Calcium-sensitive Regions of GCAP1 as Observed by Chemical Modifications, Fluorescence, and EPR Spectroscopies*

Received for publication, April 23, 2001, and in revised form, August 24, 2001
Published, JBC Papers in Press, August 27, 2001, DOI 10.1074/jbc.M103614200

Izabela Sokal‡, Ning Li¶, Candice S. Klug§, SBawomir Filipek**, Wayne L. Hubbell‖, Wolfgang Baehr$$, and Krzysztof Palczewski$$$""*""

From the Departments of 2Ophthalmology, 22Pharmacology, and 22Chemistry, University of Washington, Seattle, Washington 98195, the 2Department of Ophthalmology, Moran Eye Center, University of Utah Health Science Center, Salt Lake City, Utah 84112-5330, the 2Jules Stein Eye Institute and the Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095, and the 22Department of Chemistry, University of Warsaw, 1 Pasteur St, PL-02093 Warsaw, Poland

Guanylyl cyclase-activating proteins are EF-hand Ca2+-binding proteins that belong to the calmodulin superfamily. They are involved in the regulation of photoreceptor membrane-associated guanylyl cyclases that produce cGMP, a second messenger of vertebrate vision. Here, we investigated changes in GCAP1 structure using mutagenesis, chemical modifications, and spectroscopic methods. Two Cys residues of GCAP1 situated in spatially distinct regions of the N-terminal domain (positions 18 and 29) and two Cys residues located within the C-terminal lobe (positions 106 and 125) were employed to detect conformational changes upon Ca2+ binding. GCAP1 mutants with only a single Cys residue at each of these positions, modified with N,N’-dimethyl-N-((iodoacetyl)-N’-((7-nitrobenz-2-oxa-1,3-diazol-4-yl)ethyl)enediamine, an environmentally sensitive fluorophore, and with (1-oxy-2,2,5,5-tetramethylpyrroline-3-methyl) methanethiosulfonate, a spin label reagent, were studied using fluorescence and EPR spectroscopy, respectively. Only minor structural changes around Cys18, Cys29, Cys106, and Cys125 were observed as a function of Ca2+ concentration. No Ca2+-dependent oligomerization of GCAP1 was observed at physiologically relevant Ca2+ concentrations, in contrast to the observation reported by others for GCAP2. Based on these results and previous studies, we propose a photoreceptor activation model that assumes changes within the flexible central helix upon Ca2+ dissociation, causing relative reorientation of two structural domains containing a pair of EF-hand motifs and thus switching its partner, guanylyl cyclase, from an inactive (or low activity) to an active conformation.

Changes in intracellular [Ca2+] play a central role in the regulation of various physiological processes, either by the direct action of Ca2+ on effector enzymes, cation channels, and other proteins or, frequently, through processes mediated by Ca2+-binding proteins. These proteins are grouped into specific subfamilies based on their sequence similarity, mode of Ca2+ coordination, physiological function, and tissue and cellular distribution. Several hundred distinct Ca2+-binding proteins have been identified, an observation consistent with unique and diverse roles of Ca2+ in various cell types.

In recent years an interesting group of neuronal calcium-binding proteins (NCBP)1 (1, 2) (also known as neuronal calcium sensors (3)) was discovered and characterized to varying degrees. Better known members of this family include recoverin (4–10), hippocalcin (11–13), neurocalcin (14–17), frequenin (18–22), visinin (23, 24), guanylyl cyclase-activating proteins (GCAPs) (1–3, 25), and guanylyl cyclase-inhibitory protein (26). NCBPs are 19–25-kDa proteins with four EF-hand motifs and are slightly larger than CaM (~17 kDa). NCBPs and CaM have a similar two-dimensional structure built around the EF-hand Ca2+-binding motifs, of which only two or three of four structural EF-hand elements are functional in various NCBPs. The extensions of the N-terminal and C-terminal regions provide additional structural elements distinct from CaM, and frequently these proteins are myristoylated at the N terminus. The function of these proteins has been intensely scrutinized by several laboratories, with the most detailed insights being gained from studies on the regulation of photoreceptor guanylyl cyclases (GCs) by GCAPs. In the dark (at high [Ca2+]), GC activity in the complex with GCAPs is low. Upon illumination when [Ca2+] declines, GCAPs in the Ca2+-free form stimulate GC activity up to 10-fold. This low [Ca2+] stimulation of GCs is one of the key events in the restoration of the dark state of photoreceptor cells (2, 27, 28).

The structure of recoverin was the first to be determined in Ca2+-bound (9) and Ca2+-free forms (10, 29). In contrast to the two lobes of CaM and a central α-helix, recoverin contains a short U-shaped inter-domain linker that positions the two do-

* This work was supported by National Institutes of Health Grants EY08123 (to W. B.) and EY08061 (to K. P.), a grant from Research to Prevent Blindness, Inc. to the Department of Ophthalmology at the University of Washington and the University of Utah, a Center Grant from Foundation Fighting Blindness, Inc., to the University of Utah, the Ruth and Milton Steinbach Foundation, the E. K. Bishop Foundation, and an award from the Alcon Research Institute. The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked “advertisement” in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.

‡ Present address: Novasite Pharmaceuticals, Inc., 3520 Dunhill St., San Diego, CA 92121.

¶¶ Recipients of an Award to Prevent Blindness Senior Investigator Award.

** To whom correspondence should be addressed: University of Washington, Dept. of Ophthalmology, Box 356485, Seattle, WA 98195-6485.

†† Tel.: 206-543-9074; Fax: 206-221-6784; E-mail: palczews@washington.edu.

1 The abbreviations used are: NCBP, neuronal calcium-binding protein; BTF, (1,3-bis(tris(hydroxymethyl)methylamino)propane); CaM, calmodulin; DTNB, 5,5’-dithio(2-nitrobenzoic acid); EPR, electron paramagnetic resonance; GC, guanylyl cyclase; GCAP, GC-activating protein; IANBD, N,N’-dimethyl-N-((iodoacetyl)-N’-((7-nitrobenz-2-oxa-1,3-diazol-4-yl)ethyl)enediamine; MTSEA, 2-aminoethyl methanethiosulfonate; MTSET, [2-(trimethylammonium)methyl] methanethiosulfonate; MTSSL, (1-oxo-2,2,5,5-tetramethylpyrroline-3-methyl)methanethiosulfonate; PAGE, polyacrylamide gel electrophoresis; RMSD, root mean square deviation; ROS, rod outer segments.
Ca²⁺-sensitive Regions of GCAP1

Ca²⁺-sensitive Regions of GCAP1

mains in close contact with one another. This domain organization in recoverin produces a bi-lobed globular-shaped protein with pseudo C2 symmetry that is significantly different from CaM. Consequently, the root mean square deviation (RMSD) between the polypeptide chains of recoverin and CaM is ~10 Å. Although the binding of Ca²⁺ to recoverin produces a large rotation of the two lobes (RMSD = 9.6 Å), the C-terminal domain remains mostly unchanged. By contrast, binding of Ca²⁺ to the EF2- and EF3-hand motifs causes a prominent rearrangement of the N terminus and the extrusion of the N-terminal myristoyl group, termed the Ca²⁺-myristoyl switch, enabling recoverin to bind to membranes at high [Ca²⁺]. In contrast to recoverin, which binds only two Ca²⁺ ions, frequenin binds three Ca²⁺ ions at the EF2-, EF3-, and EF4-hand motifs (20, 21). The structural arrangements of this protein are similar to those of neurocalcin and recoverin (RMSD = 1.3–1.7 Å). Because of some changes in the orientation of one of the helices, frequenin contains a large hydrophobic crevice formed by 46 amino acids in the C-terminal lobe of unknown function (21). This protein has its myristoyl group exposed in both the Ca²⁺-bound and -free forms (20). Neurocalcin is a closely related homolog of frequenin with three functional EF-hand motifs (17) but is a more distantly related cousin to recoverin (RMSD = ~3.2 Å) and undergoes a conformational change similar to the “Ca²⁺-myristoyl switch” (17).

The structure of GCAP2 reveals that the four EF-hand motifs are arranged similarly to recoverin (RMSD 2.2 Å). GCAP1 and GCAP3, however, have not been amenable to structural studies, but based on computer predictions and biochemical studies, the EF-hand motifs can be assembled in three-dimen-sional configurations similar to GCAP2 but different from CaM and with the unique inhibitory role for the myristoyl group on GC at high [Ca²⁺] (2). Similarly to recoverin, the structure of GCAP1 is significantly altered in response to Ca²⁺ binding as determined using fluorescence methods (30), change in mobility during SDS-PAGE (25, 31), and proteolytic susceptibility (32). Binding of Ca²⁺ converts GCAP1 from an activator to an inhibitor of photoreceptor GC1 (32), with concomitant major conformational changes during this transition. GCAP1 is associated with membranes or with the particulate photoreceptor GCs at low and high [Ca²⁺] (31). The region around the EF3-hand motif, specifically Tyr⁹⁹⁹, becomes significantly more exposed to solvent in the Ca²⁺-free form of GCAP1. Limited proteolysis studies also indicate that the N terminus is exposed in Ca²⁺-bound and Ca²⁺-free forms (32). Interestingly, a point mutation in Tyr⁹⁹⁹ (Y99C) leads to the constitutive stimulation of GCAP1 with mutation of Cys 18 to Ser, Cys29 to Asn, Cys106 to Ser, and Cys125 to Ser is denoted as GCAP1(c125) (17). GCAP1 is a closely related homolog of frequenin with three functional EF-hand motifs (17) but is a more distantly related cousin to recoverin (RMSD = ~3.2 Å) and undergoes a conformational change similar to the “Ca²⁺-myristoyl switch” (17).

Expression and Purification of Bovine GCAP1-His₈ and Its Mutants—The baculovirus transfer vectors carrying GCAP1 and its mutants were purified by Qiagen plasmid kits. High Five insect cells from cabbage looper were cotransfected with 0.25 µg of BaculoGold (BD Pharmingen) DNA and 5 µg of transfer vector in 25-cm² tissue culture flasks. After 4 days, the cells were harvested, pelleted, homogenized (in water containing protease inhibitor mixture - Complete (Roche Molecular Biochemicals)), and centrifuged (10 min at 4000 g). GCAP1 and its mutants with the Cys that is preserved as in wild-type GCAP1 are denoted as C18-GCAP1(c18), C29-GCAP1(c29), C106-GCAP1(c106), and C125-GCAP1(c125). The clones and DNA samples were isolated by standard procedures, and the entire coding frames of GCAP1 and its mutants were verified by DNA sequencing.

Expression and Purification of Bovine GCAP1-His₈ and Its Mutants—The baculovirus transfer vectors carrying GCAP1 and its mutants were purified by Qiagen plasmid kits. High Five insect cells from cabbage looper were cotransfected with 0.25 µg of BaculoGold (BD Pharmingen) DNA and 5 µg of transfer vector in 25-cm² tissue culture flasks. After 4 days, the cells were harvested, pelleted, homogenized (in water containing protease inhibitor mixture - Complete (Roche Molecular Biochemicals)), and centrifuged (10 min at 4000 × g at 4 °C). The supernatant containing GCAP1-His₈ or its mutants was purified by Ni²⁺-nitrilotriacetic acid metal affinity chromatography in non-denaturing conditions according to the manufacturer’s protocol (Qiagen). The proteins were purified to apparent homogeneity as determined by SDS-PAGE and Coomassie staining. In some experiments, GCAP1 and its mutants were further purified by gel filtration as described below.

GC Activity Assay—Fresh bovine eyes were obtained from a local slaughterhouse (Schenk Packing Company, Stanwood, WA). Washed ROS membranes were prepared as described previously (36), reconstituted with recombinant GCAPs, and assayed as described by Otto-Bruc et al. (37). [Ca²⁺] was calculated using the computer program Chelator 1.00 (38), and all assays were repeated at least twice. Although some

SCHEM 1. Modifications of sulfhydryls used in this study. Upper lines, reaction schematics. R and R² depict various side chains linked to Cys. Below, chemical formulas of the various reagents used.

EXPERIMENTAL PROCEDURES

GCAP1-His₈, Expression Vector and Site-directed Mutagenesis—The bovine GCAP1 coding sequence was amplified by polymerase chain reaction with primers, which inserted a His₈ tag before the stop codon. The resulting fragment bGCAP1-His₈ was cloned into pPCR-Script Amp SK (+) (Stratagene). The transfer vector pVLGCAP1His₈ was constructed by subcloning a NotI-BamHI fragment into corresponding sites of the pVL1392 insect cell vector (BD Pharmingen). The GCAP1 mutants were generated with the QuikChange™ site-directed mutagenesis kit (Stratagene). The single mutants were generated with pVLGCAP1His₈ as the template. The primers used are listed in Table I: C18S/s-C18S-a for GCAP1(C18S), C29G/s-C29G-a for GCAP1(C29G), C29N/d-s and C29N/d-a for GCAP1(C29N) and GCAP1(C29N), C29Y/s-C29Y-a for GCAP1(C29Y), C106S/s-C106S-a for GCAP1(C106S), and C125S/s-C125S-a for GCAP1(C125S). Double mutants were generated by using DNA of GCAP1(C18S) or GCAP1(C106S) as templates, and triple mutants were generated by using DNAs of double mutants as template. The Cys-less GCAP12 mutant GCAP1(C18S,C29N,C106S, C125S) (GCAP1(c)) was created using C29-GCAP1(c) DNA as the template. The Ca²⁺-insensitive bGCAP1(E75Q,E111Q,E155Q)-His₈ was created with a similar approach, the primers used were E75Q-s/E75Q-a for GCAP1(C18S, C29N, C106S, C125S)DNA as the template and constructs were then prepared with the Cys-less GCAP12 mutant GCAP1(C18S,C29N,C106S, C125S) (GCAP1(c)) was created using C29-GCAP1(c) DNA as the template.
data are shown without standard deviations, they are the averages of two determinations. Similar results were obtained from at least three different sets of experiments performed in duplicate. As a consequence of the high sensitivity of the GC system, the absolute values of one series occasionally varied from another by 10–20%, but with preservation of the ratio between the activity of two different preparations (for example, mutants of GCAP1).

Modification of GCAP1 Sulphydryl Groups—Typically, 0.5 ml of protein (0.2 mg/ml) was dialedyzed against 10 mM Hepes, pH 7.5, and then treated with a modifying reagent, MTSEA, MTSET, or MTSES (Anatrace) (stock solution was 50 mM in H2O; the final concentration in the sample was 100 μM). The reaction was allowed to proceed for 30 min at room temperature. Labeled protein was separated from nonreacted modifying reagents by dialysis or by Ni2+/H9262.

For IANBD, an extinction coefficient of 21,000 M−1 cm−1 was used with the same buffer in Microcon centrifugal filters (Millipore Corporation, Bedford, MA). EPR spectroscopy was carried out on a Varian E109 X-band spectrometer fitted with a loop-gap resonator (40, 41). Protein samples of 6 μl were contained in Pyrex capillaries. Spectra were recorded using a 2 mW incident microwave power and 100 kHz field modulation. Collision rates of spin labels with oxygen in air were estimated using the power saturation technique as described previously (40).

RESULTS

To obtain additional insight into the conformational changes of GCAP1 upon Ca2+ binding, we employed highly specific chemical modifications of Cys residues in combination with mutagenesis, fluorescence, and EPR spectroscopy. Bovine GCAP1 has four Cys residues. The first two, Cys18 and Cys28, are located at the N-terminal region. The last two are Cys106, which is a part of EF3-hand motif, and Cys125, which is located in the C-terminal lobe (Fig. 1, A and B). In the three-dimensional model of GCAP1, based on the x-ray structure of Ca2+-bound form of recoverin and the NMR structure of GCAP2 (Fig. 1B), these four Cys are located in different regions of the protein and thus are ideally suited for reporting local changes upon Ca2+ binding. Two residues, Cys29 and Cys106, are present in the acidic part of GCAP1 containing EF-hand loops, whereas Cys18 and Cys125 are projecting toward the opposite ends of GCAP1 (Fig. 1B). GCAP1 does not contain disulfide groups. Only Cys29 is highly conserved among NCBPs, with the exception of GCAP3 (Fig. 1C). This suggests a special functional or structural role of Cys29 in GCAP1 and in corresponding positions of other NCBPs. Our experience with bacterially expressed GCAP1 was that the protein is marginally active or not active at all; therefore more time-consuming insect cell expression was required.

The Structural Integrity of GCAP1 and Its Mutants—Several complementary techniques were used to assess the properties and folding of GCAP1 and its mutants. First, recombinant bovine GCAP1 and all mutants with His6 tag were purified to apparent homogeneity, employing metal affinity chromatography (see "Experimental Procedures"). All purification procedures and preparation of ROS membranes were previously reported (1, 30–33, 37, 43, 44, 46–51). Addition of the His6 tag to the C-terminal region did not affect the GC-stimulating property of GCAP1 as compared with native GCAP1 (32). Second, the extent of myristoylation of recombinant GCAP1 was measured as described previously (33). Briefly, myristoylated GCAP1 and its mutants (identified by radioactive labeling employing [3H]myristic acid) have slightly faster mobility than unmyristoylated GCAP1 during SDS-PAGE (37). Quantitative evaluation by scintillation counting and protein determination revealed that GCAP1 and two other mutants were 70–91% acylated (33). All mutants show a similar degree of acylation as judged by SDS-PAGE (Fig. 2A). Third, intrinsic fluorescence was used to determine Ca2+-induced changes in CCAP1 and its

TABLE I

The list of GCAP1 mutagenesis primers

Name	Sense	Antisense
C18S	5′-CAGGCACGAGCATCCACCACTGTTGATAC	5′-GTACCCATGGTGGGCACCTGCTGCTGCTG
C29S	5′-CAGGCACGAGCATCCACCACTGTTGATAC	5′-GTACCCATGGTGGGCACCTGCTGCTG
C29G	5′-CATGACAGAGAGCTCCTTGGGCC	5′-GGGCGGAGGGGTCTCCTGCTGATG
C29N & C29D	5′-CATGACAGAGAGCTCCTTGGGCC	5′-GGGCGGAGGGGTCTCCTGCTGATG
C29Y	5′-GGACGAGAGAGCTCCTTGGGCC	5′-GGGCGGAGGGGTCTCCTGCTGATG
C106S	5′-GCAGACAGATCCATCGACGCGG	5′-GTCCGGTGGATGACCTGCTGCTGCGG
C182S	5′-GCAGACAGATCCATCGACGCGG	5′-GTCCGGTGGATGACCTGCTGCTGCGG
E75Q	5′-CATGATTGTCATGACCTGACTGCGG	5′-CCCGACACTGACTGATGAAACTACTG
E111Q	5′-CGAAGCAGACTGCTGAGCGA	5′-GGATGTGAGACCTGTCCTGGGTCG
E155Q	5′-CTCCTCAAGACTGCTGACTGAGG	5′-CCCTCAAGACTGCTGACTGAGG
mutants as described previously (30). An example of fluorescence changes are shown for GCAP1 and C18-GCAP1(c/H11002) in Fig. 2B. All other mutants showed similar changes, suggesting that the structural integrity was preserved when the exposed Cys18, Cys106, and Cys125 and the buried Cys29 were replaced by Ser. Fourth, all GCAPs were extensively tested for the GC stimulation at low [Ca^2+] (30 nM) and GC inhibition at high [Ca^2+] (1 μM). All active mutants were tested for GC stimulation as a function of [Ca^2+] (for example, see Fig. 3A). These are sensitive assays that most likely would discriminate between different forms of GCAP1 as presented below. Fifth, all mutants competed with the constitutively active triple mutant GCAP1(E75Q,E111Q,E155Q) (32) at high [Ca^2+] (Fig. 2C), suggesting that the sites of GCAP1 mutants binding to GC are preserved and unchanged. Sixth, conformational changes in GCAP1 were measured as a function of [Ca^2+] employing limited proteolysis (32). Each mutant was tested under these conditions, and common sets of proteolytic products were generated at low [Ca^2+] (30 nM) and at high [Ca^2+] (Fig. 2D). Seventh, thermal stability of the mutants was unaltered (Fig. 2E), suggesting that their susceptibilities to heat are not modified as a consequence of mutations. Taken together, these extensive characterizations of GCAP1 and mutants indicate close similarity in overall structural properties for the wild-type GCAP1 and its mutants.

Single Cys Mutants of GCAP1—Because GCAP1 has endogenous Cys residues at positions 18, 29, 106, and 125, three of four of these residues were eliminated by mutagenesis to study chemical reactivity of the individual Cys residues. First, Cys residues were individually mutated to Ser residues, which are nonreactive with Cys reagents. Single mutants of GCAP1 (C18S, C106S, and C125S), in which the Cys residue is replaced by Ser, are almost fully active (Table II), are expressed at high or moderate levels, and have Ca^2+-dependent properties in stimulation and inhibition of photoreceptor GCs indistinguishable from native GCAP1 (data not shown). GCAP1(C29S) is inactive at low [Ca^2+], suggesting that Ser at this position could be detrimental for proper folding of GCAP1 into an active conformation. To test whether this mutant binds to GCs, we stimulated GC with native GCAP1 at low [Ca^2+] (Fig. 3A) or with the triple mutant GCAP1(E75Q,E111Q,E155Q) at high [Ca^2+] (Fig. 3A, inset). Glu^75, Glu^111, and Glu^155 are part of
functional EF-hand motifs donating two oxygen atoms for the Ca\(^{2+}\) coordination from the last position of the binding loop and mutations to Gln disable the Ca\(^{2+}\) chelation. In both cases the mutant GCAP1(C29S) binds to GCs but is unable to undergo the conformational changes that will transform the mutant from an inhibitory to an activated form.

To explore whether the Cys\(^{29}\) to Ser mutation specifically prevented this transformation, additional mutants were produced (Table II). Cys\(^{29}\) was replaced by (i) a smaller flexible Gly, (ii) similar size charged and uncharged Asp or Asn residues, respectively, that support hydrogen bonding similar to the Cys residue, and (iii) a Tyr residue found in GCAP3 in the same position (Fig. 1C). Similar to GCAP1(C29S), GCAP1(C29G) and GCAP1(C29D) were also inactive, whereas expression of GCAP1(C29N) and GCAP1(C29Y) yielded a mutant protein, albeit at lower yields, that activated photoreceptor GC at low [Ca\(^{2+}\)] and inhibited at high [Ca\(^{2+}\)] (Fig. 3A) resembling native GCAP1. In summary, these results suggest that Cys\(^{29}\) is located in a region of GCAP1 that is essential for the GC stimulation at low [Ca\(^{2+}\)], although this residue is dispensable for GCAP1 activity and can be substituted by Asn and Tyr. The Ca\(^{2+}\) titration curve for GCAP1(C29N) is similar to GCAP1; therefore this substitution was used in the multiple Cys mutants described below.

Double and Triple Cys Mutants of GCAP1—A combination of double mutants GCAP1(C18S,C106S) and GCAP1(C18S,C106S,C125S) produced active proteins (Table II). GCAP1 triple mutants C18-GCAP1(c\(^{-}\)), C106-GCAP1(c\(^{-}\)), and C125-GCAP1(c\(^{-}\)) (with the C29N substitution in all and only one free Cys at positions 18, 106, and 125, respectively) were also active and displayed activating properties of photoreceptor GC at low [Ca\(^{2+}\)] and inhibitory at high [Ca\(^{2+}\)] like native GCAP1 (Fig. 3B). Cys-less GCAP1 (GCAP1(c\(^{-}\))) was expressed at much lower levels but still displayed a similar Ca\(^{2+}\) dependence (data

Fig. 2. Characterization of GCAP1 and its mutants. A, SDS-PAGE of GCAP1 (a) and most extensively used mutants in this study, C18-GCAP1(c\(^{-}\)) (b), C29-GCAP1(c\(^{-}\)) (c), C106-GCAP1(c\(^{-}\)) (d), C125-GCAP1(c\(^{-}\)) (e), and C29S-GCAP1 (f). Similar electrophoretic patterns were observed for other mutants. B, fluorescence emission spectra of GCAP1 and C18-GCAP1(c\(^{-}\)). Fluorescence spectra (30) were measured as a function of [Ca\(^{2+}\)], from 10\(^{-14}\) M (solid line) and at [Ca\(^{2+}\)] = 10\(^{-6}\) M (red dashed line; [Ca\(^{2+}\)] chosen as in Fig. 3). The emission spectra of GCAP1 and the mutant were recorded using \(\lambda_{ex} = 280\) nm. There is no significant change in spectral shape for GCAP1 and C18-GCAP1(c\(^{-}\)), both at 2 \(\mu\)M and at any [Ca\(^{2+}\)]. Similarly, all other mutants showed only minor changes in their intrinsic fluorescence. The fluorescence titration was reproducible in two independent experiments for each mutant. C, competition assay of GCAP1 and mutants GCAP1(E75Q,E111Q,E155Q) (32) at high (Ca\(^{2+}\)). The GC activity was measured using washed ROS (\(\alpha\)) in the presence of the constitutively active mutants (1 \(\mu\)g at 2 \(\mu\)M [Ca\(^{2+}\)] (b) and the presence of GCAP1 (c) (2 \(\mu\)g) and most extensively used mutants in this study, C18-GCAP1(c\(^{-}\)) (d) (2 \(\mu\)g for this and other mutants), C29-GCAP1(c\(^{-}\)) (e), C106-GCAP1(c\(^{-}\)) (f), and C125-GCAP1(c\(^{-}\)) (g). D, limited proteolysis of GCAP1 and C29-GCAP(c\(^{-}\)) by trypsin. The digestion was carried out at 30 °C at a ratio of GCAP1/trypsin 300:1, and the digest was analyzed by SDS-PAGE at 5 min (lanes 1 and 5), 10 min (lanes 2 and 6), and 16 min (lanes 3 and 7). +[Ca\(^{2+}\)] represents 2 \(\mu\)M [Ca\(^{2+}\)], and −[Ca\(^{2+}\)] indicates 30 nM [Ca\(^{2+}\)]. Lane 4 represents undigested GCAP. All other mutants displayed similar digestion patterns, although the varied levels of the proteolytic fragments resulted from different amount of GCAP1 mutants in the assay. E, stability of GCAP1 and its mutants. The GC activity was measured using washed ROS as a source of GC (a) in the presence of 0.5 \(\mu\)g of GCAP1 (c) at 30 nM [Ca\(^{2+}\)]. The black bar represents GCAP not exposed to heat treatment (open bar and gray bar), GCAP1 preincubated for 15 min at 50 °C or 100 °C, respectively. Other mutants C18-GCAP1(c\(^{-}\)) (d), C29-GCAP1(c\(^{-}\)) (e), C106-GCAP1(c\(^{-}\)) (f), and C125-GCAP1(c\(^{-}\)) (g) were treated in the similar conditions. The varied levels of the GC stimulating activity resulted from different amounts of GCAP1 mutants in the assays.
not shown). Introduction of a positive (GCAP1 mutant modified with MTSET) or a negative charge (modified with MTSES) in all of these positions individually generated the GCAP1 products with significantly decreased (2–4-fold) GC stimulating activity (Table III), which could be restored by the addition of dithiothreitol. These results suggest that modifications with MTSET or MTSES in GCAP1 leads to alteration in the properties of GCAP1, for example in the interaction with photoreceptor GCs.

Modification of Cys²⁹—C29-GCAP1(c[−]) stimulated photoreceptor GCs at low [Ca²⁺] and inhibited the cyclase at high [Ca²⁺] (Fig. 4A). When compared with other triple mutants, modification of Cys²⁹ appears to be the least quantitative with the rapidly reacting MTSET reagent (Scheme I), as observed for C29-GCAP1(c[−]) (Table III). Higher concentrations of the reagent were required in comparison with other mutants, and inactivation of GCAP1 mutant was fully reversible with dithiothreitol. (Fig. 4B). Hydrophobic modifications, such as DTNB or vinylpyridine of this GCAP1 mutant did not cause inactivation. Importantly, the initial rates of DTNB modification of single Cys-containing GCAP1 mutants showed no differences at low and high [Ca²⁺] (data not shown), suggesting minor conformational changes around these Cys residues as a consequence of Ca²⁺ coordination.

Fluorescence Spectroscopy—The environmentally sensitive, sulfhydryl-reactive, fluorescence N,N′-dimethyl-N-(sodiumacetily)-N′-(7-nitrobenz-2-oxa-1,3-diazol-4-yl)ethylene-diamine (IANBD) (52–73) was used to monitor conformational changes in GCAP1 mutants that occur upon addition of Ca²⁺ (Scheme I). For example, C18-GCAP1(c[−]) was modified by INABD quantitatively as C29-GCAP1(c[−]) (Fig. 4A, inset). When excited by 480-nm light, C18-GCAP1(c[−])-IANBD emitted at λ_{em} = 530 nm. Changes in fluorescence were <10% for [Ca²⁺] ranging from 10^{−8} to 10^{−6} M with EC₅₀ = 230 μM (Fig. 5A, left and right panels), reversible upon addition of EGTA (data not shown), and did not cause a shift in λ_{max} of the emission (right panel, inset). The quenching of the fluorescence by KI (0–250 mM) was indistinguishable for the C18-GCAP1(c[−])-IANBD in the presence and the absence of Ca²⁺ (data not shown). Together, these data suggest that only minor conformational changes occur around this region, including the N-terminal myristoyl group and nonfunctional, disabled by natural mutations, the EF-1 hand motif.

The C29-GCAP1(c[−])-IANBD mutant was subjected to a similar analysis as the mutant described above. Minor changes in the fluorescence for this mutant (<4%) were observed. How-
ever, the relative fluorescence intensity was enhanced ~4-fold at λ_{ex} = 530 nm as compared with C18-GCAP1(c)-IANBD (Fig. 5B) in all tested [Ca^{2+}]_{free}, suggesting immobilization or relocation of the IANBD group into a more hydrophobic environment or both. \(^3\) C106-GCAP1(c)-IANBD decreased the intensity of fluorescence only by ~5% for [Ca^{2+}] ranging from 10^{-8} to 10^{-5} M with EC_{50} = 280 nm (Fig. 5C). Addition of Ca^{2+} to C125-GCAP1(c)-IANBD increased the intensity of fluorescence by ~12%, but only at the highest 10^{-6} M [Ca^{2+}] (Fig. 5D). Together, these data suggest that regions of GCAP1 around Cys^{29} and Cys^{106} undergo minor conformational changes that increase solvent exposure of these modified Cys residues. The region around Cys^{125} also undergoes minor structural alterations causing sequestration of the Cys-IANBD group into a more hydrophobic environment or slight immobilization of the fluorophore but only in fully Ca^{2+}-loaded GCAP1.

EPR Spectroscopy.—To investigate Ca^{2+}-dependent changes in GCAP1, these same Cys mutants were modified with the spin label reagent MTSSL to generate a spin labeled side chain (Scheme 1). At low [Ca^{2+}]_{free} ([Ca^{2+}]_{free} = ~46 nm), the EPR spectral line shapes reflect a local structure entirely compatible with the structural model of GCAP1. According to the correlation of EPR spectral line shapes and protein structure described previously (74), the line shapes of both Cys^{125}-GCAP1(c)-MTSSL and Cys^{106}-GCAP1(c)-MTSSL reflect a highly mobile side chain in agreement with their putative solvent-exposed locations within the EF-hand loops. The line shape of the Cys^{29}-GCAP1(c)-MTSSL spectrum indicates a highly immobilized side chain in a constrained environment, as expected for a site packed between two helices. Finally, the line shape of Cys^{18}-GCAP1(c)-MTSSL suggests a distribution of side chain dynamic modes, perhaps corresponding to multiple structural states of the N-terminal region in slow exchange on the EPR time scale.

Only minor changes were observed between the EPR spectra recorded at 46 nm and ~86 nm [Ca^{2+}]_{free} when the nitroxide was located at Cys^{18}, Cys^{106}, or Cys^{125} (Fig. 6). On the other hand, EPR spectra of GCAP1 with the spin label at Cys^{29} showed a striking spectral broadening and a concomitant intensity decrease in this same range of [Ca^{2+}]_{free}. This observation prompted us to investigate the full Ca^{2+} titration curve for this GCAP1 mutant. Over the physiological range of [Ca^{2+}]_{free} (the activity profile is shown as a gray line in Fig. 7), only ~8% change in spectral intensity was observed. Similar to observations made using fluorescence spectroscopy, further increases in [Ca^{2+}]_{free} led to a dramatic decrease in the spectral intensity in a titration-like fashion centered around [Ca^{2+}]_{free} = ~1 mM (Fig. 7).

In addition to the Ca^{2+}-dependent change in EPR spectral line shape, the change in accessibility of the nitroxide at position 29 to collision with oxygen was also examined using the 'P_{1/2} parameter (42). The value of 'P_{1/2} is a direct measure of TABLE III

Determination of free sulfhydryl groups in GCAP1 and its mutants

GCAP1 and mutants	TNB \(^{a}\)	GC activity \(^{b}\)	GC activity + DTT \(^{c}\)
	nmol/nmol of protein	nmol/min	nmol/min
GCAP1	4	0.19 ± 0.04	0.19 ± 0.03
GCAP1-MTSES	0.6	0.09 ± 0.02	0.21 ± 0.01
GCAP1-MTSET	0.7	0.09 ± 0.01	0.22 ± 0.01
C18-GCAP1(c)	3.4	0.31 ± 0.03	0.31 ± 0.04
C18-GCAP1(c)-MTSES	0.0	0.11 ± 0.01	0.24 ± 0.03
C18-GCAP1(c)-MTSET	0	0.12 ± 0.01	0.28 ± 0.02
C29-GCAP1(c)	2.4	0.18 ± 0.04	0.19 ± 0.01
C29-GCAP1(c)-MTSES	0.1	0.09 ± 0.01	0.16 ± 0.02
C29-GCAP1(c)-MTSET	0.22	0.11 ± 0.03	0.21 ± 0.05
C106-GCAP1(c)	2.2	0.36 ± 0.02	0.36 ± 0.02
C106-GCAP1(c)-MTSES	0	0.08 ± 0.04	0.32 ± 0.02
C106-GCAP1(c)-MTSET	0.02	0.13 ± 0.01	0.30 ± 0.04
C125-GCAP1(c)	2.6	0.29 ± 0.06	0.29 ± 0.01
C125-GCAP1(c)-MTSES	0.0	0.06 ± 0.02	0.23 ± 0.02
C125-GCAP1(c)-MTSET	0.11	0.13 ± 0.03	0.38 ± 0.02

\(^{a}\) DTNB (Ellman’s reagent) reacts with sulfhydryl groups of GCAP1 and produces 5-thio-2-nitrobenzoate (TNB), which provides product with an extinction coefficient at 412 nm of 13,600 M^{-1} cm^{-1}. The concentration of proteins was determined using Bradford method.

\(^{b}\) GC assay was performed as described under “Experimental Procedures” in the presence or absence of 3 mM DTT. The activity is expressed in nmol of cGMP production per min.

\(^{c}\) Protein modification was carried out as described under “Experimental Procedures.” The activity of ROS GC stimulated by modified GCAP1 was measured as described under “Experimental Procedures” at 40 nm [Ca^{2+}]_{free}.

Fig. 4. Ca^{2+}-dependent GC stimulatory activity of C29-GCAP1(c) and inactivation of the mutant by MTSET. A, Ca^{2+}-dependent ROS GC activity stimulated by GCAP1 (●) and by C29-GCAP1(c) (○). Inset, the activity of GC without GCAP1 (black bar), in the presence of GCAP1 (light gray) and C29-GCAP1(c) (dark gray) at 40 nm and 1 μM [Ca^{2+}]_{free}. The measurements were done in three independent experiments, and the difference between then in IC_{50} did not vary more than 80 nm [Ca^{2+}]_{free}. B, the activity of C29-GCAP1(c) modified by the increasing concentration of MTSET reagent (●) and the recovery of the activity by 5 mM dithiothreitol (○). Protein modification was carried out as described under “Experimental Procedures.” The activity of ROS GC stimulated by modified GCAP1 was measured as described under “Experimental Procedures” at 40 nm [Ca^{2+}]_{free}.
solvent accessibility of the nitroxide and was found to decrease by a factor of three upon an increase in \([\text{Ca}^{2+}]_{\text{free}}\) from 46 nM to 86 mM. Thus, the nitroxide is more deeply buried in the protein structure in the high \([\text{Ca}^{2+}]_{\text{free}}\) state.

Collectively, the above data show that there is very little change in the secondary or tertiary structure in the vicinity of spin labels upon physiological activation of GCAP1 by \([\text{Ca}^{2+}]_{\text{free}}\) but that a second \([\text{Ca}^{2+}]_{\text{free}}\)-dependent event leads to a change in the environment around site 29 at high nonphysiological \([\text{Ca}^{2+}]_{\text{free}}\) (>1 mM). The molecular origin of this second process is unknown but could possibly arise from oligomerization, perhaps aided by the relatively hydrophobic nitroxide group. However, because labels at Cys18, Cys106, and Cys125 do not show similar changes, the oligomer is likely to be a nonspecific aggregate and may correspond to a dimer.

Gel Filtration—To investigate \([\text{Ca}^{2+}]_{\text{free}}\)-dependent oligomerization of GCAP1, we used gel filtration methods at high and low \([\text{Ca}^{2+}]_{\text{free}}\). In most cases, GCAP1 and its mutants eluted as a mixture of 80–90% monomeric protein and the remaining as a dimer, with the dimer being inactive.

Fig. 5. Fluorescence properties of GCAP1 mutants modified by IANBD. A, fluorescence emission spectra of C18-GCAP1(c−) modified by IANBD as a function of increasing \([\text{Ca}^{2+}]_{\text{free}}\) (black at lowest concentrations and red at highest concentrations; \(\lambda_{\text{ex}} = 480\) nm). Inset, UV spectrum of modified C18-GCAP1(c−) mutant. Right panel, changes in fluorescence intensity as a function of \([\text{Ca}^{2+}]_{\text{free}}\). Inset, differences in the fluorescence intensity for C18-GCAP1(c−) at 40 nM and 2 μM \([\text{Ca}^{2+}]\). B, lack of changes in the fluorescence emission intensity of C29-GCAP1(c−)-IANBD at \(\lambda_{\text{em}} = 530\) nm as a function of \([\text{Ca}^{2+}]_{\text{free}}\). C, fluorescence emission spectra of C106-GCAP1(c−) modified by IANBD as a function of increasing \([\text{Ca}^{2+}]_{\text{free}}\) (black at lowest concentrations and red at highest concentrations; \(\lambda_{\text{ex}} = 480\) nm). Inset, changes in fluorescence intensity as a function of \([\text{Ca}^{2+}]_{\text{free}}\). D, fluorescence emission spectra of C125-GCAP1(c−) modified by IANBD as a function of increasing \([\text{Ca}^{2+}]_{\text{free}}\) (black at lowest concentrations and red at highest concentrations; \(\lambda_{\text{ex}} = 480\) nm). Inset, changes in fluorescence intensity as a function of \([\text{Ca}^{2+}]_{\text{free}}\). The fluorescence measurements were done in duplicate, and the second set of data did not vary significantly from the set presented in this figure.
Addition of Ca²⁺ did not affect this ratio, although at high Ca²⁺ additional amounts of dimer (10–15%) were occasionally observed (data not shown). In less frequent preparations, the dimeric inactive form of GCAP1 was observed at levels up to 40% of the monomer (trace b). There was no interconversion of one form into another (trace c and d, respectively). Once more, there was no Ca²⁺ dependence on the formation of monomers/dimers under tested conditions. It is noteworthy that native GCAP1 is also monomeric (25). These results suggest that under physiological conditions GCAP1 does not undergo Ca²⁺-dependent oligomerization.

DISCUSSION

Relationship between GCAP1, CaM, and Other NCBP—In vertebrate cells, Ca²⁺ is frequently coordinated by proteins containing the EF-hand motifs (75). Among the EF-hand-containing proteins, NCBPs have become targets for intense scrutiny because of the proven involvement and potential role of these proteins in key processes within neurons (1–3). The topology of NCBPs is similar to that of CaM, consisting of a tandem of two EF-hand motifs connected by the central helix and a pseudo 2-fold symmetry (1, 76). The diversity of NCBPs is generated by the presence of unique amino acid sequences that produce distinct EF-hand pair positions and varying angles between α-helices surrounding the EF-hand motif (76). It has been proposed that these EF-hands display a constellation of unique conformational states (77), which may be critical for precise tuning of target enzymatic activities in response to changes in Ca²⁺. GCAPs offer a special possibility to investigate the conformational changes of these proteins, an opportunity that is enhanced by the detailed characterization of the target enzyme, GC1. Therefore, a wealth of information has accumulated over the years (1, 2, 27, 78, 79).

Cys²⁹ Mutation to Asn and Tyr, but Not Ser, Gly, or Asp, Produced Active GCAP1—Of all Cys residues in GCAP1, Cys²⁹ appears to be the most sensitive to substitutions. The replacement of Cys²⁹ by Ser, Gly, and Asp produced inactive proteins. Conversely, mutating Cys²⁹ to Tyr (present in GCAP3 at this position) and Asn yielded active proteins. One possibility is that this site (region) is critically important for the conversion of the inactive Ca²⁺ bound form to the active Ca²⁺ form of

4 Similar observations were also made for GCAP2 (I. Sokal and K. Palczewski, unpublished observations).
GCAP1 or that this region is critical for the interaction with GC. In agreement with both possibilities GCAP1(C29S) is a potent competitor of a constitutively active GCAP1 triple mutant but is unable to stimulate GC at low $[\text{Ca}^{2+}]$ (Fig. 2). However, this region does not undergo conformation changes upon Ca^{2+} binding as shown by spectroscopic methods, suggesting that the correct conformation of the N-terminal region is essential for the GC stimulation.

Intriguingly, helix 2 and helix 3 form a hydrophobic cavity where Cys 29 is located. Most likely the fluorescence probe is positioned along this cavity, where a hydrogen bond may be formed between Lys46 and a nitro group of the IANBD moiety (Fig. 9, right panel). The spin label group may also intercalate into this cavity. Consistent with this model, Cys at this position can be modified by hydrophobic groups with retention of the GC stimulatory activity. GCAP1 modified by the fluorophore IANBD, whose emission properties are sensitive to the molecular environment and its accessibility to water (80), showed increased fluorescence as compared with other mutants. In a native state, a hydrogen bonding between Glu28 and Gln41 of GCAP1 could be formed with GC (Fig. 9). In the Ca^{2+}-bound form, Gly and Ser residues of the corresponding mutants are buried because Glu 28, Glu 38, and Gln 41 come closer together and change the shape of the surface (Fig. 10). As shown in this study, this region does not undergo major structural changes as a function of Ca^{2+}. Therefore, we anticipate that the same interactions are still present in a Ca^{2+}-free state. In GCAP1(C29N), Asn forms a hydrogen bond with Glu 38, the same as Ser, but this pair does not enter the interior of the protein. Surfaces for Asn and Asp look similar; however, charged groups in this region prevent the activation of GC (Table III). Tyr 29 of the GCAP1(C29Y) mutant is exposed and not covered by the Glu 28-Gln 41 pair. These modeling studies point to the possibility that the Cys 29 region is involved in the interaction with GC that leads to increased cGMP production but perhaps is less important for the inhibition of GC activity at high $[\text{Ca}^{2+}]$. This hypothesis is consistent with the observation that the N-terminal region of GCAP1, including its myristoyl group, displays a different specificity in interacting with GC, depending on the $[\text{Ca}^{2+}]$ coordination (37). In an independent study employing GCAP1/GCIP chimeric molecules, we further demonstrated the importance of the N-terminal region of GCAP1 for GC stimulation (81).

Changes in the GCAP1 Structure upon Addition of Ca^{2+}

The results of this study are internally consistent with previous investigations on the fluorescence spectra of native GCAP1 and its Trp mutants, where Trp residues were specifically engineered into regions of GCAP1 to monitor Ca^{2+} binding to EF-hand motifs (30). These studies suggested that during the transition from inactive (Ca^{2+}-bound) to active conformation (Ca^{2+}-free form), there is rotation around central helix 6 (Fig.
that causes an exposure of the hydrophobic residues of this helix. Tyr99 is wedged between helix 6 and the EF3-hand motif (Fig. 1B), and its mutation to Cys causes constitutive activation of the GCAP1 mutant. The binding of Ca\(^{2+}\) at physiological conditions is insufficient to stabilize the mutant GCAP1 in an inactive conformation. Thus, mutant GCAP1(Y99C) is constitutively active, presumably causing elevated levels of cGMP, \textit{in vitro} and \textit{in vivo}. These relatively subtle changes of cGMP levels are thought to be causative of autosomal dominant cone dystrophy (33–35).

As shown in this study, other regions of the protein undergo rather minor conformational changes. These data are also consistent with limited proteolysis studies showing that in the Ca\(^{2+}\)-bound form of GCAP1, the interior of the protein is protected from proteolytic degradation, whereas in the middle section of the protein is quickly cleaved the Ca\(^{2+}\)-free form (32). Introduction of a hydrophobic group in the binding site of the pocket formed between helices 2 and 5 may make the modified protein prone to dimerization.

\textbf{GCAP1 versus GCAP2—} Of the three GCAPs, GCAP1 and GCAP2 have been the most intensely studied (2, 78). Surprisingly, although GCAP1 and GCAP2 stimulate photoreceptor GCs, many properties were reported to be different for both proteins. Like other Ca\(^{2+}\)-binding proteins, GCAP1 and GCAP2 are closely related evolutionarily, and their genes were generated by ancient gene duplication/inversion events, similar to S-100 Ca\(^{2+}\)-binding proteins (82); however, these two GCAPs share only \(\sim 45\%\) homology on the sequence level. GCAP2 is more soluble than GCAP1, and GCAP2 has been proposed to increase its solubility upon binding of Ca\(^{2+}\) ions (83). To our knowledge, it is the only known EF-hand-containing protein to show such a property; typically, the opposite is more frequently observed. For example, using small angle x-ray scattering and circular dichroism, it was shown that the related protein recoverin aggregates in the Ca\(^{2+}\)-bound forms (84) but is monomeric and soluble in the Ca\(^{2+}\)-free form. Despite this solubility property, GCAP2 inhibits GCs at high [Ca\(^{2+}\)] (85). Recoverin is monomeric and soluble in Ca\(^{2+}\)-free form GCAP1, in contrast, is mostly associated with the membranes and/or GC1 under all [Ca\(^{2+}\)] (31). There are other differences between both of these proteins, most notably the sites of the GC interaction and the GC specificity (2, 44, 48, 78).

Thus, despite some similarities between these two proteins and other members of NCBP, there are important fundamental differences. This observation is surprising because the structures of all these proteins are predicted to be similar (see the Introduction).

\textbf{Model of the Activation—} It was recently proposed, based on gel filtration studies, that the Ca\(^{2+}\)-loaded GCAP2 monomer undergoes reversible dimerization upon dissociation of Ca\(^{2+}\) (85). This observation was correlated with the ability of GCAP2 to activate photoreceptor GC and its ability to dimerize at low free [Ca\(^{2+}\)]. Those conclusions are different from the results presented in this study with GCAP1. These differences could arise from either differences in properties between the two
GCAPs, experimental conditions, or folding of proteins as a consequence of bacterially expressed proteins versus GCAP1 expressed in insect cells. As shown in gel filtration experiments (Fig. 8), GCAP1 does not undergo reversible Ca\(^{2+}\)-dependent changes in its aggregation status, and the small fraction of GCAP1 forming dimers is unable to stimulate photoreceptor GCs. In addition, it was reported that native GCAP1, purified from the bovine retina, behaves as a monomer (25). These studies are consistent with fluorescent spectroscopy in this and a previous report (30) and with EPR spectroscopy that did not detect any major conformational changes or oligomerization.

The model for the GCAP1 activation that is emerging is consistent with the one presented in Fig. 11. GCAP1 forms a stable multi-site attachment complex with GC. During activation (lowering [Ca\(^{2+}\)]), GCAP1 undergoes rotation around central helix 6 (Fig. 1) that ultimately leads to changes in the catalytic site of GC (47).

In summary, we utilized the sulphydryl chemistry of GCAP1 and its mutants to understand the conformational changes in the protein induced by Ca\(^{2+}\) binding. Four endogenous Cys residues at positions 18, 29, 106, and 125 provide an excellent spatial distribution of these reporter residues to map Ca\(^{2+}\)-induced conformational changes. Side-directed substitution of these amino acids did not perturb the overall properties of GCAP1 as tested by various complementary methods. We demonstrate that local changes around two C-terminal and N-terminal lobes, each containing two EF-hand motifs, are rather minor, suggesting that larger Ca\(^{2+}\)-dependent changes occur only within the flexible central helix of GCAP1. We offer a model of a photoreceptor GC activation that assumes changes within the flexible central helix of GCAP1 cause relative reorientation of two structural domains, switching GCAP1 from the active to the inactive state.

Acknowledgments—We thank Dr. A. Alekseev for the preparation of the GCAP dimer and Dr. Geeng-Fu Jang and Josua McBee for the comments on the manuscript. We also thank the ICM computer center at the University of Warsaw for computational tasks.

REFERENCES
1. Polans, A., Baehr, W., and Palczewski, K. (1996) Trends Neurosci. 19, 547–554
2. Palczewski, K., Polans, A. S., Baehr, W., and Ames, J. B. (2000) Bioessays 22, 337–350
3. Burgoyne, R. D., and Weiss, J. L. (2001) Biochem. J. 353, 1–12
4. Dizhoor, A. M., Ray, S., Kumar, S., Niemi, G., Spencer, M., Brolly, D., Walsh, K. A., Philipp, P. P., Hurley, J. B., and Stryer, L. (1991) Science 251, 915–918
5. Polans, A. S., Witkowska, D., Haley, T. L., Amundson, D., Baizer, L., and Adams, G. (1995) Proc. Natl. Acad. Sci. U. S. A. 92, 9176–9180
6. Kawamura, S., Hisatomi, O., Kayada, S., Tokunaga, F., and Ruo, C. H. (1993) J. Biol. Chem. 268, 14579–14582
7. Kawamura, S., Kowata, O., Yamada, M., Matsuoka, S., Hisatomi, O., and Tokunaga, F. (1996) J. Biol. Chem. 271, 21359–21364
8. Gray-Keller, M. P., Polans, A. S., Palczewski, K., and Detwiler, P. B. (1993) Neuron 10, 523–531
9. Flaherty, K. M., Znaila, S., Stryer, L., and McKay, D. B. (1993) Cell 75, 709–716
10. Ames, J. B., Ishima, R., Tanaka, T., Gordon, J. I., Stryer, L., and Ikura, M. (1997) Nature 389, 198–202
11. Kobayashi, M., Takamatsu, K., Saigo, S., Miura, N., and Noguchi, T. (1993) Biochem. Biophys. Res. Commun. 196, 1017–1022
12. Kobayashi, M., Matsumoto, K., Saito, S., Miura, N., and Noguchi, T. (1992) Biochem. Biophys. Res. Commun. 189, 511–517
13. Takamatsu, K., and Noguchi, T. (1993) Neurosci. Res. 17, 291–295
14. Okazaki, K., Watanahe, M., Ando, Y., Hagiwara, M., Terasawa, M., and Hisada, H. (1992) Biochem. Biophys. Res. Commun. 185, 147–153
15. Terasawa, M., Nakano, A., Kobayashi, R., and Hisada, H. (1992) J. Biol. Chem. 267, 19596–19599
16. Hisada, H., and Okazaki, K. (1993) Neurosci. Res. 16, 73–77
17. Vijay-Kumar, S., and Kumar, V. D. (1999) Nat. Struct. Biol. 6, 80–88
18. Pongs, O., Lindemeier, J., Zhu, X. R., Theil, T., Engelkamp, D., Krahn-Jentgens, I., Lambrecht, H. G., Koch, K. W., Schwemer, J., Rivosecchi, R., et al. (1993) Neuron 11, 15–28
19. McFerran, B. W., Graham, M. E., and Burgoyne, R. D. (1998) J. Biol. Chem. 273, 22768–22772
20. Ames, J. B., Hendriks, K. B., Strahl, T., Huttner, I. G., Hamasaki, N., and Thorner, J. (2000) Biochemistry 39, 12149–12161
21. Bourne, Y., Dannenberg, J., Pollmann, V., Marchot, P., and Pongs, O. (2001) J. Biol. Chem. 276, 11849–11855
22. Hendriks, K. B., Wang, B. Q., Schnieders, E. A., and Thorner, J. (1999) Nat. Cell. Biol. 1, 234–241
23. Takami, K., Kiyama, H., Hatakenaka, S., Tohyama, M., and Miki, N. (1985) Neurosciences 15, 667–675
24. Hatakenaka, S., Kiyama, H., Tohyama, M., and Miki, N. (1985) Brain Res. 331, 209–215
25. Goreczya, W. A., Gray-Keller, M. P., Detwiler, P. B., and Palczewski, K. (1994) Proc. Natl. Acad. Sci. U. S. A. 91, 4014–4018
26. Li, N., Fariss, R. N., Zhang, K., Otto Bruc, A., Haeseleer, F., Bronson, D., and Qin, N. (1998) Eur. J. Biochem. 252, 591–599
27. Pugh, E. N., Jr., Duda, T., Sitaramayya, A., and Sharma, R. K. (1997) Biosci. Rep. 17, 429–473
28. Fain, G. L., Matthews, H. R., Cornwall, M. C., and Koutalos, Y. (2001) Physiol. Rev. 81, 117–151
29. Tanaka, T., Ames, J. B., Harvey, T. S., Stryer, L., and Ikura, M. (1995) Nature 376, 444–447
30. Sokol, I., Otto-Bruc, A. E., Surgucheva, I., Verinde, C. L., Wang, C. K., Baehr, W., and Palczewski, K. (1999) J. Biol. Chem. 274, 19829–19837
31. Goreczya, W. A., Polans, A. S., Surgucheva, I. G., Subbaraya, I., Baehr, W., and Palczewski, K. (1997) J. Biol. Chem. 270, 22029–22036
32. Rubnica-Nawrot, M., Surgucheva, I., Hulmes, J. D., Haseelee, P., Sokol, I., Crabb, J. W., Baehr, W., and Palczewski, K. (1998) Biochemistry 37, 248–257
33. Sokol, I., Lin, N., Surgucheva, I., Warren, M. J., Payne, A. M., Bhattacharya, S. S., Baehr, W., and Palczewski, K. (1996) Mol. Cell. 2, 129–133
34. Payne, A. M., Downes, S. M., Bessant, D. A., Taylor, R., Holder, G. E., Warren, M. J., Bird, A. C., and Bhattacharya, S. S. (1998) Hum. Mol. Genet. 7, 273–277
35. Dizhoor, A. M., Boikov, S. G., and Olshevskaya, E. V. (1998) J. Biol. Chem. 273, 17311–17314
36. Papernak, M. E. (2002) Methods Enzymol. 81, 48–52
37. Otte-Bruc, A. E., Buszko, J., Surgucheva, I., Subbaraya, I., Rubnica-Nawrot, M., Crabb, J. W., Arendt, A., Hargrave, P. A., Baehr, W., and Palczewski, K. (1997) Biochemistry 36, 4295–4302
38. Schoenmakers, T. J., Visser, G. J., Flik, G., and Theuvenet, A. P. (1992)
