SUBTLETIES OF THE MINMAX SELECTOR

WEI QIAOLING

Abstract. In this note, we show that the minmax and maxmin critical values of a function quadratic nondegenerate at infinity are equal when defined in homology or cohomology with coefficients in a field. However, by an example of F. Laudenbach, this is not always true for coefficients in a ring and, even in the case of a field, the minmax-maxmin depends on the field.

1. Introduction

Given a Lagrangian submanifold L in the cotangent bundle of a closed manifold M, obtained by Hamiltonian deformation of the zero section, the minmax selector introduced by J.-C. Sikorav provides an almost everywhere defined section $M \to L$ of the projection $T^* M \to M$ restricted to L. As noticed by M. Chaperon [4], this defines weak solutions of smooth Cauchy problems for Hamilton-Jacobi equations; in the classical case of a convex Hamiltonian, the minmax is a minimum and the minmax solution coincides with the viscosity solution, which is not always the case for nonconvex Hamiltonians. For a recent use of the minmax selector in weak KAM theory, see [1].

The minmax has been defined using homology or cohomology with various coefficient rings, for example \mathbb{Z} in [4, 9], \mathbb{Q} in [3] and \mathbb{Z}_2 in [8]. Also, in [9], the maxmin was mentioned as a natural analogue to the minmax. But there is no evidence showing that all these critical values coincide. G. Capitanio has given a proof [3] that the maxmin and minmax for homology with coefficients in \mathbb{Q} are equal, but the criterion he uses (Proposition 2 in [3]) is not correct—see Remark 3.11 hereafter.

In this note, we investigate the maxmin and minmax for a general function quadratic at infinity, not necessarily related to Hamilton-Jacobi equations. We give both algebraic and geometric proofs that the minmax and maxmin with coefficients in a field coincide; the geometric proof, based on Barannikov’s Jordan normal form for the boundary operator of the Morse complex, improves our understanding of the problem.

A counterexample for coefficients in \mathbb{Z}, due to F. Laudenbach, is constructed using Morse homology; in this example, moreover, the minmax-maxmin for coefficients in \mathbb{Z}_2 is not the same as for coefficients in \mathbb{Q}. However, if the minmax and maxmin for coefficients in \mathbb{Z} coincide, then all three minmax-maxmin critical values are equal.

Date: December 23, 2011.
2. Maxmin and Minmax

Hypotheses and notation. We denote by X the vector space \mathbb{R}^n and by f a real function on X, quadratic at infinity in the sense that it is continuous and there exists a nondegenerate quadratic form $Q : X \to \mathbb{R}$ such that f coincides with Q outside a compact subset.

Let $f^- := \{x | f(x) \leq c\}$ denote the sub-level sets of f. Note that for c large enough, the homotopy types of f^c, f^- do not depend on c, we may denote them as f^∞ and f^-. Suppose the quadratic form Q has Morse index λ, then the homology groups with coefficient ring R are

$$H_*(f^\infty, f^-; R) \simeq \begin{cases} R & \text{in dimension } \lambda \\ 0 & \text{otherwise} \end{cases}$$

Consider the homomorphism of homology groups

$$i_{cs} : H_*(f^c, f^-; R) \to H_*(f^\infty, f^-; R)$$

induced by the inclusion $i_c : (f^c, f^-) \hookrightarrow (f^\infty, f^-)$.

Definition 2.1. If Ξ is a generator of $H_\lambda(f^\infty, f^-; R)$, we let

$$\gamma(f, R) := \inf \{c : \Xi \in \text{Im}(i_{cs})\},$$

i.e. $\gamma(f, R) = \inf \{c : i_{cs}H_\lambda(f^c, f^-; R) = H_\lambda(f^\infty, f^-; R)\}$.

Similarly, we can consider the homology group

$$H_*(X \setminus f^-; X \setminus f\infty; R) \simeq \begin{cases} R, & \text{in dimension } n - \lambda \\ 0, & \text{otherwise} \end{cases}$$

and the homomorphism

$$j_{cs} : H_*(X \setminus f^c, X \setminus f\infty; R) \to H_*(X \setminus f^-; X \setminus f\infty; R)$$

induced by $j_c : (X \setminus f^c, X \setminus f\infty) \hookrightarrow (X \setminus f^-; X \setminus f\infty)$.

Definition 2.2. If Δ is a generator of $H_{n-\lambda}(X \setminus f^-; X \setminus f\infty; R)$, we let

$$\overline{\gamma}(f, R) := \sup \{c : \Delta \in \text{Im}(j_{cs})\} = \sup \{c : j_{cs}H_{n-\lambda}(X \setminus f^c, X \setminus f\infty; R) = H_{n-\lambda}(X \setminus f^-; X \setminus f\infty; R)\}.$$

Lemma 2.3. One has that

$$\gamma(f, R) = \inf \max f := \inf_{|\sigma| = \Xi} \max_{x \in |\sigma|} f(x)$$

$$\overline{\gamma}(f, R) = \sup \min f := \sup_{|\sigma| = \Delta} \min_{x \in |\sigma|} f(x),$$

where σ is a relative cycle and $|\sigma|$ denotes its support. We call σ a descending (resp. ascending) simplex if $|\sigma| = \Xi$ (resp. $|\sigma| = \Delta$).

Proof. A descending simplex σ defines a homology class in $H_\lambda(f^c, f^-; R)$ if and only if $|\sigma| \subset f^c$, in which case one has $\max_{x \in |\sigma|} f(x) \leq c$, hence $\gamma(f, R) = \inf \max f$; choosing $c = \max_{x \in |\sigma|} f(x)$, we get equality. The case of $\overline{\gamma}$ is identical. \hfill \square
Definition 2.4. \(\gamma(f, R) \) is called a minmax of \(f \) and \(\overline{\gamma}(f, R) \), a maxmin.

Remark 2.5. As we shall see later, in view of Morse homology, the names are proper generically for Morse-excellent functions.

One can also consider cohomology instead of homology and define

\[
\underline{\alpha}(f, R) := \inf \{ c : i^*_c \neq 0 \}, \quad i^*_c : H^\lambda(f^\infty, f^{-\infty}; R) \to H^\lambda(f^c, f^{-\infty}; R)
\]

\[
\overline{\alpha}(f, R) := \sup \{ c : j^*_c \neq 0 \}, \quad j^*_c : H^{n-\lambda}(X \setminus f^{-\infty}, X \setminus f^c; R) \to H^{n-\lambda}(X \setminus f^c, X \setminus f^\infty; R).
\]

Proposition 2.6 ([9], Proposition 2.4). When \(X \) is \(R \)-oriented,

\[
\overline{\alpha}(f, R) = \underline{\gamma}(f, R) \quad \text{and} \quad \underline{\alpha}(f, R) = \overline{\gamma}(f, R).
\]

Proof. We establish for example the first identity: one has the commutative diagram

\[
\begin{array}{ccc}
H_\lambda(f^c, f^{-\infty}; R) & \simeq & H^{n-\lambda}(X \setminus f^{-\infty}, X \setminus f^c; R) \\
\downarrow j^*_c & & \downarrow \\
H_\lambda(f^\infty, f^{-\infty}; R) & \simeq & H^{n-\lambda}(X \setminus f^{-\infty}, X \setminus f^\infty; R) \\
\downarrow & & \downarrow j^*_c \\
H_\lambda(f^\infty, f^c; R) & \simeq & H^{n-\lambda}(X \setminus f^c, X \setminus f^\infty; R)
\end{array}
\]

where the horizontal isomorphisms are given by Alexander duality ([5], section 3.3) and the columns are exact. It does follow that \(i^*_c \) is onto if and only if \(j^*_c \) is zero. \(\square \)

Definition 2.7. As long as \(X \) is finite dimensional, theClarke generalized derivative

of a locally Lipschitzian function \(f : X \to \mathbb{R} \) can be defined as follows:

\[
\partial f(x) := \text{co}\{ \lim_{x' \to x} df(x'), \ x' \in \text{dom}(df) \};
\]

where co denotes the convex envelop. A point \(x \in X \) is called a critical point of \(f \) if \(0 \in \partial f(x) \).

Proposition 2.8. If \(f \) is \(C^2 \) then \(\underline{\gamma}(f, R) \) and \(\overline{\gamma}(f, R) \) are critical values of \(f \); they are critical values of \(f \) in the sense of Clarke when \(f \) is locally Lipschitzian.

Proof. Take \(\gamma \) for example: if \(c = \underline{\gamma}(f, R) \) is not a critical value then, for small \(\epsilon > 0 \), \(f^{c-\epsilon} \) is a deformation retract of \(f^{c+\epsilon} \) via the flow of \(-\nabla f \), hence \(\gamma(f, R) \leq c - \epsilon \), a contradiction. The same argument applies when \(f \) is only locally Lipschitzian, replacing \(\nabla f \) by a pseudo-gradient. \(\square \)

Lemma 2.9. If \(f \) is locally Lipschitzian, then

\[
\overline{\gamma}(f, R) = -\underline{\gamma}(-f, R)
\]

Proof. Using a (pseudo-)gradient of \(f \) as previously, one can see that \(X \setminus f^c \) and \((-f)^{-c} \) have the same homotopy type when \(c \) is not a critical value of \(f \). Otherwise, choose a sequence of non-critical values \(c_n \nearrow c = \overline{\gamma}(f, R) \), then \(-c_n \geq \underline{\gamma}(-f, R) \), taking the limit, we have \(\overline{\gamma}(f, R) \leq -\underline{\gamma}(-f, R) \). Similarly, taking \(c'_n \searrow \underline{\gamma}(-f, R) \), then \(-c'_n \leq \underline{\gamma}(f, R) \), from which the limit gives us the inverse inequality \(-\underline{\gamma}(-f, R) \leq \overline{\gamma}(f, R) \). \(\square \)
The following two questions arise naturally:

1. Do we have \(\gamma(f, R) = \overline{\gamma}(f, R) \)?
2. Do \(\gamma(f, R) \) and \(\overline{\gamma}(f, R) \) depend on the coefficient ring \(R \)?

Here are two obvious elements for an answer:

Proposition 2.10. One has \(\gamma(f, \mathbb{Z}) \geq \overline{\gamma}(f, \mathbb{Z}) \).

Proof. As the intersection number of \(\Xi \) and \(\Delta \) is \(\pm 1 \), the support of any descending simplex \(\sigma \) must intersect the support of any ascending simplex \(\tau \) at some point \(\bar{x} \), hence \(\max_{x \in |\sigma|} f(x) \geq f(\bar{x}) \geq \min_{x \in |\tau|} f(x) \). □

Proposition 2.11. One has \(\gamma(f, \mathbb{Z}) \geq \gamma(f, R) \) and \(\overline{\gamma}(f, \mathbb{Z}) \leq \overline{\gamma}(f, R) \) for every ring \(R \).

Proof. A simplex \(\sigma \) whose homology class generates \(H_\lambda(f^\infty, f^{-\infty}; \mathbb{Z}) \) induces a simplex whose homology class generates \(H_\lambda(f^\infty, f^{-\infty}; R) \), hence the first inequality and, mutatis mutandis, the second one. □

Theorem 2.12. If \(F \) is a field, then \(\gamma(f, F) = \overline{\gamma}(f, F) \).

Proof. By Proposition 2.6, it is enough to prove that \(\gamma(f, \mathbb{F}) = \overline{\gamma}(f, \mathbb{F}) \).

Recall that \(\gamma(f, \mathbb{F}) \) (resp. \(\alpha(f, \mathbb{F}) \)) is the infimum of the real numbers \(c \) such that \(i_{cs} : H_\lambda(f^c, f^{-\infty}; \mathbb{F}) \to H_\lambda(f^\infty, f^{-\infty}; \mathbb{F}) \) is onto (resp. such that \(i_{cs}^* : H^\lambda(f^\infty, f^{-\infty}; \mathbb{F}) \to H^\lambda(f^c, f^{-\infty}; \mathbb{F}) \) is nonzero). Now, as \(H_\lambda(f^\infty, f^{-\infty}; \mathbb{F}) \) is a one-dimensional vector space over \(\mathbb{F} \), the linear map \(i_{cs} \) is onto if and only if it is nonzero, i.e. if and only if the transposed map \(i_{cs}^* \) is nonzero. □

Remark. This proof is invalid for coefficients in \(\mathbb{Z} \) since a \(\mathbb{Z} \)-linear map to \(\mathbb{Z} \), for example \(\mathbb{Z} \ni m \to km, k \in \mathbb{Z}, k > 1 \), can be nonzero without being onto; we shall see in Section 4 that Theorem 2.12 itself is not true in that case.

Corollary 2.13. If \(\gamma(f, \mathbb{Z}) = \overline{\gamma}(f, \mathbb{Z}) = \gamma \) then \(\gamma(f, \mathbb{F}) = \overline{\gamma}(f, \mathbb{F}) = \gamma \) for every field \(\mathbb{F} \).

Proof. This follows at once from Theorem 2.12 and Proposition 2.11. □

Corollary 2.14. Let \(\gamma \in \mathbb{R} \) have the following property: there exist both a descending simplex over \(\mathbb{Z} \) along which \(\gamma \) is the maximum of \(f \) and an ascending simplex over \(\mathbb{Z} \) along which \(\gamma \) is the minimum of \(f \). Then, \(\gamma(f, \mathbb{Z}) = \overline{\gamma}(f, \mathbb{Z}) = \gamma(f, \mathbb{F}) = \overline{\gamma}(f, \mathbb{F}) = \gamma \) for every field \(\mathbb{F} \).

Proof. We have \(\gamma(f, \mathbb{Z}) \leq \gamma \leq \overline{\gamma}(f; \mathbb{Z}) \) by Lemma 2.3 and \(\overline{\gamma}(f; \mathbb{Z}) \leq \gamma(f, \mathbb{Z}) \) by Proposition 2.10, hence our result by Corollary 2.13. □
3. Morse complexes and the Barannikov normal form

The previous proof of Theorem 2.12, though simple, is quite algebraic. We now
give a more geometric proof, which we find more concrete and illuminating, based on
Barannikov’s canonical form of Morse complexes. It will provide a good setting for the
counterexample in Section 4.

First, there is a continuity result for the minmax and maxmin:

Proposition 3.1. If \(f \) and \(g \) are two continuous functions quadratic at infinity with
the same reference quadratic form, then

\[
|\gamma(f, R) - \gamma(g, R)| \leq |f - g|_{C^0} \\
|\nu(f, R) - \nu(f, R)| \leq |f - g|_{C^0}.
\]

Proof. For \(f \leq g \), from Lemma 2.3, it is easy to see that \(\gamma(f) \leq \gamma(g) \). In the general
case, this implies \(\gamma(g) \leq \gamma(f) + |g - f|_{C^0} \); exchanging \(f \) and \(g \), we get
\(\gamma(f) \leq \gamma(g) + |f - g|_{C^0} \). \(\square \)

Corollary 3.2. To prove Theorem 2.12, it suffices to establish it for excellent Morse
functions \(f : X \to \mathbb{R} \), i.e. smooth functions having only non-degenerate critical points,
each of which corresponds to a different value of \(f \).

Proof. By a standard argument, given a non-degenerate quadratic form \(Q \) on \(X \), the set
of all continuous functions on \(X \) equal to \(Q \) off a compact subset contains a
\(C^0 \)-dense subset consisting of excellent Morse functions; our result follows by Proposition 3.1. \(\square \)

To prove Theorem 2.12 for excellent Morse functions, we will use Morse homology.

Hypotheses. We consider an excellent Morse function \(f \) on \(X \), quadratic at infinity;
for each pair of regular values \(b < c \) of \(f \), we denote by \(f_{b,c} \) the restriction of \(f \) to
\(f^c \cap (-f)^{-b} = \{ b \leq f \leq c \} \).

Morse complexes. Let
\[
C_k(f_{b,c}) := \{ \xi^k_\ell : 1 \leq \ell \leq m_k \}
\]
denote the set of critical points of index \(k \) of \(f_{b,c} \), ordered so that \(f(\xi^k_\ell) < f(\xi^k_m) \) for
\(\ell < m \). Given a generic gradient-like vector field \(V \) for \(f \) such that \((f, V)\) is Morse-Smale*,
the Morse complex of \((f_{b,c}, V)\) over \(R \) consists of the free \(R \)-modules
\[
M_k(f_{b,c}, R) := \{ \sum \ell a_\ell \xi^k_\ell, \quad a_\ell \in R \}
\]
together with the boundary operator \(\partial : M_k(f_{b,c}, R) \to M_{k-1}(f_{b,c}, R) \) given by
\[
\partial \xi^k_\ell := \sum_{m} \nu_{f,V}(\xi^k_\ell, \xi^{k-1}_m) \xi^{k-1}_m
\]
where, with given orientations for the stable manifolds (hence co-orientations for un-
stable manifolds), \(\nu_{f,V} \) is the intersection number of the stable manifold \(W^s(\xi^k_\ell) \) of \(\xi^k_\ell \)
\[\star\] Being Morse-Smale means that the stable and unstable manifolds of all the critical points are
transversal.
and the unstable manifold $W^u(\xi_m^{k-1})$ of ξ_m^{k-1}, i.e. the algebraic number of trajectories of V connecting ξ_m^k and ξ_m^{k-1}; note that

- $\nu_{f,V}(\xi_m^k, \xi_m^{k-1})$ is the same for all b, c with $f(\xi_m^k)$, $f(\xi_m^{k-1})$ in $[b, c]$;
- $\nu_{f,V}(\xi_m^k, \xi_m^{k-1}) \neq 0$ implies $f(\xi_m^k) > f(\xi_m^{k-1})$: otherwise, the stable manifold of ξ_m^{k-1} and the unstable manifold of ξ_m^k for V, which cannot be transversal because of their dimensions, would intersect, contradicting the genericity of V.
- $\nu_{f,V}(\xi_m^k, \xi_m^{k-1}) = 0$ for two distinct critical points of the same index.

This does define a complex, i.e. $\partial \circ \partial = 0$: see for example [6, 7]. The homology $HM_s(f_{b,c}, R) := H_*(M_s(f_{b,c}, R))$ is called the Morse homology† of $f_{b,c}$.

Lemma 3.3 (Barannikov,[2]). If R is a field \mathbb{F}, then this boundary operator ∂ has a special kind of Jordan normal form as follows: each $M_k(f_{b,c}, \mathbb{F})$ has a basis

$$\Xi^k_\ell := \sum_{i < \ell} \alpha_{\ell,i}^k \xi^k_i, \quad \alpha_{\ell,i} \neq 0$$

such that either $\partial \Xi^k_\ell = 0$ or $\partial \Xi^k_\ell = \Xi^k_{\ell-1}$ for some m, in which case no $\ell' \neq \ell$ satisfies $\partial \Xi^{k-1}_{\ell'} = \Xi^{k-1}_{\ell'}$. If (Θ^k_ℓ) is another such basis, then $\partial \Xi^k_\ell = \Xi^{k-1}_\ell$ (resp. 0) is equivalent to $\partial \Theta^k_\ell = \Theta^{k-1}_\ell$ (resp. 0); in other words, the matrix of ∂ in all such bases is the same.

Proof. We prove existence by induction. Given nonnegative integers k, i with $i < m_k$, suppose that vectors Ξ^k_q of the form (3.1) have been obtained for all (p, q) with either $p < k$, or $p = k$ and $q \leq i$, possessing the required property that either $\partial \Xi^p_q = \Xi^{p-1}_q$ (with $j_p(q) \neq j_p(q')$ for $q \neq q'$) or $\partial \Xi^p_q = 0$. If $\partial \xi^k_{i+1} = 0$ (e.g., when $k = 0$), we take $\xi^k_{i+1} := \Xi^k_{i+1}$ and continue the induction. Otherwise, $\partial \xi^k_{i+1} = \sum \alpha_j \Xi^{k-1}_j$, $\alpha_j \in \mathbb{F}$. Moving all the terms $\Xi_{j \neq q} = \partial \Xi_q, q < i$ from the right-hand side to the left, we get

$$\partial (\xi^k_{i+1} - \sum_{q \leq i} \alpha_{j,q} \Xi^k_q) = \sum_j \beta_j \Xi^{k-1}_j.$$

Let

$$\Xi^k_{i+1} := \xi^k_{i+1} - \sum_{q \leq i} \alpha_{j,q} \Xi^k_q.$$

If $\beta_j = 0$ for all j, then $\partial \Xi^k_{i+1} = 0$ and the induction can go on. Otherwise,

$$\partial \Xi_{i+1} = \sum_{j \leq j_0} \beta_j \Xi^{k-1}_j =: \Xi^{k-1}_{j_0}$$

with $\beta_{j_0} \neq 0$; as $\partial \Xi^{k-1}_{j_0} = \partial \Xi^{k-1}_{i+1} = 0$, we can replace $\Xi^{k-1}_{j_0}$ by $\Xi^{k-1}_{j_0}$ and continue the induction†. \hfill \square

Definition 3.4. Under the hypotheses and with the notation of the Barannikov lemma, two critical points ξ_m^k and ξ_m^{k-1} of $f_{b,c}$ are coupled if $\partial \Xi^k_\ell = \Xi^{k-1}_\ell$. A critical point is free (over \mathbb{F}) when it is not coupled with any other critical point.

In other words, ξ_m^k is free if and only if Ξ^k_ℓ is a cycle of $M_k(f_{b,c}, \mathbb{F})$ but not a boundary, hence the following result:

†Morse homology is defined in general for any Morse function without being excellent.

‡Note that if \mathbb{F} was not a field, this would not provide a basis for noninvertible β_{j_0}.
Corollary 3.5. For each integer \(k\), the Betti number \(\dim_{\mathbb{F}} HM_k(f_{B,C}, \mathbb{F})\) is the number of free critical points of index \(k\) of \(f_{B,C}\) over \(\mathbb{F}\).

\[\square\]

Theorem 3.6. (1) The Barannikov normal form of the Morse complex of \(f_{B,C}\) over \(\mathbb{F}\) is independent of the gradient-like vector field \(V\).

(2) So is the Morse homology \(HM_\ast(f_{B,C}, R)\); it is isomorphic to \(H_\ast(f^c, f^b; R)\).

(3) For \(b' < b < c \leq c'\), the inclusion \(i : f^c \hookrightarrow f^{c'}\), restricted to the critical set \(C_\ast(f_{B,C})\), induces a linear map \(i_* : M_\ast(f_{B,C}, R) \rightarrow M_\ast(f_{B,C}', R)\) such that \(\partial \circ i_* = i_\ast \circ \partial\) and therefore a linear map \(i_* : HM_\ast(f_{B,C}, R) \rightarrow HM_\ast(f_{B,C}', R)\), which is the usual \(i_* : H_\ast(f^c, f^b; R) \rightarrow H_\ast(f^{c'}, f^{b'}; R)\) modulo the isomorphism (ii).

Idea of the proof [6]. (1) Connecting two generic gradient-like vector fields \(V_0, V_1\) for \(f\) by a generic family, one can prove that each of the Morse complexes defined by \(f\) over \(f_{B,C}\) is the class of a cell of dimension \(\lambda\) of \(\gamma\), i.e., their algebraic number of connecting trajectories.

(2) When there is only one critical point \(a\) of \(f\) in \(\{b \leq a \leq c\}\), both \(HM_\ast(f_{B,C}, R)\) and \(H_\ast(f^c, f^b; R)\) are trivial (the flow of \(V\) defines a retraction of \(f^c\) onto \(f^b\)). When there is only one critical point \(\xi\) of \(f\) in \(\{b \leq \xi \leq c\}\), of index \(\lambda\),

\[HM_k(f_{B,C}, R) \simeq H_k(f^c, f^b; R) \simeq \begin{cases} R, & \text{if } k = \lambda, \\ 0 & \text{otherwise}. \end{cases}\]

the class of \(\xi\) obviously generates \(HM_k(f_{B,C}, R)\), whereas a generator of \(H_\ast(f^c, f^b; R)\) is the class of a cell of dimension \(\lambda\), namely the stable manifold of \(\xi\) for \(V|_{\{b \leq a \leq c\}}\); the isomorphism associates the second class to the first.

In the general case, one can consider a subdivision \(b = b_0 < \cdots < b_N = c\) consisting of regular values of \(f\) such that each \(f_{b_i, b_{i+1}}\) has precisely one critical point. One can show that the boundary operator \(\partial\) of the relative singular homology \(\partial : H_{k+1}(f_{b_{i+1}, f^b}; R) \rightarrow H_k(f^b, f^{b_{i-1}})\) can be interpreted as the intersection number of the stable manifold of the critical point in \(\{b_i \leq a \leq b_{i+1}\}\) and the unstable manifold of that in \(\{b_i-1 \leq a \leq b_i\}\), i.e., their algebraic number of connecting trajectories.

(3) The first claims are easy. The last one follows from what has just been sketched.

\[\square\]

Corollary 3.7. If \(f\) is an excellent Morse function quadratic at infinity, then it has precisely one free critical point \(\xi\) over \(\mathbb{F}\); its index \(\lambda\) is that of the reference quadratic form \(Q\) and

\[\gamma(f, \mathbb{F}) = f(\xi).\]

Proof. Clearly, the dimension of

\[HM_k(f, \mathbb{F}) = HM_k(f_{-\infty, \infty}, \mathbb{F}) \simeq H_k(f^\infty, f^{-\infty}; \mathbb{F}) = H_k(Q^\infty, Q^{-\infty}; \mathbb{F})\]

is 1 if \(k = \lambda\) and 0 otherwise. The first two assertions follow by Corollary 3.5. To prove \(\gamma(f, \mathbb{F}) = f(\xi)\), note that \(\gamma(f)\) is the infimum of the regular values \(c\) of \(f\) such that the class of \(\xi\) in \(HM_\lambda(f_{-\infty, \infty}, \mathbb{F})\) lies in the image of \(i_* : HM_\lambda(f_{-\infty, c}, \mathbb{F}) \rightarrow HM_\lambda(f_{-\infty, \infty}, \mathbb{F})\); by Theorem 3.6 (iii), which means \(c \geq f(\xi)\).

\[\square\]
Proposition 3.8. The excellent Morse function \(-f_{b,c} = (-f)_{c,-b}\) has the same free critical points over the field \(\mathbb{F}\) as \(f_{b,c}\).

Proof. Assuming \(V\) fixed, this is essentially easy linear algebra:

- One has \(C_k(-f) = C_{n-k}(f)\) and the ordering of the corresponding critical values is reversed. Thus, the lexicographically ordered basis of \(M_*(-f)\) corresponding to \((\xi^k_\ell)_{1 \leq \ell \leq m_0, 0 \leq k \leq n}\) is \((\xi^{n-k}_{m_{n-k}+\ell+1})_{1 \leq \ell \leq m_{n-k}, 0 \leq k \leq n}\).

- The vector field \(-V\) has the same relations with \(-f\) as \(V\) has with \(f\), hence
 \[
 \nu_{-f,-V}(\xi^{n-k}_{m_{n-k}+\ell+1}, \xi^{n-(k-1)}_{m_{n-(k-1)}-m+1}) = \nu_{V}(\xi^{n-(k-1)}_{m_{n-(k-1)}-m+1}, \xi^{n-k}_{m_{n-k}+\ell+1}).
 \]

That is, the matrix of the boundary operator of \(M_*(-f_{b,c})\) in the basis \((\xi^{n-k}_{m_{n-k}+\ell+1})\) is the matrix \(M\) obtained from the matrix \(A\) of the boundary operator of \(M_*(f_{b,c})\) in the basis \((\xi^k_\ell)\) by symmetry with respect to the second diagonal (i.e. by reversing the order of both the lines and columns of the transpose of \(A\)).

Lemma 3.3 can be rephrased as follows: there exists a block-diagonal matrix
\[
P = \text{diag}(P_0, \ldots, P_n)
\]
where each \(P_k \in \text{GL}(m_k, \mathbb{F})\) is upper triangular, such that
\[
P^{-1}AP = B
\]

is a Barannikov normal form, meaning the following: the entries of the column of indices \(k_\ell\) are 0 except possibly one, equal to 1, which must lie on the line of indices \(k_{m-1}\) for some \(m\) and be the only nonzero entry on this line. The normal form \(B\) is the same for every choice of \(P\) and \(V\). Clearly, \(k_\ell\) is a free critical point of \(f_{b,c}\) if and only if both the line and column of indices \(k_\ell\) of \(B\) are zero.

Equation (3.2) reads
\[
\tilde{P}A\tilde{P}^{-1} = \tilde{B};
\]

Now, \(\tilde{P}^{-1}\) and \(\tilde{P} = (\tilde{P}^{-1})^{-1}\) are block diagonal upper triangular matrices whose \(k\)th diagonal block lies in \(\text{GL}(m_{n-k}, \mathbb{F})\); therefore, by (3.3), as \(\tilde{B}\) is a Barannikov normal form for the ordering associated to \(-f\), it is the Barannikov normal form of the boundary operator of \(M_*(-f_{b,c})\), from which our result follows at once. \[\square\]

Corollary 3.9. For any excellent Morse function \(f\) quadratic at infinity, the sole free critical point of \(-f\) over \(\mathbb{F}\) is the free critical point \(\xi\) of \(f\); hence \(\gamma(f, \mathbb{F}) = f(\xi) = -(f)(\xi) = -\gamma(-f, \xi) = -\gamma(f, \mathbb{F}) = \overline{\gamma}(f, \mathbb{F})\) by Corollary 3.7 and Lemma 2.9, which proves Theorem 2.12. \[\square\]

Before we give an example where \(\gamma(f, \mathbb{Z}) > \overline{\gamma}(f, \mathbb{Z})\), here is a situation where this cannot occur:

Proposition 3.10. Assume that \(M_*(f, \mathbb{Z})\) can be put into Barannikov normal form by a basis change (3.1) of the free \(\mathbb{Z}\)-module \(M_*(f, \mathbb{Z})\):

\[
\Xi^k_\ell := \sum_{i \leq \ell} \alpha^k_{i,\ell} \xi^k_i, \quad \alpha^k_{i,\ell} \in \mathbb{Z}, \quad \alpha^k_{i,\ell} = \pm 1.
\]

Then, \(\gamma(f, \mathbb{Z}) = \overline{\gamma}(f, \mathbb{Z}) = f(\xi)\), where \(\xi\) is the sole free critical point of \(f\) over \(\mathbb{Z}\).
Proof. We are in the situation of the proof of Proposition 3.8 with \(P_k \in \text{GL}(m_k, \mathbb{Z}) \), which implies that the Barannikov normal form \(B \) of the boundary operator is the same for \(Z \) as for \(Q \); it does follow that there is a unique free critical point \(\xi \) of \(f \) over \(Z \) (the same as over \(Q \)) and that it is the unique free critical point of \(-f\) over \(Z \); moreover, the proof of Corollary 3.7 shows that \(\gamma(f, Z) = \gamma(-f, Z) = f(\xi) \). We conclude as in Corollary 3.9. \(\square \)

Now that the coefficients are in \(\mathbb{Z} \), the classical method of so called sliding handles states that, under an additional condition imposed on the index of the change of basis in (3.4), namely \(2 \leq k \leq n - 2 \), the Barannikov normal form can be realized by a gradient-like vector field for \(f \).

More precisely, let \(P : M_k(f) \to M_k(f) \) be a transformation matrix where \(P = \text{diag}(P_0, \ldots, P_n) \) with each \(P_k \in \text{GL}(m_k, \mathbb{Z}) \) such that \(P_k = \text{id} \) for \(k = 0, 1 \) or \(n - 1, n \), and \(P_k \) is upper triangular with \(\pm 1 \) in the diagonal entries for \(2 \leq k \leq n - 2 \). Then one can construct a gradient-like vector field \(V' \) such that, if the matrix of the boundary operator for a given gradient-like vector field \(V \) is \(A \), then the matrix for \(V' \) is given by \(B = P^{-1}AP \).

Roughly speaking, one modifies \(V \), each time for one \(i \leq l \), by sliding handle of the stable sphere\(^{5}\) \(S_L(\xi^k_i) \) of \(\xi^k_i \) for \(V \) such that it sweeps across the unstable sphere \(S_R(\xi^k_i) \) of \(\xi^k_i \) with indicated intersection number. In other words, \(S'_L(\xi^k_i) \) for the resulted \(V' \) is the connected sum of \(S_L(\xi^k_i) \) and the boundary of a meridian disk of \(S_R(\xi^k_i) \) described in section 4.4 of [6]. One may refer to the Basis Theorem (Theorem 7.6) in [7] for a detailed construction of \(V' \).

Remark 3.11 (on the “proof” of Corollary 3.9 in [3]). Capitanio uses the following Criterion. A critical point \(\xi \) of \(f \) is free (over \(Q \)) if and only if, for any critical point \(\eta \) incident to \(\xi \), there is a critical point \(\xi' \), incident to \(\eta \), such that

\[
|f(\xi') - f(\eta)| < |f(\xi) - f(\eta)|.
\]

where fixing a gradient-like vector field \(V \) generic for \(f \), two critical points are called incident if their algebraic number of connecting trajectories is nonzero.

Unfortunately, this is not true: one can construct a function \(f : \mathbb{R}^{2n} \to \mathbb{R}, n \geq 2 \), quadratic at infinity with Morse index \(n \), having five critical points, two of index \(n - 1 \) and three of index \(n \), whose gradient vector field \(V \) defines the Morse complex

\[
\partial \xi^n_1 = \xi^n_2 - 1, \quad \partial \xi^n_2 = \xi^n_1 - 1, \quad \partial \xi^n_3 = 0.
\]

This complex can be reformulated into

\[
\partial \xi^n_1 = (\xi^n_2 - 1 - \xi^n_1 - 1) + \xi^n_1 - 1,
\]

\[
\partial (\xi^n_2 + \xi^n_1) = (\xi^n_2 - 1 - \xi^n_1 - 1) + 2\xi^n_1 - 1,
\]

\[
\partial (\xi^n_3 + \xi^n_2) = \xi^n_1 - 1.
\]

Hence, for a change of basis

\[
\xi^n_2 \mapsto \xi^n_2 - 1 - \xi^n_1 - 1, \quad \xi^n_2 \mapsto \xi^n_2 + \xi^n_1, \quad \xi^n_3 \mapsto \xi^n_3 + \xi^n_2.
\]

\(^{5}\)The stable and unstable sphere is defined as : \(S_L(\xi^k_i) = W^s(\xi^k_i) \cap L \) and \(S_R(\xi^k_i) = W^u(\xi^k_i) \cap L \) where \(L = f^{-1}(c) \) for some \(c \in (f(\xi^k_i), f(\xi^k_i)) \).
one can construct a gradient-like vector field \(V' \) for \(f \) by sliding handles, such that
\[
\partial \xi_1^n = \xi_2^{n-1} + \xi_1^{n-1}, \quad \partial \xi_2^n = \xi_2^{n-1} + 2\xi_1^{n-1}, \quad \partial \xi_3^n = \xi_1^{n-1}.
\]

Obviously, \(\xi_3^n \) is the only free critical point, but \(\xi_2^n \) satisfies the criterion (with incidences under \(V' \)). \(\square \)

4. An example of Laudenbach

Proposition 4.1. There exists an excellent Morse function \(f : \mathbb{R}^{2n} \to \mathbb{R} \) as follows:

1. it is quadratic at infinity and the reference quadratic form has index and coindex \(n > 1 \);
2. it has exactly five critical points: three of index \(n \), one of index \(n - 1 \) and one of index \(n + 1 \);
3. its Morse complex over \(\mathbb{Z} \) is given by
 \[
 \partial \xi_1^{n-1} = 0, \quad \partial \xi_1^n = \xi_1^{n-1}, \quad \partial \xi_2^n = -2\xi_1^{n-1}, \quad \partial \xi_3^n = -\xi_1^{n-1}, \quad \partial \xi_1^{n+1} = \xi_2^n - 2\xi_3^n,
 \]
 hence, for any field \(\mathbb{F}_2 \) of characteristic 2 and any field \(\mathbb{F} \) of characteristic \(\neq 2 \),
 \[
 \gamma(f, \mathbb{Z}) = \gamma(f, \mathbb{F}_2) = \gamma(f, \mathbb{F}) = f(\xi_3^n) > f(\xi_2^n) = \gamma(f, \mathbb{F}) = \gamma(f, \mathbb{Z}).
 \]

Proof that (4.5) implies (4.6). The Morse complex of \(f \) over \(\mathbb{F}_2 \) writes
\[
\partial \xi_1^{n-1} = 0, \quad \partial \xi_1^n = \xi_1^{n-1}, \quad \partial \xi_2^n = 0, \quad \partial(\xi_3^n + \xi_1^n) = 0, \quad \partial \xi_1^{n+1} = \xi_2^n,
\]
implying that \(\xi_3^n \) is the only free critical point, hence, by Corollary 3.7,
\[
\gamma(f, \mathbb{F}_2) = \gamma(f, \mathbb{F}) = f(\xi_3^n);
\]
as \(\gamma(f, \mathbb{Z}) \geq \gamma(f, \mathbb{F}_2) \) by Proposition 2.11 and \(\gamma(f, \mathbb{Z}) \leq f(\xi_3^n) \), we do have
\[
\gamma(f, \mathbb{Z}) = f(\xi_3^n).
\]

Similarly (keeping the numbering of the critical points defined by \(f \)) the Morse complex of \(-f\) over \(\mathbb{F} \) has the Barannikov normal form
\[
\partial(-2\xi_1^{n+1}) = 0, \quad \partial \xi_3^n = -2\xi_1^{n+1}, \quad \partial(\xi_2^n + \frac{1}{2}\xi_3^n) = 0, \quad \partial(-\xi_3^n - 2\xi_2^n + \xi_1^n) = 0, \quad \partial \xi_1^{n-1} = -\xi_3^n - 2\xi_2^n + \xi_1^n,
\]
showing that the free critical point is \(\xi_2^n \); hence, by Corollary 3.7 and Proposition 3.8,
\[
\gamma(f, \mathbb{F}) = \gamma(f, \mathbb{F}) = f(\xi_2^n);\]
finally, as we have $\gamma(f, Z) \leq \gamma(f, F)$ by Proposition 2.11, and $\gamma(f, Z) \geq f(\xi^n_1)$, we should prove $\gamma(f, Z) > f(\xi^n_1)$, which is obvious since ξ^n_1 and ξ^n_{1+1} are boundaries in $M_s(-f, Z)$.

How to construct such a function f. It is easy to construct a function $f_0 : \mathbb{R}^{2n} \to \mathbb{R}$ with properties (1) and (2) required in the proposition and whose gradient vector field V_0 provides a Morse complex given by

$$\partial \xi^{n-1}_1 = 0, \quad \partial \xi^n_1 = \xi^{n-1}_1, \quad \partial \xi^n_2 = 0, \quad \partial \xi^n_3 = 0$$

$$\partial \xi_{1+1}^n = \xi^n_3.$$

For a change of basis

$$\xi^n_2 \mapsto \xi^n_2 - \xi^n_1, \quad \xi^n_3 \mapsto \xi^n_3 - 2(\xi^n_2 - \xi^n_1)$$

one can construct a gradient-like vector field V' for f_0 by sliding handles, such that

$$\partial \xi^{n-1}_1 = 0$$

$$\partial \xi^n_1 = \xi^{n-1}_1, \quad \partial \xi^n_2 = -\xi^{n-1}_1, \quad \xi^n_3 = -2\xi^{n-1}_1$$

$$\partial \xi_{1+1}^n = -2\xi^n_2 + \xi^n_3$$

Since (f_0, V') is Morse-Smale, the invariant manifolds of those critical points of the same index are disjoint, hence one can modify f_0 to f such that

- f has the same critical points of f_0;
- the ordering of critical points for f is $f(\xi^n_2) > f(\xi^n_3) > f(\xi^n_1)$;
- V' is a gradient-like vector field for f.

This can be realized by the preliminary rearrangement theorem (Theorem 4.1) in [7].

In other words, we have made a change of critical points $\xi^n_2 \leftrightarrow \xi^n_3$, hence obtain the required Morse complex in the proposition.

ACKNOWLEDGEMENTS. I wish to thank F.Laundenbach for his example which asserts the difference between minmax and maxmin in coefficients Z. And I am also grateful for the useful discussions with A.Chenciner and M.Chaperon.

REFERENCES

[1] M.-C. Arnaud. *On a theorem due to Birkhoff*. Geometric and Functional Analysis 20, 6 (2010), 1307–1316.

[2] S.A.Barannikov, *The framed Morse complex and its invariants, singularities and bifurcations*, Adv.Soviet Math. 21 Amer. Math. Soc., Providence, RI(1994),93-115

[3] G. Capitanio,*Caractérisation géométrique des solutions de minimax pour l’équation de Hamilton-Jacobi*, Enseign. Math. (2) 49 (2003), no. 1-2, 3C34.

[4] M. Chaperon, *Lois de conservation et géométrie symplectique*, C. R. Acad. Sci. Paris, t. 312, série I, p.345–384, (1991)

[5] A. Hatcher, *Algebraic Topology*, Cambridge University Press, 2002

[6] F.Laudenbach,*Homology de Morse dans la perspective de l'homologie de floer*, Mini-cours dans le cadre de la rencontre GIRAGA XIII, Yaoundé, septembre 2010

[7] J.Milnor,*Lectures on the h-cobordism theorem*, Princeton University Press, 1965
[8] G.P. Paternain, L.Polterovich, K.F. Siburg, *Boundary rigidity for Lagrangian submanifolds, non-removable intersections, and Aubry-Mather theory*, Moscow mathematical Journal, Vol 3, No.2, Apr-Jun 2003, Pages 593-619

[9] C. Viterbo, *Symplectic topology and Hamilton-Jacobi equation*, Morse Theoretic Methods in Nonlinear Analysis and in Symplectic Topology, 439–459, 2006

WEI QIAOLING, Institut de Mathématiques de Jussieu, Université Paris 7, 175 rue du chavaleret, 75013, Paris, France

E-mail address: weiqiaoling@math.jussieu.fr