Assessment And Financial Analysis For Citrus (*Citrus Sinensis*)
Improvement Program In Jambi

Lutfi Izhar*, Desi Hernita¹, Salwati², Suharyono¹

¹Jambi Institute of Agriculture Technology Assessment (AIAT-Jambi), Jambi, Indonesia
²Riau Institute of Agriculture Technology Assessment (AIAT-Riau)

Jl. Kaharudin Nasution No. 341, Simpang Tiga, Bukit Raya, Pekanbaru, Riau, 28284, Indonesia
*Corresponding author: luitizhar@gmail.com

ARTICLE HISTORY
Received: 16 January 2020
Revised: 22 February 2020
Accepted: 12 April 2020

KEYWORDS
Citrus;
Assessment;
Economic Feasibility;
Institutional Farming;

ABSTRACT
The agricultural problems currently cover-up with limited land, water, infrastructure, production facilities and infrastructure, access to finance and institutions. These problems cause the quantity and quality of agricultural products to be stumpy. One effort that can eliminate these problems is through the assessment of a comprehensive, integrated agricultural development program. The objectives of this study was: (1) to determine the amount of citrus farming income, and (2) to analyze the economic and institutional feasibility of citrus farming in Bunga Tanjung Village, Betara District, west Tanjung Jabung region. This study was conducted in Bunga Tanjung Village, Betara District, West Tanjung Jabung, Jambi, from 2017-2019. Approach to the activities through coordination and program integration from the Regional Government. Efforts to increase the production of citrus plants are currently experiencing challenges due to doubtful economic viability. Data collected in this study includes primary data in the form of information from farmers and secondary data such as a profile of study area, demographics, social and economic potential data. Primary data was collected by interviewed farmers using a questionnaire. The sample was randomly determined citrus farmer population with 40 respondents. Data analysis techniques include tabulation analysis used to recognize the farmer's economic conditions and feasibility. The results of this study indicated that citrus productivity had increased continuously by applying environmentally friendly cultivation technology i.e. Fertilizing, controlling pests and diseases, removing water shoots, pruning shapes, and pruning unproductive branches. Citrus production of non-demonstration plots was 3.145 kg, and demonstration was 4.960 kg, there was an increase of 1.815 kg or 36.59% with an average of R/C ratio for demonstration plots was 2.51 while non-demonstration citrus of 2.20. This means that the cultivation of the citrus plant is feasible to continue.

This is an open access article under the CC-BY-SA license.

1. INTRODUCTION
The development of the agricultural sector is one of the key strategies for encouraging economic growth in the future because agriculture is a sector that concerns the life of Indonesian people and has a strategic role in the national economy. The strategic role can be realized through the development of agricultural areas that integrate with food supply, industrial raw materials, feed and bioenergy; labor employees; foreign exchange resources; source of income; and environmental preservation through environmentally friendly farming practices (Sulistyaningrum, et al., 2019; Sahara, et al., 2019).

The development of the horticultural subsector of agricultural areas requires support from the application of innovations to improve its global competitiveness. The Agricultural Research and Development Agency, through synchronization between Horticultural Research and Development Center and Provincial Assessment Institute for Agricultural Technology, has produced various superior innovations that are beneficial in developing a domestic horticulture subsector (Pangestuti & Supriyanto, 2011; Suharyono, et al., 2011). These innovations need to be broadly disseminated to have a real impact on the bursting performance of the horticulture subsector. In connection with this, the Indonesia Agency for Agricultural Research and Development has established a horticultural technology transfer acceleration program implemented to support the Horticulture Agribusiness Development (HAD) Program, which is also the flagship program of the Directorate General of Horticulture (Badan Litbang Pertanian, 2012).
The lesser horticulture productivity is due to crop management that has not been integrated based on from technical and non-technical aspects in the local specific area, so the government issued Minister of Agriculture Regulation No. 50 / Permentan / OT:140 / 8 / 2012 and No. 830 / Kpst / RC.040 / 12 / 2016 concerning inclusive and supervision for agricultural development areas, specifically for horticulture areas (Pusat Data dan Informasi Pertanian, 2016). The government has established Kerinci, Merangin, West Tanjung Jabung, Muaro Jambi, and Jambi City districts as horticultural commodity areas in Jambi Province (Izhar, et al., 2019).

In order to accelerate the growth of various major horticulture commodities, Jambi Provincial Government deems its necessity to spur increased production and productivity through integrated institutional cooperation between the Indonesia Agricultural Research and Development Agency (AIAT Jambi), universities and related local institutions in Jambi Province. Perceived from the existing horticulture production centers in Jambi Province. It is worthwhile to increase equitable development and as a reference for investment areas for the government and the private sector; particularly in achieving efficiency, effectiveness, and added value from investments in Horticulture crops alike citrus (Hernita, 2015; Izhar, et al., 2019).

Citrus is one of the economically important fruits in the world (FAO, 2015; González, et al., 2020) and is one out of three strategically horticultural commodities in Indonesia (Dirjenhort, 2016). Therefore, plans are needed to increase citrus production, including in Jambi Province, which is one of the citrus production centers in Indonesia. In Jambi Province, one of the citrus production centers located in Betara District, West Tanjab Regency. Efforts to increase production are currently facing challenges due to doubtful economic viability of farming, high production costs, and the potential of other commodity crops, which cause the competitiveness of citrus to be inferior (Arbainah, 2016). In Darsono (2008), there are a number of ways and measures of profitability that are commonly used, including a feasibility analysis (R/C) ratio which is a comparison between revenue and costs, which if the R/C value is greater than one indicates that the investment is quite profitable.

One indicator of the highest competitiveness for commodity is if the commodity has maximum benefits from its farming. If the profit of a commodity increase, it means that its competitiveness also increases. In order to maximize profits in the same area and season, various horticultural commodities can be planted in addition to citrus plants, such as chili, tomato, and other horticulture crops. Therefore, the problem that arises is how economic benefits viability of citrus farming?

The objectives of this study was: (1) to determine the amount of citrus farming income, and (2) to analyze the economic and institutional feasibility of citrus farming in Bunga Tanjung Village, Betara District, west Tanjung Jabung region.

2. MATERIALS AND METHODS

The study was conducted in Bunga Tanjung Village, Betara District, West Tanjung Jabung Region, Jambi Province, in 2017-2019. This study was a quantitative descriptive study to explain the economic aspects that affect citrus farming income. On-farm research by developing demonstration plot at least 2 ha were settled within citrus areas, involved at least 10 farmers each season.

Data collection includes: 1. Primary data in the form of information from farmers and related key information, as well as, 2. secondary data in the form of data on the condition of the study area, population demographics, social and economic potential, and others. Primary data were collected using a survey technique that interviewed farmers and key informants with a questionnaire guide, while secondary data were collected at relevant agencies, both at the provincial and district levels. Sampling techniques were randomly determined in the citrus farmer population in the study location of 30 farmers.

Farming economic feasibility analysis: used to see how much income and production from citrus farming produced by farmers in the village of Bungo Tanjung, West Tanjab District. Farming income can be analyzed using an analysis of costs and income. Farm receipts are multiplications between the production/yields obtained by farmers and the selling price (Darsono, 2008). The definition can be formulated as follows:

\[\text{TR} = Q \times \text{Py} \]

Where:
- \(\text{TR} \) = total revenue
- \(Q \) = production of activities
- \(\text{Py} \) = price of \(Q \)

While the number of costs for farming activities can be stated in the following formula:

\[\text{TC} = \text{FC} + \text{VC} \]

Where:
- \(\text{TC} \) = total cost
- \(\text{FC} \) = fixed costs of farming
- \(\text{VC} \) = variable costs of farming activities.

Meanwhile, to analyze farm income can be done by calculating the difference between total revenue and total costs, with the following formula:

\[\text{Pd} = \text{TR} - \text{TC} \]

Where:
- \(\text{Pd} \) = farm income
- \(\text{TR} \) = total revenue
- \(\text{TC} \) = total cost (total cost)

Economic feasibility analysis will be analyzed with the R/C ratio, which is a comparison between...
total revenues and costs, with the following formula:

\[
A = \frac{TR}{TC}
\]

Where:
\[
A = \frac{R}{C} \text{ ratio} \\
TR = \text{total revenue (total revenue)} \\
TC = \text{total cost (total cost)}
\]

Economic eligibility criteria, if:
\[\frac{R}{C} \text{ ratio} > \] then farming is said to be feasible/profitable
\[\frac{R}{C} \text{ ratio} < \] then the farm is said to be unfit/loss.
\[\frac{R}{C} \text{ ratio} = \] then farming is said to be even (no profit or loss).

3. RESULTS AND DISCUSSION

Table 1. Land use of some food and horticultural commodities in Bunga Tanjung Village, 2018.

No.	Commodities	Planted area (ha)	Harvested area (ha)	Productivity (ton)	Production (t/ha)
A	Food Crops				
1.	Corn	5	5	17.5	3.5
2.	Cassava	3	5	12.0	4.0
B	Horticulture				
1.	Long beans	2	2	6	3
2.	Chili	1	1	2	2
3.	Cucumber	1	1	4	4
4.	Eggplant	1	1	2	2
5.	Bananas	10	10	360	36
6.	Citrus	87	24	1,776	74

Land use in Bunga Tanjung Village, for food, there are only two dominant commodities, namely corn, and cassava, while for horticultural crops, there are six dominant commodities of vegetables (long beans, chilies, cucumbers, and eggplants), bananas and citrus. Citrus plants are more dominant than other plants (87 ha). In the year of 2018, from 87 hectares, only 40 ha can be harvested, the rest is ready to be planted with the age of 0-2 years. The productivity and production of food crops and horticulture in this village is still low and has the opportunity to be improved. For other food needs such as rice, the people of Bunga Tanjung Village are very dependent on the market (Arbainah, 2016).

Table 2. Land use of several plantation commodities in Bunga Tanjung Village, 2018

No.	Commodities	Planted area (ha)	Harvested area (ha)	Productivity (ton)	Production (t/ha)
1.	Coconut	210	190	190	1.0
2.	Palm oil	19	15	22.5	1.5
3.	Rubber	5	4	4.8	1.2
4.	Coffee	326	310	372	1.2
5.	Areca Nut	94	94	2.7	2.5

In addition to food crops and horticulture, the land use of Bunga Tanjung Village is dominated by estate crops, which are successively in accordance with the area: coffee plantations (326 ha), deep coconut (210 ha), areca nuts (94 ha), oil palm (19 ha) and rubber (5 ha). Farming has carried out by smallholders. The use of seedlings, in general, has not been labeled or certified. After fertilization, the crop has not carried out fertilization, even if some farmers apply fertilization is not in accordance with crop needs, this happens because of limited costs and farmers' unawareness, although it was already informed by the head of farmer group, community leaders and extension workers.

The location of the demonstration plot/demonstration area of citrus commodities was carried out at the citrus planting center in Tanjung Jabung Barat, namely Bunga Tanjung Village, Betara District. Betara District is an area of citrus development, which was started six years ago. This is in accordance with the program of the West Tanjung Jabung regency government as stipulated in the Masterplan of Agribusiness-Based Integrated Agricultural Area of
West Tanjung Jabung Regency (Hernita, et al., 2015). The area of citrus plantations in Betara District was 281 ha, and more than 100 ha are located in Bunga Tanjung

Table 3. Location of Citrus Plant Study in Bunga Tanjung Village Betara District Tanjung Jabung Barat Regency, Jambi 2015-2019

No.	Year	Number of farmers (people)	Land area (ha)	Number of plants (standing crops)
1.	2015	11	7	2,310
2.	2016	27	25	8,250
3.	2017	26	20	6,600
4.	2018	55	44	14,520
5.	2019	20	41	14,030
Total		139	137	45,710

The development of citrus plantations from year to year in Bunga Tanjung Village tends to increase, with the number of farmers involved was over the past five years 139 people, 140 hectares of land area, and the number of 31,680 citrus plants. This shows the seriousness of the local government in community empowerment and spatial planning in land use, where Betara District is a horticultural commodity development in West Tanjung Jabung Regency (Bappeda Provinsi Jambi, 2017).

Some names of cooperator farmers, land area, and the number of plants used as a pilot or demonstration plot conducted by BPTP Jambi in PKAH activities (Table 4). The selection of farmers is based on the results of coordination with the local Agriculture Institution and other relevant agencies at the district, sub-district, and village. Selected cooperative farmers have landed on the same land sections. It is hoped that the results of the assistance or demonstration plot can provide examples and lessons for group members and other citrus farmers in the surrounding areas of the activity site.

Table 4. Farmers Cooperative Demonstration Plots of Citrus Plants (PKAH Activity, Bunga Tanjung village, Betara District, West Tanjung Jabung Region, Jambi 2017-2019).

No.	Name of Farmer	Land area (Ha)	Number of plants (standing crops)	Information
1.	Ahmadi	0.25	84	Citrus plants have produced (planting 2012-2013)
2.	Murat	0.25	82	
3.	Jurni	0.25	82	
4.	Anang Fadli	0.25	82	
5.	Imroni	0.25	82	
6.	Ali	0.25	82	
7.	Asmuni	0.25	84	
8.	Haji Ambo	0.25	82	
Total		2.00	660	

The assistance method in West Tanjung Jabung Regency was carried out in the form of a 1 ha environmentally friendly citrus cultivation technology as a demonstration plot. Applied technology determination was based on the results of the baseline survey in which conducted at the beginning of the activity. Based line survey was elaborated together with the local Food Crops and Horticulture Institutions, West Tanjung Jabung region, extension group, and citrus farmers group in Betara District. The existing technology obtained from the baseline survey and directly interviewed with the group of the farmer is presented in Table 5.
Table 5. Identification of Existing Technologies for Citrus Demonstration Plots in Bunga Tanjung village, Betara District, West Tanjung Jabung Region, Jambi

No.	Existing technologies	Components
1	Varieties	Siam Banjar, planting in 2012-2013.
2	Seed and its source	Lampung, the assistance of the Local Food Crop and Horticulture Office
3	Land management	Soil is hoe - reversed - stacked - for surjan type
4	Conditions and planting systems	Plant spacing 5 x 6 m, cropping patterns: age 0-2 years intercropped with vegetables and 2 years old over monoculture citrus.
5	Fertilizing	Manure 0-20 kg/tree NPK Ponska 0.5 kg/tree. The method of administration is sown around the canopy, once/year application time, after harvest.
6	Maintenance	Weeding is done manually with a sickle/machete or small grass machine, with a systemic herbicide: King +DMA. There are and rarely do pruning and removal of branches or shoots of water. No fruit was thinning.
7	Harvest and postharvest	Fruits are generally harvested early/young for juice, a small portion harvested for fresh consumption. Harvesting is done with scissors or picked by hand

Farmer existing condition for citrus plantation, at the time of the harvest (on-season), the plants produce a lot of fruit, but the quality of the fruit is low; the size of the fruit is small, so the selling price is low. When harvesting, farmers often leave citrus fruits in trees (not harvested) because they are cheap (Astiari, et al., 2019).

Based on the above circumstances and initial survey together with institutions and other relevant agencies at the district, sub-district and village levels, results stated that the technology component was determined in the form of a package technology formula that would be used as a demonstration plot with an area of 1 ha. The technology formulation is carried out in some stages in accordance with field conditions. Applying citrus technologies simultaneously conducted by field officers and six farmers as cooperator farmers. The results at the beginning of the demonstration plot for the second year activities showed that the growth and development of citrus were performed suitable growth, shiny leaves, and more fruit, compared to citrus outside the demonstration plots.

Several activities carried out on the 2017-2019 citrus demonstration plot, which is a continuation from the previous year. Physically, the implementation of activities starts from land clearing, pruning unproductive branches (Budiarto, et al., 2019), making fertilizer and vegetable pesticides as well as direct application to plants (Table 6). Indonesian citrus farmers, especially in Jambi Province, have been cultivating citrus for a long time but still rely on conventional fertilization. They are spreading fertilizer around the citrus plant and flush the water around it. This process of fertilization and irrigation needs more fertilizer and high cost because of its need for many labors to do it. Watering and fertilizing systems for citrus plants carried out by citrus farmers in Indonesia are still conventional. It was wasteful in using fertilizers and irrigation, which only 60 percent of efficiency. The process of applying fertilizer and watering also requires workers thus the farmer need more money to pay the workers (Widiastuti, et al., 2019).
Table 6. Activities of the citrus demonstration plot Desa Bunga Tanjung, Betara, West Tanjung Jabung, Jambi FY 2017-2019 (Wet and Dry Season).

No.	Time Schedule	Application for innovation technologies package
1.	October-November 2015: Pruning	Application of manure and compost coffee waste with a dose of 40 kg/tree
2.	November: Application of organic fertilizer and liming	Application of 1 kg lime/tree
3.	December-January: Application of supplementary fertilizers (Urea, Rock Phosphate and KCl and NPK)	Application of urea, rock phosphate and KCl fertilizers with a dose of 1.7 kg, 1.4 kg and 1 kg/tree, respectively, 2 times
4.	March-July: Harvesting time	Harvesting is carried out several times in accordance with the conditions of fruit maturity. After the harvest, fruits are transported to the warehouse; then, the selection is made according to market demand.
5.	Mei-June: Land Clearing	Land clearing includes excess water drainage ditches, land edges and around plants
6.	September: Apply organic fertilizers	Application of manure and compost coffee waste with a dose of 40 kg/tree
7.	October: Apply NPK Mutiara Chemical Fertilizers	Application of fertilizer in a circle parallel to the canopy of 1 kg/tree on each plant, the application is the same as the place of organic fertilizer, then covered with soil.
8.	September: Placing of fruit and ladybug traps	Yellow methylate glue traps, methyl eugenol and Organic pesticides.
9.	July-December: Pruning branches and shoots water	Pruning branches and unproductive shoots
10.	November - December	Land clearing includes excess water drainage ditches, land edges, and around plants during the rainy season.

Citrus Farming Income

Finding out the benefits of citrus cultivation, an economic analysis of farming was conducted from two technologies studied, namely, the citrus plant which was used as a demonstration plot involving four cooperative farmers with an area of 1 ha of plants (Table 4) and non-demonstration plants were still members of farmer groups and in the same spread flat areas with the number of 21 farmers, for details are presented in Table 7.
Table 7. Analysis of the demonstration plot (D) and non-demonstration plot (ND), Desa Bunga Tanjung, Betara District. West Tanjung Jabung

No	Components	Bundles	Volume	Items prices (Rp)	Value (Rp)		
			D	ND			
1.	Fertilizer						
a.	NPK Mutiara	Kg	300	12,000	3,600,000		
b.	NPK Ponska	Kg	100	3,500	350,000		
c.	Dolomite	Kg	300	500	150,000		
d.	Organic Fertilizers	Kg	3,000	1,500	1,000	3,000,000	1,500,000
2.	Pesticides						
a.	Liquid	Bottle	2	30,000	60,000		
b.	Solid (bordo melted concrete)	Kg	2	64,000	120,000		
c.	Trap (Fruit Flies and lady-bug)	Package	1	450,000	450,000		
3.	Labour						
a.	land clearing	Working day	45	25	100,000	4,500,000	2,500,000
b.	Applied Fertilizer	Working day	15	5	100,000	1,500,000	500,000
c.	Pruning	Working day	10	2	100,000	1,000,000	200,000
d.	Pest/Disease	Working day	8	2	100,000	800,000	200,000
e.	Harvest	Working day	63	48	100,000	6,300,000	4,800,000
f.	Post Harvest	Working day	2	2	100,000	200,000	200,000
g.	Distribution	Working day	10	5	100,000	1,000,000	500,000
	Total Cost		153	89	18,803,000	8,585,000	
4.	Productions						
a.	Amount	Kg	4,960	3,145			
b.	Prices	Rp	9,500	6,000			
5.	Income	Rp	47,120	18,870	10,285,000	2.20	
6.	Net Income	Rp	28,317	10,285	2.20		

Analysis of farming conducted on demonstration plots and non-demonstration plots. For the demonstration plot, the total cost of plant production facilities and labor costs reached Rp18,803,000 - in one year consisting of expenses for the purchase of organic and inorganic fertilizers, pesticides, and labor. While the non-demonstration citrus is farming total expenditure of Rp8,585,000 - in one year, consisting of expenses for the purchase of organic and inorganic fertilizers, pesticides, and labor. Both of these farms are the same, only distinguishes by the amount and type of fertilizers and pesticides used. In the demonstration plot, the amount of fertilizer used both chemically and organically is relatively more than in the non-demonstration plot; this affects the outpouring of labor so that the labor force on the demonstration plot is more than the non-demonstration labor force.

The use of organic fertilizers, inorganic fertilizers, pesticides and plant maintenance such as pruning unproductive branches, dead branches, and removal of water shoots and installing fruit fly and ladybug trapping devices are very influential on the growth and yield of citrus, even though the need for an outpouring of energy relatively more work than non-demonstration citrus farming. Production of citrus in the demonstration plot was 4,960 kg, while non- demonstration plots were 3,145 kg per hectare in a year. Demplot citrus production was higher 1,815 kg or increase 36.9% compared to citrus production in non demonstration plot areas.

Citrus harvest requires a relatively long time period, from the first harvest time to the next harvest. In the demonstration plot, there were seven harvesting times with intervals of 4-6 days, while in non-demonstration citrus plants, only four times, this happened because in general farmers harvest young citrus type for juice (Hernita et al., 2015).

During the harvest time, the selling price of citrus ranges from Rp7,500 up to Rp12,500 with an average selling price during the harvest of Rp9,500, while young citrus or citrus juice was sold at Rp5,000, up to Rp7,500, or with an average selling price of Rp6,000. So that the demonstration plot obtained bruto income of Rp47,120,000, - after the costs of production facilities and labor costs were incurred, the farmer's income was Rp28,317,000 per hectare per year or with an R/C ratio.
of 2.51 and a B/C ratio of 1.51 while the non-demonstration plot farmers received from the sale of Rp18,870,000, - after the costs of production facilities and labor costs were incurred, the net income of Rp10.285,000, - with an R/C ratio of 2.20 and a B/C ratio of 1.20. The technology implemented in citrus demonstration plots is feasible to be developed, especially in tidal land or in the same agroecosystem because of the R/C ratio and B/C ratio > 1.

Based on economical analysis above, The local government should pay more attention to the centers of citrus production by facilitating farmers in form of latest technology information such as the use of seeds with superior varieties, connecting the relationship between farmers and banks, and optimizing the IPM SL program in farmer groups so the farmers can solve problems that often occur such as controlling high attack of plant pests (Aji, at al., 2019).

4. CONCLUSION

1. The horticulture assistance program for citrus in Jambi Province plays a major role in the dissemination of research technology to farmers as technology users; assistance can improve farmers’ skills so that they can improve their farming of citrus.

2. Citrus productivity increases by applying environmentally friendly cultivation technology by fertilizing, controlling pests and diseases, removing water/unproductive shoots, pruning shapes, and pruning branches that are not beneficial for the crop. Production of non demonstration plot citrus 3,145 kg and demonstration of 4,960 kg, there was an increase of 1,815 kg or 36.59%, with an R/C ratio of the demonstration plot 2.51 and B/C ratio of 1.51 while the non demonstration plot R/C ratio of 2.20 and B/C ratio 1.20.

3. The Study on the Development of Citrus Agribusiness Areas has received support from the Local Agriculture Office and other relevant agencies by synergizing activities in each region.

ACKNOWLEDGMENT

The authors would like to express our special thanks of gratitude to the head of the Jambi Assessment Institute for agricultural technology and The Head of Indonesia Agency for Agricultural Research and Development who funded this research. We would like to express our profuse thanks to the head of local government institutions for Food Crops and Horticulture in West Tanjung Jabung Region. Thanks to all those who involved and closely collaborated in this research activity especially to the head and extension work in the Batara sub-district and entirely cooperative farmers.

REFERENCES
Sahara, A., Daryanto, R., Nugrahapsari, A., Perkasa, H., Reardon, T., & Stringer, R. (2019). Improving market integration for high value fruit and vegetable production systems in Indonesia. Australian Centre for International Agricultural Research (ACIAR) project. Final report: 52 P.

Suhariyono, Hardiyanto, & Supriyanto, A. (2011). Kesiapan Benih Sumber Keprok Soe Mendukung Rehabilitasi Kawasan Agribisnis Jeruk di Nusa Tenggara Timur. Prosiding Workshop Rencana Aksi Rehabilitasi Agribisnis Jeruk Keprok SoE yang Berkelanjutan untuk Substitusi Impor di Nusa Tenggara Timur, Halaman 79-84. Badan Litbang Pertanian, Dirjend Hortikultura dan ACIAR.

Sulistyaningrum, A., Hilman, Y., Devy, N. F., & Sastro, Y. (2019, December). Acceleration of dissemination of Mandarin Citrus (Cv. Batu 55) superior variety in supporting import substitution. In IOP Conference Series: Earth and Environmental Science, 399(1), p. 012120). IOP Publishing.

Widiastuti, I., & Purnomo, F. E. (2019, December). Fertilizer and water efficiency in citrus plants using fertilizer irrigation mobile control. In Proceeding of the International Conference on Food and Agriculture, 2 (1).