Convergence Results for the Double-Diffusion Perturbation Equations

Jincheng Shi 1,* and Shiguang Luo 2

1 School of Data Science, Guangzhou Huashang College, Guangzhou 511300, China
2 Department of Applied Mathematics, Guangdong University of Finance, Guangzhou 510521, China; 26-047@gduf.edu.cn
* Correspondence: shijc0818@gdhsc.edu.cn

Abstract: We study the structural stability for the double-diffusion perturbation equations. Using the a priori bounds, the convergence results on the reaction boundary coefficients \(k_1, k_2\) and the Lewis coefficient \(L_e\) could be obtained with the aid of some Poincaré inequalities. The results showed that the structural stability is valid for the double-diffusion perturbation equations with reaction boundary conditions. Our results can be seen as a version of symmetry in inequality for studying the structural stability.

Keywords: structural stability; double-diffusion perturbation equations; Lewis coefficient; convergence result

1. Introduction

Many papers in the literature have studied the continuous dependence or convergence of solutions of different equations in porous media on construction coefficients. We give these studies a new name. We call these stabilities structural stability. This kind of stability is different from the traditional stability. We do not care about the stability with the initial data, but about their structural stability with the model itself. For an introduction to the nature of this structural stability, please see book [1]. It is important to establish the result of the structural stability in the problem of the continuum mechanics. In [2], the authors studied a variety of equations and obtained many results on structural stability. We think it is very important to study structural stability. In the process of establishing the model, the error always exists. We want to know whether a small error will cause a sharp change in the solution.

Straughan in paper [3] proposed a new type of double diffusion perturbation model in porous media. The Darcy approximation is used in the derivation of this type of equation. We usually call this type of equation Darcy equations. Details about such types of equations were introduced in [4,5].

There are many equations that describe fluids in porous media. In books [4,6,7], the authors studied many different types of equations. In [8–10], the saint-venant principle results were studied for the Brinkman, Darcy, and Forchheimer equations. The spatial decay results were obtained. In the literature, many results on the structural stability of equations in porous media have been obtained. Representative papers can be seen by [11–16]. It should be emphasized that some new results have also emerged recently, see [17–48]. These results all belong to the category of the study of structural stability.

In this article, we continue to consider the structural stability of such types of equations. We consider the following double-diffusion perturbation equations with velocity, pressure, temperature, and concentration perturbations:
We must adopt a new method to overcome the difficulty of not getting the maximum value.

where u_i, θ, ϕ, and π are the velocity, temperature, concentration disturbance, and pressure, respectively. Δ is the Laplace operator. In Equation (1), R is the Rayleigh coefficient and C is the salinity Rayleigh coefficient, ϵ_1 represents the porosity, and L_i is the Lewis coefficient, $l = (0, 0, 1) = (l_1, l_2, l_3)$. The system of Equation (1) is established in the region $\Omega \times [0, \tau]$, where Ω is bounded in the strictly convex region in R^3, and τ is a given constant and satisfies $0 \leq \tau < \infty$. The boundary conditions are:

$$u_in_i = 0, \quad \frac{\partial \theta}{\partial n} = k_1\theta, \quad \frac{\partial \phi}{\partial n} = k_2\phi, \quad (x, t) \in \partial\Omega \times [0, \tau].$$ \quad (2)

The initial conditions are:

$$u_i(x, 0) = u_{i0}(x), \quad \phi(x, 0) = \phi_0(x), \quad \theta(x, 0) = \theta_0(x), \quad x \in \Omega.$$ \quad (3)

There are significant differences between the double-diffusion perturbation equations and the Brinkman, Forchheimer, Darcy equations. The main difficulty is that we cannot get the maximum value of the disturbance as the previous papers [11–16]. In the references, the maximum value of the disturbance is often used to obtain the required structural stability results. In this paper, we can get the maximum estimates of disturbance.

The structural stability results we need will not be obtained by using the previous methods. We will give some a priori bounds for the solutions.

2. A Priori Bounds

In the course of producing the results of convergence on the coefficient of (1), we find it is easy if we can derive some a priori bounds for the solutions. We will give some Lemmas that are useful in proving our main results.

Lemma 1. For the temperature θ and the concentration disturbance ϕ, we have the following estimates:

$$\int_{\partial\Omega} \theta^2 \, dS \leq \left(\frac{m_1}{m_0} + \frac{\epsilon_0 m_2}{m_0^2} \right) \int_{\Omega} \theta^2 \, dS + \frac{1}{\epsilon_0} \int_{\Omega} \theta \phi_j \, dS,$$ \quad (4)
and
\[\int_{\Omega} \phi^2 \, dS \leq \left(\frac{m_1}{m_0} + \epsilon_0 \frac{m_2}{m_0^2} \right) \int_{\Omega} \phi^2 \, dS + \frac{1}{\epsilon_0} \int_{\Omega} \phi \phi_{i,j} \, dS, \]

where \(m_0, m_1, m_2 \) are positive constants, and \(\epsilon_0 \) is an arbitrary positive constant.

Proof. We defined a function \(\zeta_i \) on \(\Omega \). The function \(\zeta_i \) satisfies the following conditions:
\[\zeta_i n_i \geq m_0 > 0, \quad x \in \partial \Omega, \]
\[|\zeta_i| \leq m_1, \quad x \in \Omega, \]
\[|\zeta| \leq m_2, \quad x \in \Omega, \]
where \(n_i \) is the unit outward normal vector.

From the divergence theorem, we have:
\[m_o \oint_{\partial \Omega} \theta^2 \, ds \leq \oint_{\partial \Omega} \zeta_i n_i \theta^2 \, ds \]
\[= \int_{\Omega} (\zeta_i \theta)^2 \, dx \]
\[= \int_{\Omega} \zeta_i \theta^2 \, dx + 2 \int_{\Omega} \zeta_i \theta \theta_{i,j} \, dx \]
\[\leq m_1 \int_{\Omega} \theta^2 \, dx + 2m_2 \int_{\Omega} \theta \theta_{i,j} \, dx. \]

Using Schwarz’s inequality, we have:
\[\oint_{\partial \Omega} \theta^2 \, ds \leq \left(\frac{m_1}{m_0} + \epsilon_0 \frac{m_2}{m_0^2} \right) \int_{\Omega} \theta^2 \, dx + \frac{1}{\epsilon_0} \int_{\Omega} \theta \theta_{i,j} \, dx. \]

Following the same procedures, we can also get:
\[\int_{\partial \Omega} \phi^2 \, ds \leq \left(\frac{m_1}{m_0} + \epsilon_0 \frac{m_2}{m_0^2} \right) \int_{\Omega} \phi^2 \, dS + \frac{1}{\epsilon_0} \int_{\Omega} \phi \phi_{i,j} \, dS. \]

Lemma 2. For the velocity \(u_i \), temperature \(\theta \), and the concentration disturbance \(\phi \), we have the following estimates:
\[\int_{\Omega} u_i u_i \, dx + \int_{\Omega} \theta^2 \, dx + \int_{\Omega} \phi^2 \, dx \leq n_1(t), \]
\[\int_0^t \int_{\Omega} \theta_{i,j} \, dx \, dt \leq n_2(t), \]
\[\int_0^t \int_{\Omega} \phi_{i,j} \, dx \, dt \leq n_3(t), \]
where \(n_1(t), n_2(t), \) and \(n_3(t) \) are non-negative monotonically increasing functions.

Proof. Multiplying both sides of the Equation (1) by \(2u_i \), and integrating over \(\Omega \), we can get:
\[\frac{d}{dt} \int_{\Omega} u_i u_i \, dx = 2C \int_{\Omega} \phi i u_i \, dx - 2R \int_{\Omega} \theta i u_i \, dx + 2 \int_{\Omega} \pi_{i} u_i \, dx \]
\[\leq 2 \int_{\Omega} u_i u_i \, dx + C^2 \int_{\Omega} \phi^2 \, dx + R^2 \int_{\Omega} \theta^2 \, dx. \]
Multiplying both sides of the Equation (1) by 2θ, and integrating over Ω, we can get:

\[
\frac{d}{dt} \int_\Omega \theta^2 dx = 2 \int_\Omega u_3 \theta dx + 2 \int_\Omega \theta \Delta \theta dx - 2 \int_\Omega u_\theta \theta dx.
\] (16)

Using (4) and taking \(\varepsilon_0 = 2k_1 \), we can get:

\[
\int_\partial \Omega \theta^2 dS \leq \left[\frac{m_1}{m_0} + \frac{2k_1m_2^2}{m_0^2} \right] \int_\Omega \theta^2 dx + \frac{1}{2k_1} \int_\Omega \theta \theta dx.
\] (17)

For the second term on the right side of Equation (16), we have:

\[
2 \int_\Omega \theta \Delta \theta dx = 2 \int_\Omega \theta \frac{\partial \theta}{\partial n} dS - 2 \int_\Omega \theta, \theta dx
= 2k_1 \int_\partial \Omega \theta^2 dS - 2 \int_\Omega \theta, \theta dx
\leq \left(\frac{2k_1m_1}{m_0} + \frac{4k_1^2m_2^2}{m_0^2} \right) \int_\Omega \theta^2 dx - \int_\Omega \theta, \theta dx.
\] (18)

Combining (16) and (18), and using the Hölder’s inequality, we can get:

\[
\frac{d}{dt} \int_\Omega \theta^2 dx + \int_\Omega \theta, \theta dx \leq \int_\Omega u_\theta u dx + \left(\frac{2k_1m_1}{m_0} + \frac{4k_1^2m_2^2}{m_0^2} + 1 \right) \int_\Omega \theta^2 dx.
\] (19)

Multiplying both sides of Equation (1) by 2\varphi, and integrating over Ω, we can obtain:

\[
\varepsilon_1 \frac{d}{dt} \int_\Omega \varphi^2 dx + \int_\Omega \varphi, \varphi dx \leq \int_\Omega u_\varphi u dx + \left(\frac{2k_2m_1}{m_0} + \frac{4k_2^2m_2^2}{m_0^2} + 1 \right) \int_\Omega \varphi^2 dx.
\] (20)

We define a new function:

\[
F_1(t) = \int_\Omega u_\theta u dx + \int_\Omega \theta^2 dx + \int_\Omega \varphi^2 dx.
\]

Combining (15), (19), and (20), we obtain:

\[
F_1(t) \leq m_4 + m_3 \int_0^t F_1(\eta) d\eta.
\] (21)

where

\[
m_3 = \max \left\{ 3 + \frac{1}{\varepsilon_1}, R^2 + \frac{2k_1m_1}{m_0} + \frac{4k_1^2m_2^2}{m_0^2} + 1, C^2 + \frac{2k_2m_1}{m_0\varepsilon_1} + \frac{4k_2^2m_2^2}{m_0^2\varepsilon_1} + 1/\varepsilon_1 \right\},
\]

and

\[
m_4 = \int_\Omega u_\theta u_\theta dx + \int_\Omega \theta_\theta \theta_\theta dx + \int_\Omega \varphi_\theta \varphi_\theta dx.
\]

Using Gronwall’s inequality, we can get:

\[
F_1(t) \leq m_3 m_4 e^{m_3 t} \int_0^t e^{-m_3 \eta} d\eta = n_1(t).
\] (22)

Inserting (22) into (19), we can get:

\[
\int_0^t \int_\Omega \theta, \theta dx d\eta \leq \left(\frac{2k_1m_1}{m_0} + \frac{4k_1^2m_2^2}{m_0^2} + 1 \right) \int_0^t n_1(\eta) d\eta = n_2(t).
\]
Inserting (22) into (20), we can get:

\[\int_0^t \int_\Omega \varphi_i \varphi_j dx \, d\eta \leq \left(\frac{2k_2m_1}{m_0} + \frac{4k_2^2m_0^2}{m_0^2} + 1 \right) \int_0^t n_1(\eta) \, d\eta = n_3(t). \]

\[\square \]

Lemma 3. For velocity \(u_i \), we have the following estimates:

\[\left[\int_\Omega (u_i u_i)^2 \, dx \right]^\frac{1}{2} \leq m_1(t), \quad (23) \]

where \(m_1(t) \) is a positive function to be defined later.

Proof. We have the following identity:

\[\int_\Omega u_i u_j u_i u_j \, dx = \int_\Omega u_i (u_i - u_j) u_j \, dx + \int_\Omega u_i u_j u_i u_j \, dx. \quad (24) \]

Since \(\partial \Omega \) is bounded, we know from the result of [44]:

\[| \int_\Omega u_i u_j u_i u_j \, dx | \leq k_0 | \int_\partial \Omega u_i u_j \, ds |, \]

where \(k_0 \) is the Gaussian curvature depending on \(\partial \Omega \).

Taking \(\theta = u_i, \epsilon_0 = 2k_0 \) in (4), we have:

\[| \int_\Omega u_i u_j u_i u_j \, dx | \leq k_0 \left(\frac{m_1}{m_0} + \frac{2k_0 m_0^2}{m_0^2} \right) \int_\Omega u_i u_j u_i u_j \, dx \]

\[\leq k_0 \left(\frac{m_1}{m_0} + \frac{2k_0 m_0^2}{m_0^2} \right) n_1(t) + \frac{1}{2} \int_\Omega u_i u_j u_i u_j \, dx. \quad (25) \]

Combining (24) and (25), we get:

\[\int_\Omega u_i u_j u_i u_j \, dx \leq 2 \int_\Omega u_i (u_i - u_j) u_j \, dx + 2k_0 \left(\frac{3}{m} + \frac{2k_0 d^2}{2m^2} \right) n_1(t). \quad (26) \]

Using Equation (1), we obtain:

\[\frac{d}{dt} \int_\Omega u_i (u_i - u_j) \, dx = 2 \int_\Omega (u_i - u_j) u_i u_j \, dx \]

\[\leq 4 \int_\Omega u_i (u_i - u_j) \, dx + C^2 \int_\Omega \varphi_i \varphi_j \, dx + R^2 \int_\Omega \varphi_i \varphi_j \, dx. \quad (27) \]

We define \(E(t) = \int_\Omega u_i (u_i - u_j) \, dx \). From (26), we obtain:

\[E(t) \leq 4e^{\delta t} \int_0^t m(y) e^{-\delta \gamma} \, dy + R^2 n_2(t) + C^2 n_3(t) = m_2(t), \quad (28) \]

with \(m(t) = \int_\Omega u_i (x, 0) [(u_i(x, 0) - u_j(x, 0)] \, dx \).

Inserting (28) into (26), we have:

\[\int_\Omega u_i u_j u_i u_j \, dx \leq 2m_2(t) + 2k_0 \left(\frac{m_1}{m_0} + \frac{2k_0 m_0^2}{m_0^2} \right) n_1(t). \quad (29) \]
Using the result of (B.17) in [26], we have:

\[
\left(\int_{\Omega} |u|^4 dx \right)^{\frac{1}{2}} \leq M \left(\frac{5}{4} \int_{\Omega} |u|^2 dx + \frac{3}{4} \int_{\Omega} |\nabla u|^2 dx \right)
\leq M \left(\frac{5}{4} n_1(t) + \frac{6}{4} m_2(t) \right)
+ \frac{6k_0}{4} \left(\frac{m_1}{m_0} + \frac{2k_0 m_2}{m_0^2} \right) n_1(t) = m_1(t),
\]

where \(M \) is a positive constant. \(\Box \)

Lemma 4. For the temperature \(\theta \), concentration disturbance \(\varphi \), we have the following estimates:

\[
\left(\int_{\Omega} \theta^4 dx \right)^{\frac{1}{2}} \leq n_4(t), \tag{31}
\]

\[
\left(\int_{\Omega} \varphi^4 dx \right)^{\frac{1}{2}} \leq n_5(t), \tag{32}
\]

with \(n_4(t) \) and \(n_5(t) \) are all monotonically increasing functions greater than zero.

Proof. Multiplying both sides of the \((1)\) by \(\theta^3 \) and integrating over \(\Omega \), we have:

\[
\frac{1}{4} \frac{d}{dt} \int_{\Omega} \theta^4 dx + \int_{\Omega} u \theta \theta^3 dx = \int_{\Omega} u_3 \theta^3 dx + \int_{\Omega} \theta^3 \theta dx
= \int_{\Omega} u_3 \theta^3 dx - 3 \int_{\Omega} \theta^2 \theta \theta dx + k_1 \int_{\partial \Omega} \theta^4 dS
\leq \frac{1}{4} \int_{\Omega} u_4^2 dx + \frac{3}{4} \int_{\Omega} \theta^4 dx - 3 \int_{\Omega} \theta^2 \theta \theta dx + k_1 \int_{\partial \Omega} \theta^4 dx.
\]

Replacing \(\theta \) by \(\theta^2 \) and choosing \(c_0 = 2k_1 \) in (4), we get:

\[
k_1 \int_{\partial \Omega} \theta^4 dx \leq \frac{k_1 m_1}{m_0} \int_{\Omega} \theta^4 dx + \frac{2k_1^2 m_2^2}{m_0^2} \int_{\Omega} \theta^4 dx + \frac{1}{2} \int_{\Omega} \theta^2 dx \cdot (\theta^2 dx).
\]

Inserting (34) into (33), we obtain:

\[
\frac{d}{dt} \int_{\Omega} \theta^4 dx \leq \int_{\Omega} u_4^2 dx + 3 \int_{\Omega} \theta^4 dx + \frac{4m_1 k_1}{m_0} \int_{\Omega} \theta^4 dx + \frac{8k_1^2 m_2^2}{m_0^2} \int_{\Omega} \theta^4 dx.
\]

Inserting (23) into (35), we obtain:

\[
\frac{d}{dt} \int_{\Omega} \theta^4 dx \leq \int_{\Omega} u_4^2 dx + 3 \int_{\Omega} \theta^4 dx + \left(3 + \frac{4m_1 k_1}{m_0} + \frac{8k_1^2 m_2^2}{m_0^2} \right) \int_{\Omega} \theta^4 dx.
\]

An integration of (36) leads to

\[
\int_{\Omega} \theta^4 dx \leq e^{\left(3 + \frac{4m_1 k_1}{m_0} + \frac{8k_1^2 m_2^2}{m_0^2} \right) t} \left[\int_{\Omega} \theta^0_1 dx + \int_{0}^{t} \left(m_1(\eta) \right)^2 d\eta \right].
\]

We obtain:

\[
\left(\int_{\Omega} \theta^4 dx \right)^{\frac{1}{2}} \leq n_4(t). \tag{38}
\]

Following the same procedures, we can also get:

\[
\left(\int_{\Omega} \varphi^4 dx \right)^{\frac{1}{2}} \leq n_5(t), \tag{39}
\]
with
\[n_4(t) = e^{\left(3 + \frac{4a_1^2}{m_0^2} + \frac{8a_2^2}{m_0^4}\right)t} \left[\int_{\Omega} \theta_0^2 dx + \int_0^t (m_1(\eta))^2 d\eta \right], \]
and
\[n_5(t) = e^{\left(3 + \frac{4a_1^2}{m_0^2} + \frac{8a_2^2}{m_0^4}\right)t} \left[\int_{\Omega} \psi^4 dx + \int_0^t (m_1(\eta))^2 d\eta \right]. \]

3. Convergence Result for the Reaction Boundary Coefficients \(k_1\) and \(k_2\)

Let \((u_i, \theta, \varphi, \pi)\) be the solution of (1)–(3) with \(k_1 = \hat{k}_1, k_2 = \hat{k}_2(u_i^*, \theta^*, \varphi^*, \pi^*)\) be the solution of (1)–(3) with \(k_1 = 0, k_2 = 0\). We define \(\omega_i = u_i - u_i^*, \hat{\theta} = \theta - \theta^*, \hat{\varphi} = \varphi - \varphi^*, \hat{\pi} = \pi - \pi^*\), then \((\omega_i, \hat{\theta}, \hat{\varphi}, \hat{\pi})\) satisfies the following equations:

\[
\begin{align*}
\frac{\partial \omega_i}{\partial t} &= C \phi_i l_i - R \hat{\theta}_i l_i + \hat{\pi}_i, \\
\frac{\partial \omega_i}{\partial x_i} &= 0, \\
\frac{\partial \hat{\theta}}{\partial t} + \omega_i \hat{\theta}_i + u_i^* \hat{\theta}_i &= \omega_i^3 + \Delta \hat{\theta}, \\
\varepsilon \frac{\partial \hat{\varphi}}{\partial t} + L_\varepsilon (\omega_j \varphi_j + u_j^* \varphi_j) &= \omega_i^3 + \Delta \hat{\varphi}.
\end{align*}
\]

The boundary conditions are:

\[\omega_i n_i = 0, \frac{\partial \hat{\theta}}{\partial n} = \hat{k}_1 \hat{\theta}, \frac{\partial \hat{\varphi}}{\partial n} = \hat{k}_2 \varphi, (x, t) \in \partial \Omega \times [0, \tau]. \] (41)

The initial conditions are:

\[\omega_i(x, 0) = 0, \hat{\theta}(x, 0) = 0, \hat{\varphi}(x, 0) = 0, x \in \Omega. \] (42)

In deducing our main result, we will use the following Lemma.

Lemma 5. For the difference of the velocity \(\omega_i\), we can get the following estimates:

\[\int_{\Omega} \omega_{i,j} \omega_{i,j} dx \leq 2 \int_{\Omega} \omega_{i,j} (\omega_{i,j} - \omega_{j,i}) dx + 2k_0 \left[\frac{m_1 \eta_0}{m_0} + \frac{2k_0 m_2^2}{m_0^2} \right] \int_{\Omega} \omega_{i,j} dx, \] (43)

with \(k_0\) as a positive constant.

Proof. We know the fact:

\[\int_{\Omega} \omega_{i,j} \omega_{i,j} dx = \int_{\Omega} \omega_{i,j} (\omega_{i,j} - \omega_{j,i}) dx + \int_{\Omega} \omega_{i,j} \omega_{j,i} dx. \] (44)

Since the boundary of \(\Omega\) is bounded, we have:

\[| \int_{\Omega} \omega_{i,j} \omega_{j,i} dx | \leq k_0 \int_{\partial \Omega} \omega_i \omega_j dS, \] (45)

with \(k_0\) as a positive constant depending on the Gaussian curvature of \(\partial \Omega\) (see [44]).

Using the result (4) with \(\varepsilon_0 = 2k_0\), we can obtain:

\[\int_{\partial \Omega} \omega_i \omega_j dS \leq \left[\frac{m_1}{m_0} + \frac{2k_0 m_2^2}{m_0^2} \right] \int_{\Omega} \omega_i \omega_j dx + \frac{1}{2k_0} \int_{\Omega} \omega_{i,j} \omega_{j,i} dx. \] (46)
Inserting (45) and (46) into (44), we can get:

\[
\int_{\Omega} \omega_{i,j} \omega_{i,j} \, dx \leq 2 \int_{\Omega} \omega_{i,j} (\omega_{i,j} - \omega_{j,i}) \, dx + 2k_0 \left[\frac{m_1}{m_0} + \frac{2k_0 m^2}{m_0} \right] \int_{\Omega} \omega_{i,j} \, dx.
\]

In this part, we will get the following Theorem. □

Theorem 1. Let \((u_i, \theta, \varphi, \pi)\) be the classical solution of the initial value problem (1)–(3) with \(k_1 = k_1, k_2 = k_2,\) and \((u_i^*, \theta^*, \varphi^*, \pi^*)\) be the classical solution of the initial boundary value problem (1)–(3) with \(k_1 = 0, k_2 = 0.\) \((\omega_i, \hat{\theta}, \hat{\varphi}, \hat{\pi})\) is the difference of these two solutions. When \(k_1\) and \(k_2\) tend to zero, the solution \((u_i, \theta, \varphi, \pi)\) converges to the solution \((u_i^*, \theta^*, \varphi^*, \pi^*)\).

The difference of the solution \((\omega_i, \hat{\theta}, \hat{\varphi}, \hat{\pi})\) satisfies:

\[
\int_{\Omega} \omega_i \omega_i \, dx + \int_{\Omega} \hat{\theta}^2 \, dx + \epsilon_1 \int_{\Omega} \hat{\varphi}^2 \, dx + \int_{\Omega} \omega_{i,j} (\omega_{i,j} - \omega_{j,i}) \, dx \\
\leq k_1^2 m_8 \varepsilon_n \, n_6(t) + k_2^2 m_8 \varepsilon n_7(t),
\]

where \(m_8\) is a positive constant and \(n_6(t)\) and \(n_7(t)\) are positive functions.

Proof. Multiplying both sides of Equation (40) by \(2\omega_i,\) and integrating over \(\Omega,\) we can get:

\[
\frac{d}{dt} \int_{\Omega} \omega_i \omega_i \, dx = 2C \int_{\Omega} \hat{\varphi}_i \omega_i \, dx - 2R \int_{\Omega} \hat{\theta}_i \omega_i \, dx + 2 \int_{\Omega} \hat{\pi}_i \omega_i \, dx \\
\leq 2 \int_{\Omega} \omega_i \omega_i \, dx + C^2 \int_{\Omega} \hat{\varphi}^2 \, dx + R^2 \int_{\Omega} \hat{\theta}^2 \, dx.
\]

From Equation (40), we know:

\[
\frac{d}{dt} \int_{\Omega} \omega_{i,j} (\omega_{i,j} - \omega_{j,i}) \, dx \\
= 2 \int_{\Omega} (\omega_{i,j} - \omega_{j,i}) \omega_{i,j} \, dx \\
= 2C \int_{\Omega} (\omega_{i,j} - \omega_{j,i}) \hat{\varphi}_j \, dx + 2 \int_{\Omega} (\omega_{i,j} - \omega_{j,i}) \hat{\pi}_j \, dx - 2R \int_{\Omega} (\omega_{i,j} - \omega_{j,i}) \hat{\theta}_j \, dx.
\]

Using the divergence theorem and Hölder’s inequality, we can get:

\[
\frac{d}{dt} \int_{\Omega} \omega_{i,j} (\omega_{i,j} - \omega_{j,i}) \, dx \\
\leq (2C^2 + 2R^2) \int_{\Omega} (\omega_{i,j} - \omega_{j,i}) (\omega_{i,j} - \omega_{j,i}) \, dx + \frac{1}{2} \int_{\Omega} \hat{\varphi}_j \hat{\varphi}_j \, dx + \frac{1}{2} \int_{\Omega} \hat{\pi}_j \hat{\pi}_j \, dx \\
= (4C^2 + 4R^2) \int_{\Omega} \omega_{i,j} (\omega_{i,j} - \omega_{j,i}) \, dx + \frac{1}{2} \int_{\Omega} \hat{\varphi}_j \hat{\varphi}_j \, dx + \frac{1}{2} \int_{\Omega} \hat{\pi}_j \hat{\pi}_j \, dx.
\]

Multiplying both sides of Equation (40) by \(2\hat{\theta}_i,\) and integrating over \(\Omega,\) we can get:

\[
\frac{d}{dt} \int_{\Omega} \hat{\theta}^2 \, dx = 2 \int_{\Omega} \omega_i \hat{\theta} \, dx + 2 \int_{\Omega} \hat{\theta} \Delta \hat{\theta} \, dx - 2 \int_{\Omega} \omega_i \hat{\theta} \, dx - 2 \int_{\Omega} \hat{u}_i \hat{\theta} \, dx \\
= 2 \int_{\Omega} \omega_i \hat{\theta} \, dx + 2 \int_{\Omega} \hat{\theta} \Delta \hat{\theta} \, dx + 2 \int_{\Omega} \omega_i \hat{\theta} \, dx.
\]

The first term on the right side of Equation (51) can be bounded by:

\[
2 \int_{\Omega} \omega_i \hat{\theta} \, dx \leq \int_{\Omega} \omega_i \omega_i \, dx + \int_{\Omega} \hat{\theta}^2 \, dx.
\]
Using the result (4), and taking \(\varepsilon_0 = 1 \), we can get:

\[
\int_{\partial \Omega} \phi^2 dS \leq \left(\frac{m_1}{m_0} + \frac{m_2}{m_0^2} \right) \int_{\Omega} \phi^2 dx + \int_{\Omega} \phi \phi_j dx.
\]

(53)

We now take the second term on the right side of Equation (51):

\[
2 \int_{\Omega} \theta \dot{\theta} dx = 2 \int_{\partial \Omega} \theta \frac{\partial \theta}{\partial n} dS - 2 \int_{\Omega} \theta \dot{\theta} dx
\]

\[
= 2k_1 \int_{\partial \Omega} \theta dS - 2 \int_{\Omega} \theta \dot{\theta} dx
\]

\[
\leq k_1 \int_{\partial \Omega} \theta^2 dS + \int_{\Omega} \theta^2 dx - 2 \int_{\Omega} \theta \dot{\theta} dx
\]

(54)

Combining (51), (52), and (54), we can get:

\[
\frac{d}{dt} \int_{\Omega} \theta^2 dx + \frac{1}{2} \int_{\partial \Omega} \theta \dot{\theta} dx
\]

\[
\leq k_1 \int_{\partial \Omega} \theta^2 dS + \int_{\Omega} \omega_i \omega_i dx + m_s \int_{\Omega} \theta^2 dx + 2 \int_{\Omega} \omega_i \theta^2 dx
\]

\[
\leq k_1 \int_{\partial \Omega} \theta^2 dS + \int_{\Omega} \omega_i \omega_i dx + m_s \int_{\Omega} \theta^2 dx + 2 \left(\int_{\Omega} (\omega_i \omega_i)^2 dx \right)^{\frac{1}{2}} \left(\int_{\Omega} \theta^2 dx \right)^{\frac{1}{2}},
\]

where \(m_s = \left(\frac{m_1}{m_0} + \frac{m_2}{m_0^2} \right) + 1 \).

Using the result of (B.17) in [26] and (31), we can get:

\[
\frac{d}{dt} \int_{\Omega} \theta^2 dx + \frac{1}{2} \int_{\partial \Omega} \theta \dot{\theta} dx
\]

\[
\leq k_1 \int_{\partial \Omega} \theta^2 dS + \int_{\Omega} \omega_i \omega_i dx + m_s \int_{\Omega} \theta^2 dx + 2 \left(\int_{\Omega} (\omega_i \omega_i)^2 dx \right)^{\frac{1}{2}} n_4(t)
\]

\[
\leq k_1 \int_{\partial \Omega} \theta^2 dS + \int_{\Omega} \omega_i \omega_i dx + m_s \int_{\Omega} \theta^2 dx + 2M \left(\frac{5}{4} \int_{\Omega} \omega_i \omega_i dx + \frac{3}{4} \int_{\Omega} \omega_i \omega_i dx \right) n_4(t)
\]

\[
\leq k_1 \int_{\partial \Omega} \theta^2 dS + m_s \int_{\Omega} \omega_i \omega_i dx + m_s \int_{\Omega} \theta^2 dx + 3Mn_4(\tau) \int_{\Omega} \omega_i (\omega_i - \omega_i) dx,
\]

where \(m_s = M n_4(\tau) \left[\frac{3k_0 (\frac{m_1}{m_0} + \frac{2k_0 m_2}{m_0^2}) + \frac{3}{2} \right] + 1 \).

Multiplying both sides of Equation (40) by \(2 \phi \), and integrating over \(\Omega \) we can get:

\[
\epsilon_1 \frac{d}{dt} \int_{\Omega} \phi^2 dx = 2 \int_{\Omega} \omega_3 \phi dx + 2 \int_{\Omega} \phi \Delta \phi dx - 2L_\phi \int_{\Omega} \omega_i \phi_j \phi dx - 2L_\phi \int_{\Omega} u_i \, \psi \, \psi_i \, dx
\]

\[
= 2 \int_{\Omega} \omega_3 \phi dx + 2 \int_{\Omega} \phi \Delta \phi dx + 2L_\phi \int_{\Omega} \omega_i \phi_j \phi dx.
\]

(57)

The first term on the right side of Equation (57) can be bounded by:

\[
2 \int_{\Omega} \omega_3 \phi dx \leq \int_{\Omega} \omega_i \omega_i dx + \int_{\Omega} \phi^2 dx.
\]

(58)

Using (4), and taking \(\varepsilon_0 = 1 \), we can get:

\[
\int_{\partial \Omega} \phi^2 dS \leq \left(\frac{m_1}{m_0} + \frac{m_2}{m_0^2} \right) \int_{\Omega} \phi^2 dx + \int_{\Omega} \phi \phi_j dx.
\]

(59)
We now take the second term on the right side of Equation (57). We have:

\[
2 \int_{\Omega} \phi \Delta \phi \, dx = 2 \int_{\Omega} \phi \frac{\partial \phi}{\partial n} \, dS - 2 \int_{\Omega} \phi, \phi, \phi \, dx
\]
\[
= 2k_2 \int_{\Omega} \phi \, dS - 2 \int_{\Omega} \phi, \phi, \phi \, dx
\]
\[
\leq \hat{k}^2 \int_{\Omega} \phi^2 \, dS + \int_{\Omega} \omega_i \omega_i \, dx + m_5 \int_{\Omega} \phi^2 \, dx + 2L_1^2 \int_{\Omega} \omega_i \phi \, dx
\]
\[
\leq \hat{k}^2 \int_{\Omega} \phi^2 \, dS + \int_{\Omega} \omega_i \omega_i \, dx + m_5 \int_{\Omega} \phi^2 \, dx + 2L_1^2 \left(\int_{\Omega} (\omega_i \phi)^2 \, dx \right)^{\frac{1}{2}} \left(\int \phi^i \, dx \right)^{\frac{1}{2}}.
\]

Combining (57)–(60), we can obtain:

\[
\epsilon_1 \frac{d}{dt} \int_{\Omega} \phi^2 \, dx + \frac{1}{2} \int_{\Omega} \phi, \phi, \phi \, dx
\]
\[
\leq \hat{k}^2 \int_{\Omega} \phi^2 \, dS + \int_{\Omega} \omega_i \omega_i \, dx + m_5 \int_{\Omega} \phi^2 \, dx + 2L_1^2 \int_{\Omega} \omega_i \phi \, dx
\]
\[
\leq \hat{k}^2 \int_{\Omega} \phi^2 \, dS + \int_{\Omega} \omega_i \omega_i \, dx + m_5 \int_{\Omega} \phi^2 \, dx + 2L_1^2 \left(\int_{\Omega} (\omega_i \phi)^2 \, dx \right)^{\frac{1}{2}} \left(\int \phi^i \, dx \right)^{\frac{1}{2}}.
\]

We can also get:

\[
\epsilon_1 \frac{d}{dt} \int_{\Omega} \phi^2 \, dx + \frac{1}{2} \int_{\Omega} \phi, \phi, \phi \, dx
\]
\[
\leq \hat{k}^2 \int_{\Omega} \phi^2 \, dS + \int_{\Omega} \omega_i \omega_i \, dx + m_5 \int_{\Omega} \phi^2 \, dx + 2L_1^2 M \left(\frac{5}{4} \int_{\Omega} \omega_i \omega_i \, dx + \frac{3}{4} \int_{\Omega} \omega_i, \omega_i, \omega_i \, dx \right) n_5(t).
\]

where \(m_5 = ML_1^2 n_5(\tau) \left[3k_0 \left(\frac{m_1}{m_0} + \frac{2k_0 n_5^2}{m_0^2} \right) + \frac{5}{2} \right] + 1. \)

Combining (48), (50), (56), (61), and (62), we can get:

\[
\frac{d}{dt} \left[\int_{\Omega} \omega_i \omega_i \, dx + \int_{\Omega} \phi^2 \, dx + \epsilon_1 \int_{\Omega} \phi^2 \, dx + \int_{\Omega} \omega_i, \omega_i, \omega_i \, dx \right]
\]
\[
\leq (m_6 + m_7 + 2) \int_{\Omega} \omega_i \omega_i \, dx + (R^2 + m_5) \int_{\Omega} \phi^2 \, dx + (C^2 + m_5) \int_{\Omega} \phi^2 \, dx
\]
\[
+ \hat{k}^2 \int_{\Omega} \phi^2 \, dS + \hat{k}^2 \int_{\Omega} \phi^2 \, dS + \int_{\Omega} \phi^2 \, dx \left(3MN_4(\tau) + 3ML_1^2 n_5(\tau) + 4C^2 + 4R^2 \right) \int_{\Omega} \omega_i, \omega_i, \omega_i \, dx.
\]

Let

\[
F_2(t) = \int_{\Omega} \omega_i \omega_i \, dx + \int_{\Omega} \phi^2 \, dx + \epsilon_1 \int_{\Omega} \phi^2 \, dx + \int_{\Omega} \omega_i, \omega_i, \omega_i \, dx,
\]
\[
m_8 = \max \{m_6 + m_7 + 2, R^2 + m_5, \frac{C^2 + m_5}{\epsilon_1}, 3MN_4(\tau) + 3ML_1^2 n_5(\tau) + 4C^2 + 4R^2 \}.
\]

From (63), it can be seen that:

\[
\frac{d}{dt} F_2(t) \leq \hat{k}^2 \int_{\Omega} \phi^2 \, dS + \hat{k}^2 \int_{\Omega} \phi^2 \, dS + m_8 F_2(t).
\]

Integrating (64), and using (4), (5), (13), and (14), we can get:

\[
F_2(t) \leq \hat{k}^2 m_8 e^{m_8 t} n_6(t) + \hat{k}^2 m_8 e^{m_8 t} n_7(t),
\]

with \(n_6(t) = \int_0^t \left(\frac{m_1}{m_0} + \frac{m_2}{m_0} \right) n_1(\eta) \, d\eta + n_2(t) \) and \(n_7(t) = \int_0^t \left(\frac{m_1}{m_0} + \frac{m_2}{m_0} \right) n_1(\eta) \, d\eta + n_3(t). \)
Inequality (65) shows that when \hat{k}_1, \hat{k}_2 simultaneously tend to zero, the energy $F_2(t)$ also tends to zero as the indicated norm. \qed

4. Convergence Result for the Lewis Coefficient L_e

Let $(u_i, \theta, \varphi, \pi)$ be the solution of (1)–(3) when $Le = \hat{L}e$, and let $(u_i^*, \theta^*, \varphi^*, \pi^*)$ be the solution of (1)–(3) when $Le = 0$. We assume $\omega_i = u_i - u_i^*, \hat{\theta} = \theta - \theta^*, \hat{\varphi} = \varphi - \varphi^*, \hat{\pi} = \pi - \pi^*$, then $(\omega_i, \hat{\theta}, \hat{\varphi}, \hat{\pi})$ satisfies the following equations:

\[
\frac{d\omega_i}{dt} = C\phi_i - R\hat{\theta}_i + \hat{\pi}_j, \\
\frac{d\omega_i}{dx_j} = 0, \\
\frac{d\hat{\theta}}{dt} + \omega_i\hat{\theta}_j + u_i^*\hat{\theta}_j = \omega_3 + \Delta\hat{\theta}, \\
\epsilon_1\frac{d\hat{\varphi}}{dt} + L_eu_i\phi_i, \hat{\pi} = \omega_3 + \Delta\hat{\varphi}.
\] (66)

The boundary conditions are:

\[
\omega_i n_i = 0, \quad \frac{\partial\hat{\theta}}{\partial n} = k_1\hat{\theta}, \quad \frac{\partial\hat{\varphi}}{\partial n} = k_2\hat{\varphi}, \quad (x, t) \in \partial\Omega \times [0, \tau].
\] (67)

The initial conditions are:

\[
\omega_i(x, 0) = 0, \frac{\partial\varphi}{\partial \Omega} = 0, \hat{\theta}(x, 0) = 0, x \in \Omega.
\] (68)

Theorem 2. Let $(u_i, \theta, \varphi, \pi)$ be the solution of (1)–(3) when $Le = \hat{L}e$, $(u_i^*, \theta^*, \varphi^*, \pi^*)$ be the solution of (1)–(3) when $Le = 0$. We assume $\omega_i = u_i - u_i^*, \hat{\theta} = \theta - \theta^*, \hat{\varphi} = \varphi - \varphi^*, \hat{\pi} = \pi - \pi^*$, then $(\omega_i, \hat{\theta}, \hat{\varphi}, \hat{\pi})$ satisfies the following estimates:

\[
\int_\Omega \omega_i \omega_i dx + \int_\Omega \hat{\theta}^2 dx + \epsilon_1 \int_\Omega \hat{\varphi}^2 dx + \int_\Omega \omega_i \omega_i dx \leq 2L_e^2 m_{11} e^{m_{11} t} \int_0^t m_1(\eta)n_5(\eta)e^{-m_{11} \eta} d\eta,
\] (69)

where m_{11} is a constant greater than zero.

Proof. Multiplying both sides of Equation (66) by $2\omega_i$, and integrating over $\Omega \times [0, t]$, we can obtain:

\[
\frac{d}{dt} \int_\Omega \omega_i \omega_i dx = 2C \int_\Omega \phi_i \omega_i dx - 2R \int_\Omega \hat{\theta}_i \omega_i dx + 2 \int_\Omega \hat{\pi}_j \omega_i dx \\
\leq 2 \int_\Omega \omega_i \omega_i dx + C^2 \int_\Omega \hat{\theta}^2 dx + R^2 \int_\Omega \hat{\pi}^2 dx.
\] (70)

\[\]

Multiplying both sides of Equation (66) by $2\hat{\theta}$, and integrating over Ω, we can get,

\[
\frac{d}{dt} \int_\Omega \hat{\theta}_i dx = 2 \int_\Omega \omega_i \hat{\theta}_i dx + 2 \int_\Omega \hat{\theta} \Delta \hat{\theta}_i dx - 2 \int_\Omega \omega_i \hat{\theta}_i dx - 2 \int_\Omega \omega_i \hat{\theta}_i dx \\
= 2 \int_\Omega \omega_i \hat{\theta}_i dx + 2 \int_\Omega \hat{\theta} \Delta \hat{\theta}_i dx + 2 \int_\Omega \omega_i \hat{\theta}_i dx.
\] (71)

The first term on the right side of Equation (71) can be obtained from Hölder’s inequality:

\[
2 \int_\Omega \omega_i \hat{\theta}_i dx \leq \int_\Omega \omega_i \omega_i dx + \int_\Omega \hat{\theta}^2 dx.
\] (72)
Using a method similar to (4), and taking \(\varepsilon_0 = 2k_1 \), we can get:

\[
\int_{\partial \Omega} \dot{\theta}^2 dS \leq \left(\frac{m_1}{m_0} + 2k_1 \frac{m_2^2}{m_0^2} \right) \int_{\Omega} \dot{\theta}^2 dx + \int_{\Omega} \dot{\theta} \dot{\theta}, dx. \tag{73}
\]

We now deal with the second term on the right side of Equation (71). We have:

\[
2 \int_{\Omega} \dot{\theta} \Delta \dot{\theta} dx = 2 \int_{\Omega} \dot{\theta} \frac{\partial \dot{\theta}}{\partial n} dS - 2 \int_{\Omega} \dot{\theta}_j \dot{\theta}_j dx
\]

\[
= 2k_1 \int_{\partial \Omega} \dot{\theta}^2 dS - 2 \int_{\Omega} \dot{\theta}_j \dot{\theta}_j dx
\]

\[
\leq k_1^2 \int_{\partial \Omega} \dot{\theta}^2 dS - 2 \int_{\Omega} \dot{\theta}_j \dot{\theta}_j dx \tag{74}
\]

Combining (71)–(74), we can get:

\[
\frac{d}{dt} \int_{\Omega} \dot{\theta}^2 dx + \frac{1}{2} \int_{\Omega} \dot{\theta}_j \dot{\theta}_j dx
\]

\[
\leq \int_{\Omega} \omega_j \omega_j dx + \lambda_0 \int_{\Omega} \dot{\theta}^2 dx + 2 \left(\int_{\Omega} (\omega_j \omega_i)^2 dx \right)^{\frac{1}{2}} \int_{\Omega} \theta^4 dx \tag{75}
\]

where \(\lambda_0 = 2k_1 \left(\frac{m_1}{m_0} + 2k_1 \frac{m_2^2}{m_0^2} \right) + 1. \)

Using the result of (B.17) in [26] again, we can also get:

\[
\frac{d}{dt} \int_{\Omega} \dot{\theta}^2 dx + \frac{1}{2} \int_{\Omega} \dot{\theta}_j \dot{\theta}_j dx
\]

\[
\leq \int_{\Omega} \omega_j \omega_j dx + \lambda_0 \int_{\Omega} \dot{\theta}^2 dx + 2 \left(\int_{\Omega} (\omega_j \omega_i)^2 dx \right)^{\frac{1}{2}} \int_{\Omega} \theta^4 dx \tag{76}
\]

Multiplying both sides of Equation (66) by \(2\dot{\phi} \), and integrating over \(\Omega \times [0, t] \), we can get:

\[
\varepsilon_1 \frac{d}{dt} \int_{\Omega} \dot{\phi}^2 dx = 2 \int_{\Omega} \omega_j \dot{\phi}_j dx + 2 \left(\int_{\Omega} \phi \Delta \phi dx - 2L_\varepsilon \int_{\Omega} u_i \phi_j \phi_j dx \right)
\]

\[
= 2 \int_{\Omega} \omega_j \dot{\phi}_j dx + 2 \left(\int_{\Omega} \dot{\phi} \Delta \phi dx + 2L_\varepsilon \int_{\Omega} u_i \phi_j \phi_j dx \right). \tag{77}
\]

The first term on the right side of Equation (77) can be bounded by:

\[
2 \int_{\Omega} \omega_j \dot{\phi}_j dx \leq \int_{\Omega} \omega_j \omega_j dx + \int_{\Omega} \dot{\phi}^2 dx. \tag{78}
\]

Using the result (4), and taking \(\varepsilon_0 = 2k_2 \), we can get:

\[
\int_{\partial \Omega} \dot{\phi}^2 dS \leq \left(\frac{m_1}{m_0} + 2k_2 \frac{m_2^2}{m_0^2} \right) \int_{\Omega} \dot{\phi}^2 dx + \int_{\Omega} \dot{\phi}_j \dot{\phi}_j dx. \tag{79}
\]
The second term on the right side of (77) can be bounded as follows:

\[
2 \int_{\Omega} \phi \Delta \phi \, dx = 2 \int_{\partial \Omega} \frac{\partial \phi}{\partial n} \, dS - 2 \int_{\Omega} \phi_{,ij} \phi_{,ij} \, dx
\]

\[
= 2k_2 \int_{\partial \Omega} \phi^2 \, dS - 2 \int_{\Omega} \phi_{,ij} \phi_{,ij} \, dx
\]

\[
\leq 2k_2 \left(\frac{m_1}{m_0} + 2k_2 \frac{m_2^2}{m_0^2} \right) \int_{\Omega} \phi^2 \, dx - \int_{\Omega} \phi_{,ij} \phi_{,ij} \, dx. \tag{80}
\]

Combining (77), (78), and (80), we can obtain:

\[
\epsilon_1 \frac{d}{dt} \int_{\Omega} \phi^2 \, dx + \frac{1}{2} \int_{\Omega} \phi_{,ij} \phi_{,ij} \, dx
\]

\[
\leq \int_{\Omega} \omega_i \omega_i \, dx + m_{10} \int_{\Omega} \phi^2 \, dx + 2L_c^2 \int_{\Omega} u_i u_i \phi^2 \, dx \tag{81}
\]

\[
\leq \int_{\Omega} \omega_i \omega_i \, dx + m_{10} \int_{\Omega} \phi^2 \, dx + 2L_c^2 \left(\int_{\Omega} (u_i u_i)^2 \, dx \right)^{\frac{3}{4}} \left(\int \phi^4 \, dx \right)^{\frac{1}{4}},
\]

where \(m_{10} = 2k_2 \left(\frac{m_1}{m_0} + 2k_2 \frac{m_2^2}{m_0^2} \right) + 1 \).

Using the results (23) and (32), we can obtain:

\[
\epsilon_1 \frac{d}{dt} \int_{\Omega} \phi^2 \, dx + \frac{1}{2} \int_{\Omega} \phi_{,ij} \phi_{,ij} \, dx
\]

\[
\leq \int_{\Omega} \omega_i \omega_i \, dx + m_{10} \int_{\Omega} \phi^2 \, dx + 2L_c^2 m_1(t)n_5(t). \tag{82}
\]

A combination of (70), (76), (82), and (50) gives:

\[
\frac{d}{dt} \left[\int_{\Omega} \omega_i \omega_i \, dx + \int_{\Omega} \phi^2 \, dx + \epsilon_1 \int_{\Omega} \phi_{,i} \phi_{,j} \, dx + \int_{\Omega} \omega_{i,j} (\omega_{i,j} - \omega_{j,i}) \, dx \right]
\]

\[
\leq (m_6 + 3) \int_{\Omega} \omega_i \omega_i + (R^2 + m_9) \int_{\Omega} \phi^2 \, dx + (C^2 + m_{10}) \int_{\Omega} \phi^2 \, dx
\]

\[
+ (3Mn_4(\tau) + 4C^2 + 4R^2) \int_{\Omega} \omega_{i,j} (\omega_{i,j} - \omega_{j,i}) \, dx + 2L_c^2 m_1(t)n_5(t). \tag{83}
\]

Let,

\[
F_3(t) = \int_{\Omega} \omega_i \omega_i \, dx + \int_{\Omega} \phi^2 \, dx + \epsilon_1 \int_{\Omega} \phi_{,i} \phi_{,j} \, dx + \int_{\Omega} \omega_{i,j} (\omega_{i,j} - \omega_{j,i}) \, dx,
\]

\[m_{11} = \max \left\{ m_6 + 3, \frac{R^2 + m_9}{\epsilon_1}, \frac{C^2 + m_{10}}{\epsilon_1}, 3Mn_4(\tau) + 4C^2 + 4R^2 \right\}. \]

From (83), it can be seen that:

\[
\frac{d}{dt} F_3(t) \leq 2L_c^2 m_1(t)n_5(t) + m_{11} F_2(t). \tag{84}
\]

by an integration of (84) leads to:

\[
F_3(t) \leq 2L_c^2 m_{11} e^{m_{11} t} \int_0^t m_1(\eta)n_5(\eta)e^{-m_{11} \eta} \, d\eta. \tag{85}
\]

Inequality (85) shows that when \(L_c \) tends to zero, the energy \(F_3(t) \) also tends to zero.

5. Conclusions

In this paper, we studied the convergence results for the double-diffusion perturbation equations in a bounded domain. The convergence result of solutions were gained for
the reaction boundary coefficients k_1, k_2 and the Lewis coefficient L_e. Using the method in this paper, similar results for other coefficients could also be gained. Our method is useful for studying the structural stability of bounded regions. However, for unbounded regions, because the regions become more complex, and the inequalities that can be used in bounded regions cannot be used in unbounded regions, essential difficulties will arise. Methods of dealing with stress terms will be the biggest difficulty in unbounded areas. It is an open problem now that we could solve by constructing special functions in relevant future research. In this paper, we only give a theoretical proof and a numerical simulation will be given in another paper.

Author Contributions: Writing—original draft, S.L. and J.S. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by key projects of universities in the Guangdong Province (Natural Science) (2019KZDXM042), “Thirteenth Five-Year Plan” 2020 research project approval (2020KDY040), and the Research Foundations of Guangzhou Huashang College (2021HSKTO1, 2020HSDS16).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: The authors would like to deeply thank all the reviewers for their insightful and constructive comments.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Ames, K.A.; Straughan, B. Non-Standard and Improperly Posed Problems; Mathematics in Science and Engineering series; Academic Press: San Diego, CA, USA, 1997; Volume 194.
2. Hirsch, M.W.; Smale, S. Differential Equations, Dynamical Systems, and Linear Algebra; Academic Press: New York, NY, USA, 1974.
3. Straughan, B. Heated and salted below porous convection with generalized temperature and solute boundary conditions. *Transp. Porous Media* 2020, 131, 617–631. [CrossRef]
4. Straughan, B. *Stability and Wave Motion in Porous Media*; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2008; Volume 165.
5. Straughan, B. Anisotropic inertia effect in microfluidic porous thermostalsutional convection. *Microfluid. Nanofluidics* 2014, 16, 361–368. [CrossRef]
6. Nield, D.A.; Bejan, A. *Convection in Porous Media*; Springer: New York, NY, USA, 1992.
7. Straughan, B. Continuous Dependence on the Heat Source in Resonant Porous Penetrative Convection. *Stud. Appl. Math.* 2011, 127, 302–314. [CrossRef]
8. Payne, L.E.; Song, J.C. Spatial decay estimates for the Brinkman and Dracy flows in a semi-infinite cylinder. *Contin. Mech. Thermodyn.* 1997, 9, 175–190. [CrossRef]
9. Payne, L.E.; Song, J.C. Spatial decay bounds for double diffusive convection in Brinkman flow. *J. Differ. Equ.* 2008, 244, 413–430. [CrossRef]
10. Ames, K.A.; Payne, L.E.; Song, J.C. Spatial decay in the pipe flow of a viscous fluid interfacing a porous medium. *Math. Models Math. Appl. Sci.* 2001, 11, 1547–1562. [CrossRef]
11. Payne, L.E.; Straughan, B. Stability in the initial-time geometry problem for the Brinkman and Darcy equations of flow in porous media. *J. Math. Pures Appl.* 1996, 75, 255–271.
12. Payne, L.E.; Straughan, B. Structural stability for the Darcy equations of flow in porous media. *Proc. R. Soc. Lond. A* 1998, 454, 1691–1698. [CrossRef]
13. Payne, L.E.; Straughan, B. Convergenc and continuous dependence for the Brinkman-Forchheimer equations. *Stud. Appl. Math.* 1999, 102, 419–439. [CrossRef]
14. Scott, N.L. Continuous dependence on boundary reaction terms in a porous medium of Darcy type. *J. Math. Anal. Appl.* 2013, 399, 667–675. [CrossRef]
15. Scott, N.L.; Straughan, B. Continuous dependence on the reaction terms in porous convection with surface reactions. *Quart. Appl. Math.* 2013, 71, 501–508. [CrossRef]
16. Straughan, B. *The Energy Method, Stability and Nonlinear Convection*; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2004; Volume 91.
17. Ames, K.A.; Payne, L.E. On stabilizing against modelling errors in a penetrative convection problem for a porous medium. *Model. Methods Appl. Sci.* 1990, 4, 733–740. [CrossRef]
18. Celebi, A.O.; Kalantarov, V.K.; Ugurlu, D. Continuous dependence for the convective Brinkman-Forchheimer equations. *Appl. Anal.* 2005, 84, 877–888. [CrossRef]
19. Celebi, A.O.; Kalantarov, V.K.; Ugurlu, D. On continuous dependence on coefficients of the Brinkman-Forchheimer equations. *Appl. Math. Lett.* 2006, 19, 801–807. [CrossRef]
20. Franchi, F.; Straughan, B. Continuous dependence and decay for the Forchheimer equations. *Proc. R. Soc. Lond. A* 2003, 459, 3195–3202. [CrossRef]
21. Harfash, A.J. Structural Stability for Two Convection Models in a Reacting Fluid with Magnetic Field Effect. *Ann. Henri Poincare* 2014, 15, 2441–2465. [CrossRef]
22. Kaloni, P.N.; Guo, J. Steady nonlinear double-diffusive convection in a porous medium based upon the Brinkman-Forchheimer Model. *J. Math. Anal. Appl.* 1996, 204, 138–155. [CrossRef]
23. Li, Y.; Lin, C. Continuous dependence for the nonhomogeneous Brinkman-Forchheimer equations in a semi-infinite pipe. *Appl. Math. Comput.* 2014, 244, 201–208. [CrossRef]
24. Lin, C.; Payne, L.E. Structural stability for a Brinkman fluid. *Math. Meth. Appl. Sci.* 2008, 30, 567–578. [CrossRef]
25. Lin, C.; Payne, L.E. Structural stability for the Brinkman equations of flow in double diffusive convection. *J. Math. Anal. Appl.* 2007, 325, 1479–1490. [CrossRef]
26. Lin, C.; Payne, L.E. Continuous dependence on the Soret coefficient for double diffusive convection in Darcy flow. *J. Math. Anal. Appl.* 2008, 342, 311–325. [CrossRef]
27. Payne, L.E.; Song, J.C.; Straughan, B. Continuous dependence and convergence results for Brinkman and Forchheimer models with variable viscosity. *Proc. R. Soc. Lond.* A 1999, 455, 2173–2190. [CrossRef]
28. Straughan, B.; Hutter, K. A priori bounds and structural stability for double diffusive convection incorporating the Soret effect. *Proc. R. Soc. Lond.* A 1999, 455, 767–777. [CrossRef]
29. Gentile, M.; Straughan, B. Structural stability in resonant penetrative convection in a Forchheimer porous material. *Nonlinear Anal. Real World Appl.* 2013, 14, 397–401. [CrossRef]
30. Horgan, L.; Ibragimov, A. Structural stability of generalized Forchheimer equations for Compressible fluids in porous media. *Nonlinearity* 2011, 24, 1–41.
31. Li, Y.F.; Xiao, S.Z.; Zeng, P. The applications of some basic mathematical inequalities on the convergence of the primitive equations of moist atmosphere. *J. Math. Inequalities* 2021, 15, 293–304. [CrossRef]
32. Liu, Y. Continuous dependence for a thermal convection model with temperature-dependent solubility. *Appl. Math. Comput.* 2017, 308, 18–30.
33. Payne, L.E.; Straughan, B. Analysis of the boundary condition at the interface between a viscous fluid and a porous medium and related modelling questions. *J. Math. Pures Appl.* 1998, 77, 317–354. [CrossRef]
34. Li, Y.F.; Zhang, S.H.; Lin, C.L. Structural stability for the Boussinesq equations interfacing with Darcy equations in a bounded domain. *Bound. Value Probl.* 2021, 27, 1–19. [CrossRef]
35. Liu, Y.; Xiao, S.; Lin, Y.W. Continuous dependence for the Brinkman-Forchheimer fluid interfacing with a Darcy fluid in a bounded domain. *Math. Comput. Simul.* 2018, 150, 66–82. [CrossRef]
36. Shi, J.C.; Liu, Y. Structural stability for the Forchheimer equations interfacing with a Darcy fluid in a bounded region in \mathbb{R}^3. *Bound. Value Probl.* 2021, 46, 1–22.
37. Ciarletta, M.; Straughan, B.; Tibullo, V. Structural stability for a thermal convection model with temperature-dependent solubility. *Nonlinear Anal. Real World Appl.* 2015, 22, 34–43. [CrossRef]
38. Chen, W.; Palmieri, A. Nonexistence of global solutions for the semilinear Moore-Gibson-Thompson equation in the conservative case. *Discret. Contin. Dyn. Syst.* 2020, 40, 5513–5540. [CrossRef]
39. Chen, W.; Ikehata, R. The Cauchy problem for the Moore-Gibson-Thompson equation in the dissipative case. *J. Differ. Equ.* 2021, 292, 176–219. [CrossRef]
40. Palmieri, A.; Takamura, H. Blow-up for a weakly coupled system of semilinear damped wave equations in the scattering case with power nonlinearities. *Nonlinear Anal.* 2019, 187, 467–492. [CrossRef]
41. Palmieri, A.; Reissig, M. Semi-linear wave models with power non-linearity and scale-invariant time-dependent mass and dissipation, II. *Math. Nachr.* 2018, 291, 1859–1892. [CrossRef]
42. Liu, Y.; Chen, W. Asymptotic profiles of solutions for regularity-loss-type generalized thermoelastic plate equations and their applications. *Z. Angew. Math. Phys.* 2020, 71, 1–14. [CrossRef]
43. Liu, Y.; Li, Y.; Shi, J. Estimates for the linear viscoelastic damped wave equation on the Heisenberg group. *J. Differ. Equ.* 2021, 285, 663–685. [CrossRef]
44. Weatherburn, C.E. *Differential Geometry of Three Dimensions*; Cambridge University Press: Cambridge, UK, 1980.
45. Chen, W. Cauchy problem for thermoelastic plate equations with different damping mechanisms. *Commun. Math. Sci.* 2020, 18, 429–457. [CrossRef]
46. Chen, W. Decay properties and asymptotic profiles for elastic waves with Kelvin-Voigt damping in 2D. *Asymptot. Anal.* 2020, 117, 113–140. [CrossRef]
47. Chen, W.; Palmieri, A. Weakly coupled system of semilinear wave equations with distinct scale-invariant terms in the linear part. *Z. Angew. Math. Phys.* 2019, 70, 67. [CrossRef]

48. Chen, W.; Palmier, A. A blow-up result for the semilinear Moore-Gibson-Thompson equation with nonlinearity of derivative type in the conservative case. *arXiv* 2019, arXiv:1909.09348. [CrossRef]