CORONAL PROPERTIES OF \textit{Swift}/BAT-SELECTED SEYFERT 1 AGN OBSERVED WITH \textit{NuSTAR}

N. Kamraj†, F. A. Harrison‡, M. Baloković*, A. Lohfink*, M. Brightman†

\textit{Draft version September 7, 2018}

ABSTRACT

The NuSTAR observatory, with its high sensitivity in hard X-rays, has enabled detailed broadband modeling of the X-ray spectra of Active Galactic Nuclei (AGN), thereby allowing constraints to be placed on the high-energy cutoff of the X-ray coronal continuum. We investigate the spectral properties of a sample of 46 NuSTAR-observed Seyfert 1 AGN selected from the \textit{Swift}/BAT 70-month hard X-ray survey. Our measurements of the high-energy cutoff of the continuum from modeling the NuSTAR X-ray spectra are used to map out the temperature – compactness ($\theta – l$) plane for AGN coronae. We find that most of the coronae lie clustered near the boundary for runaway pair production, suggesting that annihilation and pair production act to regulate the temperature of the corona. We discuss the implications of coronae whose high-energy cutoff may indicate a low coronal temperature on the heating and thermalization mechanisms in the corona.

\textit{Subject headings:} black hole physics: galaxies – galaxies: active – X-rays: galaxies

1. INTRODUCTION

The continuum X-ray emission from Active Galactic Nuclei (AGN) is believed to originate in a hot, compact corona located above the accretion disk (e.g., Haardt & Maraschi 1993). Compton upscattering of UV and optical photons from the inner accretion disk by coronal electrons produces a power-law-like X-ray continuum, with a cutoff at energies determined by the electron temperature T_e (e.g., Rybicki & Lightman 1979; Zdziarski et al. 2000). The shape of the coronal continuum is sensitive to properties such as the seed photon field, electron temperature, optical depth, and observer viewing angle. The observed rapid variability of the 2–10 keV emission in many AGN, combined with X-ray spectral timing and reverberation mapping, strongly indicate that the corona is physically compact, of the order 3–10 gravitational radii (Fabian et al. 2009; Kara et al. 2013; Emmanoulopoulos et al. 2014; Fabian et al. 2015). The gravitational radius is defined to be GM_{BH}/c^2, where M_{BH} is the supermassive black hole mass. Such radiatively compact sources can exchange significant energy between particles and photons, with the compactness characterised by the dimensionless parameter l (Guilbert et al. 1983), defined as:

\begin{equation}
 l = 4\pi m_p R_g L m_e R_L E_L
\end{equation}

where m_p and m_e are the proton and electron mass respectively, R_g is the gravitational radius, R the source radius, L the source luminosity, and E_L the Eddington luminosity. The electron temperature T_e can also be characterised by the dimensionless parameter $\theta = k_B T_e/m_e c^2$, where k_B is the Boltzmann constant. For sufficiently energetic photons, photon-photon collisions can lead to electron-positron pair production in the corona (Svensson 1982; Guilbert et al. 1983; Zdziarski 1985). At high coronal temperatures, when the Wien tail of the power-law spectrum extends above $2m_e c^2$, pair production can quickly become a runaway process, exceeding annihilation (Svensson 1984). This will limit any further rise in temperature, thus acting as a l-dependent thermostat (Svensson 1984; Zdziarski 1985; Stern et al. 1995).

The NuSTAR observatory (Harrison et al. 2013), being the first focusing hard X-ray telescope in orbit, has enabled detailed, high signal-to-noise spectra to be obtained in the 3–79 keV band for many local AGN. NuSTAR spectral modeling can thus place constraints on the spectral photon index and high-energy cutoff of the coronal X-ray continuum, enabling robust estimates of l and θ. One of the primary goals of the NuSTAR mission is to perform an extragalactic survey of the hard X-ray sky, in order to characterise the AGN population. We define hard X-rays as photons with energies >10 keV. As part of its Extragalactic Legacy Surveys program, the NuSTAR observatory has performed snapshot observations of local AGN detected in the all-sky survey with the Burst Alert Telescope (BAT) instrument onboard the \textit{Neil Gehrels Swift Observatory} (Gehrels et al. 2004; Baumgartner et al. 2013). Though previous work has provided broad constraints on the high-energy cutoff for samples of bright AGN, tight constraints for particular AGN only became available recently thanks to NuSTAR (e.g., Ballantyne et al. 2014; Bremman et al. 2014; Marinucci et al. 2014; Fabian et al. 2015; Baloković et al. 2015). The 100-fold increase in sensitivity of the NuSTAR telescope compared to the \textit{Swift}/BAT instrument enables robust spectral modeling with a minimal NuSTAR exposure of ~ 20 ks. With even longer exposure NuSTAR observations, it is possible to obtain tight limits on X-ray spectral parameters and perform reverberation mapping measurements of coronal size.

In this paper, we study a sample of 46 \textit{Swift}/BAT se-

\dagger Cahill Center for Astronomy and Astrophysics, California Institute of Technology, Pasadena, CA 91125, USA
\ddagger Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138, USA
\ast Department of Physics, Montana State University, 211 Montana Hall, Bozeman, MT 59717, USA

\dagger https://www.nustar.caltech.edu/page/legacy_surveys
lected Seyfert 1 (Sy1) AGN observed with NuSTAR, in order to map out the location of these sources on the temperature—compactness \((\theta - l)\) diagram for AGN coronae. We do not include Swift/XRT data in our spectral modeling as the limited data quality of available simultaneous Swift/XRT data introduces difficulties in obtaining constraints on parameters such as the cutoff energy. The complexity of features in soft X-ray spectra would ideally require high signal-to-noise ratio, simultaneous spectra from soft X-ray telescopes with larger collecting area to model robustly, which are currently unavailable for the targets in our sample. In section 2, we discuss the sample used in this study, the data reduction, and analysis procedures adopted. Observational details of our AGN sample are presented in Table 2 of the appendix. In section 3 we present our results and discuss the heating and cooling mechanisms operating in the corona. We discuss future, deeper NuSTAR observations of AGN in our sample with potential cutoffs in the NuSTAR band in section 4, and present a summary in section 5. In this work, all uncertainties were calculated at the 90% confidence level and standard values of the cosmological parameters \((h_0 = 0.7, \Omega _{\Lambda } = 0.7, \Omega _m = 0.3)\) were used to calculate distances.

2. SAMPLE, DATA REDUCTION, AND ANALYSIS

2.1. Sample of Seyfert 1 AGN

We selected our sample from AGN identified in the Swift/BAT 70-month hard X-ray catalogue (Gehrels et al. 2004; Baumgartner et al. 2013). From the full catalogue, we selected NuSTAR-observed AGN with known redshifts and classified as Sy1 from optical hydrogen emission line measurements, or from available data from the NASA/IPAC Extragalactic Database (NED). The full list of AGN included in our study, along with their NuSTAR observation details, may be found in Table 2 of the appendix. Figure 1 shows the location of our sources on the redshift-luminosity plane, with the luminosity values determined from the Swift/BAT fluxes in the 14–195 keV range. We confirmed sources at high redshift to not be beamed AGN or blazar candidates from observations of their optical spectra and cross-matching with the Roma Blazar Catalog (Massaro et al. 2009). We found two sources which were misclassified from NED and were removed from our sample. We excluded 9 sources from our original sample due to lack of constraints on the high-energy cutoff from spectral fitting. Our final sample consists of 46 Sy1 AGN at 0.003 < \(z\) < 0.2.

In Figure 2, we present the distributions of Swift/BAT fluxes, luminosities and redshifts for both our sample and the Sy1 classified sources from the Swift/BAT 70-month catalogue. We find that our sample is statistically representative of the Sy1 population from the Swift/BAT 70-month catalogue, with the mean and median values overlapping between our sample and the parent Swift/BAT sample. We further applied a two-sample Kolmogorov-Smirnov test and found the K-S test statistic to be 0.1 or lower, and the p-value above 60% for all three distributions, thus confirming that the distributions are consistent between our sample and the larger Swift/BAT sample of Sy1s.

2.2. NuSTAR Observations and Data Reduction

We fit each spectrum with an absorbed power-law model with a high-energy cutoff, \(E_{\text{cut}}\). The slope of the power-law continuum is characterized by the pho-
cutoffpl, where the component TBabs models Galactic absorption, which is fixed to a typical Galactic column density of 7.6×10^{21} cm$^{-2}$ (Kalberla et al. 2005). We found that freezing the Galactic column density did not have any significant effect on the fit results, as spectral modeling over the hard X-ray band is relatively insensitive to this parameter. The redshifted component zwabs accounts for absorption by the host galaxy.

Where an Fe Kα emission line feature was observed in the spectra at 6.4 keV, we added an additive zgauss Gaussian line component to the absorbed power-law model. We note that two objects out of our sample required fitting with an Fe Kα line: Mrk 595 and RBS 1037. In addition, we test for the presence of spectral features due to reprocessing by adding a pexrav component (Magdziarz & Zdziarski 1995). We fixed elemental abundances to solar and kept the inclination angle fixed at the default value of 60°. We found that the reduced χ^2 values and best-fit parameters from modeling with pexrav were similar to those from fitting an absorbed cutoff power-law for the majority of the sources in our sample, indicating that the addition of a reflection component does not significantly modify fit results and thus is not required by the data. Futhermore, we found that the null hypothesis probability exceeds 50% for many of our sources when fitting with an absorbed cutoff power-law; we found the mean null hypothesis probability of our sample to be 43%. We note that we chose a reflection model for one source (2MASX J19301380+3410495) due to best-fit parameters such as the photon index being more physically reasonable compared to the absorbed cutoff power-law model. We also note that the reduced χ^2 for Mrk 9 is relatively high due to increased scatter in the data near ~ 10 keV and 30 keV, which do not correspond to any known physical features. We summarize some of the key best-fit spectral parameters for our sample in Table 3 of the appendix. We did not find any sources in our sample with significant line of sight absorption ($> 5 \times 10^{23}$ cm$^{-2}$), with most sources having hydrogen column densities constrained to be $< 10^{22}$ cm$^{-2}$. Figure 3 presents an example NuSTAR spectrum for a potential low-cutoff candidate in our sample, 2MASX J19301380+3410495, for which we measured E_{cut} to be 23_{-9}^{+29} keV.

3. RESULTS AND DISCUSSION

In this section, we present limits on the high-energy cutoff, E_{cut}, found from spectral modeling of our sample. We then present the location of our sources on the $\theta - l$ plane for AGN coronae, and discuss the implications of sources with low values of E_{cut} on the heating and cooling mechanisms operating in the corona.

3.1. Cutoff Constraints

The distribution of lower limits on the high energy cutoff for our sample is presented in Figure 4. The histogram shows a number of AGN with lower limits on E_{cut} below 100 keV. Typical values of E_{cut} for AGN generally range from ~ 100 keV to 300 keV (Dadina 2007; Malizia et al. 2014; Ricci et al. 2017); we note Gilli et al. (2007) comment that the mean value of E_{cut} for AGN must not exceed several hundred keV, in order to avoid overproducing the cosmic X-ray background above 100 keV.
Fig. 3.— NuSTAR hard X-ray spectrum of a candidate low cut-off AGN 2MASX J19301380+3410495 (a), alongside fit residuals for (b) an absorbed power-law model (χ^2/dof = 155.1/161) (c) absorbed power-law model with a high-energy cutoff (χ^2/dof = 144.4/160) and (d) absorbed cutoff power-law with reflection modeled via pexrav (χ^2/dof = 138/160). Black points correspond to FPMA data while points in red correspond to FPMB.

Despite the fact that the quality of NuSTAR data in the hard X-ray band exceeds any previous observations of our targets, the cutoff power-law model does still display a degree of degeneracy in the derived photon index (Γ) and E_{cut}. In order to verify that our constraints on E_{cut} are physically reasonable, in Figure 5 we compare our derived Γ and E_{cut} values to curves of constant optical depth in the E_{cut}–Γ parameter space. The purple line in Figure 5 corresponds to theoretical constraints from Petrucci et al. (2001) for an optical depth $\tau = 6$. We use the relationship derived for a slab geometry of the corona by Petrucci et al. (2001) to calculate the optical depth as a function of Γ and E_{cut}:

$$\Gamma = \sqrt{\frac{9}{4} + \frac{511 \text{ keV}}{\tau kT_e(1 + \tau/3)}} - \frac{1}{2}. \quad (2)$$

AGN coronae are typically thought to be optically thin ($\tau < 1$) (Zdziarski 1985; Stern et al. 1995), though some have been constrained to $\tau \sim 3$ based on high-quality NuSTAR data (e.g., Baloković et al. 2015; Tortosa et al. 2017; Kara et al. 2017). Combinations of Γ and E_{cut} that correspond to $\tau > 6$ can be considered to result from a degeneracy between model parameters and therefore are unphysical. With this particular assumption we suspect that for 3 targets our results may be unrealistic; if, for example, $\tau < 10$ is chosen, then no targets fall in this category. However, sources lying near or below the line with $\tau = 6$ were not removed from our sample, as the limited NuSTAR data quality with a short, 20 ks exposure does not rule out physically reasonable values of the photon index.

We investigate the presence of model degeneracies in the sources with the lowest measured E_{cut} constraints (2MASX J19301380+3410495 & 1RXS J034704.9-302409) by exploring the E_{cut}–Γ parameter space in XSPEC. Figure 6 shows the contour plots of the photon index against the high-energy cutoff for these sources. Whilst there is some degree of degeneracy be-

Fig. 4.— Distribution of lower limits on E_{cut} for our Sy1 AGN sample from modeling NuSTAR data.

Fig. 5.— E_{cut} vs photon index Γ for our sample. Points in red denote candidate sources with low coronal high-energy cutoffs for which both upper and lower limits on E_{cut} were measured. The purple line corresponds to theoretical constraints from Petrucci et al. (2001) for $\tau = 6$.
between these two parameters, the value of E_{cut} is constrained to low values over the range of physically reasonable photon index values at the 68% confidence level.

3.2. The $\theta - l$ Plane

In constructing the observational $\theta - l$ plane, we convert from E_{cut} to the coronal temperature using $k_B T_e = E_{\text{cut}} / 2$ (Petrucci et al. 2001). In calculating l, we assume a conservative value of 10R_g for the coronal radius R, as adopted in Fabian et al. (2015), as the majority of the sources in our sample lack the required X-ray reflection modeling or reverberation measurements to place constraints on coronal size. We estimated the source luminosity L_s from the flux in the 0.1–200 keV band, which was extrapolated from the applied spectral model. We convert the unabsorbed 0.1–200 keV flux obtained from spectral modeling to luminosity using luminosity distance values from NED. Black hole mass estimates, where available, were taken from Koss et al. (2017). The values of M_{BH} used in Koss et al. (2017) were obtained from a combination of broad Balmer emission line measurements, direct techniques such as X-ray reverberation mapping, and the $M_{\text{BH}} - \sigma$ relation of Kormendy & Ho (2013). We have black hole mass measurements obtained from the literature for 34 of the 46 sources in our sample. For sources with no published black hole mass, we use the median black hole mass of the Sy 1–1.5 AGN in the BAT AGN Spectroscopic Survey (BASS) (Koss et al. 2017), $\log(M_{\text{BH}}/M_{\odot}) = 7.97 \pm 0.52$.

We note that the precise location of AGN on the $\theta - l$ plane is dependent on general relativistic effects, such as gravitational redshift and light bending. Processes such as light bending introduce inclination-dependent corrections to l. These corrections depend on the geometry of the corona, which is currently highly uncertain. Therefore, due to the large uncertainties associated with model-based relativistic corrections, we do not include general relativistic effects here.

Figure 7 presents the location of our sources on the $\theta - l$ plane, in addition to theoretical pair lines for different coronal geometries. Runaway pair production occurs to the right of the pair lines, as described in the introduction. Modeling the corona as an isolated electron cloud, Svensson (1984) estimated the pair production line to have the analytical form

$$l \sim 106^{5/2} e^{1/\theta}.$$

(Stern et al. 1995) also computed the pair balance line for a slab and hemispherical corona respectively, located above a reflecting accretion disk. The solid black and purple lines in Figure 7 correspond to these geometries. Our results show that most of the AGN coronae in our sample are clustered near the lines for runaway pair production, similar to the results found by Fabian et al. (2015) for NuSTAR-observed AGN and black hole binaries (BHB). The pair lines thus appear to correspond to a physical boundary, constraining sources to that region.

Fig. 6. $E_{\text{cut}} - \Gamma$ contour plots for NuSTAR observations of the candidate low cutoff Sy1s (a) 2MASX J19301380+3410495 (b) 1RXS J034704.9-302409. The solid purple, green and yellow contours correspond to the 68, 90 and 99% confidence levels, respectively. The black cross represents the best fit values of the parameters from applying the relevant model given in Table 3.

Fig. 7. The $\theta - l$ plane for NuSTAR-observed Sy1 AGN. Solid lines correspond to pair lines for different coronal geometries. Circled points are candidate low cutoff sources for which both upper and lower limits on E_{cut} were measured. Triangles denote sources with a best-fit value and lower limit on E_{cut}. Squares denote sources with only lower limits on E_{cut}. Blue points indicate sources for which the black hole mass was taken to be the median black hole mass of the type 1 AGN in the BAT AGN Spectroscopic Survey (BASS) (Koss et al. 2017).
A few AGN are located away from the pair line boundary, hinting at low coronal temperatures. Note that we have assumed that the corona is homogeneous and at a single temperature, whereas in reality there may be a range of temperatures. This may result in a mean temperature at a lower value due to Compton cooling (Fabian et al. 2015).

Recent detections of low coronal cutoffs have been made within the NuSTAR band, such as Tortosa et al. (2017), Kara et al. (2017) and Xu et al. (2017). For example, Kara et al. (2017) measured $T_e = 15 \pm 2$ keV for the narrow-line Sy1 Ark 564, making it one of the lowest temperature coronae observed by NuSTAR to date. Multiple explanations have been proposed for the origin of low temperature coronae. In the case of an AGN accreting close to the Eddington limit, the stronger radiation field may enhance Compton cooling in comparison with sub-Eddington Seyferts (Kara et al. 2017). For sources accreting well below the Eddington limit, the relatively low coronal temperatures may be attributed to highly effective cooling in some AGN due to, e.g., high spin and the resulting higher seed photon temperature. Low temperatures may also arise from particularly weak coronal heating mechanisms, or more effective cooling due to multiple scatterings in a corona with high optical depth (e.g., Tortosa et al. 2017). Naively, when the optical depth in the corona exceeds unity, multiple inverse Compton scatterings transfer a proportionally higher fraction of the stored thermal energy to coronal luminosity. However, coronae are complex systems, and many coupled physical processes determine the electron temperature.

Another possibility is that the corona consists of a hybridized plasma, containing both thermal and non-thermal particles (e.g., Zdziarski et al. 1993; Ghisellini et al. 1993; Fabian et al. 2017). In such a system, the corona is highly magnetized and compact, and thus heating and cooling are so intense that electrons do not have time to thermalize before they are cooled by inverse Compton scattering. The presence of only a small fraction of non-thermal electrons with energies above 1 MeV can result in runaway pair production. The cooled electron-positron pairs may redistribute their available energy, thereby reducing the mean energy per particle and decreasing the coronal temperature. Such cooling would produce a hard non-thermal tail and an annihilation feature at 511 keV. Hard X-ray data of very high quality are necessary to distinguish between a hybrid, pair-dominated plasma and cooler, fully thermal plasma incapable of pair production.

4. FUTURE OBSERVATIONS

The E_{cut} constraints presented here are based on snapshot ~ 20 ks NuSTAR observations of a sample of bright Sy1 galaxies, and identified several sources which potentially have high-energy cutoffs within the NuSTAR band (i.e., 3–79 keV). Future work will involve performing longer exposure NuSTAR observations of AGN from our sample that display hints of a low coronal cutoff, which will aid in removing model degeneracies and more tightly constrain E_{cut}, in order to determine the coronal temperature. In choosing AGN from our sample for longer exposure NuSTAR observations, we performed 5000 simulations of the spectra of candidate low cutoff AGN from our sample in XSPEC, for exposure times of 50 ks and 100 ks. From the simulated spectra, we plotted distributions of the best-fit value of E_{cut} found from applying an absorbed cutoff power-law model, in addition to lower limits and upper limits on E_{cut}. The plots in Figure 8 show distributions of values of E_{cut} for one such candidate low cutoff source, 2MASX J19301380+3410495. Table 1 summarizes the mean values of E_{cut} and its lower and upper limits obtained from our simulations for some candidate low cutoff AGN in our sample.

The simulation results show that the distributions peak at low values of E_{cut}, and at similar values for both a 50 ks and 100 ks exposure. We conclude from our results that a 50 ks exposure should be sufficient to constrain the high-energy cutoff in our sample of candidate low cutoff AGN.

5. SUMMARY

In this work, we have investigated the coronal properties of a sample of Swift/BAT selected Seyfert 1 AGN that have been observed with NuSTAR. We individually modeled the NuSTAR spectra of all sources in our
sample and searched for sources with hints of low coronal cutoffs, observable within the NuSTAR band. We mapped out the location of the sources in our sample on the compactness-temperature diagram for AGN coronae, and found that the majority of sources lie near the boundary for runaway pair production. The pair production line corresponds to a physical boundary, constraining AGN to that region. A few AGN located away from the pair lines may possess low coronal temperatures; deeper 50 ks NuSTAR observations will be performed of these sources to constrain the coronal temperature and optical depth. The detection of low coronal cutoffs may be explained via scenarios such as a strong radiation field, large optical depth, or a hybrid pair-dominated plasma. Further computations with hybrid plasma models, taking into account general relativistic effects, will help elucidate in more detail the heating and cooling mechanisms operating in the corona.

We would like to thank the referee for their helpful comments, which helped improve the final version of the manuscript. We have made use of data from the NuSTAR mission, a project led by the California Institute of Technology, managed by the Jet Propulsion Laboratory, and funded by the National Aeronautics and Space Administration. We thank the NuSTAR Operations, Software and Calibration teams for support with the execution and analysis of these observations. This research has made use of the NuSTAR Data Analysis Software (NuSTARDAS) jointly developed by the ASI Science Data Center (ASDC, Italy) and the California Institute of Technology (USA). M. Baloković acknowledges support from NASA Headquarters under the NASA Earth and Space Science Fellowship Program (grant NNX14AQ07H) and support from the Black Hole Initiative at Harvard University, through the grant from the John Templeton Foundation.

Facilities: NuSTAR

REFERENCES

Arnaud, K. 1996, in ASP Conf. Series, Vol. 101, Astronomical Data Analysis Software and Systems, ed. G. H. Jacoby & J. Barnes, 17
Ballantyne, D. R., Bollenbacher, J. M., Brenneman, L. W., et al. 2014, ApJ, 794, 62
Baloković, M., Matt, G., Harrison, F. A., et al. 2015, ApJ, 800, 62
Baumgartner, W. H., Tueller, J., Markwardt, C. B., et al. 2013, ApJS, 207, 19
Brenneman, L. W., Madejski, G., Fuerst, F., et al. 2014, ApJ, 781, 83
Dadina, M. 2007, A&A, 461, 1209
Emmanoulopoulos, D., Papadakis, I. E., Dovčiak, M., & McHardy, I. M. 2014, MNRAS, 439, 3931
Fabian, A. C., Lohfink, A., Belmont, R., Malzac, J., & Coppi, P. 2017, MNRAS, 467, 2566
Fabian, A. C., Lohfink, A., Kara, E., et al. 2015, MNRAS, 451, 4375
Fabian, A. C., Zoghbi, A., Ross, R. R., et al. 2009, Nature, 459, 540
Gehrels, N., Chincarini, G., Giommi, P., et al. 2004, ApJ, 611, 1005
Ghiassini, G., Haardt, F., & Fabian, A. C. 1993, MNRAS, 263 5

Gilli, R., Comastri, A., & Hasinger, G. 2007, A&A, 463, 79
Guilbert, P. W., Fabian, A. C., & Rees, M. J. 1983, MNRAS, 205, 593
Haardt, F., & Maraschi, L. 1993, ApJ, 413, 507
Harrison, F. A., Craig, W. W., Christensen, F. E., et al. 2013, ApJ, 770, 103
Kalberla, P. M. W., Burton, W. B., Hartmann, D., et al. 2005, A&A, 440, 775
Kara, E., Fabian, A. C., Cackett, E. M., Miniutti, G., & Uttley, P. 2013, MNRAS, 430, 1408
Kara, E., García, J. A., Lohfink, A., et al. 2017, MNRAS, 468, 3489
Kormendy, J., & Ho, L. C. 2013, ARA&A, 51, 511
Koss, M., Trakhtenbrot, B., Ricci, C., et al. 2017, ApJ, 850, 74
Madsen, K. K., Harrison, F. A., Markwardt, C. B., et al. 2015, ApJ, 220, 8
Magdziarz, P., & Zdziarski, A. A. 1995, MNRAS, 273, 837
Malizia, A., Molina, M., Bassani, L., et al. 2014, ApJL, 782, L25
Marinucci, A., Matt, G., Miniutti, G., et al. 2014, ApJ, 787, 83
Massaro, E., Giommi, P., Leto, C., et al. 2009, A&A, 495, 691
Perri, M., Puccetti, S., Spagnuolo, N., et al. 2014, The NuSTAR Data Analysis Software Guide v1.7

TABLE 1
MEAN VALUES OF THE HIGH-ENERGY CUTOFF, ITS LOWER AND UPPER LIMITS FROM SIMULATED NuSTAR SPECTRA, FOR Swift/BAT-selected Sy1 AGN

Name	Exposure Time (ks)	E_{cut} (keV)	E_{cut} lower limit (keV)	E_{cut} upper limit (keV)
1RXS J034704.9-302499	50	92.7	17.1	118.8
	100	54.6	19.2	111.8
2MASX J19301380+3410495	50	21.4	15.7	33.0
	100	20.7	16.7	27.0
Mrk 1393	50	189.0	43.5	191.7
	100	155.0	45.0	199.7
SDSS J104326d47+110524.2	50	170.4	46.3	203.2
	100	134.1	52.1	206.5
UGC 06728	50	162.6	59.4	234.8
	100	127.5	67.6	222.8
Petrucci, P. O., Haardt, F., Maraschi, L., et al. 2001, ApJ, 556, 716
Ricci, C., Trakhtenbrot, B., Koss, M. J., et al. 2017, ApJS, 233, 17
Rybicki, G. B., & Lightman, A. P. 1979, Radiative processes in astrophysics (Wiley-Interscience, New York)
Stern, B. E., Poutanen, J., Svensson, R., Sikora, M., & Begelman, M. C. 1995, ApJL, 449, L13
Svensson, R. 1982, ApJ, 258, 335
—. 1984, MNRAS, 209, 175

Verner, D. A., Ferland, G. J., Korista, K. T., & Yakovlev, D. G. 1996, ApJ, 465, 487
Wilms, J., Allen, A., & McCray, R. 2000, ApJ, 542, 914
Xu, Y., Baloković, M., Walton, D. J., et al. 2017, ApJ, 837, 21
Zdziarski, A. A. 1985, ApJ, 289, 514
Zdziarski, A. A., Poutanen, J., & Johnson, W. N. 2000, ApJ, 542, 703
Zdziarski, A. A., Zycki, P. T., & Kroll, J. H. 1993, ApJ, 414, L81

APPENDIX
Name	Swift/BAT ID	Observation ID	Observation Date	Exposure (ks)	Total Counts
1RXS J034704.9-302409	SWIFT J0347.9-3027	60061039002	2013-03-15	6.4	13.5
1RXS J0736.9+5846	SWIFT J0736.9+5846	60061326002	2010-10-29	21.6	32.4
1RXS J174538.1+290823	SWIFT J1745.4+2906	600160674002	2013-04-15	12.7	20.4
2MASX J1136.0+2132	SWIFT J1136.0+2132	600610658002	2014-03-21	9.5	21.9
2MASX J15295830-1300397	SWIFT J1530.0-1300	600160617002	2013-05-16	18.5	37.0
2MASX J1530.0+3126	SWIFT J1530.0+3126	600160617002	2013-05-16	18.5	37.0
3C 273	SWIFT J0947.7+0726	60061329002	2014-02-20	17.2	34.5
4C +18.51	SWIFT J1742.2+1833	600160672002	2014-02-20	12.1	24.2
ESO 438-G009	SWIFT J1110.6+0823	60016023002	2013-06-30	23.4	46.7
Fairall 1146	SWIFT J0838.4+3557	600610682002	2014-07-15	19.3	38.6
Fairall 1203	SWIFT J0001.6+0701	60016002002	2013-08-10	18.5	37.0
[HB89] 0241+622	SWIFT J0244.8+6227	600160125002	2013-10-20	21.9	43.8
IGR J14471-6414	SWIFT J1446.7+6416	600160257002	2013-10-20	21.9	43.8
IRAS 04392-2713	SWIFT J0441.2+2704	600160210002	2013-10-20	21.9	43.8
LCRSB 232242.2-384320	SWIFT J2325.5-3827	600160826002	2016-02-10	21.6	43.2
Mrk 9	SWIFT J0736.9+5846	60061326002	2013-09-29	23.3	46.7
Mrk 376	SWIFT J0719.3-0019	600160687002	2016-02-10	21.6	43.2
Mrk 595	SWIFT J0724.1+0711	600160190002	2013-10-20	21.9	43.8
Mrk 732	SWIFT J1113.6+0936	60061028002	2014-07-15	21.9	43.8
Mrk 739E	SWIFT J1136.0+2132	600610682002	2013-10-20	21.9	43.8
Mrk 813	SWIFT J1427.5+1949	600160583002	2013-10-20	21.9	43.8
Mrk 817	SWIFT J1436.4+5846	600160590002	2013-10-20	21.9	43.8
Mrk 841	SWIFT J1504.2+1025	60010123002	2015-07-14	23.4	46.7
Mrk 1018	SWIFT J0206.2+0019	60016023002	2014-07-15	23.4	46.7
Mrk 1044	SWIFT J0230.2+0900	60016023002	2014-07-15	23.4	46.7
Mrk 1310	SWIFT J1201.2+0019	600160687002	2016-02-10	21.6	43.2
Mrk 1393	SWIFT J1508.8+0013	600160670002	2016-02-10	21.6	43.2
NGC 0985	SWIFT J0234.6+0848	60016025002	2013-08-11	13.9	27.8
PG 0804+761	SWIFT J0810.9+7602	60016035002	2015-06-02	17.3	34.6
PKS 0558-504	SWIFT J0559.8+5028	60016025002	2016-11-19	21.0	42.0
RBS 0295	SWIFT J0214.9+6432	600160210002	2017-01-14	23.3	46.6
RBS 0770	SWIFT J0923.7+2255	600160190002	2013-08-11	13.9	27.8
RBS 1037	SWIFT J1149.3+0414	600161250002	2017-02-02	40.7	81.4
RBS 1125	SWIFT J1232.1+2009	600160250002	2016-07-28	20.0	40.0
SBS 1136+594	SWIFT J1139.1+5913	600160430002	2014-12-26	23.5	47.0
SDSS J104326.47+110524.2	SWIFT J1043.4+1105	600160400002	2016-04-02	20.1	40.2
UGC 06728	SWIFT J1143.7+7492	600160400002	2016-04-02	20.1	40.2
UM 614	SWIFT J1347.7+0209	600160560002	2015-03-31	18.2	36.4
WKK 1263	SWIFT J1241.6+5748	600160510002	2015-04-27	16.4	32.8
TABLE 3
Redshifts, black hole masses and best-fit spectral parameters from fitting NuSTAR data for our Swift/BAT-selected Sy1 AGN sample

Source	Redshift	log(M_{BH}/M_\odot)A	Γ	E_{cut} (keV)	$F_{0.1-200}^{cut}$ B erg cm$^{-2}$ s$^{-1}$	χ^2/dof	ModelC
3C 227	0.086	8.61±0.10	1.63±0.16	18	4.4±1.2	331±347	1
4C +18.51*	0.186	7.97±0.52	1.67±0.09	10	5.5±1.2	73±100	1
ESO 438-G099*	0.024	7.97±0.52	1.74±0.09	10	3.9±1.0	49±33	1
Fairall 1146*	0.031	7.97±0.52	1.81±0.04	10	1.1±0.3	49±11	1
Fairall 1203*	0.058	7.97±0.52	1.58±0.07	10	3.3±0.1	139±150	1
[HB89] 0241+622	0.044	8.09±0.10	1.63±0.03	86	1.7±0.6	43±10	1
IGR J14471-641	0.053	7.70±0.10	1.73±0.03	10	6.4±0.3	631±56	1
IGR J14552-5133	0.016	8.68±0.10	1.85±0.03	10	1.7±0.3	113±5	1
IRAS 04392-2713*	0.084	7.97±0.52	1.84±0.08	10	7.8±1.9	200±173	1
LCRS 232242-2-384320*	0.036	7.97±0.52	1.67±0.14	10	5.1±1.2	59±16	1
Mrk 9	0.140	7.59±0.10	1.62±0.13	10	2.2±0.5	151±100	1
Mrk 376	0.056	8.17±0.10	1.64±0.06	10	1.8±0.6	170±147	1
Mrk 595	0.027	8.28±0.10	1.50±0.23	10	6.1±0.3	79±76	1
Mrk 732	0.029	7.23±0.10	1.85±0.07	10	8.6±0.4	269±258	1
Mrk 739E	0.030	7.14±0.10	1.87±0.07	10	1.9±0.7	113±106	1
Mrk 813	0.110	8.87±0.10	1.85±0.03	10	1.7±0.3	269±230	1
Mrk 817	0.031	7.59±0.07	1.63±0.04	10	2.3±0.6	263±214	1
Mrk 841	0.036	7.81±0.10	1.78±0.05	10	1.7±0.3	403±425	1
Mrk 1018	0.042	8.03±0.10	1.81±0.14	10	1.7±0.3	50±51	1
Mrk 1044	0.016	6.44±0.10	1.94±0.05	10	2.1±0.6	215±205	1
Mrk 1310	0.019	6.21±0.08	1.77±0.10	10	8.7±0.4	215±217	1
Mrk 1393	0.054	7.87±0.10	1.20±0.23	10	3.9±0.2	187±195	1
NGC 0985	0.043	7.99±0.10	1.63±0.10	10	3.6±0.2	126±155	1
PG 0804+761	0.100	8.73±0.05	1.69±0.05	10	6.8±0.3	122±122	1
PKS 0558-504	0.137	7.33±0.10	2.13±0.05	10	1.7±0.4	217±206	1
RBS 0295*	0.074	7.97±0.52	1.78±0.10	10	5.3±0.5	149±151	1
RBS 0770	0.032	7.34±0.10	1.80±0.03	10	2.2±0.6	403±434	1
RBS 1037*	0.084	7.97±0.52	1.88±0.01	10	3.7±0.7	180±185	1
RBS 1125	0.063	7.76±0.20	1.86±0.08	10	4.1±0.5	109±107	1
SBS 1136+594	0.060	7.98±0.10	1.71±0.06	10	9.6±0.4	295±281	1
SDSS J104326.47+110524.2	0.048	7.91±0.10	1.52±0.23	10	4.1±0.4	122±122	1
UGC 06728	0.006	5.66±0.10	1.57±0.05	10	6.9±0.3	227±208	1
UMA 614	0.033	7.09±0.10	1.64±0.09	10	7.3±0.7	162±172	1
WKK 1263	0.024	8.25±0.10	1.73±0.04	10	3.1±0.7	470±503	1

Note: — Sources marked with an asterisk (*) correspond to AGN whose black hole masses were taken to be the median black hole mass of the type 1 AGN in the BAT AGN Spectroscopic Survey (BASS) (Koss et al. 2017).

A Reference: Koss et al. (2017).

B Unabsorbed 0.1 – 200 keV flux extrapolated from applied spectral model

C Applied XSPEC models: (1) constant × TBabs × zwabs × cutoffpl
(2) constant × TBabs × zwabs × (cutoffpl + pexrav)
(3) constant × TBabs × zwabs × (cutoffpl + zgauss)