Preventive implantable cardioverter defibrillator therapy in contemporary clinical practice: need for more stringent selection criteria

Jaap W. Deckers1,2, Banafsheh Arshi2, Jan C. van den Berge1* and Alina A. Constantinescu1

1Department of Cardiology, Thoraxcenter, Erasmus Medical Center Rotterdam, Dr. Molewaterplein 40, Rotterdam, 3015 GD, The Netherlands; 2Department of Epidemiology, Erasmus Medical Center Rotterdam, Rotterdam, The Netherlands

Abstract

While the efficacy of the intracardiac defibrillators (ICDs) for primary prevention is not disputed, the relevant studies were carried out a long time ago. Most pertinent trials, including MADIT-II, SCD-Heft, and DEFINITE, recruited patients more than 20 years ago. Since then, improved therapeutic modalities including, in addition to cardiac resynchronization therapy, mineralocorticoid receptor antagonists, angiotensin receptor-neprilysin inhibitors, and, most recently, inhibitors of sodium-glucose cotransporter 2, have lowered present-day rates of mortality and of sudden cardiac death. Thus, nowadays, ICD therapy may be less effective than previously reported, and not as beneficial as many people currently believe. However, criteria for ICD implantation remain very inclusive. The patient must (only) be symptomatic and have ejection fraction (EF) ≤ 35%. The choice of EF 35% is notable because the average EF in all large trials was much lower, and clinical benefit was mainly limited to EF ≤ 30%. This EF cut-off value defines a substantial portion of potential ICD recipients. It seems therefore reasonable to limit ICD eligibility criteria in the EF range 30–35% to patients at highest risk only. We discuss and present some rational criteria to assist the clinician in improving risk stratification for preventive ICD implantation.

Keywords Intracardiac defibrillator; Ischaemic cardiomyopathy; Non-ischaemic cardiomyopathy; Left ventricular ejection fraction; Primary prevention

Received: 6 February 2021; Revised: 21 June 2021; Accepted: 23 June 2021
*Correspondence to: Jan C. van den Berge, Department of Cardiology, Thoraxcenter, Erasmus Medical Center Rotterdam, Dr. Molewaterplein 40, 3015 GD Rotterdam, The Netherlands. Tel: +31 10 70 34479. Email: j.vandenberge@erasmusmc.nl

Introduction

Each month, over 10 000 implantable cardioverter defibrillator (ICD) are being implanted in the USA alone, while the overall volume of worldwide implantations continues to increase as well.1–3 Most devices are implanted in patients at high risk of sustained ventricular tachycardia or fibrillation.2 While the efficacy of the ICDs for this indication—primary prevention—is not disputed, it is fair to say that the relevant studies were carried out a long time ago.4–10 Most trial reports date from early this century, implying that their results were obtained in—and in theory thus only applicable to—patients treated over 20 years ago. Since then, the principle of electric shock for life-threatening arrhythmias has not changed much, while other therapeutic options have progressed and rates of sudden cardiac death have decreased.11 Thus, present-day ICD therapy may be less effective than previously reported, and not as beneficial as many people currently believe. This assessment is validated by the results of the most recent and large study on preventive ICD implantation, which reported only a minor survival advantage of ICD placement compared with usual clinical care in individuals with a cardiomyopathy of non-ischaemic origin.12 Admittedly, patients with ischaemic heart disease (IHD) are at higher risk of sudden cardiac death, but their recruitment in the applicable trials also dates back two decades, and the therapy that they received reflects that. Therefore, time has
come for an updated qualitative assessment of current indications for preventive ICD therapy, and that is the aim of our paper.

The trials

In ischaemic heart disease

Preventive ICD implantation in IHD has been investigated in seven randomized trials.\(^4\)–\(^10\) MADIT I and MUSTT started enrolment in 1990 (see Table 1 for characteristics of both studies). Electrophysiological investigation (EP) was needed prior to inclusion in both, a requirement that has been abandoned in subsequent trials.\(^4\),\(^6\) In fact, MUSTT was a comparison of EP guided versus ‘conventional’ therapy, and, among the 351 randomized to EP guided therapy, 161 (46%) patients initially received defibrillators. Two ‘negative’ trials—DINAMIT and IRIS—took place shortly (within 40 days) after myocardial infarction (MI) and resulted in the contra-indication of ICD implantation in early post-MI survivors.\(^8\),\(^10\) The CABG Patch trial was performed in patients undergoing surgical coronary revascularization but found no benefit of ICD insertion in that population.\(^5\) Thus, MADIT II and SCD-Heft comprise the most recent trials favouring ICD implantation in IHD.\(^7\),\(^9\) Because of their significance, both—so-called landmark—trials are described in some detail. Additional details are presented in Table 1.

Starting in July 1997, MADIT II randomized 1232 post-MI patients with advanced left ventricular (LV) dysfunction, defined as LV ejection fraction (EF) \(\leq 30\%\) (Table 1).\(^7\) The hazard ratio for mortality was 0.69, but the plausible effect range was wide [95% confidence interval (CI) 0.51–0.93].

From September 1997 onwards, SCD-Heft evaluated prophylactic ICD therapy versus placebo (as well as vs. amiodarone) in three groups each of about 840 patients with symptomatic congestive heart failure and EF \(\leq 35\%\).\(^9\) The cardiomyopathy was of ischaemic origin in approximately 50% of the patients. Compared with placebo, ICD implantation was associated with a 23% (95% CI 4–38%) reduction in mortality. The largest survival benefit was observed in patients with New York Heart Association (NYHA) class II heart failure and with LVEF \(\leq 30\%\), characteristics present in 70–80% of patients included.

In non-ischaemic cardiomyopathy

As described earlier, SCD-Heft was a mixed trial of patients with ischaemic as well as non-ischaemic heart disease. Randomized trials of preventive ICD therapy in patients with exclusively non-ischaemic heart disease include—in chronological order—CAT, AMIOVIRT, DEFINITE, and the DANISH study.\(^12\)–\(^15\) Both CAT and AMIOVIRT were quite small, each

Table 1. Characteristics and outcome of randomized trials of intracardiac defibrillator implantation and novel pharmacotherapies in ischaemic and non-ischaemic heart disease.

Trial name	Intervention	Number with IHD \(a\)	Number \(a\)	Year of publication	Number	Annual death rate	Inclusion EF	Mean EF	ACE inhibition	Beta-blockers	MRAs	Mortality reduction	Anxiety	By trial design
MADIT-I	ICD in IHD	351	351	1996	93	12%	\(\leq 35\%)	26%	54%	54%	Unk	26%	54%	
MUSTT	EP guided therapy	742	742	1999	431	10%	\(\leq 40\%)	30%	60%	40%	Unk	30%	30%	
MADIT-II	ICD in IHD	351	351	2002	432	9%	\(\leq 35\%)	30%	60%	40%	Unk	26%	54%	
SCADD-Heft	ICD in CM	431	431	2005	351	10%	\(\leq 35\%)	30%	60%	40%	Unk	26%	54%	
DEFINITE	ICD in CM	351	351	2004	431	10%	\(\leq 35\%)	30%	60%	40%	Unk	26%	54%	
DANISH	ICD in CM	351	351	2004	431	10%	\(\leq 35\%)	30%	60%	40%	Unk	26%	54%	
EMPHASIS	ICD in CM	351	351	2006	431	10%	\(\leq 35\%)	30%	60%	40%	Unk	26%	54%	
DANISH	ICD in CM	351	351	2007	431	10%	\(\leq 35\%)	30%	60%	40%	Unk	26%	54%	
DEFACED	ICD in CM	351	351	2008	431	10%	\(\leq 35\%)	30%	60%	40%	Unk	26%	54%	
PARADIGM	ICD in CM	351	351	2014	431	10%	\(\leq 35\%)	30%	60%	40%	Unk	26%	54%	
DAPA-HF	ICD in CM	351	351	2019	431	10%	\(\leq 35\%)	30%	60%	40%	Unk	26%	54%	

ACE, angiotensin-converting enzyme; CM, cardiomyopathy; EF, ejection fraction; ICD, intracardiac defibrillator; IHD, ischaemic heart disease; MRA, mineralocorticoid receptor antagonist; NA, not applicable; SGLT2, sodium-glucose cotransporter 2 inhibitor; Unk, unknown.

\(a\) Number of patients in the active treatment arm.

\(b\) Cardiomyopathy of non-ischaemic origin.

\(c\) Early post-myocardial infarction patients, high initial mortality.

\(d\) After protocol modification.

\(e\) By trial design.
including about 100 patients. Enrolment in CAT began in 1991 and required—among others—EF ≤ 30\%13. The number of deaths in patients randomized to ICD (n = 13) or medical therapy (n = 17) was not different; the main predictor of mortality was low EF. Recruitment in AMIOVIRT commenced in August 1996 and was completed by September 2000, with the purpose to compare total mortality during therapy with amiodarone or ICD.14 The inclusion EF was ≤35\%, but the mean EF of the included patients was much lower, namely, 23\%. Survival at 3 years was similar among patients treated with ICD (88\%) and amiodarone (87\%).

DEFINITE randomized 458 symptomatic patients with LVEF ≤ 35\% and ambient arrhythmias.15 The first patient was randomized in 1998; mean EF was 21\%. With 28 and 40 deaths in the ICD and control groups, respectively, the point estimate of the difference in mortality was sizeable (hazard ratio 0.65, 95\% CI 0.40–1.06), although not statistically significant.

The DANISH study is the most recent and largest trial in non-ischaemic cardiomyopathy.12 This study randomized 556 patients with symptomatic systolic heart failure and EF ≤ 35\% to ICD, and 560 to usual clinical care. After a median follow-up of almost 6 years, 120 patients in the ICD and 131 patients in the control groups had died (hazard ratio 0.87, 95\% CI 0.68–1.12, P = 0.28). Although ICD placement was effective in lowering the rate of sudden cardiac death, from 8.2\% to 4.3\%, the authors concluded that prophylactic ICD implantation did not reduce long-term mortality.

When the data from the various trials are combined, the mortality benefits associated with preventive ICD insertion in non-ischaemic disease typically range from 19\% to 25\%.16–19 Details of the two largest trials, DEFINITE and the DANISH study, are presented in Table 1.

Current therapeutic options

Medical treatment in the two first landmark trials in IHD, MADIT-II and SCD-Heft, was probably standard for that time period, although usage of beta-blockers and mineralocorticoid receptor antagonists was relatively modest while, as a reflection of previous clinical practice, digoxin was used frequently. But in the next 20 years, further therapeutic advancements have become available for patients with LV dysfunction, with significant bearing on their outcome.

One relevant development in the treatment of patients with heart failure includes the introduction of cardiac resynchronization therapy (CRT) and with or without ICD. The COMPANION investigators established the worth of this treatment modality in 1520 patients with advanced (NYHA class III and IV) heart failure, 57\% of them with IHD. Most patients, with mean EF of 22\%, received contemporary medical treatment. One-year mortality, almost 20\%, was very high. The combination of CRT and defibrillator was successful in reducing all-cause mortality with 34\%.16 CRT has since become recommended standard therapy in patients with symptomatic heart failure in sinus rhythm and with EF ≤ 35\%, QRS duration ≥ 150 ms, and left bundle branch block QRS morphology.17

The most relevant developments in the medical treatment of patient with symptomatic heart failure include the mineralocorticoid receptor antagonists, the angiotensin receptor-neprilysin inhibitors, and, most recently, inhibitors of sodium-glucose cotransporter 2 (SGLT2).18–21 Both eplerenone and spironolactone—not separately reported in DEFINITE, infrequently used in MADIT-II and SCD-Heft, and employed in about 60\% of patients in the DANISH trial—were found to lower mortality with 20\% in advanced heart failure.18,19 Neprilysin inhibition with LCZ696 in lieu of angiotensin-converting enzyme inhibition and associated with a relative and absolute reduction in mortality of 16\% and 1.8\%, respectively, was not used in any of the preventive ICD trials.20 And neither was the SGLT2 inhibitor, a relatively novel drug that lowered mortality with (relative) 17\% and (absolute) 2.8\% compared with recommended therapy in symptomatic patients with heart failure.21 The main characteristics of the largest modern-day heart failure drug trials are also given in Table 1.

The data in Table 1 illustrate the limited use of currently available optimal medical treatment in the early trials, just as the—probably partly ensuing—high event rates of the early studies compared with the more recent. In addition, it is obvious that event rates in non-ischaemic cardiomyopathy are lower than in IHD. The data in Table 1 make it also clear that the benefits of each of the new therapeutic modalities clearly fall within the plausible effect ranges of the most recent ICD trials (while their combined effects could be larger).

Complications and costs

Immediately after their introduction, controversy about the costs and complications associated with ICD implantation was unleashed.7,22 This debate has continued ever since. The ICD implantation itself carries approximately 9\% peri-procedural risk of complication.23–26 During follow-up, in addition to the regular device interrogations, inappropriate shocks and re-hospitalizations are not uncommon, while generator replacement every 4 to 7 years carries a risk of minor and major complications.27 A list of short-term and long-term ICD complications is summarized in Table 2.

As it currently stands, 25 ICDs are required to save one life.17,28 In view of their high levels of current employment, the financial burden of preventive ICD implantation

DOI: 10.1002/ehf2.13506
apparently seems to be acceptable at individual levels in rich countries. However, this is much less the case from a societal point of view. Rising numbers of implantations and the prospect of even larger numbers of future patients with heart failure in aging populations are unwelcome from that perspective. It is thus logical that measures have been taken in some countries to minimize the rate of implantations, for instance, by limiting the number of implanting centres. It is unknown whether this has been effective.

Intracardiac defibrillator cost-effectiveness decreases when event rates decline. There can be no doubt that—in addition to the observed decrease in overall mortality observed in the pharmacological trials depicted in Table 1—the risk of sudden death has also decreased substantially, reportedly by 44%, in the last decades. Importantly, the absolute rate of sudden death was found to be lower among patients with a recent diagnosis of heart failure, consistent with the cumulative benefit of evidence-based medication on this mode of death. These findings can probably be extrapolated to the population at large. In our region, we have witnessed a reduction of about 40% in the rate of sudden cardiac death in middle-aged and elderly men and women, a much larger decrease than the observed decline in overall mortality in the same population.

Ejection fraction and intracardiac defibrillator selection criteria

Historically, when new and—in their early phase—expensive pharmaceutical agents were introduced, for instance, with the early clinical introduction of angiotensin-converting enzyme inhibitors, statins, and—now—PCSK9 inhibitors, their clinical application has been tailored to men and women at highest risk. But this has not been the practice for preventive ICDs. Despite many attempts to identify specific patient groups in whom the devices would be more (cost) effective, such efforts have not resulted in modification of guidance on their use in clinical practice. In fact, with time, the criteria for ICD implantation have only become more inclusive and lenient. Both the European and American guidelines currently state that the patient (only) needs to be symptomatic (NYHA class II or III) and have an EF ≤ 35% (while receiving ‘optimal’ medical treatment). In patients with a non-ischaemic cardiomyopathy, treatment with ‘optimal’ medical treatment for 3 months is additionally advised, although improvement in LV function (‘remodelling’) may happen after longer period of times.

The cut-off value of EF 35% is important because this criterion identifies and defines a large group of potential ICD recipients. For example, exactly 50% of the patients in PARADIGM-HF had an EF between 30% and 35%. Of note, the EF inclusion criterion in SCD-Heft was ≤35% and ≤30% in MADIT-II, but the average EF in both trials, 25% and 23%, respectively, was much lower, just as in the DANISH study and in DEFINITE. The evidence of ICD benefit in the low EF range is considerable, but this is much less the case when LV function is better preserved. For instance, the positive effects of ICD implantation in SCD-Heft were only observed in patients with EF ≤ 30%, who—importantly—comprised 80% of the study population. In MUSTT, with EF ≤ 40% as LV function inclusion criterion, the relation between EF and event rates was highly significant whether EF was treated as continuous or dichotomized variable, and total mortality in patients with EF ≤ 30% was more than 50% higher compared with EF between 30% and 40%.

Of course, sudden arrhythmic death will continue to occur, but—given the currently available therapeutic options—at a much lower rate than observed in the landmark and other trials. The conclusion that this affects ICD therapy effectiveness is not new and has led to multiple attempts to identify patients at highest risk. But individualized prediction of sudden cardiac death remains notoriously difficult, and, despite the development of innovative clinical risk models, the continuing increase in ICD insertions as well as the

Table 2. Short-term, medium-term, and long-term complication rates of intracardiac defibrillator implantation

Early (peri-implant)	Any	Mortality	Pneumothorax	Bleeding	Infection	Other
(%)	9%	0.5%	1%	1%	2%	4%

During 3 to 4 years of follow-up

Inappropriate ICD shock	Device malfunction or lead failure	Device or lead infection	Hospitalization (for other reasons)
(%)	12%	6%	2%

Device replacement related

Any	Stroke	Infection/inflammation	Haematoma requiring intervention
(%)	4%	0.5%	2%

ICD, intracardiac defibrillator.

Table 3. Factors associated with intracardiac defibrillator benefit or harm in ejection fraction range 30–35%

Factors favouring ICD implant

Ischaemic heart disease	QRS width ≥ 150 ms and LBBB*	Presence of fibrosis on MRI

Factors not favouring ICD implant

Limited life expectancy	Myocarditis < 6 months	QRS width < 120 ms

ICD, intracardiac defibrillator; LBBB, left bundle branch block; MRI, magnetic resonance imaging.

*With cardiac resynchronization therapy.
unchanged guidance in their use indicate that such methods of selection have not been successful.43,44

There can be little doubt that, within the EF range between 30% and 35%, the evidence for ICD benefit in primary prevention is limited. This is in particular true in non-ischaemic cardiomyopathy where event rates are lower than in IHD. Of note, the risk of arrhythmic endpoints is reportedly larger in the presence of myocardial fibrosis assessed with late gadolinium enhancement.45,46 And the finding of such fibrosis, although its relevance has not yet been confirmed in randomized comparisons, may tip the balance in favouring ICD implantation in non-ischaemic cardiomyopathy. In patients with myocarditis, longer duration of medical therapy than 3 months may be necessary to establish improvement of LV function.35,36 Lastly, patients with normal QRS duration have often been reported to be at relatively low risk, and ICD implantation may be deferred in such instances.49 Table 3 provides a summary of these recommendations.

Summary and conclusions

Findings from the landmark ICD trials, interpreted in combination with the clinical evidence and effective therapeutic options since accumulated and set against the costs and the potential complications of ICD implantation, now demand and allow for better and more stringent ICD implant selection criteria in primary prevention. Moreover, while it must be acknowledged that the relationship between LVEF and ICD effectiveness is not straightforward—benefit is both low in those at extremely high and at very low risk—LV function is a major determinant of prognosis in all studies of patients with heart failure, regardless of their cause.17,47,48 In the most recent and largest trials, ICD benefit was mainly confined to patients with LVEF ≤ 30%. At this moment, it seems reasonable to limit the ICD eligibility criteria in the EF range 30–35% to patients at highest risk only and to defer ICD implantation in subjects within this EF range without features suggesting high risk. In Table 3, such criteria have been presented. We realize that these cover only a limited selection of risk categories and will only be applicable to a limited number of patients and implant decisions. Nevertheless, we hope that the rational and considerations presented in this paper will gain following and will encourage modifications in clinical practice as well as in future guidance.

It goes without saying that a proper assessment of the contemporary benefit of preventive ICD in patients with relatively mild LV dysfunction, with or without CRT, will require a new randomized clinical trial. The study should include symptomatic patients with heart failure of any cause with an EF above the range currently debated, thus with LVEF over 30%, and must employ baseline imaging techniques detailed enough to establish their worth in subsequent clinical risk stratification. Given the current ICD implantation rates, the recruitment of such patients should be relatively straightforward.

Conflict of interest

None declared.

Funding

None.

References

1. Asktheicd. http://www.asktheicd.com/ (9 July 2020).
2. Leening MJ, Siregar S, Vaartjes I, Bots ML, Versteegh MI, van Geuns RJ, Koolen JJ, Deckers JW. Heart disease in the Netherlands: a quantitative update. Neth Heart J 2014; 22: 3–10.
3. Lee JH, Lee SR, Choi EK, Jeong J, Park HD, You SJ, Lee SS, Oh S. Temporal trends of cardiac implantable electronic device implantations: a nationwide population-based study. Korean Circ J 2019; 49: 841–852.
4. Moss AJ, Hall WJ, Cannon DS, Daubert JP, Higgins SL, Klein H, Levine JH, Saksena S, Waldo AL, Wilber D, Brown MW, Heo M. Improved survival with an implanted defibrillator in patients with coronary disease at high risk for ventricular arrhythmia. Multicenter Automatic Defibrillator Implantation Trial Investigators. N Engl J Med 1996; 335: 1933–1940.
5. Bigger JT Jr. Prophylactic use of implanted cardiac defibrillators in patients at high risk for ventricular arrhythmias after coronary-artery bypass graft surgery. Coronary Artery Bypass Graft (CABG) Patch Trial Investigators. N Engl J Med 1997; 337: 1569–1575.
6. Buxton AE, Lee KL, Fisher JD, Josephson ME, Prystowsky EN, Halley G. A randomized study of the prevention of sudden death in patients with coronary artery disease. Multicenter Unsustained Tachycardia Trial Investigators. N Engl J Med 1999; 341: 1882–1890.
7. Moss AJ, Zareba W, Hall WJ, Klein H, Wilber DJ, Cannon DS, Daubert JP, Higgins SL, Brown MW, Andrews ML, Multicenter Automatic Defibrillator Implantation Trial III. Prophylactic implantation of a defibrillator in patients with myocardial infarction and reduced ejection fraction. N Engl J Med 2002; 346: 877–883.
8. Hohnloser SH, Kuck KH, Dorian P, Roberts RS, Hampton JR, Hatala R, Fain E, Gent M, Connolly SJ, Investigators D. Prophylactic use of an implantable cardioverter-defibrillator after acute myocardial infarction. N Engl J Med 2004; 351: 2481–2488.
9. Bardy GH, Lee KL, Mark DB, Poole JE, Packer DL, Boineau R, Domanski M, Troutman C, Anderson J, Johnson G,
McNulty SE, Clapp-Channing N, Davidson-Ray LD, Fraulo ES, Fishbein DP, Luchesi RM, Ip JH, Sudden Cardiac Death in Heart Failure Trial I. Amiodarone or an implantable cardioverter-defibrillator for congestive heart failure. N Engl J Med 2005; 352: 225–237.

10. Steinbeck G, Andersen D, Seidl K, Brachmann J, Hofmann E, Wojciechowski D, Kornaciewicz-Jach Z, Sredniawski B, Luptovics G, Hofgartner F, Lubinski A, Rosenqvist M, Habets A, Wegscheider K, Senges J, Investigators I. Defibrillator implantation early after myocardial infarction. N Engl J Med 2009; 361: 1427–1436.

11. Shen L, Jhund PS, Petrie MC, Claggett BL, Barlara S, Clerland JGF, Dougli HJ, Granger CB, Kjekshus J, Kober L, Latini R, Maggioni AP, Packer M, Pitt B, Solomon SD, Swedberg K, Tavazzi L, Wikstrand J, Zannad F, Zile MR, McMurray J. Declining risk of sudden death in heart failure. N Engl J Med 2017; 377: 41–51.

12. Kober L, Thygesen K, Ho J, Jhund PS, Swedberg K, Tavazzi L, Wikstrand J, Zannad F, Zile MR, McMurray J. Declining risk of sudden death in heart failure. N Engl J Med 2017; 377: 41–51.

13. Bansch D, Antz M, Boczor S, Volkmer M, Littig AM, Gustafsson F, Egstrup K, Videbaek R, Korup E, Jensen G, Hildebrandt P, Steffensen FH, Brun E, Eiskjaer H, Brandes A, Thogersen AM, Gustafsson F, Egstrup K, Videbaek R, Hassager C, Svendsen JH, Hofsten DE, Torp-Pedersen C, Pehrsön S, Investigators D. Defibrillator implantation in patients with nonischemic systolic heart failure. N Engl J Med 2016; 375: 1221–1230.

14. Stricker BJ, Ansell JA, Nielsen JC, Haarbo J, Videbaek L, Korup E, Jensen G, Hildebrandt P, Steffensen FH, Brun E, Eiskjaer H, Brandes A, Thogersen AM, Gustafsson F, Egstrup K, Videbaek R, Hassager C, Svendsen JH, Hofsten DE, Torp-Pedersen C, Pehrsön S, Investigators D. Defibrillator implantation in patients with nonischemic systolic heart failure. N Engl J Med 2016; 375: 1221–1230.

15. Cadish A, Deyar A, Daubert JP, Quigg R, Estes NA, Anderson KP, Calkins H, Hoch D, Goldberger J, Slabay A, Sanders WE, Schaechter A, Levine JH, Defibrillators in Non-Ischemic Cardiomyopathy Treatment Evaluation I. Prophylactic defibrillator implantation in patients with nonischemic dilated cardiomyopathy. J Am Coll Cardiol 2003; 41: 1707–1712.

16. Bristow MR, Saxon LA, Boehmer J, Krueger S, Kass DA, De Marco T, Carson P, DeCirillo L, DeMets D, White BD, DeVries DW, Feldman AM, Comparison of Medical Therapy P, Defibrillation in Heart Failure I. Cardiac-resynchronization therapy with or without an implantable defibrillator in advanced chronic heart failure. N Engl J Med 2004; 350: 2140–2150.

17. Ponikowski P, Voors AA, Anker SD, Bueno H, Cleland JG, Coats AJ, Falk V, Gonzalez-Juanatey JR, Harjola VP, Jankowska EA, Jessup M, Linde C, Nikhavansou P, Parissis J, Pieske B, Riley JP, Rosano GM, Ruilope LM, Ruschitzka F, Rutten FH, van der Meer P, Authors/Task Force M, Document R. 2016 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure: the Task Force for the diagnosis and treatment of acute and chronic heart failure of the European Society of Cardiology (ESC). Developed with the special contribution of the Heart Failure Association (HFA) of the ESC. Eur Heart J 2016; 37: 2129–2200.

18. Pitt B, Zannad F, Remme WJ, Wyse D, Castaigne A, Perez A, Palensky J, Wittes J. The effect of spironolactone on morbidity and mortality in patients with severe heart failure. Randomized Aldactone Evaluation Study Investigators. N Engl J Med 1999; 340: 151–160.

19. Zannad F, McMurray JJ, Krum H, van Veldhuisen DJ, Swedberg K, Shi H, Vincent J, Pocock SJ, Pitt B, Group E-HS. Eplerenone in patients with non-ischaemic cardiomyopathy. N Engl J Med 2011; 364: 11–21.

20. McMurray JJ, Packer M, Desai AS, Gong J, LeFkowitz MP, Ritzkala AB, Roulard JL, Shi VC, Solomon SD, Swedberg K, Zile MR, Investigators P-H, Committees. Angiotensin-nephrilysin inhibition versus enalapril in heart failure. N Engl J Med 2014; 371: 993–1004.

21. McMurray JJV, Solomon SD, Inzucchi SE, Kober L, Kosiborod MN, Martinez FA, Ponikowski P, Sabatine MS, Anand IS, Belohlavek J, Bohm M, Chiang CE, Chopra VK, de Boer RA, Desai AS, Diez M, Drozdz J, Dukat A, Ge J, Howlett JG, Katova T, Kitakaze M, Lawton CA, Merkely B, Nicolau JC, O'Meara E, Petrie MC, Vinh PN, Schou M, Tereshchenko S, Verma S, Held C, DeMets DL, Docherty RF, Jhund PS, Bengtsson O, Sjostrand M, Langkilde AM, Committees D-HT, Investigators. Dagaplinofin in patients with heart failure and reduced ejection fraction. N Engl J Med 2019; 381: 1995–2008.

22. Zwanziger J, Hall WJ, Dick AW, Zhao H, Mulsini AI, Hahn RM, Wang H, Andrews ML, Mooney C, Wang H, Moss AJ. The cost effectiveness of implantable cardioverter-defibrillator: results from the Multicenter Automatic Defibrillator Implantation Trial (MADIT-II). J Am Coll Cardiol 2006; 47: 2310–2318.

23. Ezzat VA, Lee V, Ahsan S, Chow AW, Segal O, Rowland E, Lowe MD, Lambiase PD. A systematic review of ICD complications in randomized controlled trials versus registries: is our ‘real-world’ data an underestimation? Open Heart 2015; 2: e000198.

24. van Rees JB, de Bie MK, Thijsen J, Borleffs CJ, Schalji MJ, van Erven L. Implantation-related complications of implantable cardioverter-defibrillators and cardiac resynchronization therapy devices: a systematic review of randomized clinical trials. J Am Coll Cardiol 2011; 58: 995–1000.

25. van der Heijden AC, Borleffs CJ, Buiten MS, Thijsen J, van Rees JB, Cannegieter SC, Schalji MJ, van Erven L. The clinical course of patients with implantable cardioverter-defibrillators: extended experience on clinical outcome, device replacements, and device-related complications. Heart Rhythm 2015; 12: 1169–1176.

26. Ranasinghe I, Parzynski CS, Freeman J, Dreyer RP, Ross JS, Akar JG, Krumholz HM, Curtis JP. Long-term risk for device-related complications and reoperations after implantable cardioverter-defibrillator implantation: an observational cohort study. Ann Intern Med 2016; 165: 20–29.

27. Lewis KB, Stacey D, Carroll SL, Boland L, Sikora L, Bjurlin MA. Timing of implantation: the risks and benefits of implantable cardioverter-defibrillator generator replacement: a systematic review. Pacing Clin Electrophysiol 2016; 39: 709–722.

28. El Mohem M, Nicolas J, Khamis AM, Iskandarani G, Akel EA, Refaat M. Implantable cardiac defibrillators for people with non-ischemic cardiomyopathy. Cochrane Database Syst Rev 2018; 12: CD012738.

29. Barra S, Providencia R, Narayanan K, Boveda S, Duehmke R, Garcia R, Leyva F, Roger V, Jouven X, Aggarwal S, Levy WC, Marjion E. Time trends in sudden cardiac death risk in heart failure patients with cardiac resynchronization therapy: a systematic review. Eur Heart J 2020; 41: 1976–1986.

30. Nemeser MN, van den Berg ME, Leening MJ, Hofman A, Franco OH, Deckers JW, Heeringa J, Rijnbeek PR, Strickler BH, Eijgelaar M. Declining incidence of sudden cardiac death from 1990–2010 in a general middle-aged and elderly population: the Rotterdam Study. Heart Rhythm 2015; 12: 123–129.

31. Deckers JW, Goedhart DM, Boersma E, Briggs A, Bertrand M, Ferrari R, Remme WJ, Fox K, Simoons ML. Treatment benefit by perindopril in patients with stable coronary artery disease at different levels of risk. Eur Heart J 2006; 27: 796–801.

32. Randomised trial of cholesterol lowering in 4444 patients with coronary heart disease: the Scandinavian Simvastatin Survival Study (4S). Lancet 1994; 344: 1383–1389.

33. Stein EA, Gipe D, Bergeron J, Gaudet D, Weiss R, Dufour R, Wu R, Pordy R. Effect of a monoclonal antibody to PCSK9, REGN727/SAR236553, to reduce low-density lipoprotein cholesterol in patients with heterozygous familial hypercholesterolemia. N Engl J Med 2018; 379: 191–199.

34. Eikelboom JW, O’Rourke F, D’Agostino RB, Hjalmarson O, Armstrong PW, D’Agostino RB, et al. Effect of rosuvastatin versus simvastatin on the risk of cardiovascular death among patients with diabetes and clinically evident coronary heart disease. JAMA 2019; 322: 1745–1755.
hypercholesterolaemia on stable statin dose with or without ezetimibe therapy: a phase 2 randomised controlled trial. *Lancet* 2012; 380: 29–36.

34. Al-Khatib SM, Stevenson WG, Ackerman MJ, Bryant WJ, Callans DJ, Curtis AB, Deal BJ, Dickfeld T, Field ME, Fonarow GC, Gillis AM, Granger CB, Hammill SC, Hlatky MA, Joglar JA, Kay GN, Matlock DD, Myerburg RJ, Page RL. 2017 AHA/ACC/HRS guideline for management of patients with ventricular arrhythmias and the prevention of sudden cardiac death: a report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines and the Heart Rhythm Society. *J Am Coll Cardiol* 2018; 72: e1–e220.

35. Merlo M, Pyxaras SA, Pinamonti B, Barbati G, Di Lenarda A, Sinagra G. Prevalence and prognostic significance of left ventricular reverse remodeling in dilated cardiomyopathy receiving tailored medical treatment. *J Am Coll Cardiol* 2011; 57: 1468–1476.

36. van den Berge JC, Vroegindewey MM, Veenis JF, Brugts JJ, Caliskan K, Manintveld OC, Akkerhuis KM, Boersma E, Deckers JW, Constantinescu AA. Left ventricular remodelling and prognosis after discharge in new-onset acute heart failure with reduced ejection fraction. *ESC Heart Fail.* Online ahead of print 02 May 2021.

37. Alfred EB, Kerry LL, Gail EH, Wyse DG, John DF, Michael HL, Luis AP, Michael RG, Douglas LP, Mark EJ, Eric NP, Mario RT. Relation of ejection fraction and inducible ventricular tachycardia to mode of death in patients with coronary artery disease. *Circulation* 2002; 106: 2466–2472.

38. Scott PA, Townsend PA, Ng LL, Zeb M, Harris S, Roderick PJ, Curzen NP, Morgan JM. Defining potential to benefit from implantable cardioverter defibrillator therapy: the role of biomarkers. *Europace* 2011; 13: 1419–1427.

39. Barra S, Providencia R, Paiva L, Heck P, Agarwal S. Implantable cardioverter-defibrillators in the elderly: rationale and specific age-related considerations. *Europace* 2015; 17: 174–186.

40. Bode-Schnurbus L, Bocker D, Block M, Gradaus R, Heinecke A, Breithardt G, Borggreve M. QRS duration: a simple marker for predicting cardiac mortality in ICD patients with heart failure. *Heart* 2003; 89: 1157–1162.

41. Bloomfield DM, Bigger JT, Steinman RC, Namenow PB, Parides MK, Curtis AB, Kaufman ES, Davidenko JM, Shinn TS, Fontaine JM. Microvolt T-wave alternans and the risk of death or sustained ventricular arrhythmias in patients with left ventricular dysfunction. *J Am Coll Cardiol* 2006; 47: 456–463.

42. Iles L, Pfluger H, Lefkovits L, Butler MJ, Kistler PM, Kaye DM, Taylor AJ. Myocardial fibrosis predicts appropriate device therapy in patients with implantable cardioverter-defibrillators for primary prevention of sudden cardiac death. *J Am Coll Cardiol* 2011; 57: 821–828.

43. Goldenberg I, Vyas AK, Hall WJ, Moss AJ, Wang H, He H, Zareba W, McNitt S, Andrews ML, Investigators M-I. Risk stratification for primary implantation of a cardioverter-defibrillator in patients with ischemic left ventricular dysfunction. *J Am Coll Cardiol* 2008; 51: 288–296.

44. Bilchick KC, Wang Y, Cheng A, Curtis JP, Dharmarajan K, Stukenberg GJ, Shadman R, Anand I, Lund LH, Dahlstrom U, Sartipy U, Maggioni A, Swedberg K, O’Connor C, Levy WC. Seattle heart failure and proportional risk models predict benefit from implantable cardioverter-defibrillators. *J Am Coll Cardiol* 2017; 69: 2606–2618.

45. Di Marco A, Anguera I, Schmit M, Klem I, Nellen TG, White JA, Sramko M, Masci PG, Barison A, McKenna P, Mordi I, Haugaa KH, Levy F, Rodriguez Capitan J, Satoh H, Nabeta T, Dallaglio PD, Campbell NG, Sabate X, Cequier A. Late gadolinium enhancement and the risk for ventricular arrhythmias or sudden death in dilated cardiomyopathy: systematic review and meta-analysis. *JACC Heart Fail* 2017; 5: 28–38.

46. Akhtar M, Elliott PM. Risk stratification for sudden cardiac death in non-ischaemic dilated cardiomyopathy. *Curr Cardiol Rep* 2019; 21: 155.

47. Al-Khatib SM, Fonarow GC, Joglar JA, Inoue LY, Mark DB, Lee KL, Kadish A, Bardy G, Sanders GD. Primary prevention implantable cardioverter defibrillators in patients with nonischemic cardiomyopathy: a meta-analysis. *JAMA Cardiol* 2017; 2: 685–688.

48. Solomon SD, Claggett B, Desai AS, Packer M, Zile M, Swedberg K, Rouleau JL, Shi VC, Starling RC, Kozen O, Dukat A, Lefkowitz MP, McMurray JJ. Influence of ejection fraction on outcomes and efficacy of sacubitril/valsartan (LCZ696) in heart failure with reduced ejection fraction: the Prospective Comparison of ARNI with ACEI to Determine Impact on Global Mortality and Morbidity in Heart Failure (PARADIGM-HF) trial. *Circ Heart Fail* 2016; 9: e002744.