Design of the Node Coordinator Based on WSN Network as Fisherman Vessel Monitoring System

Sarono Widodo1, Rizal Budi Cahya2, Yusron Nasrullah3, Eko Supriyanto4, Gatut Rubiono5

1 Electro Departement, Semarang State Polytechnic, Center of Java, 50275 Indonesia
Email: sarono.widodo@polines.ac.id
2 Electro Departement, Semarang State Polytechnic, Center of Java, 50275 Indonesia
Email: rizal.b.cahya@gmail.com
3 Electro Departement, Semarang State Polytechnic, Center of Java, 50275 Indonesia
Email: yusromm@gmail.com
4 Electro Departement, Semarang State Polytechnic, Center of Java, 50275 Indonesia
Email: ekosupri2000@gmail.com
5 Mechanical Engineering, PGRI University, Banyuwangi, East Java, 68418 Indonesia
Email: g.rubiono@fdi.or.id

Abstract- Fishermen in Indonesia in general are traditional fishermen who use boats weighing less than 30 GT and are not equipped with adequate navigation equipment. This becomes a technical obstacle when important information could not be directly obtained from the fishermen. An alternative that can be used to identify the position of traditional fishing boats is a vessel monitoring system (VMS). A component in a fishing boat monitoring system is a node coordinator using Wireless Sensor Network (WSN) technology. By installing the node coordinator, the position information of the fishing boat sent by the boat node in the GPS data can be accessed within the scope of the coordinator. The coordinator node has two LoRa devices as the receiver and sender of data and an Arduino as a data processor. Data received from the boat node will be processed and added to the location of the coordinator crossed by the boat in the boat data format and then sent to the central in real time. The coordinator node has a coverage area of 0.45 miles in radius (coordinator A) and 0.35 miles (coordinator B) with 96% accuracy rate of data reception and 100% data processing.

Keywords: WSN, VMS, real time, node coordinator

1. Introduction

Traditional fishermen using fishing vessels weighing less than 30 GT with the sea reaching less than 4 miles from the coastline are estimated to be 80% of the population [1]. There are still many fishing boats that have not been equipped with navigation tools so that when the fishermen are fishing, their position could not be monitored in real time. Indonesian government regulated vessel monitoring system in Permen Nomer 42/PERMEN-KP/2015 tentang Sistem Pemantau Kapal Perikanan, SistemPemantauKapalPerikanan (Fishery Vessel Monitoring System). The Fishery Vessel Monitoring System is not set up for fishing vessels weighing under 30 GT [2].

However to provide information about the existence of traditional fishing boats is necessary because in general there are many boats that are not equipped with navigation equipment. Investment in improving the Indonesian Vessel Monitoring System (VMS) towards real time monitoring and improved system interface has very large net benefits and is a very viable investment for the Indonesian government [3]. The application of navigation systems and communication
activitiesfishery at Bitung Fishery Port is still lackingoptimal where the system runs partially which cause overlapping information [4].

Vessel Monitoring System has been used as a fishing vessel monitor in various countries. The research related to the fishing boat monitoring system is conducted by Duc-Tuyen (2013) that examines the improvement of ad hoc wireless networks based on GPS capable of providing emergency location and services for small fishing boats by fixing the weakness of radio links from sea to land from ship to center station on land [5]. The research review of Manoufal i (2013) examines wireless communications technologies to build a reliable maritime mesh network, challenges and requirements to ensure high quality maritime mesh communications [6]. There are also other system based on GPS as intelligent system for tracking and border alert for fishermen [7,8,9,10] and secured maritime alert system based on RSSI localization scheme [11].

Limitations for traditional fishermen to provide monitoring tools are a matter to be solved. An alternative fishing boat monitoring system should have at least a function that can monitor the movement of fishing boats. The system used is based on WSN (wireless system network). Node coordinator is a tool of a fishing boat monitoring system that can receive position information of a fishing boat in the form of GPS data within the scope of the coordinator and forward it to the central node for data processing.

2. Method

This research was conducted in three stages which are system design, model making and testing. The global design of fishing boat monitoring system is shown in Figure 1. There are four parts: sensor nodes (fishing boats), coordinator nodes, central and monitoring servers.

![Figure 1. Monitoring global system of fishermen boat](image)

The nodes coordinator as part of the research are designed and created using Wireless Sensor Network (WSN) technology to communicate between the sensor nodes with the node sink as the data collection center of the sensor node [12]. Sink node as well as base station is the interface between user and network. Node sensors that have movement can be connected to GPS devices and location information so that location information can be monitored by the base station [13]. The WSN method is chosen because it is possible to get boats movement data that are difficult to obtain by conventional method. The sensor nodes usually consist of four main components: the sensor itself, the processor, the radio, and the energy supply [14]. The coordinator node is designed using the LoRA shield component as a transceiver and Arduino as a data processor equipped with an energy source for the device.

The node coordinator that acts as a transceiver uses two Arduino mounted in series form using I2C multipoint serial communication and two LoRa shields are used as a receiver and a transmitter. Figure 2 shows the block diagram of the coordinator node design.
The data input and the data form output of the nodes coordinator are shown in Figures 3 and 4.
3. Result and Discussion

Testing the system is aims to know that the device node coordinator has been running in accordance with the provisions and to know the device running according to the program created.

3.1 Data Receiving Test

The data receiving test is aims to know the data sent by multipoint-to-point node boats can be received by the coordinator node. The description of the data reception test can be seen in Figure 7.

The test results of the data receiving in the coordinator as shown in Table 1 and Table 2.
Table 1. Data Receiving in The Coordinator A

No	KODE KAPAL	LINTANG	BULUR	TANGGAL	WAKTU
1	KN004	-6.812568	110.526237	2017-08-21	15:30:26
2	KN001	-6.812970	110.527006	2017-08-21	15:39:34
3	KN001	-6.812383	110.525605	2017-08-21	15:39:56
4	KN001	-6.812722	110.527046	2017-08-21	15:40:04
5	KN001	-6.812027	110.527465	2017-08-21	15:40:34
6	KN001	-6.809547	110.525856	2017-08-21	15:49:30
7	KN001	-6.809526	110.528640	2017-08-21	15:50:06
8	KN001	-6.811773	110.523635	2017-08-21	15:50:29
9	KN001	-6.809512	110.525879	2017-08-21	15:50:37
10	KN004	-6.811773	110.526115	00:00:00	00:00:00
11	KN002	-6.809508	110.528818	2017-08-21	15:51:07
12	KN002	-6.809514	110.525450	2017-08-21	15:51:37
13	KN002	-6.809516	110.528996	2017-08-21	15:52:07
14	KN002	-6.809522	110.528299	2017-08-21	15:52:07
15	KN002	-6.809545	110.525236	2017-08-21	15:52:35
16	KN002	-6.809569	110.528190	2017-08-21	15:54:08
17	KN002	-6.809584	110.528144	2017-08-21	15:54:38
18	KN002	-6.809587	110.528030	2017-08-21	15:55:38
19	KN001	-6.809767	110.529121	2017-08-21	15:55:58
20	KN002	-6.809587	110.527969	2017-08-21	15:56:08

Table 2. Data Receiving in The Coordinator B

No	KODE KAPAL	LINTANG	BULUR	TANGGAL	WAKTU
1	KN004	-6.812088	110.524795	2017-08-21	15:40:27
2	KN004	-6.811777	110.528628	2017-08-21	15:40:20
3	KN004	-6.811773	110.523635	2017-08-21	15:49:59
4	KN003	-6.811682	110.526605	2017-08-21	15:50:56
5	KN004	-6.811773	110.523635	2017-08-21	15:51:26
6	KN004	-6.811773	110.523635	2017-08-21	15:51:30
7	KN004	-6.811773	110.523635	2017-08-21	15:52:00
8	KN003	-6.811695	110.523567	2017-08-21	15:52:03
9	KN004	-6.811773	110.523635	2017-08-21	15:52:30
10	KN004	-6.809514	110.528343	2017-08-21	15:52:37
11	KN004	-6.811777	110.523635	2017-08-21	15:53:00
12	KN003	-6.811695	110.523567	2017-08-21	15:53:11
13	KN004	-6.811778	110.528635	2017-08-21	15:53:30
14	KN004	-6.811780	110.526228	2017-08-21	15:54:00
15	KN003	-6.811698	110.523567	2017-08-21	15:54:12
16	KN004	-6.811782	110.523628	2017-08-21	15:54:30
17	KN004	-6.811785	110.523628	2017-08-21	15:55:31
18	KN004	-6.811785	110.523628	2017-08-21	15:56:01
19	KN003	-6.811717	110.523574	2017-08-21	15:56:13
20	KN004	-6.811787	110.523628	2017-08-21	15:56:31

Note: The sample data is taken the first 20 data from 126 data received. The red data is defect data.

3.2 Data Processing Test

Data processing test is aimed to know the position information data sent node boat can be done addition of data format coordinate code or not to be forwarded through I2C serial communications to be sent to the central node. The result is shown in Table 3 and Table 4.
Table 3. Data Processing in The Coordinator A

No	KODE KAPAL	LINTANG	BUJUR	TANGGAL	WAKTU	KODE KOORDINATOR
1	KN004	-6.812568	110.526237	2017-08-21	15:39:26	A
2	KN001	-6.812970	110.527008	2017-08-21	15:39:34	A
3	KN004	-6.812383	110.525505	2017-08-21	15:39:56	A
4	KN001	-6.812722	110.527046	2017-08-21	15:40:04	A
5	KN001	-6.812927	110.527465	2017-08-21	15:40:34	A
6	KN002	-6.809547	110.528686	2017-08-21	15:49:36	A
7	KN002	-6.809526	110.528840	2017-08-21	15:50:06	A
8	KN004	-6.811773	110.528585	2017-08-21	15:50:29	A
9	KN004	-6.809512	110.528579	2017-08-21	15:50:37	A
10	KN004	-6.811773	110.511115	0000-00-00	00:00:00	A
11	KN002	-6.809506	110.528518	2017-08-21	15:51:07	A
12	KN002	-6.809514	110.528450	2017-08-21	15:51:17	A
13	KN002	-6.809516	110.528396	2017-08-21	15:52:07	A
14	KN002	-6.809522	110.528289	2017-08-21	15:53:07	A
15	KN002	-6.809545	110.528236	2017-08-21	15:53:38	A
16	KN002	-6.809569	110.528190	2017-08-21	15:54:08	A
17	KN002	-6.809584	110.528144	2017-08-21	15:54:38	A
18	KN002	-6.809587	110.528030	2017-08-21	15:55:38	A
19	KN001	-6.809767	110.529121	2017-08-21	15:56:58	A
20	KN002	-6.809587	110.527969	2017-08-21	15:56:08	A

Table 4. Data Processing in The Coordinator B

No	KODE KAPAL	LINTANG	BUJUR	TANGGAL	WAKTU	KODE KOORDINATOR
1	KN004	-6.812088	110.524795	2017-08-21	15:40:27	B
2	KN004	-6.811777	110.523628	2017-08-21	15:49:29	B
3	KN004	-6.811773	110.523635	2017-08-21	15:49:59	B
4	KN003	-6.811668	110.523605	2017-08-21	15:50:56	B
5	KN003	-6.811693	110.522605	2017-08-21	15:51:26	B
6	KN004	-6.811773	110.523635	2017-08-21	15:51:30	B
7	KN004	-6.811773	110.523635	2017-08-21	15:52:00	B
8	KN003	-6.811695	110.523567	2017-08-21	15:52:03	B
9	KN004	-6.811773	110.523635	2017-08-21	15:52:30	B
10	KN002	-6.809514	110.528343	2017-08-21	15:52:57	B
11	KN004	-6.811777	110.523635	2017-08-21	15:53:00	B
12	KN003	-6.811695	110.523567	2017-08-21	15:53:11	B
13	KN004	-6.811778	110.523635	2017-08-21	15:53:30	B
14	KN004	-6.811780	110.523628	2017-08-21	15:54:00	B
15	KN003	-6.811698	110.523567	2017-08-21	15:54:12	B
16	KN004	-6.811782	110.523628	2017-08-21	15:54:30	B
17	KN004	-6.811785	110.523628	2017-08-21	15:55:31	B
18	KN004	-6.811785	110.523628	2017-08-21	15:56:01	B
19	KN005	-6.811717	110.523574	2017-08-21	15:56:15	B
20	KN004	-6.811787	110.523628	2017-08-21	15:56:31	B

3.3 Area Coverage Test

Area coverage test is aims to find out how far the coverage area node coordinator. The results of coverage area testing and node coordinator placement at sea can be seen in Figure 8. The tests result are shown in Figure 9.
Figure 8. Equipments positioning in area coverage test

Figure 9. Area coverage of Coordinator A
The data receiving test result shows that at the coordinator A of 20 data sample test, there is 1 data defect when the process of receiving data from the node of the fourth boat, whereas at coordinator B of 20 test sample data, data can be accepted with no defective data. The data processing test result shows that from 20 sample data from the test results of each coordinator obtained that the process of adding coordinator code to the input data can run well. The defect data received also gets the addition of the coordinator code (automatically in the same format and system). The area coverage test results obtained that each coordinator has a range of different areas of distance range of coordinator A is 0.45 miles (732.12 m) and the farthest range of coordinator B is at a radius of 0.35 miles (566.11 m) in radius.

4. Conclusion

The coordinator node successfully receives the boat or ship position information within the scope of the coordinator with a success rate of 96%. The node coordinator successfully added coordinator code on boat position information with 100% success rate. Adding node coordinator is useful to mark a part of territorial waters. Maximum distance of area coverage of coordinator A is 0.45 miles and coordinator B is 0.35 miles in radius.

5. References

[1]. Rauzatul N. (2016). Prototipe Sistem Pelacak Jejak Kapal Nelayan Pancing Tradisional Secara Otomatis Menggunakan Visualisasi Berbasis Web. http://repository.ipb.ac.id/jspui/bitstream/123456789/80139/1/2016ma.pdf
[2]. Peraturan Menteri Kelautan dan Perikanan Republik Indonesia (2015). Sistem Pemantau Kapal Perikanan (Berita Negara Nomor 2025). http://djpsdkp.kkp.go.id/rule/file/26/permen-kp-nomor-42-tahun-2015-tentang-sistem-pemantauan-kapal-perikanan-.pdf/
[3]. Suhendar, M. (2013). Comparison of Vessel Monitoring System (VMS) between Iceland and Indonesia [final project].http://www.unuftp.is/static/fellows/document/suhendar12prf.pdf
[4]. Wahab R.A, (2014). Penggunaan Alat dan Perangkat Telekomunikasi dalam Sistem Navigasi dan Komunikasi Aktivitas Perikanan di Pelabuhan Perikanan Bitung, Buletin Pos dan Telekomunikasi, 12(4): 279-290
[5]. Ta DucT., Tran DucT., Do DucD. (2013). Efficient and Reliable GPS-Based Wireless Ad Hoc for Marine Search Rescue System. Lecture Notes in Electrical Engineering May 2013. DOI: 10.1007/978-94-007-6738-6_112.
[6]. Mohamed M., Hamada A., Peng-Yong K., Shihab J. (2013). Technologies and Networks Supporting Maritime Wireless Mesh Communications. IFIP WMNC’2013.
[7]. Arunvijay D, Yuvaraj E, (2014). Design of Border Alert System for Fishermen Using GPS, International Journal of Students Research in Technology & Management 2(02): 67-70
[8]. Yogesh Kumar A, A. BharaniVasan, S.P. ValanArasu (2015). GPS Based Tracking of Maritime Line of Control Monitoring System, INT J CURR SCI 2015, 14: E 12-18
[9]. Arull K, Asha J, Mohamed Nizar S, Malathi M, (2015). A Review on GPS Tracking and Border Alert System for Fishermen, International Journal of Science Technology & Engineering 2(5): 1-3
[10]. R.Raja Nandhini, S.Malarvizhi, A.Praveen, C.Mohanraj, R.Srinivasan, (2016). Intelligent Navigation System for Fishing Boats Using GPS, International Research Journal of Engineering and Technology(IRJET) 3(1): 1169-1172
[11]. M.Vanitha, S.P. Muthulekshmi, R.Srilakshman, D.Kiran Kumar, (2016). Secured Maritime Alert System Based on RSSI Localization Scheme, International Journal of Engineering Trends and Technology (IJETT) 34(1): 28-31

[12]. Annisa Y. (2017). Pengaruh Mobilitas Sink Node pada Wireless Sensor Network (WSN) untuk Pemantauan Aktifitas Pergerakan Gajah Dalam Area Penangkaran. Bandar Lampung: Universitas Lampung.

[13]. M.A.Matin.(2012). Chapter 1: Overview of Wireless Sensor Network.http://cdn.intechopen.com/pdfs/38793/InTechOverview_of_wireless_sensor_network.pdf

[14].M.A.Perillo (2007). Role Assignment in Wireless Sensor Networks: Energy-Efficient Strategies and Algorithms. Department of Electrical and Computer Engineering University of Rochester, Rochester, NY, USA