Fungal and Plant Phenylalanine Ammonia-lyase

Min Woo Hyun, Yeo Hong Yun, Jun Young Kim and Seong Hwan Kim*

Department of Microbiology and Institute of Basic Sciences, Dankook University, Cheonan 330-714, Korea

(Received October 31, 2011. Revised November 4, 2011. Accepted November 4, 2011)

L-Phenylalanine is one of the essential amino acids that cannot be synthesized in mammals in adequate amounts to meet the requirements for protein synthesis. Fungi and plants are able to synthesize phenylalanine via the shikimic acid pathway. L-Phenylalanine, derived from the shikimic acid pathway, is used directly for protein synthesis in plants or metabolized through the phenylpropanoid pathway. This phenylpropanoid metabolism leads to the biosynthesis of a wide array of phenylpropanoid secondary products. The first step in this metabolic sequence involves the action of phenylalanine ammonia-lyase (PAL). The discovery of PAL enzyme in fungi and the detection of 14CO$_2$ production from 14C-ring-labeled phenylalanine and cinnamic acid demonstrated that certain fungi can degrade phenylalanine by a pathway involving an initial deamination to cinnamic acid, as happens in plants. In this review, we provide background information on PAL and a recent update on the presence of PAL genes in fungi.

KEYWORDS: Fungi, Phenylalanine ammonia-lyase, Plant

Phenylalanine ammonia-lyase (PAL; E.C. 4.3.1.5) catalyzes the nonoxidative deamination of L-phenylalanine to form trans-cinnamic acid and a free ammonium ion (Fig. 1) [1]. The conversion of the amino acid phenylalanine to trans-cinnamic acid is the entry step for the channeling of carbon from primary metabolism into phenylpropanoid secondary metabolism in plants. PAL has been extensively studied because of its role in plant development and its response to a wide variety of environmental stimuli. The importance of this enzyme in plant metabolism is demonstrated by the huge diversity and large quantities of phenylpropanoid products found in plant materials [2]. In fungi, there is no direct evidence for the significance of this enzyme except as a catabolic function [3].

Since its discovery [1], the presence of PAL has been reported in diverse plants [4, 5] including certain algae, including Dunaliella marina [6], fungi [7-10], and a few prokaryotic organisms, including Streptomyces [11, 12]. In plants, PAL activity has been detected in many species, representing monocots, dicots, gymnosperms, ferns, and lycopsids [13]. In fungi, PAL activity has been detected only in a few basidiomycetes and deuteromycetes, and in one ascomycete, Nectria cinnabarina [7, 14]. There have been no reports of PAL in animals.

In this review, we provide background information on PAL and a recent update on the presence of PAL genes in fungi.

Structural Properties of PAL Proteins

PAL has been isolated and characterized from a number of plant species, some fungi and few bacterial sources. Source tissues used for PAL isolation are diverse. They include seedlings [15], shoots [1], leaf-sheath [16], cell culture [17-19], fruit [20], mycelium [21, 22], and prokaryotic cells [12]. Most known PAL sources for enzyme isolation and its properties are well tabulated and documented in several reviews [4, 23, 24]. Difficulties in purification are often encountered, partly resulting from the low abundance of PAL in cells and changes in size and properties that occur during purification. Although an apparently homogeneous protein preparation can often be obtained in non-denaturing conditions, additional polypeptide bands

*Corresponding author <E-mail : piceae@dankook.ac.kr>
are usually detected in analytical polyacrylamide gel electrophoresis gels under denaturing conditions. This can create confusion in the estimation of PAL subunit sizes.

Most reported PALs range in size from 300 to 340 kDa in native molecular mass. Some examples of exceptions are reported masses of 152 kDa in Ocimum basilicum [25], 226 kDa in the bacterium, Streptomyces [11], 250 kDa in Helianthus annuus [5], 266 kDa in Fragaria ananassa [20], 320 kDa in Ustilago maydis [26], and 560 kDa in Alternaria [21]. PAL is normally a homo-tetrameric protein consisting of four identical subunits. Hetero-tetrameric PAL, as a complex of two hetero-dimers has been reported from H. annuus (2 × 58 kDa and 2 × 68 kDa) [20] and Rhizoctonia solani (2 × 70 kDa and 2 × 90 kDa) [22]. Neumann and Schwemmle [27] reported that Oenothera seedlings have two PAL isoenzymes with four identical subunits each of 75.5 kDa and 79.2 kDa. Rhodosporidium toruloides PAL has been reported to be a dimer composed of two identical subunits with a mass of 80 kDa [28].

Isoelectric points (pIs) for PAL are usually in the acid range, from 2.5 [27] to 6.3 [26]. Isoforms with different pIs have been reported from some sources; three isoforms ranged between pI 4.8 and 5.4 in Leptosphaeria maculans fungus [29], several isoforms between pI 5.1 and 6.1 in alfalfa [17], and two isoforms between pI 4.8 and 5.4 in bean [30]. Interestingly, expression of a single cDNA of poplar PAL in a baculovirus expression system produced two isoforms with different pIs [31].

Most PALs are considered to be hydrophobic proteins. This property has led to the use of hydrophobic affinity column chromatography for the purification of PAL from cotton [32] and Rhodotorula glutinis [33]. Alfalfa PAL has been reported to be highly hydrophobic [17]. Consistent with this, the hydropathy profile of the protein sequence deduced from the cDNA sequence also predicted that alfalfa PAL would be hydrophobic [34].

The association of carbohydrate with PAL has been reported for the maize and potato enzymes [35, 36]. Through the analyses of PAL gene sequences, the presence of potential glycosylation sites has been reported from bean [37] and parsley [38], but the importance of glycosylation in PAL function has not been explored extensively. The production of active PAL in Escherichia coli cells transformed with PAL genes from the yeast Rhodosporidium [39] and from parsley [40, 41] suggests that PAL catalysis is not likely to be influenced by glycosylation. It has not been excluded that glycosylation is involved in enzyme stability and in localization of the enzyme within cells [35, 36].

The three-dimensional structure of the red yeast Rhodotorula PAL has been described using X-ray crystallography [42]. This homotetrameric protein contains 716 residues per subunit with a molecular mass of 76.88 kDa. A seahorse-like shape of each subunit interlocks with two other subunits, thereby maximizing adjacent subunit interactions and resulting in tetramer formation.

PAL Active Site and Enzyme Mechanism

PAL is one of the few amino acid-transforming enzymes not containing the cofactor pyridoxal 5-phosphate. Instead, PAL contains the unusual prosthetic group dehydroalanine [9]. The role of this post-translationally modified amino acid in catalysis is assumed to be the activation of the amino group of phenylalanine to form a better leaving group than NH$_3$ [43]. Modification of an electrophilic center at the active site of PAL by electrophilic reagents such as borohydride, cyanide, bisulfite, or nitromethane results in the complete inactivation of the enzyme. The identity of [°H]-alanine and [°C]-aspartic acid following acid hydrolysis of PAL enzyme inactivated with radiolabeled reagents, NaB$_4$H$_4$ and °CN$^-$, provides evidence for the presence of dehydroalanine in the active site [9, 44]. Studies on the ability of substrates and substrate analogs of PAL to prevent inactivation by these reagents provide further evidence to support the idea that the active site contains dehydroalanine [9, 44]. An alternative model for the role of dehydroalanin in PAL catalysis has been also proposed [45].

The mechanism of formation of dehydroalanine has not been determined yet. In cases of other proteins containing dehydroalanine, such as subtilin [46], thyroglobulin [47], and pyruvoyl enzymes [48], a serine residue is considered to be the precursor of dehydroalanine. PAL amino acid sequences contain a serine residue that is completely conserved among different species [49], and is presumed to be associated with the active site of the enzyme. Recently, the precursor of the dehydroalanine residue has been identified as serine in parsley [45] and poplar PAL [31]. In fungal PAL, it is likely that a similar process would account for the formation of the active site dehydroalanine from serine, but a role for serine as the precursor of dehydroalanine has not been directly demonstrated yet. Expression of PAL in E. coli produced active PAL enzymes in cells in which PAL was not normally produced [40, 47]. The expressed PAL proteins showed similar enzyme properties compared to endogenous PAL from other sources. This suggests that the formation of dehydroalanine may be an autocatalytic process, although it cannot be ruled out that a widespread modifying enzyme is involved in the dehydroalanine formation.

Functional Properties of PAL

PAL enzymes from many sources, especially from monocots and certain fungi, have activity towards L-tyrosine and can produce trans-p-coumaric acid. This has been described as tyrosine ammonia-lyase (TAL) activity [4, 13, 50]. In most
PAL preparations, TAL activity is very low. The PAL : TAL ratio in PAL preparations varies from 1.35–5 in _Sporobolomyces pararoseus_ fungus [51], from 4–20 in wheat [13], and from 0.6–1.3 in bean [52]. An even larger range in PAL : TAL ratios from several different plant species was reported [53]. No TAL enzyme without PAL activity has been purified. It has been demonstrated in _E. coli_-expressed maize PAL that PAL and TAL activities reside in the same polypeptide [54].

PAL preparations from a number of sources are reported to have only one Michaelis constant (K_m), but the kinetic properties of other preparations suggest that the enzyme is negatively cooperative with respect to substrate binding [55]. Two different K_m values for PAL have been reported from many sources [23]. Individual isoforms were highly purified and the kinetic analysis of each isoform revealed normal Michaelis-Menten saturation kinetics [17, 56]. The K_m values for L-phenylalanine have been reported to range from 0.011 mM [57] to 1.7 mM [1]. Most PALs show no metal ion requirement, although slight stimulation of PAL activity by metal ions such as Mg^{2+} and Ba^{2+} has been reported [5]. Inhibition of PAL activity can be induced by a wide range of compounds including carbonyl, sulphydryl, and thiol reagents, phenolic acids, and heavy metal ions [24]. Most PALs tested are sensitive to synthetic PAL inhibitors such as (S)-2-aminoxy-3-phenylpropanoic acid (AOPP), (R)-(1-amino-2-phenylethyl)phosponic (APEP) acid, and 2-aminoindan-2-phosphonic acid (AIP). Thus, these inhibitors have often been used to block the biosynthesis of phenylpropanoid compounds in plant cells and tissues [23, 58].

The pH optimum for PAL is generally in the range from 8.2–9.0 [21, 23]. The temperature optimum for PAL has been reported to be 35°C in tobacco [57], 55°C in sunflower [5], and 44–46°C in _Rhizoctonia_ [22]. Plant PAL enzymes are generally sensitive to repeated freezing and thawing and lose activity as the temperature approaches 60°C. In contrast, fungal PAL is more thermally stable too [22]. _Rhodotorula_ PAL is apparently stable for at least 6 months when it is kept at -60°C [59].

Structural Properties of PAL-Encoding Genes

Following the isolation of PAL cDNA from bean [37], parsley [38] and sweet potato [60], PAL genes have been isolated from many sources. In most plants, PAL is encoded by a small gene family of 3–5 genes. Exceptions to this are the potato PAL gene family, which is made up of 40–50 genes [61], and the loblolly pine PAL, which has been reported to be encoded by a single gene [62]. Currently, either partial or full fungal genome data is available from more 50 species. When we searched through the DNA databases of the Broad Institute (Cambridge, MA, USA; http://www.broadinstitute.org) and National Center for Biotechnology Information (Bethesda, MD, USA) for the PAL motif [GS][STG][LIVM][STG][SAC]-S-G-[DH]-L-x-[PN]-L-[SA]-x(2,3)-[SAGVT], 45 potent PAL sequences were found in 28 fungal species (Table 1). In red yeasts such as _Rhodosporium_ spp., PAL is generally encoded by a single gene [63]. In filamentous fungi, PAL is encoded by a single, two, three, and four genes (Table 1). The _Aspergillus nidulans_ genome contains four PAL genes. The presence of introns has been reported in both plant and fungal PAL genes. Plant PAL genes generally contain only one intron, while yeast PAL genes have five [63] or six introns [64]. Two introns have been found in the _Arabidopsis_ PAL gene [65], while no introns occur in jack pine and loblolly pine and _U. maydis_ PAL genes [66-68]. The analysis of 45 PAL gene sequences from the fungi listed in Table 1 show that the number of introns varies among species. The number of introns in PAL gene also differs within a species such as _A. flavus_ and _A. oryzae_. In ascomycota, the intron number ranges from none to six introns, while in basidiomycota, intron number ranges from none to 13 introns. The highest intron number is present in the PAL genes of rust fungus _Puccinia_ (Table 1). The inferred PAL protein length varies in fun ranging from 595 to 750 amino acids, except for _Botrytis cinerea_, which has 1,131 amino acids. The position of the PAL motif on the PAL protein sequence shows little variation among species. The fungal PAL motif positions mostly between 123 and 244 amino acids, except for _Neurospora_ and _Neosartorya_ sequences, which position near the C-terminus and N-terminus, respectively. The active site serine residue that is bolded in the PAL motif in Table 1 is very well-conserved both in ascomycota and basidiomycota.

Phylogenetic analysis of the 45 PAL sequences showed that PAL could be divided into three major groups: ascomycota I, ascomycota II, and basidiomycota (Fig. 2). PAL of ascomycota I is more closely related to PAL of basidiomycota than PAL of ascomycota II. The cladogram revealed the variation in the PAL protein sequence among fungi. Comparison of the inferred protein sequences of PAL from diverse fungal species showed a 33–77% protein sequence identity among the species (Table 2). The highest identity among ascomycota PALs was 65% while the highest identify among basidiomycota PALs was 97%. The highest identity between ascomycota and basidiomycota PAL found to date is 41%. Overall, the genome information on many fungi has revealed that many species have PAL gene(s) and the structural properties of the PAL gene vary within a species and among species.

PAL in Fungi

While the metabolism of phenylalanine in vascular plants and animals has been well documented, much less is
known about the fungal degradation of phenylalanine. Some of the known pathways of animal and plant metabolism of phenylalanine are also used in microorganisms. In some microorganisms, phenylalanine is converted to homogentisic acid through the intermediary formation of phenylpyruvic acid and p-hydroxyphenylpyruvic acid by transamination and hydroxylation, as in the case of animals [69]. The discovery of a PAL enzyme in fungi [70] and

Table 1. Fungal species having PAL motif sequences properties

Fungal species	Gene name	PAL motif	Position of motif	Length of protein	No. of introns
Ascomycota					
Aspergillus clavatus NRRL 1	ACLA_080920	GSISAGDLPLSYIAA	123-139	664	1
A. flavus NRRL 3357	AFL2G_05505	GSISAGDLPLSYIAA	189-205	721	2
A. flavus NRRL 3357	AFL2G_00533	GSISAGDLTPLYAIA	202-218	714	1
A. flavus NRRL 3357	AFL2G_06214	GSISAGDLSPAYISG	155-171	671	3
A. fumigatus AF293	Afl2g09110	GSISAGDLMPYIAIA	181-197	728	2
A. nidulans FGSC A4	ANID_03897	GSISAGDLTPLYAIA	182-198	687	1
A. nidulans FGSC A4	ANID_06075	GSISAGDLMPYIAIA	187-203	702	2
A. nigro ATCC 1015	e_gw1_15.39	GSISAGDLTPLYAIA	194-210	719	1
A. nigro ATCC 1015	e_gw1_3.237	GSISAGDLPSYIGG	181-197	720	2
Botrytis cinerea B05.10	BC1G_05296.1	GSISAGDLPLSYIAA	184-200	704	2
Chaetomium globosum CBS 148.51	CHGG_02399.1	GSISAGDLTPLYAIA	202-218	714	1
Fusarium graminearum NRRL 31084	FGSG_09311	GSISAGDLMTMPYIA	180-196	721	0
F. oxysporum f. sp. lycopersici 4287	FOXG_05297	GSISAGDLPLSYIAA	180-196	750	0
F. verticillioides 7600	FVEG_03798	GSISAGDLPLSYIAA	180-196	724	0
Gaetumannomyces graminis R3-111a-1	GGTG_00837.1	GSISAGDLPLSYIAA	204-220	743	2
Magnaporthe oryzae 70-15 (MG8)	MGG_10036.7	GSISAGDLMTPYIAA	207-223	627	0
M. poae ATCC 64411	MAPP_07981.1	GSISAGDLPLSYIAA	198-214	730	3
Neosartorya fischeri NRRL 181	NFIA_08460	GSISAGDLMTSPYIA	48-64	595	0
Nh. nodorum SN15	SNOG_08528.1	GSISAGDLPLSYIGC	190-206	700	4
N. oryzae RIB 40	AAO00005000532	GSISAGDLTPLYAIA	189-205	721	2
N. oryzae RIB 40	AAO00001000788	GSISAGDLPLSYIAA	180-196	724	0
N. oryzae RIB 40	AAO00002600086	GSISAGDLTPLAYVTG	183-199	696	2
Neurospora crassa OR74A (NC10)	CHGG_02399.1	GSISAGDLMTSPYIA	207-223	627	0
P. graminis tritici CRL 75-36-700-3	PTLG_12283.2	GSISAGDLMLSYVAA	190-206	691	1
Rhodosphoridum toruloides	AAA33883	GSISAGDLPLSYIAA	207-216	693	6
R. toruloides CBS 14	PM544	GSISAGDLPLSYIAA	184-200	716	2
Rhodotorula graminis WP1	CAD23828	GSISAGDLPLSYIAA	213-229	713	1
Rhodotorula graminis WP1	CAD23828	GSISAGDLPLSYIAA	213-229	713	1
Stagonospora nodorum SN15	SNOG_09914.1	GSISAGDLPLSYIAA	179-195	610	0
S. nodorum SN15	SNOG_16362.1	GSISAGDLPLSYIAA	191-207	772	2
Uncinocarpus reesii 1704	VDBG_08166.1	GSISAGDLPLSYIAA	185-201	710	2
V. dahliae VdLs.17	VDAG_010581.1	GSISAGDLPLSYIAA	181-197	696	0
V. dahliae VdLs.17	VDAG_05831.1	GSISAGDLPLSYIAA	218-234	645	0
Basidiomycota					
Coprinus cinereus okayama7#130	CC1G_06838.3	GSISAGDLPLSYIAA	212-228	734	9
C. cinerea okayama7#130	CC1G_14161.3	GSISAGDLPLSYIAA	252-268	770	6
Laccaria bicolor S238N-H82	LACBDRAFT_291120	GSISAGDLPLSYIAA	163-179	688	5
L. bicolor S238N-H82	LACBDRAFT_184628	GSISAGDLPLSYIAA	201-217	731	11
Puccinia triticum 1-1 BBBB Race 1	PTG_02419.1	GSISAGDLPLSYVAA	175-191	653	13
P. graminis tritici CRL 75-36-700-3	PGTG_12283.2	GSISAGDLPLSYVAA	190-206	691	13
Rhodosphoridum toruloides	AAA33883	GSISAGDLPLSYVAA	207-213	693	6
R. toruloides CBS 14	PM544	GSISAGDLPLSYIAA	184-200	716	6
Rhodotorula graminis WP1	CAD23828	GSISAGDLPLSYIAA	213-229	713	1
R. mucilaginosa NRRLY-1597	CAA31486	GSISAGDLPLSYIAA	213-229	720	5
Ustilago maydis 521	UM00078	SSISAGDLPLSYVAA	201-217	724	0

PAL, phenylalanine ammonia-lyase; NRRL, Northern Regional Research Laboratory; FGSC, Fungal Genetics Stock Center; ATCC, American Type Culture Collection; RIB, Research Institute of Brewing; NIH, National Institutes of Health; CBS, Centraalbureau voor Schimmelcultures.
the detection of 14CO$_2$ production from 14C-ring-labeled phenylalanine, cinnamic acid, and benzoic acid [71] have demonstrated that certain fungi can degrade phenylalanine by a pathway involving an initial deamination to cinnamic acid, as happens in plants. A metabolic pathway for the metabolism of phenylalanine via cinnamic, benzoic, p-hydroxybenzoic, and protocatechuic acids has been reported in several basidiomycete fungi, including *Rhodotorula* [72], *Ustilago hordei* [71], *Schizophyllum commune* [71], and *Sporobolomyces roseus* [8]. *S. commune* can also metabolize phenylalanine through phenylpyruvic acid, phenylacetic acid, and o-hydroxyphenylacetic acid [71]. Interestingly, it has been reported that another basidiomycete, *Lentinus lepideus*, forms phenylpropanoid compounds (e.g., p-coumaric acid, caffeic acid, isoferrulic acid, phloretic acid, and p-methoxycinnamic acid) via cinnamic acid derived from phenylalanine [73]. In this fungus, a number of these compounds accumulate in the medium as methyl esters, but the physiological significance of these compounds is not known. The conversion of phenylalanine to benzoic acid derivatives through cinnamic acid has also been reported in Deuteromycete fungi such as *Alternaria* [74], *R. solani* [75], and *Penicillium brevicompactum* [76]. The fungus *Gliocladium* produces gliotoxin, an antibiotic and antiviral cyclic peptide, derived in part from phenylalanine and modified by the addition of sulfur across the peptide ring [77].

Commercial and Medical Potential of PAL

The therapeutic potential of using PAL enzyme against neoplasms has been suggested because of its selectivity for phenylalanine [78]. PAL substantially inhibited neoplastic cell growth in vitro [79], and produced cures in some mice that were inoculated with a lymphoblastic leukemia [80]. However, PAL is of special interest to clinicians primarily due to its potential as a treatment for the inherited metabolic disorder, phenylketonuria. A treatment involving the oral ingestion of PAL [81] were proposed to patients to consume a normal diet. Preclinical evaluation of multiple species of PEGylated recombinant phenylalanine ammonia lyase for the treatment of phenylketonuria has been performed with mouse model [82]. In 2011, BioMarin Pharmaceutical has announced PEG-PAL (PEGylated recombinant phenylalanine ammonia lyase) is currently in Phase II clinical development for the treatment of PKU.

With the increasing consumption of the aspartic acid-phenylalanine dipeptide artificial sweetener, aspartame, the commercial demand for L-phenylalanine has led to mass Fig. 2. Cladogram of the inferred amino acid sequences of L-phenylalanine ammonia-lyase (PAL) from diverse fungal species. Cladogram was constructed by the neighbor-joining method using PAUP v.4.0b10. *Arabidopsis thaliana* PAL sequence was used as an out-group.
production of this amino acid [83]. Since the reaction is reversible, PAL can be used in a large-scale bio-conversion to produce L-phenylalanine from trans-cinnamic acid and ammonium salts acid [84]. Commercial production of PAL is available from *R. glutinis* (Sigma-Aldrich, St. Louis, MO, USA).

Conclusions

While a huge amount of information has accumulated on the structure, expression, and function of PAL in plants, the biological role of PAL in fungi has not been established, and, in general, information on fungal PAL is very limited. Most commonly, a catabolic function for fungal PAL has been suggested, in which the enzyme is used to obtain carbon and nitrogen from external supplies of amino acids. However, fungi can also obtain carbon and nitrogen from L-phenylalanine through phenylalanine aminotransferase or amino acid oxidase. What selective advantage does PAL offer that has led to its retention in this group of organisms? It appears that the ability to synthesize cinnamic acid is important in the life cycle of fungi. Now with the full sequencing of fungal genome(s) in diverse fungal species including human and plant pathogens, saprophytes, and mushrooms, it is possible to compare and predict the potent pathways for phenylalanine degradation among different fungal species. Molecular genetic studies such as gene replacement should reveal whether PAL is essential in fungal physiology and especially reveal links, if any, between PAL activity and pathogenesis, development, and secondary metabolic activities. Further work to develop knowledge and tools that would enable us to rationalize the existence of PAL in certain fungi is needed.

Acknowledgements

This work was supported by the National Research Foundation (NRF) grant funded by the Korea government (MEST) (KRF-2006-331-F00005).

References

1. Koukol J, Conn EE. The metabolism of aromatic compounds
in higher plants. IV. Purification and properties of the phenylalanine deaminase of *Hordeum vulgare*. J Biol Chem 1961;236:2692-8.

2. Jones DH. Phenylalanine ammonia-lyase: regulation of its induction, and its role in plant development. Phytochemistry 1984;23:1349-59.

3. Marusich WC, Jensen RA, Zamir LO. Induction of L-phenylalanine ammonia-lyase during utilization of phenylalanine as a carbon or nitrogen source in *Rhodotorula glutinis*. J Bacteriol 1981;146:1013-9.

4. Camm EL, Towers GHN. Review article: phenylalanine ammonia-lyase. Biochim Biophys Acta 1973;12:961-73.

5. Jorrin J, López-Valbuena R, Tena M. Purification and properties of phenylalanine-lyase from sunflower (*Helianthus annuus*) L. hypocotyls. Biochim Biophys Acta 1988;964:73-82.

6. Czichi U, Kindl H. Formation of p-coumaric acid and o-coumaric acid from L-phenylalanine by microsomal membrane fractions from potato: evidence of membrane-bound enzyme complexes. Planta 1975;125:115-25.

7. Bandoni RJ, Moore K, Subba Rao PV, Towers GH. Phenylalanine and tyrosine ammonia-lyase activity in some Basidiomycetes. Phytochemistry 1968;7:205-7.

8. Moore K, Subba Rao PV, Towers GH. Degradation of phenylalanine and tyrosine by *Sporobolomyces roseus*. Biochem J 1968;106:507-14.

9. Hodgins DS. Yeast phenylalanine ammonia-lyase: purification, properties, and the identification of catalytically essential dehydroalaine. J Biol Chem 1971;246:2977-85.

10. Sikora LA, Marruf G. Regulation of L-phenylalanine ammonia-lyase by L-phenylalanine and nitrogen in *Neurospora crassa*. J Bacteriol 1982;150:1287-91.

11. Emes AV, Vining LC. Partial purification and properties of L-phenylalanine ammonia-lyase from *Streptomyces verticilloides*. Can J Biochem 1970;48:613-22.

12. Xiang L, Moore BS. Inactivation, complementation, and heterologous expression of *enP*, a novel bacterial phenylalanine-ammonia-lyase gene. J Biol Chem 2002;277:32505-9.

13. Young MR, Towers GH, Neish AC. Taxonomic distribution of ammonia-lyases for L-phenylalanine and L-tyrosine in relation to lignification. Can J Bot 1966;44:341-9.

14. Vance CP, Bandoni RJ, Towers GHN. Further observations on phenylalanine ammonia-lyase in fungi. Phytochemistry 1975;14:1513-4.

15. Nari J, Molett Ch, Pinna MH, Ricard J. Some physicochemical properties of L-phenylalanine ammonia-lyase of wheat seedlings. FEBS Lett 1972;23:220-4.

16. Havir EA, Hanson KR. L-phenylalanine ammonia-lyase (maize and potato); evidence that the enzyme is composed of four subunits. Biochemistry 1973;12:1583-91.

17. Jorrin J, Dixon RA. Stress reponses in alfalfa (*Medicago sativa* L.). II. Purification, characterization, and induction of phenylalanine-ammonia-lyase isoforms from elicitor-treated cell suspension cultures. Plant Physiol 1990;92:447-55.

18. Bernards MA, Ellis BE. Phenylalanine ammonia-lyase from tomato cell cultures inoculated with *Verticillium albo-atrum*. Plant Physiol 1991;97:1494-500.

19. Campbell MM, Ellis BE. Fungal elicitor-mediated responses in pine cell cultures. III Purification and characterization of phenylalanine-ammonia-lyase. Plant Physiol 1992;98:62-70.

20. Given NK, Venis MA, Grierson D. Purification and properties of phenylalanine ammonia-lyase from strawberry fruit and its synthesis during ripening. J Plant Physiol 1988;133:31-7.

21. Pridham JB, Woodhead S. Multimolecular forms of phenylalanine-ammonia lyase in *Alternaria*. Biochem Soc Trans 1974;2:1070-2.

22. Kalghatgi KK, Subba Rao PV. Microbial L-phenylalanine ammonia-lyase: purification, subunit structure and kinetic properties of the enzyme from *Rhizoctonia solani*. Biochem J 1975;149:65-72.

23. Hanson KR, Havir EA. Phenylalanine ammonia-lyase. In: Stumpf PK, Conn EE, editors. Biochemistry of plants: a comprehensive treatise. Vol. 7. New York: Academic Press; 1981. p. 577-625.

24. Schomburg D, Salzmann M. Enzyme handbook 1. Class 4: lyases, phenylalanine ammonia-lyase. Berlin, Heidelberg: Springer-Verlag; 1990.

25. Adachi O, Matsushita K, Shinagawa E, Ameyama M. Crystallization and properties of L-phenylalanine ammonia-lyase from *Rhodosporidium toruloides*. Agric Biol Chem 1990;54:2839-43.

26. Neumann G, Schwenmmlle B, Flavonoids from *Oenothera* seedlings: identification and extranuclear control of their biosynthesis. J Plant Physiol 1993;142:135-43.

27. Dahiya JS. Isolation and characterization of phenylalanine ammonia-lyase enzyme from the fungus *Leptosphaeria maculans*. Indian J Exp Biol 1993;31:874-7.

28. Bolwell GP, Rodgers MW. L-Phenylalanine ammonia-lyase from French bean (*Phaseolus vulgaris* L): characterization and differential expression of antigenic multiple Mr forms. Biochem J 1991;279(Pt 1):231-6.

29. McKegney GR, Utland SL, Theilmann D, Ellis BE. Expression of poplar phenylalanine-ammonia lyase in insect cell cultures. Phytochemistry 1996;41:1259-63.

30. Dubery IA, Smit F. Phenylalanine-ammonia lyase from cotton (*Gossypium hirsutum*) hypocotyls: properties of the enzyme induced by a *Verticillum dahliae* phytotoxin. Biochim Biophys Acta 1994;1207:24-30.

31. D’Cunha GB, Satyanarayan V, Nair PM. Purification of phenylalanine ammonia lyase from *Rhodotorula glutinis*. Phytochemistry 1996;42:17-20.

32. Gowri G, Paiva NL, Dixon RA. Stress responses in alfalfa (*Medicago sativa* L.) 12. Sequence analysis of phenylalanine ammonia-lyase (PAL) cDNA clones and appearance of PAL transcripts in elicitor-treated cell cultures and developing plants. Plant Mol Biol 1991;17:415-29.

33. Havir EA. L-Phenylalanine ammonia-lyase: binding of polysaccharide by the enzyme from maize. Plant Sci Lett 1979;16:297-304.

34. Shaw NM, Bolwell GP, Smith C. Wound-induced phenylalanine ammonia-lyase in *Solanum tuberosum* tuber discs: significance of glycosylation and immunolocalization of enzyme subunits. Biochem J 1990;267:163-70.

35. Cramer CL, Edwards K, Dron M, Liang X, Dildine SL, Bolwell GP, Dixon RA, Lamb CJ, Schuch W. Phenylalanine ammonia-lyase gene organization and structure. Plant Mol
264 Hyun

Biol 1989;12:367-83.

38. Lois R, Dietrich A, Hahlbrock K, Schulz W. A phenylalanine
ammonia-lyase gene from parsley: structure, regulation, and
identification of elicitor and light responsive cis-acting elements.
EMBO J 1989;8:1641-8.

39. Orum H, Rasmussen OF. Expression in E. coli of the gene
encoding phenylalanine-ammonia-lyase from Rhodosporidium
toruloides. Appl Microbiol Biotechnol 1992;36:745-7.

40. Schulz W, Eiben HG, Hahlbrock K. Expression in
Escherichia coli of catalytically active phenylalanine-ammonia-lyase from
parsley. FEBS Lett 1989;258:335-8.

41. Appert C, Logemann E, Hahlbrock K, Schmid J, Amrhein N.
Structural and catalytic properties of the four phenylalanine
ammonia-lyase isoenzymes from parsley (Petroselinum crispum
Nym.). Eur J Biochem 1994;225:491-9.

42. Calabrese JC, Jordan DB, Boodhoo A, Sariaslani S, Vannelli T.
Crystal structure of phenylalanine ammonia lyase: multiple
helix dipoles implicated in catalysis. Biochemistry 2004;43:
11403-16.

43. Hanson KR, Havir EA. The enzymic elimination of ammonia. In:
Boyer PD, editor. The enzymes. New York: Academic Press; 1972. p. 75-166.

44. Hanson KR, Havir EA. L-Phenylalanine-ammonia-lyase. IV.
Evidence that the prosthetic group contains a dehydroalanine residue and mechanism of action. Arch Biochem Biophys
1970;141:1-17.

45. Schuster B, Rétey J. The mechanism of action of phenylalanine
ammonia-lyase: the role of prosthetic dehydroalanine. Proc Natl Acad Sci U S A 1995;92:8433-7.

46. Banerjee S, Hansen JN. Evidence encoding the precursor of subtilin, a small protein antibiotic.
J Biol Chem 1988;263:9508-14.

47. Ohmiya Y, Hayashi H, Kondo T, Kondo Y. Location of
ammonia-lyase isoenzymes from parsley (Petroselinum crispum
Nym.). Eur J Biochem 1994;225:491-9.

48. Recsei PA, Snell EE. Pyruvoyl enzymes. Annu Rev Biochem
1984;53:357-87.

49. Taylor RG, Lambert MA, Sexsmith E, Sadler SJ, Ray PN,
Mahuran DJ, McInnes RR. Cloning and expression of rat
histidase: homology of two bacterial histidases and four
phenylalanine-ammonia-lyases. J Biol Chem 1990;265:18192-9.

50. Neish AC. Biosynthetic pathways of aromatic compounds.
Annu Rev Plant Physiol 1960;11:55-80.

51. Parkhurst JR, Hodgins DS. Phenylalanine and tyrosine
ammonia-lyase activity in Sporobolomyces pararoseus.
Phytochemistry 1971;10:2997-3000.

52. Scott DA, Hammond PM, Brearley GM, Price CP.
Identification by high-performance liquid chromatography of
tyrosine ammonia-lyase activity in purified fractions of
Phaseolus vulgaris phenylalanine-ammonia-lyase. J Chromatogr
1992;573:309-12.

53. Jangaard NO. The characterization of phenylalanine ammonia-lyase from several plant species. Phytochemistry 1974;13:1765-8.

54. RÖsler J, Krekel F, Amrhein N, Schmid J. Maize phenylalanine
ammonia-lyase has tyrosine-ammonia-lyase activity. Plant Physiol 1997;111:175-9.

55. Nari J, Mouttet C, Fouchier F, Ricard J. Subunit interactions in
enzyme catalysis. Eur J Biochem 1974;41:499-515.

56. Bolwell GP, Bell JN, Cramer CL, Schuch W, Lamb CJ,
Dixon RA. L-Phenylalanine-ammonia-lyase from Phaseolus
vulgaris: characterization and differential induction of
multiple forms from elicitor-treated cell suspension cultures.
Eur J Biochem 1985;149:411-9.

57. Nagai N, Kojima Y, Shimosaka M, Okazaki M. Effect of
kinetin on L-phenylalanine-ammonia-lyase activity in tobacco
cell culture. Agric Biol Chem 1988;52:2617-9.

58. Zöf J, Amrhein N. Inhibitor of phenylalanine-ammonia-lyase:
2-aminoindan-2-phosphonic acid and related compounds.
Liebigs Ann Chem 1992;1992:625-8.

59. Fritz RR, Hodges DS, Abell CW. Phenylalanine ammonia-
lyase: induction and purification from yeast and clearance in
mammals. J Biol Chem 1976;251:4646-50.

60. Tanaka Y, Matsuoka M, Yamanoto N, Ohashi Y, Kano-
Murakami Y, Ozeki Y. Structure and characterization of a
cDNA clone for phenylalanine-ammonia-lyase from cut-
injured roots of sweet potato. Plant Physiol 1989:90:1403-7.

61. Joos HJ, Hahlbrock K. Phenylalanine-ammonia-lyase in potato
(Solanum tuberosum L.): genomic complexity, structural
comparison of two selected genes, and modes of expression.
Eur J Biochem 1992;204:621-9.

62. Whetten RW, Sederoff RR. Phenylalanine-ammonia-lyase
from loblolly pine: purification of the enzyme and isolation of
complementary DNA clones. Plant Physiol 1992;98:380-6.

63. Anson JG, Gilbert HJ, Oram JD, Minton NP. Complete
nucleotide sequence of the Rhodosporidium toruloides gene
encoding phenylalanine-ammonia-lyase. Gene 1987:58:189-
90.

64. Vaslet CA, Strausberg RL, Sykes A, Levy A, Filipula D,
cDNA and genomic cloning of yeast phenylalanine-ammonia-
lyase reveal genomic intron deletions. Nucleic Acids Res
1988;16:11382.

65. Wanner LA, Li G, Ware D, Somssich IE, Davis KR. The
phenylalanine-ammonia-lyase gene family in Arabidopsis
thaliana. Plant Mol Biol 1995:27:327-38.

66. Campbell MM. Elicited phenylpropanoid metabolism in pine
cell cultures [dissertation]. Guelph: University of Guelph;
1991.

67. Sederoff R, Campbell M, O’Malley D, Whetten R. Genetic
regulation of lignin biosynthesis and the potential modification
of wood by genetic engineering in loblolly pine. Recent Adv
Phytochem 1994;28:313-55.

68. Kim SH, Virmani D, Wake K, MacDonald K, Kronstad JW,
Ellis BE. Cloning and disruption of a phenylalanine-ammonia-
lyase gene from Ustilago maydis. Curr Genet 2001:40:40-8.

69. Wat CK, Towers GH. Metabolism of the aromatic amino
acids by fungi. Recent Adv Phytochem 1977;12:371-432.

70. Power DM, Towers GH, Neish AC. Biosynthesis of phenolic
acids by certain wood-destroying Basidiomycetes. Can J
Biol 1969;33:755-63.

71. Moore K, Subba Rao PV, Towers GH. Degradation of
phenylalanine and tyrosine by Basidiomycetes. Life Sci
1967;6:2629-33.

72. Uchiyama K, Kawaguchi K, Tochikura T, Ogata K.
Metabolism of aromatic amino acids in microorganisms. Part
III. Metabolism of cinnamic acid in Rhodotorula. Agric Biol
Chem 1969;33:755-63.

73. Towers GH. Metabolism of cinnamic acid and its derivatives in
Basidiomycetes. In: Harborne JB, Swain T, editors. Perspectives in phytochemistry. New York: Academic Press;
Fungal Phenylalanine Ammonia-lyase

1969. p. 179-91.
74. Nambudiri AM, Subba Rao PV, Bhat JV. Metabolism of aromatic compounds by an *Alternaria* species. Phytochemistry 1970;9:687-93.
75. Kalghatgi KK, Nambudiri AM, Bhat JV, Subba Rao PV. Degradation of L-phenylalanine by *Rhizoctonia solani*. Indian J Biochem Biophys 1974;11:116-8.
76. Campbell IM, Gallo MA, Jones CA, La Sitis PR, Rosato LM. Role of cinnamate in benzoate production in *Penicillium brevicompactum*. Phytochemistry 1987;26:1413-5.
77. Griffin DH. Fungal physiology. Toronto: Wiley-Less;1994.
78. Stith WJ, Hodgins DS, Abell CW. Effects of phenylalanine ammonia-lyase and phenylalanine deprivation on murine leukemic lymphoblasts in vitro. Cancer Res 1973;33:966-71.
79. Abell CW, Stith WJ, Hodgins DS. The effects of phenylalanine ammonia-lyase on leukemic lymphocytes in vitro. Cancer Res 1972;32:285-90.
80. Abell CW, Hodgins DS, Stith WJ. An in vitro evaluation of the chemotherapeutic potency of phenylalanine ammonia-lyase. Cancer Res 1973;33:2529-32.
81. Hoskins JA, Jack G Wade HE, Peiris RJ, Wright EC, Starr DJ, Stern J. Enzymatic control of phenylalanine intake on phenylketonuria. Lancet 1980;23:392-4.
82. Sarkissian CN, Gámez A, Wang L, Charbonneau M, Fitzpatrick P, Lemontt JF, Zhao B, Vellard M, Bell SM, Henschell C, et al. Preclinical evaluation of multiple species of PEGylated recombinant phenylalanine ammonia lyase for the treatment of phenylketonuria. Proc Natl Acad Sci U S A 2008;105:20894-9.
83. Klausner A. Building for success in phenylalanine. Bio/Technology 1985;3:301-7.
84. Hamilton BK, Hsiao HY, Swann WE, Anderson DM, Delent JJ. Manufacture of L-amino acids with bioreactors. Trends Biotechnol 1985;3:64-8.