Association of Vitamin D Receptor BsmI Gene Polymorphism with Risk of Tuberculosis: A Meta-Analysis of 15 Studies

Yu-jiao Wu1,2*, Xin Yang3,4, Xiao-xiao Wang5, Man-Tang Qiu3,4, Yi-zhong You6, Zhi-xin Zhang7, Shanmei Zhu1, Lin Xu4,5, Feng-lei Tang1*

1 Department of Pharmacy, Changzhou Third People’s Hospital, Changzhou, China, 2 College of Pharmacy, Soochow University, Suzhou, China, 3 The Fourth Clinical College of Nanjing Medical University, Nanjing, China, 4 Department of Thoracic Surgery, Nanjing Medical University Affiliated Cancer Hospital Cancer Institute of Jiangsu Province, Nanjing, China, 5 Department of Bio-statistics, Georgia Health Science University, Augusta, Georgia, United States of America, 6 Department of Pharmacy, Changzhou First People’s Hospital, Changzhou, China, 7 Department of Pulmonary Tuberculosis, Changzhou Third People’s Hospital, Changzhou, China

Abstract

Background: Genetic variations in vitamin D receptor (VDR) may contribute to tuberculosis (TB) risk. Many studies have investigated the association between VDR BsmI gene polymorphism and TB risk, but yielded inconclusive results.

Methodology/Principal Findings: We performed a comprehensive meta-analysis of 15 publications with a total of 2309 cases and 3568 controls. We assessed the strength of the association between VDR BsmI gene polymorphism and TB risk and performed sub-group analyses by ethnicity, sample size and Hardy–Weinberg equilibrium (HWE). We found a statistically significant correlation between VDR BsmI gene polymorphism and decreased TB risk in four comparison models: allele model (b vs. B: OR = 0.78, 95% CI = 0.67, 0.89; P heterogeneity = 0.004), homozygote model (bb vs. BB: OR = 0.61, 95% CI = 0.43, 0.87; P heterogeneity = 0.001), recessive model (bb vs. Bb+BB: OR = 0.70, 95% CI = 0.56, 0.88; P heterogeneity = 0.005) and dominant model (bb+Bb vs. BB: OR = 0.77, 95% CI = 0.61, 0.97; P heterogeneity = 0.010), especially in studies based on Asian population. Sub-group analyses also revealed that there was a statistically decreased TB risk in “small” studies (<500 participants) and studies with P HWE >0.5. Meta-regression and stratification analysis both showed that the ethnicity and sample size contributed to heterogeneity.

Conclusions: This meta-analysis suggests that VDR BsmI gene polymorphism is associated with a significant decreased TB risk, especially in Asian population.

Introduction

According to the latest information of the tuberculosis (TB) epidemic provided by the World Health Organization (WHO) Global Tuberculosis Report 2012, the TB mortality and incidence rates have been decreasing for several years. However, the global burden of TB remains enormous, especially in South-East Asia and South Africa, the number of new cases in 2011 is 8,700,000 including 1,131,000 HIV-infected patients; and 1,400,000 people died from TB, including 1,000,000 HIV-negative patients and 430,000 HIV-positive patients [1]. Although it is estimated that about one third of the world’s population is infected with bacillus which may cause TB, a relatively small proportion of people (10%) infected with bacillus will progress to active TB disease [2]. It is suggested that the susceptibility to TB is influenced by many factors, such as HIV infection, environmental and host genetic factors [3–6]. Recently, there are various studies reporting that host genetic factors may play an important role in susceptibility to TB. Multiple candidate genes have been investigated to determine the relationship between single nucleotide polymorphisms (SNPs) and TB risk, including the natural resistance–associated macrophage protein 1 (NRAMP1) gene [7], interleukin (IL) genes [8,9], vitamin D receptor (VDR) genes [10], and tumor necrosis factor (TNF) genes [11].

The interaction of 1,25-dihydroxyvitamin D3 with the vitamin D receptor (VDR) is able to activate monocytes, stimulate cell-mediated immunity and suppress lymphocyte proliferation [12], therefore the susceptibility to TB may be increased by deficiency of 1,25-dihydroxyvitamin D3 [13]. Vitamin D also play a key role through VDR gene mutating that may affect the immunity activity and the subsequent mediated effect of VDR, it has been considered as a risk factor in TB development process. One of the most frequently studied VDR polymorphisms is BsmI, which is in intron 8 binding to the 3’UTR, and it is genotyped as BB, Bb, or bb. A lot of investigations are performed to explore the association of VDR BsmI gene polymorphism with TB risk, but
heterogeneity, the fixed effects model (Mantel-Haenszel method).

Statistical Analysis

Data Extraction

Inclusion and Exclusion Criteria

Literature Search Strategy

Methods

Results

Meta-analysis Results

The strength of the association between VDR BsmI gene polymorphism and TB risk was evaluated by calculating pooled odds ratio (OR) with 95% confidence intervals (95% CI). The pooled ORs were calculated for five comparison models: allele model (b vs. B), homozygote model (bb vs. BB), heterozygote model (Bb vs. BB), dominant model (bb+Bb vs. BB) and recessive model (bb vs. Bb+BB). The statistical heterogeneity between studies was checked using Chi-square based Q test and considered significant at P<0.1 [18]. When there was no significant heterogeneity, the fixed effects model (Mantel-Haenszel method) was used [19]; otherwise, the random-effects model (the Der Simonian and Laird method) was utilized [20]. Sensitivity analyses were performed to identify individual study’s effect on pooled results and test the reliability of results [17]. Stratification and logistic meta-regression analyses were performed to explore the source of heterogeneity among variables, such as ethnicity and sample size (studies with more than 1000 participants were defined as “large”), and studies with less 1000 participants were defined as “small”). Publication bias was both examined with Egger's test and Begg's funnel plot, and the statistical significance was defined as P<0.05 [21]. All P values are two-sided. Data were analyzed using STATA software (version 12.1; Stata Corp, College Station, Texas USA).

Figure 1. PRISMA Flow Chart.

doi:10.1371/journal.pone.0066944.g001
95% CI = 0.43, 0.87; $P_{\text{heterogeneity}} = 0.001$, Figure 2), recessive model (bb vs. Bb+BB: OR = 0.70, 95% CI = 0.56, 0.88; $P_{\text{heterogeneity}} = 0.005$, Figure S1) and dominant model (bb+Bb vs. BB: OR = 0.77, 95% CI = 0.61, 0.97; $P_{\text{heterogeneity}} = 0.015$) and dominant model (bb+Bb vs. BB: OR = 0.76, 95% CI = 0.60, 0.97; $P_{\text{heterogeneity}} = 0.150$).

Evaluation of Heterogeneity

Heterogeneity between studies in each model was shown in Table 2. We investigated the source of heterogeneity by publication years, ethnicity, source of controls and sample size with meta-regression. Meta-regression results revealed that ethnicity and sample size (p < 0.05), but not publication years (p = 0.913) and source of controls (p = 0.609) were the sources of heterogeneity. When existed significant heterogeneity we adopted random-effects model; otherwise, we adopted fixed-effects models.

Sensitivity Analyses and Publication Bias

Sensitivity analysis was performed to assess the influence of each individual study on the pooled OR by deleting one single study each time. The results showed that no individual study affected the pooled OR significantly, suggesting stability of this meta-analysis

Table 1. Characteristics of Eligible Studies.

First author	Year	Country	Ethnicity	Control	Diagnosis standards	HIV Infection	HWE	Cases	Controls
Fitness	2004	Malawi	African	PB	Bacteriology	Positive	Yes	212	314
Selvaraj	2004	India	Asian	PB	Clinical symptoms, bacteriology, X-ray	Negative	Yes	16	18
Bornman	2004	West Africa	African	PB	Clinical symptoms, bacteriology, X-ray	Mixed	Yes	20	39
Lombard	2006	South Africa	African	PB	Clinical symptoms, bacteriology	Negative	No	6	9
Olesen	2007	West Africa	African	PB	Clinical symptoms, bacteriology	Mixed	Yes	146	152
Selvaraj	2008	India	Asian	PB	Clinical symptoms, bacteriology, X-ray	Negative	No	23	16
Alagarasu	2009	India	Asian	PB	Clinical symptoms, bacteriology, X-ray	Positive	Yes	40	39
Selvaraj	2009	India	Asian	PB	Clinical symptoms, bacteriology, X-ray	Negative	Yes	27	16
Vidyarani	2009	India	Asian	PB	Clinical symptoms, bacteriology, X-ray	NA	No	7	15
Merza	2009	Iran	Asian	PB	Clinical symptoms, bacteriology, X-ray	NA	No	7	15
Marashian	2010	Iran	Asian	PB	Bacteriology, X-ray	NA	No	23	0
Sharma	2011	India	Asian	PB	Clinical symptoms, bacteriology, X-ray	NA	No	73	274
Singh	2011	India	Asian	PB	Clinical symptoms, bacteriology, X-ray, PPD	Negative	No	32	57
Ates	2011	Istanbul	Asian	PB	Clinical symptoms, bacteriology, X-ray	NA	Yes	28	5
Kang	2011	Korean	Asian	PB	Bacteriology	NA	Yes	2	0

PB: population-based; HB: hospital-based; a: studies with P_{HWE} > 0.05; b: studies with P_{HWE} < 0.05.
The Beggs funnel plot and the Egger's test were used to assess publication bias. The Beggs funnel plot seemed symmetrical (Figure 4). Furthermore, the statistical results still showed no publication bias by Egger's test in eligible studies (p > 0.05).

Discussion

Tuberculosis is second only to HIV as the greatest killer due to a single infectious agent worldwide. Gene mutation could affect the function of VDR gene and might be associated with TB risk. In recent years, given the potential roles of VDR playing in the etiology of TB, more studies have been conducted to identify whether the VDR BsmI gene polymorphism was the genetic determiner of TB. However, these studies yielded different or even controversial results. In this meta-analysis, we found that the b allele was associated with a significant decreased risk of TB in four main comparison models. Therefore, it was first reported that VDR BsmI gene polymorphism could predict the susceptibility of TB.

Linkage disequilibrium measure is used to describe the association of alleles of adjacent polymorphisms with each other. BsmI (B>b), ApaI(A>a) and TaqI(T>t) are located near the 3’UTR of VDR gene through the strong linkage disequilibrium, and the extended genotype baT is associated with increased level of VDR [35]. The 3’UTR of VDR gene is known to be involved in regulation of mRNA stability. In 1994, Morrison first reported allelic differences of VDR gene including BsmI polymorphism in the 3’UTR might alter mRNA levels [36]. Whitfield and colleagues verified that the baT genotype could increase VDR gene expression and mRNA levels compared with BAt genotype in human osteoblast cell line [37]. Verbeek also found that the baT genotype contributed to high levels of VDR gene expression in human peripheral blood lymphocytes, leukemia cell line, prostate cell line [38]. On the other hand, Vitamin D not only regulates the metabolism of calcium and phosphorus, it also acts as an important immune gene regulating hormone with its metabolism function closely related to the macrophage activity [39]. When 1,25-dihydroxyvitamin D3 combined with VDRs that scattered on the surface of lymphocytes and monocytes, it could stimulate the
immune response of activating monocyte and turn its prosoma into its effective form, maintain its adhesive capacity, and strengthen its lethal effect to *Mycobacterium tuberculosis*. The exposure to 1,25-dihydroxyvitamin D3 metabolites in vitro was able to increase the ability of monocytes to control proliferation of *Mycobacterium tuberculosis* [40]. Therefore, the BsmI polymorphism of VDR gene could influence the activity of acceptor, and it was considered to be a potential sign of host’s susceptibility to TB. In this meta-analysis, we demonstrated that VDR BsmI gene polymorphism (B>b) contributed to TB risk in allele model (b vs. B), homozygote model (bb vs. BB), recessive model (bb vs. Bb+BB) and dominant model (bb+Bb vs. BB), which was in inconsistent with several previous independent studies [14,23–25,32–34]. Most studies suggested that a trend of reduced TB risk was observed in bb genotype compared with BB genotype, while an opposite trend was found in a study based on Iranian population which indicated that the bb genotype could increase TB risk on the contrary [30]. It may derive from different experimental designs or methods, which call for further investigation.

As we know, gene polymorphisms are complicated and fluctuating, which mainly attributed to different ethnicities. Moreover, the burden of TB is highest in Asia and Africa geographically. Therefore, we performed a sub-group analysis on ethnicities in this meta-analysis. It showed that the VDR BsmI gene polymorphism had a decreased risk of TB in Asians rather than Africans, especially in the same four comparison models above mentioned (Table 2). However, an insignificant association was found in Africans for all comparison models. To a certain extent, this finding could reflect the existence of racial differences. Previous studies including WHO tuberculosis report suggested that the yellow race was more susceptible to TB than the black and white race [41]. It might be owing to several environmental factors which were able to influence the levels of VDR gene expression on different populations, including dietary habits, intensity and hours of sunlight. Additionally, it was reported that the b allele frequency was higher in Asians than Caucasians and Africans [42]. Thus, the current finding of this meta-analysis might attribute to the racial differences.
During other sub-group analyses, we also found that sample size greatly affected the association between VDR BsmI gene polymorphism and TB risk. As shown in Table 2, there was a significantly decreased TB risk of three genotypes of VDR BsmI gene polymorphism in “small” studies, but insignificant association except only a decreased trend was found in “large” studies. It was worth noting that, there were three papers [14,22,25] based on Africans in all four “large” studies.

HWE is essential for a sound case–control study. It is probable that studies without HWE in controls have selection bias or genotyping error, which may cause misleading results. In this meta-analysis, we found the BsmI polymorphism was significantly associated with a decreased risk of TB in studies with PHWE ≤ 0.05. And five studies with PHWE ≤ 0.05 were based on Asians [15,23,27,28,34]. Thus, it is reasonable that racial differences are more likely to explain the results of sub-group analyses than sample size and HWE. More “large” studies in agreement with HWE based on Asians are required.

For heterogeneity, we found ethnicity and sample size were the source of heterogeneity, which was in consistent with sub-group analyses. When studies were stratified by ethnicity and sample size, we conducted heterogeneity test to explore the source of heterogeneity. The obvious heterogeneity existed in Asians and “small” studies. The racial differences might be responsible for the foremost source of heterogeneity. In addition, the “small” studies may be affected by the small-study effect, in which effects reported are larger, and lead to between studies variance. Thirdly, we observed that eligible studies were conducted in seven countries in Asia and Africa respectively. The environmental factors which may influence VDR gene expression are quite different in these countries. For example, the intensity and hours of sunlight in South Africa are stronger and longer than Korean by geography.

Table 2. Meta-analysis Results.

	b vs. B	bb vs. BB	Bb vs. BB	bb+Bb vs. BB	bb vs. Bb+BB
N	OR	P_h	OR	P_h	OR
Total	15	0.78(0.67,0.89)*	0.004	0.61(0.43,0.87)*	0.001
Ethnicities					
African	4	0.92(0.81,1.06)	0.351	0.81(0.50,1.30)	0.113
Asian	11	0.70(0.57,0.85)*	0.01	0.52(0.32,0.85)*	0.001
Sample Size					
Largea	4	0.94(0.84,1.05)	0.336	0.82(0.56,1.19)	0.116
Smallb	11	0.68(0.56,0.82)*	0.068	0.51(0.31,0.86)*	0.005
HWE					
Yesc	8	0.75(0.61,0.92)*	0.009	0.50(0.32,0.79)*	0.020
Nod	7	0.80(0.64,1.00)	0.050	0.78(0.45,1.37)	0.013

	OR	P_h	OR	P_h	OR
Total	15	0.78(0.67,0.89)*	0.004	0.61(0.43,0.87)*	0.001
Ethnicities					
African	4	0.92(0.81,1.06)	0.351	0.81(0.50,1.30)	0.113
Asian	11	0.70(0.57,0.85)*	0.01	0.52(0.32,0.85)*	0.001
Sample Size					
Largea	4	0.94(0.84,1.05)	0.336	0.82(0.56,1.19)	0.116
Smallb	11	0.68(0.56,0.82)*	0.068	0.51(0.31,0.86)*	0.005
HWE					
Yesc	8	0.75(0.61,0.92)*	0.009	0.50(0.32,0.79)*	0.020
Nod	7	0.80(0.64,1.00)	0.050	0.78(0.45,1.37)	0.013

N: number of studies included; OR: odds ratio; P_h: p value for heterogeneity; *OR with statistical significance; a:studies with more than 1000 participants; b:studies with less than 1000 participants; c:studies with PHWE ≤ 0.05; d:studies with PHWE >0.05.

Figure 4. Funnel plot analysis to detect publication bias in 15 eligible studies A: Funnel plot analysis of homozygote model (bb vs. BB). Egger’s test $p = 0.617$, Begg’s test $p = 0.921$; B: Funnel plot analysis of dominant model (bb+Bb vs. BB). Egger’s test $p = 0.685$, Begg’s test $p = 1.000$; the circles represent the weight of individual study.

doi:10.1371/journal.pone.0066944.t002
doi:10.1371/journal.pone.0066944.g004
HIV status and even socialized medical care also may contribute to the heterogeneity. Thus this kind of heterogeneity is hard to exclude, because recruitment of enough TB cases came from specific regions is difficult.

As for the aforementioned publication bias detected by Beggs’s funnel plot and ‘Egger’ test, the funnel plot was roughly symmetrical and no publication bias had been detected. Although Merza’s study was the only study reported increased TB risk in homozygote, heterozygote and dominant model, the effect for the publication bias was small. So we had not ruled out the Merza’s study. The results of this meta-analysis are relatively stable and reliable.

Although a previous meta-analysis conducted by Gao et al suggested the BsmI polymorphism was related to host susceptibility to TB in Asians [16], evidence for overall populations was still insignificant. In our meta-analysis, the number of studies included was almost twice as that reported by Gao et al [15 vs. 9], which can provide enough statistical power to detect modest difference. We first reported that the VDR BsmI gene polymorphism was associated with decreased TB risk in overall populations. Additionally, there are some limitations which need to be addressed. First, although all most control sources were population-based which might be represent of the general population, we could not obtain enough individual information and a more precise adjusted OR for other covariates such as age, sex and environment factors was not allowed. Secondly, the number of studies based on Africans and “large” studies based on Asians were too small.

In conclusion, results from this meta-analysis demonstrate that VDR BsmI gene polymorphism is associated with decreased TB risk, especially in Asian population. To confirm this association, future large scale case-control studies are required to validate these findings.

Supporting Information

Figure S1 Forest plot of recessive model for overall comparison (bb vs. Bb-BB).

(TIF)

Figure S2 Sensitivity Analyses.

The pooled odds ratios were calculated by omitting each data set at a time.

(TIF)

Checklist S1 PRISMA checklist.

(DOC)

Author Contributions

Conceived and designed the experiments: YJW XY LX FLT. Performed the experiments: YJW XY LX YT. Analyzed the data: YJW XY XXW. Contributed reagents/materials/analysis tools: YJW XY XXW. Wrote the paper: YJW XY XXW. Access to full text article: YJW XY.

References

1. Price P, Haddow LJ, Afandi J, Agarwal U, Easterbrook PJ, et al. (2012) Short communication: Plasma levels of vitamin D in HIV patients initiating antiretroviral therapy do not predict immune restoration disease associated with Mycobacterium tuberculosis. AIDS Res Hum Retroviruses 28: 1216–1219.
2. Delgado JC, Baena A, Tham S, Goldfield AE (2002) Ethnic-specific genetic associations with pulmonary tuberculosis. J Infect Dis 186: 1463–1468.
3. Bowen EF, Rice PS, Cooke NT, Whitlett RJ, Rayner CF (2000) HIV seroprevalence by anonymous testing in patients with Mycobacterium tuberculosis and in tuberculosis contacts. Lancet 356: 1408–1409.
4. Hilleard G (2009) Environmental dangers: asbestos and tuberculosis. Respira 67: 134.
5. Newport MJ, Nejentsev S (2004) Genetics of susceptibility to tuberculosis in humans. Monat Arch Chest Dis 61: 102–111.
6. Kaghavan S, Alagarasu K, Selvaraj P (2012) Immunogenetics of HIV and HIV associated tuberculosis. Tuberculosis (Edinb) 92: 18–30.
7. Borgoffor MW (1998) The NRAMP1 gene and susceptibility to tuberculosis. N Engl J Med 339: 199–200; author reply 200–201.
8. Diagouneta S, Abbotert D, Fumoux F, Capron M, Lefrin E (1999) Relationship between interleukin-1 production and variations in eosinophil counts during HIV infection in West Africa: influence of Mycobacterium tuberculosis infection. Scand J Immunol 49: 203–209.
9. Wilkocson RJ, Patel P, Llewellyn M, Hirsch CS, Pasvold G, et al. (1999) Influence of polymorphism in the genes for the interleukin (IL)-1 receptor antagonist and IL-1beta on tuberculosis. J Exp Med 189: 1863–1874.
10. Selvaraj P, Kurian SM, Chandra G, Reetha AM, Charles N, et al. (2004) Vitamin D receptor gene variants of BsmI, Apal, TaqI and FokI polymorphisms in spinal tuberculosis. Clin Genes 63: 73–76.
11. Selvaraj P, Sriram U, Mathan KS, Reetha AM, Narayanan PR (2001) Tumour necrosis factor alpha (-238 and -308) and beta gene polymorphisms in pulmonary tuberculosis: haplotype analysis with HLA-A, B and DR genes. Tuberculosis (Edinb) 81: 333–341.
12. Tachi Y, Shangpaku H, Nosaka Y, Kawamura T, Shinohara M, et al. (2003) Vitamin D receptor gene polymorphism is associated with chronic periodontitis. Life Sci 73: 3313–3321.
13. Davies PD (1993) Tuberculosis and migration. The Mitchell Lecture 1994. J R Coll Physicians Lond 29: 113–118.
14. Bormann L, Campbell SJ, Fielding K, Bah B, Sillah J, et al. (2004) Regulatory role of vitamin D receptor gene variants of Bsm I, Apa I, Taq I, and Fok I polymorphisms on macrophage phagocytosis and lymphoproliferative response to mycobacterium tuberculosis antigen in pulmonary tuberculosis. J Immunol 174: 523–532.
15. Lombard Z, Dallon DL, Venter PA, Williams RG, Bornman L (2006) Association of HLA-DR, -DQ, and vitamin D receptor alleles and haplotypes with tuberculosis in the Venda of South Africa. Hum Immunol 67: 645–654.
16. Olesen R, Wejse C, Velez DR, Biusey C, Sedemann M, et al. (2007) DC-SIGN (CD209), pentraxin 3 and vitamin D receptor gene variants associate with pulmonary tuberculosis risk in West Africans. Genes Immun 8: 456–467.
17. Selvaraj P, Vidyaramani M, Alagarasu K, Prabhu AS, Narayanan PR (2008) Regulatory role of promoter and 3’ UTR variants of vitamin D receptor gene on cytokine response in pulmonary tuberculosis. J Clin Immunol 28: 306–313.
18. Alagarasu K, Selvaraj P, Swaminathan S, Narendran G, Narayanan PR (2009) 5’ regulatory and 3’ untranslated region polymorphisms of vitamin D receptor gene in south Indian HIV and HIV-TB patients. J Clin Immunol 29: 196–204.
19. Selvaraj P, Prabhu AS, Harishankar M, Alagarasu K (2009) Plasma 25,1-dihydroxy vitamin D3 level and expression of vitamin D receptor and cathelin in pulmonary tuberculosis. J Clin Immunol 29: 470–475.
20. Vidyaramani M, Selvaraj P, RagHAVAN S, Narayanan PR (2009) Regulatory role of 1, 25-dihydroxyvitamin D3 and vitamin D receptor gene variants on intracellular granulome A expression in pulmonary tuberculosis. Exp Mol Pathol 86: 69–73.
21. Merza M, Farnia P, Anoosheh M, Kavasheh M, Mokhampavar M, et al. (2009) The NRAMP1, VDR and TNF-alpha gene polymorphisms in Iranian tuberculosis patients: the study on host susceptibility. Braz J Infect Dis 13: 252–256.
22. Marashian SM, Farnia P, Seyf S, Anoosheh S, Velayati AA (2010) Evaluating the role of vitamin D receptor polymorphisms on susceptibility to tuberculosis among iranian patients: a case-control study. Tuberk Orakas 38: 147–153.
32. Sharma PR, Singh S, Jena M, Mishra G, Prakash R, et al. (2011) Coding and non-coding polymorphisms in VDR gene and susceptibility to pulmonary tuberculosis in tribes, castes and Muslims of Central India. Infect Genet Evol 11: 1456–1461.

33. Singh A, Guaghan JP, Kashyap VK (2011) SLC11A1 and VDR gene variants and susceptibility to tuberculosis and disease progression in East India. Int J Tuberc Lung Dis 15: 1468–1474, i.

34. Kang TJ, Jin SH, Yeum CE, Lee SB, Kim CH, et al. (2011) Vitamin D Receptor Gene TaqI, BsmI and FokI Polymorphisms in Korean Patients with Tuberculosis. Immune Netw 11: 253–257.

35. Tsukada Y, Suda H (1980) Solubilization and purification of 2',3'-cyclic nucleotide 3'-phosphohydrolase (CNP-A) from bovine cerebral white matter—a review. Cell Mol Biol Incl Cyto Enzymol 26: 493–504.

36. Morrison NA, Qi JC, Tokita A, Kelly PJ, Crofts L, et al. (1994) Prediction of bone density from vitamin D receptor alleles. Nature 367: 284–287.

37. Whitfield GK, Rennus LS, Jormuka PW, Zitzler H, Oza AK, et al. (2001) Functionally relevant polymorphisms in the human nuclear vitamin D receptor gene. Mol Cell Endocrinol 177: 143–159.

38. Verbeek W, Gombart AF, Shiohara M, Campbell M, Koefler HP (1997) Vitamin D receptor: no evidence for allele-specific mRNA stability in cells which are heterozygous for the Taq I restriction enzyme polymorphism. Biochem Biophys Res Commun 238: 77–80.

39. Cao S, Luo PF, Li W, Tang WQ, Cong XN, et al. (2012) Vitamin D receptor genetic polymorphisms and tuberculosis among Chinese Han ethnic group. Chin Med J (Engl) 125: 920–925.

40. Rook GA, Steele J, Fraher L, Barker S, Karmali R, et al. (1986) Vitamin D3, gamma interferon, and control of proliferation of Mycobacterium tuberculosis by human monocytes. Immunology 57: 159–163.

41. Stead WW, Sennet JW, Reddick WT, Lofgren JP (1990) Racial differences in susceptibility to infection by Mycobacterium tuberculosis. N Engl J Med 322: 422–427.

42. Uitterlinden AG, Fang Y, Van Meurs JB, Pols HA, Van Leeuwen JP (2004) Genetics and biology of vitamin D receptor polymorphisms. Gene 338: 143–156.