Vega is a rapidly rotating star

D. M. Peterson1, C. A. Hummel2,3, T. A. Pauls4, J. T. Armstrong4, J. A. Benson5, G. C. Gilbreath4, R. B. Hindsley4, D. J. Hutter5, K. J. Johnston3, D. Mozurkewich6 & H. R. Schmitt4,7

1Department of Physics and Astronomy, Stony Brook University, Stony Brook, New York, USA 11794-3800
2European Southern Observatory (ESO), Casilla 19001, Santiago 19, Chile
3US Naval Observatory, 3450 Massachusetts Avenue NW, Washington, DC, USA, 20392-5420
4Naval Research Laboratory, Code 7215, 4555 Overlook Avenue SW, Washington, DC, USA 20375
5US Naval Observatory, Flagstaff Station, 10391 West Naval Observatory Road, Flagstaff, Arizona, USA 86001-8521
6Seabrook Engineering, 9310 Dubarry Road, Seabrook, Maryland, USA 20706
7Interferometrics, Inc., 13454 Sunrise Valley Drive, Suite 240, Herndon, Virginia, USA 20171

Vega, the second brightest star in the northern hemisphere, serves as a primary spectral type standard1. While its spectrum is dominated by broad hydrogen lines, the narrower lines of the heavy elements suggested slow to moderate rotation, giving confidence that the ground-based calibration of its visible spectrum could be safely extrapolated into the ultraviolet and near-infrared (through atmosphere models2), where it also serves as the primary photometric calibrator. But there have been problems: the star is too bright compared to its peers3 and it has unusually shaped absorption line profiles, leading some4,5 to suggest that it is a distorted, rapidly rotating star seen pole-on. Here we report optical interferometric observations of Vega which detect the asymmetric brightness distribution of the bright, slightly offset polar axis of a star rotating at 93\% of breakup speed. In addition to explaining the unusual brightness and line shape peculiarities, this result leads to the prediction of an excess of near-infrared emission compared to the visible, in agreement with observations6,7. The large temperature differences predicted across its surface call into question composition determinations, adding uncertainty to Vega’s age and opening the possibility that its debris disk8 could be substantially older than previously thought9,10.

Single baseline Michelson stellar interferometers measure complex “visibilities”11, usually recorded as amplitudes and phases, which are related to the intensity distribution of the target through a Fourier Transform. Even though the phases have been shown to be very sensitive to asymmetries in the intensity distribution, they are badly corrupted by the atmosphere and have been little used in the optical. But for closure phases, the data we focus on here—which are obtained by summing the phases measured on each baseline of a triangle in an interferometric array such
as the Navy Prototype Optical Interferometer12 (NPOI)–the atmospheric contribution cancels. The use of closure phase in the radio13 has enabled a dramatic gain in dynamic range of interferometric images made from multi-antenna arrays. In the optical12,14, where the phase errors can reach 100 waves on long baselines, the technique enables the use of phase information in any guise. As the observations reported here were made just with a three telescope array, the application of imaging techniques was not justified and we relied instead on fitting Roche models to the closure phase data.

The application of Roche spheroids to rotating stars was worked out 80 years ago15. Assuming solid body rotation and a point mass gravitational potential, a rotating star will adopt the figure of a Roche spheroid. Conservation of energy through surfaces of constant potential leads to the prediction that when the energy is transported by radiation the amount transported will vary over the surface in proportion to the effective gravity16 (the net of gravity less local centrifugal terms). Near breakup, the effective gravity near the equator can become quite small, leading to the prediction of a large drop in the local temperature with a corresponding decrease in brightness, an effect referred to as “gravity darkening”. Rapidly rotating stars seen at intermediate inclinations are therefore expected to display asymmetric intensity distributions. Altair17,18 proved to be the first major test of this theory in an isolated rotating star, where the theory succeeded to a high degree in describing a very non-trivial brightness distribution.

The observations considered here were obtained during late May and early June 2001 on the same nights as those of Altair previously reported17,19, where Vega served as a check star (the Vega data in machine readable form are in a separate file in the Supplementary Information). The observations and much of the data reductions are exactly as described for Altair17 which should be consulted for details. Issues specific to the Vega data are described in the Supplementary Information. We focus here on the closure phase data taken by NPOI on May 25, 2001, as they are the most extensive and of the highest quality data of that run. We augment these with the V-band magnitude, $V = 0.026 \pm 0.008$, as an additional observable. The model was fitted by enforcing the usual minimum χ^2 metric using the Levenberg–Marquardt algorithm20.

The parameters from the initial reduction are given in column 2 of Supplementary Table S1. The projected (at inclination, i) equatorial velocity, v_{eq}, for this model was predicted to be $v_{\text{eq}} \sin i \sim 15 \text{ km s}^{-1}$, a bit below the $\sim 21.8 \pm 0.1 \text{ km s}^{-1}$ found from detailed profile fits using a rotating model21. Although it is not so far off given how close the star is to pole-on, we feel the projected velocity is sufficiently well known that it should also be incorporated in the fit. We have therefore added as an “observable” $v_{\text{eq}} \sin i = 22 \pm 1.0 \text{ km s}^{-1}$ (see the Supplementary Information) and refit the data (columns 3 and 4 of Supplementary Table S1).

The Roche model provides a good fit to the augmented data set. The model parameters fit,
a number of derived quantities, and an estimate of the main parameters of the star Vega would be, were it not rotating, are given in Table 1. The quality of the fit is illustrated in Figure 1 and a false color rendering of the Vega model is shown in Figure 2. As Vega plays so many roles in astronomy, the ramifications of this result are extensive. We summarize some of the most important below.

Rotation can affect the gross spectral distribution of a star, an issue of considerable import given Vega’s role as the primary flux calibrator in the ultraviolet, visible and near infrared. To estimate the size of these effects we have calculated the changes in the fluxes from the rotating model compared to the static case that would be measured through a series of broadband filters (Table 2). As can be seen, there is a significant, systematic increase in the infrared emission from the rotating model. This is understood as due to the large amount of surface area predicted to be at relatively low temperatures.

There is an extensive literature on the possibility and extent of an “infrared excess” in the Vega spectrum. As the issue is critical to so much of astronomy, sides have been strongly taken. Observations of other A stars showed that Vega’s colors appear sensibly normal, which led authors to wonder whether the problem was with the model atmospheres. Others argued that because the hydrogen absorption coefficient completely dominates the spectra of A stars and is so well known, it was unlikely the model atmospheres were wrong, an argument that seems to have carried the day. Rapid rotation provides a simple resolution to this controversy, Vega is best modelled as a composite of model atmospheres. The star should have “normal” infrared colors, as most normal A stars are rapid rotators, and there is no need to question the quality of the individual atmosphere models.

One important aspect to this model is the near pole-on orientation of the rotational axis. Vega is surrounded by a large infrared emitting disk of material, a “debris disk”, which presents an essentially circular profile. One does not expect perfect coupling between orbiting material and the central star. But, if the poles of the disk and Vega coincide and the disk is thin we would predict 0.3% flattening, which is unlikely to be detectable, as seems to be the case.

Related to the orientation of the pole is the inferred equatorial velocity, $v_{\text{eq}} = 272 \, \text{km s}^{-1}$ (Table 1). Among the Vega-like stars, Vega itself has been anomalous in displaying a very low projected rotational velocity. The present determination strongly supports the view that the Vega-like stars are rapid rotators, consistent with the large amounts of angular momentum in the surrounding dust clouds.

Vega’s rotational state also affects inferences about its debris disk. It is well known that rotation results in the apparent brightness, and in turn the deduced luminosity, being inclination-dependent. Song et al., for example, have gone to some length to characterize the uncertainty
Figure 1: **Roche model fits to the closure phase data taken May 25, 2001.** The observations (open circles), estimated errors (bars, standard deviations) and model calculations (solid lines) are shown for each scan (labeled by hour angle, HA). Residuals (observed, O, minus calculated, C) are shown below each of the scans for clarity. The phases for the individual baselines, ϕ_i, and thus the closure phases, take on only two values, 0° or 180°, if an object is centro-symmetric. Closure phase measurements showing departures from this simple “abrupt transition” behavior provide potentially very sensitive measurements of asymmetry in an object. The soft transition at the points of the 180° phase changes here give a clear signal of the asymmetry in the intensity distribution. (Note the scale change for the residuals of the last scan.)
Figure 2: A false color model of Vega as it appears from Earth. (Blue is bright, red is faint, and the orange “+” is the subsolar point.) The temperature drops more than 2400 K from pole to equator, creating an $18 \times$ drop in intensity at 500 nm. Limb-darkening in a non-rotating model predicts only a 5-fold drop in intensity. Although the projected outline is almost perfectly circular, the polar diameter is only 80% of the equator. Dec., declination; RA, right ascension.
introduced by this effect in the Vega-like stars. It is straightforward to calculate the total luminosity of a Roche spheroid (Table 1). Further, one can apply small corrections17 to the luminosity and polar radius to obtain the corresponding values that would apply to a non-rotating star of the same mass. Using the Padova26 models we derive $M = 2.303 \, M_\odot$ and an age of $386 \pm 16 \, \text{Myr}$, on the high side of recent estimates of $354^{+20}_{-87} \, \text{Myr}$10 and $347^{+43}_{-37} \, \text{Myr}$9.

Unfortunately, Vega’s composition enters the age determination rather critically. The star is currently viewed as underabundant in heavy elements compared to the Sun27, $\text{[Fe/H]} \sim -0.5$, which clearly needs to be revisited, given the 2400 K temperature drop now predicted across its surface. Previous age determinations have implicitly or explicitly assumed solar metallicity, the argument being that composition peculiarities among the slowly rotating stars in this part of the Hertzsprung-Russell diagram are probably limited to the outer envelope, and normal composition models are therefore appropriate for estimating bulk properties. In our interpretation that argument fails, because at these rotational velocities meridional circulation will keep the the bulk of the star well mixed.

Proceeding as above we estimate $M = 2.11 \, M_\odot$ and an age of $572 \, \text{Myr}$, using the $Z = 0.008$ ([Fe/H] ~ -0.4) Padova models26. It is clear that a full abundance analysis incorporating rotation needs to be performed to remove this uncertainty. In the meantime this range, 386–572 Myr, is probably a more realistic estimate of the uncertainty in the evolutionary age of Vega and its debris disk.

Received 10 January; accepted 14 February 2006.

1. Morgan, W. W. & Keenan, P. C. Spectral classification. *Ann. Rev. Astron. Astrophys.* **11**, 29–50 (1973).

2. Bohlin, R. C. & Gilliland, R. L. Hubble Space Telescope absolute spectrophotometry of Vega from the far-ultraviolet to the infrared. *Astron. J.* **127**, 3508–3515 (2004).

3. Petrie, R. M. Spectroscopic absolute magnitudes of early-type stars from hydrogen absorption— a revision. *Publ. Dominion Astrophys. Obs.* **12**, 317–338 (1964).

4. Gray, R. O. The spectroscopic and photometric effects of rotation in the A-type stars. *J. R. Astron. Soc. Canada* **82**, 336–348 (1988).

5. Gulliver, A. F., Hill, G. & Adelman, S. J. Vega: A rapidly rotating pole-on star. *Astrophys. J.* **429**, L81–L84 (1994).
6. Blackwell, D. E., Leggett, S. K., Petford, A. D., Mountain, C. M. & Selby, M. J. Absolute calibration of the infrared flux from Vega at 1.24, 2.20, 3.76 and 4.6 microns by comparison with a standard furnace. *Mon. Not. R. Astron. Soc.* **205**, 897–905 (1983).

7. Leggett, S. K., Bartholomew, M., Mountain, C. M. & Selby, M. J. Narrow-band 1- to 5-µm photometry of A-type stars. *Mon. Not. R. Astron. Soc.* **223**, 443–447 (1986).

8. Aumann, H. H. *et al.* Discovery of a shell around Alpha Lyrae. *Astrophys. J.* **278**, L23–L27 (1984).

9. Habing, H. J. *et al.* Disappearance of stellar debris disks around main-sequence stars after 400 million years. *Nature* **401**, 456–458 (1999).

10. Song, I., Caillault, J.-P., y Navascués, D. B. & Stauffer, J. R. Ages of A-type Vega-like stars from uvbyβ photometry. *Astrophys. J.* **546**, 352–357 (2001).

11. Thompson, R. A., Moran, J. & Swenson, Jr., G. *Interferometry and Synthesis in Radio Astronomy* (Wiley-VCH, Weinheim, 2004).

12. Armstrong, J. T. *et al.* The Navy Prototype Optical Interferometer. *Astrophys. J.* **496**, 550–571 (1998).

13. Jennison, R. C. A phase sensitive interferometer technique for the measurement of the Fourier transforms of spatial brightness distributions of small angular extent. *Mon. Not. R. Astron. Soc.* **118**, 276–284 (1958).

14. Baldwin, J. E. *et al.* The first images from an optical aperture synthesis array: mapping of Capella with COAST at two epochs. *Astron. Astrophys.* **306**, L13–L16 (1996).

15. von Zeipel, H. The radiative equilibrium of a slightly oblate rotating star. *Mon. Not. R. Astron. Soc.* **84**, 684–701 (1924).

16. Hardorp, J. & Strittmatter, P. A. The effect of rotation on radiation from stars I. properties of the continuum. *Astrophys. J.* **151**, 1057–1073 (1968).

17. Peterson, D. M. *et al.* Resolving the effects of rotation in Altair with long-baseline interferometry. *Astrophys. J.* **636**, 1087–1097 (2006).

18. Domiciano de Souza, A. *et al.* Gravitational-darkening of Altair from interferometry. *Astron. Astrophys.* **442**, 567–578 (2005).

19. Ohishi, N., Nordgren, T. E. & Hutter, D. J. Asymmetric surface brightness distribution of Altair observed with the Navy Prototype Optical Interferometer. *Astrophys. J.* **612**, 463–471 (2004).
20. Press, W. H., Flannery, B. P., Teukolsky, S. A. & Vetterling, W. T. *Numerical Recipes in C 2nd edn* (Cambridge Univ. Press, Cambridge, UK, 1992).

21. Hill, G., Gulliver, A. F. & Adelman, S. J. A spectral study of Vega: A rapidly-rotating pole-on star. In Zverko, J., Ziznovsky, J., Adelman, S. J. & Weiss, W. W. (eds.) *The A-Star Puzzle*, 35–42 (IAU Symposium 224, Cambridge Univ. Press, Cambridge, UK, 2004).

22. Leggett, S. K. The flux distribution of Vega for the wavelength region from 10 to 100 microns, and the calibration of IRAS at 12 microns and 25 microns. *Astron. Astrophys.* **153**, 273–277 (1985).

23. Bessel, M. S., Castelli, F. & Plez, B. Model atmospheres broad-band colors, bolometric corrections and temperature calibrations for O - M stars. *Astron. Astrophys.* **333**, 231–250 (1998).

24. Su, K. Y. L. *et al.* The Vega debris disk: A surprise from Spitzer. *Astrophys. J.* **628**, 487–500 (2005).

25. Collins II, G. W. Continuum emission from a rapidly rotating stellar atmosphere. *Astrophys. J.* **138**, 1134–1146 (1963).

26. Girardi, L., Bressan, A., Bertelli, G. & Chiosi, C. Evolutionary tracks and isochrones for low- and intermediate-mass stars: From 0.15 to 7 Mₜₜ, and from z=0.0004 to 0.03. *Astron. Astrophys. Suppl.* **141**, 371–383 (2000).

27. Castelli, F. & Kurucz, R. L. Model atmospheres for Vega. *Astron. Astrophys.* **281**, 817–832 (1994).

28. Kurucz, R. L. *ATLAS9 Stellar Atmospheres and 2km/s Grid* (CD-ROM No. 13, Smithsonian Astrophysical Observatory, Cambridge, MA, 1993). ⟨http://kurucz.harvard.edu/cdroms.html⟩.

29. Van Hamme, W. New limb-darkening coefficients for modeling binary light curves. *Astron. J.* **106**, 2096–2117 (1993).

Supplementary Information is linked to the online version of the paper at www.nature.com/nature.

Acknowledgements We thank R. Kurucz for advice on calculating broadband fluxes using model atmospheres. The NPOI facility is a collaboration between the Naval Research Laboratory and the US Naval Observatory in association with Lowell Observatory, and is funded by the Office of Naval Research and the Oceanographer of the Navy. This research has made use of the SIMBAD literature database, operated at CDS, Strasbourg, France, and of NASA’s Astrophysics Data System.

Correspondence The authors declare that they have no competing financial interests. Correspondence and requests for materials should be addressed to D. M. P. (email: dpeterson@astro.sunysb.edu).
Table 1 | Vega Model and Derived Parameters

Quantity	Value	Error (s.d.)*		
ω = Ω/Ω_B†	0.926	±0.021		
θ_p (mas)†	2.767	0.037		
T_p (K)†	9,988	61		
i (deg.)†	4.54	0.33		
PA (deg.)†	8.6	2.7		
v_eq (km s⁻¹)	274	14		
v_eq,B ‡ (km s⁻¹)	356.1	2.4		
Ω (d⁻¹)	1.884	0.081		
Ω_B ‡ (d⁻¹)	2.034	0.041		
T_eq (K)	7,575	261		
R_p (R☉)	2.306	0.031		
R_eq (R☉)	2.873	0.026		
θ_min § (mas)	3.441	0.031		
θ_max § (mas)	3.446	0.031		
log L (L☉)	1.544	0.018		
log g_p (cm² s⁻²)	4.074	0.012		
log g_eq (cm² s⁻²)	3.589	0.056		
M		(M☉)	2.303	0.024
T_eff		(K)	9,306	86
Age		(Myr)	386	16

Six quantities are needed to uniquely define the Roche model of a star: the ratio of the angular rotation to that of breakup, ω = Ω/Ω_B, the inclination (or tilt) of the rotational axis to the line of sight, i, the position angle, PA, of the pole on the sky, the radius of the polar axis, R_p (or equivalently, using the parallax, the polar angular diameter, θ_p), the effective temperature at the pole, T_p and the surface gravity at the pole, g_p or equivalently, the mass. It is then possible to calculate the radius, R(φ), of the star for a given stellar latitude, φ, the effective gravity and the local temperature (T(φ)). For the spectral calculations we have adopted the ATLAS model atmospheres and in particular the Van Hamme limb-darkening parameterization of that grid. Other parameters include linear rotational velocities, v, the luminosity, L, surface gravities, g, the mass, M, and effective temperature, T_eff, the last referring to the entire non-rotating star. Subscripts "eq" and "p" specify quantities evaluated at the equator and pole, respectively.

*Uncertainties due to the parallax have not been included in the errors.

†The parameters derived from the model fit. A mass of 2.30 M☉ was assumed in the fit.

‡Rotating at breakup but with the same mass and polar radius

§θ_min,max are the minimum and maximum projected angular diameters.

||The parameters of a non-rotating star from the Padova grid which would reproduce the (corrected) luminosity and polar radius.
The differential excesses for the model of Vega compared to a non-rotating model (both solar composition) which matches the V magnitude with an angular diameter of 3.24 mas (ref. 27). Until the question of composition is resolved, these values should be considered indicative.

Band	Wavelength (μm)	Excess (mag)
R	0.67	-0.016
I	0.86	-0.029
J	1.12	-0.052
K	2.14	-0.072
L	3.69	-0.072