The QED corrections in the Standard Model

S I Sukhoruchkin
Petersburg Nuclear Physics Institute 188300 Gatchina Russia
E-mail: sergeis@pnpi.spb.ru

Abstract. The radiative correction as a commonly used methods of a comparison of the effects with different scales is known, for example, as Schwinger QED correction \(\frac{\alpha}{2\pi} \approx 1.159 \times 10^{-3} \). It was found that the ratio between known Standard Model parameters \(\frac{m_\mu}{M_Z} = 1.159 \times 10^{-3} \) coincides with QED correction, while the lepton ratio \(\frac{m_\mu}{m_e} = 206.77 \) becomes integer 207.01 after small QED correction for the electron rest mass. We follow Nambu suggestion that empirical relations in particle masses could be useful for the SM-development and consider empirical relations in well-known particle masses, including top-quark and tau-lepton. Indirect confirmation of the tuning effects in particle masses was found in the analysis of nuclear data.

1. Introduction
The radiative correction (of the type \(g/2\pi \)) is one of the commonly used methods of a comparison of the effects with very different scales [1]. For example, Bernstein marked [2] the closeness of the QED radiative correction (\(\alpha/\pi = 2.32 \times 10^{-3} \)) to the parameter of CP-nonconservation in kaon decay \(\eta = 2.23 \times 10^{-3} \) [3]. Here \(\alpha/2\pi = 1.159 \times 10^{-3} \) is the well-known Schwinger QED radiative correction of the magnetic moment of the electron [3]. Application of such small QED correction to the mass of electron was discussed by Shirkov [4].

It was found in 70-ties [5,6] that: (1) the electromagnetic mass splitting of the pion \(\delta m_\pi \) is close to \(9m_e = 4.599 \) MeV = \(\Delta \) and (2) the accurately known lepton ratio \(\frac{m_\mu}{m_e} = 206.77 \) becomes integer 207.01 after the application of this QED correction of the electron rest mass \(m_e^* = m_e(1 - \alpha/2\pi) \). The recently accurately measured value \(\delta m_e = 4.954(1) \) MeV [3] also is in an integer relation with \(m_e^* \) (namely, \(\delta m_e/m_e^* = 9.00 \)). We discuss here a possible origin of this relation \(m_e^* = \delta m_e/m_e \approx 1:9:1 \) in the well known particle masses and the role of the QED radiative correction of the type \(g/2\pi \). We use here empirical fact that the ratio between the two well known SM-parameters: \(\mu \)-lepton mass and Z-boson mass form a ratio \(\frac{m_\mu}{M_Z} = 1.159 \times 10^{-3} \) coinciding with the QED correction (\(\alpha/2\pi \)). We consider other corresponding values in this \(1:9:1 \) relation.

It was found in 70-ties that the doubled value of the pion mass splitting (without \(m_e \), that's the value \(2(\delta m_e - m_e) \) or the doubled value of the pion \(\beta \)-decay energy is close to \(16m_e = \delta \) and forms with pion mass itself integer ratio \(\frac{m_{\pi}}{m_e} = 139.57-0.51 \text{MeV} \)). We use here empirical fact that the ratio between the two well known SM-parameters: \(\mu \)-lepton mass and Z-boson mass form a ratio \(\frac{m_\mu}{M_Z} = 105.66+0.51 \text{MeV} \). The introduction of the period \(\delta = 16m_e \) permitted a simultaneous description of many other important mass parameters [6-9]. Among them:

(1) The nucleon \(\Delta \)-excitation, namely, \(m_{\Delta} = m_n = 294 \text{ MeV} = 2 \times 147 \text{ MeV} = 2 \times \Delta \); (2) Constant interval between scalar meson masses: \(m_{\eta'} - m_\eta = 409.8 \text{ MeV} \), \(m_{\eta} - m_\pi = 408.3 \text{ MeV} \).
(3) Introduced by Wick stable mass interval equal to $\frac{1}{2}$ of ω-meson mass $M^{\omega} = 391$ MeV = $3 \cdot 16 \delta$;
(4) Introduced by Sternheimer/Kropotkin [10, 11] mass interval equal to $1/3$ of Ξ-baryon 441 MeV = 3×147 MeV = $3 \times 18 \delta$; intervals $M^{\omega} = 391$ MeV and $M_{\Xi} = 441$ MeV are standard estimates of the constituent quark masses in Constituent Quark Models (CQM, for example $M_d = 436$ MeV in [12]);
(5) Noticed by Nambu and others [6, 20] closeness of masses to $k \times m_\pi$ or $k \times \Delta M_\Delta$ (k-integer, Table 1).

2. Nucleon structure and constituent quark masses

The constituent quark mass estimate as $1/3$ of Δ-baryon mass $M^\Delta_{q} = 410$ MeV is close to a stable interval in masses of pseudoscalar mesons $m_\eta - m_\pi = 409$ MeV and to the sum $m_\pi^2 + 2m_\eta^2 = 409.5$ MeV (corresponding to $17 + 33 = 50$ periods of δ) [10, 6, 14], shown as crossed arrows in Fig. 2.

The Δ-baryon mass is somewhat less than the initial baryon mass in the usual calculations of baryon masses in the NRCQM (Non-relativistic Constituent Quark Model). It is seen in Fig. 1 [13] where calculations with CQM with Goldstone Boson Exchange are presented as a function of the strength of residual quark interaction. The observed nucleon Δ-excitation (294 MeV) is shown as a difference of the observed masses marked "Δ" and "N" on the vertical line in the left picture. The initial non-strange baryon mass $M^\text{init}_{N} = 1350$ MeV in this CQM calculation is marked as "$+$" on the left axis. Corresponding value of the quark mass $M_q = (1/3)M^\text{init}_{N} = 450$ MeV is close to the three-fold value of the parameter ΔM_Δ of the Δ-excitation per one quark 441 MeV = 3×147 MeV = $3 \times 18 \delta$ and $M_\Xi = 441$ MeV introduced by Sternheimer/Kropotkin from an equality of $m_\Sigma - m_\Lambda = m_\Lambda - m_\eta = m_\eta - m_\mu$, etc.

Recent progress in lattice QCD calculations and in application of Dyson–Schwinger Equations (DSE) [15, 16] results in the understanding of the role of the gluon quark-dressing effect and interconnection between the relatively small values of the initial "chiral quark masses" $m_q \approx m_\pi/2 = 70$ MeV (introduced earlier in [17]) and the large values of constituent quark masses $M^\Delta_{q} = 441$ MeV = M_Ξ in NRCQM [12, 13]). This QCD quark-dressing effect as the dependence of the dressed-quark mass function $M(p)$ is shown as the top curve for the initial quark mass $m_q = 70$ MeV.

![Figure 1](image)

Figure 1. Left: Calculation of nonstrange baryon and Λ-hyperon masses as a function of interaction strength within Goldstone Boson Exchange Constituent Quark Model [13]; the initial baryon mass 1350 MeV = 3×450 MeV = $3M_q$ is marked "$+$" on the left vertical axis. Right: QCD gluon-quark-dressing effect calculated with DSE [16], initial masses $m_q = 0$ (Bottom), 30 MeV and 70 MeV (Top).
Table 1. Discussed in the literature closeness of masses [3] and mass differences to the integer numbers (k) of the pion mass $m_\pi = 139.5\text{MeV}$ or to $2m_\pi + m_\pi^\pm = 409\text{MeV}$ [14,18] (left part of the table and the line in Fig. 2 started at m_π and going throw the Lambda hyperon); the same effect with the integer numbers (k) of the parameter $\Delta M = 147\text{MeV} = M_q / 3$ (at right, it is shown in Fig. 2 as lines with a larger slope parallel to the intervals in vector meson masses of 884 MeV = $6\Delta M$ ($\Delta J=2$).

Particle	Λ	Ω	(bb) $(2S-1S)$	(bb) $(4S-2S)$	ΔE_{π}	(cc) $(2S-1S)$	(cc) $(1S)$	Ξ ω, ω	K, K^*	ΔE_{μ}	
Mass	1115.7	1672	10023	10579	408.9	3686	3096.9	1321.3	1667	1776	441.5
ΔM	-9460	-10023	k = 8	k = 12	k = 4	-3097	-783	-892			
$k \Delta M$	1116	1674	558	558	409	k = 4	k = 21	k = 9	k = 6	k = 6	k = 3
Diff.	0	2	$=5$	$=2$	0	1	10	-2	2(4)	2(7)	0
Ref.	[6,20]	[14,18]	[3,18]	[3,18]	[14,18]	[3,18]	[3,18]	[11,18]	[3,18]	[8,18]	[14,18]

Figure 2. Different mass intervals and hadron/lepton masses shown by the two-dimensional mass-presentation with the horizontal axis in units 16·16m_e close to $m_\omega/6$. Residuals $M_i - n(16 \times 16m_e = 16\delta)$ are plotted in the vertical direction (y-axis with units of $\delta = 16m_e$). Three values corresponding to different estimates of constituent quark masses are shown as lines with different slopes: horizontal line corresponds to the Wick’s interval $m_\omega/2 = M_q^* = 6,10$; crossed arrows - to $M_q^* = 409$ MeV $[6,10,29]$ and parallel lines – to the interval considered by Sternheimer and Kropotkin $M_q = 441\text{MeV}$ $[6,10,11]$.

3
The constituent-quark mass arises from a cloud of low-momentum gluons attaching themselves to the current-quark; this is dynamical chiral symmetry breaking: a non-perturbative effect that generates a quark mass from nothing (even at the chiral limit $m_q=0$, bottom curve in Fig. 1 right [16]).

The pion is simultaneously a Goldstone mode and a bound-state of effectively massive constituents [16]. The quark-parton of QCD acquires a momentum-dependent mass function (Fig. 1) that at infrared momentum ($p=0$) is larger by two-orders-of-magnitude than the current-quark mass (several MeV [3]) due to a heavy cloud of gluons that clothes a low-momentum quark [15,16].

3. Long-range correlations in nuclear binding energies

Stability of differences of binding energies ΔE_B in nuclei differing by α-cluster was noticed in [6]. In Fig. 3 ΔE_B -distributions in $Z \leq 26$ nuclei differing by 2α- and 4α-configuration are shown. The positions of maxima at $73.6\text{MeV}=16\Delta$ and $147.3\text{MeV}=32\Delta$ are exactly 1:2. For analysis of nuclear binding energies we use here the so-called Adjacent Interval Method (AIM) in which one fix all stable intervals (x) in the ΔE_B spectrum and plot distributions from the fixed binding energies to all other energies ΔE_B^{AIM}. The application of AIM-method allowed additional study of the nuclear dynamics.

![Figure 3](image-url)

Figure 3. Top: ΔE_B-distributions in nuclei $Z \leq 26$ differing by two and four α-clusters: marked are $\Delta E_B=73.6\text{MeV}=16\Delta=9\delta$ and $147.2\text{MeV}=32\Delta=18\delta$ with $\Delta=9\delta$. Bottom: ΔE_B^{AIM} - distributions in all $Z \leq 26$ nuclei of intervals adjacent to fixed with $x=73.6\text{MeV}$ (left, $\Delta=9\delta$) and for $x=147.2\text{MeV}$.
Using the AIM-method and \(x=\Delta E_B = 147.2 \text{ MeV} = 18\delta = 32\Delta \) in all \(Z \leq 26 \) nuclei we observe maxima at \(\Delta E_B = 16\Delta = 9\delta = 73.6 \text{ MeV} \) and \(130.4 \text{ MeV} = 16\delta - \epsilon/2 \) (Fig. 3, bottom right). With another \(x=\Delta E_B = 73.6 \text{ MeV} \), we observe periodicity with \(\Delta = 4.6 \text{ MeV} \) (n=6,8,10, bottom left). The \(\Delta E_B \)-distribution for all \(Z \leq 26 \) nuclei has maxima near integers \(n=16 \) and \(17 \) of \(\delta \), while in nuclei differing by \(4\alpha \) (Fig. 3) maximum coincides with \(18\delta = 32\Delta \). The same stable interval \(147.1 \text{ MeV} = 18\delta = 32\Delta \) was found out in nuclei differing by \(\Delta Z = 8, \Delta N = 10 \). The \(\Delta E_B \)-distribution in \(Z=65-81 \) nuclei has maxima at \(147 \text{ MeV} = 32\Delta \) and \(188 \text{ MeV} = 41\Delta \). Intervals \(\Delta E_B = 147.1 \) and \(106.1 \text{ MeV} = 13\delta \) are adjacent to each other [7].

An effective method of a study of nuclear dynamics is the use of a cluster effect: stable \(\Delta E_B = 46.0 \text{ MeV} \) (n=10 in units \(\Delta \)), \(\Delta E_B = 50.6 \text{ MeV} \) (n=11), \(\Delta E_B = 41.4 \text{ MeV} \) (n=9) were found in the independent data for heavy nuclei (\(N=50-82, N \approx 50, Z=79-81 \)) differing by \(6\alpha \)-cluster. The discussed stable intervals in nuclear binding energies are presented in Table 1 and 2 together with particle masses and different mass intervals. The nuclear nucleon interactions are result of the spilling out of strong QCD interaction between quarks [19]. We consider all intervals as the parameters of the QCD dynamics.

Table 2. Presentation of the parameters of tuning effects in particle masses (upper part) and the tuning effects in nuclear data (\(\Delta E_B \) and excitations \(E^* \)) by the expression (\(n \cdot m_e(\epsilon/3) \cdot m \) with the QED parameter \(\alpha = 137^{-1} \). One asterisk marks intervals observed earlier in low-energy excitations and in neutron resonances; two asterisks mark intervals found in [18,21]; parameter \(\epsilon_{\alpha_p}=340 \text{ keV} \) is discussed in [14], numbers of figures correspond to the review [18]; discussed here results are given in the bottom section. Boxed are the values related to \((2/3)m_t=M_H \) with the QED factor \(Z=129^{-1} \) [7-9].

X	m	n	\(n=1 \)	\(n=13 \)	\(n=14 \)	\(n=16 \)	\(n=17 \)	\(n=18 \)
GeV	1	1/2	\(M_j=91.2 \)	\(M_{11}=115 \)	\(M_{174} \)			
3/2	16m_e = \(\delta \)	\(m_p=105.7 \)	\(\epsilon_{\alpha_p}=131 \)	\(M_{11}=m_p/2, \ m_p \)	\(M_{141}=420 \)	\(M_{441}=441 \)		
MeV	3	0	\(16m_e = \delta \)	\(106=\Delta E_B \)	\(130=\Delta E_B \)	\(140=\Delta E_B \)	\(147.2=\Delta E_B \)	\(441.5=\Delta E_B \)
1	1	9.5=\(\delta \)	\(122^* \)	\(132^{**} \)	\(152^{**} \)	\(161^{**} \)	\(170=\delta m/3 \)	
keV	4	39*	492, Fig.16	532, Fig.22	\(646^*, \text{Fig.22} \)	\(685^*, \text{Fig.20} \)		
6	736*	910, Fig.22	\(965, \text{Fig.25} \)	\(1022, \text{Fig.16,21} \)	\(1360, \text{Fig.18} \)			
8	948, Fig.16	1060, Fig.25	\(1212^* \)	\(1293^* \), \(\text{Fig.25} \)	\(1366, \text{Fig.25} \)			
8	985, Fig.25	\(1061^{**} \)	\(1293^* \), \(\text{Fig.25} \)	\(1366, \text{Fig.25} \)				
12	1476, Fig.16	\(143^* \)	\(176^* \)	\(187^* \)	\(198^* \)	\(1501^* \)	\(\text{in resonances} \)	
eV	2	11* = \(\delta \)	\(143^* \)	\(176^* \)	\(187^* \)	\(198^* \)	\((481) \)	\(512 \)
4	22*	\(286^* \)	\(375^* \)	\(396^* \)	\(750^* \)	\(D \)		
8	44*	\(572^* \)	\(1501^* \)	\(\theta \)	\(1293=D_0 \)	\(\text{Fig.6} \)		
keV	3	648	\(965 \)	\(\text{This work} \)	\(1293=D_0 \)	\(\text{Fig.6} \)		
4. Tuning effect in particle masses

Constituent quark mass estimates \(M'_q=m_q/2=\frac{m_q}{3} \), \(M_q=2m_q/3 \) and \(M'_q=3m_q \) [5-9,18] were considered here in line with Nambu suggestion [20] that the analysis of empirical relations in particle masses could be useful for the development of the Standard Model. It was noticed in 70-ties that there is a double relation between \(m_q \) and the Sternheimer/Kropotkin interval \(M_q=3\Delta M_q=3 \cdot 147\text{MeV} = 441\text{MeV} = \Delta E_\beta \), namely, the ratio \(m_q/M_q = 1/32.27 = 1.157 \cdot 10^{-1} \) derived from the above mentioned relations (1) and (4) in particle masses is very close to the QED correction \(\alpha/2\pi=1.159 \cdot 10^{-1} \).

From this observation and the above discussed finding that both accurately known SM-parameters, namely, masses of the muon and Z-boson form a ratio \(m_\mu/M_z = 1.159 \cdot 10^{-3} \) coinciding with \(\alpha/2\pi \) \((\alpha=1/137) \) follows that the ratio \(M_z/M_q \) is very close to \(L=207 \). Moreover, this ratio \(L=207 \) exists between the masses of both vector bosons \(M_z=91.188(2)\text{GeV} \) and \(M_w=80.40(3)\text{GeV} \) and two above discussed estimates of baryon/meson constituent quark masses \(M_q=441\text{MeV}=m_q/3=\Delta E_\beta \) and \(M_q=m_q/2=775.5(3)\text{MeV}/2=387.8(2)\text{MeV}: M_q/441\text{MeV}=206.8; \) and \(M_w/(m_q/2)=207.3 \) [7-9,18]. Such a property of SM-parameters should be considered as an example of an application of Nambu’s suggestion. It could reflect the dynamics of Standard Model condensate.

The groupings in nuclear binding energies at 147.2 MeV and 441.5 MeV give independent support for the distinguished character of these QCD parameters. The presence of long-range correlations in particle masses / nuclear intervals (parameters \(m_q, D_q \) etc.) will be considered in a separate analysis.

The involvement of nucleon mass, its excitation, \(\omega \)-meson and \(\rho \)-meson masses in accurate relations is in accordance with the result by Frosch [22,14] who searched for a periodicity in accurately known 47 particle masses and found out the period of \(3m_q \) as the most distinguished one. We showed before that a closeness of pion’s electromagnetic mass splitting \(\delta m_\pi \) to \(9m_q \) [5,6] was used for introducing a doubled value of pion’s \(\beta \)-decay energy as the period \(\delta=16m_q \) for the presentation of particle masses.

The mass of the neutron is expressed as \(m_n=(6.17+13)\delta m_q \) according to the relation between masses of nucleon, pion and muon noticed by Nambu in 50-ties [20]. This value fits the systematic by Frosch \((n \times 3m_q)\) and deviate from the accurately known neutron mass by 161.8 keV. Such a shift is equal to \(1/8 \) of nucleon mass splitting \(\delta m_n = m_n - m_\pi = 1293.3\text{keV} \) and forms with the pion mass the ratio 161 keV/140 MeV=1.16 \cdot 10^{-3} close to the QED correction 1.159 \cdot 10^{-3}. All discussed ratios between mass/energy intervals which turned out to be close to QED correction are given in Table 2.

The evolution of the QED parameter \(\alpha \) with momentum transfer is presented in Fig.4 (left) for the region from the low-energies \((\alpha \approx 1/137)\) up to Z-boson mass \((\alpha=1/129)\), while in Fig.4 (right, from [24,3]) the result of the mass determination for a possible Higgs boson at \(M_H=115\text{GeV} \) is shown.

The values presented in Table 2 and situated one under another in different sections X (in each of the vertical columns marked by \(n \)) could be expressed by the dimensionless factor \(\alpha/2\pi \approx 1/(129) \).

For example, value \(\Delta E_\beta=130\text{MeV} \) (close to \(m_\mu/6=M'_q/3 \) and \(f_\pi=131\text{MeV} \) [27]) is situated under the above-mentioned preliminary value \(M_H \) [3,24]. It was noticed that this value is twice the value 58 GeV found in L3 LEP experiment by Ting and coworkers [28] and forms relation 2:3 with the mass of the top quark \(m_t=171.2(21)\text{GeV} \) [3]. The value \(m_\beta/3=57.1\text{GeV} \) relates to \(M_q \) as 129(2) close to 8·16=128.

The relation 1:2:3 between the non-confirmed parameters \(M_H=115\text{GeV} \) and \(M^{12}=58\text{GeV} \) (the LEP experiments) and the known value \(m_\pi \) is given in the upper part of Table 2. It was discussed [8,9] in connection with Wilchek remark that the top-quark mass is “the most reasonable of quark masses” [26]. A connection with the preon models could be considered seriously if these LEP parameters will be confirmed. It should be noticed that the \(\tau \)-lepton mass \(m_\tau=1777.0(3)\text{MeV} \) [3] coincides with the doubled sum \(m_\mu+m_\tau \) of 1776.6(2)MeV. Hence the mass values of all leptons \((m_e, m_\mu, m_\tau)\) can be expressed as the QED corrections of the SM/NRSCQM parameters \(M_q=441\text{MeV} \), \(M_q=3\Delta E_\beta \) and \(M_q/3=123(2) \). In this respect a check/confirmation of the earlier LEP results is urgently needed.

In addition to relations with the QED correction with \(\alpha=1/137 \) the empirical ratio between \((1/3)m_n=M_\mu/2 \approx 8\cdot16m_q \) and \(m_\pi=m_\mu/2 \) was found to be close to the QED correction for short distances (with \(\alpha=1/129 \), see Fig.4). In Table 2 it corresponds to the stable ratio between the boxed values
(2/3)m_π=M_H, pion mass m_π=2m_q (the discussed earlier chiral quark mass) and m_π/3 [7-9,18]. We see that pion mass takes part in many discussed relations. The estimate of constituent quark mass M_q'≈420MeV (or 3m_q) can be obtained from observations: 1) by Nambu - that Λ-hyperon mass is close to 8m_q [20,6], 2) by Samios [23] - that the first splitting in the decuplet m_Ω-m_Ξ^0=137~MeV is close to m_π=140MeV, and 3) the fact that Ω^- hyperon mass is close to 12m_q [6,14], hence M_q=4m_q, M_q≈3m_q (see relations in Table I, left). It was marked by Mac Gregor [29] that the radial excitations in the bottomium is close to 4m_q (Table I), in [3] these excitations are given as sequences (1S, 2S etc.).

Figure 4. Left: Momentum transfer evolution of QED effective electron charge squared. Monotonously rising theoretical curve is confronted with the precise measurements at Z mass at LEP collider [25]. Right: ALEPH results with about 3 standard deviation at mass 115GeV; observed (solid line) and expected behaviour of the test statistic (shaded region) are presented and discussed in [3,24].

The radial excitation of the charmonium vector meson is close to four-fold value of the ΔM_Ω, while the mass itself is close to the integer k=21 of it [14] (Table 1, right). It was noticed by Kropotkin [11] that the parameter M_q=441MeV=3ΔM_Ω introduced by Sternheimer [10] (discussed earlier) is close to 1/3 of the mass value of the Ξ^- hyperon. It is the result of a compensation of the mass-increase from doubled strangeness by the mass-decrease due to the residual constituent quark interaction. Small additional mass-shift in baryon masses (of the neutron, Σ^- and Ξ^- hyperons) was considered in [8,14].

Additional parameter of nucleon structure N^strip shown in Fig.2 at 882 MeV=2M_q=2×441MeV corresponds to the lattice QCD calculations of the nucleon mass for the limit of pion mass equal to 0. A.Thomas with coworkers [30] and Weise [31] estimated this parameter (884 MeV). After adding of 2ΔM_Ω=294 MeV we can obtain the parameter M^strip_Ω=M^strip_Ω+2ΔM_Ω=8ΔM_Ω=3M_q=9.16δ (on the x axis).

5. Tuning effect in nuclear excitations
The main task of this work is to show the possible fundamental application of nuclear data analysis. It should be noticed that the dimensionless factor α/2π was found to be useful in the analysis of nuclear data performed in ITEP and PNPI since 70-ties [6,14,21]. For example, a stable character of the valence nucleon residual interaction was found in many nuclei in data for nuclear binding energies and excitations. By using the standard method of estimation of (np)-residual interaction parameter ε_{np} from the difference of valence nucleon separation energies in neighbor nuclei values ε_{np}=340 keV, 680 keV, 1022 keV were found. The ratio (ε_{np}=340keV)/(294 MeV=2ΔM_Ω)=1.16×10^{-3} is close to α/2π.
The tuning effect in nuclear excitations consists in the appearance of stable energy intervals \(D \) close (or rational) to electromagnetic mass differences of the nucleon \(\delta m_N = m_e - m_p = 1293.3 \text{ keV} \) [3], the electron \(D = m_e = 511 \text{ keV} \) (or \(D = 2m_e = \epsilon_0 \)) and the pion \(\Delta = 9m_e \). For study of this effect in the data on excitations \(E^* \) of many nuclei contained in the recent compilations [32] we select data for nuclei situated near the different closed shells. For example, a spin-flip effect in \(^{10}\text{B} \) corresponds to \(D = E^*(1^+, T=0) - E^*(0^+, T=1) = 1021.8(2) \text{ keV} = 2m_e = \epsilon_0 \) and the first negative parity excitations \(E^* = 5110.3 \text{ keV} = 5\epsilon_0 \) and \(6127.2 \text{ keV} \) of \(^{10}\text{B} \) are close to \(n\times\epsilon_0 \); the spin-flip effect in another light near-magic nucleus \(^{14}\text{N} \) corresponds to \(E^* = 2315.3 \text{ keV} \) close to \(2m_e + \delta m_N = 2312.8 \text{ keV} \), the \(0^+ \) - excitations in \(^{16}\text{Ne} \) at \(E^* = 3576(2) \text{ keV} \) and \(4590(8) \text{ keV} \) are close to \(7m_e \) and \(9m_e \), etc.

The grouping in \(E^* \)-distribution for nuclei with \(A \leq 150 \) at \(E^* = 1022(2) \text{ keV} = \epsilon_0 \) discussed in [14] corresponds to three-fold values of the stable parameters of the nucleon residual interaction \(\varepsilon_{sN}(\Delta N = 2) \) in \(N \)-odd nuclei and \(\varepsilon_{sZ}(\Delta Z = 2) \) in odd-odd nuclei [14,18]. In excitations of near-magic nuclei the value \(E^* = 340 \text{ keV} \approx \epsilon_0/3 \) was found in \(^{59}\text{Ni} \), as a stable interval \(D = 342 \text{ keV} \) in \(^{41}\text{Ca} \) bound levels and in neutron resonances of target nuclei \(^{40,42}\text{Ca} \). Nuclei \(^{40,42}\text{Ca} \) and \(^{109}\text{Sn} \) (with \(E^* = 168.0(1) \text{ keV} \approx \epsilon_0/6 \)) have three neutrons above a core and the splitting with \(\Delta J = 1 \) of their ground states are due to the residual interaction of nucleons. The nucleus \(^{41}\text{Ca} \) itself has a single-particle splitting \(E^* = 2046 \text{ keV} \approx 7/2 - 3/2 \); \(D \)-distributions in \(^{41}\text{Ca}, ^{40}\text{Ar}, ^{38}\text{Zr} \) (two valence nucleons) have maxima at \(D = 511 \text{ keV} = \epsilon_0/2 \) and \(1021 \text{ keV} = \epsilon_0 \) [18].

In \(^{92}\text{Zr} \) with two valence neutron configuration at \(Z=40 \) shell (\(N=50+2 \)) the maximum at \(D = 510(2) \text{ keV} \) in spacing distribution was studied by the AIM method. For \(x = 510 \text{ keV} \) one can observe \(D_{\text{AIM}} = 341 \text{ keV} \) which means that intervals \(510 - 341 \text{ keV} \) (with the ratio 3:2 between their values) are interconnected [18]. In sum distribution of excitations in light nuclei with \(Z \leq 29 \) both values \(E^*_0 = D_0 \) and \(2D_0 \) are clearly visible (Figure 5).

In this work we studied \(D \)-distributions in two nuclei \(^{97}\text{Pd} \) and \(^{98}\text{Pd} \) situated close to the group of nuclei with \(Z=48-54 \) (around magic \(Z=50 \)) where the period \(133 \text{ keV} \) in distribution of excitations was found (Fig.5 right [14,18]). In both nuclei studied the stable interval of the same series and \(n=8 \) \(D = 1061\text{keV} = 8\times133\text{keV} \) was found (two top parts of Fig.6). In sum distribution (Fig.6 bottom) besides \(D = 1061 \text{ keV} \) (4\(\sigma \) deviation) additional stable intervals with values \(D_0, D_0/2 \) and \(512 \text{ keV} = \epsilon_0/2 \) are seen.
In 97Pd with the valence neutron $N=51$ the interval D_0 forms sequence of stable excitations based on the ground state. Obtained values of stable intervals confirm earlier results on parameters of tuning effect and are given in the bottom part of Table 2. Similar results were obtained at other nuclear shells.

We see that nuclear data from the recently collected compilations of atomic masses and energy levels of all nuclei [32] allow to check the tuning effect in excitations and binding energies of nuclei with few-nucleon configuration (close to the magic numbers). Some of parameters of these effects are close to electromagnetic mass splitting of particles (D_0, m_e, Δ). We come to conclusion that the existed nuclear data related to few-nucleon effects provide an indirect check of correlations in particle masses and SM parameters as well as the recent lattice QCD results on the origin of nucleon mass (Fig.1).

Figure 6. Top: Spacing distribution in 98Pd and 97Pd with maxima at $D=1061$ and 1293 keV = D_0. Bottom: Sum spacing distribution of 97,98Pd with maxima at $D=512$ keV = $\varepsilon_0/2$, 648 keV = $D_0/2$, 1061 keV and 1293 keV = D_0. Interval D_0 forms equidistant excitations in low-lying levels of 97Pd.
6. Conclusions

In this work we considered the recent understanding of the origin of hadronic masses and have found a special role of the QED radiative correction. This correction ($\alpha/2\pi$) was used in the comparison of different relation discussed in the literature. Starting from the suggestions by Devons [33] that nucleon structure effects could be seen in the accurately measured nuclear data and by Nambu [20] that the mass problem in the Standard Model could be very important we have found empirical relations in particle masses which could be useful for SM-development. They include the radiative corrections to the masses of the top quark, lepton and vector boson masses. The need to check the preliminary values M_{μ} and M_{E} obtained during LEP experiments is evident. The nuclear data support the distinguished structure effects could be seen in the accurately measured nuclear data and by Nambu [20] that the different relation discussed in the literature. Starting from the suggestions by Devons [33] that nucleon residual interaction parameters 170 keV and 511=3x147 MeV =M_{q} of NRCQM and corresponding nucleon residual interaction parameters 170 keV and 511=3x170 keV.

Application of the QED correction to large mass/energy values M_{q} and M_{Z} gives the observed lepton ratio $m_{\mu}/m_{e}=1/9$. (L=9x23=13x16-1). Here the intermediate term 9m_{μ} is connected with two systematics observed in the known masses: 1) the 3m_{μ} period by Frosch and 2) the =16m_{μ} period in the discussed tuning effect. Both periods (3m_{μ} and 16m_{μ}) could be expressed as the QED correction of the 3m_{μ} (mass of three-quark baryon configuration) and the doubled value of the bottom quark mass about 4 GeV [3] ($9M_{q} =3.95$ GeV). The tuning effect in particle masses (especially with a possible LEP results) and the results of nuclear data analysis could provide a further SM development. The author appreciate the help in this work by Z. Soroko and D. Sukhoruchkin.

References

[1] Dyatlov I T 1992 Phys. Rev. D 45 1636
[2] Bernstein J 1968 Elementary Particles and Currents (Stevens In. publ., Freeman)
[3] Particle Data Group 2006 J. Phys. G 33 1; Particle Data Group 2008 Phys. Lett. B 667 1.
[4] Belokurov V V and Shirkov D V 1986 Theory of Particles Interactions (in Russian, Moscow, Nauka,)
p 74
[5] Sukhoruchkin S I 1968 Proc. 2nd Int. Conf. Neutr. Cross Sections (Washington) vol. 2 p 923.
[6] Sukhoruchkin S I 1972 Statistical Properties of Nuclei (Albany, Plenum Press N.-Y.) p 215
[7] Sukhoruchkin S I 2008 Proc. Int. Conf. Nucl. Data Science Technol. (Nice, 2007) (CEA EDP Scien. publ.) p 179.
[8] Sukhoruchkin S I 2007 Nucl. Phys. A 782 37.
[9] Sukhoruchkin S I 2008 Proc. 6th Conf. Perspectives in Hadronic Physics (Trieste AIP Conf. Proc. 1056) p 55.
[10] Sternheimer R 1964 Phys. Rev. 136 1364; Sternheimer R 1968 Phys. Rev. 170 1267.
[11] Kropotkin P 1971 Field and Matter (in Russian, Moscow University) p 106.
[12] Itoh C et. al. 1989 Phys. Rev. D 40 3660.
[13] Glozman L 1990 Nucl. Phys. A 629 121c.
[14] Sukhoruchkin S I 2001 Nucl. Struct. Phys. (World Sc., p 405); Sukhoruchkin S I 2003 New Projects and Lines of Research (World Sc., p 362); Sukhoruchkin S I 2000 Proc. 10th. Int. Symp. CGS (Santa Fe 1999) AIP 529 p 703
[15] Iida H and Suganuma H and Takahashi T 2007 Proc.17th Int. Symp. Spin Phys. Symp. (Kyoto 2006) AIP 915 p 256.
[16] Bhagat M S et. al. 2007 arXiv:0710.2059v1 [nucl-th]; Maris et. al. 1998 Phys. Lett. B 420 267; Bhagwat M S et. al. 2003 Phys. Rev. C 68 015203; Bowman 2005 Phys. Rev. D 71 054507
[17] Elias V et.al. 1989 Phys. Rev. D 40 3670
[18] Sukhoruchkin S I 2008 Int. Rev. Phys. 2 239 (ISSN 197-680X) Sukhoruchkin S I 2009 Izv. RAN ser. Fiz. (in press)
[19] Detraz C 1995 Nucl. Phys. A 583 3
[20] Nambu Y 1998 Nucl. Phys. A 629 3c; Nambu Y 1952 Progr. Theor. Phys. (Kyoto) 7 595
[21] Sukhoruchkin S I 2009 Proc. 13th Int Symp. Capture Gamma-Rays (Koeln 2008) AIP 1090 p 641
[22] Frosch R 1991 Nuovo Cim. 104 913
[23] Samios N P et.al. 1974 Rev. Mod. Phys. 46 49
[24] ALEPH Collaboration, Heister A et al. 2002 Phys. Lettr. B 526 191; Foggett C D et al. et al. 2001 Phys.Rev.D 64 113014
[25] CERN Courier 2001 41 no. 7 p 19
[26] Wilcek F 2003 Nucl. Phys. B (Proc. Suppl.) 117 410
[27] Ioffe B L 2001 Physics-Uspekhi 44 1211
[28] Ting S 1993 Preprint CERN-PPE/93-34
[29] Mac Gregor M. H. 1980 Nuovo Cim. A 58 159; Takabayasi T 1963 Progr. Theor. Phys. 29 472; ibid: 30 272
[30] Thomas A W 2003 Progr. Theor. Phys Suppl. 151 1; Leinweber D.B et al. 2004 Phys. Rev. Lettr. 92 242002-1
[31] Weise W 2008 Nucl.Phys. A 805 115c
[32] Schopper H (Ed.) 2007 2008 2009 Landolt-Boernstein New Series vol. I/19A,B,C; I/22A,B; I/24 (Springer)
[33] Devons S 1961 Proc.Rutherford Jubil. Conf. (Manchester) Ed. Birks J (Heywood) p 611.