Measurements of the Correlation between Reconstructed Jets and the Reaction Plane in STAR at RHIC

Alice Ohlson
Yale University
For the STAR Collaboration

15 August 2012
Outline

- What is jet v_2?
- Measuring Jet v_2
- Jets in STAR
- Artificial Sources of Anisotropy
 → Background Fluctuations
 → Biased Event Plane
- Jet v_2 and trigger v_2
- Jet v_2 vs Centrality
- Jet v_2 vs Reconstructed Jet p_T
- Conclusions
What is Jet v_2?

- "Jet v_2" → correlation between reconstructed jets and the reaction plane (or 2nd -order participant plane)
- "Jet v_2" ≠ "Jet flow"
Measuring Jet v_2

- Why measure Jet v_2?
 - Information about pathlength-dependent parton energy loss
 - Information about jet-finding techniques and biases
 - Necessary for background subtraction in jet-hadron correlations

- How to measure jet v_2:

\[
\frac{v_2}{v_2^{\text{jet}}} = \frac{\langle \cos \left(2(\phi_{\text{jet}} - \Psi_{\text{EP}})\right) \rangle}{\text{Res}}
\]
Measuring Jet v_2

- Why measure Jet v_2?
 - Information about pathlength-dependent parton energy loss
 - Information about jet-finding techniques and biases
 - Necessary for background subtraction in jet-hadron correlations

- How to measure jet v_2:
 1) Angle of reconstructed jet axis

$$v_2^\text{jet} = \frac{\langle \cos \left(2(\phi_{\text{jet}} - \Psi_{\text{EP}}) \right) \rangle}{R_{\text{es}}}$$
Measuring Jet v_2

- Why measure Jet v_2?
 → Information about pathlength-dependent parton energy loss
 → Information about jet-finding techniques and biases
 → Necessary for background subtraction in jet-hadron correlations

- How to measure jet v_2:
 1) Angle of reconstructed jet axis
 2) Azimuthal angle of event plane

\[
\nu^2 = \frac{\left \langle \cos \left(2(\phi_{\text{jet}} - \Psi_{\text{EP}}) \right) \right \rangle}{Res}
\]

\[
\Psi_{\text{EP}} = \frac{1}{2} \tan^{-1} \left(\frac{\sum_i w_i \sin (2\phi_i)}{\sum_i w_i \cos (2\phi_i)} \right)
\]
Measuring Jet v_2

- Why measure Jet v_2?
 → Information about pathlength-dependent parton energy loss
 → Information about jet-finding techniques and biases
 → Necessary for background subtraction in jet-hadron correlations

- How to measure jet v_2:

 \[v_2 = \left\langle \cos \left(2\left(\phi_{jet} - \Psi_{EP} \right) \right) \right\rangle \]

 1) Angle of reconstructed jet axis
 2) Azimuthal angle of event plane
 \[\Psi_{EP} = \frac{1}{2} \tan^{-1} \left(\frac{\sum_i w_i \sin (2\phi_i)}{\sum_i w_i \cos (2\phi_i)} \right) \]
 3) Event plane resolution
Jets at STAR

Run 7 Au+Au $\sqrt{s_{NN}} = 200$ GeV

High Tower (HT) Trigger

Trigger Jets found with Anti-k_T algorithm [1]

$(R = 0.4, p_T^{\text{track,tower}} > 2 \text{ GeV}/c)$.

[1] M. Cacciari and G. Salam, Phys. Lett. B 641, 57 (2006)

Online Trigger

$E_T > 5.4$ GeV in one tower

$\Delta \phi \times \Delta \eta = 0.05 \times 0.05$

Offline cut: $E_T > 5.5$ GeV

Au+Au 0-20% $p_{t,jet}^{\text{rec}} \approx 22$ GeV/c

STAR Preliminary
Artificial Sources of Anisotropy

• **Background Fluctuations and the Jet Energy Scale**
 Background particles (with $p_T > 2$ GeV/c) with significant v_2 are more likely to be clustered into the jet cone in-plane versus out-of-plane
 → more low-p_T jets reconstructed with a higher p_T
 → increased number of in-plane jets in a fixed reconstructed jet p_T range

• **Biased Event Plane**
 Jet fragments included in event plane calculation
 → event plane pulled towards jet
Background Fluctuations

- Embed p+p HT jets isotropically into Au+Au minimum bias events
- Reconstruct p_T of p+p jet before and after embedding
- Correlate reconstructed jet axis with event plane of Au+Au event
- Calculate jet v_2 for a given range in jet p_T

Jet Definition:
HT trigger $E_T > 5.5$ GeV
constituent $p_T^{cut} = 2$ GeV/c

Jet p_T calculated before embedding

STAR Preliminary statistical errors only

10 < p_T^{jet} < 40 GeV/c
Background Fluctuations

- Embed p+p HT jets isotropically into Au+Au minimum bias events
- Reconstruct p_T of p+p jet before and after embedding
- Correlate reconstructed jet axis with event plane of Au+Au event
- Calculate jet v_2 for a given range in jet p_T

Jet Definition:

- HT trigger $E_T > 5.5$ GeV
- Constituent p_T cut = 2 GeV/c

Jet v_2 for a given range in jet p_T

STA Preliminary statistical errors only

Jet p_T calculated before embedding

- $10 < p_T^{jet} < 40$ GeV/c

Jet p_T calculated after embedding
Background Fluctuations

- Embed $p+p$ HT jets isotropically into Au+Au minimum bias events
- Reconstruct p_T of $p+p$ jet before and after embedding
- Correlate reconstructed jet axis with event plane of Au+Au event
- Calculate jet v_2 for a given range in jet p_T

Artificial jet v_2 caused by background fluctuations is $\sim 4\%$

Subtract from measured jet v_2 values.
Calculating the event plane at mid-rapidity leads to significant jet – event plane bias!

Need to determine event plane at forward rapidities to measure jet v_2 at mid-rapidity...

Simulation: PYTHIA jets embedded in thermal background
Zero Degree Calorimeter – Shower Maximum Detectors
→ Spectator neutrons $|\eta| > 6.3$

Forward Time Projection Chambers
→ Charged particle tracks
$2.8 < |\eta| < 3.7$
STAR Forward Capabilities

Zero Degree Calorimeter – Shower Maximum Detectors
→ Spectator neutrons
 \(|\eta| > 6.3\)
 \(|\Delta\eta| > 5.7\)

Forward Time Projection Chambers
→ Charged particle tracks
 \(2.8 < |\eta| < 3.7\)
 \(|\eta_{\text{jet}}| < 0.6\)
 \(|\Delta\eta| > 2.2\)
Event Plane Resolution

- Resolution determined from sub-event plane method
- Mixed harmonics: measure $v_2\{\text{ZDC-SMD}\}$ with respect to Ψ_1

![Graph showing event plane resolution with different symbols representing different measurements.]

- $R_{22}\{\text{TPC}\}$
- $R_{22}\{\text{FTPC}\}$
- $R_{11}\{\text{ZDC-SMD}\}$
- $R_{12}\{\text{ZDC-SMD}\} = (2/\pi)R_{11}^2$

STAR Preliminary statistical errors only
Jet v_2 and Trigger v_2

STAR Preliminary
statistical errors only

Jet Definition:
HT trigger $E_T > 5.5$ GeV
constituent $p_T^{cut} = 2$ GeV/c

- v_2 {TPC EP}
- v_2 {FTPC EP}
- v_2 {ZDC-SMD EP}

$10 < p_T^{jet} < 40$ GeV/c

Centrality Bin

- Jet v_2 {TPC} > HT v_2 {TPC} \rightarrow Jet – event plane bias is more significant when jets have additional high-p_T fragments
Jet v_2 and Trigger v_2

- Jet $v_2 \{\text{TPC}\} > HT v_2 \{\text{TPC}\} \rightarrow$ Jet – event plane bias is more significant when jets have additional high-p_T fragments

- Jet $v_2 \{\text{FTPC}\} \sim HT v_2 \{\text{FTPC}\} \rightarrow$ Surface bias / bias towards unmodified jets is largely driven by high-p_T trigger requirement

Jet Definition:
HT trigger $E_T > 5.5$ GeV
constituent p_T cut $= 2$ GeV/c

10 < p_T^{jet} < 40 GeV/c

STAR Preliminary
statistical errors only

15 August 2012

Jet v_2 in STAR – A. Ohlson
Jet ν_2 and Trigger ν_2

STAR Preliminary statistical errors only

Jet Definition:
HT trigger $E_T > 5.5$ GeV
constituent $p_T^{\text{cut}} = 2$ GeV/c

- Jet $\nu_2 \{\text{TPC EP}\}$
- Jet $\nu_2 \{\text{FTPC EP}\}$
- Jet $\nu_2 \{\text{ZDC-SMD EP}\}$
- HT trigger $\nu_2 \{\text{TPC EP}\}$
- HT trigger $\nu_2 \{\text{FTPC EP}\}$
- HT trigger $\nu_2 \{\text{ZDC-SMD EP}\}$

- Jet $\nu_2 \{\text{TPC}\} > \text{HT } \nu_2 \{\text{TPC}\} \rightarrow$ Jet – event plane bias is more significant when jets have additional high-p_T fragments

- Jet $\nu_2 \{\text{FTPC}\} \sim \text{HT } \nu_2 \{\text{FTPC}\} \rightarrow$ Surface bias / bias towards unmodified jets is largely driven by high-p_T trigger requirement

- HT $\nu_2 \{\text{ZDC-SMD EP}\} > 0$

Centrality Bin

$10 < p_T^{\text{jet}} < 40$ GeV/c
Jet v_2 vs Centrality

Jet Definition:
HT trigger $E_T > 5.5$ GeV
constituent $p_T^{cut} = 2$ GeV/c

- $Jet v_2 \{TPC \text{ EP} \}$
- $Jet v_2 \{FTPC \text{ EP} \}$
- $Jet v_2 \{ZDC-SMD \text{ EP} \}$

- Jet $v_2 \{FTPC\}$ is non-zero.
 \rightarrow Pathlength-dependent parton energy loss

- No clear centrality dependence outside statistical uncertainties.

- Caveat: Reconstructed jet energy has slight dependence on centrality

STAR Preliminary statistical errors only

$10 < p_T^{jet} < 40$ GeV/c
Jet v_2 versus Reconstructed Jet p_T

- Jet v_2\{FTPC\} increases slightly with jet p_T

- Jet v_2\{FTPC\} $>$ Jet v_2\{ZDC-SMD\}

 → In single-particle v_2 measurements, this difference is attributed to flow in participant plane vs. reaction plane, v_2(PP) $>$ v_2(RP)

→ Jet energy loss sensitive to geometry in participant frame?

Jet Definition:
HT trigger $E_T > 5.5$ GeV
constituent $p_T^{cut} = 2$ GeV/c

- Jet v_2\{TPC EP\}
- Jet v_2\{FTPC EP\}
- Jet v_2\{ZDC-SMD EP\}

STAR Preliminary statistical errors only
Conclusions

- The correlation between reconstructed jets and the reaction plane / 2^{nd}-order participant plane has been measured.
Conclusions

- The correlation between reconstructed jets and the reaction plane / 2nd-order participant plane has been measured.
- Jet – event plane bias is reduced by using detectors at forward rapidities for event plane determination.
Conclusions

- The correlation between reconstructed jets and the reaction plane / 2nd-order participant plane has been measured.
- Jet – event plane bias is reduced by using detectors at forward rapidities for event plane determination.
- Non-zero reconstructed jet $v_2\{\text{FTPC}\}$ is observed.
 → Indicative of pathlength-dependent parton energy loss.
Conclusions

- The correlation between reconstructed jets and the reaction plane / 2nd-order participant plane has been measured.
- Jet – event plane bias is reduced by using detectors at forward rapidities for event plane determination.
- Non-zero reconstructed jet v_2\{FTPC\} is observed.
 \[\rightarrow\text{Indicative of pathlength-dependent parton energy loss.}\]
- Measurements of jet v_2 with respect to the event plane measured at forward rapidities show...
 \[\rightarrow\text{The bias towards unmodified jets is largely due to the trigger requirement.}\]
 \[\rightarrow\text{Within the kinematic regions studied, jet } v_2 \text{ increases with } p_T \text{ and is roughly independent of centrality.}\]
Conclusions

- The correlation between reconstructed jets and the reaction plane / 2nd-order participant plane has been measured.
- Jet – event plane bias is reduced by using detectors at forward rapidities for event plane determination.
- Non-zero reconstructed jet $v_2\{\text{FTPC}\}$ is observed. → Indicative of pathlength-dependent parton energy loss.
- Measurements of jet v_2 with respect to the event plane measured at forward rapidities show...
 → The bias towards unmodified jets is largely due to the trigger requirement.
 → Within the kinematic regions studied, jet v_2 increases with p_T and is roughly independent of centrality.
- Can be used to further constrain theories of pathlength-dependent parton energy loss and parton-medium interactions.
Backup
Event Plane Calculations

- TPC: \(0.2 < p_T^{\text{track}} < 2.0\), \(p_T\)-weighting
 Corrections: \(\phi\)-weighting

- FTPC: \(0.2 < p_T^{\text{track}} < 2.0\), \(p_T\)-weighting
 Corrections: recentering, shifting

- ZDC-SMD
 Corrections: recentering, shifting
Does the recoil jet hit the FTPC?

- For $p_{T\text{lab}} > 10$ GeV/c, in 2M events, < 10 partons point towards the η region covered by the FTPC.
- For $p_{T\text{lab}} > 15$ GeV/c, in 2M events, 0 partons point towards the η region covered by the FTPC.

10 < $p_{T\text{lab}}$ < 40 GeV/c
- Black line: both partons in all events
- Red line: partons whose partner falls within $|\eta| < 0.6$

15 < $p_{T\text{lab}}$ < 40 GeV/c
- Green line: both partons in all events
- Blue line: partons whose partner falls within $|\eta| < 0.6$
Participant vs. Reaction Plane

- $v_2\{PP\} > v_2\{RP\}$

Fig. 6: (Color online) The values of v_2 from various analysis methods vs centrality. Both the upper lines [3] and the lower line [25] are STAR data.

Fig. 7: (Color online) The data from Fig. 6 corrected to $\langle v_2 \rangle$ in the participant plane.
Reco. Jet p_T vs. Centrality

- Embed $p+p$ HT trigger jets into Au+Au minimum bias events
- Reconstructed jet energy of embedded jets: $10 < p_T^{\text{jet}} < 15$ GeV/c
- Distribution of $p+p$ jet energies (reconstructed before embedding, with $p_T^{\text{cut}} = 0.2$ GeV/c):

- Reconstructing jets in Au+Au samples slightly higher parton energies in peripheral events than in central (by $\sim 2-5$ GeV)