Research Article

A Computer-based Study on the Effect of Sympathetic Activity during CPR

Alka Rachel John1*, M. Manivannan1 and Natesan Damodaran3

1Touch Lab, Biomedical Research Group, Department of Applied Mechanics, IIT Madras, Chennai, India
2Department of Neuro Surgery, Mahatma Gandhi Medical College and Research Institute, Pondichery, India

ARTICLE INFO

Article history:
Received 22 November, 2018
Accepted 17 December, 2018
Published 23 December, 2018

Keywords:
Cardiac arrest
cardiopulmonary resuscitation
cardiac output
mean arterial pressure
computer model

ABSTRACT

Purpose: In spite of extensive studies, the mechanism of cardiopulmonary resuscitation (CPR) has not been properly understood and a proper comprehension of the role of regulatory mechanisms of the cardiovascular system during CPR is unavailable. Using computational methods, we try to study the influence of sympathetic activation on the cardiac output and mean arterial pressure (MAP) during CPR at different compression pressures and rates.

Methods: A computer model was used to investigate the effect of sympathetic activation during CPR. The model has a detailed representation of the cardiopulmonary resuscitation system and sympathetic control. Sympathetic activation during CPR was achieved through vital cardiac parameters such as contractility and peripheral resistance. We compared the cardiac output and MAP during CPR in four scenarios, namely with;
(1) sympathetic activation of heart alone, (2) sympathetic activation of the peripheral arteries alone, (3) sympathetic activation of both heart and peripheral arteries, and (4) no sympathetic activation; for different compression pressures and rates.

Results: The results show that the cardiac output and MAP increases with increasing compression pressures and rates during CPR with sympathetic activation of peripheral arteries. The sympathetic activation of peripheral arteries during CPR at the AHA and ERC recommended chest compression pressures and rates resulted in an increased MAP, an augmented aortic diastolic pressure and a decreased cardiac output. The results also show that cardiac output and MAP pressure increases with increasing compression rate during CPR with sympathetic activation of heart. There is a slight increase in the MAP but no substantial improvement in cardiac output during CPR with sympathetic activation of heart at the AHA and ERC recommended pressures and rates.

Conclusions: It is observed from the study that sympathetic activation of heart during CPR may not be beneficial at the AHA and ERC recommended chest compression rates as it gives very little improvement in cardiac output and MAP. However, performing CPR at higher compression rate may improve the chances of resuscitation when drugs are used to induce sympathetic activity in the heart. The augmented aortic diastolic pressure during CPR with sympathetic activation of peripheral arteries at the AHA and ERC recommended compression pressure and rates can improve the myocardial perfusion, but the reduced cardiac output is a cause of concern.

*Correspondence to: Alka Rachel John, Touch Lab, Biomedical Research Group, Department of Applied Mechanics, IIT Madras, Chennai, Tamil Nadu- 600036, India; Tel: 04422575054; E-mail: alkarachel@gmail.com

© 2018 Alka Rachel John. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Hosting by Science Repository. All rights reserved.

http://dx.doi.org/10.31487/j.JICOA.2018.01.004
Introduction

Cardiopulmonary resuscitation (CPR) is an emergency lifesaving procedure that helps maintain life in a person whose heart has stopped beating. Even with widespread usage and extensive studies, the mechanism of blood flow during CPR continues to be uncertain and poorly understood. Nishizawa et al. and Sundgreen et al. found the autoregulation impaired in patients resuscitated from cardiac arrest, but a proper comprehension of the role of regulatory mechanism of the cardiovascular system during CPR is still unavailable [1, 2].

A number of animal models have been used to which study the effect of sympathetic activity during CPR. Otto and Yakaits studied the use of drugs during cardiac arrest in dogs and observed that the drugs used to achieve sympathetic activation of heart during CPR have no value in the therapy of cardiac arrest [3]. Redding and Pearson studied CPR in dogs and observed that while drugs inducing sympathetic activation of heart are not useful for resuscitation, the drugs inducing sympathetic activation of peripheral arteries are useful [4]. Yakaits et al. found that sympathetic activation of heart in dogs has little effect on successful resuscitation but the sympathetic activation of peripheral arteries during CPR improves the diastolic pressure, which is important for successful resuscitation [5]. Livesay et al. also studied the effect of drugs which cause the sympathetic activation of peripheral arteries during CPR in dogs and noted that the sympathetic activation of peripheral arteries during CPR improves the diastolic pressure, thereby improving the chances of spontaneous circulation [7]. The findings of Gonzalez et al. show that the use of drugs for sympathetic activation of peripheral arteries in human beings also results in an increased aortic diastolic pressure during CPR [8]. The study of Micheal et al. also on dogs, noted that the drugs inducing sympathetic activation of heart improves the myocardial blood flow during CPR [9].

Even though a number of animal models studied the effect of sympathetic activation during CPR, none of these models studied the influence of sympathetic activity on the cardiac output and MAP at different compression pressures and rates. We used a computer modelling approach to study the effect of sympathetic activation during CPR at different compression pressures and rates. Using a computer model gave us the flexibility to perform experiments that are otherwise difficult to be performed on human subjects or animals.

Our model has a detailed representation of cardiopulmonary resuscitation system and sympathetic control. The sympathetic activity on the cardiovascular system during CPR was achieved through heart contractility and peripheral resistance.

Materials and Methods

I Cardiopulmonary Resuscitation (CPR) Model: Our earlier Cardiopulmonary Resuscitation (CPR) model reported in John et al. was used to study the effect of sympathetic activation during CPR as it can simulate the CPR physiology under various conditions [10]. This CPR model, as shown in (Figure 1), is complete with veins, vena cava, right atrium, tricuspid valve, right ventricle, pulmonary valve, pulmonary artery, pulmonary capillary, pulmonary veins, left atrium, mitral valve, left ventricle, aorta, arteries, and capillaries. This is a lumped element model consisting of resistors, capacitors and inductors, and is represented using 27 simultaneous differential equations, which are solved using 4th order Runge-Kutta method.

The model consists of four cardiac chambers and each cardiac chamber wall property is modelled with two elements – elastance and viscoelastic resistance, to represent internal resistance of the chamber. Elastance of both the ventricles are assumed to be a constant in this CPR model. The heart valves are considered as orifices and since pressure-flow relationship across any orifice is defined by Bernoulli’s law, the valves are modelled using Bernoulli’s resistance, inerterance and resistance. The initial volume in each chamber is adjusted to set the pressure of the chamber at 15 mmHg, which is the initial filling pressure. In this CPR model, the minimum volume in each element is limited to the residual volume. The residual volume values for each element is from the work by Koeken et al. and the nominal value for each element in our CPR model are given in Appendix I [11].

The chest compression pressure in this CPR model is given as intrathoracic pressure. The compression pressure is applied equally to all thoracic elements. CPR is simulated in the model using compression pressure as input, which are sinusoidal pulses to mimic manual CPR. The duration where the pressure builds up is the compression period and the remainder of the cycle is the relaxation period.

The model predicts that the aorta can be pressurized up to 125 mmHg from baseline, which is the normal diastolic pressure. The aortic pressure at the end of the compression period is reduced to 50 mmHg. This level in the aorta was maintained throughout the compression period, and the relaxation phase was not involved in the aortic pressure. The aorta pressure is assumed to be a constant in this CPR model. The pressure in the left ventricle was observed to increase during the compression period and the left ventricle pressure was assumed to be a constant in this CPR model. The left atrium pressure was assumed to be 96 mmHg, which is the initial filling pressure. The tricuspid valve, right ventricle, pulmonary valve, pulmonary artery, pulmonary capillary, pulmonary veins, left atrium, mitral valve, left ventricle, aorta, arteries, and capillaries. This is a lumped element model consisting of resistors, capacitors and inductors, and is represented using 27 simultaneous differential equations, which are solved using 4th order Runge-Kutta method.

The model consists of four cardiac chambers and each cardiac chamber wall property is modelled with two elements – elastance and viscoelastic resistance, to represent internal resistance of the chamber. Elastance of both the ventricles are assumed to be a constant in this CPR model. The heart valves are considered as orifices and since pressure-flow relationship across any orifice is defined by Bernoulli’s law, the valves are modelled using Bernoulli’s resistance, inerterance and resistance. The initial volume in each chamber is adjusted to set the pressure of the chamber at 15 mmHg, which is the initial filling pressure. In this CPR model, the minimum volume in each element is limited to the residual volume. The residual volume values for each element is from the work by Koeken et al. and the nominal value for each element in our CPR model are given in Appendix I [11].

The chest compression pressure in this CPR model is given as intrathoracic pressure. The compression pressure is applied equally to all thoracic elements. CPR is simulated in the model using compression pressure as input, which are sinusoidal pulses to mimic manual CPR. The duration where the pressure builds up is the compression period and the remainder of the cycle is the relaxation period.

The chest compression pressure in this CPR model is given as intrathoracic pressure. The compression pressure is applied equally to all thoracic elements. CPR is simulated in the model using compression pressure as input, which are sinusoidal pulses to mimic manual CPR. The duration where the pressure builds up is the compression period and the remainder of the cycle is the relaxation period.

The model predicts that the aorta can be pressurized up to 125 mmHg from baseline, which is the normal diastolic pressure. The aortic pressure at the end of the compression period is reduced to 50 mmHg. This level in the aorta was maintained throughout the compression period, and the relaxation phase was not involved in the aortic pressure. The aorta pressure is assumed to be a constant in this CPR model. The pressure in the left ventricle was observed to increase during the compression period and the left ventricle pressure was assumed to be a constant in this CPR model. The left atrium pressure was assumed to be 96 mmHg, which is the initial filling pressure. The tricuspid valve, right ventricle, pulmonary valve, pulmonary artery, pulmonary capillary, pulmonary veins, left atrium, mitral valve, left ventricle, aorta, arteries, and capillaries. This is a lumped element model consisting of resistors, capacitors and inductors, and is represented using 27 simultaneous differential equations, which are solved using 4th order Runge-Kutta method.

The model consists of four cardiac chambers and each cardiac chamber wall property is modelled with two elements – elastance and viscoelastic resistance, to represent internal resistance of the chamber. Elastance of both the ventricles are assumed to be a constant in this CPR model. The heart valves are considered as orifices and since pressure-flow relationship across any orifice is defined by Bernoulli’s law, the valves are modelled using Bernoulli’s resistance, inerterance and resistance. The initial volume in each chamber is adjusted to set the pressure of the chamber at 15 mmHg, which is the initial filling pressure. In this CPR model, the minimum volume in each element is limited to the residual volume. The residual volume values for each element is from the work by Koeken et al. and the nominal value for each element in our CPR model are given in Appendix I [11].

The chest compression pressure in this CPR model is given as intrathoracic pressure. The compression pressure is applied equally to all thoracic elements. CPR is simulated in the model using compression pressure as input, which are sinusoidal pulses to mimic manual CPR. The duration where the pressure builds up is the compression period and the remainder of the cycle is the relaxation period.
approximately equal to the mean aortic pressure in a healthy human. The efferent reflexes are mediated by sympathetic nerves and its firing frequency is inversely proportional to the baroreceptor stretching rate. Therefore, the sympathetic efferent activity was realised by a monotonically decreasing exponential curve. Each sympathetic efferent pathway was modelled by a generic monotonic logarithmic function with pure delay. The mathematical equations and parameters were same as in the Ursino’s model [12].

Our model was developed in MATLAB R2010a with a fixed step-size of 0.001s, which was of the order of the smallest time constant of the system.

We studied the cardiac output and MAP during CPR in the following 4 scenarios:
1. with sympathetic activation of heart alone (SH),
2. with sympathetic activation of peripheral arteries alone (SP),
3. with sympathetic activation of both heart and peripheral arteries (SHP), and
4. with no sympathetic activation (NS), for a range of compression pressure and rate.

The results are showed as the mean cardiac output and mean arterial pressure over one minute after 30 seconds of compressions.

Results

I Cardiac Output Analysis

I. I Compression Pressure Analysis: The cardiac output during CPR with sympathetic activation of heart (SH), sympathetic activation of peripheral arteries (SP), sympathetic activation of both heart and peripheral arteries (SHP), and also without sympathetic activation (NS), were compared for different compression pressures in range of 50 mmHg to 150 mmHg at a constant compression rate of 110 compressions per minute (CPM). The cardiac output during CPR with SP and SHP was lesser than the cardiac output during CPR with no sympathetic activation of peripheral arteries for all compression pressures less than 130 CPM (as shown in figure 2). There was a 41.72% and a 38.08% decrease in cardiac output with sympathetic activation of peripheral arteries at 50 mmHg and 100 mmHg, respectively. However, there was a 43.59% increase in cardiac output with sympathetic activation of peripheral arteries at a compression pressure of 150 mmHg.

As seen from figure 2, during CPR without any sympathetic activation of peripheral arteries, the maximal cardiac output is clearly distinguishable at a compression pressure of 100 mmHg. However, with sympathetic activation of peripheral arteries, the cardiac output increases with increasing compression pressure.

I. II Compression Rate Analysis:

The cardiac output during CPR with SH, SP, SHP, and NS were compared for different compression rates in the range of 60 CPM to 200 CPM at a constant compression pressure of 100 mmHg. The cardiac output during CPR with SHP and SP was lesser than that without any sympathetic activation of peripheral arteries for all ranges of compression rate as shown in fig. 3. The fall in cardiac output with sympathetic activation of peripheral arteries at 80 CPM, 110 CPM and 160 CPM were 37.15%, 40.05%, and 24.9%, respectively.

In figure 3, the maximal cardiac output is clearly distinguishable at a compression pressure of 100 mmHg in the CPR with NS. SH gives the largest cardiac output at higher compression rates. The cardiac output is seen to increase with increasing compression pressure in the CPR with SP, SH and SHP.

II Mean Arterial Pressure (MAP) Analysis

II. I Compression Pressure Analysis: MAP during CPR with SH, SP, SHP and NS were compared for different compression pressures in range of 50 mmHg to 150 mmHg at a constant compression rate of 110 CPM. The MAP was greatest in the CPR with SHP and SP for all ranges of compression pressure, as shown in fig. 4. It is the sympathetic activation of peripheral arteries that gave an increased MAP. There was a 17.62% and an 81.05% increase in MAP with sympathetic activation of peripheral arteries at 50 mmHg and 150 mmHg, respectively. The aortic diastolic pressure increases only by 2.63% and 3.7% at 50 mmHg and 150 mmHg, respectively during CPR with sympathetic activation of heart. But the aortic diastolic pressure increases by 27.89% and 75.06% at 50 mmHg and 150 mmHg during CPR with the sympathetic activation of peripheral arteries.

As shown in (Figure 4), the maximal mean arterial pressure is clearly distinguishable at a compression pressure of 100 mmHg in CPR without any sympathetic activation of peripheral arteries. However, in CPR with sympathetic activation of peripheral arteries, the MAP is seen to increase with increasing compression pressure.
The increased peripheral resistance from sympathetic activation of peripheral arteries that there is a reduction in the amount of blood flowing into the arteries. This reduced cardiac output during CPR with sympathetic activation of peripheral arteries can be detrimental to the effectiveness of CPR. Our results show that with the sympathetic activation of peripheral arteries during CPR, the cardiac output increases with increasing compression pressure since it avoids the collapse of vessels at higher compression pressures, giving an improved cardiac output. However, during CPR at the AHA and ERC recommended chest compression pressures, the cardiac output also increases with increasing compression rate because of an increased preload. However, the cardiac output falls at higher compression pressures for CPR with no sympathetic activation of peripheral arteries since the flow gets obstructed due to the collapse of the vessels at higher compression pressures. We observe that with the sympathetic activation of peripheral arteries during CPR, the cardiac output also increases at higher compression rates because of the increase in heart contractility during the CPR with sympathetic activation of heart.

Impact of Sympathetic activation on the MAP during CPR: The maximal MAP was with the sympathetic activation of peripheral arteries during CPR for all ranges of compression pressure and rate. This was expected as the sympathetic activation of peripheral arteries results in an increased blood pressure. In our model, the sympathetic activation of peripheral arteries during CPR also results in an augmented aortic diastolic pressure. Several studies on dogs and a study on human beings also show that the sympathetic activation of peripheral arteries improves the artificial aortic diastolic pressure [5-8]. The literature also notes that an improvement in the aortic diastolic pressure during CPR is of prime importance in augmenting the coronary perfusion pressure and that the myocardial perfusion improves the chances of return of spontaneous circulation [6, 7, 15].

We observe from our simulation results that sympathetic activation of heart during CPR at the AHA and ERC recommended chest compression pressures do not give an increased MAP. Nevertheless, there is an improved MAP at higher compression rates during the CPR with sympathetic activation of heart.

Impact of Sympathetic activation on the cardiac output during CPR: Our results show that sympathetic activation of peripheral arteries during CPR at the AHA and ERC recommended chest compression pressures and rates results in a decreased cardiac output. It is because of the increased peripheral resistance from sympathetic activation of peripheral arteries that there is a reduction in the amount of blood flowing into the arteries. This reduced cardiac output during CPR with sympathetic activation of peripheral arteries can be detrimental to the effectiveness of CPR. Our results show that with the sympathetic activation of peripheral arteries during CPR, the cardiac output increases with increasing compression pressure since it avoids the collapse of vessels at higher compression pressures, giving an improved cardiac output. However, during CPR at the AHA and ERC recommended chest compression pressures, the cardiac output also increases with increasing compression rate because of an increased preload. However, the cardiac output falls at higher compression pressures for CPR with no sympathetic activation of peripheral arteries since the flow gets obstructed due to the collapse of the vessels at higher compression pressures. We observe that with the sympathetic activation of peripheral arteries during CPR, the cardiac output also increases at higher compression rates because of the increase in heart contractility during the CPR with sympathetic activation of heart.

Discussions

As per AHA 2015 and ERC 2015 guidelines for CPR, the recommended chest compression rate is 100 to 120 CPM and the recommended compression depth is approximately 6 cm [13, 14]. In our earlier work, we showed that the optimum compression depth for CPR is 5.7 cm, which corresponds to 100 mmHg of compression pressure [10].

Impact of Sympathetic activation on the cardiac output during CPR: Our results show that sympathetic activation of peripheral arteries during CPR at the AHA and ERC recommended chest compression pressures and rates results in a decreased cardiac output. It is because of the increased peripheral resistance from sympathetic activation of peripheral arteries that there is a reduction in the amount of blood flowing into the arteries. This reduced cardiac output during CPR with sympathetic activation of peripheral arteries can be detrimental to the effectiveness of CPR. Our results show that with the sympathetic activation of peripheral arteries during CPR, the cardiac output increases with increasing compression pressure since it avoids the collapse of vessels at higher compression pressures, giving an improved cardiac output. However, during CPR at the AHA and ERC recommended chest compression pressures, the cardiac output also increases with increasing compression rate because of an increased preload. However, the cardiac output falls at higher compression pressures for CPR with no sympathetic activation of peripheral arteries since the flow gets obstructed due to the collapse of the vessels at higher compression pressures. We observe that with the sympathetic activation of peripheral arteries during CPR, the cardiac output also increases at higher compression rates because of the increase in heart contractility during the CPR with sympathetic activation of heart.

Impact of Sympathetic activation on the cardiac output during CPR: Our results show that sympathetic activation of peripheral arteries during CPR at the AHA and ERC recommended chest compression pressures and rates results in a decreased cardiac output. It is because of the increased peripheral resistance from sympathetic activation of peripheral arteries that there is a reduction in the amount of blood flowing into the arteries. This reduced cardiac output during CPR with sympathetic activation of peripheral arteries can be detrimental to the effectiveness of CPR. Our results show that with the sympathetic activation of peripheral arteries during CPR, the cardiac output increases with increasing compression pressure since it avoids the collapse of vessels at higher compression pressures, giving an improved cardiac output. However, during CPR at the AHA and ERC recommended chest compression pressures, the cardiac output also increases with increasing compression rate because of an increased preload. However, the cardiac output falls at higher compression pressures for CPR with no sympathetic activation of peripheral arteries since the flow gets obstructed due to the collapse of the vessels at higher compression pressures. We observe that with the sympathetic activation of peripheral arteries during CPR, the cardiac output also increases at higher compression rates because of the increase in heart contractility during the CPR with sympathetic activation of heart.

Impact of Sympathetic activation on the cardiac output during CPR: Our results show that sympathetic activation of peripheral arteries during CPR at the AHA and ERC recommended chest compression pressures and rates results in a decreased cardiac output. It is because of the increased peripheral resistance from sympathetic activation of peripheral arteries that there is a reduction in the amount of blood flowing into the arteries. This reduced cardiac output during CPR with sympathetic activation of peripheral arteries can be detrimental to the effectiveness of CPR. Our results show that with the sympathetic activation of peripheral arteries during CPR, the cardiac output increases with increasing compression pressure since it avoids the collapse of vessels at higher compression pressures, giving an improved cardiac output. However, during CPR at the AHA and ERC recommended chest compression pressures, the cardiac output also increases with increasing compression rate because of an increased preload. However, the cardiac output falls at higher compression pressures for CPR with no sympathetic activation of peripheral arteries since the flow gets obstructed due to the collapse of the vessels at higher compression pressures. We observe that with the sympathetic activation of peripheral arteries during CPR, the cardiac output also increases at higher compression rates because of the increase in heart contractility during the CPR with sympathetic activation of heart.
animal studies that show that the drugs which cause sympathetic activation of heart during cardiac arrest are of no value [3-5]. However, there is an improvement in cardiac output and MAP at higher compression rates during CPR with sympathetic activation of heart. Hence, if drugs are used to induce sympathetic activation of the heart during CPR, doing CPR at a compression rate higher than the AHA and ERC recommended value might be useful.

Conclusion

A computer model was developed to determine the effect of sympathetic activation on the hemodynamics during CPR. The CPR with sympathetic activation of peripheral arteries resulted in an increased aortic diastolic pressure and MAP, and a decreased cardiac output during CPR. The CPR with sympathetic activation on the hemodynamics during CPR. The current study used the sympathetic system model with effector values for a healthy human, even though there might have been a change in the effector sensitivity during cardiac arrest. The cerebral blood flow during this pathological condition was also not explored because the model does not separately consider the cerebral system in systemic circulation. Enhancing the current model by eliminating these deficiencies would improve the accuracy of sympathetic simulation during CPR.

Appendix I

Parameter	Values	Parameter	Values
B_a	0.000016 mmHg.s².ml⁻²	1_arterial	0.0001 mmHg.s².ml⁻¹
B_at	0.000025 mmHg.s².ml⁻²	1_capillary	0.0005 mmHg.s².ml⁻¹
B_tr	0.000016 mmHg.s².ml⁻²	R_tr	0.07 mmHg.s⁻¹⁻¹
B_ttr	0.000025 mmHg.s².ml⁻²	R_tr	0.01 mmHg.s⁻¹⁻¹
C_tr	100 ml.mmHg	R_tr	0.005 mmHg.s⁻¹⁻¹
C_tr	30 ml.mmHg	R_tr	0.005 mmHg.s⁻¹⁻¹
C_tao	0.9 ml.mmHg	R_tao	0.04 mmHg.s⁻¹⁻¹
C_tao	0.3 ml.mmHg	R_tao	0.04 mmHg.s⁻¹⁻¹
C_tao	0.006 ml.mmHg	R_tao	0.005 mmHg.s⁻¹⁻¹
E_mus	0.02 mmHg/ml	R_mus	0.005 mmHg.s⁻¹⁻¹
E_mus	0.02 mmHg/ml	R_mus	0.005 mmHg.s⁻¹⁻¹
E_tao	0.02 mmHg/ml	R_mus	0.005 mmHg.s⁻¹⁻¹
cl_a	0.07 mmHg/ml	R_mus	0.03 mmHg.s⁻¹⁻¹
cl_tao	2.87 mmHg/ml	R_mus	0.75 mmHg.s⁻¹⁻¹
cl_tao	0.055 mmHg/ml	S_lo	0.35 mmHg.s⁻¹⁻¹
cl_tao	0.52 mmHg/ml	S_lo	0.01 mmHg.s⁻¹⁻¹
L_lo	0.0005 mmHg.s⁻¹⁻¹	S_lo	0.01 mmHg.s⁻¹⁻¹
L_lo	0.0005 mmHg.s⁻¹⁻¹	S_lo	0.005 mmHg.s⁻¹⁻¹
L_lo	0.0002 mmHg.s⁻¹⁻¹	S_lo	0.005 mmHg.s⁻¹⁻¹
L_lo	0.0005 mmHg.s⁻¹⁻¹	S_lo	0.01 mmHg.s⁻¹⁻¹
L_lo	0.0005 mmHg.s⁻¹⁻¹	S_lo	0.01 mmHg.s⁻¹⁻¹
L_lo	0.0005 mmHg.s⁻¹⁻¹	S_lo	0.005 mmHg.s⁻¹⁻¹
L_lo	0.0002 mmHg.s⁻¹⁻¹	S_lo	0.005 mmHg.s⁻¹⁻¹
L_lo	0.0005 mmHg.s⁻¹⁻¹	S_lo	0.01 mmHg.s⁻¹⁻¹

REFERENCES

1. Nishizawa H, Kudoh I (1996) Cerebral autoregulation is impaired in patients resuscitated after cardiac arrest. Acta Anaesthesiol Scand 40: 1149-1153. [Crossref]
2. Sundgreen C, Larsen FS, Herzog TM, Knudsen GM, Boesgaard S, et al. (2001) Autoregulation of cerebral blood flow in patients resuscitated from cardiac arrest. Stroke 32: 128-132. [Crossref]
3. Otto CW, Yakaitis RW, Redding JS, Blitt CD (1981) Comparison of dopamine, dobutamine, and epinephrine in CPR. Crit Care Med 9: 640-643. [Crossref]
4. Redding JS, Pearson JW (1963) Evaluation of drugs for cardiac resuscitation. Anesthesiology 4: 203-207. [Crossref]
5. Yakaitis RW, Otto CW, Blitt CD (1979) Relative importance of alpha- and beta-adrenergic receptors during resuscitation. Crit Care Med 7: 293-296. [Crossref]
6. Livesay JJ, Follette DM, Fey KH, Nelson RL, DeLand EC, et al (1978) Optimizing myocardial supply/demand balance with alpha-adrenergic drugs during cardiopulmonary resuscitation. J Thorac Cardiovasc Surg 7: 244-251. [Crossref]
7. Pearson JW, Joseph SR (1965) Influence of peripheral vascular tone on cardiac resuscitation. Anesthesiology 44: 746-752.
8. Gonzalez ER, Ornato JP, Garnett AR, Levine RL, Young DS, et al. (1989) Dose-dependent vasoressor response to epinephrine during CPR in human beings. Ann Emerg Med 18: 920-926. [Crossref]
9. Michael JR, Guerci AD, Koehler RC, Shi AY, Tsitlik J, et al (1984) Mechanisms by which epinephrine augments cerebral and myocardial perfusion during cardiopulmonary resuscitation in dogs. Circulation 69: 822-835. [Crossref]
10. John AR, Manivannan, M, Ramakrishnan TV (2017) Computer-Based CPR Simulation Towards Validation of AHA/ERC Guidelines. Cardiovasc Eng Technol 8: 229-235. [Crossref]
11. Koeken Y, Aelen P, Noordergraaf GJ, Paulussen I, Woerlee P, et al. (2011) The influence of nonlinear intra-thoracic vascular behaviour and compression characteristics on cardiac output during CPR. Resuscitation 82: 538-544. [Crossref]
12. Ursino M (1998) Interaction between carotid baroregulation and the pulsing heart: a mathematical model. Am J Physiol 275: 1733-1747. [Crossref]
13. Perkins GD, Handley AJ, Koster RW, Castrén M, Smyth MA, et al. (2015) European Resuscitation Council Guidelines for Resuscitation 2015: Section 2. Adult basic life support and automated external defibrillation. Resuscitation 95: 81-99. [Crossref]
14. American Heart Association (2015) Highlights of the 2015 American Heart Association guidelines update for CPR and ECC.
15. Sanders AB, Ewy GA, Taft TV (1984) Prognostic and therapeutic importance of the aortic diastolic pressure in resuscitation from cardiac arrest. Crit Care Med 12: 871-873. [Crossref]