Supplementary information

Mass spectrometry imaging (MSI) demonstrates the regional brain distribution patterns of three first-line antiretroviral drugs.

Sphamandla Ntshangase¹, Sipho Mdanda¹, Sanil D. Singh³, Tricia Naicker¹, Hendrik G. Kruger¹, Sooraj Baijnath¹*, Thavendran Govender²*

¹Catalysis and Peptide Research Unit, University of KwaZulu-Natal, Westville Campus, Durban, South Africa.

²AnSynth PTY LTD, 498 Grove End Drive, Durban, South Africa.

³Biomedical Resource Unit, University of KwaZulu-Natal, Westville Campus, Durban, South Africa.

Co-corresponding author:

*Dr. Sooraj Baijnath

Catalysis and Peptide Research Unit, E-block, 6th floor, Room E1-06-016
University of KwaZulu-Natal, Westville Campus, South Africa

Offices: +27 31 260 81799, Cell: +27 84 562 1530

Email address: baijnath.sooraj@gmail.com
LC-MS/MS

Figure S1. MS spectra of all the analytes.
Figure S2A. The proposed MS fragmentation pathways for EFV and CBB (IS).
Figure S2B. The proposed MS fragmentation pathways for TFV and ADV (IS).
Figure S2C. The proposed MS fragmentation pathways for FTC and ZDV (IS).
Sample extraction method development and optimization

SPE is used as a clean-up to remove endogenous substances from biological matrices, which may affect the analysis. Recoveries were determined by using different cartridges and solvents (MeOH or ACN), as protein precipitants. The best recoveries were achieved using the Discovery® DSC-PS/DVB SPE C18 (100 mg, 1 mL) and MeOH for plasma and Supel™ - Select HLB (30 mg, 1 mL) and ACN for brain homogenate.

Table S1. Extraction recoveries of EFV, TFV and FTC for different SPE cartridges (n = 6).
SPE cartridge
HLB SPE (30 mg, 1 mL)
HybridSPE-Phospholipid (30 mg, 1 mL)
C18 (50 mg, 1 mL)
C18 (100 mg, 1 mL)

Linearity

Three calibration curves were constructed from each biological matrix (plasma and brain) and repeated on three consecutive days. The regression equations were:

- For EFV: $y = 0.4246x + 0.0017$ ($r^2 = 0.9992$)
- For TFV: $y = 0.2441x + 0.0217$ ($r^2 = 0.9983$)
- For FTC: $y = 0.3864x - 0.0045$ ($r^2 = 0.9996$)

All the r^2 values were above 0.99, indicating good linearity.
Matrix effect and extraction recovery

Matrix effect was tested for six different lots of drug-free rat plasma and brain homogenates. The matrix effect for each lot was evaluated at LQC, MQC, and HQC (n = 6). According to EMA guidelines, the variability of matrix factor should be within ± 15 %. The extraction recovery of each drug was determined by comparing the peak area from the extracted samples with the peak area from un-extracted samples.

Drug	Sample	QC level	Mean recovery (%)	% RSD	Matrix effect (%)	% RSD
EFV	Plasma	Low	76	3	-2	4
		Mid	73	1	-2	2
		High	77	1	-4	4
	Brain	Low	79	5	-4	3
		Mid	76	3	-3	2
		High	80	4	-2	4
TFV	Plasma	Low	87	2	-4	1
		Mid	84	1	-4	1
		High	89	2	-3	1
	Brain	Low	81	4	-5	2
		Mid	79	7	-2	4
		High	83	2	-2	2
FTC	Plasma	Low	86	3	-5	3
		Mid	88	3	-4	3
		High	85	1	-2	4
	Brain	Low	88	1	-2	6
		Mid	91	4	-1	2
		High	90	1	-3	2
Accuracy and precision

The evaluation of intra-day and inter-day precision and accuracy involved analysis of four QC samples in six replicates. Accuracy and precision were expressed in terms of percentage of concentration found to the nominal concentration and percentage relative standard deviation (% RSD), respectively. According to EMA guidelines, the mean concentration should be within ± 15% of the nominal concentration value for the QC sample, except for the LLOQ which should be within ± 20% of the nominal concentration value.

Intra-day and inter-day accuracy and precision in both plasma and brain was within the limits set by EMA. See Tables S3A-C below.

Sample	Parameter	LLOQ	LQC	MQC	HQC
Plasma	Nominal concentration (ng/mL)	15	60	750	1800
Intra-day (n = 6)	Average concentration found	14.1	60.8	730.2	1760.1
	Accuracy (%)	94.0	101.3	97.4	97.8
	% RSD	1.6	1.2	1.8	2.2
Inter-day (n = 6)	Average concentration found	14.5	59.9	730.9	1764.2
	Accuracy (%)	96.7	99.8	97.5	97.8
	% RSD	2.5	3.8	2.9	2.5
Brain	Nominal concentration (ng/g)	5	20	600	1500
Intra-day (n = 6)	Average concentration found	4.8	19.4	587.2	1482.1
	Accuracy (%)	96.0	97.0	97.9	98.8
	% RSD	2.8	1.3	2.5	1.1
Inter-day (n = 6)	Average concentration found	4.9	18.9	566.2	1489.5
	Accuracy (%)	98.0	94.5	94.4	99.3
	% RSD	3.2	4.7	3.1	1.8
Table S3B. Accuracy and precision for TFV in plasma and brain homogenates samples.

Sample	Parameter	LLOQ	LQC	MQC	HQC
Plasma	Nominal concentration (ng/mL)	20	100	750	1400
	Intra-day (n = 6)				
	Average concentration found	20.2	90.5	745.1	1368.5
	Accuracy (%)	101.0	90.5	99.3	97.8
	% RSD	3.1	1.1	1.8	4.2
	Inter-day (n = 6)				
	Average concentration found	18.2	95.5	743.1	1387.5
	Accuracy (%)	91.0	95.5	99.1	99.1
	% RSD	1.5	2.1	1.6	2.4
Brain	Nominal concentration (ng/g)	2.5	20	750	1400
	Intra-day (n = 6)				
	Average concentration found	2.3	18.4	738.9	1379.2
	Accuracy (%)	92.0	92.0	98.5	98.5
	% RSD	2.5	3.6	2.8	1.7
	Inter-day (n = 6)				
	Average concentration found	2.4	19.3	610.5	1381.1
	Accuracy (%)	96.0	96.5	99.0	98.7
	% RSD	3.5	1.5	2.6	2.6
Table S3C: Accuracy and precision for FTC in plasma and brain homogenates samples.

Sample	Parameter	LLOQ	LQC	MQC	HQC
Plasma	Nominal concentration (ng/mL)	10	20	750	1800
	Intra-day (n = 6)				
	Average concentration found	10.2	18.8	730.7	1705.1
	Accuracy (%)	102.0	94.0	97.4	94.7
	% RSD	2.3	2.9	3.6	1.4
	Inter-day (n = 6)				
	Average concentration found	9.4	18.5	738.3	1755.4
	Accuracy (%)	94.0	92.5	98.4	97.5
	% RSD	3.2	2.2	1.5	0.9
Brain	Nominal concentration (ng/g)	10	20	750	1800
	Intra-day (n = 6)				
	Average concentration found	9.2	20.4	725.9	1774.1
	Accuracy (%)	92.0	102.0	96.8	98.6
	% RSD	5.1	2.8	3.2	5.4
	Inter-day (n = 6)				
	Average concentration found	9.8	20.6	730.3	1801.3
	Accuracy (%)	98.0	103.0	97.4	100.1
	% RSD	2.5	5.4	3.2	2.7
Pharmacokinetics and statistical calculations were computed using Stata 13 (StataCorp, College Station, TX). Table S4 and Table S5 show the calculated pharmacokinetic parameters in plasma and brain, respectively.

Table S4. Plasma PK data (n = 3).

Time (h)	EFV Conc (ng/mL)	SEM	TFV Conc (ng/mL)	SEM	FTC Conc (ng/mL)	SEM
0	0	0	0	0	0	0
0.25	3246.075	480.5378	5651.718	672.8655	6470.335	500.5745
0.5	1786.029	170.6117	4042.005	228.6711	5201.166	818.5461
1	1214.336	245.5418	2535.999	263.1711	3183.055	413.3275
2	874.0536	190.3906	846.7313	143.3949	1557.083	238.4424
4	163.736	29.92175	205.7547	112.2346	445.3789	149.2692
6	148.162	25.68639	142.8576	24.39166	284.9283	129.9462
8	28.47397	2.057882	119.1999	25.86489	177.9213	83.53159
24

Table S5. Brain distribution data (n = 3).

Time (h)	EFV Conc (ng/g)	SEM	TFV Conc (ng/g)	SEM	FTC Conc (ng/g)	SEM
0	0	0	0	0	0	0
0.25	385.9712	29.34078	51.0665	29.22901	591.5768	46.28393
0.5	428.543	33.33848	48.3366	23.45138	342.466	37.6826
1	363.5287	31.04823	30.7281	16.23854	201.5936	53.42299
2	258.5461	29.34518	28.49667	19.05553	71.50143	7.45932
4	140.0169	29.40835	10.8512	2.607479	56.00918	9.056186
6	94.68181	26.3346	.	.	23.26041	3.289221
8	57.67899	26.76648
24
Mass spectrometry imaging (MSI)

The MALDI-MS method was optimized for the detection of the three compounds by spotting freshly prepared standards on a ground steel MALDI target plate and then on an untreated brain tissue section. Figure S4 shows the imaged standard spots of each drug from the untreated brain tissues.

Figure S3. MALDI-MS spectrum for EFV (m/z 316.673) in brain tissue.

The MALDI-MS spectra for EFV (m/z 316.673), TFV (m/z 288.121) and FTC (m/z 248.463) in brain tissues are shown in Figure S4, S5, and S6 respectively.
Figure S4. MALDI-MS spectrum for EFV (m/z 316.673) in brain tissue.

Figure S5. MALDI-MS spectrum for TFV (m/z 288.121) in brain tissue.
Figure S6. MALDI-MS spectrum for FTC (m/z 248.463) in brain tissue.

LIFT MS/MS confirmation

The precursor ions monitored for MS imaging were confirmed by LIFT MS/MS fragmentation and the resultant product ions are shown in Table S6 below.

Analyte	Precursor ion [M+H]$^+$	Product ions
EFV	m/z 316.673	m/z 298.640 and m/z 244.037
TFV	m/z 288.121	m/z 270.058, m/z 206.104 and m/z 176.253
FTC	m/z 248.463	m/z 130.280
Table S7. Drug intensities (SUM [a.u.]) in different brain regions

Brain region	EFV SUM [a.u.] ± SD	TFV SUM [a.u.] ± SD	FTC SUM [a.u.] ± SD
CC	545.37 ± 61.98	31.15 ± 3.25	456.87 ±20.65
HPF	218.10 ± 30.55	35.70 ± 4.67	97.21 ± 9.01
CTX	1081.69 ± 185.20	428.81 ± 32.25	78.67 ± 30.67
cst	266.53 ± 10.26	11.43 ± 6.08	175.26 ± 16.20
CP	285.28 ± 6.00	167.20 ± 6.02	34.88 ± 12.92
TH	578.68 ± 36.70	44.69 ± 10.96	1077.92 ± 73.34
GP	123.82 ± 14.42	12.59 ± 3.60	28.54 ± 6.61
HY	242.21 ± 7.77	10.92 ± 9.80	578.64 ± 49.14
BFB	338.01 ± 24.17	63.17 ± 10.81	37.21 ± 4.12
Whole brain	3679.69 ± 129.88	805.68 ± 34.50	2565.19 ± 91.37
Whole brain (control)	1.04 ± 0.24	0.34 ± 0.63	0.95 ± 0.14

Figure S7. A labeled H&E stained brain tissue section and MALDI-MS brain images (100 µm spatial resolution) of the three drugs showing their spatial distribution in different brain regions.