Genome-wide identification and characterization of cacao WRKY transcription factors and analysis of their expression in response to witches’ broom disease

Dayanne Silva Monteiro de Almeida1, Daniel Oliveira Jordão do Amaral1, Luiz-Eduardo Del-Bem2, Emily Bronze dos Santos1, Raner José Santana Silva1, Karina Peres Gramacho3, Michel Vincentz2, Fabienne Micheli1,4*

1 Universidade Estadual de Santa Cruz (UESC), Departamento de Ciências Biológicas (DCB), Centro de Biotecnologia e Genética (CBG), Rodovia Ilhéus-Itabuna, km 16, Ilhéus-BA, Brazil, 2 Centro de Biologia Molecular e Engenharia Genética, Departamento de Genética e Evolução, Instituto de Biologia, Universidade Estadual de Campinas, Campinas, Brasil, 3 Cocoa Research Center, CEPLAC/CEPEC, Itabuna-BA, Brazil, 4 CIRAD, UMR AGAP, Montpellier, France

* fabienne.micheli@cirad.fr

Abstract

Transcriptional regulation, led by transcription factors (TFs) such as those of the WRKY family, is a mechanism used by the organism to enhance or repress gene expression in response to stimuli. Here, we report on the genome-wide analysis of the Theobroma cacao WRKY TF family and also investigate the expression of WRKY genes in cacao infected by the fungus Moniliophthora perniciosa. In the cacao genome, 61 non-redundant WRKY sequences were found and classified in three groups (I to III) according to the WRKY and zinc-finger motif types. The 61 putative WRKY sequences were distributed on the 10 cacao chromosomes and 24 of them came from duplication events. The sequences were phylogenetically organized according to the general WRKY groups. The phylogenetic analysis revealed that subgroups IIa and IIb are sister groups and share a common ancestor, as well as subgroups IId and IIe. The most divergent groups according to the plant origin were IIc and III. According to the phylogenetic analysis, 7 TcWRKY genes were selected and analyzed by RT-qPCR in susceptible and resistant cacao plants infected (or not) with M. perniciosa. Some TcWRKY genes presented interesting responses to M. perniciosa such as Tc01_p014750/Tc06_p013130/AtWRKY28, Tc09_p001530/Tc06_p004420/AtWRKY40, Tc04_p016130/AtWRKY74 and Tc10_p016570/ AtWRKY70. Our results can help to select appropriate candidate genes for further characterization in cacao or in other Theobroma species.

Introduction

Plants, whether growing under natural or agricultural conditions, are exposed to adverse environmental situations that affect their development and can drastically reduce their productivity. Such environmental stimuli can be abiotic (e.g., drought, cold, wounds) or caused by...
pathogens [1]. However, plants have mechanisms to survive in such adverse conditions, including tolerance or resistance to stress through adaptation mechanisms [2]. When stress conditions are detected by the plants, complex transduction pathways are induced, initiating a series of molecular, physiological and metabolic events, generally leading to an increase of tolerance/resistance [3]. Transcriptional regulation, led by transcription factors (TFs)—regulation proteins that link DNA sequences in specific promoter regions of target genes—is the first mechanism that is activated by the organism to enhance or repress gene expression involved in response to internal or external stimuli [4]. Such TFs can regulate more than one gene as well as other TFs [4].

Among TFs, the WRKY family is well known. The first WRKY protein was identified in sweet potato [5] and since then, WRKY proteins have been characterized in several other plants [6, 7] as well as in algae and non-plant eukaryotes [8]. The WRKY TFs bind a specific promoter sequence of the target gene, known as a W-box, positively or negatively regulating the target gene expression. The WRKY proteins contain one or two DNA binding domains of 60 amino acids containing the conserved heptapeptide WRKYGQK followed by a zinc-finger motif C$_2$H$_2$ (C-X$_4$-5-C-X$_2$-23-H-X-H) or C$_2$HC (C-X$_7$-C-X$_{23}$-24-H-X-C) [6]. In some species, members of the WRKY family containing three DNA binding domains have been found [9, 10]. The WRKY TF family is known to be involved in response to biotic and abiotic stresses [7], and also to modulate various other processes in plants such as embryogenesis [11], trichome and seed development [12], leaf senescence [13], fruit and pollen development [14], biomass [15], secondary metabolite biosynthesis [16] and hormone signalling [17]. In Arabidopsis species, several WRKY genes have been experimentally characterized and associated with response to fungal or bacterial pathogens [18, 19], as well as to nematodes [20]. In cacao (Theobroma cacao L.), a portion of WRKY genes have been previously identified and analyzed with regards to their expression, phylogeny within the Malvaceae family, and/or for their potential use in marker assisted selection [21–23], but no exhaustive analysis of this TF family based on cacao genome data has been carried out.

The cacao tree is cultivated mainly for its beans, used as raw material for making chocolate. However, bean production is threatened worldwide by several pathogens, such as M. perniciosa, the agent of the witches’ broom disease [24], one of the most devastating diseases of the crop in Central and South America, and the Caribbean [25]. This disease has been responsible for the abandonment by producers of many cultivated areas in these regions [26], to the point of causing a shortage of cacao beans in the global market [27]. In this scenario, during the genomic and post-genomic era, tools have been developed to understand the cacao-M. perniciosa interaction as well as to identify molecules that can be used to develop disease control methods. Here, we report on the genome-wide analysis of the T. cacao WRKY TF family and the identification of a comprehensive and non-redundant set of WRKY genes from this species. Subsequently, chromosomal location was determined and phylogenetic and motif analyses performed as a base for further comparative genomics studies. Moreover, expression patterns of WRKY genes in cacao infected (or not) with the pathogenic fungus M. perniciosa were also investigated. From the 61 TcWRKY proteins identified some were potentially involved cacao’s response to M. perniciosa and can be considered good candidates for subsequent functional analyses or disease management.

Material and methods

Datasets and WRKY protein identification

The scheme of the *in silico* pipeline used for identification of the *Theobroma cacao* WRKY protein set is shown in the S1 Fig. The *Theobroma cacao* protein sequences were downloaded...
from the CocoaGenDB database v1.0 (Theobroma_cacao_v1.pep.faa.gz; http://cocoa-genome-hub.southgreen.fr/gbrowse) [28]. The WRKY protein sequences of Arabidopsis thaliana were downloaded from the Phytozome database v12.1 (www.phytozome.org) and plant transcription factor database v.3.0 (http://plntfdb.bio.uni-potsdam.de/v3.0); only the non-redundant proteins between both databases were considered and used for the subsequent analysis (S1 Fig). The cacao proteins were screened to search for WRKY members using the local BLASTP program (blastall version 2.2.27; ftp://ftp.ncbi.nih.gov/blast/executables/blast+/LATEST) and the WRKY protein sequences of A. thaliana as input sequences (S1 Fig). The e-value for BLASTP was set at 1e-10 to obtain the final dataset of WRKY proteins. When more than one alternative splicing sequence was found for the same locus, only the longest non-redundant sequences were used for subsequent analyses. Subsequently, these candidate TcWRKY protein sequences were submitted to analysis using the InterPro (http://www.ebi.ac.uk/interpro/) and PFAM programs (http://pfam.xfam.org/) to confirm the presence of the WRKY domain, and analyzed using the SMART program (http://smart.embl-heidelberg.de/) to confirm the presence of the zinc-finger domain (S1 Fig). The protein sequences lacking both the WRKY and the zinc-finger domains were manually excluded. In parallel, an automatic search of TcWRKY proteins was made using the browser tool of CocoaGenDB v.1.0 based on keywords and InterPro numbers. The comparison of results from both analyses (local BlastP vs automatic search) allowed a fine, precise and complete analysis guaranteeing the identification of the largest non-redundant TcWRKY TF set (S1 Fig). This final largest non-redundant TcWRKY TF set contained 61 proteins (Table 1). Two of the TcWRKY proteins presented a highly altered WRKY motif and/or zinc-finger motif (Tc00_g017240 and Tc02_g001170) and for this reason were excluded from the phylogenetic analysis (Table 1). Moreover, one of the TcWRKY proteins presented the zinc-finger motif but not the conserved heptapeptide (Tc02_g012180) for this reason was excluded from all analyses (Table 1). Thus, depending on the analysis, only 60 or 58 protein sequences were used.

TcWRKY gene classification and chromosomal location

After confirmation and identification of the final dataset of TcWRKY proteins (S1 Fig), all whole protein sequences, except the Tc02_g012180, were used for sequence alignment using the ClustalOMEGA software (http://www.ebi.ac.uk/Tools/msa/clustalo/). The cacao TcWRKY proteins were categorized based on Arabidopsis WRKY protein classification [6]. The distribution of the TcWRKY sequences on cacao chromosomes was obtained from the CacaoGenDB database v1.0 (http://cocoagendb.cirad.fr) [28] using "WRKY" as input in the "Search by Keywords" tool (http://cocoa-genome-hub.southgreen.fr/content/search-keywords). The sequences downloaded from the CacaoGenDB database v1.0, excluding the chromosome Tc00, were used as an input file for prediction of WRKY gene duplication and collinearity using the MCScanX toolkit, according to the manual [29]. This analysis was made independently from other previously published reports [28] mainly because the CacaoGenDB database was regularly updated since the database creation and work publication.

Identification of conserved motifs in TcWRKY proteins

The detection of the motif composition in the 58 identified cacao WRKY proteins (all proteins except Tc00_g017240, Tc02_g001170 and Tc02_g012180) was performed with the MEME 4.9.1 program (http://meme.nbcr.net/meme/intro.html) [30]. MEME represents motifs as position-dependent letter-probability matrices which describe the probability of each possible letter at each position in the pattern [30]. The maximum number of motifs was set at 20, the maximum motif length was set at 80 amino acids, the optimum motif width was constrained
Gene locus	Conserved heptapeptide	WRKY domain	Group	Chromosome	Accession number
Tc02_g032670	WRKYGGK/WRKYGGK	C2H2	2	I	XP_007045981.1
Tc04_g009710	WRKYGGK/WRKYGGK	C2H2	2	I	XP_007032626.1
Tc09_g034740	WRKYGGK/WRKYGGK	C2H2	2	I	XP_007017012.1
Tc05_g001480	WRKYGGK/WRKYGGK	C2H2	2	I	XP_007026547.1
Tc05_g005710	WRKYGGK/WRKYGGK	C2H2	2	I	XP_007027196.1
Tc05_g020810	WRKYGGK/WRKYGGK	C2H2	2	I	XP_007029376.1
Tc07_g002020	WRKYGGK/WRKYGGK	C2H2	2	I	XP_007020620.1
Tc07_g000190	WRKYGGK/WRKYGGK	C2H2	2	I	XP_007020301.1
Tc01_g018460	WRKYGGK/WRKYGGK	C2H2	2	I	XP_007049282.1
Tc09_g002780	WRKYGGK/WRKYGGK	C2H2	2	I	XP_007011940.1
Tc09_g001530	WRKYGGK	C2H2	1	Ilia	XP_007011727.1
Tc09_g001520	WRKYGGK	C2H2	1	Ilia	XP_007011726.1
Tc06_g004420	WRKYGGK	C2H2	1	Ilia	XP_007023430.1
Tc06_g019530	WRKYGGK	C2H2	1	Ilb	XP_007026134.1
Tc02_g003250	WRKYGGK	C2H2	1	Ilb	XP_007041570.1
Tc01_g032940	WRKYGGK	C2H2	1	Ilb	XP_007051308.1
Tc01_g017430	WRKYGGK	C2H2	1	Ilb	XP_007049086.1
Tc03_g009820	WRKYGGK	C2H2	1	Ilb	XP_007037253.1
Tc07_g002910	WRKYGGK	C2H2	1	Ilb	XP_007020766.1
Tc04_g007790	WRKYGGK	C2H2	1	Ilb	XP_007032468.1
Tc02_g039950	WRKYGGK	C2H2	1	Ilb	XP_007046206.1
Tc04_g029800	WRKYGGK	C2H2	1	Ilc	XP_007035842.1
Tc01_g010370	WRKYGGK	C2H2	1	Ilc	XP_007048165.1
Tc06_g013130	WRKYGGK	C2H2	1	Ilc	XP_007025165.1
Tc01_g039500	WRKYGGK	C2H2	1	Ilc	XP_007052352.1
Tc01_g014750	WRKYGGK	C2H2	1	Ilc	XP_007048873.1
Tc00_g047270	WRKYGGK	C2H2	1	Ilc	XP_007043929.1
Tc04_g004210	WRKYGGK	C2H2	1	Ilc	XP_007031915.1
Tc01_g031960	WRKYGGK	C2H2	1	Ilc	XP_007051149.1
Tc05_g004380	WRKYGGK	C2H2	1	Ilc	XP_007026998.1
Tc00_g076580	WRKYGGK	C2H2	1	Ilc	XP_007037699.1
Tc01_g035290	WRKYGGK	C2H2	1	Ilc	XP_007051697.1
Tc08_g013540	WRKYGGK	C2H2	1	Ilc	XP_007019683.1
Tc03_g015140	WRKYGGK	C2H2	1	Ilc	XP_007038026.1
Tc01_g010220	WRKYGGK	C2H2	1	Ilc	XP_007048143.1
Tc00_g017270	WRKYGGK	C2H2	1	Ilc	XP_007037701.1
Tc09_g005290	WRKYGGK	C2H2	1	Ilc	XP_007012369.1
Tc02_g032350	WRKYGGK	C2H2	1	Ilc	XP_007045916.1
Tc05_g027100	WRKYGGK	C2H2	1	IId	XP_007030538.1
Tc09_g000780	WRKYGGK	C2H2	1	IId	XP_007011614.1
Tc01_g005580	WRKYGGK	C2H2	1	IId	XP_007047364.1
Tc03_g025390	WRKYGGK	C2H2	1	IId	XP_007039903.1
Tc01_g027130	WRKYGGK	C2H2	1	IId	XP_007050397.1
Tc08_g000030	WRKYGGK	C2H2	1	IId	XP_007017155.1
Tc03_g028030	WRKYGGK	C2H2	1	Ile	XP_007040356.1
Tc06_g000970	WRKYGGK	C2H2	1	Ile	XP_007022995.1
Tc03_g019750	WRKYGGK	C2H2	1	Ile	XP_007099721.1

(Continued)
to be between 6 and 300 residues, and the other parameters were used with the default settings. The organization of the different motifs (e.g. WRKY DNA-binding domain, leucine rich repeat/LRR) present in the cacao WRKY proteins was performed with the SuperFamily database v.1.75 (http://supfam.org/SUPERFAMILY/; [31]) based on hidden Markov models.

Phylogenetic analysis

A phylogenetic tree of amino acid sequences of WRKY domains from cacao (58 sequences, see paragraph above) and *Arabidopsis* (S1 Table) was constructed. The amino acid sequences of WRKY domains were aligned using the MUSCLE program v3.6 [32] with default parameters. The MEGA 5.1 software was used to construct a rooted phylogenetic tree [33]. The tree based on WRKY domains of *Arabidopsis* and cacao was used to identify and classify putative orthologs. The statistical method used to construct the tree was neighbor-joining [34], the evolutionary distances were obtained using the p-distances method, and these distances were used to estimate the number of amino acid substitutions per site. The reliability of each tree was established by conducting 1000 bootstrap sampling steps. To construct the tree with all species used in this study, the JTT evolutionary model plus gamma-distributed rate (JTT+G) was used as determined by the Modeltest program version 3.7 [35]. The phylogenetic analysis was completed by an analysis of orthology using the plant transcription factor database v.3.0 (http://plntfdb.bio.uni-potsdam.de/v3.0).

Plant material

The plant material used in this study consisted in TSH1188 and Catongo *T. cacao* genotypes. TSH1188 was chosen based on its demonstrated resistance to witches’ broom disease from field progeny trials assessed by the number of vegetative and cushion brooms per plant and

Table 1. (Continued)

Genelocus	gene locus	WRKY domain	Gene locus	WRKY domain	Group	Chromosome	Acession number
Tc06_g013990	WRKYGQK	C2H2	1	lle	6	XP_007025322.1	
Tc01_g035330	WRKYGQK	C2H2	1	lle	1	XP_007051705.1	
Tc01_g031780	WRKYGQK	C2H2	1	lle	1	XP_007051114.1	
Tc10_g016560	WRKYGQK	C2HC	1	III	10	XP_007011366.1	
Tc03_g017550	WRKYGQK	C2HC	1	III	3	XP_007038956.1	
Tc03_g028700	WRKYGQK	C2HC	1	III	3	XP_007040478.1	
Tc01_g034680	WRKYGQK	C2HC	1	III	1	XP_007051596.1	
Tc04_g016130	WRKYGQK	C2HC	1	III	4	XP_007033512.1	
Tc10_g016570	WRKYGQK	C2HC	1	III	10	XP_007011367.1	
Tc02_g001230	WRKHGQT	C2HC	1	III	2	XP_007041160.1	
Tc02_g001200	WRKYGQK	C2HC	1	III	2	XP_007041155.1	
Tc00_g017240**	WRCIGIK	C2H2	1	nd	0	XP_007037703.1	
Tc02_g001170**	RTKYYRC	C2HC	1	nd	2	XP_007041153.1	
Tc02_g012180***	No conserved stretch	C2H2	1	nd	2	XP_007040329.1	

Gene locus	gene locus	WRKY domain	Gene locus	WRKY domain	Group	Chromosome	Acession number
Tc06_g013990	WRKYGQK	C2H2	1	lle	6	XP_007025322.1	
Tc01_g035330	WRKYGQK	C2H2	1	lle	1	XP_007051705.1	
Tc01_g031780	WRKYGQK	C2H2	1	lle	1	XP_007051114.1	
Tc10_g016560	WRKYGQK	C2HC	1	III	10	XP_007011366.1	
Tc03_g017550	WRKYGQK	C2HC	1	III	3	XP_007038956.1	
Tc03_g028700	WRKYGQK	C2HC	1	III	3	XP_007040478.1	
Tc01_g034680	WRKYGQK	C2HC	1	III	1	XP_007051596.1	
Tc04_g016130	WRKYGQK	C2HC	1	III	4	XP_007033512.1	
Tc10_g016570	WRKYGQK	C2HC	1	III	10	XP_007011367.1	
Tc02_g001230	WRKHGQT	C2HC	1	III	2	XP_007041160.1	
Tc02_g001200	WRKYGQK	C2HC	1	III	2	XP_007041155.1	
Tc00_g017240**	WRCIGIK	C2H2	1	nd	0	XP_007037703.1	
Tc02_g001170**	RTKYYRC	C2HC	1	nd	2	XP_007041153.1	
Tc02_g012180***	No conserved stretch	C2H2	1	nd	2	XP_007040329.1	

* Sequences not classified in any group due to the absence of WRKY domain, incomplete zinc finger motif and/or small conserved WRKY domain.

** Zinc finger C2H2 identified by the Smart program (http://smart.embl-heidelberg.de/)

* * Excluded from the phylogenetic analyses.

** ** Excluded from all the subsequent analyses.

https://doi.org/10.1371/journal.pone.0187346.t001
per year, and by witches' broom incidence scale [36, 37]. The susceptible cultivar Catongo was chosen as the standard for susceptibility. These genotypes were previously used as resistance and susceptibility standards in several molecular and histological studies of witches' broom disease [38–42]. Seedlings, derived from open-pollinated pods of both genotypes were planted in a mixture of commercial potting mix (Plantmax® Eucatex, São Paulo, SP, Brazil) and clay-rich soil, in a 2:1 proportion, and grown in sterile substrate in the greenhouses of CEPLAC/CEPEC (Bahia, Brazil) under natural light and 90% relative humidity until the inoculation day. All the experiments followed a complete randomized design.

Plant inoculation procedure

The inoculation procedure was conducted in the greenhouses of CEPLAC/CEPEC (Bahia, Brazil) using inoculum from Moniliophthora perniciosa isolate 4145, which has been maintained in the CEPLAC/CEPEC phytopathological M. perniciosa collection (CEGEN n°109/2013/SECEXCEGEN) in sterile distilled water [43] and in mineral oil. The inoculation procedure has been previously described in detail [42]. Briefly, apical shoot apexes of 300 4-week-old seedlings from each genotype were inoculated with a 20 μl drop of a basidiospore suspension (2.10^5 basidiospores ml^-1 with >80% germination) in 0.3% agar [44]. Inoculated seedlings were incubated for 48 h in a control dark moist chamber at 23±2˚C and relative humidity greater than 97%. Afterwards seedlings were transferred to an acclimatization greenhouse with 23±2˚C temperature and irrigation for 20 minutes three times a day until the end of the experiment. The greenhouse relative humidity was around 80% controlled through an automated fogging system. Seedlings mock-inoculated with sterile 0.3% were used as controls. Symptoms were observed weekly up to 60 days after inoculation (dai). The inoculation efficiency was checked based on the inoculum viability (>80% of spore germination observed 24 h after inoculation [hai]) and on disease incidence on the susceptible cultivar Catongo (>80% of disease incidence observed 60 dai). Apical shoot apexes were harvested at 6, 12, 24, 48 and 72 hai and 7, 15, 30 and 45 dai. These harvesting points correspond to the main disease stages as previously described [40–42, 45, 46]. Briefly, 6h corresponded to M. perniciosa penetration in resistant and susceptible genotypes. The 24 to 72 hai period corresponded to the early stages of the infection; at 48 h the fungus hyphae were observed in the cortex beneath the epidermal layer in the susceptible genotype (in the resistant genotype the infection and fungus progression were reduced or stopped). From 15 to 25 dai, macroscopically the symptoms on susceptible genotype were observed as apical swellings and slight morphological alterations of the shoots (S2 Fig), and microscopically, hyphal strands were seen in the cortex and grew toward the vascular bundles through xylem ray cells. At 30 dai, apical hypertrophy and swellings were observed (S2 Fig); at this time the pathogen reached the pith, and swollen, flexuous, septated and unclamped hyphae grew in the apoplast. The infection continued to develop forming the phenotypic response of terminal green brooms that could be seen at 45 dai (S2 Fig). At 60 dai, the infected plant presented macroscopic symptoms called dry broom (data not shown). Control plants were kept and harvested under the same conditions and at the same time points. For each genotype and at each harvesting time (for inoculated and control plants), 24 samples were collected (1 sample = 1 apical apex of 1 cacao plantlet) and immediately frozen in liquid nitrogen and stored at -80˚C until use. Then three samples collected from each genotype at each harvesting time were pooled forming one biological replicate; two biological replicates were obtained (i.e., 6 apexes from the 24 collected were used).

Total RNA extraction and cDNA synthesis

Cacao samples were macerated in liquid nitrogen until a fine powder was obtained. Total RNA was extracted from 100–150 mg of macerated tissue using the RNAqueous® Total RNA
isolation kit according to the manufacturer’s instructions (Thermo Scientific) with modifications as previously described [47]. Briefly, after the addition of the lysis buffer to the macerated samples, a sonication step was added (10 s pulse/min, 70% output; Gex Ultrasonic processor 130, 130 W) to break polysaccharides which are present in high levels in cacao tissues. This step was conducted on ice. RNA was quantified using a NanoDrop 2000 spectrophotometer (Thermo Scientific) and its integrity was checked by 1% agarose gel electrophoresis. RNA was treated by DNase I RNase-free according to the manufacturer’s instructions (Invitrogen). The cDNA was synthesized from 200 ng of RNA using the RevertAid First Strand cDNA kit according to the manufacturer’s instruction (Thermo Scientific). The cDNA quantification was carried out in the same NanoDrop 2000 spectrophotometer.

Primer design and qPCR analysis

Seven cacao WRKY genes (Tc04_t016130, Tc10_t016570, Tc09_t001530, Tc06_t004420, Tc06_t013130, Tc01_t014750, Tc01_t018460) were selected based on the phylogenetic analysis and searches for genes that are well characterized and possibly involved in plant defense mechanisms against pathogenic fungi in the Arabidopsis genus. Specific primers were designed for each gene using the OligoPerfect™ Designer tool (http://tools.thermofisher.com) according to the following criteria: i) amplicon size of 65–150 bp; ii) primer length of 17–23 bases; iii) melting temperature of 57–63˚C; and iv) GC content of 40%-80% (S2 Table and S3 Table). The OligoAnalyzer v.3.1 program (https://www.idtdna.com/calc/analyzer) was used to analyze the primer pairs in relation to hairpin loop, self-dimer and hetero-dimer formation (https://www.idtdna.com/calc/analyzer). Primers were also designed to amplify specific regions presenting different sizes, melting temperatures, GC contents and GC/AT ratios (S3 Table) to avoid cross-reaction between genes from the cacao WRKY family [48]. For qPCR analysis, two reference genes (malate dehydrogenase/MDH and glyceraldehyde 3-phosphate dehydrogenase/ GAPDH) previously described in cacao meristems infected by M. perniciosa [47, 49] were used (S2 Table). Expression analysis by qPCR was conducted in an Agilent Technologies Stratagene Mx3005P system (Agilent Technologies). The qPCR reaction consisted of 200 ng of cDNA, 0.5 μM of each primer from candidate or reference genes (S2 Table) and 1X of Maxima™ SYBR Green/ROX qPCR Master Mix (Thermo Scientific) in a total volume of 12.5 μl. Cycling conditions were: 50˚C for 2 min, 95˚C for 1 min followed by 40 cycles at 95˚C for 30 s, 58˚C for 45 s and 72˚C for 30 s, with detection of the fluorescent signal at the end of each extension cycle. To verify that each primer pair produced only a single PCR product, dissociation analysis was carried out under the following cycling conditions: 95˚C for 25 s, 58˚C for 30 s and 72˚C for 30 s. The amplification efficiency of each primer pair was analyzed using three amounts (50, 100 and 200 ng) of each cDNA sample. Experiments also included a negative control (no template DNA). Real-time data acquisition was performed with the Stratagene MX3005P system containing the MxPro QPCR software (Agilent Technologies), which provided the values of cycle threshold (Ct) and of fluorescence. Amplification efficiency (E) was accessed using the Miner 2.2 software [50]. The gene expression level was analyzed with three experimental repetitions for both Catongo and TSH1188 genotypes with the comparative Ct method (2−ΔΔCt) using: i) MDH and GAPDH as reference genes (average of expression values from both genes); and ii) non-inoculated plants as a calibrator (at each harvesting time, a non-inoculated sample was collected and used as calibrator of the corresponding inoculated sample). Statistical analysis was done using the SASM-Agri software v.8.2 [51], which tested the experiments as a completely randomized design. t-test and F-test (ANOVA) were applied with a critical value of 0.05. The Duncan test (P ≤ 0.05) was employed for mean separation when F-values were significant.
Results

Identification and classification of TcWRKY sequences

In the cacao genome, 61 non-redundant sequences corresponding to putative WRKY proteins were found using BLASTP (Table 1). Among them, 47 had been previously annotated as WRKY proteins in the CocoaGenDB; the other 14 proteins identified by BLASTP had been previously annotated as uncharacterized, predicted or hypothetical proteins (data not shown). Among the 61 non-redundant sequences, 60 contained at least one complete heptapeptide WRKY motif while one sequence (Tc02_g012180) did not present such a conserved stretch (Table 1). The TcWRKY proteins were classified into three groups according to the presence of WRKY motif and the zinc-finger motif type. Group I contained two WRKY motifs (one in the N-terminal region of the sequence, the other in the C-terminal region) and two C\(_2\)H\(_2\) zinc-finger motifs; this group contained 10 TcWRKY proteins (Table 1; Fig 1A). Group II contained only one WRKY motif and a C\(_2\)H\(_2\) zinc-finger motif (40 TcWRKY proteins). Group III contained only one WRKY motif and a C\(_2\)HC zinc-finger motif (8 TcWRKY proteins) (Table 1, Fig 1A). It was not possible to classify the three other putative WRKY proteins (Tc02_g017240, Tc02_g001170 and Tc02_g012180) because of the presence of a highly altered WRKY motif and/or zinc-finger motif, or because of the absence of a WRKY motif (Table 1; Fig 1A). The zinc finger motifs C\(_2\)H\(_2\) from the group I were CX\(_4\)CX\(_{22}\)HX\(_1\)H (N-terminal) and CX\(_4\)CX\(_{23}\)HX\(_1\)H (C-terminal) for all sequences (Fig 2). Group II was divided into five subgroups (Iia to e) according to C\(_2\)H\(_2\) zinc-finger structure. Subgroups Iia, Iib, Iic, IId and Ile were found to contain 3, 8, 17, 6 and 6 genes, respectively (Table 1) and the members of subgroups Iia, IId, Ile and 6 members of subgroup Iib showed the CX\(_5\)CX\(_{23}\)HX\(_1\)H zinc-finger motif. The other two members of subgroup Iib (Tc02_g033950 and Tc04_g007790) showed the CX\(_3\)CX\(_{23}\)HX\(_1\)H and CX\(_3\)CX\(_{33}\)HX\(_1\)H zinc-finger structures, respectively (Fig 2). All the members of group Iic showed the CX\(_4\)CX\(_{23}\)HX\(_1\)H zinc-finger structure (Fig 2). In the case of group III, the zinc-finger motif was CX\(_7\)CX\(_{23}\)HX\(_1\)C (Fig 2). The WRKY domain (WD) was highly conserved in 52 proteins, but some of them presented variations (Table 1; Fig 2). The proteins of the group Iic showed a WRKY motif with only one amino acid modification; the protein Tc02_g001230 showed a WRKY motif with two amino acid modifications (WRKHGQT) while Tc00_g017240 contained a WRKY motif with three modifications (WRCIGIK) in addition to the presence of an incomplete zinc-finger motif (Table 1, Fig 2). These seven proteins belong to subgroup Iic, III, or were non-classified (Table 1). The sequence Tc02_g012180, which did not contain any WRKY motif, was removed from all subsequent analyses, while the sequences Tc02_g001170 and Tc02_g012180, which showed modified WRKY motif and modified zinc-finger motif, were excluded from phylogenetic analysis.

Distribution of WRKY genes in the cacao genome

The 61 putative WRKY sequences were distributed on the 10 cacao chromosomes (Fig 1A and 1B). A higher abundance of WRKY genes was observed on chromosome 1: 14 genes belonging to groups I (1 gene), II (12) and III (1) (Fig 1A and 1B). In contrast, chromosomes 8 and 10 contained only two WRKY genes each (from groups II and III, respectively; Fig 1A). The other WRKY genes were distributed as follows: 8, 7, 5, 5, 5, 3 and 6 on chromosomes 2, 3, 4, 5, 6, 7 and 9, respectively, and belonged mainly to groups I and II (Fig 1A). For four of the genes (Tc00_g047270, Tc00_g076580, Tc00_017270, Tc00_g017240), the location was uncertain, so the genes were distributed on “chromosome 00”, corresponding to non-anchored sequences of the genome (Table 1; Fig 1A). Because tandem and segmental duplication play an important role in the expansion of multigene families, we analyzed the syntenic regions and structural
changes of all 10 cacao chromosomes (Fig 3). Twenty-four WRKY genes were identified in segmental duplication events in the cacao genome (Fig 3). Tc01_g035330 participated in two duplication events with Tc03_g019750 and Tc03_g028030, while Tc01_g034680 also participated in two duplication events with Tc03_g017550 and Tc03_g028700. TcWRKY genes

Fig 1. Classification of TcWRKY genes and distribution on cacao chromosomes.

A. Distribution of TcWRKY gene groups among cacao chromosomes. Chromosome 00 corresponds to non-anchored genome regions. nc: not classified. The total number of genes in each group was indicated under parenthesis. **B.** Physical distribution of the TcWRKY genes on cacao chromosomes. In CocoaGenDB, the sequence names are preceded by “Tc_g” (e.g., Tc_g005580).
Fig 2. Multiple alignments of 60 TcWRKY proteins. The whole TcWRKY protein sequences were aligned but only the conserved domains are presented. The conserved WRKY heptapeptide is indicated in black; variations of the heptapeptide are indicated in red. The zinc finger domain is indicated in grey. Gaps
were located within syntenic blocks of all chromosomes except chromosome 10. Most of the duplications were located in chromosomes 1 and 3 (Fig 3).

Phylogenetic analysis of TcWRKY proteins

A phylogenetic tree of WRKY amino acid domains from cacao and Arabidopsis (S1 Table) was constructed to investigate the relationship between these two species (Fig 4). The WRKY protein domains were grouped according to the general WRKY classification (group I, IIA-e, III). The group I was subdivided according to the N-terminal and C-terminal WD (I* and I**, respectively). The least consistent group was the IIC that was split in two branches, one more related to the group III, the other to the group I**. Groups IIA and IIB presented a close phylogenetic relation, as well as IID and IIE (Fig 4). The phylogenetic tree constructed with cacao and Arabidopsis WRKY domains also allowed inferences to be made about the possible function of cacao sequences based on Arabidopsis sequence function knowledge. Clades or sequences associated with plant responses to pathogen or defense inducers (such as abscisic acid or salicylic acid) were identified and cacao sequences with possible defense-related responses were selected for expression analysis (Fig 4). Similar results were obtained by analysis of orthology between cacao and A. thaliana: Tc01_g018460 (XP_007049282.1) was orthologue to AT2G04880.2 (WRKY3); Tc04_g016130 (XP_007033512.1) to AT3G56400.1 (WRKY70); Tc10_g016570 (XP_007011367.1) to AT3G56400.1 (WRKY70); Tc09_g001530 (XP_007011727.1) to AT4G31800.2 (WRKY18); Tc06_g004420 (XP_007023430.1) to AT1G04880.1 (WRKY40); Tc06_g013130 (XP_007023430.1) to AT4G18170.1 (WRKY28); and Tc01_g014750 (XP_007048873.1) to AT1G29860.1 (WRKY28).

To investigate the relationship between WRKY family members in cacao more thoroughly, we analyzed the motif pattern of the TcWRKY sequences (Fig 5A). The different motifs were identified based on the biochemical properties of their amino acids as well as their specific location in the protein sequence [52]. The conserved amino acids, the position of each residue in the WRKY sequence, as well as the residue that varied according to the protein sequence are presented in Fig 5A. Twenty motifs were found and 3 of them (motifs 1 to 3; Fig 5B) constituted the WD. Motifs 1 and 2, corresponding to the C-terminal WRKY and the C2H2 motifs, were present in 58 TcWRKY members. Motif 3 corresponded to the N-terminal WRKY motif (10 members). Motif 4 is an intermediary amino acid region between motifs 1 and 2, forming the complete WD with approximately 60 amino acids. This motif is present in 58 TcWRKY proteins (Fig 5A and 5B). Six different combinations containing the WRKY motifs were found in the proteins identified in the cacao genome (Fig 5C). Twenty-nine presented the WRKY motif in the center of the sequence and 18 in the C-terminal region. Of the 10 members of group I (with duplicated domains), 9 members presented the WRKY motif in the central region of the protein while one presented this domain in the C-terminal region. Three other members (Tc02_g001230, Tc02_g001200 e Tc02_g001170) presented the WRKY motif domain in the N-terminal region of the protein and also contained the 2 LRR motifs and one NB-ARC domain. One sequence, Tc05_g005710, contained 2 LRR motifs (Fig 5C).

Expression patterns of seven selected TcWRKY genes in resistant and susceptible Theobroma cacao genotypes

According to the phylogenetic analysis (Fig 4), the orthology between cacao and Arabidopsis and the putative function of WRKY genes in Arabidopsis (related to response to biotic stress), 7
The 7 TCWRKY genes analyzed, one belonged to group I (TC01_t018460), two to...
The expression of the TcWRKY genes was analyzed in two cacao genotypes, TSH1188 (resistant to witches' broom syndrome) and TSH1118 (susceptible to witches' broom syndrome). TcWRKY proteins possibly involved in plant defense response and selected for gene expression analysis are indicated in red. These proteins are: Tc04_g016130, Tc10_g016570, Tc09_g001530, Tc06_t004420, Tc06_t013130, Tc01_t014750 and Tc01_t018460 (appearing in the I* and I** groups).

Fig 4. Phylogenetic tree of WRKY protein domains from cacao and Arabidopsis. TcWRKY protein domains (S1 Table) were grouped into three groups and their subgroups as follows: group I in red, subgroup Ila in light purple, subgroup IIb in blue, subgroup IIc in dark green, subgroup IId in light green, subgroup IIe in orange, group III in dark purple. (*) and (**) indicate the N-terminal and C-terminal WD from group I genes. Cacao WRKY proteins possibly involved in plant defense response and selected for gene expression analysis are indicated in red. These proteins are: Tc04_g016130, Tc10_g016570, Tc09_g001530, Tc06_t004420, Tc06_t013130, Tc01_t014750 and Tc01_t018460 (appearing in the I* and I** groups).
Fig 5. Phylogenetic tree and motif composition of TcWRKY proteins. A. Phylogenetic tree (left side of the figure) and motif composition of the TcWRKY proteins (right side), obtained using the MEGA v.5.1 and the MEME programs, respectively. The
disease) and Catongo (susceptible) infected or not (control) with *M. perniciosa* (Fig 6A and 6B). For both genotypes and for all the harvesting points, the PCR amplification occurred at the same melting temperature, showing that only the target gene was amplified (data not shown). RT-qPCR analysis showed differential expression between genotypes and/or between time intervals for all the analyzed genes. In Catongo, the TcWRKY genes Tc06_p004420, Tc09_p001530, Tc04_p016130 and Tc10_p016570 showed higher transcript abundance in the final stages of the infection (15 to 45 dai). The gene Tc01_p014750 showed higher transcript abundance 15 dai but also at the beginning of the infection (6 hai; about 6 times more expressed). The gene Tc06_p013130 showed higher transcript abundance (about 7 times more than the control) 24 hai while the gene Tc01_p018460 was more expressed 7 dai (Fig 6B). In TSH1188, the transcript abundance of the genes Tc06_p013130, Tc06_p004420, Tc09_p001530 and Tc01_p016570 was low (about 2 times more expressed than control). The gene Tc01_p014750 was mainly expressed in the initial infection points (6 to 24 hai; about 5 times more expressed). Interestingly, the Tc04_p016130 and Tc10_p016570 TcWRKY genes showed very high transcript abundance 45 dai: Tc04_p016130 showed an increase of about 12 times while Tc10_p016570 was expressed 120 times more than the control (Fig 6B). Some significant differences were also observed between genotypes: 12 hai and 15 dai for the gene Tc01_p014750; 24 hai, 48 hai and 15 dai for the gene Tc06_p013130; 7, 15, 30 and 45 dai for the gene Tc06_p004420; 48 hai, 7 and 15 dai for the gene Tc09_p001530; 12 hai and 45 dai for the gene Tc04_p016130; 6 hai and 45 dai for the gene Tc10_p016570; and 6 and 72 hai, 7 and 30 dai for the gene Tc01_p018460 (Fig 6B).

Discussion

WRKY proteins constitute one of the most important transcription factor families in plants due to their participation in diverse biological processes, including responses to biotic and abiotic stresses [7]. A better understanding of this family, including member characterization, phylogenetic analysis and expression analysis, can help to define new disease management strategies, as in the case of the cacao-*M. perniciosa* interaction. In this study, based on sequence comparison and molecular phylogeny, 58 cacao proteins with complete WD were found (Table 1). These proteins belonged to three main WRKY groups and their subgroups, which were distributed throughout the genome (Fig 1). Seven members presented variations in the WD (in the heptapeptide or in the C_{2}H_{2} zinc finger motifs), suggesting a higher divergence, possibly due to recent mutations, of these genes in comparison to the rest of the TcWRKY family. Groups IIc and III (5 and 1 gene, respectively) contained 70% of the amino acid variations observed, suggesting that these two groups were more subjected to selective pressure and variability through time. Analysis in other species such as cotton or tomato, also showed that these two groups were the most divergent in the evolutionary history of the WRKY family [53, 54]. The phylogenetic analysis revealed that subgroups IIA and IIB are sister groups and share a common ancestor, as well as subgroups IID and IIE (Fig 4). Various studies have demonstrated that the expansion of WRKY TF family members is mainly due to gene duplication events, as shown in rice [55], *Arabidopsis* [56], cotton [53], *Populus* [57] and barley [58]. Here, we observed that 40% of the TcWRKY sequences presented one or more duplication events (Fig 3) and that these events were associated mainly with the conservation of the TcWRKY motif.
Fig 6. Expression profile of seven TcWRKY genes in resistant (TSH118) and susceptible (Catongo) cacao plants inoculated with M. perniciosa. A. Representation of the plant symptoms and fungus phase during the infection time.
patterns (Figs 4 and 5). Generally, the duplicated genes were also present together in the same clades of the motif phylogeny as observed for Tc04_g029800/Tc01_g031960, Tc04_g009710/Tc02_g032670, Tc03_g028700/Tc01_g017550/Tc01_g034680, Tc03_g009820/Tc02_g032670, Tc03_g028030/Tc03_g019750/ Tc01_g035330, Tc01_g014750/Tc06_g013130, Tc07_g002910/Tc06_g019530, Tc09_g034740/Tc05_g001480, Tc04_g004210/Tc03_g015140 and Tc08_g000030/Tc01_g005580 (Figs 3, 4 and 5). However, in the case of the duplication of Tc08_g013540/Tc01_g010370, the two sequences were located in different phylogenetic clades, suggesting an evolution of the gene and motif structure (Figs 3 and 4). Phylogenetic analysis in macromolecules, by forming non-random clusters, also suggests that these molecules may share the same biological functions, may be present in the same cell compartment or be expressed/produced at the same moment during a biological process. Besides the heptapeptide WRKYGQK and the C₂H₂/C₂HC zinc-finger motifs–known to be involved in DNA-binding–some TcWRKY proteins (Tc02_g001230, Tc02_g001200, Tc02_g001170 and Tc00_g017270) showed conserved motifs, such as NB-ARC and/or LRR (Fig 5C), known to be involved in pathogen recognition, plant resistance and activation of plant immunity [59, 60].

Expression and functional analysis of WRKY TFs could help in discriminating the role and function of these proteins at the tissue and organism levels. Here, we evaluated by RT-qPCR the expression of seven TcWRKY genes in resistant and susceptible cacao plants inoculated or not with M. perniciosa. The choice of the genes was based on previous indications in the genome databank (CocoaGenDB), phylogenetic analysis and putative function of the orthologues in Arabidopsis, showing that: i) Tc01_p014750 and Tc06_p013130 (indicated as TcWRKY28) were co-orthologous to AtWRKY8 and AtWRKY28; ii) Tc09_p001530 and Tc06_p004420 (both indicated as TcWRKY40) were both orthologous to AtWRKY40; iii) Tc04_p016130 and Tc10_p016570 were co-orthologous to AtWRKY54 and AtWRKY70; and iv) Tc01_p018460 was orthologous to AtWRKY1 (Fig 4). Interestingly, the Tc01_p014750 and Tc06_p013130 genes came from an event of duplication (Fig 3) but showed different expression patterns (Fig 6B), suggesting that sequence evolution may result in different roles and/or functions in relation to pathogen response. These two sequences were co-orthologous to AtWRKY8 and AtWRKY28, which are induced by ABA, wounding, oxalic acid (OA) and/or hydrogen peroxide (H₂O₂) [61, 62]. In cacao, it has been reported that the amount of calcium oxalate crystal (COC) and H₂O₂ levels in the TSH1188 (resistant) vs. Catongo (susceptible) varieties present distinct temporal and genotype dependent patterns [40, 41]; susceptible variety accumulated more COC than the resistant one, and the COC dissolution–resulting in OA and H₂O₂ formation–occurred in the early infection stages in the resistant variety and in the final stage of the disease in the susceptible one. Interestingly, the Tc01_p014750 gene, orthologous to AtWRKY28, showed higher expression in the early infection stages in TSH1188 and 15 dai in the Catongo variety (Fig 6B), stages during which the H₂O₂ is considered the highest [40, 41]. The Tc06_p013130 gene (previously annotated as TcWRKY28) showed an expression pattern different from Tc01_p014750, with high abundance 24 hai in the susceptible variety and a constant and low abundance in the resistant one (Fig 6). Such divergent behavior was
previously observed for the rice \textit{WRKY28} gene. Delteil et al. [63] reported that the knock-out of \textit{OsWRKY28} by T-DNA insertion leads to a two-fold increase in resistance to a compatible rice blast fungus, and this phenotype is accompanied with increased expression of several defense-related genes. Likewise, other authors showed that the overexpression of \textit{OsWRKY28} resulted in enhanced susceptibility to the rice blast fungus \textit{Magnaporthe oryzae} and decreased accumulation of PR-5 [64]. According to the authors, these phenotypes observed in overexpression or genetic defects in \textit{OsWRKY28} are consistent with their presumed role as negative regulators of basal defense responses to compatible rice blast fungus strains [64]. The same role was also suggested for \textit{WRKY8} in \textit{Arabidopsis}. This gene could be a negative or positive regulator of the basal resistance of the plant when infected by \textit{Pseudomonas syringae} or \textit{Botrytis cinerea}, respectively [61]. In cacao, it can be suggested that Tc01_p014750 acted as a positive regulator of plant resistance to \textit{M. perniciosa} through activation by OA and/or reactive oxygen species (ROS); the involvement of OA and ROS in cacao resistance to \textit{M. perniciosa} has been previously observed in studies using the same or similar plant genotypes and culture conditions [40, 41, 65]. On the other hand, Tc06_p013130 may have acted as negative regulator of the basal resistance of cacao.

The Tc09_p001530 and Tc06_p004420 genes (both indicated as \textit{TcWRKY40}) showed high transcript abundance in the susceptible cacao variety (final stages; Fig 6B). In \textit{Arabidopsis}, studies have shown that the \textit{WRKY18}, \textit{WRKY40} and \textit{WRKY60} TFs are induced by pathogens and interact physically and functionally together forming homo and heterocomplexes [66]. The constitutive overexpression of these genes in \textit{Arabidopsis} increased its susceptibility to \textit{B. cinerea} [66]. Moreover, the superexpression of \textit{WRKY40} in transgenic \textit{Populus trichocarpa} plants conferred high susceptibility to the hemibiotrophic fungus \textit{Dothiorella gregaria} Sacc., indicating that \textit{PtrWRKY40} plays a negative role in resistance to this hemibiotrophic fungus in poplar [67]. In cacao, the Tc09_p001530 and Tc06_p004420 genes (\textit{Tc-WRKY40}) may have a similar function to that observed in poplar: the gene expression in the Catongo variety may be associated with the plant susceptibility to \textit{M. perniciosa}. In the phylogenetic analysis, the sequences Tc04_p016130 and Tc10_p016570 were grouped both with \textit{AtWRKY54} and \textit{AtWKY70} (Fig 4). Tc04_p016130 and Tc10_p016570 showed similar expression patterns, mainly with a very high expression in the last time point in TSH1188 (about 10 and 140 times more at 45 dai, respectively). Several works have reported the cooperation of the \textit{AtWRKY54} and \textit{AtWKY70} genes in response to biotic and abiotic stresses [68, 69]. These TFs are positive regulators of plant defense, and cooperate as negative regulators of salicylic acid (SA) biosynthesis and senescence [69], but are not responsive to signals such as ROS [68]. The \textit{WRKY70} TF was identified as an integrator in cross-talk between SA and jasmonic acid (JA), two hormones with a well-defined function in plant defense response regulation [70]. Generally, SA is associated with defense response against biotrophic pathogens, whereas JA has a function in defense responses against herbivore and necrotrophic pathogens [70]. In cacao, previous works have shown an increase of jasmonate biosynthesis genes in the last time stages in TSH1188-\textit{M. perniciosa} interaction (from 30 to 60 dai), as well as an increase of ROS detoxification genes [39]. The gene Tc01_p018460 showed high phylogenetic proximity with \textit{AtWRKY1} but also with other genes involved in pathogen responses induced by SA, such as \textit{AtWRKY3} and \textit{ATWRKY58} (Fig 4); this proximity may be related to similar gene function. In the susceptible genotype, the Tc01_p018460 expression was higher mainly 7 dai (Fig 6B).

Conclusion

Here, we identified 61 WRKY proteins from \textit{T. cacao}, distributed on all the chromosomes, in some cases coming from different duplication events. To our knowledge, this is the first report...
of the entire WRKY TF family in cacao and of expression analysis in relation to *M. perniciosa* infection. The TcWRKY family showed a phylogenetic composition similar to that of *Arabidopsis* and some couple of sequences showed similar expression patterns and possibly functions (e.g., Tc01_p014730/Tc06_p013130/AtWRKY28; Tc09_p001530/Tc06_p004420/AtWRKY40; Tc04_p016130/AtWRKY54; Tc10_p016570/AtWRKY70; Tc01_p018460/AtWRKY1). Mainly, the Tc04_p016130 and Tc10_p016570 sequences presented a special interest due to their high and differential expression level between resistant and susceptible plants infected by *M. perniciosa*. In general, our results can help to select appropriate candidate genes for further characterization and/or confirmation studies in relation to pathogen resistance in cacao or in other *Theobroma* species, as well as for support of future breeding efforts.

Supporting information

S1 Fig. General scheme of the *in silico* pipeline used for identification and confirmation of the TcWRKY sequences. (DOCX)

S2 Fig. Disease symptoms observed in the TSH1188 (resistant) and Catongo (susceptible) infected and non-infected plants. White arrow: swelling of the stem; black arrow: ramification (green broom). (DOCX)

S1 Table. List of the 153 *T. cacao* and *A. thaliana* WRKY domains used for phylogeny. (DOCX)

S2 Table. Primers used in this study. (DOCX)

S3 Table. Characteristics of WRKY amplicons. (DOCX)

Acknowledgments

We thank Dr. Aurizángela Oliveira de Sousa and Dr. Sara Pereira Menezes (UESC) for helpful comments during RT-qPCR design and Dr. Claudia Fortes Ferreira (Embrapa CNPMF, Brazil) for the English language revision.

Author Contributions

Conceptualization: Dayanne Silva Monteiro de Almeida, Daniel Oliveira Jordão do Amaral, Michel Vincentz, Fabienne Michel.

Formal analysis: Dayanne Silva Monteiro de Almeida, Luiz-Eduardo Del-Bem, Raner José Santana Silva, Michel Vincentz.

Funding acquisition: Fabienne Michel.

Investigation: Dayanne Silva Monteiro de Almeida, Daniel Oliveira Jordão do Amaral, Emily Bronze dos Santos, Raner José Santana Silva, Karina Peres Gramacho.

Methodology: Daniel Oliveira Jordão do Amaral, Luiz-Eduardo Del-Bem, Karina Peres Gramacho.

Project administration: Fabienne Michel.

Resources: Karina Peres Gramacho, Fabienne Michel.
Supervision: Michel Vincentz, Fabienne Micheli.
Validation: Fabienne Micheli.
Visualization: Dayanne Silva Monteiro de Almeida, Fabienne Micheli.
Writing – original draft: Dayanne Silva Monteiro de Almeida, Fabienne Micheli.
Writing – review & editing: Dayanne Silva Monteiro de Almeida, Karina Peres Gramacho, Fabienne Micheli.

References

1. Kole C, Muthamilarasan M, Henry R, Edwards D, Sharma R, Abberton M, et al. Application of genomics-assisted breeding for generation of climate resilient crops: Progress and prospects. Front Plant Sci. 2015; 6:1–16. https://doi.org/10.3389/fpls.2015.00001

2. Mickelbart MV, Hasegawa PM, Bailey-Serres J. Genetic mechanisms of abiotic stress tolerance that translate to crop yield stability. Nat Rev Genet. 2015; 16(4):237–251. https://doi.org/10.1038/nrg3901 PMID: 25752530

3. Lata C, Mishra AK, Muthamilarasan M, Bonthala VS, Khan Y, Prasad M. Genome-wide investigation and expression profiling of AP2/ERF transcription factor superfamily in Foxtail Millet (Setaria italica L.). PLoS ONE. 2014; 9(11):e113092. https://doi.org/10.1371/journal.pone.0113092 PMID: 25409524

4. Burley SK, Kamada K. Transcription factor complexes. Curr Opin Struct Biol. 2002; 12(2):225–230. https://doi.org/10.1016/S0959-440X(02)00314-7 PMID: 11959501

5. Ishiguro S, Nakamura K. Characterization of a cDNA encoding a novel DNA-binding protein, SPF1, that recognizes SP8 sequences in the 5' upstream regions of genes coding for sporamin and beta-amylase from sweet potato. Mol Gen Genet. 1994; 244(6):563–571. PMID: 7969025

6. Eulgem T, Rushton P, Robatzek S, Somssich IE. The WRKY superfamily of plant transcription factors. Trends Plant Sci. 2000; 5:199–206. https://doi.org/10.1016/s1360-1385(00)01600-9 PMID: 10785665

7. Rushton PJ, Somssich IE, Ringler P, Shen QJ. WRKY transcription factors. Trends Plant Sci. 2010; 15 (5):247–258. https://doi.org/10.1016/j.tplants.2010.02.006 PMID: 20304701

8. Zhang Y, Wang L. The WRKY transcription factor superfamily: its origin in eukaryotes and expansion in plants. BMC Evol Biol. 2005; 5(1):1–12. https://doi.org/10.1186/1471-2148-5-1 PMID: 15629062

9. Zhang Y, Feng Jc. Identification and characterization of the grape WRKY Family. Biomed Res Int. 2014;1:1–14. https://doi.org/10.1155/2014/787680 PMID: 24883326

10. Cai H, Yang S, Yan Y, Xiao Z, Cheng J, Wu J, et al. CaWRKY40 transcriptionally activates CaWRKY40, regulates Ralstonia solanacearum resistance, and confers high-temperature and high-humidity tolerance in pepper. J Exp Bot. 2015; 66(11):3163–3174. https://doi.org/10.1093/jxb/erv125 PMID: 25873659

11. Lagacé M, Matton DP. Characterization of a WRKY transcription factor expressed in late torpedo-stage embryos of Solanum chacoense. Planta. 2004; 219(1):185–189. https://doi.org/10.1007/s00425-004-1253-2 PMID: 15045588

12. Johnson CS, Kolevski B, Smyth DR. TRANSPARENT TESTA GLABRA2, a trichome and seed coat development gene of Arabidopsis, encodes a WRKY transcription factor. Plant Cell. 2002; 14:1359–1375. https://doi.org/10.1105/tpc.001404 PMID: 12084832

13. Miao Y, Laun T, Zimmermann P, Zentgraf U. Targets of the WRKY53 transcription factor and its role during leaf senescence in Arabidopsis. Plant Mol Biol. 2004; 55:853–867. https://doi.org/10.1007/s11103-004-2142-6 PMID: 15604721

14. Guan Y, Meng X, Khanna R, LaMontagne E, Liu Y, Zhang S. Phosphorylation of a WRKY transcription factor by MAPKs is required for pollen development and function in Arabidopsis. PLoS Genet. 2014; 10 (5):e1004384. https://doi.org/10.1371/journal.pgen.1004384 PMID: 24830428

15. Rinerson CI, Scully ED, Palmer NA, Donze-Reiner T, Rabara RC, Tripathi P, et al. The WRKY transcription factor family and senescence in switchgrass. BMC Genomics. 2015; 16:1–17. https://doi.org/10.1186/1471-2164-16-1

16. Suttippanta N, Pattanaik S, Kulshrestha M, Patra B, Singh SK, Yuan L. The transcription factor CrWRKY1 positively regulates the terpenoid indole alkaloid biosynthesis in Catharanthus roseus. Plant Physiol. 2011; 157(4):2081–2093. https://doi.org/10.1104/pp.111.181834 PMID: 21988879

17. Zhang ZL. A rice WRKY gene encodes a transcriptional repressor of the gibberellin signaling pathway in aleurone cells. Plant Physiol. 2004; 134(4):1500–1513. https://doi.org/10.1104/pp.103.034967 PMID: 15047897
18. Pandey SP, Roccaro M, Schönh M, Logemann E, Somssich IE. Transcriptional reprogramming regulated by WRKY18 and WRKY40 facilitates powdery mildew infection of Arabidopsis. Plant J. 2010; 64(6):912–923. https://doi.org/10.1111/j.1365-313X.2010.04387.x PMID: 21143673

19. Mukhtar MS, Deslandes L, Auriac M-C, Marco Y, Somssich IE. The Arabidopsis transcription factor WRKY27 influences wilt disease symptom development caused by *Ralstonia solanacearum*. Plant J. 2008; 56(6):935–947. https://doi.org/10.1111/j.1365-313X.2008.03651.x PMID: 18702671

20. Bhattacharjee KR, Atamian HS, Kaloshian I, Eulgem T. WRKY72-type transcription factors contribute to basal immunity in tomato and Arabidopsis as well as gene-for-gene resistance mediated by the tomato R gene *Mi-1*. Plant J. 2010; 63(2):229–240. https://doi.org/10.1111/j.1365-313X.2010.04232.x PMID: 20409007

21. Lopes MA, Hora BT Jr., Dias CV, Santos GC, Gramacho KP, Cascardo JC, et al. Expression analysis of transcription factors from the interaction between cacao and *Moniliophthora perniciosa* (Tricholomataceae). Genet Mol Res. 2010; 9(3):1279–1297. https://doi.org/10.4238/vol9-3gmrm825 PMID: 20623454

22. Borrome JW, Meewo AW, Kuhn DN, Whitlock BA, Schnell RJ. The potential of the WRKY gene family for phylogenetic reconstruction: An example from the Malvaceae. Mol Phylogenet Evol. 2007; 44(3):1141–1154. https://doi.org/10.1016/j.ympev.2007.06.012 PMID: 17681475

23. Borrome JW, Kuhn DN, Schnell RJ. Isolation, characterization, and development of WRKY genes as useful genetic markers in *Theobroma cacao*. Theor Appl Genet. 2004; 109(3):495–507. https://doi.org/10.1007/s00122-004-1662-4 PMID: 15145871

24. Aime MC, Phillips-Mora W. The causal agents of witches' broom and frosty pod rot of cacao (*Theobroma cacao*). Mycologia. 2005; 97(5):1012–1022. https://doi.org/10.3852/mycologia.97.5.1012 PMID: 16596953

25. Purdy L, Schmidt R. Status of cacao witches' broom: biology, epidemiology, and management. Annu Rev Phytopathol. 1996; 34(1):573–435. https://doi.org/10.1080/0028825x.2003.9512860

26. Griffith GW, Nicholson J, Nenninger A, Birch RN, Hedger JN. Witches' brooms and frosty pods: Two major pathogens of cacao. New Zealand Journal of Botany. 2003; 41(3):423–435. https://doi.org/10.1080/0028825x.2003.9512860

27. Sayid R. Chocolate Could Run Out In 2020 Due To Worldwide Shortage of Cocoa. The Daily Mirror online. 2013 31/12/2013; Sect. World News.

28. Argout X, Salse J, Aury JM, Guiltinan MJ, Droc G, Gouzy J, et al. The genome of *Theobroma cacao*. Nat Genet. 2011; 43:101–108. https://doi.org/10.1038/ng.736 PMID: 21186351

29. Wang Y, Tang H, DeBarry JD, Tan X, Li J, Wang X, et al. MCScanX: a toolkit for detection and evolutionary analysis of gene synteny and collinearity. Nucleic Acids Res. 2012; 40(7):e49–e49. https://doi.org/10.1093/nar/gkr1293 PMID: 22217600

30. Bailey TL, Boden M, Buske FA, Frith M, Grant CE, Clementi L, et al. MEME Suite: tools for motif discovery and searching. Nucleic Acids Res. 2009; 37(Web Server issue):W202–W208. https://doi.org/10.1093/nar/gkp335 PMID: 19458158

31. Gough J, Karplus K, Hughey R, Chothia C. Assignment of homology to genome sequences using a library of hidden Markov models that represent all proteins of known structure. Journal of Molecular Biology. 2001; 313(4):903–919. https://doi.org/10.1006/jmbi.2001.5080. https://doi.org/10.1006/jmbi.2001.5080 PMID: 11697912

32. Edgar RC. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucl Acids Res. 2004; 32:1792–1797. https://doi.org/10.1093/nar/gkh340 PMID: 15034147

33. Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S. MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol. 2011; 28(10):2731–2739. https://doi.org/10.1093/molbev/msr121 PMID: 21546353

34. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol. 1987; 4(4):406–425. PMID: 3447015

35. Posada D, Crandall KA. MODELTEST: testing the model of DNA substitution. Bioinformatics. 1998; 14(9):817–818. https://doi.org/10.1093/bioinformatics/14.9.817 PMID: 9918953

36. Lopes UV, Monteiro WR, Pires JL, Clement D, Yamada MM, Gramacho KP. Cacao breeding in Bahia, Brazil—strategies and results. Crop Breed Appl Biotechnol. 2011; 1:73–81.

37. Pires JL, De Melo GP, Yamada MM, Gramacho KP. Association among sources of resistance to witches’ broom disease for the increment of the level and durability of the character. Agrotropica 2012; 24:27–30.
38. Gesteira AS, Michel F, Carels N, Da Silva A, Gramacho K, Schuster I, et al. Comparative analysis of expressed genes from cacao meristems infected by Moniliophthora perniciosa. Ann Bot. 2007; 100(1):129–140. https://doi.org/10.1093/aob/mcm092 PMID: 17557832

39. da Hora Junior BT, Poloni JdF, Lopes MA, Dias CV, Gramacho KP, Schuster I, et al. Transcriptomics and systems biology analysis in identification of specific pathways involved in cacao resistance and susceptibility to witches’ broom disease. Mol Biosyst. 2012; 8(5):1507–1519. https://doi.org/10.1039/c2mb05421c PMID: 22373587

40. de Oliveira Ceita G, Macácio JNA, Santos TB, Alemanno L, da Silva Gesteira A, Michel F, et al. Involvement of calcium oxalate degradation during programmed cell death in Theobroma cacao tissues triggered by the hemibiotrophic fungus Moniliophthora perniciosa. Plant Sci. 2007; 173(2):106–117. https://doi.org/10.1016/j.plantsci.2007.04.006

41. Dias CV, Mendes JS, dos Santos AC, Pirovani CP, da Silva Gesteira A, Michel F, et al. Hydrogen peroxide formation in cacao tissues infected by the hemibiotrophic fungus Moniliophthora perniciosa. Plant Physiol Biochem. 2011; 49(8):917–922. https://doi.org/10.1016/j.plaphy.2011.05.004 PMID: 21641227

42. Sena K, Alemanno L, Gramacho KP. The infection process of Moniliophthora perniciosa in cacao. Plant Pathology. 2014; 1272–1281. https://doi.org/10.1111/ppa.12224

43. Castellani A. Maintenance and cultivation of common pathogenic fungi of man in sterile distilled water. Further Researches. J Trop Med Hyg. 1967; 70:181–184.

44. Surujdeo-Maharaj S, Umaharan P, Butler DR, Sreenivasan TN. An optimized screening method for isolation of WRKY transcription factors in O. sativa. BMC Plant Biol. 2014; 14(1):1–17. https://doi.org/10.1186/1471-2229-14-161 PMID: 24920373

45. Silva S, Luz E, Almeida O, Gramacho K, Bezerra J. Redescrivendo o sistema de meios em experimentos agrícolas pelos métodos Scott-Knott, Tukey e Duncan. Revista Brasileira de Agrocomputação. 2001; 1(2):18–24.

46. Bailey TL, Grigskov M. Combining evidence using p-values: application to sequence homology searches. Bioinformatics. 1998; 14(1):48–54. https://doi.org/10.1093/bioinformatics/14.1.48 PMID: 9520501

47. Cai C, Niu E, Du H, Zhao L, Feng Y, Guo W. Genome-wide analysis of the WRKY transcription factor gene family in Gossypium raimondii and the expression of orthologs in cultivated tetraploid cotton. Crop J. 2014; 2(2–3):87–101. https://doi.org/10.1016/j.cj.2014.03.001

48. Huang S, Gao Y, Liu J, Peng X, Niu X, Fei Z, et al. Genome-wide analysis of WRKY transcription factors in Solanum lycopersicum. Mol Genet Genomics. 2012; 287(6):495–513. https://doi.org/10.1007/s00438-012-0696-6 PMID: 22570076

49. Ross CA, Liu Y, Shen QJ. The WRKY gene family in rice (Oryza sativa). J Integr Plant Biol. 2007; 49(6):827–842. https://doi.org/10.1111/j.1744-7909.2007.00504.x

50. Wang Q, Wang M, Zhang X, Hao B, Kaushik SK, Pan Y. WRKY gene family evolution in Arabidopsis thaliana. Genetica. 2011; 139(6):973–983. https://doi.org/10.1007/s10709-011-9599-4 PMID: 21805321

51. Jiang Y, Duan Y, Yin J, Ye S, Zhu J, Zhang F, et al. Genome-wide identification and characterization of the Populus WRKY transcription factor family and analysis of their expression in response to biotic and abiotic stresses. J Exp Bot. 2014; 65(22):6629–6644. https://doi.org/10.1093/jxb/eru381 PMID: 25249073
58. Mangelsen E, Kilian J, Berendzen KW, Kolukisaoglu UH, Harter K, Jansson C, et al. Phylogenetic and comparative gene expression analysis of barley (Hordeum vulgare) WRKY transcription factor family reveals putatively retained functions between monocots and dicots. BMC Genomics. 2008; 9(1):1–17. https://doi.org/10.1186/1471-2164-9-194 PMID: 18442363

59. van Ooijen G, Mayr G, Kasiem MMA, Albrecht M, Cornelissen BJC, Takken FLW. Structure–function analysis of the NB-ARC domain of plant disease resistance proteins. Journal of Experimental Botany. 2008; 59(6):1383–1397. https://doi.org/10.1093/jxb/erm045 PMID: 18390848

60. Caplan J, Padmanabhan M, Dinesh-Kumar SP. Plant NB-LRR Immune Receptors: From Recognition to Transcriptional Reprogramming. Cell Host & Microbe. 3(3):126–135. https://doi.org/10.1016/j.chom.2008.02.010 PMID: 18329612

61. Chen L, Zhang L, Yu D. Wounding-induced WRKY8 is involved in basal defense in Arabidopsis. Mol Plant Microbe Interact. 2010; 23(5):558–565. https://doi.org/10.1094/MPMI-23-5-0558 PMID: 20367464

62. Chen X, Liu J, Lin G, Wang A, Wang Z, Lu G. Overexpression of AtWRKY28 and AtWRKY75 in Arabidopsis enhances resistance to oxalic acid and Sclerotinia sclerotiorum. Plant Cell Rep. 2013; 32(10):1589–1599. https://doi.org/10.1007/s00299-013-1469-3 PMID: 23749099

63. Delteil A, Blein M, Faire-Rampant O, Guellim A, Estevan J, Hirsch J, et al. Building a mutant resource for the study of disease resistance in rice reveals the pivotal role of several genes involved in defence. Mol Plant Pathol. 2012; 13(1):72–82. https://doi.org/10.1111/j.1364-3703.2011.00731.x PMID: 21726398

64. Chujo T, Miyamoto K, Shimogawa T, Shimizu T, Otake Y, Yokotani N, et al. OsWRKY28, a PAMP-responsive transrepressor, negatively regulates innate immune responses in rice against rice blast fungus. Plant Mol Biol. 2013; 82(1):23–37. https://doi.org/10.1007/s11103-013-0032-5 PMID: 23462973

65. Fister AS, O'Neill ST, Shi Z, Zhang Y, Tyler BM, Guiltnan MJ, et al. Two Theobroma cacao genotypes with contrasting pathogen tolerance show aberrant transcriptional and ROS responses after salicylic acid treatment. Journal of Experimental Botany. 2015; 66(45–6258. https://doi.org/10.1093/jxb/erv334 PMID: 26163705

66. Xu X, Chen C, Fan B, Chen Z. Physical and functional interactions between pathogen-induced Arabidopsis WRKY18, WRKY40, and WRKY60 transcription factors. Plant Cell. 2006; 18(5):1310–1326. https://doi.org/10.1105/tpc.105.037523 PMID: 16603654

67. Karim A, Jiang Y, Quo L, Ling Z, Ye S, Duan Y, et al. Isolation and characterization of a subgroup IIa WRKY transcription factor PtrWRKY40 from Populus trichocarpa. Tree Physiol. 2015; 35(10):1129–1139. https://doi.org/10.1093/treephys/tpv084 PMID: 26423133

68. Besseau S, Li J, Palva ET. WRKY54 and WRKY70 co-operate as negative regulators of leaf senescence in Arabidopsis thaliana. J Exp Bot. 2012; 63(7):2667–2679. https://doi.org/10.1093/jxb/err450 PMID: 22268143

69. Li J, Besseau S, Tóth P, Sipari N, Kollist H, Holm L, et al. Defense-related transcription factors WRKY70 and WRKY54 modulate osmotic stress tolerance by regulating stomatal aperture in Arabidopsis. New Phytol. 2013; 200(2):457–472. https://doi.org/10.1111/nph.12378 PMID: 23815736

70. Shim JS, Jung C, Lee S, Min K, Lee Y-W, Choi Y, et al. AtMYB44 regulates WRKY70 expression and modulates antagonistic interaction between salicylic acid and jasmonic acid signaling. Plant J. 2013; 73(3):483–495. https://doi.org/10.1111/pj.12051 PMID: 23067202