Electronic Supplementary Information

Design, synthesis, and evaluation of curcumin analogues as potential inhibitors of bacterial sialidase

Bo Ram Kim a,†, Ji-Young Park b,†, Hyung Jae Jeong a, Hyung-Jun Kwon b, Su-Jin Park b, In-Chul Lee b, Young Bae Ryu b,*, Woo Song Lee b,*

Affiliation

a *Bio-processing Technology Development and Support Team, Korea Research Institute of Bioscience and Biotechnology, Jeongeup 56212, Republic of Korea*

b *Natural Product Material Research Center, Korea Research Institute of Bioscience and Biotechnology, Jeongeup 56212, Republic of Korea*

Corresponding authors at: Natural Product Material Research Center, Korea Research Institute of Bioscience and Biotechnology, Jeongeup 580-185, Republic of Korea. Tel: +82 63 570 5170; Fax: +82 63 570 5239 (W.S. Lee), Tel: +82 63 570 5171 (Y.B. Ryu). E-mail address: wslee@kribb.re.kr (W.S. Lee) and ybryu@kribb.re.kr (Y.B. Ryu).

†Both authors contributed equally to the work.
Contents of Supplementary Information

1. Characterization data
 - 1H and 13C NMR spectrum of curcumin (pp. S3 – S29)

2. Preparation of enzyme
 - Sequence data of prepared enzymes (pp. S30-S31)
 - Michaelis-Menten plots and Lineweaver-Burk plot of *S. pneumoniae* NanA K_m values (pp. S32)

3. Bioassay plots
 - Lineweaver-Burk and Dixon plots of the compound 4a, 4e, 5q and 5e (pp. S33 – S34)
1. 1H and 13C NMR spectrum of curcumins

\textbf{Figure S1.} 1H (top) and 13C NMR (bottom) spectra in acetone-d_6 of 4b
Figure S2. 1H (top) and 13C NMR (bottom) spectra in acetone-d_6 of 4c
Figure S3. 1H (top) and 13C NMR (bottom) spectra in acetone-d_6 of 4d
Figure S4. 1H (top) and 13C NMR (bottom) spectra in acetone-d_6 of 4e

S6
Figure S5. 1H (top) and 13C NMR (bottom) spectra in acetone-d_6 of 4f.
Figure S6. 1H (top) and 13C NMR (bottom) spectra in acetone-d_6 of 5a
Figure S7. 1H (top) and 13C NMR (bottom) spectra in acetone-d_6 of 5b
Figure S8. 1H (top) and 13C NMR (bottom) spectra in acetone-d_6 of 5c
Figure S9. 1H (top) and 13C NMR (bottom) spectra in acetone-d_6 of 5d
Figure S10. 1H (top) and 13C NMR (bottom) spectra in acetone-d_6 of 5e

S12
Figure S11. 1H (top) and 13C NMR (bottom) spectra in acetone-d_6 of 5f
Figure S12. 1H (top) and 13C NMR (bottom) spectra in dimethylsulfoxide-d_6 of 5g
Figure S13. 1H (top) and 13C NMR (bottom) spectra in acetone-d_6 of 5h
Figure S14. 1H (top) and 13C NMR (bottom) spectra in acetone-d_6 of 5i
Figure S15. 1H (top) and 13C NMR (bottom) spectra in acetone-d_6 of 5j
Figure S16. 1H (top) and 13C NMR (bottom) spectra in acetone-d_6 of 5k
Figure S17. 1H (top) and 13C NMR (bottom) spectra in acetone-d_6 of 5l
Figure S18. 1H (top) and 13C NMR (bottom) spectra in acetone-d_6 of 5m
Figure S19. 1H (top) and 13C NMR (bottom) spectra in acetone-d_6 of 5n
Figure S20. 1H (top) and 13C NMR (bottom) spectra in acetone-d_6 of 5o
Figure S21. 1H (top) and 13C NMR (bottom) spectra in acetone-d_6 of 5p
Figure S22. 1H (top) and 13C NMR (bottom) spectra in acetone-d_6 of 5q
Figure S23. 1H (top) and 13C NMR (bottom) spectra in acetone-d_6 of 5r
Figure S24. 1H (top) and 13C NMR (bottom) spectra in acetone-d_6 of 5s
Figure S25. 1H (top) and 13C NMR (bottom) spectra in acetone-d_6 of 6
Figure S26. 1H (top) and 13C NMR (bottom) spectra in acetone-d_6 of 7.
Figure S27. 1H (top) and 13C NMR (bottom) spectra in acetone-d_6 of 8
2. Preparation of enzyme

```plaintext
1 gaaggagcgcttaacagagaaaaacgacattcgaagacggttaacggttaaacc
E G A A L T E K T D I F E S G R N G K P
61 aataaagatggaatcaagagttatctgatattcagaacactctcaagagacataaaggaact
N K D G I K S Y R I P A L L K T D K G T
121 ttgatgcaggtgcagatgaacgcgcgtctccattcagtgactgaggtgtatcggatatg
L I A G A D E R L H S D W G D I G M
181 gtcatcagcagctgtgaagataatggtaaaactttgggtgaccgagtaaccattacacac
V I R R S E N G K T W G D R V T I T N
241 ttacgtgacaatccaaacgctctctcagctggttgatcggtatatcgatatg
L R D N P K A S D P S I G S P V N I D M
301 gtgttggttcaagatgctctctcaacaaaaggaagaagctctcataaatgcgtgga
V L V Q D P E T K R I F S I Y D M F E P E
361 gggagaaggagtctttggaatgtcttcacaaaaaagaagaagctctcataaatgcgtgga
G K G I F G M S S Q K E E A Y K K I D G
421 aaaaactctcaatcgtctctgtgaagagataatggtaaaactttgggtgaccgagtaaccattacacac
K T Y Q I L Y R E G K G A Y T I R E N
481 ggtagctgctctataccagcttgtggtacgcgacagatctgcgtgttgtagatcctgtt
G T V Y T P K A T D Y R V V V D P V
541 aaacccagctctagcgcacacaggggtatataacccaaatgagtcataatggcagatc
K P A Y S D K G D L Y K G N Q L L G N I
601 taccctcagaccaacaaacaaactctctctttagaattgacgatagctatcttagatg
Y F T T N K T S P F R I A K D S Y L W M
661 ttctagctgatgacgacgaggaagcatactgcacgcctcaagatattacccgatggtc
S Y S D D G K T W S A P Q D I T P M V
721 aacaacctatgaagatctttggtagatgtctgctgaacagaaatggtacttccgaaat
K A D W M K F L G V G P G T G I V L R N
781 gggcctcacaagggacggatatttgataccggtttatatagactaataatgatattacactta
G P H K G R I L I P V Y T T N N V S H L
841 aatggtctgcaatctctctgtatcattatcagatgatcatgaaaaacactttggcattgct
N G S Q S S R I I Y S D D H G K T W H A
901 gagaagccggtacaagataacccggtagagacggtcacaagatcactctctcagtg
G E A V N D N R Q V D G Q K I H S S T M
961 aacaataagctgacgcaaaaattacaagataacccggttagagacggtcacaagatcactctctcagtg
N N R A Q N T E S T V V Q L N N G D V
1021 aacaacctagacgtgttcatgagctttgactttgagatctcaggctgctcaagaaatgatataagagacgagga
K L F M R G L T G D L Q V A T S K D G G
1081 ggtagcttggagaaggatatcaacagctttcaccaggttaaagatgctatgttctaatag
V T W E K D I K R Y P Q V K D V V Y V Q M
```
Figure S28. Nucleotide sequence and protein sequence of synthesized *S. pneumoniae* neuraminidase A (NanA)

Figure S29. Expression and purification of *S. pneumoniae* NanA.
Figure S30. Michaelis-Menten plots (A) and Lineweaver-Burk plot (B) of *S. pneumoniae* NanA K_m values. The reaction was performed at various substrate concentrations to obtain enzyme K_m values. SigmaPlot was used to fit the kinetic data using Michaelis-Menten and Lineweaver-Burk double reciprocal plots.
Figure S31. Graphical determination of the inhibition type for compounds 4a, 4e, 5q and 5e. Lineweaver-Burk (A-D) and Dixon (E-H) plots for the inhibitory activity of compounds 4a, 4e, 5q and 5e, respectively, against *S. pneumoniae* NanA hydrolysis activity in the presence of different substrate concentrations.
Figure S31. Graphical determination of the inhibition type for compounds 4a, 4e, 5q and 5e. Lineweaver-Burk (A-D) and Dixon (E-H) plots for the inhibitory activity of compounds 4a, 4e, 5q and 5e, respectively, against *S. pneumoniae* NanA hydrolysis activity in the presence of different substrate concentrations (continued).