THE NOWICKI CONJECTURE
FOR FREE METABELIAN LIE ALGEBRAS

VESSELIN DRENSKY AND ŞEHMUS FINDIK

Abstract. Let $K[X_d] = K[x_1, \ldots, x_d]$ be the polynomial algebra in d variables over a field K of characteristic 0. The classical theorem of Weitzenböck from 1932 states that for linear locally nilpotent derivations δ (known as Weitzenböck derivations) the algebra of constants $K[X_d]^{\delta}$ is finitely generated. When the Weitzenböck derivation δ acts on the polynomial algebra $K[X_d, Y_d]$ in $2d$ variables by $\delta(y_i) = x_i$, $\delta(x_i) = 0$, $i = 1, \ldots, d$, Nowicki conjectured that $K[X_d, Y_d]^{\delta}$ is generated by X_d and $x_iy_j - y_ix_j$ for all $1 \leq i < j \leq d$. There are several proofs based on different ideas confirming this conjecture. Considering arbitrary Weitzenböck derivations of the free d-generated metabelian Lie algebra F_d, with few trivial exceptions, the algebra F_d^{δ} is not finitely generated. However, the vector subspace $(F_d')^{\delta}$ of the commutator ideal F_d' of F_d is finitely generated as a $K[X_d]$-module. In this paper we study an analogue of the Nowicki conjecture in the Lie algebra setting and give an explicit set of generators of the $K[X_d, Y_d]^{\delta}$-module $(F_d')^{\delta}$.

1. Introduction

A linear operator δ of a (not necessarily commutative or associative) algebra R over a field K is called a derivation if

$$\delta(uv) = \delta(u)v + u\delta(v) \text{ for all } u, v \in R.$$

The kernel R^{δ} of δ is called the algebra of constants of δ.

In the sequel K will be a field of characteristic 0. Let $K[X_d] = K[x_1, \ldots, x_d]$, $d \geq 2$, be the polynomial algebra in d variables over K. A derivation δ of $K[X_d]$ acting as a nonzero nilpotent linear operator of the vector space KX_d with basis X_d is called a Weitzenböck derivation. The Jordan normal form $J(\delta) = (J_1, \ldots, J_s)$ of the matrix of δ considered as a linear operator acting on KX_d consists of Jordan cells J_i, $i = 1, \ldots, s$, with zero diagonals. In 1932 Weitzenböck [17] proved that the algebra of constants

$$K[X_d]^{\delta} = \ker \delta = \{u \in K[X_d] \mid \delta(u) = 0\}$$

is finitely generated. For more information on Weitzenböck derivations one can see the books by Nowicki [14], Derksen and Kemper [4], and Sturmfels [16]. The algebra of constants $K[X_d]^{\delta}$ can be considered also from the point of view of classical

2010 Mathematics Subject Classification. 17B01; 17B30; 17B40; 13N15; 13A50.

Key words and phrases. Free metabelian Lie algebras; algebras of constants; Weitzenböck derivations.

The research of both authors was partially supported by Grant I02/18 of the Bulgarian Science Fund.

The research of the second named author was partially supported by the Council of Higher Education (YÖK) in Turkey.
invariant theory. The linear operator $\alpha \delta$ of KX_d is nilpotent for all $\alpha \in K$. The exponent
\[
\exp(\alpha \delta) = 1 + \frac{\alpha \delta}{1!} + \frac{\alpha^2 \delta^2}{2!} + \cdots
\]
is a well defined invertible linear operator of KX_d and this defines a d-dimensional representation of the unitriangular group
\[
UT_2(K) = \left\{ \begin{pmatrix} 1 & \alpha \\ 0 & 1 \end{pmatrix} \mid \alpha \in K \right\}.
\]
This action can be extended diagonally on the whole algebra $K[X_d]$ and $K[X_d]^{\delta}$ is equal to the algebra of invariants $K[X_d]^{UT_2(K)}$.

Let $K[X_d, Y_d] = K[x_1, \ldots, x_d, y_1, \ldots, y_d]$, be the polynomial algebra in $2d$ variables and let δ be the Weitzenböck derivation defined by $\delta(y_i) = x_i$, $\delta(x_i) = 0$, $i = 1, \ldots, d$. In the language of invariant theory $K[X_d, Y_d]^{\delta}$ is the algebra of invariants for the action of the additive group $(K, +)$ on $K[X_d, Y_d]$ by
\[
\alpha : x_i \to x_i, y_i \to y_i + \alpha x_i, \quad i = 1, \ldots, d, \quad \alpha \in K.
\]
In 1994 Nowicki conjectured [14, p. 76, Conjecture 6.9.10] that the algebra of constants $K[X_d, Y_d]^{\delta}$ is generated by x_1, \ldots, x_d and the determinants
\[
(1) \quad u_{pq} = \begin{vmatrix} x_p & y_p \\ x_q & y_q \end{vmatrix}, \quad 1 \leq p < q \leq d.
\]

This conjecture attracted many mathematicians and was verified by several authors with proofs based on different ideas: In his Ph.D. thesis in 2004 Khoury [9, 10] gave a computational proof using Gröbner basis techniques. The unpublished proofs of Derksen and Panyushev applied ideas of classical invariant theory. Several proofs appeared in 2009. Drensky and Makar-Limanov [7] gave an elementary proof using easy arguments from undergraduate algebra and a simple induction only, without involving any invariant theory. In his proof Bedratyuk [2] reduced the Nowicki conjecture to a well known problem of classical invariant theory. Kuroda [12] gave a short proof based on the ideas of Kurano [11] in his study on the analogue in positive characteristic of the Roberts’ counterexample to the Hilbert fourteenth problem. As Kuroda mentioned Hashimoto informed him that Goto, Hayasaka, Kurano, and Nakamura [8] and Miyazaki [13] determined sets of generators for certain invariant rings where $K[X_d, Y_d]^{\delta}$ is included, and this gives one more proof of the Nowicki conjecture.

Let $K\langle X_d \rangle$, $d \geq 2$, be the free (unitary or nonunitary) associative algebra freely generated by X_d and let, as above, δ be a nilpotent linear operator acting on the vector space KX_d. Then the action of δ on KX_d can be extended to an action as a derivation on the whole algebra $K\langle X_d \rangle$. If V is a T-ideal (or a verbal ideal) of $K\langle X_d \rangle$, i.e., an ideal which is invariant under all endomorphisms of $K\langle X_d \rangle$, then it is well known that $\delta(V) \subseteq V$ and δ induces a derivation on the factor algebra $K\langle X_d \rangle/V$. We shall use the same notation δ for this derivation of $K\langle X_d \rangle/V$ and again shall call it Weitzenböck. The factor algebra $F_d(\mathfrak{V}) = K\langle X_d \rangle/V$ is a relatively free algebra in the variety \mathfrak{V} of associative algebras defined by the polynomial identities from V. As in the case of polynomial algebras, the kernel $F_d(\mathfrak{V})^{\delta}$ of δ is the algebra of constants of δ. Similarly, if $L_d = L(X_d)$, $d \geq 2$, is the free Lie algebra freely generated by X_d and W is a T-ideal (or a verbal ideal) of L_d, then the action of δ on KX_d defines a Weitzenböck derivation on the relatively free
algebra $F_d(\mathfrak{W}) = L_d/W$ in the variety of Lie algebras \mathfrak{W} defined by the polynomial identities from W. See e.g., the book by Bahturin [1] for a background on varieties of Lie algebras, the book [5] by one of the authors for associative PI-algebras, and his paper [6] with Gupta for Weitzenb"ock derivations acting on free and relatively free algebras, and for the properties of their algebras of constants.

In the sequel, let

$$F_d = F_d(\mathfrak{A}^2) = L_d/L_d''$$

be the factor algebra of L_d modulo the second term L_d'' of the derived series of L_d. This is the free metabelian Lie algebra generated by X_d. It is a relatively free algebra in the variety \mathfrak{A}^2 of the metabelian (solvable of class 2) Lie algebras defined by the identity $[[x_1, x_2], [x_3, x_4]] = 0$. The variety \mathfrak{A}^2 has a key position in the theory of varieties of Lie algebras. By the well-known dichotomy a variety \mathfrak{W} of Lie algebras either satisfies the Engel condition and by the theorem of Zelmanov [18] is nilpotent or contains the metabelian variety \mathfrak{A}^2. Since finitely generated nilpotent algebras are finite dimensional, the algebra $F_d = F_d(\mathfrak{A}^2)$ is the minimal relatively free algebra which is not finite dimensional. If δ is a Weitzenb"ock derivation of F_d, then Drensky and Gupta [6] showed that F_d^δ is finitely generated only in the trivial case when the Jordan normal form of δ consists of one Jordan cell of size 2×2 and $d - 2$ Jordan cells of size 1×1, i.e., when the rank of the matrix of δ is equal to 1.

The commutator ideal F_d' has a natural structure of a $K[X_d]$-module. Recently Dangovski and the authors [3] established that the vector space $(F_d')^\delta$ of the constants of δ in the commutator ideal F_d' of F_d is a finitely generated $K[X_d]^\delta$-module. Freely speaking, this means that the algebra of constants F_d^δ is very close to be finitely generated.

In the present paper we consider the free metabelian Lie algebra F_{2d} of rank $2d$ generated by the set $X_d \cup Y_d$. We assume that δ is its Weitzenb"ock derivation acting similarly as in the Nowicki conjecture. We give a complete set of generators of the $K[X_d, Y_d]^\delta$-module $(F_{2d})^\delta$. This gives also an infinite set of generators of the Lie algebra $(F_{2d})^\delta$.

2. Preliminaries

Till the end of the paper we fix the notation $F_{2d} = L_{2d}/L_{2d}''$ for the free metabelian Lie algebra of rank $2d$ freely generated by $X_d \cup Y_d = \{x_1, \ldots, x_d, y_1, \ldots, y_d\}$. We assume that all Lie commutators are left normed, e.g.,

$$[z_1, z_2, z_3] = [[z_1, z_2], z_3] = [z_1, z_2]ad z_3$$

for all $z_1, z_2, z_3 \in F_{2d}$. The metabelian identity implies, see, e.g., [1], that

$$[z_{j_1}, z_{j_2}, z_{j_{\sigma(3)}}, \ldots, z_{j_{\sigma(k)}}] = [z_{j_1}, z_{j_2}, z_{j_3}, \ldots, z_{j_k}],$$

where σ is an arbitrary permutation of $3, \ldots, k$. Thus the polynomial algebra $K[X_d, Y_d]$ acts on F_{2d}' by the rule

$$uf(x_1, \ldots, x_d, y_1, \ldots, y_d) = uf(ad x_1, \ldots, ad x_d, ay_1, \ldots, ay_d),$$

where $u \in F_{2d}'$, $f(X_d, Y_d) = f(x_1, \ldots, x_d, y_1, \ldots, y_d) \in K[X_d, Y_d]$.

We construct the abelian wreath product due to Shmel’kin [15]. Let $A_{2d} = K(A_d \cup B_d)$ and $G_{2d} = K(P_d \cup Q_d)$ denote the abelian Lie algebras with linear bases

$$A_d \cup B_d = \{a_1, \ldots, a_d\} \cup \{b_1, \ldots, b_d\} \text{ and } P_d \cup Q_d = \{p_1, \ldots, p_d\} \cup \{q_1, \ldots, q_d\},$$
respectively, and let C_{2d} be the free right $K[X_d,Y_d]$-module with free generators $A_d \cup B_d$. Equipping C_{2d} with trivial multiplication we give it the structure of an abelian Lie algebra. The abelian wreath product $W_{2d} = \Lambda_{2d} \wr \Gamma_{2d}$ is equal to the semidirect sum $C_{2d} \times \Gamma_{2d}$. The elements of W_{2d} are of the form

$$
\sum_{i=1}^{d} a_if_i(X_d,Y_d) + \sum_{i=1}^{d} b_ig_i(X_d,Y_d) + \sum_{i=1}^{d} \alpha_ip_i + \sum_{i=1}^{d} \beta_iq_i,
$$

where $\alpha_i, \beta_i \in K$. The multiplication in W_{2d} is defined by

$$[C_{2d}, C_{2d}] = [\Gamma_{2d}, \Gamma_{2d}] = 0,$$

$$[a_if_i(X_d,Y_d), p_j] = a_if_i(X_d,Y_d)x_j, \quad [b_ig_i(X_d,Y_d), p_j] = b_ig_i(X_d,Y_d)x_j,$$

$$[a_if_i(X_d,Y_d), q_j] = a_if_i(X_d,Y_d)y_j, \quad [b_ig_i(X_d,Y_d), q_j] = b_ig_i(X_d,Y_d)y_j,$$

$j = 1, \ldots, d$. Hence W_{2d} is a metabelian Lie algebra and every mapping

$\{x_1, \ldots, x_n, y_1, \ldots, y_n\} \to W_{2d}$

can be extended to a homomorphism $F_{2d} \to W_{2d}$. As a special case of the embedding theorem of Shmel’kin, the homomorphism $\varepsilon : F_{2d} \to W_{2d}$ defined by

$$\varepsilon(x_i) = a_i + p_i, \quad \varepsilon(y_i) = b_i + q_i, \quad i = 1, \ldots, d,$$

is a monomorphism. By this action of ε, the commutator ideal F'_{2d} is embedded into the free right $K[X_d,Y_d]$-module

$$C_{2d} = a_1K[X_d,Y_d] \oplus \cdots \oplus a_dK[X_d,Y_d] \oplus b_1K[X_d,Y_d] \oplus \cdots \oplus b_dK[X_d,Y_d]$$

as follows:

$$\varepsilon([x_i, x_j]) = a_ix_j - a_jx_i, \quad \varepsilon([y_i, y_j]) = b_iy_j - b_jy_i, \quad \varepsilon([x_i, y_j]) = a_iy_j - b_jx_i,$$

and then, by induction, if $w \in F'_{2d}$, then

$$\varepsilon([w, x_j]) = \varepsilon(w)x_j, \quad \varepsilon([w, y_j]) = \varepsilon(w)y_j, \quad j = 1, \ldots, d.$$

As a consequence of this construction, we have the following result.

Lemma 2.1. [15] Theorem 2] An element

$$\sum_{i=1}^{d} a_if_i(X_d,Y_d) + \sum_{i=1}^{d} b_ig_i(X_d,Y_d)$$

from C_{2d} is an image of an element from the commutator ideal F'_{2d} if and only if

$$\sum_{i=1}^{d} x_if_i(X_d,Y_d) + \sum_{i=1}^{d} y_ig_i(X_d,Y_d) = 0.$$

It follows immediately from Lemma 2.1 that the image $\varepsilon(F'_{2d})$ of F'_{2d} in C_{2d} is a submodule of the $K[X_d,Y_d]$-module C_{2d}. In the sequel we shall identify the elements of F'_{2d} with their images in C_{2d}.

If δ is a Weitzenböck derivation of $K[X_d,Y_d]$ we shall assume that it acts on $K[X_d,Y_d]$ by the rule

$$\delta(y_i) = x_i, \delta(x_i) = 0, \quad i = 1, \ldots, d,$$

and shall use without reference that the algebra of constants $K[X_d,Y_d]^\delta$ is generated by x_1, \ldots, x_d and the determinants [1] as conjectured by Nowicki [14] and proved
in \([9, 10, 7, 2, 12]\). In this special case the Jordan normal form \(J(\delta)\) of \(\delta\) consist of
\(2 \times 2\) Jordan cells only, i.e.,
\[
J(\delta) = \begin{pmatrix}
0 & 1 & \cdots & 0 & 0 \\
0 & 0 & \cdots & 0 & 0 \\
\vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & \cdots & 0 & 1 \\
0 & 0 & \cdots & 0 & 0
\end{pmatrix}.
\]
The action of \(\delta\) on \(\{a_i, b_i \mid i = 1, \ldots, d\}\) will be defined in the same way as on
\(\{x_i, y_i \mid i = 1, \ldots, d\}\). Thus \(\delta\) is extended to a derivation of \(F_{2d}\) and \(W_{2d}\). The vector
space \(C_{2d}^e\) of the constants of \(\delta\) in the free \(K[X_d, Y_d]\)-module \(C_{2d}\) is a \(K[X_d, Y_d]^\delta\)-module. The following theorem is a partial case of a result of \([3]\).

Theorem 2.2. Let \(\delta\) be a Weitzenböck derivation of the free metabelian Lie algebra \(F_{2d}\). Then the vector space \((F_{2d})^\delta\) of the constants of \(\delta\) in the commutator ideal \(F_{2d}\) of \(F_{2d}\) is a finitely generated \(K[X_d, Y_d]^\delta\)-module.

Since it will not cause misunderstanding with the notation for the polynomial algebra we shall use the notation
\[
K[X_d, Y_d]^\delta = K[X_d, U] = K[X_d, u_{pq} \mid 1 \leq p < q \leq d]
\]
for the algebra generated by \(X_d\) and the elements \(U = \{u_{pq} \mid 1 \leq i < j < k \leq d\}\) defined in \([\Pi]\). Drensky and Makar-Limanov \([7]\) showed that the algebra \(K[X_d, Y_d]^\delta\) has the following defining relations
\[
(2) \quad x_i u_{jk} - x_j u_{ik} + x_k u_{ij} = 0, \quad 1 \leq i < j < k \leq d.
\]
\[
(3) \quad u_{ij} u_{kl} - u_{ik} u_{jl} + u_{il} u_{jk} = 0, \quad 1 \leq i < j < k < l \leq d.
\]
and gave a canonical linear basis consisting of the elements of the form
\[
(4) \quad x_{i_1} \cdots x_{i_m} u_{k_1 l_1} \cdots u_{k_s l_s}
\]
such that the generators \(u_{k_1 l_1}\) and \(u_{k_3 l_3}\) do not intersect each other and \(u_{k_s l_s}\),
does not cover \(x_{i}\), for any \(\alpha, \beta, \gamma\). Here each \(u_{k_1 l_1}\) is identified with the open
interval \((k_1, l_1)\) on the real line. The generators \(u_{k_1 l_1}\) and \(u_{k_3 l_3}\) intersect each other if the intervals \((k_1, l_1)\) and \((k_3, l_3)\) have a nonempty intersection and are not contained in each other. We say also that \(u_{k_1 l_1}\) covers \(x_{i}\) if \(i\) belongs to the open
interval \((k_1, l_1)\). The order of generators in this basis is assumed to be as follows:
\(p_1 \leq \cdots \leq p_s\) and if \(p_n = p_{n+1}\), then \(q_n \leq q_{n+1}\); and the order among \(x_{i}\) is such
that \(i_1 \leq \cdots \leq i_m\).

As a direct consequence of the affirmative answer to the Nowicki Conjecture the algebra of constants \(K[A_d, B_d, X_d, Y_d]^\delta\) of the derivation \(\delta\) acting on the polynomial
algebra \(K[A_d, B_d, X_d, Y_d]\) is generated by \(A_d, X_d\) and the determinants
\[
(5) \quad w_{pq} = a_p y_q - b_p x_q = \begin{vmatrix}
a_p & b_p \\
a_q & b_q
\end{vmatrix}, \quad p, q = 1, \ldots, d.
\]
Hence the \(K[X_d, U]\)-module \(C_{2d}^\delta\) is generated by the elements \(a_1, \ldots, a_d\) and the
determinants \([5]\), and as a vector space \(C_{2d}^\delta\) is spanned by the elements of the form
\[
(6) \quad a_{i_1} x_{i_1} \cdots x_{i_m} u_{k_1 l_1} \cdots u_{k_s l_s}
\]
for $i_0, p_0, q_0 = 1, \ldots, d$. Ordering the elements $A_d \cup B_d \cup X_d \cup Y_d$ and assuming that the elements from A_d and B_d precede, respectively, the elements from X_d and Y_d, we obtain as an application of (2) and (3) that the $K[X_d, U]$-module C^d_{2d} has the following defining relations
\begin{align*}
 a_i u_{jk} - w_{ik} x_j + w_{ij} x_k &= 0, \quad 1 \leq i \leq d, 1 \leq j < k \leq d, \\
 w_{ij} u_{kl} - w_{ik} u_{jl} + w_{il} u_{jk} &= 0, \quad 1 \leq i \leq d, 1 \leq j < k < l \leq d.
\end{align*}

In order to fix a basis of C^d_{2d} as a vector space, the factors $x_i \cdot \ldots \cdot x_{i_m}, u_{k_1 l_1} \cdot \ldots \cdot u_{k_s l_s}$ and $x_j \cdot \ldots \cdot x_{j_r}, u_{p_1 q_1} \cdot \ldots \cdot u_{p_r q_r}$ of the elements (6) and (7) have to satisfy the restrictions in (4). Additionally, for the elements in (7) we require $q_0 \leq p_1$.

3. MAIN RESULTS

In this section we give the generators of the $K[X_d, U]^d$-module of constants $(F^d_{2d})^d$ in the commutator ideal F^d_{2d} of the free metabelian Lie algebra F^d_{2d}. Since $(F^d_{2d})^d$ is canonically embedded in C^d_{2d} we shall work in C^d_{2d} instead of directly in $(F^d_{2d})^d$.

Definition 3.1. We define the $K[X_d, U]$-submodule L of C^d_{2d} generated by the elements
\begin{align*}
 w_{ii}, & \quad 1 \leq i \leq d, \\
 w_{ij} + w_{ji}, & \quad 1 \leq i < j \leq d, \\
 a_i x_j - a_j x_i, & \quad 1 \leq i < j \leq d, \\
 a_i u_{pq} - w_{pq} x_i, & \quad 1 \leq i \leq d, 1 \leq p < q \leq d, \\
 a_j u_{ik} - a_j u_{ik} + a_k u_{ij}, & \quad 1 \leq i < j < k \leq d, \\
 w_{ij} u_{pq} - w_{pq} u_{ij}, & \quad 1 \leq i < j \leq d, 1 \leq p < q \leq d.
\end{align*}

By Lemma 2.1 one can easily observe that the generating elements (10)–(15) of L are Lie elements, i.e., images of elements in the commutator ideal F^d_{2d} of F^d_{2d}.

Lemma 3.2. The following elements span the quotient space C^d_{2d}/L.
\begin{align*}
 w_{p_0 q_0} u_{p_1 q_1} \cdot \ldots \cdot u_{p_r q_r}, \\
 a_{i_0} x_{i_1} \cdot \ldots \cdot x_{i_m} u_{k_1 l_1} \cdot \ldots \cdot u_{k_s l_s}
\end{align*}

where $u_{p_0 q_0} u_{p_1 q_1} \cdot \ldots \cdot u_{p_r q_r}$ and $x_{i_0} x_{i_1} \cdot \ldots \cdot x_{i_m} u_{k_1 l_1} \cdot \ldots \cdot u_{k_s l_s}$ are elements of the form (4); i.e., they are canonical basis elements of the algebra $K[X_d, U]$.

Proof. We shall work in the vector space C^d_{2d} modulo the subspace L. It is sufficient to handle the basis elements of C^d_{2d} of the form (16) and (17). Starting with the element $w_{p_0 q_0} x_{j_1} \cdot \ldots \cdot x_{j_r} u_{p_1 q_1} \cdot \ldots \cdot u_{p_r q_r}$ in (7) we apply the relation $w_{pq} x_i \equiv a_i u_{pq}$ (mod L) from (13) and bring the element from (7) to an element from (10). If the element from (7) is of the form $w_{p_0 q_0} u_{p_1 q_1} \cdot \ldots \cdot u_{p_r q_r}$, then (10) and (11) imply that we may assume that $p_0 < q_0$. Then using the relation (9) we obtain that the interval (p_0, q_0) does not intersect with $(p_1, q_1), \ldots, (p_r, q_r)$, and the generator (15) fixes the order among $u_{p_0 q_0}, u_{p_1 q_1}, \ldots, u_{p_r q_r}$. This closes the case (7). Now we consider the
element \(a_0, x_1, \ldots, x_m, u_{k_1, l_1}, \ldots, u_{k_s, l_s}\) in\(^6\). By assumption, the integers \(i_1, \ldots, i_m\) do not belong to the open intervals \((p_l, q_l)\). If \(i_0 \in (p_l, q_l)\) for some \(l = 1, \ldots, s\), then the relation \(a_j u_{k_l} \equiv a_l u_{k_j} + a_k u_{i_j} \mod L\) from \(^{14}\) replaces \(a_0 u_{p_0 q_0}\) with \(a_0 u_{p_0 q_0}\) and \(a_0 u_{p_0 q_0}\). Since the intervals \((i_0, q_0)\) and \((p_l, i_0, p_l)\) are shorter than the interval \((p_l, q_l)\), the integers \(i_1, \ldots, i_m\) are not covered by the intervals \((p_1, q_1), \ldots, (p_s, q_s)\). In finite number of steps the same holds for the integer \(i_0\). Finally the generator \(^{12}\) fixes the order among \(x_i, t = 0, 1, \ldots, m\). \(\square\)

Theorem 3.3. The \(K[X_d, U]\)-module \(L\) consists of all Lie elements in \(C_{2d}^\delta\).

Proof. Let

\[
\sum \xi_{ikl} a_{i_0} x_{i_1} \cdots x_{i_m} u_{k_1, l_1} \cdots u_{k_s, l_s} + \sum \psi_{pq} w_{p_0 q_0} u_{p_1, q_1} \cdots u_{p_r, q_r}
\]

be a Lie element in the vector space \(C_{2d}^\delta / L\). Then by Lemma 2.1 and Lemma 3.2 we have that

\[
\sum \xi_{ikl} x_{i_0} x_{i_1} \cdots x_{i_m} u_{k_1, l_1} \cdots u_{k_s, l_s} + \sum \psi_{pq} w_{p_0 q_0} u_{p_1, q_1} \cdots u_{p_r, q_r} = 0,
\]

where \(x_{i_0} x_{i_1} \cdots x_{i_m} u_{k_1, l_1} \cdots u_{k_s, l_s}\) and \(w_{p_0 q_0} u_{p_1, q_1} \cdots u_{p_r, q_r}\) are basis elements of the algebra \(K[X_d, U]\). Clearly each element from the first sum is linearly independent from the elements of the second sum, since there is at least one multiplier of the form \(x_{i_0}\) in each summand of the first sum which does not appear in the second sum. This implies that

\[
\sum \xi_{ikl} x_{i_0} x_{i_1} \cdots x_{i_m} u_{k_1, l_1} \cdots u_{k_s, l_s} = \sum \psi_{pq} w_{p_0 q_0} u_{p_1, q_1} \cdots u_{p_r, q_r} = 0.
\]

Thus \(\xi_{ikl} = 0 = \psi_{pq}\) for all \(i, k, l, p, q\), because \(x_{i_0} x_{i_1} \cdots x_{i_m} u_{k_1, l_1} \cdots u_{k_s, l_s}\) and \(w_{p_0 q_0} u_{p_1, q_1} \cdots u_{p_r, q_r}\) uniquely determine the monomials \(a_0 x_{i_0} x_{i_1} \cdots x_{i_m} u_{k_1, l_1} \cdots u_{k_s, l_s}\) and \(w_{p_0 q_0} u_{p_1, q_1} \cdots u_{p_r, q_r}\), respectively. \(\square\)

Finally the generators of \((F_{2d}^\delta)^5\) are obtained by computing the inverse images of generators of \(L\).

Corollary 3.4. The \(K[X_d, U]\)-module \((F_{2d}^\delta)^5\) is generated by the following elements

\[
[x_i, y_i], \quad 1 \leq i \leq d,
\]

\[
[x_i, x_j], \quad 1 \leq i < j \leq d,
\]

\[
[x_i, y_j] + [x_j, y_i], \quad 1 \leq i < j \leq d,
\]

\[
[x_i, x_p, y_q] - [x_i, y_p, x_q], \quad 1 \leq i \leq d, 1 \leq p < q \leq d,
\]

\[
[x_i, x_j, y_k] - [x_i, x_k, y_j] + [x_j, x_k, y_i], \quad 1 \leq i < j < k \leq d,
\]

and

\[
[x_i, x_p, y_j, y_q] + [y_i, y_p, x_j, x_q] - [x_i, y_p, y_j, x_q] - [y_i, x_p, x_j, y_q],
\]

where \(1 \leq i < j \leq d, 1 \leq p < q \leq d\).

Acknowledgements

The second named author is very thankful to the Institute of Mathematics and Informatics of the Bulgarian Academy of Sciences for the creative atmosphere and the warm hospitality during his visit as a post-doctoral fellow when this project was carried out.
References

[1] Yu. A. Bahturin, Identical Relations in Lie Algebras (Russian), Nauka, Moscow, 1985. Translation: VNU Science Press, Utrecht, 1987.
[2] L. Bedratyuk, A note about the Nowicki conjecture on Weitzenböck derivations, Serdica Math. J. 35 (2009), 311-316.
[3] R. Dangovski, V. Drensky, Ş. Fındık, Weitzenböck derivations of free metabelian Lie algebras, Linear Algebra and its Applications, 439 (2013), No. 10 3279-3296.
[4] H. Derksen, G. Kemper, Computational Invariant Theory, Encyclopaedia of Mathematical Sciences, Invariant Theory and Algebraic Transformation Groups 130, Springer-Verlag, Berlin, 2002.
[5] V. Drensky, Free Algebras and PI-Algebras, Springer, Singapore, 1999.
[6] V. Drensky, C.K. Gupta, Constants of Weitzenböck derivations and invariants of unipotent transformations acting on relatively free algebras, J. Algebra 292 (2005), No. 2, 393-428.
[7] V. Drensky, L. Makar-Limanov, The conjecture of Nowicki on Weitzenböck derivations of polynomial algebras, J. Algebra Appl. 8 (2009), 41-51.
[8] S. Goto, F. Hayasaka, K. Kurano and Y. Nakamura, Rees algebra of the second syzygy module of the residue field of a regular local ring, Contemp. Math. 390 (2005), 97-108.
[9] J. Khoury, Locally Nilpotent Derivations and Their Rings of Constants, Ph.D. Thesis, Univ. Ottawa, 2004.
[10] J. Khoury, A Groebner basis approach to solve a conjecture of Nowicki, J. Symbolic Comput. 43 (2008), 908-922.
[11] K. Kurano, Positive characteristic finite generation of symbolic Rees algebras and Roberts’ counterexamples to the fourteenth problem of Hilbert, Tokyo J. Math. 16 (1993), No. 2, 473-496.
[12] S. Kuroda, A simple proof of Nowicki’s conjecture on the kernel of an elementary derivation, Tokyo J. Math. 32 (2009), 247-251.
[13] M. Miyazaki, Invariants of the unipotent radical of a Borel subgroup, Proceedings of the 29th Symposium on Commutative Algebra in Japan, Nagoya, Japan, November 19-22, 2007, 43-50.
[14] A. Nowicki, Polynomial Derivations and Their Rings of Constants, Uniwersytet Mikolaja Kopernika, Torun, 1994. www-users.mat.umk.pl/~anow/pol-der.pdf.
[15] A.L. Shmel’kin, Wreath products of Lie algebras and their application in the theory of groups (Russian), Trudy Moskov. Mat. Obshch. 29 (1972), 247-260. Translation: Trans. Moscow Math. Soc. 29 (1973), 239-252.
[16] B. Sturmfels, Algorithms in Invariant Theory, 2nd ed. Texts and Monographs in Symbolic Computation, Springer-Verlag, Wien, 2008.
[17] R. Weitzenböck, Über die Invarianten von linearen Gruppen, Acta Math. 58 (1932), 231-293.
[18] E.I. Zelmanov, On Engel Lie algebras, Sibirsk. Mat. Zh. 29 (1988), No. 5, 112-117 (in Russian). Translation: Siberian Math. J. 29 (1988), 777-781.

Institute of Mathematics and Informatics, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria

E-mail address: drensky@math.bas.bg

Department of Mathematics, Çukurova University, 01330 Balcalı, Adana, Turkey
E-mail address: sfindik@cu.edu.tr