ON THE T-EQUIVALENCE RELATION

MIKOŁAJ KRUPSKI

Abstract. For a completely regular space X, denote by $C_p(X)$ the space of continuous real-valued functions on X, with the pointwise convergence topology. In this article we strengthen a theorem of O. Okunev concerning preservation of some topological properties of X under homeomorphisms of function spaces $C_p(X)$. From this result we conclude new theorems similar to results of R. Cauty and W. Marciszewski about preservation of certain dimension-type properties of spaces X under continuous open surjections between function spaces $C_p(X)$.

1. Introduction

One of the main objectives in the theory of $C_p(X)$ spaces is to classify spaces of continuous functions up to homeomorphisms. One can do this by investigating which topological properties of a space X are shared with a space Y, provided X and Y are t-equivalent, i.e. $C_p(X)$ and $C_p(Y)$ are homeomorphic. Recently, O. Okunev published a paper [12] in which he found some new topological invariants of the t-equivalence relation. All of them are obtained from the following, very interesting Theorem (see [12, Theorem 1.1])

Theorem 1.1. (Okunev) Suppose that there is an open continuous surjection from $C_p(X)$ onto $C_p(Y)$. Then there are spaces Z_n, locally closed subspaces B_n of Z_n, and locally closed subspaces Y_n of Y, $n \in \mathbb{N}^+$, such that each Z_n admits a perfect finite-to-one mapping onto a closed subspace of X^n, Y_n is an image under a perfect mapping of B_n, and $Y = \bigcup \{Y_n : n \in \mathbb{N}^+\}$.

In the formulation of the above theorem in [12] the assumption about the existence of an open continuous surjection is replaced by the assumption that these function spaces are homeomorphic. However, as noticed in [12] remarks at the end of section 1] a careful analysis of the proof reveals that the weaker assumption is sufficient. In this paper we will discuss the proof of the above theorem (detailed proof can be found in [12]). Then using an idea from [9] we will show how to slightly improve Okunev’s result, answering
Question 1.9 from [12]. In the subsequent sections we will derive a few corollaries from strengthened form of Okunev’s theorem. We will use it to find new invariants of the \(t \)-equivalence relation concerning dimension. These results are in the spirit of the significant theorems of R. Cauty from [3] and W. Marciszewski from [9].

We should also mention here, that the answer to Question 2.12 posed in [12] is known (see [2], [8]). Thus one can show (see [12]) that \(\sigma \)-discreteness is preserved by the \(t \)-equivalence relation (see [12, Question 2.9]). In fact, from a result of Gruenhage from [8] one can conclude more, namely that \(\kappa \)-discreteness is preserved by the relation of \(t \)-equivalence (see Theorem 3.1 below). We discuss this in Section 3.

Unless otherwise stated, all spaces in this note are assumed to be Tychonoff. For a space \(X \) we denote by \(C_p(X) \) the space of continuous, real-valued functions on \(X \) with the pointwise convergence topology. We say that spaces \(X \) and \(Y \) are \(t \)-equivalent, provided \(C_p(X) \) and \(C_p(Y) \) are homeomorphic. The subspace of a topological space is locally closed if it is the intersection of a closed set and an open set. The mapping \(\varphi : X \rightarrow Y \) between topological spaces is perfect, provided it is closed and all fibers \(\varphi^{-1}(y) \) are compact. For a space \(X \) we denote by \(\text{Fin}(X) \) the hyperspace of all finite subsets of \(X \) with the Vietoris topology. We follow Engelking’s book [4] regarding dimension theory.

2. On a Result of Okunev

The main goal of this section is to answer Question 1.9 from [12], i.e. to prove that in the statement of Theorem 1.1 we may additionally require that for every \(n \in \mathbb{N}^+ \) the space \(Y_n \) is in fact an image under a perfect finite-to-one mapping of \(B_n \). To this end we need to discuss the main ideas from [12]. For the convenience of the reader our notation will be almost the same as in [12].

The real line \(\mathbb{R} \) is considered as a subspace of its two-point compactification \(I = \mathbb{R} \cup \{-\infty, +\infty\} \). For a continuous function \(f : Z \rightarrow \mathbb{R} \), the function \(\tilde{f} : \beta Z \rightarrow I \) is the continuous extension of \(f \). For every \(n \in \mathbb{N}^+ \), \(\overrightarrow{z} = (z_1, \ldots, z_n) \in (\beta Z)^n \) and \(\varepsilon > 0 \) we put

\[
O_Z(\overrightarrow{z}; \varepsilon) = O_Z(z_1, \ldots, z_n; \varepsilon) = \{ f \in C_p(Z) : |\tilde{f}(z_1)| < \varepsilon, \ldots, |\tilde{f}(z_n)| < \varepsilon \}.
\]

Similarly, for every \(A \in \text{Fin}(Z) \) and \(\varepsilon > 0 \) we put

\[
O_Z(A; \varepsilon) = \{ f \in C_p(Z) : \forall z \in A \ |f(z)| < \varepsilon \}.
\]
For a point \(z \in Z \) we put
\[
\overline{O}_Z(z; \varepsilon) = \{ f \in C_p(Z) : |f(z)| \leq \varepsilon \}.
\]

Let \(\Phi : C_p(X) \to C_p(Y) \) be an open surjection which takes the zero function on \(X \) to the zero function on \(Y \) (we can assume this since \(C_p(X) \) and \(C_p(Y) \) are homogeneous). For every \((m, n) \in \mathbb{N}^+ \times \mathbb{N}^+ \) we put
\[
Z_{m,n} = \{ (x, y) \in X^n \times Y : \Phi(O_X(x, \frac{1}{m})) \subseteq \overline{O}_Y(y, 1) \}.
\]

By \(\pi_X : X^n \times \beta Y \to X^n \) we denote the projection and we put
\[
p_{m,n} = \pi_X \restriction Z_{m,n} : Z_{m,n} \to X^n.
\]

Similarly, by \(\pi_{\beta Y} : (\beta X)^n \times \beta Y \to \beta Y \) we denote the projection and we put
\[
A_{m,n} = \pi_{\beta Y}(Z_{m,n}).
\]

Denote by \(S_{m,n} \) the closure of \(Z_{m,n} \) in \((\beta X)^n \times \beta Y \). For every \(m \in \mathbb{N}^+ \) we put \(Y_{m,1} = A_{m,1} \) and for every \(n > 1 \), \(Y_{m,n} = A_{m,n} \setminus A_{m,n-1} \). Finally let us put \(B_{m,n} = S_{m,n} \cap \pi_{\beta Y}^{-1}(Y_{m,n}) \) and let
\[
r_{m,n} = \pi_{\beta Y} \restriction B_{m,n} : B_{m,n} \to Y_{m,n}.
\]

The following properties are satisfied (see [12]):

1. the set \(Z_{m,n} \) is closed in \(X^n \times \beta Y \);
2. \(r_{m,n} \) maps perfectly \(Z_{m,n} \) onto a closed subset of \(X^n \);
3. the mapping \(r_{m,n} \) is finite-to-one;
4. the sets \(A_{m,n} \) are closed, thus the sets \(Y_{m,n} \) are locally closed;
5. \(Y = \bigcup_{m,n \in \mathbb{N}^+} Y_{m,n} \);
6. the set \(B_{m,n} \) is locally closed in \(Z_{m,n} \);

Clearly, Theorem 1.1 follows from (1)–(6).

We will use the following version of the \(\Delta \)-system Lemma which can be easily proved by induction (see also [11, A.1.4])

Proposition 2.1. Let \(X \) be a set, let \(n \in \mathbb{N}^+ \) and let \(\mathcal{A} \) be an infinite collection of subsets of \(X \) each of cardinality \(\leq n \). Then there is \(A_0 \subseteq X \) with \(|A_0| < n \) and a sequence \(A_1, A_2, \ldots \) of distinct elements of \(\mathcal{A} \) such that for distinct \(i, j \geq 1 \) we have \(A_i \cap A_j = A_0 \).

Now we are ready to prove the following strengthening of Theorem 1.1

Theorem 2.2. Suppose that there is an open continuous surjection \(\Phi \) from \(C_p(X) \) onto \(C_p(Y) \). Then there are spaces \(Z_n \subseteq X^n \times Y \), locally closed subspaces \(B_n \) of \(Z_n \), and locally closed subspaces \(Y_n \) of \(Y \), \(n \in \mathbb{N}^+ \), such that each \(Z_n \) admits a perfect finite-to-one mapping onto a closed subspace
of X^n, Y_n is an image under a perfect \textbf{finite-to-one} mapping of B_n, and $Y = \bigcup \{Y_n : n \in \mathbb{N^+}\}$.

\textbf{Proof.} It is enough to prove that

(7) the mapping $r_{m,n}$ is finite-to-one.

To this end let us put

$$Z'_{m,n} = \{(A, y) \in \text{Fin}(X) \times Y : |A| \leq n \text{ and } \Phi(O_X(A; \frac{1}{m})) \subseteq \overline{O}_Y(y; 1)\}.$$

The natural mapping $h : Z_{m,n} \to Z'_{m,n}$ defined by

$$h((x_1, \ldots, x_n), y) = (\{x_1, \ldots, x_n\}, y),$$

is finite-to-one. Hence, if the set $\{A \in \text{Fin}(X) : (A, y) \in Z'_{m,n}\}$ is finite, then the set $\{\overline{x} \in X^n : (\overline{x}, y) \in Z_{m,n}\}$ is also finite. We will prove that this is the case.

\textbf{Claim.} For any $y \in Y_{m,n}$ the set $\{A \in \text{Fin}(X) : (A, y) \in Z'_{m,n}\}$ is finite.

\textbf{Proof.} This is basically \cite[Lemma 3.4]{4}. Assume the contrary. Then by Proposition \ref{prop2.1} there exists $A_0 \in \text{Fin}(X)$ and a sequence A_1, A_2, \ldots of finite subsets of X such that $|A_0| < n$, for distinct $i, j \geq 1$ we have $A_i \cap A_j = A_0$ and $(A_i, y) \in Z'_{m,n}$ for each $i \geq 1$.

To end the proof of the Claim we need to show $(A_0, y) \in Z'_{m,n}$. Indeed, then we would have $(A_0, y) \in Z'_{m,n-1}$ (since $|A_0| < n$) so $y \in A_{m,n-1}$ contradicting the assumption $y \in Y_{m,n} = A_{m,n} \setminus A_{m,n-1}$.

Let $f \in O_X(A_0; \frac{1}{m})$. We need to show that $|\Phi(f)(y)| \leq 1$. Assume the contrary. The set $\Phi^{-1}(\{\varphi \in C_p(Y) : |\varphi(y)| > 1\}$ is an open neighborhood of f. Hence, there exists a finite set $B \in \text{Fin}(X)$ and a natural number $k \in \mathbb{N}^+$ such that for any $g \in C_p(X)$ if $(f - g) \in O_X(B; \frac{1}{k})$, then $|\varphi(g)(y)| > 1$.

For $i \geq 1$, the sets $A_i \setminus A_0$ are pairwise disjoint. Hence, there exists $i \geq 1$ such that $B \cap (A_i \setminus A_0) = \emptyset$. Take $g \in C_p(X)$ satisfying

$$g \upharpoonright (A_0 \cup B) = f \upharpoonright (A_0 \cup B) \text{ and } g \upharpoonright (A_i \setminus A_0) \equiv 0.$$

Then $g \in O_X(A_i; \frac{1}{m})$ so $|\varphi(g)(y)| \leq 1$. On the other hand $(f - g) \in O_X(B; \frac{1}{k})$ so $\varphi(g)(y) > 1$, a contradiction.

\hfill \diamond

For any $y \in Y_{m,n}$, we have $r_{m,n}^{-1}(y) \subseteq \{\overline{x} \in X^n : (\overline{x}, y) \in Z_{m,n}\}$. The latter set is, as we proved, finite so the mapping $r_{m,n}$ is finite-to-one. \hfill \square

Theorem \ref{thm2.2} answers Question 1.9 from \cite{12}.
3. \(\kappa\)-Discreteness

Recall, that a space is called \(\kappa\)-discrete (\(\sigma\)-discrete) if it can be represented as a union of at most \(\kappa\) many (countably many) discrete subspaces. In [12], O. Okunev asked if \(\sigma\)-discreteness is preserved by the \(t\)-equivalence relation (see [12, Question 2.9]). He also showed how to reduce this question to the following one: Is a perfect image of a \(\sigma\)-discrete space also \(\sigma\)-discrete? However, the affirmative answer to this question is known (see [2], [8]). G. Gruenhage proved even a stronger result that, for any infinite cardinal \(\kappa\), a perfect image of a \(\kappa\)-discrete space is \(\kappa\)-discrete. Since the reduction made by Okunev works also for \(\kappa\)-discrete spaces, we have the following theorem.

Theorem 3.1. If there is an open continuous surjection from \(C_p(X)\) onto \(C_p(Y)\) and \(X\) is \(\kappa\)-discrete, then \(Y\) is \(\kappa\)-discrete.

4. The property \(C\)

From Theorem 2.2 we can conclude some new results concerning the behavior of dimension under the \(t\)-equivalence relation. The main motivation for this is the following, famous in \(C_p\)-theory problem concerning dimension (see e.g. [11, Problem 20 (1045)] or [10, Problem 2.9]).

Problem 4.1. (Arkhangel’skii) Suppose \(X\) and \(Y\) are \(t\)-equivalent. Is it true that \(\dim X = \dim Y\)?

It is well known, that if we additionally assume that \(C_p(X)\) and \(C_p(Y)\) are linearly or uniformly homeomorphic the above problem has an affirmative answer (see [10]). In general, very little is known about the behavior of dimensions under the relation of \(t\)-equivalence. We do not know for example if the spaces \(C_p(2^\omega)\) and \(C_p([0,1])\) or the spaces \(C_p([0,1])\) and \(C_p([0,1]^2)\) are homeomorphic (see [10]).

We should recall the following two definitions (see [4] and [6]).

Definition 4.2. A normal space \(X\) is called a \(C\)-space if, for any sequence of its open covers \((U_i)_{i \in \omega}\), there exists a sequence of disjoint families \((V_i)_{i \in \omega}\) of open sets such that \(V_i\) is a refinement of \(U_i\) and \(\bigcup_{i \in \omega} V_i\) is a cover of \(X\).

Definition 4.3. A normal space \(X\) is called a \(k\)-\(C\)-space, where \(k\) is a natural number \(\geq 2\), if for any sequence of its covers \((U_i)_{i \in \omega}\) such that each cover \(U_i\) consists of at most \(k\) open sets, there exists a sequence of disjoint families \((V_i)_{i \in \omega}\) of open sets such that for every \(i \in \omega\) the family \(V_i\) is a refinement of \(U_i\) and \(\bigcup_{i \in \omega} V_i\) is a cover of \(X\).
It is known that a normal space is weakly infinite-dimensional if and only if it is a 2-C-space (see [6]). It is clear that we have the following sequence of inclusions

\[
\text{weakly infinite-dimensional} = 2-C \supseteq 3-C \supseteq \ldots
\]

and that any C-space is a k-C-space for any \(k \in \{2, 3, \ldots\} \).

R. Cauty proved in [3] the following theorem concerning weak infinite dimension.

Theorem 4.4. (Cauty) Let \(X \) and \(Y \) be metrizable compact spaces such that \(C_p(Y) \) is an image of \(C_p(X) \) under a continuous open mapping. If for all \(n \in \mathbb{N}^+ \) the space \(X^n \) is weakly infinite-dimensional, then for all \(n \in \mathbb{N}^+ \) the finite power \(Y^n \) is also weakly infinite-dimensional.

Using Theorem 2.2 we can prove a version of the above theorem of Cauty for \(k \)-C-spaces. We need a suitable lemma, which is a version of [13, Theorem 4.1].

Lemma 4.5. Suppose that \(K \) and \(L \) are compact metrizable spaces. Let \(f : K \to L \) be a continuous countable-to-one surjection. If \(L \) is a \(k \)-C space, then so is \(K \).

Proof. From the proof of Theorem 4.1 in [13], it follows that it suffices to check that a class of \(\sigma \)-compact metrizable \(k \)-C-spaces is admissible, i.e. satisfies the following four conditions

(i) if \(X \) is a \(k \)-C-space and \(Y \) is homeomorphic to a closed subspace of \(X \), then \(Y \) is a \(k \)-C-space;
(ii) a space which is a countable union of \(k \)-C-spaces is a \(k \)-C-space;
(iii) if \(f : X \to Y \) is a perfect mapping, \(Y \) is zero-dimensional and all fibers \(f^{-1}(y) \) are \(k \)-C-spaces, then \(X \) is a \(k \)-C-space;
(iv) if \(A \subseteq X \), \(A \) is a \(k \)-C-space and all closed subsets of \(X \) disjoint from \(A \) are \(k \)-C-spaces, then \(X \) is a \(k \)-C-space.

Condition (i) is [6, Proposition 2.13]. Condition (ii) is [6, Theorem 2.16]. Condition (iii) is [6, Theorem 5.2]. Condition (iv) is actually [7, Lemma 2] (although it deals with C-spaces, its proof works also for \(k \)-C-spaces). \(\square \)

Theorem 4.6. Let \(X \) and \(Y \) be metrizable \(\sigma \)-compact spaces such that \(C_p(Y) \) is an image of \(C_p(X) \) under a continuous open mapping. Fix a natural number \(k \geq 2 \). If for all \(n \in \mathbb{N}^+ \) the space \(X^n \) is a \(k \)-C-space, then \(Y \) is also a \(k \)-C-space.
Proof. We apply Theorem 2.2 as follows. Let Y_n, Z_n, B_n be as in the statement of Theorem 2.2. The space $Z_n \subseteq X^n \times Y$ is metrizable and σ-compact. Indeed, it is easy to check that a perfect preimage of a compact set is compact, so from σ-compactness of X follows σ-compactness of Z_n. Let $Z_n = \bigcup_{m=1}^{\infty} K_m$, where each K_m is compact.

Since Z_n is a perfect finite-to-one preimage of a closed subspace of X^n and a closed subspace of a metrizable k-C-space is a k-C-space (see [6, 1.15 and 2.19]), each K_m is a k-C-space by Lemma 4.5. Since a countable union of closed k-C-subspaces is a k-C-space (see [6, 2.16]), we get that Z_n is a k-C-space and thus B_n is such (as an F_σ subspace of a metrizable k-C-space [6, 1.15 and 2.19]).

Since the image of a metrizable k-C-space under a closed mapping with fibers of cardinality $< c$ is a k-C-space (see [6, 6.17]), the space Y_n is a k-C-space for any $n \in \mathbb{N}^+$. Finally, since the property of being a k-C-space is invariant with respect to countable unions with closed summands (see [6, 2.16]), we get that Y is a k-C-space.

From the above theorem we can conclude a result very similar to Theorem 4.4 of R. Cauty we mentioned.

Corollary 4.7. Let X and Y be σ-compact metrizable spaces such that $C_p(Y)$ is an image of $C_p(X)$ under a continuous open mapping. If for all $n \in \mathbb{N}^+$ the space X^n is weakly infinite-dimensional, then Y is also weakly infinite-dimensional.

Proof. Apply Theorem 4.6 with $k = 2$. \hfill \square

Using the same technique, we can prove a similar theorem about C-spaces.

Theorem 4.8. Let X and Y be σ-compact metrizable spaces. Suppose, that $C_p(Y)$ is an image of $C_p(X)$ under a continuous open mapping. If X is a C-space, then Y is also a C-space.

Proof. Since the finite product of compact metrizable C-spaces is a C-space (see [14, Theorem 3]) and since being a C-space is invariant with respect to countable unions with closed summands (see [6, 2.24]), the space X^n is a C-space for every $n \in \mathbb{N}^+$.

We apply Theorem 2.2 as in the proof of Theorem 4.6. Let Y_n, Z_n, B_n be as in the statement of Theorem 2.2.

It is known that within the class of metrizable spaces, the property of being a C-space is invariant with respect to F_σ subspaces (see [6, 2.25]) and
preimages under continuous mappings with fibers being \(C\)-spaces (see [6, 5.4]). Hence the space \(Z_n\) is a \(C\)-space and so is \(B_n\). It is also known that for compact spaces property \(C\) is preserved by continuous mappings with fibers of cardinality \(< c\) (see [6, 6.4]). Thus from the \(\sigma\)-compactness of \(Z_n\) (see the proof of Theorem 4.6) and the fact that a countable union of closed \(C\)-spaces is a \(C\)-space (see [6, 2.24]), we conclude that \(Y_n\) is a \(C\)-space. By [6, 2.24] \(Y = \bigcup_n Y_n\) is a \(k\)-\(C\)-space. \(\square\)

5. COUNTABLE-DIMENSION

Let us recall the following definition

Definition 5.1. A space \(X\) is countable-dimensional if \(X\) can be represented as a countable union of finite-dimensional subspaces.

It is well known that every countable-dimensional metrizable space is a \(C\)-space. In [9] W. Marciszewski modifying a technique from [3] proved the following

Theorem 5.2. (Marciszewski) Suppose that \(X\) and \(Y\) are \(t\)-equivalent metrizable spaces. Then \(X\) is countable dimensional if and only if \(Y\) is so.

As in the previous section, we can use Theorem 2.2 to prove a slightly more general result.

Theorem 5.3. Let \(X\) and \(Y\) be metrizable spaces. Suppose, that \(C_p(Y)\) is an image of \(C_p(X)\) under a continuous open mapping. If \(X\) is countable-dimensional, then so is \(Y\).

Proof. Since \(X\) is countable-dimensional and metrizable, every finite power \(X^n\) is countable-dimensional (see [4, Theorem 5.2.20]). It is also known that within the class metrizable space, countable-dimensionality is invariant with respect to: preimages under closed mappings with finite-dimensional fibers [4, Proposition 5.4.5], subspaces [4, 5.2.3], images under closed finite-to-one mappings [4, Theorem 5.4.3]) and countable unions [4, 5.2.8]. Thus it is enough to apply Theorem 2.2. \(\square\)

Remark 5.4. Theorems 4.6, 4.8, 5.3 cannot be concluded directly from Theorem 1.1. Let us observe that if we take \(X = [0, 1]\), \(Z_n = B_n = [0, 1]^n\) and \(Y = Y_n = [0, 1]^{\omega}\), then the thesis of Theorem 1.1 holds. Indeed, in that case \(Z_n\) maps onto \(X^n\) by a perfect finite-to-one mapping (the identity) and \(B_n\) maps onto \(Y_n\) perfectly, so Okunev’s theorem from [12] (Theorem 1.7) does not prove that spaces \([0, 1]\) and \([0, 1]^{\omega}\) are not \(t\)-equivalent. To conclude
the latter, we need to use the fact that the existence of a continuous open surjection between $C_p(X)$ and $C_p(Y)$ implies that Y_n is an image of B_n under a finite-to-one mapping.

Acknowledgment.

The author is indebted to Witold Marciszewski for valuable comments and remarks.

REFERENCES

[1] A.V. Arkhangel’skii, Problems in C_p-theory, in: Open Problems in Topology, J. van Mill and G.M. Reed (eds.), Elsevier 1990, 601-615.
[2] D. Burke, R. Hansell, Perfect maps and relatively discrete collections, Papers on General topology and applications (Amsterdam, 1994), 54–56, Ann. New York Acad. Sci., 788, New York.
[3] R. Cauty, Sur l’invariance de la dimension infinie forte par t-équivalence, Fund. Math. 160 (1999), 95—100.
[4] R. Engelking, Theory of dimensions finite and infinite, Sigma Series in Pure Mathematics, 10. Heldermann Verlag, Lemgo, 1995.
[5] R. Engelking, E. Pol, Countable-dimensional spaces: a survey, Dissertationes Math. 216 (1983).
[6] V.V. Fedorchuk, Some classes of weakly infinite-dimensional spaces, J. Math. Sci. (N. Y.) 155 (2008), no. 4, 523–570.
[7] D. Garity, D. Rohm, Property C, refinable maps and dimension raising maps. Proc. Amer. Math. Soc. 98 (1986), no. 2, 336–340.
[8] G. Gruenhage, Covering compacta by discrete and other separated sets, preprint.
[9] W. Marciszewski, On properties of metrizable spaces X preserved by t-equivalence, Mathematika 47 (2000), 273–279.
[10] W. Marciszewski, Function Spaces, in: Recent Progress in General Topology II, M. Hušek and J. van Mill (eds.), Elsevier 2002, 345-369.
[11] J. van Mill, The Infinite-Dimensional Topology of Function Spaces, North-Holland Mathematical Library 64, North-Holland, Amsterdam, 2001.
[12] O. Okunev, A relation between spaces implied by their t-equivalence, Topology Appl. 158 (2011), 2158–2164.
[13] R. Pol, On light mappings without perfect fibers on compacta, Tsukuba J. Math. 20 (1996), no. 1, 11–19.
[14] D. Rohm, Products of infinite-dimensional spaces Proc. Amer. Math. Soc. 108 (1990), no. 4, 1019–1023.