INTRODUCTION

Many children are admitted to hospital due to a temporary reduction of their health status, for example acute infections, orthopaedic conditions and acute surgery. To protect the sick child from separation, many hospitals offer accommodation for parents at the ward to enable them to be with their sick child around the clock. Being together with one’s family is not only beneficial for the child’s welfare as it reduces the stressful aspects of being admitted to hospital (Coyne, Hallström, & Söderbäck, 2016; Feeg et al., 2016), but has also been reported to improve parents’ sleep and mood (Angelhoff, Edéll-Gustafsson, Johnsson, Karlsson, & Mörelius, 2015). However, worries about the sick child, uncertainty and a feeling of powerlessness are stressors that affect the parents’ ability to understand information, make the right decisions regarding the child’s care and provide care for the child (Edéll-Gustafsson, Angelhoff, Johnsson, Karlsson, & Mörelius, 2015; Stremler, Dhukai, Wong, & Parshuram, 2011).

Stressors increase the level of cortisol. Emotional draining stressors activate the hypothalamic–pituitary–adrenal (HPA) axis, which regulates cortisol release (McEwen, 2008). Saliva cortisol is an established biomarker of the stress response and reflects the biologically active fraction of cortisol. Normally, awakening in the morning causes a phasic activation of the HPA axis with a pronounced increase (38%–75%) in the cortisol levels between the morning and postawakening cortisol levels were lower than those of the reference population.

Conclusion: The hospital stay with a sick child affects parents’ cortisol levels. Parental stress needs more attention to find interventions to prevent the risk of stress-related complications that subsequently can affect the care of the child.

KEYWORDS
child, family nursing, hospitalized, paediatric nursing, parent, stress
awakening cortisol level and the postawakening cortisol level 25 min later. This effect is known as the cortisol awakening response (CAR). The HPA axis stress response is designed to help the individual to cope with stressors (Herman et al., 2016). However, a chronic activation of the HPA axis damages the cardiovascular system. Over time, this may result in stress-related disorders such as stroke and heart attack and reduce the capability of handling stress-related demands (Lupien, McEwen, Gunnar, & Heim, 2009; Slavich, 2016). Moreover, the HPA reactivity is also associated with the limbic system, which is central for mood and stress regulation (Elder, Wetherell, Barclay, & Ellis, 2014; McEwen, Eiland, Hunter, & Miller, 2012). An increase in the cortisol levels has a damaging effect on the hippocampus (Elder et al., 2014), which affects memory and cognitive function, such as new learning, attention and executive functions (Lupien et al., 2009; Oken, Chamime, & Wakeland, 2015).

To evaluate the activity of the HPA axis, cortisol has been studied in parents previously in different contexts. A correlation was found in cortisol between preterm infants’ and their mothers when receiving family-centred care (Mörelius, Broström, Westrup, Sarman, & Örtenstrand, 2012) and when the parents practiced skin-to-skin contact (Mörelius, Örtenstrand, Theodorsson, & Frostell, 2015). Low CAR in mothers of children with cerebral palsy correlated with poor health-related quality of life (Bella, Garcia, & Spadari-Brattfisch, 2011) and parents of children with autism spectrum disorders have low morning cortisol levels associated with high levels of stress for a long period of time (Ruiz-Robledillo, De Andres-Garcia, Perez-Blasco, Gonzalez-Bono, & Moya-Albiol, 2014; Wong, Mailick, Greenberg, Hong, & Coe, 2014). However, no previous study has examined salivary cortisol in parents who remain around the clock at hospital with their sick child.

Higher stress and negative emotions during a day are associated with lower morning cortisol awakening levels and lower CAR on the following day. There is, thus, a smaller difference between the morning cortisol level and the postawakening cortisol level (Proulx, Klee, & Oken, 2017; Wong et al., 2014). Having a sick child in need of medical care affects the parents’ mood (Angelhoff, Edéll-Gustafsson, & Mörelius, 2015) and mothers have reported feeling less in control during accommodation at the paediatric ward (Angelhoff et al., 2018). Therefore, our hypothesis was that parents of sick children are exposed to stressors that lead to lower morning cortisol levels and lower CARs in the hospital than those that occur at home after discharge and that they are lower than the levels in a reference population.

2 | AIMS

The aim was to study the cortisol response (morning awakening, postawakening and CAR) in parents staying with their sick child in paediatric wards and to compare the parents’ cortisol levels at the paediatric ward and at home 4 weeks after discharge. A further aim was to compare the parents’ cortisol levels with those of a reference population.

3 | DESIGN

This study had a descriptive and prospective comparative design. It is part of a larger project studying sleep, mood and stress in parents staying overnight at hospital with their sick child (Angelhoff et al., 2018).

4 | METHODS

4.1 | Participants and procedure

A sample of parents accommodated with their child in six paediatric wards at four hospitals in south-eastern Sweden participated. Inclusion criteria were parents able to read and speak Swedish, staying overnight at their child’s bedside at a paediatric ward, regardless of the child’s age and diagnosis. Data were collected between September 2013–October 2015 from the same parents twice: after being accommodated at least one night in the paediatric ward and at home 4 weeks after discharge. Based on the morning awakening cortisol levels, a sample size consisting of 31 parents reaches a power >80%, effect size Cohen’s d 0.25, p < 0.05.

As CAR on workdays differs from that on weekend days (Kunz-Ebrecht, Kirschbaum, Marmot, & Steptoe, 2004), the nursing staff recruited all parents on Tuesday afternoons with intermissions in June–August and December, to avoid possible CAR variation during weekends, public holidays and vacations. After giving their informed consent, the parents were asked to complete a questionnaire with demographic data and were given oral and written instructions on how to take their own saliva samples directly on waking on Wednesday morning (the morning awakening cortisol) and 25 min later (the postawakening cortisol). The procedure was repeated 4 weeks later at home. To collect the saliva samples, Salimetrics oral polymer swabs and tubes were used. The parents were instructed to report the actual date and time of sampling and not to eat, drink, smoke or brush their teeth until after the sampling, as it may lowering the pH in the saliva and increase bacteria growth (Hansen, Garde, & Persson, 2008; Schwartz, Granger, Susman, Gunnar, & Laird, 1998). The saliva samples collected at home were returned to the first author in prepaid envelopes. On arrival, the saliva samples were centrifuged and stored at −80°C until analysis. A commercial enzyme immunoassay method was used to analyse the saliva cortisol (Salivary Cortisol Enzyme Immunoassay Kit, Salimetrics LLC, PA, USA). The inter-assay coefficient of variation was 10% for 2 nmol/L and 6% for 30 nmol/L.

The morning awakening cortisol, postawakening cortisol, CAR and a cortisol index were considered measures of the cortisol response. The cortisol index, calculated as the CAR divided by the morning awakening cortisol, was used to adjust for inter-individual differences. By creating the cortisol index, it was not necessary to exclude potential outliers related to individual biological differences. A change greater than 10% between the morning awakening and postawakening cortisol levels was considered as a difference in the CAR. Reference population mean values were
based on data from four combined studies, including a total of 509 healthy adults with a mean age of 37.3 years (SD 13.6; Wust et al., 2000).

4.2 | Statistical analysis

The statistical software program SPSS version 24 was used for data analysis. p-Values < 0.05 were considered to be statistically significant. The independent t test compares means between two unrelated groups on the same continuous, dependent variable and was used to compare morning awakening cortisol and postawakening cortisol between the parents and the reference population. As data from the study were non-parametric, Wilcoxon signed-rank test was used for pairwise comparisons between the parents in the paediatric ward and after discharge at home. A Mann–Whitney U test was used to study possible differences in the morning awakening cortisol, the postawakening cortisol and the CAR between mothers and fathers, between parents of a child with a previously diagnosed chronic condition and parents of a child without such a diagnosis and between parents who stayed for more than one night and parents for whom the sampling occasion was their first night. Moreover, a stepwise regression method using ANOVA was used. The morning awakening cortisol, the postawakening cortisol and the CAR were set as the dependent variable in three separate models to study the effect of the independent variables including age, child’s age and the child’s diagnosis, on the parents’ morning awakening cortisol, postawakening cortisol and CAR in the paediatric ward.

4.3 | Ethics

The study was approved by the Regional Committee for Medical Research (DNR 2011/1631) and performed in accordance with the Declaration of Helsinki (World Medical Association, 2013).

5 | RESULTS

5.1 | Participants

Thirty-six parents participated in the study; five parents were excluded since two or more saliva samples were missing. The results consist of measurements from 31 parents (average age 39 years, SD 8.0). Demographic data are presented in Table 1. The children (average age 7.6 years, SD 5.3, range: 0–16 years) were divided into four diagnosis groups: oncology (N = 4); surgery/orthopaedic (N = 12); respiratory infections (N = 8); and other conditions (N = 7). Eleven of the participating parents had a child with a previously diagnosed chronic condition, which could be minor or major health problems: four of these children had oncological diagnoses, five children had been admitted due to surgical health conditions and two children had been admitted for other conditions (such as unspecified infection or abdominal pain).

5.2 | Parents’ cortisol response

Of the 124 collected saliva samples, 122 samples (98%) were included in the analysis. Two postawakening cortisol samples taken at the hospital were excluded due to an insufficient amount of saliva; however, the morning awakening cortisol sample from these parents was included in the analysis. Salivary cortisol levels are presented in Table 2. The parents had significantly lower (p = 0.01) morning awakening cortisol levels in the paediatric ward than at home (Figure 1, Table 2). In the paediatric ward, the cortisol levels had a mean increase of 71% between the morning awakening cortisol and the postawakening cortisol. At home, the cortisol levels had a mean increase of 56%. The difference was not statistically significant. In the paediatric ward, 23 parents had an increase in CAR greater than 10%, while CAR decreased greater than 10% from baseline for five parents. At home, 18 parents had an increase in

Table 1: Demographic characteristics (N = 31)

Marital status	N	(%)
Married/cohabitant	27	(87.1)
Single	3	(9.7)
Living apart	1	(3.2)
Highest education level		
Compulsory/upper secondary school	11	(35.5)
University	20	(64.5)
Been to the hospital with the child before		
Never/once	11	(35.5)
2–10 times	13	(41.9)
>10 times	7	(22.6)
The child’s diagnosis		
Oncology	4	(12.9)
Treatment	3	(9.7)
Complication after treatment	1	(3.2)
Surgery/orthopaedic	12	(38.7)
Foot/knee	4	(12.9)
Back/spine	5	(16.1)
Jaw/spine	3	(9.7)
Respiratory infections	8	(25.8)
Respiratory syncytical virus (RSV)	3	(9.7)
Pneumonia	3	(9.7)
Trouble breathing	2	(6.4)
Other conditions	7	(22.6)
Unspecified infections/fever	3	(9.7)
Diabetes type I--new onset	1	(3.2)
Seizures	1	(3.2)
Concussion	1	(3.2)
Abdominal pain	1	(3.2)
CAR greater than 10% and CAR decreased by greater than 10% from baseline for eight parents. Of the parents with decreasing CAR, four parents had a decreasing CAR both at the paediatric ward and at home. There were no statistically significant differences in morning awakening, postawakening or CAR between mothers and fathers, between parents of a child with a previously diagnosed chronic condition and parents with previously healthy children, or between parents who had been accommodated for more than one night and parents staying their first night. The parents’ age, child’s age or the child’s diagnosis did not have any effect on the cortisol levels (morning awakening, postawakening or CAR). The reference value mean for morning awakening cortisol is 15.1 nmol/L (SD 6.3) for morning awakening cortisol and 23.0 (SD 9.1) for postawakening cortisol in adults (Wust et al., 2000). The parents’ morning and postawakening cortisol levels both in the paediatric ward and at home were significantly lower (p < 0.05) than those of the reference population, which suggests that the parents experience stress even when the child is healthy and has been discharged.

At home, the parents in this study had returned to their daily lives and may have been struggling to cope with parental stress in combination with work stress. This could explain the increase in their morning awakening cortisol compared with their awakening cortisol levels at the paediatric ward. Hibel, Mercado, and Trumbell (2012) have shown that parental stress alone is not sufficient to physiologically arouse mothers. High self-rated parental stress, in combination with stress from another life domain, for example work, increases the morning awakening cortisol levels in mothers of healthy children on workdays above the level of non-workdays (Hibel et al., 2012). This needs to be further investigated, since high levels of cortisol during a prolonged period may have negative consequences for, for example, cognitive functions (McEwen & Sapolsky, 1995).

Cortisol awakening response was not lower in the hospital, which is incompatible with our hypothesis. This result shows that the parents were able to respond with a healthy increase in the postawakening cortisol response. In other words, the parents were not exhausted or worn out while accompanying their sick children at the family-centred paediatric wards.

The strength of the study presented here is that paired statistics were used to compare parents’ cortisol levels at the hospital with those after discharge. The sampling procedure was consistent
with the expert consensus guidelines for assessment of saliva cortisol response (Stalder et al., 2016). Moreover, the study gives a first overview of the HPA axis activity in parents accommodated with their sick child in family-centred paediatric wards and can be used as a foundation for future research.

7 | LIMITATIONS

Our results should be interpreted in the light of several limitations. Five parents at the paediatric ward and eight parents at home had a negative CAR, with higher morning awakening cortisol than postawakening cortisol. It is possible that the timing of sampling was inaccurate. The parents were instructed to take the saliva sample immediately on awakening. However, 5-min delay is enough to negatively affect the analysis of CAR (Smyth, Clow, Thorn, Hucklebridge, & Evans, 2013; Smyth, Thorn, Hucklebridge, Clow, & Evans, 2016) and such a delay may have occurred if the parents were occupied caring for their child or if they set the alarm clock to allow a snooze. Moreover, the study design could have been strengthened by asking the participants to use a self-rating stress scale in conjunction with the cortisol sampling.

8 | CONCLUSION

Parents of sick children are exposed to stressors, which leads to lower morning awakening cortisol levels in the hospital compared with at home after discharge. The levels are also lower than those of a reference population. After discharge, the morning awakening cortisol levels remained lower than those of the reference population, which indicates that the parents were exposed to stressors also at home. Since this is the first study, more research is necessary to obtain deeper knowledge of how and why the hospital stay affects the parents’ cortisol levels. Parents’ stress when the child is sick need to be more acknowledged because their constant support is crucial for the child and moreover to decrease the risk of stress-related consequences in parents of sick children.

ACKNOWLEDGEMENT

The Medical Research Council of South East Sweden (FORSS-159681) and Region Östergötland, Sweden supported this study.

CONFLICTS OF INTEREST

The authors have no conflicts of interest to declare.

ORCID

Charlotte Angelhoff https://orcid.org/0000-0002-0174-8630
Evalotte Mörelius https://orcid.org/0000-0002-3256-5407

REFERENCES

Angelhoff, C., Edéll-Gustafsson, U., & Mörelius, E. (2015). Sleep of parents living with a child receiving hospital-based home care. Nursing Research, 64(5), 372–380. https://doi.org/10.1097/NNR.0000000000000108
Angelhoff, C., Edéll-Gustafsson, U., & Mörelius, E. (2018). Sleep quality and mood in mothers and fathers accommodated in the family-centred paediatric ward. Journal of Clinical Nursing, 27(3–4), e544–e550. https://doi.org/10.1111/jocn.14092
Bella, G. P., Garcia, M. C., & Spadari-Bratfisch, R. C. (2011). Salivary cortisol, stress and health in primary caregivers (mothers) of children with cerebral palsy. Psychoneuroendocrinology, 36(6), 834–842. https://doi.org/10.1016/j.psyneuen.2010.11.005
Corsano, P., Majorano, M., Vignola, V., Guidotti, L., & Izi, G. (2015). The waiting room as a relational space: Young patients and their families’ experience in a day hospital. Child: Care Health and Development, 41, 1066–1073.
Coyne, I., Hallström, I., & Söderbäck, M. (2016). Reframing the focus from a family-centred to a child-centred care approach for children’s healthcare. Journal of Child Health Care, 20, 494–502. https://doi.org/10.1177/1743711316642744
Edéll-Gustafsson, U., Angelhoff, C., Johnsson, E., Karlsson, J., & Mörelius, E. (2015). Hindering and buffering factors for parental sleep in neonatal care. A phenomenographic study. Journal of Clinical Nursing, 24(5–6), 717–727. https://doi.org/10.1111/jocn.12654
Elder, G. J., Wetherell, M. A., Barclay, N. L., & Ellis, J. G. (2014). The cortisol awakening response – Applications and implications for sleep medicine. Sleep Medicine Reviews, 18, 215–224. https://doi.org/10.1016/j.smrv.2013.05.001
Feeg, V. D., Paraszczuk, A. M., Çavuşoğlu, H., Shields, L., Pars, H., & Al Mamun, A. (2016). How is family centered care perceived by healthcare providers from different countries? An international comparison study. Journal of Pediatric Nursing, 31, 267–276. https://doi.org/10.1016/j.jpeds.2015.11.007
Gartland, N., O’Connor, D. B., Lawton, R., & Bristow, M. (2014). Exploring day-to-day dynamics of daily stressor appraisals, physical symptoms and the cortisol awakening response. Psychoneuroendocrinology, 50, 130–138. https://doi.org/10.1016/j.psyneuen.2014.08.006
Hansen, A. M., Garde, A. H., & Persson, R. (2008). Sources of biological and methodological variation in salivary cortisol and their impact on measurement among healthy adults: A review. Scandinavian Journal of Clinical and Laboratory Investigation, 68, 448–458. https://doi.org/10.1080/0365510701819127
Herman, J. P., Mckveen, J. M., Ghosal, S., Kopp, B., Wulsin, A., Makinson, R., ... Myers, B. (2016). Regulation of the hypothalamic-pituitary-adrenocortical stress response. Comprehensive Physiology, 6, 603–621.
Hibel, L. C., Mercado, E., & Trumbell, J. M. (2012). Parenting stressors and morning cortisol in a sample of working mothers. Journal of Family Nursing, 18(4), 516–528. https://doi.org/10.1177/1074840912452202
Kunz-Ebrecht, S. R., Kirschbaum, C., Marmot, M., & Steptoe, A. (2004). Differences in cortisol awakening response on work days and weekends in women and men from the Whitehall II cohort. Psychoneuroendocrinology, 29(4), 516–528. https://doi.org/10.1016/j.psyneuen.2003.06.013
Lupien, S. J., McEwen, B. S., Gunnar, M. R., & Heim, C. (2009). Effects of stress throughout the lifespan on the brain, behaviour and cognition. Nature Reviews Neuroscience, 10, 434–445. https://doi.org/10.1038/nn0239
McEwen, B. S. (2008). Central effects of stress hormones in health and disease: Understanding the protective and damaging effects of stress and stress mediators. European Journal of Pharmacology, 583, 174–185. https://doi.org/10.1016/j.ejphar.2007.11.071
McEwen, B. S., Eiland, L., Hunter, R. G., & Miller, M. M. (2012). Stress and anxiety: Structural plasticity and epigenetic regulation as a
The consequence of stress. *Neuropharmacology*, 62, 3–12. https://doi.org/10.1016/j.neuropharm.2011.07.014

McEwen, B. S., & Sapolsky, R. M. (1995). Stress and cognitive function. *Current Opinion in Neurobiology*, 5(2), 205–216. https://doi.org/10.1016/0959-4388(95)80028-X

Mörelius, E., Broström, E. B., Westrup, B., Sarman, I., & Örtenstrand, A. (2012). The Stockholm neonatal family-centered care study: Effects on salivary cortisol in infants and their mothers. *Early Hum Dev*, 88(7), 575–581. https://doi.org/10.1016/j.earlhumdev.2011.12.033

Mörelius, E., Örtenstrand, A., Theodorsson, E., & Frostell, A. (2015). A randomised trial of continuous skin-to-skin contact after preterm birth and the effects on salivary cortisol, parental stress, depression and breastfeeding. *Early Hum Dev*, 91(1), 63–70. https://doi.org/10.1016/j.earlhumdev.2014.12.005

Oken, B. S., Chamine, I., & Wakeland, W. (2015). A systems approach to stress, stressors and resilience in humans. *Behavioural Brain Research*, 282, 144–154. https://doi.org/10.1016/j.bbr.2014.12.047

Proulx, J., Klee, D., & Oken, B. S. (2017). Do psychosocial predictors affect the following days’ cortisol awakening response? Expanding the temporal frame with which to explore morning cortisol. *Stress*, 20(4), 398–403. https://doi.org/10.1080/10253890.2017.1346076

Ruiz-Robledillo, N., De Andres-Garcia, S., Perez-Blasco, J., Gonzalez-Bono, E., & Moya-Albiol, L. (2014). Highly resilient coping entails better perceived health, high social support and low morning cortisol levels in parents of children with autism spectrum disorder. *Research in Developmental Disabilities*, 35(3), 686–695. https://doi.org/10.1016/j.ridd.2013.12.007

Schwartz, E. B., Granger, D. A., Susman, E. J., Gunnar, M. R., & Laird, B. (1998). Assessing salivary cortisol in studies of child development. *Child Development*, 69, 1503–1513. https://doi.org/10.1111/j.1467-8624.1998.tb06173.x

Slavich, G. M. (2016). Life stress and health: A review of conceptual issues and recent findings. *Teaching of Psychology*, 43, 346–355.

Smyth, N., Clow, A., Thorn, L., Hucklebridge, F., & Evans, P. (2013). Delays of 5–15 min between awakening and the start of saliva sampling matter in assessment of the cortisol awakening response. *Psychoneuroendocrinology*, 38(9), 1476–1483. https://doi.org/10.1016/j.psyneuen.2012.12.013

Smyth, N., Thorn, L., Hucklebridge, F., Clow, A., & Evans, P. (2016). Assessment of the cortisol awakening response: Real-time analysis and curvilinear effects of sample timing inaccuracy. *Psychoneuroendocrinology*, 74, 380–386. https://doi.org/10.1016/j.psyneuen.2016.09.026

Stalder, T., Kirschbaum, C., Kudielka, B. M., Adam, E. K., Pruessner, J. C., Wust, S., & Clow, A. (2016). Assessment of the cortisol awakening response: Expert consensus guidelines. *Psychoneuroendocrinology*, 63, 414–432. https://doi.org/10.1016/j.psyneuen.2015.10.010

Stemler, R., Dhukai, Z., Wong, L., & Parshuram, C. (2011). Factors influencing sleep for parents of critically ill hospitalised children: A qualitative analysis. *Intensive and Critical Care Nursing*, 27(1), 37–45. https://doi.org/10.1016/j.icccn.2010.11.001

Trimm, D. R., & Sanford, J. T. (2010). The process of family waiting during surgery. *Journal of Family Nursing*, 16, 435–461. https://doi.org/10.1177/1074840710385691

Wong, J. D., Mallick, M. R., Greenberg, J. S., Hong, J., & Coe, C. L. (2014). Daily work stress and awakening cortisol in mothers of individuals with autism spectrum disorders or fragile X syndrome. *Family Relations*, 63(1), 135–147. https://doi.org/10.1111/fare.12055

World Medical Association (2013). Declaration of Helsinki: Ethical principles for medical research involving human subjects. *JAMA*, 310(20), 2191–2194. https://doi.org/10.1001/jama.2013.281053

Wust, S., Wolf, J., Heilhammer, D. H., Federenko, I., Schomer, N., & Kirschbaum, C. (2000). The cortisol awakening response – Normal values and confounds. *Noise and Health*, 2(7), 79–88.

How to cite this article: Angelhoff C, Edéll-Gustafsson U, Mörelius E. The cortisol response in parents staying with a sick child at hospital. *Nursing Open*. 2019;6:620–625. https://doi.org/10.1002/nop2.245