BiTe-GCN: A New GCN Architecture via Bidirectional Convolution of Topology and Features on Text-Rich Networks

Di Jin
Tianjin University
Tianjin, China

Xiangchen Song
University of Illinois at Urbana-Champaign
Urbana, IL, USA

Zhizhi Yu
Tianjin University
Tianjin, China

Ziyang Liu
JD.com
Beijing, China

Heling Zhang
University of Illinois at Urbana-Champaign
Urbana, IL, USA

Zhaomeng Cheng
JD.com
Beijing, China

Jiawei Han
University of Illinois at Urbana-Champaign
Urbana, IL, USA

ABSTRACT

Graph convolutional networks (GCNs), aiming to obtain node embeddings by integrating high-order neighborhood information through stacked graph convolution layers, have demonstrated great power in many network analysis tasks such as node classification and link prediction. However, a fundamental weakness of GCNs, that is, topological limitations, including oversmoothing and local homophily of topology, limits their ability to represent networks. Existing studies for solving these topological limitations typically focus only on the convolution of features on network topology, which inevitably relies heavily on network structure. Moreover, most networks are text-rich, so it is important to integrate not only document-level information, but also the local text-sequence information which is particularly significant while often ignored by the existing methods. To solve these limitations, we propose BiTe-GCN, a novel GCN architecture modeling via bidirectional convolution of topology and features on text-rich networks. Specifically, we first transform the origin text-rich network into an augmented bi-typed heterogeneous network, capturing both the global document-level information and the local text-sequence information from texts. We then introduce discriminative convolution mechanisms, which perform convolution on this augmented bi-typed network, realizing the convolutions of topology and features altogether in the same system, and learning different contributions of these two parts, i.e., network part and text part, automatically for the given learning objectives. Extensive experiments on text-rich networks demonstrate that our new architecture outperforms state-of-the-arts by a breakout improvement. Moreover, this architecture can also be applied to several e-commerce search scenes such as JD searching, and experiments on JD dataset show the superiority of the proposed architecture over the related methods.

CCS CONCEPTS
- Information systems → Social networks; - Computing methodologies → Neural networks.

KEYWORDS
Graph Convolutional Networks, Bidirectional Convolution, Text-Rich Networks

ACM Reference Format:
Di Jin, Xiangchen Song, Zhizhi Yu, Ziyang Liu, Heling Zhang, Zhaomeng Cheng, and Jiawei Han. 2021. BiTe-GCN: A New GCN Architecture via Bidirectional Convolution of Topology and Features on Text-Rich Networks. In The Fourteenth ACM International Conference on Web Search and Data Mining (WSDM '21), June 03–05, 2021, Jerusalem, Israel. ACM, New York, NY, USA, 10 pages.

1 INTRODUCTION

Real-world systems can often be modeled as networks, including social networks, biological networks and information networks. Network analysis has been an active research topic for decades both in academia and industry. Recently, research of analyzing networks with deep learning has been received widespread attention. In particular, graph convolutional networks (GCNs) [8], which obtain node embeddings through the propagation and aggregation of features on network topology, have achieved great success and been widely applied in natural language processing [9, 12, 37], traffic forecasting [1, 39] and recommendation systems [15, 32], etc.

While the success of GCNs and their variants [16, 29, 38], a key issue with them is the topological limitations. Take an extreme example, let the number of layers of GCNs be very large, then from the level of methodology, the node features only serve as an initial solution of embeddings, and continuously smooth it based on the
topology using the propagation and aggregation mechanisms, making GCNs almost entirely depend on network topology. Specifically, we may get k different embeddings from GCNs if there are k connected components of the network. Especially, when there is only one component of the network (i.e., network is fully connected), all node embeddings may converge to similar values, which is a severe over-smoothing phenomenon. Considering this, GCNs only obtain satisfactory embeddings from a good local mixing state of propagation by limiting the number of propagation to two or three layers. However, this will further make GCNs rely heavily on the local homophily of topology, that is, neighborhoods should be more similar, a very strong assumption in many real-world text-rich networks.

There are also some different attempts proposed to design algorithms and models to handle the topological limitations of GCNs. For example, several studies adopt the idea of topology optimization, which refine the network topology by introducing additional schemes such as normalization [40] and markov random fields [7]. Another line of attempts is the self-supervision based methods, which utilize several high-credible labels derived from GCNs to optimize the topological channels in the following propagation of GCNs [10, 24, 34]. The third attempt is the skip connection based methods that adaptively select the appropriate neighborhoods for each node from the perspective of jumping knowledge [2, 33]. In addition, there are also some other attempts that can be considered to solve the topological limitations of GCNs, such as attention-based methods [13, 26], which leverage the attention mechanisms to allocate appropriate weights to different neighborhoods, so as to refine the network topology.

These existing methods have achieved reasonable results on handling the topological limitations of GCNs and thus improved the performance of GCNs. But they still focus only on the convolution of features on network topology. However, from the level of model architectures, an ideal way may be that the convolutions of features on network topology. However, from the level of model architectures, an ideal way may be that the convolutions of features on network topology and topology (on features) play together in the same system. The model should also learn correctly the contribution of each part, that is, topology or text, automatically, aiming to given learning objectives. Besides, since most real networks are text-rich, it is also important to incorporate not only the global document-level information but also the local text-sequence information that reflects the semantics expressed in natural language, which is particularly significant while often ignored by existing methods.

To solve these above problems, in this paper we propose a novel GCN architecture, i.e., BiTe-GCN, on text-rich networks. It consists of two main parts, data modeling and discriminative convolution. To be specific, we first augment the origin text-rich network into a bi-typed network, as shown in the top-middle part of Fig. 1. It includes two types of nodes, namely the real nodes (e.g., document nodes in the original network) and entity nodes (e.g., phrases or words extracted from text sequences); and three types of edges, that is, edges between real nodes such as paper citations, edges between real nodes and entity nodes which reflect their containing relationships, as well as edges between entity nodes which reflect the semantic structure information in text sequences. We then introduce a discriminative hierarchical convolution mechanism, based on the concept of meta-path, which can distinguish and learn out the contributions of network part and text part aiming to the learning objectives. In addition, as the augmented network constructed in data modeling contains both global document-level information and local text-sequence information, this architecture itself can incorporate more semantics and knowledge from texts.

The rest of the paper is organized as follows. Section 2 gives the problem definitions and introduces GCN. Section 3 proposes the new GCN architecture on text-rich networks. Section 4 shows the extensive experiment results and the algorithms we compared. In Section 5 we discuss and analyse the experiment results. To extend our method to more fields, Section 6 introduces the application on e-commerce search. Finally, we discuss related work in Section 7 and conclude in Section 8.

2 PRELIMINARIES

We first introduce the problem definition, and then discuss GCN which serves as the base of our new architecture.

2.1 Problem Definition

The notations used in this paper are summarized in Table 1.

Definition 1. Text-rich Networks. Consider a network $G = (V, E)$, where $V = \{v_1, v_2, \ldots, v_n\}$ is the set of n nodes and $E = \{e_{ij}\} \subseteq V \times V$ the set of m edges. The topological structure of network G can be represented by an $n \times n$ adjacency matrix $A = (a_{ij})_{n \times n}$, where $a_{ij} = 1$ if there is an edge between nodes i and j, or 0 otherwise. Specifically, we call such a network text-rich network if a portion of its nodes is associated with textual information that collectively constitutes a corpus D.

Existing methods (e.g., GCN and GAT) rely heavily on the topology of networks, while placing little emphasis on original text that give rise to network. To make better use of the original text, we extend the notion of semi-supervised node classification to encompass real-world text-rich networks such as citation networks.

Definition 2. Semi-supervised Node Classification on Text-rich networks. Given a text-rich network $G = (V, E)$, a corpus D and a labeled node set V_L containing $u \ll |V|$ nodes, where each node $v_i \in V_L$ is associated with a label $y_i \in Y$, the objective is to predict labels of $V \setminus V_L$. Note that each node $v_i \in V$ corresponds to a document $d_i \in D$.

| Table 1: The notations used in this paper. |
|-----------------|-----------------|
| **Notations** | **Descriptions** |
| V, E | The sets of nodes and edges |
| A, X | Adjacency matrix and node feature matrix |
| $G_W = (V_W, E_W)$ | Word network |
| $G_D = (V_D, E_D)$ | Document network |
| $G_W = (V_W, E_W')$ | Word network with refined edges |
| $G_D = (V_D, E_W')$ | Document network with refined edges |
| $D = \{d_1, d_2, \ldots, d_{|V_D|}\}$ | The corpus containing documents represented by each document node $v_i \in V_D$ |
| $T = \{D, W, DW\}$ | Class of sub-network types |
| Z | Readout result for GCN layers |
| H_x^l | Intermediate feature produced by GCN layer for type x at level l |
| \mathcal{Y}_D | The set of documents that have labels |
2.2 Graph Convolutional Network

Graph Convolutional Network (GCN) [8], originally developed by Kipf and Welling, is a variant of multi-layer convolutional neural networks that operates directly on networks. It learns embeddings of each node by iteratively aggregating the information from its neighborhoods. Mathematically, given a network \(G = (V, E) \), let \(X \in \mathbb{R}^{n \times d} \) be the node feature matrix, where \(n = |V| \) denotes the number of nodes and \(d \) the dimension of features. Let \(A \in \mathbb{R}^{n \times n} \) be the adjacency matrix of the network and \(D \) the corresponding node degree matrix with \(D_{ii} = \sum_j A_{ij} \). Assume that every node is connected to itself, i.e., \(\tilde{A} = A + I \) (where \(I \) is the identity matrix). Then, by introducing an effective renormalization trick, that is, \(\tilde{A} = D^{-\frac{1}{2}} \tilde{D} D^{-\frac{1}{2}} \) (where \(\tilde{D}_{ii} = \sum_j \tilde{A}_{ij} \)), the classic two-layer GCN can be defined as:

\[
Z = f(X, A) = \text{softmax}(\tilde{A} \text{ReLU}(\tilde{A}XW^{(0)})W^{(1)})
\] (1)

where \(W^{(0)} \) (and \(W^{(1)} \)) is the weight parameter, ReLU (and softmax) the non-linear activation function, and \(Z \) the final output for the assignment of node labels. While GCN works well on several networks analysis tasks such as node classification [6, 31], it still has a fundamental weakness, that is, topological limitations, including oversmoothing and local homophily of topology, which lead to the main contribution in this work: joint convolution in both network structure and features.

3 THE BITE-GCN FRAMEWORK

3.1 Overview

Previous GCN based graph convolution only performs convolution in the view of network structure. However, due to limitations, the network structure may contain noisy information that prevents the model from learning the data. However, text-rich networks contain sufficient text information which can guide the convolution process. To leverage the convolution in feature space (i.e., convolution within the corpus), we decomposing text-rich network into a bi-typed network to explicitly perform joint convolution in both node space and feature space. This composition introduces a set of word nodes which are compatible with data refinement in semantic meanings.

Our BITE-GCN framework consists of three major parts, namely bi-typed network construction, joint convolution, and data-model refinements. We will first describe how we construct the bi-typed network based on the text-rich network and then illustrate the detail convolution technique in our model and finally investigate the refinement methods that we adopted in our design.

3.2 Bi-typed Network Construction

As mentioned above, the traditional GCN framework is not suitable for text-rich joint convolution. To best utilize the text-rich information, in this work, we first construct a bi-typed network \(G \) based on the given text-rich network \(G_D = (V_D, E_D) \). This bi-typed network structure embeds the semantic information and the structure is explainable which is compatible with further data and model refinements. This process can be split into two parts, namely word network construction and whole network completion.

3.2.1 Word Network Construction

In text-rich network, each node \(v_i \) in the network \(G_D \) is associated with a feature corpus denoted as \(d_i \), usually a document describing this node. To best benefit from the corpus, we convert all documents within this corpus as a word sub-network \(G_W = (V_W, E_W) \) where \(V_W \) is the collection of all representative words or phrases extracted from the corpus \(D \). \(E_W \) is the edges connecting word pairs \((w_1, w_2) \) chosen from \(V_W \). The word edges are constructed based on the partial word sharing between different phrases, e.g., “textMining” and “dataMining” are connected since they share the word “mining”.

To best benefit from the corpus, we convert all documents within this corpus as a word sub-network \(G_W = (V_W, E_W) \) where \(V_W \) is the collection of all representative words or phrases extracted from the corpus \(D \). \(E_W \) is the edges connecting word pairs \((w_1, w_2) \) chosen from \(V_W \). The word edges are constructed based on the partial word sharing between different phrases, e.g., “textMining” and “dataMining” are connected since they share the word “mining”.

Figure 1: Overview of our BITE-GCN framework. It contains three major parts, bi-typed network construction, joint convolution, as well as data and model refinements.
3.2.2 Whole Network Completion. After the construction of word sub-network, we complete the whole bi-typed network G by adding edges between document nodes V_D and word nodes V_W. A naive approach is applying the “contain” relationship between a document and a word to create edges. We denote the network added above as:

$$G_{DW} = (V_D \cup V_W, E_{DW})$$

where

$$E_{DW} = \{(d, w) \mid w \in d, \forall w \in V_W, \forall d \in V_D\}$$

Then the whole network is the union of the networks mentioned above:

$$G = G_D \cup G_{DW} \cup G_W = (V_D \cup V_W, E_D \cup E_{DW} \cup E_W)$$

3.3 Joint Convolution

Different from previous work that perform message passing in a bi-typed network in an alternative manner, we perform joint convolution for both document nodes and word nodes at the same time. A BiTe-GCN layer consists of two-level message passing operations:

1. GCN within each type of sub-network. This is the basic level for our joint convolution, in each sub-network, we perform original GCN convolution to allow message passing within the same type of sub-network.

$$H^{(l+1)}_t = GCN_t(H^{(l)}_t), \forall t \in T$$

In our setting at each layer, there are three different H_t generated where $t \in \{D, W, DW\}$.

2. Aggregation among different types of sub-networks. After we got the message H_t for each type of sub-network, we adopt an aggregation function AGG to merge the message from different types of sub-networks. We would introduce the AGG further in Section 3.5.

$$H^{(l+1)} = AGG(H^{(l+1)}_t, \forall t \in T)$$

A complete form of two-layer BiTe-GCN model can be expressed in the following as:

$$Z = AGG_2(GCN_2t(AGG_1(GCN_1x, \forall t \in T)), \forall t \in T)$$

where X is the original features for all nodes in G. Then follow the heuristic loss definition as introduced in GCN or GAT, we define the loss function by using cross entropy as:

$$L = - \sum_{d \in Y_D} \sum_{f=1}^F Y_{df} \ln Z_{df}$$

where Y_D is the set of document indices that have labels, Y the label indicator matrix, and F the dimension of the output features, which is equal to the number of categories.

3.4 Data Refinement

One underlying assumption of GCN based methods is the local homophily of sub-networks. However, this assumption does not apply directly to our case, since edges in both sub-networks (G_D and G_W) suffer from several limitations. Edges in G_D are often based on citations, which also does not reflect the semantic similarity between documents. As a result, edges may exist among semantically distant objects, while missing among semantically close objects. Edges in G_W are based on inclusion relationship among phrases extracted from C, which also does not have strong semantic implications, and thus suffer from similarity limitations.

To enhance the semantic feasibility of edges, we perform edge refinement separately on both sub-networks.

3.4.1 Document Network Refinement. The edges in document network are citation in the scientific papers. However, due to the limitation of the author(s) knowledge, the citation structure may introduce irrelevant or missing edges. For example, there are often missing citations due to the knowledge limitation of authors and noise links due to some non-academic reasons, especially in some small related domains such as natural language processing and machine learning. The goal of edge refinement is to trim out edges linking semantically distant objects, while adding edges to link semantically close objects. To achieve this, we first need a notion of similarity. For the document network, we use cosine similarity between BERT embedding of documents.

The specific procedure is as follows: we first calculate an embedding for each document with a pre-trained BERT model; and then calculate the pairwise similarities between documents. Document pairs with similarity higher than the upper threshold $T_{D,high}$ is added as new edges, and existing edges with similarity less than a lower threshold $T_{D,low}$ is trimmed off.

3.4.2 Word Network Refinement. The initial criteria for finding the edges in the word network is to share partial words,1 e.g., “text mining” and “data mining” are connected since they share the word “mining”. However, chances are that in some cases sharing words do not guaranteed to have correlation in semantic views. For example, for the links between phrases, we use word embedding similarities for the refinements, that is, we remove noise links such as links between “artificial intelligence” and “artificial life” with very low semantic similarities, and add missing links such as links between “LSTM” and “RNN” with very high semantic similarities. To achieve this, we adopt embedding trained on the whole corpus D to guide the network structure construction, i.e., word network refinement. Here we’ve used two different embedding methods using both Euclidean space (word2vec [18]) and Spherical space (JoSE [17]) to capture the semantic meaning of words. The refinement procedure for the word network is similar to that of the document network, and here we have also two parameters, namely $T_{W,high}$ and $T_{W,low}$ to control the refinement.

3.5 Model Refinement

As introduced in Section 3.3, an aggregation function AGG is applied at the stage of merging messages passed from different types of sub-networks. For a document node d, it receives messages H_D from GCN module in document sub-network G_D and H_W from GCN module in word sub-network G_W. Naive readout functions such as MEAN and CONCAT suffer from not capturing the relation between different sources of the messages. To best utilize the information from different sources of the messages and learn the relation

1The words here refers to phrases extracted from the corpus D. Automated Phrase extraction tools such as AutoPhrase[23] is adopted here. And the phrase version of the word network can better capture the semantic meaning and the relation between phrases.
and the interaction between them, we adopt a multi-head attention layer to learn how the messages from document sub-network and word sub-network are used in the final task. For a single-head attention module, it takes both H_{Dd} from document sub-network and H_{Wd} from word sub-network. Then a non-linear function ρ is applied to the concatenation of the two messages to represent the attention for the two messages.

$$a_d = \rho(H_{Dd}||H_{Wd})$$

Then the final single-head representation for document node d is calculated by:

$$H_{d, single} = a_d \left[\begin{array}{c} H_{Dd} \\ H_{Wd} \end{array} \right]$$

Following the multi-head attention’s intuition, the final representation for document node d can then be calculated by concatenating all heads’ outputs:

$$H_d = [H_{d, single}]$$

3.6 The Framework’s Generality

The classical GCN model [8] belongs to transductive learning which limits its scalability. In network representation, different from transductive learning’s matrix-by-matrix working mechanism, the inductive learning (such as GraphSage [4] and GAT [26]) applies node-by-node working mechanism, making it be able to generalize to the unseen nodes. To distinguish these two different learning styles, we give the following formalization. We use V'_D, V'_W, G'_D, G'_W, and G'_{DW} to denote the document nodes, word nodes, document sub-network, word sub-network and document-word sub-network in the testing network G'. Then G' can be formalized as:

$$G' = G'_D \cup G'_W \cup G'_{DW} \quad \text{and} \quad G'_{DW} = (V'_D \cup V'_W, E'_{DW})$$

where

$$E'_{DW} = \{(d', w') \mid w' \in d', \forall w' \in V'_W, \forall d' \in V'_D\}$$

The BiTe-GCN framework is compatible with the transductive learning and inductive learning, so we develop both versions for it. In the inductive learning version, the node-by-node convolution calculation order needs to be specifically designed. Take a real-life e-commerce network as an example, we design and show its detailed convolution calculation process in Fig. 2.

![Figure 2: The convolution process in BiTe-GCN for a real e-commerce network. The target nodes are query node #1 and item node #3, so we orderly update #1’s neighbor nodes (product node #a and attribute node #d), #3’s neighbor nodes (product node #a and attribute node #e), and finally #1 and #3 themselves.](image)

4 EXPERIMENTS SETTING

In this section, we conduct extensive experiments to evaluate the effectiveness of our proposed method BiTe-GCN compared to several state-of-the-arts on four text-rich networks.

4.1 Datasets

We examine our BiTe-GCN on four text-rich citation networks. Table 2 shows the statistics for these datasets.

Datasets			
Cora-Enrich	2,708	5,429	7
DBLP-Five	6,936	12,353	5
Hep-Small	397	812	3
Hep-Large	11,752	134,956	4

Table 2: Dataset Statistics. $|N|$ and $|E|$ are the number of nodes and edges in the citation network. $|C|$ is the number of categories.

4.2 Compared Algorithms

We compare our methods and its variants with four state-of-the-art methods, introduced as follows:

- **GCN** [8]: It is a classical graph convolution network model and the main baseline of our BiTe-GCN. Specifically, the features here are extracted directly from corpus D.
- **GAT** [26]: Based on GCN model, it introduces the node-level multi-head attention mechanisms to specify the weights from different neighborhoods.
- **DG1** [27]: It is an unsupervised graph neural network model which derives node embeddings by maximizing mutual information between patch representations and corresponding high-level summaries of graphs.

2http://zhang1f.myweb.cs.uwindsor.ca/datasets/

3https://www.cs.cornell.edu/projects/odd/corpus/datasets.html.
with several variations as stated in section 4.2. We claim that the BiTe-GCN (attention) introduced another performance boost. In Table 3, the performance of BiTe-GCN is compared to the baseline methods.

Table 3 shows the overall results on the node classification task performed on the datasets we mentioned above.

5.1 Comparisons to Existing Methods
As shown in Table 3, our model BiTe-GCN outperforms the basic GCN by a large margin, which demonstrates the superiority of our new bidirectional convolution mechanisms of topology and features. It also performs much better than the other state-of-the-art GCN methods, which further validate the effectiveness of our new architecture. Also of note, as illustrated in the model design part, our approach is almost orthogonal to many existing GCN models which can incorporate our strategy easily to further improve performance.

5.2 Refinement and Attention
To further clarify our claimed contribution, we compare BiTe-GCN with several variations as stated in section 4.2. We claim that the data refinement together with the model refinement make a great contribution on boosting the performance.

5.2.1 Data Refinement. Compare our BiTe-GCN-B’s result with original GCN, our proposed bi-typed convolution architecture can capture the semantic meanings which is embedded in the network structure. Then adding refinement can further increase the performance of BiTe-GCN-B. The result comparison between BiTe-GCN-B and BiTe-GCN-R shows the semantic (data) refinement can benefit the base BiTe-GCN model.

5.2.2 Model Refinement (Attention). Then the model refinement (attention) introduced another performance boost. In Table 3, the comparison of two model pairs (BiTe-GCN-B, BiTe-GCN-A) and (BiTe-GCN-R, BiTe-GCN-R-A) shows the power of this attention refinement. It performs as effective as data semantic refinement because the attention mechanism can capture the information on how the message from different types of the network is utilized. However, in DBLP and Hep datasets, the attention itself cannot bring significant performance boost compared with data refinement. This is because data refinement can capture more semantic meaning in the original text-rich network, attention, however, only enhance the original network structure information, which itself is not enough to solve the problem independently. After the data refinement, the model is able to capture more semantic information. At that time, the attention can show its power to learn the different weights or utilization of different message from each type of network.

6 APPLICATION ON E-COMMERCE SEARCH
E-commerce network construction. Our new framework is also correctly suitable for the search scene in some e-commerce platforms. To be specific, in an e-commerce search scene, the queries and items which are from users and online shops respectively could constitute a natural bi-typed heterogeneous network. Learning node embedding from this network is helpful to give an accurate estimation of relevance between each pair of the query and item, such that it can optimize the follow-up ranking results. From JD.com, we build up such a network where a total of 6.5M queries and 50M items covering all categories exist as the real nodes. In consideration of the product and attribute phrases playing important roles in the e-commerce corpus, we extract 60K product phrases and 12K attribute phrases from JD’s database to act as the entity nodes in the network. Some representative examples from this built network are shown in Fig. 3. The red edge connecting a pair of real nodes generates via integrating the original user purchase behaviors and BERT-refined user click behaviors, while the yellow edge from an entity node to another is selected via retrieving the most co-occurrence phase.

Baseline algorithms. We compare our models with two types of baseline algorithms which are classical deep text matching models and emerging graph neural network (GNN) models for the searching problem. The former usually adopts a representation-based or interaction-based matching pattern to calculate a relevance score between two pieces of texts. The latter leverages neural network architectures, i.e., graph convolution layer with or without graph attention layer, to deal with network-structure data. A brief introduction to these related methods and our models are as below:

- **MV-LSTM** [28]: It is a representation-based method, which uses Bi-LSTM architecture to learn two sentences’ separate embedding with contextual information.
- **ARC-I** [5]: It is a representation-based method, which captures two sentences’ different-level matching signals with the Siamese CNN architecture.
- **ARC-II** [5]: As an enhanced version of ARC-I, it is interaction-based, and directly models the interaction space of two sentences with a single group of CNNs, which is different from the Siamese architecture in ARC-I.
- **K-NRM** [30]: It is an interaction-based method, using the kernel-based technique to learn multi-level matching signals.

We will release our codes and related datasets after this paper is accepted.
Table 3: Overall results (Accuracy) on four mentioned datasets. “OOM” means out of memory. We highlight the best model in terms of the performance under each dataset.

Methods	Cora-Enrich	DBLP-Five	Hep-small	Hep-large
GCN	0.8815	0.9177	0.4872	0.5243
GAT	0.8852	0.9365	0.4915	0.5270
DGI	0.8918	0.8564	0.5108	OOM
GeomGCN	0.8926	0.9307	0.4872	0.5047
BiTe-GCN-B	0.9000	0.9336	0.5359	0.5277
BiTe-GCN-R	0.9148	0.9466	0.5897	0.5345
BiTe-GCN-A	0.9222	0.9380	0.5385	0.5260
BiTe-GCN-R-A	0.9370	0.9524	0.6667	0.5489

Figure 3: An example of the augmented network in a real e-commerce search scene. The edges between two real nodes, two entity nodes, one real node and one entity node generate via the relationships of user behavior, co-occurrence and inclusion, respectively.

- **MatchPyramid** [20]: It underlines the similarity of text match and image recognition, and thus designs a hierarchical CNN’s structure to deal with the text match problem.
- **DUET** [19]: It is a combination method of the representation-based model and interaction-based model.
- **HG4SM** [14]: It jointly uses HG4SM-1 (representation-based embedding), HG4SM-2 (interaction-based embedding) and HG4SM-3 (metapath-guided heterogeneous network embedding) to solve the relevance match problem. We compare our model with all its three versions.
- **GCN** [8], **GAT** [26], BiTe-GCN-Refine, BiTe-GCN-Refine-Attention: As introduced in Section 4.2.

Metrics. Six kinds of metrics are introduced to fully evaluate the above models’ performance. These metrics are widely used in machine learning, including AUC (Area Under the receiver operating characteristic Curve), Accuracy, Precision, Recall, F1-score and FNR (False Negative Rate). It is worth mentioning that we mainly focus on the result of AUC in the JD search relevance scene.

Experimental setup and result analysis. For simplicity, each real or entity node’s embedding is achieved by calculating the average of word embeddings, which are initialized by the pre-trained results on 2 billion e-commerce corpus. We use the Lazy-Adam optimizer with a learning rate of 1.0e-3. For BiTe-GCN-R-A model, we set 4-head attention calculation for the aggregation of node embedding and meta-path embedding. Based on 39K human-labeled evaluation dataset, we select the best model and report its results in Table 4 corresponding to the maximum AUC value within 3 epochs.

For the results, on the one hand, the GNN-type methods are superior to all of compared deep text match method such as MV-LSTM and MatchPyramid, which benefits by the extra refinement of the rich local neighbor information. On the other hand, by disentangling the real nodes and entity nodes from the heterogeneous network and afterward building up two convolution operations on homogeneous nodes and heterogeneous nodes, our models BiTe-GCN-R and BiTe-GCN-R-A also outperform the two classical GNN models, i.e., GCN and GAT in all the test sets.
Table 4: The performance of deep text match models, graph neural network models and our models on JD’s dataset. ‘(*)’ is the dominant metric used in JD. Bold number represents the best result.

Models	AUC(*)	Accuracy	Precision	Recall	F1-score	FNR
MV-LSTM	0.8278	0.8023	0.8021	0.9873	0.8851	0.8224
K-NRM	0.8021	0.7918	0.7942	0.9854	0.8796	0.8618
ARC-I	0.7345	0.7771	0.7769	0.9975	0.8735	0.9669
ARC-II	0.7783	0.7920	0.7915	0.9915	0.8803	0.8815
MatchPyramid	0.8007	0.7946	0.7988	0.9806	0.8805	0.8336
DUET	0.8077	0.7799	0.7789	0.9980	0.8749	0.9563
HG4SM-1	0.8067	0.7978	**0.8855**	0.8474	0.8660	0.3697
HG4SM-2	0.8289	0.8534	0.8770	0.9421	0.9084	0.4459
HG4SM-3	0.8500	0.8592	0.8852	0.9392	0.9114	0.4110
GCN	0.8458	0.8580	0.8816	0.9425	0.9110	0.4272
GAT	0.8523	0.8539	0.8819	0.9361	0.9082	0.4234
BiTe-GCN-R	0.8564	0.8598	0.8847	0.9409	0.9119	0.4139
BiTe-GCN-R-A	**0.8635**	**0.8601**	0.8850	0.9409	**0.9121**	**0.4129**

7 RELATED WORK

Graph convolutional networks (GCNs) aim to extract high-level features from nodes and their neighborhoods by using the propagation and aggregation mechanisms. However, a key issue with GCNs is their topological limitations, i.e., oversmoothing and local homophily of topology. Existing methods for solving these topological limitations can be mainly divided into four kinds of strategies, that is, topology optimization methods, self-supervised methods, skip connection methods and attention-based methods.

Topology Optimization Methods. There are several studies that adopt the idea of topology optimization to improve GCNs. For example, DropEdge [22] proposes to reduce the message passing by randomly deleting a certain number of edges from the input network in order to alleviate the topological limitations of GCNs. MRFasGCN [7] makes a community knowledge-based MRF as a layer of convolution of GCN to relieve its topological limitations. TO-GCN [35] refines network topology by employing the given labels as the pairwise constraints (must-link and cannot-link). GeoGCN [21] utilizes the information (discriminative structures and long-range dependencies) in an embedding space from a network and a bi-level aggregation scheme to relieve the impact of network topology on GCNs performance.

Self-supervised Methods. Another distinct line for overcoming the topological limitations of GCNs is to augment the original label set by adding the high-credible labels derived from GCNs. For example, Li et al. [10] propose a self-training approach, which first trains GCN with given labels, and then adds the most confident predictions for each class to label set for subsequent training of GCN. Self-enhanced GNN [34] employs two algorithms, topology update and training node augmentation, to improve the quality of input data to promote the performance of GCNs. M3S [24] proposes a multi-stage training algorithm on the basis of self-training, which first adds confident data with virtual labels to the label set, and then applies DeepCluster on the embedding process of GCN and constructs a novel self-checking mechanism to improve the training of GCN. DSGCN [41] extends M3S by adopting a threshold-based rule, i.e., insert an unlabeled node if and only if its classification margin is above the threshold, to augment the training set to ease the topological limitations of GCNs.

Skip Connection Methods. The third strategy utilizes the idea of skip connection that adaptively selects appropriate neighborhoods for each node, to remission the topological limitations of GCNs. For instance, JKNet [33] introduces jumping knowledge networks, which flexibly leverages different neighborhood ranges for each node, to enable better structure-aware representation. Fey [2] improves JKNet by exploring a highly dynamic neighborhood aggregation procedure that aggregates neighborhood representations of different localities.

Attention-based Methods. Some work using the attention mechanisms to allocate appropriate weights to different neighborhoods in network can also be considered to solve the topological limitations of GCNs. For example, GAT [26] introduces the attention mechanisms, which uses weights on links, to aggregate the information of neighborhoods to refine network topology. Liu et al. [11] propose a non-local aggregation framework with an efficient attention-guided sorting to put the distant but informative nodes near each other, so as to relieve the topological limitations of GCNs. AGNN [25] adopts the method by removing all the intermediate fully-connected layers, and replacing the propagation layers with attention mechanisms which learn a dynamic and adaptive local summary of the neighborhood to achieve more accurate predictions. SPAGAN [36] designs a path-based attention that explicitly considers the influence of a sequence of nodes yielding the minimum cost, or shortest path, between nodes and its neighborhoods, mitigating the topology limitations of GCNs.

Though those methods improve the performance of GCNs to some extent, they still have several essential limitations. That is, the convolutions of these methods mainly focus on using features for network topology, making them heavily dependent on network structure. At the same time, most networks are text-rich, it is important to integrate not only the global document-level information,
but also the local text-sequence information which contains important semantics while is often ignored by the existing methods.

8 CONCLUSION

We propose a new GCN architecture, namely BiTe-GCN, for text-rich networks, to overcome the topological limitations of GCNs. This is the first time to relieve these topological limitations, including oversmoothing and local homophily of topology, through the convolutions of network and texts in the same system. Meanwhile, by utilizing a discriminative hierarchical convolution mechanism, based on the concept of meta-path, we can learn the contributions of these two parts, that is, network part and text part, automatically aiming to the ground truth such as node classification. In addition, we incorporate more semantic and knowledge information from texts, not only the global document-level information, but also the local text-sequence level information, together to convolve, making the model more powerful.

Empirical results on several text-rich networks demonstrate that our new architecture has a breakthrough improvement over the state-of-the-arts. Meanwhile, our new architecture is also well applied to some e-commerce search scenes (e.g., JD searching). Last but not least, this architecture is almost orthogonal to many existing GCN methods and thus can be readily incorporated to further improve their performance.

REFERENCES

[1] Zulong Diao, Xin Wang, Daifang Zhang, Yingru Liu, Kun Xie, and Shaoyao He. 2019. Dynamic Spatial-Temporal Graph Convolutional Neural Networks for Traffic Forecasting. In Proceedings of the 33th AAAI Conference on Artificial Intelligence. 890–897.

[2] Matthias Fey. 2019. Just Jump: Dynamic Neighborhood Aggregation in Graph Neural Networks. CoRR abs/1904.04849 (2019).

[3] Soumyajit Ganguly and Vikram Pudi. 2017. Paper2vec: Combining Graph and Text Information for Scientific Paper Representation. In Proceedings of the 39th European Conference on Information Retrieval. Vol. 10193. 383–395.

[4] William L Hamilton, Zhiao Ying, and Jure Leskovec. 2017. Inductive Representa-

[5] tion Learning on Large Graphs. In Proceedings of the 31st Advances in Neural Information Processing Systems. 1024–1034.

[6] Baotian Hu, Zhengdong Lu, Hang Li, and Qingsai Chen. 2014. Convolutional neural network architectures for matching natural language sentences. In Advances in neural information processing systems. 2042–2050.

[7] Fenyu Hu, Yaqiao Zhu, Shu Wu, Liang Wang, and Tieniu Tan. 2019. Hierar-

[8] chical Graph Convolutional Networks for Semi-supervised Node Classification. In Proceedings of the 28th International Joint Conference on Artificial Intelligence. ijcai.org, 4532–4539.

[9] Di Jin, Ziyang Liu, Weihao Li, Dongxiao He, and Weixiong Zhang. 2019. Graph Convolutional Networks Meet Markov Random Fields: Semi-Supervised Community Detection in Attribute Networks. In Proceedings of the 33th AAAI Conference on Artificial Intelligence. 152–159.

[10] Charles Kipf and Max Welling. 2016. Semi-Supervised Classification with Graph Convolutional Networks. In Proceedings of 5th International Conference on Learning Representations.

[11] Bing Li, Wei Wang, Yifang Sun, Linhan Zhang, Muhammad Asif Ali, and Yi Wang. 2020. GraphERE: Token-Centric Entity Resolution with Graph Convolutional Neu-

[12] ral Networks. In Proceedings of the 34th AAAI Conference on Artificial Intelligence. 8172–8179.

[13] Qi Liu, Xingang Li, and Xuanwu Zhang. 2018. DeepInsights Into Graph

[14] Convolutional Networks for Semi-Supervised Learning. In Proceedings of the 32th AAAI Conference on Artificial Intelligence. 3538–3545.

[15] Meng Liu, Zhengyang Wang, and Shuiwang Ji. 2020. Non-Local Graph Neural Networks. CoRR abs/2005.14612 (2020).

[16] Xian Liu, Xinmin You, Xiao Zhang, J Li, and Ping Lv. 2020. Tensor Graph Convolutional Networks for Text Classification. In Proceedings of the 34th AAAI Conference on Artificial Intelligence. 8409–8416.

[17] Ziqi Liu, Chaochao Chen, Longfei Li, Jun Zhou, Xiaolong Li, Le Song, and Yuan Qi. 2019. GeniePath: Graph Neural Networks with Adaptive Receptive Paths. In Proceedings of the 33th AAAI Conference on Artificial Intelligence. 4424–4431.

[18] Ziyang Liu, Zhaomeng Cheng, Yunjiang Jiang, Yue Shang, Hongyu Shan, and Di Jin. 2020. Heterogeneous Network Embedding for Deep Semantic Relevance Match in E-commerce Search. In Proceedings of the IEEE International Conference on Data Mining.

[19] Zhiwei Liu, Mengting Wan, Stephen Guo, Kannan Achan, and Philip S. Yu. 2020. BasConv: Aggregating Heterogeneous Interactions for Basket Recommendation with Graph Convolutional Neural Networks. In Proceedings of the 2020 AAAI International Conference on Data Mining. 64–72.

[20] Jianxin Ma, Peng Cui, Kun Kuang, Xin Wang, and Wenwu Zhu. 2019. Disentangled Graph Convolutional Networks. In Proceedings of the 36th International Conference on Machine Learning. Vol. 97. 4212–4221.

[21] Yu Meng, Jixin Huang, Guangyuan Wang, Chao Zhaog, Honglei Zhuang, Lian, Kaplan, and Jawei Han. 2019. Spherical text embedding. In Advances in Neural Information Processing Systems. 8208–8217.

[22] Zhiwei Liu, Mengting Wan, Stephen Guo, and Philip S. Yu. 2020. BiTe-GCN: A New GCN Architecture via Bidirectional Convolution of Topology and Features on Text-Rich Networks. In Proceedings of the 34th Conference on Neural Information Processing Systems. 3111–3119.

[23] Bhaaskar Mitra, Fernando Diaz, and Nick Crawell. 2017. Learning to match using local and distributed representations of text for web search. In Proceedings of the 26th International Conference on World Wide Web. 1291–1299.

[24] Liang Pang, Yan Yan, Lai Fung, Jun Xu, Shengxian Wan, and Xuqng Cheng. 2016. Text Matching as Image Recognition. In AAAI. Vol. 16. 2793–2799.

[25] Hongbin Pei, Bingzhe Wei, Kevin Chen-Chuan Chang, Yu Lei, and Bo Yang. 2020. GeoGCN: Geometric Graph Convolutional Networks. In Proceedings of the 8th International Conference on Learning Representations.

[26] Yu Rong, Wenbing Huang, Tingyang Xu, and Junzhou Huang. 2020. DropE-

dp: Towards Deep Graph Convolutional Networks on Node Classification. In Proceedings of the 8th International Conference on Learning Representations.

[27] Jingsbo Shang, Jialu Liu, Meng Jiang, Xiang Ren, Claire R. Voss, and Jawei Han. 2017. Automated Phrase Mining from Massive Text Corpora. arXiv:1702.04457 [cs] (March 2017). http://arxiv.org/abs/1702.04457 ZSCC: NoCitationData@.

[28] Ke Sun, Zouchen Lin, and Zhanxing Zhu. 2020. Multi-Stage Self-Supervised Learning for Graph Convolutional Networks on Graphs with Few Labeled Nodes. In Proceedings of the 36th AAAI Conference on Artificial Intelligence. 5892–5899.

[29] Kiran Koshy Thekumparampill, Chong Wang, Sowoon Oh, and Li-Jia Li. 2018. Attention-based Graph Neural Network for Semi-supervised Learning. CoRR abs/1803.05735 (2018).

[30] Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Liò, and Yoshua Bengio. 2018. Graph Attention Networks. In Proceedings of the 6th International Conference on Learning Representations.

[31] Petar Veličković, William Fedus, William L Hamilton, Pietro Liò, Yoshua Bengio, and R Devon Hjelm. 2019. Deep Graph Infomax. In Proceedings of 7th International Conference on Learning Representations.

[32] Shengxian Wan, Yan Yan, Lai Fung, Jun Xu, Liang Pang, and Xuqng Cheng. 2016. A Deep Semantic Architecture for Matching with Multiple Positional Sentence Representations. In Proceedings of the 30th AAAI Conference on Artificial Intelligence. 2835–2841.

[33] Felix Wu, Amauri H. Souza Jr., Tianyi Zhang, Christopher Fifty, Tao Yu, and Kilian Q. Weinberger. 2019. Simplifying Graph Convolutional Networks. In Proceedings of the 36th International Conference on Machine Learning. Vol. 97. 6681–6671.

[34] Chenyan Xiong, Zhiyuan Dai, Jamie Callan, Zhiyuan Liu, and Russell Power. 2017. End-to-end neural ad hoc ranking with kernel pooling. In Proceedings of the 40th ACM SIGIR conference on research and development in information retrieval. 55–64.

[35] Bingbing Xu, Junjie Huang, Liang Hou, Huwuet Shen, Jinluo Gao, and Xueq Cheng. 2020. Label-Consistency based Graph Neural Networks for Semi-supervised Node Classification. In Proceedings of the 43rd International ACM SIGIR conference on research and development in information Retrieval. 1897–1900.

[36] Fengli Xu, Jianxun Lian, Zhexun Han, Yong Li, Yujian Xu, and Xing Xie. 2019. Relation-Aware Graph Convolutional Networks for Agent-Initiated Social E-Commerce Recommendation. In Proceedings of the 28th ACM International Conference on Information and Knowledge Management. 529–538.

[37] Keyulu Xu, Chengtao Li, Yonglong Tian, Tomohiro Sonobe, Ken-ichi Kawarabayashi, and Stefanie Jegelka. 2018. Representation Learning on Graphs with Jumping Knowledge Networks. In Proceedings of the 35th International Conference on Machine Learning. Vol. 80. 5449–5458.

[38] Han Yang, Xiao Yan, Xinran Dai, and James Cheng. 2020. Self-Enhanced GNN: Improving Graph Neural Networks Using Model Outputs. CoRR abs/2005.07518 (2020).

[39] Liang Yang, Zesheng Kang, Xiaochuan Cao, Di Jin, Bo Yang, and Yuanfeng Guo. 2019. Topology Optimization based Graph Convolutional Network. In Proceedings of the 28th International Joint Conference on Artificial Intelligence. 4054–4061.

[40] Yiding Yang, Xinchao Wang, Mingli Song, Junsong Yuan, and Dacheng Tao. 2019. SPAGAN: Shortest Path Graph Attention Network. In Proceedings of the 28th International Joint Conference on Artificial Intelligence. 4099–4105.
[37] Liang Yao, Chengsheng Mao, and Yuan Luo. 2019. Graph Convolutional Networks for Text Classification. In Proceedings of the 33th AAAI Conference on Artificial Intelligence. 7370–7377.

[38] Jiaxuan You, Rex Ying, and Jure Leskovec. 2019. Position-aware Graph Neural Networks. In Proceedings of the 36th International Conference on Machine Learning. Vol. 97. 7134–7143.

[39] Bing Yu, Haoteng Yin, and Zhanxing Zhu. 2018. Spatio-Temporal Graph Convolutional Networks: A Deep Learning Framework for Traffic Forecasting. In Proceedings of the 27th International Joint Conference on Artificial Intelligence. 3634–3640.

[40] Lingxiao Zhao and Leman Akoglu. 2020. PairNorm: Tackling Oversmoothing in GNNs. In Proceedings of the 8th International Conference on Learning Representations.

[41] Ziang Zhou, Shenzhong Zhang, and Zengfeng Huang. 2019. Dynamic Self-training Framework for Graph Convolutional Networks. CoRR abs/1910.02684 (2019).