A Role for Protein Kinase Casein Kinase2 α-Subunits in the Arabidopsis Circadian Clock$^{1[W][OA]}$

Sheen X. Lu2, Hongtao Liu2, Stephen M. Knowles, Jian Li, Ligeng Ma, Elaine M. Tobin*, and Chentao Lin

Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, California 90095 (S.X.L., H.L., S.M.K., E.M.T., C.L.); and Hebei Key Laboratory of Molecular Cell Biology, College of Biological Sciences, Hebei Normal University, Shijiazhuang 050016, Hebei, China (J.L., L.M.)

Circadian rhythms are autoregulatory, endogenous rhythms with a period of approximately 24 h. A wide variety of physiological and molecular processes are regulated by the circadian clock in organisms ranging from bacteria to humans. Phosphorylation of clock proteins plays a critical role in generating proper circadian rhythms. Casein Kinase2 (CK2) is an evolutionarily conserved serine/threonine protein kinase composed of two catalytic α-subunits and two regulatory β-subunits. Although most of the molecular components responsible for circadian function are not conserved between kingdoms, CK2 is a well-conserved clock component modulating the stability and subcellular localization of essential clock proteins. Here, we examined the effects of a cka1a2a3 triple mutant on the Arabidopsis (Arabidopsis thaliana) circadian clock. Loss-of-function mutations in three nuclear-localized CK2α subunits result in period lengthening of various circadian output rhythms and central clock gene expression, demonstrating that the cka1a2a3 triple mutant affects the pace of the circadian clock. Additionally, the cka1a2a3 triple mutant has reduced levels of CK2 kinase activity and CIRCADIAN CLOCK ASSOCIATED1 phosphorylation in vitro. Finally, we found that the photoperiodic flowering response, which is regulated by circadian rhythms, was reduced in the cka1a2a3 triple mutant and that the plants flowered later under long-day conditions. These data demonstrate that CK2α subunits are important components of the Arabidopsis circadian system and their effects on rhythms are in part due to their phosphorylation of CIRCADIAN CLOCK ASSOCIATED1.

Biological rhythms with a period close to 24 h are called circadian rhythms and are found in a diverse array of organisms. Circadian systems are complex signaling networks that allow organisms to anticipate and prepare for regular environmental changes, thus providing them with an adaptive advantage (Ouyang et al., 1998; Green et al., 2002; Dodd et al., 2005). The circadian system can be divided conceptually into three parts: inputs that receive environmental cues to entrain the oscillator; a central oscillator that generates self-sustained rhythmicity; and outputs that consist of various rhythmic processes. The core of a circadian system, the central oscillator, generally shares a conceptually conserved mechanism in eukaryotes, consisting of a transcription-translation feedback loop (Dunlap, 1999). Circadian changes in protein subcellular localization, stability, and phosphorylation also contribute to the generation and maintenance of rhythms (Young and Kay, 2001; Mehra et al., 2009).

In the primary autoregulatory feedback loop in Arabidopsis (Arabidopsis thaliana), transcription factors CIRCADIAN CLOCK ASSOCIATED1 (CCA1) and LATE ELONGATED HYPOCOTYL (LHY) repress the transcription of TIMING OF CAB EXPRESSION1 (TOC1). In turn, TOC1 (also known as PSEUDORESPONSE REGULATOR1 [PRR1]) activates transcription of CCA1 and LHY through CCA1 HIKING EXPEDITION and other unknown mechanisms (Pruneda-Paz et al., 2009). CCA1 and LHY also repress the transcription of genes encoding EARLY FLOWERING3 (ELF3) and ELF4, LUX ARRHYTHMO (LUX; also known as PHYTOCLOCK1), and GIGANTEA (GI), all of which contribute to the positive regulation of CCA1 and LHY expression, constituting the secondary feedback loop (Covington et al., 2001; Liu et al., 2001; Doyle et al., 2002; Hazen et al., 2005; Kikis et al., 2005; Locke et al., 2005; Onai and Ishiura, 2005). In addition, PRR7 and PRR9, two TOC1 homologs, have been suggested to form an additional feedback loop with CCA1 and LHY (Farré et al., 2005; Nakamichi et al., 2010).

Posttranslational modification of clock proteins is essential for generating proper circadian rhythms (Young and Kay, 2001; Mehra et al., 2009). Phosphorylation of oscillator components appears to play a critical role in regulating their function (Liu et al., 2000; Lin et al., 2002; Akten et al., 2003; Daniel et al., 2004; Tamaru et al., 2009; Tsuchiya et al., 2009). Despite the conceptual similarity in clock mechanisms, there is little sequence conservation between clock components of plants, fungi, insects, and animals. One remarkable

1 This work was supported by the National Institutes of Health (grant nos. GM23167 [to E.M.T.] and GM56265 [to C.L.]).

2 These authors contributed equally to the article.

* Corresponding author; e-mail etobin@ucla.edu.

The author responsible for distribution of materials integral to the findings presented in this article in accordance with the policy described in the Instructions for Authors (www.plantphysiol.org) is: Elaine M. Tobin (etobin@ucla.edu).

[OA] Open Access articles can be viewed online without a subscription.

www.plantphysiol.org/cgi/doi/10.1104/pp.111.179846
exception is the protein kinase CK2 (formerly Casein Kinase2). In Drosophila, CK2 directly phosphorylates the core clock component PERIOD (PER), thereby regulating its nuclear localization and stability (Lin et al., 2002; Akten et al., 2003). CK2 also plays an essential role in the mammalian clock by regulating the nuclear entry of the clock component BMAL1 (Tamaru et al., 2009) and the protein stability of PER2 (Tsuchiya et al., 2009). In addition, CK2 phosphorylation of the Neurospora central clock component FREQUENCY (FRQ) regulates period length by determining its protein stability (Liu et al., 2000; Yang et al., 2002, 2003).

CK2 is a Ser/Thr protein kinase that is evolutionarily conserved and ubiquitously expressed in all eukaryotic cells. The CK2 holoenzyme consists of two catalytic α-subunits and two regulatory β-subunits in a tetrameric (α2β2) complex (Litchfield, 2003) that has more than 300 substrates involved in a wide variety of cellular processes (Meggio and Pinna, 2003). In Arabidopsis, there are four α-subunits (A1–A4) and four β-subunits (B1–B4), which show relatively high sequence similarity within the subunits (Salinas et al., 2006). Knockdown expression of the CK2β subunits (CKBs) lengthens period in Arabidopsis protoplasts (Kim and Somers, 2010), and overexpression of CKB3 or CKB4 leads to period shortening in transgenic Arabidopsis (Sugano et al., 1999; Perales et al., 2006). Both CKB3 and CKB4 interact with the central clock component CCA1, and phosphorylation of CCA1 by CK2 is important for its clock function (Sugano et al., 1998; Daniel et al., 2004; Portolés and Más, 2010).

It has been reported that the CK2 α- and β-subunits can function independently of CK2 tetramers (Bibby and Litchfield, 2005). Little is known regarding the role of CK2α subunits in the circadian clock. To examine their function in the clock, we isolated loss-of-function mutants for three nuclear-localized CK2α subunits and generated a cka1a2a3 triple mutant. The cka1a2a3 mutations affect various flowering pathways, the pace of the circadian clock, and CCA1 phosphorylation, suggesting that CK2α subunits are essential clock components that are critical for maintaining the correct period length through their effect on CCA1 phosphorylation.

RESULTS

Generation of the Arabidopsis cka1a2a3 Triple Mutant

To determine the biological roles of CK2α subunits in Arabidopsis, we obtained the T-DNA insertion mutants of individual α-subunits from the Arabidopsis Biological Resource Center. In the cka1 mutant (SALK_073328) and cka2 mutant (SALK_129331), the T-DNAs are inserted in the eighth and second intron of the corresponding genes, and in the cka3 mutant (SALK_022432), the T-DNA is inserted in the 5′ untranslated region of the gene (Fig. 1A). Full-length transcripts were not detected in any of the mutants by reverse transcription (RT)-PCR (Fig. 1B), indicating that they are loss-of-function mutants for the three respective α-subunits. We obtained a cka2a3 double mutant by crossing cka2 and cka3. cka1 was then crossed with the cka2a3 double mutant to generate the cka1a2a3 triple mutant.

The cka1a2a3 Mutations Affect Flowering Time

To elucidate the molecular function of CK2α subunits in Arabidopsis, we examined flowering time in cka single, double, and triple mutants. Under long-day (LD) conditions, the three cka single mutants had a
similar flowering time as wild-type plants and the cka2a3 double mutant displayed a subtle phenotype, flowering slightly later than the wild type (Fig. 2, A and B). The cka1a2a3 triple mutations substantially delayed flowering time, as measured by days to flowering or number of leaves at flowering (Fig. 2, A and B). The cka1a2a3 triple mutant showed the most profound phenotype and was chosen for further characterization. To determine whether the cka1a2a3 mutations affect flowering time through the photoperiodic response, we examined the flowering phenotype under short-day (SD) conditions. Our results revealed that the cka1a2a3 triple mutant displayed a subtle phenotype, flowering slightly later than wild-type plants under SD conditions (Fig. 2C), suggesting that the cka1a2a3 triple mutant has decreased sensitivity to day-length changes.

Flowering time is controlled by four different pathways, including the photoperiodic, autonomous, and vernalization- and gibberellic acid-dependent pathways (Mouradov et al., 2002). To determine the molecular mechanisms of the delayed flowering phenotype of the cka1a2a3 triple mutant, we examined the expression of FLOWERING LOCUS T (FT) and SUPPRESSOR OF OVEREXPRESSION OF CONSTANS1 (SOC1), which encode floral integrators (Parcy, 2005). Compared to the wild type, the rhythmic expression of FT and SOC1 were substantially reduced in cka1a2a3 triple mutant plants (Fig. 3, A and B). FLOWERING LOCUS C (FLC), a convergence point of the autonomous and the vernalization pathways, represses flowering through direct binding to FT and SOC1 chromatin to repress their expression (Helliwell et al., 2006). The transcript level of FLC was strongly increased in the cka1a2a3 triple mutant relative to the wild type (Fig. 3C), suggesting that either the autonomous or vernalization pathway could be affected by the cka1a2a3 triple mutations. The cka1a2a3 triple mutant exhibits a day-length-dependent flowering phenotype. To determine whether the cka1a2a3 triple mutations affect flowering through the photoperiodic pathway, we examined the expression of CONSTANS (CO). CO is a key gene in the photoperiodic flowering

Figure 2. The cka1a2a3 triple mutations affect flowering time. A, Photographs of plants of various genotypes grown for 23 d under LD (16L/8D) conditions. B, Flowering time of seedlings of various genotypes under LD (16L/8D) conditions. C, Flowering time of the wild type and cka1a2a3 triple mutant under SD (8L/16D) conditions. Flowering time is expressed as either days to bolting or rosette leaf number. Data are means ± sd (n = 18–25). Asterisks indicate a significant difference by Student’s two-tail t test (P < 0.05). WT, Wild type.
pathway that accelerates flowering by light-dependent activation of its immediate target gene, FT (Suárez-López et al., 2001; Yanovsky and Kay, 2002; Valverde et al., 2004). We found that the rhythmic expression of CO was significantly reduced in cka1a2a3 plants (Fig. 3D), indicating that the photoperiodic flowering pathway is affected.

The cka1a2a3 Mutations Affect the Period Lengths of Various Circadian Outputs

The photoperiodic flowering pathway is known to be regulated by the circadian clock and many Arabidopsis mutants with aberrant clock function exhibit early- or late-flowering phenotypes. To determine whether the cka1a2a3 triple mutant has a defect in circadian clock function, we examined leaf movement rhythms, a well-established circadian response in Arabidopsis (Hicks et al., 1996). Seedlings were entrained for 10 d with 12 h light/12 h dark (12L/12D) and subsequently transferred to constant light (LL). Wild-type plants exhibited a robust rhythmic movement of primary leaves with a free-running period length of 24.3 ± 0.4 h (Fig. 4, A and B). In cka1a2a3 triple mutant plants, a robust circadian rhythm of leaf movement was observed, but with a free-running period length of 25.9 ± 1.3 h (Fig. 4, A and B), which is approximately 1.5 h longer than that in the wild type. To assess the robustness of the circadian rhythms in individual seedlings, relative amplitude error (RAE) was measured using fast Fourier transform nonlinear least square analysis. RAE values range between 0 and 1, and a smaller RAE indicates a more robust rhythm. cka1a2a3 seedlings had RAE values of approximately 0.2, similar to those of the wild type (Fig. 4B), suggesting that the cka1a2a3 triple mutations cause period lengthening but do not affect the amplitude and robustness of leaf movement rhythms.

To determine the perserviveness of CK2α subunits function in the circadian clock, the circadian reporter CHLOROPHYLL A/B BINDING PROTEIN2::LUC (CAB2::LUC; Millar et al., 1995; Knowles et al., 2008) was transformed into cka1a2a3 triple mutant plants. Luminescence was examined in wild-type and cka1a2a3 triple mutant plants entrained for 7 d with 12L/12D and then transferred to LL. CAB2::LUC expression oscillated with a period length of 25.0 ± 0.4 h and 26.2 ± 0.2 h in the wild type and cka1a2a3 triple mutants, respectively.
mutant, respectively (Fig. 4, C and D). Consistent with the period lengthening observed in leaf movement rhythms, CAB2::LUC oscillations in the cka1a2a3 triple mutant were observed to be 1 to 1.5 h longer than in the wild type. Robustness similar to leaf movement rhythms was observed in CAB2::LUC rhythms (Fig. 4D). Together, these results show that the cka1a2a3 mutations affect the period lengths of circadian output rhythms (leaf movement and CAB2::LUC activity), indicating that CK2α subunits are involved in regulating period length, rather than amplitude and robustness in the circadian clock.

The cka1a2a3 Mutations Affect Period Lengths of Circadian Expression of Central Oscillator Genes

To determine whether the cka1a2a3 mutations affect the pace of the central oscillator or only a subset of outputs, we examined the circadian expression of the central oscillator genes CCA1, LHY, TOC1, and LUX in the cka1a2a3 triple mutant. The oscillations of expression of all four genes were robust and displayed a longer period length in the cka1a2a3 triple mutant than in wild-type plants (Fig. 5). We also checked the expression of other clock genes, such as PRR7, PRR9, ELF3, and GI, that are proposed to function in the interlocked feedback loops within the central oscillator (McClung, 2006). The cka1a2a3 mutations lengthened the expression period length of all genes examined without affecting the amplitude of their expression (Supplemental Fig. S1), which is consistent with the findings that the cka1a2a3 mutations affect period length but do not alter the amplitude and robustness of the circadian output rhythms such as leaf movement rhythms and CAB2::LUC rhythms under free-running conditions (Fig. 4). Therefore, CK2α subunits are important in controlling the pace of the Arabidopsis circadian clock.

The cka1a2a3 Triple Mutant Has Reduced CK2 Kinase Activity

To investigate whether aberrant clock function in the cka1a2a3 triple mutant is due to a defect in CK2 kinase activity, we performed a CK2 kinase assay using a CK2-specific peptide substrate and radiolabeled ATP. The cka1a2a3 triple mutant showed an approximately 70% reduction in kinase activity when compared with the wild type (Fig. 1C). Heparin, a specific inhibitor of CK2 (Park et al., 2008), was used in control reactions to demonstrate that the effect was only due to CK2 activity and not other kinases (Fig. 1C). These data suggest that the overall activity of the CK2 holoenzyme is affected by the cka1a2a3 triple mutations.

Phosphorylation of CCA1 Is Reduced in the cka1a2a3 Triple Mutant

In Arabidopsis, CCA1 is a central oscillator component (Wang and Tobin, 1998; Green and Tobin, 1999; Knowles et al., 2008). CCA1 protein phosphorylation by CK2 has been shown to be essential for its proper function in the circadian clock (Daniel et al., 2004). To determine the specific effects of CK2 activity on the phosphorylation of CCA1, we expressed CCA1 as a GST fusion protein in Escherichia coli and performed an in vitro kinase assay using radiolabeled GTP and different amounts of whole-cell plant extracts from light-grown seedlings. We used GTP in this assay (rather than ATP) to limit the activity of non-CK2 kinases in the reaction. Unlike many kinases, CK2 can utilize GTP as a phosphoryl donor nearly as efficiently (rather than ATP) to limit the activity of non-CK2 kinases in the reaction. Unlike many kinases, CK2 can utilize GTP as a phosphoryl donor nearly as efficiently as it can utilize ATP (Sugano et al., 1998). Plant extracts from wild-type seedlings phosphorylated GST-CCA1 more effectively than extracts from the cka1a2a3 triple mutant (Fig. 6A). We observed a 30% average reduction in the amount of phosphorylated GST-CCA1 in the triple mutant relative to the wild type (Fig. 6B). These data suggest that the cka1a2a3 mutations affect CCA1 phosphorylation in vitro. To examine whether CCA1 phosphorylation in planta is also impaired in the cka1a2a3 triple mutant, immunoblotting was performed using anti-CCA1 antibodies with total extracts from 2-week-old seedlings grown in 12L/12D and harvested at different times. CCA1 protein peaks at 1 h after dawn and decays rapidly within 6 h in wild-type plants (Fig. 7). In the cka1a2a3 triple mutant, a broader peak of CCA1 protein has been detected, which is

Figure 5. The cka1a2a3 triple mutations lengthen the free-running period of central oscillator gene expression. Shown is qRT-PCR analysis of CCA1 (A), LHY (B), TOC1 (C), and LUX (D) expression in wild-type and cka1a2a3 triple mutant plants under LL conditions. Ten-day-old seedlings were entrained in a 12L/12D cycle, transferred to LL, and harvested for 3 d at 4-h intervals. The mean of two biological replicates ± so is shown. Black circles, wild type; white squares, cka1a2a3. Day and subjective night are denoted by white and hatched bars, respectively. All experiments were done at least twice with similar results.
consistent with the period-lengthening phenotype observed in the cka1a2a3 triple mutant (Fig. 7). We were unable to differentiate the phosphorylated and unphosphorylated form of CCA1 protein. Together, these results suggest that CK2α subunits affect the pace of the circadian clock through their regulation of CCA1 phosphorylation and the timing of CCA1 protein abundance.

DISCUSSION

CK2 is a tetrameric protein kinase formed by two catalytic α-subunits and two regulatory β-subunits. Increasing evidence indicates that localization and interaction of CK2 subunits with other proteins is a dynamic process (Litchfield, 2003; Olsten et al., 2005). In fact, the CK2α monomer exists as an active form independent of β-subunits, and the regulatory β-subunit can modulate substrate specificity and catalytic activity (Sarno et al., 2002; Tamaru et al., 2009). It has also been reported that the regulatory β-subunit can interact with other protein kinases and perform functions independently of CK2 tetramers (Bibby and Litchfield, 2005). Arabidopsis has four catalytic α-subunits and four regulatory β-subunits (Salinas et al., 2006). Studies on the CKBs demonstrate that CKB3 and CKB4 interact with central clock component CCA1 and overexpression of CKB3 or CKB4 causes period shortening in Arabidopsis (Sugano et al., 1999; Perales et al., 2006). Nothing is known regarding the function of the CK2α subunits in the circadian clock and the clock phenotype of loss-of-function mutations in either α- or β-subunits has not been reported in Arabidopsis plants. We isolated T-DNA mutant lines for three CK2α subunits (CKA1, CKA2, and CKA3) that have been shown to be localized in the nucleus (Salinas et al., 2006). We expected that no obvious phenotype would be observed in any single mutant plants (Fig. 2; data not shown) due to the high sequence similarity among them (Salinas et al., 2006). We therefore generated cka2a3 double and cka1a2a3 triple mutants by genetic crosses. The cka2a3 double mutant has a subtle flowering-time phenotype and the cka1a2a3 triple mutant has a profound phenotype, flowering much later than the wild type under LD conditions (Fig. 2, A and B), supporting the idea that functional redundancy exists within this group of subunits. Interestingly, although CK2 participates in a wide variety of cellular processes, the cka1a2a3 triple mutation has no discernable effect on plant growth and development (Fig. 2; data not shown). Measurements of CK2 activity in whole-cell extracts revealed a significant decrease of CK2 activity in the cka1a2a3 triple mutant (Fig. 1C), which amounted to 30% of that of the wild-type plants. Our results are consistent with previous studies with ck2a antisense plants that showed a more than 60% inhibition of kinase activity compared with the wild type and had a low impact on plant growth and development (Lee et al., 1999).

Figure 6. Phosphorylation of GST-CCA1 protein in vitro using whole-cell extracts prepared from wild-type (WT) and cka1a2a3 seedlings. A, Recombinant GST-CCA1 protein was mixed with radiolabeled GTP and varying amounts of whole-cell extracts. Reactions were incubated at 30°C for 10 min. After washing, the reactions were subjected to SDS-PAGE. The gel was Coomassie stained (bottom image) and exposed to a phosphor screen (top image). The numbers above the lanes indicate the amounts of total protein from the whole-cell extracts that were added to the reaction. White arrowhead, Full-length GST-CCA1; asterisk, GST-CCA1 degradation product. The experiment was performed three times with similar results. B, Relative intensities of the full-length GST-CCA1 band (cka1a2a3/wild type) from the phosphor screen image shown in A. Error bars denote the SEM from three independent experiments.

Figure 7. CCA1 protein abundance in wild-type and cka1a2a3 triple mutant plant extracts. Shown are western-blot analysis of total plant extracts and detection with antibody to CCA1. Actin was used as a loading control. Two-week-old seedlings grown in 12L/12D were harvested at different times as indicated. The experiment was performed at least twice with similar results.
Recent studies showed that overexpression of the *ck2α* kinase-inactive mutant resulted in severe growth and developmental defects and eventually lethality (Moreno-Romero et al., 2008). The strong phenotype is probably due to the *ck2α* kinase-inactive mutant interacting and sequestering the endogenous CKBs (Moreno-Romero et al., 2008). Our *cka1a2a3* triple mutant allows us to examine the role of CK2α in the circadian system without affecting the endogenous CKBs and to separate clock defects from growth and developmental defects.

We found that *cka1a2a3* triple mutant plants are impaired in their ability to sense day length, flowering later than wild-type plants when grown under LD conditions. The *cka1a2a3* triple mutant exhibited reduced CO and FT expression, suggesting that CK2α subunits are involved in the photoperiodic flowering pathway for the regulation of floral induction. These results, combined with the finding that a CK2α subunit mediates the photoperiodic flowering response of rice (*Oryza sativa*; Takahashi et al., 2001), demonstrate that CK2α subunits play an important role in the regulation of flowering in both LD and SD plants. The circadian clock interacts with the photoperiodic pathway to regulate seasonal flowering; therefore, mutations that disrupt clock function often affect photoperiodic flowering (Yanovsky and Kay, 2003; Searle and Coupland, 2004). Our results revealed that the *cka1a2a3* triple mutations caused lengthening of the free-running period of various circadian output rhythms (leaf movement and CAB2::LUC activity), suggesting that CK2α subunits are important in regulating period length. Moreover, the *cka1a2a3* triple mutations caused period lengthening in the expression of all genes examined, including central clock genes (CCA1, LHY, TOC1, and LUX; Fig. 5) and genes involved in other interlocked feedback loops (PRR7, PRR9, GI, and ELF3; Supplemental Fig. S1). Taken together, these results suggest that CK2α subunits function close to the central oscillator in controlling the pace of the circadian clock.

In *Neurospora*, disruption of CK2α abolishes circadian rhythmicity and results in FRQ hypophosphorylation and elevated FRQ levels (Yang et al., 2002). In *Drosophila*, *ck2α* homozygote mutants do not live to adulthood and heterozygotes show a lengthened period of behavioral rhythms by 3 h, exceeding that of nearly all heterozygous circadian mutants in *Drosophila* (Lin et al., 2002). Considering the evolutionarily conserved function for CK2 in circadian clocks, the comparably weak phenotype observed in the *cka1a2a3* triple mutant (about 1.5 h longer period) suggests that either the fourth CK2α subunit (CKA4), which has been shown to be localized in the chloroplast (Salinas et al., 2006), could be exported out of the chloroplast to partially complement the loss of three nuclear-localized CKAs or the regulatory CKBs could perform functions independent of CK2 tetramers. It has been shown that CK2 can phosphorylate CCA1 and affect its function in the clock (Daniel et al., 2004). A recent study also showed that CK2 activity interferes with CCA1 DNA binding (Portolés and Más, 2010). Our observation that reduced CCA1 phosphorylation in vitro in the *cka1a2a3* triple mutant (Fig. 6) is consistent with the notion that lower CK2 activity leads to reduced CCA1 phosphorylation, which increases the residence time of CCA1 at the promoters and results in period lengthening. It is known that CK2 phosphorylation of the central clock component FRQ affects its protein stability in *Neurospora* (Liu et al., 2000). It is possible that phosphorylation by CK2 could target CCA1 protein for degradation. A broader peak of CCA1 protein in *cka1a2a3* triple mutant plants (Fig. 7) supports the idea that reduced CCA1 phosphorylation leads to more stable CCA1 protein, which results in period lengthening.

Our findings demonstrate that CK2α subunits play essential roles in the Arabidopsis clock by controlling the pace of the clock and that this control could be mediated by CCA1 phosphorylation. Circadian phenotypic differences between *Drosophila* CK2α and CK2β mutants suggest that catalytic and regulatory CK2 subunits may have distinct physiological roles in clock function. Further studies will be needed to elucidate the detailed mechanisms that regulate CK2 activity in vivo and the relative roles of α- and β-subunits in the Arabidopsis circadian system.

MATERIALS AND METHODS

Plant Material and Growth Conditions

Arabidopsis (*Arabidopsis thaliana*; Columbia ecotype) was used for all experiments described unless stated otherwise. *cha1* (SALK_073328), *cka2* (SALK_129301), and *cka3* (SALK_022432) were obtained from the Arabidopsis Biological Resource Center. *cka2* and *cka3* were crossed to obtain the *cka2a3* mutant that was then crossed with *cha1* to obtain the *cka1a2a3* triple mutant. Seedlings were grown under a 12 h fluorescent light (100 μmol m⁻² s⁻¹)/12 h dark (12L/12D) photoperiod at a constant temperature of 22°C, unless otherwise stated. All primers used in genotyping can be found in Supplemental Table S1.

Analysis of Circadian Rhythms

For the luciferase experiments, Arabidopsis plants homozygous for *cka1a2a3* and the wild type (Columbia) were transformed with the CAB2::LUC reporter (Knowles et al., 2008). T2 seedlings from three independent transformed lines were entrained for 6 d under 12L/12D conditions before being transferred to constant white light. Rhythmic bioluminescence was analyzed as previously described (Knowles et al., 2008). For leaf movement analysis, seedlings were entrained for 10 d under a 12L/12D cycle and then transferred to constant white light, and the vertical position of the primary leaves was monitored and analyzed as previously described (Lu et al., 2011). Rhythm data were analyzed with BRASS (available from http://www.amilar.org using the fast Fourier transform nonlinear least square program (Millar et al., 1995; Plautz et al., 1997).

Measurement of Flowering Time

Arabidopsis plants were grown on soil under either LD (16 h light/8 h dark) or SD (8 h light/16 h dark) conditions. Flowering time was scored by counting the number of days to, and number of rosette leaves at, flowering.

RNA Extraction and RT-PCR

One- to two-week-old seedlings were grown on Murashige and Skoog medium (Murashige and Skoog, 1962) with 1.5% agar. For the circadian
experiments, samples were collected every 4 h in continuous white light. Total RNA was isolated using the Illustra RNeasy mini kit (GE Healthcare). cDNA was synthesized from 1 μg of total RNA using the SuperScript first-strand cDNA synthesis system (Invitrogen). Quantitative (q)RT-PCR and semiquantitative RT-PCR were carried out as previously described (Lu et al., 2008). Actin2 and Actin7 were used as a noncycling reference for qRT-PCR and semiquantitative RT-PCR, respectively. Expression levels were normalized to the level of the control.

CK2 Activity Assays

Whole-cell extracts were prepared from 7-d-old plants. After harvesting, the plants were ground to a powder in liquid nitrogen. Fifty microliters of CK2 buffer (50 mM Tris-HCl, 10 mM MgCl2, 1 mM phenylmethylsulfonyl fluoride, 1 μg protease inhibitor cocktail-EDTA [Boehringer Mannheim]) was added to approximately 100 μl of ground tissue and the mixture was briefly crushed with a small pestle. Cell debris was pelleted by centrifugation at 16,000 g and discarded. Total protein concentration in the extract was determined by the Bradford assay. Quantitation of CK2 activity in the extracts was accomplished using the CK2 assay kit (Millipore, catalog no. 17-132). Fifteen micrometers of protein from the whole-cell extracts and 5 μCi [γ-32P]ATP were used for this assay. Reactions were incubated at 30°C for 10 min. For CK2 assays involving GST-CCA1 as a substrate, a substrate was approximately 2 μg of GST-CCA1 bound to sepharose beads (Sugano et al., 1998) and whole-cell extracts containing 1, 5, 10, or 20 μg of GST-CCA1 were mixed with 10 μl of whole-cell extracts and 1 μl of CK2 buffer (10 μM NaVO3, 20 μM GTP, 5 μCi [γ-32P] GTP). Reactions (40 μl each) were incubated at 30°C for 10 min and then stopped by adding 2 μl of 0.5x EDTA. The beads were washed three times in 0.75 ml of wash buffer (1× CK2 buffer, 1× protease inhibitor cocktail-EDTA, 0.1% NP-40). Five microliters of 4× SDS loading buffer was added to the beads and the samples were boiled for 5 min before running on a 10% SDS gel. The gel was stained with Coomassie Brilliant Blue R-250, destained, and dried using a gel dryer. The gel was then exposed to a phosphor screen.

Plant Protein Extracts and Immunoblot Analysis

Proteins were extracted in 1× extraction buffer (50 mM Tris, pH 8.0, 150 mM NaCl, 1 mM EDTA, 10% glycerol, 1% Triton X-100, 2 μM phenylmethylsulfonyl fluoride, 50 μM MG115, 50 μM MG132, and protease inhibitor cocktail [Roche]). Immunoblotting was performed as described (Lu et al., 2009) with the appropriate primary antibody (affinity-purified anti-CCA1 antibody [Wang and Tobin, 1998], anti-Actin [MP Biomedicals, Clone C4]). Sequence data from this article can be found in the Arabidopsis Genome Initiative data library using the following accession numbers: CKA1 (At1g57380), CKA2 (At3g50000), CKA3 (At2g25980), CAB2 (At1g29920), FT (At1g56480), CO (At1g51850), FLC (At5g10140), SOCI (At2g45660), ACT2 (At3g18780), ACT7 (At5g09810), CCA1 (At2g46380), LHY (At1g01060), TOC1 (At3g13800), LUX (At5g42640), GI (At1g22770), PRK7 (At5g02810), PRR9 (At2g46790), and ELF3 (At2g29930).

Supplemental Data

The following materials are available in the online version of this article.

Supplemental Figure S1. The cka1a2a1 triple mutations lengthen the period of expression of clock-controlled genes.

Supplemental Table S1. List of PCR primer sequences.

ACKNOWLEDGMENTS

We acknowledge the assistance of Arabidopsis Biological Resource Center, which provided the cka1, cka2, and cka3 T-DNA mutant lines. We thank Candace Webb for her critical reading of the manuscript.

Received May 10, 2011; accepted September 5, 2011; published September 7, 2011.

LITERATURE CITED

Achten B, Jauch E, Genova GK, Kim EY, Edery I, Raabe T, Jackson FR (2003) A role for CK2 in the Drosophila circadian oscillator. Nat Neurosci 6: 251–257

Bibby AC, Litchfield DW (2005) The multiple personalities of the regulatory subunit of protein kinase CK2: CK2 dependent and CK2 independent roles reveal a secret identity for CK2beta. Int J Biol Sci 1: 67–79

Covington MF, Panda S, Liu XL, Stayer CA, Wagner DR, Kay SA (2001) ELF3 modulates resetting of the circadian clock in Arabidopsis. Plant Cell 13: 1305–1315

Daniel X, Sugano S, Tobin EM (2004) CK2 phosphorylation of CCA1 is necessary for its circadian oscillator function in Arabidopsis. Proc Natl Acad Sci USA 101: 3292–3297

Dodd AN, Salathia N, Hall A, Kévei E, Tóth R, Nagy F, Hibberd JM, Millar AJ, Webb AA (2005) Plant circadian clocks increase photosynthesis, growth, survival, and competitive advantage. Science 309: 630–633

Doyle MR, Davis SJ, Bastow RM, McMatters HG, Kozma-Bognár L, Nagy F, Millar AJ, Amasino RM (2002) The ELF4 gene controls circadian rhythms and flowering time in Arabidopsis thaliana. Nature 419: 74–77

Dunlap JC (1999) Molecular bases for circadian clocks. Cell 96: 271–290

Farmer ME, Harmer SL, Halliday FC, Yanovsky MJ, Kay SA (2005) Overlapping and distinct roles of PRR7 and PRR9 in the Arabidopsis circadian clock. Curr Biol 15: 47–54

Green RM, Tingay S, Wang ZY, Tobin EM (2002) Circadian rhythms confer a higher level of fitness to Arabidopsis plants. Plant Physiol 129: 576–584

Green RM, Tobin EM (1999) Loss of the circadian clock-associated protein 1 in Arabidopsis results in altered clock-regulated gene expression. Proc Natl Acad Sci USA 96: 4176–4179

Hazen SP, Schultz TF, Fruneda-Paz JL, Borevitz JO, Ecker JR, Kay SA (2005) LUX ARRHYTHMO encodes a Myb domain protein essential for circadian rhythms. Proc Natl Acad Sci USA 102: 10387–10392

Helliwell CA, Wood CC, Robertson M, James Peacock W, Dennis ES (2006) The Arabidopsis FLC protein interacts directly in vivo with SOC1 and FT chromatin and is part of a high-molecular-weight protein complex. Plant J 46: 183–194

Hicks KA, Millar AJ, Carre IA, Somers DE, Straume M, Meeks-Wagner DR, Kay SA (1996) Conditional circadian dysfunction of the Arabidopsis early-flowering 3 mutant. Science 274: 790–792

Kikis EA, Khanna R, Quail PH (2005) ELF4 is a phytochrome-regulated component of a negative-feedback loop involving the central oscillator components CCA1 and LHY. Plant J 44: 300–313

Kim J, Somers DE (2010) Rapid assessment of gene function in the circadian clock using artificial microRNA in Arabidopsis mesophyll protoplasts. Plant Physiol 154: 611–621

Knowles SM, Lu SX, Tobin EM (2008) Testing time: can ethanol-induced pulses of proposed oscillator components phase shift rhythms in Arabidopsis? J Biol Rhythms 23: 463–471

Lee Y, Lloyd AM, Roux SJ (1999) Antisense expression of the CK2 alpha-subunit gene in Arabidopsis: effects on light-regulated gene expression and plant growth. Plant Physiol 119: 989–1000

Lin JM, Kilman VL, Keggen K, Paddock B, Emery-Le M, Rosbash M, Allada R (2002) A role for casein kinase 2 alpha in the Drosophila circadian clock. Nature 420: 816–820

Litchfield DW (2003) Protein kinase CK2: structure, regulation and role in cellular decisions of life and death. Biochem J 369: 1–15

Liu H, Yu X, Li K, Klejnot J, Yang H, Lisiero D, Lin C (2008) Photoexcited CRY2 interacts with CIB1 to regulate transcription and floral initiation in Arabidopsis. Science 322: 1533–1539

Liu XL, Covington MF, Fankhauser C, Chory J, Wagner DR (2001) ELF3 encodes a circadian clock-regulated nuclear protein that functions in an Arabidopsis PHYB signal transduction pathway. Plant Cell 13: 1293–1304

Liu Y, Loris J, Dunlap JC (2000) Phosphorylation of the Neurospora clock protein FREQUENCY determines its degradation rate and strongly influences the period length of the circadian clock. Proc Natl Acad Sci USA 97: 234–239

Locke JC, Southern MM, Kozma-Bognár L, Hibberd V, Brown PE, Turner MS, Millar AJ (2005) Extension of a genetic network model by iterative experimentation and mathematical analysis. Mol Syst Biol 1: 2005.0013

Lu SX, Knowles SM, Andronis C, Ong MS, Tobin EM (2009) CIRCADIAN CLOCK ASSOCIATED1 and LATE ELONGATED HYOCOTYL func-
tion synergistically in the circadian clock of Arabidopsis. Plant Physiol 150: 834–843.

Lu SX, Knowles SM, Webb CJ, Celaya RB, Cha C, Siu JP, Tobin EM (2011) The Junomucin C-containing protein JM30 regulates period length in the Arabidopsis circadian clock. Plant Physiol 155: 906–915.

McClung CR (2006) Plant circadian rhythms. Plant Cell 18: 792–803.

Meggio F, Finna LA (2003) One-thousand-and-one substrates of protein kinase CK2? FASEB J 17: 349–368.

Mehra A, Baker CL, Loros JJ, Dunlap JC (2009) Post-translational modifications in circadian rhythms. Trends Biochem Sci 34: 483–490.

Millar AJ, Carré IA, Strayer CA, Chua NH, Kay SA (2002) Control of flowering time. Mol Cell Biochem 249–250: 594–605.

Moreno-Romero J, Espunya MC, Platara M, Arinò J, Martínez MC (2008) A role for protein kinase CK2 in plant development: evidence obtained using a dominant-negative mutant. Plant J 55: 118–130.

Mouradov A, Cremer F, Coupland G (2002) Control of flowering time: interacting pathways as a basis for diversity. Plant Cell (Suppl) 14: S111–S130.

Murashige T, Skoog F (1962) A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiol Plant 15: 473–497.

Nakamichi N, Kiba T, Henriques R, Mizuno T, Chua NH, Sakakibara H (2010) PSEUDO-RESPONSE REGULATORS 9, 7, and 5 are transcriptional repressors in the Arabidopsis circadian clock. Plant Cell 22: 594–605.

Olsten ME, Weber JE, Litchfield DW (2005) CK2 interacting proteins: emerging paradigms for CK2 regulation? Mol Cell Biochem 274: 115–124.

Onai K, Ishiura M (2005) PHYTOCLOCK 1 encoding a novel GARP protein essential for the Arabidopsis circadian clock. Genes Cells 10: 963–972.

Ouyang Y, Andersson CR, Kondo T, Golden SS, Johnson CH (1998) Resonating circadian clocks enhance fitness in cyanobacteria. Proc Natl Acad Sci USA 95: 8660–8664.

Pard C (2005) Flowering: a time for integration. Int J Dev Biol 49: 585–593.

Park HJ, Ding L, Dai M, Lin R, Wang H (2008) Multisite phosphorylation of Arabidopsis HFR1 by casein kinase II and a plausible role in regulating its degradation rate. J Biol Chem 283: 23264–23273.

Perales M, Portolés S, Más P (2006) The protease-dependent degradation of CKB4 is regulated by the Arabidopsis biological clock. Plant J 46: 849–860.

Plautz JD, Straume M, Stanewsky R, Jamison CF, Brandes C, Dowse HB, Hall JC, Kay SA (1997) Quantitative analysis of Drosophila period gene transcription in living animals. J Biol Rhythms 12: 204–217.

Portolés S, Más P (2010) The functional interplay between protein kinase CK2 and CCA1 transcriptional activity is essential for clock temperature compensation in Arabidopsis. PLoS Genet 6: e1001201.

Pruneda-Paz JL, Breton G, Para A, Kay SA (2009) A functional genomics approach reveals CHE as a component of the Arabidopsis circadian clock. Science 323: 1481–1485.

Salinas P, Fuentes D, Vidal E, Jordana X, Echeverria M, Holuligue L (2006) An extensive survey of CK2 alpha and beta subunits in Arabidopsis: multiple isoforms exhibit differential subcellular localization. Plant Cell Physiol 47: 1295–1308.

Sarno S, Ghisellini F, Pinna LA (2002) Unique activation mechanism of protein kinase CK2: the N-terminal segment is essential for constitutive activity of the catalytic subunit but not of the holoenzyme. J Biol Chem 277: 22509–22514.

Searle I, Coupland G (2004) Induction of flowering by seasonal changes in photoperiod. EMBO J 23: 1217–1222.

Suárez-López P, Wheatley K, Robson F, Onouchi H, Valverde F, Coupland G (2001) CONSTANS mediates between the circadian clock and the control of flowering in Arabidopsis. Nature 410: 1116–1120.

Sugano S, Andronis C, Green RM, Wang ZY, Tobin EM (1998) Protein kinase CK2 interacts with and phosphorylates the Arabidopsis circadian clock-associated 1 protein. Proc Natl Acad Sci USA 95: 11020–11025.

Sugano S, Andronis C, Ong MS, Green RM, Tobin EM (1999) The protein kinase CK2 is involved in regulation of circadian rhythms in Arabidopsis. Proc Natl Acad Sci USA 96: 12362–12366.

Takahashi Y, Shomura A, Sasaki T, Yano M (2001) Hd6, a rice quantitative trait locus involved in photoperiod sensitivity, encodes the alpha subunit of protein kinase CK2. Proc Natl Acad Sci USA 98: 7922–7927.

Tamaru T, Hirayama J, Isojima Y, Nagai K, Norioka S, Takamatsu K, Sassone-Corsi P (2009) CK2alphaphosphorylates BMAL1 to regulate the mammalian clock. Nat Struct Mol Biol 16: 446–448.

Tsuiyi Y, Akashi M, Matsuda M, Goto K, Miyata Y, Node K, Nishida E (2009) Involvement of the protein kinase CK2 in the regulation of mammalian circadian rhythms. Sci Signal 2: ra26.

Valverde F, Mouradov A, Soppe W, Ravenscroft D, Samach A, Coupland G (2004) Photoreceptor regulation of CONSTANS protein in photoperiodic flowering. Science 303: 1003–1006.

Wang ZY, Tobin EM (1998) Constitutive expression of the CIRCADIAN CLOCK ASSOCIATED 1 (CCA1) gene disrupts circadian rhythms and suppresses its own expression. Cell 93: 1207–1217.

Yang Y, Cheng P, He Q, Wang L, Liu Y (2003) Phosphorylation of FREQUENCY protein by casein kinase II is necessary for the function of the Neurospora circadian clock. Mol Cell Biol 23: 6221–6228.

Yang Y, Cheng P, Liu Y (2002) Regulation of the Neurospora circadian clock by casein kinase II. Genes Dev 16: 994–1006.

Yanovsky MJ, Kay SA (2002) Molecular basis of seasonal time measurement in Arabidopsis. Nature 419: 308–312.

Yanovsky MJ, Kay SA (2003) Living by the calendar: how plants know when to flower. Nat Rev Mol Cell Biol 4: 265–275.

Young MW, Kay SA (2001) Time zones: a comparative genetics of circadian clocks. Nat Rev Genet 2: 702–715.