Genome-wide analysis in *Hevea brasiliensis* laticifers revealed species-specific post-transcriptional regulations of several redox-related genes

Yi Zhang¹,², Julie Leclercq¹,², Shuangyang Wu¹,²,³,⁴, Enrique Ortega-Abboud¹,², Stéphanie Pointet¹,², Chaorong Tang⁵, Songnian Hu³ & Pascal Montoro¹,²

MicroRNA-mediated post-transcriptional regulation has been reported on ROS production and scavenging systems. Although microRNAs first appeared highly conserved among plant species, several aspects of biogenesis, function and evolution of microRNAs were shown to differ. High throughput transcriptome and degradome analyses enable to identify small RNAs and their mRNA targets. A non-photosynthetic tissue particularly prone to redox reactions, laticifers from *Hevea brasiliensis*, revealed species-specific post-transcriptional regulations. This paper sets out to identify the 407 genes of the thirty main redox-related gene families harboured by the *Hevea* genome. There are 161 redox-related genes expressed in latex. Thirteen of these redox-related genes were targeted by 11 microRNAs. To our knowledge, this is the first report on a mutation in the miR398 binding site of the cytosolic CuZnSOD. A working model was proposed for transcriptional and post-transcriptional regulation with respect to the predicted subcellular localization of deduced proteins.

Reactive oxygen species (ROS) are produced by redox reactions in plants, including aerobic respiration and photosynthesis. High levels of ROS such as \(^1 \)O₂ (singlet oxygen), O₂°⁻ (superoxide radical), °OH (hydroxyl radical) and H₂O₂ (hydrogen peroxide) are generated during abiotic and biotic stress, as well as some plant development processes. This oxidative stress triggers disturbances in the basal redox state¹. Peroxides and free radicals damage all cellular components including proteins, lipids and nucleic acids. ROS are also described as secondary messengers that are perceivable and able to initiate adaptive mechanisms²,³. In order to detoxify the harmful ROS and maintain the redox homeostasis, plant cells contain enzymatic and non-enzymatic scavenging systems.

MicroRNA-mediated post-transcriptional regulation has been reported on ROS production and scavenging systems. This control can occur by transcript cleavage of either redox-related genes⁴,⁵, or their upstream transcription factors⁶, as well as indirectly through the repression of genes that induce hormone changes⁷ or a response to stress⁸. Although microRNAs first appeared highly conserved among plant species⁹, several aspects of biogenesis, function and evolution of microRNAs were shown to differ¹⁰. Non-conserved or species-specific microRNAs often expressed at very low levels could be detected using next-generation sequencing technology¹¹,¹². Besides microRNAs, little is known on the role of siRNAs on the expression of redox-related genes. Degradome analysis was first carried out in plant on Arabidopsis to facilitate the discovery and quantification of small RNAs cleaved targets¹³. Degradome sequencing experimentally confirmed several hundred targets in eucalyptus and populus¹⁴,¹⁵.

Hevea brasiliensis is the main commercial source of natural rubber, the cis-1,4-polyisoprene polymer, which is synthesized in the rubber particles of laticifers¹⁶. Latex is the cytoplasm of these articulated laticiferous vessels.
arranged in concentric rings in the phloem tissue. Latex flows out after cutting the soft bark (tapping). The application of ethephon, an ethylene releaser, to the bark stimulates latex flow and latex regeneration between two tappings\(^\text{17}\). ROS production takes place in laticifers in response to harvesting stress and consequent metabolic activity necessary for latex regeneration after tapping\(^\text{18}\). When ROS-scavenging systems cannot offset ROS accumulation, cellular dysfunctions lead to the agglutination of rubber particles\(^\text{19,20}\). This physiological syndrome, called Tapping Panel Dryness (TPD), is responsible for major losses in natural rubber production\(^\text{21}\).

Besides the evidence of ROS involvement in TPD at biochemical level\(^\text{22}\), several recent transcriptomic analyses reported that the expression of genes involved in the production and scavenging of ROS is regulated in latex. For instance, a comparison of two contrasting clones for latex yield showed that antioxidant-related genes are crucial in the regulation of latex regeneration and the duration of latex flow\(^\text{23}\). Juvenility was also found to be related to latex production. Latex from self-rooted juvenile clones created by somatic embryogenesis showed more differentially expressed genes (DEGs) related to the ROS-scavenging metabolism\(^\text{24}\). Transcriptomic analysis of a set of rubber clones showed that three and six overexpressed DEGs were involved in ROS production and ROS-scavenging, respectively\(^\text{25}\). Although all these genes were expressed in latex, several other studies did not report any significant changes in the expression of antioxidant genes in latex\(^\text{26-28}\). Post-transcriptional regulation by microRNAs was observed for some redox-related genes. Sixty-eight families of microRNAs, conserved between species, were identified in *Hevea*, including 15 with their precursors, and 16 species-specific microRNAs\(^\text{11,29-31}\). Approximately 1,000 targets were predicted and only a few targets have been experimentally validated to date\(^\text{13,32}\). All these studies globally analysed gene expression but did not specifically check redox-related gene families.

Laticifers are particularly prone to redox reactions. The latex of this non-photosynthetic tissue represents an interesting model to study how important are transcriptional and post-transcriptional regulations related to redox-related genes. This paper sets out to identify all the members of the most important gene families involved in the production and scavenging of ROS and their expression in latex, based on the new complete reference genome sequence\(^\text{25}\) and a transcriptome for a TPD-susceptible clone\(^\text{26}\). Of the 161 redox-related genes expressed in latex, 27 genes were shown to be targeted by microRNAs using small RNAs and degradome analyses. A working model was proposed for transcriptional and post-transcriptional regulations with respect to the predicted subcellular localization of deduced proteins. To our knowledge, this paper reports on the most complete classification of redox-related genes for a crop species, and reveals new insights into small RNA-mediated post-transcriptional regulations of ROS-scavenging systems.

Results

Identification and classification of redox-related genes in *Hevea*. *Hevea* redox-related genes were identified in the rubber tree genome sequence from clone Reyan 7-33-97 using *Arabidopsis thaliana* or *Populus trichocarpa* amino acid sequences from 30 gene families downloaded from the UniProt database according to the procedure described in Fig. 1. *Hevea* genes were compared to eight other species based on a bibliographical analysis (Table 1). This analysis revealed that the redox-related gene families identified mostly dealt with ROS production and scavenging and partial information is available for antioxidant biosynthesis. The number of genes for each species was extracted from several references (Supplemental Table 1).

Hevea has a much larger number of redox-related genes (407) compared to *Arabidopsis* (306). This is mainly explained by the absence of genes encoding polyphenol oxidase in *Arabidopsis* when *Hevea* genome harboured 6 genes, and by a smaller number of genes encoding glutaredoxin (43), glutathione S-transferase (51) and peroxidase (73) in *Arabidopsis* compared to *Hevea* (51, 77 and 114, respectively). A phylogenetic analysis was carried for gene families involved in ROS production and scavenging (Supplemental Figs 1–17). This analysis revealed several gene duplications for Grx, GST and Px gene families (Supplemental Figs 7, 8 and 14).
Comparative analysis of published latex transcriptomes. In order to identify redox-related genes expressed in latex, contigs or unigenes annotated as redox-related genes were extracted from the Supplemental Table 2 of recently published latex transcriptome analyses obtained by RNA sequencing technology23–28. For each publication, redox-related contigs or unigenes were assigned to one of the 30 gene families using their initial blastx annotation (Table 2). A small number of contigs (28, 30 and 12) was counted for three studies23,24,28 compared to the total gene number found in this work (Table 1) and other transcriptome analyses (912, 77, 231)25–27. The transcriptome published by Wei and collaborators had the largest number of redox-related contigs (234) but a lower coverage (0.37 Gb for all samples)27. This transcriptome was obtained from trees of rubber clone RRIM 600 with long-term latex flow. For several gene families, the number of contigs was larger than the gene number counted in the reference genome. Tang and co-workers published transcriptome data for a mixture of several tissues including latex. Thus, the RNAseq dataset from clone PB 26026 was adopted for further analysis for the following reasons: high coverage (6 Gb per sample), largest number of redox-related contigs (912), representation of all gene families, good statistical design with the use of 3 biological replicates, and data from a comparison of latex from healthy and TPD-affected trees.

Transcriptional regulation of redox-related genes and prediction of subcellular localization in laticifers. Of the 407 \textit{Hevea} redox-related genes, 161 unique transcripts were found in latex (Supplemental Table 2). All transcripts were encoded by a unique gene, except for 3 transcripts encoded by two genes harboured by 2 different scaffolds, respectively: CL1895Contig4 (L-galactose dehydrogenase 1 (GDH1) and L-galactose dehydrogenase 2 (GDH2); CL3344Contig2 (glutathione S-transferase U8; GSTU8) and glutathione S-transferase U11 (GSTU11); and CL2806Contig1 (NADPH-dependent thioredoxin reductase 1; NTR1) and NADPH-dependent thioredoxin reductase 3; NTR3). NTR1 and NTR3 were located on scaffold0536_346249 and scaffold0965_30248. GSTU8 and GSTU11 were located on scaffold0702_452766 and scaffold0965_30248. GSTU8 and GSTU11 were located on scaffold0702_452766 and scaffold0965_30248.

Function	Gene family	Arabidopsis	Hevea	Manihot	Oryza	Populus	Ricinus	Sorghum	Vitis	Zea
ROS production	Respiratory burst oxidase homolog	10	9	11	9	10	9	13	8	18
	Polyphenol oxidase	0	6	1	2	11	1	8	4	6
ROS scavenging and regulation	Peroxidase	73	114	—	138	87	—	140	—	—
	Catalase	3	5	10	3	4	2	2	6	3
	Superoxide dismutase	8	9	16	7	10	8	5	12	11
	Ascorbate peroxidase	7	8	19	11	11	10	8	8	16
	Glutathione peroxidase	8	10	7	6	7	5	6	5	5
	Glutathione reductase	2	3	5	3	3	3	2	2	2
	Monodehydroascorbate reductase	5	6	6	5	3	3	5	3	4
	Dehydroascorbate reductase	4	3	3	2	4	4	2	3	2
	Methionine sulfoxide reductase	14	9	—	7	9	—	—	—	6
	Peroxiredoxin	10	10	9	11	13	7	6	9	6
	NADPH-dependent thioredoxin reductase	3	3	—	3	3	—	3	2	—
	Glutathione S-transferase	51	77	—	84	81	—	99	—	72
	Glutaredoxin	43	51	—	49	38	—	32	25	—
	Thioredoxin	38	54	—	46	45	—	29	32	23
Ascorbate biosynthesis	GDP-L-galactose phosphorylase	2	3	—	1	2	—	—	2	1
	GDP-mannose pyrophosphorylase	3	2	—	3	—	—	1	—	1
	GDP-mannose-3’,5’-epimerase	1	2	—	2	2	—	—	2	—
	L-galactono-1,4-lactone dehydrogenase	1	1	—	2	1	—	—	1	1
	Inositol phosphate phosphatase	1	2	—	1	3	—	—	1	1
	L-galactose dehydrogenase	1	3	—	1	2	—	—	2	1
	L-gulonolactone oxidase	7	3	—	—	—	—	1	—	—
	Myo-inositol oxidase	5	3	—	1	—	—	2	—	—
Glutathione biosynthesis	Glutamate cysteine ligase	1	2	—	1	2	—	—	1	—
	Glutathione synthetase	1	2	—	1	2	—	—	1	—
Tocotrienol biosynthesis	Tocotrienol cyclase	1	1	—	1	—	—	—	—	—
	Tocotrienol γ-methyltransferase	1	2	—	1	—	—	—	—	—
	MPRO/MSBQ methyltransferase	1	3	—	1	—	—	—	—	—
	Homogentisate phytyltransferase	1	1	—	2	—	—	—	—	—
In total		306	407	>87	>403	>352	>52	>360	>131	>180
GDH1 and GDH2 were located on scaffold1364_78602 and scaffold1364_29743. The phylogenetic analyses revealed a recent duplication of the genes (Supplemental Figs 4, 8 and 11).

Subcellular localization of redox-related genes was performed using WoLF PSORT, CELLO2GO and Plant-mPLoc. The largest number of proteins was predicted in chloroplast. Given that laticifers are non-photosynthetic tissues, chloroplast and plastid predictions were assigned as plastidic proteins. Subcellular localization of latex proteins was predicted as follows: 82 in plastids, 70 in cytosol, 12 in nucleus, 7 in mitochondrion, 2 in extracellular, 1 in vacuole, 2 in peroxisome and 7 non-predicted.

When exploring RNAseq data from latex26, sixty transcripts were abundant (>1000 reads), and twelve of them were very abundant (>5000 reads) for one or other of the conditions. Twenty-nine transcripts were induced and forty-eight repressed in response to ethephon in healthy trees. Nine transcripts were induced in response to ethephon in TPD-affected trees. Four of these genes (PPO2, PrxQ, TrxS12 and TrxS13) showed contrasting regulation: repressed in healthy and overexpressed in TPD-affected trees. For the clarity of this manuscript, gene expression data are presented in Fig. 2 (cf. discussion section).

Small RNA-mediated post-transcriptional regulation of redox-related genes. Redox-related transcripts targeted by microRNAs and ta-siRNAs were searched using CLEAVELAND pipeline13 in the degradome dataset obtained from various tissues (root, leaf, bark, latex, flowers and embryo) and the reference transcriptome for rubber tree clone PB 260. The degradome analysis did not revealed post-transcriptional regulations by ta-siRNA (data not shown). Of the 407 redox-related genes, 13 were targeted by 11 different microRNAs.

Table 2. Annotation of Hevea latex redox-related genes from published latex transcriptomes.

Reference	Chao 2015	Li 2015	Wei 2015	Li 2016	Tang 2016	Montoro 2018	This study	
Topic	Rubber yield	Rubber yield	Latex flow	Rubber yield	Genome	TPD	Redox	
Technology	Hiseq2000	Hiseq2000	Hiseq2500	Hiseq2000	Hiseq2000	Hiseq2000	—	
Throughput	35 Mb	4.82 Gb	0.37 Gb	16.7Mb	1.29Gb	6 Gb	—	
Clone	CATAS8-79 PR107	RRIM 600	RRIM 600	CATAS7-33-97	HAIKEN 2	Reyan7-33-97	PB 260	PB 260
Tissue	latex	latex	latex	latex	Mixed tissues	Latex	Latex	

Table 2. Annotation of Hevea latex redox-related genes from published latex transcriptomes.

...
Figure 2. ROS production and scavenging systems, and antioxidant biosynthesis in the various latex cell compartments. The gene expression level is represented using RNAseq reads. The data in the three columns originate from healthy trees without ethephon treatment (WH), healthy trees with ethephon treatment (EH) and tapping panel dryness trees with ethephon treatment (ET), respectively. The red arrows represent ROS production or oxidation events. The green arrows represent ROS scavenging reactions or reduction events. Abbreviations are: superoxide radicals (O$_2^{-}$), hydrogen peroxide (H$_2$O$_2$), catalase (Cat), peroxidase (Px), ascorbate peroxidase (APx), glutathione peroxidase (GPx), peroxiredoxin (Prx), glutathione (GSH), monodehydroascorbate reductase (MDHAR), dehydroascorbate reductase (DHAR), glutathione reductase (GR), glutathione synthetase (GS), γ-glutamylcysteine (γ-EC), L-glutamate (Glu), cysteine (Cys), glycine (Gly), NADPH reductase (NTR), thioredoxin (Trx), methionine sulfoxide (MetO), methionine sulfoxide reductase (MSR), glutaredoxin (Grx), glutathione S-transferase (GST), myo-inositol oxygenase (Miox), L-gulonolactone oxidase (GULO), myo-Inositol (Myo-I), D-Glucuronate (D-
enging pathways coexisting in cytosol (peroxidase, ascorbate peroxidase, glutathione peroxidase, peroxiredoxin microRNAs not yet annotated in the miRBase database (Table 3).

Three microRNAs (miRNAn1 to 3), with cleavage activity in latex, were new for ethephon treatment or TPD occurrence disappeared for genes APX3, GR1, MDHAR2 significantly affected by the new way of calculation. Significant fold changes observed in standard RNA sequencing functionally of mRNAs (Supplemental Tables 3 and 4). The expression of 8 of the 13 targeted transcripts were highly expressed in latex and targeted by miR394.

The expression of the 13 post-transcriptionally regulated genes was recalculated using the reads covering the cleavage site to calculate the expression level. Finally, some genes were more abundant compared to other genes encoding SOD. Unlike Arabidopsis, none of the Hevea cytosolic SOD isoforms was subjected to post-transcriptional regulation by miR398. A mutation in the binding site makes miR398 ineffective. The high expression of the CuZnSOD1 gene might then support the maintenance of SOD activity and a consequent high level of anion superoxide dismutation. To demonstrate the biological relevance of post-transcriptional regulations, the physiological context (type and duration of stress) in which the regulation occurs should be further identified case by case. For example, the cleavage of the chloroplastic CuZnSOD transcript was correlated with the upregulation of miRNA398 expression in response to a salt stress specifically in bark and root.

The second step deals with the decomposition of H₂O₂ to H₂O and O₂ through five hydrogen peroxide scavenging pathways coexisting in cytosol (peroxidase, ascorbate peroxidase, glutathione peroxidase, peroxiredoxin...
Target Enzyme	Contig	Library	Category	miRNA accession	miRBase annotation	Start position	Stop position	Cleavage site
Ascorbate peroxidase 3	CL1Contig117	leaf 0	Pnature12390	miR535	53	73	64	
Catalase 1	CL1Contig10534	latex 3	Pyoung21016	miRNAn1, in progress	588	608	599	
Catalase 2	CL1Contig1382	latex 3	Pyoung21016	miRNAn1, in progress	421	441	432	
Catalase/Zn superoxide dismutase 2	CL1553Contig1	root 4	acc_420	miR398b	630	656	646	
Glutathione peroxidase 5	CL449Contig1	leaf 0	Pnature37668	miRNAn3, in progress	70	90	81	
Glutathione reductase 1	CL1Contig15684	leaf 2	Pyoung83898	miR394	415	435	453	
Glutathione reductase 2	CL1Contig1556	leaf 2	Pyoung83898	miR394	360	583	571	
Methionine sulfoxide reductase A2	CL372Contig4	bark 2	health2164	miRNAn4, in progress	210	231	222	
Monodehydroascorbate reductase 1	CL1Contig7966	bark 2	Pnature18863	miRNAn5, in progress	149	170	161	
Monodehydroascorbate reductase 3	CL1250Contig6	bark 2	Pyoung84691	miRNAn6, in progress	1181	1203	1194	
MPBQ/MSBQ methyltransferase 3	CL5665Contig1	leaf 4	Pyoung169157	miRNAn7, in progress	951	973	962	
Myo-inositol oxygenase 2	CL234Contig10	flower 2	Pyoung68471	miRNAn8, in progress	401	424	415	
Peroxidase 6	CL1Contig8355	leaf 2	Pyoung84691	miRNAn6, in progress	970	990	982	

Table 3. Degradome data analysis with CLEAVELAND pipeline using 161 ROS-related genes, 6 tissue-specific transcriptomes and newly annotated microRNAs.

and catalase). High and steady ROS production in latex cells requires Cat activity, which generally comes into play under stress. A decrease in Cat activity was recorded in TPD-affected trees enabling the general oxidative stress in latex cells35. Cat1 gene was highly expressed in latex and might be the main gene related to the Cat activity. Although post-transcriptional regulation was shown by microRNA miRn1, this microRNA did not efficiently cleave Cat1 transcripts in the tested biological conditions (low number of read ends at the cleavage site in degradation data). For the genes encoding thioredoxins, TrxH5 had the highest level of expression out of the 161 genes expressed in latex. From our knowledge, there is no published information related to the potential role of Prx in latex and further characterization is required. The ascorbate/glutathione cycle, involving in its last lines APx and GPx, is essential in the reduction of H2O2 to H2O and O2. Generation of the ASA and GSH forms reduced by the ascorbate-glutathione cycle involved several enzymes encoded by MDHAR2, DHA2, GR1 and GR2. The ethephon treatment did not transcriptionally activate genes involved in the glutathione/ascorbate cycle. Although some post-transcriptional regulations appeared in the degradome analysis showing that both the GR1 and GR2 transcripts, miR394 did not significantly cleave GR transcripts. APx has a high affinity for H2O2 and can reduce it to H2O in chloroplasts, cytosol, mitochondria and peroxisomes, as well as in the apoplastic space. Of the three genes encoding a cytoplasmic ascorbate peroxidase, the HbAPx1 and HbAPx5 transcripts were the most abundant. Considering the lower expression of these 3 APx genes compared to the plastidic APx4, the cytosolic ASA pathway might have a lower reducing capacity than the plastid pathway, which is obvious since the production of ROS is known to be high in plastids. Of the 23 Hevea genes encoding a GST, 21 were predicted as cytosolic GST. Among them, the GSTU3 and GSTF1 genes were actively expressed in latex cells. As GST plays a central role in the use of the reduction power of GSH to detoxify electrophiles, glutathione might be considered as the most important antioxidant in laticifers.

Glutathione, ascorbate and vitamin E isomers are the major antioxidants in latex22. The glutathione biosynthesis pathway involves two ATP-dependent enzymes: γ-glutamate cysteine ligase (GCL) and glutathione synthetase (GS). Of the two G5 and GCL genes identified in the rubber genome, only one of each was encoded protein predicted to be expressed in latex cytosol (GS1 and GCL2), one GS (GS2) and the two GCL (GCL1 and GCL2) being expressed in plastids. The genes encoding GS2 and GCL2 were significantly over-expressed in response to ethephon. There are four routes for ASA biosynthesis in plant: the L-galactose pathway, the myo-inositol oxygenase pathway, the salvage pathway via L-galactonate, and the L-gulose-pathway. Of these four routes, L-galactose is the major pathway in many plants8,37. The L-galactono-1,4-lactone (L-GalL) biosynthesis pathway occurs in cytosol, which consists of five enzymes (VTC1, GME, VTC2, VTC4 and GDH). All genes encoding these enzymes have homologues expressed in latex cytosol.

There are 4 vitamin E isomers in latex: α-tocopherol, α-tocotrienol, γ-tocotrienol and δ-tocotrienol38,39. Genes involved in the biosynthesis of δ-tocotrienol (VTE1 and VTE2) and γ-tocotrienol (VTE1, VTE31, VTE32 and VTE33) were expressed at moderate or high levels in latex. VTE33 had also a low level of expression related to
Table 4. Comparison of HbmiR398 (acc_420) cleavage site between cytosolic and chloroplastic CuZnSOD isoforms. Arrow indicated the cleavage site observed experimentally for HbCuZnSOD2 by miR398 (Gébelin et al. 2012) and in the degradome analysis. Sequence variations in cytosolic isoforms sequences compared to HbCuZnSOD2 are in bold and highlighted character.

Gene name	Sub-cellular localization	mfe kcal/mol	Alignment
HbCuZnSOD1	cytosolic	Non functional	mIRNA 23 UAGU-C-CGGGCCGAGACUCU-UGUGU 1
			Target 364 GUGAUCGGGAGAGUUGGCGCAGAU 390
HbCuZnSOD2	chloroplastic	−37.3	mIRNA 23 UAGU-C-CGGGCCGAGACUCU-UGUGU 1
			Target 456 GUGAUCGGGAGAGUUGGCGCAGAU 480
HbCuZnSOD3	cytosolic	Non functional	mIRNA 23 UAGU-C-CGGGCCGAGACUCU-UGUGU 1
			Target 346 GUGAUCGGGAGAGUUGGCGCAGAU 372
HbCuZnSOD4	cytosolic	Non functional	mIRNA 23 UAGU-C-CGGGCCGAGACUCU-UGUGU 1
			Target 284 GUGAUCGGGAGAGUUGGCGCAGAU 309

Table 4. Comparison of HbmiR398 (acc_420) cleavage site between cytosolic and chloroplastic CuZnSOD isoforms. Arrow indicated the cleavage site observed experimentally for HbCuZnSOD2 by miR398 (Gébelin et al. 2012) and in the degradome analysis. Sequence variations in cytosolic isoforms sequences compared to HbCuZnSOD2 are in bold and highlighted character.

To conclude, this study reveals new insights into small RNA-mediated post-transcriptional regulations of ROS-scavenging systems. To our knowledge, this is the first report on a mutation in the miR398 binding site of the CuZnSOD altering the post-transcriptional regulation described in model species. In addition, the literature mentioned microRNA-mediated post-transcriptional regulation on ROS production and scavenging systems. This work paves the way to the study of adaptive mechanisms. Besides, several genetic studies have revealed the involvement of antioxidant compounds in complex traits of several species. In Hevea, the 161 redox-related genes expressed in latex represent candidate genes for the identification of allelic variability. The development of molecular markers and the analysis of genetic variability of antioxidants should support breeding programmes, especially for traits relative to environmental stress.

Methods
Identification and classification of redox-related genes in the Hevea brasiliensis genome and transcriptome. Redox-related genes were identified from both the Hevea reference genome and transcriptome (Fig. 1). An amino acid sequence dataset was created by downloading sequences of thirty redox-related gene families from the UniProt database (http://www.uniprot.org/) using published accession numbers mostly from Arabidopsis, except for the polyphenol oxidase (PPO) family, which is absent in Arabidopsis. Sixteen families were selected for ROS production and scavenging (Table 1). In addition, protein sequences of genes involved in the biosynthesis of three major antioxidants in latex (ascorbate, glutathione, and tocotrienol) were collected. This dataset was blasted against the published Hevea genome and transcriptome. Redox-related contigs were also identified using blastx and GO annotations of the Hevea transcriptome. The two lists of contigs were merged and blasted on the rubber genome to identify unique contigs. Redox-associated genes were classified for each gene family related to ROS production, ROS-scavenging and regulation, and antioxidant biosynthesis (ascorbate, glutathione and tocotrienol).

Phylogenetic analysis of redox-related genes. The full length amino acid sequences of Arabidopsis redox-related protein were aligned with the amino acid deduced sequences from Hevea clone Reyan 7−33−97 genome. Identities of proteins are provided in Supplemental Table 5. The polyphenol oxidase family being absent in Arabidopsis, we used the Populus PPO gene family. This alignment was made by Muscle via Mega 6. Amino acid sequence of Arabidopsis actin 1 or Arabidopsis glutamate cysteine ligase was used as outgroup control. The phylogenetic trees were generated in Mega 6 by Bootstrap method with 500 replications after alignment.

Prediction of the subcellular localization of redox-related proteins. The subcellular location of redox-related genes was predicted with translated sequences using WoLF PSORT (http://www.genscript.com/wolf-psort.html), CELLO2GO (http://cello.life.nctu.edu.tw/cello2go/) and Plant-mPLoc (http://www.csbio.sjtu.edu.cn/bioinf/plant-multi/). The 3 predictors were successfully tested on subcellular localization prediction. The matching ratio between the prediction result and protein location was calculated according to Xiong’s Supplemental Table 2. The matching ratios from these 3 predictors ranged from 50% to 80%. The prediction of subcellular localization was considered as acceptable when the matching ratio of merged results was above 90%.

Identification of small RNA and target mRNA couples. Degradome data for several Hevea tissues (latex, leaves, male and female flowers, seeds, root and barm and zygotic embryos) were obtained according to a protocol adapted from German. Hevea microRNAs from small RNAseq data published by Gebelin and co-workers were annotated by MITP (https://sourceforge.net/projects/mitp/files/). This pipeline complies to the recommendations set by Axtell and coll, looking from hairpin structures, producing miRNA and miRNA* with up to 3 bulges or 6 unpaired bases between miRNA and miRNA*. The prediction was done with sequences
of 20–22 nt in size from 5 distinct small-RNA-seq libraries as recommended and not based on prediction from genomic sequences only. Degradome data were then analysed using the CLEAVELAND pipeline developed by Addo-Quaye et al. The degradome categories correspond to: category 4: just one read at this position; Category 3: > 1 read, but below or equal to the average depth of coverage on the transcript; Category 2: > 1 read, equal to the average depth of coverage on the transcript when there is > 1 position at maximum value; Category 1: > 1 read, equal to the maximum of the average depth of coverage on the transcript when there is just one position at maximum value.

RNA-seq data mining of cleaved targets. Expression of cleaved transcripts related to redox genes were calculated from the same RNA-seq datasets, with the exact number of reads overlapping the sRNA binding site, by using BEDTOOLS program (2.24.0) to intersect bam files with sRNA binding site coordinates (between Tstart and Tstop) provided by CLEAVELAND outputs. Then, by using R package EdgeR, comprising an over-dispersed Poisson model taking into account both biological and technical variability, differential gene expression analyses of replicated count data were performed by the experimental design allows side-by-side comparison to identify firstly, differentially expressed genes upon ethephon stimulation in the latex of healthy trees, and secondly, differentially expressed genes in the latex of healthy and TPD-affected trees subjected to ethephon stimulation.

References
1. Karkonen, A. & Kuchitsu, K. Reactive oxygen species in cell wall metabolism and development in plants. Phytochemistry 112, 22–32, https://doi.org/10.1016/j.phytochem.2014.09.016 (2015).
2. Baxter, A., Mitter, R. & Suzuki, N. ROS as key players in plant stress signalling. J Exp Bot 65, 1229–1240, https://doi.org/10.1093/jxb/ert375 (2014).
3. Foyer, C. H. & Noctor, G. Oxidant and antioxidant signalling in plants: a re-evaluation of the concept of oxidative stress in a physiological context. Plant, Cell & Environment 28, 1056–1071, https://doi.org/10.1111/j.1365-3040.2005.01327.x (2005).
4. Guan, Q., Lu, X., Zeng, H., Zhang, Y. & Zhu, J. Heat stress induction of miR398 triggers a regulatory loop that is critical for thermostolerance in Arabidopsis. Plant J 74, 840–851, https://doi.org/10.1111/jtp.12169 (2013).
5. Naya, L. et al. Regulation of copper homeostasis and biotic interactions by microRNA 398b in common bean. PLoS One 9, e84416, https://doi.org/10.1371/journal.pone.0084416 (2014).
6. Yue, E. et al. Overexpression of miR529a confers enhanced resistance to oxidative stress in rice (Oryza sativa L.). Plant Cell Rep 36, 1171–1182, https://doi.org/10.1007/s00299-017-2146-8 (2017).
7. Zhang, X., Wang, W., Wang, M., Zhang, H. Y. & Liu, J. H. The miR396b of Poncirus trifoliata Functions in Cold Tolerance by Regulating ACC Oxidase Gene Expression and Modulating Ethylene-Polyamine Homeostasis. Plant Cell Physiol 57, 1865–1878, https://doi.org/10.1093/pcp/pcw108 (2016).
8. Yuan, S. et al. Constitutive Expression of Rice MicroRNAs528 Alters Plant Development and Enhances Tolerance to Salinity Stress and Nitrogen Starvation in Creeping Bentgrass. Plant Physiol 169, 576–593, https://doi.org/10.1104/pp.15.00899 (2015).
9. Axtell, M. J., Jan, C., Rajagopalan, R. & Bartel, D. P. A two-hit trigger for siRNA biogenesis in plants. Curr Biol 21, 565–577 (2006).
10. Axtell, M. J., Westholm, J. O. & Lai, E. C. Vive la difference: biogenesis and evolution of microRNAs in plants and animals. Genome Biol 12, 221 (2011).
11. Gebelín, V. et al. Identification of novel microRNAs in Hevea brasiliensis and computational prediction of their targets. BMC Plant Biol 12, 18, https://doi.org/10.1186/1471-2229-12-18 (2012).
12. An, W. et al. MicroRNA and mRNA expression profiling analysis revealed the regulation of plant height in Gossypium hirsutum. BMC Genomics 16, 886, https://doi.org/10.1186/s12864-015-2071-6 (2015).
13. Addo-Quaye, C., Eshoo, T.W., Bartel, D.P. & Axtell, M.J. Endogenous siRNA and miRNA targets identified by sequencing of the Arabidopsis degradome. Curr Biol 18, 758–762, https://doi.org/10.1016/j.cub.2008.04.042 (2008).
14. Pappas Mde, C., Pappas, G. J. Jr. & Grattaglia, D. Genome-wide discovery and validation of Eucalyptus small RNAs reveals variable patterns of conservation and diversity across species of Myrtaceae. BMC Genomics 16, 1113, https://doi.org/10.1186/s12864-015-2322-6 (2016).
15. Chen, M., Rao, H., Wu, Q. & Wang, Y. Transcriptome-Wide Identification of miRNA Targets under Nitrogen Deficiency in Populus tomentosa Using Degradome Sequencing. International journal of molecular sciences 16, 13937–13958, https://doi.org/10.3390/ijms160613937 (2015).
16. de Fay, E. & Jacob, J. L. In Physiology of rubber tree latex (eds J. D’Auzac, J. L. Jacob, & H. Chrestin) 4–14 (CRC Press, 1989).
17. D’Auzac, J. & al. J. In Recent research developments in plant physiology Vol. 1 (ed. Pandolai S. G.) 273–332 (Trivandrum: Research Singpost, 1997).
18. Chrestin, H., Bangrätz, J., D’Auzac, J. & Jacob, J. Role of the lutoïdic tonoplast in the senescence and degeneration of the laticifers of Hevea brasiliensis. Zeitschrift für Pflanzenphysiologie 114, 261–268 (1984).
19. Putranto, R. A. et al. Involvement of Ethylene in the Latex Metabolism and Tapping Panel Dryness of Hevea brasiliensis. International journal of molecular sciences 16, 17883–17908, https://doi.org/10.3390/ijms160817885 (2015).
20. Witsuwannakul, R., Pasitkul, P., Jewtragoon, P. & Witsuwannakul, D. Hevea latex lectin binding protein in C-serum as an anti-latex coagulating factor and its role in a proposed new model for latex coagulation. Phytochemistry 69, 656–662 (2008).
21. Okoma, K. M., Dian, K., Obouayeba, S., Elabo, A. A. E. & Ngueta, A. S. P. Seasonal variation of tapping panel dryness expression in rubber tree Hevea brasiliensis. Mucuñahua. In Côte d’Ivoire. Agricultural and Biology Journal of North America 2, 559–569 (2011).
22. Zhang, Y., Leclercq, J. & Montoro, P. Reactive oxygen species in Hevea brasiliensis latex and relevance to Tapping Panel Dryness. Tree Physiol. https://doi.org/10.1093/treephys/tpw106 (2016).
23. Zhao, J., Chen, Y., Wu, S. & Tian, W. Comparative transcriptome analysis of latex from rubber tree clone CATAS8-79 and PR107 reveals new cues for the regulation of latex regeneration and duration of latex flow. BMC Plant Biol 15, 104, https://doi.org/10.1186/s12870-015-0488-3 (2015).
24. Li, H.-L. et al. Comparative Transcriptome Analysis of Latex Reveals Molecular Mechanisms Underlying Increased Rubber Yield in Hevea brasiliensis Self-Rooting Juvenile Clones. Frontiers Plant Science 7, 1204 (2016).
25. Tang, C. et al. The rubber tree genome reveals new insights into rubber production and species adaptation. Nature Plants 2, 16073, https://doi.org/10.1038/nplants.2016.73 (2016).
26. Montoro, P. et al. Transcriptome analysis in Hevea brasiliensis latex revealed changes in hormone signalling pathways during ethephon stimulation and consequent Tapping Panel Dryness. Sci Rep 8, 8483, https://doi.org/10.1038/s41598-018-20854-y (2018).
27. Wei, F. et al. Transcriptome sequencing and comparative analysis reveal long-term flowing mechanisms in Hevea brasiliensis latex. Gene 556, 153–162 (2015).
28. Li, D. et al. Next-generation sequencing, assembly, and comparative analyses of the latex transcriptomes from two elite Hevea brasiliensis varieties. Tree Genetics & Genomes 11, 1–9 (2015).
29. Gebelin, V., Leclercq, J., Hu, S., Tang, C. & Montoro, P. Regulation of MIR genes in response to abiotic stress in Hevea brasiliensis. International journal of molecular sciences 14, 19587–19601, https://doi.org/10.3390/ijms141019587 (2013).
30. Gebelin, V. et al. The small RNA profile in latex from Hevea brasiensis trees is affected by tapping panel dryness. *Tree Physiology*, https://doi.org/10.1093/treephys/tpn076 (2013).
31. Kanjanawattanawong, S. et al. Characterization of rubber tree microRNA in phytohormone response using large genomic DNA libraries, promoter sequence and gene expression analysis. *Molecular genetics and genomics* **289**, n.p (2014).
32. Lertpanyasampatha, M. et al. Genome-wide analysis of microRNAs in rubber tree (Hevea brasiensis L.) using high-throughput sequencing. *Planta* **236**, 437–445, https://doi.org/10.1007/s00425-012-1622-1 (2012).
33. Lertpanyasampatha, M., Viboonjun, U., Kongswadworakul, P., Chrestin, H. & Narangajavana, J. Differential expression of microRNAs and their targets reveals a possible dual role in physiological bark disorder in rubber tree. *Journal of Plant Physiology* **171**, 1117–1126 (2014).
34. Pramoolkit, P. et al. Involvement of ethylene-responsive microRNAs and their targets in increased latex yield in the rubber tree in response to ethylene treatment. *Plant Physiology Biochem* **84**, 203–212, https://doi.org/10.1016/j.plaphy.2014.09.016 (2014).
35. Chrestin, H. In *Physiology of Rubber Tree Latex* (eds d’Auzac, J., Jacob, J. L. & Chrestin, C.) 431–441 (CRC Press, Inc., 1989).
36. Bulley, S. & Laing, W. The regulation of ascorbate biosynthesis. *Curr Opin Plant Biol* **33**, 15–22, https://doi.org/10.1016/j._____ (2016).
37. Conklin, P. L. et al. Genetic evidence for the role of GDP-mannose in plant ascorbic acid (vitamin C) biosynthesis. *Proc Natl Acad Sci USA* **96**, 4198–4203 (1999).
38. Dunphy, P. J., Whittle, K. J., Pennock, J. F. & Morton, R. A. Identification and estimation of tocotrienols in Hevea latex. *Nature* **207**, 521–522 (1965).
39. Yacob, A. R., Bakar, N. A. A. & Said, N. Vitamin E isomers from Latex Timber Clone Rubber Tree Characterized by Ultra Violet and High Performance Liquid Chromatography. *AFCBEEx Procedia* **4**, 228–234 (2012).
40. Mellidou, I., Chagne, D., Laing, W. A., Keulemans, J. & Davey, M. W. Allochon variation in paralogs of GDP-L-galactose phosphorylase is a major determinant of vitamin C concentrations in apple fruit. *Plant Physiol* **160**, 1613–1629, https://doi.org/10.1104/____ pp.112.203786 (2012).
41. Stevens, R. et al. Tomato fruit ascorbic acid content is linked with monodehydroascorbate reductase activity and tolerance to chilling stress. *Plant Cell Environ* **31**, 1086–1096, https://doi.org/10.1111/j.1365-3040.2008.01824.x (2008).
42. Sauvage, C. et al. Genome-Wide Association in Tomato Reveals 44 Candidate Loci for Fruit Metabolic Traits. *Plant Physiol* **165**, 1120–1132, https://doi.org/10.1104/____ pp.114.241521 (2014).
43. Jo, Y. & Hyun, T. K. Genome-wide identification of antioxidant component biosynthetic enzymes: comprehensive analysis of ascobic acid and tococromanol biosynthetic genes in rice. *Computational biology and chemistry* **35**, 261–268, https://doi.org/10.1016/j.____ (2011).
44. Sohpal, V. K., Dey, A. & Singh, A. MEGA biocentric software for sequence and phylogenetic analysis: a review. *International journal of bioinformatics research and applications* **6**, 230–240, https://doi.org/10.1504/IJBRA.2010.034072 (2010).
45. Xiong, E., Zheng, C., Wu, X. & Wang, W. Protein subcellular location: The gap between prediction and experimentation. *Plant Molecular Biology Reporter* **34**, 52–61 (2016).
46. German, M. A., Luo, S., Schroot, G., Meyers, B. C. & Green, P. J. Construction of Parallel Analysis of RNA Ends (PARE) libraries, promoter sequence and gene expression analysis. *Molecular genetics and genomics* **289**, 525–522 (1965).
47. Axtell, M. J. & Meyers, B. C. Revisiting Criteria for Plant MicroRNA Annotation in the Era of Big Data. *Nature protocols* **11**, 203–212, https://doi.org/10.1038___ (2018).
48. Conklin, P. L. et al. Genetic evidence for the role of GDP-mannose in plant ascorbic acid (vitamin C) biosynthesis. *Proc Natl Acad Sci USA* **96**, 4198–4203 (1999).
49. Dunphy, P. J., Whittle, K. J., Pennock, J. F. & Morton, R. A. Identification and estimation of tocotrienols in Hevea latex. *Nature* **207**, 521–522 (1965).
50. Yacob, A. R., Bakar, N. A. A. & Said, N. Vitamin E isomers from Latex Timber Clone Rubber Tree Characterized by Ultra Violet and High Performance Liquid Chromatography. *AFCBEEx Procedia* **4**, 228–234 (2012).
51. Mellidou, I., Chagne, D., Laing, W. A., Keulemans, J. & Davey, M. W. Allochon variation in paralogs of GDP-L-galactose phosphorylase is a major determinant of vitamin C concentrations in apple fruit. *Plant Physiol* **160**, 1613–1629, https://doi.org/10.1104/___ pp.112.203786 (2012).
52. Stevens, R. et al. Tomato fruit ascorbic acid content is linked with monodehydroascorbate reductase activity and tolerance to chilling stress. *Plant Cell Environ* **31**, 1086–1096, https://doi.org/10.1111/j.1365-3040.2008.01824.x (2008).
53. Sauvage, C. et al. Genome-Wide Association in Tomato Reveals 44 Candidate Loci for Fruit Metabolic Traits. *Plant Physiol* **165**, 1120–1132, https://doi.org/10.1104/___ pp.114.241521 (2014).
54. Jo, Y. & Hyun, T. K. Genome-wide identification of antioxidant component biosynthetic enzymes: comprehensive analysis of ascobic acid and tococromanol biosynthetic genes in rice. *Computational biology and chemistry* **35**, 261–268, https://doi.org/10.1016/j.____ (2011).
55. Sohpal, V. K., Dey, A. & Singh, A. MEGA biocentric software for sequence and phylogenetic analysis: a review. *International journal of bioinformatics research and applications* **6**, 230–240, https://doi.org/10.1504/IJBRA.2010.034072 (2010).
56. Xiong, E., Zheng, C., Wu, X. & Wang, W. Protein subcellular location: The gap between prediction and experimentation. *Plant Molecular Biology Reporter* **34**, 52–61 (2016).
57. German, M. A., Luo, S., Schroot, G., Meyers, B. C. & Green, P. J. Construction of Parallel Analysis of RNA Ends (PARE) libraries, promoter sequence and gene expression analysis. *Molecular genetics and genomics* **289**, 525–522 (1965).
58. Axtell, M. J. & Meyers, B. C. Revisiting Criteria for Plant MicroRNA Annotation in the Era of Big Data. *Nature protocols* **11**, 203–212, https://doi.org/10.1038___ (2018).

Acknowledgements

This work was supported by CIRAD, the *Institut Français du Caoutchouc*, Socfindo, SIPH and Michelin (TOSCA Project), and scholarships from the Chinese Scholarship Council, Agreenium and the Chinese Academy of Sciences. The authors also thank Pascal Rey and Pierre Frenod for their careful reading, and Peter Biggins for his revision of the English.

Author Contributions

Y.Z. classed the gene families, predicted subcellular localization and analysed gene expression data. S.W., E.O.A. and S.P. performed the bioinformatics analyses. J.L. and S.W. performed the degradome analysis. C.T. provided the genome dataset. S.H. supervised the bioinformatics analyses. Y.Z., J.L. and P.M. drafted the manuscript. All the co-authors edited and approved the manuscript. P.M. coordinated the project.

Additional Information

Supplementary information accompanies this paper at https://doi.org/10.1038/s41598-019-42197-8.

Competing Interests: The authors declare no competing interests.

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

© The Author(s) 2019