Abstract

AIM: To retrospectively analyze factors affecting the long-term survival of patients with pancreatic cancer who underwent pancreatic resection.

METHODS: From January 2000 to December 2011, 195 patients underwent pancreatic resection in our hospital. The prognostic factors after pancreatic resection were analyzed in all 195 patients. After excluding the censored cases within an observational period, the clinicopathological characteristics of 20 patients who survived \(\geq 5 \) (\(n = 20 \)) and < 5 (\(n = 76 \)) years were compared. For this comparison, we analyzed the patients who underwent surgery before June 2008 and were observed for more than 5 years. For statistical analyses, the log-rank test was used to compare the cumulative survival rates, and the \(\chi^2 \) and Mann-Whitney tests were used to compare the two groups. The Cox-Hazard model was used for a multivariate analysis, and \(P \) values less than 0.05 were considered significant. A multivariate analysis was conducted on the factors that were significant in the univariate analysis.

RESULTS: The median survival for all patients was 27.1 months, and the 5-year actuarial survival rate was 34.5%. The median observational period was 595 d. With the univariate analysis, the UICC stage was significantly associated with survival time, and \(\text{CA19-9} \leq 200 \text{ U/mL} \), \(\text{DUPAN-2} \leq 180 \text{ U/mL} \), tumor size \(\leq 20 \text{ mm} \), R0 resection, absence of lymph node metastasis, absence of extrapancreatic neural invasion, and absence of portal invasion were favorable prognostic factors. The multivariate analysis showed that tumor size \(\leq 20 \text{ mm} \) (HR = 0.40; 95%CI: 0.17-0.83, \(P = 0.012 \)) and negative surgical margins (R0 resection) (HR = 0.48; 95%CI: 0.30-0.77, \(P = 0.003 \)) were independent favorable prognostic factors. Among the 96 patients, 20 patients survived for 5 years or more, and 76 patients died within 5 years after operation. Comparison of the 20 5-year survivors with the 76 non-survivors showed that lower concentrations of DUPAN-2 (79.5 vs 312.5 U/mL, \(P = 0.032 \)), tumor size \(\leq 20 \text{ mm} \) (35% vs 8%, \(P = 0.008 \)), R0 resection (95% vs 61%, \(P = 0.004 \)), and absence of lymph node metastasis were significant factors.
metastases (60% vs 18%, P = 0.036) were significantly associated with the 5-year survival.

CONCLUSION: Negative surgical margins and a tumor size ≤ 20 mm were independent favorable prognostic factors. Histologically curative resection and early tumor detection are important factors in achieving long-term survival.

Key words: Pancreatic cancer; Long-term survival; Long-term survivor; Prognostic factor; R0 resection

© The Author(s) 2015. Published by Baishideng Publishing Group Inc. All rights reserved.

Core tip: The prognosis of pancreatic cancer patients remains quite poor. In this study, however, the 5-year actuarial survival rate was much higher (34.5%) than normal. Histologically curative resection and early tumor detection were important factors in achieving long-term survival.

INTRODUCTION

Pancreatic cancer is the fourth leading cause of death among all types of cancer, accounting for 6% of men and 7% of women who died of cancer in the United States in 2010. The prognosis of patients with pancreatic cancer remains quite poor, with a 5-year survival rate of only 6%[3]. Surgery remains the only curative treatment for pancreatic cancer. Only 10%-20% of the patients with pancreatic cancer could be candidates for surgical resection in previous reports[2,3]. In 1984, the 5-year survival rate after surgery was only 3%. However, patient prognosis has been improving, and the 5-year survival rate after surgery has been approximately 11%-25% in the last decade[4-7]. This improvement may be attributable to the increased experience of surgeons performing pancreatic resection and possibly to the effects of adjuvant chemotherapy.

Several studies have reported prognostic factors after surgical resection of pancreatic cancer. The significant prognostic factors identified are tumor size, lymph node metastasis, surgical margin status, tumor markers, and adjuvant chemotherapy[8-10]. This study was designed to analyze the factors prognostic of survival in patients with pancreatic cancer and the characteristics of long-term survivors.

RESULTS

Patient characteristics

The 195 patients consisted of 108 males and 87 females (mean age 68 ± 8.1 years at the time of pancreatic resection) (Table 1). Median and interquartile range of tumor marker concentrations were carcinoembryonic antigen (CEA) 5.0 ng/mL, CA19-9 ≤ 37.0 U/mL and DUPAN-2 ≤ 150 U/mL. CEA and CA19-9 were measured by chemiluminescence enzyme immunoassay, and DUPAN-2 was by enzyme-linked immunosorbent assay.

MATERIALS AND METHODS

From January 2000 to December 2011, 195 patients with pancreatic cancer in our hospital underwent pancreatic resection, consisting of a standard operation without extended lymphadenectomy[11]. We first analyzed the prognostic factors after pancreatic resection for all 195 patients. We then assessed the clinicopathological characteristics of the 96 patients who underwent surgery on or before June 2008 and who were followed-up for > 5 years. Of these 96 patients, 20 patients survived ≥ 5 years, and 76 patients died within 5 years. The clinicopathological characteristics of these two subgroups were analyzed. The analysis of extrapancreatic neural invasion and portal invasion followed the Japan Pancreas Society (JPS) classification[12].

The protocol for the present study was approved by the Institutional Review Board of our hospital. The informed consents were waived because the study consisted of a historical cohort.

Statistical analysis

The values are presented as the means +/- standard deviations, medians (interquartile range), or numbers and percentages. The log-rank test was used to compare the cumulative survival rates, and the χ² and Mann-Whitney tests were used to compare the two groups. The Cox-Hazard model was used for the multivariate analysis, and P values less than 0.05 were considered significant. A multivariate analysis was conducted using the factors that were significant in the univariate analysis. Cutoff values were determined using receiver operating characteristic curves, except that for carcinoembryonic antigen (CEA), which was determined to be the upper limit of normal. The normal ranges of tumor markers in our hospital are CEA ≤ 5.0 ng/mL, CA19-9 ≤ 37.0 U/mL and DUPAN-2 ≤ 150 U/mL. CEA and CA19-9 were measured by chemiluminescence enzyme immunoassay, and DUPAN-2 was by enzyme-linked immunosorbent assay.
The union for International Cancer Control (UICC) pathological stage[13] was I A in nine patients (4.6%); I B in one patient (0.5%); II A in 38 patients (19.5%); II B in 110 patients (56.4%); III in nine patients (4.6%); and IV in 28 patients (14.4%). Of the 195 patients, 123 patients (63%) underwent pancreaticoduodenectomy; 61 patients (31%) underwent distal pancreatectomy; and 11 patients (6%) underwent total pancreatectomy. The surgical margin status was negative (R0) in 138 patients (71%); microscopically positive (R1) in 50 patients (26%); and grossly positive (R2) in 7 patients (4%). One hundred fifty patients (77%) received postoperative chemotherapy for an average of 208 d. During chemotherapy, 142 patients received gemcitabine; six patients received tegafur-gimeracil-oteracil potassium (S1); and two patients received other regimens. The average time from operation to the initiation of adjuvant chemotherapy was 54.9 d. Adjuvant radiation therapy was not used for any patient.

Prognostic factors for all patients

The median observational period for all patients was 595 d. The median survival was 27.1 mo, and the 5-year actuarial survival rate was 34.5%.

Table 2 shows the prognostic factors analyzed. The univariate analysis showed that UICC stage, CA19-9 ≤ 200 U/mL, DUPAN-2 ≤ 180 U/mL, tumor size ≤ 20 mm, R0 resection, absence of lymph node metastasis, absence of extrapancreatic neural invasion, and absence

Table 1 Clinicopathological characteristics of all patients

Variables	Value (n = 195)
Age, mean ± SD	67.6 ± 8.1
Gender	Male 108, Female 87
Tumor marker, median (IQR)	CEA (ng/mL) 2.8 (1.7-4.8), CA19-9 (U/mL) 143.5 (29.3-435.3), DUPAN-2 (U/mL) 182 (31.0-739.3)
Operative procedures, n	Pancreatectoduodenectomy 123, Distal pancreatectomy 61, Total pancreatectomy 11
UICC T classification, n	T1 10, T2 6, T3 168, T4 11
Surgical margin status, n	R0 138, R1 50, R2 7
Lymph node metastasis, n	Negative 50, Positive 145
Extrapancreatic neural invasion, n	Positive 108, Negative 87
Portal invasion, n	Positive 63, Negative 132
UICC stage, n	I A 9, I B 1, II A 38, II B 110, III 9, IV 28
Adjuvant chemotherapy, n	GEM 142, S1 6, GEM+S1 or others 2, None 45
Time to initiation of adjuvant therapy	(mean days) 54.9

CA19-9: Carcinoembryonic antigen; UICC: Union for international cancer control; GEM: Gemcitabin; IQR: Interquartile range.

Table 2 Univariate analysis of factors prognostic for survival in patients undergoing pancreatic resection for pancreatic cancer

Variables	n	MST (mo)	5-yr survival (%)	P value
Age				
> 65	130	22.1	31.3	0.071
≤ 65	65	47.3	40.5	
Gender				
Male	108	17.5	31.6	0.060
Female	87	23.9	38.6	
CEA (ng/mL)				
> 5	42	18.5	33.1	0.082
≤ 5	138	35.2	38.4	
CA19-9 (U/mL)				
> 200	104	47.4	47.2	0.006\(^b\)
≤ 200	69	24.2	22.7	
DUPAN-2 (U/mL)				
> 180	101	30.8	51.0	
≤ 180	28	16.0	5.6	
Tumor size (mm)				<0.001\(^b\)
> 20	156	21.7	25.9	
≤ 20	39	29.4	69.9	
Surgical margin status				<0.001\(^b\)
R0	138	47.3	45.2	
R1-2	57	16.0	5.6	
Lymph node metastasis				<0.001\(^b\)
Positive	145	21.8	26.4	
Negative	50	28.8	55.8	
Extrapancreatic neural invasion				0.00\(^b\)
Positive	108	22.0	23.9	
Negative	87	47.4	47.9	
Portal invasion				0.006\(^b\)
Positive	63	21.1	15.0	
Negative	132	35.4	42.7	
UICC Stage				<0.001\(^b\)
I A	9	34.9	87.5	
I B	1	27.1	0	
II A	38	28.2	51.3	
II B	110	20.2	29.0	
III	9	16.3	0	
IV	28	10.4	14.4	
Adjuvant chemotherapy				0.301
Yes	150	21.1	40.5	
No	45	27.1	32.5	
Time to initiation of adjuvant therapy				0.985
> 40 d	66	27.1	31.1	
≤ 40 d	84	30.8	34.0	

\(^b\) P < 0.01 vs control. MST: Mean survival time.
Figure 1 Survival curves in the multivariate analysis for CA19-9, DUPAN-2, surgical margin, and tumor size. A: CA19-9 (≤/>200); B: DUPAN-2 (≤/> 180); C: Surgical margin (R0/R1-2); D: tumor size ≤/> 20 mm.

Figure 2 Survival curves in the multivariate analysis for lymph node metastasis, extrapancreatic neural invasion, and portal invasion. A: Lymph node metastasis (+/-); B: Extrapancreatic neural invasion (+/-); C: Portal invasion.
Table 3 Multivariate analysis of factors prognostic for survival in patients undergoing pancreatic resection for pancreatic cancer

Variables	HR	95%CI	P value
CA19-9 (≤ 200)	0.668	0.410-1.084	0.102
DUPAN-2 (≤ 180)	0.767	0.461-1.264	0.299
Negative surgical margin (R0)	0.478	0.296-0.770	0.003
Tumor size ≤ 20 mm	0.399	0.171-0.825	0.012
No lymph node metastasis	0.704	0.413-1.355	0.364
No extrapancreatic neural invasion	0.906	0.548-1.477	0.695
No portal invasion	0.859	0.541-1.370	0.520

Comparison between 5-year survivors and non-survivors

Table 4 compares the 20 patients who survived ≥ 5-year and the 76 patients who died within 5 years after surgery. Comparison of these two groups showed that lower concentrations of DUPAN-2, tumors ≤ 20 mm, R0 resection, absence of lymph node metastases and portal invasion were significantly associated with 5-year survival. Even among the 20 patients who survived ≥ 5-years, 13 (65%) had tumors > 20 mm, eight (40%) had lymph node metastases, 10 (50%) had extrapancreatic invasion, and two (10%) had portal invasion.

DISCUSSION

This study retrospectively analyzed patients who underwent resection for pancreatic cancer at a single center. An analysis of factors prognostic for survival showed that tumor size ≤ 20 mm and R0 resection were independently associated with long-term survival, indicating that early tumor detection and histologically curative resection were important to achieve long-term survival. A comparison of 5-year survivors with non-survivors revealed that a significantly higher percentage of survivors had low DUPAN-2 concentrations, tumor sizes ≤ 2 cm, negative surgical margins, no lymph node metastasis, and no portal invasion. Among the 20 patients who survived ≥ 5-years, 13 had tumors larger than 20 mm; eight patients had lymph node metastases; 10 patients had extrapancreatic neural invasion; and two patients had portal invasion. An analysis of the 19 patients who survived more than 3 years revealed that seven patients (36.8%) had lymph node metastasis and 16 patients (84.2%) had tumors larger than 20 mm. Thus, even in patients with advanced pancreatic cancer, radical resection can increase the long-term survival.

Several studies have also shown that surgical margin status and/or tumor size was associated with survival rate. For example, a retrospective study of 194 pancreatic cancer patients found that negative surgical margin was the sole independent postoperative prognostic factor. A more detailed evaluation of the histological margin status of the specimens found that tumors > 1.5 mm from the closest margin were significantly associated with longer survival. Furthermore, analyses of 396 and 185 patients with pancreatic cancer showed that tumor size ≤ 2 cm was a significant prognostic factor. Collectively, these findings indicate that earlier detection and histologically curative resection can achieve longer survivals in pancreatic cancer patients.

The procedure required for histologically curative resection remains unclear. The methods suggested include
“regional pancreatectomy”, i.e., extended pancreatic resection together with vascular resection and retroperitoneal lymphadenectomy. The rationale for an extended operation is based on the high rates of intra- and extrapancreatic neural invasion and lymph node metastasis. An extended operation is thought to be essential for histologically curative resection[13]. Moreover, a study of 74 patients with pancreatic cancer found that the survival rate was significantly higher in patients who underwent an extended than a standard operation[17]. However, many recent prospective studies have shown that extended operations tend to increase morbidity and mortality rates without having a survival benefit[18–20]. A systematic review and meta-analysis showed no significant differences in the survival rate between standard and extended operations, with a trend towards increased morbidity in patients undergoing extended operations[21]. Indeed, a review of 424 patients in four prospective randomized controlled trials found that extended operation was not associated with a survival benefit but tended to increase the rates of postoperative morbidity, such as diarrhea, in the early months after surgery[22]. Thus, because a standard operation results in longer survival and avoids postoperative morbidity, extended operations are not performed at our facility.

The necessity and efficacy of adjuvant chemotherapy for pancreatic cancer also remains unclear. A multicenter, randomized, controlled phase III trial found that postoperative gemcitabine increased survival compared with observation alone[23]. Since then, gemcitabine has been the standard adjuvant chemotherapy for pancreatic cancer (also in Japan)[24]. Of our 195 patients, 150 patients (76.9%) received chemotherapy after operation. However, we were unable to show that either adjuvant chemotherapy or its early initiation significantly enhanced patient survival. A previous report indicated that survival was also significantly longer in patients who started adjuvant chemotherapy within 20 d after surgery than those patients who started chemotherapy more than 20 d after the operation[25], indicating that earlier initiation of adjuvant chemotherapy may contribute to a longer survival. In our study, 142 patients received gemcitabine and only six patients received S1; therefore, we were not able to compare survival in these two groups. Future assessments of the efficacy of S1 require a greater number of patients receiving this agent.

This study was limited by its retrospective design; its performance at a single center; and the small number of patients. Therefore, a large-scale multicenter study should be planned to confirm our findings.

We found that the combination of negative surgical margins and tumor size ≤ 20 mm independently reduced the mortality rate to less than half, indicating that earlier tumor detection and histologically curative resection are important factors contributing to long-term survival.

COMMENTS

Background

The prognosis of patients with pancreatic cancer remains quite poor, and surgery remains the only curative treatment for pancreatic cancer. However, the 5-year survival rate after surgery has been reported to be less than 25%. This study was designed to analyze the factors prognostic of survival in pancreatic cancer patients and the characteristics of long-term survivors.

Research frontiers

Several studies have reported prognostic factors after surgical resection of pancreatic cancer. This research aims to determine which factors are associated with long-term survival, i.e., tumor size, lymph node metastasis, surgical margin status, tumor markers, and adjuvant chemotherapy, to improve the prognosis of pancreatic cancer patients.

Innovations and breakthroughs

In previous reports, the 5-year survival rate after surgery was less than 25%. The 5-year actuarial survival rate in the present study was 34.5%, and this rate is much higher than other reports. The Japan Pancreas Society (JPS) classification of pancreatic cancer includes many pathological factors that make it possible to perform a detailed study. In the present study, we performed further analyses about extraneural invasion and portal invasion according to the JPS classification.

Applications

The outcome of our study indicates that surgeons should make every effort to detect pancreatic cancer in an early stage and to perform histologically curative resection during surgery.

Terminology

Adjuvant chemotherapy is chemotherapy used after a curative operation to prevent recurrence or metastasis.

Peer review

This is a retrospective clinical investigation providing interesting information on the experience of a single center with pancreatic surgery outcomes. The study does not provide any new data but contributes additional data on a subject with significant available amount of data.

REFERENCES

1. Jemal A, Siegel R, Xu J, Ward E. Cancer statistics, 2010. CA Cancer J Clin 2010; 60: 277-300 [PMID: 20610543 DOI: 10.3322/caac.20073]
2. Reber HA, Gloor B. Radical pancreatectomy. Surg Oncol Clin N Am 1998; 7: 157-163 [PMID: 9443993]
3. Begg CB, Cramer LD, Hoskins WJ, Brennan MF. Impact of hospital volume on operative mortality for major cancer surgery. JAMA 1998; 280: 1747-1751 [PMID: 9842949 DOI: 10.1001/jama.280.20.1747]
4. Sohn TA, Yeo CJ, Cameron JL, Koniaris L, Kaushal S, Abrams RA, Sauter PK, Coleman J, Hruban RH, Lillemoe KD. Resected adenocarcinoma of the pancreas-616 patients: results, outcomes, and prognostic indicators. J Gastrointest Surg 2000; 4: 567-579 [PMID: 1130791]
5. Lim JE, Chien MW, Earle CC. Prognostic factors following curative resection for pancreatic adenocarcinoma: a population-based, linked database analysis of 396 patients. Ann Surg 2003; 237, 74-85 [PMID: 12496533 DOI: 10.1097/01.SLA.0000041266.10047.38]
6. Lee SR, Kim HO, Son BH, Yoo CH, Shin JH. Prognostic factors associated with long-term survival and recurrence in pancreatic adenocarcinoma. Hepatogastroenterology 2013; 60: 358-362 [PMID: 23574658 DOI: 10.3574/hge12727]
7. Riediger H, Keck T, Wellner U, zur Hausen A, Adam U, Hopt UT, Makowiec F. The lymph node ratio is the strongest prognostic factor after resection of pancreatic cancer. J Gastrointest Surg 2009; 13: 1337-1344 [PMID: 19418101 DOI: 10.1007/s11665-009-0919-2]
Yamamoto T et al. Long-term survival after pancreatic cancer

8 Wentz SC, Zhao ZG, Shyr Y, Shi CJ, Merchant NB, Washington K, Xia F, Chakravartyh AB. Lymph node ratio and preoperative CA 19-9 levels predict overall survival and recurrence-free survival in patients with resected pancreatic adenocarcinoma. World J Gastroenterol 2012; 18: 207-215 [PMID: 23444032 DOI: 10.3748/wjg.v18.i3.207]

9 Chatterjee D, Katz MH, Rashid A, Wang H, Iuga AC, Varadachary GR, Wolff RA, Lee JE, Pisters PW, Crane CH, Gomez HF, Abbuzzese JL, Fleming JB, Wang H. Perineural and intraneural invasion in posttherapy pancreaticoduodenectomy specimens predicts poor prognosis in patients with pancreatic ductal adenocarcinoma. Ann Surg 2012; 256: 409-417 [PMID: 22301497 DOI: 10.1097/01.sla.0000413513.31824104c5]

10 Richter A, Niedergethmann M, Sturm JW, Lorenz D, Post S, Trede M. Long-term results of partial pancreaticoduodenectomy for ductal adenocarcinoma of the pancreatic head: 25-year experience. World J Surg 2003; 27: 324-329 [PMID: 12607060 DOI: 10.1007/bf0268-002-6659-z]

11 Imamura M, Doi R, Imaiizumi T, Funakoshi A, Wakasugi H, Sunamura M, Ogata Y, Hishinuma S, Asano T, Aikou T, Hosotani R, Maetani S. A randomized multicenter trial comparing resection and radiochemotherapy for resectable locally invasive pancreatic cancer. Surgery 2004; 136: 1003-1011 [PMID: 15523393]

12 Japan Pancreas Society. Classification of pancreatic carcinoma. sixth ed. Tokyo: Kanehara, 2009

13 International Union Against Cancer. TNM classification of malignant tumors. sixth ed. New York: Weiley-Liss, 2002

14 Nagakawa T, Sanada H, Inagaki M, Sugama J, Ueno K, Konishi I, Ohta T, Kayahara M, Kitagawa H. Long-term survivors after resection of carcinoma of the head of the pancreas: significance of histologically curative resection. J Hepatobiliary Pancreat Surg 2004; 11: 402-408 [PMID: 15619016 DOI: 10.1007/s00534-004-0917-4]

15 Jamieson NB, Chan NI, Foulis AK, Dickson EJ, McKay CJ, Carter CR. The prognostic influence of resection margin clearance following pancreaticoduodenectomy for pancreatic ductal adenocarcinoma. J Gastrointest Surg 2013; 17: 511-521 [PMID: 23297028 DOI: 10.1007/s11605-012-2131-z]

16 Nitkecki SS, Sarr MG, Colby TV, van Heerden JA. Long-term survival after resection for ductal adenocarcinoma of the pancreas. Is it really improving? Ann Surg 1995; 221: 59-66 [PMID: 7826162 DOI: 10.1097/00000658-199501000-00007]

17 Manabe T, Ohshio G, Baba N, Miyashita T, Asano N, Tamura K, Yamaki K, Nonaka A, Tobe T. Radical pancreatectomy for ductal cell carcinoma of the head of the pancreas. Cancer 1989; 64: 1132-1137 [PMID: 2547508]

18 Yeo CJ, Cameron JL, Sohn TA, Coleman J, Sauter PK, HRuban RH, Pitt HA, Lillenmoe KD. Pancreaticoduodenectomy with or without extended retroperitoneal lymphadenectomy for periampullary adenocarcinoma: comparison of morbidity and mortality and short-term outcome. Ann Surg 1999; 229: 613-622, discussion 622-624 [PMID: 10235519 DOI: 10.1097/00000658-199905000-00003]

19 Pedrazzoli S, DiCarlo V, Dionigi R, Mosca F, Pedezzoli P, Pasquali C, Klöppel G, Dhaene K, Michelassi F. Standard versus extended lymphadenectomy associated with pancreateoduodenectomy in the surgical treatment of adenocarcinoma of the head of the pancreas: a multicenter, prospective, randomized study. Lymphadenectomy Study Group. Ann Surg 1998; 229: 508-517 [PMID: 9790340 DOI: 10.1097/00000658-199810000-00007]

20 Reddy SK, Tyler DS, Pappas TN, Clary BM. Extended resection for pancreatic adenocarcinoma. Oncologist 2007; 12: 654-663 [PMID: 17602057]

21 Michalski CW, Kleef J, Wente MN, Diener MK, Bächler MW, Friess H. Systematic review and meta-analysis of standard and extended lymphadenectomy in pancreaticoduodenectomy for pancreatic cancer. Br J Surg 2007; 94: 265-273 [PMID: 17318801 DOI: 10.1002/bjs.5716]

22 Farnell MB, Aranha GV, Nimura Y, Michelassi F. The role of extended lymphadenectomy for adenocarcinoma of the head of the pancreas: the strength of the evidence. J Gastrointest Surg 2008; 12: 651-656 [PMID: 18085343 DOI: 10.1016/j.jgi.2007.07.0451-1]

23 Oettle H, Post S, Neul sau F, Gellett K, Langrehr J, Ridwelski K, Schramm H, Fahike J, Zuelke C, Burkart C, Gutberlet K, Kettner E, Schmaleberg H, Weigang-Koeble K, Bechstein WO, Niedergethmann M, Schmidt-Wolf I, Roll L, Doerken B, Riess H. Adjuvant chemotherapy with gemcitabine vs observation in patients undergoing curative-intent resection of pancreatic cancer: a randomized controlled trial. JAMA 2007; 297: 267-277 [PMID: 17229798]

24 Ueno H, Kosuge T, Matsuyama Y, Yamamoto J, Nakao A, Egawa S, Doi R, Mondon M, Hatori T, Tanaka M, Shimada M, Kanemitsu K. A randomised phase III trial comparing gemcitabine with surgery-only in patients with resected pancreatic cancer: Japanese Study Group of Adjuvant Therapy for Pancreatic Cancer. Br J Cancer 2009; 101: 908-915 [PMID: 1960548]

25 Murakami Y, Uemura K, Sudo T, Hashimoto Y, Kondo N, Nakagawa N, Sasaki H, Sueda T. Early initiation of adjuvant chemotherapy improves survival of patients with pancreatic carcinoma after surgical resection. Cancer Chemother Pharmacol 2013; 71: 419-429 [PMID: 23178955 DOI: 10.1007/s00280-012-2029-1]

P- Reviewer: Mura B, Teramoto-Matsubara OT, Voutsadakis IA, Zhou L. S- Editor: Qi Y. L- Editor: A E- Editor: Liu XM
