STUDY OF THE FORMATION OF MICELLES AND THEIR STRUCTURE BY THE SPIN PROBE METHOD

p. 4–18

Elena Bezuglaya, PhD, Senior Researcher, Head of Laboratory, Laboratory of Technology and Analysis of Medicinal Products, State Scientific Institution «Institute for Single Crystals» of National Academy of Sciences of Ukraine, Nauky ave. 60, Kharkiv, Ukraine, 61072
E-mail: bezugla.op@gmail.com
ORCID: https://orcid.org/0000-0002-3629-7059

Nikolay Lyapunov, Doctor of Pharmaceutical Sciences, Professor, Leading Researcher, Laboratory of Technology and Analysis of Medicinal Products, State Scientific Institution «Institute for Single Crystals» of National Academy of Sciences of Ukraine, Nauky ave. 60, Kharkiv, Ukraine, 61072
ORCID: https://orcid.org/0000-0001-6103-7489

Valentyin Chebanov, Doctor of Chemical Sciences, Professor, Corresponding Member of NAS of Ukraine, First Deputy General Director, Director of Department, Department of Chemistry of Functional Materials, State Scientific Institution «Institute for Single Crystals» of National Academy of Sciences of Ukraine, Nauky ave. 60, Kharkiv, Ukraine, 61072
ORCID: https://orcid.org/0000-0001-7564-778X

The aim. To study the surfactant solutions depending on the type and concentration of surfactants as well as their interaction with some excipients by spin probe method.

Materials and methods. Solutions of ionic and nonionic surfactants containing 4 spin probes differing in molecular structure and solubility were studied. Electronic paramagnetic resonance (EPR) spectra were obtained and their type and parameters were determined. The critical micelle concentration (CMC) was determined from the surface tension isotherm, and the rheological parameters were studied by rotational viscometry.

Results. The shape of the EPR spectra and the spectral parameters of the spin probes depended on both the surfactant concentration and the molecular structure and solubility of these spin probes. There was a concentration range in which associations with surfactants formed at surfactant concentrations below the CMC. At surfactant concentrations above the CMC and up to 1%, the structure of the surfactant micelles did not change. In the micelles, the surfactant modelling probes rotated rapidly about the long axis of the molecule and perpendicular to it, while they were fixed in the radial direction. The rotational diffusion of probes dissolved in water was much faster. The micelle cores formed by nonionic surfactant and P338 were more viscous compared to ionic surfactants. Surfactant micelles were anisotropic in viscosity, and different segments of the alkyl chains of surfactant modelling probes had different dynamic properties. The packing of molecules in the micelles was more ordered and compacted at the level of the fifth carbon atom. The interactions between surfactant and probe and between cationic surfactant and disodium edetate were determined from the parameters of the EPR spectra. The interaction between the changes in the parameters of the EPR spectra with increasing temperature, the P338 content in the solutions, and the sol-gel transition was revealed. Solubilization of lipophilic substances by P338 solutions increased due to the interaction of propylene glycol and P338.

Conclusions. The shape and parameters of the EPR spectra in real solutions and micellar solutions of surfactants were different and also depended on the structure and solubility of spin probes. Surfactant micelles were anisotropic in viscosity, and different segments of the alkyl chains of surfactant modelling probes had different dynamic properties. The packing of molecules in the micelles was more ordered and compacted at the level of the fifth carbon atom. The EPR spectra and/or their parameters changed due to the interaction between surfactant and probe, surfactant and other substances, or sol-gel transitions in P338 solutions.

Keywords: surfactant, poloxamer P338 (P338), solution, micelles, spin probe, EPR spectrum, spectrum parameters, viscosity

References
1. The European Pharmacopoeia (2019). European Directorate for the Quality of Medicines & HealthCare of the Council of Europe. Strasbourg, 5224.
2. Sheskey, P. J., Hancock, B. C., Moss, G. P., Goldfarb, D. J. (Eds.) (2020). Handbook of Pharmaceutical Excipients. London: Pharm. Press, 1296.
3. da Silva, J. B., Cook, M. T., Bruschi, M. L. (2020). Thermoresponsive systems composed of poloxamer 407 and HPMC or NaCMC: mechanical, rheological and sol-gel transition analysis. Carbohydrate Polymers, 240, 116628. doi: http://doi.org/10.1016/j.carbpol.2020.116628
4. Fakhari, A., Corcoran, M., Schwarz A. (2017). Thermogelling properties of purified poloxamer 407. Heliyon, 3 (8). doi: http://doi.org/10.1016/j.heliyon.2017.e00390
5. Soliman, K. A., Ullah, K., Shah, A., Jones, D. S., Singh, T. R. (2019). Poloxamer-based in situ gelling thermoresponsive systems for ocular drug delivery applications. Drug Discovery Today, 24 (8), 1575–1586. doi: http://doi.org/10.1016/j.drudis.2019.05.036
6. Bodrati, A., Alexandridis, P. (2018). Formulation of poloxamers for drug delivery. Journal of Functional Biomaterials, 9 (11). doi: http://doi.org/10.3390/jfb9010011
7. Čirin, D., Krstonošić, V. (2020). Influence of Poloxamer 407 on Surface Properties of Aqueous Solutions of Polysorbate Surfactants. Journal of Surfactants and Detergents, 23 (3), 595–602. doi: http://doi.org/10.1007/s12292
8. Russo, E., Villa C. (2019). Poloxamer Hydrogels for Biomedical Applications. Pharmaceutics, 11 (12), 671. doi: http://doi.org/10.3390/pharmaceutics11120671
9. Ci, L., Huang, Z., Liu, Y., Liu, Z., Wei, G., Lu, W. (2017). Amino-functionalized poloxamer 407 with both mucoadhesive and thermosensitive properties: preparation, char-
characterization and application in a vaginal drug delivery system. Acta Pharmacuetica Sinica B, 7 (5), 593–602. doi: http://doi.org/10.1016/j.apsb.2017.03.002

10. Abdeltawab, H., Svirskis, D., Sharma M. (2020). Formulation strategies to modulate drug release from poloxamer based in situ gel systems. Expert Opinion on Drug Delivery, 17 (4), 495–509. doi: http://doi.org/10.1080/17425247.2020.1731469

11. Ivanova, R., Alexandridis, P., Lindman, B. (2001). Interaction of poloxamer block copolymers with cosolvents and surfactants. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 183–185, 41–53. doi: http://doi.org/10.1016/s0927-7757(01)00538-6

12. Ćirin, D., Krstonošić, V., Poša, M. (2017). Properties of poloxamer 407 and polysorbate mixed micelles: Influence of polysorbate hydrophobic chain. Journal of Industrial and Engineering Chemistry, 47, 194–201. doi: http://doi.org/10.1016/j.jiec.2016.11.032

13. Middleton, J. M., Siefert, R. L., James, M. H., Schrand, A. M., Kolel-Veetil, M. K. (2021). Micelle formation, structures, and metrology of functional metal nanoparticle compositions. AIMS Materials Science, 8 (4), 560–586. doi: http://doi.org/10.3934/matsci.2021035

14. Pisasck, M., Devinsky, F., Pupak, F. (2015). Determination of micelle aggregation numbers of alkyltrimethylammonium bromide and sodium dodecyl sulfate surfactants using time-resolved fluorescence quenching. Open Chemistry, 13, 922–931. doi: http://doi.org/10.1515/chem-2015-0103

15. Rusanov, A. I., Shchekin, A. K. (2016). Miscellorozvazovanie v rastvorakh poverkhnosno-aktivnykh sredstv. Saint Petersburg: OOO «Zdatelstvo «Lan», 612.

16. Berliner, L. (Ed.). (1979). Metod spinovych zondov v molekulyarnoi biologii. Moscow: Nauka, 256.

17. Kuznetcov, A. N. (1976). Metod spinovogo zonda in situ gelling systems. Expert Opinion on Drug Delivery, 17 (4), 206–212. doi: http://doi.org/10.1016/j.coldsurf.a.2006.05.021

20. Liapunov, A. N., Bezuglaya, E. P., Lyapunov, N. A., Kirilyuk, I. A. (2015). Studies of Carbomer Gels Using Rotational Viscometry and Spin Probes. Pharmaceutical Chemistry Journal, 49 (9), 639–644. doi: http://doi.org/10.1007/s11094-015-1344-3

25. Likhtenshtein, G. I. (1974). Metod spinovykh zondov v molekulyarnoi biologii. Moscow: Nauka, 256.

26. Kuznetsov, A. N. (1987). Metod spinovogo zonda (Osnovy i primenenie). Moscow: Nauka, 210.

27. Liapunov, N. A., Purto, A. V. (2009). Issledovanie poverkhnostno-aktivnykh i kolloidno-mitcellyarnykh svoistv benzalkonitsia khlorida. Farmakom, 4, 54–59.

28. Bezuglaya, E., Lyapunov, N., Lysokobylda, O., Liapunov, O., Klochkov, V., Grygorova, G., Liapunova, A. (2021). Interaction of surfactants with poloxamers 338 and its effect on some properties of cream base. ScienceRise: Pharmaceutical Science, 6 (34), 4–19. doi: http://doi.org/10.15587/2519-4852.2021.249312

DOI: 10.15587/2519-4852.2022.263733

CONSUMPTION ANALYSIS OF TWO-COMPONENT FIXED COMBINATIONS OF MEDICINES FOR ARTERIAL HYPERTENSION TREATMENT IN UKRAINE AS ONE OF THE STAGES FOR EVALUATION OF THEIR REIMBURSEMENT PROSPECTS

p. 19–25

Anton Gonchar, Postgraduate Student, Department of Pharmacy Organization and Economy, Bogohomolets National Medical University, Tarasa Shevchenko blvd., 13, Kyiv, Ukraine, 01601
E-mail: anton.a.gonchar@gmail.com
ORCID: https://orcid.org/0000-0002-2088-0645

Nataliia Sholoiko, PhD, Associate Professor, Department of Pharmacy Organization and Economy, Bogohomolets National Medical University, Tarasa Shevchenko blvd., 13, Kyiv, Ukraine, 01601
ORCID: https://orcid.org/0000-0002-5083-7218

The aim was to conduct a retrospective consumption analysis of 4 groups of single pill combinations for hypertension treatment and identify potential candidates for future inclusion in the reimbursement list in Ukraine, based on retrospective consumption patterns.

Materials and methods: The objects of the study were retail sales data in pharmaceutical market in Ukraine of four groups of single pill combinations used for arterial hypertension treatment. Data was provided by the marker research system “Pharmstandard” of the company of “Morion”. Analytic-comparative, systematic, logical, and mathematical-statistical methods were used.

Results: Single pill combinations of ACE inhibitors with diuretics were the most consumed among other combinations on
2018–2020. Retrospective evaluation of consumption patterns in period of 2018–2020 showed that combinations of captopril and hydrochlorothiazide (HCTD) 50 mg/25 mg, enalapril and HCTD 10 mg/25 mg, lisinopril and HCTD 10 mg/12.5 mg were the most consumed. Among ARB and diuretics combinations valsartan and HCTD (160 mg/12.5 mg and 80 mg/12.5 mg) and losartan and HCTD (50 mg/12.5 mg) were the most consumed among ARB and diuretics combinations. Within ACE inhibitors and calcium channel blockers (CCB) combinations the most consumed were lisinopril/amlodipine 10 mg/5 mg and a perindopril arginine/amlodipine 5 mg/5 mg. Valsartan and amiodipine holds the majority among ARC and CCB combinations, consumed in period of 2018–2020.

Conclusion: Apart from the single pill combinations, enlisted in the WHO Essential medicines list, eight more single pill combination were identified, based on retrospective consumption patterns, as potential candidates for further inclusion in the reimbursement list in Ukraine

Keywords: arterial hypertension, single pill combination, consumption patterns, reimbursement, pharmaceutical market

References
1. Nguyen, T. N., Chow, C. K. (2021). Global and national high blood pressure burden and control. The Lancet, 398 (10304), 932–933. doi: http://doi.org/10.1016/s0140-6736(21)01688-3
2. Hussain, M. J., Datta, B. K., Kostova, D., Joseph, K. T., Asma, S., Richter, P. et. al. (2020). Access to Cardiovascular Disease and Hypertension Medicines in Developing Countries: An Analysis of Essential Medicine Lists, Price, Availability, and Affordability. Journal of the American Heart Association, 9 (9). doi: http://doi.org/10.1161/jaha.119.015302
3. Geldsetzer, P., Manne-Goehler, J., Marcus, M.-E., Ebert, C., Zhumadilov, Z., Wesche, C. S. et. al. (2019). The state of hypertension care in 44 low-income and middle-income countries: a cross-sectional study of nationally representative individual-level data from 1·1 million adults. The Lancet, 394 (10199), 652–662. doi: http://doi.org/10.1016/s0140-6736(19)30955-9
4. Chow, C. K. (2013). Prevalence, Awareness, Treatment, and Control of Hypertension in Rural and Urban Communities in High-, Middle-, and Low-Income Countries. JAMA, 310 (9), 959. doi: http://doi.org/10.1001/jama.2013.184182
5. Rodgers, A., Chow, C. K., Jackson, R. T., Patel, A., Usherwood, T. (2017). Guideline for the diagnosis and management of hypertension in adults – 2016. Medical Journal of Australia, 206 (3), 141–141. doi: http://doi.org/10.5694/mja16.01057
6. Gupta, P., Patel, P., Štrauch, B., Lai, F. Y., Akbarov, A., Gulsin, G. S. et. al. (2017). Biochemical Screening for Nonadherence Is Associated With Blood Pressure Reduction and Improvement in Adherence. Hypertension, 70 (5), 1042–1048. doi: http://doi.org/10.1161/hypertensionaha.117.09631
7. Tiffe, T., Wagner, M., Rücker, V., Morbach, C., Gelbrich, G., Störk, S., Heuschmann, P. U. (2017). Control of cardiovascular risk factors and its determinants in the general population – findings from the STAAB cohort study. BMC Cardiovascular Disorders, 17 (1). doi: http://doi.org/10.1186/s12872-017-0708-x
8. Williams, B., Mancia, G., Spiering, W., Agabiti Roselli, E., Azizi, M., Burnier, M. et. al. (2018). 2018 ESC/ESH Guidelines for the management of arterial hypertension. European Heart Journal, 39 (33), 3021–3104. doi: http://doi.org/10.1093/eurheartj/ehy339
9. Pro vnesennia zmin do nakazu Ministerstva okhorony zdorov’ia Ukrainy No. 751. 28.09.2012 (2016). Nakaz Ministerstva okhorony zdorov’ia Ukrainy No. 1422. 29.12.2016. Available at: https://zakon.rada.gov.ua/laws/show/z0530-17#Text
10. Roth, G. A., Mensah, G. A., Johnson, C. O., Addolorato, G., Ammirati, E., Baddour, L. M. et. al. (2020). Global Burden of Cardiovascular Diseases and Risk Factors, 1990–2019. Journal of the American College of Cardiology, 76 (25), 2982–3021. doi: http://doi.org/10.1016/j.jacc.2020.11.010
11. Jamison, D. T., Summers, L. H., Alleyne, G., Arrow, K. J., Berkley, S., Binagwaho, A. et. al. (2013). Global health 2035: a world converging within a generation. The Lancet, 382 (9908), 1988–1955. doi: http://doi.org/10.1016/s0140-6736(13)62105-4
12. Su, M., Zhang, Q., Bai, X., Wu, C., Li, Y., Mossialos, E. et. al. (2017). Availability, cost, and prescription patterns of antihypertensive medications in primary health care in China: a nationwide cross-sectional survey. The Lancet, 390 (10112), 2559–2568. doi: http://doi.org/10.1016/s0140-6736(17)32476-5
13. Attaei, M. W., Khatib, R., McKee, M., Lear, S., Dagenaïs, I., Igumbor, E. U. et. al. (2017). Availability and affordability of blood pressure-lowering medicines and the effect on blood pressure control in high-income, middle-income, and low-income countries: an analysis of the PURE study data. The Lancet Public Health, 2 (9), e411–e419. doi: http://doi.org/10.1016/s2468-2667(17)30141-x
14. Huz, V. S., Zaliska, O. M., Maksymovych, N. M. (2020). Retrospective analysis of prescriptions for the treatment of cardiovascular diseases in the program «Affordable medicines» on the example of a pharmacy. Farmatsevtichnyi Zhurnal, 1, 69–79. doi: http://doi.org/10.32352/0367-3057.3.20.07
15. Piniazhko, O., Zaliska, O., Ilyk, R. (2018). Reimbursement Decision-Making in Ukraine: Current and Future Directions. Value in Health, 21, S107. doi: http://doi.org/10.1016/j.jval.2018.04.728
16. Medicines reimbursement policies in Europe. World Health Organization. Regional Office for Europe. (2018). World Health Organization. Regional Office for Europe. Available at: https://apps.who.int/iris/handle/10665/342220
17. Huz, V. S., Zaliska, O. M. (2019). Analysis of dynamics of the drug list in the affordable medicines program for treatment of cardiovascular diseases. Farmatsevtichnyi Zhurnal, 3, 21–30. doi: http://doi.org/10.32352/0367-3057.3.19.03
18. eEML – Electronic Essential Medicines List (2019). World Health Organisation. Available at: https://list.essentialmeds.org/?section=indication=139&year=2019&age=&sex=
19. Pro vnesennia zmin do Natsionalnoho pereliku osnovnykh likarskykh zasobiv. (2021). Postanova Kabinetu ministriv Ukrainy No. 1431. 23.12.2021. Available at: https://zakon.rada.gov.ua/laws/show/1431-2021-%D0%BF#Text
20. Pro vnesennia zmin do Natsionalnoho pereliku osnovnykh likarskykh zasobiv (2017). Kabinet Ministriv Ukrainy postanova No. 1081. 13.12.2017. Available at: https://zakon.rada.gov.ua/laws/show/1081-2017-%D0%BF#Text
21. WHOCC – Guidelines. 2022 Guidelines for ATC Classification and DDD Assignment (2021). WHO Collaboration
DEVELOPMENT OF METHODS FOR THE STUDY OF DICYCLOMINE HYDROCHLORIDE IN COMBINATION WITH PARACETAMOL AS AN OBJECT OF FORENSIC-PHARMACEUTICAL EXAMINATION

p. 28–35

Olena Bevz, PhD, Assistant, Department of Medicinal Chemistry, National University of Pharmacy, Pushkinska str., 53, Kharkiv, Ukraine, 61002
E-mail: bevz.helen@gmail.com
ORCID: https://orcid.org/0000-0002-7695-3612

Igor Sych, PhD, Head of Laboratory, Laboratory of Physical, Chemical, Biological and Molecular Genetic Research, National Scientific Center «Hon. Prof. M. S. Bokarius Forensic Science Institute» of Ministry of Justice of Ukraine, Zaliutynska str., 8, Kharkiv, Ukraine, 6177
ORCID: https://orcid.org/0000-0002-1689-8260

Andrii Fedosov, Doctor of Pharmaceutical Sciences, Professor, Chief Vice-Rector on Educational Work, National University of Pharmacy, Pushkinska str., 53, Kharkiv, Ukraine, 61002
ORCID: https://orcid.org/0000-0003-1180-9836

Olha Vislous, PhD, Assistant, Department of Medicinal Chemistry, National University of Pharmacy, Pushkinska str., 53, Kharkiv, Ukraine, 61002
ORCID: https://orcid.org/0000-0002-7644-5343

Irina Sych, PhD, Associate Professor, Department of Medicinal Chemistry, National University of Pharmacy, Pushkinska str., 53, Kharkiv, Ukraine, 61002
ORCID: https://orcid.org/0000-0001-9540-7038

Olga Kryvanych, PhD, Associate Professor, Department of Pharmaceutical Disciplines, State University «Uzhgorod National University», Narodny sq., 3, Uzhgorod, Ukraine, 88000
ORCID: https://orcid.org/0000-0001-5787-6482

Nataliia Kobzar, PhD, Associate Professor, Department of Medicinal Chemistry, National University of Pharmacy, Pushkinska str., 53, Kharkiv, Ukraine, 61002
ORCID: https://orcid.org/0000-0002-2062-2769

Lina Perekhoda, Doctor of Pharmaceutical Science, Professor, Head of Department, Department of Medicinal Chemistry, National University of Pharmacy, Pushkinska str., 53, Kharkiv, Ukraine, 61002
ORCID: https://orcid.org/0000-0002-8498-331X

The aim. Selection and development of methods for the tasks of forensic pharmaceutical examination as case materials suspected of falsification or non-medical use of dicyclomine hydrochloride in combination with paracetamol in the form of tablets.

Materials and methods. The study presents the developed methods of detection and identification of dicyclomine by TLC, IR spectroscopy and GC-MS, which were performed using reagents that meet the EP, USP and USPU requirements, Class A glassware and qualified devices.

Identification by IR spectroscopy was performed in the range from 500 to 4000 cm⁻¹ on the device “Nicolet 380 FT-IR Spectrometer by Thermo Fisher Scientific”.

TLC was performed on Sorbil plates for TLC-PET-H-UV and Sorbil plates for TLC-AF-UV (CJSC “Sorbopolymer”, Russia). The following systems were used as mobile phases: dioxane-chloroform-acetone-25 % ammonia solution (47.5:45:5:2.5); tolune-acetone-ethanol-25 % ammonia solution (45:45:7.5:2.5); ethyl acetate-n-butanol-25 % ammonia solution (17:2:1). The resulting chromatographic zones were detected by irradiation with UV light and further treatment with color reagents (30 % iron (III) chloride solution; Dragendorff’s reagent modified by Munier; Marquis reagent; Froehde reagent; Mandelin reagent; FPN reagent).

Analysis by gas chromatography with mass detection was performed using a gas chromatograph with a mass spectrometric detector GCMS-QP2020. Data were analyzed using the program: GCMSsolution, LabSolutions Insight (Shimadzu Corporation, Tokyo, Japan).

Results. For the first time, the conditions for the extraction of dicyclomine hydrochloride from aqueous solutions were studied and the optimal conditions for their isolation as an object of forensic pharmaceutical examination is defined. The method of detection of dicyclomine hydrochloride and paracetamol in the drug “Trigan-D” by the methods of thin-layer chromatography, gas-liquid chromatography and chromat-mass spectrometry was developed, and the detection limits of the substances under study were determined.

Conclusion. The developed methods for dicyclomine hydrochloride in the form of tablets with paracetamol meet the require-
ments of the current legislation of Ukraine and the Ministry of Justice of Ukraine. The data obtained prove the high sensitivity and reproducibility of the methods and prove the possibility of their introduction into the practice of forensic pharmaceutical examination.

Keywords: non-medical use, psychoactive substances, forensic pharmaceutical examination, detection of medicinal substances

References

1. Bevz, O., Sych, I., Shaposhnyk, A., Sych, I., Kryvanych, O., Taran, S., Perekhoda, L. (2021). Development of determination methods of quetiapine fumarate for forensic-pharmaceutical purposes. ScienceRise: Pharmaceutical Science, 2 (30), 4–12. doi: http://doi.org/10.15587/2519-4852.2021.228132

2. Sych, I. V., Bevz, O. V., Sych, I. A., Shaposhnyk, A. M., Zarubina, M. V., Kryvanych, O. V. et. al. (2021). Development of the method for determining Methandienone in Toxicology and doping-analysis. Research Journal of Pharmacy and Technology, 14 (10), 5169–5174. doi: http://doi.org/10.52711/0974-360x.2021.00899

3. Singh, V. V., Gupta, S., Sarkar, S., Chatterjee, B. (2020). Problematic dicyclomine abuse: A case report and narrative review. Asian Journal of Psychiatry, 48, 101891. doi: http://doi.org/10.1016/j.ajp.2019.101891

4. Das, S., Mondal, S., Datta, A., Bandypadhyay, S. (2013). A rare case of dicyclomine abuse. Journal of Indian Pharmacologists, 5 (3), 106–107. doi: http://doi.org/10.1016/j.jip.2013.08.004

5. Zupanets, I. V., Ruban, O. A., Ivtsushenko, O. M., Kolisnyk, T. E. (2020). Assortment research of analgesic drugs for chronic pain treatment on pharmaceutical market of Ukraine. Farmatsvetkychnyi Zhurnal, 3, 16–28. doi: http://doi.org/10.32352/0367-3057.3.20.02

6. Chiappini, S., Mosca, A., Miuli, A., Semeraro, F. M., Mancusi, G., Santovito, M. C. et. al. (2022). Misuse of Anti-cholinergic Medications: A Systematic Review. Biomedicines, 10 (2), 355. doi: http://doi.org/10.3390/biomedicines10020355

7. Glogić, E., Jasak, Z. (2021). Benford’s Law in Forensic Analysis of Registered Turnover. Journal of Forensic Accounting Profession, 1 (1), 50–60. doi: http://doi.org/10.2478/jfap-2021-0004

8. Sinha, S., Dhimant, S., Sidana, A. (2020). A rare case of dicyclomine and mefenamic acid abuse fulfilling criteria of dependence syndrome. Indian Journal of Psychiatry, 62 (6), 740–741. doi: http://doi.org/10.4103/psychiatry.indianjpsychiatry_562_19

9. Singh, V. V., Gupta, S., Sarkar, S., Chatterjee, B. (2020). Problematic dicyclomine abuse: A case report and narrative review. Asian Journal of Psychiatry, 48, 101891. doi: http://doi.org/10.1016/j.ajp.2019.101891

10. Reiestr metodyk provedennia sudovykh eksper-tyz. Ministerstvo yustytsii Ukrainy. Available at: https://expertize-journal.org.ua/reiestr-metodik-sud-expertiz

11. Rapid testing methods of drugs of abuse (1994). United nations international drug control programme. New York: United Nations, 105.

12. Malathi, R., Amol, D., Jyotsna, P. (2015). Simple UV spectrophotometric method for estimation of dicyclomine hydrochloride in bulk and tablet formulation. International Journal of Pharmaceutical Research and Allied Sciences, 4 (3), 109–113.

13. Susmithaa, K., Chary, M. T., Venkateshwarlu, G. (2011). Assay of dicyclomine hydrochloride in pharmaceutical formulations by extractive spectrophotometry. International journal of chemical science, 9 (3), 1353–1363.

14. Rawool, C. R., Rajputohiti, A. S., Punde, N. S., Sri- vastava, A. K. (2018). Adsorptive stripping voltammetric determination of dicyclomine hydrochloride at a glassy carbon electrode modified with silver decorated Fe3O4 nanocubes in pharmaceutical and biological samples. Analytical Methods, 10 (12), 1441–1451. doi: http://doi.org/10.1039/c8ay00090c

15. Wadher, S. J., Kalyankar, T. M., Kshirsagar, J. R., Anitha, K. (2017). Simultaneous Determination of Famotidine and Dicyclomine HCl in combined Tablet Dosage form by UV-Spectrophotometer. Research Journal of Pharmacy and Technology, 10 (2), 408–413. doi: http://doi.org/10.5938/0974-360x.2017.00882.2

16. Ciura, K., Rutecka, A., Szewczyk, A., Kawczak, P., Bączek, T., Nowakowska, J. (2019). Study of the chromato- graphic behavior of selected antipsychotic drugs on RP-TLC based on quantitative structure–retention relationships. Journal of the Iranian Chemical Society, 16 (5), 1019–1027. doi: http://doi.org/10.1007/s13738-018-01576-0

17. Chaitany, D. A., Tiwari, S. K., Brahmbhatt, K. D., Patel, P. M., Shah, S. B. (2013). Development and validation of RP-HPLC method for estimation of omeprazole and dicyclomine hydrochloride in pharmaceutical dosage form. Pharma science monitor. An international journal of pharmaceutical sciences, 4 (3 (1)), 247–256.

18. Nutan, R., Akshata, D. (2021). RP-HPLC Method Development and Validation for Estimation of Dicyclomine Hydrochloride in its Bulk and Drops Form. Research Journal of Pharmacy and Technology, 14 (2), 605–609. doi: http://doi.org/10.5958/0974-360x.2021.00108.6

19. Tumylovych, E. Yu., Karpenko, Yu. N., Dvorskaia, O. N. (2010). Opredelenye komponentov preparata Tryhan D» v moche pry khmyko-toksykolohycheskom analyze. Nar- kolohyia, 9 (9), 46–51.

20. Moore, S. (2021). How is infrared spectroscopy used in key forensics applications? AzOOptics. Available at: https://www.azooptics.com/Article.aspx?ArticleId=1929

21. Bicevic-Tokic, J., Tokic, N., Ibrahimpasic, E. (2015). Chromatography as method for analytical confirmation of paracetamol in postmortem material together with psychoactive substances. Acta Informatica Medica, 23 (5), 322–325. doi: http://doi.org/10.5455/aim.2015.23.322-325

DOI: 10.15587/2519-4852.2022.263675

MONITORING OF INDICATORS OF PHYSICAL AVAILABILITY AND SOCIO-ECONOMIC AFFORDABILITY OF METFORMIN HYDROCHLORIDE MEDICINES

p. 36–43

Oksana Ryschenko, PhD, Assistant, Department of Social Pharmacy, National University of Pharmacy, Pushkinska str., 53, Kharkiv, Ukraine, 61002

E-mail: hakamachi@gmail.com

ORCID: http://orcid.org/0000-0002-8542-4333
The aim of the study was to monitor the physical availability and socio-economic affordability of metformin hydrochloride medicines, which are used for the treatment of type II diabetes mellitus.

Materials and methods. Medical and technological documentation on the standardization of medical care for patients with type II diabetes, data from the State Register of Medicinal Products of Ukraine, software complex “Apteka” of the company “Morion” and data from the pharmaceutical market research analytical company “Pharmstandard” of the company “Morion” were used as research materials to determine indicators of physical availability and socio-economic affordability of metformin HCL medicines for the treatment of type II diabetes. Documentary, analytical methods, the method of marketing research and the method of logical summarization of data were used during the research.

Results. According to the results of the analysis of the medical and technological documentation on the standardization of medical care for diabetes mellitus (DM) type II and the State Register of Medicines of Ukraine, a number of characteristics were formed for Metformin HCL pharmaceuticals, namely: tablets or film-coated tablets in a dose of 500 mg, which are manufactured: Ukrainian manufacturers (full cycle of production); Ukrainian manufacturers of tablets in bulk (primary and secondary packaging) and foreign manufacturers. The specified characteristics became the basis for the further selection of several metformin HCL medicines in terms of determining their indicators of physical availability and socio-economic affordability. When determining the physical availability of metformin HCL medications, it was established that Ukrainian-made pharmaceuticals (full production cycle) are presented in the wholesale chain of the pharmaceutical market in full. According to the socio-economic indicator of the solvency adequacy of payment capacity, among the metformin HCL pharmaceuticals, the most economically justified are the Ukrainian-made pharmaceuticals, which are made from tablets in bulk according to the full production cycle. Only 1 medicine was singled out among foreign-made ones, which has the lowest indicator of solvency adequacy for various categories of the population.

Conclusions. Monitoring of indicators of physical availability and socio-economic affordability of metformin HCL medicines showed that the most economically justified for able-bodied people and people of retirement age is the use of the Ukrainian-made pharmaceuticals (full cycle and production from tablets in bulk) for the treatment of type II DM.

Keywords: medicines, metformin, diabetes, physical availability, socio-economic affordability

References
1. Cosentino, F., Grant, P. J., Aboyans, V., Bailey, C. J., Ceriello, A., Delgado, V. et al. (2019). 2019 ESC Guidelines on diabetes, pre-diabetes, and cardiovascular diseases developed in collaboration with the EASD. European Heart Journal, 41 (2), 255–323. doi: http://doi.org/10.1093/eurheartj/ehz486
2. Flory, J., Lipska, K. (2019). Metformin in 2019. JAMA, 321 (19), 1926–1928. doi: http://doi.org/10.1001/jama.2019.3805
3. Pro zatverdzhennia ta vprovdzhennia medyko-tekhnolohichnykh dokumeniv zi standartyzatsii medychnoi dopomohy pry TsD 2 typu (2012). Nakaz MOZ Ukrainy No. 1118. 12.12.2012. Available at: https://zakon.rada.gov.ua/rada/show/v1118282-12#Text
4. Type 2 diabetes: newer agents for blood glucose control in type 2 diabetes (2009). The National Collaborating Centre for Chronic Conditions. Available at: https://www.ncbi.nlm.nih.gov/books/NBK61842/
5. Type 2 diabetes: National clinical guideline for management in primary and secondary care (2008). The National Collaborating Centre for Chronic Conditions. Available at: https://www.ncbi.nlm.nih.gov/books/NBK53885/
6. Dahlén, A. D., Dashi, G., Maslov, I. O., Atwood, M. M., Jonsson, J., Trukhan, V., Schiöth, H. B. (2022). Trends in Antidiabetic Drug Discovery: FDA Approved Drugs, New Drugs in Clinical Trials and Global Sales. Frontiers in Pharmacology, 12. doi: http://doi.org/10.3389/fphar.2021.807548
7. Litvinova, E., Posilkina, O., Kovalenko, S., Yero menko, R., Bratishko, Y., Lisna, A. (2022). Status and analysis of trends in the metformin -based drug development: formation of the logistic system of scientific research. ScienceRise: Pharmaceutical Science, 2 (36), 37–45. doi: http://doi.org/10.15587/2519-4852.2022.255536
8. Lv, Z., Guo, Y. (2020). Metformin and Its Benefits for Various Diseases. Frontiers in Endocrinology, 11. doi: http://doi.org/10.3389/fendo.2020.00191
9. Vyshnytska, I. V., Trokhymchuk, V. V. (2018). Marketing analysis of some groups of antidiabetic medicines, presented at pharmaceutical market of Ukraine. Farmatsevtichni Zhurnal, 2, 3–11. doi: http://doi.org/10.32352/0367-3057.2.17.01
10. Salem, A., Men, P., Ramos, M., Zhang, Y.-J., Ustuyugova, A., Lamotte, M. (2021). Cost-effectiveness analysis of empagliflozin compared with glimepiride in patients with Type 2 diabetes in China. Journal of Comparative Effectiveness Research, 10 (6), 469–480. doi: http://doi.org/10.2217/cer-2020-0284
11. Limwattananon, C., Wakekakhonloet, O. (2019). Access to and price trends of antidiabetic, antihypertensive, and
antilipidemic drugs in outpatient settings of the Universal Coverage Scheme in Thailand. PLOS ONE, 14 (2), e0211759. doi: http://doi.org/10.1371/journal.pone.0211759

12. Derzhavni reiestr likarskyh zasobiv Ukrainy. Available at: http://www.drzl.com.ua/ibp/ddsite.nsf/all/shlist?opensendpoint

13. Prohrannyi kompleks «Apteka». Available at: https://pharmbase.com.ua/ru/optovskye-predlozheniya/

14. Kotvitska, A. A., Volkova, A. V., Kubarieva, I. V., Cherkasyna, A. V., Korzh, Yu. V., Tereshchenko, L. V., Surikova, I. O.; Kotvitsa, A. A. (Ed.). (2021). Sotsialna farmatsiia. Kharkiv: NFAU, 264.

15. Kotvitska, A. A., Prokopenko, O. S. (2019). Monitoring of indicators of physical and socio-economic availability of medicines used for Parkinson’s disease treatment. Management, economy and quality assurance in pharmacy, 3 (59), 55–63. doi: http://doi.org/10.24959/uekj.19.15

16. Nemchenko, A. S., Nazarkina, V. M., Panfilova, H. L. et. al.; Nemchenko, A. S. (Ed.). (2017). Orhanizatsiia ta ekonomika farmatsii. Ch. 1. Orhanizatsiia farmatsvytnoho zabezpechennia naselemina. Kharkiv: NFAU: Zoloti storinki, 327.

17. Panfilova, H. L. Koeficienty adekvatnosti platospromozhnosti. Available at: https://www.pharmencyclopedia.com.ua/article/8076/koeficienty-adekvatnosti-platospromozhnosti

18. Doslidzhennia farmatsevtychnoho rynku Ukrainy analitychnoi kompanii «Farmstandart» kompanii «Morion». Available at: http://www.pharmstandard.com.ua/login

19. Kotvitska, A., Volkova, A., Korzh, I., Surikova, I. (2021). Comparative analysis of indicators that determine the effectiveness of the implementation of socio-economic determinants of health in Europe and Ukraine. ScienceRise: Pharmaceutical Science, 3 (31), 34–41. doi: http://doi.org/10.15587/2519-4852.2021.235787

20. Savych, A. O., Pavliuk, B. V. (2022). Marketing analysis of the pharmaceutical market of antidiabetic drugs in Ukraine. Current Issues in Pharmacy and Medicine: Science and Practice, 15 (1), 80–85. doi: http://doi.org/10.14739/2409-2932.2022.1.252509

21. Dermatis, Z., Lazakidou, A., Anastasiou, A., Liargovas, P. (2020). Analyzing Socio-Economic and Geographical Factors that Affect the Health of the Elderly. Journal of the Knowledge Economy, 12 (4), 1925–1948. doi: http://doi.org/10.1007/s13132-020-00691-9

22. Kovalska, I., Ruban, O., Volkova, A., Kotsvtiska, A., Cherkasyna, A. (2022). The use of complex marketing analysis and QSAR methodology for the necessity of a drug development grounding for the treatment of type 2 diabetes melitus with increased bioavailability. Pharmacia, 69 (2), 303–310. doi: http://doi.org/10.3897/pharmacia.69.e79179

23. Zhu, L., She, Z.-G., Cheng, X., Qin, J.-J., Zhang, X.-J., Cai, J. et. al. (2020). Association of Blood Glucose Control and Outcomes in Patients with COVID-19 and Pre-existing Type 2 Diabetes. Cell Metabolism, 31 (6), 1068–1077.e3. doi: http://doi.org/10.1016/j.cmet.2020.04.021

24. Luo, P., Qiu, L., Liu, Y., Liu, X., Zheng, J., Xue, H. et. al. (2020). Metformin Treatment Was Associated with Decreased Mortality in COVID-19 Patients with Diabetes in a Retrospective Analysis. The American Journal of Tropical Medicine and Hygiene, 103 (1), 69–72. doi: http://doi.org/10.4269/ajtmh.20-0375

25. 2. Classification and Diagnosis of Diabetes: Standards of Medical Care in Diabetes – 2018 (2017). Diabetes Care, 41 (Supplement_1), S13–S27. doi: http://doi.org/10.2337/dc18-s002

26. Bramante, C. T., Ingraham, N. E., Murray, T. A., Marmor, S., Hovertsen, S., Gronski, J. et. al. (2021). Metformin and risk of mortality in patients hospitalised with COVID-19: a retrospective cohort analysis. The Lancet Healthy Longevity, 2 (1), e34–e41. doi: http://doi.org/10.1016/s2666-7568(20)30033-7

27. Mishchenko, O. Ya., Kalko, K. O., Ostashko, V. F., Borysiuk, I. Yu., Rokun, D.-M. B., Ryshchenko, O. O., Bezdetko, N. V. (2021). Range analysis, socio-economic accessibility and consumption of fibrates on the pharmaceutical market of Ukraine during 2017–2020. Pharmacologyonline, 2, 650–656.

28. Brukhanova, T., Lytkin, D., Zahaiko, A., Bondareva, A. (2021). The effect of nmda-receptor antagonist on carbohydrate and lipid metabolism markers in syrian golden hamsters under experimental insulin resistance syndrome and diabetes mellitus. Problems of Endocrine Pathology, 78 (4), 72–79. doi: http://doi.org/10.21856/j-cep.2021.4.10

29. Ghany, R., Palacio, A., Dawkins, E., Chen, G., McCarter, D., Forbes, E. et. al. (2021). Metformin is associated with lower hospitalizations, mortality and severe coronavirus infection among elderly medicare minority patients in 8 states in USA. Diabetes & Metabolic Syndrome: Clinical Research & Reviews, 15 (2), 513–518. doi: http://doi.org/10.1016/j.dsx.2021.02.022

30. Wander, P. L., Lowy, E., Beste, L. A., Tulloch-Palomino, L., Korpak, A., Peterson, A. C. et. al. (2021). Prior Glucose-Lowering Medication Use and 30-Day Outcomes Among 64,892 Veterans With Diabetes and COVID-19. Diabetes Care, 44 (12), 2708–2713. doi: http://doi.org/10.2337/dc21-1351

DOI: 10.15587/2519-4852.2022.263556

THE MORPHOLOGICAL ANALYSIS OF CRYSTALLINE METHADONE: A NOVEL COMBINATION OF MICROSCOPY TECHNIQUES

p. 44–52

Noor R. Al-Hasani, Assistant Professor in Clinical Pharmacy, Department of Pharmacy, King’s College London, Stamford str., 150, London, SE1 9NH, United Kingdom, Department of Basic Sciences, College of Dentistry, University of Baghdad, Bab-Almuadadhah, Baghdad, PO 1417, Iraq

E-mail: noor.al-hasani@kcl.ac.uk

ORCID: https://orcid.org/0000-0002-9176-166X

Paul G. Royall, Senior Lecturer in Pharmaceutics, Department of Pharmacy, King’s College London, Stamford str., 150, London, SE1 9NH, United Kingdom

ORCID: https://orcid.org/0000-0002-7101-2776

104
The aim: to evaluate combined microscopy techniques for determining the morphological and optical properties of methadone hydrochloride (MDN) crystals.

Materials and methods: MDN crystal formation was optimized using a closed container method and crystals were characterized using polarized light microscopy (PLM), scanning electron microscopy (SEM) and confocal microscopy (CM). SEM and CM were used to determine MDN crystal thickness and study its relationship with crystal retardation colours using the Michel-Levy Birefringence approach.

Results: Dimensions (mean±SD) of diamond shaped MDN crystals were confirmed using SEM and CM. Crystals were 46.4±15.2 Vs 32.0±8.3 μm long, 28.0±8.2 Vs 20.8±5.5 μm wide, and 6.62±2.9 Vs 9.6±4.6 μm thick, respectively. There were significant differences between SEM and CM thickness measurements (U=1283, p<0.05), as the SEM exhibited thinner diamond crystals. The combined use of PLM and Michel-Levy chart enabled the observation of a predominantly yellow coloured MDN crystal, mean thickness at (428 nm) mean retardation value.

Conclusion: The SEM was superior and successfully determined MDN crystal dimensions for the first time, whilst the CM results were affected by the Rhodamine dye staining process used for visualisation. The qualitative analysis of the crystallinity status of methadone hydrochloride optimally achieved using a combination of SEM and PLM techniques

Keywords: methadone, birefringence, Michel-Levy birefringence colour chart, recrystallization methods, retardation, 3-D imaging, confocal microscopy, SEM, polarized light microscopy

References
1. Bishara, R. H. (1974). Methadone Hydrochloride. Analytical Profiles of Drug Substances. Vol. 3. Academic Press. 365–439. doi: http://doi.org/10.1016/s0099-5428(08)60074-x
2. Moffat, A. C., Osselton, M. D., Widdop, B., Watts, J. (2019). Clarke’s analysis of drugs and poisons. Vol. 3. London: Pharmaceutical press.
3. Pan, P.-P., Wang, J., Luo, J., Wang, S.-H., Zhou, Y.-F., Chen, S.-Z., Du, Z. (2017). Silibinin affects the pharmacokinetics of methadone in rats. Drug Testing and Analysis, 10(3), 557–561. doi: http://doi.org/10.1002/dta.2235
4. Sun, H.-M., Li, X.-Y., Chow, E. P. F., Li, T., Xian, Y., Lu, Y.-H. et al. (2015). Methadone maintenance treatment programme reduces criminal activity and improves social well-being of drug users in China: a systematic review and meta-analysis. BMJ Open, 5 (1), e005997–e005997. doi: http://doi.org/10.1136/bmjopen-2014-005997
5. Russilillo, A., Moniruzzaman, A., Somers, J. M. (2018). Methadone maintenance treatment and mortality in people with criminal convictions: A population-based retrospective cohort study from Canada. PLOS Medicine, 15 (7), e1002625. doi: http://doi.org/10.1371/journal.pmed.1002625
6. Breteville-Jensen, A. L., Lillegård, M., Gjersing, L., Andreas, J. B. (2015). Illicit use of opioid substitution drugs: Prevalence, user characteristics, and the association with non-fatal overdoses. Drug and Alcohol Dependence, 147, 89–96. doi: http://doi.org/10.1016/j.drugalcdep.2014.12.002
7. Harris, M., Rhodes, T. (2013). Methadone diversion as a protective strategy: The harm reduction potential of “generous constraints.” International Journal of Drug Policy, 24 (6), e43–e50. doi: http://doi.org/10.1016/j.drugpol.2012.10.003
8. Winstock, A. R., Lea, T. (2009). Diversion and Injection of Methadone and Buprenorphine Among Clients in Public Opioid Treatment Clinics in New South Wales, Australia. Substance Use & Misuse, 45 (1-2), 240–252. doi: http://doi.org/10.1080/10826080903080664
9. Betancourt, A. O., Gosselin, P. M., Vinson, R. K. (2012). New immediate release formulation for deterring abuse of methadone. Pharmaceutical Development and Technology, 18 (2), 535–543. doi: http://doi.org/10.3109/10837345.2012.685989
10. Shaw, I. F., Berk, J. (1976). U.S. Patent No. 3,980,766. Washington: U.S. Patent and Trademark Office; published: 14.09.1976.
11. Elie, L. E., Baron, M. G., Croxton, R. S., Elie, M. P. (2012). Investigation into the suitability of capillary tubes for microcrystalline testing. Drug Testing and Analysis, 5 (7), 573–580. doi: http://doi.org/10.1002/dta.1372
12. Elie, L., Baron, M., Croxton, R., Elie, M. (2012). Microcrystalline identification of selected designer drugs. Forensic Science International, 214 (1-3), 182–188. doi: http://doi.org/10.1016/j.forsciint.2011.08.005
13. Kuś, P., Rojkiewicz, M., Kuszy, J., Ksiądzek, M., Sochanik, A. (2019). Spectroscopic characterization and crystal structures of four hydrochloride cathinones: N-ethyl-2-amino-1-phenylhexan-1-one (hexen, NEH), N-methyl-2-amino-1-(4-methylphenyl)-3-methoxypropan-1-one (mexedrone), N-ethyl-2-amino-1-(3,4-methylenedioxyphenyl)pentan-1-one (ephylone) and N-butyl-2-amino-1-(4-chlorophenyl)propan-1-one (4-chlorobutylicathione). Forensic Toxicology, 37 (2), 456–464. doi: http://doi.org/10.1007/s11419-019-00477-y
14. Hubach, C. E., Jones, F. T. (1950). Methadone Hydrochloride Optical Properties, Microchemical Reactions, and X-Ray Diffraction Data. Analytical Chemistry, 22 (4), 595–598. doi: http://doi.org/10.1021/ac60040a028
15. Bibi, S., Kaur, R., Henriksen-Lacey, M., McNeill, S. E., Wilkhu, J., Lattmann, E. et. al. (2011). Microscopy imaging of liposomes: From coverslips to environmental SEM. International Journal of Pharmaceutics, 417 (1-2), 138–150. doi: http://doi.org/10.1016/j.ijpharm.2010.12.021
16. Kölmemek, H., Bulduk, İ., Ergün, Y., Konuk, M., Korcan, S. E., Liman, R., Çoban, F. K. (2013). Synthesis of Morphine Loaded Hydroxyapatite Nanoparticles (HAPs) and Determination of Genotoxic Effect for Using Pain Management. Journal of Pharmaceutical Research International, 25 (6), 1–13. doi: http://doi.org/10.9734/jpri/2018/v25i630116
17. Kania, A., Talik, E., Szubka, M., Ryba-Romanowska, W., Niewiadomski, A., Miga, S., Pawlik, M. (2016). Characterization of Bi2WO6 single crystals by X-ray diffraction, scanning electron microscopy, X-ray photoelectron spectroscopy and optical absorption. Journal of Alloys and Compounds, 654, 467–474. doi: http://doi.org/10.1016/j.jallcom.2015.09.127

18. Singh, M. R., Chakraborty, J., Nere, N., Tung, H.-H., Bordawekar, S., Ramkrishna, D. (2012). Image-Analysis-Based Method for 3D Crystal Morphology Measurement and Poly-morph Identification Using Confocal Microscopy. Crystal Growth & Design, 12 (7), 3735–3748. doi: http://doi.org/10.1021/cg300547w

19. Khodaei, M., Esmaeili, A. (2019). New and Enzymatic Targeted Magnetic Macromolecular Nanodrug System Which Delivers Methadone and Rifampin Simultaneously. ACS Biomaterials Science & Engineering, 6 (1), 246–255. doi: http://doi.org/10.1021/acsbiomaterials.9b01330

20. Warren, F. J., Royall, P. G., Butterworth, P. J., Ellis, P. R. (2012). Immersion mode material pocket dynamic mechanical analysis (IMP-DMA): A novel tool to study gelatinisation of purified starches and starch-containing plant materials. Carbohydrate Polymers, 90 (1), 628–636. doi: http://doi.org/10.1016/j.carbpol.2012.05.088

21. Jaffe, M., Hammond, W., Tolia, P., Arinzech, T. (Eds.). (2012). Characterization of biomaterials. Elsevier, 344.

22. Carlson, R. A. (2011). Polarized Light Microscopy. Pharmaceutical microscopy. Springer Science & Business Media, 7–64. doi: http://doi.org/10.1007/978-1-4419-8831-7

23. Frandsen, A. F. (2016). Polarized light microscopy (No. KSC-E-DAA-TN37401).

24. Klang, V., Valenta, C., Matsko, N. B. (2013). Electron microscopy of pharmaceutical systems. Micron, 44, 45–74. doi: http://doi.org/10.1016/j.micron.2012.07.008

25. Ren, F., Su, J., Xiong, H., Tian, Y., Ren, G., Jing, Q. (2016). Characterization of ibuprofen microparticle and improvement of the dissolution. Pharmaceutical Development and Technology, 22 (1), 63–68. doi: http://doi.org/10.3109/10837450.2016.1163386

26. Wei, L., Yang, Y., Shi, K., Wu, J., Zhao, W., Mo, J. (2016). Preparation and Characterization of Loperamide-Loaded Dynasan 114 Solid Lipid Nanoparticles for Increased Oral Absorption In the Treatment of Diarrhea. Frontiers in Pharmacology, 7. doi: http://doi.org/10.3389/fphar.2016.00332

27. Furrer, P., Gurny, R. (2010). Recent advances in confocal microscopy for studying drug delivery to the eye: Concepts and pharmaceutical applications. European Journal of Pharmaceutics and Biopharmaceutics, 74 (1), 33–40. doi: http://doi.org/10.1016/j.ejpb.2009.09.002

28. Prasad, V., Semwogerere, D., Weeks, E. R. (2007). Confocal microscopy of colloids. Journal of Physics: Condensed Matter, 19 (11), 113102. doi: http://doi.org/10.1088/0953-8984/19/11/113102

29. Korlach, J., Schwille, P., Webb, W. W., Feigenson, G. W. (1999). Characterization of lipid bilayer phases by confocal microscopy and fluorescence correlation spectroscopy. Proceedings of the National Academy of Sciences, 96 (15), 8461–8466. doi: http://doi.org/10.1073/pnas.96.15.8461

30. Mullin, J. W. (2001). Crystallization. Elsevier. doi: http://doi.org/10.1016/b978-0-7506-4833-2.x5000-1

31. Agio, M., Alù, A. (Eds.). (2013). Optical antennas. Cambridge University Press. doi: http://doi.org/10.1017/eb09781139013475

32. Houck, M. M., Siegel, J. A. (2015). Friction ridge examination. Fundamentals of forensic science. San Diego: Elsevier Ltd, 493–518. doi: http://doi.org/10.1016/b978-0-12-800307-3.00019-4

33. Patzelt, W., Leitz, E. (1985). Polarized Light Microscopy-Principles. Instruments. Applications. Wetzlar: Ernst Leitz Wetzlar GmbH, 103.

34. Pygall, S. R., Whetstone, J., Timmins, P., Melia, C. D. (2007). Pharmaceutical applications of confocal laser scanning microscopy: The physical characterisation of pharmaceutical systems. Advanced Drug Delivery Reviews, 59 (14), 1434–1452. doi: http://doi.org/10.1016/j.addr.2007.06.018

35. Beaufort, L., Barbarin, N., Gally, Y. (2014). Optical measurements to determine the thickness of calcite crystals and the mass of thin carbonate particles such as coccoliths. Nature Protocols, 9 (3), 633–642. doi: http://doi.org/10.1038/nprot.2014.028

DOI: 10.15587/2519-4852.2022.263415

EVALUATION OF THE STATE OF PHARMACEUTICAL SUPPLY OF PATIENTS WITH DEMENTIA WITH ALZHEIMER DISEASE IN UKRAINE IN ACCORDANCE WITH INTERNATIONAL RECOMMENDATIONS

p. 53–61

Maryna Fedotova, Assistant, Department of Pharmacy, Bukovinian State Medical University, Teatralna sq., 2, Chernivtsi, Ukraine, 58002

ORCID: https://orcid.org/0000-0002-6194-1176

Hanna Panfilova, Doctor of Pharmaceutical Sciences, Professor, Department of Organization and Economics of Pharmacy, National University of Pharmacy, Pushkinska str., 53, Kharkiv, Ukraine, 61002

E-mail: panf-al@ukr.net

ORCID: http://orcid.org/0000-0001-5297-0584

Lilia Hala, Doctor of Pharmaceutical Sciences, Associate Professor, Department of Organization and Economics of Pharmacy, Bogomolets National Medical University, T. Shevchenko blvd., 13, Kyiv, Ukraine, 01601

ORCID: https://orcid.org/0000-0002-0086-2706

Alla Lebedyn, PhD, Assistant, Department of Organization and Economics of Pharmacy, National University of Pharmacy, Pushkinska str., 53, Kharkiv, Ukraine, 61002

ORCID: http://orcid.org/0000-0002-8101-1056

Liussine Simonian, PhD, Assistant, Department of Organization and Economics of Pharmacy, National University of Pharmacy, Pushkinska str., 53, Kharkiv, Ukraine, 61002

ORCID: https://orcid.org/0000-0002-4011-3101

Oleg Gerush, PhD, Associate Professor, Head of Department, Department of Pharmacy, Bukovinian State Medical University,
The aim: to assess the state of pharmaceutical provision of patients with dementia in Alzheimer’s disease in Ukraine in accordance with international recommendations.

Materials and methods. In our studies, we used data from international guidelines, clinical protocols that regulate the organization of medical and pharmaceutical care for these patients in the USA, Australia, Japan, Germany, Great Britain, Finland, India, Kazakhstan, and Ukraine. The actual state of pharmaceutical provision of these patients in Ukraine was studied using a depersonalized database of medical prescriptions, which operates on a number of specialized healthcare institutions. In addition, data from the Morion information search system were used. We used general theoretical (historical, formal, graphic, hypothetical-deuctive, etc.) and applied (clinical-economic, organizational-economic, mathematical-statistical, etc.) research methods.

Results. It has been established that a consolidated opinion has been formed in the world scientific community regarding the possibility of effective use in the pathogenetic treatment of patients with dementia in Alzheimer’s disease of drugs from the groups N06DA Acetylcholinesterase inhibitors and N06DX-Others drugs for use in case of dementia. Thus, the pharmaceutical component of international recommendations, clinical protocols for the treatment of patients with dementia in Alzheimer’s disease contains four drugs used in pathogenetic therapy. These are N06DA02 Donepezil, N06DA03 Rivastigmine, N06DA04 Galantamine and N06DX01 Memantine. It has been reported that all the above drugs are included in the domestic clinical protocol for the treatment of patients with dementia in Alzheimer’s disease, the State Drug Formulary (with the exception of N06DA03 Rivastigmine), and the State Drug Registry. At the same time, all of them were absent from the National List of Essential Drugs, which has an important socio-economic and medical-pharmaceutical significance in the health care system. It was found that patients (200 people) received 2487 prescriptions (100.0 %), among which 9.41 % (234 prescriptions) were drugs used in pathogenetic treatment. There is a highly disproportionate nature of the distribution of prescriptions and consumption by international generic names of drugs. Thus, drugs N06DX01 Memantine accounted for 80.41 % (188 prescriptions) of all prescriptions in the group N06D Drugs for use in dementia, and the consumption rate was UAH 84420.20, which accounted for 91.48 % of the amount of expenses directed to patients with carrying out pathogenetic treatment. Significant dominance of drugs N06DX01 Memantine in the structure of prescriptions and consumption indicates the presence of severe, advanced forms of dementia in patients. This fact once again emphasizes the need for early detection and treatment of cognitive impairment, primarily for the rational use of limited health care resources. We have found that there are no prescriptions for N06D A04 Galantamine preparations, which are recommended by the relevant international recommendations in different countries of the world, as well as by the domestic clinical protocol for the pathogenetic treatment of mild and moderate forms of Alzheimer’s disease. At the same time, N06DA05 Ipidacrine preparations were used in the treatment of domestic patients, which are not presented in the pharmaceutical component of international recommendations and protocols governing the pathogenetic treatment of the above-mentioned groups of neuropsychiatric patients.

Conclusions. The peculiarities of the formation of the pharmaceutical component in the organization of the treatment process of patients with dementia in Alzheimer’s disease in Ukraine, established by us, allow further research on the development of rational ways of resource provision of neuropsychiatric patients.

Keywords: dementia, clinical and economic analysis, drug consumption, pharmaceutical provision of neuropsychiatric patients, Alzheimer’s disease

References

1. Cummings, J., Aisen, P. S., DuBois, B., Frölich, L., Jack, Jr. C. R., Jones, R. W. et. al. (2016). Drug development in Alzheimer’s disease: the path to 2025. Alzheimer’s Research & Therapy, 8 (1). doi: http://doi.org/10.1186/s13195-016-0207-9
2. Fitzpatrick-Lewis, D., Warren, R., Ali, M. U., Sherriff, D., Raina, P. Treatment for mild cognitive impairment: a systematic review and meta-analysis. CMAJ Open, 3 (4), 419–427. doi: http://doi.org/10.9778/cmaoj.20150057
3. Scheltens, N., Galindo-Garre, F., Pijnenburg, Y., van der Vlies, A. E., Smits L. L., Koene, T. et. al. (2016). The identification of cognitive subtypes in Alzheimer’s disease dementia using latent class analysis. Journal of Neurology, Neurosurgery & Psychiatry, 87, 235–243. doi: http://doi.org/10.1136/jnnp-2014-309582
4. Scheltens, N. M. E., Tijms, B. M., Koene, T., Barkhof, F., Teunissen, C. E., Wolfsgruber, S. et. al. (2017). Cognitive subtypes of probable Alzheimer’s disease robustly identified in four cohorts. Alzheimer’s & Dementia, 13 (11), 1226–1236. doi: http://doi.org/10.1016/j.jalz.2017.03.002
5. Barreto, P. S., Demougeot, L., Vellas, B., Rolland, Y. (2017). Exercise training for preventing dementia, mild cognitive impairment, and clinically meaningful cognitive decline: a systematic review and meta-analysis. Journals of Gerontology Series A: Biological Sciences & Medical Sciences, 73 (11), 1504–1511. doi: http://doi.org/10.1093/gerona/glx234
6. Fiest, K. M., Roberts, J. I., Maxwell, C. J., Hogan, D. B., Smith, E. E., Frolkis, A. et. al. (2016). The Prevalence and In-
cence of Dementia Due to Alzheimer’s Disease: a Systematic Review and Meta-Analysis. Canadian Journal of Neurological Sciences / Journal Canadien Des Sciences Neurologiques, 43 (S1), S51–S82. doi: http://doi.org/10.1017/cjn.2016.36
7. Rosa, A. D. L., Olaso-Gonzalez, G., Archangnau, C., Millan, F., Salvador-Pascual, A., Garcia-Lucerga, C. et. al. (2020). Physical exercise in the prevention and treatment of Alzheimer’s disease. Journal of Sport and Health Science, 9 (5), 394–404. doi: http://doi.org/10.1016/j.jshs.2020.01.004
8. Global health and aging (2017). World Health Organization. Available at: https://www.who.int/publications/iLibrary/2017-06/global_health_aging.pdf
9. Dos Santos Picanco, L. C., Ozela, P. F., de Fatima de Brito Brito, M., Pinheiro, A. A., Padilha, E. C., Braga F. S. et. al. (2022). Alzheimer’s disease: a review from the pathophysiology to diagnosis, new perspectives for pharmacological treatment. Current Medicinal Chemistry, 25, 3141–3159. doi: http://doi.org/10.2174/0929867323666161213101126
10. Alzheimer’s disease facts and figures: includes a special report on the financial and personal benefits of early diagnosis (2018). Alzheimer’s Association. Available at: https://www.alz.org/media/homeoffice/facts %20and %20figures/facts-and-figures.pdf
11. Hebert, L. E., Weuve, J., Scherr, P. A., Evans, D. A., Bennett, D. A., fill, P. A., et al. (2012). Alzheimer’s disease: a review from the pathophysiology to diagnosis, new perspectives for pharmacological treatment. Current Medicinal Chemistry, 25, 3141–3159. doi: http://doi.org/10.2174/0929867323666161213101126
12. Northey, J. M., Cherbuin, N., Pumpa, K. L., Sayer, A. A., et. al. (2018). Exercise interventions for cognitive function in adults older than 50: a systematic review with meta-analysis. British Journal of Sports Medicine, 52, 154–160. doi: http://doi.org/10.1136/bjsports-2016-096587
13. Orgeta, V., Mukadam, N., Sommerlad, A., Livingston, G. (2019). The Lancet Commission on dementia prevention, intervention, and care: a call for action. Irish Journal of Psychological Medicine, 36, 85–88. doi: http://doi.org/10.1017/ipm.2018.4
14. Toots, A., Liitbrand, H., Boström, G., Hörnsten, C., Holmberg, H., Lundin-Olsson, L., et. al. (2017). Effects of Exercise on Cognitive Function in Older People with Dementia: A Randomized Controlled Trial. Journal of Alzheimer’s Disease, 60 (1), 323–332. doi: http://doi.org/10.3233/jad-170014
15. Blumenthal, J. A., Smith, P. J., Mabe, S., Hinderliter, A., Lin, P.-H., Liao, L. et. al. (2018). Lifestyle and neurocognition in older adults with cognitive impairments. Neurology, 92 (3), e212–e222. doi: http://doi.org/10.1212/wnl.0000000000006784
16. Fish, P. V., Steadman, D., Bayle, E. D., Whiting, P. (2019). New approaches for the treatment of Alzheimer’s disease. Bioorganic & Medicinal Chemistry Letters, 29 (2), 125–133. doi: http://doi.org/10.1016/j.bmcl.2018.11.034
17. Veit, D. P., Weiner, M. W., Aisen, P. S., Beckett, L. A., Cairns, N. J., Green, R. C. et. al. (2019). Understanding disease progression and improving Alzheimer’s disease clinical trials: Recent highlights from the Alzheimer’s Disease Neuroimaging Initiative. Alzheimer’s & Dementia, 15 (1), 106–152.
18. Devi, G., Schelten, P. (2018). Heterogeneity of Alzheimer’s disease: consequence for drug trials? Alzheimer’s Research & Therapy, 10 (1). doi: http://doi.org/10.1186/s13195-018-0455-y
19. Aisen, P. S., Cummings, J., Jack, C. R., Morris, J. C., Sperling, R., Frölich, L. et. al. (2017). On the path to 2025: understanding the Alzheimer’s disease continuum. Alzheimer’s Research & Therapy, 9 (1). doi: http://doi.org/10.1186/s13195-017-0283-5
20. Tatulian, S. A. (2022). Challenges and hopes for Alzheimer’s disease. Drug Discovery Today, 27 (4), 1027–1043. doi: http://doi.org/10.1016/j.drudis.2022.01.016
21. Obsiah rynku preparatyv dlia likuvannia khvoroby Altsheimera siahne 12,9 mrd dol. SSHA u 2028 r. (2020) Apteka, 5, 42. Available at: https://www.apтека.ua/article/552579
22. Sadiq, M. U., Kwak, K., Dayan, E. (2022). Model-based stratification of progression along the Alzheimer disease continuum highlights the centrality of biomarker synergies. Alzheimer’s Research & Therapy, 14 (1). doi: http://doi.org/10.1186/s13195-021-00941-1
23. Musiek, E. S., Morris, J. C. (2021). Possible Consequences of the Approval of a Disease-Modifying Therapy for Alzheimer Disease. JAMA Neurology, 78 (2), 141–142. doi: http://doi.org/10.1001/jamanetworkneurol.2020.4478
24. Unifikovanyi klinichnyi protokol pervynto, vtoryno (spetsializovani), tretyno (vysokospetsializovani) ta palichychnymi dobrovolnimi. Dementiia (2016). Nakaz MOZ Ukrainy No. 736 19.07.2016. Available at: https://www.dcc.gov.ua/wp-content/uploads/2019/11/2016_736_ykpmd_dem.pdf
25. Natsionalnyi perelik osnovnykh likarskykh zasobiv (2009). Postanova Kabinetu Ministru Ukrainy No. 333. 25.03.2009. Available at: https://moz.gov.ua/uploads/0/3799-na
26. Pro zatverdzhennia chotyrnadcidato vypusk a Derzhavnoho formulari likarskykh zasobiv ta zabezpechnia yoho dostupnosti (2022). Nakaz MOZ Ukrainy No. 1011. 13.06.2022. Available at: https://moz.gov.ua/article/ministry-mandates/nakaz-moz-ukrainy-vid-13062022--1011-pro-zatverdzhennia-chotyrnadcja-vypusk-derzhavnego-formulari-likarskih-zasobiv-ta-zabezpechnia-jogo-dostupnosti
27. Hudzenko, O. P., Tolochko, V. M. (2003). Farmakoeconomichni standarty likarskoho zabezpechnia pilhovoi katehorii naselenia promyslových rehioniv – khvorym tsukrovym i netsukrovym diabetom. Kharkiv: Vyd-vo NFaU, 24.
28. Fang, J.-Q. (Ed.) (2017). Handbook of Medical Statistics. China: Sun Yat-Sen University.
29. Kotvitska, A., Volkova, A., Korzh, I., Surikova, I. (2021). Comparative analysis of indicators that determine the effectiveness of the implementation of socio-economic determinants of health in Europe and Ukraine. ScienceRise: Pharmaceutical Science, 3 (31), 34–41. doi: http://doi.org/10.15587/2519-4852.2021.235787

DOI: 10.15587/2519-4852.2022.257527

USE OF ALGORITHM OF THE PREVENTION COMPLEX OF INFLAMMATORY PROCESSES IN THE ORAL CAVITY IN METABOLIC SYNDROME

p. 62–68

Lyudmila Kravchenko, Doctor of Medical Science, Professor, Department of Therapeutic Dentistry, Odessa National Medical University, Valikovsky lane, 2, Odessa, Ukraine, 65082 ORCID: http://orcid.org/0000-0002-9228-3313

Olena Appelhans, Doctor of Medical Science, Professor, Department of Normal and Pathological Clinical Anatomy, Odes-

108
The aim of the work was to evaluate in the experiment the effectiveness of the developed treatment-and-prophylactic complex for the prevention of periodontal tissue disorders under metabolic syndrome simulation.

Materials and methods: The study of biochemical and immunological changes in the blood serum, liver and gingival tissue was performed during simulation on the metabolic syndrome of alimentary genesis on Wistar rats, all animals were divided into 5 groups: 1) intact, 2) with simulated metabolic syndrome, 3) in a week after the start of MS simulation 5 times a week in the morning perorally administered a “Capillaroprotect” aqueous solution (bioflavonoid, antioxidant) produced by “Ekosvit Oil” (Ukraine) at a rate of 135 mg/kg, 4) under similar conditions receiving the preparation based on the dihydroquercetin, the dental elixir topically on gums with pathogenic microflora.

Results: Under conditions of experimental MS simulation with a diet rich in saturated fats and carbohydrate there are systemic disorders in the body: reduced nonspecific antimicrobial protection, increased microbial contamination, intensification of lipid peroxidation, the development of inflammation and hepatotoxicity. Prophylactic administration of the proposed dihydroquercetin preparation to animals in the process of simulation of MS significantly inhibits the established disorders, positively affecting the biochemical parameters of the blood serum, liver tissue, periodontium, reducing triglycerides, total cholesterol, glucose level, restoring the state of non-specific resistance, lipid metabolism, preventing inflammation and hepatosis, as well as contamination with pathogenic microflora.

Conclusions. The proposed treatment-and-prophylactic complex, which includes the dihydroquercetin preparation, used per os in combination with local therapy of periodontal tissues with a tooth elixir based on propolis and biologically active substances of plant origin adaptogens with ultraphonophoresis under induced metabolic syndrome significantly removed the negative effects of its most important components.

Keywords: metabolic syndrome, treatment-and-prophylactic complex, inflammation, cytokine status, periodontal tissues

References
1. Saklayen, M. G. (2018). The Global Epidemic of the Metabolic Syndrome. Current Hypertension Reports, 20 (2). doi: http://doi.org/10.1007/s11906-018-0812-z
2. Jaramillo, A., Contreras, A., Lafaurie, G. I., Duque, A., Ardila, C. M., Duarte, S., Osorio, L. (2016). Association of metabolic syndrome and chronic periodontitis in Colombians. Clinical Oral Investigations, 21 (5), 1537–1544. doi: http://doi.org/10.1007/s00784-016-1942-9
3. Hrygorieva, O. A., & Korotchuk, Y. V. (2020). Morphometric, instrumental and laboratory parameters of female rats with experimental metabolic syndrome. Achievements of Clinical and Experimental Medicine, 3, 20–25. doi: http://doi.org/10.11603/1811-2471.2020.v3i11578
4. Petruchkina, N. B., Shikh, E. V., Zorina, O. A., Kartysheva, E. V. (2018). Medikamentoznaia terapiia khroneicheskogo generalizovannogo parodontita u pacientov s metabolicheskim sindromom. Stomatologiya, 6 (2), 45–46.
5. Kravchenko, L., Appelhans, O., Poliakov, A., Unhurian, L., Ivchenko, N., Bas, N. et. al. (2021). Topical application of the new dental elixir for treatment of periodontal complications during experimental reproduction of the metabolic syndrome. Pharmacology online, 3, 1–9.
6. Gosteva, Z. V. (2016). Aktualnist kompleksnoho likuvannia khvorykh iz zakhvoriuvanniamy parodonta na tli metabolichnoho syndromu. Problemy osteolohii, 1, 51–56.
7. Reshetniak, M. V., Khirmanov, V. N., Zybina, N. N. (2011). Model metabolicheskogo sindroma, vyzzvannoe kormleniem fruktozi: patogeneticheskie vzaimosviazy obmennych narushenii. Medicinski akademisheski zhurnal, 11 (3), 23–27.
8. Birulina, J. G., Ivanov, V. V., Buyko, E. E., Bykov, V. V., Smagly, L. V., Nosarev, A. V. et al. (2021). High-fat, high-carbohydrate diet-induced experimental model of metabolic syndrome in rats. Bulletin of Siberian Medicine, 19 (4), 14–20. doi: http://doi.org/10.20538/1682-0363-2020-4-14-20
9. Makarova, M. N., Makarov, V. G. (2018). Diet-Induced Models Of Metabolic Disorders. Experimental Metabolic Syndrome. Laboratory Animals for Science, 1 (1), 79–91. doi: http://doi.org/10.29296/2618723x-2018-01-08
The components of essential oils were identified by comparison of the retention indices and mass spectra of phytochemicals found in the oils. The chemical composition of essential oils from V. longifolia L., V. incana L. and V. spicata L. flowers of Ukrainian flora are poorly studied. Phenolic acids, hydroxycinnamic acids, coumarins, flavonoids, tannins, iridoids, steroidal saponins, amino acids and organic acids have been reported for these species. Herbs harvested during the flowering stage are often used in the pharmaceutical industry, so the research into chemical composition of essential oils from Veronica species flowers is urgent.

The aim of this study was a comparative GC/MS study of the chemical composition of essential oils from V. longifolia L., V. incana L. and V. spicata L. flowers of Ukrainian flora.

Materials and methods. The objects of the research were flowers of Veronica spp. of Pseudolysimachium W.D.J. Koch section, namely V. longifolia L., V. incana L. and V. spicata L., harvested in the Botanical Garden of V. N. Karazin Kharkiv National University. The study of the chemical composition of essential oils was carried out by chromatography mass spectrometry on a 6890N MSD/DS Agilent Technologies chromatograph (USA) with a 5973N mass spectrometric detector.

The components of essential oils were identified by comparison of the retention indices and mass spectra of phytochemicals found in the oils. The chemical composition of essential oils from V. longifolia L., V. incana L. and V. spicata L. flowers of Ukrainian flora are poorly studied. Phenolic acids, hydroxycinnamic acids, coumarins, flavonoids, tannins, iridoids, steroidal saponins, amino acids and organic acids have been reported for these species. Herbs harvested during the flowering stage are often used in the pharmaceutical industry, so the research into chemical composition of essential oils from Veronica species flowers is urgent.

The aim of this study was a comparative GC/MS study of the chemical composition of essential oils from V. longifolia L., V. incana L. and V. spicata L. flowers of Ukrainian flora.

Materials and methods. The objects of the research were flowers of Veronica spp. of Pseudolysimachium W.D.J. Koch section, namely V. longifolia L., V. incana L. and V. spicata L., harvested in the Botanical Garden of V. N. Karazin Kharkiv National University. The study of the chemical composition of essential oils was carried out by chromatography mass spectrometry on a 6890N MSD/DS Agilent Technologies chromatograph (USA) with a 5973N mass spectrometric detector. The components of essential oils were identified by comparison of the retention indices and mass spectra of phytochemicals found in the oils. The chemical composition of essential oils from V. longifolia L., V. incana L. and V. spicata L. flowers of Ukrainian flora are poorly studied. Phenolic acids, hydroxycinnamic acids, coumarins, flavonoids, tannins, iridoids, steroidal saponins, amino acids and organic acids have been reported for these species. Herbs harvested during the flowering stage are often used in the pharmaceutical industry, so the research into chemical composition of essential oils from Veronica species flowers is urgent.

The aim of this study was a comparative GC/MS study of the chemical composition of essential oils from V. longifolia L., V. incana L. and V. spicata L. flowers of Ukrainian flora.

Materials and methods. The objects of the research were flowers of Veronica spp. of Pseudolysimachium W.D.J. Koch section, namely V. longifolia L., V. incana L. and V. spicata L., harvested in the Botanical Garden of V. N. Karazin Kharkiv National University. The study of the chemical composition of essential oils was carried out by chromatography mass spectrometry on a 6890N MSD/DS Agilent Technologies chromatograph (USA) with a 5973N mass spectrometric detector. The components of essential oils were identified by comparison of the retention indices and mass spectra of phytochemicals found in the oils. The chemical composition of essential oils from V. longifolia L., V. incana L. and V. spicata L. flowers of Ukrainian flora are poorly studied. Phenolic acids, hydroxycinnamic acids, coumarins, flavonoids, tannins, iridoids, steroidal saponins, amino acids and organic acids have been reported for these species. Herbs harvested during the flowering stage are often used in the pharmaceutical industry, so the research into chemical composition of essential oils from Veronica species flowers is urgent.

The aim of this study was a comparative GC/MS study of the chemical composition of essential oils from V. longifolia L., V. incana L. and V. spicata L. flowers of Ukrainian flora.

Materials and methods. The objects of the research were flowers of Veronica spp. of Pseudolysimachium W.D.J. Koch section, namely V. longifolia L., V. incana L. and V. spicata L., harvested in the Botanical Garden of V. N. Karazin Kharkiv National University. The study of the chemical composition of essential oils was carried out by chromatography mass spectrometry on a 6890N MSD/DS Agilent Technologies chromatograph (USA) with a 5973N mass spectrometric detector. The components of essential oils were identified by comparison of the retention indices and mass spectra of phytochemicals found in the oils. The chemical composition of essential oils from V. longifolia L., V. incana L. and V. spicata L. flowers of Ukrainian flora are poorly studied. Phenolic acids, hydroxycinnamic acids, coumarins, flavonoids, tannins, iridoids, steroidal saponins, amino acids and organic acids have been reported for these species. Herbs harvested during the flowering stage are often used in the pharmaceutical industry, so the research into chemical composition of essential oils from Veronica species flowers is urgent.

The aim of this study was a comparative GC/MS study of the chemical composition of essential oils from V. longifolia L., V. incana L. and V. spicata L. flowers of Ukrainian flora.

Materials and methods. The objects of the research were flowers of Veronica spp. of Pseudolysimachium W.D.J. Koch section, namely V. longifolia L., V. incana L. and V. spicata L., harvested in the Botanical Garden of V. N. Karazin Kharkiv National University. The study of the chemical composition of essential oils was carried out by chromatography mass spectrometry on a 6890N MSD/DS Agilent Technologies chromatograph (USA) with a 5973N mass spectrometric detector. The components of essential oils were identified by comparison of the retention indices and mass spectra of phytochemicals found in the oils. The chemical composition of essential oils from V. longifolia L., V. incana L. and V. spicata L. flowers of Ukrainian flora are poorly studied. Phenolic acids, hydroxycinnamic acids, coumarins, flavonoids, tannins, iridoids, steroidal saponins, amino acids and organic acids have been reported for these species. Herbs harvested during the flowering stage are often used in the pharmaceutical industry, so the research into chemical composition of essential oils from Veronica species flowers is urgent.

The aim of this study was a comparative GC/MS study of the chemical composition of essential oils from V. longifolia L., V. incana L. and V. spicata L. flowers of Ukrainian flora.

Materials and methods. The objects of the research were flowers of Veronica spp. of Pseudolysimachium W.D.J. Koch section, namely V. longifolia L., V. incana L. and V. spicata L., harvested in the Botanical Garden of V. N. Karazin Kharkiv National University. The study of the chemical composition of essential oils was carried out by chromatography mass spectrometry on a 6890N MSD/DS Agilent Technologies chromatograph (USA) with a 5973N mass spectrometric detector. The components of essential oils were identified by comparison of the retention indices and mass spectra of phytochemicals found in the oils. The chemical composition of essential oils from V. longifolia L., V. incana L. and V. spicata L. flowers of Ukrainian flora are poorly studied. Phenolic acids, hydroxycinnamic acids, coumarins, flavonoids, tannins, iridoids, steroidal saponins, amino acids and organic acids have been reported for these species. Herbs harvested during the flowering stage are often used in the pharmaceutical industry, so the research into chemical composition of essential oils from Veronica species flowers is urgent.

The aim of this study was a comparative GC/MS study of the chemical composition of essential oils from V. longifolia L., V. incana L. and V. spicata L. flowers of Ukrainian flora.

Materials and methods. The objects of the research were flowers of Veronica spp. of Pseudolysimachium W.D.J. Koch section, namely V. longifolia L., V. incana L. and V. spicata L., harvested in the Botanical Garden of V. N. Karazin Kharkiv National University. The study of the chemical composition of essential oils was carried out by chromatography mass spectrometry on a 6890N MSD/DS Agilent Technologies chromatograph (USA) with a 5973N mass spectrometric detector. The components of essential oils were identified by comparison of the retention indices and mass spectra of phytochemicals found in the oils. The chemical composition of essential oils from V. longifolia L., V. incana L. and V. spicata L. flowers of Ukrainian flora are poorly studied. Phenolic acids, hydroxycinnamic acids, coumarins, flavonoids, tannins, iridoids, steroidal saponins, amino acids and organic acids have been reported for these species. Herbs harvested during the flowering stage are often used in the pharmaceutical industry, so the research into chemical composition of essential oils from Veronica species flowers is urgent.
cals in the studied essential oils with the data of NIST02 mass spectral library. The quantification of substances in the raw materials was carried out in comparison with a standard sample of menthol.

Results. As a result, 72 compounds were detected and quantified. The total content of essential oil in V. longifolia L. flowers was 0.17% (39 components), the following compounds dominated: benzocacetdehyde – 8.05, squalene – 5.17, palmitic acid – 15.73, butyl phthalate – 7.18. The total content of essential oil in V. incana L. flowers was 0.15% (43 components), the following compounds prevailed: squalene 20.47, fatty acids, namely palmitic – 26.88, palmitoleic – 17.15, oleic – 11.61. The total content of the essential oil in V. spicata L. flowers was 0.11% (43 components), the following compounds dominated: squalene – 5.53, fatty acids: palmitic – 22.78, linoleic – 6.72, carbohydrates: heptacosan – 12.27, hexacosan – 7.45. Among the identified compounds, mono-, norseque-, sesque-, di- and triterpenoids, their oxidation products (aromatic compounds, aldehydes and alcohols, ketones), fatty acids, hydrocarbons and their derivatives were detected.

Conclusions. The chemical composition of essential oils from flowers of V. longifolia L., V. incana L. and V. spicata L. from Ukrainian flora was first studied by means of chromatography mass spectrometry. The yield of essential oil from V. longifolia L. flowers is higher (0.17%) compared to those from flowers of V. incana L. (0.15 %) and V. spicata L. (0.11 %). Among the identified compounds terpenoids, aromatic compounds, their oxidation products, fatty acids and their esters, hydrocarbons were detected. The study of biologically active substances in essential oils from Veronica species flowers expands the scientific data on the chemical composition of these species and gives background for the further development of medicinal products, their standardization and understanding of their pharmacological activity.

Keywords: essential oil, flowers, GC-MS analysis, V. longifolia L., V. incana L., V. spicata L.

References:

1. Veronica L. Plants of the World Online. Kew Science. Available at: https://powo.science.kew.org/taxon/urn:lsid:ipni.org:names:30005997-2

2. Wheeler, J., Marchant, N., Lewington, M., Graham, L. (2002). Flora of the south west, Bunbury, Augusta, Denmark. Vol. 2, dicotyledons. Australian Biological Resources Study. Canberra.

3. Grieve, B. J., Blackall, W. E. (1982). How to know Western Australian wildflowers: a key to the flora of the extratropical regions of Western Australia. Part IV. University of W.A. Press.

4. Buono, D., Khan, G., von Hagen, K. B., Kosachev, P. A., Mayland-Quellhorst, E., Mosyakin, S. L., Albach, D. C. (2021). Comparative Phylogeography of Veronica spicata and V. longifolia (Plantaginaceae) Across Europe: Integrating Hybridization and Polyploidy in Phylogeography. Frontiers in Plant Science, 11. doi: http://doi.org/10.3389/fpls.2020.588354

5. Muñoz-Centeno, L. M., Albach, D. C., Sánchez-Agudo, J. A., Martínez-Ortega, M. M. (2006). Systematic Significance of Seed Morphology in Veronica (Plantaginaceae): A Phylogenetic Perspective. Annals of Botany, 9 (2), 335–350. doi: http://doi.org/10.1093/aob/mcl120

6. Martínez-Ortega, M. M., Sánchez, J. S., Rico, E. (2000). Palynological study of Veronica Sect. Veronica and Sect. Veronicastrum (Scrophulariaceae) and its taxonomic significance. Grana, 39 (1), 21–31. doi: http://doi.org/10.1080/0017313015030777

7. Albach, D. C., Martínez-Ortega, M. M., Delgado, L., Weiss-Schneeweiss, H., Özgökce, F., Fischer, M. A. (2008). Chromosome Numbers in Veronicae (Plantaginaceae): Review and Several New Counts. Annals of the Missouri Botanical Garden, 95 (4), 543–566. doi: http://doi.org/10.3417/2006094

8. Xue, H., Chen, K.-X., Zhang, L.-Q., Li, Y.-M. (2019). Review of the Ethnopharmacology, Phytochemistry, and Pharmacology of the Genus Veronica. The American Journal of Chinese Medicine, 47 (6), 1193–1221. doi: http://doi.org/10.1142/s0129049819500617

9. Albach, D. C., Martínez-Ortega, M. M., Fischer, M. A., Chase, M. W. (2004). A new classification of the tribe Veronicae-problems and a possible solution. Taxon, 53 (2), 429–452. doi: http://doi.org/10.2307/4135620

10. Albach, D., Fischer, M. (2003). AFLP-and genome size analyses: contribution to the taxonomy of Veronica subg. Pseudolysimachium sect. Pseudolysimachion (Plantaginaceae), with a key to the European taxa. Phyt. Bale, 9, 401–424.

11. Mosyakin, S. L., Fedoronchuk, M. M. (1999). Vascular plants of Ukraine: A nomenclatural checklist. Kyiv, 345.

12. Salehi, B., Shivaprasad Shetty, M., V. Anil Kumar, N., Živković, J., Calina, D., Oana Docea, A. et. al. (2019). Veronica Plants – Drifting from Farm to Traditional Healing, Food Application, and Phytopharmacology. Molecules, 24 (13), 2454. doi: http://doi.org/10.3390/molecules24132454

13. Witkowska-Banaszczak, E., Durkiewicz, M., Bylka, W. (2016). The Genus Veronica L. – activity, therapeutic use, review of research. Borgis. Post py Fitoterapii, 71–77.

14. Beara, I., Živković, J., Lesjak, M., Ristić, J., Šavićkin, K., Maksimović, Z., Janković, T. (2015). Phenolic profile and anti-inflammatory activity of three Veronica species. Industrial Crops and Products, 63, 276–280. doi: http://doi.org/10.1016/j.indcrop.2014.09.034

15. Gusev, N. F., Nemereshina, O. N. (2005). Antibacterial study of preparations from Veronica L. species. Cis-Urals. Ecolohization of nature management in the agro-industrial complex. Agricultural sciences, 4 (8), 43–47.

16. Harput, U. S., Saracoglu, I., Inoue, M., Ogihara, Y. (2002). Anti-inflammatory and Cytotoxic Activities of Five Veronica Species. Biological and Pharmaceutical Bulletin, 25 (4), 483–486. doi: http://doi.org/10.1248/bpb.25.483

17. Dunkić, V., Kosalec, I., Kosir, I., Potocnik, T., Cernek, A., Koncic, M. et. al. (2015). Antioxidant and antimicrobial properties of Veronica spicata L. (Plantaginaceae). Current Drug Targets, 16 (14), 1660–1670. doi: http://doi.org/10.2174/1389450116666150531161820

18. Harpet, U. S. (2011). Radical scavenging effects of different Veronica L. Species. Records of natural product, 5 (2), 100–107.
19. Jensen, S. R., Gofrdesen, C. H., Harput, U. S., Saracoglu, I. (2010). Chlorinated Iridoid Glucosides from Veronica longifolia and Their Antioxidant Activity. Journal of Natural Products, 73 (9), 1593–1596. doi: http://doi.org/10.1021/np100366k

20. Nazlić, M., Kremer, D., Grubešić, R. J., Soldo, B., Vuko, E., Stabentineher, E. et. al. (2020). Endemic Veronica saturejoides Vis. ssp. saturejoides–Chemical Composition and Antioxidant Activity of Free Volatile Compounds. Plants, 9 (12), 1646. doi: http://doi.org/10.3390/plants9121646

21. Kovalova, A. M., Osmachko, A. P., Kashpur, N. V., Hrudko, I. V. (2016). The antibacterial activity of complexes of Veronica Longifolia Herb. Ukrainian Biopharmaceutical Journal, 1, 58–62.

22. Taskova, R. M., Albach, D. C., Grayer, R. J. (2004). Phylogeny of Veronica– a Combination of Molecular and Chemical Evidence. Plant Biology, 6 (6), 673–682. doi: http://doi.org/10.1055/s-2004-830330

23. Taskova, R., Peev, D., Handjieva, N. (2002). Iridoid glucosides of the genus Veronica s.l. and their systematic significance. Plant Systematics and Evolution, 231 (1-4), 1–17. doi: http://doi.org/10.1007/s100600200008

24. Kovaleva, A., Ain, R., Tetiana, I., Osmachko, A., Goryachaya, O., Omelyanchik, L., Koshovyi, O. (2022). Carboxylic acids in the flowers of Veronica spicata L. and Veronica incana L. ScienceRise: Pharmaceutical Science, 1 (35), 37–43. doi: http://doi.org/10.15587/2519-4852.2022.255341

25. Osmachko, A. P., Kovaleva, A. M., Ili’ina, T. V., Koshovyi, O. N., Komisarenko, A. M., Akhmedov, E. Yu. (2017). Study of Macro- and Microelements Composition of Veronica longifolia L. Herb and Veronica teucrium L. Herb and Rhizomes, and Extracts Obtained from These Species. Azerbayan Pharmaceutical and Pharmacotherapeutic Journal, 1, 24–28.

26. Osmachko, A. P., Kovaleva, A. M., Goryachaya, O. V., Avidzba, Yu. N. (2016). Amino acid composition of Veronica teucrium L. Herb. Der Pharma Chemica, 8 (10), 216–220.

27. Xue, H., Chen, K.-X., Zhang, L.-Q., Li, Y.-M. (2019). Review of the Ethnopharmacology, Phytochemistry, and Pharmacology of the Genus Veronica. The American Journal of Chinese Medicine, 47 (6), 1193–1221. doi: http://doi.org/10.1142/s0192415x19500617

28. Mykhailenko, O., Kovalyov, V., Orlova, T. (2020). Chemical composition of the essential oil of several Iris species. Thai Journal of Pharmaceutical Sciences, 44 (3), 179–185.

29. Krivoruchko, E. V., Kovalyov, V. N. (2011). Essential oil from Aroma melonocarpus flowers. Chemistry of Natural Compounds, 47 (4), 644–645. doi: http://doi.org/10.1007/s10600-011-0019-x

30. Koshovyi, O., Raal, A., Kovaleva, A., Myha, M., Iliina, T., Borodina, N., Komisarenko, A. (2020). The phytochemical and chemotaxonomic study of Salvia spp. growing in Ukraine. Journal of Applied Biology & Biotechnology, 8 (3), 29–36. doi: http://doi.org/10.7324/jabb.2020.80306

31. Osmachko, A. P., Kovaleva, A. M., Ili’ina, T. V., Goryachaya, O. V. (2014). Components of essential oil of Veronica longifolia L. leaves and flowers. The Pharma Innovation, 3 (1), 1–6.

32. Starchenko, G., Hrytsky, A., Raal, A., Koshovyi, O. (2020). Phytochemical Profile and Pharmacological Activities of Water and Hydroethanolic Dry Extracts of Calluna vulgaris (L.) Hull. Herb. Plants, 9 (6), 751. doi: http://doi.org/10.3390/plants9060751

33. Ilina, T., Skowrońska, W., Kashpur, N., Graniec, S., Bazylik, A., Kovalyova, A. et. al. (2020). Immunomodulatory Activity and Phytochemical Profile of Infusions from Cleavers Herb. Molecules, 25 (16), 3721. doi: http://doi.org/10.3390/molecules25163721

34. Derzhavina Farmakopeia Ukrainy. Vol. 3 (2015). Kharkiv: DU «Ukrainskyi naukovyi farmakeiini tsentr yakosti likarskykh zasobiv».

35. Bondarenko, V. N., Kanivska, I. Yu., Paramonova, S. M. (2006). Teoriiya ymovirnosti i matematychna statystyka. P. I. Kyiv: NTUU “KPI”, 125.

36. Chamorro, E. R., Zambón, S. N., Morales, W. G., Sequeira, A. F., Velasco, G. A. (2012). Study of the Chemical Composition of Essential Oils by Gas Chromatography. Gas Chromatography in Plant Science, Wine Technology, Toxicology and Some Specific Applications. doi: http://doi.org/10.5772/33201

37. Gören, N., Demirci, B., Baser, K. H. C. (2001). Composition of the essential oils of Tanacetum spp. from Turkey. Flavour and Fragrance Journal, 16 (3), 191–194. doi: http://doi.org/10.1002/ffj.976

38. Binh, N. Q., Tung, N. T., Hanh, N. P., Truong, L. H., Cuong, N. H., Hoai, K. T. et. al. (2021). Chemical Composition of Essential Oils from the Leaves, Stems and Roots of Aristolochia petelotii O. C. Schmidt Growing in Vietnam. Journal of Essential Oil Bearing Plants, 24 (5), 983–989. doi: http://doi.org/10.1080/0972060x.2021.1987335

39. Bicchi, C., Brunelli, C., Cordero, C., Rubiolo, P., Galli, M., Sironi, A. (2004). Direct resistively heated column gas chromatography (Ultrafast module-GC) for high-speed analysis of essential oils of differing complexities. Journal of Chromatography A, 1024 (1-2), 195–207. doi: http://doi.org/10.1016/j.chroma.2003.10.018

40. Cri şan, G., Tămăş, M., Micălu ş, V., Krausz, T., and Sandor, V. (2007). A comparative study of some Veronica L. species. Rev Med Chir Soc Med Nat Iasi, 111 (1), 280–284.

41. Kim, S.-K., Karadeniz, F. (2012). Biological Importance and Applications of Squalene and Squalane. Advances in Food and Nutrition Research, 65, 223–233. doi: http://doi.org/10.1016/b978-0-12-416003-3.00014-7

42. De Carvalho, C., Caramujo, M. (2018). The Various Roles of Fatty Acids. Molecules, 23 (10), 2583. doi: http://doi.org/10.3390/molecules23102583

43. Innis, S. M. (2015). Palmitic Acid in Early Human Development. Critical Reviews in Food Science and Nutrition, 56 (12), 1952–1959. doi: http://doi.org/10.1080/10408398.2015.1018045

44. Menary, R. C., Garland, S. M. (1999). Authenticating Essential Oil Flavours and Fragrances – Using Enantiomeric Composition Analysis. Publication No. 99/125. Project No.UT-15A. Available at: https://www.agrifutures.com.au/wp-content/uploads/publications/99-125.pdf

45. Micera, M., Botto, A., Geddo, F., Antoniotti, S., Bertea, C. M., Levi, R. et. al. (2020). Squalene: More than a Step toward Sterols. Antioxidants, 9 (8), 688. doi: http://doi.org/10.3390/antiox9080688
The thinness and sensitivity of the skin in the area under the eyes cause the skin in this area to easily show signs of aging. Hydrogel masks contain quite a lot of water, so during use this mask will moisturize the skin longer. A hydrogel eye mask containing yellow potato tuber water extract is used for the prevention of premature aging, especially under the eyes.

The purpose of this study was to determine whether hydrogel eye mask preparations containing water extract of yellow potato tubers can provide an anti-aging effect.

Material and methods: The yellow potato tuber water extract was screened for phytochemicals, then formulated into a hydrogel eye mask with a concentration of 0.25 %, 0.5 %, and 1 %. Evaluation of the hydrogel eye mask preparation includes organoleptic, weight, thickness, pH test, tensile test, swelling power, shrinkage, stability, cycling test, hedonic test, and anti-aging. Anti-aging parameters measured include moisture, pores, blemishes, and wrinkles. The treatment was carried out for four weeks by applying the mask twice a week.

Results: The results showed that all hydrogel eye mask formulations were stable during storage and cycling tests. All formulas meet pH values, shrinkage, elasticity, swellability, and irritation tests. The hedonic test on volunteers shows the most preferred concentration of 1 %. The results of the anti-aging effectiveness test of the best hydrogel eye mask preparation is a concentration of 1 % with an increase in humidity of 27 %, a decrease in pores of 35.8 %, blemishes of 40 %, and wrinkles of 37.6 %.

Conclusion: That the different concentrations of each formula showed different anti-aging activities and the best formula was 1 % with moisture values of 27 %, pore values of 35.8 %, blemishes of 40 %, and wrinkles values of 37.6 %, which indicated anti-aging activity.

Keywords: water extract, anti-aging, yellow potato tuber, hydrogel eye mask, solanum tuberosum L., pore, wrinkle, moisture, spot, shrinkage

References
1. Ardhie, A. M. (2011). Radikal bebas dan peran antioksidan dalam mencegah penuaan. Medicinus, 24 (1), 4–9.
2. Bogadenta, A. (2012). Antisipasi Gejala Penuaan Dini pada Wajah. Kalpataru. Jurnal Kesehatan, 1 (2), 97–104.
3. Bucay, V. W., Day, D. (2013). Adjunctive Skin Care of the Brow and Periorbital Region. Clinics in Plastic Surgery, 40 (1), 225–236. doi: http://doi.org/10.1016/j.cps.2012.09.003
4. Candra, R. (2020). Aspek Dermatologi Penuaan Kulit Periorbital. Dermatologi dan Kebenihan. Medan. Universitas Sumatera Utara. Jalan Dr. T. Mansur No. 9, Padang Bulan, Kec. Medan Baru, Kota Medan, Sumatera Utara, Indonesia, 20222
5. Chandra, R. (2020). Aspek Dermatologi Penuaan Kulit Periorbital. Dermatologi dan Kebenihan. Medan. Universitas Sumatera Utara. Jalan Dr. T. Mansur No. 9, Padang Bulan, Kec. Medan Baru, Kota Medan, Sumatera Utara, Indonesia, 20222
6. Day, D. (2013). Adjunctive Skin Care of the Brow and Periorbital Region. Clinics in Plastic Surgery, 40 (1), 225–236. doi: http://doi.org/10.1016/j.cps.2012.09.003
al activities of ethanol extract of Vernonia amygdalina Delile. Leaves. AIP Conference Proceedings, 2342 (1), 080011. doi: http://doi.org/10.1063/5.0045447

9. Ginting, M., Fitri, K., Leny, L., Lubis, B. K. (2020). Formulasi dan Uji Efektifitas Anti-Aging dari Masker Clay Ekstrak Tanah Kentang Kuning (Solamun tuberosum L.). Jurnal Dunia Farmasi, 4 (2), 68–75. doi: http://doi.org/10.33085/jdf.v4i2.4541

10. Lemba, A. P. (2010). Pengaruh Jenis Pelarut dan Pengolahan Terhadap Aktivitas Antioksidan pada Produk Olahan Kentang (Solamun tuberosum L.). Jakarta.

11. Tranggono, R. I., Latifah, F. (2007). Buku pegangan.

12. Dijen, P. O. M. (1985). Formularium Kosmetika Indonesia', Jakarta: Departemen Kesehatan RI. Hal, 83 (85), 106–132.

13. Okwani, Y., Halid, N. A., Hasanuddin, S., Djunaidin, D., Hikmat, D. J. (2020). Formulasi Hydrogel Eye Mask Berbasis Ekstrak Limbah Kepala Udang Putih (Litopenaeus vannamei) Sebagai Suplemen dan Relaksasi Mata Lelah. Jurnal Mandala Pharmacon Indonesia, 6 (2), 111–117. doi: http://doi.org/10.35311/jmpi.v6i2.63

14. Dukha, R. N. (2014). Formulasi membran hidrogel berpori berbasis kombinasi HPMC (hydroxy propyl methyl cellulose) dan gelatin dengan metodece particle leaching serta penetapan karakteristik fisik-mekanik. Universitas Muhammadiyah Yogyakarta.

15. Panjaitan, E. N., Saraghi, A., Purba, D. (2013). Formulasi gel dari ekstrak rimang jahe merah (Zingiber officinale Roscoe). Journal of Pharmaceutics and Pharmacology, 1 (1), 9–20.

16. Tarwendah, I. P. (2017). Comparative study of sensory attributes and brand awareness in food product: A Review. Journal of Food and Agroindustry, 5 (2), 66–73.

17. Sitti Zubaydah, W. O., Septi Fandinata, S. (2020). Formulasi Sediaan Masker Gel Peel-Off dari Ekstrak Buah Tomat (Solanum Lycopersicum L.) Beserta Uji Aktivitas Antioksidan. Journal Syifa Sciences and Clinical Research, 2 (2), 73–82. doi: http://doi.org/10.37331/jsccr.v2i2.6980

18. Rusu, M. E., Gheldiu, A.-M., Mocan, A., Vlase, L., Popa, D.-S. (2018). Anti-aging potential of tree nuts with a focus on the phytochemical composition, molecular mechanisms and thermal stability of major bioactive compounds. Food & Function, 9 (5), 2554–2575. doi: http://doi.org/10.1039/c7fo01967j

19. Yumas, M., Ramlah, S., Mаманг, M. (2015). The Formulations of Scrub Cream from Non Fermentation Cocoa Powder and The Effects on Skin. Biopropal Industri, 6 (2).

20. Fitri, R., Reveny, J., Harahap, U., Dharmawan, H., Nasri (2021). Anti-Acne Activity From Biocellulose Mask Formula Containing (Aloe Vera (L.) Burn.F) Essence Combined With Vitamin E. Indonesian Journal of Pharmaceutical and Clinical Research, 4 (1), 1–7. doi: http://doi.org/10.32734/idpcer.v4i1.5382

21. Lubis, M. S., Dewi, I. N. (2019). Aplikasi polimer pada sediain krim body scrub ekstrak etanol ubi jalar ungu (Ipomoea batatas (L.) Lam). Prosiding SainsTeKes, 1, 37–57.

22. Ningrum, L., Rosavira, T., Pambudi, B. (2017). How the panelists votes chicken ballotine with analog chicken turkey and duck. International Journal of Innovative Science and Research Technology, 2 (4), 2017.

23. Suryono, C., Ningrum, L., Dewi, T. R. (2018). Uji Kesuksesan dan Organoleptik Terhadap 5 Kemasan Dan Produk Kepulauan Seribu Secara Deskriptif. Jurnal Pariwisata, 5 (2), 95–106. doi: http://doi.org/10.31311/par.v5i2.3526

24. Putro, D. S. (1998). Agar awet muda. Trubus Agriwidya.

25. Mamoto, N., Kalangi, S., Karundeng, R. (2009). Peran Melanokortin pada Melanosit. Jurnal Biomedek (JBM), 1 (1). doi: http://doi.org/10.35790/jbm.11.2009.805

26. Atmajah, N. S., Setyowati, E. (2012). Pengaruh Kosmetika Anti Aging Wajah Terhadap Hasil Perawatan Kulit Wajah. Beauty and Beauty Health Education, 1 (1).

DOI: 10.15587/2519-4852.2022.263878

DEVELOPMENT OF THE SPECTROPHOTOMETRIC METHOD FOR THE DETERMINATION OF ATORVASTATIN IN TABLETS USING BROMOTHYMOL BLUE

Natalija Shulyak, Postgraduate Student, Department of Pharmaceutical Chemistry, Ivan Horbachevsky Ternopil National Medical University of the Ministry of Health of Ukraine, Voli ave., 1, Ternopil, Ukraine, 46001, Lecturer, Municipal Institution of Higher Education «Volyn Medical Institute» of Volyn Oblast Council, Lesi Ukrainky str., 2, Lutsk, Ukraine, 43016

ORCID: https://orcid.org/0000-0003-4593-7190

Svitlana Protsyk, Department of Pharmaceutical Chemistry, Ivan Horbachevsky Ternopil National Medical University of the Ministry of Health of Ukraine, Voli ave., 1, Ternopil, Ukraine, 46001

ORCID: https://orcid.org/0000-0001-5030-5599

Tetyana Kucher. PhD, Associate Professor, Department of Pharmaceutical Chemistry, Ivan Horbachevsky Ternopil National Medical University of the Ministry of Health of Ukraine, Voli ave., 1, Ternopil, Ukraine, 46001

ORCID: https://orcid.org/0000-0001-9879-5590

Liubomyr Kryskiw, PhD, Associate Professor, Department of Pharmaceutical Chemistry, Ivan Horbachevsky Ternopil National Medical University of the Ministry of Health of Ukraine, Voli ave., 1, Ternopil, Ukraine, 46001

ORCID: https://orcid.org/0000-0001-8129-8167

Olha Poliak. PhD, Associate Professor, Department of Pharmaceutical Chemistry, Ivan Horbachevsky Ternopil National Medical University of the Ministry of Health of Ukraine, Voli ave., 1, Ternopil, Ukraine, 46001

ORCID: https://orcid.org/0000-0003-4765-395X

Nadiya Zarivna, PhD, Associate Professor, Department of Pharmaceutical Chemistry, Ivan Horbachevsky Ternopil Na-
The aim of the work was to develop a simple, economic, fast, reliable, and eco-friendly spectrophotometric method for the determination of atorvastatin in tablets based on the reaction with bromothymol blue (BTB).

Material and methods. A double–beam Shimadzu UV-Visible spectrophotometer, with spectral bandwidth of 1 nm wavelength accuracy ±0.5 nm, Model –UV 1800 (Japan), Software UV-Probe 2.62 was used to measure absorbance of the resulting solution. Pharmacopeial standard sample of atorvastatin calcium and BTB were provided by Sigma-Aldrich (≥98 %, HPLC). The used dosage forms of atorvastatin: tablets Atorvastatin 10 mg and 20 mg.

Results and discussion. The method of spectrophotometric determination of the quantitative content of atorvastatin calcium based on its reaction with BTB in ethyl acetate medium has been developed. The stoichiometric ratios of the reactive components as 1:1 were obtained by the methods of continuous changes and the saturation method. Linearity regression equation was $y=0.0017x+0.0496$ and the obtained correlation coefficient was $R^2=0.9993$. The linear relationship was found between absorbance at λmax and concentration of medicines in the range 15.48–154.80 µg/mL. The LOD and LOQ values were calculated to be 4.85 µg/mL and 14.71 µg/mL respectively. Spectrophotometric method for the determination of atorvastatin in tablets using BTB was developed in accordance with GAC principles.

Conclusions. A simple, economic, fast, reliable and eco-friendly spectrophotometric method was developed for the determination of atorvastatin calcium in tablets based on the reaction with BTB and validated according to the standardized validation procedure by the standard method. It was proved that according to such validation characteristics as linearity, precision, accuracy, and robustness the proposed method met the requirements of SPhU.

Keywords: atorvastatin, bromothymol blue, statins, spectrophotometry, validation, quantitative determination, pharmaceutical analysis, tablets

References
1. Lippi, G., Mattiuzzi, C., & Cervellin, G. (2019). Statins popularity: a global picture. British Journal of Clinical Pharmacology, 85 (7), 1614–1615. doi: http://doi.org/10.1111/ bcp.13944
2. European Pharmacopoeia (2020). Available at: https://www.edqm.eu/en/european-pharmacopoeia-ph-eur-10th-edition
3. Myronova, O. Yu., Vasjuk, S. O. (2015). Spectrophotometric determination of atorvastatin calcium. Current issues in pharmacy and medicine: science and practice, 1 (17), 32–35. doi: http://doi.org/10.14739/2409-2932.2015.1.41370
4. Al Adl, S. M., Abdel Aziz, L. M., Mohamed, M. A. (2017). Spectrophotometric Determination of Atorvastatin Calcium and Rosuvastatin Calcium in Bulk and Dosage Form Using P-Dimethylaminobenzaldehyde. Journal of Applied Pharmacy, 9 (1), doi: http://doi.org/10.21065/1920-4159.1000233
5. Alshabrawy, A., Mostafa, A., Abotaleb, N. (2017). Sensitive Spectrophotometric Determination of Atorvastatin in Pharmaceutical Formulation by Ion Pair Complexation with Pararosaniline Hydrochloride. Journal of Advanced Pharmacy Research, 1 (4), 193–200. doi: http://doi.org/10.21608/aphr.2017.4040
6. Bernard, S., Rani, S., Babitha, M. C. (2018). New spectrophotometric method for the estimation of atorvastatin calcium and aspirin using urea as hydrotopic solubilizing agent, Hygeia. Journal for Drugs and Medicines, 9 (2), 11–19. doi: http://doi.org/10.15254/h.j.d.med.9.2018.169
7. Ramadan, A. A., Mandil, H., Sabouni, J. (2015). Determination of atorvastatin calcium in pure and its pharmaceutical formulations using iodine in acetoni trile by UV-Visible spectrophotometric method. International Journal of Pharmacy and Pharmaceutical Sciences, 7 (9), 427–433. Available at: https://innovareacademics.in/journals/index.php/ijpps/article/view/7535/pdf_1137
8. Naveed, S. (2014). Simple UV spectrophotometric assay of atorvastatin API formulation and their comparative study. D Global Journal of Medical Research: BPharma, Drug Discovery, Toxicology and Medicine, 14 (2), 211–216. Available at: https://globaljournals.org/GJMR_Volume14/4-Simple-UV-Spectrophotometric-Assay.pdf
9. Hirave, R., Bendguide, R. D., Maniyar, M. G., Kondawar, M. S., Patil, S. B. (2013). Spectrophotometric method for simultaneous estimation of atorvastatin calcium and fenofibrate in tablet Dosage Form. International Journal of Drug Development and Research, 5 (1), 38–42. Available at: https://www.itmedicalteam.pl/articles/spectrophotometric-method-for-simultaneous-estimation-ofatorvastatin-calcium-fenofibrate-in-tablet-dosage-form-100789.html
10. Jani, D. J., Ahmed, M., Shetty, S. K. A, Sridhar, B. K., Shah, J. S. (2010). Simultaneous spectrophotometric estimation of atorvastatin calcium and amiodipine besylate in combined tablet dosage form by area under curve method. International Journal of Chemical Science, 8 (1), 701–710. Available at: https://www.tsjournals.com/articles/simultaneous-spectrophotometric-estimation-ofatorvastatin-calcium-and-amiodipine-besylate-in-combined-tablet-dosage-for.pdf
11. Tomlesh, B. D., Sujata, S. D., Farhin, S. I. (2018). Simultaneous estimation of atorvastatin calcium and telmisartan in tablet dosage form by spectrophotometry. International journal of pharmacy and pharmaceutical research, 11 (2), 46–58. Available at: https://ijppr.humanjournals.com/wp-content/uploads/2018/02/5.Tomlesh-B.-Deshmukh-Sujata-S.-Deo-Farhin-S.-Inam.pdf
12. Shulyak, N., Pionski, M., Kovalenko, S., Bakovska Stoimenova, T., Balkanov, T., El-Subbagh, H. I. et. al. (2021). Development of a Novel, Fast, Simple HPLC Method for Determination of Atorvastatin and its Impurities in Tablets. Scien-
13. Shulyak, N., Piponski, M., Kovalenko, S., Stoimenova, T. B., Drapak, I., Piponska, M. et. al. (2021). Chototropic salts impact in HPLC approaches for simultaneous analysis of hydrophilic and lipophilic drugs. Journal of Separation Science, 44 (15), 2908–2916. doi: http://doi.org/10.1002/jssc.202100016

14. Issa, Y. M., Abdel-Gawad, F. M., Abou Table, M. A., Hussein, H. M. (1997). Spectrophotometric Determination of Ofloxacin and Lomefloxacin Hydrochloride with Some Sulphonphthalein Dyes. Analytical Letters, 30 (11), 2071–2084. doi: http://doi.org/10.1080/00032719708001722

15. Prashanth, K., Basavaiah, K., Raghu, M. (2012). Rapid and sensitive spectrophotometric measurement of non-specific beta blocker propranolol hydrochloride using three sulphonphthalein dyes in pure form, pharmaceuticals and human urine. Chemical Sciences Journal, 2012, 2 14. Available at: https://www.hilarispublisher.com/open-access/rapid-and-sensitive-spectrophotometric-measurement-of-non-specific-beta-blocker-propranolol-hydrochloride-.2150-3494.1000056.pdf

16. Abdine, H., Belal, F., Zoman, N. (2002). Simple spectrophotometric determination of cinnarizine in its dosage forms. Il Farmaco, 57 (4), 267–271. doi: http://doi.org/10.1016/s0014-827x(02)01204-1

17. Derayea, S. M. S. (2014). An application of eosin Y for the selective spectrophotometric and spectrofluorimetric determination of mebeverine hydrochloride. Anal. Methods, 6 (7), 2270–2275. doi: http://doi.org/10.1039/c3ay41371e

18. Hedjazi, M., Vishnikin, A. B., Balanenko, A. D. (2021). A green spectrophotometric method for determination of drotaverine hydrochloride in pharmaceutical preparations using formation of ion association complex with erythrosine. Journal of Chemistry and Technologies, 29 (3), 467–475. doi: http://doi.org/10.15421/jchemtech.v29i3.242348

19. El-Enany, N. (2004). Spectrophotometric determination of gliclazide in pharmaceuticals and biological fluids through ternary complex formation with eosin and palladium (II). Il Farmaco, 59 (1), 63–69. doi: http://doi.org/10.1016/j.farmac.2003.08.007

20. Derzhavna farmakopeia Ukrainy. Vol. 1 (2015). Kharkiv: Derzhavne pidpryiemstvo «Ukrainskyi naukovo-ekspertnyi farmakopeinyi tsentr yakosti likarskyh zasobiv», 1128.

21. Gałuszka, A., Migaszewski, Z. M., Konieczka, P., Namieśnik, J. (2012). Analytical Eco-Scale for assessing the greenness of analytical procedures. TrAC Trends in Analytical Chemistry, 37, 61–72. doi: http://doi.org/10.1016/j.trac.2012.03.013

22. Pena-Pereira, F., Wojnowski, W., Tobiszewski, M. (2020). AGREE – Analytical GREEnness Metric Approach and Software. Analytical Chemistry, 92 (14), 10076–10082. doi: http://doi.org/10.1021/acs.analchem.0c01887
АНАТОАЦІЇ

DOI: 10.15587/2519-4852.2022.263054

ДОСЛІДЖЕННЯ УТВОРЕННЯ МІЦЕЛ ТА ЇХ СТРУКТУРИ МЕТОДОМ СПІНОВИХ ЗОНДІВ (с. 4–18)

О. П. Бегула, М. О. Липунов, В. А. Чебанов, О. М. Липунов

Мета. Дослідити розчини ПАР методом спінових зондів зазначені від вмісту класу ПАР, а також їх взаємодії з деякими допоміжними речовинами.

Матеріал та методи. Розчини іонних і неіонних ПАР, в які вводили 4 спінові зонди, що різняться за молекулярною структурою і розчинністю. Отримували спектри електронного параходнівого резонансу (ЕПР), за спектром ЕПР визначали його тип та параметри, за ізотермом поверхневого натягу – критичну концентрацію міцелоутворення (ККМ), а реологічні параметри – методом ротаційної віскозиметрії.

Результати. Від вмісту ПАР залежать форма спектрів ЕПР і спектральні параметри спінових зондів, які також обумовлює їх молекулярна структура і розчинність. Існує область концентрацій ПАР, в якій асоціати ПАР утворюються до ККМ, а реологічні параметри – методом розчинної віскозиметрії.

Висновки. Розчини ПАР залежно від вмісту ПАР, класу ПАР, а також взаємодії з деякими допоміжними речовинами мають різні динамічні властивості. Більш впорядкованою та щільною є упаковка молекул в міцелах на рівні 5 атому вуглецю. За параметрами спектрів ЕПР виявлено взаємодію міцел ПАР і зондом, в інтервалах ПАР і динатрію едемату. Показано зв'язок між зміною параметрів спектрів ЕПР з ростом температури, від вмісту ПАР и золь→гель переходом. Взаємодія зондів Р338 в розчинах і золь→гель переходом.

Ключові слова: поверхнево-активна речовина (ПАР), полоксамер Р338 (Р338), розчин, міцел, спіновий зонд, спектр ЕПР, параметри спектрів, в'язкість

DOI: 10.15587/2519-4852.2022.263733

АНАЛІЗ СПОЖИВАННЯ ДВОКОМПОНЕНТНИХ ФІКСОВАНИХ КОМБІНАЦІЙ ЛІКАРСЬКИХ ЗАСОБІВ ДЛЯ ЛІКУВАННЯ АРТЕРІАЛЬНОЇ ГІПЕРТЕНЗІЇ В УКРАЇНІ ЯК ОДИН З ЕТАПІВ ДЛЯ ОЦІНКИ ПЕРСПЕКТИВ ЇЇ РЕІМБУРСАЦІЇ (с. 19–25)

А. О. Гончар, Н. В. Шолойко

Мета: провести ретроспективне дослідження споживання 4 груп комбінованих лікарських засобів та визначити їх структуру, з урахування діючих речовин та їх доз, за медіаною часткою споживання, наступні фіксовані дози комбінованих ЛЗ для лікування АГ в Україні в 2018–2020 роках. Подальший аналіз структури споживання комбінованих ЛЗ, які підлягають реімбурсації, для подальшого проведення клініко-економічних досліджень щодо їх використання в контексті розширення переліку ЛЗ, які підлягають реімбурсації.

Матеріали та методи: об’єктами дослідження були дані роздрібних продажів за період 2018–2020 років на фармацевтичному ринку України чотирьох груп комбінованих антигіпертензивних лікарських засобів. Дані були надані системою вивчення рынку України чотирьох груп комбінованих антигіпертензивних лікарських засобів.
дозволило визначити в всередині кожній досліджуваній групі ті фіксовані дози, які мають найбільш значення медіани частки споживання за три роки. Саме це припускаю проводити подальших клініко-економічних досліджень щодо їх використання в контексті обов'язкового питання щодо розширення ними переліку комбінованих ЛЗ для лікування АГ, які підлягають реімбурсації в Україні.

Ключові слова: артеріальна гіпертензія, комбіновані лікарські засоби, структура споживання, реімбурсація, фармацевтичний ринок.

DOI: 10.15587/2519-4852.2022.261007

РОЗРОБКА МЕТОДИ ДОСЛІДЖЕННЯ ДИЦИКЛОМІНУ ГІДРОХЛОРИДУ В КОМБІНАЦІЇ З ПАРАЦЕТАМОЛОМ У ФОРМІ ТАБЛЕТОК ЯК ОБ’ЄКТУ СУДОВО-ФАРМАЦЕВТИЧНОЇ ЕКСПЕРТИЗИ

(с. 28–35)

О. В. Бевз, І. В. Сич, А. І. Федосов, О. О. Віслоус, І. А. Сич, О. В. Криваневич, Н. П. Кобzar, Л. О. Перехода

Мета. Підбір та розробка методів для завдань судово-фармацевтичної експертизи матеріалів справ з підозрою на фальсифікацію чи немедичного використання дицикломіну в комбінації з парацетамолом в формі таблеток.

Матеріали та методи. У дослідженні представлено розроблені методи виявлення та ідентифікації дицикломіну методами ТИХ, Ч-спектроскопії та ГХ-МС, які проводили з використанням реактивів, що відповідають вимогам EP, USP та USPU, послугу класу А та кваліфікованих приладів.

Ідентифікацію методом Ч-спектроскопії проводили в діапазоні від 500 до 4000 см⁻¹ на приладі “Nicolet 380 FT-IR Spectrometer by Thermo Fisher Scientific “.

ТИХ проводили на пластинках Сорбфіл ПТСХ-П-УФ та Сорбфіл ПТСХ-АФ-А-УФ (ЗАТ “Сорбполімер”, Росія). В якості рухомих фаз використовували системи: діоксан-хлороформ-ацетон-25 % розчин аміаку (47,5:45:5:2,5); толуол-ацетон-етанол-25 % розчин аміаку (45:5:7.5:2.5); етилацетат-метанол-25 % розчин аміаку (17:2:1). Утворені хроматографічні зони виявляли опроміненням УФ-світлом і подальшою обробкою реактивами (30 % розчин ферум Драгендорфа, модифікований Мясцов; реактив Маркіза; реактив Фреде; реактив Манделіна; реактив ФПН). Аналіз методом газової хроматографії з мас-детектором проводили за допомогою газового хроматографа з масспектрометричним детектором GCMS-QP2020. Дани аналізували за допомогою програми: GCMSsolution, LabSolutionsInsight (Shimadzu Corporation, Токіо, Японія).

Результати. Вперше вивчено умови екстракції дицикломіну гідрохлориду з водних розчинів та визначено оптимальні умови їх ізолювання як об’єкта судової експертизи. Розроблено методи виявлення дицикломіну гідрохлориду та парацетамолу в препараті “Триган-Д” методами тонкошарової хроматографії, газо-рідинної хроматографії та хроматомас-спектрометрії, визначено межі виявлення досліджуваних речовин.

Висновок. Розроблені методи визначення дицикломіну гідрохлориду в формі таблеток з парацетамолом відповідають вимогам чинного законодавства України та Міністерства юстиції України. Отримані дані доводять високу чутливість і відтворюваність методів і доводять можливість їх впровадження в практику судової експертизи.

Ключові слова: немедичне використання, психоактивні речовини, судово-фармацевтична експертиза, виявлення лікарських речовин.

DOI: 10.15587/2519-4852.2022.263675

МОНІТОРИНГ ПОКАЗНИКІВ ФІЗИЧНОЇ ТА СОЦІАЛЬНО-ЕКОНОМІЧНОЇ ДОСТУПНОСТІ ЛІКАРСЬКИХ ЗАСОБІВ МЕТОФОРМІНУ ГІДРОХЛОРИДУ

(с. 36–43)

О. О. Ринченко, Д. В. Ляткін, І. М. Подольський, А. В. Волкова, І. М. Владимирова

Метою дослідження стало проведення моніторингу показників фізичної та соціально-економічної доступності лікарських засобів (ЛЗ) метформіну гідрохлориду, які використовуються для лікування цукрового діабету ІІ типу.

Матеріали та методи. В цьому дослідженні використано медико-технологічну документацію щодо стандартизації надання медичної допомоги пацієнтам при цукровому діабеті (ЦД) ІІ типу, дані Державного реєстру лікарських засобів України, програмного комплексу «Аптека» компанії «Моріон» та дані аналітичної компанії дослідження фармацевтичного ринку «Фармстандарт» та компанії «Моріон» для визначення показників фізичної та соціально-економічної доступності ЛЗ метформіну гідрохлориду для лікування цукрового діабету ІІ типу. Під час дослідження були використані документальний, аналітичний методи, метод картистикового дослідження та метод логічного узагальнення даних.

Результати. За результатами аналізу медико-технологічної документації зі стандартизації медичної допомоги при ЦД-ІІ типу та Державного реєстру лікарських засобів України сформовано ряд характеристик для ЛЗ метформіну гідрохлориду, а саме: ЛЗ у формі таблеток або таблеток вкритих плівковою оболонкою у дозі 500 мг, які виготовляються: українськими виробниками.
(повний цикл виробництва); українськими виробництвами із таблеток in bulk (первинне та вторинне пакування) та іноземними виробництвами. Задачі характеристики стали підставою для подальшого вибору ряду ЛЗ метформіну в/х щодо визначення їх показників фізичної та соціально-економічної доступності. При визначенні фізичної доступності ЛЗ метформіну в/х встановлено, що препарати українського виробництва (повний цикл виробництва) представлені на отриманий ланць фармацевтичного ринку у повному обсязі. За соціально-економічним показником доступності платоспроможності серед ЛЗ метформіну в/х наибільш економічно обґрунтованим є ЛЗ українського виробництва, що встановлюється із таблеток in bulk за повним циклом виробництва. Серед ЛЗ іноземного виробництва виділено лише 1 ЛЗ, який має найнижчий показник доступності платоспроможності для різних категорій населення.

Висновки. Моніторинг показників фізичної та соціально-економічної доступності ЛЗ метформіну в/х, показав, що найбільш економічно обґрунтовані для працездатних осіб та осіб пенсійного віку є застосування для лікування ЦД II типу ЛЗ українського виробництва (повний цикл та виготовлення із таблеток in bulk).

Ключові слова: лікарські засоби, метформін, цукровий діабет, фізична доступність, соціально-економічна доступність

DOI: 10.15587/2519-4852.2022.263565

МОРФОЛОГІЧНИЙ АНАЛІЗ КРИСТАЛІЧНОГО МЕТАДОНУ: НОВА КОМБІНАЦІЯ МЕТОДІВ МІКРОСКОПІЇ (с. 44–52)

Noor R. Al-Hasani, Paul G. Royall, Neil Rayment, Kim Wolff

Мета. Оцінити комбіновані методи мікроскопії для визначення морфологічних та оптичних властивостей кристалів метадону гідрохлориду.

Матеріали та методи. Формування кристалів МДН було оптимізовано за допомогою методу закритого контейнера, а форма кристалів охарактеризована за допомогою скануючої електронної мікроскопії (SEM) та конфокальної мікроскопії (CM). Кристали МДН були використані для визначення товщини кристалів методами поляризованого світлового мікроскопа (PLM) та конфокальної мікроскопії.

Результати. Розміри кристалів МДН у формі ромба були підтверджено за допомогою SEM та CM. Кристали МДН переважно жовтого кольору із середньою товщиною при середньому значенні сповільнення (428 нм). Висновки. SEM появив себе як кращий метод і вперше успішно визначив розміри кристалів МДН, тоді як на результати CM вплину процес фарбування родаміном, який використовувався для візуалізації. Якісний аналіз стану кристалічності показав більш тонкі алмазні кристали. Спільне використання PLM та діаграми Мішеля-Леві дозволило спостерігати кристали з використанням кольорових сповільнень.

Ключові слова: метод мікроскопії, комбіновані методи, метадон, подвійне променезаломлення, діаграма подвійного променезаломлення Мішеля-Леві

DOI: 10.15587/2519-4852.2022.263415

ОЦІНКА СТАНУ ФАРМАЦЕВТИЧНОГО ЗАБЕЗПЕЧЕННЯ ХВОРИХ З ДЕМЕНЦІЄЮ ПРИ ХВОРОБІ АЛЬЦГЕЙМЕРА В УКРАЇНІ У ВІДПОВІДНІСТІ ДО МІЖНАРОДНИХ РЕКОМЕНДАЦІЙ

М. С. Федотова, Л. О. Гала, А. М. Лебедин, Л. С. Сімонян, О. В. Геруш, Г. М. Юрченко, А. О. Паламар, Н. В. Шолойко, М. І. Велика

Мета. провести оцінку стану фармацевтичного забезпечення пацієнтів з деменцією при хворобі Альцгеймера в Україні у відповідності до міжнародних рекомендацій.

Матеріали та методи. Під час проведення досліджень використовували міжнародні рекомендації, клінічні протоколи, які регулюють питання організації надання медичної та фармацевтичної допомоги хворим з деменцією при хворобі Альцгеймера у США, Австралії, Японії, Німеччині, Великобританії, Фінляндії, Індії, Казахстані та в Україні. Фактичний стан фармацевтичного забезпечення цих хворих в Україні досліджувався з використанням деперсоніфікованої бази лікарських призначення, яка функціонувала у деяких спеціалізованих закладах охорони здоров'я. Крім цього, використовувалися дані інформаційно-пошукової системи «Моріон». Використовувалися загальнонормативні (історичний, формальний, графічний, гіпотетико-дедуктивний і т. ін.) та прикладні (клініко-економічні, організаційно-економічні, математико-статистичні тощо) методи досліджень.

Результати дослідження. Встановлено, що у структурі наукової спільноти сформувалася консолідована думка стосовно можливості ефективного використання у патогенетичному лікуванні хворих з деменцією при хворобі Альцгеймера препаратів із групи N06DA йнші антицефалогінометеритаза та N06DX-інші засоби для застосування у разі деменції. Так, фармацевтична складова
лікування, а також захищені речовини адаптогенів рослинного походження з ультрафонофорезом при відтвореному метаболічному синдромі, активних речовин адаптогенів рослинного походження у вигляді аплікацій по 0,5 мл на щура на тампоні, у продовж 5–7 хвилин, під час проведення моделювання МС з другого тиждня використовували препарат на основі дигідрокверцетину, зубний еліксир місцево на основі прополісу і біологічно активних речовин адаптогенів рослинного походження з ультрафонофорезом при відтвореному метаболічному синдромі.

Висновки. Встановлені особливості у формуванні фармацевтичної складової лікувального процесу хворих з деменцією при хворобі Альцгеймера в Україні дозволяють у подальшому проводити дослідження в сполученні з розробкою рациональних шляхів ресурсного забезпечення психоневрологічних пацієнтів.

Висновки

Використання алгоритму профілактичного комплексу при запальних процесах ротової порожнини за умов метаболічного синдрому (с. 62–68). Л. С. Кравченко, О. Л. Апельханс, А. Є. Поликов, Л. М. Унгурян, О. В. Пасєчник, М. В. Розуменко, Я. І. Іванова, В. О. Розуменко

Метою роботи була оцінка в експериментальні ефективності розробленого лікувально-профілактичного комплексу для профілацитичного лікування тяжких форм деменції при хворобі Альцгеймера.

Матеріали та методи. Досліджені біохімічні та імунологічні зміни у сироватці крові, печінки та тканинах пародонту хворих, які були включено до числа пацієнтів, які брали участь у даному експерименті. Загальна кількість пацієнтів становила 90 осіб, з яких 50 були хворими з деменцією при хворобі Альцгеймера.

Результати. У хворих з деменцією при хворобі Альцгеймера відмітнено підвищення рівня тригліцеридів, загального холестерину, глюкози, відновлюючи стан неспецифічної резистентності, ліпідного обміну, рівень тахінотоксинозу, зниження рівня тіліозину, зміни в концентрації білків, зменшення рівня кальцію.

Ключові слова: деменція, клініко-економічний аналіз, споживання ліків, фармацевтичне забезпечення психоневрологічних хворих, хвороби Альцгеймера.

DOI: 10.15587/2519-4852.2022.257527

Використання алгоритму профілактичного комплексу при запальних процесах ротової порожнини за умов метаболічного синдрому (с. 62–68). Л. С. Кравченко, О. Л. Апельханс, А. Є. Поликов, Л. М. Унгурян, О. В. Пасєчник, М. В. Розуменко, Я. І. Іванова, В. О. Розуменко

Метою роботи була оцінка в експериментальні ефективності розробленого лікувально-профілактичного комплексу для профілацитичного лікування тяжких форм деменції при хворобі Альцгеймера.

Матеріали та методи. Досліджені біохімічні та імунологічні зміни у сироватці крові, печінки та тканинах пародонту хворих, які були включено до числа пацієнтів, які брали участь у даному експерименті. Загальна кількість пацієнтів становила 90 осіб, з яких 50 були хворими з деменцією при хворобі Альцгеймера.

Результати. У хворих з деменцією при хворобі Альцгеймера відмітнено підвищення рівня тригліцеридів, загального холестерину, глюкози, відновлюючи стан неспецифічної резистентності, ліпідного обміну, рівень тахінотоксинозу, зниження рівня тіліозину, зміни в концентрації білків, зменшення рівня кальцію.

Ключові слова: деменція, клініко-економічний аналіз, споживання ліків, фармацевтичне забезпечення психоневрологічних хворих, хвороби Альцгеймера.
Виду рода Вероника (Veronica L.) родини Подорожниковые (Plantaginaceae Juss.) флоры Украины згрупованы у 8 секциях. Фитохимические исследования вторичных метаболитов рода Veronica L. наиболее связаны с вивечением фенольных соединений и их производных, так как терпеноиды этих видов межде не вивечены. В настоящее время профили L. longifolia L., L. incana L. и L. spicata L. флоры Украины впервые изучены.

Мета
Метою цього дослідження було порівняльне дослідження хімічного складу ефірних олій квіток V. longifolia L., L. incana L. та L. spicata L. флори України за методом ГХ-МС.

Матеріали та методи.
Об'єкти дослідження — квітки видів секції Pseudolimoniamum W.D.J. Koch: в. довголистої (Veronica longifolia L.), в. сивої (Veronica incana L.) та в. колоскової (Veronica spicata L.), заготовлені у ботанічному саду Харківського національного університету ім. В. Н. Каразіна. Дослідження терпеноїдів проводили методом хромато-мас-спектрометрії на хроматографі 6890N MSD/DS Agilent Technologies (USA) з мас-спектрометричним детектором 5973N. Компоненти ефірних олій визначали за результатами порівняння індексів утримання, мас-спектрів хімічних речовин, отриманих в процесі хроматографування, які входять до складу досліджуваної суміші, з даними бібліотеки мас-спектрів NIST02. Кількісне визначення вмісту речовин у сировині проводили в порівнянні зі стандартним зразком ментолу.

Результати.
У результаті дослідження виявлено і встановлено вміст 72 соєдив. Загальний вміст ефірної олії в квітках V. longifolia L. становив 0,17 % (39 компонентів), у якому переважали такі соєдиви: бензоатцетальдегід – 8,05, сквален – 5,17, пальмітинова кислота – 15,73, бутилфталат – 7,18. Загальний вміст ефірної олії в квітках L. incana L. становив 0,15 % (43 компоненти), в якій переважали такі соєдиви: сквален 20,47, жирні кислоти, а саме пальмітинова – 26,88, пальмітолеїнова – 17,15, олеїнова – 11,64. Загальний вміст ефірної олії в квітках L. spicata L. становив 0,11 % (34 компоненти), в якому переважали такі соєдиви: сквален – 5,53, жирні кислоти: пальмітинова – 22,78, лінолева – 6,72, углеводи: лецитин – 12,27, геокарнозин – 7,45. Серед ідентифікованих поліферментних соєдив – моно-, норсескві-, дис-, ти- та тритерпеноїдів, продукти їх окиснення (ароматичні соєдиви, альдегіди та спирти, кетони), жирні кислоти, углеводи та похідні соєдив цих класів.

Висновки.
Вперше методом хромато-мас-спектрометрії досліджено хімічний склад ефірних олій квіток V. longifolia L., L. incana L. та L. spicata L. флори України. Найдосліджена квітка L. longifolia L. (0,17 %) та L. spicata L. (0,11 %). Серед ідентифікованих поліферментних соєдив переважали такі сполуки: сквален 20,47, жирні кислоти, а саме пальмітинова – 26,88, пальмітолеїнова – 17,15, олеїнова – 11,64. Загальний вміст ефірної олії в квітках L. incana L. становив 0,15 % (43 компоненти), в якій переважали такі соєдиви: сквален 20,47, жирні кислоти, а саме пальмітинова – 26,88, пальмітолеїнова – 17,15, олеїнова – 11,64. Загальний вміст ефірної олії в квітках L. spicata L. становив 0,11 % (34 компоненти), в якому переважали такі соєдиви: сквален – 5,53, жирні кислоти: пальмітинова – 22,78, лінолева – 6,72, углеводи: лецитин – 12,27, геокарнозин – 7,45. Серед ідентифікованих поліферментних соєдив – моно-, норсескві-, дис-, ти- та тритерпеноїдів, продукти їх окиснення (ароматичні соєдиви, альдегіди та спирти, кетони), жирні кислоти, углеводи та похідні соєдив цих класів.

Ключові слова.
ефірна олія, квітки, хромато-мас-спектрометрія, V. longifolia L., L. incana L., L. spicata L.
Результати: результати показали, що всі формуль гідрогелевих масок для очей були стабільними під час зберігання та циклічних випробувань. Усі формуль відповідають значенням pH, випробуванням на усадку, еластичність, набухання та подразнення. Гедонічний тест на добровольців показав, що найбільш ефективною концентрацією є 1 % рівень. Результати тесту на антиноксон ефективність найкращого складу гідрогелевої маски для очей: концентрація екстракту 1 % забезпечувала підвищення вологості на 27 %, зменшення пор на 35.8 %, зменшення плям на 40 % і зморшок на 37.6 %.

Висновки: різні концентрації формул масок показали різну ефективність проти старіння, і найкращою формулою був 1 % склад, що забезпечує підвищення вологості на 27 %, зменшення кількості плям на 40 % і зморшок на 37.6 %, що вказує на високу ефективність уповільнення старіння.

Ключові слова: водний екстракт, засіб проти старіння, бульба картоплі, гідрогелева маска під очі, solanum tuberosum L., пори, зморшки, вологість, плями, усадка

DOI: 10.15587/2519-4852.2022.263878