NON-VANISHING OF VECTOR-VALUED POINCARÉ SERIES

SONJA ŽUNAR

ABSTRACT. We prove a vector-valued version of Muić’s integral non-vanishing criterion for Poincaré series on the upper half-plane \mathcal{H}. Moreover, we give an accompanying result on the construction of vector-valued modular forms in the form of Poincaré series. As an application of these results, we construct and study the non-vanishing of the classical and elliptic vector-valued Poincaré series.

1. Introduction

Vector-valued modular forms (VVMFs) have prominent applications in analytic number theory [4, 5, 9, 34] and the theory of vertex operator algebras [8, 23, 25, 35]. Although their usefulness was noticed already in the 1960s by A. Selberg [34], the theory of VVMFs was established in a systematic way only in the early 2000s by M. Knopp and G. Mason [14–16]. Ever since, the theory has been steadily developing [1, 3, 12, 19–22], with many new results in the recent years [2, 6, 10, 11, 33].

Let us fix a multiplier system $v : \mathrm{SL}_2(\mathbb{Z}) \to \mathbb{C}$ of weight $k \in \mathbb{R}$. We recall that a VVMF of weight k for $\mathrm{SL}_2(\mathbb{Z})$ with respect to a representation $\rho : \mathrm{SL}_2(\mathbb{Z}) \to \mathrm{GL}_p(\mathbb{C})$ is a p-tuple $F = (F_1, \ldots, F_p)$ of holomorphic functions on $\mathcal{H} := \mathbb{C} \setminus \{z \mid \Im(z) > 0\}$ that have suitable Fourier expansions, such that

$$F|_k \gamma = \rho(\gamma) F, \quad \gamma \in \mathrm{SL}_2(\mathbb{Z}),$$

where elements of \mathbb{C}^p are regarded as column-vectors, and $|_k$ denotes the standard right action (depending on k and v) of $\mathrm{SL}_2(\mathbb{Z})$ on the set $(\mathbb{C}^p)^\mathcal{H}$ of functions $\mathcal{H} \to \mathbb{C}^p$ (see (2-4)).

Similarly as in the theory of classical modular forms (see, e.g., [24, §2.6]), one of the simplest ways to construct a VVMF is to define it as the sum of a Poincaré series

$$P_{\Lambda \setminus \mathrm{SL}_2(\mathbb{Z}), \rho} f := \sum_{\gamma \in \Lambda \setminus \mathrm{SL}_2(\mathbb{Z})} \rho(\gamma)^{-1} f|_k \gamma,$$

where Λ is a subgroup of $\mathrm{SL}_2(\mathbb{Z})$, and f is a suitable function $\mathcal{H} \to \mathbb{C}^p$ (cf. [16, §3]). In the case when the constructed VVMF is cuspidal, the question whether it vanishes identically is non-trivial. In fact, it has no complete answer even in the scalar-valued case, although in...
that case it was recognized as interesting as early as H. Poincaré [31, p. 249]. In the scalar-valued case, most known approaches to addressing this question aim at individual families of Poincaré series and are based on estimates of their Fourier coefficients [17,18,32]. A different, more general approach was discovered by G. Muić in 2009, when he proved an integral non-vanishing criterion for Poincaré series on unimodular locally compact Hausdorff groups [26, Theorem 4.1], with applications in the theory of automorphic forms and automorphic representations (see, e.g., [13]). As a corollary, he obtained a criterion for the non-vanishing of Poincaré series of integral weight on H [28, Lemma 3.1], applied it to several families of cusp forms [27–29], and we extended his results to the half-integral weight case [36–38].

In this paper, we prove a vector-valued version (Theorem 5.2) of Muić’s integral non-vanishing criterion for Poincaré series on H and use it to study the non-vanishing of two families of cuspidal VVMFs, which we call, respectively, the classical and elliptic vector-valued Poincaré series, in analogy with their scalar-valued versions studied by H. Petersson [30]. We also prove an accompanying result (Proposition 4.1) on the construction of VVMFs in the form of vector-valued Poincaré series (VVPSs). Let us emphasize that our results apply only to the case when the representation ρ is unitary. Namely, the unitarity of ρ is indispensable in the computations, involving integrals and Poincaré series, that are at the heart of our proofs (see, e.g., the third equality in (5-3)). On the other hand, a careful reader will notice that in the special case when $p = 1$ and ρ is the trivial representation, we obtain results on scalar-valued Poincaré series on H of arbitrary real weight, while in the previous work on integral non-vanishing criteria only the integral and half-integral weights were considered.

The paper is organized as follows. After introducing some basic notation in Section 2, in Section 3 we introduce vector spaces of VVMFs to be studied in this paper. In this, we essentially follow [16], the only difference being that whereas in [16] only VVMFs for $\text{SL}_2(\mathbb{Z})$ are considered, we work with VVMFs for a general subgroup Γ of finite index in $\text{SL}_2(\mathbb{Z})$. As is well known, this slight generalization does not enlarge the class of considered VVMFs in a substantial way (see Lemma 3.1), but it greatly simplifies the notation in subsequent sections.

In Section 4, we prove a result on the construction of VVMFs in the form of VVPSs (Proposition 4.1). In Section 5, we prove our integral non-vanishing criterion for VVPSs (Theorem 5.2). We end the paper by Sections 6 and 7, in which we apply our results to the classical and elliptic VVPSs, respectively.

I would like to thank Marcela Hanzer and Goran Muić for their support and useful comments. The work on this paper was in part conducted while I was a visitor at the Faculty of Mathematics, University of Vienna. I would like to thank Harald Grobner and the University of Vienna for their hospitality.

2. Basic notation

Throughout the paper, let $i := \sqrt{-1} \in \mathbb{C}$ and

$$z^k := |z|^k e^{ik \arg(z)}, \quad z \in \mathbb{C}^\times, \quad \arg(z) \in (-\pi, \pi], \quad k \in \mathbb{R}.$$
Let \(\mathcal{H} := \mathbb{C}_{\Im(z) > 0} \). The group \(\text{SL}_2(\mathbb{R}) \) acts on \(\mathcal{H} \cup \mathbb{R} \cup \{\infty\} \) by linear fractional transformations:

\[
g \cdot \tau := \frac{a\tau + b}{c\tau + d}, \quad g = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \text{SL}_2(\mathbb{R}), \quad \tau \in \mathcal{H} \cup \mathbb{R} \cup \{\infty\}.
\]

Defining \(j : \text{SL}_2(\mathbb{R}) \times \mathcal{H} \to \mathbb{C} \),

\[
j(g, \tau) := c\tau + d, \quad g = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \text{SL}_2(\mathbb{R}), \quad \tau \in \mathcal{H},
\]
we recall that

\[
\Im(g \cdot \tau) = \frac{\Im(\tau)}{|j(g, \tau)|^2}, \quad g \in \text{SL}_2(\mathbb{R}), \quad \tau \in \mathcal{H}.
\]

Throughout the paper, we fix \(p \in \mathbb{Z}_{>0}, k \in \mathbb{R} \) and a unitary multiplier system \(v \) for \(\text{SL}_2(\mathbb{Z}) \) of weight \(k \), i.e., a function \(v : \text{SL}_2(\mathbb{Z}) \to \mathbb{C} | z | = 1 \) such that the function \(\mu : \text{SL}_2(\mathbb{Z}) \times \mathcal{H} \to \mathbb{C}, \)

\[
\mu(\gamma, \tau) := v(\gamma) j(\gamma, \tau)^k,
\]
is an automorphic factor, in the sense that

\[
\mu(\gamma_1 \gamma_2, \tau) = \mu(\gamma_1, \gamma_2, \tau) \mu(\gamma_2, \tau), \quad \gamma_1, \gamma_2 \in \text{SL}_2(\mathbb{Z}), \quad \tau \in \mathcal{H}.
\]

Following [16], we impose on \(v \) the nontriviality condition

\[
v(-I_2) = (-1)^{-k}
\]

and, writing \(T := \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} \), define \(\kappa \in [0, 1[\) by the condition

\[
v(T) = e^{2\pi i \kappa}.
\]

The group \(\text{SL}_2(\mathbb{Z}) \) acts on the right on the space \((\mathbb{C}^p)^\mathcal{H} \) of functions \(\mathcal{H} \to \mathbb{C}^p \) as follows:

\[
(F | k)_\gamma(\tau) := v(\gamma)^{-1} j(\gamma, \tau)^{-k} F(\gamma, \tau), \quad F \in (\mathbb{C}^p)^\mathcal{H}, \quad \gamma \in \text{SL}_2(\mathbb{Z}), \quad \tau \in \mathcal{H}.
\]

We note that due to the nontriviality condition (2-3), we have

\[
(F | k)(-I_2) = F, \quad F \in (\mathbb{C}^p)^\mathcal{H}.
\]

Next, we recall that the group

\[
K := \text{SO}_2(\mathbb{R}) = \left\{ \kappa_\theta := \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix} : \theta \in \mathbb{R} \right\}
\]
is a maximal compact subgroup of \(\text{SL}_2(\mathbb{R}) \) and the stabilizer of \(i \) under the action (2-1). Let us denote

\[
n_x := \begin{pmatrix} 1 & x \\ 0 & 1 \end{pmatrix}, \quad a_y := \begin{pmatrix} y^2 & 0 \\ 0 & y^{-\frac{1}{2}} \end{pmatrix}, \quad h_t := \begin{pmatrix} e^t & 0 \\ 0 & e^{-t} \end{pmatrix}
\]
for \(x \in \mathbb{R}, y \in \mathbb{R}_{>0} \) and \(t \in \mathbb{R}_{>0} \). By the Iwasawa (resp., Cartan) decomposition of \(\text{SL}_2(\mathbb{R}) \), every \(g \in \text{SL}_2(\mathbb{R}) \) can be written in the form

\[
g = n_x a_y \kappa_\theta = \kappa_\theta h_t \kappa_{\theta_2}
\]
for some $x \in \mathbb{R}$, $y \in \mathbb{R}_{>0}$, $t \in \mathbb{R}_{\geq 0}$ and $\theta, \theta_1, \theta_2 \in \mathbb{R}$, and then we have $g.i = x + iy$. Denoting by v the standard $\text{SL}_2(\mathbb{R})$-invariant Radon measure on \mathcal{H} given by $d\nu(x+iy) := \frac{dx\,dy}{y^2}$, we have the following Haar measure on $\text{SL}_2(\mathbb{R})$:

\begin{equation}
(2-6) \quad \int_{\text{SL}_2(\mathbb{R})} \varphi(g)\,dg = \frac{1}{2\pi} \int_{0}^{2\pi} \int_{\mathcal{H}} \varphi(n_xa_y\kappa_\theta)\,d\nu(x+iy)\,d\theta
\end{equation}

\begin{equation}
(2-7) \quad = \frac{1}{\pi} \int_{0}^{2\pi} \int_{0}^{\infty} \int_{0}^{\infty} \varphi(\kappa_\theta_1h_t\kappa_\theta_2)\,\sinh(2t)\,d\theta_1\,dt\,d\theta_2, \quad \varphi \in C_c(\text{SL}_2(\mathbb{R})).
\end{equation}

Moreover, for every discrete subgroup Γ of $\text{SL}_2(\mathbb{R})$, we have an $\text{SL}_2(\mathbb{R})$-invariant Radon measure on $\Gamma \backslash \text{SL}_2(\mathbb{R})$ defined by the condition

\begin{equation}
\int_{\Gamma \backslash \text{SL}_2(\mathbb{R})} \varphi(\gamma g)\,dg = \int_{\text{SL}_2(\mathbb{R})} \varphi(g)\,dg, \quad \varphi \in C_c(\text{SL}_2(\mathbb{R})),
\end{equation}

or equivalently by the condition

\begin{equation}
(2-8) \quad \int_{\Gamma \backslash \text{SL}_2(\mathbb{R})} \varphi(g)\,dg = \frac{1}{2\pi |\Gamma \cap (-I_2)|} \int_{0}^{2\pi} \int_{\Gamma \backslash \mathcal{H}} \varphi(n_xa_y\kappa_\theta)\,d\nu(x+iy)\,d\theta
\end{equation}

for all $\varphi \in C_c(\Gamma \backslash \text{SL}_2(\mathbb{R}))$.

Finally, let us mention that throughout the paper, for every $n \in \mathbb{Z}_{>0}$ we regard the elements of \mathbb{C}^n as column-vectors. Moreover, we equip \mathbb{C}^n with the standard inner product

\begin{equation}
\langle x, y \rangle_{\mathbb{C}^n} := \sum_{j=1}^{n} x_j\overline{y}_j, \quad x = (x_1, \ldots, x_n), y = (y_1, \ldots, y_n) \in \mathbb{C}^n,
\end{equation}

and denote the induced norm on \mathbb{C}^n by $\| \cdot \|$. We use the same notation for the Frobenius norm on the space $M_n(\mathbb{C})$ of complex square matrices of order n:

\begin{equation}
\|X\| := \sqrt{\sum_{r=1}^{n} \sum_{s=1}^{n} |x_{r,s}|^2}, \quad X = (x_{r,s})_{r,s=1}^{n} \in M_n(\mathbb{C}).
\end{equation}

3. Vector-valued modular forms

Let $\text{Hol}(\mathcal{H})$ denote the space of holomorphic functions $\mathcal{H} \rightarrow \mathbb{C}$. We define its subspace $\mathcal{F}(k)$ to consist of the functions $f \in \text{Hol}(\mathcal{H})$ with the following property: for every $\sigma \in \text{SL}_2(\mathbb{Z})$, the function $f|_k \sigma$ has a Fourier expansion of the form

\begin{equation}
(f|_k \sigma)(\tau) = \sum_{n=h_\sigma}^{\infty} a_n(\sigma) e^{2\pi i \frac{nx_s}{y_\sigma} \tau}, \quad \tau \in \mathcal{H},
\end{equation}

where $h_\sigma \in \mathbb{Z}$, $a_n(\sigma) \in \mathbb{C}$, and $N_\sigma \in \mathbb{Z}_{>0}$. We note that the space $\mathcal{F}(k)$ is an $\text{SL}_2(\mathbb{Z})$-submodule of $\text{Hol}(\mathcal{H})$ with respect to the action $|_k$. Its submodule of functions $f \in \mathcal{F}(k)$ such that $h_\sigma \geq 0$ (resp., $h_\sigma > 0$) for all $\sigma \in \text{SL}_2(\mathbb{Z})$ will be denoted by $\mathcal{M}(k)$ (resp., $\mathcal{S}(k)$).
Let Γ be a subgroup of finite index in $\text{SL}_2(\mathbb{Z})$. We say that $F = (F_1, \ldots, F_p) \in \mathcal{F}(k)^p$ is a vector-valued modular form (VVMF) of weight k for Γ (with multiplier system v) with respect to a representation $\rho : \Gamma \to \text{GL}_p(\mathbb{C})$ if
\begin{equation}
F|_{k\gamma} = \rho(\gamma)F, \quad \gamma \in \Gamma.
\end{equation}

We will denote the space of all such F by $\mathcal{F}(k, \rho, \Gamma)$. We also define its subspaces
\begin{equation}
\mathcal{M}(k, \rho, \Gamma) := \mathcal{F}(k, \rho, \Gamma) \cap \mathcal{M}(k)^p
\end{equation}
of entire VVMFs and
\begin{equation}
\mathcal{S}(k, \rho, \Gamma) := \mathcal{F}(k, \rho, \Gamma) \cap \mathcal{S}(k)^p
\end{equation}
of cuspidal VVMFs.

It will prove useful to note that (3-1) is equivalent to the condition
\begin{equation}
F|_{k, \rho \gamma} = F, \quad \gamma \in \Gamma,
\end{equation}
where $|_{k, \rho}$ is the right action of Γ on $(\mathbb{C}^p)^\mathcal{H}$ defined by
\begin{equation}
F|_{k, \rho \gamma} := \rho(\gamma)^{-1}F|_{k \gamma}, \quad F \in (\mathbb{C}^p)^\mathcal{H}, \quad \gamma \in \Gamma.
\end{equation}

We note that in most standard texts on VVMFs (see, e.g., [16, §2]), only the spaces
\begin{equation}
\mathcal{F}(k, \rho) := \mathcal{F}(k, \rho, \text{SL}_2(\mathbb{Z})), \quad \mathcal{M}(k, \rho) := \mathcal{M}(k, \rho, \text{SL}_2(\mathbb{Z})) \quad \text{and} \quad \mathcal{S}(k, \rho) := \mathcal{S}(k, \rho, \text{SL}_2(\mathbb{Z}))
\end{equation}
are studied. Our slightly more general definition of spaces of VVMFs serves only to facilitate the construction of VVMFs in Section 4 and does not enlarge the class of studied VVMFs in a substantial way. The latter observation is elementary and well-known (see, e.g., [34, §2], [4, §1–2] and [12, §1]). For convenience of the reader, we provide its details in the following lemma.

Lemma 3.1. Let Γ be a subgroup of finite index in $\text{SL}_2(\mathbb{Z})$, and let $\rho : \Gamma \to \text{GL}_p(\mathbb{C})$ be a representation. Denoting $d := |\text{SL}_2(\mathbb{Z})/\Gamma|$, let us fix $\gamma_1, \ldots, \gamma_d \in \text{SL}_2(\mathbb{Z})$ such that $\text{SL}_2(\mathbb{Z}) = \bigsqcup_{j=1}^d \Gamma \gamma_j$. Then, the rule
\begin{equation}
F \mapsto (F|_{k \gamma_j})_{j=1}^d
\end{equation}
defines embeddings
\begin{align*}
\mathcal{F}(k, \rho, \Gamma) &\hookrightarrow \mathcal{F}(k, \rho_0), \\
\mathcal{M}(k, \rho, \Gamma) &\hookrightarrow \mathcal{M}(k, \rho_0), \\
\mathcal{S}(k, \rho, \Gamma) &\hookrightarrow \mathcal{S}(k, \rho_0),
\end{align*}
where $\rho_0 : \text{SL}_2(\mathbb{Z}) \to \text{GL}_pd(\mathbb{C})$ is a representation equivalent to the induced representation $\text{Ind}_{\Gamma}^{\text{SL}_2(\mathbb{Z})}(\rho)$ and defined as follows: for every $\gamma \in \text{SL}_2(\mathbb{Z})$, defining a permutation $\ell \in \mathcal{S}_d$ by the rule
\begin{equation}
\Gamma \gamma_j \gamma^{-1} = \Gamma \gamma_{\ell(j)}, \quad j \in \{1, \ldots, d\},
\end{equation}
we put

\[
\rho_0(\gamma) := \begin{pmatrix}
\delta_{1,1} I_p & \cdots & \delta_{1,d} I_p \\
\vdots & \ddots & \vdots \\
\delta_{d,1} I_p & \cdots & \delta_{d,d} I_p
\end{pmatrix}
\begin{pmatrix}
\rho(\gamma_1^1 \gamma_1^{1-1}) \\
\vdots \\
\rho(\gamma_1^d \gamma_1^{d-1})
\end{pmatrix},
\]

where \(\delta\) is the Kronecker delta. If \(\rho\) is unitary, then so is \(\rho_0\).

Proof. Let us prove the only two non-obvious parts of the claim:

1. \((F|k\gamma_j)_{j=1}^d|_k = \rho_0(\gamma) (F|k\gamma_j)_{j=1}^d\) for all \(\gamma \in \text{SL}_2(\mathbb{Z})\).
2. \(\rho_0 \cong \text{Ind}_{\Gamma}^{\text{SL}_2(\mathbb{Z})}(\rho)\).

(1) For \(\gamma \in \text{SL}_2(\mathbb{Z})\) and \(\ell\) as in the statement of the lemma, we have

\[
\rho_0(\gamma) (F|k\gamma_j)_{j=1}^d \overset{(3-3)}{=} \left(\delta_{r,\ell(s)} I_p\right)_{r,s=1}^d \text{diag} \left(\rho(\gamma_{\ell(j)} \gamma_{\ell(j)}^{-1})\right)_{j=1}^d (F|k\gamma_j)_{j=1}^d
\]

\[
= \left(\rho(\gamma_j \gamma_{\ell-1}(j)) F|k\gamma_{\ell-1}(j)\right)_{j=1}^d
\]

\[
= \left(F|k\gamma_j \gamma_{\ell-1}(j) |k\gamma_{\ell-1}(j)\right)_{j=1}^d
\]

\[
= (F|k\gamma_j)_{j=1}^d.
\]

(2) Denoting \(\delta_j := \gamma_j^{-1}\), we recall the following standard realization of \(\text{Ind}_{\Gamma}^{\text{SL}_2(\mathbb{Z})}(\rho)\): for every \(j \in \{1, \ldots, d\}\), let \(\delta_j \mathbb{C}^p = \{\delta_j u : u \in \mathbb{C}^p\}\) be a complex vector space isomorphic to \(\mathbb{C}^p\) via \(\delta_j u \mapsto u\); then, \(\text{Ind}_{\Gamma}^{\text{SL}_2(\mathbb{Z})}(\rho)\) can be defined as a representation of \(\text{SL}_2(\mathbb{Z})\) on \(\bigoplus_{j=1}^d \delta_j \mathbb{C}^p\) given by the formula

\[
\left(\text{Ind}_{\Gamma}^{\text{SL}_2(\mathbb{Z})}(\rho)\right)(\gamma) \left(\sum_{j=1}^d \delta_j u_j\right) := \sum_{j=1}^d \delta_{\ell(j)} \rho(\delta_{\ell(j)}^{-1} \gamma \delta_j) u_j
\]

\[
= \sum_{j=1}^d \delta_j \rho(\gamma_j \gamma_{\ell-1}(j)) u_{\ell-1}(j)
\]

for all \(\gamma \in \text{SL}_2(\mathbb{Z})\) and \(u_1, \ldots, u_d \in \mathbb{C}^p\). On the other hand, from (3-3) we see that

\[
\rho_0(\gamma) (u_j)_{j=1}^d = \left(\rho(\gamma_j \gamma_{\ell-1}(j)) u_{\ell-1}(j)\right)_{j=1}^d, \quad (u_j)_{j=1}^d \in (\mathbb{C}^p)^d.
\]

Thus, the rule

\[
(u_j)_{j=1}^d \mapsto \sum_{j=1}^d \delta_j u_j
\]

defines an \(\text{SL}_2(\mathbb{Z})\)-equivalence

\[
(\rho_0, \mathbb{C}^{pd}) \cong \left(\text{Ind}_{\Gamma}^{\text{SL}_2(\mathbb{Z})}(\rho), \bigoplus_{j=1}^d \delta_j \mathbb{C}^p\right).
\]

\(\Box\)
The proof of the following lemma is identical to that of [15, §2, Proposition], so we omit it.

Lemma 3.2. Let Γ be a subgroup of finite index in $\text{SL}_2(\mathbb{Z})$. Let $F = (F_1, \ldots, F_p) \in \mathcal{F}(k)^p$ such that $\mathbb{C}F_1 + \ldots + \mathbb{C}F_p$ is a Γ-submodule of $\mathcal{F}(k)$ with respect to the action $|_k$. Then, there exists a representation $\rho : \Gamma \rightarrow \text{GL}_p(\mathbb{C})$ such that $F \in \mathcal{F}(k, \rho, \Gamma)$.

By (2-5), for every subgroup $\Gamma \not\ni -I_2$ of finite index in $\text{SL}_2(\mathbb{Z})$ and representation $\rho : \Gamma \rightarrow \text{GL}_p(\mathbb{C})$, we have

$$\mathcal{F}(k, \rho, \Gamma) = \mathcal{F}(k, \rho', \langle -I_2 \rangle \Gamma)$$

and analogously for the subspaces of entire (resp., cuspidal) VVMFs, where ρ' is the unique extension of ρ to $\langle -I_2 \rangle \Gamma$ satisfying $\rho'(-I_2) = I_p$. This shows that we may restrict our study of VVMFs to the case when $-I_2 \in \Gamma$.

Lemma 3.3. Let $\Gamma \ni -I_2$ be a subgroup of finite index in $\text{SL}_2(\mathbb{Z})$, and let $\rho : \Gamma \rightarrow \text{GL}_p(\mathbb{C})$ be a representation. Suppose that there exists $F = (F_1, \ldots, F_p) \in \mathcal{F}(k, \rho, \Gamma)$ such that the functions F_1, \ldots, F_p are linearly independent. Then:

(N1) $\rho(-I_2) = I_p$.

(N2) Let $\sigma \in \text{SL}_2(\mathbb{Z})$ and $M \in \mathbb{Z}_{>0}$ such that $\sigma T^M \sigma^{-1} \in \Gamma$. Then, there exists $N \in \mathbb{Z}_{>0}$ such that

$$(e^{2\pi i k M} \rho(\sigma T^M \sigma^{-1}))^N = I_p.$$

Proof. (N1) We note that

$$\rho(-I_2)F \overset{(3-1)}{=} F|_k (-I_2) \overset{(2-5)}{=} F,$$

hence by the linear independence of F_1, \ldots, F_p it follows that $\rho(-I_2) = I_p$.

(N2) Since $F \in \mathcal{F}(k)^p$, there exists $N \in \mathbb{Z}_{>0}$ such that $F|_k \sigma$ is N-periodic. We have

$$\left(F|_k \sigma \right)(\tau) = \left(F|_k \sigma \right)(\tau + MN) = e^{2\pi i k MN} \left(F|_k \sigma T^{MN} \right)(\tau) \overset{(3-1)}{=} (e^{2\pi i k M} \rho(\sigma T^M \sigma^{-1}))^N \left(F|_k \sigma \right)(\tau), \quad \tau \in \mathcal{H},$$

so by the linear independence of $F_1|_k \sigma, \ldots, F_p|_k \sigma$ it follows that

$$(e^{2\pi i k M} \rho(\sigma T^M \sigma^{-1}))^N = I_p. \quad \Box$$

From now until the end of this section, let $\Gamma \ni -I_2$ be a subgroup of finite index in $\text{SL}_2(\mathbb{Z})$, and let $\rho : \Gamma \rightarrow \text{GL}_p(\mathbb{C})$ be a representation. We say that ρ is a normal representation of Γ if it satisfies the conditions (N1) and (N2) of Lemma 3.3.

Next, applying Lemma 3.1, it follows from [16, Lemma 2.4 and Theorem 2.5] that the complex vector space $\mathcal{M}(k, \rho, \Gamma)$ is finite-dimensional for every $k \in \mathbb{R}$ and is trivial if $k \ll 0$. Moreover, by [16, §7] we have the following lemma.

Lemma 3.4. If ρ is unitary, then $\mathcal{M}(k, \rho, \Gamma) = 0$ for $k < 0$.

The proof of the following lemma is analogous to [24, proof of Theorem 2.1.5], and we leave it as an exercise to the reader.
Lemma 3.5. Suppose that ρ is unitary. Let $F \in \mathcal{S}(k, \rho, \Gamma)$. Then, the function $\mathcal{H} \to \mathbb{C}, \quad \tau \mapsto \|F(\tau)\| \Im(\tau)^{\frac{k}{2}},$

is Γ-invariant and bounded on \mathcal{H}.

Lemma 3.6. Suppose that ρ is unitary. Then, $\mathcal{S}(k, \rho, \Gamma)$ is a finite-dimensional Hilbert space under the Petersson inner product

$$\langle F, G \rangle_{\mathcal{S}(k, \rho, \Gamma)} := \int_{\Gamma \backslash \mathcal{H}} \langle F(\tau), G(\tau) \rangle_{\mathbb{C}^p} \Im(\tau)^{\frac{k}{2}} d(\tau), \quad F, G \in \mathcal{S}(k, \rho, \Gamma),$$

and the embedding $\mathcal{S}(k, \rho, \Gamma) \hookrightarrow \mathcal{S}(k, \rho_0)$ of Lemma 3.1 is an isometry.

Proof. The space $\mathcal{S}(k, \rho, \Gamma)$ is finite-dimensional by our comments before Lemma 3.4. One shows that the integrand in (3-4) is Γ-invariant as in [16, proof of Lemma 5.1]. Moreover, we have

$$\int_{\Gamma \backslash \mathcal{H}} |\langle F(\tau), G(\tau) \rangle_{\mathbb{C}^p}| \Im(\tau)^{\frac{k}{2}} d(\tau) \leq v(\Gamma \backslash \mathcal{H}) \left(\sup_{\tau \in \mathcal{H}} \|F(\tau)\| \Im(\tau)^{\frac{k}{2}} \right) \left(\sup_{\tau \in \mathcal{H}} \|G(\tau)\| \Im(\tau)^{\frac{k}{2}} \right) \overset{\text{Lem. 3.5}}{<} \infty,$$

for all $F, G \in \mathcal{S}(k, \rho, \Gamma)$, so the inner product (3-4) is well-defined.

Using the notation of Lemma 3.1, the second claim of the lemma follows from the equality

$$\left\langle \left. \left(F \big|_{\gamma_j} \right)_{j=1}^d, \left. \left(G \big|_{\gamma_j} \right)_{j=1}^d \right) \right\rangle_{\mathcal{S}(k, \rho_0)} = \int_{\Gamma \backslash \mathcal{H}} \sum_{j=1}^d \langle \langle F \big|_{\gamma_j} \rangle(\tau), \langle G \big|_{\gamma_j} \rangle(\tau) \rangle_{\mathbb{C}^p} \Im(\tau)^{\frac{k}{2}} d(\tau)$$

$$= \int_{\Gamma \backslash \mathcal{H}} \sum_{j=1}^d \langle \langle F \rangle_{\gamma_j}, \langle G \rangle_{\gamma_j} \rangle_{\mathbb{C}^p} \Im(\gamma_j, \tau)^{\frac{k}{2}} d(\tau)$$

$$= \langle \langle F, G \rangle_{\mathcal{S}(k, \rho, \Gamma)} \rangle_{\mathbb{C}^p} \Im(\gamma_j, \tau)^{\frac{k}{2}} d(\tau)$$

$$= \langle \langle F, G \rangle_{\mathcal{S}(k, \rho, \Gamma)} \rangle_{\mathbb{C}^p} \Im(\gamma_j, \tau)^{\frac{k}{2}} d(\tau)$$

where the second equality follows from (2-4) and (2-2) using the unitarity of v. \qed

4. Construction of vector-valued Poincaré series

Let Γ be a subgroup of finite index in $\text{SL}_2(\mathbb{Z})$, let $\rho : \Gamma \to \text{GL}_p(\mathbb{C})$ be a representation, and let Λ be a subgroup of Γ. The defining property (3-2) of VVMFs suggests that, as in the classical theory (see, e.g., [24, §2.6]), interesting elements of $\mathcal{F}(k, \rho, \Gamma)$ may be constructed in the form of a vector-valued Poincaré series (VVPS)

$$P_{\Lambda \backslash \Gamma, \rho} f := \sum_{\gamma \in \Lambda \backslash \Gamma} f|_{\gamma \rho},$$
where $f : \mathcal{H} \to \mathbb{C}^p$ is a suitable function invariant under the $|_{k,\rho}$-action of Λ. The following proposition, based on this idea, is a vector-valued version of [38, Lemmas 3 and 5] (see also [29, first part of Lemma 2.3]).

Proposition 4.1. Let $\Gamma \supset -I_2$ be a subgroup of finite index in $\text{SL}_2(\mathbb{Z})$, and let $\rho : \Gamma \to \text{GL}_p(\mathbb{C})$ be a unitary representation. Let $\Lambda \supset -I_2$ be a subgroup of Γ. Let $f : \mathcal{H} \to \mathbb{C}^p$ be a measurable function with the following two properties:

(f1) $f_{|_{k,\rho}} \lambda = f$ for all $\lambda \in \Lambda$.

(f2) $\int_{\Lambda \backslash \mathcal{H}} \|f(\tau)\| \Im(\tau)^{\frac{k}{2}} \, dv(\tau) < \infty$.

Then, we have the following:

(1) The Poincaré series $P_{\Lambda \backslash \Gamma, \rho} f$ converges absolutely a.e. on \mathcal{H}, satisfies

$$\left. \left(P_{\Lambda \backslash \Gamma, \rho} f \right) \right|_{k,\rho} \gamma = P_{\Lambda \backslash \Gamma, \rho} f, \quad \gamma \in \Gamma,$$

and we have

$$\int_{\Gamma \backslash \mathcal{H}} \left\| \left(P_{\Lambda \backslash \Gamma, \rho} f \right) (\tau) \right\| \Im(\tau)^{\frac{k}{2}} \, dv(\tau) \leq \int_{\Lambda \backslash \mathcal{H}} \|f(\tau)\| \Im(\tau)^{\frac{k}{2}} \, dv(\tau).$$

(2) Suppose additionally that ρ is normal and that $f \in \text{Hol}(\mathcal{H})^p$. Then, the series $P_{\Lambda \backslash \Gamma, \rho} f$ converges absolutely and uniformly on compact sets in \mathcal{H} and defines an element of

$$\begin{cases}
\mathcal{S}(k, \rho, \Gamma), & \text{if } k \geq 2 \\
\mathcal{M}(k, \rho, \Gamma), & \text{if } 0 \leq k < 2 \\
0, & \text{if } k < 0.
\end{cases}$$

Proof. (1) One checks easily that the integral in (f2) is well-defined, i.e., the integrand is Λ-invariant, using (f1), (2-2) and the unitarity of ρ and v. The terms of the series $P_{\Lambda \backslash \Gamma, \rho} f$ are also well-defined by (f1). All claims in (1) now easily follow from the estimate

$$\int_{\Gamma \backslash \mathcal{H}} \sum_{\gamma \in \Lambda \backslash \Gamma} \left\| \left(f_{|_{k,\rho}} \right) (\gamma) \right\| \Im(\tau)^{\frac{k}{2}} \, dv(\tau)$$

$$= \int_{\Gamma \backslash \mathcal{H}} \sum_{\gamma \in \Lambda \backslash \Gamma} \|v(\gamma)^{-1} \rho(\gamma)^{-1} f(\gamma, \tau)\| |j(\gamma, \tau)|^{-k} \Im(\tau)^{\frac{k}{2}} \, dv(\tau)$$

$$= \int_{\Gamma \backslash \mathcal{H}} \sum_{\gamma \in \Lambda \backslash \Gamma} \|f(\gamma, \tau)\| \Im(\gamma, \tau)^{\frac{k}{2}} \, dv(\tau)$$

$$= \int_{\Lambda \backslash \mathcal{H}} \|f(\tau)\| \Im(\tau)^{\frac{k}{2}} \, dv(\tau) \overset{\text{(f2)}}{< \infty},$$

where the second equality holds by (2-2) and the unitarity of ρ and v.

(2) It follows easily from the estimate (4-3) and [24, Corollary 2.6.4] that the series $P_{\Lambda \backslash \Gamma, \rho} f$ converges absolutely and uniformly on compact sets in \mathcal{H} and defines a function $F \in \text{Hol}(\mathcal{H})^p$. By (4-1), F satisfies (3-2).
Next, let \(\sigma \in \text{SL}_2(\mathbb{Z}) \). Denoting \(x := \sigma \infty \), by [24, Theorem 1.5.4(2)] there exists \(M \in \mathbb{Z}_{>0} \) such that \(\Gamma_x = \langle \pm \sigma^M \sigma^{-1} \rangle \). In particular, \(\sigma^M \sigma^{-1} \in \Gamma \), hence by the unitarity of \(\rho \) and (N2) there exist a unitary matrix \(U \in \mathbb{U}(p) \) and \(m_1, \ldots, m_p \in]0, 1[\cap \mathbb{Q} \) such that
\[
e^{2\pi i M \rho(\sigma^M \sigma^{-1})} = U^{-1} \text{diag}(e^{2\pi i m_1}, \ldots, e^{2\pi i m_p}) U.
\]
By (4-1),
\[
F|_k \sigma^M \sigma^{-1} = \rho(\sigma^M \sigma^{-1}) F,
\]
hence
\[
UF|_k \sigma^M = e^{-2\pi i M} \text{diag}(e^{2\pi i m_j}) F|_k \sigma,
\]
so for every \(j \in \{1, \ldots, p\} \) we have
\[
((UF)_j|_k \sigma)(\tau + M) = e^{2\pi i m_j} ((UF)_j|_k \sigma)(\tau), \quad \tau \in \mathcal{H},
\]
which implies that the (holomorphic) function \(\mathcal{H} \to \mathbb{C} \),
\[
\tau \mapsto e^{-2\pi i M \tau} ((UF)_j|_k \sigma)(\tau),
\]
is \(M \)-periodic, hence the function \((UF)_j|_k \sigma \) has a Fourier expansion of the form
\[
((UF)_j|_k \sigma)(\tau) = \sum_{n \in \mathbb{Z}} b_n(j) e^{2\pi i \frac{n + m_j}{M} \tau}, \quad \tau \in \mathcal{H},
\]
where \(b_n(j) \in \mathbb{C} \) are given by
\[
b_n(j) = \frac{1}{M} \int_0^M ((UF)_j|_k \sigma)(x + iy) e^{-2\pi i \frac{n + m_j}{M} (x + iy)} dx, \quad y \in \mathbb{R}_{>0}.
\]
We have
\[
\int_{-\infty}^{\infty} |b_n(j)| e^{-2\pi \frac{n + m_j}{M} y} y^{k-2} dy \leq \frac{1}{M} \int_{[0, M] \times [0, \infty[} |((UF)_j|_k \sigma)(\tau)| \Im(\tau)^{\frac{k}{2}} d\nu(\tau)
\]
\[
= \frac{1}{M} \int_{\sigma([0, M] \times [0, \infty[)} |(UF)_j(\sigma, \tau)| \Im(\sigma, \tau)^{\frac{k}{2}} d\nu(\tau)
\]
\[
= \frac{1}{M} \int_{\Gamma \setminus \mathcal{H}} \| (UF)(\tau) \| \Im(\tau)^{\frac{k}{2}} d\nu(\tau)
\]
\[
= \frac{1}{M} \int_{\Gamma \setminus \mathcal{H}} \| F(\tau) \| \Im(\tau)^{\frac{k}{2}} d\nu(\tau)
\]
\[
< \infty,
\]
where the second inequality holds because by \cite[Corollary 1.7.5]{24} no two different points of \((0, M] \times [M, \infty] \) are mutually \(\Gamma \)-equivalent. The estimate (4-6) implies that \(b_n(j) = 0 \) if either \(n + m_j = 0 \) and \(k \geq 2 \) or \(n + m_j < 0 \). This means that the functions \((UF)_j\) satisfy

\[
(UF)_j \in \begin{cases}
S(k), & \text{if } k \geq 2 \\
M(k), & \text{if } k < 2,
\end{cases} \quad j \in \{1, \ldots, p\},
\]

so the same holds for their linear combinations \(F_j \). It follows that

\[
F \in \begin{cases}
S(k, \rho, \Gamma), & \text{if } k \geq 2 \\
M(k, \rho, \Gamma), & \text{if } k < 2.
\end{cases}
\]

Finally, the claim in the case when \(k < 0 \) follows by Lemma 3.4. \(\square \)

5. A non-vanishing criterion for vector-valued Poincaré series

Let \(\Gamma \cong \mathbb{I}_2 \) be a subgroup of finite index in \(\text{SL}_2(\mathbb{Z}) \), and let \(\rho : \Gamma \to \text{GL}_p(\mathbb{C}) \) be a unitary representation. Moreover, let \(\Lambda \cong \mathbb{I}_2 \) be a subgroup of \(\Gamma \).

We start this section with a technical lemma.

Lemma 5.1. Let \(f : \mathcal{H} \to \mathbb{C}^p \) be a measurable function satisfying (f1), and let \(A \) be a Borel-measurable subset of \(\mathcal{H} \). Then,

\[
\int_{\Lambda \setminus \Lambda \setminus A} \| f(\tau) \| \mathcal{S}(\tau)^{\frac{k}{2}} \, d\nu(\tau) = 2 \int_{\Lambda \setminus \Lambda \setminus A} \| f(g.i) \| \| j(g, i) \|^{-k} \, dg,
\]

where we use the notation

\[
(5-1) \quad \mathcal{S} := \{ n_xa_y : x + iy \in S \} K = \{ g \in \text{SL}_2(\mathbb{R}) : g.i \in S \}, \quad S \subseteq \mathcal{H}.
\]

Proof. Denoting by \(\mathbb{I}_{\Lambda \setminus \Lambda} \) (resp., \(\mathbb{I}_{\Lambda \setminus \Lambda \setminus A} \)) the characteristic function of \(\Lambda \setminus \Lambda \) (resp., \(\Lambda \setminus \Lambda \setminus A \)) in \(\mathcal{H} \) (resp., \(\text{SL}_2(\mathbb{R}) \)), we have

\[
\int_{\Lambda \setminus \Lambda \setminus A} \| f(\tau) \| \mathcal{S}(\tau)^{\frac{k}{2}} \, d\nu(\tau)
\]

\[
= \frac{1}{2\pi} \int_0^{2\pi} \int_{\Lambda \setminus \mathcal{H}} \| f(x + iy) \| y^{\frac{k}{2}} \mathbb{I}_{\Lambda \setminus \Lambda}(x + iy) \, d\nu(x + iy) \, d\theta
\]

\[
= \frac{1}{2\pi} \int_0^{2\pi} \int_{\Lambda \setminus \mathcal{H}} \| f(n_xa_y\kappa_\theta, i) \| \| j(n_xa_y\kappa_\theta, i) \|^{-k} \mathbb{I}_{\Lambda \setminus \Lambda}(n_xa_y\kappa_\theta) \, d\nu(x + iy) \, d\theta
\]

\[
(2-8) \quad = 2 \int_{\Lambda \setminus \Lambda \setminus A} \| f(g.i) \| \| j(g, i) \|^{-k} \, dg. \quad \square
\]

The following theorem may be regarded as a vector-valued version of the integral non-vanishing criterion \cite[Lemma 3.1]{28} for Poincaré series of integral weight on \(\mathcal{H} \) (see also \cite[Theorem 2]{38} for the half-integral weight version, and \cite[Theorem 4.1]{26} for the original version of the criterion, in which Poincaré series on unimodular locally compact Hausdorff groups are considered).
Theorem 5.2. Let $\Gamma \ni -I_2$ be a subgroup of finite index in $\text{SL}_2(\mathbb{Z})$, and let $\rho : \Gamma \to \text{GL}_p(\mathbb{C})$ be a unitary representation. Let $\Lambda \ni -I_2$ be a subgroup of Γ, and let $f : \mathcal{H} \to \mathbb{C}^p$ be a measurable function with the following properties:

(f1) $f|_{E,\rho} \lambda = f$ for all $\lambda \in \Lambda$.

(f2’) The series $P_{\Lambda \setminus \Gamma, \rho} f$ converges absolutely a.e. on \mathcal{H}.

Then, we have that

$$\int_{\Gamma \setminus \mathcal{H}} \left\| (P_{\Lambda \setminus \Gamma, \rho} f)(\tau) \right\| \Im(\tau)^{\frac{k}{2}} d\nu(\tau) > 0$$

if one of the following holds:

(i) There exists a Borel-measurable set $A \subseteq \mathcal{H}$ with the following properties:

(A1) No two points of A are mutually Γ-equivalent.

(A2) Denoting $(\Lambda.A)^c := \mathcal{H} \setminus \Lambda.A$, we have

$$\int_{\Lambda \setminus \Lambda.A} \| f(\tau) \| \Im(\tau)^{\frac{k}{2}} d\nu(\tau) > \int_{\Lambda \setminus (\Lambda.A)^c} \| f(\tau) \| \Im(\tau)^{\frac{k}{2}} d\nu(\tau).$$

(ii) There exists a Borel-measurable set $C \subseteq \text{SL}_2(\mathbb{R})$ with the following properties:

(C1) $CK = C$.

(C2) $CC^{-1} \cap \Gamma \subseteq \langle -I_2 \rangle$.

(C3) Denoting $(\Lambda C)^c := \text{SL}_2(\mathbb{R}) \setminus \Lambda C$, we have

$$\int_{\Lambda \setminus \Lambda.C} \| f(g.i) \| |j(g, i)|^{-k} dg > \int_{\Lambda \setminus (\Lambda C)^c} \| f(g.i) \| |j(g, i)|^{-k} dg.$$

Remark 5.3. By Proposition 4.1(1), Theorem 5.2 remains true if we replace the property (f2’) in it by (f2).

Proof of Theorem 5.2. Suppose that (i) holds. First, we recall that by [24, Theorem 1.7.8], the set of elliptic points for Γ in \mathcal{H} is countable, hence of measure zero. Next, we note that if $\tau \in \mathcal{H}$ is not an elliptic point for Γ, i.e., if $\Gamma_\tau = \langle -I_2 \rangle$, then

$$\# \{ \gamma \in \Lambda \setminus \Gamma : 1_{\Lambda.A}(\gamma.\tau) \neq 0 \} \leq 1.$$

Namely, if $\gamma.\tau, \gamma'.\tau \in \Lambda.A$ for some $\gamma, \gamma' \in \Gamma$, then there exist $\lambda, \lambda' \in \Lambda$ such that $\lambda.\gamma.\tau, \lambda'.\gamma'.\tau \in \Lambda$, hence by (A1) we have $\lambda.\gamma.\tau = \lambda'.\gamma'.\tau$, which by the non-ellipticity of τ implies that $\lambda'.\gamma' \in \{ \pm \lambda \gamma \}$, hence $\Lambda.\gamma' = \Lambda.\gamma$.

Denoting by \(1_S\) the characteristic function of a set \(S \subseteq \mathcal{H}\), we have

\[
\int_{\Gamma \setminus \mathcal{H}} \left\| (P_{\Lambda \setminus \Gamma, \rho} (1_{\Lambda, A} f)) (\tau) \right\| \Im(\tau)^{\frac{k}{2}} d\nu(\tau)
\]

\[
= \int_{\Gamma \setminus \mathcal{H}} \left\| \sum_{\gamma \in \Lambda \setminus \Gamma} 1_{\Lambda, A}(\gamma, \tau) \rho(\gamma)^{-1} (f|_{k \gamma}) (\tau) \right\| \Im(\tau)^{\frac{k}{2}} d\nu(\tau)
\]

\[
= \int_{\Gamma \setminus \mathcal{H}} \sum_{\gamma \in \Lambda \setminus \Gamma} 1_{\Lambda, A}(\gamma, \tau) \| \rho(\gamma)^{-1} (f|_{k \gamma}) (\tau) \| \Im(\tau)^{\frac{k}{2}} d\nu(\tau)
\]

\[
= \int_{\Lambda \setminus \Lambda, A} \| f(\tau) \| \Im(\tau)^{\frac{k}{2}} d\nu(\tau),
\]

where the third equality holds by (2-2), (2-4) and the unitarity of \(\rho\) and \(v\).

On the other hand, we have

\[
\int_{\Gamma \setminus \mathcal{H}} \left\| (P_{\Lambda \setminus \Gamma, \rho} (1_{\Lambda, A})^c f)) (\tau) \right\| \Im(\tau)^{\frac{k}{2}} d\nu(\tau)
\]

\[
\leq \int_{\Gamma \setminus \mathcal{H}} \sum_{\gamma \in \Lambda \setminus \Gamma} 1_{\Lambda, A}(\gamma, \tau) \| \rho(\gamma)^{-1} (f|_{k \gamma}) (\tau) \| \Im(\tau)^{\frac{k}{2}} d\nu(\tau)
\]

\[
= \int_{\Gamma \setminus \mathcal{H}} \sum_{\gamma \in \Lambda \setminus \Gamma} 1_{\Lambda, A}(\gamma, \tau) \| f(\gamma, \tau) \| \Im(\gamma, \tau)^{\frac{k}{2}} d\nu(\tau)
\]

\[
= \int_{\Lambda \setminus \Lambda, A} \| f(\tau) \| \Im(\tau)^{\frac{k}{2}} d\nu(\tau).
\]

Thus,

\[
\int_{\Gamma \setminus \mathcal{H}} \left\| (P_{\Lambda \setminus \Gamma, \rho} f) (\tau) \right\| \Im(\tau)^{\frac{k}{2}} d\nu(\tau)
\]

\[
\geq \int_{\Gamma \setminus \mathcal{H}} \left\| (P_{\Lambda \setminus \Gamma, \rho} (1_{\Lambda, A} f)) (\tau) \right\| \Im(\tau)^{\frac{k}{2}} d\nu(\tau)
\]

\[
- \int_{\Gamma \setminus \mathcal{H}} \left\| (P_{\Lambda \setminus \Gamma, \rho} (1_{\Lambda, A})^c f)) (\tau) \right\| \Im(\tau)^{\frac{k}{2}} d\nu(\tau)
\]

\[
\geq (5-3) \int_{\Lambda \setminus \Lambda, A} \| f(\tau) \| \Im(\tau)^{\frac{k}{2}} d\nu(\tau) - \int_{\Lambda \setminus \Lambda, A} \| f(\tau) \| \Im(\tau)^{\frac{k}{2}} d\nu(\tau)
\]

\[
> 0.
\]
Next, suppose that (ii) holds. To finish the proof of the theorem, it suffices to prove that the set
\[(5-5) \quad A := C.i = \{ x + iy : n_x a_y K \subseteq C \} \]
has the properties (A1) and (A2).

(A1) Suppose that \(\gamma_n(x + iy) = x' + iy' \) for some \(\gamma \in \Gamma \) and \(x + iy, x' + iy' \in A \). Equivalently, \(\gamma n_x a_y i = n_x a_y' i \), i.e., \(a_y^{-1} n_x^{-1} \gamma n_x a_y i = i \), hence \(a_y^{-1} n_x^{-1} \gamma n_x a_y \in K \), so
\[
\gamma \in (n_x a_y K) (n_x a_y)^{-1} \cap \Gamma \subseteq CC^{-1} \cap \Gamma \subseteq \langle -I_2 \rangle,
\]
which implies that \(x + iy = x' + iy' \).

(A2) Using the notation (5-1), by (C1) and (5-5) we have that \(C = A \), \(\Lambda C = \Lambda A \), and \((\Lambda C)^c = (\Lambda A)^c \), so (A2) follows from (C3) by applying Lemma 5.1. \(\square \)

6. Classical vector-valued Poincaré series

As a first example application of our results, in this section we construct and study the non-vanishing of the cuspidal VVMFs that are vector-valued analogues of the classical Poincaré series (for details on the latter cusp forms, see, e.g., [24, Theorems 2.6.9(1) and 2.6.10]). We note that in the case when \(\Gamma = \text{SL}_2(\mathbb{Z}) \), these VVMFs have already been studied in [16, §3].

We will need the following lemma.

Lemma 6.1. Let \(\Gamma \ni -I_2 \) be a subgroup of finite index in \(\text{SL}_2(\mathbb{Z}) \), let \(\rho : \Gamma \rightarrow \text{GL}_p(\mathbb{C}) \) be a unitary representation, and let \(\Lambda \ni -I_2 \) be a subgroup of \(\Gamma \). Let \(f : \mathcal{H} \rightarrow \mathbb{C}^p \) be a measurable function satisfying (f1) and (f2), such that \(P_{\Lambda \setminus \Gamma, \rho} f \in \mathcal{S}(k, \rho, \Gamma) \). Then,
\[(6-1) \quad \langle F, P_{\Lambda \setminus \Gamma, \rho} f \rangle_{\mathcal{S}(k, \rho, \Gamma)} = \int_{\Lambda \setminus \mathcal{H}} \langle F(\tau), f(\tau) \rangle_{\mathbb{C}^p} \mathfrak{Z}(\tau)^k d\nu(\tau), \quad F \in \mathcal{S}(k, \rho, \Gamma). \]

Proof. We have
\[
\langle F, P_{\Lambda \setminus \Gamma, \rho} f \rangle_{\mathcal{S}(k, \rho, \Gamma)} = \int_{\Lambda \setminus \mathcal{H}} \langle F(\tau), (P_{\Lambda \setminus \Gamma, \rho} f)(\tau) \rangle_{\mathbb{C}^p} \mathfrak{Z}(\tau)^k d\nu(\tau)
\]
\[= \int_{\Gamma \setminus \mathcal{H}} \sum_{\gamma \in \Lambda \setminus \Gamma} \langle \rho(\gamma)^{-1} (F|_{|k} \gamma)(\tau), \rho(\gamma)^{-1} (f|_{|k} \gamma)(\tau) \rangle_{\mathbb{C}^p} \mathfrak{Z}(\tau)^k d\nu(\tau)
\]
\[= \int_{\Gamma \setminus \mathcal{H}} \sum_{\gamma \in \Lambda \setminus \Gamma} \langle F(\gamma \tau), f(\gamma \tau) \rangle_{\mathbb{C}^p} \mathfrak{Z}(\gamma \tau)^k d\nu(\tau)
\]
\[= \int_{\Lambda \setminus \mathcal{H}} \langle F(\tau), f(\tau) \rangle_{\mathbb{C}^p} \mathfrak{Z}(\tau)^k d\nu(\tau), \quad F \in \mathcal{S}(k, \rho, \Gamma), \]
where in the third equality we used (2-2), (2-4) and the unitarity of \(\rho \) and \(v. \) \(\square \)

Let \(\Gamma \ni -I_2 \) be a subgroup of finite index in \(\text{SL}_2(\mathbb{Z}) \), let \(\rho : \Gamma \rightarrow \text{GL}_p(\mathbb{C}) \) be a normal unitary representation, and let \(M \in \mathbb{Z}_{>0} \) such that \(\Gamma_\infty = \langle \pm T^M \rangle \) (see [24, Theorem 1.5.4(2)]). By the unitarity of \(\rho \) and (N2), there exist \(U \in \text{U}(p) \) and \(m_1, \ldots, m_p \in [0, 1] \cap \mathbb{Q} \) such that
\[(6-2) \quad \rho(T^M) = e^{-2\pi i m_1} U^{-1} \text{diag}(e^{2\pi i m_1}, \ldots, e^{2\pi i m_p}) U. \]
Proposition 6.2. Let $k \in \mathbb{R}_{>2}$, $\nu \in \mathbb{Z}_{\geq 0}$, and $j \in \{1, \ldots, p\}$. Denoting by e_j the jth vector of the canonical basis for \mathbb{C}^p, we have the following:

1. The Poincaré series

$$\Psi_{k,\rho,\nu,U,j} := P_{\Gamma_{\infty}\setminus \Gamma,\rho} \left(e^{2\pi i \frac{\nu + m_j}{M}} U^{-1} e_j \right)$$

converges absolutely and uniformly on compact sets in \mathcal{H} and defines an element of $\mathcal{S}(k, \rho, \Gamma)$.

2. For every $F \in \mathcal{S}(k, \rho, \Gamma)$, we have

$$\langle F, \Psi_{k,\rho,\nu,U,j} \rangle_{\mathcal{S}(k,\rho,\Gamma)} = b_{\nu}(j) \frac{M^k \Gamma(k-1)}{(4\pi(\nu + m_j))^{k-1}},$$

where $b_{\nu}(j) \in \mathbb{C}$ are coefficients in the Fourier expansion

$$\langle UF \rangle_j(\tau) = \sum_{n=0}^{\infty} b_n(j) e^{2\pi i \frac{n + m_j}{M} \tau}, \quad \tau \in \mathcal{H},$$

and Γ on the right-hand side of (6-3) denotes the gamma function $\Gamma(s) := \int_0^{\infty} t^{s-1} e^{-t} dt$, $\Re(s) > 0$.

Proof. (1) By Proposition 4.1, it suffices to prove that the function $f : \mathcal{H} \to \mathbb{C}^p$,

$$f(\tau) := e^{2\pi i \frac{\nu + m_j}{M}} U^{-1} e_j,$$

satisfies (f1) and (f2) with $\Lambda = \Gamma_{\infty}$. The property (f1) is satisfied by (N1), (2-5) and the equality

$$\left(f \otimes_{k,\rho} T^{M} \right)(\tau) = e^{-2\pi i n M} \rho(T^{-M}) f(\tau + M) \left(f(\tau) \right)_{(6-5)}, \quad \tau \in \mathcal{H},$$

and (f2) holds by the following estimate: since $k > 2$,

$$\int_{\Gamma_{\infty}\setminus \mathcal{H}} \|f(\tau)\| \Im(\tau)^{\frac{\nu}{2}} d\nu(\tau) \overset{(6-5)}{=} \int_0^{M} \int_0^{\infty} e^{-2\pi i \frac{\nu + m_j}{M} y} \|U^{-1} e_j\| y^{\frac{\nu}{2} - 2} dy dx$$

$$\overset{(6-5)}{=} \frac{M^{\frac{\nu}{2}}}{(2\pi(\nu + m_j))^{\frac{\nu}{2} - 1}} \int_0^{\infty} e^{-y} y^{\frac{\nu}{2} - 2} dy < \infty.$$
First, we note that the Fourier expansion (6-4) exists by the same argument as the Fourier expansion (4-4). Now we have

\[
\langle F, \Psi_{k, \rho, \Gamma, \nu, U, j} \rangle_{S(k, \rho, \Gamma)}^{(6-1)} = \int_{\Gamma \setminus \mathcal{H}} \left(UF(\tau), e^{2\pi i \nu + mj} \frac{U^{-1} e_j}{M} \right)_{C^p} \mathcal{Z}(\tau) d\nu(\tau)
\]

\[
= \lim_{R \to 0^+} \int_0^M \int_{-\infty}^\infty \sum_{n=0}^\infty b_n(j) e^{2\pi i \nu + mj} e^{-2\pi \nu x + 2\pi \nu y} y^{-2} dy dx
\]

\[
= b_\nu(j) M^k \Gamma(k - 1) \frac{\Gamma(k - 1)}{(4\pi(\nu + mj))^k - 1},
\]

where the second equality holds because \(U \) is a unitary matrix, and the fourth one by the dominated convergence theorem.

We note the following direct consequence of Proposition 6.2.

Corollary 6.3. Let \(k \in \mathbb{R}_{>2} \). Then,

\[
\mathcal{S}(k, \rho, \Gamma) = \text{span}_{\mathbb{C}} \{ \Psi_{k, \rho, \Gamma, \nu, U, j} : \nu \in \mathbb{Z}_{\geq 0}, \ j \in \{1, \ldots, p\} \}.
\]

Finally, applying our non-vanishing criterion (Theorem 5.2), we obtain the following result on the non-vanishing of VVMFs \(\Psi_{k, \rho, \Gamma, \nu, U, j} \).

Theorem 6.4. Let \(k \in \mathbb{R}_{>2} \) and \(N \in \mathbb{Z}_{>0} \). Let \(\Gamma \in \{ \Gamma_0(N), \langle -I_2 \rangle \Gamma_1(N), \langle -I_2 \rangle \Gamma(N) \} \) and

\[
M := \begin{cases}
1, & \text{if } \Gamma \in \{ \Gamma_0(N), \langle -I_2 \rangle \Gamma_1(N) \} \\
N, & \text{if } \Gamma = \langle -I_2 \rangle \Gamma(N).
\end{cases}
\]

Let \(\rho : \Gamma \to \text{GL}_p(\mathbb{C}) \) be a normal unitary representation, and fix \(U \in \text{U}(p) \) and \(m_1, \ldots, m_p \in [0, 1] \cap \mathbb{Q} \) such that

\[
\rho(T^M) = e^{-2\pi i m U^{-1} \text{ diag}(e^{2\pi i m_1}, \ldots, e^{2\pi i m_p}) U}.
\]

Then, \(\Psi_{k, \rho, \Gamma, \nu, U, j} \neq 0 \) if

\[
\nu + mj \leq \frac{MN}{4\pi} \left(k - \frac{8}{3} \right).
\]

Proof. We apply Theorem 5.2(i) with

\[
A := [0, M] \times \left[\frac{1}{N}, \infty \right].
\]
Let us prove that the set A defined in this way satisfies (A1). Let $\tau \in A$ and $\gamma = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \Gamma$ such that $\gamma.\tau \in A$. Then $c = 0$, because otherwise we would have $|c| \geq N$ and consequently
\[
\frac{1}{N} < \Im(\gamma.\tau) = \frac{1}{(c\Re(\tau) + d)^2 + (c\Im(\tau))^2} \leq \frac{\Im(\tau)}{(c\Im(\tau))^2} < \frac{1}{N^2} \cdot \frac{1}{N} = \frac{1}{N}.
\]
Thus, $\gamma \in \Gamma_\infty = \langle \pm T^M \rangle$, hence $\gamma.\tau = \tau + nM$ for some $n \in \mathbb{Z}$. The fact that $\Re(\tau), \Re(\gamma.\tau) \in [0, M]$ implies that $n = 0$, hence $\gamma.\tau = \tau$, which proves (A1).

On the other hand, our set A satisfies (A2) if and only if
\[
\int_{\Gamma_\infty \setminus \Gamma_\infty \cdot A} \left\| e^{2\pi i \frac{\nu + mj}{M} \tau} U^{-1} e_j \right\| \Im(\tau)^{\frac{k}{2}} d\nu(\tau) > \int_{\Gamma_\infty \setminus (\Gamma_\infty \cdot A)^c} \left\| e^{2\pi i \frac{\nu + mj}{M} \tau} U^{-1} e_j \right\| \Im(\tau)^{\frac{k}{2}} d\nu(\tau),
\]
i.e., recalling that $U \in U(p)$ and that $]0, M[\times]0, \infty[$ is a fundamental domain for Γ_∞ in \mathcal{H}, if and only if we have
\[
\int_{0}^{M} \int_{0}^{\infty} e^{-\frac{2\pi}{M} \nu \frac{\nu + mj}{M} y} y^{k-2} dy \, dx > \int_{0}^{M} \int_{0}^{\infty} e^{-\frac{2\pi}{M} \nu \frac{\nu + mj}{M} y} y^{k-2} dy \, dx
\]
or equivalently
\[
\int_{0}^{\infty} \left(\frac{2\pi}{M} (\nu + mj) \right) \frac{k}{2} e^{-t} dt > \int_{0}^{\frac{2\pi}{M} (\nu + mj)} \left(\frac{2\pi}{M} (\nu + mj) \right) \frac{k}{2} e^{-t} dt,
\]
i.e., if and only if
\[
\frac{2\pi (\nu + mj)}{MN} < M_{\Gamma(a, b)},
\]
where $M_{\Gamma(a, b)} \in \mathbb{R}_{>0}$ is the median of the gamma distribution $\Gamma(a, b)$ with parameters $a, b \in \mathbb{R}_{>0}$, determined by the condition
\[
\int_{0}^{M_{\Gamma(a, b)}} x^{a-1} e^{-bx} \, dx = \int_{M_{\Gamma(a, b)}}^{\infty} x^{a-1} e^{-bx} \, dx.
\]
Applying Chen and Rubin’s estimate [7, Theorem 1], stating that
\[
a - \frac{1}{3} < M_{\Gamma(a, 1)} < a, \quad a \in \mathbb{R}_{>0},
\]
it follows that (A2) holds if
\[
\frac{2\pi (\nu + mj)}{MN} \leq \frac{k}{2} - \frac{4}{3},
\]
which is equivalent to (6-6). □
In this section, we use Proposition 4.1 and Theorem 5.2 to construct and study the non-vanishing of the vector-valued analogues of elliptic Poincaré series. The latter cusp forms were studied already by Petersson [30, (8)].

Let \(\Gamma \supset -I_2 \) be a subgroup of finite index in \(SL_2(\mathbb{Z}) \), and let \(\rho : \Gamma \to GL_p(\mathbb{C}) \) be a normal unitary representation.

Proposition 7.1. Let \(k \in \mathbb{R}_{>2}, \nu \in \mathbb{Z}_{\geq 0}, \xi \in \mathcal{H} \). Then, we have the following:

1. Let \(u \in \mathbb{C}^p \). The Poincaré series

\[
\Phi_{k,\rho,\Gamma,\nu,\xi,\Gamma} := P_{(-I_2)\backslash \Gamma,\rho} \left(\frac{(\cdot - \xi)^\nu}{(\cdot - \xi)^{\nu+k}} u \right)
\]

converges absolutely and uniformly on compact sets in \(\mathcal{H} \) and defines an element of \(\mathcal{S}(k,\rho,\Gamma) \).

2. For every \(j \in \{1, \ldots, p\} \), we have

\[
\langle F, \Phi_{k,\rho,\Gamma,\nu,\xi,\Gamma} \rangle_{\mathcal{S}(k,\rho,\Gamma)} = \frac{4\pi}{(4\Im(\xi))^k} \frac{\nu!}{(k-1)k \cdots (k+\nu-1)} b_{\nu,\xi}(j)
\]

for every \(F = (F_1, \ldots, F_p) \in \mathcal{S}(k,\rho,\Gamma) \), where \(b_{\nu,\xi}(j) \in \mathbb{C} \) are coefficients in the expansion

\[
(\tau - \bar{\xi})^k F_j(\tau) = \sum_{n=0}^{\infty} b_{n,\xi}(j) \left(\frac{\tau - \xi}{\tau - \bar{\xi}} \right)^n, \quad \tau \in \mathcal{H}.
\]

Proof. (1) The claim follows from Proposition 4.1 as soon as we prove that \(f : \mathcal{H} \to \mathbb{C}^p \),

\[
f(\tau) := \frac{(\tau - \xi)^\nu}{(\tau - \bar{\xi})^{\nu+k}} u,
\]

satisfies (f2). Applying the change of variables \(\tau \mapsto n\Re(\xi)a\Im(\xi)\tau \), we obtain

\[
\int_{(-I_2)\backslash \mathcal{H}} \|f(\tau)\| \Im(\tau)^{\frac{k}{2}} d\nu(\tau) = \frac{\|u\|}{\Im(\xi)^{\frac{k}{2}}} \int_{\mathcal{H}} \left| \frac{\tau - i}{\tau + i} \right|^\nu \Im(\tau)^{\frac{k}{2}} d\nu(\tau)
\]

\[
\leq \frac{\|u\|}{\Im(\xi)^{\frac{k}{2}}} \int_{\mathcal{H}} \frac{\Im(\tau)^{\frac{k}{2}}}{|\tau + i|^k} d\nu(\tau)
\]

\[
= \frac{\|u\|}{\Im(\xi)^{\frac{k}{2}}} \int_{0}^{\infty} \int_{\mathbb{R}} \frac{y^{k-2}}{(x^2 + (y + 1)^2)^{\frac{k}{2}}} dx dy
\]

\[
= \frac{\|u\|}{\Im(\xi)^{\frac{k}{2}}} \int_{\mathbb{R}} \frac{dx}{(x^2 + 1)^{\frac{k}{2}}} \int_{0}^{\infty} \frac{y^{k-2}}{(y + 1)^{k-1}} dy,
\]

introducing the change of variables \(x \mapsto (y + 1)x \) in the last equality. Since \(k > 2 \), the right-hand side is finite, which proves (f2).
(2) Let \(F \in S(k, \rho, \Gamma) \). By Lemma 6.1, we have
\[
\langle F, \Phi_{k, \rho, \nu, \xi, e_j} \rangle_{S(k, \rho, \Gamma)} = \int_{\mathcal{H}} \left\langle F(\tau), \frac{(\tau - \xi)^{\nu}}{(\tau - \xi)^{\nu+k}} e_j \right\rangle_{\mathbb{C}^p} \mathfrak{S}(\tau)^k \, dv(\tau).
\]
Using (7-2) and introducing the change of variables \(\tau \mapsto n_{\mathbb{R}(\xi)\mathcal{A}(\xi)\cdot \tau} \), we see that the right-hand side equals
\[
\mathfrak{S}(\xi)^{-k} \int_{\mathcal{H}} \sum_{n=0}^{\infty} b_{n, \xi}(j) \left(\frac{\tau - i}{\tau + i} \right)^{n-\nu} \left| \frac{\tau - i}{\tau + i} \right|^{2\nu} \mathfrak{S}(\tau)^k \frac{1}{|\tau + i|^{2k}} \, dv(\tau),
\]
which, introducing the substitution \(w = \frac{\tau - i}{\tau + i} \) (so \(dx \, dy = \frac{4}{|1-w|^2} \, dw \)) and denoting \(\mathcal{D} := \{ w \in \mathbb{C} : |w| < 1 \} \), equals
\[
\frac{4}{(4\mathfrak{S}(\xi))^k} \int_{\mathcal{D}} \sum_{n=0}^{\infty} b_{n, \xi}(j) w^{n-\nu} |w|^{2\nu} (1 - |w|^2)^{k-2} \, dw.
\]
Going over to polar coordinates, we obtain
\[
\frac{4}{(4\mathfrak{S}(\xi))^k} \lim_{R \to 1} \int_0^R \int_0^{2\pi} \sum_{n=0}^{\infty} b_{n, \xi}(j) r^{n+\nu+1} (1 - r^2)^{k-2} \, e^{i(n-\nu)t} \, dt \, dr,
\]
i.e., applying the dominated convergence theorem,
\[
\frac{4}{(4\mathfrak{S}(\xi))^k} \lim_{R \to 1} \sum_{n=0}^{\infty} b_{n, \xi}(j) \int_0^R r^{n+\nu+1} (1 - r^2)^{k-2} \, dr \int_0^{2\pi} e^{i(n-\nu)t} \, dt
\]
\[
= \frac{8\pi}{(4\mathfrak{S}(\xi))^k} b_{\nu, \xi}(j) \int_0^1 r^{2\nu+1} (1 - r^2)^{k-2} \, dr
\]
\[
= \frac{4\pi}{(4\mathfrak{S}(\xi))^k} b_{\nu, \xi}(j) \frac{\nu!}{(k-1)k \cdots (k + \nu - 1)},
\]
where the last equality is obtained by \(\nu \)-fold partial integration after substituting \(t = r^2 \). \(\square \)

As a direct consequence of Proposition 7.1, we obtain the following corollary.

Corollary 7.2. Let \(k \in \mathbb{R}_{>2} \) and \(\xi \in \mathcal{H} \). Then,
\[
S(k, \rho, \Gamma) = \text{span}_{\mathbb{C}} \{ \Phi_{k, \rho, \nu, \xi, e_j} : \nu \in \mathbb{Z}_{\geq 0}, \ j \in \{1, \ldots, p\} \}.
\]

In the following theorem, we give a result on the non-vanishing of elliptic VVPSs. To state it, we need the notion of the median \(M_{B(a,b)} \in [0,1] \) of the beta distribution \(B(a,b) \) with parameters \(a, b \in \mathbb{R}_{>0} \), defined by the condition
\[
\int_0^{M_{B(a,b)}} x^{a-1} (1 - x)^{b-1} \, dx = \int_{M_{B(a,b)}}^1 x^{a-1} (1 - x)^{b-1} \, dx.
\]
Theorem 7.3. Let $N \in \mathbb{Z}_{\geq 2}$, and let $\Gamma \ni -I_2$ be a subgroup of finite index in $\langle -I_2 \rangle \Gamma(N)$. Let $\rho : \Gamma \to \text{GL}_p(\mathbb{C})$ be a normal unitary representation. Let $k \in \mathbb{R}_{>2}$, $\nu \in \mathbb{Z}_{\geq 0}$, and $u \in \mathbb{C}^p \setminus \{0\}$. If

\begin{equation}
N > \frac{4 \left(M_B\left(\frac{\nu + 1}{2}, \frac{k}{2} - 1\right)\right)^{\frac{1}{2}}}{1 - M_B\left(\frac{\nu + 1}{2}, \frac{k}{2} - 1\right)},
\end{equation}

then

\[\Phi_{k,\rho,\Gamma,\nu,u} \not\equiv 0. \]

Proof. We recall that $\Phi_{k,\rho,\Gamma,\nu,u} = P_{\langle -I_2 \rangle \backslash \Gamma} f$ for $f : \mathcal{H} \to \mathbb{C}^p$,

\begin{equation}
 f(\tau) := \frac{(\tau - i)^\nu}{(\tau + i)^{\nu+k}} u.
\end{equation}

To apply Theorem 5.2, it suffices to find a Borel-measurable set $C \subseteq \text{SL}_2(\mathbb{R})$ satisfying (C1)–(C3) with $\Lambda = \langle -I_2 \rangle$. Following the idea of [27, Lemma 6-5], let us look for such a set C of the form

\[C_r := K \{ h_t : t \in [0, r] \} K \]

with $r \in \mathbb{R}_{>0}$. For every $r \in \mathbb{R}_{>0}$, the set C_r obviously satisfies (C1). Next, by [27, Lemma 6-20] we have

\[\max_{g \in C_r} \|g\| = \sqrt{2 \cosh(4r)}, \]

and on the other hand, obviously

\[\min_{\gamma \in \Gamma \setminus \langle -I_2 \rangle} \|\gamma\| \geq \sqrt{N^2 + 2}, \]

so C_r satisfies (C2) if

\begin{equation}
\sqrt{2 \cosh(4r)} < N^2 + 2.
\end{equation}

Next, one checks easily that (for every $f : \mathcal{H} \to \mathbb{C}^p$)

\[\|f(\kappa t h_t \kappa h_t^{-1}, i)\| \cdot |j(\kappa t h_t \kappa h_t^{-1}, i)|^{-k} \]

\[= \|f\left(\frac{e^t i \cos \theta_1 - e^{-t} \sin \theta_1}{e^t i \sin \theta_1 + e^{-t} \cos \theta_1}\right)\| \cdot |e^t i \sin \theta_1 + e^{-t} \cos \theta_1|^{-k} \]

for all $t \in \mathbb{R}_{\geq 0}$ and $\theta_1, \theta_2 \in \mathbb{R}$. From this, it follows by an elementary computation, using (7-4), that

\[\|f(\kappa t h_t \kappa h_t^{-1}, i)\| \cdot |j(\kappa t h_t \kappa h_t^{-1}, i)|^{-k} = \frac{\tanh^\nu t}{(2 \cosh t)^k} \|u\| \]

for all $t \in \mathbb{R}_{\geq 0}$ and $\theta_1, \theta_2 \in \mathbb{R}$. Thus, using (2-7), C_r satisfies (C3) if and only if

\begin{equation}
\int_0^r \frac{\tanh^\nu t}{\cosh^k t} \sinh(2t) dt > \int_r^\infty \frac{\tanh^\nu t}{\cosh^k t} \sinh(2t) dt.
\end{equation}

The computation from [37, proof of Proposition 6.7] shows that there exists $r \in \mathbb{R}_{>0}$ satisfying both (7-5) and (7-6) if and only if (7-3) holds. This proves the theorem. \qed
Remark 7.4. For concrete values of ν and k, it is easy to compute the value of the right-hand side in (7-3) explicitly using mathematical software (e.g., in R 3.3.2, $M_{B(a,b)}$ is implemented as \texttt{qbeta(0.5,a,b)}). Moreover, [37, Corollary 6.18] lists a few elementary sufficient conditions on ν, k and N for the inequality (7-3) to hold.

References

1. Bantay, P.: The dimension of spaces of vector-valued modular forms of integer weight. Lett. Math. Phys. 103(11), 1243–1260 (2013)
2. Bantay, P.: A trace formula for vector-valued modular forms. Commun. Contemp. Math. 17(6) (2015)
3. Bantay, P., Gannon, T.: Vector-valued modular functions for the modular group and the hypergeometric equation. Commun. Number Theory Phys. 1(4), 651–680 (2007)
4. Borcherds, R. E.: Automorphic forms with singularities on Grassmannians. Invent. Math. 132(3), 491–562 (1998)
5. Borcherds, R. E.: The Gross-Kohnen-Zagier theorem in higher dimensions. Duke Math. J. 97(2), 219–233 (1999)
6. Candelori, L., Franc, C.: Vector-valued modular forms and the modular orbifold of elliptic curves. Int. J. Number Theory 13(1), 39–63 (2017)
7. Chen, J., Rubin, H.: Bounds for the difference between median and mean of gamma and Poisson distributions. Statist. Probab. Lett. 4(6), 281–283 (1986)
8. Dong, C., Li, H., Mason, G.: Modular-invariance of trace functions in orbifold theory and generalized Moonshine. Comm. Math. Phys. 214, 1–56 (2000)
9. Eichler, M., Zagier, D.: The theory of Jacobi forms. Progress in Mathematics 55, Birkhäuser Boston, Inc., Boston, MA (1985)
10. Franc, C., Mason, G.: Fourier coefficients of vector-valued modular forms of dimension 2. Canad. Math. Bull. 57(3), 485–494 (2014)
11. Franc, C., Mason, G.: On the structure of modules of vector-valued modular forms. Ramanujan J. 47(1), 117–139 (2018)
12. Gannon T.: The theory of vector-valued modular forms for the modular group. Conformal field theory, automorphic forms and related topics, Contrib. Math. Comput. Sci. 8, Springer, Heidelberg, 247–286 (2014)
13. Grobner, H.: Smooth automorphic forms and smooth automorphic representations. Book in preparation, to appear in Series on Number Theory and Its Applications, WorldScientific.
14. Knopp, M., Mason, G.: Generalized modular forms. J. Number Theory 99(1), 1–28 (2003)
15. Knopp, M., Mason, G.: On vector-valued modular forms and their Fourier coefficients. Acta Arith. 110(2), 117–124 (2003)
16. Knopp, M., Mason, G.: Vector-valued modular forms and Poincaré series. Illinois J. Math. 48(4), 1345–1366 (2004)
17. Kohnen, W.: Nonvanishing of Hecke L-functions associated to cusp forms inside the critical strip. J. Number Theory 67(2), 182–189 (1997)
18. Lehner, J.: On the non-vanishing of Poincaré series. Proc. Edinb. Math. Soc. (2) 23(2), 225–228 (1980)
19. Marks, C.: Irreducible vector-valued modular forms of dimension less than six. Illinois J. Math. 55(4), 1267–1297 (2011)
20. Marks, C., Mason, G.: Structure of the module of vector-valued modular forms. J. Lond. Math. Soc. (2) 82(1), 32–48 (2010)
21. Mason, G.: Vector-valued modular forms and linear differential operators. Int. J. Number Theory 3(3), 377–390 (2007)
22. Mason, G.: 2-dimensional vector-valued modular forms. Ramanujan J. 17(3), 405–427 (2008)
23. Milas, A.: Virasoro algebra, Dedekind η-function and specialized Macdonald identities. Transform. Groups 9(3), 273–288 (2004)

24. Miyake, T.: Modular forms. Translated from the 1976 Japanese original by Yoshitaka Maeda. Reprint of the first 1989 English edition. Springer Monographs in Mathematics. Springer-Verlag, Berlin (2006)

25. Miyamoto, M.: Modular invariance of vertex operator algebras satisfying C_2-cofiniteness. Duke Math. J. 122(1), 51–91 (2004)

26. Mučić, G.: On a construction of certain classes of cuspidal automorphic forms via Poincaré series. Math. Ann. 343(1), 207–227 (2009)

27. Mučić, G.: On the cuspidal modular forms for the Fuchsian groups of the first kind. J. Number Theory 130(7), 1488–1511 (2010)

28. Mučić, G.: On the non-vanishing of certain modular forms. Int. J. Number Theory 7(2), 351–370 (2011)

29. Mučić, G.: On the analytic continuation and non-vanishing of L-functions. Int. J. Number Theory 8(8), 1831–1854 (2012)

30. Petersson, H.: Einheitliche Begründung der Vollständigkeitssätze für die Poincaréschen Reihen von reeller Dimension bei beliebigen Grenzkreisgruppen von erster Art. Abh. Math. Sem. Hansischen Univ. 14, 22–60 (1941)

31. Poincaré, H.: Mémoire sur les fonctions fuchsiennes. Acta Math. 1(1), 193–294 (1882)

32. Rankin, R. A.: The vanishing of Poincaré series. Proc. Edinb. Math. Soc. (2) 23(2), 151–161 (1980)

33. Saber, H., Sebbar, A.: On the existence of vector-valued automorphic forms. Kyushu J. Math. 71(2), 271–285 (2017)

34. Selberg, A.: On the estimation of Fourier coefficients of modular forms. Theory of Numbers. Proc. Sympos. Pure Math. VIII, Providence, RI, Amer. Math. Soc., 1–15 (1965)

35. Zhu, Y.: Modular invariance of characters of vertex operator algebras. J. Amer. Math. Soc. 9(1), 237–302 (1996)

36. Žunar, S.: On Poincaré series of half-integral weight, Glas. Mat. Ser. III 53(2), 239–264 (2018)

37. Žunar, S.: On the non-vanishing of Poincaré series on the metaplectic group. Manuscripta Math. 158(1–2), 1–19 (2019)

38. Žunar, S.: On the non-vanishing of L-functions associated to cusp forms of half-integral weight. Ramanujan J. 51(3), 455–477 (2020)