A CLASS OF TOEPLITZ OPERATORS
WITH HYPERCYCLIC SUBSPACES

ANDREI LISHANSKII

ABSTRACT. We use a theorem by Gonzalez, Leon-Saavedra and Montes-Rodriguez to
construct a class of coanalytic Toeplitz operators which have an infinite-dimensional
closed subspace, where any non-zero vector is hypercyclic.

1. Introduction

Let \(X \) be a separable Banach space (or a Frechet space), and let \(T \) be a bounded
linear operator in \(X \). If there exists \(x \in X \) such that the set \(\{ T^n x, n \in \mathbb{N}_0 \} \) is dense
in \(X \), then \(T \) is said to be a hypercyclic operator and \(x \) is called its hypercyclic vector.

Here \(\mathbb{N}_0 = \mathbb{N} \cup \{0\} \).

Dynamics of linear operators and, as a special case, theory of hypercyclic operators
was actively developed for the last 20 years. A detailed review of the results up to the
end of 1990-s is given in the paper [7]. For a recent exposition of the theory see the
monographs [1] [8].

However, first examples of hypercyclic operators appeared much earlier. In 1929
Birkhoff has shown that the translation operator \(T_a : f(z) \mapsto f(z + a), a \in \mathbb{C}, a \neq 0, \)
is hypercyclic in the Frechet space of all entire functions \(\text{Hol}(\mathbb{C}) \) with topology of
uniform convergence on the compact sets. Later, McLane proved hypercyclicity of the
differentiation operator \(D : f \mapsto f' \) on \(\text{Hol}(\mathbb{C}) \). The first example of a hypercyclic
operator in the Banach setting was given in 1969 by Rolewicz [11] who showed that for
any \(\lambda \in \mathbb{C}, |\lambda| > 1 \), the operator \(\lambda S^* \) is hypercyclic on \(\ell^p(\mathbb{N}_0), 1 \leq p < \infty \), where \(S^* \) is
the backward shift on \(\ell^p(\mathbb{N}_0) \) which transforms a vector \(x = (x_0, x_1, \ldots, x_n, \ldots) \in \ell^p(\mathbb{N}_0) \)
to the vector \((x_1, x_2, \ldots, x_{n+1}, \ldots) \).

Given a hypercyclic operator \(T \), what can be said about the set of its hypercyclic
vectors? Clearly, if \(x \) is a hypercyclic vector for the operator \(T \) then \(Tx, T^2x, T^3x, \ldots \)
are hypercyclic vectors for \(T \) as well. Hence, the set of hypercyclic vectors is dense
when it is non-empty.

The following result was proved by Bourdon [2] (a special class of operators commu-
ting with generalized backward shifts was previously considered by Godefroy and
Shapiro in [4]).

Theorem (Bourdon, [2]). Let \(T \) be a hypercyclic operator acting on a Hilbert space
\(H \). Then there exists a dense linear subspace, where any non-zero vector is hypercyclic
for \(T \).

Definition. Given a hypercyclic operator \(T \), an infinite-dimensional closed subspace
in which every non-zero vector is hypercyclic for \(T \) is called a hypercyclic subspace.

Author were supported by the Chebyshev Laboratory (St.Petersburg State University) under RF
Government grant 11.G34.31.0026 and by JSC "Gazprom Neft".
Montes-Rodriguez [10] Theorem 3.4 proved that the operator λS^*, $|\lambda| > 1$, on $\ell^2(N_0)$ has no hypercyclic subspaces. However, for some class of functions of the backward shift S^* on $\ell^2(N)$ there exists a hypercyclic subspace, and it is the main result of the present paper. To state it, we need to introduce some notations. Let $D = \{z \in \mathbb{C} : |z| < 1\}$ be the unit disc and let $T = \{z \in \mathbb{C} : |z| = 1\}$ be the unit circle. Recall that the disc algebra $A(D)$ is the space of all functions which are continuous in the closed disc D and analytic in D (with the norm $\max_{z \in D} |\varphi(z)|$).

Main Theorem. For any function $\varphi \in A(D)$ such that $\varphi(T) \cap \mathbb{T} \not= \emptyset$ and $\varphi(D) \cap \mathbb{T} \not= \emptyset$ the operator $\varphi(S^*)$ on $\ell^2(N_0)$ has a hypercyclic subspace.

Note that the $\varphi(z) = \lambda z$, $|\lambda| > 1$, does not satisfy this condition.

The examples in the Main Theorem may be interpreted as certain Toeplitz operator on the Hardy space. The Hardy space $H^2 = H^2(D)$ is the space of all functions of the form $f(z) = \sum_{n \geq 0} c_n z^n$ with $\{c_n\} \in \ell^2(N_0)$, and thus is naturally identified with $\ell^2(N_0)$. Recall that for a function $\varphi \in L^\infty(T)$ the Toeplitz operator T_φ with the symbol φ is defined as $T_\varphi f = P_+(\varphi f)$, where P_+ stands for the orthogonal projection from $L^2(T)$ onto H^2. Then the backward shift on S^* may be identified with the Toeplitz operator T_φ. It was shown in [3] that any coanalytic Toeplitz operator T^*_φ (i.e., φ is a bounded analytic function in D) is hypercyclic whenever $\varphi(D)$ intersects T. Our Main Theorem provides a class of coanalytic Toeplitz operators which have a hypercyclic subspace.

A general sufficient condition for the existence of a hypercyclic subspace was given by Gonzalez, Leon-Saavedra and Montes-Rodriguez in [6]. To state it we need the following stronger version of hypercyclicity:

Definition. Operator T acting on a separable Banach space B is said to be **hereditarily hypercyclic** if there exists a sequence of non-negative integers $\{n_k\}$ such that for each subsequence $\{n_{k_i}\}$ there exists a vector x such that the sequence $\{T^{n_{k_i}}x\}$ is dense in B.

We also need to recall the notion of the essential spectrum.

Definition. Operator U is called **Fredholm** if $\text{Ran} \ U$ is closed and has finite codimension and $\text{Ker} \ U$ is finite-dimensional. The **essential spectrum** of the operator T is defined as

$$\sigma_e(T) = \{\lambda : T - \lambda I \text{ is non-Fredholm}\}.$$

Theorem (Gonzalez, Leon-Saavedra, Montes-Rodriguez, [6] Theorem 3.2). Let T be a hereditary hypercyclic bounded linear operator on a separable Banach space B. Let the essential spectrum of T intersect the closed unit disc. Then there exists a hypercyclic subspace for the operator T.

We intend to use this result in the proof of the Main Theorem.

Let us mention some other results on this topic. Shkarin in [12] proved that the differentiation operator on the standard Frechet space $Hol(C)$ has a hypercyclic subspace. Quentin Menet in [9] Corollary 5.5] generalized this result: he proved that for every non-constant polynomial P the operator $P(D)$ has a hypercyclic subspace. He also obtained some results concerning weighted shifts on ℓ^p.

2
2. Preliminaries on essential spectra of linear operators.

The following lemma is well known. We give its proof for the convenience of the reader.

Lemma. Essential spectrum of the operator S^* is the unit circle.

Proof: Let us consider three cases:

Case 1: $|\lambda| > 1$. Then the operator $S^* - \lambda I = -\lambda(I - \frac{1}{\lambda}S^*)$ is invertible and, thus, it is Fredholm.

Case 2: $|\lambda| < 1$. We have $S^* - \lambda I = S^*(I - \lambda S)$. Since the operator S^* is Fredholm (its kernel is one-dimensional, its image is the whole space ℓ^2), and $I - \lambda S$ is invertible, their composition is also a Fredholm operator.

Case 3: $|\lambda| = 1$. Then the operator $S^* - \lambda I$ is not Fredholm, because its image has infinite codimension.

Indeed, the pre-image of the sequence $(\lambda y_1, \lambda^2 y_2, \lambda^3 y_3, \lambda^4 y_4, \ldots) \in \ell^2$ is given by $(a, \lambda(y_1 + a), \lambda^2(y_1 + y_2 + a), \ldots)$ and the equality $a = -\sum_{i=1}^{+\infty} y_i$ is necessary for the inclusion of this sequence into ℓ^2.

Then the pre-image of the sequence

\[
\left(1, \frac{1}{2}, 0, \ldots, 0, \frac{1}{4}, 0, \ldots, 0, \ldots, \frac{1}{2^n}, 0, \ldots, 0, \ldots\right),
\]

multiplied componentwise by $(\lambda, \lambda^2, \lambda^3, \ldots)$, is given by

\[
\left(-2, -1, -\frac{1}{2}, -\frac{1}{2}, -\frac{1}{4}, -\frac{1}{4}, \ldots, -\frac{1}{2^n}, \ldots\right),
\]

multiplied componentwise by $(1, \lambda, \lambda^2, \ldots)$, but such sequences do not belong to ℓ^2. All sequences of the form (1), as is easily seen, form an infinite-dimensional subspace in ℓ^2. \qed

The following important theorem about the mapping of the essential spectra can be found, e.g., in [5, p. 107].

Essential Spectrum Mapping Theorem. For any bounded linear operator T in a Hilbert space H and for any polynomial P one has $\sigma_e(P(T)) = P(\sigma_e(T))$.

3. Proof of the Main Theorem

In the proof of hereditary hypercyclicity of the operator $\varphi(S^*)$ we will use the following well-known criterion due to Godefroy and Shapiro [4] (for an explicit statement see, e.g., [8, Theorem 3.1]):

Theorem (Godefroy–Shapiro criterion). Let T be a bounded linear operator in a separable Banach space. Suppose that the subspaces

\[
X_0 = \text{span}\{x \in X : Tx = \lambda x \text{ for some } \lambda \in \mathbb{C}, \ |\lambda| < 1\},
\]

\[
Y_0 = \text{span}\{x \in X : Tx = \lambda x \text{ for some } \lambda \in \mathbb{C}, \ |\lambda| > 1\},
\]

and
are dense in \(X \). Then \(T \) is hereditarily hypercyclic.

Proof of the Main Theorem We should verify two conditions of the theorem of Gonzalez, Leon-Saavedra and Montes-Rodriguez.

Any function \(\varphi \) from disc-algebra can be approximated uniformly in \(\overline{D} \) by a sequence of polynomials \(P_n \). So \(P_n(S^*) \) tends to \(\varphi(S^*) \) in the operator norm.

We need to show that \(\sigma_S(\varphi(S^*)) \) intersects the closed unit disc. Since \(\varphi(\mathbb{T}) \cap \mathbb{T} \neq \emptyset \), there exist \(\lambda, \mu \in \mathbb{T} \) such that \(\varphi(\lambda) = \mu \). Then \(\mu_n = P_n(\lambda) \) tend to \(\mu \). By the Essential Spectrum Mapping Theorem for any polynomial \(P \) one has \(\sigma_S(P(S^*)) = P(\sigma_S(S^*)) = P(\mathbb{T}) \). In particular, \(\mu_n = P_n(\lambda) \in \sigma_S(P_n(S^*)) \) for any \(n \), and so \(P_n(S^*) - \mu_n I \) is not Fredholm.

Since the set of Fredholm operators is open in the operator norm (see, e.g., [3] Theorem 4.3.11), the set of non-Fredholm operators is closed, whence the limit of \(P_n(S^*) - \mu_n I \), which is equal to \(\varphi(S^*) - \mu I \), is not Fredholm, and \(\mu \) belongs to the essential spectrum of \(\varphi(S^*) \). The first condition of the theorem by Gonzalez, Leon-Saavedra and Montes-Rodriguez is verified.

It is well known that the condition \(\varphi(\mathbb{D}) \cap \mathbb{T} \neq \emptyset \) implies that \(\varphi(S^*) \) satisfies the Godefroy–Shapiro criterion. Let us briefly recall this argument.

Recall that the point spectrum of \(S^* \) equals \(\sigma_p(S^*) = \{ \lambda : |\lambda| < 1 \} \) and the eigenvector is given by \((1, \lambda, \lambda^2, \cdots) \in \ell^2(\mathbb{N}_0) \), or, if we pass to the Hardy space \(H^2(\mathbb{D}) \) using the natural identification of \(H^2 \) with \(\ell^2(\mathbb{N}_0) \), by

\[
k_\lambda(z) = \frac{1}{1 - \lambda z} = \sum_{n=0}^{\infty} \lambda^n z^n.
\]

These are the Cauchy kernels, which are reproducing kernels of \(H^2 \). Clearly, \(k_\lambda, \lambda \in \mathbb{D} \), are also eigenvectors of \(\varphi(S^*) \) which correspond to eigenvalues \(\varphi(\lambda) \).

By the condition \(\varphi(\mathbb{D}) \cap \mathbb{T} \neq \emptyset \), we know that \(\varphi(\mathbb{D}) \) is an open set which intersects both \(\mathbb{D} \) and \(\mathbb{C} \setminus \overline{\mathbb{D}} \). Clearly, both of the sets \(\{ k_\lambda, \lambda \in \mathbb{D} : |\varphi(\lambda)| > 1 \} \) and \(\{ k_\lambda, \lambda \in \mathbb{D} : |\varphi(\lambda)| < 1 \} \) are dense in \(H^2 \). Indeed, \(f \in H^2 \) is orthogonal to \(k_\lambda \) if and only if \(f(\lambda) = 0 \) and both \(\{ \lambda \in \mathbb{D} : |\varphi(\lambda)| > 1 \} \) and \(\{ \lambda \in \mathbb{D} : |\varphi(\lambda)| < 1 \} \) are open sets. Thus the conditions of the Godefroy–Shapiro criterion are satisfied and the hereditarily hypercyclicity of the operator \(\varphi(S^*) \) follows.

Thus, by the theorem of Gonzalez, Leon-Saavedra and Montes-Rodriguez, the operator \(\varphi(S^*) \) has a hypercyclic subspace. \(\square \)

Acknowledgements. The author is grateful to Quentin Menet for helpful comments on the first version of the paper.

References

[1] F. Bayart, E. Matheron, *Dynamics of Linear Operators*. Cambridge University Press, 2009.

[2] P. S. Bourdon, *Invariant manifolds of hypercyclic vectors*. Proceedings of the American Mathematical Society, (3) 118 (1993), pp. 845–847.

[3] E. B. Davies, *Linear Operators and Their Spectra*, Cambridge Studies in Advanced Mathematics, Vol. 106, Cambridge University Press, 2007.

[4] G. Godefroy, J. H. Shapiro, *Operators with dense, invariant, cyclic vector manifolds*. Journal of Functional Analysis, 98 (1991), pp. 229–269.

[5] S. Goldberg, *Unbounded Linear Operators*, McGraw-Hill, New York, 1966.

[6] M. Gonzalez, F. Leon-Saavedra, A. Montes-Rodriguez, *Semi-Fredholm Theory: Hypercyclic and supercyclic subspaces*. Proceedings of the London Mathematical Society, (3) 81 (2000), pp. 169–189.
[7] K.-G. Grosse-Erdmann, Universal families and hypercyclic operators. Bulletin of American Mathematical Society, (3) 36 (1999), pp. 345–381.
[8] K.-G. Grosse-Erdmann, A. Peris Manguillot, Linear Chaos, Springer, Berlin, 2011.
[9] Q. Menet, Hypercyclic subspaces and weighted shifts. arXiv:1208.4963v1 [math.FA], 24 Aug 2012.
[10] A. Montes-Rodriguez, Banach spaces of hypercyclic vectors. Michigan Mathematical Journal, 43 (1996), pp. 419–436.
[11] S. Rolewicz, On orbits of elements, Studia Math. 32 (1969), pp. 17–22.
[12] S. Shkarin, On the set of hypercyclic vectors for the differentiation operator. Israel Journal of Mathematics, 180 (2010), pp. 271–283.

ANDREI LISHANSKII,
DEPARTMENT OF MATHEMATICS AND MECHANICS, ST. PETERSBURG STATE UNIVERSITY,
AND
CHEBYSHEV LABORATORY, ST. PETERSBURG STATE UNIVERSITY,
ST. PETERSBURG, RUSSIA,
lishanskiyaa@gmail.com