Identification of individuals with non-alcoholic fatty liver disease by the diagnostic criteria for the metabolic syndrome

Masahide Hamaguchi, Noriyuki Takeda, Takao Kojima, Akihiro Ohbora, Takahiro Kato, Hiroshi Sarui, Michiaki Fukui, Chisato Nagata, Jun Takeda

Masahide Hamaguchi, Immunology Frontier Research Center at Osaka University, Osaka 5650871, Japan
Takao Kojima, Akihiro Ohbora, Takahiro Kato, Department of Gastroenterology, Murakami Memorial Hospital, Asahi University, Gifu 5008523, Japan
Noriyuki Takeda, Hiroshi Sarui, Department of Endocrinology and Metabolism, Murakami Memorial Hospital, Asahi University, Gifu 5008523, Japan
Michiaki Fukui, Department of Endocrinology and Metabolism, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto 6028566, Japan
Chisato Nagata, Department of Epidemiology and Preventive Medicine, Graduate School of Medicine, Gifu University, Gifu 5008523, Japan
Jun Takeda, Department of Diabetes and Endocrinology, Division of Molecule and Structure, Graduate School of Medicine, Gifu University, Gifu 5008523, Japan

Author contributions: Hamaguchi M and Takeda N designed research; Hamaguchi M, Kojima T, Takeda N, Ohbora A, Kato T, Sarui H, Fukui M, Nagata C and Takeda J performed research; Hamaguchi M analyzed data; and Hamaguchi M and Takeda N wrote the paper.

Supported by Young Scientists (B) (23790791) from Japan Society for the Promotion of Science
Correspondence to: Masahide Hamaguchi, MD, PhD, Immunology Frontier Research Center at Osaka University, Osaka 5650871, Japan. mhamaguchi@frontier.kyoto-u.ac.jp
Telephone: +81-6-68794275 Fax: +81-6-68794272
Received: June 2, 2012 Revised: January 6, 2012
Accepted: January 18, 2012
Published online: April 7, 2012

Abstract

AIM: To clarify the efficiency of the criterion of metabolic syndrome to detecting non-alcoholic fatty liver disease (NAFLD).

METHODS: Authors performed a cross-sectional study involving participants of a medical health checkup program including abdominal ultrasonography. This study involved 11 714 apparently healthy Japanese men and women, 18 to 83 years of age. NAFLD was defined by abdominal ultrasonography without an alcohol intake of more than 20 g/d, known liver disease, or current use of medication. The revised criteria of the National Cholesterol Education Program Adult Treatment Panel III were used to characterize the metabolic syndrome.

RESULTS: NAFLD was detected in 32.2% (95% CI: 31.0%-33.5%) of men (n = 1874 of 5811) and in 8.7% (95% CI: 8.0%-9.5%) of women (n = 514 of 5903). Among obese people, the prevalence of NAFLD was as high as 67.3% (95% CI: 64.8%-69.7%) in men and 45.8% (95% CI: 41.7%-50.0%) in women. Although NAFLD was thought of as being the liver phenotype of metabolic syndrome, the prevalence of the metabolic syndrome among subjects with NAFLD was low both in men and women. 66.8% of men and 70.4% of women with NAFLD were not diagnosed with the metabolic syndrome. 48.2% of men with NAFLD and 49.8% of women with NAFLD weren't overweight [body mass index (BMI) ≥ 25 kg/m²]. In the same way, 68.6% of men with NAFLD and 37.9% of women with NAFLD weren't satisfied with abdominal classification (≥ 90 cm for men and ≥ 80 cm for women). Next, authors defined it as positive at screening for NAFLD when participants satisfied at least one criterion of metabolic syndrome. The sensitivity of the definition “at least 1 criterion” was as good as 84.8% in men and 86.6% in women. Separating subjects by BMI, the sensitivity was higher in obese men and women than in non-obese men and women (92.3% vs 76.8% in men, 96.1% vs 77.0% in women, respectively).

CONCLUSION: Authors could determine NAFLD effectively in epidemiological study by modifying the usage of the criteria for metabolic syndrome.

© 2012 Baishideng. All rights reserved.
INTRODUCTION

Nonalcoholic fatty liver disease (NAFLD) is a common clinical condition with histological features that resemble those of alcohol-induced liver injury, but occurs in patients who do not drink an excessive amount of alcohol (ethanol > 20 g/d)[1,2]. This disease is often associated with obesity[3], type 2 diabetes mellitus[4,5], dyslipidemia[6], and hypertension[7]. Each of these abnormalities carries a cardiovascular disease risk, and together they are often categorized as the insulin resistance syndrome or the metabolic syndrome[8,9].

NAFLD is now considered to be the hepatic representation of the metabolic syndrome[10-12].

Conventional radiology studies used in the diagnosis of fatty liver include ultrasound (US), computed tomography, and magnetic resonance (MR) imaging. Other than these radiological studies, we have no sensitive and low invasive screening method for NAFLD. Alanine aminotransferase (ALT) > 30 IU/L was usually used as the cut off level of screening NAFLD[13,14]. This threshold had a sensitivity of 0.92 for detecting the fatty-fibrotic pattern proven by ultrasound among obese children[15]. However, ALT was within normal limits in 69% of those who had increased liver fat[16]. Similarly, in the Dallas Heart Study, 79% of the subjects with a fatty liver (liver fat content > 5.6%) had normal serum ALT[17]. This implies that a normal ALT does not exclude steatosis. Aspartate aminotransferase (AST) and gamma glutamyl transferase (GGT) also correlate with liver fat content independent of obesity[18], but are even less sensitive than serum ALT.

It was well known that NAFLD was associated with the metabolic syndrome and patients with NAFLD tend to be accompanied with the abnormal component of the metabolic syndrome. However, the efficiency of the criterion of metabolic syndrome for detecting NAFLD has not yet been clarified. We aimed to clarify the efficiency and perform a cross sectional study among apparent healthy Japanese.

MATERIALS AND METHODS

Study design

We performed a cross-sectional study involving partici-
Statistical analysis

The R version 2.9.0 (available from http://www.r-project.org/) was used for statistical analyses. Two groups of subjects were compared by using the unpaired t-test and the chi-square test, and a $P < 0.05$ was accepted as a significant level.

RESULTS

Basic characteristics of study population

The metabolic syndrome defined by revised NCEP-ATP III definition was detected in 15.0% (95% CI: 14.1%-16.0%) of men ($n = 873$ of 5811) and in 5.1% (95% CI: 4.5%-5.7%) of women ($n = 300$ of 5903). The metabolic syndrome defined by IDF definition was detected in 8.2% (95% CI: 7.5%-9.0%) of men ($n = 479$ of 5811) and in 4.3% (95% CI: 3.8%-4.8%) of women ($n = 254$ of 5903) (Table 1). Among obese people, the metabolic syndrome defined by revised NCEP-ATP III definition was detected in 30.7% (95% CI: 30.0%-31.4%) of men and in 27.1% (95% CI: 26.3%-27.9%) of women, respectively (Table 1).

Association of NAFLD with gender difference, or body fat accumulation

NAFLD was detected in 32.2% (95% CI: 31.0%-33.5%) of men ($n = 1874$ of 5811) and in 8.7% (95% CI: 8.0%-9.5%) of women ($n = 514$ of 5903). The prevalence of NAFLD in men was four times higher than those in women (Table 1). Among obese people, the prevalence of NAFLD was as high as 67.3% (95% CI: 64.8%-69.7%) in men and 45.8% (95% CI: 41.7%-50.0%) in women (Table 1). NAFLD was associated with body fat accumulation strongly both in men and women.

When we separated by quartile the subjects according to their BMI or abdominal circumference, half of NAFLD men and three quarters of NAFLD women were classified in the superior quartile. The prevalence of NAFLD in the superior quartile was higher in women than in men. The prevalence of individuals who met two or more of the MS criteria other than waist circumference was increased according to the increase of BMI or abdominal circumference (Figure 1B).

Men	Total n (%)	Obese n (%)	Non-obese n (%)
Number	5811	1441	4370
NAFLD	1874 (32.2)	703 (48.8)	871 (20.7)
5 criteria of the metabolic syndrome			
Increased abdominal circumference	791 (13.6)	703 (48.8)	88 (2)
Elevated fasting glucose level	1967 (33.8)	704 (48.9)	1263 (26.9)
Elevated blood pressure	1294 (22.3)	575 (39.9)	719 (16.5)
Decreased HDL cholesterol level	1736 (29.9)	654 (45.4)	1082 (24.8)
Elevated triglyceride level	1063 (18.3)	484 (33.6)	579 (13.2)
ALT > 30	1269 (21.8)	607 (46.5)	592 (14.7)
MS defined by rNCEP-ATP II	873 (15)	578 (40.1)	295 (6.8)
MS defined by IDF	479 (8.2)	443 (30.7)	36 (0.8)
At least 1 criterion	3688 (63.3)	1291 (89.6)	2397 (55.7)
At least 2 criteria	1955 (33.6)	957 (66.4)	998 (22.9)
At least 1 criterion or ALT > 30 IU/L	3885 (66.9)	1337 (92.8)	2548 (58.3)
Women			
Number	5903	563	5340
NAFLD	514 (8.7)	258 (45.8)	256 (4.8)
5 criteria of the metabolic syndrome			
Increased abdominal circumference	878 (14.9)	430 (76.4)	448 (8.4)
Elevated fasting glucose level	679 (11.5)	176 (31.3)	503 (9.4)
Elevated blood pressure	578 (9.8)	185 (32.9)	393 (7.4)
Decreased HDL cholesterol level	1320 (22.4)	265 (47.1)	1055 (19.8)
Elevated triglyceride level	195 (3.3)	73 (13)	122 (2.3)
Elevated ALT (ALT > 30 IU/L)	200 (3.4)	78 (13.9)	122 (2.3)
MS defined by rNCEP-ATP II	300 (5.1)	174 (30.9)	126 (2.4)
MS defined by IDF	254 (4.3)	162 (28.8)	92 (1.7)
At least 1 criterion	2374 (40.2)	511 (90.8)	1863 (34.9)
At least 2 criteria	853 (14.5)	353 (61.1)	498 (9.3)
At least 1 criterion or elevated ALT	2430 (41.2)	515 (91.5)	1915 (35.9)

NAFLD: Nonalcoholic fatty liver disease; US: Abdominal ultrasonography; BMI: Body mass index; HDL: High density lipoprotein; MS: Metabolic syndrome; rNCEP-ATP III: Revised National Cholesterol Education Program Adult Treatment Panel III definition; IDF: International diabetes federation definition; ALT: Alanine aminotransferase.
Figure 1 We separated the subjects by quartile according to their body mass index or abdominal circumference. A: The bar indicated the prevalence (%) of individuals with NAFLD; B: Individuals who meet two or more of the MS criteria other than waist circumference according to BMI or waist circumference quartiles. 2 MS criteria means individuals who meets two or more of the MS criteria other than waist circumference. NAFLD: Nonalcoholic fatty liver disease; BMI: Body mass index; MS: Metabolic syndrome.
Role of the criteria of the metabolic syndrome in detecting or diagnosing NAFLD in obese or non-obese population

Although NAFLD was associated with obesity or body fat accumulation strongly, the population that was neither overweight (BMI ≥ 25 kg/m\(^2\)) nor had elevated abdominal circumference was not small (Figure 2). Actually, 48.2% of men with NAFLD and 49.8% of women with NAFLD were not overweight (BMI ≥ 25 kg/m\(^2\)). Similarly, 68.6% of men with NAFLD and 37.9% of women with NAFLD did not satisfy increased abdominal circumference classification. Half of the NAFLD group was classified as non-obese, but the prevalence of NAFLD among the non-obese population was lower. These facts mean an effective method is needed to detect NAFLD among the non-obese population. Then, we separated the subjects into two groups, obese group or non-obese group, and investigated the efficacy of the criteria of metabolic syndrome for detecting NAFLD in each group.

Among the criteria for metabolic syndrome, the criterion of abdominal circumferences (≥ 80 cm) had high sensitivity (87.6%) for detecting NAFLD in women who were overweight (BMI ≥ 25 kg/m\(^2\)) (Table 2). In other words, abdominal circumference was effective for detecting NAFLD in obese women. However, the criterion of abdominal circumference had low sensitivity (36.3%) in non-obese women. The sensitivity of abdominal circumference (≥ 90 cm) was very low (5.8%) in non-obese men. Even in obese men the sensitivity was not high (55.3%). Other criteria for metabolic syndrome had higher sensitivity in obese men and women than in the non-obese population but sensitivity never exceeded 60%.

As a screening tool for NAFLD, the sensitivity of elevated ALT (ALT > 30 IU/L) was 49.7% in men, which exceeded the sensitivity of the criteria of metabolic syndrome, but it was 17.7% in women, which was lower than all metabolic syndrome criteria were. On the other hand, the specificity of elevated ALT was as high as 90.6% in men and 98.0% in women, but the criteria of metabolic syndrome had equally high specificity.

Next, we defined it as positive at screening for NAFLD

BMI (kg/m\(^2\))	Men	Women
BMI ≥ 25 kg/m\(^2\) and NAFLD	16.7%	4.4%
BMI < 25 kg/m\(^2\) and NAFLD	15.6%	4.3%
BMI < 25 kg/m\(^2\) and nonNAFLD	59.6%	86.1%
< 90 cm and NAFLD	22.1%	3.3%
< 90 cm and nonNAFLD	64.3%	81.8%

Men	Women
Waist ≥ 90 cm but nonNAFLD	3.5%
Waist ≥ 90 cm and NAFLD	10.1%
Waist < 90 cm and NAFLD	62.1%

Figure 2 This figure indicates the prevalence of non-alcoholic fatty liver disease and alcoholic fatty liver disease with or without patients being overweight (BMI ≥ 25 kg/m\(^2\)) or having elevated abdominal circumferences (≥ 90 cm for men and ≥ 80 cm for women). Data was expressed as prevalence (%). NAFLD accompanied with being overweight occurred in 51.8% of NAFLD men (970/1874) and 50.2% of NAFLD women (258/514). NAFLD accompanied by elevated abdominal circumference occurred in 31.4% of NAFLD men (588/1874) and 62.1% of women (319/514). NAFLD: Non-alcoholic fatty liver disease; BMI: Body mass index.
when participants satisfied at least one or two components of metabolic syndrome. The sensitivity of the definition “at least 1 criterion” was 84.8% in men and 86.6% in women. Separating subjects with BMI, the sensitivity was higher in obese men and women than in non-obese men and women (92.3% vs 76.8% in men, 96.1% vs 77.0% in women, respectively).

The prevalence of subjects with NAFLD who also had the metabolic syndrome is indicated in Figure 3. Although NAFLD was thought of as being the liver phenotype of metabolic syndrome, the prevalence of the metabolic syndrome among subjects with NAFLD was low both in men and women. Among men with NAFLD, 66.8% were not diagnosed with the metabolic syndrome defined by revised NCEP-ATP III definition, and 79.0% were not diagnosed with the metabolic syndrome as defined by revised IDF definition. Even in women, 70.4% and 67.5%, respectively, were not diagnosed with metabolic syndrome by revised NCEP-ATP III definition and revised IDF definition. These results mean that a large number of participants diagnosed with the metabolic syndrome have NAFLD, but a large number of participants with NAFLD were not diagnosed with the metabolic syndrome, whether we used revised NECP-ATP III criteria or IDF criteria.

DISCUSSION

In this study, we clarified the impact of the criteria of the metabolic syndrome for diagnosing NAFLD in a healthy population. The metabolic syndrome was associated with abdominal obesity and its criteria include waist circumference, and NAFLD was reported to be associated with abdominal obesity. However, our results indicated there was no significant difference between BMI and waist circumferences as the strength of association with NAFLD or the accumulation of metabolic syndrome criteria.

The presence of multiple metabolic disorders such as diabetes mellitus, obesity, dyslipidemia and hypertension is associated with a potentially progressive, severe liver disease. Previous reports demonstrated that prevalence of NAFLD increased to 10%-80% in individuals with obesity, 35%-90% in individuals with type 2 diabetes mellitus, 30%-56% in individuals with hypertension, and 26%-58% in individuals with dyslipidemia. Another study in a Japanese population showed that prevalence of NAFLD increased to 43% in individuals with impaired fasting glucose and 62% in individuals with type 2 diabetes mellitus. Some studies estimate the prevalence of NAFLD be up to 15%-30% of the general population, and the prevalence of metabolic syndrome was estimated to be up to 25% of the general population. In those patients with the metabolic syndrome, liver fat content is significantly increased up to 4-fold higher than those without the metabolic syndrome, and the incidence of NAFLD has been shown to be increased 4-fold in men and 11-fold in women with the metabolic syndrome. Our data clearly indicated that 21% to 33% of sub-
The MS was defined by revised NCEP-ATP III definition

Among subjects with NAFLD, 33.2% was diagnosed as MS, and 66.8% was not diagnosed as MS

The MS was defined by IDF definition

Among subjects with NAFLD, 21.0% was diagnosed as MS, and 79.0% was not diagnosed as MS

Figure 3 The prevalence of subjects with or without the metabolic syndrome among 1874 men and 514 women with non-alcoholic fatty liver disease. Data was expressed as prevalence (%). The metabolic syndrome (MS) was diagnosed using revised IDF. Among men with NAFLD, 66.8% and 79.0% were not diagnosed with the MS defined by revised NCEP-ATP III definition and revised IDF definition, respectively. In women, 70.4% and 67.5%, respectively, were not diagnosed with the MS by revised NCEP-ATP III definition and revised IDF definition. IDF: International Diabetes Federation; NCEP-ATP III: National Cholesterol Education Program Adult Treatment Panel III; NAFLD: Non-alcoholic fatty liver disease.

NAFLD with the MS
NAFLD without the MS

Men

Women

NAFLD with the MS
NAFLD without the MS

Among subjects with NAFLD, 33.2% was diagnosed as MS, and 66.8% was not diagnosed as MS

Among subjects with NAFLD, 29.6% was diagnosed as MS, and 70.4% was not diagnosed as MS

NAFLD with the MS
NAFLD without the MS

Men

Women

NAFLD with the MS
NAFLD without the MS

Among subjects with NAFLD, 21.0% was diagnosed as MS, and 79.0% was not diagnosed as MS

Among subjects with NAFLD, 32.5% was diagnosed as MS, and 67.5% was not diagnosed as MS

Hamaguchi M et al. Identification of NAFLD by metabolic syndrome diagnostic criteria

Subjects with NAFLD, depending on gender and the criteria used, were diagnosed with the metabolic syndrome. Several previous studies reported how many subjects with NAFLD were diagnosed with the metabolic syndrome, but almost all previous studies were hospital studies. Three population based studies mentioned the prevalence of subjects with NAFLD who were diagnosed with the metabolic syndrome among the general population. In these studies, the prevalence of the metabolic syndrome among subjects with NAFLD was 17% to 36% depending on gender and the criteria used. The reported prevalence was similar to ours.

There has been no report regarding the sensitivity and specificity of the metabolic syndrome for detecting NAFLD. Among the criteria for metabolic syndrome, the criterion of abdominal circumference had high sensitivity in obese women. However, it had low sensitivity (36.3%) in non-obese women and was very low (5.8%) in non-obese men and low (55.3%) in obese men. Other than the criterion of abdominal circumference, none of the sensitivities exceeded 60%. In our study, the specificity of elevated ALT (ALT > 30 IU/L) was 90.6% in men and 98.0% in women. However, the sensitivity was as low as 47.9% in men and 17.7% in women. The specificity of elevated ALT was significantly higher among obese subjects than among non-obese subjects, and sensitivity was higher among obese subjects than among non-obese subjects.

When we investigated the predictability of each component of metabolic syndrome such as abdominal circumference, fasting blood sugar, serum lipid, and blood pressure, each component had high specificity but low sensitivity, similar to elevated ALT. Therefore, we defined it as screening positive for NAFLD, when subjects satisfied at least one criterion of metabolic syndrome; the sensitivity was 84.8% in men and 86.6% in women. Additionally, we defined it as positive when subjects satisfied at least one criterion of metabolic syndrome or elevated ALT. The sensitivity of “at least 1 criterion or elevated ALT” was 90.4% in men and 87.4% in women. However, the specificity of “at least 1 criterion or elevated ALT” was lower -44%-63%.
The result of our study means that we could identify NAFLD effectively in epidemiological study by modifying the usage of the criteria for metabolic syndrome. It is clinically critical evidence that a large part of patients with NAFLD were not diagnosed with the metabolic syndrome, when we used today’s definition for the metabolic syndrome. However, our subject population consisted only of Japanese, thus, the generalizability of our study to non-Japanese populations is uncertain. It is one of our study limitations that we used abdominal ultrasonography for diagnosing NAFLD, although the validation ultrasonography had a sensitivity of 91.7% and a specificity of 100%.

COMMENTS

Background
It is well known that non-alcoholic fatty liver disease (NAFLD) is associated with the metabolic syndrome and patients with NAFLD tend to also have the metabolic syndrome.

Research frontiers
The impact of overlap between NAFLD and the metabolic syndrome has not been evaluated yet.

Innovations and breakthroughs
It is clinically critical evidence that a large number of patients with NAFLD were not diagnosed with the metabolic syndrome in a healthy Japanese population.

Applications
The authors could identify NAFLD effectively by modifying the usage of the criteria for metabolic syndrome.

Peer review
It is a relatively large population study. The conclusion is consistent with recent observations showing the dissociation between NAFLD and other parameters of metabolic syndrome. The readers of this journal will be interested in the findings of this study.

REFERENCES

1. Brunt EM, Janney CG, Di Bisceglie AM, Neuschwander-Tetri BA, Bacon BR. Nonalcoholic steatohepatitis: a proposal for grading and staging the histological lesions. Am J Gastroenterol 1999; 94: 2467-2474
2. Mulhall BP, Ong JP, Younossi ZM. Non-alcoholic fatty liver disease: an overview. J Gastroenterol Hepatol 2002; 17: 1136-1143
3. Bellentani S, Saccoccio G, Masotti F, Crocè LS, Brandi G, Sasso F, Cristandini G, Tiribelli C. Prevalence of and risk factors for hepatic steatosis in Northern Italy. Hepatology 2002; 35: 132-117
4. Akbar DH, Keady AH. Nonalcoholic fatty liver disease in Saudi type 2 diabetic subjects attending a medical outpatient clinic: prevalence and general characteristics. Diabet Care 2003; 26: 3351-3355
5. Gupte P, Amarapurkar D, Agal S, Baijal R, Kulshrestha P, Pramanik S, Patel N, Madan A, Amarapurkar A. Non-alcoholic steatohepatitis in type 2 diabetes mellitus. J Gastroenterol Hepatol 2004; 19: 854-858
6. Assay N, Kaita K, Mymin D, Levy C, Rossier B, Minuk G. Fatty infiltration of liver in hyperlipidemic patients. Dig Dis Sci 2000; 45: 1929-1934
7. Donati G, Stagni B, Piscaglia F, Venturioli N, Morselli-Labate AM, Rasciti L, Bolondi L. Increased prevalence of fatty liver in arterial hypertensive patients with normal liver enzymes: role of insulin resistance. Gut 2004; 53: 1020-1023
8. Hamaguchi M, Kojima T, Takeda N, Nakagawa T, Taniguchi H, Fujii K, Omatsu T, Nakajima T, Sarui H, Shimazaki M, Kato T, Okuda J, Ida K. The metabolic syndrome as a predictor of nonalcoholic fatty liver disease. Ann Intern Med 2005; 143: 722-728
9. Radu C, Grigorescu M, Crisan D, Lupsoy M, Constantin D, Dina L. Prevalence and associated risk factors of non-alcoholic fatty liver disease in hospitalized patients. J Gastrointestin Liver Dis 2008; 17: 255-260
10. McCullough AJ. The clinical features, diagnosis and natural history of nonalcoholic fatty liver disease. Clin Liver Dis 2004; 8: 521-533, viii
11. Adams LA, Angulo P. Recent concepts in non-alcoholic fatty liver disease. Diabet Med 2005; 22: 1129-1133
12. Marchesini G, Marzocchi R, Agostini F, Bugianesi E. Nonalcoholic fatty liver disease and the metabolic syndrome. Curr Opin Lipidol 2005; 16: 421-427
13. Neuschwander-Tetri BA. Nonalcoholic steatohepatitis and the metabolic syndrome. Am J Med Sci 2005; 330: 326-335
14. Lavine JE, Schwimmer JB. Nonalcoholic fatty liver disease in the pediatric population. Clin Liver Dis 2004; 8: 549-558, viii-ix
15. Marchesini G, Bugianesi E, Forlani G, Cerrelli F, Lenzi M, Manini R, Natale S, Vanni E, Villanova N, Melchionda N, Rizzetto M. Nonalcoholic fatty liver, steatohepatitis, and the metabolic syndrome. Hepatology 2003; 37: 917-923
16. Fraser A, Longnecker MP, Lawlor DA. Prevalence of elevated alanine aminotransferase among US adolescents and associated factors: NHANES 1999-2004. Gastroenterology 2007; 133: 1814-1820
17. Strauss RS, Barlow SE, Dietz WH. Prevalence of abnormal serum aminotransferase values in overweight and obese adolescents. J Pediatr 2000; 136: 727-733
18. Tazawa Y, Noguchi H, Nishinomiya F, Takada G. Serum alanine aminotransferase activity in obese children. Acta Paediatr 1997; 86: 238-241
19. Szczepaniak LS, Nurenberg P, Leonard D, Browning JD, Reingold JS, Grundy S, Hobbs HH, Dobbins RL. Magnetic resonance spectroscopy to measure hepatic triglyceride content: prevalence of hepatic steatosis in the general population. Am J Physiol Endocrinol Metab 2005; 288: E642-E648
20. Browning JD, Szczepaniak LS, Dobbins R, Nurenberg P, Horton JD, Cohen JC, Grundy SM, Hobbs HH. Prevalence of hepatic steatosis in an urban population in the United States: impact of ethnicity. Hepatology 2004; 40: 1387-1395
21. Thamer C, Tschritter O, Haap M, Shirkavand F, Machann J, Fritsche A, Schick F, Füreins H, Stumvoll M. Elevated serum GGT concentrations predict reduced insulin sensitivity and increased intrahepatic lipids. Horm Metab Res 2005; 37: 246-251
22. Expert Panel on Detection, Evaluation, and Treatment of High Blood Cholesterol in Adults. Executive Summary of The Third Report of The National Cholesterol Education Program (NCEP) Expert Panel on Detection, Evaluation, And Treatment of High Blood Cholesterol In Adults (Adult Treatment Panel III). JAMA 2001; 285: 2486-2497
23. Alberti KG, Zimmet P, Shaw J. Metabolic syndrome—a new world-wide definition. A Consensus Statement from the International Diabetes Federation. Diabet Med 2006; 23: 469-480
24. Hamaguchi M, Kojima T, Itoh Y, Harano Y, Fujii K, Nakajima T; Kato T, Takeda N, Okuda J, Ida K, Kawaihito Y, Yoshikawa T, Okane T. The severity of ultrasonographic findings in nonalcoholic fatty liver disease reflects the metabolic syndrome and visceral fat accumulation. Am J Gastroenterol 2007; 102: 2708-2715
25. Stone NJ, Bilek S, Rosenbaum S. Recent National Cholesterol Education Program Adult Treatment Panel III update: adjustments and options. Am J Cardiol 2005; 96: 53E-59E
26. World Health Organization Western Pacific Region, International Association for the Study of Obesity, International Obesity Task Force. The Asia-Pacific Perspective: Redefining Obesity and Its Treatment. Sydney: Health Com...
Marchesini G, Marzocchi R. Metabolic syndrome and NASH. Clin Liver Dis 2007; 11: 105-117.

Jimba S, Nakagami T, Takahashi M, Wakamatsu T, Hirota Y, Iwamoto Y, Wasada T. Prevalence of non-alcoholic fatty liver disease and its association with impaired glucose metabolism in Japanese adults. Diabet Med 2005; 22: 1141-1145.

Fan JG, Zhu J, Li XJ, Chen L, Lu YS, Li L, Dai F, Li F, Chen SY. Fatty liver and the metabolic syndrome among Shanghai adults. J Gastroenterol Hepatol 2005; 20: 1825-1832.

Amarapurkar DN, Hashimoto E, Lesmana LA, Sollano JD, Chen FJ, Goh KL. How common is non-alcoholic fatty liver disease in the Asia-Pacific region and are there local differences? J Gastroenterol Hepatol 2007; 22: 788-793.

Neuschwander-Tetri BA, Caldwell SH. Nonalcoholic steatohepatitis: summary of an AASLD Single Topic Conference. Hepatology 2003; 37: 1202-1219.

Bedogni G, Miglioli L, Masutti F, Tiribelli C, Marchesini G, Bellentani S. Prevalence of and risk factors for nonalcoholic fatty liver disease: the Dionysos nutrition and liver study. Hepatology 2005; 42: 44-52.

Ford ES, Giles WH, Dietz WH. Prevalence of the metabolic syndrome among US adults: findings from the third National Health and Nutrition Examination Survey. JAMA 2002; 287: 356-359.

Kotronen A, Westerbacka J, Bergholm R, Pietiläinen KH, Yki-Järvinen H. Liver fat in the metabolic syndrome. J Clin Endocrinol Metab 2007; 92: 3490-3497.

Sung KC, Ryan MC, Wilson AM. The severity of nonalcoholic fatty liver disease is associated with increased cardiovascular risk in a large cohort of non-obese Asian subjects. Atherosclerosis 2009; 203: 581-586.

Karnikowski M, Córdova C, Oliveira RJ, Karnikowski MG, Nóbrega Ode T. Non-alcoholic fatty liver disease and metabolic syndrome in Brazilian middle-aged and older adults. Sao Paulo Med J 2007; 125: 333-337.

S- Editor Gou SX L- Editor O’Neill M E- Editor Zhang DN