An extensive body of evidence has demonstrated the sensitivity of Fanconi anemia (FA) cells to redox-active xenobiotics, such as mitomycin C, diepoxybutane, cisplatin, and 8-methoxypsoralen plus ultraviolet irradiation, with toxicity mechanisms that are consistent with a deficiency of FA cells in coping with oxidative stress. A recent study has reported on excess sensitivity of FA complementation A group cells to chromium VI [Cr(VI)] toxicity, by postulating that a deficiency in Cr-DNA cross-link removal by FA cells and formation of Cr(VI)-associated cross-links may be the mechanism of Cr(VI)-induced cytotoxicity. However, the report failed to demonstrate any enhanced Cr uptake or, especially, any increase in Cr-DNA adducts. Thus, well-established findings on Cr(VI)-induced oxidative stress may explain excess sensitivity of FA cells to Cr(VI) in terms of its inability to cope with the Cr(VI)-induced prooxidant state. Key words: chromium, cisplatin, diepoxybutane, DNA adducts, Fanconi anemia, 8-hydroxy-2′-deoxyguanosine, 8-methoxypsoralen, mitomycin C, oxidative stress. Environ Health Perspect 111:1699–1703 (2003). doi:10.1289/ehp.6229 available via http://dx.doi.org/[Online 12 June 2003]

A number of organic and inorganic xenobiotics exert their toxicity via a sequence of mechanisms that relate to redox-related biotransformation (Bagchi et al. 2002; Balamurugan et al. 2002; Dusre et al. 1990; Ercal et al. 2001; Penketh et al. 2001; Quievryn et al. 2001; Sawamura et al. 1996; Seaton et al. 1995). These mechanisms include a number of distinct events that may result in direct oxidative damage, such as the formation of reactive oxygen species (ROS), the occurrence of redox couples [e.g., chromium (Cr(VI)/Cr(III))], and the formation of reactive intermediates of the native molecule (Dusre et al. 1990; Ercal et al. 2001; Gutteridge et al. 1984; Pagano 2002; Stohs and Bagchi 1995). As a possible alternative, the action mechanisms of some xenobiotics may interfere with some essential antioxidant systems, for example, the glutathione (GSH) system, thus resulting in a redox imbalance (Spanò et al. 1998; Vlachodimitropoulos et al. 1997).

In many instances, a combination of effects may occur, for example, related to a) ROS activity, b) modulation of redox-related activities and/or of thiol antioxidants, and/or c) the specific action of xenobiotic end product(s) (e.g., cross-linking with biopolymers) (Pagano 2002). The mechanistic features for any class of agents imply the extent to which these events may prevail, also depending on the individual structure analogs being considered, as well as other factors related to extra- and intracellular environment, for example, ambient oxygen levels, the endogenous redox-related activities, pH and other ionic balance, and the co-presence of other bioactive agents (hormones or other xenobiotics).

A set of xenobiotics has been reported to exert enhanced toxicity to cells from patients with Fanconi anemia (FA), a cancer-prone generic disease (Ahmad et al. 2002; Alter 1996; Auerbach et al. 1998). The excess sensitivity of FA cells is used in FA diagnosis and is commonly attributed to the inability of FA cells to repair DNA cross-links induced by these agents. This subject has direct implications in disease definition, because the axiom of “cross-linker sensitivity” is related to the widespread opinion that FA is a DNA repair deficiency syndrome. In this commentary we review the published evidence for the involvement of several (and distinct) redox-related mechanisms in the toxicities of all the xenobiotics that have been reported to trigger enhanced sensitivity in FA cells, and we discuss the role for cross-link formation and removal.

Xenobiotics Involving Defining FA Phenotype

Mitomycin C. Since the report by Iyer and Szybalski (1964), the requirement for redox biotransformation of mitomycin C (MMC) has been well recognized in pharmacology, because MMC must be activated by a series of redox reactions leading to semiquinone derivatives coupled with ROS formation (Dusre et al. 1990; Gutteridge et al. 1984; Penketh et al. 2001; Pritsis and Sartorelli 1986). Well-established mechanistic information has shown that MMC-associated toxicity is dependent on oxygen levels (Clarke et al. 1997; Korkina et al. 2000) and is removed by low-molecular-weight antioxidants (Raj and Heddle 1980) and by thioredoxin (Trx) overexpression (Ruppitsch et al. 1998). Recent reports demonstrate that a) MMC exposure results in an increase in oxidative DNA damage (Pagano et al. 2001); b) FA cells fail to accumulate higher MMC adduct levels in DNA than control cells (Rutherford et al. 1999; Will et al. 1998); and c) the ratio of MMC biadducts to monoadducts (reflective of a DNA repair defect) shows no difference in FA cells compared with normal cells (Rutherford et al. 1999). In a previous study, Clarke et al. (1997) had shown that MMC-induced apoptosis in FA complementation group C (FA-C) cells occurred under normoxic conditions (associated with redox-cycling mechanisms), whereas MMC was ineffective in causing apoptosis under hypoxic conditions (with prevailing cross-link formation).

Diepoxybutane. Diepoxybutane (DEB) toxicity may be indirectly associated with redox mechanisms because its epoxide structure implies susceptibility to GSH scavenging (Bartók and Láng 1980). Similar to MMC, DEB-associated toxicity correlates with oxygen levels (Korkina et al. 2000) and oxidative DNA damage (Pagano et al. 2001), whereas DEB-induced cytotoxicity and DNA damage are decreased by Trx overexpression (Ruppitsch et al. 1998). DEB toxicity is modulated by GSH, and in turn, DEB results in GSH depletion (Korkina et al. 2000; Spanò et al. 1998; Vlachodimitropoulos et al. 1997). Thus, a major feature of DEB-induced toxicity may be related to an imbalance in GSH levels resulting in a cellular prooxidant state.

Cisplatin. After the early report by Poll et al. (1982) showing excess sensitivity of FA cells to platinum compounds, cisplatin (CDDP)-associated toxicity has been regarded as an example of cross-linkers exerting enhanced toxicity to FA cells (Auerbach et al. 1998). Further studies, however, have provided mechanistic evidence for CDDP biotransformation leading to oxidative stress along with a cascade of redox-associated events. It has been recognized that oxidative pathways participate in the characteristic nephrotoxicity of CDDP, including
induction of heme oxygenase-1 (Schaaf et al. 2002), and CDDP-induced cytotoxicity and ROS formation are effectively counteracted by antioxidants such as α-tocopherol, vitamin C, and N-acetylcysteine (NAC) (De Martinis and Bianchi 2001; Schaaf et al. 2002). Treatment of myeloma cells with NAC completely blocked CDDP-dependent intracellular GSH oxidation, ROS generation, poly(ADP-ribose) polymerase cleavage, and apoptosis (Godbout et al. 2002). Bauman et al. (1991) reported a protective role of metallothionein, a scavenger of hydroxyl radicals, against a number of oxidative stress–associated xenobiotics, including CDDP.

Waitsz et al. (2002) have demonstrated that p21Waf1/Cip1, an oxidative stress regulatory gene (Esposito et al. 1998), is overexpressed in lymphoblastoid FA cells and is very sensitive to CDDP. p21Waf1/Cip1 is known to be a key regulator of G1 cell-cycle arrest and has been recently linked to G2 cell-cycle regulation (Taylor and Stark 2001). This observation fits well with the previously observed up-regulation of apoptotic regulatory p53 protein and cyclin B proteins, inactivation of CDC2 kinase, and cell-cycle arrest, which follows exposure to low doses of cross-linking agents in FA cells (Kruyt et al. 1996; 1997; Kupfer and D’Andrea 1996). Also p53, cyclin B, and CDC2 kinase are known to be involved in oxidative stress pathways (Barnounin et al. 2002; Chen et al. 2002; Chuang et al. 2002).

Hence, the literature provides cellular and molecular evidence for a direct involvement of redox pathways in CDDP-associated toxicity mechanisms.

8-Methoxypsoralen and ultraviolet A. Early studies pointed to the excess sensitivity of FA cells to 8-methoxypsoralen (8-MOP) plus ultraviolet A (UVA) irradiation (PUVA), and the results were construed as due to inability to cope with 8-MOP cross-link formation (Moustacchi and Diatloff-Zito 1985). The combination of PUVA, however, is associated with production of ROS that react subsequently with DNA, lipids, and proteins and cause a decrease in cellular antioxidative capacity (Reineckel et al. 1999). Both UVA irradiation and PUVA treatment induced significant changes in the distribution of arachidonic acid and increased the liberation of arachidonic acid from membrane phospholipids, with a significant increase in the formation of thioarbituric acid–reactive material. The activities of the antioxidant enzymes catalase and superoxide dismutase were also significantly decreased by UVA (Punnonen et al. 1991). PUVA-associated toxicity has been shown to cause GSH depletion (d’Ischia et al. 1989), which in turn involves an oxidative stress condition.

Chromium(VI). In a recent article, Vilcheck et al. (2002) reported on excess sensitivity of FA complementation A group (FA-A) cells to Cr(VI)-induced toxicity and apoptosis. Cell growth and apoptosis were measured by phosphatidylserine translocation and caspase-3 activation. Both the induction of apoptosis and of clonogenicity showed significantly increased sensitivity to Cr(VI) in FA-A cells versus control fibroblasts. However, no increase in Cr(VI) uptake or in Cr–DNA adducts was detected in FA-A cells versus control cells.

Vilcheck et al. (2002) relied on the assumptions that FA phenotype and Cr-associated toxicity should be based on (a) excess sensitivity to DNA cross-linking agents, suggesting “a general defect in the repair of DNA cross-links” and (b) the ultimate events in Cr-associated toxicity, namely, the formation of DNA lesions, such as DNA–Cr–DNA interstrand cross-links (Bridgewater et al. 1998; Mattragajasingh and Misra 1999; O’Brien et al. 2001; Singh et al. 1998). However, this study provides support to the body of evidence relating oxidative stress both to FA phenotype and to Cr toxicity.

An extensive body of literature has provided evidence for the role of multiple redox-related events in Cr-associated toxicity, as summarized in Table 1. These events include both direct and indirect mechanisms related to oxidative stress, for example, Cr-induced depletion of GSH and other thiol-based antioxidants (Nguyen-nhu and Knoops 2002; O’Brien et al. 2001; Quevry et al. 2001); protective effects of catalase, melatonin, or NAC (Cabrer et al. 2001; Izzotti et al. 1998; Shi et al. 1999); ROS formation (Bagchi et al. 2001; Hassoun and Stohs 1995; Izzotti et al. 1998; Tsou et al. 1996); nitric oxide production (Hassoun and Stohs 1995); and lipid peroxidation (Bagchi et al. 1995, 1997). The eventual formation of Cr adducts to DNA, or to proteins and DNA, may be viewed as an ultimate step in a set of redox-dependent mechanisms (Blasiak and Kowalkk 2000; Hodges et al. 2001).

As shown in Tables 2 and 3, the xenobiotics commonly used in FA diagnosis (MMC, DEB), or otherwise associated with excess sensitivity in FA cells (CDDP, PUVA), display distinct mechanisms of toxicity that, however, involve redox-dependent actions interrelated with ROS formation and/or oxygen levels, and/or modulation of antioxidant levels, and/or antioxidant enzyme activities.

These mechanistic features, conversely, may suggest a redox imbalance in FA cells, as far as
they display a prooxidant state making them unable to cope with prooxidant xenobiotics.

Prooxidant State in FA Phenotype

FA is a genetic disorder associated with bone marrow failure, chromosomal instability, and poor prognosis (Alter 1996; Auerbach et al. 1998). FA shows a progression to aplastic anemia, excess risk of malignancy (mainly non-lymphocytic leukemia), a set of typical malformations, and altered skin pigmentation. A total of eight complementation groups have been identified, and six genes (FANCA, FANCC, FANCD2, FANCE, FANFG, FANCG) have been cloned so far (Tamary et al. 2002). Diagnosis is performed by excess FA cell sensitivity to either DEB or MMC that induces high rates of chromosomal breaks (Auerbach and Wolman 1976). A line of molecular evidence has related at least two FA genes—encoded proteins with redox pathways. The protein encoded by the Fanconi gene C (FANCC) has been shown to associate with redox-related activities, namely, NADPH cytochrome P450 reductase (Kruyt et al. 1998) and glutathione S-transferase (Cumming et al. 2001). A recent study by Auerbach and colleagues has provided evidence that the FANCG protein interacts with cyclophosphamide, P450 E1 protein, an activity also known to be involved in redox biotransformation of xenobiotics (Futaki et al. 2002). Previous indirect evidence for an abnormal regulation of xenobiotic biotransformation in FA cells was provided by Joenje and colleagues (1986), who reported excess sensitivity of FA cells to cyclophosphamide without S-9 metabolic activation (Madle 1981). This finding suggested that FA cells, unlike non-FA cells, were endowed with a complete set of phase 1 activities for cyclophosphamide biotransformation.

The relationship of the FA phenotype with a prooxidant state was first suggested by Nordenson (1977). A consistent body of evidence has been accumulated since then, both related to phenotypic redox abnormalities and related to the involvement of FA proteins in redox pathways (Ahmad et al. 2002; Bogliolo et al. 2002; Pagano et al. 1998; Pagano and Korkina 2000; Pagano and Youssoufian 2003), as summarized in Table 4. FA cells are characterized by (a) excess oxidative DNA damage [8-hydroxy-2'-deoxyguanosine (8-OHdG)] in hydrogen peroxide-exposed FA cells (Takeuchi and Morimoto 1993), and in freshly drawn white blood cells from FA patients (Degan et al. 1995); (b) increased oxygen sensitivity (Joenje et al. 1981) and sensitivity to free iron (Poot et al. 1996); (c) correction of chromosomal abnormalities by either antioxidant enzymes or by low-molecular-weight antioxidants (Dallapiccola et al. 1985; Nordenson 1977; Raj and Heddie 1980); (d) excess plasma levels of clastogenic factor (Emerit et al. 1995) and of tumor necrosis factor-α (TNF-α; Dufour et al. 2003; Schulz and Shahidi 1993); (e) involvement of redox-active cytokines, such as TNF-α and interferon-γ (Dufour et al. 2003; Pearl-Yafe et al. 2003), and of inducible nitric oxide synthase (Hadjur and Jirik 2003); and (f) an involvement of Trx, which corrects MMC and DEB sensitivity in FA cells (Ruppitsch et al. 1998) and occurs in lower-than-normal levels in FA fibroblasts (Kontou et al. 2002). Together, a well-established body of evidence on FA cellular phenotype, along with the roles for some FA proteins in redox pathways (Bogliolo et al. 2002; Pagano and Youssoufian 2003), combine to support a central role for oxidative stress both in FA cellular phenotype and in FA protein functions.

Conclusions and Suggestions

Well-established literature points to the involvement of redox-dependent mechanisms in the toxicity of MMC, DEB, CDDP, PUVA, and Cr(VI). The formation of DNA or protein–DNA cross-links may be viewed as the outcome of redox reactions coupled with ROS formation, antioxidant (e.g., GSH) depletion, and a multifaceted modulation of redox-related activities.

When these xenobiotics interact with FA cells, which are in turn characterized by a multiple prooxidant state, one should expect a more pronounced toxicity compared with control cells, due to FA cell deficiency in withstanding oxidative stress. At the same time, the failure to detect excess adduct formation after Cr(VI) (Vilcheck et al. 2002) or MMC (Rutherford et al. 1999) exposure does not support a deficiency in removing damaged DNA bases (i.e., in DNA repair).

In the same prospect, the use of FA cells may be envisioned in forthcoming studies designed to investigate the action mechanisms of redox-related environmental agents or pharmaceutical drugs.
References

Ahmad SJ, Hensska F, Kirk SH. 2002. Molecular biology of Fanconi anemia—an old problem, a new insight. BioEssays 24:439–448.

Alper BP. 1996. Fanconi's anemia and malignancies. Am J Hum Genet 53(3):910–11.

Auerbach BD, Buchwalder M, Jezoe H. 1998. Fanconi anemia. In: The Genetic Basis of Human Cancer (Vogelstein B, Kinzler KW, eds). New York:McGraw-Hill, 317–322.

Auerbach AD, Wolman SR. 1976. Susceptibility of Fanconi's anemia fibroblasts to chromosome damage by carcinogens. Nature 261:494–496.

Bagchi D, Bagchi M, Stohs SJ. 1995. Chromium-III induced oxidative stress, alpha ptotop and cell death and modulation of p33 suppressor gene. Mol Cell Biochem 222:145–158.

Bagchi D, Balmori J, Bagchi M, Ye X, Williams CB, Stohs SJ. 2002. Comparative effects of TCE, edrin, naphthalene and chromium (VI) on oxidative stress and tissue damage in the liver and brain tissues of mice. Toxicol Lett 123:75–82.

Bagchi D, Hassoun EA, Bagchi M, Stohs SJ. 1995. Chromium-induced excretion of urinary lipid metabolites, DNA damage, nitro oxide production, and generation of reactive oxygen species in Sprague-Dawley rats. Comp Biochem Physiol C Pharmacol Toxicol Endocrinol 110:177–187.

Bagchi D, Vuchetich PJ, Bagchi M, Hassoun EA, Tran MX, Tang L, et al. 1997. Induction of oxidative stress by chronic administration of manganous hexammine chloride (manganese VI) and cadmium chloride (cadmium II) rats. Free Radiol Biol Med 22:477–478.

Balamurugan K, Rajaram R, Ramsami T, Narayanan S. 2002. Chromium (III)-induced apoptosis of lymphocytes: death by decision: ROS and S-nucleophylic tyrosine kinases. Free Radiol Biol Med 23:1622–1640.

Bannink N, Dubouloz CL, Embi FE, Fernandez de Mattos S, Gillies J, Medema RH, et al. 2002. H2O2 induces a transient multi-phase cell cycle arrest in mouse fibroblasts through modulating cyclin D2 and p21cip1 expression. J Biol Chem 277:13761–13770.

Barók M, Lang KL. 1980. Oxiranes. In: The Chemistry of Ethers, Anologues (Patai S, ed). The Chemistry of Functional Groups, Series, Supplement E, Part 2. Chichester, UK:John Wiley and Sons, 609–673.

Bauman JW, Liu J, Liu YP, Kassend D. 1991. Increase in metallocotolytin produced by chemicals that induce oxidative stress. Toxicol Appl Pharmacol 103:347–354.

Blois MJ. 2000. A comparison of the in vitro genotoxicity of trif- and hexavalent chromium. Mutat Res 469:135–145.

Boglio M, Cabre O, Callen E, Castelló V, Creus A, Marcos R, et al. 2002. The Fanconi anemia genome anatomy and structure and tumor suppressor network. Mutagens 17:529–538.

Bridgewater CL, Manning FC, Patierno SR. 1998. Arrest of replication by mammalian DNA polymerases alpha and beta through modulating cyclin D and p21cip1 expression. J Biol Chem 277:13761–13770.

Buchwald M. 2001. Fanconi anemia group C protein prevents apoptosis by modulating cyclin D and p21cip1 expression. J Biol Chem 277:13761–13770.

Buchwald M. 2001. Fanconi anemia group C protein prevents apoptosis by modulating cyclin D and p21cip1 expression. J Biol Chem 277:13761–13770.

Burnett C, Lang KL. 1980. Oxiranes. In: The Chemistry of Ethers, Anologues (Patai S, ed). The Chemistry of Functional Groups, Series, Supplement E, Part 2. Chichester, UK:John Wiley and Sons, 609–673.

Chen GM, Merrett JB, Dilley T, Purdom S. 2002. Down regulation of p53 with IFN-alpha 66 regulates and modifies cell death in oxidant response of human diploid fibroblasts: an apoptosis-like cell death associated with mitosis. Oncogene 21:5133–5134.

Chuang YY, Chen Y, Gasdetti, Chandramouli GVR, Cook JA, Coffin D, et al. 2002. Gene expression after treatment with hydrogen peroxide, hypoxia, or Hb hydrogen peroxide in breast cancer cells. Cancer Res 52:6246–6254.

Clarke AA, Philpott NJ, Gordon-Smith EC, Rutherford TR. 1997. The sensitivity of Fanconi anaemia group C cells to apoptosis induced by DNA damage. Br J Haematol 96:240–247.

Costantini FC, Dijkmans LM, Arwert F, Joenje H. 1997. Involvement of dATP in the bone marrow of Fanconi anaemia patients and TNFa suppresses erythropoiesis in vitro. Blood 100:11182–11184 (2003-01-0111 [Online May 15 2003].

Dufour C, Corcione A, Svahn J, Haupt R, Poggi V, Nandor d’Ischia M, Napolitano A, Prota G. 1989. Psoralens sensitize keratinocytes to the induction of oxidative damage and apoptosis in Fancc-deficient cells in vitro. Exp Cell Res 222:262–268.

Eibl R, Korkina LG. 2000. Prospects for nutritional interventions in the clinical management of Fanconi anemia. Hum Genet 107:77–82.

Eibl R, Korkina LG. 2000. Prospects for nutritional interventions in the clinical management of Fanconi anemia. Hum Genet 107:77–82.

Gandini E. 1985. Effect of oxidants and antioxidants on chromosomal breakage in Fanconi anemia lymphocytes. Hum Genet 69:62–65.

Genet 69:62–65.

Garcia J. 1981. Oxygen-dependence of chromosomal aberrations in human lymphocytes. J Biochem 120:163–175.

Genet 69:62–65.

Garcia J. 1981. Oxygen-dependence of chromosomal aberrations in human lymphocytes. J Biochem 120:163–175.

Garcia J. 1981. Oxygen-dependence of chromosomal aberrations in human lymphocytes. J Biochem 120:163–175.

Garcia J. 1981. Oxygen-dependence of chromosomal aberrations in human lymphocytes. J Biochem 120:163–175.

Garcia J. 1981. Oxygen-dependence of chromosomal aberrations in human lymphocytes. J Biochem 120:163–175.
(Abstract). In: Proceedings of the 11th Annual International Fanconi Anemia Scientific Symposium, 1–2 December 1999, New Orleans, LA, Eugene, OR: FARF, Abstract 68.

Sawamura AO, Aoyama T, Tamakoshi K, Mizuno K, Suganuma N, Kikkawa F, et al. 1996. Transfection of human cytochrome P-450 reductase cDNA and its effect on the sensitivity to toxins. Oncology 53:406–411.

Schaaf GJ, Maas RF, de Groene EM, Fink-Gremmels J. 2002. Management of oxidative stress by heme oxygenase-1 in cisplatin-induced toxicity in renal tubular cells. Free Radic Res 36:835–843.

Schulz JC, Shahidi NT. 1993. Tumor necrosis factor-α overproduction in Fanconi’s anemia. Am J Hematol 42:196–201.

Seaton MJ, Follansbee MH, Bond JA. 1995. Oxidation of 1,2-epoxy-3-butene to 1,2:3,4-diepoxybutane by cDNA-expressed human cytochromes P450 2E1 and 3A4 and human, mouse and rat liver microsomes. Carcinogenesis 16:2287–2293.

Shi X, Dong Z, Huang C, Ma W, Liu K, Ye J, et al. 1999. The role of hydroxyl radical as a messenger in the activation of nuclear transcription factor NF-kappaB. Mol Cell Biochem 194:63–70.

Singh J, Bridgewater LC, Paterno SR. 1998. Differential sensitivity of chromium-mediated DNA interstrand crosslinks and DNA-protein crosslinks to disruption by alkali and EDTA. Toxicol Sci 45:72–76.

Spánol M, Cordelli E, Leter G, Pacchierotti F. 1998. Diepoxybutane cytotoxicity on mouse germ cells is enhanced by in vivo glutathione depletion: a flow cytometric approach. Mutat Res 397:37–43.

Stohs SJ, Bagchi D. 1995. Oxidative mechanisms in the toxicity of metal ions. Free Radic Biol Med 18:321–336.

Takeuchi T, Morimoto K. 1993. Increased formation of 8-hydroxydeoxyguanosine, an oxidative DNA damage, in lymphoblasts from Fanconi’s anemia patients due to possible catalase deficiency. Carcinogenesis 14:1115–1120.

Tamary H, Bar-Yam R, Zemach M, Dgany O, Shalmon L, Yaniv I. 2002. The molecular biology of Fanconi anemia. Isr Med Assoc J 4:819–823.

Taylor WR, Stark GR. 2001. Regulation of the G2/M transition by p53. Oncogene 20:1803–1815.

Travacio M, Polo JM, Llesuy S. 2000. Chromium (VI) induces oxidative stress in the mouse brain. Toxicology 150:137–146.

Tsou TC, Chen CL, Liu TY, Yang JL. 1996. Induction of 8-hydroxydeoxyguanosine in DNA by chromium(III) plus hydrogen peroxide and its prevention by scavengers. Carcinogenesis 17:103–108.

Vlachodimitropoulos D, Norga H, Autio K, Catala J, Hirvonen A, Tasa G, et al. 1997. GSTT1-dependent induction of centromere-negative and -positive micronuclei by 1,2,3,4-diepoxybutane in cultured human lymphocytes. Mutagenesis 12:397–403.

Waisfisz Q, Miyazato A, de Winter J, Liu JM, Joenje H. 2002. Analysis of baseline and cisplatin-inducible gene expression in Fanconi anemia cells using oligonucleotide-based microarrays. BMC Blood Disord 2.5. Available: http://www.biomedcentral.com/1471-2326/2/5/ [accessed 14 August 2003].

Will O, Schindler D, Boitex S, Epe B. 1998. Fanconi’s anemia cells have normal steady-state levels and repair of oxidative DNA base modifications sensitive to Fpg protein. Mutat Res 409:65–72.