Hyperfine interactions in two-dimensional HgTe topological insulators

Anders Mathias Lunde1,2,3 and Gloria Platero4

1Instituto de Ciencia de Materiales de Madrid (ICMM), Consejo Superior de Investigaciones Científicas (CSIC), 28049 Madrid, Spain
2Instituto de Estructura de la Materia, CSIC, Serrano 123, 28006 Madrid, Spain
3Center for Quantum Devices, Niels Bohr Institute, University of Copenhagen, Denmark

4Center for Quantum Devices, Niels Bohr Institute, University of Copenhagen, Denmark

(Dated: May 11, 2014)

We study the hyperfine interaction between the nuclear spins and the electrons in a HgTe quantum well, which is the prime experimentally realized example of a two-dimensional topological insulator. The hyperfine interaction is a naturally present, internal source of broken time-reversal symmetry from the point of view of the electrons. The HgTe quantum well is described by the so-called Bernevig-Hughes-Zhang (BHZ) model. The basic states of the BHZ model are combinations of both S- and P-like symmetry states, which means that three kinds of hyperfine interactions play a role: (i) The Fermi contact interaction, (ii) the dipole-dipole-like coupling and (iii) the electron-orbital to nuclear-spin coupling. We provide benchmark results for the forms and magnitudes of these hyperfine interactions within the BHZ model, which give a good starting point for evaluating hyperfine interactions in any HgTe nanostructure. We apply our results to the helical edge states of a HgTe two-dimensional topological insulator and show how their total hyperfine interaction becomes anisotropic and dependent on the orientation of the sample edge within the plane. Moreover, for the helical edge states the hyperfine interactions due to the P-like states can dominate over the S-like contribution in certain circumstances.

\section{I. INTRODUCTION}

A topological insulator (TI) host gapless surface or edge states, while the bulk of the material has an insulating energy gap.1–4 In three-dimensional TIs the gapless surface states are spin-polarized two-dimensional (2D) Dirac fermions, whereas 2D TIs contain one-dimensional (1D) helical edge states. The helical edge states appear in counterpropagating pairs, and the states with equal energy and opposite wave numbers, k and $-k$, form a Kramers pair. Thus, elastic scattering from one helical edge state (HES) to the other one within a pair cannot be induced by time-reversal invariant potentials e.g. stemming from impurities.6,7 Therefore, the transport through a 2D TI is to a large extent ballistic with a quantized conductance of e^2/h per pair of HESs. This highlights the central role of time-reversal symmetry in TIs.

Quantized conductance have recently been measured in micron-sized samples in HgTe quantum wells6,7 which to date is the most important experimental demonstration of a 2D TI. Evidence of edge state transport was found in both two-terminal5–7 and multi-terminal8–10 devices. Moreover, clever experiments combining the metallic spin Hall effect and a 2D TI in a HgTe quantum well (QW) demonstrated the connection between the spin and the propagation direction.10 However, also deviations from perfect conductance have been observed in longer HgTe devices6,7,11,12 which could stem from e.g. inelastic scattering mechanisms.13–15 The effect of external magnetic fields have also been considered.6,8,12–24 The TI state in HgTe QWs was predicted by Bernevig, Hughes and Zhang (BHZ)25 by using a simplified $k \cdot p$ model containing states with S- and P-like symmetry, respectively. They found that beyond a critical thickness of the HgTe QW, the TI state would appear as confirmed experimentally.6,7 Furthermore, interesting experimental progress on 2D TI properties has also been achieved in InAs/GaSb QWs26–29 as proposed theoretically.29

Hyperfine (HF) interactions between the electron and nuclear spins can play an important role in nanostructures – even though it is often weak.30,31 For instance in quantum dots, HF interactions can limit the coherence of single electronic spins32–34 and, moreover, it can even lead to current hysteresis due to bistability of the dynamical nuclear spin polarization.35–37 HF-induced nuclear spin ordering in interacting 1D38–40 and 2D41–43 systems have also been discussed. Most studies consider the so-

\begin{figure}[h]
\centering
\includegraphics[width=0.5\textwidth]{fig1.png}
\caption{Hyperfine coupling between the BHZ basis states $\{|H^+\}, |E^+\}, |E^-\}, |H^-\}\rangle$, which have the total angular momentum projections on the z-axis m_j as indicated. Every increase (decrease) of m_j in the electronic sector is accompanied by a decrease (increase) of a nuclear spin due to angular momentum conservation. Hyperfine interactions due to both S- and P-like states connect the two time-reversed blocks of the BHZ model (red full arrows). However, only hyperfine interactions due to P-like states connect states within a single time-reversed block (blue dashed arrows).}
\end{figure}
called contact HF interaction20–33 which is relevant for electrons in orbital states with \(S\)-like symmetry e.g. the conduction band in GaAs. However, for \(P\)-like orbital states – such as the valence band in GaAs – the contact HF interaction is absent. Nevertheless, other anisotropic HF interactions are present for \(P\)-like states such as the dipole-dipole-like HF interaction47–51 which can play a significant role e.g. for the decoherence of a hole confined in a quantum dot.47–49,51–52

HF interactions and dynamical nuclear spin polarization have also been investigated in the context of integer quantum Hall systems52 which contain unidirectional edge states. Here HF-induced spin-flip transitions between the unidirectional edge states can create nuclear spin polarization locally at the boundary of the 2D sample.53,54 Recently, we have predicted a similar phenomenon for a 2D TI, namely that embedded fixed spins such as the nuclear spins in a 2D TI can polarize locally at the boundary due to a current through the HESs.55 Interestingly, the 2D TI with localized spins remains ballistic56 except if additional spin-flip mechanisms for the localized spins are present.57 However, combining localized spins and Rashba spin-orbit coupling in the 2D TI can produce a conductance change.58,59 In the previous works60,61 the interaction between the fixed spins embedded into the 2D TI and the HESs were modelled phenomenologically. In contrast, here we pay special attention to the detailed forms of the HF interactions within a 2D TI.

In this paper, we find the different HF interactions within the BHZ model for a HgTe QW. To this end, we take into account both the \(S\)- and \(P\)-like states of the BHZ model, which couple differently to the nuclear spins. We show that all the HF Hamiltonians couple the time-reversed blocks of the BHZ model. However, only HF interactions relevant for \(P\)-like states couple states within a time-reversed block as illustrated in Fig.1. Moreover, we estimate the different HF coupling constants. The derived Hamiltonians are general in the sense that they can be used to find the HF interactions for any kind of nanostructure in a HgTe QW, e.g. quantum dots,62 ring structures63 or hole structures.64 As an illustrative example, we find the HF interactions for a pair of HESs. Remarkably, the intra HES transitions coupled to all the nuclear spin components perpendicular to the propagation direction of the HESs. This kind of coupling is unusual compared to e.g. an ordinary Heisenberg model. Interestingly, the details of the HF interactions depend on the spacial direction of the boundary at which the HESs propagate.

The paper is structured as follows: First the HF interactions and the BHZ model are outlined in secs. II and III. Then the HF interactions are found within the BHZ model for the simplest case of a 2D QW (sec IV). From this, we derive the HF interactions for a given nanostructure in sec. V. Finally, the HF interactions for the HESs are found and discussed (sec. VI). Appendices A–D provide various details for completeness.

\section{The Hyperfine Interactions}

The HF interaction between an electron at position \(r\) with spin \(S = (S_x, S_y, S_z)\) and the nuclear spin \(I_n = (I_{nx}, I_{ny}, I_{nz})\) of the lattice atom at \(R_n\) can be derived from the Dirac equation32–34 to be (in SI units)

\[h_n^1 = \frac{\mu_0}{4\pi} \frac{8\pi}{3} (S \cdot I_n), \]
\[h_n^2 = \frac{\mu_0}{4\pi} \frac{3}{r_n^3} (S \cdot I_n) - S \cdot I_n, \]
\[h_n^3 = \frac{\mu_0}{4\pi} \frac{\gamma_n I_n \cdot I_n}{r_n^3 (1 + r_c/r_n)}, \]

where \(h_n^1\) is the Fermi contact interaction70, \(h_n^2\) is the dipole-dipole-like coupling between the electrons spin and the nuclear spin, and \(h_n^3\) is the coupling of the electrons orbital momentum \(L_n = r_n \times p\) and the nuclear spin. Here \(r_n = r - R_n\) is the electron position relative to the \(n\)th nucleus, \(r_n \equiv |r_n|, e_n \equiv e_{r_n}/r_n\) and \(\mu_0\) is the vacuum permeability. The gyromagnetic ratios of the electron \(\gamma_e\) and the \(n\)th nuclear spin \(\gamma_{jn}\) of the isotope \(j\) are, respectively, given by \((e > 0)\gamma_e = g_e \mu_B / h\), where \(\mu_B = e h/(2 m_e)\) is the Bohr magneton and \(g_e \simeq 2\) the electron g factor; and \(\gamma_{jn} = g_{jn} \mu_N / h\), where \(\mu_N = e h/(2 m_p)\) is the nuclear magneton and \(g_{jn}\) the g factor of the \(j\)th isotope. Here \(m_e\) and \(m_p\) are the bare electron and proton mass, respectively.65 Moreover, \(r_c\) is a length scale related to the finite size of the nucleus and therefore much smaller than all other length scales in the system. It can be found to be \(r_c = Z e^2 / (2 m_e c^2) \simeq Z \times 1.5\text{fm}\), where \(Z\) is the number of protons in the nucleus.32 Thus, the total HF interaction between an electron and all the nuclear spins in the lattice is

\[H_{HF} = H_{HF,1} + H_{HF,2} + H_{HF,3} = \sum_n h_n^1 + \sum_n h_n^2 + \sum_n h_n^3, \]

where only those lattice points \(R_n\) with a non-zero nuclear spin are included in the sum.

Not every atom in a HgTe crystal has a non-zero nuclear spin in contrast to e.g. GaAs. The amount of stable isotopes with a non-zero spin in Hg and Te are about33

17\% of \(^{199}\text{Hg}\) (spin-1/2), 13\% of \(^{201}\text{Hg}\) (spin-3/2),

1\% of \(^{123}\text{Te}\) (spin-1/2), 7\% of \(^{125}\text{Te}\) (spin-1/2).

Hence, about 19\% of all the atoms in HgTe have a non-zero nuclear spin. By isotope selection processes, this number can be varied somewhat experimentally.

The contact interaction \(H_{HF,1}\) is the only important HF interaction for \(S\)-like states due to their spherical symmetry around the atomic core. On the other hand, \(P\)-like states vanish at the atomic core and therefore the contact interaction does not affect electrons in those states. In contrast, the two other terms \(H_{HF,2}\) and \(H_{HF,3}\)
can indeed play a role for \(P \)-like states such as heavy-holes. Moreover, Fischer et al. found the atomic HF coupling constants to be about one order of magnitude lower for \(P \)-like compared to \(S \)-like states in GaAs.

III. THE BERNEVIG-HUGHES-ZHANG (BHZ) MODEL

Bernevig, Hughes and Zhang constructed a simple model describing the basic physics of a HgTe QW. The effective \(4 \times 4 \) BHZ Hamiltonian is derived using the methods and valid for \(\mathbf{k} = (k_x, k_y) \) close to the \(\Gamma \) point, i.e. close to \(\mathbf{k} = (0, 0) \). The basis states of the model are the two Kramer pairs \(|E\pm\rangle \) and \(|H\pm\rangle \). Details on the derivation of the BHZ model are found in Refs. 1, 23 and 76. For a 2D QW the BHZ Hamiltonian is

\[
H_0 = \sum_{\mathbf{k}} c^\dagger_{\mathbf{k}} H_0(\mathbf{k}) c_{\mathbf{k}},
\]

where \(c^\dagger_{\mathbf{k}} = (c^\dagger_{\mathbf{k},E+}, c^\dagger_{\mathbf{k},H+}, c^\dagger_{\mathbf{k},E-}, c^\dagger_{\mathbf{k},H-}) \) is a vector of creation operators and

\[
H_0(\mathbf{k}) = \begin{pmatrix} h(\mathbf{k}) & 0 \\ 0 & h^*(\mathbf{-k}) \end{pmatrix}
\]

with 0 being a zero \(2 \times 2 \) matrix and

\[
h(\mathbf{k}) = \begin{pmatrix} \varepsilon_k + M_k & A(k_x + ik_y) \\ A(k_x - ik_y) & \varepsilon_k - M_k \end{pmatrix}.
\]

Here \(\varepsilon_k = -Dk^2 \), \(M_k = M_0 - Bk^2 \), and \(k \equiv \sqrt{k_x^2 + k_y^2} \) have been introduced. The parameters \(A, B, D \) and \(M_0 \) depend on the QW geometry. Importantly, varying the QW width changes the sign of \(M_0 \), which in turn makes the system go from a non-topological to a topological state with HESs.

The Hamiltonian a priori has periodic boundary conditions and thereby does not contain any edges. By introducing boundaries into the model, it is possible to derive explicitly the HESs in the TI state of the QW. This will be discussed further in sec. VI A.

Within the envelope function approximation, the states of the BHZ model are

\[
\begin{align*}
|E+\rangle &= f_{E+}(z)|\Gamma_6, +1/2\rangle + f_{E-}(z)|\Gamma_6, -1/2\rangle, \\
|H+\rangle &= f_{H}(z)|\Gamma_8, +3/2\rangle, \\
|E-\rangle &= f_{E+}(z)|\Gamma_6, -1/2\rangle + f_{E-}(z)|\Gamma_6, +1/2\rangle, \\
|H-\rangle &= f_{H}(z)|\Gamma_8, -3/2\rangle,
\end{align*}
\]

where \(f_{i}(z) \) are the transverse envelope functions in the \(z \)-direction perpendicular to the 2D QW and \(|\Gamma_i, m_j\rangle \) are the lattice periodic functions at \(\mathbf{k} = 0 \) for the \(\Gamma_i \) band with projection \(m_j \) of the total angular momentum, \(\mathbf{J} = \mathbf{L} + \mathbf{S} \), on the \(z \)-axis. Here \(\mathbf{S} \) is the electron spin and \(\mathbf{L} \) is the orbital angular momentum (see Appendix A). The time-reversal operator \(\Theta \) connects states within a Kramer pair (\(\Theta |E\pm\rangle = \mp |E\mp\rangle \) and \(\Theta |H\pm\rangle = \mp |H\mp\rangle \)), and the two blocks in \(H_0(\mathbf{k}) \) are related by time-reversal. Here we choose phase conventions of the envelope functions such that time-reversed partners have equal envelope functions. Moreover, \(f_{E+} \) and \(f_{H} \) are chosen real, whereas \(f_{E-} \) is chosen purely imaginary. (Appendix A gives more details on the envelope functions and the lattice periodic functions.)

The states \(|E\pm\rangle \) are seen to be mixtures of the \(S \)-like \(\Gamma_6 \) band and the \(P \)-like \(\Gamma_8 \) band with \(m_j = \pm 1/2 \), whereas \(|H\pm\rangle \) consist only of the \(P \)-like \(\Gamma_8 \) band with \(m_j = \pm 3/2 \). Hence, the states have a definite total angular momentum projection,

\[
J_z|E\pm\rangle = \pm \frac{1}{2} \hbar |E\pm\rangle \quad \text{and} \quad J_z|H\pm\rangle = \pm \frac{3}{2} \hbar |H\pm\rangle,
\]

but \(|E\pm\rangle \) are not eigenstates of \(J^2 \).

The HF interactions can only induce transitions between states with a difference of angular momentum projection of one unit: \(m_j - m_j' = \pm 1 \). Therefore, we can already at this point see that only particular combinations of the BHZ states can be connected by HF interactions as seen in Fig. 1. Furthermore, it is evident that HF interactions relevant for both \(S \)- and \(P \)-like states need to be included to have a full description of the HF interactions in a HgTe TI.

The real-space basis functions of \(H_0 \) for the 2D QW with periodic boundary conditions are

\[
\varphi_{k,E\pm}(r) = \frac{\sqrt{v_a}}{\sqrt{L_x L_y}} e^{i(k_x x + k_y y)} x^{f_{E+}(z)} r_{\Gamma_6, \pm 1/2} + f_{E-}(z) u_{\Gamma_6, \pm 1/2}(r)
\]

and

\[
\varphi_{k,H\pm}(r) = \frac{\sqrt{v_a}}{\sqrt{L_x L_y}} e^{i(k_x x + k_y y)} x^{f_{H}(z)} u_{\Gamma_8, \pm 3/2}(r),
\]

where \(r = (x, y, z) \) and \(x, y, z \) are the QW length in the \(x \) \((y \) direction and \(w_{\Gamma_i, m_j}(r) = r_{\Gamma_i, m_j} \) are the real-space lattice periodic functions at \(k = 0 \). Moreover, we have included the atomic volume \(v_a \) explicitly here as it is often done for HF related calculations. It depends on the choice of the individual normalization of the envelope functions and the lattice periodic functions, respectively, if \(v_a \) should be included explicitly as discussed in Appendix B.

IV. HYPERFINE INTERACTIONS WITHIN THE BHZ MODEL

Next, we find the HF interactions within the BHZ model by using the states for a 2D QW with periodic boundary conditions. As we shall see, these results are useful, since they allow us to find the HF interactions for any nanostructure created in a HgTe QW (sec. V).
A. Outline of the way to find the hyperfine interaction matrix elements

The HF interactions (1) are local in space on the atomic scale, so the important part of the wavefunction with respect to the HF interactions is the behavior around the nucleus. Hence, in the envelope function approximation, it is the rapidly varying lattice periodic functions \(u_{i,m}(r)\) that play the central role, whereas the slowly varying envelope functions only are multiplicative factors at the atomic nucleus, as we shall see below.

We set out to find the HF interactions

\[
\mathcal{H}_{\text{HF},i} = \sum_{\bf k,k'} \sum_{\nu,\nu'} \langle \phi_{\bf k\nu} | \hat{H}_{\text{HF},i} | \phi_{\bf k'\nu'} \rangle c_{\bf k\nu}^\dagger c_{\bf k'\nu'}
\]

(8)

for \(i = 1, 2, 3\) in the basis (7), i.e. for \(\phi_{\bf k\nu}(r)\) with \(\nu = E, H\). We begin by describing the general way that we find the HF interaction matrix elements \(\langle \phi_{\bf k\nu} | \hat{H}_{\text{HF},i} | \phi_{\bf k'\nu'} \rangle\). To this end, the integration over the entire system volume \(V\) is rewritten as a sum of integrals over each unit cell \(m\) of volume \(V_{uc}(m)\), i.e.

\[
\int_V \! d\bf r (\cdots) = \sum_m \int_{V_{uc}(m)} \! d\bf r (\cdots).
\]

(9)

This should be understood in the following way: Every space point \(\bf r\) can be reached by first a Bravais lattice vector \(\bf R_m = (X_m, Y_m, Z_m)\) and then a vector \(\bf \rho\) within the \(m\)th unit cell, i.e. \(\bf r = \bf R_m + \bf \rho\). The superscript \(\text{(m)}\) on the unit cell volume \(V_{uc}(m)\) indicates that the integral is over the \(m\)th unit cell. Thus, the matrix element is

\[
\langle \phi_{\bf k\nu} | \hat{H}_{\text{HF},i} | \phi_{\bf k'\nu'} \rangle = \sum_{\bf \rho} \sum_m \int_{V_{uc}(m)} \! d\bf r \, \phi_{\bf k\nu}^*(\bf R_m + \bf \rho) \hat{H}_{\text{HF}} \phi_{\bf k'\nu'}(\bf R_m + \bf \rho).
\]

Here one sum is over all unit cells \(\bf R_m\), whereas the other sum is only over those atoms at position \(\bf R_n\) with a non-zero nuclear spin. To proceed, we take \(\nu = \nu' = H\) as an illustrative example and obtain

\[
\langle \phi_{\bf kH\tau} | \hat{H}_{\text{HF},i} | \phi_{\bf k'\nu H\tau'} \rangle \simeq \frac{v_n}{L_x L_y} \sum_{\bf R_n} \sum_n \int_{V_{uc}(m)} \! d\bf r \phi_{\bf kH\tau}^*(\bf R_n + \bf \rho) \hat{H}_{\text{HF}}(\bf R_n + \bf \rho)\phi_{\bf k'\nu H\tau'}(\bf R_n + \bf \rho),
\]

(11)

where we have used the slow variation of the envelope functions on the atomic scale, \(\hat{f}_H(\bf r_2 + Z_m) \simeq f_H(\bf Z_m)\), and the lattice periodicity of the lattice periodic functions, e.g. \(u_{\Gamma_8,\tau_3/2}(\bf R_n + \bf \rho) = u_{\Gamma_8,\tau_3/2}(\bf \rho)\) for all \(\bf \rho\). Here \(\bf R_{n\perp} = (X_m, Y_m)\), and the integral over \(\bf \rho\) is over the \(n\)th unit cell, whereas \(h_n^\tau\) is for the \(n\)th nuclei. For a specific nuclear spin \(n\), we now include only the integral over that particular unit cell containing the \(n\)th nuclear spin, since the HF interactions are local in space. In other words, if the nuclei spin \(n\) is not inside the integration volume of the unit cell \(m\), then the contribution is neglected, i.e.

\[
\langle \phi_{\bf kH\tau} | \hat{H}_{\text{HF},i} | \phi_{\bf k'\nu H\tau'} \rangle = \frac{v_n}{L_x L_y} \sum_n e^{i(k' - k)\cdot \bf R_{n\perp}} \frac{1}{n_{\perp}}
\]

(12)

where the unit cell integral now is independent of the unit cell position \(\bf R_n\). The sum is only over the lattice nuclei at \(\bf R_n\) with a non-zero nuclear spin. Therefore, the system does not have discrete translational symmetry, so the sum cannot simply be made into an integral. Hence, the matrix elements are not diagonal in \(\bf k\) due to the nuclear spins at random lattice points.

In order to proceed, we need to evaluate the integral of the lattice periodic function over the unit cell in Eq.(12). To this end, the symmetry of the lattice periodic functions are important: The contact interaction \(H_{\text{HF},i}\) is zero for \(P\)-like states, since they vanish on the atomic center, while matrix elements of \(H_{\text{HF},i}\) for \(i = 2, 3\) vanish for \(S\)-like states due to their spherical symmetry. Here, we approximate the lattice periodic functions by a Linear Combination of Atomic Orbitals (LCAO) as

\[
\begin{align}
\psi_{\Gamma_{m,j}}(\bf r) &= N_{\Gamma_{m,j}} \cdot \Omega_{\Gamma_{m,j}}(\bf r - \bf d/2), \\
\psi^{\text{Hg}}_{\Gamma_{m,j}}(\bf r) &= N^{\text{Hg}}_{\Gamma_{m,j}} \cdot \Omega^{\text{Hg}}_{\Gamma_{m,j}}(\bf r - \bf d/2),
\end{align}
\]

(13a, 13b)

where \(\psi_{\Gamma_{m,j}}\) and \(\psi^{\text{Hg}}_{\Gamma_{m,j}}\) are atomic-like wave functions centered on the Te and Hg atom, respectively, and \(\bf r\) is only within a single two-atomic primitive unit cell of HgTe centered at \(\bf r\) = 0. The atomic wave functions inherit the symmetry of the band \(\Gamma_{47,84}\) as indicated by the index \(\Gamma_{i,j}\). The atoms are connected by the vector \(\bf d\), and the constants \(N_{\Gamma_{m,j}}\) are determined by the lattice periodic function normalization \(\int_{V_{uc}} \! d\bf r \psi_{\Gamma_{m,j}}^\dagger(\bf r) = 2\), see e.g. Eq.(11). The electron sharing within the unit cell is described by \(\Omega_{\Gamma_{i,j}}(\bf r)\), which fulfill \(\Omega_{\text{Te(Hg)}}^2 = |\Omega_{\text{Te(Hg)}}|^2 = 1\).

The LCAO approach (13) now facilitates evaluation of the unit cell integral in the matrix elements \(\langle \phi_{\bf kH\tau} | \hat{H}_{\text{HF},i} | \phi_{\bf k'\nu H\tau'} \rangle\). Consider e.g. the unit cell integral in Eq.(12) for a non-zero spin on the \(n\)th Hg nucleus located on \(\bf d/2\), i.e.

\[
\int_{V_{uc}} \! d\bf r \psi_{\Gamma_8,\tau_3/2}^\dagger(\bf r) \psi_{\Gamma_8,\tau_3/2}(\bf r - \bf d/2) \approx \frac{N_{\Gamma_8,\tau_3/2}}{2} |\psi_{\Gamma_8,\tau_3/2}(\bf r - \bf d/2)|^2, \\
\]

(14)

where only the important contribution of the atomic wave functions centered on the Hg atom is included. In other
words, integrals involving atomic wave functions centered on different atoms are neglected. Fischer et al. estimated that these non-local contributions are two to three orders of magnitude smaller for GaAs – even for the long-ranged potentials in $h_{2,3}^{n}$ in Eqs. (11-12).

Thus, we have now outlined how to find the matrix elements $\langle \varphi_{kH}\rvert H_{HF},i \lvert \varphi_{kH} \rangle$ for all three kinds of HF interactions (1). The matrix elements of the types $\langle \varphi_{kE}\lvert H_{HF},i \lvert \varphi_{kE} \rangle$ and $\langle \varphi_{kE}\lvert H_{HF},i \lvert \varphi_{kE} \rangle$ follow the same lines as above. The essential ingredients are the locality of the HF interactions, the periodicity of $u_{\Gamma,n,m}(r)$ and the slowly varying envelope functions. Next, we find the three HF interactions (1) within the BHZ model.

B. The contact HF interaction for S-like states

Now we find the contact HF interaction $H_{HF,1}$ Eq. (13) within the BHZ basis (7). We begin by noting that $\langle \varphi_{kH}\rvert H_{HF},i \lvert \varphi_{kH} \rangle = 0$ and $\langle \varphi_{kE}\lvert H_{HF},i \lvert \varphi_{kE} \rangle = 0$, since the contact interaction is only non-zero at the atomic center $(\mathbf{h}_{a} \propto \delta(\mathbf{r} - \mathbf{R}_{n}))$, where the Γ_{6} P-like atomic orbitals vanish. Hence, only the Γ_{6} S-like part of the $\varphi_{kE}(r)$ states leads to non-zero matrix elements of $H_{HF,1}$. Using the approach in Sec. IV A to find the matrix elements, we get

$$\langle \varphi_{kE}\lvert H_{HF,1} \lvert \varphi_{kE} \rangle = \frac{v_{n}}{\sum_{\tau,\tau'} L_{\tau,\tau'}} \sum_{n} e^{i(k' - k) \cdot \mathbf{R}_{n,\perp}}$$

$$\times |f_{E}(Z_{n})|^{2} \int_{v_{ac}} d \rho u_{\Gamma,1/2}(\rho) h_{1}^{n} u_{\Gamma,1/2}(\rho)$$

for $\tau, \tau' = \pm$. The Γ_{6} states $u_{\Gamma,1/2}(r)$ simply factorize into a spin and an orbital part as $u_{\Gamma,1/2}(r) = u_{\Gamma}(r) \uparrow (\downarrow)$, see e.g. Eq. (A2). Using this and the explicit form of the contact interaction h_{1}^{+} in Eq. (13), we readily obtain

$$\langle \varphi_{kE}\lvert H_{HF,1} \lvert \varphi_{kE} \rangle = \frac{1}{\sum_{\tau,\tau'} L_{\tau,\tau'}} \sum_{n} e^{i(k' - k) \cdot \mathbf{R}_{n,\perp}}$$

$$\times A_{S,jn}(Z_{n}) \frac{1}{\hbar} \left[I_{\tau,\tau'}^{n} \delta_{\tau,\tau'} + \frac{1}{2} I_{\tau',\tau}^{n} \delta_{\tau,\tau'} \right]$$

where $I_{\tau,\tau'}^{n} \equiv I_{\tau,\tau'} \pm \delta_{\tau,\tau'}$ are the raising and lowering nuclear spin operators. In analogue to the case of a quantum dot, we here introduce the position dependent contact HF coupling as

$$A_{S,jn}(Z_{n}) \equiv v_{n} |f_{E}(Z_{n})|^{2} A_{S,jn}^{\text{Atomic}},$$

which includes the atomic contact HF coupling

$$A_{S,jn}^{\text{Atomic}} \equiv \frac{2\mu_{0}}{3} g_{e} \mu_{B} g_{nj} \mu_{N} |u_{\Gamma}(\mathbf{R}_{n})|^{2}$$

for the nuclear spin at site n of isotope j. Here $A_{S,jn}(Z_{n})$ depends on the real space position of the nuclear spin. In contrast, $A_{S,jn}^{\text{Atomic}}$ does not depend on the nuclear position.

C. The HF interactions for P-like states

Next, we find the HF interactions within the BHZ basis (7) for $H_{HF,2}$ and $H_{HF,3}$ Eqs. (11-12), which are relevant for the P-like states. To begin with, we argue that the Γ_{6} S-like states – part of the E_{\pm} states – do not contribute to the matrix elements $\langle \varphi_{kE}\lvert H_{HF,1} \lvert \varphi_{kE} \rangle$ and $\langle \varphi_{kE}\lvert H_{HF,1} \lvert \varphi_{kE} \rangle$ for $i = 2, 3$. In contrast, the Γ_{8} P-like part of E_{\pm} do contribute to these elements as will be shown below. To understand this, the HF matrix elements are written in terms of the unit cell integrals over the atomic-like wave functions as outlined in Sec. IV A. Firstly, for the dipole-

$A_{S,jn}^{\text{Atomic}}$ [\mu\text{eV}]	$A_{S,jn}^{\text{Atomic}}$ [\mu\text{eV}]	
^{199}Hg	-1.5	-49
^{201}Hg	0.6	-6.0
^{123}Te	-49	-7.2
^{125}Te	-59	-6.0

TABLE I. Estimates of the atomic contact HF couplings $A_{S,jn}^{\text{Atomic}}$ Eq. (13) and the atomic P-like HF couplings $A_{S,jn}^{\text{Atomic}}$ Eq. (20) in HgTe for the naturally present isotopes with non-zero spin, see (3). The HF couplings for S-like states are seen to be about one order of magnitude larger than for P-like states. The sign of the HF couplings stems from the sign of the nuclear g-factors. See Appendix D for details of these estimates.
dipole like HF interaction \cite{13}, we have
\begin{equation}
\int_{\nu_{uc}} d\rho [\Psi_{1a,m,j}^{Hg/Te}(\rho \mp d/2)]^{*} h_{n}^{n} \Psi_{\Gamma_{8},m,j}^{Hg/Te}(\rho \mp d/2) = 0
\end{equation}
due to the rotational symmetry of the S-like orbitals around the atomic core \cite{22}. Secondly, we have
\begin{equation}
\int_{\nu_{uc}} d\rho [\Psi_{1a,m,j}^{Hg/Te}(\rho \mp d/2)]^{*} h_{2}^{n} \Psi_{\Gamma_{8},m,j}^{Hg/Te}(\rho \mp d/2) = 0
\end{equation}
due to opposite parities of the S- and P-like orbitals \cite{22}. The same matrix elements containing \(h_{n}^{n} \) instead of \(h_{2}^{n} \) are also zero, because the S-like states have zero orbital momentum, i.e. \(L_{\nu} \Psi_{\Gamma_{8},m,j}^{Hg/Te}(\rho) = 0 \).

Therefore, only P-like states contribute, so we are now left with (see Sec. IV A)
\begin{equation}
\langle \varphi_{k} \mid [H_{HF,1}\mid \varphi_{k}^{*} \rangle = \frac{\mathcal{V}_{a}}{L_{x} L_{y}} \sum_{n} e^{i(k'\cdot r)} \mathcal{R}_{n,\pm} \tag{23a}
\end{equation}
\begin{equation}
\times \langle f_{E_{1}}(Z_{n}) \rangle^{2} \int_{\nu_{uc}} d\rho u_{r,\tau,1/2}(\rho) h_{n}^{n} u_{r,\tau,1/2}(\rho),
\end{equation}
\begin{equation}
\langle \varphi_{k} \mid [H_{HF,1}\mid \varphi_{k}^{*} \rangle = \frac{\mathcal{V}_{a}}{L_{x} L_{y}} \sum_{n} e^{i(k'\cdot r)} \mathcal{R}_{n,\pm} \tag{23b}
\end{equation}
\begin{equation}
\times \langle f_{H}(Z_{n}) \rangle^{2} \int_{\nu_{uc}} d\rho u_{r,\tau,3/2}(\rho) h_{n}^{n} u_{r,\tau,3/2}(\rho),
\end{equation}
\begin{equation}
\langle \varphi_{k} \mid [H_{HF,1}\mid \varphi_{k}^{*} \rangle = \frac{\mathcal{V}_{a}}{L_{x} L_{y}} \sum_{n} e^{i(k'\cdot r)} \mathcal{R}_{n,\pm} \tag{23c}
\end{equation}
\begin{equation}
\times \langle f_{E_{2}}(Z_{n}) \rangle f_{H}(Z_{n}) \int_{\nu_{uc}} d\rho u_{r,\tau,1/2}(\rho) h_{n}^{n} u_{r,\tau,3/2}(\rho)
\end{equation}
and \(\langle \varphi_{k} \mid [H_{HF,2}\mid \varphi_{k}^{*} \rangle = \frac{1}{L_{x} L_{y}} \frac{1}{L_{x} L_{y}} e^{i(k'\cdot r)} \mathcal{R}_{n,\pm} \tag{27a}\)
\begin{equation}
\times A_{P,j,n}^{E,H} \frac{1}{h} \left[- \tau \delta_{\nu,\tau} \frac{1}{15} L_{r,n} - \delta_{\tau,\nu} \frac{2}{15} L_{\tau,n} \right],
\end{equation}
\begin{equation}
\langle \varphi_{k} \mid [H_{HF,2}\mid \varphi_{k}^{*} \rangle = \frac{1}{L_{x} L_{y}} e^{i(k'\cdot r)} \mathcal{R}_{n,\pm} \tag{27b}\)
\begin{equation}
\times A_{P,j,n}^{E,H} \delta_{\nu,\tau} \frac{1}{h} \left[- \tau \right] \frac{1}{5} L_{r,n},
\end{equation}
\begin{equation}
\langle \varphi_{k} \mid [H_{HF,2}\mid \varphi_{k}^{*} \rangle = \frac{1}{L_{x} L_{y}} e^{i(k'\cdot r)} \mathcal{R}_{n,\pm} - A_{P,j,n}^{E,H} \delta_{\nu,\tau} \frac{1}{5} \frac{L_{r,n}}{L_{x} L_{y}} \tag{27c}\)
\begin{equation}
\times A_{P,j,n}^{E,H} \delta_{\nu,\tau} \frac{1}{h} \left[- \tau \right] \frac{1}{5} L_{\tau,n},
\end{equation}
where we introduce the position dependent P-like HF couplings as
\begin{equation}
A_{P,j,n}^{E,H} = u_{n}^{*} \langle f_{H}(Z_{n}) \rangle^{2} A_{P,j,n}^{Atomic, E,H}, \tag{28a}\)
\begin{equation}
A_{P,j,n}^{E,H} = u_{n}^{*} \langle f_{E_{2}}(Z_{n}) \rangle^{2} A_{P,j,n}^{Atomic, E,H}, \tag{28b}\)
\begin{equation}
A_{P,j,n}^{E,H} = u_{n}^{*} \langle f_{E_{2}}(Z_{n}) \rangle^{2} A_{P,j,n}^{Atomic, E,H}, \tag{28c}\)
\begin{equation}
A_{P,j,n}^{E,H} = |A_{P,j,n}^{E,H}|^{2}. \tag{28d}\)
\end{equation}
In comparison, for the contact HF interaction only a single position dependent HF coupling was introduced in Eq. (14). Here the explicit dependence on the position \(Z_{n} \) of the nuclear spin has been suppressed in the notation for simplicity, i.e.
\[A_{HF,j}^{\nu \nu'} (Z_n) = A_{HF,j}^{\nu \nu'} \] Similarly, the matrix elements for the HF interaction \(\tilde{H}_{HF,3} \) between the electronic orbital momentum and the nuclear spins become

\[
\langle \varphi_{kE\tau} | \tilde{H}_{HF,3} | \varphi_{k'E\tau'} \rangle = \sum_n \frac{1}{L_x L_y} e^{i(k'-k)\cdot R_{n,\perp}} \langle n \rangle \] (29a)

\[
\times A_{HF,j}^{\nu \nu'} (Z_n) \frac{\delta_{\tau,\tau'} \frac{1}{3} I_{z,n} + \delta_{-\tau,-\tau'} \frac{2}{3} I_{\perp,n}}{h},
\]

\[
\langle \varphi_{kE\tau} | \tilde{H}_{HF,3} | \varphi_{k'E\tau'} \rangle = \sum_n \frac{e^{i(k'-k)\cdot R_{n,\perp}} A_{HF,j}^{\nu \nu'} (Z_n) \delta_{\tau,\tau'} I_{z,n}}{L_x L_y}
\] (29b)

\[
\langle \varphi_{kE\tau} | \tilde{H}_{HF,3} | \varphi_{k'E\tau'} \rangle = \sum_n \frac{e^{i(k'-k)\cdot R_{n,\perp}} A_{HF,j}^{\nu \nu'} (Z_n) \delta_{\tau,\tau'} I_{\perp,n}}{L_x L_y}.
\] (29c)

It is noteworthy that the heavy hole like states \(H \pm \) only couple diagonally \((\tau = \tau')\) or Ising-like in \([27a,29b]\) in agreement with Ref.\[47\]. Physically, this is because the \(H \pm \) states have a difference of total angular momentum projection larger than one, \(|m_j - m_{j'}| > 1\). Moreover, the coupling between the states \(E \pm \) in Eqs.\([27b,29a]\) is essentially like the coupling between the light hole states \(\{\Gamma_3, \pm 1/2\} \), since the \(S \)-like states do not contribute to the matrix elements of \(\tilde{H}_{HF,2} \) and \(\tilde{H}_{HF,3} \). For these matrix elements between the \(E \pm \) states, the off-diagonal elements \((\tau = \tau')\) are a factor of 2 larger than the diagonal elements \((\tau = \tau')\) in accordance with Ref.\[51\].

Using the matrix elements in Eqs.\([27,29]\), we now finally arrive at the HF interactions relevant for the \(P \)-like states in the basis \([7]\) as

\[
\tilde{H}_{HF,i} = \sum_{n} \sum_{kk'} e^{i(k'-k)\cdot R_{n,\perp}} c_k^i \tilde{H}_{HF,i} c_{k'}
\] (30)

for \(i = 2, 3 \), where

\[
\tilde{H}_{HF,2} = \frac{1}{3h} \begin{pmatrix}
\frac{1}{3} A_{HF,j}^{EE} I_{z,n} & \frac{1}{3} A_{HF,j}^{EE} I_{z,n} & 2 A_{HF,j}^{EE} I_{z,n} & 0 & 0 \\
\frac{1}{3} A_{HF,j}^{EE} I_{z,n} & -\frac{1}{3} A_{HF,j}^{EE} I_{z,n} & 0 & 0 & 0 \\
-\frac{1}{3} A_{HF,j}^{EE} I_{z,n} & \frac{1}{3} A_{HF,j}^{EE} I_{z,n} & 0 & 0 & 0 \\
0 & 0 & \sqrt{3} A_{HF,j}^{EH} I_{z,n} & \sqrt{3} A_{HF,j}^{EH} I_{z,n} & \sqrt{3} A_{HF,j}^{EH} I_{z,n}
\end{pmatrix}
\] (31a)

and

\[
\tilde{H}_{HF,3} = -5 \tilde{H}_{HF,2}
\] (31b)

such that the total HF interaction for the \(P \)-like states becomes

\[
\tilde{H}_{HF,P} = \tilde{H}_{HF,2} + \tilde{H}_{HF,3} = -4 \tilde{H}_{HF,2}.
\] (32)

Just as the contact HF interaction \([20]\), the \(P \)-like HF interaction connects the time-reversed blocks by connecting the \(E \pm \) states. Moreover, the \(P \)-like HF interaction connects the states within the time-reversed blocks (e.g. \(E^+ \) and \(H^+ \)) in contrast to the contact HF interaction, see Fig. \[4\]

Interestingly, the sign of the dipole-dipole like HF interaction \([31a]\) is opposite to the contact HF interaction \([20]\) and to the orbital to nuclear-spin coupling \([31b]\). However, since the elements of \(\tilde{H}_{HF,3} \) are larger than those of \(\tilde{H}_{HF,2} \) in absolute value, the total HF interaction for the \(P \)-like states \([32]\) ends up having the same sign as the contact HF interaction.

V. HYPERFINE INTERACTIONS FOR A NANOSTRUCTURE IN A HgTe QUANTUM WELL

Now, we show how the HF interactions for any nanostructure in a HgTe QW can be derived from our results in Eqs.\([20,31]\) for a HgTe QW with periodic boundary conditions. Examples of such structures are quantum dots\[66\], mesoscopic rings\[57\], point contacts\[68\] and anti-dots\[69\].

For a given nanostructure, the envelope wave functions are needed in order to find its HF interactions within the BHZ framework. Utilizing the Peierls substitution \((k_x, k_y) = -i(\partial_x, \partial_y)\) in the BHZ hamiltonian \([45] \), the envelope functions \(\Phi_\eta (r_\perp) \) can be found by solving \([H_0(-i\partial_x, -i\partial_y) + V(r_\perp)]\Phi_\eta (r_\perp) = E_\eta \Phi_\eta (r_\perp)\), where \(V(r_\perp) \) is the potential confining the nanostructure\[21]\, \(r_\perp \equiv (x, y) \) and \(\eta \) is a collection of quantum numbers to be specified for a concrete situation\[66,67,69,78,92\]. Terms related to bulk inversion asymmetry\[2,22\], Rashba spin-orbit coupling\[13,76\] and/or magnetic fields\[19,21\] can also be included here. The envelope function is given by\[23\]

\[
\Phi_\eta (r_\perp) = \begin{pmatrix}
\phi_{\eta, E^+} (r_\perp) \\
\phi_{\eta, H^+} (r_\perp) \\
\phi_{\eta, E^-} (r_\perp) \\
\phi_{\eta, H^-} (r_\perp)
\end{pmatrix}
\] (33)

such that the entire wave function including the lattice
periodic functions is

$$\psi_\eta(r) = \sqrt{v_0} \sum_{\zeta = E \pm, H \pm} \phi_\eta \zeta(r_\perp) |r\zeta\rangle,$$ \hspace{1cm} (34)

where $|rE\pm\rangle = f_{ET\pm}(z)u_{r_\perp,\pm \frac{1}{2}}(r) + f_{ET\pm}(z)u_{r_\perp,\pm \frac{3}{2}}(r)$ and $|rH\pm\rangle = f_H(z)u_{r_\perp,\pm \frac{1}{2}}(r)$. For instance, the 2D QW with periodic boundary conditions simply has the envelope functions $e^{i(k_x x + k_y y)}(1, 0, 0, 0)^T/\sqrt{L_x L_y}$ etc., see Eq. (4).

To find the HF interactions $\mathcal{H}_{HF,i}$ for a given nanostructure with envelope wave function $\Phi_{\eta}(r_\perp)$, the same idea of separation of length scales as in Sec. IV is used: The HF interactions act on the atomic length scale such that the slowly varying envelope functions only become multiplicative factors in the HF interactions for the nanostructure. Thus, we find

$$\mathcal{H}_{HF,i} = \sum_n \sum_{\eta,\eta'} [\Phi_{\eta}(\mathbf{R}_{n\perp})]^\dagger \hat{H}_{HF,i}\Phi_{\eta'}(\mathbf{R}_{n\perp})c_{\eta}^\dagger c_{\eta'},$$ \hspace{1cm} (35)

where $\hat{H}_{HF,i}$ are the 4×4 matrices found in Eqs. (24, 31, 32) for the contact ($i = 1$) and P-like ($i = 2, 3, P$) HF interactions, respectively. The sum is only over the atomic sites n with a non-zero nuclear spin. The Bravais lattice vector $\mathbf{R}_{n\perp}$ is the unit cell containing the n^{th} nuclear spin can freely be interchanged by the atomic position \mathbf{R}_n of the nuclear spin due to the slow variation of the envelope functions on the atomic scale.\footnote{In situations with time-reversal symmetry, the states appear in Kramers pairs of equal energy. The BHZ model in Eq. (1) is constructed such that Kramers pairs appear as equal energy solutions of the upper and lower 2×2 blocks in H_0. Thus, $\phi_{\eta,E^+} = \phi_{\eta,H^-} = 0$ for one of the two states in a Kramers pair and vice versa, which simplifies the algebraic burden of finding Φ_{η}.\footnote{The two states in a Kramers pair are sometimes referred to as spin up and down, since the upper (lower) block only consists of orbital states with positive (negative) total angular momentum projection, see Eq. (4). If other time-reversal invariant interactions such as the Rashba spin-orbit coupling\footnote{are included into the BHZ model for a nanostructure, then the states still appear in Kramers pairs – even though the Hamiltonian is not necessarily in block diagonal form anymore. In this case, the general formula\footnote{for the HF interactions remains valid, since only the slowly varying envelope functions are affected. Here the index for the Kramers pair is included in η.}} for the HF interactions remains valid, since only the slowly varying envelope functions are affected. Here the index for the Kramers pair is included in η.}

Thus, we have now provided the general form of the HF interactions in the BHZ model for a given nanostructure in Eq. (35). Below we illustrate its use by an example.

VI. HYPERFINE INTERACTIONS FOR A PAIR OF HELICAL EDGE STATES

Next, we deal with the HF interactions for a pair of HESs in a HgTe 2D TI QW.

A. The helical edge states along the y-axis

To find the HF interactions, we first give the envelope wave functions for a pair of HESs. These can be found by introducing a boundary in the BHZ model and requiring that the envelope functions vanish at the boundary. For a semi-infinite half plane restricted to $x > 0$ and periodic boundary condition in the y-direction, k_y is still a good quantum number. The HESs envelope functions running along the y-direction become\footnote{For the contact ($i = 1$) and P-like ($i = 2, 3, P$) HF interactions, respectively. The dispersions are exactly linear in the semi-infinite half plane model used here.\footnote{Both the velocity $v_0 = -\sqrt{B^2 - D^2} |A|/(\hbar B)$ and $E_0 = -M_0 D/B$ are positive for realistic parameters and L_y is the length of the edge. The spinor parts of the HESs are independent of k_y and given by $\chi_u = n \left(\begin{array}{c} -i A \sqrt{B^2 - D^2} \\ 0 \\ B - D \\ 0 \end{array} \right)$, $\chi_d = n \left(\begin{array}{c} 0 \\ +i A \sqrt{B^2 - D^2} \\ 0 \\ B - D \end{array} \right)$,} for $\zeta = u, d$ (36)

with the energy dispersions $E_k^u = E_0 + hv_0 k_y$ and $E_k^d = E_0 - hv_0 k_y$, respectively. The dispersions are exactly linear in the semi-infinite half plane model used here.\footnote{Both the velocity $v_0 = -\sqrt{B^2 - D^2} |A|/(\hbar B)$ and $E_0 = -M_0 D/B$ are positive for realistic parameters and L_y is the length of the edge. The spinor parts of the HESs are independent of k_y and given by $\chi_u = n \left(\begin{array}{c} -i A \sqrt{B^2 - D^2} \\ 0 \\ B - D \\ 0 \end{array} \right)$, $\chi_d = n \left(\begin{array}{c} 0 \\ +i A \sqrt{B^2 - D^2} \\ 0 \\ B - D \end{array} \right)$,} \footnote{with the normalization factor $n = \sqrt{(B - D)/2B}$. The transverse part of the HESs are $h_{k_y}^u(x) = g_{-k_y}(x)$ and $h_{k_y}^d(x) = g_{k_y}(x)$, where $g_{k_y}(x) = \sqrt{2 \lambda_1 \lambda_2 (\lambda_1 + \lambda_2)} (e^{-\lambda_1 x} - e^{-\lambda_2 x})$, (38a) \footnote{with the k_y-dependence inside λ_1 and λ_2 as $\lambda_1 = -1 \sqrt{B^2 - D^2} \left(|A| + \sqrt{W_{k_y}} \right)$, (38b) \footnote{and $\lambda_2 = 1 \sqrt{B^2 - D^2} \left(|A| - \sqrt{W_{k_y}} \right)$}. Here λ_1^{-1} determines the decay length scale of the HES into the bulk and $W_{k_y} = \frac{A^2}{4} - \frac{M_0}{B} (B^2 - D^2) + \frac{D|A|\sqrt{B^2 - D^2}}{B} k_y + [B^2 - D^2] k_y^2$.} (38d)}}

\begin{align*}
\psi_{\Psi_{k_y}}(x, y) &= \frac{1}{\sqrt{L_y}} e^{ik_y y} h_{k_y}^u(x) \chi^u \quad \text{for} \quad \zeta = u, d
\end{align*}
The HESs only exist in the topological regime of the BHZ model where \(M_0/B > 0 \). The explicit forms above were derived under the assumption \(0 \leq M_0/B \leq A^2/(4B^2) \), where \(\lambda_{1,2} \) are purely real. This is the relevant regime for the realistic parameters for 2D TI in a HgTe QW.

Using the time-reversal properties of the basis states of the BHZ model (as discussed in Appendix A), it is seen explicitly that \(\Psi^i_{y,k_y}(x,y) \) and \(\Psi^d_{y,-k_y}(x,y) \) constitute a Kramers pair, since they are connected by the time-reversal operator \(\Theta \) as \(\Theta \Psi^i_{y,k_y}(x,y) = -\Psi^d_{y,-k_y}(x,y) \) and \(\Theta \Psi^d_{y,k_y}(x,y) = \Psi^u_{y,-k_y}(x,y) \). Often it consists of states with positive (negative) total angular momentum projection, see Eq. (40).

B. Hyperfine interactions for the helical edge states along the y-axis

The HF interactions are now readily found by inserting the envelope HESs along the y-axis into the general HF interaction formula \(\mathcal{H}_{HF} \) for any structure in a HgTe QW. Using Eq. (20), the contact HF interaction becomes

\[
\mathcal{H}^{(y)}_{HF,1} = \frac{1}{2\hbar} \frac{B - D}{2B} \sum_{k_y,k'_y} \sum_{n} e^{i(k_y - k'_y)Y_n} \frac{A_{S,j_n}(Z_n)}{I_y} \left[-\Lambda^{(x_n)}_{k_y,k'_y} I_{-n}c^u_{k_y,d}c^d_{k'_y} - \Lambda^{(x_n)}_{k_y,-k'_y} I_{-n}c^u_{k_y,d}c^d_{k'_y} \right] \tag{39}
\]

\[
\times \left[\Lambda^{(x_n)}_{k_y,k'_y} I_{-n}c^u_{k_y,d}c^d_{k'_y} - \Lambda^{(x_n)}_{k_y,-k'_y} I_{-n}c^u_{k_y,d}c^d_{k'_y} \right]
\]

where \(c^\dagger_{k_y,d} (c_{k'_y,d}) \) are the creation (annihilation) operators for the HESs \(\Psi^\dagger_{y,k_y}(x,y) \). We have emphasized in the notation that \(\mathcal{H}^{(y)}_{HF,1} \) is for HESs along the y-axis. The product of the transverse parts of the HESs at the nuclear spin \(n \) is introduced as

\[
\Lambda^{(x_n)}_{k_y,k'_y} \equiv \langle g^\dagger_{k_y} \mid x_n \rangle g_{k'_y} \mid x_n \rangle,
\]

and includes the only dependence of \(x_n \) in \(\mathcal{H}^{(y)}_{HF,1} \). Here we see that the contact HF interactions can produce transitions between the HESs \(\Psi^u_{y,k_y}(x,y) \) and \(\Psi^d_{y,k'_y}(x,y) \) at the expense of a change in a nuclear spin state. In particular, \(\text{elastic} \) transitions within the Kramers pair \(\Psi^u_{y,k_y}(x,y) \) and \(\Psi^d_{y,k'_y}(x,y) \) are possible. This is just as if the HESs were spin-1/2 as used e.g. in Refs. 61, 62 and 64. Hence, from the point of view of the electrons in the HESs the time reversal symmetry is broken. Of course, the composed system of electrons and nuclear spins is time-reversal invariant, since any system can be made time-reversal invariant by expanding it sufficiently.

The HF interaction due to the \(P \)-like states, \(\mathcal{H}^{(y)}_{HF,P} = \mathcal{H}^{(y)}_{HF,2} + \mathcal{H}^{(y)}_{HF,3} \), similarly found by inserting \(\Psi^c_{y,k_y} \) into Eq. (35) and using \(\tilde{H}_{HF,P} \), i.e.

\[
\mathcal{H}^{(y)}_{HF,P} = \frac{2}{15\hbar} \sum_{n} \sum_{k_y,k'_y} e^{i(k_y - k'_y)Y_n} \left\{ -2 \frac{B - D}{B} A_{P,j_n}^{EE} \left[\Lambda^{(x_n)}_{k_y,k'_y} I_{-n}c^u_{k_y,d}c^d_{k'_y} + \Lambda^{(x_n)}_{k_y,-k'_y} I_{-n}c^u_{k_y,d}c^d_{k'_y} \right] \right. \tag{41}
\]

\[
+ \left. \left[\frac{2\sqrt{3}A\sqrt{B^2 - D^2}}{|A|B} \text{Im}(A_{P,j_n}^{EE}) I_{x,n} + \frac{(B-D)A_{P,j_n}^{EE}}{B} + 3(B+D)A_{P,j_n}^{HH} \right] I_{x,n} \left[\Lambda^{(x_n)}_{k_y,k'_y} c^u_{k_y,d}c^d_{k'_y} - \Lambda^{(x_n)}_{k_y,-k'_y} c^u_{k_y,d}c^d_{k'_y} \right] \right\}
\]

where the dependence on \(Z_n \) is inside the HF couplings \(A_{P,j_n}^{XY} \), see Eq. (28). Here we used the rewritings \(i[I_{x,n}A_{P,j_n}^{EH} - I_{-n}A_{P,j_n}^{HE}] = -2I_{x,n}\text{Im}(A_{P,j_n}^{EE}) \) and \(i[I_{x,n}A_{P,j_n}^{HE} - I_{-n}A_{P,j_n}^{EH}] = +2I_{x,n}\text{Im}(A_{P,j_n}^{EH}) \), which build on the fact that \(A_{P,j_n}^{EH} = i\text{Im}(A_{P,j_n}^{EE}) \) due to the phase conventions of \(f_{ETL} \) as purely imaginary and \(f_H \) as real. This HF interaction also permits transitions between the two HESs – especially within the Kramers pair – just as the contact HF interaction (E39). The terms \(\propto c^\dagger_{k_y,d} c_{k'_y,d} \) affect transitions within a single HES. These are more unusual than their counterparts in the contact HF interaction (E39), since they do not only contain terms involving \(I_{x,n} \), but also \(I_{x,n} \). Hence, the HF interaction (E41) due to the \(P \)-like states has terms like a \(I_zS_z \) coupling, which are not present in e.g. a Heisenberg model. These terms \(\propto I_{x,n}c^\dagger_{k_y,d} c_{k'_y,d} \) stem from the fact that the HF interactions due to the \(P \)-like states Eq. (35) couple the states \(|H\pm\rangle\) and \(|E\pm\rangle\) within a single time-reversed block of \(H_0 \).

In order to shine more light on the form of the HF
interactions (39) and (41), they are given in Appendix E in terms of non-diagonal edge state spin operators using the picture of spin-1/2 HESs.

C. Hyperfine interactions for helical edge states along the x-axis: Curious differences

The HF interactions presented above are for HESs running along the y-axis. Now, we find various interesting differences in the HF interactions for HESs running along the x-axis.

The HESs are found in the same way as in sec. VI A. The only difference is that we consider the HESs localized near a boundary given by the x-axis instead of the y-axis, i.e. we study the semi-infinite half plane defined by $y > 0$. The HESs along the x-axis are given by

$$\Psi_{x,k_z}^\varsigma(x,y) = \frac{1}{L_x} e^{i(k'_z-k_z)x} \mathcal{g}_{k_z}^\varsigma(y) \chi_x^\varsigma \quad \text{for} \quad \varsigma = u,d. \quad (42)$$

Here $\mathcal{g}_{k_z}^u(y) = g_{-k_z}(y)$ and $\mathcal{g}_{k_z}^d(y) = g_{+k_z}(y)$ in terms of g_k in Eq. (38) and the spinor parts are

$$\chi_x^u = n \left(\begin{array}{c} \frac{A \sqrt{B^2-D^2}}{B-D} \vspace{1mm} \vspace{1mm} 0 \\ 0 \end{array} \right), \quad \chi_x^d = n \left(\begin{array}{c} 0 \vspace{1mm} \vspace{1mm} \frac{A \sqrt{B^2-D^2}}{B-D} \end{array} \right), \quad (43)$$

i.e. the imaginary unit i does not appear in the $E \pm$ components of the spinors as for the HESs along the y-axis, see Eq. (37). This is the mathematical origin of the differences between the HF interactions for the HESs in the two directions. These HESs also appear in Kramers pairs (Ψ_{x,k_z}^u and Ψ_{x,k_z}^d) and Ψ_{x,k_z}^u (Ψ_{x,k_z}^d) is referred to as spin-up (spin-down). The spin-up HES Ψ_{x,k_z}^u has negative velocity such that $E_k^u = E_0 - \hbar \nu_0 k_x$, while the spin-down HES has positive velocity, i.e. $E_k^d = E_0 + \hbar \nu_0 k_x$. Hence, the velocities of the HESs along the x and y axes have opposite signs, such that spin-ς always travels the same way along the boundary, see Fig. 2. Therefore, it is natural that k_x has to be exchanged by $-k_y$ to connect the HESs in the two perpendicular directions.

By inserting the HESs along the x-axis Eq. (42) into Eq. (35), the contact HF interaction becomes

$$\mathcal{H}_{HF,1}^{(x)} = \frac{1}{2\hbar} \sum_{k_x,k'_x} \sum_n \sum_{j,n} \left[\begin{array}{c} I_{x,n,c_{k_x}^u} c_{k_x}^u \vspace{1mm} \vspace{1mm} I_{x,n,c_{k_x}^d} c_{k_x}^d \end{array} \right] \Lambda_{k_x,k'_x}^{(39)} \left(Z_n \right) \quad (44)$$

$$\times \left[\begin{array}{c} \Lambda_{-k_x,-k'_x}^{(39)} \vspace{1mm} \vspace{1mm} \Lambda_{k_x,k'_x}^{(39)} \end{array} \right] = \left(\begin{array}{c} \Lambda_{k_x,k'_x}^{(39)} \vspace{1mm} \vspace{1mm} \Lambda_{-k_x,-k'_x}^{(39)} \end{array} \right),$$

where $\Lambda_{k_x,k'_x}^{(39)} = g_{k_x}^* (\chi_x^u) g_{k'_x} (\chi_x^u)$. Interestingly, the sign of the terms producing inter HES transitions is opposite to the one in $\mathcal{H}_{HF,1}^{(y)}$ (39). This difference stems from the imaginary unit i in χ_x^u (47), which is absent in χ_x^d (39). Moreover, the sign of k_x and k'_x is opposite in the Λ functions for $\mathcal{H}_{HF,1}^{(x)}$ (43) and $\mathcal{H}_{HF,1}^{(y)}$ (39), respectively. This is natural in order to maintain the propagation direction of the HES-spin $\varsigma = u,d$, see Fig. 2.

The HF interaction due to the P-like states for the HESs at the x-axis becomes

$$\mathcal{H}_{HF,x}^{(x)} = \frac{2}{15\hbar} \sum_n \sum_{k_x,k'_x} \frac{e^{i(k'_x-k_x)x}}{L_x} \left[\begin{array}{c} I_{x,n,c_{k_x}^u} c_{k_x}^u \vspace{1mm} \vspace{1mm} I_{x,n,c_{k_x}^d} c_{k_x}^d \end{array} \right] + \frac{2B-D}{B} \Lambda_{P,j,n}^{EE} \left[\begin{array}{c} \Lambda_{-k_x,k'_x}^{(39)} \vspace{1mm} \vspace{1mm} \Lambda_{k_x,-k'_x}^{(39)} \end{array} \right]$$

$$+ \left[\frac{2\sqrt{3}A \sqrt{B^2-D^2}}{|A|B} \text{Im}(A_{P,j,n}^{EH}) I_{y,n} + (B-D)A_{P,j,n}^{EE} + 3(B+D)A_{P,j,n}^{EH} \right] \left[\begin{array}{c} \Lambda_{-k_x,-k'_x}^{(39)} \vspace{1mm} \vspace{1mm} \Lambda_{k_x,-k'_x}^{(39)} \end{array} \right], \quad (45)$$

where the inter HES transition terms again have an opposite overall sign compared to $\mathcal{H}_{HF,P}^{(y)}$ (41). Another noteworthy difference is the exchange of the terms $I_{x,n,c_{k_x}^u} c_{k_x}^u$ in $\mathcal{H}_{HF,P}^{(y)}$ by $I_{y,n,c_{k_x}^u} c_{k_x}^u$ in $\mathcal{H}_{HF,P}^{(x)}$, i.e. intra
HES transitions are coupled to the nuclear spin operators perpendicular to the propagation direction. These differences again stem from the imaginary unit (or the lack thereof) in the spinors. Furthermore, the signs of k_x and k_y are again interchanged in the Λ functions by comparing $\mathcal{H}_{HF,P}^{(y)}$ and $\mathcal{H}_{HF,P}^{(z)}$.

D. Position averaged hyperfine interactions

In HgTe about 19% of the atoms have a non-zero nuclear spin and these can be assumed to be randomly distributed. In the HF interactions for the HESs the unit-cell position of every nuclear spin is included. This information is sample dependent and often valuable insights can be found without it. Therefore, we now consider the HF interactions averaged over the unit-cell position of the nuclear spins in analogy to impurity averaging. To be specific, we focus here on the HF interactions (49) and (51) for the HESs along the y-axis. Mathematically, the position averaged of some quantity F is introduced as

$$
\overline{F} = \frac{1}{N} \int d\mathcal{R}_{0,1} \cdots \int d\mathcal{R}_{N,N} F(\mathcal{R}_1, \ldots, \mathcal{R}_N),
$$

where N is the number of non-zero nuclear spins covered by the HESs. We only average over the positions $\mathcal{R}_{0,1} \equiv (\mathcal{X}_n, Z_n)$ in the cross section area A of the HESs along the y-axis. Thereby we keep the positions \mathcal{Y}_n, which break translational invariance along the edge and ultimately can lead to backscattering.

Now we study the position averaged HF Hamiltonians. However, one can equally well position average at a later stage of a calculation, if it is physically relevant for a particular phenomenon, e.g. position averaging of the transition rates. Using the normalization of $f_{F-term A}$ in Appendix B the position averaged contact HF interaction (49) becomes

$$
\overline{\mathcal{H}}_{HF,1}^{(y)} = \frac{1}{4h} \frac{B-D}{2B} \sum_{k_x k'_y} \sum_n e^{i(k'_y - k_y)Y_n} A_{S,j_n}^{\text{Atomic}} \frac{A_{S,j_n}}{N} \left(\overline{\lambda}, \mathcal{X}_n \right) \int_A d\mathcal{R}_{0,1} \cdots d\mathcal{R}_{N,N} \overline{F}(\mathcal{R}_1, \ldots, \mathcal{R}_N) \right),
$$

where the cross section area A is given in terms of the QW thickness W_z and the HES width W_a as $A = W_z W_a$, such that $\int_A d\mathcal{R}_{0,1} = 1$. Here W_z is on the order of a few decay lengths λ_z^{-1} and the number of atoms covered by the HESs is $N \equiv (L_A)/\varepsilon_a$. We observe that the position dependent HF coupling $A_{S,j_n}(\mathcal{X}_n)$ (47) is replaced by a homogenous HF coupling $A_{S,j_n}^{\text{Atomic}}/N$ due to the position averaging as in the case of quantum dots. The position average of the product of transverse functions, $\overline{\lambda}_{k,k'} = \int_0^{W_z} d\mathcal{X}_n g_{k}(\mathcal{X}_n) g_{k'}(\mathcal{X}_n)$, is now independent of the positions \mathcal{X}_n. It can be well approximated by replacing W_z by ∞ in the upper limit, which gives

$$
\overline{\lambda}_{k_x,k'_y} = \frac{2 \lambda_1 \lambda_2 (\lambda_1 + \lambda_2)}{(\lambda_1 - \lambda_2)^2} \left(\frac{2 \lambda'_2 (\lambda'_1 + \lambda'_2)}{(\lambda'_1 - \lambda'_2)^2} \right) \times \left[\frac{1}{\lambda'_1 + \lambda'_2} - \frac{1}{\lambda'_2 + \lambda'_1} - \frac{1}{\lambda'_1 + \lambda'_2} + \frac{1}{\lambda'_2 + \lambda'_1} \right],
$$

where λ_i and λ'_i depend on k_y and k'_y, respectively. It is evident that $\overline{\lambda}_{k_x,k'_y} = \overline{\lambda}_{k'_y,k_x}$, since g_{k_y} in Eq. (48) is real. Moreover, $\overline{\lambda}_{k_x,k_y} = 1$ due to the normalization of g_{k_y}. Furthermore, in the particle-hole symmetric limit $D = 0$, we have $g_{k_y}(x) = \overline{g}_{k_y}(x)$ such that

$$
\overline{\lambda}_{k_x,k'_y}(D=0) = \overline{\lambda}_{-k_x,-k'_y}(D=0) = \overline{\lambda}_{k_y,k'_y}(D=0). \quad \text{Hence, the position averaged contact HF interaction (47) becomes isotropic in the particle-hole symmetric limit. Since the BHZ model is valid only close to the Fermi point, we expand $\overline{\lambda}_{k_x,k'_y}$ to lowest order in k_y and k'_y for $D \neq 0$, i.e. $\overline{\lambda}_{k_x,k'_y} \approx \eta_{k_y,k'_y}^\Lambda$, where}

$$
\eta_{k_y,k'_y} = 1 - \frac{2^2 (A^2 B^2 + 2B^2 D^2 M_6)}{8 B M_6 (B^2 - D^2)} (k_{y} - k'_{y})^2.
$$

Hence, the lowest order expansion fulfills $\eta_{k_y,k'_y} = \eta_{-k_y,-k'_y}$ and $\eta_{k_x,k'_y} = \eta_{-k_x,-k'_y}$ such that the position averaged contact HF interaction (47) simplifies to

$$
\overline{\mathcal{H}}_{HF,1}^{(y)} \approx \frac{1}{4h} \frac{B-D}{2B} \sum_{k_x k'_y} \sum_n e^{i(k'_y - k_y)Y_n} A_{S,j_n}^{\text{Atomic}} \frac{A_{S,j_n}}{N} \left(\overline{\lambda}, \mathcal{X}_n \right) \int_A d\mathcal{R}_{0,1} \cdots d\mathcal{R}_{N,N} \overline{F}(\mathcal{R}_1, \ldots, \mathcal{R}_N) \right),
$$

where the P-states like $\overline{\mathcal{H}}_{HF,1}^{(y)}$ in Eq. (51) becomes

$$
\overline{\mathcal{H}}_{HF,P}^{(y)} \approx \frac{2}{15h} \sum_{k_x k'_y} e^{i(k'_y - k_y)Y_n} A_{S,j_n}^{\text{Atomic}} \frac{A_{P,j_n}}{N} \left(\overline{\lambda}, \mathcal{X}_n \right) \int_A d\mathcal{R}_{0,1} \cdots d\mathcal{R}_{N,N} \overline{F}(\mathcal{R}_1, \ldots, \mathcal{R}_N) \right),
$$

by using the expansion $\overline{\lambda}_{k_x,k'_y} \approx \eta_{k_y,k'_y}$ and the normalization conditions for f_H and f_{ERT} (see Appendix B). Interestingly, the terms in $\overline{\mathcal{H}}_{HF,1}^{(y)}$ (41) coupling $I_{x,n}$ and $c_{k_x}^d c_{k'_x}^\Lambda$ vanish in the position averaging, since
TABLE II. Estimates of the effective HF couplings (53) for a pair of HESs. In parentheses we give the percentage of the HF coupling stemming from the HF Hamiltonians due to P-like states, e.g. \(4(\mathcal{B} - \mathcal{D})/(15\mathcal{B}) \) \(A_{n,\mathcal{J}_{H}}^{\text{atomic}}/A_{J_{n}}^{\mathcal{H}} \). Here we use the atomic HF couplings in table 1 and the BHZ model parameters. \(B \) and \(D \) only for a 70Å thick QW.

\[
\begin{array}{l|c|c|c|c}
\text{state} & \text{199Hg} & \text{201Hg} & \text{123Te} & \text{125Te} \\
\hline
A_{J_{n}}^{\mathcal{H}} & 1.1 & -0.38 & -12 & -14 \\
& (77\%) & (75\%) & (73\%) & (73\%) \\
A_{J_{n}}^{\perp} & 0.30 & -0.11 & -3.5 & -4.2 \\
& (14\%) & (12\%) & (12\%) & (12\%)
\end{array}
\]

VII. DISCUSSION, SUMMARY AND OUTLOOK

In this paper, we have provided benchmark results within the BHZ model for the form and magnitude of (i) the contact HF interaction in Eq. (20), (ii) the dipole-like HF interaction in Eq. (31a) and (iii) the coupling of the electrons orbital momentum to the nuclear spin in Eq. (31b).

All the HF interactions couple the time-reversed blocks of the BHZ Hamiltonian \(\mathcal{H} \) – just as the Rashba spin-orbit coupling\(^{26} \) and the bulk inversion asymmetry terms.\(^{8} \) However, in contrast to the Rashba and bulk inversion asymmetry terms, the HF interactions break time-reversal symmetry from the electronic point of view. Therefore, the HF interactions couple directly the Kramers pair of counterpropagating HESs of opposite wave numbers \((k \text{ and } -k) \), and thereby open for elastic backscattering. In contrast, the Rashba spin-orbit interaction combined with other scattering mechanisms can only couple the HESs inelastically\(^{31,34,61,64} \). Hence, our careful microscopic modelling of the HF interactions confirms that elastic backscattering spin-flip processes indeed are present as correctly anticipated on physical grounds in previous works on the interaction between HESs (modelled as spin-1/2) and one or more fixed magnetic moments.\(^{61-65} \)

Furthermore, we estimated the atomic HF constants relevant for a HgTe QW, see table 1. These estimates are generally smaller by an order of magnitude or so compared to similar estimates for GaAs by Fischer et al.\(^{47,100} \) This is natural, since heavier elements often have lower HF couplings due to their higher principal quantum number of the outermost electron [see e.g. Eqs. (1), (2)]. As a consequence, the typical time for polarizing the nuclear spins by a current through the HES\(^{21} \) of a HgTe QW is increased to hours or days compared to seconds for a GaAs QW in the quantum hall regime.\(^{24} \)

From the HF Hamiltonians within the BHZ model, we derived a general formula \(\mathcal{H}^{(y)}_{\text{HF}} \) for the HF interactions for any nanostructure in a HgTe QW. The input of this formula is the envelope function of the given structure, where the effects of bulk inversion asymmetry,\(^{8} \) Rashba spin-orbit coupling\(^{26} \) or magnetic fields\(^{21} \) can be included. From this formula, we found the HF interactions for a pair of HESs. Interestingly, the HF Hamiltonians depend on the orientation of the boundary at which the HESs propagate: The sign of the terms creating inter HES transitions is opposite for perpendicular boundaries. This has not been considered previously in works on HESs coupled to fixed spins.\(^{61,65} \) On the level of transition rates between the HESs,\(^{61,62,64} \) such a difference is less important, since the rates are proportional to the HF matrix elements squared. However, this sign might play a role for more delicate phenomena such as Kondo physics\(^{63,65} \) or for HESs circulating one or more fixed spins.

We also found that the HF interactions due to the P-like states couple the intra HES transitions to both
nuclear spin components perpendicular to the propagation direction of the HESs, see Eqs. (41)–(45). The unusual terms coupling $I_{x,n}$ ($I_{y,n}$) to the intra HES transitions for propagation along the y-axis (x-axis) were not included in previous studies. These terms might complicate the nature of nuclear spin polarization and its associated Overhauser effective magnetic field in a non-trivial way. For instance, this could affect the spin-orbit interaction induced backscattering processes between the HESs in the presence of a finite Overhauser field discussed in Ref. [64].

Finally, we averaged over the positions of the nuclear spins to remove the sample dependent information. This revealed that the total HF Hamiltonian is quite generally anisotropic and, moreover, that the contribution due to P-like states can dominate over the contact HF contribution, see table [11] and Eq. (52). Therefore, it can be important to include the HF interactions relevant for P-like states for the HESs. Moreover, we found that the coupling of $I_{x,n}$ ($I_{y,n}$) to the intra HES transitions for propagation along the y-axis (x-axis) vanishes in the position averaging of the HF Hamiltonians. In this sense, these couplings are somewhat fragile compared to the usual coupling of $I_{x,n}$ to the intra HES transitions. On the other hand, position averaging at a later stage of a calculation might allow interesting effects from these unusual terms to survive.

In passing, we remark that the nuclear spins can open a very small energy gap in the HES spectrum. This can be shown by averaging out all spacial directions of the nuclear spin positions in the total HF interaction. Treating the nuclear spins as a semi-classical field of zero mean value, the energy gap becomes proportional to the in-plane field. The ensemble averaged energy gap is proportional to $N^{-1/2}$ and estimated to be on the order of $10^{-4}\mu$eV for a micron sized edge, which seems out of the current experimental range.

VIII. ACKNOWLEDGMENTS

We are especially grateful to Jan Fischer and Dietrich Roth for helpful correspondence on their work in Refs. [47]–[50] and Ref. [77], respectively. We also thank Laurens Molenkamp, Björn Trauzettel, Andrezj Kędziorski, Jens Paaske and Karsten Flensberg for useful discussions. Both AML and GP are supported by Grant No. MAT2011-24331 and by the ITN Grant 234970 (EU). AML acknowledges the Juan de la Cierva program (MICINN) and Grant No. FIS2009-07277 and the Carlsberg Foundation. Furthermore, we acknowledge FIS2010-22438-E (Spanish National Network for Physics of Out-of-Equilibrium Systems).

Appendix A: On the BHZ model states

This appendix describes various details of the BHZ states $\vert E\pm \rangle$ and $\vert H\pm \rangle$. In particular, the time-reversal properties and the phase conventions of the envelope functions are discussed.

The states in the BHZ model as presented in Ref. [25] are given by

\[
\begin{align*}
\vert E^+ \rangle &= f_1(z)\vert \Gamma_6, +1/2 \rangle + f_4(z)\vert \Gamma_8, +1/2 \rangle, \\
\vert H^+ \rangle &= f_3(z)\vert \Gamma_8, +3/2 \rangle, \\
\vert E^- \rangle &= f_2(z)\vert \Gamma_6, -1/2 \rangle + f_5(z)\vert \Gamma_8, -1/2 \rangle, \\
\vert H^- \rangle &= f_6(z)\vert \Gamma_8, -3/2 \rangle,
\end{align*}
\]

similar to Eq. [4], but without specifying any phase conventions for the envelope functions $f_n(z)$. The lattice periodic functions can be given as

\[
\begin{align*}
\vert \Gamma_6, +1/2 \rangle &= \vert S\rangle \vert \uparrow \rangle, \\
\vert \Gamma_6, -1/2 \rangle &= \vert S\rangle \vert \downarrow \rangle,
\end{align*}
\]

and

\[
\begin{align*}
\vert \Gamma_8, 3/2 \rangle &= +\frac{1}{\sqrt{2}}\left(\vert P_x \rangle + i\vert P_y \rangle \right)\vert \uparrow \rangle, \\
\vert \Gamma_8, 1/2 \rangle &= -\sqrt{\frac{2}{3}}\vert P_x \rangle \vert \uparrow \rangle + \frac{1}{\sqrt{6}}\left(\vert P_x \rangle + i\vert P_y \rangle \right)\vert \downarrow \rangle, \\
\vert \Gamma_8, -1/2 \rangle &= -\sqrt{\frac{2}{3}}\vert P_x \rangle \vert \downarrow \rangle - \frac{1}{\sqrt{6}}\left(\vert P_x \rangle - i\vert P_y \rangle \right)\vert \uparrow \rangle, \\
\vert \Gamma_8, -3/2 \rangle &= -\frac{1}{\sqrt{2}}\left(\vert P_x \rangle - i\vert P_y \rangle \right)\vert \downarrow \rangle,
\end{align*}
\]

where the Bloch amplitudes $\vert S \rangle$, $\vert P_x \rangle$, $\vert P_y \rangle$ and $\vert P_z \rangle$ transform the same way as the well-known orbitals with the same names. The orbitals are coupled to the spherical harmonics. Thus, Γ_8,m_j correspond to $\vert j = 3/2, m_j, l = 1, s = 1/2 \rangle$ in the angular momentum representation using the total angular momentum $\mathbf{J} = \mathbf{L} + \mathbf{S}$ as a good quantum number, where \mathbf{S} is the electron spin in the basis $\{\uparrow, \downarrow\}$. Likewise, Γ_6,m_j simply corresponds to the $l = 0$ state. Note that the split-off band Γ_7 with $j = 1/2$ and $l = 1$ is neglected in the BHZ model. Here $\vert S \rangle$ is chosen to be purely imaginary and $\vert P_x \rangle$, $\vert P_y \rangle$ and $\vert P_z \rangle$ to be real. Furthermore, we follow the convention by Bernevig et al. and Novik et al. by using an overall opposite sign for the Γ_8 states in terms of the P states in Eq. [A3] compared to other authors. This sign change is not important for the purposes of this paper.

Next we discuss the phase conventions for the envelope functions made in the main text. The envelope functions $f_n(z)$ ($n = 1, \ldots, 6$) are found from the Luttinger-Kane model at $k_x = k_y = 0$ and therefore has to fulfill the
following differential equations:25,76

\begin{equation}
Tf_n(z) - \sqrt{\frac{2}{3}} P_0 i \partial_z f_{n+3}(z) = E_{k=0} f_n(z), \quad (A4a)
\end{equation}

\begin{equation}
- \sqrt{\frac{2}{3}} P_0 i \partial_z f_n(z) + W_{-} f_{n+3}(z) = E_{k=0} f_n(z), \quad (A4b)
\end{equation}

for \(n = 1, 2 \) only [i.e. only for the two pairs \((f_1, f_4)\) and \((f_2, f_3)\)]. Similarly:25,76

\begin{equation}
W+f_n(z) = E_{k=0} f_n(z), \quad \text{for } n = 3, 6 \text{ only.} \quad (A5)
\end{equation}

Here we have introduced the real operators

\begin{equation}
T = E_c(z) + \frac{\hbar^2}{2 m_e} k_z (2 F(z) + 1) k_z, \quad (A6a)
\end{equation}

\begin{equation}
W_{\pm} = E_u(z) + \frac{\hbar^2}{2 m_e} k_z (2 \gamma_2 z \mp \gamma_1(z)) k_z, \quad (A6b)
\end{equation}

where \(k_z = -i \partial_z \), \(E_c(z) \) is the conduction (valence) band edge, \(m_e \) the bare electron mass, \(\gamma_{1,2} \) are the Luttinger parameters,110 and \(F(z) \) is a real function including the remote \(\Gamma_5 \) bands perturbatively.25,76 The parameters \(\gamma_{1,2}, F \) and \(E_{c,u} \) are different in the HgTe and CdTe layers of the heterostructure, which leads to the \(z \)-dependence. The solution of these equations will also give the energy for that particular solution (energy band) \(E_{k=0} \) at \(k = (0, 0) \). From Eq.(A5) it follows that we can choose \(f_3(z) = f_6(z) \), which is simply denoted as \(f_H(z) \) in the main text. Furthermore, Eqs.(A4) allow us to choose \(f_1(z) = f_2(z) \) and \(f_4(z) = f_5(z) \), which are called \(f_{E1}(z) \) and \(f_{E2}(z) \), respectively, in the main text. By comparison of Eqs.(A4) and their complex conjugates, it follows that we can choose \(f_1(z) \) real and \(f_4(z) \) purely imaginary as in Ref.74.

Now we turn our attention to the time-reversal properties of the states \(|E\pm\rangle\) and \(|H\pm\rangle\). The time-reversal operator \(\Theta \) is defined up to an arbitrary phase factor. Here we use \(\Theta = -i \sigma_y K \), where \(K \) is the complex conjugation operator and \(\sigma_y \) a Pauli matrix in electron spin-space. The time-reversal operator \(\Theta \) acts differently in different bases (due to the complex conjugation), so one should stick to the same basis through out a calculation.25 The \(|\Gamma_i, m_j\rangle\) states under the time-reversal operator follow from Eqs.(A2) and (A3) by using that the \(P \)-like states are real, the \(S \)-like states are purely imaginary and that \(\Theta|\uparrow\rangle = +|\downarrow\rangle \) and \(\Theta|\downarrow\rangle = -|\uparrow\rangle \), i.e.

\begin{align}
\Theta|\Gamma_6, \pm 1/2\rangle &= \mp |\Gamma_6, \mp 1/2\rangle, \quad (A7a) \\
\Theta|\Gamma_8, \pm 1/2\rangle &= \mp |\Gamma_8, \mp 1/2\rangle, \quad (A7b) \\
\Theta|\Gamma_8, \pm 3/2\rangle &= \mp |\Gamma_8, \mp 3/2\rangle. \quad (A7c)
\end{align}

Therefore, we can now evaluate e.g. \(\Theta|E+\rangle \) by using Eq.(A7) and that \(f_{E1} \) is real and \(f_{E2} \) is purely imaginary, which gives \(\Theta|E+\rangle = -|E-\rangle \). Hence, our conventions lead to

\begin{align}
\Theta|E\pm\rangle &= \mp |E\mp\rangle, \quad (A8a) \\
\Theta|H\pm\rangle &= \mp |H\mp\rangle, \quad (A8b)
\end{align}

which fulfill \(\Theta^2 = -1 \) as expected. We remark that that Rothe \textit{et al.}76 find opposite signs under time-reversal (i.e. \(\Theta|E\pm\rangle = \mp |E\mp\rangle \) and \(\Theta|H\pm\rangle = \mp |H\mp\rangle \)), simply because an opposite overall sign was chosen in the definition of the time-reversal operator.111 In Ref.67, the same signs as in Eq.(A8) are found.

Appendix B: Normalization of the BHZ states

In this Appendix, the normalization of the envelope functions and lattice periodic functions within the envelope function approximation is discussed. To this end, we use \(\varphi_{k,H+}(r) \) in Eq.(B1) as an example. The entire wavefunction is normalized in the usual way, i.e.

\begin{equation}
\int_{\mathcal{V}} dr |\varphi_{k,H+}(r)|^2 = 1, \quad (B1)
\end{equation}

where \(\mathcal{V} \) is the volume of the entire system. The normalization of the entire wavefunction(B1) leaves a freedom to normalize the envelope function and the lattice periodic function in the most convenient way for the problem at hand. Various choices are found in the literature, see e.g. footnote 2 in the review of Coish and Baugh31.

To see how this normalization choice works in practice, we begin by separating the left-hand side of the normalization condition(B1) into a product of the envelope function and the lattice periodic function normalization, respectively. To this end, the normalization condition(B1) is rewriter by dividing the integral over the entire space into a sum of integrals over the unit cells as in Eq.(B) i.e.

\begin{align}
1 &= \frac{v_a}{L_x L_y} \int_{\mathcal{V}} dr |f_H(z)|^2 |u_{\Gamma_8,+\frac{3}{2}}(\mathcal{R}_n + \rho)|^2 \\
&= \frac{v_a}{L_x L_y} \sum_{\mathcal{R}_n} \int_{v_{uc}} d\rho |f_H(\rho_z + \mathcal{Z}_n)|^2 |u_{\Gamma_8,+\frac{3}{2}}(\mathcal{R}_n + \rho)|^2 \\
&\simeq \frac{v_a}{L_x L_y} \sum_{\mathcal{R}_n} \int_{v_{uc}} d\rho |f_H(\mathcal{Z}_n)|^2 |u_{\Gamma_8,+\frac{3}{2}}(\mathcal{R}_n + \rho)|^2 \\
&= \frac{v_a}{L_x L_y} \sum_{\mathcal{R}_n} \int_{v_{uc}} |f_H(\mathcal{Z}_n)|^2 \left[\int_{v_{uc}} d\rho |u_{\Gamma_8,+\frac{3}{2}}(\mathcal{R}_n + \rho)|^2 \right], \quad (B2)
\end{align}

where we used in the third equality that the envelope function – by construction – is slowly varying on the scale of the unit cell, so \(f_H(\rho_z + \mathcal{Z}_n) \approx f_H(\mathcal{Z}_n) \), and that the lattice periodic functions are periodic with the lattice, i.e. \(u_{\Gamma_8,+\frac{3}{2}}(\mathcal{R}_n + \rho) = u_{\Gamma_8,+\frac{3}{2}}(\rho) \) for all lattice vectors \(\mathcal{R}_n \). The integral of \(|u_{\Gamma_8,+\frac{3}{2}}(\rho)|^2 \) over the \(n \)th unit cell is the same for every unit cell and hence independent.
of n, which we indicate by $v_{uc}^{(n)} \rightarrow v_{uc}$. Moreover, the sum over lattice points in Eq. (12) can be made into an integral (including the unit cell volume v_{uc}), since the envelope function varies slowly on the inter-atomic scale, i.e. $\sum R_e |f_H(Z)|^2 \simeq \frac{1}{v_{uc}} \int_V dR |f_H(Z)|^2$. Therefore, we arrive at

$$1 = \frac{v_{uc}}{L_x L_y} \int_V dR |f_H(Z)|^2 \left[\int d\rho |u_{\Gamma_{g,s}+\frac{1}{2}}(\rho)|^2 \right], \quad (B3)$$

where the normalization of the entire wavefunction in Eq. (11) have been written as a product of the normalization of the envelope function and lattice periodic function part, respectively. Thus, it is now clear that some freedom exists in the normalization choice.

In this paper, we normalize the lattice periodic function as Fischer et al. i.e.

$$\int d\rho |u_{\Gamma_{g,s}+\frac{1}{2}}(\rho)|^2 = \frac{v_{uc}}{v_a} = 2 \quad (B4)$$

using that a zinc-blende crystal like HgTe or GaAs contains two atoms per unit cell, $v_{uc} = 2v_a$. This normalization has the advantage that the atomic HF constants found in the main paper are independent of the number of atoms in the unit cell. Moreover, the envelope function is normalized as

$$\frac{1}{L_x L_y} \int_V dR |f_H(Z)|^2 = 1, \quad (B5)$$

such that Eq. (B3) is fulfilled.

The normalization procedure follows the same lines as above for the other BHZ basis functions, e.g. all lattice periodic functions are normalized to the number of atoms in the unit cell. When the wave function is not a simple product of an envelope function and a lattice periodic function, then it should be used that different lattice periodic functions are orthogonal, i.e. $\int d\rho |u_{\Gamma_{g,s}+\frac{1}{2}}(\rho)|^2 = 2\delta_{\Gamma_{g,s}+\frac{1}{2},\Gamma_{g,s}+\frac{1}{2}}$. Finally, it should be noted that for the $E\pm$ states, we end up with a combined normalization for the two envelope functions, i.e. $\int dz \left[|f_{E\pm}(z)|^2 + |f_{E\mp}(z)|^2 \right] = 1$. We assume that each of these two envelope functions are normalized to one half.

Appendix C: Details on the calculation of the atomic integrals of the HF interactions for P-like states

This Appendix deals with the integrals over the atomic wave functions of the form

$$\int d\rho \left[\Psi_{Hg,Tr}(\rho + d/2) \right]^* h_n^2 \Psi_{Hg,Tr}^*(\rho + d/2), \quad (C1)$$

which appear in the matrix elements of $H_{HF,2}$ and $H_{HF,3}$ in Sec. IV C. The atomic wave functions are written as $\Psi_{Hg,Tr}^*(\rho + d/2) = H_{HF,2}(\rho + d/2)$, i.e. a product of a radial and an angular part as in the main text. The angular part of the wave functions $\Psi_{\Gamma_{g,s}m}^H(\theta, \phi)$ are combinations of the usual spherical harmonics $Y_{lm}(\theta, \phi)$ and the electronic spin-1/2 (|↑⟩ and |↓⟩) and inherit the symmetry of the bands.

$$\Psi_{\Gamma_{g,s}+\frac{1}{2}}(\theta, \phi) = -Y_1^1(\theta, \phi) |↑⟩, \quad (C2)$$

$$\Psi_{\Gamma_{g,s}+\frac{1}{2}}(\theta, \phi) = -\sqrt{\frac{3}{2}} Y_0^0(\theta, \phi) |↑⟩ - \frac{1}{\sqrt{3}} Y_1^1(\theta, \phi) |↓⟩, \quad (C3)$$

which are all eigenfunctions of $J_z = L_z + S_z$ (with eigenvalue $\hbar m_j$), $J^2 = (L + S)^2$ (with $j = 3/2$, L^2 (with $l = 1$ due to P-states) and S^2 (with $s = 1/2$). To be consistent with the BHZ model, we use the same overall sign as Refs. 25 and 107, which is opposite to the one used in e.g. Refs. 73 and 109 (see also Appendix A, Eq. (A3) and endnote 108). However, this overall sign cancels out in the matrix elements between P states and therefore has no effect here.

To find the integrals (C1), the spherical approximation Eq. (24) is used. This is an excellent approximation, since most of the weight of the integrals are close to the atomic core. To facilitate the calculations, the HF dipole-dipole like interaction for a single nuclear spin h_{zz}' Eq. (11) is rewritten as (choosing the origin at the nuclear spin, i.e. $\mathbf{r}_n = \mathbf{r} - \mathbf{R}_n \rightarrow \mathbf{r}$)

$$h_{zz}' = \frac{\mu_0}{4\pi} \gamma y \gamma_y \left[\frac{1}{r^3} - \frac{1}{r^5} \right] \int \left(\int d\rho d\rho' \frac{|\Psi_{Hg,Tr}^*(\rho + d/2)|^2}{r^2} \frac{1}{r'}^2 \right) \left[3z^2 - 2 \frac{e^2}{\hbar c} \int d\rho d\rho' \frac{|\Psi_{Hg,Tr}^*(\rho + d/2)|^2}{r^2} \frac{1}{r'}^2 \right] \left[2S_z I_{z,n} - \frac{1}{2} (S_z I_{z,n} + S_z I_{z,n}) \right]$$

$$\times \left\{ \left[\frac{3z^2 - 2 \frac{e^2}{\hbar c} \int d\rho d\rho' \frac{|\Psi_{Hg,Tr}^*(\rho + d/2)|^2}{r^2} \frac{1}{r'}^2 }{r^2} \right] \left[S_z I_{z,n} - \frac{1}{2} (S_z I_{z,n} + S_z I_{z,n}) \right] + 3 \left[\frac{e^2}{\hbar c} \int d\rho d\rho' \frac{|\Psi_{Hg,Tr}^*(\rho + d/2)|^2}{r^2} \frac{1}{r'}^2 \right] \frac{1}{2} (S_z I_{z,n} + S_z I_{z,n}) \right\}$$

This is written in such a way that the integrals (like Eq. 24) consist of a radial integral over $\frac{1}{r^3} \rightarrow h_{zz}'$ times a sum of angular integrals. The terms in the curly bracket become the sum of angular integrals, where the space dependencies are seen to form spherical tensor operators or sums thereof. Therefore, the Wigner-Eckart theorem is useful to identify the integrals that are zero, see e.g. Ref. 90. As an example, the element for a Hg nuclear spin between the $\Psi_{\Gamma_{g,s}m}^H(\mathbf{r})$ states, appearing in the matrix element $\langle \phi_{k+,\Gamma_{g,s}} | H_{HF,2} | \phi_{k+,\Gamma_{g,s}} \rangle$, is found to be
(after some calculations)
\[\int_0^{r_{max}} dr r^{2} \int_0^{2\pi} d\theta \sin(\theta) |\Phi_{\Gamma_s,\tau/2}^{Hg}(r)|^2 h_{\alpha}^{3/2} \Phi_{\Gamma_s,\tau/2}^{Hg}(r) \]
\[= \frac{\mu_0}{4\pi \gamma_4} \gamma_{n} \left\langle \frac{1}{r^3} \right\rangle_r^{Hg} \delta_{\tau,\tau'} \left[-\frac{1}{5} \hbar I_{z,n} \right] \]
(C4)

using Eqs. (C2,C3) and the definition (25). The rest of the integrals for \(h_0^3 \) are found similarly.

Finally, we note that the integrals (C1) involving \(h_0^3 \) are much simpler to evaluate. The integrals in the spherical approximation (24) again separate into the radial integral \((1/r^3)_{R_{Hg}/R_{Te}}\) times a sum of angular integrals, which can be found by using the rewriting \(L_n \cdot I_n = L_{z,n}I_{z,n} + \frac{1}{2}[L_{+n}I_{-n} + L_{-n}I_{+n}] \) and Eq. (C2).

Appendix D: Estimation of the Atomic HF Constants

In this Appendix, we estimate the atomic HF couplings Eqs. (18,20).

\[A^{Atomic}_{\Gamma_s,j,n} = \frac{2\mu_0}{3} g_e^2 B_j \mu N |u_{\Gamma_s}(R_n)|^2, \]
(D1a)

\[A^{Atomic}_{\Gamma_p,j,n} = \frac{\mu_0}{4\pi} g_e^2 B_j \mu N (N_{\Gamma_p}/2) |\alpha_{jn}|^2 \left\langle \frac{1}{r^3} \right\rangle_r^{\Gamma_p} \]
(D1b)

along the same lines as Fischer et al.27 These estimates are given in Table 1. Below, we go through the ingredients to make these estimates.

Within the LCAO approach (13), the lattice periodic functions within a unit cell are written as a linear combination of the two atomic orbitals. The relative weight between the two orbitals is related to the ionization and found to be12,133

\[\alpha_{Te} \sim \sqrt{0.8} \quad \text{and} \quad \alpha_{Hg} \sim \sqrt{0.2}, \]
(D2)

which is taken to be the same for the \(\Gamma_6 \) and \(\Gamma_8 \) bands.12

Moreover, the \(g \)-factors for the various isotopes are27

\[g_{199}^{Hg} = 1.01, \quad g_{201}^{Hg} = -0.37, \]
(D3a)

\[g_{123}^{Te} = -1.47, \quad g_{125}^{Te} = -1.78. \]
(D3b)

These are seen to vary in sign, which is the reason for the sign variation of the HF couplings.

Furthermore, to estimate the HF couplings, the atomic wave functions \(\Psi_{\Gamma_s/Te}^{Hg/Te} \) also have to be given explicitly. The angular part follow the band symmetry as in Eq. (C2). As for the radial part, we follow Fischer et al.27 and approximate it by a hydrogenic radial eigenfunction \(R_{ii}(r) \) with an effective charge \(eZ_{eff} \) replacing the actual charge of the nucleus \(eZ \) in order to include atomic screening effects etc., i.e. \(Z_{eff} < Z \). The outermost electrons in Hg (Te) have the principal quantum number \(n = 6 \) (\(n = 5 \)) such that \(R_{\Gamma_s}^{Hg/(Te)}(r) = R_{6(5),1}(r) \)

and \(R_{\Gamma_p}^{Hg/(Te)}(r) = R_{6(5),0}(r) \). Clementi et al.114,115 have calculated the effective charges \(Z_{eff} \) for various atoms and orbitals and found that \(Z_{eff}(Te,5s) = 12.5, Z_{eff}(Te,5p) = 10.8 \) and \(Z_{eff}(Hg,6s/6p) = 11.2 \), which obviously is much smaller than the bare nuclear charges \(eZ = 52e \) for Te and \(eZ = 80e \) for Hg.

Using \(|u_{\Gamma_s}(R_n)|^2 \) \(\approx (N_{\Gamma_s}/2)^2 |\alpha_{jn}|^2 |\Phi_{\Gamma_s}(0)|^2 \) with the hydrogenic orbital \(|\Phi_{\Gamma_s}(r)| = R_{0}(r)Y_{0}^{\mu}(\theta, \phi)\) for isotope \(j \), we can now give the atomic contact HF coupling as

\[A^{Atomic}_{\Gamma_s,j} \approx \frac{2\mu_0}{3} g_e^2 B_j \mu N (N_{\Gamma_s,1/2}/2) |\alpha_{jn}|^2 [Z_{eff}(j,p)/3]^{3/2}, \]
(D4)

where \(a_0 = 4\pi e_0 h^2/(m_e c^2) \) is the Bohr radius and \(e_0 \) is permittivity of free space.

The hydrogenic like atomic orbitals also makes it easy to calculate \((1/r^3)_{R_{Hg}/R_{Te}}\) in Eq. (C2) numerically, which shows that neither the nuclear length scale \(r_c \) nor \(r_{max} \) make a difference in practice. Hence, we can use

\[\left\langle \frac{1}{r^3} \right\rangle_r^{\Gamma_p} \approx \int_0^{\infty} dr r^2 |R_{n,\ell=1}(r)|^2 \left\langle \frac{1}{r^3} \right\rangle_r^{\Gamma_p} \]
(D5)

to find the HF coupling \(A^{Atomic}_{\Gamma_p,j} \) for the \(P \) states.

Therefore, now we only need one more ingredient to be able to estimate the HF couplings, namely the normalization constants \(N_{\Gamma_s,m_j} \) of the lattice periodic functions in the LCAO approach (13). The normalization condition (13) lead to

\[\int_{vuc} d\Gamma_p \alpha_{\Gamma_p} \Psi_{\Gamma_p,m_j}^Hg \left(r + \frac{d}{2} \right) \pm \alpha_{Hg} \Psi_{\Gamma_p,m_j}^Hg \left(r - \frac{d}{2} \right) = \frac{2}{N_{\Gamma_p,m_j}^2}, \]
(D6)

where \(+(-) \) corresponds to \(\Gamma_8 (\Gamma_6) \). First of all, we note that

\[N_{\Gamma_s,m_j} = N_{\Gamma_s,-m_j}, \]
(D6)

due to the similar form of the atomic wave functions for \(\pm m_j \), see e.g. Eq. (C2). Using the hydrogenic eigenstates, we can therefore now numerically find the normalization constants \(N_{\Gamma_s,m_j} \). Numerically, these do depend weakly on how the Wigner-Seitz unit cell of the zinc-blende crystal is approximated, in contrast to the unit cell integrals involving \(h_0^3 \) for \(i = 2,3 \) in Sec. IV C. We have tested various spherical and cubic approximations to the primitive Wigner-Seitz unit cell all with the same volume as the Wigner-Seitz unit cell, namely \(v_{uc} = 16|d|^3/(3\sqrt{3}) \), where \(|d| = 0.279nm \) is the distance between the Hg and Te atoms in unit cell, see e.g. p.58 in Ref. 33. Such a weak dependence is also found in the estimate for GaAs by Fischer et al.27 From our various approximate unit cell calculation, we found that a good estimate for the normalization constants are \((N_{\Gamma_s,1/2})^2 \approx (N_{\Gamma_s,3/2})^2 \approx 3.6 \) and \((N_{\Gamma_s,1/2})^2 \approx 2.7 \). Therefore, we can use approximately equal normalization constants for \(u_{\Gamma_s,\pm 1/2} \) and \(u_{\Gamma_s,\pm 3/2} \), which allows for the introduction of a common
Appendix E: Hyperfine interactions in terms of edge state spin operators

Here we reformulate the HF interactions \((39)\) and \((41)\) for the HESs along the \(y\)-axis in order to give some more insights into their form. Having in mind the spin-1/2 picture of a pair of HESs discussed in sec. VI A, we lead to introduce the non-diagonal edge state spin operators as

\[
\mathcal{g}_{k_y k_y'} \equiv \sqrt{2} \left[c_{k_y u} c_{k_y' d} + c_{k_y' d} c_{k_y u} \right], \quad (E1a)
\]

\[
\mathcal{g}_{k_y k_y'}^\dagger \equiv \sqrt{2} \left[c_{k_y u}^\dagger c_{k_y' u} - c_{k_y' u} c_{k_y u} \right], \quad (E1b)
\]

\[
\mathcal{g}_{k_y k_y'}^z \equiv \sqrt{2} \left[c_{k_y u}^\dagger c_{k_y' u} - c_{k_y' u} c_{k_y u} \right], \quad (E1c)
\]

together with the operator \(\mathcal{J}_{k_y k_y'} = \mathcal{g}_{k_y k_y'}^\dagger c_{k_y u} c_{k_y' d} + c_{k_y' d} c_{k_y u} \) and the raising and lowering operators \(\mathcal{g}_{k_y k_y'}^\pm \equiv \mathcal{g}_{k_y k_y'} - i \mathcal{g}_{k_y k_y'}^y - i \mathcal{g}_{k_y k_y'}^y\) for the edge state spin. Here, for instance, \(\mathcal{g}_{k_y k_y'}^y\) moves a particle in the state \(\Psi_{k_y k_y'}\) into the state \(\Psi_{k_y k_y'}^y\) and in this sense raises the edge state spin (while also changing the wave vector). In the case of \(k_y = k_y'\), the edge state spin operators \((41)\) coincide with the usual spin-1/2 operators and \(\mathcal{J}_{k_y k_y'}\) is the particle number operator (times \(\hbar/2\)).

The contact HF interaction \((39)\) in terms of the edge state spin operators \((41)\) becomes

\[
\mathcal{H}_{\text{HF},1} = \frac{1}{2 \hbar^2} \sum_{k_y, k_y'} \frac{e^{i(k_y' - k_y)y}}{L_y} A_{S, j_n} (z_n) \left\{ -2 - \frac{B - D}{B} \right\}
\]

\[
\times A_{\text{HF}, j_{n+1}}^{\text{HH}} \left[\mathcal{L}_{k_y k_y'}(x_n) \mathcal{L}_{k_y k_y'}(x_{n+1}) \right],
\]

where

\[
\mathcal{L}_n = -\frac{\sqrt{3} A \sqrt{B^2 - D^2}}{AB} 2 \text{Im}(A_{\text{HF}, j_n}^E),
\]

\[
\mathfrak{S}_n = \frac{1}{B} \left[(B - D) A_{\text{HF}, j_{n+1}}^{\text{EE}} + 3 (B + D) A_{\text{HF}, j_n}^{\text{HH}} \right].
\]

In both HF interactions the edge state spin-flipping terms \(\mathcal{L}_{k_y k_y'}(x_n)\) appear. Moreover, in the HF interaction for \(P\)-like states the unusual coupling \(I_{x_n} \mathcal{L}_{k_y k_y'}(x_n)\) is found as discussed in the main text. Note that the terms including the operator \(\mathcal{J}_{k_y k_y'} \) vanish to second order in \(k_y\) and \(k_y'\) in the position averaging and also in the particle-hole symmetric limit, see sec. VI D.
B. Braunecker, P. Simon, and D. Loss, Phys. Rev. B 82, 155310 (2010).

B. Scharf, A. Matos-Abiague, and J. Fabian, Phys. Rev. B 86, 075418 (2012).

P. Delplace, J. Li, and M. Büttiker, Phys. Rev. Lett. 109, 246803 (2012).

M. Khartonov, Phys. Rev. B 86, 165121 (2012).

G. M. Gusev, A. D. Levin, Z. D. Kvon, N. N. Mikhailov, and S. A. Dvoretsky, Phys. Rev. Lett. 110, 076805 (2013).

B. A. Bernevig, T. L. Hughes, and S.-C. Zhang, Science 314, 1757 (2006).

I. Knez, R.-R. Du, and G. Sullivan, Phys. Rev. Lett. 107, 136603 (2011).

K. Suzuki, Y. Harada, K. Onomitsu, and K. Muraki, Phys. Rev. B 87, 235311 (2013).

L. Du, I. Knez, G. Sullivan, and R.-R. Du, arXiv:1306.1925 (2013).

C. Liu, T. L. Hughes, X.-L. Qi, K. Wang, and S.-C. Zhang, Phys. Rev. Lett. 100, 236601 (2008).

W. A. Coish and J. Baugh, physica status solidi (b) 246, 2203 (2009), ISSN 1521-3951, an excellent review on Hyperfine interaction.

J. Schliemann, A. Khaetskii, and D. Loss, J. Phys.: Condens. Matter 15, R1809 (2003).

C. P. Slichter, Principles of Magnetic Resonance (Springer, 1996), isbn-10: 3540501576 ed.

A. M. Stoneham, Theory of Defects in Solids: Electronic Structure of Defects in Insulators and Semiconductors (Oxford University Press, 1975), isbn-10: 0198507801 ed., chapter 13.

A. V. Khaetskii, D. Loss, and L. Glazman, Phys. Rev. Lett. 88, 186802 (2002).

F. H. L. Koppens, K. C. Nowack, and L. M. K. Vandersypen, Phys. Rev. Lett. 100, 236802 (2008).

J. R. Petta, A. C. Johnson, J. M. Taylor, E. A. Laird, A. Yacoby, M. D. Lukin, C. M. Marcus, M. P. Hanson, and A. C. Gossard, Science 309, 2180 (2005).

L. Cywiński, Acta Phys. Pol. A 119, 576 (2011), (arXiv:1009.4466).

K. Ono and S. Tarucha, Phys. Rev. Lett. 92, 256603 (2004).

A. Pfund, I. Shorubalko, K. Esslin, and R. Leturcq, Phys. Rev. Lett. 99, 036801 (2007).

M. S. Rudner and L. S. Levitov, Phys. Rev. Lett. 99, 036602 (2007).

A. M. Lunde, C. López-Monís, I. A. Vasiiliadou, L. L. Bonilla, and G. Platero, Phys. Rev. B 88, 035317 (2013).

B. Braunecker, P. Simon, and D. Loss, Phys. Rev. Lett. 102, 116403 (2009).

B. Braunecker, P. Simon, and D. Loss, Phys. Rev. B 80, 165119 (2009).

C. P. Scheller, T.-M. Liu, G. Barak, A. Yacoby, L. N. Pfeiffer, K. W. West, and D. M. Zumbühl, arXiv:1306.1940 (2013).

P. Simon and D. Loss, Phys. Rev. Lett. 98, 156401 (2007).

P. Simon, B. Braunecker, and D. Loss, Phys. Rev. B 77, 045108 (2008).

J. Fischer, W. A. Coish, D. V. Bulaev, and D. Loss, Phys. Rev. B 78, 155329 (2008).

J. Fischer and D. Loss, Phys. Rev. Lett. 105, 266603 (2010).

J. Fischer, B. Trauzettel, and D. Loss, Phys. Rev. B 80, 155401 (2009).

J. Fischer, M. Trif, W. Coish, and D. Loss, Solid State Communications 149, 1443 (2009).

C. Testelin, F. Bernardot, B. Eble, and M. Chamarro, Phys. Rev. B 79, 195440 (2009).

E. A. Chekhovich, M. M. Glazov, A. B. Krysa, M. Hopkinson, P. Senellart, A. Lemaître, M. S. Skolnick, and A. I. Tartakovskii, Nature Phys. 9, 74 (2013).

M. Dobers, K. v. Klitzing, J. Schneider, G. Weimann, and K. Ploog, Phys. Rev. Lett. 61, 1650 (1988).

K. R. Wald, L. P. Kouwenhoven, P. L. McEuen, N. C. van der Vaart, and C. T. Foxon, Phys. Rev. Lett. 73, 1011 (1994).

J. H. Kim, I. D. Vagner, and L. Xing, Phys. Rev. B 49, 16777 (1994).

D. C. Dixon, K. R. Wald, P. L. McEuen, and M. R. Melloch, Phys. Rev. B 56, 4743 (1997).

E. V. Deviatov, A. Würtz, A. Lorke, M. Yu. Melnikov, V. T. Dolgopolov, D. Reuter, and A. D. Wieck, Phys. Rev. B 69, 115330 (2004).

A. Würtz, T. Müller, A. Lorke, D. Reuter, and A. D. Wieck, Phys. Rev. Lett. 95, 056802 (2005).

T. Nakajima, Y. Kobayashi, and S. Komiyama, Phys. Rev. B 82, 201302 (2010).

T. Nakajima and S. Komiyama, Phys. Rev. B 85, 115310 (2012).

A. M. Lunde and G. Platero, Phys. Rev. B 86, 035112 (2012).

Y. Tanaka, A. Furusaki, and K. A. Matveev, Phys. Rev. Lett. 106, 236402 (2011).

E. Eriksson, A. Ström, G. Sharma, and H. Johannesson, Phys. Rev. B 86, 161103 (2012).

A. Del Maestro, T. Hyart, and B. Rosenow, Phys. Rev. B 87, 165440 (2013).

E. Eriksson, Phys. Rev. B 87, 235414 (2013).

K. Chang and W.-K. Lou, Phys. Rev. Lett. 106, 206802 (2011).

P. Michetti and P. Recher, Phys. Rev. B 83, 125420 (2011).

L. B. Zhang, F. Cheng, F. Zhai, and K. Chang, Phys. Rev. B 83, 081402 (2011).

W.-Y. Shan, J. Lu, H.-Z. Lu, and S.-Q. Shen, Phys. Rev. B 84, 035307 (2011).

E. Fermi, Zeitschrift für Physik 60, 320 (1930), ISSN 0044-3328.

Here \hbar is included explicitly in the gyromagnetic ratios in contrast to e.g. Fischer et al. but the same sign conventions for the interactions are used.

Many authors simply neglect r_c in $h^i_n (i = 2, 3)$, since the only role it plays, is to see explicitly that the dipole-dipole like interaction is not well-defined, see e.g. p.455 in [33].

However, since r_c is so small, no non-zero matrix element depends on its magnitude.

R. Winkler, Spin-orbit Coupling Effects in Two-Dimensional Electron and Hole Systems (Springer Tracts...
For instance, we could choose $\frac{1}{2}(\mathbf{x} + \mathbf{y})$, respectively. However, due to their numerical similarity, $N_{\Gamma_{x},m_{j}} \approx N_{\Gamma_{x,1/2}}$, we consider this to be an unnecessary complication in the case of HgTe.

Similarly, the matrix elements between S and Γ_{n} are bonding.

Note that there is a slight difference between \mathbf{R}_{n} and \mathbf{R}_{m}. The vector \mathbf{R}_{m} is a Bravais lattice vector, i.e. it points to a specific unit cell, which can consist of several atoms. On the other hand, the vector \mathbf{R}_{n} points to a specific atom. With a suitable choice of Bravais lattice vectors for a two-atomic unit cell, the two atoms are at positions: $\mathbf{R}_{n} = \mathbf{R}_{n'} - d/2$ and $\mathbf{R}_{n} = \mathbf{R}_{n'} + d/2$, where the two atoms are connected by d.

This is in fact an excellent approximation. Fischer et al.

Using a Gaussian distributed semi-classical field from the transverse edge states into the bulk part of the 2D TI, we consider this to be a boundary of a certain region.

A thick HgTe quantum well is a 2D TI with the BHZ model parameters. $A = 3.65eV\cdot A$, $B = -68.6eV\cdot A^{2}$, $D = -51.2eV\cdot A^{2}$ and $M_{0} = -0.016eV$.

For M_{0}/B larger than $A^{2}/(4B^{2})$ the parameters $\lambda_{1,2}$ can get an imaginary part, which leads to an oscillatory decay of the transverse edge states into the bulk part of the 2D TI. See e.g. Ref. [122] or the Appendix in Ref. [122] for a discussion in the particle-hole symmetric case ($D = 0$).

Other models with only linear derivatives can require other methods of confinement [10,11,125].

The normalization of the envelope functions is $\int d\mathbf{r} \sum_{\Gamma} \Lambda_{\mathbf{r} \pm H_{\pm}} \left| \phi_{\mathbf{r} \pm \mathbf{r}_{1}} \right|^{2} = 1$, which can be showed along the lines of Appendix B.

A 70Å thick HgTe quantum well is a 2D TI with the BHZ model parameters. $A = 3.65eV\cdot A$, $B = -68.6eV\cdot A^{2}$, $D = -51.2eV\cdot A^{2}$ and $M_{0} = -0.016eV$.

This estimate is based on a 7nm thick quantum well with a HES width of about $W_{n} \sim \lambda_{n}^{-1} \approx 50nm$ for $k = 0$ and using that the atomic volume v_{a} is half of the Wigner-Seitz unit cell volume, i.e. $v_{a} = 8d^{3}/(3\sqrt{3})$ $\approx 3.3 \times 10^{-2}nm^{3}$ for the zincblende crystal, where $d = 0.279nm$ is the bond length between the Hg and Te atoms.

The definition [25] of the atomic P-like HF couplings $A_{\text{Atomic}}^{P,\text{p}}$ includes the factor $(N_{\Gamma_{n}})^{2} |\alpha_{|\mathbf{r}|}|^{2}$ in contrast to the definition in Eq.(7) of Ref. [17]. However, the definition [15] of the atomic contact HF coupling is identical to the one in Ref. [17], since they both include the factor $(N_{\Gamma_{n}})^{2} |\alpha_{|\mathbf{r}|}|^{2}$. Therefore, some care has to be taken in the comparison of our results to those in Ref. [17].

A. W. Overhauser, Phys. Rev. 92, 411 (1953).

I. A. Merkulov, A. L. Efros, and M. Rosen, Phys. Rev. B 65, 205309 (2002).

S. I. Erlingsson and Y. V. Nazarov, Phys. Rev. B 66, 155327 (2002).

Using a Gaussian distributed semi-classical field from the nuclear spins, the effective HES is HES_{eff} which we can derive the ensemble averaged energy gap to be approximately $E_{g} \approx \sqrt{\pi} \text{HES}_{\text{eff}}$. Here the effective in-plane HF coupling constant is given by $A^{\text{P,\text{p}}} \equiv \sqrt{\sum_{j} N_{j}^{2} (A_{j}^{\text{p}})^{2} I_{j}(I_{j} + 1)}$, where the sum is over the nuclear spin isotope types $j = \text{199}\text{Hg}, \text{201}\text{Hg}, \text{123}\text{Te}, \text{125}\text{Te}$, I_{j} is the nuclear spin quantum number (see 3) and N_{j} is the number of nuclear spins of isotope j covered by the HESs.

P. Y. Yu and M. Cardona, Fundamentals of Semiconduc-
Even though the spherical harmonic $Y_{l=0}^{m=0} = 1/\sqrt{4\pi}$ corresponding to the $|S\rangle$ state is real, the state $|S\rangle$ is often conventionally chosen to be purely imaginary, see e.g. table C1 in Appendix C of Ref. [72]. Sometimes an imaginary unit i is actually included explicitly and not absorbed into the notation of $|S\rangle$ as it is done here, see e.g. Chuang [123, p.131 and p.634-635 Eqs.(A32)] or Bastard [74]. Generally, it is convenient to have $|S\rangle$ purely imaginary such that the parameter $P_0 = (\hbar/m_0) \langle S | (-i\hbar \partial_x) | P_x \rangle$ connecting S- and P-like bands in $\mathbf{k} \cdot \mathbf{p}$ theory becomes real, since the P-like states are real. However, the choice of having $|S\rangle$ purely imaginary affects the time-reversal properties of the $|E\pm\rangle$ states.

Note that this sign has no effect on the time-reversal properties of the states.

This overall sign-change compared to the conventional one does not come from the Spherical Harmonics as given by Sakurai [96], see e.g. Winkler [73]. For many purposes this sign do not play a role, since it is simply an overall phase factor. However, the matrix elements between Γ_6 and Γ_8 states change sign. This is taken care of in Refs. [23] and [107] by changing the sign of the definition of the P_0 parameter in the $\mathbf{k} \cdot \mathbf{p}$ theory, so the $\mathbf{k} \cdot \mathbf{p}$ Hamiltonian looks formally the same. Therefore, Refs. [23] and [74] use $P_0 = -\frac{\hbar}{m_0} \langle S | p_x | P_x \rangle$ with the opposite sign compared to the convention in Winkler [73], where $P_0 = \frac{\hbar}{m_0} \langle S | p_x | P_x \rangle$. Note that this sign has no effect on the time-reversal properties of the states.

G. Katsaros, V. N. Golovach, P. Spathis, N. Ares, M. Stofel, F. Fournel, O. G. Schmidt, L. I. Glazman, and S. De Franceschi, Phys. Rev. Lett. 107, 246601 (2011).

J. M. Luttinger, Phys. Rev. 102, 1030 (1956).

Dietrich G. Rothe, private communication.

A. Willig and B. Sapoval, J. Physique Lett. 38, 57 (1977).

We remark that this is a number with some uncertainty in the literature. For instance, Harrison [124] gives $\alpha_{Tc} \approx \sqrt{0.9}$ (and $\alpha_{Tg} \approx \sqrt{0.1}$). However, for the present estimate, we use the value by Willig and Sapoval in Ref. [112].

E. Clementi and D. L. Raimondi, J. Chem. Phys. 38, 2686 (1963).

E. Clementi, D. L. Raimondi, and W. P. Reinhardt, J. Chem. Phys. 47, 1300 (1967).

N. W. Ashcroft and N. D. Mermin, Solid State Physics (Thomson Learning, 1976).

S. Murakami, S. Iso, Y. Avishai, M. Onoda, and N. Nagaosa, Phys. Rev. B 76, 205304 (2007).

P. Michetti, P. H. Penteado, J. C. Egues, and P. Recher, Semiconductor Science and Technology 27, 124007 (2012).

M. Berry and R. J. Mondragon, Proc. R. Soc. Lond. A 412, 53 (1987).

J. A. Fürst, J. G. Pedersen, C. Flindt, N. A. Mortensen, M. Brandbyge, T. G. Pedersen, and A.-P. Jauho, New Journal of Physics 11, 095020 (2009).

E. B. Sonin, Phys. Rev. B 82, 113307 (2010).

K.-I. Imura, A. Yamakage, S. Mao, A. Hotta, and Y. Kuromoto, Phys. Rev. B 82, 085118 (2010).

S. L. Chuang, Physics of Optoelectronic Devices (Wiley-Interscience, 1999), 1st ed.

W. A. Harrison, Phys. Rev. B 8, 4487 (1973).