Flank wears Simulation by using back propagation neural network when cutting hardened H-13 steel in CNC End Milling

Muataz Hazza F. Al Hazza¹, Erry Y.T. Adesta, & Muhammad Riza
Faculty of Engineering – International Islamic University Malaysia- Malaysia
muataz@iium.edu.my

Abstract. High speed milling has many advantages such as higher removal rate and high productivity. However, higher cutting speed increase the flank wear rate and thus reducing the cutting tool life. Therefore estimating and predicting the flank wear length in early stages reduces the risk of unaccepted tooling cost. This research presents a neural network model for predicting and simulating the flank wear in the CNC end milling process. A set of sparse experimental data for finish end milling on AISI H13 at hardness of 48 HRC have been conducted to measure the flank wear length. Then the measured data have been used to train the developed neural network model. Artificial neural network (ANN) was applied to predict the flank wear length. The neural network contains twenty hidden layer with feed forward back propagation hierarchical. The neural network has been designed with MATLAB Neural Network Toolbox. The results show a high correlation between the predicted and the observed flank wear which indicates the validity of the models.

1.Introduction
The upper limit of cutting speeds in machining have been increased during the last eighty years from 15m/min in the year 1930 to over 1000m/min after 1990 [1]. The term high speed may not be the same for different materials, as high speed for one material may still be a low speed for another (for example, the high speed for titanium is a low speed for aluminium). Allowed level of speeds has been always restrained by the limitation in flank wear progress, cutting temperature and surface quality. Figure 1 shows the regions of cutting speed for milling a different work pieces and its relation to the conventional and high speed cutting [1, 2].

High speed end milling of hard alloy steels have many advantages such as reduction of machining time, higher metal removal rates, lower machining costs and better surface roughness [3]. However, high speed machining increases the temperature in both work material and cutting tool substantially due to high pressure on the cutting zone [4]. Increasing the cutting temperature has a bad effect on both the cutting tool sand the work piece. In contrast increasing the cutting temperature will reduce the cutting forces [5,6,7]. Thus, predicting and modeling the responses of the machining process such as the temperature, cutting forces, surface roughness and wear progress before the machining process in certain cutting levels become an important issue.

¹ To whom any correspondence should be addressed.
Dolinsek and Kopac [1] claimed that the characteristic wear of cutting tools is caused by the fact that the cutting speed is no longer the main influential factor on wear, but more likely wear is the consequence of the high-speed of the feed rate.

Many researchers worked in developing different models by using the Neural Network (NN) in terms of cutting parameters. Some of the researchers used the NN in predicting the cutting forces [8], flank wear [9], energy [10], temperature [3], others used the ANN to predict the surface roughness [11].

Many researchers [12,13,14,15] used the neural network to predict the wear rate. Other researchers [9, 16] used two methods such as the neural network and the regression analysis method and then compare the results to find the best model.

Flanks wear length usually used as a reference for estimating the cutting tool life. Therefore, estimating and predicting the flank wear progress early is an important and crucial matter. Adesta et al. [4] classified the methods for estimating the flank wear progress into two main types; direct and indirect methods.

Direct methods based on monitoring and measuring the flank wear length during the cutting time [17] or by estimating the flank wear length mathematically [18, 19, 20].

However, flank wear can be estimated by monitoring the change of other machining parameters such as surface roughness [21], cutting force [22], temperature [23] and vibrations [24], which reflect the flank wear change. Other methods used for measuring the flank wear length such as the acoustic emission method [25].

Milling are considered to be too complex to be modeled accurately by using analytical or even numeric means due to involvement of various control parameters [16].

In this research, new model has been developed to predict the flank wear length in terms of cutting speed, feed rate and depth of cut in high speed end milling process.

2. Experimental work
The machining has been conducted using a vertical milling center type MAZAK machine (Model Nexus 410A-II). The machining was under high cutting speed from 150 up to 250 m/ min, low feed rate 0.05-0.15 mm/ rev, low depth of cut 0.1-0.2 mm and tool diameter was 20 mm. The experiments in this research were performed on AISI H13 at hardness of 48 HRC as work material. Hisomet II tool maker microscope has been used for monitoring and measuring the flank wear length during
machining. In the experiment, 20 samples of data set concerned with the end milling process have been collected based on five-level of central composite Design (CCD) as shown in Table 1.

No of run	Cutting Speed m/min	Feed Rate mm/rev	Depth of Cut mm	No of run	Cutting Speed m/min	Feed Rate mm/rev	Depth of Cut mm
1	134.2	0.1	0.10	11	200	0.10	0.15
2	150	0.05	0.10	12	200	0.10	0.15
3	150	0.05	0.20	13	200	0.10	0.15
4	150	0.15	0.10	14	200	0.10	0.22
5	150	0.15	0.20	15	200	0.17	0.15
6	200	0.03	0.15	16	250	0.05	0.10
7	200	0.10	0.08	17	250	0.05	0.20
8	200	0.10	0.15	18	250	0.15	0.10
9	200	0.10	0.15	19	250	0.15	0.20
10	200	0.10	0.15	20	265.8	0.10	0.15

The research methodology is based on two main parts: experimental work and neural network application. The detailed research methodology illustrated in Figure 2.
3. ANN application

These samples used to train the neural network and to adjust the weights and the biases of each unit in order to reduce the error between the desired output and the actual output. The NFTOOL box in the MATLAB 2009 has been used. The back propagation algorithm applied to determine the layer's weights. Table 2 concluded the architecture, learning system, specifications of the neural network model used in the development of the new model.

Table 2. Modelling by using neural network

Tool	MATLAB 2009
Tool box	Nftool
Architecture	Feed forward
Learning system	Supervised learning
Algorithm	Back propagation Levenberg-Marquardt algorithm (LM)
Activation Function	Sigmoid (logistic function)
Number of layers, Data ratio	3 layers (input, hidden and output) 70:15:15
Number of hidden layers	20

Then the MATLAB-M file is generated from the software as in Figure 3 and the algorithm flow chart is as in Figure 4.

```matlab
function net = create_fit_net (inputs,targets)  
%CREATE_FIT_NET Creates and trains a fitting neural network.
% NET = CREATE_FIT_NET(INPUTS,TARGETS) takes these arguments:
%  INPUTS - RxQ matrix of Q R-element input samples
%  TARGETS - SxQ matrix of Q S-element associated target samples
% arranged as columns, and returns these results:
%  NET - The trained neural network
% For example, to solve the Simple Fit dataset problem with this function:
% load simplefit_dataset
% net = create_fit_net(simplefitInputs,simplefitTargets);
% simplefitOutputs = sim(net,simplefitInputs);
% To reproduce the results you obtained in NFTOOL:
% net = create_fit_net(x',y');
% Create Network
numHiddenNeurons = 20;  % Adjust as desired
net = newfit(inputs,targets,numHiddenNeurons);
net.divideParam.trainRatio = 70/100;  % Adjust as desired
net.divideParam.valRatio = 15/100;  % Adjust as desired
net.divideParam.testRatio = 15/100;  % Adjust as desired
% Train and Apply Network
[net,tr] = train(net,inputs,targets);
outputs = sim(net,inputs);
pplotperf(tr)
plotfit(net,inputs,targets)
plotreression(targets,outputs)
```

Figure 3: MATLAB-M file

Figure 4: Flow chart of ANN Application
4. Results and discussions

The regression plot for training, testing and validating the model are summarized in Fig. 5. The plots display the network outputs with respect to targets for training, validation, and test sets. For a perfect fit, the data should fall along a 45 degree line (dash line), where the network outputs are equal to the targets. For this study, the fit is very good for all data sets, with R values in each case of 0.97 or above.

![Figure 5: Plot of data regression (training, validation, testing)](image)

The final weights of the model are concluded in Table 3.

Table 3. Final weights and bias of input layers to Hidden layers

Number of layer	Cutting speed	Feed rate	Depth of cut	Bias	Number of layer	Cutting speed	Feed rate	Depth of cut	Bias
1	3.140	-1.945	0.230	-3.896	11	2.426	2.339	1.810	0.357
2	2.615	2.627	-0.983	-3.360	12	1.425	2.745	2.133	0.501
3	2.797	2.090	-1.553	-3.030	13	0.847	-1.026	-3.579	1.002
4	3.268	-0.942	1.738	-2.564	14	-2.380	-1.186	2.593	-1.637
5	-2.936	-2.167	0.186	2.372	15	2.827	2.559	0.069	1.741
6	0.175	-2.447	2.878	-1.790	16	-2.817	2.288	0.925	-2.298
7	1.230	2.388	-2.667	-1.436	17	0.532	-0.768	-3.683	2.595
8	2.448	-2.708	1.110	-1.054	18	-2.039	-2.246	-2.436	-2.863
9	1.370	1.715	-3.056	-0.548	19	-1.168	0.626	3.567	-3.391
10	-1.329	1.486	3.214	0.127	20	2.104	-2.088	-2.383	3.826

5. Validation

A comparison of the measured and the predicted values to determine the deviation between the theoretical and actual value that comes out from ANN models have been conducted. Figure 4 shows the average deviation between the actual and the predicted values by the neural network models. The results show a high percentage of accuracy, 1.17% degree of variation from the original measured values.
6. Simulation
The effect of feed rate and depth of cut during high speed milling have been simulated by using the neural network model and the results were concluded in Figure 6 and Figure 7.

The results of the simulation show that

a. The effect of the depth of cut is higher than the feed rate in higher cutting speed (250 m/min)
b. Increasing the depth of cut will increase the flank wear.

c. Increasing the feed rate above 0.8 have a positive effect on the flank wear.

d. These results may due to

7. Conclusions

This study has been involved with the ANN technique to develop a new model to predict the values of temperature in the end milling machining operation. Twenty hidden layer has been used with feed forward back propagation hierarchical neural networks were designed with Matlab2009b Neural Network Toolbox. A new model is tested and validated.

This study has been involved with the ANN technique for development of models to predict the values of flank wear length in the end milling machining operation. Twenty hidden layer has been used with feed forward back propagation hierarchical neural networks were designed with Matlab2009b Neural Network Toolbox. The results show that the models are valid by using three inputs only; cutting speed, feed rate and depth of cut. The average deviations are 1.17 % for the flank wear length. This high correlation between the predicted and observed values indicated the validity of the models effect on the flank wear.

8. References

[1] Dolinšek S. & Kopač J..2006 Mechanism and types of tool wear; particularities in advanced cutting materials Journal of Achievements in Materials and Manufacturing Engineering, 19(1), 11-18.

[2] Schulz, H., 1992 High Speed Machining, Annals of the CIRP (41) 637-643.

[3] Adesta, E. Y. T., Al Hazza, M. H., Suprianto, M. Y., & Riza, M. 2012 Prediction of Cutting Temperatures by Using Back Propagation Neural Network Modeling when Cutting Hardened H-13 Steel in CNC End Milling Advanced Materials Research, 576, 91-94.

[4] Adesta E.Y.T., AlHazza Muataz.F., M. Riza, D. Agusman, and Rosehan, 2010 Tool Life Estimation Model Based on Simulated Flank Wear during High Speed Hard Turning European Journal of Scientific Research Vol.39No.2 , pp.265-278.

[5] Lin H.M., Liao Y.S., & Wei C.C., Wear behavior in turning high hardness alloy steel by CBN tool Wear. (264) 679–684, 2008.

[6] Yallese, M. A. Chaoui, K. Zeghib, N. Boulanouar, L. & Rigal J. F, 2009 Hard machining of hardened bearing steel using cubic boron nitride tool Journal of Materials Processing Technology 209(2), 1092-1104.

[7] Adesta E.Y.T. and Al Hazza M.H.F., Machining Time Simulation in High Speed Hard Turning. Advanced Materials Research, 264, 1102-1106, 2011.

[8] Zuperl, U. Cus, F. Mursec B. and Ploj, T. 2006 A generalized neural network model of ball-end milling force system, Journal of Materials Processing Technology, vol. 175, pp. 98–108,

[9] Al Hazza M.H.F. and Adesta E. Y. T. 2011 Flank Wear Modelling In High Speed Hard Turning By Using Artificial Neural Network And Regression Analysis Advanced Materials Research Vols. 264-265, pp 1097-1101.

[10] Al Hazza M.H.F., Adesta E.Y.T, Ali A. M., Agusman D.and Suprianto M.Y. 2011 Energy Cost Modeling for High Speed Hard Turning Journal of Applied Sciences, 11: 2578-2584.

[11] Oktem H., Erzurumlu T. & Erzincanli F., 2006 Prediction of minimum surface roughness in end milling mold parts using neural network and genetic algorithm Materials & design, 27(9), 735-744.

[12] Ghosh, N. Ravi Y. B., Patra A., Mukhopadhyay S., Paul S., Mohanty A. R. & Chattopadhyay A. B 2007 Estimation of tool wear during CNC milling using neural network-based sensor fusion Mechanical Systems and Signal Processing, 21(1), 466-479.
[13] Chuangwen X., Xiaohong W., Wencui L., and Xing F., (January 2009) Milling wear monitoring study based on cutting power. Proceedings of the International Conference on Advanced Computer Control (ICACC ’09), pp. 671–674.

[14] Özel T. & Nadgir, A. 2002 Prediction of flank wear by using back propagation neural network modeling when cutting hardened H-13 steel with chamfered and honed CBN tools International Journal of Machine Tools and Manufacture 42(2), 287-297.

[15] Özel T. & Y. Karpat 2005 Predictive modeling of surface roughness and tool wear in hard turning using regression and neural networks International Journal of Machine Tools and Manufacture, 45(4), 467-479.

[16] Iqbal, A. 2013 Modeling Milling Process Using Artificial Neural Network Advanced Materials Research 628, 128-134.

[17] Cakan A. 2011 Real-time monitoring of flank wear behavior of ceramic cutting tool in turning hardened steels Int J Adv Manuf Technol 52:897–903.

[18] Usui E., Shirakashi T., Kitagawa T. 1982 Analytical Prediction of Cutting Tool Wear Wear Vol. 100, no. 1-3, pp. 129-151(1984).

[19] Huang Y. and Liang S.Y., 2004 Modeling of CBN Tool Flank Wear Progression in Finish Hard Turning ASME Journal of Manufacturing Science and Engineering Vol. 126(1), pp 98-106.

[20] Singh D. and Rao P. V. 2010 Flank wear prediction of ceramic tools in hard turning International Journal Advanced Manufacturing Technology. 50: 479–493.

[21] Choudhury S.K. and Bartary G. 2003 Role of temperature and surface finish in predicting tool wear using neural network and design of experiments International Journal of Machine Tools & Manufacture 43; pp 747–753.

[22] Sikdar S. K., and Chen M., 2002 Relationship between tool flank wear area and component forces in single point turning Journal of Materials Processing Technology 128: 210–215.

[23] Young H.T. 1996 Cutting temperature responses to flank wear Wear 201; pp117-120.

[24] Orhan, S.. Osman Er A., Camus-cu Necip, E. Ersan Aslan 2007 Tool wear evaluation by vibration analysis during end milling of AISI D3 cold work tool steel with 35 HRC hardness NDT&E International 40; PP 121–126.

[25] Scheffer, C. Kratz, H., Heyns, P. S. and Klocke, F. 2003 Development of a tool wear-monitoring system for hard turning International Journal of Machine Tools & Manufacture. 43 pp 973–985.