Intestinal Ca2+ absorption revisited: A molecular and clinical approach

Vanessa A Areco, Romina Kohan, Germán Talamoni, Nori G Tolosa de Talamoni, María E Peralta López

Abstract
Ca2+ has an important role in the maintenance of the skeleton and is involved in the main physiological processes. Its homeostasis is controlled by the intestine, kidney, bone and parathyroid glands. The intestinal Ca2+ absorption occurs mainly via the paracellular and the transcellular pathways. The proteins involved in both ways are regulated by calcitriol and other hormones as well as dietary factors. Fibroblast growth factor 23 (FGF-23) is a strong antagonist of vitamin D action. Part of the intestinal Ca2+ movement seems to be vitamin D independent. Intestinal Ca2+ absorption changes according to different physiological conditions. It is promoted under high Ca2+ demands such as growth, pregnancy, lactation, dietary Ca2+ deficiency and high physical activity. In contrast, the intestinal Ca2+ transport decreases with aging. Oxidative stress inhibits the intestinal Ca2+ absorption whereas the antioxidants counteract the effects of prooxidants leading to the normalization of this physiological process. Several pathologies such as celiac disease, inflammatory bowel diseases, Turner syndrome and others occur with inhibition of intestinal Ca2+ absorption, some hypercalciurias show Ca2+ hyperabsorption, most of these alterations are related to the vitamin D endocrine system. Further research work should be accomplished in order not only to know more molecular details but also to detect possible therapeutic targets to ameliorate or avoid the consequences of altered intestinal Ca2+ absorption.

Key words: Ca2+ absorption; Transcellular pathway; Paracellular pathway; Hormones; Dietary calcium; Physiological conditions; Pathological alterations

©The Author(s) 2020. Published by Baishideng Publishing Group Inc. All rights reserved.
D action. Part of the intestinal Ca2+ movement seems to be vitamin D independent. Intestinal Ca2+ absorption changes according to different physiological conditions. Oxidative stress inhibits the intestinal Ca2+ absorption whereas the antioxidants counteract the prooxidant effects. Most diseases that occur with altered intestinal Ca2+ absorption is related to changes in the vitamin D endocrine system. Further research could clarify many unknown points in this subject.

Citation: Areco VA, Kohan R, Talamoni G, Tolosa de Talamoni NG, Penalta López ME. Intestinal Ca2+ absorption revisited: A molecular and clinical approach. World J Gastroenterol 2020; 26(24): 3344-3364
URL: https://www.wjgnet.com/1007-9327/full/v26/i24/3344.htm
DOI: https://dx.doi.org/10.3748/wjg.v26.i24.3344

INTRODUCTION

Ca2+ plays a relevant role in the skeleton, being the bones the storage site of 99\% of total body Ca2+, mainly in the form of hydroxyapatite crystals(1). Ca2+ is essential for the acquisition of an optimal peak bone mass within the first two decades, as well as for the maintenance of bone mineral density (BMD) in adulthood(2). Apart from skeletal mineralization, this diveral cation is an important intracellular messenger and it actively participates in multiple physiological functions such as nerve excitation and transmission, muscle and cardiac contraction, blood coagulation, gland secretion and enzyme activation, among others. It is also implicated in cell differentiation and apoptosis as well as in immune response, thus having a significant role in tumorigenesis and cancer development(3). This vast scope of functions raises the need for a homeostatic regulatory system. Extracellular and metabolic Ca2+ homeostasis is achieved by the concerted action of several Ca2+ regulating hormones: Parathyroid hormone (PTH), 1,25(OH)\textsubscript{3}D, or calcitriol and calcitonin (CT). Estrogen, insulin-like growth factor (IGF-1), prolactin (PRL) and fibroblast growth factor (FGF-23) also participate in Ca2+ regulation(4).

Intestinal absorption is the unique way for Ca2+ to enter the organism from dietary nutrients. It occurs via two different mechanisms. When luminal Ca2+ is higher than that in the plasma, Ca2+ predominantly enters the intestine via the paracellular pathway through tight junctions between neighbouring enterocytes(5). This is a passive non saturable transport, which takes place all along the small intestine without significant variations. In contrast, when luminal Ca2+ is lower than plasmatic Ca2+, the cation is actively absorbed via the transcellular pathway, which is an active saturable system that prevails in the duodenum(5,6). Both mechanisms are regulated by different endocrine and non-endocrine factors.

Intestinal Ca2+ absorption in humans reaches approximately 35\% of dietary load(7). The amount of Ca2+ absorbed mainly depends on the quantity of Ca2+ consumed, the transit time in different parts of the gut and the solubility of Ca2+, which is inversely related to luminal pH(8). Even though the absorption is more efficient in the duodenum and jejunum, where pH is lower, the amount of Ca2+ absorbed is greater in the ileum, since intestinal content remains ten times longer in this portion, which is finally responsible for almost 65\% of Ca2+ absorption(9).

MOLECULAR MECHANISMS OF INTESTINAL Ca2+ ABSORPTION

Paracellular pathway

This absorptive route comprises the entrance of Ca2+ through electrically-charged watery space delimited by two neighbouring enterocytes. As it is the result of passive diffusion, this movement of the cation depends on Ca2+ concentration and voltage across intestinal epithelium. Rats fed a Ca2+-replete diet and humans show a chemical gradient which is favorable to the inward movement of the cation, since free Ca2+ is present in the duodenal lumen in a concentration of 2-6 mmol/L, compared to the much lower concentration in the interstitial fluid or plasma (1.25 mmol/L)(9,10). As to electrical potential, the plasma is positive compared to the lumen, which would determine a secretion movement and exit of Ca2+. However, since this voltage...
gradient is very low, (2.5 mV), there is no outward flow of the cation due to electrodiffusion[10]. Apart from chemical gradient, Ca2+ together with other ions and small hydrophilic molecules enter through paracellular space along with the stream of water. This solvent drag-induced mechanism depends on the activation of sodium-glucose co-transporter 1 (SGLT-1) and Na+/K+-ATPase. Sodium, which enters through SGLT-1 and other sodium-coupled apical transporters, is pumped into the paracellular space by Na+/K+-ATPase, thus increasing sodium paracellular concentration and consequently augmenting osmotic water flow through this space. For this reason luminal glucose and galactose, which are substrates of SGLT-1, increase duodenal Ca2+ absorption[10]. Finally, duodenal epithelium has a preferential selectivity for small mono or divalent cations, such as Na+ or Ca2+, over larger or negative ions. This selectivity depends on some proteins such as occludin and claudins (CLDNs) in the tight junctions, which are specialized membrane domains in the apical region of enterocytes. CLDNs 2, 12, and 15 are associated with intestinal Ca2+ entering[14,15]. CLDNs 1 and 5 have sealing functions that could also diminish Ca2+ transport[14,16].

The expression of four candidate genes of the paracellular pathway, CLDN2 and tight junction proteins 1, 2, and 3, has been shown to be enhanced in the small intestine of laying hens after sexual maturity[13].

Transcellular pathway

This active transport is carried out in three main steps; firstly, Ca2+ enters the enterocytes passively across the apical membranes. Afterwards, it binds to intracytoplasmatic proteins, which transfer the cation to the basolateral membrane (BLM). Finally, plasma membrane Ca2+-ATPase (PMCA\textsubscript{1b}) is the main Ca2+ transporter that extrudes the cation by primary active transport, at the expense of stored ATP.

Entrance of Ca2+ across the brush border membrane

Brush border membrane (BBM) is the first barrier that Ca2+ has to overcome in its way from intestinal lumen into the blood. Since Ca2+ is not able to move freely across the lipid bilayer of the plasma membrane, intestinal absorptive cells express some Ca2+ transporters. There are two epithelial Ca2+ channels that favor the passive transport of the cation across the apical membrane into enterocyte cytoplasm: Transient receptor potential vanilloid 5 (TRPV5) also known as ECaC1 or CaT2, and transient receptor potential vanilloid 6 (TRPV6); also known as ECaC2 or CaT1[2]. TRPVs are very important for maintaining blood Ca2+ levels in higher organisms, humans included. They are localized in apical membrane of Ca2+-transporting epithelial tissues and respond to 1,25(OH)\textsubscript{2}D\textsubscript{3}. They are structurally very similar since they share 75% of aminoacid identity. However, they differ in their distribution: TRPV5 shows intense expression in the intestine, whereas TRPV6 shows intense expression in the intestine, thus being particularly important in intestinal Ca2+ absorption. More ubiquitously expressed, TRPV6 is also present in the kidney, placenta, epididymis and exocrine glands among other tissues[17,18]. Apical entrance of Ca2+ through TRPV6 is warranted by the favourable inwardly oriented electrochemical gradient for Ca2+, usually in low intracellular concentrations (100 nmol/L)[19].

Although TRPV6 is central for active Ca2+ absorption, studies in TRPV6 KO-mice have demonstrated that some Ca2+ is still absorbed when TRPV6 is absent[20]. Even more, the stimulating effect of 1,25(OH)\textsubscript{2}D\textsubscript{3} on intestinal Ca2+ absorption is partially preserved in these animals[20]. In the same line, Woudenberg-Vrenken et al[21] obtained similar results when evaluating transepithelial Ca2+ absorption in a mouse-model carrying a nonfunctional TRPV6. They found that mice experimentally modified in one critic aminoacid residing in the pore site of the channel had lower intestinal Ca2+ absorption in a mouse-model carrying a nonfunctional TRPV6. They found that mice experimentally modified in one critic aminoacid residing in the pore site of the channel had lower intestinal Ca2+ absorption, however, insufficient to completely correct the diminished Ca2+ absorption. These findings strongly suggest that some other molecules may participate in the apical crossing of the electrolyte.

Another type of Ca2+ channel is present in the surface of enterocytes, Ca\textsubscript{1,3}, an apical L-type voltage-dependent channel present from the duodenum to the ileum, which might have a complementary role in Ca2+ permeation through TRPV6. The latter channel predominates in the duodenum, is activated by hyperpolarization, mainly overnight and between meals, and depends on vitamin D. In contrast, Ca(v) 1.3, predominates in mid-ileum, is activated when membrane is depolarized, mainly during postprandial active digestion, and is not modulated by vitamin D[22].

Intracellular Ca2+ crossing from apical to BLM

Once Ca2+ has passively entered the enterocyte, it binds to calbindins (CBs) and is subsequently transferred to BLM. All these proteins have a high α-helical content and share EF-hand structures with a helix-loop-helix sites that constitute the Ca2+-binding
domains. These EF-hand motifs are held together in a single globular fold via hydrophobic interactions\[^{[9]}\]. CBs\[^{[9]}\] is present in the intestine of mammals, being highly abundant in the duodenum and gradually decreasing downwardly to become undetectable in distal ileum and colon\[^{[29]}\]. CBs belong to a superfamily of Ca\(^{2+}\)-binding proteins that also includes calmodulin and troponin C\[^{[38]}\]. It has been shown that CBs undergoes structural changes upon Ca\(^{2+}\) binding, which is indicative of a Ca\(^{2+}\)-sensing protein\[^{[7]}\].

Even though Ca\(^{2+}\) can cross the aqueous cytoplasmic environment at a higher rate than when associated with proteins\[^{[29]}\], its binding to CBs prevents the free flow of Ca\(^{2+}\), helping to maintain intracellular Ca\(^{2+}\) lower than 10\(^{-7}\) mol/L. This Ca\(^{2+}\) buffering is extremely important since it prevents the potential deleterious pro-apoptotic effect of the cation, which has been confirmed in different tissues\[^{[9]}\].

Since excessive free-ionized Ca\(^{2+}\) next to the BBM could deactivate TRPV6 restricting Ca\(^{2+}\) entry, the Ca\(^{2+}\) transferring function of these proteins may also contribute to warranting a persistent Ca\(^{2+}\) entry through the apical membrane\[^{[37]}\]. In this direction, Song et al\[^{[31]}\] have found that both TRPV6 and CBs are similarly regulated, both being induced at weaning or under low Ca\(^{2+}\) diets.

The expression of CBs in duodenal enterocytes strongly depends on 1,25(OH)\(_{2}\)D\(_{3}\)\[^{[35]}\], as also does the expression of other Ca\(^{2+}\)-binding proteins such as CBs, calmodulin, parvalbumin and sorcin\[^{[39]}\], although the significance of their contribution to Ca\(^{2+}\) transferring remains to be specified. However, similarly to what we have referred for TRPV6, CBs-KO mice partially preserve Ca\(^{2+}\) translocation capacity\[^{[39]}\], which reinforces the potential role in cytoplasmatic Ca\(^{2+}\) translocation of several proteins other than CBs. In this sense, Teerapornpuntakit et al\[^{[40]}\] have found an upregulation of CBs and parvalbumin expression in pregnancy and lactation, as a complementary mechanism to supply for the high demand of Ca\(^{2+}\) in these physiological conditions. Hwang et al\[^{[41]}\] have observed an increase in the expression of most tight junction genes in the duodenum of normally fed CBs-KO mice compared to wild-type controls. These findings suggest that the transcellular Ca\(^{2+}\)-binding proteins may also exert some regulatory effect on paracellular Ca\(^{2+}\) absorption, suggesting that active and passive Ca\(^{2+}\) transport pathways may function cooperatively.

Ca\(^{2+}\) exit across the BLM

The active Ca\(^{2+}\) transport is required to overcome the unfavourable electrochemical gradient for Ca\(^{2+}\) across the BLM. PMCA, and Na\(^{+}\)/Ca\(^{2+}\) exchanger (NCX1) are the two proteins in charge of extruding Ca\(^{2+}\) out of the enterocyte, thus completing the transcellular Ca\(^{2+}\) absorption.

PMCA\(_{\alpha}\) is responsible for almost 80% of Ca\(^{2+}\) extrusion\[^{[34]}\], is highly active in the duodenum, as detected in rats and it is a primary active transporter able to hydrolyze directly ATP to transport the cation\[^{[50]}\]. The expression and activity of this pump is higher in enterocytes from the tip of the villi than in those from the crypt. This difference goes in line with the concept that mature enterocytes show a greater expression and activity of this pump is directly ATP to transport the cation\[^{[37]}\].

PMCA\(_{\alpha}\), which is a secondary active transporter, coupled with Na\(^{+}\)/Ca\(^{2+}\)-ATPase, which creates a sodium gradient for NCX1-mediated Ca\(^{2+}\) efflux. It has a Na\(^{+}\)/Ca\(^{2+}\) stoichiometry of 3:1 and it can either extrude or intrude Ca\(^{2+}\) depending on cation gradients and the potential across the plasma membrane\[^{[20]}\]. It appears to be responsible for approximately 20% of basolateral uphill Ca\(^{2+}\) extrusion from the enterocyte into blood stream\[^{[31]}\]. Despite the importance of NCX1 in several tissues such as cardiac muscle, vascular smooth muscle and the nerves\[^{[28]}\], the lower implication of this transporter in Ca\(^{2+}\) absorption as compared to PMCA\(_{\alpha}\) activity caused NCX1 to be neglected in many studies concerning the intestine.

Basolateral Ca\(^{2+}\) absorption is closely related to the uptake of the cation in the apical membrane and its intracellular translocation. In this sense, a linear relationship between apical uptake and PMCA activity has been found in the duodenum of male rats\[^{[43]}\]. In addition, CBs and CBs-Ca\(^{2+}\)-binding proteins such as CBs, calmodulin and parvalbumin activate PMCA\[^{[44]}\]. This concerted mechanism contributes to avoiding intracellular accumulation of Ca\(^{2+}\), which would block Ca\(^{2+}\) entry from the lumen and could lead to apoptosis.

REGULATION OF INTESTINAL CALCIUM ABSORPTION

Hormonal regulation of calcium absorption

Vitamin D: 1,25(OH)\(_{2}\)D\(_{3}\), the active metabolite of vitamin D, is the main regulating hormone of intestinal Ca\(^{2+}\) absorption. It induces structural and functional modifications in enterocytes and helps to enhance both transcellular and paracellular pathways, either by genomic or nongenomic actions\[^{[46,47]}\]. 1,25(OH)\(_{2}\)D\(_{3}\) can reach the
intestinal target coming from two different sources: Either from the plasma, once its synthesis has been completed by 25(OH)D3 1α-hydroxylase (CYP27B1) in renal proximal tube (endocrine source)[64] or from de novo synthesis in the cytoplasm of the enterocyte, performed by a duodenal 1α-hydroxylase (intracrine source)[65].

This calcitropic lipophilic vitamin passes through the plasma membrane and binds to vitamin D receptor (VDR), its nuclear receptor. Once bound to the ligand, VDR forms a heterodimer with retinoid X receptor (RXR) and the new 1,25(OH)2D3-VDR- RXR complex functions as a transcription factor which binds to different vitamin D response elements in various target genes[66]. This determines a significant increase in the expression of all Ca2+ transporting proteins in the enterocyte: TRPV 6, CB1r, PMCA1h, and NCX1, as has been demonstrated in animal models and humans[67,68,69]. Vitamin D-mediated Ca2+ absorption has mainly been studied in the proximal intestine, where Ca2+ is more efficiently absorbed. However, Christakos et al.[70] have recently studied this process in mice with transgenic expression of VDR exclusively in the ileum, cecum and colon of VDR KO mice. Interestingly, these animals did not present the abnormalities in Ca2+ homeostasis and bone mineralization usually seen in VDR KO mice. These findings emphasize the importance of 1,25(OH)2D3-mediated Ca2+ absorption in the distal intestine[65].

Apart from these Ca2+-transporting proteins, 1,25(OH)2D3 can regulate other important genes in Ca2+ metabolism, such as the one of 24-hydroxylase (CYP27A1) which converts 1,25(OH)2D3 into 1,24,25(OH)3D3 and 25(OH)D3 into 24,25(OH)2D, and CYP27B1, involved in the renal synthesis of 1,25(OH)2D3, but also expressed in the intestine[67,68] and parathyroid gland[69].

In addition to the genomic action described, there is some evidence that 1,25(OH)2D3 also binds to a plasma membrane receptor (MARRS: Membrane-associated, rapid response steroid-binding protein), which, in turn, activates other second messenger systems such as phospholipase A2 and protein kinase C[48,50]. Details of the underlying molecular mechanism of 1,25(OH)2D3-MARRS and its rapid minute-to-minute regulatory capacity remain to be elucidated.

Even though the transcellular pathway has been the focus of most studies concerning the effect of calcitriol on intestinal Ca2+ absorption, vitamin D has proved to exert a positive effect on the paracellular absorptive route as well. 1,25(OH)2D3 is able to change the permeability and selectivity of the tight junctions by altering certain crucial proteins such as CLDNs 2 and 12. This would help to enhance passive diffusion of Ca2+.[51]

Rexhepaj et al.[68] have observed that 1,25(OH)2D3 could also stimulate Na+/Ca2+-ATPase and SGLT, and consequently increase water- and 1,25(OH)2D3 moves inwardly with the flow. Tudpor et al.[69] have demonstrated a dose-dependent increase in solvent drag-induced Ca2+ movement one hour after direct exposure of rats to 10-100 nmol/L 1,25(OH)2D3. This rapid effect, abolished by inhibitors of phosphatidylinositol 3-kinase, protein kinase C, and MEK, would be mediated by nongenomic mechanisms involving 1,25(OH)2D3-MARRS.

It has also been reported that 1,25(OH)2D3 downregulates intestinal cadherin-17 (involved in cell-to-cell contact) and aquaporin-8 (associated with epithelial selectivity towards cations), which might also affect the Ca2+ absorption[50].

PTH: PTH, a hypercalcemic hormone secreted by parathyroid glands, is the other classical hormone known to exert a positive regulatory effect on intestinal Ca2+ absorption. However, this stimulatory effect is achieved indirectly after increasing CYP27B1 transcription for 1α-hydroxylase, the renal enzyme that completes the synthesis of 1,25(OH)2D3 in the kidney. As a result, 1,25(OH)2D3 production augments. In addition, PTH also suppresses the transcription of CYP24A1 that codifies for 24-hydroxylase, a renal enzyme which degrades 1,25(OH)2D3[117,118]. Both actions lead to an increase in plasmatic 1,25(OH)2D3 which in turn enhances Ca2+ absorption as we have already revised.

Thyroid hormones: Thyroxine (T4) and triiodothyronine (T3) are known to regulate metabolism in general. Overproduction of T4 or T3 in the context of hyperthyroidism can lead to hypercalcemia due to an excessive bone turnover and consequently lead to bone demineralization[59,60]. However, there is some evidence that thyroid hormones would cooperate with vitamin D by increasing the genomic actions of 1,25(OH)2D3 in the intestine[59,60,119]. Cross et al.[119] have shown that calcitriol added to cultures of 20-day-old embryonic chick small intestine, stimulated Na+ uptake. The calcitriol-mediated increase in Na+ uptake appeared to be related to increased tight-junctional or paracellular permeability[119]. It can be speculated that this effect could favor the paracellular entry of Ca2+ as well. More recently, Kumar et al.[120] have shown that Ca2+ influx in BBM vesicles was higher in enterocytes from hyperthyroid rats as compared to those of hypothyroid ones. The authors have proposed that this could be related to
a change in membrane fluidity induced by thyroid hormones. Similarly, they have also observed that efflux of calcium across BLM was also higher in hyperthyroid rats. This difference was associated with a higher NCX1 activity triggered by thyroid hormones, possibly through the cAMP-mediated pathway. cAMP is a potent activator of Na+/Ca2+ exchanger and it was significantly higher in intestinal mucosa of hyperthyroid rats as compared to euthyroid animals. In addition to these actions, thyroid treatment increases serum PTH and 1,25(OH)2D3 levels, which contributes to enhancing Ca2+ absorption indirectly through vitamin D3.

Growth hormone: Growth hormone (GH) has a central role in longitudinal bone growth and mineralization during childhood and adolescence. However, this metabolic hormone has receptors in most tissues and exerts various actions apart from skeletal growth. There is evidence that GH has proliferative effects on intestinal mucosa[2]. GH has been used to treat inflammatory bowel disease in pediatric[20] and adult patients[4]. Interestingly, FDA has approved the use of recombinant human GH to treat short bowel syndrome, where it improves absorption of carbohydrates, amino acids and fats[23,24]. GH can also stimulate intestinal Ca2+ absorption, which would occur indirectly by activating renal CYP27B1 and consequently, increasing serum 1,25(OH)2D3 levels[7]. It has been demonstrated that GH can prevent the loss of intestinal VDR in ovariectomized (OVX) rats[19], which would suggest that it could increase intestinal sensitivity to 1,25(OH)2D3 by regulating tissue VDR levels[79]. However, the positive effect of GH on Ca2+ absorption would not be exclusively dependent on vitamin D. Fleet et al[80] have shown that GH increases intestinal Ca2+ absorption and duodenal CB9k levels in aged rats without increasing serum 1,25(OH)2D3 levels. Analogous results have been found in humans. In adult men, Ca2+ absorption has a positively correlation with IGF-1 and age-related decline in IGF-1 has a negative impact on Ca2+ absorption that could not be justified by a decrease in serum 1,25(OH)2D3[80].

Estrogens: There is evidence that post-menopausal women experiment an increase in bone resorption together with a reduction in Ca2+ absorption and an increase in urinary Ca2+ excretion as a consequence of estrogen loss[82,83]. Post-menopausal low estrogen levels have been associated with reduced serum 1,25(OH)2D3[84]. However, OVX rats have no reduction in serum 1,25(OH)2D3 levels[85], which would suggest the implication of vitamin D independent mechanisms. Thus, O’Loughlin et al[86] observed that estradiol replacement in OVX rats increases intestinal Ca2+ absorption and duodenal CB9k levels in aged rats without increasing serum 1,25(OH)2D3 levels. Analogous results have been found in humans. In adult men, Ca2+ absorption has a positively correlation with IGF-1 and age-related decline in IGF-1 has a negative impact on Ca2+ absorption that could not be justified by a decrease in serum 1,25(OH)2D3[80].

PRL: The main lactogenic hormone, PRL, is elevated during pregnancy and lactation. Apparently, this pituitary hormone is able to enhance Ca2+ absorption in order to supply calcium for milk production. It has been shown that PRL enhances CYP27B1 protein expression and increases levels of 1,25(OH)2D3 during lactation, a moment when there is an increased Ca2+ requirement for the neonate[19]. However, its calciotropic action is not only achieved via vitamin D. It has been shown that PRL stimulates active intestinal Ca2+ transport in vitamin D-deficient rats[19]. Charoenphandhu et al[89] demonstrated that PRL directly stimulates active duodenal Ca2+ transport. Wongdee et al[90] observed that lactating rats exhibit some adaptive changes in their intestinal mucosa tending to increase the absorptive surface area. These rats have larger duodenal, jejunal and ileal villous as well as deeper cecal crypts than age-matched nulliparous rats. These histological modifications were diminished...
by bromocriptine, an inhibitor of pituitary PRL release. PRL also upregulated TRPV6 and PMCA9 in the duodenum of lactating rats. These changes were associated with a compensatory increase in FGF-23 expression, a local negative regulator of Ca\(^{2+}\) absorption, presumably to prevent Ca\(^{2+}\) hyperabsorption. Bromocriptine also manages to abolish FGF-23 increment, confirming it was induced by PRL. In addition, it has been suggested that PRL has also a stimulating effect on paracellular pathway by upregulating CLDN 15 in the tight junctions\(^{39}\).

FGF-23: It is a glycoprotein secreted by osteocytes and osteoclasts and regulated by plasma levels of 1,25(OH)\(_2\)D\(_3\) and Pi. The enhancement of these regulators leads to the serum increase in FGF-23, which in turn reduces the concentration of 1,25(OH)\(_2\)D\(_3\) by inhibiting 1α-hydroxylase and stimulating 24 α-hydroxylase. As for Pi, FGF-23 increases its renal excretion\(^{14}\).

FGF-23 has been indicated as a vitamin D antagonist in intestinal absorption of Ca\(^{2+}\). Khuituan et al\(^{[32]}\) have demonstrated that intravenous administration of FGF-23 to male rats abolished the increase in intestinal absorption of Ca\(^{2+}\) caused by the injection of 1,25(OH)\(_2\)D\(_3\). However, the inhibitory effect of FGF-23 could not be observed in the absence of the previous supply of 1,25(OH)\(_2\)D\(_3\). The mechanisms underlying the effect of FGF-23 would be related to the decrease in the gene expression of TRPV5, TRPV6 and CB\(_9k\) caused by this phosphaturic hormone. In this same work, the presence of FGFR1-4 in the BLM of rat enterocytes was confirmed. However, their functions are unclear since the direct exposure of the intestinal epithelium to FGF-23 did not cause alterations.

FGF-23 also blocks the stimulatory effect of 1,25(OH)\(_2\)D\(_3\) on the paracellular pathway of intestinal Ca\(^{2+}\) absorption\(^{[10]}\). Since vitamin D favors this process by increasing water flow across paracellular space and consequently dragging solutes as Ca\(^{2+}\), it has been proposed that FGF-23 could decrease the water flow and the dragging of this cation.

The activation of the mechanisms mediated by FGF-23 would be crucial to avoid the Ca\(^{2+}\) hyperabsorption. Therefore, it was thinkable that a molecule that senses extracellular Ca\(^{2+}\) as the calcium sensing receptor (CaSR) would play an important role. In fact, Rodrat et al\(^{[31]}\) have demonstrated that CaSR was involved in the inhibition of intestinal Ca\(^{2+}\) absorption mediated by FGF-23. According to their findings in a cell monolayer, the use of allosteric inhibitors of CaSR could reverse the inhibitory effect of FGF-23 on the stimulation of Ca\(^{2+}\) transport triggered by 1,25(OH)\(_2\)D\(_3\).

Glucocorticoids: The negative side effects of glucocorticoid (GC) treatment on bone health are well known. Impaired function and number of osteoblasts and osteoclasts, high resorption rate, deficiency in mineralization are some of the effects of chronic treatment that lead to the development of GC-induced osteoporosis (GIO)\(^{[10]}\). GIO is also partially due to the alterations that GC produces in intestinal Ca\(^{2+}\) absorption. Van Cromphaut et al\(^{[10]}\) evaluated the effect of dexamethasone treatment on the gene expression of proteins involved in the intestinal absorption of the cation. They did not find alterations in gene expression or Ca\(^{2+}\) absorption in the treated mice, justifying the absence of effects with the short treatment duration. Kim et al\(^{[10]}\) determined that a single dose of dexamethasone increased the gene expression of TRPV6 and CR\(_8\) while when it was given for 5 days, it led to a reduction in the expression of both genes. In concordance with these results, mRNA levels for duodenal VDR increased on day one, while they were reduced after 5 days of treatment. Zhang et al\(^{[10]}\) observed reduced protein expression of TRPV6 and CR\(_8\) in the intestine of male mice injected with dexamethasone 3 times a week, for 12 weeks, effect that was accompanied by hypercalciuria and reduction in serum Ca\(^{2+}\) levels. Although the role of GC in intestinal Ca\(^{2+}\) absorption is not clear, the results presented would allow infer a certain negative effect of GC on cation transfer from the lumen to the intestiment.

CT: The role of CT on intestinal Ca\(^{2+}\) absorption is controversial. Some studies have suggested that CT inhibits the process; in contrast, others indicate that has a stimulatory effect. Swaminathan et al\(^{[10]}\) have demonstrated that CT may produce an inhibitory effect at low doses, whereas high doses increase the intestinal Ca\(^{2+}\) absorption. CT effect could be mediated by the vitamin D endocrine system, since it has been demonstrated in diabetic rats that CT increases 1,25(OH)\(_2\)D\(_3\) synthesis at renal level\(^{[10]}\). Use of CT has been suggested to treat patients with β-thalassemia because they usually have low plasma levels of this hormone. CT chronic use has benefited osteoporosis associated with thalassemia, not only for its inhibitory effect on osteoclasts but also for the possible role in the 1,25(OH)\(_2\)D\(_3\) synthesis\(^{[10]}\).

Regulation of intestinal Ca\(^{2+}\) absorption by dietary calcium

The main dietary factor that can modify intestinal Ca\(^{2+}\) absorption is calcium itself.
Low-calcium uptake could eventually produce hypocalcemia, which would augment PTH secretion leading to stimulate vitamin D endocrine system and demineralize bone[109]. On the other hand, high calcium diets and calcium hyperabsorption could increase cardiovascular risk associated with vascular calcification, nephrolithiasis and dementia, among other conditions[105,111]. Since the gut is the only gate for Ca2+ uptake, it is subjected to both local and systemic regulations, which protect against either insufficient or excessive Ca2+ absorption[112]. Low calcium diets enhance serum levels of vitamin D and, consequently, activate the endocrine actions of this vitamin. Thus, a chronic dietary Ca2+ deficiency increases all transcellular pathway genes and proteins[106,112,114], and increases the activity of the intestinal PMCA\textsubscript{1b} and NCX1 all along the villus, independently of cell maturation degree[99]. Benn \textit{et al}[99] have gone further to demonstrate that this adaptive increase in Ca2+ absorption is present even in TRPV6 KO and CB\textsubscript{9k} KO mice, suggesting that TRPV6, which has been postulated as the rate-limiting factor in transcellular pathway, may not be so or it may be successfully replaced by other factors able to partially compensate its function. In our laboratory, we have observed in animals under low Ca2+ diets that the increment in Ca2+ transport is accompanied by a concomitant increase in the activity of intestinal alkaline phosphatase (IAP), a marker enzyme of enterocytic differentiation that may have a role in intestinal Ca2+ absorption[99]. Brun \textit{et al}[103] have reported that luminal Ca2+ concentration increases the activity of IAP and simultaneously decreases the percentage of Ca2+ absorption, functioning as a minute-to-minute local regulatory mechanism of Ca2+ entry, independent of vitamin D. This would limit an excessive Ca2+ intake secondary to dietary calcium restriction, thus preventing possible acute toxic effects. This regulatory mechanism may probably be one of the reasons why high Ca2+ intake (1500 mg/d) was not followed by a significant increase in Ca2+ absorption in a clinical trial[116,117], as it would have been expected from the positive effect of stimulated vitamin D endocrine system. Interestingly, L-Phenylalanine, an inhibitor of IAP, prevented this regulatory effect and Ca2+ uptake remained increased. A more recent study showed that IAP activity induced by luminal calcium concentration provoked changes in luminal pH that could modulate intestinal Ca2+ absorption[109]. In addition, a recent study revealed that IAP KO mice have higher intestinal Ca2+ uptake, which correlates with better biomechanical properties of trabecular bone[112]. It has also been suggested that CaSR, abundantly expressed in apical and basolateral membranes of enterocytes in humans, rats and mice[110,127] may also participate in the local regulation of intestinal Ca2+ absorption. Intestinal CaSR - specific KO mice showed an altered intestinal integrity, disbalanced gut microbiota and a pro-inflammatory status observed[125-127]. Rodrat \textit{et al}[101] have recently observed that high-dose of 1,25(OH)\textsubscript{2}D, or high concentration of luminal calcium reduced Ca2+ transport across a Caco-2 monolayer. The authors proposed that CaSR would sense luminal calcium triggering a local inhibitory feedback mechanism to restrict excessive Ca2+ uptake[101]. This inhibitory loop could possibly involve locally produced FGF-23, which has been observed to counteract the enhanced duodenal Ca2+ transport in mice exposed to 1,25(OH)\textsubscript{2}D, for a long term[82,83].

\section*{INTESTINAL Ca2+ ABSORPTION UNDER DIFFERENT PHYSIOLOGICAL CONDITIONS}

Intestinal Ca2+ absorption changes according to the different physiological conditions. It is promoted under high Ca2+ demands such as growth, pregnancy, lactation, dietary Ca2+ deficiency and high physical activity. In contrast, the intestinal Ca2+ transport decreases with aging.

\subsection*{Growth}

In small and premature infants, who need higher dietary calcium to have a positive balance, the intestinal Ca2+ absorption occurs through a passive paracellular pathway. These infants are unable to upregulate the transcellular pathway[38]. A progressive declination in the predominance of the paracellular pathway has been observed from childhood to adulthood[127]. Similarly, in rodents the intestinal Ca2+ absorption changes with age in order to reach the requirements for bone mineralization during growth. In suckling rat, the intestinal Ca2+ transport occurs predominantly through paracellular pathway; at weaning a transition to saturable absorption occurs indicating a larger contribution by the transcellular pathway during development, and then the absorption goes back to the paracellular pathway in adulthood[130]. The molecular changes associated with these alterations in the intestinal Ca2+ absorption is not well elucidated. With respect to the transcellular movement, the mRNA expressions of
Tryw, Cabh9K, and Pmca1 in the duodenum have been first noted at 14 d and peaked at 21 days in rodents\cite{129}. Akhter et al\cite{130} have demonstrated at 6 weeks of age that Cabh9K was highly expressed in the duodenum with a small amount in the jejenum and cecum, and at 44 wk it was no longer detected in jejenum and cecum, but remained in the duodenum. With regard to paracellular pathway, Holmes et al\cite{131} have demonstrated in the mice jejunum a decrease in Cldn2 and increases in Cldn12 and Cldn15 with age. These studies highlight that the levels of molecules involved in the intestinal Ca2+ absorption are not constant throughout growth. The potential modulators of changes in the intestinal Ca2+ absorption during postnatal development are calcitriol, PRL and milk lactose\cite{132}.

Pregnancy

One of the physiological changes in pregnancy involves alterations in Ca2+ metabolism. The adequate growth and development of the fetus is associated with increased intestinal Ca2+ absorption and renal resorption in the mother. In the first trimester of human pregnancy, the intestinal Ca2+ absorption increases twofold being maintained this increment to term. This doubling in the intestinal Ca2+ absorption seems to be the major maternal adaptation to reach the fetal requirements for Ca2+ either in humans or in rodents\cite{133}. The classical calcitropic hormones as calcitriol, PTH and CT seem not to be main responsible for the Ca2+ demand during pregnancy and lactation\cite{134}. The intestinal Ca2+ absorption has been shown to be VDR-independent in pregnant VDR knockout mice\cite{135}. Pregnancy up-regulates intestinal Ca2+ absorption and skeletal mineralization independently of the vitamin D receptor. It has been suggested that other hormones such as PRL, placental lactogen and GH or other factors could contribute to the doubling of intestinal Ca2+ absorption in normal pregnancy\cite{132}.

Lactation

After birth, the maternal mammalian gland secretes an elevated amount of Ca2+, which could reach up to 1000 mg/day of milk Ca2+. In order to provide an extra Ca2+ for milk production during lactating period, the osteoclast-mediated bone resorption and the intestinal Ca2+ absorption is increased. The hormone responsible for milk calcium secretion in the stage of lactation remains uncertain, but there is some evidence that the lactogenic hormone PRL regulates that process. Charoenphandhu et al\cite{134} have proposed that PRL stimulates the intestinal Ca2+ absorption in a two-step manner. In step 1, PRL increases the baseline of intestinal Ca2+ absorption in lactating rats through an increment in the TRPV6 mRNA, whereas in step 2, the suckling-induced PRL could induce further increased intestinal Ca2+ absorption twofold over the newly increased baseline. High levels of PRL (400-800 mg/mL) are required to induce an acute enhancement in the intestinal Ca2+ absorption, which is not attained without suckling\cite{136}. The suckling-increased Ca2+ transport in rats occurs either in the small intestine or the large intestine. This increment peaks after 30 min of suckling and lasts for 30-45 min post-suckling\cite{132}. Wongdee et al\cite{97} have demonstrated that PRL upregulated the expression of TRPV6 and PMCA\textsubscript{1b} in the duodenum of lactating rats. In addition, they have observed upregulation of FGF-23 protein expression in the duodenum and cecum of the same animals. They interpreted that PRL was responsible for the intestinal adaptation induced by lactation, which was compensated with an increase in FGF-23 to prevent excessive Ca2+ absorption that might be harmful to lactating rats.

The role of calcitriol in the hyperabsorption of Ca2+ during lactation is not clear. Kovacs\cite{137} has reported that preterm and term babies absorb Ca2+ through a passive non saturable process, which is facilitated by the lactose content in the milk. As they mature, they begin to absorb \textit{via} a saturable calcitiol-dependent mechanism. This explains why vitamin D-deficient rickets appears much later, six to 18 mo after birth\cite{138}. The phenotype of poor weight gain and low BMD in mice with a nonfunctional VDR is only observed after weaning, which indicates that intestinal Ca2+ absorption is not calcitriol-dependent while suckling\cite{139}. Recently, Zhang et al\cite{143} have demonstrated the effects of maternal 25(OH)D\textsubscript{3} administration during lactation on sows and piglets. The intestinal Ca2+ absorption was higher in treated sows as compared to non-treated sows, which are attributed to increased mRNA expressions of renal CYP27B1 and duodenal VDR, TRPV6, and CaBP-D9k. The piglets suckling sows receiving 25(OH) D\textsubscript{3} exhibited higher Ca2+ content in tibia and femur; these effects were associated with higher plasma levels of calcitriol, which increased the gene expression of proteins involved in the intestinal Ca2+ transport, \textit{e.g.}, VDR and Cldn-2 in ileum and VDR and CB\textsubscript{9K} in colon. In other words, 25(OH)D\textsubscript{3} supplementation during lactation improved bone health of both sow and piglet.

The temporal loss of bone mass during lactation is recovered promptly by mechanisms not quite clear. The bone health of the mother could be slightly or
severely compromised leading to fragility fractures in some women. Full recovery of calcium content and bone strength is not always achieved after weaning. Nevertheless, changes in calcium and bone metabolism during pregnancy and lactation in most women are normal, transient and without deleterious effects in the long-term\(^{148}\).

Aging

As a consequence of aging, the intestinal Ca\(^{2+}\) absorption decreases either in humans or in rodents. In humans, malabsorption of Ca\(^{2+}\) begins approximately at between 65 and 70 years\(^{141}\). In postmenopausal women, this deterioration begins earlier, but is reversible with estrogen therapy\(^{142}\). Among the different reasons for this decrease related to vitamin D metabolism could be mentioned: (1) Decreased renal synthesis of calcitriol by aged kidney; (2) Intestinal resistance to circulating calcitriol; (3) Decreased intestinal VDR; (4) Decreased skin synthesis of vitamin D; and (5) Substrate deficiency of vitamin D\(^{143}\). Song et al\(^{144}\) have demonstrated that low levels of VDR in mice heterozygous for the VDR gene KO cause resistance of intestinal Ca\(^{2+}\) absorption to calcitriol. This resistance appears to be generated by the low translation of CB\(_{28K}\), which occurs after binding VDR with its ligand. Ramsbeik et al\(^{145}\) have reported that beyond the traditional focus on Ca\(^{2+}\) and vitamin D, some other factors also influence intestinal Ca\(^{2+}\) absorption in post-menopausal women such as dietary intake of kilocalories, carbohydrates, and potassium. See Figure 1 for details about the molecular mechanisms involved in the intestinal Ca\(^{2+}\) absorption and the regulation by hormones.

OXIDATIVE STRESS AND ANTIOXIDANT AGENTS IN THE REGULATION OF INTESTINAL CALCIUM ABSORPTION

Reactive oxygen species (ROS) are by-products of normal cellular metabolism and there are enzymatic and non-enzymatic defense-systems in charge of maintaining a balance between ROS production and depletion. When this equilibrium fails, it is due to overproduction of ROS or to a deficiency in protective responses, oxidative stress arises, which can alter lipids, proteins and nucleic acids, thus provoking cell dysfunction and tissue damage. Gastrointestinal tract is an important source of ROS. Despite the protective barrier provided by intestinal mucosa and its adequately-distributed microbiota, digestion-endproducts and pathogens can trigger inflammatory response which favors oxidative stress. Consequently, various gastrointestinal pathologies such as gastroduodenal ulcers, cancer and inflammatory bowel disease are associated with oxidative stress\(^{145,146}\).

It has been demonstrated that intestinal Ca\(^{2+}\) absorption is also affected by oxidative stress. A study carried out in our laboratory demonstrated that DL-buthionine-S-R-sulfoximine (BSO) reduced intestinal Ca\(^{2+}\) absorption in rachitic chicks treated with cholecalciferol. BSO is an aminoacid-analogue which inhibits the synthesis of glutathione (GSH), one of the most important non-enzymatic intestinal antioxidant. The gut redox status was restored after intraluminal addition of GSH and intestinal Ca\(^{2+}\) absorption returned to baseline\(^{147}\). BSO also reduced the activity of IAP, an enzyme presumed to play a role in Ca\(^{2+}\) absorption, which was affected by the overabundance of ROS triggered by BSO. This reinforces the idea about the potential inhibitory effect of oxidative stress on the intestinal absorption of the cation\(^{148}\).

Posterior studies with different pro-oxidant drugs gave more information about the inhibition of Ca\(^{2+}\) absorption by ROS overproduction. Such is the case of menadione (MEN), a synthetic precursor of vitamin K used in anti-cancer therapy. MEN metabolism starts by one-electron reduction and originates unstable semiquinone-radicals which rapidly react with O\(_2\). As a result, the semiquinone-radical cycles back to MEN and O\(_2\) is generated, which becomes H\(_2\)O\(_2\) through spontaneous or enzymatic dismutation\(^{149}\). Since GSH acts as an electron donor, intestinal administration of MEN (2.5 μmol /kg b. w.) depletes this antioxidant tripeptide triggering oxidative stress and diminishing the enzymatic activity of IAP and PMCA\(_{1b}\)\(^{150}\). In the same direction, Areco et al\(^{151}\) have observed that intraperitoneal MEN was also able to reduce the expression of PMCA\(_{1b}\), CB\(_{28K}\) and CLDN 2 in the intestinal mucosa of chicks treated with the quinone. This would contribute to explaining the transient reduction in Ca\(^{2+}\) absorption caused by MEN, which appeared 30 minutes after treatment and lasted for less than ten hours. It is worth noting that this pro-oxidant also provoked apoptosis of enterocytes, thus determining the loss of approximately 30% of absorptive epithelial cells. The apoptotic process involved both the intrinsic and extrinsic pathways. An initial mitochondrial GSH depletion produced a reduction in mitochondrial membrane potential followed by the release of
Figure 1 Effects of hormones on intestinal Ca\(^{2+}\) absorption. Calcitriol stimulates the transcellular and paracellular absorptive pathways by inducing the expression of genes and proteins involved in Ca\(^{2+}\) transport and modifying the permeability of tight junctions. Thyroid hormones enhance the genomic actions of calcitriol whereas glucocorticoids inhibit the transcellular pathway by affecting the expression of Ca\(^{2+}\) transporting proteins. Fibroblast growth factor inhibits the intestinal Ca\(^{2+}\) absorption antagonizing 1,25(OH)\(_2\)D\(_3\) action. Growth hormone enhances the intestinal Ca\(^{2+}\) absorption through vitamin D dependent and independent mechanisms. PMCA\(_{1b}\): Plasma membrane Ca\(^{2+}\)-ATPase; CB\(_{28k}\): Calbindin 9k; Ca\(_{v}\)1.3: Ca\(^{2+}\) channel voltage-dependent L type alpha 1D subunit; TRPV5: Transient receptor potential vanilloid 5; TRPV6: Transient receptor potential vanilloid 6; CLDNs 2, 12 and 15: Claudins 2, 12 and 15; NCX1: Na\(^{+}\)/Ca\(^{2+}\) exchanger; 1,25(OH)\(_2\)D\(_3\): Calcitriol; FGF-23: Fibroblast growth factor; GH: Growth hormone; GC: Glucocorticoids; T4: Thyroxine; TJ: Tight junction; VDR: Vitamin D receptor.

A Areco VA et al. Ca\(^{2+}\) absorption/molecular and clinical approach

Cytochrome c into the cytoplasm and DNA fragmentation (intrinsic apoptotic pathway). Mitochondrial dysfunction induced by MEN affected Krebs-cycle only partially, since it reduced the activity of malate dehydrogenase in 18% and the one of \(\alpha\)-ketoglutarate dehydrogenase in 30%[152]. Extrinsic apoptotic pathway was also favored by MEN, which was evidenced by the expression of FAS, FASL and caspase-3[153]. Interestingly, quercetin, an anti-inflammatory and anti-apoptotic flavonoid with important protective properties in the intestine[154], could reverse the inhibitory effect of MEN. This flavonoid blocked the alterations in the mitochondria membrane potential triggered by MEN, thus blocking the apoptotic route dependent on FAS/FASL-caspase 3. This anti-apoptotic effect, based on the capacity of quercetin to preserve GSH levels, contributed to maintaining the absorptive enterocytes functioning[153].

The inhibitory effect of MEN on Ca\(^{2+}\) movement can also be prevented or restored by some protective drugs such as glutamine[155,156], an anti-inflammatory and anti-apoptotic drug associated with diverse functions of intestinal mucosa such as growth and reparation[157,158]. Moine et al[159,160] have observed that glutamine normalized the content of different molecules involved in both calcium absorption pathways as well as the levels of GSH and the activity of antioxidant enzymes.

Similarly, a monodosis of 10 mg/kg b. w. of melatonin (MEL), a pineal hormone also secreted in the gastrointestinal tract, has been shown to restore Ca\(^{2+}\) absorption previously reduced by MEN. This effect was the result of the normalization of the activity of antioxidant enzymes superoxide dismutase and catalase and the restoration of .O\(_2^-\) levels to basal status. MEL also restored the expression of proteins involved in both Ca\(^{2+}\) absorptive pathways[151]. These protective properties of MEL were reinforced in various studies that revealed anti-inflammatory effects of MEL in the intestine[161], helping to maintain epithelial integrity and digestive function[160], and reducing the risk of cancer[161].

Sodium deoxycholate (NaDOC) is a bile salt that depletes GSH, exerting a similar effect to the one of MEN. Rivoira et al[162] have demonstrated that high physiological doses of this salt inhibit intestinal Ca\(^{2+}\) absorption in a time and dose-dependent fashion. NaDOC mainly affects the transcellular pathway since it inhibits the expression of PMCA\(_{1b}\), CB D\(_{28k}\), and NCX1. In addition, this bile-salt generates ROS and mitochondrial changes which eventually lead to apoptosis[162]. However, there are some bile acids that are able to preserve Ca\(^{2+}\) absorption. Lithocholic (LCA) is a
secondary bile acid that binds to VDR and acts as an endogenous agonist of vitamin D[163], which has been proposed as a potential antitumoral agent[164]. LCA has proved to normalize the expression of genes and proteins involved in the transcellular pathway of Ca\(^{2+}\) absorption affected by NaDOC and restore oxidative stress parameters such as \(\cdot O_2\) and the levels of protein carbonyl groups. This acid also attenuates the increase in the permeability of mitochondrial membrane triggered by NaDOC, being able to block the apoptosis induced by NaDOC when co-administered intraluminally with this drug. As a result, LCA avoids the reduction in the transcellular Ca\(^{2+}\) absorption provoked by NaDOC[165].

There are also pathological conditions that can favor oxidative stress and consequently lead to a reduction in the intestinal Ca\(^{2+}\) absorption. One of these conditions is Type-1 diabetes mellitus (T1DM). Rivoira et al.[166] have shown that diabetic Wistar rats induced by the injection of streptozotocin (STZ), absorbed less Ca\(^{2+}\) than the control group. This reduction was transitory and reversible by insulin treatment. Interestingly, STZ-induced diabetes produced an overexpression of the proteins involved in the transcellular pathway which returned to basal levels after 60 d. This initial increase in the expression of NCX1, PMCA\(_1\), and TRPV6 has been interpreted as a possible compensatory effect to counteract the reduction in Ca\(^{2+}\) absorption, probably associated with an imbalanced redox status.

Ca\(^{2+}\) transport across intestinal epithelium is also impaired in experimental metabolic syndrome. Rodriguez et al.[167] have observed that animals with a fructose-rich diet presented alterations in intestinal redox status, which were evidenced by a marked increase in \(\cdot O_2\), lower activity of antioxidant enzymes and a reduction in GSH. These animals also had nitrosative stress with increased nitric oxide and higher nitrotyrosine content of proteins. This global redox disequilibrium determined a combined alteration of both trans and paracellular pathways of Ca\(^{2+}\) absorption that might have been aggravated by a pro-inflammatory state with increased IL-6 and NF-kB. It is noteworthy that a subcutaneous injection of naringin (40 mg/kg b. w. during 4 wk on a daily basis), an antioxidant flavonoid present in grape fruit and other citrus, duplicated GSH level and blocked both inflammation and redox unbalance triggered by fructose-rich diet, consequently protecting intestinal Ca\(^{2+}\) absorption[168]. These findings go in line with similar antioxidant effects of naringin in ischemia-reperfusion models[169]. The anti-inflammatory potential of naringin on intestinal mucosa has been confirmed by different studies in ulcerative colitis[170], sepsis-induced intestinal injury[171], and gastrointestinal tumorigenesis[172]. It has also been found that naringin contributes to maintaining an equilibrium between the different components of the microbiota[173], thus preventing dysbiotic processes that could lead to ROS overproduction and indirectly affect Ca\(^{2+}\) absorption[174].

Table 1 shows the influence of prooxidant conditions on the intestinal Ca\(^{2+}\) absorption and the reversal/protection by antioxidants.

INTESTINAL Ca\(^{2+}\) ABSORPTION UNDER PATHOLOGICAL ALTERATIONS

Inflammatory bowel diseases

Crohn’s disease and ulcerative colitis, the main forms of inflammatory bowel disease, are characterized by chronic inflammation of the intestine that can deteriorate the intestinal Ca\(^{2+}\) absorption[175]. In patients with Crohn’s disease, this alteration may be due to vitamin D deficiency, magnesium deficiency, excessive use of glucocorticoids and/or intestinal resection. Vitamin D treatment has been shown to improve the intestinal Ca\(^{2+}\) absorption in these patients[176].

Celiac disease

Patients with celiac disease (CD) frequently present Ca\(^{2+}\) deficiency, low BMD and metabolic bone diseases. In children and adolescents with CD, the Ca\(^{2+}\) deficiency may produce growth alterations and difficulties in peak bone mass achievement[177]. In the elderly, Ca\(^{2+}\) deficiency leads to low BMD and increased fracture risk[178]. Bone alterations partially result from impaired intestinal Ca\(^{2+}\) absorption due principally to the loss of villous cells in the duodenum, where the active Ca\(^{2+}\) transport occurs[179]. Steatorrhea, vitamin D deficit and changes in the mechanisms of Ca\(^{2+}\) absorption are other factors that contribute to the Ca\(^{2+}\) malabsorption[180]. Hipovitaminosis D in CD patients is also a consequence of its malabsorption and the intestinal mucosal lesion[181], which lead to reduce the plasma calcitriol levels, and therefore, the intestinal Ca\(^{2+}\) absorption.

Morbid obesity and bariatric surgery
Table 1 Effects of pro-oxidant conditions on intestinal Ca2+ absorption and associated parameters

Pro-oxidant condition	Effects on genes and proteins involved in intestinal Ca2+ absorption	Effect on REDOX state	Effects of antioxidant/protective molecules	Effects on apoptosis
BSO[157,159]	Inhibition of IAP activity	Decrease in GSH content	GSH administration normalized intestinal Ca2+ absorption	Not evaluated
MEN[149-150]	Decrease in PMCA\textsubscript{a,b} mRNA expression and activity. Decrease in CB\textsubscript{D28k}, CLDN\textsubscript{2} and NCX1 protein expression	Depletion of GSH content; Increase in ROS and protein carbonyl; Enhancement in SOD and CAT activity	QT, MEL and GLT administration normalized intestinal Ca2+ absorption and associated parameters	Activation of intrinsic and extrinsic pathways
NaDOC[162,165]	Decrease in PMCA\textsubscript{a,b} mRNA expression and NCX1 protein expression	Depletion of GSH content; Increase in ROS and activity of SOD, CAT and GPs; Increase in iNOS protein expression and NO-2 content	QT and UDCA administration avoided the inhibition of intestinal Ca2+ absorption caused by NaDOC	Activation of intrinsic and extrinsic pathway
Diabetes[166]	Decrease in expression of NCX1, PMCA\textsubscript{a,b} and TRPV6 proteins and CLDN\textsubscript{2} gene expression	Decrease in GSH content; Increase in SOD activity and ROS levels	Insulin treatment restored redox state and intestinal Ca2+ absorption	Not evaluated
Metabolic syndrome[107]	Decrease in TRPV6, PMCA\textsubscript{a,b}, CB\textsubscript{D28k}, CLDN\textsubscript{2,12} and VDR protein expression; Decrease in IAP activity	Enhancement in protein carbonyls, NO-2 levels and nitrotyrosine content in proteins; Decrease in SOD and CAT activity	Administration of NAR prevented the reduction of intestinal Ca2+ absorption caused by fructose-rich diet	Not evaluated

BSO: DL-buthionine-S, R-sulfoximine; CAT: Catalase; CB\textsubscript{D28k}: Calbindin D\textsubscript{28k}; CB\textsubscript{D9k}: Calbindin D\textsubscript{9k}; CLDN\textsubscript{2,12}: Claudin 2, 12; GLUT: Glutamine; GPX: Glutathione peroxidase; GSH: Glutathione; AP: Alkaline phosphatase; MEL: Melatonin; MEN: Menadione; NaDOC: Sodium deoxycholate; NAR: Naringin; NCX1: Na+/Ca2+ exchanger; NO-2: Nitric oxide; PMCA\textsubscript{a,b}: Plasma membrane Ca2+ ATPase; QT: Quercetin; SOD: Superoxide dismutase; TRPV6: Transient receptor potential vanilloid type 6; UDCA: Ursodeoxycholic acid; VDR: Vitamin D receptor.

Bariatric surgery (BS) is a valuable option to treat the morbid obesity. However, these procedures may produce a decrease in the BMD increasing the risk of bone fractures, particularly when the duodenum is bypassed, as occurs in Roux-en-Y Gastric Bypass (RYGB). Since the duodenum is the site where the active transport of Ca2+ occurs[108], the RYGB contributes to decreasing not only the intestinal Ca2+ absorption but also the absorption of other mineral and nutrients. The RYGB prevents the active calciotrol-mediated Ca2+ transcellular pathway in the duodenum and proximal jejunum, which resembles in certain extension a proximal intestine-specific Vdr KO animal model[183,184]. Furthermore, hipovitaminosis D is common in patients exposed to BS, which seems to be multifactorial, some factors being related to obesity and others related to the type of the surgical procedure and its consequences[180,181]. Indeed, the vitamin D deficiency would contribute to inhibiting the intestinal Ca2+ absorption, leading to impaired Ca2+ homeostasis and bone density. The reduction in the intestinal Ca2+ absorption[185] produces secondary hyperparathyroidism, and ultimately triggers bone loss[186]. Vitamin D supplementation after RYGB has not always avoided a decrease in BMD, suggesting that other factors should be involved in the bone loss[187]. In the Sleeve Gastrectomy, another very common procedure of BS, the contact time between Ca2+ and intestinal cells is shortened and, hence, the intestinal Ca2+ absorption decreases.

Diabetes

The intestinal Ca2+ absorption in diabetes has been poorly addressed. Most studies have dealt with experimental diabetes provoked by alloxan or STZ. Schneider et al.[188] have demonstrated that the intestinal Ca2+ absorption is decreased in rats made diabetic with alloxan, which is due to a decrease in the lumen-to-plasma Ca2+ flux in the duodenum and ileum. A reduction in intestinal Ca2+ absorption has been reported to be associated with low circulating levels of calciotrol, decreased VDR number and CB\textsubscript{D9k} content in diabetic rats[189,190]. In our laboratory we have also observed that the intestinal Ca2+ absorption decreases by insulin deficiency in rats injected with STZ, a model of T1DM. However, the effect was relatively rapid and transient leading to a time dependent adaptation, returning the intestinal Ca2+ absorption to normal values. The inhibition was accompanied by redox changes that produce oxidative stress, which may lead to alterations in the duodenum permeability. Both the redox state of the intestine and the intestinal Ca2+ absorption were normalized after insulin administration, which was independent of vitamin D status[191]. In a clinical study with adolescent girls using a dual-stable isotope approach to evaluate Ca2+ absorption,
Weber et al[190] did not find adverse effects of T1DM on gastrointestinal Ca\(^{2+}\) absorption. Since T1DM is characterized by bone loss, alteration in bone remodeling, low BMD and increased risk of fractures[199], further investigation should be done in order to clarify whether a reduction in intestinal Ca\(^{2+}\) absorption contributes to development of bone disease associated to insulin deficiency.

Hypercalciurias

Hypercalciuria is very common in patients with kidney stones. Although the molecular mechanisms underlying hypercalciuria are not well elucidated, it is considered that increased intestinal Ca\(^{2+}\) absorption contributes to the pathogenesis[199]. The idiopathic hypercalciumia is the most common form, but it has a polygenic trait, which makes more difficult to understand the pathogenesis. In the Dent disease, a monogenic disorder associated with hypercalciumia, it has also been found Ca\(^{2+}\) hyperabsorption. Wu et al[194] have demonstrated that the disruption of PI(4,5)P\(^2\)-5-phosphatase activity by Dent-causing mutations of OCRL gene may explain the increased intestinal Ca\(^{2+}\) absorption. The authors conclude that the TRPV6 activity is enhanced due to the increased transcription of TRPV6 gene provoked by increased calcitriol[194] and/or release of TRPV6 suppression under Dent conditions.

The hereditary hypophosphatemic rickets with hypercalciumia is a rare autosomal recessive disorder with a prevalence of 1:250000. The patients carry loss-of-function mutations in the sodium-phosphate co-transporter NaPi-2c, which cause an increase in the urinary Pi excretion, hypophosphatemia, bowing, short stature and elevated calcitriol levels. Consequently, the intestinal Ca\(^{2+}\) absorption increases, the PTH dependent Ca\(^{2+}\)-reabsorption in the distal renal tubules decreases, resulting in hypercalcemia, which leads to nephrocalcinosis in half of patients[199].

Turner syndrome

Women with Turner syndrome have an increased risk of osteoporosis mainly due to inadequately treated primary ovarian insufficiency and intrinsic bone abnormalities. These patients usually present some comorbid conditions that may further increase the risk of osteoporosis, such as vitamin D deficiency, CD and inflammatory bowel disease[195]. All these conditions may be associated with deficient Ca\(^{2+}\) absorption via different mechanisms such as endocrine deregulation of Ca\(^{2+}\) metabolism or oxidative stress among others.

Thalassemia

Osteoporosis and impairment of Ca\(^{2+}\) homeostasis are frequent complications of thalassemia. Studies in thalassemia patients and animal models suggested that a defective Ca\(^{2+}\) absorption might be a cause of thalassemic bone disorder. The possible mechanisms associated with intestinal Ca\(^{2+}\) malabsorption in thalassemia are alterations in the Ca\(^{2+}\) transporters and hormonal controls of the transcellular and paracellular intestinal transport systems[198].

CONCLUSION

There has been an important progress in molecular studies related to the effects of calcitriol on intestinal Ca\(^{2+}\) absorption in rodents and birds. However, information about the role of other hormones and dietary factors are scarce. The lack of information about the molecular alterations in the intestinal Ca\(^{2+}\) absorption that accompany human pathologies is even greater. Since oxidative stress has shown to produce a powerful influence on the intestinal Ca\(^{2+}\) absorption and the prevention or restoration by antioxidants in experimental animals have proved to be very successful, it would be worth investigating these aspects in humans carrying pathologies associated with altered intestinal Ca\(^{2+}\) absorption.

REFERENCES

1. Vannucci L, Fossi C, Quattrini S, Giusti L, Pampaloni B, Gronchi G, Giusti F, Romagnoli C, Cianferotti L, Marcacci G, Brandi ML. Calcium Intake in Bone Health: A Focus on Calcium-Rich Mineral Waters. *Nutrients* 2018; 10: 1930 [PMID: 30563174 DOI: 10.3390/nu10121930]

2. Díaz de Babouza G, Guizzardi S, Tolosa de Talamoni N. Molecular aspects of intestinal calcium absorption. *World J Gastroenterol* 2015; 21: 7142-7154 [PMID: 26109800 DOI: 10.3748/wjg.v21.i23.7142]

3. Liao QS, Du Q, Lou J, Xu JY, Xie R. Roles of Na\(^+/Ca\(^{2+}\) exchanger 1 in digestive system physiology and pathophysiology. *World J Gastroenterol* 2019; 25: 287-299 [PMID: 30686898 DOI: 10.3748/wjg.v25.i3.287]

4. Wongdee K, Charoenphandhu N, Litwack G. Vitamin D-Enhanced Duodenal Calcium Transport. Litwack
G. In: Litwack G. Vitamins and hormones. New York: Elsevier; 2015: 407-440
5 Bronner F. Calcium absorption—a paradigm for mineral absorption. J Nutr 1998; 128: 917-920 [PMID: 9700944 DOI: 10.1093/jn/128.5.917]
6 Glous A, Le Roy N, Brionne A, Bonin E, Juanchich A, Benzioni G, Pitkett ML, Prié D, Nys Y, Gautron J, Narcy A, Dulcos MJ. Candidate genes of the transcellular and paracellular calcium absorption pathways in the small intestine of laying hens. Pouls Sci 2019; 98: 6005-6018 [PMID: 31328776 DOI: 10.3832/ps20407]
7 Fleet JC, Schoch RD. Molecular mechanisms for regulation of intestinal calcium absorption by vitamin D and other factors. Crit Rev Clin Lab Sci 2010; 47: 181-195 [PMID: 21180397 DOI: 10.3109/10488363.2010.564294]
8 van der Velde RV, Brouwers JR, Geusens PP, Lems WF, van den Bergh JP. Calcium and vitamin D supplementation: state of the art for daily practice. Food Nutr Rev 2014; 58 [PMID: 25147494 DOI: 10.3402/fnr.v58.21796]
9 Duños C, Bellaton C, Panus D, Bronner F. Calcium solubility, intestinal sojourn time and paracellular permeability codetermine passive calcium absorption in rats. J Nutr 1995; 125: 2348-2355 [PMID: 7666252 DOI: 10.1093/jn/125.9.2348]
10 Wasserman RH. Vitamin D and the dual processes of intestinal calcium absorption. J Nutr 2004; 134: 3137-3139 [PMID: 15514288 DOI: 10.1093/jn/134.11.3137]
11 Charoenphandhu N, Limlonwongse L, Krishnamma N. Prolactin directly stimulates transcellular active calcium transport in the duodenum of female rats. Can J Physiol Pharmacol 2001; 79: 430-438 [PMID: 11405247]
12 Suntornsaratoon P, Kraithid T, Teerapompanakit J, Dormkam N, Wongdee K, Krishnamma N, Charoenphandhu N. Pre-stocking calcium supplementation effectively prevents lactation-induced osteopenia in rats. Am J Physiol Endocrinol Metab 2014; 306: E177-E188 [PMID: 24302005 DOI: 10.1152/ajpendo.00741.2013]
13 Fujita H, Chibu H, Yokozaki H, Sakai N, Sugimoto K, Wada T, Kojima Y, Yamashita T, Sawada N. Differential expression and subcellular localization of claudin-7, -8, -12, -13, and -15 along the mouse intestine. J Histochem Cytochem 2006; 54: 933-944 [PMID: 16657416]
14 Inai T, Sengoka A, Guan X, Hirose E, Iida H, Shibata Y. Heterogeneity in expression and subcellular localization of tight junction proteins, claudin-10 and -15, examined by RT-PCR and immunofluorescence microscopy. Arch Histol Cytol 2005; 68: 349-360 [PMID: 16505581 DOI: 10.1074/jhc.2005581.348.134]
15 Inai T, Kobayashi J, Shibata Y. Claudin-1 contributes to the epithelial barrier function in MDCK cells. Eur J Cell Biol 1999; 78: 849-855 [PMID: 10691033 DOI: 10.1007/s00441-001-0060-0]
16 Amashsh S, Schmidt T, Mahn M, Florian P, Markertz J, Tavallali S, Gittert A, Schulze KD, Fromm M. Contribution of claudin-5 to barrier properties in tight junctions of epithelial cells. Cell Tissue Res 2005; 321: 89-96 [PMID: 16158492 DOI: 10.1007/s00441-005-1101-0]
17 van Goor MKC, Hoenderop JGI, van der Wijst J. TRP channels in calcium homeostasis: from hormonal control to structure-function relationship of TRPV5 and TRPV6. Biochim Biophys Acta Mol Cell Res 2017; 1864: 883-893 [PMID: 27913205 DOI: 10.1016/j.bbamcr.2016.11.027]
18 Peng JB, Suzuki Y, Gyimesi G, Hediger MA, Kozak J, Putney J. TRPV5 and TRPV6 Calcium-Selective Channels [Internet]. Kozak J, Putney J. In: Kozak J, Putney J. Calcium Entry Channels in Non-Excitable Cells. Boca Raton (FL): CRC Press/Taylor & Francis; 2018: 241-274
19 Brown EM. Extracellular Ca2+ sensing, regulation of parathryoid cell function, and role of Ca2+ and other ions as extracellular (first) messengers. Physiol Rev 1991; 71: 371-411 [PMID: 2006218 DOI: 10.1152/physrev.1991.71.2.371]
20 Benn BS, Ajibade D, Porta A, Dhawan P, Hediger M, Peng JB, Jiang Y, Ge JD, Lieben L, Bouillon R, Carmeliet G. Calbindin-D9k: an improved model. J Biol Chem 2011; 286: 1008-1014 [PMID: 30289411 DOI: 10.1074/jbc.M110.110586]
21 Kutuzova GD, Ajibade D, Porta A, Dhawan P, Hediger M, Peng JB, Jiang Y, Ge JD, Lieben L, Bouillon R, Carmeliet G. Calbindin-D9k exhibits properties characteristic of a Ca2+ sensor. J Biol Chem 2006; 281: 16655-16659 [PMID: 16937133 DOI: 10.1074/jbc.M106.497238]
22 Woudenberg-Vrenken TE, Lameris AL, Weiser K, Olausson J, Fleckenzi TR, Bindels RJ, Freichel M, Hoenderop JGI. Functional TRPV6 channels are crucial for transepithelial Ca2+ absorption. Am J Physiol Gastrointest Liver Physiol 2012; 303: G879-G885 [PMID: 22878123 DOI: 10.1152/ajpgi.00889.2012]
23 Kellett GL. Alternative perspective on intestinal calcium absorption: proposed complementary actions of Cat(v),3 and TRPV6. Nutr Rev 2011; 69: 347-370 [PMID: 21729087 DOI: 10.1111/j.1753-4887.2011.00395.x]
24 Kojetin DJ, Ventera RA, Kordys DR, Thompson RJ, Kumar R, Cavanagh J. Structure, binding interface and hydrophobic transitions of Ca2+-loaded calbindin-D28K. Nat Struct Mol Biol 2006; 13: 641-647 [PMID: 16799559 DOI: 10.1038/nstru01112]
25 Walters JR, Howard A, Lowrey L, Mawer EB, Legon S. Expression of genes involved in calcium absorption in human duodenum. Eur J Clin Invest 1999; 29: 214-219 [PMID: 10202378 DOI: 10.1111/j.1365-2362.1999.00439.x]
26 Noble JW, Almalki R, Roe SM, Wagner A, Duman R, Atack JR. The X-ray structure of human calbindin-D28K: an improved model. Acta Crystallogr D Biol Crystallogr 2018; 74: 1006-1014 [PMID: 30289411 DOI: 10.1107/S0909457318001610]
27 Berggård T, Mirón S, Onerfors P, Thulin E, Akerfeldt KS, Enghild JJ, Akke M, Linse S. Calbindin-D28k exhibits properties characteristic of a Ca2+ sensor. J Biol Chem 2002; 277: 16662-16672 [PMID: 11872760 DOI: 10.1074/jbc.M200415200]
28 Albritton TE, Meyer T, Stryer L. Range of messenger action of calcium ion and inositol 1,4,5-trisphosphate. Science 1992; 258: 1812-1815 [PMID: 1465619 DOI: 10.1126/science.1465619]
29 Merico V, de Barboza GD, Vasco C, Ponce R, Rodriguez V, Garagna S, Tolosa de Talamont N. A mitochondrial mechanism is involved in apoptosis of Robertsonian mouse male germ cells. Reproduction 2008; 135: 797-804 [PMID: 18502394 DOI: 10.1530/0-7404-07002-0017]
30 Christakos S, Lieben L, Masuyama R, Carmeliet G. Vitamin D endocrine system and the intestine. Bonekey Rep 2014; 3: 496 [PMID: 24605213 DOI: 10.1038/bonekey.2013.230]
31 Song Y, Peng X, Porta A, Takahata H, Peng JB, Hediger MA, Fleet JC, Christakos S. Calcium transporter 1 and epithelial calcium channel messenger ribonucleic acid are differentially regulated by 1,25 dihydroxyvitamin D3 in the intestine and kidney of mice. Endocrinology 2003; 144: 3885-3894 [PMID: 12933662 DOI: 10.1210/en.2003-0314]
of the 1,25D3-MARRS (membrane-associated, rapid response steroid-binding) receptor/PDIA3/Erp57. J Steroid Biochem Mol Biol 2013; 130: 336-347 DOI: 10.1007/s00424-014-1625-9

Haughey BH, Armbrecht HJ, Brown AJ. Distribution and regulation of the 25-hydroxyvitamin D3 1α-hydroxylase in human parathyroid glands. J Steroid Biochem Mol Biol 2001; 77: 209-217 DOI: 10.1016/S0960-0760(00)00274-1

Pflugers Arch 2012; 466: 43-60 DOI: 10.1007/s00223-012-0143-y

Colonic vitamin D metabolism: implications for the pathogenesis of IBD. J Gastroenterol 2015; 50: 203-219

Haussler CA, Hsieh D, Hsieh JC, Jurutka PW. Molecular mechanisms of vitamin D action. Calcif Tissue Int 2013; 92: 77-98 DOI: 10.1007/s00223-012-9619-0

Khananshvili D. Sodium-calcium exchangers (NCX): molecular hallmarks underlying the tissue-specific and systemic functions. Pflugers Arch 2014; 466: 43-60 DOI: 10.1007/s00223-012-0143-y

Calbindin-D9k stimulates the calcium pump in rat enterocyte basolateral membranes. Am J Physiol 1992; 263: G1193-G1205 [PMID: 19779013 DOI: 10.1152/ajpgi.1992.256.1.G124]

Areco VA, Cañas F, Brindak ME, De Winter R, Haag M, Kruger M. Relationship between duodenal calcium uptake and Ca2+-Mg2+-ATPase activity. Med Sci Res 1995; 24: 809-811

Köhler P, Hofmann T, Boll G, Daum G, Schuppan D. Increased expression of the plasma membrane calcium pump in human liver cirrhosis. Gut 1992; 33: 609-613

Khanal RC. Intestinal cell calcium uptake and the targeted knockout of the 1,25D3-MARRS (membrane-associated, rapid response steroid-binding) receptor/PDIA3/Erp57. J
Areco VA. Ca²⁺ absorption/molecular and clinical approach. Mol Biol Cell 2003; 14: 293-307 [PMID: 12502520 DOI: 10.1091/mbc.02-09-0705]
1,25-dihydroxyvitamin D3 in oophorectomized women. J Clin Endocrinol Metab 1990; 71: 1288-1293 [PMID: 222926 DOI: 10.1210/21m-7-1-1288]

Arjmandi BH, Hollis BW, Kalu DN. In vivo effect of 17 beta-estradiol on intestinal calcium absorption in rats. Bone Miner 1994; 26: 181-189 [PMID: 7994118 DOI: 10.1006/bone.1994.0086]

Liel Y, Shanly S, Smirnoff P, Schwartz B. Estrogen increases 1,25-dihydroxyvitamin D receptors expression and bioreponse in the rat duodenal mucosa. Endocrinology 1999; 140: 280-285 [PMID: 9886836 DOI: 10.1210/endo.140.1.1640]

Colin EM, Van Den Bergh GJ, Van Aken M, Christakos S, De Jonge HR, Deluca HF, Prfeld JM, Birkenhüger JC, Buurman CJ, Pols HA, Van Leeuwen JP. Evidence for involvement of 17beta-estradiol in intestinal calcium absorption independent of 1,25-dihydroxyvitamin D3 level in the Rat. J Bone Miner Res 1999; 14: 57-64 [PMID: 9893066 DOI: 10.1359/jbmr.1999.14.1.57]

Cotter AA, Cashman KD. Effect of 17beta-estradiol on transepithelial calcium transport in human intestinal-like Caco-2 cells and its interactions with 1,25-dihydroxycholecalciferol and 9-cis retinoic acid. Eur J Nutr 2006; 45: 234-241 [PMID: 16491139 DOI: 10.1007/s00394-006-0590-2]

Campbell-Thompson M, Lynch JJ, Bhardwaj D. Expression of estrogen receptor (ER) subtypes and ERbeta isoforms in colon cancer. Cancer Res 2001; 61: 632-640 [PMID: 11122261]

Nie X, Jin H, Wen G, Xu J, An J, Liu X, Xie R, Tuo B. Estrogen Regulates Duodenal Calcium Absorption Through Differential Role of Estrogen Receptor on Calcium Transport Proteins. Dig Dis Sci 2020; Online ahead of print [PMID: 31974908 DOI: 10.1007/s10620-020-06076-x]

Ajibade DV, Dhawan P, Fechner AJ, Meyer MB, Pike JW, Christakos S. Evidence for a role of prolactin in calcium homeostasis: regulation of intestinal transient receptor potential vanilloid type 6, intestinal calcium absorption, and the 25-hydroxyvitamin D3 1 alpha hydroxylase gene by prolactin. Endocrinology 2010; 151: 2974-2984 [PMID: 20463051 DOI: 10.1210/en.2010-0013]

Pahhua DN, DeLuca HF. Stimulation of intestinal calcium transport and bone calcium mobilization by prolactin in vitamin D-deficient rats. Science 1981; 214: 1038-1039 [PMID: 7302575 DOI: 10.1126/science.7302575]

Wongdee K, Teerapornpuntakit J, Sritongkham J, Kraidith K, Krishnamra N. Duodenal calcium absorption independent of 1,25-dihydroxyvitamin D3 level in the rat. J Med Assoc Thai 2009; 9: 813-818 [PMID: 19576804 DOI: 10.1152/ajpendo.00347.2009]

Marucci G, Masini L, Ferrari S, Halferer D, Javid MK, Kamnichky P, Reginer JY, Rizoli R, Brandi ML. Phosphate wasting disorders in adults. Osteoporos Int 2018; 29: 2369-2387 [PMID: 30041455 DOI: 10.1007/s00198-018-4618-2]

Khuittan P, Wongdee K, Jantaratit W, Suntornmarapot K, Krishnamra N, Charoenphandhu N. Fibroblast growth factor-23 regulates 1,25(OH)2D3-mediated intestinal calcium transport by reducing the transcellular and paracellular calcium fluxes. Arch Biochem Biophys 2013; 536: 46-52 [PMID: 23747333 DOI: 10.1016/j.abb.2013.05.009]

Rodrát M, Wongdee K, Panupinthu N, Thongchoute K, Thongon N, Krishnamra N. Prolonged exposure to 1,25(OH)2D3 and high ionized calcium induces FGF-23 production in intestinal epithelium-like Caco-2 monolayer: A local negative feedback for preventing excessive calcium transport. Arch Biochem Biophys 2018; 640: 10-16 [PMID: 29317227 DOI: 10.1016/j.abb.2017.12.022]

Sutter SA, Stein EM. The Skeletal Effects of Inhaled Glucocorticoids. Curr Osteoporos Rep 2016; 14: 106-113 [PMID: 27091558 DOI: 10.1007/s11914-016-0308-1]

Van Croomphout SJ, Stockmans I, Torrekens S, Van Herck E, Carmeliet G, Bouillon R. Estrogen-induced upregulation of duodenal 1α,25-dihydroxyvitamin D3 expression and bioresponse in the rat duodenal mucosa. J Clin Endocrinol Metab 2009; 94: 280-285 [PMID: 19490920 DOI: 10.1161/jcem.108.006217]

Centeno V, de Barboza GD, Marchionatti A, Rodríguez V, Tolosa de Talamoni N. Molecular mechanisms triggered by low-calcium diets. Nutr Res Rev 2009; 22: 163-174 [PMID: 1935652 DOI: 10.1017/s009544220900126]

Andersen JJ, Kruuska B, Delaney JA, He K, Burke GL, Alonso A, Bild DE, Budoff M, Michos ED. Calcium Intake From Diet and Supplements and the Risk of Coronary Artery Calcification and its Progression Among Older Adults: 10-Year Follow-up of the Multi-Ethnic Study of Atherosclerosis (MESA). J Am Heart Assoc 2016; 5: [PMID: 27729353 DOI: 10.1161/JAHA.115.003815]

Rule AD, Roger VL, Melton LJ, Bergestrøm EL, Li X, Peyser PA, Krambeck AE, Lieske JC. Kidney stones associated with increased risk for myocardial infarction. J Am Soc Nephrol 2010; 21: 1641-1644 [PMID: 20616170 DOI: 10.1681/ASN.2010003253]

Wongdee K, Rodrat M, Teerapornpuntakit J, Krishnamra N, Charoenphandhu N. Factors inhibting intestinal calcium absorption: hormones and luminal factors that prevent excessive calcium uptake. J Physiol Sci 2019; 69: 683-696 [PMID: 31222614 DOI: 10.1007/s12576-019-00688-3]

Christakos S, Dhawan P, Liu Y, Peng X, Porta A. New insights into the mechanisms of vitamin D action. J Cell Biochem 2003; 88: 695-705 [PMID: 12577303 DOI: 10.1002/jcb.10423]

Brown AJ, Kris J, Armbrecht HJ. Effect of age, vitamin D, and calcium on the regulation of intestinal epithelial calcium channels. Arch Biochem Biophys 2005; 437: 51-58 [PMID: 15920216 DOI: 10.1016/j.abb.2005.03.021]
Areco VA et al. Calcium absorption/molecular and clinical approach

115 Brun LR, Brance ML, Rigalli A. Luminal calcium concentration controls intestinal calcium absorption by modification of intestinal alkaline phosphatase activity. Br J Nutr 2012; 108: 229-233 [PMID: 22018098 DOI: 10.1017/S0007114510056177]

116 Bangkok T. Human Vitamin and Mineral Requirements. Rome, Italy: 2001. Available from: http://www.fao.org/3/a-y2809e.pdf

117 Favus MJ. Goltzman D. Regulation of Calcium and Magnesium. In: Primer on the Metabolic Bone Diseases and Disorders of Mineral Metabolism. Ames: John Wiley & Sons, Inc.; 2013: 171-179

118 Brun LR, Brance ML, Lombarte M, Luco M, Di Lorenzo VE, Rigalli A. Regulation of intestinal calcium absorption by luminal calcium content: role of intestinal alkaline phosphatase. Mol Nutr Food Res 2014; 58: 1546-1551 [PMID: 24751318 DOI: 10.1002/mnfr.201300068]

119 Brun LR, Lombarte M, Rona S, Perez F, Millán JL, Rigalli A. Increased calcium uptake and improved trabecular bone properties in intestinal alkaline phosphatase knockout mice. J Bone Miner Metab 2018; 36: 866-871 [PMID: 29234927 DOI: 10.1007/s00774-017-0887-7]

120 Cheng SX, Okada M, Hall AE, Geibelt JP, Hebert SC. Expression of calcium-sensing receptor in rat colonic epithelium: evidence for modulation of fluid secretion. Am J Physiol Gastrointest Liver Physiol 2002; 283: G240-G250 [PMID: 12065312 DOI: 10.1152/ajpgi.00550.2001]

121 Ruten MJ, Bacon KD, Marlint KL, Stoney M, Meichsner CL, Lee FP, Hobson SA, Rodland KD, Sheppard BC, Trunkey DD, Devaney KE, Devaney CW. Identification of a functional Ca2+-sensing receptor in normal human gastric mucous epithelial cells. Am J Physiol 1999; 277: G662-G670 [PMID: 10484392 DOI: 10.1152/ajpgi.1999.277.3.G662]

122 Xie R, Dong X, Wong C, Vallon V, Tang B, Sun J, Yang S, Dong H. Molecular mechanisms of calcium-sensing receptor-mediated calcium signaling in the modulation of epithelial ion transport and bicarbonate secretion. J Biol Chem 2014; 289: 34642-34653 [PMID: 25331955 DOI: 10.1074/jbc.M114.592774]

123 Cheng SX, Lightfoot YL, Yang T, Zadeh M, Tang L, Sahay B, Wang GP, Owen JL, Mohamadzadeh M. Epithelial CaSR deficiency alters intestinal integrity and promotes proinflammatory immune responses. FEBS Lett 2014; 588: 4158-4166 [PMID: 24842610 DOI: 10.1016/j.febslet.2014.05.007]

124 Owen JL, Cheng SX, Cie Y, Sahay B, Mohamadzadeh M. The role of the calcium-sensing receptor in gastrointestinal inflammation. Semin Cell Dev Biol 2016; 49: 44-51 [PMID: 26709005 DOI: 10.1016/j.semcdb.2015.10.040]

125 Tamaritno L, Elajnaf T, Kallay E, Schepelman M. Calcium-sensing receptor in colorectal inflammation and cancer: Current insights and future perspectives. World J Gastroenterol 2018; 24: 4119-4131 [PMID: 29271078 DOI: 10.3748/wjg.v24.i36.4119]

126 Hillman LS, Johnson LS, Lee DZ, Vieira NE, Yergey AL. Measurement of true absorption, endogenous fecal excretion, urinary excretion, and retention of calcium in term infants by using a dual-tracer, stable-isotope method. J Pediatr 1993; 123: 444-456 [PMID: 8355125 DOI: 10.1016/0022-3476(93)90155-X]

127 Alevizaki CC, Ikkos DG, Singhelakis P. Progressive decrease of intestinal calcium absorption with age in normal man. J Nucl Med 1973; 14: 760-762 [PMID: 4743584]

128 Ghishan FK, Parker P, Nichols S, Hoyumpa A. Kinetics of intestinal calcium transport during maturation in rats. Pediatr Res 1984; 18: 235-239 [PMID: 6728555 DOI: 10.1209/0022-3476/18/2/002]

129 Lee GS, Lee KY, Choi KC, Ryu YH, Paik SG, Oh GT, Jeong EB. Phenotype of a calbindin-D9k gene knockout is compensated for by the induction of other calcium transport genes in a mouse model. J Bone Miner Res 2007; 22: 1968-1978 [PMID: 17969670 DOI: 10.1359/jbmr.070801]

130 Akhter S, Kutuzova GD, Christakos S, DeLuca HF. Calbindin D9k is not required for 1,25-dihydroxyvitamin D3-mediated Ca2+ absorption in small intestine. Arch Biochem Biophys 2007; 460: 227-232 [PMID: 17224126 DOI: 10.1016/j.abb.2006.12.005]

131 Holmes JL, Van Itallie CM, Rasmussen JE, Anderson JM. Claudin profiling in the mouse during postnatal development and along the gastrointestinal tract reveals complex expression patterns. Gene Expr Paterns 2006; 6: 581-588 [PMID: 16458081 DOI: 10.1016/j.mgep.2005.12.001]

132 Begg MR, Alexander RT. Intestinal absorption and renal reabsorption of calcium throughout postnatal development. Exp Biol Med (Maywood) 2017; 242: 840-849 [PMID: 28346014 DOI: 10.1177/1535370217709935]

133 Kovacs CS. Maternal Calcium and Bone Metabolism During Pregnancy, Lactation, and Post-Weaning Recovery. Physiol Rev 2016; 96: 449-547 [PMID: 26887676 DOI: 10.1152/physrev.00027.2015]

134 Chaoenphandhu N, Wongdee K, Krishnamra N. Is prolactin the cardinal calciotropic maternal hormone? J Bone Metab 2010; 17: 395-401 [PMID: 20304671 DOI: 10.1007/s10877-010-9262-1]

135 Fudge NJ. Kovacs CS. Pregnancy up-regulates intestinal calcium absorption and skeletal mineralization independently of the vitamin D receptor. Endocrinology 2010, 151: 886-895 [PMID: 20051486 DOI: 10.1210/en.2009-1010]

136 Jantarakit W, Thongn N, Pandaranandaka J, Thaerpornputtakul J, Krishnamna N, Charoenphandhu N. Prolactin-stimulated transepithelial calcium transport in duodenum and Caco-2 monolayer are mediated by the phosphoinositide 3-kinase pathway. Am J Physiol Endocrinol Metab 2007; 293: E372-E384 [PMID: 17488805 DOI: 10.1152/ajpendo.00421.2007]

137 Kovacs CS. The role of vitamin D in pregnancy and lactation: insights from animal models and clinical studies. Annu Rev Nutr 2012; 32: 97-123 [PMID: 22482392 DOI: 10.1146/annurev-nutr-071811-150742]

138 Kovacs C. Fetal mineral homeostasis [Internet]. In: The Glorious F, Petros J, Jones H. Pediatric Bone: Biology and Diseases. Endexet: Comprehensive free online endocrinology book. San Diego, CA: Elsevier/Academic; 2011: 247-275

139 Zhang L, Hu J, Li M, Shang Q, Liu S, Piao X. Maternal 25-hydroxycholecalciferol during lactation improves intestinal calcium absorption and bone properties in sow-suckling piglet pairs. J Bone Miner Metab 2019; 37: 1083-1094 [PMID: 31290008 DOI: 10.1007/s00774-019-01209-0]

140 Kovacs CS, Feingold KR, Anawalt B, Boyce A, Chrousos G, Dungan K, Grossman A, Hershman JM, Kaltsas G, Koch C, Kopp P, Korbonits M, McLachlan R, Morley JE, New M, Perreault L, Rebar R, Singer F, Trence DL, Vinik A, Wilson DP. Calcium and Phosphate Metabolism and Related Disorders During Pregnancy and Lactation 2000 [PMID: 25953396]

141 Bullamore JR, Wilkinson R, Gallagher JC, Nordin BE, Marshall DH. Effect of age on calcium absorption. Lancet 1970; 2: 535-537 [PMID: 4195202 DOI: 10.1016/s0140-6736(70)91344-9]

142 Ramsuksib K, Keuler NS, Davis LA, Hansen KE. Factors associated with calcium absorption in postmenopausal women: a post hoc analysis of dual-isotope studies. J Acad Nutr Diet 2014; 114: 761-767 [PMID: 24209888 DOI: 10.1016/j.jnd.2013.07.041]

143 Gallagher JC. Vitamin D and aging. Endocrinol Metab Clin North Am 2013; 42: 319-332 [PMID:
Naringin attenuates MLC absorption/molecular and clinical approach

Song Y, Fleet JC. Intestinal resistance to 1,25 dihydroxyvitamin D in mice heterozygous for the vitamin D receptor knockout allele. Endocrinology 2007; 148: 1396-1402 [PMID: 17110426 DOI: 10.1210/en.2006-1109]

Bhattacharyya A, Chattopadhyay R, Mitra S, Crowe SE. Oxidative stress: an essential factor in the pathogenesis of gastrointestinal mucosal diseases. Physiol Rev 2014; 94: 329-354 [PMID: 24692350 DOI: 10.1152/phyrev.00040.2012]

Clark A, Mach N. The Crosstalk between the Gut Microbiota and Mitochondria during Exercise. Front Physiol 2017; 8: 319 [PMID: 28579962 DOI: 10.3389/fphys.2017.00319]

Tolosa de Talamoni N, Marchionatti A, Baudino V, Alisio A. Glutathione plays a role in the chick intestinal calcium absorption. Comp Biochem Physiol A Physiol 1996; 115: 127-132 [PMID: 8916550 DOI: 10.1016/0300-9629(96)00023-0]

Marchionatti A, Alisio A, Díaz de Barboza G, Baudino V, Tolosa de Talamón N. DL-Buthionine-S,R-sulfoximine affects intestinal alkaline phosphatase activity. Comp Biochem Physiol C Toxicol Pharmacol 2001; 129: 85-91 [PMID: 11423381]

Díaz de Barboza G, Guizzardi S, Moine L, Tolosa de Talamón N. Oxidative stress, antioxidants and intestinal calcium absorption. World J Gastroenterol 2017; 23: 2841-2853 [PMID: 28522953 DOI: 10.3748/wjg.v23.i16.2841]

Marchionatti AM, Díaz de Barboza GE, Centeno VA, Alisio AE, Tolosa de Talamón NG. Effects of a single dose of menadione on the intestinal calcium absorption and associated variables. J Nutr Biochem 2003; 14: 466-472 [PMID: 12948877 DOI: 10.1016/s0955-2863(03)00078-0]

Aroco V, Rodríguez V, Marchionatti A, Carpentieri A, Tolosa de Talamón N. Melatonin not only restores but also prevents the inhibition of the intestinal Ca(2+) absorption caused by glutathione depleting drugs. Comp Biochem Physiol A Mol Integr Physiol 2016; 197: 16-22 [PMID: 26970583 DOI: 10.1016/j.cbpa.2016.03.005]

Marchionatti AM, Perez AV, Díaz de Barboza GE, Pereira BM, Tolosa de Talamón NG. Mitochondrial dysfunction is responsible for the intestinal calcium absorption inhibition induced by menadione. Biochim Biophys Acta 2008; 1780: 101-107 [PMID: 18053815 DOI: 10.1016/j.bbagen.2007.10.020]

Marchionatti AM, Pacciaroni A, Tolosa de Talamón NG. Effects of quercetin and menadione on intestinal calcium absorption and the underlying mechanisms. Comp Biochem Physiol A Mol Integr Physiol 2013; 164: 215-220 [PMID: 23000882 DOI: 10.1016/j.cbpa.2012.09.007]

Hong Z, Piao M. Effect of Quercetin Monoglycosides on Oxidative Stress and Gut Microbiota Diversity in Mice with Dextransodium Sulphate-Induced Colitis. Biomed Res Int 2018; 2018: 8343052 [PMID: 30539022 DOI: 10.1155/2018/8343052]

Moine I, Díaz de Barboza G, Pérez A, Benedetto M, Tolosa de Talamón N. Glutamine protects intestinal calcium absorption against oxidative stress and apoptosis. Comp Biochem Physiol A Mol Integr Physiol 2017; 212: 64-71 [PMID: 28732794 DOI: 10.1016/j.cbpa.2017.07.006]

Moine I, Pérez A, Maldonado C, Tolosa de Talamón N, Díaz de Barboza G. Glutamine protects both transcellular and paracellular pathways of chick intestinal calcium absorption under oxidant conditions. Comp Biochem Physiol A Mol Integr Physiol 2019; 238: 110553 [PMID: 31437565 DOI: 10.1016/j.cbpa.2019.11.0053]

Chen J, Zhang S, Wu J, Wu S, Xu G, Wei D. Essential Role of Nonessential Amino Acid Glutamine in Atherosclerotic Cardiovascular Disease. DNA Cell Biol 2020; 39: 8-15 [PMID: 31825244 DOI: 10.1089/dna.2019.5034]

Kim MH, Kim H. The Roles of Glutamine in the Intestine and Its Implication in Intestinal Diseases. Int J Mol Sci 2017; 18: [PMID: 28498331 DOI: 10.3390/ijms1805105]

Carrascal X, Nunez-Abades P, Ayala A, Cano M. Role of Melatonin in the Inflammatory Process and its Relationship with the Absorption of Nutrients in Inflammatory Bowel Disease. Inflamm Res 2017; 66: 273-279 [PMID: 28212870 DOI: 10.1007/s00011-016-0729-7]

Li RX, Li J, Zhang SY, Mi YL, Zhang CQ. Attenuating effect of melatonin on lipopolysaccharide-induced chicken small intestine inflammation. Poult Sci 2018; 97: 2295-2302 [PMID: 29596657 DOI: 10.3382/ps.2017-0416]

Shafabakhsh R, Reiter RJ, Davoodabadi A, Asemi Z. Melatonin as a potential inhibitor of colorectal cancer: Molecular mechanisms. J Cell Biochem 2019; 120: 12216-12223 [PMID: 31087705 DOI: 10.1002/jcb.28833]

Rivieira MA, Marchionatti AM, Centeno VA, Díaz de Barboza GE, Peralta López ME, Tolosa de Talamón NG. Sodium deoxyscholate inhibits chick duodenal calcium absorption through oxidative stress and apoptosis. Comp Biochem Physiol A Mol Integr Physiol 2012; 162: 397-405 [PMID: 22561666 DOI: 10.1016/j.cbpa.2012.04.016]

Makishima M, Lu TT, Xie W, Whitfield GK, Domoto H, Evans RM, Haussler MR, Mangelsdorf DJ. Vitamin D receptor as an intestinal bile acid sensor. Science 2002; 296: 1313-1316 [PMID: 12016314 DOI: 10.1126/science.1079477]

Zhao MX, Cai ZC, Zhu BJ, Zhang ZQ. The Apoptosis Effect on Liver Cancer Cells of Gold Nanoparticles Modified with Lithiocholic Acid. Nanoscale Res Lett 2013; 18: 304 [PMID: 30269179 DOI: 10.1186/s11671-013-2653-0]

Marchionatti AM, Pérez A, Riva MA, Rodríguez VA, Tolosa de Talamón NG. Lithocholic acid: a new emergent protector of intestinal calcium absorption under oxidant conditions. Biochem Cell Biol 2017; 95: 273-279 [PMID: 28318290 DOI: 10.1139/bcb-2016-0164]

Rivieira M, Rodríguez V, López MP, Tolosa de Talamón N. Time dependent changes in the intestinal Ca(2+) absorption in rats with type I diabetes mellitus are associated with alterations in the intestinal redox state. Biochim Biophys Acta 2015; 1852: 386-394 [PMID: 25452235 DOI: 10.1016/j.bbagen.2014.11.018]

Rodríguez V, Rivieira M, Guizzardi S, Tolosa de Talamón N. Naringin prevents the inhibition of intestinal Ca(2+) absorption induced by a fructose rich diet. Arch Biochem Biophys 2017; 636: 1-10 [PMID: 29122589 DOI: 10.1016/j.abb.2017.11.002]

Bakar E, Ulucam E, Cercekayakoubi A, Sanal F, Imam M. Investigation of the effects of naringin on intestinal ischemia reperfusion model at the ultrastructural and biochemical level. Biomed Pharmacother 2019; 109: 345-350 [PMID: 30399568 DOI: 10.1016/j.biopha.2018.10.045]

Cao H, Liu J, Shen P, Cai J, Han Y, Zhu K, Fu Y, Zhang N, Zhang Z, Cao Y. Protective Effect of Naringin on DSS-Induced Ulcerative Colitis in Mice. J Agric Food Chem 2018; 66: 13133-13140 [PMID: 30472831 DOI: 10.1021/acs.jafc.8b03942]

Li Z, Gao M, Yang B, Zhang H, Wang K, Liu Z, Xiao X, Yang M. Naringin attenuates MLC absorption/molecular and clinical approach

Aroco VA et al. Ca(2+) absorption/molecular and clinical approach

WJG | https://www.wjgnet.com

June 28, 2020 Volume 26 Issue 24
phosphorylation and NF-κB activation to protect sepsis-induced intestinal injury via RhoA/ ROCK pathway. Biochemical Pharmacology 2018; 105: 50-58 [PMID: 29635128 DOI: 10.1016/j.biopha.2018.03.163]

Zhang YS, Li Y, Wang Y, Sun SY, Jiang T, Li C, Cui SX, Qiu JX. Naringin, a natural dietary compound, prevents intestinal tumorigenesis in Apc (Min/+) mouse model. J Cancer Res Clin Oncol 2016; 142: 913-925 [PMID: 26702935 DOI: 10.1007/s00235-015-2097-9]

Lima ACD, Cecatti C, Fidélis MP, Adorno MAT, Sakamoto IK, Cesar TB, Sivieri K. Effect of Daily Consumption of Orange Juice on the Levels of Blood Glucose, Lipids, and Gut Microbiota Metabolites: Controlled Clinical Trials. J Med Food 2019; 22: 202-210 [PMID: 30638420 DOI: 10.1088/jmf.2018.0800]

D’Amelio P, Sassi F. Gut Microbiota, Immune System, and Bone. Calcif Tissue Int 2018; 102: 415-425 [PMID: 28965190 DOI: 10.1007/s00223-017-0331-y]

Ardizzzone S, Cassinotti A, Bevilacqua M, Clerici M, Porro GB. Vitamin D and inflammatory bowel disease. Vitam Horm 2011; 86: 367-377 [PMID: 21419280 DOI: 10.1016/B978-0-12-386960-9.00016-2]

Kumari M, Khazni NB, Ziegler TR, Names MS, Abrams SA, Tangriehica V. Vitamin D-mediated calcium absorption in patients with clinically stable Crohn’s disease: a pilot study. Mol Nutr Food Res 2010; 54: 1085-1091 [PMID: 20306476 DOI: 10.1002/mnfr.20090351]

Motta ME, Farta ME, Silva GA. Prevalence of low bone mineral density in children and adolescents with celiac disease under treatment. Sao Paulo Med J 2009; 127: 278-282 [PMID: 19169276 DOI: 10.1590/S1516-31802009000500006]

Vasquez H, Mazure R, Gonzalez D, Flores D, Pedreira S, Niveloni S, Smeucoel E, Maurino E, Bai JC. Risk of fractures in celiac disease patients: a cross-sectional, case-control study. Am J Gastroenterol 2000; 95: 183-189 [PMID: 10863580 DOI: 10.1111/j.1572-0241.2000.00168.x]

Hoenderop JG, Nilius B, Bindels RJ. Calcium after gastric bypass surgery. Physiol Rev 2005; 85: 373-422 [PMID: 15618484 DOI: 10.1152/physrev.00003.2004]

Krupa-Kozak U, Drabinska N. Calcium in Gluten-Free Life: Health-Related and Nutritional Implications. Foods 2016; 5 [PMID: 28211346 DOI: 10.3390/foods5010051]

Zanchi C, Di Leo G, Ronfani L, Martelossi S, Not T, Ventura A. Bone metabolism in celiac disease. J Pediatr 2008; 153: 262-265 [PMID: 18534326 DOI: 10.1016/j.jpeds.2007.10.003]

Campanha-Versiani L, Pereira DAG, Ribeiro-Samora GA, Ramos AV, de Sander Diniz MFH, De Marco LA, Soares MMS. The Effect of a Muscle Weight-Bearing and Aerobic Exercise Program on the Body Composition, Muscular Strength, Biochemical Markers, and Bone Mass of Obese Patients Who Have Undergone Gastric Bypass Surgery. Obes Surg 2017; 27: 2129-2137 [PMID: 28854703 DOI: 10.1007/s00912-017-0185-y]

Aberg K, Gehring N, Wagner CA, Liesegang A, Schiesser M, Bauer M, Lutz TA. Roux-en-Y gastric bypass surgery reduces bone mineral density and induces metabolic acidosis in rats. Am J Physiol Regul Integr Comp Physiol 2013; 305: R999-R1009 [PMID: 24026074 DOI: 10.1152/ajpregu.00338.2012]

Chakhtoura MT, Nakhoul NN, Shawwa K, Mantozos D, El Hamzalieh GA. Hypovitaminosis D in bariatric surgery: A systematic review of observational studies. Metabolism 2016; 65: 574-585 [PMID: 26805016 DOI: 10.1016/j.metabol.2015.12.004]

Corbeels K, Verlinden L, Lannooy M, Simoens C, Matthys C, Verstuyft A, Meulemans A, Carmeliet G, Van der Schueren B. Thin bones: Vitamin D and calcium handling after bariatric surgery. Bone Rep 2018; 8: 57-63 [PMID: 29955623 DOI: 10.1016/j.bonr.2018.02.002]

Riedt CS, Brolin RE, Sherrill RM, Field MP, Shapess SA. True fractional calcium absorption is decreased after Roux-en-Y gastric bypass surgery. Obesity (Silver Spring) 2006; 14: 1940-1948 [PMID: 17135609 DOI: 10.1038/oby.2006.226]

Fleischer J, Stein EM, Bessler M, Della Badia M, Restuccia N, Olivero-Rivera L, McMahon DJ, Silverberg SJ. The decline in hip bone density after gastric bypass surgery is associated with weight loss. J Clin Endocrinol Metab 2008; 93: 3735-3740 [PMID: 18647809 DOI: 10.1210/jc.2008-0481]

Schneider LE, Scheld HP. Diabetes and intestinal calcium absorption in the rat. Am J Physiol 1972; 223: 1319-1323 [PMID: 4641621 DOI: 10.1152/ajplegacy.1972.223.6.1319]

Seino Y, Sierra RL, Somi YM, Safari A, Birge SJ, Avioli LV. The duodenal 1 alpha,25-dihydroxyvitamin D3 receptor in rats with experimentally induced diabetes. Endocrinology 1983; 113: 1721-1725 [PMID: 26349659 DOI: 10.1210/endo-113-5-1721]

Nyomba BL, Verhaeghe J, Thomasset M, Lissens W, Bouillon R. Bone mineral homeostasis in spontaneously diabetic BH rats. I. Abnormal vitamin D metabolism and impaired active intestinal calcium absorption. Endocrinology 1989; 124: 565-572 [PMID: 2536313 DOI: 10.1210/endo-124-2-565]

Weber DR, O’Brien KO, Schwartz GJ. Evidence of disordered calcium metabolism in adolescent girls with type 1 diabetes: An observational study using a dual-stable calcium isotope technique. Bone 2017; 105: 184-190 [PMID: 28882565 DOI: 10.1016/j.bone.2017.09.001]

Greico GE, Cataldo D, Cacereelli E, Nigi L, Catalano G, Brusco N, Mancarella F, Ventriglia G, Fondelli C, Guarino E, Crisci I, Sebastiani G, Dotta F. Serum levels of miR-148a and miR-21-5p are increased in spontaneously diabetic BB rats. I. Abnormal vitamin D metabolism and impaired active intestinal calcium absorption in patients with clinically stable Crohn’s disease. Am J Physiol Cell Physiol 2018; 304: 415-425 [PMID: 28965190 DOI: 10.1016/j.atpcell.2018.02.002]

Guggino SE. The ClC-5 knockout mouse model of Dent’s disease has renal hypercalciuria and increased bone turnover. J Bone Miner Res 2003; 18: 615-623 [PMID: 12674323 DOI: 10.1359/jbmr.2003.18.4.615]

Bergwitz C, Miyamoto KI. Hereditary hypophosphatemic rickets with hypophosphatemia: pathophysiology, clinical presentation, diagnosis and therapy. Pflugers Arch 2019; 471: 149-163 [PMID: 30109410 DOI: 10.1007/s00424-018-2184-2]

Aoguioua A, Zachou G, Lambrinoudaki I. Turner syndrome and osteoporosis. Maturitas 2019; 130: 41-49 [PMID: 31706435 DOI: 10.1016/j.maturitas.2019.09.010]
