The association of Schistosoma and geohelminth infections with β-cell function and insulin resistance among HIV-infected and HIV-uninfected adults: A cross-sectional study in Tanzania

George PrayGod, Suzanne Filteau, Nyagosya Range, Kaushik Ramaiya, Kidola Jeremiah, Andrea M. Rehman, Rikke Krogh-Madsen, Henrik Friis, Daniel Faurholt-Jepsen

1 Mwanza Research Centre, National Institute for Medical Research, Mwanza, Tanzania, 2 Faculty of Epidemiology and Population Health, London School of Hygiene & Tropical Medicine, London, United Kingdom, 3 Muhimbili Research Centre, National Institute for Medical Research, Dar es Salaam, Tanzania, 4 Hindu Mandal Hospital, Dar es Salaam, Tanzania, 5 Centre for Physical Activity Research, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark, 6 Department of Infectious Diseases, Copenhagen University Hospital, Copenhagen, Denmark, 7 Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark, 8 Department of Infectious Diseases, Rigshospitalet, Copenhagen, Denmark

* gpraygod@yahoo.com

Abstract

Objectives

Data on the role of helminths on diabetes in Africa are limited. We investigated whether Schistosoma and geohelminth infections are associated with β-cell function and insulin resistance among adults.

Methods

A cross-sectional study was conducted among adults during 2016–2017. Demography, Schistosoma and geohelminth infections, HIV and insulin data were collected. Insulin during an oral glucose tolerance test (fasting, 30, and 120-min), overall insulin secretion index, insulinogenic index, HOMA-β, and HOMA-IR were main outcome measures for β-cell function and insulin resistance, respectively. Generalized estimating equations and generalized linear models assessed the association of Schistosoma and geohelminth infections with outcome measures separately by HIV status. Outcomes were presented as marginal means with 95% CI.

Results

Data were obtained for 1718 participants. Schistosoma infection was associated with higher 30-min insulin (24.2 mU/L, 95% CI: 6.9, 41.6) and overall insulin secretion index (13.3 pmol/L/mmol/L; 3.7, 22.9) among HIV-uninfected participants but with lower fasting insulin (-0.9 mU/L; -1.6, -0.2), 120-min insulin (-12.0 mU/L; -18.9, -5.1), and HOMA-IR (-0.3 mmol/L; -0.6, -0.0) among HIV-infected participants.
Among HIV-infected participants not yet on antiretroviral therapy (ART), geohelminth infection was associated with lower fasting insulin (-0.9 mU/L; -1.6, -0.2), 120-min insulin (-9.1 mU/L; -17.3, -1.0), HOMA-β (-8.9 mU/L/ (mmol/L; -15.3, -2.6) and overall insulin release index (-5.1 pmol/L/mmol/L; -10.3, 0.02), although this was marginally significant. There was no association among those on ART.

Conclusions

Schistosoma infection was associated with higher β-cell function among HIV-uninfected participants whereas Schistosoma and geohelminth infections were associated with reduced β-cell function among HIV-infected participants not on ART.

Introduction

Schistosomes and geohelminths are neglected human infections with significant morbidity particularly in the global south including Sub-Saharan Africa (SSA) [1]. Besides causing infectious-related ill health, studies have suggested that Schistosoma and geohelminth infections may have a protective role on the low-grade chronic inflammation-linked cardiometabolic diseases (including diabetes) [2, 3] as they change Th1 to Th2 immune response i.e. shifting pro-inflammatory to regulatory response [4, 5]. These helminths infections may increase circulating levels of interleukin (IL)-4, IL-5, IL-10 and IL-13 which may act to blunt or reverse the Th1-induced inflammation in metabolic tissues resulting in increased insulin sensitivity [6]. A recent systematic review of four Asian studies showed that helminth infections were associated with lower risk of type 2 diabetes [2]. However, there has been limited work to investigate the role of helminths on diabetes in SSA, where due to significant overlap with other infections like HIV, the association of helminths with diabetes could be different.

Data suggest that HIV infection, in contrast to helminths may increase the risk of diabetes [7, 8]. Epidemiological data report elevated serum levels of inflammatory markers (e.g. IL-6) and C-reactive protein (CRP) and link these to excess risk of diabetes and cardiovascular events [9, 10] suggesting that that inflammatory process and immune-modulation may explain the higher risk. Observational and experimental studies have suggested that schistosomiasis and other helminths could lead to more severe HIV infection characterized by a higher viral load [11–14]. Mice studies link this higher viral load to weakened ability of the host Th1 cellular components to fight viruses and reactivation of latent viruses [15, 16]. We suggest that the immunological shift from Th1 to Th2 exerted by Schistosoma and geohelminth infections may suppress Th1 cellular ability to fight HIV virus and bacterial infections leading to significant activation of cellular components of the immune system and chronic inflammation. In this paper we assessed whether people with Schistosoma or geohelminth-HIV co-infections compared to those with HIV infection only have more insulin resistance and consequently reduced β-cell function [17]. Also, we assessed if Schistosoma and geohelminth infections reduce insulin resistance and as a result enhance β-cell function among HIV-uninfected individuals.

Materials and methods

Study design and settings

This was a cross-sectional analysis of baseline data from the Chronic Infections, Co-morbidities and Diabetes in Africa (CICADA) study, a cohort study investigating risk factors for
diabetes among HIV-uninfected and HIV-infected adults in north-western Tanzania and registered at clinical.trials.gov as NCT03106480. During October 2016 to November 2017, CICADA recruited 1947 participants and those with both helminth (Schistosoma and geohelminth) and insulin data were eligible for inclusion in the current analysis.

Recruitment of participants

The study population and main methods have been reported recently [7]. Briefly, all surviving HIV-infected individuals from the Nutritional Support for African Adults Starting Antiretroviral Therapy (NUSTART) trial [18] and both HIV-infected and uninfected individuals from TB-NUT (Nutrition, Diabetes and Pulmonary Tuberculosis) study [19, 20] were invited for enrolment in CICADA study. HIV-infected participants from those studies had been on ART a median of 53 months (interquartile range 46; 102 months). In addition, a new cohort of HIV-infected people who visited antiretroviral therapy (ART) clinics in Mwanza City from October 2016 to November 2017, who were preparing to start ART and were not part of TB-NUT or NUSTART cohorts were also invited if they were aged ≥18 years and residents of Mwanza City. Using a computer-generated randomization list, we randomly selected half of the new HIV-infected participants and selected HIV-uninfected participants for frequency matching. Criteria for HIV-negative participants were: lived within the same neighbourhood as the HIV index participant (defined as living in the same street or sub-village), HIV-negative based on HIV rapid tests, had lived in Mwanza City for at least 3 months with no plans for relocating within the next 3 years, aged 18 years or above and age difference from the HIV-infected index participant not more than 5 years, same sex as the HIV-infected index participant, and willing to consent.

Data collection

Demography, socioeconomic status (SES) and NCDs risk factors. Data on demography, level of education, occupation, religion, marital status, alcohol intake, and smoking were collected based on WHO STEPS manual questionnaire [21]. In addition, information on possession of house (including type of toilet used and cooking place), bicycle, motorcycle, vehicle, sewing machine, radio, television, gas cooker, air-condition, mobile phone, animals, chicken, and boat were collected and used to compute SES using principal component analysis [22]. In this paper, SES was divided in tertiles (i.e. lower, middle and upper). Smoking history was classified as never, past and current smoking while alcohol intake was classified to never or ever groups. Reported physical activity was collected using global physical activity questionnaire and computed as metabolic equivalent of tasks minutes per week [23]. Participants were asked for a history of tuberculosis (TB) treatment and being on TB treatment was considered as ongoing clinical TB.

Anthropometry and body composition. While barefoot and with minimal clothing, weight of the participant was determined to the nearest 0.1 kg using a digital scale (Seca, Germany), height measured to the nearest 0.1 cm using a stadiometer fixed to the wall (Seca, Germany) and waist circumference using non-stretchable tape to the nearest 0.1 cm. Anthropometric measurements were taken in triplicate and medians were used for analysis. Based on weight and height measurements, body mass index (BMI) was calculated as mass (kg)/height (m)^2. Fat mass (kg) was determined using a bio-impedance analyser (Tanita BC418, Tokyo, Japan).

Glucose, insulin, CRP and HIV assessment. Following 8 hours of overnight fasting, plasma glucose (Hemocue201 RT, Hemocue AB, Angelholm, Sweden) and glycated haemoglobin A1c (HbA1c) (Hemocue HbA1c 501, Hemocue AB, Angelholm, Sweden) were determined.
using venous blood. Then participants underwent an oral glucose tolerance test (OGTT) with blood collection at 30 and 120 minutes (min). Venous blood samples drawn at the same time as those for glucose assessment were separated into serum for insulin (fasting, 30 min and 120 min) and CRP assessments and stored at -80˚C pending analysis. ELISA technique was used to assess insulin in Denmark using dual-monoclonal antibodies (ALPCO, Salem, NH, USA) whereas CRP was measured using sandwich ELISA in Germany [24]. HIV testing was done using two rapid antibody tests (SD HIV- 1/2 3.0 SD standard diagnostics Inc, and The Uni-Gold, Trinity Biotech, IDA Business Park, Bray, Co. Wicklow, Ireland). Discordant samples were tested using Uniform II vironostika-HIV Ag/Ab Micro-Elisa system (Biomerieuxbv, The Netherlands).

Parasites assessment. Helminth prevalence was determined using stool and urine samples. Stool was collected for determination of geohelminths (i.e Hookworms, *Ascaris lumbricoides*, *Trichiurus trichiura*, and *Strongyloides stercoralis*) and *Schistosoma (S.) mansoni*. Then duplicate smears (41.7 mg) were prepared from each stool sample and examined within 30 minutes of collection by two technicians using the Kato-Katz method [25]; differences in results read by the two technicians were resolved by consensus. Urine samples were examined for *Schistosoma (S.) haematobium* eggs in 10 ml of urine according to the nucleopore filtration method. Based on these data, participants with any geohelminth infection were classified as geohelminth-infected whereas those with any *Schistosoma* infection were classified as *Schistosoma*infected. Also, there were 15 participants (<1%) who had *Schistosoma* and geohelminth co-infection and these were classified as *Schistosoma*-infected. *Schistosoma* and geohelminth groups were the main exposure variables. These were analysed separately because schistosomes are blood-flukes and may lead to more severe tissue pathologies [26] and therefore might have distinct immune modulation characteristics in relation to β-cell function and insulin resistance compared to geohelminth infections. Also using blood sample we determined malaria infection using standard malaria microscopy techniques [27].

β-cell function and insulin resistance. Fasting, 30, and 120 min insulin levels, Homeostatic model assessment (HOMA)-β, insulinogenic index and total insulin release index were used as surrogates of β-cell function [28–30] whereas HOMA-Insulin Resistance (IR) was used as surrogate of insulin resistance [30] (S1 Table). In addition, fasting, 30, and 120 min glucose, HbA1c, fat mass and waist circumference were included as secondary markers of β-cell function and insulin resistance. All markers were used as outcome measures.

Ethics

Ethical clearance was provided by the National Institute for Medical Research (NIMR) in Tanzania and the London School of Hygiene and Tropical Medicine in UK and a consultative approval was obtained from the National Committee on Health Research Ethics in Denmark. Participants were enrolled after completing a written informed consent and those with diabetes and other illnesses were referred to Sekou-Toure referral hospital for care. All data were fully anonymized.

Data management and statistics

Data were double entered in CSPro database and analysed in STATA version 13 (Station College, Texas, USA). Demographic characteristics, body composition, physical activity, smoking, alcohol drinking, CRP and HIV were presented as percentages, means, and geometric means. Comparison of these variables between participants without helminth infection vs those with *Schistosoma* or geohelminth infection were done using t-test (if variables were continuous or after log-transformation where data were presented as geometric means) and chi-squared test (if variables were categorical).

Association of helminth infections with β-cell function and insulin resistance

PLOS ONE | https://doi.org/10.1371/journal.pone.0262860 January 25, 2022 4 / 17
We investigated the role of *Schistosoma* and geohelminth infections on fasting insulin, 30, and 120 min insulin using generalized estimating equations (GEE) with gamma distribution and log link since data were skewed positively with an unstructured covariance matrix (to account for within-person correlations of these markers at the 3 time points) and robust standard errors. However, for correlated outcomes with normal distribution (fasting glucose, 30, and 120 min glucose) we applied GEE with Gaussian distribution and identity link. For derived markers of β-cell function (i.e. HOMA-β, insulinogenic index and overall insulin release index) and HOMA-IR, which were all positive skewed, we used generalized linear models with gamma distribution and log link to investigate the association of main exposures on these outcomes. Finally, linear regression with robust standard errors was used on to investigate the associations between exposures with HbA1c, fat mass and waist circumference. Analyses were initially adjusted for age and sex and in final models further adjustments for body mass index, physical activity, and CRP were done [31–33] as well as malaria infection and clinical TB co-morbidities which may cofound the hypothesized relationships [34, 35] However, in final models for fat mass and waist circumference we adjusted for alcohol intake [36] and smoking [37, 38] in addition to CRP and physical activity because these could be important confounders. Data on these associations were presented as marginal means with 95% confidence intervals. In all analyses a significance level of $P<0.05$ was used. Effect modification by HIV status was explored by fitting interaction terms where wald tests with $p<0.05$ indicated significant interactions existed.

Results

Schistosoma, geohelminth, and insulin data were obtained for 1718 participants (569 HIV-uninfected, 855 HIV infected not on ART and 294 HIV infected on ART) (Fig 1). Background characteristics of participants not included and those included were similar except the proportion of females was higher in those not included (S2 Table). Due to significant interactions between *Schistosoma* or geohelminth infection with HIV treatment status on some outcomes (S3–S6 Tables) data are presented by HIV treatment status. The prevalence of *Schistosoma* infection was 8.9% (51/569), 8.1% (70/855), 6.1% (18/294) and that for geohelminth infection was 8.4% (48/569), 6.7% (57/855) and 10.5% (31/294) among HIV-uninfected, HIV-infected not yet on ART and HIV-infected on ART groups, respectively. Prevalence of individual helminths are presented in (S7 and S8 Tables). Similar to our earlier report [7], the prevalence of diabetes was 4.4% (25/569) among HIV-uninfected, 9.1% (78/855) among HIV-infected not yet on ART and HIV-infected on ART groups, respectively. Prevalence of individual helminths are presented in (S7 and S8 Tables). Similar to our earlier report [7], the prevalence of diabetes was 4.4% (25/569) among HIV-uninfected, 9.1% (78/855) among HIV-infected not yet on ART, and 3.1% (9/294) among those HIV-infected on ART. In this cohort published CD4 data showed that participants with HIV-infection had lower CD4 count and those on ART seemed to have higher CD4 count compared to those not yet on ART, but lower CD4 count compared to HIV-uninfected participants [7]. Among HIV-uninfected participants, those who were *Schistosoma*-infected were younger compared to helminth uninfected participants (35.9 years vs 43.2 years) and the proportion of women was lower in *Schistosoma*-infected compared to helminth-uninfected participants (*Table 1*). Similarly, among HIV-uninfected participants, those infected with *Schistosoma* or geohelminths had lower BMI than those not infected ($P<0.05$). However, the level of physical activity was higher in the geohelminth-infected than helminth uninfected participants ($P = 0.02$). Among HIV-infected participants on ART, *Schistosoma* infected participants seemed to have lower prevalence of current smokers compared to geohelminth uninfected group. We found no other major differences within HIV treatment groups.

Association of Schistosoma infection with β-cell function and insulin resistance

Table 2 presents associations of *Schistosoma* infection with markers of β-cell function and insulin resistance. Among the HIV-uninfected group, in final models, *Schistosoma* infection
was associated with higher 30 min insulin (24.2 mU/L, 95% CI: 6.9, 41.6) and overall insulin release index (13.3 pmol/L/mmol/L, 95%CI: 3.7, 22.9) but there was no association with HOMA-IR. In contrast among the HIV-infected not yet on ART group, Schistosoma infection was associated with lower fasting insulin (-0.9 mU/L, 95%CI: -1.6, -0.2) and 120 min insulin (-12.0 (mU/L, 95% CI: 18.9, -5.1) as well as HOMA-IR (-0.3 mmol/L, 95%CI: -0.6, -0.05).

Among HIV-infected participants on ART 30 min insulin, 120 min insulin, HOMA-β, insulinogetic index and overall insulin release index tended to be lower in participants with Schistosoma infection, but no differences were statistically significant.

Association of geohelminth infection with β-cell function and insulin resistance

Table 3 presents the association of geohelminth infection with markers of β-cell function and insulin resistance. In final adjusted models, we found that among the HIV-uninfected group, geohelminth infection was associated with lower insulinogetic index (-0.9(mU/L)/(mg/dL, 95% CI: —1.7, -0.1), but there was no association with insulin resistance. In addition, among HIV-infected participants not yet on ART, geohelminth infection was associated with lower fasting insulin (-0.9 mU/L, 95% CI: -1.6, -0.2), 120 min insulin (-9.1 mU/L, 95%CI: -17.3, -1.0), HOMA-β (-8.9 mU/L)/(mmol/L, 95% CI: -15.3, -2.6), and overall insulin release index (-5.1 pmol/L/mmol/L, 95%CI: -10.3, 0.02), although this was marginally significant. Among HIV-infected participants on ART we found no association with geohelminths.

Association of helminth infections with glucose, HbA1c and body composition

There was no association between Schistosoma infection with glucose, HbA1c, fat mass and waist circumference in either HIV-infected group (Table 4). However, among HIV-uninfected
Table 1. Background characteristics by helminth infection status.

HIV-uninfected participants	Helminth un-infected	Schistosoma-infected^a	Geo helminth-infected^b	P^c	P^d
N = 470	N = 51	N = 48			
Age (years), mean (SD)	43.2 (12.8)	35.9 (11.4)	40.5 (15.3)	<0.0001	0.19
Female sex, n(%)	270 (57.5)	17 (33.3)	25 (52.1)	0.001	0.48
Social economic status, n(%)					
Lower	63 (13.4)	3 (5.9)	6 (12.5)	0.11	0.45
Medium	211 (44.9)	30 (58.8)	26 (54.2)		
Higher	196 (41.7)	18 (35.3)	16 (33.3)		
Body mass index (kg), mean (SD)	23.8 (4.9)	22.5 (3.2)	21.5 (3.3)	0.05	0.001
Physically activity (MET min per week), mean (SD)	8809 (6898)ⁱ	10233 (8527)	11289 (7774)	0.17	0.02
Smoking status, n(%)					
Never	366 (77.9)	36 (70.6)	34 (70.8)	0.40	0.51
Past	64 (13.6)	8 (15.7)	8 (16.7)		
Current	40 (8.5)	7 (13.7)	6 (12.5)		
Ever taken alcohol, n (%)	322 (68.5)	37 (72.6)	27 (56.3)	0.55	0.08
C-Reactive Protein (mg/L)^e	1.5 (1.3, 1.6)ⁱ	1.8 (1.3, 2.7)	1.3 (0.9, 1.7)ⁱ	0.18	0.39
Tuberculosis treatment, n(%)	0 (0)	0 (0)	0 (0)		
Malaria infection, n(%)	5 (1.1)	1 (1.9)	2 (4.2)	0.46	0.13
HIV-infected not on antiretroviral therapy participants	N = 728	N = 70	N = 57		
N = 728	N = 70	N = 57			
Age (years), mean (SD)	33.3 (11.0)	38.0 (10.7)	37.3 (10.3)	0.88	0.52
Female sex, n(%)	432 (59.3)	40 (57.1)	35 (61.4)	0.72	0.75
Social economic status, n(%)					
Lower	308 (42.3)	34 (48.5)	27 (47.4)	0.23	0.44
Medium	239 (32.8)	16 (22.9)	14 (24.6)		
Higher	181 (24.9)	20 (28.6)	16 (28.0)		
Body mass index (kg), mean (SD)	21.2 (4.1)	20.6 (3.4)	20.4 (3.9)	0.24	0.17
Physically activity (MET min per week), mean (SD)	8955 (7301)^g	9525 (7970)^g	10007 (7256)	0.54	0.30
Smoking status, n(%)					
Never	552 (76.0)^g	43 (63.2)^g	51 (89.5)	0.02	0.06
Past	92 (12.7)	10 (14.7)	2 (3.5)		
Current	82 (11.3)	15 (22.1)	4 (7.0)		
Ever taken alcohol, n (%)	540 (74.4)^g	57 (83.8)^g	19 (33.3)	0.09	0.20
C-Reactive Protein (mg/L)^e	4.5 (3.9, 5.1)ⁱ	5.2 (3.3, 8.0)	4.5 (2.9, 7.0)^e	0.54	0.98
Tuberculosis treatment, n(%)	10 (1.4)	0 (0)	3 (5.3)	1.00	0.06
Malaria infection, n(%)	12 (1.7)	2 (2.9)	1 (1.8)	0.35	1.00
HIV-infected on antiretroviral therapy participants	N = 245	N = 18	N = 31		
N = 245	N = 18	N = 31			
Age (years), mean (SD)	45.8 (9.8)	43.6 (11.2)	41.4 (9.3)	0.37	0.02
Female sex, n(%)	149 (60.8)	12 (66.7)	18 (58.1)	0.62	0.77
Social economic status, n(%)					
Lower	116 (47.4)	5 (27.8)	12 (38.7)	0.27	0.65
Medium	32 (13.0)	3 (16.7)	5 (16.1)		
Higher	97 (39.6)	10 (55.5)	14 (45.2)		
Body mass index (kg), mean (SD)	20.8 (3.8)	19.6 (2.7)	20.4 (3.5)	0.19	0.56
Physically activity (MET min per week), mean (SD)	8694 (7360)^g	10789 (7806)	11652 (8455)	0.25	0.04
HIV patients on protease inhibitors, n(%)	14 (5.7)	0 (0)	2 (6.5)	0.61	0.70
Smoking status, n(%)					
Never	173 (70.6)	12 (66.7)	24 (77.4)	0.75	0.88
Past	60 (24.5)	5 (27.8)	6 (19.4)		

(Continued)
participants, geohelminth infection was associated with lower fat mass and waist circumference ($P<0.005$, all) and with HbA1c, although this was only marginally significant ($P = 0.06$) (Table 5).

Discussion

In this study, we had hypothesized that helminth infection in HIV-uninfected participants would be associated with better insulin sensitivity and β-cell function whereas helminth-HIV co-infection would increase the risk of insulin resistance and β-cell function as result of severe immune activation and chronic inflammation [39, 40]. In agreement with our hypothesis, this analysis found that *Schistosoma* infection was associated with higher level of insulin secretion among HIV-uninfected participants. In addition, among participants with *Schistosoma* or geohelminth infection there was reduced insulin secretion among HIV-infected participants not yet on ART. Contrary to our hypothesis, among HIV-uninfected participants geohelminths were associated with reduced insulinogenic index and among HIV-infected participants not on ART *Schistosoma* infection was associated with reduced insulin resistance. Overall, these metabolic changes were not associated with corresponding changes in serum glucose levels or HbA1c.

Beneficial effects of *Schistosoma* and geohelminth infections

Several studies have reported associations of *Schistosoma* and geohelminth infections with metabolic diseases. A recent study in Uganda found no association of helminths with insulin resistance or glucose [41], but in Ethiopia investigators found in a small study that *S. mansoni* infection was associated with reduced risk of impaired fasting glucose, but not with insulin secretion [42]. Outside SSA, onene Chinese study by Yuhong and colleagues found that history of previous *S. mansoni* infection was associated with reduced risk of diabetes and better metabolic profile among adults aged >60 years [43]. Similarly, Wiria and colleagues found that helminths were associated with modest improvement in insulin sensitivity not accounted by body mass index reduction alone [44]. Most previous studies investigated the role of helminths on insulin resistance and not both insulin resistance and β-cell function. Therefore, our study

	Helminth un-infected	Schistosoma-infecteda	Geohelminth-infectedb	P^c	P^d
Current	12 (4.9)	1(5.5)	1 (3.2)		
Ever taken alcohol, n (%)	182 (74.3)	12 (66.7)	20 (64.5)	0.48	0.25
C-Reactive Protein (mg/L)e	2.4 (2.0, 2.8)h	3.0 (1.3, 6.9)	1.9 (1.1, 3.2)g	0.45	0.36
Tuberculosis treatment, n(%)	2 (0.82)	0 (0)	1 (3.2)	1.00	0.30
Malaria infection, n(%)	9 (3.7)	1 (5.6)	3 (9.7)	0.51	0.14

SD, Standard deviation; MET, Metabolic equivalent of task

aIncluded both *Schistosoma mansoni* and *Schistosoma haematobium*

bIncluded hookworms, *Ascaris lumbricoides*, *Strongyloides stercoralis* and *Trichuris trichiura*

cDifference between helminth un-infected and *Schistosoma* infected groups

dDifference between helminth un-infected and geohelminth infected groups

eData presented as geometric mean (95%CI)

fParticipant missing

g2 participants missing

h3 participants missing

i5 participants missing

https://doi.org/10.1371/journal.pone.0262860.t001
adds novel data on this subject. We think at least two mechanisms could explain the beneficial effect of schistosomes on \(\beta \)-cell function among HIV-uninfected participants found in our study. First, *Schistosoma* infection could have reduced the negative effects of pro-inflammatory cytokines, including interleukin-1 beta (IL-1\(\beta \)), tumour necrosis factor-\(\alpha \) (TNF-\(\alpha \)) and gamma-interferon (\(\gamma \)-IFN) on islet \(\beta \) cells [45] by shifting Th1 to Th2 immune response [4, 5]. In animal studies it has been shown that extracts of soluble *S. mansoni* worm or eggs antigens induced secretion of anti-inflammatory cytokines including IL-10, IL-4 and IL-5 from T cells.

Table 2. Analysis of association of *Schistosoma* infection with \(\beta \)-cell function and insulin resistance by HIV treatment status.

HIV-negative participants (N = 569)	Age and sex adjusted model	Fully adjusted model*		
	Schistosoma-uninfected	Schistosoma-infected	Schistosoma-uninfected	Schistosoma-infected
Fasting insulin (mU/L)	7.2 (6.7, 7.8)	6.9 (5.9, 7.9)	7.2 (6.5, 7.5)	7.2 (6.3, 8.2)
Insulin at 30 min (mU/L)	54.3 (50.4, 58.1)	74.6 (58.9, 90.3)	20.3 (41.3, 36.6)	0.01
Insulin at 120 min (mU/L)	49.3 (46.1, 52.6)	51.6 (38.9, 64.3)	2.2 (-10.9, 15.4)	0.73
HOMA-\(\beta \) (mU/L)/(nmol/L)	51.8 (47.5, 56.2)	52.5 (38.9, 65.9)	0.6 (-13.6, 14.8)	0.93
Insulinogenic index (mU/L)/(mg/dL)	1.8 (1.5, 2.2)	3.3 (1.2, 5.5)	1.5 (-0.7, 3.6)	0.18
Overall insulin release index (pmol/L/nmol/L)	41.5 (39.0, 43.9)	51.7 (42.0, 61.4)	10.2 (0.2, 20.3)	0.04
Marker of insulin resistance	2.2 (1.9, 2.3)	2.1 (1.5, 2.6)	-0.1 (-0.6, 0.5)	0.76
HIV-infected not on antiretroviral therapy (N = 855)	Age and sex adjusted model	Fully adjusted model*		
Fasting insulin (mU/L)	6.0 (5.7, 6.4)	4.9 (4.2, 5.7)	-1.1 (-1.9, -0.3)	0.01
Insulin at 30 min (mU/L)	49.4 (46.5, 52.2)	66.3 (38.6, 54.1)	-3.1 (-11.8, 5.2)	0.48
Insulin at 120 min (mU/L)	49.3 (46.3, 52.3)	37.1 (29.4, 44.8)	-12.2 (-20.4, -4.0)	0.01
HOMA-\(\beta \) (mU/L)/(nmol/L)	43.2 (40.7, 45.7)	38.4 (31.3, 45.5)	-4.8 (-12.3, 2.7)	0.21
Insulinogenic index (mU/L)/(mg/dL)	1.4 (1.2, 1.6)	2.0 (1.1, 2.9)	0.6 (-0.3, 1.6)	0.19
Overall insulin release index (pmol/L/nmol/L)	37.5 (35.6, 39.3)	32.7 (27.6, 37.9)	-4.7 (-10.2, 0.7)	0.09
Marker of insulin resistance	1.8 (1.7, 1.9)	1.4 (1.1, 1.7)	-0.4 (-0.7, -0.04)	0.02
HIV-infected on antiretroviral therapy (N = 294)	Age and sex adjusted model	Fully adjusted model*		
Fasting insulin (mU/L)	6.5 (5.9, 7.1)	6.2 (4.8, 7.5)	-0.3 (-1.9, 1.1)	0.62
Insulin at 30 min (mU/L)	48.4 (43.3, 53.6)	40.6 (27.3, 53.9)	-7.8 (-22.0, 6.5)	0.28
Insulin at 120 min (mU/L)	36.5 (33.2, 39.9)	32.7 (22.8, 42.7)	-3.8 (-14.3, 6.6)	0.49
HOMA-\(\beta \) (mU/L)/(nmol/L)	44.1 (39.7, 48.5)	37.8 (23.9, 51.6)	-6.3 (-20.8, 8.2)	0.39
Insulinogenic index (mU/L)/(mg/dL)	1.3 (0.9, 1.6)	0.8 (-0.1, 1.7)	-0.5 (-1.5, 0.5)	0.34
Overall insulin release index (pmol/L/nmol/L)	33.2 (30.4, 36.0)	28.4 (19.6, 37.2)	-4.9 (-14.1, 4.4)	0.30
Marker of insulin resistance	2.0 (1.8, 2.2)	1.8 (1.2, 2.5)	-0.2 (-0.8, 0.5)	0.65

HOMA-\(\beta \), Homeostatic model assessment-\(\beta \); HOMA-IR, HOMA-Insulin Resistance; OGTT, oral glucose tolerance test.

*Adjusted for age, sex, C-Reactive Protein, body mass index, malaria infection, tuberculosis and physical activity.

https://doi.org/10.1371/journal.pone.0262860.t002
and subsequently prevented development of type 1 diabetes in non-obese mice [46]. Similarly, in a group of mice with diabetes induced with streptozotocin (pancreatic islets β-cell toxin), those infected with *Schistosoma* mansoni had more pancreatic β-cells mass and less focal degeneration as well as lower glucose level in comparison to those without *Schistosoma*

Table 3. Analysis of association of geohelminth infection with β-cell function and insulin resistance by HIV treatment status.

HIV-negative participants (N = 569)	Age and sex adjusted model	Fully adjusted model*		
	Marginal means (95% CI)	P		
	Geohelminth-uninfected	Geohelminth-infected	Difference	
Geohelminth-uninfected	7.2 (6.7, 7.8)	5.7 (4.7, 6.7)	-1.5 (-2.7, -0.4)	0.01
Geohelminth-infected	7.0 (6.5, 7.4)	6.6 (5.5, 7.4)	-0.4 (-1.5, 0.7)	0.49
Fasting insulin (mU/L)	54.4 (50.6, 58.3)	51.7 (39.8, 63.6)	-2.7 (-15.2, 9.8)	0.67
Insulin at 30 min (mU/L)	49.6 (46.3, 52.8)	46.0 (32.5, 59.5)	-3.6 (-17.5, 10.4)	0.62
Insulin at 120 min (mU/L)	50.1 (46.9, 53.2)	50.0 (39.4, 60.5)	-0.1 (-10.9, 10.8)	0.98
Markers of β-cell function				
HOMA-β (mU/L)/(mmol/L)	51.9 (47.7, 56.3)	38.9 (28.9, 49.1)	-13.0 (-24.0, -2.0)	0.02
Insulinogenic index (mU/L)/(mg/dL)	1.8 (1.3, 2.4)	0.6 (-0.01, 1.2)	-1.3 (-2.0, -0.5)	0.02
Overall insulin release index (pmol/L/mmol/L)	41.6 (39.0, 44.1)	37.9 (30.6, 45.2)	-3.6 (-11.4, 4.1)	0.36
Marker of insulin resistance				
HOMA-IR (mU/L)/(mmol/L)	2.2 (1.9, 2.4)	1.8 (1.3, 2.2)	-0.4 (-0.9, 0.1)	0.11
HIV-infected not on antiretroviral therapy (N = 855)				
Geohelminth-uninfected	6.0 (5.7, 6.4)	4.8 (4.1, 5.5)	-1.2 (-1.9, 0.4)	0.02
Geohelminth-infected	5.9 (5.6, 6.2)	5.0 (4.4, 6.6)	-0.9 (-1.6, -0.2)	0.01
Fasting insulin (mU/L)	49.4 (46.5, 52.3)	42.0 (34.7, 49.3)	-7.4 (-15.2, 0.5)	0.06
Insulin at 30 min (mU/L)	49.2 (46.2, 52.1)	36.6 (30.0, 43.1)	-12.6 (-19.8, -5.4)	0.001
Insulin at 120 min (mU/L)	49.5 (46.8, 52.3)	40.4 (32.7, 48.1)	-9.1 (-17.3, -1.0)	0.03
Markers of β-cell function				
HOMA-β (mU/L)/(mmol/L)	43.2 (40.7, 45.7)	32.1 (25.6, 38.6)	-11.1 (-18.1, -4.2)	0.002
Insulinogenic index (mU/L)/(mg/dL)	1.4 (1.2, 1.6)	1.9 (1.1, 2.8)	0.6 (-0.3, 1.4)	0.19
Overall insulin release index (pmol/L/mmol/L)	37.4 (35.6, 39.3)	30.6 (25.3, 35.9)	-6.8 (-12.4, -1.2)	0.02
Marker of insulin resistance				
HOMA-IR (mU/L)/(mmol/L)	1.8 (1.7, 1.9)	1.5 (1.1, 1.8)	-0.3 (-0.7, 0.01)	0.06
HIV-infected on antiretroviral therapy (N = 294)				
Geohelminth-uninfected	6.5 (5.9, 7.1)	7.4 (5.6, 9.2)	0.9 (-0.9, 2.8)	0.33
Geohelminth-infected	6.5 (6.0, 6.9)	7.4 (6.0, 6.9)	0.9 (-0.5, 2.4)	0.18
Fasting insulin (mU/L)	48.3 (43.1, 53.4)	59.9 (44.0, 75.7)	11.6 (-5.1, 28.3)	0.17
Insulin at 30 min (mU/L)	36.5 (33.1, 39.8)	44.7 (28.8, 60.6)	8.2 (-7.9, 24.4)	0.32
Insulin at 120 min (mU/L)	37.4 (33.9, 40.7)	43.5 (32.8, 54.1)	6.1 (-4.9, 17.1)	0.27
Markers of β-cell function				
HOMA-β (mU/L)/(mmol/L)	43.8 (39.4, 48.3)	51.8 (36.8, 66.7)	7.9 (-7.6, 23.5)	0.32
Insulinogenic index (mU/L)/(mg/dL)	1.3 (0.9, 1.7)	1.4 (0.2, 2.6)	0.1 (-1.1, 1.4)	0.85
Overall insulin release index (pmol/L/mmol/L)	33.2 (30.3, 36.1)	41.3 (31.1, 51.5)	8.1 (-2.5, 18.7)	0.13
Marker of insulin resistance				
HOMA-IR (mU/L)/(mmol/L)	1.9 (1.8, 2.2)	2.2 (1.6, 2.8)	0.2 (-0.4, 0.8)	0.53

HOMA-β, Homeostatic model assessment-β; HOMA-IR, HOMA-Insulin Resistance; OGTT, oral glucose tolerance test.

*Adjusted for age, sex, C-Reactive Protein, body mass index, malaria infection, tuberculosis and physical activity.

https://doi.org/10.1371/journal.pone.0262860.t003
infection [47]. Second, by switching Th1 to Th2 immunomodulation profile, Schistosoma infection could have reduced white adipose tissue inflammation, and subsequently leading to reduced insulin resistance [48]. The reduced insulin resistance would have resulted in reduced β-cells glucotoxicity [49] contributing to improved β-cell function. However, we found that Schistosoma infection was not associated with reduced insulin resistance. Although this could have been due to the fact that the predictive ability of HOMA-IR on insulin resistance was only modest in this population [50].

Although geohelminth infections were not associated with improved β-cell function, possibly due to lack of strong immune-modulatory effects [26], they were associated with lower total fat mass as well as reduced waist circumference independent of physical activity. This could have been due to loss of appetite associated with systemic or intestinal infections, but this is unlikely since it was independent of systemic inflammation (measured by CRP) and was observed in HIV-uninfected participants but not among HIV-infected participants, the population group at a higher risk of experiencing loss of appetite. So these changes were mostly likely a reflection of body weight reduction which is characteristic of helminth infections [48].

In mice studies, administration of Schistosoma egg antigens were associated with reduced risk

| Table 4. Analysis of association of Schistosoma infection with glucose, HbA1c, fat mass, and waist circumference by HIV treatment status. |
|--------------------|----------------|----------------|-----------------|----------------|----------------|
| | Age and sex adjust ed model | | Fully adjusted model^a | |
| | Schistosoma- uninfected | Schistosoma- infected | Difference | Schistosoma- uninfected | Schistosoma- infected | Difference |
| HIV-uninfected participants (N = 569) | | | | | | |
| Fasting glucose (mmol/L) | 6.6 (6.5, 6.7) | 6.8 (6.3, 7.3) | 0.2 (-0.4, 0.7) | 0.56 | 6.6 (6.5, 6.7) | 6.8 (6.3, 7.3) | 0.2 (-0.4, 0.7) | 0.44 |
| Glucose at 30 min (mmol/L) | 8.4 (8.3, 8.6) | 8.5 (7.9, 9.2) | 0.1 (-0.5, 0.8) | 0.73 | 8.4 (8.3, 8.6) | 8.5 (7.9, 9.2) | 0.1 (-0.6, 0.8) | 0.80 |
| Glucose at 120 min (mmol/L) | 8.0 (7.8, 8.3) | 8.0 (7.0, 9.1) | 0.06 (-0.9, 1.1) | 0.91 | 8.0 (7.8, 8.3) | 8.0 (7.8, 8.3) | 0.02 (-1.0, 1.1) | 0.96 |
| HbA1c (%) | 5.5 (5.4, 5.6) | 5.7 (5.3, 6.1) | 0.2 (-0.3, 0.6) | 0.49 | 5.5 (5.4, 5.6) | 5.6 (5.2, 6.1) | 0.15 (-0.3, 0.6) | 0.45 |
| Fat mass (kg) | 16.3 (15.6, 17.1) | 15.5 (13.5, 17.5) | -0.8 (-2.9, 1.3) | 0.46 | 14.8 (13.7, 15.9) | 13.9 (11.8, 16.0) | -0.9 (-2.9, 1.1) | 0.37 |
| Waist circumference (cm) | 83.8 (82.7, 84.9) | 83.0 (80.4, 85.7) | -0.8 (-3.6, 2.0) | 0.57 | 81.6 (80.1, 83.2) | 81.0 (78.1, 83.9) | -0.6 (-3.3, 2.1) | 0.66 |
| HIV-infected not on antiretroviral therapy (N = 855) | | | | | | | |
| Fasting glucose (mmol/L) | 6.6 (6.5, 6.6) | 6.4 (6.1, 6.6) | -0.2 (-0.5, 0.1) | 0.20 | 6.5 (6.5, 6.6) | 6.3 (6.0, 6.6) | -0.2 (-0.5, 0.1) | 0.19 |
| Glucose at 30 min (mmol/L) | 8.5 (8.4, 8.6) | 8.4 (8.0, 8.9) | -0.1 (-0.5, 0.4) | 0.80 | 8.5 (8.4, 8.6) | 8.4 (7.9, 8.9) | -0.1 (-0.6, 0.4) | 0.68 |
| Glucose at 120 min (mmol/L) | 8.5 (8.3, 8.7) | 8.3 (7.7, 8.8) | -0.2 (-0.9, 0.3) | 0.37 | 8.5 (8.3, 8.7) | 8.2 (7.7, 8.8) | -0.3 (-0.9, 0.3) | 0.38 |
| HbA1c (%) | 5.9 (5.8, 5.9) | 5.8 (5.6, 6.0) | -0.1 (-0.3, 0.2) | 0.66 | 5.8 (5.7, 5.9) | 5.8 (5.6, 6.0) | -0.04 (-0.2, 0.15) | 0.68 |
| Fat mass (kg) | 11.4 (10.9, 11.9) | 10.0 (8.3, 11.6) | -1.4 (-3.2, 0.3) | 0.11 | 10.5 (9.6, 11.4) | 9.3 (7.6, 11.0) | -1.2 (-2.9, -0.5) | 0.18 |
| Waist circumference (cm) | 77.0 (76.4, 77.7) | 76.1 (74.2, 78.1) | -0.9 (-2.9, 1.1) | 0.37 | 76.5 (75.5, 77.6) | 75.8 (73.7, 77.8) | -0.7 (-2.7, 1.2) | 0.46 |
| HIV infected on antiretroviral therapy (N = 294) | | | | | | | |
| Fasting glucose (mmol/L) | 6.7 (6.6, 6.7) | 6.7 (6.5, 7.0) | -0.01 (-0.3, 0.3) | 0.94 | 6.7 (6.6, 6.9) | 6.8 (6.5, 7.1) | 0.1 (-0.2, 0.4) | 0.64 |
| Glucose at 30 min (mmol/L) | 8.6 (8.4, 8.8) | 8.6 (8.0, 9.1) | -0.03 (-0.6, 0.6) | 0.92 | 8.6 (8.4, 8.8) | 8.6 (8.1, 9.2) | 0.05 (-0.6, 0.7) | 0.88 |
| Glucose at 120 min (mmol/L) | 8.0 (7.7, 8.3) | 8.3 (7.6, 8.9) | 0.3 (-0.5, 1.1) | 0.48 | 8.0 (7.7, 8.2) | 8.4 (7.6, 9.1) | 0.4 (-0.4, 1.2) | 0.33 |
| HbA1c (%) | 5.5 (5.4, 5.7) | 5.3 (5.0, 5.6) | -0.2 (-0.6, 0.1) | 0.20 | 5.5 (5.3, 5.7) | 5.3 (4.9, 5.7) | -0.2 (-0.6, 0.2) | 0.27 |
| Fat mass (kg) | 11.1 (10.2, 11.9) | 11.2 (8.1, 14.3) | 0.1 (-3.1, 3.4) | 0.94 | 9.4 (8.1, 10.7) | 10.5 (7.3, 13.7) | 1.1 (-2.2, 4.4) | 0.52 |
| Waist circumference (cm) | 78.4 (77.2, 79.6) | 76.2 (72.9, 79.5) | -2.2 (-5.7, 1.3) | 0.21 | 75.8 (74.1, 77.6) | 75.2 (71.9, 78.5) | -0.6 (-4.0, 2.8) | 0.72 |

^aAdjusted for age, sex, C-Reactive Protein, malaria infection, tuberculosis, body mass index, and physical activity in estimating association with glucose (fasting, 30 and 120 min) and HbA1c

^bAdjusted for age, sex, C-Reactive Protein, malaria infection, tuberculosis, smoking, alcohol drinking and physical activity in estimating association with fat mass and waist circumference.

https://doi.org/10.1371/journal.pone.0262860.t004
of obesity [48, 51]. Additionally, Wiria and colleagues found parasite intensity was negatively associated with body weight [44] and a Chinese study observed previous schistosome intensity was associated with current weight [43]. Reduction of abdominal fat is known to reduce the risk of diabetes, although this was not evident in the current study. This may have been because the observed loss in waist circumference was only modest.

Association of Schistosoma and geohelminth infections among HIV-infected patients

In this analysis we found that among HIV-infected patients, geohelminth and Schistosoma infections were associated with reduced insulin secretion, although this was not accompanied by corresponding higher glucose or HbA1c level. This is in accordance with studies that had shown that schistosomiasis could worsen HIV progression [52] and that immunological shift from Th1 to Th2, leaves the body unarmed to combat viral and bacterial infections which could lead to severe infections and subsequently to insulin resistance [39, 40]. Insulin resistance resulting in hyperglycaemia could have led to reduced β-cell function secondary to glucotoxicity [17].
However, we found no effect on insulin resistance despite the fact that insulin resistance is commonly associated with systemic inflammation among HIV-infected patients. It is therefore possible that the negative effect on β-cell function could be explained by other mechanisms including direct deleterious effects of pro-inflammatory cytokines on β-cells. Further research to understand mechanisms underlying development of helminth-associated β-cell function and possibly insulin resistance would help in developing strategies to prevent or manage diabetes in these populations.

Implications of results

Although *Schistosoma* and geohelminth infections should be prevented and treated, such measures could remove protection against diabetes and other metabolic diseases among HIV-uninfected populations. Although this is not a justification to withdraw prevention or treatment modalities, these measures should be implemented alongside other strategies to reduce risk of metabolic diseases including promotion of physical activity, weight reduction, consumption of healthy diet as well as avoiding excessive alcohol intake. Such non-communicable diseases (NCDs) prevention strategies are important to HIV-infected individuals particularly those not yet on ART since although reduced β-cell function was not related to overt hyperglycaemia these patients could quickly develop hyperglycaemia if they harbor other risk factors. Similarly, it is important to encourage early initiation as well as lifelong adherence of ART to reduce risk of β-cell function associated with *Schistosoma* and geohelminth infections. This is important because despite the roll out of the universal test-and-treat policy which encourages HIV testing and immediate uptake of ART, many HIV patients do not start ART in timely fashion and, of those starting, up to 50% are lost to follow-up or become non-adherent within 3 years of starting treatment [53] thus increasing their diabetes risk. Finally, in view of these results, trials testing effects of *Schistosoma* or geohelminths derived antigens on risk of metabolic diseases should be encouraged to help develop interventions for the prevention of diabetes and other NCDs.

Strengths and weaknesses

The strength of this study is that it included both HIV-infected and un-infected to assess the role of *Schistosoma* and geohelminth-HIV coinfection on β-cell function and insulin resistance; thus results can be generalized to wider populations in SSA where these helminths and HIV have high prevalence and overlap widely. In addition, the prevalence of *Schistosoma* and geohelminth infections was based on stool/urine examination and not symptom-based algorithms thus reducing potential for misclassification bias. However, in the assessment of helminths we only collected one day stool samples and diagnostic methods used have lower sensitivity compared to molecular and immunodiagnostic methods [54, 55], thus we may have underestimated the helminth prevalence. Also we did ask participants to refrain from physical activity during fasting because we knew most of our participants would walk or catch a public transport to our research clinic, but we expected this to be short with minimal effect in lowering glucose level. This study was cross-sectional and therefore causality cannot be confirmed. Although we controlled for potential confounders, we cannot rule out that there remained residual confounding. Finally, the sample size for participants on ART was the smallest, despite this being an important group given that most HIV patients should be on ART. Future larger studies should assess the association of helminth infections on β-cell function and insulin resistance among patients on ART.
Conclusion

In conclusion, in this high HIV burden setting, we found that *Schistosoma* infection was associated with better β-cell function among HIV-uninfected participants whereas *Schistosoma* and geohelminth infections were associated with reduced β-cell function among HIV-infected patients not yet on ART. Future larger studies are needed to confirm results that helminths are not associated with β-cell function or insulin resistance among patients on ART.

Supporting information

S1 Table. Markers of β-cell function and insulin resistance.
(DOCX)

S2 Table. Background characteristics of CICADA participants included and those not included in the analysis.
(DOCX)

S3 Table. Analysis of association of *Schistosoma* infection with β-cell function and insulin resistance.
(DOCX)

S4 Table. Analysis of association of geohelminth infection with β-cell function and insulin resistance.
(DOCX)

S5 Table. Analysis of association of *Schistosoma* infection with glucose, HbA1c, fat mass, and waist circumference.
(DOCX)

S6 Table. Analysis of association of geohelminth infection with glucose, HbA1c, fat mass, and waist circumference.
(DOCX)

S7 Table. Prevalence of schistosomiasis by HIV treatment status.
(DOCX)

S8 Table. Prevalence of geohelminths by treatment HIV status.
(DOCX)

Acknowledgments

The authors thank all patients for participating in this study. We are grateful to the staff of the CICADA clinic, ART clinics in Mwanza and NIMR laboratory team for their cooperation.

Author Contributions

Conceptualization: George PrayGod, Suzanne Filteau, Nyagosya Range, Kaushik Ramaiya, Kidola Jeremiah, Andrea M. Rehman, Rikke Krogh-Madsen, Henrik Friis, Daniel Faurholt-Jepsen.

Data curation: George PrayGod, Suzanne Filteau, Kidola Jeremiah, Henrik Friis, Daniel Faurholt-Jepsen.

Formal analysis: George PrayGod, Suzanne Filteau, Andrea M. Rehman, Rikke Krogh-Madsen, Daniel Faurholt-Jepsen.
Funding acquisition: George PrayGod, Suzanne Filtreau, Nyagosya Range, Kaushik Ramaiya, Kidola Jeremiah, Rikke Krogh-Madsen, Henrik Friis, Daniel Faurholt-Jepsen.

Investigation: George PrayGod, Suzanne Filtreau, Nyagosya Range, Kaushik Ramaiya, Kidola Jeremiah, Andrea M. Rehman, Rikke Krogh-Madsen, Henrik Friis, Daniel Faurholt-Jepsen.

Methodology: George PrayGod, Suzanne Filtreau, Nyagosya Range, Kaushik Ramaiya, Kidola Jeremiah, Andrea M. Rehman, Rikke Krogh-Madsen, Henrik Friis, Daniel Faurholt-Jepsen.

Project administration: George PrayGod, Suzanne Filtreau, Henrik Friis.

Resources: George PrayGod, Suzanne Filtreau, Henrik Friis.

Supervision: George PrayGod, Suzanne Filtreau, Kidola Jeremiah, Andrea M. Rehman, Rikke Krogh-Madsen, Henrik Friis, Daniel Faurholt-Jepsen.

Writing – original draft: George PrayGod.

Writing – review & editing: George PrayGod, Suzanne Filtreau, Nyagosya Range, Kaushik Ramaiya, Kidola Jeremiah, Andrea M. Rehman, Rikke Krogh-Madsen, Henrik Friis, Daniel Faurholt-Jepsen.

References

1. Hotez P.J., et al., Helminth infections: the great neglected tropical diseases. J Clin Invest, 2008. 118(4): p. 1311–21. https://doi.org/10.1172/JCI34261 PMID: 18382743

2. Tracey E.F., McDermott R.A., and McDonald M.I., Do worms protect against the metabolic syndrome? A systematic review and meta-analysis. Diabetes Res Clin Pract, 2016. 120: p. 209–20. https://doi.org/10.1016/j.diabres.2016.08.014 PMID: 27596058

3. Hotamisigil G.S., Inflammation, metaflammation and immunometabolic disorders. Nature, 2017. 542(7640): p. 177–185. https://doi.org/10.1038/nature21363 PMID: 28179656

4. Bashi T., et al., The mechanisms behind helminth’s immunomodulation in autoimmunity. Autoimmun Rev, 2015. 14(2): p. 98–104. https://doi.org/10.1016/j.autrev.2014.10.004 PMID: 25449677

5. Zaccone P., et al., Parasitic worms and inflammatory diseases. Parasite Immunol, 2006. 28(10): p. 515–23. https://doi.org/10.1111/j.1365-3024.2006.00879.x PMID: 16965287

6. Shea-Donohue T., Qin B., and Smith A., Parasites, nutrition, immune responses and biology of metabolic tissues. Parasite Immunol, 2017. 39(5).

7. Jeremiah K., et al., Diabetes prevalence by HbA1c and oral glucose tolerance test among HIV-infected and uninfected Tanzanian adults. PLoS One, 2020. 15(4): p. e0230723. https://doi.org/10.1371/journal.pone.0230723 PMID: 32267855

8. Hernandez-Romieu A.C., et al., Is diabetes prevalence higher among HIV-infected individuals compared with the general population? Evidence from MMP and NHANES 2009–2010. BMJ Open Diabetes Res Care, 2017. 5(1): p. e000304. https://doi.org/10.1136/bmjdr-2016-000304 PMID: 28191320

9. Betene A.D.C., et al., Interleukin-6, high sensitivity C-reactive protein, and the development of type 2 diabetes among HIV-positive patients taking antiretroviral therapy. J Acquir Immune Defic Syndr, 2014. 67(5): p. 538–46. https://doi.org/10.1097/QAI.0000000000000354 PMID: 25393940

10. Nordell A.D., et al., Severity of cardiovascular disease outcomes among patients with HIV is related to markers of inflammation and coagulation. J Am Heart Assoc, 2014. 3(3): p. e000844. https://doi.org/10.1161/JAHA.114.000844 PMID: 24870935

11. Downs J.A., et al., Effects of schistosomiasis on susceptibility to HIV-1 infection and HIV-1 viral load at HIV-1 seroconversion: A nested case-control study. PLoS Negl Trop Dis, 2017. 11(9): p. e0005968. https://doi.org/10.1371/journal.pntd.0005968 PMID: 28945756

12. Secor W.E., The effects of schistosomiasis on HIV/AIDS infection, progression and transmission. Curr Opin HIV AIDS, 2012. 7(3): p. 254–9. https://doi.org/10.1097/COH.0b013e328351f9e3 PMID: 22327410

13. Mulu A., Maier M., and Liebert U.G., Deworming of intestinal helminths reduces HIV-1 subtype C viremia in chronically co-infected individuals. Int J Infect Dis, 2013. 17(10): p. e697–901. https://doi.org/10.1016/j.ijid.2013.03.022 PMID: 23688549
14. Means A.R., et al., Antihelmintics in helminth-endemic areas: effects on HIV disease progression. Cochrane Database Syst Rev, 2016. 4: p. CD006419. https://doi.org/10.1002/14651858.CD006419.pub4 PMID: 27075622

15. Reese T.A., et al., Helminth infection reactivates latent γ-herpesvirus via cytokine competition at a viral promoter. Science, 2014. 345(6196): p. 573–7. https://doi.org/10.1126/science.1254517 PMID: 24968940

16. Osborne L.C., et al., Coinfection. Virus-helminth coinfection reveals a microbiota-independent mechanism of immunomodulation. Science, 2014. 345(6196): p. 578–82. https://doi.org/10.1126/science.1256942 PMID: 25082704

17. Poitout V. and Robertson R.P., Glucolipotoxicity: fuel excess and beta-cell dysfunction. Endocr Rev, 2008. 29(3): p. 351–66. https://doi.org/10.1210/er.2007-0023 PMID: 18048763

18. Filetau S., et al., Effects on mortality of a nutritional intervention for malnourished HIV-infected adults referred for antiretroviral therapy: a randomised controlled trial. BMC Med, 2015. 13: p. 17. https://doi.org/10.1186/s12916-014-0253-8 PMID: 25630368

19. PrayGod G., et al., Daily multi-micronutrient supplementation during tuberculosis treatment increases weight and grip strength among HIV-uninfected but not HIV-infected patients in Mwanza, Tanzania. J Nutr, 2011. 141(4): p. 685–91. https://doi.org/10.3945/jn.111.131672 PMID: 21346105

20. PrayGod G., et al., The effect of energy-protein supplementation on weight, body composition and handgrip strength among pulmonary tuberculosis HIV-co-infected patients: randomised controlled trial in Mwanza, Tanzania. Br J Nutr, 2012. 107(2): p. 263–71. https://doi.org/10.1017/S0007114511002832 PMID: 21729372

21. World Health Organization, WHO Steps Manual (http://www.who.int/chp/steps/manual/en/). 2008: Geneva, Switzerland.

22. Filmer D. and Pritchett L.H., Estimating wealth effects without expenditure data—or tears: an application to educational enrollments in states of India. Demography, 2001. 38(1): p. 115–32. PMID: 11227840

23. WHO, Global physical activity questionnaire (GPAQ) analysis guide (http://www.who.int/ncds/surveillance/steps/resources/GPAQ_Analysis_Guide.pdf). Last visit: 8/21/18

24. Erhardt J.G., et al., Combined measurement of ferritin, soluble transferrin receptor, retinol binding protein, and C-reactive protein by an inexpensive, sensitive, and simple sandwich enzyme-linked immunosorbent assay technique. J Nutr, 2004. 134(11): p. 3127–32. https://doi.org/10.1093/jn/134.11.3127 PMID: 15514286

25. Katz N., Chaves A., and Pellegrino J., A simple device for quantitative stool thick-smear technique in Schistosomiasis mansoni. Rev Inst Med Trop Sao Paulo, 1972. 14(6): p. 397–400. PMID: 4675644

26. Maizels R.M., Parasitic helminth infections and the control of human allergic and autoimmune disorders. Clin Microbiol Infect, 2016. 22(6): p. 481–6. https://doi.org/10.1016/j.cmi.2016.04.024 PMID: 27172808

27. Ishengoma D.S., et al., Efficacy and safety of artesunate-lumefantrine for the treatment of uncomplicated malaria and prevalence of Pfk13 and Pfmdr1 polymorphisms after a decade of using artemisinin-based combination therapy in mainland Tanzania. Malar J, 2019. 18(1): p. 88. https://doi.org/10.1186/s12936-019-2730-1 PMID: 30898164

28. Stancáková A., et al., Changes in insulin sensitivity and insulin release in relation to glycaemia and glucose tolerance in 6,414 Finnish men. Diabetes, 2009. 58(5): p. 1212–21. https://doi.org/10.2337/db08-1607 PMID: 19223598

29. Singh B. and Saxena A., Surrogate markers of insulin resistance: A review. World J Diabetes, 2010. 1(2): p. 36–47. https://doi.org/10.4239/wjd.v1i2.36 PMID: 21537426

30. Wallace T.M., Levy J.C., and Matthews D.R., Use and abuse of HOMA modeling. Diabetes Care, 2004. 27(6): p. 1487–95. https://doi.org/10.2337/diacare.27.6.1487 PMID: 15161807

31. de Luca C. and Olefsky J.M., Inflammation and insulin resistance. FEBS Lett, 2008. 582(1): p. 97–105. https://doi.org/10.1016/j.febslet.2007.11.057 PMID: 18053812

32. Kahn S.E., Hui R.L., and Utzschneider K.M., Mechanisms linking obesity to insulin resistance and type 2 diabetes. Nature, 2006. 444(7121): p. 840–6. https://doi.org/10.1038/nature05482 PMID: 17167471

33. Venkataramy V.V., et al., Effect of Physical activity on Insulin Resistance, Inflammation and Oxidative Stress in Diabetes Mellitus. J Clin Diagn Res, 2013. 7(8): p. 1764–6. https://doi.org/10.7860/JCDR/2013/6518.3306 PMID: 24086908

34. Mwangi T.W., Bethony J.M., and Brooker S., Malaria and helminth interactions in humans: an epidemiological viewpoint. Ann Trop Med Parasitol, 2006. 100(7): p. 551–70. https://doi.org/10.1179/136485906X118468 PMID: 16989681

35. Babu S. and Nutman T.B., Helminth-Tuberculosis Coinfection: An Immunologic Perspective. Trends Immunol, 2016. 37(9): p. 597–607. https://doi.org/10.1016/j.it.2016.07.005 PMID: 27501916
36. Schrieks I.C., et al., The effect of alcohol consumption on insulin sensitivity and glycemic status: a systematic review and meta-analysis of intervention studies. Diabetes Care, 2015. 38(4): p. 723–32. https://doi.org/10.2337/dc15-1556 PMID: 25805864

37. PrayGod G., et al., Predictors of body composition changes during tuberculosis treatment in Mwanza, Tanzania. Eur J Clin Nutr, 2015. 69(10): p. 1125–32. https://doi.org/10.1038/ejcn.2015.37 PMID: 25828630

38. PrayGod G., et al., Sex, smoking, and socioeconomic status are associated with body composition among tuberculosis patients in a deuterium dilution cross-sectional study in Mwanza, Tanzania. J Nutr, 2013. 143(5): p. 735–41. https://doi.org/10.3945/jn.112.168997 PMID: 23514764

39. Secor W.E., et al., Increased density of human immunodeficiency virus type 1 coreceptors CCR5 and CXCR4 on the surfaces of CD4(+) T cells and monocytes of patients with Schistosoma mansoni infection. Infect Immun, 2003. 71(11): p. 6668–71. https://doi.org/10.1128/IAI.71.6668-6671.2003 PMID: 14573694

40. Kestens L., et al., Selective increase of activation antigens HLA-DR and CD38 on CD4+ CD45RO+ T lymphocytes during HIV-1 infection. Clin Exp Immunol, 1994. 95(3): p. 436–41. https://doi.org/10.1093/ci/cz58 PMID: 31504336

41. Sanya R.E., et al., The Effect of Helminth Infections and Their Treatment on Metabolic Outcomes: Results of a Cluster-Randomized Trial. Clin Infect Dis, 2020. 70(3): p. 601–613. https://doi.org/10.1093/cid/ciz596 PMID: 31054019

42. Wolde M., et al., Inverse Associations of Schistosoma mansoni Infection and Metabolic Syndromes in Humans: A Cross-Sectional Study in Northeast Ethiopia. Microbiol Insights, 2019. 12:117863119849934. https://doi.org/10.1177/117863119849934 PMID: 31205419

43. Chen Y., et al., Association of previous schistosome infection with diabetes and metabolic syndrome: a cross-sectional study in rural China. J Clin Endocrinol Metab, 2013. 98(2): p. E283–7. https://doi.org/10.1210/jc.2012-2517 PMID: 23275524

44. Wiria A.E., et al., Infection with Soil-Transmitted Helminths Is Associated with Increased Insulin Sensitivity. PLoS One, 2015. 10(6): p. e0127746. https://doi.org/10.1371/journal.pone.0127746 PMID: 26061042

45. Arnush M., et al., IL-1 produced and released endogenously within human islets inhibits beta cell function. J Clin Invest, 1998. 102(3): p. 516–26. https://doi.org/10.1172/JCI1244 PMID: 9691088

46. Zaccone P., et al., Schistosome mansoni antigens modulate the activity of the innate immune response and prevent onset of type 1 diabetes. Eur J Immunol, 2003. 33(5): p. 1439–49. https://doi.org/10.1002/eji.200323910 PMID: 12731071

47. El-Wakil H.S., et al., Effect of schistosoma mansoni egg deposition on multiple low doses streptozotocin induced insulin dependent diabetes. J Egypt Soc Parasitol, 2002. 32(3): p. 987–1002. PMID: 12512830

48. Surendar J., et al., Immunomodulation by helminths: Similar impact on type 1 and type 2 diabetes? Parasite Immunol, 2017. 39(5). https://doi.org/10.1111/pim.12401 PMID: 27862000

49. Kawahito S., Kitahata H., and Oshita S., Problems associated with glucose toxicity: role of hyperglycemia-induced oxidative stress. World J Gastroenterol, 2009. 15(33): p. 4137–42. https://doi.org/10.3748/wjg.15.4137 PMID: 19725147

50. PrayGod G., et al., β-cell dysfunction and insulin resistance in relation to pre-diabetes and diabetes among adults in north-western Tanzania: a cross-sectional study. Trop Med Int Health, 2021. https://doi.org/10.1111/tmi.13545 PMID: 33406288

51. Yang Z., et al., Parasitic nematode-induced modulation of body weight and associated metabolic dysfunction in mouse models of obesity. Infect Immun, 2013. 81(6): p. 1905–14. https://doi.org/10.1128/IAI.00053-13 PMID: 23509143

52. Wall K.M., et al., Schistosomiasis is associated with incident HIV transmission and death in Zambia. PLoS Negl Trop Dis, 2018. 12(12): p. e0006902. https://doi.org/10.1371/journal.pntd.0006902 PMID: 30543654

53. Mee P., et al., Changes in patterns of retention in HIV care and antiretroviral treatment in Tanzania between 2008 and 2016: an analysis of routinely collected national programme data. J Glob Health, 2019. 9(1): p. 010424. https://doi.org/10.7189/jogh.09.010424 PMID: 30992984

54. Barda B., et al., Comparison of real-time PCR and the Kato-Katz method for the diagnosis of soil-transmitted helminthiasis and assessment of cure in a randomized controlled trial. BMC Microbiol, 2020. 20 (1): p. 298. https://doi.org/10.1186/s12866-020-01963-9 PMID: 33008301

55. Okoyo C., et al., Comparing the performance of circulating cathodic antigen and Kato-Katz techniques in evaluating Schistosoma mansoni infection in areas with low prevalence in selected counties of Kenya: a cross-sectional study. BMC Public Health, 2018. 18(1): p. 478. https://doi.org/10.1186/s12889-018-5414-9 PMID: 29642875