The AAA+ ATPase p97, a cellular multi-tool

Lasse Stach, Paul S. Freemont*
Section of Structural Biology, Department of Medicine, Imperial College London
*p.freemont@imperial.ac.uk

Abstract

The AAA+ ATPase p97 is essential to a wide range of cellular functions, including ERAD, membrane-fusion, NFκB activation and chromatin associated processes, which are regulated by ubiquitination. p97 acts downstream of ubiquitin signaling events and utilises the energy from ATP hydrolysis to extract its substrate proteins from cellular structures or multi-protein complexes. A multitude of p97 co-factors have evolved which are essential to p97 function. Ubiquitin-interacting domains and p97-binding domains combine to form bifunctional co-factors, whose complexes with p97 enable the enzyme to interact with a wide range of ubiquitinated substrates. A set of mutations in p97 has been shown to cause the multi-system proteinopathy Inclusion Body Myopathy associated with Paget’s disease of bone and Frontotemporal Dementia (IBMPFD). In addition, p97 inhibition has been identified as a promising approach to provoke proteotoxic stress in tumours. In this review, we will describe the cellular processes governed by p97, how the co-factors interact with both p97 and its ubiquitinated substrates, p97 enzymology and the current status in developing p97 inhibitors for cancer therapy.
Introduction

The human AAA+ (ATPases Associated with diverse cellular Activities) ATPase p97, also known as valosin containing protein VCP and homologues Cdc48 (cell division cycle protein 48) in *Saccharomyces cerevisiae*, Ter94 (Transitional endoplasmic reticulum ATPase) in *Drosophila melanogaster* and VAT (VCP-like ATPase) in *Thermoplasma acidophilum* are highly conserved across all domains of life(Erzberger and Berger 2006). It contains an amino-terminal N-domain, two AAA ATPase domains and a C-terminal unstructured extension. Six p97 protomers form a homohexamer with two planar ATPase rings stacked on top of each other(DeLaBarre and Brunger 2003, Huyton, Pye et al. 2003) (Figure 1A). The enzyme performs many important cellular functions, highlighted by its conservation across diverse species and its abundance(Barthelme and Sauer 2016). In *Xenopus leavis*, the protein makes up approximately 1% of cytosolic protein(Peters, Walsh et al. 1990, Peters, Harris et al. 1992).

The cellular processes in which p97 is implicated include protein degradation via the ubiquitin proteasome system, DNA repair, DNA replication, cell cycle regulation, NF-κB activation (nuclear factor kappa-light-chain-enhancer of activated B cells), endoplasmic reticulum associated degradation (ERAD), mitochondria associated degradation, Golgi formation and autophagy, reviewed in(Meyer and Weihl 2014). In all of these processes ubiquitination of p97 substrates is a common theme. The enzyme converts the energy of ATP hydrolysis to mechanical energy to extract ubiquitinated proteins from lipid membranes or macromolecular complexes. While p97 itself has a weak affinity for ubiquitin, it interacts with its targets primarily via co-factors. It is the variety of these co-factors that allow a single machine such as an ATPase to play a role in the diverse processes mentioned above, reviewed in(Kloppsteck, Ewens et al. 2012, Hanzelmann and Schindelin 2017). The large proportion of p97 co-factors identified so far are part of the ubiquitin system, either ubiquitin-ligases or DUBs (Deubiquitinases) or ubiquitin-binding proteins that function as adapters(Meyer and Weihl 2014). Mutations in p97 have been associated with familial amyotrophic lateral sclerosis, and IBMPFD a multi-system disease that is associated with abnormally active p97 on a molecular level leading to
neurodegenerative defects and muscular weakness at the physiological level (Watts, Wymer et al. 2004, Manno, Noguchi et al. 2010). This review will provide an overview of the cellular processes p97 is involved in, what role its cofactors play in such processes, the molecular mechanism and regulation of the enzyme, as well as efforts to target p97 in cancer chemotherapy. Where possible, connections will be made between these different aspects to provide a more integrated picture.
1. Cellular processes associated with p97

The p97 AAA ATPase has been found to be involved in a large variety of cellular processes. In this section, we will describe some of the main pathways and cellular functions that p97 has been directly implicated in.

Endoplasmic reticulum associated degradation (ERAD)

The ERAD pathway serves as a quality control system for nascent proteins entering the secretory pathway, a pathway in which the Ubiquitin Proteasome System (UPS) and p97 play central roles (Preston and Brodsky 2017) (Figure 1B). Nascent peptide chains that fail to fold properly in the ER require retrotranslocation into the cytosol where they are degraded by the proteasome. It is in the energetically unfavourable retrotranslocation event in which p97 plays its role in ERAD (Ye, Shibata et al. 2005, Stein, Ruggiano et al. 2014).

Ubiquitin binding, ATP hydrolysis and p97-cofactor binding all play a role in retrotranslocation. The heterodimeric UFD1-NPL4 (Ubiquitin Fusion Degradation protein 1) (Nuclear Protein Localization protein 4 homolog) complex possess both ubiquitin binding domains and p97 interacting motifs (Hetzer, Meyer et al. 2001, Meyer, Wang et al. 2002, Hanzelmann and Schindelin 2016). It recruits p97 to ubiquitinated substrates at the ER membrane (Ye, Meyer et al. 2003). Another ERAD associated p97 co-factor is Ubx2 (Neuber, Jarosch et al. 2005). The protein also recruits p97 to the ER membrane, specifically it facilities the interaction between p97 and Hrd1 (Hmg2 regulated degradation), a membrane anchored ubiquitin ligase which ubiquitinates ERAD substrates and also contains a p97 interacting VBM (VCP Binding Motif) motif (Bays, Gardner et al. 2001, Kikkert, Doolman et al. 2004, Gauss, Sommer et al. 2006, Morreale, Conforti et al. 2009).

The ubiquitin E3 ligase gp78 (also known as RING-type E3 ubiquitin transferase Autocrine motility factor receptor) and the DUBs ATAXIN-3 (Spinocerebellar ataxia type 3 protein) and YOD1 (also known as ubiquitin thioesterase OTU1 in yeast) are examples of p97 ubiquitin catalytic co-factors. The E3 ligase interacts with p97 through its VIM (VCP Interacting Motif) domain, and has been shown to act downstream of Hrd1 in the degradation of ERAD substrates (Fang, Ferrone et
al. 2001, Ballar, Shen et al. 2006, Zhang, Xu et al. 2015). The role of the DUB ATAXIN-3 is less well defined. This protein contains a poly-glutamine (poly-Q) domain, which causes its aggregation in genetic variants where this sequence is extended(Koch, Breuer et al. 2011). Similar to gp78, ATAXIN-3 also interacts with p97 through the arginine/lysine-rich VBM motif (Doss-Pepe, Stenroos et al. 2003, Boeddrich, Gaumer et al. 2006). Functionally, the ubiquitin chain trimming activity of this enzyme has been suggested to either slow down substrate processing(Zhong and Pittman 2006), or facilitate the transport of substrates from p97 to the proteasome(Wang, Li et al. 2006). The DUB YOD1, which binds to p97 via its UBX (Ubiquitin regulatory X) domain, is also associated with ERAD(Ernst, Mueller et al. 2009). Its role in ERAD was proposed to be the trimming of polyubiquitin chains to optimize p97 recruitment, or the removal of ubiquitin to allow the substrate to be threaded through the p97 pore for unfolding(Liu 2013).

The complexes at the ER membrane formed by p97 interact primarily with K11 and K48 linked ubiquitin chains. Upon disruption of p97 function or over-expression of a catalytically dead mutant of YOD1, the model ERAD substrate CD3δ (T-cell surface glycoprotein CD3 delta chain), decorated with these types of polyubiquitin, accumulates in the cell (Locke, Toth et al. 2014).

Chromatin related functions of p97

The functions of p97 are not limited to extraction of substrates from lipid bilayers such as in ERAD, as p97 has also been shown to be essential in the extraction of proteins from chromatin (reviewed in (Franz, Ackermann et al. 2016)). Chromatin related processes where p97 is essential, include the disassembly of protein complexes at sites of DNA damage and the unloading of stalled replication helicases. The regulation of DNA double-strand break repair is regulated by extensive post-translational modification events, particularly protein phosphorylation and ubiquitination, which facilitate the assembly of large multi-protein complexes essential to DNA repair(Polo and Jackson 2011, Schwertman, Bekker-Jensen et al. 2016). Proteins that interact with both types of modification, such as the ubiquitin E3 ligase RNF8 (RING finger protein 8), which contains a pThr-binding FHA (Forkhead-associated) domain, facilitate cross talk
between these modifications (Huen, Grant et al. 2007). Ubiquitination plays a role in complex assembly as well as disassembly, a process where p97 is required (Franz, Ackermann et al. 2016). The removal of proteins from chromatin by p97 is not limited to the final disassembly of complexes, but also includes the removal of K48-ubiquitinated proteins from complexes to facilitate the binding of downstream factors. Recently discovered examples of protein extraction from chromatin by p97 will be introduced in the following section.

The Ku70/Ku80 (70/80 kDa subunit of Ku antigen) complex, which binds the open ends of DNA double strand breaks in a first step towards break repair via non-homologous end joining, is a recently discovered p97 substrate (Taccioli, Gottlieb et al. 1994, van den Boom, Wolf et al. 2016) (Figure 1B). The Ku70/Ku80 complex forms a ring-like structure with a central cavity for DNA (Walker, Corpina et al. 2001). Following joining of the DNA ends, the protein is trapped around the double helix like a hose clamp and forms a barrier to further processing of the break. Thus, the protein complex is decorated with K48-ubiquitin chains by RNF8, triggering the recruitment of p97 to the site and subsequent removal of Ku70/Ku80 from DNA (van den Boom, Wolf et al. 2016). There is some redundancy as to which co-factors play a role in this process. Both FAF1 (FAS-associated factor 1) and UFD1-NPL4 have been shown to be sufficient for this process, with UFD1-NPL4 being the more efficient (van den Boom, Wolf et al. 2016).

In another study, it was shown that the presence of p97, recruited to DNA double-strand breaks by RNF8-generated K48 chains, is a prerequisite for efficient recruitment of downstream DNA damage response proteins BRCA1, 53BP1 and Rad51 (Meerang, Ritz et al. 2011). This process is dependent on the NPL4 co-factor (Meerang, Ritz et al. 2011). Disruption of p97 by the inhibitor NMS873, or RNA interference of p97, NPL4 was shown in both studies mentioned above to cause foci of DNA damage to persist, indicating that p97 in concert with UFD1-NPL4 is essential for efficient DNA damage repair (Meerang, Ritz et al. 2011, van den Boom, Wolf et al. 2016)

Analogous to the extraction of Ku from DNA, p97 is also required for the removal of CMG replicative helicases (comprised of Cdc45, MCM2-7, and GINS), those stalled by inter-strand cross links as well as under physiological conditions.
(Maric, Maculins et al. 2014, Moreno, Bailey et al. 2014). The stalled replication fork is resolved via a ubiquitin dependent process where p97 is essential (Fullbright, Rycenga et al. 2016). Again, removal of a protein complex by p97 from chromatin is prerequisite for access to the DNA lesion and appropriate repair (Fullbright, Rycenga et al. 2016). As a response to a stalled fork, the MCM7 subunit of the helicase is decorated with K48 linked ubiquitin chains, which recruits p97 to extract the helicase. The E3 ubiquitin ligase CRL2Lrr1 generates K48 ubiquitinilated MCM7, which promotes p97 binding via its UFD1-NPL4 co-factor (Dewar, Low et al. 2017).

In C. elegans, an RNAi screen of UBX containing proteins identified essential p97 co-factors (Franz, Pirson et al. 2016). Both UFD1 and NPL4 are essential for development. In addition, the silencing of FAF1 homologue UBXN3 (UBX containing protein 3) compromises C. elegans survival rates, particularly in p97 depleted cells and those treated with the DNA damaging agent hydroxyurea (Franz, Pirson et al. 2016). More specifically, UBXN3 binds CDT-1, a DNA-replication licensing factor. While CDT-1 is required for replication initiation, it needs to be extracted from chromatin for replication completion. In the absence of p97, or the FAF1 or UFD1-NPL4 co-factors, CDT-1 remains bound to chromatin and severe replication defects are observed (Franz, Orth et al. 2011, Franz, Pirson et al. 2016).

In addition to the examples mentioned above, p97 has also been shown to be central to numerous chromatin related processes beyond the scope of this review, such as extraction of SUMOylated proteins from chromatin and Cockayne syndrome protein extraction to resolve stalled RNA polymerase (Nie, Aslanian et al. 2012, Bergink, Ammon et al. 2013), all comprehensively reviewed by (Franz, Ackermann et al. 2016). From the studies introduced above, it is apparent that p97 plays a role in the extraction of DNA-binding proteins from different types of DNA damage. The active removal of proteins from chromatin to facilitate access to sites of DNA damage for downstream repair factors, or to allow helicase and polymerase activity to proceed, is a central function of p97. The ATPase is therefore an essential factor in genome stability, reviewed by (Vaz, Halder et al. 2013)
NF-κB activation

The transcription factor NF-κB controls the expression of cytokines, immunoreceptors and other components in the immune system (Pahl 1999) (Figure 1B). Stimulation of toll-like receptors or interleukin 1-receptors on the cell surface trigger a cell signaling event utilizing both protein phosphorylation and K63-linked ubiquitination, which leads to the release of NF-κB from the cytosol into the nucleus, where it can affect transcription (Chen 2012).

In its basal state, the NF-κB heterodimer, consisting of proteins p50, p65 and is kept in an inactive state via association with the inhibitory protein IκBα (NF-κB Inhibitor alpha) or related proteins (Henkel, Machleidt et al. 1993). For the transcription factor to be active, IκBα needs to be degraded, a process which is dependent on p97 (Dai, Chen et al. 1998). As part of the signaling cascade, both p65 and IκBα become phosphorylated. Subsequent to phosphorylation which is regulated by an unknown mechanism, the Cullin-RING ubiquitin ligase (CRL) CRL1β-TrCP ubiquitinates IκBα and thus recruits p97 (Schweitzer, Pralow et al. 2016). It has been shown that both a functional E3 ubiquitin ligase and active p97 are required for efficient degradation of IκBα and subsequently activation of NF-κB, indicating that p97 is essential for the degradation of ubiquitinated IκBα (Schweitzer, Pralow et al. 2016). There is so far no evidence as to which p97 co-factors, if any, are essential in this pathway. However, the co-factors p47 and FAF1 have inhibitory effects on NF-κB activation (Kinoshita, Kondoh et al. 2006, Shibata, Oyama et al. 2012).

Membrane fusion

The ATPase p97 also plays a role in membrane fusion of most parts of the endomembrane system (Figure 1B). It has functions in the biogenesis of the ER, the Golgi, nuclear membrane assembly and in the fusion of lysosomes. The first cellular functions assigned to p97 were the membrane fusion events essential to Golgi and ER formation (Latterich, Frohlich et al. 1995, Rabouille, Levine et al. 1995). The co-factor required for formation of the Golgi, which undergoes disassembly and re-assembly during the cell cyle, was subsequently identified to
be p47(Kondo, Rabouille et al. 1997). This co-factor contains an N-terminal UBA (ubiquitin-associated) domain, which allows it to bind ubiquitin as well as a C-terminal UBX domain, which allows it to bind p97(Meyer, Wang et al. 2002). Ubiquitination drives Golgi membrane dynamics(Meyer 2005). The enzymes driving these ubiquitination events are the E3 ubiquitin ligase HACE1 (HECT domain and ankyrin repeat-containing E3 ubiquitin-protein ligase 1) and the DUB VCIP135 (VCP interacting protein 135kDa), which act on the t-SNARE (Soluble NSF Attachment Protein Receptor) Syn5 (Syntaxin5) (Tang, Xiang et al. 2011, Zhang and Wang 2015, Huang, Tang et al. 2016). During early mitosis HACE1 ubiquitinates Syn5, which prevents interaction of Syn5 with its corresponding v-SNARE Bet1(Huang, Tang et al. 2016). A multi-protein complex containing p97 and p47 binds the ubiquitinated SNARE via the UBA domain of p47. In late mitosis, the DUB VCIP135, which associates with p97 via its UBX-L (UBX-like) domain, deubiquitinates Syn5, which permits interaction between the SNAREs, membrane fusion and finally formation of Golgi cisternae(Huang, Tang et al. 2016).

VCIP135 activity is regulated by protein phosphorylation(Totsukawa, Matsuo et al. 2013, Zhang, Zhang et al. 2014). Phosphomimetic mutants at known VCIP135 phosphorylation sites prevent association of VCIP135 with p97(Zhang, Zhang et al. 2014). More significantly, VCIP135 phosphorylated at Ser130 displays severely reduced DUB activity(Zhang and Wang 2015). During early mitosis, phosphorylated VCIP135 is inactive and may not be able to bind p97. During late mitosis, VCIP135 becomes dephosphorylated and associates with the p97-p47-Syn5 complex. The active DUB then deubiquitinates Syn5, releasing the SNARE allowing membrane fusion.

This model for membrane fusion differs from the p97 functions described above, as p97 only functions as a scaffold, the role of its ATPase activity has not been fully investigated. There is some circumstantial evidence to support this theory that p47 inhibits p97 ATPase activity by up to 5-fold(Meyer, Kondo et al. 1998, Zhang, Gui et al. 2015). However, it has also been shown that ATP is required for the p97-p47-VCIP135 complex to dissociate from Syn5(Uchiyama, Jokitalo et al. 2002).
The p97 co-factor p37, closely related to p47, has also been shown to play a role in Golgi formation. This co-factor contains the C-terminal UBX domain, but has no ubiquitin binding UBA domain(Kloppsteck, Ewens et al. 2012). The co-factor is also required for Golgi formation, but a siRNA knock down of p37 does not affect ERAD(Uchiyama, Totsukawa et al. 2006). The precise role of p37 in membrane fusion is not as well established as that of p47, but it has been shown that the process requires the tethering protein p115 and its binding partner GM130(Uchiyama, Totsukawa et al. 2006).

p97 not only has a role in Golgi formation, but is also involved in the assembly of other parts of the endomembrane system. p97 plays a role in the assembly of the nuclear envelope and the ER membrane. The p97 co-factor UFD1 binds CHMP2A, (Charged multivesicular body protein 2a) a protein that is part of the membrane abscission ESCRT-3 (endosomal sorting complexes required for transport 3) complex. A knockdown of UFD1 prevents correct localization of CHMP2A to the nuclear envelope, suggesting p97 plays a role in nuclear envelope formation(Olmos, Hodgson et al. 2015). Analogous to Golgi formation, p97 and its co-factors p47 and VCIP135 are essential to ER formation following mitosis. (Uchiyama, Jokitalo et al. 2002).

The p97 co-factors p37, p47, and the DUB VCIP135 play essential roles in membrane fusion. Here, p97 appears to act as a scaffold primarily. While p97 ATPase activity may well have a role in membrane fusion, it has not been described. Unlike the roles described earlier, where the mechanical energy generated from ATP hydrolysis was used for the extraction of proteins from chromatin, lipid bilayers and protein complexes. Conversely, the ATPase NSF (N-ethylmaleimide-Sensitive Fusion protein), which is closely related to p97, has been shown to play a central role in membrane fusion. Its ATPase activity is used to disassemble SNAP (Soluble NSF Attachment Protein) -SNARE complexes(Zhao, Wu et al. 2015). It remains to be determined which role p97 ATPase activity has in membrane fusion. Interestingly, it has been shown that p47 inhibits p97, while p37 activates p97(Zhang, Gui et al. 2015).

Additional roles of p97
There are several additional functions of p97 which do not fall into any of the above categories. In addition to ERAD, p97 also plays a role in the degradation of proteins from the mitochondrial outer membrane. Silencing of the cdc48 gene leads to a slowdown of protein turnover in the mitochondrial membrane and accumulation of ubiquitinated proteins(Wu, Li et al. 2016). Analogous to ERAD, the Cdc48-UFD1-NPL4 complex plays a role in mitochondrial degradation(Wu, Li et al. 2016). The co-factor Doa1 (Degradation of alpha 1), a homologue of human PLAA (Phospholipase A-2-activating protein), is essential in cells under mitochondrial oxidative stress, but not under ER stress(Wu, Li et al. 2016). This suggests Doa1 is a co-factor specific to mitochondria associated degradation.

In another degradation-associated function, p97 is essential for the degradation of aberrant, nascent proteins from ribosomes. mRNAs lacking stop codons lead to stalled ribosomes as the translated poly-A tail produces poly-Lys, which interact with the ribosomes. The E3 ubiquitin ligase Ltn1 (listerin 1) has been identified to ubiquitinate the nascent peptide on stalled ribosome(Bengtson and Joazeiro 2010, Defenouillere, Zhang et al. 2016). A complex containing p97, UFD1 and NPL4 extracts the peptide from the ribosomes for proteasomal degradation(Verma, Oania et al. 2013).

Just like with many other cellular processes, viral proteins have evolved to take advantage of and hijack p97 function. The influenza A matrix protein M2 undergoes retrotranslocation from the ER lumen to the cytosol(Bhowmick, Chakravarty et al. 2017). This transport mechanism of M2, which does not rely on M2 ubiquitination, is reliant on the ATPase activity of p97(Bhowmick, Chakravarty et al. 2017). Hepatitis E virus protein ORF2 is another viral protein that relies on p97 to be transported from the ER into the cytosol(Surjit, Jameel et al. 2007). In both cases, the protein is not readily degraded by the proteasome and remains in the cytosol for several hours.

The protein p97 also has a function in lysosomal trafficking, illustrated by the example of Cav-1 (caveolin-1), a protein which introduces invaginations in the plasma membrane called caveolae(Tiwari, Copeland et al. 2016). Overexpression of GFP tagged Cav-1 causes its aggregation in aggresomes in the perinuclear region, which are cleared by a combination of lysosomal and proteasomal degradation. Inhibition of p97, which is found in large amounts in the
aggresomes, prevents these structures from being cleared (Tiwari, Copeland et al. 2016). The lysosomal degradation pathway is also required for the clearance of endogenous Cav-1, which localizes correctly to caveloae (Burana, Yoshihara et al. 2016). This lysosomal pathway is dependent on p97 and a class of co-factors called Ankrd13 proteins, most of which contain ubiquitin interacting motifs (Burana, Yoshihara et al. 2016). The Ankrd13 (Ankyrin repeat domain-containing protein 13) UIMs (Uiquitin-Interacting Motifs) have been shown to bind preferentially to K63-linked ubiquitin chains (Burana, Yoshihara et al. 2016).
2. p97 and its co-factors

Modular architecture of p97 co-factors

The ATPase p97 is central to a diverse array of cellular processes despite only exhibiting one enzymatic function, the generation of mechanical energy from ATP hydrolysis. The p97 co-factors and their different domain architectures and cellular localizations permit p97 to fulfill different roles depending on the context (Figure 2).

Furthermore, different p97 co-factors have specificity for different ubiquitin linkages. In poly-ubiquitin, the carboxyl-terminus of a distal ubiquitin is ligated to an amine on the proximal ubiquitin. Ubiquitin contains eight primary amines, seven lysine side chains plus its N-terminus, all of which can be used to form polyubiquitin. Depending on which amine is used, different ubiquitin chains are produced with discrete physical properties and cellular functions, reviewed in (Akutsu, Dikic et al. 2016).

The best characterized polyubiquitin types include K48, K63 and M1 linked chains. Polyubiquitin linked via K48, the first linkage identified, is a powerful degradation signal (Chau, Tobias et al. 1989). Conversely, K63-linked chains do not constitute a degradation signal, but have a role in signal transduction (Hoege, Pfander et al. 2002). Linear polyubiquitin, where a regular peptide bond is formed to link 2 ubiquitin molecules together, plays a role in NFkB activation and apoptosis (Kirisako, Kamei et al. 2006). In addition, mixed chains can be formed which may be branched, and ubiquitin itself can be the target of post-translational modifications such as phosphorylation and acetylation (Ben-Saadon, Zaaroor et al. 2006, Koyano, Okatsu et al. 2014, Meyer and Rape 2014, Ohtake, Saeki et al. 2015), reviewed in (Ohtake and Tsuchiya 2017).

The co-factors can be divided into 2 groups depending on what part of p97 they interact with. The larger group of co-factors binds the p97 N-domain, via UBX (ubiquitin-related X), UBX-L (UBX-like), VIM (VCP Interacting Motif), VBM (VCP Binding Motif) or SHP (binding segment 1) motif, reviewed in(Kloppsteck, Ewens et al. 2012, Hanzelmann and Schindelin 2017). A smaller group binds the very C-
terminus of p97, via PUB (PNGase/UBA or UBX containing proteins) and PUL (PLAA, Ufd3p, and Lub1p) domains. As the list of proteins containing p97 recognizing motifs is rather extensive this review will focus on co-factors also containing ubiquitin-interacting domains.

UBA-UBX proteins

Of the approximately 30 UBX containing proteins encoded in the human genome, five display a common architecture of an N-terminal UBA domain, which binds ubiquitin, and a C-terminal UBX domain (Meyer and Weihl 2014). The proteins UBXD7, UBXD8, Faf1, SAKS1 (SAPK substrate protein 1) and p47 show this domain arrangement. Using immunoprecipitation experiments with all five proteins, the UBX-UBA proteins were shown to be somewhat promiscuous, binding to K11, K33, K48 and K63 linked ubiquitin chains to varying degrees, with K11 and K48 chains the most prevalent (Arumughan, Roske et al. 2016). The co-factor p47, essential for membrane fusion in Golgi biogenesis, binds p97 via a canonical UBX-N-domain interaction (Dreveny, Kondo et al. 2004, Huang, Tang et al. 2016). In addition to the UBX domain, p47 also contains an SHP motif. The SHP motif is a more recently discovered p97 interacting sequence, which provides an additional interacting surface for p97 co-factor interactions(Hanzelmann and Schindelin 2016). The UBA domain of p47 has been shown using pull down experiments to preferentially bind K63 and M1 ubiquitin chains over K48 chains (Shibata, Oyama et al. 2012).

The adaptor SAKS1 plays a role in ERAD, where it has an inhibitory effect on the clearance of some ERAD substrates, for example α-TCR (T-cell receptor alpha) and NHK-HA (Null Hong Kong variant 1-antitrypsin) (LaLonde and Bretscher 2011, Park, Yoo et al. 2017). The protein recognizes both K48 ubiquitin chains and atypical K6 linked ubiquitin, which can be found on auto-ubiquitinated BRCA1 (Breast cancer type 1 susceptibility protein) (Wu-Baer, Ludwig et al. 2010, LaLonde and Bretscher 2011).

The UBXD7 co-factor has been implicated in the degradation of cockayne syndrome group protein B, a protein essential in nucleotide excision repair (He,
Zhu et al. 2016). It also has a role in the turnover of HIF1α (hypoxia-inducible factor 1α) (Alexandru, Graumann et al. 2008). UBXD7 is required for the interaction of p97 with its substrate HIF1α. In addition, it also interacts with cullin-2, the cognate ubiquitin E3 ligase of HIF1α.

The function of UBXD8 is in the regulation of intra-cellular fatty acid storage (Lee, Kim et al. 2010). The protein can be found both in the ER membrane and in cytosolic lipid droplets, where it has a role in the regulation of ATGL turnover (Adipose triglyceride lipase), an enzyme central to triglyceride hydrolysis (Olzmann, Richter et al. 2013). The roles of ubiquitin, as well as the molecular role of p97 in this pathway are still to be determined. UBXD7 and UBXD8 have both been immunoprecipitated with K11, K48 and K63 ubiquitin peptides, but the lack of biochemical data makes it difficult to make firm predictions about the ubiquitin-specificity of their UBA domains (Alexandru, Graumann et al. 2008).

The adaptor Faf1, and its interactions with p97 and ubiquitin, has been characterized more comprehensively. A crystal structure of the UBX-N-domain complex shows a canonical interaction (Hanzelmann, Buchberger et al. 2011). The protein specifically binds K48 linked di-ubiquitin with low micromolar affinity (Song, Park et al. 2009). Pull down experiments confirm the interaction of FAF1 with K48 ubiquitin, and suggest that FAF1 may also bind K63 chains (Song, Yim et al. 2005). The coiled-coil region of FAF1 is required for its trimer formation, which may not readily form in solution, but is thought to be formed in complex with p97 (Ewens, Panico et al. 2014). FAF1 also plays a role in ERAD and chromatin associated degradation (Lee, Park et al. 2013, Franz, Pirson et al. 2016, van den Boom, Wolf et al. 2016). A p97-FAF1 complex is also essential in the degradation of TGFβ (Transforming growth factor beta). Disruption of the FAF1-p97 interaction due to FAF1 phosphorylation by AKT is thought to drive cancer metastasis (Xie, Jin et al. 2017).

UBX-like domain containing co-factors

The UFD1-NPL4 complex is an example of a UBX-L (UBX-like) domain containing co-factor. The protein Npl4 contains a UBX-L domain, which binds to the same groove on the p97 N-domain as the UBX domain, but possesses a slightly
different fold and employs a distinct binding mode (Isaacson, Pye et al. 2007). In addition to the UBX-L of NPL4, UFD1 contains a SHP motif that further stabilizes the interaction with p97 (Hanzelmann and Schindelin 2016). The UFD1-NPL4 heterodimer has been implicated in a multitude of p97-associated processes, primarily ERAD, but also chromatin associated degradation and ribosome associated degradation (Ye, Meyer et al. 2003, Verma, Oania et al. 2013, van den Boom, Wolf et al. 2016). Both UFD1 and NPL4 possess ubiquitin-interacting motifs - the Npl4 zinc finger and the UFD1 UT3 domain both contribute to ubiquitin binding. The heterodimer binds to K48 linked ubiquitin chains, but discriminates strongly against K63 linked chains (Ye, Meyer et al. 2003).

The DUB VCIP135, central to the regulation of membrane fusion, also binds p97 via a UBX-L domain (Uchiyama, Jokitalo et al. 2002). It is specifically active against K11 and K48 linked polyubiquitin (Mevissen, Hospenthal et al. 2013). In the regulation of membrane fusion however, its substrate is not thought to be polyubiquitin, but the monoubiquitinated t-SNARE Syn5 (Huang, Tang et al. 2016).

Another UBX-L containing DUB, YOD1, has been associated with lysosomal autophagy and ERAD (Ernst, Mueller et al. 2009, Papadopoulos, Kirchner et al. 2017). This DUB is specific against atypical K27, K29 and K33 chains (Mevissen, Hospenthal et al. 2013).

VIM/VBM containing proteins

Unlike the globular UBX and UBX-L folds, the VIM and VBM motifs are small peptide-like interaction motifs consisting of a single α-helix. The ubiquitin E3 ligases gp78 and Hrd1 both possess such a helical motif - a VIM in the case of gp78 and VBM for Hrd1, reviewed in (Hanzelmann and Schindelin 2017). Tethered to the ER membrane via their multiple membrane domains, these enzymes play central roles in ERAD (Bays, Gardner et al. 2001, Fang, Ferrone et al. 2001). In agreement with its role in protein degradation, Hrd1 has E3 ubiquitin ligase activity specific for K48 chains (Kikkert, Doolman et al. 2004). The E3 ligase gp78 acts on ERAD substrates downstream of Hrd1, presumably after retrotranslocation (Zhang, Xu et al. 2015). This enzyme also catalyzes the formation of K48 chains (Ye, Meyer et al. 2003). The role of this ligase is thought
to be the elongation of K48 chains on ERAD substrates. gp78 specifically elongates K48 chains, but does not introduce K48 linked polyubiquitin to other chain types producing mixed chains (Zhang, Xu et al. 2015), with its CUE domain acting as a proof-reader in this mechanism (Zhang, Xu et al. 2015).

The ubiquitin elongation factor Ube4b is another p97-associated ubiquitin ligase. Its conserved *S. cerevisiae* homologue Ufd2 co-localizes with p97 and proteasomes at sites of DNA damage and has been shown to be essential for the timely removal of Rad51 from such sites (Ackermann, Schell et al. 2016). The enzyme also plays a role in ERAD (Sirisaengtaksin, Gireud et al. 2014). Ube4b interacts with p97 via its N-terminal VBM motif (Morreale, Conforti et al. 2009). While there is little information about the substrate specificity of Ube4b, there is extensive information about the close homologue Ufd2. The Ufd2 enzyme has the ability to produce various chain types, but most efficiently produces K48 polyubiquitin (Koegl, Hoppe et al. 1999, Hatakeyama, Yada et al. 2001, Saeki, Tayama et al. 2004, Richly, Rape et al. 2005, Liu, Liu et al. 2017). Interestingly, it strongly interacts with K29 polyubiquitin and adds K48 chains to proximal ubiquitins in such chains to produce branched chains, giving it a ubiquitin editing function when taking into account the numerous p97-interacting DUBs (Liu, Liu et al. 2017).

The DUB Ataxin-3, which contains a C-terminal VBM motif, plays a role in ERAD, but its specific function is less clear (Boeddrich, Gaumer et al. 2006, Wang, Li et al. 2006). Its catalytic activity has been reported to negatively regulate ERAD (Zhong and Pittman 2006), but also be essential for the avoidance of ER stress (Wang, Li et al. 2006). The DUB efficiently cleaves K63 linked chains and discriminates against K48 chains, it is particularly effective against longer chains and mixed chains (Winborn, Travis et al. 2008). Ubiquitination of Ataxin-3 itself activates the enzyme, as does binding to p97 (Todi, Winborn et al. 2009, Laco, Cortes et al. 2012). Aggregation of Ataxin-3, caused by a polyglutamine sequence C-terminal to the VBM motif, is known to cause a wide range of neurodegenerative diseases (Li, Liu et al. 2015).

The protein Rhbdl4 (rhomboid-related protein 4) is a rhomboid protease essential for the ERAD of integral membrane proteins (Fleig, Berghold et al. 2012). The protease is embedded in the ER membrane via its seven
transmembrane helices and has been shown to cleave ERAD substrates which contain trans membrane helices, in a process that is essential for their efficient degradation (Fleig, Berghold et al. 2012). Like other rhomboid proteases, Rhbdl4 is an intra-membrane protease, its active site buried in the lipid bilayer where one of its function is the release of growth factors (Wunderle, Knopf et al. 2016). The protease has been shown to efficiently form a ternary complex with p97 and K48 linked polyubiquitin (Lim, Lee et al. 2016). A VBM motif, whose interaction with p97 has been comprehensively characterized biochemically, is located at its C-terminus, next to a ubiquitin interacting motif (Lim, Lee et al. 2016).

PUB/PUL

A small subset of co-factors binds a conserved peptide at the C-terminal end of p97. There are two identified co-factors, which bind this peptide and are also associated with the ubiquitin system. The protein PLAA (Phospholipase A-2-activating protein) binds p97 via its C-terminal PUL domain and interacts with ubiquitin via its WD40 (WD-repeat) and PFU (PLAA family ubiquitin binding) domains (Mullally, Chernova et al. 2006, Pashkova, Gakhar et al. 2010, Qiu, Pashkova et al. 2010). The PLAA co-factor acts in concert with YOD1, Ubxd1 and p97 in the autophagy of damaged lysosomes (Papadopoulos, Kirchner et al. 2017). PLAA was shown to be required for the clearance of K48 labelled lysosomes, suggesting it is this linkage type which PLAA recognizes. However, YOD1 depletion also caused K48 lysosome accumulation, an enzyme, which has negligible activity against K48 chains *in vitro* (Mevissen, Hospenthal et al. 2013, Papadopoulos, Kirchner et al. 2017).

The protein Rnf31 (RING finger protein 31), called HOIP (HOIL-1-interacting protein) in humans is part of the LUBAC (linear ubiquitin chain assembly complex), the only human UB E3 ligase which catalyzes the formation of linear ubiquitin chains (Kirisako, Kamei et al. 2006, Stieglitz, Rana et al. 2013). These linear ubiquitin chains are associated with various cellular processes, primarily NF-κB activation and cell death (Rittinger and Ikeda 2017). Rnf31 contains a PUB domain, which recognizes the p97 C-terminal peptide (Schaeffer, Akutsu et al. 2014). In addition to p97, the DUB OTULIN also possesses a peptide which interacts with the PUB binding pocket in the same manner (Schaeffer, Akutsu et
al. 2014). The physiological significance of these interactions remains to be determined.

Other significant co-factors

While not bona-fide ubiquitin-binding p97 co-factors, there are two interesting p97 associated proteins worth introducing. The correct endolysosomal trafficking of the protein caveolin-1 relies on p97 (Ritz, Vuk et al. 2011). A ternary complex formed by K63-ubiquitinated Cav-1, p97 and the putative p97 co-factor Ankrd13a (ankyrin repeat domain-containing protein 13a) is required for correct trafficking (Burana, Yoshihara et al. 2016). The Ankrd13a protein contains four ubiquitin interacting motifs which bind K63-linked polyubiquitin (Burana, Yoshihara et al. 2016). The interaction of Ankrd13a to p97 on the other hand is thought to be indirect and a co-factor connecting Ankrd13 and p97 has not yet been identified.

Structural biology studies of full-length p97 have identified the enzyme to form stable hexameric rings (Peters, Walsh et al. 1990, Huyton, Pye et al. 2003). The p97 co-factor Ubxd9, also called ASPL (Alveolar soft part sarcoma locus) or TUG (Tether containing UBX domain for GLUT4), which is located at the ER exit site, has been found to disassemble p97 hexamers, and its overexpression effects an accumulation of ubiquitinated species, consistent with p97 depletion, suggesting Ubxd9 is a p97 antagonist (Orme and Bogan 2012). Mechanistically, an extended UBX domain is essential for disassembly, the canonical UBX-N-domain interaction forms the initial contact, while α-helical lariats target D1 interprotomer interfaces and cause disassembly (Arumughan, Roske et al. 2016).
3. Structural details of co-factor interactions

A wealth of structural information is available describing p97 and p97-cofactor interactions. While the interactions of all the p97-binding domains have been visualized by X-ray crystallography, the ubiquitin-interacting domains of p97 co-factors unfortunately have not. The mechanisms by which the co-factors discriminate against some ubiquitin chain types still remain to be identified. The following chapter will therefore focus on the interactions of the p97 N-domain and its binding partners.

UBX

The UBX-domain, displaying a ubiquitin-like β-grasp fold with a β-β-α-β-β-α-β topology, binds the p97 N-domain via a conserved loop (Figure 3A). Crystal structures of the complex between the p97 N-domain and the Faf1 and Ubxd7 UBX domain, and between p97 ND1 and the p47 UBX domain explain the conserved binding mechanism (Dreveny, Kondo et al. 2004, Hanzelmann, Buchberger et al. 2011, Kim, Kang et al. 2011, Lee, Park et al. 2013, Li, Wang et al. 2017). The binding of the extended UBX domain of Ubxd9 with p97 also includes a canonical UBX-N-domain interaction (Arumughan, Roske et al. 2016). The loop connecting β3 and β4 contains a FPR motif, which fits into the groove and is conserved in all UBX domains. The side chain of the conserved phenylalanine residue fits into a hydrophobic pocket located in the groove. The arginine makes contact with an acidic patch on the C-terminal lobe of the N-domain. The central proline takes the cis-configuration to enable a rare touch turn to be formed at the end of the loop. The resulting cis-peptide has unusual Ψ and Φ angles that enable the Phe and Arg side chains to interact with their respective binding pockets within the N-domain. Using the p47 and Faf1 UBX domains as examples, the affinity of this interaction has been shown to be around 1 μM (Beuron, Dreveny et al. 2006, Ewens, Panico et al. 2014).
UBX-L

The UBX-L domain also folds into a β-grasp, but with β-β-α-β-β-α-α-β, revealed by the solution structure of rat VCIP135 (PDB:2MX2) and the crystal structure of the *S. cerevisiae* homologue of YOD1 called OTU1 in complex with human p97 (Kim, Cho et al. 2014) (Figure 3A). The most significant differences between UBX and UBX-L is the insertion of a third helix, and the conformation of the β3/β4-turn. Instead of the FPR motif, the UBX-L of OTU1 contains a YPP motif. The tyrosine fits into the same hydrophobic pocket as the phenylalanine of the UBX domain. Again, the central proline is in the cis-configuration. The second proline is in the trans-configuration. Together, the cis-proline and its preceding tyrosine residue stabilize the conformation of the touch-turn by π-stacking interactions with each other (Kim, Cho et al. 2014). The Kₒ of the OTU1-p97 interaction was shown by ITC to be 700nM, indicating that UBX-p97 and UBXL-p97 interactions are similar in strength (Kim, Cho et al. 2014). It also confirms that this interaction is highly conserved between humans and yeast. In the VCIP UBX-L domain, the tyrosine is replaced by phenylalanine, suggesting a conserved motif of GΩPP, where Ω stands for an aromatic residue(Aasland, Abrams et al. 2002). The UBX-L domain of Npl4 shows a similar overall fold, but does not contain a touch-turn motif (Isaacson, Pye et al. 2007) (Figure 3A). The β-grasp fold shows a β-β-α-β-β-α-β topology, and instead of the β3/β4-turn, the interaction with p97 is facilitated by the β-sheet and its adjacent loops. While the binding is considerably weaker than the other OTU1-p97 interaction with a Kₒ of 18 μM (Lee, Park et al. 2013), the overall orientations of the two binding partners are comparable to the other UBX-N-domain interactions.

VIM

The VIM motif consists of a single α-helix, rich in arginine residues. The crystal structure of the gp78 VIM domain in complex with p97 has revealed the mode of the interaction (Hanzelmann and Schindelin 2011) (Figure 3A). The helix binds in the groove between the two N-domain lobes, in an interaction that is similar in strength to the UBX interaction. Using the VIM domain of SVIP, as an example the Kₒ of this VIM with p97 was in the low micromolar range, similar to UBX and UBX-L binding (Hanzelmann and Schindelin 2011). The consensus sequence for
VIM is RX5AAERR, where all three conserved arginines contribute to the binding, the most C-terminal arginine residue contributes to the interaction the most. While the two alanine residues and the glutamate are highly conserved, they are not required for binding, replacement of E634 in the gp78 VIM with a leucine in fact increases the affinity for p97 (Hanzelmann and Schindelin 2011).

VBM
The VBM, also a helical motif rich in arginine residues and is related to the VIM motif. A crystal structure of the VBM of RHBDL4 with the p97 N-domain has revealed the interaction of VBM to be highly similar to the VIM-p97 interaction (Lim, Lee et al. 2016) (Figure 3A). The VBM also binds to the groove between the two N-domain lobes, in the same direction as the VIM (Figure 3D). In addition to three conserved arginine residues important for binding, there are also hydrophobic residues that make contact with the same hydrophobic pocket as the conserved phenylalanine of the UBX domain. The consensus motif of the VBM motif is ΨRXXRXXR, where Ψ stands for an aliphatic residue.

SHP
The SHP motif is a short linear motif that interacts with the p97 N-domain, but uniquely and not in the aforementioned groove. The consensus motif of SHP is ΩXGXGXXL, where Ω stands for an aromatic residue (Bruderer, Brasseur et al. 2004, Hanzelmann and Schindelin 2016, Le, Kang et al. 2016, Hanzelmann and Schindelin 2017) (Figure 3A). The crystal structures of both the UFD1 and Derlin-1 SHP motifs in complex with p97 N-domain reveal the interaction to be driven primarily by the two aromatic residues and the conserved leucine, which fit into distinct hydrophobic pockets on the C-terminal lobe of the N-domain. (Greenblatt, Olzmann et al. 2011, Hanzelmann and Schindelin 2016, Le, Kang et al. 2016, Lim, Lee et al. 2016). The second glycine residue and its following phenylalanine make main-chain hydrogen bonds with a β-sheet of the N-domain, forming an additional anti-parallel beta-strand. The binding constant of the SHP-p97 interaction has not been determined, but mutation of essential SHP residues decreases the dissociation constant of the UFD1-NPL4 interaction by a factor of
6- to 17-fold (Hanzelmann and Schindelin 2016). Given that no co-factors have been identified that rely solely on the SHP motif for binding, it is likely that the role of SHP is that of an auxiliary interaction motif only.

From the interactions described, all co-factors bind in the same cleft between the two N-domain lobes. It is likely that in vivo there would be competition for the six N-domain binding sites on each p97 hexamer which could lead to multiple co-factors binding to a single p97 hexamer. While all co-factors described above have been shown to bind to p97 independently, there is evidence that FAF1 and UBXD7 bind preferentially to p97 in complex with UFD1/NPL4 (Hanzelmann, Buchberger et al. 2011). This suggests there may be core-complexes formed by p97, for examples with UFD1/NPL4 or p47, which are prerequisite to the binding of some “secondary” co-factors (Meyer 2012). However it is also possible that temporal and/or spatial differences in the expression and localisation of the various co-factors could dictate which p97 complexes are formed (Kloppsteck, Ewens et al. 2012). In support of this, p97 can form different complexes in vitro with FAF1 and UFD1/NPL4 depending on the concentrations of both co-factors (Ewens, Panico et al. 2014). All of UBX, UBX-L, VIM and VBM bind in the same groove on the N-domain, suggesting there is competition between co-factors for p97 N-domains, and also placing the co-factors spatially to the “side” of the p97hexamer, towards the N-D1 interface in the ADP-bound form of p97 (Figure 3B). In the ATP-bound form, the co-factors would be located “on top” of the hexamer.

PUB/PUL

The PUB domain binds a conserved peptide at the extreme C-terminus of p97. The leucine and tyrosine residues that form part of a DDLYG-COOH sequence conserved in eukaryotes, bind a hydrophobic pocket on the PUB domain (Zhao, Zhou et al. 2007). Protein phosphorylation at Y805 totally abolishes binding of p97 to the PUB domain of PNGase (Peptide-N(4)-(N-acetyl-beta-glucosaminyl) asparagine amidase) and also disrupts ERAD (Zhao, Zhou et al. 2007, Li, Zhao et al. 2008) (Figure 3C). The observation that Y805 fits tightly into the hydrophobic pocket, with no space for an additional phosphate, provides a clear mechanism
as to how this interaction is regulated by phosphorylation. The PUL domain of PLAA which is structurally unrelated to the PUB domain, binds the C-terminal p97 peptide in a highly similar interaction (Qiu, Pashkova et al. 2010). While the interaction of the Rnf31 PUB domain with the p97 C-terminal peptide is only around 50 μM, the DUB OTULIN binds this PUB domain with a dissociation constant ~300nM, indicating that this mode of binding can facilitate a wide range of specificities (Schaeffer, Akutsu et al. 2014).

Regulation of p97 enzymatic activity by co-factors, and vice versa

A subset of co-factors do not just bind to p97, but also alter its enzymatic activity. This regulation is effective in both ways, for example the DUB Ataxin-3 has been shown to be activated by p97, while keeping its specificity for K63 chains (Laco, Cortes et al. 2012). This stimulatory effect is absent in disease-associated Ataxin-3 with an extended poly-glutamine sequence. The lack of DUB activation and potentially inefficient processing of ERAD substrates may be one mechanism by which the expanded poly-Q of Ataxin-3 may contribute to disease phenotypes (Laco, Cortes et al. 2012).

The p37 co-factor activates p97, while p47 decreases ATPase activity (Meyer, Kondo et al. 1998, Zhang, Gui et al. 2015). Both co-factors result in a tighter K_M of p97 for its substrate ATP (Zhang, Gui et al. 2015). Interestingly, deletion of an N-terminal region in p47 that lacks homology to p37 turns p47 from an inhibitory co-factor into an activator. These data indicate that UBX domains in general have a stimulatory effect on p97, but an N-terminal region of p47 can counter this effect (Zhang, Gui et al. 2015). Some mutations in the interface between N-domain and D1 domain of p97 are associated with the multisystem disease IBMPFD, defects in ERAD as well as other p97 associated functions, and on a molecular level with altered (increased) ATPase activities (Weihl, Dalal et al. 2006, Meyer and Weihl 2014, Tang and Xia 2016).
4. Molecular Mechanism and Enzymology of p97

Structure
Initially identified as a homohexameric particle by negative stain electron microscopy, p97 was shown to possess ATPase activity that is dependent on its oligomeric state and the presence of Mg$^{2+}$ (Peters, Walsh et al. 1990, Peters, Harris et al. 1992). Subsequently, the crystal structure of the N-domain and first ATPase domain (ND1) was solved by crystallography, followed by full-length p97 (Zhang, Shaw et al. 2000, DeLaBarre and Brunger 2003, Huyton, Pye et al. 2003). The hexamer displays a mushroom-like shape where 2 rings of ATPase domains stack on top of each other and the N-domain is co-planar to the D1 ATPase domain in ADP bound p97, and in an “up” conformation in the ATP bound state (Figure 4A)(Banerjee, Bartesaghi et al. 2016). The D1 and D2 ATPase domains both fold into typical AAA domains with an α/β-subdomain followed by a helical subdomain. Of the 12 ATPase domains in a p97 hexamer, the D1 domains are primarily required for oligomerisation, while the D2 domains play a larger role in ATP hydrolysis (Song, Wang et al. 2003, Wang, Song et al. 2003). There is some evidence that the D1-D2 linker, which can introduce asymmetry in the protein, is required for activity- p97 ND1 displays negligible ATPase activity, but a slightly longer protein containing the 20aa D1-D2 linker possesses ATPase activity roughly half of full length p97 (Tang and Xia 2016). The six D2 domains of p97 have been shown to bind less than six molecules of ATP, providing an additional link between asymmetry and ATPase activity (Briggs, Baldwin et al. 2008). ATP hydrolysis is also regulated by inter-protomer interactions between the D2 domain and the C-terminal tail of the neighbouring protomer. (Hanzelmann and Schindelin 2016).

Molecular Function of p97
Some indications as to the molecular function of p97 are provided by its physiological functions and the enzymatic activity of its archaeal homologue VAT. The T. acidophilum VAT ATPase, from a prokaryote without a ubiquitin system, has unfoldase activity (Gerega, Rockel et al. 2005). Tagging of a protein with an ssrA peptide, a C-terminal degradation tag added to protein lacking an
in-frame stop-codon, is essential and sufficient for unfolding by VAT(Keiler, Waller et al. 1996). In VAT, removal of its N-domain increases unfolding activity, indicating the N-domain may have an auto-inhibitory role (Gerega, Rockel et al. 2005). Electron microscopy structures of VAT in different nucleotide states suggest that in an ATP bound VAT, the two ATPase rings form planar rings (Huang, Ripstein et al. 2016). However, upon ATP hydrolysis the 12 ATPase domains can form a continuous spiral. The large structural rearrangement between planar rings and screw-like conformation was proposed to provide the mechanical energy required for protein unfolding (Huang, Ripstein et al. 2016).

Native Human p97 does not possess activity against ssrA tagged proteins (Rothballer, Tzvetkov et al. 2007). However, through mutagenesis of VAT it has been shown that aromatic residues are required in both the D1 and D2 pore for unfolding activity against ssrA-tagged proteins. p97 lacks aromatic residues in the D1 pore, and only through introduction of such residues and removal of the N-domain could VAT-like unfolding activity be reconstituted (Rothballer, Tzvetkov et al. 2007) (Figure 4B). Recently, two studies have independently succeeded in reconstituting p97 and Cdc48 unfoldase activity in vitro. Both studies used K48-ubiquitinated GFP as a p97 substrate. These were engineered in vitro, by enzymatically K48-ubiquitinating either a degron sequence(Bodnar and Rapoport 2017) or a ubiquitin(Blythe, Olson et al. 2017) linearly fused to the GFP. UFD1-NPL4 was required for efficient unfolding, and YOD1 for substrate release, confirming p97 relies on this co-factor to recognize K48-ubiquitinated substrates, but removal of ubiquitin is required for complete processing and release (Blythe, Olson et al. 2017, Bodnar and Rapoport 2017).

The ATPase activity of Cdc48 is reduced to 50% by the presence of Ufd1-Npl4, but increases to 300% by the additional presence of a K48-ubiquitinated substrate, a regulatory mechanism effective at preserving the ATP consumption of such an abundant ATPase(Bodnar and Rapoport 2017). Conversely, the presence of UFD1-NPL4 does not affect human p97 activity(Blythe, Olson et al. 2017). An assay using the engineered substrate also confirmed Cdc48 as bona-fide unfoldase whose substrates are threaded through the central pore, as in its prokaryotic homologues (Hanson and Whiteheart 2005, Bodnar and Rapoport 2017). (Figure 4D) Given that important pore residues are conserved between
Cdc48 and p97, this strongly suggests a highly similar mechanism for mammalian p97 (Figure 4B). These substrates may also aid structural studies and biochemical work to determine the mechanism that provides the mechanical energy for unfolding activity.

ATPase cycle

Several studies have linked the control of the ATPase cycle to the movement of the N-domain, a regulatory mechanism that appears to fail in IBMPFD mutants, where the “up” conformation is favored even in the apo-form. Structural data on p97 has shown the N-domains to be co-planar with the D1 domain in ADP-bound p97, but in an “up” position in the ATP-bound form (Banerjee, Bartesaghi et al. 2016). When in complex with the UBX-containing co-factor Faf1, the N-domain also occupy the “up” position (Ewens, Panico et al. 2014) (Figure 4A). The apo-form of the IBMPFD mutant A232E also takes this conformation (Niwa, Ewens et al. 2012) (Figure 4A). Biochemical data also supports these structural observations. When the N-domain is locked in a co-planar orientation, the ATPase activity is compromised (Niwa, Ewens et al. 2012). The co-factors p37 and p47 bind more tightly to the ATP bound form of p97 than the ADP bound form. In IBMPFD mutants, the affinity of these co-factors for p97 is independent of nucleotide state, the interaction is always as tight as for the wild ATP bound form (Bulfer, Chou et al. 2016). Binding of UBX containing co-factors p37 also increases ATP activity, while p47 inhibits the enzyme (Zhang, Gui et al. 2015). IBMPFD mutants also show higher activity, both in terms of ATP hydrolysis and unfolding activity (Niwa, Ewens et al. 2012, Blythe, Olson et al. 2017). Interestingly, neither p37 nor p47 is capable of increasing the ATPase activity of IBMPFD mutants of p97 further, providing additional evidence that the N-domain is somehow “uncoupled” from ATP hydrolysis in these disease-linked mutants (Zhang, Gui et al. 2015).

Co-factors bind more tightly to hexameric p97 than monomeric N-domain constructs (Hanzelmann, Buchberger et al. 2011). Given that the N-domain UBX interaction is located on the top of the hexamer, the “up” conformation may favour co-factor binding by virtue of enabling oligomerisation of co-factors on
“top” of the p97 hexamer. This model has been suggested for the FAF1-p97 and p47-p97 complexes (Ewens, Panico et al. 2014). There also seems to be a correlation between bound ATP, bound co-factor, increased ATP hydrolysis and N-domains in the “up” position, and conversely no ATP bound, weakly-binding co-factors, and co-planar N-domains (Figure 4C). While there is a strong correlation, it is less clear as to what is the cause and what is the effect. The ATPase activity is also further regulated by extensive post-translational modifications, reviewed by (Hanzelmann and Schindelin 2017). However, it is clear that the p97 ATP hydrolysis cycle is tightly coordinated with co-factor binding and substrate engagement which result in significant conformational changes between the N domain and D1 and the D1 and D2 AAA domains. It will be important in future studies to try can capture intermediate states of p97 throughout the ATP hydrolysis cycle.
5. Therapeutic potential of p97 inhibitors

Proteotoxic stress in tumour cells

One characteristic of many tumour cell lines is their proteotoxic stress caused by an abundance of misfolded proteins (Deshaies 2014). Due to their rapid growth and excessive genetic abnormalities, cancer cells suffer from this stress naturally. Enabling an accumulation of misfolded proteins and escalating the proteotoxic stress is an established method to target cancer cells in chemotherapy, proven effective by the proteasome inhibitor bortezomib (Deshaies 2014). However, cancer cells can overcome this selective pressure and develop resistance, for example by up-regulating expression of proteasome subunits as well as chaperones to relieve some of the proteotoxic stress, reviewed in (Lu and Wang 2013). One molecular mechanism through which this is achieved is via the transcription factor Nrf1 (Nuclear respiratory factor 1). The absence of proteasome activity leads to an accumulation of this transcription factor, which triggers increased transcription of proteasome subunits (Radhakrishnan, Lee et al. 2010). Targeting other components of the ubiquitin system, such as E3 ubiquitin ligases, DUBs or the interaction surfaces of ubiquitin-binding proteins, has proven challenging, as these protein rarely possess defined catalytic-pockets (Huang and Dixit 2016).

Since the ATPase activity of p97 is essential for its function and p97 possesses clearly defined catalytic centres for ATP hydrolysis, inhibition of p97 offers a promising avenue through which proteotoxic stress can be induced. The dependence of tumour cells on p97 activity is further illustrated by the overexpression of this enzyme in NSCLC (non-small cell lung cancer) cells (Valle, Min et al. 2011). Both ATP-competitive and allosteric inhibitors of p97 have been developed with the competitive inhibitors being at a much later stage of development.
A drug-like ATP-competitive inhibitor of p97

From a high-throughput screen, DBeQ (N2, N4-dibenzylquinazoline-2,4-diamine) was identified as an ATP competitive p97 inhibitor in vitro (Figure 5A). It also successfully inhibited known p97-dependent processes such as ERAD and autophagy (Chou, Brown et al. 2011). The molecule was developed further using SAR (Structure Activity Relationship) to produce the more potent inhibitors ML240 and ML241 and finally CB-5083, a potent p97 inhibitor with drug-like properties (Chou, Li et al. 2013, Anderson, Le Moigne et al. 2015, Zhou, Wang et al. 2015) (Figure 5A). In addition to the inhibition of known p97 dependent cellular processes, CB-5083 was shown to effectively stop tumour growth in both solid and hematological cancer xenografts and has entered Phase I trials in the clinic (Zhou, Wang et al. 2015). Interestingly, CB-5083 reduces the unfolding activity of IBMPFD mutant p97 to that of wild-type p97 (Blythe, Olson et al. 2017). Dendrimer-coated DbeQ has been shown to be more effective in triggering an accumulation of ubiquitinated species than DBeQ by itself, suggesting coating of a p97 inhibitor, with polymers may increase effectiveness (Walworth, Bodas et al. 2016).

Discovery of non-competitive inhibitors of p97

Several different classes of allosteric p97 inhibitors have been discovered by high-throughput screening. One of the classes discovered were Alkylsulfanyl-1,2,4-triazoles (Polucci, Magnaghi et al. 2013). Following SAR, the most promising lead compound (numbered 116) possessed an ATPase IC₅₀ of 24 nM and displayed anti-proliferative properties with an IC₅₀ of 380 nM (Figure 5A). The SAR experiments also showed that the IC₅₀s of the ATPase activity and of the anti-proliferative effect were not always closely related. Some compounds screened, showed strong ATPase inhibition but little anti-proliferative effect. The optimized compound showed strong specificity for p97 when tested against other ATPases such as NSF or kinases, but suffered from high clearance when used in an animal model (Polucci, Magnaghi et al. 2013).
The inhibitor NMS873, is among the best characterized allosteric p97 inhibitors and was derived from the triazole inhibitors described above (Figure 5A). It has an ATPase IC$_{50}$ comparable to CB5083 (Magnaghi, D’Alessio et al. 2013). In addition to the p97 inhibitory effect, NMS873 also triggers known phenotypes of p97 inhibition, such as accumulation of polyubiquitin and CHOP induction (Magnaghi, D’Alessio et al. 2013). While NMS873 is an effective p97 inhibitor in vitro, it is at an earlier stage of development than CB5083 in terms of drug-like properties.

In another screen, trifluoromethyl and pentafluorosulfanyl indoles were identified as allosteric p97 inhibitors (Alverez, Arkin et al. 2015). Following SAR, the most powerful compound from this class (compound 23) inhibited p97 ATPase activity with a nanomolar IC$_{50}$ (Figure 5A). The structure of p97 in complex with one compound of this class (UPCDC30245) was solved by cryo-EM, confirming that the indole part of the inhibitor interacts with p97 at the D1, D2 interface (Banerjee, Bartesagli et al. 2016) (Figure 5B).

A third class of allosteric p97 inhibitors discovered by high throughput screening were indole amides, which act as uncompetitive inhibitors (Alverez, Bulfer et al. 2016) (Figure 5A). Following SAR, the strongest of the optimized compounds (compound 3), inhibited p97 with an IC$_{50}$ of up to 500 nM at an ATP concentration of 0.1 mM. In terms of solubility and stability, these indole amides are among the most promising allosteric inhibitors being developed. They do however require higher concentrations of compound to effectively inhibit p97. The indole amide failed to display robust anti-proliferative effects. but a more potent inhibitor may induce the desired cellular responses (Alverez, Bulfer et al. 2016). An ATPase IC$_{50}$ considerable lower than 500 nM has been shown to be required for eliciting an anti-proliferative effect (Polucci, Magnaghi et al. 2013).

In addition to the molecules identified by high-throughput screening, the natural products withaferin A and dehydrocurvularin have been shown to inhibit the enzyme (Tao, Tillotson et al. 2015, Tillotson, Bashyal et al. 2016).

ATP-competitive versus allosteric inhibitors of p97
There are some caveats with ATP competitive inhibition of p97. It has been shown that binding of some p97 co-factors, for example p37 and p47, results in a decreased K_M for ATP and thus may decrease the potency of a competitive inhibitor (Zhang, Gui et al. 2015). Subsequently it was reported that for all ATP-competitive inhibitors tested, the IC$_{50}$ of p97-47 is at least 4-fold higher than for p97 alone. Conversely, the allosteric inhibitor NMS-873 does not lose potency in the presence of p47 (Gui, Zhang et al. 2016). The loss of inhibitor efficacy has so far only been observed for the p97-p47 complex. Subsequent research on the highly similar p97-p37 complex, as well as the ternary p97-UFD1-NPL4 complex, showed that these complexes are equally sensitive to ATP competitive p97 inhibitors as p97 is itself. Furthermore, the discovery that different p97 inhibitors target different complexes with varying efficacies may be the first step towards developing complex-specific inhibitors (Gui, Zhang et al. 2016).

Perspectives on p97 drug discovery efforts

There is a wealth of information on a large number of inhibitors and their interaction with p97 from both *in vivo* and *in vitro* experiments, with the notable absence of any crystal structures of p97-inhibitor complexes which may aid medicinal chemistry efforts. The sole interaction between p97 and an inhibitor has been visualized by high resolution cryo electron microscopy (Banerjee, Bartesaghi et al. 2016). The recent development of *in vitro* substrates for p97 may aid the future development of novel p97 inhibitors (Blythe, Olson et al. 2017).
Trends and Conclusions

The diversity of cellular processes listed above illustrates the versatility of p97. The enzyme plays a role in protein degradation from the ER and mitochondrial membrane, primarily in concert with its co-factors UFD1 and NPL4. In addition, it is used to extract ubiquitinated protein complexes from chromatin in DNA repair pathways, DNA replication and transcription. A pathway where its ATPase activity is less well understood is in membrane fusion, where p97 regulates the formation of the endomembrane system. From these well-described processes, there is a common theme among them, which is the recruitment of p97 by ubiquitinated substrates. The vast majority of p97 substrates described are ubiquitinated and their interaction with p97 is mediated by bi-functional co-factors, which contain both p97-interacting and ubiquitin-interacting domains. Several common themes also become apparent when summarizing the cellular and molecular functions of p97 co-factors. With the exception of the common UBA-UBX architecture, the ubiquitin-associated domains and the p97-interacting motifs occur in many different combinations, highlighting the modularity of these protein domains and binding motifs. While there are a multitude of p97-interacting motifs, most bind the same cleft in the p97 N-domain suggesting competition between co-factors for N-domains. As there are six potential binding sites, there is the possibility of mixed co-factor binding as well as co-operative binding and hierarchical complex assembly. It will be interesting to determine whether multiple complexes can function in similar biochemical pathways or if there is functional specificity assigned to specific sub-complexes.

Interestingly, the different p97-interacting motifs can be found at different positions within p97 cofactors. The UBX and VIM/VBM motifs are primarily found at the extreme N- and C-termini of the respective cofactor, while the SHP motif is located more centrally in the linear polypeptide chain. Looking at the 3D structures of p97 co-factor complexes reveals that the majority of N-domain interacting motifs, UBX, UBX-L, VIM and VBM bind the same groove between the N-domain lobes. Different co-factors thus compete for p97 binding. Interestingly, hydrophobic and basic residues dominate the consensus sequences of the N-domain interacting motifs.
In terms of ubiquitin specificity, K48 chains appear the most intimately associated with p97 functions. The ubiquitin-binding co-factors UFD1/NPL4, FAF1, SAKS1, UBXD7 and UBXD8 are all capable of binding K48 polyubiquitin. Only p47, which is not associated with protein degradation or segregation of any kind, but essential to the regulation of membrane fusion, bucks the trend and shows specificity for K63 and linear chains. The ubiquitin specificities of the ubiquitin E3 ligases and DUBs fit into the same pattern as the adaptors. The three ubiquitin ligases Hrd1, gp78 and Ube4b all catalyse the formation of K48-linked chains. The DUBs are somewhat more promiscuous, but neither YOD1, nor ATX3 cleave K48 isopeptide bonds efficiently. Only VCIP, associated with membrane fusion like p47, is active against K48 poly-ubiquitin. The co-factor complexes formed by p97 favour the catalysis of K48-linked chains and the hydrolysis of any other type of polyubiquitin. These complexes appear to have evolved to strip p97 substrates of polyubiquitin signals other than K48, from upstream signaling or other processes, and generate or amplify a K48 signal. Following recruitment of p97 to its substrate, the substrate is unfolded and it is proposed that the unfolded substrate is threaded through the central pore. However, the energy requirements of unfolding larger proteins for threading through the p97 pore is still an open question. It is equally plausible that partial threading results in destabilisation of target proteins or protein complexes and disassembly or extraction. For a continuous threading mechanism, multiple rounds of ATP hydrolysis would be required and p97 would need to anchored in such a way as to apply the necessary force for unfolding or extraction. Although in vitro using model substrates there is some evidence for threading in Cdc48, it is still unclear as how cofactors and ATP hydrolysis orchestrate the disassembly, unfolding process.

In terms of targeting p97 as a drug target for cancer, various screening efforts have produced promising leads with CB5083 being the most developed. Some allosteric inhibitors, for example NMS873, inhibit p97 with comparable potency and elicit anti-proliferative responses in cells but are not drug-like, yet. The availability of an in-vitro substrate may now allow screening for additional inhibitors, which do not interfere with ATPase hydrolysis, but nonetheless disrupt the enzymatic function of p97.
In summary p97 continues to be a fascinating enzyme and whilst much has been learned about its structure function and mechanism there are still a large number of unanswered questions which need to be addressed given the potential clinical importance of p97 as a drug target for cancer treatments.

Acknowledgements

LS and PF would like to thank Cancer Research UK for support (CRUK A13449) and Professor Xiaodong Zhang for comments.
Figure legends:

1) Figure 1. (A) Top: Schematic of the p97 architecture, side and top views of the cryo-EM structure of ADP bound p97 (PDB: 5FTK). Bottom: domain organisation of p97, colour-coded as above. (B) Well-characterised cellular process requiring p97 activity. (i) Post-mitotic membrane fusion via the p97/p47 pathway (ii) Endoplasmic reticulum associated degradation (iii) Removal of KU70/80 from chromatin (iv) NF-κB activation via the canonical pathway. Proteins are colour coded according to their function. p97 and the proteasome are in green, ubiquitinated p97 substrates are blue, cognate E3 ubiquitin ligases decorating p97 substrates are red, phosphorylation signaling proteins are in pink, ubiquitin is in yellow, other proteins are in brown.

2) Figure 2. Table of Ubiquitin-associated p97 co-factors. Left: domain organisation of co-factors, colour coded according to domain function, organized according to p97-interacting motif. Middle: cellular processes the co-factors have been implicated in. Right: Types of poly-ubiquitin the co-factor has been associated with or possesses activity against.

3) Figure 3. (A) Top: Crystal structures of p97 N-domains (grey) in complex with co-factor (gold). Faf1 UBX (PDB: 3QQ8), OTU1 UBX-L (PDB: 4KDL), Npl4 UBX-L (PDB: 2PJH), gp78 VIM (PDB: 3TIW), RbhdI4 VBM (PDB: 5EPP), UFD1 SHP (PDB: 5C1B) Conserved residues are indicated. Below: Sequence alignment of the conserved interacting motifs, first line in the alignment shows the sequence of the protein shown in the structure above (B) Composite model of UBX (red) UBX-L (yellow), VIM (green), VBM (blue) and SHP (pink) overlayed on the cryo-EM structure of ADP-bound ATP (5FTK). (C) Crystal structure of PNGase PUB domain (gold) in complex with p97 C-terminal peptide (grey) (PDB: 2HPJ) (D) Overlay of the VIM and VBM complex structures, with the VIM and VBM motifs rainbow
coloured from N-terminus (blue) to C-terminus (red). N-domains in grey.

4) Figure 4. (A) EM structures of p97. ADP bound (PDB: 5FTK), ATPγS (PDB: 5FTN), in complex with Faf1 (EMDB-2319) and the IBMPFD mutant A232E (EMDB-2038) (B) Left: Conservation of D1 and D2 pore loop residues in p97, Cdc48 and VAT. Right: structure of pore loops with residues highlighted on table on the left shown as sticks. (PDB: 5FTN) (C) Models of p97 conformations in different nucleotide states. p97 domains colour coded as before. IBMPFD mutant positions highlighted in purple. (D) Model for p97 activity. p97 forms a complex with UFD1-NPL4 and a poly-ubiquitinated substrate. Additional co-factors containing DUB activity remove poly-ubiquitin leaving K48-chains only. The substrate is then threaded through the central pore of p97 and unfolded.

5) Figure 5. (A) Table of a selection of known p97 inhibitors, including name, chemical structure, IC_{50} against p97 ATPase activity and ability to cause an anti-proliferative effect in a cell-based assay, e.g. CHOP activation, EC_{50} of cell death against cancer cell lines A549 and HCT116. (B) Cryo-EM structure of p97 in complex with UPCDC30245 inhibitor (pink) (PDB: 5FTJ)
References

Aasland, R., C. Abrams, C. Ampe, L. J. Ball, M. T. Bedford, G. Cesareni, M. Gimona, J. H. Hurley, T. Jarchau, V. P. Lehto, M. A. Lemmon, R. Linding, B. J. Mayer, M. Nagai, M. Sudol, U. Walter and S. J. Winder (2002). "Normalization of nomenclature for peptide motifs as ligands of modular protein domains." FEBS Lett 513(1): 141-144.

Ackermann, L., M. Schell, W. Pokrzywa, E. Kevei, A. Gartner, B. Schumacher and T. Hoppe (2016). "E4 ligase-specific ubiquitination hubs coordinate DNA double-strand-break repair and apoptosis." Nat Struct Mol Biol 23(11): 995-1002.

Akutsu, M., I. Dikic and A. Bremm (2016). "Ubiquitin chain diversity at a glance." J Cell Sci 129(5): 875-880.

Alexandru, G., J. Graumann, G. T. Smith, N. J. Kolawa, R. Fang and R. J. Deshaies (2008). "UBXD7 binds multiple ubiquitin ligases and implicates p97 in HIF1alpha turnover." Cell 134(5): 804-816.

Alverez, C., M. R. Arkin, S. L. Bulfer, R. Colombo, M. Kovaliov, M. G. LaPorte, C. Lim, M. Liang, W. J. Moore, R. J. Neitz, Y. Yan, Z. Yue, D. M. Huryn and P. Wipf (2015). "Structure-Activity Study of Bioisosteric Trifluoromethyl and Pentafluorosulfanyl Indole Inhibitors of the AAA ATPase p97." ACS Med Chem Lett 6(12): 1225-1230.

Alverez, C., S. L. Bulfer, R. Chakrasali, M. S. Chimenti, R. J. Deshaies, N. Green, M. Kelly, M. G. LaPorte, T. S. Lewis, M. Liang, W. J. Moore, R. J. Neitz, V. A. Peshkov, M. A. Walters, F. Zhang, M. R. Arkin, P. Wipf and D. M. Huryn (2016). "Allosteric Indole Amide Inhibitors of p97: Identification of a Novel Probe of the Ubiquitin Pathway." ACS Med Chem Lett 7(2): 182-187.

Anderson, D. J., R. Le Moigne, S. Djakovic, B. Kumar, J. Rice, S. Wong, J. Wang, B. Yao, E. Valle, S. Kiss von Soly, A. Madriaga, F. Soriano, M. K. Menon, Z. Y. Wu, M. Kamps, Y. Chen, J. S. Weissman, B. T. Aftab, F. M. Yakes, L. Shawver, H. J. Zhou, D. Wustrow and M. Rolfe (2015). "Targeting the AAA ATPase p97 as an Approach to Treat Cancer through Disruption of Protein Homeostasis." Cancer Cell 28(5): 653-665.

Arunamghan, A., Y. Roske, C. Barth, L. L. Forero, K. Bravo-Rodriguez, A. Redel, S. Kostova, E. McShane, R. Opitz, K. Faubert, K. Rau, T. Mielke, O. Daumke, M. Selbach, E. Sanchez-Garcia, O. Rocks, D. Panakova, U. Heinemann and E. E. Wanker (2016). "Quantitative interaction mapping reveals an extended UBX domain in ASPL that disrupts functional p97 hexamers." Nat Commun 7: 13047.

Ballar, P., Y. Shen, H. Yang and S. Fang (2006). "The role of a novel p97/valosin-containing protein-interacting motif of gp78 in endoplasmic reticulum-associated degradation." J Biol Chem 281(46): 35359-35368.

Banerjee, S., A. Bartesaghi, A. Merk, P. Rao, S. L. Bulfer, Y. Yan, N. Green, B. Mroczkowski, R. J. Neitz, P. Wipf, V. Falconieri, R. J. Deshaies, J. L. Milne, D. Huryn, M. Arkin and S. Subramaniam (2016). "2.3 A resolution cryo-EM structure of human p97 and mechanism of allosteric inhibition." Science 351(6275): 871-875.

Barthelme, D. and R. T. Sauer (2016). "Origin and Functional Evolution of the Cdc48/p97/VCP AAA+ Protein Unfolding and Remodeling Machine." J Mol Biol 428(9 Pt B): 1861-1869.
Bays, N. W., R. G. Gardner, L. P. Seelig, C. A. Joazeiro and R. Y. Hampton (2001). "Hrd1p/Der3p is a membrane-anchored ubiquitin ligase required for ER-associated degradation." Nat Cell Biol 3(1): 24-29.

Ben-Saadon, R., D. Zaroo, T. Ziv and A. Ciechanover (2006). "The polycomb protein Ring1B generates self atypical mixed ubiquitin chains required for its in vitro histone H2A ligase activity." Mol Cell 24(5): 701-711.

Bengtson, M. H. and C. A. Joazeiro (2010). "Role of a ribosome-associated E3 ubiquitin ligase in protein quality control." Nature 467(7314): 470-473.

Bergink, S., T. Ammon, M. Kern, L. Schermelleh, H. Leonhardt and S. Jentsch (2013). "Role of Cdc48/p97 as a SUMO-targeted segregase curbing Rad51-Rad52 interaction." Nat Cell Biol 15(5): 526-532.

Beuron, F., I. Dreveny, X. Yuan, V. E. Pye, C. McKeown, L. C. Briggs, M. J. Cliff, Y. Kaneko, R. Wallis, R. L. Isaacson, J. E. Ladbury, S. J. Matthews, H. Kondo, X. Zhang and P. S. Freemont (2006). "Conformational changes in the AAA ATPase p97-p47 adaptor complex." EMBO J 25(9): 1967-1976.

Bhowmick, S., C. Chakravarty, S. Sellathamby and S. K. Lal (2017). "The influenza A virus matrix protein 2 undergoes retrograde transport from the endoplasmic reticulum into the cytoplasm and bypasses cytoplasmic proteasomal degradation." Arch Virol 162(4): 919-929.

Blythe, E. E., K. C. Olson, V. Chau and R. J. Deshaies (2017). "Ubiquitin- and ATP-dependent unfoldase activity of P97/VCP*NPLC4*UFD1L is enhanced by a mutation that causes multisystem proteinopathy." Proc Natl Acad Sci U S A.

Bodnar, N. O. and T. A. Rapoport (2017). "Molecular Mechanism of Substrate Processing by the Cdc48 ATPase Complex." Cell 169(4): 722-735 e729.

Boeddrich, A., S. Gaumer, A. Haacke, N. Tzvetkog, M. Albrecht, B. O. Evert, E. C. Muller, R. Lurz, P. Breuer, N. Schugardt, S. Plassmann, K. Xu, J. M. Warrick, J. Suopanki, U. Wullner, R. Frank, U. F. Hartl, N. M. Bonini and E. E. Wangr (2006). "An arginine/lysine-rich motif is crucial for VCP/p97-mediated modulation of ataxin-3 fibrillogenesis." EMBO J 25(7): 1547-1558.

Briggs, L. C., G. S. Baldwin, N. Miyata, H. Kondo, X. Zhang and P. S. Freemont (2008). "Analysis of nucleotide binding to P97 reveals the properties of a tandem AAA hexameric ATPase." J Biol Chem 283(20): 13745-13752.

Bruderer, R. M., C. Brasseur and H. H. Meyer (2004). "The AAA ATPase p97/VCP interacts with its alternative co-factors, Ufd1-Npl4 and p47, through a common bipartite binding mechanism." J Biol Chem 279(48): 49609-49616.

Bulfer, S. L., T. F. Chou and M. R. Arkin (2016). "p97 Disease Mutations Modulate Nucleotide-Induced Conformation to Alter Protein-Protein Interactions." ACS Chem Biol 11(8): 2112-2116.

Burana, D., H. Yoshihara, H. Tanno, A. Yamamoto, Y. Saeki, K. Tanaka and M. Komada (2016). "The Ankrd13 Family of Ubiquitin-interacting Motif-bearing Proteins Regulates Valosin-containing Protein/p97 Protein-mediated Lysosomal Trafficking of Caveolin 1." J Biol Chem 291(12): 6218-6231.

Chau, V., J. W. Tobias, A. Bachmair, D. Marriot, D. J. Ecker, D. K. Gonda and A. Varshavsky (1989). "A multiubiquitin chain is confined to specific lysine in a targeted short-lived protein." Science 243(4898): 1576-1583.

Chen, Z. J. (2012). "Ubiquitination in signaling to and activation of IKK." Immunol Rev 246(1): 95-106.

Chou, T. F., S. J. Brown, D. Minond, B. E. Nordin, K. Li, A. C. Jones, P. Chase, P. R. Purbisky, B. M. Stoltz, F. J. Schoenen, M. P. Patricelli, P. Hodder, H. Rosen and R. J.
Deshaires (2011). "Reversible inhibitor of p97, DBeQ, impairs both ubiquitin-dependent and autophagic protein clearance pathways." *Proc Natl Acad Sci USA* **108**(12): 4834-4839.

Chou, T. F., K. Li, K. J. Frankowski, F. J. Schoenen and R. J. Deshaires (2013). "Structure-activity relationship study reveals ML240 and ML241 as potent and selective inhibitors of p97 ATPase." *ChemMedChem* **8**(2): 297-312.

Dai, R. M., E. Chen, D. L. Longo, C. M. Gorbea and C. C. Li (1998). "Involvement of valosin-containing protein, an ATPase Co-purified with IkappaBalph and 26 S proteasome, in ubiquitin-proteasome-mediated degradation of IkappaBalph." *J Biol Chem* **273**(6): 3562-3573.

Defenouillere, Q., E. Zhang, A. Namane, J. Mouaikeil, A. Jacquier and M. Fromont-Racine (2016). "Rqc1 and Ltn1 Prevent C-terminal Alanine-Threonine Tail (CAT-tail)-induced Protein Aggregation by Efficient Recruitment of Cdc48 on Stalled 60S Subunits." *J Biol Chem* **291**(23): 12245-12253.

DeLaBarre, B. and A. T. Brunger (2003). "Complete structure of p97/valosin-containing protein reveals communication between nucleotide domains." *Nat Struct Biol* **10**(10): 856-863.

Deshaires, R. J. (2014). "Proteotoxic crisis, the ubiquitin-proteasome system, and cancer therapy." *BMC Biol* **12**: 94.

Dewar, J. M., E. Low, M. Mann, M. Raschle and J. C. Walter (2017). "CRL2Lrr1 promotes unloading of the vertebrate replisome from chromatin during replication termination." *Genes Dev* **31**(3): 275-290.

Doss-Pepe, E. W., E. S. Stenroos, W. G. Johnson and K. Madura (2003). "Ataxin-3 interactions with rad23 and valosin-containing protein and its associations with ubiquitin chains and the proteasome are consistent with a role in ubiquitin-mediated proteolysis." *Mol Cell Biol* **23**(18): 6469-6483.

Dreveny, I., H. Kondo, K. Uchiyama, A. Shaw, X. Zhang and P. S. Freemont (2004). "Structural basis of the interaction between the AAA ATPase p97/VCP and its adaptor protein p47." *EMBO J* **23**(5): 1030-1039.

Ernst, R., B. Mueller, H. L. Ploegh and C. Schlieker (2009). "The otubain YOD1 is a deubiquitinating enzyme that associates with p97 to facilitate protein dislocation from the ER." *Mol Cell* **36**(1): 28-38.

Erzberger, J. P. and J. M. Berger (2006). "Evolutionary relationships and structural mechanisms of AAA+ proteins." *Annu Rev Biophys Biomol Struct* **35**: 93-114.

Ewens, C. A., S. Panico, P. Kloppsteck, C. McKeown, I. O. Ebong, C. Robinson, X. Zhang and P. S. Freemont (2014). "The p97-FAF1 protein complex reveals a common mode of p97 adaptor binding." *J Biol Chem* **289**(17): 12077-12084.

Fang, S., M. Ferrone, C. Yang, J. P. Jensen, S. Tiwari and A. M. Weissman (2001). "The tumor autocrine motility factor receptor, gp78, is a ubiquitin protein ligase implicated in degradation from the endoplasmic reticulum." *Proc Natl Acad Sci USA* **98**(25): 14422-14427.

Fleig, L., N. Bergbold, P. Sahasrabudhe, B. Geiger, L. Kaltak and M. K. Lemberg (2012). "Ubiquitin-dependent intramembrane rhomboid protease promotes ERAD of membrane proteins." *Mol Cell* **47**(4): 558-569.

Franz, A., L. Ackermann and T. Hoppe (2016). "Ring of Change: CDC48/p97 Drives Protein Dynamics at Chromatin." *Front Genet* **7**: 73.

Franz, A., M. Orth, P. A. Pirson, R. Sonneville, J. J. Blow, A. Gartner, O. Stemmann and T. Hoppe (2011). "CDC-48/p97 coordinates CDT-1 degradation with GINS
chromatin dissociation to ensure faithful DNA replication." Mol Cell 44(1): 85-96.
Franz, A., P. A. Pirson, D. Pilger, S. Halder, D. Achuthankutty, H. Kashkar, K. Ramadan and T. Hoppe (2016). "Chromatin-associated degradation is defined by UBXN-3/FAF1 to safeguard DNA replication fork progression." Nat Commun 7: 10612.
Fullbright, G., H. B. Rycenga, J. D. Gruber and D. T. Long (2016). "p97 Promotes a Conserved Mechanism of Helicase Unloading During DNA Crosslink Repair." Mol Cell Biol.
Gauss, R., T. Sommer and E. Jarosch (2006). "The Hrd1p ligation complex forms a linchpin between ER-luminal substrate selection and Cdc48p recruitment." EMBO J 25(9): 1827-1835.
Gerega, A., B. Rockel, J. Peters, T. Tamura, W. Baumeister and P. Zwickl (2005). "VAT, the thermoplasma homolog of mammalian p97/VCP, is an N domain-regulated protein unfoldase." J Biol Chem 280(52): 42856-42862.
Greenblatt, E. J., J. A. Olzmann and R. R. Kopito (2011). "Derlin-1 is a rhomboid pseudoprotease required for the dislocation of mutant alpha-1 antitrypsin from the endoplasmic reticulum." Nat Struct Mol Biol 18(10): 1147-1152.
Gui, L., X. Zhang, K. Li, K. J. Frankowski, S. Li, D. E. Wong, D. R. Moen, P. R. Porubsky, H. J. Lin, F. J. Schoenen and T. F. Chou (2016). "Evaluating p97 Inhibitor Analogues for Potency against p97-p37 and p97-Npl4-Ufd1 Complexes." ChemMedChem 11(9): 953-957.
Hanson, P. I. and S. W. Whiteheart (2005). "AAA+ proteins: have engine, will work." Nat Rev Mol Cell Biol 6(7): 519-529.
Hanzelmann, P., A. Buchberger and H. Schindelin (2011). "Hierarchical binding of cofactors to the AAA ATPase p97." Structure 19(6): 833-843.
Hanzelmann, P. and H. Schindelin (2011). "The structural and functional basis of the p97/valosin-containing protein (VCP)-interacting motif (VIM): mutually exclusive binding of cofactors to the N-terminal domain of p97." J Biol Chem 286(44): 38679-38690.
Hanzelmann, P. and H. Schindelin (2016). "Characterization of an Additional Binding Surface on the p97 N-Terminal Domain Involved in Bipartite Cofactor Interactions." Structure 24(1): 140-147.
Hanzelmann, P. and H. Schindelin (2016). "Structural Basis of ATP Hydrolysis and Intersubunit Signaling in the AAA+ ATPase p97." Structure 24(1): 127-139.
Hanzelmann, P. and H. Schindelin (2017). "The Interplay of Cofactor Interactions and Post-translational Modifications in the Regulation of the AAA+ ATPase p97." Front Mol Biosci 4: 21.
Hatakeyama, S., M. Yada, M. Matsumoto, N. Ishida and K. I. Nakayama (2001). "Ub box proteins as a new family of ubiquitin-protein ligases." J Biol Chem 276(35): 33111-33120.
He, J., Q. Zhu, G. Wani, N. Sharma and A. A. Wani (2016). "Valosin-containing Protein (VCP)/p97 Segregase Mediates Proteolytic Processing of Cockayne Syndrome Group B (CSB) in Damaged Chromatin." J Biol Chem 291(14): 7396-7408.
Henkel, T., T. Machleidt, I. Alkalay, M. Kronke, Y. Ben-Neriah and P. A. Baeuerle (1993). "Rapid proteolysis of I kappa B-alpha is necessary for activation of transcription factor NF-kappa B." Nature 365(6442): 182-185.
Hetzer, M., H. H. Meyer, T. C. Walther, D. Bilbao-Cortes, G. Warren and I. W. Mattaj (2001). "Distinct AAA-ATPase p97 complexes function in discrete steps of nuclear assembly." Nat Cell Biol 3(12): 1086-1091.

Hoege, C., B. Pfander, G. L. Moldovan, G. Pyrowolakis and S. Jentsch (2002). "RAD6-dependent DNA repair is linked to modification of PCNA by ubiquitin and SUMO." Nature 419(6903): 135-141.

Huang, R., Z. A. Ripstein, R. Augustyniak, M. Lazniewski, K. Ginalska, L. E. Kay and J. L. Rubinstein (2016). "Unfolding the mechanism of the AAA+ unfoldase VAT by a combined cryo-EM, solution NMR study." Proc Natl Acad Sci U S A 113(29): E4190-4199.

Huang, S., D. Tang and Y. Wang (2016). "Monoubiquitination of Syntaxin 5 Regulates Golgi Membrane Dynamics during the Cell Cycle." Dev Cell 38(1): 73-85.

Huang, X. and V. M. Dixit (2016). "Drugging the undruggables: exploring the ubiquitin system for drug development." Cell Res 26(4): 484-498.

Huen, M. S., R. Grant, I. Manke, K. Minn, X. Xu, M. B. Yaffe and J. Chen (2007). "RNF8 transduces the DNA-damage signal via histone ubiquitylation and checkpoint protein assembly." Cell 131(5): 901-914.

Huyton, T., V. E. Pye, L. C. Briggs, T. C. Flynn, F. Beuron, H. Kondo, J. Ma, X. Zhang and P. S. Freemont (2003). "The crystal structure of murine p97/VCP at 3.6A." I Struct Biol 144(3): 337-348.

Isaacson, R. L., V. E. Pye, P. Simpson, H. H. Meyer, X. Zhang, P. S. Freemont and S. Matthews (2007). "Detailed structural insights into the p97-Npl4-Ufd1 interface." J Biol Chem 282(29): 21361-21369.

Keiler, K. C., P. R. Waller and R. T. Sauer (1996). "Role of a peptide tagging system in degradation of proteins synthesized from damaged messenger RNA." Science 271(5251): 990-993.

Kikkert, M., R. Doolman, M. Dai, R. Avner, G. Hassink, S. van Voorden, S. Thanedar, J. Roitelman, V. Chau and E. Wiertz (2004). "Human HRD1 is an E3 ubiquitin ligase involved in degradation of proteins from the endoplasmic reticulum." J Biol Chem 279(5): 3525-3534.

Kim, K. H., W. Kang, S. W. Suh and J. K. Yang (2011). "Crystal structure of FAF1 UBX domain in complex with p97/VCP N domain reveals a conformational change in the conserved FcisP touch-turn motif of UBX domain." Proteins 79(8): 2583-2587.

Kim, S. J., J. Cho, E. J. Song, S. J. Kim, H. M. Kim, K. E. Lee, S. W. Suh and E. E. Kim (2014). "Structural basis for ovarian tumor domain-containing protein 1 (OTU1) binding to p97/valosin-containing protein (VCP)." J Biol Chem 289(18): 12264-12274.

Kinoshita, T., C. Kondoh, M. Hasegawa, R. Imamura and T. Suda (2006). "Fas-associated factor 1 is a negative regulator of PYRIN-containing Apaf-1-like protein 1." Int Immunol 18(12): 1701-1706.

Kirisako, T., K. Kamei, S. Murata, M. Kato, H. Fukushima, M. Kanie, S. Sano, F. Tokunaga, K. Tanaka and K. Iwai (2006). "A ubiquitin ligase complex assembles linear polyubiquitin chains." EMBO J 25(20): 4877-4887.

Kloppsteck, P., C. A. Ewens, A. Forster, X. Zhang and P. S. Freemont (2012). "Regulation of p97 in the ubiquitin-proteasome system by the UBX protein-family." Biochim Biophys Acta 1823(1): 125-129.
Koch, P., P. Breuer, M. Peitz, J. Jungverdorben, J. Kesavan, D. Poppe, J. Doerr, J. Ladewig, J. Mertens, T. Tuting, P. Hoffmann, T. Klockgether, B. O. Evert, U. Wullner and O. Brustle (2011). "Excitation-induced ataxin-3 aggregation in neurons from patients with Machado-Joseph disease." Nature 480(7378): 543-546.

Koegl, M., T. Hoppe, S. Schlenker, H. D. Ulrich, T. U. Mayer and S. Jentsch (1999). "A novel ubiquitination factor, E4, is involved in multiubiquitin chain assembly." Cell 96(5): 635-644.

Kondo, H., C. Rabouille, R. Newman, T. P. Levine, D. Pappin, P. Freemont and G. Warren (1997). "p47 is a cofactor for p97-mediated membrane fusion." Nature 388(6637): 75-78.

Koyano, F., K. Okatsu, H. Kosako, Y. Tamura, E. Go, M. Kimura, Y. Kimura, H. Tsuchiya, H. Yoshihara, T. Hirokawa, T. Endo, E. A. Fon, J. F. Trempe, Y. Saeki, K. Tanaka and N. Matsuda (2014). "Ubiquitin is phosphorylated by PINK1 to activate parkin." Nature 510(7503): 162-166.

Laco, M. N., L. Cortes, S. M. Travis, H. L. Paulson and A. C. Rego (2012). "Valosin-containing protein (VCP/p97) is an activator of wild-type ataxin-3." PLoS One 7(9): e43563.

LaLonde, D. P. and A. Bretscher (2011). "The UBX protein SAKS1 negatively regulates endoplasmic reticulum-associated degradation and p97-dependent degradation." J Biol Chem 286(6): 4892-4901.

Latterich, M., K. U. Frohlich and R. Schekman (1995). "Membrane fusion and the cell cycle: Cdc48p participates in the fusion of ER membranes." Cell 82(6): 885-893.

Le, L. T., W. Kang, J. Y. Kim, O. T. Le, S. Y. Lee and J. K. Yang (2016). "Structural Details of Ufd1 Binding to p97 and Their Functional Implications in ER-Associated Degradation." PLoS One 11(9): e0163394.

Lee, J. J., J. K. Park, J. Jeong, H. Jeon, J. B. Yoon, E. E. Kim and K. J. Lee (2013). "Complex of Fas-associated factor 1 (FAF1) with valosin-containing protein (VCP)-Npl4-Ufd1 and polyubiquitinated proteins promotes endoplasmic reticulum-associated degradation (ERAD)." J Biol Chem 288(10): 6998-7011.

Lee, J. N., H. Kim, H. Yao, Y. Chen, K. Weng and J. Ye (2010). "Identification of Ubxd8 protein as a sensor for unsaturated fatty acids and regulator of triglyceride synthesis." Proc Natl Acad Sci USA 107(50): 21424-21429.

Li, G., G. Zhao, H. Schindelin and W. J. Lennarz (2008). "Tyrosine phosphorylation of ATPase p97 regulates its activity during ERAD." Biochem Biophys Res Commun 375(2): 247-251.

Li, X., H. Liu, P. L. Fischhaber and T. S. Tang (2015). "Toward therapeutic targets for SCA3: Insight into the role of Machado-Joseph disease protein ataxin-3 in misfolded proteins clearance." Prog Neurobiol 132: 34-58.

Li, Z. H., Y. Wang, M. Xu and T. Jiang (2017). "Crystal structures of the UBX domain of human UBXD7 and its complex with p97 ATPase." Biochem Biophys Res Commun 486(1): 94-100.

Lim, J. J., Y. Lee, T. T. Ly, J. Y. Kang, J. G. Lee, J. Y. An, H. S. Youn, K. R. Park, T. G. Kim, J. K. Yang, Y. Jun and S. H. Eom (2016). "Structural insights into the interaction of p97 N-terminus domain and VBM in rhomboid protease, RHBDL4." Biochem 473(18): 2863-2880.

Lim, J. J., Y. Lee, S. Y. Yoon, T. T. Ly, J. Y. Kang, H. S. Youn, J. Y. An, J. G. Lee, K. R. Park, T. G. Kim, J. K. Yang, Y. Jun and S. H. Eom (2016). "Structural insights into
the interaction of human p97 N-terminal domain and SHP motif in Derlin-1 rhomboid pseudoprotease." FEBS Lett 590(23): 4402-4413.
Liu, C., W. Liu, Y. Ye and W. Li (2017). "Ufd2p synthesizes branched ubiquitin chains to promote the degradation of substrates modified with atypical chains.\" Nat Commun 8: 14274.
Liu, Y. Y., Y. (2013). "Roles of p97-associated deubiquitinases in protein quality control at the endoplasmic reticulum." Curr Protein Pept Sci 13(5): 436-446.
Locke, M., J. I. Toth and M. D. Petroski (2014). "Lys11- and Lys48-linked ubiquitin chains interact with p97 during endoplasmic-reticulum-associated degradation." Biochem J 459(1): 205-216.
Lu, S. and J. Wang (2013). "The resistance mechanisms of proteasome inhibitor bortezomib." Biomark Res 1(1): 13.
Magnaghi, P., R. D'Alessio, B. Valsasina, N. Avanzi, S. Rizzi, D. Asa, F. Gasparri, L. Cozzi, U. Cucchi, C. Orrenius, P. Polucci, D. Ballinari, C. Perrera, A. Leone, G. Cervi, E. Casale, Y. Xiao, C. Wong, D. J. Anderson, A. Galvani, D. Donati, T. O'Brien, P. K. Jackson and A. Isacchi (2013). "Covalent and allosteric inhibitors of the ATPase VCP/p97 induce cancer cell death." Nat Chem Biol 9(5): 548-556.
Manno, A., M. Noguchi, J. Fukushima, Y. Motohashi and A. Kakizuka (2010). "Enhanced ATPase activities as a primary defect of mutant valosin-containing proteins that cause inclusion body myopathy associated with Paget disease of bone and frontotemporal dementia." Genes Cells 15(8): 911-922.
Maric, M., T. Maculins, G. De Piccoli and K. Labib (2014). "Cdc48 and a ubiquitin ligase drive disassembly of the CMG helicase at the end of DNA replication." Science 346(6208): 1253596.
Meerang, M., D. Ritz, S. Paliwal, Z. Garajova, M. Bosshard, N. Mailand, P. Janseca, U. Hubscher, H. Meyer and K. Ramadan (2011). "The ubiquitin-selective segregase VCP/p97 orchestrates the response to DNA double-strand breaks." Nat Cell Biol 13(11): 1376-1382.
Mevisser, T. E., M. K. Hospenthal, P. P. Geurink, P. R. Elliott, M. Akutsu, N. Arnaudo, R. Ekkebus, Y. Kulathu, T. Wauer, F. El Oualid, S. M. Freund, H. Ovaa and D. Komander (2013). "OTU deubiquitinases reveal mechanisms of linkage specificity and enable ubiquitin chain restriction analysis." Cell 154(1): 169-184.
Meyer, H. (2012). "p97 complexes as signal integration hubs." BMC Biol 10: 48.
Meyer, H. and C. C. Weihl (2014). "The VCP/p97 system at a glance: connecting cellular function to disease pathogenesis." J Cell Sci 127(Pt 18): 3877-3883.
Meyer, H. H. (2005). "Golgi reassembly after mitosis: the AAA family meets the ubiquitin family." Biochim Biophys Acta 1744(2): 108-119.
Meyer, H. H., H. Kondo and G. Warren (1998). "The p47 co-factor regulates the ATPase activity of the membrane fusion protein, p97." FEBS Lett 437(3): 255-257.
Meyer, H. H., Y. Wang and G. Warren (2002). "Direct binding of ubiquitin conjugates by the mammalian p97 adaptor complexes, p47 and Ufd1-Npl4." EMBO J 21(21): 5645-5652.
Meyer, H. J. and M. Rape (2014). "Enhanced protein degradation by branched ubiquitin chains." Cell 157(4): 910-921.
Moreno, S. P., R. Bailey, N. Campion, S. Herron and A. Gambus (2014). "Polyubiquitylation drives replisome disassembly at the termination of DNA replication." Science 346(6208): 477-481.
Morreale, G., L. Conforti, J. Coadwell, A. L. Wilbrey and M. P. Coleman (2009). "Evolutionary divergence of valosin-containing protein/cell division cycle protein 48 binding interactions among endoplasmic reticulum-associated degradation proteins." FEBS J 276(5): 1208-1220.
Mullally, J. E., T. Chernova and K. D. Wilkinson (2006). "Doa1 is a Cdc48 adapter that possesses a novel ubiquitin binding domain." Mol Cell Biol 26(3): 822-830.
Neuber, O., E. Jarosch, C. Volkwein, J. Walter and T. Sommer (2005). "Ubx2 links the Cdc48 complex to ER-associated protein degradation." Nat Cell Biol 7(10): 993-998.
Nie, M., A. Aslanian, J. Prudden, J. Heideker, A. A. Vashisht, J. A. Wohlschlegel, J. R. Yates, 3rd and M. N. Boddy (2012). "Dual recruitment of Cdc48 (p97)-Ufd1-Npl4 ubiquitin-selective segregase by small ubiquitin-like modifier protein (SUMO) and ubiquitin in SUMO-targeted ubiquitin ligase-mediated genome stability functions." J Biol Chem 287(35): 29610-29619.
Niwa, H., C. A. Tsang, H. O. Yeung, X. Zhang and P. S. Freemont (2012). "The role of the N-domain in the ATPase activity of the mammalian AAA ATPase p97/VCP." J Biol Chem 287(11): 8561-8570.
Ohtake, F., Y. Saeki, K. Sakamoto, K. Ohtake, H. Nishikawa, H. Tsuchiya, T. Ohta, K. Tanaka and J. Kanno (2015). "Ubiquitin acetylation inhibits polyubiquitin chain elongation." EMBO Rep 16(2): 192-201.
Ohtake, F. and H. Tsuchiya (2017). "The emerging complexity of ubiquitin architecture." J Biochem 161(2): 125-133.
Olmos, Y., L. Hodgson, J. Mantell, P. Verkade and J. G. Carlton (2015). "ESCRT-III controls nuclear envelope reformation." Nature 522(7555): 236-239.
Oltmann, J. A., C. M. Richter and R. R. Kopito (2013). "Spatial regulation of UBXD8 and p97/VCP controls ATGL-mediated lipid droplet turnover." Proc Natl Acad Sci U S A 110(4): 1345-1350.
Orme, C. M. and J. S. Bogan (2012). "The ubiquitin regulatory X (UBX) domain-containing protein TUG regulates the p97 ATPase and resides at the endoplasmic reticulum-golgi intermediate compartment." J Biol Chem 287(9): 6679-6692.
Pahl, H. L. (1999). "Activators and target genes of Rel/NF-kappaB transcription factors." Oncogene 18(49): 6853-6866.
Papadopoulos, C., P. Kirchner, M. Bug, D. Grum, L. Koerver, N. Schulze, R. Poehler, A. Dressler, S. Fengler, K. Arhzaouy, V. Lux, M. Ehrmann, C. C. Weihl and H. Meyer (2017). "VCP/p97 cooperates with YOD1, UBXD1 and PLAA to drive clearance of ruptured lysosomes by autophagy." EMBO J 36(2): 135-150.
Park, E. S., Y. J. Yoo and M. Elangovan (2017). "The opposite role of two UBA-UBX containing proteins, p47 and SAKS1 in the degradation of a single ERAD substrate, alpha-TCR." Mol Cell Biochem 425(1-2): 37-45.
Pashkova, N., L. Gakhar, S. C. Winistorfer, L. Yu, S. Ramaswamy and R. C. Piper (2010). "WD40 repeat propellers define a ubiquitin-binding domain that regulates turnover of F box proteins." Mol Cell 40(3): 433-443.
Peters, J. M., J. R. Harris, A. Lustig, S. Muller, A. Engel, S. Volker and W. W. Franke (1992). "Ubiquitous soluble Mg(2+)-ATPase complex. A structural study." J Mol Biol 223(2): 557-571.
Peters, J. M., M. J. Walsh and W. W. Franke (1990). "An abundant and ubiquitous homo-oligomeric ring-shaped ATPase particle related to the putative vesicle fusion proteins Sec18p and NSF." EMBO J 9(6): 1757-1767.
Polo, S. E. and S. P. Jackson (2011). "Dynamics of DNA damage response proteins at DNA breaks: a focus on protein modifications." Genes Dev 25(5): 409-433.
Polucci, P., P. Magnaghi, M. Angiolini, D. Asa, N. Avanzi, A. Badari, J. Bertrand, E. Casale, S. Cauferuccio, A. Ciria, L. Cozzi, A. Galvani, P. K. Jackson, Y. Liu, S. Magnuson, B. Malgesini, S. Nuvoloni, C. Orrenius, F. R. Sirtori, L. Riceputi, S. Rizzi, B. Trucchi, T. O’Brien, A. Isacchi, D. Donati and R. D’Alessio (2013). "Alkylsulfanyl-1,2,4-triazoles, a new class of allosteric valosine containing protein inhibitors. Synthesis and structure-activity relationships." J Med Chem 56(2): 437-450.
Premont, G. M. and J. L. Brodsky (2017). "The evolving role of ubiquitin modification in endoplasmic reticulum-associated degradation." Biochem J 474(4): 445-469.
Qiu, L. Y., N. Pashkova, J. R. Walker, S. Winistorfer, A. Allali-Hassani, M. Akutsu, R. Piper and S. Dhe-Paganon (2010). "Structure and Function of the PLAA/Ufd3-p97/Cdc48 Complex." Journal of Biological Chemistry 285(1): 365-372.
Rabouille, C., T. P. Levine, J. M. Peters and G. Warren (1995). "An NSF-like ATPase, p97, and NSF mediate cisternal regrowth from mitotic Golgi fragments." Cell 82(6): 905-914.
Radhakrishnan, S. K., C. S. Lee, P. Young, A. Beskow, J. Y. Chan and R. J. Deshaies (2010). "Transcription factor Nrf1 mediates the proteasome recovery pathway after proteasome inhibition in mammalian cells." Mol Cell 38(1): 17-28.
Richly, H., M. Raper, S. Braun, S. Rumpf, C. Hoege and S. Jentsch (2005). "A series of ubiquitin binding factors connects CDC48/p97 to substrate mult ubiquitylation and proteasomal targeting." Cell 120(1): 73-84.
Rittinger, K. and F. Ikeda (2017). "Linear ubiquitin chains: enzymes, mechanisms and biology." Open Biol 7(4).
Ritz, D., M. Vuk, P. Kirchner, M. Bug, S. Schutz, A. Hayer, S. Bremer, C. Lusk, R. H. Baloh, H. Lee, T. Glatter, M. Gstaiger, R. Aebersold, C. C. Weihi and H. Meyer (2011). "Endolysosomal sorting of ubiquitylated caveolin-1 is regulated by VCP and UBXD1 and impaired by VCP disease mutations." Nat Cell Biol 13(9): 1116-1123.
Rothballer, A., N. Tsvetkov and P. Zwickl (2007). "Mutations in p97/VCP induce unfolding activity." FEBS Lett 581(6): 1197-1201.
Saeki, Y., Y. Tayama, A. Toh-e and H. Yokosawa (2004). "Definitive evidence for Ufd2-catalyzed elongation of the ubiquitin chain through Lys48 linkage." Biochem Biophys Res Commun 320(3): 840-845.
Schaeffer, V., M. Akutsu, M. H. Olma, L. C. Gomes, M. Kawasaki and I. Dikic (2014). "Binding of OTULIN to the PUB domain of HOIP controls NF-kappaB signaling." Mol Cell 54(3): 349-361.
Schweitzer, K., A. Pralow and M. Naumann (2016). "p97/VCP promotes Cullin-RING-ubiquitin-ligase/proteasome-dependent degradation of IkappaBalpha and the preceding liberation of RelA from ubiquitynated IkappaBalpha." J Cell Mol Med 20(1): 58-70.
Schwertman, P., S. Bekker-Jensen and N. Mailand (2016). "Regulation of DNA double-strand break repair by ubiquitin and ubiquitin-like modifiers." Nat Rev Mol Cell Biol 17(6): 379-394.
Shibata, Y., M. Oyama, H. Kozuka-Hata, X. Han, Y. Tanaka, J. Gohda and J. Inoue (2012). "p47 negatively regulates IKK activation by inducing the lysosomal degradation of polyubiquitinated NEMO." Nat Commun 3: 1061.
Sirisaengtaksin, N., M. Girerd, Q. Yan, Y. Kubota, D. Meza, J. C. Waymire, P. E. Zage and A. J. Bean (2014). "UBE4B protein couples ubiquitination and sorting machineries to enable epidermal growth factor receptor (EGFR) degradation." J Biol Chem 289(5): 3026-3039.

Song, C., Q. Wang and C. C. Li (2003). "ATPase activity of p97-valosin-containing protein (VCP). D2 mediates the major enzyme activity, and D1 contributes to the heat-induced activity." J Biol Chem 278(6): 3648-3655.

Song, E. J., S. H. Yim, E. Kim, N. S. Kim and K. J. Lee (2005). "Human Fas-associated factor 1, interacting with ubiquitinated proteins and valosin-containing protein, is involved in the ubiquitin-proteasome pathway." Mol Cell Biol 25(6): 2511-2524.

Song, J., J. K. Park, J. J. Lee, Y. S. Choi, K. S. Ryu, J. H. Kim, E. Kim, K. J. Lee, Y. H. Jeon and E. E. Kim (2009). "Structure and interaction of ubiquitin-associated domain of human Fas-associated factor 1." Protein Sci 18(11): 2265-2276.

Stein, A., A. Ruggiano, P. Carvalho and T. A. Rapoport (2014). "Key steps in ERD of luminal ER proteins reconstituted with purified components." Cell 158(6): 1375-1388.

Stiegllitz, B., R. R. Rana, M. G. Koliopoulou, A. C. Morris-Davies, V. Schaeffer, E. Christodoulou, S. Howell, N. R. Brown, I. Dikic and K. Rittinger (2013). "Structural basis for ligase-specific conjugation of linear ubiquitin chains by HOIP." Nature 503(7476): 422-426.

Surjit, M., S. Jameel and S. K. Lal (2007). "Cytoplasmic localization of the ORF2 protein of hepatitis E virus is dependent on its ability to undergo retrotranslocation from the endoplasmic reticulum." J Virol 81(7): 3339-3345.

Taccioli, G. E., T. M. Gottlieb, T. Blunt, A. Priestley, J. Demengeot, R. Mizuta, A. R. Lehmann, F. W. Alt, S. P. Jackson and P. A. Jeggo (1994). "Ku80: product of the XRCC5 gene and its role in DNA repair and V(D)J recombination." Science 265(5177): 1442-1445.

Tang, D., Y. Xiang, S. De Renzis, J. Rink, G. Zheng, M. Zerial and Y. Wang (2011). "The ubiquitin ligase HACE1 regulates Golgi membrane dynamics during the cell cycle." Nat Commun 2: 501.

Tang, W. K. and D. Xia (2016). "Mutations in the Human AAA+ Chaperone p97 and Related Diseases." Front Mol Biosci 3: 79.

Tang, W. K. and D. Xia (2016). "Role of the D1-D2 Linker of Human VCP/p97 in the Asymmetry and ATPase Activity of the D1-domain." Sci Rep 6: 20037.

Tao, S., J. Tillotson, E. M. Wijeratne, Y. M. Xu, M. Kang, T. Wu, E. C. Lau, C. Mesa, D. J. Mason, R. V. Brown, J. J. La Clair, A. A. Gunatilaka, D. D. Zhang and E. Chapman (2015). "Withaferin A Analogs That Target the AAA+ Chaperone p97." ACS Chem Biol 10(8): 1916-1924.

Tillotson, J., B. P. Bashyal, M. Kang, T. Shi, F. De La Cruz, A. A. Gunatilaka and E. Chapman (2016). "Selective inhibition of p97 by chlorinated analogues of dehydrocurvularin." Org Biomol Chem 14(25): 5918-5921.

Tiwari, A., C. A. Copeland, B. Han, C. A. Hanson, K. Raghunathan and A. K. Kenworthy (2016). "Caveolin-1 is an aggresome-inducing protein." Sci Rep 6: 38681.

Todi, S. V., B. J. Winborn, K. M. Scaglione, J. R. Blount, S. M. Travis and H. L. Paulson (2009). "Ubiquitination directly enhances activity of the deubiquitinating enzyme ataxin-3." EMBO J 28(4): 372-382.
Totsukawa, G., A. Matsuo, A. Kubota, Y. Taguchi and H. Kondo (2013). "Mitotic phosphorylation of VCIP135 blocks p97ATPase-mediated Golgi membrane fusion." Biochem Biophys Res Commun 433(2): 237-242.

Uchiyama, K., E. Jokitalo, F. Kano, M. Murata, X. Zhang, B. Canas, R. Newman, C. Rabouille, D. Pappin, P. Freemont and H. Kondo (2002). "VCIP135, a novel essential factor for p97/p47-mediated membrane fusion, is required for Golgi and ER assembly in vivo." J Cell Biol 159(5): 855-866.

Uchiyama, K., G. Totsukawa, M. Puhka, Y. Kaneko, E. Jokitalo, I. Dreveny, F. Beuron, X. Zhang, P. Freemont and H. Kondo (2006). "p37 is a p97 adaptor required for Golgi and ER biogenesis in interphase and at the end of mitosis." Dev Cell 11(6): 803-816.

Valle, C. W., T. Min, M. Bodas, S. Mazur, S. Begum, D. Tang and N. Vij (2011). "Critical role of VCP/p97 in the pathogenesis and progression of non-small cell lung carcinoma." PLoS One 6(12): e29073.

van den Boom, J., M. Wolf, L. Weimann, N. Schulze, F. Li, F. Kaschani, A. Riemer, C. Zierhut, M. Kaiser, G. Iliakis, H. Funabiki and H. Meyer (2016). "VCP/p97 Extracts Sterically Trapped Ku70/80 Rings from DNA in Double-Strand Break Repair." Mol Cell 64(1): 189-198.

Vaz, B., S. Halder and K. Ramadan (2013). "Role of p97/VCP (Cdc48) in genome stability." Front Genet 4: 60.

Verma, R., R. S. Oania, N. J. Kolawa and R. J. Deshaies (2013). "Cdc48/p97 promotes degradation of aberrant nascent polypeptides bound to the ribosome." Elife 2: e00308.

Walker, J. R., R. A. Corpina and J. Goldberg (2001). "Structure of the Ku heterodimer bound to DNA and its implications for double-strand break repair." Nature 412(6847): 607-614.

Walsworth, K., M. Bodas, R. J. Campbell, D. Swanson, A. Sharma and N. Vij (2016). "Dendrimer-Based Selective Proteostasis-Inhibition Strategy to Control NSCLC Growth and Progression." PLoS One 11(7): e0158507.

Wang, Q., L. Li and Y. Ye (2006). "Regulation of retrotranslocation by p97-associated deubiquitinating enzyme ataxin-3." J Cell Biol 174(7): 963-971.

Wang, Q., C. Song and C. C. Li (2003). "Hexamerization of p97-VCp is promoted by ATP binding to the D1 domain and required for ATPase and biological activities." Biochem Biophys Res Commun 300(2): 253-260.

Watts, G. D., J. Wymer, M. J. Kovach, S. G. Mehta, S. Mumm, D. Darvish, A. Pestronk, M. P. Whyte and V. E. Kimonis (2004). "Inclusion body myopathy associated with Paget disease of bone and frontotemporal dementia is caused by mutant valosin-containing protein." Nat Genet 36(4): 377-381.

Weihl, C. C., S. Dalal, A. Pestronk and P. I. Hanson (2006). "Inclusion body myopathy-associated mutations in p97/VCP impair endoplasmic reticulum-associated degradation." Hum Mol Genet 15(2): 189-199.

Winborn, B. J., S. M. Travis, S. V. Todi, K. M. Scaglione, P. Xu, A. J. Williams, R. E. Cohen, J. Peng and H. L. Paulson (2008). "The deubiquitinating enzyme ataxin-3, a polyglutamine disease protein, edits Lys63 linkages in mixed linkage ubiquitin chains." J Biol Chem 283(39): 26436-26443.

Wu, X., L. Li and H. Jiang (2016). "Doa1 targets ubiquitinated substrates for mitochondria-associated degradation." J Cell Biol 213(1): 49-63.
Wu-Baer, F., T. Ludwig and R. Baer (2010). "The UBXN1 protein associates with autoubiquitinated forms of the BRCA1 tumor suppressor and inhibits its enzymatic function." Mol Cell Biol 30(11): 2787-2798.

Wunderle, L., J. D. Knopf, N. Kuhnle, A. Morle, B. Hehn, C. Adrain, K. Strisovský, M. Freeman and M. K. Lemberg (2016). "Rhomboid intramembrane protease RHBDL4 triggers ER-export and non-canonical secretion of membrane-anchored TGFalpha." Sci Rep 6: 27342.

Xie, F., K. Jin, L. Shao, Y. Fan, Y. Tu, Y. Li, B. Yang, H. van Dam, P. Ten Dijke, H. Weng, S. Dooley, S. Wang, J. Jia, J. Jin, F. Zhou and L. Zhang (2017). "FAF1 phosphorylation by AKT accumulates TGF-beta type II receptor and drives breast cancer metastasis." Nat Commun 8: 15021.

Ye, Y., H. H. Meyer and T. A. Rapoport (2003). "Function of the p97-Ufd1-Npl4 complex in retrotranslocation from the ER to the cytosol: dual recognition of nonubiquitinated polypeptide segments and polyubiquitin chains." J Cell Biol 162(1): 71-84.

Ye, Y., Y. Shibata, M. Kikkert, S. van Voorden, E. Wiertz and T. A. Rapoport (2005). "Recruitment of the p97 ATPase and ubiquitin ligases to the site of retrotranslocation at the endoplasmic reticulum membrane." Proc Natl Acad Sci U S A 102(40): 14132-14138.

Zhang, T., Y. Xu, Y. Liu and Y. Ye (2015). "gp78 functions downstream of Hrd1 to promote degradation of misfolded proteins of the endoplasmic reticulum." Mol Biol Cell 26(24): 4438-4450.

Zhang, X., L. Gui, X. Zhang, S. L. Bulfer, V. Sanghez, D. E. Wong, Y. Lee, L. Lehmann, J. S. Lee, P. Y. Shih, H. J. Lin, M. Iacovino, C. C. Weihl, M. R. Arkin, Y. Wang and T. F. Chou (2015). "Altered cofactor regulation with disease-associated p97/VCP mutations." Proc Natl Acad Sci U S A 112(14): E1705-1714.

Zhang, X., A. Shaw, P. A. Bates, R. H. Newman, B. Gowen, E. Orlova, M. A. Gorman, H. Kondo, P. Dokurno, J. Lally, G. Leonard, H. Meyer, M. van Heel and P. S. Freemont (2000). "Structure of the AAA ATPase p97." Mol Cell 6(6): 1473-1484.

Zhang, X. and Y. Wang (2015). "Cell cycle regulation of VCP135 deubiquitinase activity and function in p97/p47-mediated Golgi reassembly." Mol Biol Cell 26(12): 2242-2251.

Zhang, X., H. Zhang and Y. Wang (2014). "Phosphorylation regulates VCP135 function in Golgi membrane fusion during the cell cycle." J Cell Sci 127(Pt 1): 172-181.

Zhao, G., X. Zhou, L. Wang, G. Li, H. Schindelin and W. J. Lennarz (2007). "Studies on peptide:N-glycanase-p97 interaction suggest that p97 phosphorylation modulates endoplasmic reticulum-associated degradation." Proc Natl Acad Sci U S A 104(21): 8785-8790.

Zhao, M., S. Wu, Q. Zhou, S. Vivona, D. J. Cipriano, Y. Cheng and A. T. Brunger (2015). "Mechanistic insights into the recycling machine of the SNARE complex." Nature 518(7537): 61-67.

Zhong, X. and R. N. Pittman (2006). "Ataxin-3 binds VCP/p97 and regulates retrotranslocation of ERAD substrates." Hum Mol Genet 15(16): 2409-2420.

Zhou, H. J., J. Wang, B. Yao, S. Wong, S. Djakovic, B. Kumar, J. Rice, E. Valle, F. Soriano, M. K. Menon, A. Madriaga, S. Kiss von Soly, A. Kumar, F. Parlati, F. M. Yakes, L. Shawver, R. Le Moigne, D. J. Anderson, M. Rolfe and D. Wustrow (2015). "Discovery of a First-in-Class, Potent, Selective, and Orally Bioavailable Inhibitor of the p97 AAA ATPase (CB-5083)." J Med Chem 58(24): 9480-9497.
Co-factor	Associated Cellular Process	UB-linkage
FAF1	ERAD, chromatin associated	recognises K48
UBXD7	nucleotide excision repair, HIF1α turnover	unclear/multiple
UBXD8	ERAD, lipid droplet turnover	unclear/multiple
SAK51	ERAD	recognises K6, K48
p47	membrane fusion	recognises K63, linear
p37	membrane fusion	N/A
NPL4	multiple	recognises K48
UFD1	membrane fusion	DUB K11, K48
VaPp127	ERAD, autophagy	DUB K11, K27, K29, K33
YOD1	ERAD	E3 K48
gp78	ERAD	E3 K48
Hrd1	ERAD	E3 K48
ATX3	ERAD	DUB K63
Ube4b	ERAD, chromatin associated	E4 K48
Rhbd4	ERAD	recognises K48
PLAA	ERAD, autophagy	recognises K48
Rnt31	NF-κB activation, apoptosis	E3 linear
Ank1d13a	calveolae formation	recognises K63
Ubx59	disassembles p97 hexamers	N/A

Ub - interacting
UB ligase
DUB
p97 - interacting
other

Transmembrane helix
VIM/VBM-motif
SHP-motif
A

Name	Structure	IC$_{50}$ ATPase	anti-prolif.
ATP-competitive			
DBeQ	![Structure](image1)	1.5 µM	CHOP activation at 10 µM
ML240	![Structure](image2)	0.1 µM	EC$_{50}$ A549 3.3 µM
CB-5083	![Structure](image3)	0.011 µM	EC$_{50}$ A549 0.7 µM
non-competitive			
Compound 116	![Structure](image4)	0.024 µM	EC$_{50}$ HCT116 0.4 µM
Polucci et al, 2013			
NMS-873	![Structure](image5)	0.02 µM	EC$_{50}$ A549 2.7 µM
Compound 23	![Structure](image6)	0.05 µM	
Alvarez et al, 2015			
Compound 3	![Structure](image7)	0.5 µM	
Alvarez et al, 2016			

B

- **Image 1**: Molecular structure of UPCDC30245 with interactions at key residues.
- **Image 2**: Close-up of the interaction with Cys535, Ser511, Glu498, and Val493.

![Structure](image8)