Some \((p, q)\)-Integral Inequalities of Hermite–Hadamard Inequalities for \((p, q)\)-Differentiable Convex Functions

Waehta Luangboon, Kamsing Nonlaopon, Jessada Tariboon, Sotiris K. Ntouyas and Hüseyin Budak

1. Introduction

In mathematics, the study of calculus without limits is called quantum calculus (briefly called \(q\)-calculus), and was first studied by Euler (1707–1783), introducing the number in the \(q\)-infinite series defined by Newton (also called Newton’s infinite series). In the early 20th century, Jackson [1] relied on the concept of Euler to define the \(q\)-integral and \(q\)-derivative (well-known \(q\)-Jackson integral and \(q\)-Jackson derivative) over the interval \((0, \infty)\). In \(q\)-calculus, we obtain the \(q\)-analogues of mathematical objects that can be recaptured by taking \(q \to 1\). In recent years, \(q\)-calculus has had numerous applications in various disciplines of physics and mathematics; see [2–10] and the references cited therein for more details.

In 2013, Tariboon and Ntouyas [11] presented the \(q_a\)-integral and \(q_a\)-derivative over finite intervals and also investigated the existence and uniqueness results of initial value problems for the first- and second-order impulsive \(q_a\)-difference equations. In 2020, Bermudo et al. [12] introduced the \(q^b\)-integral and \(q^b\)-derivative over finite intervals and also proved some of their basic properties. Recently, the topic of \(q\)-calculus has been applied in various integral inequalities, for example, Simpson- and Newton-type inequalities [13], Hanh inequalities [14], Ostrowski inequalities [15], Fejér-type inequalities [16], Hermite–Hadamard-like inequalities [17], Hermite–Hadamard inequalities [18], and the references cited therein. In particular, Hermite–Hadamard inequalities have also been studied by using \(q\)-calculus for convex functions by many researchers; see [12,19–25] and the references cited therein for more details.
The q-calculus generalization is called post-quantum calculus (briefly called (p,q)-calculus). In (p,q)-calculus, two independent parameters, p and q-number, are included. It is commonly known that q-calculus cannot be recaptured by taking $q \to q/p$ in q-calculus, but it can be recaptured by taking $p = 1$ in (p,q)-calculus. Then, the classical formula can be gained by taking $q \to 1$. The concept of (p,q)-integral and (p,q)-derivative over the interval $(0,\infty)$ was first studied by Chakrabarti and Jagannathan [26] in 1991. Later on, the concept of the $(p,q)_a$-integral and $(p,q)_a$-derivative over finite intervals was proposed by Tunç and Gök [27,28] in 2016. Recently, the concept of the $(p,q)^b_r$-integral and $(p,q)^b_r$-derivative over finite intervals was proposed by Vivas-Cortez et al. [29] in 2021. In the past few years, the topic of (p,q)-calculus has become interesting in various integral inequalities for many researchers, and the results of (p,q)-calculus can be found in [30–45], and the references cited therein.

In 2021, Li et al. [46] presented a new generalization of q^b-integral inequalities related to Hermite–Hadamard inequalities for q^b-differentiable convex functions. Inspired by the above-mentioned literature, we propose establishing a new generalization of $(p,q)^b$-integral inequalities related to Hermite–Hadamard inequalities for $(p,q)^b$-differentiable convex functions to extend and generalize the results given in the above-mentioned literature. Moreover, we study some special cases of various integral inequalities. Finally, we give two examples to investigate the main results.

The rest of the paper is organized as follows: In Section 2, we give some definitions and notations of (p,q)-calculus. In Section 3, we present the $(p,q)^b$-calculus. In Section 4, we show two examples to investigate our main results. In Section 5, we summarize our results.

2. Preliminaries

In this section, we provide some definitions and notations of (p,q)-calculus used in our work. Throughout this paper, we assume that $0 < q < p \leq 1$ are constants and $[a,b] \subseteq \mathbb{R}$ is an interval with $a < b$. The (p,q)-number of λ is given by

$$[\lambda]_{p,q} = \frac{p^\lambda - q^\lambda}{p - q} = p^{\lambda-1} + p^{\lambda-2}q + \cdots + pq^{\lambda-2} + q^{\lambda-1}, \quad \lambda \in \mathbb{N}. \quad (1)$$

If $p = 1$ in (1), then (1) is reduced as follows:

$$[\lambda]_q = \frac{1 - q^\lambda}{1 - q} = 1 + q + q^2 + \cdots + q^{\lambda-1}, \quad \lambda \in \mathbb{N},$$

which is called the q-analogue or q-number of λ; see [47] for more details.

Definition 1 ([27,28]). Let $\Psi : [a,b] \to \mathbb{R}$ be a continuous function. Then, the $(p,q)_a$-derivative of Ψ at x is given by

$$aD_{p,q}\Psi(x) = \begin{cases}
\Psi(px + (1-p)a) - \Psi(qx + (1-q)a), & \text{if } x \neq a; \\
\lim_{x \to a} aD_{p,q}\Psi(x), & \text{if } x = a.
\end{cases} \quad (2)$$

The function Ψ is called $(p,q)_a$-differentiable function on $[a,b]$ if $aD_{p,q}\Psi(x)$ exists for all $x \in [a, (b-a)/p + a]$.

Note that if $p = 1$ and $aD_{1,q}\Psi(x) = aD_q\Psi(x)$, then (2) is reduced as follows:

$$aD_q\Psi(x) = \begin{cases}
\Psi(x) - \Psi(qx + (1-q)a), & \text{if } x \neq a; \\
\lim_{x \to a} aD_q\Psi(x), & \text{if } x = a.
\end{cases} \quad (3)$$
which is the well-known q_{a}-derivative of Ψ on $[a, b]$; see [48,49] for more details. Moreover, if $a = 0$ and $d_{q} \Psi(x) = D_{q} \Psi(x)$, then (3) is reduced as follows:

$$D_{q} \Psi(x) = \begin{cases} \frac{\Psi(x) - \Psi(qx)}{(1-q)x}, & \text{if } x \neq a; \\ \lim_{x \to 0} D_{q} \Psi(x), & \text{if } x = a, \end{cases}$$

which is the well-known q_{a}-derivative of Ψ on $[0, b]$; see [47] for more details.

Definition 2 ([29]). Let $\Psi : [a, b] \to \mathbb{R}$ be a continuous function. Then, the $(p, q)^{b}$-derivative of Ψ at x is given by

$$bD_{p,q} \Psi(x) = \begin{cases} \frac{\Psi(qx + (1-q)b) - \Psi(px + (1-p)b)}{(1-q)(b-x)}, & \text{if } x \neq b; \\ \lim_{x \to b} bD_{p,q} \Psi(x), & \text{if } x = b. \end{cases}$$

The function Ψ is called $(p, q)^{b}$-differentiable function on $[a, b]$ if $bD_{p,q} \Psi(x)$ exists for all $x \in [b - (b-a)/p, b]$.

Note that if $p = 1$ and $bD_{1,q} \Psi(x) = bD_{q} \Psi(x)$, then (4) is reduced as follows:

$$bD_{q} \Psi(x) = \begin{cases} \frac{\Psi(qx + (1-q)b) - \Psi(x)}{(1-q)(b-x)}, & \text{if } x \neq b; \\ \lim_{x \to b} bD_{q} \Psi(x), & \text{if } x = b, \end{cases}$$

which is the well-known q^{b}-derivative of Ψ on $[a, b]$; see [12,24] for more details.

Definition 3 ([27]). Let $\Psi : [a, b] \to \mathbb{R}$ be a continuous function. Then, the $(p, q)_{a}$-integral of Ψ at x is given by

$$\int_{a}^{b} \Psi(x) \, a_{p,q} x = (p-q)(b-a) \sum_{\lambda=0}^{\infty} \frac{q^{\lambda}}{p^{\lambda+1}} \Psi \left(\frac{q^{\lambda}}{p^{\lambda+1}} b + \left(1 - \frac{q^{\lambda}}{p^{\lambda+1}} \right) a \right).$$

The function Ψ is called $(p, q)_{a}$-integrable function on $[a, b]$ if $\int_{a}^{b} \Psi(x) \, a_{p,q} x$ exists for all $x \in [a, a + p(b-a)]$.

Note that if $a = 0$, then (5) is reduced as follows:

$$\int_{0}^{b} \Psi(x) \, d_{p,q} x = (p-q)b \sum_{\lambda=0}^{\infty} \frac{q^{\lambda}}{p^{\lambda+1}} \Psi \left(\frac{q^{\lambda}}{p^{\lambda+1}} b \right),$$

which appears in [28]. Moreover, if $p = 1$, then (6) is reduced as follows:

$$\int_{0}^{b} \Psi(x) \, d_{q} x = (1-q)b \sum_{\lambda=0}^{\infty} q^{\lambda} \Psi \left(q^{\lambda} b \right),$$

which is the well-known q-Jackson integral; see [1] for more details.

Definition 4 ([29]). Let $\Psi : [a, b] \to \mathbb{R}$ be a continuous function. Then, the $(p, q)^{b}$-integral of Ψ at x is given by

$$\int_{a}^{b} \Psi(x) \, b_{p,q} x = (p-q)(b-a) \sum_{\lambda=0}^{\infty} \frac{q^{\lambda}}{p^{\lambda+1}} \Psi \left(\frac{q^{\lambda}}{p^{\lambda+1}} a + \left(1 - \frac{q^{\lambda}}{p^{\lambda+1}} \right) b \right).$$
The function Ψ is called $(p, q)^b$-integrable function on $[a, b]$ if \(\int_a^b \Psi(x)^b d_{p,q}x \) exists for all $x \in [b - p(b - a), b]$.

Lemma 1 ([27]). For $\alpha \in \mathbb{R} \setminus \{-1\}$, the following inequality holds:

\[
\int_a^b (x-a)^\alpha a_{p,q}x = \frac{(b-a)^{\alpha+1}}{[a+1]_{p,q}}.
\] (8)

Theorem 1 ([28]). Suppose that $\Psi, \Phi : [a, b] \rightarrow \mathbb{R}$ are continuous functions and $r > 0$ with $1/s + 1/r = 1$, then

\[
\int_a^b |\Psi(x)\Phi(x)|^s a_{p,q}x \leq \left(\int_a^b |\Psi(x)|^b a_{p,q}x \right)^{1/s} \left(\int_a^b |\Phi(x)|^r a_{p,q}x \right)^{1/r}.
\] (9)

3. Main Results

In this section, we prove $(p, q)^b$-integral inequalities related to Hermite–Hadamard inequalities for which the first-order $(p, q)^b$-derivatives in absolute value are convex functions. We define $I_1 = [b - (b - a)/p, b]$ and $I_2 = [b - p(b - a), b]$. The (p, q)-integral identity is as follows:

Theorem 2. Suppose that $\Psi : [a, b] \rightarrow \mathbb{R}$ is a $(p, q)^b$-differentiable function on I_1 such that $^bD_{p,q}^\Psi$ is continuous and integrable functions on I_2 with $\gamma, \nu \in \{0, 1\}$, then

\[
(b-a)\left[\int_a^b (qt + \gamma v - \gamma)^b D_{p,q}^\Psi(ta + (1-t)b) d_{p,q}t + \int_b^1 (qt + \gamma v - 1)^b D_{p,q}^\Psi(ta + (1-t)b) d_{p,q}t \right]
\]
\[
= \frac{1}{p(b-a)} \int_{pa+(1-p)b}^b \Psi(x)^b d_{p,q}x - \gamma[\nu\Psi(a) + (1-\nu)\Psi(b)] - (1-\gamma)\Psi(\nu a + (1-\nu)b).
\] (10)

Proof. Using Definition 2, we have

\[
^bD_{p,q}^\Psi(ta + (1-t)b) = \frac{\Psi(q(ta + (1-t)b) + (1-q)b) - \Psi(p(ta + (1-t)b) + (1-p)b)}{(p - q)(b - (ta + (1-t)b))}
\]
\[
= \frac{\Psi(qta + (1-qt)b) - \Psi(pta + (1-qt)b)}{(p - q)(b-a)t}.
\] (11)

Applying an identical transformation, we obtain

\[
(b-a)\left[\int_0^a (qt + \gamma v - \gamma)^b D_{p,q}^\Psi(ta + (1-t)b) d_{p,q}t + \int_0^1 (qt + \gamma v - 1)^b D_{p,q}^\Psi(ta + (1-t)b) d_{p,q}t \right]
\]
\[
= (b-a) \int_0^1 (qt + \gamma v - 1)^b D_{p,q}^\Psi(ta + (1-t)b) d_{p,q}t
\]
\[
+ (b-a) \int_0^a (1-\gamma)^b D_{p,q}^\Psi(ta + (1-t)b) d_{p,q}t.
\] (12)

Using (6) and (11), we obtain
\[
\int_0^1 t^b D_{p,q} \Psi(ta + (1 - t)b) \, d_{p,q} t = \\
\int_0^1 \frac{\Psi(qta + (1 - qt)b) - \Psi(pta + (1 - pt)b)}{(p - q)(b - a)} \, d_{p,q} t = \\
\frac{1}{b - a} \left[\sum_{\lambda=0}^{\infty} \frac{q^\lambda}{p^{\lambda+1}} \Psi \left(\frac{q^{\lambda+1}}{p^{\lambda+1}} a + \left(1 - \frac{q^\lambda}{p^\lambda} \right) b \right) - \sum_{\lambda=0}^{\infty} \frac{q^\lambda}{p^{\lambda+1}} \Psi \left(\frac{q^\lambda}{p^\lambda} a + \left(1 - \frac{q^\lambda}{p^\lambda} \right) b \right) \right] = \\
\frac{1}{b - a} \left[\frac{1}{q} \sum_{\lambda=0}^{\infty} \frac{q^\lambda}{p^{\lambda+1}} \Psi \left(\frac{q^\lambda}{p^\lambda} a + \left(1 - \frac{q^\lambda}{p^\lambda} \right) b \right) - \frac{1}{q} \Psi(a) \right] = \\
\frac{1}{b - a} \left(\frac{p - q}{pq} \right) \sum_{\lambda=0}^{\infty} \frac{q^\lambda}{p^{\lambda+1}} \Psi \left(\frac{q^\lambda}{p^\lambda} a + \left(1 - \frac{q^\lambda}{p^\lambda} \right) b \right) - \frac{1}{q} \Psi(a) = \\
\frac{1}{pq(b - a)^2} \int_{pa+(1-p)b}^b \Psi(x) \, d_{p,q} x - \frac{1}{q(b - a)} \Psi(a). \tag{13}
\]

Similarly, we obtain

\[
\int_0^1 b D_{p,q} \Psi(ta + (1 - t)b) \, d_{p,q} t = \\
\int_0^1 \frac{\Psi(qta + (1 - qt)b) - \Psi(pta + (1 - pt)b)}{(p - q)(b - a)t} \, d_{p,q} t = \\
\frac{1}{b - a} \left[\sum_{\lambda=0}^{\infty} \Psi \left(\frac{q^{\lambda+1}}{p^{\lambda+1}} a + \left(1 - \frac{q^\lambda}{p^\lambda} \right) b \right) - \sum_{\lambda=0}^{\infty} \Psi \left(\frac{q^\lambda}{p^\lambda} a + \left(1 - \frac{q^\lambda}{p^\lambda} \right) b \right) \right] = \\
\frac{1}{b - a} [\Psi(b) - \Psi(a)], \tag{14}
\]

and

\[
\int_0^1 b D_{p,q} \Psi(ta + (1 - t)b) \, d_{p,q} t = \\
\int_0^1 \frac{\Psi(qta + (1 - qt)b) - \Psi(pta + (1 - pt)b)}{(p - q)(b - a)t} \, d_{p,q} t = \\
\frac{1}{b - a} \left[\sum_{\lambda=0}^{\infty} \Psi \left(\frac{q^{\lambda+1}}{p^{\lambda+1}} va + \left(1 - \frac{q^\lambda}{p^\lambda} \right) vb \right) - \sum_{\lambda=0}^{\infty} \Psi \left(\frac{q^\lambda}{p^\lambda} va + \left(1 - \frac{q^\lambda}{p^\lambda} \right) vb \right) \right] = \\
\frac{1}{b - a} [\Psi(v) - \Psi(va + (1 - v)b)]. \tag{15}
\]

Substituting (13) to (15) in (12), we obtain the required \((p, q)^b\)-integral identity. Therefore, the proof is completed. \(\square\)

Corollary 1. Under the assumptions of Theorem 4 with \(v = 0, 1\) and \(p / [2]_{p,q}\), the following new \((p, q)^b\)-integral identities hold:

(i)

\[
(b - a) \int_0^1 (qt - 1)^b D_{p,q} \Psi(ta + (1 - t)b) \, d_{p,q} t = \frac{1}{p(b - a)} \int_{pa+(1-p)b}^b \Psi(x) \, d_{p,q} x - \Psi(b); \tag{16}
\]
\[(b-a) \left[\int_0^1 qt^b D_{p,q} \Psi(ta + (1-t)b) \, d_{p,q} t \right] = \frac{1}{p(b-a)} \int_{pa+(1-p)b}^b \Psi(x)^b d_{p,q} x - \Psi(a); \quad (17) \]

\[(b-a) \left[\int_0^{\nu} qt^b D_{p,q} \Psi(ta + (1-t)b) \, d_{p,q} t \right]
+ \int_0^1 \left(qt + \frac{p\gamma}{2} - 1 \right)^b D_{p,q} \Psi(ta + (1-t)b) \, d_{p,q} t \right]
= \frac{1}{p(b-a)} \int_{pa+(1-p)b}^b \Psi(x)^b d_{p,q} x - \gamma p\Psi(a) + q\Psi(b) - (1-\gamma) \Psi \left(\frac{pa + qb}{2} \right). \quad (18) \]

Corollary 2. Under the assumptions of Theorem 4 with \(\gamma = 0, 1/3, 1/2 \) and 1, the following new \((p,q)^b\)-integral identities hold:

(i)

\[(b-a) \left[\int_0^\nu qt^b D_{p,q} \Psi(ta + (1-t)b) \, d_{p,q} t + \int_0^1 (qt-1)^b D_{p,q} \Psi(ta + (1-t)b) \, d_{p,q} t \right] = \frac{1}{p(b-a)} \int_{pa+(1-p)b}^b \Psi(x)^b d_{p,q} x - \Psi(va + (1-v)b); \quad (19) \]

(ii)

\[(b-a) \left[\int_0^\nu \left(qt + \frac{1}{3}v - \frac{1}{3} \right)^b D_{p,q} \Psi(ta + (1-t)b) \, d_{p,q} t + \int_0^1 \left(qt + \frac{1}{3}v - 1 \right)^b D_{p,q} \Psi(ta + (1-t)b) \, d_{p,q} t \right]
= \frac{1}{p(b-a)} \int_{pa+(1-p)b}^b \Psi(x)^b d_{p,q} x - \frac{1}{3}[v\Psi(a) + (1-v)\Psi(b) + 2\Psi(va + (1-v)b)]; \quad (20) \]

(iii)

\[(b-a) \left[\int_0^\nu \left(qt + \frac{1}{2}v - \frac{1}{2} \right)^b D_{p,q} \Psi(ta + (1-t)b) \, d_{p,q} t + \int_0^1 \left(qt + \frac{1}{2}v - 1 \right)^b D_{p,q} \Psi(ta + (1-t)b) \, d_{p,q} t \right]
= \frac{1}{p(b-a)} \int_{pa+(1-p)b}^b \Psi(x)^b d_{p,q} x - \frac{1}{2}[v\Psi(a) + (1-v)\Psi(b) + \Psi(va + (1-v)b)]; \quad (21) \]

(iv)

\[(b-a) \left[\int_0^\nu (qt + v - 1)^b D_{p,q} \Psi(ta + (1-t)b) \, d_{p,q} t + \int_0^1 (qt + v - 1)^b D_{p,q} \Psi(ta + (1-t)b) \, d_{p,q} t \right]
= \frac{1}{p(b-a)} \int_{pa+(1-p)b}^b \Psi(x)^b d_{p,q} x - [v\Psi(a) + (1-v)\Psi(b)]. \quad (22) \]

Remark 1. If \(p = 1 \), then (10) is reduced as follows:

\[(b-a) \left[\int_0^\nu (qt + \gamma v - \gamma)^b D_q \Psi(ta + (1-t)b) \, d_q t + \int_0^1 (qt + \gamma v - 1)^b D_q \Psi(ta + (1-t)b) \, d_q t \right]
= \frac{1}{b-a} \int_a^b \Psi(x)^b d_q x - \gamma [v\Psi(a) + (1-v)\Psi(b)] - (1-\gamma) \Psi(va + (1-v)b), \]

which appears in [46].

Remark 2. If \(p = 1 \), then (16) to (18) are reduced as follows:
\((b-a) \int_0^1 (qt - 1)^b D_q \Psi(ta + (1-t)b) \, dq t = \frac{1}{b-a} \int_a^b \Psi(x)^b dq x - \Psi(b); \)

(i)

\((b-a) \left[\int_0^1 q t^b D_q \Psi(ta + (1-t)b) \, dq t \right] = \frac{1}{b-a} \int_a^b \Psi(x)^b dq x - \Psi(a); \)

(ii)

\[
(b-a) \left[\int_0^{1/|2_q|} \left(qt - \frac{\gamma q}{|2_q|} \right)^b D_q \Psi(ta + (1-t)b) \, dq t + \int_{1/|2_q|}^1 \left(qt + \frac{\gamma q}{|2_q|} - 1 \right)^b D_q \Psi(ta + (1-t)b) \, dq t \right] \\
= \frac{1}{b-a} \int_a^b \Psi(x)^b dq x - \Psi(b) - \Psi(a) + q \Psi(b) - (1-\gamma) \Psi \left(\frac{a+q b}{|2_q|} \right),
\]

(iii)

respectively, which appears in [46].

Remark 3. If \(p = 1 \), then (19) to (22) are reduced as follows:

(i)

\[
(b-a) \left[\int_0^v q t^b D_q \Psi(ta + (1-t)b) \, dq t + \int_{1/|2_q|}^1 \left(qt - \frac{1}{3} q \right)^b D_q \Psi(ta + (1-t)b) \, dq t \right] \\
= \frac{1}{b-a} \int_a^b \Psi(x)^b dq x - \Psi(v a + (1-v)b), \tag{23}
\]

which appears in [46]. In particular, if \(v = 1/|2_q| \), then (23) leads to the midpoint-type integral identity as follows:

\[
(b-a) \left[\int_0^{1/|2_q|} q t^b D_q \Psi(ta + (1-t)b) \, dq t + \int_{1/|2_q|}^1 \left(qt + \frac{1}{3} q \right)^b D_q \Psi(ta + (1-t)b) \, dq t \right] \\
= \frac{1}{b-a} \int_a^b \Psi(x)^b dq x - \Psi \left(\frac{a+q b}{|2_q|} \right),
\]

which appears in [50].

(ii)

\[
(b-a) \left[\int_0^v \left(qt + \frac{1}{3} q - \frac{1}{3} \right)^b D_q \Psi(ta + (1-t)b) \, dq t + \int_{1/|2_q|}^1 \left(qt - \frac{1}{3} q \right)^b D_q \Psi(ta + (1-t)b) \, dq t \right] \\
= \frac{1}{b-a} \int_a^b \Psi(x)^b dq x - \frac{1}{3} [\Psi(a) + (1-v) \Psi(b) + 2 \Psi(v a + (1-v)b)], \tag{24}
\]

which appears in [46]. In particular, if \(v = 1/|2_q| \), then (24) leads to the Simpson-like integral identity as follows:

\[
(b-a) \left[\int_0^{1/|2_q|} \left(qt - \frac{q}{3|2_q|} \right)^b D_q \Psi(ta + (1-t)b) \, dq t + \int_{1/|2_q|}^1 \left(qt + \frac{q}{3|2_q|} - 1 \right)^b D_q \Psi(ta + (1-t)b) \, dq t \right] \\
= \frac{1}{b-a} \int_a^b \Psi(x)^b dq x - \frac{1}{3} \left[\Psi(a) + q \Psi(b) + 2 \Psi \left(\frac{a+q b}{|2_q|} \right) \right],
\]

which appears in [46].
\[(b - a) \left[\int_{0}^{v} \left(qt + \frac{1}{2} v - \frac{1}{2} \right)^{D_{q}} \Psi(ta + (1 - t)b) \ ds_{t} + \int_{v}^{1} \left(qt + \frac{1}{2} v - 1 \right)^{D_{q}} \Psi(ta + (1 - t)b) \ ds_{t} \right] \\
= \frac{1}{b - a} \int_{a}^{b} \Psi(x)^{b} ds_{x} - \frac{1}{2} [v \Psi(a) + (1 - v) \Psi(b) + \Psi(va + (1 - v)b)], \tag{25}\]

which appears in [46]. In particular, if \(v = 1 / [2]_{q} \), then (25) leads to the averaged midpoint-trapezoid-type integral identity as follows:

\[(b - a) \left[\int_{0}^{1/[2]_{q}} \left(qt - \frac{1}{2} [2]_{q} \right)^{D_{q}} \Psi(ta + (1 - t)b) \ ds_{t} + \int_{1/[2]_{q}}^{1} \left(qt + 1/[2]_{q} - 1 \right)^{D_{q}} \Psi(ta + (1 - t)b) \ ds_{t} \right] \\
= \frac{1}{b - a} \int_{a}^{b} \Psi(x)^{b} ds_{x} - \frac{1}{2} \left[\frac{\Psi(a) + q \Psi(b)}{[2]_{q}} + \Psi \left(\frac{a + q b}{[2]_{q}} \right) \right], \tag{26}\]

which appears in [46]. In particular, if \(v = 1 / [2]_{q} \), then (26) leads to the trapezoid-type integral identity as follows:

\[(b - a) \left[\int_{0}^{1/[2]_{q}} \left(qt - \frac{1}{2} [2]_{q} - 1 \right)^{D_{q}} \Psi(ta + (1 - t)b) \ ds_{t} + \int_{1/[2]_{q}}^{1} \left(qt + \frac{1}{2} [2]_{q} - 1 \right)^{D_{q}} \Psi(ta + (1 - t)b) \ ds_{t} \right] \\
= \frac{1}{b - a} \int_{a}^{b} \Psi(x)^{b} ds_{x} - \frac{\Psi(a) + q \Psi(b)}{[2]_{q}},\]

which appears in [50].

Remark 4. From Corollary 2, we have the new \((p, q)^{b}\)-integral identities as follows:

(i) If we take \(v = p / [2]_{p,q} \), then (19) leads to the midpoint-type identity as follows:

\[(b - a) \left[\int_{0}^{p/[2]_{p,q}} q^{b} D_{p,q} \Psi(ta + (1 - t)b) \ ds_{t} + \int_{p/[2]_{p,q}}^{1} (qt - 1)^{b} D_{p,q} \Psi(ta + (1 - t)b) \ ds_{t} \right] \\
= \frac{1}{p(b - a)} \int_{pa + (1 - p)b}^{b} \Psi(x)^{b} ds_{x} - \Psi \left(\frac{pa + q b}{[2]_{p,q}} \right),\]

which was proposed by Aamir Ali et al. in [29].

(ii) Taking \(v = p / [2]_{p,q} \), then (20) leads to the Simpson-like integral identity as follows:
\[(b - a) \left[\int_0^{p/|p,q|} \left(qt - \frac{q}{3(2)|p,q|} \right)^b D_{p,q} \Psi(ta + (1-t)b) \, dt \right. \]
\[+ \int_0^{p/|p,q|} \left(qt + \frac{p}{3(|p,q|)} - 1 \right)^b D_{p,q} \Psi(ta + (1-t)b) \, dt \right] \]
\[= \frac{1}{p(b-a)} \int_{pa+(1-p)b}^{b} \Psi(x)^b d_{p,q} x - \frac{1}{3} \left[\frac{p\Psi(a) + q\Psi(b)}{|2|_{p,q}} + 2\Psi\left(\frac{pa + qb}{|2|_{p,q}} \right) \right]. \]

(iii) If we set \(v = p/|p,q|, \) then (21) leads to the averaged midpoint-trapezoid-type integral identity as follows:

\[(b - a) \left[\int_0^{p/|p,q|} \left(qt - \frac{q}{2(|2,p,q|)} \right)^b D_{p,q} \Psi(ta + (1-t)b) \, dt \right. \]
\[+ \int_0^{p/|p,q|} \left(qt + \frac{p}{2(|2,p,q|)} - 1 \right)^b D_{p,q} \Psi(ta + (1-t)b) \, dt \right] \]
\[= \frac{1}{p(b-a)} \int_{pa+(1-p)b}^{b} \Psi(x)^b d_{p,q} x - \frac{1}{2} \left[\frac{p\Psi(a) + q\Psi(b)}{|2|_{p,q}} + \Psi\left(\frac{pa + qb}{|2|_{p,q}} \right) \right]. \]

(iv) By setting \(v = p/|2,p,q|, \) then (22) leads to the trapezoid-type integral identity as follows:

\[(b - a) \left[\int_0^{p/|2,p,q|} \left(qt - \frac{q}{|2,2|_{2,p,q}} - 1 \right)^b D_{p,q} \Psi(ta + (1-t)b) \, dt \right. \]
\[+ \int_0^{p/|2,p,q|} \left(qt + \frac{p}{|2,p,q|} - 1 \right)^b D_{p,q} \Psi(ta + (1-t)b) \, dt \right] \]
\[= \frac{1}{p(b-a)} \int_{pa+(1-p)b}^{b} \Psi(x)^b d_{p,q} x - \frac{p\Psi(a) + q\Psi(b)}{|2|_{p,q}}. \]

Theorem 3. Suppose that \(\Psi : [a,b] \to \mathbb{R} \) is a \((p,q)^b\)-differentiable function on \(I_1 \) such that \(bD_{p,q} \Psi \) is continuous and integrable functions on \(I_2 \) with \(\gamma, v \in [0,1] \). If \(bD_{p,q} \Psi \) is convex function on \([a,b]\), then

\[\left| \frac{1}{p(b-a)} \int_{pa+(1-p)b}^{b} \Psi(x)^b d_{p,q} x - \gamma[v\Psi(a) + (1-v)\Psi(b)] - (1-\gamma)\Psi(va + (1-v)b) \right| \]
\[\leq (b - a) \left[\left| \Lambda_1(p,q,\gamma, v) + \Lambda_2(p,q,\gamma, v) - \Lambda_3(p,q,\gamma, v) \right| bD_{p,q} \Psi(a) \right] \]
\[+ \left| \Theta_1(p,q,\gamma, v) + \Theta_2(p,q,\gamma, v) - \Theta_3(p,q,\gamma, v) \right| bD_{p,q} \Psi(b) \right], \]

(27)

where \(\Lambda_i(p,q,\gamma, v), \ i = 1, 2, 3, \) and \(\Theta_j(p,q,\gamma, v), \ j = 1, 2, 3, \) are given by
\[\Lambda_1(p, q, \gamma, v) = \int_0^v t|qt + \gamma v - \gamma| \, dp_q t \]
\[= \frac{v^2(1-\nu)}{|2|p_q|} - \frac{v^3q}{|3|p_q}, \quad (\gamma + q)v \leq \gamma; \]
\[+ 2v^3(1-\gamma)(\frac{1}{|2|p_q} - \frac{1}{|3|p_q}), \quad (\gamma + q)v > \gamma, \]
\[\Theta_1(p, q, \gamma, v) = \int_0^v (1-t)|qt + \gamma v - \gamma| \, dp_q t \]
\[= \int_0^v |qt + \gamma v - \gamma| \, dp_q t - \int_0^v t|qt + \gamma v - \gamma| \, dp_q t \]
\[= \left\{ \begin{array}{ll}
\nu \gamma(1-\nu) - \frac{v^2q+q^2}{|2|p_q}, & (\gamma + q)v \leq \gamma; \\
2v^3(1-\nu)(\frac{1}{|2|p_q} - \frac{1}{|3|p_q}), & (\gamma + q)v > \gamma,
\end{array} \right. \]
\[\Lambda_2(p, q, \gamma, v) = \int_0^1 t|qt + \gamma v - 1| \, dp_q t \]
\[= \left\{ \begin{array}{ll}
\nu \gamma(1-\nu) - \frac{q}{|2|p_q}, & (\gamma + q)v \leq \gamma; \\
\frac{1}{|2|p_q} + 2\gamma^3(\frac{1}{|2|p_q} - \frac{1}{|3|p_q}), & (\gamma + q)v > \gamma,
\end{array} \right. \]
\[\Theta_2(p, q, \gamma, v) = \int_0^1 (1-t)|qt + \gamma v - 1| \, dp_q t \]
\[= \left\{ \begin{array}{ll}
\nu \gamma(1-\nu) - \frac{q}{|2|p_q} + 2\gamma^3(\frac{1}{|2|p_q} - \frac{1}{|3|p_q}), & (\gamma + q)v \leq \gamma; \\
(1-\nu)\gamma - \frac{q}{|2|p_q}, & (\gamma + q)v > \gamma,
\end{array} \right. \]
\[\Lambda_3(p, q, \gamma, v) = \int_0^v t|qt + \gamma v - 1| \, dp_q t \]
\[= \left\{ \begin{array}{ll}
\nu \gamma(1-\nu) - \frac{v^3q}{|3|p_q}, & (\gamma + q)v \leq \gamma; \\
v q(\frac{1}{|2|p_q}) - \frac{2(1-\gamma^3)(\frac{1}{|2|p_q} - \frac{1}{|3|p_q})}{|q|p_q}, & (\gamma + q)v > \gamma,
\end{array} \right. \]
\[\Theta_3(p, q, \gamma, v) = \int_0^v (1-t)|qt + \gamma v - 1| \, dp_q t \]
\[= \left\{ \begin{array}{ll}
\nu \gamma(1-\nu) - \frac{v^3q}{|3|p_q}, & (\gamma + q)v \leq \gamma; \\
v q(\frac{1}{|2|p_q}) - \frac{2(1-\gamma^3)(\frac{1}{|2|p_q} - \frac{1}{|3|p_q})}{|q|p_q}, & (\gamma + q)v > \gamma,
\end{array} \right. \]

Proof. Taking the absolute value of both sides of (10), using Lemma 1 and applying the convexity of \(|^2D_{pq}^2|\), we obtain
\[\left| \frac{1}{p(b-a)} \int_{p(a+(1-p)b)}^{b} \Psi(x) \right| b_{p,q}dx - \gamma \left[v \Psi(a) + (1-v) \Psi(b) \right] - (1-\gamma) \Psi(va + (1-v)b) \]

\[= (b-a) \left| \int_{0}^{1} \left[|qt + \gamma v - \gamma|^{b} - |qt + \gamma v - 1|^{b} \right] d_{p,q}t \right| \]

\[\leq (b-a) \left| \int_{0}^{1} \left[|qt + \gamma v - \gamma| + |qt + \gamma v - 1| \right] d_{p,q}t \right| \]

which completes the proof. \(\square\)

Corollary 3. Under the assumptions of Theorem 3 with \(v = p/[2]_{p,q}\), the following new \((p,q)^b\)-integral inequality holds:

\[\left| \frac{1}{p(b-a)} \int_{p(a+(1-p)b)}^{b} \Psi(x) \right| b_{p,q}dx - \gamma \left[\frac{p \Psi(a) + q \Psi(b)}{[2]_{p,q}} \right] - (1-\gamma) \Psi \left(\frac{pa + qb}{[2]_{p,q}} \right) \]

\[\leq (b-a) \left[\left[\Lambda_1 \left(p, q, \gamma, \frac{1}{[2]_{p,q}} \right) + \Lambda_2 \left(p, q, \gamma, \frac{1}{[2]_{p,q}} \right) - \Lambda_3 \left(p, q, \gamma, \frac{1}{[2]_{p,q}} \right) \right] \right] \]

\[+ \left[\Theta_1 \left(p, q, \gamma, \frac{1}{[2]_{p,q}} \right) + \Theta_2 \left(p, q, \gamma, \frac{1}{[2]_{p,q}} \right) - \Theta_3 \left(p, q, \gamma, \frac{1}{[2]_{p,q}} \right) \right] \left[b_{p,q} \Psi(a) \right] \]

\[\leq (b-a) \left[\left[\Lambda_1(q, \gamma, v) + \Lambda_2(q, \gamma, v) - \Lambda_3(q, \gamma, v) \right] \right] \left[b_{p,q} \Psi(a) \right] \]

\[\leq (b-a) \left[\left[\Lambda_1(q, \gamma, v) + \Lambda_2(q, \gamma, v) - \Lambda_3(q, \gamma, v) \right] \right] \left[b_{p,q} \Psi(a) \right] \]

\[\leq (b-a) \left[\left[\Lambda_1(q, \gamma, v) + \Lambda_2(q, \gamma, v) - \Lambda_3(q, \gamma, v) \right] \right] \left[b_{p,q} \Psi(a) \right] \]

Remark 5. If \(p = 1\), \(\Lambda_i(p, q, \gamma, v) = \Lambda_i(q, \gamma, v)\) and \(\Theta_j(p, q, \gamma, v) = \Theta_j(q, \gamma, v)\) for \(i = 1, 2, 3\), then (27) is reduced as follows:

\[\left| \frac{1}{b-a} \int_{a}^{b} \Psi(x) \right| b_{q}dx - \gamma \left[v \Psi(a) + (1-v) \Psi(b) \right] - (1-\gamma) \Psi(va + (1-v)b) \]

\[\leq (b-a) \left[\left[\Lambda_1(q, \gamma, v) + \Lambda_2(q, \gamma, v) - \Lambda_3(q, \gamma, v) \right] \right] \left[b_{q} \Psi(a) \right] \]

where \(\Lambda_i(q, \gamma, v), i = 1, 2, 3, \) and \(\Theta_j(q, \gamma, v), j = 1, 2, 3, \) are defined by
\[\Lambda_1(q, \gamma, v) = \int_0^v t|qt + \gamma v - \gamma| \, d_q t \]
\[= \left(\frac{\nu^2 \gamma (1 - \nu)}{[2]_q} \right) \frac{\nu^3 q}{[3]_q} - \left(\frac{\nu^2 \gamma (1 - \nu)}{[2]_q} \right) + 2 \nu^3 (1 - \nu)^3 \left(\frac{\nu^3 q}{[3]_q} \right), \quad (\gamma + q) v \leq \gamma; \]
\[= \left(\frac{\nu^2 \gamma (1 - \nu)}{[2]_q} \right) \frac{\nu^3 q}{[3]_q} - \left(\frac{\nu^2 \gamma (1 - \nu)}{[2]_q} \right) + 2 \nu^3 (1 - \nu)^3 \left(\frac{\nu^3 q}{[3]_q} \right), \quad (\gamma + q) v > \gamma, \]
\[\Theta_1(q, \gamma, v) = \int_0^v (1 - t)|qt + \gamma v - \gamma| \, d_q t \]
\[= \int_0^v |qt + \gamma v - \gamma| \, d_q t - \int_0^v t|qt + \gamma v - \gamma| \, d_q t \]
\[= \left(\frac{\nu^2 \gamma (1 - \nu)}{[2]_q} \right) \frac{\nu^3 q}{[3]_q} + \frac{\nu^3 q}{[3]_q} \gamma v + q \leq 1; \]
\[= \left(\frac{\nu^2 \gamma (1 - \nu)}{[2]_q} \right) \frac{\nu^3 q}{[3]_q} + \frac{2 (1 - \gamma)^3}{[3]_q}, \quad \gamma v + q > 1, \]
\[\Lambda_2(q, \gamma, v) = \int_0^v t|qt + \gamma v - 1| \, d_q t \]
\[= \left(\frac{\nu^2 \gamma (1 - \nu)}{[2]_q} \right) \frac{\nu^3 q}{[3]_q} + \frac{\nu^3 q}{[3]_q} \gamma v + q \leq 1; \]
\[= \left(\frac{\nu^2 \gamma (1 - \nu)}{[2]_q} \right) \frac{\nu^3 q}{[3]_q} + \frac{2 (1 - \gamma)^3}{[3]_q}, \quad \gamma v + q > 1, \]
\[\Theta_2(q, \gamma, v) = \int_0^v (1 - t)|qt + \gamma v - 1| \, d_q t \]
\[= \int_0^v |qt + \gamma v - 1| \, d_q t - \int_0^v t|qt + \gamma v - 1| \, d_q t \]
\[= \left(\frac{\nu^2 \gamma (1 - \nu)}{[2]_q} \right) \frac{\nu^3 q}{[3]_q} + \frac{\nu^3 q}{[3]_q} \gamma v + q \leq 1; \]
\[= \left(\frac{\nu^2 \gamma (1 - \nu)}{[2]_q} \right) \frac{\nu^3 q}{[3]_q} + \frac{2 (1 - \gamma)^3}{[3]_q}, \quad \gamma v + q > 1, \]

which appears in [46].

Remark 6. If \(p = 1 \), then (28) is reduced as follows:

\[
\left| \frac{1}{b - a} \int_a^b \Psi(x) \, b_d q x - \gamma \left[\frac{\Psi(a) + q f(b)}{[2]_q} \right] \right| \right| - \gamma \right) \Psi \left(\frac{a + q b}{[2]_q} \right) \right|
\]
\[
\leq (b - a) \left[\left| \Lambda_1(q, \gamma, \frac{1}{[2]_q}) + \Lambda_2(q, \gamma, \frac{1}{[2]_q}) \right| - \Lambda_3(q, \gamma, \frac{1}{[2]_q}) \right] \left| bD_q \Psi(a) \right|
\]
\[
+ \left| \Theta_1(q, \gamma, \frac{1}{[2]_q}) + \Theta_2(q, \gamma, \frac{1}{[2]_q}) - \Theta_3(q, \gamma, \frac{1}{[2]_q}) \right| \left| bD_q f(b) \right|
\]

which appears in [46].
Remark 7. From Corollary 3, we have the new \((p, q)^b\)-integral inequalities as follows:

\[(i)\] If we take \(\gamma = 0\), then (28) leads to the midpoint-type integral inequality as follows:

\[
\left| \frac{1}{p(b-a)} \int_{pa+(1-p)b}^{b} \Psi(x) \, b^{d_{pq}x} - \Psi \left(\frac{pa + qb}{[2]_{pq}} \right) \right| \\
\leq (b-a) \left[\Lambda_1 \left(p, q, 0, \frac{p}{[2]_{pq}} \right) + \Lambda_2 \left(p, q, 0, \frac{p}{[2]_{pq}} \right) - \Lambda_3 \left(p, q, 0, \frac{p}{[2]_{pq}} \right) \right] \left| b^{D_{pq}} \Psi(a) \right| \\
+ \left[\Theta_1 \left(p, q, 0, \frac{p}{[2]_{pq}} \right) + \Theta_2 \left(p, q, 0, \frac{p}{[2]_{pq}} \right) - \Theta_3 \left(p, q, 0, \frac{p}{[2]_{pq}} \right) \right] \left| b^{D_{pq}} \Psi(b) \right|. \tag{30}
\]

\[(ii)\] Taking \(\gamma = 1/3\), then (28) leads to the Simpson-like integral inequality as follows:

\[
\left| \frac{1}{p(b-a)} \int_{pa+(1-p)b}^{b} \Psi(x) \, b^{d_{pq}x} - \frac{1}{3} \left[\frac{p \Psi(a) + q \Psi(b)}{[2]_{pq}} \right] + 2 \Psi \left(\frac{pa + qb}{[2]_{pq}} \right) \right| \\
\leq (b-a) \left[\Lambda_1 \left(p, q, \frac{1}{3}, \frac{p}{[2]_{pq}} \right) + \Lambda_2 \left(p, q, \frac{1}{3}, \frac{p}{[2]_{pq}} \right) - \Lambda_3 \left(p, q, \frac{1}{3}, \frac{p}{[2]_{pq}} \right) \right] \left| b^{D_{pq}} \Psi(a) \right| \\
+ \left[\Theta_1 \left(p, q, \frac{1}{3}, \frac{p}{[2]_{pq}} \right) + \Theta_2 \left(p, q, \frac{1}{3}, \frac{p}{[2]_{pq}} \right) - \Theta_3 \left(p, q, \frac{1}{3}, \frac{p}{[2]_{pq}} \right) \right] \left| b^{D_{pq}} \Psi(b) \right|. \tag{31}
\]

\[(iii)\] If we take \(\gamma = 1/2\), then (28) leads to the averaged midpoint-trapezoid-type integral inequality as follows:

\[
\left| \frac{1}{p(b-a)} \int_{pa+(1-p)b}^{b} \Psi(x) \, b^{d_{pq}x} - \frac{1}{2} \left[\frac{p \Psi(a) + q \Psi(b)}{[2]_{pq}} \right] + 2 \Psi \left(\frac{pa + qb}{[2]_{pq}} \right) \right| \\
\leq (b-a) \left[\Lambda_1 \left(p, q, \frac{1}{2}, \frac{p}{[2]_{pq}} \right) + \Lambda_2 \left(p, q, \frac{1}{2}, \frac{p}{[2]_{pq}} \right) - \Lambda_3 \left(p, q, \frac{1}{2}, \frac{p}{[2]_{pq}} \right) \right] \left| b^{D_{pq}} \Psi(a) \right| \\
+ \left[\Theta_1 \left(p, q, \frac{1}{2}, \frac{p}{[2]_{pq}} \right) + \Theta_2 \left(p, q, \frac{1}{2}, \frac{p}{[2]_{pq}} \right) - \Theta_3 \left(p, q, \frac{1}{2}, \frac{p}{[2]_{pq}} \right) \right] \left| b^{D_{pq}} \Psi(b) \right|. \tag{32}
\]

\[(iv)\] By setting \(\gamma = 1\), then (28) leads to the trapezoid-type integral inequality as follows:

\[
\left| \frac{1}{p(b-a)} \int_{pa+(1-p)b}^{b} \Psi(x) \, b^{d_{pq}x} - \left[\frac{p \Psi(a) + q \Psi(b)}{[2]_{pq}} \right] \right| \\
\leq (b-a) \left[\Lambda_1 \left(p, q, 1, \frac{p}{[2]_{pq}} \right) + \Lambda_2 \left(p, q, 1, \frac{p}{[2]_{pq}} \right) - \Lambda_3 \left(p, q, 1, \frac{p}{[2]_{pq}} \right) \right] \left| b^{D_{pq}} \Psi(a) \right| \\
+ \left[\Theta_1 \left(p, q, 1, \frac{p}{[2]_{pq}} \right) + \Theta_2 \left(p, q, 1, \frac{p}{[2]_{pq}} \right) - \Theta_3 \left(p, q, 1, \frac{p}{[2]_{pq}} \right) \right] \left| b^{D_{pq}} \Psi(b) \right|. \tag{33}
\]

Remark 8. If \(p = 1\), then (30) to (33) are reduced as follows:

\[(i)\] We obtain the midpoint-type integral inequality as follows:

\[
\left| \frac{1}{b-a} \int_{a}^{b} \Psi(x) \, b^{d_{pq}x} - \Psi \left(\frac{a + qb}{[2]_{pq}} \right) \right| \\
\leq (b-a) \left[\Lambda_1 \left(q, 0, \frac{1}{[2]_{pq}} \right) + \Lambda_2 \left(q, 0, \frac{1}{[2]_{pq}} \right) - \Lambda_3 \left(q, 0, \frac{1}{[2]_{pq}} \right) \right] \left| b^{D_{pq}} \Psi(a) \right| \\
+ \left[\Theta_1 \left(q, 0, \frac{1}{[2]_{pq}} \right) + \Theta_2 \left(q, 0, \frac{1}{[2]_{pq}} \right) - \Theta_3 \left(q, 0, \frac{1}{[2]_{pq}} \right) \right] \left| b^{D_{pq}} \Psi(b) \right|,
\]

which appears in [46].

\[(ii)\] We obtain the Simpson-like integral inequality as follows:
\[
\left| \frac{1}{b-a} \int_a^b \Psi(x)^b d_q x - \frac{1}{3} \left[\Psi(a) + q \Psi(b) \right] \right| \leq \frac{5(b-a)}{72} \left[|\Psi'(b)| + |\Psi'(a)| \right],
\]

which appears in [46]. Moreover, if \(q \to 1 \), then (34) is reduced as follows:

\[
\left| \frac{1}{b-a} \int_a^b \Psi(x)^b d_q x - \frac{1}{3} \left[\Psi(a) + q \Psi(b) \right] \right| \leq \frac{5(b-a)}{16} \left[|\Psi'(b)| + |\Psi'(a)| \right],
\]

which appears in [51].

(iii) We obtain the averaged midpoint-trapezoid-like integral inequality as follows:

\[
\left| \frac{1}{b-a} \int_a^b \Psi(x)^b d_q x - \frac{1}{3} \left[\Psi(a) + q \Psi(b) \right] \right| \leq \frac{5(b-a)}{16} \left[|\Psi'(b)| + |\Psi'(a)| \right],
\]

which appears in [46]. Moreover, if \(q \to 1 \), then (35) is reduced as follows:

\[
\left| \frac{1}{b-a} \int_a^b \Psi(x)^b d_q x - \frac{1}{3} \left[\Psi(a) + q \Psi(b) \right] \right| \leq \frac{b-a}{16} \left[|\Psi'(b)| + |\Psi'(a)| \right],
\]

which appears in [52].

(iv) We obtain the trapezoid-type integral inequality as follows:

\[
\left| \frac{1}{b-a} \int_a^b \Psi(x)^b d_q x - \frac{1}{3} \left[\Psi(a) + q \Psi(b) \right] \right| \leq \frac{5(b-a)}{16} \left[|\Psi'(b)| + |\Psi'(a)| \right],
\]

which appears in [52].

Theorem 4. Suppose that \(\Psi : [a, b] \to \mathbb{R} \) is a \((p, q)^b\)-differentiable function on \(I_1 \) such that \(b \Delta_{p,q} \Psi \) is continuous and integrable functions on \(I_2 \) with \(\gamma, \nu \in [0, 1] \). If \(|b \Delta_{p,q} \Psi|^r \) for \(r > 1 \) is a convex function on \([a, b]\), then

\[
\left| \frac{1}{p(b-a) + (1-p)b} \int_{p(a) + (1-p)b}^{p(b)} \Psi(x)^b d_{p,q} x - \gamma [\nu \Psi(a) + (1 - \nu) \Psi(b)] - (1 - \gamma) (\nu a + (1 - \nu) b) \right| \\
\leq (b-a)(\Delta_2(p,q,\gamma,\nu))^{1-1/r} \left(\Lambda_2(p,q,\gamma,\nu)^r + |\Theta_2(p,q,\gamma,\nu)| \right)^{1/r} \\
+ (b-a)(1 - \gamma) \nu^{1-1/r} \left(\frac{v_2}{2} |b \Delta_{p,q} \Psi(a)|^r + \frac{v_2(2p-q-v)}{2} |b \Delta_{p,q} \Psi(b)|^r \right)^{1/r},
\]

(37)
Mathematics 2022, 10, 826

where $\Theta_2(p, q, \gamma, v)$ is given in Theorem 3 and $\Delta_1(p, q, \gamma, v)$ is defined by

$$
\Delta_1(p, q, \gamma, v) = \int_0^v |qt + \gamma v - 1| \, dp_q t = \begin{cases}
(1 - \gamma v) - \frac{q}{2(1 - \gamma v)^2} & \gamma v + q \leq 1; \\
\frac{q}{2} - (1 - \gamma v)^2 (1 - \gamma v) - (1 - \gamma v) & \gamma v + q > 1.
\end{cases}
$$

Proof. Taking the absolute value of both sides of (10) and using the power-mean inequality for (p, q)-integrals, we obtain

$$
\left| \frac{1}{p(b - a)} \int_{pa + (1-p)b}^b \Psi(x)^b d_p q x - \gamma [v \Psi(a) + (1 - v) \Psi(b)] - (1 - \gamma) \Psi(va + (1 - v)b) \right|
= (b - a) \left| \int_0^v (qt + \gamma v - 1) b D_p q \Psi(ta + (1 - t)b) \, dp_q t + \int_v^1 (qt + \gamma v - 1) b D_p q \Psi(ta + (1 - t)b) \, dp_q t \right|
= (b - a) \left| \int_0^v (qt + \gamma v - 1) b D_p q \Psi(ta + (1 - t)b) \, dp_q t + \int_v^1 (1 - \gamma) b D_p q \Psi(ta + (1 - t)b) \, dp_q t \right|
\leq (b - a) \left(\int_0^v (qt + \gamma v - 1) b D_p q \Psi(ta + (1 - t)b) \, dp_q t \right)^{1/r} + (b - a)(1 - \gamma) \left(\int_0^v 1 b D_p q \Psi(ta + (1 - t)b) \, dp_q t \right)^{1/r}.
$$

Applying the convexity of $|b D_p q \Psi|^r$, we have

$$
\left| \frac{1}{p(b - a)} \int_{pa + (1-p)b}^b \Psi(x)^b d_p q x - \gamma [v \Psi(a) + (1 - v) \Psi(b)] - (1 - \gamma) \Psi(va + (1 - v)b) \right|
\leq (b - a) \left(\int_0^v (qt + \gamma v - 1) b D_p q \Psi(ta + (1 - t)b) \, dp_q t \right)^{1/r}
\times \left(\left| b D_p q \Psi(a) \right|^r \int_0^v t \, dp_q t + \left| b D_p q \Psi(b) \right|^r \int_0^1 (1 - t) \, dp_q t \right)^{1/r} + (b - a)(1 - \gamma) \left(\int_0^v 1 b D_p q \Psi(ta + (1 - t)b) \, dp_q t \right)^{1/r}
\leq (b - a)(\Delta_1(p, q, \gamma, v))^{1-1/r} \left(\Lambda_2(p, q, \gamma, v) \left| b D_p q \Psi(a) \right|^r + \Theta_2(p, q, \gamma, v) \left| b D_p q \Psi(b) \right|^r \right)^{1/r}
+ (b - a)(1 - \gamma)(\frac{v^2}{2^{2/p}} \left| b D_p q \Psi(a) \right|^r + \frac{v(2^{2/p} - v)}{2^{2/p}} \left| b D_p q \Psi(b) \right|^r)^{1/r},
$$

which completes the proof. \(\Box\)

Remark 9. If $p = 1$, then (37) is reduced as follows:

$$
\left| \frac{1}{b - a} \int_a^b \Psi(x)^b d_q x - \gamma [v \Psi(a) + (1 - v) \Psi(b)] - (1 - \gamma) \Psi(va + (1 - v)b) \right|
\leq (b - a)(\Delta_1(q, \gamma, v))^{1-1/r} \left(\Lambda_2(q, \gamma, v) \left| D_q \Psi(a) \right|^r + \Theta_2(q, \gamma, v) \left| D_q \Psi(b) \right|^r \right)^{1/r}
+ (b - a)(1 - \gamma)(\frac{v^2}{2} \left| D_q \Psi(a) \right|^r + \frac{v(2 - v)}{2}) \left| D_q \Psi(b) \right|^r)^{1/r},
$$
where \(\Theta_2(q, \gamma, \nu) \) is given in Remark 5 and \(\Delta_1(q, \gamma, \nu) \) is defined by

\[
\Delta_1(q, \gamma, \nu) = \int_0^\nu |qt + \gamma \nu - 1| \, d_q t
\]

\[
= \begin{cases}
(1 - \gamma \nu) - \frac{q}{2|q|}, & \gamma \nu + q \leq 1; \\
2(1 - \gamma \nu)^2 + \frac{q}{2|q|} - (1 - \gamma \nu), & \gamma \nu + q > 1,
\end{cases}
\]

which appears in [46].

Theorem 5. Suppose that \(\Psi : [a, b] \to \mathbb{R} \) is a \((p, q,b)\)-differentiable function on \(I_1 \) such that \(bD_{p,q} \Psi \) is a continuous and integrable function on \(I_2 \) with \(\gamma, \nu \in [0, 1] \). If \(\|bD_{p,q} \Psi\|_r \) for \(r > 1 \) with \(1/s + 1/r = 1 \) is a convex function on \([a, b] \), then

\[
\left| \frac{1}{p(b-a)} \int_{pa+(1-p)b}^{b} \Psi(x)^b d_{p,q} x - \gamma [v \Psi(a) + (1 - v) \Psi(b)] - (1 - \gamma) \Psi(va + (1 - v)b) \right| \\
\leq (b - a) (\Delta_2(p, q, \gamma, \nu))^{1/s} \left(\left[\frac{bD_{p,q} \Psi(a)}{2|p,q|} + \frac{v(2|p,q| - 1)}{|p,q|} \right] \frac{bD_{p,q} \Psi(b)}{|b|} \right)^{1/r},
\]

(38)

where

\[\Delta_2(p, q, \gamma, \nu) = \int_0^1 |qt + \gamma \nu - 1| \, d_q t. \]

Proof. Taking the absolute value of both sides of (10) and using Theorem 1, we obtain

\[
\left| \frac{1}{p(b-a)} \int_{pa+(1-p)b}^{b} \Psi(x)^b d_{p,q} x - \gamma [v \Psi(a) + (1 - v) \Psi(b)] - (1 - \gamma) \Psi(va + (1 - v)b) \right| \\
= (b - a) \left| \int_0^\nu (qt + \gamma \nu - \gamma) \, bD_{p,q} \Psi(ta + (1 - t)b) \, d_{p,q} t + \int_0^\nu (qt + \gamma \nu - 1) \, bD_{p,q} \Psi(ta + (1 - t)b) \, d_{p,q} t \right| \\
\leq (b - a) \left[\int_0^\nu |qt + \gamma \nu - 1| \, bD_{p,q} \Psi(ta + (1 - t)b) \, d_{p,q} t + \int_0^\nu (1 - \gamma) \, bD_{p,q} \Psi(ta + (1 - t)b) \, d_{p,q} t \right] \\
\leq (b - a) \left(\int_0^\nu |qt + \gamma \nu - 1| \, d_{p,q} t \right)^{1/s} \left(\int_0^\nu \left[bD_{p,q} \Psi(ta + (1 - t)b) \right] \, d_{p,q} t \right)^{1/r} \\
+ (b - a)(1 - \gamma) \left(\int_0^\nu \left[bD_{p,q} \Psi(ta + (1 - t)b) \right]^{1/s} \, d_{p,q} t \right)^{1/r}.
\]

Applying the convexity of \(\|bD_{p,q} \Psi\|_r \), we have
\[
\frac{1}{p(b-a)} \int_{p \alpha + (1-p)b}^{b} \Psi(x)^{b} d_{p,q} x - \gamma[v \Psi(a) + (1-v) \Psi(b)] - (1 - \gamma) \Psi(va + (1-v)b) \leq (b-a) \left(\int_{0}^{1} |qt + \gamma v - 1|^{s} d_{p,q} t \right)^{1/s} \left[\left| \frac{b_{p,q} \Psi(a)}{\Psi} \right|^{r} + \left| \frac{b_{p,q} \Psi(b)}{\Psi} \right|^{r} \right]^{1/r} \\
+ (b-a) (1-\gamma) \left(\int_{0}^{1} t d_{p,q} t + \frac{1}{p_{q}} \int_{0}^{1} \frac{1}{p_{q}} \int_{0}^{1} (1-t) d_{p,q} t \right)^{1/r} \\
= (b-a) (\Delta_{2}(p,q,\gamma,v))^{1/s} \left[\left| \frac{b_{p,q} \Psi(a)}{\Psi} \right|^{r} + \left| \frac{b_{p,q} \Psi(b)}{\Psi} \right|^{r} \right]^{1/r}, \\
\]
which completes the proof. \(\square\)

Remark 10. If \(p = 1\), then (38) is reduced as follows:
\[
\frac{1}{p(b-a)} \int_{p \alpha + (1-p)b}^{b} \Psi(x)^{b} d_{p,q} x - \gamma[v \Psi(a) + (1-v) \Psi(b)] - (1 - \gamma) \Psi(va + (1-v)b) \leq (b-a) (\Delta_{2}(q,\gamma,v))^{1/s} \left[\left| \frac{b_{q} \Psi(a)}{\Psi} \right|^{r} + \left| \frac{b_{q} \Psi(b)}{\Psi} \right|^{r} \right]^{1/r} \\
+ (b-a) (1-\gamma) v^{1/s} \left(\frac{v^{2}}{2_{q}} \left| \frac{b_{q} \Psi(a)}{\Psi} \right|^{r} + \left| \frac{v(2_{q} - v)}{2_{q}} \right| \left| \frac{b_{q} \Psi(b)}{\Psi} \right|^{r} \right)^{1/r}, \\
\] (39)
where
\[
\Delta_{2}(q,\gamma,v) = \int_{0}^{1} |qt + \gamma v - 1|^{s} d_{q} t, \\
\]
which appears in [46].

Corollary 4. Under the assumptions of Theorems 4 and 5 with \(v = p/2_{p,q}\), if we choose \(\gamma = 0\), \(\gamma = 1/3\), \(\gamma = 1/2\) and \(\gamma = 1\), then we obtain the midpoint-type integral inequality, the Simpson-like integral inequality, the averaged midpoint-trapezoid-type integral inequality and the trapezoid-type integral inequality, respectively.

Remark 11. From Corollary 4, if \(p = 1\), then we have some \(q\)-integral inequalities, which appears in [46].

4. Examples

In this section, we show two examples to investigate our main theorems.

Example 1. Let \(f : [0,1] \rightarrow \mathbb{R}\) be defined by \(f(x) = x^2\). From Theorem 3 with \(p = 3/4\), \(q = 1/2\), \(\nu = 3/5\) and \(\gamma = 1/3\), the left side of (27) becomes
\[
\frac{1}{p(b-a)} \int_{p \alpha + (1-p)b}^{b} f(x)^{b} d_{p,q} x - \gamma[vf(a) + (1-v)f(b)] - (1 - \gamma) f(va + (1-v)b) \\
= \left| \frac{4}{3} \int_{1/4}^{1} x^{2 \frac{1}{2}} d_{3/4} x - \frac{1}{3} \left[\frac{3}{5} f(0) + \frac{2}{3} f(1) \right] - \frac{2}{3} f \left(\frac{2}{3} \right) \right| \\
\approx |0.2736 - 0.1333 - 0.1066| \approx 0.0337,
\]
and the right side of (27) becomes
\[(b - a) \left[\left\{ \Lambda_1(p, q, \gamma, v) + \Lambda_2(p, q, \gamma, v) - \Lambda_3(p, q, \gamma, v) \right\} \| b D_{p,q} f(a) \| \right. \\
+ \left[\Theta_1(p, q, \gamma, v) + \Theta_2(p, q, \gamma, v) - \Theta_3(p, q, \gamma, v) \right]\| b D_{p,q} f(b) \|] \\
\approx (1 - 0)\left[\left\{ 0.0517 + 0.2189 - 0.1394 \right\} \cdot |0.75| + \left\{ 0.0264 + 0.1810 - 0.1605 \right\} \cdot |2| \right] \\
\approx 0.1922.

It is clear that
\[0.0337 \leq 0.1922,
\]
which demonstrates the result described in Theorem 3.

Example 2. Let \(f : [0, 1] \rightarrow \mathbb{R} \) be defined by \(f(x) = x^2 \). From Theorem 3 with \(p = 3/4 \), \(q = 1/2 \), \(\gamma = 1/3 \) and \(r = 5 \), the left side of (37) becomes
\[
\frac{1}{p(b - a)} \int_{pa+(1-p)b}^{b} f(x)^{b} D_{p,q} x - \gamma \left| \nu f(a) + (1 - \nu) f(b) \right| - (1 - \gamma) f(xa + (1 - \nu)b) \\
= \frac{4}{3} \int_{\frac{1}{4}}^{1} x^2 \frac{1}{3} f(x)^{\frac{1}{3}} - \frac{1}{3} \left[3 \frac{2}{5} f(0) + \frac{2}{5} f(1) \right] - \frac{2}{3} f^\left(\frac{2}{5}\right) \\
\approx \left| 0.2736 - 0.1333 - 0.1066 \right| \approx 0.0337,
\]
and the right side of (37) becomes
\[
(b - a) \left(\Lambda_1(p, q, \gamma, v) \right)^{1-1/r} \left(\Lambda_2(p, q, \gamma, v) \right)^{1-1/r} + \Theta_1(p, q, \gamma, v) \left(\Lambda_3(p, q, \gamma, v) \right)^{1-1/r} \\
+ (b - a)(1 - \gamma)v^{1-1/r} \left(\nu^2 \left[D_{p,q} \Psi(a) \right]^{1/r} + \nu((2p,q - \nu)(2p,q) \left[b D_{p,q} \Psi(b) \right]^{1/r} \right) \\
\approx (1 - 0)\left(0.4 \right)^{1-1/5} \left(0.2189 \cdot |0.75|^{5} + 0.1810 \cdot |2|^{5} \right)^{1/5} \\
+ (1 - 0)(1 - 0.3333)(0.6)^{1-1/5} \left(0.2880 \cdot |0.75|^{5} + 0.3120 \cdot |2|^{5} \right)^{1/5} \approx 1.3868.
\]

It is clear that
\[0.0337 \leq 1.3868,
\]
which demonstrates the result described in Theorem 4.

5. Conclusions

In this work, we established some new estimates of \((p, q)\)-integral inequalities related to Hermite–Hadamard inequalities for which the first-order \((p, q)\)-derivatives in absolute value are convex functions. The main results in this study were proven to be generalizations of some previously proved results of \(q\)-integral inequalities related to Hermite–Hadamard inequalities for \(q\)-differentiable convex functions. Furthermore, the obtained results were used to study some special cases, namely the midpoint-type integral inequality, Simpson-like integral inequality, averaged midpoint-trapezoid-type integral inequality, and trapezoid-type integral inequality. Examples were given to illustrate the investigated results.

Author Contributions: Conceptualization, K.N.; investigation, W.L. and K.N.; methodology, K.N.; validation, W.L., K.N., J.T., S.K.N. and H.B.; visualization, W.L., K.N., J.T., S.K.N. and H.B.; writing—original draft, W.L.; writing—review and editing, W.L. and K.N. All authors have read and agreed to the published version of the manuscript.
Funding: This research received funding support from the National Science, Research and Innovation Fund (NSRF), Thailand.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: We would like to thank the anonymous referees for their comments, which were helpful in the improvement of this paper. The first author is supported by the Development and Promotion of Science and Technology talents project (DPST), Thailand.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Jackson, F.H. On a q-definite integrals. *Q. J. Pure Appl. Math.* **1910**, *41*, 193–203.
2. Bangerzrako, G. Variational q-calculus. *J. Math. Anal. Appl.* **2004**, *289*, 650–665. [CrossRef]
3. Gauchman, H. Integral inequalities in q-calculus. *Comput. Math. Appl.* **2004**, *47*, 281–300. [CrossRef]
4. Miao, Y.; Qi, F. Several q-integral inequalities. *J. Math. Inequal.* **2009**, *1*, 115–121. [CrossRef]
5. Raychev, P.P.; Roussev, R.P.; Smirnov, Y.F. The quantum algebra SU_q(2) and rotational spectra of deformed nuclei. *J. Phys. G Nucl. Part. Phys.* **1990**, *16*, 137–141. [CrossRef]
6. Aral, A.; Gupta, V.; Agarwal, R.P. *Applications of q-Calculus in Operator Theory*; Springer Science+Business Media: New York, NY, USA, 2013.
7. Ernst, T. *A Comprehensive Treatment of q-Calculus*; Springer: Basel, Switzerland, 2012.
8. Page, D.N. Information in black hole radiation. *Phys. Rev. Lett.* **1993**, *71*, 3743–3746. [CrossRef]
9. Gavrilik, A.M. q-Serre relations in U_q(U_n) and q-deformed meson mass sum rules. *J. Phys. A Math. Gen.* **1994**, *27*, L91–194. [CrossRef]
10. Ernst, T. A method for q-calculus. *J. Nonlinear Math. Phys.* **2003**, *10*, 487–525. [CrossRef]
11. Tariboon, J.; Ntouyas, S.K. Quantum calculus on finite intervals and applications to impulsive difference equations. *Adv. Differ. Equ.* **2013**, *2013*, 282. [CrossRef]
12. Bermudo, S.; Körüs, P.; Nápoles Valdés J.E. On q-Hermite-Hadamard inequalities for general convex functions. *Acta Math. Hungar.* **2020**, *162*, 364–374. [CrossRef]
13. Budak, H.; Erden, S.; Ali, M.A. Simpson- and Newton-type inequalities for convex functions via newly defined quantum integrals. *Math. Meth. Appl. Sci.* **2020**, *44*, 378–390. [CrossRef]
14. Asawasamrit, S.; Sudprasert, C.; Ntouyas, S.; Tariboon, J. Some result on quantum Hahn integral inequalities. *J. Inequal. Appl.* **2019**, *2019*, 154. [CrossRef]
15. Noor, M.A.; Awan, M.U.; Noor, K.I. Quantum Ostrowski inequalities for q-differentiable convex functions. *J. Math. Inequal.* **2016**, *10*, 1013–1018. [CrossRef]
16. Yang, W. Some new Fejér type inequalities via quantum calculus on finite intervals. *ScienceAsia* **2017**, *43*, 123–134. [CrossRef]
17. Budak, H.; Ali, M.A.; Tarhanaci, M. Some new quantum Hermite-Hadamard-Like inequalities for coordinated convex functions. *J. Opt. Theory Appl.* **2020**, *186*, 899–910. [CrossRef]
18. Jhanthanam, S.; Tariboon, J.; Ntouyas, S.K.; Nonlaopon, K. On q-Hermite-Hadamard inequalities for differentiable convex functions. *Mathematics* **2019**, *7*, 632. [CrossRef]
19. Prabseang, J.; Nonlaopon, K.; Ntouyas, S.K. On the refinement of quantum Hermite-Hadamard inequalities for convex functions. *J. Math. Inequal.* **2020**, *14*, 875–885. [CrossRef]
20. Alp, N.; Sariyaya, M.Z.; Kunt, M.; Işcan, İ. q-Hermite-Hadamard inequalities and quantum estimates for midpoint type inequalities via convex and quasi-convex functions. *J. King Saud Univ. Sci.* **2018**, *30*, 193–203. [CrossRef]
21. Prabseang, J.; Nonlaopon, K.; Tariboon, J. Quantum Hermite-Hadamard inequalities for double integral and q-differentiable convex functions. *J. Math. Inequal.* **2019**, *13*, 675–686. [CrossRef]
22. Yang, L.; Yang, R. Some new Hermite-Hadamard type inequalities for h-convex functions via quantum integral on finite intervals. *J. Math. Comput. Sci.* **2018**, *18*, 74–86. [CrossRef]
23. Noor, M.A.; Noor, K.I.; Awan, M.U. Some quantum estimates for Hermite-Hadamard inequalities. *Appl. Math. Comput.* **2015**, *251*, 673–679. [CrossRef]
24. Ali, M.A.; Budak, H.; Abbas, M.; Chu, M.Y. Quantum Hermite-Hadamard-type inequalities for functions with convex absolute values of second q^3-derivatives. *Adv. Differ. Equ.* **2021**, *2021*, 7. [CrossRef]
25. Liu, W.J.; Zhuang, H.F. Some quantum estimates of Hermite-Hadamard inequalities for convex functions. *J. Appl. Anal. Comput.* **2017**, *7*, 501–522.
26. Chakrabarti, R.; Jagannathan, R.A. (p, q)-oscillator realization of two-parameter quantum algebras. *J. Phys. A Math. Gen.* **1991**, *24*, L711–L718. [CrossRef]
27. Tunc, M.; Göv, E. (p, q)-Integral inequalities. *RGMIA Res. Rep. Coll.* **2016**, *19*, 1–13.
28. Tunç, M.; Göv, E. Some new integral inequalities via \((p,q)\)-calculus on finite intervals. *RGMIA Res. Rep. Coll.* 2016, 19, 1–12. [CrossRef]

29. Vivas-Cortez, M.; Ali, M.A.; Budak, H.; Kalsoom, H.; Agarwal, P. Some new Hermite-Hadamard and related inequalities for convex functions via \((p,q)\)-Integral. *Entropy* 2021, 23, 828. [CrossRef]

30. Kunt, M.; İşcan, İ.; Alp, N.; Sarıkaya, M.Z. \((p,q)\)-Hermite-Hadamard inequalities and \((p,q)\)-estimates for midpoint type inequalities via convex and quasi-convex functions. *Rev. R. Acad. Cienc.* 2018, 112, 969–992.

31. Araci, S.; Duran, U.; Acikgoz, M.; Srivastava, H.M. A certain \((p,q)\)-derivative operator and associated divided differences. *J. Inequal. Appl.* 2016, 2016, 301. [CrossRef]

32. Soontharanon, J.;Sitthiwirattham, T. Fractional \((p,q)\)-calculus. *Adv. Differ. Equ.* 2020, 2020, 35. [CrossRef]

33. Prabseang, J.; Nonlaopon, K.; Tariboon, J. \((p,q)\)-Hermite-Hadamard inequalities for double integral and \((p,q)\)-differentiable convex functions. *Axioms* 2019, 8, 68. [CrossRef]

34. Duran, U.; Acikgoz, M.; Esi, A.; Araci, S. A note on the \((p,q)\)-Hermite polynomials. *Appl. Math. Inf. Sci.* 2018, 12, 227–231. [CrossRef]

35. Thongjob, S.; Nonlaopon, K.; Ntouyas, S.K. Some \((p,q)\)-Hardy type inequalities for \((p,q)\)-integrable functions. *AIMS Math.* 2020, 6, 77–89. [CrossRef]

36. Luangboon, W.; Nonlaopon, K.; Tariboon, J.; Ntouyas, S.K. On Simpson type inequalities for generalized strongly preinvex functions via \((p,q)\)-calculus and applications. *AIMS Math.* 2021, 6, 9236–9261. [CrossRef]

37. Nasiruzzaman, M.; Mukheimer, A.; Mursaleen, M. Some Opial-type integral inequalities via \((p,q)\)-calculus. *J. Inequal. Appl.* 2019, 2019, 295. [CrossRef]

38. Ali, M.A.; Budak, H.; Murtaza, G.; Chu, Y.M. Post-quantum Hermite-Hadamard type inequalities for interval-valued convex functions. *J. Inequal. Appl.* 2021, 2021, 84. [CrossRef]

39. Awan, M.U.; Talib, S.; Noor, M.A.; Noor, K.I.; Chu, Y.M. On post quantum integral inequalities. *J. Math. Inequal.* 2021, 2, 629–654. [CrossRef]

40. Yu, B.; Luo, C.Y.; Du, T.S. On the refinements of some important inequalities via \((p,q)\)-calculus and their applications. *J. Inequal. Appl.* 2021, 2021, 82. [CrossRef]

41. Sitthiwirattham, T.; Murtaza, G.; Ali, M.A.; Promsakon, C.; Sial, I.B.; Agarwal, P. Post-quantum midpoint-type inequalities associated with twice-differentiable functions. *Axioms* 2022, 11, 46. [CrossRef]

42. Luangboon, W.; Nonlaopon, K.; Tariboon, J.; Ntouyas, S.K. Simpson- and Newton-type inequalities for convex functions via \((p,q)\)-calculus. *Mathematics* 2021, 9, 1338. [CrossRef]

43. Neang, P.; Nonlaopon, K.; Tariboon, J.; Ntouyas, S.K. Fractional \((p,q)\)-calculus on finite intervals and some integral inequalities. *Symmetry* 2021, 13, 504. [CrossRef]

44. Raees, M.; Kashuri, A.; Awan, M.U.; Anwar, M. Some new post-quantum integral inequalities involving multi-parameter and their applications. *Math. Meth. Appl. Sci.* 2022, 2022, 1–23. [CrossRef]

45. Vivas-Cortez, M.; Awan, M.U.; Talib, S.; Kashuri, A.; Noor, M.A. Some new post-quantum integral inequalities involving twice \((p,q)\)-differentiable \(\varphi\)-preinvex functions and applications. *Axioms* 2021, 10, 283. [CrossRef]

46. Li, Y.K.; Ali, M.A.; Budak, H.; Abbas, M.; Chu, Y.M. A new generalization of some quantum integral inequalities for quantum differentiable convex functions. *Adv. Differ. Equ.* 2021, 2021, 225. [CrossRef]

47. Kac, V.; Cheung, P. *Quantum Calculus*; Springer: New York, NY, USA, 2002.

48. Sudsutad, W.; Ntouyas, S.K.; Tariboon, J. Quantum integral inequalities for convex functions. *J. Math. Inequal.* 2015, 9, 781–793. [CrossRef]

49. Tariboon, J.; Ntouyas, S.K. Quantum integral inequalities on finite intervals. *J. Inequal. Appl.* 2014, 2014, 121. [CrossRef]

50. Budak, H. Some trapezoid and midpoint type inequalities for newly defined quantum integrals. *Proyecciones* 2021, 40, 199–215. [CrossRef]

51. Alomari, M.; Darus, M.; Dragomir, S.S. New inequalities of Simpson’s type for \(s\)-convex functions with applications. *Res. Rep. Collect.* 2009, 12, 1–18.

52. Xi, B.Y.; Qi, F. Some Hermite-Hadamard type inequalities for differentiable convex functions and applications. *Hacet. J. Math. Stat.* 2013, 42, 243–257.