Research Article

Bounds on graph energy and Randić energy

Ş. Burcu Bozkurt Altındağ*
Yenikent Kardelen Konuttonları, Selçuklu, 42070 Konya, Turkey
(Received: 14 June 2021. Received in revised form: 24 June 2021. Accepted: 6 July 2021. Published online: 10 July 2021.)

© 2021 the author. This is an open access article under the CC BY (International 4.0) license (www.creativecommons.org/licenses/by/4.0/).

Abstract
In the present paper, new lower and upper bounds on energy and Randić energy of non-singular (bipartite) graphs are reported. Additionally, it is shown that the obtained lower bounds are stronger than two previously known lower bounds in the literature.

Keywords: graph energy; Randić energy; bound.

2020 Mathematics Subject Classification: 05C50, 05C90.

1. Introduction

Let G be a simple connected graph. Denote by n and m the number of vertices and edges of G, respectively. Let $V(G) = \{v_1, v_2, \ldots, v_n\}$ be the set of the vertices of G and d_i be the degree of the vertex $v_i \in V(G)$, $i = 1, 2, \ldots, n$. If v_i and v_j are two adjacent vertices of G, then it is denoted by $i \sim j$. Let Δ and δ be the maximum and minimum vertex degrees of G, respectively.

Let us denote by $A = A(G)$ the adjacency matrix of a graph G. The eigenvalues $\lambda_1 \geq \lambda_2 \geq \cdots \geq \lambda_n$ of A represent the eigenvalues of G [6]. As well known in spectral graph theory, λ_1 is the spectral radius of G and

$$\sum_{i=1}^{n} \lambda_i = 0, \quad \sum_{i=1}^{n} \lambda_i^2 = 2m \quad \text{and} \quad \prod_{i=1}^{n} \lambda_i = \det A.$$

(1)

A graph G is called as non-singular if no eigenvalue of G is equal to zero. For non-singular graphs, it is obvious that $\det A \neq 0$. A graph G is singular if at least one of its eigenvalue is equal to zero. Then, $\det A = 0$.

The energy of a graph G was defined in [12] as

$$E = E(G) = \sum_{i=1}^{n} |\lambda_i|.$$

(2)

This graph invariant is utilized to estimate the total π-electron energy of a molecule represented by a (molecular) graph. [13,22]. A vast literature exists on $E(G)$, for survey and comprehensive information, see [2,11,14,19,23].

Recently, energy of non-singular graphs has also been studied in the literature. In [8], Das et al. obtained a lower bound on energy of non-singular graphs that improves the lower bounds in [3,22], under certain conditions. Gutman and Das [15] established upper bounds on energy of non-singular (bipartite) molecular graphs. In [15], it was also stated that the upper bound obtained on energy of non-singular molecular graphs improves the upper bound in [3].

The following upper bound on $E(G)$ was found in [11]

$$E(G) \leq \sqrt{2m(n-1) + n |\det A|^{2/n}}.$$

(3)

The Randić matrix $R = R(G)$ of a graph G is defined so that its (i,j)-th entry is equal to $1/\sqrt{d_id_j}$ if $i \sim j$ and is equal to 0 otherwise [1]. The eigenvalues $\rho_1 \geq \rho_2 \geq \cdots \geq \rho_n$ of R are called as the Randić eigenvalues of G [1]. Some well known results concerning the Randić eigenvalues are [1,16]

$$\sum_{i=1}^{n} \rho_i = 0, \quad \sum_{i=1}^{n} \rho_i^2 = 2R_{-1} \quad \text{and} \quad \prod_{i=1}^{n} \rho_i = \det R.$$

(4)

*E-mail address: srf.burcu.bozkurt@hotmail.com
where

\[R_{-1} = R_{-1}(G) = \sum_{i=j}^{1} \frac{1}{d_i d_j} \]

is the general Randić index of the graph \(G \) [4, 18].

In full analogous manner with the graph energy [12], the Randić energy of \(G \) was introduced in [1]. It was defined as [1]

\[RE = RE(G) = \sum_{i=1}^{n} |\rho_i|. \tag{5} \]

For details on the properties and bounds of \(RE \), see the recent works [1, 9, 10, 16, 17, 20, 21, 23].

The following upper bound on \(RE(G) \) was obtained in [17, 21]

\[RE(G) \leq 1 + \sqrt{(n - 2)(2R_{-1} - 1) + (n - 1) |\text{det } R|^{2/(n-1)}}. \tag{6} \]

In the present paper, we find new lower and upper bounds on energy and Randić energy of non-singular (bipartite) graphs. We also show that our lower bounds are stronger than two previously known lower bounds given in [7, 9, 14, 17].

2. Lemmas

We now list some lemmas that will be needed for our main results.

Lemma 2.1. [5] Let \(x_i > -1 \) for \(1 \leq i \leq n \). If \(\sum_{i=1}^{n} x_i = 0 \) and \(\sum_{i=1}^{n} x_i^2 \geq a^2 (1 - n^{-1}) \), then

\[\sum_{i=1}^{n} \ln (1 + x_i) \leq \ln (1 + a - an^{-1}) + (n - 1) \ln (1 - an^{-1}). \]

Lemma 2.2. [6, 27] Let \(G \) be a graph with \(n \) vertices and maximum vertex degree \(\Delta \). Then, for each \(i = 1, 2, \ldots, n \)

\[|\lambda_i| \leq \Delta. \]

Lemma 2.3. [10] Let \(G \) be a graph with \(n \) vertices and without isolated vertices. Then, for each \(i = 1, 2, \ldots, n \)

\[\delta |\rho_i| \leq |\lambda_i| \leq \Delta |\rho_i|. \tag{7} \]

where \(\Delta \) and \(\delta \) denote, respectively, the maximum and minimum vertex degrees of \(G \).

Lemma 2.4. [10] Let \(G \) be a graph with \(n \) vertices and without isolated vertices and let \(\lambda_1 \) be its spectral radius. Then

\[\delta (RE(G) - 1) \leq E(G) - \lambda_1 \leq \Delta (RE(G) - 1) \]

where \(\Delta \) and \(\delta \) denote, respectively, the maximum and minimum vertex degrees of \(G \).

Lemma 2.5. [6, 20] For a graph \(G \), the Randić spectral radius \(\rho_1 = 1 \).

Lemma 2.6. Let \(G \) be a bipartite graph with \(n \) vertices and without isolated vertices and let \(\lambda_1 \) be its spectral radius. Then

\[\delta (RE(G) - 2) \leq E(G) - 2\lambda_1 \leq \Delta (RE(G) - 2) \]

where \(\Delta \) and \(\delta \) denote, respectively, the maximum and minimum vertex degrees of \(G \).

Proof. Note that \(\lambda_1 = -\lambda_n \) and \(\rho_1 = -\rho_n \), for bipartite graphs [6]. Then, by taking summation (7) over \(i = 2, 3, \ldots, n - 1 \) and considering Lemma 2.5 and Equations (2) and (5), one can get the required result. \(\square \)

Lemma 2.7. [16] Let \(G \) be a graph with \(n \) vertices, adjacency matrix \(A \) and Randić matrix \(R \). If \(A \) has \(n_+ \), \(n_0 \) and \(n_- \) positive, zero and negative eigenvalues, respectively \((n_+ + n_0 + n_- = n) \), then \(R \) has \(n_+ \), \(n_0 \) and \(n_- \) positive, zero and negative eigenvalues, respectively.

For a graph \(G \) with \(n \) vertices, the following relation between the determinants of its adjacency and Randić matrices was also given in [16].

Lemma 2.8. [16] If \(G \) is a graph with isolated vertices, then \(\det R = \det A = 0 \). If \(G \) is a graph without isolated vertices, then

\[\det R = \frac{\det A}{\prod_{i=1}^{n} d_i}. \]
3. Main results

Theorem 3.1. Let G be a connected non-singular graph with $n \geq 2$ vertices and m edges. Then

$$E(G) \geq n \left(\frac{|\text{det } A|}{(1 + (n - 1) b) (1 - b)^{n-1}} \right)^{1/n}$$

where

$$b = \left[\frac{2mn - \left(2m(n-1) + n|\text{det } A|^{2/|r|} \right)}{(n-1) \left(2m(n-1) + n|\text{det } A|^{2/|r|} \right)} \right]^{1/2}.$$

Proof. We first recall that $|\lambda_i| > 0$, $1 \leq i \leq n$, for a non-singular graph G. Let $r = \frac{E(G)}{n}$ and $x_i = \frac{|\lambda_i|}{r} - 1$, for $1 \leq i \leq n$. Observe that $x_i > -1$. By means of Equations (1)–(3), we also have

$$\sum_{i=1}^{n} x_i = \sum_{i=1}^{n} \left(\frac{|\lambda_i|}{r} - 1 \right) = \frac{\sum_{i=1}^{n} |\lambda_i|}{r} - n = 0$$

and

$$\sum_{i=1}^{n} x_i^2 = \sum_{i=1}^{n} \left(\frac{|\lambda_i|}{r} - 1 \right)^2 = \frac{\sum_{i=1}^{n} \lambda_i^2}{r^2} - 2 \sum_{i=1}^{n} \frac{|\lambda_i|}{r} + 2 n$$

$$\geq \frac{2mn^2}{(E(G))^2} - n$$

$$= \frac{2mn^2}{2m(n-1) + n|\text{det } A|^{2/|r|}} - n$$

$$= \left(\frac{2mn^3}{(n-1) \left(2m(n-1) + n|\text{det } A|^{2/|r|} \right)} - \frac{n^2}{n-1} + 1 \right) \left(1 - \frac{1}{n} \right)$$

$$= \left(nb \right)^2 \left(1 - \frac{1}{n} \right).$$

From Lemma 2.1, we get that

$$\sum_{i=1}^{n} \ln \left(\frac{|\lambda_i|}{r} \right) \leq \ln (1 + (n - 1) b) + (n-1) \ln (1 - b).$$

Hence,

$$\prod_{i=1}^{n} |\lambda_i| \leq r^n (1 + (n - 1) b) (1 - b)^{n-1}$$

that is,

$$|\text{det } A| \leq \left(\frac{E(G)}{n} \right)^n (1 + (n - 1) b) (1 - b)^{n-1}.$$

This leads to the lower bound (8). \hfill \Box

For a non-singular graph G of order n, the following lower bound on $E(G)$ was found in [7, 14]

$$E(G) \geq n \left(|\text{det } A| \right)^{1/n}.$$

Remark 3.1. Let b be given by Equation (9). Note that $0 \leq b < 1$, since G is connected non-singular graph with $n \geq 2$ vertices and the fact that [11, 22]

$$E(G) \leq \sqrt{2m(n-1) + n|\text{det } A|^{2/|r|}} \leq \sqrt{2mn}.$$

Let

$$f(x) = (1 + (n - 1) x) (1 - x)^{n-1}.$$

Note that f is decreasing for $0 \leq x < 1$ [25]. Thus, $f(b) \leq f(0) = 1$, this implies that the lower bound (8) is stronger than the lower bound (10) for connected non-singular graphs. Further, if G is the graph K_2, then the equality in (8) holds.
Theorem 3.2. Let G be a connected non-singular graph with $n \geq 2$ vertices, m edges and maximum vertex degree Δ. Then

$$E(G) \leq \frac{2m}{n} + n - 1 + \Delta \ln \left(\frac{n|\det A|}{2m} \right).$$

(11)

The equality in (11) is achieved for $G \cong K_n$.

Proof. At first, recall that the following inequality

$$x \leq 1 + x \ln x,$$

for $x > 0 \ [24]$. Obviously, $|\lambda_i| > 0$, $1 \leq i \leq n$, for a non-singular graph G. Considering these facts with Equation (2), we have

$$E(G) = \lambda_1 + \sum_{i=2}^{n} |\lambda_i| \leq \lambda_1 + \sum_{i=2}^{n} (1 + |\lambda_i| \ln |\lambda_i|) \leq \lambda_1 + n - 1 + \Delta \sum_{i=2}^{n} \ln |\lambda_i|, \text{ by Lemma 2.2}$$

$$= \lambda_1 + n - 1 + \Delta \ln |\det A| - \Delta \ln \lambda_1.$$

(12)

Let us consider the function $f(x)$, defined by

$$f(x) = x - \Delta \ln x.$$

It is not difficult to see that f is a decreasing function in the interval $1 \leq x \leq \Delta$. Notice that $\lambda_1 \geq \frac{2m}{n} [6]$ and $\frac{2m}{n}$ is the average of the vertex degrees that is inevitably greater than unity for connected (molecular) graphs [15]. These together with Lemma 2.2 imply that $1 \leq \frac{2m}{n} \leq \lambda_1 \leq \Delta$. Therefore, we have

$$f(\lambda_1) \leq f\left(\frac{2m}{n}\right) = \frac{2m}{n} - \Delta \ln \left(\frac{2m}{n}\right).$$

Based on this inequality and Equation (12), we obtain the upper bound in (11). Moreover, one can readily check that the equality in (11) is achieved for $G \cong K_n$. \qed

Theorem 3.3. Let G be a connected non-singular bipartite graph with $n \geq 2$ vertices, m edges and maximum vertex degree Δ. Then

$$E(G) \leq \frac{4m}{n} + n - 2 + \Delta \ln \left(\frac{n^2|\det A|}{4m^2} \right).$$

(13)

Proof. Notice that $x \leq 1 + x \ln x$, for $x > 0 \ [24]$. Further, $|\lambda_i| > 0$, $1 \leq i \leq n$, for non-singular graphs and $\lambda_1 = -\lambda_n$, for bipartite graphs [6]. Taking into account these with Equation (2), we obtain

$$E(G) = 2\lambda_1 + \sum_{i=2}^{n-1} |\lambda_i| \leq 2\lambda_1 + \sum_{i=2}^{n-1} (1 + |\lambda_i| \ln |\lambda_i|) \leq 2\lambda_1 + n - 2 + \Delta \sum_{i=2}^{n-1} \ln |\lambda_i|, \text{ by Lemma 2.2}$$

$$= 2\lambda_1 + n - 2 + \Delta \ln |\det A| - \Delta \ln \lambda_1^2.$$

(14)

Let

$$f(x) = 2x - \Delta \ln x^2.$$

It can be readily seen that f is a decreasing function in the interval $1 \leq x \leq \Delta$. Recall from Theorem 3.2 that both $\frac{2m}{n}$ and λ_1 belong to this interval and $\lambda_1 \geq \frac{2m}{n} [6]$. Thus,

$$f(\lambda_1) \leq f\left(\frac{2m}{n}\right) = \frac{4m}{n} - \Delta \ln \left(\frac{4m^2}{n^2} \right).$$

Combining this with Equation (14), we get the required result in (13). \qed
In the next theorem, we give a lower bound on Randić energy of non-singular graphs considering the similar techniques in Theorem 3.1 together with Equations (4)–(6) and Lemmas 2.1, 2.5 and 2.7. Therefore, its proof is omitted.

Theorem 3.4. Let G be a connected non-singular graph with $n \geq 3$ vertices. Then

$$RE(G) \geq 1 + (n-1) \left(\frac{\det A}{\prod_{i=1}^{n} d_i} \right)^{1/(n-1)}$$ (15)

where

$$c = \left[\frac{(n-1)(2R_{-1} - 1) - \left((n-2)(2R_{-1} - 1) + (n-1)(\det R)^{2/(n-1)} \right)}{(n-2)(2R_{-1} - 1) + (n-1)(\det R)^{2/(n-1)}} \right]^{1/2}.\quad (16)$$

For a (connected) graph G of order n, the authors derived that $[9,17]

$$RE(G) \geq 1 + (n-1)(\det R)^{1/(n-1)} = 1 + (n-1) \left(\frac{\det A}{\prod_{i=1}^{n} d_i} \right)^{1/(n-1)}.$$ (17)

Remark 3.2. Let c be defined by Equation (16). Observe that $0 \leq c < 1$, since G is connected non-singular graph with $n \geq 3$ vertices and the fact that $[17,20,21]$

$$RE(G) \leq 1 + \sqrt{(n-2)(2R_{-1} - 1) + (n-1)(\det R)^{2/(n-1)}}$$

Consider the function $f(x)$ defined as follows

$$f(x) = (1 + (n-2)x)(1-x)^{n-2}.$$ Notice that f is decreasing for $0 \leq x < 1$ [26]. Then $f(c) \leq f(0) = 1$. Combining this with Lemma 2.8, we deduce that the lower bound (15) is stronger than the lower bound (17) for connected non-singular graphs. Furthermore, if G is the complete graph K_n, then the equality in (15) is attained.

Theorem 3.5. Let G be a connected non-singular graph with $n \geq 2$ vertices, m edges, maximum vertex degree Δ and minimum vertex degree δ. Then

$$RE(G) \leq 1 + \frac{n-1 + \Delta \ln \left(\frac{n^2(\det A)}{2m} \right)}{\delta}.$$ (18)

The equality in (18) is achieved for $G \cong K_n.$

Proof. According to Lemma 2.4 and Equation (12), we have

$$RE(G) \leq 1 + \frac{E(G) - \lambda_1}{\delta} \leq 1 + \frac{n-1 + \Delta (\ln |\det A| - \ln \lambda_1)}{\delta}.$$ From the above and the fact that $\lambda_1 \geq \frac{2m}{n}$ [6], we arrive at

$$RE(G) \leq 1 + \frac{n-1 + \Delta (\ln |\det A| - \ln \frac{2m}{n})}{\delta}.$$ Hence the upper bound in (18) holds. Moreover, it is elementary to check that the equality in (18) is achieved for $G \cong K_n.$

Theorem 3.6. Let G be a connected non-singular bipartite graph with $n \geq 2$ vertices, m edges, maximum vertex degree Δ and minimum vertex degree δ. Then

$$RE(G) \leq 2 + \frac{n-2 + \Delta \ln \left(\frac{n^2(\det A)}{4m^2} \right)}{\delta}.$$ (19)

Proof. From Lemma 2.6 and Equation (14), we directly get

$$RE(G) \leq 2 + \frac{E(G) - 2\lambda_1}{\delta}.$$
\[\leq 2 + \frac{n - 2 + \Delta \left(\ln |\text{det} A| - \ln \lambda_1^2 \right)}{\delta}. \]

Considering this with the lower bound \(\lambda_1 \geq \frac{2m}{n} \) [6], we obtain

\[RE (G) \leq 2 + \frac{n - 2 + \Delta \left(\ln |\text{det} A| - \ln \frac{4m^2}{n^2} \right)}{\delta} \]

which is the upper bound in (19).

Remark 3.3. We finally note that the upper bounds in Equations (11), (13), (18) and (19) can be improved using a lower bound such that \(\lambda_1 \geq \gamma \geq \frac{2m}{n} \) in Theorems 3.2, 3.3, 3.5 and 3.6, respectively.

Acknowledgment

The author would like to thank the two anonymous referees for their valuable comments and suggestions.

References

[1] Ş. B. Bozkurt, A. D. Gungor, I. Gutman, A. S. Cevik, Randić matrix and Randić energy, MATCH Commun. Math. Comput. Chem. **64** (2010) 239–250.

[2] Ş. B. Bozkurt Altın, D. Bozkurt, Lower bounds for the energy of (bipartite) graphs, MATCH Commun. Math. Comput. Chem. **77** (2017) 9–14.

[3] G. Caporossi, D. Cvetković, I. Gutman, P. Hansen, Variable neighborhood search for extremal graphs. 2. Finding graphs with extremal energy, J. Chem. Inf. Comput. Sci. **39** (1999) 984–996.

[4] M. Cavers, S. Fallat, S. Kirkland, On the normalized Laplacian energy and the general Randić index \(R_{-1} \) of graphs, Linear Algebra Appl. **433** (2010) 172–190.

[5] J. H. E. Cohn, Determinants with elements \(\pm 1 \), J. London Math. Soc. **42** (1967) 436–442.

[6] D. Cvetković, M. Doob, H. Sachs, Spectra of Graphs- Theory and Application, Academic Press, New York, 1980.

[7] D. Cvetković, I. Gutman (Eds.), Selected Topics on Applications of Graph Spectra, Math. Inst., Belgrade, 2011.

[8] K. C. Das, S. A. Mojallal, I. Gutman, Improving McClellands lower bound for energy, MATCH Commun. Math. Comput. Chem. **70** (2013) 663–668.

[9] K. C. Das, S. Sorgun, On Randić energy of graphs, MATCH Commun. Math. Comput. Chem. **72** (2014) 227–238.

[10] K. C. Das, S. Sorgun, I. Gutman, On Randić energy, MATCH Commun. Math. Comput. Chem. **73** (2015) 81–92.

[11] I. Gutman, Bounds for total \(\tau \)-electron energy, Chem. Phys. Lett. **24** (1974) 283–285.

[12] I. Gutman, The energy of a graph, Ber. Math. Statist. Sekt. Forschungsz. Graz. **103** (1978) 1–22.

[13] I. Gutman, Topology and stability of conjugated hydrocarbons. The dependence of total \(\tau \)-electron energy on molecular topology, J. Serb. Chem. Soc. **70** (2005) 441–456.

[14] I. Gutman, On graphs whose energy exceeds the number of vertices, Linear Algebra Appl. **429** (2008) 2670–2677.

[15] I. Gutman, K. C. Das, Estimating the total \(\tau \)-electron energy, J. Serb. Chem. Soc. **78** (2013) 1925–1933.

[16] I. Gutman, B. Furtula, Ş. B. Bozkurt, On Randić energy, Linear Algebra Appl. **442** (2014) 50–57.

[17] J. He, Y. Liu, J. Tian, Note on the Randić energy of graphs, Kragujevac J. Math. **42** (2018) 209–215.

[18] X. Li, I. Gutman, Mathematical Aspects of Randić-type Molecular Structure Descriptors, Univ. Kragujevac, Kragujevac, 2006.

[19] X. Li, Y. Shi, I. Gutman, Graph Energy, Springer, New York, 2012.

[20] B. Liu, Y. Huang, J. Feng, A note on the Randić spectral radius, MATCH Commun. Math. Comput. Chem. **68** (2012) 913–916.

[21] A. D. Maden, New bounds on the normalized Laplacian (Randić) energy, MATCH Commun. Math. Comput. Chem. **79** (2018) 321-330.

[22] B. J. McClelland, Properties of the latent roots of a matrix: The estimation of \(\tau \)-electron energies, J. Chem. Phys. **54** (1971) 640–643.

[23] E. I. Milovanović, M. R. Popović, R. M. Stanković, I. Ž. Milovanović, Remark on ordinary and Randić energy of graphs, J. Math. Inequal. **10** (2016) 687–692.

[24] D. S. Mitrinović, *Elementary Inequalities*, P. Noordhoff, Groningen, 1964.

[25] M. G. Neubauer, An inequality for positive definite matrices with applications to combinatorial matrices, Linear Algebra Appl. **267** (1997) 163–174.

[26] X. Zhang, A new bound for the complexity of a graph, Util. Math. **67** (2005) 201–203.

[27] P. Zumstein, *Comparison of Spectral Methods Through the Adjacency Matrix and the Laplacian of a Graph*, Diploma Thesis, ETH Zürich, Zürich, 2005.