Implementation of Back Propagation Artificial Neural Network for Heart Disease Abnormality Diagnosis

Jaya Kuncara Rosa Susila*, Muhammad Afit, and Pujo Laksono

Program Studi Teknik Elektro, Fakultas Sains dan Teknologi, Universitas Muhammadiyah Bandung, Jln. Soekarno Hatta No. 752, Panyileukan Kota Bandung Indonesia

*Jaya.kuncara@umbandung.ac.id

Abstract. Heart is a very important human organ, where in normal people heart beats at 60-100 beats per second, but there are abnormalities in the heart rate that can occur due to certain causes so that it becomes slower (bradycardia) or faster (tachycardia). Electrical activity of the heart can be detected by an electrocardiogram (ECG), where the output of this device is a signal that describes the condition of a person's heart. Artificial neural network (ANN) is one of the learning methods of artificial intelligence that can be used for pattern recognition or the other. One of the ANN learning paradigms is backpropagation where the computation goes through 2 stages, namely advanced calculation and backward calculation. This study aims to simulate backpropagation neural networks to recognize patterns from the output of the electrocardiogram using the MATLAB program. The input is form of printed electrocardiogram recording, and then it is normalized, next the data is processed by backpropagation computing with two phases (training phase and testing phase). The output of this ANN is a description of a patient's condition whether normal, bradycardia or tachycardia.

1. Introduction
The electrocardiogram (ECG) is a medical tool equipment with a purpose to detect abnormalities of the heart by measuring bioelectrical activity that is generated by the heart. Machines that record ECGs are called electrocardiograph. Electrocardiograph records the electrical activity of the heart muscle and displays this data on a visual screen or on printed paper.

Artificial intelligence (AI) is a scientific concept which imitates the intelligence of human brain that is applied to a system. One branch of AI for classification, optimization, compression, forecasting, control systems and so on is the artificial neural network (ANN), which mimics the workings of the human nervous system to produce an appropriate/desired output. In this ANN system there is a training system before ANN is tested to a system that will be used. From this data training, ANN can recognize a correct pattern even when the provided data is incomplete.

In this research, ANN with backpropagation learning algorithm was applied to help diagnose abnormalities of heartbeat that is associated with bradycardia and tachycardia. ANN is a supervised method for machine learning with the output of the network compared with the expected targets, therefore error output could be obtained, and then the error is propagated back to fix the weights of the network in order to minimize the error. In the diagnostics system of heartbeat abnormalities that is based on ANN, the success depends on the data that has been used to the system at the training phase.
2. Materials and Methods

2.1 Tools and Materials
The tools used in this research were divided into hardware and software. The hardware consists of a laptop that is sufficient to run a simulation program, while the software is a Windows 10 operating system and MATLAB program. The material used is the result of ECG recording (printed paper ECG).

No.	Data Type	Amount of Data	Training Data	Testing Data
1.	Normal person	70 samples	50 samples	20 samples
2.	Tachycardia patients	40 samples	30 samples	10 samples
3.	Bradycardia patients	30 samples	20 samples	10 samples
	Total amount of data	140 samples	100 samples	40 samples

2.2 System identification
Simply put, the system is divided into 3 sections, namely the input, process, and output. The input section contains some data such as PR interval, QRSD interval, QT interval, QTc interval, P axis, QRS axis, and T axis which are all obtained from ECG recording results (printed paper). The process part is designing the ANN by determining the network architecture, activation functions, and network variations. The last one there are 3 outputs, namely normal, tachycardia, and bradycardia.

2.3 Network Design
Network design is intended to obtain the optimal architecture, activation functions, and network variations to get output with high precision and recall. To get it all, the network needs to be trained with data sets that have been prepared. The training is divided into several levels as follows:

- Training 1 and 2 for determining the network architecture. The purpose of this step is to determine the number of hidden layers and the number of neurons for each hidden layer that produces the best performance during the training process with the smallest MSE (Mean Squared Error) and epoch.
- Training 3 for finding the best momentum and learning rate. At this step, at this stage determine the optimal learning rate and momentum with the architecture that has been obtained from the previous stage.
- Training 4, for finding training variations. This stage aims to find good training variations with architecture, learning rate, and momentum that has been obtained previously.
2.4 **Testing**

Testing is done by using a set of data that has not been drilled previously, i.e. as many as 40 data couples. Instruction given in Matlab to perform the testing is:

\[y = \text{sim}(net, Q) \]

2.5 **Design Analysis of Testing Results**

Performance of ANN after the training has been performed can be measured by evaluating the error results of the training, and testing against a set of new data input. The results of the training and testing can be analyzed by observing the precision or accuracy of the target with the ANN output, which was formulated as:

\[
\text{Percent}_{\text{error}} = \left| \frac{\text{data}_{\text{test}} - \text{output}_{\text{error}}}{\text{data}_{\text{test}}} \right| \times 100\%
\]

3. **Result and Discussion**

The design results can be divided into 3 parts, the results of the training, the results of the test, and the analysis of the test results. The training results are also divided into 3 parts, the results of the first training to determine the network architecture, the results of the second training to determine the best activation value, and the results of the third training to determine the variation of the network. The results of the testing are also divided into 2 parts, testing for training data and testing for test data.

3.1 **First Training Results**

The first and second training intend to determine the network architecture that produces precise output. Architectural determination is done in 2 stages, the first with one hidden layer with variations in the number of neurons from 7 to 30 neurons and the second with two hidden layers with variations in the number of neurons from 5 to 20 neurons with a rapid learning constant of 0.1, a momentum constant of 0, 1, goal performance (target error) 0.001, maximum iteration of 5000 epoch and with gradient descent (trainigd) training algorithm. The results of the first training can be seen in the graph below:

![Graph with 1 hidden layer](image1)

![Graph with 2 hidden layers](image2)

From the results of the first and second training it can be concluded that the optimal network architecture based on the graph above is a network with two hidden layers with patterns 8–20–13–3. 8 shows the number of inputs, 20 indicates first layer neurons unit, 13 indicates second layer neuron unit and 3 indicates the network output unit.

3.2 **Second Training Results**

The second analysis intend to obtain the optimum value of momentum and learning rate by using the best network architecture in the first and second training. The value of learning rate and momentum is varied in the architecture that was obtained in the first training before. At this stage an experiment was carried out by varying the value of momentum and learning rate with values ranging from 0.1 to 0.9. The results of this second training can be seen in the following table.
Table 2. Second Training Result

#	LR	Momentum	Epoch	MSE	Notes	Input	Correct	Wrong	Percentage
50	0.6	0.5	5000	0.0013225	target not reached	40	40	0	100
51	0.6	0.5	5000	0.0015151	target not reached	40	40	0	100
52	0.7	0.5	5000	0.0016181	target not reached	40	40	0	100
53	0.8	0.5	5000	0.0020197	target not reached	40	40	0	100
54	0.9	0.5	5000	0.0012597	target not reached	40	40	0	100
55	0.7	0.1	5000	0.0014485	target not reached	40	39	1	97.5
56	0.2	0.5	5000	0.0011400	target not reached	40	39	1	97.5
57	0.3	0.5	5000	0.0010636	target not reached	40	39	1	97.5
58	0.4	4912	0.0009998	0.0009998	target reached	40	40	0	100
59	0.5	5000	0.0010756	0.0010756	target not reached	40	40	0	100

Based on the results in table 2 above, the best results occur at a learning rate of 0.7 and a momentum of 0.4 which produces an MSE of 0.0009998.

3.3 Third Training Results

The purpose of the third training is to find a variation of the network that able to produce the smallest error with fast computing time. The training was conducted with the best training results in the previous training, namely network architecture 8-20-13-3, learning rate 0.7; momentum 0.4; the target error (MSE) is 0.001 and the maximum epoch is 5000 epoch. The observations are presented in the table below.

Table 3. Third Result data for looking the best variations

#	Variations	MSE	Training Result	Hasil Pengujian	Percentage (%)
1	traingd	0.0011694	5000 target tidak tercapai	40 40 0	100
2	traingdm	0.0011091	5000 target tidak tercapai	40 39 1	97.5
3	traingda	0.0009018	430 target tercapai	40 40 0	100
4	traingdx	0.0099833	162 target tercapai	40 40 0	100
5	trainmp	0.0009717	35 target tercapai	40 39 1	97.5
6	traincfg	0.0002188	499 target tercapai	40 39 1	97.5
7	traincgp	0.0666668	46 target tidak tercapai	40 30 10	75
8	traincgb	0.1000000	57 target tidak tercapai	40 30 10	75
9	trainscg	0.0078080	37 target tercapai	40 40 0	100
10	trainbfj	0.0008823	53 target tercapai	40 36 4	90
11	trainos	0.009830	299 target tercapai	40 40 0	100
12	trainlmm	0.0007434	184 target tercapai	40 21 19	52.5

From the various considerations above, the best variation is to use *traingdx*.

3.4 Test Result

From the results of the training above, it can be determined that the artificial neural network system that will be used in this research using architecture 8-20-13-3, training rate 0.7, momentum 0.4, and network variation *traingdx*.

Testing is done using data that has not been trained before. From the table below, it can be seen that the network is able to recognize the test data patterns precisely, with 100% accuracy. These results indicate that there is good accuracy between the network output and the expected target.
Based on the results of previous research and discussions, it can be concluded that the backpropagation results of ECG recording tools and test results using 8-20-13-3 architecture with a learning rate of 0.7 and momentum 0.4 as well as variations in the network training dx then the activation function using logsig shows good value.

Table 4. The Result of testing system

Testing No.	RATE	PR	QRSD	QT	QTc	Axis P	Axis QRS	Axis T
1	80	136	85	339	391	66	43	37
2	97	169	88	352	447	72	-14	127
3	92	173	97	366	453	80	-11	95
4	85	149	85	330	392	30	54	132
5	80	149	87	344	397	24	54	114
6	94	147	77	359	449	40	146	55
7	76	203	75	421	485	1	33	42
8	84	146	108	347	410	75	59	46
9	76	208	75	367	413	42	33	32
10	80	145	72	337	435	73	38	60
11	61	173	78	428	431	67	23	77
12	90	149	72	351	429	67	24	52
13	88	194	90	371	449	34	87	143
14	77	157	82	354	401	43	88	2
15	94	166	105	353	441	17	-7	-43
16	64	149	73	463	478	57	-23	217
17	64	180	64	382	394	54	46	43
18	88	163	99	324	392	66	-55	-7
19	91	167	103	351	432	70	-57	-46
20	95	165	98	342	430	62	-53	-50
21	105	120	71	302	399	55	126	-37
22	130	135	74	318	468	43	126	-60
23	178	120	83	254	437	57	121	69
24	168	131	91	282	471	49	30	-50
25	110	149	79	346	468	57	68	56
26	101	143	94	347	450	45	98	-50
27	104	143	87	320	421	57	79	58
28	163	139	107	296	487	46	33	99
29	105	129	71	302	399	52	126	-37
30	130	137	74	318	468	50	126	-60
31	58	128	95	418	409	3	17	78
32	58	166	86	394	412	51	29	59
33	59	136	82	440	389	-43	38	-42
34	57	174	95	416	399	35	41	15
35	57	181	83	420	408	-35	51	59
36	56	168	88	398	388	15	24	69
37	56	121	79	407	409	47	36	74
38	53	121	87	419	426	22	-16	15
39	54	197	81	399	400	34	23	38
40	58	177	90	421	399	-12	16	47

4. Conclusion
Based on the results of previous research and discussions, it can be concluded that the backpropagation neural network can be implemented and used as a tool to diagnose heart rate abnormalities based on the results of ECG recording tools and test results using 8-20-13-3 architecture with a learning rate of 0.7 and momentum 0.4 as well as variations in the network training dx then the activation function using logsig shows good value.
References

[1] U. D. Bambang Yuwono, Heru Cahya Rustamaji, “Diagnosa gangguan saluran pernafasan menggunakan jaringan syaraf tiruan,” *semnasIF*, vol. 2011, no. semnasIF, 2011.

[2] E. S. Nugroho, “Pengenalan Pola Sinyal Elektrokardiograf (EKG) Dengan Jaringan Syaraf Tiruan Backpropagation Untuk Diagnosa Kelainan Jantung Manusia (Perangkat Lunak),” in *Applied Engineering Seminar (AES)*, 2007.

[3] H. M. Nawawi, J. J. Purnama, and A. B. Hikmah, “Komparasi Algoritma Neural Network Dan Naive Bayes Untuk Memprediksi Penyakit Jantung,” *J. Pilar Nusa Mandiri*, vol. 15, no. 2, pp. 189–194, Sep. 2019, doi: 10.33480/pilar.v15i2.669.

[4] Y. I. Zaiim, “Sistem Pakar untuk Diagnosa Penyakit Jantung Koroner Menggunakan Metode Perceptron,” Semarang.

[5] K. Fitryadi and Sutikno, “Pengenalan Jenis Golongan Darah Menggunakan Jaringan Syaraf Tiruan Perceptron,” vol. 7, no. 1, 2017, doi: 10.14710/jmasif.v7i1.10794.

[6] F. Hermawan, “Implementasi Jaringan Syaraf Tiruan Backpropagation Untuk Mengenali Motif Batik,” *Ilm. Komput. dan Inform.*, p. 10110051, 2014.

[7] R. S. Suhartanto, C. Dewi, and L. Muflikhah, “Implementasi Jaringan Syaraf Tiruan Backpropagation untuk Mendiagnosis Penyakit Kulit pada Anak,” *J. Pengemb. Teknol. Inf. dan Ilmu Komput. Univ. Brawijaya*, vol. 1, no. 7, pp. 555–562, 2017.

[8] M. D. Wuryandari and I. Afrianto, “Perbandingan Metode Jaringan Syaraf Tiruan Backpropagation Dan Learning Vector Quantization Pada Pengenalan Wajah,” *Komputa*, vol. 1, no. 1, pp. 45–51, 2012.

[9] A. Jumantoro, R. Hartanto, and D. Prastiyanto, “Aplikasi Jaringan Saraf Tiruan Backpropagation Untuk Memprediksi Penyakit THT Di Rumah Sakit Mardi Rahayu Kudus,” *J. Tek. Elektro*, vol. 1, no. 1, pp. 11–21, 2009.

[10] D. Atika Sari, “Peramalan Kebutuhan Beban Jangka Pendek Menggunakan Jaringan Syaraf Tiruan Backpropagation,” Semarang, 2006.

[11] A. Buono, A. Kurniawan, and A. Faqih, “Peramalan Awal Musim Hujan Menggunakan Jaringan Syaraf Tiruan Backpropagation Levenberg-Marquadrat (Early Forecasting Rainy Season Using Artificial Neural Network Backpropagation Levenberg-Marquadrat),” *Semin. Nas. Apl. Teknol. Inf. 2012 (SNATI 2012)*, vol. 2012, no. 6, pp. 27–32, 2012.

[12] D. Supriyadi, “Sistem Informasi Penyebaran Penyakit Demam Berdarah Menggunakan Metode Jaringan Syaraf Tiruan Backpropagation,” Universitas Diponegoro, 2012.

[13] Subiyanto, “[Utama , 1995].” *J. Tek. Elektro*, vol. 2, no. 1, pp. 33–41, 2010.

[14] H. S, “Simulasi Pengenalan Kelainan Jantung dengan Menggunakan Metode Jaringan Syaraf Tiruan.”

[15] G. Pangestu, “Deteksi Kelainan Pada Jantung Menggunakan Citra Ekg (Elektrokardiogram) Dengan Menggunakan Metode LVQ (Learning Vector Quantization) SKRIPSI Oleh,” Malang, 2016.

Acknowledgments

This work was done in Universitas Muhammadiyah Bandung, Bandung, Indonesia, and supported fully by a research grant from Kementerian Riset, Teknologi, dan Pendidikan Tinggi Republik Indonesia, 2019.