Antibiotics and resistance: the two-sided coin of the mycobacterial cell wall

Sarah M. Batt, Christopher E. Burke, Alice R. Moorey, Gurdyal S. Besra*

Institute of Microbiology and Infection, School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK

ARTICLE INFO

Keywords:
Mycobacterium tuberculosis
Cell wall
Arabinogalactan
Mycolic acids
Lipoarabinomannan

ABSTRACT

Mycobacterium tuberculosis, the bacterium responsible for tuberculosis, is the global leading cause of mortality from an infectious agent. Part of this success relies on the unique cell wall, which consists of a thick waxy coat with tightly packed layers of complexed sugars, lipids and peptides. This coat provides a protective hydrophobic barrier to antibiotics and the host’s defences, while enabling the bacterium to spread efficiently through sputum to infect and survive within the macrophages of new hosts. However, part of this success comes at a cost, with many of the current first- and second-line drugs targeting the enzymes involved in cell wall biosynthesis. The flip side of this coin is that resistance to these drugs develops either in the target enzymes or the activation pathways of the drugs, paving the way for new resistant clinical strains. This review provides a synopsis of the structure and synthesis of the cell wall and the major current drugs and targets, along with any mechanisms of resistance.

1. Introduction

Mycobacterium tuberculosis (MtB), the causative agent of tuberculosis, has a mortality rate of over 1.5 million a year (World Health Organisation, 2019). A crucial part of this pathogenicity is the extremely unusual cell wall of mycobacteria, and as such many of the current antibiotic regimes target essential enzymes involved in its synthesis. The first-line drug regimen is a combination of antibiotics, consisting of ethambutol, isoniazid, rifampicin and pyrazinamide (World Health Organization, 2017). Since these drugs have been used for more than 60 years, multi-drug resistant strains (MDR) have developed, with mutations in the target enzymes or drug activation pathways. Second-line drugs, which include capreomycin, ethionamide and streptomycin, are the next level of treatment for those with resistant strains (World Health Organisation, 2011). However, extensively drug resistant strains (XDR), which are additionally resistant to second-line drugs, are also emerging (World Health Organisation, 2011). This has resulted in a surge of research into mycobacteria, in the hopes of finding new effective drugs and targets. As many of the current drugs, and those under development, target the cell wall (see Fig. 1 for examples in red), an understanding of the complex biosynthesis pathways and mechanisms of drug inhibition and resistance, is a valuable part of this research.

The cell envelope of mycobacteria (Fig. 1) is a waxy, hydrophobic coat, with a high percentage of lipids (40%) (Asselineau and Lederer, 1950), imparting this pathogen with an effective barrier to antibiotics (Brennan and Nikaido, 1995; Minnikin, 1982) and the host’s immune system (Harding and Boom, 2010; Murry et al., 2009; Reed et al., 2004), as well constituting key virulence factors (Fratti et al., 2003; Glickman et al., 2000; Maeda et al., 2003; Quigley et al., 2017; Schlesinger et al., 1994). Though classified as a Gram-positive, mycobacteria actually possess an outer membrane or “MOM” (mycobacterial outer membrane), which is not typical of Gram-negatives either. This MOM consists of an inner layer of mycolic acids (MAs) and an outer leaflet of free-lipids (Fig. 1) (Barksdale and Kim, 1977; Christensen et al., 1999; Minnikin, 1982; Zuber et al., 2008). The MA layer is covalently linked to the arabinogalactan (AG), a domain of heavily branched arabinose chains connected to a galactan trunk, which in turn is attached to the peptidoglycan, forming the mycolyl-arabinogalactan-peptidoglycan (mAGP) complex (Barry et al., 2007; Brennan and Nikaido, 1995; Crick et al., 2010; 2001). Also present are the lipoglycans, lipomannan (LM) and lipoarabinomannan (LAM), which are anchored within the inner membrane and project out into the periplasmic space, though there is some evidence to suggest that they also reside in the lipids of the MOM (Minnikin et al., 2015; Ortalo-Magne et al., 1996; Pitarque et al., 2008; Sani et al., 2010). The inner membrane of mycobacteria is also rather unconventional, containing a high proportion of phosphatidyl-myoinositol mannosides (PIMs), which serve to improve the membrane’s stability and barrier to drugs (Bansal-Mutalik and Nikaido, 2014).

This review will discuss the structures and biosynthesis of the major components of the MtB cell envelope, including the current drugs that target their synthesis and transport, and in turn the resistance mechanisms that have developed. Interesting drugs in the pipe-line and
abinoagaralactan-peptidoglycan complex (mAGP). The free lipids of the outer leaflet consist of PDIM (phthiocerol dimycocerosates); DAT, TAT, PAT and SGL (di-, tri- and penta-acyl trehalose and sulfated trehalose glycolipids) (Jankute et al., 2015; Minnikin et al., 2015). The diagram is roughly to scale using dimensions obtained from cryo-electron microscopy (Zuber et al., 2008). The main current and pipe-line drugs targeting the biosynthesis/transport pathways of the cell wall are shown in red. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

new target enzymes will also be considered, along with the changing aspects of research into drug discovery.

2. The cell wall core

2.1. Peptidoglycan structure

Peptidoglycan (PG) is common to all bacteria and provides crucial mechanical strength to the cell wall in order to resist internal cellular hydrostatic pressure and maintain shape, any disruption of which leads to bactericidal cell lysis (Vollmer et al., 2008). While for most bacteria, the peptidoglycan also provides a major anchoring point on the exterior of the cell for further modifications, uniquely in mycobacteria, it forms the base for the entire mycobacterial outer membrane complex, the mAGP (Brennan and Nikaido, 1995). Structurally, PG consists of long β(1 → 4)-linked glycan backbone chains of repeating N-acetylmuramic acid residues (MurNAc), cross-linked together via peptide side-chains of five amino acids, to form a mesh-like macromolecule (Fig. 2A) (Brennan and Nikaido, 1995). Though a common A1γ subtype found in many bacteria including Escherichia coli (E. coli) (Brennan and Nikaido, 1995; Schleifer and Kandler, 1972), mycobacterial PG has several modifications to the structural features. The muramic acid residues, for instance, are present as a mixture of both the typical MurNAc and a hydroxylated derivative, N-glycolylmuramic acid (MurGlyc), in mycobacteria (Mahapatra et al., 2005). The reason for this has yet to be determined, however it is thought that the glycolyl derivative has the potential to form additional hydrogen bonds, thereby increasing the strength of the PG (Brennan and Nikaido, 1995). The sequence of the mycobacterial peptide linker is L-alanine (L-Ala), D-alanine (D-Ala) (Brennan and Nikaido, 1995); further modifications of these amino acids include the amidation of the free carboxyl groups of D-isoglutamate, m-DAP, D-alanine (D-Ala) and D-Ala (Brennan and Nikaido, 1995); further modifications of these amino acids include the amidation of the free carboxyl acids of D-isoglutamate, m-DAP and the terminal D-Ala, though the significance of this is not known (Mahapatra et al., 2005). Another deviation from the usual PG structure is the cross-linking of the peptide chains, which consist mostly of 3 → 3 linkages between the central m-DAP residues in mycobacteria, with fewer of the 3 → 4 m-DAP linkages common to most prokaryotes (Kumar et al., 2012; Lavollay et al., 2008). Mycobacteria also have significantly more peptide cross-links (up to 70–80%) compared to other species, such as E. coli (50%), which provides additional mechanical strength to the mesh-like structure (Matsuhashi, 1966; Vollmer and Holtje, 2004). Mycobacteria also have significantly more peptide cross-links (up to 70–80%) compared to other species, such as E. coli (50%), which provides additional mechanical strength to the mesh-like structure (Matsuhashi, 1966; Vollmer and Holtje, 2004). Mycobacteria also have significantly more peptide cross-links (up to 70–80%) compared to other species, such as E. coli (50%), which provides additional mechanical strength to the mesh-like structure (Matsuhashi, 1966; Vollmer and Holtje, 2004). Mycobacteria also have significantly more peptide cross-links (up to 70–80%) compared to other species, such as E. coli (50%), which provides additional mechanical strength to the mesh-like structure (Matsuhashi, 1966; Vollmer and Holtje, 2004). Mycobacteria also have significantly more peptide cross-links (up to 70–80%) compared to other species, such as E. coli (50%), which provides additional mechanical strength to the mesh-like structure (Matsuhashi, 1966; Vollmer and Holtje, 2004). Mycobacteria also have significantly more peptide cross-links (up to 70–80%) compared to other species, such as E. coli (50%), which provides additional mechanical strength to the mesh-like structure (Matsuhashi, 1966; Vollmer and Holtje, 2004). Mycobacteria also have significantly more peptide cross-links (up to 70–80%) compared to other species, such as E. coli (50%), which provides additional mechanical strength to the mesh-like structure (Matsuhashi, 1966; Vollmer and Holtje, 2004). Mycobacteria also have significantly more peptide cross-links (up to 70–80%) compared to other species, such as E. coli (50%), which provides additional mechanical strength to the mesh-like structure (Matsuhashi, 1966; Vollmer and Holtje, 2004). Mycobacteria also have significantly more peptide cross-links (up to 70–80%) compared to other species, such as E. coli (50%), which provides additional mechanical strength to the mesh-like structure (Matsuhashi, 1966; Vollmer and Holtje, 2004). Mycobacteria also have significantly more peptide cross-links (up to 70–80%) compared to other species, such as E. coli (50%), which provides additional mechanical strength to the mesh-like structure (Matsuhashi, 1966; Vollmer and Holtje, 2004). Mycobacteria also have significantly more peptide cross-links (up to 70–80%) compared to other species, such as E. coli (50%), which provides additional mechanical strength to the mesh-like structure (Matsuhashi, 1966; Vollmer and Holtje, 2004). Mycobacteria also have significantly more peptide cross-links (up to 70–80%) compared to other species, such as E. coli (50%), which provides additional mechanical strength to the mesh-like structure (Matsuhashi, 1966; Vollmer and Holtje, 2004). Mycobacteria also have significantly more peptide cross-links (up to 70–80%) compared to other species, such as E. coli (50%), which provides additional mechanical strength to the mesh-like structure (Matsuhashi, 1966; Vollmer and Holtje, 2004). Mycobacteria also have significantly more peptide cross-links (up to 70–80%) compared to other species, such as E. coli (50%), which provides additional mechanical strength to the mesh-like structure (Matsuhashi, 1966; Vollmer and Holtje, 2004). Mycobacteria also have significantly more peptide cross-links (up to 70–80%) compared to other species, such as E. coli (50%), which provides additional mechanical strength to the mesh-like structure (Matsuhashi, 1966; Vollmer and Holtje, 2004). Mycobacteria also have significantly more peptide cross-links (up to 70–80%) compared to other species, such as E. coli (50%), which provides additional mechanical strength to the mesh-like structure (Matsuhashi, 1966; Vollmer and Holtje, 2004). Mycobacteria also have significantly more peptide cross-links (up to 70–80%) compared to other species, such as E. coli (50%), which provides additional mechanical strength to the mesh-like structure (Matsuhashi, 1966; Vollmer and Holtje, 2004). Mycobacteria also have significantly more peptide cross-links (up to 70–80%) compared to other species, such as E. coli (50%), which provides additional mechanical strength to the mesh-like structure (Matsuhashi, 1966; Vollmer and Holtje, 2004). Mycobacteria also have significantly more peptide cross-links (up to 70–80%) compared to other species, such as E. coli (50%), which provides additional mechanical strength to the mesh-like structure (Matsuhashi, 1966; Vollmer and Holtje, 2004).
Earlier models of the 3D structure of PG within the cell envelope depicts the layers of the glycan backbone lying along the same plane as the plasma membrane (Ghuysen, 1968), orientated perpendicularly to the MAs. However, this model could theoretically result in gaps within the structure of the PG, and a recent ‘scaffold model’ instead positions the glycan back-bones as helices, perpendicular to the plasma membrane (Fig. 2B) (Dmitriev et al., 2000). These helices are proposed to form a matrix with central spaces or ‘pores’ within each set of four peptide-linked helices, that could surround an AG moiety or other structure such as LAM (Dmitriev et al., 2000). This idea sustains biochemical (Besra and Brennan, 1997), chemical (Besra et al., 1995) and EM data (Rastogi et al., 1991) and has since been further supported by Nuclear Magnetic Resonance data (Meroueh et al., 2006).

2.2. Peptidoglycan biosynthesis

PG biosynthesis (Fig. 2C) begins in the cytoplasm with GlmU (Rv1018c), an enzyme with two sequential functions in the synthesis of uridine diphosphate-N-acetylglucosamine (UDP-GlcNAc) (Zhang et al., 2009). As an acetyltransferase, GlmU first transfers an acetyl group from acetyl-coenzyme A (acetyl-CoA) to glucosamine-1-phosphate, producing N-acetylglucosamine-1-phosphate (Zhang et al., 2009), which is further modified by GlmU’s uridyltransferase activity and UTP, into UDP-GlcNAc (Zhang et al., 2009). This is either incorporated into Lipid II as mentioned later, or converted into UDP-MurNAc, a process that is carried out by MurA (Rv1315) and MurB (Rv0482). MurA, a UDP-GlcNAc enolpyruvyl transferase, first transfers enolpyruvate, from phosphoenolpyruvate, to the UDP-GlcNAc, forming UDP-N-acetylenolpyruvylglucosamine (De Smet et al., 1999). MurB (Rv0482) is a

Fig. 2. Structural features of peptidoglycan and biosynthesis A) Chemical structure of peptidoglycan (see key for details). B) Diagram of the ‘scaffold model’ of peptidoglycan. The glycan (purple) of the peptidoglycan forms a matrix of helices orientated perpendicular to the plasma membrane, joined together by peptide cross-links and forming central pores to fit other structures, such as arabinogalactan (AG; orange and green helices) (Dmitriev et al., 2000). C) Biosynthesis of peptidoglycan. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Fig. 3. Structural features of arabinogalactan and biosynthesis A) Chemical structure of arabinogalactan. B) Biosynthesis of arabinogalactan and the rhamnose-N-acetylglucosamine linker unit.
UDP-N-acetylenolpyruvylglucosamine reductase that next reduces the enolpyruvate group, using the cofactor NADPH, to UDP-MurNAc (Eniyah et al., 2018). In mycobacteria, much of the UDP-MurNAc is hydroxylated to UDP-MurGlyc by NamH, a UDP-MurNAc hydroxylase (Mahapatra et al., 2005; Raymond et al., 2005). The penta-peptide side chain is added to the UDP-MurNAc/Nac by the ATP-dependent Mur ligases: MurC, MurD and MurE (Rv2152c, Rv2155c and Rv2158c), which ligate I-Ala, D-isoGlu and m-DAP sequentially (Kurosu et al., 2007; Munshi et al., 2013). The peptide sidechain is completed by MurF (Rv2157c) adding a D-Ala:D-Ala dipeptide subunit (Munshi et al., 2007; Munshi et al., 2013). This muramyl-pentapeptide unit, known as the Park's nucleotide (Chen et al., 2016), is then anchored into the inner membrane by MurX (Rv2156c) (a phospho-N-acetylmuramoyl-pentapeptide transferase, also known as MraY), which conjugates a deacrenyl phosphate (C50-P), producing Lipid I (Chen et al., 2016; Kurosu et al., 2016; Munshi et al., 2017). The glycosyltransferase, MurG (Rv2153c), then converts Lipid I to Lipid II, transferring a UDP-GlcNAc to the muramic acid residue of Lipid I, with β(1 → 4) linkage (Lecreux et al., 1991).

Lipid II is next translocated across the inner membrane to the periplasm. The protein responsible for this was initially thought to be either MurJ (Rv3910) or the Shape, Elongation, Division, Sporulation (SEDS) protein, FtsW (Rv2154c) (Leclercq et al., 2015; Mohammadi et al., 2011; Ruiz, 2015; 2008; Sham et al., 2014). Recent evidence points to MurJ as the more likely flipase (Zheng et al., 2018) and to FtsW as a PG glycosyl transferase (Émami et al., 2017; Meeske et al., 2016; Taguchi et al., 2019). Native mass spectroscopy has demonstrated in vitro binding of the E. coli MurJ to Lipid II (Boilla et al., 2018) and the crystal structure of MurJ from Thermosipho africanus (MurJTA) has also provided evidence of MurJ’s role in Lipid II transport (PDB IDs: 5777, 6NC6, 6NC7, 6NC8 and 6NC9) (Kuk et al., 2019; 2017). MurJTA was shown to have a cytoplasmic entrance and a periplasm exit, as well as a cytoplasmic gate and a central cavity that crystallised in both inward and outward-open conformations, demonstrating how MurJ might flip Lipid II (Kuk et al., 2019; 2017). Electron density, hypothesised to be Lipid II, was present in the portal and central cavity of the inward configuration of MurJTA; this portal is thought to regulate the entry of Lipid II into the central cavity of MurJ (Kuk et al., 2019).

Once on the external face of the membrane, Lipid II is polymerised into a chain of PG by the mono-functional and bi-functional penicillin binding proteins (PBPs) (Sauvage et al., 2008). The bi-functional PBPs, PnA1 (Rv0050), PnA2 (Rv3682) and PnA3, have both a transglycosylase domain for polymerising the glycan backbone, and a D,D-transpeptidase domain to form the 3 → 4 crosslinks between m-DAP and D-Ala of adjacent peptide side-chains, cleaving the terminal D-Ala from one side-chain (Kieser et al., 2015; Patru and Pavelka, 2010). In mycobacteria, however, 80% of the crosslinks are the non-classical 3 → 3 linkage (Kumar et al., 2012; Lavollay et al., 2008). These cross-links are formed by the combined activities of the D,D-carboxypeptidases of the monofunctional PBPs, which remove the terminal D-Ala from one sidechain (Pandey et al., 2018), followed by the activity of the L,D-transpeptidases (Ldts), which cleave the next D-Ala and forms a 3 → 3 crosslink between two m-DAP residues of nearby sidechains (Laponogov et al., 2009). There are two Ldts encoded in the Mtb genome, termed Ldtsm1 (LdtA; Rv0116c) and Ldtsm2 (LdtB; Rv2518c) (Gupta et al., 2010), which are structurally unrelated to the PBPs and contain an active-site cysteine instead of serine (Biarrotte-Sorin et al., 2006; Mainardi et al., 2005).

2.3. Drugs targeting peptidoglycan synthesis and resistance mechanisms

Due to the structural importance of PG, it is an attractive target for antimicrobials. Indeed, part of the mammalian innate immune system is the production of lysozyme, an enzyme that hydrolyses the β(1 → 4) links between GlcNAc and MurGlyc/Nac in the glycan backbone (Berger and Weiser, 1957; Chipman and Sharon, 1969); mycobacteria have a measure of resistance to lysozyme, which is conferred by the modification of MurNac to MurGlyc (Raymond et al., 2005). The most well-known antibiotics that target the biosynthesis of PG are the β-lactams, analogues of D-Ala-D-Ala that bind irreversibly to the active site of the PBP’s transpeptidase domain (Kurz and Bonomo, 2012), preventing 3 → 4 peptide crosslinking. Whilst β-lactams are highly active against both Gram-positive and Gram-negative bacteria, in mycobacteria, most of the peptide crosslinking is 3 → 3 and constructed by the structurally distinct Ldts, which are not inhibited by most β-lactams (Kurz and Bonomo, 2012; Mainardi et al., 2005). Additionally, in many bacteria, resistance to β-lactams has developed in the form of β-lactamases, which destroy the lactam ring. Mycobacteria are no exception to this and express the enzyme, BlaC (Rv2068c), a broad spectrum and highly active β-lactamase (Wang et al., 2006). These factors have meant that β-lactams were not considered as a treatment for mycobacteria for a long time. Recently though, a combinatorial regime has been developed for Mtb that utilises carbapenem, a β-lactam able to inhibit the Ldts and D,D-carboxypeptidases of mycobacteria (Cordillo et al., 2013; Dubé et al., 2012; Hugonnet et al., 2009; Kumar et al., 2012), with a β-lactamase inhibitor, clavulanic acid, which inhibits BlaC (Hugonnet et al., 2009; Hugonnet and Blanchard, 2007; Tremblay et al., 2008). This regime is highly effective against drug-resistant strains of Mtb (Kurz and Bonomo, 2012; Ramón-García et al., 2016). Unfortunately, research has suggested that there are point mutations in BlaC that could enable this β-lactamase to hydrolyse the clavulanic acid (Soroka et al., 2015).

D-cycloserine is a second-line drug, active against drug resistant mycobacteria (MDR and XDR) (World Health Organisation, 2018), that targets the biosynthesis of PG. As an analogue of D-Ala, it is a competitive inhibitor for both alanine racemase (Alr), the enzyme that converts alanine between the L- and D- forms (Halouska et al., 2007), and Ddl, which forms the terminal D-Ala-D-Ala dipeptide of the PG’s peptide sidechains (Bruning et al., 2011; Halouska et al., 2014). While both enzymes are inhibited by D-cycloserine, Alr inhibition is not lethal (Halouska et al., 2007) and the bacteriostatic effect in mycobacteria is caused by the inhibition of Ddl (Halouska et al., 2014; Prosser and de Carvalho, 2013); though Alr inhibition may indirectly enhance D-cycloserine potency by decreasing the available D-Ala to compete for Ddl (Halouska et al., 2014). D-cycloserine is an attractive drug, with extremely low levels of spontaneous resistance in clinical strains, which could be explained by the observed in vivo fitness costs of the few resistance mutations that have arisen in Mtb (Evangelopoulos et al., 2019). Most known resistance mechanisms occur in Alr, including a point mutation (aspartic acid-322 to asparagine) (Coll et al., 2018), and a promoter mutation that leads to Alr overexpression; this latter mutant has increased levels of D-Ala, which outcompete the D-cycloserine for Ddl binding (Halouska et al., 2014; 2007; Nakatani et al., 2017).

Vancomycin, a glycopeptide that binds to the terminal D-Ala-D-Ala and prevents cross-linking of the pentapeptide side chains (Reynolds, 1989), is mainly used to treat Gram-positive bacteria due to its inability to cross the outer membrane of Gram-negatives and mycobacteria. However, vancomycin could prove useful in mycobacteria if used in combination with inhibitors of cell wall synthesis enzymes, such as ethambutol (Arain et al., 1994; Soetaert et al., 2015). Ramoplanin (Wu et al., 2015), enduracidin and teixobactin (Ling et al., 2015; Piddock, 2015) are inhibitors that bind directly to Lipid II, preventing transglycosylation of the glycan backbone. Ramoplanin and enduracidin are structurally related, though an additional mannose moiety on ramoplanin enhances solubility (Wu et al., 2015). Teixobactin is a peptidyl-like antibiotic, derived from uncultured soil bacteria, that is active against Gram-positive bacteria and Mtb, with low levels of spontaneous resistance (Ling et al., 2015; Piddock, 2015).

The bi-functional enzyme, GlmU, which is involved in UDP-GlcNAc synthesis, is essential (Zhang et al., 2011), and several inhibitors have been examined, including substrate analogues (Li et al., 2011) and the natural compounds dicumarol and coumarin (Han et al., 2019).
are a number of naturally occurring nucleoside antibiotics, including capuramycin, caprazamycin, liposidomycin and muraymycin, that target MurX, the essential translocase that produces Lipid I (Boyle and Donachie, 1998; Dini, 2005). Several derivatives of capuramycin have been made, some of which are active against non-replicating Mtb (Reddy et al., 2008; Siricilla et al., 2015). The most successful derivative is SQ641, which has been through pre-clinical trials, though its poor aqueous solubility is disadvantageous (Pstragowski et al., 2017; Reddy et al., 2008).

2.4. Arabinogalactan structure

Arabinogalactan (AG) is a tree-like structure composed of a galactose trunk with arabinose branches, covalently attached to the PG via a rhamnose-GlcNAc linker unit at the base of the trunk (Fig. 3A) (Lechevalier and Lechevalier, 1970; McNeil et al., 1987). The main trunk structure consists of approximately 30 β-D-galactofuranose residues (Galβ(1 → 4) residues with alternating β(1 → 5) and β(1 → 6) linkages (Daffé et al., 1990). This is elaborated with several arabinofuranose (Araf) branches, all of which are attached to the 6-linked Galf residues at the 8th, 10th, and 12th positions of the trunk (Alderwick et al., 2005; Besra et al., 1995; Daffé et al., 1990). The initial Araf residues are connected via α(1 → 5) linkage and are further extended with α(1 → 5) linked Araf residues (Daffé et al., 1990) residues. The arabinian is a highly branched structure and these branch points are introduced with α(1 → 3) linked Araf residues (Daffé et al., 1990). The chains terminate at the non-reducing ends with a characteristic branched hexa-arabinoside unit (Araf)₆, comprising 3-5-Araf-(1 → 2)-α-D-Araf₁₋₅, 3-5-Araf-(1 → 2)-α-D-Araf₁₋₅, and an α-D-Araf₆ (Daffé et al., 1990). The terminal and penultimate Araf residues of the Araf₆ unit provide the anchoring points for the linker unit of the AG (McNeil et al., 1991). Interestingly, some of the 3,5-branched point Araf residues have been found to be modified on the position 2 with either a galactosamine or a succinyl residue (Bhamidi et al., 2008; Draper et al., 1997; Lee et al., 2006; Peng et al., 2012; Škovierová et al., 2010). The purpose of these alterations is not certain, though the additional galactosamine has been found to confer protection from the host’s immune system (Škovierová et al., 2010). Also it is speculated that the galactosamine and succinyl residues could interact to increase the stability of the arabian domain; the protonated galactosamine has a positive charge and could interact with either the phosphate groups of the membrane lipids or with the negatively charged succinyl residues (Bhamidi et al., 2008).

2.5. Arabinogalactan biosynthesis

AG biosynthesis (Fig. 3B) begins in the cytoplasm with the synthesis of the rhamnose-GlcNAc linker unit, α-L-rhamnopyranoside-(1 → 3)-α-D-GlcNAc(1 → P), that connects the AG with the PG. WeC (Rv1302), a GlcNAc-1-P transferase, first produces C₅₀-P-GlcNAc, using C₅₀-P and GlcNAc-1-P (Jin et al., 2010), to which L-rhamnose is added from dTDP-rhamnose, by WbbL (Rv3265c), a rhamnosyltransferase (McNeil et al., 1990; Mills et al., 2004). The decaprenyl-phosphate anchors the resulting rhamnose-GlcNAc linker unit to the inner membrane, with the sugar groups pointing into the cytoplasm. The galactan chain is constructed here using the soluble substrate, UDP-Galf. The dual activity of the galactofuranosyl transferase, Glft1 (Rv3782), sequentially polymerizes the addition of two priming Gal residues onto the rhamnose of the linker unit (Alderwick et al., 2008; Mikušová et al., 2006): the first Galf residue with β(1 → 4) linkage to the D-rhamnose, and the second Galf with β(1 → 5) linkage to the first Galf residue (Belánová et al., 2008). Glft2 (Rv3808c) then polymerizes approximately 28 Galf residues with alternating β(1 → 6) and β(1 → 5) linkages (Kremer et al., 2001a; Rose et al., 2006). At this point, the galactan domain, C₅₀-P-N-acetylglucosamine-L-rhamnose-galactofuranose₃₀, is transported across the inner membrane to the periplasm. There are two candidates for this role, Rv3781 and Rv3783, both of which encode ABC transporters (Dianívková et al., 2011).

The arabian domain is assembled onto the galactan by membrane-bound arabinofuranosyl transferases (ArafT) in the periplasm, using the lipid donor substrate decaprenylphosphoryl-β-D-arabinofuranose (DPA) (Wolucka et al., 1994). The DPA is synthesised in the cytoplasm from ribose-5-phosphate: PrsA (Rv1017c), a ribose-phosphate pyrophosphokinase, first adds a pyrophosphate group to ATP to position C1 of the ribose, to generate 5-phosphoribose-1-diphosphate (pRpp) (Alderwick et al., 2011b). UbiA (Rv3806c) (a decaprenyl-phosphate phosphoribosyltransferase) substitutes the terminal phosphate group from the pyrophosphate for a decaprenyl phosphate (C₅₀-P), anchoring it to the inner membrane as decaprenylphosphoryl-β-D-arabinofuranose (DPPR) (Alderwick et al., 2005; Huang et al., 2008; 2005), and Rv3807c (a putative phospholipid phosphatase) dephosphorylates position C-5 (Jiang et al., 2011). The resulting decaprenylphosphoryl-β-D-ribose (DPR) undergoes an epimerization reaction of the ribose, catalysed by the decaprenylphosphoryl-2-epimerase, DrpE1 (Rv3790) and DrpE2 (Rv3791), to produce DPA (Mikušová et al., 2005). The DPA is then flipped across the inner membrane, reorienting the Araf residue into the periplasm. Rv3789 was initially thought to be the DPA transporter (Larrouy-Maumus et al., 2012), though a role in Araf recruitment has also been suggested (Kolty et al., 2015).

In the periplasm, the C₅₀-P-N-glcNAc-L-rhamnose-galactofuranose (galactan domain) is primed by the Araf, AftA (Rv3792), with three α(1 → 5) linked Araf residues on the C-5 of the β(1 → 6) Galf residues at positions 8, 10, and 12 (Alderwick et al., 2006; 2005). The main body of the arabian is then constructed by a combination of different ArafTs, which introduce straight chains and branch points. Initially, the EmbA (Rv3794)/EmbB (Rv3795) heterodimer is thought to polymerise the longer chains of α(1 → 5) arabinose chains (Alderwick et al., 2005; Khasnobis et al., 2006; Zhang et al., 2020). The role of EmbAB is evidenced by a knock-out of the sole emb gene in the related bacteria, C. glutamicum, which abolished all AG synthesis, apart from the initial priming Araf (Alderwick et al., 2005). A knock-out of both proteins is lethal in M. smegmatis, but a single deletion of either embA or embB, only demonstrated a role in the construction of the terminal hexa-arabinoside unit, which lacked the terminal branch point in the mutants (Escuyer et al., 2001; Khasnobis et al., 2006; Lee et al., 1997). Formation of the terminal branch points, with α(1 → 3) linkage, has since been confirmed with the purified EmbAB enzyme complex (Zhang et al., 2020). It could be that the EmbAB dimer possesses both α(1 → 5) elongation and α(1 → 3) branch point activity, but that the α(1 → 5) activity is redundant in the embA or embB knock-outs, compensated for by the remaining EmbA or EmbB protein, respectively. Certainly, there is not currently an alternative candidate for the α(1 → 5) elongation. Earlier branch points in the AG are introduced by AftC (Rv3781) and AftD (Rv0236c), which incorporate α(1 → 3) linked Araf residues (Bhamidi et al., 2008; Škovierová et al., 2009). Addition of these branches, followed by extensions, leads to a highly branched structure (Alderwick et al., 2005). After the terminal 3,5-branch is formed by EmbAB’s α(1 → 3) transferase activity, AftB (Rv3805c) adds the terminal Araf residues with a β(1 → 2) linkage (Seidel et al., 2007), terminating synthesis with the classic hexa-arabinofuranose cap (Seidel et al., 2007). Further modification of the arabian domain can occur by the addition of a D-galactosamine by Rv3779, or succinyl residue by an unknown transferase, to the C-2 of the terminal 3,5-branched Araf residue (Bhamidi et al., 2008; Draper et al., 1997; Lee et al., 2006; Peng et al., 2012; Škovierová et al., 2010). The completed AG is ligated to PG by the phosphotransferase, Lcp1 (Rv3267) (Harrison et al., 2016).

2.6. Drugs targeting arabinogalactan and resistance mechanisms

Ethambutol is a bacteriostatic agent that acts by inhibiting its namesake, the Emb proteins (Belanger et al., 1996), preventing the polymerisation of arabinan, both in AG synthesis by EmbB (Safi et al., 2020).
2010; 2008; Starks et al., 2009) and lipoarabinomannan synthesis by EmbC (Goude et al., 2009). Ethambutol inhibition in M. smegmatis results in severely truncated arabinogalactan (Deng et al., 1995; Takayama and Kilburn, 1989). In C. glutamicum, only the galactan backbone and the priming arabinose residues remain; these are added by AftA, an arabinosyltransferase not affected by ethambutol (Alderwick et al., 2006). Ethambutol treatment also prevented the mycolic acid layer from covalently linking to the cell wall in M. smegmatis, due to the absence of attachment sites on the AG (Takayama and Kilburn, 1989). Recent structural studies have described ethambutol bound to the active sites of EmbB and EmbC, inhibiting activity by competing with the arabinose of both the donor and acceptor substrates (PDB IDs: 7BVC, 7BWR, 7BVG, 7BVF, 7BVE and 7BVH) (Zhang et al., 2020). Interestingly, all three Emb proteins co-purified with the FAS-II acyl carrier protein, AcpM, bound to their cytoplasmic exposed surface, though more work is required to determine the function of this protein in AG/LAM assembly (Zhang et al., 2020). Resistance to ethambutol predominantly occurs with mutations in EmbB (93.7%), most of which are substitutions of methionine-306 to a branched chain amino acid (isoleucine, leucine or valine) (Zhao et al., 2015). 72.7% of all MDR strains identified have mutations in EmbB, which reflects the universal application of ethambutol as a front-line drug (Zhao et al., 2015).

The nitrobenzamine drug, BTZ, has uncovered DprE1 as another useful target in the AG pathway; this drug is active in low doses against both MDR and XDR strains (Makarov et al., 2009; Pasca et al., 2010). DprE1 acts as an epimerase along with DprE2, converting DPR to DPA, the substrate used by all arabinosyltransferases in Mtb (Wolucka et al., 1994). Inhibition occurs when the nitro group of BTZ is converted by DprE1 to a nitroso group, which then forms a covalent bond with the active site cysteine-387 (Batt et al., 2012; Makarov et al., 2009; Neres et al., 2012; Trefzer et al., 2010). Though resistance can develop through the substitution of this cysteine for a serine (Makarov et al., 2009), there are several inhibitors in the pipe-line, including TCA1 (Wang et al., 2013), GSK710 (Batt et al., 2016) and Azaindole (Chatterji et al., 2014), that do not rely on cysteine-387 for inhibition.

The caprazamycin derivative, CPZEN-45, inhibits WecA (Ishizaki et al., 2013), an essential protein involved in the synthesis of the unique rhamnose-GlcNac linker between AG and PG (Huszár et al., 2017; Jin et al., 2010). While CPZEN-45 has good pharmacological properties and is active against MDR strains, it has poor bioavailability and so is currently being trialled for inhalation therapy in combination with the unrelated second-line drug, capreomycin (Pitner et al., 2019). The substrate UDP-Galf is not utilised in humans (Peltier et al., 2008; Tefsen et al., 2012) and so substrate analogues could be exploited to target the galactofuranosyltransferases, GlfT1 and GlfT2, although none to date have sufficient activity against the enzyme or whole cell (Konyariková et al., 2020).

2.7. Structures of the mycolic acids

Mycolic acids (MA), an abundant lipid of Mtb, are covalently attached to two-thirds of the non-reducing ends of the AG, where they extend out, perpendicular to the inner membrane, forming the inner leaflet of the MOM (McNeil et al., 1991; Minnikin, 1982). Since they are long chains of 70–90 carbons (α-alkyl-β-hydroxy fatty acids), the MAs fold into energetically favourable conformations, which is dependent on their structural features. This enables tight packing within the layer, forming an impermeable hydrophobic barrier, which is essential for viability (Bhatt et al., 2005; Brown et al., 2007) and pathogenesis (Dubnau et al., 2000; Glickman et al., 2000; Peyron et al., 2008; Rao et al., 2006; Yuan et al., 1998), while also preventing antibiotic entry into the cell (Jarlier and Nikaido, 1994; Liu and Nikaido, 1999). While
some MAs are linked to the cell wall, others are present as extractable lipids in the outer leaflet of the MOM. The majority of the extractable MAs are linked to trehalose as trehalose monomycolates (TMM) and trehalose dimycolates (TDM), though free mycolates are also present, particularly in latent phase cells (Bacon et al., 2014). TMM and TDM are thought to be intermediates in the formation of the MA layer (Kremer and Besra, 2005), though TDM, the ‘cord factor’, also has roles in pathogenicity. TDM interacts with the macrophage receptor Mincle, a C-type lectin receptor, preventing acidification of the phagosome and enabling granuloma formation (Hunter et al., 2006; Indigo et al., 2003; Ishikawa et al., 2009; Patin et al., 2017). The free mycolates have also been found to promote granuloma formation, which correlates with their abundance in latent cells (Bacon et al., 2014).

MAs are formed of two parts that can be cleaved at high temperatures: the meromycolate moiety is a long chain merododehyde of up to 62 carbons, usually with two functional groups, including cyclopropane rings, methyl groups and oxygen functions (Asselineau and Lederer, 1950; Barry et al., 1998). The α-branch is a shorter, saturated chain of 24–26 carbons, without functional groups (Asselineau and Lederer, 1950). The three classes of MAs in Mtb (Fig. 4A) consist of α-mycolates, methoxymycolates and ketomycolates. The α-MAs are the most abundant and contain only cis-cyclopropane rings, while the oxygenated methoxy-MAs and keto-MAs have either a cis-cyclopropane ring, or a trans-cyclopropane ring with an adjacent methyl branch (Brennan and Nikaido, 1995; Minnikin, 1982). Methoxy-MAs are more abundant with cis-cyclopropane rings, while keto-MAs are more common with trans-cyclopropane rings (Watanabe et al., 2002). The cyclopropane rings introduce kinks into the long chains (Brennan and Nikaido, 1995), which along with hydrophilic interactions from the oxygen functions (Villeneuve et al., 2005), enables the MAs to fold into different conformational shapes. The keto-MAs typically adopt a ‘W’ shape, packing together four chains in parallel (Villeneuve et al., 2007; 2005), while the α- and methoxy-MAs are more flexible and can take on more open structures (Groenewald et al., 2014). Interestingly, the ‘W’ conformations of the keto-MAs are reliant on the trans-configuration of the cyclopropane ring, a feature that could support a more tightly packed MA layer in strains with a higher proportion of trans-rings (Villeneuve et al., 2013) and could explain the requirement of keto-MAs for virulence (Sambandan et al., 2013; Yuan et al., 1998).

2.8. Mycolic acid biosynthesis

Fatty acid synthase-I (FAS-I) (fas; Rv2524c) is the only system in Mtb capable of synthesising fatty acids de novo. Uniquely to mycobacteria, the product distribution is bimodal, and the synthesised fatty acids can be one of two different chain lengths: either longer, C\text{26}-C\text{30} chains, or shorter chains of C\text{16}-C\text{18} (Bloch and Vance, 1977; Peterson et al., 2013). The Cell Surface 6 (2020) 100044

The mechanism employed to produce fatty acid products with two quite different chain lengths, is complex and could involve interactions between several components of both FAS systems. Also implicated in this are endogenous polysaccharides, containing either 3-O-methyl-D-mannose or 6-O-methyl-D-glucose, which have been shown to favour the shorter chain lengths by complexing with these products and facilitating their release from the FAS-I complex (Banis et al., 1977; Papaioannou et al., 2007; Wood et al., 1977).

FAS-II is a ‘prokaryote-like’ fatty acid synthase, a complex of discrete enzymes that correspond to the catalytic domains of FAS-I. The extender unit, malonyl is presented on an acyl carrier protein (ACPm; Rv2244), which is transferred from malonyl-CoA by the transacylase, FabD (Rv2243) (Kremer et al., 2001b), FabH (Rv0533c), a β-ketoacyl ACP synthase, shuttles the shorter C\text{16}-C\text{18} acyl-CoA chains from FAS-I to FAS-II, through a Claisen-like condensation with malonyl-ACPm (Choi et al., 2000). The resulting β-ketoacyl-ACPm is presented to the FAS-II enzymes, where the keto group is reduced by the keto-reductase, MbaA (Rv1483), to form β-hydroxylacyl-ACPm (Marrakchi et al., 2002). The dehydratase heterodimers, HadAB (Rv0635-Rv0636) and HadBC (Rv0636-Rv0637) convert this to enoyl-ACPm (Brown et al., 2007; Sacco et al., 2007), which is then reduced to acyl-ACPm by the enoyl-CoA reductase, InhA (Rv1484) (Banerjee et al., 1994). Further rounds are then initiated by the β-ketoacyl synthases, KasA/B (Rv2245 and Rv2246), extending the chain by an acetate each cycle (Kremer et al., 2002a; Schaeffer et al., 2001). FAS-II extends the acyl chain to C\text{18}-C\text{26}, after which modifications, such as further extensions to C\text{24}-C\text{62}, cis-/trans- cyclopropanations, methylations and methoxy-/keto-group additions, produce the mature meromycolate chain (Barkan et al., 2010; Glickman et al., 2003; Glickman et al., 2000; Barry et al., 1998).

Pks13 (Rv3800c) is an iterative Type I polyketide synthase (PKS) that joins together the two branches of the MAs through a Claisen-like condensation (Portevin et al., 2004). This involves the action of FadD32 (Rv3801c), a fatty-acyl-AMP ligase, which activates the meromycolyl-ACPm to meromycyl-AMP and loads the acyl chain onto the N-terminal ACP of Pks13 (Léger et al., 2009; Trivedi et al., 2004). The α-branch is carboxylated by the ACCase complex, a step that is necessary for the Claisen-type reaction (Gande et al., 2007), and loaded onto the C-terminal ACP domain of Pks13 (Gavalda et al., 2014). The product of the condensation reaction is then transferred onto a trehalose by Pks13, producing α-alkyl β-ketoacyl trehalose monomycolate (TMMK) (Gavalda et al., 2014) and CmrA (Rv2509) reduces the keto group to produce the mature trehalose monomycolate (TMM) (Bhatt et al., 2008; Lea-Smith et al., 2007). The TMM is transported across the inner membrane by Mmpl3 (Rv0206c) (Grzegorzewicz et al., 2012; Tablan et al., 2012). In the periplasm, a complex of secreted proteins with mycolyltransferase activity, known as the Antigen 85 complex (Ag85A, Ag85B, Ag85C; Rv3804c, Rv1886c, Rv0129c), attach the TMM either to an mycolyltransferase activity, known as the Antigen 85 complex (Ag85A, Ag85B, Ag85C; Rv3804c, Rv1886c, Rv0129c), attach the TMM either to an aglycone or to the cell wall (Bhatt et al., 2008; Lea-Smith et al., 2007). The TMM is transported across the inner membrane by Mmpl3 (Rv0206c) (Grzegorzewicz et al., 2012; Tablan et al., 2012). In the periplasm, a complex of secreted proteins with mycolyltransferase activity, known as the Antigen 85 complex (Ag85A, Ag85B, Ag85C; Rv3804c, Rv1886c, Rv0129c), attach the TMM either directly to the AG to form mAG (mycolylarabinogalactan), or to an acceptor TMM, producing TDM (Belisle et al., 2009; Jackson et al., 2007), and loaded onto the C-terminal ACP domain of Pks13 (Gavalda et al., 2014). The product of the condensation reaction is then transferred onto a trehalose by Pks13, producing α-alkyl β-ketoacyl trehalose monomycolate (TMMK) (Gavalda et al., 2014) and CmrA (Rv2509) reduces the keto group to produce the mature trehalose monomycolate (TMM) (Bhatt et al., 2008; Lea-Smith et al., 2007). The TMM is transported across the inner membrane by Mmpl3 (Rv0206c) (Grzegorzewicz et al., 2012; Tablan et al., 2012).

2.9. Drugs targeting mycolic acid biosynthesis and resistance mechanisms

MAs are essential for viability and as such the proteins involved in MA biosynthesis and transport represent excellent drug targets (Bhatt et al., 2005; Brown et al., 2007). The front-line drug, isoniazid (INH), and the structurally related second-line drug, ethionamide (ETH), inhibit the FAS-II enoyl-CoA reductase, InhA (Banerjee et al., 1994). INH is a pro-drug that must first be activated by the peroxidase activity of KatG (Rv1908c) (Zhang et al., 1992), forming an INH-NAD adduct that competitively inhibits InhA and stalls MA synthesis (Rawat et al., 2003). Isoniazid has been used to treat tuberculosis since 1952 (Murray et al., 2015) and as such resistance has developed with up to 82% of all MDR isolates having mutations in the katG gene (Torres et al., 2015), which prevents activation of the pro-drug; other resistance mechanisms include mutations in the NADH binding pocket of InhA (Banerjee et al., 1994; Dessen et al., 1995; Rozwarski et al., 1998), which have the additional downside of ETH cross-resistance. ETH is also a pro-drug, though is activated by an alternative mechanism, EthA (Rv3854c), a
monooxygenase that oxidises ETH to the active species (Baulard et al., 2000; DeBarber et al., 2000; Vannelli et al., 2002); mutations in EthA have been identified in up to 76% of ETH-resistant isolates (Morlock et al., 2003). The search for further InhA inhibitors, through compound library screening for activity against InhA, has revealed a new set of thiadiazole inhibitors, the most promising of which is GSK6963; this does not require activation by KatG and so bypasses this route of resistance, and is active against MDR and XDR isolates (Martínez-Hoyos et al., 2016). The in vitro resistance mutation rate of GSK6963 is also much lower than that of INH and it is hoped that this will represent a lower frequency of spontaneous resistant mutants in clinical isolates; any resistance mutations map to the active site of the inhA gene (glycine-96 or methionine-103) (Martínez-Hoyos et al., 2016).

The β-ketoacyl synthases, KasA/B, are another useful drug target in the mycolic acid pathway, with inhibitors including thiolactomycin (Kremer et al., 2000), although activity against the whole cell is poor (Miyakawa et al., 1982); cerulenin (Schaeffer et al., 2001); and platensimycin (Brown et al., 2009). Additionally, an indazole sulfonamide, GSK7274, which targets just KasA, has been found through whole cell screening and generation of spontaneous resistant mutants in M. bovis BCG (Abrahams et al., 2016). Interestingly, the co-crystal structure of KasA with GSK7274 has demonstrated that the inhibitor binds to the acyl channel, which contrasts to the binding observed for other inhibitors of KasA (PDB ID: 5LD8) (Abrahams et al., 2016). Isoxyl and thiacetazone, thio carbamide-containing drugs previously used in the treatment of tuberculosis, are prodrugs that are activated by EthA, and ultimately inhibit the FAS-II dehydratase, HadAB (Grzegorzewicz et al., 2015). Although discontinued due to their toxic side effects, they nonetheless have validated HadAB to be another useful drug target.

FadD32, which is involved in the condensation of the two MA branches, is essential in Mtb (Portevi et al., 2005). Diarylcoumarins were initially identified as effective inhibitors that are also active in Mtb whole cell and animal models (Stanley et al., 2013), and more chemically stable derivatives have been synthesised with the addition of a quinoline ring (Fang et al., 2018). High-throughput screening (HTS) using an assay with purified FadD32 located a further five classes of inhibitor: thiopyrimidine, benzimidazole, pyrazole, quinolone and isoquinolone (Galantrin et al., 2013).

PKS13, the polyketide synthase that condenses the two branches of the MA, is also an essential target (Portevi et al., 2004; Wilson et al., 2013), with inhibitors including benzofuran, thiophenes and coumestan. The benzofuran, TAM16, which is active against MDR and XDR strains, inhibits PKS13 by binding to the active site of the thioesterase (TE) domain (Aggarwal et al., 2017). Coumestan analogues are derived from modifications of benzofuran and similarly inhibit the TE domain (Zhang et al., 2018). Thiophenes have a different mechanism to benzofuran; binding to the N-terminal ACP domain and preventing interactions with FadD32 (Wilson et al., 2013).

The generation of spontaneous resistant mutants to many of the recently available drugs found to target Mtb, has identified MmpL3 as a potentially significant new drug target (Grzegorzewicz et al., 2012; Tahlan et al., 2012). The MmpLs proteins are RND (resistance, nodulation and cell division) superfamily membrane proteins (Saier et al., 1994), involved in lipid transport across the inner membrane. MmpL3 transports the MA precursor, TMM, and is the only essential MmpL protein in Mtb (Dome nech et al., 2005). The structural diversity of these new drugs, along with their broad-spectrum of targets in other bacterial and fungal species, has caused some ambiguity as to their true target in Mtb, though many have been demonstrated to bind directly to MmpL3 in the crystal structure, including SQ109 (1,2-ethenylideniamine), AU1235 (adaman tyl urea) and ICA (indolcarboxam ide) (PDB IDs: 6AJH, 6AGJ, 6A6J, 6ACP and 6AJG) (Zhang et al., 2019). In this study, the compounds that were either co-crystallised or modelled to the MmpL3 structure, bound to the same part of the central channel involved in proton relay, disrupting critical interactions between aspartic acid and tyrosine residues (Zhang et al., 2019). The most promising MmpL3 inhibitor is SQ109, which is currently in phase II clinical trials in the USA (World Health Organisation, 2019).

The secreted complex, AG-85, responsible for mycolic acid attachment and TDM synthesis, consists of three related proteins, though there is some redundancy (Belisle et al., 1997; Jackson et al., 1999): the loss of Ag85B is tolerated, though Ag85A is required for growth in macrophages (Armitige et al., 2000) and a deficiency in Ag85C reduces mycolic acid transfer to the mAGP complex by 40% (Jackson et al., 1999). I3-Ag85 (2-amin o-6-propyl-4,5,6,7-tetrahydro-1-benzothio phene-3-carbonitrile) is a derivative of a compound from a library found to inhibit Ag85C, which is active against MDR and XDR strains, though the MIC is poor (Warrier et al., 2012). Potent analogues of I3-Ag85 derivatives have been produced using fragment-based drug discovery (Scheid et al., 2010). Cyclophilins/cyclophostins are a new class of monocyclic-enolophosphonate that bind covalently to the catalytic serine residue of Ag85C and are potent against Mtb (Viljoen et al., 2018). Ebselen similarly binds covalently to an active site cysteine in Ag85C and is active against MDR strains (Favrot et al., 2014).

Mycolic acid attachment to AG is also inhibited by the second-line drugs, pretomanid and delamanid, though the exact targets are still not known (Matsumoto et al., 2006; Stover et al., 2000). Resistant mutants have thus far only been generated in ddn, encoding a deazaflavin dependent reductase, and enzymes involved in the synthesis and reduction of the F420 cofactor (Choi et al., 2001; Manjunatha et al., 2006), which is thought to be a drug activation system rather than the target (Haver et al., 2015; Hoffmann et al., 2016; Manjunatha et al., 2006).

2.10. Phosphatidyl-myco-inositol mannosides (PIMs), lipomannan (LM) and lipoparabinomannan (LAM)

Another distinctive feature of the mycobacterial cell wall is the presence of three species of glycolipids: phosphatidyl-myco-inositol mannosides (PIMs), lipomannan (LM) and lipoparabinomannan (LAM), which have been found in abundance, non-covalently bound to the inner membrane, and possibly also the outer membrane (Ortalo-Magné et al., 1997; Pitarque et al., 2008). The core structure consists of an acylated α-D-glycero-3-phospho-(1-D-myco-inositol) (PI) unit, glycosylated with up to six α-D-mannopyranosyl (Manp) residues in PIMs and a longer Manp core in LM/LAM (Kaur et al., 2007; Mishra et al., 2007), with an additional highly branched arabian domain in LAM (Fig. 5). In eukaryotes, various derivatives of the PI unit exist, which are often involved in cell signalling (Falasca and Maffucci, 2006; Kutanadelze, 2006; Lindmo and Stenmark, 2006). The mycobacterial PI unit differs in that it is glycosylated with Manp residues at the O-2 and O-6 positions of the inositol ring, forming a mannosyl phosphate inositol (MPI) anchor. PIMs exist in varying degrees of mannosylation, carrying 1 to 6 Manp residues, though tri- and tetra-acylated phospho-myco-inositol dimannosides (Ac1PIM2 and Ac2PIM2) and hexamannosides (Ac1PIM4 and Ac2PIM4) are the most prevalent forms of PIMs in M. bovis BCG, M. tuberculosis H37Rv and M. smegmatis (Kho et al., 1995a). Both forms have been shown to be an important structural feature of the inner membrane, increasing stability and decreasing permeability to drugs (Bansal-Mutalik and Nikaido, 2014). In contrast to the most abundant PIMs, LM and LAM are highly mannosylated, commonly carrying a chain of 21–34 α(1 → 6) linked Manp residues, interspersed with 5–10 single branched α(1 → 2) linked Manp units (Chatterjee et al., 1992a). LAM has an additional highly branched arabian layer of 50–80 arabinofuranose (Araf) residues, similar to the domain on AG (Kho et al., 1996).

LAM and LM both play an important role in the modulation of the host's immune defences (Schlesinger et al., 1994; Shukla et al., 2018). A variety of LAM caps exist, each affecting the immune response in different ways. Mannose capped LAM (ManLAM) is a major Mtb virulence factor, which is thought to contribute to the inhibition of the host's immune response, and also to act as the ligand for phagocytosis of Mtb (Schlesinger et al., 1994). Conversely, Mtb has been shown to stimulate...
an immune response through toll-like receptor 2 (TLR2), signalling via phosphoinositol-capped LAM (PILAM) and LM, which both act as TLR2 agonists (Shukla et al., 2018). For these interactions to occur, LM and LAM would need to be surface exposed, and indeed it has been shown these lipoglycans insert into the outer membrane lipids, in addition to those of the inner membrane (Ortalo-Magne et al., 1996; Pitarque et al., 2008; Sani et al., 2010). However, the issue of LM/LAM location is still disputed, with other studies only demonstrating surface exposure in the presence of the cell wall inhibitors, isoniazid and ethambutol (Alsteens et al., 2008). Also, an outer membrane location would require an as yet undiscovered transport system, though a system similar to that of *E. coli* LPS transport has been suggested (Pitarque et al., 2008). Indeed, most immunomodulatory studies have relied upon purified components, which does not account for surface exposure (Fratti et al., 2003; Knutson et al., 1998; Nigou et al., 2001; Vergne et al., 2003), though an interaction between ManLAM and the host’s immune system has been confirmed using live *Mtb* (Decout et al., 2018).

2.11. Biosynthesis of phosphatidylinositol-mannosides, lipomannan (LM) and lipoarabinomannan (LAM)

The synthesis of these lipoglycans progresses from PIM → LM → LAM (Besra et al., 1997) (Fig. 5) and begins in the cytoplasm with the production of sn-glycerol-3-phospho-(1-D-myo-inositol), a phosphatidylinositol (PI) anchored to the inner membrane by two fatty acid chains linked to the glycerol moiety. This occurs by way of a two-part process: PgsA1 (Rv2612c), a phosphatidylinositol phosphate synthase, initiates the biosynthesis of PI by catalysing the conjugation of D-myo-inositol-3-phosphate with cytidine diphosphate diacylglycerol (Jackson et al., 2000; Morii et al., 2010). The phosphatidylinositol phosphate formed in this reaction is then broken down into phosphatidylinositol and phosphate by an unknown phosphatase (Gräve et al., 2019; Jackson et al., 2000; Morii et al., 2010).

A group of GDP-mannopyranose (Manp) dependent cytoplasmic α-mannopyranosyltransferases (ManpT), from the GT-A/B (glycosyltransferase A/B) superfamily (Liu and Mushegian, 2003; Morita et al., 2005), are involved in the early stages of PIM biosynthesis, building upon the myo-inositol ring of the PI, which is anchored on the cytoplasmic face of the inner membrane: PimA (Rv2610c) transfers the first Manp to the O-2 position with α(1 → 2) linkage, forming PIM1 (Boldrin et al., 2014; Guerin et al., 2007; Korduláková et al., 2002a) and PimB (Rv2188c) transfers a second Manp residue with α(1 → 6) linkage to position O-6 to form PIM2 (Guerin et al., 2009). An acyltransferase, Rv2611c, acylates position C-6 of the Manp residue at position 2 (Korduláková et al., 2003). It is not entirely clear whether this acylation occurs before or after the mannosylation of PIM1, though studies have shown that Ac1PIM1 is preferentially formed over Ac1PIM2, suggesting that PIM1 is the likely acceptor (Korduláková et al., 2003). An unknown transferase acylates the C-3 position of the myo-inositol ring, to form the tetra-acylated mannosylated PI anchor (MPI anchor), though the tri-acylated form is more abundant (Khoo et al., 1995a). The third and fourth Manp residues are added with α(1 → 6) linkage, to the Manp at position 6 of the inositol ring, forming Ac1/2PIM3 and Ac1/2PIM4 respectively. The ManpT(s) responsible for this has yet to be determined; PimC has been proposed to transfer the first or both of these residues, though there appears to be multiple pathways, and while PimC is present in *M. tuberculosis* CDC1551, other mycobacterial species such as *Mtb* H37Rv and *M. smegmatis* do not carry a homologous gene (Krämer et al., 2002b).

At some point in the synthesis between Ac1/2PIM2-Ac1/2PIM4, the mannosylated inositol moiety is transferred across the membrane and into the periplasm, possibly by the ABC transporter, Rv1747, though there is some redundancy in the pathway (Glass et al., 2017). Here, the synthesis of the higher PIMs, LM and LAM is carried out by membrane-bound GT-C superfamily ManpTs (Liu and Mushegian, 2003; Morita et al., 2005) using polyisoprenyl-phosphate-based mannose donors, which are synthesised by Ppm1 (Rv2051c) (Berg et al., 2007; Gurcha et al., 2002). Ac1/2PIM4 forms the branch point between the Ac1/2PIM pathway and LM/LAM synthesis. This is mediated by the lipoprotein, LpqW (Rv1166) (Kovacevic et al., 2006), knock-outs of which have shown that LpqW favours the synthesis of LM/LAM by enhancing the activity of the subsequent mannosyltransferase in their synthesis, MptB...
the PIM6 pathway, adding the α(1 → 2) linked fifth and possibly sixth (Crellin et al., 2008; Rainczuk et al., 2012). PimE (Rv1159) facilitates the essentiality of the major arabinosyltransferase in grown, indicating a role in viability (Korkegian et al., 2014). This is confirmed by the structure of the arabinoxylantransferase donor, DPA, using DPA (decaprenylphosphoryl-β-D-arabinofuranose) as the arabino and knockouts have demonstrated that MptB adds the initial part of the chain, followed by MptA (Mishra et al., 2008; 2007). The mature LM possesses additional mannosyl residues as α(1 → 2) linked monomannose side chains, which are transferred by MptC (Rv2181) (Kaur et al., 2008; Mishra et al., 2011).

LAM synthesis builds upon a mature LM core, adding a highly branched arabian domain, which is synthesised by membrane-bound arabinoxylantransferases (AraTs), using DPA (decaprenylphosphoryl-β-D-arabinofuranose) as the arabino donor (Wolucka et al., 1994). The mannosyl core is first primed with Araf (arabinofuranose), by an unknown AraT, in what is thought to be a similar process to the synthesis of the arabinoxylan. The position of this priming is not clear and both the O-2 (Chatterjee et al., 1993) and O-6 (Angala et al., 2016) positions on the mannose have been implicated, the latter of which would prevent attachment of the arabian domain to all but the last mannose residue in the core. EmbC (Rv3793) then elongates the primed core, adding 12-16 α(1 → 5) linked Araf residues (Alderwick et al., 2011a; Shi et al., 2006). Branching is introduced into the linear arabian chain by AfC (Rv2673), which adds α(1 → 3) linked Araf residues (Birch et al., 2008). It has been postulated that AfD (Rv0236c) initiates further α(1 → 3) branching, although this is unconfirmed (Skovierová et al., 2009). AfB (Rv3805c) terminates the arabian with β(1 → 2) linked Araf (Jankute et al., 2017). The structure of the arabian domain, by this point is highly branched, though the non-reducing ends are less branched than those of AG, with a linear tetra-arabinoside motif more common than the branched hexa-arabinoside of AG (Chatterjee et al., 1993). CapA (Rv1635c), a PPM dependent α(1 → 5) ManpT, primes the arabian termini for capping by adding a single Manp residue (Dinadayala et al., 2006). MptC is responsible for further mannosylation of the cap through the additions of one to three α(1 → 2) Manp residues (Kaur et al., 2008). In M. tuberculosis, a substitution occurs in approximately 15–20% of mannose caps replacing mannose with a single α(1 → 4) linked methylthio-D-xylene residue (Angala et al., 2017; Ludwiczak et al., 2002; Turnbull et al., 2004). The decoration of LAM varies between mycobacterial species: while Mtbd and other slow-growing pathogenic strains have up to three mannose residues (Chatterjee et al., 1992b), phospho-inositol (PI) capped LAM (PI-LAM) is more common in non-pathogenic species, such as M. chelonae. The PI caps absolutely cryo-EM, which now has resolution that rivals X-ray crystallography. Cryo-EM has been used to resolve the structures of the targets demonstrated an association with the FAS-II protein AcpM, as also seen with EmbAB. While the function of AcpM with these arabinosyltransferases is not clear, mutating the amino acid side chains of EmbC involved in these contacts, reduced the LAM content, suggesting a role in synthesis and activity (Zhang et al., 2020). DprE1 is critical to the synthesis of the arabinosyltransferase donor, DPA, and so the inhibitors of this enzyme, which were discussed earlier in relation to AG, would also prevent synthesis of the arabinoid domain of LAM (Makarov et al., 2009).

Many of the drugs targeting the LM/LAM pathway have so far been substrate analogues, with targets including PimA, PimB and Ppm1 (Brown et al., 2001; Dinev et al., 2007; Subramanian et al., 2005), known to be essential enzymes in either M. smegmatis or Mtbd (Korduláková et al., 2002b; Rana et al., 2012; Torrelles et al., 2009). A galactose phosphonate analogue of PI was found to inhibit PimA in a cell-free, but not a whole-cell assay (Dinev et al., 2007). More recently, however, there has not been much progress in the way of new inhibitors of this pathway, which could reflect a reduced role of LM/LAM in Mtbd viability, as compared to the mAGP complex, or a deficiency of research into inhibitors of pathogenicity.

3. Conclusions

The cell wall of mycobacteria is essential for viability and virulence, and the complex pathways responsible for its synthesis contain a plethora of essential enzymes, which could be targets for new antibiotics. Currently, although there is a great deal of research into drugs and targets for Mtbd, most new drugs are initially found through whole cell assays, and the targets later located through spontaneous mutant generation. This process is lengthy and prone to error, with mutations often generated in drug activation pathways (Häver et al., 2015; Hoffmann et al., 2016; Jurén et al., 2008; Manjunatha et al., 2006; Morlock et al., 2003; Stoffels et al., 2012; Torres et al., 2015), and efflux pumps (such as MmpL5 and MmpL7) (Halloum et al., 2017; Hartkoorn et al., 2014; Milano et al., 2009). Indeed, the targets of many drugs, such as prenomadis, delamanid and pyrazinamide, are yet to be found.

Future research in drug discovery will likely take a more targeted approach as our understanding of this complex pathogen improves: new targets will be chosen due to their uniqueness and essentiality; target-based enzyme assays will be developed on a HTS basis to rapidly screen large compound libraries; and structural studies and modelling will be used to improve the properties and binding of any identified inhibitors. Examples of this shift in research methods have been touched upon here. One such instance is the GlaxoSmith Kline (GSK) library screen against the validated old target, InhA, revealing a new set of inhibitors, the thiadiazoles (Martínez-Hoyos et al., 2016). Additionally, HTS assays have also been developed for new targets, such as WbbL (Grzegorzewicz et al., 2008), WecA (Mitachi et al., 2016), FadD32 (Galandrin et al., 2013) and Ag85 (Boucau et al., 2009), so that drug libraries can be screened specifically for inhibition of these targets. One downside to these in vitro screening methods, that whole cell activity is not demonstrated, is particularly significant for Mtbd, which has such an impenetrable hydrophobic barrier to antibiotics in the form of its unpenetrable hydrophobic barrier to antibiotics in the form of its un

2.12 Drugs targeting the biosynthesis phosphatidy-myoinositol mannosides, lipomannan and lipoarabinomannan and the mechanisms of resistance

Although strains expressing truncated forms of LAM are viable (Goude et al., 2009), no strains completely lacking LAM have been grown, indicating a role in viability (Korkegian et al., 2014). This is confirmed by the essentiality of the major arabinosyltransferase involved in LAM synthesis, EmbC, in Mtbd (Goude et al., 2008). Analogously to EmbB, EmbC is inhibited by the front-line drug ethambutol (Goude et al., 2009), and structural studies have demonstrated ethambutol binding to the active site of EmbC (PDB ID: 7BVE) (Zhang et al., 2020). Although, EmbB is considered the primary target of ethambutol, treatment also results in truncated LAM, and overexpression of EmbC can confer resistance to ethambutol, indicating that inhibition of LAM biosynthesis is a part of ethambutol activity (Goude et al., 2009). Interestingly, the structure of EmbC has recently
of the front-line drug ethambutol, the Emb proteins, demonstrating both the inhibitor binding mechanism and Emb co-localisation with the FAS-II acyl carrier protein, AcpM (Zhang et al., 2020). Crystal studies have also revealed the structure of the exiting new target MmpL3, the membrane protein involved in mycolic acid transport and the target of many new antibiotics under development (Zhang et al., 2019). The MmpL proteins are involved in lipid transport across the inner membrane, an important process in Mtb. While MmpL3 is the only essential MmpL protein, others are important for virulence (Domenech et al., 2005) and should not be discounted as useful targets in the future.

Despite the increased efforts into drug discovery, only two new antibiotics have been approved in the last 40 years, bedaquiline and delamanid (Andries et al., 2005; Thakare et al., 2015). Hopefully, as our insight into the mechanisms of this powerful pathogen improves, a more targeted approach should be more productive in the discovery and approval of new antibiotics.

4. Author statements

4.1. Ethics statement

No ethical issues to report.

CRediT authorship contribution statement

Sarah M. Batt: Conceptualization, Writing - original draft, Writing - review & editing, Visualization. Christopher Burke: Conceptualization, Writing - original draft, Writing - review & editing, Visualization. Alice Moorey: Conceptualization, Writing - original draft, Writing - review & editing, Visualization. Gurdyal S. Besra: Conceptualization, Writing - original draft, Writing - review & editing.

Declaration of Competing Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Acknowledgements

GSB acknowledges support in the form of a Personal Research Chair from Mr. James Bardrick, a Royal Society Wolfson Research Merit Award, The Medical Research Council (MR/S000542/1, MR/R001154/1 and 1790300).

References

Abrahams, K.A., Chung, C.W., Ghidelli-Disse, S., Rullas, J., Rebollo-López, M.J., Gurcha, C.M., Lowary, T.L., Jiang, Z., Lowary, T.L., Jackson, M., 2005. Disruption of the genes encoding antigen 85A and antigen 85B of Mycobacterium tuberculosis H37Rv: Effect on growth in culture and in macrophages. Infect. Immun. 73, 767–778. https://doi.org/10.1128/IAI.73.2.767-778.2005.

Andries, K., Verhasselt, P., Guillemot, J., Gohman, H.W.H., Neefs, J.-M., Winkel, H., Van Gestel, J., Timmerman, P., Zhu, M., Lee, E., Williams, P., de Chaffoy, D., Hoffner, E., Cambau, E., Truffot-Pernot, C., Lounis, N., Jarlier, V., 2005. A di- arabinosyl drug active on the mycolyltransferase target of Mycobacterium tuberculosis. Science 307, 223–227. https://doi.org/10.1126/science.1106753.

Angala, Kumar, S., McNeil, M.R., Zou, L., Liav, A., Zhang, J., Lowary, T.L., Jackson, M., 2016. Identification of a Novel Mycobacterial Arabinosyltransferase Activity Which Adds an Arabinosyl Residue to α-d-Mannoyl Residue. ACS Chem. Biol. 11, 1518–1524. https://doi.org/10.1021/acschembio.6b00093.

Asgarifar, S., McNeil, M.R., Shi, L., Joe, M., Pham, H., Zuberogoitia, S., Nigou, J., Boot, C.M., Lowary, T.L., Gilleron, M., Jackson, M., 2017. Bioynthesis of the Methylhydroxyl Capping Motif of Lipoarabinomannan in Mycobacterium tuberculosis. ACS Chem. Biol. https://doi.org/10.1021/acschembio.6b01071.

Araín, T.M., Goldstein, B.P., Scotti, R., Resconi, A., 1994. Synergic activity of teicoplanin and ethambutol against Mycobacterium tuberculosis. J. Antimicrob. Chemother. 33, 359–366. https://doi.org/10.1093/jac/33.2.359.

Armitage, L.Y., Jaganathan, C., Wanger, A.R., Norris, S.J., 2000. Disruption of the genes encoding antigen 85A and antigen 85B of Mycobacterium tuberculosis H37Rv: Effect on growth in culture and in macrophages. Infect. Immun. 68, 767–778. https://doi.org/10.1128/IAI.68.2.767-778.2000.

Asselineau, J., Lederer, E., 1950. Structure of the mycic acids of Mycobacteria. Nature 166, 782–783. https://doi.org/10.1038/166782a0.

Bacon, J., Alderwick, L.J., Allnutt, J.A., Gabasova, E., Watson, R., Hatch, K.A., Clark, S.O., Jabeen, T., Bhowruth, V., Quill, L., Lund, P.A., Eggeling, L., Alderwick, L.J., 2011b. EmbC is a novel outer membrane protein involved in mycolic acid transport and the target of many new antibiotics under development. J. Biol. Chem. 286, 5740–5744

Belanger, A.E., Besra, G.S., Ford, M.E., Mikusová, K., Belisle, J.T., Brennan, P.J., Inamine, A.K., Reynolds, R.C., Besra, G.S., 2008. Expression, purification and characterization of soluble Gif and the identification of a novel galactofuranosyltransferase Rv3792 involved in priming Gif-mediated galactan polymerisation in Mycobacterium tuberculosis. Protein Expr. Purif. 58, 332–341. https://doi.org/10.1016/j.pep.2007.11.022.

Belt, T.A., Path, S., De Lisle, G., Jacobs, W.R., 1994. inhA, a gene encoding a target for isoniazid and ethionamide in Mycobacterium tuberculosis. Science 263, 227–230. https://doi.org/10.1126/science.8284673.

Banas, J.R., Peterson, D.O., Bloch, K., 1977. Mycobacterium smegmatis fatty acid synthetase. Polysaccharide stimulation of the rate-limiting step. J. Biol. Chem. 252, 5760–5764.

Bansal-Mutalik, R., Nikaido, H., 2014. Mycobacterial outer membrane is a lipid bilayer and the inner membrane is unusually rich in diacyl phosphatidylinositol dimannosides. Proc. Natl. Acad. Sci. U.S.A. 111, 4958–4963. https://doi.org/10.1073/pnas.1316811111.

Barry, C.E., Crick, D.C., McNeil, M.R., 2007. Targeting the formation of the cell wall core polysaccharide in Mycobacterium tuberculosis. Proc. Natl Acad. Sci. U.S.A. 104, 13585–13590. https://doi.org/10.1073/pnas.0700270104.

Barry, C.E., De Lisle, G., Jacobs, W.R., 1994. InhA, a Gene Encoding a Target for Isoniazid and Ethionamide in Mycobacterium Tuberculosis. Proc. Natl Acad. Sci. U.S.A 91, 11354–11359. https://doi.org/10.1073/pnas.91.25.11354.

Batt, S.M., Cacho Izquierdo, M., Castro Pichel, J., Stubbs, C.J., Vela-Glez Del Peral, L., Lovering, A.L., Eggeling, L., Besra, G.S., 2011a. The C-terminal domain of the arabinosyltransferase MmpL3 is a lectin-like carbohydrate binding module. PLoS Pathog. https://doi.org/10.1371/journal.ppat.1001299.

Bennet, S.K., Luo, X., Arain, T.M., Goldstein, B.P., Scotti, R., Resconi, A., 2014. Synergic activity of teicoplanin and ethambutol against Mycobacterium tuberculosis J. Antimicrob. Chemother. 33, 359–366. https://doi.org/10.1093/jac/33.2.359.

Benjamin G., Slayden, Richard A., Yuan, Ying, 1998. Mycolic acids: structure, biosynthesis and physiological functions. Prog. Lipid Res. 37, 143–179. https://doi.org/10.1016/s1386-1700(98)900008-3.

Barnes, L.A., Lielievre, J., Selenski, C., Axtman, M., Kremer, L., Bantscheff, M., Angulo-Barturen, I., Barry, C.E., Crick, D.C., McNeil, M.R., 2007. Targeting the formation of the cell wall core polysaccharide in Mycobacterium tuberculosis. Proc. Natl Acad. Sci. U.S.A. 104, 13585–13590. https://doi.org/10.1073/pnas.0700270104.

Barry, C.E., Crick, D.C., McNeil, M.R., 2007. Targeting the formation of the cell wall core polysaccharide in Mycobacterium tuberculosis. In: Drug Target. 7, 192–202. https://doi.org/10.2174/187152707781001018.

Batt, S.M., Cacho Izquierdo, M., Castro Pichel, J., Stubbs, C.J., Vela-Glez Del Peral, L., Perez-Herrán, E., Dhar, N., Mouzon, B., Rees, M., Hutchinson, J.P., Young, R.J., 2012. Structural basis of inhibition of Mycobacterium tuberculosis DprE1 by benzothiazinone inhibitors. Proc. Natl Acad. Sci. U.S.A 109, 5735–5740. https://doi.org/10.1073/pnas.1111706109.

Batt, S.M., microbes...
resazurin microtiter assay and the BACTEC™ MGIT™ 960 system-authors' response. J. Antimicrob. Chemother. 71, 3625. https://doi.org/10.1093/jac/dkw365.

Huang, H., Scherman, M.S., D’Haeze, W., Vereecke, D., Holsters, M., Crick, D.C., McNeil, M.R., 2005. Identification and expression of the Mycobacterium tuberculosis gene coding for 5-β,6-dideoxy-β-D-glucosylphosphoryltransferase, the first enzyme committed to decaprenylphosphoryl-β-D-arabinofuranoside synthesis. J. Biol. Chem. 280, 24539–24543. https://doi.org/10.1074/jbc.M004658200.

Huang, H., Berg, S., Spencer, J.S., Vereecke, D., D’Haeze, W., Holsters, M., McNeill, M.R. 2008. Identification of amino acids and domains required for catalytic activity of DPPR synthase, a cell wall biosynthetic enzyme of Mycobacterium tuberculosis. Microbiology 154, 736–743. https://doi.org/10.1099/mic.0.2007/013532-0.

Hugonnet, J.E., Blanchard, J.S., 2007. Irreversible inhibition of the Mycobacterium tuberculosis β-lactamase by clavulane. Biochemistry 46, 11998–12004. https://doi.org/10.1021/bi0710506.

Hugonnet, J.E., Tremblay, L.W., Boshoff, H.L., Barry, C.E., Blanchard, J.S., 2009. Monooxygenase-clarithromycin is active against extensively drug-resistant Mycobacterium tuberculosis. Science 323, 1215–1218. https://doi.org/10.1126/science.1167498.

Hunter, R.L., Otero, M.R., Jagannath, C., Acton, J.K., 2006. Multiple roles of cord factor in the pathogenesis of primary, secondary, and cavitary tuberculosis, including a re-visited description of the pathology of secondary disease. Ann. Clin. Lab. Sci. 36, 371–386.

Hustir, S., Singh, V., Poláčiková, A., Baráth, P., Barrio, M.B., Lagrange, S., Leblanc, V., Kalscheuer, R., Weinrick, B., Veeraraghavan, U., Besra, G.S., Jacobs, W.R., 2010. Identification of amino acids and domains required for catalytic activity of DPPR synthase, a cell wall biosynthetic enzyme of Mycobacterium tuberculosis. Microbiology 156, 736–743. https://doi.org/10.1099/mic.0.2009/015921-0.

Hugonnet, J.E., D’Souza, P., 2012. Role of the DPPR synthase in the cell wall biosynthesis of Mycobacterium tuberculosis. Microbiology 158, 2127–2132. https://doi.org/10.1099/mic.0.059910-0.

Hunter, R.L., 2007. Multiple roles of cord factor in the pathogenesis of primary, secondary, and cavitary tuberculosis, including a re-visited description of the pathology of secondary disease. Ann. Clin. Lab. Sci. 36, 371–386.

Hustir, S., Singh, V., Poláčiková, A., Baráth, P., Barrio, M.B., Lagrange, S., Leblanc, V., Kalscheuer, R., Weinrick, B., Veeraraghavan, U., Besra, G.S., Jacobs, W.R., 2010. Monooxygenase-clarithromycin is active against extensively drug-resistant Mycobacterium tuberculosis. Science 323, 1215–1218. https://doi.org/10.1126/science.1167498.

Hunter, R.L., Otero, M.R., Jagannath, C., Acton, J.K., 2006. Multiple roles of cord factor in the pathogenesis of primary, secondary, and cavitary tuberculosis, including a re-visited description of the pathology of secondary disease. Ann. Clin. Lab. Sci. 36, 371–386.

Hustir, S., Singh, V., Poláčiková, A., Baráth, P., Barrio, M.B., Lagrange, S., Leblanc, V., Kalscheuer, R., Weinrick, B., Veeraraghavan, U., Besra, G.S., Jacobs, W.R., 2010. Monooxygenase-clarithromycin is active against extensively drug-resistant Mycobacterium tuberculosis. Science 323, 1215–1218. https://doi.org/10.1126/science.1167498.

Hunter, R.L., 2007. Multiple roles of cord factor in the pathogenesis of primary, secondary, and cavitary tuberculosis, including a re-visited description of the pathology of secondary disease. Ann. Clin. Lab. Sci. 36, 371–386.

Hustir, S., Singh, V., Poláčiková, A., Baráth, P., Barrio, M.B., Lagrange, S., Leblanc, V., Kalscheuer, R., Weinrick, B., Veeraraghavan, U., Besra, G.S., Jacobs, W.R., 2010. Monooxygenase-clarithromycin is active against extensively drug-resistant Mycobacterium tuberculosis. Science 323, 1215–1218. https://doi.org/10.1126/science.1167498.

Hunter, R.L., Otero, M.R., Jagannath, C., Acton, J.K., 2006. Multiple roles of cord factor in the pathogenesis of primary, secondary, and cavitary tuberculosis, including a re-visited description of the pathology of secondary disease. Ann. Clin. Lab. Sci. 36, 371–386.

Hustir, S., Singh, V., Poláčiková, A., Baráth, P., Barrio, M.B., Lagrange, S., Leblanc, V., Kalscheuer, R., Weinrick, B., Veeraraghavan, U., Besra, G.S., Jacobs, W.R., 2010. Monooxygenase-clarithromycin is active against extensively drug-resistant Mycobacterium tuberculosis. Science 323, 1215–1218. https://doi.org/10.1126/science.1167498.

Hunter, R.L., Otero, M.R., Jagannath, C., Acton, J.K., 2006. Multiple roles of cord factor in the pathogenesis of primary, secondary, and cavitary tuberculosis, including a re-visited description of the pathology of secondary disease. Ann. Clin. Lab. Sci. 36, 371–386.
The reductase that catalyzes mycolic acid motif synthesis is required for efficient attachment of mycids to arabinogalactan. J. Biol. Chem. 282, 11100–11108.

Lechleivaler, P.M., Lechleivaler, H., 1970. Chemical composition as a criterion in the classification of aerobic actinomycetes. Int. J. Syst. Bacteriol. 20, 435–443. https://doi.org/10.1099/00221207-20-2-435.

Leclercq, S., Derouaux, A., Olatunji, S., Fraipont, C., Egan, A.J.F., Vollmer, W., Breukink, E., Terrak, M., 2017. Interplay between Pinellin-binding proteins and SED5 proteins promotes bacterial cell wall synthesis. Sci. Rep. 7. https://doi.org/10.1038/s41598-017-08508-2.

Leecreux, D.M., Texier, L., Rousseau, M., Van Heijenoort, J., 1991. The murG gene of Escherichia coli codes for the UDP-N-acetylgalactosamine: N-acetylmuramyl-(l-penta peptide) pyrophosphoryl-deucaprenyl N-acetylgalactosamine transferase involved in the membrane bound peptidoglycan synthesis of Bacteri. J. Bacteriol. 173, 4625–4636. https://doi.org/10.1128/JB.173.18.4625-4636.1991.

Lee, R.E., Brennan, P.J., Besra, G.S., 1997. Mycobacterial arabinobiosin synthesis: the role of synthetic arabinoside acceptors in the development of an arabinosyl transfer assay. Glycobiology 7, 1121–1128. https://doi.org/10.1097/00018827-199707000-00017.

Lee, A., Wu, S.W., Scherman, M.S., Torres, J.R., Chattejee, D., McNeil, M.R., Khoo, K.H., 2006. Sequencing of oligoarabinosyl units released from mycobacterial arabinogalactan by endogasenase arabinogalactan: Identification of distinctive and novel structural motifs. Biochemistry 45, 15817–15828. https://doi.org/10.1021/bi060886h.

Léger, M., Gavalda, S., Guillet, V., van der Rest, B., Slama, N., Montrouzier, H., Mourre, L., Quémard, A., Daffe, M., Marrackhi, H., 2009. The dual function of the mycobacterial WecA enzyme for a beta-lactam resistant transpeptidation pathway. J. Biol. Chem. 284, 18200–18206.

Mencl, M., Daffe, M., Brennan, P.J., 1991. Location of the mycolyl ester substituents in Mycobacterium tuberculosis. J. Bacteriol. 173, 3178–3183. https://doi.org/10.1128/JB.173.11.3178-3183.1991.

Mikkov, K., Hansen, Y., Yagi, T., Holters, M., Veecke, D., D’Haze, W., Scherman, M.S., Brennan, P.J., McNeil, M.R., Crick, D.C., 2005. Decaprenylphosphoryl arabinofuranosyltransferase, the donor of the D-arabinofuranosyl residues of mycobacterial arabinogalactan, is formed via a two-step epimerization of decaprenylphosphoryl ribose. J. Bacteriol. 187, 8025–8030. https://doi.org/10.1128/JB.00489-06.

Mikkov, K., Beláňová, M., Korduláková, J., Honda, K., McNeil, M.R., Mahapatra, S., Crick, D.C., Brennan, P.J., 2006. Identification of a novel galactosyl transferase involved in biosynthesis of the mycobacterial cell wall. J. Bacteriol. 188, 6592–6598. https://doi.org/10.1128/JB.00786-07.

Mishra, A.K., Alderwick, L.J., Rittmann, D., Talbot, R.V.V., Nigou, J., Pathak, A.K., Nigou, J., 2009. Benzothiazinones kill Mycobacterium tuberculosis by blocking arabinan biosynthesis. Science 324, 801–804. https://doi.org/10.1126/science.1171583.

Mishra, A.K., Krumbach, K., Rittmann, D., Appelmelk, B., Pathak, V., Pathak, A.K., Nigou, J., Geurten, J., Egeling, L., Besra, G.S., 2011. Lipoarabinomannan biosynthesis in Corynebacterium glutamicum: biosynthesis and identification of its orthogonal M-MmpL system. Mol. Microbiol. 81, 2958–2970. https://doi.org/10.1111/j.1365-2958.2011.07547.x.

Mishra, A.K., Alderwick, L.J., Rittmann, D., Wang, C., Egeling, K., Besra, G.S., 2008. Identification of a novel α(1→6) mannopyranosyltransferase (MPTa) involved in the biosynthesis of the arabinan and arabinogalactan of Mycobacterium tuberculosis. J. Bacteriol. 190, 4606–4618. https://doi.org/10.1128/JB.01083-08.

Mishra, A.K., Krumbach, K., Rittmann, D., Appelmelk, B., Pathak, V., Pathak, A.K., Nigou, J., Geurten, J., Egeling, L., Besra, G.S., 2011. Lipoarabinomannan biosynthesis in Corynebacterium glutamicum: Biosynthesis and identification of its orthogonal M-MmpL system. Mol. Microbiol. 81, 2958–2970. https://doi.org/10.1111/j.1365-2958.2011.07547.x.

Mitschi, K., Sircella, S., Yang, D., Kong, Y., Skorupska-Tudek, K., Swiezewska, E., Franzen, S., Kurapina, Y., 2016. Fluorescence-based assay for polypeptide linked to β-arabinofuranosyltransferase (WeCA) and identification of novel antimiycobacterial WeCA inhibitors. Anal. Biochem. 512, 89–97. https://doi.org/10.1016/j.ab.2015.08.008.
Peltier, P., Euzen, R., Daniellou, R., Nugier-Chauvin, C., Ferrières, V., 2008. Recent
Patru, M.M., Pavelka, M.S., 2010. A role for the class a penicillin-binding protein PonA2
Pandey, S.D., Pal, S.N.G.K., Bansal, A., Mallick, S., Ghosh, A.S., 2018. Two DD-carbox
Peterson, D.O., Bloch, K., 1977. Mycobacterium smegmatis fatty acid synthetase. Long
Morita, Y.S., Sena, C.B.C., Waller, R.F., Kurokawa, K., Sernee, M.F., Nakatani, F., Haites,
Morii, H., Ogawa, M., Fukuda, K., Taniguchi, H., Koga, Y., 2010. A revised biosynthetic
Miyakawa, S., Suzuki, K., Noto, T., Harada, Y., Okazaki, H., 1982. Thiolactomycin, a new
S.M. Batt, et al.
Ortalo-Magné, A., Lemassu, A., Lanéelle, M.A., Bardou, F., Silve, G., Gounon, P., Marchal,
Rozwarski, D.A., Grant, G.A., Barton, D.H.R., Jacobs, W.R., Sacchettini, J.C., 1998.
Portevin, D., de Sousa-D’Auria, C., Housin, C., Grimaldi, C., Chami, M., Daffé, M.,
Guilhot, C., 2004. A polyketide synthase catalyzes the last condensation step of
mycoitin and its role in mycobacterial cell wall synthesis. J. Bacteriol. 182, 3799-3805.
Sacco, E., Covarrubias, A.S., O’Hare, H.M., Carroll, P., Eynard, N., Jones, T.A., Parish, T.,
Ramón-Garciá, S., González Del Rió, R., Villarejo, A.S., Sweet, G.D., Cunningham, F.,
molecules of phosphatidylinositol mannoside in mycobacteria. J. Biol. Chem. 280, 21645–21652. https://doi.org/10.1074/jbc.M408578200.
Rana, A.K., Singh, A., Gurcha, S.S., Cox, L.R., Bhatt, A., Besra, G.S., 2012. Ppm1-Encoded
Reynolds, P.E., 1989. Structure, biochemistry and mechanism of action of glycopeptide
Quigley, J., Hugghit, V.K., Velikovsky, C.A., Marrizza, R.A., El-Sayed, N.M., Brien, V.,
The Cell Surface 6 (2020) 100044
Papainanou, N., Cheon, H.S., Lian, Y., Kishi, Y., 2007. Product-regulation mechanisms
for fatty acid biosynthesis catalyzed by Mycobacterium smegmatis FAS I.
ChemoBiochem Eur. J. Chem. Biol. 8, 1775–1780. doi.org/10.1002/chbc.200700380.
Pacca, M.R., Domenici, G., de Ribeiro, A.L., Zara, F., De Mori, P., Heym, B., Mirrione, M.,
Berrara, R., Pagni, L., Pulcolo, L., Truppioti, P., Makarov, V., Cole, S.T., Riccardi, G.,
Chembiochem Eur. J. Chem. Biol. 8, 1775–1780. https://doi.org/10.1002/cbic.200700380.
Peng, W., Zou, L., Bhambhi, S., McNeil, M.R., Lowry, T.A., 2012. The galactosamine
residue in mycobacterial arabinogalactan is a link. J. Org. Chem. 77, 9826–9832.
PETIT, Y., Euten, R., Danienou, R., Nugier-Guavin, C., Ferrères, V., 2007. Recent
knowledge and innovations related to hexosaminides: structure, synthesis and
applications. Carbohydr. Res. 343, 1897–1923. https://doi.org/10.1016/j.carres.2008.02.010.
Potter, D.O., Blich, K., 1977. Mycobacterium smegmatis fatty acid synthetase. Long
chain transacylation chain length specificity. J. Biol. Chem. 252, 5735–5739.
Peyron, P., Vauquieux, J., Poquet, Y., Levillain, F., Botanch, C., Bardou, F., Daffé, M.,
Emile, J.-F., Marchou, B., Cardona, P.-J., de Chastellier, C., Altare, F., 2008. Foamy
macrophages from tuberculous patients’ granulomas constitute a nutrient-rich re-
serve for M. tuberculosis. PLoS Pathog. 4, e1000204. https://doi.org/10.1371/journal.ppat.1000204.
Piddock, L.J.V., 2015. Teixobactin, the first of a new class of antibiotics discovered by
iChip technology J. Antimicrob. Chemother. 70, 2679-2680. https://doi.org/10.1093/jac/dkv093.
Pitarque, S., Larrouy-Maumus, G., Payré, B., Jackson, M., Puzo, G., Nigou, J., 2008. The
immunomodulatory lipoglycans, lipooligososaminoglycan and lipomannan, are exposed at
the mycobacterial cell surface. Tuberculosis. https://doi.org/10.1016/j.tube.2008.10.001.
Piner, R.A., Durham, P.G., Stewart, I.E., Reed, S.G., Cassell, G.H., Hickey, A.J., Carter, D.,
A 16-Dried Sprayed Combination of Capreomycin and CFPZ-45 for Inhaled
Tuberculosis Therapy. J. Pharm. Sci. 108, 3302-3311. https://doi.org/10.1016/j.
jps.2019.05.024.
Portevin, D., de Sousa-D’Auria, C., Housin, C., Grimaldi, C., Chami, M., Daffé, M.,
Guilhot, C., 2004. A polyketide synthase catalyzes the last condensation step of
mycoitin and its role in mycobacterial cell wall synthesis. J. Bacteriol. 182, 3799-3805.
S.M. Batt, et al.
Ortalo-Magné, A., Lemassu, A., Lanéelle, M.A., Bardou, F., Silve, G., Gounon, P., Marchal,
Daffé, M., 1996. Identification of the surface-exposed lipids on the cell envelopes
of Mycobacterium tuberculosis and other mycobacterial species. J. Bacteriol. 178, 456–461. https://doi.org/10.1128/jb.178.2.456-461.1996.
Ortalo-Magné, A., Lemassu, A., Marchal, M.A., Bardou, F., Silve, G., Gounon, P., Marchal,
Daffé, M., 1996. Identification of the surface-exposed lipids on the cell envelopes
of Mycobacterium tuberculosis and other mycobacterial species. J. Bacteriol. https://doi.org/10.1128/jb.178.2.456-461.1996.
Pandey, S.D., Pal, S.N.G.K., Bansal, A., Mallick, S., Ghosh, A.S., 2012. Two DD-carbox-
peptidic peptides from Mycobacterium smegmatis affect cell surface properties through
regulation of pep glycipid synthesis. J. Bacteriol. 200. https://doi.org/10.1128/jb.02064-16.
Papainanou, N., Cheon, H.S., Lian, Y., Kishi, Y., 2007. Product-regulation mechanisms
for fatty acid biosynthesis catalyzed by Mycobacterium smegmatis FAS I.
ChemoBiochem Eur. J. Chem. Biol. 8, 1775–1780. doi.org/10.1002/chbc.200700380.
Pacca, M.R., Domenici, G., de Ribeiro, A.L., Zara, F., De Mori, P., Heym, B., Mirrione, M.,
Berrara, R., Pagni, L., Pulcolo, L., Truppioti, P., Makarov, V., Cole, S.T., Riccardi, G.,
2010. Clinical isolates of Mycobacterium tuberculosis in four European hospitals are
uniformly susceptible to benzothiazinones. Antimicrob. Agents Chemother. 54, 1610-1618. https://doi.org/10.1128/AAC.01779-09.
Patru, E.C., Geffen, A.C., Willcock, S., Leszczcyk, S., Haas, A., Nimmerjahn, F., Lang, R.,
Ward, T.H., Schable, U.E., 2017. Trehalose dimycolate interferes with FcγRI-mediated
phagosome maturation through Shp1, FcγRI and FcγRIIb signalling. eLife 6. https://doi.org/10.7554/eLife.17497.
Patru, M.M., Pavelka, M.S., 2010. A role for the class a penicillin-binding protein PonA2
mechanism of Mycobacterium tuberculosis under conditions of nonreplication. J.
Bacteriol. 192, 1616–1618. https://doi.org/10.1128/AAC.01676-09.
Sacco, E., Covarrubias, A.S., O’Hare, H.M., Carroll, P., Eynard, N., Jones, T.A., Parish, T.,
Daffé, M., Bäckström, K., Quémard, A., 2007. The missing piece of the type II fatty acid synthase system from Mycobacterium tuberculosis. Proc. Natl. Acad. Sci. U.S.A. 104, 14628–14633. https://doi.org/10.1073/pnas.0704312104.

Safi, H., Sayers, R., Haazón, M.H., Alland, D., 2008. Transfer of embB codon 306 mutations from Mycobacterium tuberculosis to other members of the M. tuberculosis complex. Mycobacterial gene mutations only modestly increase resistance to ethambutol in Mycobacterium tuberculosis. Antimicrob. Agents Chemother. 54, 105–108. https://doi.org/10.1128/AAC.01288-09.

Saier, M.H.J., Tam, R., Reizer, A., Reizer, J., 1994. Two novel families of bacterial membrane proteins concerned with nodulation, cell division and transport. Mol. Microbiol. 11, 841–847. https://doi.org/10.1111/j.1365-2958.1994.tb03632.x.

Safi, H., Fleischmann, R.D., Peterson, S.N., Jones, M.B., Alland, D., 2010. Identification of a high expression screen selection demonstrate that common clinical embB gene mutations only modestly increase resistance to ethambutol in Mycobacterium tuberculosis. Antimicrob. Agents Chemother. 54, 105–108. https://doi.org/10.1128/AAC.01288-09.

Škovírová, H., Larrouy-Maumus, G., Pham, H., Belanová, M., Barilone, N., DasGupta, A., Shi, L., Berg, S., Lee, A., Spencer, J.S., Zhang, J., Vissa, V., McNeil, M.R., Khoo, K.H., Schaeffer, M.L., Agnihotri, G., Volker, C., Kallender, H., Brennan, P.J., Lonsdale, J.T., Saier, M.H.J., Tam, R., Reizer, A., Reizer, J., 1994. Two novel families of bacterial membrane proteins concerned with nodulation, cell division and transport. Mol. Microbiol. 11, 841–847. https://doi.org/10.1111/j.1365-2958.1994.tb03632.x.

Safin, V., Andrade, B., Barlow, J.C., Bricq, C.C., Ojha, A., Kremmer, L., Besra, G.S., Haffii, G.F., Jacobs, W.R.J., 2013. Keto-mycolic acid-dependent peptidoglycan formation contributes to tolerance to drug-sensitive Mycobacterium tuberculosis. mBio 4, e00222–00213. https://doi.org/10.1128/mBio.00222-13.

Sani, M., Houben, E.N.G., Geurtsen, J., Pierson, J., de Punder, K., van Zon, M., Wever, B., Sambandan, D., Dao, D.N., Weinrick, B.C., Vilchèze, C., Gurcha, S.S., Ojha, A., Kremer, L., Sani, M., Houben, E.N.G., Geurtsen, J., Pierson, J., de Punder, K., van Zon, M., Wever, B., Sambandan, D., Dao, D.N., Weinrick, B.C., Vilchèze, C., Gurcha, S.S., Ojha, A., Kremer, L., 2010. Novel small molecule inhibitors of MDR Mycobacterium tuberculosis by NMR fragment screening of antigen 85C. J. Med. Chem. 53, 8362–8367. https://doi.org/10.1021/jm100993z.

Schlesinger, L.S., Hull, S.R., Kaufman, T.M., 1994. Binding of the terminal mannosyl units of Mycobacterium tuberculosis lipoprotein and lipoglycan binding to toll-like receptor 2. Proc. Natl. Acad. Sci. U.S.A. 91, 11282–11285. https://doi.org/10.1073/pnas.91.24.11282.

Scheich, C., Puetter, V., Schade, M., 2010. Novel small molecule inhibitors of MDR Mycobacterium tuberculosis by NMR fragment screening of antigen 85C. J. Med. Chem. 53, 8362–8367. https://doi.org/10.1021/jm100993z.

Scaglia, F., Agnoli, M.L., Aghi, C., Calabró, C., Brennan, P.J., Lonsdale, J.T., 2001. Purification and Biochemical Characterization of theMycobacterium tuberculosis β-Ketoacyl-acyl Carrier Protein Synthases KaaA and KasB. J. Biol. Chem. 276, 47290–47297. https://doi.org/10.1074/jbc.M1080320.

Schöfer, J., Duarte, P., van Rijssel, L., Ballell, L., Barros, D., Mainardi, J.L., Hugonnet, J.E., Arthur, M., 2015. Hydrolysis of clavulanate by Mycobacterium tuberculosis β-lactamase BlaC harboring a kanamycin resistance mutation. J. Antibiot. (Tokyo) 68, 271–278. https://doi.org/10.1038/ja.2014.133.

Shaw, L., Lee, A., Spencer, J.S., Zhang, J., Vissa, V., McNeil, M.R., Khoo, K.H., Chatterjee, D., 2006. The carboxy terminus of EmbC from Mycobacterium smegatitis mediates chain length extension of the arabinan in lipopolysaccharide. J. Biol. Chem. 281, 4076–4079.

Seidel, M., Alderwick, L.J., Birch, H.L., Sahm, F.H., Besra, G.S., 2007. Identification of a novel arabinofuranosyltransferase Afb involved in a terminal step of cell wall arabinan biosynthesis in Corynebacteriaeae, such as Corynebacterium glutamicum and Mycobacterium tuberculosis. J. Biol. Chem. 282, 14279–14270. https://doi.org/10.1074/jbc.M700148200.

Sharma, A., Bhat, D., Goel, S., 2020. FtsW is a peptidoglycan polymerase that is functional in Mycobacterium tuberculosis. Front. Cell. Infect. Microbiol. 10, 110, 11565–11570. https://doi.org/10.3389/fcimb.2020.5051610.

Shelton, S.A., Batt, D., Bhat, D., Goel, S., 2020. The Cell Surface 6 (2020) 100044.
World Health Organization, 2017. Guidelines for treatment of drug-susceptible tuberculosis. Lactamase. Antimicrob. Agents Chemother. 50, 2762–2771. https://doi.org/10.1128/AAC.00120-06.

Wood, W.I., Peterson, D.O., Bloch, K., 1977. Mycobacterium smegmatis fatty acid synthesis. J. Biol. Chem. 252, 5745–5749.

World Health Organisation, 2011. Guidelines for the programmatic management of drug-resistant tuberculosis.

World Health Organization, 2019. Global Tuberculosis Report 2019. World Health Organization Press, Geneva.

World Health Organization, 2017. Guidelines for treatment of drug-susceptible tuberculosis and patient care, 2017. update. World Health Organization Press, Geneva.

Wu, M.-C., Styles, M.Q., Law, B.J.C., Strick, A.W., Nunns, L., Micklem, J., 2015. Engineered biosynthesis of enduracidin lipoglycopeptide antibiotics using the ramoplanin mannosyltransferase Ram29. Microbiology.

Yuan, Y., Zhu, Y., Crane, D.D., Barry 3rd, C.E., 1998. The effect of oxygenated mycolic acid composition on cell wall function and macrophage growth in Mycobacterium tuberculosis. Mol. Microbiol. 29, 1449–1458. https://doi.org/10.1111/j.1365-2958.1998.01026.x.

Zheng, Z., Bulloch, E.M.M., Bunker, R.D., Baker, E.N., Squire, C.J., 2009. Structure and function of GlmU from Mycobacterium tuberculosis. Acta Crystallogr. D Biol. Crystallogr. 65, 275–283. https://doi.org/10.1107/S0907444909001036.

Zhang, L., Zhao, Y., Gao, Y., Wu, L., Gao, R., Zhang, Q., Wang, Y., Wu, C., Wu, F., Guracha, S.S., Veerapen, N., Batt, S.M., Zhao, W., Qin, L., Yang, X., Wang, M., Zhu, Y., Zhang, B., Li, L., Zhang, X., Yang, H., Guddat, L.W., Xu, W., Wang, Q., Li, J., Bees, G.S., Rao, Z., 2020. Structures of cell wall arabinosyltransferases with the anti-tuberculosis drug ethambutol. Science. https://doi.org/10.1126/science.ab49102.

Zhang, Y., Heym, B., Allen, R., Young, D., Cole, S., 1992. The catalase-peroxidase gene and ironizidance of Mycobacterium tuberculosis. Nature 358, 591–593. https://doi.org/10.1038/358591a0.

Zhang, B., Li, J., Yang, Xiaolin, Wu, L., Zhang, J., Yang, Y., Zhao, Y., Zhang, L., Yang, Xiuna, Yang, Xiaobao, Cheng, X., Liu, J., Jiang, B., Jiang, H., Guddat, L.W., Yang, H., Rao, Z., 2019. Crystal Structures of Membrane Transporter MmpL3, an Anti-TB Drug Target. Cell 176, 636–648.e13. https://doi.org/10.1016/j.cell.2019.01.003.

Zhang, W., Lun, S., Wang, S.-H., Jiang, X.-W., Yang, F., Tang, J., Manson, A.L., Earl, A.M., Gunosewoyo, H., Bishai, W.R., Yu, L.-F., 2018. Identification of Novel Cossusman Derivatives as Polyketyde Synthase 13 Inhibitors against Mycobacterium tuberculosis. J. Med. Chem. 61, 791–803. https://doi.org/10.1021/acs.jmedchem.7b01319.

Zhang, L., Zhao, Y., Wang, B., Li, J., Yang, Xiaolin, Wu, L., Zhang, J., Yang, Y., Zhao, Y., Zhang, L., Yang, Xiuna, Yang, Xiaobao, Cheng, X., Liu, J., Jiang, B., Jiang, H., Guddat, L.W., Yang, H., Rao, Z., 2019. Crystal Structures of Membrane Transporter MmpL3, an Anti-TB Drug Target. Cell 176, 636–648.e13. https://doi.org/10.1016/j.cell.2019.01.003.