Remote home-based resistance exercise acutely improves mood profile in older individuals under social isolation during the COVID-19 pandemic

Gabriel de Souza Zanini
São Paulo State University
https://orcid.org/0000-0003-1740-0740

Matheus Monge Soares Correa
São Paulo State University
https://orcid.org/0000-0002-2158-0548

Bianca Fernandes
São Paulo State University
https://orcid.org/0000-0002-9322-0066

Vanessa Teixeira do Amaral
São Paulo State University
https://orcid.org/0000-0003-4050-4230

Emmanuel Gomes Ciolac
São Paulo State University
https://orcid.org/0000-0002-2397-8162

Short Report

Keywords: aging, home confinement, mental health, resistance training

DOI: https://doi.org/10.21203/rs.3.rs-562429/v1

License: © This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License
Abstract

Purpose

To assess the effect of a remote home-based resistance exercise session on mood profile in older individuals under social isolation during coronavirus 19 disease (COVID-19) pandemic.

Methods

32 older individuals (20 women; age = 67.7 ± 6.4 y) who interrupted their regular physical activity routine during the COVID-19 pandemic participated in a remote home-based exercise session via video call. The Brunel Mood Scale (BRUMS) questionnaire was applied one day before and immediately after a body weight exercise session (three sets of 15 to 30 reps in six exercises) to evaluate participants’ mood state.

Results

Significant post-exercise reductions (P < 0.05) were found in tension (41.2 ± 8.1), depression (61.7 ± 41.8 %), anger (81.2 ± 66.2 %) and mental confusion (42.9 ± 33.1 %), while a significant post-exercise increase (P = 0.023) was found in vigor (18.5 ± 5.1 %). No significant difference between pre- and post-exercise was found in fatigue. The pos-exercise changes on mood state factors resulted in significant reduction (P = 0.032) on total mood disorder score (20.2 ± 11.1 %) after exercise.

Conclusion

A remote home-based resistance exercise session was effective to improve mood profile in older individuals under social isolation during COVID-19 pandemic.

1. Introduction

The pandemic of coronavirus disease 2019 (COVID-19) is a public health ongoing challenge, responsible for 162 704 139 confirmed cases and 3 374 052 deaths worldwide (as of May 17, 2021) \(^1\). An efficient way to stop the rapid spread of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and its consequences is through social isolation \(^2\). However, recent studies suggest that home confinement can reduce the physical activity levels and increase sedentary behavior in the older \(^3,4\). In addition, the COVID-19 home-confinement promotes negative effects on mental and emotional health, and on sleep quality in individuals with unhealthy lifestyle behaviors \(^5\).

In contrast, physical exercise may be an alternative tool as adjunctive treatment for depression and maintaining mood, including in older individuals \(^6\). In addition, a single session of aerobic exercise (60–
70% HRmax) can acutely improve mood state, even in people diagnosed with clinical depression7. Thus, in a context of pandemic and social isolation, the application of remote physical exercise sessions may be an alternative to overcome sedentary behavior, to improve mood state, and to prevent possible depressive symptoms, while maintaining social isolation for preventing SARS-CoV-2 contamination3-6.

However, according to our knowledge, there are few studies that investigated the effects of a remote physical exercise session on mood state in older individuals. Thus, the purpose of the present study was to assess the effect of a remote home-based resistance exercise session on mood profile in older individuals under social isolation during COVID-19 pandemic.

2. Methods

2.1 Population and Study Design

This is a cross-sectional single-blinded study with a single intervention that investigated the effect of a remote home-based resistance exercise session on mood profile in older individuals. Thirty-two previously active older individuals (20 women; age = 67.7 ± 6.4 y), who interrupted their physical activity routine during the beginning of COVID-19 pandemic, volunteered to participate in the study. Inclusion criteria included (1) age above 60 years, (2) to have practiced physical exercise for at least the two months prior the beginning of COVID-19 pandemic, (3) not to have any limitation to practice physical activity, and (4) to have stopped their exercise routine and to be under social isolation for at least 3 months. The participants included in the study were contacted twice by telephone video call. The first call had a detailed description of study protocol, and explanation on how to answer questionnaires. Participants then gave their written informed consent (online version approved by the Research Ethics Committee of School of Sciences of UNESP) and answered the Brunel Mood Scale (BRUMS) questionnaire. The second call was performed in the day after the first call, at the same time of day, and consisted of a remote resistance exercise session. Participants then answered the BRUMS questionnaire immediately after exercise cessation. All procedures were approved by the Research Ethics Committee of School of Sciences of UNESP.

2.2 Mood State Profile Assessment

Mood state profile was assessed by BRUMS questionnaire, validated for Brazilian population8, 24 hours before (pre) and immediately after (post) the resistance exercise session. In brief, the participants answered the 24 items (in a 0–5 Likert scale) that quantifies five negative (tension, depression, anger, fatigue, and mental confusion) and one positive (vigor) mood factors (mood scores range 0 to 20 for each factor). The total mood disorder was then calculated by the formula: total mood disorder = (tension + depression + anger + fatigue + confusion) - vigor + 100 9.

2.3 Exercise Intervention
Three sets of 15 to 30 reps, with 45 s interval between sets, were performed in six resistance exercises, at the following order: squat, stiff, calf raise, push-up on the wall, shoulder press, and upright row. Squat, calf raise and push-up exercises were performed using only body weight, while a broomstick or bag were added to stiff, shoulder press and upright row exercise.

2.4 Statistical analysis

The Shapiro-Wilk and Levene tests were used to assess normality and homoscedasticity of data, respectively. The paired Student’s t test was used to identify differences in mood state variables between pre- and post-exercise. Data are expressed as mean ± standard deviation, and the level of significance was set at $P < 0.05$.

3. Results

The remote home-based resistance exercise session was well-tolerated by all participants and no adverse events occurred during sessions. Mood state data measured 24 hours before (pre) and immediately after (post) resistance exercise session are displayed in Table 1. Significant post-exercise reductions were found in tension ($41.2 \pm 8.1 \%$, $t = 5.42, P = 0.013$), depression ($61.7 \pm 41.8 \%$, $t = 4.27, P = 0.010$), anger ($81.2 \pm 66.2 \%$, $t = 4.76, P = 0.002$) and mental confusion ($42.9 \pm 33.1 \%$, $t = 3.31, P = 0.047$), whereas a significant post-exercise increase was found in vigor ($18.5 \pm 5.1 \%$; $t = -2.40, P = 0.023$). However, no significant difference between pre- and post-exercise was found in fatigue. The significant improvements on mood state factors resulted in reduced total mood disorder ($20.2 \pm 11.11 \%$, $t = 4.32, P = 0.032$), and improved iceberg profile (lower levels of negative factors and higher levels of vigor) after exercise (Figure 1).

(Insert Table 1 and Figure 1 above here)

Variable	Pre	Post
Tension	6.9 ± 4.3	$4.1 \pm 4.0 \,*$
Depression	3.6 ± 3.9	$1.4 \pm 2.2 \,*$
Anger	3.6 ± 3.3	$0.7 \pm 1.2 \,**$
Vigor	9.6 ± 3.3	$11.4 \pm 3.2 \,*$
Fatigue	6.2 ± 4.1	5.1 ± 4.1
Mental confusion	4.3 ± 4.1	$2.5 \pm 2.7 \,*$
Total mood disorder	115.1 ± 17.1	$102.3 \pm 13.6 \,**$

Table 1: Mood state 24 hour before (pre) and immediately after (post) a remote home-based resistance exercise session.

Asterisk denotes significant difference from pre ($\,* = P < 0.05; \,** = P < 0.01; \,** = P < 0.001$).
4. Discussion

The main finding of the present study was that a remote home-based resistance exercise session, using body weight or simple tools to promote resistance (i.e.: broomstick and/or bag), was effective to improve several mood factors (i.e.: tension, depression, anger, mental confusion, and vigor), resulting in reduction of total mood disorder score. According to our knowledge, this the first study to assess the acute effect of remote home-based resistance exercise on mood profile in older individuals under social isolation during COVID-19 pandemic.

The direct relationship between physical activity and/or exercise with mental health related symptoms such as depression, anxiety and stress has been shown previously\(^{10-12}\). In addition, previous studies performed prior to COVID-19 pandemic showed that a single bout of exercise promotes acute positive effects on several humor variables in healthy\(^{13,14}\) and clinical populations\(^{7,13}\), as well as in older individuals\(^{13}\). The improvements on tension, depression, anger, mental confusion, and vigor found in the present study corroborate the above-mentioned positive effects of exercise on humor profile, and shows for the first time that this positive effect may occur in older individuals, via a remote-oriented home-based resistance exercise session, and during a situation of substantial psychological distress that is the social isolation during the COVID-19 pandemic\(^{15}\).

Previous studies have suggested that acute exercise-related improvements on mood state are associated to increased cognitive activation, self-esteem, self-control and self-efficacy, as well as to the pleasure of performing the activity, and routine breaking\(^{14,16}\). In addition, a single exercise session also increases neurotransmitters expression (during and after exercise)\(^{17}\), the release of hormonal cascades\(^{18}\). Thus, it is possible that at least some of above-mentioned mechanisms are related to the present mood profile improvement found after the remote home-based resistance exercise session.

The inclusion of only older individuals with previous history of physical activity, but who interrupted their physical activity routine for the previous three months, does not allow us to extrapolate present finds for other older population (i.e.: currently actives individuals or individuals without previous history of physical activity), which is a limitation of the present study. The measure of mood state immediately after the exercise is also a limitation because it is not possible to know if the mood profile improvement is maintained along the day. Finally, the cross-sectional design does allow us to state that present acute improvements would persist after a long period of training. However, the initial step to analyze the effect of any intervention is by assessing its acute response, whereas training studies may be not justified without a safe and efficient acute response.

The present study has also important clinical implications. Total mood disorder scores of 115 appears to be the cutoff score that may further sensitize the individual to events related to psychological issues\(^{9,19}\). Thus, the present reduction on total mood disorder from nearly ~ 115.1 (pre-exercise) to nearly ~ 102.3 (post-exercise) suggests that home-based resistance exercise may have important implications for preventing psychological disorders in the present population. These finding may be even more relevant in
the context of social isolation during COVID-19 pandemic, where mood disorders may be potentiated due to the distance from family and friends, as well as concerns and pressures related to family financial issues \(^{10,20}\). Finally, the social isolation during COVID-19 appears to result in substantial reduction in physical activity levels of older individuals \(^{3}\), which may increase the global burden of diseases \(^{4,11,20}\). Thus, remote home-based resistance exercise programs may be a safe tool for counteracting the physical inactivity during the present and future pandemics.

In summary, a remote home-based resistance exercise session improved tension, depression, anger, mental confusion, and vigor in older individuals under social isolation during COVID-19 pandemic. These findings suggest that remote home-based resistance exercise may be safe and effective to mitigate the negative impacts of COVID-19 pandemic on mood in older population. However, future longitudinal studies are needed to observe the long-term results.

Declarations

Acknowledgements

VTA and BF were supported by Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES – Finance code 001) and EGC was supported by Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq #303399/2018-0) during this project. The results of the present study are presented clearly, honestly, and without fabrication, falsification, or inappropriate data manipulation.

Author’s Contributions

GSZ and MMSC participated in study design, literature review, data collection and analysis, and manuscript writing. VTA participates in data analysis, literature review and manuscript writing. BF participated in manuscript writing. EGC prepared the study, supervised the division of tasks, and participated in data analysis and manuscript writing. All authors approved the final version of the manuscript.

Competing interests

The authors declare that they have no competing interests.

Data Availability

The data used to support the findings of this study are available from the corresponding author upon request.

References

1. World Health Organization. Laboratory biosafety guidance related to coronavirus disease (COVID-19): interim guidance. Accessed May 13, 2020. *World Health Organization.*
2. Nussbaumer-Streit B, Mayr V, Dobrescu AI, Chapman A, Persad E, Klerings I, Zachariah C. Quarantine alone or in combination with other public health measures to control COVID-19: a rapid review. *Cochrane Database of Systematic Reviews*. 2020;2020(9). doi: 10.1002/14651858.CD013574.pub2.

3. Do Amaral VT, Marcal IR, Da Cruz Silva T, Souza FB, Munhoz YV, Witzler PHC, Ciolac EG. Home confinement during COVID-19 pandemic reduced physical activity but not health-related quality of life in previously active older women. *medRxiv*. 2020. Doi: https://doi.org/10.1101/2020.12.21.20248662.

4. Marçal IR, Fernandes B, Viana AA, Ciolac EG. The urgent need for recommending physical activity for the management of diabetes during and beyond COVID-19 outbreak. *Frontiers in Endocrinology*. 2020;11. doi:10.3389/fendo.2020.584642.

5. Ammar A, Trabelsi K, Beach M, Chtourou H, Boukhris O, Masmoudi LJ. On Behalf of the ECLB-COVID19 Consortium Effects of home confinement on mental health and lifestyle behaviours during the COVID-19 outbreak: insight from the ECLB-COVID19 multicenter study. *Biol Sport*. 2020;38, 9-21. doi: 10.5114/biolsport.2020.96857.

6. Bellón JÁ, Conejo-Cerón S, Sánchez-Calderón A, Rodríguez-Martín B, Bellón D, Rodríguez-Sánchez E, Moreno-Peral P. Effectiveness of exercise-based interventions in reducing depressive symptoms in people without clinical depression: systematic review and meta-analysis of randomised controlled trials. *The British Journal of Psychiatry*. 2021;1-10. doi: 10.1192/bjp.2021.5.

7. Bartholomew JB, Morrison D, Ciccolo JT. Effects of acute exercise on mood and well-being in patients with major depressive disorder. *Medicine and science in sports and exercise*. 2005;37(12), 2032. doi: 10.1249/01.mss.0000178101.78322.dd.

8. Rohlf ICPdM, Rotta TM, Luft CDB, Andrade A, Krebs RJ, Carvalho TD. A Escala de Humor de Brunel (Brums): instrumento para detecção precoce da síndrome do excesso de treinamento. *Revista Brasileira de Medicina do Esporte*. 2008; 14(3), 176-181. doi: 10.1590/S1517-86922008000300003.

9. Morgan W, Brown D, Raglin J, O’connor P, Ellickson K. Psychological monitoring of overtraining and staleness. *British journal of sports medicine*. 1987;21(3), 107-114. doi: 10.1136 / bjsm.21.3.107.

10. Bezerra ACV, Silva CEMd, Soares FRG, Silva JA. Fatores associados ao comportamento da população durante o isolamento social na pandemia de COVID-19. *Ciência & Saúde Coletiva*, 2020;25, 2411-2421. doi: https://doi.org/10.1590/1413-81232020256.1.10792020.

11. Ciolac EG. Exercise training as a preventive tool for age-related disorders: a brief review. *Clinics*. 2013;68(5), 710-717. doi: https://doi.org/10.6061/clinics/2013(05)20.

12. Pereira MD, de Oliveira LC, Costa CFT, de Oliveira Bezerra CM, Pereira MD, dos Santos CKA. A pandemia de COVID-19, o isolamento social, consequências na saúde mental e estratégias de enfrentamento: uma revisão integrativa. *Research, Society and Development*. 2020;9(7), e652974548-e652974548. doi: https://doi.org/10.33448/rsd-v9i7.4548.

13. Basso JC, Suzuki WA. The effects of acute exercise on mood, cognition, neurophysiology, and neurochemical pathways: a review. *Brain Plasticity*. 2017; 2(2), 127-152. doi: 10.3233/BPL-160040.
14. Crush EA, Frith E, Loprinzi PD. Experimental effects of acute exercise duration and exercise recovery on mood state. *Journal of affective disorders*. 2018;229, 282-287. doi: 10.1016/j.jad.2017.12.092.

15. Ingram J, Maciejewski G, Hand CJ. Changes in diet, sleep, and physical activity are associated with differences in negative mood during COVID-19 lockdown. *Frontiers in psychology*. 2020;11, 2328. doi: https://doi.org/10.3389/fpsyg.2020.588604.

16. González-Fernández F, Etnier JL, Zabala M, Sanabria D. Vigilance performance during acute exercise. *International Journal of Sport Psychology*. 2017;48(4), 435-447. doi: 10.7352/IJSP.

17. Kim YS, O'Sullivan DM, Shin SKJ. Can 24 weeks strength training reduce feelings of depression and increase neurotransmitter in elderly females? *Experimental gerontology*. 2019;115, 62-68. doi: 10.1016/j.exger.2018.11.009.

18. Kraemer WJ, Ratamess NA, Hymer WC, Nindl BC, Fragala MS. Growth hormone (s), testosterone, insulin-like growth factors, and cortisol: roles and integration for cellular development and growth with exercise. *Frontiers in endocrinology*. 2020; 11, 33. doi: https://doi.org/10.3389/fendo.2020.00033.

19. Zanini GDS, Pessôa Filho DM, Neiva CM, Da Silva DP, Ciolac EG, Verardi CEL. Stress and mood states monitoring in a swimming team during a competitive period. *Journal of Physical Education and Sport*. 2018; 18(4), 2466-2471. doi: 10.7752/jpes.2018.04369

20. Júnior PGF, Paiano R, dos Santos Costa AJ. Isolamento social: consequências físicas e mentais da inatividade física em crianças e adolescentes. *Revista Brasileira de Atividade Física & Saúde*. 2020; 25, 1-2. doi: https://doi.org/10.12820/rbafs.25e0115.