A Comparative Analysis of the Ensemble Methods for Drug Design

Rifkat Davronova) and Fatima Adilovab)

Institute of Mathematics Academy of Sciences,
Tashkent,
Uzbekistan

Abstract. Quantitative structure-activity relationship (QSAR) is a computer modeling technique for identifying relationships between the structural properties of chemical compounds and biological activity. QSAR modeling is necessary for drug discovery, but it has many limitations. Ensemble-based machine learning approaches have been used to overcome limitations and generate reliable predictions. Ensemble learning creates a set of diverse models and combines them. In our comparative analysis, each ensemble algorithm was paired with each of the basic algorithms, but the basic algorithms were also investigated separately. In this configuration, 57 algorithms were developed and compared on 4 different datasets. Thus, a technique for complex ensemble method is proposed that builds diversified models and integrates them. The proposed individual models did not show impressive results as a unified model, but it was considered the most important predictor when combined. We assessed whether ensembles always give better results than individual algorithms. The Python code written to get experimental results in this article has been uploaded to Github (https://github.com/rifqat/Comparative-Analysis).

INTRODUCTION

Quantitative structure-activity relationship (QSAR) is a computer or mathematical modeling method for identifying the relationship between biological activity and the structural properties of chemical compounds. The underlying principle is that variations in structural properties cause different biological activities\cite{1}. Structural properties refer to physicochemical properties, and biological activity corresponds to various pharmacokinetic properties, such as absorption, distribution, metabolism, excretion and toxicity.

QSAR simulations help rank the hit line of a large number of chemicals in terms of their desired biological activity and greatly reduces the number of candidates for testing. QSAR modeling has become a common process in pharmacology, but with all the progress of QSAR, even after the well-known article by a group of co-authors\cite{2}, there are many limitations\cite{3, 4}.

For example: the data may include more than hundreds of thousands of compounds, or, on the contrary, a very small sample; each compound can be represented by multiple descriptors; some features are highly correlated; it is assumed that the dataset contains some errors as relationships are estimated through in-situ experiments. Due to these and other limitations for predicting a QSAR based model, it is difficult to achieve a reliable prediction result.

In forecasting based on QSAR, machine learning approaches were applied: linear regression models\cite{5} and Bayesian neural networks\cite{6-8} were used. The random forest (RF)\cite{9,10} deserves special mention - it is the most frequently used algorithm with a high level of predictability, simplicity, and reliability. RF is a kind of ensemble method based on sets of decision trees that can prevent overfitting. RF is considered the gold standard in this area, so new QSAR forecasting methods are often compared in performance with this algorithm.

The well-known Merck Kaggle competition in 2012 drew people’s attention to neural networks. The winning team used multitasking neural networks (MTNN)\cite{11}. The fundamental learning structure is based on simple feedforward neural networks; it avoids overfitting by studying multiple biological analyzes at the same time. The team achieved results that consistently outperformed the random forest algorithm. Despite achieving high performance with a multitasking neural network, this team ended up using an ensemble combining different methods. RF, and many of the algorithms in the famous Kaggle competition used ensemble learning, a technique that creates a set of training models and combines multiple models to produce final predictions. It has been shown theoretically and empirically that the predictive power of ensemble learning is superior to the predictive power of an individual algorithm even if the last are accurate and diverse\cite{12-15}. Ensemble learning manages the strengths and weaknesses of learning individual algorithms, similar to consensus decision making in critical situations.

a)Corresponding author: rifqat.davronov@mathinst.uz
b)Electronic mail: fatadilova@mathinst.uz

arXiv:2012.07640v1 [cs.LG] 11 Dec 2020
Thus, it is popular to use algorithm ensembles by using several algorithms and combining their results. In ensembles, the base algorithms generate partially dependent or independent results on the same or a different part of a dataset, and then results are combined in several ways. The success of an ensemble depends on two main properties: the first is the individual success of the base algorithms of the ensemble, and the second one is the independence of base algorithms’ results from each other (low error, high diversity) [16].

Ensemble methods, including an ensemble of neural networks based on bootstrap sampling in QSAR (data sampling ensemble) [17]; ensemble versus different training methods for drug interactions [18], Bayesian ensemble model with various QSAR instruments (ensemble method) [8], ensemble training based on qualitative and quantitative SAR models [19], hybrid QSAR prediction model with various training methods [20], ensembles with different boosting methods [21], hybrid feature selection and training in QSAR simulations [22], and ensemble against various chemicals to predict carcinogenicity (representative ensembles) [23] have been widely used in drug-like studies.

In contrast to the work in which the results of a comparative analysis of ensemble algorithms are presented [24], this study aims at overcoming the difficulties of QSAR modeling by using ensembles. Our experiments focus on regression ensembles because this type of models is simpler and easier to understand for medical chemists. The performance of ensemble algorithms is investigated with respect to ensemble algorithms themselves, and the base algorithms used within the ensemble algorithms.

The article consists of the following sections: in section 2 we described ensemble and base regression algorithms, dimension reduction process, dataset collection. In section 3 presented the results of simulation running and their discussion. In conclude part (section 4) we showed the previous works in order to detailed the success of our results in comparing with achievements from different studies.

MATERIALS AND METHODS

In this section, the base and ensemble algorithms used in our study are briefly described. For the evaluation of the algorithms, the scikit-learn library was used [25]. Each ensemble algorithm was used with each of the base algorithms. The base algorithms were also used alone. With this configuration (2 ensemble + 1 single) x (19 base) = 57 different algorithms were obtained and used.

We ran our experiments on Windows 10 (Intel(R) Core(TM) i7-9700 CPU © 3.00GHz 3.00 GHz). We used the Scikit-learn library package (version 0.23.2) for conventional machine learning methods.

Ensemble algorithms

Bagging/bootstrapping (BG): Bagging generates N new equal-sized datasets from the original dataset by selecting samples with a replacement [26]. The base algorithms are trained with the datasets. The independence of the individual results is confirmed in the experiments to some degree. N was chosen as 10 in our experiments. The results of the base algorithms are simply averaged to produce the ensemble result.

Additive regression (AR): This is the adaptation of the AdaBoost algorithm to regression types of problems [27]. At each iteration, the samples having big errors at the previous iteration are considered. The iteration number was chosen as 10 in our study. The ensemble result is the weighted mean of the base algorithms. The weights are inversely proportional to the errors of the base algorithms.

Base regression algorithms

In our study, 19 regression algorithms were used as base learners in the ensembles. They are as follows:

Lasso: The Lasso is a linear model that estimates sparse coefficients. It is useful in some contexts due to its tendency to prefer solutions with fewer non-zero coefficients, effectively reducing the number of features upon which the given solution is dependent. For this reason Lasso and its variants are fundamental to the field of compressed sensing. Under certain conditions, it can recover the exact set of non-zero coefficients [26].

Ridge: This model solves a regression model where the loss function is the linear least squares function and regularization is given by the l2-norm. Also known as Ridge Regression or Tikhonov regularization. This estimator has built-in support for multi-variate regression[27].
ElasticNet: ElasticNet is a linear regression model trained with both ℓ_1 and ℓ_2-norm regularization of the coefficients. This combination allows for learning a sparse model where few of the weights are non-zero like Lasso, while still maintaining the regularization properties of Ridge[28].

Orthogonal Matching Pursuit (OMP): OMP is based on a greedy algorithm that includes at each step the atom most highly correlated with the current residual. It is similar to the simpler matching pursuit (MP) method, but better in that at each iteration, the residual is recomputed using an orthogonal projection on the space of the previously chosen dictionary elements[29].

Bayesian Regression: Bayesian regression techniques can be used to include regularization parameters in the estimation procedure; the regularization parameter is not set in a hard sense but tuned to the data at hand[30].

Automatic Relevance Determination: Fit the weights of a regression model, using an ARD prior. The weights of the regression model are assumed to be in Gaussian distributions. Also estimate the parameters lambda (precisions of the distributions of the weights) and alpha (precision of the distribution of the noise). The estimation is done by an iterative procedures (Evidence Maximization)[31].

Passive Aggressive Algorithms: The passive-aggressive algorithms are a family of algorithms for large-scale learning. They are similar to the Perceptron in that they do not require a learning rate. However, contrary to the Perceptron, they include a regularization parameter C [32].

Theil-Sen estimator: TheilSenRegressor is comparable to the Ordinary Least Squares (OLS) in terms of asymptotic efficiency and as an unbiased estimator. In contrast to OLS, Theil-Sen is a non-parametric method which means it makes no assumption about the underlying distribution of the data. Since Theil-Sen is a median-based estimator, it is more robust against corrupted data aka outliers. In univariate setting, Theil-Sen has a breakdown point of about 29.3% in case of a simple linear regression which means that it can tolerate arbitrary corrupted data of up to 29.3% [33].

Huber Regression: This makes sure that the loss function is not heavily influenced by the outliers while not completely ignoring their effect[34].

Kernel ridge regression (KRR): Kernel ridge regression combines ridge regression (linear least squares with l_2-norm regularization) with the kernel trick. It thus learns a linear function in the space induced by the respective kernel and the data. For non-linear kernels, this corresponds to a non-linear function in the original space [35].

Support Vector Regression (SVR): The model produced by support vector classification (as described above) depends only on a subset of the training data, because the cost function for building the model does not care about training points that lie beyond the margin. Analogously, the model produced by Support Vector Regression depends only on a subset of the training data, because the cost function ignores samples whose prediction is close to their target [36].

Decision Tree Regressor (DTR): The goal is to create a model that predicts the value of a target variable by learning simple decision rules inferred from the data features [37].

Random Forest Regressor: Random forest is a meta estimator that fits a number of classifying decision trees on various sub-samples of the dataset and uses averaging to improve the predictive accuracy and control over-fitting[38].

Extra-Trees Regressor: This class implements a meta estimator that fits a number of randomized decision trees various sub-samples of the dataset and uses averaging to improve the predictive accuracy and control over-fitting[39].

Nearest Neighbors Regression: Neighbors-based regression can be used in cases where the data labels are continuous rather than discrete variables. The label assigned to a query point is computed based on the mean of the labels of its nearest neighbors [40].

Multi-layer Perceptron regressor(MLPR): MLPRessor trains iteratively since at each time step the partial derivatives of the loss function with respect to the model parameters are computed to update the parameters. It can also have a regularization term added to the loss function that shrinks model parameters to prevent overfitting. This implementation works with data represented as dense and sparse numpy arrays of floating point values [41].

Dimension reduction process

Drug design datasets generally have a very large number of features. In our study, the original datasets and their dimensionally reduced versions are used. By doing so, the effects of the feature selection process on the accuracies of the algorithms are investigated. The accuracies over the original and dimensionally reduced datasets are compared. The Random Forest Importances method is used for feature selection [42].
TABLE I. The 4 original datasets used in study

Dataset ID	Dataset name	Number of samples	Original number of descriptors	Number of selected features	Reference
1	polymer_133	133	836	10	[44]
2	alkaloid_53	53	2221	10	[45]
3	alkaloid_103	103	355	10	[46]
4	Polymer_150	150	474	10	[47]

Dataset collection

Our drug data collection consists of 4 drug datasets obtained from several studies. The datasets are shown in Table 1. The datasets with 2075 descriptors were formed using the Dragon [43]. The molecules and outputs were obtained from the original studies.

RESULTS AND DISCUSSION

Nineteen base regressors were used together with each ensemble algorithm on 4 regression-type drug design problems. Before simulation we have posed the same questions as in the article [24], since these are the most important characteristics of ensemble methods:

- Do the algorithm ensembles generate more successful results than a single algorithm?
- What is the most successful ensemble algorithm?
- What is the base algorithm-ensemble pair with the best results?
- Which algorithm performs well with the ensembles?
- What is the most successful single algorithm?
- How are the algorithms and datasets grouped according to their performances?
- How does the dimension reduction process affect the results?

To answer these questions, 57 algorithms ((2 ensemble + 1 single) x (19 base algorithms) = 57) were employed on the 4 drug design datasets described in Table 1 and their dimensionally reduced versions. A cross validation was used and the RMSE results were averaged.

The RMSE is defined as:

$$RMSE_{alg_name} = \sqrt{\frac{1}{N} \sum_{i=1}^{N} (y_{alg_name}^i - y_{actual}^i)^2}$$

where $y_{alg_name}^i$ is the prediction of alg.name for the ith test sample, y_{actual}^i is the actual output value of the ith test sample, and N is the number of test samples.

Our base and ensemble algorithms have some hyperparameters to optimize. We used the default hyperparameters.

In the cross-validation methodology, the dataset is randomly divided after shuffling into 2 halves. One half is used in the training and the other is used in the testing. This validation is repeated 5 times. In the results of this validation, 5 estimates of testing the RMSE were obtained for each algorithm and each dataset. In some experiments, very high RMSE results were obtained, especially with the simple linear regression algorithm disturbing the overall averages. Because of this, the performance comparisons of the algorithms were done with the algorithms’ success ranking instead of the averaged RMSEs. In each experiment, the averaged cross-validation RMSEs were sorted in ascending order. The algorithm with the lowest RMSE got the 1st ranking. The worst got the 57th ranking. These success rankings are given in Tables 2 and 3. In Table 2, the results with the original datasets are shown. In Table 3, the results with the dimensionally reduced datasets are shown. The 4 datasets are ordered along the columns of the tables. The algorithms are ordered along the rows of the tables. The average success rate and standard deviation of each algorithm are shown in the last 2 columns.
In Tables 4 and 5, the summaries of Tables 2 and 3 are given, respectively. Each cell is the averaged success ranking of the experiments with the base algorithm in the cell’s row and the ensemble algorithm in the cell’s column. The average success rankings of the single algorithms used are given in the ‘Single’ column. In the ‘Avg.’ column, the averaged success rankings of the experiments with respect to the base algorithms are given. In the ‘Avg.’ row, the averaged success rankings of the experiments with respect to the ensemble algorithms are given.

When Tables 2, 3, 4, 5 are investigated, the following conclusions are reached. For the experiments with the original datasets (Tables 2 and 4):
– The best ranking performance (5.75) is obtained with the Extra Trees Regressor algorithm.
– The best performed ensemble algorithms are additive regression (AR).
– The best performed base algorithm is Support Vector Machine.
– All of the ensemble algorithms generally increased the performance of each base algorithm. The exceptions are Bayesian Ridge, Support Vector Machine and K Neighbors Regressor.
– The Decision Tree and Support Vector Machine base algorithms had their best performances with BG. The Decision Tree and Automatic Relevance Determination algorithms with AR, achieved their best performances.

For the experiments with the dimensionally reduced datasets (Tables 3 and 5):
– The best ranking performance (0.5) is obtained with the Extra Trees Regressor algorithm.
– The best performed ensemble algorithms are additive regression (AR) and bagging (BG).
– The best performed base algorithm is Ridge Regression.
– All of the ensemble algorithms generally increased the performance of each base algorithm. The exceptions are Orthogonal Matching Pursuit, Bayesian Ridge, Automatic Relevance Determination, TheilSen Regressor and Kernel Ridge.
– The Ridge Regression and Support Vector Machine base algorithms had their best performances with BG. The Ridge Regression, Support Vector Machine and Decision Tree algorithms with AR, achieved their best performances.

The average successes of the algorithms were investigated above. Next, the best performing algorithm will be investigated over each individual dataset. In Table 6, the dataset name, and the error and the name of the best performing algorithm are shown for the original and dimensionally reduced datasets.

When Table 6 is investigated, the following conclusions are reached:
– The best performing algorithms are generally ensemble algorithms. This is in agreement with the average success of the algorithms.
– Experiments with dimensional reduced data sets do not have better results than the original data sets, except for 1 data set (polymer_133).

When the algorithms are clustered, the algorithms are represented by points having 4 (the number of datasets) features (dimensions). When the datasets are clustered, the datasets are represented by points having 57 (the number of algorithms) features (dimensions).

According to Figure 1, the following conclusions are reached:
– In both figures, the ensemble-algorithm pairs are generally clustered with their base single algorithms.
– The feature selection process does not affect the similarities of the algorithms dramatically.

According to Figure 2, the following conclusions are reached:
– On the left side of Figure 2, there is no obvious pattern between the clusters and the number of features/samples.
– To the right of Figure 2, the polymers and alkaloids are clustered separately.
No.	No.	Algorithm	1	2	3	4	Avg.
0		Lasso Regression	25	2	25	44	24
1		BG-Lasso Regression	18	6	18	43	21.25
2		AR-Lasso Regression	31	4	31	40	26.5
3		Ridge Regression	52	55	52	27	46.5
4		BG-Ridge Regression	47	39	47	28	40.25
5		AR-Ridge Regression	43	29	43	32	36.75
6		Elastic Net	28	1	28	37	23.5
7		BG-Elastic Net	21	3	21	38	20.75
8		AR-Elastic Net	29	0	29	36	23.5
9		Lasso Least Angle Regression	34	44	34	45	39.25
10		BG-Lasso Least Angle Regression	32	43	32	46	38.25
11		AR-Lasso Least Angle Regression	36	42	36	47	40.25
12		Orthogonal Matching Pursuit	48	48	48	0	36
13		BG-Orthogonal Matching Pursuit	30	24	30	6	22.5
14		AR-Orthogonal Matching Pursuit	24	19	24	1	17
15		Bayesian Ridge	26	5	26	29	21.5
16		BG-Bayesian Ridge	49	35	49	23	39
17		AR-Bayesian Ridge	41	32	41	30	36
18		Automatic Relevance Determination	45	50	45	4	36
19		BG-Automatic Relevance Determination	38	17	38	3	24
20		AR-Automatic Relevance Determination	20	13	20	5	14.5
21		Passive Aggressive Regressor	37	40	37	51	41.25
22		BG-Passive Aggressive Regressor	35	30	35	52	38
23		AR-Passive Aggressive Regressor	40	14	40	53	36.75
24		TheilSen Regressor	55	56	55	2	42
25		BG-TheilSen Regressor	53	53	53	12	42.75
26		AR-TheilSen Regressor	44	34	44	24	36.5
27		Huber Regressor	23	52	23	48	36.5
28		BG-Huber Regressor	27	49	27	49	38
29		AR-Huber Regressor	33	46	33	50	40.5
30		Kernel Ridge	51	54	51	25	45.25
31		BG-Kernel Ridge	46	47	46	26	41.25
32		AR-Kernel Ridge	42	31	42	31	36.5
33		Support Vector Machine	4	16	4	41	16.25
34		BG-Support Vector Machine	1	23	1	39	16
35		AR-Support Vector Machine	14	26	14	42	24
36		K Neighbors Regressor	19	41	19	33	28
37		BG-K Neighbors Regressor	16	37	16	34	25.75
38		AR-K Neighbors Regressor	22	38	22	35	29.25
39		Decision Tree	39	8	39	19	26.25
40		BG-Decision Tree	15	10	15	20	15
41		AR-Decision Tree	0	18	0	15	8.25
42		Random Forest	12	12	12	18	13.5
43		BG-Random Forest	8	15	8	21	13
44		AR-Random Forest	13	28	13	11	16.25
45		Extra Trees Regressor	3	7	3	10	5.75
46		BG-Extra Trees Regressor	6	9	6	16	9.25
47		AR-Extra Trees Regressor	11	20	11	14	14
48		AdaBoost Regressor	9	25	9	17	15
49		BG-AdaBoost Regressor	2	21	2	22	11.75
50		AR-AdaBoost Regressor	5	33	5	13	14
51		Gradient Boosting Regressor	17	22	17	8	16
52		BG-Gradient Boosting Regressor	10	11	10	9	10
53		AR-Gradient Boosting Regressor	7	27	7	7	12
54		Multi Level Perceptron	56	51	56	56	54.75
55		BG-Multi Level Perceptron	50	36	50	55	47.75
56		AR-Multi Level Perceptron	54	45	54	54	51.75
No.	Algorithm	Dataset’s ID	1	2	3	4	Avg.
-----	--------------------------------	--------------	---	---	---	---	------
0	Lasso Regression	41	36	41	46	41	41
1	BG-Lasso Regression	38	32	38	48	39	39
2	AR-Lasso Regression	37	31	37	45	37.5	37.5
3	Ridge Regression	9	7	9	26	12.75	12.75
4	BG-Ridge Regression	12	3	12	23	12.5	12.5
5	AR-Ridge Regression	19	15	19	17	17.5	17.5
6	Elastic Net	33	34	33	39	34.75	34.75
7	BG-Elastic Net	31	29	31	40	32.75	32.75
8	AR-Elastic Net	34	28	34	38	33.5	33.5
9	Lasso Least Angle Regression	42	35	42	47	41.5	41.5
10	BG-Lasso Least Angle Regression	39	33	39	49	40	40
11	AR-Lasso Least Angle Regression	45	30	45	50	42.5	42.5
12	Orthogonal Matching Pursuit	25	26	25	37	28.25	28.25
13	BG-Orthogonal Matching Pursuit	44	12	44	36	34	34
14	AR-Orthogonal Matching Pursuit	43	5	43	35	31.5	31.5
15	Bayesian Ridge	20	21	20	9	17.5	17.5
16	BG-Bayesian Ridge	35	27	35	18	28.75	28.75
17	AR-Bayesian Ridge	30	53	30	5	29.5	29.5
18	Automatic Relevance Determination	28	45	28	8	27.25	27.25
19	BG-Automatic Relevance Determination	47	43	47	11	37	37
20	AR-Automatic Relevance Determination	48	52	48	4	38	38
21	Passive Aggressive Regressor	55	56	55	53	54.75	54.75
22	BG-Passive Aggressive Regressor	27	41	27	52	36.75	36.75
23	AR-Passive Aggressive Regressor	29	54	29	51	40.75	40.75
24	TheilSen Regressor	52	37	52	6	36.75	36.75
25	BG-TheilSen Regressor	53	40	53	3	37.25	37.25
26	AR-TheilSen Regressor	54	44	54	7	39.75	39.75
27	Huber Regressor	40	55	40	25	40	40
28	BG-Huber Regressor	49	46	49	16	40	40
29	AR-Huber Regressor	23	50	23	31	31.75	31.75
30	Kernel Ridge	11	49	11	27	24.5	24.5
31	BG-Kernel Ridge	17	48	17	22	26	26
32	AR-Kernel Ridge	16	51	16	29	28	28
33	Support Vector Machine	15	8	15	43	20.25	20.25
34	BG-Support Vector Machine	14	4	14	41	18.25	18.25
35	AR-Support Vector Machine	7	10	7	42	16.5	16.5
36	K Neighbors Regressor	36	13	36	33	29.5	29.5
37	BG-K Neighbors Regressor	32	11	32	32	26.75	26.75
38	AR-K Neighbors Regressor	50	23	50	44	41.75	41.75
39	Decision Tree	51	38	51	21	40.25	40.25
40	BG-Decision Tree	46	46	46	24	35	35
41	AR-Decision Tree	22	17	22	12	18.25	18.25
42	Random Forest	24	18	24	10	19	19
43	BG-Random Forest	26	6	26	15	18.25	18.25
44	AR-Random Forest	8	9	8	20	11.25	11.25
45	Extra Trees Regressor	2	2	2	0	0	0.5
46	BG-Extra Trees Regressor	2	0	2	1	1.25	1.25
47	AR-Extra Trees Regressor	1	1	1	2	1.25	1.25
48	AdaBoost Regressor	13	22	13	34	20.5	20.5
49	BG-AdaBoost Regressor	10	14	10	28	15.5	15.5
50	AR-AdaBoost Regressor	4	16	4	30	13.5	13.5
51	Gradient Boosting Regressor	3	25	3	19	12.5	12.5
52	BG-Gradient Boosting Regressor	18	20	18	13	17.25	17.25
53	AR-Gradient Boosting Regressor	6	19	6	14	11.25	11.25
54	Multi Level Perceptron	56	47	56	56	53.75	53.75
55	BG-Multi Level Perceptron	21	42	21	55	34.75	34.75
56	AR-Multi Level Perceptron	5	39	5	54	25.75	25.75
TABLE IV. The averaged success rankings of the algorithms on the original datasets (best to worst, 0 to 56).

Algorithm	BG	AG	Single	Avg.
Lasso Regression	21.25	26.5	24	23.92
Ridge Regression	40.25	36.75	46.5	41.17
Elastic Net	20.75	23.5	23.5	22.58
Lasso Least Angle Regression	38.25	40.25	39.25	39.25
Orthogonal Matching Pursuit	22.5	17	36	25.17
Bayesian Ridge	39	36	21.5	32.17
Automatic Relevance Determination	24	14.5	36	24.83
Passive Aggressive Regressor	38	36.75	41.25	38.67
TheilSen Regressor	42.75	36.5	42	40.42
Huber Regressor	38	40.5	36.5	38.33
Kernel Ridge	41.25	36.5	45.25	41.00
Support Vector Machine	16	24	16.25	18.75
K Neighbors Regressor	25.75	29.25	28	27.67
Decision Tree	15	8.25	26.25	16.50
Random Forest	13	16.25	13.5	14.25
Extra Trees Regressor	9.25	14	5.75	9.67
AdaBoost Regressor	11.75	14	15	13.58
Gradient Boosting Regressor	10	12	16	12.67
Multi Level Perceptron	47.75	51.75	54.75	51.42
Avg.	27.08	27.07	29.86	

TABLE V. The averaged success rankings of the algorithms on the dimensionally reduced datasets (best to worst, 0 to 56).

Algorithm	BG	AG	Single	Avg.
Lasso Regression	39	37.5	41	39.17
Ridge Regression	12.5	17.5	12.75	14.25
Elastic Net	32.75	33.5	34.75	33.67
Lasso Least Angle Regression	40	42.5	41.5	41.33
Orthogonal Matching Pursuit	34	31.5	28.25	31.25
Bayesian Ridge	28.75	29.5	17.5	25.25
Automatic Relevance Determination	37	38	27.25	34.08
Passive Aggressive Regressor	36.75	40.75	54.75	44.08
TheilSen Regressor	37.25	39.75	36.75	37.92
Huber Regressor	40	31.75	40	37.25
Kernel Ridge	26	28	24.5	26.17
Support Vector Machine	18.25	16.5	20.25	18.33
K Neighbors Regressor	26.75	41.75	29.5	32.67
Decision Tree	35	18.25	40.25	31.17
Random Forest	18.25	11.25	19	16.17
Extra Trees Regressor	1.25	1.25	0.5	1.00
AdaBoost Regressor	15.5	13.5	20.5	16.50
Gradient Boosting Regressor	17.25	11.25	12.5	13.67
Multi Level Perceptron	34.75	25.75	53.75	38.08
Avg.	27.95	26.83	29.22	

TABLE VI. The averaged success rankings of the algorithms on the dimensionally reduced datasets (best to worst, 0 to 56).

Dataset name	Best performing algorithm	RMSE	Best performing algorithm	RMSE
polymer_133	AR-Automatic Relevance Determination	0.01	BG-Gradient Boosting Regressor	0.01
alkaloid_53	AR-Elastic Net	0.29	BG-Extra Trees Regressor	0.31
alkaloid_103	AR-Decision Tree	0.57	Extra Trees Regressor	0.65
Polymer_150	Orthogonal Matching Pursuit	0.00	Orthogonal Matching Pursuit	0.02
FIGURE 1. The hierarchical clusters of the algorithms according to their RMSE values on the original (left) and dimensionally reduced (right) 4 datasets.
FIGURE 2. The hierarchical clusters of the original (left) and dimensionally reduced (right) 4 datasets according to their RMSE values obtained with 57 algorithms. In the figures, the dataset names, the number of features, and the samples are given.

PREVIOUS WORKS

The selected previous studies in this area for both classification and regression are shown comparatively in Table 7.

According to Table 7, together with our experiments, the following conclusions are reached:
- The number of drug design / chemical data sets used in our experiments is greater than in previous studies, except for [24].
- The number of base machine learning methods used in our experiments is greater than in previous studies.
- The superior success of ensemble algorithms over single algorithms is confirmed.
TABLE VII. Previous works.

Reference	Compared methods in the study	Datasets	Results
[48]	ctree, rtree, cforest, rforest, gbm, fnn, earth, glmnet, ridge, lm, pcr, plsR, rsm, rvm, ksvm, ksvmfp, nnet, nneth2o	1 regression-type (chemical data).	RandomForest showed good results.
[24]	(4 ensemble + 1 single) * (7 base) = 35	15 regression-type (chemical data).	Ensemble methods showed good results.
[49]	AdaBoostM1+Bagging (Ada_Bag), AdaBoostM1+Jrip (Ada_Jrip), AdaBoostM1+J48 (Ada_J48), AdaBoostM1+PART (Ada_PART), AdaBoostM1+RandomForest (Ada_RF), and AdaBoostM1+REPTree (Ada_RT).	MDDR database.	Bagging (Ada_Bag) and Random Forest (Ada_RF) algorithms showed good results.
[50]	EnsemDT, EnsemKRR and other single methods	2 classification datasets (chemical data)	EnsemDT and EnsemKRR than other single methods.

CONCLUSION

In machine learning, committee algorithms (ensembles), especially those with classification applications, are highly popular because they have better performances than single algorithms.

In this study, the comparative performances of algorithm ensembles with drug design datasets in regression applications were investigated. A drug design dataset collection with 4 regression-type datasets was used for this purpose. We obtained the performances of the single algorithms and the algorithm ensembles on those datasets. The combinations of 19 base algorithms and 2 ensemble algorithms were investigated.

ACKNOWLEDGMENTS

The authors would like to express their sincere gratitude to the Ministry of innovative development of the Republic of Uzbekistan (Grant FA-tech-3018–4). The authors are also thankful to several colleagues in both laboratories, who were engaged in many scientific discussions that helped the authors formulate the best current practices modeling discussed herein.