Rice (Oryza sativa L.) is a staple food for people in Laos, where it has been grown and eaten since prehistory. Diverse landraces are grown in Laos. ‘Khao Kai Noi’, a landrace favored for its eating quality, is held in the nationwide collection of traditional landraces in the Lao national genebank. Genetic diversity is crucial for sustainable use of genetic resources and conservation. To investigate the genetic diversity of ‘Khao Kai Noi’ for conservation, we genotyped 70 accessions by using 23 polymorphic simple sequence repeat markers. The markers generated 2 to 17 alleles (132 in total), with an average of 5.7 per locus. The total expected heterozygosity over all ‘Khao Kai Noi’ accessions was 0.271. Genetic variation was largest among accessions and smallest within accessions. Khao Kai Noi accessions were classified into three different genetic backgrounds, but there was unclear association between the three inferred population and name subgroups and geographical distribution. Most of the accessions were clustered with temperate japonica and showed genetic relatedness to rice from neighboring provinces of Vietnam, suggesting a Vietnamese origin. The results of this study will contribute to the conservation, core collection and future breeding of the Khao Kai Noi population.

Key Words: ‘Khao Kai Noi’, Lao rice, diversity, SSR markers.
In this study, we evaluated the genetic diversity of accessions of KKN by SSR markers. We then studied genetic relatedness among accessions of KKN collected from different geographical locations. Finally, we compared genetic relatedness between KKN and other landraces within Laos and between Laos and Vietnam.

Materials and Methods

Plant materials

We examined 70 accessions of KKN from the Lao national genebank (Table 1). The collection of this variety consists of different subgroups, with some of them having an additional descriptor in the varietal name to reflect these special traits with differences in glume color and other characteristics, such as ‘KKN Deng (red)’, ‘KKN Khao’ or ‘KKN Khaw (white)’, ‘KKN Leuang (yellow)’, ‘KKN Lai (striped)’, and ‘KKN Dam (black)’. These names were given at the collection time by farmers (Rao et al. 2006a). One Lao improved cultivar, ‘TDK11’, was also included in this study. ‘Nipponbare’ and ‘Kasalath’ were provided by the national genebank (Table 1). The collection of this variety was performed in the GeneAmp PCR System 9700 (Applied Biosystems, CA, USA) as follows: 95°C for 3 min, immediately chilled on ice for 5 min, and then run in an ABI 3500xL genetic analyzer (Applied Biosystems). Data were collected by 3500xL data collection v. 1 software (Applied Biosystems). Fragment analysis or allele calling was performed with GeneMapper v. 5 software (Applied Biosystems).

Data analysis

Gene diversity or expected heterozygosity (HE) of each loci, and polymorphism information content (PIC) over 70 accessions (560 individuals) were calculated in PowerMarker v. 3.25 software (Liu and Muse 2005). Expected (HE) and observed heterozygosity (HO) for each accession over loci was calculated in GenAIEx v. 6.5 software (Peakall and Smouse 2012). Next, accessions were classified into groups based on their name subgroup. Expected (HE) and observed heterozygosity (HO) for each of them, average (Hs), total expected heterozygosity (HT) overall name subgroups, and genetic differentiation among name subgroups (FST) were calculated in GenAIEx v. 6.5. Analysis of molecular variance (AMOVA) was also performed in GenAIEx v. 6.5 to determine hierarchical partitioning of genetic variation among the name subgroups, among accessions, and within accessions. Finally, we grouped accessions by geographical provinces and calculated all parameters in the same way as that done in analysis of name subgroups. Phylogenetic reconstruction used data of 70 accessions of KKN and other control accessions which each consisted of 8 individuals was based on the unweighted pair-group method for arithmetic mean (UPGMA; Nei et al. 1983) in PowerMarker 3.25 with 1,000 bootstrap replications.

The KKN population structure was assessed by a model-based method in STRUCTURE v. 2.3.4 software (Pritchard et al. 2000). The number of populations was tested from K = 1 to 10 with admixture and correlated allele frequencies models. Ten separate runs were performed for each K with a burn-in period of 100,000 and a run of 100,000. The optimum K value was determined from log probability of data (ln P(D)) and ad hoc statistic ΔK of Evanno et al. (2005) by using the STRUCTURE HARVESTER website and software (Earl and vonHoldt 2012).

Results

Genetic diversity values of KKN collection

Of the 24 markers, one (RM133) was monomorphic, so it was excluded from analysis. In total, 132 alleles of the 23 polymorphic markers were detected in 560 seeds of KKN. The number of alleles ranged from 2 (RM171 and RM455) to 17 (RM259), with an average of 5.7 per locus (Table 2). The PIC ranged from 0.036 (RM408) to 0.526 (RM259), with an average of 0.199. HE ranged from 0.037 (RM408) to

DNA was extracted from single brown rice seeds. Seeds were ground in a multi-bead shocker (YASUI Kikai, Japan) at 2000 rpm for 1 min, and DNA was extracted by using the cetyl trimethyl ammonium bromide (CTAB) method (Doyle and Doyle 1987). Polymerase chain reaction (PCR) was performed as described in the Multiplex PCR strategy. For 24 SSR primer pairs, forward primers were labeled with 1 of 4 fluorophores (6FAM, NED, PET, or VIC). They were later divided into 4 groups, called “panels”, of 6 markers each (Table 2) selected by Multiplex Manager v. 1.0 software to design an efficient combination of primers in a PCR reaction (Holleley and Geerts 2009). Each reaction contained 1× Type-it Multiplex PCR Master Mix (Qiagen, Hilden, Germany), 2–5 pmol of the forward and reverse primers of each of the 6 markers in a panel, and 50–100 ng of genomic DNA in a total volume of 15 µL. PCR amplification was performed in the GeneAmp PCR System 9700 (Applied Biosystems, CA, USA) as follows: 95°C for 5 min; 30 cycles of 95°C for 30 s, 58–60°C (depending on the panel, Table 2) for 90 s, and 72°C for 30 s; and finally 60°C for 30 min.

The PCR products were diluted 1:20 with sterilized Milli-Q water. Thereafter, 1 µL of each was added to 9.5 µL of Hi-Di formamide plus 0.5 µL of GeneScan 600-LIZ size standard marker (Applied Biosystems). The mixture was heated at 95°C for 3 min, immediately chilled on ice for 5 min, and then run in an ABI 3500xL genetic analyzer (Applied Biosystems). Fragment analysis or allele calling was performed with GeneMapper v. 5 software (Applied Biosystems).
Table 1. Passport data of 70 accessions of Khao Kai Noi, a Lao rice landrace group, and 18 control rice accessions from IRRI used in this study

No.	Accession no.	Accession name	Grain morphology implied by name	Origin
1	LG13251	Kai Noi		BK
2	LG13480	Kai Noi		BK
3	LG13535	Kai Noi		CS
4	LG13771	Kai Noi		LN
5	LG6493	Kai Noi		LP
6	LG9212	Kai Noi		LP
7	LG7488	Kai Noi		VM
8	LG10035	Kai Noi		VM
9	LG5845	Kai Noi		XK
10	LG6795	Kai Noi		XK
11	LG12360	Kai Noi		XK
12	LG12584	Kai Noi		XK
13	LG12923	Kai Noi		XK
14	LG13970	Kai Noi		XK
15	LG10195	Kai Noi		XS
16	LG10898	Kai Noi		XS
17	LG2755	Kai Noi Dam	black	HP
18	LG10133	Kai Noi Dam	black	XK
19	LG14024	Kai Noi Dam Mihang	black with awn	XK
20	LG14112	Kai Noi Dam Lay	black striped	XK
21	LG14027	Kai Noi Khaw Mihang	Khaw with awn	XK
22	LG2793	Kai Noi Deng	red	HP
23	LG6644	Kai Noi Deng	red	HP
24	LG14126	Kai Noi Deng	red	XK
25	LG6762	Kai Noi Deng	red	XK
26	LG14018	Kai Noi Deng	red	XK
27	LG14023	Kai Noi Deng	red	XK
28	LG14095	Kai Noi Deng	red	XK
29	LG14113	Kai Noi Deng	red	XK
30	LG2790	Kai Noi Lai	striped	HP
31	LG2794	Kai Noi Lai	striped	HP
32	LG2841	Kai Noi Lai	striped	HP
33	LG6665	Kai Noi Lai	striped	HP
34	LG14124	Kai Noi Lai	striped	HP
35	LG14077	Kai Noi Lai	striped	unknown
36	LG6760	Kai Noi Lai	striped	XK
37	LG6838	Kai Noi Lai	striped	XK
38	LG14110	Kai Noi Lai	striped	XK
39	LG10899	Kai Noi Lai	stripped	XS
40	LG14016	Kai Noi Lai Dam	striped and black	XK
41	LG14020	Kai Noi Lai Dam	striped and black	XK
42	LG6746	Kai Noi Hay	upland	HP
43	LG14028	Kai Noi Khaw/Khao	white	XK
44	LG2746	Kai Noi Leuang	yellow	HP
45	LG2792	Kai Noi Leuang	yellow	HP
46	LG2806	Kai Noi Leuang	yellow	HP
47	LG6732	Kai Noi Leuang	yellow	HP
48	LG14116	Kai Noi Leuang	yellow	HP
49	LG14117	Kai Noi Leuang	yellow	HP
50	LG14118	Kai Noi Leuang	yellow	HP
51	LG14120	Kai Noi Leuang	yellow	HP
52	LG14121	Kai Noi Leuang	yellow	HP
53	LG14122	Kai Noi Leuang	yellow	HP
54	LG14123	Kai Noi Leuang	yellow	HP
55	LG14125	Kai Noi Leuang	yellow	HP
56	LG14076	Kai Noi Leuang	yellow	unknown
57	LG14017	Kai Noi Leuang	yellow	XK
58	LG14021	Kai Noi Leuang	yellow	XK
59	LG14022	Kai Noi Leuang	yellow	XK
60	LG14026	Kai Noi Leuang	yellow	XK
H_o ranged from 0.000 (RM455) to 0.061 (RM447; Table 2). AMOVA revealed that 79% of the total variation occurred among accessions, 15% among KKN name subgroups, and 6% within accessions (Table 3).

Genetic diversity values of individual accessions

The number of alleles detected per accession ranged from 25 (10 accessions) to 62 (LG14117; Supplemental Table 1). H_EA ranged from 0.01 (LG14125) to 0.49 (LG14117). H_OA was highest (0.09) in 2 accessions (Table 3).

Genetic diversity among KKN name subgroups

Within the 70 KKN accessions, we found 7 KKN name subgroups: ‘Khao Kai Noi’ (with no descriptor), ‘Khao Kai Noi Leuang’ (yellow), ‘Khao Kai Noi Deng’ (red), ‘Khao Kai Noi Lai’ (striped), ‘Khao Kai Noi Hay’ (upland), ‘Khao Kai Noi Dam’ (black), and ‘Khao Kai Noi Khaw’ (white). Among the subgroups, H_O varied from 0.001 (‘Khao Kai Noi Dam’) to 0.038 (‘Khao Kai Noi Hay’). H_E ranged from 0.040 (‘Khao Kai Noi Khaw’) to 0.315 (‘Khao Kai Noi Deng’). H_S among subgroups was 0.175. H_T was 0.271. Genetic differentiation of the KKN name subgroups was confirmed by F_ST (0.353; Table 4).

Population differentiation between Houaphan and Xiengkhouang provinces

Of the 70 KKN accessions, 81.4% originated from two provinces—Houaphan (HP, 22) and Xiengkhouang (XK, 35)—where the production of KKN is predominant (Rao et al. 2006a). To study the phylogeography of KKN, we compared genetic diversity values between HP and XK. In HP, H_E = 0.286 and H_O = 0.014; in XK, H_E = 0.147 and H_O = 0.012 (Table 4). H_S was 0.216 and H_T was 0.222 over the two provinces. F_ST between HP and XK was 0.025.

Dendrogram clustering and STRUCTURE analysis

Using the genetic-distance-based UPGMA method, the
acccesion from the analysis, and 69 accessions were then used for the second analysis. The values of ln \(P(D) \) had great change and \(\Delta K \) were highest when the number of populations was \(K = 4 \) followed by \(K = 7 \) (Supplemental Fig. 2A, 2B). In the STRUCTURE result with \(K = 4 \), accessions assigned to the tropical japonica (javanica) clusters in the dendrogram were clearly separated from other KKN accessions (green; Fig. 1). Most of accessions were assigned to 3 inferred populations (blue, yellow, and red in Fig. 1). Subsequently, we removed three accessions grouped with tropical japonica accessions (LG9212, LG6493 and LG6746) and carried out construction of dendrogram and STRUCTURE analysis only with temperate japonica KKN accessions. Clustering patterns of the dendrogram did not change significantly without the three tropical japonica accessions. However, the STRUCTURE results demonstrated a distinct pattern (optimum \(K = 3 \), Supplemental Figs. 3, 4). Although KKN has been considered to be intermediate between the indica and tropical japonica types (Rao et al. 2006b), our results showed that most KKN accessions have a temperate japonica background. Studying effect of tropical and temperate japonica genetic background to be important revealing general genetic structure of KKN, and thus, we decided to include both tropical and temperate japonica accessions for further analysis and discussions.

The overall clustering pattern of the dendrogram coincides with the STRUCTURE results. The inferred populations indicated in red and yellow with \(K = 4 \) were localized in two clusters (tropical and temperate japonica) of the dendrogram, but these populations were separated into distinct inferred populations with \(K = 7 \). Accessions LG14117, LG13535 and LG14118, which were in the japonica cluster but were not grouped with other KKN accessions, contain genetic compositions of tropical japonica type. It is noteworthy that there were only two accessions, LG10133 and LG14018, that possessed three genetic backgrounds (blue, yellow, and red) inferred by STRUCTURE analysis.

The population of KKN used in this study consisted of
name subgroups (Table 1). Distribution of the name subgroups ‘KKN leuang (yellow, Y)’, ‘KKN deng (red, R)’, ‘KKN Khao/Khaw (white, W)’, ‘KKN Lai/Lay (striped, S)’, and ‘KKN dam (black, B)’ are shown in Fig. 1. Although accessions of the name subgroup Y (yellow) are distributed throughout temperate japonica clusters, most of them coincide with the blue inferred population by STRUCTURE. The other name subgroups did not correspond clearly with any cluster or inferred populations, and were present throughout the dendrogram.

Within the 7 forms of KKN found in this study, the ‘KKN Deng’ (red) group had the highest genetic diversity (Table 4). As the name indicates, the grain is red. A red pericarp is ubiquitous in wild populations and is associated with resistance to biotic stresses (Sweeney and McCouch 2007). This trait is due to an SNP in the Rc gene that occurred during domestication, changing the pericarp from red to white (Sweeney et al. 2007). Since wild rice is common throughout Laos (Kuroda et al. 2006), the red pericarp of ‘KKN Deng’ may have been caused by gene flow from wild rice. Further study of the Rc haplotype of ‘KKN Deng’ and adjacent wild populations may clarify the issue.

Locus RM259 had the most alleles (17). Interestingly, the same locus had the most alleles in a group of Lao black glutinous rice accessions (7) (Bouphannouay et al. 2008). Pusadee et al. (2014) also reported high diversity at the same locus in Thai landraces. Marker RM259 is mapped on chromosome 1 (Chen et al. 1997) and has been used for quantitative trait locus analysis of early flowering (Thomson et al. 2006) and grain yield under drought stress (Sandhu et al. 2014). Rice germplasm collected from HP, XK, and nearby regions may contain novel alleles for traits linked with this marker.

Discussion

Genetic diversity of KKN accessions

The 23 SSR markers revealed relatively high genetic diversity in the 70 KKN accessions, with an average of 5.7 alleles per locus and $H_t = 0.271$ (Table 4). The number of alleles per locus was smaller than that of Indian landraces comprising different cultivar groups (7.9 and 7.8, respectively; Das et al. 2013, Jian et al. 2004), similar to that of Indian local aromatic cultivars (5.4; Roy et al. 2013), and greater than those of Indian aromatic rice from Orissa state (2.08; Meti et al. 2013) and black glutinous rice from Laos (3.1; Bouphannouay et al. 2008). H_e was similar to that of ‘Balam’, an indigenous cultivar from India (Choudhury et al. 2013).

By analysis of morphology, Rao et al. (2006a) identified 9 name subgroups within the KKN group; we found 7 of these in the KKN collection. The high diversity is consistent with the use of SSR markers. Nevertheless, the collection of additional accessions might be needed to obtain variant forms that are not currently held.

Within the 7 forms of KKN found in this study, the ‘KKN Deng’ (red) group had the highest genetic diversity (Table 4). As the name indicates, the grain is red. A red pericarp is ubiquitous in wild populations and is associated with resistance to biotic stresses (Sweeney and McCouch 2007). This trait is due to an SNP in the Rc gene that occurred during domestication, changing the pericarp from red to white (Sweeney et al. 2007). Since wild rice is common throughout Laos (Kuroda et al. 2006), the red pericarp of ‘KKN Deng’ may have been caused by gene flow from wild rice. Further study of the Rc haplotype of ‘KKN Deng’ and adjacent wild populations may clarify the issue.

Locus RM259 had the most alleles (17). Interestingly, the same locus had the most alleles in a group of Lao black glutinous rice accessions (7) (Bouphannouay et al. 2008). Pusadee et al. (2014) also reported high diversity at the same locus in Thai landraces. Marker RM259 is mapped on chromosome 1 (Chen et al. 1997) and has been used for quantitative trait locus analysis of early flowering (Thomson et al. 2006) and grain yield under drought stress (Sandhu et al. 2014). Rice germplasm collected from HP, XK, and nearby regions may contain novel alleles for traits linked with this marker.
Heterozygosity of KKN—implications for germplasm management

Only 6% of the total variation occurred within accessions (Table 3). $H_{EA} > H_{DA}$ when averaged across all loci in almost all accessions (Supplemental Table 1). This situation indicates inbreeding. Inbreeding is common in self-pollinated species, such as rice (Matsui and Kagata 2003), as seen in the high inbreeding coefficient (F_{IS}) of ‘Bue Chompee’, a Thai landrace (Pusadee et al. 2009), which ranges from 0.859 to 1. This observation reflects strong but not complete inbreeding in the KKN populations in farmers’ fields.

Germplasm regeneration is a fundamental role of genebanks. Cross and Wallace (1994) recommended that accessions be held as pure lines on the basis of their simulation of allele loss during regeneration of heterogeneous self-pollinating accessions. A study of the effect of genetic integrity in bulked and pure line approaches to seed management demonstrated that selection or genetic drift may occur during rejuvenation in the bulked approach (Hirano et al. 2009). Thus, KKN accessions identified as heterogeneous populations, for example LG14117, should be subdivided into pure lines and preserved to maintain their genetic integrity during rejuvenation and conservation in the Lao genebank.

Relationship between name subgroups, geographical distribution, and genetic structure of KKN

The most popular name subgroup, ‘KKN Leuang (yellow)’, shared nearly 40% of total accessions of KKN used in this study, followed by ‘KKN Lai (striped)’ (14%) and ‘KKN Deng (red)’ (12%). Accessions of these name subgroups originated from both HP and XK provinces. Name subgroups present in HP are always present in XK, except ‘KKN Hay (upland)’. ‘Kai Noi Khaw/Khao (white)’ and ‘KKN Mihang (awned)’ are present only in XK. Rao et al. (2006a) described eight out of nine name subgroups collected from HP and only ‘KKN Mihang (awned)’ was collected from XK. In this study, variation of name subgroup in HP and XK were almost the same.

Interestingly, names which describe more than two grain traits (e.g., Kai Noi Lai Dam (striped and black)) were present only in XK. These name combinations were not described in previous report (Rao et al. 2006a). Only one form of KKN name subgroup is grown in most of the fields of farmers (Rao et al. 2006b). This study showed the presence of heterogeneous accessions, which contain different genotypes within accessions; therefore, gene flow and hybridization are expected. Introduction of the new traits through hybridization may have caused establishment of combined grain morphology and successive arise of combined name. Attention should be paid to XK Province to cover a broader morphological and genetic diversity of KKN.

No clear genetic structure was observed in terms of name subgroups based on the dendrogram and inferred populations of STRUCTURE analysis. Not only the name subgroup, genetic background inferred by dendrogram and STRUCTURE analysis did not separate clearly HP and XK provinces (Fig. 1). Isolation by distance occurs in fragmented populations owing to a lack of gene flow (Wright 1943, 1946). For example, ‘Bue Chompee’, a Thai landrace, was significantly differentiated among villages (Pusadee et al. 2009). Genetic differentiation of KKN accessions from the two main production provinces, HP and XK, was very low ($F_{ST} = 0.025$). Therefore, accessions from these two provinces share a genetic background, maybe via human-mediated gene flow, such as seed exchange among farmers, as KKN was introduced first into HP and then into XK (Bounphanousay et al. 2009, Rao et al. 2006b). KKN became popular and therefore spread to other villages and provinces because of its good eating quality. The provinces of HP and XK, which share a border, on account of the promotion of production for industrial uses (Vientiane Times 2014).

Genetic background of KKN and its origin—implications for conservation and genetic improvement

The dendrogram revealed genetic relationships between KKN and other common cultivars and among KKN accessions. Rao et al. (2006b) described KKN to be intermediate between the indica and tropical japonica types based on their gross morphology. However, most of the KKN accessions were grouped with japonica ‘Nipponbabe’, and temperate japonica background can be assumed for most of KKN. This group, together with the tropical japonica type, was clearly separated from the indica group in the dendrogram, reflecting the genetic structure and diversity in *O. sativa* reported by Garris et al. (2005). Only one accession, LG6644, was grouped with indica accessions. This clustering pattern was supported by a high bootstrap value, implying that LG6644 has an indica background. Possible explanations are an error during collection and substitution at the time of seed regeneration.

KKN accessions LG6493, LG6746, and LG9212 were grouped with upland tropical japonica accessions, whereas most KKN accessions are lowland. Since all the traditional Lao rice landraces used in this study were grouped in the tropical japonica type, these accessions may have some influences from other traditional varieties in the region.

Four traditional Vietnamese landraces were clustered in the temperate japonica type together with KKN accessions in the dendrogram, yet all the traditional Lao landraces were included in the tropical japonica group (Fig. 1). This shows that Vietnamese landraces are more closely related to KKN than other Lao landraces. KKN is believed to have been introduced into HP from Vietnam and later into XK (Rao et al. 2006b). Our results support this origin. The distribution of crop cultivars across borders is common where the local people share either sociocultural backgrounds (Kyndt et al. 2009) or climatic conditions (Forsberg et al. 2015). Rice landraces closely related to KKN in Vietnam may possess promising agromorphological characteristics. Therefore, such landraces should be added to the germplasm
collection, either by germplasm exchange between Laos and Vietnam or by joint collection expeditions, to enhance genetic diversity within the collection and for use in breeding programs.

Acknowledgements

The authors gratefully acknowledge the IRRI and NIAS Genebank, Japan, for providing germplasm for this research. KKN accessions were provided by the Agriculture Research Center (ARC), National Agriculture and Forestry Research Institute (NAFRI), Vientiane, Lao P.D.R., to the University of Tsukuba under the Standard Material Transfer Agreement of the FAO International Treaty on Plant Genetic Resources for Food and Agriculture. Plant genetic resources accession-level data were provided by the IRRI. All intellectual property rights (including copyrights) in the data are owned and retained by the said institutions. This research was supported by Grants-in-Aid #24405049 and #25257416 from the Japan Society for the Promotion of Science.

Literature Cited

Bajracharya, J., K.A. Steele, D.I. Jarvis, B.R. Sthapit and J.R. Witcombe (2006) Rice landrace diversity in Nepal: variability of agromorphological traits and SSR markers in landraces from a high-altitude site. Field Crops Res. 95: 327–335.

Bounphanousay, C., P. Jaisil, K.L. McNally, J. Sanitchon and N.R. Kanyavong (2008) Variation of microsatellite markers in a collection of Lao’s black glutinous rice (Oryza sativa L.). Asian J. Plant Sci. 7: 140–148.

Bounphanousay, C., V. Bounphanousay, K. Kanyavong and P. Inthapanya (2009) Khao Kai Noi (“Small Chicken Rice”) is high grain quality confined to higher altitude. Lao J. Agric. For. 5: 1–22.

Chen, X., S. Temnykh, Y. Xu, Y.G. Cho and S.R. McCouch (1997) Development of a microsatellite framework map providing genome-wide coverage in rice (Oryza sativa L.). Theor. Appl. Genet. 95: 553–567.

Choudhury, B., M.L. Khan and S. Dayanandan (2013) Genetic structure and diversity of indigenous rice (Oryza sativa) varieties in the Eastern Himalayan region of Northeast India. SpringerPlus 2: 228.

Cross, R.J. and A.R. Wallace (1994) Loss of genetic diversity from heterogeneous self-pollinating genebank accessions. Theor. Appl. Genet. 88: 885–890.

Das, B., S. Sengupta, S.K. Parida, B. Roy, M. Ghosh, M. Prasad and T.K. Ghose (2013) Genetic diversity and population structure of rice landraces from Eastern and North Eastern States of India. BMC Genet. 14: 71.

Doyle, J.J. and L.J. Doyle (1987) A rapid DNA isolation procedure for small quantity of fresh leaf tissue. Phytochem. Bull. 19: 11–15.

Earl, D.A. and B.M. vonHoldt (2012) STRUCTURE HARVESTER: a website and program for visualizing STRUCTURE output and implementing the Evanno method. Conserv. Genet. Resour. 4: 359–361.

Elistc, P. and N. Santos (2012) Lao people’s democratic republic rice policy study. Washington DC: World Bank. Available from: http://documents.worldbank.org/curated/en/2012/01/17783012/lao-peoples-democratic-republic-rice-policy-study.

Evanno, G., S. Regnaut and J. Goudet (2005) Detecting the number of clusters of individuals using software STRUCTURE: a simulation study. Mol. Ecol. 14: 2661–2662.

Forsberg, N.E.G., J. Russell, M. Macaulay, M.W. Leino and J. Hagenblad (2015) Farmers without borders—genetic structuring in century old barley (Hordeum Vulgare). Heredity 114: 195–206.

Garris, A., T. Tai, J. Corburn, S. Kresovich and S. McCouch (2005) Genetic structure and diversity in Oryza sativa L. Genetics 169: 1631–1638.

Hirano, R., A.S. Jatoi, M. Kawase, A. Kikuchi and K.N. Watanabe (2009) Consequences of ex situ conservation on the genetic integrity of germplasm held at different gene banks: A case study of bread wheat collected in Pakistan. Crop Sci. 49: 2160–2166.

Holleley, C.E. and P.G. Geerts (2009) Multiplex Manager 1.0: a cross-platform computer program that plans and optimizes multiplex PCR. BioTechniques 46: 511–517.

Jian, S., R. Jian and S. McCouch (2004) Genetic analysis of Indian aromatic and quality rice (Oryza sativa L.) germplasm using panels of fluorescently-labeled microsatellite markers. Theor. Appl. Genet. 109: 965–977.

Kanyavong, K. (2012) Study on genetic diversity of Khao Kai Noi (small chicken rice) local Lao rice germplasm by morphological characters. MSc (Agronomy) thesis. National University of Laos, Laos.

Kuroda, Y., S.A. Rao, C. Bounphanousay, K. Kanyavong, A. Iwata, K. Tanaka and Y.I. Sata (2006) Diversity of wild and weedy rice in Laos. In: Schiller, J.M., M.B. Chanhengxay, B. Linquist and S.A. Rao (eds.) Rice in Laos, Los Baños, Philippines, IRRI, pp. 215–234.

Kyndt, T., A.E. Assogbadjo, O.J. Hardy, R.G. Kakai, B. Sinsvin, P.V. Damme and G. Geysen (2009) Spatial genetic structuring of baobab (Adansonia digitata, Malvaceae) in the traditional agroforestry systems of West Africa. Am. J. Bot. 96: 950–957.

Liu, K. and V.S. Muse (2005) PowerMarker: an Integrated analysis environment for genetic marker analysis. Bioinformatics 21: 2128–2129.

Matsui, T. and H. Kagata (2003) Characteristics of floral organs related to reliable self-pollination in rice (Oryza sativa L.). Ann. Bot. 91: 473–477.

Mett, N., K.C. Samal, D.N. Bastia and G.R. Rout (2013) Genetic diversity analysis in aromatic rice genotypes using microsatellite based simple sequence repeats (SSR) marker. Afr. J. Biotechnol. 12: 4238–4250.

Mohanty, S. (2013) Trends in global rice consumption. Rice Today News. 12: 44–45. Available from: http://www.scribd.com/doc/119860372/RT-Vol-12-No-1-Rice-facts.

Nei, M., F. Tajima and Y. Tateno (1983) Accuracy of estimated phylogenetic trees from molecular data. J. Mol. Evol. 19: 153–170.

Peakall, R. and P.E. Smouse (2012) GenAlEx 6.5: genetic analysis in Excel. Population genetic software for teaching and research—an update. Bioinformatics 28: 2537–2539.

Pritchard, J.K., M. Stephens and P. Donnelly (2000) Inference of population structure using multilocus genotype data. Genetics 155: 2119–2128.

Pusadee, T., P. Oupkaew, B. Rerkasem, S. Jamlod and B.A. Schaal (2012) Natural and human-mediated selection in a landrace of Thai old barley (Hordeum Vulgare). Heredity 114: 195–267.

Rao, S.A., J.M. Schiller, C. Bounphanousay, A.P. Alcantara and M.T. Jackson (2006a) Naming of traditional rice varieties by the farmers of Laos. In: Schiller, J.M., M.B. Chanhengxay, B. Linquist and S.A. Rao (eds.) Rice in Laos, Los Baños, Philippines, IRRI, pp. 945–950.
and S.A. Rao (eds.) Rice in Laos, Los Baños, Philippines, IRRI, pp. 141–157.

Rao, S.A., J.M. Schiller, C. Bounphanousay and M.T. Jackson (2006b) Developing of traditional rice varieties and on-farm management of varietal diversity in Laos. In: Schiller, J.M., M.B. Chanphengxay, B. Linquist and S.A. Rao (eds.) Rice in Laos, Los Baños, Philippines, IRRI, pp. 187–196.

Rao, S.A., J.M. Schiller, C. Bounphanousay and M.T. Jackson (2006c) Diversity within the traditional rice varieties of Laos. In: Schiller, J.M., M.B. Chanphengxay, B. Linquist and S.A. Rao (eds.) Rice in Laos, Los Baños, Philippines, IRRI, pp. 123–140.

Roy, S., A. Banerjee, A. Pattanayak, S.S. Roy, R.S. Rath, A.K. Misra, S.V. Ngachan and K.C. Bansal (2013) Chaikhao (delicious) rice landraces (Oryza sativa L.) of North-east India: collection, conservation and characterization of genetic diversity. Plant Genet. Resour. 12: 264–272.

Sandhu, N., A. Singh, S. Dixit, S.M.T. Cruz, C.P. Maturan, K.R. Jain and A. Kumar (2014) Identification and mapping of stable QTL with main and epistasis effect on rice grain yield under upland drought stress. BMC Genet. 15: 63.

Sweeney, M. and S. McCouch (2007) The complex history of the domestication of rice. Ann. Bot. 100: 951–957.

Sweeney, M.T., M.J. Thomson, Y.G. Cho, Y.J. Park, S.H. Williamson, C.D. Bustamante and S.R. McCouch (2007) Global dissemination of a single mutation conferring white pericarp in rice. PLoS Genet. 3: 1418–1424.

Thomson, M.J., J.D. Edwards, E.M. Septiningsih, S.E. Harrington and S.R. McCouch (2006) Substitution mapping of dth1.1, a flowering-time quantitative trait locus (QTL) associated with transgressive variation in rice, reveals multiple sub-QTL. Genetics 172: 2501–2514.

Vientiane Times Newspapers (2014) LBC agrees to buy Khao Kai Noi from Xieng Khuang and Huaphan provinces. Available from: http://en.vietstock.vn/2014/04/lbc-agrees-to-buy-khao-kai-noi-from-xieng-khuang-huaphan-provinces-143-173932.htm.

Worklivelaos (2014) New Beerlao Gold brewed with Khao Kai Noy. Available from: http://www.worklivelaos.com/new-beerlao-gold-brewed-with-khao-kai-noy/.

Wright, S. (1943) Isolation by distance. Genetics 28: 114–138.

Wright, S. (1946) Isolation by distance under diverse systems of mating. Genetics 31: 39–59.

Zhang, L., G. Cao and L. Han (2013) Genetic diversity of rice landraces from lowland and upland accessions of China. Rice Sci. 20: 259–266.