Spine pruning drives antipsychotic-sensitive locomotion via circuit control of striatal dopamine

Il Hwan Kim, Mark A Rossi, Dipendra K Aryal, Bence Racz, Namsoo Kim, Akiyoshi Uezu, Fan Wang, William C Wetsel, Richard J Weinberg, Henry Yin & Scott H Soderling

Psychiatric and neurodevelopmental disorders may arise from anomalies in long-range neuronal connectivity downstream of pathologies in dendritic spines. However, the mechanisms that may link spine pathology to circuit abnormalities relevant to atypical behavior remain unknown. Using a mouse model to conditionally disrupt a critical regulator of the dendritic spine cytoskeleton, the actin-related protein 2/3 complex (Arp2/3), we report here a molecular mechanism that unexpectedly reveals the inter-relationship of progressive spine pruning, elevated frontal cortical excitation of pyramidal neurons and striatal hyperdopaminergia in a cortical-to-midbrain circuit abnormality. The main symptomatic manifestations of this circuit abnormality are psychomotor agitation and stereotypical behaviors, which are relieved by antipsychotics. Moreover, this antipsychotic-responsive locomotion can be mimicked in wild-type mice by optogenetic activation of this circuit. Collectively these results reveal molecular and neural-circuit mechanisms, illustrating how diverse pathologies may converge to drive behaviors relevant to psychiatric disorders.

Despite several decades of study, the mechanisms of neural circuit disturbances leading to major psychiatric symptoms remain poorly understood. Nevertheless, deciphering the circuit basis of neuropsychiatric disorders holds great potential for unifying the diverse manifestations of synaptic pathophysiology thought to lie at the root of these conditions. Moreover, distilling the polygenic basis for major psychiatric illnesses as interactions of risk alleles that alter molecular pathways important for neuronal connectivity may explain how certain risk alleles can contribute to multiple disorders.

This conceptual framing of psychiatric disorders as circuit and pathway disruptions has stimulated recent analyses of genetic risk data sets for synaptic regulatory pathways that are over-represented among neuropsychiatric risk alleles. One molecular pathway notably highlighted by this approach is the regulation of the synaptic actin cytoskeleton. Indeed, neuropsychiatric risk genes such as GIT1, SRGAP1, LIMK1, NRG1, CYFIP1, SYNGAP1, KALRN and CNKSR2 functionally orchestrate the upstream regulation of signaling events that modulate actin cytoskeletal dynamics in dendritic spines. Dendritic spines serve as the sites for most excitatory synaptic transmission in the brain; morphological abnormalities of these structures are implicated in multiple psychiatric and neurodevelopmental disorders. Actin dynamics in spines is intimately associated with spine morphogenesis and the efficacy of synaptic transmission. However, it remains unclear how disruptions of the synaptic actin cytoskeletal pathway directly relate to the synaptic pathophysiology that result in neural circuit disturbances.

Recently, we analyzed the actin signaling pathway in mice, testing whether the functional loss of the Arp2/3 complex in excitatory neurons of the cerebral cortex can model synaptic and behavioral phenotypes congruent to endophenotypes relevant to psychiatric disorders. The Arp2/3 complex directly stimulates actin polymerization in spines downstream of synaptic activation of the small GTPase Rac and is composed of seven subunits, including the critical ArpC3 subunit that we conditionally targeted with a floX-flanked (f) allele (Arpc3f/f:Camk2a-Cre, hereafter referred to as Arp2/3 mutant mice). Inhibition of this molecular pathway in cortical pyramidal neurons by deletion of Arpc3 resulted in a gradual loss of dendritic spines and in the progressive onset of behavioral abnormalities, including cognitive deficiencies, sociability deficits, reduced sensorimotor gating and locomotor hyperactivity.

We report here the identification and analysis of a long-range neural circuit disturbance in the Arp2/3 mutant mice. We demonstrate that loss of Arp2/3 activity, which induces spine loss and abnormal synaptic contacts, leads to an autonomous enhancement of excitation of pyramidal cells in the frontal cortex. This abnormality results in elevated striatal dopamine (DA) and antipsychotic-responsive psychomotor disturbances, via a long-range projection to midbrain tyrosine hydroxylase (TH)-positive neurons. Together these findings demonstrate that diverse pathologies (cortical spine pruning, cortical...
excitation and striatal hyperdopaminergia) can converge within a long-range circuit disturbance to trigger abnormal locomotor behavior.

RESULTS
Arp2/3 mutant mice respond to antipsychotics

The Arp2/3 mutant mouse model progressively develops psychomotor disturbances, including locomotor hyperactivity and stereotypical activity. Psychomotor behaviors in rodent models often respond to antipsychotics and are triggered by drugs that induce psychosis in humans. To evaluate the Arp2/3 mutant model, we therefore tested the responses of the mice to antipsychotics. In the open field test, adult mutant mice (120–150 days old) displayed an increased distance traveled (Fig. 1a,b), enhanced rearing (Supplementary Fig. 1a,b) and stereotyped behaviors (Supplementary Fig. 1c,d), as compared to their littermate controls. In accord with previous studies, the antipsychotic haloperidol at efficacious doses had slight sedating effects in control mice (Supplementary Fig. 1e–g). However, in the Arp2/3 mutant mice, the behavioral abnormalities were dramatically reduced by haloperidol in a dose-dependent manner, and they were also significantly blunted by a 0.5 mg/kg dose of the atypical antipsychotic clozapine, which showed almost no sedating effect on wild-type (WT) mice (Fig. 1a,b and Supplementary Fig. 1).

Antipsychotics are thought to ameliorate psychomotor symptoms largely by antagonizing effects of DA in the striatum, suggesting that motor disturbances in the Arp2/3 mutant mice may be due to elevated striatal DA (stDA). To test this possibility, we measured DA and its metabolites in control mice (Supplementary Fig. 1e–g). However, in the Arp2/3 mutant mice, the behavioral abnormalities were dramatically reduced by haloperidol in a dose-dependent manner, and they were also significantly blunted by a 0.5 mg/kg dose of the atypical antipsychotic clozapine, which showed almost no sedating effect on wild-type (WT) mice (Fig. 1a,b and Supplementary Fig. 1).

To investigate a possible link between these observations in the Arp2/3 mutant model, we used a rescue approach to screen cortical areas that might be responsible for the locomotor hyperactivity and stDA.

Figure 1 Arp2/3 mutant mice respond to antipsychotics and exhibit elevated stDA. (a) Open field analysis of locomotor activity over time for Arp2/3 mutant (Arpc3f/f;Camk2a-Cre) or control (Arpc3f/f) mice given i.p. vehicle (saline) or drug (haloperidol or clozapine) at 60 min (arrow) (n = 12–21). (b) Cumulative distance moved per hour for each condition from Supplementary Fig. 1, adult mutant mice (120–150 days old) displayed an increased distance traveled (Fig. 1a,b), enhanced rearing (Supplementary Fig. 1a,b) and stereotyped behaviors (Supplementary Fig. 1c,d), as compared to their littermate controls. In accord with previous studies, the antipsychotic haloperidol at efficacious doses had slight sedating effects in control mice (Supplementary Fig. 1e–g). However, in the Arp2/3 mutant mice, the behavioral abnormalities were dramatically reduced by haloperidol in a dose-dependent manner, and they were also significantly blunted by a 0.5 mg/kg dose of the atypical antipsychotic clozapine, which showed almost no sedating effect on wild-type (WT) mice (Fig. 1a,b and Supplementary Fig. 1).

Antipsychotics are thought to ameliorate psychomotor symptoms largely by antagonizing effects of DA in the striatum, suggesting that motor disturbances in the Arp2/3 mutant mice may be due to elevated striatal DA (stDA). To test this possibility, we measured DA and its metabolites in control mice (Supplementary Fig. 1e–g). However, in the Arp2/3 mutant mice, the behavioral abnormalities were dramatically reduced by haloperidol in a dose-dependent manner, and they were also significantly blunted by a 0.5 mg/kg dose of the atypical antipsychotic clozapine, which showed almost no sedating effect on wild-type (WT) mice (Fig. 1a,b and Supplementary Fig. 1).

To investigate a possible link between these observations in the Arp2/3 mutant model, we used a rescue approach to screen cortical areas that might be responsible for the locomotor hyperactivity and stDA.
We selectively re-expressed recombinant ArpC3 in Cre-positive knockout (KO) neurons in specific brain regions of the Arp2/3 mutant mice using a Flex–adeno-associated virus (AAV)-mediated regional rescue (FARR) strategy to functionally map behavioral phenotypes (Fig. 2a,b) (the selective expression of our Flex-AAV in Cre-positive cells is shown in Supplementary Fig. 3a–d). Bilateral FARR targeting the frontal cortex to coexpress ArpC3 and GFP using the ribosomally skipping 2A sequence (Flex-AAV-ArpC3-2A-GFP) significantly curtailed the locomotor hyperactivity (Fig. 2c,d), elevated rearing behavior (Fig. 2e and Supplementary Fig. 4a) and stereotypical activity (Fig. 2f and Supplementary Fig. 4b) of the Arp2/3 mutant mice. In contrast, bilateral expression of GFP (Flex-AAV-GFP) alone did not normalize these phenotypes. This effect was specific to the frontal cortex, as the same FARR strategy in the hippocampus did not rescue the motor hyperactivity of the mutant mice (Supplementary Fig. 5).

Sensory-motor gating, as assessed by pre-pulse inhibition (PPI), was previously shown to be disrupted in ArpC3 mutant mice^25. Testing revealed that the reduced PPI in the mutant mice was not normalized by re-expression of ArpC3 in the frontal cortex (Supplementary Fig. 4c), implying that rescue of Arp2/3 in this region is not sufficient to restore normal PPI. We conclude that the frontal cortex is not the primary site important for sensory-motor gating but that it is critical for the abnormal locomotor behavior seen in the Arp2/3 mutant mice.

We next asked whether the rescue of Arp2/3 function in the frontal cortex normalized the elevated stDA found in the Arp2/3 mutant mice. Microdialysis of the ventral striatum (Fig. 2g) revealed an ~3-fold elevation in extracellular DA in the striatum of the Arp2/3 mutant mice. Notably, DA levels were reduced by the re-expression of ArpC3 in frontal cortex, but not by GFP alone (Fig. 2h). These
data support the hypothesis that loss of Arp2/3 function in frontal cortical neurons leads to abnormal behaviors through elevated DA in the striatum.

We further tested this possibility by unilateral injection of rescue virus into the frontal cortex in Arp2/3 mutant mice, followed by monitoring for circling movement, a phenotype classically associated with imbalance into the frontal cortex in Arp2/3 mutant mice, followed by monitoring for DA in the striatum.

We further tested this possibility by unilateral injection of rescue virus into the frontal cortex in Arp2/3 mutant mice, followed by monitoring for circling movement, a phenotype classically associated with imbalance into the frontal cortex in Arp2/3 mutant mice, followed by monitoring for DA in the striatum.

Finally, we specifically disrupted Arp2/3 function in the frontal cortex by infection of AAV-Camk2a-Cre-GFP into the frontal cortical region of ArpC3f/f mice. Bilaterally infected mice displayed a significant ($P < 0.05$) increase of locomotor activity compared to that of GFP-infected littermate controls (Supplementary Fig. 6 and Supplementary Table 1), confirming the significance of this region of cortex in controlling locomotor behaviors. Together the combined data show that Arp2/3 loss in the frontal cortex is responsible for the locomotor symptoms and is associated with elevated extracellular stDA of these mice.

**Frontal cortical neurons project to DA neurons of the VTA/SNc.** How does loss of Arp2/3 function in excitatory neurons of the frontal cortex affect stDA levels and motor behaviors? Most stDA is supplied by release from terminals originating from TH-positive neurons in the ventral tegmental area and substantia nigra pars compacta (VTA/SNc). Previous studies have suggested that there is a projection from frontal cortical neurons to the VTA/SNc region. To determine whether the relevant cortical neurons of the Arp2/3 model show a
similar projection, we examined the anterograde projections of frontal cortical neurons infected by the Flex-AAV-ArpC3-2A-GFP (Fig. 3a). GFP-positive axons projected ~1 cm to the VTA/SNc area (Fig. 3b). High-magnification views confirmed that axons from excitatory neurons in frontal cortex projected ventrally through the striatum and then traversed dorsally toward TH-positive DA neurons in the VTA/SNc (Fig. 3c). Reconstructed projections from confocal z-series showed contacts between GFP-positive frontal cortical axons and TH-positive neurons in the VTA/SNc (Fig. 3d,e). These findings suggest that the loss of Arp2/3 in the frontal cortex can directly influence DA-producing VTA/SNc neurons.

To establish the population of frontal cortical neurons that make synaptic contacts in the VTA/SNc and to directly visualize this circuit, we performed retrograde tracing of Cre-dependent GFP expression (Fig. 3f). Cre-expressing lentiviruses were coated with rabies virus glycoprotein (lenti-FuGB2-Cre) for retrograde expression of Cre recombinase through injection of presynaptic terminals. We independently tested the retrograde expression of Cre by infection of the VTA/SNc region with lentivirus bearing Cre in Ai-14 Cre reporter mice. tdTomato expression was readily detected in neurons that project their axons into the VTA/SNc, including medium spiny neurons in the striatum and pyramidal cells in the frontal cortex (Supplementary Fig. 7a–c), confirming the expected retrograde expression of Cre.

Using this strategy, the VTA/SNc of WT mice was infected with lentivirus bearing Cre and the frontal cortex was infected with AAV-Flex-GFP (Cre reporter). GFP expression in neurons of the frontal cortex marked those neurons that project their axons to neurons of the VTA/SNc and that had been infected by the lentivirus (lenti-FuGB2-Cre virus (Fig. 3g). Two weeks after the infection, optically cleared 300-µm-thick brain sections revealed pyramidal cell bodies of GFP-positive neurons in layers 3 to 5 of the frontal cortex (Fig. 3h). High-magnification views showed axons from these pyramidal neurons directly projecting to the VTA/SNc (Fig. 3i and Supplementary Video 1). Confocal imaging verified that the axonal terminals of the GFP-positive axons from the frontal cortex made vesicular glutamate transporter 1 (Vglut1)-positive excitatory synaptic contacts with TH-positive DA neurons in the VTA/SNc (Fig. 3j,k and Supplementary Video 1). Unilateral injection of lentivirus bearing Cre into the VTA/SNc yielded an ipsilateral expression of Flex-GFP in the frontal cortex, indicating that the cortico-VTA/SNc circuitry of each cortical hemisphere is independent (Supplementary Fig. 7d,e). Together these data confirm that a subpopulation of neurons in layers 3–5 of the frontal cortex provide a direct ipsilateral excitatory input to TH-positive neurons in the VTA/SNc.

**Spine pruning leads to abnormal synaptic contacts in the frontal cortex**

A direct excitatory pathway from the frontal cortex to the VTA/SNc implies that increased excitation of this circuit could lead to increased motor activity associated with elevated stDA. However, our finding of a loss of dendritic spines suggested that these neurons should be less excitable, as a result of reduced glutamatergic input. Therefore, we further examined the ultrastructural morphology of frontal cortical pyramidal neuron synapses in the Arp2/3 mutant mice (Fig. 4a).

Transmission electron microscopic examination of randomly selected fields confirmed the loss of spines receiving synaptic contacts in layers 3–5 from the Arp2/3 mutant mice (control: 32.7 ± 0.8 per 100 µm²; Arp2/3 mutant: 17.2 ± 0.6 per 100 µm²) (Fig. 4b). Unexpectedly, the proportion of asymmetric synapses formed directly onto dendritic shafts was greatly increased (more than fivefold) in the Arp2/3 mutant mice (control: 2.4% ± 0.5%; Arp2/3 mutant: 13.8% ± 3.0%) (Fig. 4b,c). Moreover, the neuropil from Arp2/3 mutant mice contained a substantial fraction of abnormal spines with short wide necks and flattened heads contacted by two spatially separated axon terminals; these aberrant double-axon synapses were never detected in WT mice (control: 0% ± 0%; mutant: 12.7% ± 2.0%) (Fig. 4b,d).

In contrast, immunoelectron microscopy analysis of the GABAergic input revealed a slight but significant increase in the density of GABAergic synaptic contacts in the mutant material (control: 12.2 ± 0.5 per 100 µm²; mutant: 14.7 ± 0.5 per 100 µm²; P = 0.0007) in a comparable set of fields from frontal cortex (Supplementary Fig. 8). These data demonstrate that the main effect of Arp2/3 loss in cortical neuropil is on excitatory synaptic contacts, which leads to a reduction in the number of normal axonal-spine synapses. Nevertheless, axonal contacts remain, and they either shift directly onto dendritic shafts or form multi-axonal synaptic contacts on the remaining spines.

**Spine loss results in enhanced pyramidal neuron excitation**

Dendritic spines are thought to compartmentalize and filter synaptic input. We hypothesized that, in the absence of normal spine structures, the observed shaft and multi-axonal synapses might contribute to aberrant neuronal excitation. To test the impact of these abnormal synaptic contacts on the excitation of the cortico-VTA/SNc circuit, we selectively disrupted Arp2/3 function in this circuit to analyze synaptic physiology. The VTA/SNc of Arp2/3 mice was infected by lentivirus bearing Cre viruses for retrograde expression of Cre recombinase. Cre-positive neurons in the frontal cortex (projecting

---

**Figure 4** Loss of Arp2/3 function leads to the formation of abnormal synaptic contacts. (a) Schematic illustrating three types of asymmetric synaptic contacts observed in the Arp2/3 mutant mice. (b) Graph showing mean numbers of three types of synapses in control (Arp2/3f/f: Camk2a-Cre; black; n = 70 micrographs from 3 mice) and Arp2/3 mutant (Arp2/3f/f:Camk2a-Cre; blue; n = 75 micrographs from 3 mice) mice (independent t-test, *P < 0.0001). (c) Electron micrographs of asymmetric synapses (arrowheads) making direct contact with dendritic shafts (brown) in the frontal cortex of Arp2/3 mutant mice. Scale bars, 500 nm. (d) Serial electron micrographs (left) depicting an example of a reconstructed double axonal spine in the frontal cortex of Arp2/3 mutant mouse. Scale bar, 250 nm; sp, spine; d, dendrite; PSD, postsynaptic density. *P < 0.0001. N.D., not detected. Data are presented as mean ± s.e.m.
to the VTA/SNC) were selectively labeled by unilateral infection with either Flex-AAV-GFP (control) or Flex-AAV-ArpC3-2A-GFP (rescue) viruses (Fig. 5a). Confocal z-series stacks of GFP-positive neurons followed by three-dimensional reconstruction from each side of the frontal cortex verified that there were no differences in spine densities between control KO neurons or rescued neurons 10 days after infection (DAI) (Fig. 5b,c). However, at 30 DAI, control KO neurons displayed a 53% loss of spines, compared to rescued neurons from the contralateral side (Fig. 5b,c). This progressive loss of spines over time agrees with our previous report that spines are gradually lost upon Cre-mediated loss of Arp2/3 function in vivo35. This time course provided a framework for analyzing the functional consequences of spine loss over time.

We next performed whole-cell patch-clamp recordings of GFP-positive KO and rescue neurons at each time period (Fig. 5d). At 10 DAI, when spine density was still normal, there were no differences in either the miniature excitatory postsynaptic current (mEPSC) amplitude or frequency (Fig. 5e–g and Supplementary Fig. 9). In contrast, at 30 DAI both mEPSC amplitude and frequency were significantly elevated in the KO neurons, compared to rescued neurons (Fig. 5e–g and Supplementary Fig. 9). These findings show that the progressive loss of spines in the VTA/SNC-projecting cortical neurons is associated with the appearance of a cell-autonomous increase in neuronal excitation. This enhanced excitation may be due to the morphological abnormalities (abnormal shaft and double synapses) that emerge in response to the progressive loss of spines.

**Activation of the frontal cortex-to-VTA/SNC circuit induces locomotion**

The above behavioral, microdialysis and electrophysiological data show that loss of Arp2/3 function triggers abnormal synaptic contacts leading to hyperactivation of a frontal cortex-to-VTA/SNC circuit. This increase in activity might ultimately drive elevated stDA and haloperidol-sensitive locomotion. Accordingly, we hypothesized that selective activation of this circuit would elevate locomotor activity in WT mice, mimicking this phenotype of the Arp2/3 mutant mice. To test this hypothesis, we labeled the cortico-VTA/SNC circuit with channelrhodopsin-2 (ChR2) using a VTA/SNC lenti-FuGB2-Cre and cortical Flex-AAV-ChR2 bilateral viral infection strategy (Fig. 6a). (Selective expression of Flex-AAV-ChR2-mCherry in Cre-positive cells is shown in Supplementary Fig. 3e–h.) This enabled the selective activation of the circuit by optogenetic stimulation.

Stimulation of this pathway (473 nm, 10-ms square pulses at 30 Hz) evoked ~2-fold elevation of locomotor activity coincident with the onset of laser stimulation (Fig. 6b–d). However, the illumination of the same area without ChR2 (opsin-free) did not alter the activity of mice (Fig. 6c,d), confirming that acute activation stimulates movement. We next tested whether the locomotion evoked by light could be prevented by pretreatment with haloperidol, analogously to the behavioral normalization observed in the Arp2/3 mutant mice. We treated WT animals with either haloperidol (0.2 mg/kg intraperitoneally (i.p.)) or vehicle 20 min before optogenetic stimulation. Haloperidol selectively blunted the stimulated locomotor response, as compared to that in vehicle-treated controls (Fig. 6e,f). These results demonstrate that the excitation of the frontal cortical neurons that project to the VTA/SNC induces locomotion that is depressed by haloperidol, a DA receptor antagonist.

**Frontal cortex–VTA/SNC circuit activation elevates stDA**

To further analyze the relationship between excitation of the FC projection to the VTA/SNC and hyperdopaminergia in the striatum, we measured extracellular DA in the striatum during the optogenetic activation in the VTA/SNC (Fig. 6g). Two weeks after infection of Flex-AAV-ChR2-YFP or Flex-AAV-tdTomato (opsin-free control)
into the frontal cortex and lenti-FuGB2-Cre into the VTA/SNC, ChR2-YFP expression was readily detected in frontal cortical pyramidal cell bodies and in their axonal fibers projecting to the VTA/SNC (Fig. 6h). (The selective expression of Flex-AAV-ChR2-YFP in Cre-positive cells is shown in Supplementary Fig. 3i–l). One week after the implantation of the optogenetic and microdialysis probes, we collected extracellular dialysate in the striatum before and after optogenetic stimulation (Fig. 6g). HPLC analyses revealed that acute optogenetic stimulation of the axons in the VTA/SNC significantly increased DA, DOPAC, and HVA in the striatum compared to those in ops-in-free controls (Fig. 6i). These data demonstrate that the FC-VTA/SNC projection is important for regulating DA in the striatum.

Together, the results of the present study support a molecular and circuit-based mechanism linking cortical spine pruning to locomotor hyperactivity. Our model proposes that the progressive loss of spines in the frontal cortex caused by Arp2/3 deficiency leads to abnormal synaptic contacts (Supplementary Fig. 10a), resulting in hyperactivation of pyramidal neurons in the frontal cortex that project to the VTA/SNCs (Supplementary Fig. 10b). Enhanced activation of this circuit (Supplementary Fig. 10c,d) then produces elevated DA in the striatum (Supplementary Fig. 10e), which ultimately drives antipsychotic-sensitive locomotor hyperactivity (Supplementary Fig. 10f).

**DISCUSSION**

The present study of Arp2/3 mutant mice follows our initial characterization of these mice. That study noted that the progressive course of synaptic and behavioral phenotypes bear similarities to symptoms associated with several psychiatric disorders, especially the cognitive, negative and positive symptoms of schizophrenia. Disorganized behavior, which includes excessive motor activity, is a positive symptom of schizophrenia (Diagnostic and Statistical Manual of Mental Disorders IV–R). Motor hyperactivity and stereotypical behaviors in rodent models are considered to be relevant to the underlying neural circuit abnormalities related to the positive symptoms because they respond well to antipsychotics and are induced by drugs that precipitate psychosis in humans. Models of schizophrenia symptoms in mice have the potential to clarify circuit-level concepts and serve as portals to map the pathophysiology of disorder-associated symptoms. However, schizophrenia is complicated by the observations of heterogeneous pathologies whose relationships to each other (if any) are not understood. These pathologies include excessive pruning (loss) of cortical dendritic spines, excitation of glutamatergic circuitry in the cortex and elevated dopaminergic tone in striatum. In this study we mapped a functional frontal cortical–VTA/SNC circuit, in which abnormal excitation emerges to drive elevated stDA and motor disturbances. The elevated DA and motor disturbance were mimicked in WT animals by acute optogenetic stimulation of this pathway. The hyperactivity of both the Arp2/3 mutant mice and optogenetically induced mice were normalized by the antipsychotic haloperidol.

Excitatory neurons in the cortical region that make synaptic contact with the VTA/SNCs appear to originate from several frontal cortical regions, including the frontal association cortex, anterior secondary motor cortex and prelimbic cortex (Supplementary Fig. 7e), which overlap with areas considered homologous to the primate prefrontal cortex. The present study of Arp2/3 mutant mice follows our initial characterization of these mice (Fig. 6d). (The selective expression of Flex-AAV-ChR2-YFP in Cre-positive cells is shown in Supplementary Fig. 3i–l). One week after the implantation of the optogenetic and microdialysis probes, we collected extracellular dialysate in the striatum before and after optogenetic stimulation (Fig. 6g). HPLC analyses revealed that acute optogenetic stimulation of the axons in the VTA/SNCs significantly increased DA, DOPAC, and HVA in the striatum compared to those in ops-in-free controls (Fig. 6i). These data demonstrate that the FC-VTA/SNC projection is important for regulating DA in the striatum. Together, the results of the present study support a molecular and circuit-based mechanism linking cortical spine pruning to locomotor hyperactivity. Our model proposes that the progressive loss of spines in the frontal cortex caused by Arp2/3 deficiency leads to abnormal synaptic contacts (Supplementary Fig. 10a), resulting in hyperactivation of pyramidal neurons in the frontal cortex that project to the VTA/SNCs (Supplementary Fig. 10b). Enhanced activation of this circuit (Supplementary Fig. 10c,d) then produces elevated DA in the striatum (Supplementary Fig. 10e), which ultimately drives antipsychotic-sensitive locomotor hyperactivity (Supplementary Fig. 10f).

**DISCUSSION**

The present study of Arp2/3 mutant mice follows our initial characterization of these mice. That study noted that the progressive course of synaptic and behavioral phenotypes bear similarities to symptoms associated with several psychiatric disorders, especially the cognitive, negative and positive symptoms of schizophrenia. Disorganized behavior, which includes excessive motor activity, is a positive symptom of schizophrenia (Diagnostic and Statistical Manual of Mental Disorders IV–R). Motor hyperactivity and stereotypical behaviors in rodent models are considered to be relevant to the underlying neural circuit abnormalities related to the positive symptoms because they respond well to antipsychotics and are induced by drugs that precipitate psychosis in humans. Models of schizophrenia symptoms in mice have the potential to clarify circuit-level concepts and serve as portals to map the pathophysiology of disorder-associated symptoms. However, schizophrenia is complicated by the observations of heterogeneous pathologies whose relationships to each other (if any) are not understood. These pathologies include excessive pruning (loss) of cortical dendritic spines, excitation of glutamatergic circuitry in the cortex and elevated dopaminergic tone in striatum.
cortex (PFC). This long-range circuit may be conserved in humans, and functional magnetic resonance imaging suggests it functions to modulate motivation for reward in healthy individuals.\(^4\) Synaptic refinement and maturation of the PFC continues into late childhood, suggesting that disturbances in this region may correlate to the delayed onset of positive schizophrenia symptoms.\(^44\) Moreover, recent neuroimaging and electroencephalographic studies implicate connectivity disturbances localized to the PFC in schizophrenia.\(^15,46\) while enhanced activation of pyramidal neurons in this region can recapitulate aspects of the disorder in rodent models.\(^41,47\).

Our results highlight the surprising finding that loss of spines, previously observed with Golgi analysis and neuroimaging of gray matter density in many neurodevelopmental and degenerative disorders, can lead to increased rather than decreased neuronal excitation. We speculate this is most likely to occur when there is spine loss triggered in postnatal periods, after the formation of synapses, as opposed to impaired spine development, which can also result in reduced spine density.

Together the results of this study identify a new mechanism downstream of an impaired synaptic actin filament pathway that results in a neural circuit abnormality leading to pathological dST and motor disturbances relevant to several psychiatric disorders. Our findings of abnormal connectivity are the first, to our knowledge, to provide a potential explanation for seemingly unrelated observations in schizophrenia, such as pathological loss of cortical spines, enhanced excitation of cortical excitatory neurons and altered striatal output.\(^40–42,48–50\).

These results highlight the need for future strategies to directly target the neural circuit abnormality leading to pathological dST and motor disturbances, rather than current antipsychotic drugs, which appear to ameliorate the downstream consequences of circuit abnormalities.

**METHODS**

Methods and any associated references are available in the online version of the paper.

**ACKNOWLEDGMENTS**

We thank M. Caron, B. Hogan and C. Eroglu for critical reading and comments. We also thank K. Kobayashi (Fukushima Medical University, Japan) for providing the FuGB2 viral vector, K. Sakurai (Duke University) for providing the hSyn-Cre transgenic mouse, I.H.K. and W.C.W. provided reagents and protocol advice, and R. Rodriguiz and E. Spence for behavioral technical support.

We also thank K. Kobayashi (Fukushima Medical University, Japan) for providing the hSyn-Cre transgenic mouse, I.H.K. and W.C.W. provided reagents and protocol advice, and R. Rodriguiz and E. Spence for behavioral technical support.

**Note:** Any Supplementary Information and Source Data files are available in the online version of the paper.

**Note:** Any Supplementary Information and Source Data files are available in the online version of the paper.

**AUTHOR CONTRIBUTIONS**

I.H.K. and S.H.S. designed this study. I.H.K. performed behavioral work, Golgi staining, cell biology, animal surgeries, virus infections, optical clearance of brains, immunohistochemistry, circuit tracings and imaging. I.H.K. and W.C.W. performed pharmacology studies. I.H.K. and A.U. performed three-dimensional reconstruction of dendritic segments. I.H.K., E.W. and S.H.S. performed virus design and purification. N.K. and H.Y. performed whole cell patch clamp recordings. D.K.A. and W.C.W. performed HPLC and microdialysis. M.A.R. and H.Y. performed optogenetics. B.R. and R.J.W. performed electron microscopy studies. I.H.K., D.K.A. and N.K. performed statistical analyses. This paper was written by I.H.K. and S.H.S. and was edited by the other authors.

**COMPETING FINANCIAL INTERESTS**

The authors declare no competing financial interests.

Reprints and permissions information is available online at http://www.nature.com/reprints/index.html.

1. Purcell, S. M. et al. A polygenic burden of rare disruptive mutations in schizophrenia. *Nature* 506, 185–190 (2014).
2. Lee, S.H. et al. Estimating the proportion of variation in susceptibility to schizophrenia captured by common SNPs. *Nat. Genet.* 44, 247–250 (2012).
3. Malhotra, D. & Sebat, J. CNVs: harbinger of a rare variant revolution in psychiatric genetics. *Cell* 148, 1223–1241 (2012).
4. Stergiakouli, E. et al. Investigating the contribution of common genetic variants to the risk and pathogenesis of ADHD. *Am. J. Psychiatry* 169, 186–194 (2012).
5. McCarroll, S.A. & Hyman, S.E. Progress in the genetics of polygenic brain disorders: significant new challenges for neurobiology. *Neuron* 80, 578–587 (2013).
6. Hyman, S.E. Perspective: revealing molecular secrets. *Nature* 508, S20 (2014).
7. Fromer, M. et al. De novo mutations in schizophrenia implicate synaptic networks. *Nature* 506, 179–184 (2014).
8. Kirov, G. et al. De novo CNV analysis implicates specific abnormalities of postsynaptic signalling complexes in the pathogenesis of schizophrenia. *Mol. Psychiatry* 17, 142–153 (2012).
9. Won, H. et al. Deficiency of a neural circuit abnormality leading to pathological dST and motor disturbances relevant to psychiatric disorders. *Nat. Neurosci.* 15, 191–198 (2012).
10. Han, K. et al. SHANK3 overexpression causes manic-like behaviour with unique (pharmacogenetic properties). *Nature* 503, 72–77 (2013).
11. Durand, C.M. et al. SHANK3 mutations identified in autism lead to modification of dST and motor behaviors. *Mol. Psychiatry* 17, 71–84 (2012).
12. Winn, P. et al. CNTNAP2 is associated with ADHD in humans and ADHD-like behaviors in mice. *Nat. Med.* 17, 566–572 (2011).
13. Hayashi-Takagi, A. et al. Disrupted-in-Schizophrenia 1 (DISC1) regulates spines of the glutamate synapse via Rac1. *Nat. Neurosci.* 15, 327–332 (2012).
14. Carlson, B.R. et al. WRP?srGAP3 facilitates the initiation of spine development by an inverse F-BAR domain, and its loss impairs long-term memory. *J. Neurosci.* 31, 2447–2460 (2011).
15. Govek, E.E. et al. The X-linked mental retardation protein oligorhinin-1 is required for dST spine morphogenesis. *Nat. Neurosci.* 7, 364–372 (2004).
16. Meng, Y. et al. Abnormal spine morphology and enhanced LTP in LIMK1-knockout mice. *Neuron* 35, 121–133 (2002).
17. Gu, Z., Jiang, Q., Fu, A.K., Ip, N.Y. & Yan, Z. Regulation of NMDA receptors by neurexin signaling in prefrontal cortex. *J. Neurosci.* 25, 4974–4984 (2005).
18. De Ribien, S. et al. DYFIP1 coordinates mRNA translation and cytoskeleton remodeling to ensure proper dendrite spine formation. *Neuron* 79, 1169–1182 (2013).
19. Clement, J.P. et al. Pathogenic SYNGAP1 mutations impair cognitive development by disrupting maturation of dST spine synapses. *Cell* 151, 709–723 (2012).
20. Russell, T.A. et al. A sequence variant in human KALRN impairs protein function and coincides with reduced cortical thickness. *Nat. Commun.* 5, 4885 (2014).
21. Vaaga, A.K. et al. Absent CNKSR2 causes seizures and intellectual, attention, and language deficits. *Ann. Neurol.* 76, 758–764 (2014).
22. Koleske, A.J. Molecular mechanisms of dendrite stability. *Nat. Rev. Neurosci.* 14, 536–550 (2013).
23. Penzes, P., Cahill, M.E., Jones, K.A., VanLeeuwen, J.E. & Wolfef, K.M. Dendritic spine pathology in neuropsychiatric disorders. *Nat. Neurosci.* 14, 285–293 (2011).
24. Mullins, R.D., Stafford, W.F. & Pollard, T.D. Structure, subunit topology, and actin-binding activity of the Arp2/3 complex from Acanthamoeba. *J. Cell. Biol.* 136, 331–343 (1997).
25. Kim, I.H. et al. Disruption of Arp2/3 results in asymmetric structural plasticity of dendritic spines and progressive synaptic and behavioral abnormalities. *J. Neurosci.* 33, 6081–6092 (2013).
26. van den Buse, M. Modeling the positive symptoms of schizophrenia in genetically modified mice: pharmacology and methodology aspects. *Schizophr. Bull.* 36, 246–270 (2010).
27. Mohn, A.R., Gainetdinov, R.R., Caron, M.G. & Kolter, B.H. Mice with reduced NMDA receptor expression display behaviors related to schizophrenia. *Cell* 98, 427–436 (1999).
28. Hoffman, D.C. & Donovan, H. Catalyase as a rodent model for detecting antipsychotic drugs with extrapyramidal side effect liability. *Psychopharmacology (Berl.)* 120, 128–133 (1995).
29. Creese, I., Burt, D.R. & Snyder, S.H. Dopamine receptor binding predicts clinical and pharmacological potencies of antischizophrenic drugs. *Science* 192, 481–483 (1976).
30. Tsien, J.Z. et al. Subregion- and cell type-restricted gene knockout in mouse brain. *Cell* 97, 1317–1326 (1999).
31. Ungerstedt, U. & Arbuthnott, G. Quantitative recording of rotational behavior in rats after 6-hydroxydopamine lesions of the nigrostriatal dopamine system. *Brain Res. 24*, 485–493 (1970).
32. Watabe-Uchida, M., Zhu, L., Ogawa, S.K., Vamanrao, A. & Uchida, N. Whole-brain mapping of direct inputs to nigrostriatal dopamine neurons. *J. Neurosci.* 32, 858–873 (2012).
33. Sesack, S.R. & Pickel, V.M. Prefrontal cortical efferents in the rat synapse on unlesated neuronal targets of catecholamine terminals in the nucleus accumbens septi and on dopamine neurons in the ventral tegmental area. *J. Comp. Neurol.* 320, 145–160 (1992).
34. Parker, J.G., Beutler, L.R. & Palmiter, R.D. The contribution of NMDA receptor signaling in the corticobasal ganglia reward network to appetitive Pavlovian learning. J. Neurosci. 31, 11362–11369 (2011).
35. Kato, S. et al. A lentiviral strategy for highly efficient retrograde gene transfer by pseudotyping with fusion envelope glycoprotein. Hum. Gene Ther. 22, 197–206 (2011).
36. Ke, M.T., Fujimoto, S. & Imai, T. SeeDB: a simple and morphology-preserving optical clearing agent for neuronal circuit reconstruction. Nat. Neurosci. 16, 1154–1161 (2013).
37. Harnett, M.T., Makara, J.K., Spruston, N., Kath, W.L. & Magee, J.C. Synaptic amplification by dendritic spines enhances input cooperativity. Nature 491, 599–602 (2012).
38. Tønnesen, J., Katona, G., Rozsa, B. & Nagerl, U.V. Spine neck plasticity regulates compartmentalization of synapses. Nat. Neurosci. 17, 678–685 (2014).
39. Yuste, R. Electrical compartmentalization in dendritic spines. Annu. Rev. Neurosci. 36, 429–449 (2013).
40. Laruelle, M. et al. Single photon emission computerized tomography imaging of amphetamine-induced dopamine release in drug-free schizophrenic subjects. Proc. Natl. Acad. Sci. USA 93, 9235–9240 (1996).
41. Belforte, J.E. et al. Postnatal NMDA receptor ablation in corticolimbic interneurons confers schizophrenia-like phenotypes. Nat. Neurosci. 13, 76–83 (2010).
42. Gainetdinov, R.R., Mohn, A.R. & Caron, M.G. Genetic animal models: focus on schizophrenia. Trends Neurosci. 24, 527–533 (2001).
43. Ballard, I.C. et al. Dorsolateral prefrontal cortex drives mesolimbic dopaminergic regions to initiate motivated behavior. J. Neurosci. 31, 10340–10346 (2011).
44. Insel, T.R. Rethinking schizophrenia. Nature 468, 187–193 (2010).
45. Lawrie, S.M. et al. Reduced frontotemporal functional connectivity in schizophrenia associated with auditory hallucinations. Biol. Psychiatry 51, 1008–1011 (2002).
46. Ford, J.M., Mathalon, D.H., Whitfield, S., Faustman, W.O. & Roth, W.T. Reduced communication between frontal and temporal lobes during talking in schizophrenia. Biol. Psychiatry 51, 485–492 (2002).
47. Yizhar, O. et al. Neocortical excitation/inhibition balance in information processing and social dysfunction. Nature 477, 171–178 (2011).
48. Sun, D. et al. Progressive brain structural changes mapped as psychosis develops in ‘at risk’ individuals. Schizophr. Res. 108, 85–92 (2009).
49. McIntosh, A.M. et al. Longitudinal volume reductions in people at high genetic risk of schizophrenia as they develop psychosis. Biol. Psychiatry 69, 953–958 (2011).
50. Glausier, J.R. & Lewis, D.A. Dendritic spine pathology in schizophrenia. Neuroscience 251, 90–107 (2013).
**ONLINE METHODS**

**Animals.** Conditional ArpC3 knockout animals (ArpC3<sup>59</sup>) and Camk2a-Cre line (stock number 005539; Jackson Laboratory) have been described previously<sup>55</sup>. The genetic background of mice was 129Sv × C57BL/6J. Male and female littermates from heterozygous pairings were used in all experiments. A Rosa26-lox-stop-lox-tdTomato reporter line (generously provided by F. Wang, Duke University, Durham, NC) and Ai-14 line (B6;129S6-Gt(ROSA)26Sor<sup>tm14(CAG-tdTomato)Hjej<sup>©</sup>; stock no. 007908; Jackson Laboratory) were used for marking the Cre-positive neurons in the brain. For the optogenetic studies, C57BL/6J mice were purchased from Jackson Laboratory (stock no. 000664). All mice were housed (3–5 mice per cage) in the Duke University’s Division of Laboratory Animal Resources facilities (light on at 7:00 a.m., light off at 7:00 p.m.). All tests were conducted during the light cycle. Animal groups were randomly assigned from the animal number and were given treatments such as viruses before testing. All procedures were conducted with a protocol approved by the Duke University Institutional Animal Care and Use Committee in accordance with US National Institutes of Health guidelines.

**Viruses.** For production of Cre-dependent ArpC3-expressing adeno-associated virus (AAV), the ArpC3-P2A-eGFP sequence was inserted into vector backbone pAAV-EF1α-DIO (generous gift from J. Ting, MIT). AAV9.EF1α.DIO.ArpC3-P2A-eGFP.WPRE (Flex-AAV-ArpC3-2A-GFP), control AAV9.EF1α.DIO.eGFP.WPRE (Flex-AAV-GFP), AAV1.EF1α.DIO.hChR2(H134R).mCherry:WPRE (Addgene 20297), AAV9.EF1α.DIO.hChR2(H134R).eYFP:WPRE (Addgene 20298), AAV9.CAG.Flex.tdTomato.WPRE.BGH (Allen Institute 864), AAV9.CamKII.H1.GFP.Cre:WPRE and AAV9.Synapsin.eGFP.BBG viruses were produced by the University of Pennsylvania Vector Core. Lentivirus-FuGB2-Cre was derived from a previous report<sup>51</sup>. In brief, a human synapsin I promoter containing Cre expression vector pseudotyped lentivirus (pLV)-woodchuck post-transcriptional regulatory element (WPRE) with the two helper plasmids A8.9 and FuGB2 (a chimeric envelope protein composed of the extracellular and transmembrane domains of rabies virus glycoprotein and the cytoplasmic domain of VSV-G; generously provided by K. Kobayashi, Fukushima Medical University, Japan)<sup>35</sup> were transfected into HEK293T cells using the polyethylenimine method. Viral particles were concentrated by ultracentrifugation (82,750g for 2 h) and resuspended in PBS.

**Stereotoxic surgery.** For infections of viruses, mice were deeply anesthetized with intraperitoneal (i.p.) injection of ketamine (150 mg/kg)/xylazine (15 mg/kg). A 33-gauge needle was positioned in the frontal cortex (AP: +2.5 mm, ML: +1.0 mm, DV: +0.5 mm to +1.5 mm brain surface, relative to bregma) or into the VTA/SNC (AP: −3.5 mm, ML: +1.0 mm, DV: −4.2 mm brain surface, relative to bregma) using a stereotaxic frame (David Kopf Instruments). Viruses (0.8–1.0 µl) were infused slowly over 10 min into the targets using a microdriver with a 10-µl Hamilton syringe. For rescue experiments, virus was injected into mice at postnatal day (p) 15–20 to rescue Camk2a-Cre-mediated deletion of ArpC3. For optogenetics, virus was injected into 6–7-week-old WT mice. 2–3 weeks after viral infection, flat-cut fiber implants (105 µm fiber diameter and 1.25 mm OD ferrule) were lowered into place bilaterally targeting the frontal cortex (AP: +2.5 mm, ML: +1.0 mm, DV: +0.8 mm brain surface, relative to bregma) and secured in place with dental acrylic.

**Microdialysis and HPLC.** Adult mice (p120–150) were anesthetized (i.p.) with ketamine and xylazine (80 mg/kg and 8 mg/kg, respectively), and a CMA 7 guide cannula was implanted into the right ventral striatum (AP: +1.3 mm, ML: +1.3 mm, DV: −3.5 mm brain surface, relative to bregma). Five days later a CMA-7 microdialysis probe (Cuprophone, 6 kDa cut-off; 0.24 mm OD, 2 mm membrane length; CMA microdialysis, Kista, Sweden) was inserted into the guide cannula. Probes were perfused with artificial cerebrospinal fluid (aCSF) (in mM: 147 NaCl, 2.7 KCl, 1.2 CaCl<sub>2</sub>, and 0.85 MgCl<sub>2</sub>) at 0.8 µl/min. After 1 h the flow rate was reduced to 0.090 µl/min and the probe further equilibrated for 3 h before collecting the dialysate. Samples were collected into ice-cold tubes filled with 3 µl of a mixture of oxalic acid, acetic acid and t-cysteine (1 mM, 100 mM and 3 mM, respectively). Samples were analyzed by HPLC-EC using an Alexys monoanalyser analyzer (Antec, Palm Bay, Florida, USA). A detector consisted of a DECADE II detector coupled to a VT-03 flow cell (Antec, USA). DA in microdialysis samples was separated on a C18 reverse-phase 1 µm × 50 mm column (3 µm particle size, ALF-105; Antec, USA) at 50 µl/min using a mobile phase (50 mM phosphoric acid, 0.1 mM EDTA, 8 mM KCl, 12% methanol and 500 mg/L 1-octane sulfonic acid sodium salt, pH 6.0) at a potential of 0.3 V. The chromatograms were analyzed using the Clarity software package (DataApex, Prague, Czech Republic); a signal-to-noise ratio of 3 was considered the limit of detection. For simultaneous optogenetic and microdialysis experiments, microdialysis was performed with bilateral cannulation (AP: +1.3 mm, ML: +1.3 mm, DV: −3.5 mm brain surface, relative to bregma). Probes were perfused with aCSF (1.2 µl/min) and equilibrated for 1 h before collecting first baseline samples and then laser-stimulated samples. All samples were collected and analyzed as above. To measure levels of DA and its metabolites in tissue, ventral striatum was rapidly dissected, flash frozen in liquid nitrogen, and stored at −80 °C until analysis. DA and its metabolites were measured in a Coulouche III HPLC system with 5014B analytical cell and 5020 guard cell (ESA Inc., Chelmsford, MA, USA). The guard cell potential was set at +0.38 mV and the first and second electrodes of the analytical cell were at −0.15 and +0.35 mV, respectively. All quantifications were conducted in a blinded manner.

**Imaging.** All representative images were from at least three samples.

**Golgol-Cox staining.** Golgi-Cox staining procedures were performed as previously described<sup>55,52,53</sup>. Adult mice (p120–150) were deeply anesthetized with isoflurane and then perfused transcardially with Tris-buffered saline (TBS; pH 7.4) containing 25 U/ml heparin, followed by 4% paraformaldehyde (PFA) in TBS. Brains were removed and treated with solutions A and B from the FD Rapid GolgiStain Kit (FD NeuroTechnologies) for 2 weeks and then treated with solution C for 7 d. Sections (100 µm thick) were cut by cryostat and transferred to solution C and incubated for 24 h at 4 °C. After rinsing briefly with distilled water, floating sections were stained with solutions D and E for 30 min and then transferred to a 0.05% gelatin solution. Sections were mounted onto glass slides, dehydrated through a graded series of ethanol concentrations and then mounted with Permount (Fisher Scientific). z-series images of secondary or tertiary branches of neurons were collected on an AxiosCam MRm (Zeiss) on an Axios Imager M1 microscope (Zeiss) under a 63× oil-immersion objective using AxioVision 4.8.2 software (Zeiss). For quantification, spine density was calculated from the z-series images of pyramidal neurons from the frontal cortex (layers 3–5) or striatal medium spiny neurons using ImageJ software (NIH). All quantifications were conducted in a blinded manner.

**Circuit tracing.** Mice infected with Flex-AAV-ArpC3-2A-GFP in the frontal cortex at p15–20 were perfused at p120–150 as described above. Brains were removed, post-fixed overnight at 4 °C, and then cryoprotected with 30% sucrose in TBS. Brains were cut into 50 µm sagittal sections by cryostat (Leica CM 3000). Sections were treated with blocking solution (TBS containing 5% normal goat serum and 0.2% Triton X-100) for 2 h and incubated overnight at 4 °C with rabbit anti-tyrosine hydroxylase polyclonal antibody (1:1,000; Calbiochem; catalog number 657012). After washing three times for 10 min per wash with TBST (TBS containing 0.2% Triton X-100), sections were incubated with Alexa Fluor 555–IgG secondary antibody (1:500; Molecular Probes; catalog number A-13172) at 1 h at room temperature. Sections were counterstained with a 4',6-diamidino-2-phenylindole solution (DAPI; Sigma-Aldrich). After washing four times, the sections were coverslipped with FluorSave (CalBioChem) aqueous mounting medium. Sagittal images were taken by tile scan imaging using LSM 710 confocal microscope (Zeiss).

For the axonal fiber tracing, adult WT mice (2–3 months old) were infected with lenti-FuGB2-Cre (VTA/SNC) and AAV-Flex-GFP (frontal cortex) for 2 weeks. The perfused and cryoprotected brains were cut into 300-µm sagittal sections using a cryostat (Leica CM 3000) and then optically cleared by the SeeDB method as described<sup>56</sup>. Whole sagittal image was taken by tile scan imaging using a LSM 710 confocal microscope (Zeiss) with a 10× objective under control of Zen software (Zeiss). For triple labeling, sagittal brain sections (50 µm thick) were incubated overnight at 4 °C with guinea pig anti-Vglut1 antibody (1:500; Millipore; catalog number AB9509) together with rabbit anti-tyrosine hydroxylase polyclonal antibody (1:1,000; Millipore; catalog number 657012). After washing, sections were incubated with anti–guinea pig Alexa Fluor 488–IgG (1:100; Molecular Probes; catalog number A-21450) and anti-rabbit Alexa Fluor 555–IgG (1:500; Molecular Probes; catalog number A-31572). Immunostaining...
Three-dimensional reconstructions of dendritic spines from secondary or tertiary branches of pyramidal neurons in layers 3–5 of frontal cortex were taken on a LSM 710 confocal microscope (Zeiss) and three-dimensionally reconstructed using Imaris software (Bitplane).

Dendritic spine analysis. Three-dimensional reconstructions of dendritic segments using confocal images were performed as previously described23. Briefly, perfused/cryoprotected brains were cut into 40 μm sagittal sections by cryostat (Leica CM 3000). Images of dendritic spines from secondary or tertiary branches of pyramidal neurons in layers 3–5 of frontal cortex were taken on a LSM 710 confocal microscope (Zeiss). All images were acquired by z-series (0.13 μm intervals) using a 63× oil-immersion objective. The z-series of images were deconvolved by Huygens Essential deconvolution software (SVI) and then three-dimensionally reconstructed and measured by Imaris software (Bitplane). All quantifications were conducted in a blinded manner.

Transmission electron microscopy. Experiments were carried out as described25 on 4- to 5-month-old Arpc3f/fCamK2a-Cre mice and their littermate controls (Arpc3f/f) (n = 3 for both groups). Animals were deeply anesthetized with pentobarbital (60 mg/kg, i.p.), then perfused intracardially with saline, followed by a mixture of depolymerized paraformaldehyde (4%) and glutaraldehyde (0.2–2%) in 0.1 M phosphate buffer pH 7.4 (PB). Brain tissue containing the frontal cortex was postfixed in 0.5–1% osmium tetroxide in 0.1 M PB for 35–45 min and stained en bloc with 1% uranyl acetate for 1 h. After dehydration in ascending ethanol series and propylene oxide, sections from layers 3–5 of frontal cortex were infiltrated with Epon/Spurr resin (EMS) and flat-mounted between sheets of Aclar on glass slides. For single section analysis, 70-nm sections were cut and mounted on 300-mesh copper grids; for three-dimensional reconstruction, 60-nm serial sections were mounted on formvar-coated, single-slot nickel grids (EMS) and contrasted with stabilized 3% lead citrate (Ultratrust 2, Leica).

For postembedding GABA immunoreaction, thin (~100 nm) sections were collected on nickel mesh grids and processed for immunogold labeling. Briefly, after treatment at 60 °C with 0.01 M citrate buffer followed by a short incubation in 0.02 M Tris-buffered saline containing 0.005% NP-10 detergent, pH 7.6 (TBSN), grids were incubated overnight at 37 °C with the primary antibody (polyclonal rabbit anti-GABA, Sigma, catalog number A-2052). Grids were then transferred to TBSN, pH 7.6, incubated for 1 h in the secondary antibody (goat anti-rabbit conjugated to 20 nm gold particles (1:15 in TBSN, pH 8.2; British BioCell; Ted Pella, Redding, CA, catalog number 15728) and counterstained with uranyl acetate and Sato’s lead. When primary antiserum was omitted as a control, transmission in 0.02 M Tris-buffered saline containing 0.005% NP-10 detergent, pH 7.6 was postfixed in 0.5–1% osmium tetroxide in 0.1 M PB for 35–45 min and stained en bloc with 1% uranyl acetate for 1 h. After dehydration in ascending ethanol series and propylene oxide, sections from layers 3–5 of frontal cortex were infiltrated with Epon/Spurr resin (EMS) and flat-mounted between sheets of Aclar on glass slides. For single section analysis, 70-nm sections were cut and mounted on 300-mesh copper grids; for three-dimensional reconstruction, 60-nm serial sections were mounted on formvar-coated, single-slot nickel grids (EMS) and contrasted with stabilized 3% lead citrate (Ultratrust 2, Leica).

Material was examined in a JEOL T1011 electron microscope at 80 kV; randomly selected images from single sections were collected with a MegaView (Soft Imaging System) 12 bit 1024 × 1024 CCD camera at uniform magnification, examining dendritic spines (as defined by the presence of a clearly visible synaptic cleft and a postsynaptic density in the spine) and synaptic contacts to pyramidal cell shafts; results were generally consistent among animals. We used the freely available Reconstruct software (see http://synapses.clm.utexas.edu/tools/reconstruct/reconstruct.stm) to reconstruct spines from serial sections. All quantifications were conducted in a double-blinded manner.

Whole-cell patch-clamp recording. For whole-cell patch-clamp recordings, brains from animals (infected at p40–60) (WT, n = 9; CKO (30 days after infection), n = 15 pairs of hemispheres for each group; CKO (10 days after infection), n = 10 pairs of hemispheres for each group) were removed quickly into ice-cold solution bubbled with 95% O2-5% CO2 containing the following (in mM): 194 sucrose, 30 NaCl, 2.5 KCl, 1 MgCl2, 26 NaHCO3, 1.2 NaH2PO4 and 10 n-glucose. After 5 min the brains were blocked and coronal slices were taken at 200 μm. During the recovery period (30 min), slices were incubated at 35.5 °C with oxygenated ACSF solution containing the following (in mM): 124 NaCl, 2.5 KCl, 2 CaCl2, 1 MgCl2, 26 NaHCO3, 1.2 NaH2PO4 and 10 n-glucose. Pipettes (2.5–5 MΩ) contained the following (in mM): 120 cesium methane sulfonate, 5 NaCl, 10 tetraethylammonium chloride, 10 HEPES, 4 lidocaine N-ethyl bromide, 1.1 EGTA, 4 magnesium ATP and 0.3 sodium GTP, pH adjusted to 7.2 with CsOH and osmolality set to ~300 mosM with sucrose.

Recordings were performed with a MultiClamp 700B amplifier (Molecular Device). Signals were filtered at 10 kHz and digitized at 20 kHz with a Digidata 1440A digitizer (Molecular Devices). Slices were maintained under continuous perfusion of aCSF at 28–29 °C with a 2–3 ml/min flow rate. In the whole-cell configuration (series resistance < 20 MΩ), we recorded mEPSCs on the cell bodies of GFP-positive neurons with 50 μM picrotoxin and 2 μM tetrodotoxin (TTX) in the bath solution in voltage-clamp mode (cells held at −70 mV). The amplitudes and frequencies of mEPSCs were analyzed using peak detection software in pCLAMP10 (Molecular Devices). All recordings were conducted such that the experimenter was blinded to each group.

Optogenetics. Optogenetic experiments were conducted as described24. Testing began at least one week after implant surgery. On test days, mice were lightly anesthetized with isoflurane and then connected to a 473-nm DPSS laser (Shanghai Laser & Optics) via 62.3 μm core diameter sheathed fibers, connected to the implant with ceramic ferrule sleeves. A single laser beam was split (50:50) with a 1 × 2 optical commutator (Doric) to deliver −5 mW optical power to each hemisphere. Testing took place in a cylindrical chamber (18 cm diameter). Videos were captured from directly above at 30 fps. Stimulation was delivered for 2 min (10-ms square pulses; 30 Hz). For drug testing, haloperidol (0.2 mg/kg, i.p.) or vehicle (saline) was injected 20 min before laser stimulation. Data are presented as the proportion of distance traveled during the 10 min before laser stimulation. The position of each mouse was tracked frame-by-frame offline using custom tracking software (MatLab). Position data were used to calculate the distance traveled in 1-min bins throughout the session.

For simultaneous microdialysis and optogenetic experiments, optic fibers were placed bilaterally over the VTA (AP −3.5 mm, ML +1.2 mm, DV 4.0 mm). Prior to testing, mice were lightly anesthetized with isoflurane and connected to the laser and microdialysis probes were inserted. Stimulation (2 min duration; 10-ms square pulses; 30 Hz) was delivered after achieving equilibration and collecting baseline samples. All experiments were conducted in a blinded manner.

Behavioral tests. Viruses were stereotaxically injected at p15–20. All behavioral tests were conducted during light cycle at p90–120. Mice showing seizure behaviors were excluded from behavioral tests. Experimenter was blinded to genotypes and drug treatments.

Open field activity. Mice were placed into a square (21 cm × 21 cm) open field (AccuScan Instruments) and their motor activities were monitored for over 1 h under a 350 lx illumination using VersaMax software (AccuScan Instruments). In experiments with antipsychotics, baseline activity was monitored for 1 h, mice were injected (i.p.) with vehicle or drugs (0.1 or 0.2 mg/kg haloperidol or 0.5 mg/kg clozapine) and were returned immediately to the open field for 2 h. Locomotor (distance traveled), rearing (vertical beam-breaks) and stereotypical activities (repetitive beam-breaks <1 s) were measured in 5-min time-bins.

Circling motor activity. One μl of Flex-AAV-GFP (control) and Flex-AAV-Arpc3f/f-A2A-GFP (rescue) were stereotaxically injected into each side of frontal cortex (random order). Mice were placed into a large open field (42 cm × 42 cm; AccuScan Instruments) to measure motor activity at p120–150. The baseline rotational locomotion was monitored by VersaMax software (AccuScan Instruments) for 30 min, and then the mice were injected (i.p.) with amphetamine (2.0 mg/kg) and were returned to the open field for further movement tracing for 1 h.

Pre-pulse inhibition (PPI). PPI of the acoustic startle response was measured with SD1 equipment as described25. After 5 min of acclimation to the apparatus, mice were given three different types of trials: trials with the startle stimulus only (40 ms 120 dB); trials with the prepulse stimuli (20 ms) that were 4, 8 or 12 dB above the white-noise background (64 dB) and followed 100 ms later with the startle stimulus; and trials with background stimuli (null trials) to control for background movements of the animals. Each test session began with 7 startle trials, followed by blocks of 5 null, 15 prepulse and 9 startle trials presented in a pseudorandom order, and ending with 5 startle trials. The average inter-trial interval was 15 s, with a range of 12 to 30 s. The peak startle responses for each trial were measured between 35 and 65 ms after the onset of the startle stimulus. PPI was calculated as %PPI = [1 – (prepulse trials/startle-only trials)] × 100. The magnitude of the startle response was calculated as the mean response from all trials, excluding the initial block or 7 and final block of 5 trials.
Statistical analyses. All statistical tests used in this study were performed two-sided. All data are expressed as means ± s.e.m. and all statistics were analyzed using SPSS 20.0 (IBM). Independent t-tests were used for analysis of differences between two groups. When comparing more than two groups ANOVA were used followed by Bonferroni corrected pair-wise comparisons. To monitor changes over time, repeated-measures ANOVA were run followed by Bonferroni corrected pair-wise comparisons. A $P < 0.05$ was considered statistically significant. None of the data points were excluded from analyses. Data distribution was assumed to be normal but this was not formally tested. No statistical methods were used to predetermine sample sizes but our sample sizes are similar to those reported in previous publications.

Detailed information on the statistical methods and results can be found in Supplementary Table 1.

A Supplementary Methods Checklist is available.

51. Nelson, A. et al. A circuit for motor cortical modulation of auditory cortical activity. J. Neurosci. 33, 14342–14353 (2013).
52. Kim, I.H., Wang, H., Söderling, S.H. & Yasuda, R. Loss of Cdc42 leads to defects in synaptic plasticity and remote memory recall. Elife 3, e02839 (2014).
53. Kim, I.H. et al. Inositol 1,4,5-trisphosphate 3-kinase α functions as a scaffold for synaptic Rac signaling. J. Neurosci. 29, 14039–14049 (2009).
54. Rossi, M.A. et al. Prefrontal cortical mechanisms underlying delayed alternation in mice. J. Neurophysiol. 108, 1211–1222 (2012).
Erratum: Spine pruning drives antipsychotic-sensitive locomotion via circuit control of striatal dopamine

Il Hwan Kim, Mark A Rossi, Dipendra K Aryal, Bence Racz, Namsoo Kim, Akiyoshi Uezu, Fan Wang, William C Wetsel, Richard J Weinberg, Henry Yin & Scott H Soderling

Nat. Neurosci.; doi:10.1038/nn.4015; corrected online 7 May 2015

In the version of this article initially published online, “USA” was included at the end of the two affiliations in Hungary. The error has been corrected for the print, PDF and HTML versions of this article.