Photocatalytic Palladium-Catalyzed Fluoroalkylation of Styrene Derivatives

Réka Adamik, Tamás Földesi, and Zoltán Novák*

ABSTRACT: A visible light induced palladium-catalyzed fluoroalkylation method was developed. The Heck-type alkyl coupling reaction enables the introduction of trifluoroethyl, difluoroethyl and other fluoroalkyl fragment into styrenes under mild reaction conditions without the use of additional photosensitizers and ensures access to fluoroalkylated olefins on a broad scale.

The introduction of fluorine-containing functional groups into organic molecules and drug candidates can often improve the enzymatic oxidative and thermal stability as well as increase the lipophilicity and bioavailability of molecules. Therefore, in recent years the development of fluoroalkylating methods and reagents, especially trifluoromethylation and trifluoroethylation, has become an emerging area, including the photocatalytic transformations. Besides the fluoroalkylation of aromatic and heteroaromatic rings, the installation of short fluoroalkyl chains into terminal alkene is also important, but is a less explored transformation, which is mostly limited to perfluoroalkylation and trifluoroethylation. There are several different strategies to construct the trifluoroethylated styrene structure. It can be synthesized by nucleophilic substitution from the corresponding allylbromide derivative, oxidative trifluoromethylation, classical transition metal coupling with vinyl-boronates, or photocatalytic transformation using the corresponding fluoroalkyl halides as coupling agents.

In continuation of our studies in the field of fluoroalkylation reactions and photocatalytic transformations, we aimed to take advantage of the photo-Heck-type coupling approach to introduce more versatile fluoroalkyl groups into the styrene moiety using palladium catalysis and visible light irradiation. The classical palladium catalyzed cross-coupling reaction involves a well-established two-electron redox mechanism typically between the Pd(0)/Pd(II) oxidation states. However, using the original Heck reaction for the coupling of unactivated alkyl halides with arylalkenes is challenging because of two factors: the oxidative addition step is relatively slow with low-valent transition metals, and the resulting alkylmetal species can undergo premature β-hydride elimination which leads to side products. These disadvantages can be eliminated by photoc excitation of the applied catalyst. The photoexcited Pd-complexes can participate in a single-electron transfer (SET) mechanism to generate a Pd(1)-species, which allows the desired coupling to occur selectively in a photocatalytic manner. Two possible catalytic methods are available to achieve the desired functionalization with fluoroalkyl species (Scheme 1). The Gevorgyan method is based on the Pd(OAc)_2/Xantphos catalytic system, and the transformation works efficiently in benzene in the presence of Cs_2CO_3. Similarly, Fu’s procedure uses the PdCl_2(PPh_3)_2/Xantphos catalyst in DMA/H_2O solvent in the presence of K_2CO_3 base. Both alkylations require blue light irradiation for appropriate excitation of the photocatalytic system.

We started our investigation with the optimization of the reaction of styrene (1a) and trifluoroethyl iodide (2) using palladium(II)–Xantphos catalyst systems. The reactions were irradiated by 440–445 nm LEDs for 18 h at 25 °C and analyzed by GC-MS. We found that the Gevorgyan-type Pd(OAc)_2–Xantphos photocoupling system works effi-
ciently in benzene in the desired trifluoroethylation and provides the expected product 3a in complete conversion. In contrast, Fu’s conditions were not suitable for the fluoroalkylation, which shows system sensitivity of the coupling partner and indicates the necessity of fine-tuning of the reaction conditions. After finding the appropriate catalytic system we aimed to fine-tune the reaction conditions to reach more suitable reaction conditions for the fluoroalkylation of styrenes. In these experiments we focused on lowering the catalyst and base loadings, and solvent selection.

We found that the catalyst loading can be lowered in the case of the trifluoroethylation, but the minimum amount of needed Pd(OAc)₂ catalyst for the reaction completion was 5 mol %; further reduction of the catalyst loading significantly decreased the conversion (Table 1, entries 2–6). A control experiment without any irradiation indicated that the light is essential for this transformation (Table 1, entry 7). Next, we tested different Pd sources, and we demonstrated that the use of PdCl₂ could not result in any product; Pd₂(dba)₃ and Pd(acac)₂ were only moderately active in this reaction, and Pd(TFA)₂ performed almost as good as Pd(OAc)₂ (Table 1, entries 8–11). Among the tested polar solvents water, acetone and ethyl acetate were relatively ineffective (Table 1, entries 12–14), while in THF the reaction reached 83% conversion. Reactions performed in solvents similar to benzene gave versatile results: chlorobenzene was completely ineffective, while in toluene and benzotrifluoride (BTF) the coupling reaction gave 80% and 90% conversion respectively, which are good results but compared to benzene the transformation did not reach completion. In cyclohexane alongside the desired coupling iodocyclohexane was formed as a byproduct which made this solvent unsuitable (Table 1, entry 19).

With the optimized conditions in hand first we investigated the generality of the trifluoroethylation reaction (Scheme 2).

### Table 1. Fine-tuning of Photocatalytic Conditions

| Entry | Catalyst | Solvent | Conv. |
|-------|----------|---------|-------|
| 1     | 10 mol % Pd(OAc)₂ | benzene | 100%  |
| 2     | 5 mol % Pd(OAc)₂ | benzene | 100%  |
| 3     | 4 mol % Pd(OAc)₂ | benzene | 99%   |
| 4     | 3 mol % Pd(OAc)₂ | benzene | 89%   |
| 5     | 2 mol % Pd(OAc)₂ | benzene | 38%   |
| 6     | 1 mol % Pd(OAc)₂ | benzene | 12%   |
| 7     | 5 mol % Pd(OAc)₂ | benzene | 0%    |
| 8     | PdCl₂      | benzene | 0%    |
| 9     | Pd(acac)₂  | benzene | 48%   |
| 10    | Pd(TFA)₂   | benzene | 83%   |
| 11    | Pd₂(dba)₃ | benzene | 27%   |
| 12    | Pd(OAc)₂   | water   | 7%    |
| 13    | Pd(OAc)₂   | acetone | 40%   |
| 14    | Pd(OAc)₂   | ethyl acetate | 46% |
| 15    | Pd(OAc)₂   | THF     | 83%   |
| 16    | Pd(OAc)₂   | chlorobenzene | 5%  |
| 17    | Pd(OAc)₂   | toluene | 80%   |
| 18    | Pd(OAc)₂   | BTF     | 90%   |
| 19    | Pd(OAc)₂   | cyclohexane | 75% |

“Standard reaction conditions: styrene (0.2 mmol), trifluoroethyl-iodide (1.5 equiv), Cs₂CO₃ (1.5 equiv), catalyst (5 mol %), ligand (10 mol %) in 1 mL degassed benzene under Ar atmosphere, irradiated with single 10 W 440–445 nm LEDs at 25 °C. In the dark.

The transformation proceeded smoothly with styrene derivatives with electron-withdrawing and electron-donating groups as well, regardless of their position on the aromatic ring. We synthesized different alkyl (3b, 3c, 3d) and aryl (3e) derivatives in good yields, and the reaction worked efficiently with halogenated styrenes (3f–j) and methoxy derivatives (3m, 3n, 3o) as well. The silyl protected phenol functional group is also tolerated under the reaction conditions, and product 3p was isolated in 54% yield after a 24 h reaction time. Aldehyde (3q), amide (3r) and ester (3s, 3t) derivatives were also prepared successfully from the corresponding styrene.
this series the pyridine derivative (3u) was also obtained in 52% yield. On the other hand, 1,1-diphenylethylene derivatives proved to be less reactive in this transformation. Therefore, increased catalyst and base loadings were necessary to accomplish the desired coupling. We managed to synthesize the 3v and 3w derivatives in 55% and 58% yields, respectively.

Next, we broadened the scope of the photocatalytic fluoroalkylation method with versatile fluoroalkyl iodides (Scheme 3). We found that 1,1-difluoro-2-iodoethane is also capable of participating in the coupling reaction.

Scheme 3. Scope of Different Fluoroalkyl Iodides

This attracted our interest because the difluoromethyl moiety is a well-studied motif in medicinal chemistry. The difluoromethyl group is isosteric and isopolar with the −OH and −SH groups and can behave as a H-donor as well. The preparation of difluoroethylated styrene derivatives is performed only through the functionalization of allylic halides with difluorocarbene sources, and direct difluoroethylation of terminal alkene is unprecedented.

Applying the previously used reaction conditions, we found that the coupling of 1,1-difluoro-2-iodoethane with styrene requires a 24 h reaction time to reach completion, and we could isolate the corresponding difluoroethylated styrene product (5a) in 82% yield. With the slightly modified procedure, 12 additional derivatives were prepared to explore the scope of the photocatalyzed coupling reaction. This transformation also possesses good functional group tolerance, and alkyl (5b, 5c, 5d), aryl (5e), halogen (5f–k), ester (5l), methoxy (5m, 5n), and aldehyde (5o) derivatives were successfully synthesized.

Increasing further the versatility of the fluoroalkyl part we utilized 1H,1H-pentafluoropropyl iodide as a coupling partner, and we obtained the corresponding coupling products under the standard reaction conditions. In this case the pentafluoropropylated derivatives (5p–t) were isolated in 46–62% yield. Additionally, two other fluoroalkyl iodides were also tested in this transformation, 1,1,2,2-tetrafluoro-3-iodopropane and 1H,1H,S-H-octafluoropentyl iodide, and successfully gave the desired coupled products (5u, 5v) in 68% and 53% yield, respectively, which demonstrates that longer fluoro chains are also applicable in this palladium-catalyzed photochemical transformation.

Results of the radical quenching and light on–off experiments support that the fluoroalkylation reaction follows the general mechanism of the palladium-catalyzed alkylations. The Xantphos–Pd(0) complex can be excited with blue light (440–460 nm), and then this Pd species reacts with fluoroalkyl iodide in the SET reaction, supposedly generating a Xantphos–Pd(I)−I and fluoroalkyl radical pair (the latter was trapped with TEMPO to prove its presence), which are in close proximity. Alkene reacts with this palladium(II) intermediate through insertion or radical addition, and then a β-hydrogen radical elimination could form the coupled styrene product and the common H−Pd(II)−I. This latter species undergoes base-assisted reductive elimination to produce Xantphos–Pd(0), ready for the next catalytic cycle.

In conclusion we developed a visible light driven palladium-catalyzed Heck-type coupling between styrenes and fluoroalkyl iodides at room temperature, which enables the introduction of versatile fluoroalkyl chains into terminal alkene functionality. A series of styrene derivatives were subjected to the present reaction conditions and formed the corresponding fluoroalkyl derivatives in good yields. In our synthetic studies five different fluoroalkyl iodides were successfully utilized. This method offers an efficient disconnection to incorporate fluorene-containing functional groups into styrene derivatives, which could serve as a useful derivatization method to obtain fluoroalkenylated compounds.

ASSOCIATED CONTENT

Supporting Information

The Supporting Information is available free of charge at https://pubs.acs.org/doi/10.1021/acs.orglett.0c03043.

General information, synthesis procedures, characterizations of products (1H, 13C, 19F NMR, IR, HRMS), and spectra (PDF)
AUTHOR INFORMATION

Corresponding Author
Zoltán Novák — ELTE "Lendület" Catalysis and Organic Synthesis Research Group, Institute of Chemistry, Eötvös Loránd University, Faculty of Science, H-1117 Budapest, Hungary; orcid.org/0000-0001-5525-3070; Email: novakz@elte.hu

Authors
Réka Adamik — ELTE "Lendület" Catalysis and Organic Synthesis Research Group, Institute of Chemistry, Eötvös Loránd University, Faculty of Science, H-1117 Budapest, Hungary
Tamás Földesi — ELTE "Lendület" Catalysis and Organic Synthesis Research Group, Institute of Chemistry, Eötvös Loránd University, Faculty of Science, H-1117 Budapest, Hungary

Complete contact information is available at: https://pubs.acs.org/doi/10.1021/acs.orglett.0c03043

ACKNOWLEDGMENTS

REFERENCES

Notes
The authors declare no competing financial interest.

REFERENCES

(1) (a) Shimizu, M.; Hiyama, T. Modern Synthetic Methods for Fluorine-Substituted Target Molecules. Angew. Chem. Int. Ed. 2005, 44, 214–231. (b) Muller, K.; Faeh, C.; Diederich, F. Fluorine in Pharmaceuticals: Looking Beyond Intuition. Science 2007, 317, 1881–1886. (c) Johnson, B. M.; Shu, Y.-Z.; Zhuo, X.; Meanwell, N. A. Metabolyc and Pharmaceutical Aspects of Fluorinated Compounds. J. Med. Chem. 2020, 63, 6315–6386. (d) Ojima, I. Fluorine in Medicinal Chemistry and Chemical Biology; Wiley-Blackwell: 2009. (e) Wang, J.; Sánchez-Rosselló, M.; Aceña, J. L.; del Pozo, C.; Sorochinsky, A. E.; Fuster, S.; Soloshonok, V. A.; Liu, H. Fluorine in pharmaceutical industry: fluoro-containing drugs introduced to the market in the last decade (2001–2011). Chem. Rev. 2014, 114, 2432–2506. (f) Zhou, Y.; Wang, J.; Gu, Z.; Wang, S.; Zhu, W.; Aceña, J. L.; Soloshonok, V. A.; Iwasa, K.; Liu, H. Next Generation of Fluorine-Containing Pharmaceuticals, Compounds Currently in Phase II–III Clinical Trials of Major Pharmaceutical Companies: New Structural Trends and Therapeutic Areas. Chem. Rev. 2016, 116, 422–518.

(2) (a) Merino, E.; Nevado, C. Addition of CF3 across Unsaturated Mietites: A Powerful Functionalization Tool. Chem. Soc. Rev. 2014, 43, 6598–6608. (b) Li, G.; Zhang, C.; Song, C.; Ma, Y. Progress in Copper-Catalyzed Trifluoromethylation. Beilstein J. Org. Chem. 2018, 14, 155–181. (c) Tomashenko, O. A.; Grushin, V. V. Aromatic trifluoromethylation with metal complexes. Chem. Rev. 2011, 111, 4475–4521. (d) Studer, A. A. "renaissance" in radical trifluoromethylation. Angew. Chem., Int. Ed. 2012, 51, 8950–8958.

(3) Schneider, C.; Cahard, D. Tamed arene and heteroarene trifluoromethylation. Angew. Chem., Int. Ed. 2012, 51, 5048–5050. (b) Bizet, V.; Bessel, T.; Ma, J.-A.; Cahard, D. Recent progress in asymmetric fluorination and trifluoromethylation reactions. Curr. Top. Med. Chem. 2014, 14, 901–940. (g) Liu, X.; Xu, C.; Wang, M.; Liu, Q. Trifluoromethyltrimethylene: nucleophilic trifluoromethylation and beyond. Chem. Rev. 2015, 115, 683–730. (h) Alonso, C.; de Marigorta, E. M.; Rubiales, G.; Palacios, F. Carbon Trifluoromethylation Reactions of Hydrocarbon Derivatives and Heteroarenes. Chem. Rev. 2015, 115, 1847–1935. (i) Egami, H.; Sodeoka, M. Trifluoromethylation of alkenes with concomitant introduction of additional functional groups. Angew. Chem., Int. Ed. 2014, 53, 8294–8308.

(4) (a) Tóth, B. L.; Kovács, S.; Sályi, G.; Novák, Z. Mild and Efficient Palladium-Catalyzed Direct Trifluoroethylation of Aromatic Systems by C-H Activation. Angew. Chem., Int. Ed. 2016, 55, 1988–1992. (b) Tolnai, G. L.; Székely, A.; Makó, Z.; Gáti, T.; Daru, J.; Bibari, T.; Stirling, A.; Novák, Z. Efficient Direct 2,2,2-Trifluoroethylation of Indoles via C-H Functionalization. Chem. Commun. 2015, 51, 4488–4491. (c) Maraswami, M.; Pankajakshan, S.; Chen, G.; Loh, T.-P. Palladium-Catalyzed Direct C–H Trifluoroethylation of Aromatic Amides. Org. Lett. 2017, 19, 4223–4226.

(5) (a) Barata-Vallejo, S.; Bonesi, S. M.; Postigo, A. Photocatalytic fluorooalkylation reactions of organic compounds. Org. Biomol. Chem. 2015, 13, 11153–11183. (b) Koike, T.; Akita, M. Fine Design of Photoredox Systems for Catalytic Fluoromethylation of Carbon–Carbon Multiple Bonds. Acc. Chem. Res. 2016, 49, 1937–1945.

(6) Miyake, Y.; Ota, S.; Ninibhayashi, Y. Copper-Catalyzed Nucleophilic Trifluoroethylolation of Allylic Halides: A Simple Approach to Allylic Trifluoroethylolation. Chem. - Eur. J. 2012, 18, 13255–13258.

(7) (a) Xu, J.; Fu, Y.; Luo, D.-F.; Jiang, Y.-Y.; Xiao, B.; Liu, Z.-J.; Gong, T.-J.; Liu, L. Copper-Catalyzed Trifluoroethylation of Terminal Alkenes through Allylic C-H Bond Activation. J. Am. Chem. Soc. 2011, 133, 15300–15303. (b) Parsons, A. T.; Buchwald, S. L. Copper-Catalyzed Trifluoroethylation of Unactivated Olefins. Angew. Chem., Int. Ed. 2011, 50, 9120–9123.

(8) (a) Zhao, Y.; Hu, J. Palladium-Catalyzed 2,2,2-Trifluoroethylation of Organoboronic Acids and Esters. Angew. Chem. Int. Ed. 2012, 51, 1033–1036. (b) Zhang, Y.; Du, H.; Zhu, M.; Li, J.; Zou, D.; Wu, Y.; Yu, Y. Copper-Catalyzed Decarboxylative Trifluoroethylation of Cinnamic Acids. Tetrahedron Lett. 2017, 58, 880–883.

(9) (a) Kreis, L. M.; Krautwald, S.; Pfeiffer, N.; Martin, R. E.; Carreira, E. M. Photocatalytic Synthesis of Allylic Trifluoromethyl Substituted Sterene Derivatives in Batch and Flow. Org. Lett. 2013, 15, 1634–1637. (b) Li, L.; Huang, M.; Liu, C.; Xiao, J.-C.; Chen, Q.-Y.; Guo, Y.; Zhao, Z.-G. 2,2-Trifluoroethylation of Sterenes with Concomitant Introduction of a Hydroxyl Group from Molecular Oxygen by Photoredox Catalysis Activated by Visible Light. Org. Lett. 2015, 17, 4714–4717. (c) Roh, G.; Iqbal, N.; Cho, E. J. Trifluoroethylation of Alkenes: Synthesis of Allylic-CF3 Compounds by Visible-Light Photocatalysis. Chin. J. Chem. 2016, 34, 459–464. (d) Straathof, N. J. W.; Cramer, S. E.; Hessel, V.; Noël, T. Practical Photocatalytic Trifluoroethylation and Hydrotrifluoroethylation of Sterenes in Batch and Flow. Angew. Chem. Int. Ed. 2016, 55, 15549–15553.

(10) Mézéras, A.; Székely, A.; Stirling, A.; Novák, Z. Design of trifluoroalkyliden Iodonium Salts for a Hypervalency-Aided Alkenylation–Cyclization Strategy: Metal-Free Construction of Aziridine Rings. Angew. Chem. Int. Ed. 2018, 57, 6643–6647.

(11) (a) Varga, B.; Gonda, Zs.; Tóth, B.; Kotschy, A.; Novák, Z. Development of Ni-Ir dual photocatalytic Liebeskind coupling of...
sulphonium salts for the synthesis of 2-benzylpyrroldines. Eur. J. Org.
Chem. 2020, 2020, 1466—1471. (b) Földesi, T.; Adamik, R.; Sipos,
G.; Nagy, B.; Töth, B. I.; Bényei, A.; Szekeres, K.; Lang, Gy.;
Demeter, A.; Peelen, T. J.; Novák, Z. Design and application of
dimine-based copper(I) complexes in photoredox catalysis. Org.
Biomol. Chem. 2019, 17, 8343—8347.
(12) (a) Handbook of Organopalladium Chemistry for Organic
Synthesis: Negishi, E., de Meijere, A., Eds.; John Wiley & Sons:
New York, NY, 2002. (b) Metal-Catalyzed Cross-Coupling Reactions;
de Meijere, A., Diederich, F., Eds.; Wiley-VCH: Weinheim, 2004.
(13) (a) Bloome, K. S.; McMahen, R. L.; Alexanian, E. J. Palladium-
Catalyzed Heck-Type Reactions of Alkyl Iodides. J. Am. Chem.
Soc. 2011, 133, 20146—20148. (b) McMahon, C. M.; Alexanian, E. J.
Palladium-Catalyzed Heck-Type Cross-Couplings of Unactivated
Alkyl Iodides. Angew. Chem., Int. Ed. 2014, 53, 5974—5977.
(14) (a) Kurandina, D.; Parasram, M.; Gevorgyan, V. Visible Light-
Induced Room-Temperature Heck Reaction of Functionalized Alkyl
Halides with Vinyl Arenes/Heteroarenes. Angew. Chem., Int. Ed.
2017, 56, 14212—14216. (b) Wang, G.-Z.; Shang, R.; Cheng, W.-M.; Fu, Y.
Irradiation-Induced Heck Reaction of Unactivated Alkyl Halides at
Room Temperature. J. Am. Chem. Soc. 2017, 139, 18307—18312.
(c) Wang, G.-Z.; Shang, R.; Fu, Y. Irradiation-Induced Palladium-
Catalyzed Decarboxylative Heck Reaction of Aliphatic N-(Acloylo)-
phthalimides at Room Temperature. Org. Lett. 2018, 20, 888—891.
(d) Koy, M.; Sandfort, F.; Tlahuext-Aca, A.; Quach, L.; Daniliuc, C.
G.; Glorius, F. Palladium-Catalyzed Decarboxylative Heck-Type
Coupling of Activated Aliphatic Carboxylic Acids Enabled by Visible
Light. Chem. - Eur. J. 2018, 24, 4552—4555. (e) Kurandina, D.; Rivas,
M.; Radzhakov, M.; Gevorgyan, V. Heck Reaction of Electronically
Diverse Tertiary Alkyl Halides. Org. Lett. 2018, 20, 357—360.
(f) Zhao, B.; Shang, R.; Wang, G.-Z.; Wang, S.; Chen, H.; Fu, Y.
Palladium-Catalyzed Dual Ligand-Enabled Alkylation of Silyl Enol
Ether and Enamide under Irradiation: Scope, Mechanism, and
Theoretical Elucidation of Hybrid Alkyl Pd(I)-Radical Species. ACS
Catal. 2020, 10, 1334—1343. (g) Chuentragool, P.; Kurandina, D.;
Gevorgyan, V. Catalysis with Palladium Complexes Photoexcited by
Visible Light. Angew. Chem., Int. Ed. 2019, 58, 11586—11598.
(h) Xing, W.-L.; Shang, R.; Wang, G.-Z.; Fu, Y. Visible Light-Induced
Palladium-Catalyzed Ring Opening β-H Elimination and Addition of
Cyclobutane Oxime Esters. Chem. Commun. 2019, 55, 14291—
14294. (i) Feng, L.; Guo, L.; Yang, C.; Zhou, J.; Xia, W. Visible-Light-
Induced Palladium-Catalyzed Intermolecular Narasaka-Heck Reaction
at Room Temperature. Org. Lett. 2020, 22, 3964—3968.
(15) (a) Erickson, J. A.; McLoughlin, J. I. Hydrogen Bond Donor
Properties of the Difluoromethyl Group. J. Org. Chem. 1995, 60,
1626—1631. (b) Narjes, F.; Koehler, K. F.; Koch, U.; Gerlach, B.;
Colarusso, S.; Steinkühler, C.; Brunetti, M.; Altamura, S.; Francesco,
R. D.; Matassa, V. G. A Designed P1 Cysteine Mimetic for Covalent
and Non-Covalent Inhibitors of HCV NS3 Protease. Bioorg. Med.
Chem. Lett. 2002, 12, 701—704. (c) Prakash, G. K. S.; Mandal, M.;
Scheurer, S.; Petasis, N. A.; Olah, G. A. Stereoselective Synthesis
anti-α-(Difluoromethyl)-β-Amino Alcohols by Boron Acid Based
Three-Component Condensation. Stereoselective Preparation of
(2S,3R)-Difluorotheonine. J. Org. Chem. 2002, 67, 3718—3723.
(d) Chowdhury, M. A.; Abdellatif, K. R. A.; Dong, Y.; Das, D.; Suresh,
M. R.; Knaus, E. E. Synthesis of Celecoxib Analouges Possessing a
N-Difluoromethyl-1,2-Dihydropyrid-2-One 5-Lipoxygenase Pharma-
cophore: Biological Evaluation as Dual Inhibitors of Cyclooxygenases
and 5-Lipoxygenase with Anti-Inflammatory Activity. J. Med. Chem.
2009, 52, 1525—1529.
(16) (a) Burton, D. J.; Hartgraves, G. A. The Preparation of HCF,CDX
and HCF,ZnX via Direct Insertion into the Carbon
Halogen Bond of CF₃HY (Y = Br, I). J. Fluorine Chem. 2007, 128,
1198—1215. (b) Akawa, K.; Ishii, K.; Endo, Y.; Mikami, K. Copper-
Catalyzed Allylic Difluoromethylation of Allyl Carbonates with
(Difluoromethyl)zinc Reagent. J. Fluorine Chem. 2017, 203, 122—
129. (c) Gu, Y.; Lu, C.; Gu, Y.; Shen, Q. Ligand-Controlled Copper-
Catalyzed Highly Regioselective Difluoromethylation of Allylic
Chlorides/Bromides and Propargyl Bromides. Chin. J. Chem. 2018,
36, 55—58.
(17) For details, see Supporting Information.