The Complex Genetic Context of \textit{bla}_{PER-1} Flanked by Miniature Inverted-Repeat Transposable Elements in \textit{Acinetobacter johnsonii}

Zhiyong Zong1,2,*

1Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China; 2Division of Infectious Diseases, The State Key Laboratory of Biotherapy, Sichuan University, Chengdu, Sichuan Province, China

\begin{abstract}

On a large plasmid of \textit{Acinetobacter johnsonii} strain XBB1 from hospital sewage, \textit{bla}_{PER-1} and ISCR1 were found in a complex Tn402-like integron carrying an \textit{arr3-aacA4} cassette array. The integron was truncated by the same 439-bp miniature inverted-repeat transposable element (MITE) at both ends. \textit{bla}_{PER-1} and its complex surroundings might have been mobilized by the MITEst into an orf of unknown function, evidenced by the presence of the characteristic 5-bp direct target repeats. The same 439-bp MITEs have also been found flanking class 1 integrons carrying metallo-\(\beta\)-lactamases genes \textit{bla}_{IMP-1}, \textit{bla}_{VIM-2}, and \textit{bla}_{PER-2} before but without ISCR1. Although the cassette arrays are different, integrons have always been truncated by the 439-bp MITEs at the exact same locations. The results suggested that MITEs might be able to mobilize class 1 integrons via transposition or homologous recombination and therefore represent a possible common mechanism for mobilizing antimicrobial resistance determinants.

\end{abstract}

\begin{materials}

\textit{bla}_{PER-1} encodes the extended-spectrum \(\beta\)-lactamase (ESBL) \textit{PER-1} conferring resistance to penicillins, cephalosporins and monobactams [1] and has been found in \textit{Aeromonas} spp., \textit{Acinetobacter baumannii}, \textit{Alcaligenes faecalis}, \textit{Pseudomonas aeruginosa} and the \textit{Enterobacteriaceae} in Asia and Europe [2,3]. The production of \textit{PER-1} by Gram-negative bacilli of clinical significance compromises the option for antimicrobial chemotherapy. It has been well established that the mobilization of antimicrobial resistance determinants such as ESBL-encoding genes is largely mediated by mobile genetic elements including insertion sequences, transposons, integrons and gene cassettes. Recently, miniature inverted-repeat transposable elements (MITEs), which are small non-autonomous mobile genetic elements containing repeated sequences and are present in diverse bacteria [4], have also been found mediating the mobilization of antimicrobial resistance determinants [5]. \textit{bla}_{PER-1} has been found in diverse genetic contexts and is generally located downstream of the insertion sequence IS\textit{Pa}12 [2]. However, \textit{bla}_{PER-1} had not been found associated with MITEs before [2].

\textit{Acinetobacter johnsonii} (\textit{Acinetobacter} genospecies 7) is a bacterial species that has usually been found in the aquatic environment [6] but occasionally colonizes humans [7] or causes clinical infections [8]. A strain of \textit{A. johnsonii} was recovered from hospital sewage in western China and was found carrying \textit{bla}_{PER-1}. Here the genetic context of \textit{bla}_{PER-1} was examined in detail.

\end{materials}
platform were assembled using the Newbler program (version 2.6) using 40 bp as the minimum overlap length and 90% as the minimum overlap identity. The assembled sequences were further assembled with reads generated by the Illumina platform using the Sspace program (version 2.0). The sequence gap of the plasmid carrying blaper1 was filled in using PCR with primers designed based on sequences available and Sanger sequencing using an ABI 3730×1 DNA Analyzer (Applied Biosystems, Foster City, CA, USA). Similarity searches of sequences obtained were carried out using BLAST programs (http://www.ncbi.nlm.nih.gov/BLAST/) and the function of proteins was predicted using the InterProScan (http://www.ebi.ac.uk/Tools/pfa/iprscan/).

Verification of the Genetic Context of blaper1

To confirm the genetic context of blaper1, two overlapping long-range PCR were employed with primer pair PER-UF/DW-MITE-F1 and PER-UR/UP-MITE1-R1. Self-designed primers DW-MITE-F1 (5′-TTGGCTCAATTGTCGATTGCT) and UP-MITE1-R1 (5′-TTGTGGGGATTGGTGCCTC) were located 141 and 166 bp away from each end of the 15.3 kb large region containing blaper1, respectively (Figure 1). The conditions of long-range PCR (Fermentas, Burlington, ON, Canada) were 94°C for 2 min; 10 cycles of 94°C for 10 s, 55°C for 30 s, 68°C for 12 min; then 25 cycles of 94°C for 5 s, 55°C for 30 s, 68°C for 6 to 12 min plus 10 s cycle elongation for each successive cycle; and a final elongation step at 68°C for 7 min. The amplicons were sequenced at both directions (see above).

Nucleotide sequences accession number. Sequence of the genetic context of blaper1 in A. johnsonii XBB1 has been deposited in GenBank as KF017283.

Results and Discussion

The genetic region containing blaper1 in XBB1 generated by assembling whole genome sequencing reads was verified by the overlapping long-range PCR and Sanger sequencing. In XBB1, blaper1 was carried by a 399 kb large plasmid, which had been completely sequenced, assembled and circularized. blaper1 was found downstream of the insertion seqres1 in a 5.7 kb region that included gvs (encoding a glutathione S-transferase), abet (encoding an ABC-type transporter) and four genes of unknown function in a complex Tn402-like class 1 integron with the arr3 and aacA4 cassettes (Figure 1). The ISCR1-blaper1 structure was bracketed by two copies of 3′ conserved segment (3′CS), which comprised a truncated gvsE gene encoding resistance to quaternary ammonium compounds and the sulfonamide resistance gene sul1. The 5′ conserved segment (5′CS) and the Tn402-like ini transposition module (iniBA1-iniB1) were truncated by the same 439-bp MITE (Figure 1). The two MITEs, which were in the same direction, might have formed a composite transposon-like mobile element mediating the transposition of the complex Tn402-like class 1 integron containing ISCR1 and blaper1, into a gene of unknown function as evidenced by the presence of characteristic 5 bp (GTTG) direct target repeats (DR, Figure 1).

This MITE is AT-rich (AT content, 72.2%), has no orf and possesses terminal sequences without significant matches to inverted repeats of any known insertion sequences and transposons. The same (100% nucleotide identity) 439-bp MITEs have also been found flanking Tn402-like class 1 integrons carrying different cassette arrays but without ISCR1 in several Acinietobacter strains (Figure 1). In A. baumannii strain FM2 that was recovered from a prawn in Australia [10], the 439-bp MITEs flanked an unusual class 1 integron that carried methionine sulfoxide reductase genes and this MITE-flanked element was inserted into a location exactly the same as that seen in the present study. In A. baumannii clinical strain 65FFC, MITEs flanked a class 1 integron containing a single bladmp5 cassette and this MITE-flanked structure was transposed into the transposase-encoding topo4 gene of an IS4414-like element, generating 5-bp (TCCAT) DR [5]. In Acinetobacter bereziosiae strain 118FFC (GenBank accession number JX235356), a class 1 integron with the aacA7-blaslm5-aacC4 cassette array was flanked by MITEs, which were mobilized into the transposase-encoding topo4 gene of IS26 evidenced by the presence of 5-bp (TCAAT) DR (Figure 1). Partial MITEs have also been found to truncate the 5′CS of a class 1 integron carrying the bladmp1-aac(6′)-IacA1 cassette array in A. baumannii strain 48–501A (AM238490) and strain 48–696D (AJ640197). Only partial MITE sequence is provided for strain 48–696D, while MITE is truncated by IS1006 in strain 48–501A. No sequences downstream of 3′CS are available for both strains and therefore it remains unknown whether there is another copy of MITE at the other end of IS1006. bladmp1, bladmp5 and bladmp3 are genes encoding class B metallo-β-lactamases. Of note, the MITE-flanked structures containing Tn402-like integrons have been seen interrupting different genes with the presence of DR, suggesting that the MITEs indeed mediated the mobilization of integrons.

Figure 1. Structures flanked by the 439-bp MITE. Two overlapping long-range PCR are shown by lines with primer names and amplicon sizes being indicated. The MITEs shown here have identical nucleotide sequences and are in the same direction. The 5-bp DR characteristics of the transposition of MITE-form composite transposon-like element are indicated. The GenBank accession numbers, the host species and strain number of each structure are listed. The identical regions are highlighted in grey. Only partial sequences are available for the integron carrying blaper1 (GenBank accession numbers AM283490 and AJ640197). The orfs and the putative terS of ISCR1 are shown and the inverted repeats of terS [23] are underlined. The 25-bp terminal sequences of this 439-bp MITE are shown with 18 bp matched.

doi:10.1371/journal.pone.0090046.g001
Interestingly, MITE always truncated the 5′CS and trnA at the same locations in all known sequences regardless of the cassette array and host species or strains, suggesting that the truncation of Tn402-like integrons by MITEs at either ends might have only occurred once and the different cassette arrays might therefore have resulted from homologous recombination between integrons. The association of MITEs with a complex class 1 integron containing ISCR1 was not seen before and the ISCR1-blaPER-1 region seen in the present study might have also been introduced by homologous recombination with the 5′CS or 3′CS serving as one homologous region and the trnA module serving as the other required for double crossover. There is also evidence that circular molecules created by recombination in the duplicated 3′CS flanking regions containing ISCR-antimicrobial resistance gene [11]. Although the MITE-flanked structures seen in strain NF2 from Australia and A. johnsonii XBB1 from China had different genetic components, they were present at the same location, suggesting that the acquisition of the ISCR1-blaPER-1 region might have occurred later than the transposition mediated by MITEs. As mobile genetic elements, MITEs might be able to mobilize blaPER-1 into different plasmids within the host strain and then could generate various genetic scaffolds to facilitate the horizontal transfer of the ESBL gene between clinical isolates and those of an environmental origin. The presence of blaPER-1 within the mobile genetic element formed by MITEs from an environment isolate in a hospital setting is therefore of significance.

To date, blaPER-1 has been found in genetic contexts either associated with the insertion sequence ISPa12 or with ISCR1 (Table 1). ISPa12 and its close relative ISPa13 formed a composite transposon termed Tn1213, which realized the mobilization of blaPER-1 and a truncated gts remnant as evidenced by the presence of characteristic 8-bp DR. Several variants of Tn1213 have also been identified (Table 1), including IS6100 or ISPPu17 truncating ISPa12 and ISPrst1 inserting into Tn1213 [2,12,13]. Tn1213 has been found in various species in Europe and Asia and therefore appears to be a common mechanism mediating the mobilization of blaPER-1. In particular, Tn1213 and its variants were the only type genetic context of blaPER-1 identified in P. aeruginosa so far. Another type of association of ISPa12 with blaPER-1, has been seen in A. baumannii strain C.A. and Salmonella enterica, in which the insertion of ISPa12 at 57 bp upstream of blaPER-1 was independently of the blaPER-1 acquisition as the presence of the characteristic 8-bp DR flanking ISPa12 suggested transposition of ISPa12 on its own [2]. In these cases, the mechanisms for the mobilization of blaPER-1 remain undetermined. The association of ISCR1 with blaPER-1 has also been found in two A. baumannii isolates (Table 1) before but no further sequence data were available to identify the integrons in which ISCR1 and blaPER-1 might be embedded and to demonstrate whether MITEs were also involved like the case seen in the present
study. Of note, there are two spacer sizes between ISCR1 and \textit{bla}\textsubscript{PER-1}, suggesting that the acquisition of \textit{bla}\textsubscript{PER-1} by ISCR1 might have occurred more than once. As the spacer between ISCR1 and \textit{bla}\textsubscript{PER-1} was longer than that between IS\textit{Pa12} and \textit{bla}\textsubscript{PER-1}, and \textit{gus} was truncated in \textit{Tn1213}, it might be reasonable to propose that the acquisition of \textit{bla}\textsubscript{PER-1} by IS\textit{Pa12} is a more recent event when compared to the acquisition by ISCR1. Both \textit{Tn1213} and the ISCR1\-\textit{bla}\textsubscript{PER-1} context have been identified in \textit{A. baumannii}, suggesting that \textit{A. baumannii} might be the host species in which different platforms for mobilizing \textit{bla}\textsubscript{PER-1} had been formed.

Conclusion

A unique MITE-flanked complex \textit{Tn402}-like integron carrying ISCR1 and \textit{bla}\textsubscript{PER-1} was revealed in an \textit{A. johnsonii} strain from hospital sewage. Such a complex integrin flanked by a pair of 439-bp MITEs has never been reported before. The 439-bp MITEs might be able to mobilize class 1 integrons via direct transposition or homologous recombination. It appears that MITEs could serve as a common mechanism mediating the mobilization of antimicrobial resistance genes. This study has prompted an additional survey for the presence of MITEs in clinical isolates of \textit{Acinetobacter} spp.

Acknowledgments

The author is grateful to Xiaohui Wang, Xingzhao Zhang and Yanyu Gao for technical support and Dr. Sally Partridge, Westmead Hospital, The University of Sydney, Australia for helpful discussion about ISCR1.

Author Contributions

Conceived and designed the experiments: ZZ. Performed the experiments: ZZ. Analyzed the data: ZZ. Contributed reagents/materials/analysis tools: ZZ. Wrote the paper: ZZ.

References

1. Erac B, Hosgor-Limoncu M, Ermentcan S, Tasihi H, Aydemir S (2013) Prevalence of \textit{bla}\textsubscript{PER-1} and integrons in ceftazidime-resistant Gram-negative bacteria at a university hospital in Turkey. Jpn J Infect Dis 66: 146–148.
2. Poirel L, Cabanne E, Vahaboglu H, Nordmann P (2000) Genetic environment and expression of the extended-spectrum \textit{\beta}-lactamase \textit{bla}\textsubscript{PER-1} gene in gram-negative bacteria. Antimicrob Agents Chemother 44: 1708–1713.
3. Piccau RC, Poirel L, Demarta A, Petroni O, Corvaglia AR, et al. (2008) \textit{Expanded-spectrum} \textit{\beta}-lactamase \textit{PER-1} in an environmental \textit{Aeromonas media} isolate from Switzerland. Antimicrob Agents Chemother 52: 3461–3462.
4. Delhia N (2008) Small mobile sequences in bacteria display diverse structure/function motifs. Mol Microbiol 67: 475–481.
5. Dominguez S, Neben KM, da Silva GJ (2011) The \textit{bla}\textsubscript{PER-1}-carrying integron in a clinical \textit{Acinetobacter baumannii} strain is flanked by miniature inverted-repeat transposable elements (MITEs). J Antimicrob Chemother 66: 2667–2668.
6. Guardabassi L, Dalsgaard A, Olsen JE (1999) Phenotypic characterization and antibiotic resistance of \textit{Acinetobacter baumannii} spp. isolated from aquatic sources. J Appl Microbiol 87: 659–667.
7. Seifen H, Dijkshoorn L, Gerner-Smidt P, Pelzer N, Tjernberg I, et al. (1997) Distribution of \textit{Acinetobacter} species on human skin: comparison of phenotypic and genotypic identification methods. J Clin Microbiol 35: 2819–2825.
8. Penzak SR, Gubbins PO, Stratton SL, Anaissie EJ (2000) Investigation of an extended-spectrum \textit{\beta}-lactamase \textit{PER-1} in an environmental \textit{Aeromonas media} isolate from Greece. J Antimicrob Chemother 47: 342–349.
9. Nordmann P, Ronco E, Naas T, Duport C, Michel-Briand Y, et al. (1993) \textit{Expanded-spectrum \beta-lactamase producing strain of \textit{Acinetobacter baumannii} isolated from a patient in France. J Antimicrobial Chemother 43: 151–153.
10. Poirel L, Carim A, Mercat A, Le Thomas I, Vahaboglu H, et al. (1999) \textit{Extended-spectrum \beta-lactamase-producing strain of \textit{Acinetobacter baumannii} isolated from Switzerland. Antimicrob Agents Chemother 52: 3461–3462.
11. Zong Z, Zhang X (2013) \textit{Acinetobacter johnsonii} producing \textit{PER-1} \textit{\beta}-lactamase-producing strain of \textit{Acinetobacter baumannii} from Switzerland. J Antimicrob Agents Chemother 68: 1007–1010.
12. Bae IK, Jang SJ, Kim J, Jeong SH, Cho B, et al. (2011) Interspecies dissemination of the \textit{\beta}-lactamase encoding \textit{PER-1} extended-spectrum \textit{\beta}-lactamase (EspLa) \textit{Acinetobacter baumannii} in Belgium. J Antimicrob Chemother 58: 178–182.
13. Nordmann P, Ronco E, Naas T, Duport C, Michel-Briand Y, et al. (1993) Characterization of a novel extended-spectrum \textit{\beta}-lactamase from \textit{Pseudomonas aeruginosa}. Antimicrob Agents Chemother 37: 962–969.
14. Claeys G, Verschraegen G, de Baere T, Vaneechoutte M (2000) \textit{PER-1} \textit{\beta}-lactamase-producing \textit{Pseudomonas aeruginosa} in an intensive care unit. J Antimicrobial Chemother 45: 924–925.
15. Lanes C, Neuwirth C, El Garch F, Hoquey P, Plesiat P (2006) Genetic analysis of a multiresistant strain of \textit{Pseudomonas aeruginosa} producing \textit{PER-1} \textit{\beta}-lactamase. Clin Microbiol Infect 12: 270–272.
16. Casin I, Hanaur-Bercot B, Podilajoin I, Vahaboglu H, Collatz E (2003) \textit{Salmonella enterica} serovar Typhimurium \textit{bla}\textsubscript{PER-1}-carrying plasmid pST1H encodes an extended-spectrum \textit{aminoglycoside 6’-N-acetyltansferase of type B}. Antimicrob Agents Chemother 47: 697–703.
17. Wang F, Wu K, Sun J, Wang Q, Chen Q, et al. (2012) Novel ISCR1-linked resistance genes found in multidrug-resistant Gram-negative bacteria in southern China. Antimicrob Agents Chemother 40: 404–408.
18. Partridge S (2012) Identifying \textit{ISCR}1 and new \textit{ISCR} elements. 22nd European Congress of Clinical Microbiology and Infectious Diseases. London, UK. pp. Abstract P1242.