A Review of Forty-Five Years Study of Hiroshima and Nagasaki Atomic Bomb Survivors

HIDEO SASAKI, KAZUNORI KODAMA AND MICHIKO YAMADA
Department of Clinical Studies, Radiation Effects Research Foundation, Hiroshima, 732 Japan

Aging

The hypothesis that exposure to ionizing radiation accelerates the aging process has been actively investigated at ABCC-RERF since 1958, when longitudinal cohort studies of the Adult Health Study (AHS) and the Life Span Study (LSS) were initiated. In their 1975 overall review of aging studies related to the atomic bomb (A-bomb) survivors, Finch and Beebe concluded that while most studies had shown no correlation between aging and radiation exposure, they had not involved the large numbers of subjects required to provide strong evidence for or against the hypothesis. Extending LSS mortality data up to 1978 did not alter the earlier conclusion that any observed life-shortening was associated primarily with cancer induction rather than with any nonspecific cause.

The results of aging studies conducted during the intervening 15 years using data from the same populations are reviewed in the present paper. Using clinical, epidemiological, and laboratory techniques, a broad spectrum of aging parameters have been studied, such as postmortem morphological changes, tests of functional capacity, physical tests and measurements, laboratory tests, tissue changes, and morbidity.

With respect to the aging process, the overall results have not been consistent and are generally thought to show no relation to radiation exposure. Although some preliminary results suggest a possible radiation-induced increase in atherosclerotic diseases and acceleration of aging in the T cell-related immune system, further study is necessary to confirm these findings.

In the future, applying the latest gerontological study techniques to data collected from subjects exposed 45 years ago to A-bomb radiation at relatively young ages will present a new body of data relevant to the study of late radiation effects.

INTRODUCTION

The hypothesis that ionizing radiation exposure accelerates aging has been actively investigated at ABCC-RERF since 1958, when longitudinal cohort studies of the Adult Health Study (AHS) and Life Span Study (LSS) were initiated. This hypothesis arose out of experimental work on rats and mice in the late 1930s and 1940s in which irradiated animals had a shorter life span and appeared to age more rapidly than the nonirradiated controls. These observations, which have been confirmed repeatedly, led to the hypothesis that radiation-induced life-shortening is mechanistically equivalent to natural senescence. The idea of equivalence was first based on actuarial observations of an increase in the mortality rate from all causes of death, with an apparent shift of diseases characteristic of older age to younger age groups. Other phenomena that appear to support this hypothesis of equivalence include radiation-induced alteration of the physical appearance of animals such that they assume
the character of aged animals including graying of the fur, reduced activity level, occurrence of
cataract, loss of reproductive capacity, etc.6–8.

However, Mole criticized the idea of equivalence of radiation-induced life-shortening and
natural aging, and commented on the absence of conclusive data on the cause of death in earlier
experimental work9). Upton also noted in his reviews that the nonneoplasmic changes known
to follow irradiation seemed insufficient to account for the life-shortening effect being observed,
and that some of them bore little resemblance to natural senile changes10–12). Experimental work
by Lindop et al. using the age-specific mortality rate and with greater attentiveness to the cause
of death indicated that the process was not identical to natural aging13,14).

In many of the papers reviewed, there is considerable discussion about the specifically or
nonspecificity of the life-shortening observed in a variety of experimental situations15). The word
“specific” implies that the irradiated animals who die earlier than their controls exhibit a
characteristic spectrum of diseases or causes of death that differ from the spectrum seen in the
nonirradiated controls. If “nonspecific” life-shortening induced by radiation exposure, on the
other hand, is compatible with advanced or accelerated aging, radiation should not modify the
spectrum of normally occurring diseases. However, this notion may not be substantiated by
experimental evidence. Thus, the idea of a nonspecific effect of irradiation superimposable on
physiological aging becomes conceptually improbable. Recently, the discussion has been
centered on whether radiation exposure may produce life-shortening by induction of tumors and
how much of the observed shortening can be accounted for by neoplastic diseases. Though never
defined clearly, the words “specific” and “nonspecific” have therefore been taken to indicate
neoplastic and nonneoplastic contributions to life-shortening15,16). In his systematic review of
the literature and reanalysis of some of the older data, Walburg concluded that radiation exposure
at moderate-to-low doses (under 300 rad [3.0 Gy] of low-LET (Linear Energy Transfer) radiation)
shortens life, explained principally by the induction or acceleration of neoplastic diseases6). This

conclusion was supported by Storer and Sanders17).

Numerous attempts have been made to establish a theory of aging to specify its essential
mechanisms, such as the immunological theory, the neuroendocrine theory, the free radical theory,
the cross-linkage theory, the somatic mutation theory, the error theory, and the program
theory18–22). However, to date, there seems to be no satisfactory theory that explains the variety
of changes associated with the aging process18–22), thus providing no clear-cut direction for
research on radiation-induced aging. Experimental work on aging is also hampered somewhat
by the lack of any direct measure of senescence other than in terms of life span, and the difficulty
in deciding whether pathological processes in old animals are the cause of aging or the effects
of aging15).

Some attempts have been made to relate the possible effect of radiation-induced life-shortening
to nonspecific, diffuse, subclinical deterioration of tissues that might promote the onset of old-age
diseases to roughly the same degree as natural senescence. A great variety of degenerative changes
occur in irradiated tissue11,23), and some of these superficially resemble senescent changes, even
though there are profound differences between them6).

Casarett proposed that radiological aging be ascribed to the damage of endothelial cells of
the fine vasculature, leading to fibrotic changes of the arterioles and of the interstitial collagenous
Although Casarett's proposal was well founded, as it is known that radiation may cause interstitial fibrillar density and capillary fibrosis, this approach requires further substantiation.

Similarly, one might assume that alterations of the immune system are related to radiation-induced aging. However, relevant data are thought to be inconclusive.

Recently, other hypotheses related to molecular changes have been considered. Cutler reviewed the concept of the primary aging process, in which cross-linkages between biologically important molecules effected by various agents are postulated to be the origin of natural senescence and of possible radiation-induced changes. This hypothesis has received little experimental support when applied to cellular and extracellular constituents, such as collagen and age pigments. Hart discussed a more recent complementary working hypothesis that envisages the aging process as a sequence of events involving the induction of DNA damage and its subsequent manifestation at the physiological level. The ability of the system to repair DNA damage and the redundancy of the genetic information for vital functions within the system are the factors controlling the manifestation of such damage. These hypotheses have not yet been formalized and require further substantiation.

Most data on occupationally exposed groups and groups exposed to therapeutic uses of ionizing radiation have suggested that radiation-induced life-shortening in humans is not due primarily to nonspecific causes, but is due to the induction of neoplasms.

In 1956, Warren reported that radiologists had a shorter mean life span than doctors not routinely exposed to radiation, and they seemed to die at younger ages from practically every cause of death. Warren's method of comparison was criticized by Seltser and Sartwell, who found that radiologists would in fact be expected to die at younger ages, because there were proportionately fewer elderly radiologists. However, in their own cohort study on medical specialists, Seltser and Sartwell found that compared to other medical specialists, radiologists suffered higher mortality rates not only from cancer but also from cardiovascular-renal diseases and other nonneoplastic diseases.

In the United Kingdom, Court-Brown and Doll reported that they could not find excess mortality among radiologists apart from that attributed to cancer. A 20-year extension of the British radiologist study provided no support for a nonspecific life-shortening after radiation exposure. Smith and Doll reported on about 14,000 patients with ankylosing spondylitis who had been given a single course of X rays between 1935 and 1954. An excess of deaths from leukemia and cancers of the heavily irradiated sites was observed among the patients with ankylosing spondylitis, but the data did not support a nonspecific life-shortening effect. Aware of the peculiarity of their findings, Seltser and Sartwell extended their study, which revealed results similar to their earlier findings: U.S. radiologists seem to be the only human population apparently exhibiting radiation-induced nonspecific life-shortening.

An extensive review through 1975 was conducted by Finch and Beebe, based on numerous studies of aging among the A-bomb survivors. Cause-specific mortality in the LSS was examined for 82,000 survivors and 27,000 individuals who were not in either city at the time of the bombings. The relative risk was adjusted for age, sex, and city for subjects exposed to ≥ 100 rad [1 Gy] and those exposed to < 10 rad [0.1 Gy]. These subjects clearly revealed the well-
established carcinogenic effect of radiation exposure, but provided no convincing evidence that other causes of death, both in general and specific individual causes of death, were influenced in any way by radiation exposure. The age-specific mortality rates were calculated for low-dose vs. high-dose groups, for all natural causes of death except malignant neoplasms, and for time intervals from 1950 to 1972. These rates also suggested no generalized increase in mortality from natural causes that the hypothesis of accelerated aging would seem to require. Examinations of a wide variety of aging parameters in subjects who participate in RERF's biennial AHS examinations have also yielded mostly negative results. Only two of many age-related indices appear to be related to radiation. Yano and Ueda found an increase in certain electrocardiographic changes in heavily exposed males, but this was confined to a single 10-year age group, i.e., those ranging in age from 50 to 59. A second study, in which two histological changes in the testis were related to age, revealed that tubular sclerosis is also related to radiation exposure. Other potential parameters of aging have been shown to be quite reliably related to radiation exposure, especially lenticular opacity and neoplasms, but these relationships seem better understood as specific effects of radiation rather than as evidence of radiation-accelerated, nonspecific aging.

Earlier cytogenetic studies suggested a possible relationship between age and chromosome number. Yet, based on studies still in progress, these findings are now in doubt. However, Finch and Beebe suggested further investigations on aging, because the hypothesis had never been fully tested in humans and because the experience of the A-bomb survivors could be expected to provide definitive human data on the subject.

In this article, we will examine the status of aging studies conducted at ABCC-RERF by reviewing the results accumulated during the last 15 years.

Mortality Studies of A-bomb Survivors

An extended analysis of LSS mortality data up to 1974 was performed by Beebe et al. Deaths from nonneoplasmic diseases totaled about 14,000 out of 82,000 survivors. In the irradiated subjects, cerebrovascular diseases, other circulatory diseases, and diseases of the digestive system showed no evidence of an increase. Deaths due to diseases of the blood and blood-forming organs increased, but diagnoses that possibly attributed these deaths to cancer cast some doubt on this assumption. In their most recent report using data until 1978, Kato et al. calculated age-specific death rates for all nonneoplastic causes (taken at 4-year intervals and adjusted for city and sex within each time period) separately for the groups exposed to 0–0.09 Gy and to ≥1 Gy. The results did not change from earlier reports. The survival curve excluding deaths from malignant neoplasms for this cohort did not differ by dose over the whole period of 1950 through 78. These findings, as repeatedly pointed out, do not corroborate the hypothesis that radiation may accelerate natural aging. Investigations to test this hypothesis using LSS mortality data are ongoing, and some of the results will be described in this report.

Postmortem Studies of Aging

Pathology studies conducted by ABCC-RERF investigators during the past 15 years are summarized in Table 1. Although a number of age-related pathological changes have been reported,
none of them has shown any association with ionizing radiation. Focal cardiac myocytolysis, a unique, histologically recognizable cardiac lesion which might reveal the presence of an ischemic episode, was more common in older persons, but there was no evidence that radiation exposure increased the occurrence of this lesion. During a series of clinical-pathological studies of the heart, findings related to papillary muscle fibrosis and small vessel sclerosis turned out to be almost identical to findings for focal cardiac myocytolysis. A morphological study of central nervous system aging was performed, in which small vessel arteriosclerosis, senile plaques, neurofibrillary tangles, granulovascular degeneration, and hypoglossal nucleus hyaline cytoplasmic inclusions were quantified. The presence of neurofibrillary tangles, particularly in the hippocampus, was the best indicator of chronological age, but this appeared to be independent of radiation exposure. A pathological study of the central nervous system is now under way, although its scale has been reduced in accordance with a marked reduction in autopsy cases in recent years.

Table 1. Age-related pathological changes examined in RERF studies

Study	Ref.	Chronological Age Correlation	Radiation Effect
Pancreatic Ductal Epithelial Change	56	↑ With age	None
Neurofibrillary Tangle	57	↑ With age	None
Senile Plaque	57	↑ With age	None
Granulovascular Degeneration	57	↑ With age	None
Focal Cardiac Myocytolysis	58	↑ With age	None
Papillary Muscle Fibrosis (focal)	59	↑ With age	None
Urinary Bladder Transitional Epithelium	61	No relation	None

NOTE: "↑" = increases.

Functional or Physical Tests

To measure age-related changes, AHS participants underwent numerous functional and physical tests which vary greatly in their relationship to chronological age. These tests are listed in Table 2. Both systolic and diastolic blood pressure increase with age, although the latter tends to decrease in those older than 70. The forced vital capacity, a useful clinical test of respiratory performance, indicated a progressive decline in capacity with age. However, for the above-mentioned items there is no indication that change with age depends in any way on radiation exposure. Mihara et al. conducted a study to examine serial changes on chest radiography.
Hollingworth first attempted to devise an index of physiological age based on measurements of a number of physiological variables. Belsky et al. performed a similar study to look for evidence of radiation-induced aging. In their study, scores on six tests — grip strength, audiometry, vibratory perception, amplitude of visual accommodation, skin elasticity, and visual reaction time — were combined in a multiple-regression equation to provide a “physiological age” score for each individual. No association was found between physiological age and radiation. Yet each of the six parameters used to calculate physiological age individually showed a close relationship to age. Several highly statistically significant differences were seen in tests of grip strength between the control group (0–9 rad [0–0.09 Gy]) and the population exposed to ≥100 rad [1 Gy], and in the audiometric tests between the control group and the 50- to 99-rad [0.5–0.99 Gy] exposure group. Except for sporadic instances, there did not appear to be any consistent pattern of differences to suggest aging effects due to radiation exposure.

A follow-up study of physiological age is under way. With respect to survival 15 years after Belsky's study, one group which had been classified as physiologically old was compared with a second group equivalent in chronological age but considered to be physiologically young. A higher mortality rate that was not associated with either radiation exposure of cancer was observed among the physiologically old group.

Although the pattern of age-related changes varies among organs and measurements, deterioration of function with advancing age seems to be universal in all organs. Because environmental factors including nutrition, smoking, drug use, etc. may partly influence these

Table 2. Functional or physical tests performed on Adult Health Study participants

Test or Measurement	Ref.	Chronological Age Correlation	Radiation Effect
Forced Vital Capacity	62, 63	↓ With age*	None
Grip Strength	63	↓ With age	In >100 rad (1 Gy) group
Visual Acuity	63	↓ With age	Not consistent
Vibrometer	63	↓ With age	Not consistent
Audiometry	63	↓ With age	In 50–99 rad (0.5–0.99 Gy) group
Amplitude of Visual Accommodation	63	↓ With age	Not consistent
Light Extinction	63	↓ With age	Not consistent
Skin Elasticity	63	↓ With age	Not consistent
Physiologic Age	63	↑ With chronologic age	None
Cardiac Performance	64	Not consistent	None
Systolic Blood Pressure	65, 66, 67	↑ With age	None
Diastolic Blood Pressure	65, 66, 67	↑ With age until 60–69 yrs	None
Aortic Arch Diameter	68	↑ With age*	None
Cardio-thoracic Ratio	68	↑ With age*	None
Transverse Thoracic Diameter	58	↑ With age	None

NOTE: "↑" and "↓" = increases and decreases, respectively.

* Results from a longitudinal study.
Table 3. Laboratory tests used in studies of aging and radiation exposure

Test	Ref.	Chronological Age Correlation	Radiation Effect
Urine Protein	66	↑ With age	None
Blood Sedimentation Rate	66, 71	↑ With age	Positive
Glucose Tolerance Test	70	↑ With age in borderline type	Positive only in younger survivors
α, β-globulin	72	↑ With age	Positive
Lymphocyte Cytotoxicity	73	↑ With age	None
Whole-blood Phagocytic Activity	74	No relation	None
Serum Anti-EB Titors	75, 82	↑ With age	Equivocal
Lymphocyte Count	76	↓ After age 70	None
PHA Response	77	↓ With age	Positive
Con A-induced Suppressor T Lymphocytes	78, 83	↓ With age	Equivocal
Helper/Inducer T Cells	79, 83	↓ With age, especially at >75 yr	None
B Cells and Monocytes	79, 83	↑ With age, especially at >75 yr	None
MLC Response	80	↓ With age (suggestive)	Especially at >15 yr ATB
Natural Killer Cell Activity	81	↑ With age	None
Circulating Immune Complex	81	↑ With age	None
Number of T Cells	83	↓ With age	Positive at >30 yr ATB
Somatic Mutation			
T-Lymphocyte HPRT	84, 87	↑ With age	Weak positive
Erythrocyte GPA	85, 87	↑ With age	None
T-Lymphocyte TCR	86, 87	↑ With age	Positive
T-Lymphocyte HLA-A	87	↑ With age	Study in progress
Mitotic Index	88	↓ With age	None
Chromosome Aneuploidy	89, 90	↑ With age	None

NOTE: ATB = at the time of the bombings; MLC = mixed lymphocyte culture; PHA = phytohemagglutinin; GPA = glycoprotein-A; HPRT = hypoxanthine guanine phosphoribosyl transferase; and TCR = T-cell receptor. "↑" and "↓" = increases and decreases, respectively.
age-related changes, continued study taking these factors into account will be required.

Laboratory Tests

Table 3 briefly summarizes the laboratory data derived from studies of aging and radiation. Although the relationship with age for many parameters is apparent, the association between these parameters and radiation dose has been inconsistent. For example, the prevalence of impaired glucose tolerance increased with age, but radiation effects were suggested only for younger survivors. On the other hand, blood sedimentation rate and serum α- and β-globulin levels were elevated with advancing age, and radiation effects were observed for both parameters.

A number of immunological studies on the AHS subjects have been conducted in which age-related changes were also investigated. Studies on the detection and characterization of immature T cells revealed a statistically significant age-dependent increase in CD3^-4^ (CD8^+) T cells in peripheral blood. This age-related increase in frequency might be causally related to an age-dependent decrease in T-cell function. B cells showed a similar reduction in function with age as was observed in T cells, however, no significant effect of radiation exposure on B-cell frequency was observed. In contrast to the findings demonstrated in T and B cells, the absolute number of natural killer (NK) cells in peripheral blood was found to be significantly increased with age. Both NK- and antibody-dependent cell-mediated cytotoxicity activities also demonstrated significant increases with age. Despite the dramatic changes in NK cell number with age, no significant radiation effects on NK cells have been demonstrated.

Four types of mutation assays have been conducted at RERF primarily as biological dosimeters to evaluate radiation exposure. These assays have shown that the annual increment of average mutation frequency was one order of magnitude greater in the T-cell receptor gene complex and HLA-A2 mutations. Such a wide difference was considered to be related to the genes, structures and functions. Each assay indicated an age-related increase in the spontaneous mutation rate, and radiation effects were suggested in mutation rates of T-lymphocyte hypoxanthine guanine phosphoribosyl transferase (HPRT) and T-cell receptors (TCR).

In the course of long-term cytogenetic surveys searching for somatic effects of radiation, some evidence has been found for age-associated changes in lymphocyte chromosomes of the survivors. The mitotic index in 2-day-old cultures of cells grown in the presence of phytohemagglutinin (PHA) tended to decrease with age. This decrease was not influenced by other factors including radiation dose. Analysis of the frequency of aneuploid cells – aneuploidy is defined as the loss or gain of a certain chromosome in a cell due to mitotic errors – has revealed a tendency for the X chromosomes in females and the Y chromosomes in males to be lost with increasing age. However, no radiation dose effects were observed.

Tissue Changes and Disease

Tissue changes and diseases of interest in aging studies at ABCC-RERF are shown in Table 4. Most of the conditions are degenerative diseases or degenerative lesions that are positively correlated with age. The prevalence of lenticular opacities, as determined by precise ophthalmological study, and of refractory anemia both increased with age, and there is good evidence of radiation effects on both. Although the relationship between these diseases and
aging is quite apparent, the relationship may be considered to be a specific effect of radiation rather than an indication of radiation-accelerated aging. In the sixth report of the AHS, it was first demonstrated that the prevalence of arteriosclerosis based on X-ray findings was related to radiation dose67. Both stroke and coronary heart disease are typical age-related diseases in which sclerotic change of the arteries plays a major pathogenic role. Both of these diseases are significantly more prevalent in highly irradiated women from Hiroshima93,94. These increases remain even when possible biases in case detection are taken into account. Furthermore, a reanalysis of these incidence data with the observation period extended up to 1984 suggests a positive radiation effect in women from both cities. However, more precise analyses will be needed to confirm these results.

DISCUSSION

In the 15 years since the comprehensive review of aging among the AHS cohort by Finch
and Beebe34, the hypothesis that exposure to ionizing radiation accelerates the natural processes of aging has been investigated in the population of A-bomb survivors at ABCC-RERF by means of clinical, epidemiological, and laboratory techniques. To date, these studies have not clearly shown that radiation has such an effect, although abundant data have been accumulated to test this hypothesis. Extending the observation period of the LSS cohort for mortality up to 1978 did not change the result that shortened life expectancy seen in this population was associated not with any nonspecific cause, but with cancer54,55. There are still marked contrasts between these LSS data and the data on the occupational exposure of U.S. radiologists, for whom excess deaths from causes other than cancer were also suggested30. The interpretation of the differences between the two groups is difficult, but the nature of the radiation exposure in each group differs, and confounding factors other than radiation have been noted for the population of radiologists studied. However, it seems reasonable and important to continue our observations of mortality trends among the A-bomb survivors and to reanalyse the data to test again the hypothesis, as there have been relatively few deaths in the younger age groups, for whom the most pronounced putative effects might be expected.

A broad spectrum of parameters of aging have been studied over the past 15 years in the AHS population and the results are still essentially negative. Some of the aging parameters, however, show positive or equivocal effects for radiation. In their so-called “physiological age” study, in which they intended to create an index to express an individual’s progression in the aging process, Belsky et al. could not find any relationship between radiation dose and the overall index of physiological age. However, grip strength and audiometry, both of which were used in calculations of physiological age because they decreased significantly with age, varied between the higher dose and control groups63. In addition, borderline type of glucose tolerance was more frequent with age70. These results may give support to the hypothesis to the acceleration of natural aging due to radiation, but the observed radiation effects were restricted to only a few age or dose groups. For example, the blood sedimentation rate and some fraction of serum protein levels were elevated with age, and this elevation was more apparent in heavily exposed subjects; however, the cause of these effects is still unknown71,72.

In studies of immunological changes among A-bomb survivors at RERF, serum anti-EB titers, PHA response, and mixed lymphocyte culture response showed equivocal radiation effects. Furthermore, somatic mutation studies on T-lymphocyte HPRT and TCR have demonstrated an interesting effect: The frequency of mutation shown by these indices increases with age and also with radiation dose84,86,87. These findings may also support our hypothesis, but further investigation will be necessary, as these indices are reliably related to radiation and there is some probability that they might be better understood as specific effects of radiation rather than as nonspecific effects of radiation on aging. The effect of radiation on lenticular opacities and refractory anemia will also be included in the same category of index.

Atherosclerosis is one of the most common age-related pathological phenomena and it is considered a good marker of aging, as diseases based on atherosclerosis are a major cause of death in older age groups. It is noteworthy that radiation effects were suggested in some of the clinical manifestations related to atherosclerosis, such as the incidence of stroke and coronary heart disease, and the frequency of atherosclerotic lesion, which was usually diagnosed as
calcification of the aorta by means of chest X rays66,93,94.

There are several approaches to clarifying the aging process in humans. In the area of epidemiological or clinical gerontological research, attempts to develop useful indices of aging essentially use measurements thought to be related to the aging process itself or closely related to chronological age. With its 30-year, biennially updated database based on the AHS medical examinations, RERF is uniquely able to use an abundance of disease incidence, death information, laboratory, and physiometric data to portray the lifetime physiological and pathological history of 20,000 AHS participants. Examination of the age-specific incidence rates in the AHS data readily reveals which diseases are more closely associated with the aging process: Coronary heart disease, cataract, senile dementia, and osteoporosis all increase steadily in a monotonic relationship with chronological age.

When considering analyses using these accumulated data, however, it is important to differentiate between age effects and cohort effects100. For example, an impression of an overall increasing trend in disease incidence with age could arise as an artifact of a difference in cohort response mainly due to a change in environmental conditions. When appropriately stratified by birth cohort or other factors, the trend may or may not be changed. A typical example of such a phenomenon is seen in vertebral fracture incidence, which appears to increase with age in both genders. However, when the incidence is shown by 10-year birth cohorts, a completely different view emerges. It is immediately recognized that there are significant differences in incidence between birth cohorts even at the same attained age, and there is no increase in the incidence for males over the follow-up period98 (Figure 1).

The lifetime pattern of change in certain physiological variables such as systolic and diastolic

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{figure1.png}
\caption{Incidence rate of thoracic vertebral fractures by birth cohort (Ref. 98).}
\end{figure}
blood pressure, heart rate, and total serum cholesterol can also be examined using the AHS data, thus providing another unique view of the aging process. The primary advantage of cross-sectional studies is that the presence of an age trend for a parameter in a population can be detected easily. Caution is necessary in interpreting such results, however, since differences among age groups include birth-cohort effects as well as age effects. Thus, as in the case of disease incidence, age and cohort effects may be confounded. Yet this can be avoided by using serial measurements of the same individuals and by using appropriate statistical analyses such as the "growth curve" technique for longitudinal data. An analysis of long-term data in the AHS database using the growth curve technique is now in progress. How much and to what degree ionizing radiation modifies or influences the natural courses of change of physiological variables with age would be the key question of such an analysis. There may be some confounding factors influencing the association between radiation and age-related changes of physiological parameters. Possible confounders can easily be incorporated into the analysis, as useful information about lifestyle including alcohol consumption, dietary habits, smoking, parity, and occupation has been collected in the AHS medical examinations.

The overall results of studies conducted on the AHS population over the past 15 years to test the hypothesis that ionizing radiation accelerates natural aging seem to have been inconsistent or rather negative. However, some preliminary results have shown a suggestive increase in atherosclerotic diseases and accelerated aging in the T cell-related immune system due to exposure to radiation. Since these observations may prove relevant to future studies of late radiation effects, possibly using new gerontological study techniques, and since the subjects exposed at relatively young ages are approaching the ages of which they will suffer from age-related diseases, aging studies on the A-bomb survivors should continue. Potentially fruitful measures of body functions conducted in the past could be repeated in the same subjects to look for longitudinal variation, perhaps with more advanced techniques, should they become available. Fresh approaches on the molecular or submicroscopic levels could likewise break new ground in the search for aging phenomena.

ACKNOWLEDGEMENT

The authors wish to express their appreciation to Mr. Michael Edington and Ms. Beth Magra for being assisted in editing, and to Ms. Yoko Takemoto and Ms. Yuka Morishita for their effort to prepare this manuscript.

REFERENCES

1. Hollingsworth, J.W., Hashizume, A. and Jablon, S. (1965) Correlation between tests of aging, Hiroshima. An attempt to define "physiologic age." Yale J. Biol. Med. 38: 11-26.
2. Atomic Bomb Casualty Commission (1972) Symposium on problems of measurement of aging in humans (29-30 May 1972). ABCC Technical Report 38-72.
3. Jablon, S., Ishida, M. and Beebe, G.W. (1964) Studies of the mortality of A-bomb survivors. 2. Mortality
in sections I and II, 1950-1959. Radiat. Res. 21: 423-445.
4. Russ, S. and Scott, G.M. (1939) Biological effects of gamma irradiation. Br. J. Radiol. 12: 440-441.
5. Henshaw, P.S. (1944) Experimental roentgen injury. IV. Effects of repeated small doses of X-rays on blood picture, tissue morphology, and life span in mice. J. Natl. Cancer Inst. 4: 513-522.
6. Walburg, H.E. Jr. (1975) Radiation-induced life shortening and premature aging. Adv. Radiat. Biol. 5: 145-179.
7. Comfort, A. (1959) Natural aging and the effects of radiation. Radiat. Res. (Suppl 1): 216-234.
8. Alexander, P. (1957) Accelerated aging: Long-term effect of exposure to ionizing radiations. Gerontologia 1: 174-193.
9. Mole, R.M. (1959) Some aspects of mammalian radiobiology. Radiat. Res. (Suppl 1): 124-148.
10. Upton, A.C. (1957) Ionizing radiation and the aging process. A Review. J. Gerontol. 12: 306-313.
11. Upton, A.C., Kimball, A.W., Furth, J., Christenberry, K.W., and Benedict, W.H. (1960) Some delayed effects of atom-bomb radiations in mice. Cancer Res. 20: 1-60.
12. Upton, A.C. (1960) Ionizing radiation and the aging process. In The Biology of Aging: A Symposium. Ed. by Strehler, B.L. Washington, D.C., American Institute for Biological Science. pp. 318-323.
13. Lindop, P.J. and Rotblat, J. (1961) Long-term effects of a single whole-body exposure of mice to ionizing radiations. II. Causes of death. Proc. R. Soc. London Ser. B 154: 350-368.
14. Lindop, P.J. (1965) Radiation and life-span. Sci Basis Med Annu Rev, London, pp. 91-109.
15. United Nations Scientific Committee on the Effects of Atomic Radiation (1982). Ionizing Radiation: Sources and Biological Effects (the UNSCEAR Report). New York, United Nations.
16. National Research Council (1990) Health Effects of Exposure to Low Levels of Ionizing Radiation. Washington, D.C., National Academy Press.
17. Storer, J.B. and Sanders, P.C. (1958) Relative effectiveness of neutrons for production of delayed biological effects. I. Effect of single doses of thermal neutrons on life span of mice. Radiat. Res. 8: 64-70.
18. Hayflick, L. (1985) Theories of biological aging. In Principles of Geriatric Medicine. Ed. by Andres, R., Bierman, E.L. and Hazzard, W.R. New York, McGraw-Hill.
19. Hayflick, L. (1965) The limited in vivo life time of the human diploid cell strain. Exp. Cell Res. 37: 614-636.
20. Orgel, L.E. (1963) The maintenance of the accuracy of protein synthesis and its relevance to aging. Proc. Natl. Acad. Sci. USA 49: 517-521.
21. Isenberg, I. (1964) Free radicals in tissue. Physiol. Rev. 44: 487-517.
22. Burnet, F.M. (1965) Somatic mutation and chronic disease. Br. Med. J. 1: 338-342.
23. Casarett, G.W. (1964) Similarities and contrasts between radiation and time pathology. Adv. Gerontol. Res. 1: 109-163.
24. United Nations (1977) Sources and effects of ionizing radiation. United Nations Scientific Committee on the Effects of Atomic Radiation 1977 report to the General Assembly, with annexes. United Nations Sales Pub. No. E. 77. IX.I. New York.
25. Cutler, R.G. (1976) Cross linkage hypothesis of aging: DNA adducts in chromatin as a primary aging process. In Aging, Carcinogenesis and Radiation Biology. Ed. by Smith, K.C., New York, Plenum Press, pp. 443-492.
26. Hart, R.W. (1976) Role of DNA repair in aging. In Aging Carcinogenesis and Radiation Biology. Ed. by Smith, K.C. New York, Plenum Press. pp. 537-556.
27. Warren, S. (1956) Longevity and causes of death from irradiation in physicians. J. Am. Med. Assoc. 162: 464-468.
28. Seltzer, R. and Sartwell, P.E. (1958) Ionizing radiation and longevity of physicians. J. Am. Med. Assoc. 166: 585-587.
29. Seltzer, R. and Sartwell, P.E. (1965) The influence of occupational exposure to radiation on the mortality of American radiologists and other medical specialists. Am. J. Epidemiol. 81: 2-22.
30. Matanoski, G.M., Seltzer, R., Sartwell, P.E., Diamond, E.I., and Elliott, E.A. (1975) The current mortality rates of radiologists and other physician specialists: Deaths from all causes and from cancer. Am. J. Epidemiol. 101: 188-198.
31. Court-Brown, W.M. and Doll, R. (1958) Expectation of life and mortality from cancer among British radiologists. Br. Med. J. 2: 181-187.

32. Smith, P.G. and Doll, R. (1981) Mortality from cancer and all causes among British radiologists. Br. J. Radiol. 54: 187-194.

33. Smith, P.G. and Doll, R. (1982) Mortality among patients with ankylosing spondylitis after a single treatment course with x-rays. Br. Med. J. 284: 449-460.

34. Finch, S.C. and Beebe, G.W. (1975) Review of thirty years study of Hiroshima and Nagasaki atomic bomb survivors. II. Biological Effects. F. Aging. J. Radiat. Res. 16 (Suppl.): 108-121.

35. Beebe, G.W., Kato, H. and Land, C.E. (1971) Studies of the mortality of A-bomb survivors. 4. Mortality and radiation dose, 1950-1966. Radiat. Res. 48: 613-649.

36. Finch, S.C. and Moriyama, I.M. (1978) The delayed effects of radiation exposure among atomic bomb survivors, Hiroshima and Nagasaki, 1945-79. A brief summary. RERF Technical Report 16-78.

37. Strehler, B.L., Nishimura, E.T., Gee, M.V. and Shock, N.W. (1959) Influence of a single exposure to radiation on accumulation of lipofuscin (age pigment) in cardiac tissue in atomic bomb survivors. ABCC Technical Report 35-59.

38. Anderson, R.E. (1965) Aging in Hiroshima atomic bomb survivors. Arch. Pathol. 79: 1-6.

39. Doughty, W.E., Anderson, R.E., Yamamoto, T. and Webber, L.S. (1973) Spleen index in atomic bomb survivors. ABCC Technical Report 7-73.

40. Anderson, R.E. (1972) Longevity in irradiated human populations with particular reference to the atomic bomb survivors. ABCC Technical Report 9-72.

41. Hollingsworth, D.R., Hollingsworth, J.W., Bogich, S. and Keehn, R.J. (1969) Neuromuscular tests of aging in Hiroshima subjects. J. Gerontol. 24: 276-283.

42. Sasaki, T., Svedler, D.R. and Okamoto, A. (1964) Cold pressor test on atomic bomb survivors, Nagasaki. ABCC Technical Report 3-64.

43. Belisky, J.L., Tachikawa, K. and Jablon, S. (1971) ABCC-JNIH Adult Health Study. Report 5. Results of the first five examination cycles, Hiroshima-Nagasaki 1958-68. ABCC Technical Report 9-71.

44. Bizzozero, O.J., Jr., Omori, Y., Archer, P.G. and Johnson, K.G. (1967) The relation of oral glucose tolerance to age and sex in the Japanese, Hiroshima. ABCC Technical Report 21-67.

45. Hall, C.B., Hall, W.J., Ashley, F.W. and Hamilton, H.B. (1973) Serum immunoglobulin levels in atomic bomb survivors, Hiroshima. Am. J. Epidemiol. 98: 423-429.

46. King, R.A., Mellon, R.C. and Hamilton, H.B. (1973) Serum immunoglobulin levels in the ABCC-JNIH Adult Health Study, Hiroshima-Nagasaki. ABCC Technical Report 14-73.

47. Switzer, S. (1963) Hypertension and ischemic heart disease in Hiroshima, Japan. Circulation 28: 368-380.

48. Yano, K. and Ueda, S. (1963) Cardiovascular studies, Hiroshima 1958-60. Report 5. Coronary heart disease. Yale J. Biol. Med. 35: 504-522.

49. Ueda, S. and Yano, K. (1962) Cardiovascular studies, Hiroshima 1958-60. Report 3. Prevalence of cardiovascular disease related to associated factors. ABCC Technical Report 21-62.

50. Jordan, S.W., Hasegawa, C.M. and Kechn, R.J. (1966) Testicular changes in atomic bomb survivors. Arch. Pathol. 82: 542-554.

51. Hall, C.W., Miller, R.J. and Nefzger, M.D. (1964) Ophthalmologic findings in atomic bomb survivors, Hiroshima 1956-57. ABCC Technical Report 12-64.

52. Jablon, S. and Kato, H. (1972) Studies of the mortality of A-bomb survivors. 5. Radiation dose and mortality, 1950-70. Radiat. Res. 50: 649-698.

53. Bloom, A.D., Nerishi, S., Awa, A.A., Honda, T and Archer, P.G. (1967) Chromosome aberrations in leucocytes of older survivors of the atomic bombings of Hiroshima and Nagasaki. Lancet 2: 802-805.

54. Beebe, G.W., Land, C.E. and Kato, H. (1978) The hypothesis of radiation-accelerated aging and the mortality of Japanese A-bomb victims. In Late Effects of Ionizing Radiation. Vienna, International Atomic Energy Association.

55. Kato, H., Brown, C.C., Hoel, D.G. and Schull, W.J. (1981) Life Span Study Report 9, Part 2. Mortality
from causes other than cancer among atomic bomb survivors, 1950-78. RERF Technical Report 5-81.
56. Cihak, R.W., Yamakido, R., Kawashima, T., Harvey, R.L., Choi, K. and Webber, L.S. (1975) Pancreatic ductal epithelial changes in atomic bomb survivors – Hiroshima and Nagasaki. ABCC Technical Report 9-75.
57. Wollmann, R.L., Mitsuyama, Y. and Webber, L.S. (1975) A morphologic study of central nervous system aging: Hiroshima 1961-72. ABCC Technical Report 22-75.
58. Steer, A., Kawashima, T., Nakashima, T., Dock, D.S. and Lee, K.K. (1975) Focal cardiac myocytolysis. ABCC Technical Report 8-75.
59. Steer, A., Danzig, M.D., Robertson, T.L., Kawashima, T., Nakashima, T. and Lee, K.K. (1975) Focal and diffuse papillary muscle fibrosis and small vessel sclerosis of the heart. ABCC Technical Report 15-75.
60. Kishikawa, M., Otake, M., Kobuke, T., Iseki, M., Kondo, H., Tokunaga, M., Fujii, H. and Nishimori, I. (1989) Senile changes of the brain in Hiroshima and Nagasaki A-bomb survivors. RERF Research Protocol 8-89.
61. Eto, R., Ishimaru, T. and Tokunaga, M. (1987) An autopsy study of histopathologic changes in the urinary transitional epithelium of atomic bomb survivors, 1960-83. RERF Technical Report 13-87.
62. Katsuhara, K., Belsky, J.L., Fujita, S. and Miyanishi, M. (1972) Pulmonary ventilatory function in the ABCC-JNIH Adult Health Study population, Hiroshima. ABCC Technical Report 14-72.
63. Belsky, J.L., Moriyama, I.M., Fujita, S. and Kawamoto, S. (1978) Aging studies in atomic bomb survivors. RERF Technical Report 11-78.
64. Sasaki, H., Yamada, M., Sawada, H. and Kodama, K. (1984) Study of cardiac performance of A-bomb survivors (using the mechanocardiogram). Nagasaki Igakkai Zasshi-Nagasaki Med. J. 59: 554-559 (in Japanese).
65. Dock, D.S. and Fukushima, K. (1978) A longitudinal study of arterial blood pressure in the Japanese, 1958-1972. J. Chron. Dis. 31: 669-689. (RERF Technical Report 8-76.)
66. Sasaki, H., Kodama, K., Ikano, K., Yamada, M., Fujiwara, S., Nerishi, K., Hosoda, Y., Sawada, H., Shimizu, Y. and Kato, H. (1986) Secular trends of blood pressure in A-bomb survivors. Nagasaki Igakkai Zasshi-Nagasaki Med. J. 61: 442-448 (in Japanese).
67. Sawada, H., Kodama, K., Shimizu, Y. and Kato, H. (1986) Adult Health Study Report 6: Results of six examination cycles, 1968-80, Hiroshima and Nagasaki. RERF Technical Report 3-86.
68. Mihara, F., Fukuya, T., Nakata, H., Mizuno, S., Russell, W.J. and Hosoda, Y. (1988) Manifestations of aging on serial chest radiography: A longitudinal investigation. RERF Technical Report 16-88.
69. Fujita, S., Sasaki, H., Nerishi, K., Ochi, Y., Kato, H. and Hosoda, Y. (1986) Evaluation of index of physiological measurements: A predictor of mortality or morbidity associated with aging. RERF Research Protocol 4-86.
70. Toyama, K., Hazama, R., Wakabayashi, T., Miyake, S. and Nagataki, S. (1986) Actual state survey of diabetes mellitus in RERF, Nagasaki study subjects – Report 2. Hiroshima Igaku-Hiroshima Med. J. 39(3): 503-506 (in Japanese).
71. Yamada, M., Nerishi, K., Fujiwara, S., Sasaki, H., Sawada, H. and Ochi, Y. (1986) Erythrocyte sedimentation rate in Adult Health Study participants. Hiroshima Igaku-Hiroshima Med. J. 39(3): 446-451 (in Japanese).
72. Nerishi, K., Matsuo, T., Ishimaru, T. and Hosoda, Y. (1986) Radiation exposure and serum protein \(\alpha \), \(\beta \) globulin fraction. Nagasaki Igakkai Zasshi-Nagasaki Med. J. 61: 449-454 (in Japanese).
73. Caplan, R.A., Odoroff, C.L., Ozaki, K., Hamilton, H.B. and Finch, S.C. Lymphocyte cytotoxicity of colchicine in Hiroshima atomic bomb survivors. RERF Technical Report 9-78.
74. Sasagawa, S., Yoshimoto, Y., Toyota, E., Nerishi, S., Yamakido, M., Matsuo, M., Hosoda, Y. and Finch, S.C. (1989) Whole-blood phagocytic and bactericidal activities of atomic bomb survivors, Hiroshima and Nagasaki. RERF Technical Report 1-89.
75. Finch, S.C. (1979) A review of immunologic and infectious disease studies at ABCC-RERF. RERF Technical Report 22-79.
76. Oesterle, S.N. and Norman, J.E., Jr. (1979) Long term observation on absolute lymphocyte counts in the Adult Health Study sample, Hiroshima and Nagasaki. RERF Technical Report 10-79.

77. Yamakido, M., Akiyama, M., Dock, D.S., Hamilton, H.B., Awa, A.A. and Kato, H. (1983) T and B cells and PHA response of peripheral lymphocytes among atomic bomb survivors. Radiat. Res. 93: 572-580. (RERF Technical Report 23-81.)

78. Yamada, Y., Ishimaru, T., Neriishi, S., Hamilton, H.B. and Ichimaru, M. (1984) Effects of atomic bomb radiation on the differentiation of human peripheral blood B lymphocytes and on the function of concanavalin A-induced suppressor T lymphocytes. RERF Technical Report 1-84.

79. Fujiwara, S., Akiyama, M., Kobuke, K., Hakoda, M., Olson, G.B., Ochi, Y., Nakashima, E., Anderson, R.E. and Fujikura, T. (1986) Analysis of peripheral blood lymphocytes of atomic bomb survivors using monoclonal antibodies. J. Radiat. Res. (Tokyo) 27: 255-266. (RERF Technical Report 16-85.)

80. Akiyama, M., Zhou, O., Kusunoki, Y., Kyoizumi, S., Kohno, N., Akiba, S. and Delongchamp, R.R. (1989) Age- and dose-related alteration of in vitro mixed lymphocyte culture response of blood lymphocytes from A-bomb survivors. Radiat. Res. 117: 26-34. (RERF Technical Report 19-87.)

81. Akiyama, M., Kusunoki, Y., Bloom, E.T., Korn, E.L. and Makinodan, T. (1988) Immunological responses of A-bomb survivors. Radiat. Res. 116: 343-355. (RERF Technical Report 12-88.)

82. Ozaki, K., Kyoizumi, S., Mizuno, S. and Akiyama, M. (1990) Late effects of A-bomb radiation on human immune response. VI. Anti-EB virus antibody titer in sera of A-bomb survivors. Hiroshima Igaku-Hiroshima Med. J. 43: 523-524 (in Japanese).

83. Kusunoki, Y., Akiyama, M., Kyoizumi, S., Bloom, E.T. and Makinodan, T. (1988) Age-related alteration in the composition of immunocompetent blood cells in atomic bomb survivors. Int. J. Radiat. Biol. 53: 189-198.

84. Hakoda, M., Akiyama, M., Kyoizumi, S., Awa, A.A., Yamakido, M. and Otake, M. (1988) Increased somatic cell mutant frequency in atomic bomb survivors. Mutat. Res. 201: 39-48. (RERF Technical Report 18-87.)

85. Kyoizumi, S., Nakamura, N., Hakoda, M., Awa, A.A., Bean, M.A., Jensen, R.H. and Akiyama, M. (1989) Detection of somatic mutations at the glycophorin-A locus in erythrocytes of atomic bomb survivors using a single beam flow sorter. Cancer Res. 49: 581-588. (RERF Technical Report 9-88.)

86. Kyoizumi, S., Akiyama, M., Hirai, Y., Kusunoki, Y., Tanabe, K., Umeki, S., Nakamura, N., Hamamoto, K. and Yamakido, M. (1989) Spontaneous loss and alteration of antigen receptor expression in mature CD4+ T cells. RERF Technical Report 22-89.

87. Hirai, Y., Kyoizumi, S., Kushiro, J., Nakamura, N. and Akiyama, M. (1990) Age-related increase of somatic mutation frequency. In Radiation Effects Research Foundation Aging Workshop Workbook. Hiroshima, Japan, RERF. pp. 156-158.

88. Sofuni, T., Tanabe, K., Matsui, T. and Awa, A.A. (1975) Proliferation of cultured human leukocytes. ABCC Technical Report 1-75.

89. Awa, A.A., Sofuni, T. and Honda, T. (1977) Chromosome aneuploidy and radiation in a human population. In The Ninth NIRS Symposium on Carcinogenesis and Genetic Disorders: Toward Risk Estimates of Radiation. NIRS-M-27: 212-218.

90. Ohtaki, K., Kodama, Y., Nakano, M., Sposto, R. and Awa, A.A. (1985) Cytogenetic study of in-utero exposed A-bomb survivors in Hiroshima and Nagasaki. I. Aneuploidy in Hiroshima in-utero exposed individuals. RERF Research Protocol 3-85.

91. Choshi, K., Takaku, I., Mishima, H., Takase, T., Neriishi, S., Finch, S.C. and Otake, M. (1982) Ophthalmologic changes related to radiation exposure and age in the Adult Health Study sample, Hiroshima and Nagasaki. RERF Technical Report 8-82.

92. Neriishi, K., Sawada, H., Ishimaru, T., Imamura, N. and Kuramoto, A. (1986) Incidence of refractory anemia in the 13th cycle of the Adult Health Study sample. Hiroshima Igaku-Hiroshima Med. J. 39(3): 452-454 (in Japanese).

93. Robertson, T.L., Shimizu, Y., Kato, H., Kodama, K., Furonaka, H., Fukunaga, Y., Lin, C.H., Danzig,
M.D., Pastore, J.O. and Kawamoto, S. (1979) Incidence of stroke and coronary heart disease in atomic bomb survivors living in Hiroshima and Nagasaki, 1958-74. RERF Technical Report 12-79.

94. Kodama, K., Shimizu, Y., Sawada, H. and Kato, H. (1984) Incidence of stroke and coronary heart disease in the Adult Health Study sample, 1958-78. RERF Technical Report 22-84.

95. Kunishige, H. and Kato, H. (1972) Eyeground photography in cardiovascular disease study. ABCC Technical Report 26-72.

96. Tsukamoto, Y., Onitsuka, H. and Lee, K. (1975) Roentgenological aspects of ankylosing spinal hyperostosis. ABCC Technical Report 20-75.

97. Brodsky, J.B., Moore, D.F., Kawate, R. and Hamilton, H.B. (1985) Diabetes, glycosuria, and proteinuria in a Japanese cohort followed for 20 years. RERF Technical Report 11-85.

98. Fujiwara, S., Mizuno, S., Ochi, Y., Sasaki, H., Kodama, K., Russell, W.J. and Hosoda, Y. (1989) Incidence of thoracic vertebral fractures among Adult Health Study participants, Hiroshima and Nagasaki, 1958-86. RERF Technical Report 12-89.

99. Akahoshi, M., Matsuo, T., Kodama, K. and Shimaoka, K. (1990) Occurrence of dementia in Adult Health Study population. Hiroshima Igaku-Hiroshima Med. J. 43(3): 548-550 (in Japanese).

100. Shock, N.W., Greulich, R.C., Costa, P.T., Andres, R., Lakatta, E.G., Arenberg, D. and Tobin, J.D. (1984) Normal Human Aging: The Baltimore Longitudinal Study of Aging. NIH Pub. No. 84-2450, Bethesda, Md., National Institutes of Health.

101. Wong, F.L. (1990) Growth Curve analysis of total serum cholesterol and blood pressure in the Adult Health Study cohort. In Radiation Effects Research Foundation Aging Workshop Workbook. Hiroshima, Japan, RERF. pp. 131-137.

102. Finch, S.C. and Finch, C.A. (1988) Summary of the studies at ABCC-RERF concerning the late hematologic effects of atomic bomb exposure in Hiroshima and Nagasaki. RERF Technical Report 23-88.

103. Shigematsu, I. (1990) Present status and future prospects of research on late health effects of atomic bomb radiation. Hiroshima Igaku-Hiroshima Med. J. 43(3): 357-364 (in Japanese).