Constraints on the CKM angle α in the $B \rightarrow \rho\rho$ decays

Haibo Li

Physics Department, University of Wisconsin, Madison, Wisconsin 53706, USA

Received (1 November 2004)

Using a data sample of 122 million $\Upsilon(4S) \rightarrow B\overline{B}$ decays collected with BABAR detector at the PEP-II asymmetric B factory at SLAC, we measure the time-dependent-asymmetry parameters of the longitudinally polarized component in the $B^0 \rightarrow \rho^+\rho^-$ decay as $C_L = -0.23 \pm 0.24({\text{stat}}) \pm 0.14({\text{syst}})$ and $S_L = -0.19 \pm 0.33({\text{stat}}) \pm 0.11({\text{syst}})$. The $B^0 \rightarrow \rho^0\rho^0$ decay mode is also searched for in a data sample of about 227 million $B\overline{B}$ pairs. No significant signal is observed, and an upper limit of 1.1×10^{-6} (90% C.L.) on the branching fraction is set. The penguin contribution to the CKM angle α uncertainty is measured to be 11^o. All results are preliminary.

Keywords: time-dependent-asymmetry; CKM angle; longitudinal polarization.

1. Introduction

The time-dependent CP asymmetry in a $b \rightarrow u\bar{u}d$ decay of a B^0 to a CP eigenstate allows for a measurement of the angle $\alpha = \arg[-V_{td}V^*_{tb}/V_{ud}V^*_{ub}]$ if the decay is dominated by the tree amplitude. The contribution from penguin diagrams gives rise to a correction $\Delta \alpha = \alpha_{\text{eff}} - \alpha$ that can be inferred through an isospin analysis. The recent experimental results indicate a small penguin contributions in $B \rightarrow \rho\rho$. The CP analysis in $B \rightarrow \rho^+\rho^-$ is complicated by the presence of three helicity states. However, the measured polarizations in $\rho^+\rho^-$ and $\rho^0\rho^0$ modes indicate a dominance of the helicity 0 state (longitudinal polarization), that is a $CP = +1$ eigenstate. A measurement of the polarization in $B^0 \rightarrow \rho^0\rho^0$ would complete the isospin triangle, but this mode has not been observed so far. Knowledge of the $B^0 \rightarrow \rho^0\rho^0$ rate is still expected to be limiting factor to the accuracy of the α measurement with $\rho\rho$ decays.

In this paper, we present a time-dependent analysis of $B^0 \rightarrow \rho^+\rho^-$ based on a sample of 122 million $B\overline{B}$ pairs, and a search for the $\rho^0\rho^0$ final state on a sample of 227 million $B\overline{B}$ pairs at BABAR.

2. Analysis Method

We reconstruct $\rho^+\rho^-$ candidates from combinations of two charged tracks and two π^0 candidates. In the $\rho^0\rho^0$ mode, the B^0 candidates are reconstructed from their
decay products $\rho^0 \to \pi^+\pi^-$ with four charged tracks which are required to originate from a single vertex near the interaction point. The π^0 candidates are formed from pairs of photons that have measured energies greater than 50 MeV. The reconstructed π^0 mass must satisfy $0.10 < m_{\gamma\gamma} < 0.16$ GeV/c2. The mass of the ρ candidates, $m_{\pi\pi\rho}$, must satisfy $|m_{\pi\pi\rho} - 0.770$ GeV/c$^2| < 0.375$ GeV/c2, and the mass, $m_{\pi^+\pi^-}$, must satisfy $0.55 < m_{\pi^+\pi^-} < 1.0$ GeV/c2. Combinatorial backgrounds dominate near $|\cos\theta_i| = 1$, where θ_i, $i = 1, 2$ is defined for each ρ meson as the angle between the $\pi^0 (\pi^+)$ momentum in the $\rho^0 (\rho^+)$ rest frame and the flight direction of the B^0 in this frame. We reduce these backgrounds with the requirement $-0.8 < \cos\theta_i < 0.98$ in $\rho^+\rho^-$ modes and $|\cos\theta_i| < 0.99$ in $\rho^0\rho^0$ mode. Two kinematic variables ΔE and m_{ES}, allow the discrimination of signal B decays from random combinations of tracks and π^0 candidates. For $\rho^+\rho^-$ we require that $5.21 < m_{\text{ES}} < 5.29$ GeV/c2 and $-0.12 < \Delta E < 0.15$ GeV/c2. The asymmetric ΔE window suppresses background from higher-multiplicity B decays. For $\rho^0\rho^0$ we require $m_{\text{ES}} > 5.24$ GeV/c2 and $|\Delta E| < 85$ MeV/c2.

In order to reject the dominated quark-antiquark continuum background, we require $|\cos\theta_T| < 0.8$, where θ_T is the the angle between the B thrust axis and the thrust axis of the rest of the events (ROE). The other event-shape discriminating variables are combined in a neural network (N). The Ns for $\rho^+\rho^-$ and $\rho^0\rho^0$ analysis weight the discriminating variables differently, according to training on off-resonance data and the relevant Monte Carlo (MC) simulated signal events.

When multiple B candidates can be formed we select the one that minimizes the sum of the deviations of the reconstructed π^0 mass in $\rho^+\rho^-$ mode, while, for $\rho^0\rho^0$, one candidate is selected randomly. The selection efficiency is 7% (13%) for the longitudinally (transversely) polarized $\rho^+\rho^+$ signal, and it is 27% (32%) for the $\rho^0\rho^0$ signal. B in the event.

To study the time-dependent asymmetry one needs to measure the proper time difference, Δt, between the two B decays in the events, and to determine the flavor tag of the other B-meson. The time difference between the decays of the two neutral B mesons ($B_{\text{rec}}, B_{\text{tag}}$) is calculated from the measured separation Δz between the B_{rec} and B_{tag} decay vertices. The flavor of the B_{tag} is determined with a multivariate technique that has a total effective tagging efficiency of (28.4±0.7)%.

An unbinned likelihood fit is finally performed on the selected event, a probability density function is built from discriminating variables, including the angular distribution and the Δt-dependence. The signal decay-rate distribution $f_+(f_-)$ for $B_{\text{tag}} = B^0 (\bar{B}^0)$ is given by:

$$f_\pm(\Delta t) = \frac{e^{-|\Delta t|/\tau}}{4\tau} [1 \pm S_L \sin(\Delta m_d \Delta t) \mp C_L \cos(\Delta m_d \Delta t)],$$

(1)

where τ is the mean B^0 lifetime, Δm_d is the $B^0 - \bar{B}^0$ mixing frequency, and S_L and C_L are the CP asymmetry parameters for the longitudinal polarized signal.
3. Results

We measure the CP violating asymmetries in the $B^0 \to \rho^+ \rho^−$ longitudinal component decay on 122 million $B^0 \overline{B}^0$ pairs. A detailed analysis of the background due to other B decays is performed. The main systematic uncertainty on the asymmetries is found to be the unknown CP violation in B background events. Our results are $S_L = -0.19 \pm 0.33 \text{(stat)} \pm 0.11 \text{(syst)}$ and $C_L = -0.23 \pm 0.24 \text{(stat)} \pm 0.14 \text{(syst)}$. With a sample of 227 million $B^0 \overline{B}^0$ pairs we have searched for the decay mode $B^0 \to \rho^0 \rho^0$, the measured value for the branching fraction is $(0.54 \pm 0.36 \pm 0.32 \pm 0.19) \times 10^{-6}$ or an upper limit of 1.1×10^{-6} at 90% confidence level (C.L.).

Using the Grossman-Quinn bound with the recent results on $B^\pm \to \rho^\pm \rho^0$ we limit $|\alpha_{\text{eff}} - \alpha| < 11^\circ$ (68% C.L.). Ignoring possible non-resonant contributions, and $I = 1$ amplitudes one can relate CP parameters S_L and C_L to α, up to a four-fold ambiguity. If we select the solution closest to the CKM best fit central value with the new limit on the $B^0 \to \rho^0 \rho^0$ rate we improve the constraint on α due to the penguin contribution, the measured CP parameters of the longitudinal polarization correspond to $\alpha = (96 \pm 10 \text{(stat)} \pm 4 \text{(syst)} \pm 11 \text{(penguin)})^\circ$. Figure shows the confidence level as a function of α from the isospin analysis.

References

1. M. Gronau and D. London, Phys. Rev. Lett. 65, 3381 (1990).
2. BABAR Collaboration, B. Aubert, et al. Phys. Rev. Lett. 91, 171802 (2003); Belle Collaboration, J. Zhang et al., Phys. Rev. Lett. 91, 221801 (2003).
3. BABAR Collaboration, B. Aubert, et al. Phys. Rev. Lett. 89, 281802 (2002).
4. BABAR Collaboration, B. Aubert, et al. arXiv:hep-ex/0404029 to appear in Phys. Rev. Lett.
5. BABAR Collaboration, B. Aubert, et al. Phys. Rev. Lett. 66, 032003 (2002).
6. Y. Grossman and H. Quinn, Phys. Rev. D 58, 017504 (1998).
7. A. Falk et al., Phys. Rev. D 69, 011502 (2004).
8. J. Charles et al., hep-ph/0406184; M. Bona et al., hep-ph/0408079.