Complete Mitochondrial Genome of Suwallia teleckojensis (Plecoptera: Chloroperlidae) and Implications for the Higher Phylogeny of Stoneflies

Ying Wang, Jin-Jun Cao and Wei-Hai Li *

Department of Plant Protection, Henan Institute of Science and Technology, Xinxiang 453003, Henan, China; wangying198586@163.com (Y.W.); cj1986108@163.com (J.-J.C.)
* Correspondence: lwh7969@163.com; Tel.: +86-373-3040-147

Received: 24 January 2018; Accepted: 24 February 2018; Published: 28 February 2018

Abstract: Stoneflies comprise an ancient group of insects, but the phylogenetic position of Plecoptera and phylogenetic relations within Plecoptera have long been controversial, and more molecular data is required to reconstruct precise phylogeny. Herein, we present the complete mitogenome of a stonefly, Suwallia teleckojensis, which is 16146 bp in length and consists of 13 protein-coding genes (PCGs), 2 ribosomal RNAs (rRNAs), 22 transfer RNAs (tRNAs) and a control region (CR). Most PCGs initiate with the standard start codon ATN. However, ND5 and ND1 started with GTG and TTG. Typical termination codons TAA and TAG were found in eleven PCGs, and the remaining two PCGs (COII and ND5) have incomplete termination codons. All transfer RNA genes (tRNAs) have the classic cloverleaf secondary structures, with the exception of tRNA{Ser(AGN)}, which lacks the dihydrouridine (DHU) arm. Secondary structures of the two ribosomal RNAs were shown referring to previous models. A large tandem repeat region, two potential stem-loop (SL) structures, Poly N structure (2 poly-A, 1 poly-T and 1 poly-C), and four conserved sequence blocks (CSBs) were detected in the control region. Finally, both maximum likelihood (ML) and Bayesian inference (BI) analyses suggested that the Capniidae was monophyletic, and the other five stonefly families form a monophyletic group. In this study, S. teleckojensis was closely related to Sweltsa longistyla, and Chloroperlidae and Perlidae were herein supported to be a sister group.

Keywords: Plecoptera; Chloroperlidae; Suwallia teleckojensis; mitochondrial genome; phylogenetics

1. Introduction

In metazoans, the mitochondrial genome (mitogenome) is usually a circular, double-stranded molecule, ranging in size from 13 to 16 kb [1,2]. It contains a remarkably conserved set of 37 genes, i.e., 13 protein coding genes (PCGs), 2 ribosomal RNA (rRNA), and 22 transfer (tRNA) genes [1,2]. Additionally, an A + T-rich region is known as the non-coding region or the control region (CR), which is involved in the initiation of transcription and replication [2]. Because of their abundance, small size, fast rate of evolution, and low levels of sequence recombination, mitochondrial genomes are increasingly applied to comparative and molecular evolution, phylogenetic studies, and population genetics [3].

The Plecoptera (stoneflies) is a small order of hemimetabolous insects. It is comprised of 16 families and includes about 3900 described species worldwide [4,5]. Chloroperlidae includes more than 200 species mainly in the Holarctic region [5]. The chloroperlid genus Suwallia Ricker, 1943 is primarily distributed in North America, Japan, Russia, and Mongolia [6,7]. Recently, four species of the chloroperlid genus Suwallia, S. teleckojensis, S. decolorata, S. talalajensis, and S. wolongshana are reported from China [8–10].
Stoneflies comprise an ancient group of insects, but the phylogenetic position of Plecoptera has long been controversial [11]. There are different opinions based on morphological data [12–14], and later, molecular data makes these opinions more controversial [15–17]. In addition, phylogenetic relations within Plecoptera, such as, Styloperlidae, Peltoperlidae, Chloroperlidae, Perlidae, and Perlodidae was controversial [18–21]. Currently, the position of Pteronarcyidae, Styloperlidae, and Peltoperlidae in Pteronarcoidea has been resolved based on morphology [19], and our previous study that analyzed the family-level phylogenetic of the Pteronarcoidea supported the traditional morphology-based classification [22]. However, other recent analyses based on the mitogenomic data still do not support the traditional classification well [23–25]. Coincidentally, the position of Chloroperlidae, Perlidae, and Perlodidae was proposed based on morphological data [26,27], but more conflicting opinions were raised after molecular data became available. For example, most studies supported Chloroperlidae and Pteronarcyidae as a sister-group [20,21,24,25,28–30]. Up to now, only one chloroperlid species, *Sveltsa longistyla* was sequenced [31], and those conflicting opinions were mainly generated by the limited mitogenomic data. Therefore, more molecular data is required to reconstruct precise phylogeny [27,32,33].

To date, eighteen complete and four nearly complete mitogenomes of stoneflies have been sequenced [20–22,24,25,28–32,34–41]. In this article, we provided the second mitogenome of the stonefly family Chloroperlidae to facilitate a study of mitochondrial phylogeny in the Plecoptera. We sequenced the mitogenome of *S. teleckojensis* and analyzed the nucleotide composition, codon usage, compositional biases, secondary RNA structures, stem-loop (SL) structures, and conserved sequence blocks (CSBs) in the control region. Furthermore, we also reconstructed the phylogenetic tree of *S. teleckojensis* and other stoneflies based on PCGs, thus our result increases the understanding of stonefly phylogeny.

2. Results and Discussion

2.1. Genome Organization and Base Composition

The complete mitogenome of *S. teleckojensis* was 16,146 bp in length (Figure 1), which was nearly identical to the genome of *S. longistyla* (16,151 bp) and similar in length with the other previously sequenced completely mitogenomes of plecopteran insects (Table 1). It contains 37 genes (including 13 PCGs, 22 tRNAs, and 2 rRNAs) and a control region. Most genes (23 genes) were located on the J-strand (major strand), the remaining being oriented on the N-strand (minor strand) [1]. In addition to the control region, there were 76 nucleotides dispersed in 14 intergenic spacers, ranging from 1 to 20 bp. The longest non-coding intergenic spacer (20 nucleotides) was located between ND1 and *tRNA*_{Leu(CUN)}.

Gene overlaps were also found at 11 gene junctions involving 41 nucleotides with the longest overlaps (8 nucleotides) between *tRNA*_{Cys} and *tRNA*_{Tyr}, and COI and *tRNA*_{Leu(UUR)} (Figure 1 and Table 2).

The gene order of *S. teleckojensis* is identical to *Drosophila melanogaster* Meigen, which is considered to be the typical arrangement of the inset mitochondrial genes [1]. All genes have similar locations and strands to those of other published stoneflies. The arrangement of mitochondrial genes of *S. teleckojensis* is the same as *S. longistyla* [31] and should be conservative in all sequenced stoneflies.

The nucleotide composition of the mitogenome was biased toward A and T, with 66.7% of A + T content (A = 36.5%, T = 30.2%, C = 21.7%, G = 11.6%). The A + T content of PCGs, tRNAs, rRNAs, and control region is 64.1%, 69.2%, 71.5%, and 79.1%, respectively (Table 3). To evaluate the degree of the base bias, we measured base-skew. The whole genome displayed negative GC-skew and positive AT-skew. The PCGs, J-strand of PCGs, N-strand of PCGs, N-strand of tRNAs and rRNAs had a negative AT-skew, while the N-strand of tRNAs had a positive AT-skew. The tRNAs in the J-strand displayed positive AT-skews, whereas the N-strand showed negative AT-skews. This feature was probably related to the asymmetrical directional mutation pressure [42].
Table 1. General informatics of the taxa used in this study.

Taxonomic Order	Family	Species	Number (bp)	Accession Number
Plecoptera	Perlidae	Acronoaria hainana	15,804	NC_026104
		Togoperla sp.	15,723	KM409708
		Kaminuria wangi	16,179	NC_024033
		Kaminuria chungnanshana	15,943	NC_028076
		Dinocras cephalotes	15,666	NC_022843
	Pteronarcyidae	Pteronarcys princeps	16,004	NC_006133
		Pteronarcus sp.	15,585	NC_029248
Capniidae		Apteroperla tikumana	15,564	NC_027698
		Capnia zijinshana	16,310	KX904942
		Mesocapnia arizonensis	14,921	KP642637
		Mesocapnia daxingana	15,524	KY568983
Peltoperlidae		Cryptoperla stilifera	15,633	NC_026104
		Soliperla sp.	15,877	MF176958
Styloperlidae		Stylorpa sp.	15,416	KR088971
		Stylorpa spinicica	16,129	KX845569
Chloroperlidae		Sveltsa longistyla	16,151	KM216826
		Suvallia teleckojensis	16,146	MF198253
Taeniopertygidae		Taeniopertyx yugola	15,353	MG589786
		Dodsia occidentalis	16,020	MG589787
Gripopterygidae		Zelandopera fenestrata	16,385	KY522907
Perlodidae		Perlodes sp.	16,039	MF197377
		Isoperla bilineata	15,048	MF176959
Ephemeroptera	Heptageniidae	Parafronurus youi	15,481	EU349015
	Isonychiidae	Isonychia ignota	15,055	HM143892

* Incomplete genome sequence.

Table 2. Organization of the S. teleckojensis mitochondrial genome.

Gene	Direction	Location	Size	Anticodon	Anticodon Positions	Start/Stop Codons	Intergenic Nucleotides
tRNA_{Leu}	Forward	1-67	67	GAT	30-32	-	-
tRNA_{Leu(UUR)}	Forward	3002-3067	66	TAA	3031-3033	19	688
tRNA_{Cys}	Forward	3081-3768	688	ATT	3799-3801	37	13
tRNA_{Gly}	Reverse	3769-3839	71	CTT	3799-3801	0	-
tRNA_{Asp}	Forward	3839-3907	69	GTC	3869-3871	0	-
tRNA_{Glu}	Forward	3908-4066	159	ATT	3908-4066	-1	-
tRNA_{Phe}	Reverse	4060-4737	78	GTA	4060-4737	-7	-
tRNA_{Val}	Forward	4737-5525	789	GTC	4737-5525	-1	-
COI	Reverse	1426-2982	1557	ATT	1426-2982	-8	-

* Complete genome sequence.
Table 2. Cont.

Gene	Direction	Location	Size	Anticodon	Anticodon Positions	Start/Stop Codons	Intergenic Nucleotides
ND5	Reverse	6352–8086	1735	GTG/T-	0	GTG/T-	0
tRNA^{His}	Reverse	8087–8154	68	GTG	8121–8123	ATG/TAA	4
ND4	Reverse	8159–9499	1341			ATG/TAA	-7
ND4L	Reverse	9493–9789	297				
tRNA^{Thr}	Forward	9792–9859	68	TGT	9822–9824		2
tRNA^{Pro}	Reverse	9861–9928	68	TGG	9896–9898		1
ND6	Forward	9930–10,454	525	ATC/TAA	1		-1
tRNA^{Ser(UCA)}	Forward	10,454–11,590	1137				-1
ND1	Reverse	11,680–12,630	951	TAG	11,621–11,623	TTG/TAG	20
tRNA^{Leu(UAG)}	Reverse	12,632–12,697	66	TAG	12,666–12,668		1
tRNA^{Val}	Reverse	12,698–14,026	1329				
srRNA	Reverse	14,027–14,097	71	TAC	14,062–14,064		0
CR	Reverse	14,898–16,146	1249				0

Figure 1. Map of the mitochondrial genome of *S. teleckojensis*. Direction of gene transcription is indicated by the arrows. Protein-coding genes (PCGs) are shown as blue arrows, rRNA genes as purple arrows, tRNA genes as red arrows, and control region (CR) as gray arrows. tRNA genes are labeled according to single-letter IUPAC-IUB abbreviations (L1: UUR, L2: CUN, S1: AGN, S2: UCN). The GC content is plotted using a black sliding window, as the deviation from the average GC content of the entire sequence. GC skew is plotted as the deviation from the average GC skew of the entire sequence.
Table 3. The nucleotide composition of the *S. teleckojensis* mitogenome.

Feature	Proportion of Nucleotides	No. of Nucleotides						
	%T	%C	%A	%G	%A + T	AT Skew	GC Skew	
Whole genome	30.2	21.7	36.5	11.6	66.7	0.09	−0.303	16,146
PCGs	37.6	18.9	26.5	17.0	64.1	−0.17	−0.052	11,244
First codon position	40.6	20.7	19.1	19.1	62.4	−0.30	−0.102	3743
Second codon position	37.5	18.1	28.5	15.9	66.0	−0.14	−0.063	3743
Third codon position	34.8	17.8	29.1	18.2	64.0	−0.09	0.11	3743
PCG-J	32.9	24.5	28.9	13.7	61.8	−0.07	−0.281	6921
First codon position	36.4	23.1	24.5	16.0	60.9	−0.20	−0.182	2307
Second codon position	32.0	27.2	30.4	10.3	62.4	−0.03	−0.450	2307
Third codon position	30.4	23.0	31.8	14.8	62.1	0.02	−0.217	2307
PCG-N	45.1	9.9	22.7	22.2	67.8	−0.33	0.383	4323
First codon position	41.9	9.5	25.0	23.6	66.9	−0.25	0.427	1441
Second codon position	47.1	16.9	17.8	18.3	64.9	−0.45	0.140	1441
Third codon position	46.4	3.4	25.4	24.8	71.8	−0.29	0.759	1441
tRNA genes	34.6	13.9	34.6	16.9	69.2	0.00	0.100	1487
tRNA-J	33.8	15.1	36.2	14.9	70.0	0.03	−0.007	946
tRNA-N	36.0	11.6	31.8	20.5	67.8	−0.06	0.276	541
rRNA genes	39.9	9.4	31.6	19.1	71.5	−0.12	0.338	2129
LrRNA	40.3	8.3	32.9	18.5	73.2	−0.10	0.382	1329
srRNA	39.1	11.4	29.5	20.0	68.6	−0.14	0.275	800
CR	35.5	13.3	43.6	7.6	79.1	0.10	−0.272	1249

2.2. Protein-Coding Genes and Codon Usage

The total length of all 13 PCGs of *S. teleckojensis* was 11,244 bp. All but two of the PCGs in *S. teleckojensis* utilize the conventional translational start codons for invertebrate mitochondrial DNA (mtDNA). For example, one PCG (COI) contained an ATT codon, two PCGs (ND3 and ND6) contained ATC codons, and eight PCGs (ND2, COII, ATP8, ATP6, COIII, ND4, ND4L, and CytB) initiated with ATG codons. Two exceptions were ND5 and ND1, which used GTG and TTG as a start codon, respectively, as reported for most other Plecoptera [22,30]. Eleven PCGs used the typical termination codons TAA and TAG in *S. teleckojensis*, while only two PCGs (COII and ND5) stopped with the incomplete termination signal T. The stop codons TAA and TAG always had an overlap comprising several nucleotides with the downstream tRNAs (Table 2), which was supposed to act as a “backup” to prevent translation read-through if the transcripts were not properly cleaved [43]. The presence of incomplete stop codons is a feature shared with many arthropod mitochondrial genomes [2] and these truncated stop codons were assumed to be completed post-transcriptionally by the polyadenylation of mature mRNA [44].

In many insect mitogenomes, the ATP8/ATP6 and the ND4L/ND4 gene pairs overlap by seven nucleotides (ATGNTAA) which are thought to be translated as a bictron [45]. In the *S. teleckojensis* mitogenome, the overlap nucleotides were conserved for ATP8/ATP6 (ATGATAA) and ND4L/ND4 (ATGTTAA).

The relative synonymous codon usage (RSCU) reflects the influence of strongly biased codon usage [46]. The wide base compositional biases of the genome for AT was well reflected in the codon usage. There is a strong bias toward AT-rich codons with the four most prevalent codons in *S. teleckojensis* in the order: TTA (Leu), ATT (Ile), TTT (Phe), and ATA (Met) (Table 4). The four most prevalent codons in *S. teleckojensis* were similar to those in *Capnia zijinshana* [28]. Molecular processes, such as translational selection efficiency and accuracy, may influence the codon usage. They apparently have a stronger influence in organisms with rapid growth rates [47].
Table 4. Codon usage of *S. teleckojensis* mitochondrial genome protein-coding genes.

Amino Acid	Codon	N	RSCU	N+ RSCU	N− RSCU	RSCU
Phe (F)	UUU	208	1.36	85	0.98	123
	UUC	98	0.64	89	1.02	9
Leu (L)	UUA	280	2.6	131	2.13	149
	UUG	108	1	12	0.2	96
	CUU	67	0.62	53	0.86	14
	CUC	67	0.62	66	1.07	1
	CUA	112	1.04	97	1.58	15
	CUG	12	0.11	10	0.16	2
Ile (I)	AUU	213	1.46	133	1.29	80
	AUC	79	0.54	73	0.71	6
Met (M)	AUA	141	1.45	100	1.72	41
	AUG	54	0.55	16	0.28	38
Val (V)	GUU	82	1.38	29	0.88	53
	GUC	44	0.74	37	1.12	7
	GUA	70	1.18	55	1.67	15
	GUG	41	0.69	11	0.33	30
Ser (S)	UCU	94	2.32	39	1.72	55
	UCC	30	0.74	29	1.28	1
	UCA	63	1.56	48	2.12	15
	UCG	15	0.37	7	0.31	8
Pro (P)	CUC	59	1.55	34	1.21	25
	CCC	48	1.26	45	1.61	3
	CCA	36	0.95	29	1.04	7
	CCG	9	0.24	4	0.14	5
Thr (T)	ACU	66	1.25	43	1.07	23
	ACC	59	1.11	58	1.44	1
	ACA	73	1.38	56	1.39	17
	ACG	14	0.26	4	0.1	10
Ala (A)	GCU	84	1.51	48	1.29	36
	GCC	76	1.37	72	1.93	4
	GCA	37	0.67	27	0.72	10
	GCG	25	0.45	2	0.05	23
Tyr (Y)	UAU	106	1.39	32	0.84	74
	UAC	46	0.61	44	1.16	2
Stop (*)	UAA	9	1.64	7	1.75	2
	UAG	2	0.36	1	0.25	1
His (H)	CAU	46	1.12	30	0.91	16
	CAC	36	0.88	36	1.09	0
Gln (Q)	CAA	70	1.71	57	1.97	13
	CAG	12	0.29	1	0.03	11
Asn (N)	AAU	110	1.44	63	1.19	47
	AAC	43	0.56	43	0.81	0
Lys (K)	AAA	35	1.03	29	1.66	6
	AAG	33	0.97	6	0.34	27
Asp (D)	GAU	51	1.4	31	1.19	20
	GAC	22	0.6	21	0.81	1
Glu (E)	GAA	55	1.34	43	1.87	12
	GAG	27	0.66	3	0.13	24
Cys (C)	UGU	38	1.69	7	1	31
	UGC	7	0.31	7	1	0
Table 4. Cont.

Amino Acid	Codon	N	RSCU	N+	RSCU	N−	RSCU
Trp (W)	UGA	82	1.56	63	1.85	19	1.03
	UGG	23	0.44	5	0.15	18	0.97
Arg (R)	CGU	13	0.81	4	0.41	9	1.44
	CGC	2	0.13	2	0.21	0	0
	CGA	33	2.06	29	2.97	4	0.64
	CGG	16	1	4	0.41	12	1.92
Ser (S)	AGU	49	1.21	22	0.97	27	1.51
	AGC	18	0.44	12	0.53	6	0.34
	AGA	52	1.28	24	1.06	28	1.57
	AGG	3	0.07	0	0	3	0.17
Gly (G)	GGU	56	0.91	21	0.6	35	1.32
	GGC	22	0.36	14	0.4	8	0.3
	GGA	92	1.5	79	2.27	13	0.49
	GGG	75	1.22	25	0.72	50	1.89

N: Total number in all PCGs, N+: total number in J-strand, N−: total number in N-strand, RSCU: relative synonymous codon usage.

2.3. Transfer RNAs

Twenty-two typical tRNAs in the arthropod mitogenomes were found in S. teleckojensis and their respective secondary structures are shown in Figure 2. All of tRNA genes could be folded as typical cloverleaf structures except for tRNASer(AGN), in which its dihydrourine (DHU) could only form a loop (8 bp) with the DHU stem loss. In general, this phenomenon is a common condition in metazoan mtDNAs [48].

The length of S. teleckojensis tRNAs ranged from 65 to 71 bp (Table 2), similar to that of S. longistyla [31]. Like most of reported insect tRNAs, the lengths of the aminoacyl (AA) stem (7 bp), the anticodon (AC) stem (5 bp), and the AC loop (7 bp) of S. teleckojensis were invariable (Figure 2). The lengths of DHU arms and TΨC arms were more variable, ranging from 3 to 5 bp. The length of the AC stems was always conservative except that tRNASer(AGN) had the longest base pairing of all 22 tRNAs.

A total of 38 unmatched base pairs were identified in the stems of 17 different tRNAs. Compared with other stoneflies, most of the mismatched nucleotides were G–U pairs (29 base pairs), which can form a weak bond in tRNAs and non-canonical pairs in tRNA secondary structures [49]. These contained G–U pairs in amino acid arms (9 bp), DHU arms (7 bp), anticodon arms (10 bp), and TΨC arms (3 bp). The other unmatched base pairs were two U–U pairs in the AC stem of tRNAAla and tRNATyr, three A–C pairs in the TΨC stem of tRNALeu(UUR) and in the AA stem of tRNAArg and tRNASer(AGN), three A–A pairs in the AA stem of tRNAGly, tRNALeu(UUR) and tRNASer(UCN), and one U–C pair in the AA stem of tRNAMet (Figure 2).
Figure 2. Secondary structures of 22 tRNAs of *S. telecojensis*. All tRNAs are labeled with the abbreviations of their corresponding amino acids. Dashes (–) indicate Watson−Crick base pairing and dots (•) indicate G−U base pairing.

2.4. Ribosomal RNAs

Like other insect mitogenomes, the large and small rRNA subunits (*lrRNA* and *srRNA*) in *S. telecojensis* were located at tRNA*Leu* (CUN), tRNA*Val*, and tRNA*Val*—the control region, respectively (Figure 1 and Table 2). The lengths of *lrRNA* and *srRNA* were 1329 and 800 bp, respectively.

The secondary structures of both *lrRNA* and *srRNA* were drawn based on other insect models [22,50]. The secondary structure of *lrRNA* of *S. telecojensis* largely resembled previously published structures for *Styloperla spinicercia* (Linnaeus, 1763) (Insecta: Plecoptera: Styloperlidae) [22]. It consisted of 5 structural domains (I, II, IV–VI) with domain III absent, which is a typical trait in arthropods (Figure 3) [51]. Compared with *S. spinicercia*, domains I, II, and IV were variable, whereas 5 helices (H2455, H2507, H2520, H2547, and H2588) within domain V had the highest similarity [22].

The secondary structure of *srRNA* contained three domains (Figure 4). Similar to *S. spinicercia*, domain I was more variable than domains II and III, whereas Helix 1399 was the most conserved region [22]. In addition, *S. telecojensis* possessed more nucleotides in Helix1068, Helix1074, and Helix 577.
2.4. Ribosomal RNAs

Like other insect mitogenomes, the large and small rRNA subunits (lrRNA and srRNA) in *S. teleckojensis* were located at tRNALeu(CUN), tRNAVal, and tRNAVal—the control region, respectively (Figure 1 and Table 2). The lengths of lrRNA and srRNA were 1329 and 800 bp, respectively. The secondary structures of both lrRNA and srRNA were drawn based on other insect models [22,50]. The secondary structure of lrRNA of *S. teleckojensis* largely resembled previously published structures for *Styloperla spinicercia* (Linnaeus, 1763) (Insecta: Plecoptera: Styloperlidae) [22]. It consisted of 5 structural domains (I, II, IV–VI) with domain III absent, which is a typical trait in arthropods (Figure 3) [51]. Compared with *S. spinicercia*, domains I, II, and IV were variable, whereas 5 helices (H2455, H2507, H2520, H2547, and H2588) within domain V had the highest similarity [22].

![Figure 3. Predicted secondary structure of the lrRNA gene in *S. teleckojensis*. Roman numerals represent the conserved domain structures. Dashes (−) indicate Watson–Crick base pairings and dots (●) indicates G–U base pairing. I–VI indicate six domains in the secondary structure of lrRNA.](image1)

The secondary structure of srRNA contained three domains (Figure 4). Similar to *S. spinicercia*, domain I was more variable than domains II and III, whereas Helix 1399 was the most conserved region [22]. In addition, *S. teleckojensis* possessed more nucleotides in Helix1068, Helix1074, and Helix577.

We also compared the lrRNA and srRNA of *S. teleckojensis* with *S. longistyla*. The secondary structure of lrRNA and srRNA had high similarity (pair-wise sequence identity was 86.77% and 90.10%, respectively) and they should be conservative in the family Chloroperlidae.

![Figure 4. Predicted secondary structure of the srRNA gene in *S. teleckojensis*. Roman numerals denote the conserved domain structure. Dashes (−) indicate Watson-Crick base pairing and dots (●) indicate G–U base pairing. I–III indicate three domains in the secondary structure of srRNA.](image2)
We also compared the lrRNA and srRNA of *S. teleckojensis* with *S. longistyla*. The secondary structure of lrRNA and srRNA had high similarity (pair-wise sequence identity was 86.77% and 90.10%, respectively) and they should be conservative in the family Chloroperlidae.

2.5. The Control Region

Previously, the A + T-rich region, also called the control region (CR) was reported to contain elements essential to the initiation of replication and transcription [52]. The A + T-rich region of the *S. teleckojensis* mitogenome was 1249 bp in size, possessed an A + T content of 79.1%, and mapped between the srRNA and tRNA^{Met} gene cluster (Figure 1). The control region in the *S. teleckojensis* mitogenome was longer than most other stoneflies and the A + T content was slightly lower than that of *S. longistyla* (80.1%). The following structural elements were summarized in the control region of *S. teleckojensis* mitogenome: (1) a leading sequence (736 bp, containing SL1 and poly-T) adjacent to srRNA, (2) a tandemly repeated sequence block consisting of six complete and one incomplete tandem repeat units (7 bp), and (3) the remainder of the control region (392 bp, containing SL2 and poly-N) (Figure 5A).

Two Stem-loop (SL) structures were predicted in the CR: SL1 (15,445–15,504) and SL2 (15,743–15,790). The proposed stem-loop (SL) structures with a 3′ flanking G(A)_nT motif were detected after SL1 and SL2, but the 5′ flanking TATA motif was only detected after SL2 (Figure 5B). There was also a 9 bp poly-T stretch (15,464–15,472) near the 5′ end of the CR. In the remainder of the control region, like the *S. longistyla* control region, we also found lots of polynucleotide repeats (≥7 bp) including 2 poly-A, 1 poly-T, and 1 poly-C, which is unusual for a mitogenome control
region [31]. When compared with the CRs of the six other stonefly species, four conserved blocks were identified in *S. teleckojensis*: CSB1 (15,726–15,764), CSB2 (15,777–15,794), CSB3 (15,800–15,824), and CSB4 (15,847–15,900) (Figure 6). These CBs ranged in size from 18 to 54 bp, and their sequence identity among species was generally over 50%. The function of these conserved blocks is unclear. Further study on the mechanistic basis of mtDNA replication is warranted.

![Figure 6](image)

Figure 6. The alignment of conserved structural elements of CRs among stoneflies. Sequence identity among species was indicated by colored boxes. CSB1–4 indicates four conserved sequence blocks in the CRs. Blue color means 100% sequence identity. Pink color means 75% sequence identity. Green color means 50% sequence identity.

2.6. Phylogenetic Relationship

Phylogenetic analyses were performed using nucleotide sequences of 13 PCGs from 16 Plecoptera species, and two Ephemeroptera species were included as the outgroup (Table 1). Bayesian (BI) and maximum likelihood (ML) analyses generated the same tree topologies based on the PCG13 (including 13 PCGs) and PCGR (including 13 PCGs and 2 rRNAs) matrices (Figures 7 and A1). The resultant tree from the BI and ML analyses using PCG13 and PCGR datasets showed strong support for a monophyletic Capniidae, and the other five stonefly families formed a monophyletic group. In this monophyletic group, *S. teleckojensis* was closely related to *S. longistyla* (with bootstrap value of 92/100 and posterior probability of 0.98/1.00 in ML tree and BI tree, respectively), Chloroperlidae and Perlidae were herein corroborated to be a sister group (with bootstrap value of 75/67 and posterior probability of 1.00/1.00 in ML tree and BI tree, respectively). The position of Chloroperlidae and Perlidae is very different from previous studies [20,21,24,25,30]. Instead, our results support the traditional morphology-based classification [26,27]. This phenomenon may result from the limited mitogenomic data, especially for Chloroperlidae species.

Currently, the position of Pteronarcyidae, Styloperlidae, and Peltoperlidae in Pteronarcyoida has been resolved based on morphology [19,27], but this relationship has not been well supported by molecular data. Two previous studies concluded that Pteronarcyidae was not a sister group of Peltoperlidae [23,25] and Chen et al. (2016) indicated that there was a relationship of Styloperlidae (Pteronarcyidae and Peltoperlidae) [24]. However, the phylogenetic relationship among the three
families in Pteronarcoidea in our study was very different. In this study, Pteronarcyidae was recovered as a sister-group to Styloperlidae and Peltoperlidae with posterior probability of 0.85/0.98 on the tree generated by BI. ML analyses generated the same tree topologies with BI analyses, but the bootstrap value is 31/46 (Figures 7 and A1). These results were generally identical to the recent study made by our previous studies [22] and morphology studies [19,27]. The limited Peltoperlid mitogenomes may result in two clades with low support values and ambiguous relationships among the three families.

The basal position of Capniidae is confirmed and the relationship between Chloroperlidae and Perlidae is supported by BI and ML analyses, but the relationship among Pteronarcyidae, Styloperlidae, and Peltoperlidae remains to be studied in the future. Sampling across more taxonomic levels is very useful and important to gain detailed insights into this problem.

3. Materials and Methods

3.1. Specimens and DNA Extraction

A single adult sample of S. teleckojensis was used in this study. It was collected from Hanma National Nature Reserve of Inner Mongolia Autonomous Region, China in 2015 with other specimens by Weihai Li. Specimens were preserved in 100% ethanol in the field, and then kept in a −20 °C freezer. The thoracic muscle of the specimen was used for extraction of total genomic DNA using the QIAamp DNA Blood Mini Kit (Qiagen, Germany) and stored at −20 °C until needed. Vouchers consisting of the remaining stoneflies (No. VHem-0021) were deposited in the Entomological Museum of Henan Institute of Science and Technology (HIST), Henan Province, China.

3.2. Genome Sequencing, Assembly, and Annotation

The mitogenomes were amplified and sequenced as described in previous studies [22,30,53,54]. The complete mitogenome of S. teleckojensis has been deposited in GenBank with accession number MF198253. Sequence reads were assembled into contigs with BioEdit version 7.0.5.3 [55]. tRNA genes were identified by ARWEN with default settings [56]. Two rRNA and all PCG genes were identified by BLAST searches in NCBI (Available online: http://www.ncbi.nlm.nih.gov), and then confirmed by alignment with homologous genes from other published stonefly mitogenomes. The nucleotide

AT skew= \[A − T\]/\[A + T\] (1)
GC skew= \[G − C\]/\[G + C\] (2)
composition and codon usage of PCGs were calculated with MEGA 5.0 [57]. Strand asymmetry was measured using the formulas [58]:

\[
\text{AT skew} = \frac{[A - T]}{[A + T]} \quad (1)
\]

\[
\text{GC skew} = \frac{[G - C]}{[G + C]} \quad (2)
\]

The tandem repeats in the putative control region were analyzed with the Tandem Repeats Finder program (Available online: http://tandem.bu.edu/trf/trf.advanced.submit.html) and the stem-loop structures were predicted by Quikfold (Available online: http://unafold.rna.albany.edu/?q=DINAMelt/Quickfold) [59].

3.3. Phylogenetic Analysis

Phylogenetic analysis was performed based on 16 complete or nearly complete mitogenomes of stoneflies from GenBank (Table 1). The MAFFT algorithm within the TranslatorX online platform was used to align each PCG individually [60]. Before back-translation to nucleotides, poorly aligned sites were removed from the protein alignment using GBlocks in the TranslatorX with default settings. We also aligned each rRNA gene individually using the MAFFT v7.0 online server with the G-INS-I strategy [61]. GBlocks v0.91b was used to filter the ambiguous positions in the alignment of rRNAs [62].

The datasets were assembled for our phylogenetic analyses: (1) the “PCG13 matrix” (total of 11,229 bp), including 13 PCGs; (2) the “PCGR matrix” (total of 12,986 bp), including 13 PCGs and 2 rRNAs. We selected the best-fit model of nucleotide sequences of each gene by using jModelTest 0.1.1 according to the Akaike Information Criterion (AIC) [63], and the result is shown in Table 5. Bayesian analyses were run with PCG13 and PCGR datasets which were partitioned by gene. The nucleotide matrices were used to reconstruct phylogenetic trees via Bayesian inference (BI) and maximum likelihood (ML) using MrBayes 3.2.6 and RAxML-HPC2 8.1.11, respectively [64,65]. For Bayesian analyses, we conducted two simultaneous runs for 10 million generations. Each set was sampled every 1000 generations with a burn-in rate of 25%. Stationarity was examined by Tracer v.1.5, and was considered to be reached when the ESS (estimated sample size) value was above 200 [66]. For ML analyses of nucleotide sequences, bootstrapping analyses with 1000 replicates were performed with the fast ML method implemented in RAxML using the GTRGAMMA model.

Table 5. Best evolutionary models selected by jModelTest.

Gene	Best Model
ATP6	GTR + I + G
ATP8	GTR + G
COI	GTR + G
COII	GTR + G
COIII	GTR + I + G
CytB	GTR + G
ND1	GTR + I + G
ND2	GTR + I + G
ND3	GTR + I + G
ND4	GTR + I + G
ND4L	GTR + I + G
ND5	GTR + I + G
ND6	GTR + I + G
srRNA	GTR + I + G
lrRNA	GTR + G

Acknowledgments: This research was supported by the Aid program for Science and Technology Innovative Research Team in higher Educational Institutions of Henan Province (17IRTSTHN18), the landmark Innovative Project of Henan Institute of Science and Technology (No. 2015BZ04), the Key Scientific Research Project of Henan
Province (No. 16A210045), the National Natural Science Foundation of China (No. 31372251) and the initial Project of Henan Institute of Science and Technology (No. 2014028).

Author Contributions: Ying Wang and Wei-Hai Li conceived and designed the experiments; Ying Wang and Jinjun Cao performed the experiments; Ying Wang and Jin-Jun Cao analyzed the data; Ying Wang wrote the paper.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations

mtDNA Mitochondrial DNA
PCG Protein-Coding Gene
tRNA Transfer RNA
rRNA Ribosomal RNA
CR Control Region
SL Stem-Loop
CSB Conserved Sequence Block
ML Maximum Likelihood
BI Bayesian Inferences

Appendix A

Figure A1. Phylogenetic trees generated from different datasets and methods. (A) The tree was obtained by BI analysis of the PCG13 dataset. (B) The tree was obtained by ML analysis of the PCG13 dataset. (C) The tree was obtained by BI analysis of the PCGR dataset. (D) The tree was obtained by ML analysis of the PCGR dataset.
References

1. Boore, J.L. Animal mitochondrial genomes. *Nucleic Acids Res.* **1999**, *27*, 1767–1780. [CrossRef] [PubMed]
2. Wolstenholme, D.R. Animal mitochondrial DNA: Structure and evolution. *Int. Rev. Cytol.* **1992**, *141*, 173–216. [PubMed]
3. Gissi, C.; Iannelli, F.; Pesole, G. Evolution of the mitochondrial genome of metazoa as exemplified by comparison of congeneric species. *Heredity* **2008**, *101*, 301–320. [CrossRef] [PubMed]
4. Fochetti, R.; Figueroa, J.M.T. Global diversity of stoneflies (Plecoptera, Insecta) in freshwater. *Hydrobiologia* **2008**, *595*, 365–377. [CrossRef]
5. Plecoptera Species File Online. Available online: http://Plecoptera.SpeciesFile.org (accessed on 21 January 2018).
6. Alexander, K.D.; Stewart, K.W. Revision of the genus *Suwallia* Ricker (Plecoptera: Chloroperlidae). *Trans. Am. Entomol. Soc.* **1999**, *125*, 185–250.
7. Judson, S.W.; Nelson, C.R. A guide to Mongolian stoneflies (Insecta: Plecoptera). *Zootaxa* **2012**, *3541*, 1–118.
8. Chen, Z.T.; Du, Y.Z. A new species of *Suwallia* (Plecoptera: Chloroperlidae) from China. *Zootaxa* **2015**, *4018*, 297–300. [CrossRef] [PubMed]
9. Li, W.H.; Murányi, D.; Li, S. New species records of *Suwallia* Ricker, 1943 (Plecoptera: Chloroperlidae) from China, with description of the nymph of *S. decolorata* Zhiltzova & Levanidova, 1978. *Zootaxa* **2015**, *3994*, 556–564. [PubMed]
10. Li, W.H.; Murányi, D.; Li, S. The first record of genus *Suwallia* Ricker, 1943 (Plecoptera: Chloroperlidae) from China. *Illiesia* **2015**, *11*, 23–28.
11. Zwick, P. The Plecoptera—Who are they? The problematic placement of stoneflies in the phylogenetic system of insects. *Aquat. Insects* **2009**, *31*, 181–194. [CrossRef]
12. Wheeler, W.C.; Michael, W.; Wheeler, Q.D.; Carpenter, J.M. The phylogeny of the extant hexapod orders. *Cladistics* **2001**, *17*, 113–169. [CrossRef]
13. Henning, W. *Insect Phylogeny*; John Wiley and Sons Ltd.: Chichester, UK; New York, NY, USA, 1981; pp. 1–536.
14. Kukalová-Peck, J. Fossil History and the Evolution of Hexapod Structures. In *The Insects of Australia. A Textbook for Students and Research Workers*, 2nd ed.; Naumann, I.D., Ed.; Melbourne University Press: Melbourne, Australia, 1991; Volume 1, pp. 141–179.
15. Yoshizawa, K.; Johnson, K.P. Aligned 18S for Zoraptera (Insecta): Phylogenetic position and molecular evolution. *Mol. Phylogenet. Evol.* **2005**, *37*, 572–580. [CrossRef] [PubMed]
16. Terry, M.D.; Whiting, M.F. Mantophasmatodea and phylogeny of the lower neopterous insects. *Cladistics* **2005**, *21*, 240–257. [CrossRef]
17. Pick, C.; Schneuer, M.; Burmester, T. The occurrence of hemocyanin in Hexapoda. *Insect Hemocyanins 2009*, 276, 1930–1941. [CrossRef] [PubMed]
18. Stewart, K.W.; Stark, B.P. Nymphs of North American stonefly genera (Plecoptera). *Thomas Say Found.* **1988**, *12*, 1–436.
19. Uchida, S.; Isobe, Y. Styloperlidae, stat. nov. and Microperlinae, subfam. nov. with a revised system of the family group Systellognatha (Plecoptera). *Spixana* **1989**, *12*, 145–182.
20. Chen, Z.T.; Du, Y.Z. The first two mitochondrial genomes from Taeniopterygidae (Insecta: Plecoptera): Structural features and phylogenetic implications. *Int. J. Biol. Macromol.* **2017**, *111*, 70–76. [CrossRef] [PubMed]
21. Chen, Z.T.; Zhao, M.Y.; Xu, C.; Du, Y.Z. Molecular phylogeny of Systellognatha (Plecoptera: Arctoperlaria) inferred from mitochondrial genome sequences. *Int. J. Biol. Macromol.* **2018**, *111*, 542–547. [CrossRef] [PubMed]
22. Wang, Y.; Cao, J.J.; Li, W.H. The complete mitochondrial genome of the styloperlid stonefly species *Styloperla spinicercia* Wu (Insecta: Plecoptera) with family-level phylogenetic analyses of the Pteronarcyioidea. *Zootaxa* **2017**, *4243*, 125–138. [CrossRef] [PubMed]
23. Terry, M.D.; Whiting, M.F. Phylogeny of Plecopter: Molecular evidence and evolutionary trends. *Entomologische Abhandlungen* **2003**, 61, 130–131.
24. Chen, Z.T.; Wu, H.Y.; Du, Y.Z. The nearly complete mitochondrial genome of a stonefly species, *Styloperla sp*. (Plecoptera: Styloperlidae). *Mitochondr. DNA Part A* **2016**, *27*, 2728–2729.
25. Wang, K.; Ding, S.M.; Yang, D. The complete mitochondrial genome of a stonefly species, Kamimuria chungnanshana Wu, 1948 (Plecoptera: Perlidae). *Mitochondr. DNA Part A* 2016, 27, 3810–3811. [CrossRef] [PubMed]

26. Illies, J. Phylogeny and zoogeography of the Plecoptera. *Annu. Rev. Entomol.* 1965, 10, 117–140. [CrossRef] [PubMed]

27. Zwick, P. Phylogenetic system and zoogeography of the Plecoptera. *Annu. Rev. Entomol.* 2000, 45, 709–746. [CrossRef] [PubMed]

28. Chen, Z.T.; Du, Y.Z. Complete mitochondrial genome of Capnia zijinshana (Plecoptera: Capniidae) and phylogenetic analysis among stoneflies. *J. Asia-Pac. Entomol.* 2017, 20, 305–312. [CrossRef] [PubMed]

29. Chen, Z.T.; Du, Y.Z. First Mitochondrial Genome from Nemouridae (Plecoptera) Reveals Novel Features of the Elongated Control Region and Phylogenetic Implications. *Int. J. Mol. Sci.* 2017, 18, 996. [CrossRef] [PubMed]

30. Wang, Y.; Cao, J.J.; Li, W.H. The mitochondrial genome of Mesocapina daxingana (Plecoptera: Capniidae). *Conserv. Genet. Resour.* 2017, 9, 639–642. [CrossRef]

31. Chen, Z.T.; Du, Y.Z. Comparison of the complete mitochondrial genome of the stonefly Sweltsa longistyla (Plecoptera: Chloroperlidae) with mitogenomes of three other stoneflies. *Gene* 2015, 558, 82–87. [CrossRef] [PubMed]

32. Wu, H.Y.; Ji, X.Y.; Yu, W.W.; Du, Y.Z. Complete mitochondrial genome of the stonefly Cryptoperla stiltlera Svec (Plecoptera: Peltoperlidae) and the phylogeny of Polyneopteran insects. *Gene* 2014, 537, 177–183. [CrossRef] [PubMed]

33. Misof, B.; Liu, S.; Meusemann, K.; Peters, R.S.; Donath, A.; Mayer, C.; Frandsen, P.B.; Ware, J.; Flook, T.; Beutel, R.G.; et al. Phylogenomics resolves the timing and pattern of insect evolution. *Science* 2014, 346, 763–767. [CrossRef] [PubMed]

34. Qian, Y.H.; Wu, H.Y.; Ji, X.Y.; Yu, W.W.; Du, Y.Z. Mitochondrial genome of the stonefly Kamimuria wangii (Plecoptera: Perlidae) and phylogenetic position of Plecoptera based on mitogenomes. *PLoS ONE* 2014, 9, e86328.

35. Elbrecht, V.; Leese, F. The mitochondrial genome of the Arizona Snowfly Mesocapnia arizonensis (Plecoptera, Capniidae). *Mitochondr. DNA Part A* 2015, 27, 1–2. [CrossRef] [PubMed]

36. Elbrecht, V.; Poettker, L.; John, U.; Leese, F. The complete mitochondrial genome of the stonefly Dinocras cephalotes (Plecoptera, Perlidae). *Mitochondr. DNA* 2015, 26, 469–470. [CrossRef] [PubMed]

37. Huang, M.C.; Wang, Y.Y.; Liu, X.Y.; Li, W.H.; Kang, Z.H.; Wang, K.; Li, X.K.; Yang, D. The complete mitochondrial genome and its remarkable secondary structure for a stonefly Acronemia hainana Wu (Insecta: Plecoptera, Perlidae). *Gene* 2015, 557, 52–60. [CrossRef] [PubMed]

38. James, B.S.; Andrew, T.B. Insect mitochondrial genomics 2: The complete mitochondrial genome sequence of a giant stonefly, Pteronarcella princeps, asymmetric directional mutation bias, and conserved plecopteran A + T-region elements. *Genome* 2006, 49, 815–824.

39. Sproul, J.S.; Houston, D.D.; Nelson, C.R.; Evans, P.; Crandall, K.A.; Shiozawa, D.K. Climate oscillations, glacial refugia, and dispersal ability: Factors influencing the genetic structure of the least salmonfly, Pteronarcys princeps (Plecoptera, Perlidae). *Gene* 2015, 558, 82–87. [CrossRef]

40. Wang, K.; Wang, Y.Y.; Yang, D. The complete mitochondrial genome of a stonefly species, Togoperla sp. (Plecoptera: Perlidae). *Mitochondr. DNA Part A* 2016, 27, 1703–1704.

41. Zhou, C.G.; Tan, M.H.; Du, S.Y.; Zhang, R.; Machida, R.; Zhou, X. The mitochondrial genome of the winter stonefly Apteroperla tikumana (Plecoptera, Capniidae). *Mitochondr. DNA Part A* 2016, 27, 3030–3032.

42. Min, X.J.; Hickey, D.A. DNA asymmetric strand bias affects the amino acid composition of *DNA Res.* 2007, 14, 201–206. [CrossRef] [PubMed]

43. Boore, J.L. The complete sequence of the mitochondrial genome of *Nautilus macromphalus* (Mollusca: Cephalopoda). *BMC Genom.* 2006, 7, 182. [CrossRef] [PubMed]

44. Ojala, D.; Montoya, J.; Attardi, G. tRNA punctuation model of RNA processing in human mitochondria. *Nature* 1981, 290, 470–474. [CrossRef] [PubMed]

45. Stewart, J.B.; Beckenbach, A.T. Insect mitochondrial genomics: The complete mitochondrial genome sequence of the meadow spittlebug *Philaenus spumarius* (Hemiptera: Auchenorrhyncha: Cercopidae). *Genome* 2005, 48, 46–54. [CrossRef] [PubMed]
46. Sharp, P.M.; Li, W.H. An evolutionary perspective on synonymous codon usage in unicellular organisms. *J. Mol. Evol.* 1986, 24, 28–38. [CrossRef] [PubMed]

47. Carapelli, A.; Comandi, S.; Convey, P.; Nardi, F.; Frati, F. The complete mitochondrial genome of the Antarctic springtail *Cryptopygus antarcticus* (Hexapoda: Collembola). *BMC Genom.* 2008, 9, 315. [CrossRef] [PubMed]

48. Lavrov, D.V.; Brown, W.M.; Boore, J.L. A novel type of RNA editing occurs in the mitochondrial tRNAs of the centipede *Lithobius forficatus*. *PNAS* 2000, 97, 13738–13742. [CrossRef] [PubMed]

49. Gutell, R.R.; Lee, J.C.; Cannone, J.J. The accuracy of ribosomal RNA comparative structure models. *Curr. Opin. Struct. Biol.* 2002, 12, 301–310. [CrossRef]

50. Li, H.; Liu, H.Y.; Cao, L.M.; Cai, W.Z. The complete mitochondrial genome of the damsel bug *Alloeorhynchus bakeri* (Hemiptera: Nabidae). *Int. J. Biol. Sci.* 2012, 8, 93–107. [CrossRef] [PubMed]

51. Cannone, J.J.; Subramanian, S.; Schnare, M.N.; Collett, J.R.; D’Souza, L.M.; Du, Y.; Feng, B.; Lin, N.; Madabusi, L.V.; Müller, K.M.; et al. The comparative RNA web (CRW) site: An online database of comparative sequence and structure information for ribosomal, intron, and other RNAs. *BMC Bioinform.* 2002, 3, 15. [CrossRef]

52. Zhang, D.X.; Hewitt, G.M. Insect mitochondrial control region: A review of its structure, evolution and usefulness in evolutionary studies. *Biochem. Syst. Ecol.* 1997, 25, 99–120. [CrossRef]

53. Li, H.; Leavengood, J.M., Jr; Chapman, E.G.; Burkhardt, D.; Song, F.; Jiang, P.; Liu, J.; Zhou, X.G.; Cai, W.Z. Mitochondrial phylogenomics of *Hemiptera* reveals adaptive innovations driving the diversification of true bugs. *Proc. R. Soc. B.* 2017, 284, 1862. [CrossRef] [PubMed]

54. Liu, Y.Q.; Song, F.; Jiang, P.; Wilson, J.J.; Cai, W.Z.; Li, H. Compositional heterogeneity in true bug mitochondrial phylogenomics. *Mol. Phylogenet. Evol.* 2018, 118, 135–144. [CrossRef] [PubMed]

55. Hall, T.A. *BioEdit*: A user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. *Nucleic Acids Symp. Ser.* 1999, 41, 95–98.

56. Laslett, D.; Canbäck, B. ARWEN: A program to detect tRNA genes in metazoan mitochondrial nucleotide sequences. *Bioinformatics* 2008, 24, 172–175. [CrossRef] [PubMed]

57. Tamura, K.; Peterson, D.; Peterson, N.; Stecher, G.; Nei, M.; Kumar, S. MEGA5: Molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. *Mol. Biol. Evol.* 2011, 28, 2731–2739. [CrossRef] [PubMed]

58. Perna, N.T.; Kocher, T.D. Patterns of nucleotide composition at four-fold degenerate sites of animal mitochondrial genomes. *J. Mol. Evol.* 1995, 41, 353–358. [CrossRef] [PubMed]

59. Markham, N.R.; Zuker, M. DINAte server for nucleic acid melting prediction. *Nucleic Acids Res.* 2006, 33, W577–W581. [CrossRef] [PubMed]

60. Abascal, F.; Zardoya, R.; Telford, M.J. TranslatorX: Multiple alignment of nucleotide sequences guided by amino acid translations. *Nucleic Acids Res.* 2010, 38, 7–13. [CrossRef] [PubMed]

61. Katoh, K.; Standley, D.M. MAFFT multiple sequence alignment software version 7: Improvements in performance and usability. *Mol. Biol. Evol.* 2013, 30, 772–780. [CrossRef] [PubMed]

62. Castresana, J. Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis. *Mol. Biol. Evol.* 2000, 17, 540–552. [CrossRef] [PubMed]

63. Posada, D. *jModelTest*: Phylogenetic model averaging. *Mol. Biol. Evol.* 2008, 25, 1253–1256. [CrossRef] [PubMed]

64. Ronquist, F.; Teslenko, M.; van der Mark, P.V.D.; Ayres, D.L.; Darling, A.; Höhna, S.; Larget, B.; Liu, L.; Suchard, M.A.; Huelsenbeck, J.P. MrBayes 3.2: Efficient Bayesian phylogenetic inference and model choice across a large model space. *Syst. Biol.* 2012, 61, 539–542. [CrossRef] [PubMed]

65. Stamatakis, A. RAxML-VI-HPC: Maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. *Bioinformatics* 2006, 22, 2688–2690. [CrossRef] [PubMed]

66. Tracer Version 1.5. Available online: http://tree.bio.ed.ac.uk/software/tracer/ (accessed on 16 February 2018).