Research Article

High-Precision 3D Reconstruction of Cooperative Markers under Motion Blur

Yun Shi, Cong Tao, Xiaoping Wang, and Liyan Zhang

College of Mechanical and Electrical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, CO 210016, China

Correspondence should be addressed to Liyan Zhang; 870751547@qq.com

Received 21 June 2021; Revised 31 July 2021; Accepted 12 August 2021; Published 6 September 2021

Academic Editor: Balakrishnan Nagaraj

Copyright © 2021 Yun Shi et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

The application of artificial intelligence and deep learning in the fields of wireless communication, image and speech recognition, and 3D reconstruction has successfully solved some difficult modeling problems. This paper focuses on the high-precision 3D reconstruction of the motion-blurred cooperative markers, including the Chinese character coded targets (CCTs) and the noncoded circular markers. A simulation-based motion-blurred image generation model is constructed to provide sufficient samples for training the convolutional neural network to identify and match the motion-blurred CCTs on the moving object. The blurred noncoded marker matching is performed through homography. The 3D reconstruction of the markers is realized via the optimization of the spatial moving path within the exposure period. The midpoint of the moving path of the markers is taken as the final reconstruction result. The experimental results show that the 3D reconstruction accuracy of the markers with a certain motion blur effect is about 0.08 mm.

1. Introduction

Machine vision has been widely used in object positioning, pose detection, motion tracking, and 3D shape reconstruction [1–5]. However, the imaging blur effect of moving targets makes these tasks difficult.

There are two potential ways to the 3D reconstruction of motion-blurred targets: one is the reconstruction after deblurring, and the other is the reconstruction directly from the blurred images. Image deblurring is a typical inverse problem. The classic nonblind deconvolution algorithms alleviate the motion blur effect with given blur kernels such as point spread function [6] and Richardson and Lucy [7, 8]. For blind deconvolution with unknown blur kernel, Ref. [9] first used Radon transformation to estimate the blur parameters based on the spectrum information. The nonblind deconvolution is then used to recover the clear image. In [10], the gradient information of the motion-blurred image was used to determine the length and angle of the blur path. In [11], the unsaturated region was selected to estimate the blur kernel by using prior knowledge. The regularization equation was established, and the variation Bayesian was used to solve the optimal problem. In [12], the sharp boundary template was extracted from the downsampled image of the blurred image, and then, the blurred and the predicted value images were used to calculate the blur kernel. Although the above-mentioned methods can restore the motion-blurred images to some extent, the algorithms still need to make assumptions about the motion of the target or the camera. These assumptions implied the uniformity of the blur, which is usually not the case in practice.

For reducing spatially varying motion blur, Tai et al. [13] used a hybrid camera system that simultaneously captures high-resolution video at a low-frame rate together with low-resolution video at a high-frame rate. Extra information available in the hybrid camera is utilized to reformulate the correction process to achieve better deblurring effect. The optical flow method proposed in [14] calculated the spatial change. The pose data output by the gyroscope attached to
the camera was used by [15, 16] to determine the path of camera shaking and calculate the blur kernel caused by the shake. Tai et al. [17] used the coded exposure method to collect motion-blurred images, where the user estimated the homography matrix of the intermittent motion through multiple interventions.

The different depths of the image points lead to the different motion blur kernel functions, which reveal that the blurring effect is inherently related to the 3D geometry of the scene. In [18], Xu and Jia used the depth information generated by the binocular stereo image to deblur the image in any form of motion. However, this was essentially a quasi-uniform blur model with obvious ring artifacts. In [19], Lee developed a depth reconstruction method based on blur perception. Although the deblurring effect was good, the premise of the reconstruction was to know the motion path of the camera, which made it unsuitable for the 3D reconstruction of an object with unknown motion path. Hong et al. [20] achieved better motion blur removal effect in multiview images. However, they did not provide 3D reconstruction result.

Several researchers have tried to extract useful information directly from the blurred images without deblurring. In [21], a segmentation-based symmetrical stereo vision matching method was proposed to address the high matching error rates of the images with motion blur. Although this method effectively reduced the false matching rates, it was only suitable for images with slight local blurring. In [22], a motion model based on the affine transformation principle was established. This method estimated the motion blur parameters of each subregion, but it was only suitable for problems tolerating relative low accuracy. In [23], the circular coded target under the effect of motion blur was 3D reconstructed. However, the circular coded targets have a simple structure and relatively low distinguishability; therefore, they are difficult to be correctly recognized under motion blur effect. Ref. [24] proposed a set of cooperative markers which used Chinese characters as the feature target and achieved better recognition performance under motion blur effect.

For the 3D reconstruction of a high-speed moving target, the movement of the target within the exposure time cannot be ignored. The trajectory of the target during the exposure period will result in superimposed imaging, forming a certain degree of motion blur effect. Taking multiview images with motion blur effect as input, we propose an approach to 3D reconstruction of correlative markers, including both coded and noncoded ones. The remaining sections are organized as follows. Section 2 introduces the structure and the segmentation algorithm of the marker points and establishes a simulation model for the motion-blurred marker targets. Section 3 uses convolutional neural network (CNN) to match the Chinese character coded targets (CCTs) with motion blur effect. Section 4 establishes the objective function of the marker targets and provides the initial values of the parameters. Section 5 designs an experimental procedure to reconstruct the marked targets in motion. Finally, Section 6 summarizes the article.

2. The Marker Targets

The cooperative markers in this paper include the CCTs [24] and noncoded circular markers. Each of the CCTs has a unique identity and is relatively easy for establishing correspondences among the multiview images. However, the CCTs are too large to be employed for all interest points on the object. Therefore, the relative small noncoded circular markers are also utilized. The correspondences between the noncoded markers are established based on the correspondences of the CCTs.

2.1. Structure of the Markers. The structure of each Chinese character is unique. Even if a motion blur occurs, they still possess certain characteristic information. The CCTs proposed in [24] are shown in Figure 1(a), which are composed of three concentric black/white/black circles (the center of the circles is also the center of the CCTs) and a combination of different Chinese characters. The diameter of the three circles and the size of the Chinese characters are in the ratio of 1:2:3:6. We choose 100 Chinese characters as the target to be coded and use numbers 0-99 as the encoding value of the corresponding CCTs. The Chinese characters in the coded targets are different. Thus, they can be used as the target point of the unique identity characterization. The noncoded target, shown in Figure 1(b), is a square, where the positioning area is composed of a white auxiliary circle concentric with a black positioning circle. The diameter of the two circles and the square is in the ratio of 1:2:3. In different applications, the size of the markers, including the CCTs and the noncoded markers, can be scaled to fit in the range of the scene. In our experiment, the size of the marker point is set to $x = 4$ mm.

2.2. Simulation of the Motion-Blurred CCTs. We generate a large number of CCT images via soft program to provide sufficient samples for training the recognition network.

2.2.1. The Virtual Camera Method. Figure 2 illustrates a schematic diagram that defines the blur degree (intensity) σ, which can be expressed as

$$\sigma = \left| \begin{bmatrix} O^c_{\text{obj}} - O^s_{\text{obj}} \end{bmatrix} \right| / |D'_{2} - D'_{1}|, \quad (1)$$

where O^c_{obj} and O^s_{obj} are the starting and ending points of the marker’s center on the imaging plane, respectively, and D'_{1} and D'_{2} are the two intersection points.

Figure 3 shows the simulation steps of motion blur imaging. u_{oc} and x_{oc}, respectively, represent the pixel coordinate system and the image coordinate system. The camera coordinate system $O_{c}X_{c}Y_{c}Z_{c}$ and the marker coordinate system $O_{obj}X_{obj}Y_{obj}Z_{obj}$ are described by the rotation matrix R_{oc} and the translation vector t_{oc}. The point O_{obj} is translated to the point O'_{obj}, where the spatial displacement is Δt_{oc}. The new camera coordinate system $O'_{obj}X'_{obj}Y'_{obj}Z'_{obj}$ and the translated coordinate system of the marker
The smallest bounding box of the simulated images. The displacement of the marker targets is evenly discretized into \(N \) points. The rotation matrix \(\mathbf{R}_{oc}^e \) and the translation vector \(\mathbf{t}_{oc}^e \), which satisfy the process of generating the dynamic simulation segmentation image \(\mathbf{I}_{b} \) from the original image \(\mathbf{I}_{obj} \) of the marker point can be expressed as

\[
\left\{ \begin{array}{l}
\mathbf{R}_{oc} = \mathbf{R}_{oc}^1, \\
\mathbf{t}_{oc} = \mathbf{t}_{oc}^1 + \frac{i-1}{N-1} \Delta \mathbf{t}_{oc},
\end{array} \right.
\]

where \(\mathbf{I}_{b}(\mathbf{D}_{d}) \) is the gray value at \(\mathbf{D}_{d} \) in \(\mathbf{I}_{b} \), and \(\langle \rangle \) refers to the smallest bounding box of the simulated images.

The rotation matrix \(\mathbf{R}_{oc} \) is not intuitive enough. In this paper, the rotation vector \(\mathbf{r}_{oc} = [r_x, r_y, r_z]^T \) is used to represent the spatial orientation of the markers, where \(r_x, r_y, r_z \) represent the angles of the marker coordinate system rotating around the axes \(O_{obj}X_{obj}, O_{obj}Y_{obj}, \) and \(O_{obj}Z_{obj} \) in turn. In the actual measurements, the range of \(\mathbf{r}_{oc} \) is set as

\[
\mathbf{r}_{oc} = \left\{ [r_x, r_y, r_z]^T \mid r_x, r_y \in \left[-\frac{\pi}{3}, \frac{\pi}{3} \right], r_z \in [-\pi, \pi] \right\}. \tag{5}
\]

2.2.2. The Perturbation Model. The real images are affected by noise, light distribution, and light intensity. The perturbation model adds noise \(\mathbf{\eta} \), gray contrast \(\mathbf{\varphi} \), and gray increment \(\mathbf{\beta} \) to simulate these imaging factors. Hence, we assume the relationship between \(\mathbf{I}_{obj}(\mathbf{D}_{obj}) \) and the gray value \(\mathbf{I}_{img}(\mathbf{D}_{d}) \) at the corresponding point \(\mathbf{D}_{d} \) on the simulated image \(\mathbf{I}_{img} \) satisfying

\[
\mathbf{I}_{img}(\mathbf{D}_{d}) = \{ \mathbf{\varphi} \mathbf{I}_{obj}(\mathbf{D}_{obj}) + \beta \mid \mathbf{\varphi} \in [0.3,1], \beta \in [0,25] \}. \tag{6}
\]

By combining with the perturbation model (6), the virtual camera method (4) is modified to generate the CCT simulation segmentation image as

\[
\mathbf{I}_{b}(\mathbf{D}_{d}') = \left\langle \frac{1}{N} \sum_{i=1}^{N} f(\mathbf{A}_{C}, \mathbf{k}_{C1}, \mathbf{k}_{C2}, \mathbf{p}_{C1}, \mathbf{p}_{C2}, \mathbf{R}_{oc}^{i}, \mathbf{t}_{oc}^{i}), \mathbf{I}_{obj}(\mathbf{D}_{obj}), \mathbf{D}_{obj}, \mathbf{\varphi}, \beta \right\rangle + \mathbf{\eta}, \tag{7}
\]

where \(\mathbf{\eta} \) refers to the noise. Then, the parameters of the simulation model are determined to generate various motion-blurred CCTs. Figure 4 shows the simulated motion-blurred image examples with various spatial positions, directions, motion paths, blur levels, and noise levels.

3. Recognition of the Motion-Blurred CCTs

The CNN utilized for motion-blurred CCT recognition is composed of five layers: the input layer, convolutional layer (C), pooling layer (P), fully connected layer (F), and the output layer.
of the same coded target in the left and right cameras. The CCTs with the same code values are regarded as the images the rectangular boxes enclose the CCTs, and the numbers Figure 6 shows the recognition result of the CCTs, where 4.1.1. The Preliminary 3D Reconstruction of the CCTs.

obtain the initial 3D coordinates of the markers.

Figure 3: Virtual camera method to simulate motion blur imaging.

Figure 4: The motion-blurred CCTs “典” generated by simulations.

The preliminary 3D reconstruction of the noncoded targets is performed after the 3D reconstruction and optimization of the CCTs. Since we mark the optimized result of D_cinit as D_copt, the pixel coordinates D_coptl and D_coptr of D_copt on the left and right images can be expressed as

\[
\begin{align*}
D_{\text{coptr}} &= \text{project}(A_{\text{C2}}, k_{\text{C2}}, P_{\text{C2}}, R_{l}, t_{l}, D_{\text{cinit}}), \\
D_{\text{coptr}} &= \text{project}(A_{\text{C2}}, k_{\text{C2}}, P_{\text{C2}}, R_{r}, t_{r}, D_{\text{cinit}}).
\end{align*}
\]

(8)

The homography matrix \(H \) is obtained by the correspondence between the imaging plane of the left and the right camera, respectively. Divide an area on the scene shot by the binocular stereo vision system. The divided area requires a small curvature and contains at least 5 CCTs. Thus, the homography relationship can be established as

\[
D'_{l} = H_{r}^{-1}D'_{r} = H_{l}^{-1}D'_{l},
\]

(9)

where \(D'_{l} \) and \(D'_{r} \) are the pixel coordinates of the imaging point in the left and right corresponding images, \(H_{l} \) and \(H_{r} \) are the homography relationship with \(D_{l} \) and \(D_{r} \) and \(H_{l} \) is the homography between \(D_{l} \) and \(D_{r} \). The corresponding relationship between \(D_{\text{coptr}} \) and \(D_{\text{coplt}} \) can be obtained from (8) and (9) as

\[
D_{\text{coptr}} = H_{r}D_{\text{coplt}}.
\]

(10)

Use at least five sets of corresponding pixel coordinates \(D_{\text{coplt}} \) and \(D_{\text{coptr}} \) in the left and right corresponding images. According to formula (10), the homography relationship \(H_{l} \) between the left and right corresponding images is optimized. After the solution of \(H_{l} \) is completed, the center coordinates of the bounding box of the noncoded targets are obtained. The center coordinates of the noncoded markers are shown in the left image \(D_{\text{uninitl}} \) and the corresponding coordinate \(D_{\text{uninitl}} = H_{l}D_{\text{uninitl}} \) the pixel coordinates, namely, \(D_{\text{cinitl}} \) and \(D_{\text{cinitr}} \) of the center of each bounding rectangle are used to obtain the initial 3D coordinates \(D_{\text{cinit}} \) of the underlying CCT.

4.1.2. The Preliminary 3D Reconstruction of the Noncoded Targets. The preliminary 3D reconstruction of the noncoded targets is performed after the 3D reconstruction and optimization of the CCTs. Since we mark the optimized result of D_cinit as D_copt, the pixel coordinates D_coptl and D_coptr of D_copt on the left and right images can be expressed as

4. The 3D Reconstruction Based on Image Difference Minimization

In [23], Zhou et al. proposed a method to reconstruct the spatial motion path of the circular coded targets within the camera exposure time. In this paper, we investigate the 3D reconstruction of both motion-blurred CCTs and noncoded targets, including the preliminary reconstruction process and the fine-tune optimization.

4.1. The Preliminary 3D Reconstruction of Motion-Blurred Markers. The preliminary 3D reconstruction of the motion-blurred markers refers to the 3D reconstruction of the midpoint of the path within the exposure period to obtain the initial 3D coordinates of the markers.

4.1.1. The Preliminary 3D Reconstruction of the CCTs. Figure 6 shows the recognition result of the CCTs, where the rectangular boxes enclose the CCTs, and the numbers on top of them represent the code values of the CCTs. The CCTs with the same code values are regarded as the images of the same coded target in the left and right cameras.
right image. We then calculate the pixel distance between \(D'_{\text{Hr}} \) and the center coordinates of the bounding box of all noncoded targets in the right picture. Finally, we take \(D'_{\text{unitr}} \), which is nearest to \(D'_{\text{Hr}} \), as the matching point of \(D'_{\text{unil}} \).

Figure 7 shows the matching results of the noncoded targets, in which the box is the division rectangle, and the same number represents the corresponding noncoded targets after matching. When the noncoded target matching is completed, \(D'_{\text{unil}} \) and \(D'_{\text{unitr}} \) are taken as the initial values of the pixel coordinate of the noncoded targets’ positioning center, and hence, the initial 3D coordinates of the positioning center \(D_{\text{unit}} \) is obtained.

4.2. Establishment of the Objective Function. In the motion-blurred images, the markers are imaged along a 3D moving path instead of at a certain spatial point during the exposure period. Therefore, the optimization parameters in our method concern the spatial moving path of the markers.

4.2.1. Binocular System Virtual Camera Method. The virtual camera method of the binocular system is used to simulate the motion-blurred images of the CCTs on the camera-
imaging plane under high-speed motion. The process of generating the dynamic simulation segmentation images I_{bl} and I_{br} of the original image I_{obj} of the CCT in the left and right cameras can be expressed as

$$I_{bl}(D'_d) = \left\{ \frac{1}{N} \sum_{i=1}^{N} f(A_{cl}, k_{cl}, k_{c2}, P_{cl}, P_{c2}, R_{cl}^l, t_{cl}^l, t_{bl}) + \frac{i-1}{N-1} \Delta t_{bl, D_{obj}}, D_{obj}(D_{obj}), \varphi, \beta \right\},$$ \hspace{1cm} (11)

$$I_{br}(D'_d) = \left\{ \frac{1}{N} \sum_{i=1}^{N} f(A_{cl}, k_{cl}, k_{c2}, P_{cl}, P_{c2}, R_{cl}^l, R_{cl}^r, (t_{cl}^l - t_{br}) \right\} + \frac{i-1}{N-1} \Delta t_{br, D_{obj}}, D_{obj}(D_{obj}), \varphi, \beta \right\},$$ \hspace{1cm} (12)

where the noise is removed as it is not a suitable optimization parameter.

4.2.2. Optimization Goal Based on Differential Images. As in [23], we also minimize the difference between the dynamic analog segmented images and the real-shot segmented images of the markers in the left and right cameras, namely, I_{bl} and I_{br}, to fine tune the 3D reconstruction. The process is as follows:

$$\begin{cases} I_{di} = |I_{bl} - I_{br}|, \\ I_{dr} = |I_{br} - I_{bl}|, \end{cases}$$ \hspace{1cm} (13)

where $|$ ensures that the gray values of all pixels in differential images are nonnegative numbers. Here, firstly, the sizes of $I_{bl}, I_{br}, I_{d1},$ and I_{d2} have been unified to $U \times V$. Next, the optimized function F_{Δ} that minimizes the average gray value of the difference image is set as the optimization goal, which can be expressed as

$$F_{\Delta} = \left(\sum_{u=1}^{U-1} \sum_{v=0}^{V-1} I_{dl}(u, v) + \sum_{u=0}^{U-1} \sum_{v=0}^{V-1} I_{dr}(u, v) \right) / 2UV,$$ \hspace{1cm} (14)

where $I_{dl}(u, v)$ and $I_{dr}(u, v)$ represent the gray value at (u, v) of the differential image. The optimization function F_{Δ} can be expressed in terms of $R_{oc}^l, t_{oc}^l, \Delta t_{oc}, \varphi,$ and β as

$$F_{\Delta} = \text{opt}(R_{oc}^l, t_{oc}^l, \Delta t_{oc}, \varphi, \beta).$$ \hspace{1cm} (15)

4.3. Estimation of the Initial Values of the Parameters.

This subsection describes how the initial values of the optimized parameters are obtained for both CCTs and the noncoded targets. The initial values of the CCTs are obtained by improving the method in [23]. An effective method for determining the initial value of the noncoded targets is independently proposed.

(1) Determination of the Initial Values t_{oc}^l and Δt_{oc} of the CCTs. Figure 8 shows the motion relationship diagram of the CCTs, while the relationship between the camera exposure time Δt and ΔT is shown in Figure 9. Three sets of images with motion blur effect are shot under high-speed motion at equal time intervals of ΔT, where -1, 0, and 1 represent the previous frame, current frame, and the next frame in the shooting process, respectively.

For a CCT, the initial values of the 3D coordinates of the midpoint of the path within the previous, current, and the next frames are D_{cinit}^l, D_{cinit}^r, and D_{cinit}^i, which are shown by the points D_{cinit}^l, D_{cinit}^r, and D_{cinit}^i in Figure 8. Take points D_{cinit}^l and D_{cinit}^r as the midpoint D_{cinit}^i on the fitted curve. If the arc length $D_{cinit}^l D_{cinit}^r$ is used to represent the intraframe path of the current frame, the relationship can be given as

$$\frac{L_s}{L_S} = \frac{\Delta t}{2\Delta T},$$ \hspace{1cm} (16)

where L_s represents the arc length of the curve and l represents the arc length of $D_{cinit}^l D_{cinit}^r$. After calculating L_s, the spatial coordinates D_{cinit}^l and D_{cinit}^r of the points D_{cinit}^l and D_{cinit}^r can be solved. The relationships between D_{cinit}^l and D_{cinit}^r and t_{oc}^l and Δt_{oc} are as follows:

$$\begin{cases} t_{oc}^l = D_{cinit}^l, \\ \Delta t_{oc} = D_{cinit}^r - D_{cinit}^l. \end{cases}$$ \hspace{1cm} (17)

(2) Determination of the Initial Gray Image Values φ and β. To improve the initial value setting of β provided in [23], we distinguish the black background of the dynamic real-
shot segmented image and take its gray average value as β to generate the dynamic analog-segmented image. Hence, the initial value of ϕ can be calculated as

$$\phi = \sum_{u=0}^{U-1} \sum_{v=0}^{V-1} \left(I_r((u, v)) - \beta \right) \div \sum_{u=0}^{U-1} \sum_{v=0}^{V-1} I_{obj}((u, v)),$$

where I_r represents the dynamic real shot segmented image and $I_{obj}((u, v))$ and $I_r((u, v))$ represent the gray value of I_{obj} and I_r at the pixel coordinate (u, v).

(3) Determination of the Initial Space Attitude R_{oc}. We first divided r_x and r_y in r_{oc} into 10 equal parts and r_z into 50 equal parts; hence, a total of $10 \times 10 \times 50 = 5000$ combinations were obtained. We then calculated the initial value of r_{oc} using r_x, r_y, and r_z when F_{Δ} is the smallest and hence determined the initial value of R_{oc}^1.

4.3.2. Initial Values of the Noncoded Targets

(1) Determination of the Initial Values of t_{oc} and Δt_{oc}. For a rigid body moving in the 3D space, its relative pose between the beginning and the end of the motion can be described by a rotation and a translation transformation. If the rotation matrix R_{obj} represents its rotation transformation and the translation vector t_{obj} represents its translation transformation, the coordinate transformation of any point on the rigid body can be expressed as

$$P'_{obj} = R_{obj}P_{obj} + t_{obj},$$

where P_{obj} and P'_{obj} are the 3D coordinates of the point on the rigid body before and after the movement. If the midpoint and the endpoint of the intraframe path after the optimization of the CCTs are marked as D^m_{copt} and D^e_{copt}, their relation can be given as

$$D^e_{copt} = R_{obj}D^m_{copt} + t_{obj},$$

where R_{obj} and t_{obj}, respectively, represent the rotation matrix and the translation vector of the movement of the marker targets from the midpoint of the camera exposure time to the end of the camera exposure. In this paper, R_{obj} and t_{obj} are obtained by parameter fitting through the intraframe path relations of more than five CCTs. Regarding the center of the reconstructed noncoded targets, the midpoint and endpoint of the nonoptimized intraframe path are denoted as D^m_{unit} and D^e_{unit}, respectively. Their relation can be expressed as

$$D^e_{unit} = R_{obj}D^m_{unit} + t_{obj},$$

The starting point D^s_{unit} of the noncoded intraframe path without optimization is $D^s_{unit} = 2D^m_{unit} - D^e_{unit}$. Here, t_{oc}^1 and Δt_{oc} between the marker point coordinate system of the noncoded targets and the left camera coordinate system can be expressed as

$$\begin{cases} t_{oc}^1 = D^s_{unit} \\ \Delta t_{oc} = D^e_{unit} - D^s_{unit} \end{cases}$$
(2) Determination of the Initial Values of φ and β. The method for determining the initial values of φ and β of the noncoded targets is the same as that of the CCTs.

(3) Determination of the Initial Value R_{oc}^1. When determining R_{oc}^1 of the noncoded targets, r_x and r_y of R_{oc} need to be sampled at equal intervals within their value range. The parameter r_z is set to zero for the circular symmetry property of the noncoded targets. Hence, R_{oc}^1 of the noncoded targets has only $10 \times 10 = 100$ combinations.

4.4. Optimization Method and Results. We used Powell optimization to minimize F_A. Figure 10 shows the difference image during the optimization process for various iterations of the CCT “典.” The first row and the fourth row in Figure 10, respectively, represent the enlarged results of the red rectangular boxes in the second and the third rows. When the optimization is over, the difference image is nearly black, which indicates that the simulated segmented image is very close to the real segmented image. In other words, the optimization achieves good convergence.

In the final error calculation, the space coordinates of the static marker targets reconstructed by a commercial structured-light device ATOS® are assumed as the true values. Accordingly, the midpoints of the 3D moving paths of the markers are taken as the final 3D reconstruction result for the error evaluation. So far, the whole 3D reconstruction procedure of the two types of the cooperative markers with motion blur effect is completed.

5. Experiments

To validate the effectiveness of the 3D reconstruction algorithm, the multiview images of the motion target under different exposure times are captured, and the intraframe motion paths of the motion blur markers are reconstructed.

5.1. Experimental Setup. We select the rotating ceiling fan blades as the experimental object. A synchronous controller is used to control the left and right cameras to obtain the multiview images of the moving blade at 19 Hz frequency. The image resolution is 1392×1040, obtained by a Basler A102f camera.

When the fan blades are in a static state, the camera exposure time is set to 1 ms, and the binocular stereo vision system is used to obtain clear images. When the fan blade rotates at a fixed speed, the camera exposure time is set to 0.6 ms, 0.8 ms, 1.0 ms, 1.2 ms, 1.4 ms, 1.6 ms, and 1.8 ms, respectively. Then, we shoot three sets of images with motion blur effect under high-speed motion at each exposure time.

5.2. Reconstruction Results. We perform 3D reconstruction and optimization on the markers in all the images and acquired the 3D coordinates of the marker points before and after the optimization. The time-consuming steps in the optimization process mainly include the initial value search of the marker space attitude and the minimization. The average time-consuming statistics are provided in Table 1.

It can be seen from Table 1 that the average times of the two types of markers are very close for the minimization optimization. In the process of searching for the initial value of the spatial pose, the time of noncoded targets to be searched is about 1/50 of the time of the CCTs to be searched. Therefore, using the noncoded targets as the 3D reconstruction target can greatly improve the optimization efficiency.

We take the 3D coordinates of the markers reconstructed by the commercial ATOS system as the true values to measure the reconstruction accuracy. Due to the inconsistent coordinate systems between the two results, it is necessary to align the 3D points in a unique coordinate system through the best fitting function. Then, the errors of the reconstructed 3D coordinates of the markers are calculated. To validate the optimization algorithm based on the image difference minimization, the errors before and after the optimization are calculated. The results are shown in Table 2.

6. Conclusions

The 3D reconstruction error after the optimization is at least one order of magnitude lower than that of before optimization. This indicates that the optimization algorithm based on the differential image has an obvious effect on improving the accuracy of the reconstructed 3D spatial coordinates of the cooperative markers.

In the experiments, the rotating fan blade is not a rigid body due to the air perturbation, resulting in small changes in the relative position between the markers. Therefore, the actual errors of the reconstructed 3D coordinates of the markers might be smaller than the results provided in Table 2.

Data Availability

The authors declared no underlying data of this article.
Conflicts of Interest

The authors declare that there are no conflicts of interest regarding the publication of this paper.

Acknowledgments

This work was supported by the National Natural Science Foundation of China under grant no. 51575276 and no. 52075258.

References

[1] Y. Qin, Q. C. Na, F. Liu, H. B. Wu, and K. Sun, “Strain gauges position based on machine vision positioning,” Integrated Ferroelectrics, vol. 200, no. 1, pp. 191–198, 2019.
[2] H. T. Shi, G. Li, X. T. Bai, and J. Q. Huang, “Research on nonlinear control method of underactuated gantry crane based on machine vision positioning,” Symmetry, vol. 11, no. 8, 2019.
[3] M. Szydlowski, B. Powlakka, M. Matuszak, and P. Kochmanski, “Machine vision micro-milling tool wear inspection by image reconstruction and light reflectance,” Precision Engineering, vol. 44, pp. 236–244, 2016.
[4] S. Y. Wang, P. Z. Zhang, S. Y. Zhou, D. B. Wei, F. Ding, and F. K. Li, “A computer vision based machine learning approach for fatigue crack initiation sites recognition,” Computational Materials Science, vol. 171, no. 1, p. 109259, 2020.
[5] P. Chen, P. J. Wang, J. D. Wang, and Y. X. Yao, “Design and motion tracking of a strip glove based on machine vision,” Neurocomputing, vol. 288, pp. 20–29, 2018.
[6] A. Khan and H. Yin, “Arbitrarily shaped point spread function (PSF) estimation for single image blind deblurring,” The Visual Computer, vol. 5, 2020.
[7] W. H. Richardson, “Bayesian-based iterative method of image restoration,” Journal of the Optical Society of America, vol. 62, no. 1, pp. 55–59, 1972.
[8] L. B. Lucy, “An iterative technique for the rectification of observed distributions,” The Astronomical Journal, vol. 79, no. 6, pp. 745–754, 1974.
[9] M. E. Moghaddam and M. Jamzad, “Motion blur identification in noisy images using mathematical models and statistical measures,” Pattern Recognition, vol. 40, no. 7, pp. 1946–1957, 2007.
[10] A. Levin, “Blind motion deblurring using image statistics,” in Proceedings of the Advances in Neural Information Processing Systems, pp. 841–848, Whistler, B. C Canada, 2006.
[11] R. Fergus, B. Singh, A. Hertzmann, S. T. Roweis, and W. T. Freeman, “Removing camera shake from a single photograph,” ACM Transactions on Graphics, vol. 25, no. 3, pp. 787–794, 2006.
[12] M. Ben-Ezra and S. K. Nayar, “Motion deblurring using hybrid imaging,” in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 657–664, Madison, Wisconsin, USA: IEEE Computer Society Press, 2003.
[13] Y. W. Tai, H. Du, and M. S. Brown, “Image/video deblurring using a hybrid camera1–8CVPR2008.
[14] T.-B. Phan, D.-H. Trinh, D. Wolf, and C. Daul, “Optical flow-based structure-from-motion for the reconstruction of epithelial surfaces,” Pattern Recognition, vol. 105, p. 107391, 2020.
[15] S. Hee Park and M. Levoy, “Gyro-based multi-image deconvolution for removing handshake blur,” in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3366–3373, Columbus, Ohio, USA: IEEE Computer Society Press, 2014.
[16] N. Joshi, S. B. Kang, C. L. Zitnick, and R. Szeliski, “Image deblurring using inertial measurement sensors,” ACM Transactions on Graphics, vol. 29, no. 4, 2010.
[17] Y. W. Tai, N. Kong, and S. Lin, “Coded exposure imaging for projective motion deblurring2408–2415CVPR2010.
[18] L. Xu and J. Jia, “Depth-aware motion deblurring,” in Proceedings of the IEEE International Conference on Computational Photography, pp. 1–8, Seattle, WA, USA: IEEE Computer Society Press, 2012.
[19] H. Seok Lee and K. M. Lee, “Dense 3D reconstruction from severely blurred images using a single moving camera,” in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 273–280, Portland, Oregon, USA: IEEE Computer Society Press, 2013.
[20] H. Y. Hong, Y. Fan, and Z. Y. Deng, “Three-dimension deblurring algorithm for multiple observed images of moving object,” Infrared and Laser Engineering, vol. 45, no. 2, 2016.
[21] W. Wang, Y. Wang, and L. Huo, “Symmetric segment-based stereo matching of motion blurred images with illumination variations,” in Proceedings of the International Conference on Pattern Recognition, pp. 1–4, Tampa, Florida, USA: IEEE Computer Society Press, 2008.
[22] J. Gast, A. Sellent, and S. Roth, “Parametric object motion from blur,” in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1846–1854, Las Vegas, Nevada, USA: IEEE Computer Society Press, 2016.
[23] H. Zhou, M. Chen, L. Zhang, N. Ye, and C. Tao, “Measuring shape and motion of a high-speed object with designed features from motion blurred images,” Measurement, vol. 5, pp. 559–567, 2019.
[24] Y. Shi and L. Y. Zhang, “Design of Chinese character coded targets for feature point recognition under motion-blur effect,” IEEE Access, vol. 8, pp. 124467–124475, 2020.
[25] C. Bishop, Pattern Recognition and Machine Learning, Springer-Verlag Press, New York, 2006.