Production of dual species Bose–Einstein condensates of 39K and 87Rb*

Cheng-Dong Mi(米成栋)1,2, Khan Sadiq Nawaz1,2, Peng-Jun Wang(王鹏军)1,2,†, Liang-Chao Chen(陈良超)1,2, Zeng-Ming Meng(孟增明)1,2, Lianghui Huang(黄良辉)1,2, and Jing Zhang(张靖)1,2,‡

1 State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Opto-electronics, Shanxi University, Taiyuan 030006, China
2 Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan 030006, China

(Received 30 January 2021; revised manuscript received 11 March 2021; accepted manuscript online 15 March 2021)

We report the production of 39K and 87Rb Bose–Einstein condensates (BECs) in the lowest hyperfine states $|F = 1, m_F| = 1\rangle$ simultaneously. We collect atoms in bright/dark magneto-optical traps (MOTs) of 39K/87Rb to overcome the light-assisted losses of 39K atoms. Gray molasses cooling on the D1 line of the 39K is used to effectively increase the phase density, which improves the loading efficiency of 39K into the quadrupole magnetic trap. Simultaneously, the normal molasses is employed for 87Rb. After the microwave evaporation cooling on 87Rb in the optically plugged magnetic trap, the atoms mixture is transferred to a crossed optical dipole trap, where the collisional properties of the two species in different combinations of the hyperfine states are studied. The dual species BECs of 39K and 87Rb are obtained by further evaporative cooling in an optical dipole trap at a magnetic field of 372.6 G with the background repulsive interspecies scattering length $a_{\text{KRb}} = 34a_0$ (a_0 is the Bohr radius) and the intraspecies scattering length $a_K = 20.05a_0$.

Keywords: atom cooling methods, ultracold collisions, ultracold gases, hyperfine interactions

PACS: 37.10.De, 34.50.Cx, 32.80.Wr, 67.85.–d

DOI: 10.1088/1674-1056/abee6d

1. Introduction

Since Bose–Einstein condensates (BECs) were firstly observed in alkali atoms,\,[1,2] the ultracold atomic gases have attracted much attention to study many interesting quantum phenomena, e.g., the BEC–BCS crossover, spin–orbit coupling,\,[3–6] Mott insulator in the optical lattice,\,[7–9] and ultracold chemistry.\,[10,11] Dual species ultracold gasses greatly expand the research area of this platform to study even more complex physical phenomena that are not accessible in a single component quantum gas, such as producing heteronuclear molecules with long dipole–dipole interaction,\,[15–17] creating polarons near quantum criticality,\,[14–20] and observation of collective dynamics of a mixture of Bose and Fermi superfluids.\,[21] To date, several dual Bose–Bose species have been cooled to BECs in experiments, including 23Na–87Rb,\,[22] 39K–87Rb,\,[23] 39K–23Na,\,[24] 41K–87Rb,\,[25,26] 88Sr–87Rb,\,[27] 84Sr–87Rb,\,[28] 133Cs–87Rb,\,[29,30] 88Sr–87Rb,\,[27] 133Cs–87Rb,\,[29,30] and the two-species Mott phases, a dark spontaneous optical force trap (dark SPOT)\,[35] is used to load the 87Rb atoms in the $|F = 1, m_F| = 1\rangle$ state with the pre-cooling being done by the microwave evaporation in the quadrupole trap and later in the quadrupole Ioffe–Pritchard configuration (QUIC) trap. However, we follow a modified route to achieve the dual species condensate in the $|F = 1, m_F| = 1\rangle$ state using the gray molasses on the D1 line and the pre-cooling by the microwave evaporation in an optically plugged magnetic trap. At the three-dimensional MOT phases, a dark spontaneous optical force trap (dark SPOT)\,[35] is used to load the 87Rb atoms in the $|F = 1, m_F| = 1\rangle$ state in the central part without repumping beams, and a bright MOT loads the 39K atoms at the same time. This scheme mitigates the atoms loss resulted from the inelastic collisions and the light-induced loss of different species in the MOT loading stage. To effectively cool the 39K, the gray molasses cooling\,[36–39] on D1

*Project supported by the National Key R&D Program of China (Grants Nos. 2016YFA0301602 and 2018YFA0307601), the National Natural Science Foundation of China (Grant Nos. 11974224, 11704234, 11804203, 12034011, 12022406, 12004229, and 92065108), the Fund for Shanxi “1331 Project” Key Subjects Construction, and the Program of Youth Sanjin Scholar.

†Corresponding author. E-mail: petjun_wang@sxu.edu.cn
‡Corresponding author. E-mail: zhang74@sxu.edu.cn, zhang74@yahoo.com
© 2021 Chinese Physical Society and IOP Publishing Ltd

http://iopscience.iop.org/cpb http://cpl.iphy.ac.cn

063401-1
line is used after the loading stage in the magneto-optic trap. The obstacle of negative background scattering length is overcome by tuning the 39K scattering length to $a_K = 20.05 a_0$ by using an external homogeneous magnetic field at 372.6 G near a broad Feshbach resonance centered at 403.4 G, where it is positive to facilitate sympathetic cooling below 1 μK with the background interspecies scattering length $a_{KRb} = 34 a_0$ (a_0 is the Bohr radius) during the final evaporation step in the optical dipole trap. Using this scattering length improves the density of 39K due to the sympathetic cooling compared to the case cooling the 39K alone.

2. The 39K and 87Rb double MOT

The experimental setup is shown in Fig. 1, which has been used for the creation of 87Rb BEC in Refs. [40,41]. The 87Rb and 39K atoms are first simultaneously cooled and trapped in the 2D MOT chamber to form an atomic beam. This beam is then pushed to the science chamber (at much lower pressure of 10^{-9} Pa) with the help of a push beam containing 4 frequencies. In the science chamber, the 39K atoms are collected in a 3D MOT while the 87Rb atoms are collected in a dark SPOT MOT to reduce the loss of 39K atoms. We also tried the double dark SPOT MOT to further reduce the light assisted losses, however the 39K dark SPOT MOT did not work. This could be due to the use of a single (unbalanced) hollow repumping beam in contrast to the use of four hollow repumping beams (balancing each other in the opposite direction) used in Ref. [42]. Since the 87Rb does not need a high power repumping beam (compared to the 39K which needs almost the same power as that of the trapping/cooling beams due to its narrowly spaced excited state hyperfine splitting), we do not need to balance the single hollow repumping beam for the 87Rb dark SPOT MOT. The different powers and frequencies used in the push beam and the two MOT stages are listed in Table 1 while Fig. 2 gives the definitions of the detunings.

Laser beam	Detuning	Power (mW)
2D MOT		
87Rb repumping	-0.9Γ	10
39K cooling	-4.8Γ	191
39K repumping	-2.6Γ	159
Push beams		
87Rb push 1	-1.48Γ	4
39K push 1	-4.8Γ	15
39K push 2	-0.83Γ	4
3D MOT		
87Rb depumping	-1.7Γ	1.5
39K cooling	-2.65Γ	160
39K repumping	-3.7Γ	177

Fig. 1. The experimental setup for the dual 39K and 87Rb BECs showing the two MOT cells and the ion pumps for each chamber. The Rb and K sources (at 40 °C and 45 °C, respectively) supply atoms into the 2D MOT chamber. The science chamber (enclosed by the quadrupole/Feshbach coils) collects the atoms in the 3D MOT from the push beams assisted atomic flux coming from the 2D MOT via a differential pressure tube. The inset shows the top view of 3D MOT, four horizontal MOT beams and a hollow Rb repumping beam are visible.

In the 3D MOT, there are six solid MOT laser beams (2.5 cm diameter). Each of these six beams carries the Rb and K cooling and the repumping light only for K, as shown in the insert image in Fig. 1. To produce the dark region in 87Rb dark SPOT, an opaque disk with a diameter of 10 mm is used to cast a shadow at the center of the 87Rb repumping beam. The center of the hollow repumping beam is filled with a depumping beam (shown in Fig. 2(b)). The repumping +

063401-2
The depumping beam is delivered to the 3D MOT separately from the six MOT beams and thus the 87Rb atoms are trapped at the trap center in $|F = 1\rangle$ state out of the cooling cycle. The depumping beam further depletes the atomic $|F = 2\rangle$ state in the center of the MOT by optical pumping atoms to the $|F = 1\rangle$ state. The dark SPOT MOT significantly improves the simultaneous loading of both species with reduced light assisted losses.$^{[34]}$ The magnetic field gradient in the 3D MOT stage is 4 G/cm along the z-axis which is provided by a pair of coils in the anti-Helmholtz configuration as shown in Fig. 1.$^{[43]}$ The same coils provide the homogeneous magnetic field for Feshbach resonance when the current direction in one of the coils is changed.

![Energy level diagram of 39K (a) and 87Rb (b), and the time sequence of the detunings and powers of each laser. (a) The Δ_{KC} and Δ_{KR} are the detunings of the trapping and repumping laser from the atomic transitions shown in the D2 line (766.7 nm) of 39K. Similarly Δ_{GC} and Δ_{GR} are the GM cooling and repumping laser detunings from the transitions shown in the D1 line (770.1 nm). (b) Δ_{RbC}, Δ_{RbR}, and Δ_{RbD} are the detunings of the trapping, repumping, and depumping laser, respectively from the transitions shown in the D2 line (780.2 nm) of 87Rb. (c) The time sequence of the powers (red solid lines in the right vertical axis) and detunings (black dashed lines in the left vertical axis) of the respective lasers is shown. The duration of each step of the experiment is shown on the horizontal axis.

Fig. 2. Energy level diagram of 39K (a) and 87Rb (b), and the time sequence of the detunings and powers of each laser. (a) The Δ_{KC} and Δ_{KR} are the detunings of the trapping and repumping laser from the atomic transitions shown in the D2 line (766.7 nm) of 39K. Similarly Δ_{GC} and Δ_{GR} are the GM cooling and repumping laser detunings from the transitions shown in the D1 line (770.1 nm). (b) Δ_{RbC}, Δ_{RbR}, and Δ_{RbD} are the detunings of the trapping, repumping, and depumping laser, respectively from the transitions shown in the D2 line (780.2 nm) of 87Rb. (c) The time sequence of the powers (red solid lines in the right vertical axis) and detunings (black dashed lines in the left vertical axis) of the respective lasers is shown. The duration of each step of the experiment is shown on the horizontal axis.
The setup for the MOT lasers is presented in Fig. 3. For 87Rb, the cooling and repumping light for the D2 line are generated by separate lasers due to large ground state hyperfine splitting of 6.8 GHz, and then frequency tuned by double-passed AOMs. The cooling beam is then amplified by a tapered amplifier (Rb-TA), as shown in Fig. 3(a). For 39K, a single master laser can generate the cooling and repumping light due to the smaller ground state hyperfine splitting of 461 MHz. We use two master lasers, one for the MOT on D2 line and the other one for the gray molasses on D1 line. The cooling beams from both the master lasers are first combined together and then amplified by an injection locked laser. A similar setup amplifies the 39K repumping light and all of these are then amplified together by a single tapered amplifier (K-TA), as shown in Fig. 3(b). This design for the 39K guarantees the perfect collimation of the D2 and D1 line laser beams.

Fig. 3. The optical setup and frequency shifting and locking schemes of the (a) 87Rb cooling and repumping lasers and (b) the 39K D1 and D2 cooling and repumping lasers. The 87Rb repumping laser does not need amplification while all of the remaining lasers are amplified by tapered amplifiers (TAs) or injection locked lasers.

The compressed MOT (CMOT) step follows the MOT loading step by increasing the magnetic field strength to 22 G/cm (duration 150 ms). The fine tuning of the laser parameters during the CMOT reduces the radiation pressure which together with the high magnetic field increases the density of the atomic sample. The repumping + depumping beam for 87Rb is now blocked and the repumping light is delivered to the atoms through the six MOT beams. The detunings and single beam power of the lasers during the CMOT are shown in Fig. 2(c).

After the CMOT, the magnetic field is completely turned off in 100 µs and we perform normal molasses for the 87Rb but D1 line gray molasses for the 39K. The D1 line gray molasses [37] gives samples with higher density and atoms number compared to the previously devised schemes using the D2 line laser. [23,44] The one-photon detunings Δ_{GC} and Δ_{GR} both are blue detuned $+3.33\Gamma$ forming a Raman Λ-type system in which the dark and bright states formed by the coherent superposition of the Zeeman sub-levels in the hyperfine levels $|F = 1\rangle$ and $|F = 2\rangle$ help cool in the bright state and hold the atoms in the dark state thus avoiding the chance of reheating by scattering of photons from the GM fields. The other powers and detunings are given in Fig. 2(c). The molasses step lasts for 6.7 ms.
3. Optical pumping and MW evacuation

Right after the molasses step, the pumping stage follows where both the 39K and 87Rb atoms are optically pumped to the $|F = 2, m_F = 2\rangle$ states. This is done by applying a 2 G homogeneous magnetic field along the x-direction and a σ^+-polarized pump light also along the same direction. The time sequence for the optimized optical pumping of both species is as follows. The repumping light for 87Rb (detuning $+6\Gamma$) remains on in the six MOT beams while the 39K D2 line repumping light (detuning $+1.6\Gamma$) is turned on after the molasses step. Then after 0.5 ms, the 39K D1 line pump light (on resonance) is turned on for 0.7 ms and the 87Rb pump light (4Γ) for 1.1 ms. The two repumping beams stay on for additional 0.1 ms. This completes the optical pumping step.

To efficiently load the sample in the magnetic quadrupole trap, the magnetic field gradient is ramped up to 26.5 G/cm in 1 ms and held on for 10 ms and then to 62 G/cm in 200 ms and held at this field for 50 ms. Finally, the magnetic trap is further compressed to 74 G/cm in 300 ms to increase the atoms density for strong collisions in the following evaporation stage. The 20 W green laser is turned on at full power for 1 ms of waiting, the dipole trap alone now holds the atoms. This completes the optical dipole trap loading.

At this stage, the number of 87Rb atoms is 8.21×10^6 at 18 μK while there are 2.15×10^6 39K atoms at 21 μK. The transfer efficiency of the dipole trap from the quadrupole magnetic trap is around 20% for 39K and 17% for 87Rb. After the loading is complete, a background magnetic field is also stabilized at 1 G along z-direction.

A forced evaporation in the optical trap then follows. The dipole trap power is quickly reduced to 2.6 W in 30 ms to remove the hotter atoms in the wings of the crossed dipole trap, and then the power decreases again to 1.6 W in 100 ms. These operations reduce the temperature of the sample down to 8 μK. Subsequently, the 87Rb atoms are firstly transferred to the $|F = 1, m_F = 1\rangle$ state adiabatically using a MW sweep of 100 ms duration. Then a resonant flash light of 1 ms length removes the residual 87Rb atoms in the $|2, 2\rangle$ state. After another 1 ms of waiting, the 39K atoms are also transferred adiabatically to the $|F = 1, m_F = 1\rangle$ state using an RF sweep in 100 ms and a similar flash light follows removing the remaining 39K atoms in the $|2, 2\rangle$ state. The transfer efficiency is almost 95%. In this spin state preparation process, it is very important to transfer the 87Rb atoms to the lower hyperfine level before 39K because the ground hyperfine splitting of 87Rb is larger than that of 39K. Therefore, a mixture of 87Rb in $|F = 1, m_F = 1\rangle$ state and 39K in $|F = 2, m_F = 2\rangle$ state is more stable than the other way around which results in extreme losses due to hyperfine changing collisions.$^{[23,26,34]}$ To study the loss induced by this collision mechanism, we measure the lifetime of the different spin state mixtures of the 39K and 87Rb atoms by holding these mixtures in the same dipole trap depth for variable times and then measuring the number of remaining atoms. In Fig. 4, the 39K (a) and 87Rb (b) decay curves are shown for four combinations of the hyperfine states: (1) $\text{Rb}|2, 2\rangle \oplus K|2, 2\rangle$, (2) $\text{Rb}|2, 2\rangle \oplus K|1, 1\rangle$, (3) $\text{Rb}|1, 1\rangle \oplus K|2, 2\rangle$, and (4) $\text{Rb}|1, 1\rangle \oplus K|1, 1\rangle$.

The experimental data are fitted by the function $N_0 e^{-t/\tau} + N_i$, with N_i, N_0, and τ as free parameters ($N_0 + N_i$ is the initial number of atoms at $t = 0$ and N_i is the residual atom number remaining after the long holding time), as the solid lines shown in Fig. 4. The τ is the lifetime of the
species in a particular mixture. We notice that the mixture of the two species in case 2 has a very low initial 39K number $N_0 = 0.97 \times 10^5$, which is one order of magnitude lower than that in other cases. This is attributed to the faster loss in the spin state transfer process for 39K. For case 2, we obtain very small lifetime constants of $\tau_{K} = 0.8$ s and $\tau_{Rb} = 3.95$ s. We attribute this observed fast decay to the hyperfine changing collision, which can be described by the equation below:

$$^{39}\text{K}(F = 1, m_F = 1) + ^{87}\text{Rb}(F = 2, m_F = 2),$$

$$\rightarrow ^{39}\text{K}(F = 2, m_F = 2) + ^{87}\text{Rb}(F = 1, m_F = 1) + \Delta,$$

(1)

where $\Delta = h \times (6334.7 - 461.7)$ MHz $\approx k_B \times 0.306$ K. The projection of total hyperfine angular momentum $m_F, _{\text{Rb}} + m_F, _{\text{K}}$ is conserved in such a reaction. The released energy Δ in this process converted to the kinetic energy of the collision atoms is higher than the trapping potential of the dipole trap and results in the fast atom loss. Other hyperfine changing collisions can also happen but the main contribution to the losses in our system comes from this reaction. When the spin preparation sequence is reversed (case 3), this type of hyperfine changing collision is forbidden and longer lifetimes are observed with $\tau_{K} = 1.7$ s and $\tau_{Rb} = 7.92$ s.

![Fig. 4. The lifetimes of the various mixture states of 39K and 87Rb. (a) Lifetime of 39K. (b) Lifetime of 87Rb.](image)

The measured most stable combination is in the case 4 with longest lifetimes $\tau_{K} = 28$ s and $\tau_{Rb} = 27$ s. Because there is no inelastic collision of any kind in this combination when both species are prepared in the lowest states, the lifetime is only limited by the one-body loss induced by the collision of background gases and the photon scattering of the dipole trap beams. The 87Rb and 39K mixture when both in the $|2, 2\rangle$ states is not as stable (case 1) as the situation when each species is in the $|1, 1\rangle$ state (case 4) because in the former case there are still some residue atoms in for example the $|2, 1\rangle$ or other trapable state which can result in inelastic collisional losses. Losses from other inelastic collisions reported in Ref. [34] are also possible in this combination. Therefore, these losses result in $\tau_{K} = 1.65$ s and $\tau_{Rb} = 4.37$ s in case 1.

All of these lifetime measurements are done while both of the species are not condensed (at temperature of 8 μK). These decay lifetimes can be of interest for the calculation of the interspecies scattering lengths among different mixture states at ultra-cold temperatures.

5. Feshbach resonances and achievement of dual BECs

To further cool the two species, the 87Rb and 39K atoms are transferred to the $|F = 1, m_F = 1\rangle$ state after following the exact sequence of state preparation in the dipole trap and then we further perform the evaporation by ramping down the dipole trap power. During these ramp down steps, the mixture of 39K ($a_K \sim -33a_0$) and 87Rb ($a_{\text{Rb}} \sim 100a_0$) atoms (interspecies $a_{\text{RbK}} \sim 34a_0$) is cooled by evaporation in the presence of a homogeneous magnetic field of 1 G. The first ramp down takes 300 ms and the power in the dipole trap beams is reduced to 0.7 W. In another ramp down lasting for 1 s, the power in the dipole trap beams is reduced to 0.35 W. In the third ramp down, the dipole trap power in the two beams is reduced to 0.26 W in 500 ms. At this stage, the temperature of the atoms reaches below 1 μK. At this temperature, we measure the inter- and intra-species Feshbach resonances by scanning the external magnetic field along z-direction provided by the pair of coils in the Helmholtz configuration (shown in Fig. 1). The resonances are detected as an enhancement of atoms loss.[46–48] Figure 5 shows the results of the remaining atom number of both species after holding time of 200 ms for different magnetic field values.

Figure 5(a) shows two 39K intra-species resonances (25.9 G, 403.4 G) and a single 87Rb-39K inter-species resonance (318.3 G) recorded by measuring the number of 39K atoms after holding the two species in the magnetic field inside the dipole trap for 200 ms (including 20 ms ramp up time of the magnetic field). The corresponding number of 87Rb atoms is shown in Fig. 5(b). The single inter-species resonance is clearly visible at 318.3 G from the simultaneous loss of both species. The other interesting feature in this spectrum is the increase in the 87Rb atoms number (encircled) at the exact 39K...
intra-species resonances. This increase in the number of observed 87Rb atoms is due to the reduced inter-species repulsion caused by the rapid loss of 39K.

![Graph](image1)

Fig. 5. The Feshbach resonance spectrum for the mixture 39K and 87Rb in the $|F = 1, m_F = 1\rangle$ states. Panel (a) shows the number of atoms remaining in the trap for 39K and panel (b) shows that for 87Rb. The two intra-species resonances at 25.9 G and 403.4 G for 39K and the single inter-species resonance at 318.3 G for the mixture are presented.

When the atoms mixture is cooled to 0.8 μK, the negative background scattering length of 39K significantly limits the further effective evaporation cooling. Feshbach resonance can be used to tune the scattering length to avoid this problem. Many interesting phenomena can be studied by tuning the scattering length using Feshbach resonances.\[^{[48–50]}\] To achieve the BECs, the magnetic field of 372.6 G (which is below the 39K intra-species resonance at 403.4 G) is ramped up in 20 ms and held 200 ms for the field stabilization after the previously mentioned evaporation step of both species in the $|F = 1, m_F = 1\rangle$ state. At this time, the scattering length of 39K is $a_K = 20.05a_0$, which is obtained form the well known formula\[^{[32]}\]

$$a(B) = a_{bg} \left(1 - \frac{\Delta}{B - B_0}\right),$$

where the background scattering length $a_{bg} = -29a_0$, the Feshbach resonance position $B_0 = 403.4$ G, and the width $\Delta = -52$ G. Then the power in the dipole trap beams is reduced very slowly from 0.7 W to 0.2 W (in 2000 ms) and the final dual species BECs are produced.

![Graph](image2)

Fig. 6. Absorption images of the 39K (upper row) and 87Rb (lower row) atoms near the BEC critical temperature and the fits to the 1D integrated optical density along x-direction. The time of flight for these images is 20 ms for 39K and 30 ms for 87Rb. The field of view is 0.8 mm × 0.8 mm.
To obtain the information of the BECs, the magnetic field is adiabatically ramped to 354.2 G in 30 ms and held for 100 ms for tuning the 39K scattering length close to zero. Then we perform the time of flight (TOF) imaging. The dipole trap power is completely turned off to let the atom cloud to freely expand for 5 ms in high magnetic field. And then we switch off the high magnetic field and the atoms further freely expand for 20 ms for 39K and 30 ms for 87Rb in the background field of 1 G before the absorption imaging. The nearly pure condensates of 4.19×10^5 39K atoms and 5.11×10^5 87Rb atoms are produced.

Figure 6 shows the absorption images of the optical density of the 39K and 87Rb atoms, the Gaussian fitting for the thermal component, and the polynomial fitting for the condensed fraction. The bimodal character appears in the second columns for both species which means a BEC phase transition, and becomes prominent in the third column of Fig. 6 for the almost pure condensates. The first columns of Fig. 6 for both species show a single mode Gaussian fit, representing a thermal gas.

6. Achievement of 39K BEC by single species evaporation

Next, we compare the evaporation efficiency of the two-species and the single-species of 39K at different scattering lengths for 39K. Here the scattering length a_{Rb} of 87Rb is about 100a_0 and the inter-species scattering a_{KRB} is about 34a_0. For the two-species evaporation, we find that a BEC with high number of atoms can be obtained in the broad region of positive scattering length a_K from about 5.7a_0 to 35.4a_0. However, for only 39K evaporation, the 39K BEC can be produced at 97.3a_0 with low atom numbers as can be seen from Fig. 7. Here we remove the 87Rb atoms in the [2, 2] state using a flash light at 8 μK after the first two steps of evaporation in the dipole trap described above.

![Figure 7](image)

Fig. 7. Comparison of the 39K BEC achieved using the two different processes. (a) Absorption image of the 39K BEC achieved using the two-species evaporation performed at 372.6 G. (b) The same BEC produced using the single-species evaporation performed at 391.46 G. (c), (d) The respective poly-line fits to these BECs. (e) The optical density of the BECs as a function of the magnetic field in the two processes.

7. Conclusion

We have achieved the dual 39K and 87Rb BECs by utilizing various available techniques of dark SPOT MOT, D1 line gray molasses, the microwave evaporation and tuning the atomic scattering length using the Feshbach resonances. We also measure the lifetimes of these various mixture states showing interesting features especially the upper ground stretched states have shorter lifetime than the lower hyperfine stretched states. The difference in the lifetime highlights the importance of the hyperfine changing collisions in ultra-cold samples of dual species BECs. These dual BECs with rich Feshbach resonance structure and large mass imbalance can be used in various applications such as the formation of heteronuclear quantum droplets. We also show how the sympathetic cooling of 39K using the 87Rb atoms results in larger and denser BECs compared to the single species 39K evaporative cooling.

References

[1] Anderson M H, Ensher J R, Matthews M R, Wieman C E and Cornell E A 1995 Science 269 198
[2] Davis K B, Mewes M O, Andrews M R, van Druten N J, Durfee D S, Kurn D M and Ketterle W 1995 Phys. Rev. Lett. 75 3969
[3] Giorgini S, Pitaevskii L P and Stringari S 2008 Rev. Mod. Phys. 80 1215
[4] Wang P, Yu Z, Fu Z, Miao J, Huang L, Chai S, Zhai H and Zhang J 2012 Phys. Rev. Lett. 109 095301
[5] Cheuk L W, Sommer A T, Hadzibabic Z, Yefsah T, Bakr W S and Zwirelmin M W 2012 Phys. Rev. Lett. 109 095302
[6] Galitski V and Spielman I B 2013 Nature 494 39
[7] Wang D, Liu R, Zhu S and Scully M O 2015 Phys. Rev. Lett. 114 043602
[8] Chen L, Wang P, Meng Z, Huang L, Cai H, Wang D, Zhu S and Zhang J 2018 Phys. Rev. Lett. 120 193601
