Surface-Enhanced Raman Spectroscopy Analysis of Astragalus Saponins and Identification of Metabolites After Oral Administration in Rats by Ultrahigh-Performance Liquid Chromatography/Quadrupole Time-of-Flight Mass Spectrometry Analysis

Shengnan Kong†, Shan Ou‡, Yan Liu†, Minzhen Xie§, Ting Mei*, Yingshuo Zhang*, Jincheng Zhang‡, Qi Wang‡ and Bingyou Yang§

1Key Laboratory of Basic and Application Research of Beiya (Heilongjiang University of Chinese Medicine), Ministry of Education, Heilongjiang University of Chinese Medicine, Ministry of Education, Harbin, China, 2Department of Medicinal Chemistry and Natural Medicine Chemistry, College of Pharmacy, Harbin Medical University, Harbin, China

Astragalus mongholicus Bunge (Fabaceae) is an ancient Chinese herbal medicine, and Astragalus saponins are the main active components, which have a wide range of biological activities, such as immunomodulation, antioxidation, and neuroprotection. In this study, silver nanoparticles obtained by sodium borohydride reduction were used as the enhanced substrate to detect astragaloside I (1), astragaloside II (2), astragaloside III (3), astragaloside IV (4), isoastragaloside I (5), and isoastragaloside II (6) in the phloem, xylem, and cork by surface-enhanced Raman spectroscopy (SERS). In the SERS spectrum of Astragalus slices, the characteristic peaks were observed at 562, 671, 732, 801, 836, 950, 1,026, 1,391, and 1,584 cm\(^{-1}\), among which 950 cm\(^{-1}\) and 1,391 cm\(^{-1}\) were strong SERS signals. Subsequently, the metabolites of the six kinds of Astragalus saponins were identified by UPLC/ESI/Q-TOF-MS. Totally, 80, 89, and 90 metabolites were identified in rat plasma, urine, and feces, respectively. The metabolism of saponins mainly involves dehydration, deacetylation, dihydroxylation, dexylose reaction, deglycosylation, methylation, deacylation, and glycol dehydration. Ten metabolites (1-M2, 1-M11, 2-M3, 2-M12, 3-M14, 4-M9, 5-M2, 5-M17, 6-M3, and 6-M12) were identified by comparison with reference standards. Interestingly, Astragalus saponins 1, 2, 5, and 6 were deacetylated to form astragaloside IV (4), which has been reported to have good pharmacological neuroprotective, liver protective, anticancer, and antidiabetic effects. Six kinds of active Astragalus saponins from different parts of Astragalus mongholicus were identified by SERS spectroscopy. Six kinds of active Astragalus saponins from different parts of Astragalus mongholicus were identified by SERS spectrum, and the metabolites were characterized by UPLC/ESI/Q-TOF-MS,
which not only provided a new method for the identification of traditional Chinese medicine but also provided a theoretical basis for the study of the pharmacodynamic substance basis of *Astragalus mongholicus* saponins.

Keywords: astragali radix, surface-enhanced Raman spectroscopy, metabolite identification, Astragalus saponins, astragaloside IV

1 INTRODUCTION

Astragalus mongholicus Bunge is an ancient Chinese herbal medicine used as an essential ingredient in over 200 Chinese herbal formulas prescribed to treat different diseases in China and other Asian countries (Yuan et al., 2012; Sun et al., 2019). Pharmacological studies have shown that their saponins, flavonoids, and polysaccharide phytochemicals have interesting bioactivities, such as antioxidiant, anti-inflammatory, immunomodulatory, antiviral, and antitumor activities (Liu et al., 2017). According to the Chinese Pharmacopeia (2020 version), astragaloside saponins (especially astragaloside IV) possess interesting pharmacological activities, and they are used as quality assessment markers for *Astragalus mongholicus* Bunge. At present, more than 40 triterpenoid saponins have been obtained from *Astragalus mongholicus* Bunge and its related plants (Lee et al., 2017a; Song et al., 2007).

Because *Astragalus mongholicus* Bunge has many pharmacological effects, the current research focuses on the pharmacological substance basis of *Astragalus mongholicus*, mainly including the identification and content determination of flavonoids and saponins in *Astragalus mongholicus* (Zhang et al., 2018; Mei et al., 2020). At the same time, the quality of *Astragalus mongholicus* was also determined by diffuse reflectance mid-infrared transform spectroscopy (Yang et al., 2020). In addition, several researchers have studied the pharmacokinetic characteristics of its active components and metabolites in different crude extracts (Liu et al., 2015; Shi et al., 2015). Among them, astragaloside IV has been studied for neuroprotection, liver protection, anticancer, and antibacterial and has also been studied extensively in terms of the pharmacokinetics of rats and dogs (Cheng et al., 2016; Lee et al., 2017b; Zhang et al., 2020; Zhang et al., 2007; Zhang et al., 2005). However, *Astragalus* saponins have similar structures and more isomers, making them difficult to identify. Many potential active saponins in *Astragalus mongholicus* Bunge have not been studied.

Therefore, it is of great significance to develop a rapid and effective modern detection method for *Astragalus* saponins in chemical studies and the study of their metabolism in vivo. This study used SERS to detect interesting astragaloside saponins (astragaloside I (1), astragaloside II (2), astragaloside III (3), astragaloside IV (4), isoastragaloside I (5), and isoastragaloside II (6)), identify metabolites, and determine the metabolic profile of them in rat biosamples by UPLC/ESI/Q-TOF-MS to provide a fundamental basis for further pharmacology research and clinical applications of these phytochemicals.

MATERIALS AND METHODS

Chemicals and Reagents

Compound astragaloside I (1), astragaloside II (2), astragaloside III (3), astragaloside IV (4), isoastragaloside I (5), isoastragaloside II (6), and cycloastraigenol were all purchased from Chengdu Monster Biological Technology Co., Ltd., and their purity was above 98%. Heparin sodium was purchased from Beijing Xinyoubo Biotechnology Co., Ltd. (Figure 1). *Astragalus mongholicus* Bunge was purchased from Heilongjiang Zhongxin Co., Ltd. Sodium borohydride and silver nitrate were purchased from Aladdin. All other reagents were of analytical grade.

Preparation of *Astragalus mongholicus* Bunge Sample and SERS Spectrum Detection

The phloem, xylem, and cork of *Astragalus mongholicus* Bunge were extracted with 0.5 g powder and 1 ml chromatographic methanol for ultrasonic extraction for 30 min. Centrifuge for 15 min at 6,000 rpm, and take the supernatant. The six *Astragalus* saponins were 1 mg, and 100 μl of chromatographic methanol was added to each and dissolved by ultrasound. 10 μl of silver nanoparticles (Ag@BO) reduced by centrifuged sodium borohydride was added into a 1.5 ml centrifuge tube; then, the sample (2 μl) was added into the centrifuge tube, mixed, and shaken well. After that, 5 μl of sodium borohydride solution was added, shaken, and mixed, and a small amount of mixed sample was absorbed by 0.5 mm capillary for Raman detection. Raman instruments are manufactured by Wetic (Germany). Raman detection parameters are as follows: laser wavelength 633 nm, grating 600, scanning time 10 s/time, laser power 10 mW, and cumulative scanning times once. All Raman signal data in this article have no other smoothing operation except for base operation.

Animals and Drug Administration

Sixteen male Sprague Dawley rats (220–250 g) were purchased from the Experimental Animal Center of the Second Affiliated Hospital of Harbin Medical University. The laboratory animal facilities and procedures have been approved by the Animal Care and Use Committee of Harbin Medical University. All procedures are strictly implemented following the National Institute of Health Guidelines for the Care and Use of Laboratory Animals (Institute for Laboratory Animal Resources, 1996). Rats were fed in a metabolic cage with a temperature of 25°C, humidity of 60 ± 5%, 12 h dark-light cycle, free drinking water, and normal feed for three consecutive days. Rats fasted for 12 h.
before the experiment. Seven compounds were suspended in 1% sodium carboxymethyl cellulose to obtain suspension (2 mg/ml for each compound). Rats ($n = 2$) were orally given 40 mg/kg, while the control group was orally given the same amount of normal saline (Wang et al., 2014).

Preparation of Plasma, Urine, and Fecal Samples

0.5 ml of ocular vein blood was collected from rats in each treatment group at 0.5, 1, 2, 4, 6, and 8 h after administration and was centrifuged at 3,000 rpm for 10 min. Plasma samples were collected from the supernatant, combined with plasma, and stored in a −20°C refrigerator for cryopreservation. Urine was collected within 24 h and stored in a refrigerator at −20°C. The feces of rats within 24 h after oral administration were collected and air-dried naturally.

1 ml of plasma was taken, and four times the volume of methanol-acetonitrile (2:1) precipitated protein was added. The precipitated protein was vortexed for 5 min and centrifuged at 13,500 rpm for 5 min, and the supernatant was taken out and rotated-dried at 37°C. 2 ml of urine was extracted and purified on an activated solid-phase extraction column (OASIS HLB 6 CC). Purification process is as follows: first eluting with 3 ml of water, then eluting with 3 ml of 5% methanol-water, and finally eluting with 5 ml of methanol. The methanol eluted parts were collected, decompressed in water at 37°C, rotated, and dried. The dry feces were ground into powder, and 1.0 g was extracted with 20 ml methanol for 30 min by ultrasonic extraction. After extraction, the supernatant was centrifugally extracted, rotated, and dried at 37°C under reduced pressure. All samples were redissolved with 200 μl methanol and filtered through a 0.45 μm filter. Triple TOF® 5,600+ LC/MS/MS analysis (Xia et al., 2019).

FIGURE 1 | Chemical structures of astragaloside I (1), astragaloside II (2), astragaloside III (3), astragaloside IV (4), isoastragaloside I (5), isoastragaloside II (6), and cycloastragenol (the same as 1-M12, 2-M14, 3-M9, 4-M11, 5-M17, and 6-M12).
UPLC/ESI/Q-TOF-MS Analysis

An AB SCIEX Triple TOF 5600 was used for chromatographic separation. An ACQUITY UPLC CSHTM Phenyl-Hexyl (2.1 mm × 178,100 mm, 1.7 μm; Waters) was utilized for chromatographic separation. The mobile phase consisted of water (A) containing 0.1% (v/v) formic acid and acetonitrile.
of sample aliquot was injected onto the column, with the column separately used as the desolvation and collision gas, 5.5 kV; declustering potential, 80 V; and collision energy, 35 V. The optimized parameters were as follows: capillary voltage, 671, 732, 801, 836, 950, and 1,026 cm⁻¹ were strong Raman signals, indicating the fingerprint characteristics of biochemical substances in *Astragalus mongholicus* Bunge. Due to the interaction between compounds, the Raman characteristic peaks of a compound in the prepared slices are offset from those of a single compound measured by Raman spectra. The characteristic Raman frequencies of astragaloside saponins (astragalosides I–IV and isoastragalosides I–II) were consistent with those of *Astragalus* saponins at 732, 801, 836, 950, and 1,026 cm⁻¹ in *Astragalus mongholicus* Bunge Raman spectrum, indicating that *Astragalus* saponins were contained in *Astragalus* slices (Figures 2B). The peak of 1026 cm⁻¹ also indicated that the contents of glycogen, amylopectin, amylose, glucuronic acid, and medium glucosamine were consistent with the known biochemical components of *Astragalus mongholicus* Bunge, such as protein, amino acid, starch, and polysaccharide. Compared with phloem and xylem, the Raman peak of 1284 cm⁻¹ indicated that the cork of *Astragalus mongholicus* Bunge may contain N-acetylglycoside, Deuterium N-acetylglucoside, glycogen, cyclohexyl amylose, and maltose. The peak of 1529 cm⁻¹ exhibits tertiary nitroalkanes, which are opposed to NO₂ stretching. The signal intensity showed that xylem > phloem > cork.

RESULTS AND DISCUSSION

Comparison in SRSE and Conventional Raman Spectra of *Astragalus mongholicus* Bunge

In conventional Raman spectrum detection, the Raman effect is very weak due to strong fluorescence background interference (Figure 2A). SERS technology effectively quenched the fluorescence, and higher sensitivity was obtained by adsorbing the analyte to the plasma nanoparticles while significantly enhancing the Raman spectral signal (Figure 2B). Compared with conventional Raman spectroscopy, when noble metal nanoparticles were used, the conventional surface-enhanced Raman spectroscopy (SERS) enhanced factor was 10⁶–10¹⁰ (Albrecht et al., 1977; Jeannaire and Van Duyne, 1977; Gu et al., 2018). Therefore, SERS has become an interesting method for biological analysis of *Astragalus* and its saponins due to its excellent selectivity and high sensitivity (Stiles et al., 2008; Cialla-May et al., 2017).

SERS Characterization of *Astragalus* Saponins

Astragalus saponins (astragalosides I–IV and isoastragalosides I–II) have similar structures. Although they have characteristic Raman peaks at 732, 801, 836, 950, and 1,026 cm⁻¹, there are significant differences (Figure 3D). Compared with the strong Raman signal peak of 1,442 cm⁻¹ of other *Astragalus* saponins, the strong Raman signal of isoastragaloside I was 1,391 cm⁻¹ (Figure 3B). Astragaloside I (Figures 3A and astragaloside II (Figure 3c) were 619 cm⁻¹ and 715 cm⁻¹, respectively, and 1,391 cm⁻¹ was the second strong signal. Astragaloside IV also had a Raman peak of 1,391 cm⁻¹ (Figure 3F), but the response was very low. The strongest peak of astragaloside III shifted to the right, forming a peak of 1,448 cm⁻¹ (Figure 3E).

SERS Characterization of *Astragalus mongholicus* Bunge

Obvious Raman characteristic peaks could be observed at 562, 671, 732, 801, 836, 950, 1,026, 1,391, and 1,584 cm⁻¹. 950 and 1,391 cm⁻¹ were strong Raman signals, indicating the fingerprint characteristics of biochemical substances in *Astragalus mongholicus* Bunge. Due to the interaction between compounds, the Raman characteristic peaks of a compound in the prepared slices are offset from those of a single compound measured by Raman spectra. The characteristic Raman frequencies of astragaloside saponins (astragalosides I–IV and isoastragalosides I–II) were consistent with those of *Astragalus* saponins at 732, 801, 836, 950, and 1,026 cm⁻¹ in *Astragalus mongholicus* Bunge Raman spectrum, indicating that *Astragalus* saponins were contained in *Astragalus* slices (Figures 2B). The peak of 1026 cm⁻¹ also indicated that the contents of glycogen, amylopectin, amylose, glucuronic acid, and medium glucosamine were consistent with the known biochemical components of *Astragalus mongholicus* Bunge, such as protein, amino acid, starch, and polysaccharide. Compared with phloem and xylem, the Raman peak of 1284 cm⁻¹ indicated that the cork of *Astragalus mongholicus* Bunge may contain N-acetylglycoside, Deuterium N-acetylglucoside, glycogen, cyclohexyl amylose, and maltose. The peak of 1529 cm⁻¹ exhibits tertiary nitroalkanes, which are opposed to NO₂ stretching. The signal intensity showed that xylem > phloem > cork.

Characteristic Fragments of Saponins in *Astragalus mongholicus* Bunge

Compound 1 astragaloside I had an [M + H]⁺ peak at m/z 869.4880 (~2.19 ppm), and an m/z 671.4162 ([M + H-Glu-2*H₂O⁺]) fragment ion was formed after the removal of glucose (162 Da) and two molecules of water (36 Da). m/z 473.3731, m/z 437.3422, and m/z 419.3312 were formed by continuous dehydration after glycone formation, and m/z 395.3014 was formed by the loss of 84 Da (C₆H₄O₂) based on m/z 437.3422 (Figure 4A). The [M + Na]⁺ peak of compound 2 was at m/z 849.4619 (0.82 ppm). In the positive ion mode, aglycones were formed with continuous water loss to produce fragments of m/z 455.3516, m/z 437.3413, and m/z 419.3315. In addition, after the aglycones lost two molecules of water, the five-member ring connected to C-17 lost 100 Da (C₃H₄O₂) to form fragments of m/z 355.2631 and C-17 residue m/z 143.1061 ([C₃H₃O₂⁺] (Figure 4B)). Compound 3 astragaloside III had an [M + H]⁺ peak at m/z 785.4654 (~4.20 ppm). In tandem mass spectrometry, fragments of m/z 587.3915, m/z 455.3503, m/z 437.3397, m/z 419.3296, m/z 355.2618, and m/z 143.1054 were generated (Figure 4C). High-resolution mass spectrometry showed that compound 4 astragaloside IV had an [M + Na]⁺ ion peak at m/z 807.4512 (0.62 ppm) in positive ion mode. In MS/ MS, without glucose (162 Da) and two molecules of water (36 Da), m/z 587.3957 ([M + H-Glu-2 × H₂O⁺]) was formed. In addition, under the condition of glycone formation, four molecules of water were successively removed to form m/z 473.3636, m/z 455.3526, m/z 437.3422, m/z 419.3318, and the C-17 residue m/z 143.1067 ([C₃H₃O₂⁺] (Figure 4D). Compound 5 isoastragaloside I had an [M + H]⁺ peak at m/z 869.4871 (~3.22 ppm). The molecules generated fragments of m/z 671.4144, m/z 455.3515, m/z 437.3410, m/z 419.3303, and m/z 143.1059 in the secondary mass spectrometry (Figure 4E).
Compound 6 isoastragaloside II had an [M + Na]$^+$ peak at m/z 827.4785 (−0.97 ppm). Fragments of m/z 629.4043, m/z 473.3619, m/z 455.3515, m/z 437.3412, m/z 419.3305, and m/z 355.2826 were produced (Figure 4F). Compound 6 was present in large quantities in feces.

Therefore, based on the above analysis of secondary fragments of Astragalus saponins compounds in mass spectrometry, Astragalus saponins compounds can produce fragments of glucose (162 Da) and two water molecules (36 Da) in mass spectrometry. Based on lysis into aglycones, the fragments of...
m/z 473, m/z 455, m/z 437, m/z 419, and the aglycones were dehydrated continuously. After the loss of two molecules of water, the five-membered ring connected to C-17 lost 100 Da (C₅H₈O₂) to form m/z 355 and the C-17 residues m/z 143.1061 ([C₈H₁₅O₂]+) (Figure 4G).

Metabolite Identification of Astragalus Saponins

After oral administration of astragalosides I–IV and isoastragalosides I–II, compound 1 was not detected in the plasma, but it was abundant in feces. A total of 17 metabolites (1-M1 to 1-M17) were detected, among which 11 were detected in plasma and 15 in the urine and feces. In addition, compound 2 produces 18 metabolites (2-M1 to 2-M18) by desiccation, dehydration, dihydroxylation, methylation, and gluconic acid reactions, 11 of which are in the plasma and 17 of which are found in the urine and feces. Additionally, a total of 13 (3-M1 to 3-M13) metabolites with a high content were detected in the plasma, urine, and feces of rats under positive ion mode. In contrast, a total of 14 astragaloside IV-related metabolites (4-M1 to 4-M14) were detected in the rat biosamples. Among them, 4-M4 to 4-M7 were mainly detected in feces, while the remaining metabolites were identified in plasma, urine, and feces. Additionally, twenty-one metabolites (5-M1 to 5-M21) were produced in the blood, urine, and feces of rats after oral administration of isoastragaloside I. All metabolites were present in the plasma, urine, and feces of rats after oral administration of compound 6. There were 14 metabolites in the plasma and urine. Except for 6-M3, all of the other metabolites were present in feces (Figure 5).

Astragalosides II–IV and isoastragalosides I–II can cause continuous dehydration, such as metabolites 2-M1 (m/z 809.4675, –.48 ppm), 3-M1 (m/z 767.4582, –4.56 ppm), 4-M1 (m/z 767.4594, 1.56 ppm), 5-M4 (m/z 851.4793, –1.41 ppm), 6-M1 (m/z 809.4687, –1.73 ppm) identified as the dehydration products of Astragalus saponins. The six kinds of Astragalus saponins not only underwent deglucosylation and continuous dehydration, but also underwent dehydroxylase reaction, deglucosylation, and continuous dehydration reactions. Furthermore, the metabolites (1-M12, 2-M14, 3-M9, 4-M11, 5-M17, and 6-M12) produced by deglucosylation of six astragalus saponins were the same (Figure 5). Except for astragaloside III, all the other saponins caused dehydroxylase reaction, and continuous dehydration reactions occurred. Additionally, the deacetylation of astragalosides I-II and isoastragalosides I-II occurs due to the presence of acetyl groups.

The metabolite 1-M11 (m/z 679.405, –1.03 ppm) formed by methylation after deglucosylation of compound 1.1-M16 was a [M + Na]+ peak at m/z 501.332 (–4.99 ppm), suggesting that 1-M16 was a metabolite formed by acetylation and tri-dehydration along with the deglucosylation and dexylosylation of 1.1-M17 was determined to be C₃₁H₄₆O₂ and produced m/z 511.3728. Hence, it was identified as a tri-dehydration and methylation product of the aglycone moiety of 1. However, 2-M16, molecular formula C₃₈H₅₈O₁₀, is a dehydration, deglucosylation, dexylosylation methylation, and glucoaldehydation product of 2. Additionally, 3-M8 was a [M + H]+ peak at m/z 807.4493 (–4.71 ppm), suggesting that 3-M8 was a metabolite formed by glucoaldehydation and methylation along with deglucosylation and dehydration of 3. The molecular formula of 3-M13 was C₃₁H₅₂O₄ (m/z 511.3728). It is a dehydroxylated and methylated metabolite after aglycones formed by the removal of two sugars.
TABLE 1 | Characterization of in vivo metabolites of eggplant green calyx compounds 1–6 by UPLC/ESI/Q-TOF-MS.

No.	RT (min)	Formula	Ion condition	Theoretical (m/z)	Experimental (m/z)	Error (×10^−6)	MS/MS Transformations	Fragment
1	16.29	C₄₂H₇₀O₁₆ Na	891.4718	891.473	1.35	671.4162, 473.3731, 437.3734, 419.3312, 395.3014		
1-M1	11.33	C₄₂H₇₀O₁₅ H	827.4793	827.4787	−0.73	629.4056, 473.3930, 455.3593, 437.3422, 419.3314, 413.1064		
d₂-M2	8.92	C₄₁H₆₈O₁₄ Na	807.4507	807.4506	−0.12	455.3525, 437.3422, 355.2635, 297.1854, 149.0231		
1-M3	16.42	C₄₂H₇₀O₁₄ Na	833.4663	833.4679	1.92	437.3422, 419.3313, 395.3011, 351.2747, 315.1824, 257.0911, 189.0465		
1-M4	11.30	C₃₉H₆₆O₁₀ Na	675.4084	675.4075	−1.33	629.4056, 473.3930, 455.3593, 437.3422, 419.3314, 413.1064		
1-M5	11.38	C₃₉H₆₆O₁₀ H	635.4159	635.4167	1.26	629.4056, 473.3930, 455.3593, 437.3422, 419.3314, 413.1064		
1-M6	11.32	C₃₉H₆₆O₁₀ H	617.4053	617.404	2.11	473.3629, 455.3517, 437.3419, 419.3304, 413.1063		
1-M7	11.30	C₃₉H₆₆O₁₀ H	599.3948	599.3939	−1.50	473.3629, 455.3526, 437.3421, 419.3313, 413.1066		
1-M8	16.37	C₃₉H₆₆O₁₀ H	689.4265	689.4268	0.44	473.3627, 437.3422, 419.3310, 395.3011, 351.2749, 217.0705		
1-M9	16.31	C₃₉H₆₆O₁₀ H	671.4159	671.4151	−1.19	473.3625, 455.3524, 437.3420, 419.3314, 395.3012, 274.0849, 149.0231		
1-M10	16.34	C₃₉H₆₆O₁₀ H	653.4053	653.4057	0.61	473.3621, 455.3520, 437.3419, 419.3313, 395.3011, 351.2745, 217.0705		
1-M11	26.94	C₃₉H₆₆O₁₁ H	679.4057	679.405	−1.03	635.3782, 547.3257, 497.3845, 299.2014, 217.0704		
d₂-M12	15.97	C₃₉H₆₆O₁₁ Na	513.3556	513.3544	−2.34	457.3419, 373.2737, 355.2632, 351.2747, 257.0911, 189.0465		
1-M13	11.36	C₃₉H₆₆O₁₁ H	473.3631	473.3632	0.21	455.3527, 473.3423, 419.3314, 175.0598, 143.1065		
1-M14	11.28	C₃₉H₆₆O₁₁ H	455.3525	455.3529	0.88	437.3422, 419.3313, 285.0760, 175.0598, 143.1065		
1-M15	11.25	C₃₉H₆₆O₁₁ H	437.3422	437.3422	0.00	419.2212, 285.0758, 175.0594, 143.1062		
1-M16	10.56	C₃₉H₆₆O₁₁ Na	501.3345	501.3322	−4.99	473.3262, 391.2841, 373.2737, 355.2631		
1-M17	8.34	C₃₉H₆₆O₁₁ Na	473.3396	473.3372	−5.07	455.3258, 373.2740, 255.2630, 318.3098		

(Continued on following page)
Table 1: Characterization of in vivo metabolites of eggplant green calyx compounds 1–6 by UPLC/ESI/Q-TOF-MS.

No.	RT (min)	Formula	Ion condition	Theoretical Formula (m/z)	Experimental Formula (m/z)	Error (x10⁻⁶)	MS/MS Transformations	Fragment
2	11.35	C_{42}H_{70}O_{15} Na		849.4612	849.4619	0.82	473.3622, 455.3516, 437.3413, 419.3315, 355.2631, 143.1061	Prototype
2-M1	11.33	C_{42}H_{68}O_{14} H		809.4887	809.4875	−1.18	455.3519, 437.3410, 419.3306, 401.2972, 297.2400, 143.1057	Dehydration
2-M2	19.95	C_{42}H_{66}O_{13} H		791.4582	791.4588	0.76	655.2749, 629.4038, 537.2873, 473.3411, 419.3308, 373.2735, 355.2633, 317.2475, 143.1057	Double-dehydration
2-M3	8.98	C_{41}H_{68}O_{14} H		785.4887	785.4767	−1.27	455.3520, 437.3414, 419.3309, 373.2735, 355.2633, 317.2475, 143.1057	Deacetylation
2-M4	12.92	C_{41}H_{66}O_{13} Na		791.4588	791.4575	2.15	643.3962, 455.3514, 437.3417, 419.3308, 401.2972, 297.2400, 143.1057	Deacetylation/dehydroxylation
2-M5	11.16	C_{36}H_{60}O_{10} Na		675.4084	675.4073	−1.63	635.4174, 593.3935, 473.3622, 455.3519, 437.3419, 3, 401.2972, 302.2401, 143.1059	Deacetylation/dehydroxylation
2-M6	11.25	C_{36}H_{58}O_{9} H		635.4159	635.4177	2.83	473.3619, 455.3513, 437.3412, 302.2401, 143.1059	Deacetylation/dehydroxylation
2-M7	11.21	C_{26}H_{56}O_{8} H		617.4053	617.4039	−2.27	473.3617, 455.3518, 437.3413, 373.2735, 355.2633, 317.2475, 143.1057	Deacetylation/dehydroxylation
2-M8	11.33	C_{26}H_{54}O_{7} H		599.3948	599.3927	−3.50	455.3520, 437.3414, 419.3309, 373.2735, 355.2633, 317.2475, 143.1057	Deacetylation/dehydroxylation
2-M9	12.95	C_{26}H_{52}O_{6} H		647.4159	647.4131	−4.32	629.4038, 537.2873, 473.3411, 419.3309, 373.2735, 355.2633, 317.2475	Deacetylation/dehydroxylation
2-M10	11.38	C_{26}H_{50}O_{6} H		629.4053	629.4042	−2.07	473.3624, 455.3519, 437.3409, 373.2735, 355.2633, 317.2475, 143.1057	Deacetylation/dehydroxylation
2-M11	12.95	C_{26}H_{54}O_{7} H		611.3948	611.3936	−1.96	455.3520, 437.3414, 419.3309, 373.2735, 355.2633, 317.2475	Deacetylation/dehydroxylation
2-M12	11.44	C_{26}H_{52}O_{6} Na		645.3979	645.3957	−3.41	629.4030, 437.3411, 373.2735, 355.2633, 317.2475, 143.1057	Deacetylation/dehydroxylation
2-M13	12.98	C_{26}H_{50}O_{6} Na		629.4029	629.4044	2.38	455.3520, 437.3414, 419.3309, 373.2735, 355.2633, 317.2475, 143.1057	Deacetylation/dehydroxylation
2-M14	15.97	C_{26}H_{56}O_{6} Na		513.3556	513.3537	−3.70	473.3611, 455.3511, 437.3408, 419.3304, 355.2628, 282.2796, 143.1057	Deacetylation/dehydroxylation
2-M15	11.18	C_{26}H_{54}O_{7} H		473.3631	473.3618	−2.75	455.3519, 437.3414, 419.3309, 373.2735, 355.2633, 317.2475	Deacetylation/dehydroxylation
2-M16	11.13	C_{26}H_{52}O_{6} H		675.4108	675.4071	−5.48	473.3620, 455.3520, 437.3403, 419.3308, 302.2401, 143.1058	Deacetylation/dehydroxylation
2-M17	11.21	C_{26}H_{50}O_{5} H		455.3525	455.3517	−1.76	437.3412, 419.3307, 401.3195, 143.1058	Deacetylation/dehydroxylation
2-M18	11.23	C_{26}H_{50}O_{5} H		437.342	437.3413	−1.60	419.3307, 389.2679, 371.2573, 240.2372, 175.1538	Deacetylation/dehydroxylation
3	9.27	C_{41}H_{66}O_{14} Na		807.4507	807.4496	−4.20	587.3915, 455.3503, 437.3397, 419.3296, 355.2618, 143.1058	Deacetylation/dehydroxylation
3-M1	9.32	C_{41}H_{66}O_{13} H		767.4582	767.4547	−4.56	587.3912, 473.3604, 455.3502, 437.3399, 419.3296, 355.2618, 214.1054	Deacetylation/dehydroxylation

(Continued on following page)
No.	RT (min)	Formula	Ion condition	Theoretical (m/z)	Experimental (m/z)	Error (10⁻⁶)	MS/MS Transformations	Fragment
3-M2	9.35	C₄₁H₆₂O₁₂	H	749.4478	749.4435	-5.47	587.3918,455.3505,437.3399,419.3292,373.2721,355.2612,143.1054	Double-dehydration
3-M3	9.24	C₄₁H₆₂O₁₁	H	731.437	731.4339	-4.24	587.3918,473.3606,455.3502,437.3397,419.3291,373.2723,355.2618,337.2515,143.1054	Tri-dehydration
3-M4	9.21	C₃₉H₆₆O₉	H	623.4159	623.4142	-2.73	587.3939,473.3620,455.3518,437.3412,419.3306,143.1063	Deglucosylation
3-M5	9.19	C₃₉H₆₄O₈	H	605.4053	605.4016	-6.11	473.3606,455.3502,437.3396,419.3291,373.2715,143.1066	Deglucosylation/dehydration
3-M6	9.15	C₃₉H₆₂O₇	H	587.3948	587.3936	-2.04	473.3620,455.3518,437.3411,419.3306,245.0474	Deglucosylation/double-dehydration
3-M7	9.23	C₃₉H₆₀O₆	H	569.3842	569.3829	-2.28	473.3621,455.3517,437.3413,419.3307,143.1060	Deglucosylation/tri-dehydration
3-M8	9.17	C₃₂H₄₈O₁₄	H	807.4531	807.4493	-4.71	473.3626,455.3521,437.3416,419.3307,355.2631,143.1065	Deglucosylation/dehydration/glucoaldehydation/methylation
3-M9	15.98	C₃₀H₴₈O₅	Na	513.3556	513.3551	-3.05	473.3620,455.3518,437.3412,419.3306,143.1061	Deylcosylation/deglucosylation
3-M10	11.30	C₃₀H₴₆O₄	H	473.3631	473.3607	-5.07	455.3504,437.3398,419.3293,373.2724,355.2618,143.1063	Deylcosylation/deglucosylation/dehydration
3-M11	11.19	C₃₀H₴₈O₃	H	455.3525	455.3503	-4.83	437.3399,419.3293,282.2781,373.2723,355.2617,143.1064	Deylcosylation/deglucosylation/double-dehydration
3-M12	11.25	C₃₀H₴₈O₂	H	437.342	437.3401	-4.34	389.2671,371.3254,355.2622,331.2263	Deylcosylation/tri-dehydration
3-M13	8.73	C₃₀H₴₈O₂	Na	511.3763	511.3728	-6.84	448.3055,430.2962,412.2847,363.3271,355.2635,219.1741	Deylcosylation/deglucosylation/dehydration/methylation
4	9.08	C₃₁H₵₈O₁₄	Na	807.4507	807.4512	0.62	587.3967,473.3636,455.3526,347.3422,419.3318,143.1067	Deylcosylation/deglucosylation/dehydration/protolysis
4-M1	9.24	C₃₁H₵₈O₁₃	H	767.4582	767.4594	1.56	587.3956,569.3856,473.3636,455.3530,437.3424,419.3319,373.2750,355.2635	Double-dehydration
4-M2	8.90	C₃₁H₵₈O₁₂	H	749.4476	749.4448	0.53	587.3953,569.3842,473.3633,455.3529,437.3423,419.3320,373.2743,355.2638	Tri-dehydration
4-M3	8.98	C₃₁H₵₈O₁₁	H	731.437	731.437	0.00	473.3637,455.3529,437.3425,419.3319,401.3207,297.2217,143.1068	Deylcosylation
4-M4	11.17	C₃₈H₶₈O₁₀	Na	675.4081	675.4061	0.30	473.3614,455.3514,437.3408,419.3307,371.2575,143.1063	Deylcosylation/dehydration
4-M5	11.23	C₃₈H₶₆O₉	H	635.4159	635.4151	1.26	455.3527,437.3423,419.3319,331.3566,240.143.1062	Deylcosylation/dehydration
4-M6	11.14	C₃₈H₶₄O₈	H	617.4053	617.4035	2.92	473.3634,455.3530,437.3425,419.3320,143.1065	Deylcosylation/double-dehydration
4-M7	11.20	C₃₈H₶₂O₇	H	599.3948	599.3935	2.17	473.3636,455.3531,437.3425,419.3317,355.2641,143.1067	Deylcosylation/tri-dehydration
4-M8	9.17	C₃₂H₴₈O₉	H	605.4053	605.4035	-2.97	587.3937,569.3828,473.3618,455.3515,437.3409,419.3303,373.2735,355.2627	Deylcosylation/dehydration

(Continued on following page)
No.	RT (min)	Formula	Ion condition	Theoretical (m/z)	Experimental (m/z)	Error $(x10^{-6})$	MS/MS Transformations	p	u	f	Fragment	
4-M9	8.96	C$_{30}$H$_{54}$O$_{7}$	H	587.3948	587.3933	-0.25	455.3515, 437.3410, 419.3302, 389.2681, 284.2951, 336.2835, 356.2827	Deglucosylation/double-dehydration	a	a	b	
4-M10	9.00	C$_{30}$H$_{52}$O$_{6}$	H	569.3842	569.3851	1.14	473.3632, 455.3531, 373.2735, 355.2628, 335.2365	Deglucosylation/tri-dehydration	a	a	a	
d4-M11	15.96	C$_{30}$H$_{50}$O$_{5}$	Na	513.3556	513.3548	-3.51	455.3510, 437.3408, 308.2961, 284.2951, 265.2845, 143.1068	Dehydroxylation	b	b	b	
4-M12	9.19	C$_{30}$H$_{48}$O$_{4}$	H	473.3631	473.3635	0.85	357.2787, 335.2630, 284.2951	Deglucosylation/demethylation	a	a	a	
d4-M13	9.36	C$_{30}$H$_{46}$O$_{3}$	H	455.3525	455.3516	-1.98	437.3410, 355.2630, 284.2951, 217.0697	Deglucosylation/tri-dehydration	b	b	b	
5-M1	17.77	C$_{45}$H$_{72}$O$_{16}$	H	869.4899	869.4871	-3.22	671.4145, 437.3410, 355.2630, 217.0698	Deacetylation	c	c	c	
5-M2	9.09	C$_{41}$H$_{68}$O$_{14}$	Na	807.4507	807.4496	-1.36	767.4565, 617.4022, 455.3514, 355.2630, 284.2951, 217.0697	Deacetylation	c	c	c	
5-M3	17.86	C$_{43}$H$_{70}$O$_{15}$	Na	833.4663	833.4667	0.48	741.4411, 689.4251, 455.3514, 349.2951, 217.0697	Deacetylation/dehydroxylation	c	c	c	
5-M4	17.72	C$_{45}$H$_{70}$O$_{15}$	H	851.4793	851.4781	-1.41	741.4411, 689.4251, 455.3514, 349.2951, 217.0697	Deacetylation/dehydroxylation	c	c	c	
5-M5	17.88	C$_{45}$H$_{66}$O$_{13}$	H	815.4582	815.4584	0.25	741.4411, 689.4251, 455.3514, 349.2951, 217.0697	Deacetylation/dehydroxylation	c	c	c	
5-M6	11.31	C$_{39}$H$_{60}$O$_{10}$	Na	675.4084	675.4067	-2.52	473.3618, 455.3517, 355.2630, 217.0697	Deacetylation/dehydroxylation	c	c	c	
5-M7	11.34	C$_{36}$H$_{56}$O$_{8}$	Na	833.4663	833.4667	0.48	473.3615, 455.3517, 355.2630, 217.0697	Deacetylation/dehydroxylation	c	c	c	
5-M8	11.34	C$_{36}$H$_{54}$O$_{7}$	H	599.3948	599.3924	-4.00	473.3617, 455.3515, 355.2630, 217.0697	Deacetylation/dehydroxylation	c	c	c	
5-M9	11.18	C$_{32}$H$_{52}$O$_{6}$	H	599.3948	599.3924	-4.00	473.3617, 455.3515, 355.2630, 217.0697	Deacetylation/dehydroxylation	c	c	c	
5-M10	17.75	C$_{30}$H$_{50}$O$_{5}$	H	689.4265	689.4247	-2.61	671.4145, 437.3410, 349.2951, 217.0697	Deacetylation/dehydroxylation	c	c	c	
5-M11	17.80	C$_{30}$H$_{48}$O$_{4}$	H	671.4159	671.4145	-2.09	653.4009, 455.3517, 349.2951, 217.0697	Deacetylation/dehydroxylation	c	c	c	
5-M12	17.83	C$_{30}$H$_{46}$O$_{3}$	H	653.4053	653.4040	-1.99	455.3510, 437.3408, 336.2835, 284.2951, 217.0697	Deacetylation/tri-dehydration	c	c	c	
5-M13	14.97	C$_{30}$H$_{52}$O$_{6}$	Na	687.4084	687.4063	-3.05	566.3233, 460.2962, 284.2951, 217.0697	Deacetylation/deglucosylation	c	c	c	
5-M14	15.02	C$_{30}$H$_{50}$O$_{5}$	Na	645.3979	645.3979	0.00	503.1080, 429.0882, 284.2951, 217.0697	Deacetylation/deglucosylation	c	c	c	
5-M15	11.42	C$_{36}$H$_{54}$O$_{7}$	Na	849.4612	849.4589	-2.71	698.4381, 639.4035, 473.3615, 455.2519, 437.3410, 349.2951, 284.2951, 217.0697	Deacetylation/deglucosylation	c	c	c	

(Continued on following page)
TABLE 1 | Characterization of in vivo metabolites of eggplant green calyx compounds 1–6 by UPLC/ESI/Q-TOF-MS.

No.	RT (min)	Formula	Ion condition	Theoretical (m/z)	Experimental (m/z)	Error ($\times 10^{-3}$)	MS/MS Transformations	Fragment	p	u	f
5-M16	17.81	C$_{32}$H$_{56}$O$_{9}$	Na	671.4135	671.4149	2.09	Deacetylation/dehydroxylation/deglucosylation	635.3962, 455.3518, 437.3411, 419.3307, 217.0701	a	a	a
5-M17	15.97	C$_{32}$H$_{56}$O$_{9}$	Na	513.3556	513.3539	-3.31	Double-deacetylation/dexylcosylation/deglucosylation	455.3517, 437.3411, 419.3307, 373.3561, 237.2528, 143.1059	e	a	a
5-M18	11.26	C$_{32}$H$_{56}$O$_{9}$	H	473.3631	473.3613	-3.80	Deacetylation/dexylcosylation/deglucosylation	455.3518, 437.3412, 419.3305, 401.3198, 353.2467, 175.0593, 143.1061	e	a	a
5-M19	11.20	C$_{32}$H$_{56}$O$_{9}$	H	455.3525	455.3516	-1.98	Deacetylation/dexylcosylation/deglucosylation/tri-dehydration	437.3410, 419.3303, 401.3196, 2577.3552, 143.1059	a	b	a
5-M20	11.15	C$_{32}$H$_{56}$O$_{9}$	H	437.342	437.341	-2.29	Double-deacetylation/dexylcosylation/deglucosylation/tri-dehydration/methylation	419.3302, 401.3196, 297.2210, 143.1062	a	b	a
5-M21	8.40	C$_{32}$H$_{56}$O$_{9}$	Na	473.3396	473.3364	-6.76	Double-deacetylation/dexylcosylation/tri-dehydration	413.3042, 371.2574, 2629.3187, 3006	e	c	c
6	11.34	C$_{43}$H$_{70}$O$_{15}$	Na	849.4612	849.4592	-0.97	Deacetylation/tri-dehydration	629.4043, 473.3622, 455.3519, 347.3412, 419.3305, 355.2826	c	e	a
6-M1	12.90	C$_{43}$H$_{70}$O$_{14}$	H	809.4678	809.4673	-1.73	Dehydration	629.4045, 473.3621, 455.3518, 437.3412, 419.3305, 353.2467, 2210, 143.1062	e	e	a
6-M2	11.58	C$_{43}$H$_{70}$O$_{13}$	H	791.4582	791.457	-1.52	Double-deacetylation	473.3621, 455.3521, 437.3414, 419.3307, 371.2581, 2477.143.1063	e	e	e
6-M3	8.93	C$_{43}$H$_{70}$O$_{14}$	Na	807.4507	807.4487	-2.48	Deacetylation	587.3937, 473.3412, 419.3306, 343.2574	e	e	c
6-M4	11.42	C$_{43}$H$_{70}$O$_{13}$	Na	791.4558	791.4567	1.14	Deacetylation/dehydroxylation	647.4149, 629.4047, 611.3941, 473.3621, 455.3521, 437.3416, 419.3308, 355.2562, 143.1058	e	e	e
6-M5	11.15	C$_{43}$H$_{70}$O$_{12}$	Na	675.4084	675.4071	-1.92	Deacetylation/dexylcosylation	635.4183, 480.3137, 455.3516, 437.3408, 419.3306	e	e	e
6-M6	11.17	C$_{43}$H$_{70}$O$_{12}$	H	635.4159	635.4179	3.15	Deacetylation/dexylcosylation/deglucosylation	455.3514, 437.3407, 419.3308, 3305.353.2579, 143.1061	e	e	e
6-M7	11.12	C$_{43}$H$_{70}$O$_{12}$	H	617.4053	617.4046	-1.13	Deacetylation/dexylcosylation/double-dehydration	534.3410, 498.2881, 473.3619, 455.3519, 3409.419.3307, 389.2684, 335.2572, 143.1061	e	e	e
6-M8	11.31	C$_{43}$H$_{70}$O$_{12}$	H	647.4159	647.4153	-0.93	Deacetylation/dexylcosylation	647.4159, 629.4047, 611.3941, 473.3621, 455.3521, 437.3416, 419.3308, 355.2562, 143.1058	e	e	e

Continued on following page
Table 1 (Continued) Characterization of in vivo metabolites of eggplant green calyx compounds 1–6 by UPLC/ESI/Q-TOF-MS.

No.	RT (min)	Formula	Ion condition	Theoretical (m/z)	Experimental (m/z)	Error (x10⁻⁶)	MS/MS Fragment	Transformations
6-M9	11.39	C₃₀H₉₆O₁₀	H	629.4053	629.4047	-0.95	629.4047,611.3940,473.3618,455.3512,437.3414,419.3308,373.2731,355.2630,175.0596,143.1060	Deglucosylation/double-dehydration
6-M10	11.28	C₃₀H₉₄O₁₁	H	611.3948	611.3939	-1.47	473.3621,455.3520,437.3414,419.3308,355.2628,175.0591,143.1060,3619,343.419,3307,371.2579,355.2631,175.0594,143.1062	Deglucosylation/tri-dehydration
6-M11	11.36	C₳₃H₅₆O₈	Na	629.4029	629.4044	2.38	473.3620,455.3519,437.3413,419.3307,3308,355.2624,175.0591,143.1059	Deacetylation/dehydroxylation/deglucosylation
6-M12	15.99	C₳₀H₅₆O₈	Na	513.3556	513.3549	-1.36	455.3518,437.3416,373.2739,355.2632,337.2527	Deacetylation/dexylcosylation/deglucosylation
6-M13	11.25	C₳₀H₅₄O₈	H	473.3631	473.3622	-1.90	455.3519,437.3413,419.3307,401.3197,397.2208,143.1062	Deacetylation/deacetylation/dexylcosylation/deglucosylation
6-M14	11.23	C₳₀H₅₂O₈	H	455.3525	455.3518	-1.54	437.3414,419.3309,401,3194,297.2208,143.1062	Deacetylation/deacetylation/dexylcosylation/triple-dehydration
6-M15	11.21	C₳₀H₄₄O₂	H	437.342	437.3414	-1.37	419.3307,401,3202,297,2213,143.1056	Deacetylation/deacetylation/dexylcosylation/deglucosylation/tri-dehydration
6-M16	6.70	C₳₀H₄₄O₂	Na	519.345	519.3431	-3.66	389.2686,371.2579,333.2425	Deacetylation/deacetylation/dexylcosylation/double-dehydration/Acetylation

*Identified by comparing with reference standards.
*Detected at the highest abundance.
*Detected at comparatively high abundance.
*Detected at detected at low abundance (+++>+++).
from compound 3. In contrast, the [M + Na]$^+$ peak of 5-M15 at m/z 849.4589 (−2.71 ppm) indicated five deacetylation, deglycosylation, methylation, and glucoaldehydation derivatives. 5-M21 was shown to be C$_{31}$H$_{46}$O$_2$ (m/z 473.3364) and it is a five deacetylation, deglycosylation, dextrose reaction, dehydration, and methylation derivatives. 6-M16 was confirmed as C$_{32}$H$_{48}$O$_4$, which is an acetylated derivative after compound 6 aglycones dehydration products (Table 1).

Metabolic Pathways of Compounds 1–6 in Astragalus mongholicus Bunge

Astragalus saponins 1–6 could not easily be used as a prototype component in plasma after oral administration, but they had a higher content in feces (Fu et al., 2019). This may be related to the physical and chemical properties of saponins, such as their high molecular weight, high hydrogen bondability, polymer flexibility, and poor membrane permeability, leading to a decrease in their bioavailability (Gao et al., 2012; Yu et al., 2012). Among the phase I metabolites, a relatively large number of dehydration products can be observed in biological samples, all of which are formed by the dehydration of hydroxyl groups at the 3, 6, and 16 positions, which is consistent with our previous findings (Cheng and Wei, 2014; Chen et al., 2018; Lü et al., 2019). Compounds 1, 2, 5, and 6 also had diacetyl metabolites in their biological samples due to the presence of one or two acetyl substitutions on glucose. In addition, compounds 1, 2, and 5 had glycolaldehyde and methylation and acetylation of compound 6, which are all unique metabolic forms but have not been reported previously (Wan et al., 2016; Chen et al., 2019; Li et al., 2021). In identifying metabolites of astragaloside IV, 12 new dehydration products were added compared with the

FIGURE 6 | Metabolic pathways of compounds 1–6 in Astragalus mongholicus Bunge.
previously known ones (Cheng and Wei, 2014). Other pharmacological activities of Astragalus saponins have been less studied, all of which were the first metabolites studied here. Interestingly, these six Astragalus saponins all underwent deglycosylation and deacetylation reactions in the body to form the same aglycones that then underwent dehydration. More importantly, astragalosides I–II and isoastragalosides I–II can form astragaloside IV, which has increased activity after removing the acetyl group (Figure 6). This leads us to speculate that astragalosides I–II and isoastragalosides I–II may have the same potential anti-inflammatory, anti-fibrotic, antioxidative stress, antiasthma, antidiabetes, immunoregulation, and cardioprotective effects as astragaloside IV (Li et al., 2017).

CONCLUSION

In this study, silver nanoparticles obtained by sodium borohydride reduction were first used as the enhanced substrate to detect astragaloside I (1), astragaloside II (2), astragaloside III (3), astragaloside IV, (4) isoastragaloside I (5), and isoastragaloside II (6) in the phloem, xylem, and cork, by SERS. The Raman signal and mass spectrometry decomposition of the detection results were analyzed. In the SERS spectrum of astragalus slices, the characteristic peaks were observed at 562, 671, 732, 801, 836, 950, 1026, 1391, and 1584 cm$^{-1}$, among which 950 cm$^{-1}$ and 1391 cm$^{-1}$ were strong SERS signals. The SERS peak locations obtained could be attributed to biochemical substances such as Astragalus saponin, glucose, and acetamide. The technology of SERS can be used as a new, quick, and effective detection method for biochemical analysis, quality control, and discrimination of decocting pieces of Astragalus mongholicus Bunge or other Chinese medicine. UPLC/ESI/QTOF-MS was used to detect six representative Astragalus saponins in biological samples after the oral administration of Astragalus mongholicus Bunge to rats. Their metabolites were identified, and their metabolic pathways and transformation formed in vivo were summarized. The metabolism of Astragalus saponins 1–6 mainly involved dehydration, deacetylation, dihydroxylation, deglycosylation, methylation, decacylation, and glycol dehydration reactions. Ten metabolites were identified by comparison with reference standards. According to earlier studies, this is the first study on the metabolism of these Astragalus saponins. The most valuable is that astragalosides I–II and isoastragalosides I–II can form astragaloside IV with better activity after removing acetyl groups. This study is of great significance for applying SERS spectroscopy in the identification of TCM and predicting the metabolism of other saponins with similar structures in Astragalus mongholicus Bunge, which can promote the systematic study of multi-component metabolism and clinical efficacy of the Astragalus mongholicus Bunge.

DATA AVAILABILITY STATEMENT

The original contributions presented in the study are included in the article/Supplementary Material. Further inquiries can be directed to the corresponding authors.

ETHICS STATEMENT

The animal study was reviewed and approved by the Animal Care and Use Committee of Harbin Medical University.

AUTHOR CONTRIBUTIONS

QW, BY, SK, and YL participated in the research design. SK, SO, YL, TM, YZ, JZ, and MX conducted the experiments. QW, SK, and YL performed data analysis. QW, SK, SO, YL, MX, and JZ contributed to the writing of the manuscript.

FUNDING

This work was supported by the National Natural Science Foundation of China (Grant no. 82003919), Excellent Young Talents Funding of Natural Science Foundation of Heilongjiang Province in 2020 (Grant no. YQ 2020H008), Starting fund for postdoctoral of Heilongjiang Province (Grant no. LBH-Q19049), and Heilongjiang Touyan Innovation Team Program.

ACKNOWLEDGMENTS

The authors acknowledge the contributions of specific colleagues, institutions, or agencies that were very beneficial.

REFERENCES

Albrecht, M. G., Creighton, J. A., and Chem, J. A. (1977). Anomalously Intense Raman Spectra of Pyridine at a Silver Electrode. J. Am. Chem. Soc. 99, 5215–5217. doi:10.1021/ja00457a071

Chen, M. Y., Shao, L., Zhang, W., Wang, C. Z., Zhou, H. H., Huang, W. H., et al. (2018). Metabolic Analysis of Panax Notoginseng Saponins with Gut Microbiota-Mediated Biotransformation by HPLC-DAD-Q-TOF-MS/MS. J. Pharm. Biomed. Anal. 150, 199–207. doi:10.1016/j.jpba.2017.12.011

Chen, X., Xu, L., Guo, S., Wang, Z., Jiang, L., Wang, F., et al. (2019). Profiling and Comparison of the Metabolites of Diosmetin and Diosmin in Rat Urine, Plasma and Feces Using UHPLC-LTQ-Orbitrap MSn. J. Chromatogr. B Analyt Technol. Biomed. Life Sci. 1124, 58–71. doi:10.1016/j.jchromb.2019.05.030

Cheng, X., Wei, R., Sun, L., Hu, X., Liang, J., and Chen, Y. (2016). Astragaloside I Stimulates Osteoblast Differentiation through the Wnt/β-Catenin Signaling Pathway. Phytother. Res. 30, 1680–1688. doi:10.1002/ptr.5674

Cheng, X. D., and Wei, M. G. (2014). Profiling the Metabolism of Astragaloside IV by Ultra Performance Liquid Chromatography Coupled with Quadrupole/time-Of-Flight Mass Spectrometry. Molecules 19, 18881–18896. doi:10.3390/molecules191118881

Cialla-May, D., Zheng, X. S., Weber, K., and Popp, J. (2017). Recent Progress in Surface-Enhanced Raman Spectroscopy for Biological and Biomedical Applications: from Cells to Clinics. Chem. Soc. Rev. 46, 3943–3961. doi:10.1039/c7cs00172j
