SUPPLEMENTARY TEXT S1

Isolation of nuclei

Selected root segments were isolated and submerged in freshly prepared Isolation Medium pH 7.8 (IM; 2% arabic gum, 1.25% ficoll, 2.5% dextran, 0.01% BSA, 0.5 mM EDTA, 50 mM magnesium acetate, 8 mM β-mercaptoethanol, 4 mM n-octanol, 25 mM TRIS, 7 mM diethylypyrocarbonate, 30% glycerol) containing 1% protease inhibitor cocktail (Sigma-Aldrich). The pieces of tissue were incubated in vacuum on ice for 15 min and then homogenized 3x 20 s with an Ultra-Turrax homogenizer IKA T25 digital with dispersor IKA S25-10G at 20,000 rpm. Next, the homogenate was filtrated through a set of 100, 50 and 30 µm nylon sheets. The homogenization and filtration was repeated three times and each batch was collected separately. The homogenates were centrifuged at 2,500 rpm, for 15 min at 4°C. The supernatants containing the cytoplasmic fractions were transferred to a fresh centrifuge tube, precipitated with 10% v/v trichloroacetic acid (TCA) for 1 h on ice, centrifuged 5 min at 12,000 rpm and mixed with Laemmli Buffer 2x or Lysis Buffer (LysB). The pellets containing the nuclei were washed with Isolation Medium containing 0.1% protease inhibitor cocktail (Sigma-Aldrich). The purity and integrity of isolated nuclei were controlled using a light microscope after methyl green staining (Sigma-Aldrich M8884).

Isolation of the nucleoskeleton

The isolation of the NSK fraction was obtained after sequential extraction of nuclei with non-ionic detergent, DNase and high salt buffer. Freshly isolated nuclei were incubated for 5 minutes with cytoskeleton buffer (CSKB; 10 mM PIPES pH 6.8, 100 mM KCl, 300 mM sucrose, 3 mM MgCl2, 20 mM DTT, 1 mM EGTA) containing 1% protease inhibitor cocktail (P9599, Sigma-Aldrich) and 0.5% Tx-100. Next, soluble and membrane associated nuclear proteins were removed by centrifugation at 3000 rpm for 10 min at 4 °C and collected in supernatant (S1). The pellet containing nuclear insoluble fraction (F1) was next digested with 75 U of Benzonase (P9599 Sigma-Aldrich) in Digestion Buffer (DB; 10 mM PIPES pH 6.8, 50 mM KCl, 50 mM NaCl, 300 mM sucrose, 3 mM MgCl2, 20 mM DTT, 1 mM EGTA, 1% protease inhibitor coctail, 0.5% Tx-100) for 1h. Then 1 M (NH4)2SO4 was added slowly to a final concentration of 0.25 M to remove the DNA and DNA-associated proteins (S2), then the sample was incubated for 15 minutes and centrifuged. To the pellet (F2) containing loosely bound proteins 4 M NaCl was added to a final concentration of 2 M, incubated for 5 minutes and centrifuged. This step released proteins bound to the NSK (S3) and revealed the insoluble NSK fraction. All steps were performed at 4 °C.

Flow cytometry analysis

For estimation of DNA content by flow cytometry, the different root segments were isolated and fixed for 30 min at 4 °C in 2% (w/v) FA in TRIS buffer (10 mM TRIS pH 7.5, 10 mM EDTA, 100 mM NaCl) containing 0.1% Tx-100. Then samples were washed 3x with TRIS buffer and homogenized in lysis
buffer (15 mM TRIS pH 7.5, 2 mM EDTA, 80 mM KCl, 20 mM NaCl, 0.1% Tx-100) with an Ultra-Turrax T-25. Next, homogenates were filtered through a 30 µm nylon-mesh. The nuclear suspensions were centrifuged at 2,500 rpm for 20 minutes at 4 ºC and resuspended in 300 µl of lysis buffer. Before the analysis the nuclei were incubated with RNaseA (Boehringer-Mannheim) at concentration 30 µg/ml for 30 minutes and stained with propidium iodide (Sigma-Aldrich) at concentration 20 µg/ml. After 10 min flow-cytometry analysis was performed with an EPICS XL analyzer (Coulter) equipped with an argon laser tuned at 488 nm, and fluorescent signals from propidium iodide-labelled nuclei collected by a 620 nm band-pass filter.

Immunofluorescence

Nuclear or nucleoskeleton fractions were fixed in freshly prepared 2% formaldehyde (FA) in PBS buffer (pH 7.4) containing 0.5% Tx-100 for 30 minutes, then centrifuged at 2,500 rpm for 15 min and washed in the same buffer for 30 min. Pellets were re-suspended in 20 mM glycine and incubated for 30 min, then blocked in 2% BSA in PBS with 0.05% Tween-20 for 30 min. Next, the anti-AcNMCP1 antibody was added to the blocking solution to a final dilution 1:100, incubated overnight at 4 ºC and washed 3x 15 min in PBS with 0.05% Tween-20. Pellets were incubated with A488-coupled secondary antibody (Molecular Probes) at 1:100 for 45 min at room temperature, washed 2x 15 min and stained with 1 µg/ml 4’,6’ diamidino-2-phenylindole (DAPI) to counterstain DNA in the nuclei. Pellets were washed again 3x 15min. All steps were performed at room temperature and in constant shaking if not stated differently. The labelled fractions were layered onto 0.1% poly-L-lysine coated multi-wells slides, air dried and mounted with Vectashield (Vector). Negative controls were prepared by omitting the primary antibody. Samples were examined in a Confocal Microscope Leica TCS-SP2-AOBS, using the Leica-confocal software.
Supplementary Figure SL. AcNMCP1 sequence and sequence similarity. Protein sequence alignment of AcNMCP1 and NMCPI. The NMCPI sequences from Oryza sativa (OsM1; LOC. Os02g68810), Ipomoea batatas (AgNMCP1; BA187715.1), Daucus carota (DaNMCP1; BA260047) and, Aristolochia thaliana (LINC1; NP_176892.1) were aligned with that of AcNMCP1 (BAM10899.1) using ClustalW2 (Larkin et al., 2007) and edited in Jalview (Waterhouse et al., 2009). The coiled-coil segments predicted using MARCOIL (Delorme and Speed, 2002) are shaded in gray, the cdk1 consensus sequences in pink, the predicted NLS in green and the NMCPI-specific conserved regions in blue and brown, the stretch of acidic amino acids in red. The degree of conservation is represented by yellow and brown bars beneath the alignment (generated by Jalview) and the region used for antibody production is contained in a red box.
NAME	SPECIES	GENE ID	SOURCE (GENOME PROJECT)
Aly3	Arabidopsis lyrata	gene 47806	JGI release v1.0
Luc1	Zea mays silvestris	gene U10003075.g	BGI v1.0 on assembly v1.0
Luc2	Zea mays silvestris	gene U10003257.g	
Luc3	Zea mays silvestris	gene U30034265.g	
Psu1	Phaseolus vulgaris	gene Phve001032159m.g	JGI annotation v0.95 on assembly v0.9 using published ESTs, and JGI RNAseq
Psu2	Phaseolus vulgaris	gene Phve001034579m.g	
Mbo2	Malus domestica	gene MDP000012171.g	GDR prediction v1.0 on Malus x domestica assembly v1.0
Mbo3	Malus domestica	gene MDP000020564.g	
Mbo1	Malus domestica	gene MDP0000112257	
Cru1	Capsella rubella	gene Carv000119639m.g	
Cru2	Capsella rubella	gene Carv000125809m.g	
Bra1	Brassica rapa	gene Bra29402	Annotation v1.2 on assembly v1.1 from brassicadb.org
Bra2	Brassica rapa	gene Bra294099	
Tha3	Thellungiella halophila	gene Thalv00006021m.g	JGI annotation v1.0 on assembly v1
Tha2	Thellungiella halophila	gene Thalv00007287m.g	
Tha1	Thellungiella halophila	gene Thalv00018144m.g	
Mes1	Marchantia excelsa	gene cassaw1_000510m.g	Assembly version 4, JGI annotation v4.1
Mes3	Marchantia excelsa	gene cassaw1_000491m.g	
Cua1	Cuscuta australis	gene C usca1.25180	Roche 454-XR assembly and JGI v1.0 annotation
Cua3	Cuscuta australis	gene C usca1.28080	
Cua2	Cuscuta australis	gene C usca1.30490	
Ppe1	Prunus persica	gene ppa003199m.g	JGI release v1.0
Ppe2	Prunus persica	gene ppa003195m.g	
Cpa1	Carica papaya	gene evm.TU.supercontig_179.33	ASGPR release of 2007
Cpa2	Carica papaya	gene evm.TU.supercontig_1.235	
Cu1	Cucurnicaca	gene orange1.1:086975m.g	JGI v1.1 annotation on v1 assembly
Cu3	Cucurnicaca	gene orange1.1:089874m.g	
Cu2	Cucurnicaca	gene orange1.1:091326m.g	
Ccl1	Citrus limon	gene clementin1.0:026300m.g	JGI v0.9 assembly and annotation
Ccl2	Citrus limon	gene clementin1.0:028880m.g	
Egr1	Eucalyptus grandis	gene egrandis_v1.0:001076m.g	JGI assembly v1.0, annotation v1.1
Egr2	Eucalyptus grandis	gene egrandis_v1.0:001127m.g	
Vv1	Vitis vinifera	gene GSVIVG010119720001	March 2020 12X assembly and annotation from Genoscope
Vv3	Vitis vinifera	gene GSVIVG0101295001	
Vv2	Vitis vinifera	gene GSVIVG010128620001	
Mgj1	Microtus guttatus	gene mgj10004342m.g	JGI 7X assembly release v1.0 of strain INM2, annotation v1.0
Mgj2	Microtus guttatus	gene mgj10004519m.g	
Aco1	Apis mellifera	gene AcoGoldSmith_v1.000268m.g	JGI BX assembly v1.0, annotation v1.1
Aco2	Apis mellifera	gene AcoGoldSmith_v1.001172m.g	
Sbi1	Streptomyces lividans	gene Sbi100120240	Sbi1.4 models from MPS/PSA on v1.0 assembly
Sbi2	Streptomyces lividans	gene Sbi100130570	
Zma1	Zebrafish	gene ZGR002105087	5b.6b annotation (filtered set) of the major "B73" genome v2 produced by the Maize Genome Project
Zma2	Zebrafish	gene ZGR002105087	
Sst1	Stentor coeruleus	gene Sst1001647m.g	JGI 8.3K chromosome-scale assembly release 2.0, annotation version 2.0
Sst2	Stentor coeruleus	gene Sst100171m.g	
Osa1	Oryza sativa	gene Osa101146100	MSU Release 7.0 of the Rice Genome Annotation
Osa2	Oryza sativa	gene Osa101156140	
Bbi1	Brachypodium distachyon	gene Bra21g13500	JGI Be assembly release v1.0 of strain BBI2 with JGI/MPS PSA A annotation v1.2
Ppy1	Pyrus communis	gene Ppy117b3102	JGI assembly release v1.0 and COSMOS2015 annotation v1.6
Ppy2	Pyrus communis	gene Ppy1120014A	

SUPPLEMENTARY TABLE S1

ACCESSION NUMBER	NAME	SPECIES
DQ4601.1	Drosophila casei	GenBank/EMBL/DDBI
DQ14501.9	Drosophila casei	GenBank/EMBL/DDBI
AB14501.6	Apis mellifera	GenBank/EMBL/DDBI
AB14507.1	Apis mellifera	GenBank/EMBL/DDBI
MA10550.2	Arabidopsis thaliana	GenBank/EMBL/DDBI
MA101104.2	Arabidopsis thaliana	GenBank/EMBL/DDBI
MA105501.2	Arabidopsis thaliana	GenBank/EMBL/DDBI
MA125745.1	Arabidopsis thaliana	GenBank/EMBL/DDBI
AB310204.1	Arbutus unedo	GenBank/EMBL/DDBI
AB110035.1	Arbutus unedo	GenBank/EMBL/DDBI