Cyanide-bridged decanuclear cobalt-iron cage

Takuya Shiga, Tamaki Tetsuka, Kanae Sakai, Yoshihiro Sekine, Masayuki Nihei, Graham N. Newton, and Hiroki Oshio*

Graduate School of Pure and Applied Sciences, University of Tsukuba, Tennodai 1-1-1, Tsukuba, Ibaraki 305-8571, Japan

Molecular Cages, Electron-transfer-coupled spin transition, Magnetism, Switchable molecules, Cobalt, Iron.

Supporting Information Placeholder

ABSTRACT: A cyanide-bridged decanuclear \([\text{Co}_6\text{Fe}_4]\) cluster was synthesized by one-pot reaction, and the magnetic properties and electronic configuration were investigated. The complex displayed thermally-controlled electron-transfer-coupled spin transition (ETCST) behavior between \(\text{Co(II)}\)Low-Spin-NC-\(\text{Fe(II)}\)Low-Spin and \(\text{Co(II)}\)High-Spin-NC-\(\text{Fe(III)}\)Low-Spin states as confirmed by single crystal X-ray, magnetic and Mössbauer analyses.

Functional molecular materials have great promise as innovative chemical compounds for the development of future electronic devices and medical products. The controlled construction of highly organized molecular architectures is a necessity if species exhibiting desirable characteristics are to be reliably isolated. Synthetic techniques in supramolecular chemistry employ a variety of chemical bonds and molecular interactions, the organization of which depend on self-assembly. Various molecular architectures have been constructed using ligands with strictly defined coordination modes in conjunction with the flexible coordination environments of transition metal ions. Cage-like compounds, grid complexes, metal wires, rotaxanes, and catenanes are prime examples of self-assembled species, and show varied physical properties. Studies on cage compounds have focused on the templating and molecular interactions of guest molecules captured in the cavity, while grid complexes have attracted a great deal of attention as molecular units for nanoscale electric devices due to the controllability of their electronic states. Metal wires can exhibit interesting metal-metal bonds resulting from careful molecular design, and the dynamic behavior of rotaxanes and catenanes has been studied intensely with a view to their application in molecular machines.

The self-assembly of cage-like molecules has been thoroughly investigated by Fujita et al., who reported a \(\text{MizL}_{2.4}\) cage. Similar transition metal cage systems have been reported, but the vast majority were constructed from the combination of rigid, ‘pre-programmed’ organic ligands and diamagnetic metal ions, such as \(\text{Pd}^{2+}, \text{Pt}^{2+}, \text{Cd}^{2+}, \text{and Zn}^{2+}\).

We previously reported \([\text{Ni}_6\text{Fe}_4]\) and \([\text{Co}_{12}\] cage molecules, which were obtained by the self-assembly of chiral bidentate ligands with nickel or cobalt ions and hexacyano-

![Figure 1](image-url)

Figure 1. The molecular (a) and core (b) structures of 1 at 100 K. The encapsulated tetraethylammonium cation is highlighted in yellow. Hydrogen atoms, counter anions outside the cage, and solvent molecules have been omitted for clarity. Color code: C, gray; N, light blue; Co\(^{II}\)(HS), blue; Co\(^{III}\)(LS), green; Fe\(^{II}\)(LS), brown.

metalate units. The \([\text{Ni}_6\text{Fe}_4]\) complexes show ferromagnetic interactions between nickel(II) and low spin iron(III) ions due to the orthogonality of their magnetic orbitals, and constitute a rare example of magnetic cage molecules. It is important for the development of future functional cage mole-
cules to explore the physical properties and functional behavior accessible with such species.

In this work, we extended our study of cyanide-bridged cages to synthesize a [CoFe4] cage. Some cyanide bridged Co-Fe complexes are known to show electron-transfer-coupled spin transition (ETCST) phenomena, and such species are expected to have applications in future nanoscale switching technologies. For instance, a [CoFe3] square,[4] [CoFe2] macrocycles,[4b,c] and a [CoFe] one-dimensional chain[1d] have been shown to exhibit switchable magnetic properties when stimulated by temperature or light. In this paper, the synthesis, structure, and magnetic properties of a cyanide-bridged [CoFe4] cage molecule are presented.

The cyanide-bridged decanuclear cage, (Et4N)4[Co(L)3][Fe(CN)6][BF4]17CH3OH·2H2O (1, [CoFe4]), was obtained by the reaction of 2-pyridine carboxaldehyde and R-(+)-phenylethyl amine with Co(BF4)3·6H2O and (Et4N)2[Fe(CN)6] (Figure 1). Single crystal X-ray analysis reveals that 1 crystallized in the orthorhombic space group P212121, and has a cage structure, constructed from six [Co(L)3] and four hexacyanoferrate units, within which one tetraethylammonium cation is encapsulated. The metal arrangement is adamantane-like in topology: very close to that of the reported [Ni6Fe3] cage molecules.[9] The cobalt ions have octahedral coordination geometries with four nitrogen donor atoms from two chiral bidentate ligands and two nitrogen donor atoms from two neighboring hexacyanoferrate units. All cobalt ions have Δ-type conformations, stabilized by π-π stacking interactions between the phenyl moieties of the ligands in neighboring molecules. Considering the bond lengths around the cobalt centers and their distortion from perfect octahedral geometry at 100 K, three cobalt ions (Co1, Co2, and Co4) are +2 and high spin (dν100K(CoII-L) = 2.14 Å), while the other three (Co3, Co5 and Co6) are +3 and low-spin (dν100K(CoIII-L) = 1.93 Å). Mössbauer data collected at 100 K suggest that all iron ions are +2 and low-spin (vide infra).

The combined analyses suggest that compound 1 has an [CoII(L)3]CoIII4FeIII6LS electronic state at 100 K. Structural analysis at 291 K shows significant differences. Five cobalt ions (Co-C05) are divalent and high-spin (dν291K(CoII-L) = 2.12 Å), while one (Co6) remains trivalent and low-spin (dν291K(CoIII-L) = 1.90 Å). X-ray structural analysis is of limited utility in differentiating between low spin Fe(II) and Fe(III) ions, but Mössbauer spectra at 300 K revealed their presence in a 1:2 ratio, indicating that two electron transfers lead to an electronic state of [CoII(L)3]CoIII4FeIII6LS at high temperature. The location of the Co(II) and Co(III) ions allow us to suggest the Fe(II) and Fe(III) positions based on charge repulsion considerations. Schematic representations of the metal ion positions are provided in Figure 2 (inset).

The magnetic susceptibility of a fresh sample of 1 was measured using a sealed quartz cell, and χmT versus T plots are shown in Figure 2. Spin transition was observed around 250 K. At 300 K, the χmT value of 12.42 emu mol−1 K is close to the expected value of 12.41 emu mol−1 K, estimated from the sum of the uncorrelated spins of five HS-CoII and two LS-FeIII ions (g = 2.21). Lowering the temperature caused the χmT value to decrease, initially gradually, then more abruptly at around 250 K, before reaching a plateau below 180 K with an almost constant χmT value of 6.83 emu mol−1 K, consistent with the value expected from three magnetically isolated HS-FeIII ions (6.83 emu mol−1 K, g = 2.20). Below 100 K, the χmT values decreased due to the orbital contribution of the Co(II) ions. The cooling and heating processes for the fresh sample were reversible to 300 K, and confirm the ETCST suggested by the structural data.

Figure 2. Plots of χmT versus T for 1 (fresh sample). Red and blue markers indicate the heating and cooling processes, respectively. Inset: schematic diagrams showing the spin state changes associated with the ETCST.

While over the relatively short time-scale of magnetic susceptibility measurements the phase transition was reversible, desolvation effects were apparent in the Mössbauer analyses. Measurements on a fresh sample of 1 conducted at 100 K revealed one doublet corresponding to LS-Fe(II) (ΔEQ = 0.0 mm s−1, ΔEQ = 0.16 mm s−1) consistent with the [CoII(L)3]CoIII4FeIII6LS assignment indicated by the susceptibility data (Figure 3). However, measurement at 300 K for one week caused irreversible transition to the high temperature phase. Solvent molecules in the crystal lattice can be removed by sample drying, and the formula of the dried
sample was revealed to be (Et₂N)₂[Co(L)₃][Fe(CN)₆]·(BF₄)·9H₂O (1') by elemental analysis. The temperature dependent magnetic susceptibility of 1' is shown in Figure S1. The χ_mT values increased from 1.8 to 300 K and no spin transition behavior was evident, with the [Co(H₃S)₂Co(H₄S)₄Fe(L)₃Fe(H₄S)₄] state stabilized across the full temperature range, a fact confirmed by Mössbauer spectra at 300 K and 100 K (Figure 3; for parameters see Table S1). Structural analysis of the fresh sample at 100 K indicates the existence of many hydrogen-bonding interactions between terminal cyanide groups of the cage and solvent molecules (MeOH and H₂O). Hydrogen-bonded interactions affect the electronic states of hexacyanoferrate units by exerting an electron withdrawing effect that stabilizes the iron ions in their electron-rich divalent state. Crystallographic data is provided in the Supporting Information.

In summary, an ETCST-active decanuclear cobalt-iron cluster was synthesized by the reaction of a chiral bidentate ligand with a cobalt source and potassium hexacyanoferrate. Temperature modulation induced magnetic and structural transitions resulting from electron transfer between neighboring metal ions. Such magnetically switchable chiral cage molecules will be investigated for their selective host-guest behavior and specific magneto-optical functionalities.

ASSOCIATED CONTENT

Supporting Information
X-ray crystallographic data in CIF format, and magnetic properties of dried sample 1'. This material is available free of charge via the Internet at http://pubs.acs.org. CCDC 982659 and 982660 contain the supplementary crystallographic data for 1 at 100 K and 291 K and can also be obtained free of charge from the Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif.

AUTHOR INFORMATION

Corresponding Author
* E-mail: oshio@chem.tsukuba.ac.jp

Author Contributions
The manuscript was compiled from contributions by all authors.

Notes
The authors declare no competing financial interests.

ACKNOWLEDGMENTS

We gratefully acknowledge a Grant-in-Aid for Scientific Research in Priority Area “Coordination Programming” (Area 2007) from MEXT, Japan and a Grant-in-Aid for Scientific Research (Grant 25248014) from the JSPS.

ABBREVIATIONS
HS, High-Spin state; LS, Low-Spin state.

REFERENCES

(1) Molecular-based functional materials: (a) Coskun, A.; Spruell, J. M.; Barin, G.; Dichtel, W. R.; Flood, A. H.; Botros, Y. Y.; Stoddart, J. F. Chem. Soc. Rev. 2012, 41, 4827–4895. (b) Yan, X.; Wang, F.; Zheng, B.; Huang, F. Chem. Soc. Rev. 2012, 41, 6042-6065.

(2) Lehn, J.-M. Supramolecular Chemistry, VCH, Weinheim, 1995.

(3) Cage-like compounds: (a) Fujita, M.; Tominaia, M.; Horii, A.; Therrien, B. Acc. Chem. Res. 2005, 38, 369–378. (b) Pluth M. D.; Raymond, K. N. Chem. Soc. Rev. 2007, 36, 161-171. (c) Dalgarino, S. J.; Power, N. P.; Atwood, J. L. Coord. Chem. Rev. 2008, 252, 853-841. (d) Tranchemontagne, D. J.; Ni, Z.; O’Keeffe, M.; Yaghi, O. M. Angew. Chem., Int. Ed. 2008, 47, 5356-5357. (e) Chakrabarty, R.; Mukherjee, P. S.; Stang, P. J. Chem. Rev. 2011, 111, 6810-6918. (f) Ronson, T. K.; Zarra, S.; Black, P. S.; Nitschke, J. R. Chem. Commun. 2013, 49, 2476-2490.

(4) Grid compounds: (a) Ruben, M.; Rojo, J.; Romero-Salgueiro, F. J.; Uppadine, L. H.; Lehn, J.-M. Angew. Chem., Int. Ed. 2004, 43, 3644-3662. (b) Thompson, L. K.; Waldmann, O.; Xu, Z. Coord. Chem. Rev. 2005, 249, 2677-2690. (c) Dave, L. N.; Shuvakov, K. V.; Thompson, L. K. Chem. Soc. Rev. 2009, 38, 2334-2359.

(5) Metal-wires: (a) Bera, J. K.; Dunbar, K. R. Angew. Chem., Int. Ed. 2002, 41, 4453-4457 and references therein. (b) Kuo, J.-H.; Tsao, T.-B.; Lee, G.-H.; Lee, H.-W.; Yeh, C.-Y.; Peng, S.-M. Eur. J. Inorg. Chem. 2011, 2011, 2025-2029. (c) Barrios, L. A.; Aguila, D.; Roubau, O.; Gamez, P.; Ribas-Argiñó, J.; Teat, S. J.; Aromi, G. Chem. Eur. J. 2009, 15, 11235-11243.

(6) Rotaxanes: Nicholas, V.; Loeb, S. J. Chem. Soc. Rev. 2012, 41, 5866-5906 and references therein.

(7) Catenanes: Chambron, J.-C.; Sauvage, J.-P. New J. Chem. 2013, 37, 49-57 and references therein.

(8) Functional cages: (a) Yoshizawa, M.; Klosterman, J. J.; Fujita, M. Angew. Chem., Int. Ed. 2009, 48, 3418-3430 and references therein. (b) Han, M.; Michel, R.; He, B.; Chen, Y.-S.; Stalke, D.; John M.; Clever, G. H. Angew. Chem., Int. Ed. 2013, 52, 1390-1392.

(9) Nano-sized electronic devices: (a) Park, S.; Wang, G.; Cho, B.; Kim, Y.; Song, S.; Ji, Y.; Yoon, M.-H.; Lee, T. Nat. Nanotechnol. 2012, 7, 438-442. (b) Hong, S.; Grinolds, M. S.; Maletinsky, P.; Walsworth, R. L.; Lukin, M. D.; Yacoby, A. Nano Lett. 2012, 12, 3920-3924. (c) Loh, O. Y.; Espinosa, H. D. Nat. Nanotechnol. 2012, 7, 283-295.

(10) Metal-wires in molecular electronics: (a) Chae, D.-H.; Berry, J. F.; Jung, S.; Cotton, F. A.; Murillo, C. A.; Yao, Z. Nano Lett. 2006, 6, 165-168. (b) Shih, K.-N.; Huang, M.-J.; Liu, H.-C.; Fu, M.-D.; Kuo, C.-K.; Huang, G.-C.; Lee, G.-H.; Chen, C.-h.; Peng, S.-M. Chem. Commun. 2010, 46, 1338-1340. (c) Chen, I.-W.P.; Fu, M.-D.; Tseng, W.-H.; Yu, J.-Y.; Wu, S.-H.; Ku, C.-J.; Chen, C.-h.; Peng, S.-M. Angew. Chem., Int. Ed. 2006, 45, 5844-5848.

(11) Champin, B.; Mobiian, P.; Sauvage, J.-P. Chem. Soc. Rev. 2007, 36, 359-366.

(12) Harris, K.; Sun, Q.-F.; Sato, S.; Fujita, M. J. Am. Chem. Soc. 2013, 135, 12497-12499.

(13) Cyanide-bridge cage molecules: (a) Shiga, T.; Newton, G. N.; Mathieson, J. S.; Tetsuka, T.; Nihei, M.; Cronin, L.; Oshio, H. Dalton Trans. 2010, 39, 4730-4733. (b) Shiga, T.; Iijima, F.; Tetsuka, T.; Newton, G. N.; Oshio, H. Macrochem. Symp. 2012, 317-318, 286-292.

(14) Co-Fe ETCST: (a) Nihei, M.; Sekine, Y.; Suganami, N.; Nakazawa, K.; Nakao, A.; Nakao, H.; Murakami, Y.; Oshio, H. J. Am. Chem. Soc. 2011, 133, 3592-3600. (b) Matsunami, K.; Oshio, E.; Nishikawa, H.; Shiga, T.; Yamamura, Y.; Saito, K.; Oshio, H. Chem. Eur. J. 2011, 17, 9612-9618. (c) Newton, G. N.; Matsunami, K.; Wei, R.-J.; Iijima, F.; Shiga, T.; Nishikawa, H.; Oshio, H. Angew. Chem., Int. Ed. 2014, 53, 2941-2944. (d) Hoshino, N.; Iijima, F.; Newton, G. N.; Yoshida, N.; Shiga, T.; Nojiri, H.; Nakao, A.; Kumai, R.; Murakami, Y.; Oshio, H. Nat. Chem. 2012, 4, 921-926. (e) Li, D.; Clerc, R.; Roubau, O.; Harțe, E.; Mathonière, C.; Bris, R.L.; Holmes, S.M. J. Am. Chem. Soc. 2008, 130, 252-258.

(15) Synthesis of 1: To a mixture solution of 2-pyridine carbalde- hyde (71.1 μL, 0.75 mmol) and R-phenyl ethyl amine (95.7 μL, 0.75 mmol) in methanol (3.0 mL) a solution of Co(BF₄)₂·6H₂O (85.2 mg, 0.25 mmol) and [Et₄N]₂[Fe(CN)₆] (301 mg, 0.50 mmol) in methanol (4.0 mL) was added. The stirred mixture turned from dark red to dark green before it was filtered and left to crystallize by slow evaporation. Prismatic dark green crystals, suitable for X-ray structural
A decanuclear cobalt-iron cage complex, \((\text{Et}_4\text{N})_2[\text{Co}(\text{L}^5)_6][\text{Fe}(\text{CN})_6]_4(\text{BF}_4)\), was obtained, and its magnetic properties and electronic configurations were investigated. Single crystal X-ray and Mössbauer analyses showed the complex to display thermally-controlled electron-transfer-coupled spin transition (ETCST) behavior between \(\text{Co}(\text{III})\text{Low-Spin-NC-Fe}(\text{II})\text{Low-Spin}\) and \(\text{Co}(\text{II})\text{High-Spin-NC-Fe}(\text{III})\text{Low-Spin}\) states.