano R, Napolitano G, et al. Pancreatic duct stents in the prophylaxis of pancreatic damage after endoscopic retrograde cholangiopancreatography: a systematic analysis of benefits and associated risks. Digestion 2007;75:156-163.

44. Choudhary A, Bechtold ML, Arif M, et al. Pancreatic stents for prophylaxis against post-ERCP pancreatitis: a meta-analysis and systematic review. Gastrointest Endosc 2011;73:275-282.

45. Singh P, Das A, Isenberg G, et al. Does prophylactic pancreatic stent placement reduce the risk of post-ERCP acute pancreatitis? A meta-analysis of controlled trials. Gastrointest Endosc 2004;60:544-550.

46. Mazaki T, Masuda H, Takayama T. Prophylactic pancreatic stent placement and post-ERCP pancreatitis: a systematic review and meta-analysis. Endoscopy 2010;42:842-853.

47. Mazaki T, Mado K, Masuda H, Shono M. Prophylactic pancreatic stent placement and post-ERCP pancreatitis: an updated meta-analysis. J Gastroenterol 2014;49:343-355.

48. Bakman YG, Saldar K, Freeman ML. Significant clinical implications of prophylactic pancreatic stent placement in previously normal pancreatic ducts. Endoscopy 2009;41:1095-1098.

49. Zolotarevsky E, Fehmi SM, Anderson MA, et al. Prophylactic 5-Fr pancreatic duct stents are superior to 3-Fr stents: a randomized controlled trial. Endoscopy 2011;43:325-330.