A validation study of potential prognostic DNA methylation biomarkers in patients with acute myeloid leukemia using a custom DNA methylation sequencing panel

Šárka Šestáková1,2, Ela Cerovská1,3, Cyril Šálek1,2, Dávid Kundrát1, Ivana Ježíšková4, Adam Folta4, Jiří Mayer4, Zdeněk Ráčil1, Petr Cetkovský1,2 and Hana Remešová1*

Abstract

Background: Multiple studies have reported the prognostic impact of DNA methylation changes in acute myeloid leukemia (AML). However, these epigenetic markers have not been thoroughly validated and therefore are still not considered in clinical practice. Hence, we aimed to independently verify results of selected studies describing the relationship between DNA methylation of specific genes and their prognostic potential in predicting overall survival (OS) and event-free survival (EFS).

Results: Fourteen studies (published 2011–2019) comprising of 27 genes were subjected to validation by a custom NGS-based sequencing panel in 178 newly diagnosed non-M3 AML patients treated by 3+7 induction regimen. The results were considered as successfully validated, if both the log-rank test and multivariate Cox regression analysis had a \(p \)-value \(\leq 0.05 \). The predictive role of DNA methylation was confirmed for three studies comprising of four genes: CEBPA (OS: \(p = 0.02 \); EFS: \(p = 0.03 \)), PBX3 (EFS: \(p = 0.01 \)), LZTS2 (OS: \(p = 0.05 \); EFS: \(p = 0.0003 \)), and NR6A1 (OS: \(p = 0.004 \); EFS: \(p = 0.0003 \)). For all of these genes, higher methylation was an indicator of longer survival. Concurrent higher methylation of both LZTS2 and NR6A1 was highly significant for survival in cytogenetically normal (CN) AML group (OS: \(p < 0.0001 \); EFS: \(p < 0.0001 \)) as well as for the whole AML cohort (OS: \(p = 0.01 \); EFS < 0.0001). In contrast, for two studies reporting the poor prognostic effect of higher GPX3 and DLX4 methylation, we found the exact opposite, again linking higher GPX3 (OS: \(p = 0.006 \); EFS: \(p < 0.0001 \)) and DLX4 (OS: \(p = 0.03 \); EFS: \(p = 0.03 \)) methylation to a favorable treatment outcome. Individual gene significance levels refer to the outcomes of multivariate Cox regression analysis.

Conclusions: Out of twenty-seven genes subjected to DNA methylation validation, a prognostic role was observed for six genes. Therefore, independent validation studies are necessary to reveal truly prognostic DNA methylation changes and to enable the introduction of these promising epigenetic markers into clinical practice.

Keywords: DNA methylation, AML, Prognosis, Validation

Introduction

Acute myeloid leukemia (AML) is a hematopoietic malignancy characterized by a complex interplay of aberrations at different levels of the genome (i.e., genetic, epigenetic, transcriptomic, and proteomic) [1–3]. This complexity is faithfully reflected by AML heterogeneity in terms...
of pathogenesis and prognosis. In clinical practice, only properly introduced and validated genetic lesions altogether with cytogenetics are considered into treatment decision making [4]. This still applies despite growing evidence that some other markers, such as epigenetic factors, may add valuable information about the predicted course of the disease in individual AML patients [3]. DNA methylation is one of the longest-studied epigenetic mechanisms and is stable and relatively easy to measure [5, 6]. Therefore, its status can be readily harnessed as a clinically relevant stratifier. Indeed, there are an increasing number of articles assessing the influence of DNA methylation on AML prognosis—reviewed in [7]. These studies interrogate one, a few or multiple loci depending on the methodology used. Typically, as a result of such research, authors define gene(s) that may serve as new biomarkers to improve risk stratification in AML patients. The main weakness is that such works are usually not validated by other researchers and hence there is not sufficient validation of these potential biomarkers for them to be introduced into clinical practice. Therefore, we designed a comprehensive NGS-based DNA methylation panel comprising of genes previously published as having an impact on AML prognosis. For validation purposes, we selected fourteen studies published between years 2011 and 2019 [8–21] covering 27 genes (Additional file 1: Table S1). We chose works targeting only one or a few loci at once (averaged 2 loci per publication, range 1 to 7), because lower numbers of biomarkers would be more feasible for introduction into a laboratory routine practice. The list of the selected studies and their basic characterization is summarized in Table 1. The aim of this work was to make an independent verification of results published by other researchers to narrow down the list of actually prognostically relevant genes that may allow more precise AML stratification in the future.

Results
Our validation study confirmed association of DNA methylation status and prognosis for four genes: CEBPA [13], PBX3 [10], UZTS2 [16], and NR6A1 [16]. A summary of the results is presented in Table 2. Surprisingly, for two studies [19, 20], we found the exact opposite effect of DNA methylation on prognosis than originally reported—higher GPX3 and DLX4 methylation—was linked to a better outcome according to our data. Kaplan–Meier curves for OS and EFS for all six significant genes are shown in Figs. 1 and 2, respectively. In four additional studies [8, 9, 15, 21], only the results from log-rank test displayed statistical significance that was lost in the subsequent multivariate testing (Table 2). These results were not considered as sufficiently conclusive for classifying them as validated. The mean DNA methylation values in hypo- versus hypermethylated subgroups for each of the significant genes are depicted in Fig. 3.

Discussion
Despite a large number of studies addressing the importance of DNA methylation changes for AML prognosis, these aberrations are still not considered for risk stratification, although many promising results have been already reported. The lack of independent validation studies is probably the main obstacle that does not allow the implementation of epigenetic markers alongside the well-established genetic ones. Most of the publications present just more new potential epigenetic biomarkers, making the actual role of DNA methylation harder to grasp and interpret for clinical purposes. With the aim to verify the prognostic role of specific and already described DNA methylation changes in AML, we designed our custom NGS-based DNA methylation panel that covers 27 genes (Additional file 1: Table S1) taken from 14 studies published between years 2011 and 2019. The reported prognostic significance was verified for three studies [10, 13, 16]. These three studies do not share any apparent features such as size of test cohort, presence of a validation cohort, methodology, or biological material utilized for the DNA methylation assessment (see Table 1). We briefly summarize and discuss the genes with a confirmed role of DNA methylation in AML prognosis. CEBPA is a well-known gene involved in AML pathogenesis. Double CEBPA mutations have been connected to better OS and EFS [4]. Concordantly, hypermethylation of distal CEBPA promoter was reported as a favorable prognostic biomarker, which we proved in AML subgroup excluding favorable cytogenetics and without CEBPA and NPM1 mutations, but not in CN-AML without CEBPA and NPM1 mutations as also originally described by Lin et al. [13]. PBX3 has been identified as an oncogene in AML that transcriptionally regulates HOXA genes and promotes cell proliferation and resistance to chemotherapeutical agents [22]. Hajkova et al. [10] reported PBX3 overexpression associated with a higher incidence of relapses. They also showed a clear correlation between PBX3 overexpression and hypomethylation. In line with this, we detected PBX3 hypomethylation as an independent negative prognostic factor for EFS. Qu et al. [16] identified higher methylation in CpG island (CGI) shores of LZTS2 and NR6A1 genes as a predictor of better prognosis in CN-AML. Interestingly, we confirmed the predictive role of LZTS2 and NR6A1 hypermethylation not only in CN-AML, but in the whole non-M3 diagnostic AML cohort as well. The strongest link between DNA methylation and prognosis was observed if the concurrent hypermethylation of
Table 1 Studies subjected to DNA methylation validation

Publication	Studied region/gene	Sample type	Methylation detection method	Clinical significance	Notes	Test cohort (n)	Validation cohort (n)
Lin et al. [13]	CEBPA distal promoter	BM	Bisulfite sequencing, quantitative MassArray	Higher methylation was associated with longer OS in AML with normal karyotype without CEBPA mut and NPM1 mut, and in AML excluding favorable karyotype, CEBPA mut and NPM1 mut; and in AML excluding favorable karyotype, CEBPA mut and NPM1 mut	Methylation of the CEBPA distal promoter inversely correlated with CEBPA expression	193 de novo AML, prognostic significance in CN-AML without CEBPA mut and NPM1 mut (n = 25) and in AML excluding favorable karyotype, CEBPA mut and NPM1 mut (n = 59)	None
Hájková et al. [8]	Promoters of tumor suppressor genes (CDKN2B, ESR1, MYOD1, CALCA, SOCS1, CDH1)	PB or BM MNC	MethLight PCR	Hypermethylation of SOCS1 promoter associated with better outcome. Patients with smaller number of hypermethylated genes (p = 0.012) or with lower levels of cumulative DNA methylation value computed from methylation levels of all studied regions have worse OS. and EFS	Studied negative impact of HOX genes and tumor suppressors promoters hypomethylation caused by DNMT3A mutations	79 diagnostic AML excluding favorable karyotype	None
Treppendahl et al. [18]	VTRNA2-1 promoter	BM	pyrosequencing	Patients with hypermethylation (≥ 10% or > 38%) had poorer survival	Methylation was inversely correlated with expression	101 diagnostic AML	None
Hájková et al. [10]	PBX3 (TAF1 binding site)	PB or BM MNC	NGS, pyrosequencing	Lower methylation correlated with higher expression of PBX3 that was associated with higher incidence of relapse	Newly discovered hypomethylation pattern specific to CEBPA-MYH11 fusion with corresponding gene overexpression	123 diagnostic AML, prognostic significance in 40 AML that underwent standard curative therapy and did not die during the first induction	None
Jost et al. [11]	Promoter region of DNMT3A	PB	TCGA data, pyrosequencing (validation)	Hypermethylation (≥ 10%) associated with shorter EFS and OS in TCGA data, but not validated on authors' cohort of patients	Higher methylation in the region was mostly observed in patients without DNMT3A mut and was associated with moderate down-regulation of DNMT3A transcription	194 diagnostic AML of TCGA study, prognostic significance after excluding DNMT3A mut AML	88 diagnostic AML, prognostic significance not validated
Publication	Studied region/gene	Sample type	Methylation detection method	Clinical significance	Notes	Test cohort (n)	Validation cohort (n)
-------------	---------------------	-------------	-----------------------------	-----------------------	-------	----------------	-----------------------
Marcucci et al. [15]	DMRs in promoters of seven genes (CD34, RHOC, SCRN1, F2RL1, FAM82A1, MIR155HG, and VWA8)	BM	NGS: MethylCap enriched by MBD2, RRBS (validation), MassArray (validation)	High DMRs methylation associated with lower expression linked to higher CR rate and longer survival in CN-AML. Patients with lower weighted summary score of expression levels had higher disease-free survival and OS	FLT3-ITD and DNMT3A mutations associated with low methylation at DMRs, NPM1 and IDH mutations associated with higher methylation at DMRs	134 CN-AML	four independent CN-AML patient sets (n = 355)
Božić et al. [21]	One CpG in CIR gene	PB	TCGA data, pyrosequencing (validation)	Higher methylation (> 27%) associated with longer OS	Only moderate association of DNA methylation and expression of CIR	194 diagnostic AML of TCGA study	two independent datasets — 62 CN-AML and 84 AML
Zhou et al. [19]	GPX3 promoter	BM, MNC	qMSP	non-M3 AML patients with GPX3 methylation showed shorter OS and GPX3 methylation does not correlate with expression	181 de novo AML, clinical significance in 104 non-M3 AML	133 de novo AML	None
Zhou et al. [20]	DLX4	BM, MNC	qMSP	Patients with methylated DLX4 presented lower CR rate and shorter OS	DLX4 methylation was negatively associated with the expression of shorter DLX4 isoform	None	
Guo et al. [9]	SFRP1 and SFRP2 promoter regions	BM	qMSP	Higher methylation associated with shorter OS	Higher SFRP1 methylation associated with N/K-RAS mutations. Higher SFRPs methylation in older patients (≥ 50 years)	139 de novo non-M3 AML	None
Li et al. [12]	NOD2 promoter	BM, MNC	qMSP	Higher methylation correlated with lower expression of NOD2 which was associated with shorter OS in CN-AML	The role of DNA methylation in silencing of NOD2 expression was confirmed in THP1 leukemic cell line	101 diagnostic AML, clinical significance proved in 42 CN-AML	Two independent datasets — 162 CN-AML and 78 CN-AML
Liu et al. [14]	RASSF1A promoter	BM	qMSP	Hypermethylation connected with decreased OS and EFS	Hypermethylation of RASSF1A associated with ASXL1 mutations and decreased mRNA levels	226 diagnostic non-M3 AML	None
Qu et al. [16]	CGI shores of LZTS2 and NR6A1	PB or BM	CHARMox, pyrosequencing (validation), TCGA data (validation)	Hypomethylation in either of the two regions associated with worse OS	Studied on CN-AML patients	72 CN-AML in discovery cohort + 65 CN-AML in model-building cohort	65 CN-AML + 93 CN-AML from TCGA study
Publication	Studied region/gene	Sample type	Methylation detection method	Clinical significance	Notes	Test cohort (n)	Validation cohort (n)
-------------------	---------------------	-------------	------------------------------	--	--	-----------------	-----------------------
Šestáková et al. [17]	GZMB enhancer	PB	pyrosequencing	Hypermethylation associated with inferior OS between high and low methylation groups)	Concurrent presence of both DNMT3A^{mut} and IDH1/2^{mut} partially cancel out the opposite influence of these aberrations on DNA methylation resulting in a mixed methylation and hydroxymethylation profiles	104 diagnostic AML	None

BM, bone marrow; CGI, CpG island; CN-AML, cytogenetically normal AML; CR, complete remission; DMR, differentially methylated region; EFS, event-free survival; MNC, mononuclear cells; OS, overall survival; PB, peripheral blood
MassArray, Mass spectrometry analysis of cleaved fragments of chosen regions amplified by PCR; TCGA data, data from The Cancer Genome Atlas Research Network 2013 AML study [36]; qMSP, quantitative methylation-specific polymerase chain reaction; CHARMcox, Comprehensive High-throughput Array-based Relative Methylation Analysis combined with Cox proportional Hazards Model; RRBS, Reduced representation bisulfite sequencing
Table 2 DNA methylation validation results

Publication	Gene/region tested	Methylation threshold	Mean methylation levels in healthy donors (n = 11)	Logrank test	Multivariate Cox analysis of results significant in Kaplan–Meier analysis		
				p-value for OS	p-value for EFS	p-value for OS	p-value for EFS
Lin et al. [13]	CEBPA distal promoter	4.4%—Cutoff Finder [35]	6%	0.005^a/0.3^b	0.05^e/0.6^e	0.02^e/-	0.03^e/-
Hájková et al. [8]	CDKN2B, ESR1, MYOD1, CALCA, SOCS1, CDH1	cumulative methylation value ≥ 6 (median cumulative value)	CDKN2B—3%, ESR1—4%, MYOD1—5%, CALCA—16%, SOCS1—0.4%, CDH1—7%	0.1^d	0.6^d	--	--
	SOCS1 promoter	1% (AML median)		0.04^d	0.10^d	0.19	--
Treppendahl et al. [18]	VTRNA2-1 promoter	10%	38%	0.20^d	0.20^d	--	--
Hájková et al. [10]	PBX3 (TAF1 binding site)	27% (mean healthy donors)	27%	0.01	0.01	0.08	0.01
Jost et al. [11]	1 CpG in DNMT3A promoter whole DMR	10% (AML mean)	1%	1/0.6^p	1/0.6^p	--	--
Marcucci et al. [15]	CD34, RHOC, SCRNI, F2RL1, FAM92A1, MIR155HG, WWAB	10%/10.6%^h (AML median of average methylation for all genes)	CD34—6%, RHOC—14%, SCRNI—6%, F2RL1—7%, FAM92A1—11%, MIR155HG—10%, WWAB—9%	0.08/0.3^h	0.01/0.4^h	--	0.29/-
			13.7/16.95^i (median of weighted summary score) ≥ 6 genes have higher methylation than median in AML	0.02/0.2^h	0.01/0.2^h	0.8/-	0.9/-
				0.1/0.2^h	0.2/0.5^h	--	--
Božić et al. [21]	1 CpG in C1R 5’UTR region	19% (AML median)	22%	0.30	0.06	--	--
				0.30	0.1	--	--
			40%—Cutoff Finder [35]	0.02	0.03	0.3	0.1
Zhou et al. [19]	GPX3	3.6% (mean of healthy donors + SD)	2%	0.04	0.01	0.006	< 0.0001
Zhou et al. [20]	DLX4	8%—Cutoff Finder [35]	11%	0.02	0.02	0.03	0.03
Guo et al. [9]	SFRP1 promoter	12% (AML mean)/1%—Cutoff Finder [35]	SFRP1—4% SFRP2—3%	0.07/0.02	0.02/0.02	-/-	0.06/006
	SFRP2 promoter	6% (AML mean)/5%—Cutoff Finder [35]		0.3/0.3	0.5/0.8	--	--
	SFRP1, SFRP2	9% (AML mean)/8.5%—Cutoff Finder [35]		0.1/0.05	0.06/0.04	-/-	0.008
Li et al. [12]	NKD2 promoter	6%—Cutoff Finder [35]	3%	0.5	0.2	--	--
				0.09	0.1	--	--
Table 2 (continued)

Publication	Gene/region tested	Methylation threshold	Mean methylation levels in healthy donors (n = 11)	Logrank test	Multivariate Cox analysis a of results significant in Kaplan–Meier analysis
Liu et al. [14]	RASSF1A promoter	0.4% (AML mean)	1%	0.04	0.04
Qu et al. [16]	LZTS2	37% (AML median)	LZTS2—NR6A1—16%	0.02/0.01	0.008/0.02
	NR6A1	11% (AML median)		0.0001/0.0002	0.0003/0.0005
	LTZS2, NR6A1	methylation < median methylation level in both genes		0.01/0.0001	< 0.0001/ < 0.0001
Šestáková et al. [17]	2 CpGs in GZMB	45% (AML mean) at both/none of the two CpGs	21%	0.10	0.10

CN-AML, cytogenetically normal AML; DMR, differentially methylated region; IGR, intergenic region; SD, standard deviation

a Multivariate analysis with following covariates: age, leukocyte count, cytogenetics (Grimwade, 2010), transplantation in the first complete remission, FLT3-ITD, NPM1mut

b Excluded patients with favorable cytogenetic profile, NPM1mut a, CEBPAmut

c CN-AML patients without NPM1mut, CEBPAmut

d Cumulative methylation value = (1·number of hypermethylated genes with methylation < 15%) + (2·number of hypermethylated genes with methylation 15–50%) + (3·number of hypermethylated genes with methylation > 50%)

e Hypermethylated = methylation higher than maximum methylation detected in healthy donors

f Excluded patients with favorable cytogenetic profile

g DNMT3Amut patients excluded

h cytogenetically normal (CN) AML

i weighted summary score of dichotomized methylation values calculated according to Marcucci et al. [15]
both genes was present. Validation of the works of Zhou et al. [19, 20] produced contradictory results to the original studies. Unlike them, we observed a clear association between higher \(GPX3/\text{DLX4} \) promoter methylation and better survival. This discrepancy is hard to explain because even usage of different methodology (qMSP versus NGS) or biological material (BM versus PB) would not completely reverse the impact of particular gene’s hypermethylation. The recent GPX3 review described its dichotomous role in different cancer types; it can act as either an oncogene or a tumor suppressor [23]. Tumors with high \(GPX3 \) expression have an increased resistance to chemotherapy due to the \(GPX3 \) involvement in the antioxidant enzyme system [24]. This would support our findings about \(GPX3 \) hypermethylation (and thus probable downregulation) and favorable outcome in AML cohort treated by standard 3 + 7 induction regimen. As for \(\text{DLX4} \), its overexpression was described in numerous tumor types (including AML) in association with tumor progression and/or invasion [25–28]. This again supports the link between \(\text{DLX4} \) hypermethylation and better AML prognosis.

Noticeably, all verified prognostic DNA methylation changes have one thing in common: higher methylation equals better prognosis. Six out of fourteen studies subjected to the validation reported higher methylation/lower expression and superior outcome. From these six studies, three were verified by both log-rank and multivariate Cox regression analysis [10, 13, 16] and three showed significance by log-rank test [8, 15, 21]. On the other hand, from eight studies describing the relationship between higher methylation and poor prognosis, only one displayed significance by log-rank test [9], none was verified by multivariate Cox regression analysis, and for two studies the opposite relation between higher methylation and prognosis was revealed [19, 20]. Altogether, it seems that higher methylation has predominant influence on prognosis in AML. However, the exact location of differential methylation and what specific genes are affected are probably the key elements determining the direction of how DNA methylation influences patients’ outcome.

In three studies, the indirect relation of DNA methylation (through its association with gene expression) and prognosis was reported [10, 12, 15]. From these, only one study was validated [10]. Technically speaking, we cannot exclude the role of gene expression deregulation in patients’ outcome in the remaining two studies [12, 15], because in our study design we did not examine the impact of gene expression on AML prognosis.

Another important aspect to discuss is the usage of PB versus BM for DNA methylation assessment. Our AML cohort consists of PB samples only, whereas PB alone was a starting material in 3/14 studies that underwent validation. Some articles have already dealt with the comparison of DNA methylation results obtained from PB versus BM, and they reported their interchangeability for these purposes [8, 10, 16]. In line with this, the result of DNA methylation validation was not determined by the biological material used. In fact, genes with validated role of their methylation status in AML prognosis were all revealed in studies using either BM alone [13, 19, 20] or studies using a combination of PB and BM [10, 16]. PB is a starting material that is easily accessible to the majority of laboratories and it is not as burdensome for patients as BM aspirates.

In practical terms, implementation of a new biomarker represented by a single gene/region is always more feasible than that of a complex methylation pattern. The low number of genes for which we confirmed the prognostic impact with our NGS-based approach highlights the importance of such validation and a need for a consistent and easily reproducible approach to assess the impact of various changes in DNA methylation on AML prognosis.

Conclusions

We showed that validation of previously published prognostically significant DNA methylation changes is essential to confirm their relevance for patients’ stratification. Out of 27 genes, a statistically significant correlation between DNA methylation status and prognosis was proved for six of them: \(\text{CEBPA, PBX3, LZTS2, NR6A1, GPX3, and DLX4} \). We propose that further independent validation studies may build upon our results, because only markers properly verified by several independent studies can be considered for AML prognosis refinement in clinical practice.

Fig. 1 Kaplan–Meier (KM) curves for overall survival (OS): A \(\text{CEBPA} \) methylation KM curves in AML subgroup excluding favorable cytogenetics and without \(\text{CEBPA} \) and \(\text{NPM1} \) mutations \((n = 83)\). B \(\text{GPX3} \) methylation KM curves in the whole non-M3 AML cohort \((n = 178)\). C \(\text{DLX4} \) methylation KM curves in the whole non-M3 AML cohort \((n = 178)\). D \(\text{LZTS2} \) methylation KM curves in the whole non-M3 AML cohort \((n = 178)\). E \(\text{NR6A1} \) methylation KM curves in the whole non-M3 AML cohort \((n = 178)\). F \(\text{LZTS2}\&\text{NR6A1} \) methylation KM curves in the whole non-M3 AML cohort \((n = 178)\). G \(\text{LZTS2} \) methylation KM curves in the CN-AML subgroup \((n = 85)\). H \(\text{NR6A1} \) methylation KM curves in the CN-AML subgroup \((n = 85)\). I \(\text{LZTS2}\&\text{NR6A1} \) methylation KM curves in the CN-AML subgroup \((n = 85)\). CN-AML = cytogenetically normal AML, hypo = hypomethylated, hyper = hypermethylated, Strata—stratified by a variable.
Fig. 1 (See legend on previous page.)
Methods

Patients
We examined 178 adult AML patients: 128 patients from the Institute of Hematology and Blood Transfusion (Prague, Czech Republic) and 50 patients from the University Hospital Brno (Brno, Czech Republic). All patients were diagnosed with AML between 2013 and 2016 and were treated with curative intent starting with 3+7 induction regimen [29]. The clinical and basic molecular characteristics used for statistical analysis are stated in Additional file 1: Table S2. Healthy donors (n = 11) were also analyzed. The study was approved by the Ethics committees of both participating institutions and all patients provided their full consent. The research conforms to The Code of Ethics of the World Medical Association.

Targeted bisulfite sequencing
Sequencing libraries consisted of 16–18 samples and were prepared according to the SeqCap Epi protocol (Roche, Basel, Switzerland) with KAPA Hyper-Prep Kit (Roche). Diagnostic whole-blood DNA from AML patients (800–1200 ng) was first mixed with the Bisulfite-conversion Control (unmethylated DNA from phage lambda) provided in the SeqCap Epi Accessory kit (Roche) and then fragmented either via E220 Focused ultrasonicator (Covaris, Woburn, MA, USA) or Bioruptor Pico instrument (Diagenode, Liège, Belgium) to get an average size of 200 bp. EZ DNA Methylation Lightning Kit (Zymo Research, Irvine, CA, USA) was used for the bisulfite conversion. Pooled samples from each library were hybridized for about 68 h with a custom set of probes (made by Roche Company). The final concentration of the libraries was measured using KAPA Library Quantification Kit (Roche), and the average size of the libraries’ fragments was assessed on 4200 TapeStation System (Agilent Technologies, Santa Clara, CA, USA). Libraries were sequenced on a MiSeq instrument (Illumina, San Diego, CA, USA) using the MiSeq Reagent Kit v2 (300-cycles) (Illumina).

Sequencing data analysis
FastQC (version 0.11.8) [30] and MultiQC (version 1.7) [31] software was used to check the quality of fastq files. Reads were then trimmed and filtered using Cutadapt (version 2.4) [32] and the quality of reads was checked again. Filtered data were mapped with software Segemehl (version 0.3.4) [33] to human genome version GRCh37/hg19 with added sequence of Enterobacteria phage lambda NC_001416.1. Mapping statistics were assessed and we checked that more than 80% of reads were mapped for each sample. Bam files containing mapped reads were sorted and indexed by Samtools software (version 1.10). Subsequently, we used Haarz tool (version 0.3.4) [33] with enabled ”callmethyl” option to select methylated positions and create vcf files that were further processed in R software. Positions that corresponded to the lambda phage sequence were separated and used to check that the bisulfite conversion ratio was >99% for each sample. Remaining positions were filtered and only CpG positions were left in the data. Finally, we selected regions corresponding to loci published in the original articles results and the average methylation across the regions was assessed. The list of selected regions is provided in Additional file 1: Table S1. Raw sequencing data are available at the Gene Expression Omnibus repository (accession number GSE165435).

Statistical analyses and definitions
For the statistical analyses, R software (version 4.0.0) was used. Surviving patients were censored to the April 6, 2020. Overall survival (OS) was established as time from diagnosis until death of any cause. Event-free survival (EFS) was established as time from the first complete remission until death or hematological relapse. Multivariate Cox regression analysis was computed with following covariates: age, leukocyte count, cytogenetics [34], transplantation in the first complete remission, presence of FLT3-ITD and NPM1 mutations. For five studies (see Table 2), Cutoff Finder [35] was utilized to determine the optimal DNA methylation threshold. We used the same DNA methylation threshold as originally published or it was set up in the most similar and meaningful way. We also adapted the selection of AML patients because some studies detected a prognostic effect of DNA methylation only in a specific subset of AML such as cytogenetically normal (CN) AML. To properly evaluate the prognostic significance of the studied regions, we performed Kaplan–Meier analysis with log-rank test. Subsequently,
Fig. 2 (See legend on previous page.)
Fig. 3 Comparison of mean DNA methylation values in successfully validated genes between hypo- and hypermethylated subgroups of AML. CN-AML = cytogenetically normal AML, hypo = hypomethylated, hyper = hypermethylated
we assessed the effect of DNA methylation levels on overall (OS) and event-free survival (EFS) using multivariate Cox regression for those loci significantly affecting OS or EFS in Kaplan–Meier analysis. \(p \)-value \(\leq 0.05 \) was considered as statistically significant.

Supplementary Information
The online version contains supplementary material available at https://doi.org/10.1186/s13148-022-01242-6.

Acknowledgements
Not applicable.

Authors’ contributions
SS and EC performed the experiments. SS, DK, and HR interpreted the data. SS, CS, and HR wrote the manuscript. All authors read and approved the final manuscript.

Funding
This study was supported by the Ministry of Health of the Czech Republic, project for conceptual development of research organizations (00027376, IHBT).

Availability of data and materials
Raw DNA methylation sequencing data are deposited into GEO repository with the accession number GSE165435 (https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE165435). The other data supporting the findings of the present study are included in this published article [and its Additional files].

Declarations

Ethics approval and consent to participate
Informed consent was obtained from all patients. The research was approved by the Ethics Committees of the Institute of Hematology and Blood Transfusion, U Nemocnice 1, 128 20 Prague 2, Czech Republic.

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Author details
1. Department of Genomics, Institute of Hematology and Blood Transfusion (Prague, Czech Republic). 2. Institute of Clinical and Experimental Hematology, 1st Faculty of Medicine, Charles University, Prague, Czech Republic. 3. Faculty of Science, Charles University, Prague, Czech Republic. 4. Department of Internal Medicine-Hematology and Oncology, University Hospital Brno, Brno, Czech Republic.

Received: 23 September 2021 **Accepted:** 31 January 2022

Published online: 11 February 2022

References
1. Handschuh L. Not only mutations matter: molecular picture of acute myeloid leukemia emerging from transcriptome studies. J Oncol. 2019;30(2019):7239:206.
2. Rockova V, Abbas S, Wouters BJ, Erpelinck CA, Beverloo HB, Delwel R, et al. Risk stratification of intermediate-risk acute myeloid leukemia: integrative analysis of a multitude of gene mutation and gene expression markers. Blood. 2011;118(4):1069–76.
3. Jiang H, Ou Z, He Y, Yu M, Wu S, Li G, et al. DNA methylation markers in the diagnosis and prognosis of common leukemias. Signal Transduct Target Ther. 2020;5(1):1–10.
4. Dohner H, Estey E, Grimwade D, Amadori S, Appelbaum FR, Buchner T, et al. Diagnosis and management of AML in adults. 2017 ELN recommendations from an international expert panel. Blood. 2017;129(4):424–47.
5. Sestaková S, Salek C, Remesova H. DNA methylation validation methods: a coherent review with practical comparison. Biol Proced. 2019;2(1):1–11.
6. Gosselt HR, Griffioen PH, van Zelst BD, Oosterom N, de Jonge R, Heil SG. Global DNA (hydroxymethyl)ation is stable over time under several storage conditions and temperatures. Epigenetics. 2021;16(11):45–53.
7. Yang X, Wong PM, Ng RK. Abarrent DNA methylation in acute myeloid leukemia and its clinical implications. Int J Mol Sci. 2019. https://doi.org/10.3390/ijms20184576.
8. Hajkova H, Markova J, Haskovec C, Sarova I, Fuchs O, Kostecka A, et al. Decreased DNA methylation in acute myeloid leukemia patients with DNMT3A mutations and prognostic implications of DNA methylation. Leuk Res. 2012;36(9):1128–33.
9. Guo H, Zhang TJ, Wen XM, Zhou J, Ma J, An Y, et al. Hypermethylation of secreted frizzled-related proteins predicts poor prognosis in non-M3 acute myeloid leukemia. Onco Targets Ther. 2017;10(2010):3635–44.
10. Hajkova H, Fritz MH, Haskovec C, Schwarz J, Salek C, Markova J, et al. CBFB-MYH11 hypomethylation signature and PBX3 differential methylation revealed by targeted bisulfite sequencing in patients. J Hematol Oncol. 2014;7:660–44.
11. Jost E, Lin Q, Weidner CI, Wilop S, Hoffmann M, Walendra T, et al. Epimutations mimic genomic mutations of DNMT3A in acute myeloid leukemia. Leukemia. 2014;28(6):1227–34.
12. Li XX, Zhou JD, Zhang TJ, Yang L, Wen XM, Ma J, et al. Epigenetic dysregulation of NKD2 is a valuable predictor assessing treatment outcome in acute myeloid leukemia. J Cancer. 2017;8(3):460–8.
13. Lin TC, Hou HA, Chou WC, Ou DL, Yu SL, Tien HF, et al. CEBPA methylation as a prognostic biomarker in patients with de novo acute myeloid leukemia. Leukemia. 2011;25(1):32–40.
14. Liu F, Gong M, Gao L, Cai X, Zhang H, Ma Y, RASSF1A hypermethylation is associated with ASXL1 mutation and indicates an adverse outcome in non-M3 acute myeloid leukemia. Leuk Res. 2012;36(1):2043–51.
15. Marcucci G, Yan P, Maharry K, Frankhouser D, Nicolet D, Metzeler KH, et al. Epigenetics meets genetics in acute myeloid leukemia: clinical impact of a novel seven-gene score. J Clin Oncol. 2014;32(6):548–56.
16. Qu X, Othus M, Davison J, Wu Y, Yan L, Meshchini S, et al. Prognostic methylation markers for overall survival in cytogenetically normal patients with acute myeloid leukemia treated on SWOG trials. Cancer. 2017;123(13):2472–81.
17. Sestaková S, Krejčík Z, Fořta A, Cerovska E, Salek C, Merkerova MD, et al. DNA methylation and hydroxymethylation patterns in acute myeloid leukemia patients with mutations in DNMT3A and IDH1/2 and their combinations. Cancer Biomark. 2019;25(1):43–51.
18. Treppendahl MB, Qu X, Sogoard A, Yang X, Nandrup-Bus C, Hothcr C, et al. Allelic methylation levels of the noncoding YTRNA2-1 located on chromosome 5q31.1 predict outcome in AML. Blood. 2012;119(1):206–16.
19. Zhou JD, Yao DM, Zhang YY, Ma JC, Wen YM, Yang J, et al. DNA methylation and hydroxymethylation patterns in acute myeloid leukemia patients with mutations in DNMT3A and IDH1/2 and their combinations. Cancer Biomark. 2019;25(1):43–51.
20. Treppendahl MB, Qu X, Sogoard A, Yang X, Nandrup-Bus C, Hothcr C, et al. Allelic methylation levels of the noncoding YTRNA2-1 located on chromosome 5q31.1 predict outcome in AML. Blood. 2012;119(1):206–16.
21. Zhou JD, Zhang TJ, Yang YQ, Yang D, Yang L, Ma JC, et al. DLX4 hypermethylation is a prognostically adverse indicator in de novo acute myeloid leukemia. Tumour Biol. 2016;37(7):8951–60.
22. Bozic T, Lin Q, Frobel J, Wilop S, Hoffmann M, Muller-Tidow C, et al. DNA-methylation in C1R is a prognostic biomarker for acute myeloid leukemia. Clin Epigenetics. 2015;7:116015–201536.
23. Morgan R, Pandha HS. PBX3 in Cancer. Cancers (Basel). 2020;12:2. https://doi.org/10.3390/cancers12020431.
24. Chang C, Worley BL, Phaeton R, Hempel N. Extracellular glutathione peroxidase GPx3 and its role in cancer. Cancers (Basel). 2020;12;8. https://doi.org/10.3390/cancers12082197.
25. Pelosi L, Yerram S, Armstrong T, Chu N, Danilova I, Yanagisawa B, et al. GPx3 promoter methylation predicts platinum sensitivity in colorectal cancer. Epigenetics. 2017;12:7540–50.
26. Sun G, Ge Y, Zhang Y, Yan L, Wu X, Ouyang W, et al. Transcription factors BARX1 and DLX4 contribute to progression of clear cell renal cell
26. Zhang L, Wan Y, Jiang Y, Zhang Z, Shu S, Cheng W, et al. Overexpression of BP1, an isoform of homeobox gene DLX4, promotes cell proliferation, migration and predicts poor prognosis in endometrial cancer. Gene. 2019;30(7):216–23.
27. Zhou JD, Yang J, Guo H, Deng ZQ, Wen XM, Yang L, et al. BP1 overexpression is associated with adverse prognosis in de novo acute myeloid leukemia. Leuk Lymphoma. 2016;57(4):828–34.
28. Hollington P, Neufing P, Kalionis B, Waring P, Bentel J, Wachtow D, et al. Expression and localization of homeodomain proteins DLX4, H89 and HB24 in malignant and benign human colorectal tissues. Anticancer Res. 2004;24(8):955–62.
29. Ferrara F, Vitagliano O. Induction therapy in acute myeloid leukemia: is it time to put aside standard 3 + 7? Hematol Oncol. 2019;37(5):S58–63.
30. Andrews S. FastQC: a quality control tool for high throughput sequence data [Online]. 2015. Available at: http://www.bioinformatics.babraham.ac.uk/projects/fastqc/. Accessed 20 June 2020.
31. Ewels P, Magnusson M, Lundin S, Kaller M. MultiQC: summarize analysis results for multiple tools and samples in a single report. Bioinformatics. 2016;32(19):3047–8.
32. Martin M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBO Rep. 2011;17(1):10–2.
33. Otto C, Stadler PF, Hoffmann S. Fast and sensitive mapping of bisulfite-treated sequencing data. Bioinformatics. 2012;28(13):1698–704.
34. Grimwade D, Hills RK, Moorman AV, Walker H, Chatters S, Goldstone AH, et al. Refinement of cytogenetic classification in acute myeloid leukemia: determination of prognostic significance of rare recurring chromosomal abnormalities among 5876 younger adult patients treated in the United Kingdom Medical Research Council trials. Blood. 2010;116(3):354–65.
35. Budczies J, Klauschen F, Sinn BV, Gyorffy B, Schmitt WD, Darb-Esfahani S, et al. Cutoff finder: a comprehensive and straightforward Web application enabling rapid biomarker cutoff optimization. PLoS ONE. 2012;7(12):e51862.
36. Cancer Genome Atlas Research Network, Ley TJ, Miller C, Ding L, Raphael BJ, Mungall AJ, et al. Genomic and epigenomic landscapes of adult de novo acute myeloid leukemia. N Engl J Med 2013 May 30;368(22):2059-2074.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.