Abordaje laparoscópico sistemático de la coledocolitiasis

Routine laparoscopic management of common bile duct stones

Carlos M. Canullán, Enrique J. Petracchi, Nicolás Baglietto, Hugo I. Zandalazini, Bernabé M. Quesada, Pablo Merchán del Hierro, Carlos Ocampo

Servicio de Cirugía General del Hospital Dr. Cosme Argerich. Buenos Aires. Argentina.

Los autores declaran no tener conflictos de interés. Conflict of interest None declared.

Correspondencia Correspondence: Enrique J. Petracchi E-mail: petracchi@hotmail.com

RESUMEN

Antecedentes: la prevalencia conjunta de litiásis vesicular y coledociana aumenta con la edad y llega al 15% en la octava década de la vida. Su manejo continúa siendo controvertido: algunos profesionales prefieren el abordaje en un tiempo por videolaparoscopia, y otros, el abordaje en dos tiempos con endoscopía (CPRE preoperatoria) seguida de colecistectomía laparoscópica.

Objetivo: evaluar la eficacia y seguridad del manejo en un tiempo por videolaparoscopia en pacientes consecutivos con diagnóstico de litiásis vesicular y coledociana.

Material y métodos: estudio retrospectivo con datos de una base de datos prospectiva, entre julio de 2008 y julio de 2018.

Resultados: sobre un total de 2447 colecistectomías laparoscópicas realizadas en el citado período, 416 (17%) presentaron litiasis coledociana. El éxito global de la vía transcística en la extracción de litiasis coledociana fue del 81,2%; del 70,4% en los casos con diagnóstico prequirúrgico de colestasis extrahepática litiásica y del 92,9% en los otros diagnósticos. La morbilidad fue del 4%, sin mortalidad ni lesiones quirúrgicas de la vía biliar.

Conclusión: el manejo en un tiempo por videolaparoscopia es eficaz y seguro debido al elevado éxito global de la instrumentación transcística (ITC). El diagnóstico preoperatorio de coledocolitiasis condiciona una disminución de esa eficacia, por mayor indicación de coledocotomía, con un aumento de la morbilidad y del tiempo de internación.

PALABRAS CLAVE: coledocolitiasis, laparoscopia, coledocotomía, instrumentación transcística.

RESUMEN

Background: The prevalence of common bile duct stones associated with cholelithiasis increases with age and is about 15% in the 8th decade of life but its management is still controversial. Some surgeons prefer the single-stage approach with laparoscopy while others suggest the two-stage management with preoperative endoscopic retrograde cholangiopancreatography (ERCP) followed by laparoscopic cholecystectomy.

Objective: The aim of the present study was to evaluate the efficacy of feasibility of single-stage laparoscopic surgery in patients with cholelithiasis and choledocholithiasis.

Material and methods: We conducted a retrospective study with prospectively collected data between July 2008 and July 2018.

Results: Of 2447 laparoscopic cholecystectomies performed during the study period, 416 presented common bile duct stones. The global success of the transcystic approach to clear common bile duct stones was 81.2%, 70.4% in the cases with preoperative diagnosis of choledocholithiasis and 92.9% for other diagnoses. The rate of complications was 4% without deaths or bile duct injuries.

Conclusion: Single-stage laparoscopic surgery is an efficient and safe approach based on the high global success of transcystic exploration. The preoperative diagnosis of choledocholithiasis reduces the efficacy of the procedure due to greater indication of coledocotomy, with complications and longer length of hospital stay.

KEYWORDS: laparoscopic common bile duct exploration, common bile duct stones, transcystic approach.

Recibido | Received 22-04-20
Aceptado | Accepted 30-10-20

ID ORCID: Carlos M. Canullán, 0000-0002-5755-0367; Enrique J. Petracchi, 0000-0002-2575-4656; Nicolás Baglietto, 0000-0003-4906-6361; Hugo I. Zandalazini, 0000-0001-7655-2416; Bernabé M. Quesada, 0000-0002-3094-0031; Pablo Merchán del Hierro, 0000-0001-8283-4268; Carlos Ocampo, 0000-0002-2882-5384.
Introducción

La incidencia de litiasis coledociana asociada a litiasis vesicular se incrementa con la edad y llega al 15-20% en la octava década de la vida, pero su manejo continúa siendo controvertido. Existen usualmente dos maneras de tratarla: con endoscopia retrógrada preoperatoria (CPRE) seguida por una colecistectomía laparoscópica (dos tiempos), o tratando la litiasis coledociana durante la colecistectomía por videolaparoscopia (un tiempo). Las principales diferencias entre los dos tratamientos radican en la estadía hospitalaria, los costos y el entrenamiento en cirugía videolaparoscópica.

El objetivo primario de este trabajo es evaluar la eficacia y seguridad del manejo en un tiempo por videolaparoscopia de una serie consecutiva de pacientes a lo largo de 10 años, con diagnóstico de litiasis vesicular y coledociana. El objetivo secundario es analizar las variables que puedan modificar la eficacia y la seguridad de este abordaje.

Material y métodos

En el Servicio de Cirugía General del Hospital Cosme Argerich se realizó un estudio retrospectivo con datos recolectados en forma prospectiva en una base ad hoc, en el que se incluyeron todos los pacientes con litiasis coledociana, diagnosticada por colangiografía intraoperatoria (CIO) sistemática, durante un período de 10 años (julio de 2008 a julio de 2018). Se excluyeron pacientes con colecistectomía previa (litiasis residual), colangitis aguda grave, riesgo quirúrgico elevado y pancreatitis aguda grave.

Variables preoperatorias analizadas

- Edad
- Sexo
- Diagnóstico de ingreso: litiasis vesicular sintomática (LVS), colecistitis aguda (CA), pancreatitis aguda biliar (PAB) y colestasis extrahepática litiásica (CEHL)

Variables intraoperatorias analizadas

- Tiempo quirúrgico
- Porcentaje de éxito de la instrumentación transcística (ITC) y de la coledocotomía
- Índice de conversión
- Porcentaje de conductos císticos favorables versus desfavorables
- Relación cístico/cálculo
- Prevalencia de litiasis cística
- Número, tamaño y ubicación de los cálculos.

Variables posoperatorias analizadas

- Morbimortalidad (Clavien-Dindo)
- Tiempo de internación
- Litiasis residual
- Fistulas biliares
- Reoperaciones

Definiciones

- CEHL: dilatación de la vía biliar > 8 mm o visualización del cálculo por ecografía, valores de bilirrubina total > 2 mg/dL o fosfatasa alcalina (FAL) > 200 UI/L.
- Cístico favorable: cuando la desembocadura se presenta a la derecha de la vía biliar sin trayecto tortuoso. Cuando esto no se cumple, lo llamamos desfavorable. Si a través de la redisección, logramos transformarlo en favorable, lo llamamos “cístico favorable postmanobras” (Fig. 1).
- Relación cístico/calculo: fue valorada como > o < 1, utilizando el tamaño de las pinzas para estimar las medidas (Fig. 2A).
- Litiasis proximal: presencia de cálculos proximales a la unión cístico-coledociana (Fig. 2B).
- Litiasis coledociana insospechada: cuando se identifica durante la CIO en pacientes con diagnóstico preoperatorio diferente del de CEHL.
- Falla de la vía transcística: es el fracaso en la extracción de los cálculos por ITC, luego de agotar las maniobras disponibles para mejorar la eficacia (redisección, dilatación con balón, etc.).
SOCAT: síndrome de oclusión coledociana aguda total, que se presenta típicamente con aumento progresivo de niveles de bilirrubina y FAL.

Fuga biliar: salida de bilis por el drenaje de la cavidad abdominal colocado en el espacio de Morrison o necesidad de colocación de drenaje percutáneo de coleción abdominal.

Técnica quirúrgica

El instrumental utilizado incluyó óptica de 30 grados, porta agujas laparoscópico, sondas tipo K 30-35 y cánulas de 5 mm para realizar la CIO, canastillas de Dormia de 4 hilos, balones de dilatación (6 atmósferas, de 10 mm × 3 cm), tubos de Kehr de látex, camilla fluoroscópica y arco en C.

La colecistectomía videolaparoscópica fue realizada con tracción según Hunter y diseción hasta alcanzar visión crítica de seguridad. Luego del clipado proximal del cístico realizamos CIO a través de sondas tipo K 30-35 introducidas en una cánula que ingresa por el trocar de 5 mm del hipocondrio derecho. La dificultad en la progresión del catéter de CIO con salida espontánea de bilis se interpreta como presencia de válvulas en el conducto cístico o tortuosidad de este (causa anatómica). Ante la misma situación, pero sin salida espontánea de bilis se interpreta como presencia de litiasis cística, y requiere maniobra de ordeñar (milking) para su extracción. La redisección distal del cístico y nueva cisticotomía se indica ante el fracaso de la maniobra de milking o ante un cístico desfavorable, con el fin de lograr la litotomía o poder colocar el catéter de colangiografía. En todas las cirugías se colocó drenaje al espacio de Morrison, que se retira a las 24 horas del posoperatorio si no hay complicaciones.

Conducta ante coledocolitiasis

En el caso de litos menores de 3 mm se intenta su resolución con ITC, utilizando canastillas de Dormia, o simplemente lavado (flushing).

Ante litos proximales se intenta su descenso con instrumental romo (aspirador, pinzas atraumáticas) bajo guía fluoroscópica; si esta maniobra no es exitosa, el siguiente paso consiste en hacer una cisticotomía angulada o coledocotomía mínima para progresar la canastilla hasta la vía biliar proximal. Esta variante puede requerir una coledocorrafía mínima (Fig. 3).

En los casos en los que la relación cístico/cálculo es < 1 (cálido de mayor tamaño que el cístico), extraemos la Dormia con el cálido hasta el cístico y ampliamos la cisticotomía sobre este para facilitar la extracción. Otra opción consiste en dilatar la papila en forma progresiva y controlada a través de un balón percutáneo introducido por el conducto cístico y así progresar el o los cálculos hasta el duodeno.

Ante el fracaso de la ITC realizamos una coledocolitamía laparoscópica intentando extraer los cálculos con los mismos recursos utilizados durante la ITC. Si la extracción de cálculos es exitosa, realizamos un cierre primario del colédoco (CPC) previa dilatación papilar anterógrada con balón, para disminuir la presión en la vía biliar y la incidencia de bilirragia. Cuando la evacuación papilar no es adecuada o existen dudas acerca de la total extracción de cálculos, colocamos un tubo de Kehr de látex.

Los casos de megacolédoco (diámetro > 15 mm) con litiasis coledociana múltiple y relación cístico/cálculo < 1 fueron tratados con derivaciones biliodigestivas. La edad del paciente es la variable más utilizada para definir entre una coledocoduodenal anastomosis (> 60 años) o una hepaticoyeyuno anastomosis.

FIGURA 2

A. Cálculo > 5mm. Relación cístico/cálculo < 1. B. Cálculo proximal a la unión cístico-coledociana.
• Indicamos conversión a cirugía abierta en aquellos casos de cálculos impactados en colédoco medio o distal sin pasaje de contraste a duodeno en los que es imposible progresar distalmente una canastilla o una cuerda. A estos casos los denominamos SOCAT.

Resultados

En el período analizado se realizaron 2447 colecistectomías laparoscópicas, logrando efectuar CIO en el 99,7% de los casos; de ellos 416 pacientes (17%) presentaron litiasis coledociana.

Variables preoperatorias

• La relación hombre/mujer fue de 141/275, con una edad promedio de 33 años (rango 18-88 años).
• El riesgo anestésico correspondió a ASA 1: 158 (38%), ASA 2: 221 (53%), ASA 3: 37 (9%).
• De los 416 casos, el diagnóstico fue:
 ◦ Sospechado en 227 (54,5%): ictericia, colangitis aguda, PAB con dilatación biliar.
 ◦ Insospechado en 189 (45,5%): 72 CA, 70 LVS, 47 PAB.

Variables intraoperatorias

La eficacia de la resolución por vía laparoscópica fue del 99%. El tiempo quirúrgico promedio fue de 81 minutos (rango 30-250).
• ITC: la eficacia global de la ITC fue del 81,2%, con un tiempo operatorio de 55 minutos y una estadía posoperatoria promedio de 24 horas, sin morbimilidad. La variación de la eficacia según las diferentes variables analizadas puede verse en las tablas 1 y 2 y las figuras 4 y 5.

TABLA 1	Efectividad de la ITC según variables intraoperatorias		
Éxito ITC (n=338)	Fracaso ITC (n=78)	p	
Cístico favorable	341 (91%)	31 (9%)	
Cístico desfavorable	38 (86%)	6 (14%)	1,3655
Relación cístico/cálculo > 1	318 (99%)	2 (1%)	
Relación cístico/cálculo < 1	9 (9%)	87 (91%)	< 0,05
Litiasis cística	66 (95,6%)	3 (4,4%)	< 0,05

TABLA 2	Efectividad de la ITC según variables intraoperatorias		
Éxito ITC (n=338)	Fracaso ITC (n=78)	p	
Lito < 10 mm	305 (87%)	43 (13%)	
Lito > 10 mm	35 (51%)	33 (49%)	< 0,05
Número litos < 3	310 (90%)	34 (10%)	
Número litos > 3	50 (70%)	22 (30%)	< 0,05
Litos proximales	20 (91%)	2 (9%)	
Litos distales	380 (96%)	14 (4%)	0,2047

| FIGURA 3 | A. Cisticotomía convencional. B. Cisticotomía angulada.

FIGURA 4	% Éxito ITC								
Cálculo < 10 mm	< 3 cálculos	Cístico favorable	Cálculos distales	Litiasis cística	Relación Cist/Cal > 1	99 96 96 92 90 89 87 91 89	87 89 90 91 92 93 94 95 96	80 82 84 86 88 90 92 94 96	Efectividad de la ITC según variables intraoperatorias
Coledocotomía: fue necesaria en 78 casos (18,75%), con un tiempo operatorio de 94 minutos y estadía posoperatoria promedio de 72 horas, con morbilidad en 14 pacientes (17,9%). La tabla 3 muestra la indicación de coledocotomía de acuerdo con el diagnóstico preoperatorio. Luego de la coledocotomía, en 34 casos se realizó coledocraraffia sobre tubo de Kehr, 24 cierres primarios de colédoco (CPC) y 20 derivaciones biliodigestivas (14 coledocoduodenal anastomosis y 6 hepaticoyeyuno anastomosis en Y de Roux).

Conversión a cirugía abierta: se realizó en 4 pacientes (1,7%), todos con diagnóstico preoperatorio de CEHL. Dos casos se convirtieron por múltiples adherencias, un caso para control de hemostasia y desimpactación de un cálculo (SOCAT) y un caso de SOCAT se convirtió para confeccionar una hepaticoyeyuno anastomosis.

Variables posoperatorias

El tiempo de internación posoperatorio promedio fue de 30 horas (rango 24-240 horas). No hubo mortalidad ni lesiones quirúrgicas de la vía biliar (LQVB). Diecisiete pacientes (4%) presentaron complicaciones posoperatorias (Tabla 4).

- Reoperaciones: 2 pacientes (0,48%) requirieron reoperación por sangrado con disfunción hemodinámica. Otros 4 pacientes presentaron hemorragia sin disfunción hemodinámica y fueron manejados en forma conservadora.
- Fugas biliares: se presentaron en 8 casos (1,9%): 5 fueron bilirragias con evolución favorable con tratamiento conservador (dirigidas por drenaje de cavidad) y 3 se presentaron como bilomas que requirieron tratamiento percutáneo. Los 8 casos fueron posteriores a coledocotomías: 5 secundarios a derivaciones biliodigestivas y 3 posteriores a CPC (en los que no se realizó dilatación papilar).
- Infección de sitio quirúrgico: dos pacientes presentaron infección del sitio quirúrgico umbilical, con buena evolución con tratamiento antibiótico.
- Otras complicaciones: dos casos requirieron colocación de una sonda nasogástrica por vómitos y una paciente de alto riesgo quirúrgico con internación prolongada presentó una neumonía que requirió tratamiento antibiótico.
- Litiasis residual: se presentó en 5 pacientes (1,2%). El diagnóstico se realizó con colangiografía y fueron resueltos por CPRE.

Discusión

En las últimas décadas varios trabajos prospectivos aleatorizados y metanálisis han demostrado los beneficios del tratamiento de la litiasis vesicular y coledociana en un tiempo. Una menor estadía hospitalaria, menor morbilidad y menores costos son algunas de las ventajas observadas. El abordaje en un tiempo lleva un mayor tiempo operatorio, requiere contar con material más sofisticado, mayor entrenamiento y habitualmente no es reconocido económicamente, por lo que el tratamiento en dos tiempos es el más utilizado en la práctica diaria. En nuestra experiencia, contando con todos estos elementos mencionados, el tratamiento de la litiasis coledociana por videolaparoscopia en un tiempo tuvo una eficacia del 99%. La gran mayoría de los pacientes fueron resueltos por ITC. De manera similar a otras experiencias, la morbilidad, los costos y el tiempo de estadía hospitalaria fueron menores cuando la litiasis coledociana se resolvió por vía transcística que por coledocotomía.

El porcentaje de éxito de la ITC fue elevado en nuestra serie (81%), pero existen trabajos que muestran cifras cercanas al 95%.
con exclusión de casos con diagnóstico preoperatorio de CEHL, podría explicar esta diferencia. La comparación con una experiencia previa nuestra es favorable: la eficacia de la vía transcística mejoró del 75 al 81%11. Esto podría deberse a la mayor utilización de maniobras para los conductos císticos desfavorables, como la redisección, nueva cisticotomía, litotomía cística, cisticotomía sobre el cálculo coledociano, la dilatación papilar anterógrada transcística y, con menor frecuencia, el descenso de los cálculos intrahepáticos.

Las mayores limitantes para la ITC fueron la relación cístico/cálculo < 1, el tamaño de los cálculos mayor de 10 mm y el diagnóstico preoperatorio de CEHL. El 50% de las conversiones a cirugía abierta de esta serie se debieron a una presentación inusual de la coledocolitiasis. Se trata de pacientes que presentan un síndrome de oclusión coledociana aguda total (SOCAT), que se caracteriza por la instalación de ictericia, con valores de bilirrubina total y fosfatasa alcalina en ascenso progresivo. En la CIO observamos un cálculo que suele estar enclavado en el colédoco medio o distal e impide por completo el pasaje de contraste y de la canastilla, ya sea por ITC o coledocotomía. Muchos casos presentan un afinamiento del colédoco distal al cálculo, situación poco favorable para la resolución endoscópica12,13. Creemos que, en estos pacientes, la CPRE preoperatoria podría resultar útil logrando desimpacatar el cálculo, empujándolo a la zona dilatada de la vía biliar mediante la colocación de un stent que además previene una reimpacatación para luego resolverlo por ITC o coledocotomía. Según algunos autores, el stent podría ayudar en los casos de cálculos impactados disminuyendo su tamaño y favoreciendo su posterior extracción quirúrgica o endoscópica14,15. Esta hipótesis está siendo evaluada mediante un trabajo prospectivo aleatorizado. Otra alternativa para estos casos podría ser la coledoscopscia con litotripsia mediante láser16,17.

Conclusion

En pacientes no seleccionados con litiasis vesicular y coledociana la exploración laparoscópica tiene una eficacia > 99% cuando se cuenta con personal e instrumental adecuados.

La ITC en pacientes sin CEHL tiene una eficacia del 93%, pero esto se ve francamente disminuido en pacientes con CEHL, en quienes la eficacia es del 70%. La morbilidad de pacientes sin CEHL es del 0% y en pacientes con CEHL asciende al 7,4%.

Dada la alta eficacia y baja morbilidad de la ITC sugerimos este tratamiento como primera opción para litiasis coledociana.

El factor más importante como predictor del éxito de la ITC está dado por la relación cístico/cálculo.

Recomendamos el aprendizaje y la realización de CIO sistemática con el objetivo primario de disminuir las LQVB mayores, y el objetivo secundario de resolver la litiasis coledociana en 1 tiempo.

ENGLISH VERSION

Introduction

The incidence of common bile duct stones associated with cholelithiasis increases with age and is about 15-20% in the 8th decade of life, but its management is still controversial4. There are usually two different treatment options: preoperative endoscopic retrograde cholangiopancreatography (ERCP) followed by laparoscopic cholecystectomy (two-stage procedure), or single-stage treatment with intraoperative resection of common bile duct stones during laparoscopic cholecystectomy. The main differences between the two treatments include length of hospital stay, costs and training in laparoscopic surgery12.

The primary outcome of the present study was to evaluate the efficacy and safety of single-stage laparoscopic surgery in a consecutive series of patients with cholelithiasis and choledocholithiasis over a period of 10 years. The secondary outcome was to analyze the variables than can modify the efficacy and safety of this approach.

Material and methods

We conducted a retrospective study at the department of General Surgery, Hospital Cosme Argerich, of prospectively collected data retrieved from an ad hoc database of patients with choledocholithiasis diagnosed by routine intraoperative cholangiography (IOC) over a 10-year period (from July 2008 and July 2018). Patients with previous cholecystectomy (residual stones), severe acute cholangitis, high perioperative risk and severe acute pancreatitis were excluded.

Preoperative variables

- Age
- Sex
- Diagnosis on admission: symptomatic cholelithiasis, acute cholecystitis, acute biliary pancreatitis and choledocholithiasis.
Intraoperative variables

- Operative time
- Rate of successful transcystic exploration and successful choledochotomy
- Conversion rate
- Rate of favorable versus unfavorable cystic duct anatomy
- Relation between cystic duct diameter and gallstone size
- Prevalence of common bile duct stones
- Number, size, and site of gallstones

Postoperative variables

- Complications according to the Clavien-Dindo classification
- Length of hospital stay
- Residual stones
- Biliary fistulas
- Reoperations

Definitions

- Choledocholithiasis: common bile duct diameter > 8 mm or visualization of the gallstone by ultrasound, total bilirubin values > 2 mg/dL or alkaline phosphatase (ALP) > 200 IU/L.
- Favorable cystic duct anatomy: when the cystic duct enters the extrahepatic bile duct from the right lateral aspect and the course is not tortuous. In the absence of this condition, cystic duct anatomy is unfavorable. The cystic duct anatomy may become favorable after further dissection (Fig. 1).

Surgical technique

The instruments used included 30° scope, laparoscopic needle holders, K-type 30-35 probes and 5-mm cannulas for the IOC, Dormia baskets with 4 wires, dilation balloons (6 atm, 10 mm × 3 cm), latex Kehr’s T tubes and C-arm fluoroscopic units.

Laparoscopic cholecystectomy was performed using the traction maneuver described by Hunter and dissecting until the critical view of safety was achieved. After inserting a clip in the proximal segment of the cystic duct, a cannula was introduced through the 5-mm trocar placed in the right hypochondriac region and K-type 30-35 probes was introduced through the cannula for IOC. A difficult progression of the IOC probe with spontaneous bile output was interpreted as the presence of valves in the cystic duct or a tortuous course4 (anatomical cause). A stone impacted in the cystic duct is also a cause of lack of progression of the probe during IOC but without spontaneous bile output and required maneuvers such as milking the stones before removal5. If the milking maneuver failed or the cystic duct anatomy was unfavorable, further dissection of the distal cystic duct and cysticotomy were repeated to clear the stone or place the cholangiography catheter. In all surgeries, a drain was placed in the Morrison’s space, and was removed 24 hours after surgery in the absence of complications.

Management of choledocholithiasis

Stones < 3 mm were managed with transcystic exploration using Dormia baskets or flushing.

We tried to bring down proximal gallstones with blunt instruments (aspirator, atraumatic forceps) under fluoroscopic guidance; if this maneuver was not
successful, the next step was to perform an angled cysticotomy or a minimal choledochotomy to advance the basket to the proximal bile duct. This variant could require minimal bile duct repair (Fig. 3).

When the relation between the cystic duct diameter and gallstone size was < 1 (the gallstone was larger than the cystic duct), the Dormia basket with the gallstone were brought up to the cystic duct and the cysticotomy was extended to facilitate stone extraction. Papillary balloon dilation via a percutaneous transcystic approach is another option to push the stones into the duodenum.

When the transcystic exploration failed we performed laparoscopic choledochotomy in an attempt to clear the stones using the same instruments used for the transcystic exploration. If the gallstones were successfully cleared, antegrade papillary balloon dilation with primary closure of the common bile duct were performed to decrease bile duct pressure and prevent biliary leak. When the papilla was not adequately evacuated or if we were not sure about complete stone clearance, a latex Kehr’s T tube is placed.

Those cases with a large common bile duct (> 15 mm in diameter) with multiple gallstones and a relation between cystic duct diameter and gallstone size < 1 cm were treated with bilo-digestive bypass. Age is the most used variable to decide between choledochoduodenostomy (> 60 years) or hepaticojejunostomy.

Conversion to open surgery was indicated in those cases of impacted stones in the mid or distal common bile duct without passage of contrast material into the duodenum with impossibility to advance a basket or a guidewire (total acute main bile duct obstruction syndrome).

Results

During the period analyzed, 2447 laparoscopic cholecystectomies were performed, and IOC were carried out in 99.7% of the cases; 416 (17%) presented common bile duct stones.

Preoperative variables

- Most patients were women (275 vs. 141) and mean age was 33 years (range 18-88).
- The ASA risk was grade 1 in 158 (38%) patients, grade 2 in 221 (53%) and grade 3 in 37 (9%).
- The diagnoses suspected in 227 (54.5%) patients were jaundice, acute cholangitis, and acute biliary pancreatitis.
- In 189 (45.5%) patients the diagnoses were not suspected and included 72 acute cholecystitis, 70 symptomatic cholelithiasis, 47 acute biliary pancreatitis.

Intraoperative variables

The efficacy of the laparoscopic approach was 99%. Mean operative time was 81 minutes (range 30-250).

- The global efficacy of the transcystic exploration was 81.2%, with an operative time of 55 minutes and mean length of hospital stay of 24 hours, without complications. The efficacy varied according to the different variables analyzed (Tables 1 and 2, Figures 4 and 5).
- Choledochotomy was necessary in 78 cases (18.75%) with mean operative time of 94 minutes and mean hospital length of stay of 72 hours; 14 patients presented developed (17.9%). Table 3 shows the indication of choledochotomy according to the
Figure 3
A. Standard cysticotomy
B. Angled cysticotomy

Table 1
Effectiveness of the transcystic approach according to intraoperative variables

	Successful transcystic exploration (n = 338)	Failed transcystic exploration (n = 78)	p
Favorable cystic duct anatomy	341 (91%)	31 (9%)	
Unfavorable cystic duct anatomy	38 (86%)	6 (14%)	1.3655
Relation between cystic duct diameter and gallstone size > 1	318 (99%)	2 (1%)	
Relation between cystic duct diameter and gallstone size < 1	9 (9%)	87 (91%)	< 0.05
Cystic duct stone	66 (95.6%)	3 (4.4%)	< 0.05

Table 2
Effectiveness of the transcystic approach according to intraoperative variables

	Successful transcystic exploration (n = 338)	Failed transcystic exploration (n = 78)	p
Stone < 10 mm	305 (87%)	43 (13%)	
Stone > 10 mm	35 (51%)	33 (49%)	< 0.05
< 3 stones	310 (90%)	34 (10%)	
> 3 stones	50 (70%)	22 (30%)	< 0.05
Proximal stones	20 (91%)	2 (9%)	
Distal stones	380 (96%)	14 (4%)	0.2047

Figure 4
Effectiveness of the transcystic approach according to intraoperative variables

Figure 5
Effectiveness of the transcystic approach according to preoperative variables
preoperative diagnosis. After choledochotomy, 34 bile duct repair procedures over a Kehr’s T tube were performed, followed by 24 primary closures of the common bile duct and 20 bilio-digestive bypass procedures (14 choledochoduodenostomies and 6 Roux-en-Y hepaticojejunostomies).

- Conversion to open surgery was necessary in 4 patients (1.7%), all of them with preoperative diagnosis of choledocholithiasis. The reasons for conversion were multiple adhesions in 2 cases, management of hemostasis and removal of an impacted gallstone in 1 patient with total acute main bile duct obstruction syndrome and need for hepaticojejunostomy in another patient with total acute main bile duct obstruction syndrome.

Postoperative variables

Mean length of hospital stay was 30 hours (range 24-240 hours). There were no deaths or bile duct injuries. Seventeen patients (4%) with preoperative diagnosis of choledocholithiasis developed postoperative complications (Table 4).

- Two patients (0.48%) required reoperation due to bleeding with hemodynamic impairment. Another 4 patients presented bleeding without hemodynamic impairment and were managed with a conservative approach.
- Bile leaks occurred in 8 cases (1.9%); 5 were biliary leaks with favorable outcome with conservative treatment (based on the assessment of drain output) and 3 presented as biloma that required percutaneous treatment. The 8 cases developed after choledocotomies: 5 after bilio-digestive bypass procedures and 3 after primary closure of the common bile duct (without papillary dilation).
- Two patients presented surgical site infection in the umbilicus that was successfully treated with antibiotics.
- Other complications included placement of a nasogastric tube due to vomiting in two patients, and one patient with high preoperative risk and prolonged hospital stay developed pneumonia and required antibiotics.
- Five patients (1.2%) presented residual stones. The diagnosis was made by magnetic resonance cholangiopancreatography and the patients were successfully treated with ERCP.

Discussion

Over the past decades, several prospective randomized trials and meta-analyses have demonstrated the benefits of the one-stage approach for the management of cholelithiasis and choledocholithiasis. Shorter length of hospital stay, lower incidence of complications are lower costs are some advantages observed. Nevertheless, the operative time is longer with the one-stage approach; the procedure requires more sophisticated equipment and trained staff and is not usually paid accordingly. For these reasons, the two-stage approach is most commonly used in daily practice. In our experience, and considering the aforementioned facts, the efficacy of laparoscopy for the treatment of common bile duct stones in a one-stage strategy had an efficacy of 99%. Most cases were successfully treated by transcystic exploration. In line with other reports, the incidence of complications, costs and length of hospital stay were lower when the common bile duct stones were cleared by transcystic exploration than by choledocotomy.

In our series, the success rate with the transcystic exploration was high (81%) but other studies have shown figures of about 95%. This difference could be explained by the exclusion of cases with preoperative diagnosis of choledocholithiasis. The comparison with our previous experience is favorable: the effectiveness of the transcystic exploration improved from 75 to 81%. This could be due to greater use of maneuvers in case of unfavorable cystic duct anatomy such as further dissection, new cysticotomy, cystic duct lithotomy, cysticotomy over the common bile duct stone, transcystic antegrade papillary dilation and, less frequently, the use of blunting instruments to bring down intrahepatic stones.

The major limitations of the transcystic
approach were a relation between the cystic duct diameter and gallstone size < 1, gallstone size > 10 mm and preoperative diagnosis of choledocholithiasis.

Half of the conversions to open surgery in this series were due to an unusual presentation of choledocholithiasis. These patients presented total acute main bile duct obstruction syndrome characterized by jaundice with progressive increase in total bilirubin and alkaline phosphatase levels. The IOC showed a stone usually lodged in the mid or distal common bile duct that completely blocked the passage of dye and of the basket through the transcystic approach or choledocotomy. In many cases, the common bile duct presents a stricture distal to the stone, a situation hardly favorable to solve endoscopically. We believe that these patients may benefit from preoperative ERCP with stent placement, pushing the stone into the dilated area of the bile duct to prevent further impaction, followed by stone clearance through the transcystic approach or choledocotomy. Some authors state that placement of an endoprosthesis may reduce stone size, allowing later clearance of unextractable stones by open surgery or endoscopy. This hypothesis is being evaluated in a prospective randomized trial. Laparoscopic common bile duct exploration and holmium laser lithotripsy could be another option for these cases.

Conclusions

In non-selected patients with cholecystitis and common bile duct stones, laparoscopic exploration has an efficacy $> 99\%$ when performed by trained operators with adequate instruments.

The efficacy of transcystic exploration in patients without choledocholithiasis is 93% but is significantly reduced in those with choledocholithiasis (70%). The incidence of complications is 0% in those without choledocholithiasis and 7.4% in patients with choledocholithiasis.

We suggest the transcystic approach as the first option to treat common bile duct stones due to the high efficacy of the method and the low rate of complications.

The relationship between cystic duct diameter and stone size is the most important predictor of success.

We emphasize the need for training and recommend routine IOC with the primary aim of reducing major bile duct injuries and the secondary aim of solving choledocholithiasis in a single-stage procedure.

Referencias bibliográficas /References

1. Pekolj J. Tratamiento de la litiasis coledociana por vía laparoscópica. Contínua la controversia. Cir Esp. 2012; 90(3):144-6.
2. Pan L, Chen M, Ji L, et al. The safety and efficacy of laparoscopic common bile duct exploration combined with cholecystectomy for the management of cholecysto-choledocholithiasis: an up-to-date meta-analysis. Ann Surg. 2018; 268(2):247-53. DOI: 10.1097/SLA.0000000000002731
3. Dindo D, Demartines N, Clavien PA. Classification of surgical complications: a new proposal with evaluation in a cohort of 6336 patients and results of a survey. Ann Surg. 2004; 240:205-13.
4. Turner MA, Fulcher AS. The Cystic Duct: Normal Anatomy and Disease Processes. Radiographics. 2001; 21(1):3-22. DOI:10.1148/radiographics.21.1.01rg1013.11.1.01ga093.
5. Canullán CM, Petracci EJ, Bagnietto NF y col. Modificaciones de la estrategia quirúrgica ante el hallazgo intraoperatorio de litiasis cística. Rev Argent Cirug. 2017; 109(3):129-33.
6. Senthilnathan P, Sharma D, Sabnis S. Laparoscopic choledochoduodenostomy as a reliable rescue procedure for complicated bile duct stones. Surg Endosc. 2017; 32(4):1828-33. DOI:10.1007/s00464-017-5868-3.
7. Bautcom R, Feurer I, Shelton J. Surgeons, ERCP and laparoscopic common bile duct exploration: do we need a standard approach for common bile duct stones? Surg Endosc. 2016; 30(2):414-23 DOI:10.1007/s00464-015-4273-2.
8. Wandling M, Hungness E, Pavey E. Nationwide Assessment of Trends in Cholecystolithiasis. Management in the United States from 1998 to 2013. JAMA Surg. 2016; 151(12):1125-30 DOI: 10.1001/jamasurg.2016.2059.
9. Hajiabandeh S, Hajiabandeh S, Diwakar R. Laparoscopic transcystic versus transduodenal common bile duct exploration: a systematic review and meta-analysis. World J Surg. 2019; 43(8):1935-48 DOI:10.1007/s00268-019-05005.
10. Czerwonko ME, Pekolj J, Uad P, et al. Laparoscopic Transcystic Common Bile Duct Exploration in the Emergency Is as Effective and Safe as in Elective Setting. J Gastrointest Surg. 2019; 23(9):1848-55. DOI: 10.1007/s11605-018-4029-x.
11. Chiappetta Porras LT, Nápoli ED, Canullán CM y col. Tratamiento de la coledocolitiasis en un tiempo por videolaparoscopia. Análisis de 10 años de experiencia. Cir Esp. 2007; 82(4):231-4 DOI: 10.1016/s0009-739x(07)7112-8.
12. Yasuda I, Itiö T. Recent advances in endoscopic management of difficult bile duct stones. Digest Endosc. 2013; 25:376-85. DOI: 10.1111/den.12118.
13. Manes G, Paspatis G, Aabakken L, et al. Endoscopic management of common bile duct stones: European Society of Gastrointestinal Endoscopy (ESGE) guideline. Endoscopy. 2019; 51(5):472-91. DOI:10.1055/a-0862-0346.
14. Yang J, Peng J, Chen W. Endoscopic biliary stenting for irretrievable common bile duct stones: indications, advantages, disadvantages, and follow-up results. The Surgeon. 2012; 10(4):211-7. DOI: 10.1016/j.surge.2012.04.003.
15. Horiiuchi A, Nakayama Y, Kajiyama M. Biliary stenting in the management of large or multiple common bile duct stones. Gastrointestinal Endoscopy. 2010; 71(7):1200-03.e2. DOI: 10.1016/j.gie.2009.12.055.
16. Petersson U, Johansen D, Montgomery A. Laparoscopic transcystic laser lithotripsy for common bile duct stone clearance. Surg Laparosc Endosc Percutan Tech. 2015; 25(1):33-6.
17. Varban O, Assimos D, Passman C, et al. Video. Laparoscopic common bile duct exploration and holmium laser lithotripsy: a novel approach to the management of common bile duct stones. Surg Endosc. 2010; 24(7):1759-64.