QCD Equation of State and Hadron Resonance Gas

Pasi Huovinen

J. W. Goethe Universität, Frankfurt

Strong and Electroweak Matter 2010

June 23, 2010, McGill University, Montreal, Canada

in collaboration with Peter Petreczky at BNL

arXiv:0912:2541
Hadron Resonance Gas model

- EoS of interacting hadron gas well approximated by non-interacting gas of hadrons and resonances

\[P(T) = \sum_i \int d^3p \frac{p^2}{3E} f(p, T) \]

- valid when
 - interactions mediated by resonances

- Prakash & Venugopalan, NPA546, 718 (1992): experimental phase shifts
- Gerber & Leutwyler, NPB321, 387 (1989): chiral perturbation theory
 \Rightarrow \text{HRG good approximation at low temperatures}
 \rightarrow \text{lattice should reproduce HRG at } T \leq 120 - 140 \text{ MeV}

- practical problem: how to convert \text{fluid} to \text{particles}?
- energy conservation iff EoS is the same before and after freeze-out
EoS by hotQCD collaboration

Bazavov et al. arXiv:0903.4379 [hep-lat]

- evaluate interaction measure $(\epsilon - 3P)/T^4$
- obtain pressure via

$$ \frac{P}{T^4} - \frac{P_0}{T_0^4} = \int_{T_0}^{T} dT' \frac{\epsilon - 3P}{T'^5} $$

- What is $P(T_0)$?
- What is $(\epsilon(T_0) - 3P(T_0))/T_0^4$?
- How good is lattice below T_c?
Trace anomaly below T_c

Bazavov et al arXiv:0903.4379

\[(\epsilon-3p)/T^4\]

- asqtad: $N_\tau=8$
- $p4: N_\tau=8$

• Lattice EoS ≠ Hadron Resonance Gas EoS
Hadrons on lattice

• Hadron masses depend on lattice cutoff
 ⇒ i.e. on temperature:
 E.g. for pseudoscalar mesons

\[m_{ps_i}^2 = m_{ps_0}^2 + \frac{1}{r_1^2} \frac{a_i}{b_{ps} x^2} \left(1 + c_{ps} x \right)^{\beta_i} \]

\[x = \left(\frac{a}{r_1} \right)^2 \]

\[a = \frac{1}{N \tau T} \]

• 16 pseudoscalar mesons on lattice

• HRG with lattice mass spectrum?
Hadronic fluctuations

i.e. baryon number, strangeness and charge susceptibilities

\[
\chi_2^x = \frac{1}{VT^3} \frac{\partial^2 \ln Z}{\partial (\mu_x/T)^2} = \frac{1}{T^2} \frac{\partial^2 P}{\partial \mu_x^2},
\]

where \(\mu_x = \mu_B, \mu_S \) or \(\mu_Q \)

- **Lattice masses** → fluctuations in resonance gas and lattice *similar*
• very little room for modifications in hadron gas
• **BUT**, what is physical mass spectrum?
• **conservative estimate**: free particle masses
Phenomenological EoS

- $T < T_{sw}$: HRG interaction measure (black)
- $T > T_{sw}$: Lattice interaction measure (red)
- lattice $N_{\tau} = 6$ data, Cheng et al. Phys. Rev. D 77, 014511 (2008)

- ϵ and P overshoot Stefan-Boltzmann limit!
- Interaction measure too large, but where?
Interaction measure

Cheng et al ('08)

\[
\frac{(\varepsilon - 3p)}{T^4} \quad \text{Tr}_0
\]

\[
\text{p4: } N_T = 4 \quad \text{p4: } N_T = 6 \quad \text{p4: } N_T = 8
\]

\[
T \ [\text{MeV}]
\]

Bazavov et al ('09)

\[
\frac{(\varepsilon - 3p)}{T^4} \quad \text{Tr}_0
\]

\[
\text{asqtad: } N_T = 8 \quad \text{p4: } N_T = 6 \quad \text{p4: } N_T = 8
\]

\[
T \ [\text{MeV}]
\]

- peak region sensitive to \(N_T \)
Procedure for EoS

- **HRG below** $T \approx 180 - 190$ MeV
- **Parametrize** lattice using:

$$\frac{\epsilon - 3P}{T^4} = \frac{d_2}{T^2} + \frac{d_4}{T^4} + \frac{c_1}{T^{n_1}} + \frac{c_2}{T^{n_2}}$$

- **Require** that:

$$\left. \left| \frac{\epsilon - 3P}{T^4} \right| \right|_{T_0}, \quad \left. \frac{d}{dT} \left| \frac{\epsilon - 3P}{T^4} \right| \right|_{T_0}, \quad \left. \frac{d^2}{dT^2} \left| \frac{\epsilon - 3P}{T^4} \right| \right|_{T_0} \quad \text{are continuous}$$

$$\left. \left| \frac{P}{T^4} \right| \right|_{T=800\text{MeV}} = 0.95 \frac{S_{SB}}{T^4}$$

$\implies T_0, d_4, c_1, c_2$ fixed

- χ^2 **fit to lattice above** $T = 250$ MeV + **one point** at $T = 206$ MeV

- We get $T_0 = 183.8$ MeV, $d_2 = 0.2660$, $d_4 = 2.403 \cdot 10^{-3}$, $c_1 = -2.809 \cdot 10^{-7}$, $c_2 = 6.073 \cdot 10^{-23}$, $n_1 = 10$, $n_2 = 30$
• obtain pressure via

\[\frac{P}{T^4} - \frac{P_0}{T_0^4} = \int_{T_0}^{T} dT' \frac{\epsilon - 3P}{T'^5} \]
• no softening below the HRG!
Bazavov and Petreczky, arXiv:1005.1131

\[
\frac{(\varepsilon - 3p)}{T^4}
\]

HISQ, \(N_f=8\)
HISQ, \(N_f=6\)
asqtad
p4
Laine
s95p-v1
Bazavov and Petreczky, arXiv:1005.1131

\[\frac{(\varepsilon-3p)}{T^4} \]

HISQ, \(N_t=8 \)

HISQ, \(N_t=6 \)

asqtad

p4

Laine

s95p-v1

Borsányi et al, arXiv:1005.3508

\[\frac{(\varepsilon-3p)}{T^4} \]

HRG physical

HRG distorted stout \(N_t=8 \)

HRG distorted asqtad \(N_t=8 \)

stout \(N_t=10 \)

stout \(N_t=8 \)

asqtad \(N_t=8 \)

p4 \(N_t=8 \)
Ideal hydrodynamics

matter in local equilibrium: \(T^{\mu\nu} = (e + p)u^{\mu}u^{\nu} - pg^{\mu\nu} \), \(N^{\mu} = nu^{\mu} \)

local, macroscopic variables: energy density \(e(x) \)
pressure \(p(x) \)
flow velocity \(u^{\mu}(x) \) \((u^{\mu}u_{\mu} = 1) \)
baryon density \(n(x) \)

energy-momentum and charge conservation:

\[
\begin{align*}
\partial_{\mu}T^{\mu\nu}(x) &= 0 \\
\partial_{\mu}N^{\mu}(x) &= 0
\end{align*}
\]

Unknowns: initial state, final state

matter characterized by: equation of state \(p(e, n) \)
Elliptic flow v_2

Spatial anisotropy \rightarrow final azimuthal momentum anisotropy

$\varepsilon \equiv \frac{\langle x^2 - y^2 \rangle}{\langle x^2 + y^2 \rangle}$

$v_2 \equiv \frac{\langle p_x^2 - p_y^2 \rangle}{\langle p_x^2 + p_y^2 \rangle}$

Sensitive to speed of sound $c_s^2 = \frac{\partial p}{\partial e}$ and shear viscosity η
Effect on flow I

- ideal fluid, \(b = 7 \text{ fm} \)
- keep everything fixed:
 - \(\tau_0 = 0.6 \text{ fm/c}, T_{dec} = 125 \text{ MeV} \)

\[
\Rightarrow \text{harder EoS, flatter spectra}
\]
Effect on flow II

- ideal hydro, Au+Au at $\sqrt{s_{NN}} = 200$ GeV
- chemical equilibrium

- s95p: $T_{dec} = 140$ MeV
- EoS Q: first order phase transition at $T_c = 170$ MeV, $T_{dec} = 125$ MeV
Chemical non-equilibrium

- ideal fluid, $b = 7$ fm
- keep everything fixed:
 - $\tau_0 = 0.2$ fm/c, $T_{chem} = 150$ MeV, $T_{dec} = 120$ MeV

\Rightarrow harder EoS, flatter spectra
Effect on flow III

- ideal hydro, Au+Au at $\sqrt{s_{NN}} = 200$ GeV
- $T_{\text{chem}} = 150$ MeV

- EoS Q: $T_{\text{dec}} = 120$ MeV, $s_{\text{ini}} \propto N_{\text{bin}}$, $\tau_0 = 0.2$ fm/c
- s95p, $\tau_0 = 0.8$: $T_{\text{dec}} = 120$ MeV, $s_{\text{ini}} \propto N_{\text{bin}}$, $\tau_0 = 0.8$ fm/c
- s95p, $\tau_0 = 0.2$: $T_{\text{dec}} = 120$ MeV, $s_{\text{ini}} \propto N_{\text{bin}} + N_{\text{part}}$, $\tau_0 = 0.2$ fm/c
Conclusions

- below T_c lattice and HRG differ because of hadron mass spectrum

⇒ HRG **good description** below T_c

- some uncertainty in the parametrization of the EoS

⇒ but it **doesn’t matter**

- proton $v_2(p_T)$ may or may not be sensitive to EoS — **details matter!**

- EoS tables available at
 - https://wiki.bnl.gov/hhic/index.php/Lattice_calculations_of_Equation_of_State
 - and
 - https://wiki.bnl.gov/TECHQM/index.php/QCD_Equation_of_State