Prognostic serum biomarkers in cancer patients with COVID-19: A systematic review

Te-An Lee a, Shih-Han Wang a, Chun-Tse Kuo a, Chia-Wei Li a, Louise D. McCullough b, Dhimiter Bello c, Yun-Ju Lai d,∗

a Institute of Biomedical Sciences, Academia Sinica, Taipei 115, Taiwan
b Department of Neurology, McGovern Medical School, University of Texas Health Science Center at Houston, 6431 Fannin Street, Houston, TX, 77370, United States of America
c Department of Biomedical and Nutritional Sciences, Zuckerberg College of Health Sciences, University of Massachusetts Lowell, 883 Broadway Street, Dogan Hall 108C, Lowell, MA 01854, United States of America
d Solomont School of Nursing, Zuckerberg College of Health Sciences, University of Massachusetts Lowell, 113 Wilder Street, Lowell, MA 01854, United States of America

ABSTRACT

Purpose: Cancer patients with COVID-19 likely express biomarker changes in circulation. However, the biomarkers used in SARS-CoV-2 infected cancer patients for COVID-19 severity and prognosis are largely unclear. Therefore, this systematic review aims to determine what biomarkers were measured in cancer patients with COVID-19 and their prognostic utility.

Methods: A systematic literature review in PubMed, Embase, and Scopus was performed on June 16th, 2021. The search keywords coronavirus, neoplasm, biomarkers, and disease progression were used to filter out 17 eligible studies, which were then carefully evaluated.

Results: A total of 4,168 patients, 16 types of cancer, and 60 biomarkers were included. Seven up-regulated markers, including CRP, D-dimer, ferritin, IL-2R, IL-6, LDH, and PCT, were identified in eligible studies. Albumin and hemoglobin were significantly down-regulated in cancer patients with COVID-19. Moreover, we observed that the SARS-CoV-2 infected cancer patients with lower CRP, ferritin, and LDH levels successfully survived from COVID-19 treatments.

Conclusion: Several important clinical biomarkers, such as CRP, ferritin, and LDH, may serve as the prognostic markers to predict the outcomes following COVID-19 treatment and monitor the deterioration of COVID-19 in cancer patients.

Introduction

Biomarkers refer to a subgroup of medical signs that can be tested and observed objectively from patients [1]. Monitoring biomarkers from relevant biological media (blood, stool, urine, or other body fluid) provides important information on medical conditions, effectiveness of interventions, disease progression, or recovery [2]. For example, cardiac troponin is a specific and sensitive biomarker for myocardial injury. It is the preferred serologic test to evaluate patients with suspected acute myocardial infarction [3]. Additionally, some biomarkers are used in cancer diagnosis or progression, such as carcinoembryonic antigen (CEA) that is commonly used for colorectal [4] and breast cancer [5] diagnosis, and alpha-fetoprotein (AFP), which is associated with the progression of hepatocellular carcinomas [6].

Coronavirus is an enveloped positive-sense single-strand RNA (+ssRNA) virus family transmitted in mammals and avians [7]. Seven coronaviruses are known to infect humans, and three of them led to outbreaks in recent years [8]. The severe acute respiratory syndrome coronavirus (SARS-CoV) gave rise to a SARS epidemic in 2003 [8]. Subsequently, the Middle East respiratory syndrome coronavirus (MERS-CoV) outbreak in South Korea in 2012 [8]. At present, coronavirus disease 2019 (COVID-19), caused by SARS-CoV-2, has been a global pandemic since its first declaration in 2019 by WHO [9]. Compared with MERS-CoV and SARS-CoV, SARS-CoV-2 quickly spread worldwide, imposing a tremendous burden on the healthcare system and the global economy. Pneumonia, acute respiratory distress syndrome

https://doi.org/10.1016/j.tranon.2022.101443
Received 7 August 2021; Received in revised form 5 October 2021; Accepted 27 April 2022
Available online 2 May 2022
1936-5233/© 2022 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
(ARDS), and cytokine release syndrome (CRS) are severe symptoms found in COVID-19. In addition, several up-regulated biomarkers in severe COVID-19 patients have been reported, including (i) inflammatory markers: C-reactive protein (CRP), ferritin, interleukin (IL)–2, IL-6, IL-10, lactate dehydrogenase (LDH), or procalcitonin (PCT); (ii) biomedical markers: aspartate aminotransferase (AST), alanine aminotransferase (ALT), creatine kinase, and (iii) coagulant marker: D-dimer [10,11]. These identified biomarkers may serve as predictors of COVID-19 severity. Moreover, monitoring COVID-19 severity through these biomarkers may be imperative to reduce mortality.

Cancer is a disease caused by uncontrolled cell proliferation, which may metastasize to other tissues and organs through epithelial-mesenchymal transition (EMT) [12]. According to the National Cancer Institute, around 1,806,590 new cancer patients were diagnosed, and 606,520 people died from cancer in the United States in 2020 [13]. One of the hallmarks of cancers is inflammation, characterized by the release in the extracellular environment of several pro-inflammatory cytokines and chemokines, which facilitate communication between various cell types and regulate immune response, as well as cell migration [14]. For instance, overexpressed IL-6 within the tumor microenvironment promotes tumorigenesis by regulating multiple signaling pathways such as proliferation, invasiveness, metastasis, or metabolism [15].

Up-regulated levels of transforming growth factor (TGF)-β, IL-6, IL-20, and IL-23 could also act as predictors of poor survival in breast cancer [16].

Cancer patients who undergo chemotherapy have compromised immunity which may increase susceptibility to SARS-CoV-2 infection. In particular, cancer patients with COVID-19 have a higher mortality rate than COVID-19 patients without active cancer [17]. Moreover, our recent study found that SARS-CoV-2 may trigger breast cancer metastasis through Snail up-regulation [18]. Thus far, specific biomarkers in cancer patients infected with SARS-CoV-2 are unclear. This article aims to identify prognostic biomarkers in cancer patients at the early stage of COVID-19, which may help predict cancer or COVID-19 outcomes and assist in developing therapeutic strategies.

Methods

Search strategy

PubMed, Embase, and Scopus databases were used to identify studies related to cancer patients infected with the coronavirus. The hierarchical search strategies and keywords were (1) biomarker, (2) coronavirus, and (3) cancer progression (Table S1). Duplications were removed. Titles and abstracts of articles were reviewed for eligibility. All relevant articles from reference lists were identified. After screening the abstracts, final eligibility was determined based on the full content. The last search was conducted on June 16th, 2021.

Eligibility criteria

Inclusion criteria were: (1) primary source of quantitative research in a peer-reviewed journal published in English, including research articles, case reports, and correspondences; (2) adult cancer patients (all types of cancers) infected by a coronavirus; and (3) biomarkers data were reported. To maintain consistency, the severity of COVID-19 was defined by the National Institutes of Health (NIH) guidelines for COVID-19 treatment [19]. Articles that did not meet all the criteria were excluded. Unpublished theses, dissertations, review articles, conference proceedings, and studies using pediatric cancer patients or animal models were also excluded.

Data extraction

According to the inclusion and exclusion criteria, data extraction was completed by one author (T.A.L.) and verified by the other author (Y.J.). The following headlines were extracted from the articles: authors, type of study, study location, the total number of patients, patients’ age (median), type of cancer, comparison groups, biomarker data, and terminal outcomes (Table S2).

Quality assessment

The quality of the studies was assessed using the modified REporting recommendations for tumor MARKers prognostic studies (REMARK) (Table S3) [20]. Two independent reviewers (T.A.L. and C.T.K.) verified the total scores (Table S4).

Results

Characteristics of the studies

Through the database search, 1545 studies were identified from PubMed, Embase, and Scopus. Two more studies were found on Google Scholar. The search procedure followed the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) flow diagram [21] as depicted in Fig. 1. After screening each article’s title and abstract, 60 full-text studies were assessed for eligibility. Seventeen studies met the eligibility criteria and were included in the systematic review (Fig. 1). As shown in Table S2, the eligible articles included research articles (8, 47.1%) and case reports (9, 52.9%). The studies were conducted in China (4, 23.5%), Spain (3, 17.6%), Australia (2, 11.8%), Italy (2, 11.8%), and 1 (5.9%) each in Brazil, Egypt, France, Turkey, United Kingdom, and, United States. Among the 4168 subjects, there were 971 (23.2%) COVID-19 patients with cancer, 3162 (75.9%) COVID-19 patients without cancer, and 35 (0.8%) Non-COVID-19 patients with cancer. Sixteen types of cancers, including solid tumors and hematological malignancies, were found among the cancer patients. (Tables S2 and S5).

Methodological assessment

All the eligible studies were further evaluated by the modified REMARK questionnaire (Table S3). The majority of studies defined patients’ enrollment period (70.6%) and were unbiased in selecting the patients (52.9%); 41.6% described the outcomes at the onset of the study and provided a list of candidate variables; 29.4% provided information on the measurement of biomarkers. Few articles were prospective reports (17.6%) and provided a rationale for the sample sizes (5.9%). Importantly, no studies blinded the measurements of biomarkers to patient outcomes (Table S4 and Fig.S1).

Biomarker findings

Of the 60 biomarkers assessed in the 17 studies, 29 (48.3%) biomarkers showed statistically significant changes (p-value ≤ 0.05) between different groups in the original cohort study, and 14 (23.3%) biomarkers without statistical analysis from case reports were determined based on the reference intervals [22]. The biomarkers were divided into four categories based on their biological functions: biochemical, inflammatory, hematological, and coagulant markers (Table 1). Additionally, according to patients’ cancer and COVID-19 conditions from the eligible articles, we classified them into the four main groups (COVID-19 (+) & cancer (-); COVID-19 (-) & cancer (-); COVID-19 (+) & cancer (-); and COVID-19 severity & cancer (+)). The following comparisons were made between groups: (1) COVID-19 (-) & cancer (-) vs. COVID-19 (+) & cancer (+); (2) COVID-19 (+) & cancer (+) vs. COVID-19 (-) & cancer (+); (3) non-severe COVID-19 & cancer (+) vs. severe COVID-19 & cancer (+) (Tables 1 and 2).
Biomarkers for cancer-related COVID-19 patients

Compared with reference intervals, cancer patients with COVID-19 exhibited higher levels of indirect bilirubin, CRP, D-dimer, ferritin, fibrinogen, glucose, IL-2R, IL-6, LDH, PCT, and urea, and lower levels of albumin, total bilirubin, hemoglobin (Hb), and total protein (Table 2). Notably, 35.7% (5 of 14) are biochemical biomarkers, and 42.9% (6 of 14) are inflammatory biomarkers (Table 1, Group 1). Next, we identified 25 cancer-related biomarkers in COVID-19 patients from the eligible cohort studies. As shown in Table 2, up-regulated ALT, activated partial thromboplastin time (aPTT), AST, creatinine, CRP, D-dimer, ferritin, hs-cTnI, IL-10, IL-2R, IL-6, lactate, LDH, myoglobin, NT-proBNP, PCT, PT, and TNF-α, and down-regulated albumin, albumin-globulin ratio, anti-thrombin activity, globulin, Hb, prothrombin time activity, and total protein were associated with COVID-19 patients with cancer. Similar to Group 1, 28% (7 of 25) are biochemical biomarkers, and 40% (10 of 25) are inflammatory biomarkers. Interestingly, 24% (6 of 25) are coagulation biomarkers, including PT, aPTT, and D-dimer (Table 1, Group 2). As a result, these significantly changed markers may serve as the biomarkers for monitoring the risk for cancer progression related to COVID-19 infection.

Biomarkers associated with COVID-19 severity in cancer patients

Among 20 biomarkers that were significantly associated with COVID-19 severity (Table 2), increased levels of aPTT, AST, creatinine, CRP, D-dimer, ferritin, hs-cTnI, IL-10, IL-2R, IL-6, lactate, LDH, myoglobin, NT-proBNP, PCT, PT, and TNF-α, and decreased levels of albumin, albumin-globulin ratio, and Hb were related to cancer patients with severe COVID-19. Biochemical and inflammatory biomarkers each account for 40% (8 of 20) in this group (Table 1, Group 3). Additionally, through the Venn diagram comparative analysis of these biomarkers, nine biomarkers were identified in the overlapping portion of these three groups (Fig. 2). 66.7% (6 of 9) are elevated inflammatory markers, suggesting that inflammation in SARS-CoV-2 infected cancer patients is closely related to the severity of COVID-19. With the identification of these COVID-19 severity and cancer-related biomarkers, we may be able to better manage COVID-19 progression in cancer patients by monitoring the changes of these biomarkers.

Biomarkers related to different treatment outcomes in cancer patients with COVID-19

Based on the therapies utilized to treat SARS-CoV-2 infection, the case reports were divided into two groups: (1) immunotherapy
Table 1.
The categorized biomarkers from different comparison groups of patients.

Category	Biomarkers	Group 1	Group 2	Group 3
Clinical	A/G ratio	+	+	+
Biochemical	ALT	+	+	+
	AST	+	+	+
	Bilirubin	+	+	+
	(Total)	+	+	+
	Creatinine	+	+	+
	Globulin	+	+	+
	hs-cTnI (Total)	+	+	+
	Lactate	+	+	+
	Myoglobin	+	+	+
	NT-proBNP	+	+	+
	Total protein	+	+	+
	Urea	+	+	+
	Albumin	+	+	+
	Subtotal (%)	35.7	28	40
Inflammatory	CRP	+	+	+
	Ferritin	+	+	+
	IL-10	+	+	+
	IL-1ß	+	+	+
	IL-2R	+	+	+
	IL-6	+	+	+
	LDH	+	+	+
	PCT	+	+	+
	TNF-α	+	+	+
	Subtotal (%)	42.9	40	40
Hematological	ESR	+	+	+
	Hb	+	+	+
	Subtotal (%)	7.1	8	5
Coagulant	Antithrombin	+	+	+
	aPTT	+	+	+
	D-dimer	+	+	+
	Fibrinogen	+	+	+
	INR	+	+	+
	Prothrombin time activity	+	+	+
	PT	+	+	+
	Subtotal (%)	14.3	24	15
References				
	Villegas et al.			
	et al.			
	Abdul et al.			
	Albiges et al.			
	Baumann et al.			
	Cai et al.			
	Smith et al.			
	Martinez et al.			
	Pasin et al.			
	Lopez et al.			
	Meng et al.			
	Smith et al.			
	Tian et al.			
	Zahran et al.			
	Yekediz et al.			
	Gallo et al.			

The biomarkers were identified from case reports, compromising the statistical power. +, with the data reported from the eligible studies. ALT, Alanine aminotransferase; aPTT, Activated partial thromboplastin time; AST, Aspartate aminotransferase; CRP, C-reactive protein; ESR, Erythrocyte sedimentation rate; Hb, Hemoglobin; hs-cTnI, High-sensitivity cardiac troponin I; IL-1ß, Interleukin-1ß; IL-2R, Interleukin-2 receptor; IL-6, Interleukin-6; IL-10, Interleukin-10; LDH, Lactate dehydrogenase; NT-proBNP, N-terminal pro-B-type natriuretic peptide; PCT, Procalcitonin; PT, Prothrombin time; TNF-α, Tumor necrosis factor α.

Table 2.
The up- and down-regulated biomarkers from different comparison groups of patients.

Groups	Up-regulated biomarkers	Down-regulated biomarkers	Refs.
1	COVID-19 (-) & Cancer (-)† vs. COVID-19 (+) & Cancer (+)	Albumin; Bilirubin (Total); Hb; Total protein	Villegas et al.
	(+) & Cancer (+) vs. COVID-19 (-) & Cancer (-)†	Ferritin; Fibronogen; IL-2R; IL-6; LDH; PCT; Urea	Baumann et al.
2	COVID-19 (+) & Cancer (+) vs. COVID-19 (-) & Cancer (-)†	Albumin; Albumin- globulin ratio; Antithrombin activity; Globulin; Hb; Prothrombin time activity; Total protein	Abdul et al.
	(+) & Cancer (+) vs. COVID-19 (-) & Cancer (-)†		Cai et al.
	(+) & Cancer (+) vs. COVID-19 (-) & Cancer (-)†		Martinez et al.
3	Non-severe COVID-19 & Cancer (+) vs. COVID-19 & Cancer (+)	Albumin; Albumin- globulin ratio; Hb;	Albiges et al.
	(-) & Cancer (-) vs. COVID-19 (-) & Cancer (-)†		Smith et al.
	(-) & Cancer (-) vs. COVID-19 (-) & Cancer (-)†		Tian et al.

† The biomarkers were identified from case reports, compromising the statistical power. +, with the data reported from the eligible studies. ALT, Alanine aminotransferase; aPTT, Activated partial thromboplastin time; AST, Aspartate aminotransferase; CRP, C-reactive protein; ESR, Erythrocyte sedimentation rate; Hb, Hemoglobin; hs-cTnI, High-sensitivity cardiac troponin I; IL-1ß, Interleukin-1ß; IL-2R, Interleukin-2 receptor; IL-6, Interleukin-6; IL-10, Interleukin-10; INR, International normalized ratio; LDH, Lactate dehydrogenase; NT-proBNP, N-terminal pro-B-type natriuretic peptide; PCT, Procalcitonin; PT, Prothrombin time; TNF-α, Tumor necrosis factor α.

Discussion

Since 29 biomarkers were identified as significantly changed in cohort studies, we focused on the molecules in the overlapping portion combined with antiviral drugs and (2) antivirals/antibiotics only (Table 3). First, patients who received IL-6R blockade (tocilizumab) for COVID-19 [23] or PD-1 blockade (nivolumab or pembrolizumab) prior to the SARS-CoV-2 infection [24,25] had lower levels of CRP, LDH, or PCT eventually recovered from COVID-19. However, patients who had consistently higher ferritin and LDH after administering IL-1R blocker (anakinra) all died from severe respiratory failure. The results found that, in cancer patients with COVID-19, the effectiveness of immunotherapy treatment varies, with some drugs are more effective than others, which may indicate that biomarker-based precision medicine may be the better therapy for cancer patients with COVID-19. Second, patients treated with antivirals/antibiotics exhibited lower CRP and LDH levels, together with a successful virus clearance [24-26]. In addition, patients with a normal PCT level at the early stage of COVID-19 had a better prognosis after giving the antiviral drug [27] or immunotherapy [23]. This result reflects that cancer patients with low levels of CRP, LDH, or PCT may indicate a good prognosis of COVID-19 after antiviral/antibiotic drug delivery.

References

T.A. Lee et al.
Immunotherapy used in cancer patients with COVID-19

SARS-CoV-2 has high infectivity and mortality rate in immune-deficient patients, such as cancer patients [17]. A previous study showed that hematological malignancies, lung cancer, or metastatic cancer (stage IV) patients had the highest frequency of severe complications due to COVID-19 [39]. In addition, the angiotensin-converting enzyme 2 (ACE2), a receptor that mediates SARS-CoV-2 entering into the host cells, is overexpressed in some specific cancers such as pancreatic, cervical, and renal cancer [40, 41]. ACE2 also positively correlated with the epithelial-mesenchymal transition (EMT) regulators, Zeb1 and AXL [28], which could be a risk factor of metastasis for cancer patients. Moreover, TMPRSS2, a critical protease of SARS-CoV-2 internalization, was also found significantly increased at the mRNA level in prostate adenocarcinomas [42]. In this regard, cancer patients may have a higher risk of SARS-CoV-2 infection due to elevated levels of ACE2 and TMPRSS2.

During the COVID-19 pandemic, delayed diagnosis and treatment also pose challenges to cancer patients. Shortage of medical supplies, scheduling issues, and reduced patient mobility have indirectly impacted patients’ treatment and management of cancers. The overwhelmed healthcare system, staff shortages, and restricted medication access were the most frequent barriers for cancer patients [43]. In the United States, the pandemic has reduced outpatient visits by 60–70% for either new or established patients [44]. Additionally, cancer-related hospitalizations declined by 30–41% in five months. These findings indicate that patients were reluctant to visit the hospital due to COVID-19, which may delay the diagnosis and treatment, as well as increase the risk in patients with potential cancers.

It remains unclear whether acute infection by SARS-CoV-2 may enhance cancer progression, relapse, drug resistance, or metastasis. Future research should focus on longitudinal analysis to investigate the impact of COVID-19 on cancer patients. In addition, a specific study should be designed to examine outcomes in different cancer types as the divergent characteristics of different types of neoplasms likely respond to viral infection differently. Our study found that CRP, ferritin, and LDH positively relate to COVID-19 prognosis and severity in cancer patients. Therapies that reduce the expression of CRP, ferritin, and LDH will be of interest to explore as these three markers may be the appropriate serum biomarkers connecting acute infection and chronic inflammation in cancer.

Strengths and weaknesses of the research

Our study highlights the first systematic analysis to determine potential prognostic biomarkers for cancer patients with COVID-19. The
Table 3.
Biomarkers associated with different treatments in cancer patients with COVID-19 from case report studies.

Cancer types	Treatment types	Biomarkers	Outcomes	Refs.
Hematological cancer	IL-18 blockade (Anakinra)	CCL2, CRP, CXCL10, D-dimer, Ferritin, IL-1, IL-6, IL-7, IL-10, LDH	The research team observed elevated pro-inflammatory and anti-inflammatory cytokines despite the use of anakinra. All patients died from severe respiratory failure a median of six days (range 1–9 days) after anakinra was started.	da Costa et al.
(N = 5)	IL-6 blockade (Tocilizumab)		The first case of COVID-19 in a patient with MM was successfully treated with the humanized anti-IL-6 receptor antibody tocilizumab.	Zhang et al.
	Hydroxychloroquine Lopinavir/Ritonavir			Bellmann-Weiler et al.
Melanoma	PD-1 blockade (Nivolumab)	Albumin, ALP, ALT, Bilirubin (Total), Bilirubin (Direct), Creatinine, CRP, GGT, LDH, PCT, Total protein, Urea nitrogen, Uric acid	The patient had been through 27 cycles of nivolumab before the COVID-19 diagnosis, and the last dose was administered six days before the SARS-CoV-2 infection. The favipiravir and hydroxychloroquine were used for five days, and the patient was discharged.	Yekeduz et al.
(N = 1)	Piperacillin-Tazobactam Oselimavir			
	Clarithromycin			
	Metrodazole			
	Hydroxychloroquine			
Merkel cell carcinoma	PD-1 blockade (Pembrolizumab)	Creatinine, CRP, D-dimer, LDH, Urea	Hydroxychloroquine was administered for five days but stopped after supraventricular extrasystoles.	da Costa et al.
(N = 1)	Hydroxychloroquine		However, the clinical improvement of the patient allowed him to discharge after 81 days.	
	Azithromycin			
Multiple myeloma	PD-1 blockade (Tocilizumab)	CRP, LDH	Hyperinflammation-associated organ failure may be less pronounced in hematological malignancies due to pre-existing or treatment-related immunosuppression (disease-associated in the patient 1 and 2); Bendamustine/tocilizumab-induced in the patient 2.	Bellmann-Weiler et al.
(N = 1)	Ixazomycin			
	Ixazomycin			
Hematological cancer	Rituximab	CRP	The COVID-19 pneumonia signs and symptoms became stable after the transfusion, and steroid therapy was stopped. The hemoglobin level reached its peak on day 20. No antiviral or chloroquine drugs were used.	Pasin et al.
(N = 3)	Hydroxychloroquine			
	Fafipiravir	CRP, Bilirubin (Indirect), LDH		
	Prednione			
	Azathymycin			
	Betalactam antibiotic			
NK/T-cell lymphoma	Rituximab	CRP	The disease course was mild, and no patient required admission to an ICU; three patients quickly recovered after 4-8 days and one after 24 days of experimental therapy for COVID-19.	Baumann et al.
(N = 1)	SMILE			
	DDGP			
	CHOP			
	Levofloxacin			
Chronic lymphocytic leukemia (CLL)	Rituximab	CRP, D-dimer, LDH, Ferritin, PCT, Troponin I		
(N = 4)	Hydroxychloroquine			
	Lopinavir/Ritonavir			
	Azathymycin			
	Ceftraxime			
	Teicoplanin			
findings may guide clinicians and help predict either deterioration in COVID-19-related health condition or aid in the prognosis in cancer patients infected with SARS-CoV-2 after specific treatment for COVID-19 symptoms. This study focuses on the linkage of acute viral infection and chronic cancer inflammation and identifying potential serum biomarkers in cancer patients with virally mediated inflammation. The identified list of biomarkers can serve as candidates for long-term follow-up of COVID-19 convalescent cancer patients. Nevertheless, there are several limitations to our approach. There is a lack of eligible articles on cancer-type specific COVID-19 research in this review. COVID-19 patients with various types of cancer may contribute to distinct serum biomarkers. Additionally, some eligible studies are case reports, compromising the statistical power of the relationship between biomarkers and disease progression. Furthermore, immunotherapies targeting IL-6R or PD-1 and antiviral drug treatment may benefit cancer patients with COVID-19 who exhibit lower levels of CRP, ferritin, and LDH. Therefore, CRP, ferritin, and LDH could be potential biomarkers to track COVID-19 prognosis or drug efficacy in cancer patients with COVID-19.				

CRediT authorship contribution statement

Te-An Lee: Investigation, Formal analysis, Writing – original draft. Shih-Han Wang: Writing – original draft. Chun-Tse Kuo: Formal analysis, Visualization. Chia-Wei Li: Writing – original draft. Louise D. McCallough: Writing – original draft. Dhimiter Bello: Writing – original draft. Yen-Ju Lai: Supervision, Formal analysis, Writing – original draft.

Declaration of Competing Interest

The authors declare not to have any conflict of interest.
Supplementary materials

Supplementary material associated with this article can be found, in the online version, at doi:10.1016/j.tranon.2022.101443. Supplementary materials

Acknowledgments

This work was funded in part by the following: University of Massachusetts Lowell (Faculty start-up DS021000000022 to Y.-J.Lai); Ministry of Science and Technology (MOST 109–2314-B-001–002 and MOST 109–2314-B-001–008 to C.-W.Li); Academia Sinica (AS-KPQ-111-KNT and AS-GC-110-05 to C.-W.Li); Ministry of Science and Technology (MOST 109–2813-C-010-029-B to T.-A.Lee).

References

[1] K. Szrimb, J.A. Tavel, What are biomarkers? Curr. Opin. HIV AIDS 5 (2010) 463–466.
[2] G. Biomarkers Definitions Working, Biomarkers and surrogate endpoints: preferred definitions and conceptual framework, Clin. Pharmacol. Ther. 69 (2001) 89–95.
[3] M.A. Daubert, A. Jernstrom, The utility of troponin measurement in the diagnosis of myocardial infarction: review of the current findings, Vasc. Health Risk Manag. 6 (2010) 691–699.
[4] E. Tan, N. Gouvan, R.J. Nicholls, P. Ziprin, E. Xynos, P.P. Tekkis, Diagnostic precision of carcinoembryonic antigen in the detection of recurrence of colorectal cancer, Surg. Oncol. 18 (2009) 15–25.
[5] M. Brooks, Breast cancer screening and biomarkers, Methods Mol. Biol. 472 (2009) 215–221.
[6] S. Sell, Alpha-fetoprotein, stem cells and cancer: how the study of the production of alpha-fetoprotein during chemical hepatocarcinogenesis led to reaffirmation of the stem cell theory of cancer, Tumour Biol. 29 (2008) 161–180.
[7] K.M. Peck, C.L. Burch, M.T. Heise, R.S. Baric, Coronavirus host range expansion and congenital defects and evolutionary perspectives, Ann. Rev. Virol. 2 (2015) 95–117.
[8] Z. Abdelrahman, M. Li, X. Wang, Comparative review of SARS-CoV-2, SARS-CoV, MERS-CoV, and influenza viruses, Front. Immunol. 11 (2020) 552909.
[9] E. Petersen, M. Koopmans, U. Ghanem, P. Netten, M. Platz, G. Gobin, A. Rybak, C. Casadevall, Pathogenesis of SARS-CoV-2 infection and potential avenues for vaccination and therapy, Nat. Rev. Microbiol. 19 (2021) 109–127.
[10] A. Liberati, G.D. Altman, J. Tetzlaff, C. Mulrow, P.P. Gøtzsche, J.P. Ioannidis, M. Clarke, P.J. Devereaux, J. Kleijnen, D. Moher, The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate healthcare interventions: explanation and elaboration, BMJ 339 (2009) b2700.