Observation of $B^0 \rightarrow \pi^0 \pi^0$

Y. Chao,29 P. Chang,29 K. Abe,10 K. Abe,46 H. Aihara,48 K. Akai,10 M. Akatsu,24 M. Akemoto,10 Y. Asano,53 T. Aushev,14 S. Bahinipati,9 A. M. Bakich,43 A. Bay,20 I. Bedny,2 U. Bieten,15 I. Bizjak,15 A. Bondar,2 A. Bozek,30 M. Bračko,22, 15 J. Brodzicka,30 T. E. Browder,9 A. Chen,26 K.-F. Chen,29 W. T. Chen,26 B. G. Cheon,4 R. Chistov,14 S.-K. Choi,8 Y. Choi,42 A. Chuvikov,37 J. Dalseno,23 M. Danilov,14 M. Dash,55 J. Dragic,23 A. Drutskoy,6 S. Eidelman,2 V. Eiges,14 Y. Enari,24 F. Fung,9 J. Flanagan,10 S. Fratina,15 K. Furukawa,10 N. Gabyshhev,2 A. Garmash,37 T. Gershon,10 G. Gokhroo,44 B. Golob,21, 15 J. Haba,10 N. C. Hasting,10 K. Hayasaka,24 H. Hayashi,25 M. Hazumi,10 L. Hinz,20 T. Hokuue,24 Y. Hoshi,46 S. Hou,26 W.-S. Hou,29 Y. B. Hsiung,29 T. Iijima,24 H. Ikeda,10 A. Imoto,25 K. Inami,24 A. Ishikawa,10 R. Itoh,10 M. Iwasaki,48 Y. Iwasaki,10 J. H. Kang,56 J. S. Kang,17 P. Kapusta,30 S. U. Kataoka,25 N. Katayama,10 H. Kawai,3 T. Kawasaki,32 H. R. Khan,49 H. Kichimi,10 E. Kikutani,10 H. J. Kim,19 J. H. Kim,42 S. K. Kim,41 K. Kinoshita,6 H. Koiso,10 S. Korpar,22, 15 P. Krokovny,2 S. Kumar,35 C. C. Kuo,26 A. Kuzmin,2 Y.-J. Kwon,56 J. S. Lange,7 G. Leder,13 S. E. Lee,41 S. H. Lee,41 Y.-J. Lee,29 T. Lesiak,30 J. Li,40 A. Limosani,23 S.-W. Lin,29 J. MacNaughton,13 G. Majumder,44 F. Mandl,13 T. Matsumoto,50 S. Michizono,10 T. Mimisho,10 W. Mitaroff,13 K. Miyabayashi,25 H. Miyake,34 H. Miyata,32 R. Mizuk,14 D. Mohapatra,55 T. Mori,10 N. Nagami,47 Y. Nagasaka,11 T. Nakadaira,48 T. T. Nakamura,19 E. Nakano,33 M. Nakao,10 Z. Natkuniec,30 S. Nishida,10 O. Nito,51 S. Noguchi,25 T. Nozaki,10 S. Ogawa,45 Y. Ogawa,10 K. Ohmi,10 T. Ohshima,24 N. Ohuchi,10 K. Oide,10 T. Okabe,24 S. Okuno,16 S. L. Olsen,9 W. Ostrowicz,30 H. Ozaki,10 C. W. Park,32 H. Park,19 N. Parslov,43 L. S. Peak,43 L. E. Piilonen,55 H. Sagawa,10 Y. Sakai,10 N. Sato,24 T. Schietinger,20 O. Schneider,20 J. Schümann,29 A. J. Schwartz,6 K. Senyo,24 M. E. Sevior,23 T. Shidara,10 B. Shwartz,2 V. Sidorov,4 A. Somov,6 N. Soni,35 R. Stamen,10 S. Stanic,52 M. Staric,15 R. Sugahara,10 K. Sumisawa,34 T. Sumiyoshi,50 S. Suzuki,39 O. Tajima,10 F. Takasaki,10 K. Tama,10 N. Tamura,32 M. Tanaka,10 M. Tawada,10 Y. Teramoto,33 X. C. Tian,36 T. Tsukamoto,10 S. Uehara,10 T. Ugow,14 K. Ueno,29 Y. Unno,3 S. Uno,10 G. Varner,10 K. E. Varvell,43 S. Villa,20 C. C. Wang,29 C. H. Wang,28 M.-Z. Wang,29 Y. Watanabe,49 B. D. Yabsley,55 A. Yamaguchi,47 H. Yamamoto,47 Y. Yamashita,31 M. Yamauchi,10 Heyoung Yang,41 J. Ying,36 K. Yokoyama,10 M. Yoshida,10 M. Yoshida,10 S. L. Zang,12 C. C. Zhang,12 J. Zhang,10 L. M. Zhang,40 Z. P. Zhang,40 V. Zhilich,2 D. Žontar,21, 15 and D. Zürcher20

(The Belle Collaboration)

1 Aomori University, Aomori
2 Budker Institute of Nuclear Physics, Novosibirsk
3 Chiba University, Chiba
4 Chonnam National University, Kwangju
5 Chuo University, Tokyo
6 University of Cincinnati, Cincinnati, Ohio 45221
7 University of Frankfurt, Frankfurt
8 Gyeongsang National University, Chinju
9 University of Hawaii, Honolulu, Hawaii 96822
10 High Energy Accelerator Research Organization (KEK), Tsukuba
11 Hiroshima Institute of Technology, Hiroshima
12 Institute of High Energy Physics, Chinese Academy of Sciences, Beijing
13 Institute of High Energy Physics, Vienna
14 Institute for Theoretical and Experimental Physics, Moscow
15 Stefan Institute, Ljubljana
16 Kanazawa University, Yokohama
17 Korea University, Seoul
18 Kyoto University, Kyoto
19 Kyungpook National University, Taegu
20 Swiss Federal Institute of Technology of Lausanne, EPFL, Lausanne
21 University of Ljubljana, Ljubljana
22 University of Maribor, Maribor
23 University of Melbourne, Victoria
24 Nagoya University, Nagoya
25 Nara Women’s University, Nara
26 National Central University, Chung-li
We report the first observation of the decay $B^0 \to \pi^0\pi^0$, using a 253 fb$^{-1}$ data sample collected at the $\Upsilon(4S)$ resonance with the Belle detector at the KEKB e^+e^- collider. The measured branching fraction is $B(B^0 \to \pi^0\pi^0) = (2.3^{+0.4+0.2}_{-0.3-0.5}) \times 10^{-6}$, with a significance of 5.8 standard deviations including systematic uncertainties. We also make the first measurement of the direct CP violating asymmetry in this mode.

PACS numbers: 11.30.Er, 12.15.Hh, 13.25.Hw, 14.40.Nd

Measurements of the mixing-induced CP violation parameter $\sin2\phi_1$ are in good agreement with the Kobayashi-Maskawa (KM) mechanism. To confirm this theory, one now has to measure the other two angles of the unitarity triangle, ϕ_2 and ϕ_3. One technique for measuring ϕ_2 is to study time dependent CP asymmetries in $B^0 \to \pi^+\pi^-$ decay, where we have recently reported the observation of CP violation and evidence for direct CP violation. The extraction of ϕ_2, however, is complicated by the presence of both tree and penguin amplitudes, each with different weak phases. An isospin analysis of the $\pi\pi$ system is necessary, and one essential ingredient is the branching fraction for the decay $B^0 \to \pi^0\pi^0$.

QCD-based factorization predictions for $B(B^0 \to \pi^0\pi^0)$ are typically around or below 1×10^{-6}, but phenomenological models incorporating large rescattering effects can accommodate larger values. Evidence for $B^0 \to \pi^0\pi^0$ emerged at the B factories a year ago, with a combined value of $(1.9 \pm 0.5) \times 10^{-6}$ for the branching fraction. If such a high value persists, an isospin analysis for ϕ_2 extraction would become feasible in the near future. To complete the program, one would need to measure both the B^0 and \bar{B}^0 decay rates, i.e. direct CP violation.

In this paper we report the first observation of the decay $B^0 \to \pi^+\pi^-$. We also make a first measurement of the direct CP violating asymmetry in this mode. The results are based on a 253 fb$^{-1}$ (275 M $B\bar{B}$ pairs) dataset collected with the Belle detector at the KEKB e^+e^- asymmetric collider. KEKB operates at a center–of–mass (CM) energy of $\sqrt{s} = 10.58$ GeV, corresponding to the mass of the $\Upsilon(4S)$ resonance. Throughout this paper, neutral and charged B mesons are assumed to be produced in equal amounts at the $\Upsilon(4S)$, and the inclusion of charge conjugate modes is implied, unless otherwise specified.

The Belle detector is a large-solid-angle magnetic spectrometer that consists of a silicon vertex detector (SVD), a 50-layer central drift chamber (CDC), an array of aerogel threshold Čerenkov counters (ACC), a barrel-like arrangement of time-of-flight scintillation counters...
mesons; this corresponds to a window of ±σ events from this continuum processes. We use event topology to discriminate signal energy and to detect iron flux-return located outside of the coil is instrumented in a solenoid coil that provides a 1.5 T magnetic field. An inner drift chamber were used [14].

Pairs of photons with invariant masses in the range 115 MeV/c^2 < m_{\gamma \gamma} < 152 MeV/c^2 are used to form \pi^0 mesons; this corresponds to a window of ±2.5σ about the nominal \pi^0 mass, where σ denotes the experimental resolution, approximately 8 MeV/c^2. The measured energy of each photon in the laboratory frame is required to be greater than 50 MeV in the barrel region, defined as 32° < \theta_{\gamma} < 129°, and greater than 100 MeV in the end-cap regions, defined as 17° < \theta_{\gamma} < 32° and 129° < \theta_{\gamma} < 150°, where \theta_{\gamma} denotes the polar angle of the photon with respect to the positron beam line. To further reduce the combinatorial background, \pi^0 candidates with small decay angles (cos \theta > 0.95) are rejected, where \theta is the angle between the \pi^0 boost direction from the laboratory frame and one of its \gamma daughters in the \pi^0 rest frame.

Signal B candidates are formed from pairs of \pi^0 mesons and are identified by their beam energy constrained mass \text{M}_{bc} = \sqrt{E_{\text{beam}}^2 - p_B^2} and energy difference \Delta E = E_B^* - E_{\text{beam}}^*, where \text{E}_{\text{beam}} denotes the beam energy and \text{E}_B^* and \text{E}_{\text{beam}}^* are the momentum and energy, respectively, of the reconstructed B meson, all evaluated in the \e^+\e^- CM frame. We require \text{M}_{bc} > 5.2 GeV/c^2 and \text{E}_B^* > 0.3 GeV < \Delta E < 0.5 GeV. The signal efficiency is estimated using GEANT-based Monte Carlo (MC) simulations. The resolution for signal is approximately 3.6 MeV/c^2 in \text{M}_{bc}. The distribution in \Delta E is asymmetric due to energy leakage from the CsI(Tl) crystals. If it is parameterized by a bifurcated Gaussian, the upper and lower resolutions are 46 MeV and 122 MeV, respectively.

We consider background from other B decays and from e^+e^- \rightarrow q\bar{q} (q = u, d, s, c) continuum processes. A large generic MC sample shows that backgrounds from \bar{b} \rightarrow c decays are negligible. Among charmless B decays, the only significant background is \text{B}^{\pm} \rightarrow \rho^{\pm} \pi^{0} with a missing low momentum \rho^{\pm}. This background populates the negative \Delta E region, and is taken into account in the signal extraction described below.

The dominant background is due to continuum processes. We use event topology to discriminate signal events from this \q\bar{q} background, and follow the continuum rejection technique from our previous publication [11]. We use modified Fox-Wolfram moments [16] where the particles in the signal B candidate (category s) and those in the rest of the event (category o) are treated separately; we also use the missing momentum of the event as a third category (category m). Some additional discrimination is achieved by considering charged and neutral particles in the o category independently, and by taking the correlations of charges into account. We combine 16 modified moments with the scalar sum of the transverse momentum into a Fisher discriminant [17], and tune the coefficients to optimize the separation between signal and background.

The angle of the \text{B}^{\pm}-meson flight direction with respect to the beam axis (\theta_{\text{B}}) provides additional discrimination. A likelihood ratio \text{R}_s = \text{L}_s/(\text{L}_s + \text{L}_\text{BG}) is used as the discrimination variable, where \text{L}_s denotes the product of the individual Fisher and \theta_{\text{B}} likelihoods for the signal and \text{L}_\text{BG} is that for the \q\bar{q} background. The likelihood functions are derived from MC for the signal and from events in the \text{M}_{bc} sideband region (5.20 GeV/c^2 < \text{M}_{bc} < 5.26 GeV/c^2) for the \q\bar{q} background.

Additional discrimination between signal and background can be achieved by using the Belle standard algorithm for b-flavor tagging [11,13], which is also needed for the direct CP violation measurement. The flavor tagging procedure yields two outputs: \text{q} = \pm 1, indicating the flavor of the other \text{B} in the event, and \text{r}, which takes values between 0 and 1 and is a measure of the confidence that the \text{q} determination is correct. Events with a high value of \text{r} are considered well-tagged and are therefore unlikely to have originated from continuum processes. For example, an event that contains a high momentum lepton (r close to unity) is more likely to be a \text{B}\overline{\text{B}} event so a looser \text{R}_s requirement can be applied. We find that there is no strong correlation between \text{r} and any of the topological variables used above to separate signal from continuum.

We divide the data into r ≥ 0.5 and r < 0.5 bins. The continuum background is reduced by applying a selection requirement on \text{R}_s for events in each r region of Set I and Set II according to the figure of merit (FOM). The FOM is defined as \text{N}_s^{\text{exp}} / \sqrt{\text{N}_s^{\text{exp}} + \text{N}_{\text{BG}}^{\text{exp}}} , where \text{N}_s^{\text{exp}} and \text{N}_{\text{BG}}^{\text{exp}} denote the expected signal, assuming the branching fraction \text{B} = 2 \times 10^{-4}, and background yields obtained from MC and sideband data, respectively. A typical requirement suppresses 97% of the continuum background while retaining 53% of the signal.

The signal yields are extracted by applying unbinned two-dimensional maximum likelihood (ML) fits to the (\text{M}_{bc}, \Delta E) distributions of the \text{B} and \overline{\text{B}} samples. The likelihood is defined as

\text{L} = \exp \left(- \sum_{s,k,j} N_{s,k,j} \prod_{i} \left(\sum_{s,k,j} N_{s,k,j} \mathcal{P}_{s,k,j,i} \right) \right)

(1)

where

\mathcal{P}_{s,k,j,i} = P_{s,k,j}(\text{M}_{bc}, \Delta E_i),

(2)

and \text{s} indicates Set I or Set II, \text{k} distinguishes events in the \text{r} < 0.5 or \text{r} ≥ 0.5 bins, \text{i} is the identifier of the \text{i}-th
event, \(P_{s,k,j}(M_{bc}, \Delta E) \) are the two-dimensional probability density functions (PDFs) in \(M_{bc} \) and \(\Delta E \) for the signal and background components, \(N_j \) is the number of events for the category \(j \), which corresponds to either signal, \(q\bar{q} \) continuum, or background from \(B^\pm \to \rho^\pm \pi^0 \) decay.

The PDFs for the signal and for \(B^+ \to \rho^+\pi^0 \) are taken from smoothed two-dimensional histograms obtained from large MC samples. For the signal PDF, discrepancies between the peak positions and resolutions in data and MC are calibrated using \(D^0 \to \pi^0\pi^0 \) and \(B^+ \to D^0(\to K^+\pi^-\pi^0)\pi^+ \) decays. The difference is caused by imperfect simulation of the \(\pi^0 \) energy resolution while the effect of the opening angle distributions can be neglected. The invariant mass distribution for the \(D^0 \) is fitted with an empirical function for data and MC, and the observed discrepancies in the peak position and width are converted to the differences in the peak position and resolution for \(\Delta E \) in the signal PDF. We require the \(D^0 \) decay products to lie in the same momentum range as the \(\pi^0 \)'s from \(B \to \pi^0\pi^0 \). To obtain the two-dimensional PDF for the continuum background, we multiply the PDF for \(\Delta E \), which is modeled with a linear function, with the PDF for \(M_{bc} \), for which we use the ARGUS function [18]. In the fit, the shapes of the signal and \(B^+ \to \rho^+\pi^0 \) PDFs are fixed, with the normalization for \(B^+ \to \rho^+\pi^0 \) floated; all other fit parameters are allowed to float. The fit results are shown in Fig 1.

The obtained signal yield is 81.8\pm15.5 with a statistical significance (\(S \)) of 6.1, where \(S \) is defined as \(S = \sqrt{2\ln(L_0/L_N)} \), and \(L_0 \) and \(L_N \) denote the maximum likelihoods of the fits without and with the signal component, respectively. The relative yields in sets I and II are consistent with the expectation based on their relative luminosities. We vary each calibration constant for the signal PDF by \(\pm 1\sigma \) and obtain systematic errors from the change in the signal yield. Adding these errors in quadrature, the significance including systematic uncertainties is reduced to 5.8\sigma, which corresponds to the first observation of \(B^0 \to \pi^0\pi^0 \).

In order to obtain the branching fraction, we divide the signal yield by the reconstruction efficiency, measured from MC to be 12.9\%, and by the number of \(B\bar{B} \) pairs. We consider systematic errors in the reconstruction efficiency due to possible differences between data and MC. A 4.2\% systematic error is assigned for the uncertainty in the efficiency for the track multiplicity requirement. This is determined by varying the multiplicity distribution of signal MC. We assign a total error of 6\% due to \(\pi^0 \) reconstruction efficiency, measured by comparing the ratio of the yields of the \(\eta \to \pi^0\pi^0\pi^0 \) and \(\eta \to \gamma \gamma \) decays. The experimental errors on the branching fractions for these decays are included in this value. We check the effect of the continuum suppression using a control sample of \(B^+ \to D^0(\to K^+\pi^-\pi^0)\pi^+ \) decays; the \(R_s \) requirements has a similar efficiency for the MC control sample and for signal MC. Comparing the \(R_s \) requirement on the control sample in data and MC, a systematic error of 1.8\% is assigned. We check for a possible pile-up background due to hadronic continuum events that contain energy deposits from earlier QED interactions. Such a background may peak in \(M_{bc} \), however, the showers from the QED interaction can be identified from timing information recorded in the ECL. For Set II, it is possible to remove these events using this information and determine the change in event yield. We conservatively estimate a systematic uncertainty of 10.3\% for this off-time QED background. Finally, we assign a systematic error of 1.1\% due to the uncertainty in the number of \(B\bar{B} \) pairs \((274.8 \pm 3.1) \times 10^6\), and obtain a branching fraction of

\[
B(B^0 \to \pi^0\pi^0) = (2.3^{+0.4+0.2}_{-0.5-0.3}) \times 10^{-6}.
\]

The result is stable under variations of the \(R_s \) cut.

Having observed a significant signal, we utilize the \(B^0/\overline{B}^0 \) separation provided by the flavor tagging to measure the CP asymmetry. Equation (2) is replaced by

\[
P_{s,k,j} = \frac{1}{2} [1 - q \cdot \chi_{CP'}(l,j)P_{s,k,j}(M_{bc}, \Delta E_i)],
\]

where \(q \) indicates the B meson flavor, \(B(q = +1) \) or \(\overline{B}(q = -1) \), \(\chi_{CP'}(l,j) \) is the effective charge asymmetry, where \(\chi_{CP'}(l,j) = \chi_{CP}(1 - 2\chi_d)(1 - 2w_1) \). Here \(\chi_d = 0.186 \pm 0.004 \) is the time-integrated mixing parameter and \(w_1 \) is the wrong-tag fraction. For \(q\overline{q} \) continuum, \(\chi_d \) and \(w_1 \) are set to zero. The \(\pi^0\pi^0 \) sample is divided into six \(r \)-bins, and the \(r \)-dependent wrong-tag fractions, \(w_1 (l = 1, \ldots, 6) \), are determined using a high statistics sample of self-tagged \(B^0 \to D^{-s} \pi^+ D^{*-+} \rho^+ \) and \(D^{*-+} \ell^+\nu \) events and their charge conjugates [21]. The total number of signal events is fixed to the yield obtained.
from the branching fraction measurement. The relative fractions of signal events, \(q\bar{q}\) and \(p^\pm p^0\) background events in the different \(r\) bins are also fixed.

Defining the direct \(CP\) asymmetry as

\[
A_{CP} = \frac{N(B \rightarrow f) - N(B \rightarrow \bar{f})}{N(B \rightarrow f) + N(B \rightarrow \bar{f})},
\]

the result is \(A_{CP} = 0.44^{+0.53}_{-0.52} \pm 0.17\). Systematic errors are estimated by varying the fitting parameters by \(\pm 1\sigma\). Including the result of a null asymmetry check with the same analysis procedure for the \(B \rightarrow D(K\pi\pi)/\pi\) control sample, the total systematic error is \(\pm 0.17\). To illustrate this asymmetry, we show the results separately for \(B^0\) and \(\bar{B}^0\) tags in Fig. 2. While not significant, the method already gives constraints on \(\phi_d\) 21.

Our results confirm the previous evidence 11, 11 and establish the decay \(B^0 \rightarrow p^0\pi^0\). Since the observed branching fraction is much larger than predictions based on QCD factorization 8, recent theoretical discussions have focused on the possibility of an enhanced color-suppressed amplitude, together with a sizable strong phase 22. Other color-suppressed modes such as \(B^0 \rightarrow D^0\pi^0\) and \(B^0 \rightarrow D^\pm\pi^\mp\) have also been measured 23, 24, at rates considerably higher than factorization predictions 4, 25. In addition, the recent evidence for large direct \(CP\) violation in \(B^0 \rightarrow \pi^+\pi^-\) 4 and \(B^0 \rightarrow K^+\pi^-\) 26 modes disagrees with QCD based factorization predictions. Some effect beyond factorization appears to be present in charmless two-body \(B\) decays.

In conclusion, we have observed the \(B^0 \rightarrow p^0\pi^0\) decay mode in a data sample of 275 million \(BB\) pairs with a branching fraction significantly higher than factorization predictions. We obtain \(81.8^{+15.5}_{-16.9}\) signal events with a significance of 5.8 standard deviations (\(\sigma\)) including systematic uncertainties. The branching fraction is measured to be \((2.3^{+0.4+0.2}_{-0.5-0.3}) \times 10^{-6}\). This result is consistent with, and supersedes, our previous result. We have also made a first measurement of the direct \(CP\) violating asymmetry. The large branching fraction for \(B^0 \rightarrow \pi^0\pi^0\), together with the measurements of its direct \(CP\) violating asymmetry \(A_{CP}\), will allow a model-independent extraction of the CKM angle \(\phi_d\) from measurements of the \(B \rightarrow \pi\pi\) system in the near future.

We thank the KEKB group for the excellent operation of the accelerator, the KEK Cryogenics group for the efficient operation of the solenoid, and the KEK computer group and the NII for valuable computing and Super-SINET network support. We acknowledge support from MEXT and JSPS (Japan); ARC and DEST (Australia); NSFC (contract No. 10175071, China); DST (India); the BK21 program of MOEHRD and the CHEP SRC program of KOSEF (Korea); KBN (contract No. 2P03B 01324, Poland); MIST (Russia); MESS (Slovenia); NSC and MOE (Taiwan); and DOE (USA).

1. on leave from Nova Gorica Polytechnic, Nova Gorica
2. K. Abe et al. (Belle Collaboration), Phys. Rev. D 66, 071102(R) (2002).
3. B. Aubert et al. (BaBar Collaboration), Phys. Rev. Lett. 89, 201802 (2002).
4. M. Kobayashi and T. Maskawa, Prog. Theor. Phys. 49, 1253 (1973).
5. B. Aubert et al. (BaBar Collaboration), Phys. Rev. Lett. 89, 281802 (2002).
6. K. Abe et al. (Belle Collaboration), Phys. Rev. D 68, 012001 (2003).
7. K. Abe et al. (Belle Collaboration), Phys. Rev. Lett. 93, 021801 (2004).
8. M. Gronau and D. London, Phys. Rev. Lett. 65, 3381 (1990); M. Gronau, D. London, N. Sinha and R. Sinha, Phys. Lett. B 514, 315 (2001).
9. M. Beneke and M. Neubert, Nucl. Phys. B 675, 333 (2003); Y.-Y. Keum and A.I. Sanda, Phys. Rev. D 67, 054009 (2003).
10. W.S. Hou and K.C. Yang, Phys. Rev. Lett. 84, 4806 (2000); C.K. Chua, W.S. Hou and K.C. Yang, Mod. Phys. Lett. A 18, 1763 (2003); A.J. Buras et al., Phys. Rev. Lett. 92, 101804 (2004).
11. B. Aubert et al. (BaBar Collaboration), Phys. Rev. Lett. 91, 241801 (2003).
12. S. H. Lee, K. Suzuki et al. (Belle Collaboration), Phys. Rev. Lett. 91, 261801 (2003).
13. S. Kurokawa and E. Kikutani, Nucl. Inst. and Meth. A 499, 1 (2003).
14. A. Abashian et al. (Belle Collaboration), Nucl. Inst. and Meth. A 479, 117 (2002).
15. Y. Ushiroda (Belle SVD2 Group), Nucl. Inst. and Meth. A 511, 6 (2003).
[15] R. Brun et al., GEANT 3.21, CERN Report No. DD/EE/84-1 (1987).
[16] G. Fox and S. Wolfram, Phys. Rev. Lett. 41, 1581 (1978).
[17] R.A. Fisher, Annals of Eugenics 7, 179 (1936).
[18] H. Albrecht et al. (ARGUS Collaboration), Phys. Lett. B 241, 278 (1990).
[19] Particle Data Group, S. Eidelman et al., Phys. Lett. B 592, 1 (2004).
[20] H. Kakuno et al., Nucl. Inst. and Meth. A 533, 516 (2004).
[21] J. Charles et al., hep-ph/0406184
[22] C.W. Chiang, M. Gronau, J.L. Rosner and D.A. Suprun, Phys. Rev. D 70, 034020 (2004).
[23] K. Abe et al. (BELLE Collaboration), BELLE-CONF-0416, hep-ex/0409004 (2004); B. Aubert et al. (BaBar Collaboration), Phys. Rev. D 69, 032004 (2004); T.E. Coan et al. (CLEO Collaboration), ibid. 88, 062001 (2002).
[24] J. Dragic et al. (Belle Collaboration), Phys. Rev. Lett. 93, 131802 (2004).
[25] S. Barshay, L.M. Sehgal and J. van Leusen, Phys. Lett. B 591, 97 (2004).
[26] B. Aubert et al. (BaBar Collaboration), Phys. Rev. Lett. 93, 131801 (2004). Y. Chao et al. (Belle Collaboration), Phys. Rev. Lett. 93, 191802 (2004).