Determinants of LV dP/dt_{max} and QRS duration with different fusion strategies in cardiac resynchronisation therapy

Hans Henrik Odland, Torbjørn Holm, Lars Ove Gammelsrud, Richard Cornelussen, Erik Kongsgaard

Abstract

Background: We designed this study to assess the acute effects of different fusion strategies and left ventricular (LV) pre-excitation/post-excitation on LV dP/dt_{max} and QRS duration (QRSd).

Methods: We measured LV dP/dt_{max} and QRSd in 19 patients having cardiac resynchronisation therapy (CRT). Two groups of biventricular pacing were compared: pacing the left ventricle (LV) with FUSION with intrinsic right ventricle (RV) activation (FUSION), and pacing the LV and RV with NO FUSION with intrinsic RV activation. In the NO FUSION group, the RV was paced before the expected QRS onset. A quadrupolar LV lead enabled distal, proximal and multipoint pacing (MPP). The LV was stimulated relative in time to either RV pace or QRS-onset in four pre-excitation/post-excitation classes (PCs). We analysed the interactions of two groups (FUSION/NO FUSION) with three different electrode configurations, each paced with four different degrees of LV pre-excitation (PC1–4) in a statistical model.

Results: LV dP/dt_{max} was higher with NO FUSION than with FUSION (769±46 mm Hg/s vs 746±46 mm Hg/s, p<0.01), while there was no difference in QRSd (NO FUSION 156±2 ms and FUSION 155±2 ms). LV dP/dt_{max} and QRSd increased with LV pre-excitation compared with pacing timed to QRS/RV pace-onset regardless of electrode configuration. Overall, pacing LV close to QRS-onset (FUSION) with MPP shortened QRSd the most, while LV dP/dt_{max} increased the most with LV pre-excitation.

Conclusion: We show how a beneficial change in QRSd dissociates from the haemodynamic change in LV dP/dt_{max} with different biventricular pacing strategies. In this study, LV pre-excitation was the main determinant of LV dP/dt_{max}, while QRSd shortens with optimal resynchronisation.

Introduction

Cardiac resynchronisation therapy (CRT) is very useful in selected patients; however, responder rates rarely exceed 70%.

CRT causes improved electrical synchrony (shortened QRS duration (QRSd)) and mechanical function (higher left ventricular (LV) dP/dt_{max}) once inserted.

Research groups have therefore used LV dP/dt_{max} and QRSd to guide different approaches to improve CRT,
assessment or for the prediction of long-term response from CRT. We applied biventricular stimulation with different fusion strategies, including fusion with intrinsic right ventricle (RV) activation, different degrees of fusion within the LV by LV pre-excitation/post-excitation and fusion from the LV activation site with single-point and multipoint pacing (MPP) in order to analyse the effect of different fusion strategies on LV dP/dt\text{max} and QRS\text{d}.

MATERIAL AND METHODS

Ethics statement

This study was an acute single-centre observational, experimental haemodynamic study approved by the Regional Committees for Medical and Health Research Ethics in Norway and conducted following the Declaration of Helsinki principles. We obtained written, informed consent from all patients.

Study population

Patients with heart failure admitted for CRT implantation according to current European Society of Cardiology/American Heart Association guidelines were asked to participate in the study. Inclusion criteria were sinus rhythm, New York Heart Association (NYHA) functional class II and III heart failure on optimal medical therapy, QRS\text{d} larger than 150 ms and a left ventricular ejection fraction of less than 35%. Exclusion criteria were age less than 18 years and above 80 years, ongoing atrial fibrillation and complete atrioventricular block. We successfully positioned the quadrupolar LV lead in what we determined was the optimal lateral branch of the coronary sinus in each patient. LV pacing (LVP) was set up in an extended bipolar configuration with the cathode on the LV electrode and the anode on the RV defibrillation coil. Therefore, MPP was limited to simultaneous pacing from the distal LV electrode to RV coil and proximal LV electrode to RV coil, a configuration that is superior to other MPP configurations.15

Pacing interventions: groups, electrode configurations and pre-excitation/post-excitation classes

The atrial pacing (AP) rate was set 10% higher than baseline sinus rhythm, and AP-QRS interval was measured. We paced the RV at baseline in DDD-mode with AV delay at 80% of the measured AP-QRS interval. We used the AP-QRS interval to calculate the AP-left ventricular paced interval in the fusion with intrinsic RV activation group (FUSION) to pace the LV relative to QRS-onset (figure 1). The FUSION group was the only one to allow intrinsic RV activation. In the NO FUSION with intrinsic RV activation group, the AV-delay to RV pace (RVP) was set to 80% of the AP-QRS interval to avoid intrinsic RV activation (figure 1). We applied LVP from three different electrode configurations within each intervention group (FUSION/NO FUSION). LVP was paced first from the distal electrode (DIST), then from the proximal electrode (PROX), and finally combined DIST+PROX (MPP). Figure 1 shows representative electrograms from one patient and illustrations of the two main groups (FUSION/NO FUSION) with the different electrode configurations (DIST, PROX, MPP) and illustrated ideal
electrical wavefronts from intrinsic activation and pacing electrodes in models of the heart. In the biventricular pacing mode, LVP was then performed relative to either calculated AP-QRS-onset (FUSION) or relative to the RVP (NO-FUSION) to achieve LV pre-excitation/post-excitation. The off-set between LV and RV activation was set by pacing the LV with a different extent of LV pre-excitation/post-excitation in four pre-excitation/post-excitation classes (PCs):

- PC1. LVP earlier than 50 ms before QRS (FUSION) or RV pace onset (NO FUSION).
- PC2. LVP within 50 ms before QRS (FUSION) or RV pace onset (NO FUSION).
- PC3. LVP within 50 ms after QRS (FUSION) or RV pace onset (NO FUSION).
- PC4. LVP later than 50 ms after QRS (FUSION) or RV pace onset (NO FUSION).

With this, we have two main groups (FUSION/NO FUSION) with three different electrode configurations (DIST, PROX, MPP), each paced repeatedly with four different degrees of LV pre-excitation/post-excitation (PC1–4) within each main group in each patient. Therefore, AV-delay was obligate different between the groups, with AV-delay being shorter in the NO FUSION group to avoid intrinsic RV activation compared with the FUSION group. The AV-delay shortened even more when we paced the LV before RV or QRS-onset, as in PC1 and PC2. Therefore, we measured actual AV-delay within each beat, to be included in the analyses, as the interval from AP to the first ventricular activation; LVP, RVp or QRS-onset. Figure 1 shows that the initial portion of the QRS complex is unchanged in the FUSION group before pacing onset.

In the NO FUSION group, there is an immediate change in QRS compared with intrinsic QRS morphology. We confirmed a stable AV-delay visually when pacing with FUSION with intrinsic RV activation and post-excitation of LV (PC3, PC4) with every electrode configuration (figure 1) to confirm intrinsic QRS-onset before LVP and an unchanged intrinsic AV-delay. All biventricular pacing interventions were performed similarly in every patient, alternating FUSION and NO FUSION with each electrode configuration and PC. QRS morphology was visually inspected, compared with successive paced beats and fully paced beats to confirm stable fusion and LV pre-excitation/post-excitation during interventions. We averaged all measurements from 8 to 10 consecutive beats during each pacing intervention.

Data collection, pacing set-up and measurements
We collected electrophysiology signals and ECGs with the BARD Pro EP recording system, with Clearsign Amplifier (Boston Scientific). Pressures were measured via femoral artery access from the left ventricle with the Millar Micro-Cath pressure sensor catheter (Millar, USA) and collected with the PCU-2000 Pressure Control Unit (Millar, USA). We allowed pressures to stabilise with pacing before measuring the resulting LV dP/dt_max. Signals were collected in real-time from the recording system to a data acquisition unit (PowerLab, ADInstruments, UK) for analyses in the LabChart Pro V.8.0 software. We performed pacing with the EPS 320 cardiac stimulator (Micropace EP, USA). We determined QRS-onset as the first fluctuation above the isoelectric line that resulted in a complete QRS complex and QRSd from onset Q to global end of S wave from all ECG leads.

Statistical analysis
We used linear mixed models (SPSS V.26.0) that include fixed and random effects for the repeated measurements and used the Hotelling Lawley test and the GLIMMPSE sample size calculator (Glimmpse V.3.0.0 (sample-sizeshop.org)) to confirm power >80% for a type I error of 5%. We chose compound symmetry as covariance type for both fixed and random effects, with each subject selected as random effects, with Bonferroni correction for comparison of main effects. The model with covariates that provided the lowest Akaike’s information criteria was selected. The statistical output provides the estimated marginal means±SEM for each fixed-effects group, considering random effects and covariates. It allowed us to analyse the effects of and the interactions between the modes of pacing (NO FUSION and FUSION), electrodes used (DIST, PROX, MPP) and pre-excitation (PC1–4). We used general linear models to compare groups with no repeated measures. Numbers from descriptive statistics are mean±SD. A p value of less than 0.05 was considered statistically significant.

RESULTS
Baseline patient characteristics
We included 19 patients in sinus rhythm and a standard indication for a CRT device in the study. Mean age 64±10 years, 32% females, 42% ischaemic, 84% Left bundle-branch block (LBBB), 16% Intra-ventricular conduction disease (IVCD), QRSd 170±12 based on 12-lead ECG, Ejection Fraction (EF) 29%±4%, NYHA class 2.4±0.5 (mean±SD). Q-LV distal was 127±19 ms, and Q-LV proximal was 133±20 ms (mean±SD), with a linear relationship between the two (β=0.82, R=0.86, p<0.01). Paced rate, QRSd, AV-delay and LV dP/dt_max with AP, NO FUSION and FUSION are presented in table 1. Online supplementary figure 1 shows the electric intervals between the RV and LV electrodes and the interval from onset of QRS complex to LV electrodes (QLV).

The effects of stimulation on LV dP/dt_max
We analysed the overall effect of LV pacing with biventricular stimulation (NO FUSION) on LV dP/dt_max and compared this to LV pacing with fusion with intrinsic RV activation (FUSION). We found that LV dP/dt_max was higher with NO FUSION (709±46 mmHg/s) than with FUSION (746±46 mmHg/s, p<0.01). The increase in the two groups from baseline represents a 10% and 7% increase, respectively. We then evaluated the effect of electrode configuration at PC3, including both NO FUSION and FUSION, and found that LV dP/dt_max was
lower with the proximal electrode than with the distal electrode, which again was lower than MPP (753±48 mm Hg/s vs 758±48 mm Hg/s vs 770±48 mm Hg/s, p<0.01). We included the delay between LV stimulation and RV stimulation/activation (VV-delay in ms) as a continuous variable in the model and found a significant effect of VV-delay on LV dP/dt_{max} (estimate $−0.34$ ms/(mm Hg/s), p<0.01). Therefore, we expected pre-excitation classes (PC) to have different effects on LV dP/dt_{max}. Figure 2A,B shows the average timing of pre-excitation/post-excitation in each PC. Overall, regardless of fusion with intrinsic RV activation or not, LV pre-excitation of less than 0 ms (PC1 and PC2) was associated with a higher LV dP/dt_{max} (779±46 mm Hg/s)
versus post-excitation (757±46 mm Hg/s). PC2 was found to provide higher LV dP/dt max than PC3 (779±46 mm Hg/s vs 759±46 mm Hg/s, p<0.01). Pre-excitation (PC1 and PC2) was associated with higher LV dP/dt max than with no pre-excitation (PC3 and PC4) within both groups (NO FUSION and FUSION, table 2). Finally, we tested the interaction of NO FUSION and FUSION with all electrode configurations and PC. Figure 3 shows LV dP/dt max at all different electrode configurations and PCs with FUSION/NO FUSION compared with AP. Online supplemental figure 2 shows the relationship between LV dP/dt max and dP/dt max.

The effects of stimulation on QRSd
We found no difference in QRSd between NO FUSION and FUSION (156±2 ms vs 155±2 ms). However, QRSd significantly shortened from baseline with both the individual intercept into account, explaining the relationship between QRSd and LV dP/dt max. The upper stippled line indicates a 10% increase from baseline dP/dt max (lower stippled line). We show an increase in left ventricular (LV) dP/dt max above the line of a 10% increase to a more considerable extent with LV pre-excitation. A significant increase in LV dP/dt max than all is seen with FUSION and MPP and NO FUSION and distal LV electrode at PC2. In the lower part of the panel, we show the effect on QRS duration (QRSd). The stippled line indicates the level 152 ms at NO FUSION=MPP+PC3, with a red asterisk indicating a significant reduction (p<0.05) from this level and NS indicates a non-significant reduction from this level. QRSd is shortened with FUSION and PC3 with all electrode positions compared with the shortest QRSd with NO FUSION. QRSd with FUSION, MPP and PC3 is significantly lower than all other interventions. *P<0.05 compared with all. Numbers are estimated marginal means±SEM. SEM=48 mm Hg/s for dP/dt max and 2–3 ms for QRSd. AP: atrial pace, LBBB: left bundle-branch block.

The impact of AV-delay on LV dP/dt max and QRS duration
Table 1 presents the measured AV-delays in different groups. Stimulation of the LV before or after the QRS onset in the FUSION group resulted in a significant correlation between the degree of LV pre-excitation/ post-excitation (ms) and AV-delay (ms) (R=0.73, p<0.01). The association between the degree of LV pre-excitation (ms) and AV-delay (ms) in the NO FUSION group was weak (R=0.29, p<0.01). The association between AV-delay and degree of pre-excitation/ post-excitation could potentially affect the results, as AV-delay have a known impact on dP/dt max. We, therefore, studied the relationship between AV-delay and dP/dt max in the patients. We included all the data from the study in the regression analyses and found a quadratic relationship between AV-delay and dP/dt max (figure 6). Figure 6 shows how LV dP/dt max trends towards lower values at ultrashort and long AV-delays; however, even at ‘optimal’ AV-delays, 150–180 ms, a broad span in LV dP/dt max of almost 1000 mm Hg/s is observed between the patients. We also examined the relationship between AV-delay and LV dP/dt max in the mixed models with MPP (FUSION and NO FUSION) and PC3 only to avoid confounding effects.

Table 2 The effect of the interaction of pre-excitation/post-excitation class (PC) with FUSION and NO FUSION

PC	FUSION	NO FUSION
1	777±48 mm Hg/s↑	762±48 mm Hg/s
2	776±48 mm Hg/s↑	787±48 mm Hg/s↑
3	729±48 mm Hg/s↓	775±48 mm Hg/s↑
4	702±48 mm Hg/s↓	751±48 mm Hg/s (Ref.)

Interaction between FUSION and NO FUSION and PC. The arrows indicate deviation compared with Ref. Correction for AV-delay did not significantly influence the model. Numbers are estimated marginal means±SEM.

*p<0.01 compared with NO FUSION PC 4 (Ref.).
of pre-excitation/post-excitation and to test the within-subjects changes. We found no impact of AV-delay on LV dP/dt_{max} (p=0.09). We included AV-delay as a covariate in the mixed models reported in this study and observed no additional AV-delay effects that would change the results. We also measured the delay from AP to LV pace and compared it to LV dP/dt_{max} and found no significant relationship (online supplemental figure 4).

DISCUSSION

Besides that from resynchronisation, fusion strategies may have an independent impact on LV dP/dt_{max} and QRSd. As an example, we know that LV dP/dt_{max} increases to a similar extent, with full LV pre-excitation and biventricular stimulation (resynchronisation). The reason must be independent of resynchronisation. LV-only pacing without fusion with intrinsic conduction introduces more dyssynchrony compared with biventricular pacing.\(^{16,17}\) Therefore, since LV dP/dt_{max} is equally high with LV-only and biventricular pacing, the measurement lacks the ability to confirm resynchronisation as a diagnostic biomarker.\(^{18}\) When measured as an increase from baseline, LV dP/dt_{max} may not increase to the most considerable extent in positions were QRSd shorten the most.\(^{8}\) The fact that LV dP/dt_{max} does not necessarily reflect better resynchronisation may also explain why MPP that increase LV dP/dt_{max} and shorten QRSd acutely failed to show a clinical benefit compared with conventional BIVP in the MOre REsponse to Cardiac Resynchronization Therapy with Multi-Point Pacing (MORE-CRT)
study. The predictive value of an increase in LV dP/dt max from baseline for determining the response to CRT is weak. It seems that fusion and LV pre-excitation, inevitably linked to CRT, contribute independently to a rise in LV dP/dt max and a change in QRSd. It is essential to understand the measurements’ respective value as biomarkers if one would use them for acute prediction of long-term response during CRT implantation. This study was designed to provide knowledge on how different fusion strategies and LV pre-excitation/post-excitation determine QRSd and LV dP/dt max to provide information on the two’s potential utility as biomarkers for the prediction of long-term response to CRT. We show that the two parameters have different determinants, and with LV dP/dt max LV pre-excitation is likely to provide a better response, while simultaneous pacing with multiple activation wavefronts are likely to decrease QRSd the most. The latter is in keeping with better electrical resynchronisation.

Patient characteristics and Q-LV measured from the LV electrodes seen in this study are typical for patients with LBBB, and as expected, LV dP/dt max increased with biventricular stimulation compared with AP or RV pace and QRSd shortened. A significant correlation between VV-delay and LV dP/dt max revealed itself when we changed VV-delay (pre-excitation/post-excitation) within each patient during biventricular stimulation. LV pre-excitation was associated with higher LV dP/dt max. Although LV dP/dt max increased the most with LV pre-excitation, we found that QRSd shortened the most when pacing the LV close to the onset of QRS or RV-pace. Simultaneous activation of LV and RV is likely to cause a narrower QRS complex. Overall, FUSION, MPP and pacing close to QRS and RV-pace onset (PC3) provided the shortest QRSd, similar to what has been documented by others. Hence, LV dP/dt max and QRSd show different response patterns to LV pre-excitation/post-excitation (figure 5). Univentricular LV stimulation without intrinsic activation of the RV can increase LV dP/dt max to values above what is seen with standard biventricular pacing. The reason for this is still unclear, but contractility itself is not likely to be affected by LV-only stimulation. The increase in LV dP/dt max with LV pre-excitation may relate to stimulation of a larger ventricular mass in the LV electrode region. The distal electrode resulted in higher LV dP/dt max than the proximal electrode. The distal electrode is also likely to capture more myocardium before reaching the mitral valve annulus’s boundaries compared with the proximal electrode, and MPP may capture even more. The amount of myocardium captured over time may partly explain a higher LV dP/dt max when pacing with different electrode configurations (see illustrations in figure 1).

To achieve LV pre-excitation/post-excitation, we needed to pace with different AV-delays. We know that the AV-delay influences LV dP/dt max under otherwise similar haemodynamic conditions; however, in this study, the effect of LV pre-excitation on LV dP/dt max was stronger than that resulting from a change in AV-delay. AV-delay was shorter in the NO FUSION group; however, LV dP/dt max was higher with LV pre-excitation in both groups, also when corrected for AV-delay. We changed AV-delay along a wide range of intervals; however, the association between LV dP/dt max and LV pre-excitation was unaffected by AV-delay. The significance of LV pre-excitation in LBBB patients as a determinant of LV dP/dt max was therefore confirmed, in keeping with recent clinical, animal and computational experiments. We also showed that LV dP/dt max increased, resulting from even subtle LV pre-excitation (PC2). LV pre-excitation can also be achieved by pacing LV at multiple sites. Pacing the LV with pre-excitation in time (PC1–2) and in space (MPP), or both, increased LV dP/dt max (figure 3). In our study, we found that LV dP/dt max was higher in the NO FUSION group compared with the FUSION group in contrast with what has been found in similar studies. The different degrees of LV pre-excitation between the groups were different in our study compared with the intervals investigated by van Gelder et al, and may explain the differences found. Besides, beneficial haemodynamics to determine the optimal response, other than LV dP/dt max, resulting from intrinsic activation of the RV may not be recognised using LV dP/dt max. LV pacing only has not proven beneficial compared with biventricular stimulation on long-term. A recent multicenter controlled trial prospective controlled trial showed an increase by 13% in beneficial remodelling (ie, ESV reduction) after 6 months’ follow-up when using LV dP/dt max for LV lead optimisation compared with a standard approach in CRT, but still with a 27% non-responder rate. Subanalyses of the Radi-CRT study also showed no differences in long-term response among patients with non-ischaemic aetiology, indicating that the effect from selecting electrodeposition based on a higher LV dP/dt max would mainly benefit patients with an ischaemic aetiology. Twenty-eight per cent of patients without a <10% increase in LV dP/dt max experienced long-term reverse remodelling, while 16% with a >10% increase in LV dP/dt max did not experience long-term reverse remodelling. Therefore, it is quite clear that an increase in LV dP/dt max from one pacing site to another carries information that leads to an increased response rate, but an increase in LV dP/dt max from baseline does not necessarily reflect better resynchronisation to predict long-term outcomes. Interpretation of a higher LV dP/dt max as being haemodynamically superior, reflecting better resynchronisation, with one approach compared with a different approach, may not be warranted.

Fusion-optimised intervals leading to shorter QRSd, shortening of QRSd and a reduction in QRS area are associated with improved remodelling and mortality. QRSd incorporates essential elements (eg, left ventricular...
activation time) of dyssynchrony.20 Our study MPP provided shorter QRSd than pacing from single electrodes, suggesting that shortening of QRSd in our study also reflects the shortening of the left ventricular activation time.19 If shortening of QRSd were to be the sole target for a response; however, our data suggest that this will come at the cost of not optimising LV dP/dt\textsubscript{max} and vice versa. Concurrently, QRSd may not shorten to the most considerable extent with CRT when pacing LV from sites that reflect the maximal mechanical response.8 Even if shortening of the QRSd with pacing is the desired response, it is still not a perfect measure for long-term prediction.5 Figure 3 shows that with the shortest QRSd, LV dP/dt\textsubscript{max} increased, on average, only by 7%. Our study shows how LV dP/dt\textsubscript{max} may paradoxically increase in situations where QRSd gets longer.

Clinical implications

This study points out that mechanical function assessment, with LV dP/dt\textsubscript{max} and electrical activation, with QRSd, may provide conflicting results. We expect that electrical activation and mechanical action is positively concordant with successful resynchronisation.7,8 Our study shows that pre-excitation of the LV is associated with a higher dP/dt\textsubscript{max} and longer QRSd than less pre-excitation. LV pre-excitation rather than the effect from resynchronisation may determine an increase in LV dP/dt\textsubscript{max} from baseline. Therefore, a higher percentage increase in LV dP/dt\textsubscript{max} from baseline values should not be interpreted as a better result when assessing the effect of resynchronisation.

Limitations

The lack of direct insight into LV activation time intervals and exact electrical propagation in the tissue are limitations in this study. LV activation time, propagation and activated area over time would be better measures of the effect of fusion and resynchronisation than QRSd. MPP may promote better resynchronisation in the presence of a scar.32,33 Therefore, the presence of scar could potentially explain improvements in LV dP/dt\textsubscript{max} with MPP and LV pre-excitation but would not concurrently explain the associated prolongation of QRSd. We did not clearly identify the presence of scar in our patients, despite that 43% of the patients had ischaemic heart disease. The knowledge of myocardial scar location and different study design could have brought insight into the effect of a scar on both LV dP/dt\textsubscript{max} and QRSd. Multisite pacing with a larger electrode separation could have provided an even more apparent LV pre-excitation effect.10 Placement of the RV and LV electrodes in close proximity could have affected the degree of fusion and pre-excitation resulting from LV activation. Of the patients in this study, 16% were classified as not having true LBBB, and fusion with intrinsic conduction in such patients may be different from fusion with LBBB. We did, however, document a long Q-LV in all patients (online supplemental figure 1). The RV paced to LV sensed interval is presented in relation to QRSd in the supplement. Stimulation from within a scar resulting in delayed myocardial activation may have affected the degree of pre-excitation and lead to misclassification of LV pre-excitation. We did not, however, find a bias in the paced to sense RV-LV and LV-RV intervals (online supplemental figure 1).

CONCLUSION

Biventricular pacing increases LV dP/dt\textsubscript{max} and shortens QRSd depending on different degrees of fusion of electrical wavefronts in the heart. LV pre-excitation determines an increase in LV dP/dt\textsubscript{max} and a longer QRSd, while MPP and LV pacing timed with RV activation shorten QRSd with lower resulting LV dP/dt\textsubscript{max}. In this study, LV dP/dt\textsubscript{max} is therefore determined mainly by LV pre-excitation, while QRSd is determined by optimal resynchronisation.

Contributors HHO: Conceived study protocol, organised the study, performed analyses, wrote the manuscript. TH: Participated in the study, revised the manuscript. LOG: Conceived study protocol, organised the study, revised the manuscript. RCO: Conceived study protocol, organised the study, revised the manuscript. EK: Conceived study protocol, participated in the study, revised manuscript.

Funding The study was supported by a grant from Helse Sør-Ost RHF.

Competing interests LOG and RC are full-time employees in Medtronic. HHO has received honorary from Abbott Medical, Stockholder Pacertool; patent applications within the field of cardiac resynchronization therapy.

Patient consent for publication Not required.

Provenance and peer review Not commissioned; externally peer reviewed.

Data availability statement Data are available on reasonable request.

Open access This is an open access article distributed in accordance with the Creative Commons Attribution Non Commercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited, appropriate credit is given, any changes made indicated, and the use is non-commercial. See: http://creativecommons.org/licenses/by-nc/4.0/.

ORCID iD Hans Henrik Odland http://orcid.org/0000-0002-0868-4457

REFERENCES

1. Okafor O, Zegard A, van Dam P, et al. Changes in QRS area and QRS duration after cardiac resynchronization therapy predict cardiac mortality, heart failure hospitalizations, and ventricular arrhythmias. J Am Heart Assoc 2019;8:e013559.

2. Stephansen C, Sommer A, Kronborg MB, et al. Electrically vs. imaging-guided left ventricular lead placement in cardiac resynchronization therapy: a randomized controlled trial. Europace 2019;21:1369–77.

3. Molhoek SG, VAN Enven L, Bootsm A, et al. QRS duration and shortening to predict clinical response to cardiac resynchronization therapy in patients with end-stage heart failure. Pacing Clin Electrophysiol 2004;27:308–13.

4. Auricchio A, Stellbrink C, Block M, et al. Effect of pacing chamber and atrioventricular delay on acute systolic function of paced patients with congestive heart failure. The pacing therapies for congestive heart failure Study Group. The Guidant congestive heart failure Research Group. Circulation 1999;99:2993–3001.

5. Prinzén FW, Auricchio A. The “missing” link between acute hemodynamic effect and clinical response. J Cardiovasc Transl Res 2012;5:188–95.

6. Engels EB, Mafi-Rad M, van Stipdonk AMW, et al. Why QRS duration should be replaced by better measures of electrical activation to improve patient selection for cardiac resynchronization therapy. J Cardiovasc Transl Res 2016;9:257–65.
7 Zanon F, Marcantoni L, Baracca E, et al. Hemodynamic comparison of different multisites and multipoint pacing strategies in cardiac resynchronization therapies. J Interv Card Electrophysiol 2018;33:31–9.
8 Derval N, Bordachar P, Lim HS, et al. Impact of pacing site on QRS duration and its relationship to hemodynamic response in cardiac resynchronization therapy for congestive heart failure. J Cardiovasc Electrophysiol 2014;25:1012–20.
9 Thibault B, Ducharme A, Harel F, et al. Left ventricular versus simultaneous biventricular pacing in patients with heart failure and a QRS complex <150 milliseconds. Circulation 2011;124:2874–81.
10 Heckman LIB, Kuijer M, Anselme F, et al. Evaluating multisite pacing strategies in cardiac resynchronization therapy in the preclinical setting. Heart Rhythm O2 2020;1:111–9.
11 Leclercq C, Buri H, Curnis A, et al. Cardiac resynchronization therapy non-responder to Responder conversion rate in the more response to cardiac resynchronization therapy with multipoint pacing (MORE-CRT MPP) study: results from phase I. Eur Heart J 2019;40:2979–87.
12 Salden FCWM, Luermans JGLM, Westra SW, et al. Short-term hemodynamic and electrophysiological effects of cardiac resynchronization by left ventricular septal pacing. J Am Coll Cardiol 2020;75:347–69.
13 Umar F, Taylor RJ, Stegemann B, et al. Haemodynamic effects of cardiac resynchronization therapy using single-vein, threepole, multipoint left ventricular pacing in patients with ischaemic cardiomyopathy and a left ventricular free wall scar: the MAESTRO study. Europace 2016;18:1227–34.
14 van Gelder BM, Bracke MA, Meijer A, et al. The hemodynamic effect of intrinsic conduction during left ventricular pacing as compared to biventricular pacing. J Am Coll Cardiol 2005;46:2305–10.
15 Thibault B, Dubuc M, Khairy P, et al. Acute haemodynamic comparison of multisite and biventricular pacing with a quadrilobar left ventricular lead. Europace 2013;15:984–91.
16 Leclercq C, Faris O, Tunin R, et al. Systolic improvement and mechanical resynchronization does not require electrical synchrony in the dilated failing heart with left bundle-branch block. Circulation 2002;106:1760–3.
17 Gold MR, Auricchio A, Hummel JD, et al. Comparison of stimulation sites within left ventricular veins on the acute hemodynamic effects of cardiac resynchronization therapy. Heart Rhythm 2005;2:376–81.
18 Group F-NBV. BEST (biomarkers, endpoints, and other tools) resource. Silver Spring, MD: Food and Drug Administration (US) and Co-published by National Institutes of Health (US), Bethesda (MD), 2016.
19 Pappone C, Rosano S, Oreto G, et al. Cardiac pacing in heart failure patients with left bundle branch block: impact of pacing site for optimizing left ventricular resynchronization. Ital Heart J 2000;1:464–9.
20 Poole JE, Singh JP, Birgersdotter-Green U. QRS duration or QRS morphology: what really matters in cardiac resynchronization therapy? J Am Coll Cardiol 2016;67:1104–17.
21 Šipal A, Bozyel S, Aktas M, et al. Surface electrogram-guided left ventricular lead placement improves response to cardiac resynchronization therapy. JACC Clin Electrophysiol 2018;4:181–9.
22 Arbelo J, Tolosana JM, Trucco E, et al. Fusion-optimized intervals (FOI): a new method to achieve the narrowest QRS for optimization of the AV and VV intervals in patients undergoing cardiac resynchronization therapy. J Cardiovasc Electrophysiol 2016;27:1150–6.
23 Trucco E, Tolosana JM, Arbelo E, et al. Improvement of reverse remodeling using electrocardiogram fusion-optimized intervals in cardiac resynchronization therapy: a randomized study. JACC Clin Electrophysiol 2018;4:181–9.
24 Ductek SG, Ginks M, Shetty AK, et al. Invasive acute hemodynamic response to guide left ventricular lead implantation predicts chronic remodeling in patients undergoing cardiac resynchronization therapy. J Am Coll Cardiol 2011;58:1128–36.
25 Muir WW, Hamlin RL. Myocardial contractility: historical and contemporary considerations. Front Physiol 2020;11:222.
26 Prinzen FW, Cheriex EC, Delhaas T, et al. Asymmetric thickness of the left ventricular wall resulting from asynchronous electric activation: a study in dogs with ventricular pacing and in patients with left bundle branch block. Am Heart J 1995;130:1045–53.
27 Willemsen E, Schreurs R, Huntjens PR, et al. The left and right ventricles respond differently to variation of pacing delays in cardiac resynchronization therapy: a combined Experimental-computational approach. Front Physiol 2019;10:17.
28 Vanmaekelbergh D, Janssens N, Jia P, et al. RV electrical activation in heart failure during right, left, and biventricular pacing. JACC Cardiovasc Imaging 2010;3:567–75.
29 Touiaza A, Etienne Y, Gilard M, et al. Long-term left ventricular pacing: assessment and comparison with biventricular pacing in patients with severe congestive heart failure. J Am Coll Cardiol 2001;38:1966–70.
30 Sohal M, Hamid S, Perego G, et al. A multicenter prospective randomized controlled trial of cardiac resynchronization therapy guided by invasive dP/dt. Heart Rhythm O2 2021;2:19–27.
31 Prinzen FW, Houthisen R, Bogaard MD, et al. Is acute hemodynamic response a predictor of long-term outcome in cardiac resynchronization therapy? J Am Coll Cardiol 2012;59:1198. author reply 98-9.
32 Ginks MR, Ductek SG, Kapetanakis S, et al. Multi-site left ventricular pacing as a potential treatment for patients with postero-lateral scar: insights from cardiac magnetic resonance imaging and invasive haemodynamic assessment. Europace 2012;14:373–9.
33 Albatal M, Bergland J, Arevalo H, et al. Multisite pacing and myocardial scars: a computational study. Comput Methods Biomech Biomed Engin 2020;23:248–60.