Hepatitis C eradication with sofosbuvir leads to significant metabolic changes

Amilcar L Morales, Zachary Junga, Manish B Singla, Maria Sjogren, Dawn Torres

AIM
To assess the effect of sofosbuvir (SOF) based regimens on glycemic and lipid control.

METHODS
This is a retrospective analysis of hepatitis C virus (HCV)-infected patients treated and cured with a SOF regimen [SOF/ribavirin/interferon, SOF/simeprevir, or SOF/ledipasvir (LDV) ± ribavirin] from January 2014 to March 2015. Patients with hemoglobin A1C (HbA1C) and lipid panels within six months before and six months after therapy were identified and included in our study. Due to the known hemolytic effect of ribavirin, HbA1C was obtained a minimum of three months post-treatment for the patients treated with a ribavirin regimen. Medical history, demographics, HCV genotype, pre-therapy RNA, and liver biopsies were included in our analysis. The patients who started a new medication or had an adjustment of baseline medical management for hyper-
lipidemia or diabetes mellitus (DM) were excluded from our analysis.

RESULTS
Two hundred and thirty-four patients were reviewed, of which 60 patients met inclusion criteria. Sixty-three point three percent were male, 26.7% were Caucasian, 41.7% were African American and 91.7% were infected with hepatitis C genotype 1. Mean age was 60.6 ± 6.7 years. Thirty-nine patients had HbA1C checked before and after treatment, of which 22 had the diagnosis of DM type 2. HbA1C significantly decreased with treatment of HCV (pretreatment 6.66% ± 0.95% vs post-treatment 6.14% ± 0.65%, P < 0.005). Those treated with SOF/LDV had a lower HbA1C response than those treated with other regimens (0.26% ± 0.53% vs 0.71% ± 0.83%, P = 0.070). Fifty-two patients had pre- and post-treatment lipid panels; there was a significant increase in low-density lipoprotein (LDL) and total cholesterol (TC) after treatment (LDL: 99.5 ± 28.9 mg/dL vs 128.3 ± 34.9 mg/dL, P < 0.001; TC: 171.6 ± 32.5 mg/dL vs 199.7 ± 40.0 mg/dL, P < 0.001). Pre-treatment body-mass index (BMI) did not differ from post-treatment BMI (P = 0.684).

CONCLUSION
Eradication of HCV with a SOF regimen resulted in a significant drop in HbA1C and an increase in LDL and TC post therapy.

Key words: Hepatitis C; Sofosbuvir; Hyperlipidemia; Hemoglobin A1C; Low-density lipoprotein

© The Author(s) 2016. Published by Baishideng Publishing Group Inc. All rights reserved.

Core tip: In our retrospective study, we evaluated the changes in glucose and lipid metabolism in a group of hepatitis C patients treated and cured with a sofosbuvir-containing regimen. We used hemoglobin A1c (HgA1c) and lipid panels to assess those two parameters. Six months post eradication, we found a statistically significant drop in HgA1c and an increase in low-density lipoprotein and total cholesterol. The use of HgA1c, although not perfect, is easy to understand and is frequently used by primary care doctors as a tool to assess glucose control.

INTRODUCTION
Hepatitis C virus (HCV) is a leading cause of chronic liver disease, with a prevalence of infection in the United States of approximately 1.6%[1]. It remains the leading cause of death from liver disease and is the leading indication for liver transplantation in the United States despite recent medical advances in HCV therapy. HCV can cause major alterations in insulin resistance (IR) and lipid homeostasis[2-4]. HCV infection has been associated with the development of diabetes mellitus type 2[5,6] as well as a 3.5-fold increase in the prevalence of glucose alterations in non-diabetics[7]. The pathogenesis between HCV and IR seems to be multifactorial, with cytokine upregulation and direct interactions between viral particles and insulin signaling pathways[8-12]. In the traditional pegylated interferon (PegIFN) based regimens, IR was associated with decreased sustained virological response (SVR)[13]; multiple studies have shown an association between viral suppression or clearance and improvement of IR[14-17].

Along with IR, steatosis is also very common in patients infected with HCV[18]. The exact mechanism has not been fully elucidated, but host lipid alterations seem to play a major role. The virus utilizes very low-density lipoproteins (LDLs) to infect hepatocytes and several other lipid secretory mechanisms to perpetuate replication[19]. Several proteins, including Seipin and the HCV core protein, have been shown to alter the production of free fatty acids, as well as the proper excretion of lipids, increasing steatosis in the host[10-21]. Hypcholesterolemia is another finding that seems to be closely related to HCV replication mechanisms. After successful treatment with interferon-based therapy, it has been shown that hypcholesterolemia was resolved, with significant increases in LDL, triglycerides, and cholesterol[20,23].

The era of direct-acting antiviral (DAA) agents has increased SVR rates to over 90%, with dramatically improved side effect profiles[24-30]. IR and lipid alterations do not seem to affect treatment outcomes, and there is limited data on the effects of DAA therapy on metabolic and lipid profiles. A recent study evaluating the effects of sofosbuvir (SOF) and ribavirin (RBV) therapy in a mostly non-diabetic population demonstrated fluctuations in LDL levels throughout treatment, with elevations in LDL in patients achieving SVR as well as a small decrease in hemoglobin A1C (HbA1C) levels (5.58% ± 0.08% to 5.45% ± 0.91%; P = 0.0046)[31]. Additional data regarding metabolic alterations after therapy with the new DAA is scarce. In this retrospective study, the effects of HCV eradication on glucose and lipid metabolism in patients treated with SOF-based regimens at WRNMMC from 2014 to 2015 were assessed.

MATERIALS AND METHODS

Eligibility criteria
Patients aged 18 years or older with confirmed infections with HCV (by RNA) treated and cured at our institution with any combination of a NS5B inhibitor (SOF), NS5A inhibitor [ledipasvir (LDV)], protease inhibitor (Simeprevir), RBV and PegIFN from January 2014 to March 2015 were eligible for the study. Electronic records were reviewed to look for patients with a HbA1C and/or lipid panel drawn
before and after therapy. A total of 234 patient charts were reviewed.

HbA1C
The HbA1C closest to starting day of HCV therapy (up to six months pre-therapy) and the closest HbA1C post-therapy (up to six months) were included in our analysis. RBV is known to cause hemolysis, with remarkable drops in hemoglobin. Since HbA1C is closely related to red blood cell lifespan and could be altered by RBC destructions and anemia, the HbA1C in this population was selected between three to six months post therapy. Hemoglobin levels were reviewed pre-therapy and post-therapy and added to the analysis.

In patients with the diagnosis of diabetes mellitus type 2, a review of concomitant hypoglycemic medications was performed. All clinic encounters up to a year prior to starting HCV therapy, during therapy, and up to six months post therapy were reviewed, looking for adjustments of medications that could have altered HbA1C values. Those patients who started a medication or had an adjustment of baseline medical management were removed from the analysis. Patients on stable doses of oral hypoglycemic medications or insulin regimens during the study period were included. Attempts to account for diet and exercise regimens were beyond the scope of this analysis.

Lipids
Lipid panels closest to the starting and end dates of therapy (up to six months pre and post therapy) were included. All samples were drawn during the morning. However, due to the retrospective nature of the analysis, fasting could not be confirmed for all patients. Patients on stable doses of lipid-lowering agents were included, while patients started on new medications or with adjustments during the study period were removed from the analysis.

Data collection
Basic demographic and clinical information was collected for all patients, including age, gender, race, body-mass index (BMI) pre-and post-HCV therapy, and specific HCV anti-viral therapy used. Pre-therapy aspartate aminotransferase (AST), alanine transaminase (ALT), alkaline phosphatase, total bilirubin, albumin, total protein, Hepatitis C RNA, Hepatitis C genotype, and liver biopsy staging were also included. Patients with other liver diseases, such as hemochromatosis, Wilson disease, and alcoholic liver disease, were excluded from the analysis. A total of 60 patients were included in the final analysis. The study protocol was approved by the Institutional Review Board of Walter Reed National Military Medical Center.

Statistical analysis
Data were collated and analyzed using statistical software package IBM SPSS Statistics 21.0 (IBM, Armonk, New York). Continuous data was reported as means ± SDs. Paired t-test was used to compare variables measured before and after HCV treatment. Student’s t test was used to analyze between group comparisons of continuous data including the change in HbA1C, HA1C, LDL, and high density lipoprotein (HDL) over the HCV treatment. A probability value of less than 0.05 was considered statistically significant. The statistical review of the study was performed by a biomedical statistic.

RESULTS
A total of 234 patients were treated for HCV during the study period. Of these, 60 patients met the inclusion criteria. Their average age was 60.6 ± 6.7 years; 26.7% were Caucasian, 41.7% were African American, and 63.3% were male. Clinical history in the cohort was significant for diabetes (38.3%) and hyperlipidemia (HLD) (33.3%). Patients had a mean viral load of 4.7 × 10^6 ± 7.6 × 10^5; 50.0% were infected with genotype 1a, and 26.7% were infected with genotype 1b. The mean pre-treatment AST was 61.0 ± 49.3 units/L, ALT 72.1 ± 56.2 units/L, alkaline phosphatase 102.3 ± 71.3 units/L, total bilirubin 0.8 ± 1.5 mg/dL, albumin 4.2 ± 0.4 g/dL, and total protein 7.4 ± 0.7 g/dL. All patients were treated with a SOF-based regimen. Of the 23 patients with diabetes, 15 were treated with a stable dose of anti-diabetic medications, most commonly metformin. Of the 20 patients with HLD, 12 were taking a statin, and only three had their statins held during therapy (Table 1).

A total of 39 patients had pre- and post-treatment HbA1C measured. Overall, there was a significant drop in HbA1C during treatment (Figure 1). This was not accompanied by a significant decrease in BMI (pre-treatment 28.86 ± 5.15 kg/m^2, post treatment 28.48 ± 4.72 kg/m^2, P = 0.683). There was no significant difference in HbA1C effect between males and females (P = 0.793). There was no significant difference in HbA1C drop between genotype 1a and 1b (P = 0.605). Although not statically significant, patients with a history of diabetes tended to have a larger drop in HbA1C than those without diabetes, and Caucasians tended to have a larger drop in HbA1C than African Americans. Patients aged 65 and older were less likely to have a drop in their HbA1C with treatment (younger than 65, 0.68% ± 0.75%, 65 and older, -0.01% ± 0.47%, P = 0.0187). Sixteen of these patients were treated in conjunction with ribavirin; this did not have a significant effect on HbA1C change (drop in HbA1C with ribavirin 0.44% ± 0.76%; without ribavirin 0.68% ± 0.74%, P = 0.342). Patients with a high viral load (> 6000000 copies) tended to have a larger drop in HbA1C with treatment (high VL 0.87% ± 0.97%, low VL 0.40% ± 0.62%, P = 0.080). Fifty-two patients had pre- and post-treatment lipid panels measured. Overall, there was a significant increase in LDL and total cholesterol (TC) with minimal change in HDL (pre 52.8 ± 18.3 mg/dL, post 51.4 ± 18.5 mg/dL, P = 0.699) and triglycerides (pre 132.1 ± 99.7 mg/dL, post 129.8 ± 80.8 mg/dL, P = 0.853) (Figure 2). Patients with a history of HLD did not have
The mechanism responsible for this significant decrease in HbA1C up to six months post-therapy alters the effects of insulin resistance, although likely multifactorial. It is well known that HCV alters glucose metabolism by inducing inflammatory cascades and promoting IR. Defects in pathways important in hepatic gluconeogenesis such as PI3K and AKT phosphorylation have been reported in patients infected with HCV. Insulin receptor substrates 1 and 2 are closely related to the PI3K/AKT pathways; these two receptors are key components in the development of IR in patients infected with HCV. The virus can degrade these two receptors, directly affecting the PI3K/AKT pathways. Eradication of the virus restores homeostasis of these pathways, leading to an improvement in IR.

In the interferon/RBV era, several studies have demonstrated an improvement of IR with SVR. Early work by Thompson et al. demonstrated a 10% decrease in IR in genotype1 patients who achieved SVR, which was supported by the more recent results from Chien et al. that showed a significant decrease in HOMA-IR at EOT after eradication of the virus with this combination. Similarly, a study by Meissner et al. demonstrated a small but significant decrease in HbA1c in patients treated with SOF/RBV (5.58% ± 0.08% to 5.45% ± 0.08%, P = 0.0046). While the majority of these patients were non-diabetic or pre-diabetics, the patients included in this analysis had a significantly higher rate of diabetes, at 56%. When compared to the non-diabetic patients, the diabetics had a greater improvement in HbA1c.

In a subgroup analysis, patients treated with the SOF/LDV had a lower drop in HbA1c when compared to SOF/RBV and SOF/SIM groups. One possible explanation is the relationship between the new DAA and its target. The non-structural proteins of the virus NS5A and NS5B are key components in the activation of inflammatory cascades promoting insulin resistance. It is plausible that the interaction of the medication or the duration of therapy alters the effects of insulin resistance, although further study is required.

Although this study was not designed to identify the

Table 1 Patient characteristics (n = 60)

Male (n = 38)	63.3%
Female (n = 22)	36.7%
Race	
Caucasian (n = 16)	26.7%
African American (n = 25)	41.7%
Hispanic (n = 3)	5.0%
Asian (n = 2)	3.3%
Not listed (n = 14)	23.3%
Treatment	
Sofosbuvir/ribavirin/interferon (n = 21)	35.0%
Sofosbuvir/simeprevir (n = 11)	18.3%
Sofosbuvir/ledipasvir (n = 23)	38.3%
Sofosbuvir/ribavirin (n = 4)	8.3%
Sofosbuvir (n = 1)	1.7%
Biopsy stage (n = 49)	
1 (n = 8)	13.3%
2 (n = 21)	35.0%
3 (n = 5)	8.3%
4 (n = 15)	25.0%
Statin use (n = 20)	
Statin use (n = 20)	20.0%
Statin held during tx (n = 3)	5.0%
Mean viral load	
Mean viral load	4746471 ± 7641768
Mean ALT	
Mean ALT	72.1 ± 56.2
Genotype	
1a (n = 30)	50.0%
1b (n = 16)	26.7%
1 undistinguished (n = 9)	15.0%
2 (n = 2)	3.3%
3 (n = 3)	5.0%

ALT: Alanine transaminase.
The hepatitis C virus (HCV) is a leading cause of chronic liver disease, with a prevalence of infection in the United States of approximately 1.6%. It is the leading cause of death from liver disease and is the leading indication for liver transplantation in the United States. Chronic hepatitis C infection (CHC) is known to induce systemic changes regarding glucose control and lipid metabolism. Glycemic balance can be affected by direct effect over insulin activation cascades and as a systemic response to inflammatory cytokines. Patients with CHC developed diabetes mellitus earlier than non-infected patients. Lipid metabolism is also affected due to known impaired lipid secretions associated with the infectious mechanism of the virus (possible use of lipid receptor to infect hepatocytes). Steatosis is another major finding in patients infected with CHC.

COMMENTS

Background

The hepatitis C virus (HCV) is a leading cause of chronic liver disease, with a prevalence of infection in the United States of approximately 1.6%. It is the leading cause of death from liver disease and is the leading indication for liver transplantation in the United States. Chronic hepatitis C infection (CHC) is known to induce systemic changes regarding glucose control and lipid metabolism. Glycemic balance can be affected by direct effect over insulin activation cascades and as a systemic response to inflammatory cytokines. Patients with CHC developed diabetes mellitus earlier than non-infected patients. Lipid metabolism is also affected due to known impaired lipid secretions associated with the infectious mechanism of the virus (possible use of lipid receptor to infect hepatocytes). Steatosis is another major finding in patients infected with CHC.

Research frontiers

Hepatitis C therapy has changed drastically in the last four years. The authors are now able to achieve cure rates of over 90%, with minimal side effects. The long-term implications of these new agents are still unclear, and previous studies have shown mixed results regarding alterations in glucose and lipid control after eradication. There is limited data regarding the newer anti-viral agents and their effects on metabolic derangements. The study attempts to assess the metabolic changes associated with these new agents.
Innovations and breakthroughs

Similar studies evaluating metabolic changes associated with hepatitis C eradication have used HOMA-IR as a surrogate of glucose homeostasis. Although this is a very accurate way of assessing glucose changes post hepatitis C eradication, its use on a daily clinic encounter is limited. In the study, the authors used HgA1c as a surrogate for glucose homeostasis. This laboratory test is easy to use and is well known by non-gastroenterology/ hepatology providers. This laboratory test is more practical for daily clinic encounters. Previous studies on patients treated and cured with interferon and Ribavirin have shown alterations in lipid homeostasis, similar to the results. As the data on lipid alterations with the new direct antiviral agents is limited, the study adds to the knowledge on non-hepatic effects associated with a sustained virological response.

Applications

As reported in the study, several patients required adjustments in their hyperglycemic regimens, and one patient was completely taken off medication. The study suggests that shortly after completing hepatitis C therapy, primary care doctors should monitor diabetic patients, under medical management, to assess if changes to their medications are needed. Although the study was not meant to assess long-term effects, changes in HbA1c, as seen in the study, can add benefits in cost savings, as well as prevent microvascular and macrovascular disease. The changes seen in lipid homeostasis are worrying and require further investigation. These patients are still at risk of developing other liver diseases, such as non-alcoholic fatty liver disease. Primary care doctors should implement close monitoring of lipids after hepatitis C eradication, and those who meet the criteria for therapy should be treated accordingly.

Terminology

NSSA: Non-structural protein 5A. This protein plays a key role in HCV replication. It is one of the main targets for some of the new direct acting antiviral agents; such as Sofosbuvir; Sustain NS5B: Non-structural protein 5B. Involved in Hepatitis C RNA replication. It is one of the main targets for some of the new direct acting antiviral agents; NS5A: Non-structural protein 5A. This protein plays a key role in HCV replication.

Peer-review

The manuscript is well presented and of interest and the results can contribute to increase the knowledge of this topic.

REFERENCES

1. Ghany MG, Strader DB, Thomas DL, Seef LB. Diagnosis, management, and treatment of hepatitis C: an update. *Hepatology* 2009; 49: 1335-1374 [PMID: 19330875 DOI: 10.1002/hep.22759]
2. Moucari R, Asselah T, Cazals-Hatem D, Voitot H, Boyer N, Ripault MP, Sobesky R, Martinot-Peignoux M, Maylin S, Nicolas-Chanoine MH, Paradis V, Vidaud M, Valla D, Bedossa P, Marcellin P. Insulin resistance in chronic hepatitis C: association with genotypes 1 and 4, serum HCV RNA level, and liver fibrosis. *Gastroenterology* 2008; 134: 416-423 [PMID: 18164296 DOI: 10.1053/j.gastro.2007.11.010]
3. Hui JM, Sud A, Farrell GC, Bandara P, Byth K, Kench JG, McCaughan GW, George J. Insulin resistance is associated with chronic HCV virus infection and fibrosis progression [corrected]. *Gastroenterology* 2003; 125: 1695-1704 [PMID: 14724822]
4. Negro F. Abnormalities of lipid metabolism in hepatitis C virus infection. *Gut* 2010; 59: 1279-1287 [PMID: 20660700 DOI: 10.1136/gut.2009.192732]
5. Mehta SH, Bancati FL, Strathdee SA, Sankow PS, Netski D, Cossari J, Szklar DG, Thomas DL. Hepatitis C virus infection and incident type 2 diabetes. *Hepatology* 2003; 38: 50-56 [PMID: 12829996 DOI: 10.1053/jhep.2003.50291]
6. Mehta SH, Bancati FL, Sulkowski MS, Strathdee SA, Szklar D, Thomas DL. Prevalence of type 2 diabetes mellitus among persons with hepatitis C virus infection in the United States. *Ann Intern Med* 2000; 133: 592-599 [PMID: 11035386]
7. Huang JF, Yu ML, Dai CY, Hsieh MY, Hwang SJ, Hsiao PJ, Lee LP, Lin ZY, Chen SC, Hsieh MY, Wang LY, Shin SJ, Chang WY, Chuang WL, Reappraisal of the characteristics of glucose abnormalities in patients with chronic hepatitis C infection. *Am J Gastroenterol* 2008; 103: 1933-1940 [PMID: 18637090 DOI: 10.1111/j.1572-0241.2008.01996.x]
8. Nelson DR, Lim HL, Marousis CG, Fang JW, Davis GL, Shen L, Urdea MS, Kolberg JA, Lau JY. Activation of tumor necrosis factor-alpha system in chronic hepatitis C virus infection. *Dig Dis Sci* 1997; 42: 2487-2494 [PMID: 9460625]
9. Kawaguchi T, Yoshida T, Harada M, Hisamoto T, Nagao Y, Ide T, Taniguchi E, Kumemura H, Hanada S, Maeyama M, Baba S, Koga H, Kumashiro R, Ueno T, Ogata H, Yoshimura A, Sata M. Hepatitis C virus down-regulates insulin receptor substrates 1 and 2 through up-regulation of suppressor of cytokine signaling 3. *Am J Pathol* 2004; 165: 1499-1508 [PMID: 15590521 DOI: 10.1016/S0002-9440(10)63408-6]
10. Piazza V, Clémont S, Pugnale P, Conzelman S, Foti M, Mangia A, Negro F. The hepatitis C virus core protein of genotypes 3a and 1b downregulates insulin receptor substrate 1 through genotype-specific mechanisms. *Hepatology* 2007; 45: 1164-1171 [PMID: 17463532 DOI: 10.1002/hep.21634]
11. Miyamoto H, Morishii K, Moriya K, Murata S, Tanaka K, Suzuki T, Miyamura T, Koike K, Matsura Y. Involvement of the PA28gamma-dependent pathway in insulin resistance induced by hepatitis C virus core protein. *J Virol* 2007; 81: 1727-1735 [PMID: 17135326 DOI: 10.1128/JVI.01683-06]
12. Bernsmeier C, Duong FH, Christen V, Pugnale P, Negro F, Terracciano L, Heim MH. Virus-induced over-expression of protein phosphatase 2A inhibits insulin signalling in chronic hepatitis C. *J Hepatol* 2008; 49: 429-440 [PMID: 18468962 DOI: j.jhep.2008.04.007]
13. Dai CY, Huang JF, Hsieh MY, Hou NJ, Lin ZY, Chen SC, Hsieh MY, Wang LY, Chang WY, Chuang WL, Yu ML. Insulin resistance predicts response to peginterferon-alpha/ribavirin combination therapy in chronic hepatitis C patients. *J Hepatol* 2009; 50: 712-718 [PMID: 19231011 DOI: j.jhep.2008.12.017]
14. Kawaguchi T, Ide T, Taniguchi E, Hirano I, Itou M, Sumie S, Nagao Y, Yanagimoto C, Hanada S, Koga H, Sata M. Clearance of HCV improves insulin resistance, beta-cell function, and hepatic expression of insulin receptor substrate 1 and 2. *Am J Gastroenterol* 2007; 102: 570-576 [PMID: 17222321 DOI: 10.1111/j.1572-0241.2006.01038.x]
15. Delgado-Borrogra A, Jordan SH, Negre B, Healey D, Lin W, Kamegaya Y, Christofi M, Ludwig DA, Lok AS, Chung RT. Reduction in insulin resistance with effective clearance of hepatitis C infection: results from the HALT-C trial. *Clin Gastroenterol Hepatol* 2010; 8: 458-462 [PMID: 20156586 DOI: 10.1016/j.cgh.2010.01.022]
16. Huang JF, Yu ML, Huang CF, Joo SH, Dai CY, Hsieh MY, Hou NJ, Yeh ML, Hsieh MH, Yang JF, Lin ZY, Chen SC, Shin SJ, Chuang WL. The outcomes of glucose abnormalities in pre-diabetic chronic hepatitis C patients receiving peginterferon plus ribavirin therapy. *Liver Int* 2012; 32: 962-969 [PMID: 22356757 DOI: 10.1111/j.1478-3231.2012.02771.x]
17. Thompson AJ, Patel K, Chuang WL, Lawitz EJ, Rodriguez-Torres M, Ruster VA, Flishak P, Piekarowski S, Kato K, Di Giorgio A, Arora S, Foster GR, Torbenson RM, Benhamou Y, Nelson DR, Sulkowski MS, Zeuzem S, Pukstis E, Subramanian GM, McHutchison GJ. Viral clearance is associated with improved insulin resistance in genotype 1 chronic hepatitis C but not genotype 2/3. *Gut* 2012; 61: 128-134 [PMID: 21873466 DOI: 10.1136/gut.2010.236158]
18. Adinolfi LE, Gambardella M, Andreana A, Tripodi MF, Uriti R, Ruggiero G. Steatosis accelerates the progression of liver damage of chronic hepatitis C patients and correlates with specific HCV genotype and visceral obesity. *Hepatology* 2001; 33: 1358-1364 [PMID: 11391523 DOI: 10.1053/jhep.2001.24432]
19. Perlmutter G, Sible B, Letteron P, Vona G, Topilco A, Chretien Y, Koike K, Pessayre D, Chapman J, Barba G, Brehot C. Hepatitis C virus core protein inhibits microsomal triglyceride transfer protein activity and very low density lipoprotein secretion: a model
of viral-related steatosis. *FASEB J* 2002; 16: 185-194 [PMID: 11818366 DOI: 10.1096/fj.01-0396com]

20 Syed GH, Amako Y, Siddiqui A. Hepatitis C virus hijacks host lipid metabolism. *Trends Endocrinol Metab* 2010; 21: 33-40 [PMID: 19854061 DOI: 10.1016/j.tem.2009.07.005]

21 Simon TG, Butt AA. Lipid dysregulation in hepatitis C virus, and impact of statin therapy upon clinical outcomes. *World J Gastroenterol* 2015; 21: 8293-8303 [PMID: 26217081 DOI: 10.3748/wjg.v21.i27.8293]

22 Chang ML, Tsou YK, Hu TH, Lin CH, Lin WR, Sung CM, Chen TH, Cheng ML, Chuang KC, Chiu CT, Yeh CT, Pang JH, Shiao MS. Distinct patterns of the lipid alterations between genotype 1 and 2 chronic hepatitis C patients after viral clearance. *PLoS One* 2014; 9: e104783 [PMID: 25122166 DOI: 10.1371/journal.pone.0104783]

23 Kuo YH, Chuang TW, Hung CH, Chen CH, Wang JH, Hu TH, Lu SN, Lee CM. Reversal of hypolipidemia in chronic hepatitis C patients after successful antiviral therapy. *J Formos Med Assoc* 2011; 110: 363-371 [PMID: 21741004 DOI: 10.1016/S0929-6646(11)60054-5]

24 Afshar N, Zeaeem S, Kwo P, Chojkier M, Gitlin N, Puoti M, Romero-Gomez M, Zarski JP, Agarwal K, Buggisch P, Foster GR, Bräu N, Buti M, Jacobson IM, Subramanian GM, Ding X, Mo H, Yang JC, Pang PS, Symonds WT, McHutchison JG, Mier AJ, Mangia A, Marcelin P. Ledipasvir and sofosbuvir for untreated HCV genotype 1 infection. *N Engl J Med* 2014; 370: 1898-1899 [PMID: 24725238 DOI: 10.1056/NEJMoa1402454]

25 Lawitz E, Poordad FF, Pang PS, Hyland RH, Ding X, Mo H, Symonds WT, McHutchison JG, Membreno FE. Sofosbuvir and ledipasvir fixed-dose combination with and without ribavirin in treatment-naive and previously treated patients with genotype 1 hepatitis C virus infection (LONESTAR): an open-label, randomised, phase 2 trial. *Lancet* 2014; 383: 515-523 [PMID: 24209977 DOI: 10.1016/S0140-6736(13)60212-1]

26 Gane EJ, Stedman CA, Hyland RH, Ding X, Svarovskaia E, Subramanian GM, Symonds WT, McHutchison JG, Pang PS. Efficacy of nucleotide polymerase inhibitor sofosbuvir plus the NS5A inhibitor ledipasvir or the NS5B non-nucleoside inhibitor GS-9669 against HCV genotype 1 infection. *Gastroenterology* 2014; 146: 736-743.e1 [PMID: 24262278 DOI: 10.1013/j.gastro.2013.11.007]

27 Lawitz E, Sulkowski MS, Gulab R, Rodriguez-Torres M, Younossi ZM, Corregidor A, DeJesus E, Pearlman B, Rabininovitz M, Gitlin N, Lim JK, Pockros PJ, Scott JD, Feverly B, Lambrecht T, Ouerwerker-Mahadevan S, Callewaert K, Symonds WT, Picchioni G, Lindsay KL, Beumont M, Jacobson IM. Simeprevir plus sofosbuvir, with or without ribavirin, to treat chronic infection with hepatitis C virus genotype 1 in non-responders to pegylated interferon and ribavirin and treatment-naive patients: the COSMOS randomised study. *Lancet* 2014; 384: 1756-1765 [PMID: 25073039 DOI: 10.1016/S0140-6736(14)61036-9]

28 Lawitz E, Gane EJ. Sofosbuvir for previously untreated chronic hepatitis C infection. *N Engl J Med* 2013; 369: 678-679 [PMID: 23944316 DOI: 10.1056/NEJMct1307641]

29 Lawitz E, Mangia A, Wyles D, Rodriguez-Torres M, Hassanein T, Gordon SC, Schultz M, Davis MN, Kayali Z, Reddy KR, Jacobson IM, Kowdley KV, Nyberg L, Subramanian GM, Hyland RH, Arterburn S, Jiang D, McNally J, Brainard D, Symonds WT, McHutchison JG, Sheikh AM, Younossi Z, Gane EJ. Sofosbuvir for previously untreated chronic hepatitis C infection. *N Engl J Med* 2013; 368: 1878-1887 [PMID: 23607594 DOI: 10.1056/NEJMoa1248533]

30 Arase Y, Suzuki F, Suzuki Y, Akuta N, Kobayashi M, Kawamura Y, Yatsuhi H, Sezaki H, Hosaka T, Hirakawa M, Ikeda K, Kumada H. Sustained virological response reduces incidence of onset of type 2 diabetes in chronic hepatitis C. *Hepatology* 2009; 49: 739-744 [PMID: 19127513 DOI: 10.1002/hep.22703]

31 Meissner EG, Lee YJ, Osmiuna A, Sims Z, Qin J, Stardevant D, McHutchison J, Subramanian M, Sampson M, Naggie S, Patel K, Remaley AT, Masur H, Kottili S. Effect of sofosbuvir and ribavirin treatment on peripheral and hepatic lipid metabolism in chronic hepatitis C virus, genotype 1-infected patients. *Hepatology* 2015; 61: 790-801 [PMID: 25203718 DOI: 10.1002/hep.27242]

32 Adinolfi LE, Zamponi R, Restivo L, Lonardo A, Guerrera B, Mannone A, Nascimeni F, Florio A, Loria P. Chronic hepatitis C virus infection and atherosclerosis: clinical impact and mechanisms. *World J Gastroenterol* 2014; 20: 3410-3417 [PMID: 24707124 DOI: 10.3748/wjg.v20.i3.3410]

33 Romero-Gómez M, Fernández-Rodríguez CM, Andrade RJ, Diago M, Alonso S, Planas R, Solà R, Pons JA, Salmerón J, Barcena R, Perez R, Carmona I, Durán S. Effect of sustained virological response to treatment on the incidence of abnormal glucose values in chronic hepatitis C. *J Hepatology* 2008; 49: 721-727 [PMID: 18308416 DOI: 10.1016/j.jhep.2007.11.022]

34 Ampuero J, Romero-Gómez M. Assessing cardiovascular risk in hepatitis C: An unmet need. *World J Hepatol* 2015; 7: 2214-2219 [PMID: 26380047 DOI: 10.4245/wjh.v7.i19.2214]

35 Chien CH, Lin CL, Hu CC, Chang JJ, Chien RN. Clearance of Hepatitis C Virus Improves Insulin Resistance During and After Peginterferon and Ribavirin Therapy. *J Interferon Cytokine Res* 2015; 35: 981-989 [PMID: 26308911 DOI: 10.1089/jir.2014.0200]

36 Huang YW, Yang SS, Fu SC, Wang TC, Hsu CK, Chen DS, Hu JT, Kao JH. Increased risk of cirrhosis and its decompensation in chronic hepatitis C patients with new-onset diabetes: a nationwide cohort study. *Hepatology* 2014; 60: 807-814 [PMID: 24919583 DOI: 10.1002/hep.27212]

37 Everhart JE, Lok AS, Kim HY, Morgan TR, Lindsay KL, Chung RT, Bonkowski HL, Ghany MG. Weight-related effects on disease progression in the hepatitis C antiviral long-term treatment against cirrhosis trial. *Gastroenterology* 2009; 137: 549-557 [PMID: 19445938 DOI: 10.1053/j.gastro.2009.05.007]

38 Dai CY, Chuang WL, Ho CL, Hsieh MY, Huang JF, Lee LP, Hou NJ, Lin ZY, Chen SC, Hsieh MY, Wang LY, Tsai JF, Chang WY, Yu ML. Associations between hepatitis C viremia and low serum triglyceride and cholesterol levels: a community-based study. *J Hepatology* 2008; 49: 9-16 [PMID: 18486265 DOI: 10.1016/j.jhep.2008.03.016]

39 Serfaty L, Andreni T, Giral P, Carbonell N, Chazouillères O, Poupon R. Hepatitis C virus induced hypobetalipoproteinaemia: a possible mechanism for steatosis in chronic hepatitis C. *J Hepatol* 2001; 34: 428-434 [PMID: 11322205]

P- Reviewer: Aghakhani A, Blanco JR, Gutierrez JA, Hwang SG, Rezaee-Zavareh MS
S- Editor: Ji FF
L- Editor: A
E- Editor: Li D
