Closed Genome Sequence of *Clostridium pasteurianum* ATCC 6013

Carlo Rotta,a,c Anja Poehlein,b Katrin Schwarz,a Peter McClure,c Rolf Daniel,b Nigel P. Mintona

The Clostridia Research Group, BBSRC/EPSCF Synthetic Biology Research Centre, School of Life Sciences, Centre for Biomolecular Sciences, University of Nottingham, Nottingham, United Kingdom; Genomic and Applied Microbiology & Göttingen Genomics Laboratory, Georg-August-University Göttingen, Göttingen, Germany; Unilever, Research and Development, Bedford, United Kingdom

We report here the closed genome of *Clostridium pasteurianum* ATCC 6013, a saccharolytic, nitrogen-fixing, and spore-forming Gram-positive obligate anaerobe. The organism is of biotechnological interest due to the production of solvents (butanol and 1,3-propanediol) but can be associated with food spoilage. The genome comprises a total of 4,351,223 bp.

The genome harbors 10 rRNA operons, 81 tRNA genes, 3,220 predicted protein-encoding genes with function prediction, and 768 putative genes coding for hypothetical proteins. Present are eight GerK spore germination receptors, with 3 orphan gerK genes and a gerKA-gerKC and a gerKA-gerKC-gerKB cluster, and two copies of a spore cortex-lytic SleB enzyme (18). The Spo0A master regulator of sporulation is atypical. It carries a lysine residue at position 255 as opposed to the glutamine present in other clostridial Spo0A proteins (19), including that of *C. pasteurianum* DSM525. Strain ATCC 6013 produces higher spore titers than DSM 525 (20).

Nucleotide sequence accession number. The genome sequence has been deposited in GenBank under the accession number CP009267.

ACKNOWLEDGMENTS

C.R. acknowledges the financial support of the European Community’s Seventh Framework Programmes “CLOSTNET” (PEOPLE-ITN-2008-257942). K.S. and N.P.M. also acknowledge the support of the UK Biotechnology and Biological Sciences Research Council (BBSRC) (grant BB/L004556/1). A.P. and R.D. thank the “Bundesministerium für Ernährung und Landwirtschaft (BMEL)” for support.

We also thank Kathleen Gollnow and Frauke-Dorothee Meyer for technical support.

REFERENCES

1. Luers F, Seyfried M, Daniel R, Gottschalk G. 1997. Glycerol conversion to 1,3-propanediol by *Clostridium pasteurianum*: cloning and expression of the gene encoding 1,3-propanediol dehydrogenase. *FEMS Microb. Lett* 154:337–345. http://dx.doi.org/10.1111/j.1574-6968.1997.tb12665.x

2. Malaviya A, Jang YS, Lee SY. 2012. Continuous butanol production with reduced byproducts formation from glycerol by a hyper producing mutant of *Clostridium pasteurianum*. *Appl Microbiol Biotechnol* 93:1485–1494. http://dx.doi.org/10.1007/s00253-011-3629-0
3. Feng G, Churey JJ, Worobo RW. 2010. Thermoaciduric Clostridium pasteurianum spoilage of shelf-stable apple juice. J Food Prot 73: 1886–1890.

4. Spiegelberg CH. 1940. Clostridium pasteurianum associated with spoilage of an acid canned fruit. J Food Sci 5:115–130. http://dx.doi.org/10.1111/j.1365-2621.1940.tb1713.x.

5. Chevreux B, Wetter T, Suhai S. 1999. Genome sequence assembly using trace signals and additional sequence information, p 45–56. In Wingender E (ed), Computer science and biology: proceedings of the German conference on bioinformatics (GCB) 1999, Hannover, Germany. GBF-Braunschweig, Department of Bioinformatics, Braunschweig, Germany.

6. Staden R, Beal KE, Bonfield JK. 2000. The Staden package, 1998. Methods Mol Biol 132:115–130.

7. Hyatt D, Chen GL, Locascio PF, Land ML, Larimer FW, Hauser LJ. 2010. Prodigal: prokaryotic gene recognition and translation initiation site identification. BMC Bioinformatics 11:119. http://dx.doi.org/10.1186/1471-2105-11-119.

8. Lagesen K, Hallin P, Redland EA, Staerfeldt HH, Rognes T, Ussery D. 2007. RNAmmer: consistent and rapid annotation of ribosomal RNA genes. Nucleic Acids Res 35:3100–3108. http://dx.doi.org/10.1093/nar/gkm160.

9. Lowe TM, Eddy SR. 1997. tRNAscan-SE: a program for improved detection of transfer RNA genes in genomic sequence. Nucleic Acids Res 25:955–964. http://dx.doi.org/10.1093/nar/25.5.0955.

10. Markowitz VM, Mavromatis K, Ivanova NN, Chen IM, Chu K, Kyrpides NC. 2009. IMG ER: a system for microbial genome annotation expert review and curation. Bioinformatics 25:2271–2278. http://dx.doi.org/10.1093/bioinformatics/btp393.

11. Markowitz VM, Chen IM, Palaniappan K, Chu K, Szeto E, Grechkin Y, Ratner A, Jacob B, Huang J, Williams P, Huntemann M, Anderson I, Mavromatis K, Ivanova NN, Kyrpides NC. 2012. IMG: the integrated microbial genomes database and comparative analysis system. Nucleic Acids Res 40:D115–D122. http://dx.doi.org/10.1093/nar/gkr1044.

12. Zdobnov EM, Apweiler R. 2001. InterProScan—an integration platform for the signature-recognition methods in InterPro. Bioinformatics 17: 847–848. http://dx.doi.org/10.1093/bioinformatics/17.9.847.

13. Richards DF, Linnett PE, Oultram JD, Young M. 1988. Restriction endonucleases in Clostridium pasteurianum ATCC 6013 and C. Thermo- hydrosulfuricum DSM 568. J Gen Microbiol 134:3151–3157.

14. Roberts RJ. 1987. Restriction enzymes and their isoschizomers. Nucleic Acids Res 15(Suppl):r189–r217. http://dx.doi.org/10.1093/nar/15.suppl.r189.

15. Nölling J, Breton G, Omelchenko MV, Makarova KS, Zeng Q, Gibson R, Lee HM, Dubois J, Qiu D, Hitti J, Wolf YI, Tatusov RL, Sabathe F, Doucette-Stamm L, Souaille P, Daly MJ, Bennett GN, Koonin EV, Smith DR. 2001. Genome sequence and comparative analysis of the solvent-producing bacterium Clostridium acetobutylicum. J Bacteriol 183:4823–4838. http://dx.doi.org/10.1128/JB.183.16.4823-4838.2001.

16. Pochlein A, Krabben P, Dürr P, Daniel R. 2014. Complete genome sequence of the solvent producer Clostridium saccharoperbutylacetonicum strain DSM 14923. Genome Announc 2(5):e01056-14. http://dx.doi.org/10.1128/genomeA.01056-14.

17. Pochlein A, Hartwich K, Krabben P, Ehrenreich A, Liebl W, Dürr P, Gottschalk G, Daniel R. 2013. Complete genome sequence of the solvent producer Clostridium saccharobutylicum NCP262 (DSM 13864). Genome Announc 1(6):e00997-13. http://dx.doi.org/10.1128/genomeA.00997-13.

18. Xiao Y, Francke C, Abe C, Wells-Bennik MH. 2011. Clostridial spore germination versus bacilli: genome mining and current insights. Food Microbiol 28:266–274. http://dx.doi.org/10.1016/j.fm.2010.03.016.

19. Paredes CJ, Alsafer KV, Papoutsakis ET. 2005. A comparative genomic view of clostridial sporulation and physiology. Nat Rev Microbiol 3:969–978. http://dx.doi.org/10.1038/nrmicro1288.

20. Rotta C. 2015. Establishment of genetic tools in Clostridium pasteurianum and investigation of the germination mechanisms. Ph.D. thesis. University of Nottingham, Nottingham, United Kingdom.