RIESZ SPACES WITH GENERALIZED ORLICZ GROWTH

PETER HÄSTÖ, JONNE JUUSTI AND HUMBERTO RAFEIRO

ABSTRACT. We consider a Riesz φ-variation for functions f defined on the real line when $\varphi : \Omega \times [0, \infty) \to [0, \infty)$ is a generalized Φ-function. We show that it generates a quasi-Banach space and derive an explicit formula for the modular when the function f has bounded variation. The resulting BV-type energy has previously appeared in image restoration models. We generalize and improve previous results in the variable exponent and Orlicz cases and answer a question regarding the Riesz–Medvedev variation by Appell, Banas and Merentes [Bounded Variation and Around, Studies in Nonlinear Analysis and Applications, Vol. 17, De Gruyter, Berlin/Boston, 2014].

1. INTRODUCTION

The classical total variation of $f : [a, b] \to \mathbb{R}$, defined as

$$\sup_{a=x_1<\ldots<x_n=b} \sum_{k=1}^{n-1} |f(x_{k+1}) - f(x_k)|,$$

is an intuitive way to measure the variation of a function in one dimension. Appell, Banas and Merentes provide many different versions of the variation, including what they call the Riesz–Medvedev variation ([2, Section 2.4], originally from [25]):

$$\sup_{a=x_1<\ldots<x_n=b} \sum_{k=1}^{n-1} \varphi\left(\frac{|f(x_{k+1}) - f(x_k)|}{|x_{k+1} - x_k|}\right) |x_{k+1} - x_k|.$$

When $\varphi(t) = t$, this reduces to the normal total variation, above. In 2016, Castillo, Guzmán and Rafeiro [7] generalized the Riesz–Medvedev variation to the variable exponent case. In this article, we further extend and improve their result to the generalized Orlicz case and answer a question regarding the Riesz–Medvedev variation by Appell, Banas and Merentes [2].

Generalized Orlicz spaces, also known as Musielak–Orlicz spaces, have been studied with renewed intensity recently [14, 23, 26, 28] as have related PDE [4, 5, 6, 9, 10, 17, 21, 29]. A contributing factor is that they cover both the variable exponent case $\varphi(x, t) := t^p(x)$ [11] and the double phase case $\varphi(x, t) := t^p + a(x)t^q$ [3], as well as their many variants: perturbed variable exponent, Orlicz variable exponent, degenerate double phase, Orlicz double phase, variable exponent double phase, triple phase and double variable exponent. For references see [19].

Chen, Levine and Rao [8] proposed a generalized Orlicz model for image restoration with the energy function

$$\varphi(x, t) := \begin{cases} \frac{1}{p(x)}t^p(x), & \text{when } t \leq 1, \\ t - 1 - \frac{1}{q(x)}, & \text{when } t > 1. \end{cases}$$

Based on input u_0, one seeks to minimize the sum of the regularization and the fidelity term:

$$\int_{\Omega} \varphi(x, |\nabla u|) + |u - u_0|^2 \, dx.$$
The variable exponent p is chosen to be close to 1 in areas of potential edges in the image and close to 2 where no edges are expected. This allows us to avoid the so-called stair-casing effect whereby artificial edges are introduces in the image restoration process.

A feature of their functional is that $\varphi(x, t) \approx t$ for large t. Thus Chen, Levine and Rao could use the classical space $BV(\Omega)$ directly. Li, Li and Pi [24] suggested an image restoration model with variable exponent energy restricted away from 1, so that no BV-spaces are needed. In [15, 18], we considered pure variable exponent and double phase versions of this model with $p \to 1$. In this case, we cannot use the space $BV(\Omega)$, and are led to the regularization terms

$$\int_{\Omega} |\nabla f|^p(x) \, dx + |D^s f|(|\{p = 1\} \rangle \quad \text{and} \quad \int_{\Omega} |\nabla f| + a(x) |\nabla f|^q \, dx + |D^s f|(|\{a = 0\} \rangle,$$

where ∇f and $D^s f$ are the absolutely continuous and singular parts of the derivative, respectively. Here the singular part of the derivative (i.e. the edges in the image) is concentrated on the sets $\{p = 1\}$ or $\{a = 0\}$ and the exponent p or coefficient a should be chosen accordingly.

The papers [8, 15, 18] are all based on special structure of φ. The problem of defining a BV-type space based on generalized Orlicz growth has been recently attacked in [12, 13]. In this paper we show that the Riesz φ-variation gives the aforementioned energies in the variable exponent and double phase cases (Corollaries 1.2 and 1.3). This provides support for our formulation of the Riesz φ-variation as well as the generalized Orlicz growth models of image restoration.

To state some corollaries of the main result (Theorem 6.4) we define some variants of the Riesz φ-variation in generalized Orlicz spaces. For further definitions see the next section.

Definition 1.1. Let $I \subset \mathbb{R}$ be a closed interval, $\varphi \in \Phi_w(I)$ and $f : I \to \mathbb{R}$. We define the functional $V^\varphi_f : \mathbb{R}^I \to [0, \infty]$ by

$$V^\varphi_f := \sup_{(I_k)} V^\varphi(f, (I_k)) := \sup_{(I_k)} \sum_{k=1}^n \varphi^+_{I_k} \left(\frac{|\Delta_k f|}{|I_k|} \right) |I_k|,$$

where the supremum is taken over all partitions (I_k) of I by closed intervals (non-degenerate and with disjoint interiors). Here $\Delta_k f := \Delta f(I_k) := f(a_k) - f(b_k)$ for $I_k = [a_k, b_k]$. For a partition (I_k) of I we denote $|I_k| := \max\{|I_k|\}$ and using it we define

$$\nabla^\varphi f := \limsup_{|I_k| \to 0} \sum_{k=1}^n \varphi^+_{I_k} \left(\frac{|\Delta_k f|}{|I_k|} \right) |I_k| \quad \text{and} \quad \nabla^\varphi f := \limsup_{|I_k| \to 0} \sum_{k=1}^n \varphi^+_{I_k} \left(\frac{|\Delta_k f|}{|I_k|} \right) |I_k|.$$

When there is no dependence on x, all of these variants give the same end result (Lemma 5.1). However, with x-dependence, the variant with the limit superior gives a more precise result.

Corollary 1.2 (Variable exponent). Let $f \in BV(I)$ be left-continuous. If $p : \Omega \to [1, \infty)$ is bounded and satisfies the strong log-Hölder condition

$$\lim_{x \to y} |p(x) - p(y)| \log(e + \frac{1}{|x-y|}) = 0,$$

uniformly in $y \in \Omega$, then, for $\varphi(x, t) := t^{p(x)}$, we have $|D^s f|(|\{p > 1\} \rangle = 0$ and

$$\nabla^\varphi f = \int_I |f'|^{p(x)} \, dx + |D^s f|(|\{p = 1\} \rangle.$$

Corollary 1.3 (Double phase). Let $f \in BV(I)$ be left-continuous. If $a : \Omega \to [0, \infty)$ is bounded and α-Hölder continuous with

$$q < 1 + \frac{\alpha}{n},$$

then, for $\varphi(x, t) := t^a$,
then, for \(\varphi(x, t) := t + a(x)t^p \), we have \(|D^s f|\{a > 0\} = 0 \) and

\[
\nabla^p_\varphi(f) = \int_a^t |f'| + a(x)|f'|^p \, dx + |D^s f|\{a = 0\}.
\]

We are also able to answer the question posed by Appell, Banaś and Merentes in [2, p. 168] with the help of the corollary for the Orlicz case.

Corollary 1.4 (Orlicz). Let \(\varphi \in \Phi_c \) and \(K := \lim_{t \to \infty} \varphi(t)/t \). Suppose that \(V^\varphi_I(f) < \infty \).

1. If \(K < \infty \) and \(f \) is left-continuous, then \(f \in BV(I) \) and

\[
V^\varphi_I(f) = \int_I \varphi(|f'|) \, dx + K |D^s f|(I).
\]

2. If \(K = \infty \), then \(f \) is absolutely continuous and \(V^\varphi_I(f) = \varphi(|f'|) \).

To understand their question we recall Definition 2.11 from [2]:

\(\infty_p := \{ \varphi \in \Phi_c \mid \lim_{t \to \infty} \varphi(t)/t^p = \infty \} \).

In [2, Proposition 2.57] it is shown that \(V^\varphi_I \) and \(V^1_I \) generate the same space when \(\varphi \not\in \infty_1 \). We use the convention that when \(\varphi \) is replaced by a number \(p \), it indicates the case \(\varphi(x, t) = t^p \). Appell, Banaś and Merentes then ask whether \(V^\varphi_I \) and \(V^p_I \) generate the same space when \(\varphi \not\in \infty_p \) for some \(p > 1 \).

However, there is not a complete analogy between the cases \(p = 1 \) and \(p > 1 \). Since \(\varphi \) is convex and \(\varphi(0) = 0 \), the ratio \(\varphi(t)/t \) is increasing so its limit always exists. Thus \(\varphi \not\in \infty_1 \) is equivalent to \(K := \lim_{t \to \infty} \varphi(t)/t < \infty \). The same is not true when \(p > 1 \). In fact, \(\varphi \not\in \infty_p \) if and only if

\[
\lim \inf_{t \to \infty} \varphi(t)/t^p < \infty.
\]

However, this condition is satisfies for instance by \(\varphi(t) = t \) which generates the space \(BV(I) \) regardless of the value of \(p \).

In particular, this answers the question of Appell, Banaś and Merentes in the negative. From Corollary 1.4(2) we see by [11, Theorem 2.8.1] that \(V^\varphi_I \) and \(V^p_I \) generate the same space if and only if

\[
\frac{1}{c}t^p - c \leq \varphi(t) \leq ct^p + c
\]

for some constant \(c \geq 1 \).

The structure of the paper is as follows. In the next section we present necessary background information. In Section 3 we define functions of bounded Riesz \(\varphi \)-variation when \(\varphi : \Omega \times [0, \infty) \to [0, \infty) \) is a generalized \(\Phi \)-function (Definition 1.1), and show that the variation defines a quasi-seminorm. In Section 4 we show that the space of bounded Riesz \(\varphi \)-variation is complete. Then we consider variants of the definition of \(\varphi \)-variation in Section 5, in particular the effect of replacing \(\sup \) by \(\lim \sup \). Finally, in Section 6 we prove a Riesz representation lemma, which connects the Riesz \(\varphi \)-variation seminorm with the \(L^p \)-norm of the derivative of the function and prove the aforementioned corollaries. We do this by connecting the Riesz variation in these cases to modern \(BV \)-spaces as presented by Ambrosio, Fusco and Pallara in Section 3.2 of [1].
2. Preliminaries

We briefly introduce our assumptions. More information about \(L^\varphi \)-spaces can be found in [14]. Our previous works were based on conditions defined for almost every point \(x \in \Omega \). In this article we consider not equivalence classes of functions but the functions themselves, and so the following assumptions have been correspondingly adjusted.

We always use \(I = [a, b] \) to denote a closed interval with end-points \(a \) and \(b \). \textit{Almost increasing} means that a function satisfies \(f(s) \leq Lf(t) \) for all \(s < t \) and some constant \(L \geq 1 \). If there exists a constant \(c > 0 \) such that \(\frac{1}{c}g(x) \leq f(x) \leq cg(x) \) for every \(x \), then we write \(f \approx g \). Two functions \(\varphi \) and \(\psi \) are \textit{equivalent}, \(\varphi \simeq \psi \), if there exists \(L \geq 1 \) such that \(\psi(x, \frac{1}{L}t) \leq \varphi(x, t) \leq \psi(x, Lt) \) for every \(x \in \Omega \) and every \(t > 0 \). Equivalent \(\Phi \)-functions give rise to the same space with comparable norms. By \(\beta \) we indicate a generic positive constant whose value may change between appearances. By \(\beta \) we indicate a parameter from \((0,1)\) which may appear in several assumptions; since the assumptions are all monotone in \(\beta \), there is no loss of generality in assuming the same \(\beta \).

2.1. \(\Phi \)-functions.

\textbf{Definition 2.1.} We say that \(\varphi : \Omega \times [0, \infty) \to [0, \infty) \) is a \textit{weak \(\Phi \)-function}, and write \(\varphi \in \Phi_w(\Omega) \), if the following conditions hold:

- For every measurable function \(f : \Omega \to \mathbb{R} \), the function \(x \mapsto \varphi(x, f(x)) \) is measurable.
- For every \(x \in \Omega \), the function \(t \mapsto \varphi(x, t) \) is non-decreasing.
- For every \(x \in \Omega \), \(x(0,0) = \lim_{t \downarrow 0^+} \varphi(x, t) = 0 \) and \(\lim_{t \to \infty} \varphi(x, t) = \infty \).
- For every \(x \in \Omega \), the function \(t \mapsto \frac{\varphi(x,t)}{t} \) is \(L \)-almost increasing on \((0, \infty)\) with \(L \) independent of \(x \).

If \(\varphi \in \Phi_w(\Omega) \) is additionally convex and left-continuous, then \(\varphi \) is a \textit{convex \(\Phi \)-function}, and we write \(\varphi \in \Phi_c(\Omega) \). If \(\varphi \) does not depend on \(x \), then we omit the set and write \(\varphi \in \Phi_w \) or \(\varphi \in \Phi_c \).

We denote \(\varphi_A^+(t) := \sup_{x \in A \cap \Omega} \varphi(x, t) \) and \(\varphi_A^-(t) := \inf_{x \in A \cap \Omega} \varphi(x, t) \). We say that \(\varphi \) (or \(\varphi_A^\pm \)) is non-degenerate if \(\varphi_A^+ \), \(\varphi_A^- \in \Phi_w \); if \(\varphi \) is degenerate, then \(\varphi_A^+|_{(0,\infty)} \equiv 0 \) or \(\varphi_A^-|_{(0,\infty)} \equiv \infty \). We define several conditions. Let \(p, q > 0 \). We say that \(\varphi : \Omega \times [0, \infty) \to [0, \infty) \) satisfies

(A0) if there exists \(\beta \in (0, 1) \) such that \(\varphi(x, \beta) \leq 1 \leq \varphi(x, \frac{1}{\beta}) \) for all \(x \in \Omega \);

(A1) if for every \(K > 0 \) there exists \(\beta \in (0, 1) \) such that, for every ball \(B \) and \(x, y \in B \cap \Omega \),

\[\varphi(x, \beta t) \leq \varphi(y, t) + 1 \quad \text{when} \quad \varphi(y, t) \in \left[0, \frac{K}{|B|} \right] ; \]

(VA1) if for every \(K > 0 \) there exists a modulus of continuity \(\omega \) such that, for every ball \(B = B_r \) and \(x, y \in B \cap \Omega \),

\[\varphi(x, \frac{t}{1+\omega(r)}) \leq \varphi(y, t) + \omega(r) \quad \text{when} \quad \varphi(y, t) \in \left[0, \frac{K}{|B|} \right] ; \]

(\text{aInc}) \(p \) if \(t \mapsto \frac{\varphi(x,t)}{t^p} \) is \(L_p \)-almost increasing in \((0, \infty)\) for some \(L_p \geq 1 \) and all \(x \in \Omega \);

(\text{aDec}) \(q \) if \(t \mapsto \frac{\varphi(x,t)}{t^q} \) is \(L_q \)-almost decreasing in \((0, \infty)\) for some \(L_q \geq 1 \) and all \(x \in \Omega \).

We say that (\text{aInc}) holds if (\text{aInc}) \(p \) holds for some \(p > 1 \), and similarly for (\text{aDec}). If in the definition of (\text{aInc}) \(p \), we have \(L_p = 1 \), then we say that \(\varphi \) satisfies (\text{Inc}) \(p \), similarly for (\text{Dec}) \(q \).

\textbf{Example 2.2} (Variable exponent growth). Let \(p : \Omega \to [1, \infty) \) and let \(\varphi(x, t) := t^{p(x)} \) be the variable exponent functional with \(p^\infty := \infty \chi_{(1,\infty)}(t) \). It was shown in [14, Proposition 7.1.2] that \(\varphi \) satisfies (A1) if and only if

\[\left| \frac{1}{p(x)} - \frac{1}{p(y)} \right| \leq \frac{c}{\log(e + \frac{1}{|x-y|})} , \]
Note that this result does not require p to be bounded. One can show that φ satisfies (VA1) if
\[
\left| \frac{1}{p(x)} - \frac{1}{p(y)} \right| \leq \omega(|x - y|) \log(e + \frac{1}{|x - y|})
\]
where ω is a function with $\lim_{r \to 0^+} \omega(r) = 0$.

It is easy to see that the variable exponent Φ-function φ satisfies (Inc)$_{p^-}$ and (Dec)$_{p^+}$ provided $p^- \leq p(x) \leq p^+$ for every $x \in \Omega$ and that (A0) always holds.

The stronger continuity condition (VA1) (“vanishing (A1)”) was introduced in [19, 20]. If φ satisfies (Dec), then (VA1) implies that φ is continuous. The condition also allows us to get sharper estimates. An example is the following Jensen’s inequality with constant close to 1 that is needed later on. Without (VA1), the inequality only holds for some $\beta > 0$ which need not be small since φ^- is not convex [14, Corollary 2.2.2].

Theorem 2.3 (Jensen’s inequality). If $\varphi \in \Phi_c(\Omega)$ satisfies (VA1) and $B = B_r \subset \Omega$, then there exists $L > 0$ such that
\[
\varphi_B \left(\frac{1}{1 + \omega(r)} \int_B |f| \, dx \right) \leq \int_B \varphi(x, f) \, dx + \omega(r),
\]
for $\varrho_\varphi(Lf) \leq 1$.

Proof. Let $t_0 := \|f\|_{L^1(B)} / |B|$. Since φ_B is equivalent to a convex function [14, Lemma 2.2.1], we find that
\[
\varphi_B^{-}(t_0) = \varphi_B \left(\int_B |f| \, dx \right) \leq \int_B \varphi_B^{-}(L|f|) \, dx \leq \frac{1}{|B|},
\]
where the constant L is determined by the equivalence. This is a Jensen inequality, but the constant does not approach one for small balls. We obtain ω from (VA1) and define $\beta_r := \frac{1}{1 + \omega(r)}$. We denote by φ' a function, non-decreasing in s, such that
\[
\varphi(x, t) = \int_0^t \varphi'(x, s) \, ds.
\]
Such function exists since φ is convex in the second variable. Fix $x_0 \in B$ with
\[
\varphi'(x_0, \beta_r t_0) \leq (\varphi')_B^{-}(t_0)
\]
and define
\[
\psi(t) := \int_0^t \varphi'(x_0, \min\{s, \beta_r t_0\}) \, ds.
\]
Since ψ' is increasing, ψ is convex. Furthermore, $\psi(t) = \varphi(x_0, t)$ when $t \leq \beta_r t_0$. It follows from Jensen’s inequality that
\[
\varphi_B^- \left(\beta_r \int_B |f| \, dx \right) \leq \psi \left(\beta_r \int_B |f| \, dx \right) \leq \int_B \psi(\beta_r |f|) \, dx.
\]
When $t \leq t_0$ we use (VA1) to conclude that $\psi(\beta_r t) = \varphi(x_0, \beta_r t) \leq \varphi(x, t) + \omega(r)$. When $t > t_0$ we estimate
\[
\psi(\beta_r t) = \psi(\beta_r t_0) + \varphi'(x_0, \beta_r t_0) \beta_r (t - t_0) \leq \varphi(x, t_0) + \omega(r) + (\varphi')_B^{-}(t_0) \beta_r (t - t_0)
\]
\[
\leq \varphi(x, t_0) + \omega(r) + \varphi'(x, t_0) (t - t_0) \leq \varphi(x, t) + \omega(r),
\]
where we also used the convexity of φ in the last step. Thus
\[
\varphi_B^- \left(\beta_r \int_B |f| \, dx \right) \leq \int_B \psi(\beta_r |f|) \, dx \leq \int_B \varphi(x, |f|) \, dx + \omega(r). \]
\]
2.2. Modular spaces. The following results are from [16]; the proofs follow [11, 22, 27].

Definition 2.4. Let X be a real vector space. A function $\varrho : X \to [0, +\infty]$ is called a quasi-semimodular on X if:

1. the function $\lambda \mapsto \varrho(\lambda x)$ is increasing on $[0, \infty)$ for every $x \in X$;
2. $\varrho(0_x) = 0$;
3. $\varrho(-x) = \varrho(x)$ for every $x \in X$;
4. there exists $\beta \in (0, 1]$ such that $\varrho(\beta(\theta x + (1-\theta)y)) \leq \theta \varrho(x) + (1-\theta)\varrho(y)$ for every $x, y \in X$ and every $\theta \in [0, 1]$.

If (4) holds with $\beta = 1$, then ϱ is a semimodular.

If ϱ is a quasi-semimodular in X, then the set defined by

$$X_\varrho := \{ x \in X \mid \lim_{\lambda \to 0} \varrho(\lambda x) = 0 \}$$

is called a modular space. We define the Luxemburg quasi-seminorm on X_ϱ by

$$\|x\|_\varrho := \inf \left\{ \lambda > 0 \mid \varrho\left(\frac{x}{\lambda}\right) \leq 1 \right\}.$$

Note that our terminology differs from Musielak [27]. Our justification comes from the correspondence with standard terminology for norms, as demonstrated in the following proposition.

Proposition 2.5. Let X be a real vector space.

1. If ϱ is a quasi-semimodular in X, then $\| \cdot \|_\varrho$ is a quasi-seminorm.
2. If ϱ is a semimodular in X, then $\| \cdot \|_\varrho$ is a seminorm.
3. If ϱ is a quasi-modular in X, then $\| \cdot \|_\varrho$ is a quasi-norm.
4. If ϱ is a modular in X, then $\| \cdot \|_\varrho$ is a norm.

The next proposition contains the main properties that we need regarding modular spaces.

Lemma 2.6 ([16]). Let X be a real vector space, ϱ be a quasi-semimodular on X and $x \in X$. Denote by β the constant in property (4) of Definition 2.4. Then

1. $\|x\|_\varrho < 1 \implies \varrho(x) \leq 1 \implies \|x\|_\varrho \leq 1$;
2. $\|x\|_\varrho < 1 \implies \beta \varrho(x) \leq \|x\|_\varrho$;
3. $\|x\|_\varrho > 1 \implies \varrho(x) \geq \beta \|x\|_\varrho$;
4. $\|x\|_\varrho \leq \beta^{-1} \varrho(x) + 1$.

As special cases we have generalized Orlicz and Orlicz–Sobolev spaces.

Definition 2.7. Let $\varphi \in \Phi_w(\Omega)$ and define the quasi-semimodular ϱ_φ for $f \in L^0(\Omega)$, the set of measurable functions in Ω, by

$$\varrho_\varphi(f) := \int_\Omega \varphi(x, |f(x)|) \, dx.$$

The generalized Orlicz space, also called Musielak–Orlicz space, is defined as the set

$$L^\varphi(\Omega) := (L^0(\Omega))_{\varrho_\varphi} = \{ f \in L^0(\Omega) \mid \lim_{\lambda \to 0^+} \varrho_\varphi(\lambda f) = 0 \}$$

equipped with the (Luxemburg) quasi-seminorm

$$\|f\|_{L^\varphi(\Omega)} := \|f\|_{\varrho_\varphi} = \inf \left\{ \lambda > 0 \mid \varrho_\varphi\left(\frac{f}{\lambda}\right) \leq 1 \right\}.$$

If the set is clear from context we abbreviate $\|f\|_{L^\varphi(\Omega)}$ by $\|f\|_\varphi$.

Definition 2.8. A function $f \in L^\varphi(\Omega)$ belongs to the Orlicz–Sobolev space $W^{1,\varphi}(\Omega)$ if its weak derivative f' exists and belongs to $L^\varphi(\Omega)$. For $f \in W^{1,\varphi}(\Omega)$, we define the norm

$$\|f\|_{W^{1,\varphi}(\Omega)} := \|f\|_{L^\varphi(\Omega)} + \|f'\|_{L^\varphi(\Omega)}.$$
3. BOUNDED VARIATION IN THE RIESZ SENSE

We introduce the space of bounded Riesz \(\varphi \)-variation based on \(V^\varphi_I \) from the introduction. Note that we do not assume that \(f \) is measurable.

Definition 3.1. Let \(I \subset \mathbb{R} \) be a closed interval and \(\varphi \in \Phi_w(I) \). The space of *bounded \(\varphi \)-variation in Riesz’ sense* is defined by the quasi-semimodular \(V^\varphi_I \):

\[
\text{RBV}^\varphi(I) := \{ f : I \to \mathbb{R} \mid \lim_{\lambda \to 0} V^\varphi_I(\lambda f) = 0 \}.
\]

Often two \(\Phi \)-functions \(\varphi, \psi \in \Phi_w(I) \) are considered to be the same, if \(\varphi(x, t) = \psi(x, t) \) for almost everywhere \(x \) and every \(t \). In our setting we cannot use this convention, as the following example demonstrates.

Example 3.2. Let \((A_j)_{j=1}^\infty \) be a sequence of pairwise disjoint, countable and dense subsets of \(I \). Denote \(A := \bigcup_{j=1}^\infty A_j \). Then \(|A| = 0 \) since \(A \) is countable. Define \(\varphi, \psi : I \times [0, \infty) \to [0, \infty] \) by \(\varphi(x, t) := t^2 \) and \(\psi(x, t) := \begin{cases} t^2, & \text{if } x \in I \setminus A, \\ j t^2, & \text{if } x \in A_j \text{ for some } j \in \mathbb{N}. \end{cases} \)

Then \(\psi(x, t) = \varphi(x, t) \) for every \(x \in I \setminus A \) and every \(t \geq 0 \), so that \(\varphi = \psi \) a.e. Let \(f : I \to \mathbb{R} \) be the identity function and let \((I_k) \) be any partition of \(I \). Then \(|\Delta_k f|/|I_k| = 1 \) for every \(k \). Since the sets \(A_j \) are dense, the intersection \(A_j \cap I_k \) is non-empty for every \(j \) and every \(k \). Thus \(\psi^\varphi_{I_k}(1) \geq j \) for every \(j \), and therefore

\[
V^\psi_I(f) \geq \sum_{k=1}^n \psi^\varphi_{I_k} \left(\frac{|\Delta_k f|}{|I_k|} \right) |I_k| \geq \sum_{k=1}^n j |I_k| = j |I|.
\]

Letting \(j \to \infty \), we see that \(V^\psi_I(f) = \infty \). On the other hand,

\[
\sum_{k=1}^n \varphi^\varphi_{I_k} \left(\frac{|\Delta_k f|}{|I_k|} \right) |I_k| = \sum_{k=1}^n \varphi^\varphi_{I_k}(1) |I_k| = \sum_{k=1}^n |I_k| = |I|.
\]

This implies that \(V^\varphi_I(f) = |I| \).

Next, we show that equivalent \(\Phi \)-functions give rise to the same space of bounded variation.

Lemma 3.3. Suppose that \(\varphi, \psi \in \Phi_w(I) \) and \(\varphi \simeq \psi \) with constant \(L \geq 1 \). Then

\[
V^\varphi_I(L^{-1} f) \leq V^\psi_I(f) \leq V^\psi_I(L f)
\]

for every \(f : I \to \mathbb{R} \) and \(\text{RBV}^\varphi(I) = \text{RBV}^\psi(I) \).

Proof. By the definition of equivalence,

\[
\psi(x, L^{-1} t) \leq \varphi(x, t) \leq \psi(x, L t)
\]

for every \(x \in I \) and every \(t \in [0, \infty) \). Thus

\[
V^\varphi_I(f) = \sup_{(I_k)} \sum_{k=1}^n \varphi^\varphi_{I_k} \left(\frac{|\Delta_k f|}{|I_k|} \right) |I_k| \leq \sup_{(I_k)} \sum_{k=1}^n \psi^\varphi_{I_k} \left(L \frac{|\Delta_k f|}{|I_k|} \right) |I_k| = V^\psi_I(L f).
\]

Similarly \(V^\psi_I(L^{-1} f) \leq V^\varphi_I(f) \). To see that \(\text{RBV}^\varphi(I) = \text{RBV}^\psi(I) \), we note that if \(V^\varphi_I(\lambda f) \to 0 \), then \(V^\psi_I(L^{-1} \lambda f) \to 0 \) and if \(V^\psi_I(\lambda f) \to 0 \), then \(V^\varphi_I(L^{-1} \lambda f) \to 0 \).

We now show that \(V^\varphi_I \) is a quasi-semimodular.
Lemma 3.4. Let \(\varphi \in \Phi_w(I) \). Then \(V^\varphi_I : \mathbb{R}^I \to \mathbb{R}_+ \) is a quasi-semimodular. If \(\varphi \in \Phi_c(I) \), then \(V^\varphi_I \) is a semimodular.

Proof. The properties \(V^\varphi_I(0) = 0 \) and \(V^\varphi_I(-f) = V^\varphi_I(f) \) are clear. Since \(t \mapsto \varphi(x, t) \) is increasing for every \(x \in I \) it follows that \(t \mapsto \varphi_A^+(t) \) is increasing whenever \(A \subset I \). Since

\[
V^\varphi_I(\lambda f) = \sup_{(I_k)} \sum_{k=1}^n \varphi^+_k \left(\frac{\lambda |\Delta_k f|}{|I_k|} \right) |I_k|,
\]

the function \(\lambda \mapsto V^\varphi_I(\lambda f) \) is increasing on \([0, \infty)\) for every \(f : I \to \mathbb{R} \).

Note that \(\varphi_A^+ \) satisfies (aInc) with the same constant \(L \geq 1 \) as \(\varphi \). Let \((I_k) \) be a partition of \(I \). If \(\theta \in [0, 1] \), then

\[
\varphi^+_k \left(\frac{1}{2L} |\Delta_k (\theta f + (1 - \theta)g)| \right) \leq \varphi^+_k \left(\frac{\theta |\Delta_k f|}{2L |I_k|} + \frac{1 - \theta |\Delta_k g|}{2L |I_k|} \right)
\]

\[
\leq \varphi^+_k \left(\frac{\theta |\Delta_k f|}{L |I_k|} \right) + \varphi^+_k \left(\frac{1 - \theta |\Delta_k g|}{L |I_k|} \right)
\]

\[
\leq \theta \varphi^+_k \left(\frac{|\Delta_k f|}{|I_k|} \right) + (1 - \theta) \varphi^+_k \left(\frac{|\Delta_k g|}{|I_k|} \right),
\]

where the last inequality follows from (aInc). This implies that \(V^\varphi_I(\beta(\theta f + (1 - \theta)g)) \leq \theta V^\varphi_I(f) + (1 - \theta) V^\varphi_I(g) \) with \(\beta := \frac{1}{2L} \).

If \(\varphi \in \Phi_c(I) \), then \(\varphi_A^+ \) is convex as the supremum of convex functions. Thus

\[
\varphi^+_k \left(\frac{|\Delta_k (\theta f + (1 - \theta)g)|}{|I_k|} \right) \leq \varphi^+_k \left(\frac{\theta |\Delta_k f|}{|I_k|} + (1 - \theta) \frac{|\Delta_k g|}{|I_k|} \right)
\]

\[
\leq \theta \varphi^+_k \left(\frac{|\Delta_k f|}{|I_k|} \right) + (1 - \theta) \varphi^+_k \left(\frac{|\Delta_k g|}{|I_k|} \right),
\]

and it follows that \(V^\varphi_I \) is convex. \(\square \)

By Proposition 2.5, we can define the Luxemburg quasi-seminorm in \(\text{RBV}^\varphi(I) \) by

\[
\|f\|_{\text{RBV}^\varphi(I)} = \inf \left\{ \lambda > 0 \mid V^\varphi_I \left(\frac{f}{\lambda} \right) \leq 1 \right\}.
\]

This is not a quasi-norm, as is easily seen by considering constant functions: if \(f \) is constant, then \(V^f_I(f/\lambda) = 0 \) for every \(\lambda > 0 \) (since \(\Delta_k f = 0 \) for every partition and every \(k \)), and therefore \(\|f\|_{\text{RBV}^\varphi(I)} = 0 \). It is also easy to see that \(V^\varphi_I(f) = V^\varphi_I(g) \) whenever \(f - g \) is constant. Thus, in addition to \(\text{RBV}^\varphi(I) \), we also consider the sub-space

\[
\text{RBV}^\varphi_0([a,b]) := \{ f \in \text{RBV}^\varphi([a,b]) \mid f(a) = 0 \}.
\]

Then \(\text{RBV}^\varphi_0(I) \) is a quasi-normed space with the quasi-norm \(\| \cdot \|_{\text{RBV}^\varphi(I)} \), as we will see in the next theorem.

Theorem 3.5. Let \(\varphi \in \Phi_w(I) \). Then \(\text{RBV}^\varphi_0(I) \) is a quasi-normed space which is non-trivial if and only if \(\varphi_A^+ \) is non-degenerate.

Proof. By Proposition 2.5 and Lemma 3.4, \(\text{RBV}^\varphi_0(I) \) is a quasi-seminormed space. For \(\text{RBV}^\varphi_0(I) \) to be a quasi-normed space, we check that \(\|f\|_{\text{RBV}^\varphi_0(I)} = 0 \) only if \(f = 0 \). This is equivalent to the condition that \(\|f\|_{\text{RBV}^\varphi(I)} \) is non-zero for non-constant \(f \) since \(f(a) = 0 \).
Let $f \in \text{RBV}^{\varphi}(I)$ be an arbitrary non-constant function. Then we can choose a partition (I_k) of I such that $\Delta_{k_0} f \neq 0$ for some k_0. Note that $\lim_{t \to \infty} \varphi_{k_0}^+(t) = \infty$ by the definition of $\Phi_w(I)$. Hence, by the definition of V^φ_I, we get that

$$\lim_{\lambda \to 0^+} V^\varphi_I \left(\frac{f}{\lambda} \right) \geq \lim_{\lambda \to 0^+} \sum_{k=1}^{n} \varphi^+_k \left(\frac{\left| \Delta_k f \right|}{\lambda |I_k|} \right) |I_k| \geq \lim_{\lambda \to 0^+} \varphi^+_k \left(\frac{|\Delta_{k_0} f|}{\lambda |I_{k_0}|} \right) |I_{k_0}| = \infty.$$

Thus $V^\varphi_I (f/\lambda) > 1$ when λ is small enough, and therefore $\|f\|_{\text{RBV}^\varphi(I)} > 0$.

We now prove the claim concerning the non-triviality of $\text{RBV}^\varphi_0(I)$. Suppose first that φ^+_I is degenerate. Let f be a non-constant function. Let us show that $V^\varphi_I (f) = \infty$. If $f(a) \neq f(b)$, then $|\Delta f(I)|/|I| > 0$, and

$$V^\varphi_I (f) \geq \varphi^+_I \left(\frac{|\Delta f(I)|}{|I|} \right) |I| = \infty.$$

If $f(a) = f(b)$, then there exists $c \in I$ with $f(c) \neq f(a)$, since f is not constant. Let $I_1 := [a, c]$ and $I_2 := [c, b]$. Since φ^+_I is degenerate, it follows that at least one of $\varphi^+_{I_1}$ or $\varphi^+_{I_2}$ must also be degenerate. Since $|\Delta_k f|/|I_k| > 0$, $k = 1, 2$, we get that

$$V^\varphi_I (f) \geq \sum_{k=1}^{2} \varphi^+_k \left(\frac{|\Delta_k f|}{|I_k|} \right) |I_k| = \infty.$$

Thus $V^\varphi_I (\lambda f) = \infty$ for every non-constant function f and every $\lambda \in (0, \infty)$. Hence $\text{RBV}^\varphi(I)$ is just the space of constant functions, which implies that $\text{RBV}^\varphi_0(I)$ is trivial.

Suppose then that φ^+_I is non-degenerate. Thus there exists $t_0 \in (0, \infty)$ with $\varphi^+_I (t_0) < \infty$. Let $g(x) := t_0 (x - a)$. If (I_k) is any partition of I, then

$$\sum_{k=1}^{n} \varphi^+_k \left(\frac{|\Delta_k g|}{|I_k|} \right) |I_k| = \sum_{k=1}^{n} \varphi^+_k (t_0) |I_k| \leq \sum_{k=1}^{n} \varphi^+_k (t_0) |I_k| = \varphi^+_I (t_0) |I| < \infty,$$

which, together with \text{(aInc)}$_1$, implies that $g \in \text{RBV}^\varphi(I)$. Since $g(a) = 0$, it follows that $g \in \text{RBV}^\varphi_0(I)$. Thus $\text{RBV}^\varphi_0(I)$ is non-trivial. \hfill \Box

4. Completeness

In this section, we show the completeness of the space of bounded Riesz φ-variation.

Lemma 4.1. Let $\varphi \in \Phi_w(I)$ and L be the constant from \text{(aInc)}$_1$. Then, for $\alpha \geq 0$ and $\beta > 0$,

$$V^\varphi_I \left(\frac{f}{\beta} \right) \leq \alpha \iff \|f\|_{\text{RBV}^\varphi(I)} \leq \begin{cases} L \alpha \beta, & \alpha > 1, \\ \beta, & \alpha \leq 1. \end{cases}$$

Proof: The case $\alpha \leq 1$ follows immediately from the definition of norm.

Let now $\alpha > 1$. Since φ^+_I satisfies \text{(aInc)}$_1$ and $\varphi^+_I (0) = 0$, we have

$$\varphi^+_I \left(\frac{|\Delta_k f|}{L \alpha \beta |I_k|} \right) \leq \frac{1}{\alpha} \varphi^+_I \left(\frac{|\Delta_k f|}{\beta |I_k|} \right)$$

for each sub-interval of I, from which we obtain

$$V^\varphi_I \left(\frac{f}{L \alpha \beta} \right) \leq \frac{1}{\alpha} V^\varphi_I \left(\frac{f}{\beta} \right) \leq 1.$$

The result now follows from the definition of the norm. \hfill \Box
Lemma 4.2. Let \(\varphi, \psi \in \Phi_\circ(I) \). Suppose that there exists \(K > 0 \) such that
\[
\varphi(x, \frac{t}{K}) \leq \varphi(x, t) + 1.
\]
Then
\[
\text{RBV}^{\varphi}(I) \hookrightarrow \text{RBV}^{\psi}(I).
\]

Proof. Let \(\lambda_\varepsilon := \|f\|_{\text{RBV}^\varphi(I)} + \varepsilon \). Then \(V^\varphi_f(f/\lambda_\varepsilon) \leq 1 \). From the assumption and the definition of the modular, we have \(V^\varphi_f(f/\lambda_\varepsilon K) \leq V^\varphi_f(f/\lambda_\varepsilon) + |I| \leq 1 + |I| \). By Lemma 4.1,
\[
\|f\|_{\text{RBV}^\varphi(I)} \leq LK(1 + |I|)\lambda_\varepsilon = LK(1 + |I|)(\|f\|_{\text{RBV}^\varphi(I)} + \varepsilon),
\]
which concludes the proof.

We now show that \(\text{RBV}^{\varphi}(I) \) contains all Lipschitz functions and is contained in the set of absolutely continuous functions when \(\varphi \) satisfies suitable conditions. We denote by \(\text{Lip}(I) \) the space of Lipschitz functions on \(I \) and by \(\text{AC}(I) \) the space of absolutely continuous functions in \(I \).

Lemma 4.3. Let \(\varphi \in \Phi_\circ(I) \) satisfy (A0), (aInc) and (aDec). Then
\[
\text{Lip}(I) \subseteq \text{RBV}^{\varphi}(I) \subseteq \text{AC}(I).
\]

Proof. From [2, Proposition 2.52], we know that
\[
\text{Lip}(I) \subseteq \text{RBV}^s(I) \subseteq \text{AC}(I),
\]
with \(s \in (1, \infty) \), where \(\text{RBV}^s(I) \) corresponds to the choice \(\varphi(x, t) = t^s \). When \(t \geq \frac{1}{\beta} \), it follows from (aInc) that \((\beta t)^p \varphi(x, \frac{1}{\beta}) \leq L \varphi(x, t)\) and so it follows from (A0) that
\[
(\beta t)^p \leq L \varphi(x, t) + 1.
\]
From (aDec), we conclude that \(\varphi(x, \beta t) \leq L^{nt} \varphi(x, \beta) \) when \(t \geq 1 \). Hence (A0) implies that
\[
\varphi(x, \beta t) \leq L^{nt} + 1.
\]
By Lemma 4.2 and these inequalities, we conclude that
\[
\text{Lip}(I) \subseteq \text{RBV}^\varphi(I) \subseteq \text{RBV}^p(I) \subseteq \text{RBV}^p(I) \subseteq \text{AC}(I).
\]

Theorem 4.4. If \(\varphi \in \Phi_\circ(I) \), then \(\text{RBV}^{\varphi}_0(I) \) is a quasi-Banach space.

Proof. Fix \(I = [a, b] \). We first prove that
\[
(4.5) \quad \sup_{I} |f| \leq C \|f\|_{\text{RBV}^\varphi(I)}
\]
when \(f \in \text{RBV}^\varphi_0(I) \). Denote \(I_1 = [a, x] \). Since \(f(a) = 0 \), it follows from \(\Delta f(I_1) = f(x) \) that
\[
\varphi\left(a, \frac{|f(x)|}{|I_1|}\right) |I_1| \leq \varphi_{i_1}^+(\frac{\Delta I_1 f}{|I_1|}) |I_1| \leq V^\varphi_f(f).
\]
We apply this inequality to the function \(\frac{f}{\|f\|_{\text{RBV}^\varphi(I)} + \varepsilon} \) where \(\varepsilon > 0 \). Thus
\[
\varphi\left(a, \frac{|f(x)|}{|I_1|(|f|_{\text{RBV}^\varphi(I)} + \varepsilon)}\right) \leq V^\varphi_f\left(\frac{f}{\|f\|_{\text{RBV}^\varphi(I)} + \varepsilon}\right) \leq 1.
\]
Since \(\varphi(a, t) \to \infty \) as \(t \to \infty \), we conclude that the argument of \(\varphi \) on the left-hand side is bounded. Thus
\[
|f(x)| \leq C |I| (\|f\|_{\text{RBV}^\varphi(I)} + \varepsilon).
\]
The estimate (4.5) now follows as \(\varepsilon \to 0^+ \).

Let \((f_i) \) be a Cauchy sequence in \(\text{RBV}^\varphi_0(I) \). By (4.5), it is also a Cauchy sequence in \(L^\infty(I) \), which ensures that \(f := \lim_{i \to \infty} f_i \) exists. For \(\varepsilon > 0 \), there exists \(N_\varepsilon \in \mathbb{N} \) such that \(i, j > N_\varepsilon \).
implies $V^\psi_f\left(\frac{f_i-f_j}{L^\psi_f}\right) \leq 1$, since $\|f_i-f_j\|_{RBV^\psi_f(I)} < \varepsilon$. By [14, Lemma 2.2.1] there exists $\psi \in \Phi_c(I)$ with $\psi \simeq \varphi$. Since ψ is left-continuous, ψ_{k+1}^- is left-continuous (see comment after the proof of [14, Lemma 2.1.8]) and lower semicontinuous by [14, Lemma 2.1.5]. Taking this into account, we get

$$V^\psi\left(\frac{f_i-f_j}{L^\varepsilon}, (I_k)\right) = \sup \left\{ V^\psi\left(\frac{f_i-f_j}{L^\varepsilon}, (I_k)\right) \right\} \leq \lim_{j \to \infty} V^\psi\left(\frac{f_i-f_j}{L^\varepsilon}, (I_k)\right).$$

When $i > N_\varepsilon$, it follows from Lemma 3.3 that

$$V^\psi\left(\frac{f_i-f_j}{L^\varepsilon}, (I_k)\right) \leq V^\psi\left(\frac{f_i-f_j}{L^\varepsilon}, (I_k)\right) \leq \lim_{j \to \infty} V^\psi\left(\frac{f_i-f_j}{L^\varepsilon}, (I_k)\right) \leq \lim_{j \to \infty} V^\psi\left(\frac{f_i-f_j}{L^\varepsilon}, (I_k)\right) \leq 1.$$

Taking the supremum over partitions (I_k), we find that

$$V^\psi_f\left(\frac{f_i-f_j}{L^\varepsilon}, (I_k)\right) \leq 1$$

and so $\|f_i-f_j\|_{RBV^\psi_f(I)} \leq L^\varepsilon$. Thus $f \in RBV^\phi_f(I)$ and (f_i) converges to f in $RBV^\phi_f(I)$.

5. Variants of the Variation

In Definition 1.1 we defined V^ψ_f, $\nabla^\psi f$ and $\nabla^\phi f$ by taking supremum or limit superior of partitions and using either φ^+ or φ^-. In this section, we consider the impact of these choices. Since all the partitions in $\nabla^\psi f$ are allowed in the supremum in V^ψ_f and $\varphi^- f_k \leq \varphi^+ f_k$, we see that

$$\nabla^\psi f \leq \nabla^\psi f \leq \nabla^\psi f.$$

When φ is convex and independent of x, the opposite inequalities hold, as well. Indeed, $\nabla^\psi f = \nabla^\psi f(f)$ is trivial in this case.

Lemma 5.1. If $\varphi \in \Phi_c$, then

$$V^\psi_f(f) = \nabla^\psi f(f).$$

Proof. Let (I_k) be a partition of I and (I_k') be its subpartition. Suppose $I_k = \bigcup_{j=j_k}^{j_{k+1}-1} I'_j$. Then

$$\frac{|\Delta f(I_k)|}{|I_k|} \leq \sum_{j=j_k}^{j_{k+1}-1} \frac{|\Delta f(I'_j)|}{|I'_j|} = \sum_{j=j_k}^{j_{k+1}-1} \frac{|I'_j|}{|I'_j|} \frac{|\Delta f(I'_j)|}{|I'_j|}.\frac{\varphi}{|I'_j|}$$

Since the coefficients’ sum equals 1, it follows from convexity that

$$\varphi\left(\frac{|\Delta f(I_k)|}{|I_k|}\right) |I_k| \leq \sum_{j=j_k}^{j_{k+1}-1} |I'_j| \varphi\left(\frac{|\Delta f(I'_j)|}{|I'_j|}\right) |I'_j| = \sum_{j=j_k}^{j_{k+1}-1} \varphi\left(\frac{|\Delta f(I'_j)|}{|I'_j|}\right) |I'_j|.$$

Thus $V^\psi_f(f, (I_k')) \leq V^\psi_f(f, (I'_j))$. Since this holds for any subpartition, we see that we can always move to a partition with half as large $|\langle I_k \rangle|$ but no smaller $V^\psi_f(f, (I_k)).$ Hence $V^\psi_f \leq V^\psi_f.$

We just showed that $\nabla^\psi f = V^\psi f$ when $\varphi \in \Phi_c$. However, if φ depends on x, then it is possible that $\nabla^\psi f < V^\psi f$.

Example 5.2. Let $I := [0, 1]$ and define $\varphi \in \Phi_c(I)$ by $\varphi(x, t) := (x + 1)t^2$. Note that φ satisfies (A0), (A1), (alnc)$_2$ and (aDec)$_2$. Let f be the identity function. Then

$$V^\psi_f(f) \geq \varphi^+\left(\frac{|\Delta f(I)|}{|I|}\right) |I| = \varphi^+(1) = 2.$$
Let next \(\epsilon \in (0, 1) \) and let \((I_k)\) be a partition with \(|(I_k)| < \epsilon\). If \(I_k = [a_k, b_k] \), then
\[
\varphi(a_k, \frac{|\Delta_k f|}{|I_k|}) \leq \varphi^+_k \left(\frac{|\Delta_k f|}{|I_k|} \right) \leq \varphi(b_k, \frac{|\Delta_k f|}{|I_k|}) \leq \varphi(a_k + \epsilon, \frac{|\Delta_k f|}{|I_k|})
\]
since \(\varphi \) is increasing in \(x \). If \(f \) is the identity function, then \(\frac{|\Delta f|}{|I_k|} = 1 \) and
\[
\int_0^1 \varphi(x, 1) \, dx \leq \sum_{k=1}^n \varphi^+_k \left(\frac{|\Delta_k f|}{|I_k|} \right) |I_k| \leq \int_{\epsilon}^{1+\epsilon} \varphi(x, 1) \, dx.
\]
Since \(\varphi(x, 1) = x + 1 \), we obtain as \(\epsilon \to 0 \) that
\[
\nabla^\varphi(f) = \int_0^1 \varphi(x, 1) \, dx = \frac{3}{2}.
\]

We next show that \(\varphi^+ \) and \(\varphi^- \) give the same result at the limit under the stronger continuity condition (VA1). Example 5.4 shows that the result does not hold under (A1).

Lemma 5.3. If \(\varphi \in \Phi_{c}(\Omega) \) satisfies (VA1) and (Dec), then
\[
\nabla^\varphi(f) = \nabla^\varphi(f).
\]

Proof. Clearly, \(\nabla^\varphi \leq \nabla^\varphi \) so we show that \(\nabla^\varphi \leq \nabla^\varphi \). We assume that \(\nabla^\varphi(f) < \infty \), since otherwise there is nothing to prove. For \(\epsilon \in (0, 1) \) we choose \(\delta \in (0, \epsilon) \) such that
\[
\sup_{|(I_k)| < \delta} \sum_{k=1}^n \varphi^-_k \left(\frac{|\Delta_k f|}{|I_k|} \right) |I_k| \leq (1 + \epsilon) \nabla^\varphi(f).
\]
Let \((I_k)\) be a partition with \(|(I_k)| < \delta\). By the previous line,
\[
\varphi^-_k \left(\frac{|\Delta_k f|}{|I_k|} \right) < \frac{2 \nabla^\varphi(f)}{|I_k|}.
\]
Therefore it follows by (VA1) and (Dec) that
\[
\varphi^+_k \left(\frac{|\Delta_k f|}{|I_k|} \right) \leq (1 + \omega(\epsilon))q \left[\varphi^-_k \left(\frac{|\Delta_k f|}{|I_k|} \right) + \omega(\epsilon) \right],
\]
where \(\omega \) is a modulus of continuity from (VA1) with \(K := 2 \nabla^\varphi(f) \). Hence
\[
\sum_{k=1}^n \varphi^+_k \left(\frac{|\Delta_k f|}{|I_k|} \right) |I_k| \leq (1 + \omega(\epsilon))q \left[\sum_{k=1}^n \varphi^-_k \left(\frac{|\Delta_k f|}{|I_k|} \right) |I_k| + \omega(\epsilon) |I| \right]
\]
\[
\leq (1 + \omega(\epsilon))q \left[(1 + \epsilon) \nabla^\varphi(f) + \omega(\epsilon) |I| \right].
\]
Since this holds for all \((I_k)\) with \(|(I_k)| < \delta\), we conclude that
\[
\nabla^\varphi(f) \leq (1 + \omega(\epsilon))q [(1 + \epsilon) \nabla^\varphi(f) + \omega(\epsilon) |I|] \to \nabla^\varphi(f),
\]
as \(\epsilon \to 0 \). Combined with \(\nabla^\varphi \leq \nabla^\varphi \), this gives \(\nabla^\varphi = \nabla^\varphi \).

Example 5.4. Let \(p(x) := 1 + \frac{1}{\log(1/2)} \) for \(x \in (0, \frac{1}{2}) \) and \(p(0) := 1 \). Set \(\varphi(x, t) := t^p(x) \). We consider the function \(f := \chi_{(0, \frac{1}{2})} \) and a partition \((I_k)\) of \(I := [0, \frac{1}{2}] \). Then \(\Delta f(I_k) = 0 \) unless \(k = 1 \). Suppose that \(I_1 := [0, x], \quad x \in (0, \frac{1}{2}) \). Then
\[
\varphi^+_1 \left(\frac{|\Delta f(I_1)|}{|I_1|} \right) |I_1| = x^{1-p^+_1} = x^{-\frac{1}{\log(1/2)}} = \epsilon
\]
and
\[
\varphi_{I_k}^-(\frac{|\Delta f(I_k)|}{|I_k|}) |I_k| = x^{1-p_{I_k}} = x^0 = 1.
\]
Since all other terms vanish, we see that \(\nabla \varphi_{I_k}^-(f) = e \) and \(\nabla \varphi_{I_k}^+(f) = 1 \). Note that \(p \) is log-Hölder continuous so that \(\varphi \) satisfies (A1) [14, Proposition 7.1.2].

The next example shows that \(\varphi^+ \) and \(\varphi^- \) do not give the same result without the limiting process, i.e. for \(\nabla \varphi_I \) and a version of it with \(\varphi_{I_k}^- \).

Example 5.5. Let \(I := [0, 3] \) and define \(\varphi \in \Phi_c(I) \) by
\[
\varphi(x, t) := t^{\max\{2, x\}}.
\]
Note that \(\varphi \) satisfies (A0), (A1), (VA1), (alnc)\(_2\) and (aDec)\(_3\). For \(\alpha > \frac{3}{\beta} \) we define \(f_\alpha : I \to \mathbb{R} \) by \(f_\alpha(x) := \alpha \min\{x, 1\} \). Then
\[
\nabla \varphi_I^+(\beta f_\alpha) \geq \frac{\beta |\Delta f_\alpha(I)|}{|I|} |I| = 3 \varphi_I^+ \left(\frac{3\alpha}{3} \right) = \frac{(\beta \alpha)^3}{9}.
\]
Let \((I_k) \) be a partition of \(I \). If \(I_k \cap [0, 1] \) is non-empty, then
\[
\varphi_{I_k}^- \left(\frac{|\Delta f_\alpha|}{|I_k|} \right) \leq \varphi_{I_k}^-(\alpha) \leq \alpha^2,
\]
since \(|\Delta f_\alpha| \leq \alpha |I_k| \). If \(I_k \cap [0, 1] \) is empty, then \(\Delta f_\alpha = 0 \). Thus
\[
\sum_{k=1}^{n} \varphi_{I_k}^- \left(\frac{|\Delta f_\alpha|}{|I_k|} \right) |I_k| \leq \sum_{k=1}^{n} \alpha^2 |I_k| = 3\alpha^2,
\]
and hence
\[
\sup_{(I_k)} \sum_{k=1}^{n} \varphi_{I_k}^- \left(\frac{|\Delta f_\alpha|}{|I_k|} \right) |I_k| \leq 3\alpha^2 \leq \frac{27}{\beta^3 \alpha} \nabla \varphi_I^+(\beta f_\alpha).
\]
As \(\alpha \to \infty \), this shows that the inequality \(\nabla \varphi_I^+(\beta f_\alpha) \leq \sup_{(I_k)} \sum_{k=1}^{n} \varphi_{I_k}^- \left(\frac{|\Delta f_\alpha|}{|I_k|} \right) |I_k| \) does not hold for any fixed \(\beta > 0 \).

The next lemma shows that \(\nabla \varphi_I^+ \) and \(\nabla \varphi_I^- \) do define equivalent norms, even though they are not themselves equivalent.

Lemma 5.6. If \(\varphi \in \Phi_c(\Omega) \) satisfies (A1), then there exist a constant \(\beta \in (0, 1] \) such that
\[
\nabla \varphi_I^+(f) \leq 1 \implies \nabla \varphi_I^- (f) \leq 1.
\]
Furthermore, \(\| \cdot \| \nabla \varphi_I^- \approx \| \cdot \| \nabla \varphi_I^- \).

Proof. Let \(\varepsilon > 0 \) and choose \(\delta > 0 \) such that
\[
\sup_{|I_k| < \delta} \sum_{k=1}^{n} \varphi_{I_k}^+ \left(\frac{|\Delta f|}{|I_k|} \right) |I_k| \leq \nabla \varphi_I^+(f) + \varepsilon \leq 1 + \varepsilon.
\]
Let \((I_k) \) be a partition of \(I \) and \((I'_k) \) be a subpartition of \((I_k) \) with \(|\{I'_k\}|| \leq \varepsilon \). As in Lemma 5.1, we find that
\[
\varphi_{I_k}^- \left(\frac{|\Delta f(I_k)|}{|I_k|} \right) |I_k| \leq \sum_{j=k}^{j+1-1} |I'_j| \frac{|\Delta f(I'_j)|}{|I'_j|} \varphi_{I_k}^- \left(\frac{|\Delta f(I'_j)|}{|I'_j|} \right) |I_k| \leq \sum_{j=k}^{j+1-1} \varphi_{I'_j}^- \left(\frac{|\Delta f(I'_j)|}{|I'_j|} \right) |I'_j|,
\]
that

\(V(A1) \)

and

\(V(A0) \)

the homogeneity of the norm.

We start with approximate equality. Note that we do not assume (aInc) and (aDec); thus we generalize also the previous results from the variable exponent case \([7]\). Note that the assumption \(f \in AC(I) \) can be replaced by (aInc), since together with (A0) it implies that the function is absolutely continuous.

Theorem 6.1. Let \(\varphi \in \Phi_w(I) \) satisfy (A0) and (A1). If \(f \in AC(I) \) and \(f' \in L^\varphi(I) \), then \(f \in \overline{RBV}^\varphi(I) \) and

\[
\|f\|_{\overline{RBV}^\varphi(I)} \leq c \|f'\|_{L^\varphi(I)}.
\]

Proof. Let \(\|f'\|_{L^\varphi(I)} < 1 \). Since \(f \) is absolutely continuous,

\[
\left| \frac{\Delta f(I_k)}{|I_k|} \right| = \left| \int_{I_k} f' \, dx \right| \leq \int_{I_k} |f'| \, dx.
\]

By [14, Theorem 4.3.2] there exists \(\beta > 0 \) such that

\[
\varphi^+_I \left(\beta \int_{I_k} |f'| \, dx \right) \leq \int_{I_k} \varphi(x, |f'|) \, dx + 1.
\]

It follows that

\[
V_I^\varphi(\beta f, (I_k)) \leq \sum_k \varphi^+_I \left(\beta \int_{I_k} |f'| \, dx \right) |I_k| \leq \int_I \varphi(x, |f'|) \, dx + |I| \leq 1 + |I|.
\]

Since this holds for any partition \((I_k) \), we find that \(V_I^\varphi(\beta f) \leq 1 + |I| \). By (aInc), \(V_I^\varphi(\frac{\beta}{1+|I|} f) \leq \frac{1}{1+|I|} V_I^\varphi(\beta f) \leq 1 \). Hence \(\|f\|_{\overline{RBV}^\varphi(I)} \leq \frac{1}{\beta(1+|I|)} \); the claim for general \(\|f'\|_\varphi \) follows from this by the homogeneity of the norm.

\(\square \)
We next derive the corresponding upper bound. Note that here we use only the limit $|(I_k)| \to 0$, so the result holds also with V_I^φ in place of V_I^φ.

Theorem 6.2. Let $\varphi \in \Phi_w(I)$. If $f \in \text{RBV}^\varphi(I) \cap AC(I)$, then $f' \in L^\varphi(I)$ and
\[
\|f'\|_{L^\varphi(I)} \leq \|f\|_{\text{RBV}^\varphi(I)}.
\]

Proof. We assume first that $V_I^\varphi(f) \leq 1$. Since $f \in AC(I)$, the derivative f' exists almost everywhere in I. Let $((I_k^n)_k)_n$ be a sequence of partitions of I with $|(I_k^n)| \to 0$ as $n \to \infty$. Define a step-function
\[
F_n := \sum_k \frac{\Delta f(I_k^n)}{|I_k^n|} \chi_{I_k^n}.
\]
Since $\lim_n F_n = f'$ a.e. and φ is increasing, we see that $\varphi(x, \beta |f'(x)|) \leq \liminf_n \varphi(x, |F_n(x)|)$ for a.e. $x \in I$ and fixed $\beta \in (0, 1)$. Hence Fatou’s lemma implies that
\[
\int_I \varphi(x, \beta |f'|) \, dx \leq \liminf_n \int_I \varphi(x, |F_n|) \, dx \leq \liminf_n \sum_k \int_{I_k^n} \varphi_{I_k^n}^{\varphi}(|F_n|) \, dx.
\]
By the definition of F_n,
\[
\int_{I_k^n} \varphi_{I_k^n}(|F_n|) \, dx = \varphi_{I_k^n}^{\varphi} \left(\frac{|\Delta f(I_k^n)|}{|I_k^n|} \right) |I_k^n|.
\]
Thus
\[
\int_I \varphi(x, \beta |f'|) \, dx \leq \liminf_n V(f, (I_k^n)) \leq V_I^\varphi(f) \leq 1.
\]
This implies that $\|f'\|_{\varphi} \leq \frac{1}{\beta}$ and the general case follows by homogeneity as $\beta \to 1^-$. \qed

Combining the previous two results, we obtain the following:

Corollary 6.3. Let $\varphi \in \Phi_w(I)$ satisfy (A0) and (A1). Then
\[
\text{RBV}^\varphi(I) \cap L^\varphi(I) \cap AC(I) = W^{1, \varphi}(I).
\]

We next derive an exact formula for the Riesz semi-norm. In this case, we have to restrict our attention to the lim sup-version ∇^φ. This result has no analogue in [7], so it is new even in the variable exponent case.

Following [1, Section 3.2] we consider functions f of bounded variation on the real line whose derivative can be described as a signed measure Df with finite total variation, $|Df|(I) < \infty$. The measure Df can be split into an absolutely continuous part represented by $f' \, dx$ and a singular part $D^s f$ (with respect to the Lebesgue measure). In [1, (3.24)], it is shown that
\[
\inf_{g = f \text{ a.e.}} V_I^1(g) =: EV_I^1(f) = |Df|(I);
\]
the left-hand side is called the essential variation. Without the almost everywhere equivalence, the equality does not hold since we may take a function f equal to zero except at one point so that $V_I^1(f) > 0 = |Df|(I)$. Functions for which the essential variation equals the variation (i.e. $V_I^1 = EV_I^1$) are called good representatives in [1].

A left-continuous function of bounded variation is an example of a good representative and can be expressed as $f(x) = Df([a, x]) + f(a)$. Furthermore, by [1, Theorem 3.28], the left-continuous representative of a function of bounded variation is a good representative. For simplicity, we restrict our attention to left-continuous functions. Note that [1] defined variations on open intervals. Where necessary, we can treat the first interval $[a, x]$ separately by a direct calculation.
Following [13], we define, for $\varphi \in \Phi_c$,

$$
\varphi'_\infty(x) := \lim_{t \to \infty} \frac{\varphi(x, t)}{t}.
$$

Note that the limit exists since $\frac{\varphi(x, t)}{t}$ is increasing. If φ is differentiable and convex, then $\varphi'_\infty(x) = \lim_{t \to \infty} \varphi'(x, t)$, hence the notation.

Theorem 6.4 (Riesz representation theorem). *Let $f \in BV(I)$ be left-continuous. If $\varphi \in \Phi_c(I)$ satisfies $(VA1)$ and (Dec), then*

$$
\nabla^r (x) = \int_I \varphi(x, |f'|) \, dx + \int_I \varphi'_\infty \, d|D^s f|.
$$

Proof. We prove the inequality “\leq” and assume that the right-hand side is finite. By Lemma 5.3, we may replace $\nabla^r (x)$ by ∇^r for the lower bound. Let $\varepsilon > 0$ and choose $\delta \in (0, \varepsilon)$ such that

$$
\int_A \varphi(x, |f'|) \, dx < \varepsilon
$$

for any set $A \subset I$ with $|A| < \delta$. Since the support of the singular part $D^s f$ has measure zero we can choose by the definition of the Lebesgue measure a finite union $A := \bigcup_{i=1}^m [a_i, a'_i]$ with $|A| < \delta$ and

$$
\int_I \varphi'_\infty \, d|D^s f| < \varepsilon.
$$

By left-continuity, $f(x) - f(y) = Df([a, x]) - Df([a, y]) = Df([y, x])$ for $x > y$. Thus

$$
\frac{\Delta f(I_k)}{|I_k|} = \left| \int_{I_k} f' \, dx + \frac{D^s f(I_k)}{|I_k|} \right| \leq \int_{I_k} |f'| \, dx + \frac{|D^s f(I_k)|}{|I_k|}.
$$

Since $t + s \leq \max\{(1 + \theta)t, (1 + \theta^{-1})s\}$ we obtain by (Dec) that

$$
\varphi'_\infty(t + s) \leq (1 + \theta)^q \varphi'_\infty(t) + (1 + \theta^{-1})^q \varphi'_\infty(s).
$$

By the previous estimates, Theorem 2.3 (with $\beta := \frac{1}{1 + \omega(|A|)}$) and $\varphi(x, t) \leq \varphi'_\infty(x) \, t$ we obtain

$$
\varphi'^{-}_k \left(\frac{\Delta f(I_k)}{|I_k|} \right) \leq (1 + \theta)^q \varphi'^{-}_k \left(\int_{I_k} |f'| \, dx \right) + (1 + \theta^{-1})^q \varphi'^{-}_k \left(\frac{|D^s f(I_k)|}{|I_k|} \right)
$$

$$
\leq (1 + \theta)^q \int_{I_k} \varphi'^{-}_k (|f'|) \, dx + \omega(|I_k|) \, dx + (1 + \theta^{-1})^q \int_{I_k} \varphi'_\infty \, d|D^s f|.
$$

We first apply the previous inequality to the set $A_i := [a_i, a'_i]$ from A defined above, assumed to be so small that $\omega(|A_i|) \leq \varepsilon$, and choose $\theta := e^{-1/(2q)}$:

$$
\sum_i \varphi^A_i \left(\frac{\Delta f(A_i)}{|A_i|} \right) |A_i| \leq (1 + \theta)^q \int_A \varphi(x, |f'|) \, dx + \varepsilon + (1 + \theta^{-1})^q \int_A (\varphi'_\infty \, \lambda_k \, d|D^s f|)
$$

$$
\leq (1 + e^{-1/(2q)})^q \beta^{-q} \varepsilon (1 + |I|) + (1 + e^{1/(2q)})^q \int_I \varphi'_\infty \, d|D^s f|.
$$

Choose sufficiently small complementary closed intervals $B_i = [b_i, b'_i]$, i.e. $\cup_i A_i = \cup_i B_i = I \setminus \{b\}$ and $A_i \cap B_j = \emptyset$, such that $\omega(B_i) \leq \varepsilon$. We use the same estimate but now choose $\theta := e^{1/(2q)}$ and use (6.5) to obtain

$$
\sum_i \varphi^B_i \left(\frac{\Delta f(B_i)}{|B_i|} \right) |B_i| \leq (1 + e^{1/(2q)})^q \beta^{-q} \int_I \varphi(x, |f'|) + \varepsilon \, dx + (1 + e^{-1/(2q)})^q \varepsilon.
$$
Adding these two estimates and letting $\varepsilon \to 0$ and $\beta \to 1^-$, we obtain that

$$\nabla_i^\varphi(f) = \nabla_i^\psi(f) \leq \int_A \varphi(x, |f'|) \, dx + \int_I \varphi_\infty \, d|D^s f|.$$

For the opposite inequality we use ∇_i^φ and start by observing that

$$\frac{|\Delta f(B_i)|}{|B_i|} \geq \left| \int_{B_i} f' \, dx \right| - \frac{|D^s f|(B_i)}{|B_i|}.$$

This time we set $t = u - s$ in (6.6) and use the resulting inequality

$$\varphi_B^+(u - s) \geq (1 + \theta)^{-q} \varphi_B^+(u) - \theta^{-q} \varphi_B^+(s).$$

With B_i as before, we now obtain that

$$\sum_i \varphi_{B_i}^+ \left(\frac{|\Delta f(B_i)|}{|B_i|} \right) |B_i| \geq (1 + \theta)^{-q} \sum_i \varphi_{B_i}^+ \left(\left| \int_{B_i} f' \, dx \right| \right) |B_i| - \theta^{-q} \varepsilon$$

$$\geq (1 + \theta)^{-q} \left[\int_I \varphi(x, |f'|) \, dx - \varepsilon \right] - \theta^{-q} \varepsilon,$$

where the second inequality follows as in Theorem 6.2 (possibly after restricting δ to a smaller value). In the case $\int_I \varphi(x, |f'|) \, dx = \infty$, we replace the square bracket with $\frac{1}{\gamma}$ and obtain a lower bound tending to ∞. Otherwise, we choose $\theta := \varepsilon^{1/(2q)}$ and continue with the estimate of the singular part of the derivative.

Fix $\lambda > 1$. Assume that $\delta \leq \lambda^{-2q}$ so that $|A| \leq \lambda^{-2q}$. By absolute continuity of the non-singular part, we may assume δ is so small that

(6.7) \[|Df|(A) \leq |D^s f|(A) + \frac{1}{\varphi_I^+(\lambda)}.\]

Since u is a good representative, $V^+_A(f) = |Df|(A)$, which implies that

$$\sum_k |\Delta f(A_{i,k})| > |Df|(A) - \frac{1}{i_{\max} \varphi_I^+(\lambda)},$$

for any subpartition $(A_{i,k})$ of A_i with sufficiently small $\max\{|A_{i,k}|\}$, where i_{\max} is the number of intervals A_i. Now if $\frac{|\Delta f(A_{i,k})|}{|A_{i,k}|} \geq \lambda$, then (Inc) from the convexity of φ implies that

$$\varphi_{A_{i,k}}^+ \left(\frac{|\Delta f(A_{i,k})|}{|A_{i,k}|} \right) \geq \varphi_{A_{i,k}}^+(\lambda) \frac{|\Delta f(A_{i,k})|}{|A_{i,k}|}.$$

If, on the other hand, $\frac{|\Delta f(A_{i,k})|}{|A_{i,k}|} < \lambda$, then

$$\varphi_{A_{i,k}}^+ \left(\frac{|\Delta f(A_{i,k})|}{|A_{i,k}|} \right) \geq 0 \geq \frac{\varphi_{A_{i,k}}^+(\lambda) |\Delta f(A_{i,k})|}{\lambda |A_{i,k}|} - \varphi_{A_{i,k}}^+(\lambda).$$

Therefore in either case we have the inequality

$$\varphi_{A_{i,k}}^+ \left(\frac{|\Delta f(A_{i,k})|}{|A_{i,k}|} \right) \geq \frac{\varphi_{A_{i,k}}^+(\lambda) |\Delta f(A_{i,k})|}{\lambda |A_{i,k}|} - \varphi_I^+(\lambda).$$
By (Dec)$_q$, (A0) and $|A_i| \leq \delta \leq \lambda^{-2q}$, we obtain $\varphi^+_A(\lambda) \leq (\lambda/\beta)^q \varphi^+_A(\beta) \leq \frac{K}{|A_i|}$. Hence by (A0), (VA1) and $\lambda > 1$, we see that $\varphi^+_A(\lambda) \leq (1+\varepsilon)\varphi^-_A(\lambda) \leq (1+\varepsilon)\varphi^+_A(\lambda)$. We conclude that

$$
\sum_{i,k} \varphi^+_A(\lambda) \left(|\Delta f(A_{i,k})| \right)_{|A_{i,k}|} \geq \sum_{i,k} \left(\frac{\varphi^+_A(\lambda)}{\lambda} |\Delta f(A_{i,k})| - \varphi^+_f(\lambda) |A_{i,k}| \right) \\
\geq \sum_{i} \varphi^+_A(\lambda) \left(|Df|(A_i) - \frac{1}{\max \varphi^-_A(\lambda) |A_i|} \right) - \varphi^+_f(\lambda) |A| \\
\geq \sum_{i} \varphi^+_A(\lambda) \left(|Df|(A_i) - \frac{1}{\lambda} \right) - \lambda^{-2q} \varphi^+_f(\lambda).
$$

Again, by (Dec)$_q$ and (A0), $\lambda^{-2q} \varphi^+_f(\lambda) \leq \lambda^{-q} \varphi^+_f(1) \leq \frac{c}{\lambda}$.

Next we observe by (6.7) that

$$
\sum_{i} \varphi^+_A(\lambda) \frac{|Df|(A_i)}{\lambda} \geq \sum_{i} \varphi^+_A(\lambda) |D^s f|(A_i) - \varphi^+_A(\lambda) \sum_{i} \left[|Df|(A_i) - |D^s f|(A_i) \right] \\
\geq \sum_{i} \varphi^+_A(\lambda) \frac{|D^s f|(A_i)}{\lambda} - \frac{1}{\lambda} = \int \sum_{i} \varphi^+_A(\lambda) \frac{|D^s f|}{\lambda} d|D^s f| - \frac{1}{\lambda}.
$$

Since $\varphi^+_A(\lambda) \geq \varphi(x,\lambda)$ for every $x \in A_i$, we obtain that

$$
\sum_{i,k} \varphi^+_A(\lambda) \left(|\Delta f(A_{i,k})| \right)_{|A_{i,k}|} \geq \int \varphi(x,\lambda) \frac{d|D^s f|}{\lambda} - \frac{c}{\lambda}.
$$

Finally, we combine the estimate over A and B and have thus show that

$$
\nabla^\varphi(f) \geq (1+\varepsilon^{1/(2q)})^{-q} \int \varphi(x,|f'|) \, dx + \int \varphi(x,\lambda) \frac{d|D^s f|}{\lambda} - \frac{c}{\lambda} - c\sqrt{\varepsilon}.
$$

We obtain the desired lower bound as $\varepsilon \to 0$ and $\lambda \to \infty$ by monotone convergence, since $\frac{\varphi(x,\lambda)}{\lambda} \nearrow \varphi'(x)$, also using (6.5).

In the situation of the previous theorem, we precisely regain the φ-norm of the derivative of the function. Note that this result is new also in the variable exponent case. Furthermore, Example 5.2 shows that the result does not hold for V^φ_f.

Corollary 6.8. Let $f \in AC(I)$. If $\varphi \in \Phi_c(I)$ satisfies (VA1) and (Dec), then

$$
\nabla^\varphi(f) = \int_I \varphi(x,|f'|) \, dx.
$$

We conclude by commenting on the corollaries from the introduction. If $p : \Omega \to [1,\infty)$ is a bounded variable exponent, then (VA1) is equivalent to the strong log-Hölder condition. Further, $\varphi' = 1 + \infty \chi_{\{p>1\}}$ so that

$$
\int_I \varphi' \, d|D^s f| = \int_I 1 + \infty \chi_{\{p>1\}} \, d|D^s f| = |D^s f|(\{p = 1\})
$$

when $\chi_{\{p>1\}} = 0$ $|D^s f|$-a.e. In the double phase case $\varphi(x,t) = t + a(x)t^q$, we similarly obtain $\varphi' = 1 + \infty \chi_{\{a>0\}}$, and the corollary follows. Finally, in the Orlicz case φ'_∞ is a constant. If the constant is infinity, then the singular part must vanish in order that $\infty |D^s f|(I)$ be finite, and so the function is absolutely continuous.
REFERENCES

[1] L. Ambrosio, N. Fusco and D. Pallara: *Functions of Bounded Variation and Free Discontinuity Problems*, Clarendon Press, Oxford, 2000.
[2] J. Appell, J. Banaś and N. Merentes: *Bounded Variation and Around*, Studies in Nonlinear Analysis and Applications, Vol. 17, De Gruyter, Berlin/Boston, 2014.
[3] P. Baroni, M. Colombo and G. Mingione: Regularity for general functionals with double phase, *Calc. Var. Partial Differential Equations* 57 (2018), no. 2, article 62, 48 pp.
[4] A. Benyaiche, P. Harjulehto, P. Hästö, and A. Karpipinen: The weak Harnack inequality for unbounded supersolutions of equations with generalized Orlicz growth, *J. Differential Equations* 275 (2019), 790–814.
[5] A. Benyaiche and I. Khlift: Harnack inequality for quasilinear elliptic equations in generalized Orlicz-Sobolev spaces, *Potential Anal.* 53 (2020), 631–643.
[6] T.A. Bui: Regularity estimates for nondivergence parabolic equations on generalized Orlicz spaces, *Int. Math. Res. Notices IMRN* 2021 (2021), no. 14, 11103–11139.
[7] R.E. Castillo, O.M. Guzmán and H. Rafeiro: Variable exponent bounded variation spaces in the Riesz sense, *Nonlinear Anal.* 132 (2016), 173–182.
[8] Y. Chen, S. Levine and M. Rao: Variable exponent, linear growth functionals in image restoration, *SIAM J. Appl. Math.* 66 (2006), no. 4, 1383–1406.
[9] I. Chlebicka and A. Zatorska-Goldstein: Generalized superharmonic functions with strongly nonlinear operator, *Potential Anal.*, to appear. https://doi.org/10.1007/s11118-021-09920-5
[10] I. Chlebicka, P. Gwiazda and A. Zatorska-Goldstein: Renormalized solutions to parabolic equation in time and space dependent anisotropic Musielak–Orlicz spaces in absence of Lavrentiev’s phenomenon, *J. Differential Equations* 267 (2019), no. 2, 1129–1166.
[11] L. Diening, P. Harjulehto, P. Hästö and M. Růžička: *Lebesgue and Sobolev Spaces with Variable Exponents*, Lecture Notes in Mathematics, vol. 2017. Springer, Heidelberg, 2011.
[12] M. Eleuteri, P. Harjulehto and P. Hästö: Minimizers of abstract generalized Orlicz–bounded variation energy, submitted. arXiv:2112.06622
[13] M. Eleuteri, P. Harjulehto and P. Hästö: Generalized Orlicz-bounded variation spaces, in preparation.
[14] P. Harjulehto and P. Hästö: *Orlicz spaces and Generalized Orlicz spaces*, Lecture Notes in Mathematics, vol. 2236, Springer, Cham, 2019.
[15] P. Harjulehto and P. Hästö: Double phase image restoration, *J. Math. Anal. Appl.* 501 (2021), no. 1, article 123832
[16] P. Harjulehto, P. Hästö and J. Juuti: Revisiting basic assumptions of generalized Orlicz spaces, in preparation.
[17] P. Harjulehto, P. Hästö and M. Lee: Hölder continuity of quasiminimizers and ω-minimizers of functionals with generalized Orlicz growth, *Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) XXII* (2021), no. 2, 549–582.
[18] P. Harjulehto, P. Hästö, V. Latvala and O. Toivanen: Critical variable exponent functionals in image restoration, *Appl. Math. Letters* 26 (2013), 56–60.
[19] P. Hästö and J. Ok: Maximal regularity for local minimizers of non-autonomous functionals, *J. Eur. Math. Soc.* 24 (2022), no. 4, 1285–1334.
[20] P. Hästö and J. Ok: Regularity theory for non-autonomous partial differential equations without Uhlenbeck structure, arXiv:2110.14351
[21] A. Karpipinen and M. Lee: Hölder continuity of the minimizer of an obstacle problem with generalized Orlicz growth, *Int. Math. Res. Not. IMRN*, to appear.
[22] W. Kołodski: *Modular Function Spaces*, Monographs and Textbooks in Pure and Applied Mathematics, 122, Marcel Dekker, Inc., New York, 1988.
[23] J. Lang and O. Mendez: *Analysis on Function Spaces of Musielak-Orlicz Type*, Monographs and Research Notes in Mathematics, Chapman & Hall/CRC, 2019.
[24] F. Li, Z. Li, and L. Pi: Variable exponent functionals in image restoration, *Appl. Math. Comput.* 216 (2010), no. 3, 870–882.
[25] Yu.T. Medvedev: A generalization of a certain theorem of Riesz (Russian), *Uspekhi Mat. Nauk.* 6 (1953), 115–118.
[26] Y. Mizuta, T. Ohno and T. Shimomura: Sobolev’s theorem for double phase functionals, *Math. Inequal. Appl.* 23 (2020), no. 1, 17–33.
[27] J. Musielak: *Orlicz Spaces and Modular Spaces*, Lecture Notes in Math., 1034, Springer-Verlag, 1983.
[28] T. Ohno and T. Shimomura: Sobolev’s inequality for Musielak-Orlicz-Morrey spaces over metric measure spaces, *J. Austral. Math. Soc.* 110 (2021), no. 3, 371–385.
[29] B. Wang, D. Liu and P. Zhao: Hölder continuity for nonlinear elliptic problem in Musielak-Orlicz-Sobolev space, *J. Differential Equations* 266 (2019), no. 8, 4835–4863.

P. HÄSTÖ
Department of Mathematics and Statistics, FI-20014 University of Turku, Finland
peter.hasto@utu.fi

J. JUUSTI
Department of Mathematics and Statistics, FI-20014 University of Turku, Finland
jthjuu@utu.fi

H. RAFEIRO
Department of Mathematical Sciences, United Arab Emirates University, College of Science, UAE
rafeiro@uaeu.ac.ae