Orbit method quantization of the AdS$_2$ superparticle

Martin Heinze1, Ben Hoare2, George Jorjadze2,3 and Luka Megrelidze4

1II. Institut für Theoretische Physik, Universität Hamburg, Luruper Chaussee 149, D-22671 Hamburg, Germany
2Institut für Physik und IRIS Adlershof, Humboldt-Universität zu Berlin, Zum Großen Windkanal 6, D-12489 Berlin, Germany
3Razmadze Mathematical Institute and FU of Tbilisi, University Campus of Digomi, Agmashenebeli Alley 240, 0159, Tbilisi, Georgia
4Ilia State University K. Cholokashvili Ave 3/5, 0162, Tbilisi, Georgia

E-mail: martin.heinze@desy.de, ben.hoare@physik.hu-berlin.de, george.jorjadze@physik.hu-berlin.de and luka.megrelidze.1@iliauni.edu.ge

Received 26 April 2015, revised 20 June 2015
Accepted for publication 23 June 2015
Published 20 July 2015

Abstract
We consider the Hamiltonian reduction and canonical quantization of a massive AdS$_2$ superparticle realized on the coset $\text{OSP}(1|2)/\text{SO}(1,1)$. The phase space of the massive superparticle is represented as a coadjoint orbit of a timelike element of $\text{osp}(1|2)$. This orbit has a well defined symplectic structure and the $\text{OSP}(1|2)$ symmetry is realized as the Poisson bracket algebra of the Noether charges. We then construct canonical coordinates given by one bosonic and one fermionic oscillator, whose quantization leads to the Holstein–Primakoff type realization of $\text{osp}(1|2)$. We also perform a similar analysis and discuss new features and inconsistencies in the massless case.

Keywords: AdS/CFT correspondence, superparticle, coset superspace, AdS$_2$, $\text{OSP}(1|2)$, geometric quantization

1. Introduction

The quantization of constrained systems is an important problem of modern physics. Certainly a good motivation to be interested in this question is the AdS/conformal field theory (CFT) correspondence [1], which connects superstring theory in d dimensional Anti-de-Sitter space (AdS$_d$) to a super CFT on the $d-1$ dimensional conformal boundary. For the best studied example, the duality between the type IIB superstring on AdS$_5 \times S^5$ [2] and $\mathcal{N} = 4$ super Yang–Mills theory, there has been significant progress during the last decade [3], which
can be attributed to existence of integrability in the planar limit [4]. In particular, due to the conjectured quantum integrability, powerful methods have been devised [5], which in principle allow one to predict the spectrum E of arbitrary string states at large ’t Hooft coupling, $\lambda = (2\pi R^2 T_0)^2 \gg 1$, see e.g. [6]. This ostensibly amounts to quantization of the system.

With all these advances it is worth noting that the quantization of AdS superstrings from first principles is still an open question. For type IIB supergravity on AdS$_4 \times S^5$, corresponding to the subsector of half BPS string states, the spectrum has been known for a long time [7]. In [8] it was observed that the reformulation and first quantization of AdS$_3 \times S^3$ supergravity in terms of a light-cone scalar superfield [9] is equivalent to quantizing the massless AdS$_3 \times S^3$ superparticle. Hence, building on the phase space formalism of [10], the resulting quantization indeed demonstrated a matching of the spectra, see also the related work [11]. Indeed, following the standard literature it seems that a thorough understanding of the massless superparticle would be a useful prerequisite for tackling the superstring.

For massive string states, since the pioneering works [12–15], the majority of study has concentrated on semiclassical string dynamics at large ’t Hooft coupling, $\lambda \gg 1$. For these one relies on some of the $\mathfrak{psu}(2, 2|4)$ charges diverging as $\sqrt{\lambda}$, rendering the corresponding string state long, or heavy, $E \propto \sqrt{\lambda}$. In the BMN limit [12] the total angular momentum on S^5 J diverges. Corrections in $\frac{1}{28} = (E + J)^{-1}$ were computed in [16] and [17], in which the so-called uniform light-cone gauge [18] proved to be convenient. This then led to the perturbative calculation of the scattering S-matrix in this limit [19].

However, in the case of finite $\mathfrak{psu}(2, 2|4)$ charges, for which semiclassical string solutions become short, there have been considerable challenges calculating the string spectrum beyond the leading order [13], $E \propto \lambda^{1/4}$. The reason for this is that in this regime the perturbative expansion of the Lagrangian formally breaks down, which can be traced back to the particular scaling behavior of the string zero-modes [20]. For the uniform light cone gauge [18] this is related to $P_\pm = E - J \propto \lambda^{1/4}$ becoming infinite. This raises the question of whether there is a more useful gauge choice to treat these excitations, or if the computations can be done in a gauge invariant way.

Using static gauge [21] and working in bosonic AdS$_4 \times S^3$, a generalization of the pulsating string [22] was constructed in [23], which allowed for unconstrained string zero-modes. This so-called single-mode string showed classical integrability and invariance under the isometries SO(2, 4) \times SO(6). For the lowest string excitation, dual to a member of the Konishi supermultiplet, the first non-trivial quantum correction to the spectrum was indeed reproduced. The fact that [23] benefited from works on the massive bosonic AdS \times S particle [24] suggests that for the superstring it would be worthwhile understanding not only the massless, but also the massive AdS \times S superparticle.

The single-mode string solution of [23] is the SO(2, 4) \times SO(6) orbit of the pulsating string [22], motivating the investigation of symmetry group orbits of other semiclassical solutions. This is also appealing as the Kirillov–Kostant– Souriau method of coadjoint orbits, see also the seminal works [25, 26], leads to a quantization in terms of the symmetry generators, which is manifestly gauge-independent. This idea was explored in [27], where, concentrating on the bosonic case of AdS$_3 \times S^3$, orbits of the particle and spinning string [15] were investigated. In a very natural and succinct way, the quantization procedure gave rise to a Holstein–Primakoff realization for the isometry algebra [28], in agreement with previous results for the particle [24], as well as consistent short and long string limits for the spinning string.

The goal of this work is to generalize the coadjoint orbit method to the case of supergroups. As a first step in this direction, motivated by the AdS/CFT correspondence, we will
investigate the AdS$_2$ superparticle. Recalling that AdS$_2$ can be realized as the coset SU(1, 1)/SO(1, 1), here we will focus on the simplest generalization of this coset, OSP(1|2)/SO(1, 1). The superalgebra osp(1|2) [29] is the basic, hence classical and simple, Lie superalgebra of lowest dimension [30], and has bosonic subalgebra su(1, 1) as required.

Specifying the coset does not determine the action uniquely. Motivated by applications to Green–Schwarz string models, we choose the one possessing κ-symmetry in the massless case. However, in this case the κ-symmetry transformations leave us with an insufficient amount of fermions and consequently the quantization will only be consistent for the massive case.

In fact, non-critical type IIA superstring theory on OSP(1|2)/SO(2) has been studied in [31], where due to κ-symmetry and reparametrization invariance, all fermionic and bosonic fields decouple, leaving only a supersymmetric Calogero–Moser model. The related work [32] discussed strings on the coset OSP(2|2)/SO(1, 1) \times SO(2), while in [33] the coset model on OSP(1|4)/SO(1, 3) has been investigated. Furthermore, there have also been works [34] on WZNW models and topological strings for the coset OSP(1|2)/SO(2). Apart from these, the present work should also be relevant in the context of gauge/string duality for AdS$_2$ \times S^2 [35, 36], see also [37] and the recent works [38].

The paper is organized as follows. After setting up notation in section 2, in section 3 we revise how the coadjoint orbit method works for the massive and massless bosonic AdS$_2$ particle [26]. We then proceed to the AdS$_2$ superparticle in section 4, in which we discuss the action of the OSP(2|1)/SO(1, 1) coset model and its κ-symmetry transformations in the massless case. With this in mind, the coadjoint orbit method is then generalized to the massive and massless AdS$_2$ superparticle. We conclude and give an outlook in section 5.

2. Notation and conventions

Using the Pauli matrices σ_j ($j = 1, 2, 3$), a basis of su(1, 1) can be written as

$$\mathbf{t}_0 = -i\mathbf{\sigma}_3, \quad \mathbf{t}_1 = \mathbf{\sigma}_1, \quad \mathbf{t}_2 = \mathbf{\sigma}_2.$$ (2.1)

The matrices \mathbf{t}_a ($a = 0, 1, 2$) satisfy the relations

$$\mathbf{t}_a \mathbf{t}_b = \eta_{ab} \mathbf{I} + \epsilon_{abc} \mathbf{t}_c,$$ (2.2)

where \mathbf{I} is the unit matrix, $\eta_{ab} = \text{diag}(-1, 1, 1)$ and ϵ_{abc} is the Levi-Civita tensor, with $\epsilon_{012} = 1$. The Killing form defined by the normalized trace $\langle \mathbf{u}, \mathbf{v} \rangle \equiv \frac{1}{2} \text{Tr}({\mathbf{t}}_a \mathbf{t}_b \mathbf{u}^a \mathbf{v}^b) = \eta_{ab}$ provides the isometry between su(1, 1) and 3d Minkowski space, since for a pair of su(1, 1) vectors $\mathbf{u} = \nu^a \mathbf{t}_a$ and $\mathbf{v} = \nu^a \mathbf{v}_a$, one has $\langle \mathbf{u}, \mathbf{v} \rangle = \nu^a \nu^b$. Expanding $\mathbf{v} \in \text{su}(1, 1)$ as

$$\mathbf{v} = \mathbf{v}_1 \mathbf{t}_1 + \mathbf{v}_2 \mathbf{t}_2 + \mathbf{v}_- \mathbf{t}_-,$$ (2.3)

with $\mathbf{t}_\pm = \frac{1}{2}(\mathbf{t}_2 \pm \mathbf{t}_0)$, one finds $\mathbf{v}_1 = \langle \mathbf{v}, \mathbf{t}_1 \rangle$, $\mathbf{v}_2 = 2\langle \mathbf{v}, \mathbf{t}_2 \rangle$ and

$$\langle \mathbf{v}^2 \rangle = \mathbf{v}_1^2 + \mathbf{v}_-^2.$$ (2.4)

We consider the following matrix representation of the real superalgebra $\text{osp}(1|2)$

$$T_0 = \begin{pmatrix} \mathbf{t}_0 & 0 \\ 0 & 0 \end{pmatrix}, \quad S_- = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 1 \\ -1 & 1 & 0 \end{pmatrix}, \quad S_+ = -i \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & -1 \\ 1 & 1 & 0 \end{pmatrix}.$$ (2.5)
where \(t_a \) are given by (2.1). The similarity transformation \(U^{-1} T_a U, U^{-1} S_z U \), with

\[
U = \frac{1}{\sqrt{2}} \begin{pmatrix}
1 & i & 0 \\
1 & 1 & 0 \\
0 & 0 & \sqrt{2}
\end{pmatrix}
\]

maps (2.5) to the basis vectors of \(\mathfrak{osp}(1|2) \) in the usual defining representation.

The commutation relations of the basis elements

\[
T_i, \quad T_z = \frac{1}{2}(T_1 \pm T_0), \quad S_z
\]

(2.7)

take the following compact form

\[
\begin{bmatrix}
T_i, & T_z \\
T_i, & S_z \\
T_z, & S_z
\end{bmatrix} = \mp 2T_z, \quad \begin{bmatrix}
T_i, & S_z \\
T_z, & S_z
\end{bmatrix} = S_z, \quad \begin{bmatrix}
T_z, & S_z
\end{bmatrix} = 0,
\]

(2.8)

The normalized supertrace in \(\mathfrak{osp}(1|2) \) with nonzero components

\[
\langle T_i T_i \rangle = 1, \quad \langle T_+ T_- \rangle = \langle T_- T_+ \rangle = \frac{1}{2}, \quad \langle S_+ S_- \rangle = -\langle S_- S_+ \rangle = 2i
\]

(2.9)

Then expanding \(V \in \mathfrak{osp}(1|2) \) in the basis (2.7)

\[
V = V_1 T_1 + V_2 T_2 + V_3 T_3 + V_4 S_+ + V_5 S_-
\]

(2.10)

one finds \(V_1 = \langle V T_1 \rangle, V_2 = 2\langle V T_2 \rangle \) and \(V_3^\pm = \pm \frac{i}{2} \langle V S_\pm \rangle \).

3. Coset construction of the bosonic AdS\(_2\) particle

3.1. Classical description

Let us start by considering particle dynamics on AdS\(_2\), as described by the coset sigma model for SU(1, 1)/SO(1, 1). Explicitly we use the basis for SU(1, 1) given in section 2 and consider the SO(1, 1) gauge transformation \(g(\tau) \mapsto e^{i(\xi\tau)} g(\tau) \) generated by \(t_1 \). The corresponding gauge invariant action is

\[
S = \int d\tau \left[\frac{\langle (g^{-1} A t_1) \rangle^2}{2\xi} - 2\xi \mu^2 \right]
\]

(3.1)

where \(\xi \) is the worldline einbein and \(A \) transforms as a gauge potential \(A(\tau) \mapsto A(\tau) + \hat{a}(\tau) \). Varying (3.1) with respect to \(A \) gives \(A = \langle t_1 g^{-1} \rangle \) and its insertion back in (3.1) leads to the gauge invariant action written solely in terms of \(g \)

\[
S = \int d\tau \left[\frac{\langle (g^{-1} g^{-1}) \rangle^2 - \langle g^{-1} t_1 \rangle^2}{2\xi} - 2\xi \mu^2 \right]
\]

(3.2)
Defining \(\mathbf{v} = \mathbf{g} g^{-1} \) and using (2.3) and (2.4), the action (3.2) can be written as

\[
S = \int dr \left[\frac{v_+ v_-}{2} - 2\xi \mu^2 \right].
\]

The gauge transformation of \(\mathbf{v} \) is given by \(\mathbf{v} \mapsto e^{\alpha t_1} \mathbf{v} e^{-\alpha t_1} + \alpha t_1 \). Using \([t_1, t_3] = \mp 2t_3\), we obtain \(v_\pm \mapsto e^{\pm 2\alpha} v_\pm \), which explicitly demonstrates the gauge invariance of (3.3).

The action (3.3) can also be written in terms of a Lie algebra valued gauge invariant variable \(\mathbf{x} = \mathbf{g} \). Indeed, one has \(\mathbf{x} = \mathbf{g}^{-1} [t_1, \mathbf{v}] \mathbf{g} \) and \([t_1, \mathbf{v}] = 2v_+ t_3 - 2v_- t_4\). Hence, \(\langle x^2 \rangle = -4v_3 v_- \) and (3.3) becomes

\[
S = \int dr \left[-\frac{\xi \dot{x}^u x^u}{2\xi} - \frac{\xi \mu^2}{2} \right].
\]

Here, \(\xi = 4\xi \) and \(x_u = \langle x t_u \rangle \) are the coordinates of \(x \) in the basis (2.1). These coordinates are real and they are bounded on the hyperboloid \(-x_u x^u = (x_0)^2 - (x_1)^2 - (x_2)^2 = -1\), since \(\langle x^2 \rangle = 1\). The time coordinate corresponds to the polar angle in the \((x_1, x_2)\) plane, and hence, after considering the universal cover, the action (3.4) describes the AdS\(_2\) particle with mass \(\mu \).

This can be seen explicitly by introducing the global coordinates

\[
x_1 + i x_2 = \cosh \rho \ e^{-i\eta}, \quad x_0 = \sinh \rho, \quad g = \exp \left(\frac{\lambda t_1}{2} \right) \exp \left(\frac{\rho t_2}{2} \right) \exp \left(\frac{i t_0}{2} \right),
\]

such that action (3.4) becomes

\[
S = \int dr \left[-\cosh^2 \rho \ i^2 + \rho^2 - \frac{\xi \mu^2}{2} \right].
\]

The global symmetry of (3.2) is given by the right multiplications \(\mathbf{g} \mapsto \mathbf{g} \mathbf{h} \), with \(\mathbf{h} \in \text{SU}(1, 1) \), and the corresponding Noether charge reads

\[
R = \frac{\mathbf{g}^{-1} \dot{\mathbf{g}} - \langle \dot{\mathbf{g}} g^{-1} t_1 \rangle g^{-1} t_1 \mathbf{g}}{\xi}.
\]

Writing \(R \) in the form

\[
R = \begin{pmatrix} -iE & -iB \\ iB^* & iE \end{pmatrix},
\]

with \(B = B_2 + iB_1 \) and \(B^* = B_2 - iB_1 \), we find that \(E \) corresponds to the particle energy, while \(B_1 \) and \(B_2 \) are the boost generators.

Varying (3.2) with respect to \(\xi \) gives the mass-shell condition \(\langle R R \rangle + 4\mu^2 = 0 \), which is equivalent to the Casimir number relation

\[
E^2 - B^* B = \mu^2.
\]

It is interesting to note that the massive model considered here is classically equivalent to a massless particle moving on AdS\(_2\) \times S\(^1\) with fixed angular momentum on S\(^1\). To see this, we extend the \(\mu = 0 \) case of (3.1) as follows.
\[S = \int \! \! dr \left[\frac{\langle \left(\frac{g}{g^{-1}} - A t_1 \right)^2 \rangle + \dot{\phi}^2}{2\xi} \right], \]

where \(\phi \) is the angle on \(S^1 \). Varying with respect to \(\xi \) gives the mass-shell condition
\[\langle \left(\frac{g}{g^{-1}} - A t_1 \right)^2 \rangle + \dot{\phi}^2 = 0. \]
Furthermore, cyclicity of \(\phi \) yields the integral of motion
\[\dot{\phi} = 2\mu, \]
which when inserted into the mass-shell condition leads us back to (3.9).

3.2. First order formulation and quantization

Applying the Faddeev–Jackiw formalism to (3.2), one finds the first order action
\[S = \int \! \! dr \left[\langle L \frac{g^{-1}}{g} \rangle - \frac{\xi}{2} \left(L_t L_\mu + 4\mu^2 \right) - A L_1 \right], \]
where \(L \) is a Lie algebra valued phase space variable and \(L_1, L_\mu \) are its components as in (2.3).
The variables \(\xi \) and \(A \) now play the role of Lagrange multipliers and their variations provide the constraints
\[L_t L_\mu + 4\mu^2 = 0, \quad L_1 = 0. \]
Thus, the system is described by the 1-form and the Noether charge
\[\Theta = \langle L \frac{d g^{-1}}{g} \rangle, \quad R = g^{-1} L g, \]
restricted to the constraint surface (3.12). The reduction schemes for the massive and the massless cases are different and hence we analyze them separately.

First we consider the massive case, for which one can use the parametrization
\[L_\pm = \mp 2\mu e^{\gamma \tau}, \]
for some \(\gamma \), and hence \(L \) can be written as \(L = 2\mu e^{\tau_0} t_0 e^{-\tau_1} \). Setting \(g = e^{\tau_1} g_\mu \), (3.13) then takes a coadjoint orbit form [26]
\[\Theta = 2\mu \langle t_0 \frac{dg_\mu}{g_\mu} \rangle, \quad R = 2\mu g^{-1} \tau_0 g_\mu. \]
With the parametrization
\[g_\mu = e^{\tau_1} \begin{pmatrix} \sqrt{1 + z^* z} & z \\ z^* & \sqrt{1 + z^* z} \end{pmatrix}, \]
equation (3.14) reduces to
\[\Theta = \frac{i}{2} \left(b^a d b - b d b^a \right) - 2\mu d\phi, \quad R = 2 \begin{pmatrix} -i \left(\mu + b^a b \right) & -i \sqrt{2\mu + b^a b} b \\ i b^a \sqrt{2\mu + b^a b} & i \left(\mu + b^a b \right) \end{pmatrix}. \]

where \(b = \sqrt{2\mu} \) and \(b^a = \sqrt{2\mu} z^a \). From (3.8) we can then extract the Noether charges
\[E = \mu + b^a b, \quad B = \sqrt{2\mu + b^a b}, \quad B^a = b^a \sqrt{2\mu + b^a b}. \]

The symplectic form \(\Omega = d\Theta \) obtained from (3.16) is canonical \(\Omega = i d b^a \wedge db \) and in terms of \((B, B^a) \) it takes the Kirillov–Kostant form
Quantization in the oscillator variables \((b, b^*)\) then leads to the Holstein–Primakoff realization of the symmetry generators (3.17) with Casimir number

\[
C = E^2 - \frac{1}{2} \left(B^*B + BB^* \right) = \mu(\mu - 1).
\]

This representation is unitary and irreducible for \(\mu > 0\).

Now we consider the massless case. Note that at \(\mu = 0\) the 2-form (3.18) is singular at the origin \(B_0 = 0 = B_2\). This point corresponds to the massless particle with zero energy and should be removed from the phase space as for Minkowski space. From (3.12) we then have two possibilities, either \(L_+ = -e^{rs}\) and \(L_- = 0\), or \(L_+ = 0\) and \(L_- = e^{-rs}\). Let us analyze the second one, which corresponds to \(L = e^{rs} t_+ e^{-rs} t_\). As in the massive case, setting \(g = e^{rs} t\) yields

\[
\Theta = (t_+ dg_\gamma g^{-\gamma}), \quad R = g^{-\gamma} t_+ g_\gamma,
\]

and using the parametrization \(g_\gamma = e^{2\alpha \tau t} e^{2\gamma t} e^{2\tau t}\), we obtain

\[
\Theta = e^{\beta} d\gamma, \quad R = e^{\beta} \left(t_+ - 2\gamma t_1 - 4\gamma^2 t_- \right).
\]

The dynamical integrals are then given by

\[
E = \left(\gamma^2 + 1/4 \right) e^\beta, \quad B_1 = -\gamma e^\beta, \quad B_2 = -\left(\gamma^2 - 1/4 \right) e^\beta,
\]

and \(\Omega = d\Theta = de^\beta \wedge d\gamma\) again takes the Kirillov–Kostant form (3.18) for \(\mu = 0\). The case \(L_+ = -e^{rs}\) and \(L_- = 0\) gives the same answer in a similar way.

The dynamical integrals (3.22) can be expressed through canonical oscillator variables,

\[
E = b^*b, \quad B = \sqrt{b^*b} b, \quad B^* = b^*\sqrt{b^*b}.
\]

With \(|b| > 0\), and one arrives again at the Holstein–Primakoff representation for \(\mu = 0\). This representation becomes irreducible if one removes the ground state \(|0\rangle\), which is annihilated by all symmetry generators. Note that the resulting representation is unitary equivalent to the representation (3.17) for \(\mu = 1\).

4. Coset construction of the AdS2 superparticle

4.1. Classical description

Let us consider \(g(\tau) \in \text{OSP}(1|2)\) and the gauge transformations \(g(\tau) \mapsto e^{\alpha(\tau) T_\gamma} g(\tau)\). The ‘left current’ \(V = g^{-1}\) then transforms as \(V \mapsto e^{\alpha T_\gamma} V e^{-\alpha T_\gamma} + \alpha T_1\) and, using the expansion (2.10), we find the following gauge transformations for its components

\[
V_1 \mapsto V_1 + \dot{\alpha}, \quad V_\pm \mapsto e^{\pm 2\alpha} V_\pm, \quad V_\pm^* \mapsto e^{\pm \alpha} V_\pm^*.
\]

We describe a superparticle on AdS2 by the following gauge invariant action

\[
S = \int d\tau \left[\frac{V_\pm V_\mp}{2\xi} - 2 \xi \mu^2 \right].
\]
The Noether charge related to the right multiplications $g \mapsto gh$ is then given by
\[
R = \frac{g^{-1}(V_+ T_- + V_- T_+) g}{\xi}, \quad (4.3)
\]
and it satisfies the mass-shell condition $\langle R R \rangle + 4\mu^2 = 0$.

The form of this action is motivated by the supercoset formulation of the Green–Schwarz string on $\text{AdS}_5 \times S^5$ [2], $\text{AdS}_5 \times S^3$ [36], AdS_2 with NS–NS [31] or R–R flux [32], and other integrable AdS backgrounds [39]. Removing the dependence of the spacelike worldsheet coordinate the WZ term of those actions drops out and in all cases we are just left with the square of the current projected onto the Grassmann even part of the coset. Furthermore, in the massless case this implies that this action will have a κ-symmetry halving the number of fermionic degrees of freedom. Indeed, in this case the action coincides with a truncation of the $\text{AdS}_2 \times S^2$ super 0-brane action constructed in [35].

It is also of interest to look at the explicit form of this action. This is readily doable as there are only two Grassmann odd generators in $\mathfrak{osp}(1|2)$ and hence only two fermionic fields. Parametrizing the gauge fixed group field as
\[
g = \exp \left(\frac{\psi_1 S_1}{2} + \frac{\psi_2 S_-}{2} \right) \exp \left(\frac{\rho T_2}{2} \right) \exp \left(\frac{i T_0}{2} \right), \quad (4.4)
\]
we find the following action
\[
S = \int \! dr \left[\frac{1 + i\psi_1 \psi_2}{2\xi} \left(\cosh \rho \, t + \hat{\rho} - i\psi_1 \psi_1 \right) \left(- \cosh \rho \, t + \hat{\rho} + i\psi_2 \psi_2 \right) - \frac{\hat{\xi} \mu^2}{2} \right].
\]
\[
(4.5)
\]
where $\hat{\xi} = 4\xi$.

To take the flat space limit we set
\[
t \to \frac{x^0}{R}, \quad \rho \to \frac{x^1}{R}, \quad \psi_{1,2} \to \frac{\hat{x}_{1,2}}{\sqrt{R}}, \quad \hat{\xi} \to \frac{\xi}{R^2}, \quad \mu \to \mu R, \quad (4.6)
\]
and take $R \to \infty$. Doing so we find
\[
S = \int \! dr \left[\frac{\hat{x}^0 + \hat{x}^1 - i\psi_1 \hat{x}_1}{2\hat{\xi}} \left(- \hat{x}^0 + \hat{x}^1 + i\psi_2 \hat{x}_2 \right) - \frac{\hat{\xi} \mu^2}{2} \right],
\]
\[
(4.7)
\]
which can easily be seen to be equivalent to the $2d$, $\mathcal{N} = (1, 1)$ superparticle [40]
\[
S = \int \! dr \left[\eta_{\mu \nu} \left(\hat{x}^\mu - i\psi_1 \hat{x}_1 \right) \left(\hat{x}^\nu - i\psi_2 \hat{x}_2 \right) - \frac{\hat{\xi} \mu^2}{2} \right],
\]
\[
(4.8)
\]
the field content of which is given by two bosons and one Majorana spinor
\[
x = \begin{pmatrix} \hat{x}^0 \\ \hat{x}^1 \end{pmatrix}, \quad \chi = \frac{1}{\sqrt{2}} \begin{pmatrix} \hat{x}_1 \\ \hat{x}_2 \end{pmatrix}, \quad \eta = \text{diag}(-1, 1), \quad \gamma^0 = \sigma_2, \quad \gamma^1 = i\sigma_1.
\]
\[
(4.9)
\]
Considering fluctuations around a non-trivial bosonic background, the actions (4.5) and (4.7) describe two bosonic fields satisfying second order equations of motion, and two fermionic fields satisfying first order equations of motion. Therefore, in the massive case,
taking account of the mass-shell condition, we find one on-shell bosonic and one on-shell fermionic degree of freedom.

In the massless case, due to the presence κ-symmetry halving the number of fermionic degrees of freedom, we encounter a problem. The κ-symmetry can be most easily seen if we consider the following field redefinitions in (4.5) with $\mu = 0$

\[
\bar{\xi} = \text{sech}^2 \rho (1 - i \psi t) \xi, \quad x^+ = t + 2 \tan^{-1} e, \quad x^- = t - 2 \tan^{-1} e, \quad \chi_1 = \sqrt{\text{sech}} \rho \psi_1, \quad \chi_2 = \sqrt{\text{sech}} \rho \psi_2.
\] (4.10)

The resulting action is given by

\[
S = \int dr \left[- \frac{\left(\dot{x}^+ - i \bar{\xi} \dot{\chi}_1 \right) \left(\dot{x}^- - i \bar{\xi} \dot{\chi}_2 \right)}{2 \bar{\xi}} \right],
\] (4.11)

which remarkably is formally equivalent to the massless case of the $2d, \mathcal{N} = (1, 1)$ action (4.7) when we take $x^\pm = x^0 \pm x^1$ and $\bar{\xi} = \xi$. The action (4.11) is then invariant under the following κ-symmetry transformations [41]

\[
\delta \bar{\xi} = -2i \bar{\xi} \left(\dot{\chi}_1 \kappa_2 + \dot{\chi}_2 \kappa_1 \right), \quad \delta x^+ = -i \bar{\xi} P^+ \kappa_2, \quad \delta x^- = -i \bar{\xi} P^- \kappa_1,
\]

\[
\delta \chi_1 = -P^+ \kappa_2, \quad \delta \chi_2 = -P^- \kappa_1,
\] (4.12)

where $\kappa_{1,2}$ are infinitesimal Grassmann odd parameters that are allowed to depend on τ and we have defined

\[
P^+ = \dot{x}^+ - i \bar{\xi} \dot{\chi}_1, \quad P^- = \dot{x}^- - i \bar{\xi} \dot{\chi}_2.
\] (4.13)

Note that the mass-shell condition following from (4.11) is $P_+ P_- = 0$ and hence the on-shell rank of the κ-symmetry transformations (4.12) is one.

As we will see, this problem will reappear when we try to quantize the massless AdS$_2$ superparticle based on the action (4.2) and the supergroup $\text{OSp}(1|2)$. Indeed, the fact that we do not have enough fermionic degrees of freedom is a consequence of the fact that we started with the superalgebra $\mathfrak{osp}(1|2)$, which has only two fermionic generators. To properly treat the massless superparticle on AdS$_2$ we should instead start with the superalgebra $\mathfrak{su}(1, 1|1) \simeq \mathfrak{osp}(2|2)$, gauging an $\mathfrak{so}(1, 1) \oplus \mathfrak{u}(1)$ subalgebra [32], which has twice the number of fermionic generators.

4.2. First order formulation

In the first order formalism (4.2) is equivalent to

\[
S = \int dr \left[\left(L \delta g^{-1} \right) - \frac{\bar{\xi}}{2} \left(L_4 L_- + 4\mu^2 \right) - A_1 L_1 - A_4 L_4 - L_4 \dot{L}_4 \right],
\] (4.14)

where L_1, L_2, L_4 are the components of L in the basis (2.7), (ξ, A_1, A_4) play the role of Lagrange multipliers and their variations give the constraints

\[
L_4 L_- + 4\mu^2 = 0, \quad L_1 = 0, \quad L_4 = 0.
\] (4.15)

As in the bosonic case, we have the 1-form $\Theta = \left< L \, dg^{-1} \right>$ and the Noether charge $R = g^{-1} L \, g$, only now $g \in \text{OSp}(1|2), L \in \mathfrak{osp}(1|2)$ and the system has to be reduced to the constraint surface (4.15). Similarly to the bosonic case, L and g can then be parameterized

\[
L = 2\mu \, e^{2 \xi T_0} e^{-2 \xi T_1}, \quad g = e^{2 \xi T_0} g_0, \quad g_0 = \text{const},
\]

which leads to
\[\Theta = 2 \mu \langle T_0 \, d g_r \, g_r^{-1} \rangle, \quad R = 2 \mu \, g_r^{-1} \, T_0 \, g_r. \] \tag{4.16}

To find a suitable parametrization of \(g_r \) we represent it as \(g_r = g_f \, g_b \), with \(g_f \) purely fermionic and \(g_b \) purely bosonic. Setting \(g_f = e^{\theta^* S_+ + \theta S_-} \), where \(S_\pm \) are the fermionic generators in (2.5) and \(\theta \) are real Grassmann odd parameters, we find

\[
g_f = \begin{pmatrix}
1 + \frac{\theta^* \theta}{2} & 0 & \theta \\
0 & 1 + \frac{\theta^* \theta}{2} & \theta^* \\
-\theta^* & \theta & 1 - \theta^* \theta
\end{pmatrix}. \tag{4.17}
\]

with \(\theta = \theta_+ - i \theta_- \), \(\theta^* = \theta_+ + i \theta_- \). Similarly to (3.15), \(g_b \) is chosen as

\[
g_b = e^{\phi \, \Xi_0} \begin{pmatrix}
\sqrt{1 + u^* u} & u & 0 \\
u^* & \sqrt{1 + u^* u} & 0 \\
0 & 0 & 1
\end{pmatrix}. \tag{4.18}
\]

and the product of (4.17) and (4.18) can be written as

\[
g_r = e^{\phi \, \Xi_0} \begin{pmatrix}
\sqrt{1 + z^* z} + \frac{\psi^* \psi}{2 \sqrt{1 + z^* z}} & z & \psi \\
z^* & \sqrt{1 + z^* z} + \frac{\psi^* \psi}{2 \sqrt{1 + z^* z}} & \psi^* \\
z^* \psi - \sqrt{1 + z^* z} \psi^* & \sqrt{1 + z^* z} \psi - z \psi^* & 1 - \psi^* \psi
\end{pmatrix}, \tag{4.19}
\]

where \(\psi = \theta \, e^{\psi}, z = u \left(1 + \frac{\delta^* \phi}{2}\right) \) and \(\psi^*, z^* \) are their complex conjugations.

The inverse to (4.19) is given by

\[
g_r^{-1} = \begin{pmatrix}
\sqrt{1 + z^* z} + \frac{\psi^* \psi}{2 \sqrt{1 + z^* z}} & -z & z \psi - \sqrt{1 + z^* z} \, \psi \\
-z^* & \sqrt{1 + z^* z} + \frac{\psi^* \psi}{2 \sqrt{1 + z^* z}} & z^* \psi - \sqrt{1 + z^* z} \, \psi^* \\
\psi^* & -\psi & 1 - \psi^* \psi
\end{pmatrix} e^{-\phi \, \Xi_0}. \tag{4.20}
\]

and then the 1-form and the Noether charge in (4.16) become

\[
\begin{align*}
\Theta &= \frac{i}{2} \left(b^* \, \text{d} b - b \, \text{d} b^* \right) + \frac{i}{2} \left(f^* \, \text{d} f + f \, \text{d} f^* \right) - 2 \mu \, \text{d} \phi, \\
R &= \begin{pmatrix}
-2iE & -2iB & -iF \\
2iB^* & 2iE & iF^* \\
-iF^* & -iF & 0
\end{pmatrix}. \tag{4.21}
\end{align*}
\]
where \(b = \sqrt{2\mu} z, \ b^* = \sqrt{2\mu} z^*, \ f = \sqrt{2\mu} \psi, \ f^* = \sqrt{2\mu} \psi^* \) are canonical coordinates and the matrix elements in (4.21) read

\[
E = \mu + b^* b + \frac{f^* f}{2},
\]

\[
B = \sqrt{2\mu} + b^* b + \frac{f^* f}{2\sqrt{2\mu} + b^* b}, \quad B^* = (B)^*,
\]

\[
F = \sqrt{2\mu} + b^* b f + f^* b, \quad F^* = (F)^*.
\] (4.22)

The canonical coordinates define the Poisson brackets

\[
\{ A_1, A_2 \} = i \left(\frac{\partial A_1}{\partial b} \frac{\partial A_2}{\partial b^*} - \frac{\partial A_1}{\partial b^*} \frac{\partial A_2}{\partial b} \right) - i \left(\frac{\partial A_1}{\partial f} \frac{\partial A_2}{\partial f^*} + \frac{\partial A_1}{\partial f^*} \frac{\partial A_2}{\partial f} \right).
\] (4.23)

where \(\overleftarrow{\partial} \) and \(\overrightarrow{\partial} \) denote the left and the right derivatives, respectively. The Poisson brackets of the dynamical integrals (4.22) satisfy the \(\mathfrak{osp}(1|2) \) algebra

\[
\{ E, B \} = i B, \quad \{ E, B^* \} = -i B^*, \quad \{ B, B^* \} = -2i E,
\]

\[
\{ E, F \} = \frac{i}{2} F, \quad \{ B, F \} = 0, \quad \{ B^*, F \} = i F^*,
\]

\[
\{ E, F^* \} = -\frac{i}{2} F^*, \quad \{ B, F^* \} = -i F, \quad \{ B^*, F^* \} = 0,
\]

\[
\{ F, F^* \} = -2i E, \quad \{ F, F^* \} = -2i E, \quad \{ F^*, F^* \} = -2i B^*.
\] (4.24)

The Casimir number obtained from (4.22) corresponds to the mass-square

\[
C = E^2 - B^* B - \frac{1}{2} F^* F = \mu^2,
\] (4.25)

and the energy given in terms of other symmetry generators is

\[
E = E_B + \frac{F^* F}{4E_B}, \quad \text{with} \quad E_B = \sqrt{\mu^2 + B^* B}.
\] (4.26)

From (4.22) we also find

\[
F^* F = 2\mu f^* f,
\] (4.27)

which allows us to invert the map from \((b, b^*, f, f^*)\) to \((B, B^*, F, F^*)\)

\[
\begin{align*}
\begin{array}{c}
b = \left(1 - \frac{F^* F}{8\mu E_B}\right) \frac{B}{\sqrt{\mu + E_B}}, \\
b^* = (b)^*,
\end{array}
\end{align*}
\]

\[
\begin{align*}
\begin{array}{c}
f = \frac{\sqrt{\mu + E_B} F}{2\mu} - \frac{BF^*}{2\mu \sqrt{\mu + E_B}}, \\
f^* = (f)^*.
\end{array}
\end{align*}
\] (4.28)

Using then the coordinates \(z^k = (B, B^*, F, F^*) \), we can write the canonical 1-form \(\Theta = \frac{1}{2} (b^* db - b \ dB) + \frac{1}{2} (f^* df + f \ DF) \) as follows
\[\Theta = \Theta_B \, dB + \Theta_{B^s} \, dB^s + \Theta_F \, dF + \Theta_{F^s} \, dF^s, \]

with

\[\Theta_B = \frac{i}{4 \mu^2} \left(\frac{2 \mu^2}{E_B + \mu} - \frac{F^* F}{2E_B} \right) B^s, \quad \Theta_{B^s} = (\Theta_B)^*, \]

\[\Theta_F = \frac{i}{4 \mu^2} \left(E_F F^s - B^s F \right), \quad \Theta_{F^s} = - (\Theta_F)^*. \]

The matrix elements for the symplectic form \(\Omega = d\Theta \) are given by

\[\Omega_{B B} = \Omega_{B^s B^s} = 0, \quad \Omega_{B B^s} = - \Omega_{B^s B} = \partial_B \Theta_{B^s} - \partial_{B^s} \Theta_B, \]

\[\Omega_{B F} = \Omega_{FB} = \partial_B \Theta_F + \partial_F \Theta_B, \quad \Omega_{BF^s} = \Omega_{F^s B} = \partial_B \Theta_{F^s} + \partial_{F^s} \Theta_B, \]

\[\Omega_{B^s F} = \Omega_{F B^s} = \partial_B \Theta_{F^s} + \partial_{F^s} \Theta_B, \quad \Omega_{B^s F^s} = \Omega_{F^s B^s} = \partial_B \Theta_{F^s} + \partial_{F^s} \Theta_B, \]

\[\Omega_{F F} = 2 \partial_F \Theta_F, \quad \Omega_{F^s F^s} = 2 \partial_{F^s} \Theta_{F^s}, \quad \Omega_{FF^s} = \Omega_{F^s F} = \partial_F \Theta_{F^s} + \partial_{F^s} \Theta_F, \]

where all derivatives are left derivatives. We then obtain the symplectic matrix

\[\Omega_{ij} = \frac{i}{4 \mu^2} \begin{pmatrix} 0 & - A \frac{B^* F^*}{E_B} - F^* \\ A & 0 - F \frac{B F}{E_B} \\ - F^* \frac{B^* F}{E_B} - 2B^* & 2E_B \\ - F^* \frac{B F}{E_B} 2E_B - 2B \end{pmatrix}, \quad \text{with} \quad A = \frac{4 \mu^2 - F^* F}{2E}. \]

This equation generalizes the symplectic form (3.18) for the OSP(1|2) coadjoint orbits.

According to (4.24) the matrix formed by the Poisson brackets \(\Omega^{ij} = \{ \xi^i, \xi^j \} \) reads

\[\Omega^{ij} = \begin{pmatrix} 0 & -2iE & 0 & -iF \\ 2iE & 0 & iF^* & 0 \\ 0 & -iF^* & -2iE & -2iF^* \\ iF & 0 & -2iE & -2iB^* \end{pmatrix}. \]

It is straightforward to check that this matrix inverts the symplectic matrix (4.31), demonstrating the consistency of the calculations.

Now we consider the massless superparticle on \(\text{AdS}_2 \). Here, as for the bosonic case (see (3.20)), one should analyze the 1-form and the Noether charge given by

\[\Theta = (T_+ \, dg_f \, g_f^{-1}), \quad R = g_f^{-1} T_+ \, g_f. \]

We use the representation \(g_\tau = g_f g_0 \), where \(g_f = e^{\theta S_f + \theta S_f^*} \), as in (4.17), and \(g_b \) is parameterized similarly to the massless bosonic case \(g_b = e^{2i\tau T} e^{i \frac{\tau}{2} \tilde{J}} e^{2i \tilde{J} T} \). The 1-form \(\Theta \) then splits into a sum of fermionic and bosonic differentials

\[\Theta = (T_+ dg_f \, g_f^{-1}) + (g_f^{-1} T_+ g_f \, dg_b \, g_b^{-1}). \]
Using the expansion
\[g_\theta = I + \partial_+ S_- + \partial_- S_+ + \frac{\partial_+ \partial_-}{2} (S_- S_+ - S_+ S_-) \]
(4.34)
and the algebra (2.8), we find
\[g_\theta^{\dagger} T_+ g_\theta = (1 - 2i\partial_+ \partial_-) T_+ + \partial_+ S_+, \]
(4.35)
\[dg_\partial g_\theta^{\dagger} = 2i \left(\partial_+ d\partial_+ T_- - \partial_- d\partial_- T_+ \right) - i \left(\partial_+ d\partial_+ + \partial_- d\partial_- \right) T_1
+ (1 + i\partial_+ \partial_-) \left(d\partial_+ S_- + d\partial_- S_+ \right). \]

The calculation of the bosonic part is similar to (3.21). Finally we obtain
\[\Theta = i\partial_+ d\partial_+ + e^\theta (1 - 2i\partial_+ \partial_-) dy, \]
(4.36)
\[R = e^\theta (1 - 2i\partial_+ \partial_-) \left(T_+ - 2\gamma T_1 - 4\gamma^2 T_- \right) + e^{\theta/2} \partial_+ (S_+ - 2\gamma S_-). \]
(4.37)

Introducing the new bosonic variable by \(e^\beta = e^\theta (1 - 2i\partial_+ \partial_-) \) we conclude that the dependence on \(\partial_- \) drops out, which demonstrates the \(\kappa \)-symmetry discussed above.

4.3. Quantization

Let us introduce the standard bosonic and fermionic creation-annihilation operators \((b^\dagger, b)\) and \((f^\dagger, f)\), which satisfy the canonical commutation relations \([b, b^\dagger] = 1\) and \([f, f^\dagger] = 1\). The operators for the Noether charges are defined on the basis of the classical representation (4.22) and the operator ordering freedom is fixed by
\[E = \mu + b^\dagger b + \frac{f^\dagger f}{2}, \]
\[B = \sqrt{2\mu + b^\dagger b + f^\dagger f} b, \quad B^\dagger = B^\dagger, \]
\[F = \sqrt{2\mu + b^\dagger b + f^\dagger f} f + f^\dagger b, \quad F^\dagger = F^\dagger. \]

Note that the classical expressions for \(B\) and \(F\) in (4.22) can also be written in this form. This form of the symmetry generators becomes helpful for calculating of commutation relations.

The operators (4.38) act in the Hilbert space spanned by the energy eigenvectors \(|n, m\rangle\), with \(n \geq 0\) and \(m = (0, 1)\). The energy spectrum, therefore, is
\[E_{nm} = \mu + n + \frac{m}{2}. \]
(4.39)

The action of the operator \(\sqrt{2\mu + b^\dagger b + f^\dagger f}\) on the energy eigenstates is defined as in the Holstein–Primakoff representation by
\[\sqrt{2\mu + b^\dagger b + f^\dagger f} \ |n, m\rangle = \sqrt{2\mu + n + \frac{m}{2}} \ |n, m\rangle. \]
(4.40)

It is straightforward to check that the operators (4.38) satisfy the commutation relations of the \(osp(1|2)\) algebra.
\[
\left[E, B^\pm \right] = \pm B^\pm, \quad \left[B^-, B^+ \right] = 2E, \\
\left[E, F^\pm \right] = \pm \frac{1}{2} F^\pm, \quad \left[B^\pm, F^\pm \right] = 0, \quad \left[B^\pm, F^\mp \right] = \mp F^\pm, \\
\{ F^+, F^- \} = 2E, \quad \{ F^\pm, F^\mp \} = 2B^\pm,
\]

(4.41)

where we have defined \(B^- = B, B^+ = B^\# \), \(F^- = F \) and \(F^+ = F^\# \).

The calculation of the quantum Casimir number from (4.38) yields

\[
C = E^2 - \frac{1}{2} \left(B^- B^+ + B^+ B^- \right) - \frac{1}{4} \left(F^+ F^- - F^- F^+ \right) = \mu (\mu - 1/2).
\]

(4.42)

The massless case corresponds to \(\mu = 0 \). As in the bosonic case the vacuum is invariant under the action of all symmetry generators. Therefore, to construct an irreducible representation, one has to remove the state \(|0, 0\rangle \). One can show that the resulting representation is unitary equivalent to the representation (4.38) at \(\mu = 1/2 \).

5. Conclusion

In this article we have canonically quantized a massive AdS\(_2\) superparticle on the basis of the superisometry group OSP(1|2), generalizing the construction for the bosonic particle on AdS\(_2\). Gauging an SO(1, 1) subgroup of OSP(1|2), we considered the action given by the square of the left current projected onto the bosonic part of the coset. For the massive case, we represented the mass-shell phase space as a coadjoint orbit of a timelike element of \(\mathfrak{osp}(1|2) \), giving a well defined symplectic structure and a realization of the OSP(1|2) symmetry as the Poisson bracket algebra of the Noether charges. Our parametrization immediately yielded a description in terms of one bosonic and one fermionic oscillator and their canonical quantization led to a Holstein–Primakoff type realization of \(\mathfrak{osp}(1|2) \).

Repeating the analysis for the massless case, we observed the decoupling of one fermion, which is an explicit demonstration of \(\kappa \)-symmetry in our setting. As this leaves only one real fermionic field, quantization of this system appears inconsistent.

There are a number of natural generalizations that would be of interest to explore in the future. One immediate open question is the quantization of the massless superparticle in AdS\(_2\). The obstructions immediately encountered due to the \(\kappa \)-symmetry suggests that one ought to consider the larger group SU(1, 1\|1), gauging an SO(1, 1) × U(1) subgroup, as considered in, for example, [32]. One could also consider an alternative \(Z_4 \) grading for which an SO(1, 1) subgroup of SU(1, 1\|1) is gauged. The resulting model describes a superparticle on AdS\(_2\) × \(S^1 \) and has been subject of the works [42] relevant for the Kent/CFT correspondence [43]. Taking account of the \(\kappa \)-symmetries, the massless case of this model with fixed angular momentum on the \(S^1 \) should be classically equivalent to the massive model considered in this paper.

Furthermore, the theory considered in this paper can be understood as a truncation of various supercoset models related to known critical superstring backgrounds [39]. These include the supercoset PSU(1, 1\|2)/SO(1, 1) × SO(2), related to the AdS\(_2\) × \(S^2(\times T^6) \) string background [35, 36], and D(2, 1; \(\alpha \))/SO(1, 1) × SO(2) × SO(2), related to AdS\(_2\) × \(S^2 \times S^2(\times T^4) \). Generalizing further to these cases may help in understanding the connection to the full critical superstring theory. In addition, in the first case it would be interesting to understand the relation to the construction of [37].
The extension to higher dimensional Anti de Sitter spaces is an important next step. The case of AdS$_3$ could be a helpful stepping stone in this direction as in the minimal case the isometry group of the superparticle action takes direct product form, \(\text{OSP}(1|2) \times \text{OSP}(1|2) \). Hence the results of this paper relating to the supergroup \(\text{OSP}(1|2) \) will be applicable therefore.

Finally, let us conclude by recalling that one of the eventual aims of this program is the application to AdS superstring theories, of interest in the context of the AdS/CFT correspondence, and the quantization of strings on these backgrounds from first principles.

Acknowledgments

We are grateful to Gleb Arutyunov, Harald Dorn, Sergey Frolov, Vladimir Mitev, Jan Plefka, Volker Schomerus, Arkady Tseytlin, Konstantin Zarembo and Alexander Zheltukhin for useful discussions. M.H. thanks Nordita in Stockholm for kind hospitality. G.J. thanks the Humboldt University of Berlin for kind hospitality. M.H. is supported by the German Science Foundation (DFG) under the Collaborative Research Center (SFB) 676 Particles, Strings and the Early Universe. B.H. is supported by the DFG through the Emmy Noether Program ‘Gauge Fields from Strings’ and SFB 647 Space–Time–Matter, Analytic and Geometric Structures. G.J. and L.M. have received funding from Rustaveli GNSF and G.J. from a DFG grant in the framework of the SFB 647.

References

[1] Maldacena J M 1998 The large N limit of superconformal field theories and supergravity Adv. Theor. Math. Phys. 2 231

Witten E 1998 Anti-de Sitter space and holography Adv. Theor. Math. Phys. 2 253

Gubser S S, Klebanov I R and Polyakov A M 1998 Gauge theory correlators from non-critical string theory Phys. Lett. B 428 105

[2] Metsaev R R and Tseytlin A A 1998 Type IIB superstring action in AdS$_5 \times$ S5 background Nucl. Phys. B 533 109

[3] Arutyunov G and Frolov S 2009 Foundations of the AdS$_5 \times$ S5 superstring: I. J. Phys. A: Math. Theor. 42 254003

Beisert N, et al 2012 Review of AdS/CFT integrability: an overview Lett. Math. Phys. 99 3

[4] Minahan J A and Zarembo K 2003 The Bethe-ansatz for \(\mathcal{N} = 4 \) super Yang–Mills J. High Energy Phys. JHEP03(2003)013

Bena I, Polchinski J and Roiban R 2004 Hidden symmetries of the AdS$_5 \times$ S5 superstring Phys. Rev. D 69 046002

[5] Arutyunov G and Frolov S 2009 String hypothesis for the AdS$_5 \times$ S5 mirror J. High Energy Phys. JHEP09(2009)152

Arutyunov G and Frolov S 2009 Thermodynamic Bethe Ansatz for the AdS$_5 \times$ S5 mirror model J. High Energy Phys. JHEP05(2009)068

Bombardelli D, Fioravanti D and Tateo R 2010 TBA and Y-system for planar AdS$_5$/CFT$_3$ Nucl. Phys. B 834 543

Gromov N, Kazakov V, Kozak A and Vieira P 2010 Exact spectrum of anomalous dimensions of planar \(\mathcal{N} = 4 \) supersymmetric Yang–Mills theory: TBA and excited states Lett. Math. Phys. 91 265

Gromov N, Kazakov V and Vieira P 2009 Exact spectrum of anomalous dimensions of planar \(\mathcal{N} = 4 \) supersymmetric Yang–Mills theory Phys. Rev. Lett. 103 131601

Gromov N, Kazakov V, Leurent S and Volin D 2014 Quantum spectral curve for planar AdS$_5$/CFT$_4$ Phys. Rev. Lett. 112 011602

[6] Gromov N, Kazakov V and Vieira P 2010 Exact spectrum of planar \(\mathcal{N} = 4 \) supersymmetric Yang–Mills theory: Konishi dimension at any coupling Phys. Rev. Lett. 104 211601

Frolov S Konishi operator at intermediate coupling 2011 J. Phys. A: Math. Theor. 44 065401
Gromov N and Valatka S 2012 Deeper look into short strings J. High Energy Phys. JHEP03(2012)058
Frolov S 2012 Scaling dimensions from the mirror TBA J. Phys. A: Math. Theor. 45 305402
[7] Kim H, Romans L and van Nieuwenhuizen P 1985 The mass spectrum of chiral $\mathcal{N}=2$, $D=10$ supergravity and the unitary supermultiplets of $U(2, 2|4)$ Class. Quantum Grav. 2 L11
[8] Horigane T and Kazama Y 2010 Exact quantization of a superparticle in AdS(5) x S**5 Phys. Rev. D 81 045004
[9] Metsaev R R 1999 Light cone gauge formulation of IIB supergravity in AdS(5) x S(5) background and AdS/CFT correspondence Phys. Lett. B 468 65
[10] Metsaev R R, Thorn C B and Tseytlin A A 2001 Spinorial quantization of AdS superparticle (arxiv:1005.5049)
[11] Siegel W 1989 Exact quantization of a superparticle in AdS(5) x S**5 J. High Energy Phys. JHEP04(2002)013
[12] Callan C G Jr, Lee H K, McLoughlin T, Schwarz J H, Swanson I and Wu X 2003 Quantizing string theory in AdS$_5$ x S5: beyond the pp-wave Nucl. Phys. B 673 3

Callan C G Jr, McLoughlin T and Swanson I 2004 Higher impurity AdS/CFT correspondence in the near-BMN limit Nucl. Phys. B 700 271
[13] Frolov S, Plefka J and Zamaklar M 2006 The AdS$_5$ x S5 superstring in light-cone gauge and its Bethe equations J. Phys. A: Math. Theor. 39 13037
[14] Arutyunov G and Frolov S 2005 Integrable Hamiltonian for classical strings on AdS$_5$ x S5 J. High Energy Phys. JHEP02(2005)059
[15] Arutyunov G and Frolov S 2006 Uniform light-cone gauge for strings in AdS$_5$ x S5: solving su(1|1) sector J. High Energy Phys. JHEP01(2006)055
[16] Arutyunov G, Frolov S and Zamaklar M 2007 The Zamolodchikov–Faddeev algebra for AdS$_5$ x S5 superstring J. High Energy Phys. JHEP04(2007)002
[17] Klose T, McLaughlin T, Roiban R and Zarembo K 2007 Worldsheet scattering in AdS(5) x S**5 J. High Energy Phys. JHEP03(2007)094
[18] Klose T, McLoughlin T, Minahan J A and Zarembo K 2007 World-sheet scattering in AdS$_5$ x S5 at two loops J. High Energy Phys. JHEP08(2007)051
[19] Passerini F, Plefka J, Semenoff G W and Young D 2011 On the spectrum of the AdS$_5$ x S5 string at large lambda J. High Energy Phys. JHEP03(2011)046
[20] Jorjadze G, Plefka J and Pollock J 2012 Bosonic string quantization in static gauge J. Phys. A: Math. Theor. 45 485401
[21] de Vega H, Larsen A and Sanchez N G 1995 Semiclassical quantization of circular strings in de Sitter and anti-de Sitter space-times Phys. Rev. D 51 6917
[22] Minahan J A 2003 Circular semiclassical string solutions on AdS$_5$ x S5 Nucl. Phys. B 648 203
[23] Frolov S, Heinze M, Jorjadze G and Plefka J 2014 Static gauge and energy spectrum of single-mode strings in AdS$_5$ x S5 J. Phys. A: Math. Theor. 47 085401
[24] Dorn H and Jorjadze G 2005 Oscillator quantization of the massive scalar particle dynamics on ads spacetime Phys. Lett. B 625 117
Dorn H, Jorjadze G, Kalousios C and Plefka J 2011 Coordinate representation of particle dynamics in AdS and in generic static spacetimes J. Phys. A: Math. Theor. 44 095402
[25] Witten E 1988 Coadjoint orbits of the Virasoro group Commun. Math. Phys. 114 1
[26] Alekseev A and Shatashvili S L 1989 Path integral quantization of the coadjoint orbits of the Virasoro group and 2D gravity Nucl. Phys. B 323 719
[27] Heinze M, Jorjadze G and Megrelidze L 2015 Isometry group orbit quantization of spinning strings in AdS$_5$ x S5 J. Phys. A: Math. Theor. 48 125401
[28] Holstein T and Primakoff H 1940 Field dependence of the intrinsic domain magnetization of a ferromagnet Phys. Rev. 58 1098
Dzhordzhadze G, O’Raifeartaigh L and Tsutsui I 1994 Quantization of a relativistic particle on the SL(2,R) manifold based on Hamiltonian reduction Phys. Lett. B 336 388

Jorjadze G, Kalousios C and Kepuladze Z 2013 Quantization of AdS x S particle in static gauge Class. Quantum Grav. 30 025015

[29] Pais A and Rittenberg V 1975 Semisimple graded Lie algebras J. Math. Phys. 16 2062

[30] Frappat L, Sorba P and Sciarrino A Dictionary on Lie superalgebras hep-th/9607161

[31] Verlinde H L Superstrings on AdS(2) and superconformal matrix quantum mechanics (hep-th/ 0403024)

[32] Adam I, Dekel A, Mazucato L and Oz Y 2007 Integrability of type II superstrings on Ramond–Ramond backgrounds in various dimensions J. High Energy Phys. JHEP06(2007)085

[33] Bandos I A, Lukierski J, Preitschopf C and Sorokin D P 2000 OSP supergroup manifolds, superparticles and supertwistors Phys. Rev. D 61 065009

[34] Hikida Y and Schomerus V 2007 Structure constants of the OSP (1|2) WZNW model J. High Energy Phys. JHEP12(2007)100

[35] Zhou J-G 1999 Super 0-brane and GS superstring actions on AdS(2) x S**2 Nucl. Phys. B 559 92

[36] Berkovits N, Bershadsky M, Hauer T, Zhukov S and Zwiebach B 2000 Superstring theory on AdS(2) x T(6) as a coset supermanifold Nucl. Phys. B 567 61

[37] Bellucci S, Galajinsky A, Ivanov E and Krivonos S 2003 AdS(2)/CFT(1), canonical transformations and superconformal mechanics Phys. Lett. B 555 99

[38] Cagnazzo A, Sorokin D, Tseytlin A and Zarembo K 2011 Superstrings in AdS(2)xS(2) x T(6) J. Phys. A: Math. Gen. 44 275401

[39] Cagnazzo A, Sorokin D and Wulff L 2012 More on integrable structures of superstrings in AdS(4) x CP(3) and AdS(2) x S(2) x T(6) superbackgrounds J. High Energy Phys. JHEP01(2012)004

[40] Hoare B, Pittelli A and Torrielli A 2014 Integrable S-matrices, massive and massless modes and the AdS(2) x S(2) * S(2) superstring J. High Energy Phys. JHEP11(2014)051

[41] Wulff L 2014 Superisometries and integrability of superstrings J. High Energy Phys. JHEP05(2014)002

[42] Wulff L 2014 Superisometries and integrability of superstrings J. High Energy Phys. JHEP05(2014)115

[43] Wulff L 2014 Superisometries and integrability of superstrings J. High Energy Phys. JHEP05(2014)115