LHC signals of triplet scalars as dark matter portal: cut-based approach and improvement with gradient boosting and neural networks

Atri Dey

15th December, 2020

Based on - JHEP 06 (2020) 126
With J. Lahiri, B. Mukhopadhyaya
Harish-Chandra Research Institute, Allahabad
Table of Contents

1 Motivation
2 Overview of the Model
3 Constraints on relevant parameters of \(\mathcal{L}_{\text{TYPE-II SEESAW}} + \mathcal{L}_{DM} \)
4 Parameter spaces
5 Signals and benchmarks selection
6 Collider Analysis
 - Cut based Analysis
 - Multivariate analysis and Neural Network techniques
7 Conclusion
Motivation

• Consider some unknown particles constitute the dark matter (DM) content of our universe.
• How do they interact with the known particles in the SM?
• Is there any terrestrial signature of such interactions?
• The recently discovered 125-GeV scalar can be a portal to the dark sector.
• Problem: current XENON1T experiment data, strongly disfavor that possibility unless the Higgs-DM coupling is extremely small (≤10^{-3} for an SU(2) singlet scalar DM) which is incompatible with relic density bounds.
• Solutions: less constrained in an extended electroweak symmetry breaking (EWSB) sector.
Motivation

- Consider some unknown particles constitute the dark matter (DM) content of our universe.
Motivation

• Consider some unknown particles constitute the dark matter (DM) content of our universe.
 • how do they interact with the the known particles in the SM?
Motivation

- Consider some unknown particles constitute the dark matter (DM) content of our universe.
 - how do they interact with the the known particles in the SM?
 - Is there be any terrestrial signatures of such interactions?
Motivation

- Consider some unknown particles constitute the dark matter (DM) content of our universe.
 - how do they interact with the the known particles in the SM?
 - Is there be any terrestrial signatures of such interactions?
- The recently discovered 125-GeV scalar can be a portal to the dark sector.
Motivation

- Consider some unknown particles constitute the dark matter (DM) content of our universe.
 - how do they interact with the the known particles in the SM?
 - Is there be any terrestrial signatures of such interactions?
- The recently discovered 125-GeV scalar can be a portal to the dark sector.
- **Problem:** current XENON1T experiment data, strongly disfavour that possibility unless the Higgs-DM coupling is extremely small ($\leq 10^{-3}$ for an SU(2) singlet scalar DM) which is incompatible with relic density bounds.
Motivation

- Consider some unknown particles constitute the dark matter (DM) content of our universe.
 - how do they interact with the known particles in the SM?
 - Is there be any terrestrial signatures of such interactions?
- The recently discovered 125-GeV scalar can be a portal to the dark sector.

 problem: current XENON1T experiment data, strongly disfavour that possibility unless the Higgs-DM coupling is extremely small ($\leq 10^{-3}$ for an SU(2) singlet scalar DM) which is incompatible with relic density bounds.

- **solutions:** less constrained in an extended electroweak symmetry breaking (EWSB) sector.
Overview of the Model

• We consider an extension of a Type-II Seesaw scenario containing a $Y=2$ scalar triplet Δ along with a singlet scalar dark matter candidate χ.

• χ interacts with Δ and the SM-like higgs doublet Φ via terms in the scalar potential,

$$V(\Phi, \Delta, \chi) = a(\Phi^\dagger \Phi) + b^2 \text{Tr}(\Delta^\dagger \Delta) + \frac{1}{2}(M_\chi^2 + (\lambda_D v_D^2 + 2 \lambda_T \omega^2))\chi^2 + c(\Phi^\dagger \Phi)^2 + d^4 \text{Tr}(\Delta^\dagger \Delta) + e^{-h^2 \Phi^\dagger \Phi \text{Tr}(\Delta^\dagger \Delta)} + f^4 \text{Tr}(\Delta^\dagger \Delta^\dagger) \text{Tr}(\Delta \Delta) + \text{h} \Phi^\dagger \Delta^\dagger \Delta \Phi + (t \Phi^\dagger \Delta \tilde{\Phi} + \text{h.c.}) - \lambda_S \chi^4 - \lambda_D \chi^2 \Phi^\dagger \Phi - \lambda_T \chi^2 \text{Tr}(\Delta^\dagger \Delta).$$

(1)
Overview of the Model

- We consider an extension of a Type-II Seesaw scenario containing a $Y = 2$ scalar triplet Δ along with a singlet scalar dark matter candidate χ.

\begin{equation}
V(\Phi, \Delta, \chi) = a(\Phi^\dagger \Phi) + b \text{Tr}(\Delta^\dagger \Delta) + \frac{1}{2}(M_\chi^2 + (\lambda_D v_D^2 + 2 \lambda_T \omega_2^2)) \chi^2 + c(\Phi^\dagger \Phi)^2 + d \text{Tr}(\Delta^\dagger \Delta)^2 + e^{-h_2 \Phi^\dagger \Phi \text{Tr}(\Delta^\dagger \Delta)} + f \text{Tr}(\Delta^\dagger \Delta)^2 \text{Tr}(\Delta \Delta^\dagger) + h \Phi^\dagger \Delta^\dagger \Delta \Phi + (t \Phi^\dagger \Delta \tilde{\Phi} + \text{h.c.}) - \lambda_S \chi^4 - \lambda_D \Phi^\dagger \Phi - \lambda_T \chi^2 \text{Tr}(\Delta^\dagger \Delta).
\end{equation}
Overview of the Model

- We consider an extension of a Type-II Seesaw scenario containing a $Y = 2$ scalar triplet Δ along with a singlet scalar dark matter candidate χ.
- χ interacts with Δ and the SM-like higgs doublet Φ via terms in the scalar potential,

$$
\mathcal{V}(\Phi, \Delta, \chi) = a(\Phi^\dagger \Phi) + \frac{b}{2} Tr(\Delta^\dagger \Delta) + \frac{1}{2}(M_\chi^2 + (\lambda_D v_D^2 + 2\lambda_T \phi^2))\chi^2 \\
+ c(\Phi^\dagger \Phi)^2 + \frac{d}{4} \left(Tr(\Delta^\dagger \Delta) \right)^2 + \frac{e-h}{2} \Phi^\dagger \Phi Tr(\Delta^\dagger \Delta) \\
+ \frac{f}{4} Tr(\Delta^\dagger \Delta^\dagger) Tr(\Delta \Delta) + h\Phi^\dagger \Delta^\dagger \Delta \Phi + (t\Phi^\dagger \Delta \tilde{\Phi} + h.c) \\
- \lambda_S \chi^4 - \lambda_D \chi^2 \Phi^\dagger \Phi - \lambda_T \chi^2 Tr(\Delta^\dagger \Delta). \quad (1)
$$
• This scalar sector is expressed in terms of additional scalar triplet Δ with usual scalar doublet Φ and an $SU(2)_L \times U(1)_Y$ scalar singlet field χ.
This scalar sector is expressed in terms of additional scalar triplet Δ with usual scalar doublet Φ and an $SU(2)_L \times U(1)_Y$ scalar singlet field χ.

$$\Phi = \begin{pmatrix} \phi^+ \\ \frac{v_D + \phi_r + i\phi_i}{\sqrt{2}} \end{pmatrix} \quad \text{and} \quad \Delta = \begin{pmatrix} \delta^+ \\ \omega + \delta + i\eta \\ \sqrt{2}\delta^{++} \\ -\delta^+ \end{pmatrix} \quad (2)$$

with $v = \sqrt{v_D^2 + 2\omega^2}$.
• This scalar sector is expressed in terms of additional scalar triplet Δ with usual scalar doublet Φ and an $SU(2)_L \times U(1)_Y$ scalar singlet field χ.

\[
\Phi = \left(\begin{array}{c} \phi^+ \\ v_D + \phi_r + i\phi_i \\
\sqrt{2} \end{array} \right) \quad \text{and} \quad \Delta = \left(\begin{array}{cc} \delta^+ & \sqrt{2}\delta^{++} \\
\omega + \delta + i\eta & -\delta^+ \end{array} \right). \tag{2}
\]

with $v = \sqrt{v_D^2 + 2\omega^2}$.

• In mass basis one is left with a doubly charge scalar $H^{\pm\pm} \equiv \delta^{\pm\pm}$, a singly-charged scalar H^\pm and two neutral scalars h and H, along with a neutral pseudoscalar A.
• This scalar sector is expressed in terms of additional scalar triplet Δ with usual scalar doublet Φ and an $SU(2)_L \times U(1)_Y$ scalar singlet field χ.

$$\Phi = \begin{pmatrix} \phi^+ \\ \frac{v_D + \phi_r + i \phi_i}{\sqrt{2}} \end{pmatrix}$$

and

$$\Delta = \begin{pmatrix} \delta^+ \\ \omega + \delta + i \eta \\ -\delta^+ \end{pmatrix}.$$ \hspace{1cm} (2)

with $v = \sqrt{v_D^2 + 2\omega^2}$.

• In mass basis one is left with a doubly charge scalar $H^\pm \mp \equiv \delta^\pm \mp$, a singly-charged scalar H^\pm and two neutral scalars h and H, along with a neutral pseudoscalar A.

• The diagonalization process also yields three mixing angles, α, β and β'.
• This scalar sector is expressed in terms of additional scalar triplet Δ with usual scalar doublet Φ and an $SU(2)_L \times U(1)_Y$ scalar singlet field χ.

\[
\Phi = \left(\begin{array}{c} \phi^+ \\
\frac{v_D + \phi_r + i\phi_i}{\sqrt{2}} \\
\end{array} \right) \quad \text{and} \quad \Delta = \left(\begin{array}{cc} \delta^+ & \sqrt{2}\delta^{++} \\
\omega + \delta + i\eta & -\delta^+ \\
\end{array} \right). \tag{2}
\]

with $v = \sqrt{v_D^2 + 2\omega^2}$.

• In mass basis one is left with a doubly charge scalar $H^{\pm\pm} \equiv \delta^{\pm\pm}$, a singly-charged scalar H^{\pm} and two neutral scalars h and H, along with a neutral pseudoscalar A.

• The diagonalization process also yields three mixing angles, α, β and β'.

• χ does not have any VEV. An additional Z_2 symmetry prevents χ from mixing with Φ and Δ and only the CP-even scalars can act as portal for dark matter where CP is conserved.
\[\mathcal{L}_{gauge} = (D_\mu \Phi)^\dagger(D^\mu \Phi) + \frac{1}{2} Tr((D_\mu \Delta)^\dagger(D^\mu \Delta)) \]

(3)

The gauge interactions will turn out be useful to utilize the Drell-Yan production of triplet dominated states, driven by gauge couplings, where \(\lambda_D \ll \lambda_T \).

\[L_{Yukawa} = L_{SM,Y} + \sqrt{2} f_{ab} L_a T C_i \sigma^2 \Delta L_b + h.c. \]

(4)

The neutrino masses are mostly dependent on the triplet VEV \(\omega \) and can be expressed as

\[M_\nu = 2 f_\omega \]

(5)

One can get the masses of the neutrinos after the diagonalization of \(M_\nu \) with the help of the PMNS matrix.
\[\mathcal{L}_{gauge} = (D_\mu \Phi)\dagger (D^\mu \Phi) + \frac{1}{2} Tr((D_\mu \Delta)\dagger (D^\mu \Delta)) \]

The gauge interactions will turn out be useful to utilize the Drell-Yan production of triplet dominated states, driven by gauge couplings, where \(\lambda_D \ll \lambda_T \).

- In the Yukawa sector, the triplet have potential to induce Majorana neutrino masses via interactions with the left-handed lepton doublet \(L \equiv (\nu, l)^T \).

\[\mathcal{L}_Y = \mathcal{L}^{SM}_Y + \sqrt{2} f_{ab} L_a^T C i \sigma^2 \Delta L_b + h.c. \]
\[\mathcal{L}_{\text{gauge}} = (D_\mu \Phi)^\dagger (D^\mu \Phi) + \frac{1}{2} \text{Tr}((D_\mu \Delta)^\dagger (D^\mu \Delta)) \] (3)

The gauge interactions will turn out be useful to utilize the Drell-Yan production of triplet dominated states, driven by gauge couplings, where \(\lambda_D \ll \lambda_T \).

- In the Yukawa sector, the triplet have potential to induce Majorana neutrino masses via interactions with the left-handed lepton doublet \(L \equiv (\nu, l)^T \).

\[\mathcal{L}_Y = \mathcal{L}^{SM}_Y + \sqrt{2} f_{ab} L_a^T C i \sigma^2 \Delta L_b + h.c. \] (4)

- The neutrino masses are mostly dependent on the triplet VEV \(\omega \) and can be expressed as

\[M_\nu = 2f \omega \] (5)
The gauge interactions will turn out to be useful to utilize the Drell-Yan production of triplet-dominated states, driven by gauge couplings, where \(\lambda_D \ll \lambda_T \).

- In the Yukawa sector, the triplet have potential to induce Majorana neutrino masses via interactions with the left-handed lepton doublet \(L \equiv (\nu, l)^T \).

\[
\mathcal{L}_Y = \mathcal{L}_Y^{SM} + \sqrt{2}f_{ab}L_a^TCi\sigma^2\Delta L_b + h.c.
\]

(4)

- The neutrino masses are mostly dependent on the triplet VEV \(\omega \) and can be expressed as

\[
M_{\nu} = 2f\omega
\]

(5)

- One can get the masses of the neutrinos after the diagonalization of \(M_{\nu} \) with the help of the PMNS matrix.
Constraints on relevant parameters of $\mathcal{L}_{\text{Type-II Seesaw}} + \mathcal{L}_\text{DM}$

- Vacuum stability: all quartic terms in scalar potential must be such that the scalar potential remains bounded from below in any direction implies.

 $$4c \geq 0, \quad d_4 - f \geq 0, \quad e - h \geq \sqrt{4c(d_4 - 2f)} \geq 0, \quad e - 3h \geq \sqrt{4c(d_4 - 2f)} \geq 0 \quad \text{and} \quad 2f \geq \sqrt{4c + |2h|\sqrt{4c(d_4 - 2f)}} \geq 0.$$

- For perturbativity at the electroweak scale,

 $$|C_{ij}| < 4\pi.$$

- Tree-level unitarity in the scattering of Higgs bosons and the longitudinal components of the EW gauge bosons demands that the eigenvalues of the scattering matrices have to be less than 8π.

Atri Dey
LHC signals of triplet scalars as dark matter portal: cut-based approach and improvement with gradient boosting and neural networks
15th December, 2020
7 / 29
Constraints on relevant parameters of $\mathcal{L}_{\text{Type-II Seesaw}} + \mathcal{L}_{\text{DM}}$

- **Vacuum stability**: all quartic terms in scalar potential must be such that the scalar potential remains bounded from below in any direction of the field space implies.

$$4c \geq 0, \quad \frac{d}{4} - f \geq 0, \quad \frac{e - h}{2} + \sqrt{4c\left(\frac{d}{4} - 2f\right)} \geq 0,$$

$$\frac{e - 3h}{2} + \sqrt{4c\left(\frac{d}{4} - 2f\right)} \geq 0 \text{ and } 2f\sqrt{4c} + |2h|\sqrt{\left(\frac{d}{4} - 2f\right)} \geq 0.$$
Constraints on relevant parameters of $\mathcal{L}_{\text{Type-II Seesaw}} + \mathcal{L}_{\text{DM}}$

- **Vacuum stability:** all quartic terms in scalar potential must be such that the scalar potential remains bounded from below in any direction of the field space implies.

 \[4c \geq 0, \quad \frac{d}{4} - f \geq 0, \quad \frac{e - h}{2} + \sqrt{4c\left(\frac{d}{4} - 2f\right)} \geq 0, \]

 \[\frac{e - 3h}{2} + \sqrt{4c\left(\frac{d}{4} - 2f\right)} \geq 0 \text{ and } 2f\sqrt{4c} + |2h|\sqrt{\left(\frac{d}{4} - 2f\right)} \geq 0.\]

- For perturbativity at the electroweak scale,

 \[|C_{H_i H_j H_k H_l}| < 4\pi \quad (6)\]
Constraints on relevant parameters of $\mathcal{L}_{\text{Type-II Seesaw}} + \mathcal{L}_{DM}$

- **Vacuum stability:** all quartic terms in scalar potential must be such that the scalar potential remains bounded from below in any direction of the field space implies.

\[
4c \geq 0, \quad \frac{d}{4} - f \geq 0, \quad \frac{e-h}{2} + \sqrt{4c\left(\frac{d}{4} - 2f\right)} \geq 0,
\]

\[
\frac{e-3h}{2} + \sqrt{4c\left(\frac{d}{4} - 2f\right)} \geq 0 \quad \text{and} \quad 2f\sqrt{4c} + |2h|\sqrt{\left(\frac{d}{4} - 2f\right)} \geq 0.
\]

- For perturbativity at the electroweak scale,

\[
|C_{H_iH_jH_kH_l}| < 4\pi \tag{6}
\]

- Tree-level unitarity in the scattering of Higgs bosons and the longitudinal components of the EW gauge bosons demands that the eigenvalues of the scattering matrices have to be less than 8π.
• **phenomenological constraints:**

the ρ parameter, defined as $\rho \equiv m_W^2/(m_Z^2 \cos^2 \theta_W) \equiv 1 - \frac{2\omega^2}{v_D^2 + 4v_T^2}$,
puts an upper bound on ω, namely, $\omega \leq 4.8$ GeV at 95% CL.
• **phenomenological constraints:**
 the ρ parameter, defined as $\rho \equiv m^2_W/(m_Z^2 \cos^2 \theta_W) \equiv 1 - \frac{2\omega^2}{v_D^2 + 4v_T^2}$, puts an upper bound on ω, namely, $\omega \leq 4.8 \text{ GeV}$ at 95% CL.

• Constraints from oblique parameters S and T provide limits on the mass splitting between the triplet-dominated scalar mass eigenstates, which has been obeyed in the regions of parameter space used by us for the demonstration of our numerical results at 95% CL.
• **phenomenological constraints:**
the ρ parameter, defined as $\rho \equiv m_W^2/(m_Z^2 \cos^2 \theta_W) \equiv 1 - \frac{2\omega^2}{v_D^2 + 4v_T^2}$, puts an upper bound on ω, namely, $\omega \leq 4.8$ GeV at 95% CL.

• Constraints from oblique parameters S and T provide limits on the mass splitting between the triplet-dominated scalar mass eigenstates, which has been obeyed in the regions of parameter space used by us for the demonstration of our numerical results at 95% CL.

• **The experimental bound** on $m_{H^{\pm\pm}}^2$ can be easily determined from 95% CL of $\sigma(pp \to H^{++}H^{--}) \times Br(H^{\pm\pm} \to \ell^\pm \ell^\pm)$, in cases where the same-sign dilepton decay is the dominant channel for the doubly charged scalar.
• **phenomenological constraints:**
 the ρ parameter, defined as $\rho \equiv \frac{m_W^2}{m_Z^2 \cos^2 \theta_W} \equiv 1 - \frac{2\omega^2}{v_D^2 + 4v_T^2}$, puts an upper bound on ω, namely, $\omega \leq 4.8$ GeV at 95% CL.

• Constraints from oblique parameters S and T provide limits on the mass splitting between the triplet-dominated scalar mass eigenstates, which has been obeyed in the regions of parameter space used by us for the demonstration of our numerical results at 95% CL.

• **The experimental bound** on $m_{H^{\pm\pm}}^2$ can be easily determined from 95% CL of $\sigma(pp \rightarrow H^{++}H^{--}) \times Br(H^{\pm\pm} \rightarrow \ell^\pm \ell^\pm)$, in cases where the same-sign dilepton decay is the dominant channel for the doubly charged scalar.

• **Constrain from LHC:** Invisible branching ratio of the already observed scalar is not more than 19%.
• **Constrain from DM searches:**
 For χ to be considered as a thermal dark matter candidate,
• **Constrain from DM searches:**
 For χ to be considered as a thermal dark matter candidate,
 • The thermal relic density of χ should not exceed the latest Planck data at the 2σ level.
• **Constrain from DM searches:**
 For χ to be considered as a thermal dark matter candidate,
 • The thermal relic density of χ should not exceed the latest Planck data at the 2σ level.
 • The χ-nucleon cross section should be below the current upper bound from XENON1T.
Parameter spaces

- We perform a scan of the parameter space

\[m_\chi \in [60, 500] \text{ GeV}, \quad m_{H^\pm} \in [100, 1000] \text{ GeV}, \quad m_{H^{\pm\pm}} \in [100, 1000] \text{ GeV}, \]
\[|v_T| \equiv \omega \in [10^{-6}, 4.8] \text{ GeV}, \quad |\sin \alpha| \in [0.999, 1], \]
\[\lambda_D \in [-12, 12], \quad \lambda_T \in [-12, 12] \]
Parameter spaces

- We perform a scan of the parameter space
 \[m_\chi \in [60, 500] \text{GeV}, \quad m_{H^\pm} \in [100, 1000] \text{GeV}, \quad m_{H^{\pm\pm}} \in [100, 1000] \text{GeV}, \]
 \[|v_T| \equiv \omega \in [10^{-6}, 4.8] \text{GeV}, \quad |\sin \alpha| \in [0.999, 1], \]
 \[\lambda_D \in [-12, 12], \quad \lambda_T \in [-12, 12] \]
- Perturbativity conditions for parameter \(d \) and \(f \) are quite sensitive to the mass eigenvalues of the triplet-dominated states, including their splitting which prefer benchmarks are tilted towards regions corresponding to

\[
m_A \approx \sqrt{\left(\frac{2m_{H^\pm}^2}{v_D^2 + 2\omega^2} - \frac{m_{H^{\pm\pm}}^2}{v_D^2} \right) (v_D^2 + 4\omega^2)} \quad (7)
\]

with \(m_H \approx m_A \) and \(\Delta m = m_{H^\pm} - m_{H^{\pm\pm}} \).
• the allowed region in the $m_{\chi} - \sigma(\chi - N)$ space obtained from the current XENON1T data as well as relic density bound,
• the allowed region in the $m_\chi - \sigma(\chi-N)$ space obtained from the current XENON1T data as well as relic density bound,

![Graph showing allowed region in $m_\chi - \sigma(\chi-N)$ space](image)

• We use the global fit of neutrino data performed by the NuFITGroup where all neutrino masses are nearly degenerate with the lightest neutrino mass $m_1 \approx 0.1$ eV.
Signals and benchmarks selection

- Having identified the parameter space we proceed to look for experimental probes for the scenario where H can serves as DM portal.

 - For same-sign dilepton final state, we consider DY production of $H^{\pm\pm}H^{\mp}$, followed by the H^{\pm} decaying into HW^{\pm} channel where H can decay invisibly. The $H^{\pm\pm}$ can decay into a same-sign dilepton pair ($\ell^+\ell^+$).

 - To avoid the important decay mode $H^{\pm\pm} \rightarrow H^{\pm}W^{\pm}$, we restrict $|\Delta m| = |m_{H^{\pm}} - m_{H^{\pm\pm}}|$ is within 80 GeV.

 - When the mass gap between H^{\pm} and H exceeds m_W, H^{\pm} goes to HW^{\pm} with 50% branching as long as ω is very small.
Signals and benchmarks selection

- Having identified the parameter space we proceed to look for experimental probes for the scenario where H can serves as DM portal.

- For **same-sign dilepton final state**, We consider DY production of $H^{\pm\pm} H^\mp$, followed by the H^\pm decaying into HW^\pm channel where H can decay invisibly. The $H^{\pm\pm}$ can decay into a same-sign dilepton pair($\ell^\pm \ell^\pm$).
Signals and benchmarks selection

- Having identified the parameter space we proceed to look for experimental probes for the scenario where H can serve as DM portal.

- For **same-sign dilepton final state**, we consider DY production of $H^\pm H^\mp$, followed by the H^\pm decaying into HW^\pm channel where H can decay invisibly. The $H^\pm\mp$ can decay into a same-sign dilepton pair($\ell^\pm\ell^\pm$).

- To avoid the important decay mode $H^\pm\mp \rightarrow H^\pm W^\pm$, we restrict $|\Delta m| \equiv |m_{H^\pm} - m_{H^\pm\mp}|$ is within 80 GeV.
Signals and benchmarks selection

• Having identified the parameter space we proceed to look for experimental probes for the scenario where H can serves as DM portal.

• For **same-sign dilepton final state**, We consider DY production of $H^{\pm\pm}H^\mp$, followed by the H^\pm decaying into HW^\pm channel where H can decay invisibly. The $H^{\pm\pm}$ can decay into a same-sign dilepton pair($\ell^\pm\ell^\pm$).

• To avoid the important decay mode $H^{\pm\pm} \rightarrow H^\pm W^\pm$, we restrict $|\Delta m| \equiv |m_{H^\pm} - m_{H^{\pm\pm}}|$ is within 80 GeV.

• When the mass gap between H^\pm and H exceeds m_W, H^\pm goes to HW^\pm with 50% branching as long as ω is very small.
• Distribution of $H^{±±}$ and H decay branchings.

![Graph showing distribution of decay branchings](image_url)

- Some intermediate $\omega \in [10^{-5}, 10^{-4}]$ will help to get moderately good branchings in both these channels at the same time.
• The lower limit on $m_{H^{\pm\pm}}$, from searches in the $\ell^\pm \ell^\pm$ final state depend on the $\text{Br}(H^{\pm\pm} \rightarrow \ell^\pm \ell^\pm)$ as,

![Graph showing the relationship between $m_{H^{++}}$ in GeV and $\text{Br}(H^{++} \rightarrow l^+ l^+)$]
• The lower limit on $m_{H^{\pm\pm}}$, from searches in the $\ell^\pm \ell^\pm$ final state depend on the $\text{Br}(H^{\pm\pm} \rightarrow \ell^\pm \ell^\pm)$ as,

\begin{figure}
\centering
\includegraphics[width=\textwidth]{chart.png}
\end{figure}

• The lower limit on $m_{H^{\pm\pm}}$ ranges from $m_{H^{\pm\pm}} > 550$ GeV for $\text{Br}(H^{\pm\pm} \rightarrow \ell^\pm \ell^\pm) \simeq 17\%$ to $m_{H^{\pm\pm}} > 770$ GeV for $\text{Br}(H^{\pm\pm} \rightarrow \ell^\pm \ell^\pm) \simeq 100\%$.

• H can go to a pair of neutrinos or antineutrinos when the lepton flavor violating yukawa coupling is large enough which will also contribute to invisible decay H.

Parameter	BP 1	BP 2	BP 3
m_H in GeV	423.1	615.1	615.1
m_A in GeV	423.1	615.1	615.1
m_{H^\pm} in GeV	509.3	697.0	697.0
$m_{H^{\pm\pm}}$ in GeV	582.8	770.0	770.0
m_χ in GeV	59.3	56.4	56.4
λ_S	0.49	0.0297	0.0297
λ_D	0.00069	0.002125	0.002125
λ_T	11.258	10.51	10.51
ω in GeV	1.348×10^{-4}	4.074×10^{-5}	7.274×10^{-5}
$\sigma(pp \rightarrow H^{\pm\pm} H^\mp)$ in fb	1.19	0.43	0.43
$Br(H \rightarrow invisible)$	0.92	0.935	0.79
$Br(H^{\pm\pm} \rightarrow \ell^\pm \ell^\mp)$	0.228	0.95	0.65
Br_{total}	0.1049	0.44365	0.25675
Cut based Analysis

Signal: A pair of same-sign leptons (e/µ) + 2 jets + \(\slash\!\! E_T \).

Backgrounds:
1. \(t\bar{t} \) semileptonic decay which leads to non-prompt leptons in the final state.
2. \(W + \) jets which contributes by producing non-prompt leptons.
3. \(t\bar{t}W^{\pm} \) with semileptonic decay of \(t\bar{t} \).
4. \(W^{\pm}Z \) with leptonic decay of \(W^{\pm} \) and \(Z \).
5. Charge misidentification of leptons.
Cut based Analysis

- **Signal**: A pair of same-sign leptons (e/μ) + 2 jets + E_T.
Cut based Analysis

- **Signal:** A pair of same-sign leptons \((e/\mu)\) + 2 jets + \(E_T\).
- **Backgrounds:** 1) \(t\bar{t}\) semileptonic decay which leads to non-prompt leptons in the final state.
 2) \(W\) + jets which contributes by producing non-prompt leptons.
 3) \(t\bar{t}W^\pm\) with semileptonic decay of \(t\bar{t}\).
 4) \(W^\pm Z\) with leptonic decay of \(W^\pm\) and \(Z\).
 5) Charge misidentification of leptons.
Figure: Distribution of some observable signal and background processes.
Figure: Distribution of cluster transverse mass(left) and transverse mass(right) for the three signal BPs and backgrounds.

with,

$$M_{\text{cluster}} = \sqrt{m^2_{2j} + \left(\sum \vec{p}_T^j \right)^2} + \sqrt{m^2_{\ell\ell} + \left(\sum \vec{p}_T^\ell \right)^2} + E_T$$ \hspace{1cm} (8)

$$M_T = \sqrt{(\sqrt{m^2_{\ell\ell} + \left(\sum \vec{p}_T^\ell \right)^2} + E_T)^2 - \left(\sum \vec{p}_T^\ell + E_T \right)^2}. \hspace{1cm} (9)$$
Cut based Analysis

Results:

1) **Cut 1:** The invariant mass of the same-sign dileptons $m_{ll} > 400$ GeV with $E_T > 350$ GeV.

2) **Cut 2:** Cluster transverse mass $M_{cluster} > 700$ GeV, Transverse mass $M_T > 550$ GeV with $H_T > 700$ GeV.

3) **Cut 3:** p_T of the leading lepton > 250 GeV and p_T of the sub-leading lepton > 200 GeV.
Motivation Overview of the Model Constraints on relevant parameters of $\mathcal{L}_{\text{TYPE-II Seesaw}} + \mathcal{L}_{\text{DM}}$ Parameter spaces Signals and benchmarks

Cut based Analysis

• **Results:**
 1) **Cut 1:** The invariant mass of the same-sign dileptons $m_{ll} > 400$ GeV with $E_T > 350$ GeV.
 2) **Cut 2:** Cluster transverse mass $M_{\text{cluster}} > 700$ GeV, Transverse mass $M_T > 550$ GeV with $H_T > 700$ GeV.
 3) **Cut 3:** p_T of the leading lepton > 250 GeV and p_T of the sub-leading lepton > 200 GeV.

• we calculated the projected significance (S) in the same sign dilepton channel for each benchmark point, for **14 TeV LHC with 3000 fb$^{-1}$**. The significance S is defined as follows:

$$S = \sqrt{2[(S + B)\log(1 + \frac{S}{B}) - S]}$$

(10)
Cut based Analysis

- **Results:** 1) **Cut 1:** The invariant mass of the same-sign dileptons $m_{ll} > 400$ GeV with $E_T > 350$ GeV.

 2) **Cut 2:** Cluster transverse mass $M_{\text{cluster}} > 700$ GeV, Transverse mass $M_T > 550$ GeV with $H_T > 700$ GeV.

 3) **Cut 3:** p_T of the leading lepton > 250 GeV and p_T of the sub-leading lepton > 200 GeV.

- we calculated the projected significance (S) in the same sign dilepton channel for each benchmark point, for **14 TeV LHC** with **3000 fb$^{-1}$**. The significance S is defined as follows:

 $S = \sqrt{2[(S + B) \log(1 + \frac{S}{B}) - S]}$ \hspace{1cm} (10)

BP	S
BP 1	3.4 σ
BP 2	8.3 σ
BP 3	5.0 σ
Multivariate analysis and Neural Network techniques

- we further explore the possibility of improvement in the analysis with some recently developed techniques like Gradient Boosted Decision Trees and Artificial Neural Network (ANN).
we further explore the possibility of improvement in the analysis with some recently developed techniques like Gradient Boosted Decision Trees and Artificial Neural Network (ANN).

We have used 12 input variables for training and validation of our data sample.
Multivariate analysis and Neural Network techniques

- we further explore the possibility of improvement in the analysis with some recently developed techniques like Gradient Boosted Decision Trees and Artificial Neural Network (ANN).
- We have used 12 input variables for training and validation of our data sample.
- 80% of the total dataset are used for training purpose and 20% for validation.
ROC curves

Figure: ROC curves of BP 1 (top left), BP 2 (top right) and BP 3 (bottom centre) with ANN and XGBoost.
Multivariate analysis and Neural Network techniques

Significance

BP	S (Cut - based)	S (ANN)	S (XGBoost)
BP 1	3.4σ	5.9 σ	7.8 σ
BP 2	8.3σ	9.3 σ	11.6 σ
BP 3	5.0σ	6.4 σ	7.9 σ

Table: Signal significance for the benchmark points at 14 TeV with $\mathcal{L} = 3000$ fb^{-1} with ANN and XGBoost.
Conclusion

- We explore the possibility of the heavy CP-even Higgs boson of Type-II Seesaw to be the dark matter portal.
Conclusion

- We explore the possibility of the heavy CP-even Higgs boson of Type-II Seesaw to be the dark matter portal.
- We find various considerable parameter spaces allowed by all constrains and investigate whether this can be probed in high luminosity LHC.
Conclusion

- We explore the possibility of the heavy **CP-even Higgs boson of Type-II Seesaw to be the dark matter portal.**
- We find various considerable parameter spaces allowed by all constrains and investigate whether this can be probed in high luminosity LHC.
- We concentrate on **same sign dilepton + 2 jets + missing energy searches.**
Conclusion

- We explore the possibility of the heavy CP-even Higgs boson of Type-II Seesaw to be the dark matter portal.
- We find various considerable parameter spaces allowed by all constrains and investigate whether this can be probed in high luminosity LHC.
- We concentrate on same sign dilepton + 2 jets + missing energy searches.
- Firstly by cut based analysis we identify efficient observables and put optimum cuts to this to calculate projected signal significance that can be achieved at the future high-luminosity LHC.
Conclusion

- We explore the possibility of the heavy CP-even Higgs boson of Type-II Seesaw to be the dark matter portal.
- We find various considerable parameter spaces allowed by all constrains and investigate whether this can be probed in high luminosity LHC.
- We concentrate on same sign dilepton + 2 jets + missing energy searches.
- Firstly by cut based analysis we identify efficient observables and put optimum cuts to this to calculate projected signal significance that can be achieved at the future high-luminosity LHC.
- Next we further improve the significance through machine learning techniques.
Thank You
Masses in terms of parameters,

\[
m_h^2 \approx 2c v_D^2 + \frac{(e-h-2q)^2}{2c-q} \omega^2, \tag{11}
\]

\[
m_H^2 \approx q v_D^2 - \left[\frac{(e-h-2q)^2}{2c-q} - 2d\right] \omega^2, \tag{12}
\]

\[
m_A^2 = q(v_D^2 + 4\omega^2), \tag{13}
\]

\[
m_{H^{\pm\pm}}^2 = (h+q)v_D^2 + 2f\omega^2, \tag{14}
\]

\[
m_{H^\pm}^2 = (q + \frac{h}{2})(v_D^2 + 2\omega^2) \tag{15}
\]
Mixing angles in terms of parameters,

\[\tan \alpha = \frac{\sqrt{(q - 2c)^2 v_D^2 + (2dq - 4cd + (h - e + 2q)^2)}w^2}{(h - e + 2q)\omega}, \quad (16) \]

\[\tan \beta = \frac{2\omega}{v_D}, \quad (17) \]

\[\tan \beta' = \frac{\sqrt{2}\omega}{v_D} \quad (18) \]

and the neutrino mass matrix,

\[M_\nu = \begin{pmatrix} 98.6e^{i0.0244} & 14.4e^{-i1.64} & 12.3e^{-i1.65} \\ 14.4e^{-i1.64} & 106e^{-i0.0120} & 4.93e^{-i0.22} \\ 12.3e^{-i1.65} & 4.93e^{-i0.22} & 104e^{-i0.0085} \end{pmatrix} \quad (19) \]
Motivation Overview of the Model Constraints on relevant parameters of $L_{\text{TYPE-II SEESAW}} + L_{\text{DM}}$ Parameter spaces Signals and ...
Motivation
Overview of the Model
Constraints on relevant parameters of $L_{\text{TYPE-II SEESAW}} + L_{DM}$
Parameter spaces
Signals and benchmarks selection
Collider Analysis
Conclusion

Back-up slides: 4

	BP 1	BP 2	BP 3	$t\bar{t}$	$W + \text{jets}$	$t\bar{t}W$	WZ
$\sigma(fb)$	0.19	0.12	0.11	3.09×10^5	2.8×10^7	9.77	355.10
Cut 1	99.3%	99.6%	99.6%	0.2%	0.15%	2.1%	1.8%
Cut 2	99.2%	99.6%	99.6%	0.1%	0.08%	1.7%	1.3%
Cut 3	96.8%	99.2%	99.1%	0.06%	0.03%	0.9%	0.4%
Cut 4	96.8%	99.2%	99.1%	0.05%	0.026%	0.8%	0.3%
Cut 5	73.5%	87.4%	87.6%	0.01%	0.003%	0.07%	0.04%
Cut 6	40.2%	62.5%	62.4%	0.002%	0.0009%	0.01%	0.005%

Table: Signal and background efficiencies after applying various cuts at 14 TeV. The cross-sections are calculated at NLO.
### Variable	Definition
$P_{l_1}^T$ | Transverse momentum of the leading lepton
$P_{l_2}^T$ | Transverse momentum of the sub-leading lepton
E_T^{miss} | Missing transverse energy
N_j | No of jets in the event
m_{ll} | Invariant mass of the same-sign dilepton pair
P_j^T | Transverse momentum of the leading jet
$P_{j_1}^T$ | Transverse momentum of the sub-leading jet
m_{jj} | Invariant mass of the jets
$m_{cluster}$ | The cluster transverse mass
$m_{transverse}$ | Transverse mass
H_T | Scalar sum of p_T of all the final state particles
ΔR_{ll} | ΔR between two leptons