A BRIEF DESCRIPTION OF OPERATORS ASSOCIATED TO THE QUANTUM HARMONIC OSCILLATOR ON SCHATTEN-VON NEUMANN CLASSES

DUVÁN CARDONA

Abstract. In this note we study pseudo-multipliers associated to the harmonic oscillator (also called Hermite multipliers) belonging to Schatten classes on $L^2(\mathbb{R}^n)$. We also investigate the spectral trace of these operators. MSC 2010. Primary 81Q10 ; Secondary 47B10, 81Q05.

1. Introduction

1.1. Outline of the paper. Pseudo-multipliers and multipliers associated to the harmonic oscillator arise from the study of Hermite expansions for complex functions on \mathbb{R}^n (see Thangavelu [21, 22, 23, 24, 25, 26], Epperson [10] and Bagchi and Thangavelu [1]). In this note, we are interested in the membership of pseudo-multipliers associated to the harmonic oscillator (also called Hermite pseudo-multipliers) in the Schatten classes, $S_r(L^2)$ on $L^2(\mathbb{R}^n)$. With this paper we finish the classification of pseudo-multipliers in classes of r-nuclear operators on L^p-spaces (see Barraza and Cardona [2, 3]), which on $L^2(\mathbb{R}^n)$ coincide with the Schatten-von Neumann classes of order r. Our main result is Theorem 1.1 where we establish some criteria in order that pseudo-multipliers belong to the classes $S_r(L^2)$, $0 < r \leq 2$. In order to present our main result we recall some notions. Let us consider the sequence of Hermite function on \mathbb{R}^n, $\phi_\nu = \prod_{j=1}^n \phi_{\nu_j}$, $\phi_{\nu_j}(x_j) = (2^{\nu_j} \nu_j! \sqrt{\pi})^{-\frac{1}{2}} H_{\nu_j}(x_j) e^{-\frac{1}{2} x_j^2}$ (1.1) where $x = (x_1, \ldots, x_n) \in \mathbb{R}^n$, $\nu = (\nu_1, \ldots, \nu_n) \in \mathbb{N}_0^n$, and $H_{\nu_j}(x_j)$ denotes the Hermite polynomial of order ν_j. It is well known that the Hermite functions provide a complete and orthonormal system in $L^2(\mathbb{R}^n)$. If we consider the operator $L = -\Delta + |x|^2$ acting on the Schwartz space $\mathcal{S}(\mathbb{R}^n)$, where Δ is the standard Laplace operator on \mathbb{R}^n, then we have the relation $L \phi_\nu = \lambda_\nu \phi_\nu$, $\nu \in \mathbb{N}_0^n$. The operator L is symmetric and positive in $L^2(\mathbb{R}^n)$ and admits a self-adjoint extension H whose domain is given by $\text{Dom}(H) = \left\{ \sum_{\nu \in \mathbb{N}_0^n} \langle f, \phi_\nu \rangle_{L^2} \phi_\nu : \sum_{\nu \in \mathbb{N}_0^n} |\lambda_\nu \langle f, \phi_\nu \rangle_{L^2}|^2 < \infty \right\}$ (1.2).

2010 Mathematics Subject Classification. Primary 81Q10 ; Secondary 47B10, 81Q05.

Key words and phrases. Harmonic oscillator, Fourier multiplier, Hermite multiplier, nuclear operator, traces.
So, for \(f \in \text{Dom}(H)\), we have
\[
(Hf)(x) = \sum_{\nu \in \mathbb{N}_0} \lambda_\nu \widehat{f}(\phi_\nu)\phi_\nu(x), \quad \widehat{f}(\phi_\nu) = \langle f, \phi_\nu \rangle_{L^2}. \tag{1.3}
\]

The operator \(H\) is precisely the quantum harmonic oscillator on \(\mathbb{R}^n\) (see [12]).

The sequence \(\{\widehat{f}(\phi_\nu)\}\) determines the Fourier-Hermite transform of \(f\), with corresponding inversion formula
\[
f(x) = \sum_{\nu \in \mathbb{N}_0} \widehat{f}(\phi_\nu)\phi_\nu(x). \tag{1.4}
\]

On the other hand, pseudo-multipliers are defined by the quantization process that associates to a function \(m\) on \(\mathbb{R}^n \times \mathbb{N}_0^\infty\) a linear operator \(T_m\) of the form:
\[
T_m f(x) = \sum_{\nu \in \mathbb{N}_0^n} m(x, \nu) \widehat{f}(\phi_\nu)\phi_\nu(x), \quad f \in \text{Dom}(T_m). \tag{1.5}
\]

The function \(m\) on \(\mathbb{R}^n \times \mathbb{N}_0^\infty\) is called the symbol of the pseudo-multiplier \(T_m\).

If in (1.5), \(m(x, \nu) = m(\nu)\) for all \(x\), the operator \(T_m\) is called a multiplier.

Multipliers and pseudo-multipliers have been studied, for example, in the works [1, 18, 19, 20, 21, 22] (and references therein) principally by its mapping properties on \(L^p\) spaces. In order that the operator \(T_m : L^{p_1}(\mathbb{R}^n) \to L^{p_2}(\mathbb{R}^n)\) belongs to the Schatten class \(S_r(L^2)\), in this paper we provide some conditions on the symbol \(m\).

1.2. Pseudo-multipliers in Schatten classes. By following A. Grothendieck [11], we can recall that a linear operator \(T : E \to F\) (\(E\) and \(F\) Banach spaces) is \(r\)-nuclear, if there exist sequences \((e'_n)_{n \in \mathbb{N}_0}\) in \(E'\) (the dual space of \(E\)) and \((y_n)_{n \in \mathbb{N}_0}\) in \(F\) such that
\[
Tf = \sum_{n \in \mathbb{N}_0} e'_n(f)y_n, \quad \text{and} \quad \sum_{n \in \mathbb{N}_0} \|e'_n\|_{E'}\|y_n\|_F < \infty. \tag{1.6}
\]

The class of \(r\)-nuclear operators is usually endowed with the quasi-norm
\[
n_r(T) := \inf \left\{ \left\{ \sum_n \|e'_n\|_{E'}\|y_n\|_F \right\}^{\frac{1}{r}} : T = \sum_n e'_n \otimes y_n \right\} \tag{1.7}
\]

In addition, when \(E = F\) is a Hilbert space and \(r = 1\) (resp. \(r = 2\)) the definition above agrees with the concept of trace class operators (resp. Hilbert-Schmidt).

For the case of Hilbert spaces \(H\), the set of \(r\)-nuclear operators agrees with the Schatten-von Neumann class of order \(r\) (see Pietsch [13, 14]). We recall that a linear operator \(T\) on a Hilbert space \(H\) belong to the Schatten class of order \(r\), \(S_r(H)\) if
\[
s_r(T) := \sum_{n \in \mathbb{N}_0} \lambda_n(T)^r < \infty, \tag{1.8}
\]

where \(\{\lambda_n(T)\}\) denotes the sequence of singular values of \(T\), which are the eigenvalues of the operator \(\sqrt{T^*T}\). It was proved in [2] that a multiplier \(T_m\) with symbol satisfying conditions of the form
A BRIEF DESCRIPTION OF PSEUDO-MULTIPLIERS ON SCHATTEN-VON NEUMANN CLASSES

\[\kappa(m, p_1, p_2) := \sum_{s=0}^{n} \sum_{\nu \in I_s} \alpha_{r, p_1, p_2}(s, \nu) |m(\nu)|^r < \infty, \]

(1.9)

where \(\{I_s\}_{s=0}^{n} \) is a suitable partition of \(\mathbb{N}_0^n \), and \(\alpha_{r, p_1, p_2}(s, \nu) \) is a suitable kernel, can be extended to a \(r \)-nuclear operator from \(L^{p_1}(\mathbb{R}^n) \) into \(L^{p_2}(\mathbb{R}^n) \). Although it is easy to see that similar necessary conditions apply for pseudo-multipliers, the \(r \)-nuclearity for these operators in \(L^p \)-spaces was characterized in [3] by the following condition,

- a pseudo-multiplier \(T_m \) can be extended to a \(r \)-nuclear operator from \(L^{p_1} \) into \(L^{p_2} \) if and only if there exist functions \(h_k \) and \(g_k \) satisfying

\[m(x, \nu) = \phi_\nu(x)^{-1} \sum_{k=1}^{\infty} h_k(x) \hat{g}(\phi_\nu), \, \text{a.e.} \, w. \, x, \, \text{with} \sum_{k=0}^{\infty} \|g_k\|_{L^{p_2}'} \|h_k\|_{L^{p_1}} < \infty. \]

(1.10)

If we consider \(p_1 = p_2 = 2 \), and a multiplier \(T_m \), the conditions above can be replaced by the following more simple one,

\[\kappa(m, 2, r) := \sum_{\nu \in \mathbb{N}_0^n} |m(\nu)|^r < \infty, \]

(1.11)

because the set of singular values of a multiplier \(T_m \) consists of the elements in the sequence \(\{|m(\nu)|\}_{\nu \in \mathbb{N}_0^n} \). The condition (1.10) characterizes the membership of pseudo-multipliers in Schatten classes in terms of the existence of certain measurable functions. However, in this paper we provide explicit conditions on \(m \) in order to guarantee that \(T_m \in S_r(L^2) \), because explicit conditions allow us to known information about the distribution of the spectrum of these operators. Our main result is the following theorem.

Theorem 1.1. Let \(T_m \) be a pseudo-multiplier with symbol \(m \) defined on \(\mathbb{R}^n \times \mathbb{N}_0^n \). Then we have,

- \(T_m \) is a Hilbert-Schmidt operator on \(L^2(\mathbb{R}^n) \), i.e., \(T_m \in S_2(L^2) \), if and only if

\[\sum_{\nu \in \mathbb{N}_0^n} \int_{\mathbb{R}^n} |m(x, \nu)|^2 \phi_\nu(x)^2 dx < \infty. \]

(1.12)

- If \(T_m \) is a positive and self-adjoint operator, then \(T_m \) is trace class, i.e., \(T_m \in S_1(L^2) \), if and only if

\[\sum_{\nu \in \mathbb{N}_0^n} \int_{\mathbb{R}^n} m(x, \nu) \phi_\nu(x)^2 dx < \infty. \]

(1.13)

- \(T_m \in S_r(L^2) \), \(0 < r \leq 1 \), if

\[\sum_{\nu \in \mathbb{N}_0^n} \left(\int_{\mathbb{R}^n} |m(x, \nu)|^2 \phi_\nu(x)^2 dx \right)^{\frac{r}{2}} < \infty. \]

(1.14)
• If $1 < r < 2$ and there exists $\sigma > n\left(\frac{1}{r} - \frac{1}{2}\right)$ such that

$$\sum_{\nu \in \mathbb{N}_0^n} |\nu|^{2\sigma} \int_{\mathbb{R}^n} |m(x, \nu)|^2\phi_\nu(x)^2 \, dx < \infty,$$

(1.15)

then $T_m \in S_r(L^2)$.

1.3. Related works. Now, we include some references on the subject. Sufficient conditions for the r-nuclearity of spectral multipliers associated to the harmonic oscillator, but, in modulation spaces and Wiener amalgam spaces have been considered by J. Delgado, M. Ruzhansky and B. Wang in [7, 8]. The Properties of these multipliers in L^p-spaces have been investigated in the references S. Bagchi, S. Thangavelu [1], J. Epperson [10], K. Stempak and J.L. Torrea [18, 19, 20], S. Thangavelu [21, 22] and references therein. Hermite expansions for distributions can be found in B. Simon [17]. The r-nuclearity and Grothendieck-Lidskii formulae for multipliers and other types of integral operators can be found in [6, 8].

On Hilbert spaces the class of r-nuclear operators agrees with the Schatten-von Neumann class $S_r(H)$; in this context operators with integral kernel on Lebesgue spaces and, in particular, operators with kernel acting of a special way with an-harmonic oscillators of the form $E_a = -\Delta_x + |x|^a$, $a > 0$, has been considered on Schatten classes on $L^2(\mathbb{R}^n)$ in J. Delgado and M. Ruzhansky [9]. The proof of our results will be presented in the next section.

2. Pseudo-multipliers in Schatten-von Neumann classes

In this section we prove our main result for pseudo-multipliers T_m. Our criteria will be formulated in terms of the symbols m. First, let us observe that every multiplier T_m is an operator with kernel $K_m(x, y)$. In fact, straightforward computation show that

$$T_m f(x) = \int_{\mathbb{R}^n} K_m(x, y) f(y) \, dy, \quad K_m(x, y) := \sum_{\nu \in \mathbb{N}_0^n} m(x, \nu)\phi_\nu(x)\phi_\nu(y)$$

(2.1)

for every $f \in \mathcal{D}(\mathbb{R}^n)$. We will use the following result (see J. Delgado [4, 5]).

Theorem 2.1. Let us consider $1 \leq p_1, p_2 < \infty$, $0 < r \leq 1$ and let p'_1 be such that $\frac{1}{p_1} + \frac{1}{p'_1} = 1$. An operator $T : L^{p_1}(\mu_1) \to L^{p_2}(\mu_2)$ is r-nuclear if and only if there exist sequences $(g_n)_n$ in $L^{p_2}(\mu_2)$, and $(h_n)_n$ in $L^{q_1}(\mu_1)$, such that

$$\sum_n \|g_n\|_{L^{p_2}}^r \|h_n\|_{L^{q_1}} < \infty,$n and $T f(x) = \int (\sum_n g_n(x) h_n(y)) f(y) \, d\mu_1(y)$, a.e.w. x,

(2.2)

for every $f \in L^{p_1}(\mu_1)$. In this case, if $p_1 = p_2$ (see Section 3 of [4]) the nuclear trace of T is given by

$$\text{Tr}(T) := \int \sum_n g_n(x) h_n(x) \, d\mu_1(x).$$

(2.3)

Now, we prove our main theorem.
Proof of Theorem 1.1. Let us consider a pseudo-multiplier \(T_m \). By definition, \(T_m \) is a Hilbert-Schmidt operator if and only if there exists an orthonormal basis \(\{ e_\nu \} \) of \(L^2(\mathbb{R}^n) \) such that

\[
\sum_\nu \| T_m e_\nu \|_{L^2}^2 < \infty. \tag{2.4}
\]

In particular, if we choose the system of Hermite functions \(\{ \phi_\nu \} \), which provides an orthonormal basis of \(L^2(\mathbb{R}^n) \), from the relation \(T_m(\phi_\nu) = m(x, \nu)\phi_\nu \), we conclude that \(T_m \) is of Hilbert-Schmidt type, if and only if

\[
\sum_\nu \| m(\cdot, \nu)\phi_\nu \|_{L^2}^2 = \sum_{\nu \in \mathbb{N}_0^n} \int_{\mathbb{R}^n} |m(x, \nu)|^2 \phi_\nu(x)^2 dx < \infty. \tag{2.5}
\]

So, we have proved the first statement. Now, if we assume that \(T_m \) is positive and self-adjoint, then \(T_m \) is of class trace if and only if there exists an orthonormal basis \(\{ e_\nu \} \) of \(L^2(\mathbb{R}^n) \) such that

\[
\sum_\nu \langle T_m e_\nu, e_\nu \rangle_{L^2} < \infty. \tag{2.6}
\]

As in the first assertion, if we choose the basis formed by the Hermite functions, \(T_m \) is of class trace if and only if

\[
\sum_\nu \langle T_m e_\nu, e_\nu \rangle_{L^2} = \sum_{\nu \in \mathbb{N}_0^n} \int_{\mathbb{R}^n} m(x, \nu)\phi_\nu(x)^2 dx < \infty,
\]

which proves the second assertion. Now, we will verify that (1.1) implies that \(T_m \in S_r(L^2) \) for \(0 < r \leq 1 \). For this, we will use Delgado’s Theorem (Theorem 2.1) to the representation (2.1) of \(K_m \)

\[
K_m(x, y) := \sum_{\nu \in \mathbb{N}_0^n} m(x, \nu)\phi_\nu(x)\phi_\nu(y). \tag{2.8}
\]

So, \(T_m \in S_r(L^2) \) if

\[
\sum_{\nu} \| m(\cdot, \nu) \|_{L^2}^r \| \phi_\nu \|_{L^2}^r < \infty,
\]

where we have used that the \(L^2 \)-norm of every Hermite function \(\phi_\nu \) is normalised.

In order to finish the proof, we only need to prove that (1.15) assures that \(T_m \in S_r(L^2) \) for \(1 < r < 2 \). This can be proved by using the following multiplication property on Schatten classes:

\[
S_p(H)S_q(H) \subset S_r(H), \quad \frac{1}{r} = \frac{1}{p} + \frac{1}{q}. \tag{2.10}
\]

So, we will factorize \(T_m \) as

\[
T_m = T_m H^\sigma H^{-\sigma}, \quad \sigma > 0, \tag{2.11}
\]

where \(H \) is the harmonic oscillator. Let us note that the symbol of \(A = T_m H^\sigma \) is given by \(a(x, \nu) = m(x, \nu)(2|\nu| + n)^\sigma \). So, from the second assertion, \(A \in S_2(L^2) \)
if and only if
\[\sum_{\nu \in \mathbb{N}_0} |\nu|^{2\sigma} \int_{\mathbb{R}^n} |m(x,\nu)|^2 \phi_\nu(x)^2 dx \lesssim \sum_{\nu \in \mathbb{N}_0} (2|\nu| + n)^{2\sigma} \int_{\mathbb{R}^n} |m(x,\nu)|^2 \phi_\nu(x)^2 dx < \infty. \]

In order to prove that $T_m \in S_r(L^2)$, in view of the multiplication property
\[S_2(L^2) S_{\frac{2r}{2-r}}(L^2) \subset S_r(L^2), \tag{2.12} \]
we only need to prove that $H^{-\sigma} \in S_p(L^2)$ with $p = \frac{2r}{2-r}$. The symbol of $H^{-\sigma}$ is given by $a'(\nu) = (2|\nu| + n)^{-\sigma}$. By using the hypothesis $\sigma > n(\frac{1}{r} - \frac{1}{2})$ we have that
\[\sum_{\nu} |a'(\nu)|^p = \sum_{\nu} (2|\nu| + n)^{-\sigma p} < \infty \]
because $\sigma p = \sigma(\frac{1}{r} - \frac{1}{2})^{-1} > n$. So, we finish the proof. \hfill \Box

2.1. **Trace class pseudo-multipliers of the harmonic oscillator.** In order to determine a relation with the eigenvalues of T_m we recall the following result (see [15]).

Theorem 2.2. Let $T : L^p(\mu) \to L^p(\mu)$ be a r-nuclear operator as in (1.6). If $\frac{1}{r} = 1 + \frac{1}{p} - \frac{1}{2}$, then,
\[\text{Tr}(T) := \sum_{n \in \mathbb{N}_0^*} f_n^p = \sum_n \lambda_n(T) \tag{2.13} \]
where $\lambda_n(T), n \in \mathbb{N}$ is the sequence of eigenvalues of T with multiplicities taken into account.

As an immediate consequence of the preceding theorem, if $T_m : L^2(\mathbb{R}^n) \to L^2(\mathbb{R}^n)$ is a trace class (1-nuclear) then,
\[\text{Tr}(T_m) = \int_{\mathbb{R}^n} \sum_{\nu \in \mathbb{N}_0^*} m(x,\nu) \phi_\nu(x)^2 dx = \sum_n \lambda_n(T), \tag{2.14} \]
where $\lambda_n(T), n \in \mathbb{N}$ is the sequence of eigenvalues of T_m with multiplicities taken into account.

References

1. Bagchi, S., Thangavelu, S. On Hermite pseudo-multipliers. J. Funct. Anal. 268 (1), 140-170, (2015)
2. Barraza, E.S., Cardona, D. On nuclear L^p-multipliers associated to the Harmonic oscillator, in: Analysis in Developing Countries, Springer Proceedings in Mathematics & Statistics, Springer, 2018, M. Ruzhansky and J. Delgado (Eds), to appear.
3. Cardona, D., E. Samuel Barraza., Characterization of nuclear pseudo-multipliers associated to the harmonic oscillator, to appear in, Politehn. Univ. Bucharest Sci. Bull. Ser. A Appl. Math. Phys. arXiv:1709.07961.
4. Delgado, J.: A trace formula for nuclear operators on L^p, in: Schulze, B.W., Wong, M.W. (eds.) Pseudo-Differential Operators: Complex Analysis and Partial Differential Equations, Operator Theory: Advances and Applications, 205, 181-193. Birkhuser, Basel (2010)
5. J. Delgado. The trace of nuclear operators on $L^p(\mu)$ for σ-finite Borel measures on second countable spaces. Integral Equations Operator Theory, 68(1), 61-74, (2010)
6. Delgado, J.: On the r-nuclearity of some integral operators on Lebesgue spaces. Tohoku Math. J. 67(2), no. 1, 125–135, (2015)
7. Delgado, J., Ruzhansky, M., Wang, B. Approximation property and nuclearity on mixed-norm L^p, modulation and Wiener amalgam spaces. J. Lond. Math. Soc. 94, 391–408, (2016)
8. Delgado, J., Ruzhansky, M., Wang, B. Grothendieck-Lidskii trace formula for mixed-norm L^p and variable Lebesgue spaces, to appear in J. Spectr. Theory.
9. Delgado, J., Ruzhansky, M. Schatten-von Neumann classes of integral operators. arXiv:1709.06446.
10. Epperson, J. Hermite multipliers and pseudo-multipliers, Proc. Amer. Math. Soc. 124(7) 2061-2068, (1996)
11. Grothendieck, A.: Produits tensoriels topologiques et espaces nucléaires, Memoirs Amer. Math. Soc. 16, Providence, 1955 (Thesis, Nancy, 1953).
12. Prugovecki, E. Quantum mechanics in Hilbert space. Second edition. Pure and Applied Mathematics, 92. Academic Press, Inc, New York-London, 1981.
13. Pietsch, A. Operator ideals. Mathematische Monographien, 16. VEB Deutscher Verlag der Wissenschaften, Berlin, 1978.
14. Pietsch, A. History of Banach spaces and linear operators. Birkhäuser Boston, Inc., Boston, MA, 2007.
15. Reinov, O.I., Latif, Q., Grothendieck-Lidskii theorem for subspaces of L^p-spaces. Math. Nachr., Volume 286, Issue 2-3, 279–282, (2013).
16. Nicola, F., Rodino, L. Global pseudo-differential calculus on Euclidean spaces. Pseudo-Differential Operators. Theory and Applications, 4. Birkhäuser Verlag, Basel, 2010.
17. Simon, B. Distributions and their Hermite expansions. J. Math. Phys. 12, 140–148 (1971)
18. Stempak, K. Multipliers for eigenfunction expansions of some Schrödinger operators, Proc. Amer. Math. Soc. 93, 477–482 (1985)
19. Stempak, K., Torrea, J.L. On g-functions for Hermite function expansions, Acta Math. Hung. 109, 99–125, (2005)
20. Stempak, K., Torrea, J.L. BMO results for operators associated to Hermite expansions, Illinois J. Math. 49, 1111–1132, (2005)
21. Thangavelu, S. Lectures on Hermite and Laguerre Expansions, Math. Notes, vol. 42, Princeton University Press, Princeton, 1993.
22. Thangavelu, S. Hermite and special Hermite expansions revisited Duke Mathematical Journal, 94(2), 257–278 (1998)
23. Thangavelu, S. Multipliers for Hermite expansions, Revist. Mat. Ibero. 3 (1987), 1–24.
24. Thangavelu, S. Summability of Hermite expansions I, Trans. Amer. Math. Soc. 314 (1989), 119–142.
25. Thangavelu, S. Summability of Hermite expansions II, Trans. Amer. Math. Soc. 314 (1989), 143-170.
26. Thangavelu, S. Hermite expansions on \mathbb{R}^{2n} for radial functions, Revist. Mat. Ibero. 6 (1990), 61–74.

Duván Cardona:
Department of Mathematics
Pontificia Universidad Javeriana.
Bogotá
Colombia
E-mail address duvanc306@gmail.com; cardonaduvan@javeriana.edu.co