Oscillatory porous medium ferroconvection with Maxwell-Cattaneo law of heat conduction

Soya Mathew† and S. Maruthamanikandan

1 Department of Mathematics, Kristu Jayanti College, Kothanur, Bengaluru 560077, India
2 Department of Mathematics, School of Engineering, Presidency University, Itgalpur, Yelahanka, Bengaluru 560064, India

E-mail: soyamathew@kristujayanti.com

Abstract. The scheme of small perturbation is used to address the problem of buoyancy driven convection of Darcy-Brinkman type in a ferromagnetic fluid invoking the Maxwell-Cattaneo law. An analytical solution of the eigenvalue problem involved, encompassing stationary and overstable modes, is obtained by adopting simplified boundary conditions. The mathematical application package MATHEMATICA is adopted to determine the eigenvalue expressions and the critical numbers. It is established that the threshold of Darcy-Brinkman ferroconvection is amplified through the stresses of magnetic and second sound mechanisms and the opposite influence is found to be true due to the presence of porous medium. It is delineated that both the critical frequency of oscillations and aspect ratio of cells of convective heat transfer are susceptible to the different parameters of the study. It is also shown that, as long as the Cattaneo and Prandtl numbers are pretty high, the oscillatory mode of instability is preferred to the stationary mode of ferroconvection.

1. Introduction
It has been well recognized that ferromagnetic fluids revel in a number of motivating and expedient physical properties including magnetic characteristics as a solid. A versatile external magnetic field could be employed to facilitate and control heat and mass transfer that can take place in ferrofluids. Several researchers pointed out a good number of real-life applications of magnetic fluids including rotating seals, novel energy conversion and levitation devices (Popplewell [1], Bashtovoy et al [2], Berkovskii et al [3] and Horng et al [4]). A thoroughgoing research work on ferroconvection was first carried out by Finlayson [5] who carefully explicated how to approach ferroconvection due to magnetic body force resulting from magnetization. This type of heat transfer involving ferrofluids could be exploited to induce convection in miniature micro-scale devices.

Gotoh and Yamada [6], Stiles and Kagan [7] and Russell et al [8] extended the pioneering contribution of Finlayson [5] to deal with large wave number ferroconvection. Gupta and Gupta [9] and Saravanan [10] investigated the ferroconvection problem with centrifugal acceleration. It is proved that oscillatory ferroconvection is possible as long as the Prandtl number is less than unity. Maruthamanikandan [11] employed a residual method to examine the problem of ferroconvection with radiation. Floquet theory was used by Aniss et al [12] and Bajaj [13] to examine respectively the impact of magnetic and gravity modulations on ferroconvection. The regions of harmonic and sub-harmonic modes have been obtained. Nisha Mary and Maruthamanikandan [14] used regular perturbation technique to address the non-Darcy ferroconvection problem with gravity modulation.
The effect of viscosity variation on non-Darcy ferroconvection was studied by Soya Mathew and Maruthamanikandan [15] and Maruthamanikandan et al [16]. Both temperature and field dependent viscosities have been incorporated into the governing equations.

The study of porous medium convection, on the other hand, was warranted by its applications to geothermal activities, oil recovery techniques and chemical processes (Ingham and Pop [17], Vafai [18] and Nield and Bejan [19]). Further, applications relating to superfluid state necessitated the knowledge of second sound which has to do with the hyperbolic form of energy equation (Straughan [20] and Straughan and Franchi [21]). Lebon and Cloot [22] examined the effect of second sound with surface tension and buoyancy effects. Haddad and Straughan [23] showed that, under normal terrestrial conditions, stationary convection is favoured but with large thermal relaxation time, oscillatory convection is likely to occur for a specific range of parameters.

Maruthamanikandan and Smita [24] and Maria Thomas and Sangeetha [25] investigated respectively the effect of second sound on instability of Bénard type in dielectric fluids and fluids with couple stresses. It is corroborated that the Cattaneo-Bénard problem for dielectric and couple-stress fluids is more vulnerable to instability than that for Newtonian dielectric and Newtonian couple-stress fluids. In the present study we aim at investigating the problem of porous medium convective instability in a Cattaneo ferromagnetic fluid with the intention of exploring the possible range of parameters that could lead to oscillatory porous medium ferroconvection.

![Figure 1. Configuration of the problem.](image)

2. Mathematical Formulation

A Cattaneo ferrofluid filled porous layer located between two surfaces of infinite length horizontally with finite thickness d is considered. The fluid layer is cooled at a temperature of T_0 from the top and has a higher temperature T_1 at the bottom (see Figure 1). The fluid layer is exposed to a magnetic field H_0 acting in parallel to the vertical z-axis and the gravity force acting vertically downwards. The governing equations that describe the problem are

\[
\nabla \cdot \vec{V} = 0
\]

\[
\rho_0 \left[\frac{1}{\varepsilon} \frac{\partial \vec{V}}{\partial t} + \frac{1}{\varepsilon^2} (\vec{V} \cdot \nabla) \vec{V} \right] = -\nabla p + \rho \vec{g} - \frac{\mu_f}{k} \vec{V} + \vec{\mu}_f \nabla^2 \vec{V} + \nabla \cdot \left(\vec{H} \vec{B} \right)
\]
\[\varepsilon \left[\rho_o \tilde{C}_{V, H} - \mu_o \tilde{H} \cdot \left(\frac{\partial \tilde{M}}{\partial t} \right)_{V, H} \right] \left[\frac{\partial T}{\partial t} + \tilde{V} \cdot \nabla T \right] + (1 - \varepsilon) \left(\rho_o \tilde{C} \right) \frac{\partial T}{\partial t} + \mu_o T \left(\frac{\partial \tilde{M}}{\partial t} \right)_{V, H} \cdot \left[\frac{\partial \tilde{H}}{\partial t} + \left(\tilde{V} \cdot \nabla \right) \tilde{H} \right] = -\nabla \cdot \tilde{Q}_T \]
\[\tau \left[\frac{\partial \tilde{Q}_T}{\partial t} + \left(\tilde{V} \cdot \nabla \right) \tilde{Q}_T + \tilde{\omega} \times \tilde{Q}_T \right] = -\tilde{Q}_T - k_1 \nabla T \]
\[\rho = \rho_o \left[1 - \alpha (T - T_a) \right] \]
\[M = M_o + \chi \left(H - H_o \right) - K (T - T_a). \]

Various physical quantities appearing in equations (2.1) through (2.6) and the underlying assumptions have their usual meaning (Finlayson [5], Soya Mathew and Maruthamanikandan [15] and Straughan and Franchi [21]). Maxwell’s equations applicable to the problem under consideration are

\[\nabla \cdot \tilde{B} = 0, \quad \nabla \times \tilde{H} = 0, \quad \tilde{B} = \mu_o \left(\tilde{H} + \tilde{M} \right). \]

3. Stability Analysis

Following the stability analysis of small perturbations encompassing normal modes (Finlayson [5], Soya Mathew and Maruthamanikandan [15]), one obtains the following dimensionless equations

\[\frac{\sigma}{Pr} \left(D^2 - a^2 \right) W = - (R + N_m) a^2 \Theta - D_I \left(D^2 - a^2 \right) W + A_p \left(\frac{D^2}{a^2} \right)^2 W + N_m a^2 D\Phi \]
\[(1 + 2C\sigma)(\sigma \Theta - W) + C \left(\frac{D^2}{a^2} \right) W - \left(\frac{D^2}{a^2} \right) \Theta = 0 \]
\[\left(D^2 - M_3 a^2 \right) \Phi - D\Theta = 0 \]

where \(N_m \) is the magnetic Rayleigh number, \(R \) is the thermal Rayleigh number, \(D_I \) is the inverse Darcy number, \(Pr \) is the Prandtl number, \(A_p \) is the Brinkman number, \(C \) is the Cattaneo number and \(M_3 \) is the magnetization parameter. The boundary conditions encompassing free and isothermal surfaces are \(W = D^2 W = \Theta = D\Phi = 0 \) at \(z = \pm 1/2 \).

3.1. Stationary Instability

The simultaneous differential equations associated with stationary mode turn out to be

\[A_p \left(\frac{D^2}{a^2} \right)^2 W - D_I \left(\frac{D^2}{a^2} \right) W - (R + N_m) a^2 \Theta + N_m a^2 D\Phi = 0 \]
\[\left[C \left(\frac{D^2}{a^2} \right)^{-1} \right] W - \left(\frac{D^2}{a^2} \right) \Theta = 0 \]
\[\left(\frac{D^2}{a^2} \right) \Phi - D\Theta = 0. \]
Equations (3.4) - (3.6) along with the boundary conditions encompass an eigenvalue problem with R being eigenvalue. The straightforward solution $W = C_1 \cos(\pi z), \ \Theta = C_2 \cos(\pi z), \ \Phi = \frac{C_3}{\pi} \sin(\pi z)$, with C_1, C_2 and C_3 being constants, is taken into consideration. On applying the solvability condition, one obtains

$$R^{st} = \frac{D_I \left(\pi^2 + a^2 \right) + A_p \left(\pi^2 + a^2 \right)^2}{a^2 \left[1 + C \left(\pi^2 + a^2 \right) \right]} - \frac{N_M M_3 a^2}{\left(M_3 a^2 + \pi^2 \right)}$$

(3.7)

where the superscript ‘st’ stands for stationary instability.

3.2. Oscillatory Instability

The following equations are equations pertaining to the oscillatory instability

$$\left[\frac{\sigma}{Pr} + D_I + A_p \left(\pi^2 + a^2 \right) \right] \left(\pi^2 + a^2 \right) C_1 - \left(R + N_m \right) a^2 C_2 + N_m a^2 C_3 = 0$$

(3.8)

$$\left[1 + 2 C \sigma + C \left(\pi^2 + a^2 \right) \right] C_1 - \left[\left(1 + 2 C \sigma \right) \pi^2 + a^2 \right] C_2 = 0$$

(3.9)

$$\pi^2 C_2 - \left(\pi^2 + M_3 a^2 \right) C_3 = 0.$$

(3.10)

On applying the solvability condition, we obtain

$$R = \frac{M_3 a^2 p \left(D_I Pr + A_p Pr \left(p + \sigma + 2 C \sigma^2 \right) - M_3 a^4 N_m Pr \left[1 + C \left(p + 2 \sigma \right) \right] \right)}{\left(D_I + A_p \left(\pi^2 + a^2 \right) \right) \left(p + \sigma + 2 C \sigma^2 \right) - \left(1 + C \left(p + 2 \sigma \right) \right) \left(\pi^2 + a^2 \right)}$$

(3.11)

where $p = \pi^2 + a^2$. Introducing the frequency of oscillation ω through $\sigma = i \omega$ and since the Rayleigh number R cannot be imaginary, we obtain R in the form $R = R_1 + i R_2$, where

$$R_1 = \frac{M_3 a^2 p \left(X_1 - X_2 \omega^2 - 4 C^2 \omega^4 \right) + p \pi^2 \left(X_1 - X_2 \omega^2 - 4 C^2 \omega^4 \right) - M_3 a^4 N_m Pr X_3}{Pr a^2 \left(M_3 a^2 + \pi^2 \right) X_3}$$

and

$$R_2 = \frac{\left[D_I Pr - p \left(1 - p C + D_I C Pr + \left(1 + p C \right) Pr A_p \right) \right]}{\left(1 + 2 Pr \left(p + 1 C \right) A_p \right) \omega^2}$$

(3.12)
with
\[X_1 = p(1 + pC)Pr\left(D_I + A_p p\right), \quad X_2 = 1 + pC\left[2CPr\left(D_I + pA_p\right) - 1\right] \quad \text{and} \quad X_3 = (1 + pC)^2 + 4C^2\omega^2. \]

The condition that the Rayleigh number cannot be imaginary yields the expression
\[\omega^2 = \frac{(pC - 1) + \frac{p(3 + pC)}{p - 2D_I Pr - 2pPrA_p}}{4C^2}. \tag{3.12} \]

The expression for \(R^{osc} \) signifying the oscillatory Rayleigh number is arrived at upon substituting the value of \(\omega^2 \) in the expression for \(R_1 \).

4. Results and Discussion

The study is concerned with porous medium ferromagnetic instability with heat conduction law due to Maxwell-Cattaneo. An analytical solution to the subsequent eigenvalue problem, encompassing stationary and overstable modes, is obtained by embracing simplified boundary conditions. The thermal Rayleigh number \(R \), characterising the stability of the system, is obtained as a function of the different parameters of the study. The mathematical application package MATHEMATICA is used to determine the eigenvalue expressions and the associated critical numbers.

![Graph](http://example.com/graph.png)

Figure 2. Plot of \(R_c \) versus \(N_m \) with variations in \(C \) with
\(D_I = 5, \quad A_p = 3, \quad M_3 = 1 \) and \(Pr = 100 \).
Figure 3. Plot of R_c versus N_m with variations in D_I with $C = 0.06$, $A_p = 3$, $M_3 = 1$ and $Pr = 100$.

Figure 4. Plot of R_c versus N_m with variations in A_p with $D_I = 5$, $C = 0.06$, $M_3 = 1$ and $Pr = 100$.
Figure 5. Plot of R_c versus N_m with variations in M_3 with $C = 0.06$, $A_p = 3$, $D_I = 5$ and $Pr = 100$.

Figure 6. Plot of σ^2_c versus N_m with variations in C with $D_I = 5$, $A_p = 3$, $M_3 = 1$ and $Pr = 100$.
Figure 7. Plot of α_C^2 versus N_m with variations in D_I with $C = 0.06$, $A_p = 3$, $M_3 = 1$ and $Pr = 100$.

Figure 8. Plot of α_C^2 versus N_m with variations in A_p with $D_I = 5$, $C = 0.06$, $M_3 = 1$ and $Pr = 100$.

Figure 9. Plot of ω_c^2 versus N_m with variations in M_3 with $C = 0.06$, $A_p = 3$, $D_I = 5$ and $Pr = 100$.

The simultaneous change in R_c (with subscript c denoting critical value) with N_m is displayed in Figures 2 through 5. The stationary profiles are indicated by means of continuous lines and that of oscillatory instability are depicted using dashed lines. The magnetic parameter N_m signifies the ratio of release of energy due to magnetic stress to energy dissipation caused by viscosity and temperature fluctuations. It is observed that magnetic mechanism has stabilising effect as there is a drop in R_c with an increase in the parameter N_m. The spatial variation resulting from the magnetization due to the application of both temperature and external magnetic field is largely responsible for inducing ferroconvection.

Table 1. Critical values of the wave number with $D_I = 5$, $A_p = 3$, $M_3 = 1$ and $Pr = 100$.

N_m	$C = 0.05$	$C = 0.06$	$C = 0.07$			
	a_{c}^{st}	a_{c}^{osc}	a_{c}^{st}	a_{c}^{osc}	a_{c}^{st}	a_{c}^{osc}
0	2.856	3.662	2.912	3.662	2.962	3.662
20	2.864	3.673	2.921	3.675	2.972	3.677
40	2.872	3.684	2.930	3.688	2.982	3.693
60	2.880	3.695	2.939	3.702	2.993	3.708
80	2.888	3.706	2.949	3.715	3.003	3.724
100	2.896	3.718	2.958	3.728	3.013	3.739
Table 2. Critical values of the wave number with $C = 0.06$, $A_p = 3$, $M_3 = 1$ and $Pr = 100$.

N_m	$D_I = 0$	$D_I = 5$	$D_I = 10$			
	a_c^{st}	a_c^{osc}	a_c^{st}	a_c^{osc}	a_c^{st}	a_c^{osc}
0	2.562	3.144	2.912	3.662	3.451	4.543
20	2.573	3.159	2.921	3.675	3.458	4.553
40	2.584	3.176	2.930	3.688	3.464	4.563
60	2.595	3.192	2.939	3.702	3.471	4.572
80	2.606	3.208	2.949	3.715	3.478	4.582
100	2.617	3.224	2.958	3.728	3.484	4.591

Table 3. Critical values of the wave number with $C = 0.06$, $D_I = 5$, $M_3 = 1$ and $Pr = 100$.

N_m	$A_p = 1$	$A_p = 3$	$A_p = 5$			
	a_c^{st}	a_c^{osc}	a_c^{st}	a_c^{osc}	a_c^{st}	a_c^{osc}
0	3.313	4.306	2.912	3.662	2.793	3.481
20	3.335	4.337	2.921	3.675	2.799	3.489
40	3.357	4.368	2.930	3.688	2.805	3.498
60	3.379	4.399	2.939	3.702	2.811	3.507
80	3.401	4.431	2.949	3.715	2.816	3.515
100	3.423	4.462	2.958	3.728	2.822	3.524

Table 4. Critical values of the wave number with $C = 0.06$, $D_I = 5$, $A_p = 3$ and $Pr = 100$.

N_m	$M_3 = 1$	$M_3 = 3$	$M_3 = 5$			
	a_c^{st}	a_c^{osc}	a_c^{st}	a_c^{osc}	a_c^{st}	a_c^{osc}
0	2.912	3.662	2.912	3.662	2.912	3.662
20	2.921	3.675	2.919	3.670	2.918	3.668
40	2.930	3.688	2.927	3.679	2.923	3.674
60	2.939	3.702	2.934	3.687	2.929	3.679
80	2.949	3.715	2.941	3.696	2.934	3.686
100	2.958	3.728	2.949	3.704	2.939	3.692

Figure 2 demonstrates the fact that the part played by second sound mechanism is akin to that of magnetic mechanism. The treatment of equation of energy as an equation of hyperbolic type, thereby encompassing a damped equation of wave, is responsible for the augmenting effect of second sound. Figures 3 and 4 explain the effect of D_I and A_p on ferroconvective instability. A decrease in the
permeability is characterised by increasing the porous parameter D_1 and an increase in the viscous effect is attributed to the increase in Brinkman number A_p. It is tacit that the porous parameters D_1 and A_p contribute to the reduction of instability of a Cattaneo-ferrofluid.

The destabilizing nature of M_3 is apparent from Figure 4. The parameter M_3 is indicative of the shift towards nonlinearity in magnetization. Figures 2 through 9 also contain the profiles of oscillatory instability. Evidently the value of R_e^{osc} is not greater than R_e^{st} indicating the emergence of oscillatory instability prior to stationary mode under the condition of C and Pr being reasonably high. The impact of different parameters associated with oscillatory instability is comparable to that of stationary mode. Moreover, it is understood from Figures 6 through 9 that the critical frequency ω_c of oscillatory mode is sensitive to different parameters of the present study. Further, one can comprehend from Tables 1 through 4 that the critical wave number a_c is more prominently affected by the porous parameters D_1 and A_p compared to the other parameters of the study.

5. Conclusions
Darcy-Brinkman instability of a ferrofluid with Maxwell-Cattaneo law of heat conduction is studied using the technique of small perturbations. The analysis has led to the following conclusions:

- The threshold of the stationary ferroconvective instability decreases with increase in the magnetic field strength and the Cattaneo number. As a result, the effect of magnetic forces and second sound is to destabilize the system and both cause the ferroconvective motion to occur at shorter wavelengths.
- In the presence of second sound, oscillatory ferroconvective instability sets in prior to ferroconvective instability of stationary type provided the Prandtl and the Cattaneo numbers are sufficiently large.
- The critical frequency of the oscillatory mode is sensitive to all the parameters of the present study and that the critical wave number is predominantly affected by the porous parameters.
- Nonlinearity of magnetization diminishes the ferroconvection threshold and this effect becomes less strong when M_3 is significantly large.

The implications of the study may have major impact on applications of heat transfer wherein ferromagnetic fluids are employed. Nonlinear effects, anisotropic porous medium, non-Newtonian ferrofluids and other thermal constraints leading to internal heat generation could be considered in the future work of the present study.

6. References
[1] Popplewell J 1984 Technological applications of ferrofluids Phys. Tech. 15 pp 150-162.
[2] Bashtovoy V G, Berkovskiy B M and Vislovich A N 1987 Introduction to thermomechanics of magnetic fluids (Washington D.C.: Hemisphere).
[3] Berkovskii B M, Medvedev V F and Krakov M S 1993 Magnetic fluids: Engineering Applications (Oxford: Oxford Science Publications).
[4] Horng H E, Hong C Y, Yang S Y and Yang H C 2001 Novel properties and applications in magnetic fluids J. Phys. Chem. Solids 62 pp 1749-1764.
[5] Finlayson B A 1970 Convective instability of ferromagnetic fluids J. Fluid Mech. 40 pp 753–767.
[6] Gotoh K and Yamada M 1982 Thermal convection in a horizontal layer of magnetic fluids J. Phys. Soc. Japan 51 pp 3042-3048.
[7] Stiles P J and Kagan M 1990 Thermoconvective instability of a horizontal layer of ferrofluid in a strong vertical magnetic field JMMM 85 pp 196-198.
[8] Russell C L, Blennerhassett P J and Stiles P J 1995 Large wave number convection in magnetized ferrofluids JMMM 149 pp 119-121.

[9] Gupta M D and Gupta A S 1979 Convective instability of a layer of a ferromagnetic fluid rotating about a vertical axis Int. J. Engng. Sci. 17 pp 271-277.

[10] Saravanan S 2009 Centrifugal acceleration induced convection in a magnetic fluid saturated anisotropic rotating porous medium Trans. Porous Media 77 pp 79-86.

[11] Maruthamanikandan S 2003 Effect of radiation on Rayleigh-Bénard convection in ferromagnetic fluids Int. J. Appl. Mech. Engng. 8 pp 449-459.

[12] Aniss S, Belhaq M and Souhar M 2001 Effects of a magnetic modulation on the stability of a magnetic liquid layer heated from above Trans. ASME: J. Heat Trans. 123 pp 428-433.

[13] Bajaj R 2005 Thermodiffusive magnetoconvection in ferrofluids with two-frequency gravity modulation JMMM 288 pp 483-494.

[14] Nisha Mary Thomas and Maruthamanikandan S 2018 Gravity modulation effect on ferromagnetic convection in a Darcy-Brinkman layer of porous medium J. Phys.: Conf. Series 1139 p 012022.

[15] Soya Mathew and Maruthamanikandan S 2018 Darcy-Brinkman ferroconvection with temperature dependent viscosity J. Phys.: Conf. Series 1139 p 012023.

[16] Maruthamanikandan S, Nisha Mary Thomas and Soya Mathew 2018 Thermorheological and magnetorheological effects on Marangoni-ferroconvection with internal heat generation J. Phys.: Conf. Series 1139 p 012024.

[17] Ingham D B and Pop I 2005 Transport phenomena in porous media (Oxford: Pergamon).

[18] Vafai K 2010 Handbook of porous media (New York: Marcel Dekker).

[19] Nield D A and Bejan A 2013 Convection in porous media (New York: Springer).

[20] Straughan B 2009 Oscillatory convection and the Cattaneo law of heat conduction Ricerche. Mat. 58 pp 157-162.

[21] Straughan B and Franchi F 1984 Benard convection and the Cattaneo law of heat conduction Proc. Roy. Soc. Edinburgh 96A pp 175-178.

[22] Lebon G and Cloot A 1984 A nonlinear stability analysis of the Bénard-Marangoni problem J. Fluid Mech. 145 pp 447-469.

[23] Haddad S A M and Straughan B 2012 Porous convection and thermal oscillations Ricerche Mat. 61 pp 307-320.

[24] Maruthamanikandan S and Smita S N 2013 Convective heat transfer in Maxwell-Cattaneo dielectric fluids Int. J. Comp. Engg. Res. 3 pp 347-355.

[25] Maria Thomas and Sangeetha G K 2018 Effect of gravity modulation and internal heat generation on Rayleigh-Bénard convection in couple stress fluid with Maxwell-Cattaneo law Int. J. Appl. Engg. Res. 13 pp 2688-2693.