THE INTERPLAY BETWEEN 2-AND-3-CALABI–YAU TRIANGULATED CATEGORIES

DONG YANG

Abstract. This short note surveys the constructions of 3-Calabi–Yau triangulated categories with simple-minded collections due to Ginzburg and Kontsevich–Soibelman and the constructions of 2-Calabi–Yau triangulated categories with cluster-tilting objects due to Buan–Marsh–Reineke–Reiten–Todorov and Amiot, and includes a discussion on the normal form of 2-Calabi–Yau triangulated categories with cluster-tilting objects.

MSC 2010 classification: 18E30, 16E45, 14A22.

Keywords: Calabi–Yau triangulated category, cluster-tilting object, simple-minded collection, Ginzburg dg algebra, Kontsevich–Soibelman A_{∞}-algebra, generalised cluster category.

Contents

1. Silting objects, simple-minded collections and cluster-tilting objects
2. 3-CalabiYau triangulated categories
3. 2-Calabi–Yau triangulated categories
4. From 3-CYs to 2-CYs
5. From 2-CYs to 3-CYs

This is a short survey on some ‘recent’ progresses on the interplay between 2-Calabi–Yau and 3-Calabi–Yau triangulated categories. It is based on my talks given in Stuttgart in November 2011 and in Nagoya in May 2013.

2-Calabi–Yau triangulated categories with cluster-tilting objects play a central role in the additive categorification of Fomin–Zelevinsky’s cluster algebras, see for example [10] [11] [14] [15] [16]. A prototypical example of such categories is the cluster category of an acyclic quiver, introduced by Buan–Marsh–Reineke–Reiten–Todorov in [10].

3-Calabi–Yau triangulated categories with simple-minded collections play an important role in algebraic geometry and mathematical physics [12] [11]. There are two constructions of such categories: for a quiver with potential, Ginzburg constructs a 3-Calabi–Yau dg algebra Γ [15], whose finite-dimensional derived category $D_{fd}(\Gamma)$ is a 3-Calabi–Yau triangulated category with simple-minded collections; Kontsevich–Soibelman constructs a 3-Calabi–Yau A_{∞}-algebra A [11].
whose perfect derived category $\text{per}(A)$ is a 3-Calabi–Yau triangulated category with simple-minded collections. These two constructions are Koszul-dual to each other.

A direct connection between these two types of categories was observed in [36, 48, 3, 33]. For a quiver with potential, denote by Γ the associated Ginzburg dg algebra. It is shown in [3, 33] that the generalised cluster category

$$\mathcal{C} := \text{per}(\Gamma)/\mathcal{D}_{fd}(\Gamma)$$

is a 2-Calabi–Yau triangulated category with cluster-tilting objects. It is conjectured that in characteristic zero all 2-Calabi–Yau triangulated category with cluster-tilting objects are of this form. This conjecture holds true for all known examples [36, 3, 7, 6, 5, 15].

This short note surveys the above constructions due to Buan–Marsh–Reineke–Reiten–Todorov [10], Ginzburg [18], Kontsevich–Soibelman [41], Amiot [3] and Keller [33], and discusses various methods to attack the conjecture that all 2-Calabi–Yau triangulated categories with cluster-tilting objects are generalised cluster categories of quivers with potential.

Throughout, k is an algebraically closed field and $D = \text{Hom}_k(?, k)$ denotes the k-dual. All categories are k-categories and all algebras are k-algebras.

1. Silting objects, simple-minded collections and cluster-tilting objects

Let \mathcal{C} be a triangulated category with suspension functor Σ. For a set \mathcal{S} of objects of \mathcal{C}, let $\text{thick}(\mathcal{S})$ denote the smallest thick subcategory of \mathcal{C} containing \mathcal{S}.

An object M of \mathcal{C} is a silting object ([37, 8, 1]) of \mathcal{C} if

- $\text{Hom}_\mathcal{C}(M, \Sigma^p M) = 0$ for any $p > 0$,
- $\mathcal{C} = \text{thick}(M)$.

A collection $\{X_1, \ldots, X_n\}$ of objects of \mathcal{C} is simple-minded ([39, 34]) if

- $\text{Hom}_\mathcal{C}(X_i, \Sigma^p X_j) = 0$, \forall $p < 0$,
- $\text{Hom}_\mathcal{C}(X_i, X_j) = \begin{cases} k & \text{if } i = j, \\ 0 & \text{otherwise,} \end{cases}$
- $\mathcal{C} = \text{thick}(X_1, \ldots, X_n)$.

Fix $d \in \mathbb{Z}$. Assume further that \mathcal{C} Hom-finite and Krull–Schmidt. We say that \mathcal{C} is d-Calabi–Yau if there is a bifunctorial isomorphism

$$D \text{Hom}_\mathcal{C}(X, Y) \xrightarrow{\cong} \text{Hom}_\mathcal{C}(Y, \Sigma^d X)$$

for any $X, Y \in \mathcal{C}$ ([10, 31]). Note that in [31] such categories are called weakly d-Calabi–Yau triangulated categories.

Assume that \mathcal{C} is d-Calabi–Yau. An object T of \mathcal{C} is d-cluster-tilting ([35, 49, 52, 24]) if

- $\text{Hom}_\mathcal{C}(T, \Sigma^p X) = 0$ for $0 < p < d \iff X$ belongs to $\text{add}(T)$.

2-cluster-tilting objects are usually called cluster-tilting objects.

In this note, we are interested in 3-Calabi–Yau triangulated categories with simple-minded collections and 2-Calabi–Yau triangulated categories with cluster-tilting objects.
2. 3-CalabiYau triangulated categories

The algebraic theory of 3-CY’s has two sides: the Ginzburg side and the Kontsevich–Soibelman side. Both sides are associated to quivers with potential.

2.1. The Ginzburg side. On the Ginzburg side there is a dg algebra.

For a dg algebra A, let $\mathcal{D}(A)$ be the derived category of (right) dg A-modules, $\text{per}(A) = \text{thick}(A_A)$ be the perfect derived category, and $\mathcal{D}_{fd}(A)$ be the finite-dimensional derived category (i.e. $M \in \mathcal{D}_{fd}(A)$ if and only if $H^*(M)$ is finite-dimensional). See [27, 30].

To a quiver with potential (Q, W), Ginzburg associates a dg algebra $\hat{\Gamma}(Q, W)$, which we call the complete Ginzburg dg algebra of (Q, W), see [18, 38]. Precisely, $\hat{\Gamma}(Q, W)$ is constructed as follows: Let \tilde{Q} be the graded quiver with the same vertices as Q and whose arrows are

- the arrows of Q (they all have degree 0),
- an arrow $a^* : j \to i$ of degree -1 for each arrow $a : i \to j$ of Q,
- a loop $t_i : i \to i$ of degree -2 for each vertex i of Q.

The underlying graded algebra of $\hat{\Gamma}(Q, W)$ is the completion of the graded path algebra $k\tilde{Q}$ in the category of graded vector spaces with respect to the ideal generated by the arrows of \tilde{Q}. Thus, the n-th component of $\hat{\Gamma}(Q, W)$ consists of elements of the form $\sum p, \lambda p$, where p runs over all paths of degree n. The completion endows $\hat{\Gamma}(Q, W)$ with a pseudo-compact topology, see [33, 50]. The differential of $\hat{\Gamma}(Q, W)$ is the unique continuous linear endomorphism homogeneous of degree 1 which satisfies the graded Leibniz rule

$$d(uv) = (du)v + (-1)^p u dv,$$

for all homogeneous u of degree p and all v, and takes the following values on the arrows of \tilde{Q}:

- $d(a) = 0$ for each arrow a of Q,
- $d(a^*) = \partial_a W$ for each arrow a of Q, where ∂_a is the cyclic derivative associated to a (see [16]; roughly, it removes a from W),
- $d(t_i) = e_i(\sum_{a \in Q_1}[a, a^*])e_i$ for each vertex i of Q, where e_i is the trivial path at i.

The complete Jacobian algebra of (Q, W) is the 0-th cohomology of $\hat{\Gamma}(Q, W)$:

$$\hat{J}(Q, W) = \hat{k}\tilde{Q}/(\partial_a W : a \in Q_1),$$

where \overline{I} is the closure of I. When W is a finite sum, one can define the non-complete Ginzburg dg algebra and Jacobian algebra.

Theorem 2.1 ([33, Theorem A.17], [32]). Let (Q, W) be a quiver with potential and let $\Gamma = \hat{\Gamma}(Q, W)$ be the complete Ginzburg dg algebra.

(a) Γ is topologically homologically smooth, i.e. Γ as a dg Γ-bimodule belongs to $\text{per}(\Gamma^\text{op} \hat{\otimes} \Gamma)$. In particular, the perfect derived category $\text{per}(\Gamma)$ contains the finite-dimensional derived category $\mathcal{D}_{fd}(\Gamma)$.

(b) Γ is bimodule 3-Calabi–Yau, i.e. there is an isomorphism $\text{RHom}_{\Gamma^\text{op} \hat{\otimes} \Gamma}(\Gamma, \Gamma^\text{op} \hat{\otimes} \Gamma) \cong \Sigma^{-3} \Gamma$ in $\mathcal{D}(\Gamma^\text{op} \hat{\otimes} \Gamma)$.

It follows that the triangulated category $\mathcal{D}_{fd}(\Gamma)$ is 3-Calabi–Yau ([33 Section A.15]). Moreover, one checks that the simple $\widehat{J}(Q,W)$-modules form a simple-minded collection of $\mathcal{D}_{fd}(\Gamma)$.

Notice that $\Gamma = \widehat{\Gamma}(Q,W)$ is concentrated in non-positive degrees. It follows that Γ is a silting object of $\text{per}(\Gamma)$. We have the converse of Theorem 2.1 due to Van den Bergh, as a special case of [50 Theorems A and B].

Theorem 2.2 ([51]). Assume that k is of characteristic 0. Let A be a topologically homologically smooth bimodule 3-Calabi–Yau pseudo-compact dg algebra such that A is a silting object in $\text{per}(A)$. Then A is quasi-isomorphic to the complete Ginzburg dg algebra of some quiver with potential.

2.2. The Kontsevich–Soibelman side.

On the Kontsevich–Soibelman side, there is an A_{∞}-algebra. An A_{∞}-algebra A is a graded vector space endowed with a family of maps $m_n : A^\otimes n \to A$ homogeneous of degree $2 - n$ satisfying certain conditions, see for example [29]. For an A_{∞}-algebra A, one can define the derived category $\mathcal{D}(A)$, the perfect derived category $\text{per}(A)$ and the finite-dimensional derived category $\mathcal{D}_{fd}(A)$ as well.

A cyclic structure of degree d on an A_{∞}-algebra A is a supersymmetric non-degenerate bilinear form of degree d $$(-,-) : A \times A \to k[-d]$$ such that $$(m_n(a_1, \ldots, a_n), a_{n+1}) = (-1)^n(-1)^{|a_1|(|a_2|+\ldots+|a_{n+1}|)}(m_n(a_2, \ldots, a_{n+1}), a_1).$$

To a quiver with potential Kontsevich–Soibelman associates an A_{∞}-algebra $A(Q,W)$, which we call the **Kontsevich–Soibelman A_{∞}-algebra**. Precisely, as a graded vector space $A(Q,W)$ has a basis concentrated in degrees 0, 1, 2, 3:

- the trivial path e_i of Q in degree 0 for each vertex i of Q,
- an element a^* in degree 1 for each arrow a of Q,
- the arrows of Q, in degree 2,
- an element e_i^* in degree 3 for each vertex i of Q.

Write $W = \sum_c \lambda_c c$, where the sum is over all cycles c of Q of length ≥ 3. The maps m_n are given by

- $m_1 = 0$,
- $m_2(e_j \otimes a) = a = m_2(a \otimes e_i)$ and $m_2(e_i \otimes a^*) = a^* = m_2(a^* \otimes e_j)$ if $a : i \to j$ is an arrow of Q,
- $m_2(e_i \otimes e_j^*) = 0 = m_2(e_j \otimes e_i)$ and $m_2(e_i \otimes e_j^*) = e_i^* = m_2(e_j^* \otimes e_i)$ if i and j are different vertices of Q,
- $m_2(a \otimes a^*) = t_j^*$ and $m_2(a^* \otimes a) = t_i^*$ if $a : i \to j$ is an arrow of Q,
- $m_n(\cdots \otimes e_i \otimes \cdots) = 0$ for any vertex i of Q, if $n \geq 3$,
- $m_n(a_1^* \otimes \cdots \otimes a_n^*) = - \sum \lambda_{a_n \cdots a_1} a$, where the sum is over all arrows of Q.

Theorem 2.3 ([11]). Assume that k is of characteristic 0.
Let \((Q, W)\) be a quiver with potential. Then \(A(Q, W)\) has a natural cyclic structure of degree 3.

(b) Let \(A\) be an \(A_\infty\)-algebra with a cyclic structure of degree 3 such that the indecomposable direct summands of \(A\) form a simple-minded collection of \(\text{per}(A)\). Then there is a quiver with potential \((Q, W)\) such that \(A\) is \(A_\infty\)-isomorphic to \(A(Q, W)\).

2.3. The connection. The Ginzburg side and the Kontsevich–Soibelman side are related by Koszul duality. Precisely, the complete Ginzburg dg algebra \(\Gamma = \widehat{\Gamma}(Q, W)\) of a quiver with potential \((Q, W)\) can be obtained from the Kontsevich–Soibelman \(A_\infty\)-algebra \(A = A(Q, W)\) by taking the dual bar construction ([33, 44]):

\[
\Gamma = \text{Hom}_K(T_K(A^{\geq 1}[1]), K),
\]

where \(K\) is the semi-simple algebra \(kQ_0\). Conversely, the \(A_\infty\)-Koszul dual of \(\Gamma\) is the Kontsevich–Soibelman \(A_\infty\)-algebra \(A\). This leads to the following triangle equivalences

\[
\text{per}(\Gamma) \cong \text{D}_{fd}(A) \cong \text{per}(A).
\]

3. 2-Calabi–Yau triangulated categories

A typical 2-CY triangulated category is the cluster category associated to an acyclic quiver. Let \(Q\) be an acyclic quiver, i.e. a finite quiver without oriented cycles. Let \(\text{mod} kQ\) denote the category of finite-dimensional modules over the path algebra \(kQ\) and let \(\text{D}^b(\text{mod} kQ)\) denote the corresponding bounded derived category. The derived Nakayama functor \(\nu = L_{kQ} D(kQ)\) is a Serre functor of \(\text{D}^b(\text{mod} kQ)\) ([20 Theorem 4.6]). Define the cluster category \(C_Q\) ([10]) to be the orbit category

\[
C_Q := \text{D}^b(\text{mod} kQ)/\nu \Sigma^{-2}.
\]

Theorem 3.1. (a) ([28 Theorem 1 and Corollary 1]) \(C_Q\) is a 2-CY triangulated category.
(b) ([10 Theorem 3.3(b)]) The image of the \(kQ\) in \(C_Q\) is a cluster-tilting object.

There are many 2-CY triangulated categories with cluster-tilting objects arising from

(1) module categories of preprojective algebras of acyclic quivers ([17, 9]),

and from

(2) categories of maximal Cohen–Macaulay modules of singularities ([13, 21]).

There is the following remarkable recognition theorem due to Keller and Reiten.

Theorem 3.2 ([36 Theorem 2.1]). Let \(\mathcal{C}\) be a 2-Calabi–Yau algebraic triangulated category with a cluster-tilting object whose endomorphism algebra is the path algebra \(kQ\) of an acyclic quiver \(Q\). Then there is a triangle equivalence

\[
C_Q \xrightarrow{\sim} \mathcal{C}.
\]
4. FROM 3-CYS TO 2-CYS

Let \((Q,W)\) be a quiver with potential. The generalised cluster category \(\mathcal{C}_{(Q,W)} := \text{per}(\hat{\Gamma}(Q,W))/\mathcal{D}_{fd}(\hat{\Gamma}(Q,W))\).

The relation among the complete Ginzburg dg algebra \(\hat{\Gamma}(Q,W)\), the Kontsevich–Soibelman \(A_\infty\)- algebra \(A(Q,W)\) and the generalised cluster category \(\mathcal{C}_{(Q,W)}\) is encoded in the following recollement

\[
\begin{array}{c}
\hat{\mathcal{C}}_{(Q,W)} \\
\mathcal{D}(Q,W) \\
\mathcal{D}(A(Q,W))
\end{array}
\]

where \(\hat{\mathcal{C}}_{(Q,W)}\) is an unbounded version of \(\mathcal{C}_{(Q,W)}\) in the sense that \(\hat{\mathcal{C}}_{(Q,W)}\) has infinite direct sums and \(\mathcal{C}_{(Q,W)}\) consists of compact objects in \(\hat{\mathcal{C}}_{(Q,W)}\) ([31, Corollary 3]).

Theorem 4.1. If \(\hat{J}(Q,W)\) is finite-dimensional, then \(\mathcal{C}_{(Q,W)}\) is Hom-finite and 2-CY as a triangulated category. Moreover, the image of the object \(\hat{\Gamma}(Q,W)\) in \(\mathcal{C}_{(Q,W)}\) is a cluster-tilting object whose endomorphism algebra is \(\hat{J}(Q,W)\).

This result is a special case of the following more general theorem, which is a ‘topological’ version of [3, Theorems 2.1 and 3.5]. It is generalised in [19, 23].

Theorem 4.2 ([33, Theorem A.21]). Let \(A\) be a dg algebra satisfying the conditions
- \(H^i(A) = 0\) for \(i > 0\),
- \(H^0(A)\) is finite-dimensional,
- \(A\) is topologically homologically smooth,
- \(A\) is bimodule 3-Calabi–Yau.

Then \(\text{per}(A)/\mathcal{D}_{fd}(A)\) is Hom-finite and 2-CY as a triangulated category. Moreover, the image of \(A\) in \(\text{per}(A)/\mathcal{D}_{fd}(A)\) is a cluster-tilting object whose endomorphism algebra is \(H^0(A)\).

5. FROM 2-CYS TO 3-CYS

Motivated by the Keller–Reiten recognition Theorem [32] we propose the following conjecture (cf. [2, Summary of results, Part 2, Perspectives]).

Conjecture 5.1. Assume that \(k\) is of characteristic 0. Let \(\mathcal{C}\) be a 2-Calabi–Yau algebraic triangulated category with a cluster-tilting object \(T\). Then there is a quiver with potential \((Q,W)\) together with a triangle equivalence

\[
\begin{array}{c}
\mathcal{C}_{(Q,W)} \\
\hat{\Gamma}(Q,W)
\end{array} \sim \begin{array}{c}
\mathcal{C} \\
T
\end{array}
\]

If this conjecture holds, then the answer to the following question proposed in Amiot’s ICRA XIV notes is positive.
Question 5.2 ([4] Question 2.20). Assume that \(k \) is of characteristic 0. Let \(C \) be a 2-Calabi–Yau algebraic triangulated category with a cluster-tilting object \(T \). Then the endomorphism algebra of \(T \) is the complete Jacobian algebra of some quiver with potential.

Note that we have replaced ‘Jacobian algebra’ by ‘complete Jacobian algebra’. The original question has a negative answer, as there are quivers with potentials whose complete Jacobian algebras are not non-complete Jacobian algebras of any quiver with potential, see [47, Example 4.3] for an example.

Moreover, we have put an extra assumption on the characteristic of the field, as when \(k \) is of positive characteristic, the answer to the question is negative. For example, if \(k \) is of characteristic \(p > 0 \), then \(k[x]/(x^p-1) \) is not a Jacobian algebra. However, take \(\Gamma \) as the dg algebra whose underlying graded algebra is \(k\langle\langle x, x^*, t \rangle\rangle \) with \(\deg(x) = 0 \), \(\deg(x^*) = -1 \) and \(\deg(t) = -2 \), and whose differential \(d \) is defined by

\[
d(x) = 0, \quad d(x^*) = x^p - 1, \quad d(t) = xx^* - x^*x.
\]

It is straightforward to check that \(\Gamma \) satisfies the assumptions of Theorem 4.2, so \(k[x]/(x^p-1) \) is the endomorphism of a cluster-tilting object in a 2-Calabi–Yau algebraic triangulated category. More examples can be found in [42].

One approach to attack Conjecture 5.1 is developed by Amiot [3]. For many 2-Calabi–Yau triangulated categories \(C \) arising from (1) and (2) in Section 3, there is a finite-dimensional algebra \(A \) of global dimension 2 with certain conditions such that \(C \) is triangle equivalent to the cluster category of \(A \). On the other hand, the 3-Calabi–Yau completion \(\Pi_3(A) \) of \(A \) in the sense of Keller [32] satisfies the four conditions in Theorem 4.2 (with ‘topologically homologically smooth’ replaced by ‘homologically smooth’), and the cluster category of \(A \) is triangle equivalent to \(\per(\Pi_3(A))/\mathcal{D}_{fd}(\Pi_3(A)) \) ([32, Theorem 6.12(a)]. By [32, Theorem 6.10], there is a quiver with potential \((Q, W)\) such that \(\Pi_3(A) \) is quasi-isomorphic to the \(\Gamma(Q, W) \). Therefore \(C \) is triangle equivalent to \(\per(\Gamma(Q, W))/\mathcal{D}_{fd}(\Gamma(Q, W)) \). Amiot, Iyama, Reiten, Todorov [3, 7, 6, 5] have intensively worked on this topic.

Another promising approach is the from-2CY-to-3CY approach, which we explain in more details below. Let \(\mathcal{E} \) be a stably 2-CY Frobenius category and \(M \in \mathcal{E} \) be a basic cluster-tilting object. Let \(\mathcal{C} \) be the stable category of \(\mathcal{E} \), \(A = \text{End}_\mathcal{E}(M) \) and \(e \in A \) be the idempotent corresponding to the maximal projective-injective direct summand of \(M \). Then \(A/AeA = \text{End}_\mathcal{C}(M) \). The following is a consequence of [35, Proposition 4 (c)].

Theorem 5.3. Let \(\mathcal{D}_{fd,A/AeA}(\text{Mod} A) \) be the subcategory of \(\mathcal{D}(\text{Mod} A) \) whose total cohomology is finite-dimensional and supported on \(A/AeA \). Then there is a bifunctorial isomorphism

\[
\mathcal{D} \text{Hom}(X,Y) \cong \text{Hom}(Y, \Sigma^{d+1}X),
\]

where \(X \in \text{mod} A/AeA \) and \(Y \in \mathcal{D}_{fd,A/AeA}(\text{Mod} A) \).

The collection of simple \(A \)-modules supported on \(A/AeA \) is a simple-minded collection in \(\mathcal{D}_{fd,A/AeA}(\text{Mod} A) \). By Lefèvre’s \(A_\infty \)-version of Morita’s theorem for triangulated categories, there is an \(A_\infty \)-algebra \(E \) together with a triangle equivalence \(\per(E) \to \mathcal{D}_{fd,A/AeA}(\text{Mod} A) \).
which takes the direct summands of E to the simple-minded collection above. It follows from Theorem 5.3 that on E there is a supersymmetric non-degenerated bilinear form. Very sadly, however, we cannot apply Theorem 2.3, because it is not clear whether the bilinear form defined a cyclic structure on E.

For $\mathcal{E} = \text{MCM}(R)$ the category of maximal Cohen–Macaulay modules over a complete Gorenstein local algebra R with isolated singularity, de Völcsey and Van den Bergh has another approach in [15].

Theorem 5.4 ([15, Theorem 1.1]). Assume as above with $\mathcal{E} = \text{MCM}(R)$ for a complete Gorenstein local algebra R with isolated singularity. Assume that $\tilde{A} \to A$ is a cofibrant minimal model of A (with the idempotent e lifted) and let $B = \tilde{A}/\tilde{A}e\tilde{A}$. Then there is a triangle equivalence $\text{per}(B)/\mathcal{D}_{fd}(B) \simeq C$.

It is not hard to check that $\mathcal{D}_{fd}(B) \simeq \mathcal{D}_{fd,A/AeA}(\text{Mod} A)$ ([26, Corollary 2.12(b)]). If \tilde{A} is the complete Ginzburg dg algebra of some quiver with potential, so is B. In particular, we obtain a triangle equivalence $\mathcal{C}_{(Q,W)} \cong C$.

Martin Kalck and myself independently started this approach in [26, 25].

Example 5.5. As an example, let us consider the 3-dimensional McKay correspondence. Let $G \subset SL_3(k)$ be a finite subgroup. Let $S = k[x,y,z]$ with the induced G-action and let $R = S^G$. Assume that R has isolated singularity. Then by a theorem of Iyama [22, Theorem 2.5], as an R-module S is a 2-cluster-tilting object in $\text{MCM}(R)$. Its endomorphism algebra $A = \text{End}_R(S)$ is isomorphic to $\hat{J}(Q',W')$, where Q' is the McKay quiver and W' is a canonical potential. See [18, Section 4.4] for the above statement and the construction of W'. Moreover, in this case the canonical homomorphism $\hat{\Gamma}(Q',W') \to \hat{J}(Q',W')$ is a quasi-isomorphism, so it is a cofibrant minimal model of $\hat{J}(Q',W')$. Let e be the identity of R, considered as an element of A. Let 0 be the vertex of Q' corresponding to the trivial G-module. Let (Q,W) be the quiver with potential obtained from (Q',W') by deleting the vertex 0. Then $B = \hat{\Gamma}(Q',W')/\hat{\Gamma}(Q',W')e\hat{\Gamma}(Q',W') = \hat{\Gamma}(Q,W)$. As a consequence, the stable category $\text{MCM}(R)$ is triangle equivalent to the generalised cluster category $\mathcal{C}_{(Q,W)}$.

References

[1] Takuma Aihara and Osamu Iyama, *Silting mutation in triangulated categories*, J. Lond. Math. Soc. (2) **85** (2012), no. 3, 633–668.

[2] Claire Amiot, *Sur les petites catégories triangulées*, Ph. D. thesis, Université Paris Diderot - Paris 7, Juillet 2008.

[3] Claire Amiot, *Cluster categories for algebras of global dimension 2 and quivers with potential*, Ann. Inst. Fourier (Grenoble) **59** (2009), no. 6, 2525–2590.

[4] Claire Amiot, *On generalized cluster categories*, Representations of algebras and related topics, EMS Ser. Congr. Rep., Eur. Math. Soc., Zürih, 2011, pp. 1–53.

[5] Claire Amiot, Osamu Iyama, and Idun Reiten, *Stable categories of Cohen-Macaulay modules and cluster categories*, Amer. J. Math. **137** (2015), no. 3, 813–857.
[6] Claire Amiot, Osamu Iyama, Idun Reiten, and Gordana Todorov, *Preprojective algebras and c-sortable words*, Proc. Lond. Math. Soc. (3) **104** (2012), no. 3, 513–539.

[7] Claire Amiot, Idun Reiten, and Gordana Todorov, *The ubiquity of generalized cluster categories*, Adv. Math. **226** (2011), no. 4, 3813–3849.

[8] Ibrahim Assem, María José Souto Salorio, and Sonia Trepode, *Ext-projectives in suspended subcategories*, J. Pure Appl. Algebra **212** (2008), no. 2, 423–434.

[9] Aslak Bakke Buan, Osamu Iyama, Idun Reiten, and Jeanne Scott, *Cluster structures for 2-Calabi-Yau categories and unipotent groups*, Compos. Math. **145** (2009), no. 4, 1035–1079.

[10] Aslak Bakke Buan, Robert J. Marsh, Markus Reineke, Idun Reiten, and Gordana Todorov, *Tilting theory and cluster combinatorics*, Adv. Math. **204** (2) (2006), 572–618.

[11] Aslak Bakke Buan, Robert J. Marsh, and Idun Reiten, *Cluster mutation via quiver representations*, Comm. Math. Helv. **83** (2008), 143–177.

[12] Tom Bridgeland, *Stability conditions on a non-compa Calabi-Yau threefold*, Comm. Math. Phys. **266** (2006), no. 3, 715–733.

[13] Igor Burban, Osamu Iyama, Bernhard Keller, and Idun Reiten, *Cluster tilting for one-dimensional hypersurface singularities*, Adv. Math. **217** (2008), no. 6, 2443–2484.

[14] Philippe Caldero and Bernhard Keller, *From triangulated categories to cluster algebras*, Inv. Math. **172** (2008), 169–211.

[15] Louis de Thanhoffer de Völcsey and Michel Van den Bergh, *Explicit models for some stable categories of maximal Cohen-Macaulay modules*, Math. Res. Lett. **23** (2016), no. 5, 1507–1526.

[16] Harm Derksen, Jerzy Weyman, and Andrei Zelevinsky, *Quivers with potentials and their representations. I. Mutations*, Selecta Math. (N.S.) **14** (2008), no. 1, 59–119.

[17] Christof Geiss, Bernard Leclerc, and Jan Schröer, *Partial flag varieties and preprojective algebras*, Ann. Inst. Fourier (Grenoble) **58** (2008), no. 3, 825–876.

[18] Victor Ginzburg, *Calabi-Yau algebras*, [arXiv:math/0612139v3 [math.AG]]

[19] Lingyan Guo, *Cluster tilting objects in generalized higher cluster categories*, J. Pure Appl. Algebra **215** (2011), no. 9, 2055–2071.

[20] Dieter Happel, *On the derived category of a finite-dimensional algebra*, Comment. Math. Helv. **62** (1987), no. 3, 339–389.

[21] Osamu Iyama, *Auslander correspondence*, Adv. Math. **210** (2007), no. 1, 51–82.

[22] , *Higher-dimensional Auslander-Reiten theory on maximal orthogonal subcategories*, Adv. Math. **210** (2007), no. 1, 22–50.

[23] Osamu Iyama and Dong Yang, *Silting reduction and Calabi-Yau reduction of triangulated categories*, Trans. Amer. Math. Soc. **370** (2018), no. 11, 7861–7898.

[24] Osamu Iyama and Yuji Yoshino, *Mutations in triangulated categories and rigid Cohen-Macaulay modules*, Invent. Math. **172** (2008), 117–168.

[25] Martin Kalck and Dong Yang, *Relative singularity categories III: cluster resolutions*, in preparation.

[26] , *Relative singularity categories I: Auslander resolutions*, Adv. Math. **301** (2016), 973–1021.

[27] Bernhard Keller, *Deriving DG categories*, Ann. Sci. École Norm. Sup. (4) **27** (1994), no. 1, 63–102.

[28] , *On triangulated orbit categories*, Doc. Math. **10** (2005), 551–581.

[29] , *A-infinity algebras, modules and functor categories*, Trends in representation theory of algebras and related topics, Contemp. Math., vol. 406, Amer. Math. Soc., Providence, RI, 2006, pp. 67–93.

[30] , *On differential graded categories*, International Congress of Mathematicians. Vol. II, Eur. Math. Soc., Zürich, 2006, pp. 151–190.

[31] , *Calabi-Yau triangulated categories*, Trends in representation theory of algebras and related topics, EMS Ser. Congr. Rep., Eur. Math. Soc., Zürich, 2008, pp. 467–489.

[32] , *Deformed Calabi-Yau completions*, J. Reine Angew. Math. **654** (2011), 125–180, With an appendix by Michel Van den Bergh.
10 DONG YANG

[33] ________, Pseudocompact dg algebras and derived categories, appendix to derived equivalence from mutations of quivers with potential, Adv. Math. 226 (2011), no. 3, 2118–2168.
[34] Bernhard Keller and Pedro Nicolás, Weight structures and simple dg modules for positive dg algebras, Int. Math. Res. Not. IMRN (2013), no. 5, 1028–1078.
[35] Bernhard Keller and Idun Reiten, Cluster-tilted algebras are Gorenstein and stably Calabi-Yau, Adv. Math. 211 (2007), 123–151.
[36] ________, Acyclic Calabi-Yau categories, Compos. Math. 144 (2008), no. 5, 1332–1348, With an appendix by Michel Van den Bergh.
[37] Bernhard Keller and Dieter Vossieck, Aisles in derived categories, Bull. Soc. Math. Belg. Sér. A 40 (1988), no. 2, 239–253.
[38] Bernhard Keller and Dong Yang, Derived equivalences from mutations of quivers with potential, Adv. Math. 226 (2011), no. 3, 2118–2168, With an appendix by Bernhard Keller.
[39] Steffen Koenig and Dong Yang, Silting objects, simple-minded collections, t-structures and co-t-structures for finite-dimensional algebras, Doc. Math. 19 (2014), 403–438.
[40] Maxim Kontsevich, Triangulated categories and geometry, Course at the École Normale Supérieure, Paris, Notes taken by J. Bellächè, J.-F. Dat, I. Marin, G. Racinet and H. Randriambololona, 1998.
[41] Maxim Kontsevich and Yan Soibelman, Stability structures, motivic Donaldson-Thomas invariants and cluster transformations, arXiv:0811.2435.
[42] Sefi Ladkani, 2-CY titled algebras that are not Jacobian, arXiv:1403.6814.
[43] Kenji Lefèvre-Hasegawa, Sur les A_∞-catégories, Thèse de doctorat, Université Denis Diderot – Paris 7, November 2003, arXiv:math.CT/0310337.
[44] Di Ming Lu, John H. Palmieri, Quan Shui Wu, and James J. Zhang, Koszul equivalences in A_∞-algebras, New York J. Math. 14 (2008), 325–378.
[45] Yann Palu, Cluster characters for 2-Calabi-Yau triangulated categories, Annales de l’institut Fourier 58 (2008), no. 6, 2221–2248.
[46] Pierre-Guy Plamondon, Cluster characters for cluster categories with infinite-dimensional morphism spaces, Adv. Math. 227 (2011), no. 1, 1–39.
[47] ________, Generic bases for cluster algebras from the cluster category, Int. Math. Res. Not. IMRN (2013), no. 10, 2368–2420.
[48] Gonçalo Tabuada, On the structure of Calabi-Yau categories with a cluster tilting subcategory, Doc. Math. 12 (2007), 193–213.
[49] Hugh Thomas, Defining an m-cluster category, J. Algebra 318 (2007), no. 1, 37–46.
[50] Michel Van den Bergh, Calabi-Yau algebras and superpotentials, Selecta Math. (N.S.) 21 (2015), no. 2, 555–603.
[51] Dong Yang, Recollements from generalized tilting, Proc. Amer. Math. Soc. 140 (2012), no. 1, 83–91.
[52] Bin Zhu, Generalized cluster complexes via quiver representations, J. Alg. Comb. 27 (2008), 25–54.

DONG YANG, DEPARTMENT OF MATHEMATICS, NANJING UNIVERSITY, NANJING 210093, P. R. CHINA
E-mail address: yangdong@nju.edu.cn