Review Article

miRNA Regulation of Telomerase: A Novel Therapeutic Approach for Cancer

Abstract

Telomeres are repetitive sequence of nucleotides present at the end of the chromosomes. The main function of telomeres is to protect the ends of chromosomes from degradation and fusion. In normal cells, the telomere length decreases after each mitosis cycle, reaching a threshold limit after which the cell undergoes apoptosis. Telomerase is over expressed in approximately 85-90% of the tumors and thus it has become a lucrative target as an anti-cancer therapeutic. In recent past, many therapies targeting telomerase have been pursued, including immunotherapeutic approaches, telomerase targeted gene therapy, and most recently microRNAs telomerase vaccines, making them an attractive target for cancer therapeutics. MicroRNAs (miRNAs) are 20-24 base pair non-coding RNAs that regulate gene expression at post-transcriptional level. miRNAs are important regulators of cancer and can be used to target telomerase, thus acting as a therapeutic for cancer. In this review, we summarize the possibility of broad-spectrum immunotherapy or even immunoprevention and discuss therapeutic approaches based on small molecules to inhibit telomerase activity. Also focusing on microRNA and how it controls the expression of telomerase to prevent tumor development.

Introduction

Telomere and telomerase biology

Telomere refers to the repetitive sequence of nucleotides present at the end of the chromosomes, having a structure which is different from the rest of the chromatin [1]. Telomeres consist of short and repeating sequence of d(TTAGGG) with a single stranded 3’ overhang that forms a loop like structure and invades back into the duplex of telomere [2]. The main function of telomeres is capping the end of the chromosomes to prevent them from degradation and fusion. Protective function of telomere is associated with a group of telomere associated proteins known as sheltrin complex. The complex comprises of protection of telomerase 1(POT1), repressor/activator protein 1(RAP1), telomere repeat factor 1(TRF1), telomere repeat factor 2(TRF2), TRF1 and TRF2 – interacting nuclear protein 2(TIN2) and TINT1/PTOP/PIP1 protein (TPP1) [3,4]. POT1 binds to the single stranded overhangs whereas TRF1 and TRF2 bind to the double stranded DNA [5-7]. TIN2 binds TRF1 and TRF2 through protein interactions with distinct domains. TPP1 interacts with TIN1 and POT1 and forms a complex [8-10]. RAP1, TRF1-interacting protein 2 (TIN2), and TPP1 associate with these DNA-binding proteins to form a functional complex telosome. TIN2 is a key component of the telosome, and associates with both TRF1 and TRF2 and is essential for bringing together the DNA-binding proteins within the telosome complex. TRF1, TRF2 and POT1 have a key role in telomere protection by suppressing the activation of the DNA damage signaling and repair pathways at chromosome ends [11-13].

Shortening of the telomere takes place due to a phenomenon known as end replication problem. Phenomenon characterized by the shortening of the 3’ end of DNA with each cell division as DNA polymerase cannot completely replicate the strand [14,15]. At a particular threshold of telomere attenuation the damage repair system activates the p53 or the p16INK4a signaling pathway which initiates apoptosis. A various other...
environmental and genetic factors can cause telomere damage of increased shortening of telomere length. These include stress, inflammation, ROS generation and smoking [16].

Telomerase is an enzyme which maintains the length of the telomeres. The human telomerase is a holoenzyme and consist of 2 subunits: hTERT (Human telomerase reverse transcriptase), responsible for synthesis of DNA from RNA template and hTR (RNA template), which acts as a template for the addition of nucleotide sequences [17]. hTERT utilizes the template region (3’–CAUCCCAUCC–5’) of TERC to add TTAGGG DNA repeats and thereby extends single stranded 3’ telomeric strands [18]. Elongation of telomere by telomerase leads to stabilization of the chromosome and thus high telomerase activities observed in progenitor and stem cells [19]. However irregular induction of telomerase may cause cancer development. Moreover, 90% of the cancer cells express telomerase to elongate the lengths of the telomere. The activity of telomerase is highly up regulated in many tumors including, colon [20,21], breast [22,23], ovarian [24], oral [25,26], pancreas [27], melanoma[28] and soft tissue cancers [29].

MicroRNAs: Novel class of regulator for gene silencing

MicroRNA’s are 20–24 base pair non-coding RNA’s that regulate gene expression at post-transcriptional level. They influence a number of tumor related processes such as apoptosis, differentiation, proliferation and migration. The transcription of miRNAs is carried out by RNA Polymerase II forming a hairpin like primary transcript known as pri–miRNA. In nucleus, pri–miRNA is refined to a precursor miRNA called pre–miRNA by an RNAase III enzyme called Drosha. Pre–miRNA is then subsequently exported to the cytoplasm by Exportin-5 protein which is one of the Ran dependent nuclear transport receptor families [30]. TRBP and DICER cleavepre-miRNA to produce single stranded mature mi–RNA and incorporate into RNA induced silencing complex (RISC), containing GW182 and AGO2 proteins. As a part of RISC, mature mi–RNA interacts with complementary sequences in 3’ UTR’s causing mRNA degradation or translation inhibition thereby playing a role in gene regulation (Figure 1) [31].

Current therapeutics targeting telomerase

Due to the high complexity of human telomerase various therapeutics targeting telomerase have been developed. The inhibition of hTERT is a good option as it is up regulated in most of the cancer malignancies and is the rate–limiting subunit of the telomerase complex, is therefore an attractive target for cancer vaccination. Furthermore, since somatic cells exhibit no or low levels of telomerase, it can be targeted. The following are the therapeutics which target telomerase (Figure 2).

hTERT peptide based therapy: Active immunotherapy involves the use of tumor vaccines to elicit endogenous antitumor immune responses, hence “educating” immune cells to produce a long–lasting effect [32]. Immunotherapy targeting hTERT is mainly focused to elicit hTERT–specific T lymphocyte immune responses, especially CTL responses that can specifically kill hTERT+ tumor cells. Here DCs (dendritic cells) which act as APC (antigen presenting cells) are prepared ex vivo and transfected with hTERT/tumor RNA or transduced with viral vector expressing hTERT peptides [33]. After immunization, DCs migrate to draining lymph node where DCs induce hTERT–specific CD4+ TH cells and CD8+ CTLs to trigger T–cell immunity against tumor cells. Direct injection of hTERT peptides or viral vectors expressing hTERT peptides induce inflammation and recruit immature DCs to capture expressed TAAs. The DCs mature and migrate to draining lymph node where they induce hTERT–specific CD4+ and CD8+ T cells to trigger T–cell immunity against hTERT+ tumor cells.

Telomerase–directed gene therapy: The telomerase gene promoters can be used to target therapeutic genes in cancer cells as a consequence of tumor–specific gene expression of telomerase. Telomerase gene therapy is a versatile, powerful, and useful strategy which has the advantage of causing...
Regulation of telomerase by miRNA

miRNAs bind to the 3’ UTR of the target mRNA and interfere with the protein production by destabilizing the target mRNA. For example, miR-138 is reported to directly bind to the target site in hTERT 3’ UTR and repress the expression of protein [49]. A study also demonstrates that miRNA’s - let-7g*, miR-133a, miR-342-5p, miR-491-5p, and miR-541-3p also regulate hTERT directly [50]. Though, the exact mechanism of all of the miRNA’s is still unknown. The following miRNAs have known to regulate telomerase, and can be examined for future microRNA based therapeutics:

miR-135b: Reported to promote tumor transformation and progression in colon cancer prostate cancer, pancreatic ductal adenocarcinoma, anaplastic large-cell lymphomas [51]. The expression level of miR-135b is tightly regulated by tissue-specific micro-environment niches during the MSC fate-determination. These observations support the oncogenic role of miR-135b on cancer progression such that it may serve as a biomarker for cancer.

miR-21: PTEN(phosphatase and tensin homolog deleted on chromosome 10)function as a tumor suppressor and its decreased expression results in activation of PI3K/AKT which enhances tumor progression. Various studies have showed that mir-21 down regulates PTEN. Mir-21 expression inhibited apoptosis and induced proliferation accompanied by the negative regulation of shTERT expression via the phosphoinositide-3-kinase (PI3K) signaling pathway by binding to 3’ UTR of PTEN leading to inhibition of its translation .Moreover the genes PAKT and PI3K, downstream of Hert were upregulated by mir–21in Hypertrophic Scar Fibroblasts [52].

miR-19b: PITX1(Paired Like Homeodomain 1) miRNA is a direct target of mir-19b and the down regulation of PITX1 by miR-19b ultimately induces enhancement of hTERT mRNA expression [53]. PITX1 (paired like homeodomain 1) is a tumor suppressor gene as it binds directly to the promoter and directly inhibits hTERT gene transcription thereby resulting in the inhibition of telomerase activity and cell proliferation [54]. It promotes PI3K pathway signaling through inhibition of PTEN (Phosphatase and tensin homolog) expression [55, 56]. miR-19b is included in the miR–17–92 and the miR–106–363 clusters. These clusters carry out pleiotropic functions during both normal development and malignant transformation, as they act to promote proliferation and sustain cell survival [57,58].

miR-346: this mediates the upregulation of hTERT gene expression in human cervical cancers. The middle sequence motif (nt 8–13, CCAGAU) of miR-346is responsible for binding to G rich sequence binding factor (nGDSF–1) and forms a bulge loop .This binding recruits hTERT mRNA to ribosomes for translation in an AGO2–independent manner. mir-346 enhanced proliferation of cervical tissue cells by specifically targeting the 3’ UTR of hTERT transcript [59].

miR-138: This mediates the suppression of hTERT expression in cervical cancers in an AGO2(Argonaute 2) dependent manner by binding to 3’ UTR of cancer cell lines. miR 138 and miR 346 binding sites (nt 20 to 34) are in a common region of the hTERT 3’UTR for GRSF1(G– rich RNA sequence binding factor 1) overlap by 9 bases and hence they competes for binding to sites within the hTERT 3’UTRmRNA expression correlate with the ratio of miR–346 to miR–138. GRSF1 serve as universal mediator to regulate gene expression which facilitates the recruitment of the target gene mRNA to ribosomes for translation [59].

Citation: Wahi T, Dargan S, Jaitly S, Rani V (2016) miRNA Regulation of Telomerase: A Novel Therapeutic Approach for Cancer. Open J Proteom Genom 1(1): 013-018.
miR-512-5p: The study by Jun Li et al. showed that over expression of this miRNA in HNSSC (Head and Neck Squamous Cell Carcinoma cells), suppressed tumor growth in vivo and cell proliferation through elevated apoptosis, inhibition of telomerase activity, decrease of telomere binding proteins and shortening of telomere length by targeting hTERT down regulation in vitro. MiR-512-5p serve as a tumor suppressor and a direct target of hTERT. This might serve as a therapeutic agent in miRNA based HNSCC therapy [60].

miR-155: act as key regulator in breast cancer cell expression. It is efficiently upregulated with reduced TRF1 protein levels. Mediate telomere elongation, increased telomere fragility and chromosome instability by reducing the expression of TRF1 (telomere repeat factor 1) i.e. a part of shelterin complex. In contrast reducing the expression of mir-155 ensures genomic stability with improved telomere function it directly controls TRF1 expression by binding to its 3' UTR leading to translational repression [61–64].

miR-29: Acts as a tumor suppressor in lung tumors where it targets both DNMT (DNA methyltransferase) 3A and 3B and restores its normal dna methylation patterns, as well as it also induces re expression of tumor suppressor genes such as FHIT and WWOX and inhibit tumorigenicity [65]. In breast cancer, overexpression of mir-29a suppressed the expression of TTP (tristetraprolin), a protein responsible for the degradation of m-RNA in cooperation with oncogenic Rassignaling [66].

miRNAs in cancer diagnosis and therapy

Various therapeutics strategies have been developed involving re-introduction of miRNAs lost in cancer or inhibition of oncogenic miRNAs. For the inhibition of pro-oncogenic miRNA therapeutic treatments involve intravenous injections with cholesterol-conjugated 2’O-methyl which are inhibitors of miR-10b, over expressed in metastatic breast cancer [67–68]. Similarly the therapeutic potential of reintroducing miR-26a in mouse model for hepatocellular carcinoma, where systemic delivery of miR-26a expressed from an adeno-associated viral vector resulted in inhibited cancer cell proliferation [69].

Current perspectives

miRNA is believed to regulate the expression of multiple targets and many miRNAs have been linked to tumorigenesis, differentiation, immune system and cell death. It was found that high level of telomerase activity is expressed in immortal cells and in 85–90% of human cancers. Dysregulation of microRNAs (miRNAs) plays a critical role in tumor growth and progression and thus a focus of attention against cancer treatment. Transfection with miR-539 mimic significantly coupled with reduced expression of anti-apoptotic proteins Bcl-2 and Bcl-XL and decreased phosphorylation of Stat3 [70]. Other than this delivery of miR-590 mimics was found to decrease endogenous ADAM9 expression in Non-small-cell lung carcinoma (NSCLC) cells. Enforced expression of a miRNA-resistant form of ADAM9 significantly restored the aggressive behaviors in miR-590-overexpressing NSCLC cells. Restoration of miR-590 may provide a promising therapeutic strategy for NSCLC [71]. Telomerase regulation can also be target of cancer treatment as the restoration of miR-29a may be a rational therapeutic strategy for the treatment of hTERT-mediated gastric cancer metastasis [72]. The repression of telomerase and shorter telomeres in humans act as an anticancer protection mechanism. Although there is still much to understand about the regulation of telomerase, it remains a very attractive and novel target for cancer therapeutics.

Conclusion

In this review, we have summarized the current therapeutics targeting telomerase, especially focusing on microRNA. Telomerase serves as a lucrative target as it is up-regulated in approximately 90% of the tumors. In addition, the current treatments of cancer available in the field of medicine have a lot of side effects thus promoting the development of alternative ways to ameliorate cancer. Future research needs to be done to unveil the pathways involved in the regulation of telomerase–miRNA expression and to link telomerase–miRNA to key biological processes related to cancer. Unlike other small-RNAs, miRNAs do not require perfect base pairing, and thus, can regulate a network of broad, yet specific, genes and can be targeted as therapeutic gent against various disease. Future research must be into the design and application of efficient synthetic systems for miRNA delivery. Overall, a better understanding of the rational design of miRNA delivery systems will promote their translation into effective clinical treatments. Evidence suggests that miRNA-based therapies, either restoring or repressing expression and activity, hold great promise. However, Critical hurdles often involving delivery of miRNA-targeting agents remain to be overcome before transition to clinical applications.

References

1. Giraud-Panis MJ, Pisano S, Poulet A, Le Du MH, Gilson E (2010) Structural identity of telomeric complexes. FEBS Lett 584: 3785-3799. Link: https://goo.gl/RwoYFf

Table 1: MicroRNAs and their target genes in various cancer.

miRNA	Type of cancer	Target gene	References
miR-135b	Pancreatic cancer, Bile duct cancer, Colon cancer, Prostate cancer	Telomerase reverse transcriptase (TERT)	[51]
miR-21	Skin cancers, Cervical cancer, Colon cancer	Phosphatase and tensin homolog (PTEN)	[52]
miR-19b	Lung tumors, Breast cancer, Gastric cancer	Paired Like Homeodomain 1 (PITX1)	[53-58]
miR-346	Cervical cancer	Telomerase reverse transcriptase (TERT)	[59]
miR-138	Cervical cancer	Telomerase reverse transcriptase (TERT)	[59]
miR-512-5p	Head cancer, Neck cancer	Telomerase reverse transcriptase (TERT)	[60]
miR-155	Breast cancer	Telomere repeat factor-1 (TRF-1)	[61-64]
miR-29	Lung cancer, Breast cancer	DNA methyltransferase (DNMT)	[65]
			[66]
2. To-Miles FYL, Backman CL (2016) What telomeres say about activity and health: A rapid review. Can J Occup Ther pii: 0008417415627345. Link: https://goo.gl/RQ3ep5

3. Fyrquist F, Sajinonna O, Strandberg T (2013) The roles of senescence and telomere shortening in cardiovascular disease. Nat Rev Cardiol 10: 274–283. Link: https://goo.gl/ChCNBG

4. Griffith JD, Comeau L, Rosenfield S, Stansel RM, Bianchi A, et al. (1999) Mammalian telomeres end in a large duplex loop. Cell 97: 503–514. Link: https://goo.gl/8PHNBD

5. De Lange, Shelterin T (2005) The protein complex that shapes and safeguard human telomeres. Genes Dev 19: 2100–2110. Link: https://goo.gl/bdKyzo

6. Loayza D, de Lange T (2003) POT1 as a terminal transducer of TRF1 telomere length control. Nature 423: 1013–1018. Link: https://goo.gl/Bz3pIQ

7. Broccoli D, Smogorzewska A, Chong L, de-Lange T (1997) Human telomeres contain two distinct Myb-related proteins, TRF1 and TRF2. Nat Genet 17: 231–235. Link: https://goo.gl/k3KeMB

8. Bianchi A, Stansel RM, Fairall L, Griffith JD, Rhodes D, et al. (1999) TRF1 binds a bipartite telomeric site with extreme spatial flexibility. EMBO J 18: 5735–5744. Link: https://goo.gl/dlTGes

9. Ye, JD, Donigian JR, van Overbeek M, Loayza D, Luo Y, et al. (2004) Tin2 binds trf1 and TRF2 simultaneously and stabilizes the TRF2 complex on telomeres. J Biol Chem 279: 47264–47271. Link: https://goo.gl/1LdR3R

10. Frescas D, de Lange T (2014) Binding of TPP1 protein to POT1 protein is required for POT1a, b protein-mediated telomere protection. J Biol Chem 289: 24180–24187. Link: https://goo.gl/n3nZ2I

11. Liu D, Safari A, O’Connor MS, Chan DW, Laegeler A, et al. (2004) Ptpo interacts with POT1 and regulates its localization to telomeres. Nat Cell Biol 6: 673–680. Link: https://goo.gl/N2NHox

12. Denchi EL, de Lange T (2007) Protection of telomeres through independent control of ATM and ATR by TRF2 and POT1. Nature 448: 1068-1071. Link: https://goo.gl/UEiB2

13. Martinez P, Thanasoula M, Muñoz P, Liao C, Tejera A, et al. (2009) Increased telomere fragility and fusions resulting from TRF1 deficiency lead to degenerative pathologies and increased cancer in mice. Genes Dev 23: 2060-2075. Link: https://goo.gl/hLDKEx

14. Sfeir A, Kiosiakutukul ST, Hockemeyer D, MacRae SL, Karsled J, et al. (2009) Mammalian telomeres resemble fragile sites and require TRF1 for efficient replication. Cell 138: 90-103. Link: https://goo.gl/sgoss3

15. Boccardi V, Herbig U (2012) Telomerase gene therapy: A novel approach to combat aging. EMBO Mol Med 4: 685–687. Link: https://goo.gl/YPcpxC

16. Artandi SE, DePinho RA (2010) Telomeres and telomerase in cancer. Carcinogenesis 31: 9–18. Link: https://goo.gl/fkT4f4

17. Nawrot TS, Staessen JA, Holvoet P, Struijker-Boudier HA, Schippers P, et al. (2010) Telomere length and its associations with oxidized-ldL, carotid artery distensibility and smoking. Front Biosci 2: 1164–1168. Link: https://goo.gl/8K89r9

18. ZHU H, BLECHER M, van der Harst P (2011) Healthy aging and disease: Role for telomere biology? ClinSci 120: 427–440. Link: https://goo.gl/AQPi8g

19. Morin GB (1989) The human telomere terminal transferase enzyme is a ribonucleoprotein that synthesizes TTAGGG repeats. Cell 1999; 59: 521–529. Link: https://goo.gl/N44wDx

20. Okayasu I, Mitomi H, Yamashita K, Mikami T, Fujiiwa M, et al. (1998) Telomerase activity significantly correlates with cell differentiation, proliferation and lymph node metastasis in colorectal carcinomas. J Cancer Res Clin Oncol 124: 444–449. Link: https://goo.gl/mjUS8k

21. Yoshida R, Kiyozuka Y, Ichiyoshi H, Senzaki H, Takada H, et al. (1989) Change in telomerase activity during human colorectal carcinogenesis. Anticancer Res 19: 2167–2172. Link: https://goo.gl/j47WJl

22. Carey LA, Kim NW, Goodman S, Marks J, Henderson G, et al. (1999) Telomerase activity and prognosis in primary breast cancers. J Clin Oncol 17: 3075–3081. Link: https://goo.gl/OlVaM

23. Poremba C, Heine B, Dirol R, Heinecke A, Wai, D, et al. (2002) Telomerase as a prognostic marker in breast cancer: High-throughput tissue microarray analysis of TERT and HTR. J Pathol 198: 181-189. Link: https://goo.gl/q5D6DM

24. Oishi T, Kigawa J, Minagawa Y, Shimada M, Takahashi M, et al. (1998) Alteration of telomerase activity associated with development and extension of epithelial ovarian cancer. Obstet Gynecol 91: 56:5–56:11. Link: https://goo.gl/uhXWg0

25. Miyoshi Y, Tsukinoki K, Imaiizumi T, Yamada Y, Ishizaki T, et al. (1999) Telomerase activity in oral cancer. Oral Oncol 35: 283–289. Link: https://goo.gl/12CGJh

26. Mori K, Sato S, Kodama M, Habu M, Takahashi O, et al. (2013) Oral cancer diagnosis via a ferrocenynaphthalenediimside-based electrochemical telomerase assay. Clin Chem 59: 289–295. Link: https://goo.gl/L7hQek

27. Hata T, Ishida M, Motofi T, Yamaguchi T, Naitoh T, et al. (2016) Telomerase activity in pancreatic juice differentiates pancreatic cancer from chronic pancreatitis: A meta-analysis. Pancreatology 16: 372–381. Link: https://goo.gl/By7GIj

28. Pirker C, Holzmann K, Spiegel-Kreinecker S, Ellbing L, Thallinger C, et al. (2003) Chromosomal imbalances in primary and metastatic melanomas: Over-representation of essential telomerase genes. Melanoma Res 13:483–492. Link: https://goo.gl/mDXSHd

29. Tomoda R, Seto M, Tsumuki H, lida K, Yamazaki T, et al. (2002) Telomerase activity and human telomerase reverse transcriptase mRNA expression are correlated with clinical aggressiveness in soft tissue tumors. Cancer 95: 1127-1133. Link: https://goo.gl/2qBTh

30. Sarin KY, Cheung P, Gilison D, Lee E, Tennen RI, et al. (2005) Conditional telomerase induction causes proliferation of hair follicle stem cells. Nature 436: 1048-1052. Link: https://goo.gl/tncjxF

31. Lund E, Guttinger S, Calado A, Dahlberg JE, Kutya U (2004) Nuclear export of microRNA precursors. Science 303: 95–98. Link: https://goo.gl/97aFAy

32. Iorio MV, Croce CM (2012) MicroRNA dysregulation in cancer: Diagnostics, monitoring and therapeutics. A comprehensive review. EMBO Mol Med 4: 143-159. Link: https://goo.gl/c1AvKv

33. Shaw DR, LoBuglio AF (2005) Genetic immunotherapy approaches. In: Cancer Gene TherapyCuriel DT, Douglas JT, eds. Totowa, New Jersey: Humana Press Inc 129-141. Link: https://goo.gl/F4b4Fd

34. Longfel H, Janice WST, Junian H, Peitang C, Cufien H, et al. (2006) Cancer Immunotherapy Targeting the Telomerase Reverse Transcriptase. Cell Mol Immunol 3: 1-9. Link: https://goo.gl/v74w7t

35. Nemunaitis J, Tong AW, Nemunaitis M, Senzer N, Phadke A, et al. (2010) A phase I study of telomerase-specific replication competent oncolytic adenovirus (telomelysin) for various solid tumors. Mol Ther 18: 429-434. Link: https://goo.gl/suJ7UJ

36. Feng J, Funk WD, Wang SS, Weinrich SL, Avilon AA, et al. (1995) The RNA component of human telomerase. Science 269: 1236-1241. Link: https://goo.gl/8XkYXC

37. Norton J, Piatyszek MA, Wright WE, Shay JW, Corey DR (1996) Inhibition of human telomerase activity by peptide nucleic acids. Nat Biotechnol 1996; 14: 615–619. Link: https://goo.gl/7yI0DC

Citation: Wahi T, Dargan S, Jaitly S, Rani V (2016) miRNA Regulation of Telomerase: A Novel Therapeutic Approach for Cancer. Open J Proteom Genom 1(1): 013-018.
38. Herbert B, Pitts AE, Baker SI, Hamilton SE, Wright WE, et al. (1999) Inhibition of human telomerase in immortal human cells leads to progressive telomere shortening and cell death. Proc Natl Acad Sci USA 96: 14276–14281. Link: https://goo.gl/ZeQgql

39. Kondo S, Tanaka Y, Kondo H, Hitomi M, Barnett GH, et al. (1998) Antisense telomerase treatment: Induction of two distinct pathways, apoptosis and differentiation. FASEB J 12: 801–811. Link: https://goo.gl/SjyrTG

40. Harley CB (2008) Telomerase and cancer therapeutics. Nat Rev Cancer 8: 167–179. Link: https://goo.gl/42QJzL

41. Xuejun D, Anding L, Cindy Z, Jianguo F, Zhuang Z, et al. (2009) Sirna inhibition of telomerase enhances the anti-cancer effect of doxorubicin in breast cancer cells. BMC Cancer 9: 133. Link: https://goo.gl/akXNX3

42. Andrzej K, David DL, Helen EA, Gary RH, Deon JV, et al. (1997) Isolation of a candidate human telomerase catalytic subunit gene, which reveals complex splicing patterns in different cell types. Hum Mol Genet 6: 2011–2019. Link: https://goo.gl/zdRfVr

43. Radmila H, Jili N, Ringh RB (2012) Alternately spliced telomerase reverse transcriptase variants lacking telomerase activity stimulate cell proliferation. Mol Cell Biol 32: 4283–4296. Link: https://goo.gl/3qoPDW

44. Saeboe-Larssen S, Fossberg E, Gaudernack G (2006) Characterization of hTERT isoforms from normal and tumour tissues. BMC MolBiol 7: 24 41. Link: https://goo.gl/fc69u9

45. Yi X, White DM, Asner DL, Baur JA, Wright WE, et al. (2002) An alternate splicing variant of the human telomerase catalytic subunit inhibits telomerase activity. Neoplasia 2: 433–440. Link: https://goo.gl/iw3x7n

46. Colgin LM, Wilkinson C, Engleau Z, Kilian A, Robinson MO, et al. (2000) The Htet alpha splice variant is a dominant negative inhibitor of telomerase activity. Neoplasia 2: 426–432. Link: https://goo.gl/LAK1YK

47. Wong MS, Wright WE, Shay JW (2014) Alternative splicing regulation of telomerase: A Novel Therapeutic Approach for Cancer. Open J Proteom Genom 1(1): 1659-1668. Link: https://goo.gl/47pwSr

48. Bilsland AE, Anderson CJ, Fletcher-Monaghan AJ, McGregor F, Evans TR, et al. (2001) Control of human telomere length by TRF1 and TRF2. Mol Cell Biol 20: 7797–7803. Link: https://goo.gl/2xsRHL

49. Mavrakis KJ, Wolfe AL, Ornicchio E, Palomero T, de Keersmaecker K, et al. (2010) Genome-wide RNA-mediated interference screen identifies miR-19 targets in Notch-induced T-cell acute lymphoblastic leukaemia. Nat Cell Biol 12: 372–379. Link: https://goo.gl/gvdfe3

50. Jun Li, Han Lei, Yong Xu, Ze-zhang Tao (2015) miR-512-Sp Suppresses Tumor Growth by Targeting hTERT in Telomerase Positive Head and Neck Squamous Cell Carcinoma In Vitro and In Vivo. PLOS One 10: e0135265. Link: https://goo.gl/pjofIR

51. Plumb JA, Bilsland A, Kakani R, Zhao J, Glasspool RM, et al. (2003) Selective ablation of human cancer cells by telomerase-specific adenoviral suicide gene therapy vectors expressing bacterial nitroreductase. Oncogene 22: 370–380. Link: https://goo.gl/G44mnQ

52. Mitomo S, Maesawa C, Ogasawara S, Iwaya T, Shibazaki M, et al. (2008) Down regulation of miR-138 is associated with overexpression of hTERT in prostate cancer. BMC Cancer 9: 133. Link: https://goo.gl/akXNX3

53. Vanhaesebroeck B, Stephens L, Hawkins P (2012) PI3K signalling: the path to discovery and understanding. Nat Rev Cancer 12: 341–347. Link: https://goo.gl/AtkQK

54. Takahito O, Sunamura N, Yuji N, Mitsukhu O, Futushi, et al. (2015) miR-19b regulates hTERT mRNA expression through targeting PITX1 mRNA in melanoma cells. Scientific Rep 5: 9201. Link: https://goo.gl/CClyEB

55. Qi DL, Ohhira T, Fujisaki C, Inoue T, Ohta T, et al. (2011) Identification of PITX1 as a TERT suppressor gene located on human chromosome 5. Mol Cell Biol 31: 1624–1636. Link: https://goo.gl/CinuCH

56. Olive V, Bennett M.J, Walker JC, Ma C, Jiang I, et al. (2009) miR-19 is a key oncogenic component of miR-17-92. Genes Dev 23: 2839–2849. Link: https://goo.gl/XaDBj

57. Mavrakis KJ, Wolfe AL, Ornicchio E, Palomero T, de Keersmaecker K, et al. (2010) Genome-wide RNA-mediated interference screen identifies miR-19 targets in Notch-induced T-cell acute lymphoblastic leukaemia. Nat Cell Biol 12: 372–379. Link: https://goo.gl/gvdfe3

58. Olive V, Jiang I, He L (2010) miR-17-92, a cluster of miRNAs in the midst of the cancer network. Int J Biochem Cell Biol 42: 1348–1354. Link: https://goo.gl/x3MeHP

59. Ge Song, Renjie Wang, Junfei Li, Xuyuan Liu, Fang Wang, et al. (2015) miR-346 and miR-138 competitively regulate hTERT in AGO2-dependent tumours, respectively. Scientific reports 5: 15793. Link: https://goo.gl/ndltK9

60. Roberto Dinami, Cristiana Ercolani, Eleonora Petti, Silvano Piazza, YariCiani, et al. (2014) miR-155 drives telomere fragility in human breast cancer by targeting TRF1. Cancer Res 74: 4145-4156. Link: https://goo.gl/eYt4E8

61. Ancelin K, Brunori M, Bauwens S, Koering CE, Brun C, et al. (2002) Targeting assay to study the cis functions of human telomeric proteins: evidence for inhibition of telomerase by TRF1 and for activation of telomere degradation by TRF2. Mol Cell Biol 22: 3474-3487. Link: https://goo.gl/SU4YTO

62. Ma L, Reinhardt F, Pan E, Soutschek J, Bhat B, et al. (2010) Therapeutic microRNA delivery suppresses tumorigenesis in a murine liver cancer model. Nat Biotech 28: 341-347. Link: https://goo.gl/7pwa9o

63. Gebeshuber CA, Zatloukal K, Martinez J (2009) miR-29a suppresses tristetrapasin, which is a regulator of epithelial polarity and metastasis. EMBO Rep 10: 400-405. Link: https://goo.gl/2x3RHL

64. Fabbri M, Garzon R, Cimmino A, Liu Z, Zanesi N, et al. (2007) MicroRNA-29 family reverts aberrant methylation in lung cancer by targeting DNA methyltransferases 3A and 3B. Proc Natl Acad Sci USA 104: 15805-15810. Link: https://goo.gl/vWyFxo

65. Ma L, Teruya-Feldstein J, Weinberg RA (2007) Tumour invasion and metastasis initiated by microRNA-10b in breast cancer. Nature 449: 682-688. Link: https://goo.gl/x2ikQB

66. Ma L, Reinhardt F, Pan E, Soutschek J, Bhat B, et al. (2010) Therapeutic silencing of miR-10b inhibits metastasis in a mouse mammary tumor model. Nat Biotech 28: 341-347. Link: https://goo.gl/7pwa9o

67. Kota J, Chivukula RR, D’Onnell KA, Wentzel EA, Montgomery CL, et al. (2009) Therapeutic microRNA delivery suppresses tumorigenesis in a murine liver cancer model. Cell 137: 1005-1017. Link: https://goo.gl/vBlnCj

68. Zhu C, Zhou R, Zhou Q, Chang Y, Jiang (2016) MiR-29 suppresses tumor growth and tumorogenesis and overcomes arsenic trioxide resistance in hepatocellular carcinoma. Life Sci 166: 34-40. Link: https://goo.gl/CxRvx

69. Wang FF, Wang S, Sue HW, Cheng JI (2016) microRNA-590 suppresses the tumorigenesis and invasiveness of non-small cell lung cancer cells by targeting ADAM9. Mol Cell Biochem 423: 29-37. Link: https://goo.gl/m1WmNn

70. He B, Yu-Feng X, Bo T, Yu-Yun W, Chang-J Hu, et al. (2016) hTERT mediates gastric cancer metastasis partially through the indirect targeting of ITGB1 by microRNA-29a. Sci Rep 6: 21955. Link: https://goo.gl/Nv96Zo