Review Article

J. Sundari, S. Amuthalakshmi*, and C.N. Nalini

Review on analytical methods for quantification of ADHD drugs in human biological samples

DOI: 10.1515/revac-2020-0114
Received June 13, 2020; accepted September 08, 2020

Abstract: Attention deficit hyperactivity disorder (ADHD) is a common neuro-developmental disorder. The symptoms of ADHD include difficulty in attention, memory and impulse control. Many pharmaceutical formulations (stimulants and non-stimulants) are available on the market to treat ADHD symptoms. The most commonly used drugs for treatment are amphetamine, methylphenidate, atomoxetine, bupropion, guanfacine and clonidine. In the field of pharmaceuticals, bioanalysis is an important tool used for the quantification of drugs and their metabolites present in biological samples using various analytical methods. Although a number of analytical methods were reported for the quantification of these drugs in biological samples of experimental animals, due to species differences, it is important to develop analytical methods to quantify these drugs in human biological samples to aid forensic and pharmacokinetic studies. In this review, we compile the bio-analytical methods such as spectrophotometry, spectrofluorimetry, mass spectrometry, electrophoresis, liquid chromatography and gas chromatography used for the quantification of ADHD drugs in human biological samples such as blood, plasma, serum, oral fluids, sweat, hair and urine based on earlier published articles from various journals.

Keywords: ADHD, stimulants, non-stimulants, bioanalysis

1 Introduction

Attention deficit hyperactivity disorder (ADHD) is a psychiatric condition and neuro-developmental disorder typically seen in children, with symptoms including lack of attention, impulsiveness and hyperactivity [1,2]. Worldwide, 8%-12% of children [3] and 2.5% of adults are affected by ADHD [4] and the cause of this disorder is still not clear [5]. Students with this disorder have poor memory and attention, leading to poor academic achievement [6,7] and also affecting their daily activities [8]. Several genetically related studies were conducted in children and adults to explore the genetic risk factors contributing to ADHD [9,10]. Brain imaging studies can assist with ADHD diagnoses, allowing changes in the structure, function and distribution patterns of the brain to be elucidated [11]. Biomarkers can be used for improving the diagnosis and prevention of central nervous system disorders. Some of the important groups of biomarkers were studied for diagnosis of ADHD and its subtypes [12]. Quantitative electro-encephalography (QEEG) measurement of the theta/beta ratio (TBR) is an important tool for ADHD diagnosis with good sensitivity, selectivity and reliability [13,14]. For treatment, approved drugs include both stimulants and non-stimulants at various doses and in various dosage forms. In the class of stimulants, derivatives of amphetamine (AMP) and methylphenidate (MPH) formulations are the most important first line drugs. These drugs have high efficacy. Initially, AMP and MPH increase the central dopaminergic and noradrenergic activity. Due to the specific cellular mechanism of action of AMP and MPH, they can be used to treat depression and anxiety as well as ADHD. In the class of non-stimulants, atomoxetine (ATX) - the selective noradrenaline reuptake inhibitor, bupropion (BUP) - the norepinephrine and dopamine reuptake inhibitor and guanfacine (GNF) and clonidine (CLN) – both selective α2-adrenergic receptor agonists are used to treat ADHD [15-24]. Non-pharmacological treatment including counselling, proper diet maintenance, behavioural parenting and classroom-based interventions may also be useful for the management of ADHD [25].

Bioanalysis is described as qualitative and quantitative measurement of drugs and their metabolites present in biological samples such as blood, plasma, serum, saliva, cerebrospinal fluid, breath, sweat, hair and urine. Bioanalysis can elucidate the pharmacokinetics and toxico-kinetics of drugs and can lead to further understanding of the applications of the drugs in clinical,
forensic and bioequivalence studies [26,27]. The steps involved in bioanalysis are sample collection, sample preparation and sample analysis [28]. From this, sample preparation is considered one of the most important steps as it removes interferences and pre-concentrates the analytes of interest to achieve good accuracy and precision. The most important methods for sample preparation include liquid-liquid extraction (LLE), protein precipitation (PP) and solid phase extraction (SPE) [29]. Commonly, after a sample preparation procedure, high performance liquid chromatography coupled with tandem mass spectroscopy [30] is used for detection and quantification of drugs in biological samples.

In this present study, we mainly focussed on analytical methods for the determination of six pharmaceutically important drugs used to treat ADHD i.e., AMP, MPH, ATX, BUP, GNF, and CLN in human biological samples.

2 Chemistry and physio-chemical properties of ADHD drugs

2.1 AMP

AMP belongs to the ‘β-phenylethylamines’ class of drugs. Its chemical formula is C_{9}H_{13}N and molecular weight is 135.21 g/mol [31]. It is a weak basic, synthetic drug, existing in two forms, free base form and salt form i.e., AMP hydrochloride (HCl). AMP in its salt form is highly water soluble whereas AMP in its base form shows less solubility in water. It is a chiral drug existing in two enantiomeric forms, S (+)-AMP and R (-)-AMP, respectively [32]. Vree et al. determined the pKa and partition co-efficient (P) values of some AMP like drugs (ethylamphetamine, methamphetamine, etc.). The pKa value of phenylethylamine was 9.88 and ‘P’ values were 20.8 (chloroform in water) and 0.277 (heptane in water), respectively [33]. AMP showed UV absorbance at 287 nm using n-hexane as the solvent [34]. The mass spectrum of AMP showed ion peaks at mass to charge (m/z) ratios of 91, 119, and 136 [35].

2.2 MPH

MPH is a solid crystalline drug with a systematic name of methyl-2-phenyl2-(piperdin-2-yl) acetate. Its molecular formula is C_{14}H_{19}NO, molecular mass is 233.31 g/mol, boiling point is 136°C and melting point is 74°C. The molecule contains 1 hydrogen (H) bond donor, 3 H bond acceptors and 4 rotatable bonds, and fully complies with Lipinski’s rules. The molecule also has two stereo-centres that generate 4 possible configurational isomers. These isomers are divided into two pairs of enantiomers, erythro (2R, 2’R, and 2S, 2’S) and threo (2R, 2’S, and 2S, 2’R) [36]. MPH is soluble in ethyl acetate, ether, etc., and insoluble in water [37]. MPH shows UV-Visible absorbance at 510 nm (sulphanilic acid as the reagent and water as the solvent) and 610 nm (potassium permanganate as the reagent and water as the solvent) [38]. The mass spectrum of MPH showed ion peaks at m/z 56.1 and 84.2 and a precursor ion at 234.1, respectively [39].

2.3 ATX

The chemical name of ATX is (R)-N-methyl-3-phenyl-3-(o-toloyloxy)-propylamine. The salt form of ATX is ATX. HCl, the molecular formula is C_{17}H_{21}NO. HCl and the molecular weight is 291.82 g/mol [40,41]. ATX. HCl is a white solid with a solubility of 27.8 mg/mL in water, a melting point of 167°C and a dissociation constant (pKa) of 10.13. ATX is marketed as the R (−) isomer which is more potent than the S (+) isomer [42]. ATX. HCl shows a UV absorbance at 270 nm using double distilled water as the solvent [43]. The mass spectrum of ATX showed ion peaks at m/z 44 and 256 [44].

2.4 BUP

BUP. HCl is the salt form of BUP. It is a white crystalline, weak basic drug with a chemical name of (±)-2-(tert-butylamino)-3´-chloropropiophenone hydrochloride. Its molecular formula is C_{13}H_{18}ClNO. HCl, molecular weight is 239. 74 g/mol, boiling point is 334.8°C and melting point is 233°C. It belongs to the ‘aminoketones’ class of drugs with a pKa of 7.9. BUP has a single chiral centre, giving rise to two enantiomeric forms i.e., (+)-BUP and (-) BUP. The solubility of BUP. HCl at room temperature is 312 mg/mL in water, 193 mg/mL in alcohol and 333 mg/mL in 0.1 N HCl [45,46]. BUP. HCl showed a UV absorbance at 270 nm using 0.1 N HCl as the solvent [47]. The mass spectrum of BUP showed ion peaks at m/z 166, 184, and 240 [48].

2.5 GNF

GNF is a phenylacetyl guanidine with a chemical name of N-amidino-Z(2,6-dichlorophenyl)- acetamide. GNF. HCl is a white or off-white, odourless, crystalline, achiral drug. It has a molecular formula of C_{9}H_{19}Cl,N,O.
HCl, molecular weight of 282.5 g/mol and melting point of 226°C. The solubility of GNF. HCl is 0.163 mg/mL in water, 0.420 mg/mL in 0.1 N HCl, 1.265 mg/mL in acetate buffer (pH 4.5), and 1.302 mg/mL in phosphate buffer (pH 6.8) [49,50]. The mass spectrum of GNF showed ion peaks at m/z 60 and 246 [51].

2.6 CLN

CLN. HCl is an imidazoline derivative with a chemical name of 2- (2,6-dichlorophenylimino) imidazolidine hydrochloride and chemical formula of C_{9}H_{9}Cl_{2}N_{3}. HCl. It is a white crystalline powder with a bitter taste and is soluble in 13 parts of water, absolute ethanol, slightly soluble in chloroform and insoluble in ether. The molecular weight is 230.10 g/mol for CLN and 266.6 g/mol for CLN. HCl. The melting point of CLN is 130°C and 305°C for CLN. HCl. The drug is stable in light, air and at room temperature [52]. CLN. HCl shows UV absorbance at 418 nm (thymol blue as the reagent and water as the solvent) and 448 nm (bromophenol blue as the reagent and distilled water as the solvent) [53]. In the mass spectrum, the ions of CLN. HCl showed peaks at m/z 44 and 230 [54].

3 Biomedical Methods for Determination of ADHD Drugs in Human Biological Samples

3.1 Spectrophotometry

Spectrophotometry is a routinely used instrumental technique in scientific research. It is used for the quantitative measurement of drugs present in sample solutions by measuring the intensity of light (electromagnetic radiation) which is absorbed by the chemical substance [55]. Wallace et al. developed a spectrophotometric method for the determination of AMP in oxalated blood, serum, urine and homogenized tissues. The AMP present in biological samples at different concentrations may weakly absorb ultra-violet (UV) radiation during analysis and it was not possible to analyse the drug directly by using a UV spectrophotometer. Thus, selection of suitable solvents was required for analysis. In the study, AMP in biological samples was extracted by LLE using n-hexane as the extracting solvent and the drug was analysed from 250 nm to 360 nm. AMP showed its maximum absorbance (λ_{max}) at 287 nm and the limit of detection (LOD) was found to be 0.5 µg/mL [34].

3.2 Spectrofluorimetry

Spectrofluorimetry is an emission spectroscopy technique. It is used for the quantitative measurement of drugs present in sample solutions by measuring the fluorescence intensity emitted from the excited compound at a certain wavelength [58]. Mauñ-Aucejo et al. optimised the conditions for determination of AMP in urine samples by fluorimetry using batch and flow injection methods with on-line extraction. Drugs in the biological sample were extracted by LLE using diethyl ether as the solvent. The excitation and emission wavelengths were found to be 260 nm and 277 nm, respectively. The method showed good recovery and reproducibility [59].

Omar et al. determined some anti-depressant drugs from pharmaceutical dosage form and human serum using spectrofluorimetry. In the study, the drug BUP. HCl was reacted with 5-(dimethylamino) naphthalene-1-sulfonyl chloride (dansyl chloride) in the presence of 0.5 M sodium carbonate and formed a fluorescent compound. The excitation and emission wavelengths of this fluorescent compound were 347 nm and 450 nm, respectively. The proposed method was simple, sensitive and cost effective [60].

Wahbi et al. developed a spectrofluorometric method for the quantification of GNF. HCl in spiked human serum
and urine samples. The analyte in the biological samples was extracted using chloroform as an extraction solvent at basic pH and the concentration was measured by a calibration-curve method. In the study, the analyte in an aqueous potassium hydroxide solution was reacted with benzoin in the presence of β-mercaptoethanol and sodium sulphite to form a highly fluorescent compound. The excitation and emission wavelengths of this fluorescent compound were 325 nm and 435 nm, respectively. The reported method was simple, accurate, selective and sensitive [61]. There is no reported spectrofluorometric method for the determination of MPH, ATX and CLN in human biological samples.

3.3 Mass spectrometry (MS)

MS is used to measure the m/z ratio of charged particles. Different types of ion source are used to ionize chemical compounds for the generation of charged molecules or molecule fragments. Based on their m/z ratios, the ions are analysed by mass analysers. MS has become the instrument of choice in analytical chemistry and forensic science [62]. Among the six ADHD drugs, MS methods are reported for only two drugs i.e., AMP and MPH for the quantification from human biological samples. Habib et al. developed a sensitive MS method for the determination of AMP extracted from human urine samples. The analyte was alkali treated and ionised using a headspace dielectric barrier discharge (DBD) ionization method. The ions were detected by ion trap detector and the m/z of AMP was found to be 136. The proposed method was validated and the LOD was found to be 0.05 ng/mL [63].

Yang et al. developed a simple MS method for the quantification of MPH extracted from human urine samples using MPH-D3 as the internal standard (IS). The analyte in urine samples was extracted by LLE and subjected to analysis. Electrospray ionization (ESI) with a polymer microchip was used as the ion source to ionize the analyte and IS. The ions were analysed using a triple quadrupole and detected using selected reaction monitoring (SRM) mode. Ions were found at m/z 84 and 234 for the analyte and 84 and 237 for the IS, respectively [64].

Hudson et al. analysed a number of basic and neutral drugs in whole blood samples using capillary zone electrophoresis (CZE). The relative migration of the drugs AMP, MPH, BUP and CLN was recorded at both pH 2.5 and 9.5. The experiment was carried out using a fused-silica capillary (60 cm × 50 µm) with 100 mM/L phosphate as the running buffer. The separation voltage was set to 20 or 25 kV and the temperature was set at 20°C or 25°C. The analytes were detected by UV detector at wavelength of 200 nm [69].

3.4 Hyphenated techniques

Hyphenated techniques are the combination of one or more techniques and can be used to detect drugs present in samples with good sensitivity and selectivity. Here, we summarize some reported hyphenated methods such as electrophoresis, liquid chromatography and gas chromatography for the determination of six ADHD drugs extracted from various human biological samples.

3.4.1 Electrophoresis

Electrophoresis is defined as migration of charged ions in an electric field. It is a separation method and the rate of migration is dependent on factors such as net charge, size, shape of the molecule, buffer pH and applied electric current [66]. Capillary electrophoresis (CE) is one important analytical method used for the determination of ADHD drugs in human biological samples using different detectors [67]. Meng et al. developed a sensitive and reproducible micellar CE method for the determination of trace levels of AMP present in human hair. The experiment was carried out using an uncoated fused-silica capillary (60.2 cm × 75 µm) with 25 mM sodium dodecyl sulfate in 100 mM phosphate buffer (pH 2.9) and 20% (v/v) of methanol (organic additive) as a running buffer for separation. A negative voltage (-18 kV) was applied for good separation. AMP was detected using a UV detector at wavelength of 200 nm. The proposed method was validated and the LOD was 0.05 µg/mL [68].

Hudson et al. analysed a number of basic and neutral drugs in whole blood samples using capillary zone electrophoresis (CZE). The relative migration of the drugs AMP, MPH, BUP and CLN was recorded at both pH 2.5 and 9.5. The experiment was carried out using a fused-silica capillary (60 cm × 50 µm) with 100 mM/L phosphate as the running buffer. The separation voltage was set to 20 or 25 kV and the temperature was set at 20°C or 25°C. The analytes were detected by UV detector at 200 nm [69].

Hyotyläinen et al. compared two methods for the determination of AMP in human serum and urine samples. The experiment was carried out using capillaries (67 cm × 50 µm) with 0.1 M tricine (pH 8.5) and 0.05 M glycine and 0.05 M sodium dodecyl sulfate (pH 10.5) as the running buffer. The separation voltage was set to 25 kV for quantification and the temperature was maintained
at 20°C. The analyte was detected by UV detector at 220 nm. In the study, micellar electrokinetic capillary chromatography showed good separation and had greater applications than CZE [70].

Boatto et al. developed a CE method for determination of AMP in human whole blood samples using a photo diode array detector (DAD). The drug was extracted from the biological sample using a PP extraction with acetonitrile. The experiment was carried out using an uncoated fused-silica capillary (50 cm × 50 µm) with 100 mM phosphate buffer (pH 2.5) as the running solution. The separation voltage and the temperature were set to 10 kV and 25°C, respectively. The detection wavelength was set at 200 nm and the AMP peak was obtained at 5.3 min. This method was simple and effective [71].

Hercegova et al. developed a capillary isotachophoresis method for the quantification of CLN and another three drugs in control serum and human urine samples. The drugs were extracted from biological samples by both PP using methanol and SPE and were analysed. The separation was carried out in an analytical column (80 × 0.3 mm) using a cationic electrolytic system (10 mM sodium acetate buffer, pH 4.64 and 10 mM β-alanine). The analytes were analysed by an isotachophoretic analyser with a conductivity detector. The method showed good recovery in the range of 87-99% [72].

Boatto et al. developed a simple and validated CE-MS method for the quantification of derivatives of AMP in human urine samples. The derivatives of AMP were extracted from urine samples by SPE. The experiment was carried out using an uncoated fused-silica capillary (120 cm × 75 µm) with 50 mM ammonium acetate with acetic acid (pH 4.5) as a running buffer and the separation voltage was set at 25 kV. ESI was used as an ion source and the MS detection was carried out using SRM mode at m/z 50 to 500 (full scan) in positive ion mode. The method was validated according to the international guidelines [73].

Nieddu et al. proposed the validated CE-MS method for the quantification of derivatives of AMP in human urine samples. The analyte was extracted from urine by SPE. The experiment was carried out using an uncoated fused-silica capillary (120 cm × 50 µm) with 10 mM sodium phosphate monobasic with phosphoric acid (pH 4.5) as a running buffer and the separation voltage was set at 10 kV. ESI was used as an ion source and the mass spectrum was monitored from m/z 100 to 300 (full scan). Derivatives of AMP were found at m/z 210, 224 and 238 in selected ion monitoring (SIM) mode. The method showed good results in terms of accuracy and precision [74].

Bach et al. quantified MPH in human urine samples by both CE-MS and CE-MS/MS methods. The sample was prepared by LLE using cyclohexane as the extracting solvent. The experiment was carried out using a fused-silica capillary (65 cm × 50 µm, 190 µm) with 100% aqueous 40 mM ammonium acetate and 30% (v/v) ammonium hydroxide (pH 9.0) as a running buffer. The voltage was applied to the anode (20 kV) and to the cathode (4 kV) for separation. ESI was used as an ion source and the ions were analysed by ion trap analyser. The ions of the analyte were detected using SRM mode at m/z 84 and 234. The proposed method was accurate and precise [75]. There is no reported electrophoretic method for quantification of ATX and GNF in human biological samples.

Allen et al. depicted some important analytical techniques used for the determination of racemic mixtures of MPH. CE was one of the techniques used for chiral separation and detection of the drug in biological matrices [76]. CE was also used to study chiral drugs and their metabolites present in biological samples with sensitive detection and elucidation of their enantiomers and enantioselective actions [77-79]. Lee et al. investigated the enantio-selectivity of (±) threo–MPH in human plasma samples by CE. The experiment was carried out using an uncoated fused-silica capillary (40 cm × 50 µm) with 50 mM phosphate buffer (pH 3.0) containing 20 mM HP-β-CD as the chiral selector and 30 mM triethanolamine. The voltage was set at 20 kV for separation and the analytes were determined by UV detector at a wavelength of 200 nm. The method was sensitive and enabled a LOD of 600 pg/mL for both enantiomers [80].

Theurillat et al. proposed a CE method for the determination of enantio-selectivity of (±) threo –MPH in human oral fluids. The enantiomers of MPH were extracted by LLE and separated using uncoated fused-silica capillaries (40 cm × 50 µm) with phosphate and triethanolamine (pH 3.0) as the running buffer and 2-hydroxypropyl-β-CD as the chiral selector. The separation voltage was set to 20 kV for analysis and the capillary cartridge and sample holder temperatures were maintained at 25°C and 20°C, respectively. The enantiomers of MPH were detected using DAD at a wavelength of 200 nm [81].

Castro-Puyana et al. developed a CE method with good resolution (≥ 3) for the determination of enantiomers of BUP extracted from human urine samples. In this method, the separation of the analyte was carried out using an uncoated fused silica capillary (50 cm × 75 µm) with 5 mM sulfated-α-CD as the chiral selector and 25 mM phosphate (pH 3.0) as the running buffer. The enantiomers of BUP (excitation at 266 nm and emission at 453 or 513 nm) were detected by phosphorescence with a pulsed Xe-lamp. The method showed good selectivity and sensitivity [82].
3.4.2 Liquid chromatography (LC)

LC is an analytical chromatographic method used to isolate the individual components of a mixture. It separates molecules in a liquid mobile phase using a solid stationary phase. High Pressure Liquid Chromatography (HPLC) is an advanced type of LC. The samples in a solvent are pumped at high pressure and are passed through a column packed with solid particles. The principle of separation is adsorption. The samples are separated based on their affinities towards the stationary phase and detected using various detectors (including UV-Vis, DAD and fluorescence).

Currently, LC using reversed-phase silica columns is preferred for pharmaceutical analysis [83].

Talwar et al. developed an HPLC method for the quantification of AMP class drugs in human urine samples. The drugs were separated using a silica HPLC column (25 cm × 4 mm, 5 µm) with a mobile phase of hexane:water saturated with ethyl acetate:chloroform:ethanol in the ratio of 145:35:40:20, v/v/v/v at a flow rate of 1 mL/min and detected at two wavelengths 260 nm (UV) and 450 nm (Visible). The method was validated and the LOD was found to be 60 µg/L at 260 nm and 105 µg/L at 450 nm [84].

Hassan developed and validated a reverse phase HPLC method for the simultaneous determination of CLN and other drugs present in human plasma samples. The drug was extracted from plasma by LLE and was separated in an octadecyle ODS YMC (150 × 46 mm, 3 µm) column using acetonitrile:23 mM phosphate buffer, pH 6.6 (39:61, v/v) as the mobile phase and maprotiline as the extracting solvent. The separation of the analyte was carried out using a Phenomenex Gemini-NX C18 column (150 × 4.6 mm, 3 µm) with water:acetonitrile:10 mM sodium carbonate (pH 9.0) was added to the extracted drug for derivatization and was separated using a Waters Symmetry C8 column (250 × 4.6 mm, 5 µm) and λ max for 684 compounds. Using these as a reference, the test samples were determined, and the method was useful for toxicology studies. The test drugs were extracted from biological samples by LLE and were separated using a Waters Symmetry C8 column (250 × 4.6 mm, 5 µm) with Phosphate buffer: acetonitrile as the mobile phase in gradient elution mode. The flow-rate was set between 1.5 mL/min and UV spectra were obtained from 200 to 350 nm using DAD. AMP, GNF and CLN drugs had a λ max at 200.5 nm and the retention times were found to be 3.71, 11.38 and 6.12 min, respectively [89].

Zhu et al. developed a reverse phase HPLC method for the determination of MPH in human plasma samples. MPH was extracted from the plasma using LLE. DIB-Cl with 10 mM sodium carbonate (pH 9.0) was added to the extracted drug for derivatization and was separated using a Phenomenex Luna C18 (2) column (250 × 4.6 mm, 5 µm) with acetonitrile:water (73:27, v/v) as the mobile phase with a flow rate of 1 mL/min. The MPH was detected using a fluorescence detector and the excitation wavelength (λ ex) was set at 330 nm and emission wavelength (λ em) was set at 460 nm. The proposed method was validated and found to be sensitive and reliable [90].

Stegmann et al. proposed an HPLC method for the quantification of dexamphetamine, MPH and ATX in human serum and oral fluids. The drugs were extracted from the biological samples by LLE and the extracted samples were derivatized with 4-((4, 5-diphenyl-1H-imidazol-2-yl) benzoyl chloride. The separation of derivatized drugs was carried out using a Phenomenex Gemini-NX C18 column (150 × 4.6 mm, 3 µm) with water: acetonitrile (gradient elution mode) as the mobile phase at a flow rate of 0.8 mL/min and analysed using fluorescence detection. The λ ex and λ em were set at 330 nm and 440 nm, respectively. The method was validated and the LODs for
dexamphetamine, MPH and ATX were found to be 1.3, 0.6, 16 ng/mL, respectively, for serum samples and 2.5, 0.6, 5.9 ng/mL, respectively, for oral fluid samples [91].

Ulu et al. developed a reverse phase HPLC method for the determination of BUP in human plasma and urine samples. The separation of the drug was carried out using an Inertisil C18 column (150 × 4.6 mm, 5 µm) with methanol:water (75:25 v/v) as the mobile phase with a flow rate of 1.2 mL/min and analysis by fluorescence detection at 458 nm (λ_ex) and 533 nm (λ_em). The proposed method was validated and the LOD was found to be 0.24 ng/mL [92]. Other HPLC methods for the quantification of AMP, MPH, ATX, and BUP in human biological samples [93-108] and their chromatographic conditions are reported in Table 1.

Kataoka et al. developed and validated an LC-MS method for the quantification of AMP and its derivatives extracted from human urine samples. The separation of the analyte was carried out using a supelcosil LC-CN column (3.3 cm × 4.6 mm, 3 µm) with acetonitrile:50 mM ammonium acetate (15:85, v/v) as the mobile phase with a flow rate of 0.4 mL/min. ESI was used as an ion source and the analyte of interest (AMP) was detected using MS in SIM mode at m/z 136 [109].

Apollonio et al. developed an ultra-performance LC-MS method for the quantification of AMP extracted from human whole blood samples. The separation of the analyte was carried out using a Waters UPLC BEH C18 column (50 × 2.1 mm) with a mobile phase of aqueous pyrrolidine:methanol (52:48, v/v) at a flow rate of 0.4 mL/min. The analyte was ionized by using a positive ESI method and the ions were detected using SIM mode. The analyte was retained at 1.35 min and the m/z was 136 [110].

Tatsuno et al. developed a reverse phase LC-MS method for the determination of AMP in human urine samples. The analyte was extracted from urine using an SPE method and separated using an ODS column (150 × 4.6 mm) with acetonitrile:00 mM ammonium acetate (40:60, v/v) as the mobile phase at a flow rate of 1 mL/min. The analyte was analysed by thermospray ionisation with SIM detection and the m/z was 136 [111].

Bogusz et al. developed both LC-MS and LC-DAD/UV methods for the quantification of AMP in human serum and urine samples using AMP-D5 as the IS. The analyte was extracted from serum and urine by LLE and was derivatized using phenylisothiocyanate. The separation was carried out using a Superspher Select B ECO cart column (125 x 3 mm) with 50 mM ammonium formate buffer (ph 3.0):acetonitrile as the mobile phase. The mobile phase ratio was 55:45, v/v with a flow rate of 0.9 mL/min for MS detection and 60:40, v/v with a flow rate of 0.8 mL/min for DAD/UV detection (250 nm). An atmospheric pressure chemical ionisation (APCI) method was used as an ion source and the ions of the analyte and IS were detected using MS in SIM mode. The m/z was 271 for the analyte and 281 for the IS, respectively. The developed LC-MS method was found to be more specific and selective than the LC-DAD/UV method [112].

Marchei et al. developed a reverse phase LC-ESI-MS method for the quantification of MPH extracted from human plasma, oral fluids, sweat, urine [113] and hair samples [114] using SIM detection. The IS was 3, 4-methylendioxypropylamphetamine (MDPA). The analyte of interest was separated using a Thermo Electron-Hipersil Gold next-generation ultra-pure silica column (150 × 4.6 mm; 5 µm) with acetonitrile:10 mM ammonium acetate (gradient elution mode) as the mobile phase at a flow rate of 1 mL/min. The m/z was 234 for the analyte and 222 for the IS, respectively. The developed method was validated and the LOD was 0.31 ng/mL for plasma samples, 0.15 ng/mL for oral fluid samples, 0.14 ng/mL for sweat samples and 0.30 ng/mL for urine samples.

Shinozuka et al. developed an LC-MS method for the quantification of 20 anti-depressants in human plasma samples. The analyte (MPH) was separated at a retention time of 5.1 min using an Inertisil C8 column (150 × 2.0 mm, 5 µm) with methanol:10 mM ammonium acetate (ph 5.0):acetonitrile (70:20:10, v/v/v) as the mobile phase and a flow rate of 0.10 mL/min. Sonic spray ionisation (SSI) was used as an ion source and the ions were detected in SIM mode. The m/z of MPH was determined to be 234. The developed method was validated and found to be accurate and precise [115].

Wolf et al. developed a simple, validated LC-ESI-MS method for the quantification of GNF in human urine samples using protriptyline as the IS. The separation of the analyte was carried out using a YMC Basic S column (150 × 2 mm, 5 µm) with methanol:10 mM ammonium formate (60:40, v/v) as the mobile phase and a flow rate of 0.3 mL/min. The analyte and IS were detected using SIM mode and the m/z was 246, 248, and 250 for the analyte and 222 and 224 for the IS, respectively. The proposed method was reliable and accurate [116].

Danafar et al. developed and validated a LC-MS method for the determination of CLN. HCl in human plasma samples. The analyte was extracted from plasma by PP and separated using a C18 column (30 × 2.1 mm, 3.5 µm) with acetonitrile:water with 0.2% (v/v) formic acid (60:40, v/v) as the mobile phase at a flow rate of 0.2 mL/min. The analyte was ionised by ESI and detected using multiple reaction monitoring (MRM) mode. The m/z was 213 and 230. This method was useful for pharmacokinetic studies [117,118].
Table 1: HPLC methods for the determination of ADHD drugs in human biological samples.

Biological Samples	Analyte	Stationary phase	Mobile phase	Flow rate	Detection	LOD	Reference
Human urine	AMP	Hibar analytical column (250 × 4 mm, 5 µm)	0.03 M Phosphate buffer (pH 3.0) with 0.05 M methane sulphonic acid: ACN (48:52, v/v)	0.65 mL/min	UV-Visible at 480 nm	40-60 ng/mL	[93]
Human urine	AMP	Eurospher-100 C18 column (250 × 4.6 mm, 10 µm)	20 mM phosphate buffer with HCl (pH 4.0): ACN (85:15, v/v)	1 mL/min	UV-Visible at 210 nm	2 µg/mL	[94]
Human urine	MPH	C8 HPLC column (250 × 4.6 mm, 5 µm)	Phosphate buffer (pH 4.6): MeOH: ACN (5:6:40:6, v/v/v/v)	0.8 mL/min	UV-Visible at 210 nm	15 ng/mL	[95]
Human urine	AMP	Waters Spherisorb C18 ODS2 column (250 × 4.6 mm, 5 µm)	MeOH: 0.05 M ammonium acetate buffer with 0.1% (v/v) TEA, pH 3.9 (gradient elution mode)	-	UV at 210 nm	14 ng/mL	[96]
Human plasma	MPH	ODS reversed phase column (15 cm × 4.6 mm, 5 µm)	ACN: 0.07% (v/v) TEA with conc. Phosphoric acid, pH 3.4 (35:65, v/v)	1.5 mL/min	UV at 192 nm	2.5 ng/mL	[97]
Human plasma	BUP	Reverse phase column (25 cm × 4.6 mm, 5 µm)	0.05 M monobasic potassium phosphate: ACN with 0.007 M sodium heptane sulfonate and 0.01 M TEA, pH 3 (80:20, v/v).	2.3 mL/min	UV at 214 & 254 nm	5 ng/mL	[98]
Human plasma	BUP	Cartridge u-Bondapak C18 column (10 cm × 8 mm, 10 µm)	ACN: water with perchloric acid, pH 3.15 (60:40, v/v)	1.4 mL/min	UV at 250 nm	-	[99]
Human urine	AMP	Luna C18(2) column (150 × 4.6 mm, 5 µm)	0.025% (v/v) phosphoric acid with TEA buffer, pH 3.4: ACN	1 mL/min	DAD at 210 nm	120 ng/L	[100]
Human urine	AMP	Hypersil ODS RP C18 column (250 × 4.5 mm, 5 µm)	ACN: water (gradient elution mode)	1 mL/min	DAD at 280 & 450 nm	4 ng/mL	[101]
Human plasma	ATX	Agilent SB-C18 column (150 × 4.6 mm, 5 µm)	ACN: 5 mM heptane sulphonic acid buffer with 1% (v/v) of TEA and GAA, pH 4.8 (40:60, v/v)	1 mL/min	DAD at 272 nm	-	[102]
Human plasma	ATX	Agilent XDB-C8 column (150 × 4.6 mm, 3.5 µm)	MeOH: ACN: 10 mM phosphate buffer, pH 3.0 (35:15:50, v/v/v)	1 mL/min	DAD at 215 nm	16.34 ng/mL	[103]
Human plasma	BUP	Agilent XDB-C8 column (150 × 4.6 mm, 3.5 µm)	MeOH: ACN: 10 mM phosphate buffer (pH 3.0) with 20 mM 1-heptane sulfonic acid sodium salt (40:10:50, v/v/v)	1 mL/min	DAD at 214 & 254 nm	24.8 ng/mL	[104]
Human plasma	BUP	Phenomenex Aqua C18 column (250 × 4.6 mm, 5 µm)	MeOH: 0.05 M phosphate buffer with 85% (v/v) phosphoric acid, pH 5.5 (45:55, v/v)	1 mL/min	DAD at 214 & 254 nm	2 ng/mL	[105]
Human urine	AMP	Vercopak Inertsil 5-ODS-80A column, (250 × 3.2 mm, 5 µm)	ACN: water (70:30, v/v)	0.5 mL/min	Fluorescence (λex at 343 nm & λem at 500 nm)	-	[106]
Human plasma	ATX	Phenomenex Luna C18 (2) column (250 × 4.6 mm, 5 µm)	ACN: water (75:25, v/v)	1 mL/min	Fluorescence (λex at 318 nm & λem at 448 nm)	0.3 ng/mL	[107]
Human plasma	ATX	Inertsil C18 column (150 × 4.6 mm, 5 µm)	MeOH: water (85:15 v/v)	1.2 mL/min	Fluorescence (λex at 375 nm & λem at 537 nm)	-	[108]

HCl – Hydrochloric acid, ACN – Acetonitrile, GAA – Glacial acetic acid, TEA – Triethylamine, MeOH – Methanol
Miyaguchi et al. developed and validated an LC-MS/MS method for the determination of AMP extracted from human hair samples. The separation of the analyte was carried out using a Unison UK-C18 column (150 × 3 mm) with ammonium formate in water (pH 3.5):acetonitrile (gradient elution mode) as the mobile phase at a flow rate of 0.3 mL/min. ESI was used to ionise the analyte and analysis was by both orbitrap and ion trap analyser. The m/z was 91.2, 119.2, and 130 by product ion scan analysis [119].

Concheiro et al. developed and validated an LC-ESI-MS/MS method for the quantification of AMP in human urine samples using AMP-D6 as the IS. The analyte was extracted from urine samples by LLE using diethyl ether as the extracting solvent. The analyte and IS were separated using an Atlantis dC18, Intelligent Speed TM column (20 × 2.1 mm, 3 µm) with ammonium formate buffer (pH 3.0):acetonitrile (gradient elution mode) as the mobile phase at a flow rate of 0.5 mL/min and was detected using SRM mode with a triple quadrupole mass analyser. The m/z was 90.6, 118.9 and 135.9 for the analyte and 92.7 and 142.2 for the IS, respectively [120].

Vaiano et al. developed and validated an LC-MS/MS method for the determination of AMP extracted from human blood samples. The separation of the analyte was carried out using a Zorbax Eclipse Plus C18 column (50 × 2.1 mm, 1.8 µm) with 5 mM aqueous formic acid and acetonitrile (gradient elution mode) as the mobile phase with a flow rate of 0.4 mL/min. ESI was used as an ion source and the analyte ions were detected using MRM mode. The m/z of the analyte was found to be 91, 119 and 136 [35]. Marjorie Chèze et al. developed and validated an LC-MS/MS method for the determination of AMP extracted from human hair, urine and blood samples using AMP-D5 as the IS [121]. The LC chromatographic conditions and MS detection information are reported in Table 2.

Chou et al. developed and validated an LC-MS/MS method for the quantification of AMP present in human serum samples. The analyte was extracted from serum by a solid phase micro extraction (SPME) method and separated using a Supelco Discovery C18 column (15 cm × 3 mm, 5 µm) with acetonitrile: deionized water (gradient elution mode) as the mobile phase with a flow rate of 0.2 mL/min. ESI showed better results than APCI and the parent ion of the analyte was detected using SIM mode. The product ions were detected by MRM with m/z 119 and 136 [122].

The determination of AMP in human plasma and oral fluids by LC-ESI-MS/MS was proposed by Wood et al. The analyte was extracted by methanol precipitation and separated using a Hypersil BDS C18 column (100 × 2.1 mm, 3.5 µm) with 10 mM ammonium acetate buffer: acetonitrile (75:25, v/v) as the mobile phase and a flow rate of 0.3 mL/min. AMP-D11 was used as the IS. The analyte and IS were detected in MRM mode and the m/z was 91 and 136 for the analyte and 98 and 147 for the IS, respectively [123]. Further LC-MS/MS methods for quantification of AMP from human hair [124-126], urine [127-131], and serum [132,133] samples are reported in Table 2.

Ramos et al. developed an LC-MS/MS method for the quantification of MPH in human plasma samples. The analyte was extracted from plasma samples by LLE and was separated using an Eclipse XDBC18 column (150 × 4.6 mm, 3.5 µm) with methanol:water with 0.02% (v/v) ammonium trifluoroacetate (80:20, v/v) as the mobile phase at a flow rate of 1 mL/min. APCI was used as an ion source and the analyte was detected using MRM mode. The method was validated, and the m/z of AMP was 83.9 and 234.5 [134].

de Cássia Mariotti et al. developed and validated an LC-MS/MS method for the determination of MPH in human oral fluids using propranolol as the IS. Separation of the analyte and IS was carried out using a Brownlee C18 column (100 × 4.6 mm, 3 µm) with 10 mM ammonium formate buffer with 0.1% (v/v) formic acid and acetonitrile with ammonium formate (gradient elution mode) as the mobile phases at a flow rate of 0.4 mL/min. ESI was used as an ion source. The analyte and IS were detected using MRM mode with m/z 56.1, 84.2 and 234.1 for the analyte and 183.1 and 260.2 for the IS, respectively [39]. Other LC-MS/MS methods for quantification of MPH in human plasma [135-137], blood, oral fluids [137], hair [138], and urine samples [139,140] are reported in Table 2.

Choi et al. developed and validated an LC-MS/MS method for the determination of ATX and its metabolites in human plasma samples using metoprolol as the IS. The analyte was extracted from plasma samples by LLE using methyl tert butyl ether as an extracting solvent. The analyte, its metabolites and the IS were separated using a Phenomenex Luna C18 column (100 × 2 mm, 3 µm) with methanol:10 mM ammonium formate buffer, pH 3.5 (90:10, v/v) as the mobile phase at a flow rate of 0.25 mL/min. ESI was used as an ion source. The analytes and IS were detected using MRM mode and the m/z was 44 and 256 for the analyte and 116 and 268 for the IS, respectively [141,142]. Further LC-MS/MS methods for the quantification of ATX extracted from human plasma [44,143-145], blood, oral fluids, sweat, urine [146], and hair [147] samples are reported in Table 2. Montenarh et al. developed and validated an LC-MS/MS method for the determination of 130 drugs extracted from human whole blood, plasma, serum, hair, liver tissues, gastric contents and urine samples. ATX, BUP and MPH were extracted...
Table 2: LC-MS/MS methods for the determination of ADHD drugs in human biological samples.

Analyte	IS	Mobile phase	Flow rate	Detection mode	Ion Source	m/z	Reference	
AMP	AMP-D5	Uptisphere OD8 C18 column (150 × 2.1 mm, 5 µm)	2000 µL/min	ESI	SRM	65, 91 & 136 (AMP), 96, [135]		
AMP	AMP-D5	Atlantis T3 column (150 × 2.1 mm, 3 µm)	2000 µL/min	ESI	SRM	65, 91 & 136 (AMP), 96, [135]		
AMP	AMP-D5	Zorbax silica column (50 x 2.1 mm, 3 µm)	2500 µL/min	ESI	MRM	95, 81, 136.1 (AMP), 96, [136]		
AMP	AMP-D5	Luna C18 column (100 × 2 mm, 5 µm)	0.2 mL/min	ESI	SRM	91, 119, 136.1 (AMP), 96, [127]		
AMP	AMP-D5	Symmetry shield RP18 column (150 × 2.1 mm, 5 µm)	2500 µL/min	ESI	SRM	91, 119, 136.1 (AMP), 96, [129]		
AMP	AMP-D5	Synergi Polar C18 column (150 × 2.1 mm, 5 µm)	2500 µL/min	ESI	SRM	91, 119, 136.1 (AMP), 96, [130]		
AMP	AMP-D5	Penta-fluoro phenyl propyl silica column (250 × 2.1 mm, 5 µm)	2500 µL/min	ESI	SRM	91, 119, 136.1 (AMP), 96, [132]		
AMP	AMP-D5	Synergi Polar RP column (150 × 2.1 mm, 5 µm)	2500 µL/min	ESI	SRM	91, 119, 136.1 (AMP), 96, [133]		
MPH	MPH-D9	C18 column	1000 µL/min	TIS	TIS	84 & 234 (MPH), 93.1 [135]		
MPH	MPH-D9	SeQuant ZIC-HILIC column (150 × 2.1 mm, 5 µm)	2500 µL/min	ESI	SRM	84 & 234 (MPH), 93.1 [136]		
Analyte	IS	Stationary phase	Mobile phase	Flow rate	Ion Source	Detection mode	m/z	Reference
---------	----------	--	--	-----------	------------	----------------	--------------------	-----------
MPH	MPH-D9	Synergi Polar-RP column (50 × 2 mm, 2.5 µm)	10 mM ammonium formate buffer with 0.05% (v/v) FA: MeOH with 0.05% (v/v) FA (gradient elution mode)	0.3 mL/min	ESI	MRM	84, 56, 174 & 234 (MPH), 93 & 243 (IS)	[137]
MPH	MPH-D9	Zorbax Eclipse Plus C18 RRHD column (100 × 2.1 mm, 1.8 µm)	2 mM ammonium formate with 0.2% (v/v) FA in water and ACN (gradient elution mode)	0.3 mL/min	ESI	SRM	56, 84 & 234.1 (MPH), 93 & 243.2 (IS)	[138]
MPH	AMP-D6	Restek Allure PPP Propyl column (50 × 2.1 mm, 5 µm)	0.02% (w/v) formate in water and ACN (gradient elution mode)	0.5 mL/min	ESI	SRM	56.1, 84.1 & 234.1 (MPH), 93.1, 125.1 & 142.2 (IS)	[139]
MPH	AMP-D8	Capcell Pak MG-II C18 column (150 × 2 mm, 5 µm)	0.2% (v/v) FA in water: ACN (gradient elution mode)	400 µL/min	ESI	MRM	56.3, 84.3 & 234.3 (MPH), 127.1 & 144.1 (IS)	[140]
ATX	ATX-D3	C18 column (20 × 4 mm)	MeOH with 0.025% (v/v) TFA: 0.025% ammonium acetate (v/v)	200 µL/min	ESI	MRM	44 & 256 (ATX), 47 & 259 (IS)	[44]
ATX	R/S-[2H7]-ATX	Brownlee Spheri-5 C18 polyfunctional column (100 × 4.6 mm, 5 µm)	Water: 5 mM ammonium acetate with 47.2 mM FA, 4 mM TFA in ACN and water (85:15, v/v)	1 mL/min	APCI	SRM	44 & 256 (ATX), 44 & 263 (IS)	[143]
ATX	Trimipramine-D3 & Topiramate-D12	KinetexXB-C18 column (50 × 3 mm, 2.6 µm)	2 mM ammonium formate with 0.2% (v/v) FA in water and ACN (gradient elution mode)	0.4 mL/min	TIS	MRM	44.1, 148 & 256.1 (ATX), 103 & 298.3 (IS-1), 78 & 350 (IS-2)	[144]
ATX	Duloxetine	YMC-Pack TMS column (40 × 4.6 mm, 5-3 µm)	Water: 5 mM ammonium acetate with 47.2 mM FA & 4 mM TFA in ACN & water (85:15, v/v)	0.5 mL/min	ESI	MRM	44, 148 & 256 (ATX), 44, 154 & 298 (IS)	[145-147]
ATX, BUP. MPH	-	Waters SunFire C18 column (150 × 2.1 mm, 3.5 µm)	10 mM aqueous ammonium formate with 0.1% (v/v) FA (pH 3.4): ACN with 0.1% (v/v) FA (gradient elution mode)	500 µL/min	ESI	MRM	90.9, 115.2, 117.2 & 256.1 (ATX), 130.1, 131.1, 184.1, & 240.1 (BUP) & 84.1, 111.2, 217.3 & 234.2 (MPH)	[148,149]
BUP	BUP-D6	Chromolith SpeedROD RP-18 monolithic column (50 × 4.6 mm)	8 mM ammonium acetate: ACN (55:45, v/v)	5 mL/min	TIS	SRM	184 & 240 (BUP), 184 & 246 (IS)	[150]
BUP	BUP-D9	Supelco Ascentis RP-Amide column (100 × 4.6 mm, 5 µm)	5 mM ammonium formate buffer (pH 3.5): ACN (gradient elution mode)	0.8 mL/min	TIS	MRM	166.3, 184.3 & 240.2 (BUP) & 185.1 & 249.3 (IS)	[151]
BUP	BUP-D9	Acquity BEH phenyl column	MeOH: 0.06% (v/v) ammonia in aqueous solution (42:58, v/v)	0.5 mL/min	ESI	MRM	184.1 & 240.3 (BUP), 185.1 & 249.3 (IS)	[152]
BUP	BUP-HCl-D9	Waters Symmetry C18 column (150 × 4.6 mm, 5 µm)	MeOH: 0.04% (v/v) FA aqueous solution (31:69, v/v)	1 mL/min	ESI	MRM	184 & 240 (BUP), 185 & 249 (IS)	[153]
Analyte	IS	Mobile phase	Flow rate	Ion Source	Detection mode	m/z	Reference	
---------	----	--------------	-----------	------------	----------------	-----	-----------	
BUP	BUP	Waters Sun Fire C18 column (150 × 3.5 mm, 3 μm)	0.2 mL/min	TIS	MRM	166.2 & 184.2 & 240.3	[154]	
		Zorbax Eclipse XDB-C18 column (100 × 4.6 mm, 5 μm)	1 mL/min	TIS	MRM	184.1 & 240.3 & 121.8	[155]	
		Poroshell 120 EC18 (100 × 2.1 mm, 2.7 μm)	0.2 mL/min	TIS	MRM	184.1 & 240.1	[156]	
		Zorbax Eclipse XDB-C18	1 mL/min	TIS	MRM	184.1 & 246.4 (BUP, 121.8 & 278.4)	[157]	
		Agilent ZORBAX z-Select C18 (150 × 4.6 mm, 5 μm)	0.4 mL/min	TIS	MRM	184.1 & 248.2	[158]	
		ZORBAX eclipse XDB-C18	1 mL/min	TIS	MRM	184.1 & 246.2	[159]	
		Hypersil BDS C18 column (50 × 2.1 mm, 3 μm)	0.4 mL/min	TIS	MRM	184.1 & 246.2	[160]	
		Hypersil BDS C18 column (50 × 2.1 mm, 3 μm)	0.4 mL/min	TIS	MRM	184.1 & 246.2	[161]	
		Hypersil BDS C18 column (50 × 2.1 mm, 3 μm)	0.4 mL/min	TIS	MRM	184.1 & 246.2	[162]	
		Hypersil BDS C18 column (50 × 2.1 mm, 3 μm)	0.4 mL/min	TIS	MRM	184.1 & 246.2	[163]	
		Hypersil BDS C18 column (50 × 2.1 mm, 3 μm)	0.4 mL/min	TIS	MRM	184.1 & 246.2	[164]	
		Hypersil BDS C18 column (50 × 2.1 mm, 3 μm)	0.4 mL/min	TIS	MRM	184.1 & 246.2	[165]	
		Hypersil BDS C18 column (50 × 2.1 mm, 3 μm)	0.4 mL/min	TIS	MRM	184.1 & 246.2	[166]	
		Hypersil BDS C18 column (50 × 2.1 mm, 3 μm)	0.4 mL/min	TIS	MRM	184.1 & 246.2	[167]	
		Hypersil BDS C18 column (50 × 2.1 mm, 3 μm)	0.4 mL/min	TIS	MRM	184.1 & 246.2	[168]	
		Hypersil BDS C18 column (50 × 2.1 mm, 3 μm)	0.4 mL/min	TIS	MRM	184.1 & 246.2	[169]	
		Hypersil BDS C18 column (50 × 2.1 mm, 3 μm)	0.4 mL/min	TIS	MRM	184.1 & 246.2	[170]	
		Hypersil BDS C18 column (50 × 2.1 mm, 3 μm)	0.4 mL/min	TIS	MRM	184.1 & 246.2	[171]	
		Hypersil BDS C18 column (50 × 2.1 mm, 3 μm)	0.4 mL/min	TIS	MRM	184.1 & 246.2	[172]	
		Hypersil BDS C18 column (50 × 2.1 mm, 3 μm)	0.4 mL/min	TIS	MRM	184.1 & 246.2	[173]	
		Hypersil BDS C18 column (50 × 2.1 mm, 3 μm)	0.4 mL/min	TIS	MRM	184.1 & 246.2	[174]	

ACN – Acetonitrile, TFA – Trifluoroacetic acid, GAA – Glacial acetic acid, FA – Formic acid, MeOH – Methanol
from human biological samples by LLE [148,149]. The chromatographic conditions are reported in Table 2.

Denooz et al. developed an ultra-performance LC-MS/MS method for the quantification of BUP and its metabolites in human whole blood samples. The analyte was extracted from blood by SPE and BUP-D9 was used as the IS. The analyte and IS were separated at retention times of 3.76 min and 3.75 min, respectively using a Waters Acquity UPLC BEH phenyl column (100 × 2.1 mm, 1.7 µm) with 2 mM ammonium formate buffer (pH 4):acetonitrile as the mobile phase and a flow rate of 0.4 mL/min. ESI was used as an ion source and the analytes were detected using MRM mode. The method was validated, and the m/z was 166, 184 and 240 for the analyte and 185 and 349.2 for the IS, respectively [48]. Other LC-MS/MS methods for the quantification of BUP in human plasma [150-157] and serum samples [158] are reported in Table 2.

Li et al. developed and validated a new method (dried plasma spots) for the quantification of GNF using LC-MS/MS. The analyte was extracted from whole blood by SPE and GNF-[C, 13N]2 was used as the IS. The analyte and IS were separated using a Fortis UniverSil C18 column (50 × 2.1 mm, 5 µm) with 0.1% (v/v) formic acid in water:0.1% (v/v) formic acid in acetonitrile (gradient elution mode) as the mobile phase using a flow rate of 1 mL/min. Turbo ion spray (TIS) was used as an ion source. The analyte and IS were detected using SRM mode with a m/z of 60.1 and 246.1 for the analyte and 64.1 and 250.1 for the IS, respectively [159]. The same researcher also developed a dried blood spot technique for the determination of GNF in human blood samples [160,161] using LC-MS/MS and the LC-MS chromatographic conditions are reported in Table 2.

Martin et al. developed an LC-MS/MS method for the determination of GNF in human plasma samples using guanabenz as the IS. The analyte was extracted from plasma by LLE using methyl tert-butyl ether (MTBE) as the extracting solvent. Separation of the analyte and the IS was carried out using a Phenomenex Luna C18 column (30 × 2 mm, 3 µm) with water with 0.02% (v/v) formic acid: methanol as the mobile phase at a flow rate of 0.5 mL/min. ESI was used as an ion source. The analyte and IS were detected using SRM mode with m/z 60 and 246 for the analyte and 172 and 231 for the IS, respectively [51].

Ghosh et al. developed and validated an LC-ESI-MS method for the quantification of CLN in human plasma samples using carbamazapine as the IS. The analyte was extracted from plasma by LLE using ethyl acetate as the extracting solvent. The separation of the analyte and IS was carried out using an Inertsil ODS 3V C18 column (150 × 4.1 mm, 5 µm) with acetonitrile:0.1% (v/v) formic acid in water (90:10, v/v) as the mobile phase at a flow rate of 0.75 mL/min and was detected using MRM mode. The m/z was 230 for the analyte and 194 and 237 for the IS, respectively [162]. Other LC-MS/MS methods for the quantification of CLN in human plasma samples [163-166] and their LC-MS chromatographic conditions are reported in Table 2.

Pelzer et al. developed and validated an LC-MS/MS method for the quantification of CLN extracted from human serum samples using CLN-D4 as the IS. The analyte and IS were separated using a Begasil silica column (50 × 3 mm, 5 µm) with acetonitrile:water:formic acid (80:20:1, v/v/v) as the mobile phase at a flow rate of 0.7 mL/min. ESI was used as an ion source. The analyte and IS were detected using MRM mode with m/z 213 and 230 for the analyte and 219 and 236 for the IS, respectively [54].

Liquid chromatography methods for the determination of enantiomers of AMP in biological fluids have been reported using different approaches: chiral derivatization, chiral stationary phase and chiral additives in the mobile phase [167,168]. Foster et al. developed an elution reverse mode HPLC method for the determination of AMP enantiomers present in human urine samples. The extraction of enantiomers from biological samples was done by SPE and the extracted enantiomers were derivatized with chiral Marfey’s reagent to form diastereomers. The obtained diastereomers were separated using a C18 column (150 × 4.6 mm, 5 µm) with water:methanol (40:60, v/v) as the mobile phase at a flow rate of 1 mL/min with UV detection at 340 nm. The LOD of each enantiomer was found to be 0.16 mg/L [169].

Jose et al. developed an HPLC method for the determination of isomers of MPH in human plasma samples. The chromatographic separation was carried out using a Chirobiotic V2 column (150 × 4.6 mm, 5 µm) with methanol:20 mM ammonium acetate, pH 4.1 (92:08, v/v) as the mobile phase at a flow rate of 1 mL/min. The d and l-isomers of MPH were retained at 7 and 8.1 min, respectively and were detected by DAD/UV detector at 215 nm. The proposed method was validated and found to be linear, accurate and precise [170].

Thomsen et al. developed an LC-MS/MS method for the determination of enantiomers of MPH and its metabolite extracted from human whole blood using rac-threo-MPH-D10 as the IS. The separation of the drug and IS were carried out using a Chiral-AGP column (100 × 4 mm, 5 µm) with 10 mM ammonium formate buffer:0.4% (v/v) isopropanol with formic acid (pH 5.4) as the mobile phase at a flow rate of 0.6 mL/min. The analyte and IS were ionised using ESI as an ion source. The ions of the analyte and IS were detected using MRM mode and the m/z was 56, 84 and 234.2 for the analyte and 93 and 244.2 for the IS, respectively [171]. Other LC-MS/MS methods for the quantification of MPH in human plasma samples [172-174] are reported in Table 2.
3.4.3 Gas chromatography (GC)

GC is an analytical method used to measure the various components in a sample. The components need to be volatile and thermostable for GC analysis. The principle of separation is adsorption for gas solid chromatography (GSC) and partition for gas liquid chromatography (GLC). When sample is introduced into the instrument, it enters into a gas stream and passes through a column for separation. The separated components are detected using various detectors including flame ionization detector (FID), electron capture detector (ECD) and nitrogen phosphorous detector (NPD) [175]. Analysis by GC requires derivatization with suitable derivatizing agent before analysis to change the properties of the analyte for better separation, detection and to improve method sensitivity [176].

Anggard et al. proposed a GLC method for the quantification of AMP extracted from blood, cerebrospinal fluid (CSF), tissues and urine samples. The extracted analyte from urine samples was derivatized by adding trifluoroacetic anhydride and separated using a glass column (3.04 m × 4 mm) with carrier gas at a flow rate of 40 mL/min and detected by FID. The column, injector and detector temperature were set at 175°C, 235°C, and 240°C, respectively. The extracted analyte from blood and CSF samples was derivatized by adding trichloroacetyl chloride and was separated using a glass column (1.82 m × 4 mm) with carrier gas at a flow rate of 90 mL/min and detected by ECD. The column, injector and detector temperature were set at 200°C, 230°C, and 210°C, respectively. The method was found to be sensitive and accurate [177].

Brien et al. developed a GC method for the determination of AMP in human biological fluids such as whole blood and urine samples and detected using FID. The drug extracted from biological fluids was derivatized with trifluoroacetic anhydride and separated using a glass column (1.82 m × 6.35 mm) with helium and hydrogen as the carrier gas. The column, detector and inlet temperature were set at 140°C, 250°C, and 190°C, respectively and the flow rate was set to 50 mL/min (for helium) and 35 mL/min (for hydrogen). The proposed method was validated, and it was suitable for analysis [178].

Dugal et al. developed a GC method for the determination of un-metabolized MPH in human urine samples. The extracted analyte was derivatized with trifluoroacetic anhydride and the separation was carried out using a glass coiled column (1.22 m × 2 mm) with helium as the carrier gas at a flow rate of 30 mL/min. The column, injector and detector temperature were set at 140°C to 270°C, 250°C, 300°C, respectively and detection was using NPD [179]. Other GC methods for the quantification of AMP and MPH in human biological samples [180-188] are reported in Table 3.

Guerret et al. reported a GLC method for the determination of GNF in human plasma and urine samples. The analyte was extracted and an excess amount of hexafluoro acetyl acetone and methanol was added for derivatization. The separation of the analyte was carried out using a glass column (1.6 m × 3 mm) packed with 3% OV-225 on 100-120-mesh Gas Chrom Q using 5% methane in argon as the carrier gas at a flow rate of 60 mL/min and detected by ECD. The injector, column and detector temperatures were set at 250°C, 210°C, and 300°C, respectively. The developed method was specific and sensitive [189].

Chu et al. developed a GC method to determine CLN and its derivatives extracted from human plasma and urine samples. The separation was carried out using a silanized glass column (1.8 m × 2 mm) with nitrogen as the carrier gas at a flow rate of 25 mL/min. The injector, column and detector temperatures were set at 220°C, 175°C, and 250°C, respectively and detection of the analyte was by ECD [190]. Edlund PO developed a GC method for the quantification of CLN extracted from human plasma samples and evaluated various types of columns, different carrier gases and altered the oven, injector and detector temperatures to develop a selective method for the analysis of CLN using ECD [191].

Kankaanpaa et al. developed and validated a GC-MS method for the quantification of AMP in human blood, serum, oral fluids and urine samples. The analyte was extracted and derivatized with heptafluorobutyric anhydride (HFBA). The methylmexiletine was used as the IS. The analyte and IS were separated at retention times of 6.64 and 10.18 min, respectively using a DB-5MS column (30 m × 0.32 mm, 1 μm) with helium as the carrier gas and were detected using SIM mode. The m/z was found to be 118, 169, and 240 for the analyte and 136 and 254 for the IS, respectively. [192]. Miki et al. developed and validated a GC-MS method for the determination of AMP in human blood, hair and urine samples [193] and the chromatographic conditions are reported in Table 4.

Frison reported a validated GC-MS method for the determination of AMP in human plasma, hair and urine samples. The analyte was extracted and derivatized with 2, 2, 2-trichloroethyl chloroformate, 3, 4-methylenedioxypropylamphetamine (MDPA) was used as the IS. The analyte and IS were separated using a Hewlett-Packard HP-5MS capillary column (30 m × 0.25 mm, 0.25 μm) with helium as the carrier gas at a flow rate of 1 mL/min and detected using SIM mode. The m/z was 162, 218, 220, 274, and 309 for the analyte and 260,
Table 3: GC methods for the determination of AMP and MPH in human biological samples.

Analyte	Biological samples	Stationary phase	Carrier gas	Flow rate	Injector Temperature	Column Temperature	Detector Temperature	Detector	Reference
AMP	Human blood & urine	Glass U-tube column (1.8 m x 4 mm)	Nitrogen	50 mL/min	195°C	160°C	185°C	FID	[180]
AMP	Human urine	AT-5 column (30 m x 0.25 mm, 0.25 µm)	Helium	1 mL/min	220°C	40°C to 280°C	280°C	FID	[181]
AMP	Human urine	DB5 capillary column (25 m x 0.32 mm, 0.25 µm)	Helium	2 mL/min	250°C	100°C to 260°C	270°C	FID	[182]
AMP	Human urine	BPX5 capillary column (30 m x 0.25 mm, 0.25 µm)	Helium	30 mL/min	280°C	30°C to 260°C	-	FID	[183]
MPH	Human blood & urine	Borosilicate glass column (1.52 m x 3 mm)	Nitrogen and hydrogen	75 mL/min	220°C	140°C	-	FID	[184]
MPH	Human urine	Glass column (1.82 m x 2 mm)	Nitrogen	25-30 mL/min	300°C	170°C	-	FID	[185]
AMP	Human hair	CBJ-17 capillary column (30 m x 0.53 mm, 1 µm)	Helium	4 mL/min	220°C	100°C to 220°C	220°C	NPD	[186]
MPH	Human plasma	Glass coiled column (1.83 m x 2 mm)	Helium	30 mL/min	240°C	170°C	270°C	NPD	[187]
AMP	Human plasma	Narrow bore fused silica capillary column (25 m x 0.32 mm, 1.05 µm)	Helium	2 mL/min	280°C	105°C	325°C	ECD	[188]

262, 264, 395, and 397 for the IS, respectively [194]. Other GC-MS methods for the quantification of AMP in human blood [195-198], plasma [199], serum [200], oral fluids [201,202], hair [203-206], and urine samples [207-210] are reported in Table 4.

Leis et al. reported a validated GC-MS method for the determination of MPH in human plasma samples using MPH-18O2H3 as the IS. The analyte was extracted by LLE using n-hexane and derivatized with o-(pentafluorobenzyloxycarbonyl)-2, 3, 4, 5-tetrafluorobenzoyl chloride. The derivatized analyte and IS were separated using a BPX5 fused silica capillary column (15 m x 0.25 mm) with helium as the carrier gas at a flow rate of 1.5 mL/min and detected using SIM mode. The m/z was 408 and 452 for the analyte and 413 and 457 for the IS, respectively [211]. Further GC-MS methods for the quantification of MPH extracted from human plasma [212-214] and serum samples [215] are reported in Table 4.

Boumba et al. developed and validated a GC-MS method for the quantification of BUP in human whole blood, plasma and serum samples. The analyte was extracted by SPE and was separated using an Equity 5 capillary column (30 m x 0.25 mm, 0.25 µm) with helium as the carrier gas at a flow rate of 1.5 mL/min and detected using SIM mode. The m/z of BUP was 44 [216].

Julien Larose et al. proposed a GC-MS method for the determination of GNF in human plasma samples using negative chemical ionisation. GNF-13C15N3 was used as the IS and the analyte was derivatized with hexafluoro acetyl acetone. The analyte and IS were separated using a fused silica capillary column with helium as the carrier gas and were detected using SIM mode. The m/z was 417 for the analyte and 423 for the IS, respectively. The method was validated and was found to be useful for pharmacokinetic studies [217].

Haglock et al. developed and validated a GC-MS method for the determination of GNF in human urine samples. Protriptyline was used as the IS and the analyte was derivatized with HFBA. The analyte and IS were separated using a DB-5 capillary column (30 m x 0.32 mm, 0.25 µm) and were detected using SIM mode. The m/z was 86.1, 272.1, and 274.1 for the analyte and 189.1 and 191.1 for the IS, respectively [218].
Analyte	Derivatizing agent	IS	Stationary phase	Carrier gas	Flow rate	Detection	m/z	Reference
AMP	N-methyl bis(trifluoroacetamide)	Diphenyl-methane	DB-5MS or DB-1MS capillary column (30 m × 0.32 mm, 0.25 μm)	Helium	3 mL/min	SIM	140 (AMP) & 168 (IS)	[193]
AMP	Perfluoro octanoyl chloride	AMP-D3	Hewlett-Packard column (12 m × 0.2 mm, 0.33 μm)	Helium	1.4 mL/min	SIM	118, 440 (AMP) & 121, 443 (IS)	[195]
AMP	HFBA	AMP-D5	HP 5 MS capillary column (30 m × 0.2 mm, 0.25 μm)	Helium	-	SIM	91, 118 & 240 (AMP), 244 (IS)	[196]
AMP	Propyl-chloroformate	Methamphetamine-D5	Fused silica capillary column (30 m × 0.25 mm, 0.25 μm)	Helium	0.8 mL/min	SIM	130 (AMP) & 148 (IS)	[197]
AMP	S(-)-hepta-flurobutyryl propyl chloride	AMP-D11	HP-5MS column (30 m × 0.25 mm)	Helium	1 mL/min	SIM	388 (AMP) & 399 (IS)	[198]
AMP	HFBA	AMP-D6	Fused-silica DB-1 capillary column (30 m × 0.25 mm, 0.25 μm)	Helium	-	SIM	311.1 (AMP) & 317.1 (IS)	[199]
AMP	HFBA	Methamphetamine-D5	Fused-silica capillary (DB-5 MS) column (30 m × 0.25 mm, 0.25 μm)	Helium	1 mL/min	SIM	44, 91 & 135 (AMP), 62, 92 & 154 (IS)	[200]
AMP	Pentfluoro propionic acid	AMP-D5	Agilent HP-SMS column (30 m × 250 μm, 0.25 μm)	Helium	1 mL/min	SIM	91, 118 & 190 (AMP), 122, 123 & 194 (IS)	[201]
AMP	Propyl chloroformate	AMP-D5	HP-5MS column (30 m × 0.25 mm, 0.25 μm)	Helium	1 mL/min	SIM	130 (AMP) & 134 (IS)	[202]
AMP	Ethyl chloroformate	Methamphetamine-D5	Fused silica capillary column (30 m × 0.25 mm, 0.25 μm)	Helium	0.8 mL/min	SIM	116 (AMP) & 134 (IS)	[203]
AMP	Pentfluoro propionic anhydride-pentafluoro propanol.	AMP-D5	HP-5MS column (30 m × 0.25 mm, 0.25 μm)	Helium	1 mL/min	SIM	118 & 190, (AMP), 123 & 194 (IS)	[204]
AMP	Propionic acid anhydride	Methaqualone	HP-5MS capillary column (30 m × 0.25 mm, 0.25 μm)	Helium	1 mL/min	SIM	44, 91, 100 & 118 (AMP), 235 & 250 (IS)	[205]
AMP	Heptfluoro butyric anhydride	AMP-D5	HP-5MS column (30 m × 0.25 mm)	Helium	1 mL/min	SIM	240 (AMP) & 244 (IS)	[206]
AMP	Alkyl chloroformates	Methamphetamine-D5	Fused-silica capillary column (30 m × 0.25 mm, 0.25 μm)	Helium	0.8 mL/min	SIM	91, 116, 207 (AMP) & 134 (IS)	[207]
AMP	Bis(trimethylsilyl)-trifluoroacetamide and trimethyl chlorosilane	AMP-D5	HP-5 fused-silica capillary column (30 m × 0.25 mm, 0.32 μm)	Helium	1 mL/min	SIM	91, 116 & 192 (AMP), 92, 120 & 197 (IS)	[208]
Analyte	Derivatizing agent	IS	Stationary phase	Carrier gas	Flow rate	Detection	m/z	Reference
---------	--------------------	----	------------------	-------------	-----------	-----------	-----	----------
AMP	Acetic anhydride	-	Restek Rtx-SMS capillary column (30 m × 0.25 mm, 0.25 μm)	Helium	0.8 mL/min	SIM	44 (AMP)	[209]
AMP	Pentfluoro-propionic anhydride	AMP-D11	DB-SMS column (30 m × 0.25 mm, 0.25 μm)	Helium	-	SIM	190 (AMP) & 194 (IS)	[210]
MPH	HFBA	MPH-18O2	Restek Rtx-SMS fused-silica capillary column (15 m × 0.25 mm, 0.25 μm)	Helium	1.5 mL/min	SIM	369 (MPH) & 373 (IS)	[212]
MPH	o-(pentfluoro-benzyloxy carbonyl)-benzoyl chloride	MPH-18O2H3	BPX5 fused silica capillary column (15 m × 0.25 mm)	Helium	1.5 mL/min	SIM	380 (MPH) & 385 (IS)	[213]
MPH	N-Heptafluoro butyryl-L-prolyl chloride threo-ethylphenidate, HCl	Silanized glass column (1 m × 2.6 mm)	Helium	37 mL/min	SIM	527 (MPH) & 541 (IS)	[214]	
MPH	Trifluoro acetic anhydride	Ethylphenidate	Glass, coiled column (2 m × 2 mm)	Helium	20 mL/min	SIM	180 (MPH & IS)	[215]
CLN	3, 5-Bis (tri-fluoromethyl) benzoyl chloride	CLN-2H4	Fused-silica capillary column (25 m × 0.23 mm, 0.13 μm)	Helium	-	SIM	673 & 709 (CLN), 676 & 713 (IS)	[220]
CLN	Pentfluoro benzyl bromide	Moxonidine	DB 5 capillary column (30 m × 0.25 mm, 0.25 μm)	-	-	SIM	354 (CLN) & 366 (IS)	[221]
Girault et al. developed and validated a GC-MS method for the determination of CLN extracted from human plasma samples. 2-[(2, 4-dichlorophenyl) imino]imidazolidine was used as an IS and the analyte was derivatized with pentafluorobenzyl bromide. The analyte and IS were separated using an Ultra 1 bonded phase fused-silica capillary column (25 m × 0.2 mm, 0.33 μm) with helium as the carrier gas and detected using SIM mode. The m/z was 354 for the analyte and IS [219]. Other GC-MS methods for the quantification of CLN extracted from human plasma [220] and serum [221] samples are reported in Table 4.

Woźniak et al. developed and validated a GC-MS/MS method for the quantification of AMP in human blood and urine samples using metamphetamine-D5 as the IS. The analyte was extracted from biological samples by LLE using ethyl acetate as the extracting solvent and derivatized with trifluoroacetic anhydride. The analyte and IS were separated using a Phenomenex ZB-5MSi capillary column (30 m × 0.25 mm, 0.25 μm) with helium as the carrier gas at a flow rate of 1 mL/min and detected using MRM mode. The m/z value was 68.9, 91, 118, and 140 for the analyte and 113 and 158 for the IS [222].

Gambelunghe et al. proposed a GC-MS/MS method for the determination of AMP in human hair samples using AMP-D6 as the IS. The analyte was extracted and derivatized with pentafluoro propionic anhydride for analysis. The analyte and IS were separated using a CP–SIL 8CB-MS capillary column (30 m × 0.25 mm, 0.25 μm) with helium as the carrier gas at a flow rate of 1 mL/min and detected using SIM mode. The m/z was 148 for the analyte and 194 for the IS, respectively [223].

Lachenmeier et al. reported a head space GC-MS/MS method for the quantification of AMP in human hair samples using AMP-D5 as the IS and a triple quadrupole as the mass analyser. A solid-phase dynamic extraction technique was employed for sample preparation. The analyte and IS were separated using a fused-silica capillary column (30 m × 0.25 mm, 0.25 μm) with helium as the carrier gas at a flow rate of 1 mL/min. The analyte and IS were detected using both MRM and SIM mode and the m/z were 93 and 140 for the analyte and 96 and 144 for the IS, respectively. The method was validated and was useful for clinical and forensic studies [224]. There is no reported GC method for the quantification of ATX in human biological samples.

4 Discussion

This review covers almost all of the analytical methods for the determination of ADHD drugs in human biological matrices from the year 1970 to 2019. A greater number of analytical methods were reported for stimulant drugs i.e. AMP and MPH compared to non-stimulant drugs i.e. ATX, BUP, GNF, and CLN, which is represented in Figure 2.
In general, spectrophotometry and spectrofluorimetry are the simplest and most inexpensive techniques used for the quantification of drugs. In bioanalysis, a limited number of these methods were reported for the quantification of ADHD drugs, as it detects analytes at the level of µg/mL. For spectrophotometric analysis, addition of a chromogenic reagent (NQS) is required for the analysis of AMP with higher molar absorptivity. The analytes like BUP and GNF are basically non-fluorescent compounds, by reaction with reagents such as dansyl chloride, fluorescent compounds are produced which emit fluorescence at certain wavelengths and are measured using fluorimetry. Nowadays, hyphenated techniques are used for an advanced level of analysis and these have greater applications in the field of bioanalysis due to improved selectivity, sensitivity, accuracy and precision. The various bio-analytical methods used for the quantification of ADHD drugs in biological samples are overviewed in Figure 3. It is found that a greater number of LC-MS/MS methods were reported for the quantification of the six ADHD drugs. Compared to other LC detectors (UV-Vis, fluorescence, etc.), MS is more significant in terms of selectivity and sensitivity. LC-MS/MS methods in bioanalysis significantly reduce the LC run time and increase the sample throughput. To give high quality bioanalytical data, LC-MS/MS is the preferred method for the fast and sensitive quantification of ADHD drugs in biological matrices with a lower detection limit (ng to pg/mL).

5 Conclusion

In this review, the chemistry, physio-chemical properties and bio-analytical methods of six ADHD drugs were discussed. The stimulant drugs (short acting) are the most commonly prescribed drugs compared to non-stimulant drugs in the treatment of ADHD in children and adolescents. Thus, various bio-analytical methods were developed and validated for quantification of these drugs in biological matrices and were applied to pharmacokinetic, toxicokinetic studies, etc. From the above discussion, we concluded that LC-MS/MS is well-developed and the most suitable method for the quantification of ADHD drugs in human biological samples.

Acknowledgement: The authors wish to thank C.L. Baid Metha college of Pharmacy for support and encouragement.
References

[1] Ougrin D, Chaterton S, Banassee R. Attention deficit hyperactivity disorder (ADHD): review for primary care clinicians. London J Prim Care (Abingdon). 2010;3(1):45-51.

[2] Wilms Froot, Scheiner, Grossman. Attention-Deficit/ Hyperactivity Disorder. Pediatrics in Review. 2010;31(2):56-69.

[3] Luo Y, Weibman D, Halperin JM, Li X. A review of heterogeneity in Attention Deficit/Hyperactivity Disorder (ADHD). Front. Hum. Neurosci. 2019;13(42):1-12.

[4] Faraone SV, Asherson P, Banaschewski T, Biederman J, Buitelaar JK, et al. Attention-deficit/hyperactivity disorder. Nat Rev Dis Primers. 2015;1:1-23.

[5] Durston. A review of the biological bases of ADHD: what have we learned from imaging studies? Ment Retard Dev Disabil Res Rev. 2003;9(2):184-95.

[6] Turk J, Seiter-Priester A, Maria Reiterer S, Schneider P. Cognitive and Behavioural Weaknesses in Children with Reading Disorder and ADHD (H). D. Scientific Reports. 2019;9(1):1-11.

[7] Tosto MG, Momi SK, Asherson P, Malik K. A systematic review of attention deficit hyperactivity disorder (ADHD) and mathematical ability: current findings and future implications. BMC Med. 2015;13(5):1-31.

[8] Pérez-Crespo L, Canals-Sans J, Suades-Gonzalez E, Guexes M. Temporal trends and geographical variability of biological markers and the World Federation of ADHD. World J Biol Psychiatry. 2019;20(1):1-12.

[9] Guo X, Yao D, Cao Q, Liu L, Zhao Q, Li H, et al. Shared genetic background between children and adults with attention deficit/hyperactivity disorder. Neuropsychopharmacol. 2020;5:1-10.

[10] Al-Mubarak BR, Omar A, Baz B, Al-Abdulaziz B, Magrashi AI, Yemni EA, et al. Whole exome sequencing in ADHD trios from single and multi-incident families implicates new candidate genes and highlights polygenic transmission. Eur J Hum Genet. 2020;28:1098-110.

[11] Guo X, Yao D, Cao Q, Liu L, Zhao Q, Li H, et al. Shared and distinct resting functional connectivity in children and adults with attention-deficit/hyperactivity disorder. Transl Psychiatry. 2020;10(1):1-12.

[12] Thome J, Ehli AC, Fallgatter AJ, Krauel K, Lange KW, Riederer P, et al. Biomarkers for attention-deficit/hyperactivity disorder (ADHD). A consensus report of the WFSBP task force on biological markers and the World Federation of ADHD. World J Biol Psychiatry. 2012;13(5):379-400.

[13] Lenartowicz A, Loo SK. Use of EEG to diagnose ADHD. Current Psychiatry Reports. 2014;16(11):498-509.

[14] Nuwer MR, Buchhalter J, Shepard KM. Quantitative EEG in attention-deficit/hyperactivity disorder: A companion payment policy review for clinicians and payers. Neurol Clin Pract. 2016;6(6):543-8.

[15] Martinez-Raga J, Ferreiros A, Knecht C, de Alvaro R, Carabal E. Attention-deficit hyperactivity disorder medication use: factors involved in prescribing, safety aspects and outcomes. Ther Adv Drug Saf. 2017;8(3):87-99.

[16] Peterson K, McDonagh M, Fu R. Comparative benefits and harms of competing medications for adults with attention-deficit hyperactivity disorder: a systematic review and indirect comparison meta-analysis. Psychopharmacology (Berl). 2008;197(1):1-11.

[17] Faraone SV. The pharmacology of amphetamine and methylphenidate: Relevance to the neurobiology of attention-deficit/hyperactivity disorder and other psychiatric comorbidities. Neurosci Biobehav Rev. 2018;87:255-70.

[18] Challman TD, Lipsy J. Methylphenidate: Its Pharmacology and Uses. Current applications and future of artificial intelligence in cardiology. 2000;75(7):711-21.

[19] Bymaster FP, Katner JS, Nelson DL, Hemrick-Luecke SK, Threlkeld PG, Heiligenstein JH, et al. Atomoxetine increases extracellular levels of norepinephrine and dopamine in prefrontal cortex of rat: A potential mechanism for efficacy in attention deficit/hyperactivity disorder. Neuropsychopharmacol. 2002;27:699-711.

[20] Barton J. Atomoxetine: a new pharmacotherapeutic approach in the management of ADHD. Archives of Disease in Childhood. 2005;90(1):26-9.

[21] Stahl SM, Pradko JF, Haicht BR, Modell JG, Rockett CB, Learned-Coughlin S. Review of the Neuropharmacology of Bupropion, a Dual Norepinephrine and Dopamine Reuptake Inhibitor. Prim Care Companion J Clin Psychiatry. 2004;6(4):159-66.

[22] Mattes JA. Treating ADHD in Prison: Focus on Alpha-2 Agonists (Clonidine and Guanfacine). J Am Acad Psychiatry Law. 2016;44(2):151-7.

[23] Alamo C, Lopez-Munoz F, Sánchez-García J. Mechanism of action of guanfacine: a postsynaptic differential approach to the treatment of attention deficit hyperactivity disorder (ADHD). Actas Esp Psiquiatr. 2016;44(3):107-12.

[24] Bemknopf A. Guanfacine (Intuniv) for Attention-Deficit/Hyperactivity Disorder. American Family Physician. 2011;83(4):468-75.

[25] Tarver J, Daley D, Sayal K. ADHD: an updated review of the essential facts. Child: care, health and development. 2014;40(6):762-74.

[26] Van de Merbel NC. Quantitative determination of endogenous compounds in biological samples using chromatographic techniques. TrAC Trends in Analytical Chemistry. 2005;28(10):924-33.

[27] Bhatia K, Gangadhararappa HV. An Approach to Bioanalytical method development and Validation: A Review. Int J Pharm Sci Res. 2016;7(6):2291-301.

[28] Moein MM, El Beqqali A, Abdel-Rehim M. Bioanalytical method development and validation: Critical concepts and strategies. Journal of Chromatography B. 2017;1043:3-11.

[29] Pandey S, Pandey P, Tiwari G, Tiwari R. Bioanalysis in Drug Discovery and Development: A Review of Techniques and Strategies. Pharm Methods. 2010;1(1):14-24.

[30] Tsai YH, Sussman BS, Vijayaraga S. Bioanalytical Techniques – An Overview; PharmaTutor. 2015;3(9):14-24.

[31] Heal DJ, Smith SL, Gosden J, Nutt DJ. Amphetamine, past and present--a pharmacological and clinical perspective. J Psychoactive Drugs. 2000;32(5):479-96.

[32] Budavari S. The Merck index: an encyclopedia of chemicals, drugs and biologicals (12th edition). 1996.

[33] Vree TB, Muskens ATJM, Rossum JMV. Some physico-chemical properties of amphetamine and related drugs. Journal of Pharmacy and Pharmacology. 1969;21:774-75.

[34] Alamo C, Lopez-Munoz F, Sánchez-García J. Mechanism of action of guanfacine: a postsynaptic differential approach to the treatment of attention deficit hyperactivity disorder (ADHD). Actas Esp Psiquiatr. 2016;44(3):107-12.

[35] Arora K, Gangadharparpa HV. An Approach to Bioanalytical method development and Validation: A Review. Int J Pharm Sci Res. 2016;7(6):2291-301.

[36] Moein MM, El Beqqali A, Abdel-Rehim M. Bioanalytical method development and validation: Critical concepts and strategies. Journal of Chromatography B. 2017;1043:3-11.

[37] Pandey S, Pandey P, Tiwari G, Tiwari R. Bioanalysis in drug discovery and development. Pharm Methods. 2010;1(1):14-24.

[38] Bhatia K, Gangadhararappa HV. An Approach to Bioanalytical method development and Validation: A Review. Int J Pharm Sci Res. 2016;7(6):2291-301.
[35] Vaiano F, Busardo FP, Palumbo D, Kyriakou C, Fioravanti A, Catalani V, et al. A novel screening method for 64 new psychoactive substances and 5 amphetamines in blood by LC–MS/MS and application to real cases. Journal of Pharmaceutical and Biomedical Analysis. 2016;129:441-9.

[36] Wentthur CJ. Classics in Chemical Neuroscience: Methylphenidate. ACS Chemical Neuroscience. 2016;7(8):1030-40.

[37] O Neil M. The Merck Index - An Encyclopedia of Chemicals, Drugs, and Biologicals. Royal Society of Chemistry. 2013:1132.

[38] Parastekar VP, Barhate V. Spectrophotometric determination of Methylphenidate in a Pharmaceutical preparation by Potassium Permanganate and Sulphanilic acid. World Journal of Pharmaceutical Research. 2015;4(6):2264-74.

[39] de Cássia Mariotti K, Rubensam G, Barreto, F, Bica VC, Meneghini LZ, Ortiz RS, et al. Simultaneous Determination of Fenproporex, Dyethylpropione and Methylphenidate in Oral Fluid by LC-MS/MS. Chromatographia. 2014;77:83-90.

[40] Raghubabu K, Shanli Swarup L, Ramu BK, Rao MN. Simple and convenient visible spectrophotometric assay of atomoxetine hydrochloride in bulk drug and pharmaceutical preparations. Int. J. Chem. Sci. 2012;10(2):643-54.

[41] Rahman Z, Aanandhi VM, SM. Analytical method development and validation of atomoxetine hydrochloride using rapid high-performance liquid chromatographic technique. Asian Journal of Pharmaceutical and Clinical Research. 2018;11(11):118-20.

[42] Sauer J, Ring BJ, Witcher JW. Clinical Pharmacokinetics of Atomoxetine. Clin Pharmacokinet. 2005;44:571-90.

[43] Shailesh K. Spectrophotometric Determination of Atomoxetine Hydrochloride from its pharmaceutical dosage forms. Asian Journal of Research Chemistry. 2009;2:258-9.

[44] Appel DI, Brinda B, Markowitz JS, Newcorn JH, Zhu HJ. A liquid chromatography/tandem mass spectrometry assay for the analysis of atomoxetine in human plasma and in vitro cellular samples. Biomed. Chromatogr. 2012;26:1364-70.

[45] Yanicci D, Dogrukol AK D. The determination of Bupropion Hydrochloride In pharmaceutical dosage forms by original UV- and second derivative UV spectrophotometry, potentiometric and conductometric methods. Turk J Pharm Sci 2010;7:99-110.

[46] Khan SR, Berendt RT, Ellison CD, Ciavarella AB, Asafu-Adjei E, Khan MA, Faustino PJ. Chapter One - Bupropion Hydrochloride. Profiles of Drug Substances, Excipients and Related Methodology. 2016;41:1-30.

[47] Muralidhhar P, Bhargav E, Srinath B. Formulation and Optimization of Bupropion HCl Microsponges by 23 Factorial Design. International Journal of Pharmaceutical Sciences and Research. 2017;8(3):1134-44.

[48] Denooz R, Mercerolle M, Lachatre G, Charlie C. Ultra-Performance Liquid Chromatography-Tandem Mass Spectrometry Method for the Determination of Bupropion and its Main Metabolites in Human Whole Blood. Journal of Analytical Toxicology, 2010; 34(5): 280-6.

[49] Frisk-Holmberg M, Wibell L. Concentration-dependent blood pressure effects of guanfacine. Clin Pharmacol Ther. 1986;39(2):169-72.

[50] Desai S, Bhagwat DA, Shinde S, Disouza JJ. Design and Evaluation of Guanfacine extended release formulation. Int J App Pharm. 2019;11(3):43-8.

[51] Martin P, Satin L, Vince BD, Padilla AF, White C, Corcoran M, et al. Pharmacokinetics and pharmacodynamics of guanfacine extended release in adolescents aged 13–17 years with attention-deficit/hyperactivity disorder. Clinical Pharmacology in Drug Development, 2014;3(4):252-61.

[52] Abounassif MA, Mian MS, Mian NAA. Clonidine Hydrochloride. Analytical Profiles of Drug Substances and Excipients. 1992;21:109-47.

[53] Corciova A. Validated colorimetric assay of Clonidine Hydrochloride from pharmaceutical preparations. Iran J Pharm Res. 2016;15(1):149-56.

[54] Pelzer M, Addison T, Li W, Jiang X, Weng N. Development and validation of a liquid chromatography–tandem mass spectrometry method, using silica column and aqueous–organic mobile phase, for the analysis of clonidine as low as 10 pg/ml in human serum. Journal of liquid Chromatography & related technologies. 2002;25(7):1019-32.

[55] Germer TA, Zwinkels JC, Tsai BK. Theoretical Concepts in Spectrophotometric Measurements. Experimental Methods in the Physical Sciences, 2014;46:11-66.

[56] Legua CM, Falco PC, Cabeza AS. Extractive-spectrophotometric determination of amphetamine in urine samples with sodium 1, 2-naphthoquinone 4-sulphonate. Analytica Chimica Acta. 1993;283(1):635-44.

[57] Basavaiah K, Abdulrahman SAM. Use of charge transfer complexation reaction for the spectrophotometric determination of bupropion in pharmaceuticals and spiked human urine. Thai J. Pharm. Sci. 2010;34:134-45.

[58] Bec KB, Grabska J, Huck CW. Issues in Hyperspectral Traceability of Foods. Elsevier. 2012.

[59] Mauri-Aucejo AR, Pascual-Martí MC, Llobat M, Herrera A, Cerdan A. Fluorimetric determination of amphetamine in urine by flow injection with on-line liquid–liquid extraction. Microchemical Journal. 2001;69(3):199-204.

[60] Omar MA, Abdelmageed OH, Deraya SM, Attia TZ. Spectrofluorimetric protocol for antidepressant drugs in dosage forms and human plasma through derivatization with dansyl chloride. Arabian Journal of Chemistry. 2017;10(2):3197-206.

[61] Wahbi AM, Bedair MM, Galal S, Gazy A, Abdel-hay M. Spectrophotometric determination of guanethidine sulphate, guanfacine hydrochloride, guanoclor sulphate and guanoxalan sulphate in tablets and biological fluids, using benzozin. Mikrochim Acta. 1993;111(3):83-91.

[62] Waddell Smith R. Mass Spectrometry. Encyclopedia of Forensic Sciences (Second Edition). 2013:603-8.

[63] Habib A, Nargis A, Bi L, Zhao P, Wen L. Analysis of amphetamine drug compounds in urine by headspace-dielectric barrier discharge ionization-mass spectrometry. Arabian Journal of Chemistry. 2018;13(1):2162-70.

[64] Yang Y, Kameoka J, Wachs T, Henion JD, Craighead HG. Quantitative Mass Spectrometric Determination of Methylphenidate Concentration in Urine Using an Electrospray Ionization Source Integrated with a Polymer Microchip. Anal. Chem. 2004,76(9):2568-74.

[65] Wachs T, Henion J. A device for automated direct sampling and quantitation from solid-phase sorbent extraction cards by electrospray tandem mass spectrometry. Anal Chem. 2003;75(7):1769-75.

[66] Fritsch RJ, Krause I. Electrophoresis. Encyclopedia of Food Sciences and Nutrition (Second Edition). 2003:2055-62.

[67] Hempel G. Strategies to improve the sensitivity in capillary electrophoresis for the analysis of drugs in biological fluids. Electrophoresis. 2000;21(4):691-8.
Bioanalysis of ADHD drugs in human samples

[68] Meng P, Fang NJ, Wang M, Liu H. Analysis of amphetamine, methamphetamine and methylenedioxy-methamphetamine by micellar capillary electrophoresis using cation-selective exhaustive injection. Electrophoresis. 2006;27(16):3210-7.

[69] Hudson JC, Golin M, Malcolm M. Capillary Zone Electrophoresis in a Comprehensive Screen for Basic Drugs in Whole Blood, Canadian Society of Forensic Science Journal. 1995;28(2):137-52.

[70] Hyotylainen T, Siren H, Riekko LA. Determination of morphine analogues, caffeine and amphetamine in biological fluids by capillary electrophoresis with the marker technique. Journal of Chromatography A. 1996;735(1-2):439-47.

[71] Boatto G, Faedda MV, Pau A, Asproni B, Menconi S, Cerri R. Determination of amphetamines in human whole blood by capillary electrophoresis with photodiode array detection. J Pharm Biomed Anal. 2002;29(6):1073-80.

[72] Hercegoa V, Sadecka J, Polonsky J. Isotachophoretic determination of bisoprolol, clonidine, disopyramide and tolazoline in human fluids. Acta Poloniae Pharmaceutica - Drug Research. 1998;55(3):167-71.

[73] Boatto G, Nieddu M, Carta A, Pau A. Determination of amphetamine-derived designer drugs in human urine by SPE extraction and capillary electrophoresis with mass spectrometry detection. J Chromatogr B Analyt Technol Biomed Life Sci. 2005;814(1):93-8.

[74] Nieddu M, Boatto G, Dessi G. Determination of 4-alkyl 2, 5-dimeioxy-amphetamine derivatives by capillary electrophoresis with mass spectrometry detection from urine samples. Journal of chromatography. B, Analytical Techniques in the Biomedical and Life Sciences. 2007;852(1-2):578-81.

[75] Bach GA, Jack Henion. Quantitative capillary electrophoresis-ion-trap mass spectrometry determination of methylphenidate in human urine. Journal of Chromatography B: Biomedical Sciences and Applications. 1998;707(1–2):275-85.

[76] Allen SA, Pond BB. Chromatographic and electrophoretic strategies for the chiral separation and quantification of d- and l-threo methylphenidate in biological matrices. Biomed. Chromatogr. 2014 28(11):1554-64.

[77] Malagueno de Santana FJ, Jabor VA, Bonato PS. Chiral determination of antidepressant drugs and their metabolites in biological samples. Bioanalysis. 2009;1(1):221-37.

[78] Casado N, Valamana Traverso J, Garcia MA, Marina ML. Enantiomeric Determination of Drugs in Pharmaceutical Formulations and Biological Samples by Electrophoretic Chromatography. Critical reviews in analytical chemistry. 2019;1-0:31.

[79] Sanchez-Hernandez L, Castro-Puyana M, Marina ML, Crego AL. Recent approaches in sensitive enantioseparations by CE. Electrophoresis. 2012;33(3):228-42.

[80] Lee SC, Wang CC, Yang PC, Wu SM. Enantioseparation of (+)-threo-methylphenidate in human plasma by cyclodextrin-modified sample stacking capillary electrophoresis. J Chromatogr A. 2012;1232:302-5.

[81] Theurillat R, Thormann W. Monitoring of three-methylphenidate enantiomers in oral fluid by capillary electrophoresis with head-column field-amplified sample injection. Electrophoresis. 2014;35(7):986-92.

[82] Castro-Puyana M, Lammers I, Buijs J, Goolijer C, Ariese F. Sensitized phosphorescence as detection method for the enantioseparation of bupropion by capillary electrophoresis. Electrophoresis. 2010;31(23-24):3928-36.

[83] Zhu B, Chen YY. Development and Application of Liquid Chromatography in Life Sciences. J Chromatogr Sep Tech. 2017;8(2):1-4.

[84] Talwar D, Watson ID, Stewart MJ. Routine analysis of amphetamine class drugs as their naphthaquinone derivatives in human urine by high-performance liquid chromatography. Journal of Chromatography B: Biomedical Sciences and Applications. 1999;735(2):229-41.

[85] Hassan A. Simultaneous determination of selective drugs, fluoxetine, ketoprofen, oxybutynin and clonidine in human plasma. Jordan Journal of Pharmaceutical Sciences. 2011;4(2):114-23.

[86] Guo W, Li W, Guo G, Zhang J, Zhou B, Zhai Y, Wang C. Determination of atomoxetine in human plasma by a high performance liquid chromatographic method with ultraviolet detection using liquid-liquid extraction. J Chromatogr B Analyt Technol Biomed Life Sci. 2007;854(1-2):128-34.

[87] Baharfar M, Yamini Y, Seidi S, Karami M. Quantitative analysis of clonidine and ephedrine by a microfluidic system: On-chip electromembrane extraction followed by high performance liquid chromatography. Journal of Chromatography B. 2017;1068–9:313-21.

[88] Campins Falco P, Molins Legua C, Herraez Hernandez R, Sevilla Cabeza A. Improved amphetamine and methamphetamine determination in urine by normal-phase high-performance liquid chromatography with sodium 1, 2-naphthaquinone 4-sulphonate as derivatizing agent and solid-phase extraction for sample clean-up. Journal of Chromatography B: Biomedical Sciences and Applications. 1995;663(2):235-45.

[89] Gailliard Y, Pepin G. Use of high-performance liquid chromatography with photodiode-array UV detection for the creation of a 600-compound library application to forensic toxicology. Journal of Chromatography A. 1997;763(1–2):149-63.

[90] Zhu HJ, Wang JS, Patrick KS, Donovan JL, DeVane CL, Markowitz JS. A novel HPLC fluorescence method for the quantification of methylphenidate in human plasma. Journal of Chromatography B. 2007;858(1–2):91-5.

[91] Stegmann B, Dorfett A, Haen E. Quantification of Methylphenidate, Dexamphetamine, and Atomoxetine in Human Serum and Oral Fluid by HPLC with Fluorescence Detection. Therapeutic Drug Monitoring. 2016;38(1):98-107.

[92] Ulu ST, Tuncel M. Determination of Bupropion Using Liquid Chromatography with Fluorescence Detection in Pharmaceutical Preparations, Human Plasma and Human Urine. Journal of Chromatographic Science. 2012;50(5):433-9.

[93] Tedeschi L, Frison G, Castagna F, Giorgetti R, Ferrara SD. Simultaneous identification of amphetamine and its derivatives in urine using HPLC-UV. Int J Leg Med. 1993;105(5):265-9.

[94] Saber Tehrani M, Givianrad MH, Mahoor MH. Surfactant-assisted dispersive liquid–liquid microextraction followed by high-performance liquid chromatography for determination of amphetamine and methamphetamine in urine samples. Anal. Methods. 2012;4(5):1357-64.

[95] Maddadi S, Qomi M, Rajabi M. Extraction, preconcentration, and determination of methylphenidate in urine sample using solvent bar microextraction in combination with HPLC–UV: Optimization by experimental design. Journal of Liquid Chromatography & Related Technologies. 2017;40(15):806-12.
[96] Soares ME, Carvalho M, Carvalho F, Bastos ML. Simultaneous determination of amphetamine derivatives in human urine after SPE extraction and HPLC-UV analysis. Biomed. Chromatogr. 2004;18(2):125-31.

[97] Lalande M, Wilson DL, McGilvery II. HPLC Determination of Methylphenidate in Human Plasma. Journal of Liquid Chromatography. 1987;10(10):2257-64.

[98] Cooperx TB, Suckow RF, Glassman A. Determination of Bupropion and Its Major Basic Metabolites in Plasma by Liquid Chromatography with Dual-Wavelength Ultraviolet Detection. Journal of Pharmaceutical Sciences. 1984;73(8):1104-7.

[99] Al-khamis KI. Rapid Determination of Bupropion in Human Plasma by High Performance Liquid Chromatography, Journal of Liquid Chromatography. 1989;12(4):645-55.

[100] Takitane J, Menck R, de Oliveira TF, Prado NV. Determination of Amphetamine, Amfepramone and Fenproporex in Urine Samples by HPLC-DAD: Application to a Population of Brazilian Truck Drivers. J. Braz. Chem. Soc. [online]. 2016;27(3):624-30.

[101] Molins Legua C, Campíns Falco P, Sevillano Cabeza A. Amphetamine and methamphetamine determination in urine by reversed-phase high-performance liquid chromatography with sodium 1, 2-naphthoquinone 4-sulfonate as derivatizing agent and solid-phase extraction for sample clean-up. Journal of Chromatography B: Biomedical Sciences and Applications. 1995;672(3):81-8.

[102] Patel C, Patel M, Rani S, Nivsarkar M, Padh H. A new high-performance liquid chromatographic method for quantification of atomoxetine in human plasma and its application for pharmacokinetic study. Journal of Chromatography B. 2007;850(1–2):356-60.

[103] Dogrukol-Ak D, Yeniceli D. A simple and specific hplc method for the determination of atomoxetine in pharmaceuticals and human plasma. Journal of Liquid Chromatography & Related Technologies. 2010;33(19):1745-59.

[104] Yeniceli D, Dogrukol-Ak D. An LC Method for the Determination of Bupropion and Its Main Metabolite, Hydroxybupropion in Human Plasma. Chromatographia. 2009;70:1703–08.

[105] Lobo KD, Gross AS, Ray J, McLachlan AJ. HPLC assay for bupropion and its major metabolites in human plasma. Journal of Chromatography B. 2005;823(2):115-21.

[106] Wang TK, Fuh MS. Determination of amphetamine in human urine by dansyl derivatization and high-performance liquid chromatography with fluorescence detection. Journal of Chromatogr. B: Biomedical Sciences and Applications. 1996;686(2):285-90.

[107] Zhu HJ, Wang JS, Donovan JL, DeVane CL, Gibson BB, Markowitz JS. Sensitive quantification of atomoxetine in human plasma by HPLC with fluorescence detection using 4-(4, 5-diphenyl-1H-imidazole-2-yl) benzoyl chloride derivatization. Journal of Chromatography B. 2007;846(1–2):351-4.

[108] Ulu ST. Sensitive high-performance liquid chromatographic method for determination of atomoxetine in plasma and urine preconcentration derivatization with 1-dimethylaminonaphthalene-5-sulphonyl chloride, Journal of Liquid Chromatography & Related Technologies. 2012;35(6):747-56.

[109] Kataoka H, Lord HL, Pawliszyn J. Simple and Rapid Determination of amphetamine, methamphetamine, and their methylenedioxy derivatives in urine by automated in-tube solid-phase microextraction coupled with liquid chromatography-electrospray ionization mass spectrometry. Journal of Analytical Toxicology. 2000;24(4):257–65.

[110] Apollonio LG, Pianca DJ, Whitall IR, Maher WA, Kyd JM. A demonstration of the use of ultra-performance liquid chromatography–mass spectrometry [UPLC/MS] in the determination of amphetamine-type substances and ketamine for forensic and toxicological analysis. Journal of Chromatography B. 2006;836(1–2):111-5.

[111] Tatsuno M, Nishikawa M, Katagi M, Tsuchihashi H. Simultaneous determination of illicit drugs in human urine by liquid chromatography-mass spectrometry. J Anal Toxicol. 1996;20(5):281-6.

[112] Bogusz MJ, Kala M, Maier RD. Determination of phenylisothiocyanate derivatives of amphetamine and its analogues in biological fluids by HPLC-APCI-MS or DAD. J Anal Toxicol. 1997;21(1):59-69.

[113] Marchei E, Fuere M, Pellegrini M, Rossi S, García-Algar O, Vall O, Pichini S. Liquid chromatography-electrospray ionization mass spectrometry determination of methylphenidate and ritalinic acid in conventional and non-conventional biological matrices. Journal of Pharmaceutical and Biomedical Analysis. 2009;49(2):434-9.

[114] Marchei E, Muñoz JA, García-Algar O, Pellegrini M, Vall O, Zuccaro P, Pichini S. Development and validation of a liquid chromatography–mass spectrometry assay for hair analysis of methylphenidate. Forensic Science International. 2008;176(1):42-46.

[115] Shinozuka T, Terada M, Tanaka E. Solid-phase extraction and analysis of 20 antidepressant drugs in human plasma by LC/MS with SSI method. Forensic Sci Int. 2006;162(1-3):108-12.

[116] Wolf CE, Kester-Florin SJ, Poklis A. A HPLC-MS method to detect and quantify guanfacine in urine. Clinical Chemistry and Laboratory Medicine. 2011; 50(3): 535-7.

[117] Danafar H. Method validation of clonidine hydrochloride in human plasma by LC-MS technique. Pharm Biomed Res. 2015;4(4):48-58.

[118] Danafar H, Hamidi M. LC-MS Method for Studying the Pharmacokinetics and Bioequivalence of Clonidine Hydrochloride in Healthy Male Volunteers. Avicenna Journal Medical Biotechnology. 2016;8(2):91-8.

[119] Miyaguchi H, Inoue H. Determination of amphetamine-type stimulants, cocaine and ketamine in human hair by liquid chromatography/linear ion trap–Orbitrap hybrid mass spectrometry. Analyst. 2011;136:3503-11.

[120] Concheiro M, Simoes SM, Quintela O, de Castro A, Dias MJ, Cruz A, López-Rivadulla M. Fast LC–MS/MS method for the determination of amphetamine, methamphetamine, MDA, MDMA, MDEA, MBDB and PMA in urine. Forensic Science International. 2007;171(1):44-51.

[121] Chèze M, Deveaux M, Martin C, Lhermitte M, Pépin G. Simultaneous analysis of six amphetamines and analogues in hair, blood and urine by LC-ESI-MS/MS: Application to the determination of Forensic Science MDMA after low Ecstasy intake. International. 2007; 170(2–3): 100-4.

[122] Chou CC, Lee MR. Solid phase microextraction with liquid chromatography-electrospray ionization–tandem mass spectrometry for analysis of amphetamine and methamphetamine in serum. Analytica Chimica Acta. 2005;538(1–2):49-56.
Bioanalysis of ADHD drugs in human samples

[132] Ferreiros Bouzas N, Dresen S, Munz B, Weinmann W. Determination of atomoxetine in plasma and saliva by liquid chromatography/tandem mass spectrometry. Journal of Chromatography B. 2013;923–924:22-8.

[137] Josefsson M, Rydberg I. Determination of methylphenidate and ritalinic acid in blood, plasma and oral fluid from adolescents and adults using protein precipitation and liquid chromatography tandem mass spectrometry—A method applied on clinical and forensic investigations. Journal of Pharmaceutical and Biomedical Analysis. 2011;55(5):1050-9.

[139] Jang M, Kim J, Shin I, Kang S, Choi H, Yang W. Simultaneous determination of methylphenidate and ritalinic acid in hair using LC–MS/MS. Forensic Science International. 2019;294:183-8.

[140] Kwon W, Suh S, In MK, Kim JY. Simultaneous Determination of methylphenidate, amphetamine and their metabolites in Urine using direct injection liquid chromatography-tandem mass spectrometry. Mass Spectrom. Lett. 2014;5(4):104-9.

[141] Choi CI, Jang CG, Bae JW, Lee SY. Validation of an analytical LC-MS/MS method in human plasma for the pharmacokinetic study of atomoxetine. J Anal Chem. 2013;68:986-91.

[142] Choi CI, Bae JW, Lee HI, Jang CG, Sohn UD, Lee SY. Determination of atomoxetine metabolites in human plasma by liquid chromatography/tandem mass spectrometry and its application to a pharmacokinetic study. J Chromatogr B Analyt Technol Biomed Life Sci. 2012;885-886:103-8.

[143] Mullen JH, Shugert RL, Ponsler GD, Li Q, Sundaram B, Coales HL, et al. Simultaneous quantification of atomoxetine as well as its primary oxidative and O-glucuronide metabolites in human plasma and urine using liquid chromatography tandem mass spectrometry (LC/MS/MS). Journal of Pharmaceutical and Biomedical Analysis. 2005;38(4):720-33.

[144] Park D, Choi H, Jang M, Chang H, Woo S, Yang W. Simultaneous determination of 18 psychoactive agents and 6 metabolites in plasma using LC–MS/MS and application to actual plasma samples from conscription candidates. Forensic Science International. 2018;288:283-90.

[145] Papeseit E, Marchei E, Farre M, Garcia-Algar O, Pacifi ci R, Pichini S. Concentrations of atomoxetine and its metabolites in plasma and oral fluid from paediatric patients with attention deficit/hyperactivity disorder. Drug testing and Analysis. 2013;5(6):446-52.

[146] Marchei E, Papeseit E, Garcia-Algar QQ, Farre M, Pacifici R, Pichini S. Determination of atomoxetine and its metabolites in conventional and non-conventional biological matrices by liquid chromatography–tandem mass spectrometry. Journal of Pharmaceutical and Biomedical Analysis. 2012;60:26-31.

[147] Papeseit E, Marchei E, Mortali C, Aznar G, Garcia-Algar O, Farre M, et al. Development and validation of a liquid chromatography–tandem mass spectrometry assay for hair analysis of atomoxetine and its metabolites: Application in clinical practice. Forensic Science International. 2012;218(1–3):62-7.

[148] Montenarh D, Hopf M, Warth S, Maurer HH, Schmidt P, Ewald AH. A simple extraction and LC-MS/MS approach for the screening and identification of over 100 analytes in eight different matrices. Drug testing and Analysis. 2015;7(3):214-40.
[149] Montenarh D, Wernet MP, Hopf M, Maurer HH, Schmidt PH, Ewald AH. Quantification of 33 antidepressants by LC-MS/MS—comparative validation in whole blood, plasma, and serum. Anal Bioanal Chem. 2014;406:5939-53.

[150] Borges V, Yang E, Dunn J, Henion J. High-throughput liquid chromatography–tandem mass spectrometry determination of bupropion and its metabolites in human, mouse, and rat plasma using a monolithic column. Journal of Chromatography B. 2004;804(2):277-87.

[151] Shah PA, Parekh JM, Shrivastav PS. Assessment of critical extraction and chromatographic parameters for the determination of bupropion and its three primary metabolites in human plasma by LC-MS/MS. Microchemical Journal. 2015;135:81-90.

[152] Shahi PK, Patel H, Shah V, Bhokari A, Thennati R, Ameta R. Simultaneous Quantitative Determination of Bupropion and its Metabolites by High Performance Liquid Chromatography Tandem Mass Spectrometry Detection: Application to Bioequivalence Study. Indian J of Pharmaceutical Education and Research. 2018;52(4S):47-46.

[153] Wang X, Vernikovskaya DI, Abdelrahman DR, Hankins GD, Ahmed MS, Nanovskaya TN. Simultaneous quantitative determination of bupropion and its three major metabolites in human umbilical cord plasma and placental tissue using high-performance liquid chromatography–tandem mass spectrometry. Journal of Pharmaceutical and Biomedical Analysis. 2012;70:320-9.

[154] Park S, Park CS, Lee SJ, Cha B, Cho YA, Song Y et al. Development & validation of a high-performance liquid chromatography–tandem mass spectrometric method for simultaneous determination of bupropion, quetiapine & escitalopram in human plasma. Biomed. Chromatogr. 2015;29:612-8.

[155] Parekh JM, Sutariya DK, Vaghelna RN, Sanyal M, Yadav M, Shrivastav PS. Sensitive, selective and rapid determination of bupropion and its major active metabolite, hydroxybupropion, in human plasma by LC-MS/MS: application to a bioequivalence study in healthy Indian subjects. Biomed. Chromatogr. 2012;26:314-26.

[156] Iwakura K, Ogawa T, Hattori, H, Iwai M, Suzuki O, Nakagawa T. Simultaneous and sensitive analysis of fourth-generation antidepressants in human plasma by ultra-performance liquid chromatography–tandem mass spectrometry. Forensic Toxicol. 2014;32:30-8.

[157] Masters AR, McCoy M, Jones DR, Desta Z. Stereoselective method to quantify bupropion & its three major metabolites, hydroxybupropion, erythro-dihydrobupropion, and threo-dihydrobupropion using HPLC–MS/MS. Journal of Chromatography B. 2016;1015-1016:201-8.

[158] Petrides AK, Moskowitz J, Johnson-Davis KL, Jannetto PJ, Langman LJ, Clarke W, Marzinke MA. The development and validation of a turbulent flow-liquid chromatography–tandem mass spectrometric method for the simultaneous quantification of citalopram, sertraline, bupropion and hydroxybupropion in serum. Clinical Biochemistry. 2014;47(5):73-9.

[159] Li Y, Henion J, Abbott R, Wang P. The use of a membrane filtration device to form dried plasma spots for the quantitative determination of guanfacine in whole blood. Rapid Commun Mass Spectrom. 2012;26(10):1208-12.

[160] Li Y, Henion J, Abbott R, Wang P. Dried blood spots as a sampling technique for the quantitative determination of guanfacine in clinical studies. Bioanalysis, 2011;3(22):25 01-14.

[161] Li Y, Henion J, Abbott R, Wang P. Semi-automated direct elution of dried blood spots for the quantitative determination of guanfacine in human blood. Bioanalysis, 2012;4(12):1445-56.

[162] Ghosh C, Singh RP, Inamdar, S, Mote M, Chakraborty BS. Sensitive, Selective, Precise and Accurate LC–MS Method for Determination of Clonidine in Human Plasma. Chroma. 20 09;69:1227-32.

[163] Zhuang J, Chen J, Wang X, Pang Y, Bi H, Huang L, et al. Validation of a HPLC-ESI MS/MS method for the determination of clonidine in human plasma and its application in a bioequivalence study in Chinese healthy volunteers. Biomed. Chromatogr. 2015;29:1506-13.

[164] Parekh SA, Pudage A, Joshi SS, Vaidya VV, Gomes NA. Rapid and sensitive liquid chromatography–tandem mass spectrometry (LC–MS/MS) method for the determination of clonidine in human plasma. Journal of Chromatography B. 2008;867(2):172-8.

[165] Veigure R, Aro R, Metsvaht T, Standing JF, Lutsar I, Herodes K, Kipper K. A highly sensitive method for the simultaneous UHPLC–MS/MS analysis of clonidine, morphine, midazolam and their metabolites in blood plasma using HFIP as the eluent additive. Journal of Chromatography B. 2017;1052:150-7.

[166] Nirogi R, Kandikere V, Mudigonda K, Komarneni P. Liquid chromatography tandem mass spectrometry method for the quantification of clonidine with LLOQ of 10 pg/mL in human plasma. Biomedical Chromatography. 2008;22(9):992-1000.

[167] Herráez-Hernández R, Campins-Falcó P, Verdu-Andres J. Strategies for the enantiomeric determination of amphetamine and related compounds by liquid chromatography. Journal of Biochemical and Biophysical Methods. 2002;5(1–3):147-67.

[168] Herráez-Hernández R, Campins-Falcó P, Tortajada-Genaro LA. Chiral determination of amphetamine and related compounds using chlororormates for derivatization and high-performance liquid chromatography. Analyst. 1998;123(10):2311-7.

[169] Foster BS, Gilbert DD, Hutchaeleeaha A, Mayersohn M. Enantiomeric Determination of Amphetamine and Methamphetamine in Urine by Precolumn Derivatization with Marfey’s Reagent and HPLC. Journal of Analytical Toxicology. 1998;22(4):265-9.

[170] Batista JMM, Guimaeraes LAf, Soares JES, Fonteles MMF. Determination of Enantiomeric Methylphenidate in Human Plasma by High Performance Liquid Chromatography. International Journal of PharmTech Research. 2017;10(2):114-9.

[171] Thomsen R, Rasmussen HB, Linnet K. Enantioselective Determination of Methylphenidate and Ritalinic Acid in Whole Blood from Forensic Cases Using Automated Solid-Phase Extraction and Liquid Chromatography–Tandem Mass Spectrometry. Journal of Analytical Toxicology. 2012;36(8):560-8.

[172] Zhu HJ, Patrick KS, Markowitz JS. Enantiospecific determination of dl-methylphenidate and dl-ethylphenidate in plasma by liquid chromatography–tandem mass spectrometry: Application to human ethanol interactions. Journal of Chromatography B. 2011;879(11–12):783-8.
Bioanalysis of ADHD drugs in human samples

[173] Teitelbaum AM, Flaker AM, Kharasch ED. Development and validation of a high-throughput stereoselective LC–MS/MS assay for bupropion, hydroxybupropion, erythrohydrobupro- pion, and threo-hydroxybupropion in human plasma. Journal of Chromatography B. 2016;1017–1018:101-13.

[174] Coles R, Kharasch ED. Stereoselective analysis of bupropion and hydroxybupropion in human plasma and urine by LC/MS/ MS. Journal of Chromatography B. 2007;857(1):67-75.

[175] Forgacs E, Cserhati T. Gas chromatography. Food Authenticity and Traceability. 2003;197-217.

[176] Moldoveanu S, David V. Derivatization Methods in GC and GC/ MS. Peter Kusch Eds. 2019, Gas Chromatography - Deriva- tization, Sample Preparation, Application.

[177] Anggard E, Gunne LM, Niklasson F. Gas Chromatographic Determination of Amphetamine in Blood, Tissue, and Urine. Scandinavian Journal of Clinical and Laboratory Investigation. 1970;26(2):137-43.

[178] O'Brien JE, Zazulak W, Abbey V, Hinsvark O. Determination of Amphetamine and Phenetermine in Biological Fluids. Journal of Chromatographic Science. 1972;10(9):336-41.

[179] Dugal R, Rouleau MA, Bertrand MJ. The Nitrogen-Phosphorus Detector in the Gas Chromatographic Assay of Unmeta- bolized Methylphenidate. Journal of Analytical Toxicology. 1978;2(3):101-6.

[180] Lebish P, Finkle BS, Brackett JW. Determination of Amphetamine, Methamphetamine, and Related Amines in Blood and Urine by Gas Chromatography with Hydrogen-Flame Ionization Detector. Clinical Chemistry. 1970;16(3):195-200.

[181] Raikos N, Christopoulou K, Theodoridis G, Tsoukali H, Marquet P, Lacassie E, Battu C, Faubert H, Lachâtre G. Determination of amphetamine–related drugs and ephedrines in plasma, urine and hair samples after derivatization with 2,2,2-trichloroethanol chloroformate. Rapid Commun. Mass Spectrom. 2005;19(7):919-27.

[182] Rezaee M, Katagai M, Zaitku S, Nishikoda H, Tsuchihashi H. Development of a two-step injector for GC–MS with on-column derivatization, and its application to the determination of amphetamine-type stimulants (ATS) in biological specimens. Journal of Chromatography B. 2008;865(1-2):25-32.

[183] Frison G, Tedeschi L, Favretto D, Reheman B, Ferrada SD. Gas chromatography/mass spectrometry determination of amphetamine-related drugs and ephedrines in plasma, urine and hair samples after derivatization with 2,2,2-trichloroethanol chloroformate. Rapid Commun. Mass Spectrom. 2005;19(7):919-27.

[184] Gjerde H, Hasvold I, Pettersen G, Christophersen AS. Determination of Amphetamine and Methamphetamine in Blood by Derivatization with Perfluoroctyl Chloride and Gas Chromatography/Mass Spectrometry. Journal of Analytical Toxicology. 1993;17(2):65-8.

[185] Marquet P, Lacassie E, Battu C, Faubert H, Lachâtre G. Simultaneous determination of amphetamine and its analogs in human whole blood by gas chromatography-mass spectrometry. Journal of Chromatography B: Biomedical Sciences and Applications. 1997;700(1–2):77-82.

[186] Nishida M, Namera A, Yashiki M, Kojima T. On-column derivatization for determination of amphetamine and methamphetamine in human blood by gas chromatography–mass spectrometry. Forensic Science International. 2002;125(2–3):156-62.

[187] Peters FT, Kraemer T, Maurer HH. Drug Testing in Blood: Validated Negative-Ion Chemical Ionization Gas Chromato- graphic–Mass Spectrometric Assay for Determination of Amphetamine and Methamphetamine Enantiomers and Its Application to Toxicology Cases, Clinical Chemistry. 2002;48(9):1472–85.

[188] Reimer MLJ, Mamer OA, Zavisinos AP, Siddiqui AW, Dadgar D. Determination of amphetamine, metham- phenamine and desmethylphenylpyridine in human plasma by gas chromatography/negative ion chemical ionization mass spectrometry. Biol. Mass Spectrom. 1993;22:235-42.
tography—mass spectrometry. Journal of Chromatography A. 2000;896(1–2):265-73.

[201] Mohamed KM, Bakdash A. Comparison of 3 Derivatization Methods for the Analysis of Amphetamine-Related Drugs in Oral Fluid by Gas Chromatography-Mass Spectrometry. Analytical Chemistry Insights. 2017;12:1-16.

[202] Souza DZ, Boehl PO, Comiran E, Marioti KC, Pecharsky F, Duarte PC, et al. Determination of amphetamine-type stimulants in oral fluid by solid-phase microextraction and gas chromatography—mass spectrometry. Analytica Chimica Acta. 2011;696(1–2):67-76.

[203] Yahata M, Namera A, Nishida M, Yashiki M, Kuramoto T, Kimura K. In-matrix derivatization and automated headspace solid-phase microextraction for GC-MS determination of amphetamine-related drugs in human hair. Forensic Toxicol. 2006;24:51-7.

[204] Kintz P, Cirimele V, Tracqui A, Mangin P. Simultaneous determination of amphetamine, methamphetamine, 3, 4-methylenedioxymethamphetamine and 3, 4-methylenedioxymethamphetamine in human hair by gas chromatography-mass spectrometry. Journal of Chromatography B: Biomedical Sciences and Applications. 1995;670(1):162-6.

[205] Rohrich J, Kauert G. Determination of amphetamine and methylenedioxyamphetamine-derivatives in hair. Forensic Science International. 1997;84(1–3):179-88.

[206] Kintz P, Cirimele V. Interlaboratory. Comparison of quantitative determination of amphetamine and related compounds in hair samples. Forensic Science International. 1997;84(1–3):151-6.

[207] Namera A, Yashiki M, Kojima T, Ueki M. Automated Headspace Solid-Phase Microextraction and In-Matrix Derivatization for the Determination of Amphetamine-Related Drugs in Human Urine by Gas Chromatography-Mass Spectrometry. Journal of Chromatographic Science. 2002;40(1):19-25.

[208] Miranda GE, Sordo M, Salazar AM, Contreras C, Bautista L, Rojas Garcia AE, et al. Determination of Amphetamine, Methamphetamine, and Hydroxyamphetamine Derivatives in Urine by Gas Chromatography-Mass Spectrometry and Its Relation to CYP2D6 Phenotype of Drug Users. Journal of Analytical Toxicology. 2007;31(1):31-6.

[209] Dobos A, Hidvegi E, Somogyi GP. Comparison of five derivatizing agents for the determination of amphetamine-type stimulants in human urine by extractive acylation and Gas Chromatography–Mass Spectrometry. Jour. of Analytical Toxicology. 2012;36(5):340-4.

[210] Alsenedi KA, Morrison C. Determination of amphetamine-type stimulants (ATSs) and synthetic cathinones in urine using solid phase micro-extraction fibre tips and gas chromatography-mass spectrometry. Anal. Methods. 2018;10:1431-40.

[211] Leis HJ, Windischhofer W. Gas chromatography—negative ion chemical ionisation mass spectrometry using o-(pen tfluorobenzoyloxycarbonyl)-2, 3, 4, 5-tetrafluorobenzoyl derivatives for the quantitative determination of methylphenidate in human plasma. Journal of Chromatography B. 2011;879(23):2299-303.

[212] Leis HJ, Fauler G, Raspotnig G, Windischhofer W. Negative ion chemical ionization for the determination of methylphenidate in human plasma by stable isotope dilution gas chromatography/mass spectrometry. J. Mass Spectrom. 2000;35:1100-4.

[213] Leis HJ, Schutz H, Windischhofer W. Quantitative determination of methylphenidate in plasma by gas chromatography negative ion chemical ionisation mass spectrometry using o-(pentfluorobenzoyloxycarbonyl)-benzoyl derivatives. Anal Bioanal Chem. 2011;400:2663-70.

[214] Aoyama T, Kotaki H, Honda Y, Nakagawa F. Kinetic analysis of enantiomers of three -methylphenidate and its metabolite in two healthy subjects after oral administration as determined by a gas chromatographic-mass spectrometric method. Journal of Pharmaceutical sciences. 1990;79(6):465-9.

[215] Chan YM, Soldin SJ, Swanson JM, Deber CM, Thiessen JJ, Macleod S. Gas chromatographic/mass spectrometric analysis of methylphenidate (Ritalin) in serum. Clinical Biochemistry. 1980;13(6):266-72.

[216] Boumba VA, Rallis G, Petrikis P, Vougiouklakis T, Mavreas V. Determination of clozapine, and five antidepressants in human plasma, serum and whole blood by gas chromatography—mass spectrometry: A simple tool for clinical and postmortem toxicological analysis. Journal of Chromatography B. 2016;1038:43-8.

[217] Julien Larose C, Lange C, Lavene D, Kiechel JR, Basselier JJ. Determination of guanfacine in human plasma by GC-MS with electron capture negative chemical ionization. International Journal of Mass Spectrometry and Ion Physics. 1983;48:221-4.

[218] Haglock C, Wolf C, Poklis A. A Novel Method for the Determination of Guanfacine in Urine by Gas Chromatography-Mass Spectrometry. Journal of Analytical Toxicology. 2008;32(8):544-6.

[219] Yamahata T, Dote S, Ozawa Y, Nishikawa H, Maeda S. Determination of clonidine in human plasma by gas chromatography—electron-impact mass spectrometry. Journal of Chromatography B: Biomedical Sciences and Applications. 1994; 653(1):92-7.

[220] Girault J, Fournillier JB. Quantitative measurement of clonidine in human plasma by combined gas chromatography/electron capture negative ion chemical ionization mass spectrometry. Biomedical & Environmental Mass Spectrometry. 1988;17(6):443-8.

[221] Wenzl T, Lankmayr EP, Wintersteiger R, Sadjak A, Likar R, Zakel D. Determination and quantification of clonidine in human blood serum. Journal of Biochemical and Biophysical Methods. 2002;53(1–3):131-9.

[222] Wozniak MK, Wiergowski M, Aszyk J, Kubica P, Namieśnik J, Zdzięcioł K, Kotaki H, Bakdash A. Determination of amphetamine-related drugs in human blood serum. Journal of Chromatography B: Biomedical Sciences and Applications. 2005;831(1):53-61.