Nanostructured Ternary Metal Tungstate-Based Photocatalysts for Environmental Purification and Solar Water Splitting: A Review

Jun Ke · M. Adnan Younis · Yan Kong · Hongru Zhou · Jie Liu · Lecheng Lei · Yang Hou

Received: 28 July 2018 / Accepted: 2 September 2018 © The Author(s) 2018

Highlights

- A series of ternary tungstate-based photocatalysts and their applications in solar energy conversion and environmental purification are systematically introduced.
- The relationship between intrinsic structures and unique properties of ternary tungstate-based photocatalysts is discussed and summarized in detail.
- Various new concepts and innovative strategies are employed to enhance the photocatalytic performance of ternary tungstate-based photocatalysts.

Abstract Visible-light-responsive ternary metal tungstate (MWO₄) photocatalysts are being increasingly investigated for energy conversion and environmental purification applications owing to their striking features, including low cost, eco-friendliness, and high stability under acidic and oxidative conditions. However, rapid recombination of photoinduced electron–hole pairs and a narrow light response range to the solar spectrum lead to low photocatalytic activity of MWO₄-based materials, thus significantly hampering their wide usage in practice. To enable their widespread practical usage, significant efforts have been devoted, by developing new concepts and innovative strategies. In this review, we aim to provide an integrated overview of the fundamentals and recent progress of MWO₄-based photocatalysts. Furthermore, different strategies, including morphological control, surface modification, heteroatom doping, and heterojunction fabrication, which are employed to promote the photocatalytic activity of MWO₄-based materials.
activities of MWO₄-based materials, are systematically summarized and discussed. Finally, existing challenges and a future perspective are also provided to shed light on the development of highly efficient MWO₄-based photocatalysts.

Keywords Ternary metal tungstates · Micro- and nanostructures · Photocatalysis · Environmental purification · Water splitting

1 Introduction

Since Fujishima and Honda in 1972 demonstrated that titanium dioxide (TiO₂) can be used as photoanode to split water excited by ultraviolet light, photocatalysis technology has been viewed as among the most promising approaches to solve the global energy crisis and environmental problems [1–3]. In general, a complete semiconductor photocatalytic cycle involves light-harvesting, photogenerated charge carrier excitation, charge separation and transfer, and surface redox reactions [4–6] that allow for the formation of reactive oxygen species (ROSs), such as free electrons (e⁻), hydrogen peroxide (H₂O₂), hydroxyl (-OH), and superoxide radicals (O₂⁻) [7, 8]. The aforementioned ROSs play crucial roles in various important applications, including photocatalysis [9–12], photoelectrocatalysis [13–17], plasma photocatalysis [18, 19], and photothermocatalysis [20–22]. Until now, TiO₂ has been among the most extensively studied semiconductor photocatalysts because of its strong oxidative ability, chemical stability, long durability, and nontoxicity [23–25]. However, the TiO₂ photocatalyst possesses a wide band gap of ~3.2 eV that can only absorb ultraviolet (UV) light, which is a small fraction (~5%) of solar light, thereby hardly harvesting the remaining solar energy [26, 27]. To efficiently utilize the majority of the solar spectrum, Fe₄O₅ [28], WO₃ [29, 30], Bi₂WO₆ [31], ZnO [32], Bi₂O₃ [33], and NiO-based semiconductors [34] have been widely developed as photocatalysts for environmental treatment and solar water splitting (Fig. 1). Nevertheless, low sunlight utilization efficiency and quantum yield, rapid reverse reactions, and poor stability still hinder practical applications of these photocatalytic materials [35–39].

Desired photocatalysts should have a suitable band gap to achieve a high harvesting efficiency of sunlight, sufficient quantum yield, and an appropriate position of the band edge to trigger redox reactions [40–42]. For an ideal photocatalyst, the conduction band (CB) edge should be sufficiently negative to drive the photo-reduction reaction. In contrast, the valence band (VB) edge should be sufficiently positive to trigger the photo-oxidation reaction [43]. For example, in photocatalytic water splitting, when the VB edge position of the semiconductor photocatalyst is more positive than the potential of H₂O/O₂ (1.23 V vs. NHE) and the CB position is more negative than the potential of H₂/H₂O (0 V vs. NHE), the water splitting reaction can occur [44–47].

Recently, ternary tungstate-based complex oxides have been developed as potential candidates for efficient photocatalytic applications [48–50]. Tungstates are described by the general formula MWO₄ (M denotes a bivalent cation) [51] and are widely used in the luminescence, microwave ceramics, and catalytic fields, given their self-activating fluorescence effect, microwave, and optical properties [52–55]. Owing to the variety of bivalent cations, the crystal structure of MWO₄ is dependent on the size of cationic radii. According to the literature [56], MWO₄ typically has a monoclinic wolframite structure for small M²⁺ cations (M = Fe, Co, Sn, and Ni) and a tetragonal scheelite structure for large M²⁺ cations (M = Ca, Ba, Pb, and Sr), as shown in Fig. 2 [57]. During the past few decades, MWO₄ with large radii cations, including CaWO₄ [58, 59], BaWO₄ [60, 61], PbWO₄ [62], and SrWO₄ [63], has been prepared using different synthesis approaches. However, the band gaps of these MWO₄ photocatalysts are much larger than that of TiO₂ and are not suitable for practical photocatalytic applications. In contrast, the band gaps of MWO₄ with small-radii cations are considerably smaller than that of TiO₂ and could be a promising choice for the efficient utilization of solar energy [64–72]. The band-gap energies of representative MWO₄ are summarized in Fig. 3 and Table 1. In addition, the band-gap energies of various MWO₄ and the radii of the metal cations are plotted in Fig. 4. It can be seen that a flock of MWO₄ is in the yellow area, in which each MWO₄ has a smaller metal cation radius (<0.73 Å) and narrower band-gap energy (<3.2 eV) than those of the others. In contrast, MWO₄ with a larger cation radius have larger band-gap energy. Notably, for specific MWO₄, the band gaps presented in Table 1 are not the only ones, because the absorption light range of the semiconductors can be affected and controlled by various factors, including morphology, size, doping, and defects, thus resulting in one semiconductor material possessing several band-gap energies. By comparing the requirements of novel photocatalysts, MWO₄ with small-radius cations is more advantageous and can be further developed as highly efficient photocatalysts. In addition, it is clearly observed that ternary MWO₄ systems with a narrow band gap have transition metals as the cation component, which is earth-abundant, cost effective, and low-toxicity, benefiting wide usage in the future. However, for these visible-light-responsive pristine MWO₄, photocatalytic activities remain
inadequate for practical applications because of the rapid recombination of photogenerated holes and electrons.

Herein, we provide a comprehensive review of the evolution and current state of the development and application of ternary MWO₄-based photocatalysts in environmental purification and solar water splitting. First, we discuss the fundamentals of ternary MWO₄ systems, including the crystal composition, electronic structure, and relationship between the intrinsic structures and properties. Subsequently, versatile reported strategies to improve the photocatalytic activities of pristine MWO₄ are systematically summarized. Finally, challenges and future developments of ternary MWO₄-based photocatalysts are discussed. We believe that this review provides information on recent progress in ternary MWO₄-based photocatalysts for environmental and energy applications and insight into future perspectives, which will aid the design of highly efficient semiconductor-based photocatalysts.

2 Ternary MWO₄ Photocatalysts (M = bivalent metal cations)

The photocatalytic activity of semiconductor photocatalysts is known to be closely related to their crystal and electronic structures [82]. In this section, an overview of the crystal and electronic structures of ternary MWO₄ is presented and the factors influencing their photocatalytic performance is explored.
2.1 Crystal Structure

As ABO₄-type compounds, ternary MWO₄ complex materials possess a typical wolframite-type monoclinic crystal structure and scheelite-type tetragonal structure. In the scheelite crystal structure, one W atom coordinates with four O atoms to form the WO₄ tetrahedral unit. In contrast, in the wolframite crystal structure, one W atom is encircled by six oxygen atoms to form the WO₆ octahedral unit. For example, Yan et al. [83] reported a tetragonal structure in CdWO₄ material, in which the W atom is situated in the center of the tetrahedra, forming four W–O bonds of the same bond length of 1.758 Å, with the coordination number of the Cd atom being eight. However, the monoclinic structure of CdWO₄ is similar to that of previously reported MnWO₄ [84]. Both W(VI) and Cd(II) have octahedral O coordination, in which each octahedron shares two corners with its neighbors. However, the configuration of the WO₆ octahedron leads to severe distortion in which two W–O bonds are much shorter than the other four W–O bonds. The two crystal phases of CdWO₄ are shown in Fig. 5.

An investigation of methyl orange (MO) degradation showed that the photocatalytic performance of monoclinic CdWO₄ was much higher than that of tetragonal CdWO₄ and commercial TiO₂ under UV light irradiation, which can be ascribed to the lower lattice symmetry of the monoclinic CdWO₄. Furthermore, the electronic structures of the wolframite- and scheelite-type CdWO₄ were investigated by theoretical computations and simulations based on density functional theory (DFT). As shown in Fig. 5b-d, both monoclinic and tetragonal CdWO₄ are indirect-type semiconductors because the calculated bottom of the CB is not situated in the same line as the top of the VB. The calculated band gap of monoclinic CdWO₄ was larger than that of tetragonal CdWO₄, which was not consistent with the photocatalytic results. Actually, the monoclinic CdWO₄ consisted of distorted WO₆ octahedra, leading to the generation of dipole moments in the WO₆ octahedral units, while the tetragonal CdWO₄ comprised normal WO₄ tetrahedra, forming a highly symmetric lattice in the absence of dipole moments. Based on its crystal and geometric structures, the monoclinic structure of CdWO₄ is considered a highly efficient photocatalyst, and its catalytic performance has been extensively explored [74, 85, 86].

In addition, it has also been reported that SnWO₄ has two crystal structures: α-SnWO₄ and β-SnWO₄ [87]. The orthorhombic α-SnWO₄ is comparatively stable in the structure below 670 °C, whereas the cubic β-SnWO₄ is a steady structure above 670 °C. In the crystal unit of

Table 1 Band gaps, crystal sizes, and effective ionic radii of different MWO₄ materials

Compounds	Ionic radius of cation M (Å)	Band gap E_g (eV)	Crystalline sizes (nm) via Scherrer equation	References
BaWO₄	1.42	4.79	55	[56]
PbWO₄	1.29	3.2	11	[73]
SrWO₄	1.26	4.66	33	[56]
CaWO₄	1.12	4.27	32	[56]
CdWO₄	0.95	3.77	21	[74]
ZnWO₄	0.74	3.37	32	[75]
CuWO₄	0.73	3.2	36	[76]
MgWO₄	0.72	4.19	70	[77]
SnWO₄	0.69	2.27	36	[78]
NiWO₄	0.69	2.54	31	[71]
MnWO₄	0.66	2.97	29	[79]
CoWO₄	0.65	2.5	35	[80]
FeWO₄	0.61	2.16	50	[81]

![Fig. 4 Relationship between band-gap energy of MWO₄ and the radii of metal cations](image-url)
orthorhombic α-SnWO$_4$, a single W atom is bonded with six O atoms to constitute typical corner-shared WO$_6$ octahedra, while the unshared WO$_4$ tetrahedra are composed of a crystal unit of β-SnWO$_4$. Owing to the lone-pair effects on the Sn(II) ion, distorted SnO$_6$ octahedra are formed in both polymorphs. Cho et al. [88] prepared the aforementioned SnWO$_4$ materials with different types of crystal structures and investigated the relationship of the crystal structure with the optical and catalytic properties of SnWO$_4$ (Fig. 6). It was demonstrated that a difference in atom arrangement could result in an apparent difference in electronic distribution. The VB of SnWO$_4$ is constituted through high hybridization between the Sn 5s orbital and O 2p orbital, resulting from the strong interaction between the atomic orbitals with closer energy. Meanwhile, the Sn 5s orbitals contribute to the lower and upper energy levels of the VB, while the O 2p orbitals are dedicated to the middle energy levels of the VB. Therefore, the VB and CB electronic structures of SnWO$_4$ are totally different from those of the pristine WO$_3$, in which the VB and CB comprise filled O 2p orbitals and empty W 5d orbitals, respectively. The band gap of α-SnWO$_4$ was calculated to be 1.65 eV, which was lower than that of WO$_3$ (1.77 eV), thereby accounting for the broadening effect of the VB, which can be attributed to the contribution of the Sn 5s orbitals. In contrast, the calculated band gap of 3.45 eV for β-SnWO$_4$ was apparently much larger than that of α-SnWO$_4$ and WO$_3$. Although the Sn 5s orbitals also contribute to the VB of β-SnWO$_4$ (Fig. 6b), the increase in the band gap stems from the decreased length of the W–O bonds and enhanced crystal field splits, thus resulting in the upshifting of the CB position. Furthermore, the experimental results showed that both α-SnWO$_4$ and β-SnWO$_4$ exhibited higher photocatalytic performance for the degradation of Rhodamine B (RhB), as compared to other visible-light-response photocatalysts, such as bulk- or nanoWO$_3$ and nanoTiON$_x$ (Fig. 6d). Moreover, the β-SnWO$_4$ showed a higher photocatalytic activity for H$_2$ evolution in the presence of methanol, accompanying Pt as a co-catalyst under visible-light irradiation (Fig. 6e), which

Fig. 5 Models of band structures and calculated density of states for tetragonal (a, b) and monoclinic (c, d) CdWO$_4$. Reproduced with permission from Ref. [83]. Copyright 2011 Elsevier
can be mainly ascribed to the higher CB edge of β-SnWO₄ compared to that of α-SnWO₄. Based on the aforementioned analysis, one can conclude that the MWO₄ photocatalysts usually possess more than two types of crystal structure, thus leading to a difference in geometries and local lattice distortions. The non-bonded electrons in the metal ion should be considered an important factor in analyzing the crystal field, particularly in an MWO₄-based asymmetric coordination environment. The distortion of the local crystal structure influences the electronic structure and band distribution, thus affecting the catalytic performances of MWO₄-based photocatalysts.

2.2 Electronic Structure

Generally, tungstates are considered derivatives of H₂WO₄ and WO₃ because of their similar elemental constitutions and crystal structures [89–91]. The DFT [92] and ab initio [93] calculations indicate that the CB of MWO₄ consists of W 5d orbitals in tungstates, as in WO₃, while the O 2p orbitals only comprise the upper part of the VB because the bivalent metal cation in tungstates contributes differently to the VB and CB positions given different outer electronic arrangements [55].

For instance, visible-light-driven CuWO₄ is employed for photoelectrochemical (PEC) water splitting because of its suitable band gap of 2.3 eV [94–96]. For most binary metal oxides, the VB is mainly constituted of O 2p orbitals; thus, the VB energy is usually in the range of 2.5–3.0 eV, indicating that the top of the VB is not significantly shifted in the metal oxides. For ternary metal oxides, however, the mixing atomic orbitals between the O 2p orbitals and metal orbitals could result in an apparent shift in the top position of the VB [97]. Thus, for CuWO₄, the VB shifts upward, in comparison to that of WO₃, accounting for the hybridization between the O 2p orbitals and Cu 3d orbitals (Fig. 7a). The upward movement in the VB position indicates a decrease in the band gap, which results in an increased visible-light absorption range [98]. However, the composition of the CB is still a topic of hot debate. DFT
calculations show that the VB of CuWO$_4$ is composed of O 2p orbitals with a small portion of Cu 3d, whereas the CB of CuWO$_4$ is composed of W 5d orbitals [99, 100]. Moreover, the Cu 3d orbitals may contribute to the CB of CuWO$_4$ except for the top of the VB [101]. Experimental results demonstrate that the CB shift of CuWO$_4$ relative to that of WO$_3$ can be ascribed to the incorporation of Cu 3d orbitals into the energy level of the CB [102]. Yet, strong evidence of an accurate contribution proportion of Cu 3d orbitals to the CB of CuWO$_4$ has not been obtained. Although the CB composition of CuWO$_4$ is unclear, the CuWO$_4$ photoanode presented a high photocatalytic activity with a photocurrent density of up to 0.07 mA cm$^{-2}$ at 1.23 V and a high stability under AM 1.5G illumination (Fig. 7b, c), indicating that the CuWO$_4$ photoanode has a thermodynamic potential for water oxidation. In this system, a physical model of the photogenerated charge carrier pathways in CuWO$_4$ is proposed as shown in Fig. 7d. It shows that when the photogenerated electrons are transferred from a solution medium to a mid-gap state, the thermodynamic potential of the mid-gap state can be utilized to determine which elementary reaction is favored to occur and which is the rate-limiting reaction.

Apart from CuWO$_4$, the electronic structures of other MWO$_4$ materials have also been previously studied. For example, Rajagopal and co-workers [103, 104] used X-ray emission spectroscopy and DFT computation to study the electronic structures and related properties of FeWO$_4$ and CoWO$_4$ photocatalysts. The theoretical calculation results demonstrated that O 2p orbitals mainly contributed to the

![Diagram](image-url)

Fig. 7 a Distribution of energy level and b chronoamperometry curves of CuWO$_4$ and WO$_3$. c Polarization curve of CuWO$_4$ photoanode under AM1.5G irradiation. d Illustration of the physical model of charge carrier transfer in CuWO$_4$. Reproduced with permission from Ref. [102]. Copyright 2016 American Chemical Society
VB of tungstates, while the unoccupied Fe 3d orbitals and Co 3d orbitals were dominantly dedicated to the CB of FeWO₄ and CoWO₄, respectively. In addition, the density of states showed that Co 3d and W 5d orbitals also contributed to the VB regions of CoWO₄, similar to that of FeWO₄. Hence, the VBs of FeWO₄ and CoWO₄ are composed of O 2p, W 5d, and Fe/Co 3d orbitals. However, X-ray emission spectroscopy results revealed that the W 5d orbitals and O 2p orbitals are dedicated to the entire VB of the tungstates, in which the O 2p orbitals are dedicated to the upper region of the VB and W 5d orbitals are dedicated to the lower region of the VB. The theoretical results agreed well with the experimental results for FeWO₄ and CoWO₄. In addition, the electronic structure of NiWO₄ was obtained. For NiWO₄, the CB predominantly consists of W 5d orbitals and Ni 3d orbitals, while the VB primarily consists of Ni 3d orbitals and O 2p orbitals [105]. It was found that the VB composition of NiWO₄ is different from those of FeWO₄ and CoWO₄, which is related to the energy level distribution of the orbital electrons around the metal ions. Therefore, based on the aforementioned results, one can conclude that the electronic structures of ternary MWO₄ systems mainly depend on the position of the M²⁺ cation in the periodic table, which affects the outer electronic arrangements and hybridized electrons of the atomic orbital to the M²⁺ cation.

3 Strategies for Enhanced Photocatalytic Activity

As described in Sect. 1, ternary MWO₄ systems can act as highly promising photocatalysts for environmental purification and solar water splitting. However, among the major limiting factors in enhancing their photocatalytic activities is the rapid recombination of photogenerated electron and hole pairs. To overcome this problem and improve the overall catalytic performance of MWO₄ photocatalysts, many research groups have endeavored to develop various techniques to enhance the separation and transfer efficiency of photoexcited charge carriers inside MWO₄ or at the interface between different components. In this section, an overview of the developed strategies is provided to offer insights on their effects for the separation efficiency of photogenerated charge carriers and the corresponding catalytic performance of MWO₄-based photocatalysts.

3.1 Morphological Control

As is known, the morphology, facet exposure, and dimensions of photocatalysts have a significant influence on the photocatalytic performance. For example, nanostructured photocatalysts can exhibit excellent photocatalytic activities because the morphologies and particle sizes of the photocatalysts have a significant influence on the optical and electronic properties, which in turn affect the photocatalytic activities. For example, Yu et al. [106] prepared FeWO₄ samples with different morphologies, including nanoparticles, flakes, nanorods (NRs), and a mixture of NRs with flakes and tiny granules, by varying pH values during the hydrothermal process, and systematically investigated their optical properties. The results indicated that the band-gap values of FeWO₄ are correlated with specific morphologies. Hosseinpour-Mashkani and co-workers [75] synthesized ZnWO₄ nanoparticles with different sizes through a precipitation route using different polymeric surfactants. The photocatalytic degradation experiments of MO demonstrated that the ZnWO₄ with the smallest size of 27 nm exhibited the highest photoactivity, compared with other ZnWO₄ samples under UV light illumination. It has been demonstrated that particle size can affect the band gap of semiconductors because of quantum size effects. The exposed surface area of nanoparticles increases with a decrease in nanoparticle size, which can provide more active sites for a surface catalytic reaction. In addition to morphologies and particle sizes, size-related crystallinity of MWO₄ has an important influence on the photophysical and photocatalytic properties. For example, Tong et al. [74] reported nanostructured CdWO₄ with controllable particle sizes via a hydrothermal process and studied the effects of the particle sizes on the lattice symmetry and crystallinity. It was found that the decreased size of the CdWO₄ nanoparticles resulted in an expanded lattice, lowered crystallinity, and broadened band gap. Meanwhile, the decrease in particle sizes caused an apparent decrease in the photocatalytic activity of CdWO₄. These results illustrate that size-related properties are closely correlated with the photocatalytic activity of MWO₄. Apart from the effects of the aforementioned factors on photoactivity, the crystal phase of MWO₄ is also regulated by various synthetic routes to obtain the desired physicochemical and optical properties, because different crystal phases can lead to distinct differences in the exposure of crystal facets and reactivities. For instant, different crystal phases of CdWO₄ nanocrystals were prepared by adjusting the used solvents for photocatalytic H₂ evolution (Fig. 8) [86]. The solvent significantly affected the chelation and growth of the CdWO₄ material, thus leading to apparent differences in the crystal phase. m-CdWO₄ nanocrystals with particle sizes ranging from 4.4 to 31 nm can be prepared using short-chain solvents, while t-CdWO₄ nanocrystals can be easily prepared utilizing long-chain solvents. The obtained m-CdWO₄ nanocrystals exhibited much higher H₂ production than the t-CdWO₄ nanocrystals.

During recent years, the construction of hierarchical structures to tune the morphologies of MWO₄...
photocatalysts has attracted more attention, because hierarchical structures can offer more exposed surfaces and/or active sites. For example, highly efficient hydrophobic CdWO₄ microspheres were synthesized by Hou et al. [107] through a microwave-assisted interfacial hydrothermal strategy. The CdWO₄ microspheres showed enhanced photocatalytic activity for the degradation of MO under mercury lamp irradiation (Fig. 9). The advantages of a hierarchical structure for the enhanced photocatalytic activity of MnWO₄ are supported by several research groups [108–111]. Chen et al. [112] prepared FeWO₄ microspheres by using an ethylene glycol-assisted solvothermal approach, in which ionic 1-octyl-3-methylimidazolium tetrachloroferrate was used as one of the starting materials and played an important role as both a reactant and template. The microsphere-like FeWO₄ material consisted of numerous nanosheets and exhibited a much better photo-Fenton activity in water purification (Fig. 10) because of the generation of hydroxyl radicals, which are produced from the chemical reaction between Fe²⁺ on the surface of FeWO₄ and H₂O₂. The formed Fe³⁺ was further reduced by the photoinduced electrons to generate Fe²⁺, which is a virtuous cycle, to maintain high photocatalytic performance. Recently, Zhou et al. [113] synthesized an urchin-like MnWO₄ hierarchical structure through a facile hydrothermal process with the assistance of cetyltrimethylammonium bromide (CTAB) as surfactant. The introduction of CTAB as the surfactant had significant effects on the morphology and magnetic properties of the MnWO₄ nanocrystals. Subsequently, Xing et al. [114] provided a new route for the synthesis of a complex three-dimensional (3D) MnWO₄ nanostructure. In this case, a 3D flower-like MnWO₄ nanocomposite was synthesized using a microemulsion-based solvothermal approach. Moreover, Chen et al. [115] discussed the effect of the morphology of β-SnWO₄ on its photocatalytic performance, in which the β-SnWO₄ with a multi-armed architecture and hexahedral symmetry displayed much higher photocatalytic activities.
than those of both cubic \(\beta \)-SnWO\(_4\) and commercial WO\(_3\). Hence, more surface reaction sites induced by the hierarchically multi-armed architecture and the band structure reframing caused by incorporation of the Sn atom into WO\(_3\) contributed to the excellent photocatalytic activity.

Previously, crystal facet exposure was viewed as an effective strategy to regulate the surface physicochemical and photophysical properties, thus optimizing the reactivity and selectivity of photocatalysts. In general, a crystal facet with a high percentage of unbonded atoms has superior reactivity in comparison to that with a low ratio of unpaired atoms. In addition, crystal facets possessing high surface energy are usually unstable during preparation. It is desirable to synthesize photocatalysts with a high exposure of high-energy crystal facets to enhance the photocatalytic reactivity and selectivity. Using DFT calculations, Qiu and co-workers [116] reported the atom distributions and electronic properties of MnWO\(_4\) and FeWO\(_4\) with specific facets. The calculated results showed that the \{010\} and \{100\} facets have the lowest surface energies in wolframite-type FeWO\(_4\) and MnWO\(_4\), respectively. Meanwhile, it was observed that the Fe and Mn atoms on the \{010\} and \{001\} planes as absorption sites can be used to absorb anions. These results indicated that the exposed \{100\} facet in MnWO\(_4\) and FeWO\(_4\) can provide a path for improving their photoactivities, while the other exposed facets can offer a certain selectivity to a specific reaction, such as a dichlorination reaction. Recently, Ungelenk et al. [117] synthesized phase-pure \(\beta \)-SnWO\(_4\) with truncated rhombic dodecahedrons using a microemulsion technique with CTAB as a co-surfactant with n-hexanol (Fig. 11). Benefitting from the rapid Na\(_2\)WO\(_4\)-induced nucleation and slow crystal growth controlled by the CTAB-mediated microemulsion reaction, the as-prepared \(\beta \)-SnWO\(_4\) microcrystals with exposed \{100\} and \{110\} facets showed outstanding photocatalytic activity for the degradation of organic pollutants under UV light.

Fig. 9 a–c FESEM images of CdWO\(_4\) microspheres. d Photocatalytic degradation efficiencies of MO in the presence of different photocatalysts. e Photocatalytic mechanism for CdWO\(_4\) microspheres. Reproduced with permission from Ref. [107]. Copyright 2014 Royal Society of Chemistry

(Springer)
daylight irradiation, which was far better than that of other photocatalysts, including bulk non-faceted \(\beta \text{-SnWO}_4 \) and spherical-like \(\beta \text{-SnWO}_4 \) nanoparticles. In addition, given the slight difference in specific surface area between the faceted \(\beta \text{-SnWO}_4 \) and non-faceted \(\beta \text{-SnWO}_4 \), it was concluded that optimized facet exposure was the predominant reason for the distinct photocatalytic activity. In addition, Tian et al. [118] reported a facile solvothermal method for the synthesis of hierarchical \(\text{FeWO}_4 \) nanosheets with an exposed \{100\} facet, which exhibited excellent peroxidase-like catalytic activity for oxidizing the peroxidase substrate of 3,3',5,5'-tetramethylbenzidine (TMB) because of the formation of hydroxyl radicals in the presence of H\(_2\)O\(_2\). The surface Fe\(^{3+}\) in \(\text{FeWO}_4 \) can activate the H\(_2\)O\(_2\) molecule to produce active hydroxyl radicals for the oxidation of TMB. The results clearly indicated that the \{100\} facet of \(\text{FeWO}_4 \) had a much higher ratio of Fe atoms than that of the \{001\} and \{010\} facets, which explained the enhanced catalytic activity of \(\text{FeWO}_4 \) with the exposed \{100\} facet.

Owing to the high surface area and large absorption cross section it provides, a low-dimensional nanostructure can be constructed to manipulate and regulate optical, electrical, and magnetic properties [119, 120]. Low-dimensional nanostructures including those that are one-dimensional (1D) or two-dimensional (2D) cause the growth of a crystal along one or two directions, which can contribute to more exposure of specific surface facets. For example, 1D CdsWO\(_4\) NRs were prepared using microwave or hydrothermal approaches and exhibited excellent photocatalytic activity for environmental treatments, as compared to nanoparticles [121–123]. Kovacs and co-workers [111] prepared a series of \(\text{FeWO}_4 \) with different morphologies, including nanoparticles, NRs, and nanosheets, by varying the Fe precursors. The nanosheet-like \(\text{FeWO}_4 \) with band-gap energy of \(\sim 2.2 \text{ eV} \) exhibited excellent absorption ability throughout the UV and visible-light range, which was attributed to the formation of a cavity assembled by nanosheets that resulted in enhanced photon harvest. Therefore, the \(\text{FeWO}_4 \) nanosheets showed higher...
photocatalytic activity than other control samples for the degradation of organic dyes under visible-light irradiation.

3.2 Surface Modification

Considering that the photocatalytic reaction proceeds on the surface of semiconductors, the surface physiochemical properties of semiconductor-based photocatalysts are important for improvement of photocatalytic activity. Several strategies, including chemical etching, surface coverage, and co-catalyst attachment, have been developed to tune the surface properties of semiconductor-based photocatalysts.

The purpose of etching techniques, such as chemical etching and laser or electron-beam irradiation, is to form non-stoichiometric or metal/oxygen vacancies on the surface of an inorganic semiconductor. The formation of metal or oxygen vacancies has proven to have an apparent influence on the electronic distribution because of the introduction of a new defect energy level, thus affecting the light absorption range and photocatalytic activity. For example, Aloysius-Sabu et al. [124] investigated the effects of intentional electron-beam irradiation on the crystal phase, size, and surface properties of CaWO$_4$ that was prepared through chemical precipitation and heat treatment. The experimental results showed that the high-energy electron beam significantly affected the crystal size and surface structure, but not the crystal phase. When the CaWO$_4$ photocatalyst was irradiated by an electron beam, the surface atomic layers of CaWO$_4$ underwent stretching and compressive strain, which resulted in the formation of surface defects and a new energy level in the band gap. Therefore, an apparent absorption tail and narrowed band-gap energy were observed in the irradiated CaWO$_4$ sample.

In addition, Lin et al. [125] prepared a visible-light-driven Ag$_2$WO$_4$ photocatalyst through a laser irradiation route in liquid using commercial Ag$_2$WO$_4$ as a starting material for organics degradation and H$_2$ evolution. Because of the laser irradiation, the crystal structure was recrystallized and a lattice defect was introduced in Ag$_2$WO$_4$, leading to the formation of intermediate energy levels with a decrease of 0.44 eV in the band gap. The synthesized Ag$_2$WO$_4$ exhibited a photocatalytic H$_2$ evolution rate as high as 13.73 μmol (hg)$^{-1}$ under visible-light illumination, while no H$_2$ evolution was observed in the unirradiated...
commercial Ag_2WO_4 sample, which was ascribed to a large band gap of 3.22 eV for bulk Ag_2WO_4.

However, to enhance the solar conversion efficiency of tungstates, surface coverage has been adopted to increase the charge transfer efficiency by means of passivating the surface via deposition of a protective layer. For example, Karthiga and co-workers [71] reported the synthesis of NiWO$_4$ nanoparticles modified by a plant extract, *A. indica*, as a capping agent through a precipitation route for enhanced photocatalytic activity. The introduction of *A. indica*, which possesses rich water-soluble heterocyclic groups, led to the formation of a passivation layer on the surface of the NiWO$_4$ nanoparticles, which allowed the NiWO$_4$ nanoparticles to separate well from each other. In comparison to the bare NiWO$_4$ nanoparticles, the *A. indica*-coated NiWO$_4$ exhibited a much higher photocatalytic activity for the degradation of organic contaminants under visible-light irradiation because of the formation of the passivation layer of the plant extract, which significantly suppressed the recombination of photogenerated electrons and holes. Meanwhile, modified NiWO$_4$ presented higher antimicrobial activity as compared with pure NiWO$_4$ nanoparticles.

Apart from chemical etching and surface coverage strategies, attachment of noble metal co-catalysts (such as, Pt, Au, and Ag) is another effective means to tune the surface photophysical properties of photocatalysts because of the surface plasmon resonance (SPR) effect [126, 127]. The SPR effect not only significantly enhances visible-light absorption, but also produces a localized electromagnetic field, thus improving the separation efficiency of the photogenerated charge carriers at the interfaces between the metal and semiconductor [128, 129]. Furthermore, the metal–semiconductor heterostructure could efficiently suppress the recombination of photogenerated electrons and holes because of the formation of Schottky barriers at the contacted interface, thus enhancing photocatalytic performance [126]. Based on the aforementioned features, the introduction of a noble metal into MWO$_4$ is a feasible approach to realize enhancement of its photocatalytic performance. Recently, Liu et al. [130] prepared Ag nanoparticles (NPs)/α-SnWO$_4$ nanosheets through microwave-assisted anchoring of Ag NPs on SnWO$_4$ nanosheets. The loading amount of the deposited Ag NPs was well-tuned by adjusting the initial concentration of the Ag$^+$ precursor and CTAB surfactant (Fig. 12a). The obtained Ag NPs/α-SnWO$_4$ hybrid showed enhanced light absorption ability and photocatalytic activity for the degradation of MO, compared to pure α-SnWO$_4$, under visible-light irradiation. Moreover, the hybridized Ag NPs/α-SnWO$_4$ system exhibited improved transient photocurrent density in comparison to that of pristine α-SnWO$_4$ (Fig. 12c), indicating that more photoinduced charge carriers could be produced and further participated in the redox reaction. In addition, Yan et al. [131] synthesized Ag-loaded CdWO$_4$ NRs using a photo-assisted co-precipitation method with the addition of the PEG-100 surfactant, which exhibited a higher photocatalytic activity than that of pure CdWO$_4$ NRs because of the SPR effect. In another study, Au NPs were utilized to construct Schottky barriers in an MWO$_4$-based system. For instance, Au NRs/MnWO$_4$, with a diameter of 20–40 nm, was reported by Chakraborty et al. [132] to enhance the photocatalytic decomposition of 2-propanol and phenol. The Au NPs as co-catalysts in the Au/MnWO$_4$ hybrid were beneficial to multi-electron O$_2$ reduction and hole oxidation.

3.3 Heteroatom Doping

It has been demonstrated that the introduction of impurities via doping of heteroatoms into a semiconductor can influence the photocatalytic performance [133, 134]. However, heteroatom doping might either have positive or negative impacts for the photocatalytic performance of semiconductors, because there are two different doping levels—the shallow level near the surface and deep level inside the body [135]. Deep-level doping can usually provide a recombination center to intensify the meaningless dissipation of absorbed photons, thus undermining the photocatalytic activity. Therefore, appropriate heteroatom doping is vital to increasing the photocatalytic performance of heteroatom-doped photocatalysts. To overcome shortcomings, such as a narrow wavelength range and rapid recombination of photogenerated electron–hole pairs, a few recent reported types of heteroatom doping to enhance the photocatalytic performances of ternary MWO$_4$ materials are reviewed and their roles discussed in detail.

In heteroatom doping, the dopants are mainly non-metal elements such as B [136], Cl [137], and various transition metals (Zn, Ni, Fe, Co, etc.) [138, 139], which exhibit enhanced photocatalytic activity for mineralizing organic pollutants. For instance, Chen et al. [140] synthesized F-doped ZnWO$_4$ nanocrystals (F$_x$-ZnWO$_4$ nanocrystals) using a two-step hydrothermal process and investigated its chemical bonds via band structure calculations (Fig. 13). In comparison to undoped ZnWO$_4$, the F$_x$-ZnWO$_4$ nanocrystals exhibited significant red shifts and improved light absorption in the range of UV–visible light, which resulted in enhancement of photocatalytic activity for the degradation of RhB under mercury lamp irradiation. Additionally, the experimental results showed that the crystallinity and morphology of the prepared F$_x$-ZnWO$_4$ was strongly related to the photocatalytic activity. F$_x$-ZnWO$_4$ exhibited higher photocatalytic performance for the degradation of organic dyes than F$_x$-ZnWO$_4$ NPs. Based on the theoretical calculation results, the enhancement of the photocatalytic
activity of F$_i$-ZnWO$_4$ might be ascribed to the following reasons. First, F-doping increased the absorptivity of F$_i$-ZnWO$_4$, such that it could absorb more reactants to enhance the photocatalytic activity. Second, a new half-filled state was introduced into the original band gap of ZnWO$_4$ accompanying the F-doping, which could provide more holes to enhance the photocurrent density of F$_i$-ZnWO$_4$. Thus, heteroatom doping could efficiently improve the photocatalytic activities of MWO$_4$ by introducing a new energy level to regulate the original electronic structure.

Apart from the introduction of non-metal elements, transition metal elements can also be a potential dopant. For example, Su et al. [141] prepared Zn$^{2+}$-doped SnWO$_4$ nanocrystals, and reported that the morphological alteration of SnWO$_4$ nanocrystals from nanosheets to nanowires can be controlled by Zn$^{2+}$ doping. Consequently, the Zn$^{2+}$-doped SnWO$_4$ exhibited a greater Brunauer–Emmett–Teller surface area (54 and 100 m2 g$^{-1}$ for pure SnWO$_4$ and Zn$^{2+}$-doped SnWO$_4$, respectively), narrowed band gap (2.68 and 2.64 eV for pure SnWO$_4$ and Zn$^{2+}$-doped SnWO$_4$, respectively), and highly enhanced photocatalytic performance for the degradation of MO (95% and 30% for pure SnWO$_4$ and Zn$^{2+}$-doped SnWO$_4$, respectively) compared to that of pure SnWO$_4$. In addition, Song et al. [142] reported the synthesis of Zn-doped CdWO$_4$ NRs using a hydrothermal process to enhance the photocatalytic conversion efficiency of organic pollutants into low-toxicity small molecules under simulated sunlight irradiation. The influence of the Zn-doping amounts on the crystal phase, morphology, and optoelectronic properties of CdWO$_4$ NRs was also systematically investigated. Compared to the undoped sample, the Zn-doped CdWO$_4$ NRs exhibited much higher photocatalytic activity, which was assigned to...
the narrowed band gap due to Zn-doping. Heteroatom doping could be an effective means to tune the distribution of the energy level and further enhance the photocatalytic performance of MWO_4 without consuming excess foreign substances.

Recently, rare earth element-doped photocatalysts have attracted more attention because of their special 4f electron configuration, which could be beneficial for introducing a suitable energy level into the original band gap of MWO_4 [143]. Phuruangrat et al. [144] synthesized Ce-doped ZnWO_4 using a hydrothermal process and investigated the influence of Ce doping on the crystal phase, morphology, electronic structure, and photocatalytic activity of ZnWO_4. After the introduction of Ce atoms, the photocatalytic activity of ZnWO_4 improved with the increase in Ce content, owing to the following two reasons. First, the introduction of the Ce$^{3+}$ dopant led to the generation of defects on the surface of Ce-doped ZnWO_4. Second, the Ce$^{4+}$ ions on the surface of ZnWO_4 could efficiently trap electrons at the CB by the reduction of Ce$^{4+}$ into Ce$^{3+}$ ions, thus efficiently suppressing the recombination of photoinduced electrons and holes in the Ce-doped ZnWO_4. Therefore, rare earth elements with variable valence, such as Ce, La, and Eu, are promising dopants to improve the photocatalytic activity by trapping photogenerated electrons, consequently limiting the recombination of photogenerated charge carriers.

Fig. 13
(a) Geometric structures for the $\text{F}_2\text{-ZnWO}_4$. Spin density (top) and total charge density (bottom) for $\text{F}_2\text{-ZnWO}_4$.
(b) Photocurrent density of the synthesized samples under UV-light irradiation. Photocatalytic degradation of RhB over different samples under UV light irradiation. Reprinted with permission from Ref. [140]. Copyright 2010 American Chemical Society.
3.4 Heterojunction Fabrication

3.4.1 Hybridization with Semiconductors

Among the aforementioned approaches, constructing a semiconductor heterostructure is an effective means to obtain highly efficient photocatalysts [145–148]. When heterojunctions are composed of different semiconductors that have matching band potentials to form type-I or type-II heterojunctions through realignment of the energy level, the excited photogenerated holes and electrons can be moved from one semiconductor to another in opposite directions driven by the formed built-in electric fields [149, 150], thus strengthening the separation efficiency of the photoinduced electrons and holes and further enhancing photocatalytic performance.

For constructing MnWO4-based heterojunctions, semiconductors with a narrow band gap were chosen as a counterpart component to form the heterojunction system, which exhibited remarkable advantages for enhancing the photocatalytic performance. Among most semiconductors with a narrow band gap, cadmium sulfide (CdS) has attracted increasing attention for heterojunction fabrication because of its narrow band gap and high CB position, which could be beneficial for photocatalytic H2 production [151, 152]. Therefore, various CdS/MnWO4 heterojunction photocatalysts have been developed, which exhibit enhanced photocatalytic activities in water purification and energy conversion [153, 154]. For instance, Yan et al. [155] prepared a CdS/MnWO4 heterojunction using a facile hydrothermal method to mineralize MB and methyl violet (MV) under visible-light irradiation. Owing to the overlapping of energy bands and tightly contacted interfaces between CdS and MnWO4, the holes at the VB of MnWO4 could transfer to the VB of CdS, and the excited electrons at the CB of CdS could in turn move into the CB of MnWO4. This model could efficiently limit the recombination rate of the photogenerated electrons and holes, thus intensifying the separation of the photogenerated charge carriers in the hybrid system (Fig. 14). Nevertheless, it is apparent that the introduced CdS amount was not synchronous with the photocatalytic activities of the heterojunction, while there was an optimal amount of CdS in the hybrid. Excessive CdS amounts caused severe agglomeration of MnWO4, damaging the heterojunction and worsening the separation efficiency of the photogenerated electrons and holes. This phenomenon was nearly discovered in the heterojunctions by combining two or more components into one system. In addition, Xu et al. [156] prepared a CdS/ZnWO4 heterojunction consisting of ZnWO4 NRs and CdS NPs using a hydrothermal method for the photodegradation of ciprofloxacin antibiotics. Compared to the ZnWO4 NRs and CdS NPs, the CdS/ZnWO4 hybrids showed higher photocatalytic activity than bare ZnWO4 NRs and CdS NPs, which was ascribed to the highly efficient separation of the photogenerated electrons and holes in the hybrid structure.

The CdS/CdWO4 heterojunction also exhibited enhanced efficiency in the photocatalytic H2 production. For instance, Jia [157] and Wang et al. [158] deposited CdS on the surface of CdWO4 via an ion-exchange and in situ growth route, and the fabricated Z-scheme CdS/CdWO4 hybrid exhibited significantly enhanced photocatalytic performance for H2 evolution compared to that of the pure CdWO4 and CdS. As discussed in the previous section, the MWO4 with a small M2+ cation has a narrow band-gap energy, which can be considered an efficient solar energy harvester to connect with wide band-gap semiconductors for constructing MWO4-based heterojunctions [159–161]. Thus, Jiang et al. [162] fabricated an MnWO4/TiO2 heterojunction with excellent mechanical adhesion by the in situ growth of MnWO4 on a porous TiO2 film; it presented extremely high photocatalytic performance for degrading MB because of its high crystallinity, large surface area, and strong mechanical properties (Fig. 15). Similarly, Buvaneswari et al. [163] prepared an FeWO4/ZnO heterojunction via a simple co-precipitation route; the band gap of the prepared FeWO4/ZnO heterojunction was estimated to be 2.12 eV, which was apparently smaller than that of ZnO (3.01 eV). In comparison to pristine ZnO, the photocatalytic activity of the FeWO4/ZnO hybrid was substantially enhanced because of the formation of a FeWO4/ZnO heterojunction structure. Additionally, the CuWO4/ZnO hybrid consisting of ZnO NRs and CuWO4 NPs fabricated by Mavric et al. [164] showed enhanced photocatalytic activity compared to that of pure CuWO4 NPs and ZnO NRs.

Furthermore, a MOx/MWO4 hybrid as a smart-built heterojunction was fabricated using a facile one-pot synthetic strategy to enhance the interaction between MOx and MWO4, in which M is generally reported to be Fe, Ni, Co, or Cu [165–168]. Cao et al. [169] fabricated a novel p-n heterojunction consisting of Fe3O4 NPs and FeWO4 nanowires. The calculated band gap of the FeWO4/Fe3O4 heterojunction was 2.50 eV, lower than that of pristine FeWO4 nanowires. The FeWO4/Fe3O4 heterojunction exhibited enhanced photo-Fenton activity compared to that of the bare FeWO4 nanowires under UV–visible-light irradiation with the addition of H2O2. In addition, a α-SnWO4/SnO2 heterostructure was synthesized with CTAB as the surfactant [170] and displayed enhanced photocatalytic performance compared to that of pure α-SnWO4. Considering that WO3 can be obtained by dehydration from tungstate acid, WO3 is considered to be simultaneously produced during the synthesis of MWO4 and is likely to form a MWO4/WO3 heterojunction, such as CoWO4/WO3.
Aslam et al. [177] prepared a CdWO₄/WO₃ heterojunction using a hydrothermal and chemisorption method, and reported enhanced photocatalytic activities toward the degradation of organic pollutants, compared with pure CdWO₄ and WO₃. This section clearly demonstrates in detail that the construction of MWO₄-based heterojunction systems is an effective and controllable method for enhancing the photocatalytic activities of MWO₄-based semiconductors.

3.4.2 Hybridization with Carbon-Rich Materials

Carbon-rich materials, including carbon nanotubes (CNTs), graphene, and graphitic carbon nitride (g-C₃N₄), possess unique physical and chemical properties such as a large surface area, high absorption co-efficiency, and chemical stability, ensuring excellent and long-lasting applications in the fields of photochemical and PEC water treatment, photovoltaic devices, and water splitting [178–183]. Carbon-rich materials have a conjugative π structure and unique sp^2/sp^3 hybrid carbon network, which are suitable substrates for constructing hybrid photocatalysts to intensify the separation and transportation of photoinduced charge carriers inside carbon-rich networks, thus improving the photocatalytic performance [184–187]. Based on this strategy, Gaillard et al. [188] synthesized a novel photoelectrode consisting of CuWO₄ and a multi-wall CNT (MWCNT) to tune the photogenerated charge transfer in the nanocomposite film for enhancing the performance of solar-driven PEC water splitting. Compared to the bare CuWO₄ photoelectrode, the resistance and photocurrent density of the CuWO₄/MWCNT composite photoelectrode decreased and increased by 30% and 26%, respectively.
This was mainly attributed to the complete dispersion of the MWCNT as an electron collector in the entire CuWO$_4$ layer. Compared to CNTs, graphene nanosheets produced via the chemical oxidation treatment of graphite have more sp3 hybridized edge structure because of the destroyed perfect sp2 structure. It is well-known that a perfect sp2 carbon structure (CNT) is beneficial for rapid charge mobility, and that an sp3-hybridized carbon structure (graphene) can lead to a small band gap in the semiconductor [189, 190]. Meanwhile, layer-structure carbon materials have a richer porosity substructure assembly from graphene stacking and surface defects, which could provide more reactive sites, in comparison to tube-like carbon materials. Recently, Bai et al. [191] designed a ZnWO$_4$/graphene hybrid, demonstrating that graphene could act as a photo-sensitizer in the hybrid and improve the production of OH and O$_2^-$ radicals. The excited photogenerated electrons at the CB of ZnWO$_4$ could be easily injected into the lowest unoccupied molecular orbital (LUMO) of graphene, resulting in a beneficial spatial separation between the holes and electrons inside the ZnWO$_4$/graphene hybrid, in which more holes and electrons can participate in the production of active species, in comparison to bare ZnWO$_4$. Xu et al. [192] reported a CdWO$_4$/graphene hybrid using a hydrothermal process, in which the formed heterojunction showed significantly enhanced photocatalytic activity compared to that of the bare ZnWO$_4$. However, it was found that excessive graphene could have a negative effect on the photocatalytic performance because of the reduced light absorption efficiency of CdWO$_4$ with the addition of the superfluous graphene.

Apart from graphene, other carbon-rich materials, such as g-C$_3$N$_4$ and mesoporous carbon materials, have been considered as promising candidates to build MWO$_4$-based heterojunctions. g-C$_3$N$_4$, which is regarded as an allotrope of C$_3$N$_4$, possesses excellent chemical stability, a suitable band gap of 2.7 eV, and a high specific surface area, which are beneficial for anchoring various other semiconductor materials [193–195]. For instance, Sun et al. [196] synthesized g-C$_3$N$_4$/ZnWO$_4$ NRs via a thermal treatment route, and investigated the microcosmic mechanisms of the
enhanced photocatalytic activity of C₃N₄/ZnWO₄ in comparison to pristine ZnWO₄ NRs and C₃N₄. Together with theoretical calculation results, it was found that the well-matched energy level alignment of the C₃N₄ and ZnWO₄ NRs was the primary reason for the enhancement of the photocatalytic performance, in which the electrons at the VB top edge of the C₃N₄, when excited by the incident light, quickly jumped to the CB bottom edge of C₃N₄ and then transferred to the CB of ZnWO₄ because of the staged alignment, thus enhancing the charge transfer and separation efficiency. In addition, Tian et al. [197] synthesized a CdWO₄/C₃N₄ hybrid using a hydrothermal process, followed by a mixed-calcination treatment. Compared to pure CdWO₄, the CdWO₄/C₃N₄ heterojunction exhibited higher photocatalytic activity (Fig. 16c), the proposed mechanism for which is shown in Fig. 16d. The matched band structures between the two components contributed to the separation and transfer process, in which the excited electrons at the CB of C₃N₄ moved to the CB of CdWO₄ following a downward staged band, such that the photoinduced electrons and holes were efficiently separated, thus enhancing the overall photocatalytic activity. Considering its appropriate band energy level, g-C₃N₄ is usually used to construct a Z-scheme hybrid system to enhance photocatalytic activities. Instead of a type-II heterojunction, the direct Z-scheme configuration not only forms a built-in electronic field to promote the separation and transfer efficiency of photogenerated electrons and holes [198, 199]. Recently, Zhu and co-workers [200] reported a direct Z-scheme heterojunction by combining g-C₃N₄ with Ag₂WO₄ through a facile precipitation route. Because of the use of g-C₃N₄ as a support in the precursor solution, Ag₂WO₄ was able to nucleate and grow on the surface of the layered C₃N₄, thus resulting in the Ag₂WO₄ evenly distributing on the surface of the layered g-C₃N₄ nanosheets. In comparison to the bare Ag₂WO₄ and g-C₃N₄, the Z-scheme of the g-C₃N₄/Ag₂WO₄ hybrid system exhibited stronger absorption and higher separation efficiency of photogenerated charge carriers.
a much higher photoactivity for the degradation of MO, owing to the efficient separation between the photoinduced electrons and holes in the direct Z-scheme configuration. Given the aforementioned examples and explanations, it is obvious that carbon-rich materials possess a high charge carrier mobility and large specific surface area, which could efficiently promote the separation efficiency of photoexcited electrons and holes in the MWO$_4$, ultimately leading to improvement of the photocatalytic activity.

4 Summary and Outlook

This review summarized the development of novel strategies to enhance the photocatalytic performance of MWO$_4$-based materials, with a special emphasis on their applications in environmental purification and solar water splitting. Although significant improvements have been achieved in the construction of highly efficient ternary MWO$_4$-based oxides, challenges remain that need to be addressed. First, the recombination rate of photogenerated charge carriers for MWO$_4$-based photocatalysts is still considerably high, accounting for poor reduction ability in the photoexcited electrons at a low potential of the CB edge, which are easily quenched by defects and holes. Second, although morphological engineering could improve the photocatalytic activity of MWO$_4$-based systems by regulating the crystal structure, particle size, and surface area, the current synthetic methods are inadequate for large-scale preparation, particularly for nanosized materials, which would significantly improve the separation efficiency of the photogenerated charge carriers. Third, the surface effect, particularly the crystal surface effect on the photocatalytic performance of MWO$_4$-based systems, has not been synergistically and comprehensively investigated. It is thought that the atom configurations and surface defects should be paid more attention, to provide important information for designing highly efficient photocatalysts. Fourth, based on this review, it is clear that the MWO$_4$ materials consisting of a single valence metal ion, such as Cd, Zn, or Sn, have been well-developed in the past, while those composed of a versatile valence metal, for instance, Co, Fe, or Ni, have been insufficiently explored in surface engineering and theoretical computation.

To overcome these challenges, future research needs to focus on the exploration of novel photocatalytic materials. Although the sunlight-harvesting ability and separation efficiency of photogenerated charge carriers could be strengthened by heteroatom doping or heterojunction fabrication as reported by previous literature, traditional material screening, high-throughput screening, and computational materials design can guide the construction of photocatalysts with a proper band edge position and suitable band gap, thereby shortening the experimental period, reducing the workload, and saving experimental cost. In other fundamental studies, combining experiment and theory would enable understanding the photocatalytic principles and screen alternative high-performance photocatalysts. Future work also needs to focus on facile synthetic approaches for constructing stable MWO$_4$ materials with high active crystal surface and/or quantum size, and developing advanced techniques for large-scale production. It is expected that further progress in ternary MWO$_4$-based photocatalysts for applications in environmental purification and solar water splitting will be made in future studies.

Acknowledgements Y. Hou thanks the support of NSFC 51702284, Fundamental Research Funds for the Central Universities (112109*172210171) and the Startup Fund for Hundred-Talent Program of Zhejiang University (112100-19382010/001/022). J. Ke thanks the support of the NSFC 21501138, the Science Research Foundation of Wuhan Institute of Technology (K201513).

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

References

1. A. Fujishima, K. Honda, Electrochemical photolysis of water at a semiconductor electrode. Nature 238, 37–38 (1972). https://doi.org/10.1038/23837a0
2. X.P. Chen, Z.X. Zhang, L. Chi, A.K. Nair, W.F. Shangguan, Z. Jiang, Recent advances in visible-light-driven photoelectrochemical water splitting: catalyst nanostructures and reaction systems. Nano-Micro Lett. 8(1), 1–12 (2016). https://doi.org/10.1007/s40820-015-0063-3
3. Y. Hou, X. Li, Q. Zhao, G. Chen, C.L. Raston, Role of hydroxyl radicals and mechanism of Escherichia coli inactivation on Ag/AgBr/TiO$_2$ nanotube array electrode under visible light irradiation. Environ. Sci. Technol. 46(7), 4042–4050 (2012). https://doi.org/10.1021/es204079d
4. L. Cheng, Q.J. Xiang, Y.L. Liao, H.W. Zhang, CdS-Based photocatalysts. Energ. Environ. Sci. 11(6), 1362–1391 (2018). https://doi.org/10.1039/c7ee03640j
5. F. Wang, Q. Li, D. Xu, Recent progress in semiconductor-based nanocomposite photocatalysts for solar to chemical energy conversion. Adv. Energy Mater. 7(23), 1700529 (2017). https://doi.org/10.1002/aenm.201700529
6. Y. Hou, X. Zhuang, X. Feng, Recent advances in earth-abundant heterogeneous photocatalysts for photoelectrochemical water splitting. Small Methods 1(6), 1700090 (2017). https://doi.org/10.1002/smtd.201700090
7. Y. Hou, X. Li, Q. Zhao, G. Chen, ZnFe$_2$O$_4$ multi-porous microbricks/graphene hybrid photocatalyst: facile synthesis, improved activity and photocatalytic mechanism. Appl. Catal. B Environ. 142–143, 80–88 (2013). https://doi.org/10.1016/j.apcatb.2013.04.062
8. Y. Hou, X. Li, Q. Zhao, X. Quan, G. Chen, Electrochemically assisted photocatalytic degradation of 4-chlorophenol by
ZnFe2O4-modified TiO2 nanotube array electrode under visible light irradiation. Environ. Sci. Technol. 44(13), 5098–5103 (2010).

9. W.Y. Teoh, J.A. Scott, R. Amal, Progress in heterogeneous photocatalysis: from classical radical chemistry to engineering nanomaterials and solar reactors. J. Phys. Chem. Lett. 3(5), 629–639 (2012). https://doi.org/10.1021/jz3000646

10. S. Banerjee, S.C. Pillai, P. Falaras, K.E. O’Shea, J.A. Byrne, D.D. Dionysiou, New insights into the mechanism of visible light photocatalysis. J. Phys. Chem. Lett. 5(15), 2543–2554 (2014). https://doi.org/10.1021/jz501030x

11. J. Schneider, M. Matsuoaka, M. Takeuchi, J. Zhang, Y. Horiuchi, M. Anpo, D.W. Bahnemann, Understanding TiO2 photocatalysis: mechanisms and materials. Chem. Rev. 114(19), 9919–9986 (2014). https://doi.org/10.1021/cr5010892

12. M.J. Kale, T. Avanesian, P. Christopher, Direct photocatalysis by plasmonic nanostructures. ACS Catal. 4(1), 116–128 (2013). https://doi.org/10.1021/cs400939w

13. V. Augugliaro, G. Camera-Roda, V. Loddo, G. Palmisano, L. Palmisano, J. Soria, S. Yurdakal, Heterogeneous photocatalysis and photoelectrocatalysis: from unselective abatement of noxious species to selective production of high-value chemicals. J. Phys. Chem. Lett. 6(10), 1968–1981 (2015). https://doi.org/10.1021/jzacs.5b02214

14. A. Garcia, C. Fernandez-Blanco, J.R. Herance, J. Albero, H. Garcia, Graphenes as additives in photocatalysis. J. Mater. Chem. A 5(32), 16522–16536 (2017). https://doi.org/10.1039/c7ta04045h

15. A.B. Laursen, S. Kegnæs, S. Dahl, I. Chorkendorff, Molybdenum sulfides-efficient and viable materials for electro- and photoelectrocatalytic hydrogen evolution. Energy Environ. Sci. 5(2), 5577–5591 (2012). https://doi.org/10.1039/c2ee02618

16. Y. Yang, S. Ajmal, X. Zheng, L. Zhang, Efficient nanomaterials for harvesting clean fuels from electrochemical and photoelectrochemical CO2 reduction. Sustain. Energ. Fuels 2(3), 510–537 (2018). https://doi.org/10.1039/c4se0371d

17. R. Zhou, R. Zhou, X. Zhang, J. Li, X. Wang et al., Synergistic effect of atmospheric-pressure plasma and TiO2 photocatalysis on inactivation of Escherichia coli cells in aqueous media. Sci. Rep. 6, 39552 (2016). https://doi.org/10.1038/srep39552

18. J.J. Zou, C.J. Liu, Y.P. Zhang, Control of the metal-support interaction of NiO-modified photolysis catalysts via cold plasma treatment. Langmuir 25(5), 2334–2339 (2009). https://doi.org/10.1021/la902135u

19. L. Zhang, G. Kong, Y. Meng, J. Tian, L. Zhang, S. Wan, J. Lin, Y. Wang, Direct coupling of thermo- and photocatalysis for conversion of CO2/H2O into fuels. ChemSusChem 10(23), 4709–4714 (2017). https://doi.org/10.1002/cssc.201701472

20. E.T. Kho, T.H. Tan, E. Lovell, R.J. Wong, J. Scott, R. Amal, A review on photo-thermal catalytic conversion of carbon dioxide. Green Energy Environ. 2(3), 204–217 (2017). https://doi.org/10.1016/j.gee.2017.06.003

21. J. Jia, H. Wang, Z. Lu, P.G. O’Brien, M. Ghosssoub et al., Photothermal catalyst engineering: hydrogenation of gaseous CO2 with high activity and tailored selectivity. Adv. Sci. 4(10), 1700252 (2017). https://doi.org/10.1002/advs.201700252

22. H. Chen, C.E. Nanayakkara, V.H. Grassian, Titanium dioxide photocatalysis in atmospheric chemistry. Chem. Rev. 112(11), 5919–5948 (2012). https://doi.org/10.1021/cr3002092

23. L. Wan, M. Long, D. Zhou, L. Zhang, W. Cai, Preparation and characterization of freestanding hierarchical porous TiO2 monolith modified with graphene oxide. Nano-Micro Lett. 4(2), 90–97 (2012). https://doi.org/10.1007/bf03353698

24. M. Boehme, W. Ensinger, Mixed phase anatase/rutile titanium dioxide nanotubes for enhanced photocatalytic degradation of methylene blue. Nano-Micro Lett. 3(4), 236–241 (2011). https://doi.org/10.1007/s40820-015-0080-2

25. X. Li, J. Li, J. Bai, Y. Dong, L. Li, B. Zhou, The inhibition effect of tert-butyl alcohol on the TiO2 nano assays photoelectrocatalytic degradation of different organics and its mechanism. Nano-Micro Lett. 8(3), 221–231 (2016). https://doi.org/10.1007/s40820-015-0029-5

26. Y. Hou, F. Zuo, A. Dagg, P. Feng, Visible light-driven ZnFe2O4 nanorod/graphene/Bi2V3O9 core/shell heterojunction array for efficient photoelectrochemical water splitting. Nano Lett. 12(12), 6464–6473 (2012). https://doi.org/10.1021/nl303961c

27. J. Ke, H. Zhou, J. Liu, X. Duan, H. Zhang, S. Liu, S. Wang, Crystal transformation of 2D tungstic acid H2WO4 to WO3 for enhanced photocatalytic water oxidation. J. Colloid Interface Sci. 514, 576–583 (2018). https://doi.org/10.1016/j.jcis.2017.12.066

28. Y. Hou, F. Zuo, A.P. Dagg, J. Liu, P. Feng, Branched WO3 nanosheet array with layered C6H6 heterojunctions and CoOx nanoparticles as a flexible photoanode for efficient photoelectrochemical water oxidation. Adv. Mater. 26(29), 5043–5049 (2014). https://doi.org/10.1002/adma.201401032

29. S. Luo, J. Ke, M. Yuan, Q. Zhang, P. Xie, L. Deng, S. Wang, CuxS2 quantum dots embedded in Bi2WO6 nanoflowers for enhanced visible light photocatalytic removal of contaminants. Appl. Catal. B: Environ. 221, 215–222 (2018). https://doi.org/10.1016/j.apcatb.2017.09.028

30. S.G. Kumar, K.S.R.K. Rao, Zinc oxide based photocatalysistailing surface-bulk structure and related interfacial charge carrier dynamics for better environmental applications. RSC Adv. 5(5), 3306–3351 (2015). https://doi.org/10.1039/c4ra13299h

31. M. Ke, J. Liu, H. Sun, H. Zhang, X. Duan et al., Facile assembly of Bi2O3/Bi2S3/MoS2 n-p heterojunction with layered n-Bi2O3 and p-MoS2 for enhanced photocatalytic water oxidation and pollutant degradation. Appl. Catal. B: Environ. 200, 47–55 (2016). https://doi.org/10.1016/j.apcatb.2016.06.071

32. J. Liu, Y. Li, J. Ke, S. Wang, L. Wang, H. Xiao, Black NiO-TiO2 nanorods for solar photocatalysis: recognition of electronic structure and reaction mechanism. Appl. Catal. B: Environ. 224, 705–714 (2018). https://doi.org/10.1016/j.apcatb.2017.11.028

33. S.G. Kumar, L.G. Devi, Review on modified TiO2 photocatalysis under UV/visible light: selected results and related mechanisms on interfacial charge carrier transfer dynamics. J. Phys. Chem. A 115(46), 13211–13241 (2011). https://doi.org/10.1021/jp204364a

34. M. Ni, M.K.H. Leung, D.Y.C. Leung, K. Sumathy, A review and recent developments in photocatalytic water-splitting using TiO2 for hydrogen production. Renew. Sustain. Energ. Rev. 11(3), 401–425 (2007). https://doi.org/10.1016/j.rser.2005.01.009

35. J. Ke, X. Li, Q. Zhao, B. Liu, S. Liu, S. Wang, Upconversion carbon quantum dots as visible light responsive component for efficient enhancement of photocatalytic performance. J. Colloid Interface Sci. 496, 425–433 (2017). https://doi.org/10.1016/j.jcis.2017.01.121

36. A. Fujishima, X. Zhang, D. Tryk, Heterogeneous photocatalysis: from water photolysis to applications in environmental cleanup.
39. X. Zou, Y. Dong, S. Li, J. Ke, Y. Cui, Facile anion exchange to construct uniform AgX (X = Cl, Br, I) Ag2CrO4 NR hybrids for efficient visible light driven photocatalytic activity. Sol. Energy 169, 392–400 (2018). https://doi.org/10.1016/j.solener.2018.05.017

40. M.R. Hoffmann, S.T. Martin, W.Y. Choi, D.W. Bahnemann, Environmental applications of semiconductor photocatalysis. Chem. Rev. 95(28), 69–96 (1995). https://doi.org/10.1021/cr00033a004

41. D. Chen, X.G. Zhang, A.F. Lee, Synthetic strategies to nanostructured photocatalysts for CO2 reduction to solar fuels and chemicals. J. Mater. Chem. A 3(28), 14487–14516 (2015). https://doi.org/10.1039/C5ta01592h

42. H.F. Cheng, K. Fujiy, Y. Kuwahara, K. Morii, H. Yamashita, Harnessing single-active plasmonic nanostructures for enhanced photocatalysis under visible light. J. Mater. Chem. A 3(10), 5244–5258 (2015). https://doi.org/10.1039/c4ta06484d

43. K. Wenderich, G. Mul, Methods, mechanism, and applications of photodeposition in photocatalysis: a review. Chem. Rev. 116(23), 14587–14619 (2016). https://doi.org/10.1021/acs.chemrev.6b00327

44. T. Hisatomi, J. Kubota, K. Domen, Recent advances in semiconductors for photocatalytic and photoelectrochemical water splitting. Chem. Soc. Rev. 43(22), 7520–7535 (2014). https://doi.org/10.1039/c3cs60378d

45. G. Zhang, G. Liu, L. Wang, J.T.S. Irvine, Inorganic perovskite photocatalysts for solar energy utilization. Chem. Soc. Rev. 45(21), 5951–5984 (2016). https://doi.org/10.1039/c5cs00769k

46. D.M. Fabian, S. Hu, N. Singh, F.A. Houle, T. Hisatomi, K. Domen, F.E. Osterloh, S. Ardo, Particle suspension reactors and materials for solar-driven water splitting. Energy Environ. Sci. 8(10), 2825–2850 (2015). https://doi.org/10.1039/c5ee01434d

47. T. Takata, K. Domen, Development of non-oxide semiconductors as light harvesting materials in photocatalytic and photoelectrochemical water splitting. Dalton Trans. 46(32), 10529–10544 (2017). https://doi.org/10.1039/c7dt00867h

48. P. Mal, G. Bera, P. Ramabhu, G.R. Turpu, B. Chakraborty et al., Electronic, magnetic and spectroscopic properties of doped Mn1-xSrxMoO4 (A = Co, Cu, Ni and Fe) mullite-ferroic: an experimental and DFT study. J. Phys. Condens. Matter 29(7), 075901 (2017). https://doi.org/10.1088/1361-648X/aae6e4

49. S.M.M. Zawawi, R. Yahya, Z. Hassan, E.H.N.M. Ekramul Islam, scheelite-type MWO4 ceramics with scheelite structure. Mater. Res. Bull. 56, 71–79 (2014). https://doi.org/10.1016/j.materresbull.2014.04.064

50. Y.G. Su, G.S. Li, Y.F. Xue, L.P. Li, Tunable physical properties of BaWO4 nanoparticles for photocatalytic removal of Rhodamine B present in water sample. J. Nanostruct. Chem. 5(1), 45–54 (2014). https://doi.org/10.1007/s40097-014-0133-y

51. M.C. Oliveira, L. Gracia, I.C. Nogueira, M.F.D. Caro-Gurgel, J.M.R. Mercury, E. Longo, J. Andrade, Synthesis and morphological transformation of BaWO4 crystals: experimental and theoretical insights. Ceram. Int. 42(9), 10913–10921 (2016). https://doi.org/10.1016/j.ceramint.2016.03.225

52. C. Yu, F. Cao, X. Li, G. Li, Y. Xie, J.C. Yu, Q. Shu, Q. Fan, J. Chen, Hydrothermal synthesis and characterization of novel PbWO4 microspheres with hierarchical nanostructures and enhanced photocatalytic performance in dye degradation. Chem. Eng. J. 219, 86–95 (2013). https://doi.org/10.1016/j.cej.2012.12.064

53. D. Chen, Z. Liao, S.X. Ouyang, J.H. Ye, Simple room-temperature mineralization method to SrWO4 micro/nanostructures and their photocatalytic properties. J. Phys. Chem. C 115(32), 15778–15784 (2011). https://doi.org/10.1021/jp202406n

54. D. Ye, D.Z. Li, W.J. Zhang, M. Sun, Y. Hu, Y.F. Zhang, X.Z. Fu, A new photocatalyst CdWO4 prepared with a hydrothermal method. J. Phys. Chem. C 112(44), 17351–17356 (2008). https://doi.org/10.1021/jp0805213

55. A.M. Priya, R.K. Selvan, B. Senthilkumar, M.K. Satheeshkumar, C. Sanjeeviraj, Synthesis and characterization of CdWO4 nanocrystals. Ceram. Int. 37(7), 2485–2488 (2011). https://doi.org/10.1016/j.ceramint.2011.03.040

56. C. Zhang, H. Zhang, K. Zhang, X. Li, Q. Leng, C. Hu, Photocatalytic activity of ZnWO4: band structure, morphology and surface modification. ACS Appl. Mater. Interfaces 6(16), 14423–14432 (2014). https://doi.org/10.1021/am503696b

57. J. Guo, X. Zhou, Y. Lu, X. Zhang, S. Kuang, W. Hou, Monodisperse spindle-like FeWO4 nanoparticles: controlled hydrothermal synthesis and enhanced optical properties. J. Solid State Chem. 196, 550–556 (2012). https://doi.org/10.1016/j.jssc.2012.07.026

58. G. Zhang, R. Jia, Q. Wu, Preparation, structural and optical properties of AWO4 (A = Ca, Ba, Sr) nanofilms. Mater. Sci. Eng. B 128(1–3), 254–259 (2006). https://doi.org/10.1016/j.mseb.2005.11.040

59. R. Lacomba-Perales, J. Ruiz-Fuertes, D. Errandonea, D. Martin-García, A. Segura, Optical absorption of divalent metal tungstates: correlation between the band-gap energy and the cation ionic radius. EPL 83(3), 37002 (2008). https://doi.org/10.1209/0295-5075/83/37002

60. C. Shvavumara, R. Saraf, S. Behera, N. Dhananjaya, H. Nagabushana, Scheelite-type MWO4 (M = Ca, Sr, and Ba) nanophosphors: facile synthesis, structural characterization, photoluminescence, and photocatalytic properties. Mater. Res. Bull. 61, 422–432 (2015). https://doi.org/10.1016/j.materresbull.2014.09.096

61. S.D. Ramarao, S. Roopas Kiran, V.R.K. Murthy, Structural, lattice vibrational, optical and microwave dielectric studies on Ca1-xSr2MoO6 ceramics with scheelite structure. Mater. Res. Bull. 56, 71–79 (2014). https://doi.org/10.1016/j.materresbull.2014.04.064

62. S.M. Ghoreishi, Facile synthesis and characterization of CaWO4 nanoparticles using a new Schiff base as capping agent: enhanced photocatalytic degradation of methyl orange. J. Mater. Sci. Mater. Electron. 28(19), 14833–14838 (2017). https://doi.org/10.1007/s10854-017-7354-z

63. M. Mohamed Jaffer Sadiq, A. Samson Nesaraj, Soft chemical synthesis and characterization of BaWO4 nanoparticles for photocatalytic removal of Rhodamine B present in water sample. J. Nanostruct. Chem. 5(1), 45–54 (2015). https://doi.org/10.1007/s40097-014-0133-y
81. Q. Gao, Z. Liu, FeWO$_4$ nanorods with excellent UV-Visible light photocatalysis. Prog. Nat. Sci. Mater. 27(5), 556–560 (2017). https://doi.org/10.1016/j.pnsc.2017.08.016

82. J. Di, J. Xiong, H. Li, Z. Liu, Ultrathin 2D photocatalysts: electronic-structure tailoring, hybridization, and applications. Adv. Mater. 30(1), 1704548 (2018). https://doi.org/10.1002/adma.201704548

83. T. Yan, L. Li, W. Tong, J. Zheng, Y. Wang, G. Li, CdWO$_4$ polymorphs: selective preparation, electronic structures, and photocatalytic activities. J. Solid State Chem. 184(2), 357–364 (2011). https://doi.org/10.1016/j.jssc.2010.12.013

84. L.G. Cai, F.M. Liu, D. Zhang, W.W. Zhong, Dependence of optical properties of monolayer MgWO$_4$ on the electric field of incident light. Phys. B 407(17), 3654–3659 (2012). https://doi.org/10.1016/j.physb.2012.05.044

85. S.M. Hosseinpour-Mashkani, A. Sobhani-Nasab, A simple sonochemical synthesis and characterization of CdWO$_4$ nanocrystals and its photocatalytic application. J. Mater. Sci. Mater. Electron. 27(4), 3240–3244 (2015). https://doi.org/10.1007/s10854-015-4150-5

86. Y. Wang, X. Guan, L. Li, H. Lin, X. Wang, G. Li, Solvent-driven polymorphic control of CdWO$_4$ nanocrystals for photocatalytic performances. New J. Chem. 36(9), 1852–1858 (2012). https://doi.org/10.1039/c2nj40504k

87. M. Dan, M. Cheng, H. Gao, H. Zheng, C. Feng, Synthesis and electrochemical properties of SnWO$_4$. J. Nanosci. Nanotechnol. 14(3), 2395–2399 (2014). https://doi.org/10.1166/jnn.2014.8497

88. I.S. Cho, C.H. Kwak, D.W. Kim, S.W. Lee, K.S. Hong, Photophysical, photoelectrochemical, and photocatalytic properties of novel SnWO$_4$ oxide semiconductors with narrow band gaps. J. Phys. Chem. C 113(24), 10647–10653 (2009). https://doi.org/10.1021/jp901557z

89. D. Chen, L. Gao, A. Yasumori, K. Kuroda, Y. Sugahara, Size- and shape-controlled conversion of tungstate-based inorganic-hybrid belt to WO$_3$ nanoplates with high specific surface areas. Small 4(10), 1813–1822 (2008). https://doi.org/10.1002/smll.200802020

90. L. Liang, J. Zhang, Y. Zhou, J. Xie, X. Zhang, M. Guan, B. Pan, Y. Xie, High-performance flexible electrochromic device based on facile semiconductor-to-metal transition realized by WO$_3$-bSnWO$_4$ ultrathin nanosheets. Sci. Rep. 3, 1936 (2013). https://doi.org/10.1038/srep01936

91. Z.F. Huang, J. Song, L. Pan, X. Zhang, L. Wang, J.J. Zou, Tungsten oxides for photocatalysis, electrochemistry, and phototherapy. Adv. Mater. 27(36), 5309–5327 (2015). https://doi.org/10.1002/adma.201501217

92. Y. Abraham, N.A.W. Holzwarth, R.T. Williams, Electronic structure and optical properties of CdMoO$_4$ and CdWO$_4$. Phys. Rev. B 62(3), 1733–1741 (2000). https://doi.org/10.1103/PhysRevB.62.1733

93. S. Shepard, M. Smeu, Ab initio study of structural and electronic properties of copper and nickel tungstate. Comput. Mater. Sci. 143, 301–307 (2018). https://doi.org/10.1016/j.commatsci.2017.11.021

94. A.E.B. Lima, M.J.S. Costa, R.S. Santos, N.C. Batista, L.S. Cavalcante, E. Longo, G.E. Luz, Facile preparation of CuWO$_4$ porous films and their photoelectrochemical properties. Electrochim. Acta 256, 139–145 (2017). https://doi.org/10.1016/j.electacta.2017.10.010

95. L. Wang, F. Ke, Q. Wang, J. Yan, C. Liu et al., Effect of crystallization water on the structural and electrical properties of CuWO$_4$ under high pressure. Appl. Phys. Lett. 107(20), 201603 (2015). https://doi.org/10.1063/1.4935978

96. D. Wang, P.S. Bassi, H. Qi, X. Zhao, Gurudayal, L.H. Wong, R. Xu, T. Sridharan, Z. Chen, Improved charge separation in WO$_3$/CuWO$_4$ composite photoanodes for photoelectrochemical water oxidation. Materials 9(5), 348 (2016). https://doi.org/10.3390/ma9050348
156. M. Xu, T. Ye, F. Dai, J. Yang, J. Shen et al., Rationally designed n-n heterojunction with highly efficient solar hydrogen evolution. ChemSusChem 8(7), 1218–1225 (2015). https://doi.org/10.1002/cssc.201403334

157. X. Jia, M. Tahir, L. Pan, Z.F. Huang, X. Zhang, L. Wang, J.J. Zou, Direct Z-scheme composite of CdS and oxygen-defected CdWO4: an efficient visible-light-driven photocatalyst for hydrogen evolution. Appl. Catal. B: Envir. 198, 154–161 (2016). https://doi.org/10.1016/j.apcatb.2016.05.046

158. L. Wang, W. Wang, In situ synthesis of CdS modified CdWO4 nanorods and their application in photocatalytic H2 evolution. CrystEngComm 14(9), 3315–3320 (2012). https://doi.org/10.1039/c2ce26656d

159. S. Bera, S.B. Rawal, H.J. Kim, W.I. Lee, Novel coupled structures of FeWO4/TiO2 and Fe2O3/TiO2/CdS designed for highly efficient visible-light photocatalysis. ACS Appl. Mater. Interfaces 6(12), 9654–9663 (2014). https://doi.org/10.1021/am502079x

160. A. Habibi-Yangjeh, M. Shekofteh-Gohari, Novel magnetic Fe3O4/ZnO/WO3 nanocomposites: enhanced visible-light photocatalytic performance through p-n heterojunctions. Sep. Purif. Technol. 184, 334–346 (2017). https://doi.org/10.1016/j.seppur.2017.05.007

161. M.S. Hassan, T. Amna, S.S. Al-Deyab, H.C. Kim, M.S. Khil, Monodispersed 3D MnWO4–TiO2 composite nanoflowers for environmental remediation. Curr. Appl. Phys. 15(6), 753–758 (2015). https://doi.org/10.1016/j.cap.2015.03.022

162. Y.N. Jiang, B.D. Liu, W.J. Li, R. Xie, Y. Yang, Y. Li, Q. Chen, A novel Z-scheme WO3/CdWO4 heterostructured CuO/CuWO4 nanowires and thin films with enhanced photoelectrochemical properties. Int. J. Hydrog. Energy 40(20), 6512–6520 (2015). https://doi.org/10.1016/j.ijhydene.2015.03.131

163. I. Aslam, C. Cao, M. Tanveer, M.H. Farooq, W.S. Khan, M. Tahir, F. Idrees, S. Khalid, A novel Z-scheme WO3/CdWO4 photocatalyst with enhanced visible-light photocatalytic activity for the degradation of organic pollutants. RSC Adv. 5(8), 6019–6026 (2015). https://doi.org/10.1039/c4ra15847d

164. Y. Hou, Z. Wen, S. Cui, S. Ci, S. Miao, J. Chen, An advanced nitrogen-doped graphene/cobalt-embedded porous carbon polycrystalline hydrid for efficient catalysis of oxygen reduction and water splitting. Adv. Funct. Mater. 25(6), 872–882 (2014). https://doi.org/10.1002/adfm.201403657

165. Y. Qin, M. Long, B. Tan, B. Zhou, Rhb adsorption performance of magnetic adsorbent Fe3O4/γ-Al2O3 composite and its regeneration through a Fenton-like reaction. Nano-Micro Lett. 6(2), 125–135 (2014). https://doi.org/10.1007/s40246-014-0076-4

166. P. Russo, A. Hu, G. Compagnini, Synthesis, properties and potential applications of porous graphene: a review. Nano-Micro Lett. 5(4), 260–273 (2013). https://doi.org/10.1007/bf03535777

167. A. Wang, C. Wang, L. Fu, W. Wong-Ng, Y. Lan, Recent advances of graphitic carbon nitride-based structures and applications in catalysis, sensing, imaging, and LEDs. Nano-Micro Lett. 9(4), 47 (2017). https://doi.org/10.1007/s40246-017-0148-2

168. L. Pan, T. Muhammad, M. Ma, Z.F. Huang, S. Wang, L. Wang, J.J. Zou, X. Zhang, MOF-derived C-doped ZnO prepared via a two-step calcination for efficient photocatalysis. Appl. Catal. B: Envir. 189, 181–191 (2016). https://doi.org/10.1016/j.apcatb.2016.02.066

169. J. Liu, J. Ke, D. Li, H. Sun, P. Liang et al., Oxygen vacancies in shape controlled CuO/reduced graphene oxide/Cu2O hybrid for promoted photocatalytic water oxidation and degradation of environmental pollutants. ACS Appl. Mater. Interfaces 9(13), 11678–11688 (2017). https://doi.org/10.1021/acsami.7b01605

170. A.K. Singh, K. Mathew, H.L. Zhuang, R.G. Henning, Computational screening of 2D materials for photocatalysis. J Phys. Chem. Lett. 6(6), 1087–1098 (2015). https://doi.org/10.1021/jz502646d
185. G. Zhang, Z.A. Lan, X. Wang, Surface engineering of graphitic carbon nitride polymers with cocatalysts for photocatalytic overall water splitting. Chem. Sci. 8(8), 5261–5274 (2017). https://doi.org/10.1039/c7sc01747b
186. Y. Hou, M. Qiu, T. Zhang, J. Ma, S. Liu, X. Zhuang, C. Yuan, X. Feng, Efficient electrochemical and photoelectrochemical water splitting by a 3D nanostructured carbon supported on flexible exfoliated graphene foil. Adv. Mater. 29(3), 1604480 (2017). https://doi.org/10.1002/adma.201604480
187. J. Ke, X. Duan, S. Luo, H. Zhang, H. Sun, J. Liu, M. Tade, S. Wang, UV-assisted construction of 3D hierarchical rGO/Bi2MoO9 composites for enhanced photocatalytic water oxidation. Chem. Eng. J. 313, 1447–1453 (2017). https://doi.org/10.1016/j.cej.2016.11.048
188. N. Gaillard, Y. Chang, A. DeAngelis, S. Higgins, A. Braun, A nanocomposite photoelectrode made of 2.2 eV band gap copper tungstate (CuWO4) and multi-wall carbon nanotubes for solar-assisted water splitting. Int. J. Hydrog. Energy 38(8), 3166–3176 (2013). https://doi.org/10.1016/j.ijhydene.2012.10.014
189. P. Wadhwa, S. Kumar, T.J. Dhilip Kumar, A. Shukla, R. Kumar, Effect of edge defects on band structure of zigzag graphene nanoribbons. J. Appl. Phys. 123(16), 161416 (2018). https://doi.org/10.1063/1.5011310
190. Z.B. Liu, X. Zhao, X.L. Zhang, X.Q. Yan, Y.P. Wu, Y.S. Chen, J.G. Tian, Ultrafast dynamics and nonlinear optical responses from sp²- and sp³-hybridized domains in graphene oxide. J. Phys. Chem. Lett. 2(16), 1972–1977 (2011). https://doi.org/10.1021/jz2008374
191. X.J. Bai, L. Wang, Y.F. Zhu, Visible photocatalytic activity enhancement of ZnWO4 by graphene hybridization. ACS Catal. 2(12), 2769–2778 (2012). https://doi.org/10.1021/cs3008585
192. J. Xu, M. Chen, Z. Wang, Preparation of CdWO4-deposited reduced graphene oxide and its enhanced photocatalytic properties. Dalton Trans. 43(9), 3537–3544 (2014). https://doi.org/10.1039/c3dt52120f
193. J. Hao, S. Zhang, F. Ren, Z. Wang, J. Lei, X. Wang, T. Cheng, L. Li, Synthesis of TiO2@g-C3N4 core-shell nanorod arrays with Z-scheme enhanced photocatalytic activity under visible light. J. Colloid Interface Sci. 508, 419–425 (2017). https://doi.org/10.1016/j.jcis.2017.08.065
194. Y. Hou, Z. Wen, S. Cui, X. Guo, J. Chen, Constructing 2D porous graphitic C3N4 nanosheets/nitrogen-doped graphene/layered MoS2 ternary nanojunction with enhanced photoelectrochemical activity. Adv. Mater. 25(43), 6291–6297 (2013). https://doi.org/10.1002/adma.201303116
195. Y. Liu, H. Zhang, J. Ke, J. Zhang, W. Tian et al., 0D (MoS2)/2D (g-C3N4) heterojunctions in Z-scheme for enhanced photocatalytic and electrochemical hydrogen evolution. Appl. Catal. B: Environ. 228, 64–74 (2018). https://doi.org/10.1016/j.apcatb.2018.01.067
196. L. Sun, X. Zhao, C.-J. Jia, Y. Zhou, X. Cheng, P. Li, L. Liu, W. Fan, Enhanced visible-light photocatalytic activity of g-C3N4–ZnWO4 by fabricating a heterojunction: investigation based on experimental and theoretical studies. J. Mater. Chem. A 2(22), 23428–23438 (2012). https://doi.org/10.1039/c2jm34965e
197. N. Tian, H. Huang, Y. Zhang, Mixed-calcination synthesis of CdWO4/g-C3N4 heterojunction with enhanced visible-light-driven photocatalytic activity. Appl. Surf. Sci. 358, 343–349 (2015). https://doi.org/10.1016/j.apsusc.2015.07.154
198. Z.F. Huang, J. Song, X. Wang, L. Pan, K. Li, X. Zhang, L. Wang, J.J. Zou, Switching charge transfer of C3N4/W18O49 from type-II to Z-scheme by interfacial band bending for highly efficient photocatalytic hydrogen evolution. Nano Energy 40, 308–316 (2017). https://doi.org/10.1016/j.nanoen.2017.08.032
199. L. Pan, J. Zhang, X. Jia, Y.H. Ma, X. Zhang, L. Wang, J.J. Zou, Highly efficient Z-scheme WO3–x quantum dots/TiO2 for photocatalytic hydrogen generation. Chin. J. Catal. 38(2), 253–259 (2017). https://doi.org/10.1016/j.chinjcat.2016.07.026
200. B. Zhu, P. Xia, Y. Li, W. Ho, J. Yu, Fabrication and photocatalytic activity enhanced mechanism of direct Z-scheme g-C3N4/Ag2WO4 photocatalyst. Appl. Surf. Sci. 391, 175–183 (2017). https://doi.org/10.1016/j.apsusc.2016.07.104