Starch biosynthesis in cereal endosperms: An updated review over the last decade

Lichun Huang1,2, Hongyan Tan1, Changquan Zhang1,2, Qianfeng Li1,2 and Qiaoquan Liu1,2,*

1Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, State Key Laboratory of Hybrid Rice, Key Laboratory of Plant Functional Genomics of the Ministry of Education, College of Agriculture, Yangzhou University, Yangzhou 225009, China
2Co-Innovation Center for Modern Production Technology of Grain Crops of Jiangsu Province, Key Laboratory of Crop Genetics and Physiology of Jiangsu Province, Yangzhou University, Yangzhou 225009, China

*Correspondence: Qiaoquan Liu (qqliu@yzu.edu.cn)

https://doi.org/10.1016/j.xplc.2021.100237

ABSTRACT

Starch is a vital energy source for living organisms and is a key raw material and additive in the food and non-food industries. Starch has received continuous attention in multiple research fields. The endosperm of cereals (e.g., rice, corn, wheat, and barley) is the most important site for the synthesis of storage starch. Around 2010, several excellent reviews summarized key progress in various fields of starch research, serving as important references for subsequent research. In the past 10 years, many achievements have been made in the study of starch synthesis and regulation in cereals. The present review provides an update on research progress in starch synthesis of cereal endosperms over the past decade, focusing on new enzymes and non-enzymatic proteins involved in starch synthesis, regulatory networks of starch synthesis, and the use of elite alleles of starch synthesis-related genes in cereal breeding programs. We also provide perspectives on future research directions that will further our understanding of cereal starch biosynthesis and regulation to support the rational design of ideal quality grain.

Key words: cereal, starch biosynthesis, regulation network, endosperm development, quality improvement

Huang L., Tan H., Zhang C., Li Q., and Liu Q. (2021). Starch biosynthesis in cereal endosperms: An updated review over the last decade. Plant Comm. 2, 100237.

INTRODUCTION

Starch is a natural polymer composed of glucose that is unique to plants and algae. The metabolism of starch is the hub of energy metabolism and is widely involved in almost all aspects of plant growth and development. Storage starch, synthesized in the seeds, tubers, corms, and roots of plants, is the main substance used by plants to store carbohydrates and is the most important energy source for all living organisms, as well as an important industrial raw material and additive (Zeeman et al., 2010). The degradation of storage starch can also affect seed germination and pre-harvest sprouting (Tai et al., 2021). Storage starch is a semi-crystalline, insoluble particle composed of two α-glucose polymers, linear amyllose and highly branched amylopectin linked by α-1,4- and α-1,6-glycosidic linkages (Zhu et al., 2020b). The composition of amyllose and amylopectin, and the hierarchical fine structures they form, determine the diversity of starch physicochemical properties, cereal grain quality, and industrial uses. Extensive research has been carried out on storage starch in fields such as plant science, food science, polymer science, and various industrial fields. For details, please refer to several excellent reviews and book chapters published previously (Jeon et al., 2010; Kötting et al., 2010; Zeeman et al., 2010; Shen et al., 2011; Tetlow et al., 2015; Wang et al., 2015; Pfister and Zeeman, 2016; Zaman and Sarbini, 2016; Crofts et al., 2017; Thalmann and Santelia, 2017; Kaur et al., 2018; Seung and Smith, 2018; Xia et al., 2018; Abt and Zeeman, 2020; Jukanti et al., 2020; Seung, 2020; Sharma et al., 2020; Zhou et al., 2020a; Tai et al., 2021).

The cereal endosperm is a major source of storage starch in plants. In the first decade of the 21st century, great progress was made in the functional analysis of key starch synthesis-related genes (SSRGs) in cereal endosperms and their correlations with the physicochemical properties of starches with different components and structures. This work has been well summarized previously (Jeon et al., 2010; Kötting et al., 2010; Zeeman et al., 2010). In the past 10 years, a series of advances have been made in the area of starch biosynthesis within the cereal endosperm. This review aims to update recent findings in cereals, especially in the endosperm of major cereals, including rice (Oryza sativa), maize (Zea mays), wheat (Triticum aestivum), and barley (Hordeum vulgare).
The main text of the review is divided into five parts. In the first part, we briefly introduce the physicochemical properties of starch and its applications in food and non-food industries. In the second part, we detail the starch biosynthesis pathway in the endosperm of cereals based on progress made in the past decade and on previous reviews. In the third part, we summarize the regulatory network and mechanism of starch synthesis in cereal endosperms. In the fourth part, we discuss genetic improvement of cereal quality using accumulated knowledge on the genes involved in starch synthesis and its regulation, especially the SSRGs. Finally, we highlight the challenges that remain to be overcome in cereal endosperm starch research, and we raise prospects for future research.

PHYSICOCHEMICAL PROPERTIES AND APPLICATIONS OF CEREAL STARCH

Physicochemical properties of cereal starch

Starch physicochemical properties, including hardness, stickiness, gelatinization, retrogradation, digestibility, crystallization, and elasticity, are key factors for the manufacture and functional features of starch-based foods and industrial raw materials. To understand the relationship between the composition/structure of starch and its properties, starch characteristics are widely parameterized. Amylose content (AC) is the most classic parameter that reflects the composition of starch, whereas diverse parameters have been established for starch structure (Li et al., 2020a). Among them, chain-length distribution (CLD) is the fundamental component of starch structure and physicochemical properties. The CLD of amylose has been divided into three fractions based on the degree of polymerization (DP): short (DP 100–500), medium (DP 500–5000), and long (DP 5000–20 000) amylose chains (Li et al., 2016). Alternatively, it has been divided into two fractions: fraction 1 (DP 100–1000) and fraction 2 (DP 1000–20 000) (Li et al., 2017a). The CLD of amylopectin has been divided into diverse chain categories in different reports (Zhu, 2018). Generally, it has been divided into four fractions based on the amylopectin cluster model. These are the A (DP 6–12), B1 (DP 13–24), B2 (DP 25–36), and B3 (DP >36) chains, of which the A and B1 chains account for more than 90% (Yu et al., 2019; Jukanti et al., 2020). In addition, a series of indicators and instruments have been summarized and developed to quantify the physicochemical properties of starch. These include the gelatinization properties of starch, which are mainly indicated by gelatinization temperature (GT), and the crystallization properties, which are determined by crystallinity degree (Tan et al., 1999; Dankar et al., 2018).

After decades of exploration, the correlations among quantitative indicators, starch physicochemical properties, and cereal grain quality have been largely revealed and established. For starch composition, AC shows a negative correlation with starch stickiness, digestion rate, crystallinity degree, and transparency of polished rice (AC < 13%) and a positive correlation with starch hardness, elasticity, and retrogradation rate (Gong et al., 2019; Huang et al., 2020a; Li et al., 2020a; Zhang et al., 2020b). Therefore, AC is the most critical indicator that determines the physicochemical properties of starch and its end use. For the CLD of amylopectin, short (A and B1) amylopectin chains form amylopectin crystalline regions, and longer A and B1 chains can form longer double helices that require a higher temperature to dissociate than do shorter double helices in the crystalline region (Noda et al., 1998; Li et al., 2020a). Thus, the numbers of amylopectin A chains and B1 chains are negatively and positively correlated with GT, respectively, and longer amylopectin A and B1 chains reduce the starch digestion rate (Martinez et al., 2018). Starch that contained a higher proportion of amylopectin with DP 70–100 showed a less viscous but more elastic texture (Li et al., 2016). For the CLD of amylose, shorter amylose medium chains are relatively easily retrograded, whereas shorter amylose medium-to-long chains and the amount of short-to-medium chain amylose help to reduce the starch digestion rate (Li et al., 2020a).

Applications of cereal starch in food and non-food industries

Starch from cereal endosperms is used mainly as food, providing about 50% of the daily energy needed by the human body (Figure 1A and 1C). Consumer preferences and dietary habits in different regions of the world result in diverse needs for starchy food and require cereal starches with diverse physicochemical properties (Huang et al., 2020a). For instance, cereals with a lower AC, such as waxy corn and soft rice, tend to be preferred in Southeast Asia, despite being less healthy because of their high digestibility and high glycemic index (GI) (Dong et al., 2019a; Parween et al., 2020). Cereal grains are also crucial ingredients for animal feeds (Figure 1D).

As the second most abundant carbohydrate in nature after cellulose, starch’s plentiful sources, easy access, low cost, and natural, renewable, and biodegradable characteristics have led to its widespread use in industrial applications. Using physical, chemical, or enzymatic methods such as molecular cutting, rearrangement, oxidation, or introduction of substituents into starch molecules can produce modified starches with altered, enhanced, or new physicochemical properties. Modified starch overcomes the shortcomings of natural starch, such as poor freeze-thaw stability, low solubility, easy retrogradation, and low transparency, further expanding its range of applications in related industries (Masina et al., 2017; Wang et al., 2020c). In food processing, modified starch is widely added to food as a partial fat substitute to provide the shape, taste, thickening, gelling, adhesiveness, and stability required by the food system while avoiding the perception that high-fat meat products will cause cancer (Heinen et al., 2009; Kapelko-Zeberska et al., 2015; Kaur et al., 2018) (Figure 1B). Starch is also used in the alcoholic beverage industry and as a feedstock in bioethanol production for clean energy (Zeeman et al., 2010) (Figure 1E). In the textile industry, modified starch is an important material for warp sizing, printing paste, and silk printing paste (Hebeish et al., 2008) (Figure 1F). Low- and non-amylose starch is very sticky and is an ideal industrial adhesive (Onusseit, 1992) (Figure 1G). Starch with a molecular structure similar to that of cellulose in papermaking fiber is also widely used in the papermaking industry to improve the strength, stiffness, smoothness, gloss, and whiteness of paper (Shen et al., 2011) (Figure 1H). Starch-based biodegradable plastic is considered to be an ideal replacement for traditional plastics in packaging (Gross and Kalra, 2002) (Figure 1H). Modified starch is one of the most important
excipients for various new preparations in the pharmaceutical industry (Elvira et al., 2002) (Figure 1). Starch also has remarkable potential for the preparation of nanofibers using the electrospinning process. Electrospun starch nanofibers have applications in drug delivery, tissue engineering, and the manufacture of wound dressings, and their continued development and applications are expected to further expand the use and commercial value of starch (Liu et al., 2017).

STARCH BIOSYNTHESIS PATHWAY IN CEREAL ENDOSPERMS

The pathway of starch biosynthesis in the endosperm is highly conserved among cereals. A number of key enzymes, including ADP-glucose pyrophosphorylase (AGPase), granule-bound starch synthase (GBSS), soluble starch synthase (SS), starch branching enzyme (SBE), debranching enzyme (DBE), disproportionating enzyme (DPE), and starch/α-glucan phosphorylase (PHO), have been found to participate in the synthesis of starch in the cereal endosperm (Zeeman et al., 2010; Seung and Smith, 2018). Each of the starch synthesis-related enzymes (SSREs) in cereals is present in a variety of isozymes, and these isozymes can form heterologous multi-enzyme complexes with other isozymes or homomultimers with themselves in vivo to perform their functions (Utsumi et al., 2011; Crofts et al., 2015). In addition, some novel non-enzymatic proteins, such as PROTEIN TARGETING TO STARCH (PTST), have also been found to participate in starch synthesis in the cereal endosperm (Peng et al., 2014; Seung et al., 2015). From the perspective of the whole genome, the types and functions of SSREs are highly conserved in rice, maize, wheat, and barley, despite the differences in copy number and isoenzyme number owing to variations in chromosome number among cereal species (Ohdan et al., 2005; Radchuk et al., 2009; Yan et al., 2009; Kang et al., 2013a) (Table 1). A brief depiction of the starch biosynthesis pathway in the cereal endosperm is shown in Figure 2. For specific information, please refer to previous reviews (Jeon et al., 2010; Zeeman et al., 2010; Abt and Zeeman, 2020).

Generation of substrates and primers for starch synthesis

AGPase is responsible for the synthesis of ADP glucose (ADPG), the major substrate for starch synthesis (Pfister and Zeeman, 2016). In higher plants, AGPase is a heterotetramer composed of two large subunits (AGPL) and two small subunits (AGPS). The isozymes of AGPL and AGPS can be classified into cytosolic and plastidial types according to their cellular localization (Saripalli and Gupta, 2015). The cytosolic type accounts for most of the total AGPase activity in the cereal endosperm, and mutation of its encoding genes often leads to severe grain-filling defects (Crumpton-Taylor et al., 2011; Huang et al., 2014; Wei et al., 2017). ADPG, synthesized in the cytosol of the developing endosperm, is transported to the amyloplast through the plastid ADPG transporter BT1 (Brittle 1), which is located in the amyloplast envelope (Kirchberger et al., 2007; Cakir et al., 2016; Li et al., 2017b) (Figure 2A).

Malto-oligosaccharides (MOs) are required as primers for starch synthesis (Seung and Smith, 2018) (Figure 2B). The de novo synthesis of the original MOSs remains unclear. However, MOSs have been found to be continuously generated through trimming of nascent amylopectin by isoamylase 1 (ISA1) and ISA2 during starch synthesis or released by α/β-amylases during starch degradation (Myers et al., 2000; Fulton et al., 2008; Abt and Zeeman, 2020). Recombinant SSI-SSIV and GBSSI from barley and Arabidopsis elongated MOSs as short as maltose with low affinities in vitro (Brust et al., 2013; Cuesta-Seijo et al., 2016). PHO1 (also known as PHS1 and SP) was reported to interact with SSIV in Arabidopsis and may function in the extension of MOSs (Malinova et al., 2018). In rice, PHO1 assembles with DPE1 to use a broader range of sugars to

Plant Communications
Enzymes/non-enzymatic proteins	Rice (Oryza sativa L.)	Maize (Zea mays L.)	Wheat (Triticum aestivum L.)	Barley (Hordeum vulgare L.)	
ADPG pyrophosphorylase (AGPase, EC 2.7.7.27)	OsAGPS1 AY028315	ZmAGPS1 AY032604	TaAGPS1 AY727927	HvAGP-S1 AAO16183	
	OsAGPS2a EF122437	ZmAGPS2a-1/1/1/1/1/1	TaAGPS2-a AY330035	X6 808	HvAGP-S2a ACAA8449
	OsAGPS2b AP004459	ZmAGPS2b AF334960	TaAGPS2-b EU582678	HvAGP-S2b ACAA8450	
	OsAGPL1 AY028314	ZmAGPL1/Sh2 BT016868	TaAGPL1 Z21969	HvAGP-L1 CAA47626	
	OsAGPL2/GI2 D50317	ZmAGPL2 Z38111	TaAGPL2 DQ406820	HvAGP-L2 AAC49729	
	OsAGPL3 NM-001055611	ZmAGPL3 EF694838			
	OsAGPL4 NM-001055719	ZmAGPL4 EF694839			
ADPG transporter	OsBT1 Os02g0202400	ZmBT1 M79333	TaBT1 BT008958.1	HvBT1 AY560327.2	
Granule-bound starch synthase (GBSS, EC 2.4.1.21)	OsGBSSI AB425323	ZmGBSSI AY109531	TaGBSSI AF286320	HvGBSSla AAM74051	
	OsGBSSI/ OsGBSSL	ZmGBSSL/a EF471312	TaGBSSLia AFA09395	HvGBSSLb AAM7054	
Soluble starch synthase (SS, EC 2.4.1.21)	OsSSI AY299404	ZmSSI AF036891	TaSSI AJ292521	HvSSI AAM37876	
	OsSSI/a/SIII-3/ ALK AF419099	ZmSSI/a/Su2 AF019296	TaSSI/a/ Sp1 AJ269503	HvSSI/Sex6 AAN28307	
	OsSSIIb/SIII-2 AF395537	ZmSSIlb-2 EF472249	TaSSIlb EU333947	HvSSIlb AAN28307	
	OsSSIIc/SIII-3 AF383878	ZmSSIlc EU284113	TaSSIlc EU307274		
	OsSSIIIa/SIII-2/ Flo6 AY100469	ZmSSIllda/dla1 AF023159	TaSSIIIla AF258608	HvSSIlld AAF87999	
	OsSSIIIb/SIII-1 AF432915	ZmSSIlb-1 EF472250	TaSSIlb EU333946	HvSSIlb AAL40942	
	OsSSIVa/SIV-1 AY373257	ZmSSIV EU599036	TaSSIV AY044844	HvSSIV AAK97773	
	OsSSVb/SIV-2 AY373258	ZmSSV NM_001 130			

Table 1. Enzymes and non-enzymatic proteins involved in starch synthesis during cereal endosperm development. (Continued on next page)
Enzymes/non-enzymatic proteins	Rice (Oryza sativa L.)	Maize (Zea mays L.)	Wheat (Triticum aestivum L.)	Barley (Hordeum vulgare L.)
	Gene name	Acc. No./ID	Gene name	Acc. No./ID
Starch branching enzyme (SBE, EC 2.4.1.18)	OsSBEI/SBE1	EF122471	ZmBEI	Y12320
			TaBEI	
	OsSBEIIa/SBE4	AB023498	ZmBEIIa	AF286319
			TaBEIIa	
	OsSBEIIb/SBE3	D16201	ZmBEIb/Ae	AF1740401
			TaBEIb	
	OsSBEIII	AK066930	ZmBEII	JQ346193
Debranching enzyme (DBE, EC 3.2.1.68 and EC 3.2.1.41)	OsISA1	AB015615	ZmISA1/Su1	AF548380
			TaISA1	
	OsISA2	NM-001061991	ZmISA2	JX473824
			TaISA2	
	OsISA3	NM-001069968	ZmISA3	JN412069
			TaISA3	
	OsPUL	D50602	ZmPUL/Zpu1	EF137375
			TaPUL	
			HuPUL	AAD34348
Starch/α-glucan phosphorylase (PHO, EC 2.4.1.1)	OsPHOL/PH O 1	AF327055	ZmPHOL/Sh4/Sp	EU595762
			TaPHOL	
	OsPHOH	NM-001051358	ZmPHOH	AF275551
			TaPHOH	
			HuPHOL/PHS1	KF195662
Disproportionating enzyme (DPE, EC 2.4.1.25)	OsDPE1	AB626975	ZmDPE1	BT061520
			TaDPE1	DQ068045
	OsDPE2	AK067082	ZmDPE2	BT055804
			TaDPE2	BQ294920
Protein targeting to starch (PTST)	OsGBP	LOC_Os02g04330	GPM177	
			NP_001132796.1	HuPTST1
	OsFL O 6	LOC_Os03g48170	TaBGC1	
			HuFL O 6/Fra	HORVU6Hr1G018500

Table 1. Continued
Most of the information was collected from previous reports (Ohdan et al., 2005; Radchuk et al., 2009; Yan et al., 2009; Jeon et al., 2010; Kang et al., 2013a; Ma et al., 2013; Soliman et al., 2014; Liu et al., 2015b; Cuesta-Seijo et al., 2017; Wang et al., 2019; Abt and Zeeman, 2020); some genes are predicted by sequence alignment, and their authenticity and function require further verification; Acc. No., accession number.

*The naming of AGPS1 and AGPS2 is contrary to that of Yan et al. (2009), Radchuk et al. (2009) and Kang et al. (2013a), but consistent with their original citations (Johnson et al., 2003; Ohdan et al., 2005) and the NCBI website.
Figure 2. Starch biosynthesis in the cereal endosperm: rice as an example.
(A) Generation and transport of ADP glucose (ADPG), the major substrate for starch synthesis. Sucrose synthesized by photosynthesis is unloaded and distributed by GRAIN INCOMPLETE FILLING 1 (GIF1) (Wang et al., 2008), then processed into ADPG in the cytosol and amyloplast by AGPase after a series of reactions and transport. In higher plants, AGPase is a heterotetramer composed of two large subunits (AGPL) and two small subunits (AGPS). ADPG synthesized in the cytosol is transported to the amyloplast through Brittle 1 (Bt1).

(B) Generation of primers for starch synthesis. The initiation of starch synthesis requires the availability of malto-oligosaccharides (MOSs). MOSs have been found to be continuously generated through trimming of nascent amylopectin by ISA1 and ISA2 in the process of starch synthesis or released by α/β-amylases during starch degradation (Myers et al., 2000; Fulton et al., 2008; Abt and Zeeman, 2020). However, the de novo synthesis of the original MOSs in cereals is still unclear. In rice, the PHO1–DPE1 complex enhanced synthesis of long MOSs in vitro, and an unknown factor(s) can compensate for the function of PHO1 at room temperature (Satoh et al., 2008; Hwang et al., 2016). SSIV and its interaction partners, including PHO1, PTST2, MFP1, and MRC, were found to participate in the extension of MOSs in Arabidopsis (Malinova et al., 2018). In addition, recombinant SSs and GBSSI from barley and Arabidopsis were demonstrated to elongate MOSs as short as maltose in vitro (Brust et al., 2013; Cuesta-Seijo et al., 2016). MOSs are further processed into linear glucans and branched glucans, which act as primers to initiate the synthesis of amylose and amylopectin, respectively. PHO1 and SBEs combine to promote the extension of MOSs and the synthesis of branched glucans by activating each other’s mutual capacities in rice (Nakamura et al., 2012).

(C) Synthesis of amylose and amylopectin. Amylose in cereal endosperms is synthesized by GBSSI, whereas amylopectin is synthesized by coordinated cooperation of SSs, SBEs, and DBEs. PTST1 and PTST2, two non-enzymatic proteins, are also involved in the starch synthesis pathway. The isoforms of starch synthesis-related enzymes in cereals form heterologous multi-enzyme complexes with other isoforms or homo-multimers with themselves.
Starch biosynthesis in cereal endosperms

synthesize MOSs and enhance the synthesis of long MOSs in vitro (Hwang et al., 2016). PHO1 was also demonstrated to combine with SBEs to promote the extension of MOSs and the synthesis of branched glucans in rice, and similar interactions were also observed in protein extracts from the endosperms of wheat, maize, and barley (Tetlow et al., 2004; Nakamura et al., 2012; Subasinghe et al., 2014; Cuesta-Seijo et al., 2017). However, the functions of PHO1 and DPE1 remain controversial, as only the isolated cases mentioned above have been reported.

Synthesis of amylpectin

Amylopectin is synthesized by at least SS, SBE, and DBE (Kötting et al., 2010; Crofts et al., 2015) (Figure 2C). SS is responsible for the extension of the α-1,4-glycosidic bond in amylpectin; it has the largest number of isofoms and the most complex functions among the SSREs (Ohdan et al., 2005). SSI, SSII, and SSIII are generally believed to be responsible for the elongation of α-glucan chains during amylpectin synthesis, whereas SSIV and its interaction partners, including PHO1, PTST2, MAR BINDING FILAMENT-LIKE PROTEIN 1 (MFP1), and MYOSIN-RESEMBLING CHLOROPLAST PROTEIN/PROTEIN INVOLVED IN STARCH INITIATION 1 (MRC/PII1), are involved in starch granule initiation (Jeon et al., 2010; Crofts et al., 2015; Seung et al., 2018; Abt and Zeeman, 2020). The novel starch synthase SSV was recently identified, and it shows conserved sequences and gene structures in all green plants (Liu et al., 2015b). SSV shows no enzymatic activity but interacts with MRC to manipulate starch granule initiation in Arabidopsis chloroplasts, similar to its close relative SSIV (Abt and Zeeman, 2020; Abt et al., 2020).

SBE is the only enzyme that acts on glucan to produce branches connected by α-1,6-glycoside bonds, and it generally includes three types in cereals: SBEI (SBE1), SBEII, and SBEII (Han et al., 2007; Tian et al., 2009). SBEI, including SBEIIb (SBE3) and SBEIIa (SBE4), plays a major role during amylpectin synthesis in the cereal endosperm (Tian et al., 2009; Sawada et al., 2018). Significantly, SBEIIa mainly compensates for the function of SBEI, instead of SBEIIb, by forming amylpectin medium chains in the rice endosperm (Sawada et al., 2018). SBEII, which shares low similarity with SBEI and SBEII, has been found in many higher plants, including rice, maize, and wheat, and only TaSBEII was identified to be associated with the synthesis of both A and B granules in wheat grains (Han et al., 2007; Kang et al., 2013b).

DBE, comprising ISA1, ISA2, ISA3, and pullulanase (PUL), hydrolyzes α-1,6-glycosic bonds and corrects the wrong branches in starch synthesis to ensure the orderly synthesis of amylopectin. ISA1, also known as Sugary 1 (Su1) and Pre-harvest sprouting 8 (PHS8), is critical for the orderly synthesis of amylopectin in cereal endosperms (James et al., 1995; Burton et al., 2002; Du et al., 2018). Mutation of ISA1 causes a massive accumulation of highly branched glucan and phytoglycogen in grains and also causes pre-harvest sprouting (Du et al., 2018). ISA1 can form homo-oligomers with itself or heterologous complexes with ISA2, in which ISA1 plays a catalytic role and ISA2 plays a regulatory role (Utsumi et al., 2011). Moreover, ISA1, ISA2, and SSIII act synergistically to inhibit the accumulation of phytoglycogen (Lin et al., 2011).

In cereal endosperms, the enzymes involved in amylpectin synthesis usually act in the form of multi-enzyme complexes (Kötting et al., 2010; Crofts et al., 2017). For instance, trimers composed of SSI, SSIIa, and SBEII/SBEIb have been observed in the developing endosperms of wheat, maize, and rice; within these trimers, SSIIa is located between SSI and SBEII and is responsible for binding to starch granules (Hennen-Bierwagen et al., 2008; Tetlow et al., 2008; Liu et al., 2012; Hayashi et al., 2018).

Synthesis of amylose

Amylose in cereal endosperms is synthesized by granule-bound starch synthase I (GBSSI), which is encoded by the Waxy (Wx) gene (Shure et al., 1983; Wang et al., 1993) (Figure 2C). GBSSI controls amylose synthesis in the form of oligomers after being phosphorylated on the surface of starch granules (Liu et al., 2013). All three PTST proteins are involved in the synthesis of starch, but only PTST1 is involved in the synthesis of amylose (Seung et al., 2017). PTST1 interacts with GBSSI to help the latter’s localization to the surface of starch granules (Seung et al., 2015). The C-terminal carbohydrate binding module (CBM) of PTST1 is required for correct GBSSI localization, and mutation of CBM can cause GBSSI to remain in the plastid stroma (Wang et al., 2020b). The pts1 mutants in Arabidopsis and barley showed significantly reduced GBSS protein accumulation without amylose synthesis, consistent with the gbss mutants (Seung et al., 2015; Zhong et al., 2018). The OsGBP gene in rice is homologous to PTST1 in Arabidopsis and barley, but the reduced AC in the endosperm of the osgbp mutant is still much higher than that of glutinous rice.
suggested that other mechanisms are involved in localizing GBSSI to starch granules (Wang et al., 2020b).

Initiation and morphogenesis of starch granules

Starch in the cereal endosperm exists in the form of semi-crystalline, insoluble starch granules (Abt and Zeeman, 2020) (Figure 2D). The morphology of starch granules, including number, size, shape, and distribution in amyloplasts, is diverse among cereal endosperm cells. The amyloplast in the endosperm of maize and most members of the Triticeae (including wheat and barley) contains only one simple starch granule, and the starch granules of Triticeae are bimodal in size (Myers et al., 2011; Seung and Smith, 2018). In the rice endosperm, multiple starch granules initiate in amyloplasts and fuse into a larger compound structure during grain maturation (Matsushima et al., 2015) (Figure 2E). The compound starch granules are considered to be the ancestral form in the Gramineae, and the number of starch granules per amyloplast is determined in the early developmental stage (Matsushima et al., 2013, 2015).

The matrix of starch granules is composed mainly of amylopectin. Thus, enzymes and proteins involved in amylopectin synthesis, such as ISA1, SBEs, SSIII, SSIV, SSV, and PTST2, also function in the initiation and morphogenesis of starch granules. As mentioned above, ISA1 is vital for ensuring the correct formation of starch granules instead of highly branched glucan or phyto-glycogen (Burton et al., 2002). FLOURY ENDOSPERM6 (FLO6), which is homologous to PTST2 in Arabidopsis, B-GRANULE CONTENT 1 (BGC1) in wheat, and Franubet (Fra) in barley, modulates the formation of compound starch granules in the rice endosperm through interaction with ISA1, enabling its binding to the starch granules (Peng et al., 2014; Saito et al., 2018; Chia et al., 2019).

The double mutation of ISA1 and SBEIla eliminated the sugary endosperm, resulting in normal starch granule formation (Lee et al., 2017). Gradually decreasing the expression of SBEs can lead to the formation of various heterogeneous starch granules, including polygonal, aggregate, elongated, and hollow granules (Wang et al., 2018). Studies in wheat indicated that SSIV and BGC1 are required for proper granule initiation, as TaSSIVb-D mutation led to a decrease in starch granules per chloroplast (Guo et al., 2017), and mutation of either SSIV or BGC1 resulted in multiple initiations of amyloplasts and the formation of compound granules (Hawkins et al., 2021). Mutation of SSIVb (SSIV-2) or SSIIIa did not show even a slight effect on starch granule morphology in the rice endosperm, but their combination resulted in small and spherical starch granules (Toyotaowa et al., 2016). SSIII also functions in starch granule initiation in the absence of SSIV, and the absence of SSV negatively affects the number of starch granules in Arabidopsis chloroplasts, similar to that of SSIV (Szydlowski et al., 2009; Abt et al., 2020).

In cereals, starch granule morphology after mutation of the Wx gene is mostly normal, indicating that amylase is not essential for the formation of starch granules (Seung and Smith, 2018). However, mutations of PTST1 or OsGBP, which interacts with GBSSI, cause dramatic changes in starch granule morphology (Seung et al., 2015; Zhong et al., 2018; Wang et al., 2020b).
Starch biosynthesis in cereal endosperms

Recently, some NAM/ATAF/CUC (NAC) TFs involved in the regulation of starch and storage protein synthesis in developing cereal grains were cloned. Three NAC members related to starch synthesis were identified in maize: ZmNAC126, ZmNAC128/ZmNAC34, and ZmNAC130. Among these, ZmNAC126 modulates starch accumulation in corn kernels by increasing starch synthesis and inhibiting starch degradation (Xiao et al., 2020). The functions of ZmNAC128/ZmNAC34 and ZmNAC130 are redundant. They compete for a 6-bp consensus sequence (ACG-\ldots) and 16-kDa \gamma-zein, to regulate the accumulation of starch and storage protein in corn kernels (Peng et al., 2019; Zhang et al., 2019d). ZmaNAC36, which is highly expressed in the maize endosperm and is co-expressed with most of the SSRGs, may also play a role in starch synthesis in the maize endosperm (Zhang et al., 2014b). In rice, OsNAC20 and OsNAC26 bind directly to key genes of starch and protein synthesis in the endosperm. However, the high similarity of their amino acid sequences has resulted in redundancy, which was verified by the fact that only the osnac20/26 double mutant showed significantly decreased starch and storage protein content in the endosperm (Wang et al., 2020a). In the linked region of rice chromosome 11, a gene cluster encoding four NAC members (ONAC025, ONAC127, ONAC128, and ONAC129) was identified (Fang et al., 2008). ONAC127 and ONAC129 are not directly involved in starch synthesis in the rice endosperm, but they do form heterodimers that participate in apoplastic transport and the heat stress response to regulate rice grain filling, including starch accumulation (Ren et al., 2021). In wheat, the endosperm-specific TaNAC019 was also found to regulate glutenin and starch accumulation by directly activating the expression of relevant genes (Liu et al., 2020; Gao et al., 2021).

A group of nuclear factor Ys (NF-Ys), which are predominantly expressed in the rice endosperm, were also reported to be regulators of rice endosperm development (Yang et al., 2017; Zhiguo et al., 2018). Recent findings showed that OsNF-YB1 is specifically expressed in the aleurone layer of the rice developing endosperm and regulates grain filling and endosperm development by interacting with other TFs, including OsbZIP76, OsERF115, OsNF-YC11, OsNF-YC12, and bHLH144 (Bai et al., 2016; Bello et al., 2019; Xiong et al., 2019; Niu et al., 2020). For instance, NF-YB1 binds with NF-YC12 and bHLH144 to form an NF-Y heterotrimer complex (NF-YB1-YC12-bHLH144), and mutation of each gene in the complex can alter starch synthesis in the rice endosperm (Bello et al., 2019). A rice LEC1-like TF known as OsNF-YB9 functions in starch synthesis by affecting SSRG expression and starch granule morphology (Niu et al., 2021).

Furthermore, the maize MYB TF ZmMYB14 binds to the promoters of multiple SSRGs, including ZmBT1, to activate their expression (Xiao et al., 2017). ZmMYB138 and ZmMYB115 are candidate TFs involved in the regulation of starch synthesis in the maize endosperm, as suggested by expression correlation analysis (Hu et al., 2021). ZmAB41, ZmEREB156, and HvSUSIBA2 are TFs related to the modulation of SSRGs such as SSIIa, SSI, and ISA1 by abscisic acid (ABA) and/or sugar signaling (Sun et al., 2003; Hu et al., 2012; Huang et al., 2016). OsMADS7, OsBP-5, and OsEBP89 were identified in rice as...
TF	Locus	TF family	Key references
Oryza sativa L.			
OsbZIP58/RISBZ1	LOC_Os07g08420	bZIP	Kawakatsu et al., 2009; Wang et al., 2013; Xu et al., 2020
OsbZIP33/REB/RISBZ2	LOC_Os03g58250	bZIP	Yang et al., 2001; Cai et al., 2002
OsbZIP76	LOC_Os09g34880	bZIP	Niu et al., 2020
OsNAC20	LOC_Os01g01470	NAC	Wang et al., 2020a
OsNAC26	LOC_Os01g29840	NAC	
ONAC127	LOC_Os11g31340	NAC	Ren et al., 2021
ONAC129	LOC_Os11g31380	NAC	
NF-YB9	LOC_Os06g17480	NF-Y	Niu et al., 2021
NF-YB1	LOC_Os02g49410	NF-Y	Zhiguo et al., 2018; Bello et al., 2019
NF-YC12	LOC_Os10g11580	NF-Y	
bHLH144	LOC_Os04g35010	bHLH	
OsMADS7	LOC_Os08g41950	MADS-box	Zhang et al., 2018
OsMADS29	LOC_Os02g7430	MADS-box	Yin and Xue, 2012
OsMADS6	LOC_Os02g45770	MADS-box	Zhang et al., 2010
RSR1	LOC_Os05g03040	AP2/EREBP	Fu and Xue, 2010
OsEBP-89	LOC_Os03g08460	AP2/EREBP	Zhu et al., 2003
RPBF	LOC_Os02g15350	DOF	Yamamoto et al., 2006; Kawakatsu et al., 2009
SERF1	LOC_Os05g34730	DREB	Schmidt et al., 2014
OsBP-5	LOC_Os03g43810	MYC-like	Zhu et al., 2003
Zea mays L.			
ZmABI19	Zm00001d011712	B3 domain	Yang et al., 2020
Opaque2/O2	GRMZM2G015534	bZIP	Zhang et al., 2016; Deng et al., 2020
ZmZIP22	GRMZM2G043600	bZIP	Li et al., 2018a; Dong et al., 2019b
ZmZIP91	GRMZM2G043600	bZIP	Chen et al., 2015
PBF	GRMZM2G146263	DOF	Zhang et al., 2016
ZmDOF36	GRMZM2G137502	DOF	Wu et al., 2019
ZmNAC36	GRMZM2G154182	NAC	Zhang et al., 2014b
ZmNAC126	Zm00001d005028	NAC	Xiao et al., 2020
ZmNAC128/ZmNAC34	GRMZM2G062650	NAC	Peng et al., 2019; Zhang et al., 2019d
ZmNAC130	GRMZM2G154182	NAC	
ZmMYB14	GRMZM2G172327	MYB	Xiao et al., 2017
ZmEREB156	GRMZM2G421033	AP2/EREBP	Huang et al., 2016
Opaque11/O11	GRMZM2G147685	bHLH	Feng et al., 2018
ZmMADS1a	GRMZM2G160687	MADS-box	Dong et al., 2019c
ZmABI4	GRMZM2G093595	AP2/ERF	Hu et al., 2012
Triticum aestivum L.			
TaSPA	TraesCS1B02G343500, TraesCS1D02G332200	bZIP	Guo et al., 2020b
TubZIP28/TabZIP28	TRIUR3_00 571, AML47732	bZIP	Song et al., 2020
TaNAC019-A, B, D	TraesCSA02G077900, TraesCSB02G092800, TraesCS3D02G078500	NAC	Liu et al., 2020; Gao et al., 2021

Table 2. Transcription factors involved in starch synthesis during cereal endosperm development. (Continued on next page)
being associated with Wx gene regulation and its response to high temperature (Cai et al., 2002; Zhu et al., 2003; Zhang et al., 2018). Rice Starch Regulator1 (RSTR1), an APETALA2/ethyleneprofile-response element binding protein (AP2/EREBP), is a negative regulator of SSRGs that is expressed predominantly in seeds of rice and wheat (Fu and Xue, 2010; Kang et al., 2013a). Suppression of OsMADS29 expression inhibits starch biosynthesis and grain filling in the rice endosperm by causing defective programmed cell death (Yin and Xue, 2012). OsMADS6 is highly expressed in the florets and endosperm and regulates starch accumulation by regulating genes that encode AGPase (Zhang et al., 2010).

Upstream of these TFs, the DEHYDRATION-RESPONSE ELEMENT BINDING (DREB)-type TF SALT-RESPONSIVE ERF1 (SERF1) was reported to manipulate the synthesis and degradation of starch by timing the expression of RPBF in rice (Schmidt et al., 2014). O11 is a central hub of maize endosperm development and nutrient metabolism that directly regulates related key TFs, including O2 and PBF (Feng et al., 2018). The B3 domain-containing TF ZmABI19 can coordinate the expression of O11, O2, and other key TFs and has been defined as a hub of hubs (Yang et al., 2020; Zhan, 2020).

Methylation regulation
Previous studies have shown that genes preferentially expressed in the rice endosperm, including SSRGs, usually show reduced expression because of methylation, indicating that methylation is also involved in the regulation of starch synthesis (Zemach et al., 2010). Recently, similar overall methylation patterns were found in the SSRGs expressed in the maize endosperm (Hu et al., 2021). In the developing maize endosperm, the coding regions of low-expression SSRGs are highly methylated, and expression levels of SBE1 and Su1 correlate significantly and negatively with predicted DNA methylation marks (Hu et al., 2021). Thus, DNA methylation may act as a switch in the global regulation of starch biosynthesis. Moreover, high CpG methylation in Wx is closely related to low AC in rice grains, and two neighboring CpG islands were detected in the promoter region of Wx, indicating that DNA methylation is involved in the regulation of amylase synthesis (Anacleto et al., 2019).

Post-transcriptional regulation
At the post-transcriptional level, some Du (Dull) genes and quantitative trait loci (QTLs) were reported to regulate amylase synthesis by manipulating the splicing efficiency of Wx mRNA in the rice endosperm. Du1 and Du2 showed similar genetic interactions with Wx alleles: the level of GBSSI protein in both the du1 and du2 mutants was decreased by inefficient splicing of Wx pre-mRNA, whereas neither mutant affected the expression of the Wxα allele. The Du1 gene encodes a member of the pre-mRNA processing (Prp1) family that is a component of the heterodimeric nuclear cap-binding complex. The novel QTL qAC2 and the novel dull gene LowAC1, which encodes an RNA recognition motif protein, were recently shown to have a function related to Wx2 pre-mRNA splicing, similar to that of du1 and du2 (Takekoto-Kuno et al., 2015; Igarashi et al., 2021). The post-transcriptional regulation of Wx may also be involved in grain filling at high temperatures, which will be discussed below.

Post-translational regulation via phosphorylation
Post-translational phosphorylation is an important aspect of starch synthesis regulation: the formation of multi-enzyme complexes depends on protein phosphorylation, and broadband phosphatase treatment can prevent the formation of high-molecular-weight protein complexes (Grimaud et al., 2008; Tietlow et al., 2008; Kötting et al., 2010; Ahmed et al., 2015). 32P-labeled autoradiography and phosphorylated proteomics further confirmed the phosphorylation of enzymes involved in the formation of multi-enzyme complexes in the starch synthesis pathway (Tietlow et al., 2004; Walley et al., 2013). In the developing maize endosperm, the phosphorylation sites of SSREs, including AGPase large and small subunits, PHO1, SBEs, ISA2, and Bt1, were identified using high-throughput proteome, transcriptome, and phosphorylated proteome analysis (Walley et al., 2013). For example, a systematic study of the phosphorylation sites of maize SBEIib demonstrated that three serine residue sites, Ser286, Ser297, and Ser649, can be phosphorylated (Makhmoudova et al., 2014). These phosphorylation sites form salt bridges to stabilize the SBEIib protein structure, and their mutation caused a decreased phosphorylation level of recombinant SBEIib. The three phosphorylation sites show different degrees of conservation in different crop species and SBE isoforms, indicating functional differentiation among them. The difference in the conservation of Ser286 among the SBEs may explain why phosphorylation is different among different crop species and SBE isoforms.
Plant Communications

can change the activities of SBEIIa and SBEIIb but has no effect on the activity of SBEI in wheat (Tetlow et al., 2008). Several phosphorylation sites were also found in the rice GBSSI protein, such as the S415P substitution that was shown to change the phosphorylation level of GBSSI, thereby modulating its activity to a moderate level in Wx (Zhang et al., 2019a). In wheat, the amount of phosphorylated AGPase increased during the progress of seed development and was positively correlated with relative increases in AGPase activity and starch accumulation (Ferrero et al., 2020).

Regulation by hormones

Hormones play vital roles in all stages of plant growth and development, including endosperm starch synthesis. In the process of starch metabolism, gibberellin (GA) functions mainly in starch degradation by regulating Ramy1A through the TF GAmyb, but it also modulates the expression of the key TFs SERF1 and RPBF in starch synthesis to promote starch accumulation in the developing rice endosperm (Schmidt et al., 2014). Previous studies showed that AB1 could greatly enhance AGPL1 (ApL3) induction by sugar in cultured rice cells (Akihiro et al., 2005). In maize, the novel TF ZmEREB156 was found to mediate the regulation of ABA and sucrose in starch synthesis (Huang et al., 2016). Sugar accumulation resulting from mutation of ISA1 decreased the expression of OsABI3 and OsABI5 and reduced sensitivity to ABA (Du et al., 2018). AB1A induces the accumulation of ZmSSI mRNA in maize endosperm. The ZmSSI promoter contains a CACCC motif that interacts with the ABA pathway of the TF ABI4 in vitro (Hu et al., 2012). AB14 enhances the activity of promoters containing the CACCC motif, including ZmSSI (Hu et al., 2012). A recent study indicated that starch synthesis in developing seeds is regulated mainly by leaf-derived ABA. ABA synthesized in rice leaves directly activates the expression of most SSRGs and multiple hub TFs in the rice caryopsis following long-distance leaf-to-caryopsis ABA transport. Defective grain-filling 1 (DG1), a functionally conserved multi-drug and toxic compound extrusion transporter in cereals, regulates grain filling by manipulating long-distance leaf-to-caryopsis ABA transport (Qin et al., 2021).

Response to temperature

The environment is also a key determinant of starch synthesis in cereal endosperms, mainly through temperature fluctuations during the reproductive phase (Fan et al., 2019). The pho1 mutant showed shrunken rice grains when grown at 20°C, whereas most grains were plump when grown at 30°C, suggesting that low temperature promotes the function of PHO1 and that an unknown factor(s) can compensate for PHO1 function at room temperature (Satoh et al., 2008). The negative effect of high temperature (HT) on starch synthesis is more severe and more common during the reproductive period of cereals. At the genetic level, HT significantly downregulates the expression of SSRGs and induces the expression of genes encoding α-amylase, resulting in chalky grains and defective starch accumulation (Zhang et al., 2018). AGPase and GBSSI are among the SSRs that are severely affected by HT during grain ripening (Denyer et al., 1994; Boeheim et al., 2007; Yamakawa et al., 2007). HT significantly destabilizes AGPase heteromultimer, dramatically reducing ADPG synthesis (Saripalli and Gupta, 2015). Unlike the AGPase from potato tubers, the AGPases of rice and maize endosperms lack a conserved QTCL (Gln-Thr-Cys-Leu) motif and are therefore heat labile (Boeheim et al., 2007). An insertion of cysteine in the N terminus of AGPS2b in maize and rice enhanced the heat stability of their heterotetramers (Linebarger et al., 2005; Hwang et al., 2019). The L379F mutation of rice AGPS2b was also found to improve the heat stability of AGPase by increasing the number of hydrogen bonds between two AGPS2b subunits and the intermolecular interactions between AGL2 and AGPS2b (Hwang et al., 2019).

HT inhibits Wx-encoded GBSSI and AC accumulation, resulting in rice grains with poor eating quality (Zhang et al., 2018). One of the mechanisms is that HT induced the alternative splicing of OsbZIP58, thereby reducing the transcription of the Wx gene (Xu et al., 2020). HT promotes the formation of the truncated OsbZIP58β protein relative to the full-length OsbZIP58α protein, and OsbZIP58β showed lower transcriptional activity than OsbZIP58α under HT conditions (Xu et al., 2020). Specific suppression of the floral organ identity gene OsMADS7 in the rice endosperm stabilized AC under HT stress without reducing spikelet fertility (Zhang et al., 2018). The post-transcriptional regulation of Wx is a critical mechanism for maintaining a stable AC at HT. Four QTLs that can stabilize rice AC at HT by increasing the splicing efficiency of Wx pre-mRNA (qSAC3, qHAC4, qHAC8a, and qHAC8b) were detected in a genome-wide survey of chromosome segment substitution lines derived from a cross between the indica variety 9311 and the japonica variety Nipponbare (Zhang et al., 2014a, 2019b).

Furthermore, inhibition of α-amylase gene expression resulted in fewer chalky grains under HT (Hakata et al., 2012). The presence of heat-stable PGD1 or PGD2, two heat-stable isotypes of 6-phosphogluconate dehydrogenase, in the endosperm amyloplast mitigated maize yield losses caused by HT stress (Ribeiro et al., 2020). Recently, HT was also found to affect starch accumulation in the rice and maize endosperms by regulating the efficiency of DG1-mediated leaf-to-caryopsis ABA transport. HT increased DG1 expression, causing increased transport of ABA to the caryopsis and thus altering the expression of SSRGs (Qin et al., 2021).

GENETIC IMPROVEMENT OF CEREAL STARCH QUALITY

Research on SSRGs in cereals has resulted in numerous breakthroughs in cereal breeding for grain quality improvement, especially the application of elite natural and mutagenic alleles of key SSRGs (Tian et al., 2009; Chen and Bao, 2016; Zeng et al., 2017). The genetic engineering approach has also been widely used in the genetic modification of SSRGs.

The Wx gene that controls the synthesis of amylase is the most widely used gene in cereal breeding (Huang et al., 2020a). Since the cloning of the Wx gene in the 1980s, transgenic lines with various ACs have been established using antisense RNA, homologous recombination, and overexpression, and the effects of different ACs on starch physicochemical properties have been clarified (Shimada et al., 1993; Terada et al., 2000, 2002; Itoh et al., 2003; Liu et al., 2015a). In recent years,
Starch biosynthesis in cereal endosperms

diverse Wx alleles have been cloned in rice, maize, wheat, and barley (Asare et al., 2012; Guzmán and Alvarez, 2016; Luo et al., 2020). Cloning of numerous null wx alleles in maize has enabled the convenient breeding of waxy maize with a unique chewing texture. The combination of one, two, or three null wx (wx-A1, wx-B1, and wx-D1) alleles allows the breeding of partial waxy wheat with a reduced AC and amylose-free waxy wheat (Guzmán et al., 2012). Flours with different ACs and physicochemical properties can also be obtained by mixing waxy flour and non-waxy flour in different proportions. The Wx gene was selected preferentially during domestication (Anacleto et al., 2019). In rice, at least nine functional Wx alleles responsible for various ACs between 0% and 30% have been cloned, including Wx\range{a}, Wx\range{b}, Wx\range{c}, Wx\range{m/a}, Wx\range{m/b}, Wx\range{m/c}, Wx\range{m/p}, and wx (Zhang et al., 2019a). Significant achievements have been made through the introgression of Wx\range{c} alleles (low to medium AC) and Wx\range{m/p}, Wx\range{m/c}, and Wx\range{m/p} alleles (low AC) to reduce the AC of targeted rice varieties (Huang et al., 2020a).

Recently, the rare Wx allele Wx\range{m/p}/Wx\range{a} (AC ~13.5%), derived from the homologous recombination of Wx\range{m} and Wx\range{a}, was identified through genome-wide association analysis and map-based cloning (Zhang et al., 2020b; Zhou et al., 2020b). Rice carrying Wx\range{m/p}/Wx\range{a} showed an excellent eating and cooking quality, similar to soft rice, but its grains remained transparent, unlike the opaque endosperm of soft rice cultivars (Zhang et al., 2020a; Zhou et al., 2020b). Moreover, a series of novel Wx alleles was created by editing the promoter and coding region of rice Wx, and similar strategies could be adopted to create more novel Wx alleles (Huang et al., 2020b; Zeng et al., 2020; Xu et al., 2021). Direct editing of the Wx gene in superior germplasm could reduce the impact of linkage drag on yield (Gao et al., 2020).

The ALK gene, also known as SSIla and SSII-3, controls GT and is another crucial gene in rice quality improvement breeding (Gao et al., 2003). Three typical ALK alleles were identified based on three key single-nucleotide polymorphisms (SNPs) among rice cultivars (Nakamura et al., 2003; Waters et al., 2006; Gao et al., 2011). ALK\range{a} and ALK\range{b} encode inactive japonica-type SSIIa that produce a low GT. ALK\range{b} encodes the active indica-type SSIIa that produces a high GT. ALK\range{c} induces a slightly lower GT but has a wider distribution among rice subpopulations than ALK\range{b}, and both their GTs and distributions are lower than those of ALK\range{c} (Chen et al., 2020). In addition, ALK\range{d}, caused by a G/T SNP in exon 1 of the ALK\range{c} allele, was identified from the high-GT indica rice cultivar Zhonghui 9308, which had a higher GT and improved retrogradation properties (Zhang et al., 2020a). The SSIIa-deficient mutant ssia, with no SSIIa activity or SSIIa protein and a lower GT, was also identified following N-methyl-N-nitrosourea mutagenesis of the japonica rice cultivar Kinmaze (Miura et al., 2018). In rice breeding programs, ALK alleles that produce low and medium GTs are generally preferred.

Sweet corn is an important direction in maize breeding. The improvement of sweet corn involves multiple genes and their allelic variants, including Su1, Su2, Se1, Bt1, Bt2, and Sh2. Mutant alleles of isomylase 1, designated su1, were first used for sweet corn breeding, and su1 hybrids were mostly planted before 1985 (Schultz and Juvik, 2004). However, the rapid conversion of sugar to starch and the moisture loss in su1 sweet corn hybrids after harvest caused a rapid decline in ear quality, restricting their storage, transport, and marketability (Schult and Juvik, 2004). The su1 allele and the se1 mutant can be combined to breed enhanced sweet corn. The su1 gene is a recessive modification gene of su1 that is inherited independently from su1 (Zhang et al., 2019c). After the use of su1, sh2 was used extensively in commercial varieties to breed super-sweet corn; the sh2-2 allele, which encodes a partially inactivated AGPase, was obtained using ethyl methanesulfonate (EMS) mutagenesis (Lal et al., 1999). The combination of sh2-2 with su1 and sh2 can produce multi-gene compound sweet corn varieties that overcome the genetic defects of the single sh2 gene (Dodson-Swenson and Tracy, 2015). Knockout of Wx using genome editing also facilitated sucrose accumulation in corn kernels, and the simultaneous abolition of Wx and Sh2 created super-sweet and waxy compound corn (Dong et al., 2019a).

Slow-digestible starch and resistant starch (RS) with a low GI are beneficial for the prevention and treatment of type 2 diabetes, obesity, and other blood glucose diseases. Increasing their content is a topic of considerable interest in current cereal research and breeding (Jukanti et al., 2020). Increasing AC and extra-long chains of amylopectin in cereal grains are the keys to GI reduction because of their negative correlation with starch digestion rate and positive correlation with RS content (Xia et al., 2018; Huang et al., 2020a). As early as the 1940s and 1950s, ssii and amylose extender (ae) mutants were used for high-amylose maize breeding (Li et al., 2019). A series of ae mutants characterized by loss of SBEIb activity were identified in maize, among which ae 1.2 lost SBEIb catalytic activity and was unable to bind to amylopectin because it lacked a 28-amino-acid peptide (Va277–Pro299). The granule morphology and physicochemical characteristics of ae 1.2 are distinct from those of the regular frameshift ae mutant as well as the wild type (Li et al., 2011). The effects of each SBE isoform on cereal grain AC and RS content were determined using RNA interference and antisense RNA technology (Regina et al., 2006, 2010; Carciofi et al., 2012; Zhu et al., 2012). SBEIb mutation in rice and maize significantly increased the AC and RS content (Li et al., 2019). Enhanced AC and RS content were also observed in the SBEIib and SBEIla double mutant but not in the SBEIIa single mutant (Zhu et al., 2012). However, this is incongruent with reports in which the opposite effects were observed in wheat and barley (Regina et al., 2006, 2010). Consequently, sbe-ss, a natural allele of SBEIib/SBE3 that can be used for rice breeding, was cloned through the mapping of Jiangtangdao 1, a rice cultivar with a high RS content and low GI (Yang et al., 2012). Two mutant alleles of SBEIib that produced moderate changes in starch gelatinization and AC and a fine-tuned texture were obtained by screening a mutant population of the japonica rice variety Nipponbare, and they were named altered gelatinization 1 (age1) and age2 (Nakata et al., 2018). In addition, low GI breeding lines with different mutation combinations of SBEIIa and SBEIib have been obtained through map-based cloning and EMS mutagenesis in wheat (Hazard et al., 2015; Regina et al., 2015; Schönhofen et al., 2016). More recently, genome editing technology has successfully enabled the development of novel rice and wheat germplasms with a low GI through mutation of SBEs (Sun et al., 2017; Guo et al., 2020a; Li et al., 2020b). In addition to SBEs, mutations in SSIIa and SSIIla also reportedly increased
Starch biosynthesis in cereal endosperms

(Kawakatsu and Takaia, 2010; Zhang et al., 2016). These observations outline a complex regulatory network in which TFs coordinate the regulation of the accumulation of storage substances in cereal endosperms through the dynamic balance and distribution of carbon and nitrogen; however, only a small portion of this network has been analyzed.

Toward the rational design of cereal starches

The physicochemical properties of starch are closely related to the grain quality of cereals. Further optimization of starch synthesis in cereal endosperms is an important direction in future cereal breeding for grain quality improvement. Nonetheless, there are still many hurdles to overcome. Substantial quality improvements that result from alterations in starch synthesis are often accompanied by negative effects on grain yield and other aspects of grain quality, such as grain chalkiness (Li et al., 2018b). An increase in grain AC may drastically reduce starch digestion rate and reduce eating and cooking quality; the inhibition of SBElb or SSIlla led to an increase in AC and a reduction in grain yield (Zhu et al., 2012; Zhou et al., 2016). Compared with SSRGs predominantly expressed in the endosperm and pleiotropic TFs, SSRGs with a relatively low level of expression in the endosperm appear to be more suitable for crop breeding because their mutations tend to cause moderate changes in starch synthesis (Huang et al., 2021). Furthermore, fine-tuning of the expression or enzyme activity of SSRGs with predominant expression in the endosperm is also likely to be useful in developing elite cereal varieties with improved grain quality without compromising yield traits (Huang et al., 2020b; Xu et al., 2021).

FUNDING

This work was supported by grants from the National Natural Science Foundation of China (grant numbers 31825019, 32072032, and 31901517) and the PAPD Programs from Jiangsu Province Government.

AUTHOR CONTRIBUTIONS

Qiaoquan Li, L.H.,Qianfeng Li, and C.Z. conceived the project. L.H. and H.T. collected the references and prepared the figures and tables. L.H. and Qiaoquan Li wrote the manuscript. All authors read and approved the final version of the manuscript.

ACKNOWLEDGMENTS

We gratefully appreciate manuscript editing by Dr. Qing Liu (CSIRO Agriculture and Food, Australia). No conflict of interest declared.

Received: April 5, 2021
Revised: August 8, 2021
Accepted: August 27, 2021
Published: September 2, 2021

REFERENCES

Abt, M.R., and Zeeman, S.C. (2020). Evolutionary innovations in starch metabolism. Curr. Opin. Plant Biol. 55:109–117. https://doi.org/10.1016/j.pbi.2020.03.001.

Abt, M.R., Pfister, B., Sharma, M., Eicke, S., Burgy, L., Neale, I., Seung, D., and Zeeman, S.C. (2020). STARCH SYNTHASES, a noncanonical starch synthase-like protein, promotes starch granule initiation in Arabidopsis. Plant Cell 32:2543–2563. https://doi.org/10.1105/tpc.19.00946.

Ahmed, Z., Tetlow, I.J., Ahmed, R., Morell, M.K., and Emes, M.J. (2015). Protein–protein interactions among enzymes of starch biosynthesis in high-amylose barley genotypes reveal differential roles of heteromeric enzyme complexes in the synthesis of A and B
Starch biosynthesis in cereal endosperms

granules. Plant Sci. 233:95–106. https://doi.org/10.1016/j.plantsci.2014.12.016.

Akihito, T., Mizuno, K., and Fujimura, T. (2005). Gene expression of ADP-glucose pyrophosphorylase and starch contents in rice cultured cells are cooperatively regulated by sucrose and ABA. Plant Cell Physiol. 46:937–946. https://doi.org/10.1093/pcp/pci101.

Anacleto, R., Badoni, S., Parween, S., Butardo, V.M., Jr., Misra, G., Cuevas, R.P., Kuhlmann, M., Trinidad, T.P., Malllin, A.C., Acuin, C., et al. (2019). Integrating a genome-wide association study with a large-scale transcriptome analysis to predict genetic regions influencing the glycaemic index and texture in rice. Plant Biotechnol. J. 17:1261–1275. https://doi.org/10.1111/pbi.13051.

Asare, E.K., Båga, M., Rossnagel, B.G., and Chibbar, R.N. (2019). Polymorphism in the barley granule bound starch synthase I (Gbss1) gene associated with grain starch variant amylose concentration. J. Agric. Food Chem. 60:10082–10092. https://doi.org/10.1021/acs.jafc.9b06030.

Bai, A.N., Lu, X.D., Li, D.Q., Liu, J.X., and Liu, C.M. (2016). NF-YB1 regulated expression of sucrose transporters in aleuone facilitates sugar loading to rice endosperm. Cell Res. 26:384–388. https://doi.org/10.1038/cr.2015.116.

Baysal, C., He, W., Drapal, M., Villorbina, G., Medina, V., Capell, T., Khush, G.S., Zhu, C., Fraser, P.D., and Christou, P. (2019). A carbohydrate-binding protein, B-GRANULE CONTENT 1, influences starch granule size distribution in a dose-dependent manner in polyloid wheat. J. Exp. Bot. 71:105–115. https://doi.org/10.1093/jxb/erz405.

Chia, T., Chirico, M., King, R., Ramirez-Gonzalez, R., Saccomanno, B., Seung, D., Simmonds, J., Trick, M., Uayy, C., Verhoeven, T., et al. (2019). A carbohydrate-binding protein, B-GRANULE CONTENT 1, influences starch granule size distribution in a dose-dependent manner in polyloid wheat. J. Exp. Bot. 71:105–115. https://doi.org/10.1093/jxb/erz405.

Cuesta-Seijo, J., Ruizanski, C., Kucwicz, K., Meier, S., Hagglund, P., Svensson, B., and Palcic, M. (2017). Functional and structural characterization of plastidic starch phosphorylase during barley endosperm development. PLoS One 12:e0175488. https://doi.org/10.1371/journal.pone.0175488.

Deng, Y., Wang, J., Zhang, Z., and Wu, Y. (2020). Transactivation of Sus1 and Sus2 by Opaque2 is an essential supplement to sucrose synthase-mediated endosperm filling in maize. Plant Biotechnol. J. 18:1897–1907. https://doi.org/10.1111/pbi.13349.

Dankar, I., Haddara, A., Omar, F.E.L., PujoÂ, M., and Sepulcre, F. (2018). Characterization of food additive-potato starch complexes by FTIR and X-ray diffraction. Food Chem. 260:7–12. https://doi.org/10.1016/j.foodchem.2018.03.138.

Deng, Y., Wang, J., Zhang, Z., and Wu, Y. (2020). Transactivation of Sus1 and Sus2 by Opaque2 is an essential supplement to sucrose synthase-mediated endosperm filling in maize. Plant Biotechnol. J. 18:1897–1907. https://doi.org/10.1111/pbi.13349.

Denyer, K., Hylton, C., and Smith, A. (1994). The effect of high temperature on starch synthesis and the activity of starch synthases. Funct. Plant Biol. 21:783–789. https://doi.org/10.1071/PP9940783.

Dodson-Swenson, H.G., and Tracy, W.F. (2015). Endosperm carbohydrate composition and kernel characteristics of shrunken2-intermediate (sh2/sh2-i) Su1/Su1 and shrunken2-intermediate–sugary1-reference (sh2-sh2-i Su1/rSu1-v) in sweet corn. Crop Sci. 55:2947–2956. https://doi.org/10.2135/cropsci2015.03.0198.

Chen, K., Wang, Y., Zhang, R., Zhang, H., and Gao, C. (2019). CRISPR/Cas genome editing and precision plant breeding in agriculture. Annu. Rev. Plant Biol. 70:667–697. https://doi.org/10.1146/annurev-plant-050718-100049.

Chen, Y., and Bao, J. (2016). Underlying mechanisms of zymographic diversity in starch synthase I and pullulanase in rice-developing Endosperm. J. Agric. Food Chem. 64:2030–2037. https://doi.org/10.1021/acs.jafc.5b06030.
Plant Communications

Dong, Q., Qi, X., Zhu, J., Liu, C., Zhang, X., Cheng, B., Mao, L., and Xie, C. (2019a). Supersweet and waxy: meeting the diverse demands for specialty maize by genome editing. Plant Biotechnol. J. 17:1853–1855. https://doi.org/10.1111/pbi.13144.

Dong, Q., Xu, Q., Kong, J., Peng, X., Zhou, W., Chen, L., Wu, J., Xiang, Y., Jiang, H., and Cheng, B. (2019b). Overexpression of ZmbZIP22 gene alters endosperm starch content and composition in maize and rice. Plant Sci. 283:407–415. https://doi.org/10.1016/j.plantsci.2019.03.001.

Dong, Q., Wang, F., Kong, J., Xu, Q., Li, T., Chen, L., Chen, H., Jiang, H., Li, C., and Cheng, B. (2019c). Functional analysis of ZmMADS1a reveals its role in regulating starch biosynthesis in maize endosperm. Sci. Rep. 9:32535. https://doi.org/10.1038/s41598-019-39612-5.

Du, L., Xu, F., Fang, J., Gao, S., Tang, J., Fang, S., Wang, H., Tong, H., Zhang, F., Chu, J., et al. (2018). Endosperm sugar accumulation caused by mutation of PHS8/ISA1 leads to pre-harvest sprouting in rice. Plant J. 95:545–556. https://doi.org/10.1111/tpj.13970.

Elvira, C., Mano, J.F., San Román, J., and Reis, R.L. (2002). Starch-based biodegradable hydrogels with potential biomedical applications as drug delivery systems. Biomaterials 23:1955–1966. https://doi.org/10.1016/S0142-9612(01)00322-2.

Fan, X., Li, Y., Lu, Y., Zhang, C., Li, E., Li, Q., Tao, K., Yu, W., Wang, J., Chen, Z., et al. (2019). The interaction between amylose and amylopectin synthesis in rice endosperm grown at high temperature. Food Chem. 301:125258. https://doi.org/10.1016/j.foodchem.2019.125258.

Feng, F., You, J., Xie, K., Xie, W., and Xiong, L. (2008). Systematic sequence analysis and identification of tissue-specific or stress-responsive genes of NAC transcription factor family in rice. Mol. Genet. Genomics 280:547–563. https://doi.org/10.1007/s00438-008-0388-6.

Feng, F., Qi, W., Lv, Y., Yan, S., Xu, L., Yang, W., Yuan, Y., Chen, Y., Zhao, H., and Song, R. (2018). OPAQUE11 is a central hub of the regulatory network for maize endosperm development and nutrient metabolism. Plant Cell 30:375–396. https://doi.org/10.1105/tpc.17.00616.

Ferrero, D.M.L., Piattoni, C.V., Asencion Diez, M.D., Rojas, B.E., Hartman, M.D., Ballicora, M.A., and Iglesias, A.A. (2020). Phosphorylation of ADP-glucose pyrophosphorylase during wheat metabolism. Plant Cell 30:358. https://doi.org/10.1105/tpc.120.003476.

Fulton, D.C., Stettler, M., Mettler, T., Vaughan, C.K., Li, J., Francisco, P., Gil, M., Reinhold, H., Eicke, S., Messerli, G.l., et al. (2008). β-AMYLASE4, a noncatalytic protein required for starch breakdown, acts upstream of three active β-amylases in Arabidopsis chloroplasts. Plant Cell 20:1040–1058. https://doi.org/10.1105/tpc.107.056507.

Gao, H., Gadlage, M.J., Lafitte, H.R., Lenderts, B., Yang, M., Schroder, M., Farrell, J., Snopek, K., Peterson, D., Feigenbutz, L., et al. (2020). Superior field performance of waxy corn engineered using CRISPR-Cas9. Nat. Biotechnol. 38:579–581. https://doi.org/10.1038/s41587-020-0444-0.

Gao, Y., An, K., Guo, W., Chen, Y., Zhang, R., Zhang, X., Chang, S., Rossi, V., Jin, F., Cao, X., et al. (2021). The endosperm-specific transcription factor TaNAC019 regulates glutenin and starch accumulation and its elite allele improves wheat grain quality. Plant Cell 33:603–622. https://doi.org/10.1093/plcell/koa040.

Gao, Z., Zeng, D., Cui, X., Zhou, Y., Yan, M., Huang, D., Li, J., and Qian, Q. (2003). Map-based cloning of the ALK gene, which controls the gelatinization temperature of rice. Sci. China C Life Sci. 46:661–668. https://doi.org/10.1360/ysyc0099.

Gao, Z., Zeng, D., Cheng, F., Tian, Z., Guo, L., Su, Y., Yan, M., Jiang, H., Dong, Q., Huang, Y., et al. (2011). ALK, the key gene for gelatinization temperature, is a modifier gene for gel consistency in rice. J. Integr. Plant Biol. 53:756–765. https://doi.org/10.1111/j.1744-7909.2011.01065.x.

Gong, B., Cheng, L., Gilbert, R.G., and Li, C. (2019). Distribution of short to medium amylose chains are major controllers of in vitro digestion of retrograded rice starch. Food Hydrocolloid 96:634–643. https://doi.org/10.1016/j.foodhyd.2019.06.003.

Grimaud, F., Rogniaux, H., James, M.G., Myers, A.M., and Planchot, V. (2008). Proteome and phosphoproteome analysis of starch granule-associated proteins from normal maize and mutants affected in starch biosynthesis. J. Exp. Bot. 59:3395–3406. https://doi.org/10.1093/jxb/erm198.

Gross, R.A., and Kalra, B. (2002). Biodegradable polymers for the environment. Science 297:803–807. https://doi.org/10.1126.science.297.5592.803.

Guo, D., Ling, X., Zhou, X., Li, X., Wang, J., Qiu, S., Yang, Y., and Zhang, B. (2020a). Evaluation of the quality of a high-resistant starch and low-glutelin rice (Oryza sativa L.) generated through CRISPR/Cas9-mediated targeted mutagenesis. J. Agric. Food Chem. 68:9733–9742. https://doi.org/10.1021/acs.jafc.0c02995.

Guo, D., Hou, Q., Zhang, R., Lou, H., Li, Y., Zhang, Y., You, M., Xie, C., Liang, R., and Li, B. (2020b). Over-expressing TaSAPB-B reduces prolamin and starch accumulation in wheat (Triticum aestivum L.) grains. Int. J. Mol. Sci. 21:3257. https://doi.org/10.3390/ijms21092357.

Guo, H., Liu, Y., Li, X., Yan, Z., Xie, Y., Xiong, H., Zhao, L., Gu, J., Zhao, S., and Liu, L. (2017). Novel mutant alleles of the starch synthesis gene TaS3IV6-B result in the reduction of starch granule number per chloroplast in wheat. BMC Genomics 18:358. https://doi.org/10.1186/s12864-017-3724-4.

Guzmán, C., and Alvarez, J.B. (2016). Wheat waxy proteins: polymorphism, molecular characterization and effects on starch properties. Theor. Appl. Genet. 129:1–16. https://doi.org/10.1007/s00122-015-2595-9.

Guzmán, C., Caballero, L., Martin, L.M., and Alvarez, J.B. (2012). Waxy genes from spelt wheat: new alleles for modern wheat breeding and new phylogenetic inferences about the origin of this species. Ann. Bot. 110:1161–1171. https://doi.org/10.1093/aob/mcs201.

Hakata, M., Kuroda, M., Miyashita, T., Yamaguchi, T., Kojima, M., Sakakibara, H., Mitsu, T., and Yamakawa, H. (2012). Suppression of α-amylase genes improves quality of rice grain ripened under high temperature. Plant Biotechnol. J. 10:1110–1117. https://doi.org/10.1111/j.1467-7652.2012.00741.x.

Han, Y., Sun, F.-J., Rosales-Mendoza, S., and Korban, S.S. (2007). Three orthologs in rice, Arabidopsis, and Populus encoding starch branching enzymes (SBEs) are different from other SBE gene families in plants. Gene 401:123–130. https://doi.org/10.1016/j.gene.2007.06.026.

Hawkins, E., Chen, J., Watson-Lazowski, A., Arnh-Jarvis, J., Barclay, J.E., Fahy, B., Hartley, M., Warren, F.J., and Seung, D. (2021). STARCH SYNTHASE 4 is required for normal starch granule initiation in amyloplasts of wheat endosperm. New Phytol. 230:2371–2386. https://doi.org/10.1111/nph.17342.

Hayashi, M., Crofts, N., Oitome, N.F., and Fujita, N. (2018). Analyses of starch biosynthetic protein complexes and starch properties from developing mutant rice seeds with minimal starch synthase activities. BMC Plant Biol. 18:59. https://doi.org/10.1186/s12870-018-1270-0.

Hazard, B., Zhang, X., Naemeh, M., Hamilton, M.K., Rust, B., Raybould, H.E., Newman, J.W., Martin, R., and Dubcovsky, J.
Starch biosynthesis in cereal endosperms

(2015). Mutations in durum wheat SBEII genes affect grain yield components, quality, and fermentation responses in rats. Crop Sci. 55:2813–2825. https://doi.org/10.2135/cropsci2015.03.0179.

Hebeish, A., Aly, A.A., El-Shafei, A.M., and Zaghoul, S. (2008). Innovative starch derivatives as textile auxiliaries for application in sizing, finishing and flocculation. Starch 60:97–109. https://doi.org/10.1002/star.200700627.

Heinen, M.M., Verhage, B.A.J., Goldbohm, R.A., and van den Brandy, P.A. (2009). Meat and fat intake and pancreatic cancer risk in The Netherlands Cohort Study. Int. J. Cancer 125:1118–1126. https://doi.org/10.1002/ijc.24387.

Hennen-Bierwagen, T.A., Liu, F., Marsh, R.S., Kim, S., Gan, Q., Tietlow, I.J., Emes, M.J., James, M.G., and Myers, A.M. (2010). Differences in transcriptional expression of the major starch synthesis-related genes, SSII and Wx, in endosperm. Plant Mol. Biol. 64:493–509. https://doi.org/10.1007/s11103-011-1632-8.

Hwang, S.K., Koper, K., Satoh, H., and Okita, T.W. (2016). Rice endosperm starch phosphorylase (Pho1) assembly with disproportionately activating (Dpe1) to form a protein complex that enhances synthesis of malto-oligosaccharides. J. Biol. Chem. 291:19994–20007. https://doi.org/10.1074/jbc.M116.735449.

Hwang, S.K., Singh, S., Maharana, J., Kalita, S., Tuncel, A., Rath, T., Panda, D., Modi, M.K., and Okita, T.W. (2019). Mechanism underlying heat stability of the rice endosperm cytosolic ADP-glucose phosphorylase. Front. Plant Sci. 10:70. https://doi.org/10.3389/fpls.2019.00070.

Igarashi, H., Ito, H., Shimada, T., Kang, D.-J., and Hamada, S. (2021). A novel rice dull gene, LowAC1, encodes an RNA recognition motif protein affecting Waxy pre-mRNA splicing. Plant Physiol. Biol. 162:100–109. https://doi.org/10.1016/j.plaphy.2021.02.035.

Itoh, K., Ozaki, H., Okada, K., Hori, K., Takeda, Y., and Mitsui, T. (2003). Introduction of Wx transgene into rice wx mutants leads to both high- and low-amylose rice. Plant Cell Physiol. 44:473–480. https://doi.org/10.1093/pcp/pcg068.

James, M.G., Robertson, D.S., and Myers, A.M. (1995). Characterization of the maize gene sugary1, a determinant of starch composition in kernels. Plant Cell 7:417–429. https://doi.org/10.1105/tpc.7.7.417.

Jeon, J.S., Ryoo, N., Hahn, T.R., Walia, H., and Nakamura, Y. (2010). Starch biosynthesis in cereal endosperm. Plant Physiol. Bioch. 48:389–392. https://doi.org/10.1016/j.plaphy.2010.03.006.

Johnson, P.E., Patron, N.J., Bottrill, A.R., Dinges, J.R., Fahy, B.F., Parker, M.L., Waite, D.N., and Denyer, K. (2003). A low-starch barley mutant, Riso 16, lacking the cytolic small subunit of ADP-glucose pyrophosphorylase, reveals the importance of the cytolic isofrom and the identity of the plastidal small subunit. Plant Physiol. 131:684–696. https://doi.org/10.1104/pp.013094.

Jukanti, A.K., Pautong, P.A., Liu, Q., and Sreenivasulu, N. (2020). Low glycemic index rice—a desired trait in starchy staples. Trends Food Sci. Technol. 106:132–149. https://doi.org/10.1016/j.tifs.2020.10.006.

Kang, G., Xu, W., Liu, G., Peng, X., and Guo, T. (2013a). Comprehensive analysis of the transcription of starch synthesis genes and the transcription factor RS1 in wheat (Triticum aestivum) endosperm. Genome 56:115–122. https://doi.org/10.1139/gen-2012-0146 https://doi.org/10.1093/genome/gas026.

Kang, G., Li, S., Zhang, M., Peng, H., Wang, C., Zhu, Y., and Guo, T. (2013b). Molecular cloning and expression analysis of the starch-branching enzyme III gene from common wheat (Triticum aestivum). Biochem. Genet. 51:377–386. https://doi.org/10.1007/s10528-013-9570-4.

Kapelko-Zeberska, M., Zigba, T., and Singh, A.V. (2015). Physically and chemically modified starches in food and non-food industries. In: Surface Modification of Biopolymers (Hoboken, NJ: Wiley), pp. 173–193. https://doi.org/10.1002/9781119044901.ch7.

Kaur, J., Kaur, G., Sharma, S., and Jeet, K. (2018). Cereal starch nanoparticles—a prospective food additive: a review. Crit. Rev. Food Sci. 58:1097–1107. https://doi.org/10.1080/10408398.2016.1238339.

Kawakatsu, T., and Takaixa, F. (2010). Differences in transcriptional regulatory mechanisms functioning for free lysine content and seed storage protein accumulation in rice grain. Plant Cell Physiol. 51:1961–1974. https://doi.org/10.1093/pcp/pcq164.

Kawakatsu, T., Yamamoto, M.P., Touno, S.M., Yasuda, H., and Takaixa, F. (2009). Compensation and interaction between RISBZ1 and RBPF during grain filling in rice. Plant J. 59:908–920. https://doi.org/10.1111/j.1365-313X.2009.03925.x.

Kirchberger, S., Leroch, M., Huynen, M.A., Wahl, M., Neuhaus, H.E., and Tjaden, J. (2007). Molecular and biochemical analysis of the plastidic ADP-glucose transporter (ZmBT1) from Zea mays. J. Biol. Chem. 282:22481–22491. https://doi.org/10.1074/jbc.M702484200.

Kotting, O., Kossmann, J., Zeeman, S.C., and Lloyd, J.R. (2010). Regulation of starch metabolism: the age of enlightenment? Curr. Opin. Plant Biol. 13:320–328. https://doi.org/10.1016/j.pbi.2010.01.003.

Lal, S., Choi, J.-H., and Hannah, L.C. (1999). The AG dinucleotide terminating introns is important but not always required for pre-mRNA splicing in the maize endosperm. Plant Physiol. 120:65–72. https://doi.org/10.1104/pp.120.1.65.

Lee, Y., Choi, M.S., Lee, G., Jang, S., Yoon, M.R., Kim, B., Piao, R., Woo, M.O., Chin, J.H., and Koh, H.J. (2017). Sugary endosperm is modulated by starch branching enzyme Ila in rice (Oryza sativa L.). Rice 10:33. https://doi.org/10.1186/s12284-017-0172-3.

Li, C., Yue, Y., Chen, H., Qi, W., and Song, R. (2018a). The ZmbZIP22 transcription factor regulates 27-kD γ-zein gene transcription during
maize endosperm development. Plant Cell 30:2402–2424. https://doi.org/10.1105/tpc.18.00422.

Li, C., Wu, A., Yu, W., Hu, Y., Li, E., Zhang, C., and Liu, Q. (2020a). Parameterizing starch chain-length distributions for structure-property relations. Carbohydr. Polym. 241:116390. https://doi.org/10.1016/j.carbpol.2020.116390.

Li, C., Qiao, Z., Qi, W., Wang, Q., Yuan, Y., Yang, X., Tang, Y., Mei, B., Lv, Y., Zhao, H., et al. (2015). Genome-wide characterization of cis-acting DNA targets reveals the transcriptional regulatory framework of Opaque2 in maize. Plant Cell 27:532–545. https://doi.org/10.1105/tpc.14.134858.

Li, H., Gidley, M.J., and Dhital, S. (2019). High-amylase starches to bridge the “Fiber Gap”: development, structure, and nutritional functionality. Compr. Rev. Food Sci. F. 18:362–379. https://doi.org/10.1111/1541-4337.12416.

Li, H., Prakash, S., Nicholson, T.M., Fitzgerald, M.A., and Gilbert, R.G. (2016). Instrumental measurement of cooked rice texture by dynamic rheological testing and its relation to the fine structure of rice starch. Carbohydr. Polym. 146:253–263. https://doi.org/10.1016/j.carbpol.2016.03.045.

Li, H., Fitzgerald, M.A., Prakash, S., Nicholson, T.M., and Gilbert, R.G. (2017a). The molecular structural features controlling stickiness in cooked rice, a major palatability determinant. Sci. Rep. 7:43713. https://doi.org/10.1038/srep43713.

Li, J., Jiao, G., Sun, Y., Chen, J., Zhong, Y., Yan, L., Jiang, D., Ma, Y., and Xia, L. (2020b). Modification of starch composition, structure and properties through editing of TaSBF/E in both winter and spring wheat varieties by CRISPR/Cas9. Plant Biotechnol. J. 19:937–951. https://doi.org/10.1111/pbi.13519.

Li, Q.F., Huang, L.C., Chu, R., Li, J., Jiang, M.Y., Zhang, C.Q., Fan, X.L., Hu, P. (2018). Down-regulation of SSSI-2 gene expression results in novel low-amylose rice with soft, transparent grains. J. Agric. Food Chem. 66:9750–9760. https://doi.org/10.1021/acs.jafc.8b02913.

Li, S., Wei, X., Ren, Y., Qiu, J., Jiao, G., Guo, X., Tang, S., Wani, J., and Hu, P. (2017b). OsBT1 encodes an ADP-glucose transporter involved in starch synthesis and compound granule formation in rice endosperm. Sci. Rep. 7:40124. https://doi.org/10.1038/srep40124.

Lin, Q., Huang, B., Zhang, M., Zhang, X., Rivenbank, J., Lappe, R.L., James, M.G., Myers, A.M., and Hennen-Bierwagen, T.A. (2011). Functional interactions between starch synthase III and isoamylase-type starch-debranching enzyme in maize endosperm. Plant Physiol. 158:679–692. https://doi.org/10.1104/pp.111.189704.

Linebarger, C.R.L., Boehlein, S.K., Sewell, A.K., Shaw, J., and Hannah, L.C. (2005). Heat stability of maize endosperm ADP-glucose pyrophosphorylase is enhanced by insertion of a cysteine in the N terminus of the small subunit. Plant Physiol. 139:1081–1093. https://doi.org/10.1104/pp.105.067837.

Liu, D.R., Huang, W.X., and Cai, X.L. (2013). Oligomerization of rice granule-bound starch synthase 1 modulates its activity regulation. Plant Sci. 210:141–150. https://doi.org/10.1016/j.plantsci.2013.05.019.

Liu, D., Wang, W., and Cai, X. (2015a). Modulation of amylose content by structure-based modification of OsGBSS1 activity in rice (Oryza sativa L.). Plant Biotechnol. J. 12:1297–1307. https://doi.org/10.1111/pbi.12228.

Liu, F., Ahmed, Z., Lee, E.A., Donner, E., Liu, Q., Ahmed, R., Morell, M.K., Emes, M.J., and Telfow, I.J. (2011). Allelic variants of the amylose extender mutation of maize demonstrate phenotypic variation in starch structure resulting from modified protein-protein interactions. J. Exp. Bot. 63:1167–1183. https://doi.org/10.1093/jxb/err341.

Liu, F., Romanova, N., Lee, E.A., Ahmed, R., Evans, M., Gilbert, E.P., Morell, M.K., Emes, M.J., and Telfow, I.J. (2012). Glucoin affinity of starch synthase IIa determines binding of starch synthase I and starch-branching enzyme IIb to starch granules. Biochem. J. 448:373–387. https://doi.org/10.1042/bj20120573.

Liu, G., Gu, Z., Hong, Y., Cheng, L., and Li, C. (2017). Electrospun starch nanofibers: recent advances, challenges, and strategies for potential pharmaceutical applications. J. Control Release 252:95–107. https://doi.org/10.1016/j.jconrel.2017.03.016.

Luo, M., Shi, Y., Yang, Y., Zhao, Y., Zhang, Y., Shi, Y., Kong, M., Li, C., Feng, Z., Fan, Y., et al. (2020). Sequence polymorphism of the waxy gene in waxy maize accessions and characterization of a new waxy allele. Sci. Rep. 10:15851. https://doi.org/10.1038/s41598-020-72764-3.

Ma, J., Jiang, Q., Zhang, X., Lan, X., Pu, Z., Wei, Y., Liu, C., Lu, Z., and Zheng, Y. (2013). Structure and expression of barley starch phosphorylase genes. Planta 238:1081–1093. https://doi.org/10.1007/s00425-013-1953-6.

Makhmoudova, A., Williams, D., Brewer, D., Massey, S., Patterson, J., Silva, A., Vassall, K.A., Liu, F., Subedi, S., Harauz, G., et al. (2014). Identification of multiple phosphorylation sites on maize endosperm starch branching enzyme IIb, a key enzyme in amylopectin biosynthesis. J. Biol. Chem. 289:9233–9246. https://doi.org/10.1074/jbc.M114.551093.

Malinova, I., Qasim, H.M., Brust, H., and Fettke, J. (2018). Parameters of starch granule genesis in chloroplasts of Arabidopsis thaliana. Front. Plant Sci. 9:761. https://doi.org/10.3389/fpls.2018.00761.

Martinez, M.M., Li, C., Okoniewska, M., Mukherjee, I., Vellucci, D., and Hamaker, B. (2018). Slowly digestible starch in fully gelatinized material is structurally driven by molecular size and A and B1 chain lengths. Carbohydr. Polym. 197:531–539. https://doi.org/10.1016/j.carbpol.2018.06.021.

Masina, N., Choonara, Y.E., Kumar, P., du Toit, L.C., Govender, M., Indermun, S., and Pillay, V. (2017). A review of the chemical modification techniques of starch. Carbohydr. Polym. 157:1226–1236. https://doi.org/10.1016/j.carbpol.2016.09.094.

Matsushima, R., Maekawa, M., and Sakamoto, W. (2015). Geometrical formation of compound starch grains in rice implements voronoi diagram. Plant Cell Physiol. 56:2150–2157. https://doi.org/10.1093/pcp/pcv123.

Matsushima, R., Yamashita, J., Kariyama, S., Enomoto, T., and Sakamoto, W. (2013). A phylogenetic re-evaluation of morphological variations of starch grains among poaceae species. J. Appl. Glycosci. 60:37–44. https://doi.org/10.5458/jag-jag-JAG-2012_006.

Miura, S., Crofts, N., Saito, Y., Hosaka, Y., Oitome, N.F., Watanabe, T., Kumamaru, T., and Fujita, N. (2018). Starch synthase Ila-deficient mutant rice line produces endosperm starch with lower gelatinization temperature than japonica rice cultivars. Front. Plant Sci. 9:645. https://doi.org/10.3389/fpls.2018.00645.

Myers, A.M., Morell, M.K., James, M.G., and Ball, S.G. (2000). Recent progress toward understanding biosynthesis of the amylopectin crystal. Plant Physiol. 122:989–998. https://doi.org/10.1104/pp.122.4.989.
Starch biosynthesis in cereal endosperms

Myers, A.M., James, M.G., Lin, Q., Yi, G., Stinar, P.S., Hennen-Bierwagen, T.A., and Becraft, P.W. (2011). Maize opaque5 encodes monogalactosyldiacylglycerol synthase and specifically affects galactolipids necessary for amyloplast and chloroplast function. Plant Cell 23:2331–2347. https://doi.org/10.1105/tpc.111.087205.

Nakamura, Y., Ono, M., Utsumi, C., and Steup, M. (2012). Functional interaction between plastidial starch phosphorylase and starch branching enzymes from rice during the synthesis of branched maltodextrins. Plant Cell Physiol. 53:869–878. https://doi.org/10.1093/pcp/pcs030.

Nakamura, Y., Francisco, P.B., Hosaka, Y., Sato, A., Sawada, T., Kubo, A., and Fujita, N. (2003). Essential amino acids of starch synthase IIa differentiate amylopectin structure and starch quality between japonica and indica rice varieties. Plant Mol Biol. 58:213–227. https://doi.org/10.1023/a:1011007135072.

Ni, B., Zhang, Z., Zhang, J., Zhou, Y., and Chen, C. (2021). The rice LEC1-like transcription factor OsNF-YB9 interacts with SPK, an endosperm specific sucrose synthase protein kinase, and functions in seed development. Plant J. 106:1233–1246. https://doi.org/10.1111/tpj.15230.

Ni, B., Deng, H., Li, T., Sharma, S., Yun, Q., Li, Q., E., and Chen, C. (2020). OspZIP76 interacts with OsNF-YB5 and regulates endosperm cellularization in rice (Oryza sativa). J. Integr. Plant Biol. 62:1983–1996. https://doi.org/10.1111/jipb.12989.

Noda, T., Takahata, Y., Sato, T., Suda, I., Morishita, T., Ishiguro, K., and Nakamura, Y. (1998). Relationships between chain length distribution of amylopectin and gelatinization properties within the same botanical origin for sweet potato and buckwheat. Carbohydr. Polym. 37:153–158. https://doi.org/10.1016/S0144-8617(98)00047-2.

Odhani, T., Francisco, P.B., Jr., Sawada, T., Hirose, T., Terao, T., Satoh, H., and Nakamura, Y. (2005). Expression profiling of genes involved in starch synthesis in sink and source organs of rice. J. Exp. Bot. 56:3229–3244. https://doi.org/10.1093/jxb/erh292.

Onusseit, H. (1992). Starch in industrial adhesives: new developments. Ind. Crop Prod. 1:141–146. https://doi.org/10.1016/0926-6690(92)90012-K.

Orman-Ligeza, B., Borriol, P., Chia, T., Chirico, M., Dolezel, J., Drea, S., Karafiatova, M., Schlatowsky, N., Solomon, C.U., Steuerriegel, B., et al. (2020). LYS3 encodes a prolin-box binding transcription factor that controls embryo growth in barley and wheat. J. Cereal Sci. 93:102965. https://doi.org/10.1016/j.jcs.2020.102965.

Parween, S., Anonuevo, J.J., Butardo, V.M., Jr., Misra, G., Anacleto, R., Llorente, C., Kosik, O., Romero, M.V., Bandonill, E.H., Regina, A., Bird, A., Topping, D., Bowden, S., Freeman, J., Barsby, T., Kosar-Hashemi, B., Li, S., Rahman, M., and Morell, M. (2006). High-amylose wheat generated by RNA interference improves indices of large-bowel health in rats. Proc. Natl. Acad. Sci. U S A 103:3546–3551. https://doi.org/10.1073/pnas.0510737103.

Pfister, B., and Zeeman, S.C. (2016). Formation of starch in plant cells. Cell. Mol. Life Sci. 73:2781–2807. https://doi.org/10.1007/s00018-016-2250-x.

Qin, P., Zhang, G., Hu, B., Wu, J., Chen, W., Ren, Z., Liu, Y., Xie, J., Yuan, H., Tu, B., et al. (2021). Leaf-derived ABA regulates rice seed development via a transporter-mediated and temperature-sensitive mechanism. Sci. Adv. 7:eabc8873. https://doi.org/10.1126/sciadv.abc8873.

Radchuk, V.V., Borisjuk, L., Sreenivasulu, N., Merx, K., Mock, H.-P., Rolletschek, H., Wobus, U., and Wesczke, W. (2009). Spatiotemporal profiling of starch biosynthesis and degradation in the developing barley grain. Plant Physiol. 150:190–204. https://doi.org/10.1104/pp.108.133920.

Regina, A., Kosar-Hashemi, B., Ling, S., Li, Z., Rahman, S., and Morell, M. (2010). Control of starch branching in barley defined through differential RNAi suppression of starch branching enzyme lia and lib. J. Exp. Bot. 61:1469–1482. https://doi.org/10.1093/jxb/erq011.

Regina, A., Berbezy, P., Kosar-Hashemi, B., Liu, S., Cmiel, M., Larroque, O., Bird, A.R., Swain, S.M., Cavanagh, C., Jobling, S.A., et al. (2015). A genetic strategy generating wheat with very high amylose content. Plant Biotechnol. J. 13:1276–1286. https://doi.org/10.1111/pbi.12345.

Ren, Y., Huang, Z., Jiang, H., Wang, Z., Wu, F., Xiong, Y., and Yao, J. (2021). A heat stress responsive NAC transcription factor heterodimer plays key roles in rice grain filling. J. Exp. Bot. 72:2947–2964. https://doi.org/10.1093/jxb/erab027.

Ribeiro, C., Hennen-Bierwagen, T.A., Myers, A.M., Cline, K., and Settles, A.M. (2020). Engineering 6-phosphogluconate dehydrogenase improves grain yield in heat-stressed maize. Proc. Natl. Acad. Sci. U S A 117:33177–33185. https://doi.org/10.1073/pnas.2010179117.

Saito, M., Tanaka, T., Sato, K., Vrinten, P., and Nakamura, T. (2018). A single nucleotide polymorphism in the “Fra” gene results in fractured starch granules in barley. Theor. Appl. Genet. 131:353–364. https://doi.org/10.1007/s00122-017-3066-1.

Saripalli, G., and Gupta, P.K. (2015). AGPase: its role in crop productivity with emphasis on heat tolerance in cereals. Theor. Appl. Genet. 128:1893–1916. https://doi.org/10.1007/s00122-015-2565-2.

Sato, H., Shibahara, K., Tokunaga, T., Nishi, A., Tasaki, M., Hwang, S.-K., Okita, T.W., Kaneko, N., Fujita, N., Yoshida, M., et al. (2008). Mutation of the plastidial α-glucan phosphorylase gene in rice affects the synthesis and structure of starch in the endosperm. Plant Cell 20:1833–1849. https://doi.org/10.1105/tpc.107.054007.

Sawada, T., Itoh, M., and Nakamura, Y. (2018). Contributions of three starch branching enzyme isozymes to the fine structure of amylopectin in rice endosperm. Front. Plant Sci. 9:1536. https://doi.org/10.3389/fpls.2018.01536.

Schmidt, R., Schippers, J.H.M., Mieulet, D., Watanabe, M., Hoefgen, R., Guiderdoni, E., and Mueller-Roeber, B. (2014). SALT-RESPONSIVE ERF1 is a negative regulator of grain filling and gibberellin-mediated seedling establishment in rice. Mol. Plant 7:404–421. https://doi.org/10.1093/mp/sst131.

Schonhofen, A., Hazard, B., Zhang, X., and Dubcovsky, J. (2016). Registration of common wheat germplasm with mutations in SBEi genes conferring increased grain amylose and resistant starch content. J. Plant Regist. 10:200–205. https://doi.org/10.3198/jpr2015.10.0066cr.
Plant Communications

Schultz, J.A., and Juvik, J.A. (2004). Current models for starch synthesis and the sugary enhancer1 (se1) mutation in Zea mays. Plant Physiol. Bioch. 42:457–464. https://doi.org/10.1016/j.phyto.2004.05.008.

Seung, D. (2020). Amylose in starch: towards an understanding of biosynthesis, structure and function. New Phytol. 228:1490–1504. https://doi.org/10.1111/nph.16858.

Seung, D., and Smith, A.M. (2018). Starch granule initiation and morphogenesis—progress in Arabidopsis and cereals. J. Exp. Bot. 70:771–784. https://doi.org/10.1038/jxberry.2018.412.

Seung, D., Schreier, T.B., Burgy, L., Eicke, S., and Zeeman, S.C. (2018). Two plastidial coiled-coil proteins are essential for normal starch granule initiation in arabidopsis. Plant Cell 30:1523–1542. https://doi.org/10.1016/j.plant.2018.02.019.

Seung, D., Soyk, S., CoirO, M., Maier, B.A., Eicke, S., and Zeeman, S.C. (2015). PROTEIN TARGETING TO STARCH is required for localisation GRANULE-BOUND STARCH SYNTHASE to starch granules and for normal amylose synthesis in Arabidopsis. PLoS Biol. 13:e1002080. https://doi.org/10.1371/journal.pbio.1002080.

Seung, D., Boudet, J., Monroe, J., Schreier, T.B., David, L.C., Abt, M., Lu, K.-J., Zanella, M., and Zeeman, S.C. (2017). Homologs of PROTEIN TARGETING TO STARCH control starch granule initiation in arabidopsis leaves. Plant Cell 29:1657–1677. https://doi.org/10.1105/tpc.17.00222.

Sharma, M., Aguado, R., Murtinho, D., Valente, A.J.M., Mendes De Sousa, A.P., and Ferreira, P.J.T. (2020). A review on cationic starch and nanocellulose as paper coating components. Int. J. Biol. Macromol. 162:578–598. https://doi.org/10.1016/j.ijbiomac.2020.06.131.

Shen, J., Song, Z., Qian, X., and Ni, Y. (2011). Carbohydrate-based fillers and pigments for papermaking: a review. Carbohydr. Polym. 85:17–22. https://doi.org/10.1016/j.carbpol.2011.02.026.

Shimada, H., Tada, Y., Kawasaki, T., and Fujimura, T. (1993). Antisense regulation of the rice Waxy gene expression using a PCR-amplified fragment of the rice genome reduces the amylose content in grain starch. Theor. Appl. Genet. 86:665–672. https://doi.org/10.1007/BF00222654.

Shimbata, T., Ai, Y., Fujita, M., Inokuma, T., Vrinten, P., Sunohara, A., Shure, M., Wessler, S., and Fedoroff, N. (2000). Deficiency of starch synthase IIIa and IVb alters starch granule morphology from polyhedral to spherical in rice endosperm. Plant Physiol. 123:2443–2457. https://doi.org/10.1104/pp.109.066522.

Tai, L., Wang, H.J., Xu, X.J., Sun, W.H., Ju, L., Liu, W.T., Li, W.Q., Sun, J., and Chen, K.M. (2021). Cereal pre-harvest spouting: a global agricultural disaster regulated by complex genetic and biochemical mechanisms. J. Exp. Bot. 72:2857–2876. https://doi.org/10.1038/jxberry.2021.60.

Takemoto-Kuno, Y., Mitsueda, H., Suzuki, K., Hirabayashi, H., Ideta, O., Aoki, N., Umemoto, T., Ishii, T., Ando, I., Kato, H., et al. (2015). qAC2, a novel QTL that interacts with Wx and controls the low amylose content in rice (Oryza sativa L.). Theor. Appl. Genet. 128:563–573. https://doi.org/10.1007/s00122-014-2432-6.

Tan, Y., Yu, S., Xing, Y., Xu, C., Zhang, Q., and Li, J. (1999). The three important traits for cooking and eating quality of rice grains are controlled by a single locus in an elite rice hybrid, Shanyou 63. Theor. Appl. Genet. 99:642–648. https://doi.org/10.1007/s00120051278.

Terada, R., Urawa, H., Inagaki, Y., Tsugane, K., and Iida, S. (2002). Efficient gene targeting by homologous recombination in rice. Nat. Biotechnol. 20:1030–1034. https://doi.org/10.1038/nbt737.

Terada, R., Nakajima, M., Ishihiki, M., Okagaki, R.J., Wessler, S.R., and Shimamoto, K. (2000). Antisense Waxy genes with highly active promoters effectively suppress Waxy gene expression in transgenic rice. Plant Cell Physiol. 41:881–888. https://doi.org/10.1093/pcp/pcd008.

Tetlow, I.J., Liu, F., and Emes, M.J. (2015). Protein-protein interactions during starch biosynthesis. In Starch: Metabolism and Structure, Y. Nakamura, ed. (Tokyo: Springer Japan), pp. 291–313. https://doi.org/10.1007/978-4-431-55495-0_8.

Tetlow, I.J., Wait, R., Lu, Z., Akkasang, R., Bowsher, C.G., Esposito, S., Kosar-Hashemi, B., Morell, M.K., and Emes, M.J. (2004). Protein phosphorylation in amyloplasts regulates starch branching enzyme activity and protein–protein interactions. Plant Cell 16:694–708. https://doi.org/10.1105/tpc.017400.

Tetlow, I.J., Beisel, K.G., Cameron, S., Makhmoudova, A., Liu, F., Bresolin, N.S., Wait, R., Morell, M.K., and Emes, M.J. (2008). Analysis of protein complexes in wheat amyloplasts reveals functional interactions among starch biosynthetic enzymes. Plant Physiol. 146:1878–1891. https://doi.org/10.1104/pp.108.116244.

Thalmann, M., and Santelia, D. (2017). Starch as a determinant of plant fitness under abiotic stress. New Phytol. 214:943–951. https://doi.org/10.1111/nph.14491.

Tian, Z., Qian, Q., Liu, Q., Yan, M., Liu, X., Yan, C., Liu, G., Gao, Z., Tang, S., Zeng, D., et al. (2009). Allelic diversities in rice starch biosynthesis lead to a diverse array of rice eating and cooking qualities. Proc. Natl. Acad. Sci. U.S.A 106:21760–21765. https://doi.org/10.1073/pnas.0912396106.

Toyosawa, Y., Kawagoe, Y., Matushima, R., Crofts, N., Ogawa, M., Fukuda, M., Kumamaru, T., Okazaki, Y., Kusano, M., Saito, K., et al. (2016). Deficiency of starch synthase IIa and IVb alters starch granule morphology from polyhedral to spherical in rice endosperm. Plant Physiol. 170:1255–1270. https://doi.org/10.1104/pp.15.01232.
Starch biosynthesis in cereal endosperms

Utsumi, Y., Utsumi, C., Sawada, T., Fujita, N., and Nakamura, Y. (2011). Functional diversity of isoamylase oligomers: the ISA1 homo-oligomer is essential for amylpectin biosynthesis in rice endosperm. Plant Physiol. 156:61–77. https://doi.org/10.1104/pp.111.173435.

Valley, J.W., Shen, Z., Sartor, R., Wu, K.J., Osborn, J., Smith, L.G., and Briggs, S.P. (2013). Reconstruction of protein networks from an atlas of maize seed proteotypes. Proc. Natl. Acad. Sci. U S A 110:E4808–E4817. https://doi.org/10.1073/pnas.1319113110.

Wang, E., Wang, J., Zhu, X., Hao, W., Wang, L., Li, Q., Zhang, L., He, W., Lu, B., Lin, H., et al. (2008). Control of plant growth and yield by a gene with a potential signature of domestication. Nat. Genet. 40:1370–1374. https://doi.org/10.1038/ng.220.

Wang, J., Xu, H., Zhu, Y., Liu, Q., and Cai, X. (2013). OsZIP58, a basic leucine zipper transcription factor, regulates starch biosynthesis in rice endosperm. J. Exp. Bot. 64:3453–3466. https://doi.org/10.1093/jxb/ert187.

Wang, J., Chen, Z., Zhang, Q., Meng, S., and Wei, C. (2020a). The NAC transcription factors OsNAC20 and OsNAC26 regulate starch and storage protein synthesis. Plant Physiol. 184:1775–1791. https://doi.org/10.1104/pp.20.00984.

Wang, J., Xu, H., Zhu, Y., Liu, Q., and Cai, X. (2013). OsbZIP58, a basic leucine zipper transcription factor, regulates starch biosynthesis in rice endosperm. J. Exp. Bot. 64:3453–3466. https://doi.org/10.1093/jxb/ert187.

Wang, J., Chen, Z., Zhang, Q., Meng, S., and Wei, C. (2020a). The NAC transcription factors OsNAC20 and OsNAC26 regulate starch and storage protein synthesis. Plant Physiol. 184:1775–1791. https://doi.org/10.1104/pp.20.00984.

Wang, J., Xu, H., Zhu, Y., Liu, Q., and Cai, X. (2013). OsZIP58, a basic leucine zipper transcription factor, regulates starch biosynthesis in rice endosperm. J. Exp. Bot. 64:3453–3466. https://doi.org/10.1093/jxb/ert187.

Wang, J., Chen, Z., Zhang, Q., Meng, S., and Wei, C. (2020a). The NAC transcription factors OsNAC20 and OsNAC26 regulate starch and storage protein synthesis. Plant Physiol. 184:1775–1791. https://doi.org/10.1104/pp.20.00984.
Starch biosynthesis in cereal endosperms

Zhang, X., Mogel, K.J.H., Lor, V.S., Hirsch, C.N., De Vries, B., Kaeppeler, H.F., Tracy, W.F., and Kaeppeler, S.M. (2019c). Maize sugary enhancer1 (se1) is a gene affecting endosperm starch metabolism. Proc. Natl. Acad. Sci. U S A 116:20776–20785. https://doi.org/10.1073/pnas.1902747116.

Zhang, Z., Zheng, X., Yang, J., Messing, J., and Wu, Y. (2016). Maize endosperm-specific transcription factors O2 and PBF network the regulation of protein and starch synthesis. Proc. Natl. Acad. Sci. U S A 113:10842–10847. https://doi.org/10.1073/pnas.1613721113.

Zhang, Z., Dong, J., Ji, C., Wu, Y., and Messing, J. (2019d). NAC-type transcription factors regulate accumulation of starch and protein in maize seeds. Proc. Natl. Acad. Sci. U S A 116:11223–11228. https://doi.org/10.1073/pnas.1904995116.

Zhiguo, E., Li, T., Zhang, H., Liu, Z., Deng, H., Sharma, S., Wei, X., Wang, L., Niu, B., and Chen, C. (2018). A group of nuclear factor Y transcription factors are sub-functionalized during endosperm development in monocots. J. Exp. Bot. 69:2495–2510. https://doi.org/10.1093/jxb/ery087.

Zhang, X., Feng, X., Li, Y., Guzman, C., Lin, N., Xu, Q., Zhang, Y., Tang, H., Qi, P., Deng, M., et al. (2021). Genome-wide identification of bZIP transcription factor genes related to starch synthesis in barley (Hordeum vulgare L.). Genome 0:1–14. https://doi.org/10.1139/gen-2020-0195 %M 34058097.

Zhong, Y., Blennow, A., Kofoed-Enevoldsen, O., Jiang, D., and Hebelstrup, K.H. (2018). Protein Targeting to Starch 1 is essential for starch endosperm development in barley. J. Exp. Bot. 70:485–496. https://doi.org/10.1093/jxb/ery398.

Zhou, H., Wang, L., Liu, G., Meng, X., Jing, Y., Shu, X., Kong, X., Sun, J., Yu, H., Smith, S.M., et al. (2016). Critical roles of soluble starch synthase SSIIa and granule-bound starch synthase Waxy in synthesizing resistant starch in rice. Proc. Natl. Acad. Sci. U S A 113:12844–12849. https://doi.org/10.1073/pnas.1615104113.

Zhou, H., Xia, D., and He, Y. (2020a). Rice grain quality—traditional traits for high quality rice and health-plus substances. Mol. Breed. 40:1. https://doi.org/10.1007/s11032-019-1080-6.

Zhou, H., Xia, D., Zhao, D., Li, Y., Li, P., Wu, B., Gao, Q., Zhang, Q., Wang, G., Xiao, J., et al. (2020b). The origin of Wx^α provides new insights into the improvement of grain quality in rice. J. Integr. Plant Biol. 63:878–888. https://doi.org/10.1111/jipb.13011.

Zhu, F. (2018). Relationships between amylopectin internal molecular structure and physicochemical properties of starch. Trends Food Sci. Technol. 78:234–242. https://doi.org/10.1016/j.tifs.2018.05.024.

Zhu, F., Bertoft, E., Kallman, A., Myers, A.M., and Seetharaman, K. (2013). Molecular structure of starches from maize mutants deficient in starch synthase III. J. Agric. Food Chem. 61:9899–9907. https://doi.org/10.1021/jf402090f.

Zhu, H., Li, C., and Gao, C. (2020a). Applications of CRISPR-Cas in agriculture and plant biotechnology. Nat. Rev. Mol. Cell Biol. 21:661–677. https://doi.org/10.1038/s41580-020-00288-9.

Zhu, J., Yu, W., Zhang, C., Zhu, Y., Xu, J., Li, E., Gilbert, R.G., and Liu, Q. (2020b). New insights into amylase and amylopectin biosynthesis in rice endosperm. Carbohydr. Polym. 230:115656. https://doi.org/10.1016/j.carbpol.2019.115656.

Zhu, L., Gu, M., Meng, X., Cheung, S.K.C., Yu, H., Huang, J., Sun, Y., Shi, Y., and Liu, Q. (2012). High-amylose rice improves indices of animal health in normal and diabetic rats. Plant Biotechnol. J. 10:353–362. https://doi.org/10.1111/j.1467-7652.2011.00667.x.

Zhu, Y., Cai, X., Wang, Z., and Hong, M. (2003). An interaction between a MYC protein and an EREBP protein is involved in transcriptional regulation of the rice Wx gene. J. Biol. Chem. 278:47803–47811. https://doi.org/10.1074/jbc.M302806200.