Data Article

Experimental data on the mechanical properties of individual *caobilla* wood cubes used on control pile systems

Norma Patricia López-Acosta*, Eduardo Martínez-Hernández

Instituto de Ingeniería, Universidad Nacional Autónoma de México, Mexico City, Mexico

A R T I C L E I N F O

Article history:
Received 24 June 2018
Received in revised form 5 August 2018
Accepted 18 August 2018
Available online 23 August 2018

A B S T R A C T

This article contains data on the mechanical properties of individual cubes of *caobilla* wood (*Swietenia humilis Zucc.*) used as deformable cell of control piles, which are a special foundation system used to regulate both loads and settlements in buildings. The data were obtained from stress-controlled compression tests considering wooden cubes with different volumetric weight, moisture conditions and fiber orientation. In addition, the correlation of yield stress versus volumetric weight of *caobilla* wood cubes is presented. The mean values and standard deviations of volumetric weight and yield stress of the tested wooden cubes under dry and wet states are also presented.

© 2018 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

Specifications Table

Subject area	Civil Engineering, Material Science
More specific subject area	Physical and mechanical properties of building materials
Type of data	Tables and figures
How data was acquired	Laboratory tests
Data format	Raw, analyzed and tabulated

* Corresponding author.
E-mail address: nlopeza@iingen.unam.mx (N.P. López-Acosta).

https://doi.org/10.1016/j.dib.2018.08.045
2352-3409 © 2018 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
Experimental factors
The moisture content of the tested wooden cubes varies between MC = 0.5 to 1% and it represents the dry state condition in this article. Wet state condition was obtained by submerging some specimens in a container with water during 26 days before being tested.

Experimental features
Stress-controlled compression tests in a Universal Testing Machine

Data source location
Materials Laboratory of the Instituto de Ingeniería, Universidad Nacional Autónoma de México, Mexico City, Mexico

Data accessibility
Relevant data are available within the article and some additional data are in a Supplementary data file (Appendix A)

Value of the data

- The data can be used to design deformable cells of control pile systems.
- The data allow estimation of the maximum load that the piles can reach under normal working conditions, which can be compared with the capacity of the load frame of the control device to prevent its failure.
- The data allow direct estimation of the settlement of a building taking into account the deformation measured in the wooden cubes of the control devices.
- The data are useful to develop criteria for control pile maintenance.
- The data can be reanalyzed and compared with other materials used as deformable cell in order to perform additional researches.
- The dataset can be used to calculate and design new wood structural elements for buildings.
- The dataset can be reused by other researchers to investigate further properties of wooden cubes and to enable supplementary analyses.

1. Data

This article presents data on the mechanical properties of caobilla wood (Swietenia humilis Zucc.) cubes used in control pile systems. The data were obtained from stress-strain diagrams derived from stress-controlled compression tests (2 MPa/min) on cubes of 5 cm edge under different moisture conditions and fiber orientation (anisotropy of wood), as listed in Table 1. Tables 2–4 show the yield stress σ_f, the strain associated with the yield stress ε_f, the ultimate stress σ_m, the strain associated with the ultimate stress ε_m, the tangent modulus in the elastic range E_e and the tangent modulus in the plastic range E_p of the wooden cubes. In addition, the correlation of yield stress versus volumetric weight of the tested cubes and the main descriptive statistics of wooden cubes under dry and wet states are presented.

Table 1
Summary of tests performed on individual wooden cubes.

Type of specimen	Type of test	Number of specimen
Dry cubes	Vertically oriented fibers	5
	Horizontally oriented fibers	8
Wet cubes	Horizontally oriented fibers	4
2. Experimental design, materials, and methods

2.1. Description of control pile device

Control piles are a special foundation system used to correct differential settlements of buildings and problems related to regional subsidence [1–3]. The components of the system are a point-bearing pile that freely penetrates the foundation slab, a metallic load frame rigidly anchored to the foundation slab and a deformable cell placed between them (Fig. 1a). The deformable cell is composed of a set of caobilla wood cubes arranged in three levels [4,5] (Fig. 1b). The elastoplastic behavior of the wooden cubes allows transmission of almost constant load to the piles and, in turn, absorption of vertical displacements of the building [6] (Fig. 1c).

Table 2
Mechanical properties of individual dry cubes of caobilla wood with horizontally oriented fibers.

Volumetric weight (kN/m³)	σₚ (MPa)	εₚ (%)	σₘ (MPa)	εₘ (%)	Eₑ (MPa)	Eₚ (MPa)
4.62	6.9	1.5	11.3	41.5	457.6	10.5
4.78	6.7	2.0	11.4	46.1	299.1	10.5
4.88	7.5	1.5	13.3	40.2	496.9	14.7
4.98	9.2	1.3	13.8	42.2	663.8	11.1
5.59	8.9	1.7	14.0	37.5	524.9	13.9
5.83	12.1	2.7	20.6	43.5	753.9	20.1
6.57	16.2	1.6	23.0	45.2	1011.3	16.9
6.65	18.6	1.4	27.3	28.0	1330.9	36.6

Note: σₚ = yield stress, εₚ = strain associated with the yield stress, σₘ = ultimate stress, εₘ = strain associated with the ultimate stress, Eₑ = tangent modulus in the elastic range, Eₚ = tangent modulus in the plastic range.

Table 3
Mechanical properties of individual dry cubes of caobilla wood with vertically oriented fibers.

Volumetric weight (kN/m³)	σₚ (MPa)	εₚ (%)	σₘ (MPa)	εₘ (%)	Eₑ (MPa)
5.12	34.3	1.0	41.5	3.4	3432.3
5.32	34.8	1.1	45.1	5.6	3481.3
5.56	35.3	1.2	39.5	4.2	3209.4
5.94	40.5	1.8	44.3	6.5	2531.3
6.14	40.7	1.1	57.3	3.8	4069.7

Table 4
Mechanical properties of individual wet cubes of caobilla wood with horizontally oriented fibers.

Volumetric weight (kN/m³)	MC (%)	σₚ (MPa)	εₚ (%)	σₘ (MPa)	εₘ (%)	Eₑ (MPa)	Eₚ (MPa)
4.81	58.7	3.3	1.7	9.7	44.8	240.6	10.3
5.15	47.6	4.1	2.8	13.2	47.1	170.7	13.8
6.34	42.4	6.1	2.2	17.6	46.4	340.8	17.7
6.64	36.2	8.9	2.5	20.5	44.8	497.5	16.3

Note: MC = moisture content.

2. Experimental design, materials, and methods

2.1. Description of control pile device

Control piles are a special foundation system used to correct differential settlements of buildings and problems related to regional subsidence [1–3]. The components of the system are a point-bearing pile that freely penetrates the foundation slab, a metallic load frame rigidly anchored to the foundation slab and a deformable cell placed between them (Fig. 1a). The deformable cell is composed of a set of caobilla wood cubes arranged in three levels [4,5] (Fig. 1b). The elastoplastic behavior of the wooden cubes allows transmission of almost constant load to the piles and, in turn, absorption of vertical displacements of the building [6] (Fig. 1c).
2.2. Materials

The caobilla wood (*Swietenia humilis* Zucc.) is obtained from trees (15–20 m high) in the tropical dry forest areas of the Mesoamerican Pacific [7]. The wood is dried during 30 days using the Air-Drying method [8]. Afterwards, the wood is cut into cubes of 5 cm edge by means of a Dewalt high precision saw (model DW721KN-B3). Then, the cubes are measured with a Vernier and weighed on a scale. The volumetric weight of the cubes is obtained from the processing of these data. Fig. 2 shows the volumetric weight histogram of 665 wooden cubes (Supplementary Appendix A).

The moisture content MC in the cubes (after air-drying) is analyzed by the Oven-Drying method [9]. This method consists of introducing the specimens (previously weighed) in an oven at a temperature of 103 ± 2°C. The samples should remain in the oven until an appreciable weight change occurs in 4-h weighing intervals. The moisture content is calculated as follows:

\[
MC(\%) = \frac{w_{\text{water}}}{w_{\text{wood}}} \times 100 \tag{1}
\]

where \(w_{\text{water}}\) is the weight of water in wood and \(w_{\text{wood}}\) is the weight of the oven-dry wood.

2.3. Experimental design

The cubes were subjected to stress-controlled compression tests (2 MPa/min) in a Universal Testing Machine (Instron® - SatecTM, model 500 WHVL) with a maximum capacity of 2452 kN (Fig. 3). The wooden cube deformation was measured using three linear variable differential transformers (LVDT, Tokyo Sokki Kenkyujo Co model CDP-25). The data acquisition software allowed the synchronous capture of force and displacement data.
The moisture content of the tested wooden cubes varies between MC = 0.5 to 1% and it represents the “dry state” condition in this article. Additionally, to evaluate the effects of moisture on the mechanical behavior of the wooden cubes, some specimens were submerged in a container full of water for a period of 26 days before being tested. Similarly, in order to assess the influence of the wood anisotropy on the mechanical behavior of the cubes, they were tested with horizontally and vertically oriented fibers. The cubes tested for experimental evaluation were randomly chosen. Table 1 shows the total number of tests performed on individual wooden cubes and their main characteristics.

2.4. Methods

The mechanical properties of the wooden cubes are obtained from stress-strain diagrams, which are generated based on the recorded data in the stress-controlled compression tests. In these diagrams the yield point (yield stress σ_y) is calculated by the Offset Method [10]. This method consists of
drawing a line (O-A') on the elastic range of the stress-strain diagram. Next, a second 0.2% parallel line to O-A' must be drawn (line B-B'). The point where line B-B' intersects the stress-strain diagram (point C) is assumed the yield point (Fig. 4). The yield stress \(\sigma_f \) is the stress that produces in a material a specific, permanent and limiting deformation. Similarly, from the stress-strain diagram it is also possible to calculate the tangent modulus in the elastic range \(E_e \) (modulus of elasticity) and the plastic range \(E_p \), as well as the maximum stress \(\sigma_m \).

Fig. 4. Stress-strain diagram for obtaining the yield stress by the Offset Method [10].

Type of specimen	Type of test	\(\bar{\gamma} \) (kN/m³)	\(\mathcal{S}_\gamma \) (kN/m³)	\(\bar{\sigma}_f \) (MPa)	\(\mathcal{S}_{\sigma_f} \) (MPa)
Dry cubes	Vertically oriented fibers	5.61	0.42	37.13	3.19
	Horizontally oriented fibers	5.49	0.81	10.75	4.50
Wet cubes	Horizontally oriented fibers	5.73	0.89	5.61	2.50

Note: \(\bar{\gamma} \) = mean volumetric weight, \(\mathcal{S}_\gamma \) = standard deviation of volumetric weight, \(\bar{\sigma}_f \) = mean yield stress, \(\mathcal{S}_{\sigma_f} \) = standard deviation of yield stress.

Fig. 5. Failure of individual dry cubes of *caobilla* wood with horizontally oriented fibers.
Fig. 6. Failure of individual dry cubes of *caobilla* wood with vertically oriented fibers.

Fig. 7. Failure of individual wet cubes of *caobilla* wood with horizontally oriented fibers.

Fig. 8. Correlation of yield stress versus volumetric weight of *caobilla* wood cubes.
2.5. Descriptive statistics

Table 2 to Table 4 show the data obtained in the compression tests. Table 5 presents the mean values and standard deviations of volumetric weight γ and yield stress σ_f of the wooden cubes. Figs. 5–7 show examples of typical failure patterns obtained due to vertical compression on wooden cubes. Fig. 8 presents the correlation of yield stress versus volumetric weight of the wooden cubes (under dry and wet states).

Acknowledgments

The authors thank the engineering company MC Cimentaciones y Estructuras for the material provided to perform the experimental tests of this research.

Transparency document. Supporting information

Transparency data associated with this article can be found in the online version at http://dx.doi.org/10.1016/j.dib.2018.08.045.

Appendix A. Supporting information

Supplementary data associated with this article can be found in the online version at http://dx.doi.org/10.1016/j.dib.2018.08.045.

References

[1] M. González-Flores, Level control in buildings by means of adjustable piling, in: Proceedings of the Second International Conference on Soil Mechanics and Foundation Engineering, Rotterdam, 1948, pp 152-156.
[2] B. Orozco, M. Mendoza, Recimentación y hundimiento inducido de un edificio industrial mediante uso de pilotes de control y extracción de material, J. Hormig. Y. Acero 68 (2017) 57–68. https://doi.org/10.1016/j.hya.2016.12.001.
[3] E. Ovando-Shelley, E. Santoyo, M.O. Pinto de Oliveira, Intervention techniques, in: E. Bilbota, A. Flora, S. Lier, C. Viggiani (Eds.), Geotechnical Engineering for the Preservation of Monuments and Historic Sites, Taylor & Francis Group, London, 2013, pp. 75–91.
[4] M. González-Flores, Setting vertical two buildings: a meter in the most unfavorable case, in: Proceedings of the First Panamerican Conference on Soil Mechanics and Foundation Engineering, Mexico, D.F, 1959, pp 1215–1248.
[5] J.M. Aguilar, E. Rojas, Importantes mejoras en los dispositivos de control de pilotes, Memoria de la XV Reunión Nacional de mecánica de suelos, San Luis Potosí, México, 1990, pp. 139–150.
[6] M. Aguirre, Device for control of building settlement and for seismic protection, J. Geotech. Eng. 117 (12) (1991) 1848–1859. https://doi.org/10.1061/(ASCE)0733-941X(1991)117:12(1848).
[7] J.E. Gordon, W.D. Hawthorne, G. Sandoval, A.J. Barrance, Trees and 517 farming in the dry zone of southern Honduras II: the potential for tree diversity 518 conservation, Agrofor. Syst. 59 (2003) 107–117.
[8] R. Bergman, Drying and control of moisture content and dimensional changes (Chapter 13), Wood Handbook – Wood as an Engineering Material, United States Department of Agriculture (USDA), U.S.A (2010) 13.1–13.6.
[9] ASTM, ASTM D4442-16, Standard Test Methods for Direct Moisture Content Measurement of Wood and Wood-Based Materials, 2016.
[10] ASTM, ASTM D638-02, Standard Test Method for Tensile Properties of Plastics, 2002.