Proceedings from the CIHLMU 5th Infectious Diseases Symposium 2016 “Drug Resistant Tuberculosis: Old Disease - New Challenge”

Celso Khosa1,2*, Krutarth Patel1,3, Karlygash Abdiyeva1,4, Nurkeldi Turebekov1,4, Bettina Prüller1 and Norbert Heinrich1,5,6

From CIHLMU 5th Infectious Diseases Symposium 2016
Munich, Germany. 12/03/16

Abstract
The 5th CIHLMU Infectious Disease Symposium, Munich, Germany, March 12, 2016 brought together Tuberculosis Experts from developed and low middle-income countries to discuss the control of drug resistance Tuberculosis. The meeting featured 9 presentations: Tuberculosis history and current scenario, Tuberculosis and migration - current scenario in Germany, Mechanism of Tuberculosis resistance development, Epidemiology of resistance – transmission vs. new generation of resistance, The impact of diagnostic in patients beyond - sensitivity and specificity, The Bangladesh regimen – new hope trough old drugs, New drugs and regimens – an overview on studies and Multi and Extensively Drug Resistant Tuberculosis from Europe. The presentations were followed by a panel discussion.
Serious Multidrug Resistance epidemic in some countries may jeopardize the progress in Tuberculosis control. In this meeting epidemiology, mechanism, immigration and screening, diagnosis, research and treatment of drug resistant tuberculosis were discussed.

Keywords: Multi-drug resistant tuberculosis, Extensively drug-resistant tuberculosis, Diagnosis, Therapy

Introduction
The Center for International Health – CIHLMU convened the 5th CIH Infectious Disease Symposium – Drug Resistant Tuberculosis “Old Disease – New Challenge” on the 12th of March 2016, in Munich, Germany (Fig. 1). Tuberculosis (TB) is an old disease, but not a disease from the past, TB is still a public health challenge in many countries. In 2014, 9.6 million cases of TB were estimated worldwide, 3.3% of new cases and 20% of previously treated cases had Multidrug Resistant TB (MDR-TB) [1].
The aim of this symposium was to discuss holistically the drug resistant TB in developing and developed settings. Experts with diverse background and specialties were invited to discuss the epidemiology, etiology, diagnosis, prevention and treatment of drug resistant TB in different settings.

Presentation summaries
Tuberculosis history and current scenario
Dr. Nilesh Bhatt, Instituto Nacional de Saúde, Maputo, Mozambique.

Summary of presentation
Mycobacterium ulcerans existed since the Jurassic period (150 million years ago) [2], Mycobacterium tuberculosis (MTB) emerged about 3 million years ago [2] and was first described by Robert Koch in 1882. MTB is a gram-positive rod, acid fast with a slow generation time and non-replicant persisters (latency, hard to kill). MTB is airborne transmitted by droplet and the main epidemiological important form is the pulmonary tuberculosis. In pre-chemotherapy
era (before 1940) bed rest and sunlight and in certain cases, surgery - were the only treatment available.

The first case of MTB resistance to Streptomycin was described in 1948 [3] Resistance to TB antibiotics are classified as sensible, mono-resistance, MDR and Extensively Drug-resistant (XDR). The degree of resistance is directly associated with duration, cost and toxicities of the treatment. The proportion of new cases with MDR-TB remains unchanged. However, serious MDR-TB epidemics in some countries jeopardize progress in TB control. There are gaps in resistance testing versus the use of new technologies. Only 50% patients have MDR TB and only a quarter completes XDR TB treatment [1].

Discussion

- Diagnosis and treatment gaps are still a challenge to control drug resistant TB worldwide;
- Current drug resistant TB treatment is lengthy, toxic and expensive;
- New, safer drugs and regimes are urgently needed to improve treatment outcomes for drug resistant TB.

Summary of presentation

Tuberculosis rates in Germany have been declining in the second half of the twentieth century and beginning of the twenty-first century. Nevertheless, there has been an increase in the tuberculosis notification rates from 5.6/100 000 to 7.3/100 000. In general, this can have several reasons: 1) ongoing domestic spread of tuberculosis in Germany; 2) reactivation of Latent Tuberculosis Infection (LTBI) in the native population who has acquired the infection in the past; or 3) reactivation of LTBI in inhabitants who have acquired the infection in another country of origin; as well as 4) entry of individuals into the country with existing (diagnosed or undiagnosed) active TB. These scenarios require different actions in TB prevention and control [4].

Available data indicate that the increasing TB case numbers are influenced by a changing demographic context and migration. An increasing number of cases have been identified in the context of active case finding (screening) among asylum seekers and refugees according to the Protection Against Infection Act (Infektionsschutzgesetz).

Discussion

- Tuberculosis remains a public health challenge in Germany, the declining of TB trend in Germany has come to an end;
- Tuberculosis cases in Germany are increasing in the context of migration, concerted action in all levels of TB control is key, active case finding, including both screening and contact tracing, gains importance;
- Drug resistant TB gains importance. The proportion of MDR-TB was highest in patients born in one of the Newly Independent States (NIS) and among patients who have previously received anti-TB treatment;
- Need for better diagnostic tools for screening, chest X-ray screening is not perfect but an appropriate initial test for detecting pulmonary Tuberculosis;
- Treatment success was 77% for cases notified in 2014 and did not reached World Health Organization (WHO) targets of 85% [5].

Mechanism of tuberculosis resistance development

Dr. Norbert Heinrich, Ludwig-Maximillians-Universität, Munich, Germany.

Summary of presentation

Spontaneous drug resistance mutations occur at likelihood per cell division of 10^{-6} for Isoniazid (INH), 10^{-8} for Rifampicin (RMP). Selection of resistant bacteria can happen by inadequate drug combinations or by
monotherapy. The use of multiple drugs in Fixed Dose
Combinations (FDC) is expected to prevent newly
acquired drug resistance.

The classical hypothesis is that patient factors were
responsible for the appearance of resistance. Those were
poor adherence partly due to long treatment, which
would make patients stop their treatment early. How-
never, more recent pre-clinical studies using the hollow
fiber model [6] simulated plasma drug concentrations to
replicate non-adherence show that non-adherence does
not allow a drug-resistant subpopulation to overgrow. A
study in Cape Town with 10 000 patients simulated on
6-month treatment with 100% adherence, assumed
pharmacokinetic (PK) variability factored into the
simulation, 0.68% of patients developed MDR TB de-
spite 100% adherence [7]. This was further confirmed
by a meta-analysis of clinical studies involving 6510
patients, which revealed that INH rapid acetylators
who have lower drug concentrations, had a Risk Ratio
(RR) of 2.0; 95% confidence interval [CI], (1.5–2.7)
for microbiological failure and RR of 2.0 (1.1–3.4) for
acquired drug resistance [8].

Heat maps of drug distributions into the TB lesions
show that a difference in penetration of drugs into
the most difficult lesion component, the necrotic
component. In current first line therapy, this leads to
RMP most likely being the only drug which pene-
trates the necrosis and is active on bacilli encoun-
tered in there. New drugs in development often do
not penetrate the necrotic portion of the lesion in
high concentrations [9].

Discussion

- Current data is not complete regarding the
mechanism of resistance development;
- Classical hypothesis (no adherence) increasingly
replaced by PK variability/local monotherapy
hypothesis;
- Insufficient concentrations of main and
companion drugs;
- Mechanisms likely include: PK variability, especially
in critical lesion compartments pathogen related
factors and no adherence;
- Optimize existing and new combinations pathogen related
dosing in the entire population, by animal PK/
Pharmacodynamics (PD)/lesion studies paired with
human PK/PD and population modelling;
- Pharmacogenomics; tailor the doses to acetylator
status improving outcomes in terms of treatment
success and less toxicity;
- INH prophylactic treatment and resistance; usually
does not lead to resistance because of low number
of microorganism.

Epidemiology of resistance – Transmission vs. new
generation of resistance
Dr. Matthias Merker, Research Center, Borstel, Germany.

Summary of presentation
There are approximately 500 000 new MDR-TB cases
each year, and 200 000 patients die from that form of
TB. Only 1 out of 3 estimated cases is diagnosed (gap in
diagnosis) and treatment success rate is low globally
with 48% (gap in treatment) suggesting high rates of
MDR-TB transmission in the community and/or hos-
pital. The city of Minsk, Belarus recently reported every
second new TB patient to be infected with MDR-TB
strains [10]. Also other MDR-TB high burden settings,
especially countries of the former Soviet Union, are
confronted with high treatment costs of M/XDR-TB
cases of over 100 000 dollar per patient as well as severe
side effects of second-line drugs, leading to low cure
rates comparable to the pre-chemotherapy era in some
settings [1].

As one paramount example for increasing MDR-TB
transmission rates Karakalpakstan, a region in
Uzbekistan suffers from an increase of new MDR-TB
cases from 13% in 2001 to 26% in 2012 despite the
subsequent introduction of WHO endorsed Directly
Observed Treatment, Short-course (DOTS) strategy in
1998, and extended second-line treatment program in
2003. Two MDR cohorts were followed from 2001 to
2006 based on standard genotyping showing that the
MDR-TB strain population is dominated by strains
belonging to the Beijing genotype.

Discussion

- Treatment programs need to consider/trace
dominating strain populations and resistance levels
carefully;
- There is a need of early and correct detection of
resistance profiles;
- Risk for further resistance development in failing
MDR-TB treatment regimens.

The impact of diagnostic in patients beyond – Sensitivity
and specificity
Dr. Katharina Kranzer, Research Center, Borstel, Germany.

Summary of presentation
The sensitivity of diagnostic tests depends on the bacterial
load in a sample. Limits of detection are 1–50 cfu/ml for
Mycobacterial culture, 130 cfu/ml for Nucleic Acid Test
(NAT) (eg. Xpert MTB/RIF) and 5000–10 000 cfu/ml for
smear microscopy. Sensitivity of test depends on the dis-
tribution of the bacterial load within individuals with TB.
Cost, feasibility, safety, accuracy, reproducibility, health
system, treatment and comorbidities need to be taken in to consideration when evaluating new diagnostics. Accuracy studies suffice if a new diagnostic test is safer or more specific but of similar sensitivity to the old test. However, if a new test is more sensitive it will lead to additional cases being detected. Results of clinical trials assessing treatment efficacy enrolling patients diagnosed by the old test may not apply to these additional cases. Randomized control trials (individual or cluster randomization) investigating the effect of new diagnostics on clinics outcomes might be at risk of confounding and might be context-specific, decreasing their generalizability.

Education and training of clinicians is important to ensure correct use and interpretation of new diagnostics. Quality management of diagnostic tests is important both within and outside of laboratories to ensure the correct result is issued for the right patient within a reasonable time frame.

Discussion

- Sensitivity of diagnostic tests depends on limits of detection and the bacterial burden within a population;
- Evaluation of diagnostics tests with improved sensitivity should include clinical outcomes;
- Randomized controlled trials assessing the effect of diagnostics are prone to confounding and generalization might be limited;
- Quality control is widely advocated, but robust impact evaluation with regards to patient outcomes and cost-effectiveness are missing.

The Bangladesh regimen – New hope through old drugs
Prof. Hans L. Rieder, University of Zurich and Tuberculosis consultant, Zurich, Switzerland.

Summary of presentation
Starting in 1997, with recruitment into sequentially adaptive regimens for MDR-TB, carefully observing what happens to the patient bacteriologically and regarding treatment outcome, 6 sequentially adaptive regimens were used until obtaining the final 9-month regimen in 2002, composed of 7 drugs:

- 3 first-line drugs: INH, Ethambutol and Pyrazinamide;
- 1 Injectable: Kanamycin;
- 1 Anti-leprosy drug: Clofazimine;
- 1 Thioamide: Prothionamide;
- 1 Fourth-generation fluoroquinolone: Gatifloxacin;

The four-month intensive phase was prolonged if smear positive after 4 months (up to a maximum of 6 months; if then still positive, patient was declared to have treatment failure) and a fixed 5-month continuation phase, treatment duration between 9 and 11 months. The results were excellent Patients with a fluoroquinolone-susceptible strain had a successful, relapse-free outcome in 87.7% (n = 439: death = 24, default = 31, failure = 1 and relapse = 1). Similarly, among patients with a low level of fluoroquinolone resistance, the outcome was successful in 90.4% (n = 33: death = 0, default = 2, failure = 0 and relapse = 1) [11].

Another observational implementation study is ongoing in 9 francophone countries (Union-Africa collaborative study) with a preliminary success of over 80% [12].

Discussion

- A short, effective treatment regimen for MDR-TB based on the core drug Gatifloxacin has been developed since 1997 in Bangladeshi patients;
- The regimen is composed of 7 generically available (including 3 first-line) drugs, plus an anti-leprosy drug;
- Synergy between the drugs might be the key for this regimen.

New drugs and regimens – An overview on studies
Nyanda Elias Ntinginya, MD, MSc, PhD Candidate, NIMR Mbeya Medical Research Centre, Mbeya, Tanzania.

Summary of presentation
TB is an old disease, but not a disease of the past. Challenges of current TB therapy:

- Old – Arsenal of drugs developed about 5 decades ago
- Long – TB treatment takes up to 30 months for drug resistant TB
- Complex – Pill burden oral + daily injections. Enhanced lab testing and hospitalization
- Expensive – Drug resistance TB therapy can cost US$ 5000–10 000
- Inadequate – MDR treatment often fails, lower success rates

There is an urgent need to increase access to effective, affordable and acceptable treatment for MDR-TB (Table 1).

Discussion

- New potential drug candidates with novel regimen have entered clinical trials in recent years with one phase III trial ongoing;
- Studies on MDR-TB have their challenges and complexities that merit further exploration;
- Urgent need to increase access to effective, affordable and acceptable treatment for MDR-TB;
- Continued international collaboration among stakeholders is needed.
Table 1 Anti TB drugs under evaluation in MDR/XDR clinical trials

Drug	Mode of action	Notes
Bedaquiline (Sirturo®, TMC207)	Diarylquinoline, blocking ATP synthetase, adaptive Licensing FDA: marketing approval for MDR end 2012. WHO interim recommendation by June 2013. By 2014, 43 countries had used, serious concern about QT-Prolongation [14]	
Delamanid (OPC 67683)	Nitroimidazooxazole, Phase 2 results promising, Phase 3 ongoing (MDR), European Medicines Agency Committee for Medicinal Products for Human Use recommended licensing in Nov 2013. Safety: QT-Prolongation, WHO recommendation: Oct 2014 [15]	
Fluoroquinolones:	Class of broad-spectrum antibiotics that inhibit the DNA gyrase enzyme, effective in treating MDR-TB. Excellent early bactericidal activity, Lack sterilizing activity. Safety: QT prolongation, safety in combination therapy need further evaluation. Resistance and cross-resistance are reported and pose a threat. The optimal dose of Moxifloxacin and Levofloxacin – has not yet been ascertained. [16]	
Moxifloxacin, Gatifloxacin		
Pretomanid (PA-824)	Nitroimidazole, significant bactericidal and sterilizing activity alone and in combination tested in multiple MDR-TB regimens including the NC005, STAND and Nix-TB studies by TB Alliance MDR-TB treatment trial by MSF, the TB-PRACTECAL study, [16]	
Clofazimine (CFZ)	Approved for leprosy treatment and used off-label for MDR-TB, tested in several MDR-TB regimens designed to shorten treatment including the STREAM, TB PRACTECAL and end TB trials. Further studies underway [16]	

MDR/XDR TB tuberculosis from Europe
Prof. Martin Boeree, Radboud University Medical Center, Nijmegen, Netherlands.

Summary of presentation
After development of RMP, for 40 years no new TB drugs were introduced. TB incidence decreases in developed world while after an initial decrease it increases in limited resources setting. TB incidence increases relate to HIV, emergence of drug resistance and poverty.

Guidelines from WHO and in different countries especially for the treatment of drug resistant TB are based on poor evidence.

MDR and XDR-TB can be cured if at least 4 s line drugs, 8 months intensive phase with the use of an injectable. Uncertainty about optimal dose, duration and combinations are factors affecting treatment success. If drugs and rapid diagnostic would be available, individualized treatment is affordable, low resource countries need a programmatic approach. Serious side effect occurs in up to half of the patients [13].

Use of older drug, repurposed drugs and host directed therapies as means to development of new regimens for the treatment of MDR-TB. New drug like Bedaquiline and Delamanid should be used in adequately structured regimens to avoid development of resistance to those drug, avoiding to repeat errors from the past.

Discussion
- Programmatic versus individualized approaches to MDR-TB treatment;
- Use of dried blood spot for therapeutic drug monitoring and individualized patient tailor dosing;
- Need of shorter treatment for sensitive TB and MDR-TB, with strongly sterilizing components;
- Use of older drugs like RMP, Pyrazinamide in higher doses in new regimens;
- Clinical case and MDR-TB regimen design according to WHO Guidelines and new anti-TB drugs and regimens;
- Micronutrients (Vitamin A, D) role in MDR-TB the treatment;

Panel discussion
All speakers
- The PK and maximum tolerated doses for the first line TB drugs are not well-established;
- Over-the-counter availability of TB drugs needs to be avoided and the regulatory role strengthened;
- Changes in national TB programs are necessary to improve control of the drugs, regulate over the counter prescriptions;
- Acquired resistance versus transmitted resistance (Case of Mozambique, Mobility to South Africa and mining communities);
- Phenotypic versus genotypic resistance testing: which one better correlates with outcome? Both need to be taken in account, studies are still needed;
- Synergism between drugs can only be tested phenotypically;
- Is there a difference in virulence between sensitive TB and drug resistant TB? Drug resistant TB is as bad as sensible TB, there is more difference in strains, Beijing is more virulent, affecting younger people.

Acknowledgments
We would like to thank all the speakers and participants for their active participation and discussions in the symposium. Special thanks to Dr. Norbert Heinrich and Mrs. Bettina Prüller of the Center for International Health, Ludwig-Maximilians-Universität, Munich for the support through the all process of organizing the symposium.

Funding
The publication cost for this article was funded by the CIHLMU - Center for International Health, Ludwig-Maximilians-Universität, Munich, Germany. The event would not be possible without the financial support from the Federal Ministry for Economic Cooperation and Development (BMZ) and the German Academic Exchange Services (DAAD) through the CIHLMU - Center for International Health, Ludwig-Maximilians-Universität, Munich, Germany.
Organizing committee

- Moderator/Master of ceremony: Krutarth Patel;
- Registration and logistic: Nurkeldy Turebekov;
- Catering and promotion: Karlygash Abdiyeva;
- Rapporteur and internal organization: Celso Khosa;
- Administrative support and direction: Bettina Prüller and Norbert Heinrich.

Authors’ contributions

CK, KA, KP, NT participated in the organizing committee of the symposium. CK drafted the initial manuscript. KP performed the first review, KA and NT the second review. NH and BP gave the final comments and details feedback. Views expressed in individual sections are those of individual authors alone and do not necessarily represent the views of the other contributing authors. All authors read and approved the final manuscript.

Competing interests

The authors declare that they have no competing interests.

Author details

1Center for International Health – CIHLMU, Munich, Germany. 2Instituto Nacional de Saúde, Maputo, Moçambique. 3Alere Technologies GmbH, Jena, Germany. 4German Center for Infection of Infectious Diseases and Tropical Medicine, Medical Center of the University of Munich, Munich, Germany. 5Division of Infectious Diseases and Tropical Medicine, Medical Center of the University of Munich, Munich, Germany. 6German Center for Infection Research (DZIF), Munich partner site, Munich, Germany.

Published: 4 September 2017

References

1. WHO, Global Tuberculosis Programme. Global tuberculosis report 2015. Geneva: World Health Organization; 2015.
2. Daniel TM. The history of tuberculosis. Respir Med. 2006;100(11):1862–70.
3. Crofton J, Mitchison DA. Streptomycin resistance in pulmonary tuberculosis. Br Med J. 1948(2(4588):1099–15.
4. Fiebig L, Hauer B, Brodhun B, Altmann D, Haas W. Tuberculosis in Germany: a declining trend coming to an end? Eur Respir J. 2016;47(2):667–70.
5. Institute TRC: R6 report on the epidemiology of tuberculosis in Germany for 2015. 2016.
6. Pasipanodya JG, Nuermberger E, Romero K, Hanna D, Gumbo T. Systematic analysis of hollow fiber model of tuberculosis experiments. Clin Infect Dis. 2015;61(Suppl 1):S10–7.
7. Srivastava S, Pasipanodya JG, Meek C, Leff R, Gumbo T. Multidrug-resistant tuberculosis not due to noncompliance but to between-patient pharmacokinetic variability. J Infect Dis. 2011;204(12):1951–9.
8. Pasipanodya JG, Srivastava S, Gumbo T. Meta-analysis of clinical studies supports the pharmacokinetic variability hypothesis for acquired drug resistance and failure of Antituberculosis therapy. Clin Infect Dis. 2012;55(2):169–77.
9. Prideaux B, Via LE, Zimmerman MD, Eurn S, Sarathy J, O’Brien P, Chen C, Kaya F, Weiner DM, Chen P-Y, et al. The association between sterilizing activity and drug distribution into tuberculosis lesions. Nat Med. 2015;21(10):1223–7.
10. Skrahina A, Hurevich H, Zalutskaya A, Sahalchyk E, Astrauko A, van Gemert W, Hoffner S, Rusovich V, Zignol M. Alarming levels of drug-resistant tuberculosis in Belarus: results of a survey in Minsk. Eur Respir J. 2012;39(6):1425–31.
11. Aung KJ, Van Deun A, Declercq E, Sarker MR, Das PK, Hossain MA, Reider HL. Successful ‘9-month Bangladesh regimen’ for multidrug-resistant tuberculosis among over 500 consecutive patients. Int J Tuberc Lung Dis. 2014;18(10):1180–7.
12. Trébucq A: Results of The Union’s observational study of the nine-month MDR-TB regimen in Africa. In: 47th World Conference on Lung Health of the International Union Against Tuberculosis and Lung Disease (The Union): 2016; Liverpool, United Kingdom: The International Journal of Tuberculosis and Lung Disease. 2016.
13. Wu S, Zhang Y, Sun F, Chen M, Zhou L, Wang N, Zhan S. Adverse events associated with the treatment of multidrug-resistant tuberculosis: a systematic review and meta-analysis. Am J Ther. 2016;23(2):e521–30.
14. Diacon AH, Pym A, Grobusch M, Patiencia R, Rustomjee R, Page-Shipp L, Pistorius C, Krause R, Bogoshi M, Chuchovd G, et al. The diaryquinoline TMC207 for multidrug-resistant tuberculosis. N Engl J Med. 2009;360(23):2397–405.
15. Gler MT, Skripconoka V, Sanchez-Garavito E, Xiao H, Cabrera-Rivero JL, Vargas-Vasquez DE, Gao M, Awad M, Park S-K, Shim TS, et al. Delamanid for multidrug-resistant pulmonary tuberculosis. N Engl J Med. 2012;366(23):2151–60.
16. Mitnick CD, Ruen ID, Bain LJ, Honburgh CR. Issues in design and interpretation of MDR-TB clinical trials: report of the first global MDR-TB clinical trials landscape meeting. BMC Proc. 2015;9(Suppl 8):S1.