Electronic Supplementary Information

Ring opening polymerization of lactides and lactones by multimetallic alkyl zinc complexes derived from the acids Ph₂C(X)CO₂H (X = OH, NH₂)

Yahya F. Al-Khafaji,a Mark R.J. Elsegood,b Josef W. A. Freseb and Carl Redshaw*a

a Department of Chemistry, The University of Hull, Cottingham Rd, Hull, HU6 7RX, U.K.
b Chemistry Department, Loughborough University, Loughborough, Leicestershire, LE11 3TU, U.K.

E-mail: C.Redshaw@hull.ac.uk

Contents

Chart S1. Previously reported metal/main group complexes derived from 2,2'-diphenylglycine.

Crystallography

Figure S1. Alternative view of 1.
Figure S2. Packing diagram of 1.
Figure S3. View of [ZnCl₂(NCMe)₂]
Figure S4. Layered structure in [ZnCl₂(NCMe)₂]
Figure S5. Alternative view of 3.
Figure S6. Packing diagram of 3.
Figure S7. Alternative view of 4.
Figure S8. Packing diagram of 4.
Figure S9. Molecular structure of (2-CF₃C₆H₄)₃B(NCMe)·MeCN.
Ring opening polymerisation

Table S1. Optimum condition screening for the ROP of ε-CL, rac-LA and δ-VL using 4.

For ε-CL

Figure S10. Relationship between [ε-CL]/[4] and the number of average molecular weight and PDI of the polymer.
Figure S11. 1H NMR spectrum of polycaprolactone (run 1 table 1).
Figure S12. 13C NMR spectrum of polycaprolactone (run 1 table 1).
Figure S13. MALDI-ToF spectrum of PCL (run 8, table S1).

For rac-LA

Figure S14. Relationship between [rac-LA]/[4] and the number of average molecular weight and PDI of the polymer.
Figure S15. 1H NMR spectrum of polylactide (run 6 table 1).
Figure S16. 13C NMR spectrum of polylactide (run 6 table 1).
Figure S17. MALDI-ToF spectrum of PLA (run 6, table 1).
Figure S18. Homonuclear decoupled 1H NMR spectrum of of PLA (run 6, table 1).
Figure S19. 2D J-resolved 1H NMR spectrum of PLA (run 6, table 1).
Figure S20. Homonuclear decoupled 1H NMR spectrum of PLA (run 8, table 1).
Figure S21. 2D J-resolved 1H NMR spectrum of PLA (run 8, table 1).

For δ-VL

Figure S22. Relationship between [δ-VL]/[4] and the number of average molecular weight and PDI of the polymer.
Figure S23. 1H NMR spectrum of PVL (run 11 table 1).

Co-polymerization of ε-CL and rac-LA.

Figure S24. 1H NMR spectrum of copolymer PCL+ PLA, table 2 run 1.
Figure S25. 13C NMR spectrum of co-polymer PCL+ PLA, table 2 run 1.
Figure S26. DSC plot of co-polymer from ε-CL and rac-LA, table 2 run 2.
Chart S1. Previously reported metal/main group complexes derived from 2,2’-diphenylglycine.

Redshaw 1997

Gibson 1997

Redshaw 2007

Redshaw 2011 (M= Cu, Zn)

Redshaw 2009

Redshaw 2005
References
[1] C. Redshaw, V. C. Gibson, W. Clegg, A. J. Edwards and B. Miles, *J. Chem. Soc. Dalton Trans.* 1997, 3343.
[2] V. C. Gibson, C. Redshaw, W. Clegg and M. R. J. Elsegood, *J. Chem. Soc. Dalton Trans.* 1997, 3207.
[3] C. Redshaw and M. R. J. Elsegood, *Angew. Chem. Int. Ed.* 2007, 46, 7453.
[4] C. Redshaw, M. R. J. Elsegood and K. E. Holmes *Angew. Chem. Int. Ed.* 2005, 44, 1884.
[5] A. Arbaoui, C. Redshaw, D. L. Hughes and M. R. J. Elsegood, *Inorg. Chimica Acta.* 2009, 362, 509.
[6] A. Arbaoui, C. Redshaw, N. M. Sanchez-Ballester, M. R. J. Elsegood and D. L. Hughes, *Inorg. Chimica Acta,* 2011, 365, 96.
[7] E. Laga, A. Garcia-Montero, F. J. Sayago, T. Soler, S. Moncho, C. Cativiela, M. Martinez, E. P. Urriolabeitia, *Chem.-Eur.J.* 2013, **19**, 17398.
[8] D. T. Thielemann, A. T. Wagner, Y. Lan, C. E. Anson, M. T. Gamer, A. K. Powell, P. W. Roesky, *Dalton Trans.* 2013, **42**, 14794.
Crystallography

Figure S1. Alternative view of 1.
Figure S2. Packing diagram of 1.

Figure S3. View of [ZnCl$_2$(NCMe)$_2$]
Figure S4. Layered structure in [ZnCl$_2$(NCMe)$_2$]

Figure S5. Alternative view of 3.
Figure S6. Packing diagram for 3.

Figure S7. Alternative view of 4.
Figure S8. Packing diagram of 4.
Figure S9. Molecular structure of \((2\text{-CF}_3\text{C}_6\text{H}_4)_3\text{B(NCMe)}\cdot\text{MeCN}\). Selected bond lengths (Å) and angles (°): B(1) – N(1) 1.5857(17), B(1) – C(1) 1.6507(19), B(1) – C(8) 1.6450(19), B(1) – C(15) 1.6434(19); N(1) – B(1) – C(1) 107.58(10), N(1) – B(1) – C(8) 106.65(10), N(1) – B(1) – C(15) 108.31(10).

Ring opening polymerisation

Table S1. Optimum condition screening for the ROP of \(\varepsilon\)-CL, \(r\)-LA and \(\delta\)-VL using 4.

Run	Monomer	\([\text{Monomer}]:[\text{Cat}]:[\text{OH}]\)	Time/h	Temp/°C	Conv\(^a\)	\(M_n\)^b × 10\(^3\),GPC	\(M_n\),Cal\(^c\)	PDI\(^d\)
1	\(\varepsilon\)-CL	125:1:0	1	110	91	11400	12980	1.40
2	\(\varepsilon\)-CL	250:1:0	1	110	78	15000	22260	1.38
3	\(\varepsilon\)-CL	375:1:0	1	110	88	20800	37670	1.41
4	\(\varepsilon\)-CL	500:1:0	1	110	91	33700	51930	1.68
5	\(\varepsilon\)-CL	625:1:0	1	110	85	43800	60640	1.43
6	\(\varepsilon\)-CL	750:1:0	1	110	89	56200	76190	1.51
7	\(\varepsilon\)-CL	250:1:0	3	80	69	8590	19690	1.21
8	\(\varepsilon\)-CL	250:1:0	3	60	22	3850	6280	1.09
9	\(\varepsilon\)-CL	250:1:0	3	25	---	---	---	---
10	\(\varepsilon\)-CL	250:1:1	1	110	67	2580	19230	1.10
11	\(r\)-LA	50:1:0	12	110	74	3370	5330	1.19
12	\(r\)-LA	100:1:0	12	110	67	6150	9660	1.23
13	\(r\)-LA	150:1:0	12	110	61	9670	13190	1.27
14	\(r\)-LA	200:1:0	12	110	65	13000	18740	1.51
15	\(r\)-LA	250:1:0	12	110	60	15400	21620	1.37
16	\(r\)-LA	300:1:0	12	110	64	22900	27670	1.40
17	\(r\)-LA	150:1:0	12	80	19	1460	4110	1.09
18	\(\delta\)-VL	50:1:0	24	110	42	860	2100	1.04
19	\(\delta\)-VL	100:1:0	24	110	58	2670	5810	1.13
20	\(\delta\)-VL	150:1:0	24	110	41	3210	6160	1.23
21	\(\delta\)-VL	200:1:0	24	110	31	4750	6210	1.08
22	\(\delta\)-VL	250:1:0	24	110	51	5800	12770	1.25
23	\(\delta\)-VL	300:1:0	24	110	60	8820	18020	1.12

\(^a\) Determined by \(^1\)H NMR spectroscopy; \(^b\) Calculated from \([(\text{Monomer})_0]/[\text{Cat}]_0 \times \text{conv.} \times \text{Monomer molecular weight}; \(^c\) \(M_n\) from GPC. \(^d\) From GPC.
Figure S10. Relationship between $[\text{CL}]/[4]$ and the number of average molecular weight and PDI of the polymer.
Figure S11. 1H NMR spectrum of polycaprolactone (run 1 table 1).
Figure S12. 13C NMR spectrum of polycaprolactone (run 1 table 1).
Figure S13. MALDI-ToF spectrum of PCL (run 8, table S1).

Figure S14. Relationship between \([\text{rac-Lactide}]/[4]\) and the number of average molecular weight and PDI of the polymer.
Figure S15. 1H NMR spectrum of polylactide (run 6 table 1).

Figure S16. 13C NMR spectrum of polylactide (run 6 table 1).
Figure S17. MALDI-ToF spectrum of poly(rac-LA) (run 6, table 1).
Figure S18. Homonuclear decoupled 1H NMR spectrum of poly(r-LA), (run 6, table 1).

Figure S19. 2D J-resolved 1H NMR spectrum of poly(r-LA) (run 6, table 1).
Figure S20. Homonuclear decoupled 1H NMR spectrum of poly(r-LA), (run 8, table 1).
Figure S21. 2D J-resolved 1H NMR spectrum of poly(r-LA) (run 8, table 1).

Figure S22. Relationship between $[\delta$-VL]/[4] and the number of average molecular weight and PDI of the polymer.
Figure S23. 1H NMR spectrum of PVL (run 11 table 1).

Figure S24. 1H NMR spectrum of copolymer PCL+ poly(r-LA), table 3 run 1.
Figure S25. 13C NMR spectrum of co-polymer PCL+ PLA, table 3 run 7.
Figure S26. DSC plot of co-polymer from ε-CL and rac-LA, table 2 run 2.