Non-uniform continuity of the Fokas-Olver-Rosenau-Qiao equation in Besov spaces

Xing Wu*

College of Information and Management Science, Henan Agricultural University,
Zhengzhou, Henan, 450002, China

Abstract: In this paper, we prove that the solution map of Fokas-Olver-Rosenau-Qiao equation (FORQ) is not uniformly continuous on the initial data in Besov spaces. Our result extends the previous non-uniform continuity in Sobolev spaces (Nonlinear Anal., 2014) [11] to Besov spaces and is consistent with the present work (J. Math. Fluid Mech., 2020) [17] on Novikov equation up to some coefficients when dropping the extra term $(\partial_x u)^3$ in FORQ.

Keywords: Fokas-Olver-Rosenau-Qiao equation, Non-uniform continuous dependence, Besov spaces

MSC (2010): 35B30; 35G25; 35Q53

1 Introduction

In this paper, we are concerned with the following Fokas-Olver-Rosenau-Qiao equation (FORQ)

\[\begin{cases}
 u_t - u_{xxt} + 3u^2u_x - u^3_x - 4uu_xu_{xx} + 2u_xu_{xx}^2 - u^2u_{xxx} + u_x^2u_{xxx} = 0, & t > 0, \quad x \in \mathbb{R}, \\
 u(0, x) = u_0, & x \in \mathbb{R}.
\end{cases} \tag{1.1} \]

Eq. (1.1) written in a slightly different form was first derived by Fokas [3] as an integrable generalisation of the modified KdV equation. Soon after, Fuchssteiner [5] and Olver-Rosenau [19] independently obtained similar versions of this equation by performing a simple explicit algorithm based on the bi-Hamiltonian representation of the classically integrable system. Several years later, the concise form written above was recovered by Qiao [20] from the two-dimensional Euler equations by using an approximation procedure.

The entire integrable hierarchy related to the FORQ equation was proposed by Qiao [21]. It also has bi-Hamiltonian structure, which was first derived in [19] and then in [20], admits Lax pair [20] and peakon travelling wave solutions that are orbitally stable [6, 22, 18]. For more discussion about Lax integrability and peakon solutions of FORQ we refer to [2], where this equation is also referred as the modified Camassa-Holm equation.

*E-mail:ny2008wx@163.com
The local well-posedness and ill-posedness for the Cauchy problem of the FORQ equation (1.1) in Sobolev spaces and Besov spaces were studied in the series of papers [11, 12, 13, 4]. It was showed by Himonas-Mantzavinos [11] that the FORQ is well-posed in Sobolev space H^s with $s > \frac{5}{2}$ in the sense of Hadamard. Fu et al.[4] established the local well-posedness in Besov space $B^s_{p,r}$ with $s > \max\{2 + \frac{1}{p}, \frac{5}{2}\}$, $1 \leq p, r \leq \infty$. After the non-uniform dependence for some dispersive equations was studied by Kenig et al. [14], the issue of non-uniform continuity of solutions on initial data has attracted much more attention, such as on classical Camassa-Holm equation [7, 8, 9, 16] and on famous Novikov equation [10, 17]. It was further proved in [11] that the dependence on initial data is sharp, i.e. the data-to-solution map is continuous but not uniformly continuous.

For studying the non-uniform continuity of the FORQ equation, it is more convenient to express (1.1) in the following equivalent nonlocal form

\[
\begin{align*}
\begin{cases}
 u_t + u^2 \partial_x u &= \frac{1}{3}(\partial_x u)^3 - \frac{4}{3}(1 - \partial_x^2)^{-1}[(\partial_x u)^3] - \partial_x(1 - \partial_x^2)^{-1}\left[\frac{2}{3} u^3 + u(\partial_x u)^2\right], \\
 u(0,x) &= u_0, \quad t > 0, \quad x \in \mathbb{R}.
\end{cases}
\end{align*}
\]

(1.2)

When removing $(\partial_x u)^3$ from (1.2), (1.2) becomes the following Novikov equation up to some coefficients

\[
\begin{align*}
\begin{cases}
 u_t + u^2 \partial_x u &= -\frac{4}{3}(1 - \partial_x^2)^{-1}[(\partial_x u)^3] - \partial_x(1 - \partial_x^2)^{-1}\left[\frac{2}{3} u^3 + u(\partial_x u)^2\right], \\
 u(0,x) &= u_0, \quad t > 0, \quad x \in \mathbb{R}.
\end{cases}
\end{align*}
\]

(1.3)

Recently, Li, Yu and Zhu [17] have proved that the solution map of Novikov equation is not uniformly continuous dependence on the initial data in the Besov spaces $B^s_{p,r}(\mathbb{R})$, $s > \max\{1 + \frac{3}{p}, \frac{5}{2}\}$, $1 \leq p, r \leq \infty$. It is noticed that well-posedness for Novikov equation holds for $s > \max\{1 + \frac{3}{p}, \frac{5}{2}\}$ while well-posedness for FORQ holds for $s > \max\{2 + \frac{1}{p}, \frac{5}{2}\}$. This difference between the well-posedness index of these equations may be explained by the presence of the extra term $(\partial_x u)^3$ in FORQ, which is not quasi-linear and is absent from Novikov equation [11].

Up to the present, there is no result for the non-uniform continuous dependence of FORQ in Besov space and it seems more difficult due to the presence of the extra term $(\partial_x u)^3$, which elevates two regularities, compared with Novikov equation and the method developed for the Novikov equation in [17] will make it more complex. In this paper, we will follow a different route to bypass this problem. Firstly, consider a new system satisfied by $(1 - \partial_x)u \triangleq v$. Secondly, for any bounded set v_0 in working space, the corresponding solution $S_t(v_0)$ can be approximated by a function of first degree of time t with convective term and nonlocal term being coefficients. With suitable choice of initial data, the difference between two solutions will produce a term from convective term which will not be small for small time, and thus we obtain the non-uniform continuous dependence of FORQ. These will be described in more detail later.

Now, we state our main result.

Theorem 1.1 Let $s > \max\{2 + \frac{1}{p}, \frac{5}{2}\}$, $1 \leq p, r \leq \infty$. The solution map $u_0 \to S_t(u_0)$ of the initial value problem (1.2) is not uniformly continuous from any bounded subset of $B^s_{p,r}(\mathbb{R})$ into $C([0,T]; B^s_{p,r}(\mathbb{R}))$. More precisely, there exist two sequences $u^{1,n}(0,x)$ and $u^{2,n}(0,x)$ such that

\[
\|u^{1,n}(0,x), u^{2,n}(0,x)\|_{B^s_{p,r}} \lesssim 1, \quad \lim_{n \to \infty} \|u^{1,n}(0,x) - u^{2,n}(0,x)\|_{B^s_{p,r}} = 0,
\]
but

\[\liminf_{n \to \infty} \| S_t(u^{1,n}(0,x)) - S_t(u^{2,n}(0,x)) \|_{B^s_{p,r}} \geq t, \quad t \in [0,T_0], \]

with small positive time \(T_0 \) for \(T_0 \leq T \).

Remark 1.1 Since \(B^s_{2,2} = H^s \) for any \(s \in \mathbb{R} \), our result extends the previous non-uniform continuity in Sobolev spaces [11] to Besov spaces.

Remark 1.2 When dropping the extra term \((\partial_x u)^3 \) in FORQ, we can get the same result on Novikov equation up to some coefficients, which is consistent with the present work [17] on Novikov equation. The method we use in proving Theorem 1.1 is different from [17] and is more general.

Notations: Given a Banach space \(X \), we denote the norm of a function on \(X \) by \(\| \cdot \|_X \), and

\[\| \cdot \|_{L^\infty(T,X)} = \sup_{0 \leq t \leq T} \| \cdot \|_X. \]

The symbol \(A \lesssim B \) means that there is a uniform positive constant \(C \) independent of \(A \) and \(B \) such that \(A \leq CB \).

2 Littlewood-Paley analysis

In this section, we will review the definition of Littlewood-Paley decomposition and nonhomogeneous Besov space, and then list some useful properties. For more details, the readers can refer to [1].

There exists a couple of smooth functions \((\chi, \varphi) \) valued in \([0,1]\), such that \(\chi \) is supported in the ball \(B \triangleq \{ \xi \in \mathbb{R}^d : |\xi| \leq \frac{4}{3} \} \), \(\varphi \) is supported in the ring \(C \triangleq \{ \xi \in \mathbb{R}^d : \frac{2}{3} \leq |\xi| \leq \frac{8}{3} \} \) and \(\varphi \equiv 1 \) for \(\frac{4}{3} \leq |\xi| \leq \frac{3}{2} \). Moreover,

\[
\forall \xi \in \mathbb{R}^d, \quad \chi(\xi) + \sum_{j \geq 0} \varphi(2^{-j} \xi) = 1,
\]

\[
\forall \xi \in \mathbb{R}^d \setminus \{0\}, \quad \sum_{j \in \mathbb{Z}} \varphi(2^{-j} \xi) = 1,
\]

\[
|j - j'| \geq 2 \Rightarrow \text{Supp } \varphi(2^{-j} \cdot) \cap \text{Supp } \varphi(2^{-j'} \cdot) = \emptyset,
\]

\[
j \geq 1 \Rightarrow \text{Supp } \chi(\cdot) \cap \text{Supp } \varphi(2^{-j} \cdot) = \emptyset.
\]

Then, we can define the nonhomogeneous dyadic blocks \(\Delta_j \) and nonhomogeneous low frequency cut-off operator \(S_j \) as follows:

\[
\Delta_j u = 0, \text{ if } j \leq -2, \quad \Delta_{-1} u = \chi(D)u = \mathcal{F}^{-1}(\chi \mathcal{F} u),
\]

\[
\Delta_j u = \varphi(2^{-j} D)u = \mathcal{F}^{-1}(\varphi(2^{-j}) \mathcal{F} u), \text{ if } j \geq 0,
\]

\[
S_j u = \sum_{j' = -\infty}^{j-1} \Delta_{j'} u.
\]
Definition 2.1 ([1]) Let $s \in \mathbb{R}$ and $1 \leq p, r \leq \infty$. The nonhomogeneous Besov space $B^s_{p,r}(\mathbb{R}^d)\) consists of all tempered distribution u such that

$$||u||_{B^s_{p,r}(\mathbb{R}^d)} \triangleq \left(\sum_{j \in \mathbb{Z}} \left(2^{js} \left\| \Delta_j u \right\|_{L^p(\mathbb{R}^d)} \right)^r \right)^{\frac{1}{r}} < \infty.$$

In the following, we list some basic lemmas and properties about Besov space which will be frequently used in proving our main result.

Lemma 2.1 ([1]) (1) Algebraic properties: \(\forall s > 0\), \(B^s_{p,r}(\mathbb{R}^d)\cap L^\infty(\mathbb{R}^d)\) is a Banach algebra. \(B^s_{p,r}(\mathbb{R}^d)\) is a Banach algebra \(\iff B^s_{p,r}(\mathbb{R}^d) \hookrightarrow L^\infty(\mathbb{R}^d) \iff s > \frac{d}{p}\) or \(s = \frac{d}{p}\), \(r = 1\).

(2) For any \(s > 0\) and \(1 \leq p, r \leq \infty\), there exists a positive constant \(C = C(d, s, p, r)\) such that

$$\left\| uv \right\|_{B^s_{p,r}(\mathbb{R}^d)} \leq C \left(\left\| u \right\|_{L^\infty(\mathbb{R}^d)} \left\| v \right\|_{B^s_{p,r}(\mathbb{R}^d)} + \left\| v \right\|_{L^\infty(\mathbb{R}^d)} \left\| u \right\|_{B^s_{p,r}(\mathbb{R}^d)} \right).$$

(3) Let \(m \in \mathbb{R}\) and \(f\) be an \(S^m\) - multiplier (i.e., \(f : \mathbb{R}^d \rightarrow \mathbb{R}\) is smooth and satisfies that \(\forall \alpha \in \mathbb{N}^d\), there exists a constant \(C_\alpha\) such that \(\left| \partial^\alpha f(\xi) \right| \leq C_\alpha (1 + |\xi|)^{m-|\alpha|}\) for all \(\xi \in \mathbb{R}^d\). Then the operator \(f(D)\) is continuous from \(B^s_{p,r}(\mathbb{R}^d)\) to \(B^{s-m}_{p,r}(\mathbb{R}^d)\).

(4) For any \(s \in \mathbb{R}\), \((1 - \partial_x)^{-1}\) is an isomorphic mapping from \(B^{s-1}_{p,r}(\mathbb{R}^d)\) into \(B^s_{p,r}(\mathbb{R}^d)\).

Lemma 2.2 ([1, 15]) Let \(1 \leq p, r \leq \infty\) and \(\sigma > -\min\{\frac{1}{p}, 1 - \frac{1}{p}\}\). There exists a constant \(C = C(p, r, \sigma)\) such that for any smooth solution to the following linear transport equation:

$$\partial_t f + v \partial_x f = g, \quad f|_{t=0} = f_0.$$

We have

$$\sup_{s \in [0, t]} \left\| f(s) \right\|_{B^s_{p,r}(\mathbb{R})} \leq C e^{CV_p(v, t)} \left(\left\| f_0 \right\|_{B^s_{p,r}(\mathbb{R})} + \int_0^t \left\| g(\tau) \right\|_{B^s_{p,r}(\mathbb{R})} d\tau \right),$$

with

$$V_p(v, t) = \begin{cases} \int_0^t \left\| \nabla v(s) \right\|_{B^{s-\frac{1}{p}}(\mathbb{R}^d)} ds, & \text{if } \sigma < 1 + \frac{1}{p}, \\ \int_0^t \left\| \nabla v(s) \right\|_{B^s_{p,r}(\mathbb{R})} ds, & \text{if } \sigma = 1 + \frac{1}{p} \text{ and } r > 1, \\ \int_0^t \left\| \nabla v(s) \right\|_{B^{s-1}_{p,r}(\mathbb{R})} ds, & \text{if } \sigma > 1 + \frac{1}{p} \text{ or } \{ \sigma = 1 + \frac{1}{p} \text{ and } r = 1 \}. \end{cases}$$

3 Reformulation of the System

Due to the presence of the extra term \((\partial_x u)^3\) in FORQ, it seems difficult to deal with Eq. (1.2) directly. Therefore, we shall first differentiate FORQ with respect to \(x\) and then simplify the resulting expression, we obtain

$$\partial_t (\partial_x u) = (\partial_x u)^2 \partial_x^2 u - 2u(\partial_x u)^2 - u^2 \partial_x^2 u + \left[\frac{2}{3} u^3 + u(\partial_x u)^2 \right]$$

$$- (1 - \partial_x^2)^{-1} \partial_x \left[\frac{1}{3} (\partial_x u)^3 \right] - (1 - \partial_x^2)^{-1} \left[\frac{2}{3} u^3 + u(\partial_x u)^2 \right].$$

(3.1)
Let $v = (1 - \partial_x)u$, we have from (1.2) and (3.1) that

$$\begin{cases}
\partial_t v = (v^2 - 2uv)\partial_x v - \frac{1}{3}u^3 - \frac{1}{3}v^3 - \Phi_1(v) - \Phi_2(v), \\
u = (1 - \partial_x)^{-1}v, \\
v(0, x) = (1 - \partial_x)u_0(x) \triangleq v_0,
\end{cases}$$

(3.2)

where the nonlocal terms $\Phi_1(v), \Phi_2(v)$ are defined by

$$\Phi_1(v) = (1 - \partial_x^2)^{-1}\left[\frac{8}{3}u^3 - \frac{1}{3}v^3 - 3u^2v\right], \quad \Phi_2(v) = \partial_x(1 - \partial_x^2)^2\left[\frac{1}{3}v^3 - u^2v\right].$$

Since $(1 - \partial_x)^{-1}$ is an isomorphic mapping from $B^{s-1}_{p,r}(\mathbb{R})$ into $B^s_{p,r}(\mathbb{R})$, the non-uniform continuous dependence of u in $B^s_{p,r}$ then can be transformed into that of v in $B^{s-1}_{p,r}$.

4 Non-uniform continuous dependence

In this section, we will give the proof of Theorem 1.1. However, as explained above, we will directly consider Eq. (3.2) satisfied by v.

Firstly, we establish the estimates of the difference between the solution $S_t(v_0)$ and initial data v_0 in different Besov norms. That is

Proposition 4.1 Assume that $\|v_0\|_{B^{s-1}_{p,r}} \lesssim 1$. Under the assumptions of Theorem 1.1, we have

$$\begin{align*}
\|S_t(v_0) - v_0\|_{B^{s-2}_{p,r}} &\lesssim t\|v_0\|_{B^{s-2}_{p,r}}\|v_0\|_{B^{s-1}_{p,r}}, \\
\|S_t(v_0) - v_0\|_{B^{s-1}_{p,r}} &\lesssim t(\|v_0\|_{B^{s-1}_{p,r}}^3 + \|v_0\|_{B^{s-2}_{p,r}}^2\|v_0\|_{B^{s}_{p,r}}), \\
\|S_t(v_0) - v_0\|_{B^{s}_{p,r}} &\lesssim t(\|v_0\|_{B^{s-1}_{p,r}}\|v_0\|_{B^{s}_{p,r}} + \|v_0\|_{B^{s-2}_{p,r}}\|v_0\|_{B^{s+1}_{p,r}}).
\end{align*}$$

Proof For simplicity, denote $v(t) = S_t(v_0)$. Firstly, according to the local well-posedness result [4, 11], there exists a positive time $T = T(||u_0||_{B^{s-1}_{p,r}}, s, p, r)$ such that the solution $u(t)$ belongs to $C([0, T]; B^{s}_{p,r})$. Moreover, by Lemmas 2.1-2.2, for all $t \in [0, T]$ and $\gamma \geq s - 2$, there holds

$$\|u(t)\|_{B^{\gamma}_{p,r}} \leq C\|u_0\|_{B^{\gamma}_{p,r}} \text{ or } \|v(t)\|_{B^{\gamma-1}_{p,r}} \leq C\|v_0\|_{B^{\gamma-1}_{p,r}}. \quad (4.1)$$

Now we shall estimate the different Besov norms of the term $v(t) - v_0$, which can be bounded by t multiplying the corresponding Besov norms of initial data v_0.

It follows by differential mean value theorem and the Minkowski inequality that

$$\begin{align*}
\|v(t) - v_0\|_{B^{s-1}_{p,r}} &\lesssim \int_0^t \|\partial_t v\|_{B^{s-1}_{p,r}}d\tau \\
&\lesssim \int_0^t \|(v^2 - 2uv)\partial_x v\|_{B^{s-1}_{p,r}}d\tau + \int_0^t \left|\frac{1}{3}v^3\right|_{B^{s-1}_{p,r}}d\tau \\
&+ \int_0^t \left|\frac{1}{3}u^3\right|_{B^{s-1}_{p,r}}d\tau + \int_0^t ||\Phi_1(v)||_{B^{s-1}_{p,r}}d\tau + \int_0^t ||\Phi_2(v)||_{B^{s-1}_{p,r}}d\tau.
\end{align*}$$

Here, we shall only have to estimate $\|(v^2 - 2uv)\partial_x v\|_{B^{s-1}_{p,r}}$ and $\left|\frac{1}{3}v^3\right|_{B^{s-1}_{p,r}}$, since the other terms can be processed in a similar more relaxed way and have the same bound as $\|v^3\|_{B^{s-1}_{p,r}}$.

5
Using the fact that $B^{s-2}_{p,r}$ is an Banach algebra with $s - 2 > \max\{\frac{1}{p}, \frac{1}{2}\}$, together with the product estimates (2) in Lemma 2.1, one has

\[
\|v^3\|_{B^{s+1}_{p,r}} \lesssim \|v\|_{B^{s+1}_{p,r}},
\]
\[
\|(v^2 - 2uv)\partial_x v\|_{B^{s+1}_{p,r}} \lesssim \|(v^2 - 2uv)\|_{L_\infty} \|\partial_x v\|_{B^{s+1}_{p,r}} + \|v\|_{L_\infty}^3 \|\partial_x v\|_{L_\infty}
\]
\[
\lesssim \|v\|_{B^{s+2}_{p,r}}^2 \|v\|_{B^{s+1}_{p,r}} + \|v\|_{B^{s+1}_{p,r}}^3,
\]
where we have used the relation $u = (1 - \partial_x)^{-1}v$, and $(1 - \partial_x)^{-1}$ is a S^{-1}--multiplier, which is continuous from $B^{s-1}_{p,r}(\mathbb{R})$ to $B^{s'}_{p,r}(\mathbb{R})$, thus $\|u\|_{B^{s'}_{p,r}} \lesssim \|v\|_{B^{s-1}_{p,r}}$ for any $s' \in \mathbb{R}$.

Therefore, in view of (4.1), for $t \in [0, T]$, we have

\[
\|v(t) - v_0\|_{B^{s+1}_{p,r}} \lesssim t\|v\|_{L^\infty_t(B^{s-2}_{p,r})}^2 \|v\|_{L^\infty_t(B^{s}_{p,r})} + \|v\|_{L^\infty_t(B^{s-2}_{p,r})}^3
\]
\[
\lesssim t(\|v_0\|_{B^{s+2}_{p,r}}^2 \|v_0\|_{B^{s}_{p,r}} + \|v_0\|_{B^{s+1}_{p,r}}).
\]

Following the same procedure of estimate as above, we have

\[
\|v(t) - v_0\|_{B^{s}_{p,r}} \lesssim \int_0^t \|\partial_x v\|_{B^{s-2}_{p,r}} d\tau
\]
\[
\lesssim \int_0^t \|(v^2 - 2uv)\partial_x v\|_{B^{s-2}_{p,r}} d\tau + \int_0^t \frac{1}{3} v^3 \|B^{s-2}_{p,r}\| d\tau
\]
\[
+ \int_0^t \frac{1}{3} u^3 \|B^{s-2}_{p,r}\| d\tau + \int_0^t \|\Phi_1(v)\|_{B^{s-2}_{p,r}} d\tau + \int_0^t \|\Phi_2(v)\|_{B^{s-2}_{p,r}} d\tau
\]
\[
\lesssim t\|v\|_{L^\infty_t(B^{s-2}_{p,r})}^2 \|v\|_{L^\infty_t(B^{s}_{p,r})} + \|v\|_{L^\infty_t(B^{s-2}_{p,r})}^2 \|v\|_{B^{s+1}_{p,r}} + \|v\|_{B^{s+1}_{p,r}}^2 \|v\|_{B^{s}_{p,r}},
\]

and

\[
\|v^3\|_{B^{s}_{p,r}} \lesssim \|v^2\|_{L_\infty} \|v\|_{B^{s}_{p,r}} + \|v\|_{B^{s+1}_{p,r}} \|v\|_{L_\infty}
\]
\[
\lesssim \|v\|_{B^{s+1}_{p,r}}^2 \|v\|_{B^{s}_{p,r}},
\]
\[
\|(v^2 - 2uv)\partial_x v\|_{B^{s}_{p,r}} \lesssim \|(v^2 - 2uv)\|_{L_\infty} \|\partial_x v\|_{B^{s}_{p,r}} + \|(v^2 - 2uv)\|_{B^{s}_{p,r}} \|\partial_x v\|_{L_\infty}
\]
\[
\lesssim \|v\|_{B^{s+2}_{p,r}}^2 \|v\|_{B^{s+1}_{p,r}} + \|v\|_{B^{s+1}_{p,r}}^2 \|v\|_{B^{s}_{p,r}},
\]
hence,

\[
\|v(t) - v_0\|_{B^{s}_{p,r}} \lesssim \int_0^t \|\partial_x v\|_{B^{s}_{p,r}} d\tau
\]
\[
\lesssim \int_0^t \|(v^2 - 2uv)\partial_x v\|_{B^{s}_{p,r}} d\tau + \int_0^t \frac{1}{3} v^3 \|B^{s}_{p,r}\| d\tau
\]
\[
+ \int_0^t \frac{1}{3} u^3 \|B^{s}_{p,r}\| d\tau + \int_0^t \|\Phi_1(v)\|_{B^{s}_{p,r}} d\tau + \int_0^t \|\Phi_2(v)\|_{B^{s}_{p,r}} d\tau
\]
\[
\lesssim t(\|v\|_{L^\infty_t(B^{s-2}_{p,r})}^2 \|v\|_{L^\infty_t(B^{s}_{p,r})} + \|v\|_{L^\infty_t(B^{s-2}_{p,r})}^2 \|v\|_{B^{s+1}_{p,r}} + \|v\|_{B^{s+1}_{p,r}} \|v\|_{B^{s}_{p,r}}),
\]

Thus, we finish the proof of Proposition 4.1.
With the different Besov norms estimates of \(v - v_0 \) at hand, we have the following core estimates, which implies that for any bounded initial data \(v_0 \) in \(B^{s-1}_{p,r} \), the corresponding solution \(S_t(v_0) \) can be approximated by \(v_0 + t(v_0^2 - 2u_0v_0)\partial_x v_0 + \frac{1}{3}tv_0^3 + t\left(\frac{1}{3}u_0^3 + \Phi_1(v_0) + \Phi_2(v_0)\right) \) near \(t = 0 \).

Proposition 4.2 Assume that \(\|v_0\|_{B^{s-1}_{p,r}} \lesssim 1 \). Then under the assumptions of Theorem 1.1, there holds

\[
\|S_t(v_0) - v_0 - tv_0\|_{B^{s-1}_{p,r}} \lesssim t^2 (\|v_0\|_{B^{s-1}_{p,r}}^3 + \|v_0\|_{B^{s-2}_{p,r}}^2)\|v_0\|_{B^{s}_{p,r}} + \|v_0\|_{B^{s-2}_{p,r}}^4 \|v_0\|_{B^{s+1}_{p,r}})
\]

where \(v_0 = (v_0^2 - 2u_0v_0)\partial_x v_0 + \frac{1}{3}v_0^3 + \frac{1}{3}u_0^3 + \Phi_1(v_0) + \Phi_2(v_0) \).

Proof Using differential mean value theorem and the Minkowski inequality, we first arrive at

\[
\|v(t) - v_0 - tv_0\|_{B^{s-1}_{p,r}} \lesssim \int_0^t \|\partial_\tau v - v_0\|_{B^{s-1}_{p,r}} d\tau
\]

\[
\lesssim \int_0^t \|v^2 \partial_x v - v_0^2 \partial_x v_0\|_{B^{s-1}_{p,r}} d\tau + \int_0^t \|2uv \partial_x v - 2u_0v_0 \partial_x v_0\|_{B^{s-1}_{p,r}} d\tau
\]

\[
+ \int_0^t \|\frac{1}{3}v_0^3 - \frac{1}{3}u_0^3\|_{B^{s-1}_{p,r}} d\tau + \int_0^t \|\frac{1}{3}v^3 - \frac{1}{3}u^3\|_{B^{s-1}_{p,r}} d\tau
\]

\[
+ \int_0^t \|\Phi_1(v) - \Phi_1(v_0)\|_{B^{s-1}_{p,r}} d\tau + \int_0^t \|\Phi_2(v) - \Phi_2(v_0)\|_{B^{s-1}_{p,r}} d\tau. \quad (4.2)
\]

Using (3) in Lemma 2.1, it is sufficient to estimate \(\|v^2 \partial_x v - v_0^2 \partial_x v_0\|_{B^{s-1}_{p,r}} \), \(\|2uv \partial_x v - 2u_0v_0 \partial_x v_0\|_{B^{s-1}_{p,r}} \) and \(\|v^3 - v_0^3\|_{B^{s-1}_{p,r}} \), since the other terms can be processed in a similar more relaxed way and have the same bound as \(\|v^3 - v_0^3\|_{B^{s-1}_{p,r}} \).

It should be noticed that according to (4.1), \(\|v\|_{B^{s-1}_{p,r}} \lesssim \|v_0\|_{B^{s-1}_{p,r}} \lesssim 1 \), which will be frequently used later.

Due to the fact that \(B^{s-2}_{p,r} \) is an Banach algebra with \(s - 2 > \max\{\frac{1}{p}, \frac{1}{2}\} \), combining with the product estimates (2) in Lemma 2.1, we get

\[
\|v^2 \partial_x v - v_0^2 \partial_x v_0\|_{B^{s-1}_{p,r}} = \|(v^2 - v_0^2) \partial_x v + v_0^2 (\partial_x v - \partial_x v_0)\|_{B^{s-1}_{p,r}}
\]

\[
\lesssim \|(v^2 - v_0^2) \partial_x v\|_{B^{s-1}_{p,r}} + \|v_0^2 (\partial_x v - \partial_x v_0)\|_{B^{s-1}_{p,r}}
\]

\[
\lesssim \|v^2 - v_0^2\|_{L^\infty} \|\partial_x v\|_{B^{s-1}_{p,r}} + \|v^2 - v_0^2\|_{B^{s-1}_{p,r}} \|\partial_x v\|_{L^\infty}
\]

\[
+ \|v_0^2\|_{L^\infty} \|\partial_x v - \partial_x v_0\|_{B^{s-1}_{p,r}} + \|v_0\|_{B^{s-1}_{p,r}} \|\partial_x v - \partial_x v_0\|_{L^\infty}
\]

\[
\lesssim \|v - v_0\|_{B^{s-1}_{p,r}B^{s-1}_{p,r}} \|v\|_{B^{s}_{p,r}} + \|v - v_0\|_{B^{s}_{p,r}} + \|v\|_{B^{s}_{p,r}} \|v_0\|_{B^{s-2}_{p,r}}^2,
\]

and

\[
\|2uv \partial_x v - 2u_0v_0 \partial_x v_0\|_{B^{s-1}_{p,r}} = \|2(u - u_0) v \partial_x v_0 + 2u_0(v \partial_x v - v_0 \partial_x v_0)\|_{B^{s-1}_{p,r}}
\]

\[
\lesssim \|u - u_0\|_{B^{s-1}_{p,r}} \|v \partial_x v\|_{B^{s-1}_{p,r}} + \|u_0\|_{B^{s-1}_{p,r}} \|v \partial_x v - v_0 \partial_x v_0\|_{B^{s-1}_{p,r}}
\]

\[
\lesssim \|v - v_0\|_{B^{s-1}_{p,r}} \|v\|_{B^{s}_{p,r}} + \|v - v_0\|_{B^{s-1}_{p,r}} + \|v\|_{B^{s}_{p,r}} \|v_0\|_{B^{s-2}_{p,r}}^2,
\]

and

\[
\|v^3 - v_0^3\|_{B^{s-1}_{p,r}} = \|(v - v_0)(v^2 + v_0v + v_0^2)\|_{B^{s-1}_{p,r}} \lesssim \|v - v_0\|_{B^{s-1}_{p,r}}.
\]

Taking the above estimates into (4.2), which together with Proposition 4.1 yield

\[
\|v(t) - v_0 - tv_0\|_{B^{s-1}_{p,r}} \lesssim \int_0^t \|v - v_0\|_{B^{s}_{p,r}} + \|v - v_0\|_{B^{s}_{p,r}} \|v\|_{B^{s}_{p,r}} d\tau + \|v - v_0\|_{B^{s}_{p,r}} \|v_0\|_{B^{s-2}_{p,r}}^2 d\tau
\]

\[
\lesssim t^2 (\|v_0\|_{B^{s-1}_{p,r}}^3 + \|v_0\|_{B^{s-2}_{p,r}}^2 \|v_0\|_{B^{s}_{p,r}} + \|v\|_{B^{s}_{p,r}}^4 \|v_0\|_{B^{s+1}_{p,r}}).\]
Thus, we complete the proof of Proposition 4.2. □

Now, we move on the proof of Theorem 1.1.

Proof of Theorem 1.1 Let \(\hat{\phi} \in \mathcal{C}_0^\infty(\mathbb{R}) \) be an even, real-valued and non-negative function on \(\mathbb{R} \) and satisfy

\[
\hat{\phi}(x) = \begin{cases}
1, & \text{if } |x| \leq \frac{1}{4}, \\
0, & \text{if } |x| \geq \frac{1}{2}.
\end{cases}
\]

Define the high frequency function \(f_n \) and the low frequency function \(g_n \) by

\[
f_n = 2^{-ns} \phi(x) \sin\left(\frac{17}{12}2^n x\right), \quad g_n = 2^{-\frac{n}{2}} \phi(x), \quad n \gg 1.
\]

It has been showed in [16] that \(\|f_n\|_{B^s_{p,r}} \lesssim 2^{n(\sigma-s)} \).

Let

\[
v^{1,n}(0, x) = (1 - \partial_x)(f_n + g_n), \quad v^{2,n}(0, x) = (1 - \partial_x)f_n.
\]

Consider Eq. (3.2) with initial data \(v^{1,n}(0, x) \) and \(v^{2,n}(0, x) \), respectively. Obviously, we have

\[
\|v^{1,n}(0, x) - v^{2,n}(0, x)\|_{B^s_{p,r}} = \|1 - \partial_x\|_{B^s_{p,r}} \leq C 2^{-\frac{n}{2}},
\]

which means that

\[
\lim_{n \to \infty} \|v^{1,n}(0, x) - v^{2,n}(0, x)\|_{B^s_{p,r}} = 0.
\]

It is easy to show that

\[
\|v^{1,n}(0, x)\|_{B^{s-2}_{p,r}} \lesssim \|f_n + g_n\|_{B^{s-1}_{p,r}} \lesssim \|f_n + g_n\|_{B^{s-\frac{1}{2}}_{p,r}} \lesssim 2^{-\frac{n}{4}},
\]

\[
\|v^{1,n}(0, x)\|_{B^{s+\tau}_{p,r}} \lesssim \|f_n + g_n\|_{B^{s+\sigma}_{p,r}} \lesssim 2^{n(\sigma+1)} \quad \text{for} \quad \sigma \geq -\frac{3}{2},
\]

\[
\|v^{2,n}(0, x)\|_{B^{s+t}_{p,r}} \lesssim \|f_n\|_{B^{s+t+1}_{p,r}} \lesssim 2^{n(t+1)} \quad \text{for} \quad t \in \mathbb{R},
\]

which imply

\[
\left(\|v^{1,n}(0, x)\|^3_{B^{s-1}_{p,r}} + \|v^{1,n}(0, x)\|^2_{B^{s-2}_{p,r}}\|v^{1,n}(0, x)\|_{B^{s}_{p,r}} + \|v^{1,n}(0, x)\|^4_{B^{s-2}_{p,r}}\|v^{1,n}(0, x)\|_{B^{s}_{p,r}}\right) \lesssim 1,
\]

\[
\left(\|v^{2,n}(0, x)\|^3_{B^{s-1}_{p,r}} + \|v^{2,n}(0, x)\|^2_{B^{s-2}_{p,r}}\|v^{2,n}(0, x)\|_{B^{s}_{p,r}} + \|v^{2,n}(0, x)\|^4_{B^{s-2}_{p,r}}\|v^{2,n}(0, x)\|_{B^{s}_{p,r}}\right) \lesssim 1.
\]

Furthermore, since \(v^{1,n}(0, x) \) and \(v^{2,n}(0, x) \) are both bounded in \(B^{s-1}_{p,r} \), according to Proposition 4.2, we deduce that

\[
\|S_t(v^{1,n}(0, x)) - S_t(v^{2,n}(0, x))\|_{B^{s-1}_{p,r}} \geq t \left|\left[\left(v^{1,n}(0, x)\right)^2 - 2u^{1,n}(0, x)v^{1,n}(0, x)\right] \partial_x v^{1,n}(0, x)\right.
\]

\[
-\left[\left(v^{2,n}(0, x)\right)^2 - 2u^{2,n}(0, x)v^{2,n}(0, x)\right] \partial_x v^{2,n}(0, x)
\]

\[
+ \frac{1}{3} \left[\left(v^{1,n}(0, x)\right)^3 - \left[v^{2,n}(0, x)\right]^3\right] + \frac{1}{3} \left[u^{1,n}(0, x)\right]^3 + \Phi_1(v^{1,n}(0, x)) + \Phi_2(v^{1,n}(0, x))
\]

\[
- \frac{1}{3} \left[u^{2,n}(0, x)\right]^3 + \Phi_1(v^{2,n}(0, x)) + \Phi_2(v^{2,n}(0, x))\right]\|_{B^{s-1}_{p,r}} - \|1 - \partial_x\|_{B^{s-1}_{p,r}} - Ct^2
\]

\[
\geq t \left|\left[\left(v^{1,n}(0, x)\right)^2 - 2u^{1,n}(0, x)v^{1,n}(0, x)\right] \partial_x v^{1,n}(0, x)\right.
\]

\[
-\left[\left(v^{2,n}(0, x)\right)^2 - 2u^{2,n}(0, x)v^{2,n}(0, x)\right] \partial_x v^{2,n}(0, x)\|_{B^{s-1}_{p,r}} - C 2^{-\frac{n}{2}} - Ct^2.
\]

(4.3)
For the sake of simplicity and convenience, in the following we denote
\[v^{i,n}(0, x) \triangleq v_i, \quad u^{i,n}(0, x) \triangleq u_i, \quad i = 1, 2. \]

The coefficient of the first order term of \(t \) in the last inequality in (4.3) is simplified as
\[
(v_1^2 - 2u_1v_1)\partial_x v_1 - (v_2^2 - 2u_2v_2)\partial_x v_2
= (v_1^2\partial_x v_1 - v_2^2\partial_x v_2) - 2(u_1v_1\partial_x v_1 - v_2\partial_x v_2)
= I_1 - I_2.
\]

Bring in the concrete form of \(v_1 \) and \(v_2 \) where necessary, we have
\[
I_1 = (v_1^2 - v_2^2)\partial_x v_1 + v_2^2(\partial_x v_1 - \partial_x v_2)
= (v_1^2 - v_2^2)\partial_x (1 - \partial_x)(f_n + g_n) + v_2^2(\partial_x v_1 - \partial_x v_2)
= (v_1^2 - v_2^2)\partial_x (f_n + g_n) - (v_1^2 - v_2^2)\partial_x^2 g_n - (v_1^2 - v_2^2)\partial_x^2 f_n + v_2^2\partial_x (v_1 - v_2),
\]
\[
I_2 = 2u_1(v_1 - v_2)\partial_x v_1 + 2v_2(u_1\partial_x v_1 - u_2\partial_x v_2)
= 2u_1(v_1 - v_2)\partial_x (1 - \partial_x)(f_n + g_n) + 2v_2u_1\partial_x (v_1 - v_2) + 2v_2(u_1 - u_2)\partial_x v_2
= 2u_1(v_1 - v_2)\partial_x (f_n + g_n) - 2u_1(v_1 - v_2)\partial_x^2 g_n - 2u_1(v_1 - v_2)\partial_x^2 f_n
+ 2v_2u_1\partial_x (v_1 - v_2) + 2v_2(u_1 - u_2)\partial_x v_2.
\]

Using Lemma 2.1, after simple calculation, we obtain
\[
\|(v_1^2 - v_2^2)\partial_x (f_n + g_n)\|_{B^{p,r}_{-1}} \lesssim \|v_1^2 - v_2^2\|_L\|f_n + g_n\|_{B^{p,r}_{-1}} + \|v_1^2 - v_2^2\|_{B^{p,r}_{-1}}\|\partial_x (f_n + g_n)\|_{L^\infty} \lesssim 2^{-\frac{n}{4}},
\]
\[
\|(v_1^2 - v_2^2)\partial_x^2 g_n\|_{B^{p,r}_{-1}} \lesssim \|v_1^2 - v_2^2\|_{B^{p,r}_{-1}}\|\partial_x^2 g_n\|_{B^{p,r}_{-1}} \lesssim 2^{-\frac{n}{4}},
\]
\[
\|2u_1(v_1 - v_2)\partial_x (f_n + g_n)\|_{B^{p,r}_{-1}} \lesssim \|u_1\|_{B^{p,r}_{-1}}\|(v_1 - v_2)\|_{B^{p,r}_{-1}}\|\partial_x (f_n + g_n)\|_{B^{p,r}_{-1}} \lesssim 2^{-\frac{n}{4}},
\]
\[
\|2v_2u_1\partial_x (v_1 - v_2)\|_{B^{p,r}_{-1}} \lesssim \|u_1\|_{B^{p,r}_{-1}}\|(v_1 - v_2)\|_{B^{p,r}_{-1}}\|\partial_x (v_1 - v_2)\|_{B^{p,r}_{-1}} \lesssim 2^{-\frac{n}{4}},
\]
\[
\|2v_2(u_1 - u_2)\partial_x v_2\|_{B^{p,r}_{-1}} \lesssim \|v_2\|_{B^{p,r}_{-1}}\|(u_1 - u_2)\|_{B^{p,r}_{-1}}\|\partial_x v_2\|_{B^{p,r}_{-1}} \lesssim 2^{-\frac{n}{4}}.
\]

While
\[
[2u_1(v_1 - v_2) - (v_1^2 - v_2^2)]\partial_x^2 f_n = (1 - \partial_x)g_n(2f_n + g_n)\partial_x^2 f_n
= (1 - \partial_x)g_n(1 + \partial_x)g_n\partial_x^2 f_n + 2(1 - \partial_x)g_n\partial_x f_n\partial_x^2 f_n,
\]
using product law (2) in Lemma 2.1, we have that
\[
\|(1 - \partial_x)g_n\partial_x f_n\partial_x^2 f_n\|_{B^{p,r}_{-1}} \lesssim \|(1 - \partial_x)g_n\partial_x f_n\|_{B^{p,r}_{-1}}\|\partial_x^2 f_n\|_{L^\infty} + \|(1 - \partial_x)g_n\partial_x f_n\|_{L^\infty}\|\partial_x^2 f_n\|_{B^{p,r}_{-1}} \lesssim 2^{-\frac{n}{4}} \cdot 2^n \cdot 2^\alpha(2-s) + 2^{-\frac{n}{4}} \cdot 2^{n(1-s)} \cdot 2^n \lesssim 2^{-n(s-\frac{3}{4})}.
\]

Taking the above estimates into (4.3), we find that
\[
\|S_t(v^{1,n}(0, x)) - S_t(v^{2,n}(0, x))\|_{B^{p,r}_{-1}} \geq t\|(1 - \partial_x)g_n(1 + \partial_x)g_n\partial_x^2 f_n\|_{B^{p,r}_{-1}} - C2^{-\frac{n}{4}} - Ct^2. \quad (4.4)
\]
For the term \((1 - \partial_x)g_n(1 + \partial_x)g_n\partial_x^2 f_n\), it can be verified that \(\Delta_j((1 - \partial_x)g_n(1 + \partial_x)g_n\partial_x^2 f_n) = 0, j \neq n\) and \(\Delta_n((1 - \partial_x)g_n(1 + \partial_x)g_n\partial_x^2 f_n) = (1 - \partial_x)g_n(1 + \partial_x)g_n\partial_x^2 f_n\) for \(n \geq 5\). Direct calculation shows that

\[
\left\| (1 - \partial_x)g_n(1 + \partial_x)g_n\partial_x^2 f_n \right\|_{B^2_{p,r}} = 2^n(1 + 2^n x) + \frac{17}{12} n(1 + \partial_x)\phi \phi \cos(\frac{17}{12} 2^n x) + \frac{17}{12} (1 - \partial_x)\phi \phi \sin(\frac{17}{12} 2^n x)\right\|_{L^p},
\]

by the Riemann Theorem, where \((1 - \partial_x)\phi (1 + \partial_x)\phi \phi \phi \phi \triangleq \psi(x), which together with (4.4) yield

\[
\lim \inf_{n \to \infty} \left\| S_t'(v^{1,n}(0, x)) - S_t(v^{2,n}(0, x)) \right\|_{B^2_{p,r}} \geq t \quad for \ t \small{small enough.}
\]

That is to say, the solution map \(v_0 \to S_t(v_0)\) of the initial value problem (3.2) depends not uniformly continuous on initial data in \(B^2_{p,r}\).

Since \(u = (1 - \partial_x)^{-1}v\) and \((1 - \partial_x)^{-1}\) is an isomorphic mapping from \(B^2_{p,r}(\mathbb{R})\) into \(B^p_{p,r}(\mathbb{R})\), hence the non-uniform continuous dependence of \(v\) in \(B^2_{p,r}\) is consistent with that of \(u\) in \(B^p_{p,r}\).

Thus, this completes the proof of Theorem 1.1.

Acknowledgments

The author is very grateful to Dr. Jinlu Li for some useful suggestions. This work is partially supported by the National Natural Science Foundation of China (Grant No.11801090).

References

[1] H. Bahouri, J. Chemin, R. Danchin, Fourier Analysis and Nonlinear Partial Differential Equations. Springer-Verlag, Berlin, 2011.

[2] X. Chang, J. Szmigielski, Lax integrability and the peakon problem for the modified Camassa-Holm equation, Comm. Math. Phys. 358 (2018) 295-341.

[3] A. Fokas, On a class of physically important integrable equations, Physica D 87 (1995) 145-150.

[4] Y. Fu, G. Gui, Y. Liu, C. Qu, On the Cauchy problem for the integrable modified Camassa-Holm equation with cubic nonlinearity, J Differ Equ. 255 (2013) 1905-1938.

[5] B. Fuchssteiner, Some tricks from the symmetry toolbox for nonlinear equations: generalisations of the Camassa-Holm equation, Physica D 95 (1996) 229-243.

[6] G. Gui, Y. Liu, P. Olver, C. Qu, Wave-Breaking and Peakons for a Modified Camassa-Holm Equation, Commun. Math. Phys. 319 (2013) 731-759.
[7] A. Himonas, G. Misiołek, High-frequency smooth solutions and well-posedness of the Camassa-Holm equation, Int. Math. Res. Not. 51 (2005) 3135-3151.

[8] A. Himonas, C. Kenig, Non-uniform dependence on initial data for the CH equation on the line, Diff. Integr. Equ. 22 (2009) 201-224.

[9] A. Himonas, C. Kenig, G. Misiołek, Non-uniform dependence for the periodic CH equation, Commun. Partial Differ. Equ. 35 (2010) 1145-1162.

[10] A. Himonas, C. Holliman, The Cauchy problem for the Novikov equation, Nonlinearity 25 (2012) 449-479.

[11] A. Himonas, D. Mantzavinos, The Cauchy problem for the Fokas-Olver-rosenau-Qiao equation, Nonlinear Anal. 95 (2014) 499-529.

[12] A. Himonas, D. Matzavinos, Hölder continuity for the Fokas-Olver-Rosenau-Qiao equation, J Nonlinear Sci. 24 (2014) 1105-1124.

[13] A. Himonas, C. Holliman, Non-uniqueness for the Fokas-Olver-Rosenau-Qiao equation, J. Math. Anal. Appl. 470 (2019) 617-633.

[14] C. Kenig, G. Ponce, L. Vega, On the ill-posedness of some canonical dispersive equations, Duke Math. 106 (2001) 617-633.

[15] J. Li, Z. Yin, Well-posedness and analytic solutions of the two-component Euler-Poincaré system, Monatsh. Math. 183 (2017) 509–537.

[16] J. Li, Y. Yu, W. Zhu, Non-uniform dependence on initial data for the Camassa-Holm equation in Besov spaces, J. Differ. Equ. 269 (2020) 8686-8700.

[17] J. Li, M. Li, W. Zhu, Non-uniform dependence for Novikov equation in Besov spaces, 2020, J. Math. Fluid Mech. 22 (2020) 4:50.

[18] X. Liu, Y. Liu, C. Qu, Orbital stability of the train of peakons for an integrable modified Camassa-Holm equation, Adv Math. 255 (2014) 1-37.

[19] P.J. Olver, P. Rosenau, Tri-Hamiltonian duality between solitons and solitary-wave solutions having compact support, Phys. Rev. E 53 (1996) 1900-1906.

[20] Z. Qiao, A new integrable equation with cuspons and W/M-shape-peaks solitons, J. Math. Phys. 47 (2006) 112701.

[21] Z. Qiao, New integrable hierarchy, its parametric solutions, cuspons, one-peak solitons, and M/W shape peak solitons, J. Math. Phys. 48 (2007) 082701.

[22] C. Qu, X. Liu, Y. Liu, Stability of peakons for an integrable modified Camassa-Holm equation with cubic nonlinearity, Comm. Math. Phys. 322 (2013) 967-997.