A Methodological Investigation of Healthy Tissue, Hepatocellular Carcinoma and other Lesions with Dynamic 68Ga-FAPI-04 PET/CT Imaging

Barbara Katharina Geist
Medical University of Vienna Department of Radiology and Nuclear Medicine: Medizinische Universität Wien Universitätsklinik für Radiologie und Nuklearmedizin

Haiqun Xing
PUMCH: Peking Union Medical College Hospital

Jingnan Wang
PUMCH: Peking Union Medical College Hospital

Ximin Shi
PUMCH: Peking Union Medical College Hospital

Haitao Zhao
PUMCH: Peking Union Medical College Hospital

Marcus Hacker
Medical University of Vienna Department of Radiology and Nuclear Medicine: Medizinische Universität Wien Universitätsklinik für Radiologie und Nuklearmedizin

Xinting Sang
PUMCH: Peking Union Medical College Hospital

Li Huo (✉️ huoli@pumch.cn)
Peking Union Medical College Hospital https://orcid.org/0000-0003-1216-083X

Xiang Li
Medical University of Vienna Department of Radiology and Nuclear Medicine: Medizinische Universität Wien Universitätsklinik für Radiologie und Nuklearmedizin

Short communication

Keywords: Fibroblast activation protein (FAPI), Positron emission tomography, Hepatocellular carcinoma, Dual input function, Kinetic model

DOI: https://doi.org/10.21203/rs.3.rs-92507/v1

License: ☑️ This work is licensed under a Creative Commons Attribution 4.0 International License.
Read Full License
Abstract

Background: The study aimed to establish a 68Ga-FAPI-04 kinetic model in hepatic lesions, to determine the potential role of kinetic parameters in the differentiation of hepatocellular carcinoma (HCC) from non-HCC lesions.

Material and Methods: Time activity curves (TACs) were extracted from seven HCC lesions and five non-HCC lesions obtained from 68Ga-FAPI-04 dynamic positron emission tomography (PET) scans of eight patients. Three kinetic models were applied to the TACs, using image derived hepatic artery and/or portal vein as input functions. For input functions and the lesions, the according voxel with the maximum standardized uptake value (SUVmax) was taken, for the healthy tissue mean SUV values. The optimum model was chosen after applying the Schwartz information criteria to the TACs, differences in model parameters between HCC, non-HCC lesions, and healthy tissue were evaluated with the ANOVA test.

Results: A reversible two-tissue compartment model using both the arterial as well as venous input function was most preferred and showed significant differences in the kinetic parameters V_{ND}, V_T and BP_{ND} between HCC, non-HCC lesions and healthy regions ($p < 0.01$).

Conclusion: Several Model parameters derived from a two-tissue compartment kinetic model with two image-derived input function from vein and aorta and using SUVmax allow a differentiation between HCC and non-HCC lesions, obtained from dynamically performed PET scans using FAPI.

Background

Hepatocellular carcinoma (HCC), the most common primary liver cancer, is a highly heterogeneous cancer(1). The forms of heterogeneity are seen when comparing tumors between patients (interpatient heterogeneity), between different tumor nodules within the same patient (inter tumoral heterogeneity) and between different regions of the same nodule (intratumoral heterogeneity)(2). Although imaging modalities, including ultrasonography, CT, MRI are valuable in hepatic lesion characterization, they still have limitations in distinguishing the functional variables or the differentiation of malignant lesions (1). There were shreds of evidence that limited sensitivity using FDG PET in detecting hepatocellular carcinoma with the false-negative rate approaches 40–50%(3). Thus, the limited diagnostic efficacy of current imaging strategies remains a major challenge in the accurate evaluation of hepatic lesions.

Fibroblast activation protein (FAP) is over-expressed in cancer-associated fibroblasts (CAFs) in several tumor entities, especially in breast, colon and pancreatic carcinomas(4). Recently, its quinoline-based derivatives have been designed into radiopharmaceutical agents(5, 6). FAPI PET demonstrated promising preclinical and clinical results. A few first-in-human studies have found superior tumor-imaging potential of FAPI over FDG PET in different tumor entities(5, 7–9).

Several investigators suggested dynamic PET with kinetic modeling might have potential value in the differential diagnosis other than static quantitative parameters like SUV(10–12). Since the liver has blood...
supply from both the hepatic artery and portal vein, an accurate model is crucial for the following analysis. Few different kinetic models of 18F-FDG and 11C-acetate in the liver have been established. In our previous study, we compared several 18F-FDG dynamic models and introduced a simple two-tissue model using the portal vein solely to differentiate HCC from healthy liver tissues\(^{13}\) accurately.

To our knowledge, the significance of FAPI PET kinetics in the liver has not been reported yet. Since the metabolic process at the cellular level is different between FAPI (binding to FAP and internalization) and FDG (entering glycolysis and accumulation), our previous model\(^{13}\) might not be able to fit FAPI PET kinetics. The objective of this study, therefore, is to establish a kinetic model for 68Ga-FAPI-04 kinetics in hepatic lesions and to evaluate if the model parameters allow a differentiation between HCC and non-HCC lesions.

Materials And Methods

Patient characteristics

The study was approved by the Ethics Committee at Peking Union Medical College Hospital. All patients signed informed consent. Eight male patients with 12 available liver lesions (age range, 47-70 y) were recruited in this study. The pathology of these patients was confirmed by surgical resection or by needle biopsy. Among these patients, four patients had been histologically confirmed as hepatocellular carcinoma (HCC), two patients had intrahepatic cholangiocarcinoma, one patient had liver metastasis of gastric cardia adenocarcinoma and one had inflammatory granulomatous.

PET/CT scan

PET/CT scans were conducted on a PoleStar m660 PET/CT scanner (SinoUnion Healthcare, Beijing, China) at Peking Union Medical College Hospital (PUMCH)\(^{14}\) for all patients. CT transmission scans (120 kV, 260 effective mA) were performed first for attenuation correction and image fusion. Then, 174-259 MBq 68Ga-FAPI-04 was administered intravenously and the dynamic PET was performed over the liver region simultaneously. Each PET scan lasted 60 min. Dynamic PET images were reconstructed using a manufacturer (SinoUnion Healthcare, Beijing, China) provided stand-alone advanced research workstation with standard ordered subset expectation maximization (OSEM) algorithm with 2 iterations and 10 subsets. The 120-frame reconstruction protocol consisted of 60 frames of 5s, 10 frames of 30s, and 50 frames of 60s.

Image analysis

Delineation of volumes of interest were done on the Hermes Hybrid Viewer tool (Hermes Medical Solutions AB, Stockholm, Sweden). The volumes of interest (VOIs) were drawn manually over all visible lesions and healthy regions within an area far away from any lesion in the liver on the CT image of each
patient. For the image-derived input functions (IDIF), a VOI was drawn within the hepatic artery (here denoted as A) and one in the portal vein (V). Then VOIs were copied to the dynamic PET images. The corresponding concentration time-activity curves (TACs) were extracted. In case of healthy regions, the mean standardized uptake value (SUV) was taken from each region. In case of the lesions and the IDIFs, the voxel with the maximum SUV (SUVmax) was taken, since these values are least affected by partial volume and motion effects (19). Furthermore, the according volume sizes and the uptake of the last five minutes were exported. A representative PET/CT scan is shown in Figure 1.

Kinetic models

The kinetic behavior of tracers in the liver is usually described with a model using two input functions(15), since the liver tissue is supplied by both, an arterial and a venous blood input. All IDIFs were fitted with a tri-exponential function starting from the peak maximum and with a linear increase before the maximum. To find the optimum model, three models were applied to all TACs (Figure 2). One reversible two-tissue compartment model “model A” with one input function from the artery using, and second “model V” with one input function from the portal vein. The third “model AV” used both input functions from artery and vein according to the formulas:

\[
\frac{dC_1}{dt} = K_a A(t) + K_v V(t) - (k_2 + k_3) C_1(t) + k_4 C_2(t) \quad \text{Equ. 1}
\]

\[
\frac{dC_2}{dt} = k_3 C_1(t) - k_4 C_2(t) \quad \text{Equ. 2}
\]

with \(C_1(t) \) and \(C_2(t) \) as the hepatic compartment, \(A(t) \) as the artery IDIF and \(V(t) \) as the venous IDIF. Since \(A(t) \) and \(V(t) \) are both contributing to the fraction of blood volume by having a proportion of \(K_a/(K_a+K_v) \) and \(K_v/(K_a+K_v) \) to \(v_B \) (see equ, 3 below), each amount was assessed from their inflow rate constants for the measured compartment \(C_{\text{measured}}(t) \):

\[
C_{\text{measured}} = (1 - v_B)(C_1(t) + C_2(t)) + v_B \left(A(t) \frac{K_a}{(K_a+K_v)} + V(t) \frac{K_v}{(K_a+K_v)} \right) \quad \text{Equ. 3}
\]

with \(v_B \) as the fraction of the measured volume occupied by blood and \(K_a \) and \(K_v \) as the influx rate constant of the aorta and the vein, respectively.

With the rate constants as fit parameters, all model fits were performed according to the least-squares method and optimized with a Levenberg-Marquardt algorithm, implemented to a Java program. Errors of the fit parameters were estimated by calculating the covariance matrix. The residual sum of squares was
calculated for each TAC, as well as the average and standard deviation of all rate constants, furthermore the parameters $V_T = K_1/k_2 (1+k_3/k_4)$ and $V_{ND} = K_1/k_2$ were calculated, with K_1 as either K_a, K_v or (K_a+K_v) depending on the model. Since to our knowledge no initial parameters are available for FAPI model parameters, every TAC was first fitted with a one-tissue model to obtain values for K_1, k_2 and v_B. For the two-tissue models, these parameters were taken as initial values and a second fit was performed to obtain k_3 and k_4; note that the latter could become zero thus resulting in a one-tissue model for the according TAC.

Statistical analysis

In order to find the optimum model, the Schwartz Criterion (SC) (16) was applied on all models, the percentage of TACs in relation to all TACs showing a model as most preferred was calculated for each model. The ANOVA test was used to find differences between HCC, non-HCC and healthy regions, significant differences between two groups were estimated with the unpaired Student’s t-test. Due to the small sample size, a p-value of less than 0.01 was classified as significant.

Results

Lesion characteristics

Eight patients with 12 available liver lesions were recruited in this study. The 12 available lesions were separated according to histological results into a group of 7 HCC lesions (group HCC) and a group of 4 other lesions (2 ICC and 2 gastric metastases lesions). One lesion was an inflammation, having a TAC and uptake very similar to healthy tissue, it therefore was treated separately. Lesion characteristics are summarized in Table 1.
Table 1

Standardized uptake value (SUV) and volume size of all investigated lesions, including the preferred model for each lesion. For the healthy region, the average over all regions is presented for SUVmean, size and preferred model.

Group	Lesion	SUVmax	Size [cm³]	Preferred model (Schwartz Criterion)
HCC	HCC-1	2.8	6.4	Model AV
	HCC-2	4.9	1.7	Model AV
	HCC-3	6.6	2.2	Model AV
	HCC-4	14.8	20.3	Model AV
	HCC-5	6.8	0.9	Model AV
	HCC-6	8.1	1.7	Model V
	HCC-7	12.9	7.0	Model A
non-HCC	ICC-1	17.3	29.3	Model V
	ICC-2	14.8	60.7	Model A
	Metas-1	10.8	16.9	Model AV
	Metas-2	9.6	4.4	Model V
	Inflammation	1.3	4.8	Model AV
	healthy	SUVmean	40.7	Model AV
		0.8		

Model selection

For all TACs, model AV was preferred in 70 % of all cases, in detail in 58 % of all lesions, in 71 % of only HCC lesions and in 88 % of all healthy regions, see Figure 3. All relevant mean parameters derived from model AV are listed in Table 2 for all groups separately. With only one exception, k_3 and k_4 were zero in case of all healthy regions.
Table 2
Results for the relevant obtained model parameters of model AV for all lesions and healthy regions. The p-value for the ANOVA test for all four groups is also given, results < 0.01 are underlined. Values are presented as mean value plus-minus one standard deviation. Note BP_NP is not presented for healthy regions, since k₃ and k₄ were zero or almost zero.

Model Parameters	HCC lesions	Non-HCC lesions	Inflammation	Healthy	ANOVA test
K_a [min⁻¹]	0.5 ± 0.3	0.3 ± 0.3	0.0	0.5 ± 0.3	0.02
K_v [min⁻¹]	0.8 ± 0.7	0.4 ± 0.5	1.6	0.6 ± 0.7	0.23
k_2 [min⁻¹]	1.6 ± 0.7	0.6 ± 0.2	3.6	1.5 ± 0.6	0.01
k_3 [min⁻¹]	0.11 ± 0.03	0.21 ± 0.09	0.01	0.01 ± 0.01	0.12
k_4 [min⁻¹]	0.05 ± 0.04	0.04 ± 0.02	0.03	0.01 ± 0.01	0.33
K_i	0.10 ± 0.02	0.19 ± 0.09	0.08	0.01 ± 0.03	0.0002
V_T	3.7 ± 1.4	7.6 ± 1.5	4.7	0.06 ± 0.06	< 0.0001
V_{ND}	0.9 ± 0.4	1.2 ± 0.3	1.0	0.8 ± 0.2	< 0.0001
BP_{ND}	3.2 ± 1.3	5.6 ± 0.6	0.44		

Comparison between HCC and non-HCC

No significant differences were found in the SUV uptake according to the ANOVA test between all different groups HCC, non-HCC, inflammation and healthy (p = 0.06), nor between only HCC and non-HCC group (8.1 versus 13.1, p = 0.08), see Figure 4. However, comparing only the SUV uptake from all lesions together (HCC, non-HCC and inflammation) versus the healthy regions, a significant difference was found (9.2 versus 0.8, p = 0.0002). Regarding volume sizes, also no significant differences were found between HCC and non-HCC group (44 cm³ versus 65 cm³, p = 0.06).

Note that for all applied models, the differences in k₃ and k₄ were always significant between lesions and healthy regions, since k₃ and k₄ were equal or close to zero for all models and all healthy regions. For models A and V, there were no significant differences found between HCC and non-HCC lesions in case all rate constants and the macro-parameters V_T (p = 0.08 and p = 0.11, for model A and V, respectively) and V_{ND} (p = 0.73 and p = 0.57). In case of BP_{ND}, a significant difference was found only for model A: 2.9 for HCC and 6.4 for non-HCC, p = 0.0006.

With model AV, significant differences were found between all groups in case of the parameters V_T (p < 0.0001) and V_{ND} (p < 0.0001). Comparing all groups among each other without healthy regions (which
had k_3 and k_4 of almost or equal zero), a significant difference was also found in BP_{ND} ($p = 0.003$). Comparing only HCC versus non-HCC lesions, the differences were less significant for V_T (3.7 versus 7.6, $p = 0.002$), V_{ND} (0.9 versus 1.2, $p = 0.30$) and BP_{ND} (3.2 versus 5.6, $p = 0.01$).

Discussion

No reliable corrections for partial volume or motion effects were available, therefore the values in particular for K_a, K_v and k_2 may not be taken as real values with a biological meaning. Although these effects are minor in case of the aorta (17, 18), this is certainly not the case for smaller blood vessels like the portal vein. However, to reduce these effects, SUVmax was taken for all IDIFs (19), and also for all lesions due to their partially very small sizes.

Not surprisingly, the preferred model is a model taking venous and arterial input into account, since liver tissue in general is supplied by both (15). Using this model, significant differences could be found between the four investigated groups HCC, non-HCC, inflammation and healthy regions in case of all macro parameters, the binding potential BP_{ND}, the total distribution volume V_T and distribution volume of non-displaceable uptake V_{ND}. Excluding inflammation and healthy tissue from this analysis, differences were still significant for BP_{ND} and V_T, which was not observed for SUV uptake or lesion sizes, suggesting that there are kinetic differences in FAPI kinetic between HCC and non-HCC lesions.

Also not surprising, k_3 and k_4 were zero for almost all healthy regions, meaning that a reversible one-tissue model described healthy tissue best.

The inflammation lesion was treated separately, since its SUV uptake as well as its curve shape were very similar to healthy tissue having also similar model parameters. A wrong delineation aside from the real lesion due to motion effects can be excluded: a shifting of PET data due to motion effects would most probably affect the whole organ, thus similar curve shapes due to wrong delineations would have been observed also in other, even smaller lesions, which was not the case. Thus, if the delineation was correct, we conclude that FAPI tracer kinetics might be similar to healthy regions in case of inflammation.

A major limitation of this study certainly is the small cohort size. However, this was a first proof-of-concept study showing that IDIFs (with a simple compensation method) are sufficient to derive relevant model parameters from describing FAPI kinetics in liver lesions. Certainly, values like K_1 and k_2 cannot be taken as biological relevant due to a missing reliable motion and partial volume correction, however, the macro parameters V_{ND}, BP_{ND} and mainly V_T show significant differences between all groups. Further studies including a comparison to pathological results, will be conducted.

Conclusion

In the present study, we investigated kinetic models for FAPI PET in liver lesions, showing that the consideration of the maximum SUV values for artery and venous image derived input function are
suitable to at least distinguish between healthy regions, HCC lesions and non-HCC lesions in model derived macro parameters.

Declarations

Acknowledgements

Not applicable.

Authors' contributions

BG and HX performed the data collection and analysis, drafted the manuscript. JW helped draft the manuscript. XS participated in the data collection. HZ, MH and XS participated in the design of the study. LH designed the study and revised the manuscript. XL helped revise the manuscript. All authors read and approved the final manuscript.

Funding

This work was supported by the National Natural Science Foundation of China [Grant No. 81571713, 81671722]; and the CAMS Innovation Fund for Medical Sciences (CIFMS) [Grant No. 2016-I2M-4-003]; and the CAMS initiative for innovative medicine [Grant No. CAMS-2018-I2M-3-001].

Availability of data and materials

Please contact the corresponding author for data requests.

Ethics approval and consent to participate

All procedures performed in this study were in accordance with the ethical standards of the institution and with the principles of the 1964 Declaration of Helsinki and its later amendments. The study was approved by the Ethics Committee at Peking Union Medical College Hospital. Informed consent was obtained from all participants.

Consent for publication

Not applicable.

Competing interests
The authors declare no competing interests.

References

1. Craig AJ, von Felden J, Garcia-Lezana T, Sarcognato S, Villanueva A. Tumour evolution in hepatocellular carcinoma. *Nat Rev Gastroenterol Hepatol.*
2. Nault JC, Villanueva A. Intratumor molecular and phenotypic diversity in hepatocellular carcinoma. *Clin Cancer Res.* 2015;21:1786-1788.
3. Ho CL, Yu SC, Yeung DW. 11C-acetate PET imaging in hepatocellular carcinoma and other liver masses. *J Nucl Med.* 2003;44:213-221.
4. Siveke JT. Fibroblast-Activating Protein: Targeting the Roots of the Tumor Microenvironment. *J Nucl Med.* 2018;59:1412-1414.
5. Loktev A, Lindner T, Mier W, et al. A Tumor-Imaging Method Targeting Cancer-Associated Fibroblasts. *J Nucl Med.* 2018;59:1423-1429.
6. Lindner T, Loktev A, Altmann A, et al. Development of Quinoline-Based Theranostic Ligands for the Targeting of Fibroblast Activation Protein. *J Nucl Med.* 2018;59:1415-1422.
7. Giesel FL, Kratochwil C, Lindner T, et al. (68)Ga-FAPI PET/CT: Biodistribution and Preliminary Dosimetry Estimate of 2 DOTA-Containing FAP-Targeting Agents in Patients with Various Cancers. *J Nucl Med.* 2019;60:386-392.
8. Giesel FL, Heussel CP, Lindner T, et al. FAPI-PET/CT improves staging in a lung cancer patient with cerebral metastasis. *Eur J Nucl Med Mol Imaging.* 2019;46:1754-1755.
9. Kratochwil C, Flechsig P, Lindner T, et al. (68)Ga-FAPI PET/CT: Tracer Uptake in 28 Different Kinds of Cancer. *J Nucl Med.* 2019;60:801-805.
10. Park JW, Kim JH, Kim SK, et al. A prospective evaluation of 18F-FDG and 11C-acetate PET/CT for detection of primary and metastatic hepatocellular carcinoma. *J Nucl Med.* 2008;49:1912-1921.
11. Huo L, Guo J, Dang Y, et al. Kinetic analysis of dynamic (11)C-acetate PET/CT imaging as a potential method for differentiation of hepatocellular carcinoma and benign liver lesions. *Theranostics.* 2015;5:371-377.
12. Okazumi S, Isono K, Enomoto K, et al. Evaluation of liver tumors using fluorine-18-fluorodeoxyglucose PET: characterization of tumor and assessment of effect of treatment. *J Nucl Med.* 1992;33:333-339.
13. Geist BK, Wang J, Wang X, et al. Comparison of different kinetic models for dynamic 18F-FDG PET/CT imaging of hepatocellular carcinoma with various, also dual-blood input function. *Phys Med Biol.* 2020.
14. Huo L, Li N, Wu H, et al. Performance evaluation of a new high-sensitivity time-of-flight clinical PET/CT system. *EJNMMI Phys.* 2018;5:29.
15. Munk OL, Bass L, Roelsgaard K, Bender D, Hansen SB, Keiding S. Liver kinetics of glucose analogs measured in pigs by PET: importance of dual-input blood sampling. *J Nucl Med.* 2001;42:795-801.
16. Golla SSV, Adriaanse SM, Yaqub M, et al. Model selection criteria for dynamic brain PET studies. *EJNMMI Phys.* 2017;4:30.

17. Germano G, Chen BC, Huang SC, Gambhir SS, Hoffman EJ, Phelps ME. Use of the abdominal aorta for arterial input function determination in hepatic and renal PET studies. *J Nucl Med.* 1992;33:613-620.

18. Geist BK, Baltzer P, Fueger B, et al. Assessing the kidney function parameters glomerular filtration rate and effective renal plasma flow with dynamic FDG-PET/MRI in healthy subjects. *EJNMMI Res.* 2018;8:37.

19. Soret M, Bacharach SL and Bivat I. Partial-Volume Effect in PET Tumor Imaging. *JNM.* 2007;48(6):932-945.