Manufacture and evaluation of the tensile properties of a biodegradable composite material reinforced with Colombian coconut fibers

M Arciniegas1, W Delgado1, S Lesmes2, and A Pertuz1
1 Grupo de Investigación en Energía y Medio Ambiente, Universidad Industrial de Santander, Bucaramanga, Colombia
2 Laboratorio de Espectroscopía Atómica y Molecular, Universidad Industrial de Santander, Bucaramanga, Colombia

E-mail: apertuzc@correo.uis.edu.co, sergio.lesmes@correo.uis.edu.co

Abstract. The mechanical properties of a biodegradable composite material made with Colombian coconut fibers were studied. The study was carried out considering a random distribution of fibers within the composite material for three fiber/matrix compositions (10, 20 and 30) in weight-to-weight percentage. Each of these was subjected to tensile tests to evaluate the effect of the fibers in each composition, taking into account the mechanical properties of ultimate tensile strength and elastic modulus that allow selecting the composition of greater rigidity and subsequently evaluating its properties under the effects of compression forces. The results obtained show that the more rigid composite material corresponds to the fiber/matrix 20 percent composition, which presented a tensile strength of 13.83 MPa and an elastic modulus of 924.46 MPa comparable with those reported in the literature. This composition is the most fragile with a percentage of elongation is 2.27% and with low tenacity to withstand impact efforts. Finally, the behavior of the more rigid material was compared with the mechanics of Ramberg-Osgood and Hollomon, the latter being the most adjusted allowing to predict the properties of this type of materials. The results obtained expand the uses of Colombian coconut fibers as a biodegradable composite.

1. Introduction
Coconut fiber is a durable, renewable, biodegradable material with a good combination of strength, length, moisture recovery, high resistance to sunlight, salt water and microbes [1]. It is also a product that has been evaluated as a thermal and acoustic insulator [2] and has been widely used as a reinforcement in biodegradable composites for its high strength [3], low cost and availability [4], as well as evaluating the possibility of replacing asbestos in some industrial products [5].

Different studies that have been conducted in the manufacture of composite materials reinforced with coconut fibers emphasize the importance of understanding the effects of fiber treatment on fiber / matrix interfacial adhesion [6]. This process is carried out with the objective of improving the mechanical properties as demonstrated by the work of Diao et al. who studied the wheat gluten compound hardened and reinforced with treated coconut fibers obtaining values of flexural rigidity up to 1.4 GPa [7]. In addition to these studies, it has also been investigated the different variations that can affect the properties of a material reinforced with coconut fibers to obtain compounds with high yields and
different applicability [8]; as in the work of Duraibabu et al., in which epoxy compounds were reinforced with treated coconut fibers achieving an increase in mechanical properties and thermal stability [9].

Similarly, and taking into account the potential of Colombian coconut fibers within the area of composite research, the use of short fibers distributed randomly within a biodegradable polymer matrix that establishes fiber/matrix compositions is proposed 0/100 (FM0), 10/90 (FM1), 20/80 (FM2) and 30/70 (FM3) in weight to weight percentage, which by means of tensile tests allowed to select the composition of the material with greater rigidity. Fiber distributions are random in order to facilitate material engineering applications. Also, the compositions were selected by the orderly partition of a matrix without reinforcement FM0 and the maximum load supported FM3 in the test piece.

2. Materials and methods
The material of the test pieces was made with coconut fibers (CF) with an average of 2.5 cm in length and mixed with an elaborated matrix of polyvinyl acetate (PVA) and corn starch (CS). The coconut fiber is alkaline treated with sodium hydroxide (NaOH) to remove oily substances and impurities and improve the interfacial adhesion between the fiber and the matrix. The geometry of the specimens and the parameters of the tensile test are carried out according to the specifications of ASTM D3039 [10] and in the compression, test the parameters established by the ASTM D695 standard [11] are taken into account.

The tensile tests were performed with a speed of 5 mm/min and the compression tests were performed with a speed of 1.3 mm/min. For both tests, the MTS Bionix universal testing machine was used and the tests were carried out at room temperature (25 °C). Finally, a micrograph with a scanning electronic microscope (SEM) Phenom ProX-2015 in the range of 200 - 1200 μm is taken over the cross-sectional area of the fracture of one of the specimens submitted to the tensile tests.

2.1. Alkaline treatment of fibers
In a typical treatment, 400 g of coconut fiber are immersed for 6 hours in an amount of 10 L of NaOH solution with a concentration of 50 g/L diluted in deionized water, following the suggestions made by Ridzuan et al [6]. Subsequently, the fibers are removed from the solution, rinsed to remove the excess NaOH and finally dried at room temperature for 72 hours.

2.2. Preparation of the matrix
The matrix of the composite material was made using PVA and CS in a 2:1 ratio of the percentage by weight of the two materials; subsequently, the mixing process is carried out until the mixture of these two components is homogenized.

2.3. Preparation of the composite material
The composite material is made by mixing the coconut fiber with the matrix in the specified proportions (see Table 1), until obtaining a uniform impregnation of the fibers with the matrix. Finally, the mixture is poured into molds to obtain the test pieces of each of the compositions of the composite material (see Figure 1) and they are subjected to a time of 72 hours of curing to the environment.

Composition	FM0	FM1	FM2	FM3
Fiber/Matrix	0/100	10/90	20/80	30/70
3. Results and discussion

After making three replicas of the tensile test for each of the compositions of the composite material, the ultimate tensile strength, elastic modulus and elongation percentage of each were determined, obtaining the results presented in Figure 2 and Table 2.

Evaluating the results presented in Table 2, it can be deduced that the material with greater rigidity is the composite FM2 because it has the highest value of the elastic modulus with respect to the other percentage compositions. Table 3 shows the mechanical properties of the FM2 compound subjected to tensile stresses.

Table 2. Comparison of the mechanical properties of the specimens.

Composition (fiber/matrix)	FM0	FM1	FM2	FM3
Ultimate tensile strength (MPa)	3.62	7.67	13.83	3.67
Elastic Modulus (MPa)	83.88	189.73	924.46	363.51
Elongation percentage (%)	16.03	13.86	2.27	3.75

From the results presented in Table 3, it can be deduced that the FM2 composite has a low tenacity value, reducing its capacity to withstand impact forces, it is a fragile material with an elongation of only 2.27%, but it has a high value of ultimate tensile strength.
Table 3. Mechanical properties of the FM2 compound (tensile test).

Mechanical property	Quantity
Tenacity	9.1x10^{-5} J/m^3
Elastic modulus	924.46 MPa
Ultimate tensile strength	13.83 MPa
Creep resistance	7.55 MPa
Elongation percentage	2.27 %

Figure 3 shows the experimental stress-strain curve of the FM2 material along with the curves of the Hollomon and Ramberg-Osgood models. Next, we define the nomenclature of the equations presented in Table 4 of each of the models represented:

Figure 3. Comparison of the experimental data of the stress-strain curve of the FM2 compound with the models of Hollomon [12] and Ramberg-Osgood [13].

According to the curves shown in Figure 3, we can affirm that the Hollomon model’s tendency adjusts to the tensile-deformational behavior of the experimental curve of the FM2 material; contrary to what happens with the trend of the curve of the Ramberg-Osgood model, which adjusts well to the data of the experimental curve in the range of the elastic zone and when exceeding the yield point loses representativeness in the range of the permanent deformations. Table 4 shows the equations of the models represented in Figure 3.

Table 4. Equations of the Hollomon and Ramberg-Osgood models.

Hollomon model	Ramberg-Osgood model
\(\sigma = k \varepsilon^m \)	\(\varepsilon = \frac{\sigma}{E} + 0.002 \left(\frac{\sigma}{S_y} \right)^{n_0} \)
\(\sigma = 165.2 \varepsilon^{0.652} \)	\(\varepsilon = \frac{\sigma}{924.46} + 0.002 \left(\frac{\sigma}{7.55} \right)^{13.94} \)

\(k \) = Hardening coefficient; \(n \) = Hardening exponent; \(E \) = Elastic modulus; \(S_y \) = Creep effort; \(n_0 \) = Non - linearity constant; \(\sigma \) = Engineering effort; \(\varepsilon \) = Engineering deformation.

Continuing with the mechanical characterization, three replications of the compression test were made to the FM2 composition, obtaining the results presented in Table 5.
Table 5. Mechanical properties of the FM2 compound (compression test).

Mechanical property	Quantity
Tenacity	2.08x10^{-3} J/mm³
Elastic modulus	70.01 MPa
Ultimate compression strength	9.03 MPa
Creep resistance	2.85 MPa
Shortening percentage	20.02 %

The material subjected to compression reaches a final resistance value of 9.03 MPa lower than that obtained by tensile tests, with a percentage of shortening of 20.02%, evidencing that the fibers inside the material do not offer a high resistance to compression forces. Figure 3 shows an SEM image of the cross-sectional area where the FM2 material failed. Figure 4 (a) shows the fiber rupture after the stress test. In the enlargement of the image (Figure 4 (b)) it is possible to show the rupture of the fibers and their diameters, it is then suggested that the variability in the fiber diameters could allow the concentration of stresses and thereby contribute to the failure of the material.

![Figure 4](image)

Figure 4. SEM micrograph of the transversal area where the failure of the FM2 composite material occurs.

4. Conclusions
We have demonstrated that the Colombian coconut fiber offers positive effects for each of the compositions studied, highlighting that a high ultimate tensile strength (13.83 MPa) with composition FM2 was achieved, this being the composition of the material with greater fragility (elastic modulus of 924.46 MPa and percentage of elongation of 2.27%), the results obtained in the tensile test that the tensodeformational behavior of the compound have a behavior similar to the materials modeled by the model of Hollomon. It is recommended that in order to improve the mechanical properties, uniform compaction and distribution of the fiber should be guaranteed together with the matrix, evited the efforts are concentrated causing the fracture. We believe that the material composites with coconut fibers are particularly attractive for the design of novel materials useful for a wide range of potential applications, and its detailed studies on this approach are underway.

Acknowledgements
The authors gratefully acknowledge the “Universidad Industrial de Santander”, the “laboratorios de Mechanica” of the “Escuela de Ingeniería Mecánica” and the “laboratorio de Microscopía” of the “Parque Tecnológico Guatiguára” who allowed the development of this work.
References

[1] Sengupta S and Basu G 2016 Properties of Coconut Fiber Reference Module in Materials Science and Materials Engineering (Amsterdam: Elsevier)

[2] Mora-Espinosa W J and Ramón-Valencia B A 2018 Caracterización térmica, mecánica y morfológica de fibras naturales colombianas con potencial como refuerzo de biocompuestos Revista de La Academia Colombiana de Ciencias Exactas, Físicas y Naturales 41(161) 479

[3] Sathish P 2017 Coconut Fiber Reinforced Composites: A Review International Journal for Research in Applied Science and Engineering Technology V(III) 171

[4] Verma D and Gope P C 2015 The use of coir/coconut fibers as reinforcements in composites Biofiber Reinforcements in Composite Materials ed Omar Faruk and Mohini Sain (United Kingdom Woodhead Publishing) chapter 10 p 285

[5] Montañez A and Uzkátegui I 2009 Utilización de la fibra de coco como sustituto del Amianto en los procesos industriales Revista ingeniería UC 16(2) 20

[6] Ridzuan M J M, Abdul Majid M S, Afendi M, Aqmariah Kanafiah S N, and Nuriman M B M 2015 Effects of Alkaline Concentrations on the Tensile Properties of Napier Grass Fibre Applied Mechanics and Materials 786 23

[7] Diao C, Dowding T, Hensri S, and Parnas R S 2014 Toughened wheat gluten and treated coconut fiber composite Composites Part A: Applied Science and Manufacturing 58 90

[8] Graupner N, Labonte D, Humburg H, Buzkan T, Dörgens A, Kelterer W, and Müssig J 2017 Functional gradients in the pericarp of the green coconut inspire asymmetric fibre-composites with improved impact strength, and preserved flexural and tensile properties Bioinspiration & Biomimetics 12(2) 026009

[9] Suresh Kumar S M, Duraibabu D, and Subramanian K 2014 Studies on mechanical, thermal and dynamic mechanical properties of untreated (raw) and treated coconut sheath fiber reinforced epoxy composites Materials & Design 59 63

[10] American Society for Testing and Materials (ASTM) 2017 Standard test method for tensile properties of polymer matrix composite materials, ASTM D3039/D3039M-17 (USA: American Society for Testing and Materials)

[11] American Society for Testing and Materials (ASTM) 2017 standard test method for compressive properties of rigid plastics, ASTM D695-15 (USA: American Society for Testing and Materials)

[12] Fernández Columbié T, Fernández E, Rodríguez I, and Alcántara D 1970 Evaluación del coeficiente de endurecimiento del acero AISI 1045 deformado por rodillo Nexos Revista Científica 24(2) 104

[13] Aparicio G, Heber D, and Ciaccia M 2007 Comportamiento elastoplástico en tracción de láminas de acero ASTM A-569 Revista Ingeniería UC 14 57