A GENERALIZATION OF FULTON-MACPHERSON CONFIGURATION SPACES

BUMSIG KIM AND FUMITOSHI SATO

ABSTRACT. We construct a wonderful compactification of the variety parameterizing \(n \) distinct labeled points in \(X \) away from \(D \), where \(X \) is a nonsingular variety and \(D \) is a nonsingular proper subvariety. When \(D \) is empty, it coincides with the Fulton-MacPherson configuration space.

1. INTRODUCTION

1.1. Let \(X \) be a complex connected nonsingular algebraic variety \(X \) and let \(D \) be a nonsingular closed proper subvariety of \(X \). The goal of this paper is to construct the following two spaces:

- A compactification \(X_D^{[n]} \) of the configuration space of \(n \) labeled points in \(X \) away from \(D \), “not allowing the points to meet \(D \).”
- A compactification \(X_D[n] \) of the configuration space of \(n \) distinct labeled points in \(X \) away from \(D \), “not allowing the points to meet each other as well as \(D \).”

To describe the constructions, we introduce some notation. Let \(D = \bigcup_c D_c \) where \(D_c \) are irreducible components of \(D \). For a subset \(S \) of \(N := \{1, 2, ..., n\} \) denote by \(D_{c,S} \) the collection of points \(x \) in \(X^n \) whose \(i \)-th component \(x_i \) is in \(D_c \) if \(i \in S \). For a subset \(I \) (with \(|I| \geq 2 \)) of \(N \) let \(\Delta_I \subset X^n \) be the diagonal consisting of \(x \) satisfying \(x_i = x_j \) whenever \(i, j \in I \). We denote by \(\text{Bl}_Z X \) the blowup of a variety \(X \) along a closed subvariety \(Z \).

Then:

- Define \(X_D^{[n]} \) to be the closure of \(X^n \setminus \bigcup_{c,S} D_{c,S} \) diagonally embedded in
 \[
 X^n \times \prod_{c, S \subset N, |S| \geq 1} \text{Bl}_{D_{c,S}} X^n.
 \]
- Define \(X_D[n] \) to be the closure of \((X \setminus D)^n \setminus \bigcup_{|I| \geq 2} \tilde{\Delta}_I \) in the product
 \[
 X_D^{[n]} \times \prod_{I \subset N, |I| \geq 2} \text{Bl}_{\tilde{\Delta}_I} X_D^{[n]},
 \]
 where \(\tilde{\Delta}_I \) is a proper transform of \(\Delta_I \).

These spaces satisfy wonderful properties as follows.

Theorem 1. (1) The variety \(X_D^{[n]} \) is nonsingular.
There is a “universal” family $X_D^{[n]^+} \to X_D^{[n]}$: It is a flat family of stable degenerations of X with n smooth labeled points away from D.

(3) The boundary $X_D^{[n]} \setminus (X^n \setminus \bigcup_{c,S} D_{c,S})$ is a union of divisors $\bar{D}_{c,S}$ corresponding to $D_{c,S}$, $|S| \geq 1$. Any set of these divisors intersects transversally.

(4) The intersection of boundary divisors $\bar{D}_{c_1,S_1}, \ldots, \bar{D}_{c_a,S_a}$ is nonempty if and only if they are nested in the sense that each pair S_i and S_k is:

- disjoint if $c_i \neq c_k$;
- one is contained in the other if $c_i = c_k$.

Theorem 2.

(1) The variety $X_D[n]$ is nonsingular.

(2) There is a “universal” family $X_D[n]^+ \to X_D[n]$; It is a flat family of stable degenerations of X with n distinct smooth labeled points away from D.

(3) The boundary $X_D[n]^+ \setminus ((X \setminus D)^n \setminus \cup_I \Delta_I)$ is a union of divisors $\bar{D}_{c,S}$ and $\bar{\Delta}_I$, corresponding to $D_{c,S}$, $|S| \geq 1$, and Δ_I with $|I| \geq 2$. Any set of these divisors intersects transversally.

(4) The intersection of boundary divisors $\bar{D}_{c_1,S_1}, \ldots, \bar{D}_{c_a,S_a}, \bar{\Delta}_{I_1}, \ldots, \bar{\Delta}_{I_b}$ are nonempty if and only if they are nested. Here the collection $\{\bar{D}_{c_i,S_i}, \bar{\Delta}_{I_j}\}_{1 \leq i \leq a, 1 \leq j \leq b}$ is called nested if $\{\bar{D}_{c_i,S_i}\}_{1 \leq i \leq a}$ is nested; for each pair I_j and I_k, either they are disjoint or one is contained in the other; and for each pair S_i and S_k, either they are disjoint or I_k is contained in S_i.

When D is empty, then the construction of $X_D[n]$ is exactly the Fulton-MacPherson compactification $X[n]$ of the configuration space of n distinct labeled points in X ([8]). The meaning of the statements (2) in Theorems will be explained in subsection 3.1. For the definitions of $\bar{D}_{c,S}$ and $\bar{\Delta}_I$, see subsection 1.2.

To prove Theorems 1 and 2 we use L. Li’s general work on wonderful compactifications ([3] [10], [5] [9]). For the history of wonderful compactifications, we refer the reader to [1]. One may show our Theorems also by the conical wonderful compactification ([11]). The Chow rings and motives of the spaces constructed here are described in [11].

Our motivation for the construction of the spaces $X_D^{[n]}$ and $X_D[n]$ is their use in the study of stable relative maps and stable relative (un)ramified maps, respectively. This will be studied in detail elsewhere; here we give only a rough explanation of this application. First note that one can interpret the stable relative maps of $[9]$ as maps from curves to the fibers of the universal family $X_D^{[n]^+}$. Next, the paper [7] constructs a compactification of maps from curves to X without allowing any domain component collapse to points. There, the targets are the fibers of $X[n]^+$, the universal family over the Fulton-MacPherson configuration spaces. Precisely, modify X by blowing up points x where the components collapse and then gluing copies of $\mathbb{P}(T_x \oplus \mathbb{C})$ along the exceptional divisors $\mathbb{P}(T_x)$ to obtain a new target. For the relative version of [7] with respect to D, it is natural to use the fibers of $X_D[n]^+$ as targets. The statement (1), (2), and (3) of Theorem 2 will be
some key ingredients for establishing the properness and the perfect obstruction theory of the moduli space of such maps.

1.2. Notation.

- As in [4], for a subset I of $N := \{1, 2, ..., n\}$, let
 \[I^+ := I \cup \{n + 1\}. \]
- Let Y_1 be the blowup of a nonsingular complex variety Y_0 along a nonsingular closed subvariety Z. If V is an irreducible subvariety of Y_0, we will use \bar{V} or $V(Y_1)$ to denote
 - the total transform of V, if $V \subset Z$;
 - the proper transform of V, otherwise.
 If there is no risk to cause confusion, we will use simply V to denote \bar{V}. The space Bl_ZY_1 will be called the iterated blowup of Y_0 along centers Z, V (with the order).
- For a partition $I = \{I_0, I_1, ..., I_l\}$ of N, Δ_I denotes the polydiagonal associated to I. We will also consider the binary operation $I \land J$ on the set of all partitions defined by
 \[\Delta_I \cap \Delta_J = \Delta_{I \land J} \]
 as in [12] (page 143). We use Δ_{I_0} instead of Δ_I when $I = \{I_0, I_1, ..., I_l\}$ such that $|I_i| = 1$ for all $i \geq 1$.
- We say that a collection \mathcal{C} of closed subvarieties in a variety meets or intersects transversely if, for every pair of two disjoint nonempty subsets C_1 and C_2 of \mathcal{C}, the two subvarieties $\bigcap C_1 := \bigcap_{Z \in C_1} Z$ and $\bigcap C_2$ meet transversely (this includes the case that they are disjoint).

1.3. Acknowledgements. The authors thank Daewoong Cheong, Li Li, Yong-Geun Oh, and Dafeng Zuo for useful discussions. We also thank Ionuț Ciocan-Fontanine and Referee for valuable comments. B.K. is partially supported by NRF grant 2009-0063179.

2. Proof of Main Theorems

2.1. Wonderful Compactifications. We recall some results in [9] which are needed in this paper.

A finite collection \mathcal{G} of nonsingular, proper, nonempty subvarieties of a nonsingular algebraic variety Y is called a building set if the following two conditions are satisfied.

1. For every V and W in \mathcal{G}, they intersect cleanly, that is, the tangent bundle $T(V \cap W)$ of the intersection coincides with the intersection of tangent bundles TV and TW in TY.
2. For the intersection $\bigcap \mathcal{C}$ of a subset \mathcal{C} of \mathcal{G}, an element V in \mathcal{G} is called a \mathcal{G}-factor of $\bigcap \mathcal{C}$ if
 - V contains $\bigcap \mathcal{C}$ and
there is no other V' in \mathcal{G}, contained in V and containing $\bigcap \mathcal{C}$.

Then the second condition is as follows. The collection \mathcal{C}' of all \mathcal{G}-factors of $\bigcap \mathcal{C}$ meets transversely and the intersection $\bigcap \mathcal{C}'$ is exactly $\bigcap \mathcal{C}$.

Define the so-called wonderful compactification $Y_{\mathcal{G}}$ of Y with respect to \mathcal{G} to be the closure of $Y \setminus \bigcup_{V \in \mathcal{G}} V$ diagonally embedded in

$$ Y \times \prod_{V \in \mathcal{G}} \text{Bl}_V Y. $$

It has the following wonderful properties.

Theorem 3. (9)

1. The variety $Y_{\mathcal{G}}$ coincides with the iterated blowup of Y along all V in \mathcal{G} whenever the order of centers V is an inclusion order, or a building set order.

2. The boundary $Y_{\mathcal{G}} \setminus (Y \setminus \bigcup_{V \in \mathcal{G}} V)$ is the union of divisors \widetilde{V}, corresponding to $V \in \mathcal{G}$. The divisors intersect transversally.

3. A subset \mathcal{C} of \mathcal{G} is nested if and only if the intersection of all divisors \widetilde{V}, for $V \in \mathcal{C}$, is nonempty.

We explain terminologies used in Theorem 3. An inclusion order (resp. a building set order) above is by definition a total order $V_1, ..., V_l$ of $\mathcal{G} = \{V_1, ..., V_l\}$ if $i < j$ whenever $V_i \subset V_j$ (resp. if $V_1, ..., V_k$ form a building set for any $k = 1, ..., l$).

Hence, $Y_{\mathcal{G}} \cong \text{Bl}_{V_1} ... \text{Bl}_{V_l} Y$ as Y-varieties. Here one should recall the convention on the centers. A subset \mathcal{C} of a building set \mathcal{G} is called nested if there are a positive integer k and a flag $(W_1 \subset W_2 \subset ... \subset W_k)$ such that every element of \mathcal{C} is a \mathcal{G}-factor of some W_i. Here W_i is an intersection of elements of \mathcal{G}.

For example, the Fulton-MacPherson configuration space $X[n]$ is the wonderful compactification of X^n with respect to the building set $\{\Delta_I \subset X^n \mid I \subset N, |I| \geq 2\}$.

2.2. Proof of Theorem 1 and Inductive Construction of $X_D^{[n]}$. Note that the collection of all subsets $D_{c,S}$ in X^n is a building set. Hence parts (1), (3) and (4) of Theorem 1 follow from Theorem 3. In particular, $X_D^{[n]}$ can be constructed by iterated blowups of X^n along nonsingular centers (and the proper transforms of)

$$ D_S := \bigcup_{c \in S} D_{c,S} $$

arrayed by an inclusion order. We may reshuffle centers as:

$$ D_{\{1\}}; D_{\{1,2\}}; D_{\{1,2,3\}}; D_{\{1,3\}}; D_{\{2,3\}}; D_{\{3\}}; ...; D_{\{1,2, ..., n\}}; ...; D_{\{n\}}, $$

keeping the same result $X_D^{[n]}$ after the blowup along the centers with this building set order.

The above ordering of centers provides an inductive construction of $X_D^{[n]}$. Define $X_D^{[n]+}$ to be the iterated blowups of $X_D^{[n]} \times X$ along centers D_{T+}, arrayed
by an inclusion order, where $T^+ = T \cup \{n + 1\}$, $T \subset N$, and $|T| \geq 1$. (This space is not isomorphic to $X_D^{[n+1]}$ unless D is a divisor.) Note that the flatness of the natural projection $X_D^{[n+1]} \to X_D^{[n]}$ in Theorem 1 holds since it is a map between nonsingular varieties with equi-dimensional fibers. The projection is equipped with sections provided by $I(i) = \subset X_D^{[n]}, i = 1, \ldots, n.$

2.3. Proof of Theorem 2 and Inductive Construction of $X_D[n]$. We would like to take a sequence of blowups starting from X^n along centers D_S and Δ_I, $S, I \subset N, |S| \geq 1, |I| \geq 2.$ However they do not form a building set. (See Remark 3.3 for an example.) Hence we cannot apply Theorem 3 directly to $Y = X^n$. Instead, we use the wonderful compactification in a two-step process. We will show in Proposition 4 that altogether the proper transforms Δ_i of Δ_I in $X_D^{[n]}$ form a building set. Therefore we can apply Theorem 3 to $Y = X_D^{[n]}$ with the building set $\{\Delta_i\}$ where $I \subset N, |I| \geq 2$. The technical lemma on blowups will be deferred to Lemma 5 at the end of this subsection.

The inductive construction starting from X^n is given by the iterated blowup with the order:

$$D_{\{1\}};$$

$$D_{\{1,2\}}, D_{\{2\}}, \Delta_{\{1,2\}};$$

$$D_{\{1,2,3\}}, D_{\{1,3\}}, D_{\{2,3\}}, D_{\{3\}}, \Delta_{\{1,2,3\}}, \Delta_{\{1,3\}}, \Delta_{\{2,3\}};$$

$$\vdots$$

$$D_{\{1,2,\ldots,n\}}, \ldots, D_{\{n-1,n\}}, D_{\{n\}}, \Delta_{\{1,2,\ldots,n\}}, \ldots, \Delta_{\{1,n\}}, \ldots, \Delta_{\{n-1,n\}}.$$

One can achieve this sequence from the sequence of the building set orders:

$$D_{\{1\}}, D_{\{1,2\}}, D_{\{2\}}, D_{\{1,3\}}, D_{\{2,3\}}, D_{\{3\}}; \ldots; D_{\{1,2,\ldots,n\}}; \ldots; D_{\{n\}};$$

$$\Delta_{\{1,2\}}, \Delta_{\{1,2,3\}}, \Delta_{\{1,3\}}, \Delta_{\{2,3\}}; \ldots; \Delta_{\{1,2,\ldots,n\}}, \ldots, \Delta_{\{n-1,n\}}.$$

To see it, first note that all the centers D_T and Δ_I are etale locally linearized simultaneously in X^n, and hence in an iterated blowup of X^n along any set of the centers, by Lemma 5 (2). In particular this shows that the divisor D_T is transversal to Δ_I in any iterated blowup of $X_D^{[n]}$ along any set of all the centers. Now we may rearrange the centers from the initial order using the reordering of two transversal centers (Lemma 6 (1)).

Define $X_D[n]^+$ as the blowup of $X_D[n] \times X$ along D_S^+, Δ_I^+, more precisely, along D_S^+ with the inclusion order first, then along Δ_I^+, also with the inclusion order, where $S, I \subset N$ and $|S| \geq 1, |I| \geq 2$. As before, the projection $X_D[n]^+ \to X_D[n]$ has the sections provided by $I(i) = \subset X_D[n]^+, i = 1, \ldots, n.$

Proposition 4.

1. Let I_1 and I_2 be partitions of N. Then the intersection of proper transforms Δ_{I_1} and Δ_{I_2} in $X_D^{[n]}$ is the proper transform $\Delta_{I_1 \wedge I_2}$ of the intersection $\Delta_{I_1} \cap \Delta_{I_2} = \Delta_{I_1 \wedge I_2}$.

2. The collection of all diagonals $\Delta_I, I \subset N, |I| \geq 2$, is a building set in $X_D^{[n]}$.
Proof. Note that Δ_I in $X_D^{[n]}$ coincides with the variety defined by equations

$$\sigma_a = \sigma_b, \ \forall a, b \in I_i, \ I_i \in I$$

where σ_a is the section of $X_D^{[n]} \rightarrow X_D^{[n]}$, induced by $\Delta_{(a)+}$. This can be seen by considering the imposed equation at general points. Now the proof is straightforward. □

Proof of Theorem 3 (4). For simplicity assume that D is connected.

(\Rightarrow). The condition on the pair S_i and S_k (I_j and I_l, respectively) is a direct consequence of Theorem 2. Suppose that both $S(4)$ and $I(5)$ are not disjoint. Then Lemma 5 shows that $\bar{D}_S \cap \Delta_I$ is empty. □

(\Leftarrow). Let $\{D_{S_i}, \Delta_{I_j}\}_{i,j}$ be a nested set and let V be the transversal intersection $\bigcap_i D_{S_i}(X_D^{[n]})$. Then an argument similar to the proof of Proposition 3 shows that the collection

$$\mathcal{G} := \{ V \cap \Delta_I(X_D^{[n]}) \mid I \subseteq N, \ |I| \geq 2, \ \{S_i, I\}_i \text{ is nested} \}$$

is a building set of V. According to Lemma 5, \bar{V} in $X_D^{[n]}$ coincides with the wonderful compactification \bar{V} of V. Now since $\{V \cap \Delta_I(X_D^{[n]})\}_j$ is nested, we conclude that $\bar{V} \cap \bigcap_j \Delta_{\tilde{I}_j}$ in $X_D^{[n]}$ is nonempty and transversal by Theorem 3. Also, \bar{V} is $\bigcap D_{S_i}(X_D^{[n]})$ due to Lemma 5 and $\bigcap \tilde{D}_{S_i} \subset \bigcap \tilde{D}_{S_i}$ in $X_D^{[n]}$. This completes the proof. □

Note that the above proof of 4 shows the statement (3) of Theorem 2 is also true.

Lemma 5. Let $Z, Z_i, V, V_i, i = 1, \ldots, k$ be nonsingular subvarieties of a nonsingular variety X, let $\pi : \text{Bl}_Z X \rightarrow X$ be the blowup map along Z and let E be the exceptional divisor.

1. If Z_1 and Z_2 intersect transversely, then $\text{Bl}_{Z_2} \text{Bl}_{Z_1} Y = \text{Bl}_{Z_2} \text{Bl}_{Z_1} Y$.
2. If $Z, V_i, i = 1, \ldots, k$ are étale locally linearized in X simultaneously, then so are their transforms in $\text{Bl}_Z X$, and in particular V_i and V_j for any i, j intersect cleanly.
3. If V meets Z transversally, then $\bar{V} = \pi^{-1}(V)$.
4. If V and Z intersect cleanly and V is not contained in Z, then \bar{V} is the blowup of V along $Z \cap V$.
5. Assume that V_1 and V_2 intersect cleanly. If $V_1 \cap V_2 \subset Z \subsetneq V_1$, then $\bar{V_1}$ and $\bar{V_2}$ are disjoint.

Proof. The only nonstandard result is 5, which we prove here. Assume that they are not disjoint. Then for some point $p \in V_1 \cap V_2$, there are $v_1 \in T_p V_1$ such that in the normal bundle N_Z/X, $[v_1] = [v_2] \neq 0$. Since $TZ \subset TV_1$, v_2 is an element of TV_1 as well as TV_2. It implies that $[v_2] = 0$ in N_Z/X since $TV_1 \cap TV_2 = T(V_1 \cap V_2) \subset TZ$. This is a contradiction. □
3. Some more properties

3.1. Stable degenerations. For simplicity assume that \(D \) is connected. Note that \(X_D^{[n]} \rightarrow X_D^{[n]} \) is a flat family of stable degenerations of \(X \) with \(n \) smooth labeled points away from \(D \) (see subsection 2.2). The labeled points may not be distinct. Stability means that every closed fiber \(F \) has no nontrivial automorphism fixing the following data: the natural map \(F \rightarrow X; F \cap \tilde{D}_{(i,n+1)} \); and the marked points \(F \cap \tilde{\Delta}_{(i,n+1)}, i = 1,..., n \). The fibers are normal crossing varieties, étale locally the form \(xy = 0 \). The generic fiber over \(D_S(X_D^{[n]}) \) is the coproduct

\[
\text{Bl}_D X \coprod_{\mathbb{P}(N_D/X)} \mathbb{P}(N_D/X + 1)
\]

of \(\text{Bl}_D X \) and \(\mathbb{P}(N_D/X + 1) \) along \(\mathbb{P}(N_D/X) \). The points labeled by \(a \in S \) are in \(\mathbb{P}(N_D/X + 1) \setminus (\mathbb{P}(N_D/X) \cup \mathbb{P}(1)) \) and the other points are in \(\text{Bl}_D X \setminus \mathbb{P}(N_S/S) \). In general, \(\Delta_{(a)} \) is disjoint from \(D_{(n+1)} \) in \(X_D^{[n]} \) by Lemma 5.5.

Similarly, \(X_D[n] \rightarrow X_D[n] \) is a flat family of stable degenerations of \(X \) with \(n \) distinct smooth labeled points away from \(D \) (see subsection 2.3). It is equipped with sections \(\sigma_i \), which are disjoint to each other. Specifically, the fibers of \(X_D[n] \) over points in the boundary of \(X_D[n] \) are Fulton-MacPherson stable degenerations of fibers of \(X_D[n] \): In a fiber \(F \) of \(X_D[n] \) the labeled points \(F \cap \tilde{\Delta}_{(i,n+1)}, i = 1,..., n \), are away from \(\tilde{D} := F \cap \tilde{D}_{(n+1)} \), but may come together at some points of \(F \setminus \tilde{D} \). Blow up all such points \(x \in F \setminus \tilde{D} \) and then glue copies of \(\mathbb{P}(T_x \oplus C) \) along the exceptional divisors \(\mathbb{P}(T_x) \) to obtain a new modification of \(X \) in which the points in the configuration are now distinct. The stability is similar to the above case.

3.2. Group Action by \(S_n \). Let \(S_n \) be the symmetric group on \(n \) letters. There is a natural \(S_n \)-action on the space \(X_D[n] \) such that the projection \(X_D[n] \rightarrow X^n \) is \(S_n \)-equivariant. By Theorem 5.2 in [1], all stabilizers are solvable.

3.3. Remark. In general, the space \(X_D[n] \) is not isomorphic to the one-step closure of \((X \setminus D)^n \setminus \bigcup_{|I| \geq 2} \Delta_I \), that is, the closure in the product

\[
X^n \times \coprod_{c \in S \subseteq N} \text{Bl}_{D_{c,S}} X^n \times \coprod_{I \subseteq N, |I| \geq 2} \text{Bl}_{\Delta_I} X^n.
\]

For example, take \(X = \mathbb{C}^2 \) with \(D = \{(x,y) \in \mathbb{C}^2 \mid y = 0 \} \) and consider the limits of \(((t,at), (2t,bt)) \), as \(t \) goes to 0. Then the limit in \(X_D[2] \) does not depend on \(a,b \). However the limit in the one-step closure depends on \(a,b \).

3.4. Examples.

3.4.1. \(\overline{M}_{0,n} \). Let \(n \geq 3 \). The moduli space \(\overline{M}_{0,n} \) of \(n \)-pointed stable rational curves coincides with \(X_D[\bar{n} - 3] \) where \(X = \mathbb{P}^1 \) and \(D \) consists of three distinct points. Indeed, the inductive construction is exactly the blowup construction of \(\overline{M}_{0,n} \) given by Keel (6).
3.4.2. $T_{d,n}$. Let $n \geq 2$. Take $X = \mathbb{P}^d$ and let D be a hyperplane. Note that the group G of automorphisms of X fixing all points in D is isomorphic to $\mathbb{C}^* \ltimes \mathbb{C}^d$. The natural action of the group G on $X_D[n]$ is free and the quotient $X_D[n]/G$ is isomorphic to the compactification $T_{d,n}$ studied by Chen, Gibney, and Krashen [2]. It compactifies the configuration space of n distinct labeled points in \mathbb{C}^d modulo $\mathbb{C}^* \ltimes \mathbb{C}^d$.

References

[1] L. Borisov and P. Gunnells, Wonderful blowups associated to group actions, Selecta Math. 8 (2002), no. 3, 373–379.
[2] L. Chen, A. Gibney, and D. Krashen, Pointed trees of projective spaces, J. Algebraic Geom. 18 (2009), no. 3, 477–509.
[3] C. Deconcini, C. Procesi, Wonderful models of subspace arrangements, Selecta Mathematica 1 (1995), 459-494.
[4] W. Fulton and R. MacPherson: A compactification of configuration spaces, Annals of Math. 139 (1994), 183–225.
[5] Y. Hu, A compactification of open varieties, Trans. Amer. Math. Soc. 355 (2003), no. 12, 4737–4753.
[6] Keel, S: Intersection theory of moduli spaces of stable pointed curves of genus zero, Trans. Amer. Math. Soc. 330 (1992), 545–574.
[7] B. Kim, A. Kresch, and Y.-G. Oh, A compactification of the space of maps from curves, Preprint 2009.
[8] J. Li, Stable morphisms to singular schemes and relative stable morphisms, J. Differential Geometry, 57 (2000) 509-578.
[9] L. Li, Wonderful compactifications of arrangements of subvarieties, To appear in Michigan Mathematical Journal, arXiv:math.AG/0611412
[10] R. MacPherson and C. Procesi, Making conical compactifications wonderful, Selecta Math. (N.S.) 4 (1998), no. 1, 125-139.
[11] F. Sato, The Chow ring of relative Fulton-MacPherson space, arXiv:0808.0381
[12] A. Ulyanov, Polydiagonal compactification of configuration spaces, J. Algebraic Geometry 11 (2002), 129–159.