NATURAL CONNECTIONS ON RIEMANNIAN PRODUCT MANIFOLDS

DOBRINKA GRIBACHEVA

Abstract
A Riemannian almost product manifold with integrable almost product structure is called a Riemannian product manifold. In the present paper the natural connections on such manifolds are studied, i.e. the linear connections preserving the almost product structure and the Riemannian metric.

Key words: Riemannian almost product manifold, Riemannian metric, integrable structure, almost product structure, linear connection, torsion.

2010 Mathematics Subject Classification: 53C15, 53C25, 53B05.

1. Introduction

The systematic development of the theory of Riemannian almost product manifolds was started by K. Yano in [1], where basic facts of the differential geometry of these manifolds are given. A Riemannian almost product manifold (M, P, g) is a differentiable manifold M for which almost product structure P is compatible with the Riemannian metric g such that an isometry is induced in any tangent space of M.

The geometry of a Riemannian almost product manifold (M, P, g) is a geometry of both structures g and P. There are important in this geometry the linear connections with respect to which the parallel transport determine an isomorphism of the tangent spaces with the structures g and P. This is valid if and only if the structures g and P are parallel with respect to such a connection. In the general case on a Riemannian almost product manifold there exist a countless number of linear connections regarding which g and P are parallel. Such connections are called natural in [2].

In the present work we consider the natural connections on the Riemannian product manifolds (M, P, g), i.e. on the Riemannian almost product manifolds (M, P, g) with an integrable structure P. In our investigations we suppose the condition $\text{tr}P = 0$, which implies that $\dim M$ is an even number.

In [3] A. M. Naveira gave a classification of Riemannian almost product manifolds with respect to the covariant differentiation ∇P, where ∇ is the Levi-Civita connection of g. Having in mind the results in [3], M. Staikova and K. Gribachev gave in [4] a classification of the Riemannian almost product manifolds (M, P, g) with $\text{tr}P = 0$.

In Section 2 we give some necessary facts about the Riemannian almost product manifolds. We recall the classification of Staikova-Gribachev for these...
manifolds which is made regarding the tensor F determined by $F(x, y, z) = g((\nabla_x P) y, z)$. The basic classes are W_1, W_2 and W_3. The class of the Riemannian product manifolds is $W_1 \oplus W_2$.

In Section 3 we recall a decomposition of the space of the torsion tensors on a Riemannian almost product manifold to invariant orthogonal subspaces \mathcal{T}_i $(i = 1, 2, 3, 4)$ given in [2]. We establish some properties of the torsion of a natural connection on a manifold $(M, P, g) \in W_1 \oplus W_2$ in terms of the mentioned decomposition.

In Section 4 we establish that the unique natural connection on $(M, P, g) \in W_1 \oplus W_2$ with torsion T, which can be expressed by the components of F, is the canonical connection. We prove that this is the unique natural connection for which $T \in T_1$.

In Section 5 we consider the natural connections for which the torsion T can be expressed by the components of the tensor $g \otimes \theta$, where θ is the Lee 1-form associated with F. Such connections exist only on a manifold $(M, P, g) \in W_1$ and their torsions belong to a 2-parametric family. When the natural connection does not coincide with the canonical connection then we have $T \in T_1 \oplus T_4$, $T \notin T_1$ and $T \notin T_4$.

2. Preliminaries

Let (M, P, g) be a Riemannian almost product manifold, i.e. a differentiable manifold M with a tensor field P of type $(1, 1)$ and a Riemannian metric g such that

$$P^2 x = x, \quad g(Px, Py) = g(x, y)$$

for arbitrary x, y of the algebra $\mathfrak{X}(M)$ of the smooth vector fields on M. Obviously $g(Px, y) = g(x, Py)$.

Further x, y, z, w will stand for arbitrary elements of $\mathfrak{X}(M)$ or vectors in the tangent space $T_p M$ at $p \in M$.

In this work we consider Riemannian almost product manifolds with $\text{tr} P = 0$. In this case (M, P, g) is an even-dimensional manifold. We denote $\dim M = 2n$.

The classification in [4] of Riemannian almost product manifolds is made with respect to the tensor field F of type $(0,3)$, defined by

$$F(x, y, z) = g((\nabla_x P) y, z),$$

where ∇ is the Levi-Civita connection of g. The tensor F has the following properties:

$$F(x, y, z) = F(x, z, y) = -F(x, Py, Pz),$$

$$F(x, y, Pz) = -F(x, Py, z).$$

The associated 1-form θ for F is determined by the equality

$$\theta(x) = g^{ij} F(e_i, e_j, x),$$
where g^{ij} are the components of the inverse matrix of g with respect to the basis $\{e_i\}$ of T_pM.

The basic classes of the classification in [4] are W_1, W_2 and W_3. Their intersection is the class W_0 of the Riemannian P-manifolds, determined by the condition $F(x, y, z) = 0$ or equivalently $\nabla P = 0$. In the classification there are include the classes $W_1 \oplus W_2$, $W_1 \oplus W_3$, $W_2 \oplus W_3$ and the class $W_1 \oplus W_2 \oplus W_3$ of all Riemannian almost product manifolds.

In the present work we consider only the Riemannian almost product manifolds (M, P, g) with integrable almost product structure P, i.e. the manifolds with zero Nijenhuis tensor N determined by

$$N(x, y) = (\nabla_x P) P y - (\nabla_y P) P x + (\nabla_{Px} P) y - (\nabla_{Py} P) x.$$

These manifolds is called Riemannian product manifolds and they form the class $W_1 \oplus W_2$. The characteristic conditions for the classes W_1, W_2 and $W_1 \oplus W_2$ are the following

$W_1 :$ $F(x, y, z) = \frac{1}{2n} \left\{ g(x, y) \theta(z) + g(x, z) \theta(y) - g(x, P y) \theta(P z) - g(x, P z) \theta(P y) \right\}$;

$W_2 :$ $F(x, y, P z) + F(y, z, P x) + F(z, x, P y) = 0$, $\theta = 0$;

$W_1 \oplus W_2 :$ $F(x, y, P z) + F(y, z, P x) + F(z, x, P y) = 0$.

3. Natural connections on Riemannian product manifolds

The linear connections in our investigations have a torsion.

Let ∇' be a linear connection with a tensor Q of the transformation $\nabla \to \nabla'$ and a torsion T, i.e.

$$\nabla'_x y = \nabla_x y + Q(x, y), \quad T(x, y) = \nabla'_x y - \nabla'_y x - [x, y].$$

The corresponding $(0,3)$-tensors are defined by

$$Q(x, y, z) = g(Q(x, y), z), \quad T(x, y, z) = g(T(x, y), z).$$

The symmetry of the Levi-Civita connection implies

(3.1) $T(x, y) = Q(x, y) - Q(y, x)$,

$$T(x, y) = -T(y, x).$$

A partial decomposition of the space T of the torsion tensors T of type $(0,3)$ is valid on a Riemannian almost product manifold (M, P, g): $T = T_1 \oplus T_2 \oplus T_3 \oplus T_4$, where T_i ($i = 1, 2, 3, 4$) are invariant orthogonal subspaces
4 DOBRINKA GRIBACHEVA

[2]. For the projection operators p_i of \mathcal{T} in \mathcal{T}_i is established:

$$p_1(x, y, z) = \frac{1}{8} \left\{ 2T(x, y, z) - T(y, z, x) - T(z, x, y) - T(Pz, x, Py)
+ T(Py, z, Px) + T(z, Px, Py) - 2T(Px, Py, z)
+ T(Py, Pz, x) + T(Pz, Px, y) - T(y, Pz, Px) \right\},$$

$$p_2(x, y, z) = \frac{1}{8} \left\{ 2T(x, y, z) + T(y, z, x) + T(z, x, y) + T(Pz, x, Py)
- T(Py, z, Px) - T(z, Px, Py) - 2T(Px, Py, z)
- T(Py, Pz, x) - T(Pz, Px, y) + T(y, Pz, Px) \right\},$$

$$p_3(x, y, z) = \frac{1}{4} \left\{ T(x, y, z) + T(Px, Py, z) - T(Px, y, Pz) - T(x, Py, Pz) \right\},$$

$$p_4(x, y, z) = \frac{1}{4} \left\{ T(x, y, z) + T(Px, Py, z) + T(Px, y, Pz) + T(x, Py, Pz) \right\}.$$

Definition 3.1 ([2]). A linear connection ∇' on a Riemannian almost product manifold (M, P, g) is called a natural connection if $\nabla' P = \nabla' g = 0$.

If ∇' is a linear connection with a tensor Q of the transformation $\nabla \rightarrow \nabla'$ on a Riemannian almost product manifold, then it is a natural connection if and only if the following conditions are valid [2]:

$$(3.2) \quad F(x, y, z) = Q(x, y, Pz) - Q(x, Py, z),$$

$$(3.3) \quad Q(x, y, z) = -Q(x, z, y).$$

Let Φ be the $(0,3)$-tensor determined by

$$\Phi(x, y, z) = g \left(\tilde{\nabla} xy - \nabla xy, z \right),$$

where $\tilde{\nabla}$ is the Levi-Civita connection of the associated metric \tilde{g} determined by $\tilde{g}(x, y) = g(x, Py)$.

Theorem 3.1 ([2]). A linear connection with the torsion T on a Riemannian almost product manifold (M, P, g) is natural if and only if

$$4p_1(x, y, z) = -\Phi(x, y, z) + \Phi(y, z, x) - \Phi(x, Py, Pz)
- \Phi(y, Pz, Px) + 2\Phi(z, Px, Py),$$

$$4p_3(x, y, z) = -g(N(x, y), z) = -2 \left\{ \Phi(z, Px, Py) + \Phi(z, x, y) \right\}.$$
Let \((M, P, g)\) be a Riemannian almost product manifold, i.e. \((M, P, g) \in \mathcal{W}_1 \oplus \mathcal{W}_2\). For such a manifold is valid the following equality \([4]\)

\[
(3.4) \quad \Phi(x, y, z) = \frac{1}{2} \left\{ F(y, x, Pz) - F(Py, x, z) \right\}.
\]

By virtue of \((3.4)\), the characteristic condition for the class \(\mathcal{W}_1 \oplus \mathcal{W}_2\) and Theorem \(3.1\) we obtain the following

Theorem 3.2. A linear connection with the torsion \(T\) on a Riemannian product manifold \((M, P, g)\) is natural if and only if

\[
(3.5) \quad p_1(x, y, z) = \frac{1}{2} F(z, y, Px), \quad p_3(x, y, z) = 0.
\]

According to Theorem \(3.2\) and the conditions for the projection operators \(p_2\) and \(p_4\), we get the following

Corollary 3.3. For the torsion \(T\) of a natural connection on a Riemannian product manifold \((M, P, g)\) are valid the following equalities

\[
(3.6) \quad p_2(x, y, z) = \frac{1}{2} \left\{ T(x, y, z) - T(Px, Py, z) + F(z, x, Py) \right\},
\]

\[
p_4(x, y, z) = \frac{1}{2} \left\{ T(x, y, z) + T(Px, Py, z) \right\}.
\]

Further, we suppose that the considered Riemannian product manifold \((M, P, g)\) is not a Riemannian \(P\)-manifold, i.e. \(F\) is not a zero tensor.

According to Theorem \(3.2\) for the torsion \(T\) of a natural connection on a Riemannian product manifold \((M, P, g)\), we have \(T \in \mathcal{T}_1 \oplus \mathcal{T}_2 \oplus \mathcal{T}_4\). If we suppose that \(T = p_2 + p_4\) then, having in mind Corollary \(3.3\), we obtain \(F = 0\), which is a contradiction. Therefore \(T \notin \mathcal{T}_2 \oplus \mathcal{T}_4\). Then we have to consider the cases:

A) \(T \in \mathcal{T}_1\);

B) \(T \in \mathcal{T}_1 \oplus \mathcal{T}_4, T \notin \mathcal{T}_1, T \notin \mathcal{T}_4\);

C) \(T \in \mathcal{T}_1 \oplus \mathcal{T}_2, T \notin \mathcal{T}_1, T \notin \mathcal{T}_2\).

4. Case A

In \([2]\) a natural connection on a Riemannian almost product manifold \((M, P, g)\) is called *canonical* if for its torsion the following equality is valid

\[
T(x, y, z) + T(y, z, x) + T(Px, y, Pz) + T(y, Pz, Px) = 0.
\]

This connection is an analogue of the Hermitian connection on the Hermitian manifolds \([5]\). In \([2]\) it is proved that on any Riemannian product manifold \((M, P, g)\) there exist a unique canonical connection and for the torsion \(T\)
of this connection the condition $T \in T_1 \oplus T_3$ is valid. Then, according to Theorem 3.2 it is valid the following

Theorem 4.1. The case A for the torsion T of a natural connection on a Riemannian product manifold (M, P, g) is valid if and only if this connection is the canonical one. In this case the following equality is satisfied

$$T(x, y, z) = \frac{1}{2} F(z, y, Px).$$

Let T is the torsion T of a natural connection on a Riemannian product manifold (M, P, g). Having in mind the characteristic condition for the class $W_1 \oplus W_2$ and conditions (2.1), we obtain the following expression of T by the independent components of F:

$$T(x, y, z) = \lambda_1 F(x, y, z) + \lambda_2 F(y, z, x) + \lambda_3 F(Px, y, z) + \lambda_4 F(Py, z, x) + \lambda_5 F(x, y, Pz) + \lambda_6 F(y, z, Px) + \lambda_7 F(Px, Py, z) + \lambda_8 F(Py, Pz, x),$$

where $\lambda_i \in \mathbb{R}$ ($i = 1, 2, \ldots, 8$). From (4.2), using (2.1), (3.1) and (3.3), we get (4.1) and therefore T is the torsion of the canonical connection on (M, P, g). Hence we establish that it is valid the following

Proposition 4.2. The canonical connection is the unique natural connection on a Riemannian product manifold (M, P, g), which torsion can be expressed by the tensor F.

The canonical connection on a Riemannian product manifold $(M, P, g) \in \mathcal{W}_1$ is studied in [4]. Having in mind the characteristic condition for the class \mathcal{W}_1 and condition (4.1) for the torsion of the canonical connection on $(M, P, g) \in \mathcal{W}_1 \oplus \mathcal{W}_2$, we obtain the following

Proposition 4.3. For the torsion T of the canonical connection on a Riemannian product manifold $(M, P, g) \in \mathcal{W}_1$ the following equality is valid

$$T(x, y, z) = \frac{1}{4n} \{ g(y, z) \theta(Px) - g(y, Pz) \theta(x) - g(x, z) \theta(Py) + g(x, Pz) \theta(y) \}.$$

5. **Case B and Case C**

Having in mind the latter two propositions, in the present section for the cases B and C we consider the existence of a natural connection with torsion
of the mentioned class implies then the comparison of the latter equality with the characteristic condition. Since the tensor F from (5.1), using (3.1), (3.2) and (3.3), we obtain

$$T(x, y, z) = \lambda_1 g(x, y) \theta(z) + \lambda_2 g(y, z) \theta(x) + \lambda_3 g(z, x) \theta(y) + \lambda_4 g(x, y) \theta(Pz) + \lambda_5 g(y, z) \theta(Px) + \lambda_6 g(z, x) \theta(Py)$$

(5.1)

$$+ \lambda_7 g(x, Py) \theta(z) + \lambda_8 g(y, Pz) \theta(x) + \lambda_9 g(z, Px) \theta(y)$$

$$+ \lambda_{10} g(x, Py) \theta(Pz) + \lambda_{11} g(y, Pz) \theta(Px)$$

$$+ \lambda_{12} g(z, Px) \theta(Py).$$

From (5.1), using (3.1), (3.2) and (3.3), we obtain

$$F(x, y, z) =$$

$$(\lambda_1 - \lambda_{10}) \{g(x, y) \theta(Pz) - g(x, Pz) \theta(y) - g(x, Py) \theta(z) + g(x, z) \theta(Py)\}$$

$$+ (\lambda_4 - \lambda_7) \{g(x, y) \theta(z) - g(x, Pz) \theta(Py) - g(x, Py) \theta(Pz) + g(x, z) \theta(y)\}.$$

Since the tensor F is expressed by the tensor $g \otimes \theta$ only for the class W_1, then the comparison of the latter equality with the characteristic condition of the mentioned class implies

$$\lambda_1 = \lambda_{10}, \quad \lambda_4 - \lambda_7 = \frac{1}{2n}, \quad \lambda_2 = \lambda_5 = \lambda_6 = \lambda_8 = \lambda_9 = \lambda_{11} = \lambda_{12} = 0.$$

Then from (5.1), using the denotations $\lambda = \lambda_1 = \lambda_{10}$ and $\mu = \lambda_7$, we obtain the following

Theorem 5.1. Let the torsion T of a natural connection on a Riemannian product manifold $(M, P, g) \in W_1$ is expressed by $g \otimes \theta$. Then Case B or Case C is valid for T if and only if $(M, P, g) \in W_1$. In this case T has the following representation

$$T(x, y, z) =$$

$$\lambda \{g(y, z) \theta(x) - g(x, z) \theta(y) + g(y, Pz) \theta(Px) - g(x, Pz) \theta(Py)\}$$

(5.2)

$$+ \mu \{g(y, Pz) \theta(x) - g(x, Pz) \theta(y) + g(y, z) \theta(Px) - g(x, z) \theta(Py)\}$$

$$+ \frac{1}{2n} \{g(y, z) \theta(Px) - g(x, z) \theta(Py)\}, \quad \lambda, \mu \in \mathbb{R}.$$

Let us consider Case B, i.e. $T = p_1 + p_4$. Then, according to (3.5) and (3.6), we have that this case is valid if and only if

$$F(z, x, Py) = T(Px, Py, z) - T(x, y, z).$$

(5.3)

We verify directly that condition (5.3) is satisfied for any torsion T determined by (5.2), i.e. for arbitrary λ and μ. Let us remark that for $\lambda = 0$ and $\mu = -\frac{1}{4n}$ from (5.2) we get condition (4.3) for the torsion of the canonical connection on $(M, P, g) \in W_1$, i.e. Case A for the class W_1. Therefore, it is valid the following
Theorem 5.2. Let the torsion T of a natural connection on a Riemannian product manifold $(M, P, g) \in W_1$ is expressed by $g \otimes \theta$. Then Case B is valid if and only if T is determined by (5.2) for $(\lambda, \mu) \neq (0, -\frac{1}{4n})$. □

Let us consider Case C. According to Theorem 5.1, the torsion T is determined by (5.2). Then, having in mind Theorem 5.2, we establish that T satisfies the conditions of Case B. Therefore, we obtain the following

Proposition 5.3. If the torsion T of a natural connection on a Riemannian product manifold $(M, P, g) \in W_1$ is expressed by $g \otimes \theta$, then Case C does not exist. □

6. Conclusion

The canonical connection is the unique natural connection on any Riemannian product manifold (M, P, g), which torsion can be expressed by F. This is the unique natural connection with torsion in Case A.

If a natural connection on $(M, P, g) \in W_1$ has a torsion T expressed by $g \otimes \theta$, then T belongs to a 2-parametric family determined by (5.2). Case A and Case B for T are valid when $(\lambda, \mu) = (0, -\frac{1}{4n})$ and $(\lambda, \mu) \neq (0, -\frac{1}{4n})$, respectively.

Since $\theta = 0$ for the class W_2, then there do not exist any natural connection on $(M, P, g) \in W_2$ with torsion expressed by $g \otimes \theta$. Only Case A is valid on such a manifold.

References

[1] YANO K. Differential geometry on complex and almost complex spaces, Pure and Applied Math. vol. 49, New York, Pergamon Press Book, 1965.
[2] MIHOVA V. Serdica Math. P., 15, 1989, 351–358.
[3] NAVEIRA A. Rend. Mat., 3, 1983, 577–592.
[4] STAIFOVA M., K. Gribachev. Serdica Math. P., 18, 1992, 150–161.
[5] LIHNEROWICZ A. Coll. de Géom. diff. Louvain, 16, 1955, no. 2, 99–122.

Dobrinka Gribacheva
Department of Geometry
Faculty of Mathematics and Informatics
Paisii Hilendarski University of Plovdiv
236 Bulgaria Blvd.
4003 Plovdiv, Bulgaria
e-mail: dobrinka@uni-plovdiv.bg