A Piece of the Lepton Theory from a Probability

Gunn Alex Quznetsov*

March 31, 2022

Abstract

A masses of a leptons deduced from a representation of a probability density vector by a spinors. A massive W and Z bosons and a massless A boson are obtained from a transformations for which a density vector is invariant.

I use the following denotations:

\[1_2 = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, \quad 0_2 = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix} \]

and for \(k \geq 2 \):

\[1_{2k} = \begin{bmatrix} 1_k & 0_k \\ 0_k & 1_k \end{bmatrix}, \quad 0_{2k} = \begin{bmatrix} 0_k & 0_k \\ 0_k & 0_k \end{bmatrix} \]

\[\sigma_1 = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}, \quad \sigma_2 = \begin{bmatrix} 0 & -i \\ i & 0 \end{bmatrix}, \quad \sigma_3 = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} \]

are the Pauli matrices.

The Clifford pentad \(\mathbb{2} \), \(\beta \) is:

*quznets@yahoo.com
\[\beta_1 = \begin{bmatrix} \sigma_1 & 0_2 \\ 0_2 & -\sigma_1 \end{bmatrix}, \beta_2 = \begin{bmatrix} \sigma_2 & 0_2 \\ 0_2 & -\sigma_2 \end{bmatrix}, \beta_3 = \begin{bmatrix} \sigma_3 & 0_2 \\ 0_2 & -\sigma_3 \end{bmatrix}, \gamma_0 = \begin{bmatrix} 0_2 & 1_2 \\ 1_2 & 0_2 \end{bmatrix} = \beta_5, \beta_4 = i \begin{bmatrix} 0_2 & 1_2 \\ -1_2 & 0_2 \end{bmatrix}, \]

\[\beta_0 = \begin{bmatrix} 1_2 & 0_2 \\ 0_2 & 1_2 \end{bmatrix}, \gamma_5 = \begin{bmatrix} 1_2 & 0_2 \\ 0_2 & -1_2 \end{bmatrix}. \]

(1)

1 Masses

Let

\[\langle \rho (t, x, y, z), j_x (t, x, y, z), j_y (t, x, y, z), j_z (t, x, y, z) \rangle \]

be a probability current 3+1 vector field and \(\psi (t, x, y, z) \) be any complex spinor field:

\[\psi = |\psi| \begin{bmatrix} \exp (i \gamma) \cos (\beta) \cos (\alpha) \\ \exp (i \theta) \sin (\beta) \cos (\alpha) \\ \exp (i \varphi) \cos (\chi) \sin (\alpha) \\ \exp (i \psi) \sin (\chi) \sin (\alpha) \end{bmatrix}. \]

In this case the following system of equations:

\[\begin{align*}
\psi^\dagger \psi &= \rho, \\
\psi^\dagger \beta_1 \psi &= j_x, \\
\psi^\dagger \beta_2 \psi &= j_y, \\
\psi^\dagger \beta_3 \psi &= j_z
\end{align*} \]

(2)

has got the following form:
\[
\psi \dagger \psi = \rho,
\]
\[
|\psi|^2 \begin{pmatrix}
\cos^2 (\alpha) \sin (2 \beta) \cos (\theta - \gamma) & \\
- \sin^2 (\alpha) \sin (2 \chi) \cos (\varphi - \varphi) &
\end{pmatrix} = j_x,
\]
\[
|\psi|^2 \begin{pmatrix}
\cos^2 (\alpha) \sin (2 \beta) \sin (\theta - \gamma) & \\
- \sin^2 (\alpha) \sin (2 \chi) \sin (\varphi - \varphi) &
\end{pmatrix} = j_y,
\]
\[
|\psi|^2 \begin{pmatrix}
\cos^2 (\alpha) \cos (2 \beta) - \sin^2 (\alpha) \cos (2 \chi) &
\end{pmatrix} = j_z.
\]

Hence for every probability current vector \(\langle \rho, j_x, j_y, j_z \rangle \): the spinor \(\psi \), obeyed to this system, exists.

The operator \(\hat{U} (t, \Delta t) \), which acts in the set of these spinors, is denoted as the evolution operator for the spinor \(\psi (t, x, y, z) \), if:

\[
\psi (t + \Delta t, x, y, z) = \hat{U} (t, \Delta t) \psi (t, x, y, z).
\]

\(\hat{U} (t, \Delta t) \) is a linear operator.

The set of the spinors, for which \(\hat{U} (t, \Delta t) \) is the evolution operator, is denoted as the operator \(\hat{U} (t, \Delta t) \) space.

The operator space is the linear space.

Let for an infinitesimal \(\Delta t \):

\[
\hat{U} (t, \Delta t) = 1 + i \Delta t \hat{H} (t).
\]

Hence for an elements of the operator \(\hat{U} (t, \Delta t) \) space:

\[
i \hat{H} = \partial_t.
\]

If the functions \(\rho, j_x, j_y, j_z \) fulfill to the continuity equation [3]:

\[
\partial_t \rho + \partial_x j_x + \partial_y j_y + \partial_z j_z = 0
\]

then:

\[
\left((\partial_t \psi^\dagger) \beta_0 + (\partial_x \psi^\dagger) \beta_1 + (\partial_y \psi^\dagger) \beta_2 + (\partial_z \psi^\dagger) \beta_3 \right) \psi =
\]

\[
= - \psi^\dagger (\beta_0 \partial_t + \beta_1 \partial_x + \beta_2 \partial_y + \beta_3 \partial_z) \psi.
\]
Let:

\[\bar{Q} = \left(i\bar{H} + \beta_1 \partial_x + \beta_2 \partial_y + \beta_3 \partial_z \right). \]

Hence:

\[\psi^\dagger \bar{Q}^\dagger \psi = -\psi^\dagger \bar{Q} \psi. \]

Hence \(i\bar{Q} (t, x, y, z) \) is the Hermitian for the matrix product operator. Hence a real functions \(\varphi_{i,j} (t, x, y, z) \) and \(\varpi_{i,j} (t, x, y, z) \) for which:

\[-i\bar{Q} = \]

\[
\begin{bmatrix}
\varphi_{1,1} & \varphi_{1,2} + i\varpi_{1,2} & \varphi_{1,3} + i\varpi_{1,3} & \varphi_{1,4} + i\varpi_{1,4} \\
\varphi_{1,2} - i\varpi_{1,2} & \varphi_{2,2} & \varphi_{2,3} + i\varpi_{2,3} & \varphi_{2,4} + i\varpi_{2,4} \\
\varphi_{1,3} - i\varpi_{1,3} & \varphi_{2,3} - i\varpi_{2,3} & \varphi_{3,3} & \varphi_{3,4} + i\varpi_{3,4} \\
\varphi_{1,4} - i\varpi_{1,4} & \varphi_{2,4} - i\varpi_{2,4} & \varphi_{3,4} - i\varpi_{3,4} & \varphi_{4,4}
\end{bmatrix}
\]

exist.

Let \(G_t, G_z, K_t \) and \(K_z \) are the solution of the following system of equations:

\[
\begin{cases}
G_t + G_z + K_t + K_z = \varphi_{1,1}, \\
G_t - G_z + K_t - K_z = \varphi_{2,2}, \\
G_t - G_z - K_t + K_z = \varphi_{3,3}, \\
G_t + G_z - K_t - K_z = \varphi_{4,4};
\end{cases}
\]

\(G_x \) and \(K_x \) are the solution of the following system of equations:

\[
\begin{cases}
G_x + K_x = \varphi_{1,2}, \\
-G_x + K_x = \varphi_{3,4};
\end{cases}
\]

\(G_y \) and \(K_y \) are the solution of the following system of equations:

\[
\begin{cases}
-G_y - K_y = \varpi_{1,2}, \\
G_y - K_x = \varpi_{3,4}.
\end{cases}
\]

In this case:

\[-i\bar{Q} = \]

\[
= (G_t\beta_0 + G_x\beta_1 + G_y\beta_2 + G_z\beta_3) + \\
+ (K_t\beta_0 + K_x\beta_1 + K_y\beta_2 + K_z\beta_3) \gamma_5 + \]

\]
If
\[
\begin{cases}
(M_0 + M_{z,0}) = \varphi_{1,3}, \\
(M_0 - M_{z,0}) = \varphi_{2,4},
\end{cases}
\]

and
\[
\begin{cases}
(M_4 + M_{z,4}) = \varphi_{1,3}, \\
(M_4 - M_{z,4}) = \varphi_{2,4},
\end{cases}
\]

and
\[
\begin{cases}
(M_{x,0} + M_{y,4}) = \varphi_{1,4}, \\
(M_{x,0} - M_{y,4}) = \varphi_{2,3},
\end{cases}
\]

then
\[
\begin{bmatrix}
0 & 0 & \varphi_{1,3} + i\varphi_{1,3} & \varphi_{1,4} + i\varphi_{1,4} \\
0 & 0 & \varphi_{2,3} + i\varphi_{2,3} & \varphi_{2,4} + i\varphi_{2,4} \\
\varphi_{1,3} - i\varphi_{1,3} & \varphi_{2,3} - i\varphi_{2,3} & 0 & 0 \\
\varphi_{1,4} - i\varphi_{1,4} & \varphi_{2,4} - i\varphi_{2,4} & 0 & 0
\end{bmatrix}
\]

\[= M_0 \gamma_0 + M_4 \beta_4 - M_{x,0} \gamma_4 - M_{x,4} \zeta^4 + M_{y,0} \gamma_0 + M_{y,4} \eta^4 - M_{z,0} \gamma_0 - M_{z,4} \theta^4;
\]

here \(\gamma_4, \zeta^4, \gamma_0, \eta^4, \gamma_0, \theta^4\) are the chromatic pentads \(\mathbb{I}, \mathbb{E}\) members and \(\gamma_0\) and \(\beta_4\) is the light pentad \(\mathbb{B}\) members. Since in this paper I will not consider quarks then everywhere below:

\[M_{x,0} = M_{x,4} = M_{y,0} = M_{y,4} = M_{z,0} = M_{z,4} = 0\]

hence:
\[
-i\hat{Q} = (G_t\beta_0 + G_x\beta_1 + G_y\beta_2 + G_z\beta_3) + \\
+ (K_t\beta_0 + K_x\beta_1 + K_y\beta_2 + K_z\beta_3) \gamma_5 + \\
+ M_0\gamma_0 + M_4\beta_4.
\]

\{\beta_1, \beta_2, \beta_3, \beta_4, \gamma_0\} is the Clifford pentad.

If \(j_x = \rho u_x, j_y = \rho u_y, j_z = \rho u_z\) then \(u_x, u_y, u_z\) are the components of the average velocity. Hence \(\beta_1, \beta_2, \beta_3\) define the components of the average velocity \(\mathbf{2}\).

If

\[
\begin{align*}
 j_x &= \psi^\dagger \gamma_0 \psi, \\
 j_x &= \psi^\dagger \beta_4 \psi, \\
 j_x &= \rho u_x, \\
 j_x &= \rho u_4
\end{align*}
\]

then

\[
\begin{align*}
 u_x &= \sin(2\alpha) \begin{bmatrix}
 \cos(\beta) \cos(\chi) \cos(\gamma - \varphi) + \\
 + \sin(\beta) \sin(\chi) \cos(\theta - \upsilon)
\end{bmatrix}, \\
 u_x &= \sin(2\alpha) \begin{bmatrix}
 \cos(\beta) \cos(\chi) \sin(\gamma - \varphi) + \\
 + \sin(\beta) \sin(\chi) \sin(\theta - \upsilon)
\end{bmatrix}
\end{align*}
\]

and if \(\rho \neq 0\) then

\[
 u_x^2 + u_y^2 + u_z^2 + u_{x_5}^2 + u_{x_4}^2 = 1.
\]

From \[\mathbb{I}\] the maximal velocity of the information propagation in the space-time is 1.

Hence of only all five elements of the Clifford pentad lends the entire kit of the velocity components and, for the completeness, yet two "space" coordinates \(x_5\) and \(x_4\) should be added to our three \(x, y, z\).

Let

\[
\Psi(t, x, y, z, x_5, x_4) = \\
\psi(t, x, y, z) \exp(-i(x_5M_0(t, x, y, z) + x_4M_4(t, x, y, z))).
\]

In this case the motion equation is the following:
\[\beta_0 i \partial_t \Psi + \beta_1 i \partial_x \Psi + \beta_2 i \partial_y \Psi + \beta_3 i \partial_z \Psi + \gamma_0 i \partial_{x_5} \Psi + \beta_4 i \partial_{x_4} \Psi + (G_t \beta_0 + G_x \beta_1 + G_y \beta_2 + G_z \beta_3) \Psi + (K_t \beta_0 + K_x \beta_1 + K_y \beta_2 + K_z \beta_3) \gamma_5 \Psi = 0 \] (4)

Let an evolution operator \(\hat{U} (t, \Delta t) \) be denoted as a Planck evolution operator if a tiny positive real number \(h \) and a functions \(N_\varphi (t, x, y, z) \) and \(N_\varphi (t, x, y, z) \), having a range of values in the set of the integer numbers, exist for which:

\[M_0 = N_\varphi h \text{ and } M_4 = N_\varphi h. \]

Let \(-\frac{\pi}{h} \leq x_5 \leq \frac{\pi}{h}, \quad -\frac{\pi}{h} \leq x_4 \leq \frac{\pi}{h}, \)

\[\Psi (t, x, y, z, \pm \frac{\pi}{h}, x_4) = 0 \text{ and } \Psi (t, x, y, z, x_5, \pm \frac{\pi}{h}) = 0. \]

In this case the Fourier series for \(\Psi \) is of the following form:

\[\Psi (t, x, y, z, x_5, x_4) = \sum_{\nu, \kappa} \phi (t, x, y, z, \nu, \kappa) \exp \left(-i h \left(\nu x_5 + \kappa x_4 \right) \right). \]

Here:

\[\delta_{-\varphi, N_\varphi} = \frac{h}{2\pi} \int_{-\frac{\pi}{h}}^{\frac{\pi}{h}} \exp \left(i h \left(\nu x_5 \right) \right) \exp \left(i N_\varphi h x_5 \right) dx_5 = \frac{\sin \left(\pi \left(\nu + N_\varphi \right) \right)}{\pi \left(\nu + N_\varphi \right)}, \]

\[\delta_{-\kappa, N_\varphi} = \frac{h}{2\pi} \int_{-\frac{\pi}{h}}^{\frac{\pi}{h}} \exp \left(i h \left(\kappa x_4 \right) \right) \exp \left(i N_\varphi h x_4 \right) dx_4 = \frac{\sin \left(\pi \left(\kappa + N_\varphi \right) \right)}{\pi \left(\kappa + N_\varphi \right)}. \]

If denote:

\[\phi (t, x, y, z, -\nu, -\kappa) = \psi (t, x, y, z) \delta_{-\nu, N_\varphi(t,x,y,z)} \delta_{-\kappa, N_\varphi(t,x,y,z)} \]

then

\[\Psi (t, x, y, z, x_5, x_4) = \sum_{\nu, \kappa} \phi (t, x, y, z, \nu, \kappa) \exp \left(-i h \left(\nu x_5 + \kappa x_4 \right) \right). \]

From the properties of \(\delta \) in every point \(\langle t, x, y, z \rangle \): either

\[\Psi (t, x, y, z, x_5, x_4) = 0 \]

7
or an integer numbers ν_0 and κ_0 exist for which:

$$\Psi(t, x, y, z, x_5, x_4) = \phi(t, x, y, z, \nu_0, \kappa_0) \exp(-i\hbar(\nu_0 x_5 + \kappa_0 x_4)). \quad (5)$$

That is for the every space-time point: either this point is empty or single mass is placed in this point.

Let on the space of these spinors the scalar product $\Phi \ast \Psi$ be denoted as the following:

$$\Phi \ast \Psi = \left(\frac{\hbar}{2\pi}\right)^2 \int_{-\pi}^{\pi} dx_5 \int_{-\pi}^{\pi} dx_4 \cdot (\Phi^\dagger \Psi).$$

In this case:

$$\Psi \ast \beta_\mu \Psi = \psi^\dagger \beta_\mu \psi.$$

for $0 \leq \mu \leq 3$

Hence from (5):

$$\begin{cases}
\Psi^\dagger \ast \Psi = \rho, \\
\Psi^\dagger \ast \beta_1 \Psi = j_x, \\
\Psi^\dagger \ast \beta_2 \Psi = j_y, \\
\Psi^\dagger \ast \beta_3 \Psi = j_z.
\end{cases}$$

1.1 Bi-zero-nonzero-mass state

Let

$$\Psi(t, x, y, z, x_5, x_4) = \phi(t, x, y, z, 0, 0) + \phi(t, x, y, z, n, k) \exp(i\hbar(n x_5 + k x_4)).$$

Let $\epsilon_\mu (1 \leq k \leq 4)$ be a basis in which pentad $\bar{\beta}$ has got a form (P) and let

$$\Psi(x_5, x_4) = \sum_{r=1}^{4} \phi_r (0, 0) \epsilon_r + \exp(-i\hbar(n x_5 + k x_4)) \sum_{k=1}^{4} \phi_k (n, k) \epsilon_k \quad (6)$$

Hence in the basis
\[\langle \epsilon_r, \exp (-i \hbar (nX + kY)) \epsilon_k \rangle: \]

a 8-components bi-spinor:

\[
\Psi = \begin{bmatrix}
\phi_1 (0,0) \\
\phi_2 (0,0) \\
\phi_3 (0,0) \\
\phi_4 (0,0) \\
\phi_1 (n,k) \\
\phi_2 (n,k) \\
\phi_3 (n,k) \\
\phi_4 (n,k)
\end{bmatrix}
\]

corresponds to \(\Psi \).

From (5): in every point \(\langle t, x, y, z \rangle \):

\[
\Psi = \begin{bmatrix}
\phi_1 (0,0) \\
\phi_2 (0,0) \\
\phi_3 (0,0) \\
\phi_4 (0,0) \\
0 \\
0 \\
0 \\
0
\end{bmatrix}
\text{ or } \Psi = \begin{bmatrix}
0 \\
0 \\
0 \\
0 \\
\phi_1 (n,k) \\
\phi_2 (n,k) \\
\phi_3 (n,k) \\
\phi_4 (n,k)
\end{bmatrix}
\]

(7)

of \(\delta \) characteristics.

Let us denote:

\[\phi_1 \epsilon_1 + \phi_2 \epsilon_2 = \phi_L \text{ and } \phi_3 \epsilon_3 + \phi_4 \epsilon_4 = \phi_R. \]

Hence from (6):

\[\Psi (x_5, x_4) = \phi_L (0,0) + \phi_R (0,0) + \exp (-i \hbar (nX_5 + kX_4)) (\phi_L (n,k) + \phi_R (n,k)). \]

(8)

If use denotation:

\[\vartheta = \begin{bmatrix}
\vartheta \\
0 \\
0 \\
\vartheta
\end{bmatrix}, \]
\[\gamma = \begin{bmatrix} -\gamma_0 & 0_4 \\ 0_4 & \gamma_0 \end{bmatrix}, \quad \beta = \begin{bmatrix} -\beta_4 & 0_4 \\ 0_4 & \beta_4 \end{bmatrix} \]

and

\[n = \begin{bmatrix} 0_4 & 0_4 \\ 0_4 & n_{14} \end{bmatrix}, \quad k = \begin{bmatrix} 0_4 & 0_4 \\ 0_4 & k_{14} \end{bmatrix} \]

then the motion equation is the following:

\[\frac{\beta_0}{i} \partial_t \Psi + \frac{\beta_1}{i} \partial_x \Psi + \frac{\beta_2}{i} \partial_y \Psi + \frac{\beta_3}{i} \partial_z \Psi + \left(h_\mu \gamma^\mu \Psi - h_k \beta^k \Psi + \left(G_{t\beta_0} + G_{x\beta_1} + G_{y\beta_2} + G_{z\beta_3} \right) \Psi + \left(K_{t\beta_0} + K_{x\beta_1} + K_{y\beta_2} + K_{z\beta_3} \right) \gamma_5 \Psi \right) = 0 \] (9)

and

\[\begin{cases} \Psi^\dagger \Psi = \rho, \\ \Psi^\dagger \beta_1 \Psi = j_x, \\ \Psi^\dagger \beta_2 \Psi = j_y, \\ \Psi^\dagger \beta_3 \Psi = j_z. \end{cases} \] (10)

If use the following denotation: \(t = x_0, x = x_1, y = x_2, z = x_3, \partial_\mu = \frac{\partial}{\partial x_\mu} \)

then the lagrangian has got the following form:

\[\mathcal{L}_f = 0.5i \left(\left(\sum_{\mu=0}^3 \Psi^\dagger \beta_\mu \partial_\mu \Psi \right) - \left(\sum_{\mu=0}^3 \partial_\mu \Psi^\dagger \beta_\mu \Psi \right) \right) - \left(\Psi^\dagger h_\mu \gamma^\mu \Psi + \Psi^\dagger h_k \beta^k \Psi \right) + \Psi^\dagger \left(\sum_{\mu=0}^3 G_{x_\mu} \beta_\mu \right) \Psi + \Psi^\dagger \left(\sum_{\mu=0}^3 K_{x_\mu} \beta_\mu \right) \gamma_5 \Psi. \] (10)

This lagrangian is invariant for the rotation of \(xOy, yOz, xOz \) and for the Lorentz transformation of \(tOx, tOy, tOz \) and \(G_{x_k} \) and \(K_{x_k} \) behaves as the 4-vector fields \(\gamma_5 \).

1.1.1 Transformations

If \(U \) is an \(8 \times 8 \) complex matrix, \(\Psi' = U \Psi \) and

\[\begin{cases} \Psi^\dagger \beta_1 \Psi' = j_x, \\ \Psi^\dagger \beta_2 \Psi' = j_y, \\ \Psi^\dagger \beta_3 \Psi' = j_z. \end{cases} \] (11)
then for $1 \leq k \leq 3$: $U^\dagger \beta_k U = \beta_k$. In this case a real numbers $a'', b'', c'', g'', u'', v'', k, s, a', b', c', g', u', v', k', s'$ exist for which:

$$
U = \begin{bmatrix}
(a'' + b''i)1_2 & 0_2 & (c'' + ig'')1_2 & 0_2 \\
0_2 & (a' + b'i)1_2 & 0_2 & (c' + ig')1_2 \\
(u'' + iv'')1_2 & 0_2 & (k'' + is'')1_2 & 0_2 \\
0_2 & (u' + iv')1_2 & 0_2 & (k' + is')1_2
\end{bmatrix}.
$$

If $\Psi^\dagger \Psi' = \rho$ then $U^\dagger U = 1_8$. Hence:

$$
v''^2 + b''^2 + u''^2 + a''^2 = 1,
$$

$$
c''^2 + g''^2 + k''^2 + s''^2 = 1,
$$

$$
s'' = -\frac{a'' g'' u'' - u'' b'' c'' + a'' c'' v'' + b'' g'' v''}{u''^2 + v''^2},
$$

$$
k'' = \frac{-u'' a'' c'' - u'' b'' g'' + v'' a'' g'' - b'' c'' v''}{u''^2 + v''^2}.
$$

$$
v'^2 + b'^2 + u'^2 + a'^2 = 1,
$$

$$
c'^2 + g'^2 + k'^2 + s'^2 = 1,
$$

$$
s' = -\frac{a' g' u' - u' b' c' + a' c' v' + b' g' v'}{u'^2 + v'^2},
$$

$$
k' = \frac{-u' a' c' - u' b' g' + v' a' g' - b' c' v'}{u'^2 + v'^2}.
$$

U has got 4 eigenvalues: $\exp(i\alpha_1)$, $\exp(i\alpha_2)$, $\exp(i\alpha_3)$, $\exp(i\alpha_4)$ for 8 orthogonal eigenvectors:

$\varepsilon_{1,1}, \varepsilon_{1,2}, \varepsilon_{2,1}, \varepsilon_{2,2}, \varepsilon_{3,1}, \varepsilon_{3,2}, \varepsilon_{4,1}, \varepsilon_{4,2}$.

Let

$$
K = \begin{bmatrix}
\varepsilon_{1,1} & \varepsilon_{1,2} & \varepsilon_{2,1} & \varepsilon_{2,2} & \varepsilon_{3,1} & \varepsilon_{3,2} & \varepsilon_{4,1} & \varepsilon_{4,2}
\end{bmatrix}.
$$

Let $\theta_1, \theta_2, \theta_3, \theta_4$ be the solution of the system of the equations:
\[
\begin{align*}
\theta_1 + \theta_2 + \theta_3 + \theta_4 &= \alpha_1, \\
\theta_1 + \theta_2 - \theta_3 - \theta_4 &= \alpha_1, \\
\theta_1 - \theta_2 + \theta_3 - \theta_4 &= \alpha_1, \\
\theta_1 - \theta_2 - \theta_3 + \theta_4 &= \alpha_1.
\end{align*}
\]

and

\[U_1 = \exp(i\theta_1) 1_8,\]

\[U_2 = K \begin{bmatrix}
\exp(i\theta_2) 1_4 & 0_4 \\
0_4 & \exp(-i\theta_2) 1_4
\end{bmatrix} K^\dagger,\]

\[U_3 = K \begin{bmatrix}
\exp(i\theta_3) 1_2 & 0_2 & 0_2 & 0_2 \\
0_2 & \exp(-i\theta_3) 1_2 & 0_2 & 0_2 \\
0_2 & 0_2 & \exp(i\theta_3) 1_2 & 0_2 \\
0_2 & 0_2 & 0_2 & \exp(-i\theta_3) 1_2
\end{bmatrix} K^\dagger,\]

\[U_4 = K \begin{bmatrix}
\exp(i\theta_4) 1_2 & 0_2 & 0_2 & 0_2 \\
0_2 & \exp(-i\theta_4) 1_2 & 0_2 & 0_2 \\
0_2 & 0_2 & \exp(-i\theta_4) 1_2 & 0_2 \\
0_2 & 0_2 & 0_2 & \exp(i\theta_4) 1_2
\end{bmatrix} K^\dagger.\]

In this case:

\[U_1 U_2 U_3 U_4 = U\]

and

\[U_2 = \begin{bmatrix}
\exp(i\theta_2) 1_2 & 0_2 & 0_2 & 0_2 \\
0_2 & \exp(-i\theta_2) 1_2 & 0_2 & 0_2 \\
0_2 & 0_2 & \exp(i\theta_2) 1_2 & 0_2 \\
0_2 & 0_2 & 0_2 & \exp(-i\theta_2) 1_2
\end{bmatrix}\]

and a real number \(a, b, c, g, u, v, k, s\) exist for which:

\[U_3 U_4 = \begin{bmatrix}
(a + ib) 1_2 & 0_2 & (c + ig) 1_2 & 0_2 \\
0_2 & (u + iv) 1_2 & 0_2 & (k + is) 1_2 \\
(-c + ig) 1_2 & 0_2 & (a - ib) 1_2 & 0_2 \\
0_2 & (-k + is) 1_2 & 0_2 & (u - iv) 1_2
\end{bmatrix}\]
and

\[a^2 + b^2 + c^2 + g^2 = 1, \]
\[u^2 + v^2 + r^2 + s^2 = 1. \]

If

\[
U^{(+)} = \begin{bmatrix}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{bmatrix} \tag{12}
\]

and

\[
U^{(-)} = \begin{bmatrix}
(a + ib) & 0 & (c + ig) & 0 \\
0 & 1 & 0 & 0 \\
(-c + ig) & 0 & (a - ib) & 0 \\
0 & 0 & 0 & 1
\end{bmatrix}
\]

then

\[U_3 U_4 = U^{(-)} U^{(+)} = U^{(+)} U^{(-)}. \]

B-boson

\[
U_1 U_2 = \begin{bmatrix}
e^{i(\theta_1 + \theta_2)} & 0 & 0 & 0 \\
0 & e^{i(\theta_1 - \theta_2)} & 0 & 0 \\
0 & 0 & e^{i(\theta_1 + \theta_2)} & 0 \\
0 & 0 & 0 & e^{i(\theta_1 - \theta_2)}
\end{bmatrix}
\]

Let \(\chi \) and \(\varsigma \) be the solution of the following set of equations:

\[
\begin{align*}
0.5\chi + \varsigma &= \theta_1 + \theta_2, \\
\chi + \varsigma &= \theta_1 - \theta_2,
\end{align*}
\]

i.e.:

\[
\begin{align*}
\chi &= -4\theta_2, \\
\varsigma &= \theta_1 + 3\theta_2.
\end{align*}
\]

Let

\[
\hat{U} = \exp(i\varsigma) 1_8
\]
and
\[
\tilde{U} = \begin{bmatrix}
\exp \left(i \frac{\chi}{2} \right) 1_2 & 0_2 & 0_2 & 0_2 \\
0_2 & \exp (i\chi) 1_2 & 0_2 & 0_2 \\
0_2 & 0_2 & \exp \left(i \frac{\chi}{2} \right) 1_2 & 0_2 \\
0_2 & 0_2 & 0_2 & \exp (i\chi) 1_2
\end{bmatrix}.
\]

In that case:
\[
\tilde{U} \hat{U} = U_1 U_2.
\]

Let \(g_1 \) be a positive real number and for \(\mu \in \{t, x, y, z\} \): \(F_\mu \) and \(B_\mu \) be the solutions of the following systems of the equations:
\[
\begin{align*}
-0.5 g_1 B_\mu + F_\mu &= G_\mu + K_\mu \\
- g_1 B_\mu + F_\mu &= G_\mu - K_\mu
\end{align*}
\]
i.e.:
\[
B_\mu = \frac{4}{g_1} K_\mu \\
F_\mu = G_\mu + 3 K_\mu.
\]

Let the charge matrix be defined as the following:
\[
Y = -\begin{bmatrix}
1_2 & 0_2 & 0_2 & 0_2 \\
0_2 & 2 \cdot 1_2 & 0_2 & 0_2 \\
0_2 & 0_2 & 1_2 & 0_2 \\
0_2 & 0_2 & 0_2 & 2 \cdot 1_2
\end{bmatrix}
\]

In that case from (13):
\[
\beta_0 i \partial_t \Psi + \beta_1 i \partial_x \Psi + \beta_2 i \partial_y \Psi + \beta_3 i \partial_z \Psi + \frac{\hbar \Omega}{\hbar k} \Psi + (F_t \beta_0 + F_x \beta_1 + F_y \beta_2 + F_z \beta_3) \Psi + 0.5 g_1 Y (B_t \beta_0 + B_x \beta_1 + B_y \beta_2 + B_z \beta_3) \Psi = 0.
\]
\(\Psi \rightarrow \Psi' = (\bar{U}\Psi) \),
\(n \rightarrow n' \),
\(k \rightarrow k' \),
\(F_\mu \rightarrow F_\mu' \),
\(B_\mu \rightarrow B_\mu' \)

then:
\[
\beta_0 i \partial_t (\bar{U}\Psi) + \beta_1 i \partial_x (\bar{U}\Psi) + \beta_2 i \partial_y (\bar{U}\Psi) + \beta_3 i \partial_z (\bar{U}\Psi) + \\
- h \eta \gamma U \Psi - h k \beta U \Psi + \\
+ \left(F_t \beta_0 + F_x \beta_1 + F_y \beta_2 + F_z \beta_3 \right) \bar{U}\Psi + \\
+ 0.5 g \gamma (B_t \beta_0 + B_x \beta_1 + B_y \beta_2 + B_z \beta_3) \bar{U}\Psi = 0
\]

hence:
\[
\beta_0 i \left(\partial_t \bar{U} \right) \Psi + \beta_0 i \bar{U} \partial_t \Psi + \beta_1 i \left(\partial_x \bar{U} \right) \Psi + \beta_1 i \bar{U} \partial_x \Psi + \\
+ \beta_2 i \left(\partial_y \bar{U} \right) \Psi + \beta_2 i \bar{U} \partial_y \Psi + \beta_3 i \left(\partial_z \bar{U} \right) \Psi + \beta_3 i \bar{U} \partial_z \Psi + \\
- h \eta \gamma U \Psi - h k \beta U \Psi + \\
+ \left(F_t \beta_0 + F_x \beta_1 + F_y \beta_2 + F_z \beta_3 \right) \bar{U}\Psi + \\
+ 0.5 g \gamma (B_t \beta_0 + B_x \beta_1 + B_y \beta_2 + B_z \beta_3) \bar{U}\Psi = 0
\]

Since
\[
\partial_\mu \bar{U} = i \frac{\partial_\mu \chi}{2} \begin{bmatrix}
\exp \left(i \frac{\chi}{2} \right) & 0 & 0 & 0 \\
0 & 2 \exp \left(i \chi \right) & 0 & 0 \\
0 & 0 & \exp \left(i \frac{\chi}{2} \right) & 0 \\
0 & 0 & 0 & 2 \exp \left(i \chi \right)
\end{bmatrix}
\]

then
\[
\partial_\mu \bar{U} = -i \frac{\partial_\mu \chi}{2} \bar{U}\;
\]

Hence
\[
\begin{align*}
&\left(\beta_0 i \tilde{U} \partial_t + \beta_1 i \tilde{U} \partial_x + \beta_2 i \tilde{U} \partial_y + \beta_3 i \tilde{U} \partial_z\right) \Psi + \\
&\quad - h \left(u \gamma \tilde{U} + k \beta \tilde{U}\right) \Psi + \\
&\quad + \left(F^t_0 \beta_0 + F^x_0 \beta_1 + F^y_0 \beta_2 + F^z_0 \beta_3\right) \tilde{U} \Psi + \\
&\quad + 0.5 \left(\left(\beta_0 (g_1 Y_i B^i_t + \beta_0 Y \partial_t \chi) + \beta_1 (g_1 Y_i B^i_x + \beta_1 Y \partial_x \chi) + \beta_2 (g_1 Y_i B^i_y + \beta_2 Y \partial_y \chi) + \beta_3 (g_1 Y_i B^i_z + \beta_3 Y \partial_z \chi)\right) \tilde{U} \Psi = 0.
\end{align*}
\]

Since \(Y \beta = \beta Y\) then

\[
\begin{align*}
&\left(\beta_0 i \tilde{U} \partial_t + \beta_1 i \tilde{U} \partial_x + \beta_2 i \tilde{U} \partial_y + \beta_3 i \tilde{U} \partial_z\right) \Psi + \\
&\quad - h \left(u \gamma \tilde{U} + k \beta \tilde{U}\right) \Psi + \\
&\quad + \left(F^t_0 \beta_0 + F^x_0 \beta_1 + F^y_0 \beta_2 + F^z_0 \beta_3\right) \tilde{U} \Psi + \\
&\quad + 0.5 \left(\beta_0 (g_1 Y_i B^i_t + \beta_0 Y \partial_t \chi) + \beta_1 (g_1 Y_i B^i_x + \beta_1 Y \partial_x \chi) + \beta_2 (g_1 Y_i B^i_y + \beta_2 Y \partial_y \chi) + \beta_3 (g_1 Y_i B^i_z + \beta_3 Y \partial_z \chi)\right) \tilde{U} \Psi = 0.
\end{align*}
\]

hence:

\[
\begin{align*}
\tilde{U}^\dagger \left(\beta_0 i \tilde{U} \partial_t + \beta_1 i \tilde{U} \partial_x + \beta_2 i \tilde{U} \partial_y + \beta_3 i \tilde{U} \partial_z\right) \Psi + \\
\quad - h \tilde{U}^\dagger \left(u \gamma \tilde{U} + k \beta \tilde{U}\right) \Psi + \\
\quad + \tilde{U}^\dagger \left(F^t_0 \beta_0 + F^x_0 \beta_1 + F^y_0 \beta_2 + F^z_0 \beta_3\right) \tilde{U} \Psi + \\
\quad + 0.5 \tilde{U}^\dagger Y \left(\beta_0 (g_1 Y_i B^i_t + \beta_0 Y \partial_t \chi) + \beta_1 (g_1 Y_i B^i_x + \beta_1 Y \partial_x \chi) + \beta_2 (g_1 Y_i B^i_y + \beta_2 Y \partial_y \chi) + \beta_3 (g_1 Y_i B^i_z + \beta_3 Y \partial_z \chi)\right) \tilde{U} \Psi = 0.
\end{align*}
\]

Because:

\[
\begin{align*}
\tilde{U}^\dagger \gamma \tilde{U} &= \cos \left(\frac{\beta}{2}\right) \gamma - \sin \left(\frac{\beta}{2}\right) \beta, \\
\tilde{U}^\dagger \beta \tilde{U} &= \cos \left(\frac{\beta}{2}\right) \beta + \sin \left(\frac{\beta}{2}\right) \gamma, \\
\tilde{U}^\dagger \tilde{U} &= I_8, \\
\beta \mu \tilde{U} &= \tilde{U} \beta \mu, \\
\tilde{U}^\dagger Y \tilde{U} &= \Sigma
\end{align*}
\]

then
\[
-h \left(\psi' \left(\cos \left(\frac{x}{2} \right) \gamma - \sin \left(\frac{x}{2} \right) \beta \right) + k' \left(\cos \left(\frac{x}{2} \right) \beta + \sin \left(\frac{x}{2} \right) \gamma \right) \right) \psi + \\
+ \left(F'_{t} \beta_{0} + F'_{x} \beta_{1} + F'_{y} \beta_{2} + F'_{z} \beta_{3} \right) \Psi + \\
+0.5 \left(\beta_{0} \left(g_{1} B'_{t} + \partial_{t} \chi \right) + \beta_{1} \left(g_{1} B'_{x} + \partial_{x} \chi \right) + \beta_{2} \left(g_{1} B'_{y} + \partial_{y} \chi \right) + \beta_{3} \left(g_{1} B'_{z} + \partial_{z} \chi \right) \right) \Psi = 0.
\]

Therefore from (13):

\[
F'_{x} = F_{x}, \\
B'_{\mu} = B_{\mu} - \frac{1}{g_{1}} \partial_{\mu} \chi, \\
n' = -k \sin \frac{x}{2} + n \cos \frac{x}{2}, \\
k' = k \cos \frac{x}{2} + n \sin \frac{x}{2}.
\]

But \(k \) and \(n \) are an integer numbers and \(k' \) and \(n' \) must be an integer numbers, too.

A triplet \(\langle l, n, k \rangle \) of integer numbers is a Fermat triplet if

\[
l^2 = n^2 + k^2.
\]

Let \(\varepsilon \) be any tiny positive real number. An integer number \(l \) is a father number with a precise \(\varepsilon \) if for each real number \(\chi \) and for every Fermat triplet \(\langle l, n, k \rangle \) a Fermat triplet \(\langle l', n', k' \rangle \) exists for which:

\[
\left| -k \sin \frac{x}{2} + n \cos \frac{x}{2} - n' \right| < \varepsilon, \\
\left| k \cos \frac{x}{2} + n \sin \frac{x}{2} - k' \right| < \varepsilon.
\]

For every \(\varepsilon \): denumerable many of a father numbers with a precise \(\varepsilon \) exist.

Excuse me, but I mean that a masses of the real members of the particles families are defined by a father numbers with a precise \(h \). I.e. denumerable many of a families exist.

Therefore for the (17) transformation from (8):

\[
\Psi \left(x_{5}, x_{4} \right) = \sum_{r=1}^{4} \phi_{r} \left(0, 0 \right) \epsilon_{r} + \exp \left(-ih \left(n x_{5} + k x_{4} \right) \right) \sum_{k=1}^{4} \phi_{k} \left(n, k \right) \epsilon_{k} = \\
= \phi_{L} \left(0, 0 \right) + \phi_{R} \left(0, 0 \right) + \exp \left(-ih \left(n x_{5} + k x_{4} \right) \right) \left(\phi_{L} \left(n, k \right) + \phi_{R} \left(n, k \right) \right) \rightarrow
\]

17
\[\Psi^i(x_5, x_4) = \]
\[= \exp \left(i \frac{x}{2} \right) \phi_L (0, 0) + \exp \left(i \chi \right) \phi_R (0, 0) + \]
\[+ \exp \left(-i \hbar \left(-k \sin \frac{x}{2} + n \cos \frac{x}{2} \right) x_5 + \left(k \cos \frac{x}{2} + n \sin \frac{x}{2} \right) x_4 \right) \cdot \]
\[\exp \left(i \frac{x}{2} \right) \phi_L (n, k) + \exp \left(i \chi \right) \phi_R (n, k) \right) \cdot \]

U(–) transformation
U(–) has got the following eigenvalues and eigenvectors:

for the eigenvalue 1: eigenvectors:

\[
\begin{bmatrix}
0 \\
0 \\
1 \\
0 \\
0 \\
0 \\
0
\end{bmatrix}, \quad
\begin{bmatrix}
0 \\
0 \\
1 \\
0 \\
0 \\
0 \\
0
\end{bmatrix}, \quad
\begin{bmatrix}
0 \\
0 \\
0 \\
1 \\
0 \\
0 \\
0
\end{bmatrix}, \quad
\begin{bmatrix}
0 \\
0 \\
0 \\
0 \\
0 \\
0 \\
1
\end{bmatrix}; \quad (15)
\]

for the eigenvalue \(w = a + i \sqrt{1 - a^2} \): eigenvectors:

\[
L_3 = \frac{1}{\sqrt{2} \sqrt{1 - a^2} (b + \sqrt{1 - a^2})} \begin{bmatrix}
0 \\
0 \\
0 \\
0 \\
0 \\
0 \\
0
\end{bmatrix}, \quad (16)
\]

\[
L_4 = \frac{1}{\sqrt{2} \sqrt{1 - a^2} (b + \sqrt{1 - a^2})} \begin{bmatrix}
0 \\
0 \\
0 \\
0 \\
0 \\
0 \\
0
\end{bmatrix}; \quad (17)
\]
for eigenvalue $w^* = a - i\sqrt{1-a^2}$: eigenvectors:

\[
\mathcal{L}_7 = \frac{1}{\sqrt{2}\sqrt{1-a^2}(b+\sqrt{1-a^2})} \begin{bmatrix}
ic - g \\
0 \\
0 \\
0
\end{bmatrix}, \quad (18)
\]

\[
\mathcal{L}_8 = \frac{1}{\sqrt{2}\sqrt{1-a^2}(b+\sqrt{1-a^2})} \begin{bmatrix}
0 \\
ic - g \\
0 \\
0
\end{bmatrix}. \quad (19)
\]

Hence the space of $\mathcal{U}^{(-)}$ is divided on three orthogonal subspace:

- the 4-dimensional $\mathcal{U}_1^{(-)}$ on the basis $\langle \mathcal{L}_1, \mathcal{L}_2, \mathcal{L}_5, \mathcal{L}_6 \rangle$ with eigenvalue 1,
- the 2-dimensional $\mathcal{U}_w^{(-)}$ on the basis $\langle \mathcal{L}_3, \mathcal{L}_4 \rangle$ with eigenvalue w and
- the 2-dimensional $\mathcal{U}_{w^*}^{(-)}$ on the basis $\langle \mathcal{L}_7, \mathcal{L}_8 \rangle$ with eigenvalue w^*.

Let

\[\mathcal{L}_k = \gamma \mathcal{L}_k. \]

In this case $\langle \mathcal{L}_3, \mathcal{L}_4, \mathcal{L}_7, \mathcal{L}_8 \rangle$ is the orthonormal basis of $\mathcal{U}_1^{(-)}$. Let $\mathcal{U}_6^{(-)}$ be the space on the basis $\langle \mathcal{L}_3, \mathcal{L}_4, \mathcal{L}_5 \rangle$ and $\mathcal{U}_{w^*}^{(-)}$ be the space on the basis $\langle \mathcal{L}_7, \mathcal{L}_8, \mathcal{L}_7, \mathcal{L}_8 \rangle$.

\[\Psi_o = \pi_o \Psi, \quad \Psi_* = \pi_* \Psi, \]

where $\Psi_o \in \mathcal{U}_6^{(-)}$ and $\Psi_* \in \mathcal{U}_{w^*}^{(-)}$. (20)

In this case:

\[\pi_o = \frac{1}{2\sqrt{1-a^2}} \begin{bmatrix}
(b + \sqrt{1-a^2})_4 \\
(ic + g) \gamma_5 \\
\sqrt{1-a^2 - b} \end{bmatrix}, \]

19
\[\pi_* = \frac{1}{2\sqrt{1-a^2}} \left[\begin{array}{ccc} (\sqrt{1-a^2} - b) & (ic - g) \gamma_5 \\ -g - ic & (b + \sqrt{1-a^2}) \end{array} \right] . \]

Hence

\[\begin{align*}
\Psi_o (x_5, x_4) &= \frac{1}{2\sqrt{1-a^2}} \cdot \\
&\cdot \left(\begin{array}{c}
(b + \sqrt{(1-a^2)} - (ic - g) (\phi_L (0,0) + \phi_R (0,0)) + \\
\exp(-ih (nx_5 + kx_4)) \cdot (ic + g) (\phi_L (0,0) - \phi_R (0,0)) + \\
+ (b + \sqrt{(1-a^2)}) (\phi_L (n,k) + \phi_R (n,k))
\end{array} \right), \quad \text{(21)}
\end{align*} \]

\[\begin{align*}
\Psi_* (x_5, x_4) &= \frac{1}{2\sqrt{1-a^2}} \cdot \\
&\cdot \left(\begin{array}{c}
\sqrt{(1-a^2)} - (ic - g) (\phi_L (0,0) + \phi_R (0,0)) + \\
\exp(-ih (nx_5 + kx_4)) \cdot (g + ic) (-\phi_L (0,0) + \phi_R (0,0)) + \\
+ (b + \sqrt{(1-a^2)}) (\phi_L (n,k) + \phi_R (n,k))
\end{array} \right), \quad \text{(22)}
\end{align*} \]

If \(\lambda \) is the angle of the \(U^{(-)} \) eigenvalue (i.e. \(w = a + i\sqrt{1-a^2} \) and \(\cos \lambda = a \) and \(\sin \lambda = \sqrt{1-a^2} \)) then

\[\begin{align*}
U^{(-)*} \gamma U^{(-)} &= (\gamma \cos \lambda + \sin \lambda (\pi_0 - \pi_*) \beta), \\
U^{(-)*} \beta U^{(-)} &= (\beta \cos \lambda - \sin \lambda (\pi_0 - \pi_*) \gamma) . \quad \text{(23)}
\end{align*} \]

Let

\[\begin{align*}
n &\to n' = (n \cos \lambda + k \sin \lambda (\pi_0 - \pi_*)), \\
k &\to k' = (k \cos \lambda - n \sin \lambda (\pi_0 - \pi_*)), \\
\Psi &\to \Psi' = U^{(-)} \Psi, \\
F_\mu &\to F_\mu^i = F_\mu, \\
B_\mu &\to B_\mu^i = B_\mu \\
\end{align*} \]

and the motion equation for \(\Psi' \) be (23):

\[\sum_{\mu=0}^{3} \beta_\mu i \partial_\mu \Psi' - h (n' \gamma + k' \beta) \Psi' + \sum_{\mu=0}^{3} F_\mu^i \beta_\mu \Psi' + \\
+ 0.5 g_1 Y \sum_{\mu=0}^{3} B_\mu^i \beta_\mu \Psi' = S \Psi'. \quad \text{(25)} \]
Hence:
\[
\sum_{\mu=0}^{3} \beta_{\mu} \left(\partial_{\mu} U^{(-)} \right) \Psi + \sum_{\mu=0}^{3} \beta_{\mu} i U^{(-)} (\partial_{\mu} \Psi) - \\
- h \left(n \gamma + k \beta \left(U^{(-)} \right) \right) + \sum_{\mu=0}^{3} F_{\mu} \beta_{\mu} \left(U^{(-)} \right) + \\
+ 0.5 g_{1} Y \sum_{\mu=0}^{3} B_{\mu} \beta_{\mu} \left(U^{(-)} \right) = S \left(U^{(-)} \right),
\]

then
\[
U^{(-)} \sum_{\mu=0}^{3} \beta_{\mu} \left(\partial_{\mu} U^{(-)} \right) \Psi + \sum_{\mu=0}^{3} \beta_{\mu} i U^{(-)} (\partial_{\mu} \Psi) - \\
- U^{(-)} \sum_{\mu=0}^{3} \beta_{\mu} \left(\partial_{\mu} U^{(-)} \right) \Psi + \\
+ U^{(-)} \sum_{\mu=0}^{3} F_{\mu} \beta_{\mu} \left(U^{(-)} \right) \Psi + + U^{(-)} \sum_{\mu=0}^{3} 0.5 g_{1} Y \sum_{\mu=0}^{3} B_{\mu} \beta_{\mu} \left(U^{(-)} \right) \Psi = \\
= U^{(-)} \Psi. \]

Since
\[
U^{(-)} \beta_{\mu} = \beta_{\mu} U^{(-)} \Psi, \quad Y U^{(-)} = U^{(-)} Y, \quad U^{(-)} (\pi_{o} - \pi_{*}) = (\pi_{o} - \pi_{*}) U^{(-)} \Psi,
\]

then
\[
\sum_{\mu=0}^{3} \beta_{\mu} \left(\partial_{\mu} U^{(-)} \right) \Psi + \sum_{\mu=0}^{3} \beta_{\mu} i U^{(-)} (\partial_{\mu} \Psi) - \\
- h \left(n \cos \lambda + k \sin \lambda (\pi_{o} - \pi_{*}) \right) \Psi + \left(k \cos \lambda - n \sin \lambda (\pi_{o} - \pi_{*}) \right) \Psi + \\
+ \sum_{\mu=0}^{3} F_{\mu} \beta_{\mu} \Psi + 0.5 g_{1} Y \sum_{\mu=0}^{3} B_{\mu} \beta_{\mu} \Psi = \\
= U^{(-)} \Psi. \]

From (23):
\[
- h \left(n \cos \lambda + k \sin \lambda (\pi_{o} - \pi_{*}) \right) (\gamma \cos \lambda + \sin \lambda (\pi_{o} - \pi_{*}) \beta) + \\
+ \left(k \cos \lambda - n \sin \lambda (\pi_{o} - \pi_{*}) \right) (\beta \cos \lambda - \sin \lambda (\pi_{o} - \pi_{*}) \gamma) + \\
+ \sum_{\mu=0}^{3} F_{\mu} \beta_{\mu} \Psi + 0.5 g_{1} Y \sum_{\mu=0}^{3} B_{\mu} \beta_{\mu} \Psi = \\
= U^{(-)} \Psi. \]

Since
\[
(\pi_{o} - \pi_{*}) (\pi_{o} - \pi_{*}) = 1_{8}
\]
then

\[\sum_{\mu=0}^{3} \beta_{\mu} U^{(-)\dagger} \left(\partial_{\mu} U^{(-)} \right) \Psi + \sum_{\mu=0}^{3} \beta_{\mu} i \partial_{\mu} U^{(-)} = \]

\[U^{(-)\dagger} \left(SU^{(-)} \right) \Psi. \]

Hence from (13):

\[\sum_{\mu=0}^{3} \beta_{\mu} U^{(-)\dagger} \left(\partial_{\mu} U^{(-)} \right) = U^{(-)\dagger} \left(SU^{(-)} \right) \]

and

\[S = \sum_{\mu=0}^{3} \beta_{\mu} i \left(\partial_{\mu} U^{(-)} \right) U^{(-)\dagger} \]

Therefore from (25) the motion equation for the transformation (24) is the following:

\[\sum_{\mu=0}^{3} \beta_{\mu} i \partial_{\mu} \Psi' - \sum_{\mu=0}^{3} \beta_{\mu} i \left(\partial_{\mu} U^{(-)} \right) U^{(-)\dagger} \Psi' - h (k' \gamma + k' \beta) \Psi' + \]

\[= \sum_{\mu=0}^{3} F_{\mu} \beta_{\mu} \Psi + 0.5 g_{1} Y \sum_{\mu=0}^{3} B_{\mu} \beta_{\mu} \Psi = 0. \]

\(W \)-bosons Let \(g_2 \) be a positive real number.

If design \((a, b, c, g \) form \(U^{(-)}):\)

\[W_{0,\mu} = -2 \frac{1}{2} g_2 \left(g \left(\partial_{\mu} a \right) b - g \left(\partial_{\mu} b \right) a + \left(\partial_{\mu} c \right) g^2 \right) \]

\[+ a \left(\partial_{\mu} a \right) c + b \left(\partial_{\mu} b \right) c + c^2 \left(\partial_{\mu} c \right) \]

\[W_{1,\mu} = -2 \frac{1}{g_2 g_2} \left(\left(\partial_{\mu} a \right) a^2 - b g \left(\partial_{\mu} c \right) \right) \]

\[+ \left(\partial_{\mu} a \right) c + g \left(\partial_{\mu} a \right) b + c \left(\partial_{\mu} b \right) c \]

\[W_{2,\mu} = -2 \frac{1}{g_2 g_2} \left(g \left(\partial_{\mu} a \right) c - a \left(\partial_{\mu} a \right) b - b^2 \left(\partial_{\mu} b \right) - \right) \]

\[- c \left(\partial_{\mu} c \right) b - \left(\partial_{\mu} b \right) g^2 - \left(\partial_{\mu} c \right) c \]

and

\[W_\mu = \begin{bmatrix} W_{0,\mu} & 0 & (W_{1,\mu} - i W_{2,\mu}) & 0 \\ 0 & 0 & 0 & 0 \\ (W_{1,\mu} + i W_{2,\mu}) & 0 & -W_{0,\mu} & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} \]
then

\[-i \left(\partial_\mu U(\cdot) \right) U(\cdot) = \frac{1}{2} g_2 W_\mu \]

and from (23):

\[
\sum_{\mu=0}^{3} \beta_\mu i \left(\partial_\mu - i \frac{1}{2} g_2 W_\mu \right) \Psi' - \
- h \left(n' \gamma + k' \beta \right) \Psi' + \
+ \sum_{\mu=0}^{3} F_\mu \beta_\mu \Psi' + 0.5 g_1 \nu \sum_{\mu=0}^{3} B_\mu \beta_\mu \Psi' = 0. \tag{28}
\]

Let

\[
\dot{U} = \begin{bmatrix}
(\dot{a} + i \dot{b}) & 1_2 & 0_2 & (\dot{c} + i \dot{g}) & 1_2 & 0_2 \\
0_2 & 1_2 & 0_2 & 0_2 \\
(\dot{-c} + i \dot{g}) & 1_2 & 0_2 & (\dot{a} - i \dot{b}) & 1_2 & 0_2 \\
0_2 & 0_2 & 0_2 & 1_2
\end{bmatrix},
\]

\[
\dot{\pi}_o = \frac{1}{2 \sqrt{1 - \dot{a}^2}} \begin{bmatrix}
(\dot{b} + \sqrt{1 - \dot{a}^2}) & 1_4 & (-i \dot{c} + \dot{g}) \gamma_5 \\
(\dot{c} + \dot{g}) \gamma_5 & 1_4 & \left(\sqrt{1 - \dot{a}^2} - \dot{b} \right) \gamma_5
\end{bmatrix},
\]

\[
\dot{\pi}_s = \frac{1}{2 \sqrt{1 - \dot{a}^2}} \begin{bmatrix}
\left(\sqrt{1 - \dot{a}^2} - \dot{b} \right) & 1_4 & (i \dot{c} - \dot{g}) \gamma_5 \\
(-\dot{g} - i \dot{c}) \gamma_5 & 1_4 & \left(\dot{b} + \sqrt{1 - \dot{a}^2} \right) \gamma_5
\end{bmatrix}.
\]

Let:

\[\cos \dot{\lambda} = \dot{a} \quad \text{and} \quad \sin \dot{\lambda} = \sqrt{1 - \dot{a}^2}\]

and

\[
\Psi' \rightarrow \Psi' = \left(\dot{U} \psi' \right), \\
n' \rightarrow n' = \left(n' \cos \dot{\lambda} + k' \sin \dot{\lambda} \left(\dot{\pi}_o - \dot{\pi}_s \right) \right), \\
k' \rightarrow k' = \left(k' \cos \dot{\lambda} - n' \sin \dot{\lambda} \left(\dot{\pi}_o - \dot{\pi}_s \right) \right), \\
F_\mu \rightarrow F'_\mu = F_\mu, \\
B_\mu \rightarrow B'_\mu = B_\mu, \tag{29}
\]

23
and

\[W_\mu \rightarrow W'_\mu. \]

In that case from (27):

\[W'_\mu = -\frac{2i}{g_2} \left(\partial_\mu \left(\dot{U} U^{(-)} \right) \right) \left(\dot{U} U^{(-)} \right)^\dagger; \]

Hence:

\[W'_\mu = -\frac{2i}{g_2} \left(\partial_\mu U \right) \dot{U}^\dagger - \frac{2i}{g_2} \dot{U} \left(\partial_\mu U^{(-)} \right) U^{(-)} \dot{U}^\dagger; \]

i.e.:

\[W'_\mu = \dot{U} W_\mu \dot{U}^\dagger - \frac{2i}{g_2} \left(\partial_\mu U \right) \dot{U}^\dagger. \]

If

\[F_{\mu,\nu} = \left(\partial_\mu W_\nu - \partial_\nu W_\mu - i \frac{g_2}{2} \left(W_\mu W_\nu - W_\nu W_\mu \right) \right) \]

then

\[F'_{\mu,\nu} = \partial_\mu W'_\nu - \partial_\nu W'_\mu - i \frac{g_2}{2} \left(W'_\mu W'_\nu - W'_\nu W'_\mu \right) = U F_{\mu,\nu} U^\dagger. \]

Therefore \(F_{\mu,\nu} \) is invariant for the transformation (29).

The Lagrangian for \(F_{\mu,\nu} \):

\[\mathcal{L}_F = \left(-\frac{1}{4} \sum_{\mu,\nu} F_{\mu,\nu} F_{\mu,\nu} \right). \]

Hence the Euler-Lagrange equations for \(W_\mu \) are the following:

\[\sum_\nu \partial^\nu \left(\partial_\mu W_\nu - \partial_\nu W_\mu - i \frac{g_2}{2} \left[W_\mu, W_\nu \right] \right) = 0. \]

For the components:

\[
\begin{align*}
\sum_\nu \partial^\nu \partial_\nu W_{0,\mu} &= g_2 \sum_\nu \partial^\nu \left(W_{1,\nu} W_{2,\mu} - W_{2,\nu} W_{1,\mu} \right) + \partial_\mu \sum_\nu \partial^\nu W_{0,\nu}, \\
\sum_\nu \partial^\nu \partial_\nu W_{1,\mu} &= g_2 \sum_\nu \partial^\nu \left(W_{0,\nu} W_{2,\mu} - W_{2,\nu} W_{0,\mu} \right) + \partial_\mu \sum_\nu \partial^\nu W_{1,\nu}, \\
\sum_\nu \partial^\nu \partial_\nu W_{2,\mu} &= g_2 \sum_\nu \partial^\nu \left(W_{0,\mu} W_{1,\nu} - W_{0,\nu} W_{1,\mu} \right) + \partial_\mu \sum_\nu \partial^\nu W_{2,\nu}.
\end{align*}
\]

24
Let:

\[
\alpha_{0,\mu,\nu} = \partial_{\nu}W_{0,\mu} - g_2 (W_{1,\mu}W_{2,\nu} - W_{2,\mu}W_{1,\nu}) ,
\alpha_{1,\mu,\nu} = \partial_{\nu}W_{1,\mu} - g_2 (W_{0,\nu}W_{2,\mu} - W_{0,\mu}W_{2,\nu}) ,
\alpha_{2,\mu,\nu} = \partial_{\nu}W_{2,\mu} - g_2 (W_{0,\mu}W_{1,\nu} - W_{0,\nu}W_{1,\mu}) .
\]

(30)

Hence if \(\sum_\nu \partial^{\nu}W = 0\) then

\[
\sum_\nu \partial^{\nu}\alpha_{0,\mu,\nu} = 0 , \sum_\nu \partial^{\nu}\alpha_{1,\mu,\nu} = 0 , \sum_\nu \partial^{\nu}\alpha_{2,\mu,\nu} = 0 .
\]

From (30):

\[
\partial_{\nu}W_{0,\mu} = (g_2 (W_{1,\mu}W_{2,\nu} - W_{2,\mu}W_{1,\nu}) + \alpha_{0,\mu,\nu}) ,
\]

(31)

\[
\partial_{\nu}W_{1,\mu} = (g_2 (W_{0,\nu}W_{2,\mu} - W_{0,\mu}W_{2,\nu}) + \alpha_{1,\mu,\nu}) ,
\]

(32)

\[
\partial_{\nu}W_{2,\mu} = (g_2 (W_{0,\mu}W_{1,\nu} - W_{0,\nu}W_{1,\mu}) + \alpha_{2,\mu,\nu}) ;
\]

(33)

From (31):

\[
\partial_{\nu}\partial_{\nu}W_{0,\mu} = g_2 \partial_{\nu} (W_{1,\mu}W_{2,\nu} - W_{2,\mu}W_{1,\nu}) + \partial_{\nu}\alpha_{0,\mu,\nu} =
= g_2 (\partial_{\nu}W_{1,\mu}W_{2,\nu} + W_{1,\mu}\partial_{\nu}W_{2,\nu} - \partial_{\nu}W_{2,\mu}W_{1,\nu} - W_{2,\mu}\partial_{\nu}W_{1,\nu}) + \partial_{\nu}\alpha_{0,\mu,\nu};
\]

(34)

hence from (34), (32) and (33):

\[
\partial_{\nu}\partial_{\nu}W_{0,\mu} = g_2 \left(-g_2 (W_{0,\nu}W_{2,\mu} - W_{0,\mu}W_{2,\nu}) + \alpha_{1,\mu,\nu} \right) W_{2,\nu} -
= g_2 \left(-g_2 (W_{0,\nu}W_{1,\mu} - W_{0,\mu}W_{1,\nu}) + \alpha_{2,\mu,\nu} \right) W_{1,\nu} -
+ W_{2,\mu}\partial_{\nu}W_{1,\nu} + W_{1,\mu}\partial_{\nu}W_{2,\nu} + \partial_{\nu}\alpha_{0,\mu,\nu};
\]

hence:

\[
\partial_{\nu}\partial_{\nu}W_{0,\mu} =
= g_2 \left(-g_2 (W_{2,\nu}^2 + W_{1,\nu}^2) W_{0,\mu} + (W_{1,\mu}W_{1,\nu} + W_{2,\mu}W_{2,\nu}) W_{0,\nu} \right) +
+ \alpha_{1,\mu,\nu}W_{2,\nu} - \alpha_{2,\mu,\nu}W_{1,\nu} + W_{1,\mu}\partial_{\nu}W_{2,\nu} - W_{2,\mu}\partial_{\nu}W_{1,\nu} + \partial_{\nu}\alpha_{0,\mu,\nu};
\]

and
\[
\partial_\nu \partial_\mu W_{0,\mu} = -g_2^2 \left(W_{2,\nu}^2 + W_{1,\nu}^2 + W_{0,\nu}^2 \right) W_{0,\mu} + g_2^2 (W_{0,\mu} W_{0,\nu} + W_{1,\mu} W_{1,\nu} + W_{2,\mu} W_{2,\nu}) W_{0,\nu} + g_2 (\alpha_{1,\mu,\nu} W_{2,\nu} - \alpha_{2,\mu,\nu} W_{1,\nu} + W_{1,\mu} \partial_\nu W_{2,\nu} - W_{2,\mu} \partial_\nu W_{1,\nu}) + \partial_\nu \alpha_{0,\mu,\nu};
\]

if \(\sum_\nu \partial_\nu W_\nu = 0 \) then:

\[
\sum_\nu \partial_\nu \partial_\nu W_{0,\mu} = -g_2^2 W_{0,\mu} \sum_\nu W_\nu^2 + \frac{g_2^2}{2} \sum_\nu (W_\mu W_\nu + W_\nu W_\mu) W_{0,\nu} + g_2 \sum_\nu (\alpha_{1,\mu,\nu} W_{2,\nu} - \alpha_{2,\mu,\nu} W_{1,\nu}),
\]

(35)

\[
\sum_\nu \partial_\nu \partial_\nu W_{1,\mu} = -g_2^2 W_{1,\mu} \sum_\nu W_\nu^2 + \frac{g_2^2}{2} \sum_\nu (W_\nu W_\mu + W_\mu W_\nu) W_{1,\nu} + g_2 \sum_\nu (W_{0,\nu} \alpha_{2,\mu,\nu} - \alpha_{0,\mu,\nu} W_{2,\nu})
\]

and

\[
\sum_\nu \partial_\nu \partial_\nu W_{2,\mu} = -g_2^2 W_{2,\mu} \sum_\nu W_\nu^2 + \frac{g_2^2}{2} \sum_\nu (W_\nu W_\mu + W_\mu W_\nu) W_{2,\nu} + g_2 \sum_\nu (\alpha_{0,\mu,\nu} W_{1,\nu} - W_{0,\nu} \alpha_{1,\mu,\nu})
\]

\[
\alpha_{\mu,\nu} = \begin{bmatrix}
\alpha_{0,\mu,\nu} & \alpha_{1,\mu,\nu} - i\alpha_{2,\mu,\nu} \\
\alpha_{1,\mu,\nu} + i\alpha_{2,\mu,\nu} & -\alpha_{0,\mu,\nu}
\end{bmatrix}
\]

then

\[
\sum_\nu \partial_\nu \partial_\nu W_\mu = -g_2^2 W_\mu \sum_\nu W_\nu^2 + \frac{g_2^2}{2} \sum_\nu (W_\nu W_\mu + W_\mu W_\nu) W_\nu - i\frac{g_2}{2} \sum_\nu (\alpha_{\mu,\nu} W_\nu - W_\nu \alpha_{\mu,\nu})
\]

It is the motion equation for the field \(W_\mu \) which has got a less than unit 1 velocity. That is this field does not behave as a massless field.

Hence although \(F_{\mu,\nu} \) is a massless field but its components \(W_\mu \) do not behave like a massless fields.

If

\[
\sum_\nu \left(W_\nu \frac{\partial W_\nu}{\partial W_\mu} + \frac{\partial W_\nu}{\partial W_\mu} W_\nu \right) = 0
\]

then a real \(\nu \) exists for which
\[v = \left(2 \sum_{\nu} W_{\nu}^2 \right)^{\frac{1}{2}} \]
\[(36) \]

and

\[\partial_{W_{\mu}} v = 0 \]

then the Lagrangian of \(W_{\mu} \) is:

\[\hat{\mathcal{L}} = \sum_{\nu} (\partial_{\nu} W_{\mu}) (\partial_{\nu} W_{\mu}) - g^2 \sum_{\nu} \frac{W_{\nu}^2}{2} W_{\mu}^2 + \]
\[+ g^2 \sum_{\nu} (W_{\nu} W_{\mu} + W_{\mu} W_{\nu})^2 - \]
\[- i \frac{g^2}{2} \left((\sum_{\nu} \left[\alpha_{\mu,\nu}, W_{\nu} \right]) W_{\mu} + W_{\mu} (\sum_{\nu} \left[\alpha_{\mu,\nu}, W_{\nu} \right]) \right). \]

It is a lagrangian of a field with mass

\[M = g \sqrt{2} \]

and \(M > 0 \).

A and Z bosons Let \(A_{\mu} \) and \(Z_{\mu} \) are a fields for which \[(37) \]:

\[Z_{\mu} = \frac{1}{\sqrt{g_1^2 + g_2^2}} (g_2 W_{0,\mu} - g_1 B_{\mu}), \]
\[A_{\mu} = \frac{1}{\sqrt{g_1^2 + g_2^2}} (g_2 B_{\mu} + g_1 W_{0,\mu}) \]

and

\[\sum_{\nu} \partial_{\nu} \partial_{\nu} A_{\mu} = 0. \]
\[(38) \]

Let denote:

\[\frac{g_2}{2} \sum_{\nu} (W_{\mu} W_{\nu} + W_{\nu} W_{\mu}) W_{0,\nu} + g_2 \sum_{\nu} (\alpha_{1,\mu,\nu} W_{2,\nu} - \alpha_{2,\mu,\nu} W_{1,\nu}) = \Lambda. \]

Hence from \[(35) \] and \[(36) \]:

\[\sum_{\nu} \partial_{\nu} \partial_{\nu} W_{0,\mu} = -g^2 \frac{v^2}{2} W_{0,\mu} + \Lambda \]
\[(39) \]

From \[(37) \]:

27
\[B_\mu = \frac{1}{\sqrt{g_1^2 + g_2^2}} (g_2 A_\mu - g_1 Z_\mu), \quad W^0_\mu = \frac{1}{\sqrt{g_1^2 + g_2^2}} (g_1 A_\mu + g_2 Z_\mu). \] (40)

and

\[\sum_\nu \partial^\nu \partial_\nu A_\mu = \frac{1}{\sqrt{g_1^2 + g_2^2}} \left(g_2 \sum_\nu \partial^\nu \partial_\nu B_\mu + g_1 \sum_\nu \partial^\nu \partial_\nu W^0_\mu \right), \]

from (39):

\[\sum_\nu \partial^\nu \partial_\nu Z_\mu = \frac{1}{\sqrt{g_1^2 + g_2^2}} \left(\frac{-g_2^2 v^2}{2} W^0_{0_\mu} + \Lambda \right), \]

from (38):

\[A_\mu = - (g_2^2 - g_1^2) \frac{1}{2g_1 g_2} Z_\mu + \frac{1}{\sqrt{g_1^2 + g_2^2}} \left(g_1 \Lambda + g_2 \left(\sum_\nu \partial^\nu \partial_\nu B_\mu + g_1^2 v^2 B_\mu \right) \right), \] (41)

From (37):

\[\sum_\nu \partial^\nu \partial_\nu Z_\mu = \frac{1}{\sqrt{g_1^2 + g_2^2}} \left(g_2 \sum_\nu \partial^\nu \partial_\nu W^0_\mu - g_1 \sum_\nu \partial^\nu \partial_\nu B_\mu \right), \]

from (39):

\[\sum_\nu \partial^\nu \partial_\nu Z_\mu = \frac{1}{\sqrt{g_1^2 + g_2^2}} \left(\frac{-g_2^2 v^2}{2} W^0_{0_\mu} + \Lambda \right) - g_1 \left(\sum_\nu \partial^\nu \partial_\nu B_\mu + g_1^2 v^2 B_\mu - g_2^2 v^2 B_\mu \right), \]

from (40):
$$\sum_{\nu} \partial^\nu \partial_\nu Z_\mu = -\frac{v^2}{2} \frac{1}{g_1^2 + g_2^2} \left(g_1^4 + g_2^4 \right) Z_\mu - g_1 g_2 \frac{v^2}{2} \frac{1}{g_1^2 + g_2^2} \left(g_2^2 - g_1^2 \right) A_\mu +$$

$$+ \frac{1}{\sqrt{g_1^2 + g_2^2}} \left(g_2 \Lambda - g_1 \left(\sum_{\nu} \partial^\nu \partial_\nu B_\mu + g_1^2 \frac{v^2}{2} B_\mu \right) \right)$$

and from (41):

$$\sum_{\nu} \partial^\nu \partial_\nu Z_\mu = -\frac{1}{2} \frac{v^2}{2} \left(g_1^2 + g_2^2 \right) Z_\mu +$$

$$+ \frac{1}{2} \sqrt{g_1^2 + g_2^2} \left(\frac{1}{g_2} \Lambda - \frac{1}{g_1} \left(\sum_{\nu} \partial^\nu \partial_\nu B_\mu + g_1^2 \frac{v^2}{2} B_\mu \right) \right)$$

That is Z_μ has got the mass:

$$M_Z = \frac{v}{2} \sqrt{g_1^2 + g_2^2}.$$

Fragments

Since

$$(\pi_0 + \pi_*) = 1_8$$

then

$$\sum_{\mu=0}^{3} \beta_\mu \left(\partial_\mu - i \frac{1}{2} g_2 W_\mu \right) (\pi_0 + \pi_*) \Psi^- -$$

$$- h \left(\left(\frac{n}{h} \cos \lambda (\pi_0 + \pi_*) \right) + \frac{k}{h} \sin \lambda (\pi_0 - \pi_*) \right) \gamma +$$

$$+ h \left(\left(\frac{k}{h} \cos \lambda (\pi_0 + \pi_*) \right) + \frac{n}{h} \sin \lambda (\pi_0 - \pi_*) \right) \beta \right) \Psi^+ +$$

$$+ \sum_{\mu=0}^{3} F_\mu \beta_\mu (\pi_0 + \pi_*) \Psi^- +$$

$$+ 0.5 g_1 \sum_{\mu=0}^{3} B_\mu \beta_\mu (\pi_0 + \pi_*) \Psi^+ = 0.$$

Because

$$\pi_0 \beta = \beta \pi_0, \pi_* \beta = \beta \pi_*,$$

$$\pi_0 \gamma = \gamma \pi_0, \pi_* \gamma = \gamma \pi_*$$

then
\[\begin{align*}
\sum_{\mu=0}^{3} \beta_{\mu} i \left(\partial_{\mu} - i \frac{1}{2} g_{2} W_{\mu} \right) \pi_{o} \Psi^i + \\
+ \sum_{\mu=0}^{3} \beta_{\mu} i \left(\partial_{\mu} - i \frac{1}{2} g_{2} W_{\mu} \right) \pi_{s} \Psi^i - \\
- \hbar \left(n \cos \lambda \gamma_{o} \Psi^i + n \cos \lambda \gamma_{s} \Psi^i + \\
+ k \sin \lambda \gamma_{o} \Psi^i - k \sin \lambda \gamma_{s} \Psi^i + \\
+ k \cos \lambda \beta_{o} \Psi^i + k \cos \lambda \beta_{s} \Psi^i - \\
- \hbar \sin \lambda \beta_{o} \Psi^i + \hbar \sin \lambda \beta_{s} \Psi^i \\
+ \sum_{\mu=0}^{3} F_{\mu} \beta_{\mu} \pi_{o} \Psi^i + \sum_{\mu=0}^{3} F_{\mu} \beta_{\mu} \pi_{s} \Psi^i + \\
+ 0.5 g_{1} \sum_{\mu=0}^{3} B_{\mu} \beta_{\mu} \pi_{o} \Psi^i + \\
+ 0.5 g_{1} \sum_{\mu=0}^{3} B_{\mu} \beta_{\mu} \pi_{s} \Psi^i = 0. \\
\end{align*} \]

Let
\[\Psi_{o}^i = \pi_{o} \Psi^i \text{ and } \Psi_{s}^i = \pi_{s} \Psi^i. \]

In that case:
\[\begin{align*}
\sum_{\mu=0}^{3} \beta_{\mu} i \left(\partial_{\mu} - i \frac{1}{2} g_{2} W_{\mu} \right) \pi_{o} \Psi^i - \\
- \hbar \left((n \cos \lambda + k \sin \lambda) \gamma + (k \cos \lambda - n \sin \lambda) \beta \right) \Psi_{o}^i + \\
+ \sum_{\mu=0}^{3} F_{\mu} \beta_{\mu} \Psi_{o}^i + 0.5 g_{1} \sum_{\mu=0}^{3} B_{\mu} \beta_{\mu} \Psi_{o}^i + \\
\sum_{\mu=0}^{3} \beta_{\mu} i \left(\partial_{\mu} - i \frac{1}{2} g_{2} W_{\mu} \right) \pi_{s} \Psi^i - \\
- \hbar \left((n \cos \lambda - k \sin \lambda) \gamma + (k \cos \lambda + n \sin \lambda) \beta \right) \Psi_{s}^i + \\
+ \sum_{\mu=0}^{3} F_{\mu} \beta_{\mu} \Psi_{s}^i + 0.5 g_{1} \sum_{\mu=0}^{3} B_{\mu} \beta_{\mu} \Psi_{s}^i = 0. \\
\end{align*} \]

Therefore for the (24) transformation from (21, 22):
\[\Psi(x_5, x_4) = \Psi_{o}(x_5, x_4) + \Psi_{s}(x_5, x_4) \rightarrow \]
\[\rightarrow \Psi^i(x_5, x_4) = \Psi_{o}^i(x_5, x_4) + \Psi_{s}^i(x_5, x_4) = \]
\[= \frac{1}{2\sqrt{1 - a^2}} \cdot \left(b + \sqrt{1 - a^2} \right) \left(a + i \sqrt{1 - a^2} \right) \phi_{L}(0, 0) + \phi_{R}(0, 0) - \\
\cdot - (ic - g) \left(a + i \sqrt{1 - a^2} \right) \phi_{L}(n, k) - \phi_{R}(n, k) + \\
\cdot + \exp \left(-ih \left((n \cos \lambda + k \sin \lambda) x_5 + (k \cos \lambda - n \sin \lambda) x_4 \right) \right) \cdot \left(ic + g \right) \left(a + i \sqrt{1 - a^2} \right) \phi_{L}(0, 0) - \phi_{R}(0, 0) + \\
\cdot + \left(b + \sqrt{1 - a^2} \right) \left(a + i \sqrt{1 - a^2} \right) \phi_{L}(n, k) + \phi_{R}(n, k) \right) + \]
\[
+ \frac{1}{2\sqrt{1-a^2}} \left(\sqrt{1-a^2} - b \right) \left((a - i\sqrt{1-a^2}) \phi_L (0, 0) + \phi_R (0, 0) \right) + \\
+ (ic - g) \left((a - i\sqrt{1-a^2}) \phi_L (n, k) - \phi_R (n, k) \right) + \\
+ \exp (-ih \left((n \cos \lambda - k \sin \lambda) x_5 + (k \cos \lambda + n \sin \lambda) x_4 \right)) \cdot \\
\left((g + ic) \left((a - i\sqrt{1-a^2}) \phi_L (0, 0) + \phi_R (0, 0) \right) + \\
+ (b + \sqrt{1-a^2}) \left((a - i\sqrt{1-a^2}) \phi_L (n, k) + \phi_R (n, k) \right) \right) \\
\right) \\
\right) \\
\right) \).
\]

That is:

\[
\Psi (x_5, x_4) = \Psi_o (x_5, x_4) + \Psi_s (x_5, x_4) \rightarrow \\
\rightarrow \Psi^s (x_5, x_4) = \Psi^s_o (x_5, x_4) + \Psi^s_s (x_5, x_4) = \\
= \frac{1}{2\sqrt{1-a^2}} \\
\left(\left. \begin{array}{c}
(b + \sqrt{1-a^2}) \left((a + i\sqrt{1-a^2}) \phi_L (0, 0) + \phi_R (0, 0) \right) - \\
- (ic - g) \left((a + i\sqrt{1-a^2}) \phi_L (n, k) - \phi_R (n, k) \right) + \\
+ \exp (-ih \left((na + k\sqrt{1-a^2}) x_5 + (ka - n\sqrt{1-a^2}) x_4 \right)) \cdot \\
\left((ic + g) \left((a + i\sqrt{1-a^2}) \phi_L (0, 0) - \phi_R (0, 0) \right) + \\
+ (b + \sqrt{1-a^2}) \left((a + i\sqrt{1-a^2}) \phi_L (n, k) + \phi_R (n, k) \right) \right) \\
\end{array} \right) \right) + \\
\left(\left. \begin{array}{c}
\end{array} \right) \right) \\
\right) \\
\right) \cdot \\
\frac{1}{2\sqrt{1-a^2}}. \\
\left(\left. \begin{array}{c}
\end{array} \right) \right)
Let in some point \(\langle t, x, y, z \rangle \phi_L (n, k) \neq 0 \) or/and \(\phi_R (n, k) \neq 0 \).
In that case \([45]\) in this point: \(\phi_L (0, 0) = 0 \) and \(\phi_R (0, 0) = 0 \).
Hence:

\[
\Psi^i (x_5, x_4) = \frac{1}{2 \sqrt{1 - a^2}},
\]

\[
- (ic - g) \left((a + i \sqrt{1 - a^2}) \phi_L (n, k) - \phi_R (n, k) \right) + \exp \left(-ih \left((na + k \sqrt{1 - a^2}) x_5 + (ka - n \sqrt{1 - a^2}) x_4 \right) \right) \cdot \left(b + \sqrt{(1 - a^2)} \right) \left((a + i \sqrt{1 - a^2}) \phi_L (n, k) + \phi_R (n, k) \right),
\]

(43)

\[
\Psi^i (x_5, x_4) = \frac{1}{2 \sqrt{1 - a^2}},
\]

\[
(ic - g) \left((a - i \sqrt{1 - a^2}) \phi_L (n, k) - \phi_R (n, k) \right) + \exp \left(-ih \left((na - k \sqrt{1 - a^2}) x_5 + (ka + n \sqrt{1 - a^2}) x_4 \right) \right) \cdot \left(b + \sqrt{(1 - a^2)} \right) \left((a - i \sqrt{1 - a^2}) \phi_L (n, k) + \phi_R (n, k) \right),
\]

(44)

and

\[
\Psi^i (x_5, x_4) =
\]

\[
= - i (ic - g) \phi_L (n, k) + \frac{1}{2 \sqrt{1 - a^2}} \left(\exp \left(-ih \left((na + k \sqrt{1 - a^2}) x_5 + (ka - n \sqrt{1 - a^2}) x_4 \right) \right) \right) \cdot \left(b + \sqrt{(1 - a^2)} \right) \left((a + i \sqrt{1 - a^2}) \phi_L (n, k) + \phi_R (n, k) \right) + \frac{1}{2 \sqrt{1 - a^2}} \exp \left(-ih \left((na - k \sqrt{1 - a^2}) x_5 + (ka + n \sqrt{1 - a^2}) x_4 \right) \right) \cdot \left(b + \sqrt{(1 - a^2)} \right) \left((a - i \sqrt{1 - a^2}) \phi_L (n, k) + \phi_R (n, k) \right),
\]

(45)

Local probabilities

Let:

\[
\Psi^i \Psi_0 = \rho_0, \quad \Psi^i \Psi_0^* = \rho_0^i,
\]

\[
\Psi^i \beta_1 \Psi_0 = j_{0x}, \quad \Psi^i \beta_1 \Psi_0^* = j_{0x}^i,
\]

\[
\Psi^i \beta_2 \Psi_0 = j_{0y}, \quad \Psi^i \beta_2 \Psi_0^* = j_{0y}^i,
\]

\[
\Psi^i \beta_3 \Psi_0 = j_{0z}, \quad \Psi^i \beta_3 \Psi_0^* = j_{0z}^i,
\]

\[
\Psi^i \Psi_* = \rho_* , \quad \Psi^i \Psi_* = \rho_*^i,
\]

\[
\Psi^i \beta_1 \Psi_* = j_{*x}, \quad \Psi^i \beta_1 \Psi_*^* = j_{*x}^i,
\]

\[
\Psi^i \beta_2 \Psi_* = j_{*y}, \quad \Psi^i \beta_2 \Psi_*^* = j_{*y}^i,
\]

\[
\Psi^i \beta_3 \Psi_* = j_{*z}, \quad \Psi^i \beta_3 \Psi_*^* = j_{*z}^i,
\]

32
Because
\[
(\Psi^\dagger \Psi_o)^2 - \left((\Psi^\dagger \beta_1 \Psi_o)^2 + (\Psi^\dagger \beta_2 \Psi_o)^2 + (\Psi^\dagger \beta_3 \Psi_o)^2 \right) = \\
= (\Psi^\dagger \gamma \Psi_o)^2 + (\Psi^\dagger \beta \Psi_o)^2,
\]
\[
(\Psi^\dagger \Psi_s)^2 - \left((\Psi^\dagger \beta_1 \Psi_s)^2 + (\Psi^\dagger \beta_2 \Psi_s)^2 + (\Psi^\dagger \beta_3 \Psi_s)^2 \right) = \\
= (\Psi^\dagger \gamma \Psi_s)^2 + (\Psi^\dagger \beta \Psi_s)^2
\]
then the local densities are:
\[
\rho_{oo}^2 = \rho_o^2 - (j_{ox}^2 + j_{oy}^2 + j_{oz}^2) = (\Psi^\dagger \gamma \Psi_o)^2 + (\Psi^\dagger \beta \Psi_o)^2 \\
= (\Psi^\dagger \gamma \Psi_o)^2 + (\Psi^\dagger \beta \Psi_o)^2
\]
\[
\rho_{so}^2 = \rho_s^2 - (j_{sx}^2 + j_{sy}^2 + j_{sz}^2) = (\Psi^\dagger \gamma \Psi_s)^2 + (\Psi^\dagger \beta \Psi_s)^2 \\
= (\Psi^\dagger \gamma \Psi_s)^2 + (\Psi^\dagger \beta \Psi_s)^2
\]
Let us design:
\[
\gamma_0 = \pi_o^\dagger \gamma \pi_o, \gamma_s = \pi_s^\dagger \gamma \pi_s, \\
\beta_0 = \pi_o^\dagger \beta \pi_o, \beta_s = \pi_s^\dagger \beta \pi_s
\]
\[
\gamma_0^\dagger = U^{(-)} \gamma_0 U^{(-)}, \gamma_s^\dagger = U^{(-)} \gamma_s U^{(-)}, \\
\beta_0^\dagger = U^{(-)} \beta_0 U^{(-)}, \beta_s^\dagger = U^{(-)} \beta_s U^{(-)}.
\]
Since
\[
\gamma_0^\dagger = a \gamma_0 + \sqrt{1 - a^2} \beta_0, \beta_0^\dagger = a \beta_0 - \sqrt{1 - a^2} \gamma_0, \\
\gamma_s^\dagger = a \gamma_s - \sqrt{1 - a^2} \beta_s, \beta_s^\dagger = a \beta_s + \sqrt{1 - a^2} \gamma_s
\]
then
\[
\rho_{oo}^2 = \rho_{oo}^\dagger^2 \text{ and } \rho_{so}^2 = \rho_{so}^\dagger^2.
\]
From (11) since:
\[
\rho = \rho', \quad j_x = j_x', \quad j_y = j_y', \quad j_z = j_z
\]

then the local densities:
\[
\rho_o^2 = \rho^2 - (j_x^2 + j_y^2 + j_z^2) = \rho_o'^2 = \rho^2 - (j_x'^2 + j_y'^2 + j_z'^2)
\]

Because
\[
\left(\Psi^\dagger\Psi\right)^2 - \left((\Psi^\dagger\beta_1\Psi)^2 + (\Psi^\dagger\beta_2\Psi)^2 + (\Psi^\dagger\beta_3\Psi)^2\right) =
\]
\[
= \left(\Psi^\dagger\gamma\Psi\right)^2 + (\Psi^\dagger\beta\Psi)^2
\]

and
\[
\left(\Psi'^\dagger\Psi'^\dagger\Psi'^\dagger\Psi'\right)^2 - \left((\Psi'^\dagger\beta_1\Psi'^\dagger\Psi'^\dagger\Psi'^\dagger\Psi')^2 + (\Psi'^\dagger\beta_2\Psi'^\dagger\Psi'^\dagger\Psi'^\dagger\Psi')^2 + (\Psi'^\dagger\beta_3\Psi'^\dagger\Psi'^\dagger\Psi'^\dagger\Psi')^2\right) =
\]
\[
= \left(\sqrt{\left(\Psi'_o^\dagger\gamma\Psi'_o\right)^2 + (\Psi'_o^\dagger\beta\Psi'_o)^2} + \sqrt{\left(\Psi'_o^\dagger\gamma\Psi'_o\right)^2 + (\Psi'_o^\dagger\beta\Psi'_o)^2}\right)^2
\]

but
\[
\left(\Psi'^\dagger\Psi'^\dagger\Psi'^\dagger\Psi'\right)^2 - \left((\Psi'^\dagger\beta_1\Psi'^\dagger\Psi'^\dagger\Psi'^\dagger\Psi')^2 + (\Psi'^\dagger\beta_2\Psi'^\dagger\Psi'^\dagger\Psi'^\dagger\Psi')^2 + (\Psi'^\dagger\beta_3\Psi'^\dagger\Psi'^\dagger\Psi'^\dagger\Psi')^2\right) \\
\neq \left(\Psi'^\dagger\gamma\Psi'^\dagger\Psi'^\dagger\Psi'^\dagger\Psi'\right)^2 + (\Psi'^\dagger\beta\Psi'^\dagger\Psi'^\dagger\Psi'^\dagger\Psi')^2
\]

then
\[
\rho_o = \sqrt{\left(\Psi^\dagger\gamma\Psi\right)^2 + (\Psi^\dagger\beta\Psi)^2} = \\
= \sqrt{\left(\Psi_o^\dagger\gamma\Psi_o\right)^2 + (\Psi_o^\dagger\beta\Psi_o)^2} + \sqrt{\left(\Psi_s^\dagger\gamma\Psi_s\right)^2 + (\Psi_s^\dagger\beta\Psi_s)^2} = \\
= \rho_{oo} + \rho_{so}
\]

and
\[
\rho_o' = \\
= \sqrt{\left(\Psi'_o^\dagger\gamma\Psi'_o\right)^2 + (\Psi'_o^\dagger\beta\Psi'_o)^2} + \sqrt{\left(\Psi'_o^\dagger\gamma\Psi'_o\right)^2 + (\Psi'_o^\dagger\beta\Psi'_o)^2} = \\
= \rho_{oo'} + \rho_{so'}
\]
but

\[\rho_o^2 \neq (\Psi^\dagger \gamma \Psi)^2 + (\Psi^\dagger \beta \Psi)^2. \]

Therefore \(\rho_o \) is a local probability density of a sum of two mutually exclusive events with a local densities \(\rho_{oo} \) and \(\rho_o^* \).

Because:

\[
\begin{align*}
\Psi^\dagger \gamma \Psi_o &= \frac{1}{2} \left(1 - \frac{b}{\sqrt{1-a^2}}\right) \Psi^\dagger \gamma \Psi, \\
\Psi^\dagger \beta \Psi_o &= \frac{1}{2} \left(1 - \frac{b}{\sqrt{1-a^2}}\right) \Psi^\dagger \beta \Psi, \\
\Psi^\dagger \gamma \Psi_* &= \frac{1}{2} \left(1 + \frac{b}{\sqrt{1-a^2}}\right) \Psi^\dagger \gamma \Psi, \\
\Psi^\dagger \beta \Psi_* &= \frac{1}{2} \left(1 + \frac{b}{\sqrt{1-a^2}}\right) \Psi^\dagger \beta \Psi
\end{align*}
\]

then \(\rho_o \) and \(\rho_o^* \) do not depend from \(U(-) \).

For \(U(+) \) \footnote{12}:

\[
\Pi_o = \frac{1}{2\sqrt{1-u^2}} \begin{bmatrix} (v + \sqrt{1-u^2}) 1_4 & (-s + ik) \gamma_5 \\ (-ik - s) \gamma_5 & (\sqrt{1-u^2} - v) 1_4 \end{bmatrix},
\]

\[
\Pi_* = \frac{1}{2\sqrt{1-u^2}} \begin{bmatrix} (\sqrt{1-u^2} - v) 1_4 & (s - ik) \gamma_5 \\ (ik + s) \gamma_5 & (v + \sqrt{1-u^2}) 1_4 \end{bmatrix}.
\]

Hence:

\[
U(+)\dagger U(+) = u\gamma - \sqrt{1-u^2} (\Pi_o - \Pi_*) \beta,
\]

\[
U(+)\dagger \beta U(+) = u\beta + \sqrt{1-u^2} (\Pi_o - \Pi_*) \gamma
\]

and all rest for \(U(+) \) like to \(U(-) \).

References

[1] G. A. Quznetsov, The Poincare group deduced from the logic properties of the information in Photon : Old Problems in Light of New Ideas, V. Dvoeglazov (ed), Nova Science Publishers, NY, 2001 or http://arXiv.org/abs/physics/9901039

[2] E. Madelung, Die Mathematischen Hilfsmittel des Physikers. (Springer Verlag, 1957)
[3] Gunn A. Quznetsov, The probability in the relativistic m+1 space-time, http://arXiv.org/abs/physics/9803035

[4] G. Quznetsov, The Probability Distribution to Leptons and Quarks, http://arXiv.org/abs/physics/9904024

[5] Gunn Quznetsov, The lepton, quark and hadron currents, http://arXiv.org/abs/physics/9806007.

[6] G. Quznetsov, Whence the Gauge Fields arise, http://arXiv.org/abs/physics/0006036

[7] for instance, Gordon Kane, Modern Elementary Particle Physics. (Addison-Wesley Publishing Company, Inc., 1987)