Mannose Trimming Is Required for Delivery of a Glycoprotein from EDEM1 to XTP3-B and to Late Endoplasmic Reticulum-associated Degradation Steps*

Bella Groisman1, Marina Shenkman1, Efrat Ron, and Gerardo Z. Lederkremer2

From the Department of Cell Research and Immunology, George Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel

Although the trimming of α1,2-mannose residues from precursor N-linked oligosaccharides is an essential step in the delivery of misfolded glycoproteins to endoplasmic reticulum (ER)-associated degradation (ERAD), the exact role of this trimming is unclear. EDEM1 was initially suggested to bind N-glycans after mannose trimming, a role presently ascribed to N(ER)-associated degradation (ERAD), the exact role of this livery of misfolded glycoproteins to endoplasmic reticulum cursor Nones (1–3). Calnexin and calreticulin will bind to the sugar to their native state with the help of several resident chaper-

† This work was supported by grants from the Israel Science Foundation (1229/07) and German-Israeli Project Cooperation (DIP).
‡ To whom correspondence should be addressed. Tel.: 972-3-6409239; Fax: 972-3-6422046; E-mail: gerardo@post.tau.ac.il.

This is an Open Access article under the CC BY license.
Mannose Trimming Delivers Glycoprotein to XTP3-B in Cells

inhibition on association of EDEM1 and downstream ERAD factors with the substrate and the effect on the subcellular localization of these factors in relation to the substrate.

We used as a model an established ERAD substrate, the uncleaved precursor of asialoglycoprotein receptor H2a (20, 21). The precursor of H2a is a type 2 membrane glycoprotein that is expressed endogenously only in hepatocytes and is cleaved next to the transmembrane domain, and its ectodomain is secreted (22). When expressed in other cell types, most H2a precursor molecules remain uncleaved and are targeted to ERAD (18, 20).

Our results suggest that association of EDEM1 with the substrate does not require ERManI and the mannose-trimming event. In contrast, this trimming is essential for association with XTP3-B, substrate sequestration in the ERQC, and delivery to the E3 ubiquitin ligases HRD1 and SCFβTr2.

EXPERIMENTAL PROCEDURES

Materials—Rainbow 14C-labeled methylated protein standards were obtained from GE Healthcare. Promix cell labeling mix ([35S]Met plus [35S]Cys) > 1000 Ci/mmol was from PerkinElmer Life Sciences. Protein A-Sepharose was from Repligen (Needham, MA). Lactacystin (Lac) and kifunensine (Kif) were from Cayman Chemicals (Ann Arbor, MI). Streptavidin-agarose-conjugated beads and other common reagents were from Sigma.

Plasmids and Constructs—H2a was subcloned in pCDNA1 (Invitrogen) (18). The pSUPER vector carrying a shRNA for human ERManI was described previously (17). pSUPER carrying shRNA for human SEL1L was a kind gift from Y. Yoshida (Tokyo Metropolitan Institute of Medical Science) and E. Wiertz (Leiden Metropolitan Institute of Medical Science). The insert for pSUPER carrying shRNA for human EDEM1 was constructed as in Ref. 17 using the target sequence AGATTCCACCGTCCAAGTC. EDEM1-HA was a kind gift from K. Nagata (Kyoto University).

Mouse Fbs2 F box deletion mutant (Fbs2ΔF) cloned in pcDNA3-FLAG and human hsHRD1 RING finger mutant cloned in pcDNA3.1-Myc/His-A(−) vector were those used before (23) and were kind gifts from Y. Yoshida (Tokyo Metropolitan Institute of Medical Science) and E. Wiertz (Leiden University), respectively. S-tagged XTP3-B was a kind gift of R. Tyler and R. Kopito (Stanford University, Stanford, CA). An insert for pSUPER carrying shRNA for human EDEM1 was constructed as in Ref. 17 using the target sequence AGATTCCACCGTCCAAGTC. EDEM1-HA was a kind gift from K. Nagata (Kyoto University).

Mouse Fbs2 F box deletion mutant (Fbs2ΔF) cloned in pcDNA3-FLAG and human hsHRD1 RING finger mutant cloned in pcDNA3.1-Myc/His-A(−) vector were those used before (23) and were kind gifts from Y. Yoshida (Tokyo Metropolitan Institute of Medical Science) and E. Wiertz (Leiden University), respectively. S-tagged XTP3-B was a kind gift of R. Tyler and R. Kopito. Constructs encoding H2a G78R uncleavable mutant (24) fused through its C terminus to a 38-amino acid streptavidin binding peptide (H2aSBP) or to monomeric red fluorescent protein (H2aRFP) were described before (19, 23).

Primers and RT-PCR—Total cell RNA was extracted with EZ-RNA kit (Biological Industries, Beit Haemek, Israel). ReddyMix (Abgene, Epsom, UK) was used for PCR. Reverse transcription was performed with a VersoTM cDNA kit (Thermo Fisher Scientific), using a mixture of random hexamer and anchored oligo(dT) primers. An aliquot (10%) of the RT product was used for PCR with the following primers: CTTTCAACTCTGGTAAAAAGTGG and TTTTG-GCTCCCCCTGCAAAT for GAPDH.

Antibodies—Rabbit polyclonal anti-H2 carboxyl-terminal and anti-H2 amino-terminal antibodies were the ones used in earlier studies (22, 25). Rabbit polyclonal anti-Derlin-1 was a kind gift from Y. Ye (National Institutes of Health). Mouse monoclonal antibodies were as follows; anti-FLAG (M2) was from Sigma, anti-Myc from Cell Signaling (Beverly, MA), anti-HA from Sigma or Santa Cruz Biotechnology (Santa Cruz, CA) and an anti-S tag from Novagen (Gibbstown, NJ). Goat anti-rabbit IgG antibody conjugated to Cy3, goat anti-mouse IgG conjugated to FITC, and goat anti-rabbit and anti-mouse IgG conjugated to HRP were from Jackson ImmunoResearch Laboratories (West Grove, PA). Goat anti-mouse IgG conjugated to agarose was from Sigma.

Cell Culture and Transfections—HEK 293 cells were grown in DMEM plus 10% FCS and NIH 3T3 cells in DMEM plus 10% newborn calf serum. An HEK 293 stable cell line expressing H2aSBP was described previously (23). All cells were grown at 37 °C under an atmosphere of 5% CO2.

Transient transfection of NIH 3T3 cells was performed using FuGENE 6™ reagent (Roche Applied Science) according to the kit protocol. Transient transfection of HEK 293 cells was done according to the calcium phosphate method. The experiments were performed 24–48 h after the transfection.

Metabolic Labeling, Immunoprecipitation, SDS-PAGE, and Quantitation—Subconfluent (90%) cell monolayers in 60-mm dishes were labeled with [35S]Met, lysed, and immunoprecipitated with anti-H2 antibodies as described previously (20, 22). Kif (100 μM) was added to cells 2 h before the labeling, and it was also present during starvation, labeling, and chase periods. Reducing SDS-PAGE was performed on 10% or 12% Laemmli gels. The gels were analyzed by fluorography using 20% 2,5-diphenyloxazole and were exposed to Biomax MS film (Kodak, New Haven, CT) before being dried and subjected to fluorography. Quantification was performed in a Fujifilm FLA 5100 phosphor-imaging device (Japan).

Coimmunoprecipitation and Immunoblotting—Cell lysis and immunoprecipitation of H2a and related constructs was done as described previously (20), except that an anti-H2a N-terminal antibody was used. Cell lysis was performed in the presence of 2 mM PMSF and 5 μg/ml aprotinin. For precipitation of SBP cell lysis was done in 1% Nonidet P-40, 50 mM Tris/HCl (pH 8), 150 mM NaCl for 30 min on ice, and debris and nuclei were pelleted in a microfuge for 30 min at 4 °C. The samples were immunoprecipitated with streptavidin-agarose-conjugated beads or an appropriate antiserum and protein A-agarose. For immunoprecipitation with an anti-HA monoclonal antibody, whole goat anti-mouse IgG antibody immobilized on agarose beads was used. After overnight precipitation, the beads were washed three times with lysis buffer, followed by elution of the bound proteins by boiling with sample buffer containing β-mercaptoethanol at 100 °C for 5 min. Immunoblotting and detection by ECL were done as described previously (18), except for exposure and quantitation in a Bio-Rad ChemiDoc XRS Imaging System.

Immunofluorescence Microscopy—The procedures employed were as described previously (17, 18). Whereas for bio-
Mannose Trimming Delivers Glycoprotein to XTP3-B in Cells

chemical experiments HEK 293 cells were used for high transfection efficiency, the imaging experiments were done using NIH 3T3 cells for optimal subcellular structure resolution. For treatments with Lac (25 μM) or Kif (100 μM) cells on coverslips were incubated with medium containing the drug at 37 °C in a CO₂ incubator for 3–5 h. Confocal microscopy was done on a Zeiss laser scanning confocal microscope (LSM 510; Carl Zeiss, Jena, Germany) as described previously (17). Colocalization analysis (Pearson) was done using ImageJ software.

RESULTS

Mannose Trimming Is Essential for ERAD of Asialoglycoprotein Receptor H2a but Is Not Required for Its Association and Colocalization with EDEM1—We had previously shown that degradation of asialoglycoprotein receptor H2a is strongly dependent on trimming of mannose residues (17, 26). This can be seen in Fig. 1A, that shows the result of a pulse-chase experiment, where the H2a precursor was much stabilized in the presence of the α1,2-mannosidase inhibitor Kif, leading also to an increased amount of the cleaved H2a ectodomain fragment. When mannose trimming is blocked, there is a typical shift to a slower migration of the ERAD substrate (Fig. 1A, lanes 3 and 4 compared with lanes 1 and 2). We tested the requirement of EDEM1 for ERAD of H2a. Anti-EDEM1 shRNA strongly inhibited the degradation of H2a, although it did not lead to a significant change in the migration (Fig. 1B, compare lanes 3 and 4 with 1 and 2 and the graph in Fig. 1D). In contrast, overexpression of EDEM1 accelerated the degradation (Fig. 1C, compare lanes 3 and 4 with 1 and 2, Fig. 1D) and also caused a 30% reduction in the level of the pulse-labeled H2a (Fig. 1C, compare lane 1 with lane 3), probably by reducing the initial lag in degradation (22). Fig. 1E shows the efficiency of the EDEM1 knockdown.

EDEM1 coimmunoprecipitated with H2a to a similar extent in the presence or absence of a proteasomal inhibitor (Lac) and also when inhibiting mannose trimming with Kif (Fig. 2A), similar to what had been observed with another ERAD substrate, Null Hong Kong mutant of α1-antitrypsin (27). We looked at the subcellular localization of EDEM1, which appeared in a somewhat punctate ER pattern (see Ref. 28 for a detailed analysis of EDEM1 localization), colocalizing partially with H2a linked to monomeric red fluorescent protein (H2aRFP) (Fig. 2B, upper panels). H2aRFP is an ERAD substrate (19) and similar to H2a, Kif inhibits its degradation and trimming of its mannose residues (Fig. 2D). Upon proteasomal inhibition, the ERAD substrate accumulates in the ERQC and colocalized to a much higher extent (2-fold) with EDEM1 (Fig. 2C), which partially redistributed to this juxtanuclear region (Fig. 2B, middle panels). Inhibition of mannose trimming causes the ERAD substrate to accumulate in a punctate pattern (6, 17), and also in this case, there was more colocalization with EDEM1 (Fig. 2B, lower panels, and 2C). The behavior of EDEM1 is different from that of ERManI, which is concentrated in the ERQC in all conditions, in untreated cells, after proteasome inhibition and after inhibition of mannose trimming (17).

Because Kif could theoretically compete with substrate binding to EDEM1, we analyzed the effect of inhibition of mannose trimming by knockdown of ERManI, an enzyme that we had shown is required for the extensive mannose trimming and targeting to ERAD (17). Knockdown of ERManI causes a smaller extent of inhibition of mannose trimming compared with Kif (compare band shifts in Figs. 2A and 3A, middle panels), but led to increased coimmunoprecipitation of EDEM1 with H2a (Fig. 3), indicating that association of EDEM1 with the substrate does not depend on the activity or presence of ERManI, the presence of which may actually compete for binding to the substrate. Altogether, the results indicate that EDEM1 is involved in ERAD of H2a and that association and colocalization of EDEM1 and the ERAD substrate do not require mannose trimming or ERManI.

Association of ERAD Substrate to XTP3-B Requires ER Mannosidase I and Mannose Trimming, a Requirement That Is Independent of SEL1L—The affinity of the mammalian lectin OS9 and of yeast Yos9 for several oligosaccharides was determined recently in vitro and showed a clear preference for trimmed oligosaccharides and no binding to Man₃GlcNAc₂ or Man₄GlcNAc₂ (missing the middle branch terminal mannose) (8, 10). The same is true for XTP3-B,
which has a similar function as OS9 (11). Therefore, the prediction would be that inhibition of \(\text{H9251} \) 1,2-mannosidases would inhibit ERAD substrate binding to the lectins. Although for some substrates OS9 and XTP3-B seem to be interchangeable (29), other substrates have a preference in associating with one of the lectins (30). Coimmunoprecipitation of H2a with OS9 yielded a very low signal (data not shown), but it showed significant binding to XTP3-B (Fig. 4A, lane 1). Cell treatment with Kif or knockdown of ERManI significantly inhibited the coimmunoprecipitation to 25 and 35% of the control, respectively, even though the total amount of ERAD substrate present increased as its degradation was inhibited (Fig. 4A, lanes 2 and 3 compared with lane 1). Combined knockdown of ERManI and Kif treatment reduced the association even further, to 10% of the control (Fig. 4A, graph).

It had been reported that the sugar chains of SEL1L, the HRD1 E3 ligase adaptor (31), are involved in its interactions with EDEM1 (27) and also with OS9 and XTP3-B (30). These findings could suggest an indirect sugar dependence, with a protein-protein interaction of the substrate with SEL1L and sugar-protein interactions of SEL1L with the lectins. In this case, knockdown of SEL1L should abrogate the mannose-trimming dependence of the putative indirect interaction of the ERAD substrate with XTP3-B. Nevertheless, after efficient

performed using the ImageJ program (average of 30 cells from three independent experiments are presented; error bars are S.D.); \(p < 0.045 \) for treated samples compared with untreated. D, similar to the pulse-chase experiment in Fig. 1A but performed with cells transiently transfected with an H2aRFP cDNA-encoding vector in the absence or in the presence of Kif (100 μM) or Lac (25 μM).
Mannose Trimming Delivers Glycoprotein to XTP3-B in Cells

knockdown of SEL1L (Fig. 4C), the coimmunoprecipitation of H2a with XTP3-B was still inhibited by cell treatment with Kif, to an extent similar to that in the control cells (compare Fig. 4, A and B, lanes 1 and 2).

Targeting of H2a to E3 Ubiquitin Ligases Is Dependent on Mannose Trimming—We analyzed whether delivery of the substrate to factors downstream of XTP3-B in the ERAD pathway is dependent on the mannose-trimming step. We had shown that two E3 ubiquitin ligases participate in the degradation of H2a (23), HRD1 (a transmembrane protein exposing a RING H2 finger domain to the cytosol (32)) and the cytosolic SCP3^{bhs2} (33). This can be seen in Fig. 5, which shows a pulse-chase analysis of H2a and the inhibition of the degradation by overexpression of dominant negative mutants of HRD1 (RING finger mutant) and Fbs2 (F box mutant). In this case, we used SBP-tagged uncleavable H2a, which behaves similarly to the wild type protein, except that it does not yield a cleaved fragment (23).

We had seen that upon proteasomal inhibition, a large portion of HRD1 colocalizes with H2aRFP at the ERQC (19). This can be seen in Fig. 6A (middle panels). Treatment with Kif redistributed both H2aRFP and HRD1 to a punctate pattern but with much decreased colocalization, similar to that in untreated cells (Fig. 6A, lower panels, and B). Kif also caused a much lower degree of coprecipitation of H2aSBP and HRD1 (Fig. 6C).

For SCP3^{bhs2}, Fbs2, the substrate recognition component of this E3 ligase presents additional interest. Fbs2 is a lectin that binds substrate N-glycans (34) and for sugar chain recognition, the glycoprotein must undergo retrotranslocation to the cytosol where the E3 ligase is located. Thus, Fbs2 associates with the substrate at a very late ERAD stage. We had shown that Fbs2 targets the sugar moiety of H2a, whereas the protein moiety is the target of HRD1 (23). Fbs2 colocalized partially with H2aRFP at the ERQC in Lac-treated cells (Fig. 7A, middle panels) and also in this case, there was a strong reduction of the colocalization upon Kif treatment of the cells, resulting in similar levels to those in untreated cells (Fig. 7A, lower panels, and B). In vitro Fbs2 binds a large range of trimmed and untrimmed high mannose oligosaccharides (33), indicating that lack of trimming of the ERAD substrate should not abolish Fbs2 binding. However, the Fbs2-H2aSBP interaction was drastically reduced by incubation of cells with Kif, showing no detectable coprecipitation (Fig. 7C). Altogether, the results suggest that mannose trimming is necessary for delivery to late ERAD stages, including the retrotranslocation step.
Therefore, we looked at the protein Derlin-1, implicated in a putative retrotranslocation complex (35). Derlin-1 also coprecipitated with H2aRFP and colocalized with the ERAD substrate at the ERQC upon proteasomal inhibition. Surprisingly, inhibition of mannose trimming did not affect the extent of colocalization nor of coprecipitation compared with proteasomal inhibition (Fig. 8). Similar to H2aRFP and EDEM1, there was also a large increase in the colocalization of H2aRFP with Derlin-1 comparing untreated cells with Lac- or Kif-treated cells. This suggests that the association with Derlin-1 takes place before the mannose-trimming event.

DISCUSSION

When being targeted to ERAD, a misfolded glycoprotein undergoes ERMan1-dependent trimming to yield the N-linked oligosaccharide structures Man5–6GlcNAc2 (6, 17). These are the best binders to OS9 (10) and XTP3-B (11). Substrate binding to XTP3-B in cells in vivo requires this trimming and ER-ManI (Fig. 4). This requirement is not dependent on the presence of SEL1L. Altogether, our results suggest that the substrate associates directly with XTP3-B after excision of the α1,2-mannose residues from its sugar chains. Reported sugar-dependent interactions of SEL1L with EDEM1 (27), OS9 and XTP3-B (30) might be nonproductive for ERAD of the substrate. For example, Kif affected EDEM1-SEL1L binding but 1-deoxymannojirimycin had no effect on the EDEM1-SEL1L association (27). However, 1-deoxymannojirimycin is known to inhibit strongly ERAD of many glycoprotein substrates, including H2a (17). Alternatively, EDEM1, OS9 and XTP3-B...
may each exist as oligomers, one subunit associating with the substrate and another with SEL1L. The HRD1 complex, to which both OS9 and XTP3-B are associated, was shown to require oligomerization to be functional in yeast (36). In any case, our data favors a model whereby mannose trimming of the N-glycans of the ERAD substrate glycoprotein regulates its binding to XTP3-B, in a way similar to that reported for OS9 (8) (see model in Fig. 9). It was shown that XTP3-B and OS9 can bind nonglycosylated proteins (37). However, XTP3-B still seems to bind glycoprotein substrates through their sugar chains (Fig. 4) (11). Substrates can bind to OS9 and XTP3-B through both protein and sugar moieties (8, 30, 38, 39), but an initial lectin-sugar recognition event may normally be required.

After association of the substrate with XTP3-B (or OS9) upon mannose trimming, the lectin would deliver the glycoprotein to downstream ERAD factors such as HRD1 and SCF^{Fbs2}. HRD1 was recently reported to be mandatory for soluble luminal ERAD substrates but not for membrane-bound ones (29). However, membrane-bound H2a (Fig. 5) (23) as well as other membrane-bound ERAD substrates (TCRα, CD3ε) (32) are targets of HRD1. As these proteins are substrates of more than one ligase, this may explain why down-regulation or knock-out of HRD1 does not significantly affect their rate of degradation (29) but overexpression of a dominant negative HRD1 mutant does affect their rate of degradation (Fig. 5) (32).

There was a strong inhibition by Kif of the coimmunoprecipitation of H2a with XTP3-B and HRD1 and a total block in the association of H2a with cytosolic Fbs2. This is probably due to the inability of the ERAD substrate to reach the retrotranslocation complex and to be transported to the cytosol. This result is consistent with an observation that proteasomal inhibition but not mannosidase inhibition led to the accumulation of another ERAD substrate, mutant hERG in the cytosol (40). This suggests that the retrotranslocation to the cytosolic proteasomes is highly dependent on the excision of α1,2-mannose residues.

Interestingly, binding to Derlin-1 is independent of the mannose-trimming event (Fig. 8). Therefore, although Derlin-1 has been implicated in retrotranslocation, it probably

FIGURE 8. Association of H2a with Derlin-1 is not affected by inhibition of mannose trimming. A, experiment similar to that in Fig. 6A, except that endogenous Derlin-1 was visualized using rabbit polyclonal anti-Derlin-1 and Cy2-conjugated goat anti-rabbit IgG. B, experiment similar to that in Fig. 7C, except that Derlin-1 was detected on the blot using rabbit polyclonal anti-Derlin-1. ppt, precipitation.

FIGURE 9. Model for mannose trimming-mediated delivery of the ERAD substrate from EDEM1 to XTP3-B and to a retrotranslocation complex. Cotranslational glycosylation is followed by trimming of two glucose residues and association with the chaperones/lectins calnexin (CNX) or calreticulin. The glycoprotein is transported to the ERQC (18, 21) and can recycle back to the peripheral ER, undergoing during this process cycles of deglycosylation, reglucosylation by UDP-Glc:glycoprotein glucosyltransferase (4) and trimming of up to 2 α1,2-mannose residues by ERManI (17). Association to Derlin-1 and EDEM1 is followed by trimming of one or two more α1,2-mannose residues, which removes the glycoprotein from the calnexin folding cycle, determining its targeting to ERAD by association with XTP3-B or OS9 and delivery to the ubiquitination and retrotranslocation machinery. All proteins with a lectin activity are in light gray, including the cytosolic SCF E3 ligase component Fbs2, and glycosidases are in dark gray, including EDEM1, for which mannosidase activity has still not been proven in vitro, and peptide N-glycanase (PNGase), which cleaves the sugar chain before proteasomal degradation of the protein.
associates with the substrate at an early stage, before excision of mannose residues. This is consistent with a study of the involvement of Derlin-1 in both ER retention of mutant CTFRΔE508 and its delivery to the ubiquitination machinery, which suggested that Derlin-1 functions at several steps in the ERAD pathway (41). Indeed, Derlin-1 associates with Bap31 (42), a protein that participates in early quality control events, as it associates with calnexin and cycles between the peripheral ER and the ERQC (43), but also in late events in substrate retrotranslocation (42). Derlin-1 also associates with late ERAD factors, E3 ubiquitin ligases (44, 45), the retrotranslocation factor p97 (35, 46, 47), and cytosolic N-glycanase (48). Interestingly, Derlin-1 forms hetero-oligomers with Derlin-2 (47). Derlin-2 and -3 were shown to interact with EDEM1 (49) that, as we show here, associates with the substrate independently of the excision of mannose residues. Recognition of substrates by EDEM1 does not require mannose trimming (Fig. 2) (27) or the activity of ERManI (Fig. 3). Mannose trimming is not required either for the appearance of EDEM1 and the glycoprotein in the same region of the cell (Fig. 2). These events would take place before the trimming step. Therefore, it can be suggested that N-glycans with trimmed mannose residues are not the signal for substrate recognition by EDEM1. Consistently, EDEM1 was not found in complex with E3 ubiquitin ligases or with OS9 (30, 50–52). EDEM1 was also suggested to act as a chaperone binding to misfolded polypeptides (53, 54). Therefore, in addition to its direct or indirect participation in the excision of mannose residues (15, 16), a possible role of EDEM1 is in chaperoning or shuttling the substrate together with Derlin-1 through the ERQC, where it is delivered to XTP3-B and OS9, after the mannose-trimming event.

Fig. 9 shows a model for the role of mannose trimming, based on our results and those of others, where during the calnexin cycle, the misfolded glycoprotein is delivered to the ERQC. There, it binds Derlin-1 and EDEM1. ERManI, concentrated in the ERQC compartment, trims the α1,2-mannose residues with the help of EDEM1. At this stage, the glycoprotein can be released and recycled to the peripheral ER where, if still not properly folded, it is reglucosylated and reassociates with calnexin and is targeted again to the ERQC. If during these cycles, there is trimming to M6–5, and loss of the mannose acceptor for reglucosylation, this releases the glycoprotein from the calnexin cycle and delivers it to XTP3-B (or OS9), which traps the substrate in the ERQC and targets it to the ubiquitination and retrotranslocation machinery.

Acknowledgments—We are grateful to Ron Kopito, Kazuhiro Nagata, Emmanuel Wiertz, Yukiko Yoshida and Yihong Ye for reagents.

REFERENCES
1. Aebi, M., Bernasconi, R., Clerc, S., and Molinari, M. (2010) Trends Biochem. Sci. 35, 74–82

2. Hebert, D. N., Bernasconi, R., and Molinari, M. (2010) Semin. Cell Dev. Biol. 21, 526–532
3. Lederkremer, G. Z. (2009) Curr. Opin. Struct. Biol. 19, 515–523
4. D’Alessio, C., Caramelo, J. J., and Parodi, A. J. (2010) Semin. Cell Dev. Biol. 21, 491–499
5. Määttänen, P., Gehring, K., Bergeron, J. J., and Thomas, D. Y. (2010) Semin. Cell Dev. Biol. 21, 500–511
6. Frenkel, Z., Gregory, W., Kornfeld, S., and Lederkremer, G. Z. (2003) J. Biol. Chem. 278, 34119–34124
7. Frenkel, G. Z. and Glickman, M. H. (2005) Trends Biochem. Sci. 30, 297–303
8. Hosokawa, N., Kamiya, Y., Kamiya, D., Kato, K., and Nagata, K. (2009) J. Biol. Chem. 284, 17061–17068
9. Hosokawa, N., Kamiya, Y., and Kato, K. (2010) Glycobiology 20, 651–660
10. Quan, E. M., Kamiya, Y., Kamiya, D., Denic, V., Weibezaehn, J., Kato, K., and Weissman, J. S. (2008) Mol. Cell 32, 870–877
11. Yamaguchi, D., Hiu, D., Matsumoto, N., and Yamamoto, K. (2010) Glycobiology 20, 348–355
12. Kamiya, Y., Kamiya, D., Yamamoto, K., Nyfeler, B., Hauri, H. P., and Kato, K. (2008) J. Biol. Chem. 283, 1857–1861
13. Hosokawa, N., Wada, I., Hasegawa, K., Yorihzu, T., Tremblay, L. O., Herscovics, A., and Nagata, K. (2001) EMBO Rep. 2, 415–422
14. Jakob, C. A., Bodmer, D., Spirig, U., Battig, P., Marciel, A., Dignard, D., Bergeron, J. J., Thomas, D. Y., and Aebl, M. (2001) EMBO Rep. 2, 423–430
15. Hosokawa, N., Tremblay, L. O., Sleno, B., Kamiya, Y., Wada, I., Nagata, K., Kato, K., and Herscovics, A. (2010) Glycobiology 20, 567–575
16. Olivari, S., and Molinari, M. (2007) FEBS Lett. 581, 3658–3664
17. Ave佐, E., Frenkel, Z., Ehrlich, M., Herscovics, A., and Lederkremer, G. Z. (2008) Mol. Biol. Cell 19, 216–225
18. Kambi-Netzer, S., Shenkman, M., Tolchinsky, S., Fromm, S. V., Ehrlich, R., and Lederkremer, G. Z. (2001) Mol. Biol. Cell 12, 1711–1723
19. Kondratyev, M., Ave佐, E., Shenkman, M., Groisman, B., and Lederkremer, G. Z. (2007) Exp. Cell Res. 313, 3395–3407
20. Shenkman, M., Ayalon, M., and Lederkremer, G. (1997) Proc. Natl. Acad. Sci. U.S.A. 94, 11363–11368
21. Frenkel, Z., Shenkman, M., Kondratyev, M., and Lederkremer, G. Z. (2004) Mol. Biol. Cell 15, 2133–2142
22. Tolchinsky, S., Yuk, M. H., Ayalon, M., Lodish, H. F., and Lederkremer, G. Z. (1996) J. Biol. Chem. 271, 14496–14503
23. Groisman, B., Ave佐, E., and Lederkremer, G. Z. (2006) Isr. J. Chem. 46, 189–196
24. Yuk, M. H., and Lodish, H. F. (1993) J. Cell Biol. 123, 1735–1749
25. Shenkman, M., Ehrlich, M., and Lederkremer, G. Z. (2000) J. Biol. Chem. 275, 2845–2851
26. Ayalon-Soffer, M., Shenkman, M., and Lederkremer, G. Z. (1999) J. Cell Sci. 112, 3309–3318
27. Cormier, J. H., Tamura, T., Sunryd, J. C., and Hebert, D. N. (2009) Mol. Cell 34, 627–633
28. Zuber, C., Cormier, J. H., Guhl, B., Santimaria, R., Hebert, D. N., and Roth, J. (2007) Proc. Natl. Acad. Sci. U.S.A. 104, 4407–4412
29. Bernasconi, R., Gali, C., Calanca, V., Nakajima, T., and Molinari, M. (2010) J. Cell Biol. 188, 223–235
30. Christianson, J. C., Shaler, T. A., Tyler, R. E., and Kopito, R. R. (2008) Nat. Cell Biol. 10, 272–282
31. Mueller, B., Lilley, B. N., and Ploegh, H. L. (2006) J. Cell Biol. 175, 261–270
32. Kikkert, M., Doelman, R., Dai, M., Avner, R., Hassink, G., van Vooroen, S., Thanhed, S., Roitman, J., Chau, V., and Wiertz, E. (2004) J. Biol. Chem. 279, 3525–3534
33. Yoshida, Y., Tokunaga, F., Chiba, T., Iwai, K., Tanaka, K., and Tai, T. (2003) J. Biol. Chem. 278, 43877–43884
34. Yoshida, Y. (2007) Biosci. Biotechnol. Biochem. 71, 2623–2631
35. Ye, Y., Shibata, Y., Yun, C., Ron, D., and Rapoport, T. A. (2004) Nature 429, 841–847
36. Horn, S. C., Hanna, J., Hirsch, C., Volkwein, C., Schütz, A., Heinemann, U., Sommer, T., and Jarosh, E. (2009) Mol. Cell 36, 782–793
Mannose Trimming Delivers Glycoprotein to XTP3-B in Cells

37. Alcock, F., and Swanton, E. (2009) J. Mol. Biol. 385, 1032–1042
38. Bernasconi, R., Pertel, T., Luban, J., and Molinari, M. (2008) J. Biol. Chem. 283, 16446–16454
39. Hosokawa, N., Wada, I., Nagasawa, K., Moriyama, T., Okawa, K., and Nagata, K. (2008) J. Biol. Chem. 283, 20914–20924
40. Gong, Q., Keeney, D. R., Molinari, M., and Zhou, Z. (2005) J. Biol. Chem. 280, 19419–19425
41. Younger, J. M., Chen, L., Ren, H. Y., Rosser, M. F., Turnbull, E. L., Fan, C. Y., Patterson, C., and Cyr, D. M. (2006) Cell 126, 571–582
42. Wang, B., Heath-Engel, H., Zhang, D., Nguyen, N., Thomas, D. Y., Hanrahan, J. W., and Shore, G. C. (2008) Cell 133, 1080–1092
43. Wakana, Y., Takai, S., Nakajima, K., Tani, K., Yamamoto, A., Watson, P., Stephens, D. J., Hauri, H. P., and Tagaya, M. (2008) Mol. Biol. Cell 19, 1825–1836
44. Lilley, B. N., and Ploegh, H. L. (2004) Nature 429, 834–840
45. Ye, Y., Shibata, Y., Kikkert, M., van Voorden, S., Wiertz, E., and Rapoport, T. A. (2005) Proc. Natl. Acad. Sci. U.S.A. 102, 14132–14138
46. Hegde, R. S., and Ploegh, H. L. (2010) Curr. Opin. Cell Biol. 22, 437–446
47. Lilley, B. N., and Ploegh, H. L. (2005) Proc. Natl. Acad. Sci. U.S.A. 102, 14296–14301
48. Katiyar, S., Joshi, S., and Lennarz, W. J. (2005) Mol. Biol. Cell 16, 4584–4594
49. Oda, Y., Okada, T., Yoshida, H., Kaufman, R. J., Nagata, K., and Mori, K. (2006) J. Cell Biol. 172, 383–393
50. Carvalho, P., Goder, V., and Rapoport, T. A. (2006) Cell 126, 361–373
51. Denic, V., Quan, E. M., and Weissman, J. S. (2006) Cell 126, 349–359
52. Gauss, R., Jarosch, E., Sommer, T., and Hirsch, C. (2006) Nat. Cell Biol. 8, 849–854
53. Hosokawa, N., Wada, I., Natsuka, Y., and Nagata, K. (2006) Genes Cells 11, 465–476
54. Olivari, S., Cali, T., Salo, K. E., Paganetti, P., Ruddock, L. W., and Molinari, M. (2006) Biochem. Biophys. Res. Commun. 349, 1278–1284