A GENERALIZATION OF PURELY EXTENDING MODULES RELATIVE TO A TORSION THEORY

SEMRA DOĞRUOZ AND AZİME TARHAN

Abstract. In this work we introduce a new concept, namely, τ_s-extending modules (rings) which is torsion-theoretic analogues of extending modules and then we extend many results from extending modules to this new concept. For instance we show that for any ring R with unit, if R is purely τ_s-extending then every cyclic τ-nonsingular R-module is flat and we show that this fact is true over a principal ideal domain as well. Also, we make a classification for the direct sums of the rings to be purely τ_s-extending.

1. Introduction

Injective modules have been intensively studied in the 1960s and 1970s in module theory and more generally in algebra. As a generalization of injective modules extending modules (CS), that is every closed submodule is a direct summand, have been studied widely in last three decades. In general setting Chatters and Hajarnavis [6], Harmancı and Smith [21], Kamal and Muller [22] and their schools can be mentioned involving studies of extending modules.

Recently, torsion-theoretic analogues of extending modules has been an interest to extend many results and concepts from extending modules to a torsion theory such primarily studies as Asgari and Haghany [3], Berktaş, Doğruöz and Tarhan [5], Crivei [10], Çeken and Alkan [11], Doğruöz [12]. Clark [7] defined a module M is purely extending if every submodule of M is essential in a pure submodule of M, equivalently every closed submodule of M is pure in M. Al-Bahrani [1] generalized purely extending modules as a purely y-extending module using s-closed submodules which was defined by Goodearl [19] such as a submodule N of a module M is s-closed in M if M/N is non-singular. So a module M is called purely y-extending if every s-closed submodule of M is pure in M. In fact Al-Bahrani [1] belike misused the terminology of s-closed submodules. They used the term y-closed (purely y-extending) instead of s-closed (purely s-extending) respectively. In this study we use s-closed submodule and purely s-extending module instead of y-closed submodule and purely y-extending module in the sense of Al-Bahrani [1].

2010 Mathematics Subject Classification. Primary 16S90, 16D40; Secondary 16E60.

Key words and phrases. Pure submodule, closed submodule, (non)singular module, extending module, torsion theory.

This work includes some parts of Ph.D. thesis of the second author.
We use the concept 'purity' in the sense of Cohn [9] (as in [7]) which implies definition of Anderson and Fuller [2], that is, a submodule \(N \) of an \(R \)-module \(M \) is called pure submodule in \(M \) in case \(IN = N \cap IM \) for each finitely generated right ideal \(I \) of the ring \(R \) (see also [23]). In the present paper we introduce purely \(\tau_s \)-extending modules and then we extend many results from [1], [7] and [19] to this new concept.

For instance we show that:

Theorem 18: Let \(R \) be a \(\tau \)-torsion ring and \(M \) be an \(R \)-module. Let \(E(M) \) be an injective hull of \(M \). Then \(M \) is a purely \(\tau_s \)-extending module if and only if \(A \cap M \) is pure in \(M \) for every direct summand \(A \) of \(E(M) \) such that the submodule \(A \cap M \) is \(\tau_s \)-closed in \(M \).

Proposition 26: Let \(R \) be a ring with identity. If \(R \) is purely \(\tau_s \)-extending then every cyclic \(\tau \)-nonsingular \(R \)-module is flat.

and

Theorem 31: Let \(R \) be a commutative integral domain. Then the following properties are equivalent:

1. \(R \) is a semi-hereditary ring.
2. \(R \oplus R \) is an extending module.
3. \(R \oplus R \) is a purely extending module.
4. \(R \oplus R \) is a purely s-extending module.
5. \(R \oplus R \) is a purely \(\tau_s \)-extending module.
6. For each \(n \in \mathbb{N} \), \(\bigoplus_n R \) is an extending module.
7. For each \(n \in \mathbb{N} \), \(\bigoplus_n R \) is a purely extending module.
8. For each \(n \in \mathbb{N} \), \(\bigoplus_n R \) is a purely s-extending module.
9. For each \(n \in \mathbb{N} \), \(\bigoplus_n R \) is a purely \(\tau_s \)-extending module.

which is a torsion-theoretic analogue of [7, Proposition 1.6].

Throughout the work \(R \) will be an associative ring with identity and all \(R \)-modules will be unitary left \(R \)-modules unless otherwise stated. \(R-\text{Mod} \) will be the category of unitary left \(R \)-modules, and all modules and module homomorphisms will belong to \(R-\text{Mod} \). Let \(\tau : (\mathcal{T}, \mathcal{F}) \) be a torsion theory on \(R-\text{Mod} \). The modules in \(\mathcal{T} \) are called \(\tau \)-torsion modules and the modules in \(\mathcal{F} \) are called \(\tau \)-torsion-free modules. Let \(M \in R-\text{Mod} \). Then the \(\tau \)-torsion submodules of \(M \), denoted by \(\tau(M) \), is defined to be the sum of all \(\tau \)-torsion submodules of \(M \). Thus \(\tau(M) \) is the unique largest \(\tau \)-torsion submodule of \(M \) and \(\tau(M/\tau(M)) = 0 \) for an \(R \)-module \(M \). The torsion class \(\mathcal{T} \) is given \(\mathcal{T} := \{ M \in R-\text{Mod} | \tau(M) = M \} \) and \(\mathcal{F} \) is refered to as torsion-free class and given by \(\mathcal{F} := \{ M \in \text{Mod} - R | \tau(M) = 0 \} \). In our study \(\tau \) will be a hereditary torsion theory on \(R-\text{Mod} \) and we mean \(R \) is \(\tau \)-torsion ring if \(R R \) is \(\tau \)-torsion.

Let \(M \) be an \(R \)-module. A submodule \(N \) of \(M \) is called \(\tau \)-essential in \(M \) (\(N \leq_{\tau} M \)) if \(N \) is essential in \(M \) and \(M/N \) is \(\tau \)-torsion (see [17], originally defined by Tsai in 1965 [26]). Define the set \(Z_{\tau}(M) = \{ m \in M | \text{Ann}(m) \leq_{\tau} R \} \). If \(Z_{\tau}(M) = M \)
A GENERALIZATION OF PURELY EXTENDING MODULES RELATIVE TO A TORSION THEORY

then M is called \(\tau \)-singular module and if $Z_{\tau}(M) = 0$ then M is called \(\tau \)-nonsingular module \((13)\).

For elementary, additional and unexplained terminology the reader is referred to \([2]\) or \([27]\) for module and ring theory, \([17]\) and \([25]\) for torsion theory, \([13]\) for extending modules and \([23]\) for homological algebra.

2. Purely \(\tau_{s} \)-Extending Modules

Let M be an R-module and N be a submodule of M. We call N is \(\tau_{s} \)-closed submodule of M if the factor module M/N is a \(\tau \)-nonsingular and it is denoted by $N \leq_{\tau_{s}c} M$.

Definition 1. Let M be an R-module. If every \(\tau_{s} \)-closed submodule of M is pure in M then we call M is a purely \(\tau_{s} \)-extending module. It is denoted briefly \(p_{\tau_{s}} \)-extending.

Lemma 2. Let R be a \(\tau \)-torsion ring. If N is \(\tau_{s} \)-closed in M then N is closed in M.

Proof. Let N be a \(\tau_{s} \)-closed submodule of M. Then the factor module M/N is \(\tau \)-nonsingular i.e., $Z_{\tau}(M/N) = 0$. Since R is \(\tau \)-torsion, $Z_{\tau}(M/N) = Z(M/N)$. Assume N is not closed in M. Then there exists a submodule K of M such that K contains N as an essential submodule. So the factor module K/N is singular \([19]\). Hence $Z(K/N) = K/N$. On the other hand since $Z(K/N)$ is a submodule of $Z(M/N)$, we have $Z(K/N) = 0$. Hence K/N is nonsingular. But since K/N is singular, it must be zero (i.e. $K/N = 0$). Therefore $N = K$ and so N is closed submodule of M. \(\square \)

Corollary 3. Let R be a \(\tau \)-torsion ring. If M is a purely extending module then M is purely \(\tau_{s} \)-extending.

Proof. Let M be a purely extending module and N be a \(\tau_{s} \)-closed submodule of M. Since R is \(\tau \)-torsion N is closed in M by Lemma 2. From \([7]\) Lemma 1.1 every closed submodule of M is pure in M. So N is pure in M. Therefore M is purely \(\tau_{s} \)-extending module. \(\square \)

As in general extending module theory we have some of the fundamental properties of purely \(\tau_{s} \)-extending modules as follows:

Lemma 4. Let $M = M_1 \oplus M_2$ be a purely \(\tau_{s} \)-extending module then M_1 and M_2 are also purely \(\tau_{s} \)-extending modules i.e., any direct summand of a purely \(\tau_{s} \)-extending module is purely \(\tau_{s} \)-extending.

Proof. $M = M_1 \oplus M_2$ be a purely \(\tau_{s} \)-extending module and let N_1 be a \(\tau_{s} \)-closed submodule of M_1. Then $Z_{\tau}(M_1/N_1) = 0$. For the proof we want to show that N_1 is pure in M_1. First let us show that N_1 is \(\tau_{s} \)-closed in M i.e., (M/N_1) is \(\tau \)-nonsingular.
Assume M/N_1 is not τ-nonsingular module. Thus $Z_\tau(M/N_1) \neq 0$. Then there exists an element $N_1 \neq m + N_1 \in M/N_1$ such that $Ann(m + N_1) \leq \tau_m R$. On the other hand, since $m \in M = M_1 \oplus M_2$, $m_1 \in M_1$ and $m_2 \in M_2$, the writing $m = m_1 + m_2$ is unique. Thus

$$Ann(m + N_1) = Ann((m_1 + m_2) + N_1) = Ann(m_1 + N_1 + m_2 + N_1) = Ann(m_1 + N_1) \cap Ann(m_2 + N_1)$$

(see [2] Proposition 2.16). In addition since $Ann(m + N_1) \leq \tau_m R$, we have $Ann(m_1 + N_1) \cap Ann(m_2 + N_1) \leq \tau_m R$. Since $Ann(m_1 + N_1) \cap Ann(m_2 + N_1) \subseteq Ann(m_1 + N_1) \subseteq R$, we have $Ann(m_1 + N_1) \leq \tau_m R$. But this contradicts with $Z_\tau(M/N_1) \neq 0$. Hence $Z_\tau(M/N_1) = 0$ i.e., N_1 is a τ_s-closed submodule of M. By the hypothesis N_1 is pure in M since M is purely τ_s-extending module. By [15] Proposition 1.2 (2) N_1 is pure in M_1. Thus M_1 is purely τ_s-extending module. Similarly it can be shown that M_2 is also purely τ_s-extending module.

Corollary 5. Let $M = \bigoplus_{i \in I} M_i$ be a purely τ_s-extending module where I is a finite index set. Then for every $i \in I$, M_i is purely τ_s-extending.

Proof. It is clear from Lemma

Lemma 6. Let C be an R-module. Then C is a τ-nonsingular module if and only if for every τ-singular R-module A, $\text{Hom}_R(A,C) = 0$.

Proof. Let $f : A \rightarrow C$ be an R-module homomorphism where C is a τ-nonsingular module and A is a τ-singular R-module. Then $f(A) = f(Z_\tau(A))$. We show $f(Z_\tau(A)) \subseteq Z_\tau(C)$. If $x \in f(Z_\tau(A))$ then there is an element $a \in Z_\tau(A)$ such that $x = f(a)$. So $Ann(a) \leq \tau_m R$. If $r \in Ann(a)$, then $rx = rf(a) = f(ra) = 0$ i.e., $r \in Ann(x)$. Since $Ann(a) \leq Ann(x) \leq R$, we have $Ann(x) \leq \tau_m R$ i.e., $x \in Z_\tau(C)$. By the hypothesis, since $Z_\tau(C) = 0$, $f = 0$ and thus $\text{Hom}_R(A,C) = 0$.

For the converse let $\text{Hom}_R(A,C) = 0$ for every τ-singular R-module A. Specially $\text{Hom}_R(Z_\tau(C),C) = 0$. So the inclusion map $Z_\tau(C) \hookrightarrow C$ is zero. Hence $Z_\tau(C) = 0$ and so C is τ-nonsingular module.

Lemma 7. The class of τ-nonsingular modules is closed under extensions by short exact sequences.

Proof. Let C and A be τ-nonsingular modules and consider the following short exact sequence

$$0 \longrightarrow C \longrightarrow B \longrightarrow A \longrightarrow 0$$

For every τ-singular R-module M, using Lemma we have $\text{Hom}_R(M,C) = 0$ and $\text{Hom}_R(M,A) = 0$. Then the following short exact sequence

$$0 \longrightarrow \text{Hom}_R(M,C) \longrightarrow \text{Hom}_R(M,B) \longrightarrow \text{Hom}_R(M,A) \longrightarrow 0$$
yields $\text{Hom}_R(M, B) = 0$. Again by Lemma 8, the R-module B must be τ-nonsingular.

\[\square\]

Next we can show τ_s-closed submodules have transitivity property.

Lemma 8. Let M be an R-module and let K and N be submodules of M such that $K \subseteq N$. If K is τ_s-closed submodule of N and N is τ_s-closed submodule of M, then K is τ_s-closed submodule of M.

Proof. Since K is τ_s-closed submodule of N and N is τ_s-closed submodule of M, $Z_T(N/K) = 0$ and $Z_T(M/N) = 0$. We must show that $Z_T(M/K) = 0$. Consider the following short exact sequence

\[
0 \longrightarrow N/K \longrightarrow M/K \longrightarrow M/N \longrightarrow 0
\]

By Lemma 8, the class of τ-nonsingular modules are closed under extensions by short exact sequences. Since N/K and M/N are both τ-nonsingular, M/K is τ-nonsingular. Hence $Z_T(M/K) = 0$. Thus K is τ_s-closed submodule of M. \[\square\]

Now we have some basic properties as follows.

Lemma 9. Any τ_s-closed submodule of a purely τ_s-extending module is purely τ_s-extending.

Proof. Let M be a purely τ_s-extending module and let N be a τ_s-closed submodule of M. Then M/N is τ-nonsingular. Let K be a τ_s-closed submodule of N. Then by Lemma 8, K is a τ_s-closed submodule of M. Since M is purely τ_s-extending module, K is pure in M. By [15] Proposition 1.2 (2), K is pure in N. So N is purely τ_s-extending module. \[\square\]

There exist submodules K, L of a module M such that K and L both closed submodules of M but $K \cap L$ is not closed in K, L or M (see [19] Example 1.6). But we have the following in our case.

Proposition 10. Let M be an R-module and N, K be τ_s-closed submodules of M. Then $N \cap K$ is a τ_s-closed submodule of M.

Proof. Let M be an R-module and N, K be τ_s-closed submodules of M. Then M/K and M/N are τ-nonsingular, i.e., $Z_T(M/N) = 0$ and $Z_T(M/K) = 0$. Assume $Z_T(M/(N \cap K)) \neq 0$. Then there is a $(N \cap K) \neq \bar{m} \in M/(N \cap K)$ such that $\text{Ann}(\bar{m}) \subseteq \tau_s R$. Now for $\bar{m} = m + (N \cap K)$, $m \notin N \cap K$. On the other hand for $m \in M$, choose the elements $\hat{m} = m + N \in M/N$ and $\bar{m} = m + K \in M/K$. Then we have $\text{Ann}(\bar{m}) \subseteq \text{Ann}(\hat{m})$ and $\text{Ann}(\bar{m}) \subseteq \text{Ann}(\hat{m})$. Indeed, now let $0 \neq r \in \text{Ann}(\bar{m})$. Then $r\bar{m} = 0$ and so $r\bar{m} + (N \cap K) = N \cap K$. Hence $r\bar{m} \in N \cap K$. So we have $r\bar{m} \in N$ and $r\bar{m} \in K$. Thus $r\bar{m} + N = N$ and $r\bar{m} + K = K$, i.e. $r\bar{m} = 0$ and $r\bar{m} = 0$. Consequently $r \in \text{Ann}(\bar{m})$ and $r \in \text{Ann}(\hat{m})$. Hence $\text{Ann}(\bar{m}) \subseteq$
Ann(\(\tilde{m}\)) and Ann(\(\tilde{m}\)) \(\subseteq\) Ann(\(\tilde{m}\)). On the other hand since Ann(\(\tilde{m}\)) \(\leq\) \(\tau_s\) R we have Ann(\(\tilde{m}\)) \(\leq\) \(\tau_s\) R and Ann(\(\tilde{m}\)) \(\leq\) \(\tau_s\) R. Then by hypothesis \(Z_\tau(M/N) = 0\) and \(Z_\tau(M/K) = 0\), we have \(m \in N\) and \(m \in K\) and so \(m \in N \cap K\). Hence \(\tilde{m} = m + (N \cap K) = N \cap K\). This is a contradiction. Thus \(Z_\tau(M/(N \cap K)) = 0\). Therefore \(N \cap K\) is a \(\tau_s\)-closed submodule of \(M\).

Corollary 11. Any intersection of \(\tau_s\)-closed submodules is also \(\tau_s\)-closed.

Proof. It is an evident result of Proposition 10.

Lemma 12. Let \(M\) be an \(R\)-module and let \(K, L\) be submodules of \(M\) such that \(K \leq L\). If \(L\) is a \(\tau_s\)-closed submodule of \(M\) then \(L/K\) is a \(\tau_s\)-closed submodule of \(M/K\).

Proof. Let \(L\) be a \(\tau_s\)-closed submodule of \(M\). Then \(Z_\tau(M/L) = 0\). On the other hand \((M/K)/(L/K) \cong M/L\) and since \(\tau\)-nonsingular modules are closed under isomorphisms, \(Z_\tau((M/K)/(L/K)) = 0\). Hence \(L/K\) is \(\tau_s\)-closed in \(M/K\).

Lemma 13. Let \(M\) be an \(R\)-module and let \(K, L\) be submodules of \(M\) such that \(K \leq L\). If the factor module \(L/K\) of \(M/K\) is \(\tau_s\)-closed then \(L\) is a \(\tau_s\)-closed submodule of \(M\).

Proof. Since \(L/K\) is a \(\tau_s\)-closed submodule of \(M/K\), \(Z_\tau((M/K)/(L/K)) = 0\). Since \((M/K)/(L/K) \cong M/L\) and \(\tau\)-nonsingular modules are closed under isomorphisms, \(Z_\tau(M/L) = 0\). Hence \(L\) is a \(\tau_s\)-closed submodule of \(M\).

Proposition 14. Let \(M\) be a purely \(\tau_s\)-extending \(R\)-module and \(N\) be a \(\tau_s\)-closed submodule of \(M\). Then the factor module \(M/N\) is purely \(\tau_s\)-extending.

Proof. Let \(M\) be a purely \(\tau_s\)-extending \(R\)-module and \(N\) be a \(\tau_s\)-closed submodule of \(M\). By the definition of purely \(\tau_s\)-extending module, \(N\) is pure in \(M\). For \(N \leq K \leq M\) let \(K/N\) be \(\tau_s\)-closed in \(M/N\). Now \((M/N)/(K/N) \simeq M/K\) and since the \(\tau\)-nonsingular modules are closed under isomorphisms, \(Z_\tau(M/K) = 0\). So \(K\) is \(\tau_s\)-closed submodule of \(M\). Since \(M\) is purely \(\tau_s\)-extending, \(K\) is pure in \(M\). By Proposition 1.2 (3) \(K/N\) is pure in \(M/N\). Thus \(M/N\) is purely \(\tau_s\)-extending.

Let \(M\) be an \(R\)-module. For an arbitrary submodule \(N\) of \(M\) by Zorn’s Lemma there is a maksimal submodule \(K\) of \(M\) such that \(N\) is essential in \(K\). The submodule \(K\) is called closure of \(N\) in \(M\) ([24]).

Now we give another generalization of closures relative to a torsion theory as follows:

Definition 15. Let \(M\) be an \(R\)-module and let \(N\) be a submodule of \(M\). The smallest \(\tau_s\)-closed submodule \(K\) of \(M\) which is containing \(N\) is called \(\tau_s\)-closure of \(N\) in \(M\). The \(\tau_s\)-closure of \(N\) is denoted by \(N^{\tau_s}\).

Lemma 16. Every submodule \(N\) of an \(R\)-module \(M\) has a \(\tau_s\)-closure in \(M\).
Proof. Let M be an R-module and N be a submodule of M. Now define the set $S = \{ K \leq M \mid N \subseteq K \text{ and } K \leq \tau_s \ M \}$. Since $Z_s(M/M) = 0$, M is τ_s-closed in M and so $M \in S$. Then S is non-empty. Let C be a chain in S. Take $C = \bigcap_{K_i \in C} K_i$. By Corollary 11, C is a τ_s-closed submodule of M. Then $C \in S$. By Zorn’s Lemma there is a minimal element in S. If we call this element such as H then H is τ_s-closure of N in M. Thus every submodule N of M has a τ_s-closure in M. □

Proposition 17. An R-module M is a purely τ_s-extending if and only if the τ_s-closure of N (i.e., $N^{-\tau_s}$) is pure in M for every submodule N of M.

Proof. Let M be a purely τ_s-extending module. Then every τ_s-closed submodule of M is pure in M. By Zorn’s Lemma every submodule N of M has a τ_s-closure in M. By the definition of τ_s-closure, the submodule $N^{-\tau_s}$ is τ_s-closed in M and by the hypothesis the submodule $N^{-\tau_s}$ is pure in M.

Conversely, let K be a τ_s-closed submodule in M. By the definition of τ_s-closure, $K^{-\tau_s} = K$. By the hypothesis $K^{-\tau_s}$ i.e. K is a pure submodule in M. Then any τ_s-closed submodule of M is pure in M. Thus M is a purely τ_s-extending module.

Theorem 18. Let R be a τ-torsion ring, let M be an R-module and let $E(M)$ be the injective hull of M. Then, M is a purely τ_s-extending module if and only if $A \cap M$ is pure in M for every direct summand A of $E(M)$ such that the submodule $A \cap M$ is τ_s-closed in M.

Proof. Let R be a τ-torsion ring, M be an R-module, $E(M)$ be the injective hull of M and M be a purely τ_s-extending module. Then for every direct summand A of $E(M)$ such that $A \cap M$ is a τ_s-closed submodule of M it is clear that $A \cap M$ is pure in M.

Conversely, let A be a τ_s-closed submodule of M and let B be a complement of A in M. Then $A \oplus B$ is essential in M [19, Proposition 1.3]. Now it is clear that $A \oplus B$ is essential in $E(M)$. Hence $E(A) \oplus E(B) = E(A \oplus B) = E(M)$ [20]. Since $A = A \cap M \leq s E(A) \cap M \leq (E(A) \cap M)/A$ is singular (see [19]). Moreover since R is a τ-torsion ring $(E(A) \cap M)/A$ is τ-singular. On the other hand since $(E(A) \cap M)/A \leq M/A$ and A is τ_s-closed submodule of M, M/A is τ-nonsingular and thus $(E(A) \cap M)/A$ is τ-nonsingular. Therefore $(E(A) \cap M)/A = 0$ and so $E(A) \cap M = A$. Since A is τ_s-closed in M, $E(A) \cap M$ is also τ_s-closed in M. Since $E(A)$ is a direct summand of $E(M)$ by the hypothesis $E(A)/M$ is a pure submodule of M. Hence A is pure in M. Thus M is a purely τ_s-extending module. □

Theorem 19. Let R be a τ-torsion ring, let M be an R-module and let $E(M)$ be the injective hull of M. Assume $A + M$ be a flat module for every direct summand A of $E(M)$ with $A \cap M$ is τ_s-closed submodule of M. Then M is a purely τ_s-extending module.

Proof. Let A be a direct summand of $E(M)$ such that $A \cap M$ is τ_s-closed in M. Consider the following short exact sequences of R-modules
where \(i_1, i_2 \) are inclusion maps and \(f_1, f_2 \) are natural epimorphisms. Since \(A \) is a direct summand of \(E(M) \), there is a submodule \(A' \) of \(E(M) \) such that \(E(M) = A \oplus A' \). Thus \(A \) is also a direct summand of \(A + M \). Then the short exact sequence

\[
0 \rightarrow A \rightarrow A + M \rightarrow (A + M)/A \rightarrow 0
\]

splits. Therefore \((A + M)/A\) is flat since it is isomorphic to a direct summand of \(A + M \). On the other hand since \(M/(A \cap M) \cong (A + M)/A \) the factor module \(M/(A \cap M) \) is again flat. By \cite{[15]} Theorem 1.7 \(A \cap M \) is pure in \(M \). Hence by Theorem \cite{[15]} \(M \) is a purely \(\tau_s \)-extending module. □

3. Purely \(\tau_s \)-Extending Rings

If the ring \(R \) is purely \(\tau_s \)-extending as an \(R \)-module over itself then \(R \) is called purely \(\tau_s \)-extending.

3.1. Multiplication Modules. Let \(R \) be a commutative ring and \(M \) be an \(R \)-module. For every submodule \(N \) of \(M \) if there exists an ideal \(I \) of \(R \) such that \(N = IM \) then \(M \) is called a multiplication module. For every submodule \(N \) of \(M \) let us define

\[
(N : M) = \{ r \in R \mid rM \subseteq N \}.
\]

Then \(M \) is an multiplication \(R \)-module if and only if \(N = (N : M)M \) \cite{[4]}.

Definition 20. \cite{[8]} Let \(M \) be an \(R \)-module and \(N \) be a submodule of \(M \). If

\[
N = \text{Hom}(M, N) = \sum \{ \varphi(N) \mid \varphi : M \rightarrow N \}
\]

then \(N \) is called an idempotent submodule of \(M \). If every submodule of \(M \) is idempotent then \(M \) is called a fully idempotent module.

Theorem 21. \cite{[14]} Theorem 2.11] Let \(M \) be a multiplication \(R \)-module and \(M = M_1 \oplus M_2 \), is a direct sum of fully idempotent submodules \(M_1 \) and \(M_2 \). Then \(M \) is a fully idempotent module.
Lemma 22. [14] Lemma 2.13] Let M be a fully idempotent R-module, N be a submodule of M and I be an ideal of R. Then $N \cap MI = NI$, i.e., N is pure in M.

Now we can give the following theorem by using fully idempotent submodules:

Theorem 23. Let R be a commutative ring and let $M = M_1 \oplus M_2$ be a multiplication R-module with fully idempotent submodules M_1, M_2 of M. Then M is a purely τ_s-extending module.

Proof. Let M be a multiplication R-module and N be a τ_s-closed submodule of M. By Theorem 21 M is fully idempotent R-module and by Lemma 22 the τ_s-closed submodule N of M is pure in M. Hence M is purely τ_s-extending. □

Now we can give a characterization of a purely τ_s-extending R-module with a ring as follows:

Proposition 24. Let R be a commutative ring and let M be a faithful multiplication R-module. If R/R is purely τ_s-extending module then M is also purely τ_s-extending module.

Proof. Let N be a τ_s-closed submodule of M. Since M is multiplication R-module, we can write $N = (N : M)M$. Claim: $(N : M)$ is τ_s-closed submodule in R. Assume $(N : M)$ is not τ_s-closed submodule in R. Then $R/(N : M)$ is not τ-nonsingular i.e., $Z(R/(N : M)) \neq 0$. Then there exists at least one non-zero element \bar{r} of $R/(N : M)$ such that $Ann(r + (N : M))$ is τ-essential in R. So $\bar{r} = r + (N : M) \neq (N : M)$. Then there is an element $0 \neq m_0 \in M$ such that $rm_0 \notin N$. Now $Ann(r + (N : M)) \subseteq Ann(rm_0 + N)$. If $s \in Ann(r + (N : M))$, then $sr + (N : M) = (N : M)$. Hence we have $sr \in (N : M)$ so it is easy to check that $(sr)M \subseteq N$ (*). Let us show that $s \in Ann(rm_0 + N)$. Now $s(rm_0 + N) = srm_0 + N$ but since $(sr)M \subseteq N$ and by (*) for $m_0 \in M$, $srm_0 \in N$, i.e., $srm_0 + N = N$. So $s \in Ann(rm_0 + N)$. Hence we have $Ann(r + (N : M)) \subseteq Ann(rm_0 + N)$. On the other hand, since N is τ_s-closed in M it is clear that M/N τ-nonsingular. So $r + (N : M)$ and $N = N$ but it contradicts with $rm_0 \notin N$. Hence $(N : M)$ must τ_s-closed in R. Moreover since R is purely τ_s-extending $(N : M)$ is pure in R. Now for the finitely generated ideal I of R we have $IN = I(N : M)M = I \cap (N : M)M = IM \cap (N : M)M = IM \cap N$ ([1]). Therefore the τ_s-closed submodule N of M is pure in M. Hence M is a purely τ_s-extending module. □

Remark 25. [23] Proposition 3.46] Let R be an arbitrary ring. The left R-module R is a flat left R-module.

In the sequel we use the flat ring in the sense of Rotman [23] Proposition 3.46], i.e the ring R is flat if R/R is flat.

Proposition 26. Let R be an arbitrary ring. If R/R is purely τ_s-extending then every cyclic τ-nonsingular R-module is flat.
Proof. Let \(R R \) be a purely \(\tau_s\)-extending module. Let \(M = Ra \) be a cyclic \(\tau\)-nonsingular \(R\)-module which is generated by a where \(a \in R \). Define the map \(f : R \rightarrow M \) with \(f(r) = ra \). Clearly \(f \) is an epimorphism and \(\text{Ker}(f) = \text{Ann}(a) \). So \(R/\text{Ker}(f) = R/\text{Ann}(a) \cong Ra \). Moreover, since \(Ra \) is a \(\tau\)-nonsingular module and the class of \(\tau\)-nonsingular modules is closed under isomorphisms \(R/\text{Ann}(a) \) is \(\tau\)-nonsingular. Hence \(\text{Ann}(a) \) is \(\tau_s\)-closed in \(R \). By the hypothesis \(\text{Ann}(a) \) is pure in \(R \). Since \(R \) is flat and \(\text{Ann}(a) \) is pure in \(R \), \(R/\text{Ann}(a) \) is flat by \cite{1} Lemma 19.18. Therefore \(Ra \) is flat.

Proposition 27. Let \(R \) be a principal ideal domain (for short PID). If every cyclic \(\tau\)-nonsingular \(R\)-module is flat then \(R R \) is purely \(\tau_s\)-extending.

Proof. Let \(K \) be a \(\tau_s\)-closed ideal of \(R \). Then \(R/K \) is \(\tau\)-nonsingular. Since \(R \) is PID the factor ring \(R/K \) is also PID. Hence \(R/K \) is cyclic. By hypothesis \(R/K \) is flat. Thus by \cite{1} Lemma 19.18, \(K \) is pure in \(R \). Then \(R \) is purely \(\tau_s\)-extending. \(\square \)

3.2. Semi-hereditary Rings. Let \(R \) be a ring with unit element. If every left (right) ideal of \(R \) is projective then \(R \) is called a left (right) hereditary ring. If every finitely generated left (right) ideal of \(R \) is projective then \(R \) is called a left (right) semi-hereditary ring \((25)\).

When the ring \(R \) is semi-hereditary we have Proposition 26 with its converse also as follows.

Theorem 28. Let \(R \) be a semi-hereditary ring. Then \(R R \) is purely \(\tau_s\)-extending if and only if every cyclic \(\tau\)-nonsingular \(R\)-module is flat.

Proof. Let \(R \) be a purely \(\tau_s\)-extending semi-hereditary ring and let \(M \) be a cyclic \(\tau\)-nonsingular \(R\)-module generated by an element \(a \) of \(R \) \((M = Ra \) is \(\tau\)-nonsingular). Take the homomorphism \(f : R \rightarrow Ra \) with \(f(r) = ra \). It is clear that \(f \) is an epimorphism. Since \(R/\text{Ker}(f) = R/\text{Ann}(a) \cong Ra \) and \(\tau\)-nonsingular modules are closed under isomorphisms, \(R/\text{Ker}(f) \) is \(\tau\)-nonsingular. Then \(\text{Ker}(f) \) is a \(\tau_s\)-closed submodule of \(R R \). By the hypothesis \(\text{Ker}(f) \) is pure in \(R \). On the other hand since \(R \) is a semi-hereditary ring, every finitely generated ideal of \(R \) is projective and so \(R/\text{Ker}(f) \) is projective. Since projective modules are flat, \(R/\text{Ker}(f) \) is flat and thus \(Ra \) (and so \(M \)) is flat.

Conversely let \(C \) be a \(\tau_s\)-closed ideal of \(R \). Then \(R/C \) is \(\tau\)-nonsingular and also \(R/C \) is cyclic. Hence by the hypothesis \(R/C \) is flat. By \cite{13} Theorem 1.7 we have \(C \) is pure in \(R \). Thus \(R R \) is a purely \(\tau_s\)-extending module. \(\square \)

Theorem 29. Let \(R \) be a left semi-hereditary ring. Then \(R \oplus R \) is purely \(\tau_s\)-extending if and only if every \(\tau\)-nonsingular 2-generated \(R\)-module is flat.

Proof. Let \(M = Rm_1 + Rm_2 \) be a \(\tau\)-nonsingular \(R\)-module. Define the map \(f : R \oplus R \rightarrow M \) with \(f(r_1, r_2) = r_1 m_1 + r_2 m_2 \). Now it is clear that \(f \) is an epimorphism. Hence \((R \oplus R)/\text{Ker}(f) \cong M \). Since \((R \oplus R)/\text{Ker}(f) \) is \(\tau\)-nonsingular, \(\text{Ker}(f) \) is a \(\tau_s\)-closed submodule of \(R \oplus R \). By the hypothesis \(\text{Ker}(f) \) is pure in \(R \oplus R \). Since
R is a semi-hereditary ring, R is flat. Because of the direct sum of flat modules is flat $R \oplus R$ is flat \cite{19}. Thus by \cite{15} Proposition 1.3 (3), we have the R-module M is flat.

For the converse, let C be a τ_s-closed submodule of $R \oplus R$. Then $(R \oplus R)/C$ is τ-nonsingular. On the other hand since $R \oplus R$ is a 2-generated τ-nonsingular, R-module $(R \oplus R)/C$ is also 2-generated τ-nonsingular R-module. By the hypothesis $(R \oplus R)/C$ is flat. Then by \cite{15} Theorem 1.7 we get C is pure in $R \oplus R$. Thus $R \oplus R$ is purely τ_s-extending. □

Corollary 30. Let R be a left semi-hereditary ring and I be a finite index set. Then $\bigoplus I R$ is purely τ_s-extending if and only if every τ-nonsingular I-generated R-module is flat.

Now we can give the following generalized characterization of purely τ_s-extending modules.

Theorem 31. Let R be a commutative integral domain. Then the following properties are equivalent:

1. R is a semi-hereditary ring.
2. $R \oplus R$ is an extending module.
3. $R \oplus R$ is a purely extending module.
4. $R \oplus R$ is a purely s-extending module.
5. $R \oplus R$ is a purely τ_s-extending module.
6. For each $n \in \mathbb{N}$, $\bigoplus_n R$ is an extending module.
7. For each $n \in \mathbb{N}$, $\bigoplus_n R$ is a purely extending module.
8. For each $n \in \mathbb{N}$, $\bigoplus_n R$ is a purely s-extending module.
9. For each $n \in \mathbb{N}$, $\bigoplus_n R$ is a purely τ_s-extending module.

Proof. The equivalence of (1), (2) and (6) are given in \cite{13} Corollary 12.10.

In addition the equivalence of (1), (2), (3), (6) and (7) are given in \cite{7} Proposition 1.6.

(3) \iff (4). Every s-closed submodule of a module M is closed in M. But converse is true if M is nonsingular \cite{19} Proposition 2.4. Here since R is commutative integral domain, R is nonsingular. Therefore closed submodule and s-closed submodule implies each other. Thus the proof is clear by \cite{7} Lemma 1.1 in fact Lemma 1.1 is originally given by Fuchs \cite{16}.

(7) \iff (8). It can be easily checked be like (3) \iff (4).

Now we show (5) \Rightarrow (4). Let K be a s-closed submodule of $R \oplus R$. Then $(R \oplus R)/K$ is nonsingular. Since any nonsingular module is τ-nonsingular. $(R \oplus R)/K$ is a τ-nonsingular. By the hypothesis K is pure in $R \oplus R$. Hence $R \oplus R$ is a purely s-extending module.

The implication of (9) \Rightarrow (8) is a generalization of (5) \Rightarrow (4).

Now it’s left to show (1) \Rightarrow (5). For this let K be a τ_s-closed submodule of $R \oplus R$. Since R is a semi-hereditary ring, as a finitely generated R-module $(R \oplus R)/K$ is
projective and so \((R \oplus R)/K\) is flat (see \[23\] Proposition 3.46). By \[15\] Proposition 1.3 \(K\) is pure in \(R \oplus R\). Hence \(R \oplus R\) is a purely \(\tau_s\)-extending module.

Finally \((1) \Rightarrow (9)\) is also similar to \((1) \Rightarrow (5)\). This completes the proof. \(\Box\)

Example 32. Let \(\mathbb{Z}\) be the ring of integers. Then \(\mathbb{Z}\) is a purely \(\tau_s\)-extending \(\mathbb{Z}\)-module over itself.

Proof. Since \(\mathbb{Z}\) is a principal ideal domain (PID), every ideal of \(\mathbb{Z}\) is free and so it is projective. Therefore \(\mathbb{Z}\) is a hereditary ring. Moreover \(\mathbb{Z}\) is a semi-hereditary ring. By Theorem \[31\] \(((1) \Rightarrow (5))\) we have \(\mathbb{Z} \oplus \mathbb{Z}\) is purely \(\tau_s\)-extending. Additionally, by Lemma \[9\] since the direct summands of purely \(\tau_s\)-extending modules are purely \(\tau_s\)-extending, we have \(\mathbb{Z}\) is a purely \(\tau_s\)-extending module. \(\Box\)

References

[1] Al-Bahrani, B. H., On purely \(y\)-extending modules, *Iraqi Journal of Science* **54** (3), (2013), 672-675.

[2] Anderson, F. W. and Fuller, K. R., Rings and Categories of Modules. Graduate Texts in Math., No:13, Springer Verlag, New York, 1974.

[3] Asgari, Sh., and Haghany, A., \(t\)-extending modules and \(t\)-Baer modules, Communications in Algebra, **39** (5), (2011), 1605-1623.

[4] Barnard, A., Multiplication modules, *Journal of Algebra*, **71**, (1981), 174-178.

[5] Berktas, M. K., Doğruöz, S. and Tarhan, A., Pure closed subobjects and pure quotient Goldie dimension, *JP Journal of Algebra, Number theory and Applications* **41** (1), (2019), 49-57.

[6] Chatters, A. W. and Hajarnavis, C. R., Rings in which every complement right ideal is a direct summand, *Quart. J. Math. Oxford* **28** (1), (1977), 61-80.

[7] Clark, J., On purely extending modules, *The Proceedings of the International Conference in Abelian Groups and modules*, (1999), 353-358.

[8] Clark, J., Lomp, C., Vanaja, N. and Wisbauer, R., Lifting Modules, Frontiers in Mathematics, Birkhäuser Verlag, Basel, 2006.

[9] Cohn, P. M., On the free product of associative rings, *Math. Zeitschr.* **71**, (1959), 380-398.

[10] Crivei, S., Relatively extending modules, *Algebr. Represent. Theor.* **12** (2-5), (2009), 319-332.

[11] Çeken, S. and M. Alkan, M., On \(\tau\)-extending modules, *Mediterranean Journal of Mathematics* **9** (1), (2012), 129-142.

[12] Doğruöz, S., Classes of extending modules associated with a torsion theory, *East-West Journal of Mathematics* **8** (2), (2006), 163–180.

[13] Dung, N. V., Huynh, D. V., Smith, P. F. and Wisbauer, R., Extending Modules, Longman, Harlow, 1994.

[14] Ertas, N. O., Fully Idempotent and Multiplication Modules, *Palestine Journal of Mathematics* **3**, (2014), 432–437.

[15] Fieldhouse, D. J., Purity and flatness, PhD Thesis, Department of Mathematics McGill University Montreal, Canada, July 1967.

[16] Fuchs, L., Note on generalized continuous modules, preprint, (1995).

[17] Golan, J. S., Torsion Theories, Longman, New York, 1986.

[18] Gomez Pardo, J. L., Spectral Gabriel Topologies and Relative Singular Functors, *Comm. Algebra* **13** (1), (1985), 21-57.

[19] Goodearl, K. R., Ring Theory, Nonsingular Rings and Modules, Marcel Dekker, New York, 1976.
[20] Goodearl, K. R. and Warfield, R. B., An Introduction to Noncommutative Noetherian Rings, Cambridge University Press, 1989.
[21] Harmanci, A. and Smith, P.F., Finite direct sum of CS-modules, *Houston J. Math.* **19** (4), (1993), 523-532.
[22] Kamal, M. A. and Muller, B. J., Extending modules over commutative domains, *Osaka J. Math.* **25**, (1988), 531-538.
[23] Rotman, J. J., An introduction to homological algebra, Academic Press, New York, 1979.
[24] Smith, P. F., Modules for which every submodule has a unique closure, *Ring Theory Conference, World Scientific, New Jersey*, (1993), 302-313.
[25] Stenstrom, B., Rings of Quotients, Springer-Verlag, 1975.
[26] Tsai, C.T., Report on injective modules, Queen’s Paper in Pure and Applied Mathematics, No.6, Kingston, Ontario:Queen’s University, 1965.
[27] Wisbauer, R., Foundations of module and ring theory, Gordon and Breach, 1991.

Current address: Semra Doğruöz: Adnan Menderes University, Aydın, Turkey
Email address: sdogruoz@adu.edu.tr
URL: http://orcid.org/0000-0002-7928-301X

Current address: Azime Tarhan: Adnan Menderes University, Aydın, Turkey
Email address: a.tarhan89@hotmail.com
URL: http://orcid.org/0000-0002-5363-1936