Crumbs homologue 1 is required for maintenance of photoreceptor cell polarization and adhesion during light exposure

Serge A. van de Pavert, Albena Kantardzhieva, Anna Malysheva, Jan Meuleman, Inge Versteeg, Christiaan Levelt, Jan Klooster, Sylvia Geiger, Mathias W. Seeliger, Penny Rashbass, Andre Le Bivic and Jan Wijnholds

1The Netherlands Ophthalmic Research Institute, Royal Netherlands Academy of Arts and Sciences, Meibergdreef 47, 1105 BA Amsterdam, The Netherlands
2Retinal Electrodiagnostics Research Group, Department of Ophthalmology, University of Tübingen, Schleichstr. 12-16, 72076 Tübingen, Germany
3Centre for Developmental Genetics, Department of Biomedical Science, University of Sheffield, Western Bank, Sheffield, S10 2TN, UK
4Laboratoire de Neurogenèse et Morphogenèse au cours du Développement et chez l’Adulte (NMDA), UMR 6156 CNRS, IBDM, Université de la Méditerranée, Campus de Luminy, case 907, 13288 Marseille CEDEX 09, France

*These authors contributed equally
‡Author for correspondence (e-mail: j.wijnholds@ioi.knaw.nl)

Accepted 4 May 2004
Journal of Cell Science 117, 4169-4177 Published by The Company of Biologists 2004
doi:10.1242/jcs.01301

Summary
Loss of Crumbs homologue 1 (CRB1) function causes either the eye disease Leber congenital amaurosis or progressive retinitis pigmentosa, depending on the amount of residual CRB1 activity and the genetic background. CRb1 localizes specifically to the sub-apical region adjacent to the adherens junction complex at the outer limiting membrane in the retina. We show that it is associated here with multiple PDZ protein 1 (Mupp1), protein associated with Lin-7 (Pals1 or Mpp5) and Mpp4. We have produced Crb1–/– mice completely lacking any functional Crb1. Although the retinas are initially normal, by 3-9 months the Crb1–/– retinas develop localized lesions where the integrity of the outer limiting membrane is lost and giant half rosettes are formed. After delamination of the photoreceptor layer, neuronal cell death occurs in the inner and outer nuclear layers of the retina. On moderate exposure to light for 3 days at 3 months of age, the number of severe focal retinal lesions significantly increases in the Crb1–/– retina. Crb2, Crb3 and Crb1 interacting proteins remain localized to the sub-apical region and therefore are not sufficient to maintain cell adhesion during light exposure in Crb1–/– retinas. Thus we propose that during light exposure Crb1 is essential to maintain, but not assemble, adherens junctions between photoreceptors and Müller glia cells and prevents retinal disorganization and dystrophy. Hence, light may be an influential factor in the development of the corresponding human diseases.

Supplemental data available online

Key words: Leber congenital amaurosis, Light induced degeneration, Cell polarity, Cell adhesion, Subapical region, Adherens junction

Introduction
Mutations causing amino acid substitutions in the human Crumbs homologue 1 (CRB1) gene, the human homologue of Drosophila Crumbs, can lead to Leber congenital amaurosis (LCA), classic and retinitis pigmentosa type 12, and retinitis pigmentosa with Coats-like exudative vasculopathy (Cremers et al., 2002; den Hollander et al., 1999; van Soest et al., 1999), whereas all known null mutations lead to LCA. LCA is a group of inherited severe retinal diseases characterized by loss of vision within one year after birth. It accounts for at least 5% of all retinal dystrophies and is one of the main causes of blindness in children (Cremers et al., 2002). Mutations in six genes were identified that together account for approximately 50% of all LCA patients. CRB1 accounts for 9-13.5% of these cases (Cremers et al., 2002). The CRB1 protein contains 19 epidermal growth factor-like domains, three lamin A globular-like domains, a transmembrane domain and a 37 amino acid cytoplasmic tail with an C-terminal ERLI motif (den Hollander et al., 1999; Tepass et al., 1990).

In the retina, photoreceptor cells (PRCs) transform the incoming light to a signal that is processed subsequently by other neurons in the retina and brain. The PRCs are packed together, with processes of Müller glia cells (MGCs) for structural and metabolic support, in the retinal outer nuclear layer (ONL). The establishment and maintenance of apical-basal polarization and cell adhesion is crucial for the PRCs. At the apical site of the ONL, an adhesion belt, named the outer limiting membrane (OLM), contains specialized adherens junctions (AJs), which are present between the PRCs and MGCs. The AJs consist of multi-protein complexes and are linked to the cell skeleton for cell shape (Tepass, 2002).

Crumbs, a transmembrane protein, is associated with the formation of adherens junctions between cells in Drosophila (Grawe et al., 1996; Tepass, 1996). It localizes at a specialized region apical to the AJs, the subapical region (SAR) (Pellikka et al., 2002; Tepass, 1996), and is an essential component of the intracellular scaffold for the assembly of the protein complex at the AJ (Bachmann et al., 2001; Klebes and Knust,
the translation start site and transmembrane signal peptide of A targeting vector was constructed by assembling a 5.6 kb was used to screen an EMBL3 genomic 129/Ola DNA phage library.

Materials and Methods

Generation of Crb1^{−/−} mice

Genotype analysis, we detected the wild-type Crb1 allele using a sense primer JW1 (5′-CTGGGAGGGGTTTGGACAG-3′) and an antisense primer JW105 (5′-AAAACCTGGACCAAGCCGC-3′). These primer pairs amplify a 351-bp fragment from wild-type Crb1. The mutant allele was amplified using antisense primer JW105 and a sense primer JW123 (5′-GCTGTGAGAGATCTCCGGC-3′). All animals were treated according to guidelines established at the institutions in which the experiments were performed.

Morphological and immunohistochemical analysis

Affinity purified rabbit polyclonal antibodies raised against the C-terminal 36 amino acid peptide of human CRB1 (AK7) and the C-terminal 19 aa peptide of mouse Crb1 (AK2), antibodies raised against the C-terminal WNLMPAPMERLI amino acids (EP13), the extracellular GPAWEPFRCEIRAD amino acids (EP14) and cytoplasmic CARLEMDSVKLVPREE amino acid domains of human CRB2, and internal 15 amino acids peptides (KCVEADEETFESEEL) conserved between human membrane palmitoylated protein 4 (MPP4) and mouse Mpp4 (AK4), were generated and purified following standard procedures.

After fixation with 4% paraformaldehyde in PBS the mouse eye-cups were cryo-protected with sucrose. Snap-frozen human eyes were obtained from the Cornea Bank Amsterdam, with a post mortem period of 8-24 hours. Cryosections (7 µm) were rehydrated in PB and blocked for 1 hour using 10% goat or donkey serum, 0.4% Triton X-100 and 0.1% BSA in PB. Tissues for anti-Pals1 (protein associated with Lin-7) staining were blocked and permeabilized in 10% goat or donkey serum, 1% SDS and 0.1% BSA in PBS for 1 hour. Primary antibodies were diluted in 0.3% goat or donkey serum, 0.4% Triton X-100 and 0.1% BSA in PBS and incubated for 1 hour. Secondary antibodies were diluted in 0.1% goat or donkey serum in PB and incubated for 1 hour at room temperature. For details on antibodies and concentrations, see Supplementary data (http://jcs.biologists.org/supplemental/).

Sections were imaged on a Zeiss 510 confocal laser scanning microscope. Confocal images were processed with the Zeiss LSM image browser v3.2 and figures were assembled in Adobe Photoshop v7.0. Details on electron microscopy are available on request.

Light exposure and analysis of retinal damage

Prior to the start of the light exposure, all mice were maintained in a 12 hours dark/12 hours dimmed light (100 lux) cycle. After a 12-hour dark period mice were continuously exposed for 72 hours to 3000 lux of diffuse white fluorescent light (TLD-18W/33 tubes, Philips; 350-700 nm) without pupillary dilation. A correlation between codon 450 polymorphism in Rpe65 and light-sensitivity (Wenzel et al., 2001) in Crb1^{−/−} or wild-type retinas was excluded (for details, see Supplemental data, http://jcs.biologists.org/supplemental/).

Immediately after light exposure, the eyes were orientated and thereafter enucleated, fixed either for cryosectioning or for 3 µm sectioning in Technovit 7100 (Kulzer, Wehrheim, Germany). In the latter, the whole retina was examined for protrusions and ingresses. Statistical analysis was performed using the Mann-Whitney test. Significance was accepted if P<0.05. For apoptosis analysis, the rhodamine in situ cell death detection kit (Roche, Mijdrecht, The Netherlands), a TdT-mediated dUTP nick-end labeling (TUNEL) assay, was used on 7 µm cryosections, according to the manufacturer’s suggested protocol, and included 1:5 dilution of the labelling mix. As positive control, sections treated with DNase were used according to manufacturer’s protocol. Images were obtained with a Leica DMRD microscope and DC350F digital camera (Leica, Rijswijk, The Netherlands).

Immunoprecipitation experiments

Retinas were isolated from 3-month-old wild-type and Crb1^{−/−} mice
and homogenized in lysis buffer (1% Triton X-100, 150 mM NaCl, 1 mM EDTA, 1 mM PMSE, 1 mM Na3VO4, 50 mM Tris-HCl, pH 7.4 containing a complete protease inhibitor cocktail). Crude lysates were cleared by centrifugation (10,000 g for 15 minutes at 4°C) and were used for immunoprecipitation with AK2. Membrane fractions were prepared by homogenization of retinas in extraction buffer (10 mM NaCl, 3 mM MgCl2, 1 mM DTT, 1 mM PMSE, 1 mM Na3VO4, 10 mM Hepes, pH 7.9 supplemented with a complete protease inhibitors cocktail) and subsequent differential centrifugation. Membrane fractions were resuspended in lysis buffer and cleared by centrifugation, the supernatants were used for immunoprecipitation with monoclonal anti- multiple PDZ domain protein 1 (Muppl; Transduction Laboratories, Alphen aan de Rijn, The Netherlands). As a control, mouse IgGs (Sigma) were used to perform immunoprecipitation. The precipitated proteins were washed four times with lysis buffer, eluted with sample buffer and analyzed by western blotting.

Electroretinography and scanning-laser ophthalmoscopy

Electroretinography

ERGs and SLOs were obtained according to previously reported procedures (Seeliger et al., 2001). Briefly, following dark adaptation overnight, mice were anesthetized with ketamine (66.7 mg/kg) and xylazine (11.7 mg/kg), and the pupils were dilated. The ERG equipment consisted of a Ganzfeld bowl, a DC amplifier, and a PC-based control and recording unit (Multilinea Vision; Jaeger-Toennies, Hoechberg, Germany). Band-pass filter cut-off frequencies were 0.1 and 3000 Hz. Single flash recordings were obtained both under dark-adapted (scotopic) and subsequently light-adapted (photopic) conditions. Light adaptation was achieved with a background illumination of 30 cd/m2 starting 10 minutes before photopic recordings. Single flash stimulus intensities were increased from 10^-4 cd*s/m2 to 25 cd*s/m2, divided into ten steps of 0.5 and 1 log cd*s/m2. Ten responses were averaged with an inter-stimulus interval (ISI) of either 5 seconds or 17 seconds (for 1, 3, 10, 25 cd*s/m2).

Scanning-laser ophthalmoscopy

Fundus imaging was performed with a HRA scanning-laser ophthalmoscope (SLO; Heidelberg Instruments, Heidelberg, Germany) that provides two Argon wavelengths (blue, 488 nm and green, 514.5 nm) and an infrared diode laser (690 nm) for fundus visualization. The confocal diaphragm of the SLO allows imaging of different planes of the posterior pole, ranging from the surface of the retina down to the retinal pigment epithelium (RPE) and the choroid. Different planes can be viewed by varying the focus by about ±20 diopters.

Results

The localization of proteins in the outer limiting membrane

The photoreceptor layer in the retina contains a structure called the OLM that contains AJs, a region of cell-cell adhesion between PRCs and MGCs. We examined the localization of mouse Crb1 with mammalian homologues of Crumbs-interacting proteins and other AJ and tight junction proteins in wild-type retinas. At the subapical region (SAR), adjacent to the AJ, we detected a number of proteins: Crb1 (Fig. 1A), F-actin (Fig. 1B), membrane-associated guanylate kinase (MAGUK) proteins (Bachmann et al., 2001; Hong et al., 2001) membrane palmitoylated protein 4 (Muppl) (Stohr and Weber, 2001) (Fig. 1C) and Pals1 (Roh et al., 2002; Wei and Malicki, 2002) (Fig. 1D), the PSD95/Dlg/ZO-1 (PDZ) motif containing proteins multiple PDZ protein 1 (Muppl) (Hamazaki et al., 2002) (Fig. 1E) and Patj (Lemmers et al., 2002; Roh et al., 2002) (Fig. 1F) as well as atypical protein kinase C (aPKC) (Fig. 1G). The Crb1 homologues Crb2 (Fig. 1H) and Crb3 (Makarova et al., 2003) (Fig. 1I), co-localized with Crb1 to the SAR. The AJ contained β-catenin (Fig. 1A), N-cadherin, p120 (Paffenholz et al., 1999), ZO-1 and ZO-2 (Itoh et al., 1999) (data not shown).

Patj was also detected in the retinal pigment epithelium (RPE) (data not shown). Mpp4 localized strongly in the synaptic terminal of the photoreceptors in the outer plexiform layer (data not shown and Fig. 5F). CD44 localized in the apical villi of the MGCs, but did not co-localize with Crb1 in the SAR (Fig. 1J). Cdc42 was detected in a similar localization to the photoreceptor layer in the retina down to the retinal pigment epithelium (RPE) and the choroid.

Fig. 1. Confocal images of 3-month-old wild-type mouse and human retinas. These images are high power insets of the OLM. (A) Crb1 is confined to the SAR, whereas β-catenin localized more basally at the AJ. (B) Crb1 localized at the basal part of the F-actin localization in the PRC inner segments. (C) Mpp4, (D) Pals1, (E) Mupp1 and (F) Patj localized at the SAR, compared to the location of β-catenin at the AJ. (G) aPKC co-localized with Crb1 to the SAR. (H-I) Crb2 and Crb3 localized at the SAR. A similar staining was detected in Crb1+/− retina. (J) CD44 localized in the MGC apical villi, but did not co-localize with Crb1 in the SAR. Par6, moesin or ZO-3 were not detected in the OLM (data not shown). Claudin-1 to -5 and occludin were not detected in the retina, but claudin-2 and occludin were detected in the retinal pigment epithelium (RPE). (K) CRB1 localized at the SAR of the human retina, apical to β-catenin in the AJ. (L) MUPP1 localized at the SAR of the human retina. (M) Schematic diagram of the localization for the different proteins at the SAR or AJ. Scale bar: 2.5 μm.
there are other complexes involved in establishing epithelial polarity, such as the Par3-Par6-aPKC-Cdc42 complex (Hurd et al., 2003). Components of this complex are known to interact with Crb family members and interacting proteins, e.g. Par6 has been shown to interact directly with Crb3 and Pals1 (Hurd et al., 2003; Lemmers et al., 2004). Of this complex, we detected aPKC and Cdc42 in the PRCs (Fig. 1G,M). This is the first study in mouse that defines the localization of several proteins at the OLM, such as Patj, Mupp1, Crb2, Crb3, Mpp4, aPKC and Cdc42. The localization of the homologues of these proteins, e.g. Crumbs in the SAR and Armadillo in the zonula adherens (ZA) in Drosophila, show remarkable similarities with our data in mouse (for a review, see Knust and Bossinger, 2002).

In the human retina, CRB1 and MUPP1 were detected at the SAR. The AJ was stained with a β-catenin antibody, while CRB1 and MUPP1 were located apical to this region (Fig. 1K,L), as in the mouse retina.

Binding partners of Crb1

To extend the co-localization studies further, we investigated which proteins associated together in the same complex. Immunoprecipitation of Mupp1 from retinal lysates demonstrated that endogenous Mupp1 interacted in PRCs in a protein-complex with Crb1, Pals1 and Mpp4 (Fig. 2). The antibody against Mupp1 efficiently co-precipitated Crb1, in agreement with co-localization of Crb1 with Mupp1 in the retina. Pals1 was efficiently co-precipitated as well. The Mpp4 protein was efficiently co-precipitated with Mupp1 from the outer limiting membrane given that most of the Mpp4 is localized at the outer plexiform layer (data not shown). The membrane-associated protein Patj was not detected in the Mupp1 precipitate (Fig. 2). In Crb1 mutant retinas before the onset of retinal degeneration, the complex between Mupp1, Pals1 and Mpp4 formed in the absence of Crb1, indicating that Crb1 is not essential for this interaction (Fig. 2, first column). Pals1 was detected as a doublet (Hurd et al., 2003; Makarova et al., 2003). Both Pals1 proteins are present in the Mupp1 immunoprecipitate, with preference for the high molecular mass form. We conclude that in PRCs, Mupp1 is in complex with Pals1, Mpp4 and Crb1 and localized at the SAR.

Generation of Crb1–/– mice

We inactivated the murine Crb1 gene (den Hollander et al., 2002) by deleting a 2.9 kb genomic DNA fragment in murine embryonic stem cells (Fig. 3A,B; see Materials and Methods). The deletion contained the upstream promoter of the gene and the first exon encoding the amino terminus of the Crb1 protein. The homozygous mice were healthy and fertile under normal conditions in the animal facilities. Antibodies directed against the carboxyl terminus of Crb1 did not detect Crb1 in retinal lysates of Crb1–/– mice (Fig. 3C). Using three different antibodies against Crb1, including that was described by Pelikka et al. (Pelikka et al., 2002), we observed localization of Crb1 specifically at the SAR in the inner segments of rods and cones of wild-type retinas (Fig. 3A), but not in the outer segments of the cones as previously described (Fig. 1A, Fig. 3D,E) (Pelikka et al., 2002). In Crb1–/– mice, Crb1 protein was not detected (Fig. 3F,G) indicating that the targeted allele is a true null.

Retinal morphology in Crb1–/– mice

In Crb1–/– mice, maintained in a 12 hours light (100 lux)/12 hours dark cycle, no abnormalities were detected in 2 or 3 weeks, or 2-month-old retinas (n=5 in each group). However by 3 months, Crb1–/– mice had developed small, but significant, regions of retinal degeneration that were never observed in wild-type controls (Fig. 4A-C). The OLM was ruptured by the protrusion of single or groups of PRC bodies into the interphotoreceptor space. Moreover, ingress PRC bodies were also detected in the OPL and inner nuclear layer (INL) (Fig. 4A,B). A striking feature of the Crb1–/– phenotype was the presence of double PRC layers or half rosettes (Fig. 4C). The rosettes were immediately underneath the PRC layer and developed PRC inner segment membranes and an OLM. The number of PRCs in the upper and lower layers was approximately half the amount compared to the region immediately adjacent to the affected area, suggesting that the single PRC layer transformed into two layers without major loss of the PRCs. At this stage, except for the localized regions of retinal degeneration described in the next section (Fig. 5), the subcellular localizations of N-cadherin, β-catenin, p120, ZO-1, ZO-2, Patj, Mupp1, F-actin, Mpp4, Pals1, aPKC, Cdc42, Crb2 and Crb3 were similar to the wild-type (data not shown, Fig. 1). The gross ultra-structure of the AJ and the apical processes of MGCs, which extend for a short distance beyond the AJ, was normal when viewed by electron microscopy (Fig. S1, http://jcs.biologists.org/supplemental/). The outer segment membranes of wild-type and mutant mice were flat and well organized, and closely aligned with each other and the plasma membrane. Our results indicate that mouse Crb1 is not essential for the assembly of the SAR and AJ during PRC layer development but rather to maintain the correct position and integrity of the SAR and AJ. Since retinal degeneration occurred in the presence and normal subcellular localization of both Crb2 and Crb3 in Crb1–/– mice, it appeared that the

![Fig. 2. Mupp1 immunoprecipitation (IP) co-precipitates Crb1, Mpp4 and Pals1. Crb1 was co-immunoprecipitated from retinal lysates of wild-type but not Crb1–/– mice. Patj was not found in the precipitated protein complex but was present only in the total retinal lysate (L). Anti-Pals1 detected a Pals1 doublet (Roh et al., 2002). In the control (Pre), mouse IgGs were used for immunoprecipitation.](http://jcs.biologists.org/supplemental/)
Fig. 3. Generation of Crb1^{−/−} mice and confocal images of mouse retinas. (A) Crb1 disrupted by insertion of the targeting vector. E1, exon 1; E2, Exon 2; pA, polyadenylation signal; PGK, phosphoglycerate kinase promoter; B, BamHI; RV, EcoRV; Bg, BglII.

(B,C) Deletion of the exon encoding the N-terminal signal peptide prevents the production of Crb1 protein with C-terminal transmembrane and intracellular domains. (B) EcoRV Southern blot analysis using a 750 bp BglII-AccI fragment probe in the 3′ flanking region. (C) Immunoprecipitation of Crb1, with AK7, from lysate of wild-type but not of the Crb1^{−/−} retina. As positive control 293/CRB1 cell lysates were used. Crb1 was stained using AK2. Asterisks indicate cross-reacting bands with AK2 in 293 cells. (D-G) Localization of Crb1 (red) in the OLM and staining of cone segments and pedicles by peanut agglutinin (PNA; green) in the retinas of wild-type (D) and Crb1^{−/−} (F) mice. Detail of the localization of Crb1 at the SAR for the wild-type (E) and Crb1^{−/−} (G) retina. Scale bars: 30 μm.

Fig. 4. Retinal phenotype of Crb1^{−/−} mice exposed to cycled light (12 hours dark/12 hours 100 lux). (A-C) Different stages of degeneration in 3-month-old Crb1^{−/−} retinas. (A) Start of degeneration in which some PRCs protrude through the OLM and ingress into the OPL. (B) More PRCs are involved in larger ingression areas and PRCs ingressed onto the INL. (C) Ingressed PRCs re-aggregate into half rosette structures, and form new inner segments and an OLM (arrow). (D,E) Morphology of 6-month-old Crb1^{−/−} retinas. (D) Formation of a giant half rosette of PRCs with outgrown inner segments. Note the presence of cells from the INL, possibly MGC nuclei, close to the edges of and inside this structure (arrowheads). (E) Complete degeneration of the ONL, presence of ghost structure (arrow) and ingestion of RPE into the retina (arrowheads). Scale bars: 100 μm.
Light exposure accelerates retinal degeneration in

Crb1–/– mice

Mutations in Drosophila crumbs result in improper PRC morphogenesis and progressive light-induced PRC degeneration (Johnson et al., 2002). Since light could be one of the environmental factors causing the degenerations at foci in the Crb1–/– retina, we exposed 3-month-old pigmented wild-type and Crb1–/– mice to continuous moderate white fluorescent light (3000 lux) for 3 days (Hao et al., 2002). In a representative experiment there was a significant increase in the number of degenerative areas in moderate light-exposed Crb1–/– retinas, compared to retinas exposed to cycled light (12 hours dark/12 hours 100 lux) (P<0.02, n=4) (Fig. 5A). The number of degenerative regions counted in the Crb1–/– retinas exposed to 3000 lux for 72 hours is probably an underestimate of the true number of foci affected, as we observed that several small foci appeared to fuse into larger abnormal regions as can be seen in Fig. 5B when compared to Fig. 4. Retinal degeneration started at several foci at the inferior temporal quadrant of the Crb1–/– retina, the area most exposed to light in the murine retina. In the moderate light-exposed Crb1–/– mice, retinal degeneration started as described for the 3- to 9-month Crb1–/– mice in cycled light (Fig. 5B). However, 3 days after moderate light exposure, PRCs apical to the rosettes lacked inner and outer segments (Fig. 5C). None of the moderate light-exposed wild-type retinas showed degenerative areas (n=10). Overall our results support the hypothesis that light is an environmental factor that enhances the onset of retinal degeneration in Crb1–/– retinas.

Light damage to the retina is detected early in MGCs, which respond by altering their protein levels and/or subcellular localization, e.g. by the upregulation and redistribution of intermediate filament proteins (Chen and Weber, 2002). We therefore used glial filibrillary acidic protein (GFAP) to stain intermediate filaments in MGCs. In Crb1–/– mice, ectopic GFAP staining correlated well with regions of detectable retinal degeneration. Strongly stained bundles of newly formed GFAP-positive intermediate filaments were detected through the INL and ONL. Moreover, MGCs extended further through the OLM into the interphotoreceptor space (Fig. 5D,E). In the degenerated areas, staining with markers for the OLM indicated losses of neuronal synapses at local regions (Fig. 5F-G). Remarkably, only a small number of TUNEL-positive cells were detected specifically at these sites of retinal degeneration in moderate light-exposed Crb1–/– mice (Fig. 5K,L), suggesting a delayed initiation of cell death after loss of PRC-MGC adhesion.

Electroretinography and fundus photography

The retinal function was examined by electroretinography. No loss of overall retinal function was detected in either the 3-, 6- (data not shown), or 9-month-old Crb1–/– mice exposed to cycled light, nor in 3-month-old Crb1–/– mice exposed for 72 hours to 3000 lux of light (Fig. S2, http://jcs.biologists.org/ supplemental/). This is not surprising as the focal retinal degeneration observed is very localized, whilst the remainder of the retina appears grossly normal. In the 72-hour 3000 lux-exposed Crb1–/– mice, fundus photography revealed macroscopically visible retinal spots (Fig. 5M) that correlated with rosette structures and double PRC layers in the sections. In mice with rosette or pseudo-rosette formation but without double PRC layers, similar spots were detected (Akhmedov et al., 2000; Mehalow et al., 2003). No spots were observed on SLO in 3-, 6- or 9-month-old Crb1–/– retinas exposed to cycled light, most likely because the areas of retinal degeneration were very small.

Discussion

In this study, we present the generation and characterization of Crb1–/– knockout mice. We demonstrate that complete disruption of Crb1 results in light-inducible retinal degeneration. The onset of the disease is due to transient loss of cell adhesion between PRCs and MGCs. When PRCs re-adhere, rosette structures and double PRC layers are formed. It has been demonstrated that MGCs rescue nearby PRCs from apoptosis and prolong their survival by the expression of growth factors (Harada et al., 2000). These MGC-derived growth factors might be essential in the transient rescue of PRCs in the ectopic rosette structures and double PRC layers in Crb1–/– retinas. Hence, Crb1 is not essential for the initial assembly of the AJs between PRCs and MGCs, but rather for the maintenance of the AJs during light exposure.

In most polarized vertebrate epithelial cells, tight junctions are located apical to the AJ. In the retina, the OLM harbours an AJ and a distinct region apical to the AJ, the SAR. We provide novel data on Crb1 co-localization with Mpp4, Cdc42, F-Actin, Patj, Mupp1, aPKC, Crb2 and Crb3 in the SAR. Localization of Pals1 in the SAR was also confirmed (Mehalow et al., 2003). Cell-cell contact in the OLM is not tight, since large molecules such as colloidal thorium and peroxidase (Feeney, 1973; Peyman et al., 1971) readily diffuse from the vitreous through the OLM, into the interphotoreceptor space. In accordance, claudins 1-5 were not detected at the SAR.

The complex of Crb1, Pals1 and Mpp4 with Mupp1 has not been demonstrated before in vivo. In cultured epithelial cells it was shown by Roh et al. (Roh et al., 2002; Roh et al., 2003) that PALS1 binds to CRB1 and that PALS1 binds to the L27-like domain in PATJ and MUPP1 (Roh et al., 2002; Roh and Margolis, 2003). MPP4, a family member of Pals1, also interacted with CRB1 when overproduced in 293 human...
The role of Crb1 in photoreceptor cell polarity

Embryonic kidney cells (A.K. and J.W., unpublished results). It is therefore probable that separate complexes of Crb1-Pals1-Mpp4-Mupp1 and Crb1-Mpp4-Mupp1 exist, or since MAGUK proteins may form heterodimers or homodimers (Nix et al., 2000), that complexes of Crb1-Pals1/Mpp4-Mupp1 are present in the PRCs. Conditions used for Patj immunoprecipitation were not optimal for the demonstration of a Patj-Pals1-Mpp4-Crb1 complex (data not shown). However, the interaction between Patj and Pals1 has been shown by others with overexpression in epithelial cell culture (Lemmers et al., 2002; Roh et al., 2002). Since Patj co-localizes with Crb1 and Mupp1 at the SAR, it is therefore conceivable that Crb1-Pals1/Mpp4-Patj complexes also exist.

The many different mutations in the human CRB1 gene cause variable eye phenotypes, e.g. LCA, retinitis pigmentosa type 12, classic retinitis pigmentosa, and retinitis pigmentosa with Coats-like exudative vasculopathy. Full ablation of CRB1 function is likely to result in LCA (Cremers et al., 2002), whereas other amino acid substitutions in the extracellular domain of CRB1 are likely to result in different forms of retinitis pigmentosa. The same may be true for truncated CRB1 proteins lacking the transmembrane and cytosolic domains.

Fig. 5. Retinal phenotype of 3-month-old Crb1−/− mice exposed to 3000 lux for 72 hours. (A) Representative experiment with wild-type and Crb1−/− retinas indicating number of protrusions, ingressions and total amount in cycled light (12 hours dark/12 hours 100 lux) versus 72 hours of 3000 lux. Error bars represent s.e.m. Asterisks indicate statistical difference (P<0.02) between the groups exposed to cycled light and 72 hours of 3000 lux. (B) Numerous ingression areas through the OPL (arrow) and protrusions through a distorted OLM (arrowhead) in the Crb1−/− retina. (C) OLM present in rosette (arrow), no segments are present on the disorganized PRCs (arrowhead). (D-J) Fluorescence microscopy images of degenerated areas. Nuclei are stained with Hoechst (blue). Note that in unaffected areas, adjacent to the ingression areas, localization of the proteins is normal. GFAP localized near the inner limiting membrane, at the MGC end-feet and in horizontally radiating MGC rootlets in the OPL (data not shown) in wild-type mice exposed to both cycled light and 72 hours of 3000 lux. (E) Detail of D, strong staining of GFAP in the ONL and through OLM. (F) Areas of protrusions (arrowheads) and ingressions (arrows) where Mpp4 is lost at the OLM and OPL as well as mislocalized into the ONL (asterisk). (G) β-Catenin mislocalization throughout the ONL in ingression areas (arrows). (H) ZO-2 localization perturbed in a protrusion and ingestion area. (I,L) Mislocalization and loss of Patj or Mupp1 in affected areas (arrowheads). (K) Apoptotic cells are rarely present in wild-type retinas. (L) Slightly increased apoptosis is apparent in Crb1−/− mice around ingression areas. Scale bars: 50 μm. (M) SLO image (514.5 nm) of a 3-month-old Crb1−/− mouse fundus after exposure for 72 hours to 3000 lux. The multiple dots (arrowhead) indicate areas of rosette formation in the inferior temporal quadrant of the retina. Scale bars: 50 μm.
(Cremer et al., 2002). Mehalow et al. (Mehalow et al., 2003) recently identified a mutation in the Crb1 gene responsible for the rd8 retinal degeneration phenotype. The rd8 mutation is most probably not a null allele, but encodes an aberrant secreted truncated Crb1-rd8 protein of 1207 amino acids, of which 47 are novel amino acids. This aberrant protein lacks four of the 19 epidermal growth-factor domains and one of the three laminin A G-like domains (Mehalow et al., 2003). The production of Crb1-rd8 in combination with the lack of the native Crb1 protein causes retinal folds (pseudorosettes), very different from the double photoreceptor layers (giant half-rosettes) observed in the Crb1−/− mice. In old rd8 mice the photoreceptor layer declines to a single row of PRCs. In contrast, in foci of Crb1−/− retinas, complete loss of PRCs and INL, as well as degeneration of RPE occurs after an initial transformation of single to double photoreceptor layers. The difference in phenotype could be the result of genetic background or residual Crb1 function in the Crb1-rd8 protein. A deletion in a photoreceptor-specific nuclear receptor mRNA causes retinal degeneration in the rd7 mouse. Proc. Natl. Acad. Sci. USA 97, 5551-5556.

We thank C.A.A.M. Mol-Neefjes for excellent technical assistance; J. van der Vliet for immunizing rabbits; U. Tepass for anti-Crb1 (851); R. van der Neut for anti-CD44; M. Roh and B. Margolis for the anti-Crb3, anti-Pals1 and anti-Patj antibodies; T. van den Berg for light spectrum analysis; T. Gorgels for the light-experiment equipment; B. Nunes-Cardozo for assistance with the CLSM; The Cornea Bank Amsterdam for providing the donor eyes; A.A. Put for the artwork; S. Alexeeva, A. Bergen, P.T.V.M. de Jong and W. Kamphuis for discussions and critical reading of the manuscript. Support for this research was provided by the DFG (to M.W.S.), ZonMW-NWO (912-02-018) and EC grants (to J.W., A.L.B. and P.R. respectively) (QLG3-CT-2002-01266).

References

Akhmedov, N. B., Piriev, N. I., Chang, B., Rapoport, A. L., Hayes, N. L., Nishina, P. M., Nusinowitz, S., Heckenlively, J. R., Roderick, T. H., Kozak, C. A. et al. (2000). A deletion in a photoreceptor-specific nuclear receptor mRNA causes retinal degeneration in the rd7 mouse. Proc. Natl. Acad. Sci. USA 97, 5551-5556.

Bachmann, A., Schneider, M., Theilenberg, E., Grawe, F. and Knust, E. (2001). Drosophila Stardust is a partner of Crumbs in the control of epithelial cell polarity. Nature 414, 638-643.

Chen, H. and Weber, A. J. (2002). Expression of glial fibrillary acidic protein and glutamine synthetase by Muller cells after optic nerve damage and intravitreal application of brain-derived neurotrophic factor. Glia 38, 115-125.

Cremer, F. P., van den Hurk, J. A. and den Hollander, A. I. (2002). Molecular genetics of Leber congenital amaurosis. Human Mol. Genet. 11, 1169-1176.

den Hollander, A. I., ten Brink, J. B., de Kok, Y. J., van Soest, S., van den Born, L. I., van Driel, M. A., van de Pol, D. J., Payne, A. M., Bhattacharya, S. S., Kellner, U. et al. (1999). Mutations in a human homologue of Drosophila crumbs cause retinitis pigmentosa (RP12). Nat. Genet. 23, 217-221.

den Hollander, A. I., Ghiani, M., de Kok, Y. J., Wijnholds, J., Ballabio, A., Cremer, F. P. and Broccoli, V. (2002). Isolation of Crb1, a mouse homologue of Drosophila crumbs, and analysis of its expression pattern in eye and brain. Mech. Dev. 110, 203-207.

Feeney, L. (1973). The interphotoreceptor space. I. Postnatal ontogeny in mice and rats. Dev. Biol. 32, 101-114.

Grawe, F., Wodarz, A., Lee, B., Knust, E. and Skaer, H. (1996). The Drosophila genes crumbs and standart are involved in the biogenesis of adherens junctions. Development 122, 951-959.

Hamazaki, Y., Itoh, M., Sasaki, H., Furuse, M. and Tsukita, S. (2002). Multi-PDZ domain protein 1 (MUPP1) is concentrated at tight junctions through its possible interaction with claudin-1 and junctional adhesion molecule. J. Biol. Chem. 277, 455-461.
The role of Crb1 in photoreceptor cell polarity

4177

The arm-repeat protein NPRAP (neurojungin) is a constituent of the plaques of the outer limiting zone in the retina, defining a novel type of adhering junction. Exp. Cell Res. 250, 452-464.

Pelikka, M., Tanentzapf, G., Pinto, M., Smith, C., McGlade, C. J., Ready, D. F. and Tekpass, U. (2002). Crumbs, the Drosophila homologue of human CRB1/RP12, is essential for photoreceptor morphogenesis. Nature 416, 143-149.

Peyman, G. A., Spitznas, M. and Straatsma, B. R. (1971). Peroxidase diffusion in the normal and photocoagulated retina. Invest. Ophthalmol. 10, 181-189.

Pieplage, J., Stork, T., Bunse, I. and Klamt, C. (2003). The Drosophila cell survival gene discs lost encodes a cytoplasmic Cadomin-1-like protein, not a homolog of tight junction PDZ protein Patj. Dev. Cell 5, 841-851.

Roh, M. H. and Margolis, B. (2003). Composition and function of PDZ protein complexes during cell polarization. Am. J. Physiol. Renal Physiol. 285, F377-F387.

Roh, M. H., Makarova, O., Liu, C. J., Shin, K., Lee, S., Laurinec, S., Goyal, M., Wiggins, R. and Margolis, B. (2002). The Maguk protein, Pals1, functions as an adapter, linking mammalian homologues of Crumbs and Discs Lost. J. Cell Biol. 157, 161-172.

Seidelger, M. W., Grimm, C., Stahlberg, F., Friedburg, C., Jaisse, G., Zrenner, E., Guo, H., Remé, C. E., Humphries, P., Hofmann, F. et al. (2001). New views on RPE65 deficiency, the rod system is the source of vision in a mouse model of Leber congenital amaurosis. Nat. Genet. 29, 70-74.

Stohr, H. and Weber, B. H. (2001). Cloning and characterization of the human retina-specific gene MPP4, a novel member of the p55 subfamily of MAGUK proteins. Genomics 74, 377-384.

Tepass, U. (1996). Crumbs, a component of the apical membrane, is required for zonula adherens formation in primary epithelia of Drosophila. Dev. Biol. 177, 217-225.

Tepass, U. (2002). Adherens junctions, new insight into assembly, modulation and function. BioEssays 24, 690-695.

Tepass, U., Theres, C. and Knust, E. (1990). Crumbs encodes an EGF-like protein expressed on apical membranes of Drosophila epithelial cells and required for organization of epithelia. Cell 61, 787-799.

van Soest, S., van Rossem, M. J., Heckenlively, J. R., van den Born, L. I., de Meulemeester, T. M., Vliex, S., de Jong, P. T., Bleeker-Wagemakers, E. M., Westerveld, A. and Bergen, A. A. (1999). Integrated genetic and physical map of the 1q31-q32.1 region, encompassing the RP12 locus, the F13B and HF1 genes, and the EEF1AL11 and RPL30 pseudogenes. Cytogenet. Cell Genet. 84, 22-27.

Wei, X. and Malicki, J. (2002). nagic oke, encoding a MAGUK-family protein, is essential for cellular patterning of the retina. Nat. Genet. 31, 150-157.

Wenzel, A., Remé, C. E., Williams, T. P., Hafezi, F. and Grimm, C. (2001). The Rpe65 Leu450Met variation increases retinal resistance against light-induced degeneration by slowing rhodopsin regeneration. J. Neurosci. 21, 53-58.

Wijnholds, J., Evers, R., van Leusden, M. R., Mol, C. A., Zaman, G. J., Mayer, U., Beijnen, J. H., van der Valk, M., Krümpenfort, P. and Borst, P. (1997). Increased sensitivity to anticancer drugs and decreased inflammatory response in mice lacking the multidrug resistance-associated protein. Nat. Med. 3, 1275-1279.