Kinetics of the West Nile virus induced transcripts of selected cytokines and Toll-like receptors in equine peripheral blood mononuclear cells

Muhammad Jasim Uddin1, Willy W. Suen1, Angela Bosco-Lauth2, Airm-Elizabeth Hartwig2, Roy A. Hall3,4, Richard A. Bowen2 and Helle Bielefeldt-Ohmann1,3,4*

Abstract
West Nile virus (WNV) is one of the most common causes of epidemic viral encephalitis in horses worldwide. Peripheral blood mononuclear cells (PBMCs) are amongst the first to encounter the virus following a mosquito bite. This study aimed to elucidate the transcription kinetics of cytokine, Toll-like receptor (TLRs) and TLRs-associated genes following WNV challenge of equine PBMCs. PBMCs were challenged with an Australian strain of WNV (WNV

Introduction
West Nile virus (WNV), a mosquito-borne flavivirus, is widely distributed throughout Africa, the Middle East, Asia, Southern Europe, the Americas and Australia [1]. Since the first isolation of the Australian strain of WNV—Kunjin strain (WNV

reported in the USA [5]. Relative to the WNV

*Correspondence: h.bielefeldtohmann1@uq.edu.au
1 School of Veterinary Science, The University of Queensland, Gatton, QLD, Australia
Full list of author information is available at the end of the article

© 2016 The Author(s). This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.
To survive virus infection, the host must recognise invasion and develop an effective antiviral immune response. This response is initiated in infected cells after detection of virus by specific, conserved host molecules, such as Toll-like receptors (TLRs) which trigger signalling cascades that induce the activation of transcription factor NF-κB, IFN regulatory factors (IRFs), including IFNs and hundreds of different IFN-stimulated effector genes (ISGs) [8]. The involvement of TLR3 [9], 7 [10] and 9 [11] in WNV infection has been widely studied in mice and humans. MyD88, NF-κB, STAT, ISG15, IRF7 and 9 [12–16] are crucially involved in the recognition and induction of host immune response to WNV. As a result of successful recognition of WNV by TLRs and associated genes, cytokine and IFN cascades are activated to prevent the early stages of WNV replication [17]. The ISG products include antiviral effector molecules and immunomodulatory cytokines that serve to restrict virus replication and modulate the adaptive immune response [15]. However, these signalling pathways have been studied predominantly in mice (reviewed in [8]), with only limited studies in horses [18]. WNV typically produce severe encephalitis and death in mice (reviewed in [19]), while most WNV infections in humans and equines are subclinical [20–22]. The transcriptome profile in small animal models may therefore not reflect what happens in the majority of human and equine infections, thus warranting alternative models [23]. Furthermore, while WNVNY99 causes severe neuropathology and death in mice, WNVKUN mostly causes only subclinical infection in horses and rabbits [23].

Identification of molecules that may be involved in limiting virus growth and contributing to host survival is therefore crucial to understand the host-pathogen interactions of subclinical infection. Therefore, we hypothesised that WNVKUN induces a pattern of innate immune responses, which might help to elucidate the host-pathogen interactions of intermediate virulent flaviviruses [23–25]. Furthermore, the virus in most natural cases of equine WNV encephalitis is undetectable in the central nervous system (CNS) at the time of clinical symptoms appearing [20, 21] suggesting that an early innate immune response may be an important factor for limiting CNS infection and survival of horses [26]. Peripheral blood mononuclear cells (PBMCs) are amongst the first immune components to encounter WNV following a mosquito bite. It has been suggested that the equine PBMCs may serve as target cells for North American strains of WNV and play a role in subsequent viral dissemination [27]. Therefore, the current study aimed at assessing the kinetics of innate immune molecule transcripts activated at early time points following WNVNSW2011 infection of equine PBMCs. For this purposes, WNVNSW2011 stimulated equine PBMCs were cultured for 24 h and gene transcripts, which might be involved in the innate immune response to virus, were quantified.

Materials and methods
Preparation of WNV
The WNVNSW2011 strain used in this study has previously been characterized and described in detail [4]. Two additional passages of the virus were performed in C6/36 mosquito (Aedes albopictus) cells cultured in RPMI-1640 media with 2% foetal bovine serum (FBS) at 28 °C without CO2 [28]. The virus stock was stored at −80 °C. The titre of the stock was quantified using standard plaque assay on Vero cells, as described previously [28]. Briefly, samples were serially diluted in PBS in the range 1:10³ to 1:10⁶. Three hundred microliters (300 µL) of sample was added to each well of a 6-well plate with a confluent monolayer of Vero cells. The plates were incubated for 2 h at 37 °C, then 2 mL of overlay was added to each well (final concentration = 0.5% agar with 1× DMEM, 2% FBS, l-glutamine [2 nM], penicillin [50 U/mL] and streptomycin [50 µg/mL]). Plates were incubated in a 37 °C with 5% CO₂ incubator. At 4 days post-infection (pi), 2 mL of 10% formaldehyde was added and incubated for 30 min at room temperature to fix the plate. The gel overlay was removed and 1 mL of 0.2% crystal violet was added and incubated for 30 min. Plaques were enumerated using a light box. The WNVNSW2011 was diluted to 1 × 10⁶ PFU/50 µL for use in PBMCs infection in vitro experiments.

PBMC isolation, culture and challenged with viruses
The studies were approved by the University of Queensland Animal Ethics Committee (AEC nos. SVS/306/11/VAXINE and SVS/298/13/VAXINE), and the Animal Use and Care Committee of Colorado State University (Approval: 12-3837A), and carried out in accordance with the NHMRC and NIH guidelines for ethical use of animals in research. EDTA-stabilized blood samples were collected from three healthy WNV seronegative horses (n = 3) [29]. Blood was collected from the jugular vein of horses into EDTA-coated collection tubes (Vacuette®, Greiner Bio One, Australia). The PBMCs were isolated from the blood using Ficoll-Histopaque (Sigma) as described previously [25, 30]. The viability of the purified PBMCs was assessed using the trypan blue exclusion method and was always greater than 90%. The cells were counted using a haemocytometer and the concentration was adjusted to 1 × 10⁶ cells/0.5 mL in RPMI-1460
supplemented with L-glutamine (2 nM), streptomycin (50 µg/mL) and penicillin (50 U/mL), and 10% FBS [25, 30]. The cells were cultured in a 24-well cell culture plate (Costar Corning, the Netherlands) seeded with 500 µL cell suspension per well and at 37 °C with 5% CO₂. Remaining PBMCs (fresh-isolated PBMCs) were pelleted and kept at −80 °C for RNA isolation. After 1 h of seeding, the PBMCs were challenged by adding 50 µL of WNV NSW2011 stock to each well to give a final multiplicity of infection (MOI) of one [7, 25, 31]. Additional 450 µL medium was added to each well to make up the final volume 1 mL. One well of PBMCs per animal (n = 3) was harvested at 2 h, 6 h, 12 h and 24 h after virus infection. The harvested cells (WNV-stimulated PBMCs) were pelleted and kept at −80 °C until subjected to RNA isolation. For complete harvest of adherent PBMCs, detachment with lidocaine HCl (12 mM) was performed [32]. To ensure the complete harvesting of cells, wells were checked using an inverted microscope. Duplicate wells of uninfected cells (mock-inoculated PBMCs) were harvested and treated in a similar manner at each time point.

Experimentally horse infection with WNV

Three horses (all quarterstock horses, 1–2 years old; one gelding and two females) seronegative for WNV were challenged by intradermal inoculation of 3 × 10⁸ PFU of WNV NSW2011. Horses were euthanatized 12 days pi [33]. Samples from CNS (medulla oblongata), spleen and lymph nodes (the injection-site draining pre-scapular) were collected at necropsy for RNA isolation, histopathology assessment and immunohistochemistry.

RNA isolation, cDNA synthesis and transcriptome quantification

Total RNA was isolated from PBMCs using miRN easy RNA isolation kit (Qiagen Pty Ltd, Australia) following the manufacturer’s instructions. Total RNA from tissues from the experimentally infected horses was isolated using MagMAX-96 Viral RNA Isolation Kit (Life Technologies). On-column RNA clean-up was performed using DNase I digestion kit (Qiagen) following the manufacturer’s protocol. The quantity and quality of RNA was measured using NanoDrop 1000 spectrophotometer (Thermo Scientific, Australia). The isolated RNA was kept at −80 °C for further use. cDNA synthesis was performed using ‘qScript cDNA synthesis kit’ (cat. No: 95047-100, Quanta Biosciences) following the manufacturer’s protocol and stored at −20 °C until employed in transcriptome analysis using quantitative real time PCR (qRT-PCR). Primers for cytokines, TLRs and downstream genes, apoptosis and oxidative stress related genes, and two house-keeping genes (ACTB and GAPDH) were designed from FASTA products of the GenBank mRNA sequences for *Equus caballus* using the Primer3 program [34]. The WNV KUN specific primers were described earlier [35]. Details of the primers are given in Table 1. To quantify the mRNA expression for target and reference genes, qRT-PCR was performed using the Rotor Gene Corbett 6000 quantitative real-time PCR system (Qiagen).

A two-step qRT-PCR was performed using Rotor-Gene SYBR Green PCR Kit (Qiagen). Each run contained cDNA samples and a no-template control. qRT-PCR was set up using 1 µL of cDNA template, 10.5 µL of deionized RNase free water, 0.5 µM of upstream and downstream primers, and 12.5 µL of 2× Rotor-Gene SYBR Green PCR Master Mix (MM) (Qiagen) in a total reaction volume of 25 µL. The cycling conditions included an initial PCR activation step (5 min at 95 °C), and a two-step cycling protocol, with a denaturation step and a combined annealing/extension step. The two-step thermal cycling conditions were 5 s at 95 °C followed by 10 s at 60 °C (40 cycles). An amplification-based auto-threshold (Rotor-Gene Q Series Software, Qiagen) and adaptive baseline were selected as algorithms. Melting curve analysis was performed to detect the specificity of the PCR reaction. Each sample was run twice and the average value was used as expression value. Gene-specific expression was measured as relative to the geometric mean of the expression of two housekeeping genes (GAPDH and ACTB) (Table 1). The delta Ct (ΔCt) [ΔCt = Ct target − Ct housekeeping genes] values were calculated as the difference between target gene and reference genes and expression was calculated as 2−ΔΔCt [36]. Although the widely accepted delta Ct method has been used to calculate the relative gene expression, it is important to determine the PCR efficiency for each transcript.

To compare the magnitude of gene expression, the fold change was calculated. For this purpose, the delta delta Ct (ΔΔCt) values were calculated as follows: ΔΔCt = ΔCt WNV − ΔCt mock. The bar graphs in Figures 1, 2, 3, 4, 5, 6 and 7 show the expression of genes in WNV-stimulated PBMCs over mock-inoculated PBMCs (fold change: the normalised expression value of a gene in WNV-stimulated cells/the normalised expression value of a gene in mock-inoculated cells). Furthermore, accounting for the effects of culture conditions on gene transcription in WNV- and mock-inoculated equine PBMCs, relative expression of genes between WNV-stimulated [ΔΔCt WNV = ΔCt WNV − ΔCt fresh] and mock-inoculated [ΔΔCt mock = ΔCt mock − ΔCt fresh] cells were analysed. For this purpose, to compare the normalised expression of genes from PBMCs harvested at each time point to their respective expression levels before either WNV- or...
Table 1 List of primers used in this study

Gene	Primer seta	Amplicon size (bp)	Gene Bank accession number
ACTB	F: TGAGCGCAAGTACTCCGTAT R: TCTCTGTGTCTGATCCACAT	96	NM_001081838.1
GAPDH	F: GTTTAGGCTGGAGTAACCG G: R: AATGAAAGGTCATTGATGG	106	NM_001163856.1
IFNa	F: TCTTGTAGCTCTGAGCAAC R: AACTGGTGGCGCTAAAACAC	103	NM_001099441.1
IFNb	F: ACCATTCTGCAGCTGAAGAA R: AGGGCCAAGTCCTGAGCATT	115	NM_001099440.1
IFNy	F: TAAAAAGCAGCAGACAGAA R: TTTGGCTGGGACCTCAAGAT	80	NM_001081949.1
TNFa	F: AAGCCTGAGCCCATTTGTTG R: TCTGTACAGCTTCAGCATT	104	NM_001081819.1
IL1a	F: ATGGAGAGTGCACACCAACCA R: TTCCTGCTGTGCTGGTGGG	119	NM_001082500.1
IL1β	F: TCAAGTACGCTTTGGGACAC R: TTCACATCAGAAGGCATGGT	80	NM_001082526.1
IL6	F: TCTTACAAAGCAGCCTCCTC R: AGTGGTCCATTTGAGGTGGT	118	NM_001082496.1
IL8	F: TCAAGCAGCAGTCTGGAAC R: AGCTGCAGGGACGACAGGT	113	NM_001083951.1
IL12	F: ATCGTGAGTGTGCTGTTCA R: TATACGTACCTGAGCCAGAT	111	NM_001082516.1
IL22	F: TCCACCTCCTCATCATCGGGA R: TGGTTGAGGTCTCAAGCCAT	89	XM_001491754.3
PTX3	F: TCTGTGACAGCTGGAATT R: ACAACATGACCTGTCGCAAT	99	XM_005602088.1
CXCL10	F: GCAGCCTGTACCTGACATTAA R: TGGCAATGATCTCAACGCTT	112	NM_001114940.1
TLR1	F: TGTGTTGCTTAAAACGCTT R: TTCTGCGACCTTTGGAAAGAA	89	NM_001256899.1
TLR2	F: TGCAATCTGAAAGTGGGA R: ACCCGTGAGATTTTGAGCA	111	NM_001081796.1
TLR3	F: CCTGCAACAGTGTGCCTGT R: TGGTTGAGGATTTAAGCCAT	109	NM_001081798.1
TLR4	F: AGCAGTTACTTACGACGCCA R: TGAAGATGATGCACAGCA	90	HM_001099769.1
TLR5	F: TCCATGGGAGGTTGCTGATGA R: CCCCGGAAATTTTGGCAATAT	86	NM_001257142.1
TLR6	F: CTTAGCCACACACCGGAA R: ATGGCAACACCTCCTCGGGAAA	101	NM_001081772.1
TLR7	F: TTGATGGGCAAAGAAACC R: ACCCGCTCTTTGGAAACCCTGA	109	NM_001111301.1
TLR8	F: TGGGCAAGTACGCTGACAGAA R: GTGGTGACCTTTGTGTT	120	NM_001081790.1
TLR9	F: AGCATCTTGCAGAAGACCT R: AGTGTTGGCAAGATACAGGCA	116	XM_005608830.1
TLR10	F: TCAAACTCTTCAGCCAGAAA R: AGGTGCCATTTGGCAGGAT	64	XM_001488549.4
MyD88	F: TGCTGCTTACCTGGACTC R: ACCCGAGACATGAGAATGA	97	XM_001490000.3
Traf3	F: AGCCAGACTGCGACTGTTT R: CCAAACTGACAGCGCAAGAA	98	XM_001501647.1
ST1	F: TGCTGCTTACCTGGACTGTTT R: CCAAACTGACAGCGCAAGAA	92	XM_005601647.1
ST2	F: TGCGAAAGTCCAGCCAGCAA R: TGTCCTCCAGCTGGAACCAAT	87	XM_001504841.2
Table 1 continued

Gene	Primer set	Amplicon size (bp)	Gene Bank accession number
IRF3	F: AAGGTGTTCCACATGCCT R: GTGGCTGGTGGAAATGTGCA	102	XM_005596407.1
IRF7	F: TGTTGTCACACTACATGCCA R: ACGTGTTGGATTGGGCTTA	80	XM_005598388.1
NFKB	F: ACCAGTGTCATGCAGCAGATT R: TGCCAGTGGTGGGCTGAGATT	80	XM_001916418.3
ISG15	F: CAGTTCTGCTGACTTTCGAGA R: CAGGGCGCAAGTTCATGTACA	102	XM_005607605.1
SOCS1	F: ATTTAAGCTGTCCTGCCCAGA R: CAACCCCTGTGGTTCGACAA	81	XM_005615004.1
SOCS3	F: TCTCAACATCTCTCGGCGA R: TAAAGCCGGGCGCATGCTACT	115	NM_001123379.1
Caspase 3	F: ATGCAGCAAACCTCACAGGAA R: ATGCCACAAATTTCTTGCCG	87	NM_001163961.1
HMOX1	F: TGCTTGTCTGCTGGGAAAGA R: TGCTGGTGGTGGGGAAGA	108	XM_005606579.1
WNVNSW2011	F: AACGCCAGTGGAAGAAGTGGA^{cd} R: TCAGGCAGCGCAACACAA	70	D00246

* Annealing temperature was 60 °C for all the primer sets.
* Primer set is adopted from Beckman et al. [54].
* Kwon S et al. [55].
* Pyke et al. [35].

Figure 1 Expression kinetics of interferons mRNA. **A** Interferons expression in fold change. The ∆∆Ct (∆∆Ct = ∆Ct_{WNV} − ∆Ct_{Mock}) values were calculated by subtracting the ∆Ct of genes in mock-inoculated PBMCs. The bar graph showed the expression of genes in WNV-infected PBMCs over mock-inoculated PBMCs (fold change: the normalised expression value of a gene in WNV-stimulated cells/the normalised expression value of a gene in mock-inoculated cells). Bars without common superscripts (A, B) denote statistical significant difference among time points (P < 0.05).

B–**D** Relative expression of interferons mRNA, accounting for the effects of culture conditions on gene transcription in WNV- and mock-inoculated equine PBMCs. To compare the normalised expression of interferon genes from PBMCs harvested at each time point to their respective expression levels before either WNV- or mock-inoculation, the ∆∆Ct values were calculated by subtracting ∆Ct of genes in fresh-isolated PBMCs from the ∆Ct of genes in WNV- or mock-inoculated PBMCs at each time-point (for WNV-stimulated PBMCs, ∆∆Ct_{WNV} = ∆Ct_{WNV} − ∆Ct_{fresh} and for mock-inoculated PBMCs, ∆∆Ct_{Mock} = ∆Ct_{Mock} − ∆Ct_{fresh}). *P < 0.05.
mock-inoculation, the ∆∆Ct values were calculated by subtracting ∆Ct of genes in fresh-isolated PBMCs from the ∆Ct of genes in WNV- or mock-inoculated PBMCs at each time-point.

Immunohistochemistry (IHC)

Immunolabeling for flavivirus NS1 antigen using the monoclonal antibody 4G4 has been previously described in [28]. Immunophenotyping of T-lymphocytes in inflammatory aggregates was achieved using cross-reactive anti-human CD3 (CD3 clone F7.2.38, Dako) mouse monoclonal antibody following previously described protocols [37]. For each IHC batch, a positive and negative antigen control was included.

Virus growth kinetics quantification

The PBMCs were isolated from the three WNV_{KUN} seronegative horses, as described above. Cells were diluted to 1 × 10⁵ cells/mL in RPMI supplemented with 10% FBS. One mL aliquots of cells were pelleted by centrifugation, the supernatant discarded, and the cells resuspended with 100 µL medium containing 1 × 10⁵ PFU of WNV_{NSW201} (MOI 1). The cells-virus suspension was incubated at 37 °C for 1 h for virus-adsorption. The suspensions were agitated every 15 min. Each 100 µL of cell-virus suspension was then plated in one well of a 24-well cell culture plate, and 900 µL RPMI containing 10% FBS was added. The cells were incubated at 37 °C in a CO₂ incubator until the designated time of harvest (day 1, 2,
For the Vero cell positive control, DMEM with 5% FBS was used. Thermal-inactivation control involved addition of 1×10^5 PFU/mL of WNV NSW2011 to wells without the presence of cells. These control wells underwent the same conditions as the test wells. A well for each of three horses, a Vero cell positive control and a thermal-inactivation control was harvested every 24 h for 4 days pi. For complete removal of adherent PBMCs, lidocaine was used [32], whereas trypsinization was performed for Vero cells. The virus concentration in supernatant was quantified using standard plaque assay [4].

Detection of viral infectivity in PBMCs

The PBMCs harvested at 24 h pi were placed on two spots in circles drawn with a Dako pen on glass slides. The slides were air dried, formalin fixed and subjected to the immunolabelling protocol with monoclonal antibody 4G4 described above, except for omission of the deparaffinization steps.

Statistical analysis

In general the technical replicates were averaged. The impact of virus challenge (treatment) and duration of incubation (time points) were evaluated using the SAS software package v. 9.2 (SAS institute, Cary, NC, USA). For this purpose, the GLM (general linear model; Proc GLM) procedure and the implemented analysis of variance (ANOVA) statistic were used. Pairwise comparisons were performed between the time points and treatment groups, using Tukey’s multiple comparisons in SAS, where P value was simultaneously adjusted. Besides, student’s t test was applied when treatment groups were compared. The data were expressed as means ± standard deviations (SD) of biological repeats and (*) $P < 0.05$ were set as statistically significant.

Results

Expression of interferon and cytokine genes

Expression of the mRNA for IFNα, β and γ were higher in WNV-stimulated PBMCs at most time points from 2 to 24 h compared to control PBMCs (Figure 1A). IFNα (Figure 1B) and IFNγ (Figure 1D) transcription were significantly upregulated at 6 h, whereas IFNβ (Figure 1C) transcription was significantly increased at 24 h pi. The expression of mRNA for cytokines IL1α, IL1β, IL12, and IL22 was increased at most time points in WNV-stimulated PBMCs compared to the mock-inoculated PBMCs (Additional file 1A). Pro-inflammatory cytokines IL6 and IL8 mRNA were increased 91 and 26 fold, respectively, at 24 h pi in virus induced PBMCs. IL22 mRNA expression was 75 fold higher in WNV-stimulated PBMCs compared to mock-inoculated PBMCs, whereas steady state expression of TNFα and IL12 mRNA was observed over times (Additional file 1A). Although the PTX3 gene transcript was upregulated in WNV-infected PBMCs at 2 h pi, it was down-regulated at the later hours pi (Additional file 1A). When IL1 gene transcription was compared between WNV-stimulated and mock-inoculated PBMCs, IL1α (Figure 2A) and IL1β (Figure 2B) transcription patterns were similar in both the stimulated and control cells. Notably, IL1α and IL1β mRNA expression level in both WNV-stimulated and mock-inoculated PBMCs were highest at 6 h pi (Figures 2A and B). IL6 (Figure 2C), 8 (Figure 2D), and 22 (Figure 2E) mRNA transcription were
higher at 24 h pi in WNV-stimulated PBMCs compared to mock-inoculated PBMCs, whereas PTX3 mRNA (Figure 2F) was upregulated at 2 h pi in the virus-stimulated PBMCs.

Expression of Toll-like receptors and associated downstream genes

The expression of TLR family (TLR1-10) gene transcripts was also quantified in WNV-infected equine PBMCs (Additional file 1B). TLR3, 5, 7, and 8 mRNA expression were increased early at 2 h pi, whereas TLR6 and 9 transcription levels were higher at 12 h pi. In addition to the higher expression at 2 h, TLR8 mRNA was increased at 24 h pi, whereas TLR1 mRNA was increased at 24 h pi only (Additional file 1B). When TLR3 (Figure 3A), TLR7 (Figure 3B) and TLR9 (Figure 3C) mRNA expression in WNV-stimulated PBMCs was compared with mock-inoculated PBMCs, TLR3 mRNA expression level was higher at 6 and 12 h pi, whereas TLR7 and 9 mRNA expression level were higher at 2 h pi. The time
Transcripts of all the downstream genes associated with signalling of those TLRs quantified were up to four times upregulated in WNV-stimulated PBMCs compared to mock-inoculated PBMCs (Additional file 1C). TRAF3, IRF3, STAT1 and NF-κB mRNA showed similar patterns of expressions in PBMCs in response to WNV challenge. The mRNA expression of these genes was upregulated at 2 h as well as 24 h pi (Figures 4A, 4B, 4C, 4D, 4E, 4F) and NF-κB mRNA was significantly upregulated in WNV-inoculated equine PBMCs compared to mock-inoculated PBMCs. Notably, STAT1 and 2 gene transcripts were upregulated from 2 h pi and during the remaining time of the experiment (Figures 4C and D). Beside TLRs-associated genes, the ISG15, SOCS1 and SOCS3 genes were also upregulated in horse PBMCs in response to WNV challenge (Figure 5A). When these gene transcription levels were compared between WNV-inoculated and mock-inoculated PBMCs, ISG15, SOCS1 and SOCS3 mRNA were up-regulated at 24 h pi in stimulated PBMCs (Figures 5B–D). Additionally, SOCS3 mRNA was upregulated at 2 h pi in WNV-inoculated PBMCs compared to mock-inoculated control cells (Figure 5D). Most of the gene transcription levels were found to be influenced by the time of stimulation and virus inoculation (Additional file 3).

HMOX1 and caspase 3 genes expression

Transcriptomes related to oxidative stress (HMOX1) and apoptotic pathway (caspase 3) were quantified in equine PBMCs. Although there was steady state expression of HMOX1 mRNA levels, the caspase 3 mRNA level was increased in WNV-stimulated PBMCs when compared to mock-inoculated PBMCs (Figure 6A). Caspase 3 gene expression was significantly higher in virus-stimulated PBMCs at 12 h pi (Figure 6B).

Quantification of selected gene transcripts and viral antigen detection in tissues from experimentally WNV_{NSW2011}-infected horses

The mRNA expression patterns of selected genes (IFNα, β and γ, IL1β, IL22, PTX3, TNFα, ISG15, TLR3, TLR7, TLR9, MyD88, TRAF3, IRF7, STAT1 and 2) were also
assessed in lymphoid tissues (spleen, pre-scapular lymph node draining the inoculation site) and brain (Medulla oblongata) from horses experimentally infected with WNVNSW2011 [50], terminated 12 days pi (Figure 7). While all these genes were transcribed in the lymphoid tissues, particularly high mRNA levels were seen for IFNα, CXCL10, TLR3, ISG15 and IRF7 (Figure 7A). In brain tissues, particularly high mRNA levels were seen for IFNγ, IL22, ISG15 and IRF7 (Figure 7A). No viral RNA was detected in mock-inoculated equine PBMCs and Ct were set to 40 for delta Ct (ΔCt) calculation. In order to assess the permissiveness of equine PBMCs to WNVNSW2011 infection beyond the first 24 h, a 4-day (96 h) growth kinetics experiment was conducted. Virus titration by plaque assay was performed on PBMCs culture supernatant. The 96 h growth kinetics curve showed that the virus titres from wells with challenged PBMCs did not differ significantly from that of the thermal inactivation culture (cell-free culture control) (Figure 8B). This suggests that WNVNSW2011 did not productively replicate in equine PBMCs. The lack of NS1-specific immunolabeling of WNVNSW2011-challenged equine PBMCs on day 1 pi corroborated the failure of WNVNSW2011 to establish productive infection in equine PBMCs (Figure 8C). This contrasted with the high titres, as well as positive NS1-immunolabeling, observed in supernatants and cell pellet, respectively, from virus inoculated Vero cells (positive control) (Figures 8C and F). Mock-stimulated PBMCs immunostained using 4G4 as negative control are shown in Figure 8E.

Discussion

Understanding the expression kinetics of genes involved in the innate immune recognition of virus is important for understanding the host-pathogen interactions and pathogenesis of disease. TLRs and associated downstream gene products are amongst the key molecules recognizing virus and initiating the inflammatory cascades and antiviral responses immediately upon infections [38]. Blood peripheral leukocytes are thought to be amongst the first cells to come into contact with mosquito-inoculated WNV [27, 31] and thus PBMCs may act as the first line of defence against the virus. However, despite their potential importance, the interaction between WNV and equine PBMCs remains to be elucidated. As part of a greater aim to elucidate the genomic networks, this study identified the expression patterns of selected key genes in equine PBMCs following in vitro challenge with an equine-virulent Australian strain of WNV.

Virus growth kinetics in peripheral blood mononuclear cells

Viral RNA measurement showed higher levels of WNVNSW2011 RNA in WNV-inoculated equine PBMCs at 24 h pi compared to 6 h pi (Figure 8A). No viral RNA was detected in mock-inoculated equine PBMCs and Ct were set to 40 for delta Ct (ΔCt) calculation. In order to assess the permissiveness of equine PBMCs to WNVNSW2011 infection beyond the first 24 h, a 4-day (96 h) growth kinetics experiment was conducted. Virus titration by plaque assay was performed on PBMCs culture supernatant. The 96 h growth kinetics curve showed that the virus titres from wells with challenged PBMCs did not differ significantly from that of the thermal inactivation culture (cell-free culture control) (Figure 8B). This suggests that WNVNSW2011 did not productively replicate in equine PBMCs. The lack of NS1-specific immunolabeling of WNVNSW2011-challenged equine PBMCs on day 1 pi corroborated the failure of WNVNSW2011 to establish productive infection in equine PBMCs (Figure 8C). This contrasted with the high titres, as well as positive NS1-immunolabeling, observed in supernatants and cell pellet, respectively, from virus inoculated Vero cells (positive control) (Figures 8C and F). Mock-stimulated PBMCs immunostained using 4G4 as negative control are shown in Figure 8E.

Discussion

Understanding the expression kinetics of genes involved in the innate immune recognition of virus is important for understanding the host-pathogen interactions and pathogenesis of disease. TLRs and associated downstream gene products are amongst the key molecules recognizing virus and initiating the inflammatory cascades and antiviral responses immediately upon infections [38]. Blood peripheral leukocytes are thought to be amongst the first cells to come into contact with mosquito-inoculated WNV [27, 31] and thus PBMCs may act as the first line of defence against the virus. However, despite their potential importance, the interaction between WNV and equine PBMCs remains to be elucidated. As part of a greater aim to elucidate the genomic networks, this study identified the expression patterns of selected key genes in equine PBMCs following in vitro challenge with an equine-virulent Australian strain of WNV.

**Among the ten members of the TLR family (TLR1-10), TLR3, 7, 8 and 9 recognise viral genomic components [39]. TLR3 has been associated with the direct recognition of double-stranded viral RNA, while TLR7 and TLR8 target single-stranded viral RNA [39]. The involvement of TLR3 and TLR7 has been extensively studied for WNV infection and recognition in mice [9, 10]. In this study, TLR1, 3, 5, 7 and 9 mRNA expression all became
upregulated within 2–24 h of in vitro virus challenge of horse PBMCs suggestive of their involvement in the WNV-induced innate immune response in this species. MyD88 and NF-κB mRNA expression likewise became upregulated in WNV-exposed equine PBMCs at 2 h pi. The partial WNV-recognition pathway has been sketched in mouse [8, 40] where WNV is being sensed by TLR3 and 7. TLR3 and 7 lead to the activation of TRAF3 and MyD88, respectively. TRAF3 leads to the activation of IRF7, whereas IRF3 is activated by MyD88. IFN regulatory factors (IRFs) then lead to the production of IFNβ (reviewed in [8]). Subsequently, IFNβ and IFNα activate STAT1, STAT2 and IRF9, and these molecules then stimulate the transcription of antiviral genes such as the ISGs [8, 15]. The results of the present studies of equine PBMCs responses to WNV are in accordance with these pathways, with mRNA for TRAF3, IRF3, IRF7 and the STATs all being upregulated within 2 h post-challenge. While transcription of TLRs and associated genes were upregulated at early time points, ISG15 mRNA was upregulated at 24 h pi in the equine PBMCs in line with the time required to induce an antiviral state. This study identified higher expression of both Type-I (IFNα and IFNβ) and Type-II (IFNγ) IFNs in WNV-stimulated equine PBMCs compared to mock-inoculated PBMCs. The protective roles of IFNs in WNV infection have been widely studied in mice [41, 42]. Antiviral IFNs signal through the JAK/STAT pathway to induce ISG production. ISGs can also be directly induced by some IRFs in an IFN-independent pathway [43]. Either way, the ISGs function to block virus replication [43]. IFNβ gene expression was also reported to be upregulated in WNVKUN-induced human blood monocyte derived dendritic cells at 24 h pi and then decreased at 48 and 72 h pi.
[7]. It is important to note that phosphorylation of IRF3 in virus-infected cells can affect the virus-induced gene expression. TBK1 and IKKE are able to phosphorylate IRF3 and IRF7 in virus-infected cells, and can thereby control the IRF signalling pathway [44]. The phosphorylation-related virus-induced down-stream genes expression
has not been verified in this study. Furthermore, SOCS are the physiological suppressors of cytokine signalling and form part of a classical feedback loop. SOCS1 and SOCS3 siRNA treated macrophages facilitated higher replication of WNV in the mouse [15] and up-regulation of SOCS1 and SOCS3 mRNA has been found in mouse in response to WNV infection [45]. Higher expressions of SOCS1 and 3 at 2 h pi may contribute to the restriction of WNV replication and balancing the immune responses of equine PBMCs in response to WNVNSW2011.

The present study involved infection of equine PBMCs with WNVNSW2011 at MOI 1. Styer et al. [31] reported that mosquitoes typically inoculate ~10^2 PFU directly into the blood while probing and feeding and thus circulating PBMCs are amongst the first cells to be exposed to WNV. We found that higher viral RNA was detected at 24 h pi compared to 6 h pi in equine PBMCs. Therefore, an extended experiment up to 4 days pi was conducted, in order to investigate whether WNVNSW2011 can productively replicate in equine PBMCs. It is important to note that for successful replication, viruses will required several hours to complete the replication cycle, which includes production of mature virions and subsequently exocytosis from cells as infectious viral particles [46]. Following a mosquito bite, the initial WNV infection and spread (the early phase) and peripheral viral amplification (the visceral-organ dissemination phase) may take up to 4 days [40]. Therefore, virus was not quantified using plaque assay in this study until 24 h pi and later. Interestingly, we found that WNVNSW2011 did not replicate in the equine PBMCs, which was further supported by the lack of expression of viral NS1 at 24 h pi. Although in vitro WNV inoculation by passes the host-virus interfaces in the skin, the host-viral interactions of virus delivered into the blood might be represented by the type of study employed here. In this context, the higher expression of Type I IFNs and ISG15 in the first 24 h pi may explain the inhibition of viral replication or growth in equine PBMCs. These early virus restriction mechanisms may point to a natural resistance mechanism(s) in this species and are in accordance with the fact that the majority of infections in horses are subclinical [1].

Rawle et al. [7] compared the growth kinetics of WNVNSW2011 and WNvNY99 using plaque assay and found that WNVNSW2011 did not replicate in human blood monocyte derived dendritic cells as they extended the experiment from 24 to 72 h pi, whereas WNvNY99 successfully replicated in these cells for the duration of the experiment. The successful replication of WNvNY99 has also been reported in equine PBMCs [27], where in vitro equine PBMCs were infected for 10–14 days pi. Since other studies [7, 27] did not quantify viral RNA during the first 24 h pi, a comparison to our findings of viral RNA detection is precluded. Our results of WNVNSW2011 growth kinetics, quantified using plaque assay, corroborates the growth kinetics of this virus strain reported by Rawle et al. [7] but differs from the growth kinetics of WNvNY99 reported by Rawle et al. [7] and Gracia-Tapia et al. [27], respectively. Whether these differences in growth kinetics in leukocytes between WNVNSW2011 and WNvNY99 maybe ascribed to virus characteristics sensu stricto or may be explained by their respective ability to induce protective innate immune responses remains to be elucidated.

Other than IFNs (both Type I and Type II), transcripts for several cytokines were found to be upregulated in response to WNV stimulation of equine PBMCs, including IL1α, IL1β, IL6 and IL8. Studies with IL1R1 knockout mice have demonstrated that IL1 is critical for limiting WNV-induced encephalitis in the murine model, purportedly via a T cell activation mechanism [47] and mice inoculated intraperitoneally with WNVNY99 had upregulation of IL6 and IL12 transcripts [48]. It is important to note that when traditional fold changes are calculated to demonstrate gene expression, the culture conditions may confound the results. Therefore, in addition to the traditional method (Figures 1A, 5A, and 6A; Additional file 1), we compared the normalized expression of cytokine genes from PBLs harvested at each time point to their respective expression levels before either WNV or mock inoculation (Figures 1B–D, 2A–F, 3A–C, 4A–G, 5B–D, 6B; Additional file 2). This method display the temporal kinetics of cytokine gene transcription in mock-inoculated PBLs, which in turn can reveal background effects of culture conditions on gene transcription in the WNV-challenged PBLs. Using this approach, we demonstrated that IL1α, IL1β and IL6 mRNA expression levels were increased in both sets of culture conditions. A holistic transcriptome expression study using microarray found higher expression of IL12, IL22, SOCS3 and PTX3 in the thalamus of experimentally WNVNY99-infected horses [18]. Similar to the in vitro experiment, we found that transcription of selected cytokine genes was upregulated in brain, spleen and draining lymph node of experimentally WNVNSW2011-infected horses. We found that while IFNγ and IL22 mRNA expression level was higher in lymphoid tissues (lymph node and spleen), their expression level was lower in CNS in experimentally WNVNSW2011-infected horse. It has been suggested that IL22 exacerbates lethal WNvNY99 encephalitis by promoting virus neuro invasion in mice [49]. Therefore, lower expression of IL22 and higher expression of antiviral IFNα in equine brain at 12 days pi may explain the absence of viral antigen in the brain of experimentally infected horse in this study. Notably, higher expression of IL22...
in experimentally infected horse tissues (spleen and lymph node) coincided with the expression of this gene in experimentally infected horse thalamus [18] implying that species is also an important factor to be considered. Furthermore, despite mild inflammations in the CNS, no viral antigen was detected by IHC and qRT-PCR, suggesting virus clearance by at least 12 days pi. Similar results have been demonstrated in other studies in both experimentally and naturally infected horses [20, 21, 50]. It remains to be established exactly what role each individual cytokine plays in virus control and inflammation in equine WNV encephalitis, but the prominent transcription of the chemokine ligand CXCL10 in the experimentally infected equine brain may at least explain the CD3⁺ cell infiltrates in the brain.

Caspase 3 mRNA expression was increased over time in equine PBMCs in response to in vitro WNVNSW2011. WNV has been reported to induce apoptosis in human brain derived glia cells in culture by the activation of caspase 3, 8 and 9 [51] but so far there has been no study that quantified caspase expression in equine PBMCs following WNV challenge. Higher expression of caspase 3 mRNA in in vitro infected equine PBMCs is in accordance with other studies [51, 52] establishing that caspase 3-dependent apoptosis might be involved in WNV infection. It remains to be shown that the equine cells proceed to undergo apoptosis following WNV exposure in vitro and in vivo. On the other hand, comparatively lower expression of TNFα and HMOX1 mRNA in this study suggests that oxidative stress may not be important in WNVNSW2011 induced early immune responses in equine PBMCs.

Mosquito-borne diseases are a major human and animal health issue globally as well as in Australia. The socio-economic importance of these diseases to the equine industries is substantial and their impact is predicted to increase in some regions due to changes in vector breeding associated with climate change. This has been well demonstrated by the unprecedented outbreak of WNV encephalitis in horses in SE Australia in 2011 following flooding of many eastern regions of Australia. Although the expression of most of the genes studied here was similar to those found in the mouse model, the murine immune response to WNV may not necessarily reflect the immune responses in human and horse [19, 53]. Therefore, studies in horse PBMCs may provide a better understanding of the early interactions between host cells and viruses, at least as far as horses are concerned. The expression kinetics of the selected transcriptomes illustrates a partial pathway by which WNV is detected by the host immune system. Further studies will be required to elucidate the complete network of antiviral defences.

Additional files

Additional file 1. Expression kinetics of cytokines, TLRs and TLR-asssociated genes in equine PBMCs in response to West Nile virus in fold change. A) Cytokines expression in fold change. The ΔΔCt (ΔΔCt = ΔCtWNV - ΔCtmock) values were calculated by subtracting the ΔCt of genes in mock-inoculated PBMCs. The bar graph showed the expression of genes in WNV-infected PBMCs over mock-inoculated PBMCs (fold change: the normalised expression value of a gene in WNV-stimulated cells / the normalised expression value of a gene in mock-inoculated cells). Bars without common superscripts (A, B) denote statistical significant difference among time points (P < 0.05). B) Toll-like receptors expression in fold change. The ΔΔCt (ΔΔCt = ΔCtWNV - ΔCtmock) values were calculated by subtracting the ΔCt of genes in mock-inoculated PBMCs. The bar graph showed the expression of genes in WNV-infected PBMCs over mock-inoculated PBMCs (fold change: the normalised expression value of a gene in WNV-stimulated cells / the normalised expression value of a gene in mock-inoculated cells). Bars without common superscripts (A, B) denote statistical significant difference among time points (P < 0.05).

Additional file 2. Time-dependent relative expression of TLRs mRNAs in equine PBMCs in response to West Nile virus. Description of data: Relative expression of TLRs mRNA, accounting for the effects of culture conditions on gene transcription in WNV- and mock-inoculated equine PBMCs. To compare the normalised expression of TLR genes from PBMCs harvested at each time point to their respective expression levels before either WNV- or mock-inoculation, the ΔΔCt values were calculated by subtracting ΔCt of genes in fresh-isolated PBMCs from the ΔCt of genes in WNV- or mock-inoculated PBMCs at each time-point for WNV-stimulated PBMCs, ΔΔCtWNV = ΔCtWNV - ΔCtfresh, and for mock-inoculated PBMCs, ΔΔCtmock = ΔCtmock - ΔCtfresh, *P<0.05.

Additional file 3. Effect of time and virus stimulation on the relative expression of genes. Summary of the Proc GLM (SAS) analysis detecting effect of time and virus stimulation on the mRNA expressions level of genes. Adjusted P-values are mentioned in the columns for time of WNV-inoculation, WNV-stimulation, and the interaction of incubation time and virus stimulation.

Competing interests
The authors declare that they have no competing interests.

Authors' contributions
Conceived and designed the experiments: MJU, WWS, RAH, RAB, HBO. Performed the experiments: MJU, WWS, ABL, AEH, RAB, HBO. Analyzed the data: MJU, WWS, HBO. Drafted the manuscript: MJU, WWS, HBO. All authors read and approved the final manuscript.

Acknowledgements
We thank Dr Peter D. Kirkland, Elizabeth Macarthur Agriculture Institute, Menangle, New South Wales, Australia for RNA isolation from infected equine tissues. The studies were supported by the Australian Research Council (LP1210686 to RAH, HBO). MJU is supported by a UQ Postdoctoral Fellowship, and WWS was supported by an Australian Postgraduate Award. The experimental equine infection study was funded by the Animal Models Core at Colorado State University (RAB).

Author details
1 School of Veterinary Science, The University of Queensland, Gatton, QLD, Australia. 2 Department of Biomedical Sciences, Animal Reproduction and Biotechnology Laboratory, Colorado State University, Fort Collins, USA. 3 School...
of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD, Australia. * Australian Infectious Diseases Research Centre, The University of Queensland, St Lucia, QLD, Australia.

Received: 3 August 2015 Accepted: 17 May 2016
Published online: 07 June 2016

References

1. Angenvoort J, Braught AC, Bowen RA, Groschup MH (2013) West Nile virus infection of equids. Vet Microbiol 167:168–180
2. Doherty R, Carley JG, Mackerras MJ, Marks EN (1963) Studies of arthropod-borne virus infections in Queensland. III. Isolation and characterization of virus strains from wild-caught mosquitoes in North Queensland. Aust J Exp Biol Med Sci 41:17–39
3. Hall RA, Broom AK, Smith DW, Mackenzie JS (2002) The ecology and epidemiology of Kunjin virus. Curr Top Microbiol Immunol 267:253–269
4. Frost MJ, Zhang J, Edmonds JH, Prow NA, Gu X, Davis R, Horinitsky C, Arzey KE, Fliniasion D, Hick P, Read A, Hobson-Peters J, May FY, Doggett SL, Hanotis J, Russell RC, Hall RA, Kromhoy AA, Kirkland PD (2012) Characterization of virulent West Nile virus Kunjin strain, Australia, 2011. Emerging Infect Dis 18:792–800
5. CDC (2012) West Nile virus disease cases and deaths reported to CDC by year and clinical presentation, 1999–2012. http://www.cdc.gov/westnile/resources/pdfs/summulative/99_2013_CasesAndDeathsClinicalPresentationHumanCases.pdf
6. Prow NA, Hewlett EEK, Faddy HM, Cioacetto F, Wang W, Cox T, Hall RA, Bielefeldt-Ohmann H (2014) The Australian public is still vulnerable to emerging virulent strains of West Nile virus. Front Public Health 2:146
7. Rawle DJ, Setoh YX, Edmonds JH, Kromhoy AA (2015) Comparison of attenuated and virulent West Nile virus strains in human monocyte-derived dendritic cells as a model of initial human infection. Virol J 12:46
8. Diamond MS, Gale M Jr (2012) Cell-intrinsic innate immune control of West Nile virus infection. Trends Immunol 33:522–530
9. Daffis S, Samuel MA, Suther MS, Gale M Jr, Diamond MS (2008) Toll-like receptor 3 has a protective role against West Nile virus infection. J Virol 82:10349–10358
10. Welte T, Reagan K, Fang H, Machain-Williams C, Zheng X, Mendell N, Chang GJ, Wu P, Blair CD, Wang T (2009) Toll-like receptor 7-induced immune response to cutaneous West Nile virus infection. J Gen Virol 90:2660–2668
11. Demento SL, Bonafe N, Cui W, Kaech SM, Caplan MJ, Fikrig E, Ledizet M, Fahmy TM (2010) The innate immune adaptor molecule MyD88 restricts West Nile virus replication and spread in neurons of the central nervous system. J Virol 84:12125–12138
12. Apostolou E, Thanos D (2008) Virus Infection Induces NF-kappaB-dependent interchromosomal associations mediating monoligic IFN-beta gene expression. Cell 134:85–96
13. Perwitasari O, Cho H, Diamond MS, Gale M Jr (2011) Inhibitor of kappa B kinase epsilon (IKKepsilon), STAT1, and IFIT2 proteins define novel innate immune effector pathway against West Nile virus infection. J Biol Chem 286:44412–44423
14. Daffis S, Samuel MA, Suther MS, Keller BC, Gale M Jr, Diamond MS (2008) Interferon regulatory factor IRF-7 induces the antiviral alpha interferon response and protects against lethal West Nile virus infection. J Virol 82:8465–8475
15. Sabouri AH, Marcondes MC, Flynn C, Berger M, Xiao N, Fox HS, Sarvetnick NE (2014) TLR signaling controls lethal encephalitis in WNV-infected brain. Brain Res 1574:84–95
16. Bourgeois MA, Denslow ND, Seino KS, Barber DS, Long MT (2011) Gene expression analysis in the thalamus and cerebral of horses experimentally infected with West Nile virus. PLoS One 6:e24371
17. Graham JB, Thomas S, Swarts J, McMillan AA, Ferris MT, Suther MS, Treuting PM, Ierton R, Gale M Jr, Lund JM (2015) Genetic diversity in the collaborative cross model recapitulates human west nile virus disease outcomes. MBio 6:493–515
18. Bunning ML, Bowen RA, Cripp CB, Sullivan KG, Davis RS, Komar N, Godsey MS, Baker D, Hettler DL, Holmes DA, Biggerstaff BJ, Mitchell CJ (2002) Experimental infection of horses with West Nile virus. Emerging Infect Dis 8:380–386
19. Cantile C, Del Piero F, Di Guardo G, Arrispeci M (2001) Pathologic and immunohistochimical findings in naturally occurring West Nile virus infection in horses. Vet Pathol 38:414–421
20. Zou S, Foster GA, Dodd PY, Petersen LR, Stramer SL (2010) West Nile fever characteristics among viremic persons identified through blood donor screening. J Infect Dis 202:1354–1361
21. Suen WW, Uddin MJ, Wang W, Brown V, Adney D, Broad N, Prow NA, Hall RA, Bowen RA, Bielefeldt-Ohmann H (2015) Experimental West Nile virus infection in rabbits: an alternative model for studying mechanism of non-lethal meningoencephalitis and virus control. Pathogens 4:529–558
22. Suen WW, Prow NA, Setoh YX, Hall RA, Bielefeldt-Ohmann H (2016) End-point disease investigation for virus strains of intermediate virulence as illustrated by flavivirus infections. J Gen Virol 97:366–377
23. Uddin MJ, Suen WW, Prow NA, Hall RA, Bielefeldt-Ohmann H (2015) West Nile virus challenge alters the transcription profiles of innate immune genes in rabbit peripheral blood mononuclear cells. Front Vet Sci 2:76
24. Quicke KM, Suther MS (2013) The innate immune playbook for restricting West Nile virus infection. Viruses 5:2643–2658
25. Garcia-Tapia D, Loiaccono CM, Kleboecker SB (2006) Replication of West Nile virus in equine peripheral blood mononuclear cells. Vet Immunol Immunopathol 110:229–244
26. Prow NA, Setoh YX, Biron RM, Sester DP, Kim KS, Hobson-Peters J, Hall RA, Bielefeldt-Ohmann H (2014) The West Nile virus-like flavivirus Koutango is highly virulent in mice due to delayed viral clearance and the induction of a poor neutralizing antibody response. J Virol 88:9947–9962
27. Bielefeldt-Ohmann H, Prow NA, Wang W, Tan CS, Coyle M, Douma A, Hobson-Peters J, Kidd L, Hall RA, Petrovsky N (2014) Safety and immunogenicity of a delta inulin-adjuvanted inactivated Japanese encephalitis virus vaccine in pregnant mares and foals. Vet Res 45:130
28. Uddin MJ, Nuro-Gyina PK, Islam MA, Tesfaye D, Tholen E, Looft C, Schelander K, Cinu MU (2012) Expression dynamics of Toll-like receptors mRNA and cytokines in porcine peripheral blood mononuclear cells stimulated by bacterial lipopolysaccharide. Vet Immunol Immunopathol 147:211–222
29. Styer LM, Kent KA, Albright RG, Bennett CJ, Kramer LD, Bernard KA (2007) Mosquitoes inoculate high doses of West Nile virus as they probe and feed on live hosts. PLoS Pathog 3:1262–1270
30. Ohmann HB, Gilchrist JE, Babiuk LA (1984) Effect of recombinant DNA-produced bovine interferon alpha (BoIFN-alpha 1) on the interaction between bovine alveolar macrophages and bovine herpesvirus type 1. J Gen Virol 65:1487–1495
31. Bielefeldt-Ohmann H, Bosco-Lauth A, Tolany A-E, Edwards J, Prow NA, Wang W, Kromhoy AA, Hall RA, Kirkland PD, Bowen RA (2013) Experimental infectious of horses with the equine-pathogenic West Nile Virus strain WNV_100_2011. AVS (Australian Virology Society) Meeting 7, 8–11 December 2013, Queenstown, New Zealand
32. Rozen S, Skaltsky H (2000) Primer3 on the WWW for general users and for biologist programmers. Methods Mol Biol 132:365–386
33. Pyke AT, Smith IL, van den Hurk AF, Northill JA, Chuan TF, Westacott PS, McNeilly NR (2000) The molecular basis of the restriction of virulent West Nile virus in equine peripheral blood mononuclear cells. Front Vet Sci 2:76
34. Rozen S, Skaletsky H (2000) Primer3 on the WWW for general users and for biologist programmers. Methods Mol Biol 132:365–386
35. Pfaffl MW (2001) A new mathematical model for relative quantification in real-time fluorescent TaqMan PCR assays. J Virol Methods 96:131–139
36. Pyke AT, Smith IL, van den Hurk AF, Northill JA, Chuan TF, Westacott PS, McNeilly NR (2000) The molecular basis of the restriction of virulent West Nile virus in equine peripheral blood mononuclear cells. Front Vet Sci 2:76
37. Treuting PM, Ireton R, Fabian MS, Baker D, Hettler DL, Holmes DA, Biggerstaff BJ, Mitchell CJ (2002) Genetic diversity in the collaborative cross model recapitulates human West Nile virus disease outcomes. MBio 6:493–515
38. Pfaffl MW (2001) A new mathematical model for relative quantification in real-time fluorescent TaqMan RT-PCR assays. J Virol Methods 117:161–167
39. Pfaffl MW (2001) A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res 29:445
40. Tolnay AE, Baskin CR, Tumprey TM, Sabourin PJ, Sabourin CL, Long JP, Pyles JA, Albrecht RA, Garcia-Sastre A, Katze MG, Bielefeldt-Ohmann H (2010) Extrapolumonary tissue responses in cynomolgus macaques (Macaca fascicularis) infected with highly pathogenic avian influenza A (H5N1) virus. Arch Virol 155:905–919
41. Arjona A, Wang P, Montgomery RR, Fikrig E (2011) Innate immune control of West Nile virus infection. Cell Microbiol 13:1648–1658
39. Kawai T, Akira S (2011) Toll-like receptors and their crosstalk with other innate receptors in infection and immunity. Immunity 34:637–650
40. Suthar MS, Diamond MS, Gale M Jr (2013) West Nile virus infection and immunity. Nat Rev Microbiol 11:115–128
41. Samuel MA, Diamond MS (2005) Alpha/beta interferon protects against lethal West Nile virus infection by restricting cellular tropism and enhancing neuronal survival. J Virol 79:13350–13361
42. Shrestha B, Wang T, Samuel MA, Whitby K, Craft J, Fikrig E, Diamond MS (2006) Gamma interferon plays a crucial early antiviral role in protection against West Nile virus infection. J Virol 80:5338–5348
43. Schoggins JW, Rice CM (2011) Interferon-stimulated genes and their antiviral effector functions. Curr Opin Virol 1:519–525
44. Fitzgerald KA, McWhirter SM, Faia KL, Rowe DC, Latz E, Golenbock DT, Coyle AJ, Liao SM, Maniatis T (2003) IKKepsilon and TBK1 are essential components of the IRF3 signaling pathway. Nat Immunol 4:491–496
45. Mansfield KL, Johnson N, Cosby SL, Solomon T, Fooks AR (2010) Transcriptional upregulation of SOCS 1 and suppressors of cytokine signaling 3 mRNA in the absence of suppressors of cytokine signaling 2 mRNA after infection with West Nile virus or tick-borne encephalitis virus. Vector Borne Zoonotic Dis 10:649–653
46. Brinton MA (2002) The molecular biology of West Nile Virus: a new invader of the western hemisphere. Annu Rev Microbiol 56:371–402
47. Durrant DM, Robinette ML, Klein RS (2013) IL-1R1 is required for dendritic cell-mediated T cell reactivation within the CNS during West Nile virus encephalitis. J Exp Med 210:503–516
48. Pena J, Plante JA, Carillo AC, Roberts KK, Smith JK, Juelich TL, Beasley DW, Freiberg AN, Labute Mx, Naraghi-Arani P (2014) Multiplexed digital mRNA profiling of the inflammatory response in the West Nile Swiss Webster mouse model. PLoS Neg Trop Dis 8:e3216
49. Wang P, Bai F, Zénewicz LA, Dai J, Gate D, Cheng G, Yang L, Qian F, Yuan X, Flavell Montgomery RR, RA, Town T, Fikrig E, (2012) IL-22 signaling contributes to West Nile encephalitis pathogenesis. PLoS One 7:e44153
50. Suen WW, Prow NA, Hall RA, Bielefeldt-Ohmann H (2014) Mechanism of West Nile virus neuroinvasion: a critical appraisal. Viruses 6:2796–2825
51. Kleinschmidt MC, Michaelis M, Ogbono H, Doerr HW, Cinatl J Jr (2007) Inhibition of apoptosis prevents West Nile virus induced cell death. BMC Microbiol 7:49
52. Samuel MA, Morrey JD, Diamond MS (2007) Caspase 3-dependent cell death of neurons contributes to the pathogenesis of West Nile virus encephalitis. J Virol 81:2614–2623
53. Easas J, Hughes CC (2004) Of mice and not men: differences between mouse and human immunology. J Immunol 172:2731–2738
54. Beekman L, Tohver T, Dardari R, Leguillette R (2011) Evaluation of suitable reference genes for gene expression studies in bronchoalveolar lavage cells from horses with inflammatory airway disease. BMC Mol Biol 12:5
55. Kwon S, Gewirtz AT, Hurley DJ, Robertson TP, Moore JN, Vandenplas ML (2011) Disparities in TLR5 expression and responsiveness to flagellin in equine neutrophils and mononuclear phagocytes. J Immunol 186:6263–6270