The present study focused on extracting green larvicides from extracts of the combination of *Foeniculum vulgare* and *Matricaria chamomilla* using different solvents of increasing polarity in a Soxhlet extractor and evaluating their ovicidal, larvicidal, and cytotoxic activities. The most promising among all tested extracts was hexane extract. The ovicidal activity of the hexane PH2 extract resulted in a significant (p < 0.05) decrease in egg hatchability from 95.00 ± 6.16% to 15 ± 9.04% at doses ranging from 62.5 to 500 mg/mL. The larval mortality with the hexane extract ranged from 13.33 ± 3.3% to 93.33 ± 3.3% at doses ranging from 31.25 to 250 mg/mL, respectively. The LC50 and LC90 values of the larvicidal activity of the hexane extract were estimated to be 148.3 and 242.17 mg/mL after 24 h of exposure. Similarly, the LC50 values after 48 and 72 h of exposure were 124.93 and 100.3 mg/mL, respectively, against the third instar of *Cx. pipiens*. PH2 treatment of larvae resulted in histopathological changes such as degenerated epithelial cells and destruction of microvilli on the epithelial cells. The PH2 extract achieved a dose-dependent decrease in the rate of cell survival. The IC50 value of PH2-treated HUVECs was 192.07 mg/mL after 24 h of incubation. The cells showed changes in cellular and nuclear morphology. In conclusion, the hexane extract of PH2 could be used in mosquito management programs.

© 2021 The Author(s). Published by Elsevier B.V. on behalf of King Saud University. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
activities (JUCÁ et al., 2020, Ntie-Kang et al., 2016), including insecticidal and insect-repelling activities (Mishra et al., 2020). Natural products have attracted substantial interest as insecticidal agents because they are target-specific, less toxic, and biodegradable and can overcome insecticidal resistance (Younoussa et al., 2020, Mishra et al., 2020, Said-Al Ahl et al., 2017).

Foeniculum vulgare Mill (Apiaceae) and *Matricaria chamomilla* L (Asteraceae) are plants that are widely used in traditional healers (Diaz-Maroto et al., 2006, Miraj and Alesaeidi, 2016). The activities of these two plants have been documented in many review articles regarding their antibacterial, antifungal, antioxidant, antithrombotic, anti-inflammatory, estrogenic, hepatoprotective, antidiabetic, antihirsutism, antidepressive, antiosteoarthritis, and antidiarrheal effects (Rather et al., 2016, Badgujar et al., 2014, Miraj, and Alesaeidi, 2016).

In insect control research, the use of combinations of insecticides is recommended not only to improve the efficiency of insecticides but also to overcome insect resistance and preserve the efficacy of insecticides for many years (Nelson and Kursar, 1999, Younoussa et al., 2020). Combinations of plant extracts are widely reported in the literature, and believed to increase their effects, achieving synergistic or balanced effects (Cheesman et al., 2017) and thus potentially preventing issues regarding insect resistance (Isman et al., 2006). Synergism can result from crude plant extract or the combination of different plant extracts. Herbalists always recommend the use of the crude extract over the use of isolated compounds (Williamson et al., 2009).

In the current investigation, we evaluated the effects of the combination of two plant extracts against the third instar of *Cx. pipiens* in laboratory conditions.

2. Materials and methods

2.1. Test materials

Plants were purchased from Riyadh Herb Market, Riyadh Province, Saudi Arabia, and the voucher specimens of *Foeniculum vulgare* family Apiaceae seeds (KSU-031) and *Matricaria chamomilla* family Asteraceae fruits (KSU-032) were deposited at herbarium of Bioproduct Research Chair, King Saud University. The extracts of *F. vulgare* seeds and *M. chamomilla* fruits were ground to a powder, mixed at a 1:1 ratio, and extracted using a Soxhlet extractor. Four different solvents, namely, hexane, chloroform, ethyl acetate, and methanol, were used. Similarly, *F. vulgare* was extracted individually using the same solvents. All extracts were prepared in DMSO.

2.2. Total phenolic content (TPC)

The TPC of PH2 extract was analyzed using FC reagent (Al-Zharani et al., 2019). Different concentrations of 2 μl of standard gallic acid (5–90 μl/mL) were mixed with 20 μl of FC reagent in a 96-well plate. After mixing, the samples were incubated for 10 min (25 °C); then, 80 μl of 7.5% sodium carbonate was added and incubated in the dark for 2 h at 25 °C. Finally, plate was read at 765 nm and the concentration was calculated. The TPC was calculated as mg/g gallic acid equivalent (GAE/g).

2.3. Total flavonoid content (TFC)

The aluminum chloride method was employed to calculate TFC (Al-Zharani et al., 2019). Quercetin was used for the preparation of a standard curve by dissolving quercetin (1 mg) in of DMSO (1.0 mL) then, different concentrations were prepared using DMSO (5–90 μg/mL). Two microliters of standard quercetin solutions or PH2 extract was added to methanol (60 μl), 4 μl of 10% aluminum chloride, 1 M potassium acetate (4 μl), and 112 μl of distilled water in a 96-well plate. After mixing, the plates were kept at 25 °C for 60 min and the absorbance (368 nm) was read (Thermo Scientific Multiskan, China). The concentration was calculated as mg quercetin equivalent (QE)/g. All of the experiments were performed in triplicate.

2.4. Mosquito larvicidal assays

Mosquito colonies of *Culex pipiens* were maintained as previously described (Al-Mekhlafi, 2018). For each test, 8 ml of water containing 20 larvae (third instar) was placed into a 6-well plate and aliquots of the PH2 methanol, ethyl acetate, and hexane extracts solubilized in DMSO were then added. The DMSO (negative control) was used for comparison. Mortality was reported after 24 and 48 h of treatment. The assays were carried out at 25 ± 2 °C in triplicate with different concentrations of methanol, ethyl acetate (625, 500, 375, and 250 μg/mL), and hexane (250, 125, 62.50, and 31.25 μg/mL). The data was analyzed and LC50 and LC90 values were calculated using SPSS 16 software.

2.5. Ovicidal bioassay

The eggs were kept in a six-well plate containing 8 ml of tap water. Different concentrations of PH2 extract (500, 250, 125, 62.5 and 0 μg/mL) were prepared for the assay. The experiment was carried out in triplicate at 25 ± 2 °C for 24 h and then each sample was transferred to a well containing tap water to assess hatching. DMSO was used as a negative control.

2.6. Histopathological changes

The dead treated and control larvae were immersed in formalin (pH 7.2) and processed as reported previously (Al-Mekhlafi, 2018). In brief, each larva was processed in ethanol, embedded in paraffin, and cut into thin sections using a microtome and stained with hematoxylin and eosin and the midgut region was observed under a microscope (Olympus, Japan).

2.7. Cell lines

Human umbilical vein endothelial cells (HUVECs) were purchased from the American Type Cell Culture Collection (ATCC, USA) and grown in Dulbecco’s Modified Eagle Medium (DMEM). DMEM was supplemented with L-glutamine, sodium pyruvate, 10% fetal bovine serum (Gibco, USA) and penicillin-streptomycin 1% (UFC, Saudi Arabia).

2.8. MTT assay

MTT assay was performed as reported previously (Abutaha et al., 2021). Briefly, HUVECs (5 × 104 cells/well) were seeded for 24 h in a 24-well plate. The following day, the cells were treated with PH2 extract and incubated for 24 h. Later, MTT (5 mg/mL) (Merck, USA) solution was removed after incubation (2 h) and DMSO (100 μl) was added. The absorbance was read at 550 nm using a microtiter plate reader (Multiskan™ FC, USA). The percent survival was calculated and a graph was plotted using Origin software.

2.9. Morphological assessment

Cells (1 × 105 cells/3 mL) were seeded for 24 h in a 24-well plate and allowed to adhere overnight. After 24 h of treatment with PH2 extract (200 μg/mL), the morphological features were observed.
and imaged under phase-contrast microscope. The cells in the same plate were fixed with ice-cold methanol and then stained with Hoechst 33,342 for 20 min. The wells were washed with PBS and imaged under a fluorescence microscope.

2.10. Fourier transform infrared spectroscopy (FTIR)

PH2 extract was mixed with potassium bromide and compacted into a disk. The samples were scanned by FTIR (NICOLET 6700, USA). The spectrum was recorded within the region of 4000–400 cm⁻¹.

2.11. GC–MS analysis

Hexane extract of PH2 was analyzed in GC–MS using Perkin Elmer Clarus 600 (PerkinElmer, USA) linked to HP-88 column (0.25 μm film × 0.25 mm i.d. × 30 m length). One microliter of the PH2 extract was injected. Helium (99.9%) at a flow rate of 1 mL/min was used. The column oven temperature was set at 40 °C, increased by 10 °C per min to reach 200 °C (held for 3 min), and then held at 300 °C. The phyto-compounds were identified using mass spectral database libraries (Adams and WILEY).

2.12. Statistical analysis

The results are expressed as mean and standard deviation using SPSS program (version 21.0 for Windows; SPSS, Chicago, IL, USA). The significance of differences (p < 0.001) was evaluated using ANOVA followed by Tukey’s test. The LC50 values were assessed using OriginPro 8.5.

3. Results

3.1. Total phenol and flavonoid contents

The total phenol and flavonoid contents of PH2 extract were quantified as 5.82 GAE/mg and 2.18 QE/g, respectively.

3.2. Larvicidal bioassay

The larvicial potential of the methanol extract ranged from 3.33 ± 3.33% to 66.67 ± 6.67%. The LC50 value was estimated to be 590 μg/mL. The larval mortality of the ethyl acetate extract against the third instar of Cx. pipiens was 13.33 ± 3.33% and 53.3 ± 3.33% at 500 and 625 μg/mL, respectively. The LC50 value was estimated to be 677 μg/mL after 24 h of exposure (Table 1). Meanwhile, the mortality of larvae treated with PH2 hexane extract ranged from 13.33 ± 3.3% to 93.33 ± 3.3% at doses ranging from 31.25 to 250 μg/mL, respectively. The LC50 and LC90 values were estimated to be 148.3 and 242.17 μg/mL, respectively, after 24 h of exposure. Similarly, the LC50 values after 48 and 72 h of exposure were 124.93 and 100.3 μg/mL, respectively (Table 2). No mortality was observed in the negative control (0.1% DMSO). All of the extracts tested showed dose- and time-dependent activity against the third instar of Cx. pipiens.

3.3. Ovicidal activity

The ovicidal activity of the PH2 hexane extract resulted in a significant (p < 0.001) decrease in egg hatchability from 95.00 ± 6.16% at 15 ± 9.04% at doses ranging from 62.5 to 500 μg/mL PH2 (Fig. 1). No failure in hatching was observed in the control.

3.4. Histopathological study

The damage caused by PH2 extract to third instar Cx. pipiens was assessed histologically at 148.3 μg/mL. The histopathological observation revealed some changes such as edema between the degenerated epithelial cells and destruction of microvilli on the apical surface of the epithelial cells (Fig. 2C, D). Histopathological evaluation of the negative control showed no damage to the midgut tissues (Fig. 2A, B).

3.5. Cytotoxicity

Upon evaluation of the toxicity of PH2 extract by MTT assay using HUVECs, a concentration-dependent decrease in the rate of cell survival was identified, with an IC50 value of 192.07 μg/mL for a 24 h incubation period. To assess the morphological changes, cells were observed under a microscope. As illustrated in Fig. 3, the cells treated with PH2 extract showed changes in the cellular and nuclear morphology. The cells were detached, round in shape, and revealed DNA fragmentation.

Table 1
Larvicidal activity of PH2 methanol and ethyl acetate extracts against Culex pipiens.

F	df	LC50 (μg/mL)	LC90 (μg/mL)	Mortality (%)	Concentration (μg/mL)	Time	Extract type	
44.79	4	0.00	590.65	66.67 ± 6.67a	46.67 ± 3.33b	3.33 ± 3.33c	0.00 ± 0c	24 Methanol
52.18	4	671.98	484.45	80.00 ± 5.77a	60.00 ± 5.77b	13.33 ± 6.67c	6.67 ± 3.33c	48 Ethanol
73.33	4	627.55	301.55	93.33 ± 3.33a	70.00 ± 5.77b	56.67 ± 3.33ab	46.67 ± 8.82b	72 Ethanol
236.17	4	677.72	442.08	80.00 ± 5.77a	56.67 ± 3.33a	53.33 ± 3.33a	6.67 ± 3.33b	48 Ethanol
240.00	4	590.19	390.34	86.67 ± 3.33a	76.67 ± 3.33ab	63.33 ± 3.33b	10.00 ± 0c	72 Ethanol

Table 2
Larvicidal activity of PH2 hexane extract against Culex pipiens.

F	df	LC50 (μg/mL)	LC90 (μg/mL)	Mortality (%)	Concentration (μg/mL)	Time	Extract type	
44.79	4	242.17	148.43	93.33 ± 3.33a	40.00 ± 5.77b	13.33 ± 3.33c	0.00 ± 0c	24 Hexane
80.15	4	217.86	124.93	100.00 ± 0a	56.67 ± 3.33b	30.00 ± 0c	0.00 ± 0d	48 Ethanol
139.20	4	201.14	100.3904	100.00 ± 0a	76.67 ± 3.33b	50.00 ± 5.77c	0.00 ± 0d	72 Ethanol
3.6. Fourier transform infrared (FTIR) spectrometry

The FTIR spectrum is shown in Fig. 4. A broad peak at 3449 cm\(^{-1}\) represents O–H stretching phenol groups. Peaks at 2913 and 2995 cm\(^{-1}\) represent C–H of alkyne groups. The absorbance at 2361 cm\(^{-1}\) corresponds to nitro compounds (N–O). The band at 1022 cm\(^{-1}\) represents the C = C of aromatic rings. The absorbance at 1436 cm\(^{-1}\) represents carbonyl groups. The peak at 1141 to 1436 cm\(^{-1}\) are related to the bending of O–H, C–H, and C–N–C, and stretching attributed to carboxyls, alkanes, and amines. Fig. 5.

3.7. GC–MS analysis

The major compounds of the PH2 extract were bisabolol oxide A (17.1%), 1-methoxy-4-(1-z-propenyl) benzene (10.5%), methyl ester of hexadecanoic acid (8.3%), and 10-nonadecanone (7.03%) (Table 3).

4. Discussion

Mosquitoes in the aquatic stage (eggs and larvae) are an attractive target for mosquito control because, in stagnant water, they
are easily managed. However, introducing synthetic mosquitocides into waterbodies may pose risks to humans, animals, and the environment (Subramanian et al., 2012, Bagavan and Rahuman, 2011). Larvicides derived from natural sources, mainly plants, are a promising alternative for managing mosquitoes (Warikoo et al., 2012, Hemalatha et al., 2015). H. forskaolii is used in Tanzania to control insect vector-borne diseases (Asnake et al., 2016). It was shown that H. forskaolii root chloroform extract was toxic to C. quinquefasciatus, A. gambiae, and A. aegypti with LC50 values of 6.0, 2.0, and 3.8 μg/mL, respectively (Sillo et al., 2019). Similarly, in Portugal, extract of the aerial parts of F. vulgare resulted in LC90 and LC99 values of 37.1 and 52.4 μl/L, respectively, against Ae. aegypti larvae (Rocha et al., 2015). In our recent study (Al-Mekhlafi et al., 2020), the ethyl acetate extract of M. chamomilla showed an LC50 value of 287 μg/mL after 24 h of exposure and reduced the hatchability of the eggs of Cx. pipiens. In the present investigation, the mixture of H. forskolii and M. chamomilla showed dose- and time-dependent toxicity against Cx. pipiens with
Compounds identified in the hexane extract of an LC50 value of 148.4 g/mL helped to reduce the LC50 value of ethyl acetate extract of *M. chamomilla* from 287.1 g/mL (Mekhlafi et al., 2020) to 148.4 g/mL. Similarly, combinations of *Canarium schweinfurthii*, *Aucoumea klaineana*, and *Dacryodes edulis* led to the improvement of their efficiency and exhibited significant activity against *A. gambiae* (Ohame et al., 2016). The combination of thymol and carvacrol at a 1:4 ratio exhibited significant synergistic activity against *Cx. pipiens* larvae, compared with the compounds tested individually (Youssefi et al., 2019).

Histopathological assessment of the third instar of *Cx. pipiens* exposed to PH2 extract showed a change in the midgut architecture, mainly in the basal membrane, epithelial cells, and microvilli. Such damage was due to secondary metabolites in PH2 extract. Secondary metabolites lower the surface tension of the mucosal membrane and as a result damage the digestive system. Damage in the midgut region changes various functions, such as osmoregulation, digestion, nutrition absorption, and ion transport (Sina and Shukri, 2016). However, as in other insects, the mosquito’s stomach does not function only in digestion, but also in mechanical and chemical defense against invaders (Terra, 2001). Damage to the digestive tract due to larvicidal agents generally affects the digestion and absorption of food in this region (Rohmah et al., 2020). In addition, damage to the regenerative cells impedes the development of larvae and hence metamorphosis (Procópio et al., 2015). Extracts of different parts of *A. bilimbi* including leaf, flower, and fruit were reported to damage the villi, epithelial cells, and microvilli.

The combination of insecticidal agents is encouraged to optimize the efficacy of the insecticides, solve the problem of insect resistance, and preserve the efficiency of the insecticidal agents for years. In the current investigation, *H. forskoalli* solvent extracts tested individually were inactive against mosquito larvae, while its combination with *M. chamomilla* extract showed synergistic properties. The combination of *Callitris glauca* and *Khaya senegalensis* extract at a ratio of 1:1 exerted synergistic effects on *A. aegypti* (Shaalan et al., 2005). Synergistic efficacy was also observed in the combination of *E. camaldulensis* with *C. rigidus* extracts at a 3:1 ratio against *A. gambiae* larvae (Rios et al., 2017). Similarly, combinations of *Canarium schweinfurthii*, *Aucoumea klaineana*, and *Dacryodes edulis* led to the improvement of their efficiency and exhibited significant activity against *A. gambiae* (Ohame et al., 2016). The combination of thymol and carvacrol at a 1:4 ratio exhibited significant synergistic activity against *Cx. pipiens* larvae, compared with the compounds tested individually (Youssefi et al., 2019).

Histopathological assessment of the third instar of *Cx. pipiens* exposed to PH2 extract showed a change in the midgut architecture, mainly in the basal membrane, epithelial cells, and microvilli. Such damage was due to secondary metabolites in PH2 extract. Secondary metabolites lower the surface tension of the mucosal membrane and as a result damage the digestive system. Damage in the midgut region changes various functions, such as osmoregulation, digestion, nutrition absorption, and ion transport (Sina and Shukri, 2016). However, as in other insects, the mosquito’s stomach does not function only in digestion, but also in mechanical and chemical defense against invaders (Terra, 2001). Damage to the digestive tract due to larvicidal agents generally affects the digestion and absorption of food in this region (Rohmah et al., 2020). In addition, damage to the regenerative cells impedes the development of larvae and hence metamorphosis (Procópio et al., 2015). Extracts of different parts of *A. bilimbi* including leaf, flower, and fruit were reported to damage the villi, epithelial cells, and microvilli.

The combination of insecticidal agents is encouraged to optimize the efficacy of the insecticides, solve the problem of insect resistance, and preserve the efficiency of the insecticidal agents for years. In the current investigation, *H. forskoalli* solvent extracts tested individually were inactive against mosquito larvae, while its combination with *M. chamomilla* extract showed synergistic properties. The combination of *Callitris glauca* and *Khaya senegalensis* extract at a ratio of 1:1 exerted synergistic effects on *A. aegypti* (Shaalan et al., 2005). Synergistic efficacy was also observed in the combination of *E. camaldulensis* with *C. rigidus* extracts at a 3:1 ratio against *A. gambiae* larvae (Rios et al., 2017). Similarly, combinations of *Canarium schweinfurthii*, *Aucoumea klaineana*, and *Dacryodes edulis* led to the improvement of their efficiency and exhibited significant activity against *A. gambiae* (Ohame et al., 2016). The combination of thymol and carvacrol at a 1:4 ratio exhibited significant synergistic activity against *Cx. pipiens* larvae, compared with the compounds tested individually (Youssefi et al., 2019).

Histopathological assessment of the third instar of *Cx. pipiens* exposed to PH2 extract showed a change in the midgut architecture, mainly in the basal membrane, epithelial cells, and microvilli. Such damage was due to secondary metabolites in PH2 extract. Secondary metabolites lower the surface tension of the mucosal membrane and as a result damage the digestive system. Damage in the midgut region changes various functions, such as osmoregulation, digestion, nutrition absorption, and ion transport (Sina and Shukri, 2016). However, as in other insects, the mosquito’s stomach does not function only in digestion, but also in mechanical and chemical defense against invaders (Terra, 2001). Damage to the digestive tract due to larvicidal agents generally affects the digestion and absorption of food in this region (Rohmah et al., 2020). In addition, damage to the regenerative cells impedes the development of larvae and hence metamorphosis (Procópio et al., 2015). Extracts of different parts of *A. bilimbi* including leaf, flower, and fruit were reported to damage the villi, epithelial cells, and microvilli.
metabolites are consumed orally or absorbed by the cuticle and affect the physiology of insects, causing their death (Rattan, 2010). Many reports have revealed that the main constituents of the extract are responsible for bio-activity, as it contains the main fraction of the extract (Gul 1994, Vani et al., 2009, Golade and Lockwood, 2008). Therefore, we considered four major compounds from PH2 extract. From the GC–MS results, bisabolol oxide A, 1-methoxy-4-(1-z-propenyl) benzene, methyl ester of hexadecanoic acid, and 10-nonadecanone were found to be the major compounds of PH2 extract. An oil rich in bisabolol oxide A from different plant extracts showed antimicrobial (Tolouee et al., 2010, Furtado et al., 2005). It has also been reported that 1-methoxy-4-(1-z-propenyl) benzene possesses insecticidal activity (CHEBI, 2021). Estragole showed strong larvicidal activity with LC50 of 41.67 and 38.56 μg/mL for An. sinensis and An. anthropophagus, respectively (He et al., 2018). Estragole was shown to possess contact toxicity against Lasioderma serricorne adults (LD50 = 15.58 mg/ adult) (Wang et al., 2014).

5. Conclusions

PH2 hexane extract showed larvicidal activity against Cx. pipiens as well as structural change of the midgut region. Caution is required in the use of the PH2 extract as a larvicid again Cx. pipiens due to its toxic effects on normal HUVECs, as determined using MTT assay.

Declaration of Competing Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Acknowledgement

This work was funded by the Deanship of Scientific Research at Princess Norah bint Abdullah University, through the Research Groups Program Grant no. (RGP-1442 -0037)

References

Abutaha, N.M, Farooq, M.F, Mohammed, A.Z, Alotaibi, A, Cordero, M.A.W, Bepari, O.M, Mitri, A.S, 2020. Inhibition of the mosquito. Natural product research, 2020, 34.5: 692-705.

Bustamante, Jaleesa. "Mosquito Deaths & Mosquito Borne Disease Statistics [2020]." MosquitoReviews, 18 Dec. 2019, mosquitoreviews.com/learn/disease-death-statistics.

CHEBI, Chemical Entities of Biological Interest (2021)

Chearsin, M., Blan, M., Voon, C.K., 2017. Developing new antimicrobial therapies: are synergistic combinations of plant extracts/compounds with traditional antibiotics a realistic proposition? Trends in Pharmaceutical Sciences 37, (1) 8-57.

Dias CN, Moraes DFC. Essential oils and their compounds as Aedes aegypti L. (Diptera: Culicidae) larvicides: review. Parasitol Res. 113 (2): 565–92. pmid:24265058

Diaz-Maroto, M.C., Pérez-Coello, M.S., Esteban, J., Sanz, J., 2006. Comparison of the volatile composition of wild fennel samples (Foeniculum vulgare Mill.) from Central Spain. Journal of agricultural and food chemistry 54 (18), 6814–6818.

Diaz-Maroto, M.C., Pérez-Coello, M.S., Esteban, J., Sanz, J., 2006. Comparison of the volatile composition of wild fennel samples (Foeniculum vulgare Mill.) from Central Spain. Journal of agricultural and food chemistry 54 (18), 6814–6818.

Furtado, R.F., De Lima, M.G.A., Neto, M.A., Bezerra, J.N.S., Silva, E.M.G., 2005. Atividade larvicida de óleos essenciais Contra Aedes aegypti L. (Diptera: Culicidae). Neotrop Entomol 34, 843–847.

Golade, A.A., Lockwood, C.B., 2008. Toxicity of Ocimum sanctum L. essential oil as Aedes aegypti larvae and its chemical composition. Journal of essential oil bearing plants. 11 (2): 148–153.

Gul, P., 1994. Seasonal variation of oil and menthol content in Mentha arvensis Linn. Pakistan J. For. 44, 16–20.

Hasibuan, R.P.A.Z., 2014. Cytotoxic effect of n-hexane, ethyl acetate and ethanol extracts of Plancheranthus amboniensis, (Lour.) Spreng.) on HeLa and Vero cell lines. Int. J. PharmTech Res. 6, 1800–1805.

He, G., Jiang, W., Zhu, L., 2011. GC/MS analysis of the volatile activity of Zanthoxylum acanthopodium essential oil against the malaria mosquitoes, Anopheles pharrelianus and Anopheles sinensis. Malaria journal 17 (1), 1–7.

Hemalatha, P., Elumalai, D., Janaki, A., et al., 2015. Larvicidal activity of Lantana camara aculeate against three important mosquito species. Entomol. Stud. 3 (1), 174–181. https://www.ebi.ac.uk/chebi/searchId.do?chebiId=24852. Accessed 15–3–2021.

Isman, M.B., 2006. Botanical insecticides, deterrents, and repellents in modern agriculture and an increasingly regulated world. Annual Review of Entomology 51 (1), 45–66.

JUCÁ, Mérica Marques, et al. Flavonoids: biological activities and therapeutic potential. Current drug research, 2020, 34.5: 692-705.

Korulamisra, N., Trongtokt, Y., Roongrijay, Y., Apivathnasorn, C., 2005. Screening for larvicidal activity in some Thai plants against four mosquito vector species. Southeast Asian J Trop Med Public Health. 36 (6), 1412–1422, pmid:16610643.

Magalhães, L.A.M., Lima, M.P., Marques, M.O.M., Facanali, R., Pinto, A.C.S., Tadei, W. P., 2010. Chemical composition and larvicidal activity against Aedes aegypti larval of essential oils from four Guarea species. Molecules. 15 (8), 5734–5741, pmid:20724962.

Mirjalil, S., Alesaeidi, S., 2016. A systematic review study of therapeutic effects of Matricaria recuitta chamomile (chamomile). Electronic physician 8 (9), 3024–8.

Molina, A., Berge, A., et al., 2017. Essential oils and their mixtures against three mosquito vectors. Asian Pac J Trop Med. 4, 29–34. https://doi.org/10.1016/j.jocs.2015.11.00027-8.

Muntz, P., 2012. Essential oils and their role in food. Crit Rev Food Sci Nutr. 52 (8), 935–42.

Nelson, A.C., Kursar, T.A., 1999. Interactions among plant defense compounds: a method for analysis. Chemoecology 9 (2), 81–92.

O’Brien, C., Ong, J.P., Padzys, G.S., et al., 2016. Essential oils and larvicidal activities against Anopheles gambari, antioxidant and antibacterial properties of Aucoumea klaineana Pierre, Camarium schwarfinflii Eng and Doryclides edulis (G. Don) Lam essential oils from Gabon. International Journal of Pharmacology Research 5 (1), 68–75.

Okeleye, B. I., Mkwesthana, N. T., & Ndip, R. N. (2013). Evaluation of the antibacterial and antifungal potential of Pothophorum africana: toxicological effect on human chang liver cell line. The Scientific World Journal, 2013.

Paixão, E.S., Teixeira, M.G., Rodrigues, L.C., 2018. Zika, chikungunya and dengue: the causes and threats of new and re-emerging arboviral diseases. BMJ global health 3, (Suppl 1) e000530.

Procópio, T.F., Fernandes, K.M., Pontual, E.V., et al., 2015. Schinus terebinthifolius for larvicides: review. Int. J. PharmTech Res. 6, 1800–1805.

Premsook, C., 2014. Use of two essential oils for control of Aedes aegypti larvae. J Entomol Zool Stud. 3 (1), 174–181. https://www.ebi.ac.uk/chebi/searchId.do?chebiId=24852. Accessed 15–3–2021.

Roby, M.H.H., Sarhan, M.A., Selim, K.A.H., Khalel, K.I., 2013. Antioxidant and antimicrobial activities of essential oil and extracts of fennel (Foeniculum vulgare Mill) essential oils and their mixtures against Lasioderma serricorne (Methidae). Mosquito Reviews, 18 Dec. 2019, mosquitoreviews.com/learn/disease-death-statistics.

Rattan R.S., “Mechanism of action of insecticidal secondary metabolites of plant origin,” Crop Protection, vol. 29, no. 9, pp. 913–920, 2010.View at: Publisher Site | Google Scholar

Rios, N., Stashenko, E.E., Duque, J.E., 2017. Evaluation of the insecticidal activity of essential oil and their mixtures against Aedes aegypti (Diptera: Culicidae). Revista Brasileira de Entomologia 61 (4), 307–311.

Rohy, M.M.H., Sarhan, M.A., Selim, K.A.H., Khalel, K.I., 2013. Antioxidant and antimicrobial activities of essential oil and extracts of fennel (Foeniculum vulgare Mill) essential oils and their compounds as Aedes aegypti L. (Diptera: Culicidae) larvicides: review. Parasitol Res. 113 (2): 565–92. pmid:24265058

Roby, M.H.H., Sarhan, M.A., Selim, K.A.H., Khalel, K.I., 2013. Antioxidant and antimicrobial activities of essential oil and extracts of fennel (Foeniculum vulgare Mill) essential oils and their mixtures against Lasioderma serricorne (Methidae). Mosquito Reviews, 18 Dec. 2019, mosquitoreviews.com/learn/disease-death-statistics.
Terra, W.R., 2001. The origin and functions of the insect peritrophic membrane and peritrophic gel. Archives of Insect Biochemistry and Physiology 47 (2), 47–61.

Tolouee, M., Alinezhad, S., Saberi, R., Eslamifar, A., Zad, S.J., Jaimand, K., Taeb, J., Rezaee, M.B., Kawachi, M., Shams-Ghafori, M., Razzaghi-Abyaneh, M., 2010. Effect of Matricaria chamomilla L. flower essential oil on the growth and ultrastructure of Aspergillus niger van Tieghem. International Journal of Food Microbiology 139, 127–133.

Vani, S.R., Cheng, S.F., Chua, C.H., 2009. Comparative Study of Volatile Compounds from Genus Ocimum. American Journal of Applied Sciences. 6 (3), 523–528.

Wang, Y., You, C.X., Wang, C.F., Yang, K., Chen, R., Zhang, W.J., et al., 2014. Chemical constituents and insecticidal activities of the essential oil from Amomum tsao-ko against two stored-product insects. J Oleo Sci. 63, 1019–1026. https://doi.org/10.5650/jos.es.14087.

Warriko, R., Ray, A., Sandhu, J.K., Samal, R., Wahab, N., Kumar, S., 2012. Larvicidal and irritant activities of hexane leaf extracts of tropical biomedicine. Asian Pac J Trop Biomed. 2 (2), 152–155. https://doi.org/10.1016/S2221-1691(11)60211-6.

White, N.J., 2004. Antimalarial drug resistance. The Journal of clinical investigation 113 (8), 1084–1092.

Williamson, E.M., 2009. Synergy and other interactions in phytomedicines. In: Trease and Evans Pharmacognosy. 16th edition,. Elsevier, Amsterdam, Netherlands, pp. 53–61.

Younoussa, L., Kenmoe, F., Ouamarou, M. K., Batti, A. C. S., Tamesse, J. L., & Nukenine, E. N. (2020). Combined Effect of Methanol Extracts and Essential Oils of Callistemon rigidus (Myrtaceae) and Eucalyptus camaldulensis (Myrtaceae) against Anopheles gambiae Giles larvae (Diptera: Culicidae). International Journal of Zoology, 2020.

Youssefi, M.R., Tabari, M.A., Esfandari, A., et al., 2019. Efficacy of two monoterpeneoids, carvacrol and thymol, and their combinations against eggs and larvae of the west nile vector Culex pipiens. Molecules 24 (10), 1867.

Further Reading

Nibret, E., Ashour, M.L., Rubanza, C.D., Wink, M., 2009. Screening of some Tanzanian medicinal plants for their trypanocidal and cytotoxic activities. Phytother Res. 24, 945–947.

Obame-Engonga, L.C., Sima-Obiang, C., Ngoua-Meye-Misso, R.L., et al., 2017. Larvicidal and ovicidal properties against Anopheles gambiae, antioxidant and antibacterial activities of the combination of essential oils Eucalyptus citriodora, Cymbopogon giganteus and Cymbopogon nardus from Gabon. Journal of Multidisciplinary Engineering Science and Technology 4 (8), 7887–7894.