Understanding Tropical Forest Abiotic Response to Hurricanes using Experimental Manipulations, Field Observations, and Satellite Data

Ashley E. Van Beusekom1, Grizelle González1, Sarah Stankavich2, Jess K. Zimmerman2, and Alonso Ramírez3

1USDA Forest Service International Institute of Tropical Forestry, Río Piedras, Puerto Rico 00926, USA
2Department of Environmental Sciences, University of Puerto Rico, Río Piedras campus, San Juan, Puerto Rico 00931, USA
3Department of Applied Ecology, North Carolina State University, Raleigh, North Carolina 27605, USA

Correspondence to: Ashley E. Van Beusekom (ashley.vanbeusekom@usda.gov)

Abstract. With projected increasing intensity of hurricanes and large uncertainty in the path of forest recovery from hurricanes, studies are needed to understand the fundamental response of forests to canopy opening and debris deposition: the response of the abiotic factors underneath the canopy. Through two manipulative experiments and instrumenting prior to hurricane María (2017) in the Luquillo Experimental Forest (LEF) of Puerto Rico, this study found a long recovery time of primary abiotic factors (beneath canopy light, throughfall, and temperature) influenced by the disturbance of canopy opening, and complex responses by the secondary abiotic factors (relative humidity, soil moisture, and leaf saturation) influenced by the disturbance of the primary factors. Recovery took 9 years for beneath canopy light, while throughfall recovery took 6 years and neither had recovered when hurricane Maria passed 3 years after the second experiment. Air and soil temperature seemingly recovered fairly quickly from each disturbance (<2.5 years in two experiments for ~+1 °C of change); however, temperature was the most important modulator of secondary factors, which followed the long-term patterns of the throughfall. While the soil remained wetter and relative humidity in the air stayed lower until recovery, leaves in the litter and canopy were wetter and drier, with evidence that leaves dry out faster in low rainfall and saturate faster in high rainfall after disturbance. Comparison of satellite and field data before and after the 2017 hurricanes showed the utility of satellites in expanding the data coverage, but the muted response of the satellite data suggest they measure dense forest as well as thin forest that is not as disturbed by hurricanes. Thus, quick recovery times recorded by satellites should not be assumed representative of all of the forest. Data records spanning the multiple manipulative experiments followed by hurricane María in the LEF provide evidence that intermediate hurricane frequency has the most extreme abiotic response (with evidence on almost all abiotic factors tested) versus infrequent or frequent hurricanes.

1 Introduction

Hurricanes are expected to increase in intensity with climate change (Emanuel, 1987; Knutson et al., 2010; Yoshida et al., 2017), thus understanding how tropical forests respond to hurricanes is critical to understanding future forest regimes. Tropical
forests are in a cycle of non-equilibrium, a cycle driven by the response to the large step-changes of hurricanes (Burslem et al., 2000). Recently, new tools for understanding the nature and duration of the forest-hurricane response have become available for use; satellite data can provide landscape-wide qualities of the historical response (Schwartz et al., 2017) and earth systems models can provide long-term forest response given the projections of increased frequency of hurricanes (Lee et al., 2018). While these tools can provide a large amount of spatially-complete, cost-effective, and consistently-recorded data, the data needs to be placed in context of what is actually happening at the ecosystem level. There is a need for connection between disturbance and recovery at the critical forest scale: for the manner in which landscape-scale data downscale to the more critical forest landscapes, and for the measured response of the forest with repeated hurricanes that should be put into a long-term model (Bustamante et al., 2016; Holm et al., 2014). These connections can only be accomplished with the analysis of fine-scale field observational data. Instead of trying to estimate if and when the vegetation has returned to its pre-disturbance state, insight on ecosystem health can be gained by studying how the abiotic factors respond to the disturbance. Cascading effects due to canopy openness account for most of the shifts in the forest biota and biotic processes (Shiels et al., 2015), and the biotic environment responds to changes in the abiotic environment.

To this end, a manipulative experiment on hurricane disturbance effects was implemented in the Luquillo Experimental Forest (LEF) in northeastern Puerto Rico, with measurements starting January 2003 and continuing through the time of this manuscript. The LEF represents a tropical wet montane forest, with high rainfall, high productivity, frequent hurricane disturbance, and semi-frequent droughts (González et al., 2013; Scatena and Lugo, 1995; Wang et al., 2003). The forest extends from sea level to 1 km peaks. Droughts occur twice as frequently as hurricanes on the island (every 10 and 21 years respectively) and affect the forest often as dry spells or stronger (Scatena, 1995; Waide et al., 2013). The Canopy Trimming Experiment (CTE) was designed to study the key mechanisms behind a tropical forest’s response after a major hurricane, and guide how repeated hurricanes might be expected to alter such ecosystems using these key mechanisms (Richardson et al., 2010; Shiels et al., 2015; Shiels and González, 2014). Multiple control and treated plots were created in the forest. In the treated plots, the forest canopy was trimmed and the canopy debris was littered to the forest floor, to simulate the canopy changes from a category 3 hurricane (on the Saffir Simpson scale).

Two large disturbances occurred during the experiment, both of which were measured by satellites as well as the field instruments. In summer 2015 a drought affected the LEF, starting in May 2015. The forest was still experiencing drought conditions until March 2016 (https://droughtmonitor.unl.edu), although precipitation increased after September 2015. On September 20, 2017, category 4 hurricane Maria made a direct hit on the CTE site. A relatively small amount of disturbance was attributed to the offshore passing of hurricane Irma 2 weeks earlier; the CTE site was on the lee of hurricane Irma. The drought and the hurricanes provided data beyond the experimental manipulations on how the forest abiotic environment responds to canopy opening and debris modulated with the variance of climate seasonal cycles and irregularities.
A simplified way of thinking about response to canopy opening and debris deposition is to consider three levels of response. Primary factors are only affected by the initial disturbance: more light and throughfall reach the forest floor and temperatures under the canopy increase. Secondary factors are affected by the primary inputs: relative humidity (in the air), soil moisture, and leaf saturation (wetness of canopy and litter leaves) levels change under the canopy. Tertiary factors are biotic, which are affected by primary and secondary factors, the abiotic factors. Research on biotic effects of hurricane disturbance are numerous (for synthesis efforts see: Mitchell, 2013; Shiels et al., 2015) but less researched is how the abiotic factors have changed to alter the biotic environment. This study attempts to quantify abiotic response as acute changes from a hurricane disturbance (experimental or otherwise) and recovery from the changes, for primary and secondary factors. Quantifying the responses makes it possible to assess if the experimental trimming data and satellite data are reasonable sources for studying the effect of hurricane disturbance and appear to be measuring the same abiotic system, as well as appreciate if different events cause substantially different responses. This study does not attempt to determine what amount of recovery is considered ‘normal’ conditions to biotic life, or in other words what would affect tertiary factors, but instead quantifies changes in the abiotic factors that can be used to frame the changes found in biotic factors post-hurricane in many previous studies including those of biotic abundance (Shiels et al., 2015), soil biochemistry (Arroyo and Silver, 2018), litter decomposition (González et al., 2014; Lodge et al., 2014), and plant reproduction (Zimmerman et al., 2018).

2 Methods

In spring of 2005 (CTE1) and December of 2014 (CTE2), in 0.09 ha square plots near the El Verde Field Station (419 m, 18°20’ N, 65°49’ W), the forest canopy was trimmed in 3 treatment plots, and the canopy debris was littered to the forest floor. The plot size and trim amounts were based on the patch disturbance after the two most recent hurricanes before 2017, both category 3 hurricanes at the location of El Verde: Hugo in September 1989, and Georges in September 1998 (Zimmerman et al., 2014). Non-palm trees of substantial size (>15 cm diameter) had their smaller branches (<10 cm diameter) removed. Smaller non-palm trees and all palm trees were trimmed at 3 m height. All the trimming debris was added to the plot from which it was obtained from, with the debris in each plot supplemented with outside debris if necessary, to keep the amounts and kinds of debris equal across the plots.

Biotic and abiotic data were collected in the inner 0.04 ha quadrants of the 0.09 ha trimmed plots to minimize edge effects. Details of the biotic responses to the 2005 experiment have been extensively documented (Richardson et al., 2010; Shiels et al., 2014, 2015; Shiels and González, 2014), but the abiotic responses (after CTE1 or CTE2) were not fully analysed until now. Primary factor data (beneath canopy light, throughfall, and air and soil temperature) and secondary factor data (air relative humidity, soil moisture, and leaf saturation) were collected in all plots. To account for spatial heterogeneity under the canopy,
While the CTE1 and CTE2 data were being collected, abiotic data were also being collected by satellites and by a nearby weather station. The weather station was located on a tower 30 m above the ground, above control (untrimmed) canopy. After hurricane Maria, comparisons could be drawn between the experiment and the actual hurricane response, as well as an analysis of which aspects of the response were captured by satellite data, MODIS and AMSR2. It is important to note that hurricane Maria provided a much larger hurricane trimming effect than the CTEs were designed to simulate.

2.1 Collecting and Homogenizing Time Series Data Types

Abiotic field data after 2015 were collected sub-hourly by automated sensors and averaged into daily values. The abiotic field data before 2015 were collected by different sensors or more intermittent methods (soil and litter gravimetric water contents (GWCs) and canopy photos), so the data had to be converted and calibrated from this first period to the post-2015 period in order to make one time series. Satellite data also had to be converted and calibrated to the post-2015 data type. Specific methods of collection, conversion, and calibration of each data type will be detailed in the following subsections.

Many of the data types required calculation of a smoothed data pattern in order to convert and calibrate. In all cases, the smoothing was done using Local Estimated Scatterplot Smoothing (LOESS), which fits least squares polynomials locally to the points. The LOESS degree of smoothing is contingent on the size of the local neighborhood, which here was always chosen to be one year of data around each point. The yearly smoothing was done to extract the larger signal from the data and to homogenize the different collection intervals of the data. The automated sensor field data captured larger amounts of background noise than the temporally smoothed rain funnel data and the geographically smoothed satellite data; and to a lesser extent, the geographically smoothed soil and litter GWCs and canopy photo data. The one-year smoothing neighborhood was chosen to be longer than the longest length of time between repeat measurements across all data types and methods. No smoothing was done across any of the event dates, in CTE treated, control, or satellite data, regardless if the data type was affected by each event. These smoothing breaks were used to keep boundary conditions of the LOESS applications more similar.

2.1.1 Beneath Canopy Light Data

Light beneath the canopy was quantified with solar radiation data. Solar radiation data were collected after 2015 by a Campbell Scientific LI200X pyranometer in each plot measuring 400-1100 nm light from sun plus sky radiation. Earlier estimates of solar radiation were made with sets of hemispherical canopy photos, ten photos in each set in each plot, which were taken approximately every 4 months 2005-2012. Sets of photos were also taken before the first experiment, and once a year 2015–2017. The solar radiation field data were compared to MODIS Aqua and Terra satellite leaf area index (LAI) data at 500 m, 8-
day resolution. The Beer-Lambert law (Monsi, 1953) was used to convert the LAI data into solar radiation estimates, calculating the attenuation the canopy with a specific LAI invokes on the available (above-canopy) light. Annual patterns of photosynthetically active radiation (PAR) extinction coefficients are needed to calculate the attenuation given by the Beer-Lambert law. An annual pattern of these extinction coefficients was solved for by using two years of data of the field-measured CTE2 control plot solar radiation, the tower weather station above-canopy solar radiation, and the MODIS LAI data. The three sets of data were interpolated or averaged to daily values, and then the coefficients were calculated on the two years of data before the hurricane (so excluding the 2015 drought). These annual patterns were averaged and smoothed into one annual pattern of extinction coefficients that was applied for every year of the MODIS data.

In the reanalysis of the CTE1 data presented here, canopy photos were converted to global solar radiation data with a modified version of the Hemiphot method (ter Steege, 2018) as follows. Images were converted from color to black and white with a threshold, where the threshold is found iteratively for the best separation of background and foreground using the Ridler and Calvard method (Bachelot, 2016); this method requires calibration. Thresholding was later calibrated to have agreement between annual patterns in the photo solar radiation data and annual patterns in the instrument measured solar radiation data measured in the control plots. Next, the black and white images were converted to canopy openness data by calculating openness on concentric rings of the photo representing the sky hemisphere with an arc of 1 degree.

Then, PAR was calculated under the canopy for every day of the year before and after each photo, assuming a constant canopy cover for those time periods. The PAR was then made into one daily time series at each photo site by linearly interpolating PAR each day as a fraction of the previous and the next photo’s calculated PAR on that day. This roughly interpolated the canopy cover changes due to recovery from the trimming, and interpolated seasonal changes in canopy cover as long as the photos were repeated every winter and summer.

The PAR is the sum of direct and indirect light. The direct light was calculated from the path length of the sun’s light through the atmosphere to the forest and the atmospheric transmissivity. Atmospheric transmissivity was given variability around the standard tropical value assuming a linear relationship with relative humidity in the air (Winslow et al., 2001) (as measured above canopy). Path length was calculated from the sun’s orbital position on each day of the year relative to the forest. Diffuse light was calculated assuming each part of the sky is equally bright and thus diffuse light is a fraction of direct light. Underneath the canopy, PAR can be approximated as the sum of the direct light through all open parts of the canopy and the diffuse light multiplied by 15% (based on empirical equations; Gates, 2012). Global solar radiation is then approximated as a multiple of PAR (2X; see Escobedo et al., 2009) calibrated to solar radiation measurements from above the canopy at the tower weather station.
2.1.2 Throughfall Data

Throughfall data were collected the entire time period with the same method of bi-weekly recordings of rain funnels. These funnels were 9.2 cm in diameter, with 1000 mm3 volume. Throughfall was also collected in the treated plots sub-hourly after 2015 with automatic rain gages. The rain gage data that overlapped the rain funnel data was used to calibrate the rain funnel data.

2.1.3 Temperature Data

Temperature data were collected after 2015 by a Decagon Devices VP-3 sensor in each plot in the air 2 m up from the ground and a 5TM sensor in each plot in the soil 0.05 m down into the ground. Earlier temperature data were collected hourly by a Campbell Scientific 107 sensor in each plot in the air and one in the soil, underneath the canopy. Air temperature above the canopy at the tower weather station was calculated with the same instrument the entire time period, so annual patterns of the ratios of above-canopy air temperature to below-canopy air and soil temperature were used to calibrate the 107 data. First, the ratios were calculated for two years of VP-3 data before the hurricane (so excluding the 2015 drought). These annual patterns were averaged and smoothed into one annual ratio pattern for air and one for soil. Then an air and soil annual ratio pattern was calculated for the complete years of the 107 data (so excluding 2005-2007) and the above canopy data, and the difference between the ratios were used to make one annual correction each for air and soil that was applied for every year of the 107 data. The air temperature field data were compared directly to MODIS Aqua and Terra satellite land surface temperature (LST) data at 1 km, 8-day resolution. MODIS LST measures energy balance at the land surface, so is not representative of air temperature under the canopy but it will be affected by changes in air temperature. Annual maximums of LST and air temperature are highly correlated across the globe with correlation strongest in forested areas (Mildrexler et al., 2011), and LST has been shown to respond to forest cover changes in other areas of the tropics (van Leeuwen et al., 2011).

2.1.4 Air Relative Humidity Data

Air relative humidity data were only collected after 2015. They were collected by the same Decagon Devices VP-3 sensors in each plot (2 m up from the ground) that collected air temperature. Because only one kind of instrument collected this data, no conversion was done on this data.

2.1.5 Soil Moisture Data

Soil volumetric water content (VWC) data were collected after 2015 by reflectometers, with one Decagon Devices 5TM sensor in each plot measuring shallowly at 5 cm deep and three Campbell Scientific CS616 sensors in each plot collecting profiles from the surface to 15 cm deep. The VWC profile data are comparable to measurements of soil moisture collected by drying out soil samples. Such soil samples were collected for GWCs approximately every 3 months 2003-2006, and in 2015, with 5 in each plot. Some of these soil GWCs have been published previously before this reanalysis (Richardson et al., 2010). Here,
soil GWCS were converted to soil VWCs estimates with measurements of soil bulk density recorded at the same time as the GWCS, or, using average values from each plot if direct measurements were not available. The 2015 overlap period between the smoothed data of the sensors and the soil sample data was used to calibrate the converted data. The shallow soil VWC field data were compared directly to AMSR2 descending and ascending track satellite soil VWC data, at 10 km, 1-day resolution.

2.1.6 Leaf Saturation Data

Leaf saturation data were collected after 2015 by three Decagon Devices dielectric leaf wetness sensors in the low canopy leaves in each plot, 5 m up from the ground and three in the litter leaf layer in each plot. These sensors have similar thermal mass and radiative properties to real leaves, and wetness is measured by the voltage signal output after voltage excitation, which is higher in proportion to the volume of water on the sensor. This voltage output was then assigned 0% saturation (dry) at the lowest recorded value, and 100% saturation at the highest recorded value. Earlier measurements of litter saturation were made with leaf GWC values from litterbags, 5 in each control plot and 10 in each treated plot. These litterbags were made of air-dried, pre-weighed leaves, placed in the litter layer immediately after the CTE1 trimming and retrieved for collection approximately every 3 months 2005-2006. This data was published previously (Richardson et al., 2010). The litterbag procedure was repeated for the CTE2 trimming, and four litterbag measurements of GWC were made in 2015. Leaf GWC is proportional to leaf VWC if the assumption of constant leaf bulk density across plots is made. Then the early litterbag data could be converted to saturation percentages using the ratio between the data of the 2015 litterbags and the smoothed data of the dielectric leaf wetness sensors collected at the same time.

2.2 Quantifying Abiotic Interaction and Response

To explore the relationships between primary and secondary abiotic factors, daily means were correlated. All abiotic data after January 2015 were prewhitened by filtering with an autoregressive integrated moving average model (ARIMA; Box et al., 2015) and first-differencing to remove seasonality and trends. The resulting prewhitened data were examined for correlation between primary and secondary factors for periods with daily data (i.e., after CTE2 and continuing after the hurricanes until 2019).

To explore the differences between responses of different abiotic factors, a smooth time series of each factor was computed, as well as annual averages of data starting after each disturbance event and continuing until the next disturbance event. This was done for CTE data as well as satellite and tower weather station data. For the smooth time series, one-year LOESS neighborhoods were used to reduce the noise in the data and extract the larger signal with seasonality. For the annual time series, averages of every 365 days after an event were computed (e.g., after hurricane Maria on September 20, 2017; an average was computed from September 21, 2017 to September 20, 2018). Each yearly mean was visualized as a point at the midpoint of each calendar year (July 1), regardless of the starting date of the average, so that the connected annual time series did not...
change visually in its seasonal relationship to the smooth time series throughout the series of disturbances. Thus, the first point after an event represents the average of day 1 to day 365 (year one), the second point the average of year two, and so on.

Recovery and acute change of each factor was quantified by pre-defined metrics on the smooth time series that showed seasonality. Recovery after a CTE experiment was defined as the point in time that the treated (smoothed) data time series crosses the smoothed time series of the control data, afterwards which the difference between the treated and control data stays within a 15% buffer of the control data for a year, or until the next event. It is possible that this is a conservative measure for certain biotic species' perception of abiotic disturbance, but from an abiotic point of view the 15% buffer corresponds with visual recovery in the time series. Other studies have defined recovery as the year in which the annual maximum value (of the disturbed area) returns to a previous annual maximum value (assumed representative of undisturbed conditions; Lin et al., 2017). While the method used here is dependent on the size of the smoothing neighborhood; it is able to make use of the parallely collected control data to calculate more precise recovery lengths than a year. Furthermore, in a frequently disturbed regime such as the LEF, it is difficult to say what year would be representative of undisturbed conditions. Time series were also analyzed to calculate acute change from disturbance. The acute change after the hurricane was defined as the change in the control time series or the satellite time series from right before the hurricane to right after the hurricane. September 20, 2017. The acute change after an experiment disturbance event was defined as the maximum difference between the treated and control time series (in relation to the control time series) on any day between the last day of the canopy trimming (spring 2005, December 2014) and of the next September 20 (year 2005 and 2015, respectively), so that the experimental changes could be compared to the hurricane changes. Sensitivity tests were performed to see how the calculated recovery lengths differed with smaller and larger buffers than the 15%, as well as how the recovery lengths and acute changes differed with smaller and larger smoothing neighborhoods than the one year.

3 Results

Some of the secondary factors correlated with the primary factors of solar radiation and temperature, but there were no monotonic relationships found with throughfall. The prewhitened (seasonality and trends removed) air relative humidity correlated well with both the prewhitened primary factors of solar radiation and air temperature ($R^2 = -0.67$) across all periods (after CTE2 and after the hurricanes) and all plots (control and treated). The prewhitened leaf saturation (canopy and litter) correlated somewhat with both the prewhitened primary factors of solar radiation ($R^2 = -0.35$) and air temperature ($R^2 = -0.49$) across all periods and plots. The prewhitened soil moisture (shallow and profiles) did not correlate consistently well with any of the primary factors. All significant correlations were highest at zero lags.

The smoothed time series allowed calculation of more detailed responses than if the analysis had been restricted to only calculations on annual averages. The CTE and satellite acute changes after each disturbance event as calculated from the metrics on the smoothed time series (vertical bars on Figures 1, 2 and Table 1) are much larger than what was seen with the

Delete: Solar radiation data were collected after 2015 by a Campbell Scientific Li200X pyranometer in each plot measuring 400-1100 nm light from sun plus sky radiation. Earlier estimates of solar radiation were made with sets of hemispherical canopy photos, ten photos in each set in each plot, which were taken approximately every 4 months 2005-2012. Sets of photos were also taken before the first experiment, and once a year 2015-2017. The solar radiation field data were compared to MODIS Aqua and Terra satellite leaf area index (LAI) data at 500 m, 8-day resolution. The Beer-Lambert law (Monsi, 1953) was used to convert the LAI data into solar radiation estimates. Annual patterns of photosynthetically active radiation (PAR) extinction coefficients and the prewhitened solar radiation needed for the Beer-Lambert law were calculated by solving the Beer-Lambert Law for the coefficients with the comparison the field-measured control plot solar radiation, and the field-measured above canopy solar radiation, and the MODIS LAI data. The coefficients were solved for using with all data interpolated or averaged to daily values, and only using the two years of data before the hurricane (so excluding the 2015 drought). These annual patterns were averaged and smoothed into one annual pattern that was applied for every year of the MODIS data.

2.3 Estimating Solar Radiation from Canopy Photos

Canopy photos were converted to global solar radiation data with a modified version of the Hemisplot method (ter Steege, 2018) as follows. Images were converted from color to black and white with a threshold, where the threshold is found iteratively for the best separation of background and forehead using the Ridler and Calvard method (Bachelot, 2016); this method requires calibration. Thresholding was later calibrated to have agreement between annual patterns in the photo solar radiation data and annual patterns in the instrument measured solar radiation data measured in the control plots. Next, the black and white images were converted to canopy openness data by calculating openness on concentric rings of the photo representing sky hemisphere with an arc of 1 degree. Then, PAR was calculated under the canopy for every day of the year before and after each photo, assuming a constant canopy cover for those time periods. The PAR was then made into one daily time series at each photo site by linearly interpolating PAR each day as a fraction of the previous and the next photo’s calculated PAR on that day. This roughly interpolated the canopy cover changes due to recovery from the trimming, and interpolated seasonal changes into daily.
annual averages of the data (differences in dashed lines on Figures 1, 2). Throughfall, with its long recovery time, is the only exception to this and its acute changes could be accurately summarized with the annual average changes (Figure 1b). The CTE annual averages showed convergence in their time series (dashed lines on Figures 1, 2) in approximately the same time as the recovery metrics (gray circles on Figures 1 and 2), but necessarily round up to the next year (or longer if the recovery is late in the year). For example, air temperature after CTE1 recovered in a calculated 2.4 years (Table 1), or in year three, and the black and red dashed lines in Figure 1c cross at the third point. Solar radiation is the most severe exception. After CTE1, solar radiation had seasonal differences that persisted in the lightest and darkest times of the year until 6.0 years (Table 1; >6, so in year seven), after the annual averages converged in year five (Figure 1a).

The passage of hurricane Maria, 2.8 years after the second experiment, happened when most of the abiotic factors had not recovered and the rest had just recovered. Temperatures after CTE1 and CTE2 and relative humidity in the air after CTE2 recovered in year three, less than half the time it took solar radiation to recover after CTE1, and a less than a third of the time it took throughfall to recover (Table 1). The effect of Hurricane Maria was smaller on the treated plots than the control plots, such that the absolute level of abiotic disturbance on the treated plots was smaller than on the control plots (Figures 1, 2). It is expected that the abiotic fluctuations from the hurricane would be smaller in the unrecovered treated plots than in the control plots since there is less vegetation to disturb. The fluctuation is smaller, but furthermore for most of the abiotic factors, the treated plots are closer to the recovered state after the hurricane than are the control plots. For example, there is more solar radiation reaching the forest floor in the treated plots than in the control plots before hurricane Maria, but after the hurricane there is less solar radiation reaching the forest floor in the treated plots than in the control plots (Figure 1a). The same scenario can be seen in the throughfall (Figure 1b), the temperatures to a lesser extent (Figures 1c, d), the soil moisture profile (Figure 2c), and the litter saturation (Figure 2e). The air relative humidity has the opposite scenario, showing treated plots closer to the recovery state of less humidity in the air after the hurricane (Figure 2a).

Overall, the patterns of acute changes across the abiotic factors from the experiments and the hurricane Maria are similar (Table 1). With only 0.09 ha plots, edge effects of the non-disturbed forest were expected to lessen the effectiveness of the experiments in simulating hurricane disturbance; yet, the acute changes showed that CTE2 was the most immediately disruptive event across the abiotic factors, more so than the hurricane. The soil moisture increased much more in the treated plots of CTE1 and CTE2 than in the acute change calculated before to after the hurricane. However, it is impossible to know the true ‘control’ (no hurricane scenario) soil moisture level post-hurricane, because the difference after the hurricane is defined by the ‘control’ after the hurricane.

The satellite data have somewhat similar characteristics to the field data in the control plots (blue vs. black lines in Figures 1a, 1c, 2b) in that the magnitude of the acute change is similar (Table 1) and the responses to the summer 2015 drought and hurricane Maria are in the same direction. Before the hurricane, the (MODIS LAI-estimated) solar radiation satellite data look very similar to the field data, but they show a smaller change after the hurricane (Table 1) and faster recovery down to previous
values than did the field data (Figure 1a). The LEF lost 51% of the initial greenness in hurricane Maria, but the U.S. Caribbean overall lost 31% of its initial greenness (Van Beusekom et al., 2018), so for the hurricane disturbance, including area outside the forest would be expected to dampen the measurement of the LAI hurricane disturbance signal. The (MODIS LST–estimated) temperature satellite data plot between the field air temperature data measured below the canopy and that measured above the control canopy at the tower weather station (black and green lines respectively, Figure 1c), as might be expected from a LST representative of surface energy balance. These data were strongly affected by the hurricane and quick to recover. The (AMSR2-estimated) shallow soil moisture satellite data have very large spatial smoothing (10 km resolution, containing non-forest and thin forest areas), showing a drier soil than the CTE. These data were also strongly affected by the hurricane and appear to recover quickly (Figure 2b).

3.1 Sensitivity Testing on Calculated Recovery Times

The calculated recovery times are very robust to alterations in the size of the neighborhood from half as large to twice as large (neighborhoods of 0.5-2 years), with a mean of less than ±0.2 years for any neighborhood size. Larger neighborhoods than the one-year reported in Table 1 disproportionally affect the calculated recovery times of the coarser data, throughfall and CTE1 litter saturation (Figures 1b, 2e). Smaller neighborhoods than the one-year reported in Table 1 disproportionally affect the calculated recovery times of the noisier data and the data with many missing observations, throughfall and CTE1 air and soil temperatures, respectively (Figures 1b-d). Allowing the buffer (inside which the control and treated plots are said to be similar enough to warrant a recovered state) to be from half as large to twice as large (buffers of 7.5-30%) only affects the calculation of the recovery lengths of CTE1 solar radiation, CTE1 throughfall, and CTE1 and CTE2 litter saturation (Figures 1a, 1b, 2e and Table 1). Solar radiation is calculated to recover after CTE1 somewhat quicker, in 5 years (from 6 years) with a larger buffer, and it does not recover in the 7.6 years if the buffer is shrunk to 7.5%. Throughfall recovery calculation does not change if the buffer is larger, but it does not recover in the 9.9 years of CTE1 if the buffer is smaller. Litter saturation is calculated to recover after CTE2 in 0.7 years right after the summer 2015 drought (down from >2.8 years) with a larger buffer (and still in 1.0 years after CTE1, and it does not recover in the 2.1 years after CTE1 if the buffer is shrunk to 7.5% (and still not in the 2.8 years after CTE2). The calculated changes after an experimental disturbance event are fairly robust to alterations in the size of the neighborhood (absolute changes are on average less than ±15% different), but the calculated changes after the hurricane can be quite affected if the neighborhood is expanded, making the time series smoother at the end points before and after the hurricane (Figures 1, 2).

4 Discussion

The responses in the CTE plots for after hurricane Maria were very similar to the responses after the two trimming events, which was the aim; nonetheless, it is encouraging how well the experiments worked. However, lacking a control plot for the actual hurricane response, the differences in the seasonal timing of the experiment treatments and hurricane Maria, as well as sensitivity of the calculations of actual hurricane effects to the data smoothing, make direct comparison of acute changes from

Deleted: data

Deleted: however

Deleted: with only 0.09 ha plots, edge effects of the non-disturbed forest were expected to lessen the effectiveness of the experiments in simulating hurricane disturbance. However, yet, the solar radiation suggested that CTE2 was the most immediately disruptive event.

Deleted: recovery time

Deleted: data

Deleted: Sensitivity tests were performed using different LOESS smoothing neighborhoods and altering the size of the 15% buffer.

Deleted: Daily means of all data (point data in Figures 1 and 2) were first-differenced and prewhitened by filtering with an autoregressive integrated moving average model (ARIMA; Box et al., 2015) and first-differencing to remove seasonality and trends, and residuals the resulting prewhitened data were examined for correlation between primary and secondary factors for periods with daily data (after CTE2 and after the hurricanes). Residuals of the prewhitened air air relative humidity correlated well with both residuals of the prewhitened solar radiation and air temperature ($r^2 = -0.67$) across all periods and plots. The prewhitened residuals of leaf saturation (canopy and litter) correlated somewhat with both the prewhitened residuals of solar radiation ($r^2 = -0.35$) and air temperature ($r^2 = -0.49$) across all periods and plots. The prewhitened residuals of soil moisture (shallow and profiles) did not correlate consistently well with any of the primary factors. All significant correlations of residuals were highest at zero lags.
The passage of hurricane Maria, 2.8 years after the second experiment, showed a smaller effect on the treated plots than on the control plots (Figures 1, 2). It is expected that the abiotic fluctuations from the hurricane would be smaller in the untreated plots than on the control plots (Figures 1a, b). It is expected that the abiotic fluctuations from the hurricane would be smaller in the untreated plots than on the control plots since there is less vegetation to disturb. The fluctuation is smaller, but furthermore for most of the abiotic factors, the treated plots are closer to the recovered state after the hurricane than are the control plots (in terms of which variables?, I would mention variable and cross reference to the figure as done in the next sentence). This is not referring to disturbance relative to the conditions prior to the hurricane, but absolute conditions. For example, there is more solar radiation reaching the forest floor in the control plots than in the treated plots before hurricane Maria, but after the hurricane there is less solar radiation reaching the forest floor in the treated plots (Figure 1a). The same scenario can be seen in the relative humidity (Figure 2e). The air relative humidity has the opposite scenario, showing treated plots closer to the recovery state of less humidity in the air after the hurricane (Figure 2a).

It is well-known that there are issues of scale when comparing outright the values of large-pixel satellite observations to point field observations (Wu and Li, 2009), but the faster recovery seen in the satellite data is interesting. The MODIS LAI may be measuring some low vegetation that grows back rapidly and not recovering canopy, thus decreasing the estimated solar radiation back to undisturbed values more quickly than seen in field observations. The MODIS LST-estimated temperature satellite data and the AMSR2-estimated shallow soil moisture satellite data may have had large acute changes and quick recoveries because they are measuring more than just the forest. Above canopy temperatures are included in the energy balance LST data and low-permeability areas that flood and dry out are included in the AMSR2 data.

Two of the primary factors, light and water, changed dramatically after the disturbance events (Table 1, Figures 1a, 2b). Across the three events, the range of the percentage change in understory solar radiation after disturbance was quite large (214 to 919%), it is likely that a sizeable portion of the range is due to the different seasonal timing of the events. The 1998 Hurricane Georges was estimated to have changed the forest light by almost 400% (Comita et al., 2009), which is within the range seen here. The response of reduced understory light and throughfall (Table 1) was found here to last much longer than the 18 months concluded previously (Richardson et al., 2010). However, it was noted in a related study (Shields et al., 2010) that the control plot understory solar radiation appeared to be still recovering from the 1998 Hurricane Georges in the early measurements. The time series here support a continuing recovery from Georges; see the decreasing solar radiation trend 2004-2008 in control.
CTE data, and also in the satellite data 2003-2008 (Figure 1a). This 9 to 10-year understory light recovery time after Hurricane Georges is compatible with the new CTE1 estimate of 8.9 years to recovery (Table 1). This study had additional information from the second experimental trimming, as well as a longer record of analyzed data from the first trimming and new methods to make a more-continuous record from the intermittent field data. The response may appear in the drier darker season as being recovered (e.g., January 2008, 3 years post-trimming), but it is clear with the longer record that the response is slower to recover. Temperatures of air and soil were much more robust in respect to the changes from the events versus their annual seasonal cycle changes, with approximately 3% air and 6% soil acute increases, or +0.7 °C air and +1.4 °C soil, recovered by 2-2.5 years (Table 1, Figures 1c, 1d). But these changes may still be significant to biotic factors. Other studies show that gross primary productivity of the forest is highly sensitive to small increases in air temperature greatly increasing canopy temperature (Pau et al., 2018), so this change that is exemplified in the hottest parts of the year (Figures 1c, 1d) should not be discounted.

Abiotic factors that change because of primary factor changes, or secondary factors, have more complicated recovery paths than the primary factors. Specific timelines for recovery would be expected to be highly influenced by the tree species and soil types, and the rates seen here for all abiotic factors would not necessarily apply to all hurricane-affected tropical forests. Nevertheless, general patterns might be expected to hold. All of the secondary factors were clearly affected by the summer 2015 drought and subsequent long-term rainfall levels, as seen by the large magnitude decreases in summer 2015 and the recovery afterwards in air relative humidity, soil moisture, and leaf saturation (Figure 2). However, daily patterns of the relative humidity in the air and leaf saturation under the canopy were significantly influenced by the temperature and light inputs (based on the results of the residual correlations), while soil moisture may not be influenced much by these inputs. Relative humidity (Table 1, Figure 2a) recovered from a 5% decrease after CTE2 in 2.7 years (right before hurricane Maria) according to the defined recovery criteria, but it seems conceivable that it had only temporarily recovered in the autumn season, and the treated plots would not have reached the same maximum seasonal relative humidity in the air as the control plots in the winter. The soil moisture and litter saturation responses from the first trimming present different conclusions when analyzed along with the nearly continuous in situ measurements after the second trimming. Previous studies found very quick recovery of these factors, 3 months and 18 months, respectively (Richardson et al., 2010). However, re-analysis of the data after the first experimental trimming: separating the data into control and treated plots; calculating volume-based percentages of water in the soil and litter instead of mass-based percentages; and most significantly, looking at the trimonthly collected data from CTE1 in light of the nearly continuously collected data from CTE2, led this study to draw different conclusions.

The soil moisture increases in all three trimming events (including the hurricane) but the magnitude of the acute change and the time till recovery appears highly dependent on the amount of rainfall (Table 1, Figure 2b, 2c). Differences between treated and control sites appear pronounced in dry periods (e.g., spring 2006 and summer 2015), with wet periods obscuring the differences in the sites when the soil may be approaching saturation (e.g., summer 2006). However, the recovery process happens mostly monotonically (in the smoothed time series) and looks close to the 15% buffer by 2.8 years. Soil moisture is
higher after disturbance because there is more throughfall and less transpiration (no leaves), but once the leaf area starts to recover the soil moisture recovers quickly.

Conversely, during the dry periods the differences between treated and control sites are obscured for the leaf saturation data. The litter leaves in the second trimming were measured to be wetter and drier following the trim, and not uniformly drier as concluded previously (Figures 2d, 2e). Data from the second trimming and hurricane Maria shows that the litter was more saturated immediately following the events, and the low canopy leaves were drier. During periods of low rainfall, the treated plots dry out faster than the control plots, in both litter and low canopy leaves. Sometimes this results in the leaf saturation being lower in the treated plots than the control plots (e.g., summer 2015 and spring 2017). When the rainfall increases after a dry period, during the late-summer rainfall, the treated plot leaf saturation increases much faster than the control plots, suggesting the long-term effect of disturbance on leaf saturation is a more dramatic modulation in saturation by rainfall. Other studies in completely different ecosystems, southeastern United States, have seen that litter is able to become more saturated after large storms than before the storms, and they attribute this to the addition of new debris being able to hold on to more water (Van Stan et al., 2017). The litter saturation data from the first experimental trimming (data from 2005-2007) do not contradict this conclusion, but due to their record length and collection interval (trimonthly) they are not overly conclusive.

The results do not support a longer or shorter recovery time interval for the second treatment, ten years after the first (Table 1). The results in the sensitivity tests showed that quantifying recovery times using smoothed time series to homogenize data from several sources was a worthwhile effort, in that the abiotic factors can be sorted into quicker and slower recoveries, with results robust to the smoothing method. However, the definition of the ‘recovered point’ in time will be dependent on what biotic life considers ‘normal’, necessarily different for every organism. Across all abiotic factors, this study used a uniform buffer metric of ‘within 15% agreement between control and treated plots’ once the experimental response is finished, in order to quantify the length of abiotic recovery as a starting point to for other researchers to frame the changes found in biotic factors post-hurricane. The percentage of the buffer did not matter to the results in most cases, as shown in the sensitivity tests. However, the percentage did alter the results on factors with more complicated recovery paths, such as litter saturation (Figure 2e), and factors with more data variance, such as solar radiation and throughfall (Figures 1a, b). This points to the difficulty of quantifying recovery in an environmental system.

Climate projections predict Puerto Rico air temperature will be +2 °C warmer in the coming century and rainfall will be -20 to -30% smaller in the fall and summer wet seasons (Hall et al., 2013; Karmalkar et al., 2013). Effects from future hurricanes on the abiotic factors will be on top of this background change. This means a hurricane could add an acute effect of almost 50% more to the temperature increase, with a recovery of over 2 years (Table 1). The throughfall after a hurricane was found to increase >100% with a long recovery of almost 9 years (Table 1). But, given the climate projections of more events like the summer 2015 drought, the more noteworthy effect of future hurricanes may be the litter and low canopy leaves drying out
much faster in the drought and saturating faster with rain after the drought. This will create a much more dynamic environment of leaf wetness, which may have implications for biotic factors.

5 Conclusions

The manner in which abiotic characteristics are disturbed and the speed at which they recover will be key to the continued existence of tropical forests under a climate with more intense hurricane activity. Climate projections predict changes that will exacerbate the effects of hurricanes of increasing temperature and dynamically changing leaf wetness. There is evidence here that intermediate hurricane frequency will have the most extreme abiotic response (with evidence on almost all abiotic factors tested) versus infrequent or frequent hurricanes, and that satellite data may show a faster recovery than field data looking at canopy response and soil moisture. Caution must be exercised when declaring the recovered point of a forest, as canopy closing may take a decade and not all abiotic factors recover monotonically. Abiotic factor responses to hurricanes are not included in current climate projections. Results from detailed manipulative experiments such as this study are needed in order to begin to quantify abiotic factor responses to hurricanes to add to the climate projections.

Data Availability

The CTE data are hosted on the USDA Forest Service Research Data Archive at https://doi.org/10.2737/RDS-2019-0051 (González et al., 2019).

Author Contribution

AEVB designed and carried out the mathematical analysis. GG, JKZ, and AR designed, supervised, and carried out the experiment. GG installed sensors and oversaw data collection of solar radiation, temperature, air relative humidity, soil moisture, and leaf saturation after CTE2. SS helped execute CTE2 and supervise the establishment. AEVB prepared the manuscript with contributions from GG and AR.

Acknowledgements

The authors thank Carlos Estrada, Samuel Matta, Samuel Moya, Maria M. Rivera, Humberto Robles, and Carlos Torrens for assisting field data, and Ariel E. Lugo and Michael Richardson for comments on an earlier version of the manuscript. This research was funded by the Luquillo Critical Zone Observatory (National Science Foundation grant EAR-1331841) and the Luquillo Long-Term Ecological Research Site (National Science Foundation grant DEB-1239764). All research at the International Institute of Tropical Forestry is done in collaboration with the University of Puerto Rico. Any use of trade, product, or firms’ names is for descriptive purposes only and does not imply endorsement by the U.S. Government.
References

Arroyo, O. G. del and Silver, W. L.: Disentangling the long-term effects of disturbance on soil biogeochemistry in a wet tropical forest ecosystem, Global Change Biology, 24(4), 1673–1684, doi:10.1111/gcb.14027, 2018.

Bachelot, B.: Sky v1.0: Canopy Openness Analyzer Package, 2016.

Box, G. E., Jenkins, G. M., Reinsel, G. C. and Ljung, G. M.: Time series analysis: forecasting and control, John Wiley & Sons., 2015.

Burslem, D. F. R. P., Whitmore, T. C. and Brown, G. C.: Short-term effects of cyclone impact and long-term recovery of tropical rain forest on Kolombangara, Solomon Islands, Journal of Ecology, 88(6), 1063–1078, doi:10.1046/j.1365-2745.2000.00517.x, 2000.

Bustamante, M. M. C., Roitman, I., Aide, T. M., Alencar, A., Anderson, L. O., Aragão, L., Asner, G. P., Barlow, J., Berenguer, E., Chambers, J., Costa, M. H., Fanin, T., Ferreira, L. G., Ferreira, J., Keller, M., Magnusson, W. E., Morales-Barquero, L., Morton, D., Ometto, J. P. H. B., Palace, M., Peres, C. A., Silvério, D., Trumbore, S. and Vieira, I. C. G.: Toward an integrated monitoring framework to assess the effects of tropical forest degradation and recovery on carbon stocks and biodiversity, Glob Change Biol, 22(1), 92–109, doi:10.1111/gcb.13087, 2016.

Comita, L. S., Uriarte, M., Thompson, J., Jonckheere, I., Canham, C. D. and Zimmerman, J. K.: Abiotic and biotic drivers of seedling survival in a hurricane-impacted tropical forest, Journal of Ecology, 97(6), 1346–1359, 2009.

Connell, J. H.: Diversity in Tropical Rain Forests and Coral Reefs, Science, 199(4335), 1302–1310, doi:10.1126/science.199.4335.1302, 1978.

Emanuel, K. A.: The dependence of hurricane intensity on climate, Nature, 326(6112), 483–485, 1987.

Escobedo, J. F., Gomes, E. N., Oliveira, A. P. and Soares, J.: Modeling hourly and daily fractions of UV, PAR and NIR to global solar radiation under various sky conditions at Botucatu, Brazil, Applied Energy, 86(3), 299–309, 2009.

Gates, D. M.: Biophysical ecology, Courier Corporation., 2012.

González, G., Willig, M. R. and Waide, R. B.: Ecological gradient analyses in a tropical landscape: Multiples perspectives and emerging themes, Ecological Bulletins, 54, 13–20, 2013.

González, G., Lodge, D. J., Richardson, B. A. and Richardson, M. J.: A canopy trimming experiment in Puerto Rico: The response of litter decomposition and nutrient release to canopy opening and debris deposition in a subtropical wet forest, Forest ecology and management, 332, 32–46, 2014.

González, G., Van Beusekom, A. E., Stankavich, S., Zimmerman, J. K. and Ramírez, A.: Luquillo Experimental Forest Canopy Trimming Experiment data, Fort Collins, CO: Forest Service Research Data Archive, doi:https://doi.org/10.2737/RDS-2019-0051, 2019.

Hall, T. C., Sealy, A. M., Stephenson, T. S., Kusunoki, S., Taylor, M. A., Chen, A. A. and Kitoh, A.: Future climate of the Caribbean from a super-high-resolution atmospheric general circulation model, Theor Appl Climatol, 113(1–2), 271–287, doi:10.1007/s00704-012-0779-7, 2013.

Hogan, J. A., Zimmerman, J. K., Thompson, J., Uriarte, M., Swenson, N. G., Condit, R., Hubbell, S., Johnson, D. J., Sun, J., F., Chang-Yang, C.-H., Su, S.-H., Ong, P., Rodriguez, L., Monoy, C. C., Yap, S. and Davies, S. J.: The Frequency of Cyclonic
Wind Storms Shapes Tropical Forest Dynamism and Functional Trait Dispersion, Forests, 9(7), 404, doi:10.3390/f9070404, 2018.

Holm, J., Chambers, J., Collins, W. and Higuchi, N.: Forest response to increased disturbance in the central Amazon and comparison to western Amazonian forests, Biogeosciences, 11(20), 5773–5794, 2014.

Karmalkar, A. V., Taylor, M. A., Campbell, J., Stephenson, T., New, M., Centella, A., Benzanilla, A. and Charlery, J.: A review of observed and projected changes in climate for the islands in the Caribbean, Atmosf, 26(2), 283–309, 2013.

Knutson, T. R., McBride, J. L., Chan, J., Emanuel, K., Holland, G., Landsea, C., Held, I., Kossin, J. P., Srivastava, A. K. and Sugi, M.: Tropical cyclones and climate change, Nature Geosci, 3(3), 157–163, doi:10.1038/ngeo779, 2010.

Lee, C.-Y., Tippett, M. K., Sobel, A. H. and Camargo, S. J.: An Environmentally Forced Tropical Cyclone Hazard Model, Journal of Advances in Modeling Earth Systems, 10(1), 223–241, doi:10.1002/2017MS001186, 2018.

van Leeuwen, T. T., Frank, A. J., Jin, Y., Smyth, P., Goulden, M. L., Werf, G. R. van der and Randerson, J. T.: Optimal use of land surface temperature data to detect changes in tropical forest cover, Journal of Geophysical Research: Biogeosciences, 116(G2), doi:10.1029/2010JG001488, 2011.

Lin, K.-C., Hamburg, S. P., Wang, L., Duh, C.-T., Huang, C.-M., Chang, C.-T. and Lin, T.-C.: Impacts of increasing typhoons on the structure and function of a subtropical forest: reflections of a changing climate, Sci Rep, 7(1), 1–10, doi:10.1038/s41598-017-05288-y, 2017.

Lodge, D. J., Cantrell, S. A. and González, G.: Effects of canopy opening and debris deposition on fungal connectivity, phosphorus movement between litter cohorts and mass loss, Forest ecology and management, 332, 11–21, 2014.

Mildrexler, D. J., Zhao, M. and Running, S. W.: A global comparison between station air temperatures and MODIS land surface temperatures reveals the cooling role of forests, Journal of Geophysical Research: Biogeosciences, 116(G3), 2011.

Mitchell, S. J.: Wind as a natural disturbance agent in forests: a synthesis, Forestry (Lond), 86(2), 147–157, doi:10.1093/forestry/cps058, 2013.

Monsi, M.: Uber den Lichtfaktor in den Pflanzengesellschaften und seine Bedeutung fur die Stoffproduktion, Jpn. J. Bot, 14, 22–52, 1953.

Pau, S., Detto, M., Kim, Y. and Still, C. J.: Tropical forest temperature thresholds for gross primary productivity, Ecosphere, 9(7), e02311, doi:10.1002/ecs2.2311, 2018.

Richardson, B. A., Richardson, M. J., González, G., Shiels, A. B. and Srivastava, D. S.: A canopy trimming experiment in Puerto Rico: the response of litter invertebrate communities to canopy loss and debris deposition in a tropical forest subject to hurricanes, Ecosystems, 13(2), 286–301, 2010.

Scatena, F. N.: Relative Scales of Time and Effectiveness of Watershed Processes in a Tropical Montane Rain Forest of Puerto Rico, in Natural and Anthropogenic Influences in Fluvial Geomorphology, pp. 103–111, American Geophysical Union (AGU), 1995.

Scatena, F. N. and Lugo, A. E.: Geomorphology, disturbance, and the soil and vegetation of two subtropical wet steepland watersheds of Puerto Rico, Geomorphology, 13(1–4), 199–213, doi:10.1016/0169-555X(95)00021-V, 1995.
Schwartz, N. B., Uriarte, M., DeFries, R., Bedka, K. M., Fernandes, K., Gutiérrez-Vélez, V. and Pinedo-Vasquez, M. A.: Fragmentation increases wind disturbance impacts on forest structure and carbon stocks in a western Amazonian landscape, Ecological Applications, 2017.

Shiels, A. B. and González, G.: Understanding the key mechanisms of tropical forest responses to canopy loss and biomass deposition from experimental hurricane effects, Forest Ecology and Management, 332, 1–10, 2014.

Shiels, A. B., Zimmerman, J. K., Garcia-Montiel, D. C., Jonckheere, I., Holm, J., Horton, D. and Brokaw, N.: Plant responses to simulated hurricane impacts in a subtropical wet forest, Puerto Rico, Journal of Ecology, 98(3), 659–673, doi:10.1111/j.1365-2745.2010.01646.x, 2010.

Shiels, A. B., González, G. and Willig, M. R.: Responses to canopy loss and debris deposition in a tropical forest ecosystem: Synthesis from an experimental manipulation simulating effects of hurricane disturbance, Forest Ecology and Management, 332, 124–133, 2014.

Shiels, A. B., González, G., Lodge, D. J., Willig, M. R. and Zimmerman, J. K.: Cascading effects of canopy opening and debris deposition from a large-scale hurricane experiment in a tropical rain forest, Bioscience, 65(9), 871–881, 2015.

ter Steege, H.: Hemiphot.R: Free R scripts to analyse hemispherical photographs for canopy openness, leaf area index and photosynthetic active radiation under forest canopies, 2018.

Van Beusekom, A. E., Álvarez-Berrios, N. L., Gould, W. A., Quiñones, M. and González, G.: Hurricane Maria in the U.S. Caribbean: Disturbance Forces, Variation of Effects, and Implications for Future Storms, Remote Sensing, 10(9), 1386, doi:10.3390/rs10091386, 2018.

Van Stan, J. T., Coenders-Gerrits, M., Dibble, M., Bogeholz, P. and Norman, Z.: Effects of phenology and meteorological disturbance on litter rainfall interception for a Pinus elliottii stand in the Southeastern United States, Hydrological Processes, 31(21), 3719–3728, doi:10.1002/hyp.11292, 2017.

Waide, R. B., Comarazamy, D. E., González, J. E., Hall, C. A. S., Lugo, A. E., Luvall, J. C., Murphy, D. J., Ortiz-Zayas, J. R., Ramírez-Beltrán, N. D., Scatena, F. N. and Silver, W. L.: Climate variability at multiple spatial and temporal scales in the Luquillo Mountains, Puerto Rico, Ecological Bulletins, 54, 21–41, 2013.

Wang, H., Hall, C. A. S., Scatena, F. N., Fetcher, N. and Wu, W.: Modeling the spatial and temporal variability in climate and primary productivity across the Luquillo Mountains, Puerto Rico, Forest Ecology and Management, 179(1–3), 69–94, doi:10.1016/S0378-1127(02)00489-9, 2003.

Winslow, J. C., Hunt Jr, E. R. and Piper, S. C.: A globally applicable model of daily solar irradiance estimated from air temperature and precipitation data, Ecological Modelling, 143(3), 227–243, 2001.

Wu, H. and Li, Z.-L.: Scale Issues in Remote Sensing: A Review on Analysis, Processing and Modeling, Sensors, 9(3), 1768–1793, doi:10.3390/s9031768, 2009.

Yoshida, K., Sugi, M., Mizuta, R., Murakami, H. and Ishii, M.: Future Changes in Tropical Cyclone Activity in High-Resolution Large-Ensemble Simulations, Geophysical Research Letters, 44(19), 9910–9917, 2017.

Zimmerman, J. K., Hogan, J. A., Shiels, A. B., Bithorn, J. E., Carmona, S. M. and Brokaw, N.: Seven-year responses of trees to experimental hurricane effects in a tropical rainforest, Puerto Rico, Forest Ecology and Management, 332, 64–74, doi:10.1016/j.foreco.2014.02.029, 2014.
Zimmerman, J. K., Hogan, J. A., Nytch, C. J. and Bithorn, J. E.: Effects of hurricanes and climate oscillations on annual variation in reproduction in wet forest, Puerto Rico, Ecology, 99(6), 1402–1410, doi:10.1002/ecy.2236, 2018.
Figure 1: Primary factor time series, or factors that change due to the initial disturbance changes. Orange vertical lines are the periods of canopy trimming experiment (CTE) 1, CTE2, and hurricanes Irma and Maria (appear as one line), sequentially. Daily values of data are represented with fitted smoothed lines and thick dotted dashed lines connect annual averages of daily data to aid in visualization of the differences between the time series. Red lines are from treated areas and black lines are from control areas (until the hurricanes) beneath the canopy. Green lines are from the tower weather station above the CTE control canopy and blue lines are from satellite data. Vertical bars show the acute change after an event for CTE data (gray) and satellite data (blue). The time of recovery from each experiment (if seen) is marked with a gray circle. Plots show a) solar radiation beneath the canopy; b) air temperature; and d) soil temperature.}

Deleted:

Deleted: Points are data values on a day and lines are smoothed data. ...ed points and ...[6]

Deleted: Points are from control areas (until the hurricanes) beneath the canopy. Gray ...points and ...[7]

Deleted: trimmed ...[8]
Figure 2: Secondary factor time series, or factors that change because of primary factor changes. Orange vertical lines are the periods of canopy trimming experiment (CTE) 1, CTE2, and hurricanes Irma and Maria (appear as one line), sequentially. Daily values of data are represented with fitted smoothed lines and thick dotted dashed lines connect annual averages of daily data to aid in visualization of the differences between the time series. Red lines are from treated areas and black lines are from control areas (until the hurricanes) beneath the canopy. Blue lines are from satellite data. Vertical bars show the acute change after an event for CTE data (gray) and satellite data (blue). The time of recovery from each experiment (if seen) is marked with a gray circle. Plots show a) air relative humidity; b) soil moisture shallow; c) soil moisture profile; d) leaf canopy leaf saturation; and e) litter leaf saturation.
Table 1: Recovery time from the canopy trimming experiments (CTE1 and 2) and the change after each disturbance event as seen by field instruments and satellites.

	Recovery Time	Change from CTE	Change from Hurricane							
	CTE1	CTE2	CTE1*	CTE2*	Instruments**	Satellite**				
Solar Radiation	6.0 yrs	>2.8 yrs	214 %	919 %	99 W/m²	666 %	74 W/m²	234 %	40 W/m²	
Throughfall	8.9 yrs	>2.8 yrs	100 %	2 mm/day	119 %	2 mm/day	46 %	4 mm/day	12 %	3.1 °C
Temperature Air	2.4 yrs	2.5 yrs	3 %	0.6 °C	3 %	0.7 °C	2 %	0.4 °C	12 %	3.1 °C
Temperature Soil	2.4 yrs	2.0 yrs	3 %	0.9 °C	8 %	1.8 °C	0 %	0.05 °C		
Relative Humidity	2.7 yrs		-5 %	-4 %	-6 %	-6 %				
Shallow Soil Vol. Water Content	>2.8 yrs		58 %	0.1 m³/m²	5 %	0.02 m³/m²	67 %	0.1 m³/m²		
Soil Profile Vol. Water Content	0.7 yrs	>2.8 yrs	29 %	0.1 m³/m²	48 %	0.1 m³/m²	0 %	-0.002 m³/m²		
Saturation Canopy	>2.8 yrs		-42 %	-7 %	-46 %	-7 %				
Saturation Litter	1.0 yrs	>2.8 yrs	-11 %	-2 %	189 %	-40 %	30 %	-10 %		

* First column is percentage change from control; second column in italics is absolute change from control
** First column is percentage change from before hurricane María; second column italics is absolute change from before hurricane María
EDITOR: Thank you for submitting a revised version of your manuscript. The manuscript has now been seen by an associate editor who despite the positive assessment of the changes made following the open discussion, recommends major revisions before sending the manuscript to the initial reviewers.

In “Understanding Tropical Forest Abiotic Response to Hurricanes using Experimental Manipulations, Field Observations, and Satellite Data” the authors present a 16 year-long time series of experimental data to describe the change and recovery of abiotic variables following a hurricane in tropical forest. Although the authors made an effort to address the comments of the reviewers, the poor structure of the manuscript makes it difficult to evaluate its scientific merits. I, therefore, propose that the authors restructure the manuscript before it is being sent out for review by the initial reviewers. The revision should not simply try to please the reviewer by ticking the boxes listed below but should consist of a thorough effort guided by the referee’s comment to enhance the presentation and the flow of the study.

A paragraph should be between 10 and 15 lines long and should contain a single idea. Paragraphs help the readers to absorb the information in a natural way. The manuscript contains too many paragraphs that exceeds the recommended length as well as paragraphs that touch on more than one idea/issue (L115-133). Use paragraphs correctly to increase the flow of the text.

The method section should contain a description of all methods used in the study. Over 20% of the result section should be moved into the methods section. Use subsections to better structure the methods. One way could be to have a subsection describing the experimental treatments followed by an individual subsection for each variable. At present it is written that the canopy was trimmed and readers are referred to other papers. This manuscript should be a stand-alone piece and readers should be able to grasp the essence of the trimming experiment without having to access other papers. For each variable the methods before and after 2015 should be described as well as the methods used to homogenize the time series. The section could be completed with a subsection explaining how recovery was defined and calculated. The 2015 drought plays a central role in the discussion and its length, intensity and impact should thus be characterized. The tower is mentioned for the first time in the discussion.

AUTHORS: Thank you for your comments. We have significantly restricted the manuscript following your comments, as can be seen in the tracked changes manuscript. We have rewritten the methods and results sections, following the advice here. The methods section now has subsections as suggested, and the tower data is brought up
here. Each abiotic variable type has its own subsection explaining its collection and homogenization. A new subsection contains the description of the response methods. More details of the trimming are now in the introduction so the paper can stand-alone. The drought is characterized in the introduction as suggested. The previous responses to the reviewers have been edited to reflect the new changes. There are now two sets of changes to the tracked changes manuscript: the original edits in response to the reviewers’ comments are under “Ashley Van Beusekom” and the changes after that (in response to the editors comments) are under “Ashley Van Beusekom2”.

EDITOR: In the result sections the authors should draw the attention of the reader to the most interesting results (which should be put into context in the discussion). The current result section contains too many information on the methods or simply repeats the information contained in the captions of the figures (for example 212-215, 222-228, 249-252, 290-325, 344-370, 372-382). A major effort is needed to enhance the quality of the methods section.

AUTHORS: We completely revised the results section as suggested, removing the caption information and moving the methods to the methods section. The interesting results are now highlighted here (instead of first being brought up in the discussion as they were previously).

EDITOR: The figures basically show the time series but fail to convince at a glance what is being written about the quality of the experiments compared to effect of a real hurricane and subsequent recovery. The effect of the experimental treatments and the hurricane on the abiotic environment is being dwarfed by its seasonal variation. Statistics, for example effect sizes, could be used to focus on the figures on the effects rather than the seasonal variation. More processed figures would contribute to the potential impact of the study. Simply showing time series require the readers to do a lot of the work themselves. Can you think of better formats to show the impact and recovery in a single figure? For example, calculate the intercept and slope between control and treatment within a moving window. Plot a time series of the intercept and/or slope (with their uncertainty interval). Differences right after the disturbance should be the largest. Similarities between time series should increase when approaching recovery. An important challenge in science nowadays is to find compelling ways to present large data sets and especially the lessons that can be learned from these data sets. The present figures are not very helpful from that point of view.
AUTHORS: We removed the raw point data that one reviewer requested, and instead added lines connecting annual averages to “aid in visualization of the differences between the timeseries.” The acute change and the point of recovery as indicated by the recovery metrics is marked on each figure. The methods for the figure are now discussed in the methods section, making it more clear that these figures are showing processed results and not raw data.

EDITOR: The first paragraph of the discussion is interesting but it is not backed up by the results.

AUTHORS: The acute change metrics show that CTE2 was more effective than the hurricane at disturbing the forest at the field site. We moved this part into the results to clarify the paragraph. We put more cautionary words in throughout the paragraph to emphasize that this is the start of the discussion, and that there are caveats in direct comparison of experimental and actual hurricane results.

EDITOR: L291 to 300 as well as L328-334 should be moved to the results.

AUTHORS: This has been done.

EDITOR: Specific comments
L119 recovery instead of recognition?

AUTHORS: Changed this to “It is possible that this is a conservative measure for certain biotic species’ perception of abiotic disturbance, but from an abiotic point of view the 15% buffer corresponds with visual recovery in the time series.”

EDITOR: L126- seems to belong to the previous paragraph.
AUTHORS: Added a new topic sentence and tied this paragraph together better. This paragraph is now discussing the metrics we use to quantify the response, so recovery and acute change. The topic sentence is “To explore the differences between responses of different abiotic variables, a smooth time series of each variable was computed, and recovery and acute change of each variable was quantified by pre-defined metrics.” Then the “recovery and acute change pre-defined metric definitions” are discussed.

EDITOR: L137 Not clear how measurements were made above the canopy. I guess a tower was used but this nowhere stated. It is mentioned in the discussion which is too late.

AUTHORS: The tower is now introduced at the beginning of the methods section.

EDITOR: L139 this drought has not been mentioned before and it should be characterized.

AUTHORS: The drought is now characterized in the introduction.

EDITOR: L151 adding a couple of words would enhance the flow of this sentence.

AUTHORS: A few words were added to improve this sentence. It now reads “Soil volumetric water content (VWC) data were collected after 2015 by reflectometers, with one Decagon Devices 5TM sensor in each plot measuring shallowly at 5 cm deep and three Campbell Scientific CS616 sensors in each plot collecting profiles from the surface to 15 cm deep.”

EDITOR: L162 5 m seems low compared to the typical height of a mature canopy, i.e., >30 m.

AUTHORS: Added the word “low canopy” throughout the manuscript to make it clear that we are looking at the low canopy leaves, not the average canopy leaf.
Authors: This sentence was reworked to be two sentences, and the sentences around it were also reworked. It now reads: “The Beer-Lambert law (Monsi, 1953) was used to convert the LAI data into solar radiation estimates, calculating the attenuation the canopy with a specific LAI invokes on the available (above-canopy) light. Annual patterns of photosynthetically active radiation (PAR) extinction coefficients are needed to calculate the attenuation given by the Beer-Lambert law. An annual pattern of these extinction coefficients was solved for by using two years of data of the field-measured CTE2 control plot solar radiation, the tower weather station above-canopy solar radiation, and the MODIS LAI data. The three sets data were interpolated or averaged to daily values, and then the coefficients were calculated on the two years of data before the hurricane (so excluding the 2015 drought). These annual patterns were averaged and smoothed into one annual pattern of extinction coefficients that was applied for every year of the MODIS data.”

Editor: This reference for the method: ter Steege 2018. Given the timing of the experiment this cannot be the primary reference of the method.

Authors: This is the reference for the processing of the photos taken for the experiment, not for the taking of the photos. We added a few words to the beginning of the sentence to make this clearer: “In the reanalysis of the CTE1 data presented here, canopy photos were converted to global solar radiation data with a modified version of the Hemiphot method (ter Steege, 2018) as follows.”

Editor: how was the “uniform overcast sky factor” determined?

Authors: A reference was added, it is an empirical calculation assuming uniform light over the sky. We changed this sentence for clarity to: “Underneath the canopy, PAR can be approximated as the sum of the direct light through all open parts of the canopy and the diffuse light multiplied by 15% (based on empirical equations; Gates, 2012).”
EDITOR: L231 replace altering by alternations, changes, deviation, …?

AUTHORS: Agreed, alternations sounds much better.

EDITOR: L345 be more precise than “quite large”

AUTHORS: Added (214 to 919%).

EDITOR: L349 check the grammar of “concluded in previously”

AUTHORS: Yes, should have been “concluded previously”

EDITOR: L369 soil or air temperature?

AUTHORS: Added “air”.

EDITOR: L377 “in all plots of Fig 2”. This is the discussion so refer to the ecology: give the names of the variables that changed.

AUTHORS: Changed to “as seen by the large magnitude decreases in summer 2015 and the recovery afterwards in air relative humidity, soil moisture, and leaf saturation (Figure 2).”
AUTHORS: Yes, fixed this to “This will create”

EDITOR: L437 Satellite data are poorly integrated in the study. Scaling issues of large pixels vs small scale observations is a well-known issue. It is interesting to see that this issue of scales is leading to an apparent faster recovery. This conclusion is not shown in the results, not embedded in existing literature in the discussion and therefore comes a bit as a surprise in the conclusion.

AUTHORS: Satellite data scaling issues are now first discussed as a result in the last paragraph of the results. We expanded the discussion paragraph on the satellite data, acknowledging that the interesting thing is the quick recover and adding some discussion around this.
RC1: Van Beusekom et al. present measurements of the forest abiotic environment following experimental and natural disturbances in the Luquillo forest in Costa Rica [sic, should be Puerto Rico] over a period of 16 years. They use this information to assess the recovery time of different variables. Measurements such as these can provide valuable insights into the mechanisms which govern a particular ecosystem response – particularly when combined with measurements or modelling of plant responses. The paper is clearly written and presented, and the measurements are well-described and, as best as I can judge, appropriately controlled for changes in measurement technique. However, the key to the story of the paper is the definition of recovery time, and this appears to be somewhat arbitrarily defined with significant consequences for the results. On this basis, I cannot recommend the paper for publication in its current form.

Recovery time is defined in the paper as the point when the treated data time series crosses the control data time series and afterwards stays within 15

The choice of x and y is also critical, however. x=15

Even if one just eyeballs the plots, whilst one can be fairly confident about recovery for solar radiation, for throughfall it is much less clear (there is even divergence in 2014 following the supposed point of recovery, making it questionable whether recovery had even occurred). The definition of recovery time therefore needs some careful thought and sensitivity testing to give confident that the results are robust to the method used.

AUTHORS: We added a subsection to the methods “Quantifying Abiotic Interaction and Response” to explain the reasoning behind the recovery period metric and to make it clear that we ran sensitivity tests to find this method acceptable. The sensitivity testing has a subsection in the results, “Sensitivity Testing on Calculated Recovery Times”. In the Introduction, we agree that recovery is an arbitrarily defined point, saying “This study attempts to quantify abiotic response as acute changes from a hurricane disturbance (experimental or otherwise) and recovery from the changes, for primary and secondary factors. Quantifying the responses makes it possible to assess if the experimental trimming data and satellite data are reasonable sources for studying the effect of hurricane disturbance and appear to be measuring the same abiotic system, as well as appreciate if different events cause substantially different responses. This study does not attempt to determine what amount of recovery is considered ‘normal’ conditions to biotic life, or in other words what would affect tertiary factors, but instead quantifies changes in the abiotic factors that can be used to frame the changes found in biotic factors post-hurricane in many previous studies.
including those of biotic abundance (Shiels et al., 2015), soil biochemistry (Arroyo and Silver, 2018), and plant reproduction (Zimmerman et al., 2018).” We have also added annual averages to the plot at the suggestion of the editor, and we discuss how the response seen in the annual averages compares with the metrics off the smoothed time series.

We also added some discussion around the purpose and intent of the recovery period metric, to clarify what “recovered” actually means. At the end of the Discussion, we now say: “The results in the sensitivity tests showed that quantifying recovery times using smoothed time series to homogenize data from several sources was a worthwhile effort, in that the abiotic factors can be sorted into quicker and slower recoveries, with results robust to the smoothing method. However, the definition of the ‘recovered point’ in time will be dependent on what biotic life considers ‘normal’, necessarily different for every organism. Across all abiotic factors, this study used a uniform buffer metric of ‘within 15% agreement between control and treated plots’ once the experimental response is finished, in order to quantify the length of abiotic recovery as a starting point to for other researchers to frame the changes found in biotic factors post-hurricane. The percentage of the buffer did not matter to the results in most cases, as shown in the sensitivity tests. However, the percentage did alter the results on factors with more complicated recovery paths, such as litter saturation (Figure 2e), and factors with more data variance, such as solar radiation and throughfall (Figures 1a, b). This points to the difficulty of quantifying recovery in an environmental system.”

RC1: Minor comments:
Line 94. Were Campbell sensors used after 2015 as well? In the previous paragraph it indicates not, but here that they were.

AUTHORS: Campbell temperature 107 sensors were only used before 2015, and after 2015, soil VWC was measured by CS616 sensors, which are also made by Campbell. We changed the wording in this paragraph to refer to the sensors as ‘107 sensors’ instead of Campbell sensors to avoid this confusion.

RC1: L187. Is this really resilience? There is presumably just less vegetation to be disturbed, which naturally leads to a smaller fluctuation. I would argue it just leads to lower amplitude of variability.
AUTHORS: We clarified this statement, pointing out that the treated plots are closer to recovery after the hurricane than the control plots are. “The passage of hurricane Maria, 2.8 years after the second experiment, happened when most of the abiotic factors had not recovered and the rest had just recovered. Temperatures after CTE1 and CTE2 and relative humidity in the air after CTE2 recovered in year three, less than half the time it took solar radiation to recover after CTE1, and a less than a third of the time it took throughfall to recover (Table 1). The effect of Hurricane Maria was smaller on the treated plots than the control plots, such that the absolute level of abiotic disturbance on the treated plots was smaller than on the control plots (Figures 1, 2). It is expected that the abiotic fluctuations from the hurricane would be smaller in the unrecovered treated plots than in the control plots since there is less vegetation to disturb. The fluctuation is smaller, but furthermore for most of the abiotic factors, the treated plots are closer to the recovered state after the hurricane than are the control plots. For example, there is more solar radiation reaching the forest floor in the treated plots than in the control plots before hurricane Maria, but after the hurricane there is less solar radiation reaching the forest floor in the treated plots than in the control plots (Figure 1a). The same scenario can be seen in the throughfall (Figure 1b), the temperatures to a lesser extent (Figures 1c, d), the soil moisture profile (Figure 2c), and the litter saturation (Figure 2e). The air relative humidity has the opposite scenario, showing treated plots closer to the recovery state of less humidity in the air after the hurricane (Figure 2a).”

RC1: L188. “greater disturbance” is not clear. Perhaps, “greater fluctuations in the measured abiotic variables due to disturbance”?

AUTHORS: Changed to “larger abiotic fluctuations due to disturbance”.

RC1: L190. What exactly does it mean that “tree demographics were . . . dynamic”? Does this refer to the mix of ages in the forest, the rate of growth, the rate of turnover?

AUTHORS: All of the above. We added an explanation “(the rates of species and stem mortality and growth)”
RC2: General Comment
This study integrated the observations both from in-situ and satellite platform for studying the dynamics of vegetation change in Luquillo Experimental Forest. Two canopy trimming experiments, one in 2004 and another in 2015, were designed as control experiments to reveal the vegetation recovery in response to the wind damage to the trees, especially for the case caused by the tropical storms (Irma and Maria) in 2017. The authors reported long term and continues time series of under-canopy solar radiation, throughfall, air temperature (under and above), soil water, and relative humidity and leaf saturation in the manuscript. This work can provide an insight into the vegetation recovery due to the wind disturbance in the tropical climate zone. However, the structure of the manuscript and approach for analysis the data are a bit confusing. I suggested that the authors provide a general review of the vegetation recovery in the introduction section and try to focus on the study results for the tropics. Here, I provided a few studies (listed in the reference) including observation and modelling works which are relevant for providing a general review of the wind disturbance research. The introduction of the canopy trimming experiment can move to the methodology section which can be the design of canopy trimming and natural disturbance events. Along with this discussion, the method applied for this study to identify the recovery period is questionable, and the authors didn’t include or calculate the uncertainty caused by instruments, sampling approaches, or data analysis (smoothing). Regarding the issue for identifying the recovery period, I recommended the authors to analysis the annual maximum observations, for example the study made by Lin et al. (2016). By comparing annual maximum values over a long-term time series is helpful to identify the status of vegetation recovery period. I had several specific comments for the authors to improve the current version of this manuscript.

AUTHORS: Thank you for your detailed comments. We address those below. We moved the description of the experiment to the methods and we have also added the Mitchell (2013) reference in the introduction. We have greatly expanded the methodology description of the recovery metrics (with added results), citing Lin et al. (2016) as discussed under the comment 8. We also added annual averages to the figures and discussed how the annual summaries compare to the smoothed time series metrics in abiotic acute change and recovery time. The papers on windthrow modelling and tree mortality do not seem to be on topic as we are concerned with the abiotic environment and not the geographical extent of the disturbance.

RC2: Specific comments
1. Using the measurement of wetness of litter leaves and soil water to understand the canopy recovery physically is not reasonable. Although the wetness of litter leaves and soil moisture can be affected by the coverage of the overstory canopy, the magnitude of soil moisture and litter leaves are fixed which might only depend only on the soil property and leaf types. Please explain how to use the observation of soil moisture and wetness of litter leaves to reveal the status vegetation recovery.

AUTHORS: We are not attempting to understand canopy recovery, but instead how the forest abiotic environment responds to the vegetation changes, and when the abiotic environment is recovered to its pre-hurricane state. We added this sentence in the introduction “Instead of trying to estimate if and when the vegetation has returned to its pre-disturbance state, insight on ecosystem health can be gained by studying how the abiotic factors respond to the disturbance.” We agree that the timeline of soil and litter moisture recovery very much depends on the types of soil and leaves involved. We are focused on the response, not the specific timeline. This comment has been added to the discussion in the section talking about the soil and litter patterns: “Specific timelines for recovery would be expected to be highly influenced by the tree species and soil types, and the rates seen here for all abiotic factors would not necessarily apply to all hurricane-effected tropical forests. Nevertheless, general patterns might be expected to hold.” We have pointed out that similar patterns to the litter saturation response patterns seen here were also presented in Southeastern United States.

RC2: 2.P2L61: (wetness of canopy and litter leaves) How to determine the wetness of canopy leave and litter leaves.

AUTHORS: This is discussed in the methods, “Leaf saturation data were collected after 2015 by Decagon Devices dielectric leaf wetness sensors in the canopy leaves 5 m up from the ground and in the litter leaf layer.”

RC2: 3.P3L79: “locally to the points”, Can you show the original points in your results?

AUTHORS: We added points to the plots, but on suggestion of the editor we needed to make the plots clearer, so we have removed the points and added annual averaging lines instead. The tracked changes show the point plots; hopefully you agree that the annual average lines are much clearer than the point plots.
RC2: 4.P3L90: The MODIS only measured the sink temperature of the surface. Why did the authors compare the air temperature observations to the MODIS LST observations?

AUTHORS: We compared to see if any of the forest cover change seen in the field observations of temperature (above and below canopy) were comparable to the LST. We clarified this in the methods, saying “MODIS LST measures energy balance at the land surface, so is not representative of air temperature under the canopy but it will be affected by changes in air temperature. Annual maximums of LST and air temperature are highly correlated across the globe with correlation strongest in forested areas (Mildrexler et al., 2011), and LST has been shown to respond to forest cover changes in other areas of the tropics (van Leeuwen et al., 2011).” Again in the results, we clarified “The (MODIS LST-estimated) temperature satellite data plot between the field air temperature data measured below the canopy and that measured above the canopy at 30 m (black and gray lines respectively, Figure 1c), giving evidence that the satellite measurements were affected by a vertically averaged Earth, as might be expected from a LST representative of surface energy balance.”

RC2: 5.P3L92: How many 5TM sensors were deployed for soil water observation? What is the minimum requirement for avoiding the spatial heterogeneity under canopy at this study site?

AUTHORS: We use several sensors in each of the 6 plots to avoid this problem. We added the number of sensors to each paragraph in the methods, for each type of sensors. At the beginning of the methods, we now explain “To account for spatial heterogeneity under the canopy, multiple sensors were used in each plot were used and the results were averaged in all control and treated plots (with quality control).”

RC2: 6.P4L115-L124: Too many details were lost or cannot be found. For example, the relationship between the 8-day MODIS LAI and 8-day in-situ solar radiation was built up for converting the MODIS LAI to solar radiation for the study site, but the authors didn’t present this information and uncertainty.
AUTHORS: We clarified this section by expanding description to “The Beer-Lambert law (Monsi, 1953) was used to convert the LAI data into solar radiation estimates, calculating the attenuation the canopy with a specific LAI invokes on the available (above-canopy) light. Annual patterns of photosynthetically active radiation (PAR) extinction coefficients are needed to calculate the attenuation given by the Beer-Lambert law. An annual pattern of these extinction coefficients was solved for by using two years of data of the field-measured CTE2 control plot solar radiation, the tower weather station above-canopy solar radiation, and the MODIS LAI data. The three sets data were interpolated or averaged to daily values, and then the coefficients were calculated on the two years of data before the hurricane (so excluding the 2015 drought). These annual patterns were averaged and smoothed into one annual pattern of extinction coefficients that was applied for every year of the MODIS data.” We also now separated each variable’s method of processing into it’s own subsection, for clarity.

RC2: 7.P5L149-150: The reason for applying 1year smooth window is not clear, please explain in the method section.

AUTHORS: We added an expanded explanation to the methods: “The LOESS degree of smoothing is contingent on the size of the local neighborhood, which here was always chosen to be one year of data around each point. The yearly smoothing was done to extract the larger signal from the data and to homogenize the different collection intervals of the data. The automated sensor field data captured larger amounts of background noise than the temporally smoothed rain funnel data and the geographically smoothed satellite data; and to a lesser extent, the geographically-smoothed soil sample, litterbag, and canopy photo data. The one-year smoothing neighborhood was chosen to be longer than the longest length of time between repeat measurements across all data types and methods.”

RC2: 8.P5L159-161: The way for justifying the recovery period is not clear, please explain the method in detail.

AUTHORS: We add a subsection to the methods “Quantifying Abiotic Interaction and Response” to explain the reasoning behind the recovery period metric and to make it clear that we ran sensitivity tests to find this method acceptable. The sensitivity testing has a subsection in the results, “Sensitivity Testing on Calculated Recovery Times”.

35
We also added some discussion around the purpose and intent of the recovery period metric, to clarify what “recovered” actually means. At the end of the Discussion, we now say: “The results in the sensitivity tests showed that quantifying recovery times using smoothed time series to homogenize data from several sources was a worthwhile effort, in that the abiotic factors can be sorted into quicker and slower recoveries, with results robust to the smoothing method. However, the definition of the ‘recovered point’ in time will be dependent on what biotic life considers ‘normal’, necessarily different for every organism. Across all abiotic factors, this study used a uniform buffer metric of ‘within 15% agreement between control and treated plots’ once the experimental response is finished, in order to quantify the length of abiotic recovery as a starting point to for other researchers to frame the changes found in biotic factors post-hurricane. The percentage of the buffer did not matter to the results in most cases, as shown in the sensitivity tests. However, the percentage did alter the results on factors with more complicated recovery paths, such as litter saturation (Figure 2e), and factors with more data variance, such as solar radiation and throughfall (Figures 1a, b). This points to the difficulty of quantifying recovery in an environmental system.”

RC2: 9 P6L169-176: I didn’t understand why the authors reported the residuals of the statistical analysis in this paragraph. Is this information helpful for understanding the uncertainty of various measurements?

AUTHORS: This is the method for correlating time series: we remove seasonality and trends and correlate what is left over. We had called these ‘leftovers’ as ‘residuals. To make this clearer, we changed the words “residuals of [data]” to “the prewhitened [data].”

RC2: 10 In the Discussion section: It is very difficult for me to find/justify the information of the recovery periods, such 10 years, 2.8 years and others values from Figs 1 and 2. I recommended the authors to indicate such a piece of information both in this section and key Figs.

AUTHORS: We have redone the figures to have thick lines of annual averages to aid in the visualization of the recovery, and also added circles marking the recovery point (as well as bars marking the acute changes). We also added a few more references to Table 1, where all the specific recovery information is at.
