The f–vector of the clique complex of chordal graphs and Betti numbers of edge ideals of uniform hypergraphs

Gábor Hegedüs
Johann Radon Institute for Computational and Applied Mathematics

January 26, 2011

Abstract

We describe the Betti numbers of the edge ideals $I(G)$ of uniform hypergraphs G such that $I(G)$ has linear graded free resolution.

We give an algebraic equation system and some inequalities for the components of the f–vector of the clique complex of an arbitrary chordal graph.

Finally we present an explicit formula for the multiplicity of the Stanley-Reisner ring of the edge ideals of any chordal graph.

1 Introduction

Let X be a finite set and $E := \{E_1, \ldots, E_n\}$ a finite collection of non empty subsets of X. The pair $H = (X, E)$ is called a hypergraph. The elements of X are called the vertices and the elements of E are called the edges of the hypergraph.

We say that a hypergraph H is d-uniform, if $|E_i| = d$ for every edge $E_i \in E$.

Keywords. Betti number, chordal graph, Hilbert function, Stanley-Reisner ring

2000 Mathematics Subject Classification. 05E40, 13D02, 13D40
Let \mathbb{Q} denote the rational field. Let R be the graded ring $\mathbb{Q}[x_1,\ldots,x_n]$.

The vector space $R_s = \mathbb{Q}[x_1,\ldots,x_n]_s$ consists of the homogeneous polynomials of total degree s, together with 0.

We may think of an edge E_i of a hypergraph as a squarefree monomial $x^{E_i} := \prod_{j \in E_i} x_j$ in R.

We can associate an ideal $I(H) \subseteq R$ to a hypergraph H. The edge ideal $I(H)$ is the ideal $\langle x^{E_i} : E_i \in E \rangle$, which is generated by the edges of H.

The edge ideal was first introduced by R. Villareal in [20]. Later edge ideals have been studied very widely, see for instance [5, 6, 7, 8, 9, 11, 12, 18, 20, 22, 23].

In [9] R. Fröberg characterized the graphs G such that G has a linear free resolution. He proved:

Theorem 1.1 Let G be a simple graph on n vertices. Then $R/I(G)$ has linear free resolution precisely when \overline{G}, the complementary graph of G is chordal.

In [6] E. Emtander generalized Theorem 1.1 for generalized chordal hypergraphs. He proved that the Stanley–Reisner ring of the incidence complex $\Delta(H)$ corresponding to H, where H is a generalized chordal hypergraph, has a linear free resolution. In [22] R. Woodroofe extended the definition of chordality from graphs to clutters.

In this article we prove explicit formulas for the Betti numbers of the edge ideals of m-uniform hypergraphs H such that $R/I(H)$ has linear free resolution.

Let Δ be a simplicial complex. A facet F is called a leaf, if either F is the only facet of Δ, or there exists an other facet G, $G \neq F$ such that $H \cap F \subseteq G \cap F$ for each facet H with $H \neq F$. A facet G with this property is called a branch of F.

Zheng (see [23]) calls the simplicial complex Δ a quasi–tree if there exists a labeling F_1,\ldots,F_m of the facets such that for all i the facet F_i is a leaf of the subcomplex $\langle F_1,\ldots,F_i \rangle$. We call such a labeling a leaf order.

A graph is called chordal if each cycle of length > 3 has a chord.

We recall here for the famous Dirac’s Theorem (see [4]).

Theorem 1.2 (Dirac) A finite graph G on $[n]$ is a chordal graph iff G is the 1–skeleton of a quasi–tree.
Let G be a finite graph on $[n]$. A **clique** of G is a subset F of $[n]$ such that $\{i, j\} \in E(G)$ for all $i, j \in F$ with $i \neq j$.

We write $\Gamma(G)$ for the simplicial complex on $[n]$ whose faces are the cliques of G.

In our article we give an algebraic equation system for the components of the f–vector of the clique complex of an arbitrary chordal graph.

Theorem 1.3 Let G be an arbitrary chordal graph. Let $\Gamma := \Gamma(G)$ be the clique complex of G and $f(\Gamma) := (f_{-1}(\Gamma), \ldots, f_{d-1}(\Gamma))$ be the f-vector of the complex Γ. Here $d = \dim(\Gamma)$. Then

$$-\sum_{i=1}^{p+1} (-1)^i i \binom{f_0}{i+1} + \sum_{j=1}^{p+1} (-1)^{j+p} f_j \binom{f_0 - j - 2}{p - j + 1} = 1 \quad (1)$$

and

$$\sum_{k=1}^{p+1} (-1)^k f_k \left(\sum_{i=k-1}^{p} (-1)^i (2 + i)^i \binom{f_0 - k - 1}{i - k + 1} \right) + \sum_{i=0}^{p} (-1)^i (2 + i)^i (i + 1) \binom{f_0}{i + 2} = 0, \quad (2)$$

for each $j = 1, \ldots, n - d - 1$, where $p := \pdim(R/I(G))$ and \overline{G} is the complement of the graph G.

Remark. In this Theorem the number of equations depends on the dimension of the complex Γ. We know from the Auslander–Buchsbaum Theorem that $n - d \leq p$. If $p = n - d$, then the module $M = R/I(\overline{G})$ is Cohen–Macaulay and we know that the complement of the chordal graph G is a d–tree (see [21] Theorem 6.7.7, [9]). Consequently we know explicitly the f–vector of the clique complexes of d–trees.

Theorem 1.4 Let G be an arbitrary chordal graph. Let $\Gamma := \Gamma(G)$ be the clique complex of G and $f(\Gamma) := (f_{-1}(\Gamma), \ldots, f_{d-1}(\Gamma))$ be the f-vector of the complex Γ. Here $d = \dim(\Gamma)$. Then

$$\sum_{j=1}^{i+1} (-1)^j f_j \binom{f_0 - (j + 1)}{i - j + 1} + (i + 1) \binom{f_0}{i + 2} \geq \binom{p}{i} \quad (3)$$

for each $0 \leq i \leq p$, where $p := \pdim(R/I(\overline{G}))$ and \overline{G} is the complement of the graph G.
In Section 2 we collected some basic results about simplicial complices, free resolutions, Hilbert fuctions and Hilbert series. We present our main results in Section 3. We prove our main results in Section 4.3.

2 Preliminaries

2.1 Simplicial complices and Stanley–Reisner rings

We say that $\Delta \subseteq 2^{[n]}$ is a simplicial complex on the vertex set $[n] = \{1, 2, \ldots, n\}$, if Δ is a set of subsets of $[n]$ such that Δ is a down–set, that is, $G \in \Delta$ and $F \subseteq G$ implies that $F \in \Delta$, and $\{i\} \in \Delta$ for all i.

The elements of Δ are called faces and the dimension of a face is one less than its cardinality. An r-face is an abbreviation for an r-dimensional face. The dimension of Δ is the dimension of a maximal face. We use the notation $\dim(\Delta)$ for the dimension of Δ.

If $\dim(\Delta) = d - 1$, then the $(d + 1)$–tuple $(f_{-1}(\Delta), \ldots, f_{d-1}(\Delta))$ is called the f-vector of Δ, where $f_i(\Delta)$ denotes the number of i–dimensional faces of Δ.

Let Δ be an arbitrary simplicial complex on $[n]$. The Stanley–Reisner ring R/I_Δ of Δ is the quotient of the ring R by the Stanley–Reisner ideal $I_\Delta := \langle x^F : F \notin \Delta \rangle$,

generated by the non–faces of Δ.

Let $H = ([n], E(H))$ be a simple hypergraph and consider its edge ideal $I(H) \subseteq R$. It is easy to verify that $R/I(H)$ is precisely the Stanley–Reisner ring of the simplicial complex

$$\Delta(H) := \{ F \subseteq [n] : E \not\subseteq F, \text{ for all } E \in E(H) \}.$$

This complex is called the independence complex of H. By definition the edges of H are precisely the minimal non–faces of $\Delta(H)$.

Consider the complementary hypergraph \overline{H} of a d-uniform hypergraph. This is defined as the hypergraph $(V(H), E(\overline{H}))$ with the edge set

$$E(\overline{H}) := \{ F \subseteq X : |F| = d, \ F \notin E(H) \}.$$

Then the edges of \overline{H} are precisely the $(d - 1)$-dimensional faces of the independence complex $\Delta(H)$.
Specially, let $H = ([n], E(H))$ be a simple graph and consider its edge ideal $I(H) \subseteq R$. Then
\[
\Delta(H) := \{ F \subseteq [n] : \text{ F is an independent set in H} \}.
\]
is the independence complex of H. Clearly the edges of H are precisely the minimal non–faces of $\Delta(H)$.

Similarly we can define the clique complex of H:
\[
\Gamma(H) := \{ F \subseteq [n] : \text{ F is a clique in H} \}.
\]

2.2 Free resolutions
Recall that for every finitely generated graded module M over R we can associate to M a minimal graded free resolution
\[
0 \longrightarrow \bigoplus_{i=1}^{\beta_p} R(-d_{p,i}) \longrightarrow \bigoplus_{i=1}^{\beta_{p-1}} R(-d_{p-1,i}) \longrightarrow \ldots \longrightarrow \bigoplus_{i=1}^{\beta_0} R(-d_{0,i}) \longrightarrow M \longrightarrow 0,
\]
where $p \leq n$ and $R(-j)$ is the free R-module obtained by shifting the degrees of R by j.

Here the natural number β_k is the k’th total Betti number of M and p is the projective dimension of M.

The module M has a pure resolution if there are constants $d_0 < \ldots < d_g$ such that
\[
d_{0,i} = d_0, \ldots, d_{g,i} = d_g
\]
for all i. If in addition
\[
d_i = d_0 + i,
\]
for all $1 \leq i \leq p$, then we call the minimal free resolution to be d_0–linear.

In [19] Theorem 2.7 the following bound for the Betti numbers was proved.

Theorem 2.1. Let M be an R–module having a pure resolution of type (d_0, \ldots, d_p) and Betti numbers β_0, \ldots, β_p, where p is the projective dimension of M. Then
\[
\beta_i \geq \binom{p}{i}
\]
for each $0 \leq i \leq p$.

5
2.3 Hilbert function

Finally let us recall some basic facts about Hilbert functions and Hilbert series.

Let \(M = \bigoplus_{i \geq 0} M_i \) be a finitely generated nonnegatively graded module over the polynomial ring \(R \). Define the Hilbert function \(h_M : \mathbb{Z} \to \mathbb{Z} \) by
\[
h_M(i) := \dim \mathbb{Q} M_i.
\]

If we know the \(f \)-vector of the simplicial complex \(\Delta \), then we can compute easily the Hilbert function \(h_{\mathbb{Q}[\Delta]}(t) \) of the Stanley–Reisner ring \(M := \mathbb{Q}[\Delta] \).

Lemma 2.2 (Stanley, see Theorem 5.1.7 in [1]) The Hilbert function of the Stanley–Reisner ring \(\mathbb{Q}[\Delta] \) of a \((d-1)\)-dimensional simplicial complex \(\Delta \) is
\[
h_{\mathbb{Q}[\Delta]}(t) = \sum_{j=0}^{d-1} f_j(\Delta) \binom{t - 1}{j}.
\]

In the proof of our main results we use the following Proposition.

Proposition 2.3 ([3, Chapter 6, Proposition 4.7]) Let \(M \) be a graded \(R \)-module with the graded free resolution
\[
0 \longrightarrow F_n \longrightarrow \ldots \longrightarrow F_1 \longrightarrow M \longrightarrow 0.
\]

If each \(F_j \) is the twisted free graded module \(F_j = \bigoplus_{k=1}^{\beta_{j,k}} R(\delta_{j,k}) \), then
\[
h_M(t) = \sum_{j=1}^{n} (-1)^j \sum_{k=1}^{\beta_{j,k}} \binom{n + \delta_{j,k} + t}{n}.
\]

Let \(\Delta \) be a simplicial complex such that the Stanley-Reisner ring \(R/I_\Delta \) has a linear free resolution. It is known that the generators of \(I_\Delta \) all have the same degree.

It follows that \(R/I_\Delta \) is a hypergraph algebra \(R/I(H) \) for some \(k \)-uniform hypergraph \(H \).

2.4 Hilbert–Serre Theorem

Let \(M = \bigoplus_{i \geq 0} M_i \) be a finitely generated nonnegatively graded module over the polynomial ring \(R \). We call the formal power series
\[
H_M(z) := \sum_{i=0}^{\infty} h_M(i) z^i
\]
the Hilbert–series of the module M.

The Theorem of Hilbert–Serre states that there exists a (unique) polynomial $P_M(z) \in \mathbb{Q}[z]$, the so-called Hilbert polynomial of M, such that $h_M(i) = P_M(i)$ for each $i \gg 0$. Moreover, P_M has degree $\dim M - 1$ and $(\dim M - 1)!$ times the leading coefficient of P_M is the multiplicity of M, denoted by $e(M)$.

Thus, there exist integers m_0, \ldots, m_{d-1} such that $h_M(z) = m_0 \cdot \binom{z}{d-1} + m_1 \cdot \binom{z}{d-2} + \ldots + m_{d-1}$, where $\binom{z}{r} = \frac{1}{r!}z(z-1)\ldots(z-r+1)$ and $d := \dim M$. Clearly $m_0 = e(M)$.

We can summarize the Hilbert-Serre theorem as follows:

Theorem 2.4 (Hilbert–Serre) Let M be a finitely generated nonnegatively graded R–module of dimension d, then the following statements hold:

(a) There exists a (unique) polynomial $P(z) \in \mathbb{Z}[z]$ such that the Hilbert–series $H_M(z)$ of M may be written as

$$H_M(z) = \frac{P(z)}{(1 - z)^d}$$

(b) d is the least integer for which $(1 - z)^d H_M(z)$ is a polynomial.

3 The computation of the Betti–vector from the f-vector

3.1 Our main result

In our main result we describe explicitly the Betti numbers of the edge ideals $I(G)$ of uniform hypergraphs G such that $I(G)$ has linear free resolution.

Theorem 3.1 Let $G \subseteq \binom{[n]}{m}$ be an m–uniform hypergraph. Suppose that the edge ideal $I(G)$ has an m-linear free resolution

$$\mathcal{F}_G : 0 \rightarrow R(-m - g)^{\beta_g} \rightarrow \ldots \rightarrow$$

$$\rightarrow R(-m - 1)^{\beta_1} \rightarrow R(-m)^{\beta_0} \rightarrow I(G) \rightarrow 0. \quad (8)$$

If $\Delta := \Delta(G)$ is the independence complex of G and $f(\Delta) := (f_{-1}(\Delta), \ldots, f_{d-1}(\Delta))$ is the f-vector of the complex Δ, then
\[
\beta_i(G) = \sum_{j=1}^{i+1} (-1)^j f_{j+m-2}(\Delta) \binom{f_0(\Delta) - (j + 1)}{i - j + 1} + \binom{i + m - 1}{m - 1} \binom{f_0(\Delta)}{i + m}
\]
(10) for each \(0 \leq i \leq g\).

Remark. J. Herzog and M. Kühl proved similar formulas for the Betti number in [15]. Theorem 1. Here we did not assume that the ideal \(I(G)\) with linear resolution is Cohen–Macaulay.

Proof. Let \(M := R/I(G)\) denote the quotient module of the edge ideal \(I(G)\). Clearly \(R/I(G)\) is the Stanley–Reisner ring of the incidence complex \(\Delta(G)\).

First we compute the Hilbert function \(h_M(t)\) of the quotient module \(M\) from the graded free resolution of \(I(G)\).

From Proposition 2.3 we conclude that the Hilbert function \(h_M(t)\) of \(M\) is
\[
h_M(t) = \binom{t + n}{n} + \sum_{i=0}^{g} (-1)^{i+1} \beta_i(G) \binom{t + n - m - i}{n}.
\]
(11)

From the Vandermonde identities (see e.g. [10], 169–170)
\[
\binom{t + n}{n} = \sum_{j=0}^{n} \binom{n}{j} \binom{t}{j}
\]
and
\[
\binom{t + n - m - i}{n} = \sum_{j=0}^{n} \binom{t}{j} \binom{n - m - i}{n - j}
\]
for each \(i \geq 0\), we infer that
\[
h_M(t) = \sum_{j=0}^{n} \binom{n}{j} \binom{t}{j} + \sum_{i=0}^{g} (-1)^{i+1} \beta_i(G) \left(\sum_{j=0}^{n} \binom{t}{j} \binom{n - m - i}{n - j} \right) =
\]
\[
= \sum_{j=0}^{n} \binom{n}{j} \binom{t}{j} + \sum_{j=0}^{n} \binom{t}{j} \left(\sum_{i=0}^{g} (-1)^{i+1} \beta_i(G) \binom{n - m - i}{n - j} \right)
\]

8
\[= \sum_{j=0}^{n} \binom{t}{j} \binom{n}{j} + \sum_{i=0}^{g} (-1)^{i+1} \binom{n-m-i}{n-j} \beta_i(G) \]

(12)

On the other hand we can apply Lemma 2.2 for the simplicial complex \(\Delta \). We get

\[h_M(t) = \sum_{j=0}^{n} f_{j-1}(\Delta) \binom{t}{j}. \]

(13)

But the polynomials \(\{ \binom{t}{j} : j \in \mathbb{N} \} \) constitute a basis of the polynomial ring \(\mathbb{Q}[t] \).

Hence equations (12) and (13) imply that

\[f_{j-1}(\Delta) = \binom{n}{j} + \sum_{i=0}^{j-m} (-1)^{i+1} \binom{n-m-i}{n-j} \beta_i(G) \]

(14)

for each \(0 \leq j \leq n \).

Now we can prove equation (10) by induction.

It is clear that

\[\beta_0(G) + f_{m-1}(\Delta) = \binom{n}{m}. \]

Hence we settled the case \(i = 0 \).

Suppose that equation (10) is true for each \(0 \leq i \leq j-m-1 \). Now we prove equation (10) for \(j-m \).

It follows from equation (14) that

\[(-1)^{j-m} \beta_{j-m}(G) = \sum_{i=0}^{j-m-1} (-1)^{i+1} \binom{n-m-i}{n-j} \beta_i(G) + \binom{n}{j} - f_{j-1}(\Delta). \]

(15)

Hence substituting equation (10) for \(\beta_i \), where \(0 \leq i \leq j-m-1 \), and rearranging the terms yields to equation (10) for \(j-m \). \(\square \)

In the proof of Theorem 1.3 we need for the following Corollary.

Corollary 3.2 Let \(G \subseteq [n]_2 \) be a 2–uniform hypergraph. Suppose that the edge ideal \(I(G) \) has an 2-linear free resolution

\[\mathcal{F}_G : 0 \rightarrow S(-2-g)^{\beta_g} \rightarrow \ldots \rightarrow S(-3)^{\beta_3} \rightarrow S(2)^{\beta_0} \rightarrow I(G) \rightarrow 0. \]

(16)
If $\Delta := \Delta(G)$ is the independence complex of G and $f(\Delta) := (f_{-1}(\Delta), \ldots, f_{d-1}(\Delta))$ is the f-vector of the complex Δ, then

$$
\beta_i(G) = \sum_{j=1}^{i+1} (-1)^j f_j(\Delta) \binom{f_0(\Delta) - (j + 1)}{i - j + 1} + (i + 1) \binom{f_0(\Delta)}{i + 2} \quad (17)
$$

for each $0 \leq i \leq g$.

3.2 Examples

We give here two applications of Corollary 3.2.

S. Jacques proved in [16] that the total i'th Betti numbers of the complete graph K_n with n vertices are

$$
\beta_i = (i + 1) \binom{n}{i + 2}
$$

for each $0 \leq i \leq n - 2$. This is clear from Corollary 3.2 because then $\tilde{G} = ([n], \emptyset)$ and the graph \tilde{G} is chordal.

Now consider the computation of the total Betti numbers of the complete bipartite graphs $K_{n,m}$. Clearly $\overline{K_{n,m}}$ is a chordal graph, hence it follows from Theorem 1.1 that the edge ideal I has a linear free resolution.

Define the ideal

$$I := I(K_{n,m}) = \langle x_i y_j : 1 \leq i \leq n, 1 \leq j \leq m \rangle.$$

It is easy to verify that the incidence complex $\Delta(K_{n,m})$ is the disjoint union of two simplices, one of dimension $n - 1$, the other of dimension $m - 1$.

Hence we get that

$$f_i(\Delta(K_{n,m})) = \binom{n}{i + 1} + \binom{m}{i + 1}$$

for each $i \geq 0$.

Finally it follows from [16, Corollary 5.2.5] and Corollary 3.2 that

$$\beta_i(K_{n,m}) = \sum_{j+l=i+2, j,l \geq 1} \binom{n}{j} \binom{m}{l} = \sum_{j=1}^{i+1} (-1)^j \left(\binom{n}{j + 1} + \binom{m}{j + 1} \right) \binom{n + m - j - 1}{i - j + 1} + (i + 1) \binom{n + m}{i + 2}.\]
4 The proof of our main result

4.1 A generalization of Herzog–Kühl Theorem

We need for the following easy Lemma:

Lemma 4.1 Let $K(z) = \sum_{i=0}^{p} c_i z^{d_i} \in \mathbb{Q}[z]$ be an arbitrary polynomial over \mathbb{Q}. Then K is divisible by $(1 - z)^m$ iff $K^{(j)}(1) = 0$ for each $j = 0, \ldots, m - 1$.

We can prove Theorem 1.3 with the following generalization of the famous Herzog–Kühl Theorem (Theorem 1 in [15]). We can prove this Theorem using the same method as in [15], but for the reader’s convenience we include here the proof.

Theorem 4.2 Let M be an R–module having a pure resolution of type (d_0, \ldots, d_p) and Betti numbers β_0, \ldots, β_p, where p is the projective dimension of M. Let d denote the dimension of the module M. Suppose that $d + 1 \leq n$. Then

$$\sum_{i=0}^{p} (-1)^i \beta_i = 0 \quad (18)$$

and

$$\sum_{i=0}^{p} (-1)^i \beta_i d_i (d_i - 1) \cdots (d_i - j + 1) = 0 \quad (19)$$

for each $j = 1, \ldots, n - d - 1$.

Proof.

Since the Hilbert–series is additive on short exact sequences, and since

$$H_R(z) = \frac{1}{(1 - z)^n},$$

and consequently

$$H_{R(-d)}(z) = \frac{z^d}{(1 - z)^n},$$

the pure resolution

$$0 \rightarrow \bigoplus_{k=1}^{\beta_p} R(-d_p) \rightarrow \bigoplus_{k=1}^{\beta_{p-1}} R(-d_{p-1}) \rightarrow \ldots \rightarrow \bigoplus_{k=1}^{\beta_0} R(-d_0) \rightarrow M \rightarrow 0,$$
yields
\[H_M(z) = \sum_{i=0}^{p} (-1)^i \beta_i \frac{z^{d_i}}{(1 - z)^n}, \]
(20)
where \(p = \text{pdim}(M) \).

Write \(d := \text{dim}M \), and let \(m := \text{codim}(M) = n - d \). It follows from the Auslander–Buchbaum formula that \(m \leq p \). We infer from the Theorem of Hilbert–Serre that we can write
\[H_M(z) = \frac{P(z)}{(1 - z)^d}. \]
(21)
Comparing the two expressions (20) and (21) for \(H_M \), we find
\[(1 - z)^m P(z) = \sum_{i=0}^{p} (-1)^i \beta_i z^{d_i}. \]
(22)
This formula shows that \((1 - z)^m\) divides \(\sum_{i=0}^{p} (-1)^i \beta_i z^{d_i} \) (in the ring \(\mathbb{Z}[x] \)). It follows from Lemma 4.1 that \((\beta_0, \ldots, \beta_p)\) solves the equation system (18), (19).

\[\Box \]

4.2 The multiplicity of Stanley-Reisner ideals of chordal graphs

We can derive easily the following Corollary.

Corollary 4.3 Let \(M \) be an \(R \)-module having a pure resolution of type \((d_0, \ldots, d_p)\) and Betti numbers \(\beta_0, \ldots, \beta_p \), where \(p \) is the projective dimension of \(M \). Let \(d \) denote the dimension of the module \(M \). Suppose that \(d + 1 \leq n \). Then
\[\sum_{i=0}^{p} (-1)^i \beta_i d_i^j = 0 \]
(23)
for each \(j = 0, \ldots, n - d - 1 \).

Remark. It follows easily that these equations are linearly independent.
Corollary 4.4 Let M be an R–module having a pure resolution of type (d_0, \ldots, d_p) and Betti numbers β_0, \ldots, β_p, where p is the projective dimension of M. Let d denote the dimension of the module M and $m := \text{codim}(M) = n - d$. Suppose that $d + 1 \leq n$. Then

$$e(M) = (-1)^m \frac{p!}{m!} \sum_{i=0}^{p} (-1)^i \beta_i \left(\frac{d_i}{p} \right).$$

Proof. It comes out from the definition that

$$e(M) = ((1 - z)^d \cdot H_M(z)) |_{z=1} = P(1).$$

Hence we infer from equation (22) that

$$e(M) = P(1) = \left(\frac{(-1)^m m!}{m!} ((1 - z)^m P)^{(m)} |_{z=1} = \right)$$

$$= \left(\frac{(-1)^m m!}{m!} \sum_{i=0}^{p} (-1)^i \beta_i p! \left(\frac{d_i}{p} \right) = \right)$$

$$= (-1)^m \frac{p!}{m!} \sum_{i=0}^{p} (-1)^i \beta_i \left(\frac{d_i}{p} \right).$$

\[\square \]

Now we can describe easily the multiplicity of the Stanley–Reisner ideals of chordal graphs.

Corollary 4.5 Let G be an arbitrary chordal graph and $H := \overline{G}$ denote the complement of the graph G. Let $\Gamma := \Gamma(G)$ be the clique complex of G and $f(\Gamma) := (f_{-1}(\Gamma), \ldots, f_{d-1}(\Gamma))$ be the f-vector of the complex Γ. Let p be the projective dimension of $R/I(H)$. Let d denote the dimension of the module $R/I(H)$ and $m := \text{codim}(R/I(H)) = n - d$. Then

$$e(R/I(H)) = (-1)^m \frac{p!}{m!} \sum_{i=0}^{p} (-1)^i \left(\sum_{j=1}^{i+1} (-1)^j f_j \left(\frac{f_0 - (j + 1)}{i - j + 1} \right) + (i + 1) \left(\frac{f_0}{i + 2} \right) \right) \left(\frac{i + 2}{p} \right)$$

13
Proof. It follows from Theorem 1.1 that the module $M := R/I(H)$ has a 2-linear resolution:
\[
\mathcal{F}_H : 0 \rightarrow S(-2-p)^{\beta_p} \rightarrow \ldots \rightarrow S(-3)^{\beta_1} \rightarrow S(-2)^{\beta_0} \rightarrow R \rightarrow M \rightarrow 0. \tag{24}
\]
where p is the projective dimension of M.

If we apply Theorem 4.4 for the module M, we get that
\[
e(R/I(H)) = (-1)^m \frac{p!}{m!} \sum_{i=0}^{p} (-1)^i \beta_i \left(\binom{i+2}{p} \right), \tag{25}
\]
Now using Theorem 3.2 and substituting
\[
\beta_i(H) = \sum_{j=1}^{i+1} (-1)^j f_j \left(\binom{f_0 - (j + 1)}{i - j + 1} \right) + (i + 1) \left(\binom{f_0}{i + 2} \right) \tag{27}
\]
into (25), we get our result. \hfill \Box

4.3 The proofs

Proof of Theorem 1.3 Let $H := \overline{G}$ denote the complement of the graph G.

Then consider the module $M := R/I(H)$. It follows from Theorem 1.1 that the module M has a 2-linear resolution:
\[
\mathcal{F}_H : 0 \rightarrow S(-2-p)^{\beta_p} \rightarrow \ldots \rightarrow S(-3)^{\beta_1} \rightarrow S(-2)^{\beta_0} \rightarrow R \rightarrow M \rightarrow 0. \tag{26}
\]
where p is the projective dimension of M.

If we apply Theorem 3.2 for the graph $F := H$, then we get that
\[
\beta_i(H) = \sum_{j=1}^{i+1} (-1)^j f_j(\Delta) \left(\binom{f_0(\Delta) - (j + 1)}{i - j + 1} \right) + (i + 1) \left(\binom{f_0(\Delta)}{i + 2} \right) \tag{27}
\]
for each $0 \leq i \leq p$.

Now we can apply Theorem 4.2. If we substitute the expressions (27) for $\beta_i(H)$ into the equation system (18), (19) and rearrange the obtained equations, we get our result.
Namely
\[
\sum_{i=0}^{p} (-1)^i \beta_i = \sum_{i=0}^{p} (-1)^i \left(\sum_{j=1}^{i+1} (-1)^j f_j \left(f_0 - j - 1 \atop i - j + 1 \right) + (i + 1) \left(f_0 \atop i + 2 \right) \right)
\]
\[
= \sum_{i=0}^{p} (-1)^i (i + 1) \left(f_0 \atop i + 2 \right) + \sum_{i=0}^{p} (-1)^i \left(\sum_{j=1}^{i+1} (-1)^j f_j \left(f_0 - (j + 1) \atop i - j + 1 \right) \right)
\]
\[
= \sum_{i=0}^{p} (-1)^i (i + 1) \left(f_0 \atop i + 2 \right) + \sum_{j=1}^{p+1} (-1)^j f_j(\Gamma) \left(\sum_{i=j}^{p} (-1)^i \left(f_0 - (j + 1) \atop i - j + 1 \right) \right)
\]
\[
= - \sum_{i=1}^{p+1} (-1)^i i f_0 \left(f_0 \atop i + 1 \right) + \sum_{j=1}^{p+1} (-1)^j + p f_j(\Gamma) \left(f_0(\Gamma) - j - 2 \right) = -1,
\]
because
\[
\sum_{i=j-1}^{p} (-1)^i \left(f_0 - (j + 1) \atop i - j + 1 \right) = (-1)^p \left(f_0 - j - 2 \atop p - j + 1 \right).
\]

Similarly
\[
\sum_{i=0}^{p} (-1)^i d_i^j \beta_i = \sum_{i=0}^{p} (-1)^i (2+i)^j \left(\sum_{j=1}^{i+1} (-1)^j f_j \left(f_0 - j - 1 \atop i - j + 1 \right) + (i + 1) \left(f_0 \atop i + 2 \right) \right)
\]
\[
= \sum_{k=1}^{p+1} (-1)^k f_k(\Gamma) \left(\sum_{i=k-1}^{p} (-1)^i (2+i)^j \left(f_0 - k - 1 \atop i - k + 1 \right) \right) +
\]
\[
+ \sum_{i=0}^{p} (-1)^i (2+i)^j (i + 1) \left(f_0 \atop i + 2 \right) = 0. \tag{28}
\]

Proof of Theorem 1.4 Let \(H := \overline{G} \) denote the complement of the graph \(G \). Applying Theorem 1.1 and Theorem 3.2 for the graph \(F := H \), we get again (27). Hence we infer from Theorem 4 that
\[
\sum_{j=1}^{i+1} (-1)^j f_j \left(f_0 - (j + 1) \atop i - j + 1 \right) + (i + 1) \left(f_0 \atop i + 2 \right) \geq \binom{p}{i}. \tag{29}
\]
for each $0 \leq i \leq p$.

Acknowledgements. I am indebted to Josef Schicho and Lajos Rónyai for their useful remarks.

References

[1] W. Bruns, J. Herzog, Cohen-Macaulay rings, Cambridge Studies in Advanced Mathematics, 39, Cambridge University Press, Cambridge, 1993.

[2] D. Cox, J. Little, D. O’Shea, Ideals, varieties, and algorithms, Springer, 1992.

[3] D. Cox, J. Little, D. O’Shea, Using Algebraic Geometry, Springer, 2005.

[4] Dirac, G. A., On rigid circuit graphs. Abh. Math. Sem. Univ. Hamburg 25 (1961) 7176.

[5] E. Emtander, Betti numbers of hypergraphs. Comm. Algebra 37 (2009), no. 5, 1545–1571.

[6] E. Emtander, A class of hypergraphs that generalizes chordal graphs. Math. Scand. 106 (2010), no. 1, 50–66.

[7] S. Faridi, Cohen-Macaulay properties of square-free monomial ideals. J. Combin. Theory Ser. A 109 (2005), no. 2, 299–329.

[8] S. Faridi, The facet ideal of a simplicial complex Manuscripta Math. 109 (2002), no. 2, 159–174.

[9] R. Fröberg, On Stanley-Reisner rings. Topics in algebra, Part 2 (Warsaw, 1988), 57–70, Banach Center Publ., 26, Part 2, PWN, Warsaw, 1990.

[10] R.L. Graham, D.E. Knuth, O. Patashnik, Concrete Mathematics, Addison-Wesley, 1989.
[11] H. T. Hà; A. Van Tuyl, Monomial ideals, edge ideals of hypergraphs, and their graded Betti numbers. *J. Algebraic Combin.* **27** (2008), no. 2, 215–245.

[12] H. T. Hà; A. Van Tuyl, Splittable ideals and the resolutions of monomial ideals. *J. Algebra* **309** (2007), no. 1, 405–425.

[13] J. Herzog, T. Hibi, X. Zheng, Dirac’s theorem on chordal graphs and Alexander duality. *European J. Combin.* **25** (2004), no. 7, 949960.

[14] G. Hegedüs, Betti numbers of edge ideals of uniform hypergraphs, see http://arxiv.org/abs/1009.0394.

[15] J. Herzog, M. Kühl, On the Betti numbers of finite pure and linear resolutions. *Comm. Algebra* **12** (1984), no. 13-14, 16271646.

[16] S. Jacques, Betti Numbers of Graph Ideals, PhD Thesis, available online http://arxiv.org/abs/math/0410107.

[17] E. Miller; B. Sturmfels, Combinatorial commutative algebra. Graduate Texts in Mathematics, 227. Springer-Verlag, New York, 2005.

[18] S. Morey; E. Reyes; R. H. Villarreal, Cohen-Macaulay, shellable and unmixed clutters with a perfect matching of Knig type. *J. Pure Appl. Algebra* **212** (2008), no. 7, 1770–1786.

[19] T. Römer, Bounds for Betti numbers. *J. Algebra* **249** (2002), no. 1, 20-37.

[20] R. H. Villarreal, Cohen-Macaulay graphs. *Manuscripta Math.* **66** (1990), no. 3, 277–293.

[21] R. H.Villarreal, Monomial algebras. Monographs and Textbooks in Pure and Applied Mathematics , **238**. Marcel Dekker, Inc., New York, 2001.

[22] R. Woodroofe, Chordal and sequentially Cohen-Macaulay clutters, available online http://arxiv.org/abs/0911.4697.

[23] Zheng, X. Resolutions of facet ideals. *Comm. Algebra* **32** (2004), no. 6, 23012324.