Non-collinear coupling between magnetic adatoms in carbon nanotubes

A. T. Costa

Instituto de Física, Universidade Federal Fluminense, 24210-346 Niterói, RJ, Brazil

C. G. Rocha and M. S. Ferreira

School of Physics, Trinity College Dublin, Dublin 2, Ireland

(Dated: July 11, 2018)

Abstract

The long range character of the exchange coupling between localized magnetic moments indirectly mediated by the conduction electrons of metallic hosts often plays a significant role in determining the magnetic order of low-dimensional structures. In addition to this indirect coupling, here we show that the direct exchange interaction that arises when the moments are not too far apart may induce a non-collinear magnetic order that cannot be characterized by a Heisenberg-like interaction between the magnetic moments. We argue that this effect can be manipulated to control the magnetization alignment of magnetic dimers adsorbed to the walls of carbon nanotubes.

PACS numbers:
More than a decade after the discovery of carbon nanotubes, these nanoscale cylindrical structures are still the subject of intensive scientific research due to their intriguing physical properties. Significant progress has been made to explain the intrinsic properties of nanotubes but to expand their applicability we must understand and control how they interact with other objects. Nanotubes interacting with magnetic foreign objects offer a wide range of technologically promising possibilities within the so-called area of spintronics in molecular structures. In fact, the ability to produce sizeable changes in the conductance of a nanotube due to an applied magnetic field is one of the driving forces in the research of magnetic properties of carbon-based structures\(^1\)-\(^2\). Substrates\(^3\)-\(^4\), substitutional impurities\(^5\), adsorbed atoms\(^6\)-\(^7\) and nanoparticles\(^8\) are some of the different magnetic foreign objects that can interact with carbon nanotubes. Among those, transition-metal magnetic adatoms have been reported to produce noticeable changes in the spin-dependent electronic structure of carbon nanotubes\(^6\)-\(^8\). Furthermore, the formation of defect-induced magnetic moments in carbon-based materials appears as an additional possibility to manipulate the magnetic response of these systems\(^9\).

The transport properties of magnetically-doped structures depend on the way their magnetic moments are oriented. Therefore, besides establishing how magnetic impurities affect the electronic structure of a nanotube, it is crucial to understand the nature of the coupling between these moments. Regarding magnetic adatoms, dipolar and exchange interactions are the basic mechanisms defining the alignment of their moments\(^10\). The former decays rather quickly as the moments are moved apart whereas the latter depends on both the dimensionality and on the nature of the interaction. Direct exchange coupling results from the overlap between wave functions centred at the magnetic impurities but also decays abruptly as the distance between them increases. Of indirect nature, the so-called indirect exchange coupling (IEC) between magnetic impurities mediated by the conduction electrons of the non-magnetic host is known to decay more slowly and plays an important role in determining the overall magnetic alignment of the system. In fact, we have recently shown that the IEC between magnetic adatoms in carbon nanotubes is long ranged and is of Heisenberg form\(^11\). We have also shown that the coupling may be either ferromagnetic or antiferromagnetic, depending on the type of atoms, their separation as well as on the size and type of nanotube host.

The slow decaying rate of the IEC makes the indirect interaction dominant when magnetic
objects are sufficiently far apart. However, it becomes comparable to the direct exchange coupling when the objects are brought closer together. In this situation, the proximity of two magnetic moments may give rise to unusual ordering. Recent calculations indicate that the magnetization alignment of magnetic dimers adsorbed onto the surface of a 3-dimensional metal is often neither ferromagnetic nor antiferromagnetic but follows a non-collinear order12. The origin of such a non-Heisenberg behaviour lies in the competition between the direct and indirect contributions to the exchange coupling and should arise when localized magnetic moments embedded in a metallic host are in close proximity. It is the purpose of this manuscript to show that such an effect also occurs when magnetic dimers are adsorbed onto the walls of a metallic nanotube. Since the IEC decays more slowly in low-dimensional hosts, we argue that nanotubes are likely to expand the range of separations for which this competition can induce non-collinear alignments. In other words, the effect of non-collinear magnetization alignment of dimers should be more robust in nanotubes than in flat substrates of higher dimensionality.

We consider a dimer made of two magnetic atoms, labelled A and B, adsorbed to the walls of an infinitely long carbon nanotube and schematically represented in Figure 1. Magnetism in these atoms is driven by an intra-atomic Coulomb interaction that, when treated in mean-field approximation through a self-consistent procedure, can be described by an effective spin-dependent potential located at the atomic positions. In this way, the electronic structure of the entire system is well described by a Hamiltonian in a basis of localized atomic orbitals. In such a basis, this tight-binding-like Hamiltonian is fully determined by the on-site potentials and hopping integrals.

We assume that the magnetic moments of the individual adatoms are initially parallel, hereafter referred to as the ferromagnetic configuration. In this configuration, the Hamiltonian of the entire system written in the basis $|j\rangle$ of atomic orbitals centred at a site j is given by $\hat{H} = \hat{H}_{NT} + \hat{H}_D + \hat{V}_C$, where $\hat{H}_{NT} = \sum_{jj'} |j\rangle \gamma |j'\rangle$ is the Hamiltonian of the individual nanotube, $\hat{H}_D = |a\rangle \epsilon_a \langle a| + |b\rangle \epsilon_b \langle b| + |a\rangle \tau |b\rangle + |b\rangle \tau^\dagger |a\rangle$ is the Hamiltonian associated with the dimer and $\hat{V}_C = \sum_{\ell} t \{ |a\rangle \langle \ell| + |\ell\rangle \langle a| \} + \sum_{\ell'} t' \{ |b\rangle \langle \ell'| + |\ell'\rangle \langle b| \}$ refers to the coupling between the adatoms and the nanotube. The parameters γ, ϵ_a, ϵ_b and t are all matrices in spin and orbital spaces and correspond to the hopping between nearest-neighbour sites in the nanotube, the on-site potentials of atom A, of atom B and the hopping between the nanotube atoms and the adatoms, respectively. Likewise, the basis $|j\rangle$ represents vectors in
FIG. 1: Left: Schematic diagram representing a magnetic dimer formed by two magnetic atoms adsorbed to the surface of a carbon nanotube. Right: A more detailed diagram shows a 2-dimensional depiction of the magnetic adatom above the hexagonal lattice of the nanotube. The dashed lines highlight to which nearest-neighbour sites the adatom is connected by a hopping parameter t.

the same linear space. It is evident from the expressions above that sites $j = a$ and $j = b$ label the two adatoms and the indices ℓ and ℓ' label the nanotube sites that are coupled to those respective atoms. These latter sites are schematically illustrated in Figure 1b, where a magnetic adatom lying just above the centre of the nearest hexagon is connected to its nearest carbon atoms. It is worth mentioning that there are two fundamental differences between \hat{H} and the Hamiltonian considered in Reference [11]. The inclusion of a hopping τ between atoms A and B that accounts for the direct interaction due to their proximity is the first difference, followed by the fact that the magnetic adatoms are now located above the centres of the nanotube hexagons, as opposed to being immediately above the carbon atoms.

The energy required to rotate the magnetic moment of one adatom relatively to the other is given by

$$\Delta E(\theta) = \frac{1}{\pi} \int_{-\infty}^{\infty} d\omega \left[\frac{1}{1 + e^{\beta(\omega - \mu)}} \right] \text{Im Tr} \ln[1 + 2 V_x^2 (1 - \cos \theta) G_{a,b}^\uparrow(\omega) G_{b,a}^\downarrow(\omega)] , \quad (1)$$

where θ is the angle of rotation and V_x is a matrix in orbital space representing the strength of the local exchange potentials. $G_{m,\ell}(\omega)$ represents the propagator between sites $j = \ell$ and $j = m$ for electrons of spin σ and energy ω in the FM configuration, and the trace is
over orbital indices. Regarding the fraction within brackets, \(\beta = 1/k_B T \), where \(k_B \) is the Boltzmann constant and \(T \) is the temperature.

For the sake of simplicity the electronic structure of the system will be here treated within the single-band tight-binding model. The expressions above are very general and by no means restricted to such a simple case. The results here obtained can be easily extended to a multi-orbital description but bring no qualitative difference. This is justified by the fact that the main features of the IEC are predominantly determined by the extended electrons of the host, in this case the nanotube, whose electronic structure is known to be well reproduced by a single-band tight-binding model. Having transition-metal atoms in mind, the adatoms are then described by a 5-fold degenerate \(d \)-band with the appropriate occupation to represent typical magnetic materials. In this way, rather than matrices in orbital indices, all quantities in the integrand of Eq. (1) become scalar.

The energy variation \(\Delta \mathcal{E}(\theta) \) can be calculated by inserting the appropriate Green function matrix elements \(G_{a,b}^\uparrow(\omega) \) and \(G_{b,a}^\downarrow(\omega) \) into Eq. (1) and evaluating the corresponding energy integral. The Green functions are evaluated firstly in the absence of any magnetic impurities through a standard renormalization procedure13 and subsequently renormalized through Dyson’s equation to account for the presence of the magnetic adatoms in a self-consistent fashion. As far as the tight-binding parameters are concerned, the on-site potentials \(\epsilon_a \) and \(\epsilon_b \) are easily determined by the aforementioned self-consistent procedure and follow from the appropriate selection of the \(d \)-band occupation. The hopping parameter \(\gamma = 2.7 \text{ eV} \) is known to describe well the \(\pi \)-band of carbon nanotubes. The only remaining parameters to be specified are the coupling \(t \) describing the electronic hopping linking the adatoms with the nanotube and the proximity parameter \(\tau \) that accounts for the direct interaction between nearby adatoms.

We start by assuming \(\tau = 0 \), which corresponds to the standard IEC between magnetic objects without any direct interaction11. In Fig. 2 we see that the IEC has a nice sinusoidal behavior as a function of the angle between magnetizations if the adatoms are sufficiently far apart. As demonstrated many years ago by Herring14, the angular dependence of the energy variation follows a standard Heisenberg form \(\Delta \mathcal{E}(\theta) = J_0 + J_1 \cos(\theta) \) only for large separations of the magnetic objects. The deviation from the traditionally assumed Heisenberg-like behaviour may arise as a consequence of charge rearrangements due to the relative rotation of magnetic moments. Such rearrangements are of little importance in a 3D metal because
screening is extremely efficient there; such is not the case in carbon nanotubes, even metallic ones. In fact, for small separations one finds small deviations from the Heisenberg form which are nevertheless not strong enough to introduce any non-collinearity in the equilibrium states. For the Heisenberg-like case it is simple to show that the sinusoidal behaviour remains the same for arbitrary values of t and that the only effect that this parameter has on $\Delta E(\theta)$ is in determining the amplitude of the cosine function, that is, on the quantity J_I.

Whereas ab-initio calculations would struggle to provide a detailed angular dependence of the total energy, they can be used to obtain the actual total energy of the system in both ferromagnetic and antiferromagnetic configurations, two quantities whose difference provides direct information on $\Delta E(\theta)$ and, in turn, on the reasonable range of values for the parameter t. With that purpose in mind, ab-initio calculations were evaluated for adatoms lying a minimum distance apart to reflect the absence of any direct interaction. The difference between the total energy values for the antiferromagnetic and ferromagnetic configurations was then used to guide us to the appropriate range of values of the hopping t. Our calculations are performed using the SIESTA code within the LDA and GGA approaches for the exchange and correlation potential. Norm-conserving pseudopotentials with relativistic corrections and a split-valence double-ζ basis of pseudoatomic orbitals with an orbital confining energy of 0.05 eV and an energy cutoff of 150 Ry were used. The k-point sampling is composed of 11 k points in the axial direction of the tube and we built an unit cell with 96 atoms for the $(4,4)$ CN plus the two magnetic atoms. One may notice that we induced a magnetization up or down only in the magnetic atoms. The two configurations (ferro and antiferromagnetic) for the adatoms were studied. The in-plane lattice parameter was chosen to be large enough to guarantee a negligible interaction between periodic CN images ($\sim 98\text{Å}$). All the structure was optimized by conjugate gradient with force tolerance of 0.05 eV/Å.

Having determined the range of values of the parameter t that accounts for the correct magnitude (and sign) of the indirect coupling J_I, we can now proceed to introduce a direct hopping term τ that corresponds to bringing the two adatoms closer together. As depicted in Figure 3, a suitable choice of values for the parameter τ may induce an interesting situation in which the angular dependence of the energy variation is no longer described by a single sinusoidal function. Such a non-Heisenberg-like behaviour arises as the result of a competition between the direct and indirect contributions to the magnetic coupling.
FIG. 2: Energy change $\Delta \Omega$ as a function of relative angle θ between magnetizations for two Mn atoms ($n = 1.1$ electron per atom). The hopping between magnetic atoms has been artificially turned off ($\tau = 0$), and the hopping Mn-C is $t = 0.4 \gamma$. Each Mn atom is atop the centre of a hexagon that are 4 unit cells apart.

Having the energy minimum at an intermediate angle $0 < \theta < \pi$ means that the preferential magnetization alignment for such a magnetic dimer is of non-collinear type. Incidentally, one may notice that the effect is robust under doping or the application of a gate voltage: the dashed curve in figure 3 shows that the stable configuration is still non-collinear after a change of 0.2γ in the Fermi energy. It is interesting to notice that, upon doping, the energy of the antiferromagnetic state becomes smaller than that of the ferromagnetic alignment. First principle calculations that only evaluate total energies or energy differences between the two collinear states would predict a change in alignment upon doping. What our results show is that, for magnetic objects close to each other, those energy differences are not enough: one must analyze the local stability around the collinear states.

Rather than the result of a fortunate choice of parameters, this non-collinearity effect is robust enough to be seen in a wide range of values for the proximity parameter τ as well.
FIG. 3: (Color online) Energy change as a function of angle between magnetizations of two Mn atoms adsorbed to a (5,5) nanotube. The adatoms are located atop the centres of nearest neighbour hexagons, connected to six C atoms each. The Mn-Mn hopping $\tau = 0.47\gamma$. The dashed curve corresponds to a doped nanotube, simulated by a change in Fermi energy $\Delta E_f = 0.2\gamma$.

as for adatoms of different nature. To assess the robustness of this effect we introduce a parameter ζ defined as

$$\zeta = SGN \left[\left(\frac{d^2\Delta E}{d\theta^2} \right)_{\theta=0} \times \left(\frac{d^2\Delta E}{d\theta^2} \right)_{\theta=\pi} \right]$$

where the function $SGN(x) = 1$ for $x \geq 0$ and $SGN(x) = -1$ for $x < 0$. Eq. (2) uses the curvature of the function $\Delta E(\theta)$ at $\theta = 0$ and $\theta = \pi$ to define an indirect way of testing whether or not the magnetic coupling of the dimer follows a Heisenberg law. According to the definition above, $\zeta = -1$ corresponds to a Heisenberg behaviour and $\zeta = +1$ corresponds to the non-collinearity effect. A more informative view is in the diagram of Figure 4 where we have adopted a colour code that uses black to represent $\zeta = +1$ and white to represent $\zeta = -1$. On the horizontal axis the proximity parameter τ runs from 10% to 110% of the
FIG. 4: Top panel: state diagram for the ground state of a magnetic dimer on an armchair (5,5) nanotube, and $t = 0.7$. The white region corresponds to non-collinear ground states. Bottom panel: same as above, but the Fermi energy has been shifted by 0.2γ.

Since this effect results from a competition between the direct and indirect contributions to the magnetic coupling, it is natural to suspect that one may have the ability to select electronic hopping γ, whereas the d-band occupation on the vertical axis includes characteristic values corresponding to Fe and Co, for instance. It is noteworthy that the non-collinear state takes a non-negligible fraction of the diagram, indicating that the situation illustrated in Figure 3 is far from coincidental.

Since this effect results from a competition between the direct and indirect contributions to the magnetic coupling, it is natural to suspect that one may have the ability to select
the preferred alignment of the magnetizations by controlling how these two contributions are related. Although changing τ is a mathematically possible way of altering the direct contribution to the coupling, it is of little applicability once this would, in practical terms, involve varying the separation of the magnetic atoms in the dimer. A possible alternative is to change the indirect contribution to the coupling. To change the indirect coupling by moving the adatoms apart would be equally impractical but one could make use of the fact that this type of coupling can also be affected by controlling the nanotube Fermi energy. In fact, the authors have already shown\cite{11} that the indirect coupling can be modified by tuning the Fermi energy through doping or through a carefully engineered gate voltage. The bottom panel of Figure 4 shows a similar diagram in which the Fermi level of the nanotube host has been shifted by $\Delta E_F = 0.2\gamma$. A clear distinction between the diagrams in top and bottom panels of Figure 4 corroborates that this is in fact a possible and more practical way of controlling the magnetization alignment of magnetic dimers attached to the walls of a carbon nanotube. Whereas a single isolated dimer may not be able to produce a sizeable effect, a finite concentration of those dimers will undoubtedly be sufficient to produce a measurable change in the magnetization of the system.

In our model calculations we must choose a value for the effective Coulomb interaction parameter U such that the Stoner criterion for the onset of magnetism is satisfied\cite{19}. In single-orbital models this value has to be unrealistically large due to the artificially reduced density of states at the Fermi level. It is well known that the large U limit of the Hubbard model is the Heisenberg model\cite{19}. Since we are looking for deviations from Heisenberg-like behavior, the large U constraint may force us to underestimate the relative frequency of occurrence of non-collinearity. It is, thus, instructive to examine the behavior of the kind of state diagram presented in figure 4 under variations of the Coulomb parameter U. In figure 5 it is obvious that a smaller U results in a significantly expanded region of non-collinear ground-states. It is important to notice, however, that even for the high $U = 20\gamma$ we used to obtain the results in figure 4 non-collinear ground-states occupy a significant part of the state diagram.

In summary, we have shown that the proximity of two magnetic adatoms attached to the walls of carbon nanotubes may induce the formation of non-collinear alignment of their magnetizations. This effect is the result of a competition between the direct and indirect contributions to the exchange coupling, which become comparable when the magnetic
FIG. 5: State diagram for the ground state of a magnetic dimer on an armchair (5,5) nanotube, and $t = 0.7\gamma$, for two values of the effective Coulomb interaction: $U = 20\gamma$ (top panel) and $U = 12\gamma$ (bottom panel). The white region corresponds to non-collinear ground states.

Adatoms are not too far apart. Due to the long-range character of the IEC in low-dimensional structures, carbon nanotubes are ideal candidates to display the non-heisenberg behaviour discussed in this paper. Moreover, the ability to control the indirect coupling through a careful selection of the Fermi energy of nanotubes opens the road to the possibility of controlling the magnetization of nanotube-based systems doped with magnetic dimers.
Acknowledgments

The authors gratefully acknowledge many enlightening conversations with R. B. Muniz. M. S. F. acknowledges the financial support of Science Foundation Ireland and Enterprise Ireland. A. T. C acknowledges financial support received from CNPq and FAPEMIG from Brazil.

* Electronic address: antc@if.uff.br
† Electronic address: ferreirm@tcd.ie
1 K. Tsukagoshi, B. W. Alphenaar, and H. Ago, Nature 401, 572 (1999).
2 L. E. Hueso, J. M. Pruneda, V. Ferrari, G. Burnel, J. P. Valdes-Herrera, B. D. Simons, P. B. Littlewood, E. Artacho, A. Fert, and N. D. Mathur, Nature 445, 410 (2007).
3 M. S. Ferreira and S. Sanvito, Phys. Rev. B 69, 035407 (2004).
4 O. Cespedes, M. S. Ferreira, S. Sanvito, M. Kociak, and J. M. D. Coey, J. Phys.: Condens. Matter 16, 155 (2004).
5 S. B. Fagan, R. Mota, R. J. Baierle, A. J. R. da Silva, and A. Fazzio, Mater. Charact. 50, 183 (2003).
6 S. B. Fagan, R. Mota, A. J. R. da Silva, and A. Fazzio, Phys. Rev. B 67, 205414(2003).
7 S. B. Fagan, R. Mota, R. J. Baierle, A. J. R. da Silva, and A. Fazzio, Physica B 340, 982 (2003).
8 C. K. Yang, J. Zhao, and J. P. Lu, Phys. Rev. Lett. 90, 257203 (2003).
9 Yuchen Ma, A. S. Foster, A. V. Krasheninnikov, and R. M. Nieminen, Phys. Rev. B 72, 205416 (2005).
10 D. Altbir, P. Vargas, J. d’Albuquerque e Castro, and U. Raff, Phys. Rev. B 57, 13604 (1998).
11 A. T. Costa, D. F. Kirwan, and M. S. Ferreira, Phys. Rev. B 72, 085402 (2005).
12 A. T. Costa, R. B. Muniz, and D. L. Mills, Phys. Rev. Lett. 94, 137203 (2005).
13 C. G. Rocha, T. G. Dargam, and A. Latgé, Phys. Rev. B 65, 165431 (2002).
14 C. Herring, in Magnetism, edited by George T. Rado and Harry Suhl (Academic Press, New York and London, 1966), Vol. IV.
15 R. Saito, M. Fujita, G. Dresselhaus, and M. S. Dresselhaus, Appl. Phys. Lett. 60, 2204 (1992).
16 D. Sánchez-Portal, P. Ordejón, E. Artacho, and J. M. Soler, Int. J. Quantum Chem. 65, 453
(1997); P. Ordejón, E. Artacho, and J. M. Soler, Phys. Rev. B 53, R10441 (1996).

17 D. M. Ceperley, and B. J. Alder, Phys. Rev. Lett. 45, 566 (1980).

18 N. Troullier, and J. L. Martins, Phys. Rev. B 43, 1993 (1991).

19 K. Yosida, Theory of Magnetism, 2nd Edition, Springer Verlag (2006).