MINIREVIEW

Proposed Model: Mechanisms of Immunomodulation Induced by Probiotic Bacteria

C. Maldonado Galdeano, 1,2 A. de Moreno de LeBlanc, 1,2 G. Vinderola, 1
M. E. Bibas Bonet, 2 and G. Perdigón1,2*

Centro de Referencia para Lactobacilos, Chacabuco 145, 4000 Tucumán, Argentina, 1 and Catedra de Inmunología, Instituto de Microbiología, Facultad de Bioquímica, Química y Farmacia, Universidad Nacional de Tucumán, Tucumán, Argentina2

The mammalian microbiota comprises several hundred different bacterial species, many of which have a beneficial effect on the host. For example, they are involved in preventing colonization of the gut by pathogens and maintaining the gut mucosal immunity (85). The gut microbiota is more abundant in the large intestine of mammals, with densities rising to over 10^{11} organisms/g intestinal content (84, 86). The number of bacterial cells in the entire gut exceeds the number of eukaryotic cells in the host, but under normal circumstances they coexist without any adverse effect on the host. The influence of the resident microflora on mucosal immune function and gut health has become an area of scientific and clinical importance (22, 26). There is an active dialogue between the commensal microorganisms and the host mucosal immune system (21, 48).

This cross talk elicits different host responses to commensal and pathogenic bacteria. Commensal bacteria may even share molecular patterns recognized by toll-like receptors (TLRs), which can recognize patterns associated mainly with pathogens. However, the mucosal immune system of the healthy intestine allows the persistence of this microbiota associated with the intestine and avoids immunological tolerance, maintaining the intestinal homeostasis. Now, there is acceptance of the concept that oral tolerance is not generated by commensal bacteria and by nonpathogenic microorganisms (49). The healthy host is able to elicit a good mucosal immune response against luminal antigens and to maintain a “physiological state of inflammation” in the gut, but it is also capable of responding to invading commensal organisms or pathogens. In the healthy host the penetration of the commensal bacteria is usually prevented by the barrier afforded by the intestinal epithelium and the immune cells associated with the mucosa, which are highly adapted to the presence of the normal microbiota (71). The signals sent by these microorganisms prevent their penetration and keep them outside the intestinal tissue. If the commensal microorganisms invade the host tissues, the innate immune mechanisms contribute to their rapid clearance, but when pathogens enter the intestine, innate and adaptive mechanisms are coordinately stimulated to respond to the danger signals (38, 60). Although mucosal epithelial tissues form an efficient barrier that prevents the entrance of the environmental pathogens and the external antigens into the host internal milieu, mucosal tissues represent the main sites of infection by pathogens. Many attempts have been made to understand the gut immunomodulation by pathogenic bacteria but not the mechanisms involved in the modulation of the gut immune system by commensal bacteria and by nonpathogenic microorganisms present in many foods included in the daily diet.

NONPATHOGENIC PROBIOTIC BACTERIA

Interest in the gut microflora has led to numerous investigations to demonstrate that there are beneficial and potentially harmful microorganisms in the intestine and that the one could be used to influence the activities of the other. These findings led to the “probiotic” concept, originally used to describe microbial feed supplements which stimulate the growth of farm animals. Now, the use of live microbes as dietary supplements has been extended to humans. Many definitions of probiotics have been published, starting from Fuller, who defined a probiotic as “a live microbial feed supplement which beneficially affects the host by improving its intestinal microbial balance” (25). A more recent one from FAO/WHO is the following: “live microorganisms that when being administered in appropriate dose, they confer a benefit of health to the receiver.”

Some of the health benefits which have been claimed for probiotics include the following: improvement of the normal microflora (2), prevention of infectious diseases (3, 6, 9, 11, 13, 65, 83) and food allergies (51, 61), reduction of serum cholesterol (23, 77), anticarcinogenic activity (14, 18, 33, 35, 73), stabilization of the gut mucosal barrier (79), immune adjuvant properties (15, 20, 24, 28, 36, 40, 77, 80, 92), alleviation of intestinal bowel disease symptoms (31, 82), and improvement in the digestion of lactose in intolerant hosts (19, 42).

The genera most commonly used in probiotic preparations are Lactobacillus, Bifidobacterium, Streptococcus, and Lactococcus and some fungal strains (58). Foods for human consumption that containing mainly lactic acid bacteria include fermented milks, cheeses, fruit juices, wine, and sausages. Single and mixed cultures of live microorganisms are used in probiotic preparations (4, 88).

The ability of probiotics to prevent or reverse several pathological conditions (27) by stimulating the immune system and
all the scientific evidence of immune system activation by probiotics indicate that the ability to generate an immune response should be included in the probiotic definition. Consequently, we suggest probiotics should be defined as follows: “live microorganisms, that when included in foods can influence the composition and activity of the gut microbiota, modulate the inflammatory response, improve the nonspecific intestinal barrier, and reinforce or modulate the mucosal and the systemic immune responses.” This definition ascribes to the probiotic microorganisms in the dietary supplement the potential for the prevention of infections, tumor growth, or other systemic pathologies, including effects in mucosal sites distant from the gut, such as the bronchus (15, 69), mammary glands (16, 17), and the urogenital tract (74, 91). However, for the best use of these microorganisms, the mechanisms by which they work should be understood. We believe that the selection of an appropriate probiotic strain for its inclusion in a probiotic preparation should be made on the basis of its capacity to induce an improved gut immune response without modification of the intestinal homeostasis. To achieve this task, probiotic strains should have the following properties: (i) high cell viability, thus they must be resistant to low pH and bile acids; (ii) ability to persist in the intestine even if the probiotic strain cannot colonize the gut (continuous administration may be necessary); (iii) adhesion to the gut epithelium to cancel the flushing effects of peristalsis. In this last aspect, there are many relevant literature reports of the adhesive property of the probiotic bacteria to epithelial cells in in vitro studies (5, 10, 29, 30, 87). (iv) Also, they should be able to interact or to send signals to the immune cells associated with the gut. There are reports from in vitro assays that show the activation of immune cells after stimulation by probiotics (32, 54, 55, 81).

WHAT ARE THE IMMUNE MECHANISMS INDUCED BY PROBIOTIC BACTERIA?

The functioning of the gut mucosal immune system requires a complex network of signals with multiple interactions between commensal and foreign antigens and the eukaryotic cells. These include epithelial cells, macrophages, dendritic cells, and other cells that belong to the nonspecific barriers, mucus-producing cells such as goblet cells, and Paneth cells, which secrete antimicrobial peptides and produce cryptidins or defensins (76).

The mucosal epithelial cells are crucial in coordinating the defense mechanisms. They respond to environmental signals by releasing chemokines and cytokines that recruit the immune cells from both the innate and adaptive immune responses. These recruited immune cells can in turn act upon the epithelial cells, stimulating the release of cytokines. This response must not be triggered by harmless intestinal commensal bacteria, and the inflammatory response must be controlled. The particular characteristics of soluble, particulate antigens and pathogens will affect the gut immune response in relation to the way that they initiate the interaction with the immune system. At least three different routes exist for the uptake of luminal antigens: dendritic cells, specialized M cells from the Peyer’s patches, and individual M cells found in the villous epithelium (39, 43). The anatomical location of the immune cells from the innate response (macrophages and dendritic cells) and the way by which these cells acquire antigens are crucial in determining the nature of the subsequent responses. Thus, the immune response induced can be the result of uptake of antigens by transepithelial sampling involving dendritic cells (75) or by dendritic cells present in the lamina propria of the intestine or by M cells from Peyer’s patches or from the intestinal villi.

In the gut immune response induced by commensal bacteria, the antigen presentation from the luminal flora leads to the generation of large quantities of local immunoglobulin A (IgA) without induction of systemic immunity (56). The local secretory IgA specific for the pathogen requires the interaction of phagocytic dendritic cells with T and B cells from the Peyer’s patches with the antigen-presenting cells in isolated lymphoid follicles or in the mesenteric lymph nodes. The pathway of antigen internalization is crucial for immune cell stimulation and the initiation of mucosal immune responses.

In the complex microenvironment of the gut, how can the transient population of nonpathogenic probiotic bacteria which may be unable to colonize the intestine affect gut mucosal immunity? What kinds of signals do they induce to act as oral adjuvants? Which kind of immune response do they elicit: innate or adaptive? How long do they have to remain in the gut to be effective? What is the quantity of these microorganisms that is needed to achieve the immunomodulatory capacity? Is the viability of the microorganisms a sine qua non condition required to induce such immunomodulation?

In order to survive, probiotic bacteria entering by the mouth must be resistant to pH, bile acid, proteolytic enzymes, antimicrobial peptides, intestinal peristalsis, and luminal secretory IgA blocking. The oral adjuvant capacity of some probiotic bacteria has been well demonstrated in our laboratory (90). How can this particulate antigen, without a virulence factor, evade all the barriers of the host and up- or down-regulate the gut mucosal immune system? It is obvious that these non-pathogenic probiotic bacteria must interact with the epithelial cells and with the immune cells associated with the gut to start the network of immune signals. The increase in the number of IgA-producing cells was the most remarkable property induced by probiotic microorganisms or by fermented milk yogurt (62, 68). The physiological role of IgA in the mucosal surface is unquestionable (34, 45). The IgA+ B cells induced in the Peyer’s patches circulate through the mesenteric lymphatic nodes to enter into the blood via the thoracic duct and return to the intestinal mucosa, repopulating distant mucosal sites, such as the bronchus. Similar recirculation also occurs with intestinal T cells (70). Some probiotic microorganisms are also able to increase the IgA cycle, and this effect is dose dependent (15, 67).

T-independent IgA induction was also demonstrated; the cytokines transforming growth factor β (TGF-β), interleukin-4 (IL-4) (50), and IL-2, IL-6, and IL-10 work in a synergistic way from other immune cells different from T cells and can promote the switch from IgM to IgA expression (12, 44).

We have demonstrated that some probiotic bacteria can act as adjuvants of the mucosal and systemic immune response (65, 68). The stimulation with probiotic bacteria induced signals on epithelial and immune cells that evoked different patterns of cytokines in the intestine (53, 64, 89), depending on the dose administered (Table 1), as has also been shown by...
Massen et al. (47). The quantity of these microorganisms to achieve the adjuvant effect in the mucosal or systemic immune response was 1 × 10⁸ to 1 × 10⁹ CFU/day (68, 90).

In the analyses of the profiles of cytokines induced by some lactic acid bacteria, we observed the most remarkable effect was the increase in the tumor necrosis factor alpha (TNF-α) and gamma interferon (IFN-γ) and in the regulatory cytokine IL-10 for all the probiotic strains assayed. This effect was obtained without increasing the inflammatory response and only a slight increase in the cellularity was found. However, the induction of TNF-α by the probiotic bacteria would be necessary to initiate the cross talk between the immune cells associated with the lamina propria and the intestinal epithelial cells. IFN-γ would also play a physiological role; it has been demonstrated that this cytokine is necessary for the maturation of some immune cells, such as dendritic cells, and also controls their cellular proliferation at the intestinal level (78). It was previously thought that to have an effect on the immune system, the probiotic strains must remain viable. We demonstrated (52) that this fact is true only for some strains. For Lactobacillus delbrueckii subsp. bulgaricus, viability was not necessary for the induction of positive cells producing cytokines, although the number of positive cells was comparatively lower than the number obtained with viable L. delbrueckii subsp. bulgaricus organisms. The viability was critical for determining the time of residence in the gut with differences

Organism	Feeding period (days)	No. of cells producing:^b	Cytokines	IgA					
			TNF-α	IFN-γ	IL-2	IL-12	IL-4	IL-10	
L. casei CRL 431	2	90 ± 8^a	24 ± 6	13 ± 3	86 ± 23^a	40 ± 2^a	99 ± 21		
	5	74 ± 10^a	85 ± 19^a	27 ± 8	63 ± 8^a	135 ± 17^a			
	7	52 ± 7	30 ± 16^a	37 ± 11	87 ± 19^a	168 ± 25^a			
L. delbrueckii subsp. bulgaricus	2	79 ± 6^a	42 ± 8	17 ± 4	146 ± 8^a	97 ± 23^a	95 ± 18		
	5	59 ± 11	42 ± 8	17 ± 4	51 ± 9^a	68 ± 8^a	92 ± 12		
	7	43 ± 12	209 ± 34^a	17 ± 4	108 ± 13^a	34 ± 8^a	135 ± 17^a		
L. acidophilus CRL 724	2	52 ± 7	31 ± 13	25 ± 8	87 ± 18^a	34 ± 8^a	135 ± 17^a		
	5	51 ± 9	31 ± 12	11 ± 2	27 ± 7	18 ± 6	98 ± 17		
	7	22 ± 11	64 ± 6^a	31 ± 12	27 ± 7	18 ± 6	98 ± 17		
Control		24 ± 4	17 ± 6	31 ± 12	27 ± 7	18 ± 6	98 ± 17		

Expt type, challenge variable, and conditions	IL-6 production (pg/ml) by SIEC^c	Challenged with:	Not challenged^d
In vitro			
Bacterial concn^e			
10⁶ CFU/ml	245 ± 10[*]	190 ± 20[*]	310 ± 11
10⁷ CFU/ml	405 ± 17[*]	500 ± 17[*]	878 ± 22[*]
10⁸ CFU/ml	414 ± 17[*]	368 ± 38	
Antibody treatment of SIEC^f			
Not coated	531 ± 60[*]	641 ± 75[*]	863 ± 80[*]
Coated with anti-TLR2	376 ± 20	514 ± 95[*]	755 ± 60[*]
Coated with anti-TLR4	510 ± 32	481 ± 62[*]	740 ± 44[*]
Ex vivo			
2 days	3,804 ± 82[*]	499 ± 85	
5 days	1,109 ± 91[*]	452 ± 102	
7 days	1,704 ± 83[*]	1,740 ± 97[*]	

^a IL-6 released by small intestine epithelial cells (SIEC) from BALB/c mice when the cells were challenged with different concentrations of the bacterial strains, with lipopolysaccharide (LPS), or were not challenged (control).

^b IL-6 production by SIEC left untreated or treated with anti-TLR2 and anti-TLR4 antibodies before they were stimulated with the bacterial strains or with LPS.

^c IL-6 production by SIEC isolated from BALB/c mice that received viable culture (1 × 10⁸ CFU/ml/day) of L. casei isolated from human feces or L. helveticus isolated from cheese for different periods of time (2, 5, or 7 days).

^d Values are means ± standard deviations. *, significantly different from the corresponding control value (P < 0.05).

^e LPS was used as a positive control.

^f Negative control.
between viable and nonviable probiotic bacteria administration; nonviable bacteria were cleared more rapidly. We also demonstrated that the probiotic bacteria must remain in the gut at least 48 to 72 h to be effective; that is the time required for any particulate antigen to induce gut immunostimulation (52, 63). This fact is a very important finding, indicating the importance of daily administration in a dose established for each probiotic bacterium to have an adjuvant effect without the induction of oral tolerance.

We and other workers have demonstrated that probiotic microorganisms are able to induce a gut mucosal immune response (41, 63) which requires the bacteria to interact with the epithelial and immune cells in the gut to induce the network of signals involved in an immune response.

Probiotic bacteria may arrive in the intestine along routes which correspond with the different pathways for the internalization of antigens. These bacteria (as whole cells or as antigenic fragments) must interact with the M cells in the Peyer’s patches, with gut epithelial cells, and with the associated immune cells. After contact with these cells, the release of cytokines is induced to up- or down-regulate the immune response.

How do these nonpathogenic bacteria interact with the intestinal epithelial cells? What kind of signals do they induce in the immune cells in order to initiate the gut response?

Mucosal epithelial cells form an efficient barrier which prevents antigens from environmental pathogens from gaining access to the gut. FIG. 1. Scanning electron micrograph showing the interaction of Lactobacillus helveticus R389 with intestinal epithelial cells (IEC) obtained from the small intestine of BALB/c mice. The epithelial cells were recovered from the small intestine after digestion with collagenase in adequate culture medium. A Lactobacillus helveticus suspension (10^11 CFU/ml) was added to isolated IEC. After bacterial contact with IEC for 2 h, the samples were processed for scanning electron microscopy. Magnification, ×6,000.

FIG. 2. Histological slices of intestine from BALB/c mice, showing the pathway of internalization to the gut by lactic acid bacteria. Animals received fluorescein isothiocyanate-labeled lactic acid bacteria (1 × 10^8 CFU/ml) by intragastric intubation. (A) Fluorescence in Peyer’s patches of the small intestine of mice 5 min after administration of labeled Lactobacillus delbrueckii subsp. bulgaricus CRL 423 (isolated from yogurt). (B) Fluorescence in lamina propria of the small intestine of mice that received labeled Lactobacillus casei CRL 431 isolated from human feces. The samples were processed after 5 min of lactobacillus administration. (C) Fluorescence in the nodule and crypts of the large intestine of mice 10 min after administration of labeled Lactobacillus acidophilus CRL 724 isolated from feces. Magnification, ×1,000.
access to the host milieu. Flagellated microorganisms, including commensals, trigger epithelial homeostatic chemokine responses that recruit immune cells of the innate immune system to the epithelium and lamina propria of the intestine to link the innate or/and the adaptive immune response (78). It has also been shown that commensal bacteria can activate TLR signals (37). Although the precise location of these receptors in the intestinal epithelial cells (apical or/and basolateral) is controversial (8), TLR signals are essential, not only for response to pathogens (59) but also to maintain the intestinal barrier function (72).

With in vivo studies in mice, we demonstrated the pathway of internalization for the probiotic bacteria present in the lumen of the small intestine: an M cell (MC) is associated with the epithelium, and an epithelial cell (EC) and the interdigitating dendritic cells (DC) are able to sample bacteria. After the interaction with the epithelial cells, probiotic bacteria or their fragments are internalized. The first cells that would interact with them are the antigen-presenting cells (APC), macrophages, and/or dendritic cells associated with the lamina propria of the gut. The interaction with epithelial cells induces IL-6 release. Macrophages and dendritic cells phagocytose the probiotic bacteria or their fragments, and they are induced to produce cytokines such as TNF-α and IFN-γ, which increase epithelial cell stimulation and initiate the cross talk between all the associated immune cells. Mast cells would also be stimulated to produce IL-4. Other cytokines, such as IL-10 and IL-6, are also produced to enhance the cytokine network of signals. The ingested bacteria or their particles could also be eliminated by phagocytosis clearance. IL-6 would favor the clonal expansion of IgA B lymphocytes, increasing the number of IgA-producing cells and the passage of them to plasmatic cells in the lamina propria of the gut. IL-6 together with IL-4 and TGF-β (not determined in our studies) can induce the T-independent switch from IgM to IgA on the surface of B cells and can promote in this way an increase in the number of B cells that are IgA⁺ in the lamina propria of the gut. EC, intestinal epithelial cells; MQ, macrophages; TL, T lymphocytes; BL, B lymphocytes; MS, mast cells; PC, plasma cells.

FIG. 3. The local immune response in the gut induced by the interaction between probiotic bacteria and the epithelial and immune cells associated with the lamina propria of the small intestine. Activation of the innate immune response is shown. There would be different pathways of internalization for the probiotic bacteria present in the lumen of the small intestine: an M cell (MC) is associated with the epithelium, and an epithelial cell (EC) and the interdigitating dendritic cells (DC) are able to sample bacteria. After the interaction with the epithelial cells, probiotic bacteria or their fragments are internalized. The first cells that would interact with them are the antigen-presenting cells (APC), macrophages, and/or dendritic cells associated with the lamina propria of the gut. The interaction with epithelial cells induces IL-6 release. Macrophages and dendritic cells phagocytose the probiotic bacteria or their fragments, and they are induced to produce cytokines such as TNF-α and IFN-γ, which increase epithelial cell stimulation and initiate the cross talk between all the associated immune cells. Mast cells would also be stimulated to produce IL-4. Other cytokines, such as IL-10 and IL-6, are also produced to enhance the cytokine network of signals. The ingested bacteria or their particles could also be eliminated by phagocytosis clearance. IL-6 would favor the clonal expansion of IgA B lymphocytes, increasing the number of IgA-producing cells and the passage of them to plasmatic cells in the lamina propria of the gut. IL-6 together with IL-4 and TGF-β (not determined in our studies) can induce the T-independent switch from IgM to IgA on the surface of B cells and can promote in this way an increase in the number of B cells that are IgA⁺ in the lamina propria of the gut. EC, intestinal epithelial cells; MQ, macrophages; TL, T lymphocytes; BL, B lymphocytes; MS, mast cells; PC, plasma cells.
be cleared or transported to the mesenteric lymph nodes, where they interact with T and B cells to induce specific mucosal IgA or suppress T cells (57).

When probiotic bacteria labeled with fluorescein isothiocyanate were administered to mice, we found fluorescent cells at different levels of the intestine in Peyer’s patches, lamina propria of the villi, and nodules of the large intestine (Fig. 2A, B, and C) (52, 66). The possible pathway of internalization to the villi of the whole bacteria could be through the M cells present in the villi (39). For the bacterial particles, TLR2 or the CD206 receptor would be involved, as was demonstrated after L. casei CRL 431 administration (53, 89), with which there was a remarkable increase of both of these receptors in the immune cells associated with the lamina propria or in cells isolated from Peyer’s patches. The IgA + cells in the lamina propria of the small intestine were increased for different lactic acid bacteria, such as L. acidophilus, L. bulgaricus, and S. thermophilus (63, 67, 68, 90). Specific IgA against the probiotic bacteria and modifications in the number of CD4 + population were not found (53, 90). These findings would show that antigenic presentation with production of specific antibodies would not be induced. In previous studies under physiological conditions (healthy animals), we observed that the administration of different probiotic bacteria did not increase the CD4 + or CD8 + population (53, 90). The results obtained for positive cells for cytokine release analyzed in isolated immune cells from Peyer’s patches showed that the adherent population (macrophages and dendritic cells) had a more relevant effect on cytokine production (64).

Even though we cannot ignore that other mucosal immune mechanisms, such as the Th1 cell response, can be modulated by probiotic bacteria, this was demonstrated by other authors in pathological processes such as allergy (36), inflammatory bowel disease (7, 8, 18), or colon cancer (14, 16, 17). Our previous scientific evidence under physiological conditions led us to suggest that the probiotic bacteria interact with the epithelial cells and preferentially with the immune cells from the innate immune system, reinforcing this barrier (52, 53, 63, 89). When they interact with cells from Peyer’s patches, they can induce an increase of the IgA cycle, as was demonstrated in our laboratory (15, 69). According to these previous studies, where we demonstrated (i) the epithelial interaction of the probiotic bacteria, (ii) the pathway of internalization of probiotics to the gut, (iii) the inducing signals to the immune cells associated with the intestine by an increase in the cytokine production and an increase in the number of IgA-secreting cells; and (iv) the increase of IgA-secreting cells in other distant mucosal sites, such as the bronchus and mammary glands, as a consequence of gut stimulation by probiotic bacteria. We suggested that under physiological conditions, probiotic bacteria can act as mucosal and systemic adjuvants. This last effect would be mediated by the network of cytokines induced after probiotic stimulation. In our opinion, the most important signals induced by probiotic bacteria included in daily food would be mediated through the immune cells involved in the innate immune response. The proposed model for probiotic interaction and gut immune activation in our opinion is shown in Fig. 3 and Fig. 4.

In conclusion, we demonstrated for probiotic microorganisms that the most important mechanisms involved in the gut immune stimulation are the clonal expansion of B-lymphocyte IgA + and the innate immune response. The magnitude of such stimulation did not enhance the inflammatory immune response. They induced up- or down-regulation of the innate
response in order to maintain the intestinal homeostasis. Even through the T-cell population was not modified in the lamina propria of the intestine, we cannot exclude T-cell activation as a source of the cytokines detected.

More studies concerning the different signals induced by probiotic microorganisms involved in the activation of immune cells through distinct receptors are necessary. This research will allow determination of the big difference among the signals induced by pathogens (besides their virulence factors) that use similar receptors, commensal and noncommensal probiotic bacteria, to induce inflammatory immune responses or immunomodulatory effects. The proposed model for the mechanisms induced by probiotic bacteria from our studies shows at least in part the scientific basis of the way in which the probiotics work. This knowledge would also be useful for the influence on the gut immune system under pathological conditions.

ACKNOWLEDGMENTS

We thank Roy Fuller for his help in preparation of the manuscript. This work was financially supported by a grant from Consejo de Investigaciones Universidad Nacional de Tucumán, 26/D231-2001/2003, Argentina, and from PIP 02176 (CONICET), Argentina, and PICT 00/10068.

REFERENCES

1. Akira, S., K. Takeda, and T. Kaisho. 2001. Toll-like receptors: critical proteins linking innate and acquired immunity. Nat. Immunol. 2:675–680.
2. Alam, M. N., and S. S. Maitra. 2001. Toll-like receptor 4 mediates LPS-induced cytokine production in human colon cancer cells. J. Immunol. 167:5937–5945.
3. Alexander, J., and G. Perdigón. 2004. Regulatory effect of yogurt on intestinal inflammatory immune response. Eur. J. Inn. Monit. 21:61–66.
4. de Moreno de LeBlanc, A., C. Maldonado Galdeano, S. Chaves, and G. Perdigón. 2005. Oral administration of L. casei CRL 431 increases immunity in bronchus and mammary glands. Eur. J. Inn. Monit. 3:23–28.
5. de Moreno de LeBlanc, A., C. Maldonado Galdeano, S. Chaves, and G. Perdigón. 2006. Study of cytokines involved in the prevention of a murine experimental breast cancer by kefir. Cytokine 34:1–8.
6. de Moreno de LeBlanc, A., C. Matar, N. LeBlanc, and G. Perdigón. 2005. Effects of milk fermented by Lactobacillus helveticus R389 on a murine breast cancer model. Breast Cancer Res. 7:477–484.
7. de Moreno de LeBlanc, A., J. Valdez, and G. Perdigón. 2004. Regulatory effect of yogurt on intestinal inflammatory immune response. Eur. J. Inn. Monit. 21:61–66.
8. Finegold, M. V., L. Sutter, and G. E. Mathisen. 1983. Normal indigenous intestinal flora, p. 3–31. In D. J. Hentges (ed.), Human intestinal microflora in health and disease. Academic Press, New York, NY.
9. Fukushima, M., and M. Nakano. 1996. Effects of a mixture of organisms Lactobacillus acidophilus and Streptococcus faecalis on cholesterol metabolism in rats fed on fat-and-cholesterol-enriched diet. Br. J. Nutr. 76:857–867.
10. Fulmer, Y. X., Y. Kwast, H. Hara, A. Terada, and T. Mitsuoka. 1998. Effect of a probiotic formula on intestinal immunoglobulin A production in healthy children. Int. J. Food Microbiol. 42:89–94.
11. Fuller, R. 1989. Probiotics in man and animals. J. Appl. Bacteriol. 66:365–369.
12. Fuller, R. 1991. Probiotics in human medicine. Gut 32:439–442.
13. Furrie, E., S. Macfarlane, A. Kennedy, J. H. Cummings, S. W. Walsh, D. A. O’Neill, and G. T. Macfarlane. 2005. Synthetic therapy (Bifidobacterium longum/Sinergy) initiates resolution of inflammation in patients with active ulcerative colitis: a randomized controlled pilot trial. Gut 54:242–249.
14. Gill, H. S., K. J. Rutherford, J. Prasad, and P. K. Gopal. 2000. Enhancement of natural and acquired immunity by Lactobacillus rhamnosus (HN001), Lactobacillus acidophilus (HN017) and Bifidobacterium lactis (HN019). Br. J. Nutr. 83:167–176.
15. Granato, D., F. Perotti, I. Masseray, M. Rouvet, M. Golliard, A. Servin, and D. Brassart. 1999. Cell surface-associated lipoteichoic acid acts as an adhesion factor for attachment of Lactobacillus johnsonii L. to human enterocyte-like Caco-2 cells. Appl. Environ. Microbiol. 65:1071–1077.
16. Greene, J. D., and T. R. Klæenhammer. 1994. Factors involved in adherence of lactobacilli to human Caco-2 cells. Appl. Environ. Microbiol. 60:4487–4490.
17. Herias, M. V., J. F. J. G. Koninkx, J. G. Vos, J. H. J. Huis in’t Veld, and J. E. Isolauri, E., Y. Su¨tas, P. Kankaanpa¨a¨, H. Arvilommi, and S. Salminen. 2005. Randomized trial of probiotics—lactic acid bacteria and breast cancer model. Breast Cancer Res. 76:21–61.
18. Jiang, M. H., M.-N. Kwon, K. Iwatai, M. Yamamoto, K. Terahara, Ch. Sasakawa, T. Suzuki, T. Nochi, Y. Yokota, P. D. Rennert, T. Hiroi, H. Tamagawa, H. Iijima, J. Kunisawa, Y. Yuki, and H. Kiyono. 2004. Intestinal villous M cells: an antigen entry site in the mucosal epithelium. Proc. Natl. Acad. Sci. USA 101:1104–1109.
19. Kato, I., K. Tanaka, and T. Yokokura. 1999. Lactic acid bacterium potently induces the production of interleukin-12 and interferon-gamma by mouse splenocytes. Int. J. Immunopharmacol. 21:121–131.
20. Kelly, D., S. Conway, and T. Canovas. 2005. Commensal gut bacteria: mechanisms of immune modulation. Trends Immunol. 26:326–333.
21. Kopp-Hoillian, L. 2001. Prophylactic and therapeutic uses of probiotics: a review. J. Am. Diet. Assoc. 101:229–238.

VOL. 14, 2007 MINIREVIEW 491
43. Krabenhølb, J. P., and M. R. Neutra. 2000. Epithelial M cells: differentiation and function. Annu. Rev. Cell Dev. Biol. 16:301–332.

44. Kunimoto, D. Y., R. P. Nordan, and W. Strober. 1989. IL-6 is a potent cofactor of IL-1 in IgM synthesis and of IL-5 in IgA synthesis. J. Immunol. 143:2230–2235.

45. Lamm, M. 2003. IgA function. Mucosal Immunol. Update 11:7–8.

46. Lee, S. J., S. Evers, D. A. Roberts, P. F. Arlow, J. Resti, L. Resti, Y. C. Lee, T. Feizi, H. Langen, and M. C. Nussenzweig. 2002. Mammose receptor-mediated regulation of serum glycoprotein homeostasis. Science 295:1898–1901.

47. Maassen, C., C. van Holten-Neelen, F. Balk, M. Heijne den Bak-Glashouwer, R. Leer, J. Laman, W. Boorsma, and E. Claassen. 2000. Strain-dependent induction of cytokine profiles in the gut by orally administered Lactobacillus strains. Vaccine 18:2613–2623.

48. Macpherson, A. J., and N. L. Harris. 2004. Interaction between commensal bacterial and the immune system. Nat. Rev. Immunol. 4:478–485.

49. Macpherson, A. J., and T. Uhr. 2004. MINIREVIEW CLIN. V ACCINE IMMUNOL. 12:515S–520S.

50. Majamaa, H., and E. Isolauri. 2005. IL-6 is a potent cofactor of IL-1 in IgM synthesis and of IL-5 in IgA synthesis. J. Immunol. 143:2230–2235.

51. Miettinen, M., S. Matikainen, J. Vuopio-Varkila, and K. Varkila. 1996. Production of tumor necrosis factor alpha, interleukin-6, and interleukin-10 is induced by lactic acid bacteria. Infect. Immun. 64:5034–5045.

52. Miettinen, M., J. Vuopio-Varkila, J. Pirhonen, K. Varkila, M. Korimoto, and I. Julkunen. 1998. Lactobacillus and streptococci induce interleukin 12 (IL-12), IL-18, and gamma interferon production in human peripheral blood mononuclear cells. Infect. Immun. 66:1058–6062.

53. Milling, S. W. F., L. Cousins, and G. MacPherson. 2005. How do dendritic cells communicate with intestinal antigens? Trends Immunol. 26:349–352.

54. Mowat, A. M. 2003. Anatomical basis of tolerance and immunity to intestinal antigens. Nat. Rev. Immunol. 3:331–341.

55. Naidu, A. S., W. R. Bidlack, and R. A. Clemens. 2000. Effects of probiotic bacteria Lactobacillus casei in their persistence in the gut and in mucosal immune stimulation. J. Appl. Microbiol. 97:673–681.

56. Neutra, M. R., N. J. Mantis, and J. P. Krahenbuhl. 2000. Immunomodulation of mucosal immune response to commensal intestinal bacteria. Ann. N. Y. Acad. Sci. 1029:36–43.

57. Njie, M. R., and N. J. Mantis. 2003. Role of viability of probiotic strains in their persistence in the gut and in mucosal immune stimulation. J. Appl. Microbiol. 97:673–681.

58. Njie, M. R., J. P. Krahenbuhl, and M. R. Neutra. 2004. Interaction between commensal bacterial and the immune system. Nat. Rev. Immunol. 4:478–485.

59. Njie, M. R., N. J. Mantis, and J. P. Krahenbuhl. 2000. Immunomodulation of mucosal immune response to commensal intestinal bacteria. Ann. N. Y. Acad. Sci. 1029:36–43.

60. Njie, M. R., N. J. Mantis, and J. P. Krahenbuhl. 2000. Immunomodulation of mucosal immune response to commensal intestinal bacteria. Ann. N. Y. Acad. Sci. 1029:36–43.

62. Perdigon, G., C. Maldonado Galdeano, C. G. Vinderola, A. de Moreno, M. E. Bubis Bonet. 2005. Immunomodulation of mucosal immune response by probiotics. Curr. Trends Immunol. 6:69–85.

63. Perdigon, G., C. Maldonado Galdeano, C. G. Vinderola, A. de Moreno, M. E. Bubis Bonet. 2005. Immunomodulation of mucosal immune response by probiotics. Curr. Trends Immunol. 6:69–85.

64. Perdigon, G., C. Maldonado Galdeano, C. G. Vinderola, A. de Moreno, M. E. Bubis Bonet. 2005. Immunomodulation of mucosal immune response by probiotics. Curr. Trends Immunol. 6:69–85.

65. Perdigon, G., C. Maldonado Galdeano, C. G. Vinderola, A. de Moreno, M. E. Bubis Bonet. 2005. Immunomodulation of mucosal immune response by probiotics. Curr. Trends Immunol. 6:69–85.

66. Perdigon, G., C. Maldonado Galdeano, C. G. Vinderola, A. de Moreno, M. E. Bubis Bonet. 2005. Immunomodulation of mucosal immune response by probiotics. Curr. Trends Immunol. 6:69–85.

67. Perdigon, G., C. Maldonado Galdeano, C. G. Vinderola, A. de Moreno, M. E. Bubis Bonet. 2005. Immunomodulation of mucosal immune response by probiotics. Curr. Trends Immunol. 6:69–85.