Role of Silymarin in Cancer Treatment: Facts, Hypotheses, and Questions

Tomas Koltai, MD, PhD¹ and Larry Fliegel, PhD²

Abstract
The flavonoid silymarin extracted from the seeds of Silybum marianum is a mixture of 6 flavolignan isomers. The 3 more important isomers are silybin (or silibinin), silydianin, and silychristin. Silybin is functionally the most active of these compounds. This group of flavonoids has been extensively studied and they have been used as hepato-protective substances for the mushroom Amanita phalloides intoxication and mainly chronic liver diseases such as alcoholic cirrhosis and nonalcoholic fatty liver. Hepatitis C progression is not, or slightly, modified by silymarin. Recently, it has also been proposed for SARS COVID-19 infection therapy. The biochemical and molecular mechanisms of action of these substances in cancer are subjects of ongoing research. Paradoxically, many of its identified actions such as antioxidant, promoter of ribosomal synthesis, and mitochondrial membrane stabilization, may seem protumoral at first sight, however, silymarin compounds have clear anticancer effects. Some of them are: decreasing migration through multiple targeting, decreasing hypoxia inducible factor-1α expression, inducing apoptosis in some malignant cells, and inhibiting promitotic signaling among others. Interestingly, the antitumoral activity of silymarin compounds is limited to malignant cells while the nonmalignant cells seem not to be affected. Furthermore, there is a long history of silymarin use in human diseases without toxicity after prolonged administration. The ample distribution and easy accessibility to milk thistle—the source of silymarin compounds, its over the counter availability, the fact that it is a weed, some controversial issues regarding bioavailability, and being a nutraceutical rather than a drug, has somehow led medical professionals to view its anticancer effects with skepticism. This is a fundamental reason why it never achieved bedside status in cancer treatment. However, in spite of all the antitumoral effects, silymarin actually has dual effects and in some cases such as pancreatic cancer it can promote stemness. This review deals with recent investigations to elucidate the molecular actions of this flavonoid in cancer, and to consider the possibility of repurposing it. Particular attention is dedicated to silymarin’s dual role in cancer and to some controversies of its real effectiveness.

Keywords
antioxidant, cancer, invasion, migration, milk thistle, silybin, silymarin

Received August 27, 2021. Received revised October 20, 2021. Accepted for publication December 6, 2021.

Introduction
Research on plants and their possible curative properties is not new. It has been occurring since ancient times. In the last 200 years this search has become more scientifically oriented and led to discoveries such as curare, strychnine, atropine, salicylate, digitalis, and more recently taxanes, artemisinin, vitamins, and many others. These naturally originated molecules “have cellular targets similar to those of new drugs developed by pharmaceutical companies.”¹ Many of these natural products were so strikingly important for human health that they swiftly entered clinical practice. Sometimes, they were favorably modified by the pharmaceutical industry and then derivatives with enhanced benefits were born. While taxane compounds are one of the best examples of a success story in oncology, other compounds, not so blatantly effective as

¹ Hospital del Centro Gallego de Buenos Aires, Buenos Aires, Argentina
² University of Alberta, Edmonton, AB, Canada

Corresponding Author:
Larry Fliegel, Department of Biochemistry, Faculty of Medicine, University of Alberta, 347 Medical Science Bldg., Edmonton, AB, Canada, T6G 2H7.
Email: lfliegel@ualberta.ca

Creative Commons Non Commercial CC BY-NC: This article is distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 License (https://creativecommons.org/licenses/by-nc/4.0/) which permits non-commercial use, reproduction and distribution of the work without further permission provided the original work is attributed as specified on the SAGE and Open Access page (https://us.sagepub.com/en-us/nam/open-access-at-sage).
taxanes are on the waiting list. There is also a group of natural products that were, and are, used for known diseases other than cancer. In some cases, their antitumoral effects were slowly recognized and they were repurposed. Silymarin is one of this type of products, with some recognized antitumor effects however, repurposing has not yet occurred. Seeds of *Silybum marianum*, popularly known as milk thistle, have been used since ancient times to treat diverse ailments, and more recently liver damage due to toxins, particularly *Amanita phalloides* poisoning (but including many others such as carbon tetrachloride, metals, allylalcohol) and alcohol-induced damage, including hepatitis, cirrhosis, and jaundice. From a technical point, what are commonly called seeds are actually fruits, but we shall call them seeds following other publication precedents). The last 15 years have witnessed a growing interest in silymarin and the plant it comes from: *Silybum marianum* (L.) Gaertn (also known as *Cardus marianus* and wild artichoke).

Although Silymarin is probably the most thoroughly studied nutraceutical, it is looked upon with skepticism by the medical profession for multiple reasons, such as:

1. ample distribution and easy accessibility to milk thistle;
2. over the counter availability;
3. the fact that it is a weed;
4. some controversial issues regarding bioavailability, and pharmacological actions;
5. its status as a nutraceutical rather than a drug according to FDA;
6. its vulgarization through many nonscientific Internet pages dedicated to silymarin compounds;
7. the enormous number of manufacturers, many of them scarcely known (Figure 1);
8. the direct consequence of this “popularization” is that it is available over the counter at the herbalist shop or through the Internet, rather than with a prescription in the pharmacy;
9. the lack of striking effects on the disease;
10. the fact that it is not usually considered in university-level pharmacology courses.

Definition. Silymarin is the standardized extract obtained from the dried seeds of *Silybum marianum* (milk thistle) containing approximately 70% to 80% of the silymarin complex and an approximately 20% to 30% chemically undefined fraction, comprising mostly other polyphenolic compounds. The main component is silybin (silibinin). Silymarin and silybin are not synonyms. However, many older reports indistinctly use one or the other term, leading to some confusion. Silymarin extract and its components may frequently differ in their effects due to differences in solubility and bioavailability.

History. Silymarin has been used in Europe since the fourth century BCE by Theophrastus of Eresus, and reappears in the year 65 of current era in Pedanius Dioscorides’ *De Materia Medica*. Here he proposed milk thistle for the treatment of serpent venom bite and called it silybon.8 It does not seem to be part of Traditional Chinese Medicine.9 It was also used in Ancient Egypt, however, we do not know exactly for what purpose. During the Renaissance some of the therapeutic effects were discovered and published by herbalists and physicians such as Pietro Andrea Mattioli (1544) and Hieronymus Bock (1539), among others. In the seventeenth century, an English botanist, Nicholas Culpeper, suggested that milk thistle was useful for liver diseases.

Location and Habitat. This invasive annual plant was originally found in the Mediterranean basin, but now it is present in all the continents. It requires dry, warm soil and it is very competitive eliminating other plants.

Chemistry. The standardized extract obtained from the seeds of *Silybum marianum* is known as silymarin which contains between 70% and 80% of silymarin flavolignans. Silymarin is a mixture of 8 flavolignan structurally related isomers: silybin (or silibinin), isosilibinin, silydianin, silychristin, isosilychristin, and taxifolin. The main component of silymarin is Silibinin which is a compound consisting of equal amounts of silybin A and silybin B (CAS 22888-70-6).

BOX 1: Average composition of silymarin.

Component	Percentage
Silybin	60% to 70%
Silychristin	20%
Silydianin	10%
Isosilybin	5%
Taxifolin	1%

Small amounts of the flavonoids: quercetin, kaempferol, apigenin, naringin, eriodyirol.

In 1959, Möschlin isolated silybin, and then in 1968 silymarin chemistry was described in detail by Wagner et al.,16, 17 and Pelter and Hansel. Today, more than 50 years have elapsed since the initial hepatic antitoxic and protective function of the compound was discovered and now, its antitumor activity is under scrutiny (Figures 2 to 4). Silymarin, the active principal component of milk thistle, was originally thought to be one substance, until it was discovered that it is actually composed of a group of different flavolignans (Box 1).

Silybin is stable in acidic conditions but unstable under alkaline conditions. Alkaline media disrupt flavolignan’s skeleton. This is important because the extracellular matrix of tumors has a low pH (approximate pH = 6.8), while intracellular tumor pH is alkaline (approximate pH = 7.5), but only slightly more alkaline than normal cell intracellular pH (approximately = 7.2). Normal cells, on the other hand, have an alkaline extracellular milieu (approximate pH = 7.35). We presume, without evidence to sustain the presumption, that silybin can reach the malignant cell’s acidic extracellular space without degradation. This singular feature, the acidic extracellular pH of tumors, may explain why silybin effects differ in normal versus malignant cells. Silymarin may be able to better access the malignant cell compared with normal cells. This theory needs experimental confirmation.

Production. Silymarin extract is obtained by compressing the seeds which leads to a loss of lipids. Then, the active principal component is extracted with acetone, methanol, ethanol, or
ethyl acetate. After a second lipid and impurities extraction, what is left is a mixture of flavolignans called silymarin. Silybin is obtained from silymarin through methanolic extraction.

Biological activity. In 1975, Desplaces et al showed that silymarin had a protective effect on hepatocytes against phalloidin, the toxin of *Amanita phalloides*, when it was administered before the poison. When it was given immediately after phalloidin, it still protected hepatocytes but when given 30 min later, this protective action was negligible. Phalloidin produces acute hemorrhagic necrosis of hepatocytes. When silymarin was administered before the poison there were no morphologic (electron microscopic level) or biochemical signs of hepatic lesions. Silymarin was adopted as an “hepato-protector” by lay persons and the medical profession based on sometimes controversial evidence.

Hepato-protection. For example in:

1. **Chronic hepatitis B and C:** silymarin was able to lower transaminases but there was no change in viral load. However, Fried et al did not find benefits in chronic hepatitis C virus infected patients with high doses of silymarin, and did not find effective lowering of transaminases. No transaminase lowering was found with silymarin in hepatitis C virus infection in another study with very high doses of silymarin. Other authors arrived to completely different results: silymarin had antiviral actions by blocking hepatitis C virus cellular entry and transmission. As a first conclusion we may say that there is no clear evidence of silymarin’s benefits in chronic hepatitis C.
2. **Alcoholic hepatitis:** Trinchet et al found no significant favorable effects of silymarin in alcoholic hepatitis in a double blind randomized study.
3. **Nonalcoholic fatty liver disease:** In this case, silymarin has shown favorable and less controversial results.
4. **Reduction/inhibition of hepatic fibrosis:** silymarin showed the ability to reduce hepatic fibrosis in the early stages of liver injuries.
5. **Cirrhosis:** a large population study showed that silymarin decreased mortality in patients with hepatic cirrhosis.

In spite of the evidence favoring its benefits in chronic liver disease, “the overall efficacy of silymarin remains unclear”
according to Tighe et al.39 However, there are many, and some potentially beneficial, known biochemical effects of silymarin and silybin. For example, free radical scavenging and antioxidative properties of silybin are well known and have been thoroughly investigated.40 It is considered 10-fold more antioxidant than vitamin E. In 1977, Machicao and Sonnenbichler41 showed that silybin increased RNA synthesis in rat liver cells and mainly increased the production of ribosomal RNA and polymerase A. Shriever et al.42 found that silymarin inhibited fatty acid synthesis in rat liver: fatty-acid-synthetase and ATP-citrate-lyase, 2 of the main lipogenic enzymes, were diminished by about 50%. Fiebrich and Koch43,44 described silymarin as a blocker of prostaglandin production \textit{in vitro} through inhibition of both prostaglandin synthetase and lipoxygenase. This reduction of lipoxygenation was confirmed on liver ribosomes and mitochondria as well and probably explains silymarin’s hepatoprotective actions.45

A few years later Sonnenbichler et al.46 presented the first evidence that silymarin acted in a different way in noncancerous hepatic tissue and malignant cells: in the first case it stimulated DNA synthesis, in the second it did not. Silymarin is also a potent blocker of cyclic AMP breakdown \textit{(in vitro)} by a
phosphodiesterase preparation, an inhibitor of histamine release from human basophil leukocytes, dose-dependent downregulator of in vitro lymphocyte blastogenesis and alters the mitochondrial electron transport chain through mitochondrial calcium release, in addition to its antioxidant properties. Immunostimulatory effects of silymarin were also described in experimental models, but not in the context of cancer treatment.

Silymarin and Other Diseases (Table 1)

Silymarin has been investigated and proposed for the treatment of many different diseases, from Alzheimer dementia to SARS Covid-19, including diabetes, diabetic complications, hyperlipidemia, and hypercholesterolemia among others. However, in the last 15 years, the main focus has been cancer.

Silymarin and Cancer

The first observation of silymarin’s possible benefits in cancer is the 1991 publication by Mehta and Moon. They showed that silymarin could act as a preventive (antipromoter) of cancer in mouse mammary glands treated with DMBA (dimethylbenzanthracene) and TPA (tetradecanoylphorbol acetate). The treatment protocol they employed made it possible to differentiate whether the chemoprevention worked at the initiation stage of carcinogenesis (DMBA phase) or during promotion (TPA phase).

A 1991 review on the advances in pharmacological studies of silymarin by Rui did not mention anticancer activities. But in 1994, Agarwal et al performed a study on skin treated with TPA confirming the protective effect of this flavonoid against tumor promotion. Silymarin protected against induction of ornithine decarboxylase by TPA. Ornithine decarboxylase inhibition protects against tumor promotion. A protective effect of silymarin was also found in colon and small intestine adenocarcinoma cells induced by 1,2-dimethylhydrazine. Silymarin and its components also inhibit beta-glucuronidase.

Valenzuela and Garrido proposed 3 levels for silymarin’s action in experimental animals:

(a) as an antioxidant, by scavenging prooxidant free radicals and by increasing the intracellular concentration of the tripeptide glutathione;
(b) through a regulatory action of cell membrane permeability and increase in its stability against xenobiotic injury;
(c) through nuclear expression, by increasing ribosomal RNA synthesis, by stimulating DNA polymerase I, and by exerting a steroid-like regulatory effect on DNA transcription.

Silymarin also inhibits rat liver cytosolic glutathione S-transferase, although this function does not clearly hint towards anticancer activity. On the other hand, silymarin scavenges reactive oxygen species as noted above, and inhibits...
arachidonic acid metabolism in human cells, \(^{125}\) has antiinflammatory effects similar to those of indomethacin, \(^{126}\) protects skin against carcinogenic agents \(^{127,128}\) and ultraviolet radiation. \(^{129}\) These publications strongly suggest a cancer-preventive activity and silymarin is slowly emerging as an anticancer drug. For example, Scambia et al. \(^{132}\) tested the antiproliferative activity of silymarin on human ovarian and breast cancer cell lines and found a growth-inhibiting effect on both. Silymarin also showed synergism with the commonly used anticancer compounds doxorubicin and cisplatin.

In DU145, prostate carcinoma cells, silymarin showed inhibition of Erb1 (eukaryotic ribosome biogenesis protein 1) signaling and G1 arrest. \(^{133}\) In MDA-MB 486 breast cancer cells, G1 arrest was found due to increased p21 and decreased CDKs activity. \(^{134}\) In advanced human prostate carcinoma cells, silymarin decreased ligand binding to Erb1 \(^{135}\) and NF-kB expression was strongly inhibited by silymarin in hepatoma cells \(^{136}\) as well as in histiocytic lymphoma, HeLa and Jurkat cells. \(^{137}\)

According to ZI and Agarwal, low doses of silymarin inhibited ERK1 and ERK2 Map kinases in a skin cancer cell line (human epidermoid carcinoma A431) and at higher doses activated MAPK/JNK1. This means that at lower doses the effect was antiproliferative and at higher doses proapoptotic. \(^{138}\)

Treating prostate carcinoma cells with silymarin the levels of PSA were significantly decreased and cell growth was inhibited through decreased CDK activity and induction of Cip1/p21 and Kip1/p27. \(^{139}\)

Silymarin has also been shown to have a variety of other protective effects in various cell types, such as anti-COX2 and anti-IL-1\(\alpha\) activity, \(^{140}\) antiangiogenic effects through inhibition of VEGF secretion, upregulation of Insulin like Growth Factor Binding Protein 3 (IGFBP3), \(^{141}\) and inhibition of androgen receptors. \(^{142}\) In leukemia HL-60 cells, silymarin inhibited proliferation and induced differentiation into monocytes in a dose-dependent manner. \(^{143}\) Another important effect of silymarin in cancer is the downregulation of the STAT3 pathway which was seen in many cell models. STAT3 is active in many types of cancer and is associated with poor prognosis and resistance to treatments. \(^{144-146}\) Telomerase activity is another important factor in promoting carcinogenesis and evading senescence, thus inducing cancer cell immortality; silymarin has the ability to decrease telomerase activity in prostate cancer cells. \(^{147}\)

Table 1. Silymarin Research Beyond Hepatoprotection and Cancer: A Summary.

Type of disease	Specific disease	References
Neurologic diseases	General	62,63
Parkinson’s disease		64
Alzheimer	65-67	
Multiple sclerosis	68.69	
Diabetic cognitive impairment	70	
Learning and memory deficits (in mice)	71	
Diabetes	Diabetic complications	72-76
Hypercholesterolemia	Cyclosporine nephrotoxicity	82
Renal diseases	Diabetic nephropathy	83,84
Ischemia/reperfusion	Damage prevention in general	85
In heart muscle	86	
In the central nervous system	87,88	
In the kidney	89,90	
In intestine and bowel	91	
In the stomach	92	
In the lungs	93	
In the liver	94.95	
Multivisceral	96	
Skin	Protection against UV radiation	97-99
Melasma	100	
Rosacea	101	
Immune system	Inhibition of UV-induced immune suppression	102
Infections: Viral	Covid infection	103,104
Anti-Mayaro virus	105	
Anti-Chikungunya virus	106	
Anti-Zika virus	107	
Infections: bacterial	Escherichia coli	108
Amiodarone	Improved effects on atrial flutter	109
Decreased Amiodarone side-effects	110	
Ulcerative colitis	Prolonged remission	111
Inflammatory bowel disease	112	
Irritable bowel syndrome	113	
Migraine	Reduced frequency of attacks	114
Endocrine	Hyperprolactinemia	115
	Decreased hot flashes in menopause	116
	Polycystic ovarian syndrome	117

Silymarin and Apoptosis

The apoptotic mechanism silymarin employs on cancer cells is generally p53 dependent, and follows the usual steps: increased proapoptotic proteins; decreased antiapoptotic proteins; mitochondrial cytochrome C release-caspase activation. \(^{148}\) Caspase inhibitors terminate silymarin apoptotic activity. Malignant p53 negative cells show only minimal apoptosis when treated with silymarin. Therefore, one conclusion is that silymarin may be useful in tumors with conserved p53.

Silymarin and Cancer Cell Migration

Enhanced cell migration is an important part of cancer progression. The antimigratory effects of silymarin in cancer cells are the result of mechanisms that \(^{149}\):

1. inhibit histone deacetylase activity; \(^{149}\)
2. increase histone acetyltransferase activity; \(^{149}\)
3. reduce expression of the transcription factor ZEB1; \(^{149}\)
4. increase expression of E-cadherin; \(^{149}\)
5. increase expression of miR-203; 149
6. reduce activation of sodium hydrogen isoform 1 exchanger (NHE1); 150
7. target β catenin and reduce the levels of MMP2 and MMP9; 151
8. reduce activation of prostaglandin E2; 152
9. suppress vimentin expression; 153
10. inhibit Wnt signaling; 154
11. modulate β1 integrin signaling. 155

Silymarin and Angiogenesis

Angiogenesis is important in cancer growth because solid tumors need a blood supply to grow. Silymarin inhibits angiogenesis. There are various postulated mechanisms:

1. Decreased migration of endothelial cells. 156
2. Flt1 (VEGFR1) upregulation. 157 (VEGFR1 upregulation may act as a negative regulator of VEGFA that is upheld by this receptor with low protein kinase activity and therefore VGEFA is unable to bind to KDR [VEGFR2] with much higher kinase activity). 158
3. VEGF downregulation. 40

Silymarin and Epithelial–Mesenchymal Transition (EMT)

EMT is involved in tumor progression and metastatic expansion. In a transcriptome study of nonsmall cell lung cancer (NSCLC) cells, Kaipa et al 159 found that silibinin had no effect on EMT. However, the opposite was found in other malignant tissues 160–162 where it showed inhibitory effects.

Silymarin and TIMP1

High expression of the tissue inactivator of metalloproteases I, or TIMP1, in cancer is a marker of poor prognosis 163,164 because it is involved in tumor progression, metastasis, and shorter overall patient survival. TIMP1 also promotes accumulation of tumor-associated fibroblasts. 165 Therefore, it may be considered a target in cancer treatment. Silymarin has the capacity to decrease TIMP1 expression 166–168 in mice.

Silymarin and LPAR1

LPAR1 and 3 (lisophosphatidic receptors 1 and 3) are related to cancer invasiveness. 169–172 Silymarin has the ability to downregulate LPAR1. 173

Silymarin and TGF β2

Silibinin reduces the expression of TGF β2 in different tumors such as triple negative breast, 174 prostate, and colorectal cancers. 175 TGF β2 downregulation impedes the TGF β2/Smad pathway reducing cellular motility and MMP2 and MMP9 (metalloproteases) reducing invasion. In the liver, TGF β2 downregulation results in an antifibrotic effect, preventing hepatic fibrosis induced by inflammatory liver diseases. 166,176
Silymarin and Hypoxia Inducible Factor-1α (HIF-1α)

When cells are exposed to hypoxia, HIF-1α accumulates in the nucleus activating transcription of many genes and this plays an important role in tumor progression. Silymarin was found to decrease HIF-1α expression in rainbow trout brain and in rat lung under hypoxic conditions. In prostate cancer cells silibinin inhibited HIF-1α translation.

Silymarin and CD44 and EGFR

CD44, the transmembrane receptor for hyaluronan, is increased in breast cancer and many other tumors, due to EGF (epidermal growth factor) stimulation. Silibinin decreased CD44 expression and the activation of EGFR (epidermal growth factor receptor) by EGF. In prostate cancer, silibinin decreased/inhibited CD44 expression as well. CD44 binding with hyaluronan triggers important protumoral signaling from its intracellular segment, inducing cancer cell survival, angiogenesis, migration, and invasion. The CD44 antigen (synonym HCAM) is a glycoprotein acting as an adhesion molecule on the cell surface. Cell adhesion molecules play an important role in cell migration. In fact, CD44 has been shown to be strongly correlated with invasion and metastasis.

Silymarin Modulation of TNFα (Tumor Necrosis Factor Alpha)

Tyagi et al. showed that silibinin pretreatment of lung cancer cells inhibited TNFα induced “phosphorylation of STAT3, STAT1, and Erk1/2, NF-κB-DNA binding, and expression of COX2, iNOS, matrix metalloproteinases (MMP)2, and MMP9, which was mediated through impairment of STAT3 and STAT1 nuclear localization.”

Silymarin Inhibition of the Wnt/β-Catenin Signaling

The Wnt/β-catenin pathway is critical in cell proliferation, migration, and differentiation. It is a powerful regulator of embryonic development and tumorigenesis. Lu et al. showed that silibinin inhibited the Wnt/β-catenin pathway in both prostate and breast cancer cells.

Silymarin Potentiation of TRAIL-Induced Apoptosis

Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is part of the TNF superfamily. It is known to selectively induce apoptosis in cancer cells without having significant toxicity toward normal cells. Kauntz et al. found silibinin potentiated TRAIL-induced apoptosis in human colon adenocarcinoma cells. Furthermore, this potentiation was also found in TRAIL-resistant cells. Silibinin upregulated Death Receptors 4 and 5, thus increasing the number of receptors for TRAIL binding. Silibinin had the ability to induce not only the extrinsic apoptotic pathway, but also the intrinsic pathway. TRAIL sensitization by silymarin was also found in glioblastoma cells and in hepatocarcinoma.

Silymarin and Phospholipase A2

Secreted phospholipase A2 participates in inflammation and carcinogenesis. Silibinin downregulates secreted phospholipase A2 in cancer cells.

Silymarin and Platelet-Derived Growth Factor (PDGF)

PDGF and its receptor are required for fibroblast proliferation and differentiation. It was found that silibinin had the ability to downregulate PDGF in fibroblasts, thus decreasing proliferation.

Silymarin Decreases the Levels of Interleukin 8 (IL-8)

Interleukin 8 has been identified as a protumoral cytokine and there is evidence showing that inhibition of IL-8 reduces tumorigenesis. Flavonoids, in general, reduce levels of IL-8. Curcumin, apigenin, and silybin showed the ability to decrease IL-8 levels.

Silymarin Inhibits the Signal Transducer and Activator of Transcription 3 (STAT3) Pathway

STAT3 exists in the cytosol of cells and is a focal point of multiple oncogenic pathways. Silymarin inhibited STAT3 phosphorylation and decreased the expression of intranuclear sterol regulatory element binding protein 1 (SREBP1), decreasing lipid synthesis. The final consequences of these inhibitions were growth arrest and apoptosis.

Silibinin Acts as a Mitochondrial “Poison” in Malignant Cells

Si et al. experimenting with 2 human breast cancer cell lines, MCF7 and MDA-MB-231, found that silibinin produced morphological and functional changes in mitochondria: decreased mitochondrial mass, condensed crests, reduced membrane potential and ATP content, and decreased mitochondrial biogenesis.

Silibinin and Metalloproteases

MMP2 and MMP9 play an important role in extracellular matrix remodeling and their levels correlate with progression of neuroblastoma tumors. Yousefi et al. found that silibinin decreased MMP2, MMP9, and urokinase plasminogen activator receptor level (uPAR) in neuroblastoma cells. uPAR is also a marker of cell invasion.
Silymarin and COX2

COX-2 expression in cancer can stimulate angiogenesis and is associated with tumor growth, invasion, and metastasis. Silymarin decreased the expression of COX2 in a model of chemically induced hepatocarcinoma in rats.

Silybinin and Programmed Death-Ligand 1 (PD-L1)

The programmed cell death protein and its ligand (PD-L1) complex play a key role in tumor progression being involved in growth regulation disturbance. This results in a defect in programmed cell death, apoptosis. Silybin inhibits PD-L1 by impeding STAT5 binding in NSCLC. This hints at the possible usefulness of silymarin as a complement to immune checkpoint inhibitors. A similar effect was found in nasopharyngeal carcinoma. In renal carcinoma cells, silybin decreased PD-L1 in murine renal cancer cells in vitro and in vivo.

Silybin and Notch Signaling

The Notch signaling pathway is highly conserved, regulating development and is involved in angiogenesis and metastasis. Silybin inhibited Notch signaling in hepatocellular carcinoma cells showing antitumoral effects. However, dibenzazepine is much more powerful in this respect. Notch was also downregulated by silybin in breast cancer cells impeding notch-1/ERK/Akt signaling and inducing apoptosis.

Silymarin and SIRT1

SIRT1 can deacetylare histones and other substrates and may act in a dual manner: as tumor suppressor or tumor promoter. Silymarin has the ability to increase hepatic SIRT1 expression. Silymarin can also increase SIRT1 expression in other tissues, such as hippocampus, articular chondrocytes, and heart muscle. Silymarin seems to act differently in tumors: in lung cancer cells SIRT1 downregulated SIRT1 and exerted multiple antitumor effects such as reduced adhesion and migration and increased apoptosis. When SIRT1 was independently downregulated with siRNA the silymarin’s antitumoral effects were increased.

Silymarin and VEGF/VEGFR

The angiogenic cytokine vascular endothelial growth factor (VEGF) and its receptor (VEGFR) play critical roles in vasculo genesis and angiogenesis. Jiang et al. found that adding silymarin to prostate and breast cancer cells swiftly reduced the secretion of VEGF to the medium in a dose-dependent manner. Silymarin also prevented VEGF expression in myocardial cells exposed to doxorubicin toxicity as well as other manifestations of cardiotoxicity. A similar decrease in VEGF and VEGFR levels was found with silymarin in preclampsic placenta, however the effect was very modest.

There is evidence showing that silymarin reduces VEGF expression at the transcription level.

Silymarin and Myc

C-Myc is a multifunctional master regulator transcription factor; it is activated by oncogenic pathways, drives many functions for rapid cell division, and inhibits antiproliferative pathways. There is direct and indirect evidence that silymarin interacts with c-Myc in some cases increasing its expression in liver cells as a response to hepatic chemical injuries or decreasing it in malignancies. Rajamanickam et al. found that silymarin could prevent spontaneous tumorigenesis in an APCmin/+ mouse model (prone to develop intestinal tumors) by decreasing β-catenin, cyclin D1, c-Myc, phosho-glycogen synthase kinase-3β expression, phosho-Akt, and cyclooxygenase-2 in polyps. This report confirms silymarin’s multitargeting effects in tumors and its different behavior in nonmalignant cells.

Silymarin and Carbonic Anhydrases

Carbonic anhydrases (CAs) play an important role in cancer progression, particularly those associated with the cell membrane (membrane CAs), namely isoforms CA9 (CAIX) and CA12 (CAXII). These CAs intervene in acidifying the extracellular substance and, working in tandem with sodium bicarbonate cotransporters, increase the intracellular pH. Downregulating or inhibiting membrane CAs has become a valid target for cancer therapy. Silymarin has the ability to inhibit CA isoforms CA I and CA II. However, we could not find any publications specifically addressing silymarin’s role as a possible inhibitor of membrane CAs.

Silymarin and Mitochondria

This is a controversial relationship. On one side, silymarin showed ability to reduce oxygen consumption in mitochondria NAD-dependent substrates, while on the other hand stimulating respiration in mitochondria oxidizing succinate. Silymarin increases mitochondrial release of Ca++ and lowers mitochondrial membrane potential in cancer cells and increases the transmembrane potential in toxic aggressions. Regarding mitochondria we may presume that silymarin has context-dependent effects.

Antimetastatic Potential

Many of the features discussed above hint towards silymarin’s antimetastatic potential. In a TRAMP (Transgenic Adenocarcinoma of the Mouse Prostate) model of prostate carcinoma, when mice were fed with silibinin invasion and metastasis were reduced. The antimetastatic effect was due to less invasion, less EMT, less collagen I-cancer cell adhesion, and less expression of CD44.

In a randomized clinical study with patients harboring solid tumors, silymarin was added to standard chemotherapy. Although
silymarin failed to improve the results, there was a slight— not significant— trend towards reduced metastasis. We think that this study had some flaws which included a small sample size (15 patients with silymarin and 15 with placebo), tumors being present in different organs, and very low dosage (420 mg/day). In spite of these flaws, the trend towards a decrease in metastasis is still interesting and further study with a larger sample population was suggested by the authors.

Silymarin: Decreasing Side Effects and Toxicity of Chemotherapeutic Drugs

Silymarin coadministered with chemotherapeutic drugs has the ability to reduce toxicity in normal organs: it protects against liver and kidney toxicities induced by methotrexate in children and adults treated for leukemia. Silybin decreased cisplatin’s nephrotoxicity without affecting its antitumoral effectiveness. There is also evidence that it protects the heart from doxorubicin toxicity, however, it is less potent than quercetin in this effect. Silymarin reduced docetaxel central and peripheral neurotoxicity. Silymarin was able to decrease diarrhea produced by irinotecan treatment. Silymarin reduced hepatotoxicity in patients with nonmetastatic breast cancer receiving doxorubicin /cyclophosphamide-paclitaxel.

Silymarin and Resistance to Treatment

Rho et al found that adding silymarin to epidermal growth factor receptor tyrosine kinase inhibitors could overcome
resistance produced by the T790M mutation in NSCLC xenografts. The mechanism of action seems to be impeding EGFR dimerization. It was found that bladder cancer cell lines resistant to cisplatin could be resensitized with silymarin. A similar result was obtained with ovarian cancer cells resistant to paclitaxel. The mechanism involved in resensitization to chemotherapeutic drugs is not fully known, however possible factors are: inhibition of NF-κB nuclear migration, inhibition of survival protein levels, downregulation of Pgp (MDR 1), and multidrug resistance-associated protein 1 (MRP 1). Silychristin (a component of silymarin) and silychristin derivatives have shown the particular ability to inhibit Pgp activity in a concentration-dependent manner (see Tables 2 to 12).

Silymarin’s Cancer Chemopreventive Actions

Table 5 summarizes the findings by Vinh et al. that show that silymarin was able to significantly decrease the incidence of bladder neoplasms in male rats receiving the carcinogenic substance 3-N-butyl-1-N-(4-hydroxybutyl) nitrosamine. Interestingly, these results were achieved by oral administration of silymarin and were found in those animals that received silymarin not only at the initiation of carcinogenesis, but also in those of the postcarcinogenic period (for more examples on chemoprevention, see Tables 2 to 12).

Silymarin and Hormonal Receptors

Silymarin is a selective estrogen β receptor (ER-β) agonist. However, it also has some estrogenic effects through ER-α. Silymarin has strong binding affinity to ER-β and a mild affinity for ER-α. Silymarin’s estrogenic actions should be seriously considered as a problem in female hormone-dependent tumors. Furthermore, silymarin’s estrogenic effects are confirmed by the observation that it produces benefits in menopausal women with hot flashes. Contrario sensu, it may be advantageous in benign prostate hyperplasia and prostate cancer. However, in an experiment carried out in albino rats, silymarin increased testosterone and LH. It also increased spermatogenesis in rats. In spite of these 2 findings, the evidence for silymarin benefits in prostate cancer is abundant (see Table 3). Our conclusion is that the possible benefits found in prostate cancer are independent of silymarin’s hormonal effects.

Silymarin Inhibits Clathrin-Dependent Trafficking

Endocytosis is an important mechanism of cell intercommunication which acquires major relevance in cancer. This process is initiated by the invagination of the plasma membrane. The protein clathrin provides A coat to this invagination (Figure 5). The clathrin coated vesicle has the ability to select for the adequate cellular receptor. There is also endocytosis without clathrin coating.
Table 6. Pancreas.

Year, Ref.	Findings
2011320	Silibinin induced cell cycle arrest and apoptosis in certain pancreatic cancer cell lines.
2015321	The combination of an HDAC inhibitor and silibinin had additive effects on growth inhibition and apoptosis of pancreatic cancer cells.
2015322	In an orthotopic model of pancreatic cancer, silibinin reduced glycolytic activity of cancer cells, proliferation, and cachexia.
2013323	Dose-dependent cell growth inhibition was produced by silibinin concentrations between 25 and 100 µM. In xenograft in nude mice, tumor weight was significantly decreased by dietary silibinin.
2018324	SW1990 pancreatic cancer cells showed G1 arrest with decreased cyclins and CDKs and apoptosis with silibinin.

Table 7. Breast.

Year, Ref.	Findings
2004325	Silymarin, as part of a mixture of flavonoids, downregulated the Breast Cancer Resistance Protein (BCRP). The authors propose a “flavonoid cocktail” for this purpose.
2004326	Silibinin synergized with conventional chemotherapeutic drugs in anticancer effects on breast cancer cells.
2009327	Silibinin decreased MMP9 and VEGF expression induced by TPA through downregulation of the Raf/Mek/Erk pathway.
2013328	Silymarin showed synergy with doxorubicin in producing MCF7 cell apoptosis
2014329	Silymarin showed much higher proapoptotic gene induction in a lung cancer cell line than in a breast cancer cell line.
2014330	Silibinin inhibited the accumulation of myeloid derived suppressor cells (MDSC) in murine breast cancer and increased overall survival. Silibinin decreased tumor volume.
2015331	Silibinin induced autophagic death in breast cancer cells. Silibinin treatment decreased ATP levels and altered mitochondrial electric potential with increased ROS accumulation.
2015332	Silibinin induced apoptosis in breast cancer cells. (Comment: the concentrations used were too high and are not achievable in human use).
2015333	ERα inhibition was a key factor in silibinin-induced autophagy and apoptosis. Using ERα inhibitors with silibinin, both apoptosis and autophagia were further increased.
2016334	Silibinin decreased BCL2 proteins in breast cancer cells and normal breast cells and uniformly increased PTEN in different cancer cell lines.
2017335	Silibinin sensitized breast cancer cells to doxorubicin treatment. (Comment: The concentrations used were excessively high and difficult to achieve in the clinical setting).
2017336	Silymarin-loaded iron nanoparticles produced cell cycle arrest in triple negative breast cancer cells.
2017337	Silymarin’s anticancer effects were due to inhibition of Akt and MAPK pathway.
2021338	Silibinin decreased proliferation and viability of MDA-MB-231 and MCF-7 cells in a concentration-dependent manner, inducing apoptosis. These results were obtained in vitro and in vivo.

Silymarin has the ability to inhibit clathrin-dependent trafficking at least in the case of certain viruses such as Hepatitis C virus, reovirus, influenza virus,269,270 and Hepatitis B virus.271 The mechanism behind this inhibition is through interference with the clathrin endocytic pathway. Actually, silymarin interferes with all the clathrin-dependent endocytic processes. Taxifolin, a close relative of silybin, was also found to inhibit receptor-mediated endocytosis of β-hexosaminidase in normal fibroblast culture. There were similar findings with other flavonoids.272

Although there is no experimental evidence in this sense, we may presume that silymarin decreases endocytic trafficking in cancer cells too. Additionally, clathrin has protumoral effects beyond endocytosis: it switches TGF-β into a procancer role.273

Figure 6 shows a simplified overview of the clathrin-dependent endocytosis.

Silymarin and Renal Carcinoma

When targeting renal carcinoma cells with silymarin, migration and invasion were significantly decreased by inhibition of the EGFR/MMP-9 pathway: silymarin blocked phosphorylation of EGFR and ERK1/ERK2 and reduced expression of MMP-9.275 This was confirmed by Liang et al276 and by Chang et al in vivo277 and in our unpublished observations with 2 patients with grade IV clear cell renal carcinoma, who experienced no new metastasis after they started on silymarin.

Silymarin and Pancreatic Cancer

Silymarin has not been extensively tested in pancreatic ductal adenocarcinoma (PDAC) (see Table 6). However, it does have an important antifibrotic effect. One of the major problems in PDAC is the intense stromal reaction with abundant production of stromal collagen fibers.278 These impede delivery of the chemotherapeutic drug to the tumor mass and create interstitial hypertension through the strongly hydrophilic hyaluronan. Therefore, silymarin’s antifibrotic effects may provide an interesting complement to standard treatment.279 Desmoplastic tumors are the consequence of the intense activity of cancer-associated fibroblasts (CAFs) producing
collagen fibers. PDAC and the liver have specialized CAFs known as stellate cells considered the producers of the desmoplastic reaction. Silymarin has been found to inhibit/decrease the desmoplastic reaction through 2 mechanisms:

(a) it inhibits TGF β2 that induces the desmoplastic phenotype of naïve fibroblasts;280
(b) it increases E-cadherin expression 281,282 decreasing the invasive nature of the desmoplastic reaction.

Silymarin decreased fibrosis not only in 2 models of induced liver fibrosis37,283 but also in lung fibrosis induced by cigarette smoke.284 In this last case, this occurred by downregulation of the TGF-β1/Smad 2/3 pathway signaling.

Although we could not find any publication showing that silymarin could reduce the desmoplastic reaction in pancreatic cancer, we may assume that it has the potential to do so, because the mechanisms behind this are similar to those found in liver and lung cancers. Long et al suggested this possibility, however they did not incorporate any evidence in their review.279

1. In a mouse model of induced mammary carcinogenesis, the administration of silymarin, slightly increased mammary tumor incidence.369 This may be due to silymarin’s estrogenic effects,115,261,370 however, the issue remains controversial because silymarin increases ERβ and decreases ERα expression.264
2. In a model of mouse hepatic carcinogenesis (with nitrosodimethyamine), silymarin showed no effects at all.371
3. In a mouse model of alcohol-dependent hepatocarcinoma, silibinin increased tumor progression if chronic alcohol intake continued.372
4. Many of the in vitro experiments described in Table 2 to 12 were performed at very high concentrations that are difficult or impossible to achieve in vivo. On the other hand, in vivo experiments (marked with an X in Tables 2 to 12) were mainly conducted with oral administration of silymarin or silibinin, so those results should have a more significant impact on future clinical research.
5. Most of the published literature on silymarin and cancer does not mention the p53 status of the cells and this information is of capital importance (silymarin shows apoptotic effects on p53 positive cells but not on mutated p53).

Pharmacokinetics

Flavolignans (silymarin is a mixture of flavolignans) generally have poor bioavailability. This is the consequence of:

Year, Ref.	Findings
2005346	Silibinin strongly inhibited growth of hepatocellular cancer cells. It also increased apoptosis with inhibition of CDK2, CDK4, and CDC2 kinases.
2006347 X	Silymarin inhibited hepatocarcinogenesis induced by nitrosodimethyamine.
2008348 X	Silymarin decreased the expression of MMP2 and MMP9 and decreased recruitment of mast cells in vivo in a rat liver carcinogenesis model.
2008349	Silibinin decreased cell proliferation and migration of human hepatocellular cancer cells by inhibiting the Erk 1/2 cascade.
2009350	Silymarin decreased growth of hepatocellular carcinoma (HCC) cells and induced apoptosis.
2009351 X	In a xenograft mouse model of HCC, silibinin reduced growth and proliferation through reduction of Akt/Erk signaling and increased histone acetylation.
2015352	Silibinin increased growth inhibition of hepatocarcinoma cells by either sorafenib or gefitinib.
2020353	Silymarin showed antimetastatic and proapoptotic effects on HepG2 cells through the Slit-2/Robo-1 pathway.

Table 9. Liver.

Year, Ref.	Findings
2002339 X	Silymarin inhibited chemically induced carcinogenesis of the colon in mice.
2013340 X	Silibinin blocked TNFα-induced NF-kB activation in vitro and in vivo. Tumor growth and progression were concomitantly inhibited. Bcl2, COX2, VEGF, and MMPs levels were also diminished by silibinin feeding of xenotransplanted mice.
2015341	Silymarin induced proteasomal degradation of cyclin D1 and inhibited growth of colon cancer cells.
2016342	Treatment with silymarin increased the efficacy of ionizing radiation on colon cancer cells causing increased cell death.
2017343	Silibinin inhibited proliferation and increased apoptosis in colon cancer cells.
2017344 X	The combination of regorafenib and silybin had synergistic antiproliferative and proapoptotic effect. This combination was tested in 22 patients with metastatic colon cancer. No control group was available.
2020345	Sylimarin, associated with other nutraceuticals, reduced intestinal polyp growth in an animal model.

Table 8. Colon.

Year, Ref.	Findings
2005346	Silymarin inhibited chemically induced carcinogenesis of the colon in mice.
2013340 X	Silibinin blocked TNFα-induced NF-kB activation in vitro and in vivo. Tumor growth and progression were concomitantly inhibited. Bcl2, COX2, VEGF, and MMPs levels were also diminished by silibinin feeding of xenotransplanted mice.
2015341	Silymarin induced proteasomal degradation of cyclin D1 and inhibited growth of colon cancer cells.
2016342	Treatment with silymarin increased the efficacy of ionizing radiation on colon cancer cells causing increased cell death.
2017343	Silibinin inhibited proliferation and increased apoptosis in colon cancer cells.
2017344 X	The combination of regorafenib and silybin had synergistic antiproliferative and proapoptotic effect. This combination was tested in 22 patients with metastatic colon cancer. No control group was available.
2020345	Sylimarin, associated with other nutraceuticals, reduced intestinal polyp growth in an animal model.
Table 10. Ovary.

Year, Ref.	Disease	Findings
2014[354]	Promyelocytic leukemia	Silymarin suppressed cell growth and induced caspase-dependent apoptosis with increased p53, p21, and p27, and decreased CDK2.
2003[355] X	Acute myeloid leukemia	A silybin-phosphatidylcholine complex decreased tumor growth in xenografted mice (tumor weight inhibition of 78%).
2013[356] X	Lymphoma	Silibinin decreased tumor growth in vitro and in vivo through downregulation of Erk and Akt signaling.

Table 11. Hematologic.

Year, Ref.	Disease	Findings
2001[143]	Promyelocytic leukemia	Silymarin inhibited proliferation and induces differentiation into monocytes. It showed synergy with vitamin D3.
2010[357]	Acute myeloid leukemia	Silibinin induced differentiation of acute myeloid leukemia cells ex vivo (only in cases in which there were no chromosome aberrations).
2016[358]	Lymphoma	Silibinin induced apoptosis in Alk-positive anaplastic large cell lymphoma by suppressing the phosphorylation of NPM/ALK.
2020[359]	Lymphoma	Epstein-Barr positive lymphoma cell proliferation was inhibited and apoptosis induced through NF-kB inhibition by silymarin.
2016[360]	Multiple myeloma	Silybin suppressed myeloma cell proliferation and induced apoptosis by inhibiting the PI3K/Akt/mTOR pathway.

1. their strongly hydrophobic nature that does permit dilution to more than 50 μg/mL in water. Some organic solvents have a much better performance for this purpose. For example, ethanol shows a solubility of 225 mg/mL[373] however, other authors mention a higher absorption around 30%. In spite of this low absorption, according to Janiak et al, a plasma level of 500 mg/L (500 μg/mL) is achievable 90 min after oral administration of 200 mg/kg of silymarin in mice[375] The pharmacokinetic considerations we shall make refer to the standardized form of silymarin with known amounts of silybin.

Absorption. Silymarin is not soluble in water and oral administration shows poor absorption in the alimentary tract (approximately 1% in rats,[374] however, other authors mention a higher absorption around 30%). In spite of this low absorption, according to Janiak et al, a plasma level of 500 mg/L (500 μg/mL) is achievable 90 min after oral administration of 200 mg/kg of silymarin in mice.[375]

Excretion. Silymarin is mainly excreted in the bile and half-life is 6 h.

Toxicity. Toxicity is almost absent[376] and therefore high oral doses can be administered with negligible side effects.

Dose/absorption studies in humans. A number of other studies have administered various doses and studied the plasma concentration. For example, with oral administration of 240 mg of silybin to 6 healthy volunteers the following results were obtained[377]:

- maximum plasma concentration 0.34 ± 0.16 μg/mL and time to maximum plasma concentration 1.32 ± 0.45 h. Absorption half life 0.17 ± 0.09 h, elimination half life 6.32 ± 3.94 h.[377] Beckmann-Knopp et al[378] also found: “Mean maximum plasma concentration after an oral dose of 700 mg silymarin, containing 254 mg of silibinin, is 317 ng/ml or 0.6 mM. Accumulation in plasma during three daily medications is negligible. Plasma protein binding is reported to reach about 90–95%. “ After feeding volunteers with a smaller dose of 80 mg of a lipophilic silybin-phosphatidylcholine complex (silipide) Gatti et al[379] found that free unconjugated silybin reached a maximum concentration of 141 ng/mL after 2.4 h. The level of conjugated silybin peaked after 3.8 h reaching 255 ng/mL. Another study on 6 healthy volunteers used a larger dose of 560 mg of silymarin and attained concentrations starting at 0.18 and going as high as 0.64 μg/mL.[377] These results are quite different and to some extent controversial.

Absorption studies in animals. Administration of silybin to animals also showed divergent results. In dogs,[380] the silybin-phosphatidylcholine complex (SPC) showed increased concentrations when compared with silymarin extract, however, the results showed a low level in general: SPC: 1.310 ± 880 ng/ml; silymarin: 383 ± 472 ng/ml. While Morazzoni et al[381] found higher peak levels of silybin in the form of silipide when administered to rats: “After oral silipide, silybin reached peak plasma levels within 2 h, with a Cmax of 9.0 ± 3.0 μg/mL for unconjugated drug and 93.4 ± 16.7 μg/mL for total (free + unconjugated drug).”

Pharmacodynamic conclusions: The above studies show that the achievable concentration in humans (with a low dose) is far lower than what was found in rodents (with a high dose). The important issue is that most of the experiments found in the literature at cellular level used a concentration around 100 μg/mL. Even in the study by Morazzoni et al[381] the level of 100 μg/mL was not achieved and in any case it is a peak level that cannot be sustained. Therefore, is the experimental level of 100 μg/mL achievable at the bedside?

We think that there is no evidence that it can be. Oral administration of silymarin in humans achieves nanogram, but not microgram levels. Furthermore, we should not extrapolate Morazzoni’s findings in rats to humans as their pharmacokinetics may differ.
Therefore, the evidence based on these high concentration experiments should be viewed with caution. On the other hand, experiments with xenograft models are more reliable (Tables 2 to 12, xenograft results are marked with an X).

Tissue concentration. For cancer treatment purposes the important data to know are the concentrations achievable in tissues. Zhao and Agarwal\(^{382}\) found the following results in mice 30 min after administration:

- Liver: 8.8 \(\mu\)g per gram of tissue
- Lung: 4.3 \(\mu\)g per gram of tissue
- Stomach: 123 \(\mu\)g per gram of tissue
- Pancreas: 5.8 \(\mu\)g per gram of tissue
- Prostate: 2.5 \(\mu\)g per gram of tissue after 1 h.

After an oral intake, silipide (the lipophilic SPC), achieved a maximum concentration of silybin in bile within 4 h and then declined with a mean time of approximately 10 h.\(^{383}\) Silybin complexed with the amino-sugar meglumine is water soluble and can reach a tissue concentration high enough to show clear antigrowth effects in NSCLC xenografts.\(^{307}\) The distribution in different tissues also varies widely according to the type of tissue considered. It is higher in the liver and diminishes in lungs, pancreas, and prostate.\(^{382}\) A relatively high concentration is achievable in colorectal mucosa (20-141 nmol/g of tissue).\(^{384}\)

The tissue levels obtainable compare unfavorably with those used in cell studies. To achieve apoptosis in cell studies, a concentration of more than 20 \(\mu\)M was necessary,\(^{385}\) and this concentration does not seem easy to achieve by oral intake of standard preparations. It was also necessary to use a concentration of 100 \(\mu\)g/mL to induce apoptosis in Ramos cells (B lymphocytes).\(^{386}\) Kamrani et al.\(^{387}\) used concentrations between 50 and 100 \(\mu\)g/mL to induce apoptosis in colon cancer cells. Therefore, while only a nanomolar concentration can be attained in tissues, micromolar concentrations were needed to induce apoptosis in these studies (the molecular weight of silybin is 482, 100 \(\mu\)g/ml = 207 \(\mu\)M).

In spite of this difficulty, Sing and Agarwal\(^{298}\) found an important decrease in tumor volume in xenografted mice with human prostate carcinoma cells when the mice were orally fed with silymarin.

There are also different requirements for effects on cell migration versus proliferation. For endothelial cells, it was necessary to use a concentration of 48.1 \(\mu\)g/mL of silymarin to achieve a 20% reduction in proliferation and 16.1 \(\mu\)g/mL to achieve the same reduction in proliferation of LoVo colon cancer cells\(^{156}\) to achieve a reduction of migration of 50%, it is necessary a concentration of 1.15 \(\mu\)g/mL on endothelial cells (with silybin instead of silymarin 0.66 \(\mu\)g/mL were enough to achieve the same).\(^{156}\) Our conclusion is that, from a bioavailability standpoint, it is much easier to achieve migration inhibition, than proliferative reduction.

In Europe one of the most used brands of silymarin is Legalon® L (silybin 3,23-O-bis-hemisuccinate) that comes in capsules of 150 mg. It also comes in vials containing 350 mg of silybin for intravenous use. In the United States, silymarin is considered a nutritional supplement.\(^{388}\) The intake of 5 of these capsules in 6 human volunteers, showed no adverse events. The concentration in plasma correlated with the dose and only 10% of it was unconjugated silymarin. A half life of 6 h was estimated.\(^{389}\)

In experimental conditions, many researchers dilute silybin in DMSO, a polar solvent in which silymarin is highly soluble. Unfortunately, this is not possible at the bedside.

Pharmaceutical Methods to Increase Bioavailability

Silymarin’s low solubility, rapid metabolism, and quick excretion, led researchers and pharmaceutical industry to develop methods that could solve these very important drawbacks. Therefore, many compounds have been formulated mainly using nanotechnology. These compounds include nanosuspensions, solid dispersions, complexes with cyclodextrins and phospholipids, microemulsions, nanoemulsions, liposomes, polymer nanocarriers, solid-lipid nanoparticles and nanostructured...
We shall discuss only a few of them.

- **Combination with succinate**: is available on the market under the trade mark Legalon® (bis hemisuccinate silybin).
- **Combination with phosphatidylcholine**: this was the first system developed for a better bioavailability: it consists of the combination of 2 molecules of phosphatidylcholine with one of silybin. It has been registered under the name Siliphos®, but is also known as Idb1016, sili-pide, or phytosome.391–394 This method increased bioavailability 10-fold.395
- **Silybin-cyclodextrin complex**: adding cyclodextrin considerably enhances silymarin’s water solubility.
- **Other combinations with**: meglumine, 23-O-phosphate. The problem with silybin combinations is that although they increase water solubility at the same time, they may reduce other effects such as antioxidant properties.23
- **Nanosuspensions**: are colloidal dispersions of drug particles with surfactants on the surface or other kind of synthetic stabilizers. This method improves dissolution and prolongs drug half life.396
- **Polymeric micelles**: are nano-sized particles in which a hydrophobic substance is fully covered by a hydrophilic external layer. Wu et al397 developed a silybin core included in amphiphilic chitosan micelles.
- **Self micro-emulsifying drug delivery systems (SMEDDS)**: are mixtures of oil and surfactants. Liu et al398 developed a silybin SMEDD that significantly increased its bioavailability.
- **Liposomes**: are lipid bilayer structures with a silybin core. This composition substantially improves bioavailability.399
- **Inclusion in polymeric matrices** that carry and protect the drug.400 There are many other mechanisms based on nano-particles that increase absorption, prolong half life, and improve water solubility of silymarin, that escape the scope of this article. For a review of the issue, see Di Costanzo et al401 and Piazzini et al402 (Figure 7).

Dosage and side Effects

A phase I study of silymarin in prostate cancer patients showed that 13 g daily per os divided into 3 doses was well tolerated.
The most frequent adverse event was asymptomatic liver toxicity. Side effects, although rare, were mainly related to the gastrointestinal tract, such as diarrhea, bloating, and nausea. Abenavoli et al. found that daily doses beyond 1500 mg had laxative effects and increased bile flow. The usual dose of 400 or 800 mg a day is probably insufficient to achieve anticancer effects. It may be necessary to administer 800 mg 4 times a day because the half-life is short. However, the dose of silymarin for cancer treatment remains controversial. In one study, a high dose of silybinin was administered to patients prior to prostatectomy (13 g daily). They achieved high plasma concentrations, but nevertheless, low levels of silibinin were found in prostate tissue. In an attempt to circumvent some of these problems one group used a silymarin-phosphatidylcholine compound administered orally as a daily dose of 2.8 g for 4 weeks prior to surgery. They achieved high levels in human breast cancer tissue. This high bioavailability in this breast cancer study is an encouraging signal for a phase II clinical trial. It should also be noted that silymarin constituents have different anticancer abilities, therefore a formulation of the strongest combination would represent a fundamental step in order to incorporate this flavonoid into standard treatments.

The Main Problems with Silymarin

Problem 1: Bioavailability. The evidence gathered in Tables 2 to 12 clearly shows that silymarin should have a place in cancer treatment. The main problem is its bioavailability. Many of the in vitro investigations have used concentrations that are very difficult to achieve at the bedside. The combination of silymarin with phosphatidylcholine (silipide) has a better bioavailability, however this combination is not available for clinical use.

Problem 2: Dual nature of silymarin’s effects. Silymarin has protumoral and antitumoral effects. For example, in pancreatic cancer it promotes growth arrest and apoptosis (see Table 6) and decreases CD44 signaling. However, Lee et al. found that in addition to the antitumoral actions, silymarin also upregulated cancer stemness-related genes, namely TWIST1, Snail, and c-Jun. At the same time, it decreased p53 wild type and increased Ki-67 (a marker of proliferation). This is a powerful call for caution. On the other hand, in bladder cancer, silymarin seems to decrease stemness through inhibition of the β-catenin/ZEB1 signaling (Wu 178). In pancreatic tumors (PANC1), it was also found that silymarin targeted stem cells decreasing proliferation and increasing apoptosis, and had similar effects in breast cancer cells. These controversies on silymarin protostem or antistem effects may be due to context or tumor dependency. The question remains unsolved.

Problem 3: DNA intercalation. In 2020, Pawar and Jaldappagari reported that flavoglycans had the ability to intercalate into the DNA double helix with moderate binding affinity. Other authors have vehemently contradicted this finding. However, if this silymarin effect on DNA is confirmed, it may have unthought consequences which are favorable (modulating gene activities against cancer) or undesirable (genotoxicity and or mutations). The issue is important enough to encourage further basic research in this area.

Figure 7. Methods to increase silymarin’s bioavailability.
Clinical Trials

The United States Clinical Trials web-page lists the following trials for silymarin in cancer:

1. NCT03130634: The Efficacy of Silymarin as Adjuvant Therapy on Colorectal Cancer patients Undergoing FOLFIRI Treatment.
 - State: recruiting since 2017.
 - Kaohsiung Medical University Chung-Ho Memorial Hospital. Taiwan.
 - Study Design: This is an open-label, randomized, comparative, double arm, single center study to assess efficacy of Silymarin (150 mg 3 times a day) as adjuvant therapy on metastatic colorectal cancer patients undergoing FOLFIRI chemotherapy in Taiwan.

2. NCT00487721: The Effect of High-dose Silybin-phytosome in Men With Prostate Cancer. (A Pilot Biomarker Study of Oral Silybin-Phytosome Followed by Prostatectomy in Patients With Localized prostate cancer).
 - State: completed 2014
 - University of Colorado. Denver
 - Subjects will take Silibin-Phytosome for 2 to 10 weeks.
 - The dose of Silibin-Phytosome is 13 g daily, in 3 divided doses.
 - Outcome: To determine if measurable silibinin tissue levels are detectable in the prostate glands of men treated with Silybin-Phytosome administered according to the protocol.
 - Results: low concentration of silymarin in prostatic tissue.

3. NCT01829178: Evaluation of Effects of Silymarin on Cisplatin Induced Nephrotoxicity in Upper Gastrointestinal Adenocarcinoma.
 - State: completed 2015
 - University of Tehran
 - This study looked for possible protective effects of silymarin on kidney injury in patients receiving cisplatin.
 - No results posted.

4. NCT00055718: Silymarin (Milk Thistle Extract) in Treating Patients with Acute Lymphoblastic Leukemia Who Are Receiving Chemotherapy.
 - State: completed 2013
 - Miami Children's Hospital, Winthrop University Hospital, Mount Sinai Medical School.
 - This study looked for hepatoprotective effects of silymarin in patients receiving chemotherapy.
 - No results posted.

5. NCT02146118: A Phase II Study to Assess Efficacy of Combined Treatment with Erlotinib (Tarceva) and Silybin-phytosome (Siliphos) in Patients With EGFR Mutant Lung Adenocarcinoma.
 - State: unknown
 - Goso University. Busan, Korea.
 - No results.

6. NCT01402648: Estrogen Receptor Beta Agonists (Eviendep) and Polyp Recurrence
 - State: completed 2011
 - Ospedale Policlinico Consorziale—Gastroenterology Unit. Bari, Italy
 - No results.

The conclusion we reach regarding clinical trials is:

1. There were only 2 clinical trials (4 and 5) to determine therapeutic possibilities of silymarin against cancer. Neither have published results.
2. The dose used in the clinical trials showed differences of up to 1000% which clearly means that there is no standard dose.

Schröder et al414 conducted a randomized double-blind, cross-over placebo-controlled trial (with 2 periods of 10 weeks with a wash out period in the middle) with 49 patients that showed rising PSA levels after radical prostatectomy (34) or radiotherapy (15). They received a supplement containing soy, different isoflavones, silymarin, vitamins, minerals, and antioxidants. While receiving the treatment the doubling time for PSA was 1150 days compared with 445 days with the placebo. The fact that the supplement contained many other components besides the silymarin makes it impossible to draw conclusions about this compound. But it is evident that the supplement modified the biochemical evolution of the disease, delaying PSA progression.

Four Clinical Cases

Four clinical case reports are available, which though they cannot in themselves constitute a proof for the efficacy of silymarin, are nonetheless interesting and suggest a need for further studies. Hsu et al415 describe the case of a 66-year-old Taiwanese patient with a regression of an 11 cm diameter hepatocellular carcinoma. The patient was receiving 450 mg of silymarin daily, and no other medication. Even if we cannot consider this regression as a consequence of silymarin treatment, the fact that spontaneous regression of hepatomas is quite infrequent, makes us think of some intervention of silymarin in this unusual event. Moroni and Zanlorenzi416 published another case of complete regression of an advanced unresectable hepatocellular carcinoma treated with sorafenib and silymarin. Additionally, Bosch-Barrera et al417 presented 2 cases of brain metastases from lung cancer in which the treatment with silymarin decreased edema and the size of metastases, without improvement of the primary tumor.

Discussion

The concept of a tumor as a consequence of the mutation of one gene, and with one driver signaling or metabolic pathway, is flawed in most cases with the exception of cases such as chronic myeloid leukemia. Usually many genes and pathways...
are involved. The approach of attacking only one of the many hallmarks of cancer is also flawed. Recent evidence suggests that multiple genes are usually involved along with many signaling pathways, all interconnected, and interdependent and generating an extraordinary ability of tumor cells to survive and resist internal and external threats. This is one of the reasons why treatments made up of many different drugs are implemented in most treatment protocols.

Silymarin and its derivatives, through its multipronged attacks, allow one drug to reach many targets at the same time. Of course, we cannot expect silymarin to “cure” cancer all by itself, and it cannot replace any conventional chemotherapeutic treatment, but it is rather a privileged companion to therapeutic schemes in which it may develop useful complementary activity. This activity entails 3 concepts:

(a) cancer prevention;
(b) synergy with some treatment protocols;
(c) decrease of collateral damage induced by chemotherapeutic drugs.

Silymarin’s clinically achievable concentration in serum and at the tumor site, with the possible exception of the liver, seems insufficient for inducing apoptosis. However, xenograft model experiments showed that even with this low bioavailability drawback, silymarin could stop tumor growth. The first studies on silymarin activity in cancer were performed in hepatic cells showing some characteristics that cannot be really considered antitumoral such as increased ribosomal synthesis and RNA polymerase I activation. This did not happen in hepatoma cells or in other malignant cells (Figure 8).

Antiproliferative activity was found against almost all types of tumors, whether solid or nonsolid (Tables 2 to 12). These findings were confirmed not only at cellular level but also in vivo.

Silymarin has many other antitumor effects that can complement mainstream treatment protocols, such as:

- reduction of cell motility and invasion through TGF-β2 inhibition;
- inhibition of HIF-1α translation;
- decreased TIMP1 expression, thus decreasing metalloproteinases activation;
- inhibition of the EGFR-MMP9 pathway;
- decreasing the accumulation of MDSCs in the tumor;
- inhibition of ERK and AKT signaling;
- protection against off-target toxicity of chemotherapeutic drugs;
- synergistic or added effects with some chemotherapeutics;
- reduction of extracellular fibronectin production.

To this short list we must add that there is evidence sustaining clear benefits in clinical cases such as hepatocarcinoma and clear cell renal carcinoma.

However, silymarin also has some effects that work against classical chemotherapy. For example, its ability as an antioxidant reduces ROS production. Many of the drugs currently used against cancer are precisely based on the creation of an oxidative stress with increased ROS that induces apoptosis of malignant cells.

Therefore, we must ask: why is silymarin a useful complement to chemotherapy?

Evidence indicates that there may be 2 possible answers:
1. Silymarin has context-dependent effects: its behavior is different in normal and malignant cells as can be seen in BOX 2.

2. Its anticancer effects overwhelm those that seem favorable for cancer cell survival.

Box 2. built on references.

Silymarin effects in normal cells
• Increased protein synthesis through increased ribosome formation and RNA polymerase I stimulation.
• Antioxidant effects through increased glutathione production and ROS scavenging.
• Decreased electron leak in the electron transport chain through uncoupling.
• Increased level of mitochondrial membrane potential.
• Anti-apoptotic effect under cellular stress.

Silymarin effects in malignant cells
• Decreased cancer cell migration
• Decreased proliferation
• Decreased angiogenesis
• Decreased expression of HIF-1α
• Decreased expression of TIMP1
• Anti-angiogenic effects
• Reduced/inhibited NF-κB activation
• Inhibited T-cell inflammatory cytokines

What Remains to be Done?

In the first place, some of silymarin’s protumoral effects demand further research with the objective of ascertaining if they need to be counteracted. Then, the precise silymarin concentrations required for the different antitumoral effects need to be established. And finally, the tumor concentration achievable with the different pharmaceutical preparations has to be determined. Once these 3 pieces of information are combined silymarin will be ready for serious clinical trials as a complement to classical chemotherapeutic schedules.

Conclusions

Silymarin compounds have considerable antitumoral effects. Well-planned clinical trials should be necessary to finally assess its bedside indications. Its dual, antitumoral and protumoral, effects merit further research.

Silymarin should be used at very high doses because low concentrations may induce protumoral effects. There is no toxicity even with very high doses. Silymarin’s low absorption and bioavailability make it preferable to use modified pharmaceutical forms, such as nanoparticles or conjugated with compounds that increase its water solubility. These combinations already exist even if they have not been marketed as yet. The abundant existing evidence shows that silymarin has a definite place in cancer treatment. It has the ability to interfere with the expression of proteins related to cell cycle regulation, apoptosis, angiogenesis, and multidrug resistance. These characteristics define an anticancer drug. On the other hand, its strong antioxidant activity makes it a useful drug in cancer prevention.

Silymarin’s lack of toxicity, even at very high doses, and the lack of effects on normal cells are important reasons for its further development.

Is there any other drug, that with no toxicity at all that can:

1. Inhibit EGFR signaling
2. Upregulate CDK inhibitors such as p21 and p27
3. Downregulate CDKs
4. Induce growth arrest by interfering MAPkinases cascade
5. Induce apoptosis
6. Inhibit TGF-alpha
7. Reduce the expression of VEGF and VEGFR
8. Inhibit the AKT axis
9. Decrease tumoral fibrosis

Silybin could be used as a scaffold or structure that can be modified improving its antitumoral effects. For example, Manivannan et al. have synthesized silybin analogues with increased anticancer capacity. One of these compounds named “15k,” was very potent and selective for ovarian cancer cells, where it bound to tubulin with high affinity. Subsequent experiments found that 15k induced growth arrest and apoptosis of ovarian cancer cells at a much lower concentration than silymarin. Furthermore, it showed no toxicity in animals.428

Finally, it is important to note that many of silymarin’s multipronged antitumoral actions are equally, or sometimes even better conveyed by other flavonoids such as genistein and epigallocatechin gallate.429,430
10. and have many other antitumoral effects?

Probably no other drug can achieve all these results without adverse events or high toxicity. We cannot expect that such a nontoxic pharmaceutical work as a stand-alone drug against cancer. But it can be an important factor in a multidrug anticancer schedule. Having mentioned this, the reports of increased stemness problem remain an unsolved issue which needs further investigation.

The inability to patent the compound is no doubt a drawback for the pharmaceutical industry and will restrict investment in these types of compounds. In its bioavailable formulations, silimarin deserves to be tested on clinical grounds, not as a stand-alone pharmaceutical, but as part of a treatment schedule.

Finally, the low concentrations that can be achieved with silimarin extracts at the bedside (in the order of ng/mL) hints to a serious bias in much of the past and present research at the cellular level where the average concentration range used was between 50 and 100 μg/mL. As a precondition for repurposing silimarin, newer pharmaceutical formulations should be screened in order to establish whether they can reach the necessary therapeutic concentrations.

Abbreviations

AR androgen receptor
BCRP Breast cancer resistance protein.
CDK cyclin dependent kinase
CA carbonic anhydrase
CAF cancer associated fibroblast
COX2 cyclooxygenase 2
CXCR4 C-X-C chemokine receptor type 4
DMBA dimethylbenzanthracene
EGF epidermal growth factor
EGFR epidermal growth factor receptor
EMT epithelial–mesenchymal transition
ER estrogen receptor.
ERB1 eukaryotic ribosome biogenesis protein 1
ERK extracellular signal-regulated kinases
FDA Food and Drug Administration (USA)
FKBP5 FK506 binding protein 5
HCC hepatocellular carcinoma
HIF-1 alpha hypoxia inducible factor 1 alpha
HDAC histone deacetylase
IGFBP3 insulin like growth factor binding protein 3
IL interleukin
MDSC myeloid derived suppressor cell
MAPK mitogen-activated protein kinase
MMP metalloproteases
MDR multidrug resistance protein
MRP1 multidrug resistance-associated protein 1
NF-kB nuclear factor-kappa B
NSCLC nonsmall cell lung cancer
PDAC pancreatic ductal adenocarcinoma
PDGF platelet derived growth factor
PD-L1 programmed death ligand 1
PSA prostate specific antigen
Rb retinoblastoma protein
ROS reactive oxygen species
SCLC small cell lung cancer
SIRT1 NAD-dependent deacetylase sirtuin-1
SLIT2 slit homolog 2 protein
SPC self micro-emulsifying drug delivery systems
SREBP1 sterol regulatory element binding protein 1
STAT3 signal transducer and activator of transcription 3
TGF transforming growth factor
TPA tetradecanoylphorbol acetate
TRAIL tumor necrosis factor (TNF)-related apoptosis-inducing ligand
TRAMP transgenic adenocarcinoma of the mouse prostate
UPAR urokinase plasminogen activator receptor
VEGF vascular endothelial growth factor
VEGFR vascular endothelial growth factor receptor
ZEB1 zinc finger E-box-binding homeobox 1

Acknowledgments

Ms. Julia Hanna Weiss cooperated in the revision and correction of the article.

Author Contributions

Both authors equally contributed in the writing of the article.

Declaration of Conflicting Interests

The authors declared no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.

Funding

The authors received no financial support for the research, authorship, and/or publication of this article.

Ethical Approval

Not applicable, because this article does not contain any studies with human or animal subjects

ORCID iD

Tomas Koltai https://orcid.org/0000-0002-7398-5096

Trial Registration

Not applicable, because this article does not contain any clinical trials.

Plagiarism

All the figures, tables, and boxes are original and were developed by the authors.

References

1. Delmas D. Silimarin and derivatives: from biosynthesis to health benefits. *Molecules*. 2020;25(10):2415. https://doi.org/10.3390/molecules25102415
2. Young JA, Evans RA, Hawkes RB. Milk thistle (Silybum marianum) seed germination. *Weed Sci.* 1978;26(4):395-398. https://doi.org/10.1017/S0043174500050189

3. Letteron P, Labbe G, Degott C, et al. Mechanism for the protective effects of silymarin against carbon tetrachloride-induced lipid peroxidation and hepatotoxicity in mice. *Biochem. Pharmacol.* 1990;39:2027-2034. https://doi.org/10.1016/0006-2952(90)90625-U

4. Krén V, Walterova D. Silybin and silymarin—new effects and applications. *Biomed. Papers.* 2005;149(1):29-41. https://doi.org/10.5507/bp.2005.002

5. Saller R, Meier R, Brignoli R. The use of silymarin in the treatment of liver diseases. *Drugs.* 2001;61(14):2035-2063. https://doi.org/10.2165/00003495-200161140-00003

6. Vargas-Mendoza N, Madrigal-Santillán E, Morales-González Á, et al. Hepatoprotective effect of silymarin. *World J Hepatol.* 2014;6(3):144. https://doi.org/10.4254/wjh.v6.i3.144

7. Flora K, Hahn M, Rosen H, Benner K. Milk thistle (Silybum marianum) for the therapy of liver disease. *Am J Gastroenterol.* 1998;93(2):139-143. https://doi.org/10.1038/S0002-9270(97)00008-2

8. Theodosiou E, Puchchartová K, Stamatis H, Křen V. Bioavailability of silymarin flavonolignans: drug formulations and biotransformation. *Phytochem Rev.* 2014;13(1):1-18. https://doi.org/10.1007/s11100-013-9285-5

9. Poljak SJ, Ferenci P, Pawlotsky JM. Hepatoprotective and antiviral functions of silymarin components in hepatitis C virus infection. *Hepatology.* 2013;57(3):1262-1271. https://doi.org/10.1002/hep.26179

10. Federico A, Dallio M, Loguercio C. Silymarin/silybin and chronic infection. *Viral Hepatitis.* 2010;61(14):2035-2063. https://doi.org/10.1002/hep.26179

11. Schadewaldt H. The history of silymarin. *Contribution to the history of liver therapy.* *Med Welt.* 1969;20(15):902-914. PMID: 5784380.

12. Andrzejewska J, Sadowska K, Mielcarek S. Effect of sowing date and rate on the yield and flavonolignan content of the fruits of milk thistle (*Silybum marianum* L. Gaertn.) grown on light soil in a moderate climate. *Ind Crops Prod.* 2011;33(2):462-468. https://doi.org/10.1016/j.indcrop.2010.10.027

13. Takemoto T, Ikegawa S, Nomoto K. Studies on constituents of Silybum marianum (L.) Gaertn. I. New flavonolignans named 2,3-dehydroisilymarin and 2,3-dehydroisilychristin. *AGRIS (FAO of the UN).* 1975;95(8):1017 PMID: 123760. https://doi.org/10.1017/S0043174500050189

14. Kim NC, Graf TN, Sparacino CM, Wani MC, Wall ME. Complete isolation and characterization of silybins and isosilybins from milk thistle (*Silybum marianum*). *Org Biomol Chem.* 2003;1:1684-1689. https://doi.org/10.1039/B30099K

15. Möschlin G. PhD thesis, Karlsruhe University, 1959, mentioned in Biedermann, D., Vavříková, E., Cvák, L., & Křen, V. Chemistry of silybin. *Natural Prod Rep.* 2014;31(9):1138-1157. https://doi.org/10.1039/C3NP07122K

16. Wagner H, Hörhammer L, Seitz M. Chemical evaluation of a silymarin-containing flavonoid concentrate from Silybum marianum (L.) Gaertn. *Arzneimittelforsch.* 1968;8(6):696-698. PMID: 5755806.

17. Wagner H, Hörhammer L, Münster R. On the chemistry of silymarin (silybin), the active principle of the fruits from *Silybum marianum* (L.) Gaertn. (Carduus marianus L.). *Arzneimittelforsch.* 1968;18(6):688-696. PMID: 5755805.

18. Pelter A, Hansel R. The structure of silybin (silybum substance E6), the first flavonolignan. *Tetrahedron Lett.* 1968;9(25):2911-2916. https://doi.org/10.1016/S0040-4039(00)89610-0

19. Cardone RA, Alfarouk KO, Elliott RL, et al. The role of sodium hydrogen exchanger 1 in dysregulation of proton dynamics and reprogramming of cancer metabolism as a sequela. *Int J Mol Sci.* 2019;20(15):3694. https://doi.org/10.3390/ijms20153694

20. Webb BA, Chimenti M, Jacobson MP, Barber DL. Dysregulated pH: a perfect storm for cancer progression. *Nat Rev Cancer.* 2011;11(9):671-677. https://doi.org/10.1038/nrc3110

21. Simánek V, Kren V, Ulrichová J, Vicar J, Cvak L. Silymarin: what is in the name…? An appeal for a change of editorial policy. *Hepatology.* 2000;32(2):442-444. https://doi.org/10.1053/jhep.2000.9770

22. Biedermann D, Vavříková E, Cvák L, Krén V. Chemistry of silybin. *Nat Prod Rep.* 2014;31(9):1138-1157. https://doi.org/10.1039/C3NP07122K

23. Gazár K, Svobodová A, Psohotová J, et al. Oxidised derivatives of silybin and their antiradical and antioxidant activity. *Bioorg Med Chem.* 2004;12(21):5677-5687. https://doi.org/10.1016/j.bmc.2004.07.064

24. Kroll DJ, Shaw HS, Oberlies NH. Milk thistle nomenclature: why it matters in cancer research and pharmacokinetic studies. *Integr Cancer Ther.* 2007;6(2):110-119. https://doi.org/10.1177/1537354707301825

25. Deep G, Oberlies HH, Kroll DJ, Agarwal R. Identifying the differential effects of silymarin constituents on cell growth and cell cycle regulatory molecules in human prostate cancer cells. *Int J Cancer.* 2008;123(1):41-50. https://doi.org/10.1002/ijc.23485

26. Ding TM, Tian SJ, Zhang ZX, et al. Determination of active component in silymarin by RP-LC and LC/MS. *J Pharm Biomed Anal.* 2001;26(1):155-161. https://doi.org/10.1016/S0731-7085(01)00364-8

27. Desplaces A, Choppin J, Vogel G, Trost W. The effects of silymarin on experimental phaloidine poisoning. *Arzneim-Forsch.* 1975;25(1):89-96. PMID: 125090.

28. Tuchweber B, Sieck R, Trost W. Prevention by silybin of phalloidin-induced acute hepatotoxicity. *Toxicol Appl Pharmacol.* 1979;51(2):265-275. https://doi.org/10.1016/0041-008X(79)90469-1

29. Mayer KE, Myers RP, Lee SS. Silymarin treatment of viral hepatitis: a systematic review. *J Viral Hepat.* 2005;12(6):559-567. https://doi.org/10.1111/j.1365-2893.2005.00636.x

30. Fried MW, Navarro VJ, Afdhal N, et al. Effect of silymarin (milk thistle) on liver disease in patients with chronic hepatitis C successfully treated with interferon therapy: a randomized controlled trial. *Jama.* 2012;308(3):274-282. https://doi.org/10.1001/jama.2012.8265
31. Hawke RL, Schriever SJ, Soule TA, Wen Z, Smith PC, Reddy KR, SynCH Trial Group. Silymarin ascending multiple oral
dosing phase I study in noncirrhotic patients with chronic hepatitis C. J Clin Pharmacol. 2010;50(4):434-449. https://doi.org/10.
1177/0091270009347475
32. Wagoner J, Negash A, Kane OJ, et al. Multiple effects of silymarin on the hepatitis C virus lifecycle. Hepatology. 2010;
51(6):1912-1921. doi: https://doi.org/10.1002/hep.23587
33. Trinchet JC, Coste T, Levy VG, et al. Treatment of alcoholic hepatitis with silymarin. A double-blind comparative study in 116
patients. Gastroenterol Clin Biol. 1989;13(2):120-124. PMID: 2707520.
34. Soliman NA, El-Daridy SA. Taraxacum officinale and Silybum marianum alone or combined orchestrate experimentally induced
hepatic steatosis through lipogenecity, glucose tolerance and oxidant/antioxidant status. Int J Biol Chem Sci. 2015; 9(4):1918-1928. https://doi.org/10.4314/ijbcs.v9i44.17
35. Xu N, Wang H. Silymarin attenuated hepatic steatosis through regulation of lipid metabolism and oxidative stress in a mouse
model of nonalcoholic fatty liver disease (NAFLD). Am J Transl Res. 2016;8(2):1073. PMID: 27158393.
36. Zhu SY, Jiang N, Yang J, et al. Silybum marianum oil attenuates hepatic steatosis and oxidative stress in high fat diet-fed mice. Biomed Pharmacother. 2018;100:191-197. https://doi.org/10. 1016/j.biopharma.2018.01.144
37. Clichici S, Olteanu D, Nagy AL, Oros A, Filip A, Mircea PA. Silymarin inhibits the progression of fibrosis in the early stages
of liver injury in CCl4-treated rats. Silymarin inhibits the development of diet-induced fibrosis in the early stages of liver injury in
rats. Hepatol. 2002;35(3):538-541. https://doi.org/10.1097/01.HeP.0000049384.69916.60
38. Ferenci P, Dragosics B, Dittrich H, et al. Randomized controlled trial of silymarin treatment in patients with cirrhosis of the liver. J Hepatol. 1989;9(1):105-113. https://doi.org/10. 1016/0168-8278(89)90083-4
39. Zhu SY, Jiang N, Yang J, et al. Silybum marianum oil attenuates hepatic steatosis and oxidative stress in high fat diet-fed mice. Biomed Pharmacother. 2018;100:191-197. https://doi.org/10. 1016/j.biopharma.2018.01.144
40. Basaga H, Poli G, Tekkaya C, Aras I. Free radical scavenging and antioxidant properties of ‘silibin’ complexes on microsomal lipid
peroxidation. Cell Biochem Funct. 1997;15(1):27-33. https://doi.org/10.1002/SICJ19970844(199703)15:1<27::
AID-CBF174-3.0.CO;2-W
41. Machicafo F, Sonnenbichler J. Mechanism of the stimulation of RNA synthesis in rat liver nuclei by silybin. Hoppe Seylers Z
Physiol Chem. 1977;358(2):141-147. https://doi.org/10.1515/bchem2.1977.358.1.141
42. Shirshewer H, Krämer U, Rukowski G, Borjis KJ. Influence of silybin-dihemisuccinate on fatty acid synthesis in rat liver. Arzneimittelforschung. 1979;29(3):524-526. PMID: 39576.
43. Fiebrich F, Koch H. Silymarin an inhibitor of prostaglandin synthetase. Experiencia. 1979;35(12):1550-1552. https://doi.org/10.1007/ BF01953185
44. Fiebrich F, Koch H. Silymarin an inhibitor of lipoxygenase. Experiencia. 1979;35(12):1548-1560. https://doi.org/10.1007/ BF01953184
45. Bindoli A, Cavallini L, Siliprandi N. Inhibitory action of silymarin of lipid peroxide formation in rat liver mitochondria and
microsomes. Biochem Pharmacol. 1977;26(24):2405-2409. https://doi.org/10.1016/0006-2952(77)90449-X
46. Sonnenbichler J, Goldberg M, Hane L, Madabunyi I, Vogl S, Zell I. Stimulatory effect of silibinin on the DNA synthesis in partially hepatectomized rat livers: non-response in hepatoma and other malign cell lines. Biochem Pharmacol. 1986;35(3):538-541. https://doi.org/10.1016/0006-2952(86)90233-9
47. Koch HP, Bachner J, Löfler E. Silymarin: potent inhibitor of cyclic AMP phosphodiesterase. Methods Find Exp Clin Pharmacol. 1985;7(8):409-413. PMID: 3001454.
48. Fiebrich F, Koch H. Silymarin a inhibitor of lipooxygenase. Planta Med. 1986;52(6):438-440. https://doi.org/10.1055/s-2007-969247
49. Elan-Kopaie M, Nasri H. Silymarin and diabetic nephropathy. J Renal Inj Prev. 2012;1(1):3. https://doi.org/10.12861/jrip.2012.02
50. Chávez E, Bravo C. Silymarin-induced mitochondrial Ca2+ release. Life Sci. 1988;43(12):975-981. https://doi.org/10.1016/ 0024-3205(88)90542-5
51. Valenzuela A, Guerra R, Vidalia LA. Antioxidant properties of the flavonoids silybin and (+) cyanidanol-3: comparison with butylated hydroxyanisole and butylated hydroxytoluene. Planta Med. 1986;52(6):438-440. https://doi.org/10.1055/s-2007-96
52. Wilsrumsne C, Kittur S, Shah G, et al. Immunomodulatory effect of Silybum Marianum (milk thistle) extract. Med Sci Monit. 2002;8(11):BR439-BR443. PMID: 12444368.
53. Esmaeil N, Anaraki SB, Ghargozloo M, Moayed B. Silymarin impacts on immune system as an immunomodulator: one key for many locks. Int Immunopharmacol. 2017;50:194-201. https://doi.org/10.1016/j.intimp.2017.06.030
54. Wu ZS, Wu Q, Yang JH, et al. Prognostic significance of MMP-9 and TIMP-1 serum and tissue expression in breast cancer. Int J Cancer. 2008;122(9):2050-2056. https://doi.org/10.1002/ijc.23337
55. Stolf AM, Cardoso CC, Acco A. Effects of silymarin on diabetes mellitus complications: a review. Phytother Res. 2017; 31(3):366-374. https://doi.org/10.1002/ptr.5768
56. Tsvorkey MJ, El-Desouki NI, Kamel RA. Cytoprotective effect of silymarin against diabetes-induced cardiomycocyte apoptosis in diabetic rats. Biomed Environ Sci. 2015;28(1):36-43. https://doi.org/10.3967/bes2015.004
57. Rafieian-Kopaeia M, Nasr H. Silymarin and diabetic nephropathy. J Renal Inj Prev. 2012;1(1):3. https://doi.org/10.12861/jrip.2012.02
58. García-Ramírez M, Turch M, Simó-Servat O, Hernández C, Simó R. Silymarin prevents diabetes-induced hyperpermeability in human retinal endothelial cells. Endocrinologia, diabetes y nutricion. 2018;65(4):200-205. https://doi.org/10.1016/j.endinu.2017.12.004
59. Krečman V, Škottová N, Walterová D, Ulrichová J, Šimánek V. Silymarin inhibits the development of diet-induced
24

Journal of Evidence-Based Integrative Medicine

60. Haddadi R, Shahidi Z, Eyvari-Brooshghalan S. Silymarin and new therapeutic potentials of milk thistle (Silybum marianum). Nat Prod Commun. 2013;8(12). https://doi.org/10.1177/1934578X130801236

61. Skottova N, Krecman V, Walterova D, Ulrichova J, Simanek V. Effects of silymarin and silybin on lipoprotein cholesterol levels and oxidizability of low density lipoproteins in rats. Atherosclerosis. 1997;134(1–2):134-134. eLIBRARY ID: 279046. ISSN0021-9150.

62. Haddadi R, Shahidi Z, Eyvari-Brooshghalan S. Silymarin and neurodegenerative diseases: therapeutic potential and basic molecular mechanisms. Phytomedicine. 2020;79:153320. https://doi.org/10.1016/j.phymed.2020.153320

63. Borah A, Paul R, Choudhury S, et al. Neuroprotective potential of silymarin against CNS disorders: insight into the pathways and molecular mechanisms of action. CNS Neurosci Ther. 2013;19(11):847-853. https://doi.org/10.1111/cns.12175

64. Wang MJ, Lin WW, Chen HL, et al. Silymarin protects dopaminergic neurons against lipopolysaccharide-induced neurotoxicity by inhibiting microglia activation. Eur J Neurosci. 2002;16(11):2103-2112. https://doi.org/10.1046/j.1460-9568.2002.02290.x

65. Yaghmaei P, Azarfar K, Dezfulian M, Ebrahim-Habibi A. Silymarin effect on amyloid-β plaque accumulation and gene expression of APP in an Alzheimer’s disease rat model. DARU J Pharmaceut Sci. 2014;22(1):1-7. https://doi.org/10.1186/2008-2231-22-24

66. Wang MJ, Lin WW, Chen HL, et al. Silymarin protects dopaminergic neurons against lipopolysaccharide-induced neurotoxicity by inhibiting microglia activation. Eur J Neurosci. 2002;16(11):2103-2112. https://doi.org/10.1046/j.1460-9568.2002.02290.x

67. Shariati M, Shakhtoukhtin V, Schulzke JD, et al. Silymarin protects pancreatic β-cells against cytokine-mediated toxicity: implication of c-Jun NH2-terminal kinase and janus kinase/signal transducer and activator of transcription pathways. Endocrinology. 2005;146(1):175-185. https://doi.org/10.1210/en.2004-0850

68. Huseini HF, Larijani B, Heshmat R, et al. The efficacy of Silybum marianum (L.) gaertn.(silymarin) in the treatment of type II diabetes: a randomized, double-blind, placebo-controlled, clinical trial. Phytother Res. 2013;27(5):664-668. https://doi.org/10.1002/ptr.1988

69. Hussain SAR. Silymarin as an adjunct to glibenclamide therapy improves long-term and postprandial glycemic control and body mass index in type 2 diabetes. J Med Food. 2007;10(3):543-547. https://doi.org/10.1089/jmf.2006.089

70. Voroneanu L, Nistor I, Dumea R, Apetrii M, Covic A. Silymarin in type 2 diabetes mellitus: a systematic review and meta-analysis of randomized controlled trials. J Diabetes Res. 2016; 20(12) Volume 2016. Article ID 5147468 https://doi.org/10.1155/2016/5147468

71. Skottová N, Večerá R, Urbánek K. Effect of silymarin and its polyphenolic fraction on cholesterol absorption in rats. Pharmacol Res. 2006;53(2):104-112. https://doi.org/10.1016/j.phrs.2005.09.004

72. Soto CP, Perez BL, Favari LP, Reyes JL. Prevention of alloxan-induced diabetes mellitus in the rat by silymarin. Comparative Biochemistry and Physiology Part C: pharmacology. Toxicol Endocrinol. 1998;119(2):125-129. https://doi.org/10.1016/S0742-8413(97)00198-9

73. Matsuda T, Ferreri K, Todorov I, et al. Silymarin protects pancreatic β-cells against cytokine-mediated toxicity: implication of c-Jun NH2-terminal kinase and janus kinase/signal transducer and activator of transcription pathways. Endocrinology. 2005;146(1):175-185. https://doi.org/10.1210/en.2004-0850

74. Huseini HF, Larijani B, Heshmat R, et al. The efficacy of Silybum marianum (L.) gaertn.(silymarin) in the treatment of type II diabetes: a randomized, double-blind, placebo-controlled, clinical trial. Phytother Res. 2016; 20(12) Volume 2016. Article ID 5147468 https://doi.org/10.1155/2016/5147468

75. Hussain SAR. Silymarin as an adjunct to glibenclamide therapy improves long-term and postprandial glycemic control and body mass index in type 2 diabetes. J Med Food. 2007;10(3):543-547. https://doi.org/10.1089/jmf.2006.089

76. Voroneanu L, Nistor I, Dumea R, Apetrii M, Covic A. Silymarin in type 2 diabetes mellitus: a systematic review and meta-analysis of randomized controlled trials. J Diabetes Res. 2016; 20(12) Volume 2016. Article ID 5147468 https://doi.org/10.1155/2016/5147468

77. Sobolová L, Skottová N, Večerá R, Urbánek K. Effect of silymarin and its polyphenolic fraction on cholesterol absorption in rats. Pharmacol Res. 2006;53(2):104-112. https://doi.org/10.1016/j.phrs.2005.09.004

78. Skottová N, Večerá R, Urbánek K, Váňa P, Walterová D, Čvak L. Effects of polyphenolic fraction of silymarin on lipoprotein profile in rats fed cholesterol-rich diets. Pharmacol Res. 2003;47(1):17-26. https://doi.org/10.1016/S1043-6618(02)00252-9

79. Skottová N, Krečman V. Silymarin as a potential hypocholesterolaemic drug. Physiol Res. 1998;47(1):1-7. PMID: 9708694.

80. Nassuato G, Iemmolo RM, Strazzabosco M. Effect of silibinin on biliary lipid composition experimental and clinical study. J Hepatol. 1992;12:290-295. https://doi.org/10.1016/0168-8278(91)90029-Z

81. Somogyi A, Ecsedi GG, Blazovics A, Miskolczi K, Gergely P, Feher J. Short term treatment of type II hyperlipoproteinaemia with silymarin. Acta Med Hung. 1989;46:289-295. PMID: 2699920.

82. Zima T, Kamenikova L, Janebova M, Buchar E, Crkovska J, Urbanova V, Urbanova V, Urbanova V. The effect of silymarin on kidneys of rats suffering from alloxan-induced diabetes mellitus. J Basic Clin Physiol Pharmacol. 2019;30(4). https://doi.org/10.1515/jbcpp-2018-0109

83. Jin G, Bai D, Yin S, et al. Silibinin rescues learning and memory deficits by attenuating microglia activation and preventing neuroinflammatory reactions in SAMPS mice. Neurosci Lett. 2016;629:256-261. https://doi.org/10.1016/j.neulet.2016.06.008
94. Younis NN, Shaheen MA, Mahmoud MF. Silymarin preconditioning protects end organs from ultraviolet radiation-induced apoptosis and DNA damage by nucleotide excision repair mechanism. *PLoS ONE*. 2011;6(6):e21410. https://doi.org/10.1371/journal.pone.0021410

95. Turgut F, Bayrak O, Catal F, et al. Antioxidant and protective effects of silymarin on pulmonary vascular dysfunction through NF-κB and STAT-1 activation. *Phytotherapy Research*. 2010;17(12):963-973. https://doi.org/10.1016/j.phymed.2010.03.012

96. Koçarslan A, Koçarslan S, Aydin MS, et al. Intraperitoneal silymarin or TUDC. *Phytomedicine*. 2010;17(12):963-973. https://doi.org/10.1016/j.phymed.2010.03.012

97. de la Lastra CA, Martin MJ, Motilva V, Jimenez M, La Casa C, Lopez A. Gastroprotection induced by silymarin, the hepatoprotective principle of Silybum marianum in ischaemia-reperfusion injury. *Int Urol Nephrol*. 2008;40(2):453-460. https://doi.org/10.1007/s11255-008-9365-4

98. Demir M, Amanvermez R, Polat AK, et al. The effect of silymarin on mesenteric ischemia-reperfusion injury. *Med Princ Pract*. 2014;23(2):140-144. https://doi.org/10.1159/000356860

99. Jong Y, Zhao X, Zhang H, Li Q, Lu G, Zhao X. Modulatory effect of silymarin on pulmonary vascular dysfunction through HIF-1α-iNOS following rat lung ischemia-reperfusion injury. *Exp Ther Med*. 2016;12(2):1135-1140. https://doi.org/10.3892/etm.2016.3370

100. Younis NN, Shaheen MA, Mahmoud MF. Silymarin preconditioning protects insulin resistant rats from liver ischemia-reperfusion injury: role of neutrophils. *Planta Med*. 1995;61(02):116-119. https://doi.org/10.1055/s-2006-958028

101. Jin Y, Zhao X, Zhang H, Li Q, Lu G, Zhao X. Modulatory effect of silymarin on pulmonary vascular dysfunction through HIF-1α-iNOS following rat lung ischemia-reperfusion injury. *Exp Ther Med*. 2016;12(2):1135-1140. https://doi.org/10.3892/etm.2016.3370

102. Camini FC, da Silva TF, da Silva Caetano CC, et al. Cardioprotective activity of silymarin or TUDC. *Exp Ther Med*. 2016;34284.8147

103. Yildiz S, Gozukardak E, Yildiz S, et al. Protective effects of silymarin against global cerebral ischemia/reperfusion injury in rats. *Hepatol Res*. 2003;26(3):217-224. https://doi.org/10.1016/S0300-483X(03)00188-4

104. Palit P, Mukhopadhyay A, Chattopadhyay D. Phyto-pharmacological perspective of silymarin: a potential prophylactic or therapeutic agent for COVID-19, based on its promising immunomodulatory, anti-coagulant and anti-viral property. *Phytoterp Res*. 2021;204(2):398-409. https://doi.org/10.1002/ptr.8708

105. Gorla US, Rao K, Kulandaivelu US, Alavala RR, Panda SP. Lead finding from selected flavonoids with antiviral (SARS-CoV-2) potentials against COVID-19: an in-silico evaluation. *Comb Chem High Throughput Screening*. 2021;24(6):879-890. https://doi.org/10.2174/138620732399200818162706

106. Camini FC, da Silva TF, da Silva Caetano CC, et al. Antiviral activity of silymarin against mayayo virus and protective effect in virus-induced oxidative stress. *Antiviral Res*. 2018;158:8-12. https://doi.org/10.1016/j.antiviral.2018.07.023

107. Lani R, Hassandarvish P, Chiam CW, et al. Antiviral activity of silymarin against chikungunya virus. *Sci Rep*. 2015;5(1):1-10. https://doi.org/10.1038/srep11421

108. de la Lastra CA, Martin MJ, Motilva V, Jimenez M, La Casa C, Lopez A. Gastroprotection induced by silymarin, the hepatoprotective principle of *Silybum marianum* in ischemia-reperfusion mucosal injury: role of neutrophils. *Phytother Res*. 2016;30(12):1678-9741.20160072

109. Koçarslan A, Koçarslan S, Aydin MS, et al. Intraperitoneal administration of silymarin protects end organs from multivisceral ischemia-reperfusion injury in a rat model. *Brazilian J Cardiovasc Surg*. 2016;31:434-439. https://doi.org/10.5935/1678-9741.20160072

110. Svobodová A, Zdařilová A, Malšíková J, Mikulková H, Walterová D, Vostálová J. Attenuation of UVA-induced damage to human keratinocytes by silymarin. *J Dermatol Sci*. 2007;46(1):21-30. https://doi.org/10.1016/j.jdermsci.2006.12.009

111. Berardesca E, Cameli N, Cavallotti C, Levy JL, Piérard GE, de Paoli Ambrosi G. Combined effects of silymarin and methylsulfonylmethane in the management of rosacea: clinical and instrumental evaluation. *J Cosmet Dermatol*. 2008;7(1):8-14. https://doi.org/10.1111/j.1473-2165.2008.00355.x

112. Meeran SM, Katiyar S, Elments CA, Katiyar SK. Silymarin inhibits UV radiation-induced immunosuppression through augmentation of interleukin-12 in mice. *Mol Cancer Ther*. 2006;5(7):1660-1668. https://doi.org/10.1158/1535-7163.MCT-06-0095

113. Palit P, Mukhopadhyay A, Chattopadhyay D. Phyto-pharmacological perspective of silymarin: a potential prophylactic or therapeutic agent for COVID-19, based on its promising immunomodulatory, anti-coagulant and anti-viral property. *Phytoterp Res*. 2021;204(2):398-409. https://doi.org/10.2174/138620732399200818162706

114. Camini FC, da Silva TF, da Silva Caetano CC, et al. Antiviral activity of silymarin against mayayo virus and protective effect in virus-induced oxidative stress. *Antiviral Res*. 2018;158:8-12. https://doi.org/10.1016/j.antiviral.2018.07.023

115. Lani R, Hassandarvish P, Chiam CW, et al. Antiviral activity of silymarin against chikungunya virus. *Sci Rep*. 2015;5(1):1-10. https://doi.org/10.1038/srep11421

116. da Silva TF, Ferraz AC, Almeida LT, et al. Antiviral effect of silymarin against Zika virus in vitro. *Acta Trop*. 2020;211:105613. https://doi.org/10.1016/j.actatropica.2020.105613

117. Rakelly de Oliveira D, Relison Tintino S, Morais Braga MFB, et al. In vitro antimicrobial and modulatory activity of the natural products silymarin and silibinin. *BioMed Res Int*. 2015;2015: https://doi.org/10.1155/2015/292797

118. Vereckei AS, Besh HR, Zipes DP. Combined amiodarone and silymarin treatment, but not amiodarone alone, prevents sustained atrial flutter in dogs. *J Cardiovasc Electrophysiol*. 2003;14:861-867. https://doi.org/10.1046/j.1540-8167.2003.02446.x

119. Ágoston M, Örsi F, Free E, et al. Silymarin and vitamin E reduce amiodarone-induced lysosomal phospholipidosis in rats. *Toxicology*. 2003;190:231-241. https://doi.org/10.1016/S0300-483X(03)00188-4
111. Rastegarpanah M, Malekzadeh R, Vahedi H, et al. A randomized, double blinded, placebo-controlled clinical trial of silymarin in ulcerative colitis. *Chin J Integr Med*. 2015;21(12):902-906. https://doi.org/10.1007/s11655-012-0126-x

112. Nguyen THT, Trinh NT, Tran HN, et al. Improving silymarin oral bioavailability using silica-installed redox nanoparticle to suppress inflammatory bowel disease. *J Controlled Release*. 2021;331:515-524. https://doi.org/10.1016/j.jconrel.2020.10.042.

113. Hagan M, Hayee BH, Rodriguez-Mateos A. (Poly) phenols in inflammatory bowel disease and irritable bowel syndrome: a review. *Molecules*. 2021;26(7):1843. https://doi.org/10.3390/molecules26071843

114. Monfared ME, Jadidi A, Hosseini SM, Ashtiani AR. Investigating the effectiveness of silymarin in treatment of migraine patients referred to medical centers affiliated to arak university of medical sciences. *J Biochem Tech*. 2018;9(2):98-101.

115. Capasso R, Aviello G, Capasso F, et al. Silymarin BIO-C®, an extract from Silybum marianum fruits, induces hyperprolactinemia in intact female rats. *Phytochemistry*. 2009;16(9):839-844. https://doi.org/10.1016/j.phytochem.2009.02.007

116. Saberi Z, Gorji N, Memariani Z, Moeini R, Shirafkan H, Amiri M. Evaluation of the effect of Silybum marianum extract on menstrual symptoms: a randomized, double-blind placebo-controlled trial. *Phytother Res*. 2020;34(12):3359-3368. https://doi.org/10.1002/ptr.6789

117. Kayedpoor P, Mohamadi S, Karimzadeh-Bardei L, Nabiuni M. Anti-inflammatory effect of silymarin on ovarian immunohistochemical localization of TNF-α associated with systemic inflammation in polycystic ovarian syndrome. *Int J Morphol*. 2017;35(2):723-732. https://doi.org/10.4067/S0717-95022017000200054

118. Mehta RG, Moon RC. Characterization of effective chemopreventive agents in mammary gland in vitro using an initiation-promotion protocol. *Anticancer Res*. 1991;11(2):593-596. PMID: 1905902.

119. Ruy YC. Advances in pharmacological studies of silymarin. *Mem Inst Oswaldo Cruz*. 1991;86, Suppl 2, 79–85. https://doi.org/10.1590/s0049-82541991000600020.

120. Agarwal R, Katiyar SK, Lundgren DW, Mukhtar H. Inhibitory effect of silymarin, an anti-inflammatory flavonoid, on 12-O-tetradecanoylphorbol-13-acetate-induced epidermal ornithine decarboxylase activity and mRNA in SENCAR mice. *Carcinogenesis*. 1994;15(6):1099-1103. https://doi.org/10.1093/ carcin/15.6.1099

121. Gershein LL. Action of dietary trypsin, pressed coffee oil, silymarin and iron salt on 1,2-dimethylhydrazine tumorigenesis by gavage. *Anticancer Res*. 1994;14(3A):1113-1116. PMID: 8074460.

122. Kim DH, Jin YH, Park JB, Kobashi K. Silymarin and its components are inhibitors of betaglucuronidase. *Biol Pharm Bull*. 1994;17(3):443-445. https://doi.org/10.1248/bpb.17.443

123. Valenzuela A, Garrido A. Biochemical bases of the pharmacological action of the flavonoid silymarin and of its structural isomer silibinin. *Biol Res*. 1994;27(2):105-112. PMID: 8640239.

124. Bartholomaeus AR, Bolton R, Ahokas JT. Inhibition of rat liver cytosolic glutathione S transferase by silybin. *Xenobiotica*. 1994;24(1):17-24. https://doi.org/10.3109/00498259409043217

125. Dehnlow C, Murawski N, de Groot H. Scavenging of reactive oxygen species and inhibition of arachidonic acid metabolism by silibinin in human cells. *Life Sci*. 1996;58(18):1591-1600. https://doi.org/10.1016/0042-3205(96)00134-8

126. De la Puerta R, Martinez E, Bravo L, Ahumada MC. Effect of silymarin on different acute inflammatory models and leukocyte migration. *J Pharm Pharmacol*. 1996;48(9):968-970. https://doi.org/10.1111/j.2042-7158.1996.tb06014.x

127. Zi X, Mukhtar H, Agarwal R. Novel cancer chemopreventive effects of a flavonoid antioxidant silymarin: inhibition of mRNA expression of an endogenous tumor promoter TNF alpha. *Biochim Biophys Res Commun*. 1997;239(1):334-339. https://doi.org/10.1016/bbrc.1997.7375

128. Ahmad N, Gali H, Javed S, Agarwal R. Skin cancer chemopreventive effects of a flavonoid antioxidant silymarin are mediated via impairment of receptor tyrosine kinase signaling and perturbation in cell cycle progression. *Biochim Biophys Res Commun*. 1998;247(2):294-301. https://doi.org/10.1006/bbrc.1998.8748

129. Katiyar SK, Korman NJ, Mukhtar H, Agarwal R. Protective effects of silymarin against photocarcinogenesis in a mouse skin model. *J Natl Cancer Inst*. 1997;89(8):556-566. https://doi.org/10.1093/jnci/89.8.556

130. Saliou C, Kitazawa M, McLaughlin L, et al. Antioxidants modulate acute solar ultraviolet radiation-induced NF-kappa-B activation in a human keratinocyte cell line. *Free Radical Biology and Medicine*. 1999;26(1–2):174-183. https://doi.org/10.1016/S0891-5849(98)00212-3

131. Lahiri-Chatterjee M, Katiyar SK, Mohan RR, Agarwal R. A flavonoid antioxidant, silymarin, affords exceptionally high protection against tumor promotion in the SENCAR mouse skin tumorigenesis model. *Cancer Res*. 1999;59(3):622-632. PMID: 9973210.

132. Scambia G, De Vincenzo R, Ranelletti PO, et al. Antiproliferative effect of silybin on gynaecological malignancies: synergy with cisplatin and doxorubicin. *Eur J Cancer*. 1996;32(5):877-882. https://doi.org/10.1095/0095-8049(96)00011-1

133. Zi X, Grasso AW, Kung HI, Agarwal R. A flavonoid antioxidant, silymarin, inhibits activation of erbB1 signaling and induces cyclin-dependent kinase inhibitors, G1 arrest, and antiproliferative effects in human prostate carcinoma DU145 cells. *Cancer Res*. 1998;58(9):1920-1929. PMID: 9581834.

134. Zi X, Feyes DK, Agarwal R. Anticarcinogenic effect of a flavonoid antioxidant, silymarin, in human breast cancer cells MDA-MB 468: induction of G1 arrest through an increase in Cip1/p21 concomitant with a decrease in kinase activity of cyclin-dependent kinases and associated cyclins. *Clin Cancer Res*. 1998;4(4):1055-1064. PMID: 9563902.

135. Sharma Y, Agarwal C, Singh AK, Agarwa IR. Inhibitory effect of silibinin on ligand binding to erbB1 and associated mitogenic signaling, growth, and DNA synthesis in advanced human prostate carcinoma cells. *Mol Carcinog*. 2001;30(4):224-236. https://doi.org/10.1002/mc.1032
136. Saliou C, Rihn B, Cillard J, Okamaoto T, Packer L. Selective inhibition of NF-kB activation by the flavonoid hepatoprotector silymarin in HepG2. Evidence for different activating pathways. FEBS Lett. 1998;440:8-12. https://doi.org/10.1016/S0014-5793(98)01409-4

137. Manna SK, Mukhopadhyay A, Van NT, Aggarwal BB. Silymarin suppresses TNF-induced activation of NF-kappa B, c-Jun N-terminal kinase, and apoptosis. J Immunol. 1999;163(12):6800-6809. PMID: 10586080.

138. Zi X, Agarwal R. Modulation of mitogen-activated protein kinase activation and cell cycle regulators by the potent skin cancer preventive agent silymarin. Biochem Biophys Res Commun. 1999;263(2):528-536. https://doi.org/10.1006/bbrc.1999.1398

139. Agarwal R, Agarwal C, Ichikawa H, Singh RP, Aggarwal BB. Anticancer potential of silymarin: from bench to bed side. Anticancer Res. 2006;26(6B):4457-4498. PMID: 17201169.

140. Zhao J, Sharma Y, Agarwal R. Significant inhibition by the flavonoid antioxidant silymarin against 12-O-tetradecanoylphorbol 13-acetate-caused modulation of antioxidant and inflammatory enzymes, and cyclooxygenase 2 and interleukin-1alpha expression in SENCAR mouse epidermis: implications in the prevention of stage I tumor promotion. Mol Carcinog. 1999;26(4):321-333. https://doi.org/10.1002/(SICI)1098-2744(199912)26:4<321::AID-MC11>3.0.CO;2-9

141. Zi X, Zhang J, Agarwal R, Pollak M. Silibinin up-regulates insulin-like growth factor-binding protein 3 expression and inhibits proliferation of androgen-independent prostate cancer cells. Cancer Res. 2000;60(20):5617-5620. PMID: 11059749.

142. Zhu W, Zhang JS, Young CY. Silymarin inhibits function of the androgen receptor by reducing nuclear localization of the receptor in the human prostate cancer cell line LNCaP. Carcinogenesis. 2001;22(9):1399-1403. https://doi.org/10.1093/carcin/22.9.1399

143. Kang SN, Lee MH, Kim KM, Cho D, Kim TS. Induction of human promyelocytic leukemia HL-60 cell differentiation into monocytes by silibinin: involvement of protein kinase C. Biochem Pharmacol. 2001;61(12):1487-1495. https://doi.org/10.1016/S0006-2952(01)00626-8

144. Verdura S, Cuays E, Llorach-Parés L, et al. Silibinin is a direct inhibitor of STAT3. Food Chem Toxicol. 2018;116:161-172. https://doi.org/10.1016/j.fct.2018.04.1399

145. Bosch-Barrera J, Queralt B, Menendez JA. Targeting STAT3 with silibinin to improve cancer therapeutics. Cancer Treat Rev. 2017;58:61-69. https://doi.org/10.1016/j.crv.2017.06.003

146. Mao J, Yang H, Cui T, et al. Combined treatment with sorafenib and silibinin synergistically targets both HCC cells and cancer stem cells by enhanced inhibition of the phosphorylation of STAT3/ERK/AKT. Eur J Pharmacol. 2018;832:39-49. https://doi.org/10.1016/j.ejphar.2018.05.027

147. Thelen P, Wutke W, Jarry H, Grzmił M, Ringert RH. Inhibition of telomerase activity and secretion of prostate specific antigen by silibinin in prostate cancer cells. J Urol. 2004;171(5):1934-1938. https://doi.org/10.1097/01.ju.0000121329.37206.1b

148. Katiyar SK, Roy AM, Baliga MS. Silymarin induces apoptosis primarily through a p53-dependent pathway involving Bcl-2/Bax, cytochrome c release, and caspase activation. Mol Cancer Ther. 2005;4(2):207-216. PMID: 15713892.

149. Singh T, Prasad R, Katiyar SK. Therapeutic intervention of silymarin on the migration of non-small cell lung cancer cells is associated with the axis of multiple molecular targets including class 1 HDACs, ZEB1 expression, and restoration of mir-203 and E-cadherin expression. Am J Cancer Res. 2016;6(6):1287. PMID: 27429844.

150. Trappoliere M, Caligiuri A, Schmid M, et al. Silybin, a component of sylimarin, exerts anti-inflammatory and anti-fibrogenic effects on human hepatic stellate cells. J Hepatol. 2009;50(6):1102-1111. https://doi.org/10.1016/j.jhep.2009.02.023

151. Vaid M, Prasad R, Sun Q, Katiyar SK. Silymarin targets β-catenin signaling in blocking migration/invasion of human melanoma cells. PLoS ONE. 2011;6(7):e23000. https://doi.org/10.1371/journal.pone.0023000

152. Woo SM, Min KJ, Chae IC, Chun KS, Kwon TK. Silymarin suppresses the PGE2-induced cell migration through inhibition of EP2 activation; G protein-dependent PKA-CREB and G protein-independent Src-STAT3 signal pathways. Mol Carcinog. 2015;54(3):216-228. https://doi.org/10.1002/mc.22092

153. Wu KJ, Zeng J, Zhu GD, et al. Silibinin inhibits prostate cancer invasion, motility and migration by suppressing vimentin and MMP-2 expression. Acta Pharmacol Sin. 2009;30(8):1162-1168. https://doi.org/10.1038/aps.2009.94

154. Eo HJ, Park GH, Jeong JB. Inhibition of wnt signaling by silymarin in human colorectal cancer cells. Biomol Ther. 2016;24(4):380. https://doi.org/10.4062/biomolther.2015.154

155. Dastpeyman M, Motamed N, Azadmanshe K, et al. Inhibition of silibinin on migration and adhesion capacity of human highly metastatic breast cancer cell line, MDA-MB-231, by evaluation of β1-integrin and downstream molecules, Cdc42, Raf-1 and D4GDI. Med Oncol. 2012;29(4):2512-2518. https://doi.org/10.1007/s12032-011-0113-8

156. Yang SH, Lin JK, Chen WS, Li SY, Chiu JH. Anti-angiogenic effect of silymarin on colon cancer LoVo cell line. J Surg Res. 2003;113(1):133-138. https://doi.org/10.1016/S0022-4804(03)00229-4

157. Yang SH, Lin JK, Huang CJ, Chen WS, Li SY, Chiu JH. Silibinin inhibits angiogenesis via Fli-1, but not KDR, receptor up-regulation. J Surg Res. 2005;128(1):140-146. https://doi.org/10.1016/j.jss.2005.04.042

158. http://www.uniprot.org/uniprot/P17948 Accessed 10/20/2020

159. Kaipa JM, Starkviene V, Erfele H, Eils R, Gladlin E. Transcriptome profiling reveals silibinin dose-dependent response network in non-small lung cancer cells. PeerJ. 2020;8:e10373. https://doi.org/10.7717/peerj.10373

160. Adhikari M, Kaushik N, Ghimire B, et al. Cold atmospheric plasma and silymarin nanoemulsion synergistically inhibits human melanoma tumorigenesis via targeting HGF/c-MET downstream pathway. Cell Commun Signal. 2019;17(1):1-14. https://doi.org/10.1186/s12964-019-0360-4

161. Kim DH, Park SJ, Lee SY, Yoon HS, Park CM. Silymarin attenuates invasion and migration through the regulation of
epithelial-mesenchymal transition in Huh7 cells. Korean J Clin Lab Sci. 2018;50(3):337-344. https://doi.org/10.15324/kjcls.2018.50.3.337

162. Li J, Hu L, Zhou T, et al. Taxifolin inhibits breast cancer cell proliferation, migration and invasion by promoting mesenchymal to epithelial transition via β-catenin signaling. Life Sci. 2019;232:116617. https://doi.org/10.1016/j.lfs.2019.116617

163. McCarthy K, Maguire T, McGreal G, McDermott E, O’Dwyer MJ. High levels of tissue inhibitor of metalloproteinase-1 predict poor outcome in patients with breast cancer. Int J Cancer. 1999;84(1):44-48. https://doi.org/10.1002/(SICI)1097-0215(19990219)84:1<44::AID-IJC9>3.0.CO;2-P

164. Di Sario A, Bendia E, Taffetani S, et al. Hepatoprotective and anti-inflammatory/anti-fibrotic effects of the hepatoprotective silymarin and the chistosomicide praziquantel against schistosoma mansoni-induced liver fibrosis. Parasit Vectors. 2012;5(1):1-14. https://doi.org/10.1186/1756-3305-5-9

165. Malekinejad H, Taheri-Brjerdi M, Janbaz-Acaybar H, Amniatilab A. Silymarin regulates HIF-1α and iNOS expression in the brain and gills of hypoxic-reoxygenated rainbow trout oncorhynchus mykiss. Aquatic Biology. 2012;15(3):261-273. https://doi.org/10.3354/ab00427

166. Jia JD, Bauer M, Cho JJ, et al. Anti-fibrotic effect of silymarin in rat secondary biliary fibrosis is mediated by downregulation of procollagen α1 (I) and TIMP-1. J Hepatol. 2001;35(3):392-398. https://doi.org/10.1016/S0168-8278(01)00418-9

167. Chen IS, Chen YC, Chou CH, Chuang RF, Sheen LY, Chiu CH. Hepatoprotection of silymarin against thioacetamide-induced chronic liver fibrosis. J Sci Food Agric. 2012;92(7):1441-1447. https://doi.org/10.1002/jsfa.4723

168. Handorean AM, Yang K, Robbins EW, Flagg TW, Iczkowski KA. Silibinin suppresses CD44 expression in prostate cancer cells. Am J Transl Res. 2009;1(1):80. PMID: 19966941.

169. Jothy S. CD44 And its partners in metastasis. J Clin Exp Metastasis. 2005;23(4):207-209. https://doi.org/10.1007/s10881-004-9142-3

170. Ward Y, Lake R, Yin JJ, et al. LPA Receptor heterodimerizes with CD97 to amplify LPA-initiated RHO-dependent signaling and invasion in prostate cancer cells. Cancer Res. 2011;71(23):7301-7311. https://doi.org/10.1158/0008-5472.CAN-11-2381

171. Kato K, Yoshikawa K, Tanabe E, et al. Opposite roles of LPA 1 and LPA 3 on cell motile and invasive activities of pancreatic cancer cells. Tumor Biol. 2012;33(5):1739-1744. https://doi.org/10.1007/s13277-012-0433-0

172. Wei JS, Johansson P, Chen L, et al. Massively parallel sequencing reveals an accumulation of de novo mutations and an activating mutation of LPAR1 in a patient with metastatic neuroblastoma. PLoS ONE. 2013;8(10):e77731. https://doi.org/10.1371/journal.pone.0077366

173. Sahay D, Leblanc R, Grunewald TG, et al. The LPA1/ZEB1/mir-21-activation pathway regulates metastasis in basal breast cancer. Oncotarget. 2015;6(24):20604. https://doi.org/10.18632/oncotarget.3774

174. Eraky SM, El-Mesery M, El-Karef A, Eissa LA, El-Gayar AM. Silymarin and caffeine combination ameliorates experimentally-induced hepatic fibrosis through down-regulation of LPAR1 expression. Biomed Pharmacother. 2018;101:49-57. https://doi.org/10.1016/j.biopha.2018.02.064

175. Kim S, Han J, Jeon M, et al. Silibinin inhibits triple negative breast cancer cell motility by suppressing TGF-β2 expression. Tumor Biol. 2016;37(8):11397-11407. https://doi.org/10.1007/s13277-016-5000-7

176. Zare Z, Dizaj TN, Lohrasbi A, et al. Silibinin inhibits TGF-β-induced MMP-2 and MMP-9 through smad signaling pathway in colorectal cancer HT-29 cells. Basic Clin Cancer Res. 2020;12(2):81-90.

177. Malekinejad H, Taheri-Brjerdi M, Janbaz-Acaybar H, Amniatilab A. Silymarin regulates HIF-1α and iNOS expression in the brain and gills of hypoxic-reoxygenated rainbow trout oncorhynchus mykiss. Aquatic Biology. 2012;15(3):261-273. https://doi.org/10.3354/ab00427

178. Jung HJ, Park JW, Lee JS, et al. Silibinin inhibits expression of HIF-1α through suppression of protein translation in prostate cancer cells. Biochem Biophys Res Commun. 2009;390(1):71-76. https://doi.org/10.1016/j.bbrc.2009.09.068

179. Kim S, Han J, Kim JS, et al. Silibinin suppresses EGFR ligand-induced CD44 expression through inhibition of EGFR activity in breast cancer cells. Anticancer Res. 2011;31(11):3767-3773. PMID: 22110198.

180. Merzak A, Koocheckpour S, Pilkington GJ. CD44 Mediates anti-invasive effect of a new silybin phosphatidylcholine vitamin E complex in rats. Dig Liver Dis. 2005;37(11):869-876. https://doi.org/10.1016/j.dld.2005.05.011

181. Wang B, He G, Xu G, Wen J, Yu X. miRNA-34a inhibits cell proliferation, migration and invasion by promoting mesenchymal-epithelial transition in Huh7 cells. Anticancer Res. 2012;32:100818.

182. Rutnam ZJ, Yang BB. The non- coding 3′ UTR of CD44 induces metastasis by regulating extracellular matrix functions. J Cell Sci. 2012;125(8):2075-2085. https://doi.org/10.1242/jcs.100818

183. Troness B, Spartz A, Sharma U, et al. CD44 Facilitates metastasis by promoting co-clustering of breast cancer cells and cancer associated fibroblasts. Cancer Res. 2019;79(13 Supplement):2044. https://doi.org/10.1158/1538-7445.AM2019-2044

184. Tsay M, Agarwal C, Dwyer-Nield LD, Singh RP, Malkinson AM, Agarwal R. Silibinin modulates TNF-α and IFN-γ mediated signaling to regulate COX2 and iNOS expression in tumorigenic mouse lung epithelial LM2 cells. Mol Carcinog. 2012;51(10):832-842. https://doi.org/10.1002/mc.20851

185. Lu W, Lin C, King TD, Chen H, Reynolds RC, Li Y. Silibinin inhibits Wnt/β-catenin signaling by suppressing Wnt co-receptor
LRP6 expression in human prostate and breast cancer cells. *Cell Signal.* 2012;24(12):2291-2296. https://doi.org/10.1016/j.cellsig.2012.07.009

189. Kauntz H, Bousserouel S, Gossé F, Raul F. The flavonolignan silibinin potentiates TRAIL-induced apoptosis in human colon adenocarcinoma and in derived TRAIL-resistant metastatic cells. *Apoptosis.* 2012;17(8):797-809. https://doi.org/10.1007/s10495-012-0731-4

190. Kauntz H, Bousserouel S, Gossé F, Raul F. Silibinin triggers apoptotic signaling pathways and autophagic survival response in human colon adenocarcinoma cells and their derived metastatic cells. *Apoptosis.* 2011;16(10):1042. https://doi.org/10.1007/s10495-011-0631-z

191. Son YG, Kim EH, Kim JY, et al. Silibinin sensitizes human adenocarcinoma and in derived TRAIL-resistant metastatic cells. *Apoptosis.* 2012;17(8):797-809. https://doi.org/10.1007/s10495-012-0731-4

192. Bousserouel S, Bour G, Kauntz H, Gosse F, Marescaux J, Raul F. Silibinin inhibits interleukin-1β-induced production of pro-inflammatory mediators in canine hepatocyte cultures. *J Vet Pharmacol Ther.* 2011;34(2):120-129. https://doi.org/10.1111/j.1365-2885.2010.01200.x

193. Hagelgans A, Nacke B, Zamaraeva M, Siegert G, Mühl B. Silibinin down-regulates expression of secreted phospholipase A2 enzymes in cancer cells. *Anticancer Res.* 2014;34(4):1723-1729. PMID: 24692702.

194. Chen YH, Chen CL, Lu DW, Liang CM, Tai MC, Chen JT. Silibinin inhibits interleukin-1β-induced production of pro-inflammatory mediators in canine hepatocyte cultures. *J Vet Pharmacol Ther.* 2011;34(2):120-129. https://doi.org/10.1111/j.1365-2885.2010.01200.x

195. Youssefi M, Ghaffari SH, Soltani BM, et al. Therapeutic efficacy of silybinin on human neuroblastoma cells: akt and NF-κB expressions may play an important role in silybinin-induced response. *Neurochem Res.* 2012;37(9):2053-2063.

196. Sellam LS, Zappasodi R, Chettibi F, et al. Silibinin down-regulates COX-2 expression and attenuates hyperlipidemia in human colon cancer cells. *World J Gastroenterol.* 2005;11(13):1896-1902. https://doi.org/10.3748/wjg.v11.i13.1896

197. Inoue K, Slaton JW, Eve BY, et al. Interleukin 8 expression regulates tumorigenicity and metastases in androgen-independent prostate cancer. *Clin Cancer Res.* 2000;6(5):2104-2119. PMID: 10815938.

198. Mizuakumi Y, Jo WS, Duerr EM, et al. Induction of interleukin-8 preserves the angiogenic response in HIF-1α-deficient colon cancer cells. *Nat Med.* 2005;11(9):992. https://doi.org/10.1038/nm1294

199. Kozlowski L, Zakrzewska I, Tokajuk P, Wojtkiewicz MZ, Konopka M, Skabski M. Concentration of interleukin-6 (IL-6), interleukin-8 (IL-8) and interleukin-10 (IL-10) in blood serum of breast cancer patients. *Rocz. Akad. Med. Warszaw.* 1995;40(13):1081-1085. PMID: 8784066.

200. Biswas SK, McClure D, Jimenez LA, Megson IL, Rahman I. Curcumin induces glutathione biosynthesis and inhibits NF-κB activation and interleukin-8 release in alveolar epithelial cells: mechanism of free radical scavenging activity. *Antioxid Redox Signal.* 2005;7(1-2):32-41. https://doi.org/10.1089/ars.2005.7.32

201. Gerritsen ME, Carley WW,Ranges GE, et al. Flavonoids inhibit cytokine-induced endothelial cell adhesion protein gene expression. *Am J Pathol.* 1995;147(2):278. PMID: 7543732.

202. Hussain SA, Jassim NA, Numan IT, Al-Khalifa II, Abdullah TA. Anti-inflammatory activity of silymarin in patients with knee osteoarthritis. *Saudi Med J.* 2009;30(1):98-103. PMID: 19139781.

203. Au YY, Hasenwinkel JM, Frondoza CG. Silibinin inhibits interleukin-1β-induced production of pro-inflammatory mediators in canine hepatocyte cultures. *J Vet Pharmacol Ther.* 2011;34(2):120-129. https://doi.org/10.1111/j.1365-2885.2010.01200.x

204. Shi Z, Zhou Q, Gao S, et al. Silibinin inhibits endometrial carcinoma via blocking pathways of STAT3 activation and SREBP1-mediated lipid accumulation. *Life Sci.* 2019;217:70-80. https://doi.org/10.1016/j.lfs.2018.11.037

205. Si L, Liu W, Hayashi T, et al. Silibinin-induced apoptosis of breast cancer cells involves mitochondrial impairment. *Arch Biochem Biophys.* 2019;671:42-51. https://doi.org/10.1016/j.abb.2019.05.009

206. Visse R, Nagase H. Matrix metalloproteinases and tissue inhibitors of metalloproteinases structure, function, and biochemistry. *Circ Res.* 2003;92(8):827-839. https://doi.org/10.1161/01.RES.0000070112.80711.3D

207. Yogeshki L, Zappasodi R, Chettibi F, et al. Silibinin down-regulates COX-2 expression and attenuates hyperlipidemia in human breast cancer cell. *Mol Cell Biochem.* 2008;313(1):53-61. https://doi.org/10.1007/s00894-007-9741-5

208. Wyllie AH. Apoptosis and carcinogenesis. *Eur. J. Cell Biol.* 1995;73(3):189-197.

209. Weng Y, Wang N, Li Y, et al. Interleukin 8 expression regulates tumorigenicity and metastases in human non-small cell lung cancer in SCID mice. *J Clin Invest.* 2000;106(8):2290-2299. PMID: 10786697.

210. Arenberg DA, Kunkel SL, Polverini PJ, Glass M, Burdick MD, Strieter RM. Inhibition of interleukin-8 reduces tumorigenesis of human non-small cell lung cancer in SCID mice. *J Clin Invest.* 1996;97(12):2792-2802. https://doi.org/10.1172/JCI118734

211. Si L, Liu W, Hayashi T, et al. Silibinin-induced apoptosis of breast cancer cells involves mitochondrial impairment. *Arch Biochem Biophys.* 2019;671:42-51. https://doi.org/10.1016/j.abb.2019.05.009

212. Sellam LS, Zappasodi R, Chettibi F, et al. Silibinin down regulates PD-L1 expression in nasopharyngeal carcinoma by interfering with tumor cell glycolytic metabolism. *Arch Biochem Biophys.* 2020;690:108479. https://doi.org/10.1016/j.abb.2020.108479

213. Yang C, Li F, Ma J, et al. Evaluation of anti-cancer potency of silibinin. *World J Gastroenterol.* 2005;11(13):1896-1902. https://doi.org/10.3748/wjg.v11.i13.1896

214. Capacciome KM, Pine SR. The notch signaling pathway as a mediator of tumor survival. *Carcinogenesis.* 2013;34(7):1420-1430.
a pilot randomized controlled trial. Basic & Clinical Cancer Research. 2017;9(2):13-19.

242. Fanoudi S, Alavi MS, Karimi G, Hosseinzadeh H. Milk thistle (Silybum Marianum) as an antioxidant or a protective agent against natural or chemical toxicities: a review. Drug Chem Toxicol. 2020;43(3):240-254. https://doi.org/10.1080/01480545.2018.1485687

243. Comelli MC, Mengs U, Schneider C, Prosdocimi M. Toward the definition of the mechanism of action of silymarin: activities related to cellular protection from toxic damage induced by chemotherapy. Integr Cancer Ther. 2007;6(2):120-129. https://doi.org/10.1177/1534735407302349

244. Hagag AA, Elgamsy MA, El-Asy HM, Mabrouk MM. Protective role of silymarin on hepatic and renal toxicity induced by MTX based chemotherapy in children with acute lymphoblastic leukemia. Mediter J Hematol Infect Dis. 2016;8(1): e2016043. https://doi.org/10.4084/MJHID.2016.043

245. Invernizzi R, Bernuzzi S, Ciani D, Ascarei E. Silymarine during chemotherapy in comparison with quercetin. Phytother Res. 2021;1006182. https://doi.org/10.1177/10781552211006182

246. Bokemeyer C, Fels LM, Dunn T, et al. Silibinin protects against cisplatin-induced nephrotoxicity without compromising cisplatin or ifosfamide anti-tumour activity. Br J Cancer. 1996;74(12):2036-2041. https://doi.org/10.1038/bjc.1996.673

247. Gaedeke J, Fels LM, Bokemeyer C, Mengs U, Stolte H, Lentzen H. Cisplatin nephrotoxicity and protection by silibinin. Nephrol Dial Transplant. 1996;11(1):55-62. https://doi.org/10.1093/ndt/11.1.55

248. Psotová J, Chlopčiková Š, Grambal F, Šimánek V, Ulrichová J. Influence of silymarin and its flavonolignans on doxorubicin-iron induced lipid peroxidation in rat heart microsomes and mitochondria in comparison with quercetin. Phytother Res. 2002;16(S1):63-67. https://doi.org/10.1002/ptr.811

249. Yardım A, Kucukler S, Özdemir S, et al. Silymarin alleviates doctaxel-induced central and peripheral neurotoxicity by reducing oxidative stress, inflammation and apoptosis in rats. Gene. 2021;769:145239. https://doi.org/10.1016/j.gene.2020.145239

250. Chang TK, Yin TC, Su WC, et al. Pilot study of silymarin as supplementation to reduce toxicities in metastatic colorectal cancer patients treated with first-line FOLFIRI Plus bevacizumab. Oncol Res Featuring Preclin Clin Cancer Ther. 2021; 7:8; 801-809. https://doi.org/10.3727/096504201X16218531628569

251. Moezian GSA, Javadinia SA, Sales SS, Fanipakdel A, Elyasi S, Karimi G. Oral silymarin formulation efficacy in management of AC-T protocol induced hepatotoxicity in breast cancer patients: a randomized, triple blind, placebo-controlled clinical trial. J Oncol Pharm Pract. 2021;10781552211006182. https://doi.org/10.1177/10781552211006182

252. Rho JK, Choi YJ, Jeon BS, et al. Combined treatment with silibinin and epidermal growth factor receptor tyrosine kinase inhibitors overcomes drug resistance caused by T790 M mutation. Mol Cancer Ther. 2010;9(12):3233-3243. https://doi.org/10.1158/1535-7163.MCT-10-0625

253. Sun Y, Guan Z, Zhao W, et al. Silibinin suppresses bladder cancer cell malignancy and chemoresistance in an NF-κB signal-dependent and signal-independent manner. Int J Oncol. 2017; 51(4):1219-1226. https://doi.org/10.3892/ijo.2017.4089

254. Zhou L, Liu P, Chen B, et al. Silibinin restores paclitaxel sensitivity to paclitaxel-resistant human ovarian carcinoma cells. Anticancer Res. 2008;28(2A):1119-1127. PMID: 18507063.

255. Zhang S, Morris ME. Effects of the flavonoids biochanin A, morin, phloretin, and silymarin on P-glycoprotein-mediated transport. J Pharmacol Exp Ther. 2003;304(3):1258-1267. https://doi.org/10.1124/jpet.102.044412

256. Maitrejean M, Comte G, Barron D, El Kirat K, Conseil G, Di Pietro A. The flavonolignan silybin and its hemisynthetic derivatives, a novel series of potential modulators of P-glycoprotein. Bioorg Med Chem Lett. 2000;10(2):157-160. https://doi.org/10.1016/S0960-894X(99)00636-8

257. Džuhák P, Hajdúch M, Gažák R, et al. New derivatives of silybin and 3-dehydrosilybin and their cytotoxic and P-glycoprotein modulatory activity. Bioorg Med Chem. 2006;14(11):3793-3810. https://doi.org/10.1016/j.bmc.2006.01.035

258. Leslie EM, Mao Q, Oleschuk CJ, Deeley RG, Cole SP. Modulation of multidrug resistance protein 1 (MRP1/ABCC1) transport and ATPase activities by interaction with dietary flavonoids. Mol Pharmacol. 2001;59(5):1171-1180. https://doi.org/10.1124/mol.59.5.1171

259. Nguyen H, Zhang SZ, Morris ME. Effect of flavonoids on MRP1-mediated transport in Panc-1 cells. J Pharm Sci. 2002;92:250-257. https://doi.org/10.1002/jps.10283

260. Viktorová J, Dobiasová S, Řehořová K, et al. Antioxidant, anti-inflammatory, and multidrug resistance modulation activity of silychristin derivatives. Antioxidants. 2019;8(8):303. https://doi.org/10.3390/antiox8080303

261. Seidlova-Wuttke D, Becker T, Christoffel V, Jarry H, Wuttke W. Silymarin is a selective estrogen receptor β (ERβ) agonist and has estrogenic effects in the metaphysis of the femur but no or anti-estrogenic effects in the uterus of ovariectomized (ovx) rats. J Steroid Biochem Mol Biol. 2003;86(2):179-188. https://doi.org/10.1016/S0960-0760(03)00270-X

262. Plišková M, Vondráček J, Kren V, et al. Effects of silymarin flavonolignans and synthetic silybin derivatives on estrogen and aryl hydrocarbon receptor activation. Toxicology. 2005;215(1-2):80-89. https://doi.org/10.1016/j.tox.2005.06.020

263. El-Shitany NA, Hegazy S, El-Desoky K. Evidences for antioestoropotic and selective estrogen receptor modulator activity of silymarin compared with ethinylestradiol in ovariectomized rats. Phytomedicine. 2010;17(2):116-125. https://doi.org/10.1016/j.phymed.2009.05.012

264. Atawia RT, Tadors MG, Khalifa AE, Mosli HA, Abdel-Naim AB. Role of the phytoestrogenic, pro-apoptotic and anti-oxidative properties of silymarin in inhibiting experimental benign prostatic hyperplasia in rats. Toxicol Lett. 2013; 219(2):160-169. https://doi.org/10.1016/j.toxlet.2013.03.002

265. Vostalova J, Vidlar A, Uhrová J, Vrbkova J, Simonek V, Student V. Use of selenium – silymarin mix reduces lower urinary tract symptoms and prostate specific antigen in men. Phytomedicine. 2013;21(1):75-81. https://doi.org/10.1016/j.phymed.2013.07.018
266. Khalil EA. Hormonal profile and histopathological study on the influence of silymarin on both female and male albino rats. *Egyptian J Hosp Med*. 2003;13(1):112-122. https://doi.org/10.21608/ezhm.2003.18236

267. Abedi H, Jahromi HK, Hashemi SMA, Jashni HK, Jahromi ZK, Pourahmadi M. The effect of silymarin on spermatozoa process in rats. *Int J Med Res Health Sci*. 2016;5(6):146-150.

268. Mellman I, Yarden Y. Endocytosis and cancer. *Cold Spring Harbor Perspect Biol*. 2013;5(12):a016949. https://doi.org/10.1011/chsperspect.a016949

269. Blaising J, Lévy PL, Gondeau C, et al. Silibinin inhibits epithelial C cell entry into hepatocytes by hindering clathrin-dependent trafficking. *Cell Microbiol*. 2013;15(11):1866-1882. https://doi.org/10.1111/cmi.12155

270. Polyak SJ, Oberlies NH, Pecheur EI, Dahari H, Ferenci P, Pavlotsky JM. Silymarin for hepatitis C virus infection. *Antiviral Ther*. 2013;18(2):141. https://doi.org/10.3851/IMP2402

271. Umetsu T, Inoue J, Kogure T, et al. Inhibitory effect of silymarin on hepatitis B virus entry. *Biochem Biophys Rep*. 2018;14:20-25. https://doi.org/10.1016/j.bbrep.2018.03.003

272. Vladutiu GD, Middleton Jr E. Effects of flavonoids on enzyme secretion and endocytosis in normal and mucolipidosis II fibroblasts. *Life Sci*. 1986;39(8):717-726. https://doi.org/10.1016/0024-3205(86)90019-6

273. Caballero-Díaz D, Bertran E, Peñuelas-Haro I, et al. Clathrin switches transforming growth factor-β role to pro-tumorigenic in liver cancer. *J Hepatol*. 2020;72(1):125-134. https://doi.org/10.1016/j.jhep.2019.09.012

274. Smith CM, Haucke V, McCluskey A, Robinson PJ, Chircop M. Silybin inhibits the growth of renal cell carcinoma. *Mol Cancer*. 2013;12(1):4. https://doi.org/10.1186/1476-4598-12-4

275. Li L, Gao Y, Zhang L, Zeng J, He D, Sun Y. Silibinin inhibits cell growth and induces apoptosis by caspase activation, down regulating survivin and blocking EGFR-ERK activation in renal cell carcinoma. *Cancer Lett*. 2008;272(1):61-69. https://doi.org/10.1016/j.canlet.2008.06.033

276. Liang L, Li L, Zeng J, et al. Inhibitory effect of silybin on EGFR signal-induced renal cell carcinoma progression via suppression of the EGFR/MMP-9 signaling pathway. *Oncol Rep*. 2012;28(3):999-1005. https://doi.org/10.3892/or.2012.1874

277. Chang HR, Chen PN, Yang SF, et al. Silibinin inhibits the invasion and migration of renal carcinoma 786-O cells in vitro, inhibits the growth of xenografts in vivo and enhances chemosensitivity to 5-fluorouracil and paclitaxel. *Mol Carcinog*. 2011;50(10):811-823. https://doi.org/10.1002/mc.20756

278. Koltai T, Reshkin SJ, Carvalho T, Cardone RA. Targeting the stromal pro-tumoral hyaluronan-CD44 pathway in pancreatic cancer. *Int J Mol Sci*. 2021;22(8):3953. https://doi.org/10.3390/ijms22083953

279. Long J, Zhang Y, Yu X, et al. Overcoming drug resistance in pancreatic cancer. *Expert Opin Ther Targets*. 2011;15(7):817-828. https://doi.org/10.1517/14728222.2011.566216

280. Ting HJ, Deep G, Jain AK, et al. Silibinin prevents prostate cancer cell-mediated differentiation of naive fibroblasts into cancer-associated fibroblast phenotype by targeting TGF β2. *Mol Carcinog*. 2015;54(9):730-741. https://doi.org/10.1002/mc.22135

281. Amawi H, Hussein NA, Karthikeyan C, et al. HM015k, A novel silybin derivative, multi-targets metastatic ovarian cancer cells and is safe in zebrafish toxicity studies. *Front Pharmacol*. 2017;8:498. https://doi.org/10.3389/fphar.2017.00498

282. Song Y, Ye M, Zhou J, Wang ZW, Zhu X. Restoring E-cadherin expression by natural compounds for anticancer therapies in genital and urinary cancers. *Mol Therapy-Oncol*. 2019;14:130-138. https://doi.org/10.1016/j.omto.2019.04.005

283. Lieber CS, Leo MA, Cao Q, Ren C, DeCarli LM. Silymarin retards the progression of alcohol-induced hepatic fibrosis in baboons. *J Clin Gastroenterol*. 2003;37(4):336-339. https://doi.org/10.1097/00004836-200310000-00013.

284. Ko JW, Shin NR, Park SH, et al. Silibinin inhibits the fibrotic responses induced by cigarette smoke via suppression of TGF-β1/smад 2/3 signaling. *Food Chem Toxicol*. 2017;106:424-429. https://doi.org/10.1016/j.fct.2017.06.016

285. Lao CD, Demierre MF, Sondak VK. Targeting events in melanoma carcinogenesis for the prevention of melanoma. *Expert Rev Anticancer Ther*. 2006;6(11):1559-1568. https://doi.org/10.1586/14737140.6.11.1559

286. Li LH, Wu LJ, Jiang YY, et al. Silymarin enhanced cytotoxic effect of anti-Fas agonistic antibody CH11 on A375-S2 cells. *J Asian Nat Prod Res*. 2007;9(7):593-602. https://doi.org/10.1080/10268020600882502

287. Jones V, Katiyar SK. Emerging phytochemicals for prevention of melanoma invasion. *Cancer Lett*. 2013;335(2):251-258. https://doi.org/10.1016/j.canlet.2013.02.056

288. Lee MH, Huang Z, Kim DJ, et al. Direct targeting of MEK1/2 and RSK2 by silybin induces cell-cycle arrest and inhibits melanoma cell growth. *Cancer Prev Res*. 2013;6(5):455-465. https://doi.org/10.1158/1940-6207.CAPR-12-0425

289. Vaid M, Singh T, Prasad R, Katiyar SK. Silymarin inhibits melanoma cell growth both in vitro and in vivo by targeting cell cycle regulators, angiogenic biomarkers and induction of apoptosis. *Mol Carcinog*. 2015;54(11):1328-1339. https://doi.org/10.1002/mc.22208

290. Gajos-Michniewicz A, Czyz M. Modulation of WNT/β-catenin pathway in melanoma by biologically active components derived from plants. *Fitoterapia*. 2016;109:283-292. https://doi.org/10.1016/j.fitote.2016.02.002

291. Mokhtari MJ, Motamed N, Shokrgozar MA. Evaluation of silybin on the viability, migration and adhesion of the human prostate adenocarcinoma PC-3 cell line. *Cell Biol Int*. 2008;32(8):888-892. https://doi.org/10.1016/j.cellbi.2008.03.019

292. Davis-Searles PR, Nakanishi Y, Kim NC, et al. Milk thistle and isoflavonoids from Silybum marianum on antiproliferative end points in human prostate carcinoma cells. *Cancer Res*. 2005;65(10):4448-4457. https://doi.org/10.1158/0008-5472.CAN-04-4662

293. Kacar S, Aykanat NEB, Sahinturk V. Silymarin inhibited DU145 cells by activating SLIT2 protein and suppressing expression of CXCR4. *Med Oncol*. 2020;37(3):1-9. https://doi.org/10.1007/s12032-020-1343-4
294. Zi X, Agarwal R. Silibinin decreases prostate-specific antigen with cell growth inhibition via G1 arrest, leading to differentiation of prostate carcinoma cells: implications for prostate cancer intervention. *Proc Natl Acad Sci USA*. 1999;96:7490-7495. https://doi.org/10.1073/pnas.96.13.7490

295. Deep G, Singh RP, Agarwal C, Kroll DJ, Agarwal R. Silymarin and silibinin cause G1 and G2/M cell cycle arrest via distinct circuitries in human prostate cancer PC3 cells: a comparison of flavone silibinin with flavanolignan mixture silymarin. *Oncogene*. 2006;25(7):1053. https://doi.org/10.1038/sj.onc.1209146

296. Tyagi A, Bhatia N, Condon MS, Bosland MC, Agarwal C, Agarwal R. Inhibition of retinoblastoma protein (Rb) phosphorylation at serine sites and an increase in Rh-E2F complex formation by silibinin in androgen-dependent human prostate carcinoma LNCAp cells: role in prostate cancer prevention. *Mol Cancer Ther*. 2002;1(7):525-532. PMID: 12479270.

297. Chu SC, Chiou HL, Chen PN, Yang SF, Hsieh YS. Silibinin inhibits the invasion of human lung cancer cells via decreased productions of urokinase-plasminogen activator and matrix metalloproteinase-2. *Mol Carcinog*. 2004;40(3):143-149. https://doi.org/10.1002/mc.20018

298. Cufi S, Bonavia R, Vazquez-Martin A, et al. Silibinin meglumine, a water-soluble form of milk thistle silymarin, is an orally active anti-cancer agent that impedes the epithelial-to-mesenchymal transition (EMT) in EGFR-mutant non-small-cell lung carcinoma cells. *Food Chem Toxicol*. 2013;60:360-368. https://doi.org/10.1016/j.fct.2013.07.063

299. Mateen S, Tyagi A, Agarwal C, Singh RP, Agarwal R. Silibinin inhibits human nonsmall cell lung cancer cell growth through cell-cycle arrest by modulating expression and function of key cell-cycle regulators. *Mol Carcinog*. 2010;49(3):247-258. https://doi.org/10.1002/mc.20595

300. Li W, Mu D, Song L, et al. Molecular mechanism of silymarin-induced apoptosis in a highly metastatic lung cancer cell line anip973. *Cancer Biother Radiopharm*. 2011;26(3):317-324. https://doi.org/10.1089/cbr.2010.0892

301. Sharma G, Singh RP, Chan DC, Agarwal R. Silibinin induces growth inhibition and apoptotic cell death in human lung carcinoma cells. *Anticancer Res*. 2003;23(3B):2649-2655. PMID: 12894553.

302. Mateen S, Raina K, Jain AK, Agarwal C, Chan D, Agarwal R. Epigenetic modifications and p21-cyclin B1 nexus in anticancer effect of histone deacetylase inhibitors in combination with silybin in non-small cell lung cancer cells. *Epigenetics*. 2012;7(10):1161-1172. https://doi.org/10.4161/epi.22070

303. Corominas-Faja B, Oliveras-Ferraro C, Cuyas E, et al. Stem cell-like ALDHbright cellular states in EGFR-mutant non-small cell lung cancer: a novel mechanism of acquired resistance to erlotinib targetable with the natural polyphenol silybin. *Cell Cycle*. 2013;12(21):3390-3404. https://doi.org/10.4161/cc.26417

304. Tyagi A, Singh RP, Ramasamy K, et al. Growth inhibition and regression of lung tumors by silibinin: modulation of angiogenesis by macrophage-associated cytokines and nuclear factor-κB and signal transducers and activators of transcription 3. *Cancer Prev Res*. 2009;2(1):74-83. https://doi.org/10.1158/1940-6207.CAPR-08-0095

305. Cuyas E, Perez-Sanchez A, Micol V, Menendez JA, Bosch-Barrera J. STAT3-targeted Treatment with silibinin overcomes the acquired resistance to crizotinib in ALK-rearranged lung cancer. *Cell Cycle*. 2016;15:3413-3418. https://doi.org/10.1080/15384101.2016.1245249

306. de Oliveira DT, Sávio ALV, de Castro Marcondes JP, et al. Cytotoxic and toxicogenomic effects of silibinin in bladder cancer cells with different TP53 status. *J Biosci*. 2017;42(1):91-101. https://doi.org/10.1007/s12038-016-9654-5

307. Vinh PQ, Sugie S, Tanaka T, et al. Chemopreventive effects of a flavonoid antioxidant silymarin on N-butyl-N-(4-hydroxybutyl) nitrosamine-induced urinary bladder carcinogenesis in male ICR mice. *Jpn J Cancer Res*. 2002;93(1):42-49. https://doi.org/10.1111/j.1349-7006.2002.tb01199.x
317. Imai-Sumida M, Chiyomaru T, Majid S, et al. Silibinin suppresses bladder cancer through down-regulation of actin cytoskeleton and PI3K/Akt signaling pathways. Oncotarget. 2017;8(54):92032. https://doi.org/10.18632/oncotarget.20734

318. Zeng J, Sun Y, Wu K, et al. Chemopreventive and chemotherapeutic effects of intravesical silybinin against bladder cancer by acting on mitochondria. Mol Cancer Ther. 2011;10(1):104-116. https://doi.org/10.1158/1535-7163.MCT-10-0577

319. Wu K, Ning Z, Zeng J, et al. Silibinin inhibits β-catenin/βEB1 signaling and suppresses bladder cancer metastasis via dual-blocking epithelial–mesenchymal transition and stemness. Cell Signal. 2013;25(12):2625-2633. https://doi.org/10.1016/j.cellsig.2013.08.028

320. Ge Y, Zhang Y, Chen Y, et al. Silibinin causes apoptosis and cell cycle arrest in some human pancreatic cancer cells. Int J Mol Sci. 2011;12(8):4861-4871. https://doi.org/10.3390/ijms12084861

321. Feng W, Cai D, Zhang B, Lou G, Zou X. Combination of HDAC inhibitor TSA and silibinin induces cell cycle arrest and apoptosis by targeting survivin and cyclinB1/Cdk1 in pancreatic cancer cells. Biomed Pharmacother. 2015;74:257-264. https://doi.org/10.1016/j.biopharma.2015.08.017

322. Shukla SK, Dasgupta A, Mehla K, et al. Silibinin-mediated metabolic reprogramming attenuates pancreatic cancer-induced cachexia and tumor growth. Oncotarget. 2015;6(38):41146-41163. https://doi.org/10.18632/oncotarget.5843

323. Nambiar D, Prajapati V, Agarwal R, Singh RP. In vitro and in vivo anticancer efficacy of silybinin against human pancreatic cancer BxPC-3 and Panc-1 cells. Cancer Lett. 2013;334(1):109-117. https://doi.org/10.1016/j.canlet.2012.09.004

324. Zhang X, Liu J, Zhang P, et al. Silibinin induces G1 arrest, apoptosis and JNK/SAPK upregulation in SW1990 human pancreatic cancer cells. Oncol Lett. 2018;15(6):9868-9876. https://doi.org/10.3892/ol.2018.8541

325. Zhang S, Yang X, Morris ME. Combined effects of multiple flavonoids on breast cancer resistance protein (ABCG2)-mediated transport. Pharm Res. 2004;21(7):1263-1273. https://doi.org/10.1023/B:PHAM.0000033015.84146.4c

326. Tyagi AK, Agarwal C, Chan DC, Agarwal R. Synergistic anticancer effects of silybinin with conventional cytotoxic agents doxorubicin, cisplatin and carboplatin against human breast carcinoma MCF-7 and MDA-MB-468 cells. Oncol Rep. 2004;11(2):493-499. https://doi.org/10.3892/or.11.2.493

327. Kim S, Choi JH, Lim HI, et al. Silibinin prevents TPA-induced carcinogenesis by targeting survivin and cyclinB1/Cdk1 in pancreatic cancer cells. Oncol Rep. 2002;101(5):461-468. https://doi.org/10.1002/ijc.10230

328. Rastegar H, Ashitani HA, Anjarani S, Bokaei S, Khaki A, Javadi L. The role of milk thistle extract in breast carcinoma cell line (MCF-7) apoptosis with doxorubicin. Acta Med Iran. 2013;59:51-58.

329. Kalla PK, Chitti S, Aghamirzaei ST, Senthilkumar R, Arjunan S. Anti-cancer activity of silymarin on MCF-7 and NCIH-23 cell lines. Adv Biol Res. 2014;8(2):57-61. https://doi.org/10.5829/idosi.abr.2014.8.2.82286

330. Forghani P, Khorramizadeh MR, Waller EK. Silibinin inhibits accumulation of myeloid-derived suppressor cells and tumor growth of murine breast cancer. Cancer Med. 2014;3:215-224. https://doi.org/10.1002/cam4.186

331. Jiang K, Wang W, Jin X, Wang Z, Ji Z, Meng G. Silibinin, a natural flavonoid, induces autophagy via ROS-dependent mitochondrial dysfunction and loss of ATP involving BNIP3 in human MCF7 breast cancer cells. Oncol Rep. 2015;33(6):2711-2718. https://doi.org/10.3892/or.2015.3915

332. Pirouzpanah MB, Sabzichi M, Pirouzpanah S, Chavoshi H, Samadi N. Silibilin-induces apoptosis in breast cancer cells by modulating p53, p21, Bak and Bel-7 pathways. Asian Pac J Cancer Prev. 2015;16(5):2087-2092. https://doi.org/10.7314/apjc.2015.16.5.2087.

333. Zheng N, Zhang P, Huang H, et al. ERα down-regulation plays a key role in silibinin-induced autophagy and apoptosis in human breast cancer MCF-7 cells. J Pharmacol Sci. 2015;128(3):97-107. https://doi.org/10.1016/j.jphs.2015.05.001

334. Jahanafrooz Z, Motameh N, Bakhshandeh B. Comparative evaluation of silibinin effects on cell cycling and apoptosis in human breast cancer MCF-7 and T47D cell lines. Asian Pac J Cancer Prev. 2016;17(5):2661-2665. PMID: 27268647.

335. Molavi O, Narimani F, Asaeie F, et al. Silibinin sensitizes chemoresistant breast cancer cells to chemotherapy. Pharm Biol. 2017;55(1):729-739. https://doi.org/10.1080/13880209.2016.1270972

336. Paulpandi M. 78P In vivo activation of mitochondrial pathway and cell cycle arrest through silymarin loaded iron nanoparticles as proficient nanocomplex system for triple negative breast cancer therapy. Ann Oncol. 2017;28(suppl_10):mdx655-mdx655. https://doi.org/10.1016/annonc/mdx655-mdx655.020. https://doi.org/10.1093/annonc/mdx655.020

337. Sik CG, Seon YE, Jung KY, et al. Anticancer effect of silymarin on breast cancer cells through inhibition of Akt and MAPK pathway expression. 151–151. KALAS Int Symp. 2017;8:151-151.

338. Kim SH, Choo GS, Yoo ES, et al. Silymarin inhibits proliferation of human breast cancer cells via regulation of the MAPK signaling pathway and induction of apoptosis. Oncol Lett. 2021;21(6):1-10. https://doi.org/10.3892/ol.2021.12753

339. Kohno H, Tanaka T, Kawabata K, et al. Silymarin, a naturally occurring polyphenolic antioxidant flavonoid, inhibits azoxymethane-induced colon carcinogenesis in male F344 rats. Int J Cancer. 2002;101(5):461-468. https://doi.org/10.1002/ijc.10625

340. Raina K, Agarwal C, Agarwal R. Effect of silybin in human colorectal cancer cells: targeting the activation of NF-kB signaling. Mol Carcinog. 2013;52(3):195-206. https://doi.org/10.1002/mc.21843

341. Eo HJ, Park GH, Song HM, et al. Silymarin induces cyclin D1 expression and cell cycle arrest through silymarin loaded iron nanoparticles on breast cancer MCF-7 cells. Mol Carcinog. 2010;52(3):195-206. https://doi.org/10.1002/mc.21843

342. Lal M, Gupta D. Studies on radiation sensitization efficacy by silymarin in colon carcinoma cells. Discoveries. 2016;4(1):1. https://doi.org/10.15190/d.2016.3
350. Ramakrishnan G, Raghavendran HRB, Vinodhkumar P, Devaki Varghese L, Agarwal C, Tyagi A, Singh RP, Agarwal R. Silymarin, boswellic acid and curcumin enriched dietetic formulation reduces the growth of inherited intestinal polyps in an animal model. World J Gastroenterol. 2009;15(16):1943. https://doi.org/10.3892/wjg.v26.i14.1601

351. Silymarin induces cell cycle arrest and apoptosis in ovarian cancer cells. Eur J Pharmacol. 2014;743:79-88. https://doi.org/10.1016/j.ejphar.2014.09.019

352. Silymarin inhibits cell cycle arrest and apoptosis in ovarian cancer cells. Eur J Pharmacol. 2014;743:79-88. https://doi.org/10.1016/j.ejphar.2014.09.019

353. Silymarin inhibits cell cycle arrest and apoptosis in ovarian cancer cells. Eur J Pharmacol. 2014;743:79-88. https://doi.org/10.1016/j.ejphar.2014.09.019

354. Silymarin induces cell cycle arrest and apoptosis in ovarian cancer cells. Eur J Pharmacol. 2014;743:79-88. https://doi.org/10.1016/j.ejphar.2014.09.019

355. Silymarin induces cell cycle arrest and apoptosis in ovarian cancer cells. Eur J Pharmacol. 2014;743:79-88. https://doi.org/10.1016/j.ejphar.2014.09.019

356. Silymarin inhibits cell cycle arrest and apoptosis in ovarian cancer cells. Eur J Pharmacol. 2014;743:79-88. https://doi.org/10.1016/j.ejphar.2014.09.019

357. Silymarin inhibits cell cycle arrest and apoptosis in ovarian cancer cells. Eur J Pharmacol. 2014;743:79-88. https://doi.org/10.1016/j.ejphar.2014.09.019

358. Silymarin induces cell cycle arrest and apoptosis in ovarian cancer cells. Eur J Pharmacol. 2014;743:79-88. https://doi.org/10.1016/j.ejphar.2014.09.019

359. Silymarin inhibits cell cycle arrest and apoptosis in ovarian cancer cells. Eur J Pharmacol. 2014;743:79-88. https://doi.org/10.1016/j.ejphar.2014.09.019

360. Silymarin inhibits cell cycle arrest and apoptosis in ovarian cancer cells. Eur J Pharmacol. 2014;743:79-88. https://doi.org/10.1016/j.ejphar.2014.09.019

361. Silymarin inhibits cell cycle arrest and apoptosis in ovarian cancer cells. Eur J Pharmacol. 2014;743:79-88. https://doi.org/10.1016/j.ejphar.2014.09.019

362. Silymarin inhibits cell cycle arrest and apoptosis in ovarian cancer cells. Eur J Pharmacol. 2014;743:79-88. https://doi.org/10.1016/j.ejphar.2014.09.019

363. Silymarin inhibits cell cycle arrest and apoptosis in ovarian cancer cells. Eur J Pharmacol. 2014;743:79-88. https://doi.org/10.1016/j.ejphar.2014.09.019

364. Silymarin inhibits cell cycle arrest and apoptosis in ovarian cancer cells. Eur J Pharmacol. 2014;743:79-88. https://doi.org/10.1016/j.ejphar.2014.09.019

365. Silymarin inhibits cell cycle arrest and apoptosis in ovarian cancer cells. Eur J Pharmacol. 2014;743:79-88. https://doi.org/10.1016/j.ejphar.2014.09.019

366. Silymarin inhibits cell cycle arrest and apoptosis in ovarian cancer cells. Eur J Pharmacol. 2014;743:79-88. https://doi.org/10.1016/j.ejphar.2014.09.019

367. Silymarin inhibits cell cycle arrest and apoptosis in ovarian cancer cells. Eur J Pharmacol. 2014;743:79-88. https://doi.org/10.1016/j.ejphar.2014.09.019

368. Silymarin inhibits cell cycle arrest and apoptosis in ovarian cancer cells. Eur J Pharmacol. 2014;743:79-88. https://doi.org/10.1016/j.ejphar.2014.09.019

369. Silymarin inhibits cell cycle arrest and apoptosis in ovarian cancer cells. Eur J Pharmacol. 2014;743:79-88. https://doi.org/10.1016/j.ejphar.2014.09.019

370. Silymarin inhibits cell cycle arrest and apoptosis in ovarian cancer cells. Eur J Pharmacol. 2014;743:79-88. https://doi.org/10.1016/j.ejphar.2014.09.019

371. Silymarin inhibits cell cycle arrest and apoptosis in ovarian cancer cells. Eur J Pharmacol. 2014;743:79-88. https://doi.org/10.1016/j.ejphar.2014.09.019

372. Silymarin inhibits cell cycle arrest and apoptosis in ovarian cancer cells. Eur J Pharmacol. 2014;743:79-88. https://doi.org/10.1016/j.ejphar.2014.09.019

373. Silymarin inhibits cell cycle arrest and apoptosis in ovarian cancer cells. Eur J Pharmacol. 2014;743:79-88. https://doi.org/10.1016/j.ejphar.2014.09.019

374. Silymarin inhibits cell cycle arrest and apoptosis in ovarian cancer cells. Eur J Pharmacol. 2014;743:79-88. https://doi.org/10.1016/j.ejphar.2014.09.019

375. Silymarin inhibits cell cycle arrest and apoptosis in ovarian cancer cells. Eur J Pharmacol. 2014;743:79-88. https://doi.org/10.1016/j.ejphar.2014.09.019

376. Silymarin inhibits cell cycle arrest and apoptosis in ovarian cancer cells. Eur J Pharmacol. 2014;743:79-88. https://doi.org/10.1016/j.ejphar.2014.09.019

377. Silymarin inhibits cell cycle arrest and apoptosis in ovarian cancer cells. Eur J Pharmacol. 2014;743:79-88. https://doi.org/10.1016/j.ejphar.2014.09.019

378. Silymarin inhibits cell cycle arrest and apoptosis in ovarian cancer cells. Eur J Pharmacol. 2014;743:79-88. https://doi.org/10.1016/j.ejphar.2014.09.019

379. Silymarin inhibits cell cycle arrest and apoptosis in ovarian cancer cells. Eur J Pharmacol. 2014;743:79-88. https://doi.org/10.1016/j.ejphar.2014.09.019

380. Silymarin inhibits cell cycle arrest and apoptosis in ovarian cancer cells. Eur J Pharmacol. 2014;743:79-88. https://doi.org/10.1016/j.ejphar.2014.09.019

381. Silymarin inhibits cell cycle arrest and apoptosis in ovarian cancer cells. Eur J Pharmacol. 2014;743:79-88. https://doi.org/10.1016/j.ejphar.2014.09.019

382. Silymarin inhibits cell cycle arrest and apoptosis in ovarian cancer cells. Eur J Pharmacol. 2014;743:79-88. https://doi.org/10.1016/j.ejphar.2014.09.019

383. Silymarin inhibits cell cycle arrest and apoptosis in ovarian cancer cells. Eur J Pharmacol. 2014;743:79-88. https://doi.org/10.1016/j.ejphar.2014.09.019

384. Silymarin inhibits cell cycle arrest and apoptosis in ovarian cancer cells. Eur J Pharmacol. 2014;743:79-88. https://doi.org/10.1016/j.ejphar.2014.09.019

385. Silymarin inhibits cell cycle arrest and apoptosis in ovarian cancer cells. Eur J Pharmacol. 2014;743:79-88. https://doi.org/10.1016/j.ejphar.2014.09.019

386. Silymarin inhibits cell cycle arrest and apoptosis in ovarian cancer cells. Eur J Pharmacol. 2014;743:79-88. https://doi.org/10.1016/j.ejphar.2014.09.019

387. Silymarin inhibits cell cycle arrest and apoptosis in ovarian cancer cells. Eur J Pharmacol. 2014;743:79-88. https://doi.org/10.1016/j.ejphar.2014.09.019

388. Silymarin inhibits cell cycle arrest and apoptosis in ovarian cancer cells. Eur J Pharmacol. 2014;743:79-88. https://doi.org/10.1016/j.ejphar.2014.09.019

389. Silymarin inhibits cell cycle arrest and apoptosis in ovarian cancer ce...
Biopharm. 2006;63(3):288-294. https://doi.org/10.1016/j.ejpb.2005.12.005

Liu L, Pang X, Zhang W, Wang S. Formulation design and in vitro evaluation of silymarin loaded self micro emulsifying drug delivery systems. Asian J Pharm Sci. 2007;2:150-160.

Maheshwari H, Aggarwal R, Patil C, Katarie OP. Preparation and pharmacological evaluation of silybinin liposomes. Arzneimittelforschung. 2003;53(06):420-427. https://doi.org/10.1055/s-0031-1297130

Nguyen MH, Yu H, Dong B, Hadinoto K. A supersaturating delivery system of silybinin exhibiting high payload achieved by amorphous nano-complexation with chitosan. Eur J Pharm Sci. 2016;89:163-171. https://doi.org/10.1016/j.ejps.2016.04.036

Di Costanzo A, Angelico R. Formulation strategies for enhancing the bioavailability of silymarin: the state of the art. Molecules. 2019;24(11):2155. https://doi.org/10.3390/molecules24112155

Piazzini V, D’Ambrosio M, Luceri C, et al. Formulation of nanomicelles to improve the solubility and the oral absorption of silymarin. Molecules. 2019;24(9):1688. https://doi.org/10.3390/molecules24091688

Flaig TW, Gustafson DL, Su LJ, et al. A phase I and pharmacokinetic study of silybin-phytosome in prostate cancer patients. Invest New Drugs. 2007;25(2):139-146. https://doi.org/10.1007/s10637-006-9019-2

Jacobs PB, Dennehy C, Ramirez G, Sapp J, Lawrence VA. Milk thistle for the treatment of liver disease: a systematic review and meta-analysis. Am J Med. 2002;113:506-515. https://doi.org/10.1016/S0002-9343(02)01244-5

Abenavoli L, Capasso R, Milic N, Capasso F. Milk thistle in liver diseases: past, present, future. Phytother Res. 2010;24(10):1423-1432. https://doi.org/10.1002/ptr.3207

Flaig TW, Gledé M, Gustafson D, et al. A study of high-dose oral silybin-phytosome followed by prostatectomy in patients with localized prostate cancer. Prostate. 2010;70(8):848-855. https://doi.org/10.1002/pros.21118

Lazzeroni M, Guerrieri-Gonzaga A, Gandini S, et al. A presurgical study of oral silybin-phosphatidylcholine in patients with early breast cancer. Cancer Prev Res. 2016;9(1):89-95. https://doi.org/10.1158/1940-6207.CAPR-15-0123

Lee SM, Lee GW, Park SY, et al. 2020. Dual Effects of Silibinin on Human Pancreatic Cancer Cells. Preprint downloaded from https://assets.researchsquare.com/files/rs-130714/v1/6f2d72ec-7e77-448d-85b5-b2bdeea220a0.pdf?c=1608755626 accessed 7/2021.

Tehrani FK, Ranji N, Kouhkan F, Hosseinzadeh S. PAN-C1 cancer stem-like cell death with silybin encapsulated in polymersomes and deregulation of stemness-related miRNAs and their potential targets. Ir J Basic Med Sci. 2021;24(4):514. https://doi.org/10.22038/ijbms.2021.54001.12136

Abdollahi P, Ebrahimi M, Motamed N, Samani FS. Silybinin affects tumor cell growth because of reduction of stemness properties and induction of apoptosis in 2D and 3D models of MDA-MB-468. Anti-cancer Drugs. 2015;26(5):487-497. https://doi.org/10.1097/CAD.0000000000000205

Firoouz J, Ebrahimi M, Sotoodehnejadmehatalash F. Evaluation of inhibitory effect of silybinin on growth and stemness property of MCF-7 cell line derived mammospheres. SSU Journals. 2017;25(2):111-122. http://jssu.ssu.ac.ir/article-1-3944-en.html.

Pawar SK, Jaldappagari S. Interdiction of a flavonoid, silybinin into DNA base pairs: experimental and theoretical approach. J Mol Recognit. 2020;33:e2812. https://doi.org/10.1002/jmr.2812

Biedermann D, Hurtová M, Biedermannová L, Valentová K, Kven V. Flavonolignans from silymarin do not intercalate into DNA: rebuttal of data published in the paper J. Mol. Recognit. e2812 (2019). J Mol Recognit. 2021;34(7):e2888. https://doi.org/10.1002/jmr.2888

Schröder FH, Roobol MJ, Boeve ER, et al. Randomized, double-blind, placebo-controlled crossover study in men with prostate cancer and rising PSA: effectiveness of a dietary supplement. Eur Urol. 2005;48(6):922-931. https://doi.org/10.1016/j.eururo.2005.08.005

Hsu CY, Sun PL, Chang HC, Perng DS, Chen YS. Spontaneous regression of advanced hepatocellular carcinoma: a case report. Cases J. 2009;2(1):6251. https://doi.org/10.4076/1757-1626-2-6251

Moroni M, Zanlorenzi L. Complete regression following sorafenib in unresectable, locally advanced hepatocellular carcinoma. Future Oncol. 2013;9(8):1231-1237. https://doi.org/10.2217/fon.13.86

Bosch-Barrera J, Sais E, Cañete N, et al. Response of brain metastasis from lung cancer patients to an oral nutraceutical product containing silybinin. OncoTarget. 2016;7(22):32006. https://doi.org/10.18632/oncotarget.7900

Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell. 2011;144(5):646-674.

Gladin E. Graph-theoretical model of global human interactome reveals enhanced long-range communicability in cancer networks. PLoS ONE. 2017;12(1):e0170953. https://doi.org/10.1371/journal.pone.0170953

Poljak SJ, Morishima C, Shuhart MC, Wang CC, Liu Y, Lee DYW. Inhibition of T-cell inflammatory cytokines, hepatocyte NF-κB signaling, and HCV infection by standardized silymarin. Gastroenterology. 2007;132(5):1925-1936. https://doi.org/10.1053/j.gastro.2007.02.038

Zhong X, Zhu Y, Lu Q, Zhang J, Ge Z, Zheng S. Silymarin causes caspases activation and apoptosis in K562 leukemia cells through inactivation of Akt pathway. Toxicology. 2006;227-(3):211-216. https://doi.org/10.1016/j.tox.2006.07.021

Kren V, Walterová D. Silybin and silymarin-new effects and applications. Biomed Papers. 2005;149(1):29-41. PMID: 16170386.

Saller R, Brignoli R, Melzer J, Meier R. An updated systematic review with meta-analysis for the clinical evidence of silymarin. Complement Med Res. 2008;15(1):9-20. https://doi.org/10.1159/000113648

Su CH, Chen LJ, Liao JF, Cheng JT. Dual effects of silymarin on nasopharyngeal carcinoma cells (NPC-TW01). Complement Med Res. 2013;20(4):261-266. https://doi.org/10.1159/000354594

Sadighi S, Dashi-Khavidaki S, Shahbazi F, et al. The effects of concomitant use of silymarin and chemotherapy on solid tumors: a pilot randomized controlled trial. Basic Clin Cancer Res. 2017;9(2):13-19.

Faisal Z, Mohos V, Fliszár-Nyúl E, et al. Interaction of silymarin components and their sulfate metabolites with human serum
albumin and cytochrome P450 (2C9, 2C19, 2D6, and 3A4) enzymes. *Biomed Pharmacother*. 2021;138:111459. https://doi.org/10.1016/j.biopha.2021.111459

427. Manivannan E, Amawi H, Hussein N, et al. Design and discovery of silybin analogues as antiproliferative compounds using a ring disjunctive–based, natural product lead optimization approach. *Eur J Med Chem*. 2017;133:365-378. https://doi.org/10.1016/j.ejmech.2017.03.033

428. Amawi H, Hussein NA, Karthikeyan C, et al. HM015k, A novel silybin derivative, multi-targets metastatic ovarian cancer cells and is safe in zebrafish toxicity studies. *Front Pharmacol*. 2017;8:498. https://doi.org/10.3389/fphar.2017.00498

429. Bhatia N, Agarwal R. Detrimental effect of cancer preventive phytochemicals silymarin, genistein and epigallocatechin 3-gallate on epigenetic events in human prostate carcinoma DU145 cells. *Prostate*. 2001;46(2):98-107. https://doi.org/10.1002/1097-0045(20010201)46:2<98::AID-PROS1013>3.0.CO;2-K

430. Fallah M., Davoodvandi A., Nikmanzar S., et al. (2021). Silymarin (milk thistle extract) as a therapeutic agent in gastrointestinal cancer. *Biomed Pharmacother.*, 142, 112024.