Inverse docking based screening and identification of protein targets for Cassiarin alkaloids against *Plasmodium falciparum*

Arvind Negi a,1,*, Nitisha Bhandari b,1, Bharti Rajesh Kumar Shyaml c, Sandeep Chaudhary c, *

aSchool of Chemistry, National University of Ireland, University Road, Galway H91 TK33, Ireland

bSchool of Biotechnology, Graphic Era University, Dehradun, Bell Road, Society Area, Clement Town, Dehradun, Uttarakhand 248002, India

A R T I C L E I N F O

Article history:
Received 6 December 2017
Accepted 31 January 2018
Available online 2 February 2018

Keywords:
Plasmodium falciparum
Inverse docking
Cassiarin alkaloids
Proteomics

A B S T R A C T

Various reports have shown Cassiarin alkaloids, selective in vitro activities against various strains of *Plasmodium falciparum* with low cytotoxicity, which indicates their possible candidature as antimalarial drug. However, poor recognition of their protein targets and molecular binding behaviour, certainly limits their exploration as antimalarial drug candidature. To address this, we utilises inverse screening, based on three different docking methodologies in order to find their most putative protein targets. In our study, we screened 1047 protein structures from protein data bank, which belongs to 147 different proteins. Our investigation identified 16 protein targets for Cassians. In few cases of identified protein targets, the binding site was poorly studied, which encouraged us to perform comparative sequence and structural studies with their homologous proteins, like as in case of Kelch motif associated protein, Armadillo repeats only protein and Methionine aminopeptidase 1b. In our study, we also found tryptophanyl-tRNA synthetase and 1-Deoxy-D-Xylose-5-phosphate reductoisomerase proteins are the most common targets for Cassians.

© 2018 The Authors. Production and hosting by Elsevier B.V. on behalf of King Saud University. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Malaria is a mosquito-borne infectious disease affecting humans and other animals caused by the protozoan parasite, *Plasmodium*. According to WHO 2015 statistics, 212 million clinical episodes and 429,000 deaths were reported worldwide (Bhatt et al., 2015; World Health Organization, 2015; Kamholz, 2016; World Health Organization, 2016) and nearly 3.2 billion people are at the risk of malaria, especially children under age of 5 years, pregnant women, immune compromised patients, as well as non-immune migrants (Schumacher and Spinelli, 2012; Negi, 2013; Wells et al., 2013). These large numbers are mainly subjected by *Plasmodium falciparum* (*P. falciparum*), followed by *P. vivax*, *P. ovale*, *P. malariae*, and to some extent *P. knowlesi*. Although in recent years, some profound development has been seen in antimalarial drug discovery, but higher number of resistance cases, mild to moderate selectivity/toxicity ratio of most of the antimalarial drugs, show a need of new scaffolds or new chemical entity (NCE) (Bushell et al., 2017). Moreover, the alkaloid natural product class has been found promising and useful in numerous disease states, as mentioned in these reports (Kayser et al., 2003; Frederich et al., 2008; Özçelik et al., 2011; Singla et al., 2013; Singla et al., 2014). Additionally, alkaloids, such as Quinine, Cryptopleine, Thiapakortones A–D and their semi or synthetic derivatives (Caniato and Puricelli, 2003; Oliveira et al., 2009) are well studied as antimalarial agents (Cimanga et al., 1997; Davis et al., 2013), showing alkaloidal scaffold inheritance of antiplasmodial activity.

In recent years, various medicinal active natural compounds were reported from a plant, *Cassia siamea* (Leguminosae). Most of these natural compounds are either isolated from leaves (Cassiarin-A, B, G, H, J, K, 5-acetonyl-7-hydroxy-2-methylchroomene, Chrobisiamone A) (Morita et al., 2017; Oshimi et al., 2008; Deguchi et al., 2012), or flower (Cassiarin C, D, E, F; 10,11-dihydroanhydrobarakol, anhydrobarakol Cassiphenol A and Cassiphenol B) (Thongsaard et al., 2001) (Deguchi et al., 2014),
or also from twigs (Siamalkaloids A, B, C) (Wu et al., 2016), structures shown in Fig. 1. Surprisingly, Cassiarin-A and Cassiarin-B were found highly selective than Chloroquine against chloroquine sensitive \textit{P. falciparum} 3D7 strain over human breast cancer cell lines (MCF7), as selectivity/cytotoxicity ratio are fairly high, ≥4348, ≥1112, 3281 for Cassiarin-A, B and Chloroquine, respectively (Morita et al., 2009). Furthermore, their antimalarial role was purposed though their vasorelaxation activity, as prompted by nitric oxide production from the endothelium, which might inhibit the host cell surface attachment of the parasite (Morita et al., 2009). In 2009, Oshimi et al. isolated Cassiarins C-E and 10,11-dihydroanhydrobarakol which showed reasonable in vitro selectivity against \textit{P. falciparum} 3D7 over human leukaemia cells (HL-60 cell lines) (Oshimi et al., 2009).

1. Chemistry

Isoquinoline is the basic alkaloidal core of Cassiarins, which fused with 2-methyl-2H-pyran ring at position \([4, 8a]\), forms tricyclic ring and as prototype represented in the structure Cassiarin-C (shown in Fig. 1). Further derivatization at \(C_2\) position of Cassiarin-C, forms Cassiarin D, E and F. The methyl at \(C_2\) in the pyran ring of these isoforms (Cassiarin-C, D, E and F), can adopt 2 conformations as \(R\) or \(S\). Every isoform has its own structure signature at \(C_2\) position, when compare to Cassiarin-C structure, which has simply a methyl group: (a) Cassiarin-D has –CH2– tethered 5-propenone-7-hydroxy-4H-chromen-4-one functionality at \(C_2\) with regards to Cassiarin-C, as shown in Fig. 1; (c) Cassiarin E is Bis-isomer of Cassiarin-C; (d) Cassiarin-F has fused with a toluene ring, to form a tetracyclic ring at position \([2, 3]\) of Cassiarin-C and also has further substructure extension in a form of 2-resorcinol propanone functionality, shown in Fig. 1.

In order, to characterize the molecular targets for these Cassiarin alkaloids, we used inverse docking, which is grown as a valuable tool in drug target identification in recent years. Also, helpful in rediscoversing the molecular mechanism of polypharmacological active compounds, especially, the natural products and detecting, the possible adverse side targets of existing drugs as in toxicological studies. Previous reports on inverse docking shows implementation of various methodologies, to improve the accuracy and prioritizing the identified targets. Kumar et al. tried to address the limitations of docking scoring schemes with respect to attain confidence in theoretical binding affinities (Kumar et al., 2014). They presented a reverse approach, where they used the pharmacophore features of the ligand as interactions of complementary amino acids of protein cavities (also, called them as “pseudoreceptor”). These pseudoreceptors were then matched with the cavities/ binding sites of the selected protein dataset. They applied this approach on 3 co-crystalised ligands over 28 proteins of Zea mays and provide an application of the total probability and docking energy, in order to acquire confidence in prioritizing the probable protein targets (Kumar et al., 2014). Also, Carvalho et al. adopted a reverse screening strategy based on ligand similarity and target structure, which resulted into, a number of putative protein target candidates for quercetin polypharmacological effects and also successfully correlated them, with previously tested proteins, mainly protein kinases and poly [ADP-ribose] polymerases (Carvalho et al., 2017). In another report, Kumar et al. compared the rank list results from inverse docking and ligand-based similarity search, assist them to prioritize the chitinase as most probable target for kinetin molecule, further supported by experimental data (Kumar et al., 2015). While, few compiled literature reviews on inverse screening and its application are available, related to the drug repositioning (Kharkar et al., 2014) and available target databases/servers (Lee et al., 2016).

However, the selectivity/cytotoxicity profile of these reported Cassiarin alkaloids has been promising in \textit{P. falciparum} but as their protein targets are poorly recognised, which certainly limits their further exploration as antimalarial candidature. To identify their protein targets and acquire significant confidence in prioritising the identified target, we used reverse screening on all available protein targets from protein data bank, using three different placement docking methods.

2. Materials & methods

2.1. Proteins set

All the protein targets for \textit{P. falciparum} were searched on protein data bank, claiming 1047 structures. After filtering off the NMR and low resolved cryo-electron structures from X-ray structures, proteins were selected and arranged in the order of their crystal structure resolution as an individual target, see in Table 2. In most cases, preferences were given to co-crystallised ligand containing protein structures, otherwise the structures without co-crystallised ligand protein were also selected. Later, the self-docking on co-crystallised ligand containing protein targets, was performed to calculate the minimum RMSD values (min. RMSD values) in order, to evaluate the competency of a particular protein in accommodating of its own co-crystallise ligand (also, called ligandability) (Kumar, 2018). In those structures, which lack co-crystallise ligand, active site finder tool of MOE (Del Carpio et al., 1993; Negi et al., 2013a) was used to find the active surface patches which were saved as dummy atoms for performing the later docking. Also, in certain cases we aligned the target protein sequences with their homologous proteins of other species. These studies involved superposition of three-dimensional structure of the proteins of interest, as to see the overlapped domains and regions with comparative homologous proteins, which could be inferred into key active site residues in those proteins which were poorly studied in the past.

2.2. Ligand set

As absolute stereochemistry at \(C_2\) position of Cassiarins is unknown, therefore we build both (\(R\)) and (\(S\)) stereoisomers, which were further minimised by MMFF94x Forcefield. Although, the energy minimisation step showed a reasonable energy difference between both the stereoisomer forms of individual Cassiarins (C, D, E & DBH), but these were used as such in our molecular modelling studies, as to avoid any pseudo positive or misleading results.

2.3. Molecular modelling

The proteins were prepared by, (a) removing of the water molecules from their crystal structures; (b) modelling the missing or breaks in their loops; and (c) protonation of the structure. Later, the co-crystallise ligand binding site or saved dummy atoms on proteins were used for docking of the Cassiarins. This inverse screening was performed by utilising 2 docking placement methods (also called, “Differential placement method based docking”). The first was the alpha triangle placement method, which generates the ligand-protein poses based on the overlapping of ligand atom triplets onto the triplets of protein point sites (are, also called alpha sphere centres). At each iteration cycle, a pose was determined based on sampling of a random triplet of ligand atoms over a random triplet of alpha sphere centres. The following setting was used for this method: minimum and maximum iterations cycles were set 800,000 and 5,000,000 respectively with timeout
(6000 s). The second was triangle matcher placement method, which generate the ligand-protein poses by aligning the ligand atoms triplet on triplets of alpha spheres in a more systematic way than in the Alpha Triangle method (method setting was, total number of returned poses was set 100,000, with time out 3000 s). Lastly, we utilised another approach which was different than the previous docking methods, i.e. grid based docking, as a part of VlifeMDS suite tool (VLife, 2010) which uses the genetic algorithm for grid formation and docking. Later, we compare the docking binding affinities, resulted from these methods, to get the confidence in prioritising the most putative Cassiarin targets.

3. Result and discussions

3.1. Protein set and docking

All the 1047 proteins were retrieved from protein data bank, which were found to belongs to 147 different protein-types. This protein dataset was divided into 2 categorises: one which has co-crystallise ligands and other one, without co-crystallise ligands. In case of co-crystallise ligand containing protein-types, we considere all those structures for a protein where co-crystallise ligand has a diverse chemotype in its structure. Later, we performed the self-docking to filter the most suitable protein crystal structure based on the min. RMSD value for its own co-crystallise ligand. In those protein-type, where protein structure does not contain any co-crystallise ligand, the structures were chosen based on their resolution (Res.). In order, to find the active site on those structure which does not contain co-crystallise ligand, active site finder tool was used to identify the active patches for the docking. Later, alpha triangle and triangle matcher placement methods resulted in various docking poses, which were ranked by GBVI/WSA dG scoring function (results for alpha triangle and triangle matcher are provided in Supplementary information, Table 1 and Table 2 respectively). While, the grid based docking results are enlisted in Supplementary information as Table 3. The grid based docking was performed on a larger area \((80 \times 80 \times 80)\), as increased size of sheared active cavity results more conspicuous differences in the docking energies which could be useful in separating closely related putative targets.

The energy minimisation step revealed the most stable conformation among the isomers of individual Cassiarins, see in Table 3.

![Fig. 1. Chemical structures of compounds isolated from Cassia siamea (Leguminosae).](image)

Table 1

Alkaloids	Plasmodium falciparum (IC50 = μM)	Cytotoxicity (μM)	Reference
Chloroquine	0.011 \(^a\)	36.1 \(^d\)	Morita et al. (2009)
Cassiarin A	0.023 \(^a\), 0.005 \(^b\)	>100, 35 \(^a\)	Morita et al. (2009, 2007)
Cassiarin B	22.0 \(^a\), 6.9 \(^b\)	>100, >100 \(^a\)	Morita et al. (2009, 2007)
Cassiarin C	24.2 \(^a\)	>100 \(^d\)	Oshimi et al. (2009)
Cassiarin D	3.6 \(^b\)	>100 \(^b\)	Oshimi et al. (2009, 2008)
Cassiarin E	7.3 \(^a\)	>100 \(^b\)	Oshimi et al. (2009)
10,11-dihydroanhydrobarakol (DHB)	2.3 \(^e\)	>100 \(^d\)	Oshimi et al. (2009)
Anhydrobarakol (ANH)	4.7 \(^f\), 7.8 \(^g\)	>100 \(^d\)	Oshimi et al. (2009, 2008)
5-acetyl-7-hydroxy-2-methylchromone (AHMC)	8.6 \(^f\), 4.5 \(^g\)	>100 \(^d\)	Oshimi et al. (2009, 2008)
Chrobisiamone A	2.6 \(^e\)	-	Oshimi et al. (2008)
Cassiarin F	3.3 \(^b\)	>50 \(^d\)	Deguchi et al. (2011)

\(^a\) Chloroquine-sensitive \(P. falciparum\) strain 3D7.

\(^b\) \(P. falciparum\) 3D7.

\(^c\) MCF7 (human breast adenocarcinoma) cell line.

\(^d\) HL-60 Human blood premyelocytic leukaemia.

\(^e\) P388 mouse leukaemia cells.
Table 2
The selected proteins with their PDB codes, resolution (Res.), co-crystallise ligand and self-docking RMSD values are provided in this table.

Protein	PDB	Res. (Å)	Co-crystallized ligand	Min. RMSD values
Dihydroorotate dehydrogenase	AC8	1.95	5-(4-Cyano-2-methyl-1H-benimidazol-1-yl)-N-cyclopropylphthiophene-2-carboxamide	0.406
Triosephosphate Isomerase	TO5X	1.10	No	
PfA-M1	TBV	1.80	N-[2-[(N-(25,3R)-3-amino-4-[4-(benzoyloxy)-phenyl]-2-hydroxybutanoyl)-L-alanyl] aminoethoxy]ethoxy acetyl]-4-benzyl-L-phenylalanyl-N-ly-hex-5-n-oxylysiane	1.354
	W3	1.80	Terr-Butyl-[15)-1-(4-bromophenyl)-2-[(hydroxyamino)-2-oxoethyl]-carbamate	1.080
	XU2	1.50	Tosedostat	0.511
	KSL	1.91	Phosphonic Arginine	1.160
	SX	1.85	3-amino-N-(1R)-2-(hydroxyamino)-2-oxo-1-[4-(1H-pyrazol-1-yl)-phenyl]-ethy1benzamide	1.492
	EBI	1.65	2-(3-Amino-2-hydroxy-4-phenyl-butyl(aminooxyloxy))-4-methyl-pentanoic acid	0.850
	XZ	1.10	GMP synthetase	
	CR	2.00	2-(3-Amino-2-hydroxy-4-phenyl-butylamine)-4-methyl-pentanoic acid	0.396
	R7	2.50	3-Amino-N-([1R]-2-(hydroxyamino)-2-oxo-1-[4-(1H-pyrazol-1-yl)-phenyl]-ethy1benzamide	0.612
	CM	2.30	25-[25]-[(R)]-[R-amino(phenyl)-methyl]-hydroxophospholyl]-methyl-4-methylpentanoic acid	0.807
	PN	2.00	(R)-[R-amino(1H-pyrazol-1-yl)-phenyl]-hydroxophosphonic acid	1.208
	BW	2.00	N-(28,35,65,185,215)-2-amino-18-(4-benzoylphenyl)-21-carnamoyl-3-hydroxy-6-(naphtharin-2-yl)methyl)-7,16,17,20-tetraazapentacosan-25-y1-hex-5-ynamide	1.409
	QJ	1.80	N-[25,3R]-3-amino-2-hydroxy-4-[4-(methoxyphenyl)-butanoyl]-L-leucine	0.815
	UW	2.72	Xanthosine-5-monophosphate	0.704
GMP synthetase	TL	1.96	4-(2,4-dichlorophenoxy)-3-hydroxoybenzaldehyde	0.560
	XB	2.68	3-Chloro-4-(4-chloro-2-hydroxyphenoxy)-N-methylbenzamide	0.788
	VS	2.50	Nicotinamide adenosine dinucleotide (NADH)	0.818
	GE	2.15	7-[4-(Chloro-2-hydroxyphenoxy)]-4-methyl-2H-chromen-2-one	0.551
	Q8	2.50	Toaizid-Nicotinamide adenosine dinucleotide (NADH)	0.914
	HW	2.35	2-(2,4-Dichlorophenyl)-phenol	0.907
	FO	2.50	4-(2,4-Dichlorophenyl)-2'-methylbiphenyl-3-ol	1.020
	ZB	2.60	5-Chloro-8-([3-chlorobenzoyl]-oxy)-quinoine	0.611
	LF	2.90	Halofigunone	1.270
	WI	1.65	1-(4-fluorophenyl)-3-[4-(4-fluorophenyl)-1-methyl(3-trifluoromethyl)]-1H-pyrazol-5-y1-ura	0.501
	P1	1.30	Mannose-6-Phosphate	
	PH	1.75	Decarboxylated-5-adenosyl-methionine	
	RE	1.90	5'-deoxy-5'-methylthioadenosine	0.818
	TC	1.71	5-adenosyl-1,8-diamino-3-thioctane	0.450
	HE	2.00	5'-deoxy-5'-methylthioadenosine	0.512
	QX	2.75	3-[3-(Bromobenzyl)-1-tert-buty1-[1H-pyrazol-3,4-Di]pyrimidin-4-amine	0.717
	VF	2.00	Staurosporine	0.825
	PE	2.75	2-Amino-[(2,4-dichloro-5-[2-diethylenimino-ethoxy]-phenyl)-N-ethylthien[2,3-D]-pyrimidine-6-carboxamide	0.309
	PJ	2.81	Macbeacin	0.532
	K0	2.30	Adenosine diphostate (ADP)	0.599
	JD	2.01	Adenyl-1-Mimidodiphosphate (AMP-PNP)	1.402
	TR	2.11	N-[(E)-(2,4-dichlorophenyl)-methylidene]-3-4-dihydroxybenzohydrazide	0.373
	KX	2.40	Nicotinamide adenosine dinucleotide phosphate (NADP)	1.007
	K7	2.70	Adenosine-2'-5'-Diphostate (2'-ADP)	0.641
	IJ	2.33	WR99210	0.513
	MS	2.6	Cycloguanil	0.998
	QT	2.3	Pyrimethamine	1.604
	DA	2.7	N-[2-chloro-5-(trifluoromethyl)]-phenyl]imidodcarbonimide diacid	1.200
	PD	2.5	Dihydrofolic acid	0.888
	NB	1.86	3'-deoxy-3'-D-[tryosyl]aminoo)-adenosine	0.711
	LM	2.83	4-[2-Hydroxyethyley]-1-piperazine thanesulfonic acid	1.302
	K0	2.09	Adenosine triphosphate (ATP)	1.009
	KO	2.8	ADP	0.977
	Q3	1.40	Rapamycin	0.221
	JN	2.75	N-[2-ethylenylene]-2-[3H-imidazo[4,5-b]pyridin-2-ylsulfanyl]acetamide	0.708
	VN	2.35	8-Deethyl-8-[but-3-yl]-ascomycin	0.890
	T2	1.70	4-Hydroxy-1,2,5-oxadiazole-3-carboxylic acid	0.901
	XV	1.70	2-(4-Chloro-2-hydroxy(methoxy)phenyl] cyclohexylaminoethane-1,12-triol	0.990
	CE	2.05	Chloroquinine	1.313
	DG	1.74	NADH	1.607
	BT	1.88	Bicene	0.780
	PO	1.90	Indirubin-5-sulphonate	0.449
	LS	1.80	3-hydroxy-1-isobutyl-5-phenyl-pentyl-benzamidine	0.760
	KJ	1.85	5-[1,1-bis(oxadilylde)-1,2-thiazinan-2-yl]-N3-[25,3R]-4-[2-3-methoxyphenyl]propanamide	0.831
Protein	PDB	Res. (Å)	Co-crystallized ligand	Min. RMSD values
---------	-----	---------	------------------------	-----------------
22. Plasmin I	2BJU	1.56	N-[((R-carboxy-ethyl)-x-(5)-(2-phénylthényl)]-2-ylamino)-3-oxidanyl-1-phenyl-butan-2-yl]-N,N'-dipropyl-benzene-1,3-dicarboxamide	0.451
23. Plasmin IV	2IGX	1.70	5-Pentyl-N-[(4-(&p;pipérinidin-1-y1-carboxyl)]-biophényl-4-yl][methyl]-N-[1-(pyridin-2-yl-methyl)]-pipérinidin-4-Y1]pirydinid-2-carboxamide	1.222
24. Phosphoglycerate Kinase	2LS5	2.80	Pepstatin A	0.870
25. Glutathione reductase	1ONF	3.00	Naf	0.391
26. Thymidylate Kinase	2YOG	3.10	Flavin Adenine Dinucleotide (FAD)	0.904
27. Ubiquitin Carboxyl-Terminal Hydrodrolase 3 (Uchl3)	2WDT	3.10	Flavin Adenine Dinucleotide (FAD)	0.904
28. Purine Nucleoside Phosphorylase	2BSX	3.20	Inosine	0.832
29. Histo-Aspartic Protease (Hap)	2QGI	3.30	Naf	1.001
30. Purine Phosphoribosyltransferase	1ARO	3.40	Naf	0.798
31. Peptide Deformylase	1RL4	3.50	Naf	0.894
32. Cyclophilin	1QNG	3.60	Naf	1.001
33. Glutathione-S-Transferase	4ZXG	3.70	Naf	0.894
34. Glyceraldehyde-3-Phosphate Dehydrogenase	1YWG	3.80	Naf	0.894
35. Ribose 5-phosphate isomerase	2F8M	3.90	Naf	0.894
36. MTIP	4R1E	4.00	Naf	0.894
37. Guanylate Kinase	5CDK	4.10	Naf	0.894
38. Apical membrane antigen 1	4YWG	4.20	Naf	0.894
39. cGMP-dependent protein kinase	4FGE	4.30	Naf	0.894
40. Glycerol-3-Phosphate Dehydrogenase	1YJ8	4.40	Naf	0.894
41. Tryptophanyl-tRNA Synthetase	1Y13	4.50	Naf	0.894
42. Aspartate Transcarbamoylase	1N81	4.60	Naf	0.894
43. Phosphoethanolamine Methyltransferase	1P9B	4.70	Naf	0.894
44. Adenylosuccinate synthetase	1P9B	4.80	Naf	0.894
45. Nucleoside diphosphate kinase B	1XIQ	4.90	Naf	0.894
46. D-Ribulose 5-Phosphate 3-Epimerase	1TQX	5.00	Naf	0.894
47. GTPase Rab6	1DSC	5.10	Naf	0.894
48. Rab5 protein	3CLV	5.20	Naf	0.894
49. Orotidine 5'-Monophosphate Decarboxylase	3VJ2	5.30	Naf	0.894

Table 2 (continued)

2-yaminol)-3-oxidanyl-1-phenyl-butan-2-yl]-N,N'-dipropyl-benzene-1,3-dicarboxamide | 0.451 |
2-ylamino)-3-oxidanyl-1-phenyl-butan-2-yl]-N,N'-dipropyl-benzene-1,3-dicarboxamide | 0.451 |
Protein Description	PDB	Res. (Å)	Co-crystallized ligand	Min. RMSD values
68. Oxoacyl-Acp Reductase	2Q8Z	1.8	6-Amino-UMP	0.861
	3SYT	1.7	6-amino-5-fluorouridine 5'-dihydrogen phosphate	0.914
	2ZA1	2.65	Orotidine 5'-monophosphate	0.503
70. Glutamate Dehydrogenase	2C07	1.50	Na	0.709
71. glutamate dehydrogenase 2	4GLE	2.35	Na	0.709
72. PHIST	4QXS	1.50	Na	0.709
Histone acetyltransferase GCNS	5TPX	2.10	(15, 25)-Nε-N ε-dimethyl-Nε-Nε-(3-methyl-[1,2,4]triazolo[3,4-a]pythalazin-6-yl)-1-phenylpropane-1,2-diamine	0.799
74. PFA0510w (Bromodomain protein)	4PY6	2.50	Na	0.709
75. PF3D7_1475600	4NXJ	2.18	Na	0.709
76. PF10_0328	3FKM	2.50	Na	0.709
77. Ubiquitin conjugating enzyme UBC9	4M1N	1.50	Na	0.709
78. Ubiquitin conjugating enzyme E2	2H2Y	2.80	Na	0.709
79. Ubiquitin carrier protein	2R0J	1.85	Na	0.709
80. Ubiquitin conjugating enzyme e2	2QVQ	2.40	Na	0.709
81. PF10_0330 (Ubiquitin-conjugating enzyme)	2ONU	2.38	Na	0.709
82. Falcilysin (protein)	3S5M	1.55	Na	0.709
83. Calcium-dependent protein kinase 3	3KZ1	1.15	Na	0.709
84. Calcium-dependent protein kinase	3MSE	2.10	Na	0.709
85. Pyruvate kinase	3KHD	2.70	Na	0.709
86. Calcium-dependent protein kinase 2	3PM8	2.00	Na	0.709
87. ADP-Ribosylation Factor 1	3LRP	2.50	GDP	0.758
88. Aspartate Aminotransferase	3KTY	2.80	Pyridoxal phosphate (PLP)	1.009
89. PFO360w protein (HSP90 Activator protein)	3NIB	2.50	Na	0.709
90. MAP-2 kinase	3NIE	2.30	Phosphoaminophosphonic acid-adenylate ester	0.417
91. Serine/threonine kinase-1	3LLT	2.50	Phosphoaminophosphonic acid-adenylate ester	0.857
92. Ornithine delta-aminotransferase	3N72	1.77	Na	0.709
93. Aha-1	3MMR	2.14	2-(S)-amino-6-boronohexanoic acid	0.637
94. Arginase	3MSE	2.10	Na	0.709
95. Malarial ClpB Atpase/Hsp101 Protein	4IRF	1.65	Na	0.709
96. ClpB protein (Green fluorescent protein)	4XBI	1.80	Na	0.709
97. Maltose-binding periplasmic protein	4O2X	2.70	Na	0.709
98. Aquaglyceroporin	3C02	2.05	Nε-Octylglucoside	1.110
99. Profilin	2JKG	1.89	Na	0.709
100. Microtubule-associated protein 1 light chain 3	4EOY	2.22	Na	0.709
101. Thrombospondin related anonymous protein	4F1J	1.73	Na	0.709
102. Apicoplast TIC22a	4E6Z	2.15	Na	0.709
103. Diphenyl Nucleoside	3T64	1.65	2', 5'-Dideoxy-5'-[(diphenylmethyl)amino]-uridine	0.598
104. Erythrocyte Binding Antigen Region II Region 175	2Y8C	2.10	2,3-deoxy-3-fluoro-5-O-trityluridine	1.006
105. 2C-methyl-D-erythritol-2,4-cyclodiphosphate synthase (IspF)	4C81	1.56	Cytidine-5'-diphosphate	1.308
106. Thioredoxin reductase	4J5E	2.37	FAD	1.100
107. Thioredoxin-2	4O3Z	2.20	Na	0.709
108. Thioredoxin Peroxidase 2	4C0D	1.75	Na	0.709
109. Thioredoxin Peroxidase	1XYI	1.80	Na	0.709
110. Thioredoxin like protein	3CXG	2.00	Na	0.709
111. Thioredoxin like protein	1SYR	2.95	Na	0.709
112. Peptidase	5RBS	2.30	Na	0.709
113. ATP-dependent Clp protease	4GIM	2.80	Na	0.709
114. GAP50	3TGH	1.70	Na	0.709
115. Tumor protein (TCTP)	3P3K	2.55	Na	0.709
116. ARF GTPase activating protein	3SUH	2.40	Na	0.709
117. Sir2A	3031	2.20	NAD	0.709
In general, we found that R-stereoisomers have more energy minimised structures than their S-isomers and DHB stereoisomers appeared to be unaffected with the C2-stereochimetry. The large structure containing isoforms show more energy penalties than their smaller isoforms, as follow: F > D > E > DHB > C, which seems reasonably obvious, as these have more steric hindrance in their structures. Also, we found certain isoforms consist similar structural connectivity but shows significant differences in their energy levels (C vs DHB, E vs D), indicating that the subtle alteration, like replacing nitrogen as from N1-isoquinoline by oxygen, diminishes the aromatic character, which increases the cyclic ring constrain.

Based on the binding energies, resulted from three different docking methods (Table 4 in Supplementary information). Based on these observations, we found 16 targets as for individual three docking methods (Table 4 in Supplementary information). Selected only those ones which were present in the result of all top 25 most energy minimised Cassiarin-protein complexes and descriptively in the later sections of this article.

Table 2 (continued)

Protein	PDB	Res. (Å)	Co-crystallized ligand	Min. RMSD values
123. Ser/Thr protein kinase	2PMO	2.90	Hymenaldisine	0.993
124. Adenylate Kinase	3TLX	2.75	ADP	0.989
125. Apicomplexan AP2 protein	3IGM	2.40	Na	1.082
126. Nucleosome assembly protein 1a	3SFL	2.30	Na	
127. Nucleosome assembly protein	3KYK	2.80	Na	
128. Falcipain (Isoform-2)	3BFF	2.90	N-[1-Hydroxycarboxyethyl-carbonyl][leucylamino-butyl]-guanidine	0.613
129. Glyceral Kinase	2W41	2.41	ADP	0.83
130. Malaria Sporozoite Protein Uis3a	2VVA	2.50	Phosphatidylethanolamine	1.502
131. EBA-175 region VI	2RJE	1.80	Na	
132. Pyrroline carboxylic reductase	2RCY	2.30	NAD	0.906
133. Phosphatidylethanolamine-Binding Protein	2R77	1.60	Na	
134. Internal Kinesin	1RY6	1.60	Na	
135. Dynein Light Chain I	1YO3	1.65	Na	
136. Malarial Hypothetical protein	1ZSO	2.17	Na	
137. Adenosyl-homocysteinase	1VBB	2.40	Na	1.205
138. Fe-Superoxide Dismutase	2GOJ	2.00	Na	
139. Ribosomal RNA Methyltransferase	2PLW	1.70	S-Adenosyl-L-homocysteine (SAM)	0.666
140. Protein-L-isooaspartate- O-	2PBF	2.00	SAM	0.480
141. Dimethyladenoines transferase	2H1R	1.89	Na	
142. Atmsmodial PLL Synthase	2AWW	1.62	Tetraethylene glycol	0.922
143. Actin Depolymerizing Factor	3QZB	1.60	D(-)-tartaric acid	0.801
144. Glucose-6-phosphate isomerase	3P3S	2.45	Fructose-6-phosphate	0.442
145. Methionine aminopeptidase	3SGB	1.55	Na	
146. Nucleolar GTP-binding protein a	2Q8J	2.01	GDP	0.575
147. Orotate Phosphoryl transferase	4FYM	2.60	Na	

In Table 3, we summarise the basic structural features of these targets. The binding mode of Cassiarins with these protein targets has been discussed descriptively in the later sections of this article.

3.2. Tryptophanyl-tRNA synthetase

The cytosolic tryptophanyl-tRNA synthetase of *Plasmodium falciparum* (Pf-tTrpRNA, PDB: 4J75, Res.2.4 Å, (Koh et al., 2013))
belongs to aminoacyl tRNA synthetase (aaRS) class, which charges amino acids to their cognate tRNAs during protein synthesis and requires a large conformational change during their functioning. Previous studies on bacterial and human tRNA synthetase revealed key structural features: (a) In bacteria, these have open, ligand-free state (F-state) where either Trpdomain (Trp) or ATP can bind; (b) Simultaneous binding of Trp and ATP in the pre-transition state requires a conserved loop, KMSKS (492K493M494D495S496) in P. falciparum and 140K140M141S142A143S in humans (Datt and Sharma, 2014) to close onto the active site and C-terminal domain moves toward the active site, containing Rossmann-fold domain; (c) After the intermediate tryptophan-adenylate (WAMP) formation, both the KMSKS loop and C-terminal domain move slightly away from the catalytic core to allow to release of the product (called, as P-state) (Datt and Sharma, 2014) (d) While in human cytoplasmic TrpRS (Hs-cTrpRS), the binding of Trp is mainly accompanied by the N-terminus and a conserved AIDQ motif. Phylogenetically, Pf-cTrpRS is more close to Hs-cTrpRS (~44% identity) than the human mitochondrial TrpRS (~16% identity) (Koh et al., 2013).

According to literature (Datt and Sharma, 2014), the WAMP binds to the 28 key amino acid residues of Pf-cTrpRNA (highlighted as bold single letter amino acid code): (i) 295YTG296G and 317HXGHXL23P in the tip of a loop between β3 and β5 (ii) 341Q5XXEK (iii) 411YXXX415Q (iv) 456VPQGD457XX459F (v) 481VF483M (vi) 492K496M, as shown in Fig. 2(A) and as follow: (a) The indole and adenine ring has π–π interactions with Tyr306, Phe482; (b) The free NH2 and Nβ-heteroatom of adenine ring has H-bond interaction with backbone of Met483; (c) The hydroxyl (OH) groups of ribose sugar shows H-bonding with β-COOH of Asp455 and backbone of Gln452; (d) The phosphate head lies within H-bond distance with side chain of Arg309 and backbone of Gly310; (e) The NH2 tethered functionality of tryptophan interacts with Gln429. Like adenine ring of WAMP, tetracyclic core of Cassiarin-F (Orange) faces vertically to the β6-strand region extended from 481Val to 496Thr and xβ5-helix from 318Leu to 333Phe and also, has T-shaped π–π interactions with Phe482 (3.89 Å) and His320 (3.23 Å) (Sinnokrot and Sherrill, 2004), see in Fig. 2(B). The Nβ1 isoquinoline of tetracyclic ring of Cassiarin-F faces towards a cavity consist β2-β3-strand (region from 426Cys to 435Gly), 452GID456Q conserved motif, xβ1-helix (region from 356G to 463M) and has H-bond acceptor interaction with NH2 terminus of the side chain of Gln456 (3.02 Å). The resorcinol phenolic-OH inclined towards the xβ5-strand (region from 357Pro to 362Leu), xβ5-helix (35Ser to 35Phe), showing H-bond donor interaction with γ-COOH acid side chain of Gln346 (2.43 Å). The extended propanone functionality aligned with β7-strand (354Pyr to 358Arg), has H-bond acceptor interaction with guanidine side chain of Arg309 (1.95 Å) and amide backbone of Gly310 (2.09 Å). While the tricyclic ring of R-Cassiarin-C shows reverse orientation: (a) phenolic ring fitted into a pocket surrounded by xβ1 (region from 356G to 463M) and conserved motif GIDQ, showing H-bond donor interactions with aliphatic side chain of Thr307 (2.39 Å; β3 strand) and amide backbone of Pro451 (2.39 Å; β3-446Cys to 453Gly), while its Np1 isoquinoline ring projected outwards, as shown in Fig. 2(C). Although, the S-isomer of Cassiarin-C attained a reasonable conformational binding change, as phenolic OH projected towards the xβ6-helix and involved with γ-COOH group of Gln346 (2.32 Å), but its Np1 isoquinoline ring has H-bond acceptor interaction with Thr307 (2.76 Å) of β7β8-strand and utilisation of conserved motif GIDQ, shows similar binding pocket like R-isomer-C, shown in Fig. 2(D). The heteroatom (Nβ7) replacement with oxygen atom in Cassiarin-C, brings S-DHB, which restricted the phenolic ring, aromatic character due to formation of quinone ring and also affected its binding with Pf-cTrpRNA. However, its binding resembles to the 2-resorcinol propanone substructure of Cassiarin F binding, as the carbonyl (CO) of quinones utilise ε-NHz of Lys347 (2.48 Å) of β6-Strand and have proximity with the conserved motif GIDQ, xβ1, xβ5 and β7, as shown in Fig. 2(E). Although, as it is devoid of tetracyclic ring like in Cassiarin-F therefore the interactions with of β7 region and xβ5 got disappeared. The S-DHB has shown a close identity in its binding pattern like R-DHB, which would therefore similarly mimic interactions as like 2-resorcinol propanone of Cassiarin-F, with slight variation in its binding conformation as resulted by the modification of C2-stereochemistry, see in Fig. 2(F). The close binding behaviour of both isomers of DBH with regards to the 2-resorcinol propanone of Cassiarin-F, offers a possible biososrote substitution on tetracyclic core of Cassiarin-F in order, to improve structure based rational design against Pf-cTrpRNA protein in P. falciparum. Additionally, we observed that S-DHB binding within the π-stacking interaction to the Tyr425 residue, which is deleted in human aminoacyl tRNA synthetase proteins and can be utilised as a structural feature in optimisation of NCE.

Table 4

R-Cassiarin C	S-Cassiarin C	R-Cassiarin D	S-Cassiarin D
4J75	4J75	2W41	2W41
4Y87	4Y87	3PR3	3UU
3VMR	3VMR	4Y67	4Y67

Tyrosyl-tRNA synthetase

Tyrosyl-tRNA synthetase (PDB: 3VGJ, Res. 2.21 Å, (Bhatt et al., 2011) belongs to the aminoacyl tRNA synthetase family proteins and therefore have similar function and catalytic motifs as seen in previous case of Pf-cTrpRNA, except its utilisation of tyrosine at the place of tryptophan, in the form of tyrosyl-AMP. It consists of a catalytic domain region started from residues 18–260, contains KMSKS and GIDQ conserved motifs. Also, as obvious, its nucleoside binding pocket interactions are similar like Pf-cTrpRNA (Fig. 3(A)), as (a) adenosine ring fits in the cavity constituted by Lys247, Leu238, Met237, Gly236 and Met248 of complimentary Pf-DHB binding within the 7 region and thus have similar catalytic motifs as seen in (Fig. 3(B)); (b) The His70, Ala72 and Gln73 which lies at the tip of loop between xβ1-helix/β7β8-strand and Leu206, Asp209, Gln210 of evolutionary conserved residues 207G169S176Q create its sugar binding pocket; (c) Asp61, Phe63, Glu64 enclosed the sugar-phosphate junction and phosphate head; (d) The Gln192, Asp195 located on the top of ionised NH2 of tyrosine where the Trp94, Ala96, Ph99 composed hydrophobic pocket in order to accommodate aromatic phenol ring.

The molecular docking of R-Cassiarin-C has shown H-bond donor interactions with Thr307 and Gln452 through its phenolic (OH) group, as shown in Fig. 4(A). As compared to R-isomer, S-Cassiarin-C shows more suitability for AMP binding pocket, as: (a) its phenolic (OH) oriented similarly like phosphate heads and has H-bond acceptor-donor interactions with side chain of Lys77 (2.72 Å) and free COOH terminus of Arg61 (2.87 Å).
PDB	Protein/Target	Co-crystallise ligand	Structural features and functions
4J75	Tryptophanyl-tRNA synthetase	Tryptophanyl-Adenosine monophosphate	• Utilises tryptophan as substrate
• Contain 632 amino acids			
• Has KMSKS conserved loop and AIDQ motif in its active binding site			
• Utilises tryptophyl as a substrate			
• Catalytic domain contains 18-260 amino acid residues			
• Has KMSKS conserved loop and AIDQ motif in its binding site			
• Homodimer in its active form			
• Each monomer is made up of two large domains			
• One large domain for NADPH			
• Other one for catalysis			
• FOSIDOMYCIN inhibitors are most studied class			
3VGJ	Tyrosyl-tRNA synthetase	Tyrosyl-Adenosine monophosphate (YAMF)	
4Y67	1-Deoxy-D-Xylose-5-phosphate reductoisomerase	Fosidomycin	• Homodimer in its active form
• Each monomer is made up of two large domains			
• One large domain for NADPH			
• Other one for catalysis			
• FOSIDOMYCIN inhibitors are most studied class			
2W41	Glycerol kinase	Adenine Diphosphate	• Utilises glycerol as substrate
• Participate in rate-limiting step in glycerol utilisation			
• Has 501 amino acid residues			
• Contains two domains separated by a deep cleft			
• Domain I (regions 1-262 and 436-471)			
• Domain II (regions 263-435 and 472-501)			
• Domain I is for glycerol binding; Domain II is for ADP binding.			
• Its kinase domain shows typical H-bond acceptor–donor triad interactions			
3MMR	Plasmodium falciparum Arginase	2-(5)-amino-6-boronoheaxanoic acid	• Utilises binuclear manganese
• Forms tetrahedral geometry with both the manganese atoms.			
• Close to human arginase I (28%) and II (27%)			
3F53	Nucleosome Assembly Protein	n. a	• 347 amino acid long-dimer
• Has two domains, domain I (mainly contain, dimerization helix-2, region started from 37 to 87)			
• Domain II, containing multiple β-helices and a subdomain containing four antiparallel β-strands (residues 128–185)			
• Domain II, containing multiple β-helices and a subdomain containing four antiparallel β-strands (residues 128–185)			
• Domain I is for ADP binding; Domain II is for ATP binding.			
1P9B	Adenylosuccinate synthetase	GDP and IMP	• Consists of 19 strands (β1–β19), 12 β-helices and seven 310 helices
• It has nine parallel β-strands, with a tenth antiparallel strand (β10) form a central sheet			
• Has 4 subdomains			
• Subdomains III (residues 278–302) majorly constitute ligand binding pocket			
• It has 2 binding sites: orthosteric (IMPDH binding site) and allosteric (GDP binding site).			
3PR3	Glucose-6-Phosphate Isomerase	Fructose-6-phosphate	• Orthosteric site contains key amino acids, Glu380, Lys540, Thr233, Lys232, Thr236, Ser231 and Gly158
• Has two domains, domain I (mainly contain, dimerization helix-2, region started from 37 to 87)			
• Domain II, containing multiple β-helices and a subdomain containing four antiparallel β-strands (residues 128–185)			
• Domain II, containing multiple β-helices and a subdomain containing four antiparallel β-strands (residues 128–185)			
• Domain I is for ADP binding; Domain II is for ATP binding.			
4YY8	Kelch Motif Associated Protein of Plasmid Falciarparum	Mono-alkylated p-substituted sulphonamides	• Made up of 28 β-strands where βA to βA involved in the formation of its 6 kelch motifs
• Every motif contains 4 β-strands in common,			
• 6 kelch motifs together built a propeller architecture			
• Enzymatically active as a homodimer			
• High percentage of conserved residues in the active cavity, which is proximal to the interface between two subunits			
• Each subunit contains a pyridoxal-phosphate (PLP) binding domain and a substrate binding domain			
• PLP binding loop domain (region started from 287 to 293) and strictly conserved in all species			
3LG0	Ornithine α-aminotransferase of Plasmid Falciparum	n. a	• Enzymatically active as a homodimer
• High percentage of conserved residues in the active cavity, which is proximal to the interface between two subunits			
• Each subunit contains a pyridoxal-phosphate (PLP) binding domain and a substrate binding domain			
• PLP binding loop domain (region started from 287 to 293) and strictly conserved in all species			
3LT0	Enoyl Acyl Carrier Protein Reductase	Triclosan and NADPH	• With its most studied class of inhibitor (triclosan derivatives), it shows formation of typically ternary complex of GTP-NAD−–triclosan
• Ring A of Triclosan binds to hydrophobic pocket and has π-stacking interaction distance with nicotinamide ring of the cofactor NAD+			
• Catalytic domain contains 18-260 amino acid residues			
• Contains 15 β-helices, form a characteristic alpha solenoid structure			
• Each Armadillo repeat is composed of a pair of alpha helices that form a hairpin structure			
2C07	Oxoacyl Acyl-Carrier-Protein Reductase	Triclosan and NADPH	• Most studies limited to triclosan and its derivatives.
• Our comparative structural studies with E. coli found 4 key mutations: Ser99 (Gly41 in E. coli), Ser94 (Ala36 in E. coli), Arg95 (Thr37 in E. coli) and Ser198 (Gly137 in E. coli):			
• Ring A of Triclosan binds to hydrophobic pocket and has π-stacking interaction distance with nicotinamide ring of the cofactor NAD+			
• Catalytic domain contains 18-260 amino acid residues			
• Contains 15 β-helices, form a characteristic alpha solenoid structure			
• Each Armadillo repeat is composed of a pair of alpha helices that form a hairpin structure			
5EWG	Armadillo Repeats Only Protein of Plasmid Falciparum	n. a	• 252 amino acid residues long dimer
• Contains 15 β-helices, form a characteristic alpha solenoid structure			
• Each Armadillo repeat is composed of a pair of alpha helices that form a hairpin structure			
3SB6	Methionine Aminopeptidase 1b	n. a	• Comparative studies with human homologous protein: Thr156 and Ser268 mutated in place of Pro192 and Cys301 (in human),
• It is dimeric in nature.			
• Each monomer is composed of two catalytic domains, an N-terminal independent GTPase (1-236) and a C-terminal ATPase domain (237-555)			
• Its dimer form is highly required for its activity as the interface has 108C-terminal residues of the ATPPase domain.			
• In this interface, two cis-prolines (Pro548–Pro549) allow a tetrahedral configuration of Asp543, Thr551, Glu553 and Arg539			
• Assist parasite for its initial binding to the surface receptors on the host red blood cell.			
• Consist of a boomerang shaped α-helical core formed from three subdomains			
• Subdomain 1 (region 161–225) only contains a 5-residue long α-helix (helix 1) provide a junction for subdomains 2 and 3			
3UUW	Guanosine monophosphate synthetase	Xanthose Monophosphate (XMP)	• It is dimeric in nature.
• Each monomer is composed of two catalytic domains, an N-terminal independent GTPase (1-236) and a C-terminal ATPase domain (237-555)
• Its dimer form is highly required for its activity as the interface has 108C-terminal residues of the ATPPase domain.
• In this interface, two cis-prolines (Pro548–Pro549) allow a tetrahedral configuration of Asp543, Thr551, Glu553 and Arg539
• Assist parasite for its initial binding to the surface receptors on the host red blood cell.
• Consist of a boomerang shaped α-helical core formed from three subdomains
• Subdomain 1 (region 161–225) only contains a 5-residue long α-helix (helix 1) provide a junction for subdomains 2 and 3

n.a. no crystallise protein.
pyridine ring of its isoquinoline core binds like adenosine ring of AMP as it utilises His70 (T-shaped π-π interaction, 3.59 Å) and Lys247 (H-bond acceptor interaction, 2.67 Å) of KMSKS conserved motif, shown in Fig. 4(B) (Sinnokrot and Sherrill, 2004). Similar to S-Cassiarin-C, the binding conformation of R-DHB also utilises AMP binding pocket, as: (a) quinone has H-bond acceptor interaction with Gly207 backbone (2.03 Å); (b) The 2-methyl-2H-pyran ring mimic the adenosine ring binding region through H-bond acceptor interaction with the side chain of Lys247 (2.02 Å), see in Fig. 4(C).

3.4. 1-Deoxy-D-xylose-5-phosphate reductoisomerase (DXR)

DXR (PDB: 4Y67, Res. 1.6 Å, (Chofer et al., 2015)) is a class B dehydrogenase enzyme, which exists as a homodimer in its active form (the active region started from Lys75 to Ser488) where each monomer is made up of two large domains separated by a cleft containing a deep pocket, a linker region, and a small C-terminal domain (Chofer et al., 2015). One of the large domain is responsible for NADPH binding (region started from 77 to 230), and the other domain is for catalysis (contains, metal and substrate binding, region started from 231 to 369). The catalytic domain is an α/β-type structure, consisting of five α-helices (α7–α11) and four β-strands (β4–β11) and have two different conformations, open and closed. The open conformation assist the substrate D-xylose-5-phosphate (DXP) to enter and binds to the active site (Mac Sweeney et al., 2005; Umeda et al., 2011). On the other hand, the NADPH binding site, contain conserved residues (Asp231, Glu233, Ser269, Ser270, Trp296, Met298, Asn311, Lys312, and Glu315), which are also conserved in all human malaria parasites (Yajima et al., 2007; Kunfermann et al., 2013).

However, the most studied inhibitor class, fosmidomycin and its analogues bind in a typical fashion to DXR protein (Chofer

Fig. 2. Illustrating the interaction of the various ligands with tRNA synthetase: (A) Binding of WAMP (B) Binding of Cassiarin F (Orange) (C) Binding of R-Cassiarin C (Blue), (D) Binding of S-Cassiarin C (Violet), (E) Binding of R-DHB (Cyan); (F) Binding of S-DHB (Brown).

Fig. 3. (A) Superposition of active site domain of Tyrosyl-tRNA synthetase (secondary structure ribbon colour; grey colour code for co-crystallise ligand) and Pf-c-TrpRNA (secondary structure in green colour; brown colour code for co-crystallise ligand); (B) interactive mode of co-crystallise ligand with Tyrosyl-tRNA synthetase.
et al., 2015), which can further categorised into three regions (a) phosphate head (PO₄) binding region, which has tight H-bond interaction network with Ser270, Asn311, two water molecules, and His293; (b) hydrophobic carbon backbone binding region, which runs parallel to the indole ring of Trp296 and interacts with Met298; (c) hydroxamate binding pocket, which coordinated in cis-arrangement with metal ion (Mg²⁺ or Mn²⁺), negatively charged residues (Asp231, Glu233, and Glu315) and forms a typical distorted trigonal bipyramidal geometry for these class of compounds (Fig. 5(A)).

The molecular docking of Cassiarin-F shows its resorcinol phenolic functionality utilises majorly hydroxamate binding region, as characterised by its H-bond interaction with the backbone of Ser269 (3.18 Å), His341 (2.65 Å) and side chain (OH) of Ser232 (2.66 Å), as shown in Fig. 5(B). Also, its hydrophobic tetracyclic ring aligns parallel to the Trp296 and Met360, as same like the hydrophobic carbon backbone of the fosmidomycin analogues. Similarly, like Cassiarin-F, the R-Cassiarin-C phenol ring fits into the hydroxamate binding region as through the H-bond acceptor/donor interactions with free –NH₂ side chain of Lys205 and –COOH functionality of Asp231 respectively. While, the isoquinoline ring of R-Cassiarin-C participates in π-π interaction with Trp296 (3.86 Å & 4.45 Å), which shows its ring orientation different from the F-isofrom, in Fig. 5(C). This indicates the pivotal role of additional aryl ring system (i.e. the extended propanone-resorcinol structure of Cassiarin-F), is a key difference for the such binding conformation of Cassiarin-F when compared to the binding conformation of R-Cassiarin-C.

Structurally, Cassiarin-C and Cassiarin-D are only different at C₂-position substitution with 5-propenone-7-hydroxy-4H-chromen-4-one. The molecular docking of S-Cassiarin-D shows the 5-propenone functionality imitate like phosphate head and binds to Ser270 (side chain (1.61 Å) and backbone (1.92 Å)), backbone of Gly271 (2.54 Å) and side chain (OH) of Ser269 (2.37 Å) via H-bond acceptor interactions. While, the non-aromatic quinone interact with NH₂-terminal of Glu233 (2.83 Å) through H-bond acceptor interaction. It appears that C₂ extension from Cassiarin-C to Cassiarin-D pushed the tricyclic isoquinoline core more towards the NADPH binding pocket region (as provided with the presence of Ser88 and Ile89 from the of NADPH binding site) and, also aligned with the hydrophobic backbone patch (presence of Trp296 and Met360), shown in Fig. 6(A). However, H-bond acceptor interaction of N₁-isoquinoline with NH-indole side chain of Trp296 (1.90 Å), shows the tricyclic ring tossed up from the cavity, which could be interesting to observe in case of co-binding of NADPH as its adenine ring would be close within 4.5 Å distance for π-π interaction with isoquinoline ring of S-Cassiarin-D. While in case of R-DHB, the quinone ring binds to phosphate head region via H-bond acceptor interaction with side chain of Ser270 (3.08 Å), backbone of Ser269 (2.03 Å) and NH₂-terminus of side chain of Lys312 (2.34 Å), in Fig. 6(B). Additionally, the incorporated Oxygen atom of 2H-dihydropyran core of R-DHB shares a H-bond acceptor interactions with side chain of Ser232. Also, it has been found interesting that the interactive mode of R-DHB couldn’t find characteristic hydrophobic backbone binding residues like Trp296 and Met360 within 4.5 Å. However, in case of molecular binding of S-DHB, quinone ring interacts (NH2 terminal of Lys 205 (2.63 Å) and Asn311 (2.89 Å)), via H-bond acceptor interactions, similarly like quinone ring of R-isomer, shown in Fig. 6(C) and Fig. 6(B), respectively, but its C₂ associated pyran ring proximity to the
Trp296 (hydrophobic interactions, 3.58 Å and 4.05 Å) and Met360, shows the critical role of C$_2$ stereochemistry in their binding to the DXR protein, as it was not seen in R-isomer. We also found these Cassiarins binding lacks the utilisation of hydroxamate cavity of DXR protein and hence unable to coordinate with Mn$^{2+}$ ions and to form typical trigonal bipyramidal geometry, as seen in fosmidomycin class inhibitors.

3.5. Glycerol kinase (PfGK)

PfGK (PDB: 2W41, Res. 2.41 Å, (Schnick et al., 2009)) phospho-rylate the glycerol, which is a rate-limiting step in glycerol utilisation in parasite metabolism (Schnick et al., 2009; Naidoo, 2013). Deletion of host gene shows no effect on gametocyte development, suggesting that these life cycle stages do not utilize host-derived glycerol as a carbon source (Schnick et al., 2009). The structural architecture of PfGK contains 501 amino acid residues, arranged in two domains separated by a deep cleft. Each domain is constructed around a α/β core (characterise as βββαβαβααβ) that is characteristic of the sugar kinase/Hsp70/actin superfamily proteins (Bork et al., 1992; Hurley, 1996). The Domain I (regions 1–262 and 436–471) comprises β$_3$β$_2$β$_1$β$_5$α$_1$β$_6$α$_6$β$_12$α$_9$ and Domain II (regions 262–435 and 472–501) consists of β$_{16}$β$_{14}$β$_{13}$α$_{12}$β$_{19}$α$_{13}$β$_{20}$α$_{14}$ (Schnick et al., 2009).

However, domain 1 is responsible for glycerol binding and domain II is for ADP binding. The adenine base of ADP slipped into a pocket of domain II and the ribose-phosphate functionality pointed towards the interdomain cleft. The nucleoside (adenine-
sugar) shows typical, kinase domain triad interactions ([H-bond acceptor/donor/acceptor interactions (Negi et al., 2013b)] with kinase domain (Asn418, Ser332 and Gly313) of PfPGK. The phosphate binding pocket surrounded by Gly267, Thr268, Gly413 and Gly414 are profoundly required in the ternary closed complex with ATP. While, sugar binding pocket constituted by residues like Gly313, Ser314 and Met415 (Hurley et al., 1993; Schnick et al., 2009), see in Fig. 7(A).

The phenolic (OH) and propanone functionalities of 5-propenone-7-hydroxy-4H-chromen-4-one of R-Cassiarin-D utilises triad interaction like adenine, with backbone of Asn418 (2.35 Å) and side chain of Ser332 (2.26 Å), as shown in Fig. 7(B). Although, S-isomer of Cassiarin-D also interacted with Asn418 (2.15 Å) in a similar fashion like R-isomer, but as because C2 stereochemistry changes in both isomer, the remaining halves of both isomers oriented differently, as R-isomer extended towards Leu320, over Thr268 while S-isomers twisted in L-shaped into the vicinity of Thr268, shown in Fig. 7(C). However, the presence of Pro328 and Met415 parallel to the C2 tethered backbone in both stereoisomers binding conformations, showed their utilisation of sugar binding region. Also, R-Cassiarin-E follows the same trend like Cassiarin-D isomers binding with kinase region, as its phenolic O-H involved in H-bond donor interactions with backbone of Asn418 (2.17 Å). However, R-Cassiarin-E doesn’t have 5-propenone-7-hydroxy-4H-chromen-4-one functionality like Cassiarin-D isomers, but has bis-tricyclic system, which encloses most of the Cassiarin-D isomers binding cavity residues, Fig. 7(D).

3.6. Plasmodium falciparum Arginase (PfAI)

PfAI (PDB: 3MMR, Res. 2.14 Å, (Dowling et al., 2010)) has close resemblance with its human homologous proteins, human arginases I (HsAI, 28%) and II (HsAII, 27%) and also utilises binuclear manganese (Müller et al., 2005). The interactive mode of co-crystallise ligand (2(S)-amino-6-boronohexanoic acid, ABH) of the PfAI illustrated the key important residues of the active site, as it has H-bond interactions with Glu368, Asp274, Ser229, Asn222 and forms tetrahedral geometry with both the manganese atoms (Wells et al., 2009; Dowling et al., 2010), see in Fig. 8(A).

The molecular docking of these Cassiarins shows their utilisation of the ABH binding cavity. Whereas, the R/S isomer of Cassiarin-C flipped their orientations, displaying the influence of their C2 stereochemistry and relatively small molecular size with regards to the cavity size, shown in Fig. 8(B) and (C), respectively. Their flipping in orientation can be further understood based on their interactions as the phenolic (OH) and O-pyran ring of R-Cassiarin-C has H-bond acceptor interactions with His218 (2.77 Å) and Thr337 (2.80 Å) while, the phenolic (OH) of S-Cassiarin-C has H-bond donor interactions with Asp274 (2.24 Å) and Glu277 (2.57 Å) and its O-pyran ring has H-bond acceptor with Asn222 (2.44 Å). On the other side, the S-DHB shows H-bond acceptor interactions with side chain of Ser229 (2.99 Å) and Asn222 (2.08 Å), as shown in Fig. 8(D). These isoforms binding utilises only one manganese metal ion for coordination in their 4.5 Å, which is irrespective to the conventional inhibitors as their binding utilises two manganese atoms. This point could be useful in developing a hepatic antimalarial drug in future, as PfAI has been critical for malarial parasites during their liver stage development.

3.7. Nucleosome assembly protein

P. falciparum contains two nucleosome assembly proteins termed PfNapL and PfNapS (Chandra et al., 2005). PfNapL (PDB: 3FS3, Res. 2.3 Å, (Gill et al., 2009)) is a 347-amino acid dimer, cytoplasmic localised protein and has a central core of ~250 residues that are thought to be responsible for histone binding. PfNap composed of two domains, domain-I (consists, dimerization helix-2, region started from 37 to 87) and domain-II, containing multiple

Fig. 8. Interactive binding mode: (A) co-crystallise ABH (gold); (B) R-Cassiarin-C (blue); (C) S-Cassiarin-C (violet); (D) S-DHB (brown).
\(\alpha\)-helices and a subdomain containing four antiparallel \(\beta\)-strands (amino acid residues 128–185) (Gill et al., 2009). The dimerization helix-2 of domain-I forms the distinguishing shape of PfNapL, where two backbone helices cluster in an antiparallel manner to form the dimer using mainly hydrophobic interactions and salt bridges or hydrogen bonds (Gill et al., 2009).

The R-Cassiarin-E binds in a V-shaped, as shown in Fig. 9(A), where both aromatic cores go inside to the cavity composed of \(\alpha_2\) (Arg68, His72 and Tyr 75) of dimerization helix-2, \(\alpha_7\) (Tyr272, Pro271, Lys266 are the residues involved), Gly145 and Phe146 at the tip of \(\beta_2\), and Met169, Val179 are in the loop in between \(\beta_3\) and \(\beta_4\) and exposes its \(\chi_1\) terminus of Lys266 (3.20 Å) and N\(_1\)-terminus of His266 (3.20 Å) and NH-imidazole side chain of His272 (2.28 Å), respectively. While, in case of S-DHB, the pyran ring faces towards Cys133, Tyr79, encloses into a cavity composed of Lys266, Glu267, Ile270 and Pro271 on one side and Arg68, His72 and Tyr135 from other side (see, in Fig. 9(B)).

3.8. Adenylosuccinate synthetase (PfAdSS)

Each subunit of PfAdSS (PDB: 1P9B, Res. 2.0 Å (Eaazhaisai et al., 2004)) consists of 19 strands (\(\beta_1-\beta_{19}\), 12 \(\alpha\)-helices, seven \(\beta_{10}\) helices and 6 loops (L1-3). Nine parallel \(\beta\)-strands (\(\beta_6, \beta_7, \beta_8, \beta_{10}, \beta_{11}, \beta_{12}, \beta_{13}, \beta_{14}, \beta_9\)) along with a tenth antiparallel strand (\(\beta_{15}\)) forms a central sheet. This sheet is bordered by four subdomains: (a) subdomain-I (residues 54–65) comprises of only two \(\beta\)-strands (\(\beta_1\) and \(\beta_2\)); (b) subdomain-II (residues 114–206) mainly involved in interface interactions; (c) subdomains-III (residues 278–302) majorly constitute ligand binding pocket; (d) subdomain-IV (residues 339–418). It has 2 binding sites: orthosteric (IMP binding site) and allosteric (GTP binding site). Both sites are close to each other. The previous studies highlighted various structural features and key residues of active site, as summarised here, (Eaazhaisai et al., 2004): (a) Lys31 (which is a conserved residue in active site); (b) Lys62 (forms H-bonds with ribose hydroxyls in PfAdSS but absent in the other homologous AdSS proteins); (c) Lys29 is highly involved in phosphate head binding of GDP and shares a typical H-Bond character (Low Barrier Hydrogen Bond, LBHB, (Cleland and Kreevoy, 1994)); (d) phosphate binding pocket majorly constituted by the residues, like Asp26, Lys29, Gly53, His54 and Asn232; (e) Asp26 is believed to be a key residue which gets protonated and later coordinated to Mg\(^{2+}\) (Cho et al., 1999; Iancu et al., 2002). (f) Asn232 and mouse AdSS complexes, (g) LBHB interaction of His54 and O\(_2\) of 6-phosphoryl of IMP (2.54 Å), is parallel to the mouse synthetase complex (2.46 Å) (Cleland and Kreevoy, 1994; Iancu et al., 2002).

The molecular docking of R-DHB shows, its pyran ring utilise the NH-guanidine side chain of Arg313 of \(\beta_{13}\) (2.16 Å & 2.30 Å) and alcoholic (OH) side chain of Thr307 of most conserved segment of loop L5 (2.62 Å) via H-bond acceptor interactions, see in Fig. 10 (A). However, its binding pocket shows conserved helix \(\alpha_1\) (G28, L29, G30K31), L5 region containing (H103Y105P107), \(\beta_{13}\) (R113) and L6 (P128) of PfAdSS. However, S-DHB also shows similar binding like R-DHB to the pocket, like \(\alpha_1\) (L20G20K21), \(\beta_3\) (H24), L5 (E304P307), \(\beta_{13}\) (R113). While, its quinone ring and 2H-pyran ring has H-bond acceptor interaction with NH of backbone of Gly30 (2.15 Å) and NH side chain terminus of Lys339 (2.44 Å), as seen in Fig. 10(B).

3.9. Glucose-6-Phosphate isomerase (PfG6P)

As no further structural information for PfG6P protein (PDB: 3PR3, Res. 2.45 Å, (Gileadi et al., 2011)) was available, hence we evaluated its own co-crystalisit ligand (fructose-6-phosphate) binding, to allocate the key residues in its active site. The binding shows its phosphate head has H-bond interaction with Gly158, Glu380 and Lys540, see in Fig. 11(A). Furthermore, compared with human protein (HsG6P, PDB: 1JLH, Res. 2.1 Å (Cordeiro et al., 2003)), PfG6P found to have two globular domains (as one, large and other, small domains) and an “arm-like” C-terminal tail, similar like HsG6P of humans. Both the large and the small domain have a central core of a \(\beta\)-pleated sheet flanked by \(\alpha\)-helices to form a typical z/\(\beta\) folding motif. The large domain contains 6 \(\beta\)-strands (\(\beta_1\) to 42K; \(\beta_2\); 46F to 52R; \(\beta_3\); 357N to 362P; \(\beta_4\); 400V to 402F; \(\beta_5\); 425V to 430F; \(\beta_6\); 455S to 500S) and small domain has 4 \(\beta\)-strands (\(\beta_1\); 150N to 154L; \(\beta_2\); 201N to 205L; \(\beta_3\); 225T to 230L; \(\beta_4\); 264M to 267V).

The molecular docking of R-DHB shows its binding complimentary to the fructose-6-phosphate as the presence of residue 156–159 and 231–239 shows the phosphate binding pocket of fructose-6-phosphate, which is situated in between \(\beta_{13}\) and \(\beta_{16}\) respectively, as shown in Fig. 11(B). While, R-Cassiarin-D shows similar binding orientation to the cavity, situated in \(\beta_{16}\)/Lys232, Thr233, Thr236, flanked \(\alpha\)-helix (Gly293, Arg294), \(\beta_{17}\) (Gln376, Glu380), C-terminal tail (Lys540) and enclosed within H-bond distance with charged side chains of Glu380 (2.09 Å), Arg294 (2.33 Å) and backbone of Gly293 (2.92 Å), shown in Fig. 11(C).

![Fig. 9. Interactive binding mode: (A) R-Cassiarin-E (pink); (B) S-DHB (brown).](image-url)
3.10. Kelch motif associated protein of Plasmodium falciparum (PfKEAP)

It is BTB domain containing 389 residues long dimer (PDB: 4YY8, Res. 1.81 Å, (Jiang et al., 2015), constituted by 28 \(b \)-strands where \(\beta_4 \) to \(\beta_{28} \) involved in the formation of its 6 kelch motifs: Every motif contains 4 \(b \)-strands in common, except motif 5, which has unusual 6 \(b \)-strands (\(K_1: \beta_4^1-444-448, \beta_5^1-460-464, \beta_6^1-469-472, \beta_27^1-529 \), Ser720-Ala724; \(K_2: \beta_7^2-484-489, \beta_8^2-491-495, \beta_9^2-496-500, \beta_{11}^2-506-510, \beta_{12}^2-517-520; \(K_3: \beta_{13}^3-532-536, \beta_1^3-539-543, \beta_5^3-546-549, \beta_6^3-555-559, \beta_7^3-564-567, \beta_8^3-579-583, \beta_{11}^3-586-590, \beta_{15}^3-591-605, \beta_{17}^3-610-613, \beta_{20}^3-622-624, \beta_{21}^3-627-630, \beta_{22}^3-633-637, \beta_{23}^3-640-642, \beta_{24}^3-650-654, \beta_{25}^3-659-663, \beta_{26}^3-674-678, \beta_{27}^3-682-685, \beta_{28}^3-696-700, \beta_{29}^3-705-709 \)). These 6 kelch motifs togerher built a propeller architecture, shown in Fig. 12(B). Further comparative sequence and structure studies with human (\(Hs \)KEAP, PDB: 4XMB, Res. 2.43 Å) (Jain et al., 2015) and mouse (\(Mm \)KEAP, PDB: 4ZY3, Res. 1.80 Å) (Saito et al., 2016) kelch motif containing proteins, show key residues associated with the orthosteric binding site, Fig. 12(A).

The co-crystallised ligand (mono-alkylated \(p \)-substituted sulphonamides) of \(Hs \)KEAP fits in between cavity surrounded by kelch repeats \(K_{13-15} \): \(F_{15}^{561}, Y_{458}^{459}, Y_{488}^{489}, Y_{529}^{530}, Y_{546}^{547}, Y_{576}^{577}, Y_{594}^{595}, F_{598}^{599} \) of \(Pk \)KEAP, shown in Fig. 12(C). The cross docking of co-crystallise ligand of \(Hs \)KEAP on \(Pk \)KEAP, shows distinctive kelch motif features in \(Pk \)KEAP as compare to the kelch motifs of human proteins, as further supported by minimum RMSD value (4.84 Å) and free energy (−7.86) for \(Pk \)KEAP than minimum RMSD (1.07 Å) and free energy (−7.34) for \(Hs \)KEAP. While in our observation, we found \(R \)-Cassiarin-\(E \) (\(Pk \)KEAP) and \(S \)-Cassiarin-\(C \) more profoundly forming energy-stable complexes with \(Pk \)KEAP. Also, their interactive mode has similar binding pattern as \(-\)OH groups of \(R \)-Cassiarin-\(E \) interacts with the backbone of \(K_2 \) region through \(H \)-bond acceptor-donor interactions, as shown in Fig. 13(A). While, the other half, fits in the hydrophobic cavity constituted by aromatic amino acids. On the other side, the \(S \)-Cassiarin-\(C \) uses multi kelch motifs as compared to \(R \)-Cassiarin-\(E \) (\(K_2 (\beta_7), K_4 (\beta_{15}), K_5 (\beta_{19}+\beta_{20}), \beta_{25}, \beta_{26}, \beta_{27}, \beta_{28} \)), for its binding to \(Pk \)KEAP via \(H \)-bond acceptor/donor interaction with Ser720 (2.67 Å) and Phe674 (2.41 Å) respectively, as shown in Fig. 13(B).

3.11. Ornithine-\(\delta \)-aminotransferase of Plasmodium falciparum (PFOAT)

\(Pk \)OAT (PDB: 3LG0, Res. 2.3 Å, (Jortzik et al., 2010)) is active as a homodimer. Based on the comparative sequence alignment with other OATS (Human: \(Hs \)OAT, PDB: 20AT, Res. 1.95 Å (Storici et al., 1999); Toxoplasma: \(Tc \)OAT, PDB: 3E3K, Res. 1.73 Å (Filippova et al., 2016)) (shown in Fig. 14(A)), we observed high percentage of conserved residues in the active cavity, which is close to the interface of two subunits. Each subunit contains a pyridoxal-
phosphate (PLP) binding domain and a substrate binding domain (Jortzik et al., 2010). The PLP binding loop domain (region started from 287 to 293) is strictly conserved in all species. The S-Cassiarin-E binds significantly with the PLP-binding loop domain via H-bond donor interaction with amide backbone of Pro286 (2.13 Å) and His289 (2.23 Å); \(p \)-stacking interaction with imidazole ring of His289 (4.24 Å). Furthermore, \(N_1 \)-isoquinoline (2\(H \)) has H-bond acceptor interaction with \(N_H \)-guanidine side chain of Arg83 (2.10 Å). While the 2\(H \)-isoquinoline ring folded towards a hydrophobic cavity (comprises V106L107M108M109) which allows the Cassiarin-E to undergo the specific binding conformation, shown in Fig. 14(B).

3.12. Enoyl acyl carrier protein reductase (PfENR)

Previous studies on the protein, enoyl acyl carrier protein reductase obtained from different origins (\(P. falciparum \), \(E. coli \), \(B. napus \), \(M. tuberculosis \), \(H. pylori \)) show overall identical structural homology (Pidugu et al., 2004). This analysis also provides the key features, related to the substrate binding loop region, which were further correlated with the affinities of its conventional inhibitor class, Triclosan derivatives (Belluti et al., 2013). The Triclosan derivatives are primarily contain the Biphenyl ether scaffold (Ring A and Ring B separated by an oxygen atom). In case of \(PfENR \), the binding of Triclosan (PDB: 3LT0, Res. 1.96 Å, (Maity et al., 2010)) typically forms a ternary complex as \(PfENR \)-NAD\(^+\)-Triclosan, where ring A of Triclosan settles into a hydrophobic pocket (composed of Tyr277, Tyr267, Gly313, Pro314, Ile323, Phe368, Ile369, and Ala372) and has \(p \)-stacking interaction distance with nicotinamide ring of the cofactor NAD\(^+\) (Maity et al., 2010), in Fig. 15(A). While, Ring B of triclosan has close proximity with ribose- phosphate functionalities of NAD\(^+\), substrate-binding loop residues (like Ala319, Ala320, and Ile323) and a conserved loop (containing Ala217, Asn218, Ala219, and Val222) (Pidugu et al., 2004).

The molecular modelling of Cassiarin-E advocates the binding to the co-factor binding site irrespective to the expected substrate binding site. The tricyclic ring of R-Cassiarin-E forms the sandwich-type \(p \)-\(p \) interactions with indoyl moiety of Trp131 (3.82 Å, 4.08 Å, 4.58 Å, 3.73 Å, 3.89 Å & 4.29 Å). While, the remaining part of the molecule twisted towards the ribose-phosphate sugar pocket of NADH, which was also a binding pocket of Ring B of Triclosan, see in Fig. 15(A). This tricyclic ring of this twisted half also has H-bond donor/acceptor interaction with Asp107 (2.34 Å) and NH backbone of Ala217 (2.90 Å) of cavity domains (comprising C\(^{106} \)B\(^{107} \)N\(^{109} \)G\(^{110} \) and S\(^{317} \)P\(^{318} \)A\(^{319} \)) on one side and A\(^{217} \)N\(^{218} \) on other side, respectively, as shown in Fig. 15(B).
3.13. Oxoacyl acyl-carrier-protein reductase (FabG)

Most of the interactive domain information for 3-oxoacyl acyl-carrier-protein reductase (PDB: 2C07, Res. 1.50 Å, (Wickramasinghe et al., 2006)) was limited to Triclosan orthosteric site inhibition, while co-factor binding was highly underestimated. Therefore, we explore the co-factor binding site (NADPH binding site) with 3-oxoacyl acyl-carrier-protein reductase of *E. coli* (PDB: 1Q7B, Res. 2.05 Å, (Price et al., 2004)), found RMSD of their backbone (1.455 Å, for 237 amino acids), identity (47.1%) and similarity (68.0%) and with 4 key mutations, as indicated, in Fig. 16(A): Ser99 (Gly41 in *E. coli*), Ser94 (Ala36 in *E. coli*), Arg95 (Thr37 in *E. coli*) and Ser198 (Gly137 in *E. coli*). The molecular modelling studies revealed the binding of R-isomer of Cassiarin-E, majorly utilises the binding cavity of nicotinamide functionality of NADP, as shown in Fig. 16(B).

3.14. Armadillo repeats only protein of Plasmodium falciparum (PfARO)

PfARO is poorly studied protein (PDB: 5EWP, Res. 1.8 Å (Peifer et al., 1994; Brown et al., 2016)), therefore we compare its structure with the truncated structure of cell adhesion protein of Caenorhabditis elegans (PDB: 4R11, Res. 2.79 Å) (Choi et al., 2015), see in Fig. 17(A). Our investigation found PfARO is 252 amino acid residues long, right handed super helix dimer of 15 a-helices, which forms a characteristic alpha solenoid structure (Peifer et al., 1994). However, each Armadillo repeat is composed of a pair of alpha helices that form a hairpin structure (involving alpha-helices: α_1^{1-48}, α_2^{49-57}, α_3^{58-65}, α_4^{66-73}, α_5^{74-100}, $\alpha_6^{101-118}$, $\alpha_7^{119-126}$, $\alpha_8^{127-134}$, $\alpha_9^{135-142}$, $\alpha_{10}^{143-150}$, $\alpha_{11}^{151-158}$, $\alpha_{12}^{159-167}$, $\alpha_{13}^{168-175}$, $\alpha_{14}^{176-183}$, $\alpha_{15}^{184-191}$, $\beta_1^{192-200}$, $\beta_2^{201-209}$, $\beta_3^{210-218}$, $\beta_4^{219-227}$, $\beta_5^{228-236}$, $\beta_6^{237-245}$, $\beta_7^{246-254}$, $\beta_8^{255-263}$, $\beta_9^{264-272}$, $\beta_10^{273-281}$) The molecular docking of S-Cassiarin-D isomer shows its binding T-shaped $\pi-\pi$ interaction of Phe244 (3.55 Å & 3.79 Å) (Sinnokrot and Sherrill, 2004), as shown in Fig. 16(B).
Fig. 15. Interactive binding mode (A) co-crystallise ligand (gold); (B) R-Cassiarin-E (pink).

Fig. 16. (A) Superpose of FabG protein of *P. falciparum* (residues labelled in brown) with *E. coli* utilising identical ligand (triclosan derivative) binding orthosteric site; (B) Interactive mode of R-isomer of Cassiarin-E.

Fig. 17. (A) Superpose with cell adhesion protein of *Caenorhabditis elegans* (grey colour backbone); (B) Interactive mode of S-Cassiarin D (green).
dependent on the turn, as enclosed by the interface of $\alpha_{2/3}$ region (containing A67A70H72p73W74A75A76D77). Also, its OH group shows H-bond donor interaction with His72 (2.57 Å) and Asp77 (2.02 Å) with the mentioned interface of $\alpha_{2/3}$ region, in Fig. 17(B).

3.15. Methionine aminopeptidase 1b (pfMetAP)

As no structural information related to the pfMetAP (PDB: 3S6B, Res. 1.95 Å, (Wernimont et al., 2011a,b)) was disclosed by the previous studies, therefore we performed comparative studies of its structure with its human homologous protein (HsMetAP, PDB: 2G6P, Res. 1.9 Å, human methionine aminopeptidase Type 1) (Hu et al., 2006). The superimposition of pfMetAP and HsMetAP shows the coverage of 81%, RMSD of their backbone (1.253 Å, for 301 amino acids) and identity (54%), as structures shown in Fig. 18(A). Although, the binding of co-crystallise ligand with pfMetAP, shows high resemblance in their orthosteric site, with subtle mutation that could be exploited for selective drug designing and targeting against P. falciparum in future, as follow: Thr156 and Ser268 mutated in place of Pro192 and Cys301 (in human), respectively provide H-bond donor/acceptor interaction, see in Fig. 18(A). However, the tricyclic ring of R-DHB binds in the hydrophobic core (containing T156W159p162C167H176 & H270p273H277 W320) and its quinone functionality secured the polar interface of pfMetAP constituted by D193p204E303E334 (see in Fig. 18(B)).

3.16. Guanosine monophosphate synthetase (GMP synthetase)

GMP synthetase (PDB: 3UOW, Res. 2.72 Å, (Wernimont et al., 2011a,b)) is dimeric in nature. Each monomer is composed of two catalytic domains, an N-terminal independent GATase (1–236) and a C-terminal ATPPase domain (237–555) (Ballut et al., 2015). Its dimer form is highly required for its activity as the interface has 108C-terminal residues of the ATPPase domain. In this interface,
two cis-prolines (Pro548–Pro549) allow a tetrahedral configuration of Asp543, Thr551, Glu553 and Arg539 (Ballut et al., 2015). The binding of co-crystallise xanthose monophosphate (XMP) (Gileadi et al., 2011) shows the key residues of ligand binding site of GMP synthetase, shown in Fig. 19(A): (a) Arg336, Pro436, Gly435, Pro436 covering the purine face of XMP; (b) the steric hindrance of bulky hydrophobic residues Phe510, Pro432 twisted the ribose sugar towards the polarised domain (constituted by Arg441, Gln476); (c) phosphate heads enclosed by the Lys547, Glu553, Thr551 and Ile552. However, binding of tricyclic ring of \(\text{R-Cassiarin-E} \) fitted to the purine-ribose sugar binding cavity (\(\pi-\pi \) interactions, 3.69 Å & 3.48 Å with Phe510) while the methylene (–CH2–) tethered substructure of the molecule (Dihydro-isoquinoline) popped out from the XMP binding cavity, see in Fig. 19(B).

3.17. Merozoite surface proteins duffy binding like Domain-2 (PfMSPDBL2)

The merozoite surface proteins of P. falciparum has duffy binding like domains (PfMSPDBL1 and PfMSPDBL2), which helps the merozoite for their initial binding to the surface receptors on the host red blood cell (Wickramarachchi et al., 2009). The duffy binding like (DBL) fold (PfMSPDBL2; PDB: 3VUU, Res. 2.09 Å, (Hodder et al., 2012)) consists of residues from 161 to 457 residues, which has a boomerang shaped \(\alpha \)-helical core (9 \(\alpha \)-helices) formed from three subdomains (Hodder et al., 2012): (a) subdomain-1 (region 161–225) has only contain 5 residue long \(\alpha \)-helix (\(\alpha_1 \)) and provide a stable junction for subdomain-2 and subdomain-3 by a \(\text{H} \)-bond network (involving Arg-207 (from subdomain 1), Asp-266 (from subdomain-2), and Glu-352 (subdomain-3)); (b) Subdomain-2 (residues 226–341) composed of four structurally conserved helices (helices 2–5); (c) subdomain-3 (344–460) composed of two long \(\alpha \)-helices (\(\alpha_6 \) and \(\alpha_7 \)) and two smaller \(\alpha \)-helices (\(\alpha_8 \) and \(\alpha_9 \)) (Hodder et al., 2012). Moreover, a disulfide linkage between Cys441 and Cys444 brings helices \(\alpha_8 \) and \(\alpha_9 \) are near each other in an anti-parallel manner. The \(\text{R-Cassiarin-D} \) molecular binding mode clearly shows no involvement with subdomain-1 and binds inside the cavity formed by subdomain-2 and subdomain-3: N252, E254, K255, R261, of \(\alpha_3 \), T335, G336, Y337, G338, I340, of \(\alpha_6 \), T355, E359, in \(\alpha_6 \), P442, E443, C444, K445...
in loop between 299-329. Also shows, the H-bond donor-acceptor interactions with COOH of Glu443(2.97 Å) and NH₂ terminal of Lys445 (2.69 Å), see in Fig. 20.

In our interest, we evaluated the physicochemical properties of these isoforms with regards to the known quinine alkaloid analogues (Chloroquine, Primaquine, Amodiaquione, Mefloquine). However, most of the Cassiarins show equivalent physicochemical properties with respect to the quinine analogues, while Cassarin-C found to be the closest candidate with Primaquine, as shown in Table 6.

4. Conclusion

The search for new antimalarial scaffold still have valuable weightage. Current research identified the most putative targets for Cassiarin alkaloids in P. falciparum. We also produce a series of top 25 putative targets for individual Cassiarin isoforms against P. falciparum (provided in Supplementary information). Also, found that the monomer forms (like Cassarins C and DHB) have comparatively more cavity fitting to these proteins, as attributed by their smaller surface area than their Bis-forms (D, E, and F) (provided in Table 2). However, their multi-mode interactions with their putative protein targets also indicate their synergetic pharmacological mode of action against P. falciparum strains. We also discussed various comparative studies of identified protein targets with their homologous proteins, especially human homologous proteins, which were never studied before and therefore draws several key structural features and differences that could be further exploited in designing and selective targeting against these identified proteins, as provided in case of Oxocyl acyl-carrier-protein reductase, Kelch motif associated protein. Armadillo repeats only protein and Methionine aminopeptidase 1b. We also found that the screening based on inverse docking, using three different docking methods, quite helpful in filtering the pseudo-positive results which are usually generated from one docking method. This kind of methodology could be useful in, the exploration and target identification for polypharmacological active compounds or validating the side targets of a particular drug.

Conflicts of interest

The authors declare no conflict of interest.

Appendix A. Supplementary material

Supplementary data associated with this article can be found in the online version, at https://doi.org/10.1016/j.jsps.2018.01.017.

References

Ballut, L., Violot, S., Shivakumaraswamy, S., Thota, I.P., Sathya, M., Kunala, J., et al., 2015. Active site coupling in Plasmodium falciparum GMP synthetase is triggered by domain rotation. Nature Commun. 6, 8930.

Bello, P., Paolino, P., Lecuiller, L., Colizi, F., Kostreva, D., Bisi, A., et al., 2013. Design, synthesis, and biological and crystallographic evaluation of novel inhibitors of Plasmodium falciparum Enoyl-ACP-reductase (PF Fab). J. Med. Chem. 56, 7516–7526.

Bhatt, S., Weiss, D., Cameron, E., Bisanjo, D., Mappin, B., Dalrymple, U., et al., 2015. The effect of malaria control on Plasmodium falciparum in Africa between 2000 and 2015. Nature 526, 207–211.

Bhatt, T.K., Khan, S., Divvedi, V.P., Banday, M.M., Sharma, A., Chandele, A., et al., 2011. Malaria parasite tyrosyl-tRNA synthetase secretion triggers pro-inflammatory responses. Nat. Commun. 2, 1–11.

Bork, P., Sander, C., Valencia, A., 1992. An AT/PS domain common to prokaryotic cell cycle proteins, sugar kinases, actin, and HSP70 heat shock proteins. Proc. Natl. Acad. Sci. 89, 7290–7294.

Brown, C., Zhang, K., Emery, J., Prusty, D., Wetzel, J., Heincke, D., et al., 2016. ARO (armadillo repeats only protein) from Plasmodium falciparum. Protein Data Bank.
Oshimi, S., Tomizawa, Y., Hirasawa, Y., Honda, T., Ekasari, W., Widyawaruyanti, A., Deguchi, J., Hirasawa, Y., Ekasari, W., Widyawaruyanti, A., Wahyuni, T.S., Oliveira, A.B., Dolabela, M.F., Braga, F.C., Jácome, R.L., Varotti, F.P., Póvoa, M.M., 2009. Recent advancements in small molecule inhibitors of insulin–like growth factor-1 receptor with pyridoxal binding domain characterized in leishmania major by comparative sequence analysis and homology modelling. ISRN Computational Biology 2013.

Negi, A., Blushan, S., Gupta, P., Garg, P., Kumar, R., 2013a. Cystathionine β-lyase-like protein with pyridoxal binding domain characterized in leishmania major by comparative sequence analysis and homology modelling. ISRN Computational Biology 2013.

Negi, A., Ramario, P., Kumar, R., 2013b. Recent advancements in small molecule inhibitors of insulin–like growth factor-1 receptor (IGF-1R) tyrosine kinase as anticancer agents. Mini Rev. Med. Chem. 13, 653–681.

Oliveira, A.B., Dolabela, M.F., Braga, F.C., Jácome, R.L., Varotti, F.P., Póvoa, M.M., 2009. Plant-derived antimalarial agents: new leads and efficient phythomedicines. Mini Rev. Med. Chem. 13, 653–681.

Piefer, M., Berg, S., Reynolds, A.B., 1994. A repeating amino acid motif shared by proteins with diverse cellular roles. Cell 76, 789–791.

Price, A.C., Zhang, Y.-M., Rock, C.O., White, S.W., 2004. Colafactor-induced conformational rearrangements establish a catalytically competent active site and a proton relay conduit in FabG. Structure 12, 417–428.

Saito, T., Ichimura, Y., Taguchi, K., Suzuki, T., Mizushima, T., Takagi, K., et al., 2016. p62/Stiprm1 promotes malignancy of HCV-positive hepatic carcinoma through Nrf2-dependent metabolic reprogramming. Nature Commun. 7, 1–16.

Schuck, P., Polley, S.D., Fivelman, Q.L., Ranford-Cartwright, L.C., Wilkinson, S.R., Brannigan, J.A., et al., 2009. Structure and non-essential function of glycerol kinase in Plasmodium falciparum blood stages. Mol. Microbiol. 71, 533–545.

Schumacher, R.-F., Spinelli, E., 2012. Malaria in children. Mediterranea J. Hematol. Infect. Diseases 4, 1–12.

Singla, R., Negi, A., Singh, V., 2014. Indole based alkaloid in cancer: an overview. Pharma. Tutor. Mag. 2, 76–82.

Singla, R., Singh, V., Negi, A., 2013. Synthetic indole alkaloids in cancer: an overview. Adv. J. Pharm. Life Sci. Res. 1, 7–15.

Sinnokrot, M.O., Sherrill, C.D., 2004. Substituent effects in π–π interactions: sandwich and T-shaped configurations. J. Am. Chem. Soc. 126, 7690–7697.

Storici, P., Capitani, G., Müller, R., Schirmer, T., Jansonius, J.N., 1999. Crystal structure of human ornithine aminotransferase complexed with the highly specific and potent inhibitor 5-fluoromethylornithine 1. J. Mol. Biol. 285, 297–314.

Thongsaaard, W., Chainakul, S., Bennett, G., Marsden, C., 2001. Determination of barakol extracted from Cassia sissa by HPLC with electrochemical detection. J. Pharm. Biomed. Anal. 25, 853–859.

Umeda, T., Tanaka, N., Kukaseb, Y., Nakamichi, M., Kitade, Y., Nakamura, K.T., 2011. Molecular basis of fomosidomycin’s action on the human malaria parasite Plasmodium falciparum. Scientific Reports 1, 1–8.

VLife, M., 2010. 3.5 (2008) Molecular Design Suite. Vlife Sciences Technologies Pvt. Ltd., Pune.

Wells, T.N., Van Huijsduijnen, R.H., Van Voorhis, W.C., 2015. Malaria medicines: a glass half full? Nat. Rev. Drug Discovery 14, 424–442.

Wernimont, A.K., Dong, A., Hills, T., Amani, M., Perieteanu, A., Lin, Y.H., Loppnau, P., Arrowsmith, C.H., Edwards, A.M., Bountra, C., Weigelt, J., Hui, R., 2011. Crystal Structure of FF01_0123, a GAPM Syntehase from Plasmodium falciparum. PLoS Negl. Trop. Dis. 5, e1041.

Wernimont, A.K., Dong, A., Hills, T., Amani, M., Perieteanu, A., Lin, Y.H., Loppnau, P., Arrowsmith, C.H., Edwards, A.M., Bountra, C., Weigelt, J., Hui, R., 2011. Crystal Structure of FF01_0123, a GMP Syntehase from Plasmodium falciparum. PLoS Negl. Trop. Dis. 5, e1041.

World Health Organization, 2015. WHO/UNICEF report: Malaria MDG target achieved amid sharp drop in cases and mortality, but 3 billion people remain at risk. Saudi Med. J. 36, 1377–1378.

World Health Organization, 2016. World malaria report 2015, World Health Organization.