Meta-Analysis of the Significance of Asymptomatic Bacteriuria in Diabetes

Marjo Renko, MD, PhD
Päivi Tapasainen, MD, PhD
Päivi Tossavainen, MD, PhD
Tytti Pokka, BSc
Matti Uhari, MD, MSC

OBJECTIVE — To evaluate whether asymptomatic bacteriuria (ASB) is more common in patients with diabetes than among control subjects. In addition, we wanted to clarify the clinical significance of ASB in patients with diabetes.

RESEARCH DESIGN AND METHODS — We conducted a systematic review and meta-analysis of published data since 1966. Twenty-two studies fulfilled the inclusion criteria of the meta-analysis.

RESULTS — ASB was present in 439 of 3,579 (12.2%) patients with diabetes and in 121 of 2,702 (4.5%) healthy control subjects. ASB was more common both in patients with type 1 diabetes (odds ratio 3.0 [95% CI 1.1–8.0]) and type 2 diabetes (3.2 [2.0–5.2]) than in control subjects. The point prevalence of ASB was higher in both women (14.2 vs. 5.1%; 2.6 [1.6–4.1]) and men (2.3 vs. 0.8%; 3.7 [1.3–10.2]) as well as in children and adolescents (12.9 vs. 2.7%; 5.4 [2.7–11.0]) with diabetes than in healthy control subjects. Albuminuria was more common in patients with diabetes and ASB than those without ASB (2.9 [1.7–4.8]). History of urinary tract infections was associated with ASB (1.6 [1.1–2.3]).

CONCLUSIONS — We were able to show that the prevalence of ASB is higher in all patients with diabetes compared with control subjects. We also found that diabetic subjects with ASB more often had albuminuria and symptomatic urinary tract infections.

Diabetes Care 34:230–235, 2011

ASB is considered clinically significant and worth treating during pregnancy because treatment effectively reduces the risk of pyelonephritis and preterm delivery (5,6). Although ASB has been found to associate with increased risk of hospitalization for urosepsis in a prospective observational study among women with diabetes (7), the treatment of ASB in one randomized controlled trial did not reduce the risk of symptomatic urinary tract infection (8). Associations between ASB, metabolic control of diabetes, and impaired renal function have been brought up repeatedly (9–15). To evaluate whether ASB is truly more common in patients with diabetes than among control subjects and to clarify the clinical significance of ASB in diabetic subjects, we did a systematic literature search and performed a meta-analysis of the published data.

RESEARCH DESIGN AND METHODS — We performed a literature search in PubMed for the years 1966–2007 using the following MeSH terms: “asymptomatic bacteriuria” and “diabetes” in order to find all the articles that considered epidemiology, risk factors, and prognosis of ASB in patients with diabetes. Altogether, 112 hits were found. Reviews, commentary articles, and editorials were excluded. On the basis of the title and abstract, 45 articles were found to be original-research articles on the selected topic. All members of the study group read these 45 articles. Studies where ASB was defined as growth of one or two bacteria species for ≥10^5 cfu/ml urine in one or more samples taken from asymptomatic patients were included. After excluding 24 articles in which study design, presentation, or reporting was not adequate, 21 articles were finally accepted and analyzed (Fig. 1). Of the non-English articles, only abstracts in English were reviewed.

We focused on the point prevalence of ASB in diabetic patients and control subjects and the associations of ASB and specific risk and prognostic factors among people with diabetes. Analyses were performed using the Comprehensive Meta-Analysis Program, version 1.0.25. Heterogeneity was assessed and quantified by calculating I^2 (inconsistency) values. Without the heterogeneity (test for inconsistency not significant), pooled estimates of odds ratios (ORs) or effect sizes and 95% CIs for the estimates were derived using a fixed-effects model; otherwise, a random-effects model was used (16). The possibility of publication bias was assessed with funnel plots (not shown). The analyses were performed separately for women and men and for patients with type 1 diabetes and type 2 diabetes, whenever possible. The quality of the articles was assessed by all members of the study group, using a scale from 1 to 5, and the summary scoring was then decided after a discussion on the flaws and biases of the study. Because using one figure indicative for the quality of included studies has been shown to be problematic
or even misleading, the numbers were not included in the final analyses (17).

RESULTS — Twenty-two studies fulfilled the inclusion criteria of the meta-analysis (Table 1). The design was cross-sectional in 16 and follow-up in 5 studies, whereas 10 studies comprised only women. The mean quality score of the studies included in the analyses was 2.6 (range 1–4). The only randomized intervention trial was evaluated separately (8).

In the pooled data, ASB was present in 439 of 3,579 (12.2%) patients with diabetes and in 121 of 2,702 (4.5%) healthy control subjects. ASB was more common in both patients with type 1 diabetes (OR 3.0 [95% CI 1.1–8.0]) and type 2 diabetes (3.2 [2.0–5.2]) than in control subjects. The point prevalence of ASB was higher in both women (14.2 vs. 5.1%; 2.6 [1.6–4.1]) and men (2.3 vs. 0.8%; 3.7 [1.3–10.2]) with diabetes than in healthy control subjects (Figs. 2 and 3). There were only two trials (12,18) that included children and adolescents and comprised 683 subjects and was published by the same study group. In these surveys, ASB was more common in children and adolescents with diabetes (12.9%) than in healthy control subjects (2.7%; 5.4 [2.7–11.0]) (Fig. 4).

The effect of the duration of diabetes on the point prevalence of ASB was reported in four studies (9,10,13,19) all comprising only women. The mean duration of diabetes was longer in patients with ASB than in those without ASB (pooled difference 0.17 years [95% CI 0.03–0.31]; P = 0.01). The mean A1C, as a measurement of glycemic control in diabetes, did not differ in diabetic subjects with ASB compared with those without ASB (pooled difference 0.21 [−0.07 to 0.50]; P = 0.14).

The mean creatinine level did not differ in diabetic subjects with or without ASB in three cross-sectional surveys (pooled difference 0.21 μmol/l [95% CI −0.3 to 0.8]; P = 0.36) (7,11,19). Association of proteinuria and ASB was studied in three trials (10,19,20). Proteinuria, defined as ≥30 mg/24 h in two of the studies and as presence of macroalbuminuria in one study, was more common in patients with diabetes and ASB than those without ASB (OR 2.9 [95% CI 1.7–4.8]; P < 0.0001) (Fig. 5).

Renal function was measured with glomerulus filtration rate (GFR) in two studies, both of which included only women with diabetes. In the cross-sectional survey, there was no difference in GFR values between diabetic subjects with and without ASB, but in a 6-year follow-up study the GFR values decreased more in patients with diabetes and ASB than in those without ASB (14 vs. 9%, P = 0.03) (9,15). In multivariate analyses adjusted for age, length of follow-up, duration of diabetes, and microalbuminuria at baseline, the difference was no longer sta-

Citation	Diabetes	Controls	Effect	PValue
Abu-Bakare et al 1986	9 / 100	8 / 100	1.137	.800
Bonadio et al 2004	40 / 228	27 / 146	.938	.816
Boyko et al 2005	14 / 218	32 / 799	1.845	.128
Geerlings et al 2000	163 / 636	9 / 153	5.514	.000
Ishay et al 2005	25 / 411	4 / 160	2.526	.080
Joffe et al 1974	8 / 60	1 / 36	5.385	.086
Kelestimur et al 1990	6 / 64	0 / 56	12.556	.031
Mendoza et al 2002	16 / 50	2 / 50	11.294	.000
Rozsal et al 2006	14 / 67	5 / 84	4.174	.006
Schmitt et al 1986	31 / 341	5 / 100	1.900	.189
Sotiropoulos et al 2005	35 / 363	10 / 350	3.828	.000
Vigg et al 1977	5 / 42	4 / 48	1.486	.573
Random Combined (12)	**366 / 2589**	**107 / 2082**	**2.569**	**.000**

Figure 2—Forest plot of 12 studies on the prevalence of ASB in women with diabetes and healthy control subjects. Because of the heterogeneity of the studies (I2 63%, P < 0.001), the results of the random-effects model are presented.
Table 1—Characteristics of the included studies

Reference	Study design	Number of patients (diabetic subjects/control subjects)	Mean age (years) (diabetic subjects/control subjects)	Patient group and Source (diabetic subjects/control subjects)	Type of diabetes	Outcomes	Language	Quality score (1–5)
Ishay et al. 2005 (19)	Cross-sectional, controlled	411/160	59.6/53.3	Only women from a diabetes outpatient clinics	Type 2 diabetes	Prevalence, duration, urinary protein, creatinine, A1C	English	4
Bonadio et al. 2004 (9)	Cross-sectional, controlled	228/146	57.7/59.0	Only women from metabolic/cardiology outpatient clinics	Type 1 and type 2 diabetes	Prevalence, duration, A1C	English	3
Makuysna et al. 2002 (25)	Cross-sectional, controlled	123/53	51.0/46.0	Only black race from diabetes outpatient clinics/ outpatient clinics	Type 1 and type 2 diabetes	Prevalence	English	2
Geerlings et al. 2000 (10)	Cross-sectional, controlled	636/153	Not available/478	Only women from diabetes outpatient clinics/eye and trauma outpatient clinics	Type 1 and type 2 diabetes	Prevalence, duration, urinary protein, A1C, UTI anamnesis	English	3
Keskeintur et al. 1999 (26)	Cross-sectional, controlled	110/100	Not available	Hospital patients	Type 1 and type 2 diabetes	Prevalence	Turkish	1
Schmitt et al. 1986 (27)	Cross-sectional, controlled	752/200	55.0/54.0	Outpatient clinics/outpatient clinics	Type 2 diabetes	Prevalence	English	4
Abu-Bakare et al. 1986 (28)	Cross-sectional, controlled	190/190	Not available	Only black race from diabetes outpatient clinics	Type 1 and type 2 diabetes	Prevalence	English	4
Rozsai et al. 2006 (18)	Cross-sectional, controlled	133/178	15.6/14.1	Children and adolescents from diabetes outpatient clinics/medical students	Type 1 diabetes	Prevalence	English	4
Mendoza et al. 2002 (29)	Cross-sectional, controlled	50/50	Not available	Only women from Diabetes outpatient clinic/outpatient clinic	Type 1 and type 2 diabetes	Prevalence	Spanish	1
Vigg et al. 1977 (30)	Cross-sectional, controlled	87/93	18–60/18–60 (range)	Diabetes outpatient clinics/outpatient clinic	Type 1 and type 2 diabetes	Prevalence	English	1
Joffe et al. 1974 (31)	Cross-sectional, controlled	100/36	57.0/72.0	Diabetes outpatient clinics/outpatient clinics	Type 1 and type 2 diabetes	Prevalence	English	1
Rozsai et al. 2003 (12)	Cross-sectional, controlled	178/194	15.1/14.4	Children and adolescents	Type 1 diabetes	Prevalence	English	3
Boroumand et al. 2006 (20)	Cross-sectional, controlled	202	56.0	Only women from diabetes outpatient clinics/outpatient clinics	Type 2 diabetes	Urinary protein	English	1
Zhanel et al. 1995 (11)	Cross-sectional	1,072	>16	Only women from diabetes outpatient clinics/outpatient clinics	Type 1 and type 2 diabetes	Prevalence, Creatinine, A1C, UTI anamnesis	English	1
Boyko et al. 2005 (32)	Controlled follow-up (2 years)	218/799	Not available	Postmenopausal women from an epidemiological cohort study	Type 2 diabetes	Prevalence, duration, A1C	English	3
Tzotropoulos et al. 2003 (13)	Controlled follow-up (12 months)	363/350	61.3/63.0	Only women from diabetes outpatient clinics/outpatient clinics	Type 2 diabetes	UTI during follow-up	Spanish	3
Ribera-Montes et al. 2006 (21)	Follow-up (12 months)	457	68.3	Diabetes outpatient clinics/health center	Type 1 and type 2 diabetes	UTI during follow-up	English	3
Kannajeeva et al. 2005 (7)	Follow-up (2.9 years)	496	Not available	Diabetes outpatient clinics/outpatient clinics	Type 1 and type 2 diabetes	Creatinine, UTI during follow-up	English	3
Geerlings et al. 2001 (14)	Follow-up (18 months)	378	59.4	Only women from diabetes outpatient clinics/health center	Type 1 and type 2 diabetes	UTI during follow-up	English	3
Semetikowska-Jurz 1995 (22)	Follow-up (14 years)	49	Not available	Diabetes outpatient clinics/outpatient clinics	Type 1 and type 2 diabetes	UTI during follow-up	English	3
Mieland et al. 2006 (15)	Follow-up (6 years)	348	51.1	Only women from diabetes outpatient clinics/outpatient clinics	Type 1 and type 2 diabetes	UTI	English	4
Harding et al. 2002 (8)	Intervention	105	Antibiotics 57.0/ placebo 53.7	Only women from diabetes outpatient clinics/outpatient clinics	Type 1 and type 2 diabetes	UTI	English	5

Of the non-English articles, only abstracts in English were reviewed.
A heterogeneity test was not significant (12 25.6%, P = 0.24) the results of the fixed-effects model are presented.

CONCLUSIONS — In this meta-analysis of observational studies, we were able to show that the prevalence of ASB was three times higher in all patients with diabetes compared with control subjects. We also found that diabetic subjects with ASB more often had albuminuria and symptomatic UTIs than those without ASB. Only one randomized controlled trial on the effect of active treatment of ASB has been performed (8).

Whether glucosuria, as such, could increase the rate of ASB is unclear. Even though adding glucose to urine enhances the growth of bacteria in vitro, the association has not been verified in vivo (23). In this meta-analysis, A1C was slightly higher in diabetic subjects with ASB than in those without ASB, but the difference was neither statistically nor clinically significant. Thus, it seems unlikely that ASB would be just a consequence of a poor metabolic control of diabetes.

Urinary albumin is an important marker of diabetic nephropathy. We found that albuminuria was more common in diabetic subjects with than without ASB. The presence of bacteriuria, as such, does not seem to interfere with urinary albumin measurements. Kramer et al. (24) measured urine albumin concentrations in the same 81 diabetic individuals during ASB and with sterile urine, and no statistically significant differences were found.

Systematic reviews and meta-analyses of observational studies are very sensitive to biases attributed to confounding factors. Meta-analyses of observational studies are good in developing new hypotheses that then have to be tested in intervention studies. In our meta-analysis, we were able to verify the higher incidence of ASB in diabetic compared with control subjects. Associations between ASB and important clinical outcomes, such as occurrence of symptomatic UTI and complications of diabetes, have been evaluated in several surveys (10,11,13–15), but the conclusion has been that screening of ASB in diabetes is not beneficial. Lack of association has been interpreted as an evidence for equality (6). In this case, ASB does not cause any clinical consequences, and most of the research findings would show this. However, by chance alone, there would also be findings showing both negative and positive associations with ASB and clinical endpoints. Yet there are reports of no association and reports showing positive associations between ASB and clinical outcomes but no real contradictory reports. This was seen also in our meta-analysis, in which a small number of studies and patients were included, only the association between albuminuria and ASB reached statistical significance. The lack of contradictory reports may well be because of publication bias, but we suggest that the associations of ASB and clinical outcomes should be further tested in prospective trials to better define the questions raised in this meta-analysis.

ASB is not a stable phenomenon but fluctuates over time even without any interventions. The pathophysiology of UTIs is unclear, but it is probable that the biologic reasons for asymptomatic and symptomatic urinary infections are similar. In the randomized controlled trial, routine screening and treatment of ASB in diabetic women did not change the occurrence of symptomatic UTIs or hospitalization because of UTIs (8). Harding et al.’s (8) trial is a landmark study in this field, but only women were included, mostly with type 2 diabetes. It is important to repeat these results and also include men and adolescents in the material. Altogether, the only way to thoroughly clarify the significance of ASB in patients with diabetes is to perform high-quality prospective studies on screening and treating ASB, with UTIs, metabolic control, and

Citation	Diabetes	Controls	Effect	PValue
Abu-Bakare et al. 1986	3 / 90	2 / 90	1,517	.650
Keleslimur et al. 1990	1 / 46	0 / 44	2,934	.494
Rozsa et al. 2006	8 / 66	0 / 94	27,462	.001
Schmitt et al. 1986	1 / 411	0 / 100	.734	.850
Vigg et al. 1977	2 / 48	1 / 45	1,913	.596
Fixed Combined (5)	**15 / 681**	**3 / 373**	**3,665**	**.013**

Figure 3 — Forest plot of five studies on the prevalence of ASB in men with diabetes and healthy control subjects. Because the heterogeneity test was not significant (I2 25.6%, P = 0.24) the results of the fixed-effects model are presented.

Figure 4 — Forest plot of two studies on the prevalence of ASB in children and adolescents with diabetes and healthy control subjects. Because the heterogeneity test was not significant (I2 25.6%, P = 0.51) the results of the fixed-effects model are presented.
occurrence of long-term complications of diabetes as outcomes.

The limitations of this meta-analysis arise mainly from the difficulties in obtaining detailed information from the articles included. We were not able to perform all analyses separately for the age-groups, sexes, or diabetes types. Also, the methodological quality of the majority of the studies included in this meta-analysis was poor. Almost all studies were performed among elderly women with type 2 diabetes, and whenever there were men, adolescents, or young adults included, the data for the different patient groups were not possible to separate. Yet this meta-analysis supports previous observations, verifies the incidence of ASB in the more seldom-investigated patient groups, and found significant association between albuminuria and ASB in patients with diabetes.

Acknowledgments — No potential conflicts of interest relevant to this article were reported.

M.R. participated in designing and planning the study, made the literature searches, read and reviewed the articles, made the analyses, and wrote the first version of the manuscript. P.Ta. participated in designing and planning the study, read and reviewed the articles, and edited the manuscript. P.To. participated in designing and planning the study, read and reviewed the articles, and edited the manuscript. T.P. participated in designing and planning the study, made the literature searches, read and reviewed the articles, and edited the manuscript. P.Ta. participated in designing and planning the study, made the analyses, and edited the manuscript. M.U. participated in designing and planning the study, read and reviewed the articles, and edited the manuscript.

References

1. Wild S, Roglic G, Green A, Sicree R, King H. Global prevalence of diabetes: estimates for the year 2000 and projections for 2030. Diabetes Care 2004;27:1047–1053
2. Harjutsalo V, Sjoberg L, Tuomilehto J. Time trends in the incidence of type 1 diabetes in Finnish children: a cohort study. Lancet 2008;371:1777–1782
3. Raz R. Asymptomatic bacteriuria: clinical significance and management. Int J Antimicrob Agents 2003;22(Suppl. 2):45–47
4. Balasoiu D, Van Kessel KC, van Kat-Renaud H, Collet TJ, Hoepelman AI. Granulocyte function in women with diabetes and asymptomatic bacteriuria. Diabetes Care 1997;20:392–395
5. Smaill F. Antibiotics for asymptomatic bacteriuria in pregnancy. Cochrane Database Syst Rev CD000490, 2001
6. Lin K, Fajardo K. Screening for asymptomatic bacteriuria in adults: evidence for the U.S. Preventive Services Task Force reaffirmation recommendation statement. Ann Intern Med 2008;149:W20–W24
7. Karunajeewa H, McGechie D, Stuccio G, Stingemore N, Davis WA, Davis TM. Asymptomatic bacteriuria as a predictor of subsequent hospitalisation with urinary tract infection in diabetic adults: the Fremantle Diabetes Study. Diabetologia 2005;48:1288–1291
8. Harding GK, Zhanel GG, Nicolle LE, Cheang M. Antimicrobial treatment in diabetic women with asymptomatic bacteriuria. N Engl J Med 2002;347:1576–1583
9. Bonadio M, Boldrini E, Forori G, Matteucci E, Vigna A, Mori S, Giampietro O. Asymptomatic bacteriuria in women with diabetes: influence of metabolic control. Clin Infect Dis 2004;38:e41–e45
10. Geerlings SE, Stolk RP, Camps MJ, Netten PM, Hoekstra JB, Bouter KP, Bravenboer B, Collet JT, Jansz AR, Hoepelman AI. Asymptomatic bacteriuria may be considered a complication in women with diabetes: Diabetes Mellitus Women Asymptomatic Bacteriuria Study Group. Diabetes Care 2000;23:744–749
11. Zhanel GG, Nicolle LE, Harding GK. Prevalence of asymptomatic bacteriuria and associated host factors in women with diabetes mellitus: the Manitoba Diabetic Urinary Infection Study Group. Clin Infect Dis 1995;21:316–322
12. Rozsai B, Lanyi E, Soltesz G. Asymptomatic bacteriuria and leukocyturia in type 1 diabetic children and young adults. Pediatr Diabetes 2003;26:2209–2210
13. Sotiropoulos A, Skourtsis S, Merkouris P, Peppas T, Apostolou O, Kontela E, Skliros E, Pappas S. Incidence and outcome of asymptomatic bacteriuria in females with type 2 diabetes mellitus over a 1-year follow-up period and association with risk factors. Diabet Med 2005;22:1625–1626
14. Geerlings SE, Stolk RP, Camps MJ, Netten PM, Collet JT, Schneeberger PM, Hoepelman AI. Consequences of asymptomatic bacteriuria in women with diabetes mellitus. Arch Intern Med 2001;161:1421–1427
15. Meiland R, Geerlings SE, Stolk RP, Netten PM, Schneeberger PM, Hoepelman AI. Asymptomatic bacteriuria in women with diabetes mellitus: effect on renal function after 6 years of follow-up. Arch Intern Med 2006;166:2222–2227
16. Littell JH, Corcoran J, Pillai V. Systematic Reviews and Meta-Analysis. New York, Oxford University Press, 2008
17. Juni P, Witschi A, Bloch R, Egger M. The hazards of scoring the quality of clinical trials for meta-analysis. JAMA 1999;282:1054–1060
18. Rozsai B, Lanyi E, Berki T, Soltesz G. Urinary cytokine response to asymptomatic bacteriuria in type 1 diabetic children and young adults. Pediatr Diabetes 2006;7:153–158
19. Ishay A, Lavi I, Luboshitzky R. Prevalence and risk factors for asymptomatic bacteriuria in women with type 2 diabetes mellitus. Diabet Med 2006;23:185–188
20. Boroumand MA, Sam L, Abbasi SH, Salari M, Kasani A, Forghani S. Asymptomatic bacteriuria in type 2 Iranian diabetic women: a cross sectional study. BMC Womens Health 2006;6:4
21. Ribera MC, Pascual R, Orozco D, Perez BC, Pedrera V, Gil V. Incidence and risk factors associated with urinary tract infection in diabetic patients with and without asymptomatic bacteriuria. Eur J Clin Microbiol Infect Dis 2006;25:380–393
22. Semetkowska-Jurkiewicz E, Horoszek-Maziarz S, Galinski J, Mantius A, Krupa-Wojciechowska B. The clinical course of untreated asymptomatic bacteriuria in diabetic patients: 14-year follow-up. Mater Med Pol 1995;27:91–95
23. Geerlings SE, Meiland R, Hoepelman AI. Pathogenesis of bacteriuria in women with diabetes mellitus. Int J Antimicrob Agents 2002;19:539–545
24. Kramer CK, Camargo J, Ricardo ED, Almeida FK, Canahi LH, Gross JL, Azavedo MJ. Does bacteriuria interfere with albuminuria measurements of patients
with diabetes? Nephrol Dial Transplant 2009;24:1193–1196

25. Makuyana D, Mhlabi D, Chipfupa M, Muyombwe T, Gwanzura L. Asymptomatic bacteriuria among outpatients with diabetes mellitus in an urban black population. Cent Afr J Med 2002;48:78–82

26. Kelestimur F, Unal A, Pasaoglu H, Basar E, Kilic H, Doganay M. [Asymptomatic bacteriuria in patients with diabetes mellitus]. Mikrobiyol Bul 1990;24:126–132 [Article in Turkish]

27. Schmitt JK, Fawcett CJ, Gullickson G. Asymptomatic bacteriuria and hemoglobin A1. Diabetes Care 1986;9:518–520

28. Abu-Bakare A, Oyaide SM. Asymptomatic bacteriuria in Nigerian diabetics. J Trop Med Hyg 1986;89:29–32

29. Mendoza T, Garcia de los Rios M, Lafourcade M, Soto C, Durruty P, Alvo M. [Asymptomatic bacteriuria in type 2 diabetics women]. Rev Med Chil 2002;130:1001–1007 [Article in Spanish]

30. Vigg B, Rai V. Asymptomatic bacteriuria in diabetics. J Assoc Physicians India 1977;25:57–61

31. Joffe BI, Seftel HC, Distiller LA. Asymptomatic bacteriuria in diabetes mellitus. S Afr Med J 1974;48:1306–1308

32. Boyko EJ, Fihn SD, Scholes D, Abraham L, Monsey B. Risk of urinary tract infection and asymptomatic bacteriuria among diabetic and nondiabetic postmenopausal women. Am J Epidemiol 2005;161:557–564