Effects of different combinations of "Baoshiling" on soil physical and chemical properties of Huangguogan

Y.H. Xu, Z.H. Wang, B. Xiong, X. Qiu, L. Liao, G.C. Shun, S.J. Huang, Z.X. Dong, X.Y. Liu, L.J. Xi

College of Horticulture, Sichuan Agricultural University, Chengdu, Sichuan, China

Abstract: The research is done on the Huangguogan (unique citrus breed in Sichuan, China). The experiment setted 27 groups of "Baoshiling" (self-study compound fertilizer) fertilization treatment to explore the "Baoshiling" different combinations on soil physical and chemical properties of Huangguogan. The results showed that all the combinations had improved the soil of Huangguogan orchard. The combination of A3B2C2 had the best effect. The best Fertilization management measures was "Baoshiling" bud flowering fertilizer 2kg, stable fruit fertilizer 2kg, strong fruit fertilizer 2kg. It could reduce the pH of soil and the bulk density of soil, increase the available nitrogen, available phosphorus, available potassium and urease activity.

1 Introduction

1.1 Huangguogan orchard
Huangguogan is a unique and resource-rich orange and orange natural hybrids in Sichuan [12]. At present, Huangguogan planted in Sichuan Province Ya'an Hanyuan County with high economic value. It has late maturity, no seed, high quality, high yield and other excellent economic traits [5, 6]. In recent years, people use fertilizer for a long time, the amount of fertilizer and the proportion of unreasonable. This phenomenon leads to Huangguogan orchard soil compaction, unbalanced soil fertility and relatively lacking or locally enriched nutrients. These seriously affect the fruit quality and yield of Huangguogan, but also pollute the environment and affect human health.

1.2 Organic - inorganic compound fertilizer
Organic - inorganic fertilizer is compound fertilizer and mixed fertilizer collectively by chemical methods and physical processing. Compound fertilizer can improve soil fertilizer efficiency, reduce the number of fertilization and save fertilizer costs [13]. It is possible to improve the soil fertility level, reduce the loss of soil nutrients and environmental pollution, improve soil compaction and promote the balanced absorption of Huangguogan through the best combination of compound formula and scientific fertilization management technology [1, 2, 4, 11].

According to the fertilizer characteristics of Huangguogan to design the fertilization experiment with different formula combination fertilizer and the corresponding fertilization technique can improve the soil fertility and productivity. It can make the plant and soil balance development by scientific fertilization. These improve the economic benefits of Huangguogan and market competitiveness.
2 Materials and Methods

2.1 Supply of orchards, plants and fertilizers
The experimental orchard is a demonstration garden of Huangguogan in Shimian County. The soil of the test site is slightly acidic and belongs to the climate type of the subtropical dry valley. The plant was planted in the garden for 9 years and moderate growth potential. The tree shape was basically the same. Previous management standards are consistent. Experimental fertilizer is the "Baoshiling" compound fertilizer formula. They are including A formula (N: P: K = 13: 7: 10), B formula (N: P: K = 12: 8: 10), C formula (N: P: K = 11: 4: 15).

2.2 Experimental design
The experiment in March 2015-March 2016 in Shimian Huangguogan agriculture demonstration garden. A total of 27 treatments were conducted with conventional fertilization as control (CK) with a single plant as a plot. The amount of fertilizer applied in each formulation was set to three gradients, like table 2. Fertilization scheme in table 1.

Table 1 Specific fertilization scheme.

Approach	A(kg/plant)	B(kg/plant)	C(kg/plant)	Approach	A(kg/plant)	B(kg/plant)	C(kg/plant)
A₁B₁C₁	1	1.5	1.5	A₂B₂C₁	1.5	2	2.5
A₁B₂C₂	1	1.5	2	A₂B₁C₁	1.5	2.5	1.5
A₁B₂C₃	1	2	2.5	A₂B₂C₂	1.5	2	2
A₁B₃C₁	1	2	1.5	A₂B₂C₃	1.5	2.5	2.5
A₁B₃C₂	1	2	2	A₂B₁C₁	1.5	1.5	1.5
A₁B₃C₃	1	2	2.5	A₂B₁C₂	1.5	1.5	2
A₂B₁C₁	1	2.5	1.5	A₂B₂C₁	1.5	2	2
A₂B₁C₂	1	2.5	2	A₂B₂C₂	1.5	2	2
A₂B₃C₃	1.5	1.5	1.5	A₂B₂C₃	2	2	2.5
A₂B₂C₃	1.5	1.5	2.5	A₂B₁C₁	2.5	2	2.5
A₂B₃C₂	1.5	2	2	A₂B₂C₂	1.5	2	2
A₂B₃C₃	1.5	2	2	A₂B₁C₁	1.5	1.5	1.5

Table 2. Fertilizer gradient of different formulations.

Number	A(Kg/plant)	B(Kg/plant)	C(Kg/plant)
1	1	1.5	1.5
2	1.5	2	2
3	2	2.5	2.5

*Conventional fertilization method: budding and flowering stage of organic fertilizer 1.5kg / plant + inorganic fertilizer 1.5kg / plant; stable fruit application of organic fertilizer 1kg / plant + inorganic fertilizer 1kg / plant; strong fruit season application of organic fertilizer 1kg / plant + inorganic fertilizer 1.5kg / plant. (Organic fertilizer: fermented chicken manure, nitrogen, phosphorus, potassium ≥8%; inorganic fertilizer: urea and superphosphate Russian potash).
3 Results and Analysis

3.1 Analysis of Soil Physical Properties of Different Treatments
As can be seen from table 3, the soil bulk density was lower than that of the control (CK). The soil bulk density of A3B2C3, A2B3C1 and A2B1C3 was the lowest, which was 18.7%, 17.6% and 17.1% lower than that of the control.

The soil water content of each treatment compared to the control was generally similar or increased. The soil water content of A3B2C3, A3B2C2 and A3B1C1 was the lowest, which was 0.5% higher than that of the control. The soil water content of A3B1C3 and A3B2C1 was the second, which was 0.4% higher than that of the control.

Huangguogan can produce high quality and high yield characteristics in environments with a pH of about 6 [3]. The soil pH of A3B1C3, A3B2C1 and A3B2C2 were 6.12, 6.13 and 6.19 respectively. The micro-acid was suitable for the cultivation of Huangguogan. The soil pH of A3B1C2, A2B1C3 and A2B2C1 was the lowest. They were 5.8, 5.76 and 5.79 respectively. So low acidity is not suitable for cultivation of Huangguogan.

3.2 Analysis of Soil Chemical Properties of Different Treatments
As can be seen from table 4, the content of soil organic matter was significantly higher than the control. The contents of soil organic matter in A3B2C2, A3B2C1 and A3B1C3 were significantly increased by 56%, 54% and 46%.

The contents of available nitrogen (AN) in the treated soils were not consistent with those of the control. The contents of AN nitrogen in the treatments were significantly increased by 43.6%, 40.3% and 39.4% compared with the control. However, the contents of AN in soil treated with A1B1C1, A1B2C1 and A1B2C3 were lower than those in the control group. This may be due to budding flowering fertilization can’t meet the needs of trees. It can’t be coordinated development in trees and soil.

The content of available phosphorus in each treated soil was higher than that in control. The contents of available phosphorus in A3B2C1, A3B2C2 and A3B1C3 were significantly increased by 20.74mg/kg, 20.35mg/kg and 15.92mg/kg respectively compared with the control.

The content of available potassium in each treated soil were higher than those in the control group. The content of available potassium in A3B2C1, A3B2C2 and A3B1C3 were significantly increased by 124mg/kg, 110mg/kg and 98mg/kg respectively compared with the control. In this way, different fertilizers can be used to increase the content of potassium in soil.

The activities of soil urease were not consistent with the control. The soil urease activity of A3B2C2, A3B1C3 and A3B2C1 was the highest, which was 140.05mg / 100g, 139.87mg / 100g and 139.21mg / 100g respectively. The soil urease activity of A3B1C3 was 90.04mg / 100 lower than that of the control group. This may be due to the low nutrient content of the treated soil caused by insufficient soil fertility and low microbial activity.
Table 3 Different fertilizer treatments of Huangguogan orchard soil physical properties.

Approach	bulk density (g/cm³)	Water Content (%)	pH	Approach	bulk density (g/cm³)	Water Content (%)	pH
CK	1.527a	9.9cd	6.79a	A1:B1:C1	1.359ijk	10.3ab	6.47abcde
A1:B1:C1	1.411gh	9.9cd	6.4abcdef	A1:B1:C2	1.324efghi	10.3cd	6.02fghijk
A1:B1:C2	1.474bcd	10.1abcd	6.39abcdef	A1:B1:C3	1.471bcde	10.1abc	5.99fgijk
A1:B1:C3	1.497abc	10.1abcd	6.49abcde	A2:B1:C1	1.408fgh	10.1abcd	6.26cdefg
A2:B1:C1	1.514ab	10.3ab	6.05fghijk	A2:B1:C2	1.383hij	10.4a	6.31bcdefg
A2:B1:C2	1.477bcd	10.2abc	6.18defghijk	A1:B1:C4	1.323kkm	10.3ab	6.67ab
A1:B1:C4	1.464cde	9.8d	5.92ghijk	A2:B1:C2	1.353ijk	10.2abc	6.3cdefgh
A1:B1:C3	1.428efg	10bced	6.11defghijk	A1:B1:C5	1.306lmon	10.3ab	6.12defghij
A1:B1:C5	1.393ghi	9.9cd	5.87ijk	A1:B1:C1	1.278mnop	10.3ab	6.13defghij
A1:B1:C1	1.378hij	10.2abc	5.91hijkl	A1:B1:C2	1.283mnop	10.4a	6.19cdefghi
A1:B1:C2	1.316klmn	10.2abc	5.84ijkl	A1:B1:C3	1.343jkl	10.2abc	6.34bcdefg
A1:B1:C3	1.299lmonp	10.1abcd	5.8jk	A2:B1:C1	1.275lmonp	10.4a	6.34bcdefg
A2:B1:C1	1.267nqop	10.1abcd	5.76k	A2:B1:C2	1.307lmno	10.2abc	6.6abc
A2:B1:C2	1.259nqop	9.9cd	5.79jk	A2:B1:C3	1.242q	10.1abcd	6.34bcdefg

Note: The same indicators of different treatment between the lowercase letters that the difference between the two significant levels (P < 0.05). The same below.

Table 4 Different fertilizer treatments of Huangguogan orchard soil chemical properties and urease activity.

Approach	Organic Matter (g/kg)	AN (mg/kg)	Available phosphorus (mg/kg)	Available potassium (mg/kg)	Urease (mg/100g)
CK	21.93q	76.055q	15.24t	91.5y	92.72n
A1:B1:C1	29.94d	75.76r	16.66r	102y	138.95b
A1:B1:C2	29.26c	73.543t	16.29s	108.5t	138.24c
A1:B1:C3	28.19g	75.337s	17.46q	141.5r	126.18e
A1:B1:C4	27.8h	66.727x	29.99f	146.0z	123.63g
A1:B1:C5	26.21j	75.49r	19.32p	160.5m	119.01i
A1:B1:C6	25.2i	67.803w	26.91h	168.5k	117.08j
A1:B1:C7	23.65n	74.978s	19.87o	178i	124.65f
A1:B1:C8	22.82p	72.826u	31.62d	185f	92.92n
A1:B1:C9	22.84q	69.956v	16.04s	94x	90.04o
A1:B1:C10	25.76k	77.772op	20.11o	95.5w	126.71e
A1:B1:C11	28.75f	97.356g	20.75n	138.5s	123.95t
A1:B1:C12	29.61d	95.929h	20.04g	143.5q	138.62bc
A1:B1:C13	27.88gh	93.41j	28.18g	146.5o	123.85g
A1:B1:C14	26.67i	82.985m	30.02f	163l	119.69h
A1:B1:C15	25.23j	93.186j	31.31de	185.5e	117.23j
A1:B1:C16	24.47m	99.778f	30.24f	182h	114.47k
A1:B1:C17	22.91o	94.975i	31.06e	187.5d	93.91m
A1:B1:C18	23.56n	88.387k	32.12c	158.5n	100.01i
A1:B1:C19	27.98gh	80.853n	24.28j	168.5k	128.76d
A1:B1:C20	29.72d	103.455e	25.08i	141r	138.77bc
A1:B1:C21	32.08c	115.787a	31.16e	189.5c	139.87a
A1:B1:C22	33.89b	107.805c	35.98a	215.5a	139.21b
A1:B1:C23	34.53a	108.522b	35.59b	201.5b	140.05a
A1:B1:C24	25.78k	104.172d	23.37k	171.5j	118.93i
A1:B1:C25	25.05l	81.078n	21.87m	184g	115.05k
A1:B1:C26	23.02o	87.671	25.12i	145p	119.27h
A1:B1:C27	26.34ij	78.118o	22.25l	103u	94.04m
4 Conclusions
The demand for nitrogen, phosphorus and potassium in different growth processes is different. The appropriate fertilization management of fruit trees can improve the soil fertility of orchard, fruit quality, enhance tree vigor and increase yield. From the experimental results, it can be seen that the combination of different formulations can effectively reduce the soil pH and soil bulk density, improve the alkali nitrogen, available phosphorus, available potassium and urease activity. This is consistent with the result of Yang Cheng [10], Xu Zuxiang [9] and so on. Therefore, different combinations of "Baoshiling" organic-inorganic fertilizer can achieve the purpose of improving soil fertility and improving soil compaction in Huangguogan orchard. "Baoshiling" organic-inorganic fertilizer can’t only improve the physical and chemical properties of the soil to the level of the growth of Huangguogan to maintain a higher soil nutrient content, but also enhance microbial metabolic activity of Huangguogan orchard soil. This is consistent with the results of Xu Peizhi[7, 8], Zhuang Yimei [14] on citrus.

The results show that the treatment of A1B2C2 is the best combination of formulations. the regulation of soil physical properties of the best can improve soil nutrient content and microbial metabolic activity. The quality of the processed Huangguogan is also the best. Therefore, according to Huangguogan three key phenological period to apply the "Baoshiling" bud flowering fertilizer 2kg, stable fruit fertilizer 2kg, strong fruit fertilizer 2kg fertilization management measures the best. It has a great effect on the improvement of the economic benefit of Huangguogan. It is worth popularizing and applying.

References
[1] Deng, X.Q. 2002. Effects of Organic Manure and Inorganic Fertilizer on Soil Physical and Chemical Properties in Citrus Orchards. Zhejiang: Zhejiang Ganju.
[2] Ishii, T. & Shrestha, Y.H. 1992. mycorrhizal fungi in Citrus soils and relationship between soil factors and number of the spores. Japan: Soc. Hort. Sci.
[3] Lu, D.M. 2004. Cultivation Techniques of High Quality and High Yield of Citrus. Zhengzhou: Fruit Growers' Friend.
[4] Lv, Z.H. & Feng, X.M. 2007. Fertilization Techniques for Soil Testing in Fruit Trees. Shandong: China fruit and vegetable.
[5] Wang, D.H. & Li, T.J. 1991. Selection of Guiwangan, an Excellent Line of Huangguogan. Chongqing: China Citrus.
[6] Wang, Z.H. & Lu, S.F. 2011. Biological Characteristics Survey and the Differences Compare in Strains of Huangguogan in Shimian. Heilongjiang: Northern Horticulture.
[7] Xu, P.Z. & Jie, K.Z. 2010. Effects of organic and inorganic fertilizers on sloping-land citrus orchards with acid soils in Southern China. Beijing: Plant Nutrition and Fertilizer Science.
[8] Xu, P.Z. & Yang, S.H. 2008. Effects of organic fertilizer with inorganic fertilizer on sloping cit- rus in Guangdong. Guangzhou: Guangdong Agricultural Sciences.
[9] Xu, Z.X. 2010. Effect of Combined Application of Organic and Inorganic Fertilizers on the Physical Characters of Soils. Henan: Journal of Irrigation and Drainage.
[10] Yang, C. & Liu, Q.X. 2016. Effects of Combined Application of Organic and Inorganic Fertilizers on Soil Physical and Chemical Properties and Tomato Growth. Jiangsu: Jiangsu Agricultural Sciences.
[11] Zhang, X.Z. & Shi, J. 2014. Fertility Characteristics and Evaluation of the Wine- growing Region of Yunnan. Nanjing: Soils.
[12] Zhang, Z.C. & Wang, D.H. 1994. Studies on The Relationship of Huangguogan by Isoayme. Sichuan: Journal of Sichuan Agricultural University.
[13] Zhao, Y.T. & Jiang, B.W. 2009. soil and fertilizer science. Beijing: Chemical Industry Press.
[14] Zhuang, Y.M. & Xie, Z.N. 1990. Effects of Organic-Fertilizer Application on Soil Properties of Citrus Orchard in Red Soil. Fujian: Subtropical Plant Science.