Evaluation of *Helicobacter Pylori* and *NapA* Gene in Paraffin Blocks of Gastric Adenocarcinoma Tissues from Pathology Bank of Shahid Beheshti Hospital, Qom, Iran (2011-2017)

Qom, Iran’da Shahid Beheshti Hastanesi Patoloji Bankası’nda 2011-2017 Yılları Arasındaki Mide Adenokarsinom Dokularının Parafin Bloklarında *Helicobacter Pylori* ve *NapA* Geninin Değerlendirilmesi,

Mahdiieh Ghoddoosi¹, Mahya Teymoori², Fateme Sadat Mirtalebi Roknabadi², Saeed Shams³, Ahmad Hormati⁴

¹Department of Pathology, Shahid Beheshti Hospital, Qom University of Medical Sciences, Qom, Iran
²Faculty of Basic Sciences, Department of Genetics, Islamic Azad University Qom Branch, Qom, Iran
³Cellular and Molecular Research Center, Qom University of Medical Sciences, Qom, Iran
⁴Gastroenterology and Hepatology Diseases Research Center, Qom University of Medical Sciences, Qom, Iran

ABSTRACT

Objectives: *Helicobacter pylori* is a known cause of gastrointestinal diseases such as gastritis, gastric ulcers and in severe cases of gastric cancer. Neutrophil-activating protein (NAP) is one of the important markers in bacterial pathogenesis. The aim of this study was to evaluate the presence of *Helicobacter pylori* and *napA* gene in specimens with gastric cancer.

Methods: This study was performed on 67 gastrectomy specimens stored in the pathology ward of Shahid Beheshti Hospital in Qom. The presence of *Helicobacter pylori* infection in cancerous tissues was evaluated by Giemsa staining. After recording the microscopic data, DNA was extracted from paraffin blocks using a commercial kit. Finally, PCR of 16s rRNA and *napA* genes were evaluated.

Results: According to pathological evaluation results, forty gastrectomy cases (59.7%) were diagnosed as gastric adenocarcinoma. The mean age ± standard deviation (SD) for the patients was 49.12± 18.54 years and was more prevalent in men. The microscopic examination of the tissues showed that all adenocarcinoma samples were also positive for *Helicobacter pylori* (100%-40/40). Intestinal type adenocarcinoma (85%), N1 lymph node metastasis (52.5%), G1 grade (50%), and T2 stage (65%) were the most frequent pathological findings. The results of 16s rRNA gene analysis were in accordance with pathological results and all samples were positive by PCR method as well. All *Helicobacter pylori*-positive samples had no *napA* pathogenic gene.

Conclusion: The results showed that cases of gastric adenocarcinoma in Qom were significant and positive cases of *Helicobacter pylori* infection were high among these samples. In this study, no case of *napA* positive gene was found. It seems that this gene alone is not an independent factor in tumor development and may be influenced by other virulence factors. Therefore, further research is needed to clarify the issue.

Key Words: *Helicobacter pylori*, *napA*, gastric adenocarcinoma

Received: 03.19.2020 Accepte: 11.23.2020

© These authors have contributed equally to this work and are considered as joint first authors.

©Copyright 2021 by Gazi University Medical Faculty - Available on-line at web site http://medicaljournal.gazi.edu.tr/doi: http://dx.doi.org/10.12996/gmj.2021.08
INTRODUCTION

Cancer is the main cause of death in both developing and developed countries. According to available statistics, it is predicted that the prevalence of cancer will spread around the world, especially in less developed countries, where about 82% of the world population resides. The complexity of the disease is caused by several factors including environmental and host-associated factors as well as infections. Lifestyle has a direct impact on the increased risk of cancer, which may include smoking, poor diet, physical inactivity, and reproductive changes.

It has been reported approximately 18.1 million new cases of cancer (17 million excluding non-melanoma skin cancer) and 9.6 million deaths due to cancer (9.5 million excluding non-melanoma skin cancer) all around the world, in 2018. Lung cancer, in both genders, is the most cancer that commonly diagnosed (11.6% of all cases) and the main cause of cancer deaths (18.4% of total cancer deaths), followed by breast cancer in women (11.6%), prostate cancer in men (7.1%) and colorectal cancer (6.1%). Lung cancer is the most common cancer and the main cause of cancer deaths among men, followed by prostate and colorectal cancer (for incidence) and liver and gastric cancer (for mortality). Among women, breast cancer is the most cancer that commonly diagnosed and the main cause of cancer deaths, followed by colorectal and lung cancer for incidence and vice versa (lung and colorectal) for mortality. Cervical cancer ranks fourth for both incidence and mortality.

Despite advances in prevention, diagnosis and treatment, gastric cancer is a complex and heterogeneous disease that has raised global health concerns. The disease has still been reported as the main cause of cancer death. It is the fifth most common cancer and the third main cause of death among worldwide malignancies. Fortunately, the incidence and death rate of gastric cancer has dropped dramatically in the past 70 years. However, gastric cancer in Iran is the most common cancer in men and the second most common cancer in women (after breast cancer) and its prevalence has increased in some provinces, especially in northern provinces such as Mazandaran.

According to Lauren's classification, gastric cancer is divided into diffuse and intestinal types. Diffuse adenocarcinoma is more aggressive and affects young people and does not occur through histological stages; whereas intestinal adenocarcinoma is characterized histologically by developing from the infiltration of inflammatory cells associated with Helicobacter pylori to atrophic gastritis, intestinal metaplasia, dysplasia, and ultimately adenocarcinoma.

Several pathogenic factors of Helicobacter pylori strains have been reported including adhesins, urease, cytotoxin-associated gene A (CagA), Vacuolating cytotoxin A (VacA), neutrophil-activating protein (NAP), etc. that are critical for attachment to epithelial cells and colonization, resulting in the pathogenesis of bacterial infection.

Among these factors, Helicobacter pylori Neutrophil-activating protein (HP-NAP) is one of the most important pathogenic factors of the bacterium. This protein is able to induce the binding of neutrophils to endothelial cells and to reduce nitroblue tetrazolium (NBT) through the production of reactive oxygen intermediates (ROIs).

Table 1: Sequences of 16s rRNA and napA genes primers

Gene	Primers (5’->3’)	Size of amplified product(bp)	Reference
16s rRNA	F: CTGGGAGGACTAAGCCTCC		
R: ATTACTGACGCTTAGTGGC	110 bp	(11)	
napA F: AATTATGGAAGATGGTCGGG			
R: TCTCTTTCAGGGGTGTA | 223 bp | This study |

In a total volume of 25 μl, PCR was run including 10 μl of Master Mix 2X (Amplicon, Denmark), 1 μl of each primer (Metabion, Germany) (10 pmol/μl), 3 μl of extracted DNA and 10 μl of sterile distilled water. The reaction was done at 95 °C for 10 min as initial denaturation, followed by 33 cycles including denaturation (95 °C/ 15 s), annealing (56 °C/ 30 s for 16s RNA gene and 52 °C/ 30 s for napA gene), extension (72 °C/ 30 s), and final extension (72 °C/10 min) using a Thermocycler (Eppendorf, Germany).

Significant variation in the activity level of the protein has recorded among different strains of Helicobacter pylori, indicating a variable level of protein expression (similar to VacA). HP-NAP is contained in the bacterial cytosol and released after autolysis. It can bind to the outer surface of the membrane in a manner similar to the urease enzyme. So, by reaction with carbohydrates, the protein can mediate the attachment of bacteria to the cell surface.

Therefore, with the possible role of HP-NAP in the pathogenesis of H. pylori, this study was carried out as the first study in the province of Qom to investigate the presence of Helicobacter pylori and napA pathogenic gene in paraffin-embedded gastric cancer samples in a seven-year period.

METHODS

This study was conducted in paraffin blocks of gastric adenocarcinoma tissues stored in the pathology ward of Shahid Beheshti Hospital, Qom, which was approved by the ethics committee of the university with code IR.IAU.Qom.REC.1397.007.

Pathological evaluation

Using the hospital information system, the records of gastrectomies performed from 2011 till 2017 were investigated and all cases with gastric adenocarcinoma were identified. Then, tissue sections were prepared from the paraffin blocks and after staining by Giemsa, the slides were evaluated by a pathologist. All data were also recorded including demographic information and microscopic findings e.g. type of adenocarcinoma, tumor grade, perineural invasion, lymphovascular invasion, lymph node metastasis, tumor stage, and presence of Helicobacter pylori infection.

Primer Design

Two pairs of primers for detecting 16s rRNA and napA genes were used in this study. The specific primer for 16s rRNA, as a conserved gene and universal for H. pylori diagnosis, was used from the study of Saiedi et al. Using designed primers in this study, the presence of the napA gene was also investigated. For this purpose, the sequences deposited at NCBI (https://www.ncbi.nlm.nih.gov/blast) were downloaded and saved by CLC sequence viewer 7.6 software (CLC bio, Aarhus, Denmark). Then, using the alignment of H. pylori sequences, suitable sites were identified for primer designing. Gene Runner software was used to evaluate the designed primers for Tm, GC percentage, and secondary structures. Finally, by Primer-BLAST (https://www.ncbi.nlm.nih.gov/tools/primer-blast/), its attachments to other bacteria were theoretically investigated and confirmed.

DNA extraction and PCR

Paraffin-embedded DNA Extraction Kit (Favorgen, Taiwan) was used to extract genomes from the blocks according to the manufacturer’s instructions. The extracted genomes were stored at -20 °C until PCR.

To confirm the presence of Helicobacter pylori in the samples that were reported as positive in the pathological evaluation, PCR amplification of the 16s rRNA gene fragment of H. pylori was also performed. All positive samples were screened for the presence or absence of napA virulence gene using specific primers (Table 1).

Statistical analysis

Age and gender were calculated using mean and standard deviation, and pathologic findings were calculated using frequency distribution by SPSS software version 22.

RESULTS

During 7 years, 67 cases of gastrectomy were recorded in our hospital. By evaluating microscopic slides, 40 (59.7%) cases of gastric adenocarcinoma were diagnosed. The mean age ± SD of patients was 49.12 ± 18.54 years. Among these patients, men accounted for 30 cases (75%) of the population with the highest cancer incidence, compared to women (10 cases, 25%). Tissue evaluation with Giemsa staining showed that all cancer samples were also positive for H. pylori and napA pathogenic gene.

In Table 2, the results of the study are presented in terms of the type of adenocarcinoma, tumor grade, perineural invasion, lymphovascular invasion, lymph node metastasis, tumor stage, and the presence of Helicobacter pylori infection.
Original Investigation / Öğün Araştırma

GMJ 2021; 32:40-44
Ghoddoosi et al.

Figure 1: Microscopic image of Giemsa-stained section (magnification x 400) of cancer tissue (arrow: Helicobacter pylori).

Table 2: Pathologic findings of the group with cancer. * (NX: regional lymph node cannot be assessed)

Pathologic findings	No.	%
Intestinal Adenocarcinoma	34	85
Diffuse	6	15
G1	20	50
G2	16	40
G3	4	10
Perineural invasion	23	57.5
Lymphovascular invasion	13	32.5
N0	11	27.5
N1	21	52.5
N2	5	12.5
NX*	3	7.5
T1 (T1a & T1b)	9	22.5
T2	26	65
T3	5	12.5

For confirmation of the presence of Helicobacter pylori, the 16s rRNA gene was evaluated for all cancerous tissue samples. The PCR results were consistent with the pathological findings and all H. pylori-positive paraffin-embedded specimens were also positive by PCR (Fig. 2). The napA gene was evaluated on 40 16s rRNA-positive samples and all of them were negative for this gene (0%) (Fig. 3).

Figure 2: Electrophoresis of 16s rRNA PCR on 1% agarose gel. M: 50bp marker, No. 1-3: Helicobacter pylori-positive samples, No. 4: negative control.

Figure 3: Electrophoresis of napA PCR on 1% agarose gel. M: marker 50bp, No. 1: positive control of napA, No. 2: positive sample of 16s rRNA gene, No. 3: negative control.

DISCUSSION

Gastric cancer has been known as one of the major causes of death worldwide. More than 90% of gastric cancers are adenocarcinoma and the rest is lymphoma or sarcoma of gastrointestinal stromal tissue. Approximately two-thirds of gastric cancer cases occur in developing countries and 42% in China alone. However, gastric cancer cannot easily be classified as associated with less developed economies.
Perineural invasion presents a variety of malignant tumors and can be a sign of tumor metastasis and invasion and shows poor prognosis. Among our patients, the perineural invasion was identified with a prevalence of 57.5%. This finding is in agreement with Selçukbircik et al., which reported the presence of perineural invasion in 211 of 287 gastric cancers (73%) (34).

Molecular assay of the 16s rRNA gene showed that all positive samples in the pathological evaluations were also positive for H. pylori. This result indicated that both methods were the same in sensitivity and can be used to diagnose infection. In a study by Lu et al., a comparison of five molecular PCR methods with different genes including urease A (ureA), 16s rRNA, random chromosome sequence, 26-kDa species-specific antigen (SSA), and urease C (ureC) for the detection of Helicobacter pylori in gastric tissues were evaluated. They showed that the 16s rRNA, SSA, and ureC genes detected in 100% of culture-positive specimens (24/24 samples). Thus, these genes can be utilized for the diagnosis of bacteria in gastric biopsy (35).

Bacterial pathogenic factors play an important role in the progression of gastritis to gastric cancer; therefore their detection can help to identify the strains in the different regions. Miehlke et al. (2011) showed that infection with positive strains for cagA+ and vacA1/m1 were more associated with the progression of gastric cancer (36).

Koehler et al. (2003) evaluated Helicobacter pylori genomes isolated from 92 paraffin-embedded tissue specimens of patients with gastric adenocarcinoma and MALT lymphoma. They found that the prevalence of icaA1 and icaA2 genes was 6.5 times higher in patients with adenocarcinoma (37).

In this study, the napA gene was selected and evaluated. Although some studies have suggested a link between this gene and cancer, none of the samples were positive for the gene. Long et al. (2009) showed that serum positive for HP-NAP specific antibodies in gastric cancer patients was significantly higher than in chronic gastritis and healthy (control) groups and HP-NAP may contribute to the development of gastric cancer by producing interleukin-8 in gastric epithelial cells (38).

Contrary to the done study by Long et al., another report showed that serum level of anti-NapA antibody was associated with reduced risk of gastric cancer and that this protein could not be used as an independent indicator in screening and diagnosis of gastric cancer (39).

Surprisingly, Shakiri et al. also reported that NapA was significantly associated with a reduced risk of gastric cardia and noncardia adenocarcinomas (40). Therefore, these findings may justify the absence of this gene in our study strains.

CONCLUSION

Due to the presence of Helicobacter pylori in all adenocarcinoma samples; there may be a link between the existence of bacteria and cancer. The napA gene was not found in the samples and appears to have played no significant role in the carcinogenicity of the bacteria. It seems that napA alone is not a virulence factor in the progression of gastritis to gastric cancer and may be influenced by other virulence-associated genes of the bacteria. Therefore, the evaluation of other genes is recommended.

Conflict of interest

No conflict of interest was declared by the authors.

Acknowledgement

We thank Technology and Research Council of Qom University of Medical Sciences for supporting the study.

REFERENCES

1. Torre LA, Bray F, Siegel RL, Ferlay J, Lortet-Tieulent J, Jemal A. Global cancer statistics, 2012. CA Cancer J Clin 2015; 65(2): 87-108.
2. Tan P, Yeoh KG. Genetics and Molecular Pathogenesis of Gastric Adenocarcinoma. Gastroenterology 2015; 149(5): 1153-62 e3.
3. González C, Sala N, Rokkas T. Gastric cancer: epidemiologic aspects. Helicobacter 2013; 18: 34.
4. Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 2018; 68(6): 394-424.
Farhood B, Geraily G, Alizadeh A. Incidence and mortality of various cancers in Iran and compare to other countries: a review article. Iranian journal of public health 2018; 47(3): 309.

6. Ferlay J, Colombe M, Soejomotaram I, Mathers C, Parkin D, Piñeros M, et al. Estimating the global cancer incidence and mortality in 2018: GLOBOCAN sources and methods. Int J Cancer 2019; 144(8): 1941.

7. Ma J, Shen H, Kapesa L, Zeng S. Lauren classification and individualized chemotheraphy in gastric cancer. Oncol Lett 2016; 11(5): 2959-64.

8. Roessler BM, Rabelo-Goncalves EM, Zeitune JM. Virulence Factors of Helicobacter pylori: A Review. Clin Med Insights Gastroenterol 2014; 7: 9-17.

9. Mirtalebi Roknabadi F, Teymori M, Shams S, Hormati A, Ghoddoosi M, Kermani S. Presence of cagA Gene in Patients with Gastric Cancer and Gastritis with Helicobacter pylori Infection. J Mazandaran Univ Med Sci 2019; 29(117): 214-21.

10. Satin B, Del Giudice G, Della Bianca V, Dusi S, Laudanna C, Tonello F, et al. The Neutrophil-Activating Protein (Hp-Hap) of Helicobacter pylori Is a Protective Antigen and a Major Virulence Factor. The Journal of Experimental Medicine 2000; 191(9): 1467.

11. Saeedi E, Sheikshahrokh A. vacA Genotype Status of Helicobacter pylori Isolated from Foods with Animal Origin. Biomed Res Int 2016; 2016: 1-7.

12. Brenner H, Rothenbacher D, Arndt V. Epidemiology of stomach cancer. Methods Mol Biol 2009; 472: 467-71.

13. Forman D, Burley VJ. Gastric cancer: global pattern of the disease and an overview of environmental risk factors. Best Pract Res Clin Gastroenterol 2006; 20(4): 633-49.

14. La Vecchia C, Negri E, Franceschi S, Gentile A. Family history and the risk of stomach and colorectal cancer. Cancer 1992; 70(1): 50.

15. Abdollahi H, Shams S, Zahedi MJ, Darvish Moghadam S, Hayatabkhsh MM, Jafarzadeh A. IL-10, TNF-alpha and IFN-gamma levels in serum and stomach mucosa of Helicobacter pylori-infected patients. Iran J Allergy Asthma Immunol 2011; 10(4): 267-71.

16. Hamrah MH, Hamrash MS, Hamrah MH, Kanda M, Hamrah AE, Dahi AE, et al. Prevalence of Helicobacter pylori infection in dyspeptic patients in Andkhoy Afghanistan. Asian Pacific journal of cancer prevention: APJCP 2017; 18(11): 3123.

17. Hooi J, Lai W, Ng W, Suen M, Underwood F, Tanyingoh D, et al. Global Prevalence of Helicobacter pylori infection: Systematic Review and Meta-Analysis. 2017.

18. Ahn HJ, Lee DS. Helicobacter pylori in gastric carcinogenesis. World J Gastrointest Oncol 2015; 7(12): 455-65.

19. Crew KD, Neugut Al. Epidemiology of gastric cancer. World J Gastroenterol 2006; 12(3): 354-62.

20. Jenabi E, Saatchi M, Khazaei S, Mansori K, Ayubi E, Soheylizad M, et al. National distribution of stomach cancer incidence in Iran: A population-based study. Advances in Human Biology 2019; 9(11): 89.

21. Farhadifar N, Fotoukian Z, Pouya M, Saravi M. Epidemiologic and malignancy indices of gastric cancer in patients referred to oncology clinic at ramsar emam sajjad hospital during 2002-2009. JSU Journals 2012; 20(1): 110-8.

22. Sadjadi A, Malekzadeh R, Derakhshan MH, Sepehr A, Nouraie M, Sotoudeh M, et al. Cancer occurrence in Ardabil: results of a population-based cancer registry from Iran. Int J Cancer 2003; 107(1): 113-8.

23. Yamagata H, Kiyohara Y, Aoyagi K, Kato I, Iwamoto H, Nakayama K, et al. Impact of Helicobacter pylori infection on gastric cancer incidence in a general Japanese population: the Hisayama study. Archives of internal medicine 2000; 160(13): 1962.

24. Maddah G, Abdollahi A, Kajheh Karamadini M, Nakhaeezadeh S, Jabbari Noughab A, Jangjoo A, et al. Evaluation Incidence of Helicobacter pylori infection in gastric adenocarcinoma. The Horizon of Medical Sciences 2014; 19(4): 212-7.

25. Muñoz N, Correa P, Cuello C, Duque E. Histologic types of gastric carcinoma in high-and low-risk areas. Int J Cancer 1968; 36(6): 809.

26. Ahmadi Hedayati M, Khani D. Relationship of social risk factors and Helicobacter pylori infection with pathological characteristics of Gastric carcinoma. Iranian Journal of Medical Microbiology 2020; 14(1): 43-30.

27. Deng J, You Q, Gao Y, Yu Q, Zhao P, Zheng Y, et al. Prognostic value of perineural invasion in gastric cancer: a systematic review and meta-analysis. PLoS one 2014; 9(2).