Physiological Responses in C₃ and C₄ Turfgrasses under Soil Water Deficit

Travis Culppeper, Joseph Young, and David T. Montague
Plant and Soil Science Department, Texas Tech University, Lubbock, TX 79409

Dana Sullivan
TurfScout, LLC, Greensboro, NC 27401

Benjamin Wherley
Soil and Crop Sciences Department, Texas A&M University, College Station, TX 77843

Abstract. Lawns must be managed increasingly under less frequent or deficit irrigation. Deficit irrigation can reduce gas exchange, carbon assimilation, and physiological function in both warm- (C₄) and cool- (C₃) season turfgrasses, yet limited research has compared the physiological response to increasing levels of soil water deficit. The objectives of this greenhouse study were to compare three commonly used transition-zone turfgrasses—bermudagrass (Cynodon dactylon), buffalograss (Buchloe dactyloides), and tall fescue (Festuca arundinacea) —and their ability to maintain quality and physiological function under water deficit stress. Visual turf quality, normalized difference vegetation index (NDVI), reflective canopy temperature, and gross photosynthesis were evaluated initially near field capacity (FC), and subsequent soil water deficit [48% (moderate) and 33% (severe)] of plant-available water] conditions. Bermudagrass and tall fescue had similar quality ratings near FC, although the photosynthetic rate was greater for bermudagrass. Compared with other turfgrasses, bermudagrass maintained greater turf quality, NDVI, and photosynthetic rates further into water deficit stress. Tall fescue quality and photosynthetic rates declined most rapidly in both experiments as a result of the combined heat and drought stress. Buffalograss used less water compared with other species, and maintained consistent turf quality, NDVI, and photosynthetic rates under moderate and severe water deficit. These results support the notion that buffalograss and bermudagrass are better adapted than tall fescue at maintaining functional and ecosystem services with shallow soil depths in landscape situations under imposed summertime water restrictions.

Shifts in population dynamics from rural to urban have placed increased pressures on potable water supplies in many areas (Ahern et al., 2003; Vorosmarty et al., 2000). Property values increase with aesthetically pleasing landscapes (Council of Tree and Landscape Appraisers, 2003), but supplemental irrigation is often necessary for maintaining outdoor landscapes in semiarid to arid climates (St. Hilaire et al., 2008). It is estimated that in some hydrological regions, as much as 30% to 50% of all urban water is applied to landscapes, with the majority applied during the summer months (Gerston et al., 2002; Nouri et al., 2013). A major component of urban landscapes is turfgrass (Milesi et al., 2005). Benefits of turfgrass and green urban spaces include reducing air temperature, mitigating environmental pol-

Received for publication 11 July 2019. Accepted for publication 2 Oct. 2019.
D.S. is President, TurfScout, LLC.
J.Y. is the corresponding author. E-mail: joey.young@ttu.edu.
stress. Additional sand plus calcareous clay mix was added around the turfgrass core to bring the soil level up to 1 cm below the top of the container. Samples of each species (n = 36) were established in the greenhouse over a 6-month period before initiating the study. During establishment, containers were maintained under well-watered (three times per week to saturation) greenhouse conditions and fertilized monthly with 18.5 kg N/ha of 24N–3.5P–14.1K plus micronutrients (Plant Food; Scotts Miracle-Gro Products, Inc., Marysville, OH).

An evaporative cooling system and fans were engaged to maintain more stable greenhouse conditions when the internal temperature reached 90 °F (32.2 °C). A CR1000 data logger (Campbell Scientific, Logan, UT) recorded greenhouse environmental data. Solar radiation was monitored using a pyranometer (LI200X; LI-COR Biosciences, Lincoln, NE) placed 6.6 ft (2 m) above the greenhouse bench surface. Supplemental lighting was not provided to plants during either trial. An additional temperature and humidity sensor (HMP60; Vaisala, Helsinki, Finland) was placed at greenhouse bench level throughout each experiment. Each sensor recorded measurements every 60 s, and hourly means were calculated and stored by the data logger. Evaporative demand was estimated through hourly mean vapor pressure deficit (VPD), calculated using saturated vapor pressure and ambient vapor pressure of hourly mean air temperature and relative humidity (Jones, 1992).

Containers were arranged as a randomized complete block design with four replications of each treatment. Blocks were oriented linearly away from the evaporative cooling system to reduce the potential for temperature as a confounding variable. The first and second trials were initiated in 2017 on 7 Mar. and 18 Apr., respectively. All treatments were irrigated to saturation and allowed to drain for 24 h to reach FC. An initial set of turf quality and physiological measurements were collected from all containers near FC. Containers were irrigated three times per week with 90 or 180 mL water to provide 1.6 or 3.3 cm water/week. Gravimetric measurements of containers before initiating the experiment and each irrigation event were used to determine plant-available water (PAW). Subsequent measurements of turf parameters were initiated on day 8 of both trials after experimental units had reached consistent water deficit stress.

Visual turf quality was assessed by three researchers two days per week. The three
Table 2. Analysis of variance for interactions or main treatment effects of three turfgrass species maintained under two levels of water deficit stress under greenhouse conditions.

Trial	Factor	PAW (%)	Turf quality	NDVI	Canopy temp	CO₂ fixed
Trial 1	Day (D)	***	NS	***	***	***
	Species (S)	*	***	***	NS	***
	D × S	NS	*	***	***	NS
	Irrigation (I)	***	***	***	***	NS
	D × I	NS	***	NS	NS	NS
	S × I	***	***	NS	NS	NS
	D × S × I	NS	NS	NS	NS	NS
Trial 2	D	***	***	***	***	***
	S	***	***	***	***	***
	D × S	***	***	NS	***	***
	D × I	NS	***	NS	NS	NS
	S × I	***	***	NS	NS	NS
	D × S × I	NS	NS	NS	NS	NS

ns, *, **, *** = Nonsignificant or significant at P ≤ 0.05, 0.01, or 0.001, respectively. PAW = plant-available water; NDVI = normalized difference vegetation index.

Fig. 2. Mean turf quality for species near field capacity at the initiation of Trials 1 and 2. Data were analyzed separately for trials as a result of an interaction with trial and species. Bars sharing the same letter are the same statistically at α = 0.05.

Results and Discussion

Greenhouse conditions. Based on PAW estimated before each irrigation event, it was determined that deficit irrigation resulted in soil moisture levels of 52 ± 0.13% (sd) and 35 ± 0.14% of PAW (moderate and severe, respectively) during Trial 1, and between 44 ± 0.11% and 31 ± 0.09% of PAW during Trial 2. Daily maximum shortwave radiation, air temperature, and VPD were recorded during both trials (Fig. 1). For Trial 1, maximum daily shortwave radiation averaged 665 ± 224 W-m⁻², whereas maximum daily shortwave radiation for Trial 2 averaged 846 ± 112 W-m⁻². Maximum and minimum daily greenhouse air temperatures for Trial 1 averaged 36.7 ± 3.5 and 22.8 ± 0.5 °C, respectively. Maximum and minimum daily air temperatures for Trial 2 averaged 38.3 ± 2.1 and 28.0 ± 2.8 °C, respectively. In addition,
daily maximum VPD within the greenhouse averaged 5.4 ± 1.2 kPa for Trial 1 and 5.6 ± 1.0 kPa for Trial 2. The somewhat elevated radiation, temperature, and evaporative demand experienced during Trial 2 likely contributed to trial main effects detected through ANOVA (Tables 1 and 2).

FC conditions. Species main effects were observed for all parameters when soil moisture was near FC (Table 1). A trial × species interaction occurred for turf quality with soil water near FC, so each trial was analyzed separately. Turf quality was numerically lower for all species at the beginning of Trial 1 compared with Trial 2 (Fig. 2). Buffalograss had lower turf quality (5 of 9) in Trial 1 than other species based on reduced foliar density achieved during the 6 months of greenhouse acclimation and growth. Reduced greenhouse light levels (Baldwin et al., 2009), greater soil moisture (Qian and Engelke, 1999), or both may have contributed to reduced buffalograss quality during acclimation. Although somewhat reduced relative to Trial 2, both tall fescue and buffalograss had acceptable levels of turf quality (6 and 7, respectively) at FC in Trial 1. In Trial 2, all species had acceptable turf quality, with tall fescue and buffalograss showing similar visual quality (7.5 of 9) near FC, and buffalograss also having greater turf quality than in Trial 1 (7 of 9) (Fig. 2).

There were no trial × species interactions for NDVI or canopy temperature near FC, so data were pooled across trials for each parameter (Table 1). Similar to turf quality, reduced buffalograss coverage lowered NDVI compared with buffalograss and tall fescue (Fig. 3A). Tall fescue exhibited lower canopy temperatures than both C4 grasses at FC (Fig. 3B). This was likely associated with greater transpirational water loss, which would reduce canopy temperature during optimum water availability (Sun et al., 2013). Differences observed among species near FC highlight natural variation in C3 and C4 turfgrasses not related to water deficit stress.

Water deficit stress conditions. Soil moisture levels from two irrigation treatments were less in Trial 2 compared with Trial 1 as a result of greater evaporative demand during Trial 2. The only difference observed at moderate water deficit stress was a decreased percentage of PAW for tall fescue relative to the C4 grasses in Trial 2 (Fig. 4B), which is consistent with previous research demonstrating greater water use rates and reduced moisture in tall fescue relative to C4 turfgrass (Huang et al., 1998). In contrast, bermudagrass PAW percentage was lowest at severe water deficit stress when compared with other species in both trials (Fig. 4). These results demonstrate variations in water usage by the three species under water deficit stress consistent with previous research (Beard and Beard, 2004; Fu et al., 2004; Huang, 2008; Qian and Fry, 1997). Interestingly, there were no differences in water usage among species when greater than 50% PAW was maintained, but reducing water availability to less than 50% led to differences in water usage among the species. Results may demonstrate the ability of buffalograss to reduce overall water usage in drier conditions through osmotic adjustment compared with bermudagrass using more available water before leaf firing and dormancy (Hsiao, 1973; Ludlow et al., 1985; Qian and Fry, 1997). These mechanisms indicate differences in water use and drought symptom expression between the two C4 turfgrasses.

Visual turf quality and NDVI measurements provided evidence of changes in canopy appearance during water deficit stress. ANOVA revealed both day × species and species × irrigation interactions on turf quality for both trials (Table 2). Buffalograss had the lowest turf quality at the start of the water deficit phase, but improved as the trial progressed; tall fescue quality declined through day 15 in Trial 1 (Fig. 5A). Bermudagrass maintained acceptable turf quality throughout Trial 1 except for day 22. Bermudagrass had the best visual quality at moderate water deficit stress, but buffalograss had the highest turf quality at severe water deficit stress in Trial 1 (Fig. 5B). Buffalograss was able to maintain acceptable and similar turf quality ratings at both water deficit levels when combining all dates, whereas bermudagrass and tall fescue had lower turf quality at severe water deficit stress in Trial 1 (Fig. 5B). Warmer temperatures in Trial 2 affected tall fescue more extensively than C4 species under water deficit stress (Fig. 5C). Bermudagrass and buffalograss maintained similar turf quality throughout most of Trial 2, but both C4 grasses experienced significant decline in turf quality between days 11 and 15.

![Normalized Difference Vegetation Index (NDVI) and Canopy Temperature](image-url)
At the conclusion of Trial 2, bermudagrass declined below acceptable turf quality levels and below that of buffalograss. This observation is consistent with previous research that showed buffalograss maintained acceptable quality further into water stress than other species (Qian and Engelke, 1999; Sifers et al., 1990). Buffalograss continued to outperform other species under severe water stress.

Fig. 4. Percent of plant-available water for species × irrigation interaction in Trials 1 (A) and 2 (B). Pot weights during water deficit stress were subtracted from initial pot weight near field capacity to determine the percentage of plant-available water for each pot after each measurement. All measurements dates were averaged. Bars sharing the same letter are the same statistically at α = 0.05.

Fig. 5. Mean turf quality for day × species (A and C) and species × irrigation (B and D) interactions during Trials 1 (A and B) and 2 (C and D). Each figure represents treatments averaged over water deficit level (A and C) or day (B and D). Turf quality was measured by three researchers on a 1- to 9-point scale with 1 = poorest, 9 = best, and 6 = minimum acceptability. The error bars represent the least significant difference (LSD) value at α = 0.05 for the day × species interaction (A and C). Bars sharing the same letter in the species × irrigation interaction (B and D) are the same statistically at α = 0.05.
deficit stress, but both C₄ grasses had better visual quality when compared with tall fescue at moderate water deficits in Trial 2 (Fig. 5D). Increased light quantity and air temperatures in Trial 2 affected visual quality positively of C₄ species, but combined drought and heat stress reduced visual quality of tall fescue.

There was a day × species interaction on NDVI in Trial 1 (Table 2). Limited lateral growth of buffalograss reduced NDVI when compared with other turfgrasses (Fig. 6). However, buffalograss NDVI did not decrease under severe water deficit stress as observed with bermudagrass and tall fescue (Fig. 6B). All species had significant increases in NDVI from days 8 to 11, but bermudagrass and tall fescue declined from day 12 to 15 (Fig. 6A). All species stabilized through the remainder of Trial 1. Main treatment effects occurred for day, species, and irrigation on NDVI in Trial 2 (Table 2). As such, bermudagrass (0.452) and tall fescue (0.442) each had greater NDVIs than buffalograss (0.356), and moderate water deficit stress (0.415) resulted in a greater NDVI than severe water deficit stress (0.383) when combining all other factors.

Canopy temperature measurements during the study provided additional evidence of plant water use and stomatal regulation through transpirational cooling. There were significant day and irrigation main effects on canopy temperature during the water deficit phase for Trial 1 (Table 2). Turfgrasses maintained under severe water deficit had increased canopy temperature relative to those grown under moderate water deficit (30.3 vs. 28.0 °C, respectively) when combining species and measurement dates. In contrast, there was a three-way interaction for day × species × irrigation in Trial 2 (Table 2). Initially, tall fescue had higher canopy temperatures when compared with C₄ species at the start of water deficit stress (Fig. 7). The peak canopy temperature was reached for all species on day 15, followed by reduction of canopy temperatures through the remainder of Trial 2. Peak canopy temperatures corresponded to turf quality reductions in both C₄ species noted previously (Fig. 5C). Buffalograss was the only species with similar canopy temperatures at both water deficit stress levels on all dates (Fig. 7). Buffalograss canopy temperatures did not fluctuate as greatly as other species between dates. Previous research suggests high pubescence and the glaucous nature of buffalograss may allow for minimal transpiration while still maintaining reduced canopy temperature (Jefferson et al., 1989; Stewart et al., 2004). Tall fescue maintained a similar canopy temperature regardless of water deficit level until the final two rating dates, at which time
the severe water deficit stress treatment experienced increased canopy temperature compared with moderate water deficit stress (Fig. 7). Bermudagrass at severe water deficit stress exhibited greater canopy temperatures than moderate water deficit stress between days 15 and 18. As temperatures decreased through day 22 and the remainder of Trial 2, both water deficit treatments maintained similar canopy temperatures. Lack of difference in canopy temperature for buffalograss at two water deficit stress levels demonstrates improved drought tolerance and limited water use characteristics compared with bermudagrass and tall fescue (Colmer and Barton, 2017). In contrast, severe water deficit stress led to rapidly increasing canopy temperatures in tall fescue and, to some extent, in buffalograss.

There was a species main effect on gross photosynthesis measured near FC in both trials (Table 1). As such, bermudagrass exhibited the greatest gross photosynthesis, with tall fescue being intermediate and buffalograss lowest in Trial 1 (Fig. 8A). Tall fescue and buffalograss showed similar rates of gross photosynthesis at the beginning of Trial 2, but less than that of bermudagrass (Fig. 8B). A day × species interaction in both trials resulted in similar results for species as water deficit stress increased (Table 2). Gross photosynthesis of tall fescue diminished rapidly as soils reached water deficit stress (Fig. 8). Water deficit stress likely altered leaf water content in tall fescue, which increased photorespiration potential and altered biochemical reactions that reduced photosynthesis (Hu et al., 2010; Huang et al., 1998; Sun et al., 2013). As tall fescue entered into water deficit stress, gross photosynthesis decreased to the lowest levels of all species, approaching 2 and 3 μmol CO₂/m²/s for Trials 1 and 2, respectively. Bermudagrass gross photosynthesis gradually declined to similar levels as that of tall fescue as water deficit stress progressed in Trial 1. In Trial 2, bermudagrass again declined, but stabilized at levels of 8 μmol CO₂/m²/s (Fig. 8B). Interestingly, although buffalograss showed a trend toward lowest gross photosynthesis near FC, buffalograss maintained moderate rates of gas exchange relative to other species as water deficit stress ensued. There was also a day × irrigation interaction for gross photosynthesis in Trial 2 (Table 2). When combining across species, moderate water deficit stress produced relatively consistent gross photosynthesis levels over the trial duration. However, under severe water deficit stress, gross photosynthesis declined from 8 to 4 μmol CO₂/m²/s through the trial period (Fig. 9A). Under moderate water deficit stress, bermudagrass had the greatest gross photosynthesis (10 μmol CO₂/m²/s), buffalograss was intermediate (8 μmol CO₂/m²/s), and tall fescue was the lowest (4.5 μmol CO₂/m²/s) (Fig. 9B). Under severe water deficit stress, bermudagrass and buffalograss showed similar gross photosynthesis (7 μmol CO₂/m²/s), both of which were greater than tall fescue (3 μmol CO₂/m²/s) (Fig. 9B). These results demonstrate the benefits of the C4 vs. C₃ photosynthetic pathway under combined water deficit and heat stress conditions (Su et al., 2008). However, it should be noted that rooting may have been restricted in this study, which may have prevented grasses from extending roots to access greater available water. This may have affected tall fescue negatively to a greater extent than other species as a result of its well-documented drought avoidance characteristics (Bremer et al., 2006; Qian and Fry, 1997; Su et al., 2008; Younger, 1985).

Conclusions

This greenhouse research evaluated physiological responses of commonly used transition-zone turf species to soil water deficit stress. Although restricting rooting depth could have contributed to results that may differ somewhat from field situations, some notable differences were demonstrated...
among species. Buffalograss maintained the lowest canopy temperatures during water deficit stress, and had the least notable reductions in turf quality, NDVI, and gross photosynthetic rate as water deficit stress progressed. Although bermudagrass showed greater gross photosynthetic rate and NDVI compared with buffalograss near FC, both response variables declined to levels at or less than that of buffalograss as water deficit stress progressed. Tall fescue exhibited the greatest stress when combining heat and water deficit stress, sustaining only 50% of the gross photosynthesis levels measured in bermudagrass and buffalograss in Trial 2. Although a variety of adaptive and functional attributes should be considered when making appropriate species selection, these data support use of C3 species as opposed to tall fescue for maximizing ecosystem services in landscapes routinely experiencing heat and soil water deficit stress throughout the summer months. These results demonstrate more explicitly the limited physiological adaptation of tall fescue on restricted root zones (<7 inches), which may occur in rockier soil profiles or following homeowner conversion.

Literature Cited

Alig, R.J., J.D. Kline, and M. Lichtenstein. 2003. Urbanization on the US landscape: Looking ahead in the 21st century. Landsc. Urban Plan. 69:219–234.

Baldwin, C.M., H. Liu, L.B. McCarty, H. Luo, C.E. Wells, and J.E. Tolar. 2009. Impacts of altered light spectral quality on warm season turfgrass growth under greenhouse conditions. Crop Sci. 49:1444–1453.

Beard, J.B. and H.J. Beard. 2004. Beard’s turfgrass encyclopedia for golf courses, grounds, lawns, sports fields. Michigan State University Press, East Lansing, MI.

Beard, J.B. and R.L. Green. 1994. The role of turfsgrasses in environmental protection and their benefits to humans. J. Environ. Qual. 23:452–460.

Blackburn, G.A. 1998. Quantifying chlorophylls and carotenoids at leaf and canopy scales: An evaluation of some hyperspectral approaches. Remote Sens. Environ. 66:273–285.

Bowman, W.D. 1989. The relationship between leaf water status, gas exchanges, and spectral reflectance in cotton leaves. Remote Sens. Environ. 30:249–255.

Bremer, D.J. and J.M. Ham. 2005. Measurement and partitioning of in situ carbon dioxide fluxes in turfsgrasses using a pressurized chamber. Agron. J. 97:627–632.

Bremer, D.J., S.J. Keeley, and J.D. Fry. 2006. Performance in the transition zone of two hybrid bluegrasses compared with Kentucky bluegrass and tall fescue. Applied Turf. Sci. doi: 10.1094/ATS-2006-0808-02-RS.

Carrow, R.N. 1996. Drought resistance aspects of turfsgrasses in the Southeast: Root–shoot responses. Crop Sci. 36:687–694.

City of Lubbock. 2010. Water use management plan. 3 July 2019. <https://ps.ci.lubbock.tx.us/docs/default-source/water-department-file-library/water-conservation-amp-drought-contingency-plan.pdf?sfvrsn=e9f56e9_c2>.

Colmer, T.D. and L. Barton. 2017. A review of warm-season turfgrass evapotranspiration, responses to deficit irrigation, and drought resistance. Crop. Sci. 57:S10–S110.

Council of Tree and Landscape Appraisers. 2003. Guide for plant appraisal. 9th ed. International Society of Arboriculture, Champaign, IL.

Devitt, D.A., D.S. Neumann, D.C. Bowman, and R.L. Morris. 1995. Water use of landscape plants in an arid environment. J. Arboric. 21:239–245.

Fam, D., E. Mosley, A. Lopes, L. Mathieson, J. Morison, and G. Connellan. 2008. Irrigation of urban green spaces: A review of the environmental, social and economic benefits. Technical report no. 04/08. Cooperative Research Centre for Irrigation Futures, Sydney, Australia.

Fu, J., J. Fry, and B. Huang. 2004. Minimum water requirements of four turfgrasses in the transition zone. HortScience 39:1740–1744.

Gerston, J., M. MacLeod, and C.A. Jones. 2002. Efficient water use for Texas: Policies, tools, and management strategies. Texas Agricultural Experiment Station, College Station, TX.

Hsiao, H.C. 2002. Factors affecting water stress. Annu. Rev. Plant Physiol. 54:259–510.

Hu, L., Z. Wang, and B. Huang. 2010. Diffusion limitations and metabolic factors associated with inhibition and recovery of photosynthesis from drought stress in C3 perennial grass species. Physiol. Plant. 139:93–106.

Huang, B. 2008. Turfgrass water requirements and factors affecting water use, p. 193–205. In: J.B. Beard and M.P. Kenna (eds.). Water quality and quantity issues for turfgrass in urban landscapes. Council for Agricultural Science and Technology spec. publ. no. 27. Council for Agricultural Science and Technology.

Huang, B., J. Fry, and B. Wang. 1998. Water relations and canopy characteristics of tall fescue cultivars during and after drought stress. HortScience 33:837–840.

Huete, A.R. and R.D. Jackson. 1987. Suitability of spectral indices for evaluating vegetation characteristics on arid rangelands. Remote Sens. Environ. 23:229–233.

Jefferson, P.G., D.A. Johnson, and K.H. Asay. 1989. Epicuticular wax production, water status and leaf temperature in Triticaceae range grasses of contrasting visible glaucousness. Can. J. Plant Sci. 69:513–519.

Jones, H.G. 1992. Plants and microclimate: A quantitative approach to environmental plant physiology. 2nd ed. Cambridge University Press, Cambridge, MA.

Kim, D.H., M.R. Doyle, S. Sung, and R.M. Amasino. 2009. Vernalization: Winter and the timing of flowering in plants. Ann. Rev. Dev. Biol. 25:277–299.

Ludlow, M.M., M.J. Fisher, and I.R. Wilson. 1985. Stomatal adjustment to water deficits in three tropical grasses and a tropical legume grown in controlled conditions and in the field. Austral. J. Plant Physiol. 12:131–149.

Milesi, C.S., W. Running, C.D. Elvidge, J.B. Dietz, B.T. Tuttle, and R.R. Nemani. 2005. Mapping and modeling the biogeochemical cycling of turf grasses in the United States. Environ. Mgt. 36:426–438.

Morris, K.N. and R.C. Shearman. 1998. NTEP turfgrass evaluation guidelines. In: NTEP turfgrass evaluation workshop, Beltsville, MD.

Nouri, H., S. Beecham, F. Kazemi, and A.M. Hassanli. 2013. A review of ET measurement techniques for estimating the water requirements of urban landscape vegetation. Urban Water J. 10:247–259.

Qian, Y.L. and M.C. Engelke. 1999. Performance of five turfgrasses under linear gradient irrigation. HortScience 34:893–896.

Qian, Y.L. and J.D. Fry. 1997. Water relations and drought tolerance of four turfgrasses. J. Amer. Soc. Hort. Sci. 122:129–133.

Schiavon, M., B.D. Barnes, D.A. Shaw, J.M. Henry, and J.H. Baird. 2013. Strategies for converting tall fescue to warm-season turf in a Mediterranean climate. HortTechnology 23:442–448.

Sifers, S.T., J.B. Beard, and M.H. Hall. 1990. Comparative dehydration avoidance and drought resistance among major warm-season turfgrass species and cultivars. Texas Turfgrass Research 1990:PR-4783–4786. Texas Agr. Expt. Sta. Publ., College Station, TX.

St. Hilaire, R., M.A. Arnold, D.C. Wilkersron, D.A. Devitt, B.H. Hurc. J.B. Lesikar, V.I. Lohr, C.A. Martin, G.V. McDonald, R.L. Morris, D.R. Pittenger, D.A. Shaw, and D.F. Zoldoske. 2008. Efficient water use in residential urban landscapes. HortScience 43:2081–2092.

Steinke, K., D. Chalmers, J. Thomas, and R. White. 2011. Bermudagrass and buffalograss drought response and recovery at two soil depths. Crop Sci. 51:1215–1223.

Stewart, J.R., R. Kjelgren, P.G. Johnson, and M.R. Kuhns. 2004. Soil-water-use characteristics of precision-irrigated buffalograss and Kentucky bluegrass. Appl. Turfgrass Sci. doi: 10.1094/ATS-2004-1118-01-RS.

Stier, J.C., K. Steinke, E.H. Ervin, F.R. Higgison, and P.E. McMaugh. 2013. Turfgrass benefits and issues, p. 105–145. In: J.C. Stier, P.B. Horgan, and A.S. Bonos (eds.). Turfgrass: Biology, use, and management. American Society of Agronomy, Soil Science Society of America, and Crop Science Society of America, Madison, WI.

Su, K., J.D. Bremer, S.J. Keeley, and J.D. Fry. 2008. Rooting characteristics and canopy responses to drought of turfgrasses including hybrid bluegrass. Agron. J. 100:949–956.

Sun, J., W. Meyer, J. Cross, and B. Huang. 2013. Growth and physiological traits of canopy and root systems associated with drought resistance in tall fescue. Crop Sci. 53:575–584.

Vörösmary, C.J., P. Green, J. Salisbury, and R.B. Lammers. 2000. Global water resources: Vulnerability from climate change and population growth. Science 289:284–288.

Younger, V.B. 1985. Physiology of water use and water stress, p. 37–43. In: V.A. Gibbault and S.T. Coeckeran (eds.). Turfgrass water conservation. University of Califorina, Riverside, Coop. Ext. Publ. 21405. University of California, Riverside, CA.

Zhang, J., B. Poudel, K. Kenworthy, J.B. Unruh, D. Rowland, J.E. Erickson, and J. Kruze. 2019. Drought responses of above-ground and below-ground characteristics in warm-season turfgrass. J. Agron. Crop Sci. 205:1–12.