Screening essential oils for their antimicrobial activities against the foodborne pathogenic bacteria Escherichia coli and Staphylococcus aureus

Julian Thielmann a, b, *, Peter Muranyi b, Pamina Kazman a, b

a Technical University of Munich TUM, Munich, Germany
b Fraunhofer Institute for Process Engineering and Packaging IVV, Freising, Germany

A R T I C L E I N F O

Keyword:
Microbiology

A B S T R A C T

The application of essential oils as antimicrobials is a current subject of research and a promising approach in terms of natural food preservation. Due to the diversity of EO producing plant genera and the inconsistent use of susceptibility testing methods, information on the antibacterial potency of many EO varieties is fragmentary. This study was performed to assess the minimal inhibitory concentrations (MIC) of 179 EO samples from 86 plant varieties, using a single method approach, excluding emulsifying agents. MICs were acquired in a broth micro-dilution assay, using a dispersion based approach to incorporate EOs in a concentration range of 6400 to 50 μg/ml. Staphylococcus aureus and Escherichia coli were used as model bacteria. At concentrations below 400 μg/ml S. aureus was inhibited by 30 E. coli by 12 EO varieties. Axadractha indica (50 μg/ml vs. S. aureus) and Lirsea cubeba (50 μg/ml vs. S. aureus, 200 μg/ml vs. E. coli) essential oils were identified as promising new antimicrobial EO candidates with significant antimicrobial activity against the two foodborne pathogenic bacteria.

1. Introduction

Investigating the antimicrobial activities of plant essential oils (EO) has concerned many scientific studies within the last two decades. Besides a few general screenings [1, 2, 3], most studies were focused on one type of essential oil only, mainly Thymus vulgaris, Origanum vulgare or Cinnamomum species. Significant activities of these and other EOs against certain foodborne pathogenic bacteria such as Escherichia coli, Listeria monocytogenes, and Salmonella typhimurium have been demonstrated [4, 5, 6]. Furthermore, there has been continuous work regarding the identification of single active compounds from well investigated EOs, such as thymol, carvacrol or eugenol and partial elucidation of their cellular mechanism of action [7, 8, 9]. Most work on antimicrobial EOs was inspired by the idea of identifying alternative preservative agents with an overall “green” and “natural” or “bio-based” character for modern food technology applications.

The findings published to date, are still very fragmentary regarding a wide variety of essential oils [10]. Some EOs are still untested or negative results remain unpublished. In addition, it is difficult to reliably compare results from literature data, due to the strong variance of the used antimicrobial susceptibility testing methods. This complicates the selection of the most suitable EO candidates for further antimicrobial research and applications. Additionally, there are some constraints for EOs concerning food application, especially their sensory impact. EO components are considered aroma compounds (e.g. Thymol, Citral, Limonene, α-/β-Pinene, etc.), meaning they generally induce sensory activity [10]. Regarding food application it is therefore recommended to choose an essential oil based on the sensory profile of the targeted food product [11]. EOs with low inhibitory concentrations are considered advantageous to achieve antimicrobial effects in the product without affecting the sensory properties. For this study we defined a critical minimal inhibitory concentration (MIC) of 400 μg/ml in vitro, to select EOs with the most promising suitability for future application trials.

This study was performed to extent the available information on antibacterial activities of plant essential oils, intending to normalize the discussion on the antibacterial activity of plant essential oils with quantitative data for a large number of EOs. The comparability of the results is maximized by the use of a reproducible, quantitative method for MIC determination, combining the advantages of a dispersion approach, as developed by Remmal, Bouchikhi [12] and Friedman, Henika [13], with the reliability of a standardized broth microdilution assay [14]. Emulsifying agents and organic solvents were excluded when possible, as several authors argued that such additives distort susceptibility tests [12, 15]. The trials included a wide variety of EOs, available from three

* Corresponding author.
E-mail address: julian.thielmann@ivv.fraunhofer.de (J. Thielmann).

https://doi.org/10.1016/j.heliyon.2019.e01860
Received 8 February 2019; Received in revised form 26 April 2019; Accepted 28 May 2019
2405-8440/© 2019 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
different German essential oil retailers and was focused on the two foodborne pathogenic model bacteria: *Escherichia coli* and *Staphylococcus aureus*.

2. Materials and methods

2.1. Essential oils

Essential oils were provided by three different German essential oil manufacturers (Neumond GmbH, Raisting, Germany; Frey&Lau GmbH, Henstedt-Ulzburg, Germany; Dülberg Konzentrab GmbH, Hamburg, Germany). Overall, essential oils from 86 plant varieties were accessible, whereof 38 equal varieties where available in triplicate and 20 in duplicate, but from the different sources, respectively. Altogether 179 commercial oil samples were tested. The investigated samples did not contain additives or solvents and were confirmed to be natural by the manufacturers. Furthermore, EOs were considered sterile. EO samples were stored in resealable vials at 5 °C in the dark, but were allowed to adjust to room temperature prior to investigation. The samples were washed twice in sterile 1/4 Ringer’s solution. Prior to use, cells were washed twice in sterile 1/4 Ringer’s solution and vigorously shaken for 30 s. Oil containing stock dispersions turned slightly white and were stable towards phase separation for up to 48 h. Solutions were adjusted to 12.8 mg/ml in glass vials which were sealed with a sterile, gas-permeable seal (BREATHSel, Greiner bio-one, Frickenhausen, Germany). Turbidity measurement was performed after incubation in a microplate reader (Tecan, Männedorf, Switzerland) at 595 nm. The seals were removed and plates were shaken orbital for 30 s. Each well was measured at nine spots with 5 flashes per spot. Obtained spot-OD-values of each well were averaged as well-OD-values. Values of parallel wells were averaged afterwards and blank-OD-values were subtracted. The minimal inhibitory concentration (MIC) was defined as the lowest concentration tested which did not allow cell growth within 24 h at 37 °C.

2.2. Bacterial strains and growth conditions

The Gram-positive bacterium *Staphylococcus aureus* DSM 1104 and the Gram-negative bacterium *Escherichia coli* DSM 1103 were used as test organisms. The strains were obtained from the Leibniz Institute DSMZ German Collection of Microorganisms and Cell Cultures (DSMZ, Braunschweig, Germany) and are both recommended for antimicrobial susceptibility testing. Stock cultures were grown in 100 ml sterile tryptic Braunschweig, Germany) and are both recommended for antimicrobial organisms. The strains were obtained from the Leibniz Institute DSMZ.

2.3. Essential oil incorporation

Essential oil incorporation was optimized for the execution of a broth microdilution assay for antibacterial susceptibility testing [16]. To avoid the interfering influences of organic solvents or emulsifying agents, a dispersion approach, as first described by Remmal, Bouchikhi [17], was chosen. To increase their viscosity, Mueller-Hinton broth (MHB) (Merck-Millipore, Darmstadt, Germany) and deionized water were spiked with 0.15 % agarose (Merck-Millipore, Darmstadt, Germany) prior to sterilization. All media were adjusted to pH 7.0 ± 0.1. EO stock solutions were adjusted to 12.8 mg/ml in glass vials which were sealed and vigorously shaken for 30 s. Oil containing stock dispersions turned slightly white and were stable towards phase separation for up to 48 h. Air bubbles were driven out by slight vortexing. A small number of EOs was found to be unstable in dispersion, due to complex-formation and clouding. For these EOs dimethyl sulfoxide (DMSO) was used to aid oil incorporation. Final DMSO concentration was 4.4 % (v/v) and had no growth inhibitory effects. Oils incorporated in DMSO are marked separately in the results tables.

2.4. Broth microdilution assay

Antibacterial susceptibility testing was performed according the CLSI laboratory standard for broth microdilution assays [16]. Concentrations tested in the assays ranged from 6400 to 50 μg/ml in bisecting dilution steps. Assays were performed using sterile 96 well microplates (transparent, F-bottom) (Greiner bio-one, Frickenhausen, Germany). Each concentration was tested in triplicate and a single blank (broad with corresponding EO-concentration). Three oils were tested in parallel per plate (n = 3). Ultimately, each well contained 100 μl of EO dispersion. Inoculum was prepared by a hundredfold dilution of the adjusted cell suspension in double concentrated (2x) MHB. Each well was spiked with 100 μl inoculated 2xMHB resulting in a final cell count of 1.0*10⁸ cfu per well. Inoculation media were used immediately to avoid growth dependent shifts in the cell count. Growth, sterility and quality controls were analyzed for every culture, but on separate microplates. Chloramphenicol (2.0–0.008 μg/ml) served as control bacteriostatic to assess cell susceptibility for each batch culture (data not shown). Prior to incubation for 24 h at 37 °C, the inoculated plates were shaken orbital for 30 s on a plate mixer (Kisker, Steinfurt, Germany). To avoid loss of volatile essential oil and humidity during incubation each plate was sealed with a sterile, gas-permeable seal (BREATHSel, Greiner bio-one, Frickenhausen, Germany). Turbidity measurement was performed after incubation in a microplate reader (Tecan, Männedorf, Switzerland) at 595 nm. The seals were removed and plates were shaken orbital for 30 s. Each well was measured at nine spots with 5 flashes per spot. Obtained spot-OD-values of each well were averaged as well-OD-values. Values of parallel wells were averaged afterwards and blank-OD-values were subtracted. The minimal inhibitory concentration (MIC) was defined as the lowest concentration tested which did not allow cell growth within 24 h at 37 °C.

3. Results

The MIC values of 179 essential oils from 86 plant species against *E. coli* DSM 1103 and *S. aureus* DSM 1104, determined in a broth microdilution assay, are presented in Table 1. The results show growth inhibitory activities for the majority of the tested EO samples. Inhibition was generally stronger against the Gram-positive bacterium *S. aureus* than against Gram-negative *E. coli*. At or below the preliminary defined critical concentration of 400 μg/ml 46 EO samples from 30 plant genera inhibited *S. aureus*, whereas *E. coli* was only inhibited by 22 samples from 12 plant genera. EO varieties from different providers rarely revealed identical MIC values. Nonetheless, *Azadirachta indica*, *Backhousia citriodora*, *Cinnamomum cassia*, *Cinnamomum verum*, *Leptospermum scoparium*, *Litsea cubeba*, *Nardostachys jatamansi*, *Origanum vulgare*, *Pogostemon cablin*, *Sanfitalum album*, *Thymus syzigis* and *Vetiveria zizanoides* were found to be the most inhibitory EOs against *S. aureus* with MIC values of 50 μg/ml. Only four EOs, *Cinnamomum cassia*, *Cinnamomum verum*, *Origanum vulgare* and *Thymus syzigis* could exhibit inhibitory effect against *E. coli* at 50 μg/ml. But certain other EOs from *Backhousia citriodora*, *Cupressus sempervirens*, *Cymbopogon citratus*, *Cymbopogon martini*, *Cymbopogon nardus*, *Litsea cubeba*, *Origanum majorana*, *Origanum vulgare*, and *Syzgium aromaticum* still revealed promising activity with MICs between 100 and 400 μg/ml against *E. coli*.

Some EOs did not show any antibacterial activities. *Cananga odorata*, *Cupressus sempervirens*, *Daucus carota*, *Foeniculum vulgare*, *Juniperus communis*, *Pimpinella anisum* oils were available from each provider, but did not show any activity against *S. aureus* or *E. coli*, respectively. *Artemisia pallasii*, *Boswellia carteri*, *Matricaria chamomilla*, *Pinus mugo*, *Piper nigrum*, *Pogostemon cablin*, *Pinus sylvestris* and *Vetiveria zizanoides* only exhibited inhibitory activity against *S. aureus*. Growth of *E. coli* was not affected by these EOs. For *Pogostemon cablin* and *Vetiveria zizanoides* these findings were particularly distinct, as the three EO samples from the different providers revealed the same results for *E. coli*. Exclusive inhibitory potential against *E. coli* was only shown for samples from *Cinnamomum camphora* and *Citrus sinensis*.

4. Discussion

The number of scientific studies on the antimicrobial activity of plant
Plant botanical name	Oil common name	Extracted plant part	MIC (μg/ml) S. aureus	MIC (μg/ml) E. coli				
			a	b	c	a	b	c
1. Abies alba	silver fir	branches	n. l.	n. l.				
2. Abies procera	noble fir	branches	n. l.	n. l.				
3. Achillea millifolium	yarrow	herb	6400	n. l.				
4. Anethum graveolens	dill	seeds + herb	n. l.	n. l.				
5. Angelica archangelica	root	garden angelica	400	n. l.	1600			
6. Anethum nobilis	roman chamomile	blossom	200*	n. l.	n. l.			
7. Artemisia dracunculus	leaves	tarragon	6400	n. l.	n. l.			
8. Artemisia pallens	davana	herb	6400	n. l.	n. l.			
9. Asarabachus indica	neem	seeds	50*	1600*				
10. Backhousia caesia	lemon myrtle	herb	50	200				
11. Boswella carteri	olibanum	resin	1600	n. l.	n. l.			
12. Cananga odorata	ylang-ylang	blossom	n. l.	n. l.	n. l.			
13. Canaria humicola	elemi	resin	400	n. l.	6400	n. l.		
14. Carnus carvi	caraway	seeds	800	n. l.	3200	6400	1600	
15. Cedrus atlantica	atlas cedar	wood	n. l.					
16. Cinnamomum camphora	ravistara	leaves	3200		6400			
17. Cinnamomum camphora	camphor	branches	n. l.	n. l.	6400			
18. Cinnamomum camphora	ho	leaves	1600		800			
19. Cinnamomum cassia	chinese cinnamon	branches	50	50	200	50	50	
20. Cinnamomum verum	true cinnamon	bark	200	50	800	200	50	200
21. Citrus limon	cistrose	leaves + branches	400					
22. Citrus aurantifolia	lime	peel	1600	800	3200	6400	800	6400
23. Citrus aurantium	bitter orange	peel	1600	n. l.	3200	1600	n. l.	1600
24. Citrus aurantium	neroli	blossom	6400	800	3200	3200	800	6400

Table 1
Minimal inhibitory concentrations (μg/ml) of essential oils from three different manufacturers (a, b, c) against Staphylococcus aureus DSM 1104 and Escherichia coli DSM 1103.

...continued on next page...
essential oils has strongly grown over the last three decades. Due to the use of many different microbiological methods for susceptibility testing and different definitions of antimicrobial activity, the comparability of studies on essential oils is often critical. Many studies focus on selected EOs, providing insight into their activity against one or more microorganisms [4, 5, 7, 8, 18], but only few publications compress information on the EO variety tested. In comparison to other essential oils, providing insight into their activity against one or more microorganisms [4, 5, 7, 8, 18], but only few publications compress information on the EO variety tested. In comparison to other essential oils

Plant botanical name	Oil common name	Extracted plant part	MIC (μg/ml)
S. aureus			
E. coli			
61	Mentha piperita citrata	bergamot mint	1600
62	Mentha spicata	spearmint	1600
63	Myrtus communis	myrtle leaves + branches	1600
64	Nardostachys jatamansi	spikenard roots	1600
65	Ocimum basilicum	basil	1600
66	Origanum majorana	marjoram leaves	1600
67	Origanum vulgare	oregano leaves	1600
68	Pelargonium graveolens	rose geranium leaves	1600
69	Pinus sylvestris	scots pine needles	1600
70	Lavandula officinalis	lavender flowers	1600
71	Mentha spicata	spearmint leaves	1600
72	Pelargonium graveolens	rose geranium leaves	1600
73	Pelargonium graveolens	rose geranium leaves	1600
74	Pogostemon cablin	patchouli leaves	1600

Plant botanical name	Oil common name	Extracted plant part	MIC (μg/ml)
S. aureus			
E. coli			
75	Pinus sylvestris	scots pine needles	1600
76	Rosmarinus officinalis	rosemary leaves	1600
77	Salvia lavandulifolia	salvia spanish leaves	1600
78	Salvia officinalis	salvia leaves	1600
79	Salvia sclarea	clary sage leaves	1600
80	Santalum album	sandalwood wood	1600
81	Syzygium aromaticum	clove buds	1600
82	Thymus mastichina	thyme leaves	1600
83	Thymus sylvestris	thyme linalool leaves	1600
84	Thymus sylvestris	thyme thymol leaves	1600
85	Vetiveria zizanoides	vetiver roots	1600
86	Zingiber officinale	ginger roots	1600

a = Neunmond GmbH.
b = Frey & Lau GmbH.
c = Düllberg Konzentra GmbH.
blank space = EO not available.
n. I. = no inhibition.
* = contains DMBO.

cubeba EO is produced in high amounts and cheaply available. Further research is necessary to identify its full antimicrobial spectrum and to optimize its potential. As the tested *Litsea cubeba* EOs tested in this study fell below the defined food application limit of 400 μg/ml they might be considered a promising candidate for food preservative applications, also due to its unique, refreshing aroma [25, 27]. The main active compound of *L. cubeba* EOs is the monoterpene Citral, which has been found to be positive in terms of sensory effects when used as an antimicrobial compound in food products [28].

Nardostachys jatamansi and *Azadirachta indica* might also become interesting regarding food preservation applications, as both plants are important in traditional Indian medicine and consequently have histories of safe use [29, 30]. *Nardostachys jatamansi* is dominated by different sesquiterpenes which, to our best knowledge, have not been investigated concerning antimicrobial activities yet [30]. The essential oil from *Azadirachta indica*, commonly known as neem-tree essential oil, mainly consists of the compounds Azadirachtin and Nimbin. The compounds are known to possess antimicrobial activity, but are predominately used as spermicides [29, 31].

By comparing the results of EOs from a single plant species, but from different manufacturers, it becomes evident that simple postulations regarding the antibacterial effect of a certain EO cannot be made easily. As shown in Table 1, most EO varieties revealed differing MIC values when purchased from another manufacturer. Possible reasons may be versatile, as chemical composition is affected by various external factors, such as geographic origin, environmental conditions, point of harvest or other processing dependent influences [32, 33, 34]. These findings are in line with the results from previous works [35, 36] and enhance the often
J. Thielmann et al. Heliyon 5 (2019) e01860

requested need for chemical characterizations of antimicrobial EOs to identify the active compounds and their interdependencies [3]. Consequently, EO optimization and standardization regarding antimicrobial activity appears to be inevitable for application.

This study also revealed results which differ greatly from those reported by others. The lacking growth inhibition by Cananga odorata, Cupressus sempervirens, Juniperus communis or Pimpinella anisum may be due to the comparably low concentrations used. Authors, who found these oils to be inhibitory, used way higher concentrations, revealing MICs ranging from 12.5 mg/mL for Cupressus sempervirens EO against E. coli [37] to 40 μg/mL for Juniperus communis EO versus S. aureus [38]. In regard of future applications in food systems and the strong sensory impact of essential oils on food these EO varieties appear to be unsuitable. Given the focus of application it is apparent to select essential oils with very low MICs. As described before, we defined a critical MIC level of 400 μg/mL in order to identify EO varieties with a greater applicability concerning food preservation. In general it is recommended to couple food application studies with sensory profiling trials. Another peculiarity in this study is the fact, that none of the Foeniculum vulgare EOs showed any inhibitory activity. In previous studies fennel seed essential oil was found to be bactericidal at comparable concentrations between 20 μL and 80 μL/mL against E. coli and S. aureus by Dadalioglu and Evrendilek [39]. In this case clarification can only be achieved by chemical analysis of the respective oils which has not been performed as part of our investigations, due to the more broadened approach. On the other hand it was once more affirmed, that Daucus carota essential oils completely lack antimicrobial activity, as also stated by Hammer, Carson [3].

5. Conclusion

In summary, this study provides insight into the in vitro antibacterial activity of a wide variety of essential oils from many different plant genera against E. coli and S. aureus. The data contributes to the ongoing scientific investigation regarding the application of essential oils as natural food preservative agents. As the comparison of MICs from different studies is most often difficult, due to the use of varying quantitative or semi-quantitative methods, this study aimed to normalize the discussion by testing a wide variety of plant essential oils with a single, standardized quantitative method for MIC detection. After benchmarking EOs from thyme and oregano as the most active, EO varieties from Azadirachta indica and Litsea cubeba were identified as promising candidates concerning possible applicability in food.

Declarations

Author contribution statement

Julian Thielmann: Conceived and designed the experiments; Performed the experiments; Analyzed and interpreted the data; Contributed reagents, materials, analysis tools or data; Wrote the paper.

Pamina Kazman: Performed the experiments; Analyzed and interpreted the data.

Peter Muranyi: Analyzed and interpreted the data; Wrote the paper.

Funding statement

This work was partially funded by the Federal Ministry of Economics and Technology (BMWi) via the industrial collective research program of the German Federation of Industrial Research Associations (AiF) under contract number IGF 99EN/1.

Competing interest statement

The authors declare no conflict of interest.

Additional information

No additional information is available for this paper.

References

[1] G. Sacchetti, S. Maietti, M. Muzzoli, M. Scaglianti, S. Manfredini, M. Radice, R. Bruni, Comparative evaluation of 11 essential oils of different origin as functional antioxidants, antiradicals and antimicrobials in foods, Food Chem. 91 (4) (2005) 621–632.
[2] V.C. Pawar, V.S. Thaker, In vitro efficacy of 75 essential oils against Aspergillus niger Mycoses, Mycoes 49 (2006) 316–322.
[3] K.A. Hammer, C.F. Carson, T.W. Riley, Antibacterial activity of essential oils and other plant extracts, J. Appl. Microbiol. 86 (6) (1999) 985–990.
[4] A. Sivropoulou, E. Papamikos, C. Nikolaou, S. Kokkini, T. Laranas, M. Arsenakis, Antimicrobial and cytotoxic activities of Origanum essential oils, J. Agric. Food Chem. 44 (5) (1996) 1202–1205.
[5] L.S. Ooi, Y. Li, S.L. Kam, H. Wang, E.Y. Wong, V.E. Ooi, Antimicrobial activities of cinnamon oil and cinnamonaldehyde from the Chinese medicinal herb Cinnamum cassia Blume, Am. J. Chin. Med. 34 (3) (2006) 511–522.
[6] M. Oussalah, S. Caillet, L. Saucier, M. Lacroix, Inhibitory effects of selected plant essential oils on the growth of four pathogenic bacteria: E. coli O157:H7, Salmonella Typhimurium, Staphylococcus aureus and Listeria monocytogenes, Food Control 18 (5) (2007) 414–420.
[7] R.J. Lambert, P.N. Skandamis, P.J. Coote, G.J. Nychas, A study of the minimum inhibitory concentration and mode of action of organo essential oil, thymol and carvacrol, J. Appl. Microbiol. 91 (3) (2001) 453–462.
[8] J. Xu, F. Zhou, B.P. Ji, R.S. Pei, N. Xu, The antibacterial mechanism of carvacrol and thymol against Escherichia coli, Lett. Appl. Microbiol. 47 (3) (2008) 174–179.
[9] A. Paparella, L. Taccogna, I. Aguzzi, C. Chavez-Lopez, A. Serto, F. Marsilio, G.uzzi, Flow cytometric assessment of the antimicrobial activity of essential oils against Listeria monocytogenes, Food Control 19 (12) (2008) 1174–1182.
[10] S. Burt, Essential oils: their antibacterial properties and potential applications in foods—a review, Int. J. Food Microbiol. 94 (3) (2004) 223–253.
[11] J. Gutierrez, C. Barry-Ryan, R. Beurke, The antimicrobial efficacy of plant essential oil combinations and interactions with food ingredients, Int. J. Food Microbiol. 124 (1) (2008) 91–97.
[12] A. Remmal, T. Bouchikhi, A. Tantauoi-Elaraki, M. Ettayebi, Inhibition of antibacterial activity of essential oils by tween 80 and ethanol in liquid medium, J. Pharm. Belg. 48 (5) (1993) 352–356.
[13] M. Friedman, P.R. Henika, R.E. Mandrell, Bactericidal activities of plant essential oils and some of their isolated constituents against Campylobacter jejuni, Escherichia coli, Listeria monocytogenes, and Salmonella enterica, J. Food Prot. 65 (10) (2002) 1545–1560.
[14] L.B. Reller, M. Weinstein, J.H. Jorgensen, M.J. Ferraro, Antimicrobial susceptibility testing: a review of general principles and contemporary practices, Clin. Infect. Dis. 49 (11) (2009) 1749–1755.
[15] B.J. Juven, J. Kanner, F. Schved, H. Weislivich, Factors that interact with the antibacterial action of thyme essential oil and its active constituents, J. Appl. Bacteriol. 76 (6) (1994) 626–631.
[16] CLSI, Performance Standards for Antimicrobial Susceptibility Testing, 26th edition, Clinical & Laboratory Standards Institute, Wayne, PA, USA, 2015.
[17] A. Remmal, T. Bouchikhi, K. Rhayour, M. Ettayebi, A. Tantauoi-Elaraki, Improved method for the determination of antimicrobial activity of essential oils in agar medium, J. Essent. Oil Res. 2 (2) (2011) 179–184.
[18] M.C. Rota, A. Herrera, R.M. Martinez, J.A. Somatoy, M.J. Jordan, Antimicrobial activity and chemical composition of Thymus vulgaris, Thymus sylvis and Thymus hyrmioli essential oils, Food Control 19 (7) (2008) 681–687.
[19] M. Sairam, G. Ilyavazhagan, S.K. Sharma, S.A. Dhanraj, B. Suresh, M.M. Parida, A.M. Jana, K. Devendra, W. Selvamurthi, Antimicrobial activity of a new vaginal contraceptive NIM-76 from neem oil (Azadirachta indica), J. Ethnopharmacol. 71 (3) (2000) 377–382.
[20] S. Dupont, N. Caffin, B. Bhandari, G.A. Dykes, In vitro antibacterial activity of Australian native herb extracts against food-related bacteria, Food Control 17 (11) (2006) 929–932.
[21] V.P. Kumar, N.S. Chauhan, H. Padh, M. Rajani, Search for antibacterial and antifungal agents from selected Indian medicinal plants, J. Ethnopharmacol. 107 (2) (2006) 182–188.
[22] A.J. Hayes, B. Markovic, Toxicity of Australian essential oil Bachuussa citriodora (Lemon myrtle), Part I. Antimicrobial activity in vitro and cytotoxicity, Food Chem. Toxicol. 40 (4) (2002) 535–543.
[23] T.T. Liu, T.S. Yang, Antimicrobial impact of the components of essential oil of Litsea cubeba from Taiwan and antimicrobial activity of the oil in food systems, Int. J. Food Microbiol. 156 (3) (2012) 68–75.
[24] J.J. Brophy, R.J. Goldack, C.J.R. Fookes, P.I. Forster, Leaf oils of the genus Backhousia (Myrtaceae), J. Essent. Oil Res. 7 (3) (1995) 237–254.
[25] G.O. Onawunmi, Evaluation of the antimicrobial activity of Citalia, Lett. Appl. Microbiol. 9 (3) (1989) 105–108.
[26] G.O. Onawunmi, W.A. Yisa, E.O. Ogunlana, Antibacterial constituents in the essential oil of Cymbopogon citratus (DC) Stapf, J. Ethnopharmacol. 12 (3) (1984) 279–286.
[27] W.R. Li, Q.S. Shi, Q. Liang, X.B. Xie, X.M. Huang, Y.B. Chen, Antibacterial activity and kinetics of Litsea cubeb oil on Escherichia coli, PLoS One 9 (11) (2014), e110983.
[28] V. Muriel-Galet, J.P. Cerisuelo, G. Lopez-Carballe, M. Lara, R. Gavara, P. Hernandez-Munoz, Development of antimicrobial films for microbiological control of packaged salad, Int. J. Food Microbiol. 157 (2) (2012) 195–201.

[29] S.S. Riar, C. Devakumar, G. Babazhagan, J. Bardhan, A.K. Kain, P. Thomas, R. Singh, B. Singh, Volatile fraction of Neem oil as a spermicide, Contraception 42 (4) (1990) 479–487.

[30] G. Juliano, A. Mattana, M. Usai, Composition and in vitro antimicrobial activity of Thymus herba-barona Loisel growing wild in Sardinia, J. Essent. Oil Res. 12 (4) (2000) 516–522.

[31] M.L. Faleiro, M.G. Miguel, P. Fadreiro, F. Venancio, R. Tavares, J.C. Brito, A.C. Figueiredo, J.G. Pedro, Antimicrobial activity of essential oils isolated from Portuguese endemic species of Thymus, Lett. Appl. Microbiol. 36 (1) (2003) 35–40.

[32] M. Lint-Balchin, S.G. Deans, Bioactivity of selected plant essential oils against Listeria monocytogenes, J. Appl. Microbiol. 82 (6) (1997) 597–602.

[33] M. Lint-Balchin, S. Hart, S.G. Deans, E. Eaglesham, Comparison of the pharmacological and antimicrobial action of commercial plant essential oils, J. Herbs, Spices, Med. Plants 4 (2) (1996) 69–86.

[34] M. Mariano, C. Bersani, G. Comi, Antimicrobial activity of the essential oils of Thymus vulgaris L. measured using a biophotometric method, J. Food Prot. 62 (9) (1999) 1017–1023.

[35] M. Lint-Balchin, S. Hart, S.G. Deans, E. Eaglesham, Comparison of the pharmacological and antimicrobial action of commercial plant essential oils, J. Herbs, Spices, Med. Plants 4 (2) (1996) 69–86.

[36] M. Lint-Balchin, S. Hart, S.G. Deans, E. Eaglesham, Comparison of the pharmacological and antimicrobial action of commercial plant essential oils, J. Herbs, Spices, Med. Plants 4 (2) (1996) 69–86.

[37] M. Lint-Balchin, S. Hart, S.G. Deans, E. Eaglesham, Comparison of the pharmacological and antimicrobial action of commercial plant essential oils, J. Herbs, Spices, Med. Plants 4 (2) (1996) 69–86.

[38] S. Pepeljnjak, I. Kosalec, N. Blazevic, Antimicrobial activity of juniper berry essential oil (Juniperus communis L., Cupressaceae), Acta Pharm. 55 (4) (2005) 417–422.

[39] I. Dadalioglu, G.A. Evrendilek, Chemical compositions and antibacterial effects of essential oils of Turkish oregano (Origanum minutiflora), bay laurel (Laurus nobilis), Spanish lavender (Lavandula stoechas L.), and fennel (Foeniculum vulgare) on common foodborne pathogens, J. Agric. Food Chem. 52 (26) (2004) 8255–8260.