Comparative efficacy of interventions for reducing symptoms of depression in people with dementia: systematic review and network meta-analysis

Jennifer A Watt,1,2 Zahra Goodarzi,3,4,5 Areti Angeliki Veroniki,1,6,7 Vera Nincic,1 Paul A Khan,1 Marco Ghassemi,1 Yonda Lai,1 Victoria Treister,1 Yuan Thompson,1 Raphael Schneider,8,9,10 Andrea C Tricco,1,11 Sharon E Straus12,11

ABSTRACT

OBJECTIVE
To describe the comparative efficacy of drug and non-drug interventions for reducing symptoms of depression in people with dementia who experience depression as a neuropsychiatric symptom of dementia or have a diagnosis of a major depressive disorder.

DESIGN
Systematic review and meta-analysis.

DATA SOURCES
Medline, Embase, the Cochrane Library, CINAHL, PsyCINFO, and grey literature between inception and 15 October 2020.

ELIGIBILITY CRITERIA FOR STUDY SELECTION
Randomised trials comparing drug or non-drug interventions with usual care or any other intervention targeting symptoms of depression in people with dementia.

MAIN OUTCOME MEASURES
Pairs of reviewers screened studies, abstracted aggregate level data, and appraised risk of bias with the Cochrane risk of bias tool, which facilitated the derivation of standardised mean differences and back transformed mean differences (on the Cornell scale for depression in dementia) from bayesian random effects network meta-analyses and pairwise meta-analyses.

RESULTS
Of 22138 citations screened, 256 studies (28483 people with dementia) were included. Missing data posed the greatest risk to review findings. In the network meta-analysis of studies including people with dementia without a diagnosis of a major depressive disorder who were experiencing symptoms of depression (213 studies; 25177 people with dementia; between study variance 0.23), seven interventions were associated with a greater reduction in symptoms of depression compared with usual care: cognitive stimulation (mean difference −2.93, 95% credible interval −4.35 to −1.52), exercise combined with social interaction and cognitive stimulation (−12.37, −19.01 to −5.36), reminiscence therapy (−2.30, −3.68 to −0.93). Except for massage and touch therapy, cognitive stimulation combined with a cholinesterase inhibitor (−11.39, −18.38 to −3.93), massage and touch therapy (−9.03, −12.28 to −5.88), multidisciplinary care (−1.98, −3.80 to −0.16), occupational therapy (−2.59, −4.70 to −0.40), exercise combined with social interaction and cognitive stimulation (−12.37, −19.01 to −5.36), and reminiscence therapy (−2.30, −3.68 to −0.93). Except for massage and touch therapy, cognitive stimulation combined with a cholinesterase inhibitor, and cognitive stimulation combined with exercise and social interaction, which were more efficacious than some drug interventions, no statistically significant difference was found in the comparative efficacy of drug and non-drug interventions for reducing symptoms of depression in people with dementia without a diagnosis of a major depressive disorder.

Conclusions
In this systematic review, non-drug interventions were found to be more efficacious than drug interventions for reducing symptoms of depression in people with dementia without a major depressive disorder.

SYSTEMATIC REVIEW REGISTRATION
PROSPERO CRD42017050130.
irritability, social isolation, sadness) signs. Although those with dementia and symptoms of depression might not fulfil all the criteria of a major depressive disorder, these symptoms nonetheless have an impact on people with dementia and their care givers. Symptoms of depression in people with dementia are associated with adverse health outcomes, including lower quality of life, functional decline, and increased risk of death and are also associated with increased distress, burden, and depression in care givers.

Drug (eg, antidepressants, antipsychotics) and non-drug (eg, reminiscence therapy, exercise) interventions are used to treat both major depressive disorders and symptoms of depression in people with dementia. Increasing evidence of harm associated with antidepressant use in those with dementia (eg, from falls and fractures), and growing interest in social prescribing—linking patients with non-drug interventions in their community—as an effective treatment to combat symptoms of depression, loneliness, and isolation, has led to a renaissance for non-drug interventions. Randomised trials directly comparing the efficacy of drug and non-drug interventions are, however, rare, which creates uncertainty in clinical decision making about selection of optimal evidence based interventions for treating symptoms of depression in people with dementia.

We determined the comparative efficacy of drug and non-drug interventions for reducing symptoms of depression in people with dementia who were experiencing depression as a neuropsychiatric symptom of dementia or had a diagnosis of a major depressive disorder. Network meta-analysis (NMA) was used to fill this critical knowledge gap created by a paucity of head-to-head randomised controlled trials.

Methods
We registered and published our protocol, which contains details of the literature search strategy. Our systematic review and NMA manuscript is written in accordance with the Preferred Reporting Items for Systematic Reviews and Meta-analyses (PRISMA) extension statement for reporting systematic reviews incorporating NMA.

Data sources and searches
We searched Medline, Embase, the Cochrane Library, CINAHL, and PsycINFO for citations published in any language from inception to 15 October 2020. We also searched grey literature and reviewed reference lists of included studies and related systematic reviews.

Study selection
Eligible studies for inclusion were randomised controlled trials of drug and non-drug interventions used to treat symptoms of depression in people with dementia experiencing depression as a neuropsychiatric symptom of dementia or with a diagnosis of a major depressive disorder. Dementia (eg, medical history of dementia or Diagnostic and Statistical Manual of Mental Disorders, fifth edition (DSM-V)) and major depressive disorder (eg, DSM-V) were defined by study authors. Eligible drug interventions required final approval from the US Food and Drug Administration or Health Canada, as of our literature search date. Eligible comparators included usual care, placebo, or another drug and non-drug intervention. Studies reporting symptoms of depression using any outcome measure (eg, geriatric depression scale or Cornell scale for depression in dementia) were considered suitable for inclusion (see supplementary table 1). After pilot testing, pairs of reviewers (JAW, ZG, VN, PAK, MG, YT, VT, YT, RS) independently screened all citations and full text articles. No language restrictions were applied. Discrepancies in study inclusion were resolved by deliberation within the reviewer pairs or with input from a third reviewer.

Data abstraction and quality assessment
Pairs of reviewers (JAW, ZG, VN, PAK, MG, YT, RS) abstracted aggregate level data from each included full text article and appraised each randomised controlled trial using the Cochrane risk of bias tool. For studies that reported two or more outcome measures for the same outcome, we established a hierarchy for determining the data to be abstracted. The Cornell scale for depression in dementia was the most commonly reported scale, followed by the geriatric depression scale and then the neuropsychiatric inventory-depression subscale. The Cornell scale for depression in dementia was preferentially abstracted, when reported. If this scale was not reported, but the geriatric depression scale or neuropsychiatric inventory-depression subscale was reported, we preferentially abstracted these scales before others. In one case we preferentially abstracted the geriatric depression scale as opposed to the neuropsychiatric inventory-depression subscale. Otherwise, in five cases we preferentially abstracted the Montgomery-Åsberg depression rating scale, Hamilton depression rating scale, major depression rating scale, and Sandoz clinical assessment-geriatric-depressed mood scale. We contacted study authors for additional information about the study methods and reported outcomes. Discrepancies about data abstraction and quality assessment were resolved by deliberation within reviewer pairs or with input from a third reviewer.

Data synthesis and analysis
Two clinicians (JAW and ZG) coded all interventions according to the intervention or interventions described by study authors—that is, if the authors named an intervention as usual care but the intervention included providing educational materials to care givers in addition to usual care then the intervention was coded as “care giver education” (see fig 1 and supplementary table 2 for node definitions). Usual care was defined as appropriate access to healthcare (eg, doctor or nurse practitioner visits) and social care (eg, support for activities of daily living, such as bathing), based on patient needs and preferences. A placebo was defined
as an inert intervention that was otherwise identical to an active comparator (eg, pill, sham intervention).

We assessed network connectivity using a network diagram (STATA, version 15.1). Network transitivity was assessed by visual inspection of a table containing categorised study characteristics: mean study duration, mean patient age, mode proportion of women (≥50% or <50%), mode study setting (eg, nursing home or clinic), mode dementia type, mode outcome measure reported, mode severity of dementia, and mode of two items from the risk of bias assessment (incomplete outcome data and blinding of outcome assessment). When two risk of bias categories had the same number of randomised controlled trials (eg, two trials were at low risk of bias from missing data and two were at high risk of bias from missing data), we reported the risk of bias category associated with the greater risk of bias.

We conducted a bayesian random effects NMA in OpenBUGS, version 3.2.3. When more than one study existed for a treatment comparison, we conducted bayesian random effects pairwise meta-analysis. In these models, we assumed a common within network heterogeneity variable between studies and between data types (ie, contrast based or arm based data) because all interventions were aimed at alleviating similar symptoms in people with dementia. We chose random effects models because we anticipated between study clinical and methodological heterogeneity. Informative prior distributions were implemented for all between study heterogeneity variables (log(τ^2) ~ t(–3.85, 1.932, 5)). Vague prior distributions were implemented for trial baselines and treatment effects (normal(0, 1000)). Because several different scales were used across studies, we report outcomes as posterior standardised mean differences with 95% credible intervals and predictive intervals. We back transformed standardised mean differences to mean differences, measured on the Cornell scale for depression in dementia, by multiplying the pooled standard deviation (derived from baseline mean Cornell scale for depression in dementia values of treatment arms in parallel randomised controlled trials that reported symptoms of depression measured with the scale) by each standardised mean difference. We compared mean differences with a minimum clinically important difference derived using a distribution based approach. To approximate the minimum clinically important difference, we derived estimates at 0.4 and 0.5 standard deviations of the pooled standard deviation. We ranked treatments using surface under the cumulative ranking curve values and accounted for their uncertainty in interpretation. Global inconsistency was assessed by comparing deviance and deviance information criterion statistics between consistency and inconsistency models. The loop specific approach was used to assess local inconsistency in each closed network loop.3 We planned to conduct subgroup analyses based on the following effect modifiers: study setting (residence in a nursing home or assisted living facility versus community or clinic setting), mean age of study population (≥80 years or <80 years), proportion of women (≥50% or <50%), whether standardised criteria were used to diagnose dementia, history of Alzheimer’s disease, study size (omitting studies with <50 patients enrolled), dementia severity (mild-moderate or moderate-severe), and intervention duration (≥11 weeks or <11 weeks). We also planned to conduct sensitivity analyses based on two components of the quality assessment that posed the greatest risk to the validity of study findings: missing outcome data and blinding of outcome assessment. However, additional analyses were possible only in these NMAs of interventions that were connected: standardised

Fig 1 | Descriptions of highly efficacious non-drug interventions in people with dementia

Cognitive stimulation	Exercise
Structures therapy (eg, one or two sessions per week, for a defined number of hours) with sessions aimed at promoting cognitive function (eg, orientation, reminiscence, art therapy, games)	Active engagement in aerobic, resistance, or balance training

Environmental modification
Any modification to the living environment or place where care is provided

Massage and touch therapy
Any activity involving massage, acupressure, or therapeutic touch

Occupational therapy
Case management or activities to enhance functional independence, delivered by an occupational therapist

Social interaction
Interactions with caregivers or others, beyond the provision of usual care

Multidisciplinary care
A care plan developed by more than one healthcare provider (eg, doctor, nurse, occupational therapist)

Psychotherapy
Cognitive behavioural therapy, counselling, validation therapy, problem adaptation therapy, supportive therapy, or psychodynamic interpersonal therapy

Reminiscence therapy
Any activity to give reminders of a patient’s past or family members

Animal therapy
Any activity involving spending time with animals
criteria used to diagnose dementia, mean age of study population <80 years, community study setting, mild-moderate dementia severity, intervention duration ≥11 weeks, low risk of bias from missing outcome data, and low or unclear risk of bias from missing outcome data. All other subgroup and sensitivity analyses were presented as pairwise meta-analyses. We completed a network meta-regression based on study publication year. A sensitivity analysis was conducted using a weakly informative prior distribution for between study standard deviation (τ ~N(0,1), τ >0) in our primary analysis. A comparison adjusted funnel plot was used to assess small study effects, where treatments were ordered by expected efficacy (eg, we would expect reminiscence therapy to be more efficacious than usual care) (STATA, version 15.1).28

Patient and public involvement
Twelve dementia care partners (nurses, allied health professionals, doctors, and a care giver) participated in an outcome prioritisation exercise.19 They independently ranked commonly reported neuropsychiatric symptoms (eg, aggression, agitation, depression, sleep disturbances) in descending order of importance.19 31 These care partners selected change in symptoms of depression as an outcome of interest; therefore, our systematic review and NMA compares the efficacy of interventions for reducing symptoms of depression in people with dementia.19

Results
Overall, 22138 citations and 3542 full text articles were screened (fig 2) and 256 articles (28483 people with dementia) included in the systematic review (see supplementary references). Of 29 study authors emailed, 12 responded (41%); two provided additional data and one clarified study methods.34–36 The Cornell scale for depression in dementia was the most reported outcome measure (table 1 and supplementary table 1). Most studies enrolled at least 50% of women and the mean age in most studies was at least 70 years. Studies were most often conducted in community and clinic settings (table 1 and supplementary tables 3a, 3b, 4a, and 4b).

People with dementia without a major depressive disorder
Two hundred and thirty five studies reported outcomes for interventions that targeted symptoms of depression in people with dementia without a diagnosis of a major depressive disorder. Of these studies, 213 (25177 people with dementia) were included in pairwise meta-analysis and NMA. The network contained 61 connected intervention nodes: 70% of direct treatment comparisons involved usual care or placebo (fig 3). There were 45 triangular loops and seven quadratic loops. In most treatment comparisons, studies assessed symptoms of depression using the Cornell scale for depression in dementia and enrolled more women than men. Non-drug interventions were studied in 70% of trials. Nine studies compared the efficacy of an antidepressant with placebo and two studies compared the efficacy of an antidepressant with an antipsychotic.12 13 25 37–42 Risk of bias from missing data and blinding of outcome assessors posed the greatest risk to review findings: 42% of randomised controlled trials were at high risk of bias from missing data and 37% of trials were at unclear or high risk of bias from lack of assessor blinding (see supplementary table 5a and figure 1a). Differences were found in effect modifiers across 94 direct treatment comparisons—namely in terms of study setting, intervention duration, type of dementia, dementia severity, and risk of bias from missing data and lack of assessor blinding (see supplementary table 6). Standard deviation values associated with baseline mean Cornell scale for depression in dementia scores were included from 70 randomised controlled trials in the derivation of minimum clinically important differences. The estimated minimum clinically important difference for the Cornell scale for depression in dementia was 2.0 at 0.4 standard deviations and 2.5 at 0.5 standard deviations.

Supplementary table 7 reports the pairwise meta-analysis and NMA outcomes. The between study variance (τ2) in the primary NMA was moderate (0.23, 95% credible interval 0.17 to 0.31). A consistency rather than an inconsistency model provided a better model fit (see supplementary table 7). Two closed network loops were inconsistent in the primary NMA (2/52 loops, 4%): usual care-social interaction-animal therapy (inconsistency factor 1.88, 95% confidence interval 0.93 to 2.84) and music therapy-social interaction-cognitive rehabilitation (1.33, 0.08 to 2.58) (see supplementary figure 2a). No evidence was found of small study effects (see supplementary figure 3).

In the primary NMA, cognitive stimulation, cognitive stimulation combined with a cholinesterase inhibitor, exercise combined with social interaction and cognitive stimulation, massage and touch therapy, multidisciplinary care, occupational therapy, and reminiscence therapy were found to be more efficacious than usual care for reducing symptoms of depression in people with dementia without a diagnosis of a major depressive disorder (table 2 and supplementary table 7). In pairwise meta-analysis, animal therapy, exercise, and psychotherapy combined with reminiscence therapy and environmental modification were also found to be more efficacious than usual care for reducing symptoms of depression in people with dementia (table 2 and supplementary table 7). Except for massage and touch therapy, cognitive stimulation combined with a cholinesterase inhibitor, and cognitive stimulation combined with exercise and social interaction, which were found to be more efficacious than some drug interventions, there was no statistically significant difference in the comparative efficacy of drug and non-drug interventions for reducing symptoms of depression in people with dementia without a diagnosis of a major depressive disorder (see supplementary table 7). These findings...
were unchanged when a minimally informative prior was implemented for the heterogeneity variable. Based on surface under the cumulative ranking curve values, the most highly ranked interventions were cognitive stimulation combined with exercise and social interaction (98.3%, 88.3% to 100%), cognitive stimulation combined with a cholinesterase inhibitor (98.3%, 95% credible interval 86.7% to 100%), and massage and touch therapy (95.0%, 86.7% to 100%).

When a minimally informative prior was implemented for the heterogeneity variable, the most highly ranked interventions were cognitive stimulation combined with a cholinesterase inhibitor (98.3%, 88.3% to 100%), cognitive stimulation combined with exercise and social interaction (98.3%, 86.7% to 100%), and massage and touch therapy (95.0%, 85.0% to 100%).

In the NMA of studies with dementia diagnosed using standard criteria (eg, DSM-V), a consistency rather than inconsistency model provided a better model fit, and no inconsistent loops of evidence were found (supplementary figure 2d). As in the primary NMA, cognitive stimulation, cognitive stimulation combined with exercise and social interaction, massage and touch therapy, multidisciplinary care, occupational therapy, and reminiscence therapy were found to be more efficacious than usual care (table 3 and supplementary tables 8 and 9). In this NMA of studies where dementia was diagnosed using standard criteria, massage and touch therapy, cognitive stimulation combined with a cholinesterase inhibitor, and cognitive stimulation combined with exercise and social interaction were found to be more efficacious than some drug interventions (see supplementary table 8). An antidepressant combined with a cholinesterase inhibitor was found to be more efficacious than caregiver support (mean difference −9.2, 95% credible interval −18.3 to −0.08) in this subgroup of studies, but no statistically significant differences were found when the efficacy of other drug and non-drug interventions were compared (see supplementary table 8).

People with dementia and a major depressive disorder
Twenty two studies (1829 people with dementia) reported outcomes for interventions aimed at reducing...
RESEARCH

Table 1 | Characteristics of the included studies

Characteristics	% (No) of studies (n=256)
Mean age of participants (years):	
<70	5 (13)
70–74.9	16 (40)
75–79.9	33 (84)
≥80	42 (108)
Not reported	4 (11)
Women enrolled:	
0–49	19 (49)
50–100	73 (186)
Not reported	8 (21)
Dementia type:	
Multiple*	23 (58)
Alzheimer's disease	41 (105)
Lewy body	0.4 (1)
Vascular	1 (3)
Parkinson's disease	1 (2)
Frontotemporal	2 (6)
Not reported	32 (83)
Dementia severity:	
Mild	12 (31)
Mild or moderate	42 (108)
Mild, moderate, or severe	21.5 (55)
Moderate	2 (6)
Moderate or severe	10 (26)
Severe	3 (7)
Not reported	10 (25)
Study setting:	
Clinic or community	41 (105)
Hospital	3 (7)
Nursing home or assisted living	39.5 (101)
Multiple settings	9 (22)
Not reported or not clearly reported	8 (21)
Duration of study intervention (weeks):	
≤11	43 (109)
11–20	30.5 (78)
21–30	11 (29)
≥30	16 (40)
Measurement tool for depression:	
Cornell scale for depression in dementia	39 (100)
Geriatric depression scale	23 (58)
Hamilton depression scale	7 (19)
Neuropsychiatric inventory-depression	15 (38)
Other	16 (41)

*For example, Alzheimer's disease and vascular dementia.

Discussion

Our systematic review and NMA showed that non-drug interventions were as, or more, efficacious than drug interventions for reducing symptoms of depression in people with dementia without a diagnosis of a major depressive disorder. Ten interventions were found to be more efficacious than usual care in our primary pairwise meta-analyses and NMA: animal therapy, cognitive stimulation, exercise, massage and touch therapy, reminiscence therapy, multidisciplinary care, occupational therapy, cognitive stimulation and a cholinesterase inhibitor, exercise combined with social interaction and cognitive stimulation, and psychotherapy combined with reminiscence therapy and environmental modification. No drug intervention alone was found to be more efficacious than usual care. Intervention rankings suggest that non-drug interventions either alone or in combination with drug interventions are the best interventions for reducing symptoms of depression in people with dementia without a diagnosis of a major depressive disorder. Our findings further suggest a high probability that people with dementia will derive a clinically meaningful benefit from non-drug interventions.

Comparison with other studies

This systematic review and NMA compared the efficacy of drug interventions with non-drug interventions for reducing symptoms of depression in people with dementia. Previous systematic reviews found potential reductions in symptoms of depression associated with certain non-drug interventions. Another systematic review showed limited and inconsistent evidence of benefit concerning the efficacy of drug interventions for reducing symptoms of depression in people with dementia in our NMA we synthesised data for 61 interventions across 213 studies to bring together these two disparate bodies of literature and show the relative ranking of drug and non-drug interventions in terms of efficacy. Our study is important and timely given the growing interest in social prescribing—linking patients with non-drug interventions in their community—as a treatment regimen for mitigating symptoms of depression, loneliness, and social isolation. We identified efficacious non-drug treatment options (eg, cognitive stimulation, exercise, and reminiscence therapy) that clinicians can prescribe as part of an evidence based treatment plan to reduce symptoms of depression in people with dementia. Our finding that non-drug interventions were as or more, efficacious than drug interventions is consistent with our findings.
and multidisciplinary care approaches alleviate symptoms of depression in people with dementia builds on our recent finding that these approaches also reduce symptoms of aggression and agitation in people with dementia.31 However, cost effectiveness, scalability, and sustainability of efficacious non-drug and multidisciplinary interventions for reducing neuropsychiatric symptoms in people with dementia remain unclear and might vary by intervention.122 123

Policy implications
Several effective non-drug interventions, including cognitive stimulation, multidisciplinary care, occupational therapy, and exercise are already accessible in some clinical and community settings; however, clinicians, policy makers, health services researchers, and implementation scientists must work together to ensure that all people with dementia have equitable access to these interventions, regardless of sex, geographical location (ie, rural or urban) or ethnicity; to teach patients and care givers about how these interventions can reduce symptoms of depression; and to study the impact of how enrolling patients in programmes that incorporate these interventions reduces symptoms of depression or other related symptoms of loneliness and social isolation.119 For example, the National Institute for Health and Care Excellence dementia care guideline recommends cognitive stimulation therapy to improve cognitive function, independence, and wellbeing.124 Moreover,
Table 2 | Efficacy of interventions for reducing symptoms of depression in people with dementia without a diagnosis of major depressive disorder

Intervention vs usual care	Studies in pairwise treatment comparison (participant*)	Network meta-analysis	Meta-analysis			
	SMD (95% CI)	SMD re-expressed as MD on CSDD (95% CI)	Probability of MD >0.4 SDs‡ (%)	SMD (95% CI)	SMD re-expressed as MD on CSDD (95% CI)	Probability of MD >0.4 SDs‡ (%)
Animal therapy**	1 (23)	−0.45 (−1.24 to 0.39)	55.6	−0.94 (−1.76 to −0.16)	−4.82 (−8.97 to −0.8)	90.9
Cognitive stimulation†‡	13 (805)	−0.57 (−0.85 to −0.30)	90.4	−0.67 (−1.02 to −0.33)	−3.42 (−5.19 to −1.64)	94.1
Cognitive stimulation+cholinesterase inhibitor	−2.23 (−3.60 to −0.77)	−11.39 (−18.38 to −3.93)	93.3	−2.21 (−3.61 to −0.82)	−11.43 (−18.39 to −3.92)	98.4
Exercise**†‡	6 (581)	−0.27 (−0.58 to 0.03)	21.9	−0.47 (−0.89 to −0.07)	−2.42 (−4.55 to −0.34)	63.9
Exercise+social interaction+cognitive stimulation†‡	1 (14)	−2.43 (−3.73 to −1.05)	99.8	−2.40 (−3.41 to −1.43)	−12.28 (−17.41 to −7.30)	100
Massage and touch therapy**‡	3 (219)	−1.77 (−2.41 to −1.13)	100	−1.77 (−2.42 to −1.12)	−9.05 (−12.35 to −5.70)	100
Multidisciplinary care†‡	7 (838)	−0.39 (−0.74 to −0.03)	49.1	−0.48 (−0.90 to −0.05)	−2.44 (−4.62 to −0.23)	63.9
Occupational therapy†‡	5 (497)	−0.51 (−0.92 to −0.08)	69.0	−0.5 (−1.02 to 0.02)	−2.56 (−5.20 to 0.12)	64.8
Psychotherapy+reminiscence therapy+environmental modification†‡	1 (51)	−1.00 (−2.05 to 0.08)	87.2	−0.99 (−1.53 to −0.45)	−2.56 (−3.27 to −1.85)	97.5
Reminiscence therapy**‡	14 (1163)	−0.45 (−0.72 to −0.18)	65.8	−0.50 (−0.81 to −0.21)	−2.57 (−3.17 to −1.98)	99.0

CSDD=Cornell scale for depression in dementia; MA=pairwise meta-analysis; MD=mean difference; CI=credible interval; SMD=standardised mean difference.

*Sample sizes adjusted for clustering effect, when appropriate.
†Pairwise meta-analysis.
‡Minimum clinically important difference estimated to be 2.0 at 0.4 standard deviations (SDs) and 2.5 at 0.5 SDs.

Conclusions

Our systematic review and NMA comparing the efficacy of drug interventions with non-drug interventions for reducing symptoms of depression in people with dementia showed that non-drug interventions are more efficacious than drug interventions. Multidisciplinary approaches to people with dementia can benefit from care interventions, such as cognitive stimulation therapy, occupational therapy, and reminiscence therapy. Care interventions, such as animal therapy and massage, can speak with people with dementia about available care options and support people with dementia, and policy makers can support people with dementia and other caregivers through developing health services, systems, and policies that can enable implementation.

Strengths and limitations of this review

Our study has notable strengths. We reviewed more than 3000 full text articles because symptoms of depression, as with other neuropsychiatric symptoms in people with dementia, are often not reported in the title or abstract of articles. We presented our findings as back transformed mean differences on the Cornell scale of depression, as with other neuropsychiatric symptoms.

Our study also has limitations. Firstly, although we could derive estimates of intervention efficacy in people with dementia, we were not able to explore the impact of the severity of depression because several different scales were included, not all of which have established thresholds for categorising symptoms of depression. Secondly, we could not explore the impact of the severity of depression on the Cornell scale of depression, as with other neuropsychiatric symptoms in people with dementia, are often not reported in the title or abstract of articles. We presented our findings as back transformed mean differences on the Cornell scale of depression, as with other neuropsychiatric symptoms.

Lastly, due to the potential costs of harm.
Table 3 | Efficacy of interventions for reducing symptoms of depression in subgroups of people with dementia without a diagnosis of major depressive disorder

Intervention v usual care	Studies in pairwise treatment comparison (participant*)	Network meta-analysis	Probability of MD > 0.4 SDs (%)	Meta-analysis†			
Studies enrolling participants with mild or moderate severity dementia (111 studies)							
Cognitive stimulation†	11 (765)	-0.51 (-0.80 to -0.19)	-2.59 (-4.10 to -0.98)	78.1	-0.63 (-1.01 to -0.25)	-3.21 (-5.17 to -1.29)	88.1
Cognitive stimulation+cholinesterase inhibitor	-	-2.37 (-3.95 to -0.73)	-12.10 (-20.16 to -3.70)	98.8	-	-	-
Exercise+social interaction+cognitive stimulation†	1 (14)	-2.40 (-3.80 to -0.98)	-12.25 (-19.36 to -4.99)	99.8	-2.41 (-3.39 to -1.42)	-12.29 (-17.30 to -7.25)	100
Massage and touch therapy†	3 (219)	-1.78 (-2.44 to -1.07)	-9.06 (-12.45 to -5.44)	100	-1.76 (-2.46 to -1.07)	-9.01 (-12.55 to -5.44)	100
Occupational therapy†	3 (282)	-0.63 (-1.20 to -0.10)	-3.24 (-4.10 to -0.49)	80.7	-0.71 (-1.36 to -0.05)	-3.62 (-6.96 to -0.26)	82.2
Psychotherapy+reminiscence therapy+environmental modification†	1 (51)	-0.99 (-2.20 to 0.16)	-5.03 (-11.21 to 0.80)	84.7	-0.99 (-1.53 to -0.45)	-5.05 (-7.84 to -2.32)	98.5
Reminiscence therapy†	9 (1043)	-0.55 (-0.91 to -0.20)	-2.81 (-4.62 to -1.02)	81.1	-0.51 (-0.90 to -0.12)	-2.60 (-4.62 to -0.62)	70.9
Studies at low risk of bias from missing data (101 studies)							
Cognitive stimulation†	7 (248)	-0.92 (-1.34 to -0.51)	-4.70 (-6.82 to -2.59)	99.4	-1.14 (-1.65 to -0.62)	-5.80 (-8.45 to -3.18)	99.7
Cognitive stimulation+cholinesterase inhibitor	-	-2.47 (-4.24 to -0.64)	-12.62 (-21.62 to -3.27)	98.4	-	-	-
Exercise+social interaction†	3 (304)	-0.55 (-1.10 to -0.00)	-2.80 (-5.62 to -0.06)	71.8	-0.71 (-1.44 to 0.00)	-3.61 (-7.34 to 0.14)	79.2
Massage and touch therapy†	2 (85)	-1.40 (-2.38 to -0.42)	-7.15 (-12.15 to -0.17)	97.7	-1.41 (-2.36 to -0.42)	-7.18 (-12.07 to -2.17)	97.7
Multidisciplinary care†	2 (93)	-1.19 (-2.07 to -0.31)	-6.05 (-10.56 to -1.56)	95.8	-1.33 (-2.30 to -0.33)	-6.81 (-11.73 to -1.50)	96.5
Music therapy+occupational therapy†	1 (119)	-0.41 (-1.65 to 0.79)	-2.10 (-4.82 to 0.05)	51.2	-0.42 (-0.78 to -0.06)	-2.13 (-3.96 to -0.31)	53.7
Music therapy†	5 (383)	-0.52 (-0.08 to -0.04)	-2.66 (-4.99 to -0.21)	69.3	-0.34 (-1.30 to 0.62)	-1.73 (-6.65 to 3.15)	44.9
Psychotherapy+reminiscence therapy+environmental modification†	1 (51)	-0.99 (-2.20 to 0.30)	-5.06 (-11.24 to 1.52)	82.2	-0.99 (-1.53 to -0.45)	-5.06 (-7.83 to -2.31)	98.4
Reminiscence therapy†	7 (432)	-0.37 (-0.84 to 0.09)	-1.90 (-4.29 to 0.48)	46.2	-0.52 (-1.01 to -0.01)	-2.66 (-5.18 to 0.06)	68.2
Studies using standard criteria for dementia diagnosis (136 studies)							
Cognitive stimulation†	10 (712)	-0.83 (-1.17 to -0.51)	-4.24 (-5.99 to -2.58)	99.4	-0.91 (-1.31 to -0.53)	-4.66 (-6.70 to -2.69)	99.5
Cognitive stimulation+cholinesterase inhibitor	-	-2.41 (-4.02 to -0.88)	-12.31 (-20.49 to -4.17)	99.5	-	-	-
Cognitive stimulation+exercise+social interaction†	1 (14)	-2.42 (-3.79 to -1.05)	-12.33 (-19.30 to -5.43)	99.8	-2.41 (-3.39 to -1.42)	-12.31 (-17.30 to -7.33)	100
Massage and touch therapy†	2 (199)	-2.14 (-2.94 to -1.37)	-10.90 (-14.98 to -6.97)	100	-2.15 (-2.93 to -1.36)	-10.98 (-14.97 to -6.97)	100
Multidisciplinary care†	4 (679)	-0.74 (-1.27 to -0.23)	-3.76 (-6.50 to -1.16)	91.1	-0.78 (-1.34 to -0.20)	-3.97 (-6.85 to -1.01)	90.2
Occupational therapy†	3 (349)	-0.84 (-1.46 to -0.22)	-4.29 (-7.45 to -1.11)	92.4	-1.02 (-1.78 to -0.27)	-5.22 (-9.09 to -1.39)	94.7
Reminiscence therapy†	8 (1050)	-0.42 (-0.79 to -0.06)	-2.15 (-4.05 to -0.29)	55.6	-0.37 (-0.76 to 0.01)	-1.90 (-3.90 to 0.08)	44.0

CSDD=Cornell scale for depression in dementia; MA=pairwise meta-analysis; MD=mean difference; CrI=credible interval; SMD=standardised mean difference.

*Sample sizes adjusted for clustering effect, when appropriate.
†Pairwise meta-analysis.
‡Minimum clinically important difference estimated to be 2.0 at 0.4 standard deviations (SDs) and 2.5 at 0.5 SDs.
RESEARCH

AUTHOR AFFILIATIONS
1 Knowledge Translation Program, Li Ka Shing Knowledge Institute, St Michael’s Hospital, Toronto, ON, Canada
2 Division of Geriatric Medicine, Department of Medicine, University of Toronto, Toronto, ON, Canada
3 Department of Medicine, University of Calgary, Foothills Medical Centre, Calgary, AB, Canada
4 Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
5 O’Brien Institute of Public Health, University of Calgary, Calgary, AB, Canada
6 Department of Primary Education, School of Education, University of Ioannina, Ioannina, Greece
7 Institute of Reproductive and Developmental Biology, Department of Surgery and Cancer, Faculty of Medicine, Imperial College, London, UK
8 Division of Neurology, Department of Medicine, University of Toronto, Toronto, ON, Canada
9 Institute of Medical Science, University of Toronto, Toronto, ON, Canada
10 St Michael’s Hospital, Toronto, ON, Canada
11 Institute for Health Policy, Management and Evaluation, University of Toronto, Toronto, ON, Canada

We thank Jessie McGowan for creating our literature search strategy.

Contributors: JAW, ZG, ACT, AAW, and SES designed the study. JAW, ZG, VN, PAK, MG, VT, XL, YT, and RS screened articles and abstracted data. JAW, ZG, and AAV conducted data analyses. JAW drafted the first version of the manuscript. All authors contributed to the manuscript’s revision and interpretation of findings. JAW is the guarantor.

The corresponding author attests that all listed authors meet authorship criteria and that no others meeting the criteria have been omitted.

Funding: This study was funded by the Alberta Critical Care Strategic Clinical Network. The funder had no role in the study design, collection, analysis, and interpretation of data; writing of the report; or decision to submit the article for publication. All authors had full access to study data and can take responsibility for the integrity of the data and accuracy of the data analysis.

Competing interests: All authors have completed the ICMJE uniform disclosure form at www.icmje.org/coiDisclosure.pdf and declare support from the Alberta Critical Care Strategic Clinical Network; no financial relationships with any organisations that might have an interest in the submitted work in the previous three years; no other relationships or activities that could appear to have influenced the submitted work. ACT is funded by a tier 2 Canada research chair in Knowledge Synthesis. SES is funded by a tier 1 Canada research chair in knowledge translation. AAV is funded by a European Union’s Horizon 2020 grant (No 754936).

Ethical approval: Not required.

Data sharing: The full dataset and statistical code will be available upon reasonable request.

The manuscript’s guarantor (JAW) affirms that the manuscript is an honest, accurate, and transparent account of the study being reported; that no important aspects of the study have been omitted; and that any discrepancies from the study as originally planned (and, if relevant, registered) have been explained.

Dissemination to participants and related patient and public communities: We will disseminate our results to relevant knowledge user groups (eg, patients, care givers, healthcare managers, and clinicians).

Provenance and peer review: Not commissioned; externally peer reviewed.

This is an Open Access article distributed in accordance with the Creative Commons Attribution Non Commercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited and the use is non-commercial. See: http://creativecommons.org/licenses/by-nc/4.0/.

1 World Alzheimer Report 2018. London, 2018.
2 Goodarz ZS, Mele BS, Roberts DH, Holroyd-Leduc J. Depression Case Finding in Individuals with Dementia: A Systematic Review and Meta-Analysis. J Am Geriatr Soc 2017;65:937-48. doi:10.1111/jgs.14713
3 Armer MS, Kirkham J, Newton H, et al. Meta-Analysis of the Prevalence of Major Depressive Disorder Among Older Adults With Dementia. J Clin Psychiatry 2018;79:1711772. doi:10.4088/JCP.17i11772
4 Alexopoulos GS, Abrams RC, Young RC, Shamoian CA. Cornell Scale for Depression in Dementia. Biol Psychiatry 1988;23:271-84. doi:10.1016/0006-3223(88)90038-8
5 Yesavage JA, Brink TL, Rose TL, et al. Development and validation of a geriatric depression screening scale: a preliminary report. J Psychiatr Res 1982-1983;17:37-49. doi:10.1016/0022-3956(82)90033-4
6 Diagnostic and Statistical Manual of Mental Disorders. 5th ed. American Psychiatric Association, 2013.
7 Fauth EB, Gibbons A. Which behavioral and psychological symptoms of dementia are the most problematic? Variability by prevalence, intensity, distress ratings, and associations with caregiver depressive symptoms. Int J Geriatr Psychiatry 2014;29:26-71. doi:10.1002/gps.4002
8 Baharudin AD, Din NC, Subramanian P, Razali R. The associations between behavioral and psychological symptoms of dementia (BPSD) and coping strategy, burden of care and personality style among low-income caregivers of patients with dementia. BMC Public Health 2019;19(Suppl 4):447. doi:10.1186/s12889-019-6868-0
9 Peters ME, Schwartz S, Han D, et al. Neuropsychiatric symptoms as predictors of progression to severe Alzheimer’s dementia and death: the Cache County Dementia Progression Study. Am J Psychiatry 2015;172:460-5. doi:10.1176/appi.ajp.2014.14040480
10 Hurt C, Bhattacharyya S, Burns A, et al. Patient and caregiver perspectives of quality of life in dementia. An investigation of the relationship between the behavioral and psychological symptoms in dementia. Dement Geriatr Cogn Disord 2008;26:138-46. doi:10.1159/000149584
11 Kaup BA, Loreck D, Gruber-Baldini AL, et al. Depression and its relationship to function and medical status, by dementia status, in nursing home admissions. Am J Geriatr Psychiatry 2007;15:38-42. doi:10.1097/GPJ.0b013e18130535f4
12 Finkel SI, Mintzer JE, Dyksen M, Krishnan KR, Kurt T, McGae T A. Randomized, placebo-controlled study of the efficacy and safety of sertraline in the treatment of the behavioral manifestations of Alzheimer’s disease in outpatients treated with donepezil. Int J Geriatr Psychiatry 2004;19:9-18. doi:10.1002/gps.998
13 Sulzter DL, Gray XF, Gunay I, Wheatley MV, Mahler ME. Does behavioral improvement with haloperidol or trazodone treatment depend on psychosis or mood symptoms in patients with dementia? Am J Geriatr Soc 2001;49:1294-300. doi:10.1046/j.1532-5415.2001.49256.x
14 Chang W, Je S. A comparative study on the effect of group reminiscence therapy and group validation therapy for the elderly with dementia. Korean Journal of Gerontological Social Welfare 2008;41:301-25
15 Boström G, Conradisson M, Hörnsten C, et al. Effects of a high-intensity functional exercise program on depressive symptoms among people with dementia in residential care: a randomized controlled trial. Int J Geriatr Psychiatry 2016;31:868-78. doi:10.1002/gps.4401
16 Banerjee S, Helliwell J, Dewey M, et al. Sertraline or mirtazapine for depression in dementia (HTA-SADD): a randomised, multicentre, double-blind, placebo-controlled trial. Lancet 2011;378:403-11. doi:10.1016/S0140-6736(11)60803-1
17 Watt JA, Gomes T, Bronskill SE, et al. Comparative risk of harm associated with trazodone or atypical antipsychotic use in older adults with dementia: a retrospective cohort study. CMAJ 2018;190:E1376-83. doi:10.1503/cmaj.180551
18 Drinkwater C, Wildman J, Moffatt S. Social prescribing. BMJ 2019;364:l1285. doi:10.1136/bmj.l1285
19 Watt J, Goodarz Z, Trisco AC, Veroniki AA, Straus SE. Comparative safety and efficacy of pharmacological and non-pharmacological interventions for the behavioral and psychological symptoms of dementia: protocol for a systematic review and network meta-analysis. Syst Rev 2017;6:182. doi:10.1186/s40643-017-0572-x
20 Hutton B, Salanti G, Caldwell DM, et al. The PRISMA extension statement for reporting of systematic reviews incorporating network meta-analyses of health care interventions: checklist and explanations. Ann Intern Med 2015;162:777-84. doi:10.7336/M14-2385
21 Higgins JP, Altman DG, Gøtzsche PC, et al, Cochrane Bias Methods Group, Cochrane Statistical Methods Group. The Cochrane Collaboration’s tool for assessing risk of bias in randomised trials. BMJ 2011;343:d5928. doi:10.1136/bmj.d5928
22 Hsieh CJ, Chang C, Su SF, et al. Reminiscence Group Therapy on Depression and Apathy in Nursing Home Residents With Mild-to-moderate Dementia. J Exp Clin Med 2010;2:72-8. doi:10.1016/S1878-3317(10)60012-5
23 Barnes R, Veith R, Okimoto J, Raskind M, Gumbrecht G. Efficacy of antipsychotic medications in behaviorally disturbed dementia patients. Am J Psychiatry 1982;139:1170-4. doi:10.1176/ajp.139.9.1170
24 Lawton MP, Van Halma K, Klapper J, Kleban MH, Katz IR, Corin J. A stimulation-retreat social care unit for elders with dementia

doi: 10.1136/bmj.n532 | BMJ 2021;372:n532 | the bmj
illness. Int Psychogeriatr 1998;10:373-95. doi: 10.1017/S104161029800547X
25 Nyh AL, Gottfries CG. The clinical efficacy of citopalan in treatment of emotional disturbances in dementia disorders. A Nordic multicentre study. Br J Psychiatry 1990;157:894-901. doi: 10.1192/bjp.157.6.894
26 Ban TA, Morey L, Agullia E, et al. Nimodipine in the treatment of old age dementias. Prog Neuropsychopharmacol Biol Psychiatry 1994;18:525-51. doi: 10.1016/0160-8927(94)90005-2
27 Peckaby CA, Davies H, Berger PA, Tenklingen JB. Desamino-D-arginine-vasopressin (DDAVP) in Alzheimer's disease. Neurobiol Aging 1986;7:301-3. doi: 10.1016/0197-4580(86)90011-4
28 Chaiman A, Higgins JPT, Mavridis D, Spyridonos P, Salanti G. Graphical tools for network meta-analysis in STATA. PLoS One 2013;8:e76654. doi: 10.1371/journal.pone.0076654
29 Dias S, Sutton AJ, Ades AE, Welton NJ. Evidence synthesis for decision making 2: a generalised linear modeling framework for pairwise and network meta-analysis of randomized controlled trials. Med Decis Making 2013;33:607-17. doi: 10.1177/0272989X12458724
30 Rhodes KM, Turner RM, Higgins JP. Predictive distributions were developed for the extent of heterogeneity in meta-analyses of continuous outcome data. J Clin Epidemiol 2015;68:52-60. doi: 10.1016/j.ceb.2014.08.012
31 Watt JS, Goodarzi Z, Veroniki AA, et al. Comparative Effectiveness of Interventions for Aggressive and Agitated Behaviors in Dementia: A Systematic Review and Network Meta-Analysis. Ann Intern Med 2019;171:63-42. doi: 10.7326/M19-0993
32 Dias S, Welton NJ, Sutton AJ, Caldwell DM, Lu G, Ades AE. Evidence synthesis for decision making 4: inconsistency in networks of evidence based on randomized controlled trials. Med Decis Making 2013;33:641-56. doi: 10.1177/0272989X12455847
33 Veroniki AA, Vasilaidis HS, Higgins JP, Salanti G. Evaluation of inconsistency in networks of interventions. Int J Epidemiol 2013;42:332-45. doi: 10.1093/ije/dys222
34 Yamakawa K, Kawano Y, Noguchi D, et al. Effects of cognitive stimulation therapy (Japanese version) (CST-J) for people with dementia, a single-blind, controlled clinical trial. Aging Ment Health 2013;17:579-86. doi: 10.1080/13607863.2013.777395
35 Tse MW, Lau JL, Kwan R, et al. Effects of activity programs play for nursing home residents with dementia, and mental and psychological well being. Cluster randomized controlled trial. Geriatr Gerontol Int 2018;14:85-90. doi: 10.1111/ggi.13509
36 Bass DM, Judge KS, Snow AL, et al. A controlled trial of Partners in Dementia Care: veteran outcomes after six and twelve months. Alzheimer Res Ther 2014;6:9. doi: 10.1186/alzrt62
37 Bergh S, Selbaek G, Engedal K. Discontinuation of antidepressants in people with dementia and neuropsychiatric symptoms (DESEMP study): double blind, randomised, parallel group, placebo controlled trial. BMJ 2012;344:e1566. doi: 10.1136/bmj.e1566
38 Burke MJ, Roccaforte WH, Wengel SP, Bayer BL, Ranno AE, Willcockson NK. L-deprenyl in the treatment of mild dementia of the Alzheimer type: results of a 15-month trial. J Am Geriatr Soc 1993;41:219-25. doi: 10.1111/j.1532-5415.1993.tb0706x
39 Choe YM, Kim KW, Hoo JH, et al. Multicenter, randomized, placebo-controlled, double-blind clinical trial of escitalopram on the progression-degrading effects in Alzheimer’s disease. Int J Geriatr Psychiatry 2016;31:1731-9. doi: 10.1002/gps.4384
40 Freedman M, Rewick D, Xeni T, et al. L-deprenyl in Alzheimer’s disease: cognitive and behavioral effects. Neurology 1998;50:660-8. doi: 10.1212/wnl.50.3.660
41 Lehto P, Stokke W, Hasenbroek M, Pasquier F. Frontotemporal dementia: a randomised, controlled trial with trodotide. Dement Geriatr Cogn Disord 2004;17:355-9. doi: 10.1159/000077171
42 Reifer BV, Teni L, Raskind M, et al. Double-blind trial of irapimune in Alzheimer’s disease patients with and without depression. Am J Psychiatry 1989;146:4-9. doi: 10.1176/ajp.146.1.45
43 Teranesi M, Kurti M, Nishino S, et al. Efficacy and tolerability of risperidone, yohimbine, and flavoxamine for the treatment of behavioral and psychological symptoms of dementia: a blinded, randomized trial. J Clin Psychopharmacol 2013;33:600-7. doi: 10.1097/CPQ.0b013e3182979845
44 Olsen C, Pedersen I, Bergland A, Endres-Slegers M, Patil G, Hildebaek C. Efficacy of animal-assisted interventions on depression, agitation and quality of life in nursing home residents suffering from cognitive impairment or dementia: a cluster randomized controlled trial. Int J Geriatr Psychiatry 2016;31:1312-21. doi: 10.1002/gps.4436
45 Fernández-Calvo B, Rodríguez-Pérez R, Contrador I, Rubio-Santos A, Ramos F. [Efficacy of cognitive training programs based on new software technologies in patients with Alzheimer-type dementia.] Psicothema 2011;23:44-50.
46 Spence A, Thigpen L, Woods W, et al. Efficacy of an evidence-based cognitive stimulation therapy program for people with dementia: randomised controlled trial. Br J Psychiatry 2003;183:248-54. doi: 10.1192/bjp.183.3.248
Gerontol B Psychol Sci Soc Sci 1997;52:159-66. doi:10.1093/geronb/52B.4.P159
112 Verkaik R, Francke AL, van Meijel B, Spreeuwenberg PM, Ribbe MW, Bensing JM. The effects of a nursing guideline on depression in psychogeriatric nursing home residents with dementia. Int J Geriatr Psychiatry 2011;26:723-32. doi:10.1002/gps.2586
113 Lanza G, Centonze SS, Destro G, et al. Shiatsu as an adjuvant therapy for depression in patients with Alzheimer's disease: A pilot study. Complement Ther Med 2018;38:74-8. doi:10.1016/j.ctim.2018.04.013
114 Kiooses DN, Rosenberg PB, McGovern A, Fonzetti P, Zaydens H, Alexopoulos GS. Depression and Suicidal Ideation During Two Psychosocial Treatments in Older Adults with Major Depression and Dementia. J Alzheimers Dis 2015;48:453-62. doi:10.3233/JAD-150200
115 Brulvik FK, Allore HG, Ranhoff AH, Engedal K. The effect of psychosocial support intervention on depression in patients with dementia and their family caregivers: an assessor-blind randomized controlled trial. Dement Geriatr Cogn Dis Extra 2013;3:386-97. doi:10.1159/000355912
116 Noone D. The Impact of Mindfulness Based Cognitive Therapy Group for Depression in People with Dementia attending Memory Clinics: A Feasibility Randomised Controlled Trial. University College London, 2017.
117 McSweeney K, Jeffreys A, Griffith J, Piakiotis C, Khasas R, O’Connor BW. Specialist mental health consultation for depression in Australian aged care residents with dementia: a cluster randomized trial. Int J Geriatr Psychiatry 2012;27:1163-71. doi:10.1002/gps.3762
118 Erdal A, Flo E, Aarsland D, Ballard C, Slettebo DD, Huseba BS. Efficacy and Safety of Analgesic Treatment for Depression in People with Advanced Dementia: Randomised, Multicentre, Double-Blind, Placebo-Controlled Trial (DEPPAIN.DEM). Drugs Aging 2018;35:545-58. doi:10.1007/s40266-018-0546-2
119 Woods B, Aguirre E, Spector AE, Orrell M. Cognitive stimulation to improve cognitive functioning in people with dementia. Cochrane Database Syst Rev 2012;2:CD005562. doi:10.1002/14651858.CD005562.pub2
120 Woods B, O’Philbin L, Farrell EM, Spector AE, Orrell M. Reminiscence therapy for dementia. Cochrane Database Syst Rev 2018;3:CD001120.
121 Dudas R, Malouf R, McCleery J, Dening T. Antidepressants for treating depression in dementia. Cochrane Database Syst Rev 2018;8:CD003944.
122 Gittin LN, Rose K. Factors associated with caregiver readiness to use nonpharmacologic strategies to manage dementia-related behavioral symptoms. Int J Geriatr Psychiatry 2014;29:93-102. doi:10.1002/gps.3979
123 Graft MJ, Adang EM, Vernooij-Dassen MJ, et al. Community occupational therapy for older patients with dementia and their carers: cost effectiveness study. BMJ 2008;336:134-8. doi:10.1136/bmj.39408.481898.8E
124 NICE. Dementia: assessment, management and support for people living with dementia and their carers. NICE Guideline [NG97]. 2018. https://www.nice.org.uk/guidance/ng97

Supplementary information: additional tables 1-9, figures 1-3, and references