Introduction

Esophageal carcinoma (EC) is one of the most common cancers and a leading cause of death, and is derived from various malignant cell types. The studies of Kumagai et al. and Duan et al. estimated that there were more than 400,000 deaths per year caused by EC worldwide. As the main types of EC, squamous cell carcinoma (SCC) and adenocarcinoma (AC) are one of the six common causes of mortality, with 77/100,000 deaths per year in China, 11/100,000 per year in Japan, and 4.99/100,000 per year in Western countries.

Although surgical resection for EC remains as the mainstream treatment over the past decades, surgery alone (SA) has been associated with a low long-term survival rate (SR). Most EC patients who underwent surgical resection alone suffered from 4–10% morbidity and 54–69% mortality and exhibited a 5-year survival of 15–24% after surgery. Chemoradiotherapy (CRT) could be administered before or after surgery; CRT before surgery as a neoadjuvant therapy is more often used in Europe and North America as compared to that in Asia. Neoadjuvant CRT followed by surgery (NCRTS) has shown poor outcomes for EC treatment whereas decreased recurrence and improved SR have been reported with various durations. Thus, a consensus on the role of NCRTS in patients with EC is absent at present.

In our previous meta-analysis, in comparison with SA, NCRTS can increase 1-, 3-, and 5-year SRs in patients with EC.

Key words: Esophageal Carcinoma; Meta-analysis; Neoadjuvant Chemoradiotherapy; Survival Outcomes
5-year SRs was revealed. However, the SRs were not related to increased postoperative morbidity and mortality in those who suffered from EC. Furthermore, concurrent CRT was superior to sequential CRT.[12] Moreover, the different survival effects after CRT in patients from various ethnicities or genetic backgrounds were not analyzed, thereby necessitating further investigation.[12]

To assess the association between NCRTS and survival outcomes and evaluate whether the newly published or updated clinical trials can influence the results of our previous study, a comprehensive search of randomized clinical trials (RCTs) comparing NCRTS versus SA was carried out, and an up-to-date meta-analysis was performed in this study.

METHODS

Search strategy

We followed the Preferred Reporting Items for Systematic Reviews and Meta-analyses guidelines for the present report.[13] To identify all the published studies regarding neoadjuvant CRT and EC, we conducted an electronic search in the databases including PubMed, EMBASE, and the Cochrane Library. The following terminologies “esophageal neoplasm”, “carcinoma”, “adjuvant”, “chemotherapy”, “radiotherapy”, “combined modality therapy”, and “clinical trial” were searched by two independent investigators (up to August 2015). Manual searches of the reference lists of all the relevant studies and review articles were also conducted.

Selection criteria

The inclusion and exclusion criteria in the current updated meta-analysis were the same as the criteria in the previous meta-analysis.[12] The criteria for eligibility of the studies were as follows: (1) RCTs evaluating NCRTS versus SA; (2) articles that provided survival data between patients from the NCRTS and SA groups; (3) articles that described the cases and controls in the diagnosis and the sources; and (4) having risk ratio (RR) with 95% confidence interval (CI) or data that could be calculated. The articles were excluded from the study if they met the following criteria: (1) non-RCT; (2) controls including patients with malignant tumors; and (3) if the publications were duplicate studies, abstracts, reviews, or the reported data were from an abstract presented at a meeting.

Data extraction and quality assessment

The following data were extracted from newly included RCTs by two investigators independently: number of participants, publication time, country, tumor histology, NCRTS regimen and sequence (concurrent CRTS or sequential CRTS), patient outcomes including 1-, 3-, and 5-year SRs, and postoperative morbidity and mortality. The quality of the eligible studies was assessed using the Jadad et al.’s guidelines.[14] Randomization, blinded, withdrawals, generation of random numbers, and concealment of allocation, which are the essential aspects of RCT, were scored from 0 to 5. A threshold of ≥4 points was regarded as a high-quality study. Any discrepancy was resolved by group discussion to achieve a consensus.

Statistical analysis

This meta-analysis was carried out using the STATA software version 10.0 (StataCorp, College Station, TX, USA). The primary outcomes of this study were 1-, 3-, and 5-year SRs. The RR with 95% CIs as effective size was determined to assess the 1-, 3-, and 5-year SRs, postoperative morbidity, and postoperative mortality. The significance of the pooled RR was determined by the Z-test. Heterogeneity was determined using the Q-test.[15,16] A random effects model was applied when heterogeneity existed among studies whereas a fixed effects model was applied when there was no statistical heterogeneity.[17] Sensitivity analysis was conducted by excluding those studies with distinct outliers in the results.[18] Subgroup analyses were conducted for 1-, 3-, and 5-year SRs, as well as postoperative morbidity and mortality based on publication year, ethnicity, sequence, and histology. The publication bias was evaluated with a funnel plot, Begg’s test, and Egger’s test.[19,20] All the P values were two-sided, and P < 0.05 was considered statistically significant.

RESULTS

The process of the study selection is schematically illustrated in Figure 1. A total of 1120 articles from the initial search were identified and screened, and 53 studies were reviewed in detail. Finally, 16 studies were eligible, which included 11 RCTs[21-31] from the previous meta-analysis and 5 new RCTs [Table 1].[32-36] All these studies with a large, merged sample size were included in the updated analysis, randomly comparing EC patients with different therapies (NCRTS [n = 1305] vs. SA [n = 1244]), whereas the previous meta-analysis included a total of 1529 patients. The quality assessment by Jadad score [Table 1] encompassed

Figure 1: Flowchart of study selection and exclusion process.
A total of 14 studies reported the effect of NCRTS versus SA and the 1-year SR. The summary RR showed that the NCRTS were associated with a higher 1-year SR [RR: 1.07, 95% CI: 1.02–1.13, \(P = 0.005\); Figure 2], and a nonsignificant heterogeneity was detected across the included studies (\(I^2: 21.5\%, P = 0.220\)). Similarly, pooled analysis suggested that patients who received NCRTS exhibited a significantly increased 3-year SR [RR: 1.26, 95% CI: 1.14–1.39, \(P < 0.001\); nonsignificant heterogeneity; Figure 3]. Finally, the summary analysis for the 5-year SR indicated that the comparison of NCRTS versus SA displayed a beneficial effect [RR: 1.36, 95% CI: 1.18–1.56, \(P < 0.001\); nonsignificant heterogeneity; Figure 4].

The data for the effect of NCRTS on postoperative morbidity were available from 13 studies. Overall, we noted that although the patients who received NCRTS reduced the risk of postoperative morbidity by 7.0%, the decrease was not statistically significant [RR: 0.93, 95% CI: 0.82–1.05, \(P = 0.254\); no evidence of heterogeneity; Figure 5]. Similarly, a significant effect between NCRTS and SA for postoperative mortality was not observed [RR, 1.17, 95% CI: 0.56–2.44, \(P = 0.684\); Figure 6].

Table 1: Characteristics of 16 RCTs included in the final meta-analysis

First author of study	Year of publication	Country	Sample size, n	Sequence of chemoradiotherapy	Histology	Jadad scores		
	NCRTS	SA	Total					
Nygaard[21]	1992	Norway	47	41	88	Sequential	SCC	2
Apino[22]	1994	Thailand	35	34	69	Concurrent	SCC	1
Le Prise[23]	1994	France	41	45	86	Sequential	SCC	2
Bosset[24]	1997	France	143	139	282	Sequential	SCC	3
Urbal[25]	2001	USA	50	50	100	Concurrent	SCC (25.0%); AC (75.0%)	2
An[26]	2003	China	48	49	97	Sequential	SCC	3
Lee[27]	2004	Korea	51	50	101	Concurrent	SCC	2
Burmeister[28]	2005	Australia	128	128	256	Concurrent	SCC (37.0%); AC (63.0%)	3
Natsugoe[29]	2006	Japan	22	23	45	Concurrent	SCC	2
Tepper[30]	2008	USA	30	26	56	Concurrent	SCC (25.0%); AC (75.0%)	2
Cao[31]	2009	China	118	118	236	Concurrent	SCC	2
Lv[32]	2010	China	158	80	238	Concurrent	SCC	4
Yang[33]	2012	China	54	69	123	Concurrent	SCC	4
van Hagen[34]	2012	The Netherlands	178	188	366	Concurrent	SCC (75.0%); AC (23.0%); other (2.0%)	2
Mariette[35]	2014	France	98	97	195	Concurrent	SCC (70.3%); AC (29.2%); undifferentiated carcinoma (0.5%)	3

NCRTS: Neoadjuvant chemoradiotherapy followed by surgery; SCC: Squamous cell carcinoma; AC: Adenocarcinoma; RCTs: Randomized clinical trials; SA: Surgery alone.
Although nonsignificant heterogeneity was observed for the outcomes, we conducted subgroup analyses for 1-, 3-, and 5-year SRs to evaluate the effect of NCRTS in specific subpopulations [Table 2]. First, we noted that NCRTS was associated with higher 1-year SR when the studies conducted in Western countries or patients receiving a concurrent sequence. Second, the patients who received NCRTS showed no significant effect on 3-year SR if the studies published before 2000, patients receiving sequential sequence, or patients suffering from AC. Third, NCRTS was not associated with 5-year SR when the studies published before 2000 or patients receiving a sequential sequence. Fourth, NCRTS significantly reduced the postoperative morbidity when the studies published in 2000 or after or patients suffering from AC. Finally, NCRTS was associated with a lower risk of postoperative mortality when the studies conducted in Eastern countries, patients receiving concurrent sequence, or patients suffering from SCC. Conversely, NCRTS significantly increased the postoperative mortality if the studies published before 2000, conducted in Western countries, patients receiving sequential sequence, or patients suffering from AC.

The results of Egger et al.\cite{20} and Begg and Mazumdar\cite{19} showed no evidence of publication bias for 1-, 3-, and 5-year SRs and postoperative morbidity. The funnel plot appeared to be symmetrical [Figure 7]. Although the results of Begg et al. showed no evidence of publication bias for postoperative mortality ($P = 0.428$), the results of Egger et al. showed potential evidence of publication bias for postoperative mortality ($P = 0.007$). However, the conclusions were not altered after adjustment for publication bias using the trim and fill method.\cite{37}

Discussion

This updated meta-analysis for survival benefits of NCRTS included the data from previously published studies and five new RCTs, with 80% more patients in comparison with the previous meta-analysis.\cite{10} The effect of NCRTS on survival outcomes for EC can be strengthened by the evidence from these additional studies. The results indicated that NCRTS could increase 1-, 3-, and 5-year SRs in patients with EC. The efficacy of NCRTS might be influenced by stratification analysis.

Our previously published meta-analysis explored the association between NCRT and the improvement of survival outcomes for EC; however, certain limitations were notable.\cite{10} First, some controversial results and conclusions were reported in the previous meta-analysis, which reported contradictory results with respect to the postoperative mortality and subgroup analysis of 3-year survival outcome, according to histology and ethnicity.\cite{10,38} Second, although some studies suggested concurrent CRT as a standard therapy for EC, a definite conclusion that the concurrent NCRTS was superior to sequential NCRTS due to its greater risk of adverse reactions was lacking because of insufficient evidence.\cite{1,39,40} Third, a significant increase in the survival outcomes for SCC or AC by NCRTS was indicated in the meta-analysis by Sjoquist et al.,\cite{8} whereas
Table 2: Subgroup analysis for survival outcomes

Outcomes	Group	RR (95% CI)	P	Heterogeneity (%)	P for heterogeneity
1-year survival rate	Publication year				
	2000 or after	1.06 (0.99–1.14)	0.085	43.8	0.067
	Before 2000	1.04 (0.90–1.20)	0.640	0	0.866
	Ethnicity				
	Eastern countries	1.02 (0.96–1.08)	0.558	20.7	0.272
	Western countries	1.13 (1.04–1.22)	0.003	0	0.822
	Sequence				
	Sequential	1.06 (0.93–1.12)	0.380	0	0.676
	Concurrent	1.08 (1.02–1.14)	0.005	41.2	0.083
	Histology				
	SCC	1.04 (0.97–1.10)	0.244	17.7	0.280
	AC	1.08 (0.97–1.20)	0.173	10.2	0.291
3-year survival rate	Publication year				
	2000 or after	1.30 (1.10–1.53)	0.002	51.9	0.023
	Before 2000	1.17 (0.85–1.61)	0.347	0	0.807
	Ethnicity				
	Eastern countries	1.28 (1.12–1.47)	<0.001	0	0.887
	Western countries	1.30 (1.14–1.49)	<0.001	60.7	0.009
	Sequence				
	Sequential	1.24 (0.94–1.64)	0.130	0	0.697
	Concurrent	1.30 (1.17–1.44)	<0.001	51.3	0.025
	Histology				
	SCC	1.26 (1.13–1.42)	<0.001	3.3	0.411
	AC	1.22 (0.98–1.51)	0.073	61.5	0.051
5-year survival rate	Publication year				
	2000 or after	1.41 (1.17–1.69)	<0.001	31.4	0.167
	Before 2000	1.41 (0.41–4.90)	0.587	66.2	0.085
	Ethnicity				
	Eastern countries	1.40 (1.14–1.71)	0.001	0	0.740
	Western countries	1.42 (1.18–1.71)	<0.001	60.9	0.025
	Sequence				
	Sequential	1.21 (0.75–1.95)	0.440	45.6	0.175
	Concurrent	1.43 (1.24–1.65)	<0.001	38.1	0.115
	Histology				
	SCC	1.37 (1.15–1.63)	<0.001	0	0.807
	AC	1.79 (1.12–2.87)	0.014	72.0	0.028
Postoperative morbidity	Publication year				
	2000 or after	0.88 (0.77–0.99)	0.041	0	0.520
	Before 2000	1.11 (0.85–1.45)	0.427	0	0.676
	Ethnicity				
	Eastern countries	0.98 (0.70–1.38)	0.921	0	0.567
	Western countries	0.92 (0.80–1.05)	0.216	13.9	0.321
	Sequence				
	Sequential	1.08 (0.84–1.38)	0.540	0	0.774
	Concurrent	0.87 (0.75–1.01)	0.060	0.9	0.426
	Histology				
	SCC	1.02 (0.86–1.21)	0.837	0	0.805
	AC	0.44 (0.23–0.83)	0.012	–	–
Postoperative mortality	Publication year				
	2000 or after	1.06 (0.48–2.35)	0.888	70.9	<0.001
	Before 2000	1.95 (1.01–3.77)	0.048	4.6	0.351
	Ethnicity				
	Eastern countries	0.35 (0.26–0.48)	<0.001	23.0	0.273
	Western countries	1.62 (1.09–2.40)	0.017	6.9	0.378

Contd...
only improvements in the 3- and 5-year survival outcomes for SCC, but not AC, were evaluated in our previous meta-analysis. Moreover, the last searched article was an RCT published in 2009 in the previous meta-analysis, and the number of identified studies was limited. Therefore, it was deemed necessary to conduct an updated meta-analysis for exploring further information and demonstrating the efficacy of NCRTS.

The results of the previously published meta-analysis indicated that NCRTS increased the SR in patients with EC, which were similar to this updated meta-analysis. On the other hand, although 1-year SR reached a significant level in this updated meta-analysis, some other studies indicated that patients after NCRTS experienced increased survival benefits as assessed from 3- or 5-year survival outcomes but not from 1-year. The variability in the results between this meta-analysis and other studies might be attributable to the inadequate

Outcomes	Group	RR (95% CI)	P	Heterogeneity (%)	P for heterogeneity
Sequence	Sequential	2.06 (1.10–3.87)	0.024	4.6	0.351
Histology	Concurrent	0.59 (0.46–0.76)	<0.001	70.9	<0.001
SCC	0.67 (0.52–0.86)	0.001	85.1	<0.001	
AC	2.97 (0.98–9.00)	0.054	0	0.712	

SCC: Squamous cell carcinoma; AC: Adenocarcinoma; CI: Confidence interval; RR: Risk ratio; --: Not applicable.

Figure 7: Funnel plot for studies reported 1-, 3-, and 5-year SRs, postoperative morbidity and postoperative mortality between the NCRTS and surgery alone groups. SRs: Survival rates; NCRTS: Neoadjuvant chemoradiotherapy followed by surgery; SE: Standard error; RR: Risk ratio.
Estimates of alcohol-related oesophageal cancer

Meta-analysis of postoperative morbidity and perioperative complications induced by neoadjuvant concurrent chemotherapy and radiotherapy (NCRTS) before surgery is a suitable treatment option for patients with EC. However, the postoperative morbidity and mortality showed no significant association with NCRTS compared to SA. In a future study, an increased attention may be focused on the risk factors for the incidence of morbidity and mortality, including postoperative complications, histology, and NCRTS toxic effects.

Financial support and sponsorship

Nil.

Conflicts of interest

There are no conflicts of interest.

References

1. Daly JM, Fry WA, Little AG, Winchester DP, McKee RF, Stewart AK, et al. Esophageal cancer: Results of an American College of Surgeons Patient Care Evaluation Study. J Am Coll Surg 2000;190:562-72. doi: 10.1016/S1072-7515(00)00238-6.

2. Kumagai K, Rouvelas I, Tsai JA, Mariosa D, Klevrebof V, Lindblad M, et al. Meta-analysis of postoperative morbidity and perioperative mortality in patients receiving neoadjuvant chemotherapy or chemoradiotherapy for resectable esophageal and gastro-esophageal junctional cancers. Br J Surg 2014;101:321-38. doi: 10.1002/bjs.9418.

3. Duan XF, Tang P, Yu ZT. Neoadjuvant chemoradiotherapy for resectable esophageal cancer: An in-depth study of randomized controlled trials and literature review. Cancer Biol Med 2014;11:191-201. doi: 10.7497/j.issn.2095-3941.2014.03.005.

4. Zhang SK, Guo LW, Chen Q, Zhang M, Liu SZ, Quan PL, et al. The association between human papillomavirus 16 and esophageal cancer in Chinese population: A meta-analysis. BMC Cancer 2015;15:1096. doi: 10.1186/s12885-015-1096-1.

5. Roerecke M, Shield KD, Higuchi S, Yoshimura A, Larsen E, Rehm MX, et al. Estimates of alcohol-related esophageal cancer burden in Japan: Systematic review and meta-analyses. Bull World Health Organ 2015;93:329-38C. doi: 10.2471/BLT.14.142141.

6. Henry MA, Lerco MM, Ribeiro PW, Rodrigues MA. Epidemiological features of esophageal cancer. Squamous cell carcinoma versus adenocarcinoma. Acta Cir Bras 2014;29:389-93. doi: 10.1590/s1288-015-1096-1.

7. Castro C, Bosetti C, Malvezzi M, Bertuccio P, Levi F, Negri E, et al. Patterns and trends in esophageal cancer mortality and incidence in Europe (1980-2011) and predictions to 2015. Ann Oncol 2014;25:283-90. doi: 10.1093/annonc/mdt486.
29. Burmeister BH, Smithers BM, Gervais V, Fitzgerald L, Simes RJ, Devitt P, et al. Surgery alone versus chemoradiation followed by surgery for resectable esophageal squamous cell carcinoma. Ann Oncol 2004;15:947-54. doi: 10.1093/annonc/mdh219.

30. Sjoquist KM, Burmeister BH, Smithers BM, Zalcberg JR, Simes RJ, Barbou A, et al. Survival after neoadjuvant chemotherapy or chemoradiotherapy for resectable oesophageal carcinoma: An updated meta-analysis. Lancet Oncol 2011;12:681-92. doi: 10.1016/S1470-2045(11)70142-5.

31. Mariette C, Piessen G, Triboulet JP. Therapeutic strategies in oesophageal carcinoma: Role of surgery and other modalities. Lancet Oncol 2007;8:545-53. doi: 10.1016/S1470-2045(07)70172-9.

32. Goymann S, Wijnhoven BP, Hulshof M, Bateman A. Role of chemoradiotherapy in oesophageal cancer – Adjuvant and neoadjuvant therapy. Clin Oncol (R Coll Radiol) 2014;26:522-32. doi: 10.1016/j.conr.2014.05.015.

33. Zheng B, Zheng W, Zhu Y, Lin XY, Xu BH, Chen C. Role of adjuvant chemoradiotherapy in treatment of resectable esophageal carcinoma: A meta-analysis. Chin Med J 2013;126:1178-82. doi: 10.3760/ cmaj.issn.0366-6999.20121798.

34. Gung DB, Zhang X, Han HL, Xu YJ, Sun DQ, Shi ZL. Neoadjuvant chemoradiotherapy could improve survival outcomes for esophageal carcinoma: A meta-analysis. Dig Dis Sci 2012;57:3226-33. doi: 10.1007/s10620-012-2263-8.

35. Moher D, Liberati A, Tetzlaff J, Altman DG, The PRISMA. Preferred reporting items for systematic reviews and meta-analyses: The PRISMA statement. PLoS Med 2009;6:e1000097. doi: 10.1371/journal.pmed.1000097.

36. Tobias A. Assessing the influence of a single study in meta-analysis. Control Clin Trials 1996;17:1-12. doi: 10.1016/0197-2456(95)00134-4.

37. DerSimonian R, Laird N. Meta-analysis in clinical trials. Control Clin Trials 1986;7:177-88. doi: 10.1016/0197-2456(86)90046-2.

38. Higgins J, Green S, editors. Cochrane Handbook for Systematic Reviews of Interventions 5.0.1. Ch. 9. Oxford, UK: The Cochrane Collaboration; 2008.

39. Gavaghan DJ, Egger M, Davey Smith G, Schneider M, Minder C. Bias in meta-analyses of controlled trials: Is blinding necessary? Control Clin Trials 1996;17:1-12. doi: 10.1016/0197-2456(95)00134-4.

40. Sjoquist KM, Burmeister BH, Smithers BM, Zalcberg JR, Simes RJ, et al. Randomized trial of preoperative chemoradiation for unresectable locally advanced squamous cell carcinoma of the oesophagus. Eur J Cancer 2012;48:30-9. doi: 10.1016/j.ejca.2011.11.017.

41. Hamai Y, Hihara J, Taomoto J, Yamakita I, Ibuki Y, Okada M. Effects of perioperative chemotherapy on pathological staging and prognosis for locally advanced squamous cell carcinoma of the oesophagus. Biomed Res 2012;33:143-4. doi: 10.2307/2533446.

42. Tobias A. Assessing the quality of reports of randomized clinical trials: Is blinding necessary? Control Clin Trials 1996;17:1-12. doi: 10.1016/0197-2456(95)00134-4.

43. Yang H, Fu JH, Liu MZ, Fang WT, Wang JM, Chen YP, et al. A multi-centered randomized controlled study of neo-adjuvant chemoradiotherapy followed by surgery versus surgery alone for locally advanced squamous cell carcinoma of esophagus: An interim analysis. Zhonghua Yi Xue Za Zhi 2012;92:1028-32. doi: 10.3760/ cmaj.issn.0376-2491.2012.15.005.
44. Gronnier C, Tréchot B, Duhamel A, Mabrut JY, Bail JP, Carrere N, et al. Impact of neoadjuvant chemoradiotherapy on postoperative outcomes after esophageal cancer resection: Results of a European multicenter study. Ann Surg 2014;260:764‑70. doi: 10.1097/SLA.0000000000000955.
45. Lin FC, Durkin AE, Ferguson MK. Induction therapy does not increase surgical morbidity after esophagectomy for cancer. Ann Thorac Surg 2004;78:1783‑9. doi: 10.1016/j.athoracsur.2004.04.081.
46. Kelley ST, Coppola D, Karl RC. Neoadjuvant chemoradiotherapy is not associated with a higher complication rate vs. surgery alone in patients undergoing esophagectomy. J Gastrointest Surg 2004;8:227‑31. doi: 10.1016/j.gassur.2003.11.024.
47. Merritt RE, Whyte RI, D’Arcy NT, Hoang CD, Shrager JB. Morbidity and mortality after esophagectomy following neoadjuvant chemoradiation. Ann Thorac Surg 2011;92:2034‑40. doi: 10.1016/j.athoracsur.2011.05.121.
48. Berger AC, Scott WJ, Freedman G, Konski A, Weiner L, Cheng JD, et al. Morbidity and mortality are not increased after induction chemoradiotherapy followed by esophagectomy in patients with esophageal cancer. Semin Oncol 2005;32 6 Suppl 9:S16‑20. doi: 10.1053/j.seminoncol.2005.04.017.
49. Luc G, Gronnier C, Lebreton G, Brigand C, Mabrut JY, Bail JP, et al. Predictive factors of recurrence in patients with pathological complete response after esophagectomy following neoadjuvant chemoradiotherapy for esophageal cancer: A multicenter study. Ann Surg Oncol 2015;22 Suppl 3:S1357‑64. doi: 10.1245/s10434-015-4619-8.