Notes on Abelian Class field theory

S. Subramanian

1. Let K be a number field which for us would be a finite Galois extension of Q, the field of rational numbers (in particular, Q itself is a number field). The problem that is of interest is to understand $\text{Gal}(\overline{K}/K)^{ab}$ which is the abelianisation of $\text{Gal}(\overline{K}/K)$, the Galois group of K, where \overline{K} denotes an algebraic closure of K. We let \mathcal{O}_K denote the ring of integers of K, and \mathbb{Z} the ring of integers of Q.

Let M be a finitely generated \mathcal{O}_K submodule of K. Since $M \subset K$, it is clear that $M \otimes_{\mathcal{O}_K} K = K$, so that rank of M as an \mathcal{O}_K module is one. Let M^* denote the dual \mathcal{O}-module $M^* = \text{Hom}_{\mathcal{O}_K}(M, \mathcal{O}_K)$. Then M^* is also a rank one \mathcal{O}_K-module, so that $M^* \otimes_{\mathcal{O}_K} K = K$. Since M^* is finitely generated as an \mathcal{O}_K-module let m_1, \ldots, m_r be generates for M^*. The isomorphism $M^* \otimes_{\mathcal{O}_K} K \rightarrow K$ enables us to regard $m_i \otimes 1$ as elements of K, so we see that M^* is also a finitely generated \mathcal{O}_K submodule of K. It is now clear that $M \otimes_{\mathcal{O}_K} M^* = \mathcal{O}_K$ and further $M \otimes_{\mathcal{O}_K} M^* = MM^*$ where on the right hand side, the multiplication is in K, regarding M and M^* as submodules of K. Let $\mathcal{C}(K)$ denote the group of such finitely generated \mathcal{O}_K submodules of K. It is clear that $\mathcal{C}(K)$ is an abelian group.

Let p_1, p_2, q_1, q_2 be prime elements of \mathcal{O}_K (we emphasise: prime elements,
not prime ideals) such that \(p_1 p_2 = q_1 q_2 \) and the \(p_i, q_i \) are all distinct. Consider the \(\mathcal{O}_K \)-module \(M \) generated by \(\frac{1}{p_1}, \frac{1}{q_1} \), in \(K \). Then \(M \otimes_{\mathcal{O}_K} \mathcal{O}_K[\frac{1}{p_2}, \frac{1}{q_2}] \) is isomorphic to \(\mathcal{O}_K[\frac{1}{p_2}, \frac{1}{q_2}] \) as an \(\mathcal{O}_K[\frac{1}{p_2}, \frac{1}{q_2}] \) module, but \(M \) is not isomorphic to \(\mathcal{O}_K \) as an \(\mathcal{O}_K \)-module. This is a simple example of the fact that \(\mathcal{O}_K \) is a UFD if and only if \(\mathcal{C}_\ell(K) = 1 \). Since \(K/Q \) is a finite Galois extension, all but finitely many primes in \(\mathbb{Z} \) remain unramified in \(\mathcal{O}_K \). Let \(\{p_1, \cdots, p_m\} \) be the set of primes in \(\mathbb{Z} \) outside which \(\text{Spec} \mathcal{O}_K \to \text{Spec} \mathbb{Z} \) is unramified. Let \(S \) be the inverse image in \(\mathcal{O}_K \) of the set \(\{p_1, \cdots, p_m\} \). We observe first that for \(M \in \mathcal{C}_\ell(K) \) we have an inclusion

\[
\mathcal{O}_K \subset M
\]

such that \(M/\mathcal{O}_K \) is a torsion \(\mathcal{O}_K \)-module. Also, we have a strictly decreasing sequence

\[
M \supset M^2 \supset M^3 \supset \cdots \supset \mathcal{O}_K
\]

and hence it follows that \(M^n = \mathcal{O}_K \) for some positive integer \(n \), so that every element of \(\mathcal{C}_\ell(K) \) is of finite order.

We need the following lemma:

Lemma (1.1): Let \(X \) be an affine one-dimensional scheme (like \(\text{Spec} \mathbb{Z} \) or \(\text{Spec} \mathcal{O}_K \)) and \(\pi : Y \to X \) a finite Galois etale morphism. Suppose every line bundle on \(X \) is trivial. Then every line bundle on \(Y \) is trivial.

Proof of Lemma (1.1): Let \(L \) be a line bundle on \(Y \), possibly non trivial. We consider the vector bundle \(\pi_*L \) on \(X \). Let rank \(\pi_*L = r = \text{degree of } \pi \). Since \(X \) is affine and one dimensional, we obtain an exact sequence

\[
\mathcal{O} \to \mathcal{O}_X^{\oplus (r-1)} \to \pi_*L \to M \to 0
\]
where M is a line bundle on X (equal to $\det \pi_* L$). By hypothesis, M is trivial, and on an affine scheme, extensions split, so $\pi_* L$ is trivial. This implies that L is trivial. Q.E.D.

Let $\mathcal{O}_{K, S}$ denote the localisation of \mathcal{O}_K obtained by inverting all the elements of S, and $\mathbb{Z}_{(p_1, \ldots, p_m)}$ the localisation of \mathbb{Z} obtained by inverting p_1, \ldots, p_m. Then the morphism $\text{Spec} \mathcal{O}_{K, S} \to \text{Spec} \mathbb{Z}_{(p_1, \ldots, p_m)}$ is etale, and hence by Lemma 1 above every line bundle on $\text{Spec} \mathcal{O}_{K, S}$ is trivial. This forces:

Lemma (1.2): Any $M \in \mathcal{C}_\ell(K)$ satisfies $M \subset \mathcal{O}_{K, S}$.

In particular:

(Lemma 1.3): $\mathcal{C}_\ell(K)$ is finite.

2. Let K be a number field as before, and L/K a finite, Galois extension (not necessarily abelian), with Galois group G and let G^{ab} be the abelianisation of G, so that we have an exact sequence

$$1 \to [G, G] \to G \to G^{ab} \to 1.$$

We have

Proposition (2.1): Let $M \in \mathcal{C}_\ell(L)$ such that M is not the pullback of an element of $\mathcal{C}_\ell(K)$. Then

$$\sigma_1^* \sigma_2^* M = \sigma_2^* \sigma_1^* M$$

$\forall \sigma_1, \sigma_2 \in G$ such that $\sigma_1 \sigma_2 \neq \sigma_2 \sigma_1$.
Proof. Since σ_1, σ_2 do not commute in G, the orbit of M under $< \sigma_1, \sigma_2 >$ is a non-abelian subgroup of $\mathcal{C}\ell(L)$ which is abelian (here $< \sigma_1, \sigma_2 >$ denotes the group generated by σ_1, σ_2). It follows that the commutator $[G, G]$ acts trivially on $\mathcal{C}\ell(L)$. Q.E.D.

Proposition (2.2): Any element $M \in \mathcal{C}\ell(L)$ fixed by G^{ab}, descends to an element of $\mathcal{C}\ell(K)$.

Proof: Follows from the above proposition and Galois descent. Q.E.D.

Theorem (2.3): Let K be a number field, and let $M \in \mathcal{C}\ell(K)$, $M \neq \mathcal{O}_K$. Let $M^n = \mathcal{O}$, where n is the order of M. Then there is a finite cyclic \mathbb{Z}/n extension L/K such that M becomes trivial in $\mathcal{C}\ell(L)$.

Proof: Let \mathcal{O}_K be the ring of integers of K and consider the ring

$$R = \mathcal{O}_K \oplus M \oplus M^2 \oplus \cdots \oplus M^{n-1}$$

R is an \mathcal{O}_K-algebra, and defines an integral extension of \mathcal{O}_K, whose quotient field does the job. Q.E.D.

Theorem (2.4): Let K be a number field such that $\mathcal{C}\ell(K)$ is nontrivial. Then there exists a finite abelian Galois extension L/K such that every $M \in \mathcal{C}\ell(K)$ becomes the trivial element of $\mathcal{C}\ell(L)$.

Proof: By Theorem (2.3) above, we can do it for every element of $\mathcal{C}\ell(K)$, and since $\mathcal{C}\ell(K)$ is finite, we obtain a finite extension where this happens. Q.E.D.
Theorem (2.5): Let K be a number field such that $\mathcal{C}\ell(K)$ is nontrivial. Then there is a finite, Galois, abelian extension L/K whose Galois group is $\mathcal{C}\ell(K)$ such that every $M \in \mathcal{C}\ell(K)$ becomes trivial in $\mathcal{C}\ell(L)$.

Proof: Follows from previous steps. Q.E.D.

3. We now consider a number field K such that $\mathcal{C}\ell(K) = 1$. As remarked before, it is easy to see that in this case the ring of integers \mathcal{O}_K is a UFD and hence a principal ideal domain. The typical case is \mathbb{Z} in \mathbb{Q} and the arguments in the general case are similar.

Let L/\mathbb{Q} be a finite, Galois, abelian extension of \mathbb{Q} with Galois group G. Since G is a finite abelian group, by the Chinese Remainder Theorem, $G = \mathbb{Z}/p_1^{a_1} \otimes \cdots \otimes \mathbb{Z}/p_n^{a_n}$ where p_1, \ldots, p_n are rational primes. By going modulo a subgroup of G (every subgroup of G is normal since G is abelian) we may assume that the Galois group of L/K is \mathbb{Z}/p^a. Unlike in the coprime case, when we used the Chinese Remainder Theorem, and could have assumed the base field was \mathbb{Q} without loss of generality, the group \mathbb{Z}/p^a is a non split extension of \mathbb{Z}/p factors. We first consider the case when L/K is a Galois extension with Galois group \mathbb{Z}/p, and as before, we consider the case $K = \mathbb{Q}$ (the general case in similar). Let \mathcal{O}_L be the ring of integers of L and let q be a rational prime in \mathbb{Z}. These are two cases to consider: $p \neq q, p = q$.

Case (i) $q \neq p$.
Claim: In this case, $\text{Spec} \mathcal{O}_L \to \text{Spec} \mathbb{Z}$ is etale at q. For, we consider a prime $q_1 \in \mathcal{O}_L$ such that q_1^2 divides q in \mathcal{O}_L. We consider the completion L_{q_1} of L at q_1 and the completion Q_q of Q at q. We thus obtain an extension of local fields L_{q_1}/Q_q, again with Galois group \mathbb{Z}/p. However, the residue field extension \mathcal{O}_L/q_1 over \mathbb{Z}/q is an extension of the finite field \mathbb{Z}/q and hence its Galois group is cyclic (generated by the Frobenius at q). This cyclic group has to be a quotient of \mathbb{Z}/p and hence has to be isomorphic to \mathbb{Z}/p. This shows that q remains unramified.

Case (ii) the case $q = p$. We recall that L/Q is a Galois extension with Galois group \mathbb{Z}/p and by Case (i) treated above, \mathcal{O}_L is unramified outside p. By Lemma (1.2) above, it follows that $\mathcal{C}_L(L) = 1$.

From the above arguments, it follows that $\pm 1 \in \mathbb{Z}$ are the only points ramified in the extension (possibly except for p) and hence the field extension is obtained by adjoining roots of unity.

Further, since every time the class group remains trivial (in the case of a \mathbb{Z}/p^a extension), we can repeat the argument. We thus obtain

Theorem (3.1): Let K be a number field with $\mathcal{C}_L(K) = 1$. Then any abelian extension of K is obtained by adjoining roots of unity.

Remark: The exception occurs in the case of $\mathbb{Z}/2$ extension of Q, where $Q(\sqrt{p})$ is an abelian $\mathbb{Z}/2$ extension not obtained by adjoining a root of unity, where p is a rational prime. This can be seen by looking at the arguments in Cases (i) and (ii) above. These fields have trivial class group by Lemma (1.2) above.
Address: School of Mathematics, Tata Institute of Fundamental Research, Mumbai 400005, India

Email: subramnn@math.tifr.res.in