Magnetic Resonance Three-dimensional Cube Technique in the Measurement of Piglet Femoral Anteversion

Dong-Mei Sun¹, Shi-Nong Pan¹, En-Bo Wang², Li-Qiang Zheng³, Wen-Li Guo¹, Xi-Hu Fu¹

¹Department of Radiology, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, China
²Department of Pediatric Orthopedics, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, China
³Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, China

Abstract

Background: The accurate measurement of the femoral antversion (FA) angle is always a topic of much debate in the orthopedic surgery and radiology research. We aimed to explore a new FA measurement method to acquire accurate results without radiation damage using piglet model.

Methods: A total of thirty piglets were assigned to two groups based on the age. Bilateral femora were imaged with 3.0-T magnetic resonance (MR) and 64-slice computed tomography (CT) examinations on all piglets. FA was measured on MR-three-dimensional (3D) postprocessing software with a four-step method: initial validation of the femoral condylar axis, validation of the condylar plane, validation of the femoral neck axis, and line-plane angle measurement of FA. After MR and CT examinations, all piglets were sacrificed and their degree of FA was measured using their excised, dried femora. MR, CT, and dried-femur measurement results were analyzed statistically; MR and CT measurements were compared for accuracy against each other and against the gold standard dried femur measurement.

Results: In both groups, the mean FA value measured by MR was lower than that measured by CT. A statistically significant difference was observed between CT- and dried-femur measurements but not between MR- and dried-femur measurements. A higher correlation (0.783 vs. 0.408) and a higher consistency (0.863 vs. 0.578) with dried-femur measurement results were seen for MR measurements than CT measurements in the 1-week age group. However, in the 8-week age group, similar correlations (0.707 vs. 0.669) and consistencies (0.864 vs. 0.821) were observed.

Conclusions: Noninvasive MR-3D-Cube reconstruction was able to accurately measure FA in piglets. Particularly in the 1-week age group with a larger proportion of cartilaginous structures, the correlation and consistency between MR- and dried-femur measurement results were higher than those between CT- and dried-femur measurements, suggesting that MR may be a new useful examination tool for FA-related diseases in children.

Key words: Femoral Anteversion; Hip; Magnetic Resonance Imaging; Piglet; Three-dimensional Fast Spin Echo Cube

INTRODUCTION

A normal femoral antversion (FA) angle is an important factor in maintaining hip stability and normal gait in humans. Congenital or acquired hip diseases with abnormal FA often require surgical correction. Accurately determination of the FA is important in the effective treatment of these hip diseases and prevents serious complications from occurring.¹⁻⁵ The accurate measurement of FA is always a topic of much debate in orthopedic surgery and radiology research.

The concept of FA may be traced back to 1954.⁶ Billing believed that FA was an included angle between the anteverision plane, formed by the axes of the femoral neck and the femoral shaft, and the condylar plane, formed by the axes of the femoral condyle and the femoral shaft. This definition describes FA as an included angle between plane and plane. This concept has been used by many two-dimensional (2D) imaging methods for FA measurement such as radiography, fluoroscopy, ultrasound, and computed tomography (CT).⁷⁻¹³ The limitation of the above modalities

Address for correspondence: Dr. Shi-Nong Pan,
Department of Radiology, Shengjing Hospital of China Medical University,
No. 36, Sanhao Street, Heping, Shenyang, Liaoning 110004, China
E-Mail: cjr.panshinong@vip.163.com

This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike 3.0 License, which allows others to remix, tweak, and build upon the work non-commercially, as long as the author is credited and the new creations are licensed under the identical terms.

For reprints contact: reprints@medknow.com

© 2016 Chinese Medical Journal | Produced by Wolters Kluwer - Medknow

Received: 21-12-2015 Edited by: Li-Shao Guo
How to cite this article: Sun DM, Pan SN, Wang EB, Zheng LQ, Guo WL, Fu XH. Magnetic Resonance Three-dimensional Cube Technique in the Measurement of Piglet Femoral Anteversion. Chin Med J 2016;129:1584-91.
is that they use 2D measurements to evaluate a complex three-dimensional (3D) entity such as FA, which can directly affect the accuracy of the measurement results. We believe that a correct understanding of FA is the key to its accurate measurement. Due to the presence of individual variability in the neck-shaft angle, the true FA should be an angle formed by the femoral neck axis and the femoral shaft coronal plane, i.e., a line-plane angle. Only when the concept of FA as a line-plane angle is established can FA be measured more effectively and accurately.

In recent years, the 3D-CT technique has been widely used for FA measurement in hip studies.\(^{[14-19]}\) Compared with the previous examination methods, 3D-CT has the advantages of its ability to visualize the anatomic structure of the hip from any angle, its freedom from body position restrictions, and its high reproducibility. However, CT radiation exposure attracts more and more public concern, especially for children who are more sensitive to radiation damage than adults.\(^{[20-25]}\) Several 3D-CT examinations, including preoperative and postoperative evaluations, are often required in diseases such as developmental dysplasia of the hip, which has a relatively high incidence in infants.\(^{[26]}\) Just as Brenner concluded, each CT scan confers a very small increased risk of developing cancer in the future, but with hundreds of thousands of children getting CT scans every year that small individual risk balloons into a pressing public concern.\(^{[27]}\) Compared with CT, magnetic resonance (MR) examination has several advantages. First of all, MR can show cartilages on both ends of femur, which cannot be seen on CT. Meanwhile, radiation-free, multi-plane imaging, and high soft tissue resolution are also its advantageous places. Since 1990, several scholars\(^{[12,28-30]}\) have introduced MR techniques into the FA measurement field, but similar methods to 2D-CT and great dependence on patients’ body position during the examination were limitations for them to acquire true FA.

Based on the concept of FA as a line-plane angle, our study was designed to explore a new FA measurement method to acquire accurate results without radiation damage. For this purpose, we introduced the MR-3D-fast spin echo (FSE)-Cube technique for volume scanning of piglet femur and then measured the FA in 3D space by the postprocessing software.

Methods

Study design

Experiments were carried out on thirty healthy piglets with the approval of the Shengjing Hospital of China Medical University Institutional Animal Investigation Committee. The MR images were obtained with a GE 3.0-T MR scanner (Signa Excite HDx; GE Healthcare, Milwaukee, WI, USA) and the CT images were obtained with a 64-slice CT system (Philips Healthcare Company, Cleveland, USA). The piglets were then sacrificed and dissected and their femora were entirely removed for dried-femur measurement. After the experiments were completed, FA was measured using MR and CT 3D postprocessing software.

Experimental animals

Experimental groups

Piglets were assigned to two groups on the basis of age, 15 in 1-week age group and 15 in 8-week age group. The inclusion criteria were normal development and gait by visual inspection, and normal shape and signal of pelvis and femur by MR coronal T1-weighted and T2-weighted imaging. The exclusion criteria were developmental malformations and claudicating gait noted on visual inspection, and abnormal shape and signal of pelvis and femur on MR images.

Anesthetized procedures

All studies were performed under general anesthesia. The first anesthetic dose consisted of 40 mg of midazolam hydrochloride (Nhwa Pharmaceutical Co., Jiangsu, China) and 20 mg of ketamine hydrochloride (Gutian Pharmaceutical Co., Fujian, China) per kilogram of body weight, delivered by intramuscular injection. A second intramuscular anesthetic dose was given 30 min later, with 20 mg of ketamine hydrochloride and 5 mg of xylazine hydrochloride (Zizhu Pharmaceutical Co., Beijing) per kilogram of body weight. A continuous intravenous infusion of propofol (AstraZeneca PLC, London, UK) diluted in normal saline at a dose of 0.002 mg/kg per minute during the scanning sessions.

Magnetic resonance equipment and methods

All images were acquired with a 3.0-T MR imaging unit using an 8US TORSOPA coil (GE Healthcare, Milwaukee, WI, USA) with the experimental animals under anesthesia. The piglets were placed in the prone position, with their limbs fixed. The first step was the pelvis and femur routine examination, including coronal T1-weighted and T2-weighted imaging, for determining whether the piglets met inclusion criteria. The second step was 3D femoral volume scanning using the Cube technique, with a scanning range determined by the coronal localizer which covered the entire femur. Imaging with the 3D-FSE-Cube technique was performed using the following parameters: repetition time/echo time, 3000/106 ms; echo train length, 100; matrix, 224 × 224; field of view, 48 cm; section thickness, 1.4 mm; and receiver bandwidth, 62.5 kHz. All sections were acquired in 6 min.

The data were transmitted to a workstation (GE AW4.4, GE Healthcare) after scanning; then, postprocessing was conducted with 3D-maximum intensity projection software. The initial operation interface of the workstation was a quadrant interface, on which there were three display boxes [Figure 1], representing three series of orthogonal planes (box with yellow border; box with green border; and box with blue border). Each display box could show all planes parallel to the current plane by paging up and down. Two perpendicular lines within each box represented the corresponding of the other two boxes. For example, the green line in yellow box represented the intersection line of the current planes of green and yellow boxes; adjusting the direction of one line could...
change the direction of the plane it represented. The three series of planes were always orthogonal. Initially, we adjusted the position of the marked lines and enabled the three series of planes in each box to approximate the coronal, axial, and sagittal planes of the femur.

The FA measurement method was performed in four steps.

- **Step 1**: Initial validation of the condylar axis. An adjustment of the marked lines in yellow and green boxes was made so that the yellow line in green box became the tangent of the line connecting the 2 posterior femoral condyle margins; this line was determined by the lowest points of the bilateral femoral condyles. This provided the initial validation of the condylar axis [Figure 1].

- **Step 2**: Validation of the condylar plane. Keeping the intersection point on the condylar axis, the position of the upper part of the yellow line in blue box was adjusted [Figure 1] so that the yellow line passed through the lowest point of the greater trochanter. In Steps 1 and 2, it was little difficult to determine simultaneously the lowest points of the bilateral femoral condyles and the greater trochanter at once. However, after two or three times of adjustments, we found that the yellow lines passed through both the 2 lowest points of the femoral condyles and the greater trochanter in green and blue boxes simultaneously, and then the validation of the condylar plane was completed. The plane in yellow box was therefore the femoral coronal plane (condylar plane) [Figure 2].

- **Step 3**: Validation of the direction of the head-neck axis. The goal of this step was to find the plane passing through the femoral head-neck axis and was perpendicular to the condylar plane in yellow box. All adjustments in this step were performed in yellow box. The central section of the femoral neck was first determined by paging up and down between the uppermost and lowermost femoral neck, then the intersection point of the 2 marked lines was fixed at the center point of the narrowest part of the femoral neck. With the same method, the center point of the widest part of the femoral head on the central section of the femoral head was found. The green line was then adjusted to pass through the above two points, so it represented the femoral head-neck axis. The current plane in green box was the plane which passed through the femoral head-neck axis and was perpendicular to the femoral coronal plane; its intersection line with the femoral coronal plane was the yellow line in green box [Figure 3].

- **Step 4**: FA measurement. The midpoints of the longest part of the femoral head and the shortest part of the femoral neck were determined in the current plane in box B [Figure 4]. The line connecting these 2 midpoints was the head-neck axis, and the included angle between this line and the yellow line was the FA.

All MR-3D postprocessing FA measurements were conducted independently by two experienced radiologists (Shi-Nong Pan and Dong-Mei Sun), and the mean value of three separate measurements was recorded.

Computed tomography equipment and methods

3D-CT scans were performed with a 64-slice CT machine. The scanning parameters were 120 kV and 150 mA, with
a 0.5 s rotation time. Contiguous slices at 1.0 mm intervals were obtained from the upper rim of the femoral head to the distal femur. The piglets were placed in the same position as in the MR examination. The images were retrospectively reconstructed at a CT workstation (Extended Brilliance workstation V3.5, Phillips Healthcare, Cleveland, USA) to produce the 3D images. The FA measurement methods adopted were those that had been widely used in current 3D-CT studies\(^5\),\(^15\),\(^19\) [Figure 5]. All CT postprocessing were conducted independently by the same radiologists (Shi-Nong Pan and Dong-Mei Sun), and the mean value of three separate measurements was recorded. Different processing orders were used to ensure that the radiologists did not know the corresponding MR results.

Dried-femur measurement method

After MR and CT examinations, the piglets were sacrificed with an intracardiac injection of 10 mg pentobarbital sodium (Xinya Pharmaceutical Co., Shanghai, China) per 5 kg of body weight. Their femora were entirely removed for evaluation.

First, the femur was placed on a horizontal table, with the bilateral posterior margins of the femoral condyles and the posterior margin of the greater trochanter contacting the table surface. Next, the femoral head was measured using a Vernier caliper, with the caliper’s external measurement claw in line with the femoral head-neck axis. The midpoints of the longest part of the femoral head and the shortest part of the femoral neck were determined. The femoral head and neck were opened along the connecting line of these two midpoints, perpendicular to the table surface, with the greater trochanter preserved in order to determine the femoral coronal plane. The midpoints of the longest part of the femoral head and the shortest part of the femoral neck were determined again by measuring with a Vernier caliper, and the included angle between the connecting line of these 2 midpoints and the horizontal plane was designated as the FA. The FA was measured with a conimeter, with the bottom edge aligned to the connecting line of the above midpoints, and a deltoid plate, with one rectangular edge on the horizontal table and the other rectangular edge passing through the central point of the conimeter. Both the conimeter and the deltoid plate were perpendicular to the table surface. The angle indicated by the edge passing through the central point of the conimeter, \(-90^\circ\), was the value of FA [Figure 6]. The results of this measurement method were considered as the gold standard.

Statistical analysis

The formulation of statistical methods and the statistical analysis was both completed by a professional statistician (Li-Qiang Zheng) using Statistical Package for the Social Sciences software, version 17.0 (SPSS, Inc., Chicago, IL, USA). All continuous variables met Gaussian
distribution and homogeneity tests for variance and were therefore expressed as a mean ± standard deviation (SD). Analysis of variance with randomized block design was performed for MR, CT, and dried-femur measurement results to determine whether the differences between the results of the three methods were statistically significant. Using the dried-femur measurement as the gold standard, Pearson’s correlation coefficient analysis was conducted to determine the correlation between MR/CT measurement results and dried-femur measurement results. The intraclass correlation coefficient and Bland–Altman plots of the design data from the two-way mixed model were employed to analyze the consistency of MR and CT measurements with the gold standard. For all statistics reported, two-tailed tests with P < 0.05 were considered to indicate statistically significant differences.

RESULTS

The FA measurement results of the two piglet groups, by different methods, are shown in Table 1. In both age groups, the FA measurement results obtained by MR were lower than those by CT; the differences between MR and CT measurement results, and between CT and dried-femur measurement results, were statistically significant. No statistically significant difference was observed between MR and dried-femur measurement results.

The consistencies and correlations of CT and MR results with the gold standard measurements are demonstrated in Figures 7 and 8. In the 1-week age group, FA measurement results obtained by MR had better correlation with dried-femur measurement results than by CT (0.783 vs. 0.408) [Figure 7a and 7c]. Bland–Altman plots showed a measurement error of 9.4° between CT and the dried-femur measurement method, which was significantly greater than an error of −1.0° between MR and dried-femur measurement method [Figure 7b and 7d]. In the 8-week age group, FA measurement results obtained by MR were lower than those by CT, but MR and CT measurement results were both well-correlated with dried-femur measurement results (0.707 vs. 0.669) [Figure 8a and 8c]. Bland–Altman plots showed a greater measurement error for CT than for MR (5.7 vs. −0.8) [Figure 8b and 8d]. There was significantly higher consistency between MR and the dried-femur measurement results than between CT and the gold standard (0.863 vs. 0.578) in the 1-week age group; in the 8-week age group, there was similar consistency between MR/CT and dried-femur measurement results (0.864 vs. 0.821).

In 1-week and 8-week age groups, the mean CT radiation dose was 155 mGy/cm and 159 mGy/cm, respectively. The two-sample t-test showed no statistically significant difference in CT radiation dose between the groups (t = 1.163, P = 0.255).

DISCUSSION

Only sectional images are displayed using MR-3D postprocessing software for FA measurement and it is difficult to understand the 3D structure from these images. In order to facilitate the presentation, a schematic diagram was established that places the femur in a 3D coordinate...
system. From Figure 9, we could come to the conclusion that the line-plane angle (FA) is smaller than the plane-plane angle (torsion angle, i.e., the angle measured by CT method). The true FA is not identical to the torsion angle as the femoral neck-shaft angle must be factored in; they would be equal only if the neck-shaft angle is 90°. The above analysis explains the reason why the mean FA value measured by CT was larger than that measured by MR in our study. This result happens to be consistent to those of studies by Botser et al. and Tomczak et al.[12,30] In those studies, large
There are no conflicts of interest.

Conflicts of interest
This work was supported by grants from the National Natural Science Foundation of China (Nos. 30871211, 81271538), and Outstanding Scientific Fund of Shengjing Hospital (No. 201208).

Financial support and sponsorship
There are no conflicts of interest.
REFERENCES

1. Tönns D, Heinecke A. Diminished femoral antetorsion syndrome: A cause of pain and osteoarthritis. J Pediatr Orthop 1991;11:419-31. doi: 10.1097/01241398-199107000-00001.

2. Tönns D, Heinecke A. Acetabular and femoral antetorsion: Relationship with osteoarthritis of the hip. J Bone Joint Surg Am 1991;73:1147-50.

3. Gelberman RH, Cohen MS, Shaw BA, Kasser JR, Griffin PP, Wilkinson RH. The association of femoral retroversion with slipped capital femoral epiphysis. J Bone Joint Surg Am 1986;68:1000-7.

4. Ito K, Minka MA, Leungin M, Herlen S, Ganz R. Femoracetabular impingement and the cam-effect. A MRI-based quantitative anatomical study of the femoral head-neck offset. J Bone Joint Surg Br 2001;83:171-6.

5. Jia J, Li L, Zhai L, Zheng X, Liu X. Three-dimensional-CT evaluation of femoral neck anteversion, acetabular anteversion and combined anteversion in unilateral DDH in an early walking age group. Int Orthop 2012;36:119-24. doi: 10.1007/s00264-011-1337-0.

6. Murphy SB, Simon SR, Kijewski PK, Wilkinson RH, Griscom NT. Femoral anteversion. J Bone Joint Surg Am 1987;69:1169-76.

7. Reikerås O, Bjerkreim I, Kolbenstvedt A. Anteversion of the acetabulum and femoral neck in normals and in patients with osteoarthritis of the hip. Acta Orthop Scand 1983;54:18-23. doi: 10.3109/17453678308992864.

8. Ruwe PA, Gage JR, Ozoneon MF, DeLuca PA. Clinical determination of femoral anteversion. A comparison with established techniques. J Bone Joint Surg Am 1992;74:820-30.

9. Hernandez RJ, Tachdjian MO, Poizanski AK, Dias LS. CT determination of femoral torsion. AJR Am J Roentgenol 1981;137:97-101. doi: 10.2214/ajr.137.1.97.

10. Prasad SS, Bruce C, Crawford S, Higman J, Garg N. Femoral antetorsion in infants: A method using ultrasound. Skeletal Radiol 2003;32:462-7. doi: 10.1007/s00256-003-0652-y.

11. Wedge JH, Munkaci J, Loback D. Anteversion of the femur and idiopathic osteoarthrosis of the hip. J Bone Joint Surg Am 1989;71:1040-3.

12. Tomczak RJ, Guenther KP, Riebe A, Mergo P, Ros PR, Brambs HJ. MR imaging measurement of the femoral antetorsional angle as a new technique: Comparison with CT in children and adults. AJR Am J Roentgenol 1997;168:791-4. doi: 10.2214/ajr.168.3.9057536.

13. Guenther KP, Tomczak R, Kessler S, Pfeiffer T, Puhl W. Measurement of femoral antetorsion by magnetic resonance imaging – Evaluation of a new technique in children and adolescents. Eur J Radiol 1995;21:47-52. doi: 10.1016/0720-448X(95)00684-1.

14. Abel MF, Sutherland DH, Wenger DR, Mubarak SJ. Evaluation of CT scans and 3-D reformed images for quantitative assessment of the hip. J Pediatr Orthop 1994;14:48-53. doi: 10.1097/00004281-199401000-00011.

15. Chhabra A, Nordeck S, Wadhwa V, Madhavapeddi S, Robertson WJ. Three-dimensional measurement of femoroacetabular impingement – 3D computed tomography, 3D magnetic resonance imaging – Diagnostic performance compared with 3D CT imaging. J Magn Reson Imaging 2011;33:908-15. doi: 10.1002/jmri.22494.

16. Koenig JK, Pring ME, Dwek JR. MR evaluation of femoral neck anteversion and tibial torsion. Pediatr Radiol 2012;42:113-5. doi: 10.1007/s00247-011-2206-0.

17. Kwon M, Osowzal M, O’Loughlin PF, Cittak M, Kendoff D, Hüfner T, et al. Three-dimensional measurement of femoral antetorsion: Comparison to a conventional radiological method. Arch Orthop Trauma Surg 2010;130:513-8. doi: 10.1007/s00203-009-0923-8.

18. Botser IB, Oszowal M. Three-dimensional measurement of femoral anteversion by magnetic resonance imaging – Evaluation of a new technique in children. Curr Opin Pediatr 2008;20:243-7. doi: 10.1097/MOP.0b013e3282fafa52.

19. Koenig JK, Wallace CG, Chen W, Rosenberg JK, Gold GE. Imaging of the wrist at 1.5 Tesla using isotropic three-dimensional fast spin echo cube. J Magn Reson Imaging 2011;33:908-15. doi: 10.1002/jmri.22494.

20. Sanders JO, Otsuka NY, Martus JE. What’s new in pediatric orthopaedics. J Bone Joint Surg Am 2015;97:344‑50.

21. Botser IB, Ozowal M. Three-dimensional measurement of femoroacetabular impingement with chronic acetabular rim fracture – 3D computed tomography, 3D magnetic resonance imaging and arthroscopic correlation. World J Orthop 2015;6:498-504. doi: 10.5312/wjo.v6.i6.498.