Hypervalent Iodine with Linear Chain at High Pressure

Shubo Wei¹, Jianyun Wang¹, Shiyu Deng², Shoutao Zhang¹ & Quan Li¹,²

Hypervalent Iodine is an element of fascinating chemical complexity, and numerous hypervalent iodine compounds reveal vital value of applications in organic synthesis. Investigation of the synthesis and application of new type of hypervalent iodine compound has extremely significant meaning. Here, the formation of CsIn (n > 1) compounds is predicted up to 200 GPa using an effective algorithm. The current results show that CsI₃ with space group of Pm-3n is thermodynamically stable under high pressure. Hypervalence phenomenon of iodine atoms in Pm-3n CsI₃ with endless linear chain type structure appears under high pressure, which is in sharp contrast to the conventional understanding. Our study further reveals that Pm-3n CsI₃ is a metallic phase with several energy bands crossing Fermi-surface, and the pressure creates a peculiar reverse electron donation from iodine to cesium. The electron-phonon coupling calculations have proposed superconductive potential of the metallic Pm-3n CsI₃ at 10 GPa which is much lower than that of CsI (180 GPa). Our findings represent a significant step toward the understanding of the behavior of iodine compounds at extreme conditions.

Iodine compounds have always been the subject of extensive studies because of their significant properties such as conduction characteristic1,2, optical property3, catalytic performance4,5 and medical application6, etc. For instance, cesium iodide (CsI) is one of the simplest and most representative ionic solids, and extensive theoretical and experimental studies have been carried out7–15. CsI exhibits variety of interesting phenomena such as pressure involved metallization and superconductivity under high pressure12–14. In addition, organic molecules bearing hypervalent iodine moieties have been transformed from laboratory curiosities to useful and routinely employed reagents in organic synthesis16–21. Comparing with the relatively and easily synthesized organic complexity, the synthesis of inorganic hypervalent iodine compounds with attractive properties and its corresponding structures have been a long-standing puzzle. For I₃⁻ ion, its linear geometric structure was determined for the first time in 1935 by Mooney, who carried out X-ray analysis on ammonium triiodide22. The I₃⁻ anion belongs to the type of compounds known as hypervalent, which violate the Lewis octet rule23. Due to the representative hypervalence property of I₃⁻ ion, it is of great consideration for further study of CsIn (n > 1) compounds to explore the possibility of forming hypervalent CsIn with interesting properties or structures. Previous experimental works show that crystal CsI₃ and CsI₄ can be synthesized at ambient pressure24–27. Subsequently, experimental XRD measurement proposed that the crystal information of CsI₃ and CsI₄ were orthorhombic Pmnb and monoclinic P2₁/a symmetry, respectively28–30. W. Zhang et al. did an excellent work for NaₓCly system by combining theoretical predictions and diamond anvil cell experiments31. They reported that Na₂Cl, Na₃Cl, Na₂Cl₂, NaCl₃ and NaCl₇ are theoretically stable and have unusual bonding and electronic properties at high pressure31. Na-Cl and Cs-I system are clearly analogous as typical ionic solids and they may adopt the same structures. Currently, the synthesis or the full high-pressure structural information of CsIn are still far from being clear and established. These structural uncertainties have impeded in-depth understanding and further exploration of phenomena of CsIn might under compression.

Here, we present systematic structure searches to establish the thermodynamically stable structures of CsIn (n = 2–5) up to 200 GPa using the developed CALYPSO (Crystal structure AnaLYsis by Particle State Key Laboratory of Superhard Materials, Jilin University, Changchun 130012, China. ²College of Materials Science and Engineering, Jilin University, Changchun 130012, China. Correspondence and requests for materials should be addressed to Q.L. (email: liquan777@jlu.edu.cn)
Swarm Optimization) method, which has been successfully used in numerous predictions regarding compounds and structures over the past few years. Our work shows that CsI₃ has the simple Pmnb structure at ambient pressure and undergoes a complicated transition to high symmetric cubic Pm-3n phase at high pressure. The current Pm-3n phase of CsI₃ is a metal phase, and the pressures create a peculiar reverse electron donation from iodine to cesium. In addition, the iodine atoms of Pm-3n phase forming into several completely linear chains show an attractive hypervalence phenomenon, which cannot be simply explained by traditional three-center-four-electron (3c-4e) scheme. This work presents significant concerning on the synthesis and the fundamental structural properties of the simplest and most representative polyiodide materials with implications for an entire family of similar materials.

Calculation Methods
To obtain stable structures for CsIₙ, we carried out a structural search using a global minimization of free energy surfaces based on the CALYPSO methodology and the first-principles calculations. The remarkable feature of this methodology is the capability of predicting the stable structure with only the knowledge of the chemical composition at given external conditions (for example, pressure). The underlying ab initio structural relaxations, electron localization function (ELF) and electronic band structure calculations were performed within the framework of density functional theory (DFT) as implemented using VASP (Vienna ab initio simulation package) code. The generalized gradient approximation (GGA) within the framework of Perdew–Burke–Ernzerhof (PBE) was used for the exchange-correlation functional. And the projector augmented wave method (PAW) has been adopted, with Cs and I treated as valence electrons for cesium and iodine, respectively. The cutoff energy for the expansion of the wavefunction into plane waves was set at 400 eV and fine Monkhorst–Pack (MP) k meshes of 0.025 Å⁻¹ have been chosen to ensure that all the enthalpy calculations are well converged. The phonon calculations have been carried out by using a supercell approach as implemented in the Phonopy code. This method uses the forces obtained by the Hellmann–Feynman theorem calculated from the optimized 3 × 3 × 3 supercell. The Baden’s quantum theory of atoms in molecules (QTAIM) analysis was used for charge calculation.

Electron-phonon coupling (EPC) calculations have been performed using the pseudo-potential plane-wave method and density-functional perturbation theory as implemented in the Quantum-ESPRESSO package. EPC calculation has been performed on 4 × 4 × 4 MP q meshes in the first Brillouin zone with a kinetic energy cutoff of 60 Ry. A × 16 × 16 MP k meshes are chosen to ensure k-point sampling convergence with Gaussians of 0.025 Ry, which approximates the zero-width limit in this calculation.

Results and Discussions
The high-pressure synthesis and structural information of CsIₙ. Structural predictions for CsIₙ (n = 2 – 5) have been performed with CALYPSO methodology using simulation sizes with 1–4 formula per primitive cell under a series of pressure points (0, 50, 100, 150 and 200 GPa). The enthalpy of formation per atom is calculated using the following formula:

\[
\Delta H_f (\text{CsI}_n) = [H (\text{CsI}_n) - H (\text{CsI}) - (n-1) H (\text{I}_2)/2]/(n + 1)
\]

where \(\Delta H_f\) is the enthalpy of formation per atom and \(H\) is the calculated enthalpy per chemical unit for each compound.

From the convex hull shown in Fig. 1a (solid lines), only CsI₂ with space group of Pm-3n is thermodynamically stable under high pressure. However, previous experimental work shows that CsI₃ can be synthesized at ambient pressure, and a P2₁/a phase with 4 formulas per primitive cell has been proposed by X-ray analysis. The currently predicted Pnma phase is energetically much superior to the monoclinic P2₁/a structure, while the formation enthalpy of Pnma is positive value and thus does not support its thermodynamic stability. We note that the experimentally synthesized CsI₃ was heated in a closed vessel at 90 °C, and was then cooled slowly to 25 °C. Therefore, the P2₁/a CsI₃ structure is a metastable phase. CsI₃ is stable at ambient pressure and adopts an orthorhombic lattice with Pnma symmetry (Fig. 2a). The optimized lattice parameter of Pmnb phase at 0 GPa is \(a = 7.2366\) Å, \(b = 11.2631\) Å and \(c = 10.4905\) Å. At 0 GPa, this actually Cs⁺[I₃]⁻ phase contains linear type I⁻ ions with two 1–1 bonds length of 2.901 and 3.019 Å, which is similar to the experimental data of 2.820 and 3.100 Å, respectively. Such typical hypervalent iodine moiety of orthorhombic Pmnb structure can be conventionally explained by traditional theory. For I⁻ ion of Pmnb phase, the central iodine atom shares two electrons with two adjacent iodine atoms by forming one 3c-4e bond, and meanwhile it gets one electron from cesium atom to keep the other two iodine atoms following Lewis octet rule. On the other hand, Pauling and Cartmell interpreted the hypervalence phenomenon of this ion in terms of the trigonal-bipyramidal orbitals of the central atom (sp³d hybridization). The central iodine atom has 10 electrons in valence shell which supports the conventional hypervalence phenomenon. The Pmnb structure remains stable up to 7.8 GPa, where undergoes a complicated first-order phase transition to cubic Pm-3n structure with volume collapse of 7.19% (Fig. 1b). The optimized lattice parameters of Pm-3n phase at 10 GPa is \(a = 6.2865\) Å. Atoms occupy the Wyckoff 2a (0, 0, 0) for cesium and 6d (0, 0.5, 0.75) for iodine. Surprisingly, the...
enthalpies of Pm-3n phase at least up to 200 GPa from convex hull (Fig. 1a) show that Pm-3n phase tends to decompose as the increasing pressure.

Comparing with orthorhombic Pmn\textit{b} structure, a striking feature of this modification is that all the iodine atoms form endless linear chains (Fig. 2b). And these endless chains just locate on the surface of the Pm-3m Cs lattice. The lattice dynamics calculations with no imaginary phonon frequencies support the dynamic stability of Pm-3n structure over the pressure range studied here (Fig. 3a). Remarkably, the endless chain structure has rarely been found in inorganic compounds before. One previous work shows that the B atoms of Li$_2$B can form kinked chains along the c axis under high pressure\textsuperscript{38}. However, such kinked chains of B is clearly different from iodine chains which are thoroughly linear without any tortuosity. The similar crystal structures with Pn\textit{ma} and Pm-3n space groups have been reported for NaCl\textsubscript{3}\textsuperscript{31}. NaCl\textsubscript{3} is stable in the Pn\textit{ma} containing almost linear asymmetric Cl$_3$ groups at 20 to 48 GPa, and then transforms into a metallic Pm-3n structure. NaCl\textsubscript{3} and CsI$_3$ are clearly analogous compounds and even adopt the same structures, and Cl-Cl bonds in Pm-3n NaCl\textsubscript{3} similar with our predicted I-I bonds by forming extended monatomic chains running along the three mutually perpendicular axes\textsuperscript{31}. In addition, the Cs–I bond length in CsI$_3$ is close to that in CsI as pressures change, indicating the forming of Cs–I ionic bond (Fig. 3b). And the I–I bond length in CsI$_3$ is 2.764 Å at 60 GPa, significantly shorter than the shortest I–I distances of 3.021 Å in solid I$_2$ (Fig. 3b), showing a stronger bonding character. The ELF of CsI$_3$ at 150 GPa shows that the strongest electron localization area are located between iodine and iodine atoms (Fig. 3c), suggesting covalent bond forms between the iodine atoms. As we well know, pressure-induced molecular dissociation of solid I$_2$ has been reported from theoretical or experimental studies, but iodine in Pm-3n phase can held together by strong chemical bonds at least until 200 GPa. We have calculated the charges using Bader’s quantum theory of atoms in molecules (QTAIM) analysis\textsuperscript{54} for

![Figure 1. Enthalpy calculations of CsI$_n$.](image)

(a) Enthalpies of formation of CsI$_n$ under a range of pressures. Dotted lines connect data points, and solid lines denote the convex hull. (b) Enthalpy (related to the Pmn\textit{b} phase) of Pm-3n structure for CsI$_3$ as a function of pressures.

![Figure 2. Crystal structures of CsI$_n$.](image)

(a) CsI$_3$ at 0 GPa with actual formula of Cs$^+$[I$_3$]$^-$. (b) CsI$_3$ at 10 GPa in a cubic Pm-3n structure.
CsI$_3$ at high pressure. From Fig. 3d, the electrons devoted from cesium to iodine are gradually reduced as the increasing pressure, indicating a peculiar reverse electron donation from iodine to cesium, and thus naturally gives rise to suppress the strength of Cs–I bonds, which is responsible for tendency of the decomposition at higher pressure. Each iodine atom of CsI$_3$ gets two shared electrons from the nearest-neighbor iodine and averagely 0.3 electrons from cesium atom, and frankly the valence shell of iodine has 9.3 electrons with hypervalence character. Generally, several hypervalent compounds such as hypervalent P, S, I and Xe in PCl$_5$, SF$_6$, IF$_7$ and XeF$_4$ always have integral electrons in valence shell of 10, 12, 14 and 12, respectively.$^{60}$ For conventional hypervalent iodine compounds, only one central atom possesses hypervalence property which being surrounded by other several ligands. While in the current ionic CsI$_3$ compound, all the iodine atoms possess such character, which broadens conventional understanding of hypervalent iodine. Therefore, high pressure induces the attractive hypervalent phenomenon in CsI$_3$ iodine with specific endless linear chain structure.

At ambient pressure, the prototypical ionic crystal of CsI$_3$ is an insulator. Interestingly, CsI$_3$ becomes metallic after the first-order phase transition at 7.8 GPa. The calculated electronic band structures of Pm-3n phase at 10 GPa show it is metallic with several bands crossing Fermi level (Fig. 4a). Pressure induces CsI$_3$ to exhibit increasingly shorter interatomic distances, which is accompanied by an increase in the bandwidth, especially those near the Fermi-surface, thus leading to the 5p bands of iodine expand along conductive band direction (Fig. 4b). Furthermore, the calculated projected density of states (PDOS) of CsI$_3$ show that the 5d states of Cs have more electronic occupation as the pressure increasing (Fig. 4c,d).

It should be mentioned that the superconducting behaviors in CsI have been extensively explored through experimental measurement and theoretical calculations.$^{12-14}$ It is suggested that the formation of several electrons and hole Fermi-surface pockets in CsI is due to a dramatic increase of the electron donation from I$^-$ to Cs$^+$, thus leading to more electrons to be involved in the electron-phonon coupling which is responsible for superconductivity and the larger EPC potential, thereby contributing to the increase in $T_c$.$^{12}$ Therefore, it is intriguing to determine whether Pm-3n CsI$_3$ will possess superconducting property under high pressure.

Figure 5 shows the phonon density of states (PHDOS) and Eliashberg spectral function $\alpha^2F(\omega)$ for Pm-3n CsI$_3$ at 10 GPa. It is found that $\alpha^2F(\omega)$ contains two parts of which the low and high frequency...
area are localized within a narrow vibrational region of 0.8–3.4 THz and 3.4–4.2 THz, respectively. The integrated EPC $\lambda$ of low frequency $\alpha^2 F(\omega)$ are 0.353 constituting 95.66% of the total $\lambda$ 0.369, and the other EPC $\lambda$ in high frequency area is 0.016 accounts 4.34% of total $\lambda$. With increasing pressure to 150 GPa, $\lambda$ was reduced to be 0.074. The superconducting critical temperature $T_c$ can be estimated from the Allen-Dynes modified McMillan equation:

$$T_c = \frac{1}{1.1} \left[ \frac{\omega_{\log}}{\lambda} \right]^{1/2} \exp \left[ -\frac{1.04(1 + \lambda)}{\lambda - \mu^* (1 + 0.62 \lambda)} \right],$$

where $\omega_{\log}$ is the logarithmic average frequency calculated directly from the phonon spectrum and $\mu^*$ is the Coulomb pseudopotential. $\omega_{\log}$ is obtained to be 97.33 K at 10 GPa and 322.96 K at 150 GPa. Using a $\mu^*$ of 0.1, the estimated $T_c$ is 0.15 K at 10 GPa but it disappears at 150 GPa. It is noteworthy that the estimated $T_c$ in

Figure 4. The electronic property analysis of $Pm-3n$ CsI$_3$. Calculated electronic band plot along high-symmetry directions of $Pm-3n$ CsI$_3$ at 10 GPa (a) and 150 GPa (b). Electronic density of states for $Pm-3n$ CsI$_3$ at 10 GPa (c) and 150 GPa (d).

Figure 5. The electron-phonon coupling calculations of $Pm-3n$ CsI$_3$. The calculated phonon density of states (solid line), Eliashberg spectral function $\alpha^2 F(\omega)$ (dashed line), and the electron-phonon integral (dotted line) of $Pm-3n$ CsI$_3$ at 10 GPa.
CsI₃ is noticeably larger than the value in CsI of 0.03 K, and the pressure is significantly lower than that of CsI (180 GPa).

Conclusions

In summary, we have systematically investigated compounds CsIₙ up to 200 GPa using an effective CALYPSO algorithm. Strikingly, CsI₃ with space group of Pm-3n is thermodynamic stability under high pressure. Within the cubic Pm-3n CsI phase, iodine atoms arranging into several endless linear chains show an attractive hypervalence phenomenon under high pressure, which is in sharp contrast to the conventional understanding. We further discovered that Pm-3n CsI₃ is a metallic phase with several energy bands crossing Fermi-surface, and the pressure creates a peculiar reverse electron donation from iodine to cesium. The electron-phonon coupling calculations have proposed superconductive potential of the metallic Pm-3n CsI₃ at 10 GPa, which are analogous to the known CsI₁₂. This work has wide implications for other inorganic compounds that likely harbor similar high-pressure behavior, and the significance for synthetic chemistry is highlighted.

References

1. Liang, C. C. Conduction Characteristics of the Lithium Iodate-Aluminum Oxide Solid Electrolytes. J. Electrochem. Soc. 120, 1289–1292 (1973).
2. Bradley, J. N. & Greene, P. D. Potassium iodide+silver iodide phase diagram. High ionic conductivity of KAgI₂. Trans. Faraday Soc. 62, 2069–2075 (1966).
3. Yuster, P. H. & Delbecq, C. J. Some Optical Properties of Potassium Iodide-Thallium Phosphors. J. Chem. Phys. 21, 892–898 (1953).
4. Xie, W. & Li, H. Alumina-supported potassium iodide as a heterogeneous catalyst for biodiesel production from soybean oil. J. Mol. Catal. A: Chem. 255, 1–9 (2006).
5. Prajapati, D. & Sandhu, J. S. Cadmium iodide as a new catalyst for knevenagel condensations. J. Chem. Soc. Perkin Trans. 1, 739–740 (1993).
6. Smanik, P. A. et al. Cloning of the human sodium iodide symporter. Biophys. Res. Commun. 226, 339–345 (1996).
7. Mao, H. K., Hemley, R. J., Chen, L. C., Shu, J. F. & Finger, L. W. X-ray diffraction to 302 gigapascals: High-pressure crystal structure of cesium iodide. Science 246, 649 (1989).
8. Eremets, M. I., Shimizu, K., Kobayashi, T. C. & Amaya, K. Metallic CsI at pressures of up to 220 gigapascals. Science 281, 1333 (1998).
9. Hemley, R. J. Superconductivity in a Grain of Salt. Science 281, 1296 (1998).
10. Huang, T. L. & Ruoff, A. L. Equation of state and high-pressure phase transition of CsI. Phys. Rev. B 29, 1112 (1984).
11. Mao, H. K. et al. High-pressure phase transition and equation of state of CsI. Phys. Rev. Lett. 64, 1749 (1990).
12. Xu, Y. et al. Superconducting high-pressure phase of cesium iodide. Phys. Rev. B 79, 144110 (2009).
13. Eremets, M. I., Shimizu, K., Kobayashi, T. C. & Amaya, K. Metallic CsI at pressures of up to 220 gigapascals. Science 281, 1333 (1998).
14. Eremets, M. I., Shimizu, K., Kobayashi, T. C. & Amaya, K. Metallization and superconductivity in CsI at pressures up to 220 GPa. J. Phys. Condens. Matter 10, 11519 (1998).
15. Zhang, E., Gale, J. D., Uberuaga, B. P., Stanek, C. R. & Marks, N. A. Importance of dispersion in density functional calculations of cesium chloride and its related halides. Phys. Rev. B 88, 054112 (2013).
16. De Mico, A., Margarita, R., Parlanti, L., Vescovi, A. & Piancatelli, G. A versatile and highly selective hypervalent iodine (III)/2, 2, 6, 6-tetramethyl-1-piperidinylxoyl-mediated oxidation of alcohols to carbonyl compounds. J. Org. Chem. 62, 6974–6977 (1997).
17. Wirth, T. Hypervalent iodine chemistry in synthesis: scope and new directions. Angew. Chem.-Int. Edit. 44, 3656–3665 (2005).
18. Frigerio, M., Santagostino, M., Sputore, S. & Palmisano, G. Oxidation of Alcohols with o-Iodoxybenzoic Acid in DMSO: A New Insight into an Old Hypervalent Iodine Reagent. J. Org. Chem. 60, 7272–7276 (1995).
19. Morarity, R. M. & Vaid, R. K. Carbon-carbon bond formation via hypervalent iodine oxidations. Synthesis 6, 431–447 (1990).
20. Richardson, R. D. & Wirth, T. Hypervalent iodine goes catalytic. Angew. Chem.-Int. Edit. 45, 4402–4404 (2006).
21. Tohma, H., Takizawa, S., Maegawa, T. & Kita, Y. Facile and clean oxidation of alcohols in water using hypervalent iodine (III) reagents. Angew. Chem.-Int. Edit. 39, 1306–1308 (2000).
22. Moomy, R. C. L. The Configuration of the Triiodide Group in Ammonium Triiodide Crystals. Z. Krist. 90, 143 (1935).
23. Lewis, G. N. The atom and the molecule. J. Am. Chem. Soc. 38, 762 (1916).
24. Bozorth, R. M. & Pauling, L. The crystal structures of cesium Tri-iodide and cesium Dibromo-Iodide. J. Am. Chem. Soc. 47, 1561–1571 (1925).
25. Briggs, T. R. The Poliyodides of Cesium. II. J. Phys. Chem. 34, 2260 (1930).
26. Briggs, T. R., Greenawald, J. A. & Leonard, J. W. The Poliyodides of Cesium–Cesium Iodide, Iodine, and Water at 25°. J. Phys. Chem. 34, 1951–1960 (1930).
27. Briggs, T. R., Clack, K. D. G., Ballard, K. H. & Sassaman, W. A. Poliyodides of Potassium. II. The Ternary System Potassium Iodide–Iodine–Water. J. Phys. Chem. 44, 350–372 (1940).
28. Tasman, H. A. & Boswijk, K. H. Re-investigation of the crystal structure of CsI₁₂. Acta Crystal. 8, 59–60 (1955).
29. Havinia, E. E., Boswijk, K. H. & Wiebenga, E. H. The crystal structure of Cs₅I₆ (Cs₄I₄). Acta Crystal. 7, 487–490 (1954).
30. Breneman, G. L. & Willett, R. D. The crystal structure of cesium tribromide and a comparison of the Br⁻ and I⁻ systems. Acta Crystal. B 25, 1073–1076 (1969).
31. Zhang, W. et al. Unexpected Stable Stoichiometries of Sodium Chlorides. Science 342, 1502–1505 (2013).
32. Wang, Y., Lv, J., Zhu, L. & Ma, Y. CALYPSO: A method for crystal structure prediction. Comput. Phys. Commun. 183, 2063–2070 (2012). CALYPSO Code is Free for Academic Use. Please Register at http://www.calypto.cn.
33. Wang, Y., Lv, J., Zhu, L. & Ma, Y. Crystal structure prediction via particle-swarm optimization. Phys. Rev. B 82, 094116 (2010).
34. Wang, Y. et al. An effective structure prediction method for layered materials based on 2D particle swarm optimization algorithm. J. Chem. phys. 137, 224108 (2012).
35. Lv, J., Wang, Y., Zhu, L. & Ma, Y. Particle-swarm structure prediction on clusters. J. Chem. Phys. 137, 084104 (2012).
36. Zhang, M. et al. Superhard BC₅ in Cubic Diamond Structure. Phys. Rev. Lett. 114, 015502 (2015).
37. Zhou, D., Li, Q., Ma, Y., Cui, Q. & Chen, C. Unraveling convoluted structural transitions in SiIr at high pressure. J. Phys. Chem. C 117, 5352 (2013).
38. Peng, F., Miao, M., Wang, H., Li, Q. & Ma, Y. Predicted lithium–boron compounds under high pressure. J. Am. Chem. Soc. 134, 18599 (2012).
39. Wang, H., John, S. T., Tanaka, K., Iitaka, T. & Ma, Y. Superconductive sodalite-like clathrate calcium hydride at high pressures. *Proc. Natl. Acad. Sci. USA* **109**, 4643 (2012).
40. Zhu, L. et al. Spiral chain O, form of dense oxygen. *Proc. Natl. Acad. Sci. USA* **109**, 751 (2012).
41. Li, Q., Zhou, D., Zheng, W., Ma, Y. & Chen, C. Global structural optimization of tungsten borides. *Phys. Rev. Lett.* **110**, 136403 (2013).
42. Lu, C., Miao, M. & Ma, Y. Structural Evolution of Carbon Dioxide under High Pressure. *J. Am. Chem. Soc.* **135**, 14167 (2013).
43. Li, Q. et al. A novel low compressible and superhard carbon nitride: Body-centered tetragonal CN. *Phys. Chem. Chem. Phys.* **14**, 13081 (2012).
44. Lu, S., Wang, Y., Liu, H., Miao, M. S. & Ma, Y. Self-assembled ultrathin nanotubes on diamond (100) surface. *Nature Commun.* **5**, 3666 (2014).
45. Zhu, L., Liu, H., Pickard, C. J., Zou, G. & Ma, Y. Reactions of xenon with iron and nickel are predicted in the Earth’s inner core. *Nature Chem.* **6**, 644–648 (2014).
46. Wei, S. et al. High-pressure phase transition of cesium chloride and cesium bromide. *Phys. Chem. Chem. Phys.* **16**, 17924–17929 (2014).
47. Hach, R. J. & Rundle, R. E. The Structure of Tetramethylammonium Pentaiodide. *J. Am. Chem. Soc.* **73**, 4321 (1951).
48. Rundle, R. E. On the Problem Structure of XeF₄ and XeF₂. *J. Am. Chem. Soc.* **85**, 112 (1963).
49. Pimentel, G. C. The bonding of trihalide and bifluoride ions by the molecular orbital method. *J. Chem. Phys.* **19**, 446 (1951).
50. Kresse, G. & Furthmüller, J. Efficient iterative schemes for *ab initio* total-energy calculations using a plane-wave basis set. *Phys. Rev. B* **54**, 11169 (1996).
51. Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. *Phys. Rev. Lett.* **77**, 3865 (1996).
52. Blöchl, P. E. Projector augmented-wave method. *Phys. Rev. B* **50**, 17953–17979 (1994).
53. Togo, A., Oba, F. & Tanaka, I. First-principles calculations of the ferroelastic transition between rutile-type and CaCl₂-type SiO₂ at high pressures. *Phys. Rev. B* **78**, 134106 (2008).
54. Bader, R. F. W. *Atoms in Molecules: A Quantum Theory*, Oxford Univ. Press, (1990).
55. Baroni, S., Giannozzi, P. & Testa, A. The Green’s-function approach to linear response in solids. *Phys. Rev. Lett.* **58**, 1861 (1987).
56. Giannozzi, P., De Gironcoli, S., Pavone, P. & Baroni, S. *Ab initio* calculation of phonon dispersions in semiconductors. *Phys. Rev. B* **43**, 7231 (1991).
57. Giannozzi, P. et al. QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials. *J. Phys. Condens. Matter* **21**, 395502 (2009).
58. Pauling, L. *The Nature of the Chemical Bond*, 2nd ed. Cornell Univ. Press, Ithaca, NY, p.111 (1948).
59. Cartmell, E. & Fowles, G. W. Valency and Molecular Structure. *Nature Commun.* **6**, 14393 (2015).