ABSTRACT
Objective: To evaluate whether hemostasis with electrocautery in comparison with Floseal® leads to different bleeding rates during total knee arthroplasty. Methods: A comparative study was performed between two groups: group with ten consecutive total knee arthroplasties with Floseal® used as hemostatic method and control group with ten consecutive total knee arthroplasties with electrocautery as hemostatic method. Bleeding parameters such as debit of the drain, liquid infusion and blood transfusion rate were recorded. Results: Floseal® group received less blood transfusion, less liquid infusion and lower drainage in absolute numbers compared to the control group. However, no parameter was statistically significant. Conclusion: Hemostasis with Floseal® is as effective as hemostasis with electrocauterization, what makes it a viable alternative to patients with contraindication to electric scalpel use. Level of Evidence II, Prospective Comparative Study.

Keywords: Arthroplasty. Knee. Hemorrhage.
than 20). The presence of any of these signs or the need to use vaso-active drug to maintain blood pressure were considered “trigger condition” for blood transfusion.

Surgical standardization

Before beginning the procedure, all patients were evaluated according to the objective criteria of the Knee Society Scoring (KSS). All surgeries were performed with the use of an inflated pneumatic tourniquet after venous emptying by elevation of the member for three minutes, without using elastic bandage for limb exsanguination. The pressure used in pneumatic tourniquet was 300 mmHg. Data were collected on the time of limb ischemia and surgical time, in minutes, of all the patients. The surgical time, defined as the time between the start of the skin incision and the last point of incision in the skin was measured in minutes.

The surgical approach used was the medial parapatellar way. The implants used were primary arthroplasties with replacement of the posterior cruciate ligament fixed with cement.

In the control group, after placement of the implants, the surgical route was tamponed with surgical dressings and bandages for five minutes, after deflating the tourniquet. After tamponed, hemostasis was performed with monopolar electrocautery. In the study group, Floseal® was applied before release of the tourniquet, the regions of potential bleeding, especially in the superior, medial, and lateral recesses. The surgical approach was then tamponed the same way as in the control group. After the tamponed period (five minutes), the product was again applied to the bleeding sites with a bandage at those points for two minutes. The process was repeated as many times as necessary to achieve bleeding control. In this group adjunctive hemostasis with electrocautery was not used, Floseal® being the exclusive hemostatic agent.

Post-operative care

All patients received the same analgesia, consisting of common analgesic, anti-inflammatory and opioids, with dose adjustment according to kidney function and contraindications. The antithrombotic prophylaxis was performed in all patients, starting 12 hours after surgery and the daily maintenance dose of enoxaparin 40 mg subcutaneously was used until the tenth postoperative day.

We followed the same rehabilitation protocol in both groups. Volume replacement on postoperative period followed the predefined guidelines described in anesthetic care.

Quantification of bleeding

Quantification of bleeding was done through three steps: measuring the volume administered during hospitalization (colloid solutions used in surgery and number of units of packed red blood cells transfused in each patient during hospitalization), the measurement of hemoglobin (Hb) levels 24h prior to surgery and on the third postoperative day and quantification of DPV debt.

RESULTS

Twenty patients were consecutively operated and divided into two groups. Group A, which used the pro-coagulant Floseal®, was formed by seven females and three males. The mean age was 67.8 years old (range 54-81 years). Group B, which homeostasis was made with electrocautery comprised six females and four males. The mean age was 66.6 years old (range 59-77 years). The average range of motion (ROM) preoperatively (p = 0.191) did not differ between groups, and both groups showed one patient with flexion contracture of 5 degrees. The calculation of KSS preoperative (p = 0.429) tourniquet time (p = 0.41) and surgical time (p = 0.177) also showed no statistical difference. (Table 1)

Considering the postoperative data for testing the efficacy of anti-coagulation with Floseal®, the measurements of Hb drop (g/dL) (p = 0.2), total debit drain (ml) (p = 0.195), colloid infusion (ml) (p = 0.363) and infusion of crystalloid (ml) (p = 0.383) showed no statistical differences. Four patients in the control group received a concentrate of red blood cells and only one patient in group A required one blood transfusion bag (p = 0.303). (Table 2)

For statistical analysis we used Fischer’s test and Student’s t test. Any variable studied was statistically significant (p <.05).

Table 1. Comparison of preoperative data between the group that used Floseal® and the group using electrocautery.

	Group A	Group B	p
Range of motion (degrees)	86.5 +/- 12.5	94.5 +/- 13.8	0.191
KSS	49 +/- 710.1	46.6 +/- 6.7	0.429
Tourniquet time (min)	91.6 +/- 14.63	106.4 +/- 15.44	0.41
Surgical time (min)	130.5 +/- 16.4	140 +/- 13.74	0.177

Table 2. Comparison of peri-and post-operative periods between the Floseal® and electrocautery groups.

	Group A	Group B	p
Hb level drop (g/dL)	3.34 +/- 0.92	3.94 +/- 1.1	0.2
DPV debit (ml)	260.5 +/-165	183 +/- 77.3	0.195
Colloid infusion (L)	0.45 +/- 0.37	0.3 +/- 0.34	0.363
Crystalloid infusion (L)	1.95 +/- 0.36	2.16 +/- 0.64	0.383
Blood transfusion (number of concentrate bags)	1	4	0.303

DISCUSSION

In order to control and prevent bleeding after a total knee arthroplasty, some alternatives have been studied. Some have proven efficacy and few side effects, but others have not yet an established role in knee surgery. The use of Floseal® in surgeries with the potential risk of bleeding has well-established benefits. Urologic and neurological surgeries and procedures in the ear, nose and throat had significant less bleeding with the use of this product. In the context of orthopedic surgery, and especially in knee surgeries, its effectiveness is still controversial, with few and limited studies on the subject. Kim et al. showed no significant differences using or not the product in unilateral knee arthroplasties. However, Comadoll et al. showed that the use of Floseal® can significantly reduce the postoperative hemoglobin level drop, although it has not cause differences in the rates of blood transfusions. We analyzed preoperative data of groups of patients and there was no significant difference between the characteristics of the samples. Thus, despite not having been performed prior randomization of cases, we consider that the groups were homogeneous. The standardization of the surgical technique and lack of difference in surgical and tourniquet time,
also reduce the interference of these factors in the final outcome. Our study showed in absolute numbers a smaller amount of bleeding if taking into account the drainage output and the Hb level drop postoperatively, besides a lower amount of fluid infusion in the postoperative period using Floseal®. There were also fewer transfusions in the group that used the product, the variable that is the most significant, in our opinion, to prove its effectiveness. However, none of these variables showed any statistical difference. One possible cause of the lack of statistical difference is the small number of patients in both groups. One possible advantage of using Floseal® is to avoid the potential risk of wound complications with the use of electrocautery, mainly in the coagulation mode, although this problem is usual in abdominal surgeries. Electrocautery, however, has major advantage due to its low cost and wide availability. Thus, the primary significance of the study lies in the fact that Floseal® present itself as an equally effective alternative to traditional electrocautery. In patients with contraindications to electrocautery or that require additional procedures to allow their use, such as patients at high risk of arrhythmias or pacemaker users, Floseal® can be used safely. In our study, no patient had allergic or adverse reactions to the use of Floseal®, although there are reports in the literature regarding allergy to the product. Based on our results, we recommend using Floseal® in selected patients who are restricted to the use of electrocautery, rather than indiscriminately.

CONCLUSION

Hemostasis using the Floseal® was similar to hemostasis using electrocautery, making it a viable alternative for patients who have contraindications to the use of the electric scalpel.

REFERENCES

1. Kurtz S, Ong K, Lau E, Mowaf W, Halpern M. Projections of primary and revision knee arthroplasty in the United States from 2005 to 2030. J Bone Joint Surg Am. 2007;89(4):780-5.
2. Healy WL, Della Valle CJ, Iorio R, Berend KR, Cusnner FD, Dalury DF, et al. Complications of total knee arthroplasty: standardized list and definitions of the knee society. Clin Orthop Relat Res. 2013;471(1):215-20.
3. Berman AT, Geissele AE, Bosacco SJ. Blood loss with total knee arthroplasty. Clin Orthop Relat Res. 1988;(234):137-8.
4. Bong MR, Patel V, Chang E, Issack PS, Hebert R, Di Cesare PE. Risks associated with blood transfusion after total knee arthroplasty. J Arthroplasty. 2004;19(3):281-7.
5. Radovanovic I, Queally J, Bahari S, Sproule J, McElwain J. Anticoagulant use and its effect on bleeding and complications in total knee arthroplasty. Acta Orthop Belg. 2012;78(2):187-91.
6. Ho KM, Ismail H. Use of intravenous tranexamic acid to reduce allogetic blood transfusion in total hip and knee arthroplasty: a meta-analysis. Anaesth Intensive Care. 2003;31(5):529-37.
7. Gasparini G, Papaleo P, Pola P, Cerciello S, Pola E, Fabbriçiani C. Local infusion of norepinephrine reduces blood losses and need of transfusion in total knee arthroplasty. Int Orthop. 2006;30(4):253-6.
8. Schnurr C, Csécsei G, Eysel P, König DP. The effect of computer navigation on blood loss and transfusion rate in TKA. Orthopedics. 2010;33(7):474.
9. Sasanuma H, Sekiya H, Takatoku K, Takada H, Sugimoto N, Hoshino Y. Efficient strategy for controlling postoperative hemorrhage in total knee arthroplasty. Knee Surg Sports Traumatol Arthroscl. 2011;19(6):921-5.
10. Reuthenbuch O, Lachat ML, Vogt P, Schurr U, Turina M. FloSeal®, a new hemostatic agent in peripheral vascular surgery. Vasa. 2000;29(3):204-6.
11. Richter F, Schnorr D, Deger S, Trk I, Roigas J, Wille A, et al. Improvement of hemostasis in open and laparoscopically performed partial nephrectomy using a gelatin matrix-thrombin tissue sealant (FloSeal®). Urology. 2003;61(1):73-7.
12. Mathiasen RA, Cruz RM. Prospective, randomized, controlled clinical trial of a novel matrix hemostatic sealant in children undergoing adenoidectomy. Otolaryngol Head Neck Surg. 2004;131(5):601-5.
13. Nasso G, Giancone F, Bonifazi R, Romano V, Viscochio G, De Filippo CM, et al. Prospective, randomized clinical trial of the FloSeal® matrix sealant in cardiac surgery. Ann Thorac Surg. 2009;88(5):1520-6.
14. Ellegaia DB, Maatens NF, Laws ER Jr. Use of FloSeal® hemostatic sealant in transsphenoidal pituitary surgery: technical note. Neurosurgery. 2002;51(2):513-5.
15. Dogulu F, Durdag E, Cemil B, Kurt G, Ozgun G. The role of FloSeal® in reducing epidual fibrosis in a rat lamimectomy model. Neurol Neurochir Pol. 2009;43(4):346-51.
16. Miyamoto K, Masuda K, Inoue N, Okuma M, Muehlieman C, An HS. Anti-adhesion properties of a thrombin-based hemostatic gelatin in a canine laminectomy model: a biomechanical, biochemical, and histologic study. Spine (Phila Pa 1976). 2006;31(4):E91-7.
17. Garcia Ariz M, Pérez-Carrasquillo O, Zierenberg CE, Cheleutte J, Guerra JA, Santiago-Borrero PJ. Hemostatic matrix application after open sponynectomy in a hemophilic patient. Am J Orthop (Belle Mead NJ). 2012;41(4):179-81.
18. Kim HJ, Fraser MR, Kahn B, Lyman S, Figgie MP. The efficacy of a thrombin-based hemostatic agent in unilateral total knee arthroplasty: a randomized controlled trial. J Bone Joint Surg Am. 2012;94(13):1160-5.
19. Silva AL, Demange MK, Gobbi RG, Silva TF, Pécora JR, Croci AT. Tradução e validação da escala Knee Society Score: KSS para a Língua Portuguesa. Acta Ortop Bras. 2012;20(1):5-30.
20. Comadoll JL, Comadoll S, Hutchcraft A, Krishnan S, Farrell K, Kreuwe HT, et al. Comparison of hemostatic matrix and standard hemostasis in patients undergoing primary TKA. Orthopedics. 2012;35(6):e785-93.
21. Ji GW, Wu YZ, Wang X, Pan HX, Li P, Du WY, et al. Experimental and clinical study of influence of high-frequency electric surgical knives on healing of laparotomies. World J Gastroenterol. 2006;12(25):4082-5.
22. Soballe PW, Nimbkar NV, Hayward I, Nielsen TB, Drucker WR. Electric cautery lowers the contamination threshold for infection of laparotomies. Am J Surg. 1998;175(4):263-6.
23. Yan CY, Cai XJ, Wang YF, Yu H. Ventricular fibrillation caused by electrocoagulation in monopolar mode during laparoscopic subphrenic mass resection. Surg Endosc. 2011;25(1):309-11.
24. Fu O, Cao P, Mi WD, Zhang H. Ventricular fibrillation caused by electrocoagulation during thoracic surgery. Acta Anaesthesiol Scand. 2010;54(2):256.
25. Ramos G, Ramos Filho J, Rassi Júnior A, Pereira E, Gabriel Neto S, Chaves E. Marcapasso cardíaco artificial: considerações pré e per-operatórias. Rev Bras Anestesiol. 2003;53(6):854-62.
26. Carter RM, Hallwell B, Harkins G. Pelvic inflammatory reactions to Floseal®. J Minim Invasive Gynecol. 2011;18(3):284.
27. Spencer HT, Hsu JT, McDonald DR, Karlin LJ. Intraoperative anaphylaxis to gelatin in topical hemostatic agents during anterior spinal fusion: a case report. Spine J. 2012;12(8): e1-6.