L^p compression of some HNN extensions

Pierre-Nicolas Jolissaint and Thibault Pillon

May 7, 2014

Abstract

In [GJ03], the authors introduce a framework to prove that a large class of HNN extensions have the Haagerup property, the main motivation being Baumslag-Solitar groups. Using this framework and new tools on locally compact groups developed in [CdCMT12], we are able to obtain quantitative results on embeddings into Lebesgue spaces for a large class of HNN extensions.

1 Introduction

In [GK04], Guentner and Kaminker introduced the notion of compression exponent between metric spaces. Roughly speaking, it gives a way of quantifying how well a metric space coarsely embeds into another. We recall here the definitions. Let X and Y be metric spaces. A map $f : X \to Y$ is said to be large-scale Lipschitz if we can find some constants $A, B \geq 0$ so that the following inequality holds for every $x, y \in X$:

$$d(f(x), f(y)) \leq Ad(x, y) + B.$$

In this case, we define $R(f)$ to be the supremum over the $\alpha \in [0, 1]$ such that there exist some constants $C, D \geq 0$ so that $d(f(x), f(y)) \geq Cd(x, y)^\alpha - D$, for every $x, y \in X$. Then, the compression exponent, or simply compression of X with target Y is defined as $\alpha^*_Y(X) := \sup_f R(f)$, where the supremum is taken over all Large-scale Lipschitz maps f from X into Y. When $Y = L^p(\Omega)$ with Ω a standard Borel space, we set $\alpha^*_p = \alpha^*_p$. If G is a compactly generated locally compact group (e.g. a finitely generated group), we view it as a metric space with the word metric. The study of groups seen as metric spaces has

*Both authors supported by Swiss SNF -grant 20-137696.
offered some striking results. Let us recall one. If G is a finitely generated group and if $\alpha^*_p(G) > 0$ for some $p \in (1, +\infty)$, then G satisfies the Novikov conjecture (see [KY06]).

In [GJ03] the authors introduced the notion of an \mathcal{N}-BS group. These are groups arising as HNN extensions satisfying properties similar to Baumslag-Solitar groups. In order to prove the Haagerup property for such groups, they developed a framework that we shall heavily rely on and that we now recall.

Let \mathcal{N} be a locally compact compactly generated group and let G be a closed subgroup of \mathcal{N}. Let $i_1, i_2 : H \to G$ be two inclusions of a group H onto open subgroups of finite index, and assume i_1 and i_2 are conjugated by an automorphism φ of \mathcal{N}. The \mathcal{N}-BS group Γ is then the HNN extension $\text{HNN}(G, H, i_1, i_2)$ whose presentation is given by $\langle S, t | R, ti_1(h)t^{-1} = i_2(h) \forall h \in H \rangle$, where $G = \langle S | R \rangle$.

Theorem 1 Let \mathcal{N} be a connected Lie group and G a closed cocompact subgroup of \mathcal{N} and let Γ be an HNN extension as above. Then, for all $p > 1$, $\alpha^*_p(\Gamma) = 1$.

The strategy to prove Theorem 1 is to construct a metric space M on which Γ acts continuously, properly, cocompactly and by isometries, so that, M and Γ are quasi-isometric by Svarc Lemma: this is done in section 2, where we also give a quantitative comparison between two natural metrics on M. In the last section, we prove Theorem 1 and treat some concrete examples.

2 The space M

Let $\hat{\mathcal{N}} = \mathcal{N} \times \mathbb{Z}$, where \mathbb{Z} acts on \mathcal{N} by iterations of φ and let $j_\mathcal{N} : \Gamma \to \hat{\mathcal{N}}$ be the homomorphism defined by $g \mapsto (g, 0)$ for $g \in G$ and $t \mapsto (1, 1)$. Then consider T, the Bass-Serre tree associated with the HNN extension Γ and denote by $j_T : \Gamma \to \text{Aut}(T)$ the monomorphism induced by the action of Γ on T. For later use, recall the following result from [GJ03].

Theorem 2 The homomorphism $j : \Gamma \to \hat{\mathcal{N}} \times \text{Aut}(T)$, $g \mapsto (j_\mathcal{N}(g), j_T(g))$ is injective and has closed image. In particular, it is proper. \(\square\)

Following Proposition 2.1 in [CdCMT12], we will define a metric space Y on which $\hat{\mathcal{N}}$ acts continuously, properly, cocompactly and by isometries. Endow $\hat{\mathcal{N}}$ with a left-invariant Riemannian metric. For each coset $L_i = \mathcal{N} \times \{i\}$ of $\hat{\mathcal{N}}$ in $\hat{\mathcal{N}}$ we consider a strip $L_i \times [0, 1]$, equipped with the product Riemannian metric, and attach it to $\hat{\mathcal{N}}$ by identifying $(l, 0)$ to l and $(l, 1)$
to $l \cdot (1,1)$. Denote by Y the space obtained in this way. Y has a natural shortest-path metric induced by the riemannian metric on each of the strips. Furthermore, Y is naturally homeomorphic (but not necessarily isometric!) to $\mathcal{R} \times \mathbb{R}$. Using this obvious parametrization, \mathcal{R} acts on Y by $(n,k) \cdot (y,s) = (n\varphi^k(y), k+s)$, for $(n,k) \in \mathcal{R}$ and $(y,s) \in Y$. As in Proposition 2.1 in [CdCMT12], Y is a locally compact, geodesic metric space on which \mathcal{R} acts continuously, properly, cocompactly and by isometries. We denote by b the projection map $(y,s) \mapsto s$.

Let us recall briefly the construction of the Bass-Serre tree T of Γ. It is an oriented graph whose vertices are the left-cosets Γ/G and the edges correspond to the left cosets $\Gamma/i_1(H)$. The edge $\gamma/i_1(H)$ is directed from $\gamma t^{-1} G$ to γG. As the $i_k(H)$ are of finite index in G, T is locally finite. Then, by construction, Γ acts naturally on T by left multiplication.

Now, let $p : \Gamma \to \mathbb{Z}$ be the homomorphism defined on the generators by $p(t) = 1$ and $p(g) = 0$, for every $g \in G$. Since the vertices of T correspond to the left cosets of G in Γ, we can define a map c on the vertices of T by $c(xG) = p(x)$ and extend it to the metric tree T by affine interpolation. This allows us to define the fibre product M:

$$M = \{(x,y) \in T \times Y : c(x) = b(y)\}.$$

The subspace M is Γ-invariant for the diagonal action of Γ on $T \times Y$. Indeed, for all $x \in T$, $c(g \cdot x) = c(x)$ if $g \in G$ and $c(t \cdot x) = c(x) + 1$. In a similar fashion, for all $y \in Y$, $b(g \cdot y) = b(y)$ if $g \in G$ and $b(t \cdot y) = b(y) + 1$. Hence, if $c(x) = b(y)$, it implies that $c(\gamma \cdot x) = b(\gamma \cdot y)$ for any $\gamma \in \Gamma$. Other similar fibre products have already been considered, namely horocyclic products and millefeuille spaces. Those spaces are defined using so-called Busemann functions (see Section 7 in [CdCMT12]). It is worth noting that, in general, our functions c or b are not Busemann functions.

We endow $T \times Y$ with the product metric, namely, $d((x,y),(x',y')) = d_T(x,x') + d_Y(y,y')$.

Lemma 1 M is path-connected. Furthermore, denoting by d_M the shortest-path metric induced by d on M, the metrics d and d_M are bilipschitz equivalent.

Proof: First, observe that, for any point $y = (n,s) \in Y$, the path

$$\alpha_y : \mathbb{R} \to Y : u \mapsto (n,u+s)$$

is a geodesic such that $\alpha_y(0) = y$ and $b(\alpha_y(u)) = b(y) + u$, $\forall u \in \mathbb{R}$. Similarly, for any point $x \in T$ one can choose a geodesic path $\beta_x : \mathbb{R} \to T$ such that
\[\beta_x(0) = x \] and \[c(\beta_x(u)) = c(x) + u. \] Let \((x_0, y_0), (x_1, y_1) \in M.\) We will build a path linking those points in two steps. For the first one, let \(\sigma : [0, d_T(x_0, x_1)] \to T\) be the geodesic from \(x_0\) to \(x_1.\) Let \(\theta_1\) be the path defined by
\[\theta_1(u) = (\sigma(u), \alpha_{y_0}(c(\sigma(u)) - b(y_0))). \]

The left component links \(x_0\) to \(x_1,\) while the right component starts from \(y_0\) and ends at a certain point \(y_2.\) Moreover, the path \(\theta_1\) is contained in \(M.)\)

Indeed, for all \(u \in [0, d_T(x_0, x_1)],\) we have:
\[b(\alpha_{y_0}(c(\sigma(u)) - b(y_0))) = b(y_0) + c(\sigma(u)) - b(y_0) = c(\sigma(u)). \]

So, \(\theta_1\) connects \((x_0, y_0)\) to a point \((x_1, y_2) \in M\) satisfying \(b(y_2) = c(x_1) = b(y_1).\) For the second step, we will find a path in \(M\) between \((x_1, y_2)\) and \((x_1, y_1).\) In a similar way, let \(\tilde{\sigma} : [0, d_Y(y_2, y_1)] \to Y\) be a geodesic path linking \(y_2\) to \(y_1\) in \(Y.\) Then, it is easy to check that the path
\[\theta_2 : [0, d_Y(y_2, y_1)] \to M : \theta_2(u) = (\beta_{x_1}(b(\tilde{\sigma}(u)) - c(x_1)), \tilde{\sigma}(u)) \]
does the job. This shows that \(M\) is path-connected. Now, the inequality \(d \leq d_M\) being immediate, we need to analyze the length of the path we just considered in order to finish the proof. Denoting by \(L(\theta_j)\) the length of the path \(\theta_j,\) we get the following estimates:
\[L(\theta_1) \leq 2d_T(x_0, x_1) \]
and
\[L(\theta_2) \leq 2d_Y(y_2, y_1) \leq 2(d_T(y_0, y_1) + d_Y(y_1, y_2)) \]
By construction, \(d_Y(y_0, y_2) \leq d_T(x_0, x_1).\) We can conclude:
\[
\begin{align*}
d_M((x_0, y_0), (x_1, y_1)) & \leq L(\theta_1) + L(\theta_2) \\
& \leq 2d_T(x_0, x_1) + 2d_Y(y_0, y_1) + 2d_Y(y_1, y_2) \\
& \leq 4d_T(x_0, x_1) + 2d_Y(y_0, y_1) \\
& \leq 4 \cdot d((x_0, x_1), (y_0, y_1)).
\end{align*}
\]

\[\square \]

3 Proof of Theorem \[\square \] and Applications

In order to apply Svarc Lemma, we prove that the action of \(\Gamma\) is proper and cocompact.
Lemma 2 The Γ-action on $T \times Y$ is proper. That is, for all $(x, y) \in T \times Y$, there exists $r > 0$ so that $\{ \gamma \in \Gamma : \gamma \cdot B((x, y), r) \cap B((x, y), r) \neq \emptyset \}$ is relatively compact in Γ.

In particular, as M is a closed subset of $T \times Y$, we get immediately the following Corollary.

Corollary 1 The Γ-action on the fibre product M is proper.

Proof of Lemma 2: The action of $\text{Aut}(T) \times \tilde{\mathcal{N}}$ on $T \times Y$ is proper, therefore, by Theorem 2, it is also the case for the action of Γ. As M is closed and Γ-invariant, we can conclude.

Lemma 3 The action of Γ on M is cocompact.

Proof: It is enough to see that, for any sequence $(x_k, y_k)_k \subset M$, we can find a sequence $(\gamma_k)_k \subset \Gamma$ so that the sequence $(\gamma_k \cdot (x_k, y_k))_k$ converges. Since Γ acts transitively on the edges of T, we can assume that the sequence $(x_k)_k$ belongs to the edge $[G, tG]$. This implies that $0 \leq c(x_k) = b(y_k) \leq 1$, for all but possibly finitely many k, so that the sequence $(y_k)_k$ is contained in the strip of Y corresponding to the coset \mathcal{N} in $\tilde{\mathcal{N}}/\mathcal{N}$. Using the fact that the action of G on \mathcal{N} is cocompact, we can multiply by elements of G in such a way that the sequence $(y_k)_k$ converges. But since G stabilizes the vertex G in T, this process maintains the sequence $(x_k)_k$ inside the edges adjacent to G. Since there are only finitely many on these, the sequence $(x_k, y_k)_k$ converges up to extracting a subsequence. This concludes the proof.

We are now able to prove Theorem 1.

Proof of Theorem 1: Firstly, we show that $\alpha_p^*\mu(\Gamma) \geq \alpha_p^*\mu(\tilde{\mathcal{N}})$. Indeed, by Svarc Lemma, Γ is quasi-isometric to (M, d_M), which is quasi-isometric to (M, d) by Lemma 4. Moreover, Y is quasi-isometric to \mathcal{N}. Hence, $\alpha_p^*(\Gamma) = \alpha_p^*(M) \geq \alpha_p^*(T \times Y)$ and $\alpha_p^*(Y) = \alpha_p^*(\tilde{\mathcal{N}})$. Then, the lower bound follows from the propositions:

- For a tree T, $\alpha_p^*(T) = 1$, for all $p > 1$. (See Theorem 2.6 in [BS08])
- For two metric spaces X and X', the compression of $X \times X'$ is the minimum of the compressions of the factors. (See [GK04])

Finally, we conclude the proof by noting that $\alpha_p^*(\tilde{\mathcal{N}}) = 1$, which follows from the following propositions:
• Any semi-direct product of a connected Lie group with \(\mathbb{Z} \) is quasi-isometric to a connected Lie group. (By an unpublished result of Y. Cornulier)

• Let \(K \) be a connected Lie group. Then, \(\alpha_p^*(K) = 1 \), for all \(p > 1 \). (See [Tes11])

We remark that, if \(\mathcal{R} \) is a soluble connected Lie group, then Cornulier’s result is a simple consequence of a lemma of Mostow. Here is a short proof that we owe to Alain Valette. In this case, \(\mathcal{R} \) is soluble and Noetherian (i.e. every closed subgroup is compactly generated). A lemma of Mostow (see Lemma 5.2 in [Mos71]) asserts that there exist a compact normal subgroup \(K \) of \(\mathcal{R} \) and a soluble almost connected Lie group \(M \) such that the quotient \(\mathcal{R}/K \) is isomorphic to \(L \), where \(L \) is a cocompact, closed subgroup of \(M \). Then, the connected component of unity \(M^0 \) is quasi-isometric to \(\mathcal{R} \). Indeed, on one hand, by compactness, \(\mathcal{R} \) is quasi-isometric to \(\mathcal{R}/K \) and by Mostow we deduce that \(\mathcal{R} \) is quasi-isometric to \(L \). On the other hand, by cocompactness, \(L \) is quasi-isometric to \(M \) and, since \(M \) has only finitely many connected components, it is quasi-isometric to \(M^0 \).

In particular, Theorem \(\square \) allows us to cover all the examples appearing in [GJ03].

Corollary 2 The following groups have compression 1.

1. The Baumslag-Solitar groups \(BS^p_q = \langle x, t \mid x^p = tx^q t^{-1} \rangle = HNN(\mathbb{Z}, \mathbb{Z}, p, q) \), with parameters \(p, q \in \mathbb{Z}_+ \). (For a different proof, see also [CV12].)

2. Torsion free, finitely presented abelian-by-cyclic groups.

3. Let \(\mathcal{R} \) be a homogeneous nilpotent Lie group. So, it admits a dilating automorphism \(\varphi \). Suppose that \(\mathcal{R} \) contains a discrete, cocompact subgroup \(G \) which is invariant by \(\varphi \). Then, for any finite index subgroup \(H \) in \(G \), the extension \(HNN(G, H, i_1, \varphi|_H) \), where \(i_1 \) is the canonical injection, has compression 1.

Proof: The Baumslag-Solitar groups \(BS^p_q \) can be seen as HNN extension of \(\mathbb{Z} \) with itself, considering the inclusions \(i_1, i_2 : \mathbb{Z} \to \mathbb{Z} \) defined by \(i_1(n) = pn \) and \(i_2(n) = qn \). Then, apply Theorem \(\square \) with the automorphism of \(\mathcal{R} = \mathbb{R} \) given by \(\varphi(x) = \frac{p}{q}x \).
For the second class of examples, it is known (see for instance [FM00]) that these groups are HNN extensions of \mathbb{Z}^n with itself with respect to $i_1, i_2 : \mathbb{Z}^n \to \mathbb{Z}^n$, where i_1 is the identity and $i_2 \in GL_n(\mathbb{Z})$. Again, apply Theorem 1 with the automorphism of $\mathfrak{N} = \mathbb{R}^n$ given by i_2^{-1}.

The case of the last class of examples is clear by construction.

Remark 1 It is important to note that the assumption about finite presentation is necessary to treat the second class of examples. Indeed, the wreath product $\mathbb{Z} \wr \mathbb{Z}$ is torsion free, abelian-by-cyclic and finitely generated. However, it is computed in [ANP09] that $\alpha_2(\mathbb{Z} \wr \mathbb{Z}) = \frac{2}{3}$.

Remark 2 In the case where \mathfrak{N} is a generic compactly generated locally compact (not necessarily a connected Lie group), it is also possible to find a space Y admitting a geometric action of $\tilde{\mathfrak{N}}$, by Proposition 2.1 in [CdCMT12]. However, it is not clear how to endow Y with a natural fibration b compatible with the semi-direct product structure on $\tilde{\mathfrak{N}}$ in order to generalize Theorem 1.

References

[ANP09] Tim Austin, Assaf Naor, and Yuval Peres, *The wreath product of \mathbb{Z} with \mathbb{Z} has Hilbert compression exponent $\frac{2}{3}$*, Proc. Amer. Math. Soc. 137 (2009), no. 1, 85–90. MR 2439428 (2009f:20060)

[BS08] N. Brodskiy and D. Sonkin, *Compression of uniform embeddings into Hilbert space*, Topology Appl. 155 (2008), no. 7, 725–732. MR 2395586 (2009b:20078)

[CdCMT12] P.-E. Caprace, Y. de Cornulier, N. Monod, and R. Tessera, *Amenable hyperbolic groups*, preprint, arXiv:1202.3585v1 (2012).

[CV12] Yves Cornulier and Alain Valette, *On equivariant embeddings of generalized baumslag-solitar groups*, preprint, arxiv:1212.6765 (2012), no. arxiv:1212.6765.

[FM00] Benson Farb and Lee Mosher, *On the asymptotic geometry of abelian-by-cyclic groups*, Acta Math. 184 (2000), no. 2, 145–202. MR 1768110 (2001e:20035)
[GJ03] Świątuslaw R. Gal and Tadeusz Januszkiewicz, *New a-T-menable HNN-extensions*, J. Lie Theory 13 (2003), no. 2, 383–385. MR 2003149 (2004g:20057)

[GK04] Erik Guentner and Jerome Kaminker, *Exactness and uniform embeddability of discrete groups*, J. London Math. Soc. (2) 70 (2004), no. 3, 703–718. MR 2160829 (2006i:43006)

[KY06] Gennadi Kasparov and Guoliang Yu, *The coarse geometric Novikov conjecture and uniform convexity*, Adv. Math. 206 (2006), no. 1, 1–56. MR 2261750 (2007g:58025)

[Mos71] G. D. Mostow, *Some applications of representative functions to solvmanifolds*, Amer. J. Math. 93 (1971), 11–32. MR 0283819 (44 #1049)

[Tes11] Romain Tessera, *Asymptotic isoperimetry on groups and uniform embeddings into Banach spaces*, Comment. Math. Helv. 86 (2011), no. 3, 499–535. MR 2803851

Authors addresses:
Institut de Mathématiques - Unimail
11 Rue Emile Argand
CH-2000 Neuchâtel
Switzerland

pierre-nicolas.jolissaint@unine.ch; thibault.pillon@unine.ch