Abstract

Alocasia alba Schott is a member of Macrorrhizos group from Aroid family that has conserved in Bali Botanic Garden. On its development, the collections showed varied morphological diversity on leaves and flowers. The aim of this study is to fill the knowledge gap in morphology and anatomy of the species A. alba and to know the phenotypic variation in this species. A total of eight A. alba accessions from Java, Bali and West Nusa Tenggara were observed in morphological and anatomical characters. The result showed that the eight accessions of A. alba have some variations in morphological and anatomical characters. These variations might be caused by genetic factors that resulted from plant adaptation to the different environments.

Keywords: Aroid, environment, leaves, phenotypic, stomata

Submitted: 21 June 2021
Accepted: 12 September 2021
Published: 17 January 2022
Editor: Miftahul Ilmi

Introduction

Alocasia is one of plant group which is very popular among ornamental plant hobbyists and plant breeders. The genus has variety in leave shapes and colors, potentially for exotic plants breeding. Alocasia have estimated 121 species that spread around the world, but only 78 species have been described (Boyce & Croat 2011). The Alocasia distributions and diversities in Indonesia remain unknown. However based on herbarium tracking and field observation, it is estimated about 36 Alocasia species origin from Indonesia (unpublished data). This number may change if the study about Alocasia diversity in its nature habitat is increased. Hay (1998) grouped Alocasia according to similarity on its special character Alocasia i.e Puber, Scabriuscula, Princeps, Macrorrhizos, Longiloba and Cuprea group.

Alocasia alba Schott is a member of Macrorrhizos group with large figures and leaves (Figure 1) which first described by Schott based on cultivated plant from Malesiana region. Botanist identified that A. alba is originated from Java (Hay 1998). Exploration biodiversity in some regions found the new distribution of A. alba in Bali, Lombok (Kurniawan et al. 2013) and Lampung (Mustaqim & Setiawan 2019). In Bali, A. alba has a wide distribution from altitude 196 - 1300 m asl on humus to sandy land.
Figure 1. Alocasia alba Schott (A) Plant (B) Flower (Photograph by I Gede Wawan Setiadi)

Bali Botanic Garden as ex situ conservation institution of Indonesian Institute of Sciences, has conserved A. alba collected from Java, Bali and West Nusa Tenggara. On their development, the collections showed varied morphological diversity on leaves and flowers. Kurniawan et al. (2013) reported about the variation on flower structures and leave shapes in A. alba. Similar research on collected Begonia areolate in Cibodas Botanic Garden from various regions, showed the diversity on their leaves while maintained in the same environmental conditions (Efendi et al. 2020). This showed the genetic influence in plant collection is still remaining although being cultivated away from its natural habitat.

There were less study on phenotypic variation in morphology and anatomy in Alocasia genus. Only two reported articles on Alocasia macrorrhizos (L.) G. Don. such as morphology and reproductive characteristic in Vanuatu (Garcia et al. 2008) also on morphology, anatomy and isozyme variation in Central Java (Suratman et al. 2016). Meanwhile, the morphological and anatomical character research has very important aspect as the parameter to determine diversity level in A. alba. Morphological character often used to represent and identified intra-species together with phenotypic variation because they are fast, simple and inexpensive (Jingura & Kamusoko 2015; Suratman et al. 2016). Anatomical character also useful for systematic study, species identification and solve the taxonomic problem (Chikmawati 2013). The aim of this study is to fill the knowledge gap in the morphology and anatomy of species A. alba and to understand the phenotypic variation in this species.

MATERIALS AND METHODS

Materials

A total of eight Alocasia alba Schott accessions from, Java, Bali and West Nusa Tenggara were observed (Table 1, Figure 2). They were planted in Bali Botanic Garden (BBG) after one year acclimatization in nursery and the plant growth was good. BBG is situated in mountain area at 1,250-1,400 m asl so that the temperature was relatively low.
Methods
Observation of morphology characters was carried out by direct observation of both vegetative and generative characters and character state. The observation of characters included the shape and color of petiole, leaf, peduncle and flower. The observation of character states included the plant height, petiole, peduncle, leaf length and the length of each zone of flower. The plant leaves that used as the main research were the second or third leaves from the top. The color of each part of plants was identified by RHS (Royal Horticultura Society) Color Chart.

Anatomy of leaves anatomy was obtained with modified paraffin-tert-butanol method (Sass 1951). The sections were stained with safranin and fast green. There are two methods for epidermal character observation. We used HNO$_3$ solution (Cutler et al. 2007) to obtain leaf surface and to measure length, width of stomata and simple nail varnish to examine stomatal density (number of stomata/mm2 leaf area) on both abaxial and adaxial surfaces.
RESULTS AND DISCUSSION

Morphological analysis

Morphological vegetative characters, both quantitative and qualitative characters, showed several variations (Table 2). All quantitative characters showed the differences in plants height, petiole and sheath length, leaf length and width, posterior costae diverging, primary lateral vein, peduncle and spathe length, spadix and stipitate length, female zone, male zone, also sterile interstice zone and appendix length.

These color variations also occurred in some of plant parts i.e. in petioles, pattern or line in petioles, leaf colors, axillary glands, peduncles, spathes and each zone in spadix. Some plant characters might have or not patterns or line of petiole. This absence of pattern only found in *A. alba* accession from West Nusa Tenggara. Mostly, leaf characters of accessions from those three locations were similar, but all accessions showed different leaf forms. (Figure 3). Some *A. alba* leaves from Bali accession have suborbicular-sagittate shape, unite posterior lobe, and lanceolate inner-side posterior. *A. alba* from Java accession, has leaf edge which has sinuate character, otherwise West Nusa Tenggara has slightly undulate character that different from others.

![Figure 3. Variation of leaf. A. RS.136 (Java). B. BA.753A (Bali). C. DL.99 (Bali). D. PSA.215 (Bali). E. PSA.222 (Lombok). F. PSA.226 (Lombok). G. MBA.121 (Lombok). H. JQ.1143 (Lombok) (Photograph by Ni Putu Sri Asih).](image)

The generative characters, both quantitative and qualitative, showed different sizes and colors in all part of flower and peduncle (Table 3). The only similarity of those accessions is the number of inflorescence, whether it presents in several or a pair of inflorescence. Peduncle color of Bali accession shows more varied than Java and West Nusa Tenggara accession. While the limb, lower spathe, ovary and stigma color of West Nusa Tenggara accession show the most varied. The number of stigma lobe shows the same number
with Bali and West Nusa Tenggara accession (2-4 lobes), while the Java accession has different number (2-3 lobes).

Anatomical analysis
Epidermal examination on leaf anatomy of eight accessions of A. alba showed that cell wall on adaxial epidermal has anticlinal straight, angular or rounded and undulate anticlinal cell wall, whereas on abaxial, it is undulate, sinuous, straight and rounded anticlinal cell wall (Figure 4). Both abaxial and adaxial on periclinal wall are smooth. In this study, all accessions of A. alba

No	Characters	Java	Bali	West Nusa Tenggara
1	Plant height (cm)	129.8-132	114-300	82.5-242
2	Petiole length (cm)	83.4-96.8	66.9-99.2	77.2-102.5
3	Petiole color	Moderate yellowish green 138A	Strong yellow green C N144C	Greyish olive green A NN137A
				Moderate yellow green C 138 C
				Greyish olive green B NN 137B
4	Pattern or line on petiole	Present	Present	Absent-present
5	Pattern/line color	Dark purplish grey A N187A	Greyish reddish brown B 200	Dark purplish grey A N 186A
				Dark greyish reddish brown A 200
6	Sheath length (cm)	34.9-40.3	26.8-65	31-49
7	Leaf shape	Ovate-sagittate	Suborbicular-sagittate	Ovate-sagittate
			Ovate-sagittate	Cordate-sagittate
8	Leaf color	Greyish olive green NN137A	Greyish olive green B NN137B	Greyish olive green A MM37
			Greyish olive green A NN137A	Greyish olive green B NN137 B
			Greyish olive green B NN 137A	Greyish olive green A NN137A
9	Leaf edge	Sinuate	Undulate	Undulate
10	Spread of posterior leaf	Separated	United-separated	Separated
11	Leaf length (cm)	60-68	51.8-94	48.5-94
12	Leaf width (cm)	51.8-62.5	51.8-94	36.6-67
13	Apex	Shortly acuminate	Shortly acuminate	Shortly acuminate
			Acuminate	Acuminate
14	Inner side of posterior lobe	Obovate	Obovate	Obovate
			Narrowly obovate	Narrowly obovate
			Lanceolate	Lanceolate
15	Posterior costae diverging (°)	135-150	65-110	75-135
16	Primary lateral vein	7-10	8-12	8-14
17	Axillary glands color	White NN155D	White NN155D	White NN155D
			Brilliant yellow green 149 C	Strong yellow green 145 A
No	Characters	Java	Bali	West Nusa Tenggara
----	-----------------------------------	----------------------------	-------------------------------	--
1	Inflorescences	several at the centre of leaf crown, occasionally a pair	several at the centre of leaf crown, occasionally a pair	several at the centre of leaf crown, occasionally a pair
2	Peduncle length (cm)	21-28	25-37	23.5-40
3	Peduncle color	Light yellow green D144	Moderate yellow green D139	Strong yellow green A144
			Moderate yellow green C139	Strong yellow green A143
			Moderate yellow green D137	Light yellow green B145
			Strong yellow green C143	Strong yellow green C143
			Strong yellow green C144	Strong yellow green C144
			Strong yellow green C145	Strong yellow green C145
			Brilliant yellow green C142	
4	Spathae length (cm)	12.7-14.6	13.6-18.6	10.7-17.2
5	Limb color	Brilliant yellow green C150	Light yellow green B146	Strong yellow green C144
			Strong yellow green D1144	Strong yellow green A145
			Strong yellow green D1145	Moderate yellow green A138
			Strong yellow green C144	Strong yellow green C144
			Strong yellow green A145	Strong yellow green B145
			Strong yellow green C145	Strong yellow green C145
			Brilliant yellow green C154	
6	Lower spathe color	Moderate yellow green B146	Brilliant yellow green C154	Strong yellow green A144
			Brilliant yellow green C150	Strong yellow green B144
				Strong yellow green C144
				Strong yellow green C144
				Strong yellow green B145
				Strong yellow green C150
				Brilliant yellow green C154
7	Spadix length (cm)	9.3-11.1	10.6-13	7.8-11.6
8	Stipitate (mm)	2-6	1-4	1-7
9	Female zone length (cm)	2-2.4	1.9-2.9	1.5-2.3
10	Sterile interstice length (cm)	0.7-0.8	0.6-1.4	0.5-1.6
11	Male zone length (cm)	2.4-3	2.3-3.4	1.8-3.5
12	Appendix length (cm)	3.6-5.4	5.3-6.9	3.2-5.4
13	Ovary color	Strong yellow green C1144	Light yellow green C145	Light yellow green D150
		Strong yellow green C1144	Strong yellow green D1144	Light yellow green B145
		Strong yellow green C1144	Strong yellow green D1144	Brilliant yellow green C149
		Light green yellow C1	Light green yellow C1	Strong yellow green D1144
				Strong yellow green D1144
				Strong yellow C144
				Strong yellow C144
14	Lobe number of stigma	2-3	2-4	2-4
have similar anatomical characters. *A. alba* leaf type is ampishomatic which means that stomata occur in both surfaces, but the stomatal density on adaxial is less than abaxial surface. Types of stomata on *A. alba* are anomocytic, anisocytic, paracytic and brachyparatetracytic (Figure 4). The latter stomata type was based on Dilcher (1974). Transversal section of leaf showed 1-2 layer of palisade on adaxial side of the leaf and sponge tissue arranged below the palisade (Figure 5 A). All accessions have druse shape of CaCO$_3$ crystal (Figure 5 B).

![Figure 4](image-url)

Figure 4. Leaves epidermal on *A. alba*. Anticlinal epidermal wall with undulate cell (A), angular and rounded cell (B). sinuous (C). Stomata type of brachyparatetracytic (b) also presents in *A. alba* (D). There are stomata types i.e. anomocytic (a), anisocytic (ai) and paracytic (p). Epidermal cell (e). Scale bar 50 μm.

The transversal section of *A. alba* showed that the leaf consists of cuticle, epidermal, palisade and sponge cells (Figure 5). The cuticle is situated in

No	Characters	Java	Bali	West Nusa Tenggara
15	Stigma color	Pale green yellow D 2	Light yellow green D 150	Light greenish yellow D7
		Pale green yellow D 3	Pale greenish yellow D1	Light greenish yellow D8
			Light yellow green D 150	Light yellow green D 150
			Strong green yellow B 151	Strong green yellow B 152
16	Sterile interstice color	Pale yellow pink D159	Yellowish white D 158	Pale yellow B 158
			Yellowish white D 158	Yellowish white B 155
			Yellowish white D 158	Yellowish white D 158
17	Male zone color	Pale yellow pink D159	Yellowish white D 158	Pale yellow B 158
		Yellowish white C158	Yellowish white D 155	Yellowish white B 155
			Yellowish white C 155	Yellowish white C 158
18	Appendix color	Light yellow pink A 159	Yellowish white C 158	Pale yellow B 158
		Pale yellow A 158	Yellowish white D 158	Pale yellow A 158
			Yellowish white A 158	Yellowish white D 155
			Yellowish white D 158	Yellowish white D 158

Table 3. Contd.
adaxial surface, while the one layer of epidermal cell is situated in both surfaces. The sponge cell has the thickest part in leaf tissue.

Table 4 showed stomata and epidermal measurement. Stomatal density from Java is higher than from Bali and West Nusa Tenggara. The stomata are longer and wider as well as the epidermal cells are thicker in the adaxial than abaxial side. This study also showed that Bali’s accessions have longer stomata; thicker epidermis, palisade and sponge compared to accessions of other locations. But, the adaxial stomata of Java accession are the widest.

![Figure 5](image_url). The transversal section of *A. alba* leaf. A.) Bar scale 100 μm. B.) s: sponge; p: palisade; le: lower palisade; ue: upper palisade. Scale bar 50 μm.

Discussion

Eight accessions of *A. alba* from Java, Bali and West Nusa Tenggara were observed based on morphological and anatomical characters. Predominantly, the variations in morphological are the color of petiole, pattern of petiole, leaf, peduncle, spathe and spadix of *A. alba* (Table 2 and Table 3). Related to the present of patterns in petiole, it is divided into two variations i.e. petiole with pattern and petiole without-pattern. Petiole without-pattern only found in accession from West Nusa Tenggara. These kinds of variations have never been studied but have founded in several variations in *Alocasia longiflora* Miq.
A. longiloba have seven peak variations and mostly have mottled petiole, but the petiole of watsoniana variation is not or faintly mottled. This immottled petiole sometime also founded in lowii variation. The cause of variations are still not understood (Hay 1998).

According to the color of petiole pattern, there are four variations of color. These variations of colors have never been reported in *Alocasia* genus, but has reported in *Colocasia esculenta* (Maretta et al. 2020) and other family, Begoniaceae (Efendi et al. 2020). The differences of colors might be as a response to different light intensities that are obtained by the plant (Zhang et al. 2018).

This study also found some variations in leaf shapes, sizes of petioles, leaves, peduncles, spathes and each zone of spadix. This phenotypic variation within species is the result of the interaction of environmental and genetic factors that was gradually inherited to the offspring (Ramsey et al. 1994; Gonzalez et al. 2012; Albarrán-Lara et al. 2018; Li et al. 2018; Alcántara-ayala et al. 2020; Ren et al. 2020). The leaf size and shape indicated the diversity of leaf morphological phenotypes (Ren et al. 2020).

Meanwhile, the epidermal character of the eight accessions of *A. alba* showed similarities, especially in qualitative parameters. The similarity of cell form in the adaxial and abaxial surface is commonly found in plants, even though it is also found the different forms between those two surfaces (Cutler et al. 2007). The leaf anatomy of *A. alba* had been observed by Erlinawati & Tihurua (2013). The observed characters were epidermal cell shape, anticlinal wall, distribution of stomata, and the present of trichome. Erlinawati & Tihurua (2013) mentioned that the anticlinal wall of *A. alba* was straight but, the eight accessions of *A. alba* on this study, showed that it is also found the undulate and sinuous anticlinal cell wall. These differences can give new information about the range or variation of *A. alba* epidermal characters.

The stomata of *A. alba* are found in adaxial and abaxial, and it has four types of stomata *i.e.* anomocytic, anisocytic, paracytic, and brachyparatetra-cytic (Figure 4). Some studies about the stomata type of Araceae have been conducted in *A. cucullata, A. macrorrhiza* and *A. plumbea* (Suratman et al. 2016; Arogundade & Adedeji 2019), some Araceae species in Bombay and Maharashtra (Vaidya 2016b), and some species of *Alocasia, Colocasia* and *Remusatia* in Indonesia (Erlinawati & Tihurua 2013). Those three studies found one type of stomata in each species, but other research discovered two types of stomata (Sookchaloem et al. 2016; Vaidya 2016a). Those agreed to Cutler et al. (2007) which stated that although most species only have one type, but some species can have several types of stomata.

The other stomata character, density of stomata, showed that the highest density belongs to Java accession. The fact that the stomata on the abaxial side are denser than adaxial side has also confirmed by several research in *Alocasia* (Arogundade & Adedeji 2019; Suratman et al. 2016). Kondo et al. (2010) mentioned that environment condition is one of factor that affects the
density of stomata in plants. The dependency of this character to the environment condition can be used as indicator of transpiration and photosynthesis rate; also on absorption of water and mineral by the plant (Suratman et al. 2016; Rindyastuti & Hapsari, 2017). The quantitative data such as stomata length and width, epidermal thickness, palisade thickness, and sponge thickness and leaf thickness showed the variation amongst examined accession from three locations. Commonly, the Bali accession has the highest of all characters measurement and it might be caused by the adaptation of plant to the environment factors (Suratman et al. 2016).

The fact that the character variations of A. alba accessions from different locations, Java, Bali and West Nusa Tenggara, which planted in Bali Botanic Garden Conservatory that relatively has same environment condition might be caused by the genetic factor that the plant inherited from the parental and adaptation to the different physical condition for long time. Research about plant variation in different environments is important to understand the genetic diversity, genetic breeding and basis of conservation biology (Li et al. 2018) completed with the evolutionary processes that might promote speciation and maintain diversity (Alcántara-ayala et al. 2020). Furthermore, for biology conservation, plant variation research can give more specific information about the species that has to be conserved, especially the wild species to prevent genetic diversity loss (Santos et al. 2012).

CONCLUSION
This study showed that there are some variations within species of A. alba from different locations based on their morphological and anatomical characteristics. These variations can be caused by genetic factors as a result from plant adaptation to different environments. Therefore, to prove the genetic factors on these variations, more data of morphology, anatomy and molecular are needed to enrich the information of A. alba.

AUTHORS CONTRIBUTION
N.P.S.A did the morphological observation, analysis and write manuscript. E.H. did the morphological observation, stomatal density measurement and write manuscript. E.F.T. did the anatomical preparation, observation, analysis and write manuscript.

ACKNOWLEDGMENTS
The authors acknowledge gratefully to Bali Botanic Garden and Herbarium Bogoriense for the permission and support of this research. We also thank to Exploration Team for providing the A. alba collection and the staff of Conservatory Garden for maintaining the life and growth of A. alba.

CONFLICT OF INTEREST
The authors state that there is no any conflict of interest regarding the research or the research funding.
REFERENCES

Albarrán-Lara, A.L. et al., 2018. Low genetic differentiation between two morphologically and ecologically distinct giant-leaved Mexican oaks. *Plant Systematics and Evolution*, 305(1), pp. 89–101. doi: 10.1007/s00606-018-1554-8.

Alcántara-ayala, O. et al., 2020. Morphological variation of leaf traits in the *Ternstroemia lineata* species complex (Ericales: Penthaphylacaceae) in response to geographic and climatic variation. *PeerJ*, 8(e8307), pp.1–27. doi: 10.7717/peerj.8307.

Arogundade, O.O. & Adedeji, O., 2019. The importance of foliar anatomy in the taxonomy of the genus *Alocasia* (Schott) G. Don. *Jordan Journal of Biological Sciences*, 12(1), pp.67–75.

Boyce, P.C. & Croat, T.B., 2011, *The uberlist of Araceae, totals for published and estimated number of species in aroid genera*, viewed 28 January 2021, from http://www.aroid.org/genera/20201008Uberlist.pdf.

Chikmawati, T., 2013. Anatomical and cytological features of *Spathoglottis plicata* from Java Island. *Journal of Tropical Life Science*, 3(2), pp.87–90. doi: 10.11594/jtls.03.02.03.

Cutler, D.F. et al., 2007, *Plant Anatomy: An Applied Approach*. First. USA: Blackwell Publishing Ltd. doi: 10.1002/9781119945734.ch7.

Dilcher, D.L., 1974. Approaches to the identification of Angiosperm leaf remains. *The Botanical Review*, 40(1), pp.1–157. doi: 10.2307/2420009.

Efendi, M. et al., 2020. Catatan variasi morfologi intraspesies *Begonia areolata* Miq. berdasarkan koleksi Kebun Raya Cibodas, Jawa Barat. *Jurnal Biologica Samudra*, 2(2), pp.103–113.

Erlinawati, I. & Tihurua, E. F., 2013. Leaf surface comparison of three genera Araceae in Indonesia. *Buletin Kebun Raya*, 16(2), pp.131–145.

Garcia, J. Q. et al., 2008. Morphological variation and reproductive characteristics of wild giant taro (*Alocasia macrorrhizos*, Araceae) populations in Vanuatu. *New Zealand Journal of Botany*, 46, pp.189–203. doi: 10.1080/00288250809509762.

Gonzalez, N. et al., 2012. Leaf size control: complex coordination of cell division and expansio. *Trends in Plant Science*, 17(6), pp.332–340. doi: 10.1016/j.tplants.2012.02.003.

Hay, A., 1998. The genus *Alocasia* (Araceae-Colocasioeae) in West Malesia & Sulawesi. *Gardens’ Bulletin Singapore*, 50, pp.221–334.

Jingura, R. & Kamusoko, R., 2015. Utility of markers for determination of genetic diversity in *Jatropha*: A review. *Open Renewable Energy Journal*, 8, pp.1–6.

Kondo, T. et al., 2010. Stomatal density in controlled by a mesophyll-derived signaling molecule. *Plant Cell Physiology*, 51(1), pp.1–8. doi: doi:10.1093/pcp/pcp180.

-11-
Kurniawan, A. et al., 2013. Studies on the Araceae of the Lesser Sunda Islands I: New distribution records for *Alocasia alba*. Gardens’ Bulletin Singapore, 65(2), pp.157–162.

Li, L. et al., 2018. Diversity analysis of leaf phenotypic characters of *Pyracantha fortuneana*, in *IOP Conf. Series: Earth and Environmental Science* 199 022011, pp.1–7. doi: 10.1088/1755-1315/199/2/022011.

Maretta, D. et al., 2020. Genetic diversity in eddoe taro (*Colocasia esculenta* var. *antiquorum*) from Indonesia based on morphological and nutritional characteristics. *Biodiversitas*, 21(8), pp.3525–3533. doi: 10.13057/biodiv/d210814.

Mustaqim, W. A. & Setiawan, E., 2019. *Alocasia alba* (Araceae) in Southern Sumatra: further distribution recorded. *Aroideana*, 42(2), pp.18–22.

Ramsey, M. W. et al., 1994. Geographic variation in morphological and reproductive characters of coastal and tableland populations of *Blandfordia grandiflora* (Liliaceae). *Plant Systematics and Evolution*, 192(3–4), pp.215–230. doi: 10.1007/BF00986253.

Ren, J. et al., 2020. Variation and genetic parameters of leaf morphological traits of eight families from *Populus simonii* × *P. nigra*. *Forest*, 11(1319), pp.1–17. doi: 10.3390/f11121319.

Rindyastuti, R. & Hapsari, L., 2017. Adaptasi ekofisiologi terhadap iklim tropis kering: studi anatomi daun sepuluh jenis tumbuhan berkayu. *Jurnal Biologi Indonesia*, 13(1), pp.1–14.

Santos, R. C. et al., 2012. Morphological characterization of leaf, flower, fruit and seed traits among Brazilian *Theobroma* L. species. *Genetic Resources and Crop Evolution*, 59, pp.327–345. doi: 10.1007/s10722-011-9685-6.

Sass, J., 1951, *Botanical microtechnique*. 2nd edition. The Iowa State College Press.

Sookchaloem, D. et al., 2016. Leaf blade anatomy characteristics of the genus *Amorphophallus* Blume ex Decne. in Thailand. *Agriculture and Natural Resources*, 50, pp.437–444. doi: 10.1016/j.anres.2016.09.002.

Suratman et al., 2016. Morphological, anatomical and isozyme variation among giant taro (*Alocasia macrorrhiza*) accessions from Central Java, Indonesia. *Biodiversitas*, 17(2), pp.422–429. doi: 10.13057/biodiv/d170204.

Vaidya, M., 2016a. Stomatal complexes in some species of Araceae. *World Journal of Pharmaceutical Research*, 5(7), pp.1037–1047. doi: 10.20959/wijpr20167-6511.

Vaidya, M., 2016b. Study of Stomata in some species of *Alocasia* and *Syngonium* of family Araceae juss. *International Journal Of Advances In Pharmacy, Biology And Chemistry*, 5(2), pp.180–185.

Zhang, Y. et al., 2018. Effects of shading on some morphological and physiological characteristics of *Begonia semperflorens*. *Pakistan Journal of Botany*, 50(6), pp.2173–2179.