Research Article
Ultrastructural Study of Alveolar Epithelial Type II Cells by High-Frequency Oscillatory Ventilation

Xiaofei Qin, Wanhai Fu, Youwei Zhao, Qiong Meng, Chuming You, and Qiuming Yu

Department of Pediatrics, Guangdong Second Provincial People's Hospital, No. 1 Shiliugang Road, Haizhu District, Guangzhou 510317, China

Correspondence should be addressed to Wanhai Fu; wanhaifucn@126.com

Received 13 August 2013; Accepted 17 November 2013

1. Introduction

The use of mechanical ventilation in clinical practice has increased the survival rate of newborns. However, respiratory and neurological complications or sequelae have increased because of ventilator-induced lung injury (VILI), a phenomenon caused or aggravated by mechanical ventilation. Alveolar epithelial type II cells (AECIIs) are alveolar epithelial stem cells targeted in acute lung injury (ALI) and acute respiratory distress syndrome (ARDS) or VILI. The structural and functional changes in AECIIs are related to ALI, ARDS, and VILI [1, 2]. The normal function of AECIIs relies on normal cytomorphology.

High-frequency oscillatory ventilation (HFOV) is a lung protective ventilation strategy in newborns with ALI or ARDS. However, data on the effect of HFOV on the ultrastructural features of AECIIs are limited. The practical application value of HFOV is still controversial. This study used a newborn piglet model with ALI to study the effect of conventional ventilation and HFOV with a high lung volume strategy on AECIIs. The ultrastructural features of AECIIs after HFOV with a high lung volume strategy in a newborn piglet model with ALI were evaluated.

2. Materials and Methods

2.1. Animals and Surgery. Fifteen newborn piglets (≤3 days old, weighing 1.0 kg to 1.97 kg) were used. All animal experiments were performed with the approval of the Guangdong Second Provincial People’s Hospital Animal Care and Use Committee (2009-XEK-028).

Piglets were given 10% chloral hydrate (1 mL/kg) orally and placed in a supine position under an infant radiant warmer. The body temperature of the animals was maintained in the range of 38.0°C to 39.5°C. Catheters were inserted in the axillary vein and the femoral artery for injecting medication and fluids, as well as for blood gas analysis and arterial blood pressure monitoring. The maintenance fluids included continuous infusion of 0.9% saline solution containing 5% dextrose (120 mL/kg/d). A dopamine infusion (5 μg/kg/min) was continuously administered. The piglets were anesthetized
using diazepam (0.5 mg/kg, intramuscularly) and ethyl carbamate (0.6 g/kg, intravenously). The piglets were intubated with endotracheal tubes (4.0 mm internal diameter) and then ventilated using conventional ventilation (Servo-i; Maquet, Solna, Sweden) or HFOV. Each piglet was intravenously infused with a bolus of cefotiam hydrochloride (100 mg/kg).

Using the pressure control mode, we set the initial ventilator settings to a positive end-expiratory pressure (PEEP) of 2 cm H2O, a peak inspiratory pressure of 10 cm H2O, an inspiratory-to-expiratory ratio of 1:2, and a fraction of inspired oxygen (FiO2) of 0.30. The breathing frequency was set to 25 breaths/min to 30 breaths/min and then adjusted to maintain the pressure of arterial carbon dioxide (PaCO2) in the normal range (35 mm Hg to 45 mm Hg).

2.2. ALI and Treatment Regimens. ALI was induced by lavaging the whole lung with normal saline. During lavage, all piglets were ventilated by a conventional mechanical ventilator using the pressure control mode. Warmed (37°C) normal saline (35 mL/kg) was instilled into the lung via the endotracheal tube. Saline was allowed to remain in the lung for 10 s before removal. Lung lavage was repeated at 5 min intervals until the pressure of arterial oxygen was below 100 mm Hg for 60 min at the following ventilator settings: peak inspiratory pressure, 24 cm H2O; PEEP, 6 cm H2O; inspiratory-to-expiratory ratio, 1:2; FiO2, 1.0; and breathing frequency, 35 breaths/min.

After lung injury was established, the piglets were randomly assigned into five study groups (with three piglets in each group): control (receiving no ventilation), conventional ventilation for 24 h, conventional ventilation for 48 h, HFOV for 24 h, and HFOV for 48 h. The control piglets were sacrificed by overdosing with 10% potassium chloride under deep anesthesia. In the conventional ventilation group, the piglets were ventilated using a conventional mechanical ventilator (Servo-i) in the pressure control mode at the following ventilator settings: peak inspiratory pressure, 20 cm H2O; PEEP, 4 cm H2O; inspiratory-to-expiratory ratio, 1:2; and FiO2, 1.0. The breathing frequency was set to 25 breaths/min to 30 breaths/min and adjusted to maintain PaCO2 in the normal range (35 mm Hg to 45 mm Hg). In the HFOV group, the piglets were placed in HFOV (SLE-5000; Tokibo, Tokyo, Japan) with an oscillatory frequency of 10 Hz, a fractional inspiratory time of 33%, and an FiO2 of 1.0. The mean airway pressure was set to 2 cm H2O higher than that in conventional ventilation, which indicated a high lung volume strategy in HFOV. The amplitude was set to the range of 20 cm H2O to 25 cm H2O and adjusted to maintain PaCO2 in the normal range (35 mm Hg to 45 mm Hg). During ventilation, FiO2 was decreased by 10% every 6 h up to 40%. At the end of ventilation, the piglets were sacrificed by overdosing with 10% potassium chloride under deep anesthesia. The lungs were immediately removed, and samples (1 mm3) were obtained from the lower parts of the right lung and fixed with 2.5% glutaraldehyde.

2.3. Transmission Electron Microscope. The samples were prefixed in 2.5% glutaraldehyde, postfixed in 1% osmic acid, and then embedded in Epon 812. Ultrathin sections prepared using an ultramicrotome were stained with uranyl and lead citrate. AECIs were examined under a transmission electron microscope by two blinded, independent observers.

3. Results

3.1. Ultrastructural Changes in AECIIs from the Control Group. The ultrastructure of AECIIs showed tight interaction with the basal membrane and AECIs. The nuclei were round and clear, and the chromatin inside each nucleus was homogeneous. Lamellar bodies (LBs) with uniform density and ring-like arrangement were present. Some LBs showed decreased electron density and vacuole-like deformity. Microvilli were displayed distinctly (Figure 1).

3.2. Ultrastructural Changes in AECIIs from the Conventional Ventilation Group. In both the conventional ventilation 24 h and 48 h groups, LBs were arranged around the nucleus in reduced numbers and with decreased electron density. Some AECIIs showed shrunken nuclei containing nonhomogeneous, condensed chromatin.

In the conventional ventilation 24 h group (Figure 2), AECIIs interacted with the basal membrane and loose AECIs. AECI secretions were discharged into the alveolar space, and naive AECIs were observed.

At 48 h, some AECIIs were dislodged from the basal membrane (Figure 3). Some AECIIs did not have nuclei and showed LB with vacuole-like and polymorphic deformity. Giant LB and irregularly arranged microvilli were the major manifestations.

3.3. Ultrastructural Changes in AECIIs from the HFOV Group. In the HFOV 24 h group, the juxtaposition of AECIIs to the basal membrane and AECIs was close (Figure 4). The changes in LB (vacuole-like appearance and polymorphic deformity) were less severe than those in the conventional 24 h group. The nuclei and karyosome were round and clear. The chromatin inside the nuclei was concentrated and condensed.

Except for small numbers of AECIIs, most of the cells interacted tightly with the basal membrane and AECI under...
Figure 2: Ultrastructural changes of AECIIs in conventional ventilation 24h group (x5800). The secretion of AECII discharged into alveolar space was observed.

Figure 3: Ultrastructural changes of AECIIs in conventional ventilation 48h group (x9700). AECII without nucleus was observed. Microvilli were irregularly arranged.

Figure 4: Ultrastructural changes of AECII in HFOV 24 h group (x9700). The juxtaposition of AECII to basal membrane and AECI was close.

Figure 5: Ultrastructural changes of AECIIs in HFOV 48 h group (x5800). The incompletely vacuole-like deformity in LB was presented.

Continuous ventilation on HFOV up to 48 h (Figure 5). The nuclei were round and regular. Incomplete vacuole-like deformity in LB was also observed.

4. Discussion

AECIIs cover approximately 4% of the mammalian alveolar surface but constitute 15% of all lung cells as multifunctional cells. AECIIs participate in the defense and pathogenesis of infection. AECIIs also perform various important functions within the lungs, including regulation of surfactant metabolism, ion transport, and alveolar repair in response to injury. Clinically, obtaining lung tissue from neonates on a mechanical ventilator to study AECIIs is difficult. Therefore, we used newborn piglets as models to observe the ultrastructural features of AECIIs in animals with lung injury treated by conventional ventilation or HFOV.

Figure 3 shows that AECIIs display the following structural features typical of cell damage with increasing ventilation time in ventilated lungs: nuclei shrunken in size or without a nucleus, karyopyknotic in shape, cell dissociated and dislodged from the basal membrane and AECIs, LBs decreased in electron density and numbers, and LBs with vacuole-like and polymorphic deformity. As illustrated in Figure 2, AECII secretion was discharged into the alveolar space. Figures 2 and 3 show the different degrees of damage in AECIIs (apoptosis, necrosis, and degeneration) during mechanical ventilation, which may lead to insufficiency of pulmonary surfactant synthesis and secretion. The reasons for these observations are discussed. On the one hand, stretched AECIIs and alveolar macrophages promote the release of proinflammatory mediators in mechanical ventilation [3, 4]. On the other hand, the structure and function of AECIIs are damaged after lung injury, and pulmonary surfactant synthesis and secretion are decreased [5–8], which downregulate host immunologic defense and decrease host anti-inflammatory ability. This result agrees with our previous work. AECII damage is aggravated as observed under transmission electron microscope, and pulmonary inflammation is deteriorated [9]. As the most important part of the innate immune system of the lung, AECIIs boost the activity of phagocytes [10–12]. Alveolar macrophages phagocytose apoptotic polymorphonuclear neutrophils, which not only depress the secretion of proinflammatory cytokines, such as interleukin-1β, interleukin-8, interleukin-10, and tumor-necrosis-factor-α, but also promote the secretion of anti-inflammatory mediators, such as transforming growth factor β1 [13, 14]. Alveolar macrophages and other phagocytes eliminate apoptotic cells by recognizing molecules, such as CD44, on apoptotic cell membrane surface...
changes in AECIIs following HFOV with a high lung volume strategy or conventional ventilation in a newborn piglet model with ALI. However, our results were all descriptive analysis and lacked quantitative presentation of data. Notwithstanding its limitations, this study is interesting and suggests that AECIIs are injured during mechanical ventilation and that HFOV with a high lung volume strategy results in less AECII damage than conventional ventilation. The sample size and quantitative analysis must be, respectively, increased and broadened to study the possible mechanisms of HFOV to minimize injury.

Acknowledgment

This study was partly supported by Grant no. 2010B031600258 from the Guangdong Science and Technology Department.

References

[1] L.-H. Shu, K.-L. Wei, Y.-X. Shang et al., “Relationship between alveolar epithelial type II cells and pulmonary surfactant protein A levels in young rats with acute lung injury,” Chinese Journal of Contemporary Pediatrics, vol. 10, no. 4, pp. 504–508, 2008.

[2] L.-H. Shu, K.-L. Wei, C.-F. Liu et al., “Changes of pulmonary surfactant protein A in young rats with acute lung injury induced by lipopolysaccharide,” Chinese Journal of Contemporary Pediatrics, vol. 10, no. 2, pp. 203–206, 2008.

[3] J. Pugin, I. Dunn, P. Jollivet et al., “Activation of human macrophages by mechanical ventilation in vitro,” American Journal of Physiology: Lung Cellular and Molecular Physiology, vol. 275, no. 6, part 1, pp. L1040–L1050, 1998.

[4] N. E. Vlahakis, M. A. Schroeder, A. H. Limper, and R. D. Hubmayr, “Stretch induces cytokine release by alveolar epithelial cells in vitro,” American Journal of Physiology: Lung Cellular and Molecular Physiology, vol. 277, no. 1, part 1, pp. L1167–L1173, 1999.

[5] T. J. Gregory, W. J. Longmore, M. A. Mexley et al., “Surfactant chemical composition and biophysical activity in acute respiratory distress syndrome,” Journal of Clinical Investigation, vol. 88, no. 6, pp. 1976–1981, 1991.

[6] U. Pison, U. Obertache, M. Brand et al., “Altered pulmonary surfactant in uncomplicated and septicemia-complicated courses of acute respiratory failure,” Journal of Trauma, vol. 30, no. 1, pp. 19–26, 1990.

[7] A. Günther, C. Siebert, R. Schmidt et al., “Surfactant alterations in severe pneumonia, acute respiratory distress syndrome, and cardiogenic lung edema,” American Journal of Respiratory and Critical Care Medicine, vol. 153, no. 1, pp. 176–184, 1996.

[8] D. Vockeroth, L. Gunasekara, M. Amrein, F. Possmayer, J. F. Lewis, and R. A. W. Veldhuizen, “Role of cholesterol in the biophysical dysfunction of surfactant in ventilator-induced lung injury,” American Journal of Physiology: Lung Cellular and Molecular Physiology, vol. 298, no. 1, pp. L117–L125, 2010.

[9] W. H. Fu, X. F. Qin, C. M. You et al., “High frequency oscillatory ventilation versus conventional ventilation in a newborn piglet model with acute lung injury,” Respir Care, vol. 58, no. 5, pp. 824–830, 2013.

[10] A. J. Thorley, P. Goldstraw, A. Young, and T. D. Tetley, “Primary human alveolar type II epithelial cell CCL20 (macrophage inflammatory protein-3α)-induced dendritic cell migration,”
[10] A. Quintero and J. R. Wright, “In vivo clearance of surfactant lipids by neutrophils and macrophages isolated from the acutely inflamed lung,” *American Journal of Physiology: Lung Cellular and Molecular Physiology*, vol. 282, no. 2, pp. L330–L339, 2002.

[11] W. J. Piotrowski and J. Marczak, “Cellular sources of oxidants in the lung,” *International Journal of Occupational Medicine and Environmental Health*, vol. 13, no. 4, pp. 369–385, 2000.

[12] S. Andersson, A. Kheiter, and T. A. Merritt, “Oxidative inactivation of surfactants,” *Lung*, vol. 177, no. 3, pp. 179–189, 1999.

[13] J. L. Malloy and J. R. Wright, “In vivo clearance of surfactant lipids during acute pulmonary inflammation,” *Respiratory Research*, vol. 5, article 8, 2004.

[14] J. R. Wright, “Host defense functions of pulmonary surfactant,” *Biologicals of the Neonate*, vol. 85, no. 4, pp. 326–332, 2004.

[15] F. Stüber, H. Wrigge, S. Schroeder et al., “Kinetic and reversibility of mechanical ventilation-associated pulmonary and systemic inflammatory response in patients with acute lung injury,” *Intensive Care Medicine*, vol. 28, no. 7, pp. 834–841, 2002.

[16] P. E. Parsons, M. A. Matthay, L. B. Ware, and M. D. Eisner, “Elevated plasma levels of soluble TNF receptors are associated with morbidity and mortality in patients with acute lung injury,” *American Journal of Physiology: Lung Cellular and Molecular Physiology*, vol. 288, no. 3, pp. L426–L431, 2005.

[17] P. E. Parsons, M. D. Eisner, B. T. Thompson et al., “Lower tidal volume ventilation and plasma cytokine markers of inflammation in patients with acute lung injury,” *Critical Care Medicine*, vol. 33, no. 1, pp. 1–6, 2005.