HADWIGER NUMBERS OF SELF-COMPLEMENTARY GRAPHS

ANDREI PAVELESCU AND ELENA PAVELESCU

Abstract. The Hadwiger number of a graph G, denoted by $h(G)$, is the order of the largest complete minor of G. A graph is said to be self-complementary if it is isomorphic to its complement. We prove that for all $n \equiv 0, 1(\mod 4)$ and for all $\left\lfloor \frac{n+1}{2} \right\rfloor \leq h \leq \left\lfloor \frac{3n}{5} \right\rfloor$, there exists a self-complementary graph G with n vertices whose Hadwiger number is h.

1. Introduction

A minor of a simple undirected graph G is a graph H that can be obtained from G through a series of vertex deletions, edge deletions, and edge contractions. The Hadwiger number of a simple undirected graph G, denoted by $h(G)$, is the order of the largest complete minor of G. The Hadwiger conjecture, one of the famous problems in graph theory, states that for any graph G, $\chi(G) \leq h(G)$, where $\chi(G)$ is the chromatic number of G. While the validity of the conjecture is still unknown in general, Girse and Gillman [1] and Rao and Sahoo [5] proved the conjecture to be true for self-complementary graphs. A graph is said to be self-complementary if it is isomorphic to its complement. Nordhaus and Gaddum [3] proved that for a self-complementary graph G on n vertices, $\chi(G) \leq \left\lfloor \frac{n+1}{2} \right\rfloor$. Rao and Sahoo [5] showed that $\left\lfloor \frac{n+1}{2} \right\rfloor \leq h(G)$. The same lower bound for $h(G)$ was independently found by the authors in [4]. In [5] and [4], different classes of examples show that this lower bound is attained.

Motivated by a conjecture of Kostochka [2], Stiebitz [6] proved that if G is a graph on n vertices, then $h(G) + h(cG) \leq \left\lfloor \frac{6n}{5} \right\rfloor$, where cG is the complement of G. This implies that for a self-complementary graph with n vertices G, $h(G) \leq \left\lfloor \frac{3n}{5} \right\rfloor$. Given these upper and lower bounds for the Hadwiger numbers of self-complementary graphs, Rao and Sahoo [5] asked whether each integer within this allowable range is realized as a Hadwiger number of a self-complementary graph. In what follows, we answer this question in the positive. We first show that the $\left\lfloor \frac{3n}{5} \right\rfloor$ upper bound is realized for all $n \equiv 0, 1(\mod 4)$, thus proving the upper bound for the Hadwiger number is sharp. Then we use induction to prove the following:

Date: September 2, 2018.
Theorem 1. For all \(n \equiv 0, 1 \pmod{4} \) and for all \(\left\lfloor \frac{n+1}{2} \right\rfloor \leq h \leq \left\lfloor \frac{3n}{5} \right\rfloor \), there exists a self-complementary graph \(G \) with \(n \) vertices whose Hadwiger number is \(h \).

We prove Theorem 1 in the next two sections.

2. CONSTRUCTIONS FOR THE UPPER BOUND

Self-complementary graphs with \(n \) vertices exist only for \(n \equiv 0, 1 \pmod{4} \). One is prompted by the upper bound of \(\left\lfloor \frac{3n}{5} \right\rfloor \) to consider the remainders of \(n \) modulo 5. The Chinese Remainder Theorem yields ten cases that need to be considered. The following construction, introduced in \([5]\), provides examples of self-complementary graphs with maximum Hadwiger number in eight of the cases.

Consider \(X_r \) a self-complementary graph on \(r \) vertices, \(K_q \) the complete graph on \(q \) vertices, and \(E_q \) the graph with \(q \) vertices and no edges. The graph \(G \) with \(n = 4q + r \) vertices described in Figure 1 is self-complementary. In this figure, the triple lines mark that all edges between the respective subgraphs are present (i.e. a complete bipartite graph).

![Figure 1. A self-complementary graph with \(n = 4q + r \) vertices.](image)

By assigning different values to \(r \) and \(q \) in the graph described in Figure 1 we obtain self-complementary graphs of maximal Hadwiger number for all \(n \equiv 0, 1 \pmod{4} \), except \(n \equiv 12, 17 \pmod{20} \). These graphs are presented in Table 1. We explain why each of these eight graphs attain the maximum Hadwiger number of \(\left\lfloor \frac{3n}{5} \right\rfloor \).

Let \(p \) denote the minimum between \(q \) and \(r \). For each copy of \(E_q \), contract \(p \) disjoint edges between \(p \) of its vertices and the same \(p \) vertices of \(X_r \). This way, we obtain a \(K_{2q+p} \) minor of \(G \). Notice that for all eight graphs in Table 1 \(2q + p \) equals the upper bound \(\left\lfloor \frac{3n}{5} \right\rfloor \), thus \(h(G) = \left\lfloor \frac{3n}{5} \right\rfloor \).

For \(n = 20s + 12 \) and \(n = 20s + 17 \), we found that no values of \(r \) and \(q \) yield graphs whose Hadwiger number is \(\left\lfloor \frac{3n}{5} \right\rfloor \) (\(12s + 7 \) and \(12s + 10 \), respectively). For these two cases, we provide different classes of examples.
Table 1.

n = 4q + r	r	q	h = ⌊3n/5⌋
20s	4s	4s	12s
20s + 1	4s + 1	4s	12s
20s + 4	4s	4s + 1	12s + 2
20s + 5	4s + 1	4s + 1	12s + 3
20s + 8	4s	4s + 2	12s + 4
20s + 9	4s + 1	4s + 2	12s + 5
20s + 13	4s + 1	4s + 3	12s + 7
20s + 16	4s + 4	4s + 3	12s + 9

For \(n = 12 \), \(\lfloor \frac{3n}{5} \rfloor = 7 \). The self-complementary graph with 12 vertices presented in Figure 2 contains a \(K_7 \) minor obtained by contracting the five marked edges.

Figure 2. A self-complementary graph with \(n = 12 \) vertices containing a \(K_7 \) minor. This minor can be obtained by contracting the five marked edges.

For \(n = 20s + 12 \) with \(s \geq 1 \), let \(G \) be the self-complementary graph obtained from the graph in Figure 3, together with all edges between the vertices of \(T_1, T_2, T_3, T_4 \) and the vertices of the two copies of \(E_s \), and all edges between the vertices of \(T_1, T_2, T_3, T_4 \) and the vertices of the two copies of \(K_s \). For a natural number \(m \), \(K_m \) denotes the complete graph with \(m \) vertices and \(E_m \) the graph on \(m \) vertices with an empty edge set. This graph admits a \(K_{12s+7} \) minor obtained by performing the following sequence of edge contractions:

- For \(i \in \{1, 3\} \), choose one vertex \(t_i \) of \(T_i \) and contract \(2s \) disjoint edges between the remaining vertices of \(T_i \) and the \(2s \) vertices of the two copies of \(K_s \);
For \(i \in \{2, 4\} \), choose one vertex \(t_i \) of \(T_i \) and contract \(2s \) disjoint edges between the remaining vertices of \(T_i \) and the \(2s \) vertices of the two copies of \(E_s \);

• the edge \(a_3a_4 \) contracts to form a single vertex \(a_3 = a_4 \);
• the edges \(a_1t_1 \) and \(a_1t_3 \) contract to form the vertex \(a_1 = t_1 = t_3 \).
• the edges \(a_2t_2 \) and \(a_2t_4 \) contract to form the vertex \(a_2 = t_2 = t_4 \).

Note that the four copies of \(K_{2s+1} \) induce a \(K_{8s+4} \) subgraph of \(G \). The contractions of edges in between the vertices of the \(T_i \)'s and those of the \(K_s \)’ and those of \(E_s \), respectively, take place within bipartite graphs. As such, there are many possible choices of the set of contracted edges. This sequence of edge contractions produces a \((8s + 4) + 4s + 3 = 12s + 7\) complete minor.

Figure 3. A self-complementary graph on \(n = 20s + 12 \) vertices containing a \(K_{12s+7} \) minor. All the drawn edges represent complete bipartite graphs, and \(a_1, a_2, a_3, \) and \(a_4 \) are single vertices. All edges between \(T_1, T_2, T_3, T_4 \) and the two copies of \(E_s \) and the two copies of \(K_s \) are also included in the graph. These are not drawn to preserve readability.

For \(n = 20s + 17, s \geq 0 \), we build a self-complementary graph \(G \) on \(n \) vertices by adding a vertex \(a \) to the graph in Figure 1 with \(r = 4s + 4 \) and \(q = 4s + 3 \). See Figure 1.

Consider the subgraph of \(G \) induced by the vertices of \(X_{4s+4} \). Since the average degree of the vertices of \(X_{4s+4} \) is \(\frac{4s+3}{2} \), exactly half of them have degree less than \(\frac{4s+3}{2} \) (see [4]). Let \(b \) be one of these vertices. The vertex \(a \) neighbors all the vertices of the two copies of \(K_{4s+3} \), and half of the vertices of \(X_{4s+4} \), namely those of small degree, \(b \) included. To obtain the \(K_{12s+10} \) complete minor, contract \(4s + 3 \) disjoint edges between one copy of \(E_{4s+3} \) and the \(4s + 3 \) vertices of \(X_{4s+4} \) except \(b \), another \(4s + 3 \) disjoint edges between the other copy of \(E_{4s+3} \) and the same \(4s + 3 \) vertices of \(X_{4s+4} \), and the edge \(ab \).
3. **Inductive Step**

Let $n \geq 12$, $n \equiv 0, 1 (\text{mod } 4)$. Assume that for each integer k between $\lfloor \frac{n+1}{2} \rfloor$ and $\lfloor \frac{3n}{5} \rfloor$, there exists a self-complementary graph G on n vertices whose Hadwiger number is k. Using the construction in Figure 1 with $X_r = G$ and $q = 1$, we obtain a self-complementary graph on $n + 4$ vertices and Hadwiger number $k + 2$. As

$$\left\lfloor \frac{n + 4 + 1}{2} \right\rfloor - \left\lfloor \frac{n + 1}{2} \right\rfloor = 2 \quad \text{and} \quad \left\lfloor \frac{3(n + 4)}{5} \right\rfloor - \left\lfloor \frac{3n}{5} \right\rfloor \leq 3,$$

it follows that, for every k in between $\lfloor \frac{n+4+1}{2} \rfloor$ and $\lfloor \frac{3(n+4)}{5} \rfloor$, one inductively builds an example of a self-complementary graph on $n + 4$ vertices and Hadwiger number k, with the exception of $k = \lfloor \frac{3(n+4)}{5} \rfloor$ when $\left\lfloor \frac{3(n+4)}{5} \right\rfloor - \left\lfloor \frac{3n}{5} \right\rfloor = 3$. Since the case of the upper bound $k = \lfloor \frac{3(n+4)}{5} \rfloor$ was already covered in the previous section, the proof is complete by induction on n.

References

1. R. Girse, R. Gillman. *Homomorphisms and related contractions of graphs*. International J. of Mathematics and Mathematical Sciences 11 (1988), Issue 1, 95–100
2. A.V. Kostochka. *A lower bound for the product of the Hadwiger number of a graph and its complement*. Komb. Anal. 8, Moscow (1989), 50–62
3. E.A. Nordhaus, J.W. Gaddum. *On Complementary Graphs*. Amer. Math. Monthly 63, No. 3 (1956), 175–177
4. A. Pavelescu, E. Pavelescu. *Complete minors of self-complementary graphs*, preprint available at https://arxiv.org/abs/1708.02309
5. S.B. Rao, U.K. Sahoo. *Complexity results in self-complementary graphs*. AIMSCS research report no RR2014-21 (2014)
6. M. Stiebitz. *On Hadwiger’s number – A problem of the Nordhaus-Gaddum type*. Discrete Mathematics 101 (1992), 307–317
University of South Alabama, Mobile, AL 36688
E-mail address: andreipavelescu@southalabama.edu

University of South Alabama, Mobile, AL 36688
E-mail address: elenapavelescu@southalabama.edu