X-rays from the Dawn of the Modern Universe. Chandra and XMM-Newton Observations of $z > 4$ Quasars

C. Vignali

INAF - Osservatorio Astronomico di Bologna, Via Ranzani 1, 40127
Bologna, Italy

W.N. Brandt, D.P. Schneider

Department of Astronomy & Astrophysics, The Pennsylvania State University, 525 Davey Lab, University Park, PA 16802, USA

Abstract. Quasars at $z > 4$ provide direct information on the first massive structures to form in the Universe. Recent ground-based optical surveys (e.g., the Sloan Digital Sky Survey) have discovered large numbers of high-redshift quasars, increasing the number of known quasars at $z > 4$ to ≈ 500. Most of these quasars are suitable for follow-up X-ray studies. Here we review X-ray studies of the highest redshift quasars, focusing on recent advances enabled largely by the capabilities of Chandra and XMM-Newton. Overall, analyses indicate that the X-ray emission and broad-band properties of high-redshift and local quasars are reasonably similar, once luminosity effects are taken into account. Thus, despite the strong changes in large-scale environment and quasar number density that have occurred from $z \approx 0–6$, individual quasar X-ray emission regions appear to evolve relatively little.

1. Introduction

Our knowledge of the X-ray properties of quasars at $z > 4$ has advanced rapidly over the past few years. In particular, the Sloan Digital Sky Survey (SDSS; e.g., York et al. 2000) has generated large and well-defined samples of $z > 4$ quasars (e.g., Anderson et al. 2001); most of these quasars are suitable for X-ray studies. The X-ray observational strategy has comprised archival studies of high-redshift quasars with ROSAT (Kaspi, Brandt, & Schneider 2000; Vignali et al. 2001, hereafter V01), snapshot $(\approx 4–10 \text{ ks})$ observations with Chandra to define basic quasar X-ray properties such as fluxes and luminosities (e.g., V01; Brandt et al. 2002, 2003; Bechtold et al. 2003; Vignali et al. 2003a,b, hereafter V03a, V03b) and longer observations with XMM-Newton to derive either tight constraints on the X-ray emission (e.g., Brandt et al. 2001) or spectral parameters by direct X-ray fitting (Ferrero & Brinkmann 2003; Grupe et al. 2004). Chandra snapshot observations have also allowed joint spectral fitting of subsamples of quasars drawn from two main samples at $z > 4$: the optically luminous Palomar Digital Sky Survey (e.g., Djorgovski et al. 1998) and the SDSS. The X-ray spectral results provide no evidence of strong spectral evolution
in radio-quiet quasar (RQQ) X-ray emission from local samples up to \(z \approx 5 \); the spectrum at high redshift is well parameterized by a power law in the \(\approx 2–40 \) keV rest-frame band with \(\Gamma = 1.8–2 \) (V03a; V03b). Furthermore, no evidence for widespread intrinsic X-ray absorption has been found, although it seems likely that a few individual objects may be X-ray absorbed (e.g., V01; V03b). These overall results have been supported recently by direct X-ray spectroscopy of QSO 0000–263 at \(z = 4.10 \) with XMM-Newton (Ferrero & Brinkmann 2003).

The color selection of the SDSS has been proven to be effective in finding high-redshift optically luminous quasars up to \(z \approx 5.7 \) (see Fan et al. 2003 for SDSS quasars at higher redshifts). On the other hand, moderately deep Chandra observations and the ultra-deep (2 Ms) survey of the Chandra Deep Field-North (CDF-N; Alexander et al. 2003) can detect Active Galactic Nuclei (AGN) at \(z > 4 \) that are typically \(\gtrsim 10–30 \) times less luminous than the SDSS quasars (e.g., Barger et al. 2002; Silverman et al. 2002; Vignali et al. 2002, hereafter V02; Castander et al. 2003). These AGN are much more numerous and therefore more representative of the AGN population at high redshift than the rare SDSS quasars; however, their X-ray emission does not appear to contribute significantly to reionization at \(z \approx 6 \) (Barger et al. 2003). A detailed X-ray spectral analysis of the \(z > 4 \) AGN in the CDF-N is presented in V02.

Below we present some new X-ray spectral results obtained by joint spectral fitting of all the RQQs at \(z > 4 \) thus far detected by Chandra. A spectral analysis performed on a smaller but more X-ray luminous sample of \(z > 4 \) radio-loud quasars is presented by Bassett et al. (in preparation).

2. Joint X-ray Spectral Results

To define the overall X-ray properties of \(z > 4 \) RQQs, we selected all of the RQQs detected by Chandra with \(> 2 \) counts in the observed 0.5–8 keV band. The sample comprises 46 quasars with a median redshift of 4.43; the number of source counts is \(\approx 750 \). Note that these quasars represent a large fraction \((\approx 70\%) \) of the optically selected RQQs at \(z > 4 \) with X-ray detections at present.\(^1\) Although it is possible that individual objects are characterized by “peculiar” X-ray properties, our approach obtains average spectral parameters for the quasar population at \(z > 4 \) using a much larger sample than those presented in V03a and V03b. In the X-ray spectral analysis, the Cash statistic (Cash 1979) has been adopted. Our preliminary analysis shows that a power law fits the X-ray data reasonably well; the photon index in the rest-frame \(\approx 2–40 \) keV band is \(\Gamma = 1.9 \pm 0.1 \) (see Fig. 1). This is consistent with previous results obtained for RQQ samples at high redshift observed with Chandra (V03a; V03b) and XMM-Newton (Ferrero & Brinkmann 2003; Grupe et al. 2004), as well as with quasar X-ray spectral results at low and intermediate redshift (e.g., George et al. 2000; Page et al. 2003). Our analyses indicate that the X-ray spectral properties of \(z > 4 \) RQQs and local RQQs are similar; the only significant differences have been found in their broad-band properties using the

\(^1\)See http://www.astro.psu.edu/users/niel/papers/highz-xray-detected.dat for a regularly updated listing of X-ray detections and sensitive upper limits at \(z > 4 \).
X-rays from the Dawn of the Modern Universe

3

46 RQQs [z=4.0−6.3]
~750 source counts

Figure 1. Combined spectrum of $z > 4$ RQQs detected by Chandra with > 2 counts in the observed 0.5–8 keV band. The spectrum shown here (only for presentation purposes) is fitted with a power-law model and Galactic absorption (see the text for details).

SDSS Early Data Release quasar catalog (Schneider et al. 2002) and are likely due to luminosity effects (Vignali, Brandt, & Schneider 2003; see also Brandt, Schneider, & Vignali, these proceedings). Thus, despite the strong changes in large-scale environment and quasar number density that have occurred from $z \approx 0–6$, individual quasar X-ray emission regions appear to evolve relatively little. From the joint X-ray spectral fitting we also find no significant evidence for absorption above the Galactic value; the upper limit in the source rest frame is $N_H < \sim 9 \times 10^{20}$ cm$^{-2}$ (see Vignali et al., in preparation, for detailed discussion).

3. The Future

The correlation found between quasar AB magnitude at a rest-frame wavelength of 1450 Å and the observed 0.5–2 keV flux (e.g., V03b) is a powerful tool to select samples of $z > 4$ quasars suitable for follow-up X-ray observations. The combination of snapshot observations with Chandra and longer exposures with XMM-Newton should continue to be highly effective in allowing the study of the overall X-ray properties of quasars at high redshift. In the coming years, as the SDSS is completed and several thousand Chandra and XMM-Newton archival observations become available to the scientific community, our knowledge of the broad-band properties of quasars at the highest redshifts will significantly increase. However, detailed X-ray spectroscopic analyses of large samples of $z > 4$ quasars must await the more distant future and X-ray missions such as Constellation-X, XEUS, and Generation-X.
Acknowledgments. Support from the Italian Space Agency under contract ASI I/R/073/01 (CV), NASA LTSA grant NAG5-13035 (WNB, DPS), NSF CAREER award AST-9983783 (WNB), and NSF grant AST-9900703 (DPS) is gratefully acknowledged.

References

Alexander, D.M., et al. 2003, AJ, 126, 539
Anderson, S.F., et al. 2001, AJ, 122, 503
Barger, A.J., et al. 2002, AJ, 124, 1839
Barger, A.J., et al. 2003, AJ, 126, 632
Bechtold, J., et al. 2003, ApJ, 588, 119
Brandt, W.N., Guainazzi, M., Kaspi, S., Fan, X., Schneider, D.P., Strauss, M.A., Clavel, J., & Gunn, J.E. 2001, AJ, 121, 591
Brandt, W.N., et al. 2002, ApJ, 569, L5
Brandt, W.N., et al. 2003, in New X-ray Results from Clusters of Galaxies and Black Holes, ed. C. Done, E.M. Puchnarewicz, & M.J. Ward, in press (astro-ph/0212082)
Cash, W. 1979, ApJ, 228, 939
Castander, F.J., Treister, E., Maccarone, T.J., Coppi, P.S., Maza, J., Zepf, S.E., & Guzman, R. 2003, AJ, 125, 1689
Djorgovski, S.G., et al. 1998, in Wide Field Surveys in Cosmology, ed. S. Colombi, & Y. Mellier (Paris: Editions Frontieres), 89
Fan, X., et al. 2003, AJ, 125, 1649
Ferrero, E., & Brinkmann, W. 2003, A&A, 402, 465
George, I.M., Turner, T.J., Yaqoob, T., Netzer, H., Laor, A., Mushotzky, R.F., Nandra, K., & Takahashi, T. 2000, ApJ, 531, 52
Grupe, D., Mathur, S., Wilkes, B., & Elvis, M. 2004, AJ, in press (astro-ph/0310188)
Kaspi, S., Brandt, W.N., & Schneider, D.P. 2000, AJ, 119, 2031
Page, K.L., Turner, M.J.L., Reeves, J.N., O’Brien, P.T., & Sembay, S. 2003, MNRAS, 338, 1004
Schneider, D.P., et al. 2002, AJ, 123, 567
Silverman, J.D., et al. 2002, ApJ, 569, L1
Vignali, C., Brandt, W.N., Fan, X., Gunn, J.E., Kaspi, S., Schneider, D.P., & Strauss, M.A. 2001, AJ, 122, 2143 (V01)
Vignali, C., Bauer, F.E., Alexander, D.M., Brandt, W.N., Hornschemeier, A.E., Schneider, D.P., & Garmire, G.P. 2002, ApJ, 580, L105 (V02)
Vignali, C., Brandt, W.N., & Schneider, D.P. 2003, AJ, 125, 433
Vignali, C., Brandt, W.N., Schneider, D.P., Garmire, G.P., & Kaspi, S. 2003a, AJ, 125, 418 (V03a)
Vignali, C., et al. 2003b, AJ, 125, 2876 (V03b)
York, D.G., et al. 2000, AJ, 120, 1579