Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website.

Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.
Impact of Corticosteroids in Coronavirus Disease 2019 Outcomes
Systematic Review and Meta-analysis

Edison J. Cano, MD; Xavier Fonseca Fuentes, MD; Cristina Corsini Campioli, MD; John C. O’Horo, MD, MPH; Omar Abu Saleh, MBBS; Yewande Odeyemi, MBBS; Hemang Yadav, MBBS; and Zelalem Temesgen, MD

BACKGROUND: Since its appearance in late 2019, infections caused by severe acute respiratory syndrome coronavirus 2 have created unprecedented challenges for health systems worldwide. Multiple therapeutic options have been explored, including corticosteroids. Preliminary results of corticosteroids in coronavirus disease 2019 (COVID-19) are encouraging; however, the role of corticosteroids remains controversial.

RESEARCH QUESTION: What is the impact of corticosteroids in mortality, ICU admission, mechanical ventilation, and viral shedding in COVID-19 patients?

STUDY DESIGN AND METHODS: We conducted a systematic review of literature on corticosteroids and COVID-19 in major databases (PubMed, MEDLINE, and EMBASE) of published literature through July 22, 2020, that report outcomes of interest in COVID-19 patients receiving corticosteroids with a comparative group.

RESULTS: A total of 73 studies with 21,350 COVID-19 patients were identified. Corticosteroid use was reported widely in mechanically ventilated patients (35.3%), ICU patients (51.3%), and severe COVID-19 patients (40%). Corticosteroids showed mortality benefit in severely ill COVID-19 patients (OR, 0.65; 95% CI, 0.51-0.83; P = .0006); however, no beneficial or harmful effects were noted among high-dose or low-dose corticosteroid regimens. Emerging evidence shows that low-dose corticosteroids do not have a significant impact in the duration of SARS-CoV-2 viral shedding. The analysis was limited by highly heterogeneous literature for high-dose and low-dose corticosteroid regimens.

INTERPRETATION: Our results showed evidence of mortality benefit in severely ill COVID-19 patients treated with corticosteroids. Corticosteroids are used widely in COVID-19 patients worldwide, and a rapidly developing global pandemic warrants further high-quality clinical trials to define the most beneficial timing and dosing for corticosteroids.

CHEST 2021; 159(3):1019-1040

KEY WORDS: coronavirus; corticosteroids; COVID-19; outcomes

ABBREVIATIONS: COVID-19 = coronavirus disease 2019; MERS = Middle Eastern respiratory syndrome; RR = relative risk; SARS = severe acute respiratory syndrome; SARS-CoV-2 = severe acute respiratory syndrome coronavirus 2

AFFILIATIONS: From the Division of Infectious Disease (E. J. Cano, C. Corsini Campioli, J. C. O’Horo, O. Abu Saleh, and Z. Temesgen) and the Division of Pulmonary and Critical Care Medicine (X. Fonseca Fuentes, J. C. O’Horo, Y. Odeyemi, and H. Yadav), Mayo Clinic, Rochester, MN.

FUNDING/SUPPORT: The authors have reported to CHEST that no funding was received for this study.

CORRESPONDENCE TO: Edison J. Cano, MD; e-mail: canocevallos.edison@mayo.edu

Copyright © 2020 American College of Chest Physicians. Published by Elsevier Inc. All rights reserved.

DOI: https://doi.org/10.1016/j.chest.2020.10.054
In December 2019, a novel coronavirus, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), was linked to a cluster of cases of severe acute respiratory syndrome (SARS) in Wuhan, China. By March 11, 2020, the outbreak had affected millions worldwide, and the World Health Organization declared coronavirus disease 2019 (COVID-19) a pandemic.

Different interventions have been implemented based on previous experience with other coronavirus diseases, such as SARS caused by severe acute respiratory syndrome coronavirus 1, and Middle Eastern respiratory syndrome (MERS) caused by Middle Eastern respiratory syndrome coronavirus. The literature is evolving rapidly, and newer findings position corticosteroids as a strong candidate for treatment. However, the role of corticosteroids in the management of COVID-19 remains a subject of controversy.

The immune response is a key determinant of SARS-CoV-2 infection. The first phase of illness is characterized by fever, cough, and high viral loads. The next stage, labeled the pulmonary phase, is characterized by persistent lung inflammation despite decreasing viral load, resulting in respiratory failure owing to ARDS (Fig 1). In the last stage, the uncontrolled hyper-inflammatory response results in a syndrome of multiorgan dysfunction with high mortality risk. Corticosteroids are starting to emerge mainly in the form of retrospective data. One of the earliest published meta-analyses reviewed 5,270 patients from 15 observational studies of coronavirus diseases caused by SARS-CoV-2, severe acute respiratory syndrome coronavirus 1, and Middle Eastern respiratory syndrome coronavirus with literature available up to March 15, 2020. Of the 5,270 patients, only 179 (3.39%) were COVID-19 patients from two Chinese studies. Overall, patients receiving corticosteroids with coronavirus diseases were more likely to be critically ill, had a longer length of hospital
stay, had higher mortality, had more bacterial infections, and had higher rates of hypokalemia.

A similar meta-analysis addressing the impact of corticosteroids in adults with coronavirus diseases (MERS, SARS, and COVID-19 literature up to March 20, 2020) included four studies available for COVID-19 and showed no mortality benefit or harm with corticosteroid use in coronavirus diseases, although data from three studies were generated at the same institution (Jinyintan Hospital in Wuhan, China) without more information about possible overlapping cases.

It is worth emphasizing that COVID-19, SARS, and MERS are phenotypically heterogeneous in terms of contagiousness, fatality rates, and severity, despite their close virus phylogeny, and grouping these diseases to report outcomes may pose significant selection bias, hence the need for literature on COVID-19 specifically. A meta-analysis with mortality outcomes available in four studies for 495 COVID-19 patients (comprising literature up to May 7, 2020) showed no differences in mortality among patients with or without corticosteroid treatment (relative risk [RR], 1.38; 95% CI, 0.87-2.18; \(P = .17 \)). Another meta-analysis with literature until April 25, 2020, showed no benefit of corticosteroids in COVID-19 based on two studies, but again, the data were generated at the same hospital with overlapping timelines for both studies.

The impact of corticosteroids in COVID-19 outcomes remains unclear based on early literature mainly comprising retrospective studies with significant population overlap; however, as the pandemic evolves, corticosteroid use in COVID-19 is being reported worldwide. In this study, we sought to determine the mortality impact of corticosteroids vs standard of care in hospitalized COVID-19 patients. Secondary outcomes addressed for qualitative synthesis comprised disease severity, ICU admission, need for mechanical ventilation, viral clearance, and safety.

Figure 1 – A, Diagram showing clinical phases of coronavirus disease 2019. B, Diagram showing immunomodulatory effects of glucocorticoid therapy in the nucleus driven by glucocorticoid response elements (GREs) resulting in increased expression of antiinflammatory molecules (annexin-1; nuclear factor of \(\kappa \) light polypeptide gene enhancer in B-cells inhibitor, \(\alpha \) [IkBa]; secretory leukocyte protease inhibitor [SLPI], and IL-10) and decreased production of nuclear factor \(\kappa \)-light-chain-enhancer of activated B cells (NF-\(\kappa \)B) and proinflammatory cytokines (IL-2, IL-6, and tumor necrosis factor \(\alpha \) [TNF\(\alpha \)]). CRP = C-reactive protein.
Methods

We conducted a systematic review and meta-analysis searching for corticosteroids (methylprednisolone, dexamethasone, prednisone, corticoids, and steroids) and COVID-19 cases in major databases (PubMed, MEDLINE, and EMBASE) for published literature until July 22, 2020. We adhered to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) statement for reporting systematic reviews and meta-analysis.25 A detailed search strategy and the PRISMA checklist can be found in e-Appendix 1.

PICO Question

Population: Hospitalized patients with COVID-19.

Intervention: Corticosteroids administered while hospitalized.

Comparisons: Standard of care or investigational therapies.

Outcomes: Mortality (quantitative analysis), severity of COVID-19, ICU admission, need for mechanical ventilation, viral clearance, and safety (qualitative analysis).

Study Selection

The inclusion criteria were (1) peer-reviewed publications on COVID-19 only, (2) retrospective or prospective studies with more than three cases, (3) reporting the outcomes of interest for adult patients receiving corticosteroids in (4) all languages available. We excluded studies (1) without a comparison group to characterize better the effect of corticosteroids, (2) of special populations such as pregnant or pediatric patients because COVID-19 presentation and management are different in these populations, and (3) of organ transplant recipients or inflammatory or rheumatologic patients who reported chronic corticosteroid use.

A total of 945 studies were identified after removing duplicates; 774 were excluded after initial screening. Two investigators (E. J. C., C. C. C.) independently reviewed the identified abstracts and selected articles for full review. Discordances were resolved by a third investigator (X. F.). The excluded studies comprised reviews (n = 275), short communications or letters (n = 229), case reports with fewer than four patients (n = 134), literature on pregnant women or children (n = 49), guidelines or society recommendations (n = 47), studies not reporting outcomes on COVID-19 (n = 27), and preclinical data (n = 13). A total of 171 full-text studies were analyzed for eligibility and 73 peer-reviewed articles were included for qualitative and quantitative analysis (Fig 2).

Data extracted for each study included study design; median or mean age, or both; country, region, or hospital to assess possible population overlap; sample size; patients receiving corticosteroids; corticosteroid dose and duration; other reported therapies; whether they reported outcomes on special populations; and outcomes of interest. Quantitative meta-analysis was performed for mortality outcomes, whereas other clinically relevant end points such as severity of COVID-19, ICU admission, need for mechanical ventilation, viral clearance, and other adverse events were summarized in a qualitative fashion. We labeled as low-dose corticosteroids any reported dose of methylprednisolone ≤ 200 mg daily or ≤ 2 mg/kg/d or equivalent in other corticosteroids.

Risk of Bias Assessment

Risk of bias was determined using the Risk of Bias in Nonrandomized Studies of Interventions (ROBINS-I) tool for nonrandomized studies26 and version 2 of the Cochrane risk-of-bias tool for randomized trials (RoB-2).27 Studies from the same

Figure 2 – PRISMA flow diagram showing study selection.
hospital or region were noted to perform sensitivity analysis in the likelihood of population overlap.

Statistical Analysis

Summary risk ratios also referred to as relative risk \(RR \) and their 95% CIs were calculated using the DerSimonian and Laird random-effects model and a fixed-effect model for specific populations as deemed appropriate.\(^2\) Heterogeneity was assessed with an \(I^2 \) statistic, where 0% indicates no heterogeneity and 100% indicates the highest level of heterogeneity.\(^1\) Sensitivity and subgroup analyses were performed to analyze sources of heterogeneity. Data analysis was performed using Review Manager (RevMan, version 5.4; The Cochrane Collaboration). This meta-analysis used de-identified publicly available published data and required no ethics committee approval.

Results

A total of 73 peer-reviewed articles were included for qualitative \(n = 55 \) and quantitative \(n = 33 \) analysis. Variables extracted for each publication are listed in Table 1.\(^1\) All 73 studies included outcomes on COVID-19 patients receiving corticosteroids and a comparison group that did not receive corticosteroids. We were able to find four studies that reported outcomes of propensity score-matched populations\(^2\) and one randomized clinical trial.\(^5\) The remaining studies had limited information about baseline characteristics of their population receiving corticosteroids.

Overall Corticosteroid Use in COVID-19

A total of 21,350 COVID-19 patients were included in the 73 studies; 4,618 (21.6%) patients received corticosteroids. The median or mean age of patients in these studies ranged from 39 years (interquartile range, 32-54 years) to 88 years (interquartile range, 86.6-90 years). The use of corticosteroids across studies was highly variable and ranged from 1% to 97%, with a median corticosteroid use of 35.5% across studies. Most studies were generated in China \(n = 55 \) [75.3%], followed by the United States \(n = 4 \) [5.4%] and Spain \(n = 4 \) [5.4%]. The Chinese studies totaled 43% of patients \(n = 9,200 \) included in the meta-analysis, with 2,450 (26.6%) receiving corticosteroids. We identified at least 37 studies from China that shared institutions, locations, and time of chart review that potentially could represent overlapping patients for which sensitivity analysis was performed in the quantitative synthesis. A total of 5,655 patients shared reported institutions or regions; 1,780 (31.4%) of these received corticosteroids.

Dose and Timing of Corticosteroid Use

Thirty-five of 73 studies (47.9%) reported the dose or timing of corticosteroids. From these 35 studies, 26 studies \(74.2\% \) reported using low-dose corticosteroids, four studies reported high-dose or pulse corticosteroid only, two studies \(5.6\% \) reported mixed high-dose and low-dose regimens, and three studies \(8.3\% \) reported a dose of unspecified corticosteroid; thus, we were unable to classify the latter group to either the low-dose or high-dose group. Seventeen studies (47.2%) reported duration of treatment, ranging from 3 to 12 days. Methylprednisolone was the most common corticosteroid reported in 26 studies (35.6%).

Adjunctive therapies reported concomitantly with corticosteroids are reported in Table 1 and include antibiotics, antivirals, tocilizumab, immunomodulators, traditional Chinese medicine, IV immunoglobulin, and convalescent plasma. Limited information was available on medication overlap for most studies, and qualitative synthesis was not performed.

Corticosteroid Use in Severe COVID-19

Nineteen studies (26%) reported corticosteroid use with significant variability ranging from 1% to 100% across studies. Corticosteroid use was reported in 396 of 987 severe COVID-19 patients (40%). These numbers were interpreted as baseline characteristics rather than outcomes because of the lack of information of baseline characteristics across studies (e-Table 1).

Corticosteroid Use in ICU-Admitted Patients

Eighteen studies reported corticosteroid use in 807 of 1,571 COVID-19 patients admitted to the ICU (51.3%). The rate of corticosteroid use in ICU patients ranged from 13.9% to 100% across studies (e-Table 2). Two studies limited their population to patients admitted to the ICU only.\(^6\)\(^9\)\(^9\) Four studies from China shared similar institutions and were labeled as possible overlapping populations.

Corticosteroid Use in Mechanically Ventilated Patients

Twelve studies reported corticosteroid use in 230 of 652 mechanically ventilated COVID-19 patients (35.3%), with highly variable corticosteroid use reported (8.5%-100%) across studies (e-Table 3). Two studies from China had possibly overlapping populations \(n = 10 \) and \(n = 18 \), respectively,\(^8\)\(^2\)\(^9\) but represented a small fraction of mechanically ventilated patients.
TABLE 1] Summary of Evidence of Corticosteroid Use in COVID-19

Study	Design	Age, y	Region, Hospital	Possible Population Overlap	Sample Size	Patients Receiving Corticosteroids	Corticosteroids Dosage	Other Therapies Reported	Special Populations	Outcomes or Characteristics Reported	Risk of Bias	
Almazeedi et al31	RCS	41 (25-75)	Kuwait	No	1,096	40 (3.64)	ABX, AVR, HCQ		1,3	Moderate		
Argenziano et al32	RCS	63 (50-75)	United States	No	850	178 (20.9)	ABX, AVR, IVIG, HCQ, TCZB		1	Serious		
Ayerbe et al33	Case series	67.57 ± 15.52	Spain	No	2,075	960 (46.2)	ABX, AVR, HCQ, TCZB		3	Moderate		
Blanco et al34	Case series	40 (31-40)	Spain	No	5	1 (20)	ABX, AVR, HCQ, TCZB	HIV	1	Serious		
Callejas-Rubio et al71	Case series	63.9 ± 12.9	Spain	Yes	92	83 (90.2)	MP, 2 mg/kg/3 d, 250 mg/3 d, and 500 mg/3 d	TCZB	2,3	Moderate		
Cao et al35	Case series	54 (37-67)	China, Zhongnan Hospital	Yes	102	51 (50)	AVF, ABX, IVIG, CTM		3	Moderate		
Cao et al36	RCS	53 ± 20	China, Beijing YouAn Hospital	Yes	80	19 (23.7)	AVF, ABX, CTM		1	Serious		
Chen et al37	Case series	50.5 (42.5-53.25)	China, Wuhan	No	8	4 (50)	MP, 40 mg/d for 6 d	ABX, AVR	3	Serious (size)		
Chen et al38	RCS	54 (20-91)	China, Zhongnan Hospital	Yes	55	34 (61.8)	MP, 40-80 mg/d for 3-5 d	ABX, AVR, IVIG	Age > 65 y	3	Moderate	
Chen et al39	Cohort study	49 (34-62)	China, Guangzhou 8th People’s Hospital	No	267	29 (10.8)	ABX, AVR, HCQ		4	Serious		
Chen et al39	RCS	58.9 ± 13.7	China, Hebei (13 designated hospitals)	No	51	46 (90.1)	MP, 80 mg/d for 5-6 d	ABX, AVR	Critically ill patients	2,3	Moderate	
Chroboczek et al40	Case series	61 ± 12	France	No	70	21 (30)	ABX, AVR, HCQ	PSM	2	Low		

(Continued)
Study	Design	Age, y	Region, Hospital	Possible Population Overlap	Sample Size	Patients Receiving Corticosteroids	Corticosteroids Dosage	Other Therapies Reported	Special Populations Reported	Outcomes or Characteristics Reported	Risk of Bias
Dang et al41	RCS	88 (86.6-90)	China, Renmin Hospital	Yes	17	6 (35.2)	. . .	ABX, AVR, IVIG, TCM	. . .	1 Serious	
Deng et al42	RCS	69 (62-74)	China, Tongji, Huazhong and Hankou branch of The Wuhan’s Central Hospital	Yes	225	152 (67.5)	3 Moderate	
Ding et al43	Case series	49 (47-50)	China, Tongji and Huazhong Hospital	Yes	5	3 (60)	. . .	ABX, AVR	Influenza coinfection	1,2,3 Critical (coinfection)	
Fadel et al44	Quasi-experimental prospective	62 (51-62)	United States	No	213	132 (61.9)	MP, 0.5-1 mg/kg/d for 3 d	1,2,3 Low	
Fang et al45	Case series	40 ± 12.6	China, Anhui Provincial Hospital	Yes	78	25 (32.0)	MP hydrocortisone-equivalent dose, 237.5 mg/d for 7 d in general group, 250.0 mg/d for 4.5 d in severe group	AVR, TCZB	. . .	4 Moderate	
Feng et al46	RCS	53 (40-64)	China, Jinyintan Hospital, Shanghai Public Health Clinical Center, and Tongling People’s Hospital	Yes	476	127 (26.6)	. . .	AVX, ABX	Critical patients	1,3 Moderate	

(Continued)
Study	Design	Age, y	Region, Hospital	Sample Size	Other Therapies Reported	Special Populations	Outcomes or Characteristics	Risk of Bias
Fernandez-Cruz et al⁴⁷	RCS 65.4 ± 12.9	Spain	No	463	ABX, AVR, HCQ, TCZB, OIM	PSM		Moderate
Giacobbe et al⁴⁸	Case series	66 (57-70)	Italy	78	ABX, TCZB	. . .		Moderate
Gong et al⁴⁹	RCS 38 ± 8.9	China	No	34	MP, 1 mg/kg/d	. . .		Moderate
Guan et al⁵¹	RCS 47 (35-58)	China	Yes	1,099	ABX, AVR, IVIG	1,2,3		Moderate
Hong et al⁵²	RCS 55.4 ± 17.1	South Korea	No	98	ABX, AVR, HCQ	. . .		Serious
Horby et al⁵⁰	Randomized	66.1 ± 15.7	United Kingdom	6,425	ABX, AVR, HCQ, TCM	. . .		Low
Hu et al⁵³	RCS 46 (33-57)	China	No	72	ABX, AVR, IVIG	3,4		Moderate
Huang et al⁵⁴	RCS 49 (41-58)	China	Yes	41	ABX, AVR	1,3,5		Moderate
Huang et al⁵⁵	Case series	45 (34-59)	China, First Hospital of Changsha city	238	AVIR, HCQ	1		Serious
Jacobs et al⁵⁶	Case series	52.4 ± 12.5	United States	32	AVIR, HCQ, OIM	ICU, ECMO		Moderate

(Continued)
Study	Design	Age, y	Region, Hospital	Possible Population Overlap	Sample Size	Patients Receiving Corticosteroids	Corticosteroids Dosage	Other Therapies Reported	Special Populations	Outcomes or Characteristics Reported	Risk of Bias
Jiang et al57	RCS	41 (12-74)	China, Taizhou Enze Medical Center	No	60	9 (15)	...	ABX, AVR, IVIG	...	1 Serious	
Kato et al56	Case series	67 (62-71)	Japan	No	70	2 (2.85)	Steroid pulse therapy	ABX, AVR	...	2 Serious	
Khamis et al59	Case series	48 ± 16	Oman	No	63	15 (23.8)	...	ABX, AVR, HCQ, OIM, CPT	...	1 Serious	
Li et al60	RCS	57 (45-70)	China, Tongji Hospital	Yes	128	52 (40.6)	...	ABX, AVR, TCM, IVIG	...	3 Moderate	
Li et al61	RCS	...	China, Yichang Central People’s Hospital	Yes	206	NA	Unspecified corticosteroids 40-80 mg/d	4 Critical	
Li et al62	RCS	47.5 (36-63.5)	China, Beijing YouAn Hospital	Yes	66	17 (25.7)	MP, low-dose group: ≤ 300 mg; high-dose group, > 300 mg	ABX, AVR, TCM	...	4 Moderate	
Li et al62	Case series	56 (44-66)	China, Tongji Hospital	Yes	548	6 (1.1)	Prednisone medium cumulative dose 200 mg for 4 d	ABX, AVR, IVIG	...	1 Moderate	
Ling et al63	RCS	44 (34-62)	China, Shanghai Public Health Clinical Center	Yes	66	5 (7.6)	4 Serious	
Liu et al64	Case series	42 (34-50)	China, Xixi Hospital	No	10	3 (30)	MP, 80 mg/d	ABX, AVR, IVIG	...	1,2 Serious	
Liu et al66	Case series	45 (30-62)	China, Fifth Affiliated Hospital of Sun Yat-sen University	No	101	15 (14.8)	MP, 2-8 mg/kg/d; maximum 500 mg/d	ABX, AVR	...	1,2 Moderate	

(Continued)
Study	Design	Age, y	Region, Hospital	Possible Population Overlap	Sample Size	Patients Receiving Corticosteroids	Corticosteroids Dosage	Other Therapies Reported	Special Populations	Outcomes or Characteristics Reported	Risk of Bias	
Liu et al⁵⁶	Case series	48 (30-62)	China, Wuhan Union Hospital	Yes	40	8 (20)	MP, 40 mg/d	ABX, AVR		1	Moderate	
Liu et al⁶⁷	Case series	38 (28-47)	China, Renmin Hospital	Yes	53	12 (22.6)	. . .	ABX, AVR, IVIG		3	Moderate	
Lu et al²³	Case series	62 (50-71)	China, Tongji Hospital	Yes	62	31 (50)	Median hydrocortisone-equivalent dosage, 200 mg/d (range, 100-800 mg/d) for 4-12 d	ABX, IVIG	ICU, PSM		2,3	Moderate
Luo et al⁶⁸	Case series	73 (62-80)	China, Tongji Hospital	Yes	15	8 (53.3)	MP, 40-160 mg/d	TCZB		1,3	Moderate	
Montastruc et al⁶⁹	Case series	63.4 (20-89)	France	No	96	13 (13.5)	ICU		1,2	Moderate
Okoh et al⁷⁰	RCS	62 (49-74)	United States	No	251	35 (13.9)	. . .	ABX, AVR, HCQ, TCZB	. . .	3	Moderate	
Shahriarirad et al⁷²	RCS	53.8 ± 16.6	Iran	No	113	5 (4.4)	3	Moderate
Shen et al⁷³	RCS	51 (36-64)	China, Shanghai Public Health Clinical Center	Yes	325	50 (15.3)	. . .	ABX, AVR, CPT	. . .	4	Critical	
Shi et al⁷⁴	RCS	54 (39-64)	China, First Affiliated Hospital of Zhejiang University	Yes	99	77 (77.7)	Unspecified corticosteroids 60 mg/d	ABX, AVR, IVIG		4	Moderate	
Sun et al⁷⁵	RCS	44 (34-56)	China, Beijing 302 Hospital	No	55	25 (45.4)	Unspecified corticosteroid 40-80 mg/d for 3-5 d	AVR, IVIG		. . .	1	Serious
Vahedi et al²⁸	RCS	58.39 ± 13.57	Iran	No	60	30 (50)	Prednisolone 25 mg/d	ABX, AVR		. . .	3	Moderate
Study	Design	Age, y (range)	Region, Hospital	Possible Population Overlap	Sample Size	Patients Receiving Corticosteroids	Corticosteroids Dosage	Other Therapies Reported	Special Populations	Outcomes or Characteristics Reported	Risk of Bias	
--------------	------------	----------------	---	----------------------------	-------------	-----------------------------------	-----------------------	------------------------	-------------------	--------------------------------------	--------------	
Wan et al?77	Case series	47 (36-55)	China, Chongqing Three Gorges Central Hospital	No	135	36 (26.6)	. . .	ABX, AVR, TCM	. . .	1 Moderate		
Wang et al?14	RCS	56 (42-68)	China, Zhongnan Hospital	Yes	138	62 (44.9)	. . .	ABX, AVR	. . .	1 Low		
Wang et al?79	RCS	51 (36-65)	China, Zhongnan Hospital	Yes	107	62 (57.9)	. . .	ABX, AVR	. . .	3 Moderate		
Wang et al?80	Case series	71 ± 10.6	China, Tongji Hospital	Yes	108	55 (50.9)	MP 40-80 mg/d for 3-5 d	ABX, AVR, IVIG	. . .	3 Moderate		
Wang et al?81	RCS	63 ± 14	China, First Affiliated Hospital of Zhejiang University	Yes	104	63 (60.5)	MP 40-80 mg/d	ABX, AVR	. . .	5 Moderate		
Wang et al?82	RCS	54 (48-64)	China, Union Hospital of Huazhong University of Science and Technology	Yes	46	26 (56.5)	MP, 1-2 mg/kg/d for 5-7 d	ABV, AVR	Severe disease	2,3 Moderate		
Wu et al?83	RCS	58.5 (50-69)	China, Jin Yin-tan Hospital	Yes	84	50 (59.5)	. . .	ABX, AVR	ARDS	3 Serious (ARDS)		
Wu et al?84	RCS	61 (50-69)	China, Wuhan Hankou Hospital and No. Six Hospital of Wuhan	No	2,041	1,026 (50.2)	. . .	ABX, AVR	. . .	1 Serious		
Xu et al?85	Case series	52 (43-63)	China, First Affiliated Hospital and the Shenzhen Third People’s Hospital	No	113	64 (56.6)	MP, < 1.5 mg/kg/d	AVR	. . .	4 Serious		
Study	Design	Age, y	Region, Hospital	Possible Population Overlap	Sample Size	Patients Receiving Corticosteroids	Corticosteroids Dosage	Other Therapies Reported	Special Populations	Outcomes or Characteristics Reported	Risk of Bias	
--------------------	--------	------------	--	----------------------------	-------------	----------------------------------	------------------------	-----------------------	----------------------	--------------------------------------	--------------	
Xu et al*86	Case series	41 (32-52)	China, multicenter including Wenzhou Central Hospital	Yes	62	16 (25.8)	Unspecified corticosteroid 40-80 mg/d	AVR	. . .	3	Moderate	
Yan et al*87	RCS	64 (49-73)	China, Tongji Hospital	Yes	193	136 (70.4)	. . .	ABX, AVR	Diabetes	3	Serious (diabetes)	
Yang et al*88	Case series	55 ± 17.1	China, Yichang Central People’s Hospital	Yes	200	112 (56)	. . .	ABX, AVR	. . .	1	Serious	
Yang et al*89	Case series	56 (44-64)	China, Wuhan Third Hospital	No	136	55 (40.4)	MP, 40 mg/d	ABX, AVR, CTM	. . .	1	Moderate	
Yang et al*17	RCS	59.7 ± 13.3	China, Jin Yin-tan Hospital	Yes	52	30 (57.6)	. . .	ABX, AVR, IVIG	ICU	3	Moderate	
Yuan et al*90	RCS	48.1 (33-64)	China, Central Hospital of Wuhan	No	70	35 (50)	MP, median dose, 44.6 mg/d	ABX	Nonsevere cases, PSM	1,4,5	Moderate	
Zha et al*11	RCS	39 (32-54)	China, Anhui Provincial Hospital	Yes	31	11 (35.4)	MP 40 mg once or twice daily for 5 d	ABX, AVR	. . .	3,4	Moderate	
Zhang et al*12	Case series	55 (39-66)	China, Zhongnan Hospital	Yes	221	115 (52)	MP 1-2 mg/kg/d	ABX, AVR	. . .	1	Moderate	
Zhang et al*13	Case series	38 (32-57)	China, Union Hospital of Huazhong University of Science and Technology	Yes	111	30 (27.0)	. . .	ABX, AVR, IVIG	. . .	1,2	Moderate	
Zhang et al*26	RCS	62 ± 14.2	China, Tongji Hospital	Yes	166	38 (22.8)	MP, 1-2 mg/kg/d for 3-7 d; critically ill patients received MP 240-500 mg pulses/d for 3 d	ABX, AVR, IVIG, TCZB	Diabetes	5	Serious	

(Continued)
Study	Design	Age, y	Region, Hospital	Possible Population Overlap	Sample Size	Patients Receiving Corticosteroids	Corticosteroids Dosage	Other Therapies Reported	Special Populations	Outcomes or Characteristics Reported	Risk of Bias
Zhao et al95	RCS	56.0 (31.5-66)	China, Henan Provincial People’s Hospital	No	29	13 (44.8)	ABX, AVR, IVIG, TCM	. .	Yes	1	Serious
Zhao et al96	RCS	46	China, Jingzhou Central Hospital	No	91	79 (86.8)	ABX, AVR, IVIG	. .	No	1	Moderate
Zheng et al97	Case series	59-62 (range)	China, Wuhan Union Hospital	Yes	55	21 (38.1)	MP 0.5-1 mg/kg/d for 5 d	ABX, AVR	. .	1,2	Moderate
Zheng et al98	RCS	66 (58-76)	China, Hangzhou 12 Wenzhou Central Hospital	No	34	33 (97.0)	ABX, AVR, IVIG	ICU		1,2	Moderate
Zhou et al18	RCS	56 (46-67)	China, Jin Yintan Hospital	Yes	191	57 (29.8)	ABX, AVR, IVIG	3		3	Moderate

Data are presented as No. (%), mean ± SD, or median (interquartile range), unless otherwise indicated. ABX = antibiotics; AVR = antivirals; COVID-19 = coronavirus disease 2019; CPT = convalescent plasma transfusion; CS = corticosteroids; HCQ = hydroxychloroquine; IVIG = IV immunoglobulin; MP = methylprednisolone; OIM = other immunomodulators; PSM = propensity score matching; RCS = retrospective cohort study; TCM = traditional Chinese medicine; TCZB = tocilizumab.

aOutcomes: 1 = severity, ICU admission, or both; 2 = mechanical ventilation; 3 = mortality; 4 = viral clearance; and 5 = adverse events.
SARS-CoV-2 Shedding in Corticosteroid Use
Thirteen studies reported viral clearance in 1,482 COVID-19 patients receiving corticosteroids vs no corticosteroids. The nucleic acid test results and timing were not standardized, and the method of reporting viral clearance varied significantly among studies. Three studies that did not report corticosteroid dose concluded that patients treated with corticosteroids might have prolonged viral shedding.30,63,73

Seven studies reported low-dose corticosteroids and viral clearance in 604 COVID-19 patients. Findings are summarized in Table 2. Five studies comprising 457 patients showed no evidence for prolonged SARS-CoV-2 viral shedding in low-dose corticosteroid administration. Xu et al85 reported a higher proportion of COVID-19 patients with prolonged viral shedding receiving low-dose corticosteroids; however, the duration of shedding was not reported by corticosteroids use. Only the study of Gong et al49 showed a significant delay in viral clearance by an average of 5 days in patients receiving low-dose corticosteroids (29.11 ± 6.61 days vs 24.44 ± 5.21; \(P < .05\)).

Corticosteroid Safety and Adverse Events
Five studies reported adverse events related to corticosteroid therapy in COVID-19 patients. Unfortunately, details on severity, predisposing risk factors, or other details were not available in these studies. Giacobbe et al48 reported bloodstream infection in 19 of 24 patients receiving corticosteroids or corticosteroids with tocilizumab vs in 26 of 54 patients who did not receive corticosteroids (\(P = .002\)). Huang et al54 reported secondary infection in three of nine patients receiving corticosteroids vs 1 of 32 patients not receiving corticosteroids. Wang et al81 reported COVID-19-associated pulmonary aspergillosis in 6 of 63 patients (9.5%) receiving corticosteroids vs 2 of 41 patients (4.8%) not receiving corticosteroids. Yuan et al90 reported no infections in either the group receiving corticosteroids or the group receiving no corticosteroids. Zhang et al64 reported hyperglycemia in 23 of 38 patients (60%) receiving corticosteroids vs 59 of 128 patients (46%) not receiving corticosteroids.

Quantitative Analysis
Thirty-three of 73 studies reported mortality outcomes in patients receiving corticosteroids with a comparison group not receiving corticosteroids. One study was excluded (Ding et al45) owing to a critical risk of bias because it described outcomes in patients with COVID-19 and influenza coinfection.

We identified 32 studies comparing glucocorticoids with not administering glucocorticoids in COVID-19 patients (Fig 3). Heterogeneity was too high (\(I^2 = 90\%\)) to combine meaningfully for meta-analysis in this set with statistically significant heterogeneity (\(P < .0001;\) e-Fig 1), with an overall detrimental effect of corticosteroids in mortality of (OR, 2.30; 95% CI, 1.45-3.63; \(P = .0004\)).

We identified eight studies reporting mortality outcomes exclusively in severely ill COVID-19 patients (ARDS, mechanically ventilated, or critically ill) receiving corticosteroids vs those who did not (Fig 4). Low heterogeneity (\(I^2 = 29\%\); heterogeneity \(P = .19\); e-Fig 2) was found, with favorable odds of mortality (fixed-effect model) among those receiving corticosteroids, achieving statistical significance (OR, 0.65; 95% CI, 0.51-0.83; \(P = .0006\)).

We also identified two studies that used high-dose corticosteroid protocols and 15 studies specifying low-dose regimens. Among those studies reporting higher doses (Fig 5), low heterogeneity was found (\(I^2 = 0\%\); e-Fig 3), but the odds of mortality (random-effects model) among those receiving high-dose corticosteroids did not achieve statistical significance (OR, 0.57; 95% CI, 0.27-1.23; \(P = .16\)).

Low-dose corticosteroids were assorted with moderate heterogeneity (\(I^2 = 60\%\); e-Fig 4) and also with a nonsignificant odds (random-effects model) for mortality (OR, 1.13; 95% CI, 0.71-1.8; \(P = .61\) (Fig 6). Because of concern of possible overlap of some study populations, several iterations of sensitivity analyses were performed, serially removing studies in which the same patient may have been reported more than once. None of these resulted in a meaningful change in heterogeneity metrics, nor in the odds of benefit or harm reaching statistical significance.

Discussion
In this systematic review and meta-analysis, we identified 73 comparative studies describing the experience of corticosteroids in COVID-19, which represents a considerable number of publications for a relatively new disease. Also, significant potential population overlap exists in studies generated in China that should be considered in future syntheses.

Overall, 21.6% of COVID-19 patients received corticosteroids in our analysis, highlighting the wide use...
Study	Age, y	Region, Hospital	Patients Receiving Corticosteroids	Corticosteroid Dosage	Viral Clearance in Corticosteroids vs No Corticosteroids
Fang et al	40 ± 12.6	China, Anhui Provincial Hospital	25/78 (32)	MP hydrocortisone-equivalent dose, 237.5 mg/d for 7 d in general group, 250.0 mg/d for 4.5 d in severe group	Mean viral clearance in nonsevere patients: corticosteroids 17.6 ± 4.9 d vs no corticosteroids 18.7 ± 7.7 d (P = .667) Mean viral clearance in severe patients: corticosteroids 18.8 ± 5.3 d vs no corticosteroids 18.3 ± 4.2 d (P = .84)
Gong et al	38 ± 8.9	China, First Clinical Medical College of Three Gorges University	18/34 (52.9)	MP, 1-2 mg/kg/d gradually halved every 3 d for a total of 5-10 d	Mean time to negative nucleic acid: corticosteroids 29.11 ± 6.61 d vs no corticosteroids 24.44 ± 5.21 d (P < .05)
Hu et al	46 (33-57)	China, Second Hospital of Nanjing	28/72 (38.8)	MP, 140 mg/d for 4.54 d	Median viral clearance: corticosteroids 18 d (IQR, 14.3-23.5 d) vs no corticosteroids 17 d (IQR,12-20 d; P = .252)
Li et al	. . .	China, Yichang Central People’s Hospital	NA/206	Unspecified corticosteroids 40-80 mg/d	High-dose corticosteroids (80 mg/d) delayed viral clearance (aHR, 0.67; 95% CI, 0.46-0.96; P = .031), but low-dose corticosteroids (40 mg/d) did not (aHR, 0.72; 95% CI, 0.48-1.08; P = .11)
Xu et al	52 (43-63)	China, First Affiliated Hospital and the Shenzhen Third People’s Hospital	64/113 (56.6)	MP, < 1.5 mg/kg/d	Viral shedding > 15 d was seen more frequently in patients receiving corticosteroids, 64.5% vs 40.5% (P = .025)
Yuan et al	48.1 (33-64)	China, Central Hospital of Wuhan	35/70 (50)	MP, median dose 44.6 mg/d	Median viral clearance: corticosteroids 20.3 d (IQR, 15.2-24.8 d) vs no corticosteroids 19.4 d (IQR, 11.5-28.3 d; P = .669)
Zha et al	39 (32-54)	China, Anhui Provincial Hospital	11/31 (35.4)	MP, 40 mg once or twice daily for 5 d	Median viral clearance: corticosteroids 15 d (IQR, 14-16 d) vs no corticosteroids 14 d (IQR, 11-17; P = .87)

Data are presented as No./Total No. (%), mean ± SD, or median (IQR), unless otherwise indicated. aHR = adjusted hazard ratio; COVID-19 = coronavirus disease 2019; IQR = interquartile range; MP = methylprednisolone.
Study or Subgroup	Corticosteroids	No corticosteroids	OR M-H, Random, 95% CI	OR M-H, Random, 95% CI
Almahedi S, et al.	16 40	3 1,056	3.8%	234.00 [63.91-856.73]
Ayerbe L, et al.	200 960	86 1,115	5.4%	3.15 [2.40-4.12]
Callejas-Rubio JL, et al.	6 83	1 9	2.4%	0.62 [0.07-5.85]
Cao J, et al.	11 51	6 51	4.2%	2.06 [0.70-6.09]
Chen Q, et al.	0 4	0 4	Not estimable	
Chen TL, et al.	14 34	5 21	4.0%	2.24 [0.67-7.55]
Chen Y, et al.	3 46	0 5	1.6%	0.69 [0.04-19.51]
Deng Y, et al.	88 152	21 73	5.0%	3.40 [1.87-6.21]
Ding Q, et al.	0 3	0 2	Not estimable	
Fadel R, et al.	18 132	21 81	4.9%	0.45 [0.22-0.91]
Fernandez-Cruz A, et al.	55 396	16 67	5.0%	0.51 [0.27-0.97]
Guan W, et al.	5 204	10 895	4.2%	2.22 [0.75-6.58]
Horby, et al.	482 2,104	1,110 4,321	5.5%	0.86 [0.76-0.97]
Huang C, et al.	4 9	2 32	2.3%	12.00 [1.72-83.80]
Jacobs JP, et al.	1 5	9 27	2.3%	0.50 [0.05-5.15]
Li K, et al.	13 52	2 50	3.4%	8.00 [1.70-37.60]
Luo P, et al.	3 8	0 7	1.5%	9.55 [0.40-225.19]
Okoh AK, et al.	26 36	71 216	4.7%	5.90 [2.63-13.25]
Shahriarirad R, et al.	1 5	8 108	2.3%	3.13 [0.31-31.36]
Vahedi E, et al.	0 30	1 30	1.5%	0.32 [0.01-8.24]
Wang D, Yin Y, et al.	18 62	1 45	2.6%	18.00 [2.30-140.74]
Wang F, et al.	30 55	24 53	4.8%	1.45 [0.68-3.09]
Wang Y, et al.	2 26	1 20	2.1%	1.58 [0.13-18.81]
Wu C, et al.	23 50	21 34	4.5%	0.53 [0.22-1.28]
Xue W, et al.	0 16	0 46	Not estimable	
Yan Y, et al.	95 136	13 57	4.8%	7.84 [3.62-16.10]
Yang X, et al.	16 30	16 22	4.0%	0.43 [0.13-1.40]
Zha L, et al.	0 11	0 20	Not estimable	
Zhou F, et al.	26 57	28 134	4.9%	3.18 [1.63-6.19]
Total (95% CI)	4,919	8,735	100.0%	2.30 [1.45-3.63]

Figure 3 – Forest plot showing mortality outcomes in coronavirus disease 2019 patients receiving corticosteroids vs those not receiving corticosteroids.

Study or Subgroup	Corticosteroids	No corticosteroids	OR M-H, Fixed, 95% CI	OR M-H, Fixed, 95% CI
Chen Y, et al.	3 48	0 5	0.5%	0.89 [0.04-19.51]
Feng Y, et al. (1)	25 52	8 18	3.8%	1.16 [0.39-3.40]
Horby, et al. (2)	95 324	283 683	78.4%	0.59 [0.44-0.78]
Jacobs JP, et al.	1 5	9 27	1.4%	0.50 [0.05-5.15]
Lu X, et al.	12 31	5 31	1.9%	3.28 [0.99-10.90]
Wang Y, et al.	2 26	1 20	0.6%	1.58 [0.13-18.81]
Wu C, et al.	23 50	21 34	8.2%	0.53 [0.22-1.28]
Yang X, et al.	16 30	16 22	5.2%	0.43 [0.13-1.40]
Total (95% CI)	564	840	100.0%	0.65 [0.51-0.83]

Figure 4 – Forest plot showing mortality outcomes in severely ill coronavirus disease 2019 patients receiving corticosteroids vs those not receiving corticosteroids.
of corticosteroids, despite the lack of well-established indications or high-quality studied in favor or against corticosteroids. Almost half of studies reported dose or timing of corticosteroids, with low-dose methylprednisolone being the most common approach. Corticosteroids were used widely in mechanically ventilated patients (35.3%), ICU patients (51.3%), and severe COVID-19 patients (40%), which potentially could reflect a general practice, rather than the impact of corticosteroids in severity of disease, pending high-quality studies. Also, evidence emerged in our synthesis showing that low-dose corticosteroids do not have significant impact in duration of SARS-CoV-2 viral shedding, in contrast with data from SARS and MERS.16

Severely ill COVID-19 patients showed a statistically significant mortality benefit from corticosteroids (OR, 0.65; 95% CI, 0.51-0.83; \(P = .0006 \)) in our analysis. No beneficial or harmful effect was noted among high-dose or low-dose corticosteroids recipients. Overall mortality of COVID-19 patients receiving corticosteroids was higher than in patients not receiving corticosteroids, with the caveat that the population studied was too heterogeneous, possibly because of selection bias among studies, with corticosteroids administered to patients with grave prognosis at baseline. The vast majority of studies did not report baseline characteristics of the group receiving corticosteroids.

Side effects in COVID-19 patients receiving corticosteroids included superinfection, COVID-19-associated pulmonary aspergillosis, and hyperglycemia; however, the literature on side effects is lacking. Well-known corticosteroid side effects such as hyperglycemia and superimposed infections have been reported in coronavirus diseases.99,100 However, the largest meta-
Organization	Date	COVID-19 Population	Recommended Dose	Level of Evidence	Corticosteroid Use Recommendation
Chinese National Health Committee (7th version)	3/4/2020	Progressive deterioration of oxygenation indicators, rapid radiographic progression, and excessive activation of inflammatory response	MP, 1-2 mg/kg/d for 3-5 d	Expert consensus	Favors corticosteroids
The Surviving Sepsis Campaign: Society of Critical Care Medicine/ European Respiratory Society	3/28/2020	Patients on mechanical ventilation and ARDS	Hydrocortisone 200 mg/d	Weak recommendation, low-quality evidence	Favors corticosteroids
Infectious Disease Society of America	9/25/2020	Critically ill patients with severe disease, ie, SpO₂ ≤ 94% on room air, those who require supplemental oxygen, mechanical ventilation, or ECMO	Dexamethasone 6 mg for 10 d (or until discharge if earlier) or equivalent corticosteroids dose	Strong (critically ill)/ conditional (severe disease) recommendation, moderate certainty of evidence	Favors corticosteroids
Patients without hypoxemia, not requiring supplemental oxygen	Conditional recommendation, low certainty of evidence	Against corticosteroids
National Institutes of Health	8/27/2020	Patient on mechanical ventilation or requiring oxygen supplementation	Dexamethasone 6 mg/d (or alternative corticosteroids) for up to 10 d or until hospital discharge	AI^a (mechanically ventilated patients), BI^b (requiring oxygen)	Favors corticosteroids
Patients not requiring oxygen supplementation	AI^a	Against corticosteroids
World Health Organization^c	9/2/2020	Patients with severe disease and critically ill	Dexamethasone 6 mg/d or hydrocortisone 50 mg every 8 h for 7-10 d	Strong recommendation, moderate certainty evidence	Favors corticosteroids
American Thoracic Society	4/3/2020	No suggestion	. . .	Expert consensus	Against corticosteroids

ECMO = extracorporeal membrane oxygenation; MP = methylprednisolone; SpO₂ = oxygen saturation.

^aGrade A, level 1: strong recommendation, high-quality evidence.

^bGrade B, level 1: strong recommendation, moderate-quality evidence.

^cWorld Health Organization is in the process of updating treatment guidelines to include dexamethasone or other corticosteroids.
analysis on low-dose corticosteroid use in patients with sepsis did not show an increased risk of superinfection (n = 5,356; RR, 1.06; 95% CI, 0.95-1.19; P = .27) or gastroduodenal bleeding (n = 5,171; RR, 1.07; 95% CI, 0.85-1.35; P = .55), although an increased risk of hyperglycemia (RR, 1.20; 95% CI, 1.10-1.31; P < .0001), hypernatremia (RR, 1.66; 95% CI, 1.34-2.06; P < .0001), and muscle weakness (RR, 1.21; 95% CI, 1.01-1.44; P = .04) was found.101

Although the role of corticosteroids in COVID-19 remains unclear, evidence suggests benefits of corticosteroids in ARDS. A meta-analysis published in 2018 in patients with ARDS receiving corticosteroids (n = 494 for hydrocortisone and n = 272 for methylprednisolone) showed reduced time to extubation, duration of hospitalization, and mortality, with an increase in ventilation-free days and ICU-free days.102 The proposed doses for methylprednisolone in this setting are 1 to 2 mg/kg bolus followed by the same daily dose at an infusion rate of 10 mL/h daily with a gradual taper.103,104 Based on similar information, the Society of Critical Care Medicine/the European Society of Intensive Care Medicine guidelines also recommended the early use of corticosteroids in moderate to severe ARDS.105 However, the quality of evidence supporting these findings has been questioned.106

Study Limitations

Our qualitative synthesis was limited by the detail of reported patients’ characteristics among studies. Also, a lack of details in dosing, indication, and timing of corticosteroids was found across studies. Potential for population overlap also was noted in most studies generated in China. Although this was mitigated by sensitivity analysis in the quantitative synthesis, it is difficult to assess the impact of the overlap in the qualitative synthesis. Our qualitative synthesis was limited by the heterogeneity of studies included in high-dose and low-dose corticosteroids.

International Recommendations for Corticosteroids in COVID-19

The international recommendations for corticosteroid use in COVID-19 are summarized in Table 3. The Chinese Clinical Guidance for COVID-19 Pneumonia Diagnosis and Treatment published by the Chinese National Health Committee set the initial recommendations for methylprednisolone in patients with progressive clinical deterioration.107 Other international societies and organizations are incorporating recommendations for corticosteroids in COVID-19 based on disease severity, including the American Thoracic Society,108 the Infectious Disease Society of America,109 the National Institutes of Health of the United States,110 the Surviving Sepsis Campaign,111 and the World Health Organization.112

Interpretation

The current evidence does not support indiscriminate corticosteroid administration in patients with COVID-19. However, severely ill COVID-19 patients may benefit from corticosteroids based on our findings. The potential role for corticosteroids as an immunomodulatory agent in COVID-19 needs to be explored further in clinical trials. This is particularly important in resource-limited settings where targeted immunomodulators may not be readily available or affordable.
References

1. Zhou P, Yang X-L, Wang X-G, et al. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature. 2020;579(7798):270-273.

2. Addi RA, Benksim A, Amine M, Cherkaoûi M. Asymptomatic COVID-19 infection management: the key to stop COVID-19. J Clin Exp Invest. 2020;11(3):1-2.

3. Holshue ML, DeBolt C, Lindquist S, et al. First case of 2019 novel coronavirus in the United States. N Engl J Med. 2020;382(10):929-936.

4. Weber DJ, Rutala WA, Fischer WA, et al. Emerging infectious diseases: focus on infection control issues for novel coronaviruses (severe acute respiratory syndrome-CoV and Middle East respiratory syndrome-CoV), hemorrhagic fever viruses (Lassa and Ebola), and highly pathogenic avian influenza viruses, A(H5N1) and A(H7N9). Am J Infect Control. 2016;44(5 suppl):e91-e100.

5. di Mauro G, Cristina S, Concetta R, Francesco R, Annalisa C. SARS-CoV-2 infection: response of human immune system and possible implications for the rapid test and treatment. Int Immunopharmacol. 2020;84:106519.

6. Channappanavar R, Perlman S. Pathogenic human coronavirus infections: causes and consequences of cytokine storm and immunopathology. Semin Immunopathol. 2017;39(5):529-539.

7. Tay MZ, Poh CM, Renia L, MacAry PA, Ng LFP. The trinity of COVID-19: immunity, inflammation and intervention. Nat Rev Immunol. 2020;20(6):363-374.

8. Azkur AK, Akdis M, Azkur D, et al. Immune response to SARS-CoV-2 and mechanisms of immunopathological changes in COVID-19. Allergy. 2020;75(7):1564-1581.

9. Huang C, Wang Y, Li X, et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet. 2020;395(10223):497-506.

10. Ho JC, Ooi GC, Mok TY, et al. High-dose pulse versus nonpulsed corticosteroid regimens in severe acute respiratory syndrome. Am J Resp Crit Care Med. 2003;168(12):1449-1456.

11. Yam LY-C, Lau AC-W, Lai FY-L, Shung E, Chan J, Wong V. Corticosteroid treatment of severe acute respiratory syndrome in Hong Kong. J Infect. 2007;54(1):28-39.

12. Sung JY. Severe acute respiratory syndrome: report of treatment and outcome after a major outbreak. Thorax. 2004;59(5):414-420.

13. Yang YZ, Liu J, Zhou Y, et al. The effect of corticosteroid treatment on patients with coronavirus infection: a systematic review and meta-analysis. J Infect. 2020;81(1):e13-e20.

14. Wang D, Hu B, Hu C, et al. Clinical characteristics of 138 hospitalized patients with 2019 novel coronavirus-infected pneumonia in Wuhan, China. JAMA. 2020;323(11):1061-1069.

15. Huang C, Wang Y, Li X, et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet. 2020;395(10223):956-960.

16. Li H, Chen C, Hu F, et al. Impact of corticosteroid therapy on outcomes of persons with SARS-CoV-2, SARS-CoV, or MERS-CoV infection: a systematic review and meta-analysis. Leukemia. 2020;34(6):1503-1511.

17. Yang X, Yu Y, Xu J, et al. Clinical course and outcomes of critically ill patients with SARS-CoV-2 pneumonia in Wuhan, China: a single-centered, retrospective, observational study. Lancet Respir Med. 2020;8(5):475-481.

18. Zhou F, Yu T, Du R, et al. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study. Lancet. 2020;395(10229):1054-1062.

19. Wu C, Chen X, Cai Y, et al. Risk factors associated with acute respiratory distress syndrome and death in patients with coronavirus disease 2019 pneumonia in Wuhan, China. JAMA Intern Med. 2020;180(7):934-943.

20. Petrosillo N, Viceconte G, Ergoul O, Ippolito G, Petersen E. COVID-19, SARS and MERS: are they closely related? Clin Microbiol Infect. 2020;26(6):729-734.

21. Wang Y, Ao G, Qi X, Zeng J. The first consecutive case of COVID-19 in Wuhan, China. J Med Virol. 2020;92(6):106519.

22. Li X, Xu S, Yu M, et al. Risk factors for severity and mortality in adult COVID-19 inpatients in Wuhan. J Allergy Clin Immunol. 2020;146(1):110-118.

23. Lu X, Chen T, Wang Y, Wang J, Yan F. Adjunctive corticosteroid therapy for critically ill patients with COVID-19. Crit Care. 2020;24(1):241.

24. Ye Z, Wang Y, Colunga-Lozano LE, et al. Efficacy and safety of corticosteroids in COVID-19: a systematic review and evidence for COVID-19, other coronavirus infections, influenza, community-acquired pneumonia and acute respiratory distress syndrome: a systematic review and meta-analysis. CMAJ. 2020;192(27):E756-E767.

25. Liberati A, Altman DG, Tetzlaff J, et al. The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate health care interventions: explanation and elaboration. BMJ. 2009;339:b2700.

26. Sterne JA, Hernan MA, Reeves BC, et al. ROBINS-I: a tool for assessing risk of bias in non-randomised studies of interventions. BMJ. 2016;355:i4919.

27. Sterne JAC, Savovic J, Page MJ, et al. RoB 2: a revised tool for assessing risk of bias in randomised trials. BMJ. 2019;366:14898.

28. Jackson D, White IR, Thompson SG. Extending DerSimonian and Laird’s methodology to perform multivariate random effects meta-analyses. Stat Med. 2010;29(12):1282-1297.

29. Higgins JP, Thompson SG, Deeks JJ, Altman DG. Measuring inconsistency in meta-analyses. BMJ. 2003;327(7414):557-560.

30. Chen X, Zhu B, Hong W, et al. Associations of clinical characteristics and treatment regimens with the duration of viral RNA shedding in patients with COVID-19. Int J Infect Dis. 2020;98:252-260.

31. Almazedi S, Al-Youna S, Jamal MH, et al. Characteristics, risk factors and outcomes among the first consecutive 1096 patients diagnosed with COVID-19 in Kuwait. EclinicalMedicine. 2020;24:100448.

32. Argenziano MG, Bruce SL, Slater CL, et al. Characterization and clinical course of 1000 patients with COVID-19 in New York: retrospective case series. medRxiv. 2020. Apr 22;2020.04.20.2007116.

33. Ayrøe L, Risco C, Ayis S. The association between treatment with heparin and survival in patients with Covid-19. J Thromb Thrombolys. 2020;50(2):298-301.

34. Blanco JL, Ambrosioni J, Garcia F, et al. COVID-19 in patients with HIV: clinical case series. Lancet HIV. 2020;7(5):E314-E316.

35. Cao J, Tu WJ, Cheng W, et al. Clinical features and short-term outcomes of 102 patients with coronavirus disease 2019 in Wuhan, China. Clin Infect Dis. 2020;71(15):748-755.

36. Cao ZH, Li TZ, Liang LC, et al. Clinical characteristics of coronavirus disease 2019 patients in Beijing, China. Plos One. 2020;15(6).

37. Chen Q, Quan B, Li XN, et al. A report of a single-centered, retrospective study. CMAJ. 2020;92(6):106519.

38. Chen T, Dai Z, Mo P, et al. Clinical characteristics and outcomes of older patients with coronavirus disease 2019 (COVID-19) in Wuhan, China (2019): a single-centered, retrospective study. J Gerontol A Biol Sci Med Sci. 2020;75(9):1788-1795.
39. Chen Y, Zhang K, Zhu G, et al. Clinical characteristics and treatment of critically ill patients with COVID-19 in Hebei. Ann Palliat Med. 2020;9(4):2118-2130.

40. Chroboczek T, Lacoste M, Wackenheim C, et al. Corticosteroids in patients with COVID-19: what about the control group? Clin Infect Dis. 2020;ciaa768.

41. Deng JZ, Zhu GY, Yang YJ, Zheng F. Clinical characteristics of coronavirus disease 2019 in patients aged 80 years and older. J Integ Med. 2020;18(5):395-400.

42. Ding Q, Lu PP, Fan YH, Xia YJ, Liu M. Clinical characteristics of coronavirus disease 2019 in Wuhan, China: a retrospective study. Chin Med J (Engl). 2020;133(11):1261-1267.

43. Ding Q, Lu PP, Fan YH, Xia YJ, Liu M. The clinical characteristics of pneumonia patients coinfected with 2019 novel coronavirus and influenza virus in Wuhan, China. J Med Virol. 2020;92(9):1549-1555.

44. Fadel R, Morrison AR, Vahia A, et al. Early short course corticosteroids in hospitalized patients with COVID-19. Clin Infect Dis. 2020;71(16):2114-2120.

45. Fang XW, Mei Q, Yang TJ, et al. Low-dose corticosteroid therapy does not delay viral clearance in patients with COVID-19. J Infect. 2020;81(1):179-181.

46. Feng Y, Ling Y, Bai T, et al. COVID-19 with different severities: a multicenter study of clinical features. Am J Resp Crit Care. 2020;201(11):1380-1388.

47. Fernandez-Cruz A, Ruiz-Antoran B, Munoz-Gomez A, et al. A retrospective controlled cohort study of the impact of glucocorticoid treatment in SARS-CoV-2 infection mortality. Antimicrob Agents Chemother. 2020;64(9).

48. Giacobbe DR, Battaglini D, Ball L, et al. Bloodstream infections in critically ill patients with COVID-19. Eur J Clin Invest. 2020;50(10):e13319.

49. Gong Y, Guan L, Jin Z, Chen S, Xiang G, Gao B. Effects of methylprednisolone use on viral genomic nucleic acid negative conversion and CT imaging lesion absorption in COVID-19 patients under 50 years old. J Med Virol. 2020;92(11):2551-2555.

50. Horby P, Lim WS, Emberson JR, et al. Dexamethasone in hospitalized patients with Covid-19—preliminary report. N Engl J Med. 2020;NEJMoa202436.

51. Guan WJ, Ni ZY, Hu Y, et al. Clinical characteristics of coronavirus disease 2019 in China. N Engl J Med. 2020;382(18):1708-1720.

52. Hong KS, Lee KH, Chung JH, et al. Clinical features and outcomes of 98 patients hospitalized with SARS-CoV-2 infection in Daegu, South Korea: a brief descriptive study. Yonsei Med J. 2020;61(5):431-437.

53. Hu ZL, Lv YL, Xu CJ, et al. Clinical use of short-course and low-dose corticosteroids in patients with non-severe COVID-19 during pneumonia progression. Front Public Health. 2020;8:355.

54. Huang C, Wang Y, Li X. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet. 2020;395(10233):496-496.

55. Huang YX, Cai CL, Zang JL, et al. Treatment strategies of hospitalized patients with coronavirus disease-19. Aging (Albany, NY). 2020;12(12):11224-11237.

56. Jacobs JP, Stammers AH, St Louis J, et al. Extracorporeal membrane oxygenation in the treatment of severe pulmonary and cardiac compromise in coronavirus disease 2019: experience with 32 patients. ASAIO J. 2020;66(7):722-730.

57. Jiang Y, He S, Zhang C, et al. Clinical characteristics of 60 discharged cases of 2019 novel coronavirus-infected pneumonia in Taizhou, China. Ann Transl Med. 2020;8(5):47.

58. Kato H, Shimizu H, Shibue Y, et al. Clinical course of 2019 novel coronavirus disease (COVID-19) in individuals present during the outbreak on the Diamond Princess cruise ship. J Infect Chemother. 2020;26(8):865-869.

59. Khamis F, Al-Zakwani I, Al Naamani H, et al. Clinical characteristics and outcomes of the first 63 adult patients hospitalized with COVID-19: an experience from Oman. J Infect Public Health. 2020;13(7):906-913.

60. Li K, Chen D, Chen S, et al. Predictors of fatality including radiographic findings in adults with COVID-19. Respir Res. 2020;21(1):146.

61. Li S, Hu Z, Song X. High-dose but not low-dose corticosteroids potentially delay viral shedding of patients with COVID-19. Clin Infect Dis. 2020;ciaa829.

62. Li TZ, Cao ZH, Chen Y, et al. Duration of SARS-CoV-2 RNA shedding and factors associated with prolonged viral shedding in patients with COVID-19 [published online ahead of print July 9, 2020]. J Med Virol. https://doi.org/10.1002/jmv.26280.

63. Ling Y, Xu SB, Lin YX, et al. Persistence and clearance of viral RNA in 2019 novel coronavirus disease rehabilitation patients. Chin Med J (Engl). 2020;133(9):1039-1047.

64. Liu F, Xu AF, Zhang Y, et al. Patients of COVID-19 may benefit from sustained lopinavir-combined regimen and the increase of ecosinophil may predict the outcome of COVID-19 progression. Int J Infect Dis. 2020;95:183-191.

65. Liu J, Li S, Liu J, et al. Longitudinal characteristics of lymphocyte responses and cytokine profiles in the peripheral blood of SARS-CoV-2-infected patients. EBioMedicine. 2020;55:102763.

66. Liu J, Zheng X, Huang Y, Shan H, Huang J. Successful use of methylprednisolone for treating severe COVID-19. J Allergy Clin Immunol. 2020;146(2):325-327.

67. Liu J, Lei X, Xiao X, et al. Epidemiological and clinical characteristics of patients with coronavirus disease-2019 in Shiyian City, China. Front Cell Infect Microbiol. 2020;10:284.

68. Luo P, Liu Y, Qiu L, Liu X, Liu D, Li J. Tocilizumab treatment in COVID-19: a single center experience. J Med Virol. 2020;92(7):814-818.

69. Montastruc F, Romano C, Montastruc JL, et al. Pharmacological characteristics of patients infected with SARS-CoV-2 admitted to intensive care unit in south in France. Therapie. 2020;75(4):381-384.

70. Okoh AK, Sossou C, Dangavach NS, et al. Coronavirus disease 19 in minority populations of Newark, New Jersey. Int J Equity Health. 2020;19(1):93.

71. Callejas-Rubio JL, del Castillo JDL, Fernandez JD, Arrabal EG, Ruic MC, Centeno NO. Effectiveness of corticoid pulses in patients with cytokine storm syndrome induced by SARS-CoV-2 infection. Med Clin (Barcelona). 2020;155(4):159-161.

72. Shahriariad R, Khodamoradi Z, Erfani A, et al. Epidemiological and clinical features of 2019 novel coronavirus diseases (COVID-19) in the South of Iran. BMC Infect Dis. 2020;20(1):427.

73. Shen Y, Zheng F, Sun D, et al. Epidemiology and clinical course of COVID-19 in Shanghai, China. Emerg Microbes Infect. 2020;9(1):1537-1545.

74. Shi D, Wu W, Wang Q, et al. Clinical characteristics and factors associated with long-term viral excretion in patients with severe acute respiratory syndrome coronavirus 2 infection: a single-center 28-day study. J Infect Dis. 2020;222(6):910-918.

75. Sun L, Shen L, Fan J, et al. Clinical features of patients with coronavirus disease 2019 from a designated hospital in Beijing, China. J Med Virol. 2020;92(10):2055-2066.

76. Vahedi E, Ghanei M, Ghazvini A, et al. The clinical value of two combination regimens in the management of patients suffering from Covid-19 pneumonia: a single centered, retrospective, observational study. Daru. 2020;28(2):407-516.

77. Wan S, Xiang Y, Fang W, et al. Clinical features and treatment of COVID-19 patients in northeast Chongqing. J Med Virol. 2020;92(7):797-806.

78. Huang Y, Chen S, Yang Z, et al. SARS-CoV-2 viral load in clinical samples of critically ill patients. Am J Respir Crit Care Med. 2020;92(11):1435-1438.

79. Wang D, Yin Y, Hu C, et al. Clinical course and outcome of 107 patients infected with the novel coronavirus, SARS-CoV-2, discharged from two hospitals in Wuhan, China. Crit Care. 2020;24(1):188.
