Prediction Models in Degenerative Spine Surgery: A Systematic Review

Daniel Lubelski, MD, Andrew Hersh, BA, Tej D. Azad, MD, MS, Jeff Ehresman, BS, Zachary Pennington, BS, Kurt Lehner, MD, and Daniel M. Sciubba, MD

Abstract

Study Design: Systematic review.
Objectives: To review the existing literature of prediction models in degenerative spinal surgery.
Methods: Review of PubMed/Medline and Embase databases was conducted to identify articles between January 1, 2000 and March 1, 2020 that reported prediction model performance for outcomes following elective degenerative spine surgery.
Results: Thirty-one articles were included. Twenty studies were of thoracolumbar, 5 were of cervical, and 6 included all spine patients. Five studies were externally validated. Prediction models were developed using machine learning (42%) and logistic regression (42%) as well as other techniques. Web-based calculators were included in 45% of published articles. Various outcomes were investigated, including complications, infection, length of stay, discharge disposition, reoperation, readmission, disability score, back pain, leg pain, return to work, and opioid dependence.
Conclusions: Significant heterogeneity exists in methods used to develop prediction models of postoperative outcomes after degenerative spine surgery. Most internally validate their scores, but a few have been externally validated. Areas under the curve for most models range from 0.6 to 0.9. Techniques for development are becoming increasingly sophisticated with different machine learning tools. With further external validation, these models can be deployed online for patient, physician, and administrative use, and have the potential to optimize outcomes and maximize value in spine surgery.

Keywords
degenerative, degenerative disc disease, cervical, lumbar

Introduction

Value-based care has become a manifest focus of American health care policy and is driven by efforts to improve outcomes while reducing costs. Hospital systems and policy makers continue to explore methods to reduce complications, improve patient education, and increase efficiency in perioperative and postoperative settings. Given substantial variability between surgeons in the indications and interventions used for given degenerative spinal pathologies, there is commensurate variability in outcomes. Randomized controlled trials (RCTs) remain the gold standard for determining the efficacy of an intervention and a small number have been conducted for the management of degenerative spine pathology. However, RCTs of surgical interventions have inherent challenges and cannot be performed for every clinical question. Cost and comparative effectiveness studies have emerged as an alternative to identify operations that are more likely to yield high value outcomes. Another burgeoning approach is the development and validation of clinical prediction models.

Predictive analytics in clinical medicine has been enabled by the rapid adoption of electronic medical records, development of national registries and prospective multicenter databases, and increased awareness of machine and statistical learning methods. Clinical prediction models have the potential to provide patient-specific risk profiles and expected outcomes. Another burgeoning approach is the development and validation of clinical prediction models.

Corresponding Author:
Daniel M. Sciubba, Department of Neurosurgery, Johns Hopkins University School of Medicine, 600 North Wolfe Street, Meyer 5-185A, Baltimore, MD 21287, USA.

Email: dsciubba1@jhmi.edu

Creative Commons Non Commercial No Derivs CC BY-NC-ND: This article is distributed under the terms of the Creative Commons Attribution-Non Commercial-NoDerivs 4.0 License (https://creativecommons.org/licenses/by-nc-nd/4.0/) which permits non-commercial use, reproduction and distribution of the work as published without adaptation or alteration, without further permission provided the original work is attributed as specified on the SAGE and Open Access pages (https://us.sagepub.com/en-us/nam/open-access-at-sage).
With these tools, surgeons may be able to give a patient their expected likelihood of success for a given operation, as well as their chance for adverse outcomes and complications. On a hospital-wide and national level, these tools can help identify targets for quality improvement efforts and policy making.

Given the demonstrated variability in degenerative spinal surgery practice and outcomes, the application of more robust prediction models to this field may lead to substantial improvements in patient care. However, the studies of prediction model development for degenerative spinal surgery have been heterogeneous. These articles have focused on postoperative outcomes, length of stay (LOS), discharge disposition, and adverse events. They have also varied in terms of design, sample size, method of validation, and mode of deployment. The goal of this systematic review was to summarize the existing literature on prediction models in degenerative spinal surgery. We categorized the existing degenerative spinal surgery prediction models based on their respective outcomes and design and report the relative strengths and weaknesses of these studies to aid in interpretation and consideration for clinical deployment.

Methods

We performed a search of the English language literature using the PubMed/Medline and Embase databases to identify articles between January 1, 2000 and March 1, 2020 that reported prediction model performance for outcomes following elective degenerative spine surgery.

Search terms included (prediction OR predictive) AND (spine OR spinal OR “spine surgery” OR “laminectomy” OR “interbody fusion” OR “diskectomy” OR “discectomy” OR “spinal fusion”). We further queried the bibliographies of the included studies to identify additional relevant articles.

Inclusion criteria were English language articles involving adult patients who underwent elective spine surgery for a degenerative spinal pathology. Studies involving tumor, infection, and deformity were excluded, as were nonclinical studies. All studies were required to have a description of a model that could facilitate inputting patient-level data to predict the outcome of interest. Prediction model outcomes could include functional/disability/pain scores or more objective measures such as LOS, reoperation, readmission, and complications.

Results

We identified 1535 unique articles (Figure 1), of which 48 underwent full-text review leading to the inclusion of 31 articles in this review. Reasons for exclusion included no mention of a prediction model (n = 7), outcomes not fitting inclusion criteria (n = 5), and only abstract available (n = 5). Of these 31
Table 1. Studies Evaluating Complications During/After Spine Surgery.

Author, year	Institutions	Design	Time length	Sample size	Internal AUC	Calib?	Internal validation	External validation	Calc
Lee, 2014	Single	Retrospective	2 years	1476	Overall: 0.76 Major: 0.81	Yes	Random number generator	Overall: 0.70 Major: 0.85	Yes
McGirt, 2015	Single	Prospective	1 year	1803	Overall: 0.72	Yes	Training/validation	No	No
Ratliff, 2016	Multiple	Retrospective	30 days	279315	Overall: 0.70 Pulmonary: 0.72	No	Training/validation	Veeravagu: 0.72	Yes
Kim, 2018	Multiple	Retrospective	30 days	22629	Cardiac: 0.71 VTE: 0.57 Infection: 0.61	No	Training/validation	No	No
Han, 2019	Multiple	Retrospective	>1 year	1106234	Overall: 0.70 Infection: 0.72	Yes	Training/validation	Bootstrapping	No
Janssen, 2019	Single	Retrospective	30 days	898	Overall: 0.72	Yes	No	No	No

Abbreviations: VTE, venous thromboembolism; AUC, area under the curve; Calib?, calibration performed?; Calc, whether the authors reported that they developed a Web-based calculator.

Table 2. Prediction Models for Reoperation and Readmission After Spine Surgery.

Author, year	Institutions	Design	Time length	Sample size	Internal AUC	Calib?	Internal validation	External validation	Calc
McGirt, 2015	Single	Prospective	30 days	1803	Readmit 0.74	Yes	Training/validation	No	No
Lubelski, 2017	Single	Retrospective	90 days	952	Reop 0.91	Yes	Bootstrapping	Yes	No
Goyal, 2019	Multi	Retrospective	30 days	59145	Readmit 0.66	No	Training/validation	No	No
Hopkins, 2019	Multi	Retrospective	30 days	23264	Readmit 0.81	No	Training/validation	No	No
Siccoli, 2019	Single	Retrospective	1 year	635	Reop 0.63	Yes	Training/validation	No	No

Abbreviations: Reop, reoperation; Readmit, readmission; AUC, area under the curve; Calib?, calibration performed?; Calc, whether the authors reported that they developed a Web-based calculator.

articles, 5 articles (16%) included external validation. Of the 31 included studies, 20 (65%) were of thoracolumbar surgeries, 5 (16%) were cervical surgeries, and 6 (19%) were inclusive of patients undergoing any spinal surgery.

There was heterogeneity in how the prediction models were developed. Thirteen (42%) used machine learning, 13 (42%) used logistic regression, 2 (6%) used linear regression, 1 (3%) used binomial regression, 1 (3%) used both logistic and linear regression, and 1 (3%) used Cox proportional hazards regression. For internal validation, 17 (55%) used cross-validation by splitting their cohort into a training and validation sets, 9 (29%) used bootstrapping, 1 (3%) used random number generators, and 4 (13%) did not specify. Web-based calculators were included in 14 (45%) of the published articles. Various outcomes were investigated, including overall complications, infection, LOS, discharge disposition, reoperation, readmission, Oswestry Disability Index (ODI) score, back pain, leg pain, return to work, and opioid dependence.

Six articles looked at complications (Table 1), which included infection (n = 3), all-inclusive complications (n = 4), pulmonary complications (n = 2), cardiac complications (n = 2), venous thromboembolism (n = 1), and neurologic complications (n = 1). Of these, 3 were single institution studies, 1 used the American College of Surgeons National Surgical Quality Improvement Program (ACS-NSQIP) database, 1 used the Truven Health Analytics MarketScan database, and 1 used both the Truven database and the Centers for Medicare and Medicaid Services (CMS) Medicare database. One was prospective while 5 were retrospective. Study follow-up ranged from 30 days to 2 years. Area under the curve (AUC) ranged from 0.57 to 0.72.

Reoperation (n = 2) and readmission (n = 4) were examined by 5 articles (Table 2). Three were single institution studies and 2 used the ACS-NSQIP database. One was prospective while 4 were retrospective. Study follow-up ranged from 30 days to 1 year. AUC ranged from 0.63 to 0.91.

Nine studies examined the LOS and discharge disposition of patients (Table 3). Of these, 2 examined discharge to a rehabilitation facility, 1 examined discharge to any facility, 5 examined nonhome discharge, and 2 examined prolonged LOS. Three were single institution, 5 used the ACS-NSQIP database, and 1 used the NeuroPoint Quality Outcomes Database (QOD) database. One was prospective while 8 were retrospective. AUC ranged from 0.75 to 0.89.

Eighteen articles examined functional outcomes (Table 4), which included quality-of-life measures (n = 11), opioid dependence (n = 3), returning to work (n = 2), patient satisfaction (n = 2), and persistent postsurgical pain (n = 1). Quality-of-life outcome measures included scores on the following validated inventories: ODI, visual analog scale for
leg and lower back pain, EuroQol 5-dimensions (EQ-5D), Patient Health Questionnaire-9 (PHQ-9), Pain and Disability Questionnaire (PDQ), Short Form 6-dimensions (SF-6D), and the modified Japanese Orthopedic Association (mJOA). Seven were single institution studies, 5 used the QOD database, and 6 were multi-institutional. Four were prospective while 14 were retrospective. Follow-up ranged from 90 days to 2 years. AUC ranged from 0.64 to 0.81. Specifically, AUC ranged from 0.64 to 0.81 for quality-of-life measures, 0.70 to 0.80 for opioid dependence, 0.71 to 0.81 for return to work, and 0.64 to 0.79 for patient satisfaction. AUC was 0.66 for persistent postsurgical pain.

Discussion

We identified 31 studies reporting prediction models for degenerative spinal surgery. These have mainly focused on predicting complications, readmission, reoperation, and functional/quality-of-life outcomes. We found that while almost all studies attempted to internally validate their model, external validation was rare. AUC values ranged from as low as 0.6 to as high as 0.97, and only two-thirds of papers reported calibration of their models. While most articles reported discrimination, calibration is equally important when trying to identify patients that will develop a given event versus those who will not. One should not use a model where the absolute risk estimates are not accurate. Sometimes calibration can be good in certain risk groups, but overestimates or underestimates risk in different populations. For this reason, better models are those that report both these values. Furthermore, just under half the studies reported their model in the form of a web-based calculator. Model deployment in this format greatly enhances the ability to report both their model and the datasets used to create them varied greatly. Lee et al. retrospectively evaluated 1476 patients undergoing degenerative spine surgery from a single institutional surgical registry to construct a predictive model of postoperative major complications, minor complications, surgical site infection, and duralotomy. They reported an AUC of 0.76 for any complication and 0.81 for major complications and deployed their model at http://depts.washington.edu/spinersk/. McGirt et al. prospectively evaluated 1803 patients undergoing lumbar spine surgery at a single institution to produce a model that incorporated 45 baseline variables to predict postoperative complications with an AUC of 0.72. Most recently, Janssen et al. reported a single institution retrospective series predicting postoperative infection with an AUC of 0.72.

The other studies that published models of complications used multi-institutional data. Ratliff et al. retrospectively evaluated 279,315 patients from a longitudinal national claims database to construct a predictive model of complications after surgery. They produced a model with an AUC of 0.70 and deployed the algorithm in a freely available smartphone application (http://itunes.apple.com/app/ratool/id1087663216). The authors also externally validated this model using data from a single-institution prospective patient series (N = 246). Kim et al. retrospectively evaluated 22,629 patients using the cross-sectional NSQIP database to develop machine learning models to identify risk factors for complications after posterior lumbar spine fusion. AUCs for logistic regression and artificial neural network models both outperformed benchmark American Society of Anesthesiologists (ASA) class for predicting complications. In their logistic regression model, the AUC for predicting cardiac complications was 0.66, for predicting venous thromboembolism was 0.59, for predicting wound infection was 0.61, and for predicting mortality was 0.7. Of note, several authors including Sebastian et al. attempted to validate the previously developed NSQIP Surgical risk calculator (riskcalculator.facs.org). They found that the calculator generally had relatively poor predictive performance across all outcomes measured, including an AUC of 0.56 for reoperation, 0.61 for any complication, 0.61 for serious complications, and 0.63 for surgical site infection.

Table 3. Prediction Models for Length of Stay and Discharge of Patients Undergoing Spine Surgery.

Author, year	Institutions	Design	Sample size	Internal AUC	Calib?	Internal validation	External validation	Calc
McGirt, 2015	Single	Prospective	1803	Rehab: 0.84	Yes	Training/validation	No	No
Guan, 2018	Multi	Retrospective	217	Nonhome disch: 0.80	Yes	N/A	No	No
Karhade, 2018	Multi	Retrospective	26364	Nonhome disch: 0.82	Yes	Training/validation	Stopa: 0.89	Yes
Goyal, 2019	Multi	Retrospective	59145	Nonhome disch: 0.87	No	Training/validation	No	No
Ogink, 2019	Multi	Retrospective	9338	Nonhome disch: 0.75	Yes	Training/validation	No	Yes
Ogink, 2019	Multi	Retrospective	28600	Nonhome disch: 0.75	Yes	Training/validation	No	Yes
Siccoli, 2019	Single	Retrospective	635	Prolonged LOS: 0.77	Yes	Training/validation	No	No
Harada, 2020	Multi	Retrospective	10453	Facility disch: 0.75	Yes	Training/validation	Harada: 0.77	No
Lubelski, 2020	Single	Retrospective	257	Rehab: 0.89	No	Bootstrapping	Prolonged LOS: 0.89	Yes

Abbreviations: Disch, discharge; Rehab, inpatient rehabilitation; AUC, area under the curve; Calib?, calibration performed; Calc, whether the authors reported that they developed a Web-based calculator.
Author, year	Institutions	Design	Time length	Sample size	Internal AUC	Calib?	Internal validation	External validation	Calc	
Spratt, 2004²⁷	Single	Prospective	1 year	40	AUC N/A, PPV 85.7%, NPV 100%	No	N/A	No	No	
Hegarty, 2012³⁷	Single	Prospective	90 days	53	PPSP: 0.66	No	Bootstrapping	No	No	
McGirt, 2015³¹	Single	Prospective	1 year	1803	ODI: $R^2 = 0.51$, Return to work: 0.79	Yes	Training/validation	No	No	
Asher, 2017³²	Multi	Retrospective	90 days	4694	Return to work: 0.71	Yes	Bootstrapping	No	Yes^a	
Lubelski, 2017¹⁷	Single	Retrospective	1 year	952	EQ-5D $R^2 = 0.43$, PHQ-9 $R^2 = 0.35$, PDQ $R^2 = 0.47$, Return to work: 0.71	Yes	Bootstrapping	No	Yes	
McGirt, 2017²⁶	Multi	Prospective	1 year	7618	ODI: 0.69, EQ-5D: 0.69, LBP: 0.67, Leg pain: 0.64	Yes	Bootstrapping	No	Yes^a	
Devin, 2018³³	Multi	Retrospective	90 days	4689	Return to work: 0.81	Yes	Bootstrapping	No	No	
Khor, 2018³⁸	Multi	Retrospective	1 year	1,583	ODI: 0.73, LBP: 0.75, Leg pain: 0.75	Yes	Training/validation	ODI: 0.71, LBP: 0.72, Leg pain: 0.83	No	Yes
Asher, 2019⁴⁰	Multi	Retrospective	1 year	4148	Patient satisfaction: 0.64	No	Bootstrapping	No	No	
Karhade, 2019³⁴	Multi	Retrospective	180 days	2737	Opioid dep: 0.80	Yes	Training/validation	No	Yes	
Karhade, 2019³⁵	Multi	Retrospective	180 days	5413	Opioid dep: 0.80	Yes	Training/validation	No	Yes	
Karhade, 2019³⁶	Multi	Retrospective	180 days	8,435	Opioid dep: 0.70	Yes	Training/validation	No	Yes	
Merali, 2019³⁹	Multi	Retrospective	2 years	539	SF-6D/mJOA: 0.7	No	Training/validation	No	No	
Pennings, 2019²⁹	Multi	Retrospective	N/A	719	Micro-disc $R^2 = 0.78$, Lami $R^2 = 0.80$, Lami + Fusion $R^2 = 0.79$	Yes	Bootstrapping	No	No	
Rundell, 2019³⁸	Multi	Retrospective	1 year	5840	Micro-disc: ODI: 0.76, NRS-BP: 0.75, NRS-LP: 0.74, PSI: 0.80, Lami: ODI: 0.76, NRS-BP: 0.74, NRS-LP: 0.73, PSI: 0.81, Lami + Fusion: ODI: 0.77, NRS-BP: 0.75, NRS-LP: 0.74, PSI: 0.79	Yes	Bootstrapping	No	No	
Siccoli, 2019¹⁶	Single	Retrospective	1 year	635	ODI: 0.73, LBP: 0.75, Leg pain: 0.72	Yes	Training/validation	No	No	
de Silva, 2020³¹	Single	Retrospective	1 year	64	mJOA: 0.69	No	N/A	No	No	
Staub, 2020³⁰	Single	Retrospective	1 year	1244	N/A	Yes	Training/validation	No	Yes	

Abbreviations: N/A, not available; AUC, area under the curve; PPV, positive predictive value; NPV, negative predictive value; LBP, low back pain; mJOA, modified Japanese Orthopedic Association; NRS, numeric rating scale (back pain and leg pain); PSI, Patient Satisfaction Index; PPSP, persistent postsurgical pain; ODI, Oswestry Disability Index; Microdisc, microdiscectomy; Lami, Laminectomy; Calib? calibration performed; Calc, whether the authors reported that they developed a Web-based Calculator.

^aNo longer available at published URL.
Han et al15 retrospectively evaluated 1 106 234 patients from the Truven MarketScan, Commercial database, the Truven MarketScan Medicare Databases, and the CMS Medicare database to develop predictive models of adverse events 30 days after spine surgery. The predictors identified included patient demographics, medical comorbidities, surgical indication, and operative characteristics and the resultant model had an AUC of 0.70 for predicting overall adverse events.

Reoperation and Readmission
Prediction models of reoperation and reoperation are particularly apt for current CMS hospital quality metrics. The articles that have looked at this have been primarily retrospective, with the exception of the article by McGirt and colleagues,11 who prospectively evaluated 1803 patients at a single institution to develop multiple predictive models, including one for readmission. Using 45 baseline variables, their model yielded an AUC of 0.74. They did not have external validation and the large number of baseline variables as compared with overall number of readmission events (N = 108), may potentially increase the risk of overfitting and thereby limit generalizability.

Of the models derived from retrospective analyses, Siccoli et al16 evaluated 635 patients from a prospective registry using machine learning algorithms to predict need for reoperation and patient outcomes at 12 months. Their model for reoperation had an AUC of 0.63, which is on the lower end of the spectrum. Lubelski et al17 retrospectively evaluated 952 patients from a single institution who underwent anterior or posterior cervical decompression/fusion and found that predictors of clinical outcomes included race, median income, body mass index, medical comorbidities, presenting symptoms, surgical indication, surgery type, and number of operated levels. They validated their cohort using bootstrapping and found an AUC of 0.91 for 90-day reoperation, 0.63 for 30-day emergency department visits, and 0.78 for 30-day readmission. A web-based calculator was deployed at https://riskcalc.org/PatientsEligibleforCervicalSpineSurgery/.

Two additional studies used the ACS-NSQIP database to generate calculators. Hopkins et al19 retrospectively evaluated 23 264 patients who underwent posterior lumbar fusion and found that predictors of 30-day readmission included medical comorbidities and whether surgery was a reoperation or index case. Despite the limitations of the NSQIP database, their model achieved an AUC of 0.81. Though not included in the original article, the authors did later report that this model was adequately calibrated.44 In contrast, the more inclusive study by Goyal et al,18 which had cervical and lumbar spinal fusion patients, developed a model with poorer predictive discrimination. They evaluated 59 145 patients from the ACS-NSQIP database and produced a model with an AUC of 0.66 for unplanned admission.

The national administrative databases are readily accessible and have very large numbers, which may increase the power for statistical analysis. Predictive models that are calculated from these databases, however, may be subject to significant bias because of how the data is collected, completeness of the included variables, and how they are categorized based on billing diagnosis and procedure codes. Models based on smaller sample sizes may potentially be superior if the data is collected prospectively and if the data collection is more nuanced and accurate. Ultimately, when evaluating different prediction models, it is important to consider how the data was collected, sample size, number of institutions included, as well as AUC, discrimination, calibration.

Length of Stay and Discharge
In addition to predicting adverse outcomes, predicting prolonged length of hospital stay and discharge disposition can improve patient experience, reduce health-facility associated complications, and reduce costs. Several authors have developed prediction models to determine expected length of stay as well as the likelihood of discharge to nonhome or inpatient rehabilitation destination.

Using their prospective data set, McGirt et al11 developed a model with an AUC of 0.84 for predicting discharge to in-patient rehabilitation. Lubelski et al16 retrospectively evaluated 257 patients from a single institution and published a model that had an AUC of 0.89 for likelihood of rehabilitation discharge as well as AUC of 0.89 for prolonged LOS (>7 days). The authors deployed this model as a web-based calculator at https://jhuspine1.shinyapps.io/RehabLOS/. Similarly, Siccoli et al16 retrospectively evaluated a prospective registry of 635 patients undergoing lumbar decompression surgery using machine learning algorithms to predict extended length of stay (>28 hours) with an AUC of 0.77.

Guan and colleagues25 used the Quality Outcomes Database (QOD), a multicenter prospective registry, to develop a prediction score of discharge needs for patients undergoing lumbar fusion. With an AUC of 0.81, their model could place a patient into the low- or high-score category, which would determine the likelihood of needing additional homes services or acute rehabilitation.

The other publications on predictors of rehabilitation discharge all used the ACS-NSQIP database to generate prediction models. Harada et al21 evaluated 10,453 patients from the ACS-NSQIP database who underwent open lumbar fusion (AUC of 0.75), and then externally validated the model using their institutional dataset (AUC of 0.77). Similarly, Karhade et al22 evaluated 26 364 ACS-NSQIP patients who underwent lumbar surgery for degenerative disc disorders to generate a model with an AUC of 0.82. Their model was then externally validated by Stopa and colleagues26 and the authors of the original article deployed a web-based calculator at https://sorg-apps.shinyapps.io/discdisposition/.

Ogink and colleagues23 then published an evaluation of 9338 patients in the ACS-NSQIP database who underwent surgery for degenerative spondylolisthesis and found that their model predicted nonhome discharge with an AUC of 0.75 (https://sorg-apps.shinyapps.io/spondydisposition/). Then in a parallel publication, the same group27 evaluated 28 600 patients
in the ACS-NSQIP database who underwent surgery for lumbar spinal stenosis and generated a model predicting nonhome discharge with an AUC of 0.75 (https://sorg-apps.shinyapps.io/stenosisdisposition/). Last, analyzing 59,145 ACS-NSQIP patients who underwent either cervical or lumbar spinal fusion, Goyal et al. produced a model predicting nonhome discharge with an AUC of 0.87.

Pain, Disability, and Quality of Life

Functional and quality-of-life outcomes are critical to delivering patient-centered spine care. Therefore, these outcome metrics have also been the focus of clinical prediction models. The ODI is a widely used and extensively validated method for quantifying low back pain–associated disability and has been used by multiple prediction studies as an outcome. McGirt et al. prospectively evaluated a larger cohort of 7,618 patients from the NeuroPoint QOD one year after elective lumbar spine surgery and found that predictors of patient-reported outcomes (PROs) included employment status, baseline back pain, psychological distress, baseline ODI, level of education, workers’ compensation status, symptom duration, race, baseline leg pain, ASA score, age, primary symptom, smoking status, and insurance status. Internal validation yielded modest AUCs of 0.69 for ODI, 0.67 for numeric rating scale (NRS) for back pain, and 0.64 for NRS for leg pain. Siccoli et al. achieved comparable discriminative ability for these outcomes among patients undergoing single- or multi-level decompression for lumbar spinal stenosis, with data collected from retrospective review of a prospective registry. Khor et al. collected prospective, multi-institution registry data (N = 1,583) for patients undergoing elective lumbar surgery and developed predictive models that achieved AUCs of 0.73 for ODI, 0.75 for NRS back pain, and 0.75 for NRS leg pain. A web-based calculator was deployed at https://becertain.shinyapps.io/lumbar_fusion_calculator. Importantly, these models were independently, externally validated by Quddusi et al.

An often-underestimated aspect in the development of clinical prediction models is variable selection. In an effort to address this, Rundell et al. retrospectively evaluated 5,840 patients from multiple institutions to develop prognostic models of 1-year outcomes. The key finding of this study was that ODI at 3-months postsurgery was the strongest predictor of 12-month outcomes. Future predictive studies should think carefully about variable selection and consider feature engineering, a term in machine learning that describes using domain knowledge to create variables that may drive improved predictive performance.

While the majority of predictive models in degenerative spine surgery have focused on lumbar spine surgery, early efforts in modeling quality-of-life outcomes for cervical spine surgery patients are emerging. In addition to predicting reoperation and readmission rates, Lubelski et al. used their single-institution cohort of patients undergoing cervical spine surgery to develop nomograms for quality-of-life outcomes (EuroQOL, EQ-5D; PHQ-9, PDQ). These nomograms predicted quality-of-life outcomes to varying degrees, with R^2 values of 0.43 for EQ-5D, 0.35 for PHQ-9, and 0.47 for PDQ. Asher and colleagues used the Neuropoint QOD to create a model predicting patient satisfaction after 1- or 2-level anterior cervical disectomy and fusion. Their model had an AUC of 0.66, and found that geographical region, socioeconomic status, baseline disability and symptom duration all contributed to postoperative outcome. Devin et al. also utilized the QOD for cervical spine surgery patients and found that predictors of returning to work within 90 days included age, employment, occupation, workers’ compensation, baseline Neck Disability Index score, presentation, and levels fused. They used bootstrapping to validate their cohort and achieved an AUC of 0.81. And Merali et al. used the AOSpine prospective registry to predict postoperative SF-6D and mJOA quality-of-life outcomes in patients undergoing surgery for cervical spondylotic myelopathy. Their models used machine learning tools to predict 6-, 12-, and 24-month outcomes, and their best performing model had an average AUC of 0.7.

A final outcome of interest is opioid use following degenerative spine surgery. Associations between spine surgery and opioid use are well established. Karhade et al. endeavored to build predictive models of sustained opioid use after cervical and lumbar spine surgery, defined as >90 days of uninterrupted prescription filling. Their models had AUCs ranging from 0.7 to 0.8 and were deployed as web-based calculators to potentially enable a surgeon, at the bedside, to identify an individual’s specific risk.

Limitations and Future Directions

There is an increasing body of literature looking at predicting outcomes in degenerative spine surgery. Some focus on administrative outcomes such as readmission, emergency department visits, and reoperation, whereas others focus on patient reported outcomes and complications. Heterogeneity also exists in how the data is collected, how the analyses are performed and models validated, and the mechanisms by which the data is reported. To be integrated into clinical practice, prediction models need to have the data collected in a systematic way, preferably prospectively, with detailed clinical information. Models based on the Current Procedural Terminology and diagnosis codes of administrative databases are therefore inherently limited. Models need to assess for discrimination and calibration and should preferably have AUC >0.7. Details of how the analysis is performed should be explicitly reported. Validation should be performed with a patient population that is different from which the model was generated, ideally at another institution. If validation is performed on patients from the same institution, this limits the model’s generalizability outside of the primary hospital setting.

Future directions include the generation a grading system to help clinicians determine the relative strengths of the different published models. Additionally, studies are needed to determine the usefulness of such prediction models. Better understanding is needed whether the use of a prediction model leads...
to greater patient satisfaction, outcome, or value. Lastly, it is important to remember that regardless of how accurate the prediction model is, it cannot replace clinical judgment. There are innumerable clinical and social variables that are taken into account when helping patients decide on a treatment course. The goal is to create prediction calculators that can help the physician provide more accurate and individualized descriptions of the risk/benefit profile for a given patient.

Conclusion
The continued emphasis on value-based care in American health care and the variability in degenerative spine surgery outcomes presents an important case for clinical prediction modeling. The current body of clinical prediction for degenerative spine surgery is heterogeneous with regard to data sets, outcome measures, and statistical learning methods. Importantly, external validation of proposed models must be emphasized and executed. While the promise of clinical prediction in degenerative spine surgery for patients, hospitals, and health systems is significant, further efforts are required before current models are appropriate for clinical deployment.

Declaration of Conflicting Interests
The author(s) declared the following potential conflicts of interest with respect to the research, authorship, and/or publication of this article: Daniel M. Sciubba is a consultant for Baxter, DePuy-Synthes, Globus Medical, K2M, Medtronic, NuVasive, Stryker, and receives unrelated grant support from Baxter Medical, North American Spine Society, and Stryker. The other authors have no disclosures to make.

Funding
The author(s) disclosed receipt of the following financial support for the research, authorship, and/or publication of this article: This supplement was supported by a grant from AO Spine North America.

ORCID iD
Daniel Lubelski, MD https://orcid.org/0000-0002-9403-9509
Andrew Hersh, BA https://orcid.org/0000-0003-1755-3974
Zachary Pennington, BS https://orcid.org/0000-0001-8012-860X
Daniel M. Sciubba, MD https://orcid.org/0000-0001-7604-434X

References
1. Lubelski D, Alentado VJ, Williams SK, et al. Variability in surgical treatment of spondylolisthesis among spine surgeons. World Neurosurg. 2018;111:e564-e572. doi:10.1016/j.wneu.2017.12.108
2. Alvin MD, Lubelski D, Alam R, et al. Spine surgeon treatment variability: the impact on costs. Global Spine J. 2018;8:498-506. doi:10.1177/2192568217739610
3. Mroz TE, Lubelski D, Williams SK, et al. Differences in the surgical treatment of recurrent lumbar disc herniation among spine surgeons in the united states. Spine J. 2014;14:2334-2343. doi:10.1016/j.spinee.2014.01.037
4. Azad TD, Vail D, O’Connell C, Han SS, Veeravagu A, Ratliff JK. Geographic variation in the surgical management of lumbar spondylolisthesis: characterizing practice patterns and outcomes. Spine J. 2018;18:2232-2238. doi:10.1016/j.spinee.2018.05.008
5. Bailey CS, Rasoulinejad P, Taylor D, et al. Surgery versus conservative care for persistent sciatica lasting 4 to 12 months. N Engl J Med. 2020;382:1093-1102. doi:10.1056/NEJMoai912658
6. Ghogawala Z, Dziura J, Butler WE, et al. Laminctomy plus fusion versus lumincotomy alone for lumbar spondylolisthesis. N Engl J Med. 2016;374:1424-1434. doi:10.1056/NEJMoai508788
7. Försth P, Olafsson G, Carlsson T, et al. A randomized, controlled trial of fusion surgery for lumbar spinal stenosis. N Engl J Med. 2016;374:1413-1423. doi:10.1056/NEJMoai1513721
8. Weinstein JW, Tosteson TD, Lurie JD, et al. Surgical versus nonsurgical therapy for lumbar spinal stenosis. N Engl J Med. 2008;358:794-810. doi:10.1056/NEJMoai0707136
9. Azad TD, Veeravagu A, Mittal V, et al. Neurosurgical randomized controlled trials-distance travelled. Neurosurgery. 2018;82:604-612. doi:10.1093/neuros/nyx319
10. Mansouri A, Cooper B, Shin SM, Kondziolka D. Randomized controlled trials and neurosurgery: The ideal fit or should alternative methodologies be considered? J Neurosurg. 2016;124:558-568. doi:10.3171/2014.12.JNS142465
11. McGirt MJ, Sivaganesan A, Asher AL, Devin CJ. Prediction model for outcome after low-back surgery: Individualized likelihood of complication, hospital readmission, return to work, and 12-month improvement in functional disability. Neurosurg Focus. 2015;39:E13. doi:10.3171/2015.8.FOCUS15338
12. Lee MJ, Czik AM, Hamilton D, Chapman JR. Predicting medical complications after spine surgery: A validated model using a prospective surgical registry. Spine J. 2014;14:291-299. doi:10.1016/j.spinee.2013.10.043
13. Kim JS, Merrill RK, Arvind V, et al. Examining the ability of artificial neural networks machine learning models to accurately predict complications following posterior lumbar spine fusion. Spine (Phila Pa 1976). 2018;43:853-860. doi:10.1097/BRS.0000000000002442
14. Ratliff JK, Balise R, Veeravagu A, et al. Predicting occurrence of spine surgery complications using “big data” modeling of an administrative claims database. J Bone Joint Surg Am. 2016;98:824-834. doi:10.2106/JBJS.15.00301
15. Han SS, Azad TD, Suarez PA, Ratliff JK. A machine learning approach for predictive models of adverse events following spine surgery. Spine J. 2019;19:1772-1781. doi:10.1016/j.spinee.2019.06.018
16. Siccoli A, de Wispelaere MP, Schröder ML, Staartjes VE. Machine learning-based preoperative predictive analytics for lumbar spinal stenosis. Neurosurg Focus. 2019;46:E5. doi:10.3171/2019.2.FOCUS18723
17. Lubelski D, Alentado V, Nowacki AS, et al. Preoperative nomograms predict patient-specific cervical spine surgery clinical and quality of life outcomes. Neurosurgery. 2017;83:104-113. doi:10.1093/neuros/nyx343
18. Goyal A, Ngufor C, Kerezoudis P, McCutcheon B, Storlie C, Bydon M. Can machine learning algorithms accurately predict discharge to nonhome facility and early unplanned readmissions following spinal fusion? Analysis of a national surgical registry.
machine learning algorithms. *J Neurosurg Spine.* 2019;31: 742-747. doi:10.3171/2019.5.SPINE1987

46. Fairbank JC, Pynsent PB. The Oswestry Disability Index. *Spine (Phila Pa 1976).* 2000;25:2940-2952. doi:10.1097/00007632-200011150-00017

47. Quddusi A, Eversdijk HAJ, Klukowska AM, et al. External validation of a prediction model for pain and functional outcome after elective lumbar spinal fusion. *Eur Spine J.* 2020;29:374-383. doi: 10.1007/s00586-019-06189-6

48. Vail D, Azad TD, O’Connell C, Han SS, Veeravagu A, Ratliff JK. Postoperative opioid use, complications, and costs in surgical management of lumbar spondylolisthesis. *Spine (Phila Pa 1976).* 2018;43:1080-1088. doi:10.1097/BRS.0000000000002509

49. O’Connell C, Azad TD, Mittal V, et al. Preoperative depression, lumbar fusion, and opioid use: an assessment of postoperative prescription, quality, and economic outcomes. *Neurosurg Focus.* 2018; 44:E5. doi:10.3171/2017.10.FOCUS17563

50. Kasparek MF, Boettner F, Rienmueller A, et al. Predicting medical complications in spine surgery: evaluation of a novel online risk calculator. *Eur Spine J.* 2018;27:2449-2456. doi:10.1007/s00586-018-5707-9