Combined genotoxicity of chlorinated products from tyrosine and benzophenone-4

Yangyang Changa,d, Yaohui Baia, Qinghua Jia,d, Yang Huoa,d, Huijuan Liub, John C. Crittendenc,*, Jiuhui Qua,\dagger

a Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
b State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
c Brook Byers Institute for Sustainable Systems and School of Civil and Environmental Engineering, Georgia Institute of Technology, 828 West Peachtree Street, Atlanta, GA 30332, United States
d University of Chinese Academy of Sciences, Beijing 100049, China

\textbf{HIGHLIGHTS}

- Genotoxicity of chlorinated mixture (GCM) is not predicted by that of single (GCI).
- pH is an important factor affecting difference between GCM and GCI (G_A = GCM-GCI).
- G_A > 0 occurred at pH 5.0–6.1 and G_A < 0 occurred at pH 6.3–8.0.
- G_A is determined by N-DBPs decrease in mixture and combined effects between DBPs.
- TON ratio can be used to estimate the G_A value.

\textbf{ABSTRACT}

The toxicity of disinfection by-products (DBPs) from a single precursor was studied intensively. Here we examined the genotoxicity when two precursors (tyrosine (Tyr) and benzophenone-4 (BP-4)) were chlorinated together and separately. We sought to examine whether the genotoxicity of the mixture (GCM) could be estimated from the sum of the genotoxicities of the individual precursors (GCI), which were chlorinated separately. We determined the genotoxicity using the SOS/umu test. The results revealed that GCM was not identical to GCI. The difference in genotoxicity between GCM and GCI (G_A) was observed to decrease with increasing pH. GCM was higher than GCI (G_A > 0) at pH 5.0–6.1, and lower than GCI (G_A < 0) at pH 6.3–8.0. We found that nitrogen-containing DBPs played a dominant role in determining GCM and GCI. We propose that the total organic nitrogen (TON) ratio, \(\frac{TON_{\text{chlorinated mixture}}}{TON_{\text{sum of chlorinated individuals}}} \), is useful to estimate G_A.

* Corresponding authors.
E-mail addresses: john.crittenden@ce.gatech.edu (J.C. Crittenden), jhqu@rcees.ac.cn, jhqu@mail.rcees.ac.cn (J. Qu).

http://dx.doi.org/10.1016/j.jhazmat.2016.10.014
0304-3894/© 2016 Elsevier B.V. All rights reserved.
1. Introduction

Chlorine is one of the most commonly used disinfectants in drinking water. However, disinfection by-products (DBPs, Acronyms used in this paper is listed in Box 1) with genotoxic, mutagenic and carcinogenicic activities are produced during chlorination. In fact, chlorine reacts with natural organic matter (e.g., humic/fulvic acids, proteins and amino acids) [1–3], anthropogenic chemicals (e.g., pesticides and personal care products) [4], and salts (e.g., bromide and iodide) [5], and produces a wide variety of DBPs [6]. Although most DBPs' concentrations are very low (~1–100 μg/L) [7], they may pose a human health hazard as a result of persistent exposure and/or their synergistic effects [8–10]. Many previous studies have focused on the toxicity of a single DBP [2], a single chlorinated compound [11–13] or chlorinated water samples [14–16]. However, when multiple precursors are chlorinated, little is known about the factors that cause the toxicity of the mixture and whether the mixture's toxicity can be estimated from the sum of the toxicities of the individual chlorinated precursors. Accordingly, we need to determine how and why the toxicity varies during chlorination of multiple precursors.

The composition of source water is complicated. Thus it is difficult to study the underlying mechanism of combined genotoxicity of DBPs from multiple precursors. To simplify the study, we selected two representative precursors, tyrosine (Tyr, a natural organic matter) and benzophenone-4 (BP-4, an anthropogenic chemical). Tyr is a naturally occurring amino acid and is present in many peptides, proteins, and algae [17,18]. The largest influx concentration of the hydrolysable Tyr is 27.4 μg/L [19]. Its DBPs were identified and quantified in previous studies [20–23]. BP-4 is one of the most widely used UV sunscreens and is used in a variety of personal care products (e.g., sunscreens, lipsticks, lotions, shampoos and cosmetics) [24–26]. BP-4 has been detected in wastewater, river water, and sea water, at concentrations ranging from ng/L to high μg/L levels [27,28]. However, traditional wastewater treatment plants did not efficiently eliminate BP-4. Moreover, BP-4 could be present in reclaimed water. Consequently, it is important to determine BP-4 byproducts that are formed during chlorination [13]. Both Tyr and BP-4 are common precursors in reclaimed source waters. Furthermore, Tyr is a precursor of nitrogen disinfection by-products (N-DBPs) [20], and BP-4 reacts with disinfectants only to form carbonaceous by-products (C-DBPs) [13]. In vivo genotoxicity and cytotoxicity assays suggest that the genotoxic and cytotoxic activities of N-DBPs are higher than those of C-DBPs [29–31]. Accordingly, curiosity in the study of N-DBPs has increased rapidly.

Accordingly, we hypothesized that after chlorination, the toxicity of a Tyr and BP-4 mixture could not be equal to the sum of individual toxicities that result from chlorinating them separately. In this study, we used genotoxicity to test this hypothesis and then explore: (i) what is the main experimental condition affecting the difference between the genotoxicity of the chlorinated mixture (GCM) and the sum of genotoxicities of the individual chlorinated compounds (GCI), (ii) what is the underlying mechanism of the genotoxicity difference between GCM and GCI (GΔ, GΔ = GCM – GCI), (iii) develop a methodology to estimate GΔ.

2. Materials and methods

2.1. Chemicals and solution preparation

Standards for the analysis of the following DBPs were purchased from AccuStandard (USA): (1) chloroform (CF) and (2) halogenated volatile organic chemical as a mixture of DBPs including dichloroacetoneitrile (DCAN), trichloroacetoneitrile (TCAN), chloral hydrate (CH), chloropirin (CP), 1,1-dichloropropanone (DCP) and 1,1,1-trichloro–2-propanone (TCP). Two species of haloacetic acids (HAAs, including dichloroacetic acid (DCAA) and trichloroacetic acid (TCAA)) were purchased from Beilin Chang Lian Ltd. (China). Dichloroacetamide (DCAcAm) and trichloroacetamide (TCAcAm) were purchased from Alfa Aesar (Germany) and J&K (China), respectively. Ethyl acetate and methyl tert-butyl ether (MTBE) used to extract DBPs were obtained from Fisher (USA). Tyr was obtained from Sigma-Aldrich (USA). BP-4 and phloroic acid (PA) were obtained from J&K (China). The chemical structures of Tyr, BP-4 and PA were listed in Fig. 1. The sodium hypochlorite aqueous solution was obtained from Sinopharm Chemical Reagent Co., Ltd (China). The concentration of the chlorine stock solution was determined using the N,N-diethyl-p-phenylene diamine ferrous titration method. All chemicals were of analytical grade and used without further purification. All reagent solutions were prepared with ultra-pure water (resistivity 18.2 MΩ cm, Millipore, US). Additionally, all bottles were rinsed three times with ultrapure water and then dried in a muffle furnace at 500 °C for 4 h.

2.2. Chlorination experiments

Chlorination experiments were performed under headspace-free conditions in glass screw-cap vials that were capped with Teflon-faced septa and kept in the dark. Hydrochloric acid and sodium hydroxide were used to adjust the pH (pH = 5.0–8.0). 50 mM

Box 1: Acronyms used.
DBPs
Tyr
BP-4
GCM
GCI
GΔ
TON
N-DBPs
C-DBPs
CF
DCAN
TCAN
CH
CP
DCP
SD
of phosphate buffer solution was applied to maintain the desired pH levels for pH values of 6.0 to 8.0, and 100 mM phosphate buffer solution was used to adjust the desired pH level at pH = 5.0. To easily determine the concentrations and genotoxicity of chlorination byproducts from Tyr and BP-4, the initial concentrations of precursors were designed as 0.1 mM in the experiments. The experiments were conducted in five phases. For phase 1, to ensure excess chlorine during chlorination, 3 mM solution of free chlorine (Cl2) was added to 200 mL solutions of Tyr (0.1 mM), BP-4 (0.1 mM) and a mixture (0.1 mM of Tyr and 0.1 mM of BP-4) (Fig. S1(a), Supplementary data (SD)). These results allowed us to determine whether the GCM varies relative to GCI and the primary environmental factors affecting GΔ1. For phase 2, there was a measurable chlorine residual after 72 h of chlorination when the initial molar concentration of chlorine ([Cl2]0) was 15 times as much as that of precursors ([Tyr]0,[BP-4]0 and [mixture]0) (Fig. S1(b), SD). To confirm at which time the GΔ is the largest, varying reaction time experiments were conducted. Reaction times were 10 min, 1 h, 6 h, 24 h and 72 h. For total mixture concentrations of 0.1 mM, these molar ratios of [Tyr]0,[BP-4]0 were chlorinated using 1.5 mM of free chlorine at room temperature (25 ± 0.2 °C): 0:1, 2:8, 5:5, 8:2 and 1:0. These results allowed us to determine which molar ratio yields the largest GΔ > 0. For phase 3, Tyr, BP-4 and a mixture of the two ([Tyr]0,[BP-4]0 = 8:2, which corresponded to a mixture investigated in phase 2) were chlorinated for several narrow pH intervals at room temperature (25 ± 0.2 °C). (These results allowed us to determine the impact of pH on GΔ.) For phase 4, Tyr with and without ammonium chloride (NH4Cl), and PA-BP-4 mixtures (0.1 mM, [PA]0,[BP-4]0 = 2:8, 5:5, 8:2 and 1:0) were chlorinated at pH = 6.0 at room temperature (25 ± 0.2 °C), respectively. (These results allowed us to determine the primary DBPs affecting GCM and GCI.) For phase 5, 0.08 mM of Tyr and 0.02 mM of BP-4 were chlorinated separately. The post-chlorination samples were mixed (hereafter we referred to them as the post-chlorination mixture), followed by genotoxicity determination. (These results allowed us to determine the combined effects.) To completely quench the chlorine residual, ascorbic acid was used, and the dosage was double the initial molar concentration of chlorine. All experiments were conducted in triplicate.

2.4. DBP analysis

CF, CH, CP, DCP, TCP, DCAN and TCAN were extracted using MTBE and analyzed by USEPA’s method 551.1 [33]. Two species of HAAs, including DCAA and TCAA, were methylated using acidic methanol, followed by extraction using MTBE, and measured using USEPA method 552.3 [34]. DacAm and TcAcAm were analyzed by GC/MS [23]. More analysis details are described in Text S2.

2.5. Determination of total organic nitrogen (TON)

Concentrations of TON were estimated by subtracting the ammonia nitrogen (NH3–N) concentration from the total Kjeldahl nitrogen (TKN) concentration. The TKN concentrations were determined by the modified nitrogen method [35] using a Digestion Unit K-435 and AutoKjeldahl Unit K-370 (China). Concentrations of NH3–N were measured by the Nessler’s reagent colorimetric method [36] using a U-3010 UV–vis spectrophotometer (Hitachi Co, Japan) equipped with 10 mm quartz cuvettes. More experimental details were listed in Text S3 of SD

2.6. Genotoxicity test

To evaluate the genotoxic responses to Tyr, BP-4 and their mixture with and without chlorination, a modified SOS/umu test [37] using Salmonella typhimurium TA1535/pSK1002 without S9 activation was used. The SOS/umu assay has been shown to be useful as a biological endpoint for genotoxicity monitoring of DBPs containing unknown genotoxic substances [12,38,39]. Prior to genotoxicity measurement, the samples were concentrated using two pre-conditioned Oasis HLB solid extraction cartridges (6 mL, 500 mg, Waters, USA). The extracts were then dissolved into 200 μL of dimethyl sulfoxide. The genotoxic activities of samples were qualitatively and quantitatively expressed by the induction factor and the equivalent 4-nitro-1-oxide (4-NQO) concentration (Toxicity Equivalent Quotient, TEQ4-NQO), respectively. In genotoxicity tests, all samples were evaluated in triplicate. The experimental procedure is described in Text S4.

2.7. Statistical analysis

The Pearson correlation coefficient was determined using SPSS 19.0 (IBM) and the relationships between GCM and the concentrations of DBPs were determined. The independent sample T-test was carried out to determine if GCM and the genotoxicity of the post-chlorination mixture were significantly different from GCI. The T-test was also used to determine if there were any significant genotoxicity differences for chlorinated Tyr with NH4Cl compared to chlorinated Tyr alone, as well as for the chlorinated Tyr and BP-4 mixtures ([Tyr]0:[BP-4]0 = 2:8, 5:5, 8:2 and 1:0) compared to chlo-

Fig. 1. Chemical structures of the tested compounds.
were measured at pH 6.0 (Fig. S6, SD). The species of the byproducts that were formed by Tyr and BP-4 when they were chlorinated individually were the same as those in their mixture ([Tyr]₀;[BP-4]₀ = 8:2). This revealed that the reaction pathway of Tyr and BP-4 in mixture was basically identical to that for the individual precursors. To explore the underlying mechanism of G_{Δ}, it was crucial to determine the dominant DBPs affecting GCM and GCI and determine their combined effects.

3.3.1. Dominant DBPs affecting the GCM and GCI

To determine the primary DBPs that contribute to the genotoxicity, the possible C- and N-DBPs were measured (Fig. S7) [20]. We found that the four C-DBPs, including CF, CH, DCAA and TCAA, were not correlated ($p > 0.05$) with GCM and GCI. This suggested C-DBPs make a small contribution to GCM and GCI. However, both DCAN and TcAcAm were correlated with GCM Fig. S8 (a), (DCAN ($R^2 = 0.411$, $p < 0.05$), TcAcAm ($R^2 = 0.701$, $p < 0.01$)) as well as with GCI Fig. S8 (b), (DCAN ($R^2 = 0.621$, $p < 0.01$), TcAcAm ($R^2 = 0.630$, $p < 0.01$)). The DCAN and TcAcAm genotoxicity (TEQ$_{4\text{-NQO}}$ value: 1.7×10^{-4} µg/L and 2.5×10^{-4} µg/L, respectively) accounted for a tiny fraction of N-DBP genotoxicity. To investigate the role of unknown N-DBPs in GCM and GCI, we compared the genotoxicity of Tyr with NH$_4^+$ and that without NH$_4^+$ (Fig. 3(a)), as well as the genotoxicity of Tyr and that of PA he same structure with Tyr no amine group (Fig. 3(b) and (c)) (Text S6). Results suggested that N-DBPs dominated GCM and GCI. Because G_{Δ} reflected the genotoxicity difference between GCM and GCI, G_{Δ} was related to the N-DBP production in the mixture as compared to the sum of the individual chlorinated precursors.

3.3.2. Combined effects between DBPs of Tyr and BP-4

The chlorination products of Tyr and BP-4 may interact to produce a synergistic or antagonistic impact on G_{Δ}. To investigate this, we determined the genotoxicity of the post-chlorination mixture and compared it with the GCI. We found that the post-chlorination mixture had a significantly higher genotoxicity for pH values from 5.0 to 7.0 and a lower genotoxicity at pH 8.0 than the 24-h GCI (Fig. 4). This suggested that the combined effects occur between the chlorinated products of Tyr and BP-4, and they played an important determining role in the resulting G_{Δ}. Accordingly, G_{Δ} depends on not only N-DBP production between the mixture and individual precursors but also the combined effects between DBPs from Tyr and BP-4.

3.3.3. The role of N-DBPs and combined effects in G_{Δ}

To evaluate the importance of N-DBP production and the impacts on G_{Δ}. TON concentrations were measured as a surrogate to estimate the total concentration of N-DBPs. Table 1 showed that the N-DBP production in the mixture was lower than the sum of production by the individual precursors. Nevertheless, G_{Δ} was greater than 0 for pH values from 5.0 to 6.1 (Fig. 2), and the above results showed a synergistic effect in the post-chlorination mixture at pH 5.0–7.0 (Fig. 4). Based on comparison of the TEQ$_{4\text{-NQO}}$ values from the chlorinated mixture (11.9 µg/L at pH 5.0 and 6.6 µg/L at pH 6.0) and the post-chlorination mixture (9.5 µg/L at pH 5.0 and 6.3 µg/L at pH 6.0), we concluded that synergistic effects were the main cause for $G_{\Delta} > 0$. However, $G_{\Delta} > 0$ could not be fully explained by synergistic effects. Differences in the N-DBP composition might also contributed to the occurrence of $G_{\Delta} > 0$.

In contrast, G_{Δ} was observed to be less than 0 for pH values from 6.3 to 8.0 (Fig. 2). We found that this was related to a decrease in N-DBPs that were produced from the mixture as compared to the sum of those from the individual chlorinated precursors (Table 1). As pH increased from 5.0 to 8.0, N-DBPs decreased significantly in the mixture (Table 1), and the synergistic effect decreased, and then an antagonistic effect took place (Fig. 4). The decrease of N-DBPs in
the mixture rather than by a synergistic effect played a leading role in GΔ being less than 0 at high pH. Accordingly, the value of GΔ was determined by the combined impacts of synergistic or antagonist effects of the DBPs and the decrease of N-DBPs in the mixture.

3.4. Estimation of GΔ by TON ratio

In this study, the reaction pathway of N-DBPs was consistent in the chlorination of Tyr alone and in mixture. The TON ratio, defined as TON (chlorinated mixture)/TON (the sum of chlorinated individuals), was adopted to estimate GΔ (Table 1). A non-linear regression analysis suggested that there was a significant correlation between GΔ and TON ratio (R² = 0.997, p < 0.01) (Fig. 5). The regression equation (y = 18.5 x² + 9.9 x + 0.9) could be used to estimate GΔ.

Remarkably, all TON ratios were lower than 1, indicating the addition of BP-4 decreases the production of N-DBPs from Tyr. On the basis of previous literature, chlorination reactions with Tyr [41] and BP-4 [13] were described by following Eqs. (1) and (2)

\[-d[Tyr]/dt = k_{obs}[Tyr][Cl_{2}]\]

(1)
Fig. 4. Comparison of GCI and the genotoxicity of the post-chlorination mixture ([Tyr]0 = 0.08 mM, [BP-4]0 = 0.02 mM) at varying pH values (T = 25°C, [Cl2]0 = 1.5 mM, t = 24 h). Asterisks indicate that the genotoxicity is significantly different from GCI (p < 0.05). Error bars are the same as those in Fig. 1.

Fig. 5. The non-linear regression analysis of \(G_\Delta \) at varying TON ratios (T = 25°C, [Cl2]0 = 1.5 mM, t = 24 h). TON ratio was defined as \(\text{TON} = \frac{C}{C_{1510}} \) (sum of chlorinated individual). Error bars are the same as those in Fig. 1.

\[
-d[BP-4]/dt = k_{obs}[BP-4]
\]

where \(k_{obs} \) represent the rate constants of Tyr and BP-4, respectively. \(k_{obs} (10^3) \) was observed to be approximately 3 to 4 orders of magnitude higher than \(k_{obs} (10^1 - 10^2) \) [39,41]. Under the same chlorine dosage, compared with Tyr alone, Tyr in mixture could be reacted with more chlorine, thus accelerating the Tyr chlorination. Based on the reaction pathway of Tyr, N-DBPs are generated and then hydrolyzed to form C-DBPs [19]. During the contact time between 6 h and 72 h, N-DBPs were being degraded (Fig. S7). So Tyr in mixture produced less N-DBPs at 24 h as compared to Tyr alone. To verify the effect of chlorine dosage on the degradation of N-DBPs, the genotoxicity and TON concentrations of Tyr under various chlorine dosages ([Cl2]0/[Tyr]0 = 7.5:1, 15:1 and 30:1) were measured (Fig. 6). The decreases in genotoxicity and TON concentrations were statistically significant (p < 0.01) with increasing chlorine dosage. This result suggested that the TON ratio was lower than 1 because the formation of N-DBPs in mixture was lower than with Tyr alone. Moreover, the TON ratio decreased with increasing pH (Fig. 5). This may be associated with the pH dependence of \(k_{obs} \) and \(k_{obs} \). It has been proved that a rise in pH can lead to increases of \(k_{obs} \) and \(k_{obs} \) [13,42], and the increase of \(k_{obs} \) is much larger than that of \(k_{obs} \). More chlorine reacted with Tyr in mixture at higher pH, thus decreasing the TON ratio. As a consequence, the pH dependence of the rate constant is responsible for the variation in the TON ratio.

Fig. 6. Genotoxicity and total organic nitrogen (TON) concentrations of chlorinated Tyr (0.1 mM) with different chlorine dosages (pH = 6.0, T = 25°C, t = 24 h). Asterisks indicate that the genotoxicity is significantly different for chlorinated Tyr with different chlorine dosages (p < 0.05). Error bars are the same as those in Fig. 1.

4. Conclusions

This study investigated the role of pH in controlling \(G_\Delta \). We confirmed that the genotoxicity of a chlorinated Tyr and BP-4 mixture could not be estimated from the sum of the genotoxicities of the individual chlorinated precursors. pH was an important influencing factor affecting \(G_\Delta \). \(G_\Delta \) decreased with increasing pH values from 5.0 to 8.0. \(G_\Delta > 0 \) occurred at pH 5.0–6.1, and \(G_\Delta < 0 \) occurred at pH 6.3–8.0. Synergistic effects played a crucial role in the genotoxicity of the chlorinated mixture and induced a higher genotoxicity (\(G_\Delta > 0 \)). A reduction of N-DBPs in the mixture caused \(G_\Delta \) to be less than 0. Although the precursors in this study were single compounds (Tyr and BP-4), our study provided valuable insight regarding the genotoxicity of DBPs from other multiple precursors. It is expected that researchers will pay more attention to the genotoxicity difference between mixtures and individual precursors after chlorination to correctly evaluate the DBPs’ potential negative effects on ecological systems and human health. In addition, the role of the N-DBPs and combined effects during the evaluation of genotoxicity differences is likely to be of particular concern.

Acknowledgements

This work is supported by the National Natural Science Foundation of China (Nos. 51290282, 51578537 and 51420105012) and the National Water Pollution Control and Treatment Science and Technology Major Project (2014ZX07405003). We thank Prof. Zijian Wang for providing technical support. This research is also supported by the Brook Byers Institute for Sustainable Systems, Hightower Chair, and the Georgia Research Alliance at the Georgia Institute of Technology.

Appendix A. Supplementary data

Supplementary data associated with this article can be found, in the online version, at http://dx.doi.org/10.1016/j.jhazmat.2016.10.014.

References

[1] U.V. Gunten, A. Driedger, H. Gallard, E. Salhi, By-products formation during drinking water disinfection: a tool to assess disinfection efficiency, Water Res. 35 (2001) 2095–2099.

[2] S.D. Richardson, M.J. Pletwa, E.D. Wagner, R. Schoeny, D.M. Demarini, Occurrence, genotoxicity, and carcinogenicity of regulated and emerging disinfection by-products in drinking water: a review and roadmap for research, Mutat. Res. Fundam. Mol. Mech. 636 (2007) 178–242.

[3] M. Siddiqui, G. Amy, J. Ryan, W. Odem, Membranes for the control of natural organic matter from surface waters, Water Res. 34 (2000) 3355–3370.
R. Shen, S.A. Andrews, Demonstration of 20 pharmaceuticals and personal care products (PPCPs) as nitrosamine precursors during chloramine disinfection. Water Res. 45 (2011) 944–952.

A. Kampioti, E.G. Stephanou, The impact of bromide on the formation of neutral and acidic disinfection by-products (DBPs) in Mediterranean chlorinated drinking water. Water Res. 36 (2002) 2596–2606.

Y. Biechel, U.V. Gunten, Formation of iodo-trihalomethanes during disinfection and oxidation of iodide-containing waters, Environ. Sci. Technol. 34 (2000) 2784–2791.

C.M. Villanueva, G. Castaño-Vinyals, V. Moreno, G. Carrasco-Turigas, N. Aragónés, E. Bello, E. Ardanaz, E. Toledo, J.M. Altzibar, I. Zaldúa, Concentrations and correlations of disinfection by-products in municipal drinking water: from an exposure assessment perspective, Environ. Res. 114 (2012) 1–11.

G.E. Boven Jr., P.A. Rogerson, J.E. Vena, Case control study of the geographic variability of exposure to disinfectant byproducts and risk for rectal cancer, Int. J. Health Geogr. 6 (2007) 2565–2580.

M.J. Nieuwenhuijzen, J. Grellier, R. Smith, N. Iszatt, J. Bennett, N. Best, M. Toledano, The epidemiology and possible mechanisms of disinfection by-products in drinking water, Philos. Trans. A Math. Phys. Eng. Sci. 367 (2009) 4043–4076.

C.M. Villanueva, M. Kogevinas, Disinfection byproducts and bladder cancer: a pooled analysis, Epidemiology 15 (2004) 357–367.

J. Li, D. Wei, C. Wei, Y. Du, Transformation of ceftazolin during chlorination process: products, mechanism and genotoxicity assessment, J. Hazard. Mater. 262 (2013) 48–54.

J. Owusu-Yaw, W.B. Wheeler, C.I. Wei, Genotoxicity studies of the reaction of chlorine or chlorite dioxide with L-tryptophan, Toxicol. Lett. 56 (1991) 213–227.

M. Xiao, D. Wei, J. Yin, G. Wei, Y. Du, Transformation mechanism of benzophenone-4 in free chlorine promoted chlorination disinfection, Water Res. 47 (2013) 6223–6233.

D. Wang, Z. Xu, Y. Zhao, X. Yan, J. Shi, Change of genotoxicity for raw and finished water: role of purification processes, Chemosphere 83 (2011) 14–20.

B.A. Lyon, R.Y. Milisk, A.B. Deangelo, J.E. Simmons, M.P. Moyer, H.S. Weinberg, Integrated chemical and toxicological investigation of UV-chlorine/chloramine drinking water treatment, Environ. Sci. Technol. 48 (2014) 6743–6753.

Y. Shi, X.W. Cao, F. Tang, H.R. Du, Y.Z. Wang, X.Q. Qiu, H.P. Yu, B. Lu, In vitro toxicity of surface water disinfected by different sequential treatments, Water Res. 43 (2008) 218–228.

N.M. Ram, A review of the significance and formation of chlorinated N-organic compounds in water supplies including preliminary studies on the chlorination of alanine tryptophan, tyrosine, cysteine, and syringic acid, Environ. Int. 11 (1985) 441–451.

I. Szajdak, R. Österberg, Amino acids present in humic acids from soils under different cultivations, Environ. Int. 22 (1996) 331–334.

W.A. Mitch, S.W. Krasner, P. Westerhoff, A. Dotson, Occurrence and Formation of Nitrogenous Disinfection By-Products, American Water Works Association Research Foundation, Denver, Colo. 2009.

W. Chu, N. Gao, S.W. Krasner, M.R. Templeton, D. Yin, Formation of halogenated C- N-DBPs from chlor(am)ination and UV irradiation of tyrosine in drinking water, Environ. Pollut. 161 (2012) 8–14.

H.C. Hong, M.H. Wong, Y. Liang, Amino acids as precursors of trihalomethane and haloacetic acid formation during chlorination, Arch. Environ. Contam. Toxicol. 56 (2009) 638–645.

M.L. Trehy, R.A. Yost, C.J. Miles, Chlorination byproducts of amino acids in natural waters, Environ. Sci. Technol. 20 (1986) 1117–1122.

W.H. Chu, N.Y. Gao, Y. Deng, S.W. Krasner, Precursors of dichloroacetamide, an emerging nitrogenous DBP formed during chlorination or chloramination, Environ. Sci. Technol. 44 (2010) 3908–3912.

M.S. Díaz-Cruz, M. Urraca, D. Barceló, D. Barceló, Organic UV filters and their photodegradation, metabolites and disinfection by-products in the aquatic environment, TrAC Trend Anal. Chem. 27 (2008) 873–887.

F. Stenback, Local and systemic effects of commonly used cutaneous agents: lifetime studies of 16 compounds in mice and rabbits, Acta Pharmacol. Toxicol. 41 (1977) 41–51.

S. Wahie, J.J. Lloyd, P.M. Farr, Sunscreen ingredients and labelling: a survey of products available in the UK, Clin. Exp. Dermatol. 32 (2007) 359–364.

R. Roldál, J.B. Quintana, P. Lópe-Malta, S. Muniategui-Lorezo, D. Prada-Rodríguez, Multisial determination of sunscreen chemicals in water samples by liquid chromatography-tandem mass spectrometry, Anal. Chem. 80 (2008) 1307–1315.

K. Feint, A. Zener, M. Rapp, Widespread occurrence of estrogenic UV-filters in aquatic ecosystems in Switzerland, Environ. Pollut. 158 (2010) 1817–1824.

M.G. Mueller, E.D. Wagner, K. Mccalla, S.D. Richardson, Y.T. Woo, M.J. Plewa, Haloacetonitriles vs. regulated haloacetic acids: are nitrogen-containing DBPs more toxic, Environ. Sci. Technol. 41 (2007) 645–650.

M.J. Plewa, M.G. Mueller, S.D. Richardson, F. Fasano, K.M. Buettner, Y.T. Woo, A.B. Mckague, E.D. Wagner, Occurrence, synthesis, and mammalian cell genotoxicity of haloacetonitriles: an emerging class of nitrogenous drinking water disinfection byproducts, Environ. Sci. Technol. 42 (2008) 955–961.

M.J. Plewa, E.D. Wagner, P. Jazwierska, S.D. Richardson, P.H. Chen, A.B. Mckague, Halonitromethane drinking water disinfection byproducts: chemical characterization and mammalian cell genotoxicity and genotoxicity, Environ. Sci. Technol. 38 (2015) 62–68.

J.L. Burleson, G.R. Peyton, W.H. Glaze, Gas-chromatographic/mass-spectrometric analysis of derivatized amino acids in municipal wastewater products, Environ. Sci. Technol. 14 (2002) 1354–1359.

USEPA Method 551.1, 1995, J.W. Munch, D.P. Hautman, Determination of chlorination disinfection by-products, chlorinated solvents, and halogenated pesticides/herbicides in drinking water by liquid-liquid extraction and gas chromatograph with electron-capture detection (Revision 1.0). Office of Research and Development, Washington, DC.

USEPA Method 552.3, 1995, D.J. Munch, J.W. Munch, A.M. Pawlecki, Determination of haloacetic acids in drinking water by liquid–liquid extraction, derivatization and gas chromatography with electron capture detection. Office of Research and Development, Washington, DC.

G.O.F. Standardization, Water quality – Determination of Kjeldahl nitrogen – Method after mineralization with selenium, International Standard Iso (1984).

National Standards of the People’s Republic of China GB7479-87, 1987. Water Quality, Determination of Ammonium by the Nessler Colorimetric Method (in Chinese). Ministry of Environmental Protection of the People’s Republic of China (MEPPRC). Beijing, China.

Y. Oda, S. Nakamura, I. Oki, T. Kato, H. Shigawara, Evaluation of the new system (umu-test) for the detection of environmental mutagens and carcinogens, Mutat. Res. Fundam. Mol. Mech. 147 (1985) 219–229.

X. Gao, B. Zhang, G. Zhong, D. Zhang, Combination of in vitro bioassays for the determination of cytotoxic and genotoxic potential of wastewater, surface water and drinking water samples, Chemosphere 75 (2009) 1453–1460.

D. Wei, Z. Tan, Y. Du, Toxicity–based assessment of the treatment performance of wastewater treatment and reclamation processes, J. Environ. Sci. 24 (2012) 969–978.

Y. Xin, Q. Shen, W. Guo, J. Peng, Y. Liang, Precursors and nitrogen origins of trichloronitromethane and dichloroacetone during chlorination/chloramination, Chemosphere 88 (2012) 25–32.

C.N. And, T.M. Olson, Relative reactivity of amino acids with chlorine in mixtures, Environ. Sci. Technol. 41 (2007) 3220–3225.

X.L. Armesto, M.L. Canie, J.A. Santaballa, α-Amino acids chlorination in aqueous media, Tetrahedron 49 (1993) 275–284.