Chemical bonding and Born charge in 1T-HfS$_2$

S. N. Neal1, S. Li2, T. Bird2 and J. L. Musfeldt1,3

We combine infrared absorption and Raman scattering spectroscopies to explore the properties of the heavy transition metal dichalcogenide 1T-HfS$_2$. We employ the LO–TO splitting of the E_g vibrational mode along with a reevaluation of mode mass, unit cell volume, and dielectric constant to reveal the Born effective charge. We find $Z^*_B = 5.3 e$, in excellent agreement with complementary first-principles calculations. In addition to resolving the controversy over the nature of chemical bonding in this system, we decompose Born charge into polarizability and local charge. We find $a = 5.07 \text{ Å}^3$ and $Z^* = 5.2 e$, respectively. Polar displacement-induced charge transfer from sulfur p to hafnium d is responsible for the enhanced Born charge compared to the nominal 4$^+$ in hafnium. 1T-HfS$_2$ is thus an ionic crystal with strong and dynamic covalent effects. Taken together, our work places the vibrational properties of 1T-HfS$_2$ on a firm foundation and opens the door to understanding the properties of tubes and sheets.

INTRODUCTION

While 3d transition metal oxides and chalcogenides display strong electronic correlations, narrow bandwidths, and robust magnetism, 4 and 5d systems are recognized for strong spin–orbit coupling, increased hybridization, and more diffuse orbitals. As a result, materials that contain 4- and 5d centers often have enhanced or emergent properties$^{1-9}$. Transition metal dichalcogenides such as MoTe$_2$, IrTe$_2$, HfSe$_2$, and PtSe$_2$ are of great interest for their unconventional chemical bonding and hybridization, topology, multiferricity, and tendency toward complex dimerization patterns$^{10-17}$. Within this class of materials, 1T-HfS$_2$ has attracted particular attention as an analog of HfO$_2$—a highly polarizable gate dielectric18,19.

1T-HfS$_2$ is a layered material with a $P\bar{3}m1$ (#164) space group at 300 K20. Each Hf$^{4+}$ ion has D_{3d} site symmetry and is located at the center of a S^2-octahedron. The van der Waals gap is 3.69 Å, and the sheet thickness is 2.89 Å. Photoemission studies reveal an indirect bandgap of 2.85 eV between Γ and M/L, which varies slightly from the ≈ 2 eV optical gap21. 1T-HfS$_2$ forms a high-performance transistor with excellent current saturation22. The carrier mobility is on the order of 1800 cm2V$^{-1}$s$^{-1}$—much higher than MoS$_2$ and thickness-dependent as well23,24. Group theory predicts that at the Γ point, 1T-HfS$_2$ has vibrational modes with symmetries of $A_{1g} + E_g + A_{2u} + E_u$. The $A_{1g} + E_g$ modes are Raman-active, and the $A_{2u} + E_u$ modes are infrared-active20,25. Despite many years of work, there are a surprising number of unresolved questions about 1T-HfS$_2$—even in single-crystal form. In the field of vibrational spectroscopy, there is controversy about mode assignments, the role of resonance in creating hybrid modes, the presence or absence of surface phonons, and the use of these data to reveal the Born effective charge (Z^*_B). As an example, Born effective charges between 3.46e and 5.5e have been reported by various experimental26,27 and theoretical28 groups. Evidence for the degree of ionicity (or covalency) is both interesting and important because 5d orbitals tend to be more diffuse than those of their 3d counterparts. Within this picture, 1T-HfS$_2$ has the potential to sport significant covalency. High-pressure Raman scattering spectroscopy reveals a first-order phase transition near 11 GPa and different ω/∂Ps (and thus mode Gruneisen parameters) for the hybrid E_g and fundamental A_{1g} modes29. At the same time, variable temperature Raman scattering spectroscopy shows a systematic blueshift of the spectral features down to 100 K, except for the large A_{1g} mode ~330 cm$^{-1}$, which redshifts24,29. In few- and single-layer form, 1T-HfS$_2$ is suitable for high-performance transistors$^{30-32}$, displays a direct gap (rather than indirect as in the bulk)33, exhibits photocatalytic behavior appropriate for water splitting34, reveals applications in photodetection35, is susceptible to strain effects36, and is useful in N, C, and P surface adsorption37. This system can be integrated into van der Waals heterostructures and grown vertically as well31,37,38.

In order to explore the vibrational properties of 1T-HfS$_2$, we measured the infrared absorption and Raman scattering response and employed the results to evaluate Born effective charge. We find that $Z^*_B = 5.3e$, in excellent agreement with our complementary first-principles calculations. In order to understand how Z^*_B relates to the nominal 4$^+$ charge of the Hf center, we employ a Wannier function analysis to project out the different orbital contributions. This analysis reveals that the sulfur p orbital transfers charge to the cation and that this contribution enhances the Born charge beyond the nominal value. Decomposing Z^*_B into polarizability and local charge, we find that there is strong ionicity as well as significant covalency in this system. Both are quite different than in 2H-MoS$_2$—probably on account of spin–orbit coupling. We also identify two weak structural distortions near 210 and 60 K evidenced by subtle frequency shifts of the E_g and A_{1g} vibrational modes as well as changes in the phonon lifetimes. Taken together, these findings resolve the controversy over the nature of chemical bonding in 1T-HfS$_2$ and clarify the role of the 5d center in the process.

RESULTS AND DISCUSSION

First-principles predictions of charge and bonding

Figure 1a displays the projected density of states of 1T-HfS$_2$ computed using density functional theory and atom-centered local projectors39. The bands can be assigned Hf and S characters easily, and the degree of hybridization between the atoms is not

1Department of Chemistry, University of Tennessee, Knoxville, TN, USA. 2Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, MN, USA. 3Department of Physics and Astronomy, University of Tennessee, Knoxville, TN, USA. 4email: musfeldt@utk.edu

Published in partnership with FCT NOVA with the support of E-MRS
dominant (albeit nonzero). This reveals the strong ionic nature of this system: the valence band is composed mainly of S-p orbitals, whereas the conduction band is predominantly Hf-d in character. We find a bandgap of 2.05 eV using the HSE06 functional. This is consistent with the small electronegativity of the Hf (1.3 on the Pauling scale) compared to that of S (2.6 on the Pauling scale).

Despite the apparent ionicity of the density of states, the dynamical Born effective charges in 1T-HfS$_2$ are anomalous. We find an in-plane value for the Hf ions as $Z^{\text{in-plane}}_{\text{Hf}} = +6.4e$. By contrast, the out-of-plane value for Hf $Z^{\text{out-of-plane}}_{\text{Hf}}$ is only $2.0e$. This reveals that either (i) the Hf ions are strongly polarizable, or (ii) the small degree of covalency is strongly dependent on ionic displacements.

Figure 1b displays the phonon dispersions of 1T-HfS$_2$. While the spectrum is highly dispersive within the plane (for instance, in the Γ–M direction), it is much less so in the out-of-plane direction (for instance, along Γ–A). This difference is a natural consequence of the layered crystal structure and is the origin of the spikes in the phonon density of states (right panel, Fig. 1b). One aspect of these predictions that will be important for later discussion is the mode order around the A_{1g} fundamental. Notice that the E_u feature is predicted to be below the A_{1g} mode, whereas the A_{2u} mode is predicted to be above the A_{1g} fundamental. These features are labeled in Fig. 1b. Theoretical phonon frequencies are in excellent agreement with our measured results (Table 1).

Lattice dynamics can be used to gain information about the chemical bonding in crystals. In 1T-HfS$_2$, the E_u optical mode is due to the in-plane vibrations of the Hf cations against the S anions (Fig. 1c). The frequency difference between the longitudinal and transverse optical modes (the LO–TO splitting)
Infrared properties of 1T-HfS2

There are two fundamental infrared-active phonons. The 1T-HfS2 is the Born effective charge and q is the wavevector. With this extra term present in the dynamical matrix, the twofold degeneracy of the E_u optical modes is lifted:

$$\omega_{E_u,TO}^2 - \omega_{E_u,LO}^2 = D_{E_u}^{\text{Non}} = \frac{4\pi}{\Omega \varepsilon_{\infty}(\infty)} e^2 \left(\sum_{i} \left| U_i \right|^2 Z_{i,xx}^2 \right)^{\frac{1}{2}},$$

(2)

where m' is the effective mass, determined by

$$m = \frac{1}{m_{\text{eff}}} + \frac{1}{2m_s}.$$

(4)

in this case, the effective mass is 47.02 u. A general expression for effective mass is provided in Supplementary Information. We use this result along with Eq. (3) to analyze the experimental Born effective charge below. Gaussian units are employed.

Infrared properties of 1T-HfS2

Figure 2a summarizes the infrared response of single-crystalline 1T-HfS2. We assign the vibrational modes, symmetries, and displacement patterns based on prior literature as well as our complementary lattice dynamics calculations (Table 1). There are two fundamental infrared-active phonons. The E_u symmetry mode is extremely broad and centered at 155 cm\(^{-1}\). It is ascribed to an in-plane, out-of-phase motion of the sulfur layers against the hafnium. As we will discuss below, the maximum corresponds to the transverse optical (TO) phonon frequency. In the bulk form, peaks in absorption always correspond to the TO component of the mode. The A_{2u} mode at 336 cm\(^{-1}\) is much weaker and narrower. This feature is due to an out-of-plane + in-phase sulfur layer stretching, and although it is polarized in the c direction, it appears in the nascent form here probably due to surface flakiness or slight misalignment. In any case, it is very small. There is also a minute structure near 310 cm\(^{-1}\) which, as we shall see below, corresponds to the weakly activated longitudinal optical (LO) phonon frequency of the E_u mode. Of course, each polar phonon has separate LO and TO components, and the LO frequency is always higher than that of the TO frequency due to the polarizability of the surrounding medium. Displacement patterns for each phonon are shown in Fig. 1c and summarized in Table 1.

Figure 2a also displays the infrared response of 1T-HfS2 as a function of temperature. What is striking about these results is the overall lack of temperature-induced change over the 300–8 K range—in both peak position and intensity. Traditionally, modeling of frequency vs. temperature effects provides important information on anharmonicity in a solid as well as the various force constants. The idea is to bring together frequency vs. temperature plots along with one of several different equations that depend upon the situation. The absence of mode hardening with decreasing temperature suggests, however, that anharmonic effects in 1T-HfS2 are modest and that energy scales are high. Oscillator strength sum rules are obeyed, as expected. Below 100 K, there is a small resonance in the form of a dip that develops on top of the 155 cm\(^{-1}\) E_u symmetry phonon. This structure is one of the spectroscopic signatures of weak local lattice distortion. Because the evidence for the effect is stronger in the Raman response, we will defer this discussion until later. Partial sum rules on the E_u vibrational mode are obeyed; expected.

Another way to reveal temperature effects is to examine phonon lifetimes (Fig. 2b). These values, which are expressions of the Heisenberg uncertainty principle, can be calculated from the linewidth of each vibrational mode as $\Gamma = \frac{\hbar}{\tau}$, where Γ is the full

Fig. 2 Infrared absorption studies of 1T-HfS2 as a function of temperature. a Infrared absorption spectra of 1T-HfS2 as a function of temperature. The color scheme emphasizes the different phases, and the curves are offset for clarity. b Close-up view of the infrared response of 1T-HfS2 on an absolute scale. The inset displays the phonon lifetime of the E_u mode as a function of temperature. Error bars are on the order of the size of the data points.
width at half-maximum and \hbar is the reduced Planck’s constant. We find that the phonon lifetime of the E_u mode is 0.03 ps—exceptionally short compared to that of the A_{2u} mode. The lifetime of the E_u mode is nearly insensitive to temperature as well, meaning that this mode dissipates energy very well—even at low temperatures. In other words, τ is large because there are many scattering events. On the other hand, the lifetime of the E_u and A_{2u} modes, respectively) as well as those of polar semiconductors like GaAs, ZnSe, and GaN (which tend to be between 2 and 10 ps). Likewise, silicon has a phonon lifetime between 1.6 and 2 ps, depending on the carrier (hole) density. This means that carrier–phonon scattering is of greater importance in 1T-HfS$_2$ than in 2H-MoS$_2$ or the traditional semiconductors. Employing a characteristic phonon velocity of 4700 ms$^{-1}$ (see ref.35), we find mean free paths in 1T-HfS$_2$ of 143 pm and 1740 pm for the E_u and A_{2u} modes, respectively. The mean free path for the E_u mode is slightly smaller than all of the characteristic length scales in the system, including the 369 pm van der Waals gap, the 289 pm sheet thickness, and the 253 pm Hf–S bond length, whereas the mean free path for the A_{2u} mode is four or five times larger than these characteristic length scales.

Revealing Born effective charge via infrared spectroscopy

The Born effective charge of transition metal dichalcogenides has been of sustained interest. This is because Born charge can be calculated from first principles as summarized in the previous section and revealed directly from spectroscopic data by taking into account the relationship between the longitudinal and transverse optic phonon frequencies as indicated in Eq. (3). As a reminder, ω_{LO} and ω_{TO} are the longitudinal and transverse optic phonon frequencies, c is the speed of light, N is the number of formula units in the unit cell, V is the volume of the 1T–HfS$_2$ formula unit, ϵ_0 is the electronic charge, ϵ_0 is the permittivity of free space, $\epsilon(\infty)$ is the dielectric constant after the phonons, and m_0 is the effective mass. Employing Eq. (4), we find $m_0 = 47.02$ u for 1T–HfS$_2$. We also use $\omega_{LO} = 310$ cm$^{-1}$, $\omega_{TO} = 155$ cm$^{-1}$, $\epsilon(\infty) = 6.20$, $N = 1$, and $V = 66.44$ Å3. In the absence of a robust experimentally determined volume, we used a theoretically predicted value. This anomalous Born charge signals either (i) covalency between the cations and anions or (ii) cation polarizability. Uchida explored the issues in terms of static and dynamic charge. We can address the question more robustly with contemporary tools. Maximaly localized Wannier functions can be utilized to explain the origin of anomalous Born effective charges. The macroscopic electronic polarization can be expressed in terms of the center of localized Wannier functions as

$$P_{nl} = \frac{1}{\Omega_0} \sum_{n} \int r \mid W_n(r) \mid^2 d^2r,$$

where $W_n(r)$ is the Wannier function and the sum is over the filled Wannier orbitals. By displacing the Hf atoms in the in-plane and out-of-plane directions, it is possible to calculate the shift of the center of each Wannier function, and hence get an orbital-by-orbital

$\omega(LO)$ (cm$^{-1}$)	$\omega(TO)$ (cm$^{-1}$)	$\epsilon(\infty)$	m_0 (u)	V (\AA^3)	Z_∞^e (e)	Reference
300	152	6.33	–	3.46	4.36	Chen et al.28
318	166	6.20	23.59	69.46	3.90	Lucovsky et al.27
321	166	6.20	–	5.50	This work (experiment)	
310	155	6.20	47.02	66.44	5.3	This work (experiment)
300	152	8.09	47.02	66.44	6.4	This work (theory)

Literature results and our own work—both experimental and theoretical—are included.

Z_∞^e (e)	α (\AA^3)	Z' (e)	Reference
–	2.2	0.86	Iwasaki et al.26
3.46	–	–	Chen et al.28
3.90	–	–	Lucovsky et al.27
5.50	–	2.60	Uchida et al.26
5.3	5.07	5.2	This work (experiment)
6.4	6.85	6.2	This work (theory)

Literature values and our own work are included.
orbital or band-by-band decomposition of the Born effective charges. Table 4 shows the band-by-band contributions to the Born effective charges of Hf. It turns out that despite the large electronegativity difference between Hf and S, the covalency of Hf–S bonds is the dominant reason behind the anomalous Born effective charge in this compound: the Wannier centers of the electrons in the S–3p bands displace significantly when the Hf ion is displaced. On the other hand, the Hf–5p electrons are displaced almost exactly as much as the Hf ion core itself. Thus, S–3p orbitals contribute most to the difference between Born effective and nominal charge.

Taking a closer look at the electrons in the S–3p orbitals, Fig. 3 shows one of the Wannier functions with and without the Hf ion displacement. In line with the strongly ionized density of states, the S–p electrons are mostly localized on S, with small lobes on Hf indicating hybridization. When Hf atoms are displaced in an in-plane direction, one of the three Hf–S bonds is shortened, while the other two are elongated. The shortened bond causes the Wannier function to be tilted, and its center shifted toward the Hf atom, shown in Fig. 3b. This explains why S–3p orbitals will contribute a positive polarization value when Hf atoms are moving in-plane. On the other hand, when Hf atoms move in the out-of-plane direction, the shape of the hybridized electron density on the Hf atom changes, showing a significant qualitative change in the hybridization, as well as a shift in the S–3p Wannier centers parallel to the Hf displacement. This leads to a negative dynamic contribution of S–3p to the out-of-plane Hf effective charge. Though only one S–3p orbital is shown here, the others are similar.

As a comparison, the Born effective charge of Mo in 2H-MoS2 is 1.1−1.2e in the in-plane direction46, and theoretical results suggest a sign reversal of the cation Born charge51. This is likely because of a much stronger covalency in MoS2 than in HfS2, which results in more electrons transferred from S anions onto Mo cations when Mo ions are displaced. Note that there is a 4d2 − π+ antibonding orbital in Mo–S bonds near the Fermi level because Mo’s 4d band is partially filled, and this orbital can result in large electron transfer in a way similar to π-backboning in organic chemistry53. Our DFT calculation confirms the partially filled band structure as shown in the Supplementary Information.

Raman scattering reveals structural crossovers in 1T-HfS2

Figure 4a summarizes the Raman scattering response of 1T-HfS2 as a function of temperature. We assigned the spectral features based on our lattice dynamics calculations and prior literature (Table 1)25,29,42. The two Raman-active fundamentals at 259 and 336 cm−1 are even symmetry vibrational modes. We attribute these features to E2g symmetry (in-plane, out-of-phase sulfur-layer shearing) and the A1g symmetry (out-of-plane opposing sulfur motions leading to layer breathing), respectively. There is also a weak overtone mode near 650 cm−1 that is slightly less than twice the frequency of the A1g fundamental. This feature has also been referred to as a second-order mode26. There are several hybrid features as well. For instance, the E2g (TO) mode appears weakly in the Raman spectrum near 132 cm−1 due to an in-plane motion of the sulfur against the hafnium. Finally, the shoulder near 325 cm−1 has been the subject of some controversy in the literature. It was previously described as an in-plane shearing (E2g), an out-of-plane sulfur translation (A2g), or even a surface phonon24,25,29,42. Based on prior pressure studies, the position of this phonon diverges from that of the A1g mode near 325 cm−1 as pressure is increased29. If this feature was a surface phonon, it would likely track parallel to the much larger mode. Because it does not, it is unlikely to be a surface phonon. With the help of prior literature as well as the common position with the E2g mode in the infrared studies, we assign this structure as an E2g symmetry phonon24,25,29,42.

Additional justification for this assignment comes from our phonon density of states calculations and the predicted order of the hybrid modes around the A1g fundamental (Fig. 1b). We do not see the hybrid A2u mode in our spectra—even at low temperature, although different laser wavelengths should reveal it25.

Figure 4b,c displays close-up views of the A1g and E2g symmetry Raman-active fundamentals as a function of temperature in contour form. While there is little frequency sensitivity in either feature (due to the high-energy scales in this system), there are noticeable linewidth effects. Focusing on the behavior of the A1g layer expansion mode in Fig. 4b, we see that the linewidth narrows considerably with decreasing temperature, with slight broadening across T1 ≈ 60 K and T2 ≈ 210 K. There is also a slight redshift across T1. Analysis of the E2g sulfur-layer stretching mode in Fig. 4c, again shows linewidth narrowing as the base temperature is approached, also with noticeable broadening across the two crossover regimes. A slight redshift below T1 is again present. We attribute the 60 and 210 K transitions in 1T-HfS2 to local lattice distortions involving a slight motion of the S centers with respect to the Hf ions so as to change the bond lengths and angles a little while maintaining the same overall space group.

Table 4. A band-by-band decomposition of Born effective charge of Hf in HfS2 using the integration of Wannier function.

Core charge	Hf:5p	S:3s	S:3p	Total	
Z_b,xx	+10	−6.08	+0.30	+2.34	6.56
Z_b,zz	+10	−6.20	0.01	−1.86	1.93

All units are in e. The core charges correspond to the charge of the ionic Hf core of the PAW potential used in the DFT calculation, which has all valence orbitals empty. (Only the 5p, 3d, and 6s electrons of Hf atoms and 3s, 3p, electrons of S atoms are considered explicitly in the DFT calculation.) Hf-5d orbitals are not shown because they are formally not occupied. Further details are available in Supplementary Information.

Fig. 3 Visualization of a sulfur p_z maximally localized Wannier orbital. The blue atom is a sulfur center, whereas red atoms are bonded hafnium centers. The red and blue lobes of the orbital indicate the opposite signs of the wavefunction. No structural distortion is present in (a). Hf atoms are displaced in-plane and out-of-plane in (b) and (c), respectively.
Using these linewidth trends and the technique described previously, we calculated phonon lifetimes for the Raman-active vibrational modes of 1T-HfS\textsubscript{2} (Fig. 4d). As a reminder, the \(A_{1g}\) and \(E_g\) modes are the fundamentals. The lifetime of the \(A_{1g}\) phonon rises steadily with decreasing temperature. The behavior of the \(E_g\) symmetry mode is different. It rises gradually below \(T_2\) and dramatically across \(T_1\). This suggests that carrier–phonon scattering is reduced with decreasing temperature. Overall, the lifetimes of the Raman-active even symmetry modes are similar to those of the infrared-active phonon modes in 1T-HfS\textsubscript{2} (Fig. 2b)—with the exception of the \(E_g\) symmetry vibrational mode that is very lossy and therefore sports an extremely short lifetime. This is one surprising feature in 1T-HfS\textsubscript{2} that is not replicated in more traditional systems like 2H-MoS\textsubscript{2}.

METHODS

Crystal growth and spectroscopic measurements

1T-HfS\textsubscript{2} single crystals were grown via chemical vapor transport by 2D Semiconductors, Inc. Prior to traditional infrared and Raman scattering measurements, the sample was surface-exfoliated to remove surface impurities and then mounted on a round pin-hole aperture exposing the \(ab\) plane. Far-infrared studies were performed using a Bruker IFS 113V Fourier-infrared spectrometer equipped with a bolometer detector covering the 20–700 cm\(^{-1}\) frequency range with 2 cm\(^{-1}\) resolution. The measured transmittance was converted to absorption as \(\alpha(\omega) = -\frac{1}{d}\text{Im}(T(\omega))\), where \(d\) is the thickness (in this case, \(\approx 8.4 \times 10^{-4}\) cm). Raman scattering spectroscopy was carried out using a LabRAM HR Evolution
In the case of 1T-HfS₂, an energy band gap of 2.05 eV can be achieved by at least a factor of two, which in PBEsol or meta-GGA functionals both underestimate the band gap by at least 0.3 eV. The lattice constants and vectors are taken from the experimental atom unit cell with a 12 × 12 × 6 k-point grid and cut-off energy of 500 eV. The Wannier90 software package is used for this analysis. The main components for our simulation are available at this GitHub address: https://github.com/yygshi/HF2_results. Other computation details will be available from the corresponding authors upon request.

Received: 26 October 2020; Accepted: 26 March 2021; Published online: 16 April 2021

REFERENCES

1. Kim, B. J. et al. Novel Jₓₓ = 1/2 mott state induced by relativistic spin-orbit coupling in Sr₂IrO₄. Phys. Rev. Lett. 101, 076402 (2008).
2. Birol, T. & Haule, K. Jₓₓ = 1/2 Mott-insulating state in Rh and Ir fluorides. Phys. Rev. Lett. 114, 096403 (2015).
3. Zwartsenberg, B. et al. Spin-orbit-controlled metal-insulator transition in Sr₂IrO₄. Nat. Phys. 16, 290–294 (2020).
4. Cao, G. et al. Electrical control of structural and physical properties via strong spin-orbit interactions in Sr₂IrO₄. Phys. Rev. Lett. 120, 017201 (2018).
5. Cao, G. et al. Charge density wave formation accompanying ferrimagnetic ordering in quasi-one-dimensional Ba₂IrO₄. J. Phys. C 113, 657–662 (2000).
6. Chen, Q. et al. Realization of the orbital-selective Mott state at the molecular level in Ba₂LaRu₂O₆. Phys. Rev. Mater. 4, 064409 (2020).
7. Singleton, J. et al. Magnetic properties of Sr₂NiO₄ and Sr₂Col₂O₄: magnetic hysteresis with coercive fields of up to 55 T. Phys. Rev. B 94, 224408 (2016).
8. O’Neill, K. R. et al. Spin-lattice and electron-phonon coupling in 3d/5d hybrid Sr₂NiO₄. npj Quantum Mater. 4, 1–8 (2019).
9. Ma, Y., Kou, L., Huang, B., Dai, Y. & Heine, T. Two-dimensional ferroelastic topological insulators in single-layer Janus transition metal dichalcogenides MSe₂ (M=Mo, W). Phys. Rev. B 98, 085420 (2018).
10. Yao, Q., Zhang, L., Bampoulis, P. & Zandvliet, H. J. Mesoscale investigation of defects and oxidation of HfSe₂. J. Phys. Chem. C 122, 25498–25505 (2018).
11. Zhu, H. et al. Defects and surface structural stability of MoTe₂ under vacuum annealing. ACS Nano 11, 11005–11014 (2017).
12. Chen, C. et al. Surface phases of the transition-metal dichalcogenide IrTe₂. Phys. Rev. B 95, 094118 (2017).
13. Idaïa, S. et al. Ultrafast dissolution and creation of bonds in IrTe₂ induced by photodoping. Sci. Adv. 4, eaaq2867 (2019).
14. Pascut, G. L. et al. Dimension-induced cross-layer quasi-two-dimensionality in metallic IrTe₂. Phys. Rev. Lett. 112, 086402 (2014).
15. Jiang, K. et al. New pressure stabilization structure in two-dimensional PtSe₂. J. Phys. Chem. Lett. 11, 73427349 (2020).
16. Kempt, R., Kuc, A. & Heine, T. Two-dimensional noble-metal-chalcogenides and phospho-chalcogenides. Angew. Chem. Int. Ed. 59, 9242–9254 (2020).
17. Kozakhmetov, A. et al. Scalable BEOL compatible 2D tungsten diselenide. 2D Mater. 7, 015029 (2020).
18. Cheema, S. S. et al. Enhanced ferroelectricity in ultrathin films grown directly on silicon. Nature 580, 478–482 (2020).
19. Lee, H.-J. et al. Scale-free ferroelectricity induced by flat phonon bands in HfO₂. Science 67, 1–10 (2020).
20. Iwasaki, T., Kuroda, N. & Nishina, Y. Anisotropy of lattice dynamical properties of ZrS₂ and HfS₂. J. Phys. Soc. Japan 51, 2233–2240 (1982).
21. Traving, M. et al. Combined photoemission and inverse photoemission study of HfS₂. Phys. Rev. B 63, 035107 (2001).
22. Kanazawa, T. et al. Few-layer HfS₂ transistors. Sci. Rep. 6, 22277 (2016).
23. Xu, K. et al. Ultrathin transistors based on few-layered HfS₂, Adv. Mater. 27, 7881–7887 (2015).
24. Najmaei, S. et al. Cross-plane carrier transport in van der Waals layered materials. Small 14, 1–11 (2018).
25. Roubi, L. & Garlone, G. Resonant Raman spectrum of HfS₂ and ZrS₂. Phys. Rev. B 37, 6808–6812 (1988).
26. Uchida, S.-i & Tanaka, S. Optical phonon modes and localized effective charges of transition-metal dichalcogenides. Phys. Soc. Japan 45, 153–161 (1976).
27. Lucovsky, G., White, R. M., Benda, J. A. & Revelli, J. F. Reflectance-fingerprint spectra of layered group IV and group VI transition-metal dichalcogenides. Phys. Rev. B 7, 3859–3870 (1973).
28. Chen, J. Phonons in bulk and monolayer HfS₂ and possibility of phonon-mediated superconductivity: a first-principles study. Solid State Commun. 238, 14–18 (2017).
29. Ibañez, J. et al. High-pressure Raman scattering in bulk HfS₂: comparison of density functional theory methods in layered MS₂ compounds (M = Hf, Mo) under compression. Sci. Rep. 8, 1–10 (2018).
30. Fu, L. et al. van der Waals epitaxial growth of atomic layered HfS₂ crystals for ultrasensitive near-infrared photodetectors. Adv. Mater. 29, 1700439 (2017).

DATA AVAILABILITY

The datasets generated and/or analyzed during this study are available from the corresponding author on reasonable request. Files related to the first principles calculation are available at this link: https://doi.org/10.13020/jpp2-9d29.
31. Zhang, W., Neta, S., Kanazawa, T., Andzemi, J. T. & Miyamoto, Y. Effect of increasing gate capacitance on the performance of a p-MoS2/HfSiO3 Van der Waals heterostructure tunneling field-effect transistor. J. Appl. Phys. 58, 7832-7835 (2019).

32. Kang, J., Sahin, H. & Peeters, F. M. Mechanical properties of monolayer sulfides: a comparative study between MoS2, WSe2, and MoSe2. Phys. Chem. Chem. Phys. 17, 27742–27749 (2015).

33. Singh, D., Gupta, S. K., Sonvane, Y. & Kumar, A. 2D-HfS2 as an efficient photocatalyst for water splitting. Catal. Sci. Technol. 6, 6605–6614 (2016).

34. Wang, D. et al. Selective direct growth of atomic layered HfS2 on hexagonal boron nitride for high performance photodetectors. Chem. Mater. 30, 3819–3826 (2017).

35. WU, N. et al. Strain effect on the electronic properties of 1T-HfS2 monolayer. Physica E 93, 1–5 (2017).

36. Berwanger, M., Ahuja, R. & Piquini, P. C. HfSiO3 and SiO2 monolayers with adsorbed C, N, P atoms: a first principles study. Catalysis 10, catal10010094 (2020).

37. Zheng, B. et al. Vertically oriented few-layered HfS2 nanosheets: growth mechanism and optical properties. 2D Mater. 3, 035024 (2016).

38. Lei, C. et al. Broken-gap type-II band alignment in WTe2/HfSiO3 van der Waals heterostructure. J. Phys. Chem. C 123, 23089–23095 (2019).

39. Kresse, G. & Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 59, 1758–1775 (1999).

40. Ghosez, P., Michenaud, J.-P. & Gonze, X. The physics of dynamical atomic charges: the case of ABX3 compounds. Phys. Rev. B 58, 6224–6240 (1998).

41. Baroni, S., De Giorgicolli, S., Dal Corso, A. & Giannozzi, P. Phonons and related crystal properties from density-functional perturbation theory. Rev. Mod. Phys. 73, 515–562 (2001).

42. Cingolani, A., Lugará, M., Scamarcio, G. & Levy, F. The Raman scattering in hafnium disulfide. Solid State Commun. 62, 121–123 (1997).

43. Wooten, F. Optical Properties of Solids (Academic Press, 1972).

44. Sun, Q. C. et al. Spectroscopic determination of phonon lifetimes in rhenium-doped MoSe2 nanosheets. Nano Lett. 13, 2803–2808 (2013).

45. Letcher, J., Kang, K., Cahill, D. G. & Diott, D. E. Effects of high carrier densities on phonon and carrier lifetimes in Si by time-resolved anti-Stokes Raman scattering. Appl. Phys. Lett. 90, 252104 (2007).

46. Sun, Q. C., Xu, X., Vergara, L. I., Rosentsveig, R. & Musfeldt, J. L. Dynamical charge and structural strain in inorganic fullerene like MoS2 nanoparticles. Phys. Rev. B 79, 205405 (2009).

47. Wieting, T. J. & Verble, J. L. Infrared and Raman studies of long-wavelength optical phonons in hybrid Mo2S3. Phys. Rev. B 4, 4286–4292 (1971).

48. Carr, G. L., Perkowitz, S., & Tanner, D. B. Infrared and millimeter waves, vol. 13 (Academic Press, 1985).

49. Kittel, C. Introduction to Solid State Physics. 8th ed. (Wiley, 2004).

50. Sun, Q. C., Xu, X., Baker, S. N., Christianson, A. D. & Musfeldt, J. L. Experimental determination of ionility in MnO nanoparticles. Chem. Mater. 23, 2956–2960 (2011).

51. Ashcroft, N. W. & Mermin, D. Solid State Physics (Thomson Learning, 1976).

52. Ghosez, P. & Gonze, X. Band-by-band decompositions of the Born effective charges. J. Condens. Matter Phys. 12, 9179–9188 (2000).

53. Pike, A. et al. Origin of the counterintuitive dynamic charge in the transition metal dichalcogenides. Phys. Rev. B 95, 201106 (2017).

54. Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 50, 17953 (1994).

55. Kresse, G. & Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using plane-wave basis set. Phys. Rev. B 54, 11169–11186 (1996).

56. Nunes, R. W. & Gonze, X. Berry-phase treatment of the homogeneous electric field dielectric functions in insulators. Phys. Rev. B 63, 155107 (2001).

57. Souza, I., Anzelm, J. & Vanderbilt, D. First-principles approach to insulators in finite electric fields. Phys. Rev. Lett. 89, 117602 (2002).

58. Baroni, S., Giannozzi, P. & Testa, A. Green’s-function approach to linear response in solids. Phys. Rev. Lett. 58, 1861–1864 (1987).

59. Csonka, G. I. et al. Assessing the performance of recent density functionals for bulk solids. Phys. Rev. B 79, 155107 (2009).

60. Sun, J. et al. Self-consistent meta-generalized gradient approximation within the projector-augmented-wave method. Phys. Rev. B 84, 035117 (2011).

61. Heyd, J., Scuseria, G. E. & Ernzerhof, M. Hybrid functionals based on a screened coulomb potential. J. Chem. Phys. 118, 8207–8215 (2003).

62. Greenaway, D. L. & Nitschke, R. Preparation and optical properties of group IV-VI chalcogenides having the CdI2 structure. J. Phys. Chem. Solids 24, 1455–1458 (1965).

63. Yamaguchi-Kasahara, K., M., Ozen, S., Lykan, F., Peeters, F. M. & Sahin, H. Raman fingerprint of stacking order in HfS2–Ca(OH) heterobilayer. Phys. Rev. B 99, 205405 (2019).

64. Terenzi, N. & Vanderbilt, D. Maximally localized generalized Wannier functions for composite energy bands. Phys. Rev. B 56, 12847–12865 (1997).

65. Marzari, N., Fe., P., Yates, B. R. & Vanderbilt, D. Maximally localized Wannier functions: theory and applications. Rev. Mod. Phys. 84, 1419–1475 (2012).

66. Mostofi, A. A. et al. An updated version of wannier90: a tool for obtaining maximally-localised wannier functions. Comput. Phys. Commun. 185, 2309–2310 (2014).

ACKNOWLEDGEMENTS

Research at the University of Tennessee is supported by the U.S. Department of Energy, Office of Basic Energy Sciences, Materials Science Division under award DE-FG02-01ER45585. The work at the University of Minnesota is supported primarily by the National Science Foundation through the University of Minnesota MRSEC under Award Number DMR-2011401. We acknowledge the Minnesota Supercomputing Institute (MSI) at the University of Minnesota for providing resources that contributed to the research results reported within this paper. We thank S. Najmaei and I. Boulares at the U. S. Army Research Lab for the 1T-HfS2 crystal and useful conversations.

AUTHOR CONTRIBUTIONS

This project was conceived by J.L.M. and S.N.N. Raman scattering and infrared absorption measurements were conducted by S.N.N., and data were analyzed by S.N. N. and J.L.M. Theoretical studies and density functional calculations were carried out by S.L. and T.B. All authors discussed the data. The paper was written by S.N.N., S.L., T. B., and J.L.M. All authors read and commented on the paper.

COMPETING INTERESTS

The authors declare no competing interests.

ADDITIONAL INFORMATION

Correspondence and requests for materials should be addressed to J.L.M.

Reprints and permission information is available at http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

© The Author(s) 2021