Polymorphic adaptations in metazoans to establish and maintain photosymbioses

Jenny Melo Clavijo¹, Alexander Donath¹, João Serôdio² and Gregor Christa¹,²*

¹ Center for Molecular Biodiversity Research (zmb), Zoological Research Museum Alexander Koenig, Adenauerallee 160, Bonn, 53113, Germany
² Department of Biology and Center for Environmental and Marine Studies, University of Aveiro, Campus Santiago, Aveiro, 3810-192, Portugal

ABSTRACT

Mutualistic symbioses are common throughout the animal kingdom. Rather unusual is a form of symbiosis, photosymbiosis, where animals are symbiotic with photoautotrophic organisms. Photosymbiosis is found among sponges, cnidarians, flatworms, molluscs, ascidians and even some amphibians. Generally the animal host harbours a phototrophic partner, usually a cyanobacteria or a unicellular alga. An exception to this rule is found in some sea slugs, which only retain the chloroplasts of the algal food source and maintain them photosynthetically active in their own cytosol – a phenomenon called ‘functional kleptoplasty’. Research has focused largely on the biodiversity of photosymbiotic species across a range of taxa. However, many questions with regard to the evolution of the ability to establish and maintain a photosymbiosis are still unanswered. To date, attempts to understand genome adaptations which could potentially lead to the evolution of photosymbioses have only been performed in cnidarians. This knowledge gap for other systems is mainly due to a lack of genetic information, both for non-symbiotic and symbiotic species. Considering non-photosymbiotic species is, however, important to understand the factors that make symbiotic species so unique. Herein we provide an overview of the diversity of photosymbioses across the animal kingdom and discuss potential scenarios for the evolution of this association in different lineages. We stress that the evolution of photosymbiosis is probably based on genome adaptations, which (i) lead to recognition of the symbiont to establish the symbiosis, and (ii) are needed to maintain the symbiosis. We hope to stimulate research involving sequencing the genomes of various key taxa to increase the genomic resources needed to understand the most fundamental question: how have animals evolved the ability to establish and maintain a photosymbiosis?

Key words: evolutionary genomics, biodiversity, photosynthesis, photosymbiosis, kleptoplasty.

CONTENTS

I. Introduction ... 2007
II. Biodiversity of photosymbiosis in animals ... 2008
 (1) Photosymbioses in Porifera ... 2008
 (2) Photosymbioses in Cnidaria ... 2008
 (3) Photosymbioses in basal bilaterians 2008
 (4) Photosymbioses in molluscs ... 2008
 (5) Photosymbioses in chordates 2010
 (6) Photosymbioses is also widely distributed in protists 2010
III. Evolution of photosymbioses in animals ... 2010
IV. Evolutionary genomics of photosymbioses ... 2012
 (1) Onset and maintenance of photosymbioses 2012
 (2) Maintenance of the symbiont includes phagosome arrest and ROS tolerance ... 2013
 (3) Most lineages lack genomic information 2013
 (4) Implications of the mode of symbiont transmission on the evolution of the host genome 2014
 (5) Additional genomes of non-model organisms are needed 2015

* Address for correspondence (Tel: +351 234 370 968; E-mail: gregor.christa@ua.pt)
Evolution of photosymbiosis

I. INTRODUCTION

In 1878, Heinrich Anton de Bary defined symbiosis as a long-term relationship between organisms from different species (de Bary, 1878). It is found among all domains of life and classified as either mutualistic (both partners benefit), commensalistic (just one partner benefits, but without harming the other), or parasitic (one partner is negatively affected by the other) (Decelle, Colin & Foster, 2015). A particular form of symbiosis is endosymbiosis, in which one symbiotic partner lives within the other (Sagan, 1967; Kutscher & Niklas, 2005). A special form of mutualistic symbiosis is photosymbiosis (Cowen, 1988). This term is used when a heterotrophic organism acquires the benefits of photosynthesis by establishing an extra- or intracellular mutualistic symbiosis with a phototrophic organism (Buchner, 1921; Yonge, 1934; Cowen, 1988). Perhaps surprisingly, photosymbioses in animals are widespread across multiple phyla including sponges, cnidarians, acoelomorphs, platyhelminths, molluscs, ascidians, and even some vertebrates (Yonge, 1934; Venn, Loram & Douglas, 2008; Rumpho, Summer & Manhart, 2000). The vast majority of photosymbiotic animals inhabit marine environments, with the notable exception of few freshwater species (see online Supporting Information, Table S1) (e.g. Jensen & Pedersen, 1994; Huss, 1999; McCoy & Balzer, 2001). Generally, the phototrophic symbionts are either oxygenic photosynthetic bacteria, cyanobacteria, or unicellular algae (Trench, 1987; Venn et al., 2008; Kirk & Weis, 2016). A functionally unique system of acquiring the benefits of photosynthesis in animals is found among members of sacoglossan sea slugs. These marine gastropods are able to ‘steal’ and retain only the chloroplasts of their food algae: these are referred to as kleptoplasts (‘stolen plastids’) (Rumpho et al., 2011). In some species, the kleptoplasts remain photosynthetically active even during times of starvation (Wägele et al., 2011; Rumpho et al., 2011; Christa et al., 2015). This is referred to as functional kleptoplasy (Waugh & Clark, 1986), for which the term photosymbiosis is not entirely accurate, because the endosymbiosis only involves a non-reproducing organelle. However, the kleptoplasts may (perhaps transiently) benefit from their intracellular presence in the animal host due to enriched availability of carbon dioxide (Serôdio et al., 2014). In metazoans, functional kleptoplasy is taxonomically restricted to Sacoglossa, but it is also found in some protists, including Ciliates and Foraminifera (Pilet, de Vargas & Pawlowski, 2011; Pillet & Pawlowski, 2012; Not et al., 2016).

The mechanisms involved in the recognition and incorporation of a symbiont by the animal host are now under intensive investigation. The symbionts are either taken up from the environment (horizontal transmission) or they are passed from parent to offspring (vertical transmission) during reproduction (Muller-Parker, D’elia & Cook, 2015). Inside the animal host, the symbionts may enter a ‘vegetative cyst’ phase where the cell cycle is arrested and the symbionts are potentially under host control. For example, the dinoflagellate Symbiodinium is only found in non-motile forms inside hosts (Koike et al., 2004; Stambler, 2011) in which they are surrounded by a membrane, called a symbysome in corals (Stambler, 2011) or perialgal vacuole in Hydra (McNeil, 1981). These symbiont compartments are important to guarantee the regulation of molecular exchanges and of the symbiotic environment (Blackall, Wilson & Oppen, 2015). Whether kleptoplasts reside in such a membrane is still under debate (Rumpho, Summer & Manhart, 2000; Muniaín, Marin & Penchasazadeh, 2001; Hirose, 2005; Martin, Walther & Tomashko, 2013, 2015). The host shelters the symbiont or the kleptoplasts against predators and environmental fluctuations, and supplies sufficient inorganic compounds, such as CO₂, for photosynthesis (Pearse & Muscatine, 1971; Stat, Carter & Hoegh-Guldberg, 2006; Yellowlees, Rees & Leggat, 2008), although CO₂ limitation in the host can occur (Radecker et al., 2017). In turn, the host receives photosynthates, mainly in the form of fixed carbon, which can meet at least 50% of their overall nutritional requirements (Fitt, Fisher & Trench, 1986; Klump & Griffiths, 1994; Stat et al., 2006; Hernawan, 2008; Stanley & Lipps, 2011). In comparison, kleptoplasts are probably only able to supply their host slugs with between 1% (Rauch et al., 2017) and 60% (Raven et al., 2001) of their nutritional requirements. The discrepancy between the latter two values presumably arises from methodological differences, emphasising the need for further studies to unravel the true extent of nutritional support provided by kleptoplasts.

Extensive studies have been carried out on the biodiversity and physiology of symbionts and their hosts. However, the evolution of photosymbiosis is comparatively less well understood. Recent advances in next-generation-sequencing techniques now allow us to analyse these symbionts and hosts from an evolutionary genomics perspective. While many recent studies have focused on the transcriptomic and genomic properties of the symbiont, only a few have begun to examine the host. Comparative analyses involving multiple photosymbiotic and non-photosymbiotic animal lineages are important to answer the most fundamental question: what genomic adaptations have enabled the evolution of photosymbiosis in animals?
II. BIODIVERSITY OF PHOTOSYMBIOSIS IN ANIMALS

(1) Photosymbioses in Porifera

The photosymbiotic relationship of marine sponges is regarded as a driving force for the establishment of reefs over a wide geological timescale (Lipps & Stanley, 2016a). Sponges are probably the most diverse group in terms of number of photosymbiotic species and the variety of symbionts (Fig. 1). For example, in some temperate and tropical regions more than 60% of sponge species were found to harbour photosymbionts from multiple different lineages (Steindler, Beer & I’lan, 2002; Lemloh et al., 2009). Photosymbiosis is found in four Porifera classes: Demospongiae, Hexactinellida, Homoscleromorpha, and Calcarea (Diaz & Ward, 1999; Diaz et al., 2007; Fromont et al., 2016). While most species generally establish photosymbiosis with cyanobacteria (Fig. 1; Usher, 2008; Adams, Duggan & Jackson, 2012; Thacker & Freeman, 2012), demospongan sponges might also harbour green non-sulfur bacteria of the genus Chloroflexi (Rodríguez et al., 2011; Webster & Taylor, 2012), members of the Clionaidae are symbiotic with the dinoflagellate Symsagittifera roscoffensis (Kovacevic, 2012) or dinoflagellates (Muller-Parker, 1990; Carey et al., 2011). This uncertainty arises because of issues with culturing and the lack of proper morphological identification of the algae. The convolutids and other members are photosymbiotic with as yet undescribed algae (Ax, 1970). Shannon & Achatz, 2007). This uncertainty arises because of issues with culturing and the lack of proper morphological identification of the algae. The convolutids Symagnostifera roscoffensis and Convolutriloba longissima harbour the chlorophyte Tetraselmis convolutae (Bartolomaeus, 1997; Seródio et al., 2011), while Amphicolasopsis sp., A. langerhansi, Waminoa litus, and W. brickneri can harbour the dinoflagellates Symbiodinium and/or Amphidinium kelyhii (Taylor, 1971; Lopes & Silveira, 1994; Barneah et al., 2007; Hikosaka-Katayama et al., 2012). Convoluta convoluta harbours the diatom Licomorpha sp. (Fig. 1; Ax & Apelt, 1963; Apelt, 1969).

Photosymbiosis is also found in freshwater platyhelminths belonging to the Rhabdocoela, but this is probably the least-understood system. Here, particular members of the Provorticidae, Dalyeliidae, and Typhloplanidae are symbiotic. Members of the genus Pogaina of the Provorticidae, e.g. Pogaina kinnei, feed on diatoms and presumably retain them as symbionts (Ax, 1970). Dalyelidia viridis (Dalyelidiidae), Tylophlana viridata and Phaeocora typhlops (both Typhloplanidae) live symbiotically with the chlorophyte Chlorella sp. (Eaton & Young, 1975; Douglas, 1987). Various other members are photosymbiotic with as yet undescribed algae (Ax, 1970; Armonies, 1989; McCoy & Balzer, 2001).

(2) Photosymbioses in Cnidaria

Together with sponges, corals are the main contributors in establishing reefs (Stanley & Lipps, 2011; Lipps & Stanley, 2016b) and the diversity of species that harbour photosymbionts is comparable between these two taxa. Yet, cnidarians are either photosymbiotic with chlorophytes (Kovacevic, 2012) or dinoflagellates (Muller-Parker et al., 2015); in rare cases even with both (Fig. 1; Verde & McCloskey, 1996). Their photosymbiosis with Symbiodinium is thought to underlie the ability of corals to form massive reefs: more than 95% of the energy required is provided by the symbiont’s photosynthetic activity (Muscatine, Pool & Trench, 1975; Stat et al., 2006; Hariri, Yamamoto & Hoehl-Guldberg, 2010; Stanley & Lipps, 2011). This energetic boost provides the needed energy for light-enhanced calcification (Goreau, 1959; Muscatine et al., 1975; Roth, 2014). In particular tropical and temperate members of Anthozoa, Hexacorallia and Octocorallia harbour photosymbionts, while the sister group to Hexacorallia, the Ceriantharia, are photosymbiont-free (Rodriguez et al., 2014; Stampar, Morandini & Da Silveira, 2014). Sister to Anthozoa is the clade Medusozoa which includes Hydrozoa, Scyphozoa, Staurozoa and Cubozoa. While the latter two taxa are not reported to be symbiotic, some members of the Scyphozoa, the upside-down jellyfish of the genus Cassiopea, harbour Symbiodinium (Thornhill et al., 2006; Lampert, 2016). In Hydrozoa, the situation is more complex: the H. viridissima group (also referred to as green Hydra), the H. vulgaris group and the H. oligactis group are symbiotic with chlorophyte algae of the genus Chlorella or Chlorococcum (Matthias, Frederike & Thomas, 2003; Bosch, 2012; Kawaida et al., 2013), but only in H. viridissima is the symbiosis stable (Kawaida et al., 2013; Ishikawa et al., 2015). The H. braueri group, however, is completely symbiont-free (Kovacevic, 2012).

(3) Photosymbioses in basal bilaterians

Acoelomorphs are particularly abundant in marine and brackish water habitats but are rather poorly investigated with regard to photosymbiosis (McCoy & Balzer, 2001). All photosymbiotic members belong to the Convolutidae of the ‘Acoelomorpha’ (Paps, Baguñà & Riutort, 2009). The ‘Acoelomorpha’ were previously assigned to Platychelminthes but recent phylogenetic studies indicate a paraphyletic nature, and place the Acoela as the sister group to all bilaterians (Hejnol et al., 2009; Mwinyi et al., 2010; Philippe et al., 2011). The nature of the symbionts of Acoela is poorly understood. In some taxonomic reports the symbiont is simply described as zoochlorella or zooxanthellla (Fig. 1; Ax, 1970; Shannon & Achatz, 2007). This uncertainty arises because of issues with culturing and the lack of proper morphological identification of the algae. The convolutid Symagnostifera roscoffensis and Convolutriloba longissima harbour the chlorophyte Tetraselmis convolutae (Bartolomaeus, 1997; Seródio et al., 2011), while Amphicolasopsis sp., A. langerhansi, Waminoa litus, and W. brickneri can harbour the dinoflagellates Symbiodinium and/or Amphidinium kelyhii (Taylor, 1971; Lopes & Silveira, 1994; Barneah et al., 2007; Hikosaka-Katayama et al., 2012). Convoluta convoluta harbours the diatom Licomorpha sp. (Fig. 1; Ax & Apelt, 1963; Apelt, 1969).

Photosymbiosis is also found in freshwater platyhelminths belonging to the Rhabdocoela, but this is probably the least-understood system. Here, particular members of the Provorticidae, Dalyeliidae, and Typhloplanidae are symbiotic. Members of the genus Pogaina of the Provorticidae, e.g. Pogaina kinnei, feed on diatoms and presumably retain them as symbionts (Ax, 1970). Dalyelidia viridis (Dalyelliidae), Tylophlana viridata and Phaeocora typhlops (both Typhloplanidae) live symbiotically with the chlorophyte Chlorella sp. (Eaton & Young, 1975; Douglas, 1987). Various other members are photosymbiotic with as yet undescribed algae (Ax, 1970; Armonies, 1989; McCoy & Balzer, 2001).

(4) Photosymbioses in molluscs

In Mollusca, photosymbiosis is taxonomically restricted to some bivalves and gastropods. Tropical marine bivalves from the family Cardiidae host the dinoflagellate Symbiodinium (Ohno, Katoh & Yamasu, 1995; Maruyama et al., 1998; Hernawan, 2008). This bivalve family encompasses large
Evolution of photosymbiosis

Fig. 1. Sankey diagram of animal taxa that are photosymbiotic and their respective symbiotic partner. Most animal lineages establish a symbiosis with dinoflagellates or with chlorophytes, but may also with cyanobacteria or even, in rare cases, diatoms. Diatoms are, however, reported to be parasitic in arctic sponges. Some members of Porifera might also be symbiotic with green-sulfur bacteria or red algae, but as this is only known from a few taxa, they are not included in the figure. Some members of the sacoglossan sea slugs only incorporate chloroplasts, which are then referred to as kleptoplasts.

species that can reach up to 1 m in diameter, like Tridacna, and are occasionally referred to as giant clams (Vermeij, 2013). Their exceptionally large sizes are thought to result from the establishment of symbioses (Griffiths & Klumpp, 1996) often with several clades of Symbiodinium (Bailleul, Belela-Baillie & Maruyama, 2000; DeBoer et al., 2012; Ikeda et al., 2017). The major characteristic of cardiids is an enlarged and colourful mantle, in which Symbiodinium is hosted in extracellular spaces (Hernawan, 2008). This is different from other photosymbiotic systems, in which the symbiont resides intracellularly (Wakefield & Kempf, 2001). Besides Tridacincae (Hirose, 2005), photosymbiosis in the Cardiidae is also found in members of the Fraginaceae (Farmer, Fitt & Trench, 2001), but is lacking in the Laevicardiidae and Trachycardiidae (Maruyama et al., 1998). The only known photosymbiotic freshwater bivalve belongs to the genus Anodonta and hosts the chlorophyte Chlorella (Goetsch & Scheuring, 1926; Pardy, 1980). In contrast to the photosymbiotic Cardiidae, the symbionts in Anodonta reside in the gills and mantle (Pardy, 1980).

In gastropods photosymbiosis is found in various genera. The ceanogastropod Strombus gigas hosts Symbiodinium (Banaszak, Ramos & Goulet, 2013). The snails acquire the symbiont during the larval stage (Garcia-Ramos & Banaszak, 2007) and the symbiosis only appears to be mutualistic at this stage. In adults it takes a parasitic form: the snails provide nutrition to their symbiont because the presence of a shell reduces the possibility of photosynthesis (Banaszak et al., 2013). This is the only known member of the Caenogastropoda reported to be photosymbiotic (Garcia-Ramos & Banaszak, 2007).

Among heterobranch sea slugs (Gastropoda) two very different systems of photosynthetic symbiosis have been described. (i) Some members of the Nudibranchia acquire symbionts by feeding on photosymbiotic cnidarians and subsequently embed the symbiotic algae (Symbiodinium) in their own cytosol (Burghardt et al., 2005; Burghardt, Stemmer & Wägele, 2008). Several different taxa are able to carry Symbiodinium: Melibe engeli (Dendronotida) harbours a dinoflagellate acquired from an unknown source (Burghardt et al., 2008); members of the Aeolidiida, e.g., Berghia stephanoeae and Sparilla neapolitana, ingest Symbiodinium after feeding on Anthozoa (Carroll & Kempf, 1990; Schlesinger et al., 2009; Dionísio et al., 2013); and the fricellinididean Phylloidesmium briaeum obtains its symbionts from feeding on the soft coral Briareum violaceum (Burghardt et al., 2008). (ii) Members of the Sacoglossa remove the cell contents of their macroalgal food and specifically sequester the chloroplasts, which are then
called kleptoplasts (Fig. 1), in cells of their digestive system (Händeler et al., 2009). However, the basal-branching shelled Ossyoacea, e.g. Cylindrobulla schatti or Oxynoe antillarum, and most Limapontioidea (e.g. Placida dendritica), are not able to ingest the kleptoplasts in a functional state and instead digest them rather quickly (Christa et al., 2015). By contrast, some members of the Costasiellidae, such as Costasussia ocellifera or C. karoshiinae and most Plakobranchaceae, e.g. Elysia timida or Plakobranchus ocellatus, are able to retain photosynthetic activity in the kleptoplasts, even during starvation (Christa et al., 2014, 2015; de Vries, Christa & Gould, 2014; Wagele & Martin, 2014).

(5) Photosymbioses in chordates

A few chordates are known to be able to establish photosymbiosis. Knowledge about the diversity and physiology of this phenomenon is, however, scarce. A lifelong and obligate relationship in chordates is found only in the tropical colonial ascidians from the family Didemnidae. These ascidians are mainly associated extracellularly with cyanobacteria from the genus Prochloron (Hirose et al., 2018). These symbiotic associations are generally considered to be primary producers of open ocean planktonic communities (Decelle et al., 2015). Photosymbiotic foraminiferans play a major ecological role contributing to the global carbon cycle and to 25% of carbonate calcium deposits (Langer, Silk & Lipps, 1997; Erez, 2003; Lipps & Stanley, 2016). Foraminifera acquire their symbionts either vertically or horizontally (Fay, Weber & Lipps, 2009). They associate with a variety of symbionts including dinoflagellates, diatoms, rhodophytes, chlorophytes and cyanophytes (Hansen & Buchardt, 1977; Hansen & Dalberg, 1979; Smith, 1991; Lee, 2006; Lipps & Stanley, 2016), a range that covers all known symbionts from animal lineages. Of the 150 foraminiferan families, 10% are hosts of algal symbionts (Lee & Anderson, 1991). Benthic foraminiferans either establish symbioses with Symbiodinium (Schmidt, Kucera & Uthicke, 2014) or, as in Sacoglossa, retain only the chloroplasts from their algal prey (Bernhard & Bowser, 1999; Pillet et al., 2011; Pillet & Pawlowski, 2012). Planktonic foraminiferans, however, mainly associate with the dinoflagellate Pelagodinium, a sister taxon of Symbiodinium (Decelle et al., 2015). The symbiotic relationship between photosynthetic partners and Foraminifera is sensitive to environmental stressors that can cause a massive release of symbionts known as bleaching (Hallock, Forward & Hansen, 1986; Hallock et al., 2003, 2006). In this sense, Foraminifera have been used as indicators of water quality and temperature of the reef ecosystem (Reymond, Uthicke & Pandolfi, 2012).

III. EVOLUTION OF PHOTOSYMBIOSES IN ANIMALS

Although there are many records showing the biodiversity of photosymbioses in animals, we lack information on the evolution of these symbioses across most lineages. Figure 2 provides a brief overview of the phylogenetic relationships among non-photosymbiotic or photosymbiotic taxa. Given the tremendous diversity of photosymbiotic species, this figure contains only hypothetical origins or losses of photosymbiosis in the respective clades.

Sponges are probably the sister taxon to all other metazoans (Philippe et al., 2009; Jékely, Paps & Nielsen, 2015; Pisani et al., 2015; Whelan, Kocot & Halanych, 2015). Surprisingly, no studies of the great diversity of photosymbiosis in sponges have been carried out. On the basis of current evolutionary hypotheses (Worheide et al., 2012; Simion et al., 2017) and the fact that photosymbiotic species exist in all sponge classes, it is possible that the ability to incorporate symbionts either evolved in the last common ancestor (LCA) of all sponges with subsequent multiple losses in different lineages or that several independent acquisitions occurred (Fig. 2).

In cnidarians, several analyses on single taxa have been performed to clarify the evolution of photosymbiosis (Kawaiida et al., 2013; Schwentner & Bosch, 2015; Ishikawa et al., 2016). Phylogenetic analyses in Hydra (Kawaiida et al., 2013; Schwentner & Bosch, 2015) suggest the evolution of
Evolution of photosymbiosis

Fig. 2. Legend on next page.
non-stable symbiosis in the LCA of the *Hydra* group, while stable symbiosis originated in the LCA of the *H. viridissima* group (Fig. 2). Under this scenario, non-stable symbiosis has been secondarily lost in the LCA of the *H. baueri* group (Fig. 2). Thus, symbiosis in *Hydra* was established first followed later by mechanisms allowing a long and stable symbiosis (e.g. oxidative stress tolerance) (Ishikawa et al., 2016). Among cnidarians four distinct taxa evolved photosymbiosis, i.e. Hexacorallia, Octocorallia, Scyphozoa, and Hydrozoa (Fig. 2; Kayal et al., 2013; Stampar et al., 2014; Zapata et al., 2015). Yet, whether this reflects independent acquisitions of symbiotic taxa or multiple losses is unclear (Fig. 2).

Phylogenetic analyses in Acoela are mainly focused on their taxonomic position within bilaterians (Paps et al., 2009) or on the evolution of selected morphological characters (Jondelius et al., 2011). Based on published, unresolved phylogenies, photosymbiosis evolved in the LCA of the Convolutidae clade of the Acoela (Fig. 2; Jondelius et al., 2011).

The phylogeny of Platyhelminthes is also under intense investigation. The photosymbiotic *Dalyellia viridis* and *Typhloplana viridata* are distantly related to photosymbiotic members of the Provoirticidae, such as *Pogaina kinnei* (Fig. 2; Jondelius & Thollesson, 1993; Littlewood et al., 1999; Zamparo et al., 2001; Van Steenkiste et al., 2013). Thus, photosymbioses may have evolved at least twice independently in the platyhelmithes (Fig. 2), or was lost in the Dugesidae, such as *Schmidtia mediterranea* (Fig. 2).

Recent phylogenetic analyses in molluscs (Giribet & Wheeler, 2002) suggest that photosymbioses evolved at least twice in bivalves, once in *Anodonta* sp. (Pardy, 1980) and once in the Cardiidae. For the latter, two scenarios for the evolution of photosymbioses are feasible, based on their phylogenetic position (Maruyama et al., 1998): either photosymbiosis evolved in the LCA of Cardiidae and was subsequently lost in the sister taxa Laevicardiinae (e.g. *Fulvia*) and Trachycardiinae (e.g. *Vasicardium*) (Fig. 2) or two independent acquisitions occurred, once in the LCA of Fraginiae (e.g. *Coreium*) (Kirkendale, 2009) and once in the LCA of Trochidinae (e.g. *Fragum*) (Fig. 2; Maruyama et al., 1998).

In Nudibranchs, photosymbioses evolved at least twice, once in the LCA of *Melibe* and once in Aeolidida (Fig. 2). In Aeolidida several gains or losses of photosymbioses are conceivable, as most genera include photosymbiotic and non-photosymbiotic members (Fig. 2). No analyses have yet been conducted with regard to the most likely evolutionary scenarios and the phylogenetic reconstructions in this group are still ongoing. In sacoglossans, functional kleptoplasty was acquired at least twice, once in the LCA of Costasiellidae and once in the LCA of the Plakobranchacea (Fig. 2; Christa et al., 2015).

There is little information on the evolution of photosymbioses in chordates. In Ascidia, more than 30 species from four genera of the Didemnidae are photosymbiotic, but their congeners are mostly non-symbiotic (Fig. 2). This suggests multiple origins of this symbiosis (at least once in each genus) in the ascidians (Fig. 2; Yokobori et al., 2006), but further work is needed. In amphibians, the photosymbiotic salamanders of the genus *Ambystoma* and *Hynobius* and frogs of the genus *Lithobates* are only distantly related. Thus, again photosymbiosis is likely to have evolved several times independently (Fig. 2).

IV. EVOLUTIONARY GENOMICS OF PHOTOSYMBIOSES

In addition to the uncertainties in scenarios of how photosymbioses evolved, the underlying molecular mechanisms needed to establish and maintain photosymbioses also remain largely unknown.

(1) **Onset and maintenance of photosymbioses**

In corals, detailed work unravelling the genomic adaptations that enable photosymbiosis has increased our understanding of the onset and maintenance of this symbiosis significantly (Baumgarten et al., 2015; Neubauer et al., 2016, 2017; van der Burg et al., 2016). Discrimination by the coral host among symbionts, pathogens, and food particles is key to symbiosis establishment and depends most likely on features of the host innate immune system (Davy, Allemand & Weis, 2012). It involves the recognition of specific microbial-associated molecular patterns (MAMPs) of the symbiont or pathogen by pattern-recognition receptors (PRRs) (Davy et al., 2012). In symbiotic cnidarians a set of PRRs has been identified.

Fig. 2. Metazoan lineages in which photosymbioses occurs. Several animal lineages from different habitats (column 1: marine, cyan circles; freshwater, blue circles; terrestrial, green circles) have a symbiotic relationship with a phototrophic partner. For almost all metazoan lineages, evolutionary scenarios of how photosymbioses evolved are not available. For Sacoglossa, two studies investigated the most likely evolution of functional kleptoplasty (blue circles in the tree). Based on studies on photosymbiotic and non-photosymbiotic taxa (column 2: green and white circles, respectively), different hypothesis of evolving (red circles in the tree) or losing (white circles in the tree) photosymbioses are feasible. Unfortunately, for the vast majority of taxa neither genome (column 3) nor transcriptome (column 4) data exist (black circles, present; white circles, absent). Tree assembled from published studies (Maruyama et al., 1998; Zamparo et al., 2001; Yokobori et al., 2006; Kirkendale, 2009; Jondelius et al., 2011; Pyron & Wiens, 2011; Wörheide et al., 2012; Carmona et al., 2013; Kawaïda et al., 2013; Kayal et al., 2013; Van Steenkiste et al., 2013; Rodríguez et al., 2014; Christa et al., 2015; Schwemmer & Bosch, 2015; Zapata et al., 2015). Photograph credits: Heike Wägelle (*Didemnum, Costasiella, Phyllodesmium, Tridacna, Briareum, Halicona*), João Serôdio (*Symosugilifera* and Jenny Melo (*Ambystoma*).
that is absent in non-symbiotic species: a repertoire of thrombospondin-type-1 repeat protein (TSR) (Neubauer et al., 2017) and a set of expanded scavenger receptors (SRs), including a unique c-type lectin domain (LOX1), several scavenger receptor cystein-rich (SRCR) receptors, and a specific set of Class B scavenger receptors (CD36) (Neubauer et al., 2016). Experimental studies on SRs and TSRS support their role in symbiont recognition (Rodriguez-Lanetty, Phillips & Weis, 2006; Lehnert et al., 2014; Neubauer et al., 2016, 2017). Additionally, cnidian ficolin-like (CniFL) proteins are found in symbiotic and non-symbiotic cnidarians, but their role in symbiont recognition is still debated (Baumgarten et al., 2015; van der Burg et al., 2016). Recently, a study in a functional kleptoplast bearing sea slug showed that similar factors as in corals might be involved in plastid recognition (Chan et al., 2018).

(2) Maintenance of the symbiont includes phagosome arrest and ROS tolerance

Stable and long-lasting photosymbiosis is thought to be dependent on cellular response mechanisms coping with elevated levels of reactive oxygen species (ROS) (Kawano et al., 2004; Johnson, 2011; Ishikawa et al., 2016). In Hydra vulgaris and H. viridissima, the host first establishes the photosymbiosis and later develops tolerance to oxidative stress. Gene expression studies showed that H. vulgaris is less tolerant to ROS in an aposymbiotic state than in symbioses (Ishikawa et al., 2016). Under stress conditions, such as excessive light or high temperature, corals suffer from ROS stress generated by their symbionts (although the host itself is also stressed by high temperature). The symbiosis is then disrupted and the symbionts are expelled by various cellular mechanisms (Weis, 2008). In Sacoglossa, ROS tolerance was recently hypothesized to play a role in enduring long periods of starvation (de Vries et al., 2015). Although not studied in detail, it seems that coping with elevated ROS levels, potentially produced by the symbiont, is a common mechanism in different animal lineages to maintain the symbiosis. Besides ROS tolerance, stopping or delaying digestion allows stable integration and maintenance of the symbioses (Rodriguez-Lanetty et al., 2006; Dunn, Schnitzler & Weis, 2007; Voolstra et al., 2009). The mechanism behind such digestion control is unknown. For corals, the ‘arrested phagosome’ hypothesis attempts to provide one explanation (Hill & Hill, 2012), although experimental verification and analyses of genomic regulation that would enable this are still missing. This is of particular interest as selective forces could act on genomic adaptations to allow the evolution of photosymbiosis. For instance, nutritional support provided by the symbiont might lead to (i) better survival in oligotrophic waters, (ii) reduced predation through an associated increase in body size, or (iii) the ability to endure periods of starvation (especially in gastropods). Such ecological benefits could also explain why photosymbiosis apparently evolved multiple times independently within various taxa. However, nutritional support may not be the only factor. Often non-photosymbiotic species are sympatric within the same habitat and in the case of gastropods, non-photosymbiotic species often have the same survival during periods of starvation as photosymbiotic species. It remains important to identify potential evolutionary forces leading to genome adaptations to identify the relevant genome adaptions.

(3) Most lineages lack genomic information

Unfortunately, analyses focusing on genomic adaptations that allow the establishment and maintenance of photosymbiosis in most symbiotic species other than corals are absent. This is partly due to the lack of available genome sequences, especially of photosymbiotic species.

In sponges, analyses of genomic and transcriptomic data have focused on carbon and nitrogen metabolism, vitamin biosynthesis, and proteins that act as symbiont factors (Hentschel et al., 2012). However, data for candidate sponge species to understand the evolutionary genomics involved in photosymbioses are still lacking (Pita, Fraune & Hentschel, 2016).

The genomes of the anthozoans Acropora digitifera, Aiptasia pallida and Nematostella vectensis, several transcriptomes of other anthozoan species, the genome of the hydrozoan Hydra vulgaris (Chapman et al., 2010) and the transcriptome of H. viridissima (Ishikawa et al., 2016) have been published (see online Supporting Information, Table S1). The Hydra genome is highly complex and exhibits dramatic changes in genome size. The smallest genome is estimated for H. viridissima (380 Mbp) based on microphotometry of Feulgen-stained nuclei of epithelial and interstitial cells (Zacharias et al., 2004; Chapman et al., 2010; Bosch, 2012). According to Bosch (2012) this small genome size could be related to the small cell size of H. viridissima and contributions of the symbiont to the host’s metabolism. Likewise, the highly reduced genome of streptosiberian insects is hypothesized to be a result of their parasitic lifestyle (Niehuis et al., 2012). Because stable symbioses only evolved in the H. viridissima group, comparative analyses of genomes of the other three Hydra groups could shed light on adaptations needed to maintain photosymbiosis.

Unfortunately, no genomic or transcriptomic data are accessible for any photosymbiotic member of the Acoela or Platyhelminthes (Fig 2). Only the genome of the free-living freshwater planarian Schmidtea mediterranea has been sequenced to date, a non-photosymbiotic species frequently used in regeneration, tissue homeostasis, and stem-cell research (Robb et al., 2015).

Few studies using genomic resources have been performed among molluscs. Among bivalves only the genome of the pacific oyster Crassostrea gigas has been sequenced (Zhang et al., 2012). For the photosymbiotic Tridacna maxima, Mies et al. (2017b) showed that four specific genes are expressed during the onset of the symbiosis: a clam-specific actin, a symbiont-specific Ribulose-1,5-bisphosphate-carboxylase/-oxygenase (RuBisCO) gene, a symbiosis-specific H+ -ATPase gene and an aldo-keto oxidoreductase gene. The H+ -ATPase gene is considered
a symbiosis indicator, since it is expressed in symbiotic cells of *Symbiodinium* and not in free-living or aposymbiotic cells (Bertucci et al., 2009). By contrast, *Symbiodinium* expresses aldo-keto oxidoreductase only in the presence of light, both in free-living and in symbiotic forms (Mies et al., 2017b). This protein is necessary for glycerol synthesis (Jez et al., 1997), which might be continuously translocated to *Tridacna* (Mies et al., 2017b). Yet, no genomic sequences of these bivalve hosts are available to facilitate the search for further genetic factors that might underpin the establishment or maintenance of symbiosis.

In sea slugs, only the draft genome of *Aplysia californica* is currently available (https://www.broadinstitute.org/ alysia/alysisa-genome-project, last updated in 2013). For the kleptoplastic sacoglossan *Elysia chlorotica* a non-assembled short-read draft genome exists (Bhattacharya et al., 2013). Transcriptomic data sets have been generated for 13 nudibranch species (Goodheart et al., 2015) and five sacoglossans (Schwartz, Curtis & Pierce, 2010; Wägele et al., 2010; Han et al., 2013; de Vries et al., 2015): in Nudibranchia only one out of the 13 sequenced species is symbiotic, in Sacoglossa four. In Sacoglossa one study compared the transcriptomic response of two species that differed in longevity of plastid retention (de Vries et al., 2015). Yet, we still do not understand what sets functional kleptoplasty species apart from non-kleptoplastic sister taxa.

Among Ascidia the genome of the carpet sea squirt, *Didemnum vexillum* (Didemnidae), has been sequenced (Velanda-Huerto et al., 2016). This non-symbiotic species (Lin et al., 2016) is currently considered a highly successful invasive taxon (Bullard et al., 2007; Lengyel, Collie & Valentine, 2009; Locke & Carman, 2009; Stefaniak et al., 2012). In addition, the genomes of seven non-photosymbiotic species, i.e. *Ciona intestinalis* (Dehal et al., 2002), *Ciona savignyi* (Small et al., 2007), *Botryllus schlosseri* (Voskoboynik et al., 2013), *Oikopleura dioica* (Seo et al., 2001), and three species of *Molgula* (Stolfi et al., 2014), have been sequenced (see online Supporting Information, Table S1). No genetic and transcriptomic data regarding the unique association between didemnidaen ascidians and *Prochloron* are available.

No studies have reported genomic information from amphibian–algae symbioses. The closest species to photosymbiotic salamanders with a sequenced genome and available transcriptome is the non-symbiotic Mexican axolotl *Ambystoma mexicanum*, well known for its ability to regenerate amputated limbs and for its neotenic form with external gills and caudal fin (Wu et al., 2013; Keinath et al., 2015). Recently, thorough comparative transcriptomic analysis of the expression of cells of photosymbiotic *Ambystoma maculatum* bearing *Ophilia* algae, algae-free cells, and eggs with extracellular algae have been performed (Burns et al., 2017). Interestingly, algae in host cells show stress responses and a shift in energy acquisition compared to algae inside the egg capsule. Under low light conditions and low oxygen levels, intracellular algae obtain phosphates and glutamine from their host, but rely on fermentation instead of photosynthesis (Burns et al., 2017). Salamander cells with intracellular algae show inhibition of immune responses to tolerate the symbiont (Burns et al., 2017). To what degree this process might also occur in other photosymbiotic clades is not known.

(4) Implications of the mode of symbiont transmission on the evolution of the host genome

In order to understand the genome adaptations that are needed to evolve photosymbiosis, the mode of symbiont transmission should also be considered. Acquiring symbionts horizontally always includes an aposymbiotic life stage present in all photosymbiotic animal lineages, which is usually the larval phase before metamorphosis into juveniles (e.g. Belda-Baillie et al., 1999; Weis et al., 2001; Harrison, 2011; Pelletreau et al., 2014; Mies et al., 2017a). Juveniles then successfully take up the symbiont from their environment, but there seems to be little co-evolution of species with horizontal transmission and their symbiont partners (van Oppen et al., 2001; Bright & Bulgheresi, 2010). The identification of symbionts in adult stages may mask potentially non-specific symbiont uptake during the juvenile stages. For example, in corals it has been shown that juveniles have a rather unspecific symbiont uptake and symbiont selection is based on intracellular sorting and adaptive bleaching (Buddemeier & Fautin, 1993) in adults (Little, van Oppen & Willis, 2004). This might also apply to Foraminifera (Fay et al., 2009). On what this sorting is based, i.e. if certain genome adaptations are needed or there is interspecific competition among symbionts or selection based on ecological factors, is unknown. Alternatively, the whole community of algal symbionts can be altered during re-colonization following a bleaching event [Jones et al., 2008]. Thus, analyses of symbionts only at a distinct adult stage will provide only restricted information about the potential diversity of the recognition mechanisms involved. Nevertheless, it seems reasonable to assume that acquiring a broad diversity of symbionts via horizontal transmission could represent a high level of diversity in symbiont-recognition mechanisms. In this scenario, species that are only able to incorporate symbionts from a distinct lineage may have a reduced set of recognition mechanisms.

Vertical transmission is found among sponges (Usher et al., 2001; Oren, Steindler & Ilan, 2005), corals (Baird, Guest & Willis, 2009; Padilla-Gamin˜no et al., 2012), acelomorphs (Barneah et al., 2007; Hikosaka-Katayama et al., 2012) and ascidians (Hirose, Oka & Akahori, 2004). For this mode of transmission the symbionts need to be translocated into the reproductive system, requiring a rather complicated mechanism in ascidia, for example (Hirose, 2000). In contrast to horizontal transmission, vertical transmission might well lead to genomic adaptations and co-evolution of symbionts and hosts is likely (Barneah et al., 2004). Further, because the symbionts are not necessarily acquired from the water column, genomic adaptations for symbiont recognition could be lost during evolution. As a result, the plasticity of the recognition system might become reduced. This could provide an explanation of higher specificity of endosymbiotic algae in corals with vertical transmission.
(Stat et al., 2008). Vertical transmission might also favour the successful colonization of environments in which the horizontally transmitted symbiont is not found (Oren et al., 2005). In species with both modes of transmission (Bright & Bulgheresi, 2010) genomic adaptation might even be more complex.

(5) Additional genomes of non-model organisms are needed

Analyses of already sequenced transcriptomes and genomes of various photosymbiotic and non-photosymbiotic taxa will certainly help to understand the genomic adaptations needed to establish and maintain photosymbiosis. Broad taxon sampling will uncover whether these mechanisms are evolutionarily ancient or whether they are the result of convergence. In this regard it will be of particular interest to investigate Foraminifera, because they share many features of photosymbiosis with animals. To obtain the necessary information more genome data sets are needed and are preferred over transcriptomic data sets. The absence of a transcript in a sequenced transcriptome does not translate into the absence of the gene or gene product and is thus only of limited use. Nevertheless, initial studies relying on a mixture of transcriptomic and genomic resources are a first step towards understanding the adaptations necessary to evolve photosymbiosis in animals. In the near future, techniques such as single-cell RNA sequencing (scRNA-seq) and long-read sequencing, will allow more accurate determination of the transcriptional state of an organism and the identification of stage- and tissue-specific expressed and alternatively spliced genes (Shapiro, Biezuner & Linnarsson, 2013; Kolodziejczyk et al., 2015; Garalde et al., 2018).

V. CONCLUSIONS

(1) The phenomenon of photosymbiosis in the animal kingdom is remarkably widespread. Many studies have increased our understanding of the biodiversity of the animal hosts and algal symbionts. However, in most lineages the evolution of photosymbiosis is still poorly known, especially with regard to selective forces leading to genome adaptations that enable the evolution of symbiont recognition and stable integration.

(2) Studies in corals should inspire future analyses: specific receptors of the host innate immune system have evolved in symbiotic corals that are most likely involved in the recognition of Symbiodinium. Similar analyses for other photosymbiotic animals are absent but will be fundamental to advancing our understanding of how photosymbioses evolved, whether there are common genomic adaptations in different lineages, and how the mode of transmission might influence the genome evolution.

(3) Such analyses will help to understand why some species harbour multiple symbionts of different lineages, while others are restricted to single species.

(4) Comparative analyses of photosymbiotic and non-photosymbiotic species are key to understanding what makes photosymbiotic species so special.

VI. ACKNOWLEDGEMENTS

The authors would like to thank Heike Wägele and Matthew Nitschke for critically assessing the manuscript and for providing photographs. Funding through the Fundação para a Ciência e a Tecnologia (FCT) to G.C. (SFRH/BPD/108992/2015), the Alexander-Koenig-Gesellschaft (AKG) to G.C., and the German Research Foundation (DFG) to A.D. (DO 1781/1-1) is gratefully acknowledged. For financial support, thanks are due to the CESAM - Centre for Environmental and Marine Studies (UID/AMB/50017), FCT/Ministry of Science and Education through national funds, and co-funding by the European Fund For Regional Development, within the PT2020 Partnership Agreement and Compete 2020.

VII. REFERENCES

Adams, D. G., Duggan, P. S. & Jackson, O. (2012). Cyanobacterial symbioses. In Ecology of Cyanobacteria II (ed. B. A. Whitten), pp. 593–647. Springer, Dordrecht, Netherlands.

Albertin, C. B., Simakov, O., Mitros, T., Wang, Z. Y., Pungor, J. R., Edminger-Gonzales, E., Brenner, S., Ragsdale, C. W. & Rokhsar, D. S. (2015). The octopus genome and the evolution of cephalopod neural and morphological novelties. Nature 524, 220–229.

Alie, A., Havashi, T., Sugimura, I., Manuli, M., Sugano, W., Mano, A., Satoir, N., Agata, K. & Funayama, N. (2015). The ancestral gene repertoire of animal stem cells. Proceedings of the National Academy of Sciences of the United States of America 112, E7095–E7100.

Anderson, D. A., Walz, M. E., Weil, E., Tonnellato, P. & Smith, M. C. (2016). RNA-Seq of the Caribbean reef-building coral Orbicella faveolata (Scleractinia-Merulinidae) under bleaching and disease stress expands models of coral innate immunity. PeerJ 4, e1616.

Apelt, G. (1969). Die Symbiose zwischen dem acerolen turbellar Carola aculeata und Diatomenen der Gattung Locmusina. Marine Biology 3, 165–187.

Armonies, W. (1989). Semiplanktong phylomedusines in the Wadden Sea. Marine Biology 101, 521–527.

Ax, P. (1970). Neue Pogaina-Arten (Turbellaria, Dalyellioda) mit Zooxanthellen aus dem Mesosom ramm der Nordsee-und Mittelmeerkiste. Marine Biology 5, 337–340.

Ax, P. & Apelt, G. (1965). Die “Zooxanthellen” von Carola aculeata (Turbellaria Acoela) entstehen aus Diatomien. Naturwissenschaften 52, 444–446.

Bailie, B. K., Belda-Baillie, C. A. & Maruyama, T. (2000). Conspicuity and Indo-Pacific distribution of Symbiodinium genotypes (Dinophyceae) from giant clams. Journal of Physiology 36, 1153–1161.

Baio, A. H., Gueitt, J. R. & Willis, B. L. (2009). Systematic and biogeographical patterns in the reproductive biology of scleractinian corals. Annual Review of Ecology, Evolution, and Systematics 40, 551–571.

Banaszak, A. T., Ramos, M. G. & Goulet, T. L. (2013). The symbiosis between the gastropod Strombus gigas and the dinoflagellate Symbiodinium: an ontogenic journey from mutualism to parasitism. Journal of Experimental Marine Biology and Ecology 449, 358–365.

Barneah, O., Brickner, I., Hooge, M., Weis, V. M. & Benavahu, Y. (2007). First evidence of maternal transmission of algal endosymbionts at an oocyte stage in a triploblastic host, with observations on reproduction in Hymenopoma brockmanii (Acoelomorpha). Invertebrate Biology 126, 113–119.

Barneah, O., Weis, V. M., Perez, S. & Benavahu, Y. (2004). Diversity of dinoflagellate symbionts in Red Sea soft corals: mode of symbiont acquisition matters. Marine Ecology Progress Series 275, 89–95.

Barnhis, D. J., Lauder, J. T., Oliver, T. A., Seneca, F. O., Traylor-Knowles, N. & Palumbi, S. R. (2013). Genomic basis for coral resilience to climate change. Proceedings of the National Academy of Sciences of the United States of America 110, 1387–1392.
of functional kleptoplasty in Sacoglossa (Heterobranchia, Gastropoda). Organisms Diversity & Evolution 15, 23–36.

Cover, R. (1980). The role of algal symbiosis in reef through time. PALAIOS 3, 217–227.

Davy, R. K., Allemand, D. & Weis, V. M. (2012). Cell biology of cyanobacterial-dinoflagellate symbiosis. Molecular and Cellular Biology 32, 229–261.

DeBoer, T. S., Baker, A. C., Erdmann, M. V., Ambravant, Jones, P. R. & Barber, P. H. (2012). Patterns of Symbiodinium distribution in three giant clam species across the biodiverse Bird’s Head region of Indonesia. Marine Ecology Progress Series 444, 117–132.

Deicke, J., Colin, S. & Foster, R. A. (2015). Photosymbiosis in marine planktonic protists. In Marine Protists (eds. S. Ohtuka, T. Suzuki, T. Horiguchi, N. Suzuki and F. Noyi), pp. 465–500. Springer, Tokyo, Japan.

Dohal, P., Sato, Y., Campbell, R. K., Chapman, J., Degnan, B. D., Tomano, A., Davidson, B. D., Gregorio, A., Gelpke, M., Goodstein, D. M., Harauf, N., Hastings, K. M. E., Ho, I., Hotta, K., Huang, W., et al. (2002). The draft genome of Ciona intestinalis: insights into chordate and vertebrate origins. Science 298, 2157–2167.

Dengouf, E., Henriot, S., Mungpakdee, A., Auvry, J. M. D., Silva, C., Brinkmann, H., Mikheal, L., Olsen, L. O., Jurin, C., Casentino, C., Bouquet, J. M., Dans, B., Pouliain, J., Camps, G., Adams, M., Gross, L., et al. (2010). Plasticity of animal genome architecture unmasked by rapid evolution of a pelagic tunicate. Science 330, 1301–1305.

Diaz, M. C., Thacker, R. W., Ritzler, K. & Plantoni Dietschi, C. (2007). Two new haptospherid sponges from Caribbean Panama with symbiotic filamentous cyanobacteria, and an overview of sponge-cyanobacteria associations. In Perisin Research: Biodiversity, Innovation and Sustainability (eds M. R. Cuntoño, G. Lóro-Hajdu, H. Hajdu and G. Murice), pp. 31–39. National Museum, Rio de Janeiro, Brazil.

Diaz, M. C. & Ward, B. B. (1999). Perspectives on sponge-cyanobacterial symbioses. Memoirs of the Queensland Museum 44, 154.

Diongno, G., Rosa, R., Leal, M. C., Cruz, S., Brandão, C., Cadago, G., Sodró, J. & Cadago, R. (2013). Beasts and beasts: a portrait of sea slugs aquarium. Aquatique 408, 1–14.

Douglas, A. E. (1967). Experimental studies on symbiotic Chilorea in the neohedrodocoid turbellaria Didyvalis viridis and Typhloplanis viridis. British Physiological Journal 22, 157–161.

Duchene, R., Schindler, C. & Weis, V. M. (2007). Apoptosis and autophagy as mechanisms of dinoflagellate symbiont release during cnidarian bleaching: every which way you lose. Proceedings of the Royal Society of London B: Biological Sciences 274, 2063–2074.

Eaton, J. & Young, J. (1975). Studies on the symbiosis of Phacoceros typhloides (Vejroyck) (Turbellaria; Neohedrodocida) and Chilorea vulgaris var. vulgaris, Fort & Novakova (Chlorococcales). Archiv für Hydrobiologie 75, 50–75.

Erez, J. (2003). The source of ions for biomineralization in Foraminifera and their implications for palaeoceanographic proxies. Reviews in Mineralogy and Geochemistry 54, 115–149.

Farage, M. A., Fitt, W. K. & Trech, R. K. (2001). Morphology of the symbiosis between Corallum candidum (Mollusca: Bivalvia) and Symbiodinium corallineum (Dinophyceae). Biological Bulletin 200, 336–343.

Fay, S. A., Weber, M. W. & Lipp, J. H. (2009). The distribution of Symbiodinium diversity within individual host foraminifera. Coral Reefs 28, 717–726.

Fernández-Valverde, S. L., Clavijo, M. D. & Degnan, B. M. (2015). Deep developmental transcriptome sequencing uncovers numerous new genes and enhances gene annotation in the sponge Amphipholis squamellata. BMC Genomics 16, 387.

Fiore, C. L., Labrie, M., Jarett, J. K. & Lesser, M. P. (2015). Transcriptional activity of the giant barrel sponge Xestopis multisulcatus holobiont: molecular evidence for metabolic interchange. Frontiers in Microbiology 6, 304.

Fitt, W. K., Fisher, C. R. & Trech, R. K. (1986). Contribution of the symbiotic dinoflagellate Symbiodinium microadriaticum to the nutrition, growth and survival of larval and juvenile tridacnid clams. Aquatic Ecology 25, 5–22.

Fromont, S., A. A. Adamski, M. Ramos, O. M., Leisinger, S., Liu, J., Ferrier, D. E. & Adamski, M. (2013). Calcispores have a ParaHox gene and dynamic expression of dispersed NK homeobox genes. Nature 514, 620–623.

Franken, J., Huggett, M. J., Legger, S. K. & Schönberg, C. H. (2016). Characterization of Luttrellia peltata, a calcareous cyanobiont from South-Western Australia, and its symbionts. The Journal of Marine Biological Association of the United Kingdom 96, 541–552.

Garalde, D. R., Kellner, D. E., Jachimowicz, D., Sipos, B., Lloyd, J. H., Bruce, M., Pantic, N., Admasu, T., James, P., Warland, A., Jordan, M., Ciccone, J., Sierra, S., Keenan, J. & Martin, S., et al. (2018). Highly parallel direct RNA sequencing on an array of nanopores. Nature Method 15, 201–206.

Garcia-Ramos, M. & Banazak, A. (2007). The distribution of the dinoflagellate Symbiodinium in the conch Strombus gigas. Gulf and Caribbean Fisheries Institute 38, 403–406.
Evolution of photosymbiosis

Hirose, E., Maruyama, T., Cheng, L. & Lewin, R.A. (1996). Intracellular symbiosis of a photosynthetic prokaryote, Prochloron sp., in a colonial ascidian. Invertebrate Biology 115, 343–348.

Hirose, E., Neill, B.A., Schmidt, E.W. & Murakami, A. (2009). Energetic life and evolution of Prochloron and related cyanobacteria inhabiting colonial ascidians. In Handbook on Cyanobacteria (eds P.M. Gaunt and H.J. Marler), pp. 161–189. CRC Press, Boca Raton, USA.

Hirose, E., Oka, A. & Akahori, M. (2004). Sexual reproduction of the photosymbiotic ascidian Diaphanoeca ovum in the Ryukyu Archipelago, Japan: vertical transmission, seasonal change, and possible impact of parasitic copepods. Marine Biology 146, 677–682.

Hus, V. (1999). Freshwater algal symbioses in protozoa and invertebrates. In Eukaryotic Microorganisms and Life in Extreme Environments (ed. J. Beckeb), pp. 641–650. Springer, Dordrecht, Netherlands.

Ishino, S., Yamahata, H., Kondo, S.-n., Inoue, K., Morishima, S.-y. & Koike, K. (2017). Zooxanthellal genetic variants in giant clams are partially determined by species-intrinsic and growth-related characteristics. PLoS One 12, e0172285.

Ishikawa, M., Yuyama, I., Shimizu, H., Nozawa, M., Ikeo, K. & Gojobori, T. (2016). Different endosymbiotic interactions in two hydra species reflect the evolutionary history of endosymbiosis. Genome Biology and Evolution 8, 2155–2161.

Jékely, G., Paps, J. & Nielsen, C. (2015). The phylogenetic position of ctenophores and the origin(s) of nervous systems. Evol Dev 6:1.

Jensen, K.S. & Pedersen, M.F. (1994). Photosynthesis by symbiotic algae in the freshwater sponge Spongilla lacustris. Limnology and Oceanography 39, 531–561.

Joffe, M.J., Bennett, M.J., Schlegel, B.P., Lewis, M., Trevor, M. & Penning, T.M. (1997). Comparative anatomy of the aldo-keto reductase superfamily. Biochemical Journal 326, 625–636.

Johnson, M.D. (2011). Acquired photophores in ciliates: a review of cellular interactions and structural adaptations. Journal of Eukaryotic Microbiology 58, 185–195.

Jones, U. & Thoolen, M. (1999). Phylogeny of the Rhodocoloea (Platyhelminthes): a working hypothesis. Canadian Journal of Zoology 77, 298–308.

Jondelius, U., Wallberg, A., Hooge, M. & Raikova, O.I. (2011). How the worm got its pharynx: phylogeny, classification and Bayesian assessment of character evolution in Acetabula. Systematic Biology 60, 845–871.

Jones, A.M., Berkelmans, R., van Oppen, M.J.H., Mieog, J.C. & Sinclair, W. (2008). A community change in the algal endosymbionts of a scleractinian coral following a natural bleaching event: field evidence of acclimatization. Proceedings of the Royal Society of London B: Biological Sciences 275, 1593–1596.

Kageyama, H., Ohara, K., Kouture, Y., Shizue, H., Tachida, H. & Komiyakawa, Y. (2013). Symbiosis between Hydra and Chlorota: molecular phylogenetic analysis and experimental study provide insight into its origins and evolution. Molecular Phylogenetics and Evolution 66, 906–914.

Kawano, T., Kadono, T., Kosaka, T. & Hisoya, H. (2004). Green paramaecia as an evolutionary winner of oxidative symbiosis: a hypothesis and supportive data. Zeitschrift für Naturforschung 59, 538–542.

Kaval, E., Roure, B., Philippe, H., Collins, A.G. & Lavrov, D.V. (2013). Cnidarian phylogenetic relationships as revealed by mitogenomes. BMC Evolutionary Biology 13, 5.

Keeling, P.C., Smolikovskiy, V.A., Tsimoshinskaya, N.Y., Tsonis, P.A., Voss, R.S. & Smith, J.J. (2015). Initial characterization of the large genome of the salamander Ambystoma mexicanum using shotgun and laser capture chromosome sequencing. Scientific Reports 5, 16413.

Kerney, R. (2011). Symbioses between salamander embryos and green algae. Symbiosis 55, 102–117.

Kerney, R., Kim, E., Hangarter, R.P., Heiss, A.A., Bishop, G.D. & Halil, B.K. (2011). Intracellular invasion of green algae in a salamander host. Proceedings of the National Academy of Sciences of the United States of America 108, 6497–6502.

Kirk, N.L. & Weis, V.M. (2016). Animal-Symbiont symbioses: foundations of coral reef ecosystems. In The Methanogenic Bacteria of Microbial Symbioses (eds C.J. Hurst), pp. 269–294. Springer, Cham, Switzerland.

Kirkendale, L. (2009). Their Day in the sun: molecular phylogenetics and origin of photosymbiosis in the ‘other’ group of photosymbiotic marine bivalves (Cardilia: Fragia). Biological Journal of the Linnaean Society 97, 448–465.

Kooi, K., Jimo, M., Sakai, R., Kaeriyama, M., Muramoto, K., O SATA, M., Maruyama, T. & Kamiya, H. (2004). Octocoral chemical signalling selects and controls dinoflagellate symbionts. Biological Bulletin 207, 80–86.

Kolodziejczyk, A.A., Kim, J.K., Svensson, V., Marioni, J.C. & Teichmann, S.A. (2015). The technology and biology of single-cell RNA sequencing. Molecular Cell 58, 610–620.

Kovacevic, G. (2012). Value of the Hydra model system for studying symbiosis. International Journal of Developmental Biology 56, 627–635.
Growth and sexual differentiation in polyps without symbionts

*Morey, A., Huysman, L., Ball, E. E., Hayward, D. C., Grasso, L. C., Chua, C. M., Woo, H. N., Gattuso, J.-P., Forêt, S. & Miller, D. J. (2012). Whole transcriptome analysis of the coral Acropora millepora reveals complex responses to CO2-driven acidification during the initiation of calcification. Molecular Ecology 21, 2441–2454.

Muller-Parker, G., D’ella, C. F. & Cook, C. B. (2015). Interactions between corals and their symbiotic algae. In Coral Reefs in the Anthropocene (ed. C. Birkenland), pp. 99–116. Springer, Dordrecht, Netherlands.

Munin, C., Marin, A. & Penchazadeh, P. (2001). Ultrastructure of the digestive gland of larval and adult stages of the sacoglossan Elysia pagana. Marine Biology 139, 687–695.

Muscatine, L., Pool, R. & Trench, R. (1975). Symbiosis of algae and invertebrates: aspects of the symbiotic surface and the host-symbiont interface. Transactions of the American Microscopical Society 94, 450–469.

Muto, K., Nishikawa, K. & Miyashita, H. (2017). Symbiotic green algae in eggs of Hymenocera serricornis, an amphibious endemic to Japan. Physiological Research 65, 171–174.

Mwinyi, A., Bailly, X., Bourel, S. J. J., Jondelius, U., Littlewood, D. T. J. & Pootsiandlovski, L. (2010). The phylogenetic position of Acoela as revealed by the complete mitochondrial genome of Synagoga veraeformis. BMC Evolutionary Biology 10, 309.

Neuraur, E. F., Poole, A. Z., Detournay, O., Weiss, V. M. & Davy, S. K. (2016). The scavenger receptor repertoire in six cnidian species and its putative role in cnidian-dinoflagellate symbiosis. Proc Natl Acad Sci U S A 113, 24492–24497.

Nicholson, S. A., Roberts, B. W., Richter, D. J., Fairclough, S. R. & King, N. (2012). Origin of metazooan coral reef diversity and the antiquity of the classical coral/symbiont complex. Proceedings of the National Academy of Sciences of the United States of America 109, 13066–13071.

Niehuis, O., Hartig, G., Grath, S., Pohl, H., Lehrman, J., Taifer, H., Donath, A., Krauss, V., Eisenhardt, C., Herzel, J., Petersen, M., Mayer, C., Neumann, K., Peters, R. S., Stadler, P. F., et al. (2012). Genomic and morphological evidence converge to resolve the enigma of Strepsiptera. Current Biology 22, 1309–1313.

Nott, F., Pröbst, I., Gerics Ribiero, C., Geen, K., Gulliot, L., Jonatson, C. & Vaultot, D. (2016). Photosymbiosis in marine pelagic environments. In The Marine Micromedusae (eds J. L. Stahl & M. Vella Cretou), pp. 305–322. Springer, Cham, Switzerland.

Ohno, T., Kato, T. & Yamasu, T. (1995). The origin of algal-bivalve phototrophy. Polychaeta 38, 1–22.

van Oppen, M. J. H., Palstra, F. P., Piquet, A. M. T. & Miller, D. J. (2001). Patterns of coral-dinoflagellate associations in Acropora: significance of local availability and phylogeny of Symbiodinium strains and host-symbiont selectivity. Proceedings of the Royal Society of London B: Biological Sciences 268, 1759–1767.

Oren, M., Steindler, L. & Ilan, M. (2005). Transmission, plasticity and the molecular identification of cyanobacterial symbions in the Red Sea sponge Dicranoscyphus livingstonii. Marine Biology 148, 35–41.

Pallada-Gascon, J. L., Pochon, X., Bird, C., Concepcion, G. T. & Gates, R. D. (2012). From parent to gytanoid: vertical transmission of Symbiodinium (Dinophyceae) ITS2 sequence assemblages in the Reef Building Coral Montipora capitata. PLoS One 7, 38440.

Paps, J., Baguš, J. & Ruijter, M. (2009). Bilateral phylogeny: a broad sampling of 13 nuclear genes provides a new Lophotrochozoa phylogeny and supports a paraphyletic basal Acoelomorpha. Molecular Biology and Evolution 26, 2397–2406.

Pardy, R. (1980). Symbiotic algae and 14C incorporation in the freshwater clam, Anodonta. Biological Bulletin 158, 349–355.

Pearse, V. B. & Muscatine, L. (1971). Role of symbiotic algae (zoanthellae) in coral calcification. Biological Bulletin 141, 350–363.

Perlinogu, K. N., Weber, A. P., Weber, K. I. & Rumphi, M. E. (2014). Lipid accumulation during the establishment of kleptoplasmy in Elysia chlorotica. PLoS One 9, e97477.

Philippe, H., Brinkmann, H., Copley, R. R., Moroz, L. L., Naranjo, H., Poupart, A. J., Wallberg, A., Petersen, K. J. & Telford, M. J. (2011). Acoelomorph flatworms are deuterostomes related to Xenoturbella. Nature 470, 255–258.

Philippe, H., Derelle, R., Lopez, P., Pick, K., Borchelli, C., Boury-Esnault, N., Vancelet, J., Renard, H., Houliston, E., Quinnell, E., Da Silva, C., Winckecki, L., Le Guvader, H., Leys, S., Jackson, D. J., et al. (2009). Phlogoporphazes revises traditional views on deep animal relationships. Current Biology 19, 706–712.

Pillet, L., de Vargas, C. & Pavlovski, J. (2011). Molecular identification of sequestered diatom chloroplasts and kleptoplasts in foraminifera. PloS One 162, 394–404.
Evolution of photosymbiosis

Pillet, I. & Pawlowski, J. (2012). Transcriptome analysis of foraminiferan Eubhamia margaritaceum questions the role of gene transfer in kleptoplasty. Molecular Biology and Evolution 30, 66–69.

Bhattacharya, A. & Chapman, J. (2011). Large-scale phylogeny of Amphibia including over 2000 species, and a revised classification of extant frogs, salamanders, and caecilians. Molecular Phylogenetics and Evolution 61, 543–581.

Ridecker, N., Pigoreau, C., Wild, C. & Voolstra, C.R. (2015). Simulated respiration and net photosynthesis in Cynopsidus sp. during glucose enrichment suggests in hospite CO2 limitation of algal endosymbioses. Frontiers in Marine Science 2, 1–13.

Schmitz, S., Deines, P., Bahrin, F., Wagner, M. & Taylor, M.W. (2011). Chloroflexi bacteria are more diverse, abundant, and similar in high than in low microbial abundance sponges. FEMS Microbiology Ecology 78, 497–510.

Schwarz, J.A., Curtis, N.E. & Pierck, S.K. (2010). Using algal transcriptome sequences to identify transferred genes in the sea slug, Elysia chlorotica. Evolutionary Biology 37, 29–37.

Schweitzer, M. & Bosch, T.C. (2015). Revising the age, evolutionary history and species level diversity of the genus Hydra (Cnidaria: Hydrozoa). Molecular Phylogenetics and Evolution 91, 41–55.

Sko, H.C., Kure, M., Edvardsen, R.B., Jensen, M.F., Beck, A., Spriet, E., Gorsky, G., Thompson, E.M., Lehrach, H., Reinhardt, R. & Chourrout, D. (2001). Miniature genome in the marine chordate Ophiura obesa. Science 294, 2506–2506.

Seródio, J., Cruz, S., Cartaxana, P. & Calado, R. (2014). Photophysiology of kleptoplasts: photosynthetic use of light by chloroplasts living in animal cells. Philosophical Transactions of the Royal Society B: Biological Sciences 369, 20130242.

Seródio, J., Silva, R., Ezequiel, J. & Calado, R. (2011). Photophysiology of the symbiotic acor flatworm Synagongius rossicus: algal symbiont photosaccumulation and host photosbehaviour. Journal of the Marine Biological Association of the United Kingdom 91, 1–23.

Shapiro, E., Bieuzener, T. & Linnarsson, S. (2013). Single-cell sequencing-based technologies will revolutionize whole-organism science. Nature Reviews Genetics 14, 616–639.

Shinzato, C., Inoue, M. & Kusakabe, M. (2014). A snapshot of a coral “holobiont”: a transcriptome assembly of the scleractinian coral, Porites, captures a wide variety of genes from both the host and symbiotic zoanthellae. PLoS One 9, e85182.

Shinzato, C., Shoguchi, E., Kawashima, T., Hamada, M., Hisata, K., Tanaka, M., Nakamura, F., Fujii, M., Koyanagi, R., Ikuta, T., Fujimaya, T., Miller, D.J. & Satoh, N.H. (2011). Using the Aiptasia digitifera genome to understand coral responses to environmental change. Nature 476, 320–323.

Simakov, O., Marletaz, F., Cho, S.J., Edsinger-Gonzales, E., Havlak, P., Hebelman, U., Kuo, D.-H., Larson, T., Lu, J., Arendt, D., Savage, R., Osawa, K., de Jong, P., Grimwood, J., Chapman, J.A., Shapiro, H.J. et al. (2013). Insights into bilaterian evolution from three spiralian genomes. Nature 506, 526–531.

Simon, P., Philippe, H., Baurain, D., Jager, M., Richter, D.J., De Franco, A., Bouret, S., Sato, N., Queneix, E., Erens kok, A., Larroux, C., Delsuc, F., King, N., Wörheide, G. & Manuel, M. (2017). A large and consistent phylogenetic dataset supports sponges as the sister group to all other animals. Current Biology 27, 958–967.

Small, K.S., Brudno, M., Hill, M.M. & Sidow, A. (2007). A haplotype alignment and reference sequence of the highly polymorphic Ciona savignyi genome. Genome Research 18, R41–R41.

Smith, D.C. (1991). Why do so few animals form endosymbiotic associations with photosynthetic microbes? Philosophical Transactions of the Royal Society B: Biological Sciences 333, 225–230.

Spierer, D.I., Parney, M.S., Zarzoroph, A.K., Batelle, B.A., Bracken-Gregor, H.D., Breinholst, J.W., Bryce, S.M., Cronin, T.W., Garm, A., Lindgren, A.R., Petel, N.H., Porter, M.L., Protas, M.E., Rivera, A.S., Serr, J.M. et al. (2014). Using phylogenetically-informed annotation (PhA) to search for light-interacting genes in transcriptomes from non-model organisms. BMC Genomics 15, 559.

Srivastava, M., Smokov, O., Chapman, J., Fahey, B., Gautier, M.E., Mitros, T., Richards, G.S., Conaco, C., Dacre, M., Hebelman, U., Labrou, C., Putnam, N.H., Stanke, M., Adamska, M., Darling, A. et al. (2010). The Amphipholus queenslandica genome and the evolution of animal complexity. Nature 466, 729–726.

Sperling, N. (2011). Zooxanthellae: the yellow symbionts inside animals. In Coral Reefs: An Ecosystem in Transition (eds Z. Durbins and N. Sambler), pp. 87–106. Springer, Dordrecht, Netherlands.

Stampar, S.N., Morandini, A.C. & Da Silverira, F.L. (2014). A new species of Pachycorallium (Cnidaria, Anthoza, Cerenariidae) from tropical southwestern Atlantic. Zootaxa 3827, 431–453.

Stanley, G.D. & Lipp, J.H. (2011). Photosymbiosis: the driving force for reef success and failure. Paleontological Society Papers 17, 33–60.

Stat, M., Carter, D.A. & Hoegh-Guldberg, O. (2006). The evolutionary history of Symbiodinium and scleractinian hosts—symbiosis, diversity, and the effect of climate change. Perspectives in Plant Ecology, Evolution and Systematics 8, 83–93.

Stat, M., Loh, W.K.W., Hoegh-Guldberg, O. & Carter, D.A. (2008). Symbiosis acquisition strategy drives host–symbiont associations in the southern Great Barrier Reef. Coral Reefs 27, 763–772.
Velandia-Huerto, J., Zhang, H., Gittenberger, A., Smith, K., Holsinger, K., Lin, S. & Whithalch, R. B. (2012). Determining the native region of the putatively invasive ascidian Didemnum vexillum Korn. 2002. Journal of Experimental Marine Biology and Ecology 422, 64–71.

Steindler, L., Beer, S. & Ilan, M. (2002). Photosymbiosis in intertidal and subtidal tropical sponges. Symbiosis 33, 263–274.

Stolle, A., Lowe, E. K., Racioppo, C., Ristoratore, F., Brown, C. T., Swalla, B. J. & Christian, L. (2014). Divergent mechanisms regulate conserved cardio-angiogenic development and gene expression in distantly related ascidians. eLife 3, e03729.

Sun, J., Chen, Q., Leu, J. C., Xu, J. & Qu, J. W. (2013). PmHCbase: development of a transcriptomic database for the brain coral Platygyra carnosus. Marine Ecology Progress Series 484, 178–192.

Taylor, D. (1971). On the symbiosis between Amphidinium klitii [Dinophyceae] and Amphipholis spongiosa [Turbellaria: Acetabula]. 1. Journal of the Marine Biological Association of the United Kingdom 51, 301–313.

Thacker, R. W. & Freeman, C. J. (2012). Sponge-microbe symbioses: recent advances and new directions. Advances in Marine Biology 62, 57.

Thornhill, D. J., Daniel, M. W., Ljungrens, T. C., Schmidt, G. W. & Fitt, W. K. (2006). Natural infections of aposymbiotic Cassiopea xamachana acanthostome from environmental pools of Symbiodinium. Journal of Experimental Marine Biology and Ecology 338, 50–56.

Taylor-Knowles, N., Granger, B. R., Lurinski, T. J., Parki, J. R., Garamszegi, S., Xia, Y., Marto, J. A., Kaufmann, L. & Finnerty, J. R. (2011). Production of a reference transcriptome and transcriptomic database (PlociporaBase) for the caulliflower coral, Plocipora damicornis. BMC Genomics 12, 385.

Trench, R. K. (1987). Dimolflagellates in non-parasitic sponges. In The Biology of Dinoflagellates (ed. F. J. R. Taylor), pp. 531–570. Blackwell Scientific Publications, Boston, USA.

Tulin, S., Aguil, D., Istriah, S. & Smith, J. (2013). A quantitative reference transcriptome for Nematostella vectensis early embryonic development: a pipeline for de novo assembly in emergingmodel systems. EvoDevo 4, 16.

Usinger, R. (1983). The ecology and phylogeny of cyanobacterial symbionts in sponges. Marine Ecology 29, 178–192.

Usinger, R. K. (1960). Photosynthesis and respiration of two species of algal symbionts and invertebrate hosts. Plant, Cell & Environment 31, 679–694.

Van Steenkerke, N., Teske, B., Willems, W., Backeljau, T., Jondevius, L. & Aerts, T. (2013). A comprehensive molecular phylogeny of Dalyellphytoplanalida (Phytelmphelines: Rhabdocoela) reveals multiple escapes from the marine tropical sponge. Molecular Phylogenetics and Evolution 73, 18–22.

Venn, A., Leon, J. & Dougall, A. (2008). Photosynthetic symbioses in animals. Journal of Experimental Biology 59, 1009–1013.

Verde, E. & Moomaw, L. (1996). Photosynthesis and respiration of two species of algal symbionts in the anemone Anthopleura elegantissima (Brachiopoda; Anthozoa). Journal of Experimental Marine Biology and Ecology 195, 187–202.

Vermeij, G. J. (2013). The evolution of molluscan photosymbioses: a critical appraisal. Biological Journal of the Linnean Society 109, 497–511.

Voolstra, C. R., Schwarzb, J. A., Schneiter, J., Sunagawa, S., Desalvo, M. K., Szmany, A. M., Coffroth, M. A. & Meiners, M. (2009). The host transcriptome remains unaltered during the establishment of coral-algal symbiosis. Molecular Ecology 18, 1825–1833.

Voskoboinik, A., Neff, N. F., Sahoo, D., Newman, A. M., Pushkarev, D., Moh, W., Passarella, B., Fan, H. C., Mantasal, G. L., Palmer, K. J., Ishizuka, K. J., Gissi, C., Greggio, F., Ben-Shlomo, R., Corey, D. M., et al. (2013). The genome sequence of the colonial chlord, Botella schluss. eLife 2, e05069.

De Vries, J., Christia, G. & Gould, S. B. (2014). Plastid survival in the cytosol of animal cells. Trends in Plant Science 19, 347–350.

De Vries, J., Woehle, C., Christia, G., Waleur, A. G., Jahn, P. & Gould, S. B. (2015). Comparison of sister animal species identifies factors underpinning plastid compatibility in green sea slugs. Proceedings of the Royal Society of London B: Biological Sciences 282, 20142519.

Wagle, H., Drueck, O., Handerl, K., Martin, R., Schmitt, V., Christa, G., Piniger, B., Gould, S. B., Dagan, T., Klemm-Koll, A. & Martin, W. (2011). Transcriptomic evidence that longevity of acquired plastids in the photosynthetic slug Elysia timida and Phaeodactyla stollus does not entail lateral transfer of algal nuclear genes. Molecular Biology and Evolution 28, 699–706.

Wagle, H. & Martin, W. F. (2014). Endosymbioses in sacoglossan sea slugs: plant-eating animals that keep photosynthetic organelles without borrowing genes. In Endosymbiosis (ed. W. Lovehardt), pp. 291–324. Springer, Vienna, Austria.

Withlatch, T. S. & Kemp, S. C. (2001). Development of host-and symbiont-specific monoclonal antibodies and confirmation of the origin of the symbiosome membrane in a chonemia-dinophagous sponges. Marine Ecology Progress Series 178, 173–192.

Wenger, G. & Clarke, K. (1986). Seasonal and geographic variation in chlorophyll level of Elysia timida (Accoglossa: Ophiohoarnacia). Marine Biology 92, 483–487.

Webster, N. S. & Taylor, M. W. (2012). Marine sponges and their microbial symbionts: love and other relationships. Environmental Microbiology 14, 53–56.

Weis, V. M. (2008). Cellular mechanisms of Cnidarian bleaching: stress causes the collapse of symbiosis. Journal of Experimental Biology 211, 3059–3066.

Weis, V. M., Reynolds, W. S., DeBoer, M. D. & Kropf, D. A. (2001). Host-symbiont specificity during onset of symbiosis between the dinoflagellates Symbiodinium sp. and planula larvae of the scleractinian coral Pocillopora damicornis. Clariol Reefs 20, 301–308.

Wenger, C. (2013). RNAseq versus genome-predicted transcriptomes: a large population of novel transcripts identified in an Illumina-454 Hauly transcriptome. BMC Genomics 14, 204.

Wheeler, N. V., Kocot, K. M. & Halanych, K. M. (2015). Employing phylogenomics to resolve the relationships among cnidarians, eutephorophytes, sponges, phaeodarians, and bilaterians. Integrative and Comparative Biology 55, 1088–1095.

Wörheide, G., Dohmann, M., Erpenbeck, D., Larroux, C., Malandano, M., Voigt, O., Borchellini, C. & Pavot, D. V. (2012). Deep phylogeny and evolution of sponges (Phylum Porifera). Advances in Marine Biology 63, 1–78.

Wu, C.-H., Tsai, M.-H., Ho, C.-C., Chen, C.-Y. & Lee, H.-S. (2013). De novo transcriptome sequencing of axolotl blastema for identification of differentially expressed genes during limb regeneration. BMC Genomics 14, 434.

Yellowelles, D., Rees, T. A. V. & Lecat, W. (2008). Metabolic interactions between algal symbionts and invertebrate hosts. Plant Cell Environment 31, 679–694.

Yonge, C. (1934). Origin and nature of the association between invertebrates and unicellular algae. Nature 134, 12–13.

Zacharias, H., Anokhin, B., Kalturin, K. & Bosch, T. C. (2004). Genome sizes and chromosomes in the basal metazoan Hydra. Hydrobiologia 513–515.

Zamparo, D., Brooks, D. R., Hoberg, E. P. & McLennan, D. A. (2001). Phylogenetic analysis of the Rhabdocoela (Phytelmphelines) with emphasis on the Nuderkemata and relatives. Zoological Scripta 30, 59–77.

Zapata, F., Goetz, F., Smith, S. A., Howison, M., Siebert, S., Church, S. H., Sanders, S. M., Amos, C. L., McFadden, C. S., France, S. C., Daly, M., Collins, A. G., Haddock, S. H. D., Dunn, C. W. & Cartwright, P. (2015). Phylogenetic analyses support traditional relationships within Cnidaria. PLoS One 10, e0120068.

Zhang, G., Fang, X., Guo, X., Li, L., Luo, R., Xu, Y., Fang, P., Zhang, L., Wang, X., Qi, H., Xiong, Z., Que, H., Xie, Y., Holland, P. W. H., Paps, J., et al. (2012). The oyster genome reveals stress adaptation and complexity of shell formation. Nature 490, 49–54.

VIII. SUPPORTING INFORMATION

Additional supporting information may be found online in the Supporting Information section at the end of the article. Table S1. Genomes and transcriptomes of photosymbiotic animals and their close relatives.