NECESSARY THERMODYNAMICS FACTORS TO OBTAIN SIMPLE SOLID SOLUTIONS IN HIGH-ENTROPY ALLOYS FROM THE Al-Ti-Co-Ni-Fe SYSTEM

In this paper findings regarding the design and synthesis of High-Entropy Alloys based on mixing enthalpy, mixing entropy, \(\delta\) parameter, \(\Omega\) parameter and valence electron concentration are presented. Four alloys were synthesised with different predicted crystalline structures. Results of the microstructure and crystal structure studies are presented. It was shown that predicted structures as well as complex intermetallic phases exist in the material. The validity of valence electron concentration as well as additional parameters such as mixing enthalpy, mixing entropy and others necessary to obtain only the solid solution in High-Entropy Alloys were examined.

Keywords: High-Entropy Alloys, Entropy, Enthalpy, VEC, solid solution

1. Introduction

Recently, one of the most popular and evolving group of materials in materials science are high-entropy alloys (HEA). According to the definition, these alloys contain at least five principal metallic elements (5-35 at. pct. each) [1-4]. This group is characterized by high hardness, wear resistance, high temperature resistance, and oxidation resistance [5-12]. High entropy alloys are expected to form solid solutions with simple crystallographic structures such as FCC and/or BCC [13-15]. According to the Guo et al. [14], the crystallographic structure and the stability of the solid solutions may be successfully predicted by the use of valance electron concentration (VEC). The total number of d-electrons in the valance band of each constituent element (\(VEC_i\)) and its molar ratio (\(c_i\)) are used for VEC calculation for the multi-component alloys (Eq. 1).

\[
VEC = \sum c_i VEC_i
\]

(1)

It was assumed by Guo et al. [14] that VEC lower than or equal to 6.87 results the BCC crystal structure, whereas values greater than or equal to 8 results the FCC crystal structure. When the VEC parameter is between 6.87 and 8, dual phase structure exists.

The objective of this work is to compare the calculated VEC parameters of selected alloys with the theoretical assumptions and experimental results. Aluminum, titanium, cobalt, nickel, and iron were chosen as an alloying elements in the experiments.

The chemical composition of each alloy was designed to obtain different crystallographic structures. The VEC value used for calculations and crystal structure of each element is presented in Table 1. Aluminum and titanium were chosen to stabilize the BCC phase (VEC < 6.87) while cobalt, nickel and iron were used to stabilize the FCC phase (VEC \(\geq 8\)).

Element	Al	Ti	Co	Ni	Fe
VECi	3	4	9	10	8

| Crystallographic structure of element | FCC | HCP | HCP | FCC | BCC |

2. Experimental

The investigated alloys from the Al-Ti-Co-Ni-Fe system were synthesized by an arc melting of pure elements in the Ti-gettered argon atmosphere on a water-cooled copper mould (AM Edmund Bühler). In order to improve the homogeneity of the alloy, the obtained samples were re-melted at least four times. The chemical composition of each alloy was designed to obtain different crystal structures – BCC, BCC+FCC, and FCC (Table 2), predicted on the basis of the calculated VEC value. For further investigations, middle sections of ingots were chosen for the preparation of specimens. Obtained samples were ex-
expected to represent the most homogenous chemical composition. Samples were polished and etched with HCl+HNO₃+CH₃OH (100:3:100).

The microstructures of each alloy were investigated by the use of scanning electron microscopy (SEM, FEI Versa 3D). The crystalline structure of investigated samples was identified by XRD measurements (XRD Panalytical Empyrean using Co Kα1 radiation (λ = 1.789 Å).

In addition, the microstructure of alloy 4 consists of dendrites, yet they are much smaller than in other alloys (Fig. 1D), and small interdendritic space. There were also indexed two FCC phases (Fig. 1D’).

4. Discussion

Results presented in this paper show that neither of investigated alloys have the crystal structure predicted on the basis of VEC. Taking VEC into account, alloys 1, 3 and 4 should form single-phase structures, and alloy 2 should form dual-phase structure. Apart from BCC and FCC phases present in the material, additional phases such as Laves-type, BCT have been identified. This kind of alloys are susceptible to cracking, due to the occurrence of Laves-type phase in alloy 1 and eutectic in alloy 2. In the case of alloy 4 the existence of FCC2 phase is the result of element substitution in the material. In the discussed system constituent elements tend to segregate, which could result in forming similar phases (solid solutions) but formed from different elements – it is possible because of probably substitutions of elements. A good example of this is alloy 4, where titanium trend to segregate to dendrites boundary and interdendritic spaces (Fig. 2).

Table 2: Chemical composition atomic pct., calculated ΔH_{mix}, ΔS_{mix} and crystal lattice of synthesized alloys

	Al	Ti	Co	Ni	Fe	ΔH_{mix} [kJ/mol·¹]	VEC	Predicted crystal lattice	ΔS_{mix} [J/mol·K]
1	30	30	10	10	20	−30.2	5.60	BCC	12.5
2	15	20	20	25	20	−25.3	7.15	FCC+BCC	13.3
3	10	10	25	35	20	−16.9	8.05	FCC	12.4
4	5	5	35	35	20	−9.5	8.6	FCC	11.3

3. Results

As was already mentioned in Part 2 that each alloy was designed to obtain a specific crystal lattice structure. According to the calculated values of the VEC parameter, alloys 1, 3 and 4 should form a solid solution of only one type of structure, BCC or FCC. On the other hand, alloy 2 is expected to have both FCC and BCC structures. The negative value of ΔH_{mix} means that components were thoroughly mixed together in the formed solid solutions. If ΔH_{mix} would be positive it will be impossible to create a solution (no mixing in solid state). Both parameters, VEC and ΔS_{mix} (except of alloy 4), fulfil the formal definition of HEA, thus the investigated alloys were examined as High-Entropy Alloys.

The microstructure and the phase composition of all investigated alloys are presented in the Fig. 1. The microstructure of alloy 1 (Fig. 1A) is characteristic for microstructures of as-cast samples. The dendrites (light) and interdendritic areas (dark) form elongated areas. In comparison to other synthesised samples, alloy 1 also has imperfections (such as cracks) visible in Fig. 1A. The XRD measurement performed on alloy 1 (Fig. 1A’) reveals three different BCC phases and AlFeTi-like Laves phase.

The microstructure of alloy 2 (Fig. 1B) is characterized by the occurrence of dendrites (dark) surrounded by the interdendritic areas (light) and eutectic. This kind of formation of dendrites and interdendritic areas also named “flower-like” is not usual in conventional (two or three elements) alloys. In the ID (interdendritic region), irregular eutectic was noticed. The eutectic forms the discontinuous formations in ID. The analysis of the XRD pattern (Fig. 1B’) enables the identification of three types of phases: 2 BCC-type, 1 FCC-type, and the BCT-type.

The microstructure of alloy 3 (Fig. 1C) consists of large dendrites (light), and the interdendritic space (dark). Two FCC phases were identified in this alloy.
Fig. 1. Microstructure and XRD patterns of the investigated alloys: (A) and (A’) – alloy 1, (B) and (B’) alloy 2, (C) and (C’) alloy 3, (D) and (D’) – alloy 4. The Dendritic areas are signed as ‘D’, Interdendritic areas as ‘ID’ and Eutectic as ‘E’.
than 12.4 J/mol·K but its ΔH_{mix} value is less negative than for the remaining samples, additionally Al_{5}Ti_{6}Co_{3}3Ni_{3}Fe_{20} is the only alloy that fulfills the ΔH_{mix} condition.

Other parameters that should be considered during designing phases are: δ (eq. 4) and Ω (eq. 5) parameters:

\[\delta = 100 \sum_{i=1}^{n} c_i \left(1 - r_i / \bar{r}\right)^2 \]
(4)

where: \(\bar{r} = \frac{1}{n} \sum_{i=1}^{n} c_i r_i \), \(c_i \) – molar ratio, \(r_i \) – atomic radius of each element.

\[\Omega = \frac{T_m \Delta S_{\text{mix}}}{\Delta H_{\text{mix}}} \]
(5)

where \(T_m = \sum_{i=1}^{n} c_i (T_m)_i \), \((T_m)_i\) – melting point of each element.

The parameter which interconnects the relation between the mixing entropy and mixing enthalpy is the Ω parameter. For multi-component alloys, the Ω value should be greater than 1.1 [16]. Lower values will indicate that ΔS_{mix} does not compensate for the ΔH_{mix}. Among all investigated alloys, only alloy 3 and 4 have Ω value greater than 1.1.

TABLE 3

	δ	Ω
Alloy 1	7.3	0.6
Alloy 2	7.4	0.8
Alloy 3	6.3	1.2
Alloy 4	4.8	2.0

Based on the data analysis presented in Table 3, it is concluded that the solid solutions could be formed only when ΔH_{mix}, δ and Ω conditions (proper values of each parameter) are fulfilled. What is interesting is that even if the ΔS_{mix} condition in not realized it is possible to form a solid solution (alloy 4). An example of this could be alloy 3, where the ΔH_{mix} value is more negative than the boundary value for the multi-component alloy.
alloys. However, it should be emphasized that in general the VEC parameter enables the prediction of the type of expected crystallographic structure, but it does not allow to design solid state solutions. It should be noticed that even if ΔH_{mix}, δ and Ω conditions are fulfilled it is possible that in the material in some systems could exist microsegregation [18].

5. Conclusions

The criterions that are most commonly used in designing and the synthesis of high-entropy alloys are valence electron concentration (VEC) and high entropy of mixing (ΔS_{mix}). However, as presented in this paper, these two parameters are not sufficient enough to ensure the obtaining of solid solutions. In many circumstances the high value of mixing entropy is not able to compensate for the negative value of mixing enthalpy. The parameter which connects ΔS_{mix} and ΔH_{mix} is Ω – values higher than 1.1 guarantee the most optimal conditions for FCC and/or BCC phase stabilization. Another parameter directly connected with mixing enthalpy is δ, and its value should be lower than 6.6 pct. It seems that one of the most important factors which should be considered in the synthesis of HEAs is ΔH_{mix} with values falling between -15 kJ/mol$^{-1}$ and 5 kJ/mol$^{-1}$. In some systems could exist microsegregation even if all parameters for solid solution are satisfy.

Acknowledgements

Research supported by Ministry of Science and Higher Education Republic of Poland (project No. 15.11.110.505)

REFERENCES

[1] J.W. Yeh, Y.L. Chen, S.J. Lin, S. K. Chen, Mater. Sci. Forum 560, 1-9 (2007).
[2] Y. Zhang, X. Yang, P.K. Liaw, Jom 64, 830-838 (2012).
[3] Y. Zhang, Y. Zhou, X. Hui, M. Wang, G. Chen, Sci. China Ser. G Physics, Mech. Astron. 51, 427-437 (2008).
[4] M.J. Yao, K.G. Pradep, C.C. Tasan, D. Raabe, Scr. Mater. 72-73, 5-8 (2014).
[5] Y.Y. Chen, T. Duval, U.D. Hung, J.W. Yeh, H.C. Shih, Corros. Sci. 47, 2257-2279 (2005).
[6] C. Hsu, J.W. Yeh, S. Chen, T. Shun, Metall. Mater. Trans. A 35A, 1465-1469 (2004).
[7] Y.F. Kao, T.J. Chen, S.K. Chen, J.W. Yeh, J. Alloys Compd. 488, 57-64 (2009).
[8] A.V. Kuznetsov, D.G. Shaysultanov, N.D. Stepanov, G.A. Salishchev, O.N. Senkov, Mater. Sci. Eng. A 533, 107-118 (2012).
[9] C.P. Lee, Y.Y. Chen, C.Y. Hsu, J.W. Yeh, H.C. Shih, J. Electrochem. Soc. 154, C424-C430 (2007).
[10] C. Li, J.C. Li, M. Zhao, Q. Jiang, J. Alloys Compd. 475, 752-757 (2009).
[11] X.F. Wang, Y. Zhang, Y. Qiao, G.L. Chen, Intermetallics 15, 357-362 (2007).
[12] M.A. Hemphill, T. Yuan, G.Y. Wang, J.W. Yeh, C.W. Tsai, A. Chuang, P.K. Liaw, Acta Mater. 60, 5723-5734 (2012).
[13] D. Miracle, J. Miller, O. Senkov, C. Woodward, M. Uchic, J. Tiley, Entropy 16, 494-525 (2014).
[14] S. Guo, C. Ng, J. Lu, C. T. Liu, J. Appl. Phys. 109, 103505-1 (2011).
[15] Y.L. Chou, J.W. Yeh, H.C. Shih, Corros. Sci. 52, 2571-2581 (2010).
[16] X. Yang, Y. Zhang, Mater. Chem. Phys. 132, 233-238 (2012).
[17] S. Guo, Q. Hu, C. Ng, C.T. Liu, Intermetallics 41, 96-103 (2013).
[18] K. Górecki, P. Bala, G. Cios, T. Koziel, M. Stepień, K. Wieczerzak, Metall. Mater. Trans. A 47A, 3257-3262 (2016).