Three-manifold invariants and their relation with the fundamental group

E. Guadagnini a,b and L. Pilo b,c

(a) Dipartimento di Fisica dell’Università di Pisa,
Piazza Torricelli, 2. 56100 Pisa, Italy

(b) Istituto Nazionale di Fisica Nucleare, Pisa Italy.

(c) Scuola Normale Superiore
Piazza dei Cavalieri 7. 56100 Pisa, Italy.

E-Mail: guadagni@ipifidpt.difi.unipi.it, pilo@ibmth.difi.unipi.it

Abstract. We consider the 3-manifold invariant $I(M)$ which is defined by means of the Chern-Simons quantum field theory and which coincides with the Reshetikhin-Turaev invariant. We present some arguments and numerical results supporting the conjecture that, for nonvanishing $I(M)$, the absolute value $|I(M)|$ only depends on the fundamental group $\pi_1(M)$ of the manifold M. For lens spaces, the conjecture is proved when the gauge group is $SU(2)$. In the case in which the gauge group is $SU(3)$, we present numerical computations confirming the conjecture.
1 Introduction

Recently, new 3-manifold invariants \([1, 2]\) have been discovered; the algebraic aspects of their construction, which is based on the structure of simple Lie groups, are well understood \([3, 4, 5, 6, 7, 8, 9]\). However, the topological meaning of these invariants is still unclear. Let us denote by \(I(M)\) the invariant of the 3-manifold \(M\) which is closed, connected and orientable; \(I(M)\) is the invariant defined by means of the Chern-Simons quantum field theory \([1, 9]\) and coincides with the Reshetikhin-Turaev invariant \([2, 3]\). In general, it is not known how \(I(M)\) is related, for instance, to the homotopy class of \(M\) or to the fundamental group of \(M\). In this article we shall formulate the following

Conjecture: for nonvanishing \(I(M)\), the absolute value \(|I(M)|\) only depends on the fundamental group \(\pi_1(M)\).

In the absence of a general proof, we shall verify the validity of the conjecture for a particular class of manifolds: the lens spaces. There are examples of lens spaces \(M_1\) and \(M_2\) with the same fundamental group \(\pi_1(M_1) \simeq \pi_1(M_2)\) which are not homeomorphic; for all these manifolds, we shall prove that (for nonvanishing invariants) \(|I(M_1)| = |I(M_2)|\) when \(I(M)\) is the invariant associated with the group \(SU(2)\). In the case in which the gauge group is \(SU(3)\), we will present numerical computations confirming the conjecture. Our results are in agreement with the computer calculations for \(SU(2)\) of Freed and Gompf \([10]\) and the expression of the \(SU(2)\) invariant obtained by Jeffrey \([11]\). Differently from \([10]\) and \([11]\), our approach is based exclusively on the properties of 3-dimensional Chern-Simons quantum field theory. We shall use general surgery rules to compute \(I(M)\) and, in our construction, invariance under Kirby moves is manifestly satisfied.

Our notations and conventions are described in section 2. The expression of the invariant \(I(M)\) for a generic lens space is derived in section 3 and, for the gauge group \(SU(2)\), the validity of our conjecture is proved in section 4. The numerical computations for the group \(SU(3)\) are reported in section 5 and the conclusions are contained in section 6.

2 Surgery rules

The basic ingredient in the construction of the 3-manifold invariant \(I(M)\) is a polynomial invariant \(E(\mathcal{L})\) for oriented, framed and coloured links \(\{\mathcal{L}\} \subset S^3\). In the Chern-Simons field theory, this link invariant is defined by the expectation values of the Wilson line operators \([1]\); each link component is framed and its colour is given by an irreducible representation of a simple compact Lie group which is called the gauge group. For example, when the gauge group is \(SU(N)\) and each link component has colour corresponding to the fundamental representation of \(SU(N)\), \(E(\mathcal{L})\) is determined by the skein relation \([1, 2]\)

\[
q^{1/(2N)} E(\mathcal{L}_+) - q^{-1/(2N)} E(\mathcal{L}_-) = (q^{1/2} - q^{-1/2}) E(\mathcal{L}_0),
\]

(1)
where \(q = \exp(-i2\pi/k) \) is the deformation parameter and \(k \) is the renormalized coupling constant of the Chern-Simons field theory. The standard skein-related links \(\mathcal{L}_+ \), \(\mathcal{L}_- \) and \(\mathcal{L}_0 \) correspond to a configuration with over-crossing, under-crossing and no-crossing respectively. Moreover, under an elementary \(\pm 1 \) modification of the framing of a link component, \(E(\mathcal{L}) \) gets multiplied by the factor \(q^{\pm(N^2-1)/2N} \). Finally, the factorization property \([1,12]\) which holds for the distant union of links fixes the normalization of the unknot with preferred framing

\[
E_0[\text{fund.}] = (q^{N/2} - q^{-N/2})/(q^{1/2} - q^{-1/2}) \quad .
\]

In general, the colour which characterizes one link component is an element of the algebra \(\mathcal{T} \) which coincides with the complex extension of the representation ring of the gauge group. The sum operation in this algebra extends by linearity to \(E(\mathcal{L}) \); whereas the product operation in the colour algebra \(\mathcal{T} \) simply corresponds to the satellites obtained from the companion links by standard cabling \([1,13]\). For unitary groups, the fundamental skein relation \([1]\), the normalization \((2)\) of the unknot and the correspondence between cabled components and higher-dimensional representations of the gauge group uniquely determine the values of the link invariant \(E(\mathcal{L}) \) for arbitrary coloured link components.

Let us denote by \(\mathcal{L}_1 \# \mathcal{L}_2[\rho] \) the connected sum of the links \(\mathcal{L}_1 \) and \(\mathcal{L}_2 \) in which the component which connects these two links has colour given by the irreducible representation \(\rho \) of the gauge group. From the properties of the Chern-Simons field theory it follows that \([1,13]\)

\[
E(\mathcal{L}_1 \# \mathcal{L}_2[\rho]) = \frac{E(\mathcal{L}_1) E(\mathcal{L}_2)}{E_0[\rho]} \quad ,
\]

where \(E_0[\rho] \) is the value of the unknot with preferred framing and colour \(\rho \).

For integer values of the Chern-Simons coupling constant \(k \) \((k = 1, 2, 3, ...) \), the set of vanishing link invariants defines an ideal \(\mathcal{I}_k \) of \(\mathcal{T} \). Thus, for fixed integer \(k \), the colour states belong to the algebra \([13]\) of the equivalence classes

\[
\mathcal{T}_{(k)} = \mathcal{T} / \mathcal{I}_k \quad .
\]

Usually, \(\mathcal{T}_{(k)} \) is of finite order \([14]\) and, for appropriate values of \(k \), \(\mathcal{T}_{(k)} \) is isomorphic with the Verlinde algebra \([15]\) which is determined by of the fusion rules of certain two-dimensional conformal models \([1]\). We shall now concentrate on \(\mathcal{T}_{(k)} \) when the gauge group \(G \) is \(SU(2) \) \([13]\) or \(SU(3) \) \([16]\). For \(G = SU(2) \) and \(k = 1 \), \(\mathcal{T}_{(1)} \) is isomorphic with the group algebra of \(Z_2 \), which is the center of \(SU(2) \). For \(G = SU(2) \) and \(k \geq 2 \), the ideal \(\mathcal{I}_k \) is generated by the representation with \(J = (k-1)/2 \) and \(\mathcal{T}_{(k)} \) is of order \((k-1) \). For \(G = SU(3) \) and \(k = 1, 2 \), the algebra \([1] \) is isomorphic with the group algebra of \(Z_3 \), which is the center of \(SU(3) \). For \(G = SU(3) \) and \(k \geq 3 \), the ideal \(\mathcal{I}_k \) is generated by the two irreducible representations with Dynkin labels \((k-1,0)\) and \((k-2,0)\); in this case, \(\mathcal{T}_{(k)} \) is of order \((k-1)(k-2)/2\).

We shall denote by \(\{ \psi | i \} \) (with \(i = 1, 2, ..., \dim(\mathcal{T}_{(k)}) \)) the elements of a basis in \(\mathcal{T}_{(k)} \). When \(G = SU(2) \) and \(k \geq 2 \) or when \(G = SU(3) \) and \(k \geq 3 \), each
\(\psi[i] \) represents the equivalence class of an irreducible representation of the gauge group. For low values of \(k \), \(\psi[i] \) corresponds to an irreducible representation of the gauge group up to a nontrivial multiplicative factor [13, 14]. The unit in \(T(k) \) will be denoted by \(\psi[1] \); \(\psi[1] \) is the class defined by the trivial representation.

Let us now consider the definition of the 3-manifold invariant \(I(M) \). Each 3-manifold \(M \), which is closed, connected and orientable, admits a surgery presentation [17] given by Dehn surgery on \(S^3 \). Each “honest” [17] surgery instruction can be represented by a framed link \(L \subset S^3 \) with components \(\{ L_b \} \) with \(b = 1, 2, ... \). The surgery link \(L \) is not oriented and an integer surgery coefficient \(r_b \) is attached to the component \(L_b \). The framing \(L_{bf} \) of \(L_b \) is specified by the linking number

\[
\ell_k (L_b, L_{bf}) = r_b.
\]

The surgery link associated to the manifold \(M \) is not unique. Indeed, if the surgery links \(L \) and \(L' \) are related by a finite sequence of Kirby moves, the corresponding manifolds are homeomorphic [18]. Therefore, each 3-manifold \(M \) is characterized by a class of “equivalent” surgery links in \(S^3 \), where “equivalent” links means links related by Kirby moves.

Let \(L \subset S^3 \) be a surgery link for the manifold \(M \). The invariant \(I(M) \) is defined in terms of the expectation value \(E(L) \) of the Wilson line operators associated with the surgery link \(L \). More precisely, one introduces an (arbitrary) orientation and a particular colour state \(\Psi_0 \) for each component of \(L \). For fixed integer \(k \), the surgery colour state \(\Psi_0 \in T(k) \) is

\[
\Psi_0 = a_k \sum_i E_0[i] \psi[i],
\]

where the sum is performed over all the elements \(\{ \psi[i] \} \) of the basis of \(T(k) \). The coefficients \(\{ E_0[i] \} \) coincide with the expectation values of the unknot with preferred framing and colour \(\psi[i] \). When the gauge group \(G \) is \(SU(2) \), \(a_k \) is given by [13]

\[
a_k = \begin{cases}
1/\sqrt{2} & k = 1 \\
\sqrt{\frac{2}{k}} \sin (\pi/k) & k \geq 2
\end{cases},
\]

whereas, when \(G = SU(3) \), one has [16]

\[
a_k = \begin{cases}
1/\sqrt{3} & k = 1, 2 \\
16 \cos (\pi/k) \sin^3 (\pi/k)/(k \sqrt{3}) & k \geq 3
\end{cases}.
\]

We shall denote by \(\sigma(L) \) the signature of the linking matrix associated with \(L \); \(\sigma(L) \) does not depend on the choice of the orientation of \(L \). Let us define the function \(I(L) \) by means of the relation [3]

\[
I(L) = \exp [i \theta_k \sigma(L)] \ E(L),
\]

where, for \(G = SU(2) \), the phase factor \(e^{i\theta_k} \) is [2, 13]

\[
e^{i\theta_k} = \begin{cases}
\exp (-i\pi/4) & k = 1 \\
\exp [i\pi(k - 2)/(4k)] & k \geq 2
\end{cases}.
\]
and, for $G = SU(3)$, the phase factor is

$$e^{i\theta_k} = \begin{cases}
\exp(i\pi/2) & k = 1 \\
\exp(-i\pi/2) & k = 2 \\
\exp(-i6\pi/k) & k \geq 3
\end{cases} \quad (11)$$

It can be verified that $I(\mathcal{L})$ is invariant under Kirby moves and then it represents a topological invariant for the 3-manifold M. In what follows, we shall denote this invariant by $I(M)$.

It should be noted that the multiplicative phase factor in (9) is not a matter of convention (or choice of framing); the presence of the term $\exp[i\theta_k \sigma(\mathcal{L})]$ in (9) guarantees the invariance of $I(\mathcal{L})$ under Kirby moves. According to the definition (9), the normalization of the 3-manifold invariant $I(M)$ is fixed by $I(S^3) = 1$.

In order to compare $I(M)$ with the expressions obtained in [10, 11], we need to produce the relation between the link invariants and the representation matrices of the mapping class group of the torus.

Let us consider the Hopf link in S^3, shown in Figure 1; let the two link components C_1 and C_2 have preferred framings and colours $\psi[i]$ and $\psi[j]$ respectively. The associated Chern-Simons expectation value is denoted by

$$H_{ij} = E(C_1, \psi[i]; C_2, \psi[j]) \quad . \quad (12)$$

The complex numbers $\{H_{ij}\}$ where $i, j = 1, 2, \ldots, \dim(T(k))$ can be understood as the matrix elements of the so-called Hopf matrix H. Note that H is symmetric and that $E_0[i] = H_{ij} = H_{ji}$. Let $Q(i)$ be the value of the quadratic Casimir operator of the irreducible representation of the gauge group which is associated with an element of the class $\psi[i]$. One can show [14] that the matrices

$$X_{ij} = a_k H_{ij} \quad ; \quad Y_{ij} = q^{O(i)} \delta_{ij} \quad ; \quad C_{ij} = \delta_{ij} \quad . \quad (13)$$

give a projective representation of the modular group

$$X^2 = C \quad . \quad (14)$$

Figure 1
\[(XY)^3 = e^{-i\theta_k} C \] \hfill (15)

This representation is isomorphic with the representation obtained in two-dimensional conformal field theories \cite{II}; \(X\) corresponds to the \(S\) matrix of the conformal models and \(Y\) is the analogue of the \(T\) matrix.

3 Lens Spaces

Lens spaces, which are characterized by two integers \(p\) and \(r\), will be denoted by \(\{ L_{p/r} \}\). The fundamental group of \(L_{p/r}\) is \(\mathbb{Z}_p\). Two lens spaces \(L_{p/r}\) and \(L_{p'/r'}\) are homeomorphic if and only if \(|p| = |p'|\) and \(r = \pm r' \pmod{p}\) or \(rr' = \pm 1 \pmod{p}\). Thus, we only need \(\{ L_{13/2} \}\) to consider the case in which \(p > 1\) and \(0 < r < p\); moreover, \(r\) and \(p\) are relatively prime. The lens spaces \(L_{p/r}\) and \(L_{p'/r'}\) are homotopic if and only if \(|p| = |p'|\) and \(rr' = \pm\) quadratic residue \(\pmod{p}\). Consequently, one can find examples of lens spaces which are homotopic but are not homeomorphic; for instance, \(L_{13/2}\) and \(L_{13/5}\). One can also find examples of lens spaces which are not homeomorphic and are not homotopic but have the same fundamental group; for instance, \(L_{13/2}\) and \(L_{13/3}\).

One possible surgery instruction corresponding to the lens space \(L_{p/r}\) is given the unknot \(\{ \text{unknot} \}\) with rational surgery coefficient \((p/r)\). From this surgery presentation one can derive \(\{ \text{honest} \}\) a “honest” surgery presentation of \(L_{p/r}\) by using a continued fraction decomposition of the ratio \((p/r)\)

\[\frac{p}{r} = z_d - \frac{1}{z_{d-1} - \frac{1}{\ddots - \frac{1}{z_1}}} \] \hfill (16)

where \(\{z_1, z_2, \cdots, z_d\}\) are integers. The new surgery link \(L\) corresponding to a “honest” surgery presentation of \(L_{p/r}\) is a chain with \(d\) linked components, as shown in Figure 2, and the integers \(\{z_1, z_2, \cdots, z_d\}\) are precisely the surgery coefficients.

\[\begin{array}{c}
\includegraphics[width=0.5\textwidth]{figure2.png} \\
z_1 \quad z_2 \quad \cdots \quad z_d
\end{array} \]

Figure 2

According to the definition \(\{ \text{III} \}\), the lens space invariant is given by

\[
I(L_{p/r}) = e^{i \theta_k \sigma(\mathcal{L})} (a_k)^d \sum_{j_1, \ldots, j_d \in T_k} \prod_{i=1}^{d} \left(q^{z_i} Q(j_i) \right) \times \\
\times E_0[j_1] \cdots E_0[j_d] E(\mathcal{L}; \psi[j_1], \cdots, \psi[j_d]) \quad .
\] (17)

The link of Figure 2 can be understood as the connected sum of \((d - 1)\) Hopf links \(\mathcal{H}\), i.e. \(\mathcal{L} = \mathcal{H}#\mathcal{H} \cdots #\mathcal{H}\). Therefore, by using equation (3), expression (17) can be written as

\[
I(L_{p/r}) = e^{i \theta_k \sigma(\mathcal{L})} (a_k)^d \sum_{j_1, \ldots, j_d \in T_k} q^\left(\sum_{i=1}^{d} z_i Q(j_i) \right) H_{j_1d} H_{j_2j_{d-1}} \cdots H_{j_2j_1} H_{j_11} \quad .
\] (18)

In terms of the generators (13) of the modular group, one finds

\[
I(L_{p/r}) = e^{i \theta_k \sigma(\mathcal{L})} (a_k)^{-1} [F(p/r)]_{11} \quad ,
\] (19)

where \([F(p/r)]_{11}\) is the element corresponding to the first row and the first column of the following matrix

\[
F(p/r) = XY^{z_d} XY^{z_{d-1}} X \cdots XY^{z_1} X \quad .
\] (20)

The invariant \(I(L_{p/r})\) given in equation (19) is in agreement with the expressions obtained in [10, 11] apart from an overall normalization factor.

4 The SU(2) case

In this section, we shall compute \(I(L_{p/r})\) for the gauge group \(G = SU(2)\). Then, we will show that in this case our conjecture is true; i.e. when \(I(L_{p/r}) \neq 0\), the absolute value \(|I(L_{p/r})|\) only depends on \(p\).

For \(k \geq 2\), the standard basis of \(T_k\) is \(\{ \psi[j] \}\); the index \(j\) represents the dimension of the irreducible representation described by \(\psi[j]\) and \(1 \leq j \leq (k - 1)\). The matrix elements of \(X\) and \(Y\) are

\[
(X)_{mn} = \frac{i}{\sqrt{2k}} \left[\exp\left(-\frac{i\pi mn}{k} \right) - \exp\left(\frac{i\pi mn}{k} \right) \right] \quad ;
\]

\[
(Y)_{mn} = \xi \exp\left(-\frac{i\pi m^2}{2k} \right) \delta_{mn} \quad ;
\] (21)

with

\[
\xi = \exp(i\pi/2k) \quad .
\] (22)

When \(k = 1\), one has

\[
X = \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix} \quad , \quad Y = \begin{pmatrix} 1 & 0 \\ 0 & i \end{pmatrix} \quad .
\] (23)
The algebra T_1 is isomorphic with T_3 and it is easy to verify that

$$I_{k=1}(L_{p/r}) = \left[I_{k=3}(L_{p/r}) \right]^*.$$ \hfill (24)

Therefore, we only need to consider the case $k \geq 2$.

In order to compute $I(L_{p/r})$, we shall derive a recursive relation for the matrix (20); the argument that we shall use has been produced by Jeffrey [11] in a slightly different context. In fact, our final result for $I(L_{p/r})$ is essentially in agreement with the formulae obtained by Jeffrey. Since in our approach the invariance under Kirby moves is satisfied, our derivation of $I(L_{p/r})$ proves that the appropriate expressions given in [10, 11] really correspond to the values of a topological invariant of 3-manifolds.

Let us introduce a few definitions; with the ordered set of integers \{z_1, z_2, \cdots, z_d\} one can define the following partial continued fraction decompositions

$$\alpha_t = z_t - \frac{1}{z_{t-1} - \frac{1}{\cdots - \frac{1}{z_1}}}, \hfill (25)$$

where $1 \leq t \leq d$. The integers α_t and γ_t satisfy the recursive relations

$$\alpha_{m+1} = z_{m+1} \alpha_m - \gamma_m, \hfill (26)$$

$$\gamma_{m+1} = \alpha_m, \quad \gamma_1 = 1, \quad \alpha_0 = 1; \hfill (27)$$

and, clearly, $\alpha_d/\gamma_d = p/r$. Finally, let F_t be the matrix

$$F_t = XY^{z_t}XY^{z_{t-1}}X \cdots XY^{z_1}X; \hfill (28)$$

by definition, one has $F_d = F(p/r)$.

Lemma 1

The matrix element $(F_t)_{mn}$ is given by

$$(F_t)_{mn} = B_t \sum_{s(m,k,|\alpha_t|)} \left[e^{i\pi s \gamma_t} \left(s + \frac{\alpha_t}{\gamma_t}\right)^2 - e^{i\pi s \alpha_t} \left(s - \frac{\alpha_t}{\gamma_t}\right)^2 \right]; \hfill (29)$$

$$B_t = \frac{(-i)^{t+1}}{\sqrt{2k|\alpha_t|}} \xi^{z_{t+1}z_t+\cdots+z_1} \exp \left\{ -\frac{i\pi}{4} \left[\text{sign}(\alpha_0\alpha_1) + \cdots + \text{sign}(\alpha_{t-1}\alpha_t) \right] \right\} \exp \left\{ \frac{i\pi n^2}{2k} \left[\frac{1}{\alpha_0\alpha_1} + \cdots + \frac{1}{\alpha_{t-2}\alpha_{t-1}} \right] \right\}; \hfill (30)$$

where $s(m, k, |\alpha_t|)$ stands for the sum over a complete residue system modulo $(2k|\alpha_t|)$ with the additional constraint $s \equiv m \pmod{2k}$.

Proof

The proof is based on induction. First of all we need to verify the validity of equations (29) and (30) when $t = 1$. In this case, from the definition (28) one gets

$$(F_t)_{mn} = \frac{1}{2k} \xi^{z_1} \sum_{s=1}^{2k} e^{-i\pi s^2 z_1/(2k)} \left[e^{-i\pi s(m+n)/k} - e^{-i\pi s(m-n)/k} + \text{c. c.} \right]. \hfill (31)$$
Since the sum (31) covers twice a complete residue system modulo k, i.e. $1 \leq s \leq 2k$, a multiplicative factor $1/2$ has been introduced in (31). The change of variables $s \to -s$ shows that the last two terms in (31) are equal to the first two terms. Therefore, equation (31) can be written as

$$ (F_1)_{mn} = -\frac{1}{2k} \xi^{z_1} \sum_{s=1}^{2k} e^{-i\pi s^2 z_1 /(2k)} \left[e^{-i\pi s(m+n)/k} - e^{-i\pi s(m-n)/k} \right]. \quad (32) $$

At this point, one can use the reciprocity formula [19] reported in the appendix and one gets

$$ (F_1)_{mn} = \frac{1}{\sqrt{2k|z_1|}} \xi^{z_1} \exp \left\{ -\frac{i\pi}{4} \text{sign}(\alpha_0 \alpha_1) \right\} \times $$

$$ \times \sum_{v=0}^{\lfloor z_1 \rfloor - 1} \left[e^{i\pi v^2/(2k)} - e^{i\pi (2k|v| z_1^2 - v^2)/2} \right]. \quad (33) $$

By introducing the new variable $s = 2kv + m$, one finds that in equation (33) the variable s covers a complete residue system modulo $(2k|z_1|)$ with the constraint that $s \equiv m \pmod{2k}$. Therefore, equation (33) can be written in the form

$$ (F_1)_{mn} = B_1 \sum_{s(m,k,|z_1|)} \left[e^{i\pi v^2/(2k)} - e^{i\pi (2k|v| z_1^2 - v^2)/2} \right]. \quad (34) $$

This confirms the validity of equation (29) when $t = 1$. In order to complete the proof, suppose now that (29) is true for a given t; we shall show that (29) is true also in the case $t + 1$. Indeed, one has

$$ (F_{t+1})_{mn} = \sum_{v=1}^{k} (XY^{z_{t+1}})_{mv} (F_t)_{vn}. \quad (35) $$

From equation (29) one gets

$$ (F_{t+1})_{mn} = -B_t \frac{i \xi^{z_{t+1}}}{\sqrt{2k}} \sum_{v=1}^{2k} \sum_{s(v,k,|\alpha_t|)} e^{-i\pi v^2 z_{t+1}} \left[e^{i\pi v z_{t+1}/2} - e^{i\pi (z_{t+1} s + v)/2} e^{-i\pi v k/2} \right] $${

$$ - e^{-i\pi v/2} \left[e^{i\pi (z_{t+1} s + v)/2} e^{-i\pi v k/2} + e^{i\pi (z_{t+1} s + v)/2} e^{i\pi v k/2} \right]. \quad (36) $$

Again, the last two terms can be omitted provided one introduces a multiplicative factor 2. Moreover, because of the constraint $v = s (\text{mod} 2k)$, one can set $v = s$, thus

$$ (F_{t+1})_{mn} = -B_t \frac{i \xi^{z_{t+1}}}{\sqrt{2k}} e^{2k|\alpha_t| - 1} \sum_{s=0}^{2k|\alpha_t| - 1} \left[e^{i\pi s^2 z_{t+1}} - e^{-i\pi s^2/(2(\gamma_{t+1} m+n))} \right] \left[e^{-i\pi s^2/(2(\gamma_{t+1} m+n))} + e^{i\pi s^2/(2(\gamma_{t+1} m+n))} \right]. \quad (37) $$
By using the reciprocity formula, one obtains the final expression for \((F_{t+1})_{mn}\)

\[
(F_{t+1})_{mn} = -i B_t e^{2\pi i t} \sqrt{|\alpha_t|} e^{\left(\frac{i\pi \alpha_t^2}{2k\alpha_t \alpha_{t+1}}\right)} e^{-\frac{i\pi}{4} \text{sign}(\alpha_t \alpha_{t+1})} \sum_{v=1}^{\frac{|\alpha_{t+1}|}{\alpha_t}} \left\{ e^{\frac{i\pi \alpha_t}{2k\alpha_{t+1}}} \left(2kv + m + \frac{n}{\alpha_t}\right)^2 - e^{\frac{i\pi \alpha_t}{2k\alpha_{t+1}}} \left(2kv + m - \frac{n}{\alpha_t}\right)^2 \right\} . \tag{38}
\]

In terms of the variable \(s = 2kv + m\), equation (38) can be rewritten in the form (29) and this concludes the proof.

From the definition (19) and Lemma 1 it follows

Theorem 1

Let \(SU(2)\) be the gauge group, the 3-manifolds invariant \(I_k(L_{p/r})\) for \(k \geq 2\) is given by

\[
I_k(L_{p/r}) = \sum_{s (\text{mod} \, p)} \left\{ \exp \left[\frac{i\pi (r+1)^2}{2pkr} \right] \exp \left[\frac{i2\pi}{p} \left[rks^2 + (r+1)s \right] \right] - \exp \left[\frac{i\pi (r-1)^2}{2pkr} \right] \exp \left[\frac{i2\pi}{p} \left[rks^2 + (r-1)s \right] \right] \right\} \frac{e^{i\theta_k \sigma(C)}}{ak} . \tag{39}
\]

Proof

According to equation (19), the expression for the matrix element \([F(p/r)]_{11}\) has been written by means of a sum over a complete residue system modulo \(p\).

As shown in equation (39), the expression for \(I_k(L_{p/r})\) is rather involved; nevertheless, \(|I_k(L_{p/r})|^2\) can be computed explicitly. Let us introduce the modulo-\(p\) Kronecker delta symbol defined by

\[
\delta_p(x) = \begin{cases}
0 & x \not\equiv 0 \ (\text{mod} \, p) \\
1 & x \equiv 0 \ (\text{mod} \, p)
\end{cases} ; \tag{40}
\]

where \(p\) and \(x\) are integers. One can easily verify that, for integer \(n\),

\[
\begin{align*}
\delta_p(xn) &= \delta_p(x) \quad \text{if} \quad (n,p) = 1 ; \\
\delta_{pn}(xn) &= \delta_p(x) . \tag{41}
\end{align*}
\]

Finally, we shall denote by \(\phi(n)\) the Euler function \([20]\) which is equal to the number of residue classes modulo \(n\) which are coprime with \(n\).

Theorem 2

The square of the absolute value of \(I_k(L_{p/r})\) is given in the following list:

for \(p = 2\)

\[
|I_k(L_{2/1})|^2 = \left[1 + (-1)^k \right] \frac{\sin^2 \left[\pi/(2k) \right]}{\sin^2 \left[\pi/k \right]} ; \tag{42}
\]

for \(p > 2\) one has:
when \(p \) and \(k \) are coprime integers, i.e. \((k, p) = 1\),

\[
\left| I_k(L_{p/r}) \right|^2 = \frac{1}{2} \left[1 - (-1)^p \right] \frac{\sin^2 \left[\frac{\pi \left(k^{\phi(p)} - 1 \right)}{(kp)} \right]}{\sin^2(\pi/k)} + \frac{1}{2} \left[1 + (-1)^p \right] \frac{\sin^2 \left[\frac{\pi \left(k^{\phi(p)/2} - 1 \right)}{(kp)} \right]}{\sin^2(\pi/k)}
\]

; (43)

when the greatest common divisor of \(p \) and \(k \) is greater than unity, i.e. \((k, p) = g > 1\) and \(p/g \) is odd

\[
\left| I_k(L_{p/r}) \right|^2 = \frac{g}{4 \sin^2(\pi/k)} \left[\delta_g(r - 1) + \delta_g(r + 1) \right] ;
\]

; (44)

when \((k, p) = g > 1\) and \(p/g \) is even

\[
\left| I_k(L_{p/r}) \right|^2 = \frac{g}{4 \sin^2(\pi/k)} \left\{ \delta_g(r + 1) \left[1 + (-1)^{kp/2g^2} (-1)^{(r+1)/g} \right] + \delta_g(r - 1) \left[1 + (-1)^{kp/2g^2} (-1)^{(r-1)/g} \right] \right\}.
\]

; (45)

Proof

From Theorem 1 it follows that the square of the absolute value of the lens space invariant is

\[
\left| I_k(L_{p/r}) \right|^2 = a(k)^{-2} (2kp)^{-1} S(k, p, r)
\]

with

\[
S(k, p, r) = \sum_{s,t\ (\text{mod } p)} \left\{ \exp \left(\frac{i2\pi}{p} \left[kr \left(s^2 - t^2 \right) + (r + 1) (s - t) \right] \right) - \exp \left(\frac{i2\pi}{kp} \right) \exp \left(\frac{i2\pi}{p} \left[kr \left(s^2 - t^2 \right) + r (s - t) + s + t \right] \right) - \exp \left(-\frac{i2\pi}{kp} \right) \exp \left(\frac{i2\pi}{p} \left[kr \left(s^2 - t^2 \right) + r (s - t) - s - t \right] \right) + \exp \left(\frac{i2\pi}{p} \left[kr \left(s^2 - t^2 \right) + (r - 1) (s - t) \right] \right) \right\}.
\]

; (47)

The indices \(s \) and \(t \) run over a complete residue system modulo \(p \). When \(p = 2 \), each sum contains only two terms and the evaluation of (47) is straightforward; the corresponding result is shown in equation (42). Let us now consider the case in which \(p > 2 \). By means of the change of variables \(s \rightarrow s + t \), the sum in \(t \) becomes a geometric sum and one obtains

\[
S(k, p, r) = p \sum_{s\ (\text{mod } p)} \left\{ \exp \left(\frac{i2\pi}{p} \left[kr s^2 + (r + 1) s \right] \right) \delta_p(2kr s) \right\}
\]

10
\[-\exp\left(\frac{i2\pi}{kp}\right) \exp\left\{\frac{i2\pi}{p}\left[krs^2 + (r + 1)s\right]\right\} \delta_p(2krs + 2)\]
\[-\exp\left(-\frac{i2\pi}{kp}\right) \exp\left\{\frac{i2\pi}{p}\left[krs^2 + (r - 1)s\right]\right\} \delta_p(2krs - 2)\]
\[+ \exp\left\{\frac{i2\pi}{p}\left[krs^2 + (r - 1)s\right]\right\} \delta_p(2krs)\].
\hspace{2cm}
\hspace{2cm} (48)

By using properties (41), one can determine the values of \(s\) which give contribution to (48). Let us start with \((k, p) = 1\). Clearly, in this case one has
\[\delta_p(2rks) \neq 0 \Rightarrow \begin{cases} s = p & p \text{ odd} \\ s = p, p/2 & p \text{ even} \end{cases}.\]
\hspace{2cm} (49)

When \((k, p) = 1\) and \(p\) is odd, one gets
\[\delta_p(2krs \mp 2) = \delta_p(krs \mp 1)\]
\hspace{2cm} (50)

The delta gives a non-vanishing contribution if and only if the following congruence is satisfied
\[rks = \pm 1 \pmod{p}\].
\hspace{2cm} (51)

The unique solution \([20]\) to \((51)\) is given by
\[s = \pm (rk)^{\phi(p) - 1}\] .
\hspace{2cm} (52)

When \((k, p) = 1\) and \(p\) is even, one finds two solutions
\[s_1 = \pm (rk)^{\phi(p/2) - 1}, \quad s_2 = \pm (rk)^{\phi(p/2) - 1} + p/2\] .
\hspace{2cm} (53)

Let us now examine the case \((p, k) = g > 1\). We introduce the integer \(\beta\) defined by \(p = g\beta\). For \(\beta\) odd, one has
\[\delta_p(2krs) = \delta_\beta(s)\] .
\hspace{2cm} (54)

Within the residues of a complete system modulo \(p\), the values of \(s\) giving non-vanishing contribution are of the form \(s = \alpha\beta\) with \(1 \leq \alpha \leq g\). When \(\beta\) is even, one gets
\[\delta_p(2krs) = \delta_\beta(2s) = \delta_{\beta/2}(s)\] .
\hspace{2cm} (55)

The solutions of the associated congruence are
\[s = \alpha \frac{\beta}{2}, \quad 1 \leq \alpha \leq 2g\] .
\hspace{2cm} (56)

When \((k, p) = g > 1\) and \(p\) is odd, \(\delta_p[2r(ks \pm 1)]\) does not contribute because \(rks = \pm 1 \pmod{p}\) has no solutions. On the other hand, if \(p\) is even we have
\[\delta_p[(2rks \pm 2)] = \delta_{p/2}(rks \pm 1)\] .
\hspace{2cm} (57)
The delta function (57) is non-vanishing when \((p/2, k) = 1\) and, in this case, the two solutions are \(s_1 = \pm (r k)^{\phi(p/2) - 1}\) and \(s_2 = s_1 + p/2\). This exhausts the analysis of the modulo \(p\) Croneker deltas when \(p > 2\).

At this stage, Theorem 2 simply follows from the substitution of the values of \(s\) for which the various Croneker deltas modulo \(p\) are non-vanishing. In the case \((k, p) = 1\) and \(p\) odd, the algebraic manipulations are straightforward. When \((k, p) = 1\) and \(p\) even, the evaluation of (58) needs some care. In this case, one has to deal with factors of the form

\[
\exp \left[\frac{i \pi}{b} (a^{\phi(b)} - 1) \right] ;
\]

with \(b > 2\) even and \((a, b) = 1\). In appendix B, it is shown that terms of the type (58) are trivial because actually

\[
a^{\phi(b)} \equiv 1 \pmod{2b} .
\]

Finally, the derivation of equations (44) and (45) is straightforward.

Let us now consider the dependence of \(|I(L_{p/r})|^2\) on \(r\). As shown in equations (44) and (45), \(|I(L_{p/r})|^2\) depends on \(r\). However, this dependence is rather peculiar: when \(I(L_{p/r}) \neq 0\), \(|I(L_{p/r})|^2\) does not depend on \(r\). Indeed, when expression (44) is different from zero, its values are given by

\[
0 \neq (44) = \begin{cases}
\sin^{-2}(\pi/k) & \text{for } g = 2 ; \\
(g/4) \sin^{-2}(\pi/k) & \text{for } g > 2 .
\end{cases}
\]

Similarly, when expression (45) is different from zero, its value is given by

\[
0 \neq (45) = \frac{g}{2 \sin^2(\pi/k)} .
\]

To sum up, when \(I(L_{p/r}) \neq 0\), \(|I(L_{p/r})|^2\) only depends on \(p\) and, therefore, it is a function of the fundamental group \(\pi_1(L_{p/r}) = \mathbb{Z}_p\). Thus, Theorem 2 proves the validity of our conjecture for the lens spaces when the gauge group is \(SU(2)\).

5 The \(SU(3)\) case

In this section we shall present numerical computations confirming the validity of our conjecture for lens spaces when the gauge group is \(SU(3)\). As in the \(SU(2)\) case, the \(SU(3)\) Chern-Simons field theory can be solved explicitly in any closed, connected and orientable three-manifold [16]. The general surgery rules for \(SU(3)\) and for any integer \(k\) have been derived in [16]. In particular, it turns out that

\[
I_{k=1}(L_{p/r}) = \left[I_{k=2}(L_{p/r}) \right]^* = I_{k=4}(L_{p/r}) .
\]

Therefore, we only need to consider the case \(k \geq 3\). For \(k \geq 3\), the matrices which give a projective representation of the modular group have the following form

\[
X_{(m,n)}(a,b) = \frac{i}{k \sqrt{3}} q^{-2} q^{-(m+n)(a+b+3)+(m+3)b+(n+3)a}/3
\]

12
\[
\left[1 + q^{(n+1)(a+b+2)+(m+1)(b+1)} + q^{(m+1)(a+b+2)+(n+1)(a+1)} - q^{(m+1)(b+1)} - q^{(n+1)(a+1)} - q^{(m+n+2)(a+b+2)} \right] ; \quad (63)
\]

\[
Y_{(a,b)}(m,n) = q^{[m^2+n^2+mn+3(m+n)]/3} \delta_{am} \delta_{bn} ; \quad (64)
\]

\[
C_{(a,b)}(m,n) = \delta_{an} \delta_{bn} ; \quad (65)
\]

where each irreducible representation of \(SU(3) \) has been denoted by a couple of nonnegative integers \((m,n)\) (Dynkin labels).

By using equation (18), we have computed \(I_k(L_{p/r}) \) numerically for some examples of lens spaces. In particular, we have worked out the value of the invariant for the lens spaces \(L_{p/r} \), with \(p \leq 20 \) and \(3 \leq k \leq 50 \). In all these cases, the results are in agreement with our conjecture.

Our calculations have been performed on a Pentium based PC running Linux. For instance, the results of the computations for the cases \(L_{8/1}, L_{8/3}, L_{15/1}, L_{15/2}, L_{15/4} \) with \(3 \leq k \leq 50 \) are shown in Tables 1, 2, 3, 4, 5. The spaces \(L_{8/1} \) and \(L_{8/3} \) are not homotopically equivalent; as shown in Tables 1 and 2, the phase of the invariant distinguishes these two manifolds. The case in which \(p = 15 \) is more interesting because there are two different spaces belonging to the same homotopy class; \(L_{15/1} \) and \(L_{15/4} \) are homotopically equivalent and \(L_{15/2} \) represents the other homotopy class. The phase of the invariant distinguishes the manifolds of the same homotopy class.

6 Conclusions

In this article, we have presented some arguments and numerical results supporting the conjecture that, for nonvanishing \(I(M) \), the absolute value \(|I(M)|\) only depends on the fundamental group \(\pi_1(M) \). Since the Turaev-Viro invariant \([21]\) coincides \([3]\) with \(|I(M)|^2\), our conjecture gives some hints on the topological interpretation of the Turaev-Viro invariant. For the gauge group \(SU(2) \), \(|I(M)|^2\) can be understood as the improved partition function of the Euclidean version of \((2+1)\) gravity with positive cosmological constant \([22, 23]\). In this case, our conjecture suggests that, for instance, the semiclassical limit is uniquely determined by the fundamental group of the universe.

Finally, one may ask for which values of \(k \) the equality \(I_k(M) = 0 \) is satisfied and what the meaning of this fact is. The complete solution to this problem is not known. From the field theory point of view, gauge invariance of the factor \(\exp \left(iS_{CS} \right) \) (where \(S_{CS} \) is the Chern-Simons action) in the functional measure gives nontrivial constraints on the admissible values of \(k \) in a given manifold \(M \). In certain cases \([3]\) one finds that, in correspondence with the “forbidden” values of \(k \), the invariant \(I_k(M) \) vanishes. So, it is natural to expect that \(I_k(M) = 0 \) is related to a breaking of gauge invariance for large gauge transformations. From the mathematical point of view, \(I_k(M) = 0 \) signals the absence of the natural extension of \(E(\mathcal{L}) \) to an invariant \(E_M(\mathcal{L}) \) of links in the manifold \(M \). More precisely, when \(I_k(M) \neq 0 \) for fixed integer \(k \), one can define \([3]\) an invariant \(E_M(\mathcal{L}) \) of oriented, framed and
coloured links \{ \mathcal{L} \subset M \} with the following property: if the link \(\mathcal{L} \) belongs to a three-ball embedded in \(M \), then one has \(E_M(\mathcal{L}) = E(\mathcal{L}) \). The values of the invariant \(E_M(\mathcal{L}) \) correspond to the vacuum expectation values of the Wilson line operators associated with links in the manifold \(M \). When \(I_k(M) = 0 \), the invariant \(E_M(\mathcal{L}) \) cannot be constructed; consequently, for these particular values of \(k \), the quantum Chern-Simons field theory is not well defined in \(M \).

Acknowledgments. We wish to thank Turaev for useful discussions.

Appendix A

The generalized Gauss sums have a very useful property which can be expressed by means of the so-called reciprocity formula \[\left| e^{-i\pi c/a} \right|^{-1} \sum_{n=0}^{\lfloor c/2 \rfloor} e^{i\pi c(n^2+bn)} = \sqrt{\left| e^{-i\pi c/a} \right|^{-1} \sum_{n=0}^{\lfloor c/4 \rfloor} e^{-i\pi c(n^2+bn)}} \right| , \tag{66} \]

where the integers \(a, b, c \) satisfy the relations

\[\begin{aligned} ac &\neq 0, \\
ac + b &\text{ is even} . \end{aligned} \tag{67} \]

Appendix B

Lemma 2 Let \(a, b \) two integers, with \((a,b) = 1\) and \(b > 2 \) even; one has

\[a^{\phi(b)} \equiv 1 \pmod{2b} . \tag{68} \]

Proof

The proof consists of two parts: firstly, it is shown by induction that Lemma 2 holds when \(b = 2^m \) with \(m > 1 \) integer. Secondly, equation (68) is proved when \(b = 2^m c \) with \(m \geq 1 \) and \(c \) odd integer.

Since \(b \) is even, \(a \) is clearly odd and can be written in the form \(a = (2f + 1) \). When \(b \) is of the type \(b = 2^m \), the condition \(b > 2 \) implies that \(m \geq 2 \). Let us now consider the case \(m = 2 \); one has \(\phi(b) = \phi(2^2) = 2 \), therefore

\[a^{\phi(b)} = (2f + 1)^2 = 1 + 4f(f + 1) \equiv 1 \pmod{2^3} . \tag{69} \]

Thus, Lemma 2 is satisfied when \(b = 2^2 \). Suppose now that equation (68) holds when \(b = 2^n \) for a certain \(n \). We need to prove that (68) is true also for \(b = 2^{n+1} \).

Indeed, \(\phi(2^{n+1}) = 2^n \) and one gets

\[(2f + 1)^{\phi(2^{n+1})} = \left[(2f + 1)^{\phi(2^n)} \right]^2 \] \tag{70}
By using the induction hypothesis
\[(2f + 1)^{\phi(2^n)} = 1 + N 2^{n+1}, \quad (71)\]
one finds
\[
\left[(2f + 1)^{\phi(2^n)} \right]^2 = 1 + 2^{n+2} N (1 + 2^n N) \equiv 1 \pmod{2^{n+2}}. \quad (72)
\]
Therefore, equation (68) is also satisfied when \(b = 2^{(n+1)} \). To sum up, for \(m \geq 1 \) and \(a \) odd, one has
\[a^{\phi(2^m)} \equiv 1 \pmod{2^{m+1}} \quad (73)\]

Let us now consider the general case in which \(b = 2^m c \) with \(c \) odd integer. From Euler Theorem \[20\] it follows that
\[a^{\phi(b)} \equiv 1 \pmod{b} \Rightarrow a^{\phi(b)} \equiv 1 \pmod{c}. \quad (74)\]
On the other hand, \(\phi(2^m c) = \phi(2^m)\phi(c) \) and, for \(m > 1 \), equation (73) implies
\[a^{\phi(b)} = a^{\phi(c)\phi(2^m)} \equiv 1 \pmod{2^{m+1}} \quad (75)\]
Since \((2^{m+1}, c) = 1\), from equations (74) and (73) one gets
\[a^{\phi(b)} \equiv 1 \pmod{2^{m+1}c} \equiv 1 \pmod{2b}. \quad (76)\]
Finally, we need to consider the case \(b = 2c \). Since \(\phi(c) \) is even, one gets
\[a^{\phi(2c)} = [1 + 4f(f+1)]^{\phi(c)/2} \equiv 1 \pmod{2^2} \quad (77)\]
Equations (73) and (77) imply
\[a^{\phi(2c)} \equiv 1 \pmod{2^2 c} \quad (78)\]
This concludes the proof.

\[\blacklozenge \]

References

[1] E. Witten, Commun. Math. Phys. 121 (1989) 351-399.

[2] N.Y. Reshetikhin, V.G. Turaev, Commun. Math. Phys. 127 (1990) 1-26 and Invent. Math. 103 (1991) 547-597.

[3] V.G. Turaev, Quantum invariants of knots and three manifolds, de Gruyter Studies in Mathematics 18 (Berlin, 1994).

[4] R. Kirby and P. Melvin, Invent. Math. 105 (1991) 473-545.

[5] W.B.R. Lickorish, Pacific J. Math. 149 (1991) 337-347.
[6] H.R. Morton, P.M. Strikland, *Satellites and Surgery Invariants*, in Knots 90 ed. Hawauchi; de Gruyter, (Berlin, 1992).

[7] L.H. Kauffman and L.L. Sostenes *Temperley-Lieb recoupling theory and invariants of 3-manifolds*, Princeton University Press (Princeton, 1994).

[8] T. Kohno, Topology 31 (1992) 203-230.

[9] E. Guadagnini and S. Panicucci, Nucl. Phys. B 388 (1992) 159.

[10] D.S. Freed and R.E. Gompf, Commun. Math. Phys. 14X (1991) 79-117.

[11] L. C. Jeffrey, Commun. Math Phys. 147 (1992) 563-604.

[12] E. Guadagnini, Int. Journ. Mod. Phys. A7 (1992) 877.

[13] E. Guadagnini, *The Link Invariants of the Chern-Simons Field Theory*, de Gruyter Expositions in Mathematics, Walter de Gruyter (Berlin, 1993).

[14] E. Guadagnini and L. Pilo, Nucl. Phys. B 433 (1995) 597.

[15] E. Verlinde, Nucl. Phys. B 300 (1988) 360.

[16] E. Guadagnini and L. Pilo, Jour. Geom. Phys. 14 (1994) 236; and Jour. Geom. Phys. 14 (1994) 365.

[17] D. Rolfsen, *Knots and Links*, (Publish or Perish, 1976).

[18] R. Kirby, Invent. Math. 45 (1978) 35-56; R. Fenn and C. Rourke, Topology 18 (1979) 1-15; D. Rolfsen, Pacific Journ. Math. 110 (1984) 377-386.

[19] C.L. Siegel, *Über das quadratische Reziprozitätsgesetz algebraischen Zahlkörpern*, Nachr. Acad. Wiss. Göttingen Math. Phys. Kl., 1 (1960) 1-16.

[20] Hua Loo-Keng, *Introduction to number theory*, Springer-Verlag (New York, 1982).

[21] V.G. Turaev and O.Y. Viro, Topology 31 (1992) 865.

[22] F. Archer and R. Williams, Phys. Lett. B 273 (1991) 438.

[23] E. Guadagnini and P. Tomassini, Phys. Lett. B 336 (1994) 330.
k	$L_{8/1}$ \(I_k \)	$	I_k	$	
3	1.000000000 - i 0.000000175	1.000000000			
4	-1.000000000 + i 0.000000012	1.000000000			
5	-0.499999939 + i 1.538841821	1.618033989			
6	-2.000000000 + i 0.0000000175	2.000000000			
7	-1.000000000 - i 0.0000000095	1.000000000			
8	-6.828427084 + i 6.828427165	9.656854249			
9	-0.499999950 + i 0.866025433	1.000000000			
10	-4.236067816 + i 3.077683759	5.236067977			
11	-2.073846587 - i 14.423920506	14.572244935			
12	-12.373524802 - i 17.926145664	21.781891892			
13	18.195669358 + i 0.000000868	18.195669358			
14	5.657005398 + i 4.110054701	6.992443043			
15	63.431390926 + i 26.274142180	68.657642707			
16	6.721172941 + i 2.603796085	7.207906752			
17	15.581719525 + i 26.988328071	31.163437478			
18	-69.185356387 - i 11.544994773	70.142001987			
19	-40.26155013 + i 5.00001734	46.26155013			
20	43.367008373 - i 50.048195295	66.23253224			
21	22.973052202 + i 3.157573698	23.189036183			
22	219.05414271 - i 58.695485329	226.78192164			
23	23.00602198 - i 5.90551129	23.74666829			
24	23.434763344 + i 4.314782640	95.35737633			
25	-185.40752744 + i 67.483626877	197.30893621			
26	-161.49103989 + i 77.769978391	179.24152308			
27	-214.34242534 + i 99.165358161	236.17036986			
28	50.544948881 - i 155.56136312	163.56689929			
29	47.834849646 - i 26.55060565	54.70925161			
30	443.615385766 - i 296.41325177	533.53168852			
31	46.894822945 - i 30.137471278	55.74398258			
32	211.662329441 + i 39.566544008	215.32870944			
33	-344.61072364 + i 250.37435362	425.96227271			
34	-290.37666930 + i 243.654963011	379.05928409			
35	-381.345093602 + i 307.914657384	490.13826785			
36	27.064369107 - i 326.618342223	327.73773287			
37	79.582315000 - i 70.742976321	106.61566554			
38	734.287201006 - i 734.28720264	1038.43893195			
39	87.05370702 - i 75.119208091	108.32925865			
40	408.590935390 - i 0.000001624	408.59093539			
41	-545.54147393 + i 565.843251992	875.99871122			
42	-542.07708515 + i 521.724789196	690.34082245			
43	-590.050989168 + i 655.318028318	881.81737795			
44	-39.32467251 - i 574.905929557	576.24929975			
45	118.947578576 - i 140.6915854636	184.23551343			
46	1090.316030520 - i 1420.927547540	1791.03996096			
47	116.363242798 - i 145.914887153	186.63214773			
48	687.196328608 - i 86.813088226	692.658145364			
49	78.05370702 - i 75.119208091	108.32925865			
50	408.590935390 - i 0.000001624	408.59093539			
\(k \)	\(L_{8/3}^k \)	\(I_k \)			
-----	-----	-----			
3	1.000000000 + i 0.000000000	1.000000000			
4	-1.000000000 + i 0.000000000	1.000000000			
5	1.309016994 - i 0.951056516	1.618033989			
6	-2.000000000 + i 0.000000000	2.000000000			
7	-0.623489802 + i 0.781831482	1.000000000			
8	0.000000000 + i 0.000000000	0.000000000			
9	-0.500000000 + i 0.866025404	1.000000000			
10	1.618033989 + i 4.979796570	5.236067977			
11	6.053529319 - i 13.255380237	14.572244935			
12	-7.464101615 + i 12.928203230	14.928203230			
13	7.723965314 - i 20.366422715	21.781891892			
14	15.581718739 + i 26.982396270	31.163437478			
15	17.218843527 - i 67.995675380	70.142001987			
16	20.431729095 + i 62.882396270	66.118464248			
17	-5.710545730 + i 35.802993757	23.189036183			
18	0.000000000 + i 0.000000000	0.000000000			
19	-1.972537314 + i 6.932749548	7.207906752			
20	15.81718739 + i 26.988328525	31.163437478			
21	17.218843527 - i 67.995675380	70.142001987			
22	20.431729095 + i 62.882396270	66.118464248			
23	20.431729095 + i 62.882396270	66.118464248			
24	0.000000000 + i 0.000000000	0.000000000			
25	-4.496779900 + i 23.326028428	23.74646829			
26	54.169163837 + i 78.477582217	95.357376335			
27	34.262337211 - i 194.311370120	197.308936212			
28	38.208113963 - i 233.059184818	236.170369862			
29	-132.328401250 + i 96.142211171	163.566899299			
30	-8.284500381 + i 54.078362271	54.709251617			
31	0.000000000 + i 0.000000000	0.000000000			
32	-7.933195866 + i 55.178306982	55.743982582			
33	129.764538515 + i 171.836019661	215.328709440			
34	57.178306982 - i 422.107212669	425.962272715			
35	-65.823047822 + i 373.301054424	379.059824907			
36	62.256293514 - i 486.168356194	490.18262785			
37	-258.631121471 + i 201.300681961	327.73732877			
38	-12.859044288 + i 105.903757675	106.681586544			
39	0.000000000 + i 0.000000000	0.000000000			
40	-12.423570453 + i 107.64511930	108.32958655			
41	254.752281347 + i 319.449256739	408.590935390			
42	85.965636475 - i 781.283554973	785.998781122			
43	-98.245742501 + i 683.314148273	690.340822456			
44	92.175015400 - i 876.986690089	881.817377951			
45	-477.00308251 + i 363.663986140	576.249299975			
46	-18.44181139 + i 183.310248618	184.235513433			
47	0.000000000 + i 0.000000000	0.000000000			
48	-17.920983557 + i 185.769761658	186.632147873			
49	441.516918550 + i 533.702273720	692.658145364			
\(k \)	\(L_{15/1} \)	\(I_k \)	\(I_k	\)
-----	----------------	------	---------		
3	1.000000000 - i 0.000000175	1.000000000			
4	0.000000021 + i 1.732050808	1.732050808			
5	-2.665351925 + i 1.936491953	3.294556414			
6	3.000000303 + i 3.464101353	4.582575695			
7	-0.000000165 + i 1.732050808	1.732050808			
8	-1.732050808 + i 0.000000010	1.732050808			
9	-0.907604426 - i 11.866568847	11.901226911			
10	-5.959909504 - i 18.342712091	19.286669182			
11	-17.245203220 + i 14.943053456	22.818673947			
12	-11.196152781 - i 8.196151933	13.875544804			
13	0.000000084 - i 15.347547346	15.347547346			
14	0.000000083 - i 1.732050808	1.732050808			
15	-101.423006915 - i 32.954328677	106.642459228			
16	-1.224744868 + i 1.224744875	1.732050808			
17	-20.645987906 + i 15.591127116	25.871607244			
18	-40.127945922 - i 30.808776018	50.590836361			
19	-40.070955963 - i 2.740927872	40.164588848			
20	164.290883844 - i 129.064834808	208.923972053			
21	274.923532195 - i 143.150674204	277.108616721			
22	2753.539308536 + i 268.335013764	2876.740429803			
23	0.000000762 - i 277.056941014	277.056941014			
24	152.288761117 + i 135.366631353	155.366631353			
25	-82.729230504 + i 126.741605117	13.374260781			
26	0.000000076 - i 667.745345688	825.378649414			
27	13.416605095 + i 0.680413518	13.43347358			
28	164.960256203 + i 68.328775084	178.551694562			
29	-82.729230504 + i 287.059281883	298.74262511			
30	-4.270422302 + i 12.674160517	13.374260781			
31	0.000000076 - i 667.745345688	825.378649414			
32	13.416605095 + i 0.680413518	13.43347358			
33	164.960256203 + i 68.328775084	178.551694562			
34	-82.729230504 + i 287.059281883	298.74262511			
35	-4.270422302 + i 12.674160517	13.374260781			
36	0.000000076 - i 667.745345688	825.378649414			
37	13.416605095 + i 0.680413518	13.43347358			
38	164.960256203 + i 68.328775084	178.551694562			
39	-82.729230504 + i 287.059281883	298.74262511			
40	-4.270422302 + i 12.674160517	13.374260781			
41	0.000000076 - i 667.745345688	825.378649414			
42	13.416605095 + i 0.680413518	13.43347358			
43	164.960256203 + i 68.328775084	178.551694562			
44	-82.729230504 + i 287.059281883	298.74262511			
45	-4.270422302 + i 12.674160517	13.374260781			
46	0.000000076 - i 667.745345688	825.378649414			
47	13.416605095 + i 0.680413518	13.43347358			
48	164.960256203 + i 68.328775084	178.551694562			
49	-82.729230504 + i 287.059281883	298.74262511			
50	-4.270422302 + i 12.674160517	13.374260781			
k	$L_{15/2}^{(1)}$	$	I_k	$	
-----	-----------------	-------			
3	1.0000000000 + i 0.000000000	1.000000000			
4	0.0000000000 - i 1.732050808	1.732050808			
5	0.0000000000 + i 0.000000000	0.000000000			
6	3.0000000000 - i 3.464101615	4.582575695			
7	0.0000000000 - i 1.732050808	1.732050808			
8	1.7320508080 + i 0.000000000	1.732050808			
9	10.730551990 - i 5.147276559	11.901226911			
10	0.0000000000 + i 0.000000000	0.000000000			
11	-12.336706536 + i 19.196290072	22.818673947			
12	-11.196152423 + i 8.196152423	13.875544804			
13	14.350206054 - i 5.442315293	15.347547346			
14	0.0000000000 + i 1.732050808	1.732050808			
15	0.0000000000 + i 0.000000000	0.000000000			
16	1.224744871 - i 1.224744871	1.732050808			
17	9.345902508 + i 24.124555285	25.871607244			
18	-6.617211192 - i 50.156208387	50.590363631			
19	50.553444640 - i 93.414583721	106.216454548			
20	0.0000000000 + i 0.000000000	0.000000000			
21	-53.061366041 + i 135.569663969	145.583798394			
22	-11.153278505 + i 37.984578277	39.588177633			
23	-29.353726021 - i 27.414466365	40.164588848			
24	-164.290886665 - i 40.353726021	208.923972053			
25	0.0000000000 + i 0.000000000	0.000000000			
26	228.013392388 + i 157.386281027	277.056941014			
27	56.698638283 + i 144.640561664	155.356453557			
28	0.0000000000 - i 136.433611353	136.433611353			
29	11.816320486 + i 6.264616638	13.374260781			
30	0.0000000000 + i 0.000000000	0.000000000			
31	-1.359079795 - i 13.364922631	13.43847358			
32	164.960256101 + i 68.328775330	178.51694562			
33	-224.792217910 - i 196.762841162	298.74262511			
34	-110.636340119 - i 591.852144574	602.104111256			
35	0.0000000000 + i 0.000000000	0.000000000			
36	147.472006710 + i 702.099015977	717.419696551			
37	45.731849880 + i 175.635202563	181.491395038			
38	-177.588145856 - i 44.971426177	183.19828283			
39	-875.291194999 - i 68.328775330	907.51694562			
40	0.0000000000 + i 0.000000000	0.000000000			
41	1052.478012596 + i 204.116082250	1072.088308877			
42	399.545318063 + i 429.453516017	586.572061733			
43	-171.355849479 - i 147.974819607	479.622156784			
44	44.430164502 + i 6.388093254	44.887049949			
45	0.0000000000 + i 0.000000000	0.000000000			
46	-17.945816315 - i 41.315412930	45.04456443			
47	571.498128245 + i 57.493242102	574.382784800			
48	-817.737034535 - i 394.055666358	907.729985094			
49	-780.92437266 - i 1621.597997004	1799.837990828			
50	0.0000000000 + i 0.000000000	0.000000000			
k	$L_{15/4}$	$	I_k	$	
-----	------------	-------			
3	1.0000000000 + i 0.0000000000	1.0000000000			
4	0.0000000000 + i 1.7320508080	1.7320508080			
5	-1.018073921 - i 3.1333093460	3.2945564140			
6	3.0000000000 + i 3.4641016150	4.5825756950			
7	-0.751508681 - i 3.1333093460	3.2945564140			
8	-1.7320508080 + i 0.0000000000	1.7320508080			
9	10.730551990 + i 5.1472765590	11.9012269110			
10	-15.603243133 - i 11.3364197110	19.2866691820			
11	17.245203123 + i 14.9430535680	22.8186739470			
12	-11.196152423 - i 8.1961524230	13.8755448040			
13	3.672908488 + i 14.9015755130	15.3475473460			
14	-1.68624678 + i 0.3854175630	1.7320508080			
15	0.0000000000 + i 0.0000000000	0.0000000000			
16	-1.224744871 + i 1.2247448710	1.7320508080			
17	-17.429589094 - i 19.1193484560	25.8716072440			
18	-6.617211192 + i 50.1562083870	50.5908363610			
19	0.000000000 - i 106.2164545480	106.2164545480			
20	-44.235991098 + i 136.1443815520	143.1506742440			
21	72.909410760 - i 126.0113494000	145.5837983940			
22	-36.010673013 + i 50.1562083870	50.5908363610			
23	-10.836276386 + i 38.6751769410	40.1645888480			
24	164.290883975 - i 126.0113494000	145.5837983940			
25	-153.611719961 + i 23.2178197190	13.3742607810			
26	106.668092622 + i 102.0104855750	143.1506742440			
27	-36.010673013 + i 106.2164545480	106.2164545480			
28	-9.197471902 + i 9.7096530350	13.3742607810			
29	0.000000000 + i 0.0000000000	0.0000000000			
30	-1.224744871 + i 1.2247448710	1.7320508080			
31	-164.960256101 - i 68.3287753300	178.5516945620			
32	85.599713692 + i 106.2164545480	106.2164545480			
33	147.472006710 - i 702.0900159770	717.4196965510			
34	-36.010673013 + i 136.1443815520	143.1506742440			
35	33.851120653 + i 753.7537657510	754.5135106500			
36	147.472006710 - i 702.0900159770	717.4196965510			
37	-136.240563896 + i 119.9067775330	181.4913950380			
38	0.000000000 + i 183.1938282830	183.1938282830			
39	538.949599873 + i 711.6053431560	892.6638984580			
40	-909.450887536 + i 660.7547469270	1124.1431191920			
41	1008.985242455 - i 362.3839435450	1072.0883088770			
42	-546.310790198 + i 213.5680315950	586.5720617330			
43	426.548198677 + i 219.3035488190	479.6221557840			
44	-24.267771377 + i 37.7613893480	44.8870499490			
45	0.000000000 + i 0.0000000000	0.0000000000			
46	-6.133571758 + i 44.6250486410	45.0449644300			
47	-558.735830232 - i 133.1535034830	574.3827848000			
48	394.055666358 + i 817.7370345360	907.7299850940			
49	-883.212092863 - i 1568.230508010	1799.8379908280			
50	410.499402001 + i 2151.9132252290	2190.7168343000			