On Typical Hesitant Fuzzy Languages and Automata

Valdigleis S. Costa
Universidade Federal do Vale do São Francisco
Colegiado de Ciência da Computação
Salgueiro-PE, Brazil
valdigleis.costa@univasf.edu.br

Benjamín C. Bedregal *

Regivan H. N. Santiago †
Universidade Federal do Rio Grande do Norte
Departamento de Informática e Matemática Aplicada
Natal-RN, Brazil
bedregal@dimap.ufrn.br
regivan@dimap.ufrn.br

Abstract. The idea of nondeterministic typical hesitant fuzzy automata is a generalization of the fuzzy automata presented by Costa and Bedregal. This paper, presents the sufficient and necessary conditions for a typical hesitant fuzzy language to be computed by nondeterministic typical hesitant fuzzy automata. Besides, the paper introduces a new class of Typical Hesitant Fuzzy Automata with crisp transitions, and we will show that this new class is equivalent to the original class introduced by Costa and Bedregal.

Keywords: Typical Hesitant Fuzzy Sets, Fuzzy Languages, Automata, Nondeterminism

*Thanks to CNPQ for the research funding granted through the project 311429/2020-3.
†Thanks to CNPQ for the research funding granted through the project 312053/2018-5.
1. Introduction

The fuzzy computation theory emerged as a model based on fuzzy sets [1] capable of extrapolating the Church’s thesis [2]. The machine models more studied by fuzzy computation theory are fuzzy Turing machines [2, 3] and the fuzzy finite automata [4]. Finite automata are a computational model that has finite memory limitation. This model is widely used for modeling applications in hardware and software [5], and it is also essential for building compilers [4, 6]. In recent years, several generalizations of the concept of finite automata have been presented, such as fuzzy automata [7, 8, 9, 10, 11], probabilistic automata [12, 13, 14], and quantum automata [15, 16, 17, 18, 19].

With the development of the various extensions for fuzzy sets, some generalizations for fuzzy automata have been presented, for example, interval-valued fuzzy automata [20, 21] and intuitionistic fuzzy automata [22]. Recently, Costa and Bedregal in [23] using the concepts of typical hesitant fuzzy set [24, 25], introduced the concept of Nondeterministic Typical Hesitant Fuzzy Automata and presented a subclass, called Deterministic Typical Hesitant Fuzzy Automata, which generalizes the notion of deterministic finite automata. They showed how it is possible to obtain a Deterministic Typical Hesitant Fuzzy Automata from a Nondeterministic Typical Hesitant Fuzzy Automata. However, the removal of the nondeterminism presented by Costa and Bedregal does not preserve the language.

Costa and Bedregal defined nondeterministic typical hesitant fuzzy automata as machines capable to compute typical hesitant fuzzy language [23]. However, it does not characterize a class for these languages. Thus an open question exists, every typical hesitant fuzzy language can be computed by a typical hesitant fuzzy automaton?

In this article, the theory of typical hesitant fuzzy automata will be strengthened, characterizing the languages computed by nondeterministic typical hesitant fuzzy automata. Moreover, we will show the nondeterminism does not increase the power of typical hesitant fuzzy automata. This work has the following division, first this introduction, then in Section 2, presents the mathematical basis for this work. Section 3, presents a characterization for the languages computed by typical hesitant fuzzy automata. Section 4, display a new class of typical hesitant fuzzy automata and some results.

2. Preliminaries

In this section, we present all the basic definitions and notations used throughout the text.

2.1. Languages and Finite Automata

As said in [4], an alphabet is any finite non-empty set Σ. The elements from Σ are called letters, and a word on Σ is any finite sequence of letters. The symbol λ denotes the empty word, i.e., the word without letters from Σ. The set Σ^* is a free monoid generated by Σ concerning the operation of concatenation [23]. The set $\Sigma^+ = \Sigma^* - \{\lambda\}$, and any $L \subseteq \Sigma^*$ is called language.

Definition 1. [4] A deterministic finite automaton (DFA) is a quintuple $A = (Q, \Sigma, \delta, q_0, F)$ where Q is finite non-empty set of states, $\delta : Q \times \Sigma \to Q$ is a the transition function, $q_0 \in Q$ is the initial

1This paper always assumes complete (N)DFA, meaning that the transition function is total.
state and $F \subseteq Q$ is the set of final states.

The transition function δ can extend into a function $\hat{\delta} : Q \times \Sigma^* \rightarrow Q$ by the following recursion:

\begin{align*}
\hat{\delta}(q, \lambda) &= q \tag{1} \\
\hat{\delta}(q, wa) &= \delta(\hat{\delta}(q, w), a) \tag{2}
\end{align*}

where $a \in \Sigma$ and $w \in \Sigma^*$.

Definition 2. The language computed by a DFA A is the set $L(A) = \{ w \in \Sigma^* | \hat{\delta}(q, w) \in F \}$.

As said in [26], if $w = a_1 \cdots a_n \in \Sigma^+$ and $w \in L(A)$ for some DFA A, then there exists a finite sequence of states q_1, \cdots, q_n such that $\delta(q_0, a_1) = q_1, \cdots, \delta(q_{n-1}, a_n) = q_n$ with $q_n \in F$. On the other hand, $\lambda \in L(A)$ if and only if $q_0 \in F$.

Definition 3. [19] A language L is regular, whenever L is finite or L is obtained from regular languages L_1 and L_2 by either finite union, concatenation, or Kleene closure.

Theorem 1. [19] A language L is regular if and only if a DFA compute it.

Remark 1. Notice that by the Chomsky’s hierarchy [11], as mentioned in proof of Theorem 2 in [12], there is only an enumerable set of regular languages.

Another well-known type of finite automata is the nondeterministic finite automaton, defined below.

Definition 4. [4] A nondeterministic finite automaton (NFA) is a quintuple $N = \langle Q, \Sigma, \delta_N, q_0, F \rangle$ where Q, Σ, q_0 and F are equal to Definition 1 and $\delta_N : Q \times \Sigma \rightarrow 2^Q$ is the nondeterministic transition function.

As discussed by Hopcroft et al. in [4], it is clear that every AFD is an AFN where the inequality $\#\delta(q, a) \leq 1$ is satisfied for every pair $(q, a) \in Q \times \Sigma$, where $\#$ denote the cardinality of sets. The function δ_N can be extended into a function $\hat{\delta}_N : Q \times \Sigma^* \rightarrow 2^Q$ by the following recursion:

\begin{align*}
\hat{\delta}_N(q, \lambda) &= q \tag{3} \\
\hat{\delta}_N(q, wa) &= \bigcup_{q \in \delta_N(q, w)} \{ \delta_N(q, a) \} \tag{4}
\end{align*}

for all $a \in \Sigma$ and $w \in \Sigma^*$.

Definition 5. The language computed by NFA A is the set $L(A) = \{ w \in \Sigma^* | \hat{\delta}(q, w) \cap F = \emptyset \}$.

According to [27], for any $n \in \mathbb{N}$, there are n-state NFAs recognizing languages which cannot be recognized by any DFA with less than 2^n states.

Theorem 2. [4] A language L is regular if and only if a NFA compute it.

\[\text{For more details about union, concatenation and Kleene closure see [4].}\]
2.2. THFE, THFL, and THFA

According to [24, 28], a HFS is defined in terms of a function which return sets of membership degrees for each element of their domain \(U \neq \emptyset \). In 2014, Bedregal et al. [25] introduced a particular case of HFS, called Typical Hesitant Fuzzy Set, or simply THFS, which considers some restrictions.

Definition 6. [25, Definition 8] Let \(\mathbb{H} \subseteq 2^{[0,1]} \) be the set of all finite non-empty subsets of the interval \([0,1]\), and let \(U \) be a non-empty set. A THFS on \(U \) is a function \(\psi : U \rightarrow \mathbb{H} \).

Remark 2. Here will be considered that \(\langle [0,1], \vee, \wedge, 0, 1 \rangle \) is a distributive lattice concerning the usual order \(\leq \) on real numbers.

Each \(X \in \mathbb{H} \) is called a Typical Hesitant Fuzzy Element (THFE). The set \(\mathbb{H}_1 = \{ X \in \mathbb{H} | \#X = 1 \} \) is called of degenerate elements set. Several operators on \(\mathbb{H} \) were proposed in [25, 28, 29, 30, 31, 32, 33]. In particular, Costa and Bedregal [23], have presented the inf-combination and sup-combination.

Definition 7. [23, Definition 3.1.] For \(X, Y \in \mathbb{H} \) the function \(\otimes : \mathbb{H} \times \mathbb{H} \rightarrow \mathbb{H} \) is computed by,

\[
X \otimes Y = \{ x \wedge y | x \in X, y \in Y \}
\]

is called inf-combination of \(X \) and \(Y \).

Definition 8. [23, Definition 3.2.] For \(X, Y \in \mathbb{H} \) the function \(\sqcup : \mathbb{H} \times \mathbb{H} \rightarrow \mathbb{H} \) is computed by,

\[
X \sqcup Y = \{ x \vee y | x \in X, y \in Y \}
\]

is called sup-combination of \(X \) and \(Y \).

The operations \(\wedge \) and \(\vee \) are, respectively, the operations of infimum and supremum on the distributive lattice \([0,1]\), for complete notions related to partial order and lattice theory, the reader can refer to [34]. According to [23], \(\mathbb{H} \) has the following properties:

\((H1) \) The structures \(\langle \mathbb{H}, \otimes, \{1\} \rangle \) and \(\langle \mathbb{H}, \sqcup, \{0\} \rangle \) are commutative and idempotent monoids.

\((H2) \) The element \(\{1\} \) is an annihilator of \(\sqcup \), and \(\{0\} \) is an annihilator of \(\otimes \).

\((H3) \) \(\otimes \) distribute over \(\sqcup \) and \(\sqcup \) distribute over \(\otimes \).

According to [23] since \(\langle \mathbb{H}, \sqcup, \{0\} \rangle \) is a monoid, the operation \(\sqcup \) is extended for the \(n \)-dimensional case.

Definition 9. [23] Given \(X_1, X_2, \ldots, X_n \in \mathbb{H} \),

\[
\bigcup_{i=1}^{n} X_i = \left(\bigcup_{i=1}^{n-1} X_i \right) \sqcup X_n
\]
Remark 3. Since \otimes and \sqcup are both commutative, associative, and idempotent, given any finite non-empty set $\kappa \subset \mathbb{H}$, the set of elements generated by the (sup) inf-combination on the set κ is also finite.

The ordering problem THFS and THFE have yet been studied in [31,32,35,36]. Now we propose a new relation on \mathbb{H} based in the sup-combination, and we will show that this order generalizes the usual order of real numbers.

Definition 10. Given $X, Y \in \mathbb{H}$, $X \sqsubseteq Y \iff X \sqcup Y = Y$

Proposition 1. \sqsubseteq is a partial order on \mathbb{H}.

Proof: Consider that $X, Y, Z \in \mathbb{H}$ so:

(i) we have that, $X \sqcup X (H1) X$. So \sqsubseteq is reflexive;

(ii) suppose that $X \sqsubseteq Y$ and $Y \sqsubseteq X$, then $X \supseteq Y \sqcup X (H1) X \sqcup Y \supseteq Y$ so \sqcup is anti-symmetric and

(iii) suppose that $X \sqsubseteq Y$ and $Y \sqsubseteq Z$, thus we have that, $X \sqcup Z \supseteq Y \sqcup X (H1) X \sqcup Y \supseteq Y \sqcup Z$ $\supseteq Z$ therefore, $X \sqsubseteq Z$, so \sqsubseteq is transitive.

Since that \sqsubseteq is reflexive, anti-symmetric and transitive, the relation \sqsubseteq is a partial order on \mathbb{H}. \square

Theorem 3. The order \sqsubseteq generalize the usual order \leq on $[0, 1]$.

Proof: Let \mathbb{H}_1 the set of degenerate elements of \mathbb{H}, for all $\{x\}, \{y\} \in \mathbb{H}_1$ we have that,

$\{x\} \sqsubseteq \{y\} \iff \{x\} \sqcup \{y\} = \{y\} \iff x \vee y = y \iff x \leq y$

and $x, y \in [0, 1]$, thus completing the proof. \square

Moreover, the following properties are easily verified.

(R1) If $X \sqsubseteq Y$, then $(X \sqcup Z) \sqsubseteq (Y \sqcup Z)$.

(R2) If $X \sqsubseteq Y$, then $(X \otimes Z) \sqsubseteq (Y \otimes Z)$.

(R3) $\{0\} \sqsubseteq X \sqsubseteq \{1\}$ for all $X \in \mathbb{H}$.

Proposition 2. For $\circ \in \{\otimes, \sqcup\}$, if $X \sqsubseteq Y$, then $X \sqsubseteq (X \circ Y)$.

Proof: Suppose that $X \sqsubseteq Y$ so by (R1) and (R2) we have that $(X \circ X) \sqsubseteq (X \circ Y)$ but by (H1), $X \circ X = X$, therefore, $X \sqsubseteq (X \circ Y)$. \square
Remark 4. Notice that for all \(X, Y \in \mathbb{H}, X \sqcup (X \sqcup Y) = X \sqcup Y \). Therefore, \(X \sqsubseteq (X \sqcup Y) \).

Theorem 4. Let \(\{X_i\}_{i \in I} \) be a finite family of elements of \(\mathbb{H} \), then for any \(X_j \), with \(j \in I \), \(X_j \sqsubseteq \bigcup_{i \in I} X_i \).

Proof: By remark 4, commutativity and associativity in \((H1)\).

Definition 11. Let \(\mathcal{U} \) be a nonempty set, \(f : \mathcal{U} \rightarrow \mathbb{H} \) and \(k \in \mathbb{H} \). Then we have the following sets:

(i) \(R_f = \{X \in \mathbb{H} \mid f(x) = X, x \in \mathcal{U}\} \).

(ii) \(S^k_f = \{x \in \mathcal{U} \mid k \sqsubseteq f(x)\} \).

Definition 12. A Typical Hesitant Fuzzy Language, or simply THFL, is any THFS \(f : \Sigma^* \rightarrow \mathbb{H} \). The set of all Typical Hesitant Fuzzy Languages is denoted by \(\mathbb{T} \).

Recently, Costa and Bedregal in [23] introduced a new generalization of fuzzy automata called Nondeterministic Typical Hesitant Fuzzy Automata.

Definition 13. [23] A Nondeterministic Typical Hesitant Fuzzy Automaton, or simply NTHFA, is a quintuple \(M = \langle Q, \Sigma, \psi, q_0, \mathcal{F} \rangle \) where \(Q \) is a finite non-empty set of states, \(\Sigma \) is an alphabet, \(\psi : Q \times \Sigma \times Q \rightarrow \mathbb{H} \) is a THFS, \(q_0 \) is initial state and \(\mathcal{F} : Q \rightarrow [0,1] \) is the THFS on \(Q \) of final states.

Definition 14. [23] For any NTHFA \(M \) the functions \(\psi \) is extended into a function \(\hat{\psi} : Q \times \Sigma^* \times Q \rightarrow \mathbb{H} \) using the recursion:

\[
\hat{\psi}(q, \lambda, q') = \begin{cases}
\{0\}, & \text{if } q \neq q' \\
\{1\}, & \text{else}
\end{cases}
\]

\[
\hat{\psi}(q, wa, q') = \bigcup_{q'' \in Q} \left(\hat{\psi}(q, w, q'') \otimes \psi(q'', a, q') \right)
\]

Definition 15. [23] Let \(M \) be a NTHF, then \(M \) computes the THFL \(f_M : \Sigma^* \rightarrow \mathbb{H} \) is defined by,

\[
f_M(w) = \bigcup_{q \in Q} \left(\hat{\psi}(q_0, w, q) \otimes \mathcal{F}(q) \right)
\]

Remark 5. By definition 15 it’s possible to deduce that, for all \(M, f_M(\lambda) = \mathcal{F}(q_0) \).
3. A Characterization of the Languages Computed by NTHFA

This paper will denote the set of all the THFL computed by NTHFA by T_R. Now consider the following definition.

Definition 16. Let Σ be an alphabet and let $f_1 : \Sigma^* \rightarrow H$ and $L_2 : \Sigma^* \rightarrow H$ two be THFL such that $f_1, f_2 \in T_R$, the H-union of f_1 and f_2, denoted by $f_1 \uplus f_2$, is given by,

$$f_1 \uplus f_2(w) = f_1(w) \sqcup f_2(w) \tag{11}$$

for all $w \in \Sigma^*$.

Theorem 5. If $f_1, f_2 \in T_R$, then $f_1 \uplus f_2 \in T_R$.

Proof:
Assume that $f : \Sigma^* \rightarrow H$ and $f_2 : \Sigma^* \rightarrow H$ belongs to T_R, so there exists $M_1 = \langle S, \Sigma, \psi_1, s_0, F_1 \rangle$ and $M_2 = \langle P, \Sigma, \psi_2, p_0, F_2 \rangle$ such that $f_1 = f_{M_1}$ and $f_2 = f_{M_2}$. Moreover, without loss of generality, assume that $S \cap P = \emptyset$, now define a new NTHFA $M = \langle Q, \Sigma, \psi, q_0, F \rangle$ where,

(a) $Q = S \cup P \cup \{q_0\}$ with $q_0 \notin (S \cup P)$.

(b) For all $q \in Q$ we have,

$$F(q) = \begin{cases}
F_1(q), & \text{if } q \in S \\
F_2(q), & \text{if } q \in P \\
F_1(s_0) \sqcup F_2(p_0), & \text{if } q = q_0
\end{cases} \tag{12}$$

(c) For all $q, q' \in Q$ and $a \in \Sigma$ we have,

$$\psi(q, a, q') = \begin{cases}
\psi_1(q, a, q'), & \text{if } q, q' \in S \\
\psi_1(s_0, a, q'), & \text{if } q = q_0, q' \in S \\
\psi_2(q, a, q'), & \text{if } q, q' \in P \\
\psi_2(p_0, a, q'), & \text{if } q = p_0, q' \in P \\
\{0\}, & \text{otherwise}
\end{cases} \tag{13}$$

it is evident that M is NTHFA. Now notice that,

$$f_M(\lambda) \overset{\text{Rem. } 5}{=} F(q_0)$$

$$\overset{\text{Eq. } 12}{=} F_1(s_0) \sqcup F_2(p_0)$$

$$\overset{\text{Rem. } 5}{=} F_{M_1}(\lambda) \sqcup F_{M_2}(\lambda)$$

$$= f_{M_1} \uplus f_{M_2}$$

\[\text{Eq. } 14\]
and for all $w \in \Sigma^+$ with $w = a_1a_2 \cdots a_n$, by $(H1)$ we have that \mathbb{H} is a monoid thus,

$$
\begin{align*}
\mathcal{L}_M(a_1a_2 \cdots a_n) &= \bigcup_{q_f \in Q} \left(\bigcup_{q_f \in Q - \{q_0\}} \left(\hat{\psi}(q_0, a_1a_2 \cdots a_n, q_f) \otimes \mathcal{F}(q_f) \right) \right) \\
&\quad \bigcup \left(\bigcup_{q_f \in Q - \{q_0\}} \left(\hat{\psi}(q_0, a_1a_2 \cdots a_n, q_f) \otimes \mathcal{F}(q_f) \right), (\hat{\psi}(q_0, a_1a_2 \cdots a_n, q_0) \otimes \mathcal{F}(q_0)) \right) \\
&= \left\{ 0 \right\} \otimes \mathcal{F}(q_0).
\end{align*}
$$

(15)

But by equations (9) and (13), and also by $(H2)$ it is clear that,

$$
\hat{\psi}(q_0, a_1a_2 \cdots a_n, q_0) = \{0\}.
$$

Therefore,

$$
\begin{align*}
\mathcal{L}_M(a_1a_2 \cdots a_n) &= \bigcup \left(\bigcup_{q_f \in Q - \{q_0\}} \left(\hat{\psi}(q_0, a_1a_2 \cdots a_n, q_f) \otimes \mathcal{F}(q_f) \right) \right) \\
&= \left\{ 0 \right\} \otimes \mathcal{F}(q_0).
\end{align*}
$$

(16)

Hence, by equations (14) and (16), $f_M = f_{M_1} \uplus f_{M_2}$, completing the proof.

The result of the above theorem shows that the \mathbb{H}-union is a closure for the set \mathcal{T}_R, and this result is generalized as follows.

Corollary 1. Let $\{f_i\}_{i \in I}$ be a finite family of THFL such that $f_i \in \mathcal{T}_R$ for all $i \in I$, then there exists a NTHFA M such that $f_M = \bigcup_{i \in I} f_i$.

Proof:

Using induction on I and the theorem 5.

The next result presents a characterization of the languages computed by NTHFA, i.e., the next result establishes the sufficient and necessary conditions for a THFL f belongs to \mathcal{T}_R.

Theorem 6. Let $f : \Sigma^* \rightarrow \mathbb{H}$ be a THFL. Then the following statements are equivalent.

(i) $f \in \mathcal{T}_R$.

(ii) R_f is finite and for each $k \in R_f$ the set S^k_f is a regular language.
Proof:

(i) ⇒ (ii) Suppose that \(f : \Sigma^* \rightarrow \mathbb{H} \) belongs to \(\mathcal{T}_R \), thus there exists a NTHFA \(M = (Q, \Sigma, \psi, q_0, F) \) such that \(f = f_M \), i.e. for all \(w \in \Sigma^* \) we have,

\[
f(w) = \bigcup_{q_n \in Q} \left(\hat{\psi}(q_0, w, q_n) \otimes F(q_n) \right).
\]

Nevertheless, by definition of \(\mathcal{M} \) we have that, \(Q \times \Sigma \times Q \) is finite. Therefore, \(R_{\psi} \) and \(R_{\mathcal{F}} \) are finite sets. But by Remark 3 we have that \(R_{\psi} \) is finite. Hence, the set \(R_f \) is finite. Now for each \(k \in R_f \) we define an NFA \(A_k = (Q, \Sigma, q_0, \delta_k, F_k) \) where:

\[
\delta_k(q, a) = p \iff k \subseteq \psi(q, a, p)
\]

and

\[
q \in F_k \iff k \subseteq \mathcal{F}(q).
\]

with \(q, p \in Q \) and \(a \in \Sigma \). Now we have that for any \(w \in \Sigma^* \),

\[
w \in L(A_k) \iff \hat{\delta}_k(q_0, w) \in F_k
\]

\[
\iff \exists q_1, \ldots, q_{n-1}, q_n \in Q, \text{ such that } q_n \in F_k \text{ and } \\
\delta_k(q_0, a_1) = q_1, \ldots, \delta_k(q_{n-1}, a_n) = q_n
\]

Eq. (17), (18)

\[
\iff \exists q_1, \ldots, q_{n-1}, q_n \in Q, \text{ such that } k \subseteq \mathcal{F}(q_n) \text{ and } \\
k \subseteq \psi(q_0, a_1, q_1), \ldots, k \subseteq \psi(q_{n-1}, a_n, q_n)
\]

\[
\iff \exists q_n \in Q, \text{ such that } k \subseteq \mathcal{F}(q_n) \text{ and } k \subseteq \hat{\psi}(q_0, w, q_n)
\]

(17)

\[
\iff \exists q_n \in Q, \text{ such that } k \subseteq (\mathcal{F}(q_n) \otimes \hat{\psi}(q_0, w, q_n))
\]

(18)

\[
\iff k \subseteq \bigcup_{q_n \in Q} \left(\hat{\psi}(q_0, w, q_n) \otimes \mathcal{F}(q_n) \right)
\]

\[
\iff k \subseteq f(w)
\]

\[
w \in S_f^k
\]

Hence, \(L(A_k) = S_f^k \). Since \(A_k \) is a NFA, by Theorem 2 we have that \(S_f^k \) is a regular language.

(ii) ⇒ (i) Assume that \(R_f = \{k_1, \ldots, k_n\} \) for some \(n \in \mathbb{Z}_+^* \), and that for each \(k \in R_f \) the set \(S_f^k \) is a regular language. Hence, by Theorem 1 there exists a finite family of DFA \(\{A_k\}_{k \in R_f} \), where \(A_k = (Q_k, \Sigma, \delta_k, q_0^k, F_k) \) such that \(L(A_k) = S_f^k \). Now for each \(k \in R_f \) define an NTHFA \(M_k = (Q_k, \Sigma, \psi_k, q_0^k, F_k) \) such that for each \(q, q' \in Q_k \) and \(a \in \Sigma \):

\[
\psi_k(q, a, q') = \begin{cases}
1, & \text{if } \delta_k(q, a) = q' \\
0, & \text{else}
\end{cases}
\]

and

\[
\mathcal{F}_k(q) = \begin{cases}
k, & \text{if } q \in F_k \\
0, & \text{else}
\end{cases}
\]
By the construction above we have that for all $w \in \Sigma^*$,

$$w \in L(A_k) \Rightarrow f_{M_k}(w) = k$$

and

$$w \notin L(A_k) \Rightarrow f_{M_k}(w) = \{0\}$$

so by definition $f_{M_k} \in \mathbb{T}_R$. Since R_f is finite there exists a finite family $\{f_{M_k}\}_{k \in R_f}$ and, by corollary 1 there exists an NHTFA M such that,

$$f_M = \bigcup_{k \in R_f} f_{M_k}.$$

Moreover, it is clear that $f_M = f$, therefore, $f \in \mathbb{T}_R$. \hfill \Box

But by Theorem above, it is possible to conclude the following result.

Corollary 2. There exists THFL $f : \Sigma^* \rightarrow \mathbb{H}$ such that $f \notin \mathbb{T}_R$.

Proof:

The THFL $f : \Sigma^* \rightarrow \mathbb{H}$, defined by:

$$f(w) = \bigcup_{i=0}^{\left\lfloor \frac{|w|}{2^i} \right\rfloor} \left\{ \frac{1}{2^i + 1} \right\}$$

is such that R_f is infinite. Hence, by Theorem 6 we have that $f \notin \mathbb{T}_R$. \hfill \Box

The characterization present by Theorem 6 and the Corollary 2 induce the inclusion described in figure 1.

![Figure 1. Inclusion between \mathbb{T} and \mathbb{T}_R.](image)
Theorem 7. The set \mathbb{T}_R is nondenumerable.

Proof: For each $x \in [0, 1]$ define a THFA $M_x = \langle \{q_0^x, q_1^x\}, \Sigma, \psi, q_0^x, F_x \rangle$ such that for all $q, q' \in \{q_0^x, q_1^x\}$ and $a \in \Sigma$ we have:

\[
\psi(q, a, q') = \{x\}
\]

and

\[
F_x(q) = \{x\}
\]

now for each $w \in \Sigma^*$ it is clear that $f_{M_x}(w) = \{x\}$. Now define the set $\Theta = \{f_{M_x} \mid x \in [0, 1]\}$, clearly $\Theta \subset \mathbb{T}_R$, moreover, there exists a bijection from Θ into $[0, 1]$, so Θ is nondenumerable. Therefore, \mathbb{T}_R is nondenumerable.

4. Crisp Typical Hesitant Fuzzy Automata

In this section, the paper is showing that the existence of a THFS of transitions in the definition of NTHFA is not essential to compute a THFL. For this, we will introduce below a new class of typical hesitant fuzzy automata.

Definition 17. A Crisp Nondeterministic Typical Hesitant Fuzzy Automaton, or simply CNTHFA, is a quintuple \(N = \langle Q, \Sigma, \delta_N, q_0, F \rangle \), where \(Q, \Sigma, q_0, F \) is equal to definition 13 and \(\delta_N : Q \times \Sigma \rightarrow 2^Q \) is equal to definition 4.

Definition 18. A CNTHFA \(M \) computes the THFL \(f_M : \Sigma^* \rightarrow \mathbb{H} \) define by,

\[
f_M(w) = \bigsqcup_{q \in \delta_N(q_0, w)} F(q) \quad (21)
\]

First, the research show that any THFL that an CNTHFA computes, also is computed by a NTHFA.

Theorem 8. Let \(N \) be an CNTHFA, then there exists an NTHFA \(M \) such that \(f_N = f_M \).

Proof: Given a CNTHFA \(N = \langle Q, \Sigma, \delta_N, q_0, F \rangle \), define a new NTHFA \(M = \langle Q, \Sigma, \psi, q_0, F \rangle \) where:

\[
\psi(q, a, q') = \begin{cases}
\{1\}, & \text{if } q' \in \delta_N(q, a) \\
\{0\}, & \text{else}
\end{cases} \quad (22)
\]

for all $q, q' \in Q$ and $a \in \Sigma$. Now For any $w \in \Sigma^*$ it is clear that $f_N(w) = f_M(w)$. Hence, $f_N = f_M$.

On the other hand, the computational power of NTHFA is equivalent to the power of CNTHFA.
Theorem 9. Let \mathcal{M} be an NTHFA, then there exist a CNTHFA \mathcal{N} such that \mathcal{N} has one more state than \mathcal{M} and $f_{\mathcal{M}} = f_{\mathcal{N}}$.

Proof:
Without loss of generality, by the proof of item (ii) in Theorem 6 assume that $\mathcal{M} = \langle Q, \Sigma, \psi, q_0, F \rangle$ is a NTHFA with the restriction $\psi(q, a, q') = \{1\}$ or $\psi(q, a, q') = \{0\}$ for all $q, q' \in Q$ and $a \in \Sigma$. Now define the following CNTHFA $\mathcal{N} = \langle Q \cup \{q_\infty\}, \Sigma, \delta_\mathcal{N}, q_0, F_\mathcal{N} \rangle$ where $q_\infty \notin Q$, therefore, \mathcal{N} has one more state than \mathcal{M}, moreover, $\delta_\mathcal{N}$ is defined by the rules:

(r1) If $\psi(q, a, q') = \{1\}$, then $q' \in \delta_\mathcal{N}(q, a)$ for any $q, q' \in Q$ and $a \in \Sigma$.

(r2) If $\psi(q, a, q') = \{0\}$, then $q_\infty \in \delta_\mathcal{N}(q, a)$ for any $q, q' \in Q$ and $a \in \Sigma$.

(r3) $\delta_\mathcal{N}(q_\infty, a) = \{q_\infty\}$ for all $a \in \Sigma$.

Finally define $F_\mathcal{N}$ as being:

$$F_\mathcal{N}(q) = \begin{cases} F(q), & \text{if } q \in Q \\ \{0\}, & \text{else} \end{cases}$$

(23)

By this construction, it is easy to see that $f_{\mathcal{M}}(w) = f_{\mathcal{N}}(w)$ for all $w \in \Sigma^*$, completing the proof. □

The above theorem shows that CNTHFA needs an extra state to compute the same language as an NTHFA. These results together present a new way to characterize the set \mathbb{T}_R.

Corollary 3. Let $f : \Sigma^* \to \mathbb{H}$ be a THFL. We have that $f \in \mathbb{T}_R$ if and only if there exists CNTHFA \mathcal{N} such that $f = f_{\mathcal{N}}$.

Proof:
Straightforward by theorems 8 and 9. □

Definition 19. A Crisp Deterministic Typical Hesitant Fuzzy Automaton, or simply CDTHFA, is a quintuple $D = \langle Q, \Sigma, \delta, q_0, F \rangle$, where Q, Σ, q_0, F is equal to definition 13 and $\delta : Q \times \Sigma \to Q$ is equal to definition 11. Let D be a CDTHFA, the THFL computed by D is exactly the THFL $f_D : \Sigma^* \to \mathbb{H}$ define as:

$$f_D(w) = F(\hat{\delta}(q_0, w))$$

(24)

Theorem 10. For all CDTHFA D there exists a CNTHFA \mathcal{N} such that $f_D = f_{\mathcal{N}}$.

Proof:
Is obvious, since CDTHFA can be seen as a special instance of CNTHFA with $\#\delta(q, a) \leq 1$ for all $(q, a) \in Q \times \Sigma$. □

Theorem 11. if $f \in \mathbb{T}_R$, then there exists a CDTHFA D such that $f = f_D$.

Proof: Suppose that $f \in \mathbb{T}_R$, so there exists a CNTHFA $N = \langle Q, \Sigma, \delta_N, q_0, \mathcal{F} \rangle$ such that $f = f_N$, now it is sufficient to construct the CDTHFA $D = \langle 2^Q, \Sigma, \delta, \{q_0\}, \mathcal{F}_D \rangle$ where for all $(X, a) \in 2^Q \times \Sigma$ we have that:

$$\delta(X, a) = \bigcup_{q \in X} \delta_N(q, a)$$ \hspace{1cm} (25)

and

$$\mathcal{F}_D(X) = \begin{cases} \bigcup_{q \in X} \mathcal{F}(q), & \text{if } X \neq \emptyset \\ \{\emptyset\}, & \text{else} \end{cases}$$ \hspace{1cm} (26)

moreover, it is not difficult to verify that $\hat{\delta}(\{q_0\}, w) = \hat{\delta}_N(q_0, w)$ for all $w \in \Sigma^*$. Hence, we have that,

$$f_D(w) = \mathcal{F}_D(\hat{\delta}(\{q_0\}, w))$$

$$= \bigcup_{q \in \delta(\{q_0\}, w)} \mathcal{F}(q)$$

$$= \bigcup_{q \in \delta_N(q_0, w)} \mathcal{F}(q)$$

$$= f_N(w)$$

$$= f(w)$$

completing the proof. \hfill \Box

The Theorem 11 shows that nondeterminism is not essential to compute THFL. Moreover, this lemma said that questions about \mathbb{T}_R elements could be seen as questions about CDTHFA.

Definition 20. Let $f_1 : \Sigma^* \rightarrow \mathbb{H}$ and $f_2 : \Sigma^* \rightarrow \mathbb{H}$ two be THFL the \mathbb{H}-intersection of f_1 and f_2, denoted by $f_1 \cap f_2$, is the THFL define by:

$$f_1 \cap f_2(w) = f_1(w) \otimes f_2(w)$$ \hspace{1cm} (27)

Theorem 12. If $f_1, f_2 \in \mathbb{T}_R$ on the same alphabet Σ, then $f_1 \cap f_2 \in \mathbb{T}_R$.

Proof: Suppose that $f_1, f_2 \in \mathbb{T}_R$ so by Theorem 11 there exists two CDTHFAs $D_1 = \langle Q_1, \Sigma, \delta_1, q_0, \mathcal{F}_1 \rangle$ and $D_2 = \langle Q_2, \Sigma, \delta_2, p_0, \mathcal{F}_2 \rangle$ such that $f_1 = f_{D_1}$ and $f_2 = f_{D_2}$. Now without loss of generality assume that $Q_1 \cap Q_2 = \emptyset$, then define $D = \langle Q_1 \times Q_2, \Sigma, \delta, (q_0, p_0), \mathcal{F} \rangle$ where:

$$\delta((q, p), a) = (\delta_1(q, a), \delta_2(p, a))$$ \hspace{1cm} (28)

with $(q, p) \in Q_1 \times Q_2, a \in \Sigma$ and

$$\mathcal{F}((q, p)) = \mathcal{F}_1(q) \otimes \mathcal{F}_2(p)$$ \hspace{1cm} (29)
it is easy to see that D is a CDTHFA and that for all $(q, p) \in Q_1 \times Q_2$ and $w \in \Sigma^*$:
\[
\hat{\delta}((q, p), w) = (\hat{\delta}_1(q, w), \hat{\delta}_2(p, w))
\]
(30)
hence for all $w \in \Sigma^*$,
\[
f_D(w) = F(\hat{\delta}((q_0, p_0), w))
\]
\[
\overset{Eq. (30)}{=} F((\hat{\delta}_1(q_0, w), \hat{\delta}_2(p_0, w)))
\]
\[
\overset{Eq. (29)}{=} F_1(\hat{\delta}_1(q_0, w)) \otimes F_1(\hat{\delta}_2(p_0, w))
\]
\[
= f_1(w) \otimes f_2(w)
\]
\[
= f_1 \sqcup f_2(w)
\]
since D is a CDTHFA, by Theorems 10 and 11 $f_1 \sqcup f_2 \in \mathcal{T}_R$.

The above theorem result shows that the \mathbb{H}-intersection is a closure for the set \mathcal{T}_R and this result can be generalized as follows.

Corollary 4. Let \(\{f_i\}_{i \in I} \) be a finite family of THFL such that $f_i \in \mathcal{T}_R$ for all $i \in I$, then there exists a CDTHFA D such that $f_D = \bigcap_{i \in I} f_i$.

Proof:
Using induction on I and the theorem 12.

\[\square \]

5. Conclusions

This paper presents a characterization for the languages computed by nondeterministic typical hesitant fuzzy automata, i.e., here we prove the sufficient and necessary conditions for that a typical nondeterministic hesitant fuzzy automaton compute a typical hesitant fuzzy language. Besides, we show that typical hesitant fuzzy transitions and also that nondeterminism are not attributes necessary to compute typical hesitant fuzzy languages. This result corrects the previous result presented in [23], which presented the nondeterministic typical fuzzy automata as not equivalent to the deterministic counterpart. This paper also presents the initial results about closure operators for the class of typical hesitant fuzzy languages computed by typical nondeterministic hesitant fuzzy automata. Here we prove that the \mathbb{H}-union and the \mathbb{H}-intersection are both closed for this class of languages. It is intended in future work to study the process of approximating typical hesitant fuzzy automata based on the idea of total admissible orders [36] and also based on partial order \sqsubseteq introduced in this paper.

References

[1] Zadeh LA. Fuzzy sets. Information and Control, 1965. 8(3):338–353.
[2] Farias ADS, Lopes LRA, Bedregal B, Santiago RHN. Closure properties for fuzzy recursively enumerable languages and fuzzy recursive languages. Journal of Intelligent & Fuzzy Systems, 2016. 31(3):1795–1806.

[3] Bedregal BC, Figueira S. On the computing power of fuzzy Turing machines. Fuzzy Sets and Systems, 2008. 159(9):1072–1083.

[4] Hopcroft JE, Motwani R, Ullman JD. Automata theory, languages, and computation. International Edition, 2006. 24:19.

[5] Farias ADS, Costa VS, Santiago RH, Bedregal B. A residuated function in a class of Mealy type L-valued finite automaton. In: Annual Conference of the North American Fuzzy Information Processing Society - NAFIPS. 2017 pp. 1–6. doi:10.1109/NAFIPS.2016.7851592.

[6] Aho AV. Compilers: principles, techniques and tools (for Anna University), 2/e. Pearson Education India, 2003.

[7] Stanimirović S, Ćirić M, Ignjatović J. Determinization of fuzzy automata by factorizations of fuzzy states and right invariant fuzzy quasi-orders. Information Sciences, 2018. 469:79–100.

[8] Wei X, Li Y. Fuzzy alternating automata over distributive lattices. Information Sciences, 2018. 425:34–47.

[9] Mordeson JN, Malik DS. Fuzzy automata and languages: theory and applications. CRC Press, 2002.

[10] Costa V, Bedregal B. Fuzzy linear automata and some equivalences. Tendências em Matemática Aplicada e Computacional, 2018. 19(1):127–145.

[11] Rabin MO. Probabilistic automata. Information and Control, 1963. 6(3):230–245.

[12] Paz A. Introduction to probabilistic automata. Academic Press, 2014.

[13] Abney S, McAllester D, Pereira F. Relating probabilistic grammars and automata. In: Proceedings of the 37th Annual Meeting of the Association for Computational Linguistics. 1999 pp. 542–549.

[14] Ying M. Automata theory based on quantum logic II. International Journal of Theoretical Physics, 2000. 39(11):2545–2557.

[15] Moore C, Crutchfield JP. Quantum automata and quantum grammars. Theoretical Computer Science, 2000. 237(1-2):275–306.

[16] Qiu D. Automata theory based on quantum logic: some characterizations. Information and Computation, 2004. 190(2):179–195.

[17] Qiu D. Automata theory based on complete residuated lattice-valued logic. Science in China Series: Information Sciences, 2001. 44(6):419–429.

[18] Hirvensalo M. Quantum automata theory - A review. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 2011. 7020 LNCS:146–167. doi:10.1007/978-3-642-24897-9_7.

[19] Ravi K, Alka C. Interval-valued fuzzy regular language. Journal of Applied Mathematics & Informatics, 2010. 28(3-4):639–649.

[20] Ravi K, Choubey A. Myhill-Nerode Theorem for Interval-valued Fuzzy Regular Lanugage. In: AIP Conference Proceedings, volume 1324 (1). American Institute of Physics, Chandigarh, 2010 pp. 30–33.
[22] Choubey A, Ravi K. Intuitionistic fuzzy automata and intuitionistic fuzzy regular expressions. *J. Appl. Math. & Informatics*, 2009. 27(1-2):409–417.

[23] Costa VS, Bedregal B. On typical hesitant fuzzy automata. *Soft Computing*, 2020. 24(12):8725–8736.

[24] Torra V. Hesitant fuzzy sets. *International Journal of Intelligent Systems*, 2010. 25:529–539.

[25] Bedregal B, Reiser R, Businche H, Lopez-Molina C, Torra V. Aggregation functions for typical hesitant fuzzy elements and the action of automorphisms. *Information Sciences*, 2014. 255:82–99.

[26] Levetl WJ. An introduction to the theory of formal languages and automata. John Benjamins Publishing, 2008.

[27] Eilenberg S. Automata, languages, and machines. Academic press, 1974.

[28] Matzenauer ML, Reiser R, Santos H, Bedregal B. Typical hesitant fuzzy sets: Evaluating strategies in GDM applying consensus measures. In: 2019 Conference of the International Fuzzy Systems Association and the European Society for Fuzzy Logic and Technology (EUSFLAT 2019). Atlantis Press. ISBN 978-94-6252-770-6, 2019/08 pp. 438–445.

[29] Xia M, Xu Z. Hesitant fuzzy information aggregation in decision making. *International Journal of Approximate Reasoning*, 2011. 52(3):395–407.

[30] Rodríguez RM, Bedregal B, Businche H, Dong Y, Farhadinia B, Kahraman C, Martínez L, Torra V, Xu Y, Xu Z, et al. A position and perspective analysis of hesitant fuzzy sets on information fusion in decision making. Towards high quality progress. *Information Fusion*, 2016. 29:89–97.

[31] Garmendia L, Campo RG, Recasens J. Partial orderings for hesitant fuzzy sets. *International Journal of Approximate Reasoning*, 2017. 84:159–167.

[32] Santos H, Bedregal B, Santiago R, Businche H, Barrenechea E. Construction of typical hesitant triangular norms regarding Xu-Xia-partial order. In: 2015 Conference of the International Fuzzy Systems Association and the European Society for Fuzzy Logic and Technology (IFSA-EUSFLAT-15). Atlantis Press, 2015 pp. 953–959.

[33] Bedregal B, Santiago RH, Businche H, Paternain D, Reiser R. Typical hesitant fuzzy negations. *International Journal of Intelligent Systems*, 2014. 29(6):525–543.

[34] Grätzer G. Lattice theory: foundation. Springer Science & Business Media, 2011.

[35] Xu Z, Xia M. Distance and similarity measures for hesitant fuzzy sets. *Information Sciences*, 2011. 181(11):2128–2138.

[36] Matzenauer M, Reiser R, Santos H, Bedregal B, Businche H. Strategies on admissible total orders over typical hesitant fuzzy implications applied to decision making problems. *Int. J. Intell. Sys. (In Press)*, 2021. doi:10.1002/int.22374.

[37] Huang L. Advanced dynamic programming in semiring and hypergraph frameworks. In: Coling 2008: Advanced Dynamic Programming in Computational Linguistics: Theory, Algorithms and Applications-Tutorial notes. 2008 pp. 1–18.

[38] Zeng W, Li D, Yin Q. Distance and similarity measures between hesitant fuzzy sets and their application in pattern recognition. *Pattern Recognition Letters*, 2016. 84:267–271. doi:10.1016/j.patrec.2016.11.001. URL http://dx.doi.org/10.1016/j.patrec.2016.11.001.

[39] Hamers L, et al. Similarity measures in scientometric research: The Jaccard index versus Salton’s cosine formula. *Information Processing and Management*, 1989. 25(3):315–18.
[40] Rabin MO, Scott D. Finite automata and their decision problems. *IBM Journal of Research and Development*, 1959. 3(2):114–125.

[41] Moore EF. Gedanken-experiments on sequential machines. *Automata studies*, 1956. 34:129–153.

[42] Mealy GH. A method for synthesizing sequential circuits. *The Bell System Technical Journal*, 1955. 34(5):1045–1079.

[43] McCulloch WS, Pitts W. A logical calculus of the ideas immanent in nervous activity. *The Bulletin of Mathematical Biophysics*, 1943. 5(4):115–133.

[44] Kleene SC. Representation of events in nerve nets and finite automata. Technical report, RAND PROJECT AIR FORCE SANTA MONICA CA, 1951.

[45] Zhou NL, Hu BQ. Axiomatic approaches to rough approximation operators on complete completely distributive lattices. *Information Sciences*, 2016. 348:227–242.