Distinct selective forces and Neanderthal introgression shaped genetic diversity at genes involved in neurodevelopmental disorders

Alessandra Mozzi1, Diego Forni1, Rachele Cagliani1, Uberto Pozzoli1, Mario Clerici2,3 & Manuela Sironi1

In addition to high intelligence, humans evolved specialized social-cognitive skills, which are specifically affected in children with autism spectrum disorder (ASD). Genes affected in ASD represent suitable candidates to study the evolution of human social cognition. We performed an evolutionary analysis on 68 genes associated to neurodevelopmental disorders; our data indicate that genetic diversity was shaped by distinct selective forces, including natural selection and introgression from archaic hominins. We discuss the possibility that segregation distortion during spermatogenesis accounts for a subset of ASD mutations. Finally, we detected modern-human-specific alleles in DYRK1A and TCF4. These variants are located within regions that display chromatin features typical of transcriptional enhancers in several brain areas, strongly suggesting a regulatory role. These SNPs thus represent candidates for association with neurodevelopmental disorders, and await experimental validation in future studies.

In nature, “intelligence” can be defined as the problem-solving ability to adapt to changes in natural and social environment. In the last decades, broad comparative analyses indicated that social interaction drives the evolution of higher cognitive abilities in animals1,2, supporting the “social brain hypotesis”3. Although complex social systems are observed throughout the animal kingdom, vertebrates are considered to posses higher cognitive functions and more complex social behaviors than invertebrates4,5. Recent studies suggest that vertebrate expansion in synapse proteome complexity, driven by the combined action of paralog diversification and alternative splicing, contributed to the behavioral and cognitive complexity of these species6,7.

Among vertebrates, advanced cognitive abilities and complex behavioral patterns are observed in Mammalia and Aves. Within both classes, some lineages stand out for their higher cognition (e.g., primates, cetaceans, and elephants in mammals, corvids and parrots in birds)6-10. However, prosocial behaviors such as other-regarding preferences and reciprocity are thought to be more common in mammals compared to other vertebrates11,12.

Among all animals, humans display the highest forms of intelligence, although uncertainty still exists about the timing of appearance of some cognitive and behavioral traits and on the sharing of these features with archaic extinct hominids13,14. In modern humans, the evolution of cognitive functions led to the development of a grammatical and syntactical language, which has likely served as an intelligence amplifier15. Humans have also evolved specialized social-cognitive skills for living and exchanging knowledge in cultural groups16. Some of these skills are specifically affected in children with autism spectrum disorder (ASD). In fact, it was recently suggested that genes and cerebral circuits affected in ASD represent candidates for the evolution of human social cognition. Notably, it was proposed that the higher cognitive capacities in humans were acquired at the cost of increased susceptibility to mental disease17-19.

Psychiatric conditions such ASD and schizophrenia (SCZ) have a prevalence around 3–4% in human populations20. SCZ and ASD are characterized by a polygenic architecture and persist in populations despite a negative fitness effect. This apparent evolutionary paradox is explained by recent observations that, although common variants play a role in the pathogenesis of ASD and SCZ21,22, rare or de novo mutations represent the major source

1Bioinformatics, Scientific Institute IRCCS E. MEDEA, 23842, Bosisio Parini, Italy. 2Department of Physiopathology and Transplantation, University of Milan, 20090, Milan, Italy. 3Don C. Gnocchi Foundation ONLUS, IRCCS, 20100, Milan, Italy. Correspondence and requests for materials should be addressed to A.M. (email: alessandra.mozzi@bp.lnf.it)
of large-effect risk factors. Substantial overlap exists among genes mutated in ASD/SCZ and those associated with intellectual disability (ID). ID has an overall prevalence of 1.5 to 2% in Western populations and is common in children diagnosed with ASD. Overall, these observations suggest that the expansion of cognitive and social abilities also expanded the mutational target for ASD, SCZ, and ID, thus explaining their high prevalence.

Because of the huge genetic heterogeneity of these complex diseases, a reverse strategy based on the identification of networks of genes interconnected by a specific feature (e.g., biological function or protein-protein interactions) may help define genetic disease subtypes. Starting from these assumptions, we analyzed the evolutionary history of two gene modules (M1 and M2), that are associated with different phenotypes and were previously identified by Hormozdiari and colleagues. These modules were built through the exome sequencing data of 1116 patients affected by ASD and ID. Module 1 includes genes associated to transcriptional regulation during brain development, whereas module 2 is composed of synaptic genes involved in long-term potentiation and calcium signaling.

Results

Gene selection. We analyzed the evolutionary history of two different sets of genes (modules M1 and M2) previously identified by Hormozdiari and colleagues using MAGI (Merging Affected Genes into Integrated-networks). This computational method simultaneously integrates protein-protein interaction data, RNA expression profile, and the enrichment of de novo mutations in affected probands. Specifically, Hormozdiari and coworkers used expression data during brain development and de novo mutations from 6 studies of ASD and ID. Each of these modules contains a subset of genes belonging to a common pathway: M1 consists of 47 genes associated with Wnt, Notch, SWI/SNF, and NCOR signaling, and M2 includes 21 genes associated with synaptic function and mainly expressed at postnatal stages.
Episodic positive selection in Mammalia and Sauropsida. We first explored possible variations in selective pressure at M1 and M2 module genes among vertebrate species. In particular, we applied branch-site likelihood ratio tests (LRTs) to phylogenies that include representative vertebrate species from lamprey to human (Fig. 2, Supplementary Table S2). When recombination was detected, gene alignments were split on the basis of the recombination breakpoints. LRTs were used to test the two internal branches of the phylogeny leading to the Mammalia and to the Sauropsida classes (Fig. 2). A false discovery rate (FDR) correction was applied, as suggested. Positive selection was declared if neutral models were rejected in favor of the positive selection model using two codon frequency models (Table 1, Supplementary Table S3).

Evidence of positive selection was detected in 8/47 (17.0%) M1 genes and in 6/21 (28.6%) M2 genes (Table 1, Supplementary Table S3). Most genes with statistically-supported evidence of positive selection in mammals also showed evidence of selection in Sauropsida (Table 1, Supplementary Table S3). For instance, this was the case for MECP2, which causes Rett syndrome when mutated, and of SYNGAP1, whose mutations were associated with ID, ASD, and epilepsy. Three genes were only selected on the Sauropsida branch, and five only on the mammalian branch (Table 1). Overall, these data suggest that genes in the two modules were not targeted by stronger selective pressure in Mammalia compared to Sauropsida.

Positively selected sites along the mammalian or sauropsidan branches were identified through the Bayes Empirical Bayes (BEB) analysis. To be conservative, we considered as positively selected only sites also detected by the Mixed Effects Model of Evolution (MEME) method. Using this criterion, a few positively selected sites were detected (Table 1, Fig. 3). Interestingly, three sites positively selected on the mammalian branch are located in two genes encoding major components of the postsynaptic density (PSD) of excitatory neuronal synapses: GRIN2A and SYNGAP1. In particular, two sites (G951 and T1043) map to the C-terminal domain (CTD) of GRIN2A, and one (R329) is located in the SYNGAP1 C2 domain, which is necessary for the Rap GTPase activity (Fig. 3).

Positive selection across the mammalian phylogeny. The branch-site tests we applied in the section above are well-suited to search for episodic selection in a phylogeny of distantly related species, but they are generally characterized by low statistical power. Thus, for genes showing evidence of selection along the mammalian branch, we extended the evolutionary analysis to include additional species. The codeml site models were run on gene phylogenies of at least 60 mammalian species (Table 2, Supplementary Tables S2 and S4). When recombination was detected, gene alignments were split on the basis of the recombination breakpoints. Two neutral models (M8a and M7) were rejected in favor of the M8 positive selection model for the MDM2, MECP2, MYC, SMARCC2, and UIMC1 genes in module 1, as well as for GRIN2A, MAP1A and SYNGAP1 in module 2 (Table 2, Supplementary Table S4).
calculated for genes in modules 1 and 2, as well as for all human RefSeq autosomal coding genes (see Materials).

Interestingly, one positively selected site was also detected in the second microtubule-binding domain (Fig. 3). Among M2 genes, we identified 12 selected sites in MAP1A. This gene encodes a microtubule-associated protein predominantly expressed in neurons \(^42\). All selected sites are in the heavy-chain domain that cooperates with the light-chain for microtubule binding \(^43\). In particular, four selected sites are located in the second zinc-finger domain; in UIMC1, sites tend to be scattered across the protein sequence (Fig. 3).

Using this approach, an additional selected site (P1150) was detected in the GRIN2A CTD. Several positively selected sites were found in MDM2 and UIMC1. In MDM2, most selected sites are located in a C-terminal region encompassing two zinc-finger domains; in UIMC1, sites tend to be scattered across the protein sequence (Fig. 3). Among M2 genes, we identified 12 selected sites in MAP1A. This gene encodes a microtubule-associated protein predominantly expressed in neurons \(^42\). All selected sites are in the heavy-chain domain that cooperates with the light-chain for microtubule binding \(^43\). In particular, four selected sites are located in the second zinc-finger domain (Fig. 3).

Interestingly, one positively selected site was also detected in SMARCC2, which encodes a subunit of the chromatin remodeling complex mSWI/SNF that directly controls neurogenesis in the developing cerebral cortex by regulating its size and thickness \(^44\).

Purifying and positive selection in humans and great apes.

taking advantage of the availability of genetic diversity data for humans and great apes, we combined analysis of intra-species polymorphism and between-species divergence to detect sites targeted by positive selection in the human, chimpanzee, and gorilla lineages. To this aim, we used the gammaMap method \(^45\), which categorizes population-scaled selection coefficients (\(\gamma\)) into 12 classes, ranging from strongly beneficial (\(\gamma = 100\)) to inviable (\(\gamma = -500\)), with \(\gamma\) equal to 0 indicating neutrality.

As expected, analysis of \(\gamma\) for M1 and M2 genes indicated a major role of purifying selection: most median values were lower than or equal to −50 (indicating that most amino acid replacements are deleterious) (Fig. 4). However, the degree of constraint was stronger in the gorilla and chimpanzee lineages compared to humans, especially for M1 genes (Fig. 4).

We also identified lineage-specific positively selected sites, defined as those with a cumulative probability higher than 0.75 of having \(\gamma \geq 1\) (Table 3). Positively selected sites were detected in genes showing higher median \(\gamma\) values, suggesting that these genes were targeted by positive selection, and did not merely experience a relaxation of constraint or accumulated rare variants as a result of human population size growth \(^47\) (Fig. 4).

Purifying selection in human populations.

given the major effect of purifying selection in driving the evolution of M1 and M2 genes, we next compared their level of constraint to that imposed on other human genes. To this purpose, we used SnIPRE, which contrasts polymorphism and divergence data at non-synonymous and synonymous sites, to calculate the constraint parameter \(f, f\) represents the proportion of mutations that are non-lethal. Thus, the lower \(f\) is for a given gene, the stronger its level of constraint \(^48\). \(f\) values were calculated for genes in modules 1 and 2, as well as for all human RefSeq autosomal coding genes (see Materials.

Mammalia (MA1—MA)	Suauropsida (MA1—MA)							
\(2\Delta\text{lnL}^a\)	\(2\Delta\text{lnL}^a\)							
p value\(^b\)	**p value\(^b\)**							
MEME-BEB sites\(^c\)	**MEME-BEB sites\(^c\)**							
M1	M2							
Gene	**lnL**	**\(10^\gamma\)**	**lnL**	**\(10^\gamma\)**	**lnL**	**\(10^\gamma\)**	**lnL**	**\(10^\gamma\)**
CHD8	58.044	2.56 \times 10^{-14}	—	76.290	4.90 \times 10^{-14}	—	D2199, D2487	
HSPA4	0	1	—	11.0829	1.74 \times 10^{-1}	—		
MDM2	12.255	9.28 \times 10^{-4}	—	0	1	—		
MECP2	4.950	2.61 \times 10^{-4}	—	21.963	5.56 \times 10^{-4}	—		
MYC	10.527	2.35 \times 10^{-3}	—	8.519	3.51 \times 10^{-3}	—		
RBL1	0	1	—	15.493	1.66 \times 10^{-4}	—		
SMARCC2 Region 2 (106–1152aa)	15.721	1.47 \times 10^{-4}	—	0	1	—		
UIMC1	7.634	7.85 \times 10^{-3}	—	7.068	7.85 \times 10^{-3}	—		
DLG4	5.320	4.22 \times 10^{-2}	—	0	1	—		
GRIN2A Region 3 (1587–1586aa)	5.974	1.73 \times 10^{-2}	—	5.667	1.73 \times 10^{-2}	—		
GRIN2B	0	1	—	8.337	7.77 \times 10^{-3}	—		
KCNMA1	18.850	1.44 \times 10^{-5}	—	18.811	1.44 \times 10^{-5}	—	C622	
MAP1A	61.374	9.44 \times 10^{-15}	—	L610, S1029, G2436	32.349	1.29 \times 10^{-8}	—	
SYNGAP1 Region 2 (115–1343aa)	64.996	1.50 \times 10^{-15}	—	R329, A1281	26.360	2.83 \times 10^{-7}	—	

Table 1. Likelihood ratio test statistics for models of variable selective pressure along mammalian and sauropsidan branches (codon frequency: F3 \times 4). \(2\Delta\text{lnL}\): twice the difference of the natural logs of the maximum likelihood of the models being compared. \(^b\)\(p\) values are FDR corrected. \(^c\)Positions refer to the human sequence (see Supplementary Table 1, Supplementary material). Bolded \(p\) values indicated LRTs confirmed by applying the F61 codon frequency model (see Supplementary Table 1, Supplementary material).
and Methods). The distribution of \(f \) values was significantly different in the three groups (one-way ANOVA, \(F = 39.5, p = 2 \times 10^{-16} \)), with both M1 and M2 genes showing significantly lower average \(f \) compared to all other human genes (Tukey’s test, \(p = 1.00 \times 10^{-8} \) and \(p = 3.53 \times 10^{-7} \), respectively) (Fig. 5A, Supplementary Table S5). Because the degree of constraint may depend on gene features unrelated to function (e.g., GC content) 49, 50, we compared genes in the M1 and M2 modules to gene subsets matched for GC content and length (see methods for matching procedures). M1 and M2 genes showed significantly lower \(f \) values when compared to the respective matched gene sets (Fig. 5B). Finally, we wished to verify whether M1 and M2 genes differ in the level of coding sequence constraint compared to genes that display similar evolutionary rates over their entire length (coding and non-coding) and across a longer time-frame. We thus used GERP (Genomic Evolutionary Rate Profiling) scores to obtain gene sets matched to genes in the M1 and M2 modules. Again M1 and M2 genes displayed lower \(f \) values (Fig. 5C).

Neanderthal introgression and modern human-specific alleles. Admixture with extinct hominins (Neanderthals and Denisovans) resulted in the introgression of archaic alleles into the human gene pool 51–53. Recent data indicated that genomic regions experiencing strong levels of background selection are depleted in Neanderthal ancestry 54. Moreover, regions depleted of both Neanderthal and Denisova ancestry are enriched for genes expressed in specific brain regions (e.g. the ventral frontal cortex-ventrolateral prefrontal cortex in infants and the striatum in adulthood) 55. We thus used a Neanderthal introgression map to estimate the average introgression scores for M1 and M2 genes. These scores were compared to those calculated for all human coding genes to determine whether M1 and M2 genes experienced unusual levels of introgression. Significant differences among the three groups (M1, M2, and all other genes) were observed for both Europeans and Asians (Kruskall-Wallis test, \(p = 0.032 \) and \(p = 0.0085 \), respectively) (Fig. 5D, Supplementary Table S5). Specifically, M1 genes showed significantly lower levels of introgression compared to all coding human genes in both populations (Nemenyi post-hoc test, \(p = 0.033 \) and \(p = 0.0085 \) for Europeans and Asians, respectively) (Fig. 5D). The same results were obtained when M1 genes were compared to gene sets matched in GC content and length or GERP scores (Fig. 5E and F).

However, this finding does not imply that introgression did not occur at these genes. In fact, 8 genes in either M1 or M2 had an introgression score higher that the 95th percentile value calculated on the distribution of all human coding genes (Supplementary Table S5). These genes were further analyzed by identifying regions with a...
M1 and M2 genes as windows of at least 25kb where all SNPs have an S score lower than the 5th percentile (calculations, a scenario consistent with selection in early modern humans. Specifically, we called selected regions where Neanderthals carry fewer derived alleles than expected based on the allelic configuration in modern populations10, failed to reveal other-regarding preferences and reciprocity11, 12. Selective events by Green and coworkers51. As expected, given the selection criteria of high frequency in modern TCrypt4 STAG1, P1A, and PIAS1 occurred in putative selected regions (Supplementary Table S6 and Supplementary Fig. S1). However, the strongest signals were evident for TCF4, which showed several modern human variants in long regions of low S (Fig. 7). Indeed, DYRK1A had been identified as a top candidate for early human selective events by Green and coworkers15. As expected, given the selection criteria of high frequency in modern human populations, the derived alleles of DYRK1A and TCF4 variants are fixed in populations of Asian ancestry, while they display very high frequency in Europeans and Africans (Supplementary Table S6).

Discussion
We took advantage of genetic diversity data for human populations, archaic hominins and great apes, as well as of genomic information for vertebrates to provide insight into the evolution of two gene modules involved in neurodevelopmental disorders. We focused in particular on 68 genes which, despite not being an exhaustive catalog of genetic risk loci for ASD and ID, were previously shown to represent functional modules enriched of diverse functional categories, including genes involved in the ubiquitin pathway and in cancer (see below), in line with previous observations57, 58.

We first assessed whether M1 and M2 genes evolved under different selective pressure on the branches leading to Mammalia and to Sauropsida. This was achieved by using branch-site tests, which were shown to be robust to the large evolutionary distances of the vertebrate phylogeny59. Although lineages showing high cognitive skills occurred in putative selected regions (Supplementary Table S6 and Supplementary Fig. S1).
We did not observe a substantial difference in selective pressure in Mammalia compared to Sauropsida, and in most cases we detected evidence of episodic positive selection for the same genes in both lineages, suggesting that coding variants in these genes do not represent major drivers of social skill differences among Vertebrata. However, sites that experienced episodic positive selection in either the mammalian or the sauropsidan branch were detected in several genes with clear involvement in ASD or ID. In this respect it is worth noting that branch-site tests have low false positive rates but also limited power to detect specific sites targeted by selection. Moreover, we applied a conservative criterion by requiring that selected sites were identified by at least two methods. These factors are likely to have resulted in an under-estimation in the number of positively selected sites, and in some instances no site was detected despite a significant LRT. We thus extended evolutionary analysis to a larger mammalian phylogeny and we used a population genetics-phylogenetic approach to more specifically investigate the strength of selection acting on humans and great apes.

Figure 4. Population genetics-phylogenetics analysis in human, chimpanzee and gorilla lineages. Violin plot of selection coefficients for the the human, chimpanzee and gorilla lineages (median, red dot; interquartile range, black bar) for M1 and M2 genes. The gray shading denotes different degree of constraint based on selection coefficients. Black stars indicate genes with lineage-specific positively selected sites.
Based on the number of detected sites and on coding sequence length, the genes showing the strongest signals of positive selection in Mammalia and in Hominindea were \textit{MDM2} and \textit{UIMC1}. Both genes are highly expressed in the testis (http://www.gtexportal.org/) and have been implicated in cancer62, 63. \textit{MDM2} encodes a nuclear-localized E3 ubiquitin ligase that mediates the degradation of p53 and RB62 in a proteasome-dependent and ubiquitin-independent manner64. The protein product of \textit{UIMC1} (often referred to as RAP80) is a nuclear protein involved in the multivalent recognition of polyubiquitin chains (UIMs) that recruits BRCA1 and other proteins to DNA damage sites65. Previous works reported that genes involved in cancer and apoptosis, including \textit{BRCA1} and \textit{BRCA2}, are common targets of positive selection66, 67. In line with these data, we also found selected sites in \textit{MYC}, \textit{RB1}, and \textit{TRAF2}, genes which play a role in cancer and/or apoptosis (Fig. 4, Table 3). An interesting possibility to explain these findings is selfish spermatogonial selection: variants that increase the rate of cell division or decrease the probability of apoptosis in a given germline cell are favored, irrespective of the fitness effect on the embryo68. Indeed, male germ-line-selective advantage has previously been described for mutations in other genes involved in cancer (e.g. \textit{FGFR2}, \textit{FGFR3}, \textit{RET}, \textit{PTPN11}) that cause congenital disorders with paternal age effect69–77. In this respect, it is worth noting that missense mutations in probands with ASD were described in \textit{MDM2} and \textit{UIMC1} regions where positively selected sites are also located (Fig. 3). Intriguingly, the \textit{MDM2} region where the selected sites and the ASD mutation map is necessary for USP2a binding, which results in \textit{MDM2} stabilization and p53 degradation78. The \textit{MDM2} mutation detected in the ASD proband was of paternal origin (no information is available for the \textit{UIMC1} change)79. Indeed, recent analyses reported a strong paternal bias in \textit{de novo} ASD point mutations and a correlation between mutation number and paternal age79. Given that a substantial overlap exists in risk genes for autism and for cancer58, it will be important to assess whether a subset of mutations associated with ASD derive from selfish spermatogonial selection.

\textit{MDM2} and \textit{UIMC1} were identified as top risk genes for ASD, although the contribution of specific variants remains to be validated. Based on functional data, \textit{MDM2} is a very promising candidate. In mouse neurons, \textit{MDM2} ubiquitinates DLG4 (also known as PSD-95) and participates with other ASD-associated genes to the process of experience-dependent synapse elimination80. PSD-95 is a membrane-associated guanylate kinase (MAGUK) acting as scaffold for junctional surface complexes and actin cytoskeleton, thus contributing to the organization of the postsynaptic density (PSD)81. Whereas the evolutionary history of DLG4 seems to be dominated by purifying selection, three of its direct interactors (\textit{GRIN2A}, \textit{SYNGAP1}, and \textit{MAP1A}, in addition to

Gene	Lineage	Codon	Ancestral AA	Derived AA	Pra
GORASP2	Human	257	Ala	Thr	0.901
	Gorilla	247	Pro	Ser	0.988
HSPA4	Human	778	Ile	Thr	0.982
	Gorilla	283	Arg	Glu	0.960
MDM2	Human	432	Met	Val	0.961
	Gorilla	413	Ser	Cys	0.948
MYC	Human	369	Asp	Val	0.874
	Chimp	224	Ala	Pro	0.872
PSMA7	Human	216	Pro	Ser	0.911
RAB2A	Gorilla	197	Thr	Ser	0.752
RB1	Human	233	Val	Met	0.947
SETD5	Chimp	421	Thr	Ala	0.759
	Chimp	563	Pro	Ala	0.760
SMARCC1	Human	117	Thr	Ala	0.850
	Human	437	Pro	Leu	0.851
SYT1	Gorilla	420	Val	Ile	0.902
TRAF2	Human	237	Ala	Val	0.963
	Human	258	Ser	Leu	0.963
	Human	373	Thr	Ile	0.935
	Gorilla	221	Val	Ile	0.781
	Chimp	429	Arg	Gly	0.958
	Chimp	439	Ala	Thr	0.960
	Chimp	511	Arg	His	0.911
	Chimp	597	Ser	Gly	0.974
	Chimp	601	Cys	Phe	0.974
	Gorilla	16	Asn	Ile	0.913
	Gorilla	62	Thr	Ala	0.894
	Gorilla	502	Gin	His	0.764
	Gorilla	581	Ser	Cys	0.775

Table 3. Positively selected sites in the human, chimpanzee and gorilla lineages. *Posterior probability of $\gamma \geq 1$ as detected by gammaMap.
MDM2) showed evidence of positive selection on the mammalian branch. Mutations in GRIN2A have been associated with a variety of neurological disorders. NMDA receptors are both ligand-gated and voltage-dependent, and play a fundamental role in brain development and function. Interestingly, three of the four positively selected

Figure 5. Degree of selective constraints and Neanderthal ancestry of M1 and M2 genes. (A) Swarm plot representation of f values for M1 (blue), M2 (green), and all other human RefSeq genes (Supplementary Table S5). Tukey’s post-hoc test p values are reported. Genes showing evidence of positive selection in the mammalian phylogeny are in red. (B) Boxplot representation of f values for M1 and M2 genes compared to gene sets matched for GC content and length (M1 reference set (blue border) $= 1344$ genes, M2 reference set (green border) $= 84$ genes) or (C) GERP score (M1 reference set (blue border) $= 649$ genes, M2 reference set (green border) $= 126$ genes). Student’s t test p values are reported. (D) Comparison of the average introgression score in European (EUR) and East Asian (ASN) population for M1, M2 and all RefSeq genes. Nemenyi’s post-hoc test p values are reported. (E) Comparison of average introgression scores between M1/M2 genes and gene sets matched by GC content and length or (F) GERP scores. Wilcoxon Rank-Sum test p values are reported.
sites detected in GRIN2A are in the intracellular CTD domain, which contains the terminal conserved -ESDV-
sequence required for the interaction wit DLG4. This domain primarily experienced diversification during the

Figure 6. Neanderthal introgression at the SYNGAP1 locus. (A) The genomic region containing SYNGAP1 is shown within the UCSC Genome Browser view. The 20 archaic variants defining the introgressed Neanderthal haplotype are reported. Relevant annotation tracks are also shown. SNPs reported as eQTLs in BRAINEAC are in green. (B) Haplotype analysis reconstructed through a median-joining network of SYNGAP1 introgressed SNPs. Each node represents a different haplotype, with the size of the circle proportional to frequency. IDs for SNPs defining the haplotype shared by Neanderthals, Denisovans, and a small fraction of non African modern humans are listed on the branch. (C) Box plot representation of CUTA and PHF1 genes expression levels stratified by genotype status at rs4231. Data derive from the BRAINEAC data collection (THAL, thalamus; HIPP, hippocampus; PUTM, putamen; WHMT, white matter; CRBL, cerebellum; TCTX, temporal cortex).
two rounds of gene duplication that led to the generation of four GluN2A-D paralogs in Vertebrata. CTD diversification led to the development of subunit-specific functions in the regulation of vertebrate behavior, depending on the differential modulation of synaptic signaling. In particular, the CTDs of GRIN2A and GRIN2B (GluN2B) differentially regulate behavioral phenotypes in mice (e.g. impulsivity and anxiety). This difference is partially mediated by the differential binding to intracellular signaling proteins. Reverse-genetics experiments will be required to evaluate whether variation at the positively selected sites modulate phenotype traits in mammals or NMDAR biochemical properties.

With respect to SYNGAP1 and MAP1A, both encoding abundant proteins in the PSD, very different numbers of positively selected sites were observed. Several sites were detected in MAP1A, whereas only few are located in SYNGAP1. This difference is likely to reflect both the strength of positive selection acting on these genes and the relevance of functional/structural constraint in limiting the space accessible for amino acid substitutions. At least in Homininae and in human populations, SYNGAP1 and MAP1A display different levels of constraint. MAP1A is relatively tolerant to amino acid substitutions compared to other genes in the M1 and M2 modules (Fig. 5). This observation does not imply that the gene is dispensable, and loss of MAP1A function causes neurodegeneration in mice, but some changes that do not abolish protein function can likely be tolerated. In this respect, it is worth noting that de novo mutations in MAP1A have not been unequivocally associated to ASD or ID, but a population genetics study indicated that the gene is significantly enriched in rare missense variants when ADS and SCZ subjects are compared to controls. This observation, together with our data, suggests that mildly deleterious variants in MAP1A segregate at low frequency and contribute to the genetic susceptibility to ASD/SCZ. SYNGAP1, on the contrary, appears to be strongly constrained and only two selected sites were identified. Interestingly, one of them is located in the C2 domain. De novo mutations in SYNGAP1 are thought to represent a relatively common cause of ID with epilepsy, and most detected changes in affected subjects are loss-of-function mutations.
Five missense variants have been reported to date as pathogenic and two of them are located in the C2 domain, indicating that amino acid substitutions in this region potentially modulate cognitive phenotypes33. Whereas the level of constraint was similarly high at M1 and M2 genes, only genes in the M1 module were found to display significantly lower Neanderthal introgression scores compared to the reference gene set. The reason(s) why genomic regions experiencing background selection tend to be depleted in Neanderthal ancestry is a matter of debate55, 83. Both epistatic reproductive incompatibilities between humans and Neanderthals and increased mutation load due to reduced fitness in Neanderthals have been proposed as possible explanations54, 88. Disentangling these alternatives is beyond the scope of our work. As for the reason why the M2 module did not show reduced Neanderthal introgression, we note that it comprises fewer genes, and most of these tend to display low introgression scores. The high average score of the M2 module is largely due to few outliers in CEU (GRIN2B, SYNGAP1, and KCNH1) and ASIN (MAPK1) (Supplementary Table S5).

All the archaic SNPs we identified in genes with high introgression scores were located in non-coding regions. Because eQTLs for cerebellum and temporal cortex were found to be over-represented among introgressed SNP, we checked our archaic variants against the BRAINEAC database. BRAINEAC provides information on eQTLs from 12 brain regions obtained from 134 neurologically healthy individuals of European descent90. Results showed the presence of a SYNGAP1 introgressed haplotype shared by Neanderthals, Denisovans, and by a small fraction of non African modern humans. Five SNPs in the haplotype are reported as eQTLs for two nearby genes, CUTA and PHEF1. Although these genes are involved in different processes, both regulate the signaling of molecules acting as neurotransmitters, namely acetylcholine and γ-aminobutaric acid (GABA). CUTA affects the folding, oligomerization, and secretion of acetylcholinesterase91, whereas the PHF1b isoform promotes the transcription of GABRB1, which encodes GABA type A receptor (GABA_A)3; this results in the regulation of GABA-mediated neurotransmission in the central nervous system, in particular in neocortical and hippocampal neurons92. CUTA also modulates the generation of β-amyloid peptides (Aβ), major components of senile plaques typical of Alzheimer’s disease93. Specifically, the longest isoform of CUTA interacts with BACE1, a β-secretase involved in the generation of Aβ peptides, reducing secretion of neurotoxic molecules. We found that the introgressed allele at rs42311 (C) is associated with an increased expression of CUTA in many brain tissues, suggesting a protective effect against neurotoxic β-amyloid plaque generation. It is tempting to speculate that, as both cholinergic and GABAergic signaling are finely regulated, changes in the expression levels of CUTA and PHEF1 would result in alterations of synaptic plasticity94, 95. These data are in line with recent observations whereby introgressed alleles are often associated with neurological disorders59 and changes in methylation patterns between modern humans and archaic hominins are common at genes involved in neurological and psychiatric diseases96. However, it remains to be evaluated whether the introgressed variants we describe entail a phenotypic effect.

Likewise, the functional significance of the modern-human-specific variants we detected in DYRK1A and TCF4 is presently unknown. It is also worth mentioning that modern-human-specific alleles are defined on the basis of two archaic genomes only. Thus, these alleles may have been present in Neanderthals and/or Denisovans, possibly at low frequency, and be unsampled in these two individuals. Alternatively, derived alleles at these sites may have existed before the split of humans from archaic hominins and be lost to drift in Neanderthals and Denisovans. Nonetheless, the fact that several putative modern alleles in DYRK1A and TCF4 are located in regions showing signatures of selection in early humans supports the view that some selective pressure drove their frequency increase in modern populations.

Mutations in DYRK1A and TCF4 cause syndromic diseases presenting with microcephaly and intellectual disability97–105. For both genes haploinsufficiency is often associated with disease, indicating that adequate expression levels of these proteins are essential for neurodevelopment98,101,106. Moreover, in the case of DYRK1A, over-expression can also be deleterious: the gene is located in the Down syndrome (DS) critical region and its copy number alteration may be the underlying mechanism for abnormal brain development in DS107. Thus, fine-tuning of DYRK1A expression is central to normal brain development. The putative modern alleles we detected in these two genes are located within regions that display chromatin features typical of transcriptional enhancers in several brain areas, strongly suggesting a regulatory role on gene expression. These SNPs thus represent candidates for association with neurodevelopmental disorders, and await experimental validation in future studies (eg., by approaches that exploit genetically-manipulated induced pluripotent stem cells).

Methods

Datasets and Databases. We analysed the evolutionary history of 68 genes identified using MAGI, a computational method that simultaneously integrates data of protein–protein interaction and co-expression network to identified sets of genes defined “disease modules” enriched in de novo mutation in cases compared to controls29.

In particular, we focused on the two gene sets denoted by Hormozdari as Best Modules (47 genes in M1 and 21 in M2) (Fig. 1, Supplementary Table S1).

Gene coding sequences were retrieved from the Ensembl (http://www.ensembl.org/index.html) and the National Center for Biotechnology Information (NCBI, http://www.ncbi.nlm.nih.gov) databases.

1000 Genomes Phase 1 data for population genetics analysis were retrieved from the dedicated website (http://www.1000genomes.org/). The marginal probabilities of Neanderthal ancestry for Europeans and Asians were retrieved from the Datasets–Neanderthal Introgression (http://genetics.med.harvard.edu/reichlab/Reich_Lab/Datasets_/Neandertal_Introgression.htmlgenetics.med)54, whereas the list of “modern-human-specific sites” were obtained from Prufer and colleagues96.

Brain eQTL data were retrieved from the Brain eQTL Almanac (BRAINEAC) database (www.braineac.org)90.

S scores for all SNPs were retrieved from the UCSC genome browser (table name: Selective Sweep Scan (S))51.
Evolutionary analysis in vertebrates. We identified orthologous coding sequences in the genome of 33 species selected to be representative for the Vertebrata subphylum and to include a similar number of mammalian and sauropsidan species (Fig. 2, Supplementary Table S2). Orthology was assessed using the EnsemblCompara GeneTrees database and only 1-to-1 orthologs were included. Because this database does not include some Sauropsida species (Falco peregrinus, Zonotrichia albicollis, Melopsitta undulata, Columba livia and Alligator mississippiensis), we performed BLAST searches of the human coding sequences against the genome of these species using the NCBI BLAST utility. Hits that were not consistent with the presence of a single ortholog were removed. SUMO2 and YY1 (M1) were not included in this analysis due to the impossibility to reach a substantial number of orthologs from other species.

Alignments were performed using the RevTrans 2.0 utility and manually edited to remove uncertainties in proximity of small gaps.

Substitution saturation was checked using Xia's index implemented in DAMBE. This test compares a entropy-based index of saturation (\(I_a \)) with a critical value (\(I_{a,c} \)). If \(I_a \) is significantly lower than \(I_{a,c} \), sequences have not experienced substitution saturation. No evidence of significant saturation was obtained for any alignment.

All alignments were screened for the presence of recombination breakpoints using GARD. GARD evaluates the statistical significance of putative breakpoints through Kishino-Hasegawa (HK) tests. A breakpoint was considered significant if its \(p \) values were lower than 0.01.

The branch-site likelihood ratio tests (models MA and MA1) implemented in the PAML suite were used to test the mammalian and sauropsidan branches.

The total tree length for the gene alignments ranged from 3.17 to 18.15; these values are within a good accuracy range for codeml sites models. We used two different codon frequencies model: the F3 × 4 model (codon frequencies estimated from the nucleotide frequencies in the data at each codon site) and the F61 model (frequencies of each of the 61 non-stop codons estimated from the data)37. An FDR correction was applied to account for multiple hypothesis testing, as suggested. Positively selected sites were identified using two different methods: the Bayes Empirical Bayes (BEB) analysis from MA (with a cutoff of 0.90) and the Mixed Effects Model of Evolution (MEME) (with the default cutoff of 0.1)33.

GARD and MEME analyses were performed either through the DataMonkey server (http://www.datamoney.org) or run locally.

Evolutionary analysis in the mammalian phylogeny. Coding sequences were retrieved for at least 60 mammalian species, including Metatheria and Eutheria (Fig. 2, Supplementary Table S2). Sequences were checked for orthology, aligned, and screened for recombination as described in the previous section.

To detect positive selection, we used the codeml NSsite models from PAML. Selection was declared if both neutral models (M8a, M7) were rejected in favor of the positive selection model (M8) using the F3 × 4 and F61 codon frequency models.

When the likelihood ratio test indicated the action of positive selection, we applied three different methods to identified individual selected sites: BEB analysis (from M8 with a cutoff of 0.90)15, the Random effects likelihood (REL, with a cutoff of 50), and the Fast Unconstrained Bayesian AppRoximation (FUBAR, with a cutoff of 0.90). To limit false positives, we considered a site as positively selected if it was detected by at least two different methods.

Population genetics-phylogenetics analysis in the human, chimpanzee, and gorilla lineages. Human data derive from the 1000 Genomes Phase 1 Project database for European (CEU), Yoruba (YRI), and Chinese (CHB). For chimpanzees and gorillas, we used SNP information from 25 and 27 individuals, respectively.

Ancestral sequences were reconstructed by parsimony from the human, chimpanzee, orangutan, and macaque sequences.

Analyses were performed with gammaMap, that evaluates intra-specific variation and inter-specific diversity to estimate, along coding regions, the distribution of population-scaled selection coefficients (\(\gamma \)). In this framework, \(\gamma \) is defined as 2PNes, where P is the ploidy, Ne is effective population size, and s is the fitness advantage of any amino acid-replacing derived allele.

In the analysis, we assumed \(\theta \) (neutral mutation rate per site), \(k \) (transitions/transversions ratio), and T (branch length) to vary among genes following log-normal distributions, whereas p (probability of adjacent codons to share the same selection coefficient) following a log-uniform distribution. For each gene we set the neutral frequencies of non-STOP codons (1/61). For selection coefficients we considered a uniform Dirichlet distribution with the same prior weight for each selection class. For each gene we run 100,000 iterations with thinning interval of 10 iterations.

Purifying selection in humans. The strength of purifying selection was estimated using SnIPRE, a tool that relies on the comparison of polymorphism and divergence data from synonymous and non-synonymous sites within genes. SnIPRE uses a generalized linear mixed model to represent the genome-wide variability among categories of mutations and to estimate its functional consequence. We estimated the degree of selective constraints at each gene using the \(f \) parameter, which is the proportion of non-synonymous mutation that are not deleterious.

The \(f \) parameter was estimated for each gene of the M1 and M2 modules and for all RefSeq autosomal coding human genes used as reference (Supplementary Table S5).
To evaluate divergence within genes, we used the liftOver tool to convert human GRCh37/hg19 genome coordinates to *Pan troglodytes* (CGSC 2.1.3/PaniTro3) coordinates; we selected only genes that mapped on chimpanzee genome (n = 14805).

Specific reference gene sets were selected for both the M1 and M2 modules. These sets were obtained by controlling for base composition and gene length or gene conservation. We used a threshold of ≥ 10% for each feature and a matching procedure similar to that reported by Enard and colleagues. Thus, for each M1 and M2 gene, we searched for all matching genes whose GC content and length or GERP score differed less or more than 10% from those of the M1/M2 gene. GERP scores were obtained from UCSC genome browser (table name: GERP Scores for Mammalian Alignments).

Neanderthal introgression and haplotype analysis. To investigated the introgression from archaic hominins, we used the probabilities of Neanderthal ancestry calculated for each SNP of the 1000 Genomes Project dataset. We used the inferred Neanderthal ancestry at each allele in European (CEU, GBR, FIN, IBS and TSI) and Asian (CHB, CHS, and JPT) populations. The introgression summary score was calculated for each gene by averaging the marginal probabilities of Neanderthal ancestry for all SNPs of the gene.

We thus estimated the average introgression scores for M1 and M2 genes, as well as for all ReSeq coding human genes. We analyzed in detail M1 and M2 genes having an average introgression score higher that the 95th percentile value based on the distribution of all genes. Introgressed regions were defined based on the presence of archaic variants (i.e. homozygous positions in the Neanderthal sequence where the archaic allele is only present in populations of non-African ancestry) with an high introgression score (i.e. higher than 95th percentile). The introgressed regions were then analyzed for the presence of brain eQTLs (via the BRAINEAC database) and median-joining networks were constructed to infer haplotype genealogy. For Network analyses we used CEU, YRI, and CHB SNPs with genotype information from an Altai Neanderthal and a Denisovan individual.

Modern human alleles and selection in early modern humans. A list of modern human-specific sites - i.e. positions where the Denisova or Altai Neanderthal sequences display the ancestral allele, whereas most modern humans carry the derived allele - were retrieved from a previous study. We filtered these variants by requiring that both the Altai Neanderthal and the Denisova sequences were homozygous for the ancestral allele and the variants were either eQTLs in brain or mapped to putative regulatory regions for brain expression. For this purpose, we used information from the HaploReg database to scan for variants in regulatory regions as assessed by open chromatin, histone modifications, or DNase hypersensitivity.

To assess whether a moder human-specifc SNPs were located in genomic regions that experienced positive selection in early modern humans, we exploited the selection scan score (S) developed by Green et al. A negative S score identifies a region where Neanderthals carry fewer derived alleles than expected based on the allele status in modern populations. S scores were retrieved for all SNPs in the genome and the genome-wide distribution of S was calculated. We then searched for modern-human-specific variants in M1/M2 genes that were located in a region of at least 25 Kb where all SNPs have an S score lower than the 5th percentile in the genome-wide distribution.

References
1. Dunbar, R. I. The social brain: mind, language, and society in evolutionary perspective. *Annu. Rev. Anthropol.* 163–181 (2003).
2. Shultz, S. & Dunbar, R. I. Social bonds in birds are associated with brain size and contingent on the correlated evolution of life-history and increased parental investment. *Biol. J. Linn. Soc.* 100, 111–123 (2010).
3. Dunbar, R. The social brain hypothesis. *Brain 9*, 178–190 (1998).
4. Moore, B. R. The evolution of learning. *Biol. Rev. Camb. Philos. Soc.* 79, 301–335 (2004).
5. Grant, S. C. The molecular evolution of the vertebral behavioural repertoire. *Philos. Trans. R. Soc. Lond. B. Biol. Sci.* 371, 20150051 (2016).
6. Nithianantharajah, J. et al. Synaptic scaffold evolution generated components of vertebrate cognitive complexity. *Nat. Neurosci.* 16, 16–24 (2013).
7. Harris, E. E. & Hey, J. X chromosome evidence for ancient human histories. *Proc. Natl. Acad. Sci. USA* 96, 3320–3324 (1999).
8. Lefebvre, L., Reader, S. M. & Sol, D. Brains, innovations and evolution in birds and primates. *Brain Behav. Evol.* 63, 233–246 (2004).
9. Marino, L. Convergence of complex cognitive abilities in cetaceans and primates. *Brain Behav. Evol.* 59, 21–32 (2002).
10. Emery, N. J. Cognitive ornithology: the evolution of avian intelligence. *Philos. Trans. R. Soc. Lond. B. Biol. Sci.* 361, 23–43 (2006).
11. Di Lascio, F., Nynfeler, F., Bshary, R. & Bugnyar, T. Ravens (Corvus corax) are indifferent to the gains of conspecific recipients or human partners in experimental tasks. *Anim. Cogn.* 16, 35–43 (2013).
12. Schwab, C., Swoboda, R., Kotschial, K. & Bugnyar, T. Recipients affect prosocial and altruistic choices in jackdaws, Corvus monedula. *PLoS One* 7, e34922 (2012).
13. Enard, W. The Molecular Basis of Human Brain Evolution. *Curr. Biol.* 26, R1109–R1117 (2016).
14. Burke, A. Spatial abilities, cognition and the pattern of Neanderthal and modern human dispersals. *Quaternary International* 247, 230–235 (2012).
15. Dicke, U. & Roth, G. Neuronal factors determining high intelligence. *Philos. Trans. R. Soc. Lond. B. Biol. Sci.* 371, 20150180 (2016).
16. Herrmann, E., Call, J., Hernandez-Llora, M. V., Hare, B. & Tomasello, M. Humans have evolved specialized skills of social cognition: the cultural intelligence hypothesis. *Science* 317, 1360–1366 (2007).
17. Crow, T. J. Schizophrenia as the price that homo sapiens pays for language: a resolution of the central paradox in the origin of the species. *Brain Res. Brain Res. Rev.* 31, 118–129 (2000).
18. Srinivasan, S. et al. Genetic Markers of Human Evolution Are Enriched in Schizophrenia. *Biol. Psychiatry* 80, 284–292 (2016).
19. Crespi, B. J. Autism As a Disorder of High Intelligence. *Front. Neurosci.* 10, 300 (2016).
20. Global Burden of Disease Study 2013 Collaborators. Global, regional, and national incidence, prevalence, and years lived with disability for 301 acute and chronic diseases and injuries in 188 countries, 1990–2013: a systematic analysis for the Global Burden of Disease Study 2013. *Lancet* 386, 743–800 (2015).
21. Gratten, J., Wray, N. R., Keller, M. C. & Visscher, P. M. Large-scale genomics unveils the genetic architecture of psychiatric disorders. *Nat. Neurosci.* 17, 782–790 (2014).
22. Ronemus, M., Jossifov, I., Levy, D. & Wigler, M. The role of de novo mutations in the genetics of autism spectrum disorders. *Nat. Rev. Genet.* 15, 133–141 (2014).
23. Gratton, J. Rare variants are common in schizophrenia. Nat. Neurosci. 19, 1426–1428 (2016).
24. Vissers, L. E., Gilissen, C. & Veltman, J. A. Genetic studies in intellectual disability and related disorders. Nat. Rev. Genet. 17, 9–18 (2016).
25. Moffett, H. C., Batshaw, M. L. & Hoffman, E. P. Genomics, intellectual disability, and autism. N. Engl. J. Med. 366, 733–743 (2012).
26. Parikhshak, N. N. et al. Integrative functional genomic analyses implicate specific molecular pathways and circuits in autism. Cell 155, 1008–1021 (2013).
27. Mitrà, K., Carvunis, A. R., Ramesh, S. K. & Ideker, T. Integrative approaches for finding modular structure in biological networks. Nat. Rev. Genet. 14, 719–732 (2013).
28. Steffman, H. A., Bernier, R. & Eichler, E. E. A genotype-first approach to defining the subtypes of a complex disease. Cell 156, 872–877 (2014).
29. Hormozdiari, F., Penn, O., Borenstein, E. & Eichler, E. E. The discovery of integrated gene networks for autism and related disorders. Genome Res. 25, 142–154 (2015).
30. Zhang, J., Nielsen, R. & Yang, Z. Evaluation of an improved branch-site likelihood method for detecting positive selection at the molecular level. Mol. Biol. Evol. 22, 2472–2479 (2005).
31. Anisimova, M. & Yang, Z. Multiple hypothesis testing to detect lineages under positive selection that affects only a few sites. Mol. Biol. Evol. 24, 1219–1228 (2007).
32. Bienvenu, T. et al. MECP2 mutations account for most cases of typical forms of Rett syndrome. Hum. Mol. Genet. 9, 1377–1384 (2000).
33. Mignot, E. et al. Genetic and neurodevelopmental spectrum of SYNGAP1-associated intellectual disability and epilepsy. J. Med. Genet. 53, 511–522 (2016).
34. Murrell, B. et al. Detecting individual sites subject to episodic diversifying selection. PLoS Genet. 8, e1002764 (2012).
35. Pena, Y. et al. The C2 domain of SynGAP is essential for stimulation of the Rap GTase reaction. EMBO Rep. 9, 350–355 (2008).
36. Gharib, W. H. & Robinson-Rechavi, M. The branch-site test of positive selection is surprisingly robust but lacks power under synonymous substitution saturation and variation in GC. Mol. Biol. Evol. 30, 1675–1686 (2013).
37. Yang, Z. PAML 4: phylogenetic analysis by maximum likelihood. Mol. Biol. Evol. 24, 1586–1591 (2007).
38. Murrell, B. et al. FUBAR: a fast, unconstrained bayesian approximation for inferring selection. Mol. Biol. Evol. 30, 1196–1205 (2013).
39. Kosakovsky Pond, S. L. & Frost, S. D. Not so different after all: a comparison of methods for detecting amino acid sites under selection. Mol. Biol. Evol. 22, 1208–1222 (2005).
40. Yan, Z., Kim, Y. S. & Jetten, A. M. RAP80, a novel nuclear protein that interacts with the retinoid-related testis-associated receptor. J. Biol. Chem. 277, 32379–32388 (2002).
41. Akamatsu, W., DeVeale, B., Okano, H., Cooney, A. J. & van der Kooy, D. Suppression of Oct4 by germ cell nuclear factor restricts pluripotency and promotes neural stem cell development in the early neural lineage. J. Neurosci. 29, 2113–2124 (2009).
42. Halpain, S. & Dehmelt, L. The MAP1 family of microtubule-associated proteins. Genome Biol. 7, 224 (2006).
43. Chien, C. L., Lu, K. S., Lin, Y. S., Hsieh, C. J. & Hirokawa, N. The functional cooperation of MAP1A heavy chain and light chain 2 in the binding of microtubules. Exp. Cell Res. 308, 446–458 (2005).
44. Tuoc, T. C. et al. Chromatin regulation by BAF70 controls cerebral cortical size and thickness. Dev. Cell 25, 256–269 (2013).
45. Wilson, D. J., Hernandez, R. D., Andolfatto, P. & Przeworski, M. A population genetics-phylogenetics approach to inferring natural selection in coding sequences. PLoS Genet. 7, e1002395 (2011).
46. Quach, H. et al. Different selective pressures shape the evolution of Toll-like receptors in human and African great ape populations. Hum. Mol. Genet. 22, 4829–4840 (2013).
47. Keinan, A. & Clark, A. G. Recent explosive human population growth has resulted in an excess of rare genetic variants. Science 336, 740–743 (2012).
48. Eilertson, K. E., Booth, J. G. & Bustamante, C. D. SnIPRE: selection inference using a Poisson random effects model. Mol. Biol. Evol. (2013).
49. Tighten, P. E. Genomic selection for resistant traits in the bean aphid. Mol. Ecol. (2013).
50. Hill, M. W. et al. A scan for positively selected genes in the genomes of humans and chimpanzees. PLoS Biol. 3, e170 (2005).
51. Chen, J. Y., Yang, Z. & Nielsen, R. A scan for positively selected genes in the genomes of humans and chimpanzees. PLoS Genet. 9, e1003529 (2013).
52. Stessman, H. A., Bernier, R. & Eichler, E. E. Integrative functional genomic analyses implicate specific molecular pathways and circuits in autism. Cell 155, 1008–1021 (2013).
53. Green, R. E. et al. A draft sequence of the Neandertal genome. Science 328, 710–722 (2010).
54. Meyer, M. et al. A high-coverage genome sequence from an archaic Denisovan cave in Siberia. Nature 468, 1033–1060 (2010).
55. Vernot, B. et al. Detecting individual sites subject to episodic diversifying selection. PLoS Genet. 12, e1006699 (2016).
56. Prüfer, K. et al. The complete genome sequence of a Neanderthal from the Altai Mountains. Nature 505, 43–49 (2014).
57. Green, R. E. & Eichler, E. E. Integrative functional genomic analyses implicate specific molecular pathways and circuits in autism. Cell 155, 1008–1021 (2013).
58. Quiros, M. J., Hug D., & Nielsen, R. Positive selection on apoptosis related genes. FEBS Lett. 584, 469–476 (2010).
59. Nielsen, R. et al. A scan for positively selected genes in the genomes of humans and chimpanzees. PLoS Biol. 3, e170 (2005).
60. Wilkie, A. O. et al. Apert syndrome results from localized mutations of FGFR2 and is allelic with Crouzon syndrome. Nat. Genet. 9, 165–172 (1995).
61. Decety, J., Bartal, I. B., Uzefovsky, F. & Knafo-Noam, A. Empathy as a driver of prosocial behaviour: highly conserved neurobehavioural mechanisms across species. Philos. Trans. R. Soc. Lond. B. Biol. Sci. 371, 20150077 (2016).
62. Wade, M., Li, Y. C. & Wahl, G. M. MDM2, MDMX and p53 in oncogenesis and cancer therapy. Nat. Rev. Cancer. 13, 83–96 (2013).
63. Park, S. Y. et al. RAP80 regulates epithelial-mesenchymal transition related with metastasis and malignancy of cancer. Cancer Sci. 107, 267–273 (2016).
64. da Fonseca, R. R., Kosiol, C., Vinar, T., Siepel, A. & Nielsen, R. Positive selection on apoptosis related genes. FEBS Lett. 584, 469–476 (2010).
65. Wilkie, A. O. et al. Apert syndrome results from localized mutations of FGFR2 and is allelic with Crouzon syndrome. Nat. Genet. 9, 165–172 (1995).
66. Drosophila melanogaster model organism database. Genome Biol. 18, 1205–1205 (2007).
67. Lou, D. I. et al. Rapid evolution of BRCA1 and BRCA2 in humans and other primates. BMC Evol. Biol. 14, 155-2148–14-155 (2014).
68. da Fonseca, R. R., Kosiol, C., Vinar, T., Siepel, A. & Nielsen, R. Positive selection on apoptosis related genes. FEBS Lett. 584, 469–476 (2010).
69. Nielsen, R. et al. A scan for positively selected genes in the genomes of humans and chimpanzees. PLoS Biol. 3, e170 (2005).
71. Schaefer, F., Anderson, C., Can, B. & Say, B. Novel mutation in the FGFR2 gene at the same codon as the Crouzon syndrome mutations in a severe Pfeiffer syndrome type 2 case. Am. J. Med. Genet. 75, 252–255 (1998).
72. Khonsari, R. H. et al. Central nervous system malformations and deformations in FGFR2-related craniosynostosis. Am. J. Med. Genet. A 158A, 2797–2806 (2012).
73. Bellus, G. A. et al. Achondroplasia is defined by recurrent G380R mutations of FGFR3. Am. J. Hum. Genet. 56, 368–373 (1995).
74. Tavasolimin, P. L. et al. Thanatophoric dysplasia (types I and II) caused by distinct mutations in fibroblast growth factor receptor 3. Nat. Genet. 9, 321–328 (1995).
75. Rousseau, F. et al. Missense FGFR3 mutations create cysteine residues in thanatophoric dwarfism type I (TD1). Hum. Mol. Genet. 5, 509–512 (1996).
76. Carlson, K. M. et al. Parent-of-origin effects in multiple endocrine neoplasia type 2B. Am. J. Hum. Genet. 55, 1076–1082 (1994).
77. Tartaglia, M., Gelb, B. D. & Zemker, M. Noonan syndrome and clinically related disorders. Best Pract. Res. Clin. Endocrinol. Metab. 25, 161–179 (2011).
78. Stevenson, L. F. et al. The ubiquitinating enzyme Usp24 regulates the p53 pathway by targeting Mdm2. EMBO J. 26, 976–986 (2007).
79. O’Roak, B. J. et al. Multiplex targeted sequencing identifies recurrently mutated genes in autism spectrum disorders. Science 338, 1619–1622 (2012).
80. Tsai, N. P. et al. Multiple autism-linked genes mediate synapse elimination via proteasomal degradation of a synaptic scaffold PSD-95. Cell 151, 1581–1594 (2012).
81. Zheng, C. Y. et al. Seabold, G. K., Horak, M. & Petralia, R. S. MAGUKs, synaptic development, and synaptic plasticity. J. Neurosci. 35, 4587–4598 (2015).
82. Turner, S. J., Morgan, A. T., Perez, E. R. & Scheffer, I. E. New genes for focal epilepsies with speech and language disorders. Mol. Psychiatry 17, 493–512 (2011).
83. Bronicki, L. M., Amiel, J., Brockschmidt, A., Vilella, A. J. & Gokhman, D. Polycomblike protein PHF1b: a transcriptional sensor for GABA receptor activity. BMC Pharmacol. Toxicol. 14, 37–6511–14-37 (2013).
84. Williams, A. T. et al. Role of copper and the copper-related protein CUT1 in mediating APP processing and Abeta generation. Neurobiol. Aging 36, 1310–1315 (2015).
85. Luscher, B., Fuchs, T. & Kilpatrick, C. L. GABAA receptor trafficking-mediated plasticity of inhibitory synapses. Neuron 70, 385–409 (2011).
86. Goldman, T. et al. Reconstructing the DNA methylation maps of the Neandertal and the Denisovan. Science 344, 523–527 (2014).
87. Kharbanda, M. et al. Partial deletion of TCF4 in three generation family with non-syndromic intellectual disability, without features of Pitt–Hopkins syndrome. Eur. J. Med. Genet. 59, 310–314 (2016).
88. Ramsamy, A. et al. Genetic variability in the regulation of gene expression in ten regions of the human brain. Nat. Neurosci. 17, 1418–1428 (2014).
89. Liu, Y. et al. Protein CatA undergoes an unusual transfer into the secretory pathway and affects the folding, oligomerization, and secretion of acetylcholinesterase. J. Biol. Chem. 284, 5195–5207 (2009).
90. Saha, S. et al. Polymorphic-like protein PHP1b: a transcriptional sensor for GABA receptor activity. BMC Pharmacol. Toxicol. 14, 37–6511–14-37 (2013).
91. Hou, P. et al. Role of copper and the copper-related protein CUTA in mediating APP processing and Abeta generation. Neurobiol. Aging 36, 1310–1315 (2015).
92. Wilson, M. A. & Fadel, J. R. Cholinergic regulation of fear learning and extinction. J. Neurosci. Res. (2016).
93. Schaefer, F. et al. The Genetic Cost of Neanderthal Introgression. Genetics 203, 881–891 (2016).
94. Verhagen, S. N. et al. The phenotype of adcmixture between modern humans and Neandertals. Science 351, 737–741 (2016).
95. Liu, Y. et al. Parent-of-origin effects in multiple endocrine neoplasia type 2B. Am. J. Hum. Genet. 80, 994–1001 (2007).
96. Amiel, J. et al. Mutations in TCF4, encoding a class I basic helix-loop-helix transcription factor, are responsible for Pitt-Hopkins syndrome. J. Hum. Genet. 80, 988–993 (2007).
97. Amiel, J. et al. Severe mental retardation with breathing abnormalities (Pitt-Hopkins syndrome) is caused by haploinsufficiency of the neuronal BHLH transcription factor TCF4. Hum. Mol. Genet. 16, 1488–1494 (2007).
98. Liu, Y. et al. DYRK1A haploinsufficiency causes a new recognizable syndrome with microcephaly, intellectual disability, speech impairment, and distinct facies. J. Hum. Genet. 53, 1473–1481 (2015).
99. Couturier, J. B. et al. The DYRK1A gene is a cause of syndromic intellectual disability with severe microcephaly and epilepsy. J. Med. Genet. 49, 731–736 (2012).
100. van Bon, B. W. et al. Intragenic deletion in DYRK1A leads to mental retardation and primary microcephaly. Clin. Genet. 79, 296–299 (2011).
101. Bronicki, L. M. et al. Ten new cases further delineate the syndromic intellectual disability phenotype caused by mutations in DYRK1A. Eur. J. Hum. Genet. 23, 1482–1487 (2015).
102. van Bon, B. W. et al. Disruptive de novo mutations of DYRK1A lead to a syndromic form of autism and ID. Mol. Psychiatry 21, 126–132 (2016).
103. Dierssen, M. & de Lagran, M. M. DYRK1A (dual-specificity tyrosine-phosphorylated and -regulated kinase 1A): a gene with dosage effect during development and neurogenesis. ScientificWorldJournal 6, 1911–1922 (2006).
104. Tejedor, F. I. & Hammerle, B. MNB/DYRK1A as a multiple regulator of neuronal development. FEBS J. 278, 223–235 (2011).
105. Villegas, A. J. et al. GeneTree: Complete, duplication-aware phylogenetic trees in vertebrates. Genome Res. 19, 327–335 (2009).
106. Wernersson, R. & Pedersen, A. G. RevTrans: Multiple alignment of coding DNA from aligned amino acid sequences. Nucleic Acids Res. 31, 3537–3539 (2003).
107. Xia, X. DAMBE5: a comprehensive software package for data analysis in molecular biology and evolution. Mol. Biol. Evol. 20, 1720–1728 (2013).
108. Kosakovsky Pond, S. L., Posada, D., Gravenor, M. B., Woelk, C. H. & Frost, S. D. Automated phylogenetic detection of recombination using a genetic algorithm. Mol. Biol. Evol. 23, 1891–1901 (2006).
109. Anisimova, M., Bielawska, J. P. & Yang, Z. Accuracy and power of bayes prediction of amino acid sites under positive selection. Mol. Biol. Evol. 19, 955–958 (2002).
110. Delport, W., Poon, A. F., Frost, S. D. & Kosakovsky Pond, S. L. Datamonkey 2010: a suite of phylogenetic analysis tools for evolutionary biology. Bioinformatics 26, 2455–2457 (2010).
111. Pond, S. L., Frost, S. D. & Muse, S. V. HyPhy: hypothesis testing using phylogenies. Bioinformatics 21, 676–679 (2005).
112. Prado-Martinez, J., et al. Great ape genetic diversity and population history. Nature 499, 471–473 (2013).
Enard, D., Messer, P. W. & Petrov, D. A. Genome-wide signals of positive selection in human evolution. *Genome Res.* **24**, 885–895 (2014).

Cooper, G. M. *et al.* Distribution and intensity of constraint in mammalian genomic sequence. *Genome Res.* **15**, 901–913 (2005).

Bandelt, H. J., Forster, P. & Rohl, A. Median-joining networks for inferring intraspecific phylogenies. *Mol. Biol. Evol.* **16**, 37–48 (1999).

Ward, L. D. & Kellis, M. HaploReg v4: systematic mining of putative causal variants, cell types, regulators and target genes for human complex traits and disease. *Nucleic Acids Res.* **44**, D877–81 (2016).

Neale, B. M. *et al.* Patterns and rates of exonic de novo mutations in autism spectrum disorders. *Nature* **485**, 242–245 (2012).

de Ligt, J. *et al.* Diagnostic exome sequencing in persons with severe intellectual disability. *N. Engl. J. Med.* **367**, 1921–1929 (2012).

Fromer, M. *et al.* De novo mutations in schizophrenia implicate synaptic networks. *Nature* **506**, 179–184 (2014).

Tabarki, B., AlMajhad, N., AlHashem, A., Shaheen, R. & Alkuraya, F. S. Homozygous KCNMA1 mutation as a cause of cerebellar atrophy, developmental delay and seizures. *Hum. Genet.* **135**, 1295–1298 (2016).

Author Contributions

M.S. and A.M. conceived and designed the study. A.M. and D.F. performed evolutionary and population genetics-phylogenetics analyses. A.M., D.F., M.S., and U.P. analyzed the data. M.S., R.C., M.C. coordinate and supervise the project. M.S., A.M. and D.F. wrote the article. All authors read and approved the final manuscript.

Additional Information

Supplementary information accompanies this paper at doi:10.1038/s41598-017-06440-4

Competing Interests: The authors declare that they have no competing interests.

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

© The Author(s) 2017