Resistance to diet-induced adiposity in cannabinoid receptor-1 deficient mice is not due to impaired adipocyte function

Oosterveer, Maaike H.; Koolman, Anniek H.; de Boer, Pieter T.; Bos, Trijnie; Bleeker, Aycha; Bloks, Vincent W.; Kuipers, Folkert; Sauer, Pieter J. J.; van Dijk, Gertjan

Published in:
Nutrition & Metabolism

DOI:
10.1186/1743-7075-8-93

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from it. Please check the document version below.

Document Version
Publisher's PDF, also known as Version of record

Publication date:
2011

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):
Oosterveer, M. H., Koolman, A. H., de Boer, P. T., Bos, T., Bleeker, A., Bloks, V. W., Kuipers, F., Sauer, P. J. J., & van Dijk, G. (2011). Resistance to diet-induced adiposity in cannabinoid receptor-1 deficient mice is not due to impaired adipocyte function. Nutrition & Metabolism, 8(1), 93-1-93-12. [93].
https://doi.org/10.1186/1743-7075-8-93

Copyright
Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

The publication may also be distributed here under the terms of Article 25fa of the Dutch Copyright Act, indicated by the "Taverne" license. More information can be found on the University of Groningen website: https://www.rug.nl/library/open-access/self-archiving-pure/taverne-amendment.

Take-down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the number of authors shown on this cover page is limited to 10 maximum.
Additional File 1, Table S1. Composition experimental diets.

	CHOW	HF	HF/FO
Starch	363	147	147
Protein	211	201	201
Glucose	47	158	158
Fatty acids			
C14:0	0.5	12.2	16.1
C16:0	8.4	92.5	79.5
C16:1	0.7	11.5	18.0
C18:0	3.7	76.3	50.5
C18:1	13.7	133.2	101.0
C18:2	16.9	11.5	9.7
C18:3	1.9	2.9	15.2
C20-22	0.4	4.0	53.3

Values are given in g/kg.
Additional File 1, Table S2. Primer and probe sequences used for qPCR.

Gene	Sense	Antisense	Probe	Accession number
Adiponectin (Adipoq)	AGG ACA TCC TGG CCA CAA TG	CTT AGG ACC AAG AAG ACC TGC AT	CTC TCC AGG AGT GCC AT TCT GCC A	NM_009605
Acc1 (Acaca)	CCA TCC AAA CAG AGG GAA CAT C	CTA CAT GAG TCA TGC CAT AGT GGT T	ACG CTA AAC AGA ATG TCC TTT GCC TCC AAC	NM_133360
Angptl3	CCC AGA GCA CAC AGA CCT	CAC CAC CAG CCA CCT GAG	AGC TGT CCC TTT GCT CTG TGA TTC CAT	NM_013913
Angptl4	AGA TCC AGC AAT TGT TCC AGA AG	AAG AGG TCT ATC TGG CTC TGA AGA TT	CCC AGC AGC AGA GAT ACC TAT CAA AGC AG	NM_020581
Ap2 (Fabp4)	CAC CAT CCG GTC AGA GAG TAC TT	TCT AGG GTT ATG ATG CTC TTC ACC T	CAT CGA ATT CCA CGC CCA GTT TGA	NM_024406
Apoc1	GGG CAGCCA TTG AAC ATA TCA	TTG CCA AAT GCC TCT GAG AAC	CCC GGG TCT TGG TCA AAA TTT CCT TC	NM_007469
Apoc3	CCA AGA CGG TCC AGG ATG C	ACT TGC TCC AGT AGC CTT TCA GG	CCA TCC AGC CCC TGG CCA CC	NM_023114
Atgl (Pnpla2)	AGC ATC TGC CAG TAT CTG GTAT	CAC CTG CTC AGA CAG TCT GGA A	ATG GTC ACC CAA TTT CCT CTT GGC CC	NM_025802
Cb1 (Cnr1)	ACA AGC TTA TCA AGA CGG TGT TTG	TGC TCC TCA GAG CAT AGA TGA TG	CTC TGC CTG CTG AAC TCC ACC GTG	NM_007726
Cd36 (Fat)	GAT CGG AAC TGT GGG CTC AT	GGT TCC TTC TCT AAG GAC AAC TTC	AGA ATG CCT CCA AAC ACA GCC AGG AC	BC010262
Cd68	CAC TTC GGG CCA TGT TTC TC	AGG ACC AGG CCA ATG ATG AG	CAA CCG TGA CCA GTC CCT CTT GCT G	NM_009853
Gene	5' UTR	CDS	3' UTR	Accession
----------	--------	----------	--------	-----------
C/ebp (Cebpa)	CCA AGA AGT CCG TGG ACA AGA A AGG CGG TCA TTG TCA CTG GT CGC AAC AAC ATC GCG GTG CG			NM_007678
Cpt1a	CTC AGT GGG AGC GAC TCT TCA GGC TCT TGT GGT ACA CGA CAA CCT GGG GAG GAG ACA GAC ACC ATC CAA C			NM_013495
Faah	CAG AAG CTG TGC TCT TTA CCT ACC CAG ATA GGA GGT CAC ACA GAA TTA TCC ACC			NM_010173
Fas (Fasn)	GGC ATC ATT GGG CAC TCC TT GCT GCA AGC TGG CTA GCA CAG			NM_007988
Fatp4 (Slc27a4)	CCA GAC AAG GGT TTT ACA GAT AAG CT ACC ACC TGC TGT GCA CCA CAA TG CCG GCA CCA CGG GGC TAC CC			NM_011989
Gpihbp1	GCG GAA CCG ACA AAG GCTT A TTT ACC TGC TCT CCA			NM_026730
Hsl (Lipe)	GAG GCC TTT GAG ATG CCA CT TGG TCA ACA GCA TGG CTA GCA CAG			NM_010719
Lpl	AAG GTC AGA GCC AAG AGA AGC A CCA GAA AAG TGA ATC TTG AC ACT TGG T			NM_008509
Napepld	GGC CTT GGA GTC GAT TCT TCT GTA TTT CAT AAA CCA CCT TGG TTC AT AGG TCA AAA GGA CCA AAC CTT TTT CCA ATC TC			NM_178728
Pepck (Pck1)	GTG TCA TCC GCA AGC TGA AG GTC TGA TCT CTG TCC ATC CAA CTG TTG CCA AAC GCT GTC AATG AATG CAC TAA			NM_011044
Ppary2 (Pparg)	CTA TGA GCA CTT CAC AAG AAA TTA CCA CAC AGA GCT GAT TCC GAA GGG CCA C			U09138
Scd1	ATG CTC CAA GAG ATC TCC AGT TCT CTT CAC CTT CTC TCG TTC ATT TCC CCA CCA CCA CCA TCA CTC CTC			NM_009127
	GGA GCC ATG	CCT GTC TCA	CAG CTC ATC	AF286470
-------------------	----------------	----------------	----------------	----------
Srebp-1c (Srebf1)	GAT TGC ACA TT	CCC CCA GCA TA	AAC AAC CAA GAC AGT GAC TTC C	
Additional File 1, Figure S1. (A) VO₂, (B) VCO₂ and (C) RER values during light and dark phases. Open symbols, CB₁⁺/⁺ mice; closed symbols, CB₁⁻/⁻ mice. Values are given as means ± SEM for n=5-7. (D) Gene expression levels in epididymal fat tissue of 3-week old CB₁⁺/⁺ and CB₁⁻/⁻ mice receiving regular chow. Open bars, CB₁⁺/⁺ mice; closed bars, CB₁⁻/⁻ mice. Values are given as means ± SEM for n=4-8.
Additional File 1, Table S3. Detailed indirect calorimetry data of $CB_1^{+/+}$ and $CB_1^{-/-}$ mice fed chow, a HF or a HF/FO diet during 6 weeks.

	chow	HF	HF/FO			
	$CB_1^{+/+}$	$CB_1^{-/-}$	$CB_1^{+/+}$	$CB_1^{-/-}$	$CB_1^{+/+}$	$CB_1^{-/-}$
Values expressed per mouse						
Dark phase						
Carbohydrate oxidation (mg/hr)	128±7	128±6	76±2#	79±5#	68±3#	73±3#
Fat oxidation (mg/hr)	-11±2	-10±2	15±1#	19±2#	17±2#	19±2#
Energy expenditure (cal/hr)	455±16	465±20	481±9	554±23#*	470±13	506±9#
Light phase						
Carbohydrate oxidation (mg/hr)	93±6	79±3*	60±3#	57±5#	53±3#	56±4#
Fat oxidation (mg/hr)	-1±6	6±1*	17±1#	24±2#*	19±1#	22±2#
Energy expenditure (cal/hr)	397±13	401±16	436±12	509±18#*	419±16	464±10#$*
Values expressed per gram lean body mass						
Dark phase						
Carbohydrate oxidation (mg/hr)	25±1	28±1	15±1#	17±1#	14±1#	15±0#
Fat oxidation (mg/hr)	-2.1±0.4	-2.1±0.4	3.0±0.3#	4.2±0.4#	3.5±0.3#	3.7±0.4#
Energy expenditure (cal/hr)	89±2	101±3*	97±5	121±7#*	96±3	106±3*
Light phase						
Carbohydrate oxidation (mg/hr)	18±1	17±1	12±1#	12±1#	11±1#	12±1#
Fat oxidation (mg/hr)	-0.2±0.4	1.2±0.3*	3.5±0.3#	5.3±0.4#*	3.9±0.4#	4.6±0.5#
Energy expenditure (cal/hr)	78±1	87±3*	88±5	111±5#*	86±3	97±2#$*
Values are given as means ± SEM for \(n=5-7 \); \# \(p<0.05 \) compared to chow group of the same genotype, $ p<0.05 \) compared to HF group of the same genotype, * \(p<0.05 \) \(CB_{1}^{-/-} \) vs. \(CB_{1}^{+/+} \) (Student t-test).

General linear model analysis revealed overall effects for the following parameters (\(p<0.05 \)):

- Genotype: dark phase energy expenditure per mouse, light phase energy expenditure per mouse, normalized dark phase energy expenditure, normalized light phase energy expenditure, normalized light phase fat oxidation.
- Chow versus HF: dark/light phase carbohydrate/fat oxidation per mouse, light phase carbohydrate/fat oxidation per mouse, dark/light phase energy expenditure per mouse, dark/light phase normalized carbohydrate/fat oxidation, dark/light phase normalized energy expenditure.
- Chow versus HF/FO: dark/light phase carbohydrate/fat oxidation per mouse, light phase carbohydrate/fat oxidation per mouse, light phase energy expenditure per mouse, dark/light phase normalized carbohydrate/fat oxidation.