A Novel Adenosine A$_{2a}$ Receptor Agonist Attenuates the Progression of Monocrotaline-induced Pulmonary Hypertension in Rats

Allan KN Alencar1, Sharlene L Pereira1,2, Flavia E da Silva1, Valéria do MN Cunha3, Lidia M Lima1, Roberta Tesch1, Carlos MR Sant’Anna4, Carlos AM Fraga1, Eliezer J Barreiro1, Roberto T Sudo1 and Gisele Zapata-Sudo1*

1Programa de Desenvolvimento de Fármacos, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
2Departamento de Farmacologia, Instituto de Ciências Biológicas, Universidade Federal de Juiz de Fora, Juiz de Fora, MG, Brazil
3Programa de Farmacologia e Imunologia, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
4Departamento de Química, Instituto de Ciências Exatas, Universidade Federal Rural do Rio de Janeiro, Seropédica, RJ, Brazil

Abstract

Background and purpose: Pulmonary hypertension is characterized by enhanced pulmonary vascular resistance, Right Ventricular Hypertrophy (RVH), and increased Right Ventricular Systolic Pressure (RVSP). This study examined the therapeutic effects of (E)-N’-(3,4-dimethoxynitrobenzylidene)-3,4-dimethoxy-N-methylbenzohydrazide (LASSBio-1366) on monocrotaline-induced pulmonary hypertension in rats.

Experimental approach: Pulmonary hypertension was induced in male Wistar rats by a single intraperitoneal injection of monocrotaline (MCT) at a dose of 60 mg/kg. Rats were divided into the following groups: control (saline injection only), MCT, MCT+vehicle (dimethyl sulfoxide [DMSO]), and MCT+LASSBio-1366. Starting 14 days after MCT injection, rats were treated daily with orally administered LASSBio-1366 (50 mg/kg/day) or vehicle for 14 days. Experiments were performed at the end of the 2-week treatment period (28 days post-MCT). Hemodynamics, vascular activity, and expression of endothelial nitric oxide synthase (eNOS), adenosine A$_{2a}$ receptor (A$_{2a}$R), and sarcoplasmic/endoplasmic reticulum Ca$^{2+}$-ATPase 2a (SERCA2a) were evaluated in each group.

Results: MCT increased the RVSP, RVH, and endothelial dysfunction in the pulmonary artery rings. These changes were attenuated by LASSBio-1366. The RVSP was reduced from 49.59 ± 5.08 mmHg in the MCT group, to 35.50 ± 1.17 mmHg in the LASSBio-1366-treated group (P<0.05). MCT also reduced eNOS, A$_{2a}$R, and SERCA2a levels compared with control, but treatment with LASSBio-1366 rescued their expression.

Conclusion: LASSBio-1366 activated A$_{2a}$R and attenuated RVH, endothelial dysfunction, and pulmonary vascular remodeling that occurs in rats with pulmonary hypertension.

Keywords: pulmonary hypertension, monocrotaline, ventricular dysfunction, pulmonary vascular remodeling, A$_{2a}$, adenosine agonist, N-acylhydrazone derivative

Abbreviations: PAH: Pulmonary Arterial Hypertension; RV: Right Ventricle; MCT: Monocrotaline; PASM: Pulmonary Artery Smooth Muscle Cell; PVR: Pulmonary Vascular Resistance; mPAP: Mean Pulmonary Arterial Pressure; PDE: Phosphodiesterase; DMSO: Dimethylsulphoxide; HF: Heart Failure; RVSP: Right Ventricular Systolic Pressure; BW: Body Weight; PhE: Phenylephrine; Ach: Acetylcholine

Introduction

Pulmonary Arterial Hypertension (PAH) is a rare disorder, with a prevalence of 15-50 people per million [1,2]. The condition can occur idioopathically or develop in the context of other conditions. PAH is characterized by endothelial cell dysfunction, proliferation of endothelial and pulmonary arterial smooth muscle cells, pulmonary vasoconstriction, and in situ thrombosis. These changes lead to a sustained increase in pulmonary vascular resistance and pulmonary arterial pressure, culminating in progressive Right Ventricular (RV) dysfunction and death [3]. PAH is diagnosed by invasive hemodynamic measurements after catheterization of the right side of the heart. PAH is defined as a resting mean pulmonary arterial pressure ≥ 25 mmHg [4].

Pulmonary vasoconstriction is considered by many as an early event in the development of PAH. Vasoconstriction has been associated with an abnormal function or expression of K⁺ channels, and endothelial dysfunction [5]. Endothelial dysfunction causes decreased production of vasodilators, such as nitric oxide (NO) and prostacyclin, and increased production of vasoconstrictors, such as endothelin-1 [6]. NO is a systemic vasodilator that acts via cyclic guanosine monophosphate (cGMP) pathways. Therapeutic strategies to increase NO-dependent pulmonary vasodilation primarily target phosphodiesterase type 5 (PDE5), which degrades cGMP. Sildenafil or tadalafil are PDE5 inhibitors that are effective in patients with PAH [7], confirming NO involvement in the regulation of pulmonary vascular tone.

NO can also be released by adenosine A$_{2a}$ receptor (A$_{2a}$R) activation, which is coupled to a G stimulatory protein and activates adenylyl cyclase/protein kinase A (PKA) pathways, leading to endothelial NO synthesis and vasodilation [8]. Adenosine is distributed throughout the body and is an important intermediate of purine synthesis and energy metabolism. Experimental evidence suggests that adenosine activation of A$_{2a}$R is critical to the control of vascular tone and remodeling by acting as an important regulator of inflammation and a potent vasodilator of pulmonary arteries [9]. A$_{2a}$R-knockout mice develop PAH and undergo increased pulmonary vascular remodeling [9]. Therefore, A$_{2a}$R activation could have beneficial effects on vascular remodeling and vasodilation during PAH.

*Corresponding author: Gisele Zapata-Sudo, PhD, Universidade Federal do Rio de Janeiro, Centro de Ciencias da Saude, Instituto de Ciencias Biomedicas, Bloco J, Sala 14, Rio de Janeiro, RJ, Brazil, Tel: 55-21-25626550; Fax: 55-21-25626550; E-mail: gsudo@farmaco.ufrj.br

Received October 23, 2013; Accepted November 27, 2013; Published November 29, 2013

Citation: Alencar AKN, Pereira SL, da Silva FE, do MN Cunha V, Lima LM, et al. (2013) A Novel Adenosine A$_{2a}$ Receptor Agonist Attenuates the Progression of Monocrotaline-induced Pulmonary Hypertension in Rats. J Pulmon Resp Med S4: 005. doi:10.4172/2161-105X.S4-005

Copyright: © 2013 Alencar AKN, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Recently, we showed that a new N-acylhydrazone derivative (LASSBio-1359), synthesized from a Brazilian natural product in sassafras oil (safrole), reversed monocrotaline (MCT)-induced PAH in rats by activation of A2AR [10]. This study investigates the effects of oral administration of (E)-N’-(3,4-dimethoxybenzylidene)-3,4-dimethoxy-N-methylbenzohydrazide (LASSBio-1366) on pulmonary vascular and RV function in rats with MCT-induced PAH, and explored potential mechanisms of its effects.

Materials and Methods

Drugs and reagents

LASSBio-1366 was synthesized by the Laboratório de Avaliação e Síntese de Substâncias Bioativas of the Universidade Federal do Rio de Janeiro. Dimethyl sulfoxide (DMSO, Merck Sharp & Dohme, and Darmstadt, Germany) was used as solvent to the LASSBio-1366, due its low solubility in water. MCT, Phenyphrine (PhE), Acetylcholine (ACh), and ZM 241385 were purchased from Sigma Aldrich (St. Louis, MO). LASSBio-1366 and ZM 241385 were dissolved in DMSO. PhE and ACh were dissolved in distilled water. MCT was dissolved in 1 M HCl, then neutralized with 0.5 M NaOH, and diluted with PBS.

Primary antibody to A2AR (catalogue number: AAR-002) was purchased from Alomone Labs Ltd. (Jerusalem, Israel) and the dilution used was 1:1000. The primary antibodies to eNOS (catalogue #9572), SERCA2a (catalogue #4388), and GAPDH (catalogue #5174) were purchased from Cell Signaling Technology (Beverly, MA, USA) and its dilutions were 1:1000. Anti-rabbit IgG-HRP (dilution 1:5000, catalogue #7074) was obtained from Abcam Corporation (Cambridge, MA, USA).

Animals and experimental protocol

The experimental protocols in this study were approved by the Animal Care and Use Committee at Universidade Federal do Rio de Janeiro. Male Wistar rats (220-300 g) were housed at 20 ± 3°C under a 12-hour light/dark cycle with free access to food and water. Rats were randomly divided into the following groups (n=6 per group): (1) control (injected with saline 0.2 mL), (2) MCT, (3) MCT+vehicle 0.2 mL (DMSO), and (4) MCT+LASSBio-1366 (50 mg/kg). Saline or MCT (60 mg/kg) was injected intraperitoneally (i.p.). At 2 weeks after MCT treatment, the pulmonary artery rings were harvested, submerged in lysis buffer with protease inhibitors, and immediately frozen in liquid N2 for homogenization.

Docking of LASSBio-1366 in A2A adenosine receptor crystal structure

The crystal structure of the A2A adenosine receptor co-crystallized with the selective antagonist ZM 241385 (PDB ID: 3EML) [14] was chosen to carry out the molecular docking studies, using the genetic algorithm software GOLD 5.2 (CCDC). The set of amino acid residues selected as the binding site to perform docking studies was determined by a distance of 15 Å from the Asn253 residue. A docking study of ZM 241385 in the A2A crystal structure executed to evaluate the quality of the predicted docking pose by comparison with the experimental binding mode showed a good performance for the GoldScore fitness function [15], as previously described [16].

The structure of LASSBio-1366 was energy-minimized using the DFT/B3LYP method [17], available in the Spartan’08 software (Wavefunction Inc). Three consecutive runs were then performed with LASSBio-1366 and the resulting poses were classified according to the chosen fitness function.

Hemodynamic measurements

Rats were anesthetized with sodium pentobarbital (40 mg/kg, i.p.). The depth of anesthesia was evaluated by pinching the paws with forceps. The thoracic cavity was opened, and a heparinized 19-G scalp vein was inserted into the RV. The RV Systolic Pressure (RVSP) was measured with PowerLab (ADInstruments, Sydney, Australia) monitoring equipment. Rats were euthanized at the end of the experiment while still anesthetized. Hemodynamic values were automatically calculated with the physiological data acquisition system LabChart 7.0 (ADInstruments, Sydney, Australia).

RV hypertrophy (RVH) measurements

After euthanasia, hearts were isolated, flushed with saline, and dissected to separate the RV from the left ventricle (LV) and septum (S). RVH was detected from the ratio of the weight RV/LV+S.

Western blotting

Tissues were harvested, submerged in lysis buffer with protease inhibitors, and immediately frozen in liquid N2 for homogenization.
Lung and cardiac tissues were homogenized in a Potter glass homogenizer using a lysis buffer (12.5% sucrose, 20 mM Tris-HCl [pH 7.4], and 1 mM EDTA) in the presence of 1 mM phenylmethylsulfonylfluoride (PMSF), 1 mM benzamidine, 1 mM dithiothreitol (DTT), and 1 µg/mL of a protease inhibitor cocktail (pepsatin, chymostatin, aprotinin, leupeptin, and antipain). The homogenate was centrifuged for 5 min at 1000 × g. The supernatant was collected and frozen [18] for further analyses. Total protein concentrations in each sample were determined spectrophotometrically using the Bradford method [19].

Identical amounts of protein for each blot (50-100 µg) were separated [20] by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) using 10% acrylamide gels and transferred to nitrocellulose membranes in a semi-dry system (Bio-Rad, Hercules, CA). The membranes were blocked with 5% nonfat dry milk in Phosphate Buffered saline (PBS) containing 0.1% Tween 20 and incubated with antibodies against A2AR, SERCA2a, eNOS, and glyceraldehyde 3-phosphate dehydrogenase (GAPDH). Membranes were treated with Super Signal West Pico Chemiluminescence reagents (Pierce, Rockford, IL, USA) and exposed to radiographic films. Films were scanned and densitometry was measured using Scion Image (Scion Corporation, Frederick, MD).

Expression of each protein was normalized to GAPDH expression. Total protein concentrations in each sample were determined using the Bradford method [19].

Noninvasive and invasive blood pressure (BP) measurements

Noninvasive BP measurements were performed on Wistar rats through a tail-cuff plethysmograph (Letica model LE 5001, Cornella, Barcelona, Spain). Animals were treated daily, for 14 days, with either vehicle (DMSO) or LASSBio-1366 (50 mg/kg) via oral gavage. The BP of rats was measured before treatment began, and at treatment days 1, 3, 5, 7, 11, and 14 [10].

Wistar rats were anesthetized with sodium pentobarbital (40 mg/kg, i.p.), and a catheter was placed into the right carotid artery for arterial BP measurement using a pressure transducer (MLT884, ADInstruments). A pair of external electrodes was placed on the chest for electrocardiogram recording. A catheter was placed in the jugular vein for intravenous (i.v.) injection of LASSBio-1366. Thirty minutes after the surgical procedure, rats received a bolus injection of LASSBio-1366 (10 mg/kg). Both BP and electrocardiogram were recorded continuously before and during the administration of LASSBio-1366.

Data analyses

All data are presented as the mean ± Standard Error of the Mean (SEM). To compare multiple groups, one-way analysis of variance (ANOVA) followed by Newman-Keuls’ tests was used. P values<0.05 were considered statistically significant.

Results

LASSBio-1366 activates the adenosine A2AR to induce pulmonary arterial relaxation

The vasodilatory activity of LASSBio-1366 was investigated in pulmonary artery rings from normal Wistar rats. LASSBio-1366 induced relaxation of PhE-contracted vessels (10−5 mol/L) in a concentration-dependent manner. The concentration of LASSBio-1366 that reduced the PhE-induced contraction by 50% (IC50) was 25.1 ± 12.9 µmol/L (Figure 2A). The effect of LASSBio-1366 on vasodilation in the presence of ZM 241385 (10−7 mol/L), a selective antagonist of the adenosine A2AR, was investigated. Pretreatment of pulmonary arteries with ZM 241385 decreased RV/BW+S from 1.72 ± 0.18 in the MCT-treated group to 1.18 ± 0.07 (P<0.05). Additionally, LASSBio-1366 significantly decreased RV/BW+S from 1.72 ± 0.18 in the MCT-treated group to 1.18 ± 0.07 (P<0.05).

The proposed mode of interaction of LASSBio-1366 in A2AR

After the three consecutive runs, the highest score pose of LASSBio-1366 in A2AR adenosine receptor was analyzed and compared with the interactions of ZM 241385 (Figures 2B and 2C). The scale of the score gives a guide as to how good the pose is; the higher the score, the better the docking result is likely to be. It can be observed that LASSBio-1366 has a different binding mode when compared with ZM241385. The triazole-triazine subunit of ZM241385 interacts with Phe168 by π-stacking interactions and with Glu169 and Asn253 by hydrogen bonds (Figure 2B). LASSBio-1366 is involved in two hydrogen bonds with the side chains of Tyr271 and His278 and its planar N-acylhydrazone subunit is positioned near the hydrophobic side chain of Phe168 (Figure 2C).

Effects of orally administered LASSBio-1366 on pulmonary hemodynamics and RVH

We demonstrated that RVH in MCT-treated rats led to the enhancement of RVSP (Figure 3B). RVSP was significantly increased in rats after MCT treatment (49.59 ± 5.08 mmHg) compared to normal rats (27.28 ± 2.09 mmHg) (P<0.05; Figure 3B). Similarly, MCT increased the RV/BW ratio from 0.67 ± 0.03 in normal control rats to 1.49 ± 0.15 (P<0.05; Figure 3C). LASSBio-1366 treatment significantly decreased RVSP to 35.50 ± 1.18 mmHg compared to 54.17 ± 2.21 mmHg in the MCT-vehicle group (P<0.05). Additionally, LASSBio-1366 significantly decreased RV/BW+S from 1.62 ± 0.12 in the MCT-treated group to 0.98 ± 0.04 (P<0.05).

Oral treatment with LASSBio-1366 attenuates endothelial dysfunction of pulmonary artery rings in MCT-induced PAH

At the end of the treatment course, pulmonary artery rings were removed from rats and prepared for isometric tension recording to
evaluate the endothelial dysfunction. The maximum relaxation induced by ACh was reduced from 57.3 ± 5.5% in control rats to 37.5 ± 4.0% in MCT-treated rats and 42.36 ± 1.3% in rats treated with MCT and vehicle (P<0.05 vs. control; Figure 4). This finding indicates that MCT causes endothelial dysfunction in the pulmonary artery rings. Oral administration of LASSBio-1366 (50 mg/kg) to MCT-treated rats increased the maximum relaxation induced by ACh to 49.31 ± 1.4% (P<0.05 vs. MCT; Figure 4). The concentration of LASSBio-1366 to induce 50% of the maximal relaxation (IC50) in the phenylephrine-induced contraction of pulmonary artery from vehicle-treated and LASSBio-1366-treated rats were 21.9 ± 2.0 and 10.2 ± 1.7, respectively (P<0.001).

Effects of LASSBio-1366 on A2AR and eNOS expression in the lungs of MCT-treated rats

Western blotting showed that MCT significantly decreased expression of A2AR and eNOS in the lungs. Notably, LASSBio-1366 (50 mg/kg/day) increased the expression of A2AR (Figure 5A) and eNOS (Figure 5B) in MCT-injured lungs compared to treatment with vehicle alone.

Effects of LASSBio-1366 on SERCA2a expression in RV tissue from MCT-treated rats

Western blotting of RV tissue revealed that MCT reduced SERCA2a expression compared to controls (P<0.05; Figure 6). LASSBio-1366 restored SERCA2a expression in MCT-treated rats.

Effects of LASSBio-1366 on systemic BP during prolonged or acute treatment in normal Wistar rats

LASSBio-1366 was administrated orally (50 mg/kg/day) to
Pulmonary Hypertension

The A2AR antagonist ZM 241385 significantly decreased the vasodilator response of isolated pulmonary arteries during PAH. Pretreatment of pulmonary artery rings with LASSBio-1366, an endogenous agonist adenosine and its analogues in the arterial smooth muscle, has been described as one of the residues that interact with the endogenous agonist adenosine [21,22]. It is interesting to notice that ZM241385 is an A2A antagonist while LASSBio-1366 has an agonist activity potential and this could be related to the different patterns of interactions observed in the docked molecules [23]. In the present study, we found that LASSBio-1366 restored eNOS expression in lung tissue from MCT-treated mice. Xu et al. [9] provided the first evidence that A2AR contributes to the development of PAH in mice. At 14 to 16 weeks of age, A2AR-knockout mice exhibited hemodynamic, histological, and ultrastructural changes associated with PAH [9]. In our experiments, MCT-treated rats showed a reduction of A2AR expression and LASSBio-1366 upregulated A2AR level in lung tissue, further implicating A2AR in PAH progression.

Table 1: Blood systemic pressure data of Wistar rats receiving i.v. LASSBio-1386 (10 mg/kg).

Time after MCT injection	SP (mmHg)	DP (mmHg)	MAP (mmHg)
Normal Wistar rats	144.5 ± 0.4	101.4 ± 0.3	131.1 ± 0.5
LASSBio-1366 5 min after	143.9 ± 0.6	102.8 ± 0.7	129.9 ± 0.7
10 min after	141.0 ± 0.2	99.2 ± 0.4	128.0 ± 1.2
20 min after	143.0 ± 0.4	104.2 ± 0.3	125.0 ± 1.0

Discussion

The present study shows that LASSBio-1366 attenuates pulmonary vasoconstriction, RV systolic pressure, and RV hypotrophy in rats with MCT-induced PAH. PAH is a disease of the small pulmonary arteries, characterized by vascular narrowing leading to a progressive increase in pulmonary vascular resistance. The consequence of this increased pulmonary venous afterload is the heart failure [6]. LASSBio-1366 induced relaxation of PhE-contracted pulmonary vessels indicating an interesting pharmacological action for intervention in the dysfunctional arteries during PAH. Pretreatment of pulmonary artery rings with the A2AR antagonist ZM 241385 significantly decreased the vasoconstrictor effect of LASSBio-1366 and this finding suggested the involvement of A2AR in this process.

It is interesting to notice that ZM241385 is an A1 antagonist while LASSBio-1366 has an agonist activity potential and this could be related to the different patterns of interactions observed in the docked molecules [14]. This information in support of mutagenesis data which has shown that mutation of the His278 to alanine abolishes the affinity of A1a agonists [21,22]. A2AR-knockout mice show pulmonary vascular features that resemble idiopathic PAH, suggesting an important role for A2AR in PAH development [9]. A2AR agonists may emerge as new compounds to treat PAH. Furthermore, A2AR agonists may be important regulators of inflammation [21]. Adenosine is a potent pulmonary vasodilator that has been used to treat clinical and experimental pulmonary hypertension [21]. Thus, A2AR activation by LASSBio-1366 may be an important therapeutic strategy for the treatment of PAH.

In addition, LASSBio-1366 effectively attenuates endothelial dysfunction of pulmonary artery rings, as measured by the increased Ach-induced relaxation and it probably occurs because A2AR is an important regulator in the development of PAH and pulmonary vascular remodeling [9]. A2AR is located in the vascular endothelium and is coupled to a G stimulatory protein. It induces NO release to promote vasodilatation by activating adenylyl cyclase/PKA pathways [8]. Adenosine also produces endothelium-independent relaxation, which is partly induced by the activation of A1R in smooth muscle, which regulates a mixed population of K+ channels [23]. LASSBio-1366 could, therefore, activate A2AR in the pulmonary arteries and restore normal levels of endothelial NO, leading to improvement of endothelial dysfunction and reduction of pulmonary vascular resistance.

Table 1: Blood systemic pressure data of Wistar rats receiving i.v. LASSBio-1386 (10 mg/kg).

*All values are mean ± SEM, n=6 per group

Considerable evidence has been collected concerning the role of intracellular Ca2+ signaling in the development of heart failure. SERCA2a regulates intracellular Ca2+ handling and plays a crucial role in cardiac contraction and relaxation. In human patients with and animal models of heart failure, SERCA2a expression and activity are reduced [27]. This study provides the first evidence that in a rat model of MCT-induced PAH, there is a reduction of RV SERCA2a at 28 days after MCT injection. Impaired SERCA2a expression may be implicated in the RV dysfunction induced by PAH. The rescue of RV SERCA2a expression by LASSBio-1366 was likely the result of reduced load in right side of the heart.

Oral treatment of spontaneously hypertensive rats with LASSBio-1366 promoted a pronounced hypotensive effect (data not shown). Although treatment of normotensive Wistar rats with the compound had no effect on blood pressure. This feature is important because it indicates a low potential of LASSBio-1366 to induce side effects on the blood pressure of patients with PAH.

Previously, we demonstrated that the activation of A2AR by a new agonist named LASSBio-1359 attenuated the development of MCT-induced PAH in a rat model [10]. LASSBio-1366 was designed and synthesized to improve the molecular recognition by the receptor. The rationale to its synthesis was to facilitate its interaction to the A2AR by a new rationale to its synthesis was to facilitate its interaction to the A2AR. The molecular similarity between the two aromatic rings of compound LASSBio-1359 was improved by the introduction of the dimethoxyl group in the left ring which resulted in LASSBio-1366. Our hypothesis was that because of the molecular symmetry of LASSBio-1366, it should interact easily to the A2AR and should contribute to its superior therapeutic effects to reduce the vascular remodeling in HAP.
It was confirmed that oral treatment with LASSBio-1366 reduced cardiac and vascular dysfunction partially mediated by the activation of the adenosine A2R, which was similar to those effects observed with LASSBio1359. Future studies are required to determine whether LASSBio-1366 could be used in clinical settings.

Acknowledgements

This work was supported by grants of Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES), Fundação Universitária Jose Bonifácio (FUJB), Programa de Apoio a Núcleos de Experiência (PRONEX), Fundação Carlos Chagas Filho de Amparo à Pesquisa do Estado do Rio de Janeiro (FAPERJ), Instituto Nacional de Ciência e Tecnologia de Fármacos e Medicamentos (INCT - INOFAR) - CNPq.

References

1. Humbert M, Sitbon O, Chaouat A, Bertocchi M, Habib G, et al. (2006) Pulmonary arterial hypertension in France: results from a national registry. Am J Respir Crit Care Med 173: 1023-1030.
2. Peacock AJ, Murphy NF, McDurray JJ, Caballero L, Stewart S (2007) An epidemiological study of pulmonary arterial hypertension. Eur Respir J 30: 104-109.
3. Task Force for Diagnosis and Treatment of Pulmonary Hypertension of European Society of Cardiology (ESC), European Respiratory Society (ERS), International Society of Heart and Lung Transplantation (ISHLT), Galié N, Hoeper MM, et al. (2009) Guidelines for the diagnosis and treatment of pulmonary hypertension. Eur Respir J 34: 1219-1263.
4. O’Callaghan DS, Savale L, Montani D, Jais X, Sitbon O, et al. (2011) Treatment of pulmonary arterial hypertension with targeted therapies. Nat Rev Cardiol 8: 526-538.
5. Humbert M, Sitbon O, Simonneau G (2004) Pulmonary arterial hypertension in France: results from a national registry. Am J Respir Crit Care Med 173: 1023-1030.
6. Humbert M, Morrell NW, Archer SL, Stennark KR, MacLean MR, et al. (2004) Cellular and molecular pathobiology of pulmonary arterial disease. J Am Coll Cardiol 43: 135-245.
7. Montani D, Chaumais MC, Savale L, Natai D, Price LC, et al. (2009) Phosphodiesterase type 5 inhibitors in pulmonary arterial hypertension. Adv Ther 26: 813-825.
8. Ray CJ, Marshall JM (2006) The cellular mechanisms by which adenosine evokes release of nitric oxide from rat aortic endothelium. J Physiol 570: 85-96.
9. Xu MH, Gong YS, Su MS, Dai ZY, Dai SS, et al. (2011) Absence of the adenosine A2A receptor confers pulmonary arterial hypertension and increased pulmonary vascular remodeling in mice. J Vasc Res 48: 171-183.
10. Alencar AKN, Pereira SL, da Silva FE, do MN Cunha V, Lima LM, et al. (2013) A Novel Adenosine A2A Receptor Agonist Attenuates the Progression of Monocrotaline-induced Pulmonary Hypertension in Rats. J Pulmon Resp Med 54: 005. doi:10.4172/2161-105X.JPRM.S-005