The Ant Mosaic Distribution of *Oecophylla smaragdina* and Dominant Ant Species: Effects on Ants Communities in Agroforestry in Tarakan Island

A Rahim¹,²* and K Ohkawara¹

¹Laboratory of Ecology, Division of Biological Sciences, Graduate School of Natural Science and Technology, Kanazawa University, Kakuma Campus, Kanazawa, Japan
²Departement of Agrotechnology, Agriculture Faculty, Borneo University, Tarakan, Indonesia

*E-mail: arahim.ubt@gmail.com or rahim@borneo.ac.id

Abstract. Agroforestry system enhanced ant biodiversity. Ant structure in the ecosystem has been driven by many factors, e.g., competition and predation among species. Dominant species and predator may give impact to species diversity in the ecosystem. We had field research to examine the interactions among dominant ant species, predator *Oecophylla smaragdina*, and other ants in Tarakan, North Kalimantan. In agroforestry system as the study site, ants and other insects on 66 crop trees were collected by sweeping and beating. The obtained number of the two species *Tapinoma melanocephalum* and *Oecophylla smaragdina* occupied more than 60% of all collected ants. Two dominant ants tended to be separately distributed. The community structure may be ant mosaic pattern. Furthermore, the densities of the two dominant ants were higher, but their diversities in the tree were lower than dominant species and predator absence. Probably, the tendency seems to be active on the distribution of other ants.

Keywords: Agroforestry System, *O. smaragdina*, Interaction, Ant Mosaic

1. Introduction

Agroforestry systems are a set of land-use systems [1-2]. Plants were grown as crops and other crops animals in some forms of spatial arrangement or temporal sequence [1-4]. In Indonesia, it is consist of traditional cultivars, such as coffee, cacao, and banana, are a part of ancient knowledge and practice [1,3]. They are sustained by various biological components in addition to artificial process because many plants and animals are mutually interacting in the agroforestry ecosystems [4-7,8]. Although increased plant diversity in agroforestry is expected to grow beneficial arthropods, variety by itself may not reduce pests [9]. Also, intensive agroforestry can influence ant species composition, promoting invasive tramp ant species [10].

Ant is one of the insects giving a heavy impact on the ecosystems as predators, preys and symbions [11-13]. *Oecophylla smaragdina* is one of an important predator on a tropical island. Weaver ant *O. smaragdina* found from South-East Asia and North-Australia [14]. It lives on trees (arboreal insect) and a major predator in the food web of rainforest [11]. So, it may be useful material to establish the agricultural methods with the control of insects [11,15-18]. *Oecophylla* as a biological agent has been widely reported. It was control pests in citrus [15,18], mango [19,20], cashew [21], mahogany [22], palm oil [23], and cacao [24]. In mango tree, using *O. smaragdina* as biocontrol and
The soft chemical showed insect pest damage, the incidence of mango scab disease and infestation of lenticels lower than using chemical insecticides [19,25]. However, some farmers are reluctant to use weaver ants, since they attack not only pests but also humans [16]. It was repelling of pollinators [26], interfere foraging behavior and parasitism [27,28] and negative impact host-parasitoid interactions on mango [29].

Dominant species also affect ant community structure in the ecosystem. In savanna ecosystem, dominant species can control ant assemblages [30]. *Crematogaster lorteti* and *Tapinoma simrothi* followed by *Tapinoma israele* and *Crematogaster scutellaris* are dominant species that the ants strongly monopolized each tree in Mediterranean forests [31]. In tropical arboreal ants, if dominant ants are present, the other ants are a random subset of the overall community, but where dominant ants are absent, species were distributed nonrandomly across trees [32].

Interaction *O. smaragdina* with other ants were interested in understanding. In horticulture system (cashew and mango tree) plot with abundant weaver ant, *O. smaragdina* had similar or higher canopy arthropod and natural enemy diversity and similar ratios of natural enemies to insect pests, compared with a plot where the weaver ant was absent [33]. Other than that, dominant species competition varied with habitat type [30]. In this study, we want to know whether that the dominant species may seriously influence on ant the community structures in agroforestry system or not. This research was made to answers these questions; (i) how does species composition of ants on trees structure in agroforestry, (ii) does distribution of populations in dominant species influence other ants, (iii) effects of *O. smaragdina* and dominant species on the diversity of ants on trees.

2. Material and methods

2.1 Study sites

From February to August in 2016, field collection was carried out in the mixed tree plantations or agroforestry system (the area: 80 m x 90 m) at Mamburungan village (30°16′06.29″ N, 117°03′12.43″ E) on the Tarakan Island in North Kalimantan (figure 1). Tarakan has the highest rainfall in North Kalimantan. During 10 ten years ago, precipitation in February is lower than another month. The mean temperature is 27.50°C, and the mean humidity is 75%.

![Figure 1. Map of study sites in Tarakan Island, North Kalimantan, Indonesia. Black dot represent the study site.](image-url)
2.2. Collection of ants on the crop trees
In this study, we used durian (Durio zibethinus) and Citrus (Citrus aurantiifolia) as crop sample. In total 66 crop trees were exploited. These crops composed 44 durians and 22 citruses. We collected ants by beating and sweeping, in 10 branches. Count of individuals in a given unit (branch, leaf, or flower) was 20 branches. All collected samples served with ethanol (99%) specimens. In the laboratory, ants sorted according to their external morphology or morphospecies [34]. We were recorded and identified. Ant specimens identified to genus level by the key of identification guide to the ant genera of the world [35]. Furthermore, we were recognized ants to species by other resources (e.g., electronic funds).

2.3. Data analysis
Species composition of ants on trees and tree in the site were summarized. The diversity of ants was analyzed using the Shannon-Wiener diversity index (HI). We examined the distribution of dominant species population for analysis mosaic of ants. Besides, effects of dominant species on the diversity of ants on trees using generalized linear model (GLM) were used to analyze the relationship between ant dominants species and ant diversity.

3. Results

3.1. Species composition of ants on trees
In total, 25 ant species were collected. These species belonged to 5 subfamilies and 15 genera (table 1). The accumulated number of two species T. melanocephalum and O. smaragdina occupied more than 60% of all collected ants.

Sub Family	Species	Number	(%)
Ponerinae	Ponera sp.1	4	0.01
Dolichoderinae	Dolichoderus sp. 1	2	0.001
	Iridomyrmex anceps	3086	5.8
	Iridomyrmex sp. 1	329	0.6
	Iridomyrmex sp. 2	356	0.7
	Philidris sp.1	786	1.5
	Tapinoma melanocephalum	26808	50.5
	Tapinoma sp. 1	288	0.5
	Technomyrmex albipes	1517	2.9
	Technomyrmex sp. 1	2428	4.6
Formicinae	Anoplolepis gracilipes	2325	4.4
	Oecophylla smaragdina	7750	14.6
	Camponotus sp. 1	57	0.1
	Polyhachis sp. 1	29	0.05
Pseudomyrmicinae	Tetraponera sp. 1	325	0.6
	Tetraponera sp. 2	49	0.1
Myrmiciane	Crematogaster diffromus	2121	4.0
	Crematogster sp. 1	806	1.5
	Crematogster sp. 2	145	0.3
	Monomorium destructor	2712	5.1
	Monomorium sp. 1	402	0.8
	Monomorium sp. 2	140	0.3
	Tetramorium sp. 1	586	1.1
	Tetramorium sp. 2	32	0.1
	Pheidole sp.1	16	0.03
On a tree, 9-17 species were collected (figure 2) and an average number of workers on branch trees ranged from 1.2 to 10.6 (figure 3). Multiple ant species inhabited in a tree, however only two species were dominant.

3.2. Distribution of populations in dominant species
As shown in figure 4, the two species were dominant in the rank of worker densities. The densities of *T. melanocephalum* and *O. smaragdina* occupied more than 60% of all ant densities in 39 and 9 trees, respectively (figure 5). In addition, the spatial distribution of the trees where they were dominant tended not to be overlapped (figure 6), showing the distribution pattern called "ant mosaic." Furthermore, there was a negative correlation between the densities of the two ants in the tree (R²=0.08, P<0.05).

3.3 Effects of dominant species on the diversity of ants on trees
The species diversity of ants in trees, described as Shannon’s diversity index was negatively correlated with the density of workers in *T. melanocephalum* (figure 7b), although the correlation with the density of *O. smaragdina* was not significant (figure 7a).

The effects of the two species were analyzed in more detail, by model selection using generalized linear model (GLM). As a result, the densities of both two species had adverse effects on ant species diversity (table 2). The crop trees are likely to be monopolized by single ant species. The pattern decreased the species diversity of ants in trees.
4. Discussion

O. smaragdina and *T. melanocephalum* is species dominant in this research. *O. smaragdina* was 9-10 occupied trees. It species recorded in cacao agroforestry landscapes [36,37] and urban area [38,39]. *O. smaragdina* is an arboreal ant and usually built a nest in a tree. One colony can reach 100 nests. The nests can be scattered over 15 trees or over an area of more than 1000 m2 [40]. This study, durian and citrus tree supported *O. smaragdina* developed nest. However, the number of nests found in a colony is affected by several factors such as food availability and the degree of disturbance that occurs [11]. Furthermore, *T. melanocephalum* is one of the most ants important in tropical regions of Africa or Asia. In many research *T. melanocephalum* recorded in the urban area on the mainland [38] and small island [39], cacao agroforestry with low precipitation [36,37], and intensive agroforestry practices [10]. *T. melanocephalum* is tramp species [41] and can be built polydomous colonies [42]. These tramp species are convenient associated with humans and are the most abundant in disturbed habitats, agricultural land and settlements [41,42]. *T. melanocephalum* built a nest and foraging activity in the cavity of a tree, leaf, and another place at the trees. In this study relied on the flowers and tree trunk durian and citrus.

In this study, the two dominant ant species were tended separately distribute at the local area or these 'dominant' ant species in the trees tended not overlap. The distribution these called 'ant mosaic' [43]. Dominant species were maintained colonies by producing abundance and high density and activity. However, it is not related to large numbers, but behavior in aggression and high interferential potential is a form of retaining existing resources from other ants [11,44,45]. Competition between ants can be more stringent [46]. It is mutual exclusion territories, and microhabitat requirement is needed in the competition [43,47]. Food, area, lighting, nests, female, male are competition factor among intraspecific or interspecific species for survival and reproduction [11]. In another case, interaction among ants showed no competition or resulting co-occurrences pattern and species.
aggregation. However, significant negative interactions detected among large ants in tropical ant communities [48]. Species segregation can be caused by adverse inter-specific interaction, but can also be caused by the influence or filtering of environmental factors [49,50].

Figure 6. Spatial distribution of trees occupied by two dominant species in the studied site. The size and pattern of the symbol show the rate of worker densities and the existence of *O. smaragdina* nest. Dotted line shows the range of habitat of each species.

Figure 7. The relationships among the worker densities of the dominant species and the species diversity of ants in tree. The species diversity was shown by the Shannon's diversity index
Table 2. Generalized linear model in the relationships among the worker densities of two dominant ants and the species diversities of ants in tree. The species diversity in tree was described as the Shannon’s diversity index.

Model	Density of $O.\,smaragdina$	Density of $T.\,melanocephalum$	$O.\,smaragdina \times T.\,melanocephalum$	Intercept	AIC	Δ
1	-0.2**	-0.2**	-	1.77**	43.2	-
2	-0.2**	-0.2**	0.004	1.77**	45.2	2.0
3	-	-0.16**	-	1.60**	61.0	17.8
4	-0.08	-	-	1.32**	95.2	52.0

*: P<0.005, **: P<0.0001

Dominant species are known to have an impact on the structure of the ant community in the ecosystem. That species influence species richness at the community level [11,50,51] and the effect on other ants species [46,51,52]. In this study, dominant species is $T.\,melanocephalum$ and $O.\,smaragdina$. Some explanations about the negative relationship between dominant species and ant diversity can be started from the environmental influence of the agroforestry system. Agroforestry supported the existence of species dominant species. Agroforestry allows the availability of food resources such as abundant carbohydrates and proteins. $T.\,melanocephalum$ have symbiosis mutualism with another organism, which was produced sucrose [53]. Carbohydrates and proteins are the primary sources of food for $T.\,melanocephalum$ species. Also, microhabitats such as canopy, flower, and tree trunk allow ants to make more nests. Another factor is the role of farmers in controlling ecosystems facilitating the existence of such ants, for example, pruning. Pruning affects temperature and humidity on the trees. Foraging activities were negatively correlated with ambient temperature but positively correlated with ambient relative humidity [54]. Especially for $O.\,smaragdina$, disruption of activity, the presence of chemical compounds released by the body and predation of other ants or known as "aggressively" are the factors that cause negative interaction of ant diversity in the ecosystem [26-28,55]. In another case, species dominant Pheidole spp observed aggressively displacing other ants from the baits in all areas [51]. Iridomyrmex purpureus were affected ant assemblages depends on microhabitat and resource type [56].

5. Conclusion
In conclusion, plantation using agroforestry supported ant diversity. However, there are dominant species and that species separately distributed in the ecosystem. These dominant species and predator affected the diversity of ants. Through this study, we collected information of ant diversity in an agroforestry system in Tarakan Island, North Kalimantan, and we have illustrated how ants diversity can contribute to the knowledge of species distributions across the potency using the ant as a biological control in agroecosystem plantation. Further research that also, interaction among natural enemies and herbivore species in agroforestry.

Acknowledgments
BPPLN-RISTEKDIKTI scholarship of Indonesian Ministry of Research, Technology, and Higher Education was funded doctoral study at Kanazawa University. Thanks to our field assistants and laboratory assistants (Muttaqien, WisnuAgeng, Philipus and others). Thanks to the owners of farmers in site. Thanks also to the staff of the Agriculture Faculty, University of Borneo Tarakan. We also thank the editors and two anonymous reviewers for their constructive comments on earlier drafts of the manuscript, which helped us to improve the content.
References

[1] Nair P K R 2009 Agroforestry system 3 97-128.
[2] Sardjono M A, Djogo T, Ariffin H S and Wijayanto 2003 Classification and Pattern Combination Component Agroforestry (Bogor ICRAF) p 38.
[3] Aumeeruddy S B 1994 Agroforestry Systems 28 113–141
[4] Jose S 2012 Agroforest Syst. 85 1–8.
[5] Altieri M A 1999 Agriculture, Ecosystems and Environment 74 19–31.
[6] Sileshi G, Festus K A, Oluyede C A, Sebastian C, Martin K and Matakala P W 2007 African Journal of Environmental Science and Technology 1 68–80
[7] Bhagwat S A, Willis K J, Birks H J B, Whittaker R J 2008 Trends Ecol. Evol. 23 261–267
[8] Tian Y, F Cao and G Wang 2013 Agroforest Syst 87 1201–1210
[9] Rao M R, Singh M P and Day R 2000 Agroforestry Systems 50 243–277
[10] Wara A, Lach L, Majer J D, Heterick B and Didham R K 2015 Asian Myrmecology 7 87 – 104
[11] Hölldobler B and Wilson E O 1990 The Ants (Canada: Harvard UnivPr) p 732
[12] Klein A M, Steffan-Dewenter I and Tscharntke T 2002 Biodiversity and Conservation 11 683–693
[13] Philpott S M and Armbrecht I 2006 Ecol. Entomol. 31 369–377
[14] Azuma N K, Ogata T K and S Higashi 2006 Ecol. Res. 21 126–136
[15] Way M J, Khoo KC 1991 Annu. Rev. Entomol 37 479–503.
[16] Offenberg J 2015 Journal of Applied Ecology 52 1197–1205
[17] Mele P V, Cuc N T T, Seguni Z, Camara K and Offenberg J 2009 Int. J. Agricultural Resources, Governance and Ecology 8 484-504
[18] Mele PV 2008 Agricultural and Forest Entomology 10 13–22
[19] Peng R K and Christian K 2005 International Journal of Pest Management 51(2) 149-155
[20] Peng R K and Christian K 2013 Journal of Economic Entomology 106 (1) 299-304
[21] Dwomoh D A, Jakpasu V K A, Joseph B A, Agene V N 2009 Pest Manag Sci. 65 41–46
[22] Peng R, K Christian, D Reilly 2012 Agricultural and Forest Entomology 14 428–433
[23] Pierre E M, Azarae I 2013 Asian Myrmecology 5 163–176
[24] Forbes S J and Northfield T D 2017 Biotropica 0 1-9
[25] Abdulla N R, Rwegasira R M, Jensen K M V, Mwatamala M W, Offenberg J 2016 J. Appl. Entomol. 140 500–506
[26] Tsuji K, Hasyim A, Harlison, Nakamura, K 2004 Ecological Research 19 669–673
[27] Appiah E F, Ekesia S, Afreh-Nuamah K, Obeng-Ofori D and Mohamed S A 2014 Biological Control 79 49–57
[28] Tanga C M, Sunday E, Prem G, Nderitu P W and Samira A M 2016 Insects 7 doi:10.3390/insects7010001
[29] Migani V, Sunday E, Merkel K and Hoffmeister T 2017 Plos One DOI:10.1371/journal.pone.0170101.
[30] Parr C L 2008 Journal of Animal Ecology 77 1191–1198
[31] Martinez J J I 2015 Acta Oecologica 65-66 11-16
[32] Sanders N J, Gotelli N J, Heller N and Gordon D M 2003 Proc. Nat. Acad. Sci. 100 2474–2477
[33] Peng K and Christian K 2013 J. Appl. Entomol 137 711–720
[34] Lattke J E Specimen processing: building and curating an ant collection 2000 (In Ants: Standard Methods for Measuring and Monitoring Biodiversity) ed Agosti D, Majer JD, Alonso LE, Schultz TR. (Smithsonian Institution Press: Washington, DC, USA) pp 155–171
[35] Bolton B 1997 Identification Guide to The Ant Genera of The World (London: Harvard UnivPr) p 22.
[36] Rizali A, Clough Y, Buchori D, Hosang M L A, Bos M M and Tscharntke T 2013 Insect Conservation and Diversity 6 328–338
[37] Rizali A, Yann C, Buchori D and Tscharntke T 2013 Agroforestry Diversity 5 26-38
[38] Rizali A, Bos M M, Buchori D, Yamane S and Schulze C H 2008 HAYATI Journal of Biosciences 15 (2) 77-84
[39] Rizali A, Rahim A, Sahari B, Prasetyo L B and Buchori D 2011 Jurnal Biologi Indonesia 7 (2) 221-230
[40] Van Mele P and Cuc N T T 2000 International Journal of Pest Management 6 (4) 295-301
[41] McGlynn T E 1999 J. Biogeogr. 26 535-538
[42] Appel A G, Na J P S and Lee C 2004 Sociobiology 44 89–100
[43] Leston D 1973 ANS 19 311–41
[44] Davidson D W 1997 Biological Journal of the Linnean Society 61 153-181.
[45] Arman X, Gaucherel C and Alan N 2011 Oecologia 166 783–794.
[46] Andersen A N and Patel A D 1994 Oecologia 98 15–24.
[47] Blüthgen N and Nigel E S 2007 Austral Ecology 32 93–104
[48] Elwood M D F, Bluthgen N, Fayle T M and Foster W A 2016 Acta Oecologica 75 24-34
[49] Palmer T D 2003 Ecology 84 (11) 2843–2855
[50] Nathan J, Kraft B, Adler P B, Godoy O, Emily C J, Fuller S and Levine J M 2015 Functional Ecology 29 592–599
[51] Parr C L, Brent J S, Alan N A, Kevin J G and Steven L C 2005 American Naturalist 165(4) 481-494
[52] Seguni Z S K, Way M J, Mele P V 2011 Crop Protection 30 713-717
[53] Kim-Fung C, Lee C Y 2006 Sociobiology 48(3) 875-883
[54] Zhou A M, Kuang B Q, Gao R and Liang G W 2015 Florida Entomologist 98(4) 1217-1222
[55] Dejean A, Corbara B, Orivel J and Leponce M 2007 Functional Ecosystem and Communities 1(2) 105-120
[56] Gibb H 2005 Austral Ecology 30 856–867