INVITED REVIEW

Sodium sensing in the brain

Masaharu Noda · Takeshi Y. Hiyama

Received: 24 September 2014 / Revised: 25 November 2014 / Accepted: 27 November 2014 / Published online: 10 December 2014
© The Author(s) 2014. This article is published with open access at Springerlink.com

Abstract Sodium (Na) homeostasis is crucial for life, and the Na⁺ level ([Na⁺]) of body fluids is strictly maintained at a range of 135–145 mM. However, the existence of a [Na⁺] sensor in the brain has long been controversial until Naₓ was identified as the molecular entity of the sensor. This review provides an overview of the [Na⁺]-sensing mechanism in the brain for the regulation of salt intake by summarizing a series of our studies on Naₓ. Naₓ is a Na channel expressed in the circumventricular organs (CVOs) in the brain. Among the CVOs, the subfornical organ (SFO) is the principal site for the control of salt intake behavior, where Naₓ populates the cellular processes of astrocytes and ependymal cells enveloping neurons. A local expression of endothelin-3 in the SFO modulates the [Na⁺] sensitivity for Naₓ activation, and thereby Naₓ is likely to be activated in the physiological [Na⁺] range. Naₓ stably interacts with Na⁺/K⁺-ATPase whereby Na⁺ influx via Naₓ is coupled with activation of Na⁺/K⁺-ATPase associated with the consumption of ATP. The consequent activation of anaerobic glucose metabolism of Naₓ-positive glial cells upregulates the cellular release of lactate, and this lactate functions as a gliotransmitter to activate GABAergic neurons in the SFO. The GABAergic neurons presumably regulate hypothetic neurons involved in the control of salt intake behavior. Recently, a patient with essential hypernatremia caused by autoimmunity to Naₓ was found. In this case, the hypernatremia was considered to be induced by the complement-mediated cell death in the CVOs, where Naₓ specifically populates.

Keywords Salt homeostasis · Na⁺ sensing · Naₓ channel · Sensory circumventricular organs · Subfornical organ

Introduction

Terrestrial animals are exposed to considerable risks of dehydration and salt deficiency, and their life depends on the maintenance of water and salt in the body fluids [3, 4]. Changes in cell volume caused by severe hypertonicity or hypotonicity in body fluids can lead to irreversible damage to organs including nervous systems [5, 7, 62]. To escape from such risks, mammals have a set of homeostatic mechanisms that work together to maintain body fluid osmolality at approximately 300 mOsm/kg mainly through the intake or excretion of water and salt [37, 55]. When animals are dehydrated, both sodium ion concentration ([Na⁺]) and osmolality in body fluids increase because Na⁺ is the major cationic component of extracellular fluids and the main determinant of body fluid osmolality. Na⁺ homeostasis is thus inseparably linked with body fluid control, and [Na⁺] in body fluids needs to be continuously monitored to maintain its physiological range (135–145 mM for mammals) [4, 58].

Bengt Andersson hypothesized the existence of a putative [Na⁺] sensor within the brain nearly four decades ago that is distinct from osmosensors [3, 22]. Since then, a series of experimental evidences has suggested that the [Na⁺] increase in body fluids is detected in the brain [17, 48]. In addition, experimental ablation studies suggested that the anterior wall of the third ventricle is involved in [Na⁺] sensing [4, 17, 39]. However, the precise location of the [Na⁺]-sensing cells and the molecular entity of the [Na⁺]-specific sensor were not

M. Noda (✉) · T. Y. Hiyama
Division of Molecular Neurobiology, National Institute for Basic Biology, 5-1 Higashiyama, Myodaiji-cho, Okazaki 444-8787, Japan
e-mail: modon@nibb.ac.jp

M. Noda · T. Y. Hiyama
School of Life Science, The Graduate University for Advanced Studies, Okazaki 444-8787, Japan
identified for a long time, though it has been a major interest of physiologists.

The most likely candidate sites for [Na+] sensing were postulated to be the circumventricular organs (CVOs) of the brain [16, 17, 57]. The CVOs, midline structures found in the brain of all vertebrates, are so named because of their proximity to the ventricles of the brain [49]. Their specialized common features are extensive vascularization, no blood-brain barrier (BBB), and atypical ependymal cells being exposed to cerebrospinal fluid (CSF). Among the CVOs, only three loci, the subfornical organ (SFO), organum vasculosum of the lamina terminalis (OVLT), and area postrema (AP), harbor neuronal cell bodies that have efferent neural connections to many other areas of the brain. Therefore, these three CVOs are termed sensory CVOs [38] (Fig. 1a). Because of the lack of a BBB, their component cells are exposed to the chemical environment of the systemic circulation, unlike other neural cells in the central nervous system (CNS). The SFO and OVLT situated on the anterior wall of the third ventricle are supposed to be involved in the sensing of [Na+] and osmolality.

The cell type of [Na+] sensing cells has also been a concern whether they are neurons or glial cells. It has been long considered that neurons transmit neural information and glial cells provide nourishment and physical scaffold for neurons. However, it is now widely accepted that glial cells can actively modulate the information processing by neurons via several mechanisms [28, 63].

The primary locus of [Na+] sensing and the molecular entity of the [Na+] sensor

We have long been studying the functional roles of an atypical Na channel NaX, which was initially classified as a subfamily of voltage-gated Na channels and called Na2 [51, 53, 54]. NaX was originally cloned by several independent groups from rat astrocytes [23], the human heart [24], a mouse atrial tumor cell line [21], and the rat dorsal root ganglia (DRG) [2]. The primary structure of NaX markedly differed from that of the other Na channel members, including the key regions for voltage sensing and inactivation [25, 51]. Because previous attempts at the functional expression of NaX in heterologous systems had failed, we generated NaX-gene-knockout (NaX-KO) mice by inserting the lacZ gene in frame to examine the distribution and physiological roles of this channel [51, 65]. NaX was revealed to be expressed in some limited loci in the brain, including the SFO and OVLT [65]. NaX expression in these loci was confirmed by immunohistochemistry [67].

As the SFO and OVLT were the potential loci for [Na+] sensing, we examined the salt intake behaviors of the NaX-KO mice using the two-bottle test, providing them with both distilled water and a 0.3 M NaCl solution to drink [33, 65]. As long as wild-type (WT) and NaX-KO mice were fully satiated with water, they showed no marked preference for either [33]. However, when they were dehydrated, WT mice showed extensive water intake and aversion to saline, while NaX-KO mice did not show such an aversion to the saline (Fig. 1b) [33].

Because NaX-KO mice have a normal tasting ability, including that for salt, the behavioral defects in the NaX-KO mice were supposed to be attributable to some internal sensing mechanisms for [Na+] in body fluids [65]. Consistent with this view, infusion of a hypertonic Na+ solution into the cerebral ventricle did not induce aversion to salt in NaX-KO mice, in contrast to wild-type animals [33]. Importantly, the aversion to salt was not induced by the infusion of a hyperosmotic mannitol solution with physiological [Na+] in either genotype of mice, suggesting that NaX is involved in the [Na+] specific sensing mechanism in the brain [33].

After water deprivation, NaX-KO mice showed marked neuronal activation in the SFO and OVLT compared with WT mice, as estimated by Fos immunoreactivity [65]. The behavioral phenotype of NaX-KO mice was completely recovered by a site-directed transfer of the NaX gene with an adenoviral vector into the SFO (Fig. 1c) [33]. These data clearly indicate that the SFO is the primary locus of [Na+] sensing in the brain for the control of salt intake behavior and that NaX plays a critical role in the sensing mechanism.

Molecular properties of NaX in vitro

We speculated that NaX may open in response to changes in extracellular [Na+] ([Na+]o) and function as the [Na+] sensor in the brain. We verified this possibility by imaging analysis of changes in the intracellular [Na+] ([Na+]i) when the [Na+]o was raised stepwise from the lower amount [34]. When a series of Na+ solutions higher than the physiological level were applied to NaX-positive cells isolated from the SFO, persistent Na+ influx appeared (Fig. 1d) [34]. The threshold value of NaX for [Na+]o was ~150 mM ([19]; see also Fig. 2a). These [Na+] sensitive cells were insensitive to the rise in osmolality or [Cl−]o (Fig. 1e) [34]. As expected, no SFO cells derived from NaX-KO mice showed such responses, and transfection of NaX cDNA conferred [Na+] sensitivity on the cells from NaX-KO mice [53]. Notably, the NaX-immunoreactive cells in these loci were revealed to be glial fibrillary acidic protein (GFAP)-positive glial cells (astrocytes and ependymal cells) [67]. These data indicate that NaX is a Na channel sensitive to an increase in the [Na+]o and that glial cells are sensing cells.
[Na⁺] dependency of Na⁺ in vivo

As aforementioned, [Na⁺] is strictly controlled at 135–145 mM in the blood and CSF of mammals, including humans [58]. In order to maintain the physiological level strictly, the active range of sensitivity of brain [Na⁺] sensor(s) should be within this range. However, the apparent threshold value of Na⁺ activation was ~150 mM in vitro, as described above [34]. Therefore, it was presumed that the threshold value of Na⁺ for [Na⁺] must be modulated in vivo by some unknown mechanism.

Endothelin receptor B (ET receptor B) is predominantly expressed in glial cells in the brain [36] and extremely highly expressed in the SFO [31]. Furthermore, ET peptides and their receptors are intimately involved in the physiological control of systemic blood pressure and Na homeostasis [43]. It was thus tempting to speculate that ET is involved in signaling mechanisms mediated by sensor molecules such as Na⁺ in the SFO.

By our in situ hybridization, ET-3, but not ET-1 or ET-2 messenger RNA (mRNA), was detected in some cells inside the SFO [35]. Moreover, ET-converting enzymes (Ece1 and Ece2), proteases responsible for the conversion of inactive ET
precursors (big endothelin) to bioactive mature forms [41], were also expressed in the SFO in a similar manner [35]. This situation suggested the presence of autocrine or paracrine signaling mechanisms for ET in the SFO (see below).

Enhancement mechanism of Na⁺ sensitivity in vivo by ET-3

We examined the effects of ET-3 on the [Na⁺]o dependency of Na⁺ by using the patch clamp method [35]. [Na⁺]o-sensitive inward currents were observed when the “high Na⁺ solution” ([Na⁺]o=170 mM) was applied to Na⁺-positive SFO cells derived from WT mice [35]. The dose response curve of the [Na⁺]o-dependent response reached a maximum at ~170 mM without ET-3; C_{1/2} was 161 mM (Fig. 2a; [ET-3]=0 nM). When 1 nM ET-3 was applied, the response curve of [Na⁺]o dependency shifted to the lower side; the C_{1/2} value shifted to 133 mM (Fig. 2a; [ET-3]=1 nM). This condition may reflect a physiological situation in vivo.

During dehydration, ET-3 mRNA levels in the SFO increased in a time-dependent manner (Fig. 2b; approximately ten fold at 36 h compared to 0 h). On the other hand, the expression of ETBR was not regulated by dehydration [35]. The activation of Na⁺ via ETBR was revealed to be mediated by a PKC pathway that activates ERK1/2 downstream [35] (Fig. 2c). The phosphorylation of ERK1/2 was consistently and markedly enhanced in the SFO tissues of dehydrated mice [35].

Cells in the SFO, which lacks a BBB, may be exposed to circulating hormones, including ETs [61]. However, ET-3 levels in the plasma and CSF remained low even after 1–2 days of dehydration (ranging from 13 to 32 pM) [35]. Because ET-3 at 50 pM did not affect Na⁺ gating, ET-3 locally produced in the SFO probably stimulates Na⁺-positive glial cells through ETBR in an autocrine or paracrine fashion.

We further demonstrated that a specific blocker of ETBR attenuated the salt-aversive behavior in WT mice induced by dehydration [35]. Even in slightly dehydrated animals, induction of the expression of ET-3 in the SFO may lead to a stimulation of ETBR signaling and a significant enhancement of the sensitivity of Na⁺ to [Na⁺]o, which may help animals respond to dehydration robustly.

Direct interaction between Na⁺ channels and α subunits of Na⁺/K⁺-ATPase

Our analyses using electron microscopy revealed that Na⁺ channels are specifically expressed in perineuronal processes of astrocytes and ependymal cells enveloping particular neural populations, including GABAergic neurons in the SFO (Fig. 3a). These Na⁺-positive glial cells were sensitive to an

Fig. 2 Endothelin-3 (ET-3) signaling shifted the [Na⁺]o dependency of Na⁺ activation to the lower side. a Relationships between the current density and [Na⁺]o in the presence or absence of 1 nM ET-3; n=6 for each. b In situ hybridization for detection of ET-3 expression in the SFO of WT mice. Brains were obtained from mice provided freely with food and water (0 h) or from those provided only with food during the indicated period (12, 24, 36, and 48 h). Sections on the same slide are shown. c Activation cascades of Na⁺ by ETBR signaling. The pathway indicated by dotted lines was suggested not to work for the Na⁺ activation. Reproduced with permission from [35]
increase in the \([\text{Na}^+]_o\) [67], indicating that glial cells, not neurons, are the primary site of \([\text{Na}^+]\) sensing (Fig. 3b). These findings imply that there exists a signal transfer from NaX-positive glial cells to SFO neurons because neuronal activity in the SFO is involved in the control of body fluid homeostasis. However, there was no clue as to the signaling substance or mechanism at that time.

We therefore started with a screening for molecules interacting with the cytoplasmic domains of NaX to better understand the physiological processes involving NaX in glial cells. This screening revealed that NaX channels stably interact with \(\alpha_1\) and \(\alpha_2\) subunits of Na\(^+\)/K\(^+\)-ATPase via its carboxy-terminal region [60]. Subsequent detailed analyses revealed a close physical and functional coupling between NaX and Na\(^+\)/K\(^+\)-ATPase: Binding of NaX to Na\(^+\)/K\(^+\)-ATPase is requisite to \([\text{Na}^+]\)-dependent activation of Na\(^+\)/K\(^+\)-ATPase, and \([\text{Na}^+]_o\)-dependent activation of NaX leads to stimulation of Na\(^+\)/K\(^+\)-ATPase activity [60].

Fig. 3 NaX channels control lactate signaling from glial cells to neurons for \([\text{Na}^+]\) sensing in the SFO. a Immunoelectron microscopy of the SFO using anti-NaX antibody. Neurons (N) and their processes (Np) are enveloped with the immunopositive thin processes of an astrocyte (Ast; blue). Red arrows point to immunopositive signals. Neurons and their processes, including synapses, are surrounded by immunopositive thin processes of astrocytes. Scale bars, 1 \(\mu\)m. b Schematic drawing of NaX-positive ependymal cells and astrocytes in the SFO. The SFO is characterized by the presence of neuronal cell bodies and extensive networks of fenestrated capillaries that allow components of the plasma to leak into the intercellular space. The SFO has contact with the CSF through a single layer of NaX-positive ependymal cells. c Imaging analyses of the uptake of glucose in the SFO using a fluorescent glucose derivative. The SFO tissues isolated from wild-type (WT) and NaX-KO (KO) mice were incubated with the fluorescent glucose analog in 145 mM (left column) or 170 mM (right column) Na\(^+\) solution. Scale bars, 50 \(\mu\)m. d Control of spike frequency of GABAergic neurons in the SFO by NaX. The SFO tissues from WT and NaX-KO mice were treated with the high-Na\(^+\) solution. NaX is indispensable for \([\text{Na}^+]\)-dependent potentiation of the GABAergic firing in the SFO. Reproduced with permission from [67] (a), [52] (b), and [60] (c, d).
Na^+-dependent metabolic enhancement of the Na$_x$-positive glial cells

Activation of Na$^+/K^+$-ATPase potentially stimulates anaerobic metabolism of glucose in glial cells and produces lactate as the end product. To examine whether the Na$_x$ channel is indeed involved in the energy control system in the Na$_x$-positive glial cells in vivo, we performed an imaging analysis of the uptake of glucose in the SFO using a fluorescent glucose derivative. [Na$^+$]$_o$-sensitive glucose uptake was obviously detected selectively in the WT but not in the Na$_x$-KO tissues: After incubation with a hypertonic Na$^-$ solution, an intensively labeled mesh-like structure became apparent in the SFO obtained from WT mice [60] (Fig. 3c). This result suggested that fine glial processes in the SFO actively took up the fluorescent derivative of glucose. The enhancement of glucose uptake was completely abolished by an Na$^+/K^+$-ATPase inhibitor, ouabain, indicating that the activity of Na$^+/K^+$-ATPase plays an essential role in the glucose demand induced by the elevation of the [Na$^+$]$_o$ [60]. Consistently, lactate release from the SFO tissue of WT, but not of Na$_x$-KO mice, was upregulated by incubation with hypertonic Na$^-$ solution [60].

Lactate signaling from glial cells to neurons

We next examined the possibility that lactate mediates the signal transfer from glial cells to neurons to control activity. In the SFO, GABAergic neurons are one of the major neuronal types surrounded by Na$_x$-positive glial processes [67]. In electrophysiological experiments using tissue slices, we found that the GABAergic neurons in the SFO are spontaneously firing, and the firing frequency in the slices of WT mice gradually increased on application of hypertonic Na$^+$ (Fig. 3d, WT). In contrast, the activity of GABAergic neurons in the SFO of Na$_x$-KO mice was not potentiated by hypertonic Na$^+$ (Fig. 3d, KO). GABAergic neurons of both genotypes were increased when lactate was directly added at 1 mM to the perfusate [60]. An inhibitor of monocarboxylate transporters (MCTs), which transport lactate across the membrane, inhibited the Na$^+$-dependent potentiation of the GABAergic firing [60]. Subsequent analyses revealed that the underlying mechanism of the activation was depolarization of GABAergic neurons, due, in part, to the inactivation of the ATP-sensitive K channel (Kir6.2/K$_{ATP}$ channel): the K$_{ATP}$ channel closes in response to an increase of intracellular ATP level as a result of lactate metabolism in neurons [60]. These data clearly indicate that lactate released from glial cells serves as an energy substrate to upregulate the firing activity of the GABAergic neurons. This lactate signaling appears to play a crucial role in the control of neuronal activities involved in the Na intake behavior in the brain.

Summary of the [Na$^+$]-sensing mechanism in the SFO for the control of salt intake behavior

Based on our findings, a schematic overview of the cellular mechanisms for [Na$^+$]$_o$ sensing and [Na$^+$]-dependent regulation of neural activities in the SFO is presented in Fig. 4. The sensory CVOs, including the SFO, are characterized by the extensive networks of fenestrated capillaries which allow ingredients of plasma to be released to the intercellular space. Their ventricular side is partitioned by an ependymal cell layer facing the third ventricle. Na$_x$ channels populate perineural processes of astrocytes and ependymal cells in the SFO. Even under hydrated (normal) conditions, ET-3 level expressed in the SFO could modulate the [Na$^+$]$_o$ dependency of Na$_x$ and make Na$_x$ sensitive to an increase in [Na$^+$]$_o$ in the physiological range. When animals are dehydrated, [Na$^+$]$_o$ in plasma and CSF significantly increases above the usual level. Under such conditions, the [Na$^+$]$_o$ exceeds the threshold of Na$_x$, Na$_x$ channels open, and the [Na$^+$]$_i$ is increased. This leads to activation of Na$^+/K^+$-ATPase in these cells. Activated Na$^+/K^+$-ATPase consumes ATP higher than the usual level to pump out Na$^+$. To fuel Na$^+/K^+$-ATPase with ATP, the glial cells enhance glucose uptake to stimulate anaerobic glycolysis. Lactate, the end product of the anaerobic glycolysis, is released from the glial cells and supplied to neurons, including GABAergic neurons, through the processes enveloping them. Lactate stimulates the activity of the GABAergic neurons through production of ATP, which presumably leads to the regulation of hypothetic neurons involved in the control of salt intake behavior. In dehydrated KO mice, the [Na$^+$]-dependent

Fig. 4 Overview of the [Na$^+$]-sensing mechanism and Na$_x$-dependent regulation of neuronal activity in the SFO. Reproduced with permission from [55]
stimulation of glycolysis is impaired and the activity of the GABAergic neurons is not promoted.

Essential hypernatremia caused by autoimmunity to Naₙ

“Essential hypernatremia” is clinically characterized by chronic elevation of plasma [Na⁺] with an inappropirate lack of thirst and upward resetting of the osmotic set point for vasopressin release, thereby resulting in persistent hypernatremia with a euvoletic state [6, 18, 68]. In most cases of essential hypernatremia, structural abnormalities are commonly detected in the hypothalamic-pituitary area, as a result of trauma, tumors, or inflammation. However, several cases of essential hypernatremia without demonstrable hypothalamic structural lesions have been reported, although the precise mechanism(s) has(have) not yet been elucidated [8, 14, 15, 20, 29, 59].

We examined a patient with essential hypernatremia associated with abnormal reductions in water intake and vasopressin release without demonstrable hypothalamic structural lesions and found that she developed autoantibodies to Naₙ [32, 54]. Passive transfer of the immunoglobulin (Ig) fraction of the patient’s serum in WT mice reproduced her symptoms. This was revealed to be induced by complement-mediated cell death in the CVOs, where Naₙ is specifically expressed [32, 54]. Passive transfer of the immunoglobulin (Ig) fraction of the patient’s serum in WT mice reproduced her symptoms. This was revealed to be induced by complement-mediated cell death in the CVOs, where Naₙ is specifically expressed [32, 54].

The SFO and OVLT have projections to the SON and PVN, which are responsible for regulating the production/release of vasopressin (Fig. 1a) [46, 64]. Histological damage to the SFO and OVLT may be the reason for the dysregulation in vasopressin production/release. This defect in the regulation of vasopressin appears to have caused serious symptoms in the patient.

Since sensory CVOs lack a BBB, antibodies easily leak from blood vessels into these loci [11]. This indicates that cell surface proteins, including channels and transporters in the sensory CVOs, may be easy targets of autoantibodies. Neurons or glial cells in the sensory CVOs are known to express receptors for multiple circulating peptides, including angiotensin II and natriuretic peptides [49]. These receptors may also be potential targets for autoantibodies. We very recently identified more patients with essential hypernatremia whose sera contained autoantibodies that were specifically reactive to the SFO (in preparation). Thus, examination of autoantibodies reactive to the sensory CVOs represents an option for clinical tests of patients with chronic body-fluid disorders.

Naₙ expression in the other loci in the brain and peripheral tissues

Beside the SFO and OVLT, clusters of lacZ expression in the Naₙ-KO mice were also observed in some specific loci in the brain: the medial preoptic area, the anterior and dorsomedial part of the hypothalamic area, dorsomedial part of the interpeduncular nucleus, medial part of the median raphe (so-called rhabdoid nucleus), mesencephalic nucleus of the fifth cranial nerve, median habenular nucleus, median eminence, and neurohypophysis [65]. In addition, relatively weak lacZ expression was detected in the cerebral cortex in layer IV of the lateral area (from the most anterior portion to the end of the posterior portion of the cortex) and the basolateral amygdala [65]. This expression was confirmed by immunohistochemistry using our antibody (our unpublished data).

Grob et al. reported that neurons in the median preoptic nucleus (MnPO) in rats responded to a change in the extracellular sodium concentration [27]. MnPO is a midline structure situated on the anterior wall of the third ventricle between the SFO and OVLT and receives neural connections from these two loci [49]. They also showed that the MnPO in rats was positive for Naₙ expression by in situ hybridization. As aforementioned, we detected X-gal staining in the medial preoptic area but not in the MnPO in Naₙ-KO mice [65]. Recently, the same group reported that this was attributed to the species difference by showing that Naₙ expression in the MnPO is observed in rats but not in mice [50]. However, as far as we examined with our antibody, of which specificity was confirmed by immunostaining using Naₙ-KO mice [34], we could not detect any signals in rat MnPO immunohistochemically (our unpublished data). Because MnPO has a BBB, it may not primarily participate in the [Na⁺] sensing in the brain, though it should be an important locus for integration of the neural information for body fluid homeostasis.

In the peripheral nervous systems, Naₙ expression was detected in the dorsal root ganglia and non-myelinating Schwann cells [65, 66]. In previous papers by other groups, relatively high levels of Naₙ mRNA were detected outside the nervous system, particularly in the lung, heart, and perinatal uterine smooth muscle by Northern blot analysis [2, 23], and in the kidney by reverse transcription-polymerase chain reaction (RT-PCR) [2]. We examined the localization of Naₙ throughout the visceral organs at the cellular level [66]: In the lung especially of neonates, robust Naₙ signals were observed in the alveolar type II cells, which actively absorb sodium and water to aid gas exchange through the alveolar surface [47]. The myometrium of the pregnant uterus was significantly positive for Naₙ expression [65]. In visceral organs including lung, heart, intestine, bladder, kidney and tongue, a subset of Schwann cells within the peripheral nerve trunks and ganglia were highly positive for Naₙ. Further studies revealed that these Naₙ⁺-positive cells were non-myelinating Schwann cells of sympathetic and/or parasympathetic nerve fibers surrounding blood vessels [66]. Recently, Lara et al. reported that Naₙ is expressed in the thick ascending limb and collecting duct cells in rat kidney [44]. However, as far as we examined lacZ expression in the Naₙ-KO mice and...
Na$_+$ expression in wild-type mice by immunohistochemistry, we could not verify the expression in the kidney (our unpublished data).

Future directions

In this review, we summarized a series of our studies on the [Na$^+$/sub] sensing mechanism in the brain for the control of salt intake behavior. Although some candidates for osmosensors have been postulated, the mechanism for osmosensing is still controversial [42, 55], in contrast to the [Na$^+$/sub] sensing. A [Na$^+$/sub] sensing mechanism in the brain is also considered to be involved in the control of blood pressure. Excess dietary salt is one of the decisive factors for the rise of blood pressure [40]. Slightly elevated plasma [Na$^+$/sub] with apparent normovolemia is often observed in hypertensive humans [10]. Increases in [Na$^+$/sub] in CSF by central infusion of Na$^+$-rich artificial CSF cause sympathetic hyperactivity and hypertension [45]. Therefore, some sensing mechanism for [Na$^+$/sub] in CSF is considered to be a decisive factor in salt-sensitive hypertension, though the precise mechanism has not been elucidated [10, 56]. It is noteworthy that lesions of the anteroventral third ventricle region (AV3V), which encompasses the SFO and OVLT, prevent the development or reverse hypertension in several hypertensive rats including Dahl salt-sensitive and DOCA-salt rats [9, 12, 13, 19, 26, 30]. In addition, it was reported that the ventral lamina terminalis mediates enhanced cardiovascular responses of rostral ventrolateral medulla neurons during increased dietary salt [1]. It would be important to examine whether the [Na$^+$/sub] sensing by Na$_+$ in the SFO and/or OVLT is involved in the salt-sensitive control of blood pressure.

Acknowledgments We thank Ms. Akiko Kodama for her secretarial assistance.

Open Access This article is distributed under the terms of the Creative Commons Attribution License which permits any use, distribution, and reproduction in any medium, provided the original author(s) and the source are credited.

References

1. Adams JM, Bardgett ME, Stocker SD (2009) Ventral lamina terminalis mediates enhanced cardiovascular responses of rostral ventrolateral medulla neurons during increased dietary salt. Hypertension 54:308–314
2. Akopian AN, Soutslova V, Sivilotti L, Wood JN (1997) Structure and distribution of a broadly expressed atypical sodium channel. FEBS Lett 400:183–187
3. Andersson B (1971) Thirst—and brain control of water balance. Am Sci 59:408–415
4. Andersson B (1978) Regulation of water intake. Physiol Rev 58:582–603
5. Arieff AI (1993) Management of hyponatraemia. BMJ 307:305–308
6. Avioli LV, Earley LE, Kashima HK (1962) Chronic and sustained hyponatraemia, absence of thirst, diabetes insipidus, and adrenocorticotropic insufficiency resulting from widespread destruction of the hypothalamus. Ann Intern Med 56:131–140
7. Ayus JC, Armstrong DL, Arieff AI (1996) Effects of hyponatraemia in the central nervous system and its therapy in rats and rabbits. J Physiol 492:243–255
8. Bappal B, Sheikh HA, Radhakrishan A, Mula-Abed WA (2006) Adipic hyponatraemia with a reset osmostat. Saudi Med J 27:727–729
9. Berecek KH, Barron KW, Webb RL, Brody MJ (1982) Vasopressin-central nervous system interactions in the development of DOCA hypertension. Hypertension 4:131–137
10. Blaustein MP, Leenen FH, Chen L, Golovina VA, Hamlyn JM, Pallone TL, Van Huyse JW, Zhang J, Wier WG (2012) How NaCl raises blood pressure: a new paradigm for the pathogenesis of salt-dependent hypertension. Am J Physiol Heart Circ Physiol 302:H1031–H1049
11. Broadwell RD, Sofroniev MV (1993) Serum proteins bypass the blood-brain fluid barriers for extracellular entry to the central nervous system. Exp Neurol 120:245–263
12. Buggy J, Fink GD, Johnson AK, Brody MJ (1977) Prevention of the development of renal hypertension by anteroventral third ventricular tissue lesions. Circ Res 40:1110–1117
13. Buggy J, Fink GD, Haywood JR, Johnson AK, Brody MJ (1978) Interruption of the maintenance phase of established hypertension by ablation of the anteroventral third ventricle (AV3V) in rats. Clin Exp Hypertens 1:337–353
14. Cauble MS, Mack-Shipman L, Schaefcr GB, Balakrishnan S, Larsen JL (2001) Idiopathic hypothalamic dysfunction with precocious puberty and adipsic hyponatraemia first presenting in adolescence. J Pediatr Endocrinol Metab 14:1163–1167
15. Conley SB, Brocklebank JT, Taylor IT, Robson AM (1976) Recurrent hyponatraemia; a proposed mechanism in a patient with absence of thirst and abnormal excretion of water. J Pediatr 89:898–903
16. Cox PS, Denton DA, Mowbr DR, Tarjan E (1987) Natriuresis induced by localized perfusion within the third cerebral ventricle of sheep. Am J Physiol Regul Integr Comp Physiol 252:R1–R6
17. Denton DA, McKinley MJ, Weisinger RS (1996) Hypothalamic integration of body fluid regulation. Proc Natl Acad Sci U S A 93:7397–7404
18. DeRubertis FR, Michelin MF, Davis BB (1974) “Essential” hyponatraemia. Report of three cases and review of the literature. Arch Intern Med 134:889–895
19. de Wardener HE (2001) The hypothalamus and hypertension. Physiol Rev 81:1599–1658
20. duRivage SK, Winter RJ, Brouillette RT, Hunt CE, Noah Z (1985) Idiopathic hypothalamic dysfunction and impaired control of breathing. Pediatrics 75:896–898
21. Felipe A, Knittle TJ, Doyle KL, Tamkun MM (1994) Primary structure and differential expression during development and pregnancy of a novel voltage-gated sodium channel in the mouse. J Biol Chem 269:30125–30131
22. Fitzsimons JT (1989) Bengt Andersson’s pioneering demonstration of the hypothalamic “drinking area” and the subsequent osmoreceptor/sodium receptor controversy. Acta Physiol Scand Suppl 583:15–25
23. Gautron S, DeSantos G, Pinto-Henrique D, Koulakoff A, Gros F, Berwald-Netter Y (1992) The glial voltage-gated sodium channel: cell- and tissue-specific mRNA expression. Proc Natl Acad Sci U S A 89:7272–7276
24. George ALJ, Knittle TJ, Tamkun MM (1992) Molecular cloning of an atypical voltage-gated sodium channel expressed in human heart and uterus: evidence for a distinct gene family. Proc Natl Acad Sci U S A 89:4893–4897
25. Goldin AL, Barchi RL, Caldwell JH, Hofmann F, Howe JR, Hunter JC, Kailen RG, Mandel G, Meisler MH, Netter YB, Noda M, Tamkun MM, Waxman SG, Wood JN, Catterall WA (2000) Nomenclature of voltage-gated sodium channels. Neuron 28:365–368

26. Goto A, Ganguj M, Tobian L, Johnson MA, Iwai J (1982) Effect of an anteroinferior third ventricle lesion on NaCl hypertension in Dahl salt-sensitive rats. Am J Physiol Heart Circ Physiol 243:H614–H618

27. Grob M, Drolet G, Mouginot D (2004) Specific Na+ sensors are functionally expressed in a neuronal population of the median preoptic nucleus of the rat. J Neurosci 24:3974–3984

28. Hamilton NB, Attwell D (2010) Do astrocytes really excitate neurotransmitters? Nat Rev Neurosci 11:227–238

29. Hayek A, Peake GT (1982) Hypothalamic adiposia without demonstrable structural lesion. Pediatrics 70:275–278

30. Haywood JR, Fink GD, Buggy J, Boullette S, Johnson AK, Brody MJ (1983) Prevention of two-kidney, one-clip renal hypertension in rat by ablation of AV3V tissue. Am J Physiol Heart Circ Physiol 245: H683–H689

31. Hindmarch C, Fry M, Yao ST, Smith PM, Murphy D, Ferguson AV (2008) Microarray examination of the transcriptome of the subfornical organ in the rat: regulation by fluid and food deprivation. Am J Physiol Regul Integr Comp Physiol 295:R1914–R1920

32. Hiyama TY, Matsuda S, Fujikawa A, Matsumoto M, Watanabe E, Kajiwara H, Niimura F, Noda M (2010) Autoimmunity to the sodium-level sensor in the brain causes essential hypertension. Neuron 66:508–522

33. Hiyama TY, Watanabe E, Okado H, Noda M (2004) The subfornical organ is the primary locus of sodium-level sensing by Na+ sodium channels for the control of salt-intake behavior. J Neurosci 24:9276–9281

34. Hiyama TY, Watanabe E, Ono K, Inenaga K, Tamkun MM, Yoshida M, Matsumoto M, Suzuki R, Matsuda T, Watanabe E, Noda M (2013) Endothelin-3 expression in the subfornical organ enhances the sensitivity of Na+, sodium channels to suppress salt intake. Cell Metab 17:507–519

35. Hiyama TY, Yoshida M, Matsumoto M, Suzuki R, Matsuda T, Watanabe E, Noda M (2013) Endothelin-3 expression in the subfornical organ enhances the sensitivity of Na+, sodium channels to suppress salt intake. Cell Metab 17:507–519

36. Hori S, Komatsu Y, Shigemoto R, Mizuno N, Nakanishi S (1992) Distinct tissue distribution and cellular localization of two messenger ribonucleic acids encoding different subtypes of rat endothelin receptors. Endocrinology 130:1885–1895

37. Hussy N, Deleuze C, Desarménien MG, Moos FC (2000) Osmotic regulation of neuronal activity: a new role for taurine and glial cells in a hypothalamic neuroendocrine structure. Prog Neurobiol 62:113–134

38. Johnson AK, Gross PM (1993) Sensory circumventricular organs and brain homeostatic pathways. FASEB J 7:678–686

39. Johnson RF, Beltz TG, Thunhorst RL, Johnson AK (2003) Investigations on the physiological controls of water and saline intake in C57BL/6 mice. Am J Physiol Regul Integr Comp Physiol 285:R394–R403

40. Kaplan NM (2006) Kaplan’s clinical hypertension, 9th edn. Lippincott, Williams & Wilkins, Philadelphia

41. Kedzierski RM, Yanagisawa M (2001) Endothelin system: the double-edged sword in health and disease. Annu Rev Pharmacol Toxicol 41:851–876

42. Kinsman B, Cowles J, Lay J, Simmonds SS, Browning KN, Stocker SD (2014) Osmoregulatory thirst in mice lacking the transient receptor potential vanilloid type 1 (TRPV1) and/or type 4 (TRPV4) receptor. Am J Physiol Regul Integr Comp Physiol 307: R1092–R1100

43. Kohan DE, Rossi NF, Insoch EW, Pollock DM (2011) Regulation of blood pressure and salt homeostasis by endothelin. Physiol Rev 91:1–77

44. Larsa LS, Satou R, Bourgeois CR, Gonzalez AA, Zsomorok A, Prieto MC, Navar LG (2012) The sodium-activated sodium channel is expressed in the rat kidney thick ascending limb and collecting duct cells and is upregulated during high salt intake. Am J Physiol Renal Physiol 303:F105–F109

45. Leenen FH (2010) The central role of the brain aldosterone—"ouabain" pathway in salt-sensitive hypertension. Biochim Biophys Acta 1802:1132–1139

46. Mangiapane ML, Thrasher TN, Keil LC, Simpson JB, Ganong WF (1984) Role for the subfornical organ in vasopressin release. Brain Res Bull 13:43–47

47. Matalon S, O’Brodovich H (1999) Sodium channels in alveolar epithelial cells: molecular characterization, biophysical properties, and physiological significance. Annu Rev Physiol 61:627–661

48. McKinley MJ, Denton DA, Weisinger RS (1978) Sensors for antidiuresis and thirst—osmoreceptors or CSF sodium detectors? Brain Res 141:89–103

49. McKinley MJ, McMahan RM, Davies P, Giles ME, Penschow J, Sunn N, Uschakov A, Oldfield BJ (2003) The sensory circumventricular organs of the mammalian brain. Adv Anat Embryol Cell Biol 172:1–III–XII

50. Nehmé B, Henry M, Mouginot D, Drolet G (2012) The expression pattern of the Na+-sensor, Na+, in the hydromineral homeostatic network: a comparative study between the rat and mouse. Front Neuroanat 6:26

51. Noda M (2006) The subfornical organ, a specialized sodium channel, and the sensing of sodium levels in the brain. Neuroscience 12:80–91

52. Noda M (2007) Hydromineral neuroendocrinology: mechanism of sensing sodium levels in the mammalian brain. Exp Physiol 92:513–522

53. Noda M, Hiyama TY (2005) Sodium-level-sensitive sodium channel and salt-intake behavior. Chem Senses 30(suppl 1):i44–i45

54. Noda M, Hiyama TY (2014) The Na+ channel: what is it and what it does. Neuroscientist. doi:10.1177/1073858414541009

55. Noda M, Sakuta H (2013) Central regulation of body-fluid homeostasis. Trends Neurosci 36:661–673

56. Orlov SN, Mongin AA (2007) Salt-sensing mechanisms in blood pressure regulation and hypertension. Am J Physiol Heart Circ Physiol 293:H2039–H2053

57. Park R, Denton DA, McKinley MJ, Pennington G, Weisinger RS (1989) Intracerebroventricular saccharide infusions inhibit thirst induced by systemic hypertonicity. Brain Res 493:123–128

58. Peruzzo M, Milani GP, Garzoni L, Longoni L, Simonetti GD, Bettinelli A, Fossali EF, Bianchetti MG (2010) Body fluids and salt metabolism—part II. Ital J Pediatr 36:78–85

59. Schaad U, Vassella F, Zuppinger K, Oetliker O (1979) Hypodipsic hypernatremia syndrome. Helv Paediatr Acta 34:63–76

60. Schaad U, Vassella F, Zuppinger K, Oetliker O (1979) Hypodipsia-hypernatremia syndrome. Helv Paediatr Acta 34:63–76

61. Shimizu H, Watanabe E, Hiyama TY, Nagakura A, Fujikawa A, Okado H, Yanagawa Y, Obata K, Noda M (2007) Glial Na+ channels control lactate signaling to neurons for brain [Na+] sensing. Neuron 54:59–72

62. Smith PM, Ferguson AV (2010) Circulating signals as critical regulators of autonomic state—central roles for the subfornical organ. Am J Physiol Regul Integr Comp Physiol 299:H2039–H2053

63. Tasker JG, Oliet SH, Bains JS, Brown CH, Stern JE (2012) Glial neuroprotection in the organ vasculosum of the lamina terminalis (OVLT) attenuate osmotically-induced drinking and vasopressin secretion in the dog. Endocrinology 110:1837–1839
65. Watanabe E, Fujikawa A, Matsunaga H, Yasoshima Y, Sako N, Yamamoto T, Saegusa C, Noda M (2000) Na_2/NaG channel is involved in control of salt-intake behavior in the CNS. J Neurosci 20:7743–7777

66. Watanabe E, Hiyama TY, Kodama R, Noda M (2002) Na_s sodium channel is expressed in non-myelinating Schwann cells and alveolar type II cells in mice. Neurosci Lett 330:109–113

67. Watanabe E, Hiyama TY, Shimizu H, Kodama R, Hayashi N, Miyata S, Yanagawa Y, Obata K, Noda M (2006) Sodium-level-sensitive sodium channel Na_s is expressed in glial laminate processes in the sensory circumventricular organs. Am J Physiol Regul Integr Comp Physiol 290:R568–R576

68. Welt LG (1962) Hypo- and hypernatremia. Ann Intern Med 56:161–164