Chimeric Monoclonal Antibody Cetuximab Targeting Epidermal Growth Factor-Receptor in Advanced Non-Melanoma Skin Cancer

Uwe Wollina¹, Georgi Tchernev²,³, Torello Lotti⁴

¹Department of Dermatology and Allergology, Städtisches Klinikum Dresden, 01067 Dresden, Germany; ²Medical Institute of the Ministry of Interior, Dermatology, Venereology and Dermatologic Surgery; ³Onkoderma, Private Clinic for Dermatologic Surgery, Dermatology and Surgery, Sofia 1407, Bulgaria; ⁴University G. Marconi of Rome, Dermatology and Venereology, Rome 00192, Italy

Abstract

BACKGROUND: Non-melanoma skin cancer (NMSC) is the most common malignancy in humans. Targeted therapy with monoclonal antibody cetuximab is an option in case of advanced tumor or metastasis.

AIM: We present and update of the use of cetuximab in NMSC searching PUBMED 2011-2017.

METHODS: The monoclonal antibody cetuximab against epidermal growth factor receptor (EGFR) has been investigated for its use in NMSC during the years 2011 to 2017 by a PUBMED research using the following items: "Non-melanoma skin cancer AND cetuximab," "cutaneous squamous cell carcinoma AND cetuximab," and "basal cell carcinoma AND cetuximab," and "cetuximab AND skin toxicity". Available data were analyzed including case reports.

RESULTS: Current evidence of cetuximab efficacy in NMSC was mainly obtained in cutaneous SCC and to a lesser extend in BCC. Response rates vary for neoadjuvant, adjuvant, mono- and combined therapy with cetuximab. Management of cutaneous toxicities is necessary. Guidelines are available.

CONCLUSIONS: Cetuximab is an option for recurrent or advanced NMSC of the skin. It seems to be justified particularly in very high-risk tumors. There is a need for phase III trials.

Introduction

Non-melanoma skin cancer (NMSC) is the most common malignancy in humans, with basal cell carcinoma (BCC) and cutaneous squamous cell carcinoma (cSCC) as the dominant tumor types [1]. As major risk factors the following findings could be identified: age ≥ 50 years of life, Fitzpatrick’s phototype I or II, and increased chronic exposure to natural or artificial ultraviolet (UV) irradiation. Other known risk factors include immunosuppression, solid organ transplantation, and use of tanning beds [1][2][3][4][5][6].

Logically, the reduction of UV-exposure seems the major goal in primary prevention [1]. The three pillars of current treatment for localized disease are surgery with wide excision, Mohs surgery for recurrent tumors or special localizations such as the face, and radiotherapy [1].

The role of chemotherapy and targeted therapy in NMSC seems to be confined to advanced cases, where surgery has become impossible or is contraindicated, and to metastatic disease [8][9][10][11][12].

Cetuximab is a chimeric monoclonal antibody against epidermal growth factor receptor (EGFR) and had been FDA-approved for head and neck SCC in conjunction with radiotherapy [12].

We present and update of the use of cetuximab in NMSC searching PUBMED 2011-2017.
BCC

BCC is the most common human cancer. Age-adjusted BCC incidence (cases per 100,000 person-years) was 360.0 in men and 292.9 in women in a recent population-based study in Olsmedt county, Missouri [13]. In contrast to cSCC, BCC does not increase cancer-related mortality [14]. BCC develops as a result of the interplay between ultraviolet radiation (UVR) and genotype with somatic mutations (Smoothed) and germline mutations/polymorphisms. The role of UVR exposure and BCC is not as clear as in cSCC [15].

Prognostic factors of BCCs are tumor size, histological subtype, tumor location, margins, and recurrence. The first line treatment of BCC is wide excision or Mohs surgery dependent on the site of tumor growth. In relapsed tumors, Mohs surgery provides a better outcome with a lower recurrence rate. Radiotherapy is an alternative for patients, who refuse surgery or where surgery is contraindicated. For advanced BCC, Smoothened (SMO) inhibitors vismodegib and sonidegib have been FDA approved [8][9].

Cutaneous SCC

Cutaneous SCC (cSCC) is the second most common NMSC. The age-adjusted cSCC incidence (cases per 100,000 person-years) has been calculated as high as 207.5 for men and 128.8 for women in Olmsted country [13]. The rate of metastasis has been estimated between 1.9 to 2.6%.

Risk factors for metastatic spread are the maximum diameter, poor histological differentiation and particular anatomical localizations such as lip, cheek, and ear [16].

The risk of recurrence, metastases, and mortality can be further stratified. High-risk and very high-risk tumors are the possible indication for the use of cetuximab.

High-risk tumors (HRSCC) are characterized by localization in the head-and-neck region, maximum diameter of more than 2 cm, invasion into the subcutaneous adipose tissue, poor differentiation, recurrence or occurrence in a previously irradiated area, and immunosuppression [16].

Very high-risk SCC (VHRSCC) include tumors with perineural, lympho-vascular, parotid, cartilaginous or bony invasion, in-transit, regional or distant metastases [17].

Studies of cetuximab in cutaneous SCC 2011-17

In 2011, the first phase II trial included 36 patients with SCC. Disease control was obtained in 69% after 6 weeks of treatment. Patients received a 400 mg/m² loading dose followed by 250 mg/m² weekly for at least 6 weeks with 48 weeks follow-up. In this study, three related serious adverse events were observed - two grade 4 infusion reactions and one grade 3 interstitial pneumonitis. Grade 1 to 2 acne-like rash occurred in 78% of patients and was associated with prolonged PFS [18].

Table 1: Results of cetuximab therapy in cSCC 2011-2017 (disease-free survival – DFS, overall survival – OAS, complete response – CR, partial response – PR, stable disease – SD, progressive disease – PD)

No.	Metastases	Best response	Outcome	Remarks	Reference
26	lymph node	2 x CR, 8 x PR, 15 x SD	1 x at 6 months	in part with surgery phase II trial	[18]
1	lymph node	CR after 6 weeks	DFS > 6 months	1st line	[19]
8	lymph node	CR	> 6 months	plus volumetric modulated arc radiotherapy	[20]
4	lymph node	CR	> 6 months	6 x with radiotherapy	[21]
1	lung, pleura, lymph nodes	PR after 6 months	1 relapse after 6 months, median disease-free survival 20.5 months	cetuximab plus paclitaxel	[22]
3	lymph node	CR after 16 weeks	DFS 16 months		[23]
6	lymph node	3 x CR, 2 x PD	PR for 17 and 18 months, median 3 years	in combination with surgery VHRSCC	[17]
17	bone or visceral	4 x PR	-	penile & scrotal, cetuximab alone or with cisplatin	[25]

Reference

[13] [14] [15] [16] [17] [18] [19] [20] [21] [22] [23] [24] [25] [26] [27]
There have been a number of retrospective case series and case reports published since then (Table 1). Cetuximab has been used as 1st – 3rd line therapy, alone or in combination with surgery, radiotherapy or chemotherapy [17][18][19][20][21][22][23][24][25][26][27].

Cetuximab in advanced BCC 2011-2017

Cetuximab has also been used in patients with advanced BCC [11]. The safety profile is not different from SCC patients. However, Karapurakal et al. (2015) used a lower starting dosage of 125 mg/m² increased to 250 mg/m² or 300 mg/m². Their dosages varied from 125 mg/m² once a month to 300 mg/m² once a week. The authors did not explain the reason for these dose variations. Two patients achieved a CR, the other 2 had a PR. During a median follow-up of 12 months overall survival was 100%. Mean disease-free survival was one month. Three of their four patients suffered from Gorlin-Goltz syndrome [22].

Management of adverse effects

Skin toxicity is the most common adverse effects of cetuximab. Treatment is based on skin moisturizers and sunscreens [28]. In a retrospective trial on gastrointestinal cancer patients, prophylactic and reactive treatment for acne-like rash was equally effective [29].

Treatment of the papulopustular rash includes topical use of erythromycin or metronidazole for mild cases, and systemic tetracyclines or retinoids for skin toxicities grade ≥2 with temporary interruption of cetuximab therapy [30]. The incidence of skin toxicity seems to be lower in smokers but the incidence of anorexia is higher compared to non-smokers [31].

Topical vitamin K3 (menadione) is not effective in the prevention of cutaneous toxicity nor does it change the expression of EGFR in skin [32].

In conclusion, there are increasingly more data available on the use of targeted therapy in advanced NMSC although controlled prospective, randomized, placebo-controlled phase III trials are still missing. From the available data, cetuximab seems to be effective as monotherapy after surgery. The safety profile is different from approved indications such as advanced colorectal and head-and-neck cancer. In contrast to hedgehog inhibitor vismodegib approved for advanced BCC, second cSCC have not been observed with cetuximab therapy of NMSC [33][34][35][36].

References

1. Apalla Z, Nashan D, Weller RB, Castellsagué X. Skin cancer: Epidemiology, disease burden, pathophysiology, diagnosis, and therapeutic approaches. Dermatol Ther (Heidelb). 2017; 7(Suppl 1):5-19. https://doi.org/10.1007/s13555-016-0165-y PMid:28150105 PMCid:PMC5289116
2. Etzkorn JR, Parikh RP, Marzban SS, Law K, Davis AH, Rawal B, Schell MJ, Sondak VK, Messina JL, Rendina LE, Zager JS, Lien MH. Identifying risk factors using a skin cancer screening program. Cancer Control. 2013; 20:248-54. https://doi.org/10.1177/1073274813024000402 PMid:24077401 PMCid:PMC4518026
3. Piselli P, Verdirossi D, Cimaglia C, Busnach G, Fratino L, Ettorre GM, De Paoli P, Citterio F, Serrano D. Epidemiology of de novo malignancies after solid-organ transplantation: immunosuppression, infection and other risk factors. Best Pract Res Clin Obstet Gynaecol. 2014; 28:1251-65. https://doi.org/10.1016/j.bpobgyn.2014.08.007 PMid:25209964
4. Muehleisen B, Pazenekottl A, French LE, Hoffbauer GF. Nonmelanoma skin cancer in organ transplant recipients: increase without delay after transplant and subsequent acceleration. JAMA Dermatol. 2013; 149:618-20. https://doi.org/10.1001/jamadermatol.2013.3115 PMid:23677099
5. Wollina U. Addiction to Tanning – A new cause of early onset of nonmelanoma skin cancer. Open Dermatol J. 2009; 3:86-8. https://doi.org/10.2174/1874372200903010086
6. Wu TP, Stein JA. Nonmelanoma skin cancer in young women. J Drugs Dermatol. 2013; 12:568-72. PMid:23652953
7. Newlands C, Currie R, Memon A, Whitaker S, Woolfard T. Nonmelanoma skin cancer: United Kingdom National Multidisciplinary Guidelines. J Laryngol Otol. 2016; 130:S125-S132. https://doi.org/10.1177/0022215116003055 PMid:28411252 PMCid:PMC4873942
8. Wollina U, Tchernev G. Advanced basal cell carcinoma. Wien Med Wochenschr. 2013; 163:347-53. https://doi.org/10.1007/s10354-013-0193-5 PMid:23589318
9. Jain S, Song R, Xie J. Sonidegib: mechanism of action, pharmacology, and clinical utility for advanced basal cell carcinomas. Onco Targets Ther. 2017; 10:1645-1653. https://doi.org/10.2147/OTT.S130910 PMid:28352196 PMCid:PMC5360396
10. Yin VT, Pfeiffer ML, Esmaeli B. Targeted therapy for orbital and periocular basal cell carcinoma and squamous cell carcinoma. Ophthal Plast Reconstr Surg. 2013; 29:87-92. https://doi.org/10.1097/IOP.0b013e3182831bf3 PMid:23446297 PMCid:PMC3878052
11. Amaral T, Garbe C. Non-melanoma skin cancer: new and future synthetic drug treatments. Expert Opin Pharmacother. 2017; 18:689-699. https://doi.org/10.1080/14656566.2017.1316372 PMid:28414587
12. Wollina U. Cetuximab for non-melanoma skin cancer. Expert Opin Biol Ther. 2012; 12:949-56. https://doi.org/10.1517/14712998.2012.681374 PMid:22519406
13. Muzic JG, Schmitt AR, Wright AC, Alieni DT, Zubaas AS, Olazagasti Lourido JM, Sosa Seda IM, Weaver AL, Baum CL. Incidence and trends of basal cell carcinoma and cutaneous squamous cell carcinoma: A population-based study in Olmsted County, Minnesota, 2000 to 2010. Mayo Clin Proc. 2017; 92:890-898. https://doi.org/10.1016/j.mayocp.2017.02.015 PMid:28522111
14. Barton V, Armeson K, Hampras S, Ferris LK, Visvanathan K, Rollison D, Alberg AJ. Nonmelanoma skin cancer and risk of all-cause and cancer-related mortality: a systematic review. Arch Dermatol. 2017; 159:243-51. https://doi.org/10.1001/jamahetmed.2016.0899.
26. Conen KL, Fischer N, Hofbauer GF, Shafaeddin-Schreve B, Winterhalder R, Rochlitz C, Zippelius A. Cetuximab in metastatic squamous cell cancer of the skin: a Swiss case series. Dermatology. 2014; 229(2):97-101. https://doi.org/10.1159/000362384 PMid:24923455

27. Seber S, Gonulutas A, Ozturk O, Yetsiytg T. Recurrent squamous cell carcinoma of the skin treated successfully with single agent cetuximab therapy. Oncol Targets Ther. 2016; 9:945-8. https://doi.org/10.2147/OTT.S66227 PMid:26955287 PMCid:PMC4772919

28. Hofheinz RD, Sengaert S, Safont MJ, Demonty G, Prenen H. Management of adverse events during treatment of gastrointestinal cancers with epidermal growth factor inhibitors. Crit Rev Oncol Hematol. 2017; 114:102-13. https://doi.org/10.1016/j.critrevonc.2017.03.032 PMid:28477738

29. Wehler TC, Graf C, Mühler M, Herzog J, Berger MR, Gockel I, Lang H, Theobald M, Galle PR, Schimanski CC. Cetuximab-induced skin exantheme: prophylactic and reactive skin therapy are equally effective. J Cancer Res Clin Oncol. 2013; 139:1667-72. https://doi.org/10.1007/s00432-013-1483-4 PMid:23918349 PMCid:PMC3771414

30. Pinto C, Barone CA, Girolomoni G, Russi EG, Merlano MC, Ferrari D, Maiello E. Management of skin reactions during cetuximab treatment in association with chemotherapy or radiotherapy: update of the Italian expert recommendations. Am J Clin Oncol. 2016; 39:407-15. https://doi.org/10.1097/COC.0000000000000291 PMid:27077276

31. Kajizono M, Saito M, Maeda M, Yamaji K, Fujisawa S, Kawasaki Y, Matsunaga H, Sendo T. Cetuximab-induced skin reactions are suppressed by cigarette smoking in patients with advanced colorectal cancer. Int J Clin Oncol. 2013; 18:684-8. https://doi.org/10.1007/s10147-012-0427-3 PMid:22678464

32. Eriksen JG, Kaalund I, Cleemensen O, Overgaard J, Pfeiffer P. Placebo-controlled phase II study of vitamin K3 cream for the treatment of cetuximab-induced rash. Support Care Cancer. 2017; 25(7):2179-85. https://doi.org/10.1007/s00520-017-3623-x PMid:28197850

33. Saintes C, Saint-Jean M, Brocard A, Peuvrel L, Renaut JJ, Khammar A, Quénéhervé G, Dréno B. Development of squamous cell carcinoma into basal cell carcinoma under treatment with Vismodegib. J Eur Acad Dermatol Venereol. 2015; 29:1006-9. https://doi.org/10.1111/jdv.12526 PMid:24980899

34. Orooji A, Goerati S, Ulkila J, Leverkus M. Multiple highly and moderately differentiated squamous cell carcinomas of the skin during vismodegib treatment of inoperable basal cell carcinoma. Br J Dermatol. 2014; 171:431-3. https://doi.org/10.1111/bjd.12840 PMid:24446722

35. Zhu GA, Sundram U, Chang AL. Two different scenarios of squamous cell carcinoma within advanced basal cell carcinomas: cases illustrating the importance of serial biopsy during vismodegib usage. JAMA Dermatol. 2014; 150:970-3. https://doi.org/10.1001/jamadermatol.2014.583 PMid:24740281