Research Article

Qinhui Ren, Fuhua Wei*, Hongliang Chen, Ding Chen*, and Bo Ding

Preparation of Zn-MOFs by microwave-assisted ball milling for removal of tetracycline hydrochloride and Congo red from wastewater

http://doi.org/10.1515/gps-2021-0020
received December 01, 2020; accepted January 31, 2021

Abstract: In this study, we prepared Zn-MOFs as an ordinary, low-cost, and efficiency method taking advantage of zinc(II) acetate monohydrate and 1,3,5-benzenetricarboxylic acid in microwave-assisted ball milling. The Zn-MOFs were measured via scanning electron microscopy, infrared spectrometry, X-ray diffraction, and thermogravimetry. We explored its use as a photocatalyst for the degradation of tetracycline hydrochloride and Congo red from aqueous solutions. The results demonstrate that the kinetic model was appropriate for the removal of organic pollutants. In general, it is feasible, inexpensive, and effective to use metal organic framework (MOF) to treat waste liquid. Therefore, our findings indicate that Zn-MOFs have broad application vista in wastewater purification.

Keywords: MOFs, MWBM, antibiotics, organic dye

1 Introduction

Antibiotics have been widely used for the treatment and prevention of bacterial infections in veterinary and human medicine, as well as in agriculture. The prevalence of their use in combination with the ineffectiveness of traditional sewage handling methods has resulted in the accumulation of a number of antibiotics in water supplies and aquatic environments [1]. A few methods for removing antibiotics from water have been developed, including photocatalytic degradation biological treatment, advanced oxidation processes, and membrane separation [2]. Among them, photocatalytic degradation seems to be the best option, because it is environmentally friendly and cost-effective.

Since the 1990s, metal organic frameworks (MOFs) have been an intense focus on materials science research because of not only their fascinating and different structures [3,4], but also their extensive applications in energy storage [5,6], gas storage [7–9], catalysis [10,11], drug delivery [12,13], carbon dioxide capture [14,15], magnetic properties [16,17], ion exchange [18,19], and so on. A tool for the construction of lengthened porous materials was supplied by combination of organic linkers and metal ions [20,21]. Because of the sensitivity to the reaction conditions, the same reagent can produce a completely different structure under different circumstances. Different methods can be used to prepare compounds with different structures. High quality MOFs crystals can be obtained via using methods involving solvent heat or wet solution chemistry [22]. New approaches in preparation, for example, microwave [23–26], electrochemical synthesis [27,28], and mechnochemical [29,30], can greatly reduce synthesis time and increase production capabilities. Compared to traditional synthesis methods, constructing MOFs using the acoustic chemistry method is more concise, controllable, and convenient [31–34].

MOFs are usually composed of metal clusters or inorganic metal ions linked via organic ligands by coordination bonds [35,36]. Our laboratory first reported the technique of microwave-assisted ball milling (MWBM) [37–39]. The major advantages of this method are that it saves time and improves the speed of the chemical reaction [40,41]. The induction coupling of ball milling and microwaves results in the capacitance of some nanocrystalline materials produced at indoor temperatures, such as MOFs [42–44]. In this report, MOFs were synthesized using the MWBM approach, and zinc(II) acetate tetrahydrate was

* Corresponding author: Fuhua Wei, College of Chemistry and Chemical Engineering, Anshun University, Anshun 561000, Guizhou, China, e-mail: wfh.1981@163.com
* Corresponding author: Ding Chen, State Key Laboratory of Advanced Design and Manufacturing for Vehicle Body, College of Mechanical and Vehicle Engineering, Hunan University, Changsha 410082, China, e-mail: chending@hnu.edu.cn
Qinhui Ren, Hongliang Chen, Bo Ding: College of Chemistry and Chemical Engineering, Anshun University, Anshun 561000, Guizhou, China

© Open Access. © 2021 Qinhui Ren et al., published by De Gruyter. This work is licensed under the Creative Commons Attribution 4.0 International License.
used as a source of metal ions for the preparation of MOFs. H$_2$BTC and Zn(CH$_3$COO)$_2$$\cdotH_2$O were the raw materials and were successfully used for the reduction of the aqueous tetracycline hydrochloride and Congo red (CR).

2 Experimental

All reagents for the preparation and analysis were obtained from commercial suppliers. The ligands 1,3,5-benzenetricarboxylic acid (trimesic acid, C$_6$H$_6$O$_6$, H$_2$BTC, 98%), tetracycline hydrochloride, and zinc(II) acetate monohydrate (Zn(CH$_3$COO)$_2$$\cdot$4H$_2$O, ≥990%) were supplied by Aladdin Biological Technology Co, LTD, Shanghai, China.

We performed structural and morphological characterizations using Fourier transform infrared spectroscopy (FTIR, IRTracer-100, Shimadzu), X-ray diffraction (XRD), field emission scanning electron microscopy, and thermogravimetry (TG).

The compound was synthesized according to the method previously described [42–44], using 1,3,5-benzenetricarboxylic acid (4,994 g, 0.0238 mol), zinc(II) acetate monohydrate (3.5375 g, 0.01587 mol), a stainless steel ball (600 g), and 700 mL deionized water. After 40 min of reaction under the same conditions, the solution changed from colorless to blue until any color change ceased and acid gas was emitted. The compound was filtered and washed with water. The filtered solid was added to a beaker with ethanol and stirred for 3 h using a magnetic stirrer. The precipitate was filtered under suction and dried. The final product was collected for subsequent characterization and experiments.

Tetracycline hydrochloride and CR were chosen as model contaminants to evaluate the degradation ability of the Zn(II)-MOFs. Tetracycline hydrochloride and CR were used as the raw materials and were dissolved in a 250 mL beaker at room temperature (~25°C). The degradation of tetracycline hydrochloride and CR was tested in a beaker containing 55, 30, or 15 ppm of the aqueous tetracycline hydrochloride solution with 100 mg and 50 mg MOFs under the action of a Xe lamp or nature light on a magnetic stirrer. The absorbance at 358 nm [45] and 495 nm was monitored by UV-visible spectrophotometer (UV-2550, 220 V, Shimadzu Instruments [Suzhou] Co, Ltd) from the reaction suspension every 30–60 min, respectively. In this way, the removal rate of tetracycline hydrochloride and CR could be obtained at different time intervals. The amount of degraded tetracycline hydrochloride and CR were calculated according to the following equation:

\[
q_e = \frac{(C_0 - C_e) V}{m},
\]

where C_0, C_e, V, and m are the initial concentrations of the solution (ppm), equilibrium concentrations of the solution (ppm), the volume of the solution (L), and the mass of the Zn-MOFs (g), respectively.

3 Results and discussion

MWBM is a way of preparing MOFs that is fast and does not require organic solvents, and a simple reaction mechanism for this process has been provided elsewhere [42]. Briefly, under the combined effects of microwave and ball milling, anionic H$_2$BTC is formed easily in an aqueous environment via ionization. The H$_2$BTC anions then attack metal cations of the salt to form coordination compounds [46]. As compared to the other methods shown in Figure 1, synthesis of Zn-MOFs and MIL-101-Cr [46], MIL-53(Fe) [47], MIL-125(Ti) [48], MIL-68(In) [49], and HUT-091 [50] are compared as shown in Figure 1, and Zn-MOFs are superior to other MOFs materials.

As shown in Figure 2, the Fourier transform infrared spectroscopy spectrum showed the characteristic peaks of the MOFs at 1,556 and 1,371 cm$^{-1}$. Because of the existence of carboxyl, no peak appears at 1,710 cm$^{-1}$ where a strong carbonyl peak would be expected. This is primarily because of extended conjugate π-bonds that are created from the carboxylate formed from carboxy anion, thus making the two oxygen atoms equivalent. Therefore, the density of the electron cloud between atoms is distributed symmetrically.
The XRD characterization of the materials is shown in Figure 3. The XRD pattern shows that there is no wide absorption peak, which proves that the crystallization of the materials is very good.

The morphology of the Zn-MOFs was observed by SEM, as exhibited in Figure 4. The result showed the unusual morphology of the Zn-MOF particles and also revealed MOF crystals with high dispersibility. At present, the molecular interaction of the organic ligand is weakened or even vanished, and the deprotonation of the organic ligand was enhanced, which promoted the growth of crystal in aqueous solution.

As shown in Figure 5, thermogravimetric analysis demonstrated that the TG curve exhibits three different stages: the first is a mass loss (17.8%) stage between 20°C and 176°C that could also be put down to evaporation of the solvent water molecules from the sample; the second stage at 176°C and 421°C is mainly caused by the solvent because of oxidation of Zn\(^{2+}\) which accounted for 53% of the loss \[42\]; the third stage starts at 421°C, at which temperature the structure and the organic linker of the Zn-MOFs are destroyed, indicating that the thermal stability of the Zn-MOFs is 421°C. The quality of this loss is stable at 421°C and then completed at 800°C. The residue was 48.05% of the initial mass. Most often the reaction of organic ligands and metal ions via a common synthesis procedure yields MOFs with more stable structures \[51\].

Figure 6 shows that the BET surface area was 85 m\(^2\)/g. The average particle size was 706 nm, indicating a mesoporous material.

In actual wastewater treatment, the original pollutant concentration is a key factor to achieve the desired degradation effect, as shown in Figure 7. When the initial concentration of CR was 50 mg L\(^{-1}\) and quality of Zn-MOFs was 100, 50, and 25 mg, the final concentration was reduced by 89.11%, 83.91%, and 22.78%, respectively. When the initial concentration of CR was 30 mg L\(^{-1}\) and quality of Zn-MOFs was 50 mg, the final concentration was reduced by 97.2%. When the initial concentration of tetracycline hydrochloride was 15, 30, and 55 mg L\(^{-1}\), the final concentration was reduced by 70.66%, 54.37%, and 22.78%, respectively. When the initial concentration of CR was 100 mg L\(^{-1}\) and quality of Zn-MOFs was 50 mg, the final concentration was reduced by 56.14%. Increasing initial concentrations of wastewater resulted in a decreasing removal rate. Increasing quality of Zn-MOFs resulted in an increasing removal rate. Competition among tetracycline and molecules for photocatalytic sites of the catalyst is an important factor in this effect, especially because tetracycline hydrochloride and CR molecules can produce other intermediates in the photocatalytic process \[52\]. In addition, when the concentration of tetracycline hydrochloride is high, the path length of the photon into the tetracycline solution decreases \[53\]. It is also worth noting that Zn-MOFs can show high photocatalytic activity for tetracycline hydrochloride and CR degradation. The results clearly show that Zn-MOFs have great potential for tetracycline and CR degradation at relatively low concentrations.

To research the impact the amount of catalyst has on the removal of tetracycline, we studied two amounts, 50 and 100 mg of Zn-MOFs, in a 30 mg/L tetracycline hydrochloride solution. Results revealed that the larger the amount of catalyst, the higher the removal rate. However, when the amount of catalyst was doubled from 50 to 100 mg, the removal rates were 47.63% and 54.37%, respectively. To study the influence of the amount of Zn-MOF and the concentration of CR on the removal rate, we studied three amounts, 25, 50, and 100 mg, concentration
of tetracycline hydrochloride solution were 30, 50, and 100 mg L$^{-1}$. The results revealed that the larger the amount of catalyst, the higher the removal rate. However, when the amount and concentration of the catalyst were different, the maximum and minimum removal rates were 97.2% and 34.9%, respectively. First, Zn-MOFs precipitate and

Figure 4: SEM of Zn-MOFs.
accumulate under addition of large number of catalyst, thus reducing the production of active substances in the photocatalytic process [54]. Second, the more the presence of catalyst, the higher the turbidity of the solution, thereby dispersing the light and reducing the effect of light passing through the solution [55]. To determine the reusability of Zn-MOFs, the used Zn-MOFs were washed in water, dried, and reused. The results showed that after three cycles, the decrease in the activity of Zn-MOFs was only 52%, which showed reasonable reusability. The results of TC removal by Zn-MOFs and Fe3O4@SiO2-chitosan/GO [56], NH2-MIL-101(Cr) [57], MIL-101(HCl) [58], ZIF-8 [59], GBCM350 activated carbon [60], and Uio-66 [61] adsorbents are compared as shown in Figure 8, and the Zn-MOFs are superior to other adsorbents.

To fully understand and study the kinetics of Zn-MOF-mediated photocatalytic degradation of tetracycline and CR, optimum conditions were analyzed. In accordance with reports in the literature, photocatalytic
degradation of contaminants was described by kinetics model \([44,62]\). The equations are as follows:

\[
\ln \frac{C_t}{C_0} = k_1 t, \quad (2)
\]

\[
\frac{t}{q_t} = \frac{t}{q_e} + \frac{1}{k_2 q_e^2}. \quad (3)
\]

In these equations, \(C_t\), \(C_0\), \(k_1\), \(k_2\), and \(t\) are the concentration of tetracycline at time \(t\), the initial concentration of tetracycline, the kinetics reaction rate constant \((\text{min}^{-1})\), and the reaction time \((\text{min})\), and \(q_t\) and \(q_e\) represent the amounts \((\text{mg g}^{-1})\) of the adsorbents at time \(t\) and equilibrium, respectively. The results of Zn-MOFs calculations are presented in Figure 9 and Tables 1 and 2. The kinetics pseudo-first-order model was appropriate to describe the photocatalytic degradation of tetracycline hydrochloride. The pseudo-second-order model is more suitable to describe the photocatalytic degradation of Zn-MOFs for CR, the concentration, and the sample dosage, which have certain influence on the photocatalytic effect.

In the photocatalytic process, hydroxyl radicals \((\cdot \text{OH})\), electrons \((e^-)\), superoxide ions \((\cdot \text{O}_2^-)\), and holes \((h^+)\) as well as various active substances can be produced, and these substances may be involved in the photodegradation of tetracycline \([63]\). For the sake of identification of the dominant oxidative species, the photocatalytic degradation efficiency was measured via adding \(\text{H}_2\text{O}_2\) (2 mL) to the solution, increasing the amount of hydroxyl radical in the system to further promote the reaction. As shown in Table 1, when the concentration was 30 ppm, addition of 2 mL of hydrogen peroxide resulted in a 14% and 30% increase in the tetracycline hydrochloride removal rates of 50 mg and 100 mg catalysts, respectively. When \(\text{H}_2\text{O}_2\) is added, the removal rate of tetracycline hydrochloride decreases as the amount of catalyst increases, which may be because of the complex interaction of various factors. Another possible cause is the inability of amodiaquine to cover all the exchangeable sites on it under the high dosage of adsorbent, leading to insufficient tetracycline hydrochloride uptake \([64,65]\). The detailed mechanism of Zn-MOFs adsorption on CR is consistent with Cu-MOFs \([42]\). Finally, the aggregation of adsorbent particles at a higher concentration results in a decrease in the surface area and an increase in the diffusion path length. We also demonstrated the existence of active substances. Among these influencing factors, \(h^+\) plays a leading role in the removal of pollutants.

Table 1: Parameters of the process of tetracycline degradation by Zn-MOFs

Concentration and dosage	Rate equation	\(R^2\)	Removal rate (%)
55 mg/L, 100 mg	\(y = -0.00106x + 0.000341\)	0.99129	22.78
15 mg/L, 100 mg	\(y = -0.00523 + 0.00318\)	0.99496	70.66
30 mg/L, 100 mg	\(y = -0.0032x + 0.01702\)	0.99229	54.37
30 mg/L, 50 mg	\(y = -0.00299x + 0.07416\)	0.99278	47.63
30 mg/L, 100 mg + \(\text{H}_2\text{O}_2\)	\(y = -0.00396x - 0.2129\)	0.99405	67.8
30 mg/L, 50 mg + \(\text{H}_2\text{O}_2\)	\(y = -0.00412x - 0.77061\)	0.999	78.6
4 Conclusions

In a word, the synthesis of MOFs by MWBM is faster and simpler than other methods. These results demonstrate that this method has proven to be an effective and reliable method for synthesizing MOFs. Furthermore, ability to remove tetracycline solution from wastewater by Xe light was tested. The results showed that Zn-MOFs could effectively degrade tetracycline hydrochloride and dye. The addition of H₂O₂ into the solution promoted the photocatalytic reaction, and the degradation of tetracycline was analyzed with pseudo-first-order model. The resulting data revealed correlation coefficients of the first kinetic model all above 0.99, thus proving that the degradation of tetracycline hydrochloride and CR could be explained by the first kinetics and the second kinetics, respectively. Therefore, the application of MOFs for tetracycline hydrochloride degradation can be used in practice in the future. The results indicate that the MWBM process is an effective way for simple and fast preparation of MOFs for practical applications.

Research funding: This work was supported by Guizhou Education Department Youth Science and Technology Talents Growth Project (KY[2019]149).

Author contributions: Qinhui Ren: writing – original draft, project; Fuhua Wei: writing – review and editing; Hongliang Chen: writing – original draft, formal analysis; Ding Chen: writing – methodology, formal analysis; Bo Ding: experiment.

Conflict of interest: The authors state no conflict of interest.

Data availability statement: The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

Table 2: Kinetic parameters for CR over Zn-MOFs

Concentration (mg/L)	Quanti (mg)	Pseudo-first-order kinetics	Pseudo-second-order kinetics		
		Kₑ (min⁻¹)	R²	Kₛ (g (mg min⁻¹))	R²
50	100	-0.01149	0.95317	0.00942	0.98621
50	50	-0.0018	0.93866	0.00987	0.9962
25	50	-0.00254	0.87482	0.0048	0.99887
100	50	-0.00343	0.89493	0.0038	0.9022
30	50	-0.02116	0.94589	0.0061	0.99041

References

[1] Liu M, Zhang Y, Yang M, Tian Z, Ren L, Zhang S. Abundance and distribution of tetracycline resistance genes and mobile elements in an oxytetracycline production wastewater treatment system. Environ Sci Technol. 2012;46:7551–77.

[2] Michael I, Rizzo L, Mc Ardell CS, Manaia CM, Merlin C, Schwartz T, et al. Urban wastewater treatment plants as hot-spots for the release of antibiotics in the environment: a review. Water Res. 2013;47:957–96.

[3] Sato H, Kosaka W, Matsuda R, Hori A, Hijikata Y, Belosludov RV, et al. Sorption in a soft nanoporous crystal. Science. 2014;343:167–70.

[4] Wang H, Xu J, Zhang DS, Chen Q, Wen RM, Chang Z, et al. Crystalline capsules: metal-organic frameworks locked by size-matching ligand bolts. Angew Chem Int Ed. 2015;54:5966–70.

[5] Xia W, Mahmood A, Zou RQ, Xu Q. Metal-organic frameworks and their derived nanostructures for electrochemical energy storage and conversion. Energy Environ Sci. 2015;8:1837–66.

[6] Wang L, Han YZ, Feng X, Zhou JW, Qi PF, Wang B. Metal-organic frameworks for energy storage: batteries and supercapacitors. Coord Chem Rev. 2016;307:361–81.

[7] Yuan DQ, Zhao D, Sun DF, Zhou HC. An isoreticular series of metal-organic frameworks with dendritic hexacarboxylate ligands and exceptionally high gas-uptake capacity. Angew Chem Int Ed. 2010;49:5357–61.

[8] HeY B, Zhou W, Qian GD, Chen BL. Methane storage in metal-organic frameworks. Chem Soc Rev. 2014;43:5657–78.

[9] Yan Y, Juricek M, Coudert FX, Vermeulen NA, Grunder S, Dailly A, et al. Non-interpenetrated metal-organic frameworks based on copper(ii) paddlewheel and oligopyrrolyleneisophthalate linkers: synthesis, structure, and gas adsorption. J Am Chem Soc. 2016;138:3371–81.

[10] Liu XL, Ma R, Zhuang L, Hu BW, Chen JR, Liu XY, et al. Recent developments of doped g-C₃N₄ photocatalysts for the degradation of organic pollutants. Crit Rev Environ Sci Technol. 2020;50:1–40. doi: 10.1080/10643389.2020.174433.

[11] Hao MJ, Qiu MQ, Yang H, Hu BW, Wang XG. Recent advances on preparation and environmental applications of MOF-derived carbons in catalysis. Sci Total Environ. 2020;760:143333.

[12] Sun CY, Qin C, Wang XL, Su ZM. Metal-organic frameworks as potential drug delivery systems. Expert Opin Drug Del. 2013;10:89–101.

[13] Millward AR, Yaghi OM. Metal-organic frameworks with exceptionally high capacity for storage of carbon dioxide at room temperature. J Am Chem Soc. 2005;127:17998–9.

[14] Sumida K, Rogow DL, Mason JA, McDonald TM, Bloch ED, Herm ZR, et al. Carbon dioxide capture in metal-organic frameworks. Chem Rev. 2012;112:724–81.

[15] Kreno LE, Leong K, Farha OK, Allendorf Mark M, Van Duyne RP, Hupp JT. Metal-organic framework materials as chemical sensors. Chem Rev. 2012;112:1105–25.

[16] Ogawa H, Mori K, Murashima K, Karasawa S, Koga N. One-, two-, and three-dimensional heterospin complexes consisting of 4-(N-tert-butylamino)pyridine (4NPy), dicyanamide ion (DCA), and 3d metal ions: crystal structures and magnetic properties of [M-L]·[(4NPy)](x)(DCA)(y)(CH₂CH₂N)(z)](n) (M = Mn, Co, Ni, Cu, Zn). Inorg Chem. 2016;55:717–28.
Liu XY, Qu XN, Zhang S, Ke HS, Yang Q, Shi Q, et al. High-performance energetic characteristics and magnetic properties of a three-dimensional cobalt(ii) metal-organic framework assembled with azido and triazole. Inorg Chem. 2015;54:15120–5.

Lalonde M, Bury W, Karagiari O, Brown Z, Hupp JT, Farha OK. Transmetalation: routes to metal exchange within metal-organic frameworks. J Mater Chem A. 2013;1:5453–68.

Gao L, Li CY, Chan KY. Polystyrenesulfonate threaded in MIL-101(Cr)(ii): a cationic polyelectrolyte synthesized directly into a metal-organic framework. Chem Mater. 2015;27:3601–8.

Moulton B, Zaworotko MJ. From molecules to crystal engineering: Supramolecular isomerism and polymorphism in network solids. Chem Rev. 2001;101:1629–58.

Delgado-Friedrichs O, O’Keeffe M, Yaghi OM. Taxonomy of periodic nets and the design of materials. Phys Chem. 2007;9:1035–43.

Cžaja AU, Trukhan N, Muller U. Industrial applications of metal-organic frameworks. Chem Soc Rev. 2009;38:1284–93.

Hashemi L, Morsali A. Microwave assisted synthesis of a new lead(ii) porous three-dimensional coordination polymer: study of nanostructured size effect on high iodide adsorption affinity. CrystEngComm. 2012;14:779–81.

Klinowski J, Almeida Paz FA, Silva P, Rocha J. Microwave-assisted synthesis of metal-organic frameworks. Dalton Trans. 2011;40:321–30.

Ni Z, Masel RL. Rapid production of metal-organic frameworks via microwave-assisted solvothermal synthesis. J Am Chem Soc. 2006;128:12394–5.

Jhung SH, Lee J-H, Forster PM, Férey G, Cheetham AK, Chang J-S. Microwave synthesis of hybrid inorganic-organic porous materials: phase-selective and rapid crystallization. Chem Eur J. 2006;12:7899–905.

Martínez Joaristi Á, Juan-Alcániz J, Serra-Crespo P, Kapteijn F, Gascon J. Electrochemical synthesis of some archetypical Zn2+, Cu2+, and Al3+ metal organic frameworks. Cryst Growth Des. 2012;12:3489–98.

Mueller U, Schubert M, Teich F, Puettner H, Schierle M, Pütter H, Muller U. Industrial applications of metal-organic frameworks. J Mater Chem. 2006;16:626–36.

James SL, Adams CJ, Bolm C, Braga D, Collier P, Frisic T, et al. Mechanochemistry: opportunities for new and cleaner synthesis. Chem Soc Rev. 2012;41:4143–47.

Sakamoto H, Matsuda R, Kilagawa S. Systematic mechanochemical preparation of a series of coordination pillared layer frameworks. Dalton Trans. 2012;41:3956–61.

Stock N, Biswas SN. Synthesis of metal-organic frameworks (MOFs): routes to various MOF topologies, morphologies, and composites. Chem Rev. 2012;112:933–69.

Luo G, Wu D, Liu L, Li D, Zhao Q, Xiao Z, et al. A hybrid carboxylate-water decamer with a discrete octameric water moiety self-assembled in a 2D copper(ii) coordination polymer. Sci China Chem. 2012;55:1213–9.

Bera M, Rana A, Chowdhuri DS, Hazari D, Jana SK, Puschmann H, et al. Three-dimensional silver(I)-thiodiglycolate coordination polymer with weak Ag-Ag bond. J Inorg Organomet Polyim Mater. 2012;22:897–902.

Chuang YC, Ho WL, Sheu CF, Lee GH, Wang Y. Crystal engineering from a 1D chain to a 3D coordination polymer accompanied by a dramatic change in magnetic properties. Chem Commun. 2012;48:10769–71.

Zhou HC, Long JR, Yaghi OM. Introduction to metal–organic frameworks. Chem Rev. 2012;112:673–4.

Zhou HC, Kilagawa S. Metal-organic frameworks (MOFs). Chem Soc Rev. 2014;43:5415–8.

Chen BY, Chen D, Kang ZT, Zhang YZ. Preparation and microwave absorption properties of Ni-Co nanoferrites. J Alloy Compd. 2015;618:222–6.

Chen D, Zhang YZ, Kang ZT. A low temperature synthesis of MnFe2O4 nanocrystals by microwave-assisted ball-milling. Chem Eng J. 2013;215:235–9.

Chen D, Zhang YZ, Tu CJ. Preparation of high saturation magnetic MgFe2O4 nanoparticles by microwave-assisted ball milling. Mater Lett. 2012;82:10–2.

Chen D, Zhang YZ, Chen BY, Kang ZT. Coupling effect of microwave and mechanical forces during the synthesis of ferrite nanoparticles by microwave-assisted ball milling. Ind Eng Chem Res. 2013;52:14179–84.

Chen G, Song Z, Chen J, Peng JH. Investigation on phase transformation of titania slag using microwave irradiation. J Alloy Compd. 2013;579:612–6.

Wei FH, Chen D, Lang Z. Synthesis and characterization of metal–organic frameworks fabricated by microwave-assisted ball milling for adsorptive removal of from aqueous solutions. RSC Adv. 2017;7:46520–8.

Wei FH, Chen D, Lang Z. Preparation of Fe-MOFs by microwave-assisted ball milling for reducing Cr(VI) in wastewater. Dalton Trans. 2017;46:16525–31.

Wei FH, Chen D, Lang Z. Comparison study on the adsorption capacity of rhodamine B and orange II on Fe-MOFs. Nanomaterials. 2018;8:248.

Wang H, Yuan X, Wu Y, Zeng G, Dong H, Chen X, et al. In situ synthesis of In5S8@MIL-125(Ti) core-shell microparticle for the removal of tetracycline from wastewater by integrated adsorption and visible-light-driven photocatalysis. Appl Catal B. 2016;186:19–29.

Khán NA, Jhung SH. Synthesis of metal-organic frameworks (MOFs) with microwave or ultrasound: Rapid reaction, phase-selectivity, and size reduction. Coord Chem Rev. 2015;285:11–23.

Du DY, Qin JS, Li SL, Su ZM, Lan YQ. Recent advances in porous polyoxometalate based metal-organic framework materials. Chem Soc Rev. 2014;43:4615–32.

Wang Z, Cohen SM. Post synthetic modification of metal-organic framework works. Chem Soc Rev. 2009;38:1315–1329.

Britt D, Lee C, Uribe-Romo FJ, Furukawa H, Yaghi OM. Ring-opening reactions within porous metal-organic frameworks. Inorg Chem. 2010;49:6387–9.

Goestena MG, Juan-Alcániz J, Ramos-Fernandez EV, Gupta KBSS, Stavitski E, Bekkum HV, et al. Sulfation of metal-organic frameworks: opportunities for acid catalysis and proton conductivity. J Catal. 2011;281:177–87.

Farha OK, Hupp JT. Rational design, synthesis, purification, and activation of metal–organic framework materials. Acc Chem Res. 2010;43:1166–75.

Zhou B, Zhao X, Liu H, Qu J, Huang CP. Visible-light sensitive cobalt-doped BiVO4 (Co-BiVO4) photocatalytic composites for the degradation of methylene blue dye in dilute aqueous solutions. Appl Catal B. 2010;99:214–21.
Chen F, Yang Q, Li X, Zeng G, Wang D, Niu C, et al. Hierarchical assembly of graphene-bridged Ag3PO4/Ag/BiVO4 (040) Z-scheme photocatalyst: an efficient, sustainable and heterogeneous catalyst with enhanced visible light photoactivity towards tetracycline degradation under visible light irradiation. Appl Catal B. 2017;200:330–42.

Safari GH, Hoseini M, Seyedsalehi M, Kamani H, Jaafari J, Mahvi AH. Photocatalytic degradation of tetracycline using nanosized titanium dioxide in aqueous solution. Int J Environ Sci Technol. 2014;12(2):603–16.

Lu X, Wang Y, Zhang X, Xu G, Wang D, Lv J, et al. NiS and MoS2 nanosheet co-modified graphitic C3N4 ternary heterostructure for high efficient visible light photodegradation of antibiotic. J Hazard Mater. 2018;341:10–9.

Huang B, Liu Y, Li B, Liu S, Zeng G, Zeng Z, et al. Effect of Cu(ii) ions on the enhancement of tetracycline adsorption by Fe3O4@SiO2-chitosan/graphene oxide nanocomposite. Carbohydr Polym. 2017;157:576.

Tian N, Jia QM, Su HY, Zhi YF, Ma AH, Wu J, et al. The synthesis of mesostructured NH2-MIL-101(Cr) and kinetic and thermodynamic study in tetracycline aqueous solutions. J Porous Mater. 2016;23:1–10.

Hu T, Lv H, Shan S, Jia Q, Su H, Tian N, et al. Porous structured MIL-101 synthesized with different mineralizers for adsorptive removal of oxytetracycline from aqueous solution. Rsc Adv. 2016;6:73741–7.

Wu CS, Xiong ZH, Li C, Zhang JM. Zeolitic imidazolate metal organic framework ZIF-8 with ultra-high adsorption capacity bound tetracycline in aqueous solution. Rsc Adv. 2015;5:82127–37.

Álvarez-Torrellas S, Ribeiro RS, Gomes HT, Ovejero G, García J. Removal of antibiotic compounds by adsorption using glycerol-based carbon materials. Chem Eng J. 2016;296:277–88.

Chen C, Chen D, Xie S, Quan H, Luo X, Guo L. Adsorption behaviors of organic micropollutants on zirconium metal–organic framework UiO-66: analysis of surface interactions. ACS Appl Mater Interfaces. 2017;9:41043–54.

Tian N, Jia Q, Su H, Zhi Y, Ma A, Wu J, et al. The synthesis of mesostructured NH2-MIL-101(Cr) and kinetic and thermodynamic study in tetracycline aqueous solutions. J Porous Mater. 2016;23(5):1269–78.

Yao L, Yang H, Chen ZS, Qiu MQ, Hu BW, Wang XX. Bismuth oxychloride-based materials for the removal of organic pollutants in wastewater. Chemosphere. 2020. doi: 10.1016/j.chemosphere2020128576.

Selatnia A, Boukazoula A, Kechid N, Bakhti MZ, Chergui A, Kerchich Y. Biosorption of lead(II) from aqueous solution by a bacterial dead Streptomyces rimmocus biomass. Biochem Eng J. 2004;19:127–35.

Tangaromsuk J, Pokethityooyk P, Kruatrachue M, Uptham ES. Cadmium biosorption by Sphingomonas paucimobilis biomass. Bioresour Technol. 2002;85:103–5.