Soluble extract of soybean fermented with *Aspergillus oryzae* GB107 inhibits fat accumulation in cultured 3T3-L1 adipocytes

Kyoung-Ha So¹, Yasuki Suzuki², Shinichi Yonekura², Yutaka Suzuki¹, Chan Ho Lee³, Sung Woo Kim⁴, Kazuo Katoh¹ and Sang-Gun Roh¹

¹Laboratory of Animal Physiology, Graduate School of Agricultural Science, Tohoku University, Aoba-ku, Sendai 981-8555, Japan
²Faculty of Agriculture, Shinshu University, Nagano-ken 399-4598, Japan
³Genebiotech Co., Seoul, 137-787 Korea
⁴Department of Animal Science, North Carolina State University, Raleigh, NC 27695, USA

BACKGROUND/OBJECTIVES: This study was conducted to investigate the effects of fermented soybean (FS) extract on adipocyte differentiation and fat accumulation using cultured 3T3-L1 adipocytes.

MATERIALS/METHODS: 3T3-L1 adipocytes were treated with FS and nonfermented soybean (NFS) extract during differentiation for 10 days *in vitro*. Oil red O staining was performed and glycerol-3-phosphate dehydrogenase (GPDH) activity was measured for analysis of fat accumulation. Expressions of adipogenic genes were measured.

RESULTS: Soluble extract of soybean fermented with *Aspergillus oryzae* GB107 contained higher levels of low-molecular-weight protein than conventional soybean protein did. FS extract (50 μg/ml) inhibited adipocyte differentiation and fat accumulation during differentiation of 3T3-L1 preadipocytes for 10 days *in vitro*. Significantly lower GPDH activity was observed in differentiated adipocytes treated with the FS extract than those treated with NFS extract. Treatment with FS extract resulted in decreased expression levels of leptin, adiponectin, and adipogenin genes, which are associated with adipogenesis.

CONCLUSIONS: This report is the first to demonstrate that the water-soluble extract from FS inhibits fat accumulation and lipid storage in 3T3-L1 adipocytes. Thus, the soybean extract fermented with *A. oryzae* GB107 could be used to control lipid accumulation in adipocytes.

Keywords: Fermented soybean, adipocyte, adipogenesis, 3T3-L1, *Aspergillus oryzae*

INTRODUCTION

Soybean, a high-quality protein source, has been widely used in traditional nonfermented foods, such as soy milk, tofu, and tofu skin, and in fermented foods, such as miso, soy sauce, bean paste, natto, and tempeh. In a previous study, we demonstrated that solid-state fermentation of soybean by *Aspergillus oryzae* (A. oryzae) GB107 improves the nutritional quality of soybean food and feed meals [1]. The use of fermented soybean (FS) meal as a replacement for conventional soybean meal improved the efficiency of nutrient utilization and the diarrhea score of nursery pigs [2]. In addition, FS decreased the immune response by lipopolysaccharide in nursery pigs [3].

Obesity is characterized by excessive accumulation and storage of body fat and results in abnormalities in energy storage and utilization. This increase in adipose tissue mass occurs as a result of both hypertrrophy and hyperplasia of adipocytes, the latter being due to increased differentiation of preadipocytes [4-6]. The discovery that adipose cells secrete leptin, which regulates food intake and energy homeostasis [7], confirmed the role of adipose tissue as a secretory organ. In addition to leptin, adipocytes have been found to secrete adipokines, i.e., adiponectin, tumor necrosis factor-α (TNF-α), chemerin, and interleukin-6 (IL-6) [8-13]. The development of an *in vitro* preadipocyte culture system has facilitated the elucidation of the mechanism of adipogenesis and has shown that the key players in adipogenesis are peroxisome proliferator-activated receptor-γ2 (PPAR-γ2), CCAAT/enhancer binding protein (C/EBP-α), C/EBP-β, and sterol regulatory element-binding protein-1c (SREBP-1c) [5,14].

Natural and synthetic agents that are effective in prevention of both fat- and sugar-induced obesity can exert anti-obesity effects by increasing lipolysis in white adipocytes and by blocking adipocyte differentiation. FS exhibits several biological functions depending on the microbe used for fermentation [15]. In this study, we investigated whether the soluble extract of soybean fermented with *A. oryzae* GB107 modulates fat accumulation and lipogenesis in cultured 3T3-L1 adipocytes. Our results show that the extract of soybean fermented with...
A. oryzae GB107 could be used to prevent obesity and obesity-induced diseases.

MATERIALS AND METHODS

SDS-PAGE patterns of FS and NFS protein
FS was prepared by a commercial company (Genebiotech Co. Ltd., Seoul, Korea) as previously reported [1]. Water-soluble proteins were extracted from FS and NFS using a modified method based on a previous report [1]. Ground samples (0.125 g) were homogenized for 5 minutes on ice with lysis buffer containing 4 mL of 20 mM Tris-HCl buffer (pH 7.6) including 0.1% sodium dodecyl sulfate, 5 mM dithiothreitol, and 5 μg/mL protease-inhibitor cocktail (Nacalai Tesque, Kyoto, Japan). Homogenized samples were centrifuged at 17,675 × g for 15 minutes at 4°C, and the supernatants were transferred to 1.5-μL microcentrifuge tubes and used for protein analysis. The protein content of each sample was determined using a Protein Assay Kit (Bio-Rad, Richmond, CA, USA). Proteins were subjected to SDS-PAGE using 5-12% gradient polyacrylamide gels. Coomassie blue-stained gels were scanned with a Bioimage system (Bioimage, Ann Arbor, MI, USA). The remaining prepared supernatants were used for treatment of cultured adipocytes.

3T3-L1 cell culture and adipocyte differentiation
3T3-L1 preadipocytes were cultured and differentiated according to methods described in a previous report [16]. Briefly, the cells (5 × 10⁴ cells/well) were plated and grown for 2 days post-confluence in six-well tissue culture plates in DMEM containing 10% fetal bovine serum, and the medium was changed every 2 days. Cells were induced to differentiate by replacing the medium with serum-containing DMEM with 0.5 mM 3-isobutyl-1-methylxanthine (IBMX), 0.25 μM dexamethasone, and 1 μg/mL insulin. Two days later, the medium was again changed to serum-containing DMEM with insulin but no IBMX or dexamethasone. Two days later, the medium was again changed to DMEM containing 10% fetal bovine serum in the absence of any differentiating reagents, and it was replaced every 2 days from that day onward. For experimental purposes, the cells were treated and changed with differentiation medium with vehicle control, FS or NFS extracts (50 μg/mL) every 2 days during their differentiation. For controls, cells were treated with lysis buffer diluted with medium as vehicle. A preliminary dose-finding experiment concluded that a single dose (50 μg/mL) of FS and NFS extracts was suitable. The culture medium was collected every 2 days to examine glycerol release from 3T3-L1 adipocytes. After 10 days of differentiation, fat accumulation was determined by GPDH activity and oil red O staining. In addition, reverse transcription polymerase chain reaction (RT-PCR) was performed to monitor the expression levels of genes associated with adipogenesis.

MTT assay
3T3-L1 preadipocytes were cultured in a 96-well dish. After treatment with FS and NFS for 24 h, a 20 μL aliquot of 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetraolumbromide (MTT, a yellow tetrazole; 5 mg/mL in PBS) was added to the wells, followed by incubation for 24 h at 37°C, as described in a previous report [17]. The supernatant was removed carefully, 200 μL of DMSO was added and mixed, and the absorbance was read at 563 nm.

Oil red O staining
Cytoplasmic lipid droplets were stained with oil red O, as described in a previous report [12]. Briefly, cells were rinsed three times in phosphate-buffered saline (PBS) and then fixed in 10% (v/v) formaldehyde for 10 min. The cells were washed twice with PBS, followed by staining for 30 min at 37°C in freshly diluted oil red O (Sigma Chemical Co., St. Louis, MO, USA) solution (six parts oil red O stock and four parts H₂O; oil red O stock solution is 0.5% oil red O in isopropanol), followed by further washing with PBS. The stained cytoplasmic triglycerides were visualized and photographed using a microscope. For quantification of oil red O content, the cells were washed 3 times with distilled H₂O for removal of background staining, and isopropanol was added to resolve oil red O. The OD₅₇₅ nm of the de-staining isopropanol was measured by spectrophotometry.

GPDH (glycerol-3-phosphate dehydrogenase) activity
To monitor the differentiation of preadipocytes, the activity of the marker enzyme GPDH was analyzed using a commercial kit (GPDH activity measuring test; Hokudo, Sapporo, Japan), according to our previous report [18]. The protein content of each sample was determined using a Protein Assay Kit (Bio-Rad, Richmond, CA, USA).

Glycerol measurement
Lipolytic activity was measured based on glycerol release from 3T3-L1 adipocytes over 2 days during treatment with FS or NFS extracts. Glycerol levels in the culture medium were analyzed using a Glyceride E-test Wako kit (Wako Pure Chemical Co. Ltd., Osaka, Japan).

Semi-quantitative RT-PCR
Total RNA from 3T3-L1 cells was extracted using Trizol® reagent (Gibco/Invitrogen BRL, Rockville, MD). Semi-quantitative RT-PCR was performed as previously described [19] to determine the mRNA expression levels of leptin, adiponectin, and adipogenin. β-actin, a house-keeping gene, was used as the internal control.

Total RNA (1 μg) was incubated at 70°C for 5 minutes. After heating, the RNA was chilled rapidly on ice. Then, it was reverse-transcribed for synthesis of cDNA in a 20 μL RT reaction containing ReverTra ACE® (Toyobo, Osaka, Japan) and oligo-dT primers. The mixtures were incubated at 30°C for 10 minutes, 42°C for 60 minutes, and 95°C for 5 minutes. The RT products were used for subsequent PCR amplification with 20-35 cycles, which is the linear increasing phase of the PCR products.

The PCR components included the following: 10 μL of Go Taq® Green Master Mix (Go Taq® Green Master Mix, Promega, Madison, WI, USA), 1 μL of primer mixture (1 pmol/μL), 1 μL of cDNA sample, and 8 μL of nuclease-free water. The primer sequences, product sizes, number of amplification cycles, and annealing temperatures used for semi-quantitative RT-PCR are shown in Table 1. PCR products were resolved on a 1.5%
Table 1. Primers and conditions for semi-quantitative RT-PCR

Gene	Primer sequence (bp)	Cycle	Tm (°C)	
PPAR-γ2	forward TGGGGAACTCTGAGGAT	454	25	58
	reverse CCATGGAAAGCCCTGATG			
Adipogenin	forward CTCTCGTGTTCTGACG	385	25	60
	reverse GGTAACACACACCTGAGA			
Adipophilin	forward AATATGGGAGGCGACCCCA	475	25	60
	reverse CCTCATGCTGAAACCTTC			
HSL²	forward CCCAGGCTCCTTACCAT	386	25	58
	reverse GCCCTCAGGTGAAACCAA			
ATGL³	forward CTCCGAGAGATGACAACA	474	25	58
	reverse CGATCCAGCTGAGGAAACA			
Adiponectin	forward GTTAGAGCTCCTGTCCTCC	430	20	60
	reverse TGCTCGTGCTAATGATTC			
Leptin	forward TGACACCAAAACCCCTCAACA	357	35	58
	reverse CTCAAAACCAACACCTTGTG			
β-actin	forward AGGTCTACCTACGGAACAT	357	22	58
	reverse ACTGGCTATCTGCTGTCG			

¹ Tm: Melting Temperature
² HSL: hormone-sensitive lipase
³ ATGL: adipose triglyceride lipase

agarose gel, and the DNA was visualized by ethidium bromide staining and analyzed using ImageJ 1.47. The mRNA levels of leptin, adiponectin, and adipogenin were normalized based on the mRNA level of β-actin.

Statistical analysis

The results are representative of at least three independent experiments and expressed as the mean ± SEM values of three or six wells in each experimental group. Differences in the means of each treatment were determined by Duncan test. The level of significance was uniformly set at P < 0.05.

RESULTS

Protein profile of FS and NFS extracts

The profiles of water-soluble proteins extracted from FS and NFS were examined and confirmed using SDS-PAGE gels. FS extracts contained higher levels of low-molecular-weight proteins (24-30 kDa) than NFS extracts (Fig. 1), and levels of low-molecular-weight proteins below 17 kDa were higher in FS extracts than in NFS extracts.

Effect of FS and NFS extracts on 3T3-L1 cell viability

We performed an MTT assay to determine whether FS and NFS treatment affects cell viability in 3T3-L1 preadipocytes. The MTT assay revealed no changes in preadipocyte viability at all tested concentrations of FS and NFS (Fig. 2A and B).

Morphological changes in differentiated adipocytes treated with FS and NFS extracts

To investigate the effect of FS and NFS extracts on 3T3-L1 preadipocyte differentiation, cells were treated with soybean extracts with a dose of 50 µg/mL. On microscopic examination, the FS extract-treated cells showed a low adipocyte number

Fig. 1. Distribution of the water-soluble proteins extracted from FS and NFS. Approximately 25 µg of protein was loaded per lane. Lanes M contain Marker.

Fig. 2. Effect of (A) FS and (B) NFS on the viability of 3T3-L1 preadipocytes by MTT assay. Values are expressed as a percentage survival compared to control (0 µg/mL) after 24 h incubation.

Fig. 3. Morphological changes in 3T3-L1 cells cultured with NFS extract (50 µg/mL) or FS extract (50 µg/mL). (A) After 10 days, the cells were fixed and stained with oil red O for detection of oil droplets. (B) Magnified photographs of 3T3-L1 adipocytes cultured with NFS extract (50 µg/mL) or FS extract (50 µg/mL). (C) The stained cells were destained with isopropanol, and the OD of the de-staining isopropanol was measured by spectrophotometry. Values are expressed as mean ± SEM (n = 6). *Mean values with different superscripts are significantly different (P<0.05).
and a lower degree of adiposity compared with that for all other treatments (Fig. 3A, B). No changes were observed in adipocytes treated with lower doses of 50 μg/ml. In addition, the lowest optical density values were obtained for adipocytes treated with FS extract (Fig. 3C).

GPDH enzyme activity in differentiated adipocytes treated with FS and NFS extracts

GPDH occupies a central position in the triglyceride synthesis pathway, at the point where it branches from the glycolytic pathway [20]. Therefore, GPDH enzyme activity was measured in differentiated adipocytes treated with FS or NFS extracts. GPDH enzyme activity was significantly lower in differentiated adipocytes treated with the FS extract than in cells treated with the NFS extract (Fig. 4).

Glycerol release from differentiated adipocytes treated with FS and NFS extracts

To determine the effects of FS and NFS extracts on lipolysis, glycerol release into cell culture medium was measured during adipocyte differentiation. After 8 days of adipocyte differentiations, treatment of FS extract group was enhanced glycerol release whereas treatment of NFS extract group was significantly blocked (Fig. 5).

Levels of gene expression in differentiated adipocytes treated with FS and NFS extracts

Significantly lower mRNA levels of leptin and adiponectin were observed in adipocytes treated with the FS extract compared to those treated with the control and NFS (Fig. 6). However, the levels of PPAR-γ2, SREBP-1c, HSL, and ATGL expression did not change among the treatments. The expression levels of adipophilin and adipogenin were lower than those of control and NFS.

DISCUSSION

To the best of our knowledge, this report is the first to demonstrate that the water-soluble extract from soybean fermented with A. oryzae GB107 inhibits fat accumulation and GPDH activity, stimulates lipolysis in adipocytes, and downregulates leptin and adiponectin gene expression. Fat accumulation and lipogenesis could be inhibited by one or multiple components extracted from FS. In comparison of FS and NFS extracts by protein electrophoresis, we observed that the FS extract consisted of more low-molecular-weight proteins (24-30 kDa and less than 17 kDa) than the NFS extract. Several types of enzymes break the large proteins in soybean to small molecules such as peptides and amino acids, which contribute the unique sensory and functional properties of the final products [15]. To date, many studies have reported on the anti-obesity and anti-lipogenic effects of soybean [17,21-26]. For example, black soybean anthocyanins have been reported to
inhibit preadipocyte proliferation and lipid accumulation during differentiation and to reduce basal lipolysis in 3T3-L1 cells [18]. β-Conglycinin protein is a source of active peptides that inhibit fatty acid synthase activity and lipid accumulation in human adipocytes and 3T3-L1 adipocytes [21,22]. Peptides from meju, fatty acid synthase activity and lipid accumulation in human adipocytes and 3T3-L1 adipocytes [21,22]. Peptides from meju, fatty acid synthase activity and lipid accumulation in human adipocytes and 3T3-L1 adipocytes [21,22]. Peptides from meju, fatty acid synthase activity and lipid accumulation in human adipocytes and 3T3-L1 adipocytes [21,22]. Peptides from meju, fatty acid synthase activity and lipid accumulation in human adipocytes and 3T3-L1 adipocytes [21,22]. Peptides from meju, fatty acid synthase activity and lipid accumulation in human adipocytes and 3T3-L1 adipocytes [21,22]. Peptides from meju, fatty acid synthase activity and lipid accumulation in human adipocytes and 3T3-L1 adipocytes [21,22]. Peptides from meju, fatty acid synthase activity and lipid accumulation in human adipocytes and 3T3-L1 adipocytes [21,22]. Peptides from meju, fatty acid synthase activity and lipid accumulation in human adipocytes and 3T3-L1 adipocytes [21,22]. Peptides from meju, fatty acid synthase activity and lipid accumulation in human adipocytes and 3T3-L1 adipocytes [21,22]. Peptides from meju, fatty acid synthase activity and lipid accumulation in human adipocytes and 3T3-L1 adipocytes [21,22]. Peptides from meju, fatty acid synthase activity and lipid accumulation in human adipocytes and 3T3-L1 adipocytes [21,22].

3. Roh SG, Carroll JA, Kim SW. Effects of fermented soybean meal on innate immunity-related gene expressions in nursery pigs acutely challenged with lipopolysaccharides. Anim Sci J. Forthcoming 2014.
4. Friedman JM, Halaas JL. Leptin and the regulation of body weight in mammals. Nature 1998;395:763-70.
5. Gregoire FM, Smas CM, Sul HS. Understanding adipocyte differentiation. Physiol Rev 1998;78:783-809.
6. Roh SG, Hishikawa D, Hong YH, Sasaki S. Control of adipogenesis in ruminants. Anim Sci J 2006;77:472-7.
7. Zhang Y, Proenca R, Maffei M, Barone M, Leopold L, Friedman JM. Positional cloning of the mouse obese gene and its human homologue. Nature 1994;372:425-32.
8. Sethi JK, Xu H, Uysal KT, Wiesbrock SM, Scheja L, Hotamisligil GS. Characterisation of receptor-specific TNFalpha functions in adipocyte cell lines lacking type 1 and 2 TNF receptors. FEBS Lett 2000;469:77-82.
9. Yamauchi T, Kamon J, Ito Y, Tsuchida A, Yokomizo T, Kita S, Sugiyama T, Miyagishi M, Hara K, Tsunoda M, Murakami K, Ohteki T, Uchida S, Takekawa S, Waki H, Tsuchi Y, Shibata Y, Terauchi Y, Frogeul P, Tobe K, Koyasu S, Takeda K, Kitamura T, Shimizu T, Nagai R, Kadokawa T. Cloning of adiponectin receptors that mediate anti-diabetic metabolic effects. Nature 2003;421:762-9.
10. Hotamisligil GS, Sharligl N, Spiegelman BM. Adipose expression of tumor necrosis factor-alpha: direct role in obesity-linked insulin resistance. Science 1993;259:88-91.
11. Roh SG, Song SH, Choi KC, Katoh K, Wittarmer V, Parmentier M, Sasaki S. Chemerin--a new adipokine that modulates adipogenesis via its own receptor. Biochem Biophys Res Commun 2007;362:1013-8.
12. Suzuki Y, Hong YH, Song SH, Aradiyanti A, Kato D, So KH, Katoh K, Roh SG. The regulation of chemerin and CMKLR1 genes by expression of TNF-α, adiponectin, and chemerin analog in bovine differentiated adipocytes. Asian-Australas J Anim Sci 2012;25:1316-21.
13. Suzuki Y, Song SH, Kato S, So KH, Aradiyanti A, Kitayama H, Sasaki Y, Lee SD, Choi KC, Kagino A, Katoh K, Roh SG. Chemerin analog regulates energy metabolism in sheep. Anim Sci J 2012;83:263-7.
14. Tontonoz P, Hu E, Spiegelman BM. Stimulation of adipogenesis in fibroblasts by PPAR gamma 2, a lipid-activated transcription factor. Cell 1994;79:1147-56.
15. Kwon DY, Daily JW 3rd, Kim HJ, Park S. Anti-diabetic effects of fermented soybean products on type 2 diabetes. Nutr Res 2010;30:1-13.
16. Hong YH, Hishikawa D, Miyahara H, Tsuzuki H, Nishimura Y, Gotoh C, Choi KC, Horig K, Takagi Y, Lee HG, Cho HK, Roh SG, Sasaki S. Up-regulation of adipogenin, an adipocyte plasma membrane protein, during adipogenesis. Mol Cell Biochem 2005;276:133-41.
17. Kim HK, Kim JN, Han SN, Nam JH, Na HN, Ha TJ. Black soybean anthocyanins inhibit adipocyte differentiation in 3T3-L1 cells. Nutr Res 2012;32:770-7.
18. Choi KC, Shrestha YB, Roh SG, Hishikawa D, Kun MJ, Tsuzuki H, Hong YH, Sasaki S. The role of phosphatidylindolinositol 3-kinase and mitogenic activated protein kinase on the differentiation of ovine preadipocytes. Asian-Australas J Anim Sci 2003;16:1199-204.
adipogenesis via GPCR43. Endocrinology 2005;146:5092-9.
20. Wise LS, Green H. Participation of one isozyme of cytosolic glycerophosphate dehydrogenase in the adipose conversion of 3T3 cells. J Biol Chem 1979;254:273-5.
21. Gonzalez de Mejia E, Martinez-Villaluenga C, Roman M, Bringe NA. Fatty acid synthase and in vitro adipogenic response of human adipocytes inhibited by α and α' subunits of soybean β-conglycinin hydrolysates. Food Chem 2010;119:1571-7.
22. Martinez-Villaluenga C, Bringe NA, Berhow MA, Gonzalez de Mejia E. β-Conglycinin embeds active peptides that inhibit lipid accumulation in 3T3-L1 adipocytes in vitro. J Agric Food Chem 2008;56:10533-43.
23. Lovati MR, Manzoni C, Canavesi A, Sirtori M, Vaccarino V, Marchi M, Gaddi G, Sirtori CR. Soybean protein diet increases low density lipoprotein receptor activity in mononuclear cells from hypercholesterolemic patients. J Clin Invest 1987;80:1498-502.
24. Oakenfull DG, Topping DL. Saponins and plasma cholesterol. Atherosclerosis 1983;48:301-3.
25. Sidhu GS, Oakenfull DG. A mechanism for the hypocholesterolaemic activity of saponins. Br J Nutr 1986;55:643-9.
26. Sugano M, Goto S, Yamada Y, Yoshida K, Hashimoto Y, Matsu T, Kimoto M. Cholesterol-lowering activity of various undigested fractions of soybean protein in rats. J Nutr 1990;120:977-85.
27. Kwon DY, Hong SM, Ahn IS, Kim MJ, Yang HJ, Park S. Isoflavonoids and peptides from meju, long-term fermented soybeans, increase insulin sensitivity and exert insulinotropic effects in vitro. Nutrition 2011;27:244-52.
28. Iwai K, Nakaya N, Kawasaki Y, Matsue H. Inhibitory effect of natto, a kind of fermented soybeans, on LDL oxidation in vitro. J Agric Food Chem 2002;50:3592-6.
29. Iwai K, Nakaya N, Kawasaki Y, Matsue H. Antioxidative functions of natto, a kind of fermented soybeans: effect on LDL oxidation and lipid metabolism in cholesterol-fed rats. J Agric Food Chem 2002;50:3597-601.
30. de Mejia EG, Dia VP. Lunasin and lunasin-like peptides inhibit inflammation through suppression of NF-kappaB pathway in the macrophage. Peptides 2009;30:2388-98.