Analysis of energy efficiency in the Krueng Raya TBBM Pertamina building using the energy audit method

Asril Sitorus*1, Edy Yurisman1, Hendra Susilo1, Himsar Ambarita1,2 and T B Nur1,2

1Department of Mechanical Engineering, Faculty of Engineering, Universitas Sumatera Utara, Medan 20155, Indonesia
2Sustainable Energy and Biomaterial Center of Excellence, Universitas Sumatera Utara, Padang Bulan, 20155 Medan, Indonesia

*Email: Ariel_ftusu@yahoo.com

Abstract. Energy audit is a technique to determine anytime, according to, and how to use energy in its facilities, and to take advantage of opportunities to improve efficiency. In this study an audit was conducted in the Pertamina TBBM Krueng Raya office building. This study discusses calculating the Energy Consumption Intensity (IKE) of a building, the thermal comfort level of a building so that it can realize a green building and be applied to other BBM terminal installations. The results of survey data, the pattern of electric energy use combined with Krueng Raya TBBM is 42.617 kWh/year in which the building area is 259.18 m². The results of study, obtained IKE at the Krueng Raya TBBM building amounted to 164.43 kWh/m²/year. Although by default the category of saving building criteria, but the visual comfort aspect questions SNI 03-6197-2000 and thermal SNI 03-6390-2000 is not allowed.

1. Introduction
Energy has a very important role in the industrial sector, transportation, mining, and commercial buildings. The problem of global warming makes us make efforts to prevent artificial warming, extreme climate change, and environmental degradation. The use of fossil fuels in the production process in excessive power generation will increase the amount of carbon emissions by up to 60%. Emissions from carbon itself will produce global warming. Excessive use of electricity will also emit heat waves that can cause global warming. Basically, it is known that energy efficiency is part of energy conservation [1]. In the context of efficient energy use, the government has issued a national energy policy that refers to policies for providing effective and efficient energy, as well as implementing energy conservation and environmental preservation. One way to reduce the impact of global warming is to save energy, including in the building sector. Energy audits are recommended to be carried out in buildings such as office buildings, schools, hotels, apartments, shopping centers and hospitals [2]. The industrial building is the second largest natural resource consumption sector after the food industry. Therefore, industrial buildings have a very important role to be able to reduce the environmental impact that causes global warming [3]. The use of lighting in buildings can be influenced by the purpose of the building, daytime use, lighting levels and hours of usage by occupants [4].

Pertamina as an oil and gas company engaged in the upstream to downstream oil and gas sectors in the country and is responsible for the distribution of fuel. Pertamina seeks to manage energy consumption and minimize energy use in the context of energy conservation activities. Since the issuance of Law Number 22 Year 2001 concerning oil and gas, hence since then Pertamina as a state company engaged in the oil and gas industry is no longer a single company in the downstream oil and gas sector [5]. Saving energy use is a very wise action and is very important to reduce production costs, so that the effective and efficient use of energy is expected to increase the productivity and
competitiveness of the products or services produced. Increasing the performance of the company can be done with efficiency, both in the form of cost efficiency / fuel distribution costs and efficient use of energy in one fuel distribution installation, including energy efficiency in buildings / buildings of BBM terminal installations.

Energy efficiency in buildings was introduced popularly in Indonesia around the 2000s, and quickly became a trend. The government issued more than 10 regulations and SNIs related to building energy efficiency [6-15]. Energy Audit methods are used to determine the level of energy use in buildings, Energy audit is the first step to find out the use of energy to be able to create energy conservation measures in accordance with Government Regulation No. 70 of 2009 concerning energy conservation which requires energy use to be done sparingly and efficiently. Audits have a level of detail based on the object being audited based on the energy used, energy consumption and resources available for audits. Audits have 3 types including: Preliminary energy audits, Details of energy audits, and Comprehensive energy audits. Energy audits make it possible to build specific energy models that have been used to analyze the impact of various energy saving measures on major energy consumption [16]. By conducting energy audits, it is expected to save energy and non-energy and evaluate the use of electrical energy in buildings [17-20]. This study aims to calculate the Energy Consumption Intensity (IKE) from buildings / buildings, the thermal comfort level of the building so that it can realize a green building and be applied to other BBM terminal installations.

2. Method

2.1. Data Collecting

Data collection techniques used to determine energy consumption in TBBM facilities require a survey and data collection stage, while the data needed includes:

a. Primary Data is data obtained through surveys and measurements directly to the field. Primary data needed includes electrical measurements in the main panel (main panel) and distribution panel (main distribution panel), measurement of each energy user equipment, in this case the motor and pump in the process of fuel distribution, specifications of each major energy user equipment, equipment operational mechanism, hours of use of equipment and technological systems used, and energy management systems that have been implemented;

b. Secondary data is, supporting data obtained from the study site. Secondary data is required as shown in table 1.

No.	Secondary Data Requirements	Period
A	Public Facilities	
a	Office Building Layout Plan	updated
b	Figure Single line electrical diagram at the office	updated
c	AC Equipment Data and specifications	
d	Data of room lighting equipment and its specifications	updated
e	Regional lighting equipment data	1 Week
f	Data of other electrical equipment in the building and its specifications	updated
g	Number of people (total employees) different in the building	2016 - 2018
h	Electricity usage data (kwh / month)	2016 - 2018

c. Energy audit process flow chart in the Krueng Raya-Aceh Pertamina TBBM building as shown in figure 1.
3. Results and discussions

3.1. Description of the research object

In the current energy audit activity, supporting facilities that are the object of detailed Audit are several buildings that represent offices and visiting facilities that have significant energy use. The supporting facilities for the assessment in this case are office buildings. The Krueng Raya TBBM building functions as an office building. The TBKM Krueng Raya building is located on Jalan Admiral Malahayati Km 32. The assessment here is intended to assess the current condition of the building based on the above criteria. To meet the criteria of a building that is Safe, Comfortable and Energy Saving. The following are the Assessment parameters that will be carried out including: electrical system for office buildings, energy consumption intensity of buildings / buildings in Krueng Raya TBBM, electricity usage patterns in Krueng Raya TBBM building, lighting system measurement, air system measurement.
3.2. Electrical system in office buildings

The electricity system in office buildings in TBBM Krueng Raya is supplied by PLN electricity. Based on the results of measurements made in the office Sub Distribution Panel (SDP) (main office load), it is known that the maximum office load is 21.66 kW, a minimum of 1.94 kW and an average load of 8.86 kW. The following is the load profile of the load measurements as shown in Figure 2. While the quality of the electricity in the office SDP is shown in table 2.

![Load profile SDP office](PROFILE_OFFICE SDP_KRUENG RAYA TBBM)

Figure 2. Load profile SDP office.

Table 2. The quality of electricity in the Krueng Raya TBBM office building.

Observation	Max	Min	Average	SPD Office
Volt (V) Phase R	236.27	195.64	222.32	
Phase S	243.48	217.63	226.13	
Phase T	244.95	221.62	228.25	
Current (Ampere)				
Phase R	83.41	5.83	27.53	
Phase S	17.04	2.12	9.75	
Phase T	12.73	0.00	3.67	
Phase N	70.89	3.59	20.48	
Apparent Power (kVA)	21.81	2.02	8.98	
Active Power (kW)	21.66	1.94	8.86	

From the profile of the use of electricity in offices as shown in figure 2, it can be seen that the building has implemented the principle of saving energy, where there are visible fluctuations in the load or decrease in electricity load between office operating hours (daytime) and at night. The load at night is only used on street lighting and building area lights.

3.3. Pattern of energy use and building energy consumption intensity

The pattern of energy use and intensity of building energy consumption based on measurement data (load survey) in the Krueng Raya TBBM building is distributed for lighting systems, air systems and receptacle systems. The amount of power used to the air system, lighting system and receptacle is as in table 3. Below:
Table 3. Total electric energy in the Krueng Raya TBBM building.

Distributed	Power (kW/day)	Percentage
Air Condition	18.58	92 %
Lighting	0.778	4 %
Receptacle	0.825	4 %
Total	20.17	100 %

The total electrical energy consumed in the Krueng Raya TBBM building is 20.17 kWh or 161.43 kWh/day or 42.617 KWh/year.

3.4. The intensity of energy consumption in the Krueng Raya TBBM building

The results of the Krueng Raya TBBM building area survey are shown in table 4.

Table 4. Extensive area of the Krueng Raya TBBM building.

Type of room	Long (m)	Width (m)	Large (m²)
Workspace			
Administration	15.9	6.9	109.71
Supervisor RSD	3.8	2.9	11.02
Archive	3.8	2.3	8.74
Financial	3.9	2.9	11.31
Maintenance service	3.9	2.9	11.31
Meeting	8.8	3.8	33.44
Marine	3.0	2.8	8.4
Staff marine	3.0	1.8	5.4
living marine	4.8	3.0	14.4
Server	3.6	2.4	8.64
Head of operation	4.8	3.6	17.28
Lobby	6.3	3.1	19.53
Warehouse	5.9	4.0	23.6

Based on table 4, the measured area in the building area is 259.18 m². Where the energy usage pattern is seen in table 3 where the total electrical energy is 42.617 KWh/year. To calculate the IKE per year in a building, it must first be known the estimated energy consumption and equipment available in each room using equation 1.

\[
IKE = \frac{\text{Total Electric Energy Consumption (kWh)}}{\text{Building area (m}^2\text{)}}
\]

Thus the IKE value of the Krueng Raya TBBM building is:

\[
IKE = \frac{42.617 \text{ (kWh/year)}}{259.18 \text{ (m}^2\text{)}} = 164.43 \text{ kWh/m}^2\text{/year}
\]

3.5. Lighting System

Work activities indoors require light and the light is generated with artificial lighting and also from natural lighting. Specifically for artificial lighting generated by a lighting system (lights), it should follow the references that have been made in an SNI standard [21]. To be able to meet the aforementioned effects, an engineering layout or room layout is needed to meet the standard lighting strength and also to meet the energy-saving effect by using energy-efficient lighting technology. The
The lighting technology used in the Krueng Raya TBBM building lighting system is already largely using LED lights. The following are the results of measurements of the quality of lighting or lighting strength as in table 5 and the distribution value of the lighting specifications of table 6 in the work area of the Krueng Raya TBBM building.

Table 5. Strong distribution of lighting in the Krueng Raya TBBM building.

Room Name	Large (M²)	Type	1	2	3	Average	Standard	Information
OFFICE SPACE								
Workspace								
Administration	109.71	LED	149	172	174	165.0	350	Not meet
Supervisor RSD	11.02	LED	206	223	585	338.0	350	Meet
Archive	8.74	TL	170	151	217	179.3	350	Not meet
Financial	11.31	LED	84	76	102	87.3	350	Not meet
Maintenance service	11.31	LED	126	176	593	298.3	350	Not meet
Meeting	33.44	LED	88	102	96	95.3	350	Not meet
Marine	8.4	LED	172	186	164	174.0	350	Not meet
Staff Marine	5.4	LED	28	33	41	34.0	350	Not meet
Living Marine	14.4	LED	69	85	80	78.0	350	Not meet
Server	8.64	TL	70	64	68	67.3	350	Not meet
Head of Operation	17.28	LED	149	172	174	165.0	350	Not meet
Lobby	19.53	LED	70	64	68	67.3	100	Not meet
Warehouse	23.6	LED	132	195	179	168.7	300	Not meet

Table 6. Distribution of lighting power specification values in the Krueng Raya TBBM building.

Room Name	Large (m²)	Type	Watt	Unit	Total Watt	specific lighting power [watt/m²]		
Workspace						Actual	Standard	Information
Administration	109.71	LED	20	10	200	1.82	15	Meet
Supervisor RSD	11.02	LED	10	4	40	3.63	15	Meet
Archive	8.74	TL	40	2	80	9.15	15	Meet
Financial	11.31	LED	7	4	28	2.48	15	Meet
Maintenance service	11.31	LED	7	4	28	2.48	15	Meet
Meeting	33.44	LED	7	5	67	2.00	15	Meet
Marine	8.4	LED	7	2	14	1.67	15	Meet
Staff Marine	5.4	LED	7	2	14	2.59	15	Meet
Living Marine	14.4	LED	7	2	14	0.97	15	Meet
Server	8.64	TL	20	3	60	6.94	15	Meet
Head of Operation	17.28	LED	40	4	160	9.26	15	Meet
Lobby	19.53	LED	32	1	39	2.00	15	Meet
Warehouse	23.6	LED	32	1	32	1.36	15	Meet

From table 5 it can be seen that the illumination strength does not meet the standard values required by SNI 03-6197-2000, while table 6 shows that the lighting power has fulfilled the standard values required by SNI 03-6197-2000.

3.6. Air conditioning System

Same is the case with the lighting system. In the air system, the evaluation parameters are the aspects of Thermal Comfort (workspace) and the technology level (COP / Coefficient of Performance) of the AC unit used for the Air Conditioning system. Based on SNI 03-6390-2000 "Energy Conservation in the
Air System. Thermal comfort for work space is a room that has a temperature or room temperature between 22°C to 26°C and a relative humidity value of 50% to 70% and it is stated that the AC unit used should have the COP value required for example, for the AC unit split is required to use an AC unit that has COP > 2.6. The description of the air system in the work area of the Krueng Raya TBBM building is: An assessment of the thermal comfort of the room and an assessment of air conditioning technology.

a. Assessment of thermal comfort

The results of measurements of temperature and relative humidity in rooms in the Krueng Raya TBBM building area as shown in Table 7.

Room Name	Weight (m)	Width (m)	Large (m²)	Relative Humidity (% RH)	Temperature (°C)	Actual	Standard	Information	Actual	Standard	Information
Workspace											
Administration	15.9	6.9	109.71	60	50 to 70	Meet	25 to 26	Not meet	25	25 to 26	Meet
Supervisor RSD	3.8	2.9	11.02	55	50 to 70	Meet	25 to 26	Meet	26	25 to 26	Meet
Archive	3.8	2.3	8.74	56	50 to 70	Meet	25 to 26	Meet	26	25 to 26	Meet
Financial	3.9	2.9	11.31	57	50 to 70	Meet	25 to 26	Meet	24	25 to 26	Meet
Maintenance service	3.9	2.9	11.31	53	50 to 70	Meet	25 to 26	Not meet			
Meeting	8.8	3.8	33.44	53	50 to 70	Meet	25 to 26	Meet	25	25 to 26	Meet
Marine	3.0	2.8	8.4	45	50 to 70	Not meet	25 to 26	Meet	25	25 to 26	Meet
Staff Marine	3.0	1.8	5.4	45	50 to 70	Not meet	25 to 26	Meet	25	25 to 26	Meet
Living Marine	4.8	3.0	14.4	42	50 to 70	Not meet	25 to 26	M Meet	25	25 to 26	Not meet
Server	3.6	2.4	8.64	56	50 to 70	Meet	25 to 26	Not meet	27	25 to 26	Not meet
Head of Operation	4.8	3.6	17.28	60	50 to 70	Meet	25 to 26	Meet			
Lobby	6.3	3.1	19.53	56	50 to 70	Meet	28 to 26	Not meet	25	25 to 26	Not meet
Warehouse	5.9	4.0	23.6	55	50 to 70	Me	25 to 26		25	25 to 26	

Based on table 7, it can be seen that the thermal comfort in the working area of the Krueng TBBM building still has several rooms that do not meet the required standards.

b. Assessment of air condition technology

Based on observations in the field, the air conditioning technology used in the Krueng TBBM building uses a Split Air Conditioning type. The AC unit technology used in TBBM Krueng Raya complies with SNI requirements with a COP value > 2.6 as shown in Figure 3. The AC units used in some rooms exceed their capacity or the installed capacity exceeds the cooling load required as shown in Table 8. Below:

![COP: 3.01](image1.png)

![COP: 2.61](image2.png)

Figure 3. AC technology (a) and (b) used in The Krueng Raya TBBM Building.
Table 8. Cooling capacity needed.

Type of room	Survey Cooling Load			
	Large \((m^2) \)	Unit AC Needs	Installed	Information
Workspace				
Administration	109.71	5.49	4	Less
Supervisor RSD	11.02	0.55	1.5	Exceed
Archive	8.74	0.44	2	Exceed
Financial	11.31	0.57	1.5	Exceed
Maintenance service	11.31	0.57	2	Exceed
Meeting	33.44	1.67	2	Exceed
Marine	8.4	0.42	1	Exceed
Staff Marine	5.4	0.27		
Living Marine	14.4	0.72	1	corresponding
Server	8.64	0.43	1	Exceed
Head Of Operation	17.28	0.86	2	Exceed
Lobby	19.53	0.98	1	corresponding
Warehouse	23.6	1.18		

4. Conclusions

From the results of research conducted using the energy audit method, the Energy Consumption Intensity (IKE) value of the Krueng Raya TBBM building is 164.43 kWh/m²/year when compared to the 2011 IFC Study Reference. Although categorically the energy saving building criteria, but aspects of visual comfort and thermal abandoned. For the aspect of visual comfort referring to the standards required by SNI 03-6197-2000 with lighting specifications <15 watts/m² as shown in Tables 5 and 6. Whereas for the quality of the air system is based on SNI 03-6390-2000 namely: the aspect of thermal comfort the workspace at temperature 22°C-26°C and relative humidity of 50%-70% are shown in Table 7, while the Split AC unit with a COP value > 2.6 as shown in Figure 3 and Table 8.

There are also recommendations for savings opportunities from the lighting system at the Krueng Raya TBBM support facility:

a. Retrofit street lighting / regional lights from 250 watt HPL-N / Mercury to 80 Watt LEDs.

b. Maintain the COP value (performance) of Split AC units with regular routine maintenance.

c. Setting a comfortable room temperature based on benchmarks in Indonesia around 23°C-25°C.

Acknowledgments

This work has been fully supported by Directorate of Research and Community Service, Directorate General Strengthening Research and Development Ministry of Research, Technology and Higher Education Republic of Indonesia, in accordance with the funding agreement and community service for fiscal year 2019.

Reference

[1] Hidayanto, Nur. Analisis Statistik Terhadap Potensi Penghematan Energi Pada Bangunan Gedung Dengan Metode Benchmarking. Program Studi Teknik Elektro Manajemen Teknik Ketenagalistrikan dan Energi, Jakarta. 2012

[2] Suprayogi, Muhammad R. Analisis Audit Energi Beban HVAC (Heat, Ventilation, and Air Conditioning) di Rumah Sakit Umum Daerah Dr. Saiful Anwar Malang. Jurnal Mahasiswa TEUB. Vol.2 no 4. Hal. 8-16.

[3] Berge, Bjorn. (2009). The Ecology of Building Materials (second edition), London: Architectural Press
[4] Kamaruzzaman, Syahrul Nizam., Edwards, Rodger., dkk.. Achieving energy and cost savings through simple daylighting control in tropical historic buildings, Journal of Energy and Buildings, Vol. 90. Hal. 85-93, 2014, https://ukm.pure.elsevier.com/en/publications/achieving-energy-and-costsavings-through-simple-daylighting-cont

[5] Rencana Strategis 2014-2019 Kementerian Energi dan Sumber Daya Mineral, 2014

[6] PII. (2016). Teknologi Bangunan Hijau, Engineer Weekly, No. 03 W.III. Persatuan Insinyur Indonesia

[7] ISO 50002-2014, Energy audits - Requirements with guidance for use. ICS : 27.015 Energy efficiency. Energy conservation in general. 2014

[8] SNI 6196:2011. Prosedur Audit Energi pada Bangunan Gedung, Badan Standardisasi Nasional. Jakarta.

[9] ASEAN-USAID. Building Energy Conservation Project. ASEAN Lawrence Berkeley Laboratory, United States. 1992

[10] SNI 6197:2011. Konservasi Energi Pada Sistem Pencahayaan, Badan Standardisasi Nasional. Jakarta. 115

[11] SNI 6390:2000. Konservasi Energi Sistem Tata Udara Bangunan Gedung, Badan Standardisasi Nasional. Jakarta.

[12] ESDM, Peraturan Menteri ESDM no 13 Tentang Penghemanatan pemakaian tenaga listrik pada bangunan pemerintah. p.02, 2012

[13] ASHRAE Handbook. Fundamentals, American Society of Heating Refrigerating and Air Conditioning Engineers. Inc. Atlanta, 1981

[14] SNI 6389:2011. Konservasi Energi Selubung Bangunan pada Bangunan Gedung, Badan Standardisasi Nasional. Jakarta.

[15] SNI 6575:2001. Tata cara perancangan sistem pencahayaan buatan pada bangunan gedung, Badan Standardisasi Nasional. Jakarta.

[16] Matteo Dongellini, Cosimo Marinosci and Gian Luca Morini, Energy audit of an industrial site: a case study. Energy Procedia. 45. 424 – 433. 2014

[17] Kluczek, A., Olszewski, P., Energy audits in industrial processes, Journal of Cleaner Production xxx. 1 - 17. 2016, http://dx.doi.org/10.1016/j.jclepro. 2016.10.123

[18] Baso Mukhlis, Evaluasi Penggunaan Listrik Pada Bangunan Gedung Di Lingkungan Universitas Tadulako, Jurnal Ilmiah Foristek Vol.1, No. 1, Hal 33-42, 2011

[19] Indah Fitriani, Evaluasi Efisiensi Energi Listrik pada Bangunan Rumah Sakit dr. Sayidiman Kabupaten Magetan. Program Pasca Sarjana Universitas Sebelas Maret Surakarta. 2017