Riluzole: a therapeutic strategy in Alzheimer’s disease by targeting the WNT/β-catenin pathway

Alexandre Vallée¹, Jean-Noël Vallée²,³, Rémy Guillevin¹, Yves Lecarpentier⁴

¹DACTIM-MIS, Laboratory of Mathematics and Applications (LMA), University of Poitiers, CHU de Poitiers, Poitiers, France
²CHU Amiens Picardie, University of Picardie Jules Verne (UPJV), Amiens, France
³Laboratory of Mathematics and Applications (LMA), University of Poitiers, Poitiers, France
⁴Centre de Recherche Clinique, Grand Hôpital de l’Est Francilien (GHEF), Meaux, France

Correspondence to: Alexandre Vallée; email: alexandre.g.vallee@gmail.com
Keywords: Riluzole, Alzheimer’s disease, WNT pathway, glutamate, oxidative stress
Received: December 11, 2019 Accepted: January 27, 2020 Published: February 8, 2020

ABSTRACT

Alzheimer’s disease (AD) is a neurodegenerative disease, where the etiology remains unclear. AD is characterized by amyloid-(Aβ) protein aggregation and neurofibrillary plaques deposits. Oxidative stress and chronic inflammation have been suggested as causes of AD. Glutamatergic pathway dysregulation is also mainly associated with AD process. In AD, the canonical WNT/β-catenin pathway is downregulated. Downregulation of WNT/β-catenin, by activation of GSK-3β-induced Aβ, and inactivation of PI3K/Akt pathway involve oxidative stress in AD. The downregulation of the WNT/β-catenin pathway decreases the activity of EAAT2, the glutamate receptors, and leads to neuronal death. In AD, oxidative stress, neuroinflammation and glutamatergic pathway operate in a vicious circle driven by the dysregulation of the WNT/β-catenin pathway. Riluzole is a glutamate modulator and used as treatment in amyotrophic lateral sclerosis. Recent findings have highlighted its use in AD and its potential increase power on the WNT pathway. Nevertheless, the mechanism by which Riluzole can operate in AD remains unclear and should be better determine. The focus of our review is to highlight the potential action of Riluzole in AD by targeting the canonical WNT/β-catenin pathway to modulate glutamatergic pathway, oxidative stress and neuroinflammation.

INTRODUCTION

Alzheimer’s disease (AD) is one of the major neurodegenerative disease, but its etiology remains unclear. AD is marked by two major postmortem hallmarks: amyloid-(Aβ) protein aggregation formed by plaque deposits and tau protein hyperphosphorylation which results in neurofibrillary tangles. In AD, the common symptoms are cognitive function dysregulation, memory loss and neurobehavioral manifestations [1]. Other cognitive and behavioral symptoms are poor facial recognition ability, social withdrawal, increase in motor agitation and wandering likelihood [2, 3]. Aging is the main risk factors of AD [4]. Affected neural circuits in aging and AD are the same, and involving glutamatergic pathway, oxidative stress and neuroinflammation [5, 6]. Glutamatergic neurons are vulnerable to damages in AD and in aging [7–9]. Oxidative stress and neuroinflammation are considered as mainly underlying causes of AD [10, 11]. Increase of oxidative stress can be an early indication of AD [12, 13]. In AD, the accumulation of Aβ protein leads to the decrease of the WNT/β-catenin pathway [14]. Diminution of β-catenin decreases phosphatidylinositol 3-kinase (PI3K)-protein kinase B (Akt) (PI3K/Akt) pathway activity [15, 16]. Inhibition of WNT/β-catenin/PI3K/Akt pathway enhances oxidative stress in mitochondria of AD cells [17]. Thus, activation of the WNT/β-catenin pathway may be an interesting therapeutic target for AD [18, 19].
Riluzole is a glutamate modulator and used as treatment in amyotrophic lateral sclerosis [20]. Moreover, use of Riluzole is associated with prevention of age-related cognitive decline [21]. Riluzole administration can be correlated with induction of dendritic spines clustering [21] depending on glutamatergic neuronal activity [22, 23]. In mutant mouse and rat model of AD, Riluzole can prevent age-related cognitive decline [21, 24]. Moreover, Riluzole is associated with the rescue age-related gene expression changes in hippocampus of rats [6]. Hippocampus region is responsible for learning and memory and is one of the regions compromised by AD progression [25, 26].

Nevertheless, the mechanism by which Riluzole can operate in AD remains unclear and should be better determine. The focus of our review is to highlight the potential action of Riluzole in AD by targeting the canonical WNT/β-catenin pathway to modulate glutamatergic pathway, oxidative stress and neuroinflammation.

HALLMARKS OF AD: OXIDATIVE STRESS AND NEUROINFLAMMATION

AD manifestations are characterized by senile plaques, due to the extracellular accumulation of the amyloid β (Aβ) protein [27], and neurofibrillary tangles (NFTs), caused by hyperphosphorylated tau aggregation [28].

Aβ is produced by the sequential cleavage of the Amyloid Precursor Protein (APP), controlled by the β-secretase (BACE-1) and complex of gamma-secretase [29]. NFTs is formed by the aggregation of hyperphosphorylated microtubule-associated protein (MAP) tau. Tau is a microtubule-stabilizing protein maintaining the structure of neuronal cells and the axonal transport. In AD, multiple kinases phosphorylate Tau in an aberrantly manner. These kinases are the Glycogen synthase kinase-3β (GSK-3β), the cyclin-dependent protein kinase-5 (CDK5), the Dual specificity tyrosine-phosphorylation-regulated kinase 1A (DYRK1A), the Calmodulin-dependent protein kinase II (CAMKII), and the Mitogen-activated protein kinases (MAPKs) are the best known [30–32].

Some pathways including genetic factors, neuroinflammation correlated with neurotoxicity, oxidative stress and cytokine release, are considered as possible underlying causes [10, 11]. Aβ and NFTs involve neuroinflammation and oxidative damages resulting in progressive neuronal degeneration. Oxidative stress enhancement can be an indication of AD [13].

In AD, mitochondrial damages enhance the production of ROS (reactive oxygen species) but diminish the production of ATP [33]. Mitochondrial damages affect cell function by enhancing the release of ROS leading to cell damage and death. Energy depletion is caused by the disruption of oxidative phosphorylation [34]. Thus, both the dysregulation of mitochondrial activity and oxidative stress enhancement are responsible to dementia and neuronal cell death [35–37].

Numerous cellular pathways are altered by Aβ-induced oxidative stress [38]. Neurotoxic effects are induced by Aβ peptide through the enhancement of oxidative stress and damages on the membrane, mitochondrial function and lipids production [39]. NADPH dehydrogenase (complex I) generates superoxide from oxidative phosphorylation into the mitochondrial respiratory chain [40]. Complex I and complex IV (cytochrome c oxidase) deficiencies are initiated by Aβ. These deficiencies lead to ROS generation [41]. Mitochondrial-derived ROS correlated with Aβ, are inhibited in resistant relative to sensitive cells. Through the diminution of the mitochondrial respiration chain, Aβ-resistant cells are less likely to generate ROS and are mainly resistant to depolarization of the mitochondria [17].

Amyloid oligomers complex into the lipid bilayer and lead to the peroxidation of lipids, proteins and biomolecule damages [42]. Membrane alteration generated by the accumulation of Aβ are induced by the influx of Ca²⁺. This leads to the alteration of the homeostasis of Ca²⁺ leading to mitochondrial dysregulation and neuronal death. Diminution of the activity of Glutathione (GSH) is responsible for the increase of Ca²⁺ release and ROS accumulation [43]. Then, ROS accumulation affects DNA transcription, DNA oxidation and the activity of the target proteins [44, 45]. Tau leads to the dysregulation of the mitochondrial activity, which dysregulates energy production, enhances ROS and nitrogen species (RNS) production [46]. ROS and RNS alters the integrity of cell membranes to induce failure of synapses [47]. ROS production activates pro-inflammatory gene transcription and cytokines release, including interleukin-1 (IL-1) and tumor necrosis factor-α (TNF-α), responsible for neuroinflammation [37]. Aβ-related inflammatory compound of the disease is one of the main targets to control AD development [48]. Aβ stimulates inflammation leading to damage and neuronal death [49].

Numerous studies have shown the link between neuroinflammation and oxidative stress [50]. NF-κB induces the production of ROS and RNS leading to neuronal damages [51, 52]. NF-κB activates COXX-2
and cytosolic phospholipase A2 which stimulate prostaglandins production leading to oxidative stress [53]. Production of peroxide, through the involvement of iNOS and NF-κB pathway, is associated with dysregulation of the glucose metabolism [54]. IL-1 can stimulate GSH production in astrocytes through a NF-κB dependent pathway [55].

GLUTAMATERIC PATHWAY IN AD

Glutamate is a key excitatory neurotransmitter in the CNS, responsible for fast excitatory neurotransmission. In neurons, glutamate is stored in synaptic vesicles, from where it is released. The release of glutamate leads to an increase in glutamate concentration in the synaptic cleft, which binds the ionotropic glutamate receptors. Glutamate is removed from the synaptic cleft and transported to astrocytes by glutamate transporters (such as GLT-1 or excitatory amino acid transporters 1 and 2: EAATs 1 and 2) to prevent overstimulation of the glutamate receptor [56]. Astrocytes clear >90% of excess glutamate by EAATs and play a major role in the glutamate/glutamine cycle. Following glutamate uptake, glutamine synthetase (GS) catalyzes the ATP-dependent reaction of glutamate and ammonia into glutamine. Glutamine is released and in turn is taken up by neurons for conversion back to glutamate by glutaminase.

In a physiological state, in astrocytes, β-catenin activates the gene expression of EAAT2 and GS [57]. This allows the re-uptake of glutamate from the synaptic cleft by astrocytes through EAAT2. Glutamate is then metabolized by GS.

In AD, EAAT2 expression is decreased [58]. The over-accumulation of glutamate in the synaptic cleft leads to excitotoxicity that impairs glutamate receptors located on the post-synaptic side of the cleft. This phenomenon leads to calcium overload, mitochondrial dysfunction, apoptosis and ultimately death of the post-synaptic neuron. Cell death is restricted to post-synaptic neurons. The decrease if glutamate transmission is significantly associated with neuronal death and loss of synapse [56]. Moreover, the downregulation of glutamate transport is correlated with the decrease of EAAT2 expression in AD [58].

Some animal models of AD have shown the importance of NMDA receptors (glutamatergic N-methyl-D-aspartate) in AD and the affection of glutamatergic synapses [59, 60].

Synaptic dysregulation is one the main mechanism involved in AD [28] which is present at early step of AD development [61]. Moreover, Aβ expression is closely associated with glutamatergic pathway expression [62]. Excessive activation of extra-synaptic NMDA receptors [63] and excessive downregulation of synaptic NMDA receptors [64] lead to increase of Aβ release [65].

OXIDATIVE STRESS, NEUROINFLAMMATION AND GLUTAMATERIC PATHWAY IN AD

Oxidative stress leads to the loss of cell homeostasis by mitochondrial oxidants overproduction [66]. The development of oxidative stress in AD compromises astrocyte function leading to impairment of glutamate transport and then increasing excitotoxicity to neurons [67]. Aβ interaction on the membrane of astrocytes induces calcium changes. Mitochondrial dysregulation in astrocytes is associated with a mitochondrial depolarization, increased conductance and membrane permeability [68]. The formation of calcium selective channels on membrane could be induced by Aβ into astrocytes generating a change in the conductance [69]. Aβ insertion in membrane changes the structure of membrane [70]. In AD, astrocytes appear as the primary target of Aβ, and oxidative stress enhancement is associated with the alteration of calcium intracellular signaling [69]. Astrocytes have a major role in neuronal integrity. Changes in cytokines and oxidative damages in astrocytes increase neurotoxicity and vulnerability of neurons [67]. In parallel a vicious and positive crosstalk is observed between oxidative stress and neuroinflammation. NF-κB activation induces the generation of prostaglandins and oxidative stress [53] whereas oxidative stress can stimulate in a direct feedback NF-κB pathway [50]. Thus, interesting drugs should consider the modulation of astrocyte activity to reduce both inflammation and oxidative stress.

THE CANONICAL WNT/β-CATENIN PATHWAY (FIGURE 1)

The Wingless/Int (WNT) pathway is a family of secreted lipid-modified glycoproteins [71]. Several signaling are mediated by this pathway, including fibrosis and angiogenesis [72–74].

During eye development, WNT/β-catenin pathway activity is highly mediated. Then, a dysfunction of the WNT/β-catenin pathway leads to several ocular malformations due to defects in cell fate differentiation and determination [75]. During the development of lens, the WNT/β-catenin pathway is stimulated in the pericircular surface ectoderm and lens epithelium [76, 77]. For the retinal development, the WNT/β-catenin pathway is stimulated in the dorsal optic vesicle and then, participates to the activation of RPE at the optic vesicle step. At this level, WNT/β-catenin pathway is
The retinal vascular initiation is mainly modulated by the expression of the WNT/β-catenin pathway [75]. In the retinal vascular system, WNT/β-catenin pathway is controlled by the erythroblast transformation-specific (ETS) transcription factor Erg. Erg has a major and key role in angiogenesis [79]. Erg modulates the WNT/β-catenin pathway by promoting β-catenin stability and by regulating the transcription of Frizzled 4 (FZD4) [79].

Stimulation of FZD4/β-catenin signaling needs the presence of the complex LRP5/LRP6 [80]. LRP5 has a main role while LRP6 presents a minor role in the retinal vascularization [81, 82]. Disheveled (Dsh) forms a complex with Axin, and this prevents the phosphorylation of β-catenin by glycogen synthase kinase-3β (GSK-3β). Then, β-catenin accumulation in the cytosol is observed and translocates to the nucleus to bind T-cell factor/lymphoid enhancer factor (TCF/LEF) co-transcription factors. This nuclear bind allows the transcription of WNT-responsive genes, such as cyclin D1, c-Myc, PDK1, MCT-1 [83, 84].

WNT ligands absence is associated with cytosolic β-catenin phosphorylation by GSK-3β.

A destruction complex is composed by tumor suppressor adenomatous polyposis coli (APC), Axin, GSK-3β and β-catenin. Then, phosphorylated β-catenin is destroyed in the proteasome. WNT inhibitors, including DKKs and SFRPs, control the WNT/β-catenin pathway by preventing its ligand-receptor interactions [85].

Figure 1. The canonical WNT/β-catenin pathway. Inactivated WNT: Under physiologic circumstances, the cytoplasmic β-catenin is linked to its destruction complex, consisting of APC, AXIN and GSK-3β. β-catenin is phosphorylated by GSK-3β. Thus, phosphorylated β-catenin is destroyed into the proteasome. Then, cytoplasmic level of β-catenin is kept low in the non-presence of WNT ligands. If β-catenin is not accumulated in the nucleus, the TCF/LEF complex does not stimulate the target genes. DKK1 inhibits the WNT/β-catenin pathway through the bind to WNT ligands or LRP5/6. Activated WNT: When WNT ligands activate both FZD and LRP5/6, DSH is stimulated and phosphorylated by FZD. Phosphorylated DSH in turn activates AXIN, which comes off β-catenin destruction complex. Thus, β-catenin escapes from phosphorylation and then accumulates in the cytoplasm. The accumulated cytosolic β-catenin moves into the nucleus, where it interacts with TCF/LEF and stimulates the transcription of target genes.
GSK-3β, a neuron-specific intracellular serine-threonine kinase, is the major inhibitor of the WNT pathway [86]. GSK-3β regulates numerous pathophysiological pathways (cell membrane signaling, neuronal polarity and inflammation) [87–89]. GSK-3β downregulates β-catenin cytosolic accumulation and then its nuclear translocation [87]. GSK-3β diminishes β-catenin, mTOR (PI3K/Akt pathway downstream), and HIF-1α expression [90].

THE CANONICAL WNT/β-CATENIN PATHWAY IN AD

Some evidence has presented a down-regulation of the Wnt/β-catenin pathway in the pathogenesis of AD [5, 47, 91–94]. Aβ leads to a dysregulation of the WNT/β-catenin pathway in AD [95, 96]. Aβ increases Dickkopf-1 (DKK1) expression, a WNT inhibitor. In AD, DKK-1 links LRP 5/6, inhibits the complex WNT /Frd and downregulates the interaction with WNT ligands [97]. DKK-1 overexpression has been shown in AD brain of humans and transgenic mice [98]. GSK-3β activity is increased in the hippocampus of AD patients [99]. In AD, GSK-3β phosphorylates MAP tau to enhance NFTs expression [100–102]. GSK-3β over-activity is associated in AD with the diminution of β-catenin level and the increase of tau phosphorylation and NFTs formation [103]. GSK-3β activation enhances the APP cleavage [104]. The inhibition of GSK-3β activity is associated with the reversion of cell damages in AD [105].

WNT/β-CATENIN AND GLUTAMATERGIC PATHWAY (FIGURE 2)

Some experimental studies have shown that β-catenin can regulate the expression of EAAT2, GLT-1 and GS [57, 106–108]. β-catenin knockout leads to the inhibition of glutamate neurotransmission [109].

Figure 2. The WNT pathway and glutamate in AD. Under physiological conditions, glutamate released from the presynaptic neuron stimulates ionotropic glutamate receptors present on the postsynaptic neuron. The resulting influx of Na+ and Ca2+ into the cell leads to depolarization and generation of an action potential. However, chronic elevation of glutamate through impairment of EAAT2 and GS causes neuronal damage and leads to AD. In AD, the downregulation of β-catenin signaling inhibits the activity of EAAT2. Chronic accumulation of glutamate (through an impaired EAAT2 function, as glutamate reuptake function) induces excitotoxicity and then, neuronal death.
Moreover, β-catenin expression acts in concordance with its downstream targets, as TCF/LEF, to control EAAT2 and GS expression [57]. In parallel, some studies have shown the potential role of NF-κB in the control of EAAT2 expression [110]. Evidence highlights the decrease of WNT/β-catenin pathway in rats presenting increase in neuroinflammation [91]. WNT/β-catenin pathway is mainly associated with oxidative stress and neuroinflammation [47, 111–113]. These signals, act in vicious circle with downregulated β-catenin expression, which in turn, downregulate the expression of EAAT2/GS and then, glutamate excitotoxicity [57, 114].

AD: LOW ATP PRODUCTION AND DECREASED WNT/β-CATENIN PATHWAY (FIGURE 3)

Cerebral hypo-metabolism is associated with the severity of symptoms observed in AD [115]. The decrease in glucose transport in AD brains is caused by the decrease in energy demand related to the dysfunction of AD synapses [17].

Glut-1 (glucose transporter 1) expression, which have a main role in glucose transport in brain [116], is decreased in AD [117]. After glucose entered in cell, glucose is transformed into glucose-6-phosphate by the enzyme Hexokinase (HK). Amyloidogenic AD in mouse models and in post-mortem brains show decreased levels of HK [118]. Then, glycolysis ending stage is formed by phosphoenolpyruvate (PEP) conversion into pyruvate. Tis step is catalyzed by the pyruvate kinase (PK) with an ADP. PK is composed by four isoforms (PKR, PKL, PKM1 and PKM2). Low affinity with PEP characterizes PKM2 [119].

High concentration of glucose leads to acetylation of PKM2 to reduce its activity and then, targets toward the lysosome-dependent degradation of PKM2 [120]. Peptidyl-prolyl isomerase (Pin1) allows, under high concentration of glucose, the nuclear translocation of PKM2 [120] to bind β-catenin and then, to induce c-Myc, Glut, LDH-A (lactate dehydrogenase), PDK1 (pyruvate dehydrogenase kinase 1) expression [121]. Pyruvate dehydrogenase complex (PDH) is phosphorylated by activated PDK1. Phosphorylated PDH is inactivated to prevent the conversion of pyruvate into acetyl-CoA in the mitochondria [122].

WNT/β-catenin pathway activates the PI3K/Akt pathway to increase glucose metabolism [123]. Activated PI3K/Akt pathway leads to the stimulation of hypoxia-inducible factor-1-α (HIF-1α) [124]. Thus, the overexpression of HIF-1α allows the activation of Glut, PDK1, PDH-1 and PKM2 [125–127].

In AD brain, the accumulation of Aβ is associated with the decrease of PI3K/Akt pathway [128], the decrease of WNT pathway and the degradation of β-catenin [5, 93]. In AD, β-catenin degradation leads to the reduction of PI3K/Akt pathway and then, the inactivation of HIF-1α [15, 16]. Inhibition of the activity of HIF-1α diminishes the nuclear translocation of PKM2 and does not allow the PEP cascade to produce pyruvate. Nuclear PKM2 does not bind β-catenin and not allows the stimulation of glycolytic enzymes. Glucose hypo-metabolism and energy deficiency is observed in AD brains [116].

AD: ROS PRODUCTION AND DECREASED WNT/β-CATENIN PATHWAY (FIGURE 3)

PKM2 inhibition leads to increase ROS and NADPH production by inhibiting LDH-A [125]. Conversely, activation of LDH-A results in production of lactate from pyruvate [129]. This activation of LDH-A is associated with the generation of NAD+ to maintain NADH/ NAD+ redox balance [130]. A shift from mitochondrial respiration to lactate production operates and inhibits ROS production and oxidative stress [131]. Aβ toxicity is downregulated by this metabolic reprogramming with the activation of HIF-1α, PDK1 and LDH-A [132, 133]. The activation of glycolytic enzymes leads to aerobic glycolytic and then, reduces oxidative stress [133, 134].

However, Aβ toxicity is associated by the inhibition of the WNT/β-catenin pathway leading to ROS production in mitochondria [17]. FoxO (Forkhead box class O) transcription factors are main intracellular modulators of metabolic pathways including glucose transport and regulation of oxidative stress [135]. ROS decreases Wnt pathway through the diversion of β-catenin from TCF/LEF to FoxO [136]. This leads to β-catenin/FoxO complex and nuclear activation of FoxO [137, 138]. FoxO activates apoptotic genes expression [139–141] by stimulating cyclin-dependent kinase inhibitor p27, kip1 and decreasing cyclin D1 expression [142, 143]. The activation of FoxO induces apoptosis [144], whereas FoxO decreasing is associated with low Aβ exposure [145]. WNT/β-catenin pathway stimulation can phosphorylate FoxO into the cytosol and then, allows diminution of apoptosis, decrease of cytochrome c release, Bad phosphorylation and caspase signaling [146].

AD: NEUROINFLAMMATION AND DECREASED WNT/β-CATENIN PATHWAY (FIGURE 3)

Release of cytokines, blood barrier breakdown and infiltration of leukocytes in brain characterized neuroinflammation [147]. Neurodegeneration is partly
caused by the neuroinflammation [148]. NF-κB, cytokines and prostaglandins activation are responsible for CNS neuroinflammation [149, 150]. In physiologic condition, WNT/β-catenin pathway can control the immune response during neuroinflammation [151]. WNT and NF-κB act in an opposed manner [152–156]. LRP5 negatively regulates macrophage differentiation [157].

B-catenin inhibits NF-κB -mediated transcription of pro-inflammatory genes by decreasing GSK-3β activity. GSK-3β positively regulates NF-κB pathway but negatively modulates β-catenin level [158, 159]. Decreased β-catenin level is correlated with the increase of NF-κB pathway and thus, neuroinflammation [160].

RILUZOLE AND NEURODEGENERATIVE DISEASES

Riluzole could be considered as a neuroprotective drug while its action mechanism remains unclear. Riluzole can block glutamatergic cell transmission in brain through the inhibition of the discharge of aminoaonic

Figure 3. Interactions between Aβ, WNT pathway and energy metabolism in AD. In AD, Aβ protein activates DKK-1, an inhibitor of WNT pathway. In absence of WNT ligands, cytosolic β-catenin is phosphorylated by GSK-3β. APC and Axin combine with GSK-3β and β-catenin to enhance the destruction process in the proteasome. β-catenin does not translocate to the nucleus et does not bind TCF/LEF co-transcription factor. WNT target genes, such as cMyc, are not activated. Aβ protein accumulation decreases level of PI3K/Akt pathway and results in inactivation of HIF-1alpha. Downregulation of beta-catenin reduces the expression of PI3K/Akt signaling. HIF-1alpha inactivated does not stimulate Glut, HK, PKM2, LDH-A and PDK1. Inactivation of HIF-1alpha involves PKM2 non-translocation to the nucleus. PKM2 inhibits PEP cascade and the formation of pyruvate. PKM2 does not bind beta-catenin and does not induce cMyc-mediated expression of glycolytic enzymes (Glut, LDH-A, PDK1). Inhibition of Glut and HK involves glucose hypo-metabolism with decreased in glucose transport and phosphorylation rates. PDK1 does not inhibit PDH, which stimulates pyruvate entrance into mitochondria. Aβ toxicity is associated with mitochondrial-derived ROS (reactive oxygen species). GSK-3β phosphorylation activates hyperphosphorylation of Tau, which induces neurofibrillary tangles and neuroinflammation.
acid from central nervous system. This drug can block the post synaptic effects of glutamic acid by blockage of NMDA receptors [161]. Parkinson’s disease (PD) is characterized by a mitochondrial dysfunction [94, 162, 163]. The insufficiency of energy leads to the weakness of glutamatergic activation and then contributes to PD [164]. The glutamate antagonism role of Riluzole may be useful for PD patients. Increase of synaptic efficacy of striatal ionotropic glutamatergic receptors leads to dyskinesia and may be relieved by Riluzole which acts on excitatory glutamatergic transmission [165]. Moreover, PD is associated with the decrease of the WNT/β-catenin pathway [166, 167]. Riluzole could be an interesting drug by targeting this pathway. Anxiety disorders could be reduced by anti-glutamatergic action of the Riluzole and the reduction of the amino acid neurotransmission [168]. Riluzole reduces symptoms in bipolar disorders which present a decrease in WNT/β-catenin pathway [169].

Riluzole is a well-known treatment of amyotrophic lateral sclerosis (ALS). This drug is used in ALS due to its anti-glutamatergic toxicity role while ALS presents an upregulation of the WNT/β-catenin pathway [AV].

RILUZOLE: A POTENTIAL ACTOR ON THE DECREASED WNT/β-CATENIN PATHWAY IN AD (FIGURE 4)

Riluzole administration can counteract glutamate alterations, cognitive deficits, and tau pathology associated with P301L tau expression [24, 170]. Riluzole increases the performance in the rTg (TauP301L) 4510 mouse model of AD. The TauP301L-mediated diminution in PSD-95 expression, a compound of excitatory synapses in the hippocampus, is rescued by Riluzole. Moreover, Riluzole is an enhancer of Wnt/β-catenin pathway in both HT22 neuronal cells and adult hippocampal progenitor cells [171]. This can explain the

![Figure 4. Riluzole potential action in AD. By directly targeting the WNT pathway, Riluzol could act on neuroinflammation, oxidative stress and the glutamatergic pathway involved in AD process.](image-url)
beneficial action observed by Riluzole in AD. Riluzole has been approved for the ALS, a disease presenting an upregulation of Wnt/β-catenin pathway, the indication of Riluzole used in ALS is due to its action on the glutamatergic pathway [172]. Nevertheless, Riluzole show weak effects in median survival at 3 months [173–175]. These poor effects of Riluzole in ALS could be explained by the increasing of the WNT/β-catenin pathway by Riluzole [167]. Positive effects of Riluzole used have been observed in bipolar disorders, a disease presenting a downregulation of the WNT/β-catenin pathway [169, 176, 177]. However, only one experimental study has directly shown the positive role of Riluzole on the WNT/β-catenin pathway [171].

CONCLUSION

Primary etiology of AD remains unclear; nevertheless, neuroinflammation, oxidative stress and glutamatergic pathway could be underlying causes of AD. The canonical WNT/β-catenin pathway is downregulated in AD. The downregulation of this pathway is responsible for the enhancement of oxidative stress, neuroinflammation and the dysregulation of the glutamatergic pathway in AD. Riluzole could be an interesting therapeutic strategy in AD by targeting the WNT/β-catenin pathway and increasing it. Few studies have focused on this potential therapeutic way in AD, and futures clinical trials could highlight this interaction and the beneficial effects of Riluzole in AD.

Abbreviations

AD: Alzheimer’s disease; Acetyl-coA: Acetyl-coenzyme; APC: Adenomatous polyposis coli; DSH: Disheveled; FZD: Frizzled; GK: Glucokinase; GLUT: Glucose transporter; GSK3: Glycogen synthase kinase-3; LDH: Lactate dehydrogenase; LRP 5/6: Low-density lipoprotein receptor-related protein 5/6; MCT-1: Monocarboxylate lactate transporter-1; NDs: Neurodegenerative diseases; PI3K-Akt: Phosphatidylinositol 3-kinase-protein kinase B; PFK-1: Phosphofructokinase-1; PDH: Pyruvate dehydrogenase complex; PDK: Pyruvate dehydrogenase kinase; TCF/LEF: T-cell factor/lymphoid enhancer factor; TCA: Tricarboxylic acid.

AUTHOR CONTRIBUTIONS

All authors listed have contributed to the work, and approved it for submitting to publication.

CONFLICTS OF INTEREST

The authors declare that the research was conducted in the absence of any commercial or financial relationship that could be construed as a potential conflict of interest.

REFERENCES

1. Pandi-Perumal SR, BaHammam AS, Brown GM, Spence DW, Bharti VK, Kaur C, Hardeland R, Cardinali DP. Melatonin antioxidative defense: therapeutic implications for aging and neurodegenerative processes. Neurotox Res. 2013; 23:267–300. https://doi.org/10.1007/s12640-012-9337-4 PMID:22739839

2. Reisberg B, Ferris SH, de Leon MJ, Crook T. The Global Deterioration Scale for assessment of primary degenerative dementia. Am J Psychiatry. 1982; 139:1136–39. https://doi.org/10.1176/ajp.139.9.1136 PMID:7114305

3. Chung JA, Cummings JL. Neurobehavioral and neuropsychiatric symptoms in Alzheimer’s disease: characteristics and treatment. Neurol Clin. 2000; 18:829–46. https://doi.org/10.1016/S0733-8619(05)70228-0 PMID:11072263

4. Brookmeyer R, Johnson E, Ziegler-Graham K, Arrighi HM. Forecasting the global burden of Alzheimer’s disease. Alzheimers Dement. 2007; 3:186–91. https://doi.org/10.1016/j.jalz.2007.04.381 PMID:19595937

5. Vallée A, Lecarpentier Y. Alzheimer Disease: Crosstalk between the Canonical Wnt/Beta-Catenin Pathway and PPARs Alpha and Gamma. Front Neurosci. 2016; 10:459. https://doi.org/10.3389/fnins.2016.00459 PMID:27807401

6. Pereira AC, Gray JD, Kogan JF, Davidson RL, Rubin TG, Okamoto M, Morrison JH, McEwen BS. Age and Alzheimer’s disease gene expression profiles reversed by the glutamate modulator riluzole. Mol Psychiatry. 2017; 22:296–305. https://doi.org/10.1038/mp.2016.33 PMID:27021815

7. Braak H, Braak E. Neuropathological staging of Alzheimer-related changes. Acta Neuropathol. 1991; 82:239–59. https://doi.org/10.1007/BF00308809 PMID:1759558

8. Morrison JH, Hof PR. Selective vulnerability of corticocortical and hippocampal circuits in aging and Alzheimer’s disease. Prog Brain Res. 2002; 136:467–86. https://doi.org/10.1016/S0079-6123(02)36039-4 PMID:12143403
9. Neves G, Cooke SF, Bliss TV. Synaptic plasticity, memory and the hippocampus: a neural network approach to causality. Nat Rev Neurosci. 2008; 9:65–75. https://doi.org/10.1038/nrn2303 PMID:18094707

10. Ehrnhoefer DE, Wong BK, Hayden MR. Convergent pathogenic pathways in Alzheimer’s and Huntington’s diseases: shared targets for drug development. Nat Rev Drug Discov. 2011; 10:853–67. https://doi.org/10.1038/nrd3556 PMID:22015920

11. Jucker M, Walker LC. Pathogenic protein seeding in Alzheimer disease and other neurodegenerative disorders. Ann Neurol. 2011; 70:532–40. https://doi.org/10.1002/ana.22615 PMID:22028219

12. Praticò D, Clark CM, Liun F, Rokach J, Lee VY, Trojanowski QJ. Increase of brain oxidative stress in mild cognitive impairment: a possible predictor of Alzheimer disease. Arch Neurol. 2002; 59:972–76. https://doi.org/10.1001/archneur.59.6.972 PMID:12056933

13. Dalle-Donne I, Rossi R, Colombo R, Giustarini D, Milizani A. Biomarkers of oxidative damage in human disease. Clin Chem. 2006; 52:601–23. https://doi.org/10.1373/clinchem.2005.061408 PMID:16484333

14. Wan W, Xia S, Kalionis B, Liu L, Li Y. The role of Wnt signaling in the development of Alzheimer’s disease: a potential therapeutic target? Biomed Res Int. 2014; 2014:301575. https://doi.org/10.1155/2014/301575 PMID:24883305

15. Park KS, Lee RD, Kang SK, Han SY, Park KL, Yang KH, Song YS, Park HJ, Lee YM, Yun YP, Oh KW, Kim DJ, Yun YW, et al. Neuronal differentiation of embryonic midbrain cells by upregulation of peroxisome proliferator-activated receptor-gamma via the JNK-dependent pathway. Exp Cell Res. 2004; 297:424–33. https://doi.org/10.1016/j.yexcr.2004.03.034 PMID:15212945

16. Yue X, Lan F, Yang W, Yang Y, Han L, Zhang A, Liu J, Zeng H, Jiang T, Pu P, Kang C. Interruption of β-catenin suppresses the EGFR pathway by blocking multiple oncogenic targets in human glioma cells. Brain Res. 2010; 1366:27–37. https://doi.org/10.1016/j.brainres.2010.03.032 PMID:20969832

17. Harris RA, Tindale L, Cumming RC. Age-dependent metabolic dysregulation in cancer and Alzheimer’s disease. Biogerontology. 2014; 15:559–77. https://doi.org/10.1007/s10522-014-9534-z PMID:25305052

18. Zhang X, Yin W, Shi X, Li Y. Curcumin activates Wnt/β-catenin signaling pathway through inhibiting the activity of GSK-3β in APPswe transfected SY5Y cells. Eur J Pharm Sci. 2011; 42:540–46. https://doi.org/10.1016/j.ejps.2011.02.009 PMID:21352912

19. Inestrosa NC, Ríos JA, Cisternas P, Tapia-Rojas C, Rivera DS, Braidy N, Zolezzi JM, Godoy JA, Carvajal FJ, Ardiles AO, Bozinovic F, Palacios AG, Sachdev PS. Age Progression of Neuropathological Markers in the Brain of the Chilean Rodent Octodon degus, a Natural Model of Alzheimer’s Disease. Brain Pathol. 2015; 25:679–91. https://doi.org/10.1111/bpa.12226 PMID:25351914

20. Bensimon G, Lacomblez L, Meininger V, and ALS/Riluzole Study Group. A controlled trial of riluzole in amyotrophic lateral sclerosis. N Engl J Med. 1994; 330:585–91. https://doi.org/10.1056/NEJM199403313300901 PMID:8302340

21. Pereira AC, Lambert HK, Grossman YS, Dumitriu D, Waldman R, Jannetty SK, Calakos K, Janssen WG, McEwen BS, Morrison JH. Glutamatergic regulation prevents hippocampal-dependent age-related cognitive decline through dendritic spine clustering. Proc Natl Acad Sci USA. 2014; 111:18733–38. https://doi.org/10.1073/pnas.1421285111 PMID:25512503

22. Kavalali ET, Klingauf J, Tsien RW. Activity-dependent regulation of synaptic clustering in a hippocampal culture system. Proc Natl Acad Sci USA. 1999; 96:12893–900. https://doi.org/10.1073/pnas.96.22.12893 PMID:10536019

23. Kleindienst T, Winnubst J, Roth-Alpermann C, Bonhoeffer T, Lohmann C. Activity-dependent clustering of functional synaptic inputs on developing hippocampal dendrites. Neuron. 2011; 72:1012–24. https://doi.org/10.1016/j.neuron.2011.10.015 PMID:22196336

24. Hunsberger HC, Weitzner DS, Rudy CC, Hickman JE, Libell EM, Speer RR, Gerhardt GA, Reed MN. Riluzole rescues glutamate alterations, cognitive deficits, and tau pathology associated with P301L tau expression. J Neurochem. 2015; 135:381–94. https://doi.org/10.1111/jncc.13230 PMID:26146790

25. West MJ, Coleman PD, Flood DG, Troncoso JC. Differences in the pattern of hippocampal neuronal loss in normal ageing and Alzheimer’s disease. Lancet. 1994; 344:769–72. https://doi.org/10.1016/S0140-6736(94)92338-8 PMID:7916070
26. Fox NC, Warrington EK, Freeborough PA, Hartikainen P, Kennedy AM, Stevens JM, Rossor MN. Presymptomatic hippocampal atrophy in Alzheimer’s disease. A longitudinal MRI study. Brain. 1996; 119:2001–07. https://doi.org/10.1093/brain/119.6.2001 PMID: 9010004

27. Gouras GK, Almeida CG, Takahashi RH. Intraneuronal Aβeta accumulation and origin of plaques in Alzheimer’s disease. Neurobiol Aging. 2005; 26:1235–44. https://doi.org/10.1016/j.neurobiolaging.2005.05.022 PMID: 16023263

28. Selkoe DJ. Alzheimer’s disease results from the cerebral accumulation and cytotoxicity of amyloid beta-protein. J Alzheimers Dis. 2001; 3:75–80. https://doi.org/10.3233/JAD-2001-3111 PMID: 12214075

29. Chow VW, Mattson MP, Wong PC, Gleichmann M. An overview of APP processing enzymes and products. Neuromolecular Med. 2010; 12:1–12. https://doi.org/10.1007/s12017-009-8104-z PMID: 20232515

30. Yoshimura Y, Ichinose T, Yamauchi T. Phosphorylation of tau protein to sites found in Alzheimer’s disease brain is catalyzed by Ca2+/calmodulin-dependent protein kinase II as demonstrated tandem mass spectrometry. Neurosci Lett. 2003; 353:185–88. https://doi.org/10.1016/j.neulet.2003.09.037 PMID: 14665412

31. Ferrer I, Barrachina M, Puig B, Martínez de Lagrán M, Martí E, Avila J, Dierssen M. Constitutive Dyrk1A is abnormally expressed in Alzheimer disease, Down syndrome, Pick disease, and related transgenic models. Neurobiol Dis. 2005; 20:392–400. https://doi.org/10.1016/j.nbd.2005.03.020 PMID: 16242644

32. Dolan PJ, Johnson GV. The role of tau kinases in Alzheimer’s disease. Curr Opin Drug Discov Devel. 2010; 13:595–603. PMID: 20812151

33. Desler C, Lillenes MS, Tønnjem T, Rasmussen LJ. The Role of Mitochondrial Dysfunction in the Progression of Alzheimer’s Disease. Curr Med Chem. 2018; 25:5578–87. https://doi.org/10.2174/0929867324666170616110111 PMID: 28618998

34. Luque-Contreras D, Carvajal K, Toral-Rios D, Franco-Bocanegra D, Campos-Peña V. Oxidative stress and metabolic syndrome: cause or consequence of Alzheimer’s disease? Oxid Med Cell Longev. 2014; 2014:497802. https://doi.org/10.1155/2014/497802 PMID: 24683436

35. Benilova I, Karren E, De Strooper B. The toxic Aβ oligomer and Alzheimer’s disease: an emperor in need of clothes. Nat Neurosci. 2012; 15:349–57. https://doi.org/10.1038/nn.3028 PMID: 22286176

36. Sochocka M, Kout souraki ES, Gasi orowski K, Leszek J. Vascular oxidative stress and mitochondrial failure in the pathobiology of Alzheimer’s disease: a new approach to therapy. CNS Neurol Disord Drug Targets. 2013; 12:870–81. https://doi.org/10.2174/18715273113129990072 PMID: 23469836

37. Islam MT. Oxidative stress and mitochondrial dysfunction-linked neurodegenerative disorders. Neur Res. 2017; 39:73–82. https://doi.org/10.1080/01616412.2016.1251711 PMID: 27809706

38. Zuo L, Hemmelgarn BT, Chuang CC, Best TM. The Role of Oxidative Stress-Induced Epigenetic Alterations in Amyloid-β Production in Alzheimer’s Disease. Oxid Med Cell Longev. 2015; 2015:604658. https://doi.org/10.1155/2015/604658 PMID: 26543520

39. Reddy PH, Manczak M, Mao P, Calkins MJ, Reddy AP, Shirendeb U. Amyloid-beta and mitochondria in aging and Alzheimer’s disease: implications for synaptic damage and cognitive decline. J Alzheimers Dis. 2010 (Suppl 2); 20:5499–512. https://doi.org/10.3233/JAD-2010-100504 PMID: 20413847

40. Adam-Vizi V. Production of reactive oxygen species in brain mitochondria: contribution by electron transport chain and non-electron transport chain sources. Antioxid Redox Signal. 2005; 7:1140–49. https://doi.org/10.1089/ars.2005.7.1140 PMID: 16115017

41. Bobba A, Amadoro G, Valenti D, Corsetti V, Lassandro R, Atlante A. Mitochondrial respiratory chain Complexes I and IV are impaired by β-amyloid via direct interaction and through Complex I-dependent ROS production, respectively. Mitochondrion. 2013; 13:298–311. https://doi.org/10.1016/j.mito.2013.03.008 PMID: 23562762

42. Butterfield DA, Drake J, Pocernich C, Castegna A. Evidence of oxidative damage in Alzheimer’s disease brain: central role for amyloid beta-peptide. Trends Mol Med. 2001; 7:548–54. https://doi.org/10.1016/S1471-4914(01)02173-6 PMID: 11733217

43. Ferreiro E, Oliveira CR, Pereira CM. The release of calcium from the endoplasmic reticulum induced by amyloid-beta and prion peptides activates the
mitochondrial apoptotic pathway. Neurobiol Dis. 2008; 30:331–42.
https://doi.org/10.1016/j.nbd.2008.02.003 PMID:18420416

44. Ghosh R, Mitchell DL. Effect of oxidative DNA damage in promoter elements on transcription factor binding. Nucleic Acids Res. 1999; 27:3213–18.
https://doi.org/10.1093/nar/27.15.3213 PMID:10454620

45. Parsian AJ, Funk MC, Tao TY, Hunt CR. The effect of DNA damage on the formation of protein/DNA complexes. Mutat Res. 2002; 501:105–13.
https://doi.org/10.1016/S0027-5107(02)00016-7 PMID:11934442

46. Patterson KR, Remmers C, Fu Y, Brooker S, Kanaan NM, Vana L, Ward S, Reyes JF, Philibert K, Glucksman MJ, Binder LL. Characterization of prefibrillar Tau oligomers in vitro and in Alzheimer disease. J Biol Chem. 2011; 286:23063–76.
https://doi.org/10.1074/jbc.M111.237974 PMID:21550980

47. Vallée A, Lecarpentier Y, Guillemin R, Vallée JN. Effects of cannabinoid interactions with Wnt/β-catenin pathway and PPARγ on oxidative stress and neuroinflammation in Alzheimer’s disease. Acta Biochim Biophys Sin (Shanghai). 2017; 49:853–66.
https://doi.org/10.1093/abbs/gmx073 PMID:28981597

48. Zolezzi JM, Inestrosa NC. Wnt/TLR Dialog in Neuroinflammation, Relevance in Alzheimer’s Disease. Front Immunol. 2017; 8:187.
https://doi.org/10.3389/fimmu.2017.00187 PMID:28286503

49. Zolezzi JM, Inestrosa NC. Peroxisome proliferator-activated receptors and Alzheimer’s disease: hitting the blood-brain barrier. Mol Neurobiol. 2013; 48:438–51.
https://doi.org/10.1007/s12035-013-8435-5 PMID:23494748

50. Turilliazzi E, Neri M, Cerretani D, Cantatore S, Frati P, Moltoni L, Busardo FP, Pomara C, Riezzo I, Fineschi V. Lipid peroxidation and apoptotic response in rat brain areas induced by long-term administration of nandrolone: the mutual crosstalk between ROS and NF-κB. J Cell Mol Med. 2016; 20:601–12.
https://doi.org/10.1111/jcmm.12748 PMID:26828721

51. Saha RN, Pahan K. Regulation of inducible nitric oxide synthase gene in glial cells. Antioxid Redox Signal. 2006; 8:929–47.
https://doi.org/10.1089/ars.2006.8.929 PMID:16771683

52. Brown GC. Mechanisms of inflammatory neurodegeneration: iNOS and NADPH oxidase. Biochem Soc Trans. 2007; 35:1119–21.
https://doi.org/10.1042/BST0351119 PMID:17956292

53. Hsieh HL, Yang CM. Role of redox signaling in neuroinflammation and neurodegenerative diseases. Biomed Res Int. 2013; 2013:484613.
https://doi.org/10.1155/2013/484613 PMID:24455696

54. Castegna A, Thongboonkerd V, Klein JB, Lynn B, Markesbery WR, Butterfield DA. Proteomic identification of nitrated proteins in Alzheimer’s disease brain. J Neurochem. 2003; 85:1394–401.
https://doi.org/10.1046/j.1471-4159.2003.01786.x PMID:12787059

55. He Y, Jackman NA, Thorn TL, Vought VE, Hewett SJ. Interleukin-1β protects astrocytes against oxidant-induced injury via an NF-κB-dependent upregulation of glutathione synthesis. Glia. 2015; 63:1568–80.
https://doi.org/10.1002/glia.22828 PMID:25880604

56. Lin CL, Kong Q, Cuny GD, Glicksman MA. Glutamate transporter EAAT2: a new target for the treatment of neurodegenerative diseases. Future Med Chem. 2012; 4:1689–700.
https://doi.org/10.4155/fmc.12.122 PMID:22924507

57. Lutgen V, Narasipura SD, Sharma A, Min S, Al-Harthi L. β-Catenin signaling positively regulates glutamate uptake and metabolism in astrocytes. J Neuroinflammation. 2016; 13:242.
https://doi.org/10.1186/s12974-016-0691-7 PMID:27612942

58. Jacob CP, Koutsilieri E, Bartl J, Neuen-Jacob E, Arzberger T, Zander N, Ravid R, Roggendorf W, Riederer P, Grünblatt E. Alterations in expression of glutamate transporters and receptors in sporadic Alzheimer’s disease brain. J Neurochem. 2003; 85:1394–401.
https://doi.org/10.1046/j.1471-4159.2003.01786.x PMID:12787059

59. Townsend M, Shankar GM, Mehta T, Walsh DM, Selkoe DJ. Effects of secreted oligomers of amyloid beta-protein on hippocampal synaptic plasticity: a potent role for trimers. J Physiol. 2006; 572:477–92.
https://doi.org/10.1113/jphysiol.2005.103754 PMID:16469784

60. Haas C, Selkoe DJ. Soluble protein oligomers in neurodegeneration: lessons from the Alzheimer’s amyloid beta-peptide. Nat Rev Mol Cell Biol. 2007; 8:101–12.
https://doi.org/10.1038/nrm2101 PMID:17245412

61. Sperling RA, Laviolette PS, O’Keefe K, O’Brien J, Rentz DM, Pihlajamaki M, Marshall G, Hyman BT, Selkoe DJ, Hedden T, Buckner RL, Becker JA, Johnson KA. Amyloid deposition is associated with impaired default network
function in older persons without dementia. Neuron. 2009; 63:178–88. https://doi.org/10.1016/j.neuron.2009.07.003 PMID:19640477

62. Cheng L, Yin WJ, Zhang JF, Qi JS. Amyloid beta-protein fragments 25-35 and 31-35 potentiate long-term depression in hippocampal CA1 region of rats in vivo. Synapse. 2009; 63:206–14. https://doi.org/10.1002/syn.20599 PMID:19072840

63. Li S, Jin M, Koeglsperger T, Shepard NE, Shankar GM, Selkoe DJ. Soluble Aβ oligomers inhibit long-term potentiation through a mechanism involving excessive activation of extrasynaptic NR2B-containing NMDA receptors. J Neurosci. 2011; 31:6627–38. https://doi.org/10.1523/JNEUROSCI.0203-11.2011 PMID:21543591

64. Snyder EM, Nong Y, Almeida CG, Paul S, Moran T, Choi EY, Nairn AC, Salter MW, Lombroso PJ, Gouras GK, Greengard P. Regulation of NMDA receptor trafficking by amyloid-beta. Nat Neurosci. 2005; 8:1051–58. https://doi.org/10.1038/nn1503 PMID:16025111

65. Kamenetz F, Tomita T, Hsieh H, Seabrook G, Borchelt D, Iwatsubo T, Sisodia S, Malinow R. APP processing and synaptic function. Neuron. 2003; 37:925–36. https://doi.org/10.1016/S0896-6273(03)00124-7 PMID:12670422

66. Swomley AM, Butterfield DA. Oxidative stress in Alzheimer disease and mild cognitive impairment: evidence from human data provided by redox proteomics. Arch Toxicol. 2015; 89:1669–80. https://doi.org/10.1007/s00204-015-1556-z PMID:26126631

67. González-Reyes RE, Nava-Mesa MO, Vargas-Sánchez K, Ariza-Salamanca D, Mora-Muñoz L. Involvement of Astrocytes in Alzheimer’s Disease from a Neuroinflammatory and Oxidative Stress Perspective. Front Mol Neurosci. 2017; 10:427. https://doi.org/10.3389/fnmol.2017.00427 PMID:29311817

68. Duchen MR. Mitochondria and calcium: from cell signalling to cell death. J Physiol. 2000; 529:57–68. https://doi.org/10.1111/j.1469-7793.2000.00057.x PMID:11080251

69. Abramov AY, Canevari L, Duchen MR. Calcium signals induced by amyloid beta peptide and their consequences in neurons and astrocytes in culture. Biochim Biophys Acta. 2004; 1742:81–87. https://doi.org/10.1016/j.bbamcr.2004.09.006 PMID:15590058

70. Arispe N, Doh M. Plasma membrane cholesterol controls the cytotoxicity of Alzheimer’s disease AbetaP (1-40) and (1-42) peptides. FASEB J. 2002; 16:1526–36. https://doi.org/10.1096/fj.02-0829com PMID:12374775

71. Al-Harthi L. Wnt/β-catenin and its diverse physiological cell signaling pathways in neurodegenerative and neuropsychiatric disorders. J Neuroimmune Pharmacol. 2012; 7:725–30. https://doi.org/10.1007/s11481-012-9412-x PMID:23114888

72. Logan CY, Nusse R. The Wnt signaling pathway in development and disease. Annu Rev Cell Dev Biol. 2004; 20:781–810. https://doi.org/10.1146/annurev.cellbio.20.010403.113126 PMID:15473860

73. Klaus A, Birchmeier W. Wnt signalling and its impact on development and cancer. Nat Rev Cancer. 2008; 8:387–98. https://doi.org/10.1038/nrc2389 PMID:18432252

74. Fuhrmann S. Wnt signaling in eye organogenesis. Organogenesis. 2008; 4:60–67. https://doi.org/10.4161/org.4.2.5850 PMID:19122781

75. Fujiwura N. WNT/β-Catenin Signaling in Vertebrate Eye Development. Front Cell Dev Biol. 2016; 4:138. https://doi.org/10.3389/fcell.2016.00138 PMID:27965955

76. Machon O, Kreslova J, Ruzickova J, Vacik T, Klimova L, Fujiwura N, Lachova J, Kozmik Z. Lens morphogenesis is dependent on Pax6-mediated inhibition of the canonical Wnt/beta-catenin signaling in the lens surface ectoderm. Genesis. 2010; 48:86–95. https://doi.org/10.1002/dvg.20583 PMID:20027618

77. Carpenter AC, Smith AN, Wagner H, Cohen-Tayar Y, Rao S, Wallace V, Ashery-Padan R, Lang RA. Wnt ligands from the embryonic surface ectoderm regulate ‘bimetallic strip’ optic cup morphogenesis in mouse. Development. 2015; 142:972–82. https://doi.org/10.1242/dev.120022 PMID:25715397

78. Hägglund AC, Berghard A, Carlsson L. Canonical Wnt/β-catenin signalling is essential for optic cup formation. PLoS One. 2013; 8:e81158. https://doi.org/10.1371/journal.pone.0081158 PMID:24324671

79. Birdsey GM, Shah AV, Dufton N, Reynolds LE, Osuna Almagro L, Yang Y, Aspalter IM, Khan ST, Mason JC, Dejana E, Göttgens B, Hodivala-Dilkis K, Gerhardt H, et al. The endothelial transcription factor ERG promotes vascular stability and growth through Wnt/β-catenin signaling. Dev Cell. 2015; 32:82–96. https://doi.org/10.1016/j.devcel.2014.11.016 PMID:25584796
80. Ye X, Wang Y, Cahill H, Yu M, Badea TC, Smallwood PM, Peachey NS, Nathans J. Norrin, frizzled-4, and Lrp5 signaling in endothelial cells controls a genetic program for retinal vascularization. Cell. 2009; 139:285–98. https://doi.org/10.1016/j.cell.2009.07.047 PMID:19837032

81. Zhou Y, Wang Y, Tischfield M, Williams J, Smallwood PM, Rattner A, Taketo MM, Nathans J. Canonical WNT signaling components in vascular development and barrier formation. J Clin Invest. 2014; 124:3825–46. https://doi.org/10.1172/JCI6431 PMID:25083995

82. Huang W, Li Q, Amiry-Moghaddam M, Hokama M, Sardi SH, Nagao M, Warman ML, Olsen BR. Critical Endothelial Regulation by LRPS during Retinal Vascular Development. PLoS One. 2016; 11:e0152833. https://doi.org/10.1371/journal.pone.0152833 PMID:27031698

83. Shtutman M, Zhurinsky J, Simcha I, Albanese C, D’Amico M, Pestell R, Ben-Ze’ev A. The cyclin D1 gene is a target of the beta-catenin/LEF-1 pathway. Proc Natl Acad Sci USA. 1999; 96:5522–27. https://doi.org/10.1073/pnas.96.10.5522 PMID:10318916

84. Angers S, Moon RT. Proximal events in Wnt signal transduction. Nat Rev Mol Cell Biol. 2009; 10:468–77. https://doi.org/10.1038/nrm2717 PMID:19536106

85. Cruciat CM, Niehrs C. Secreted and transmembrane wnt inhibitors and activators. Cold Spring Harb Perspect Biol. 2013; 5:a015081. https://doi.org/10.1101/cshperspect.a015081 PMID:23085770

86. Aberle H, Bauer A, Stappert J, Kispert A, Kemler R. β-catenin is a target for the ubiquitin-proteasome pathway. EMBO J. 1997; 16:3797–804. https://doi.org/10.1093/emboj/16.13.3797 PMID:9237389

87. Wu D, Pan W. GSK3: a multifaceted kinase in Wnt signaling. Trends Biochem Sci. 2010; 35:161–68. https://doi.org/10.1016/j.tibs.2009.10.002 PMID:19884009

88. Hur EM, Zhou FQ. GSK3 signalling in neural development. Nat Rev Neurosci. 2010; 11:539–51. https://doi.org/10.1038/nrn2870 PMID:20648061

89. Ambacher KK, Pitzul KB, Karajigkar M, Hamilton A, Ferguson SS, Cregan SP. The JNK- and AKT/GSK3β-signaling pathways converge to regulate Puma induction and neuronal apoptosis induced by trophic factor deprivation. PLoS One. 2012; 7:e46885. https://doi.org/10.1371/journal.pone.0046885 PMID:23056511

90. Yokosako K, Mimura T, Funatsu H, Noma H, Goto M, Kamei Y, Kondo A, Matsubara M. Glycolysis in patients with age-related macular degeneration. Open OphthalmoJ. 2014; 8:39–47. https://doi.org/10.2174/1874364101408010039 PMID:25191529

91. Orellana AM, Vasconcelos AR, Leite JA, de Sá Lima L, Andreotti DZ, Munhoz CD, Kawamoto EM, Scavone C. Age-related neuroinflammation and changes in AKT-GSK-3β and WNT/β-CATENIN signaling in rat hippocampus. Aging (Albany NY). 2015; 7:1094–111. https://doi.org/10.18632/aging.100853 PMID:26647069

92. Libro R, Bramanti P, Mazzon E. The role of the Wnt canonical signaling in neurodegenerative diseases. Life Sci. 2016; 158:78–88. https://doi.org/10.1016/j.lfs.2016.06.024 PMID:27370940

93. Vallée A, Lecarpentier Y, Guillevin R, Vallée JN. Reprogramming energetic metabolism in Alzheimer’s disease. Life Sci. 2018; 193:141–52. https://doi.org/10.1016/j.lfs.2017.10.033 PMID:29079469

94. Vallée A, Lecarpentier Y, Guillevin R, Vallée JN. Thermodynamics in Neurodegenerative Diseases: Interplay Between Canonical WNT/Beta-Catenin Pathway-PPAR Gamma, Energy Metabolism and Circadian Rhythms. Neuromolecular Med. 2018; 20:174–204. https://doi.org/10.1007/s12017-018-8486-x PMID:29572723

95. Thies W. Stopping a thief and killer: alzheimer’s disease crisis demands greater commitment to research. Alzheimers Dement. 2011; 7:175–76. https://doi.org/10.1016/j.jalz.2011.02.002 PMID:21414555

96. Silva-Alvarez C, Arrázola MS, Godoy JA, Ordenes D, Inestrosa NC. Canonical Wnt signaling protects hippocampal neurons from Aβ oligomers: role of non-canonical Wnt-5a/Ca(2+) in mitochondrial dynamics. Front Cell Neurosci. 2013; 7:97. https://doi.org/10.3389/fncel.2013.00097 PMID:23805073

97. Mao B, Wu W, Li Y, Hoppe D, Stannek P, Glinka A, Niehrs C. LDL-receptor-related protein 6 is a receptor for Dickkopf proteins. Nature. 2001; 411:321–25. https://doi.org/10.1038/35077108 PMID:11357136

98. Caricasole A, Copani A, Caraci F, Aronica E, Rozemuller AJ, Caruso A, Storto M, Gaviraghi G, Terstappen GC, Nicoletti F. Induction of Dickkopf-1, a negative modulator of the Wnt pathway, is associated with
neuronal degeneration in Alzheimer’s brain. J Neurosci. 2004; 24:6021–27.
https://doi.org/10.1523/JNEUROSCI.1381-04.2004
PMID: 15229249

99. Bhat RV, Andersson U, Andersson S, Knerr L, Bauer U, Sundgren-Andersson AK. The Conundrum of GSK3 Inhibitors: Is it the Dawn of a New Beginning? J Alzheimer’s Dis. 2018; 64:S547–54.
https://doi.org/10.3233/JAD-179934
PMID: 29758944

100. Buée L, Troquier L, Burnouf S, Belarbi K, Van der Jeugd A, Ahmed T, Fernandez-Gomez F, Caillier R, Grosjean ME, Begard S, Barbot B, Demeyer D, Obriot H, et al. From tau phosphorylation to tau aggregation: what about neuronal death? Biochem Soc Trans. 2010; 38:967–72.
https://doi.org/10.1042/BST0380967
PMID: 20658986

101. Mendoza J, Sekiya M, Taniguchi T, Iijima KM, Wang R, Ando K. Global analysis of phosphorylation of tau by the checkpoint kinases Chk1 and Chk2 in vitro. J Proteome Res. 2013; 12:2654–65.
https://doi.org/10.1021/pr400008f
PMID: 23550703

102. Rosso SB, Inestrosa NC. WNT signaling in neuronal maturation and synaptogenesis. Front Cell Neurosci. 2013; 7:103.
https://doi.org/10.3389/fncel.2013.00103
PMID: 23847469

103. Oliva CA, Vargas JY, Inestrosa NC. Wnt signaling: role in LTP, neural networks and memory. Ageing Res Rev. 2013; 12:786–800.
https://doi.org/10.1016/j.arr.2013.03.006
PMID: 23665425

104. Inestrosa NC, Varela-Nallar L. Wnt signaling in the nervous system and in Alzheimer’s disease. J Mol Cell Biol. 2014; 6:64–74.
https://doi.org/10.1093/jmcb/mjt051
PMID: 24549157

105. Li XH, Du LL, Cheng XS, Jiang X, Zhang Y, Lv BL, Liu R, Wang JZ, Zhou XW. Glycation exacerbates the neuronal toxicity of β-amyloid. Cell Death Dis. 2013; 4:e673.
https://doi.org/10.1038/cddis.2013.180
PMID: 23764854

106. Chao CC, Hu S, Ehrlich L, Peterson PK. Interleukin-1 and tumor necrosis factor-alpha synergistically mediate neurotoxicity: involvement of nitric oxide and of N-methyl-D-aspartate receptors. Brain Behav Immun. 1995; 9:355–65.
https://doi.org/10.1016/0889-1983(95)00032-7
PMID: 8903852

107. Cadoret A, Ovejero C, Terris B, Souil E, Lévy L, Lammers WH, Kitajewski J, Kahn A, Perret C. New targets of beta-catenin signaling in the liver are involved in the glutamine metabolism. Oncogene. 2002; 21:8293–301.
https://doi.org/10.1038/sj.onc.1206118
PMID: 12447692

108. Audard V, Cavard C, Richa H, Infante M, Couvelard A, Sauvanet A, Terris B, Paye F, Flejou JF. Impaired E-cadherin expression and glutamine synthetase overexpression in solid pseudopapillary neoplasm of the pancreas. Pancreas. 2008; 36:80–83.
https://doi.org/10.1128/JVI.06266-11
PMID: 18192886

109. Narasipura SD, Henderson LJ, Fu SW, Chen L, Kashanchi F, Al-Harthi L. Role of β-catenin and TCF/LEF family members in transcriptional activity of HIV in astrocytes. J Virol. 2012; 86:1911–21.
https://doi.org/10.1128/JVI.06266-11
PMID: 22156527

110. Eid T, Tu N, Lee TS, Lai JC. Regulation of astrocyte glutamine synthetase in epilepsy. Neurochem Int. 2013; 63:670–81.
https://doi.org/10.1016/j.neuint.2013.06.008
PMID: 23791709

111. Vallée A, Lecarpentier Y, Guillevin R, Vallée JN. Thermodynamics in Gliomas: Interactions between the Canonical WNT/Beta-Catenin Pathway and PPAR Gamma. Front Physiol. 2017; 8:352.
https://doi.org/10.3389/fphys.2017.00352
PMID: 28620312

112. Vallée A, Lecarpentier Y, Vallée JN. Targeting the Canonical WNT/β-Catenin Pathway in Cancer Treatment Using Non-Steroidal Anti-Inflammatory Drugs. Cells. 2019; 8:8.
https://doi.org/10.3390/cells8070726
PMID: 31311204

113. Vallée A, Lecarpentier Y. Crosstalk Between Peroxisome Proliferator-Activated Receptor Gamma and the Canonical WNT/β-Catenin Pathway in Chronic Inflammation and Oxidative Stress During Carcinogenesis. Front Immunol. 2018; 9:745.
https://doi.org/10.3389/fimmu.2018.00745
PMID: 29706964

114. Li W, Henderson LJ, Major EO, Al-Harthi L. IFN-gamma mediates enhancement of HIV replication in astrocytes by inducing an antagonist of the beta-catenin pathway (DKK1) in a STAT 3-dependent manner. J Immunol. 2011; 186:6771–78.
https://doi.org/10.4049/jimmunol.1100099
PMID: 21562161

115. Mosconi L, Pupi A, De Leon MI. Brain glucose hypometabolism and oxidative stress in preclinical Alzheimer’s disease. Ann N Y Acad Sci. 2008; 1147:180–95.
116. Szablewski L. Glucose Transporters in Brain: In Health and in Alzheimer's Disease. J Alzheimers Dis. 2017; 55:1307–20. https://doi.org/10.3233/JAD-160841 PMID:27858715

117. Liu Y, Liu F, Iqbal K, Grundke-Iqbal I, Gong CX. Decreased glucose transporters correlate to abnormal hyperphosphorylation of tau in Alzheimer disease. FEBS Lett. 2008; 582:359–64. https://doi.org/10.1016/j.febslet.2007.12.035 PMID:18174027

118. Cuadrado-Tejedor M, Vilarino M, Cabdevilla F, Del Rio J, Frechilla D, Perez-Mediavilla A. Enhanced expression of the voltage-dependent anion channel 1 (VDAC1) in Alzheimer's disease transgenic mice: an insight into the pathogenic effects of amyloid-β. J Alzheimers Dis. 2011; 23:195–206. https://doi.org/10.3233/JAD-2010-100966 PMID:20930307

119. Lv L, Li D, Zhao D, Lin R, Chu Y, Zhang H, Zha Z, Liu Y, Li Z, Xu Y, Wang G, Huang Y, Xiong Y, et al. Acetylation targets the M2 isoform of pyruvate kinase for degradation through chaperone-mediated autophagy and promotes tumor growth. Mol Cell. 2011; 42:719–30. https://doi.org/10.1016/j.molcel.2011.04.025 PMID:21700219

120. Yang W, Zheng Y, Xia Y, Ji H, Chen X, Guo F, Lyssiotis CA, Aldape K, Cantley LC, Lu Z. ERK1/2-dependent phosphorylation and nuclear translocation of PKM2 promotes the Warburg effect. Nat Cell Biol. 2012; 14:1295–304. https://doi.org/10.1038/ncb2629 PMID:23178880

121. Roche TE, Baker JC, Yan X, Hiromasa Y, Gong X, Peng T, Dong J, Turkan A, Kasten SA. Distinct regulatory properties of pyruvate dehydrogenase kinase and phosphatase isoforms. Prog Nucleic Acid Res Mol Biol. 2001; 70:33–75. https://doi.org/10.1016/S0079-6603(01)70013-X PMID:11642366

122. Hunt TK, Aslam RS, Beckert S, Wagner S, Ghani QP, Hussain MZ, Roy S, Sen CK. Aerobically derived lactate stimulates revascularization and tissue repair via redox mechanisms. Antioxid Redox Signal. 2007; 9:1115–24. https://doi.org/10.1089/ars.2007.1674 PMID:17567242

123. Sun Q, Chen X, Ma J, Peng H, Wang F, Zha X, Wang Y, Jing Y, Yang H, Chen R, Chang L, Zhang Y, Goto J, et al. Mammalian target of rapamycin up-regulation of pyruvate kinase isoenzyme type M2 is critical for aerobic glycolysis and tumor growth. Proc Natl Acad Sci USA. 2011; 108:4129–34. https://doi.org/10.1073/pnas.1014769108 PMID:21325052

124. Demmen GL. HIF-1: upstream and downstream of cancer metabolism. Curr Opin Genet Dev. 2010; 20:51–56. https://doi.org/10.1016/j.jgde.2009.10.009 PMID:19942427

125. Reuter S, Gupta SC, Chaturvedi MM, Aggarwal BB. Oxidative stress, inflammation, and cancer: how are they linked? Free Radic Biol Med. 2010; 49:1603–16. https://doi.org/10.1016/j.freeradbiomed.2010.09.006 PMID:20840865

126. Vallée A, Vallée JN. Warburg effect hypothesis in autism Spectrum disorders. Mol Brain. 2018; 11:1. https://doi.org/10.1186/s13041-017-0343-6 PMID:29301575

127. Vallée A, Lecarpentier Y, Vallée JN. Curcumin: a therapeutic strategy in cancers by inhibiting the canonical WNT/β-catenin pathway. J Exp Clin Cancer Res. 2019; 38:323. https://doi.org/10.1186/s13046-019-1320-y PMID:31331376

128. Li H, Kang T, Qi B, Kong L, Jiao Y, Cao Y, Zhang J, Yang J. Neuroprotective effects of ginseng protein on PI3K/Akt signaling pathway in the hippocampus of D-galactose/AlCl3 inducing rats model of Alzheimer’s disease. J Ethnopharmacol. 2016; 179:162–69. https://doi.org/10.1016/j.jep.2016.03.042 PMID:27621223

129. Lee TH, Pastorino L, Lu KP. Peptidyl-prolyl cis-trans isomerase Pin1 in ageing, cancer and Alzheimer disease. Expert Rev Mol Med. 2011; 13:e21. https://doi.org/10.1186/s13046-019-1320-y PMID:21682951

130. Chiarugi A, Dölle C, Felici R, Ziegler M. The NAD metabolome—a key determinant of cancer cell biology. Nat Rev Cancer. 2012; 12:741–52. https://doi.org/10.1038/nrc3340 PMID:23018234

131. Le A, Cooper CR, Gouw AM, Dinavahi R, Mahtia A, Deck LM, Royer RE, Vander Jagt DL, Semenza GL, Dang CV. Inhibition of lactate dehydrogenase A induces oxidative stress and inhibits tumor progression. Proc Natl Acad Sci USA. 2010; 107:2037–42. https://doi.org/10.1073/pnas.0914433107 PMID:20133848

132. Soucek T, Cumming R, Dargusch R, Maher P, Schubert D. The regulation of glucose metabolism by HIF-1 mediates a neuroprotective response to amyloid beta peptide. Neuron. 2003; 39:43–56.
13. Newington JT, Pitts A, Chien A, Arseneault R, Schubert D, Cumming RC. Amyloid beta resistance in nerve cell lines is mediated by the Warburg effect. PLoS One. 2011; 6:e19191. https://doi.org/10.1371/journal.pone.0019191 PMID:21541279

14. Newington JT, Rappon T, Albers S, Wong DY, Rylett RJ, Cumming RC. Overexpression of pyruvate dehydrogenase kinase 1 and lactate dehydrogenase A in nerve cells confers resistance to amyloid β and other toxins by decreasing mitochondrial respiration and reactive oxygen species production. J Biol Chem. 2012; 287:37245–58. https://doi.org/10.1074/jbc.M111.366195 PMID:22948140

15. Barthel A, Schmoll D, Unterman TG. FoxO proteins in insulin action and metabolism. Trends Endocrinol Metab. 2005; 16:183–89. https://doi.org/10.1016/j.tem.2005.03.010 PMID:15860415

16. Almeida M, Ambrogini E, Han L, Manolagas SC, Jilka RL. Increased lipid oxidation causes oxidative stress, increased peroxisome proliferator-activated receptor-gamma expression, and diminished pro-osteoogenic Wnt signaling in the skeleton. J Biol Chem. 2009; 284:27438–48. https://doi.org/10.1074/jbc.M109.023572 PMID:19657144

17. Essers MA, de Vries-Smits LM, Barker N, Polderman PE, Burgering BM, Korswagen HC. Functional interaction between beta-catenin and FOXO in oxidative stress signaling. Science. 2005; 308:1181–84. https://doi.org/10.1126/science.1109083 PMID:15905404

18. Hoogeboom D, Essers MA, Polderman PE, Voets E, Smits LM, Burgering BM. Interaction of FOXO with beta-catenin inhibits beta-catenin/T cell factor activity. J Biol Chem. 2008; 283:9224–30. https://doi.org/10.1074/jbc.M706638200 PMID:18250171

19. Reif K, Burgering BM, Cantrell DA. Phosphatidylinositol 3-kinase links the interleukin-2 receptor to protein kinase B and p70 S6 kinase. J Biol Chem. 1997; 272:14426–33. https://doi.org/10.1074/jbc.272.22.14426 PMID:9162082

20. Brunet A, Bonni A, Zigmond MJ, Lin MZ, Juo P, Hu LS, Anderson MJ, Arden KC, Blenis J, Greenberg ME. Akt promotes cell survival by phosphorylating and inhibiting a Forkhead transcription factor. Cell. 1999; 96:857–68. https://doi.org/10.1016/S0092-8674(00)80595-4 PMID:10102273

21. Stahl M, Dijkers PF, Kops GJ, Lens SM, Coffer PJ, Burgering BM, Medema RH. The forkhead transcription factor FoxO regulates transcription of p27Kip1 and Bim in response to IL-2. J Immunol. 2002; 168:5024–31. https://doi.org/10.4049/jimmunol.168.10.5024 PMID:11994454

22. Schmidt M, Fernandez de Mattos S, van der Horst A, Klompmaker R, Kops GJ, Lam EW, Burgering BM, Medema RH. Cell cycle inhibition by FoxO forkhead transcription factors involves downregulation of cyclin D. Mol Cell Biol. 2002; 22:7842–52. https://doi.org/10.1128/MCB.22.22.7842-7852.2002 PMID:12391153

23. Fernández de Mattos S, Essafi A, Soeiro I, Pietersen AM, Birkenkamp KU, Edwards CS, Martino A, Nelson BH, Francis JM, Jones MC, Brosens JJ, Coffer PJ, Lam EW. FoxO3a and BCR-ABL regulate cyclin D2 transcription through a STAT5/BCL6-dependent mechanism. Mol Cell Biol. 2004; 24:10058–71. https://doi.org/10.1128/MCB.24.22.10058-10071.2004 PMID:15509806

24. Manolopoulos KN, Klotz LQ, Korsten P, Bornstein SR, Barthel A. Linking Alzheimer’s disease to insulin resistance: the FoxO response to oxidative stress. Mol Psychiatry. 2010; 15:1046–52. https://doi.org/10.1038/mp.2010.17 PMID:20966918

25. Shang YC, Chong ZZ, Hou J, Maiese K. The forkhead transcription factor FOXO3a controls microglial inflammatory activation and eventual apoptotic injury through caspase 3. Curr Neurovasc Res. 2009; 6:20–31. https://doi.org/10.2174/156720209787466064 PMID:19355923

26. Shang YC, Chong ZZ, Hou J, Maiese K. Wnt1, FoxO3a, and NF-kappaB oversee microglial integrity and activation during oxidant stress. Cell Signal. 2010; 22:1317–29. https://doi.org/10.1016/j.cellsig.2010.04.009 PMID:20462515

27. Erickson MA, Dohi K, Banks WA. Neuroinflammation: a common pathway in CNS diseases as mediated at the blood-brain barrier. Neuroimmunomodulation. 2012; 19:121–30. https://doi.org/10.1159/000330247 PMID:22248728

28. Glass CK, Saijo K, Winner B, Marchetto MC, Gage FH. Mechanisms underlying inflammation in neurodegeneration. Cell. 2010; 140:918–34.
149. Kawai T, Akira S. Signaling to NF-kappaB by Toll-like receptors. Trends Mol Med. 2007; 13:460–69.
https://doi.org/10.1016/j.cell.2010.02.016
PMID:20303880

150. Lehnardt S. Innate immunity and neuroinflammation in the CNS: the role of microglia in Toll-like receptor-mediated neuronal injury. Glia. 2010; 58:253–63.
https://doi.org/10.1002/glia.20928
PMID:19705460

151. Silva-García O, Valdez-Alarcón JJ, Baizabal-Aguirre VM. The Wnt/β-catenin signaling pathway controls the inflammatory response in infections caused by pathogenic bacteria. Mediators Inflamm. 2014; 2014:310183.
https://doi.org/10.1155/2014/310183
PMID:25136145

152. Deng J, Miller SA, Wang HY, Xia W, Wen Y, Zhou BP, Li Y, Lin SY, Hung MC. beta-catenin interacts with and inhibits NF-kappa B in human colon and breast cancer. Cancer Cell. 2002; 2:323–34.
https://doi.org/10.1016/S1535-4110(02)00154-X
PMID:12398896

153. Deng J, Xia W, Miller SA, Wen Y, Wang HY, Hung MC. Crossregulation of NF-kappaB by the APC/GSK-3beta/beta-catenin pathway. Mol Carcinog. 2004; 39:139–46.
https://doi.org/10.1002/mc.10169
PMID:14991743

154. Umar S, Sarkar S, Wang Y, Singh P. Functional cross-talk between beta-catenin and NFkappaB signaling pathways in colonic crypts of mice in response to progastrin. J Biol Chem. 2009; 284:22274–84.
https://doi.org/10.1074/jbc.M109.020941
PMID:19497850

155. Ajmone-Cat MA, D’Urso MC, di Blasio G, Brignone MS, De Simone R, Minghetti L. Glycogen synthase kinase 3 is part of the molecular machinery regulating the adaptive response to LPS stimulation in microglial cells. Brain Behav Immun. 2016; 55:225–35.
https://doi.org/10.1016/j.bbi.2015.11.012
PMID:26593276

156. Ma B, Hottiger MO. Crosstalk between Wnt/β-Catenin and NF-κB Signaling Pathway during Inflammation. Front Immunol. 2016; 7:378.
https://doi.org/10.3389/fimmu.2016.00378
PMID:27713747

157. Borrell-Pagès M, Romero JC, Juan-Babot O, Badimon L. Wnt pathway activation, cell migration, and lipid uptake is regulated by low-density lipoprotein receptor-related protein 5 in human macrophages. Eur Heart J. 2011; 32:2841–50.
https://doi.org/10.1093/eurheartj/ehr062
PMID:21398644

158. Hoeflich KP, Luo J, Rubie EA, Tsao MS, Jin O, Woodgett JR. Requirement for glycogen synthase kinase-3beta in cell survival and NF-kappaB activation. Nature. 2000; 406:86–90.
https://doi.org/10.1038/35017574
PMID:10894547

159. Beurel E, Michalek SM, Jope RS. Innate and adaptive immune responses regulated by glycogen synthase kinase-3 (GSK3). Trends Immunol. 2010; 31:24–31.
https://doi.org/10.1016/j.it.2009.09.007
PMID:19836308

160. Fajas L, Auboeuf D, Raspé E, Schoonjans K, Lefebvre AM, Saladin R, Najib J, Laville M, Fruchart JC, Deeb S, Vidal-Puig A, Flier J, Briggs MR, et al. The organization, promoter analysis, and expression of the human PPARgamma gene. J Biol Chem. 1997; 272:18779–89.
https://doi.org/10.1074/jbc.272.30.18779
PMID:9228052

161. Doble A. The pharmacology and mechanism of action of riluzole. Neurology. 1996 (Suppl 4); 47:S233–41.
https://doi.org/10.1212/WNL.47.6.Suppl_4.2335
PMID:8959995

162. Vallée A, Lecarpentier Y, Guillevin R, Vallée JN. Aerobic glycolysis in amyotrophic lateral sclerosis and Huntington’s disease. Rev Neurosci. 2018; 29:547–55.
https://doi.org/10.1515/revenuro-2017-0075
PMID:29303786

163. Vallée A, Lecarpentier Y, Vallée JN. Circadian Rhythms and Energy Metabolism Reprogramming in Parkinson’s Disease. Curr Issues Mol Biol. 2019; 31:21–44.
https://doi.org/10.21775/cimb.031.021
PMID:31160540

164. Bose A, Beal MF. Mitochondrial dysfunction in Parkinson’s disease. J Neurochem. 2016 (Suppl 1); 139:216–31.
https://doi.org/10.1111/jnc.13731
PMID:27546335

165. Zhang C, Yuan XR, Li HY, Zhao ZJ, Liao YW, Wang XY, Su J, Sang SS, Liu Q. Anti-cancer effect of metabotropic glutamate receptor 1 inhibition in human glioma U87 cells: involvement of PI3K/Akt/mTOR pathway. Cell Physiol Biochem. 2015; 35:419–32.
https://doi.org/10.1159/000369707
PMID:25613036

166. Vallée A. [Aerobic glycolysis activation through canonical WNT/β-catenin pathway in ALS]. Med Sci (Paris). 2018; 34:326–30.
https://doi.org/10.1051/medsc/20183404013
PMID:29658475
167. Lecarpentier Y, Vallée A. Opposite Interplay between PPAR Gamma and Canonical Wnt/Beta-Catenin Pathway in Amyotrophic Lateral Sclerosis. Front Neurol. 2016; 7:100. https://doi.org/10.3389/fneur.2016.00100 PMID: 27445967

168. Pittenger C, Coric V, Banasr M, Bloch M, Krystal JH, Sanacora G. Riluzole in the treatment of mood and anxiety disorders. CNS Drugs. 2008; 22:761–86. https://doi.org/10.2165/00023210-200822090-00004 PMID: 18698875

169. Valvezan AJ, Klein PS. GSK-3 and Wnt Signaling in Neurogenesis and Bipolar Disorder. Front Mol Neurosci. 2012; 5:1. https://doi.org/10.3389/fnmol.2012.00001 PMID: 22319467

170. Whitcomb DJ, Molnár E. Is riluzole a new drug for Alzheimer's disease? J Neurochem. 2015; 135:207–09. https://doi.org/10.1111/jnc.13260 PMID: 26451974

171. Biechele TL, Camp ND, Fass DM, Kulikauskas RM, Robin NC, White BD, Taraska CM, Moore EC, Muster J, Karmacharya R, Haggarty SJ, Chien AJ, Moon RT. Chemical-genetic screen identifies riluzole as an enhancer of Wnt/β-catenin signaling in melanoma. Chem Biol. 2010; 17:1177–82. https://doi.org/10.1016/j.chembiol.2010.08.012 PMID: 21095567

172. Aggarwal S, Cudkowicz M. ALS drug development: reflections from the past and a way forward. Neurotherapeutics. 2008; 5:516–27. https://doi.org/10.1016/j.nurt.2008.08.002 PMID: 19019302

173. Lacomblez L, Bensimon G, Leigh PN, Guillet P, Meininger V, and Amyotrophic Lateral Sclerosis/Riluzole Study Group II. Dose-ranging study of riluzole in amyotrophic lateral sclerosis. Lancet. 1996; 347:1425–31. https://doi.org/10.1016/S0140-6736(96)91680-3 PMID: 8676624

174. Miller RG, Mitchell JD, Lyon M, Moore DH. Riluzole for amyotrophic lateral sclerosis (ALS)/motor neuron disease (MND). Amyotroph Lateral Scler Other Motor Neuron Disord. 2003; 4:191–206. https://doi.org/10.1080/14660820310002601 PMID: 13129806

175. Miller RG, Mitchell JD, Moore DH. Riluzole for amyotrophic lateral sclerosis (ALS)/motor neuron disease (MND). Cochrane Database Syst Rev. 2012; 3:CD001447. https://doi.org/10.1002/14651858.CD001447.pub3 PMID: 22419278

176. Gould TD, Manji HK. The Wnt signaling pathway in bipolar disorder. Neuroscientist. 2002; 8:497–511. https://doi.org/10.1177/1073858002003003 PMID: 12374432

177. Hoseth EZ, Krull F, Dieset I, Mørch RH, Hope S, Gardsjord ES, Steen NE, Melle I, Brattbakk HR, Steen VM, Aukrust P, Djurovic S, Andreassen OA, Ueland T. Exploring the Wnt signaling pathway in schizophrenia and bipolar disorder. Transl Psychiatry. 2018; 8:55. https://doi.org/10.1038/s41398-018-0102-1 PMID: 29507296