Notes on “An Effective ECC based User Access Control Scheme with Attribute based Encryption for WSN”

M. Tech Ist Year
M. Chandra Mouli Reddy
PhD Scholar
Veltech Univ
Chennai-600062, T.N
mouli.veltech@gmail.com

Lakshmi Narayana K
Asst prof-CSE
SITAMS
Chittoor-A.P
kodavali.lakshmin@gmail.com

Jaya Prakash, P
Asst prof-CSE
SITAMS
Gandhinagar-382007
pokalajayaprakash@gmail.com

Chandra Sekhar Vorugunti
DA-IIC
Gujarat
vorugunti.chandra_sekhar@daiict.ac.in

Abstract — The rapid growth of networking and communication technologies results in amalgamation of ‘Internet of Things’ and ‘Wireless sensor networks’ to form WSNIT. WSNIT facilitates the WSN to connect dynamically to Internet and exchange the data with the external world. The critical data stored in sensor nodes related to patient health, environment can be accessed by attackers via insecure internet. To counterattack this, there is a demand for data integrity and controlled data access by incorporating a highly secure and light weight authentication schemes. In this context, Santanu et al had proposed an attribute based authentication framework for WSN and discussed on its security strengths. In this paper, we do a thorough analysis on Santanu et al scheme; to show that their scheme is susceptible to privileged insider attack and node capture attack. We also demonstrate that Santanu et al scheme consists of major inconsistencies which restrict the protocol execution.

Keywords— WSN security, Authentication, Attribute based authentication, Elliptic Curve Cryptography, Smart cards.

I. INTRODUCTION

The advances in internet technologies resulted in a dynamic internet called “Internet of Things” which can be labelled as a worldwide interconnection of distinctively addressable objects like RFID tags, sensors, Owens etc. The amalgamation of WSN and IoT allows mutual communication between external world and WSN by exchanging the information (patient health readings, environment data etc) sensed by sensors via Internet. However, accessing the sensor node via Internet raises security challenges, which need to be addressed to gain the advantage of the various benefits of such combination.

To achieve the data integrity and controlled access to sensor data, there is a demand for secure authentication schemes to allow only the legitimate user having specified access attributes to connect to the WSN. Due to the resource constrained nature of sensor nodes, the authentication scheme should not result in execution of heavy weight cryptographic operations like encryption, decryption etc. by the sensor nodes.

Various researchers had proposed protocols for secure authentication of users connecting to WSN [1-12] based on various techniques like password based [1-12], Temporal Credential based [1], biometric based [1,7], chinese remainder theorem based [3,4], identity based [5], bilinear pairing [6], ECC based [5,6,9,10], chaotic map based [8], attribute based [10,11,12] etc. Unfortunately, most of the protocols are analyzed insecure shortly, after they were put forward [1,2,3,4,5,6,8].

In 2015, Santanu et al. [10] proposed an ECC-based user access control scheme with attribute-based encryption for WSN and claimed that their protocol achieves stronger security by resisting major cryptographic attacks. In this paper we will show that Santanu et al. scheme is completely vulnerable to privileged insider attack which leads to leakage of user password to an insider, vulnerable to node capture attack, which leads to leakage of user identity to an attacker. Also Santanu et al scheme requires huge data storage and computation cost for generating user smart card. We will also show that, Santanu et al scheme consists of many inconsistencies or anomalies in various phases of their protocol execution.

In this section, we examine an effective ECC-based user access control scheme with attribute-based encryption for WSN by Santanu et al [10] in 2015. The notations used in Santanu et al. [10] are listed below.

U_i: User
BS: Base station
S_i: Sensor node
CH_u: Cluster head ‘u’
P_W: Password of user U_i
ID: Identity of user U_i
CID: Identifier of cluster head CH_u
h(.): A secure one-way hash function.
x: Secret Key of base station
X: Public Key of base station.
MKCH: Master key for cluster head CH_u

The rest of the paper is organized as follows. In section II, a brief review of Santanu et al. scheme is given. Section III, describes the security weakness of Santanu et al. scheme. In section IV, we discuss various inconsistencies of Santanu et al. scheme, section V provides the conclusion of the paper.

II. REVIEW OF SANTANU ET AL SCHEME

In this section, we examine an effective ECC-based user access control scheme with attribute based encryption for WSN by Santanu et al [10] in 2015. The notations used in Santanu et al. [10] are listed below.
Computes: BS computes $T_1 = h(T_U)$

Check T_1 specific to U_i

Computes: $S_K = y_i G$

Receive: $<N_i||Y_i||T_{SU}|N_i|$ at TSU_i

Selects: ID_i, r_i, and PW_i

Computes: $RPW_i = h(ID_i||r_i||PW_i)$

$\{RPW_i, ID_i\}$

Authentication Phase:

U_i provides ID_i, PW_i.

$RPW_i^* = h(ID_i||r_i||PW_i)$, $A_i^* = h(ID_i||TSU_i)$

$R_i^* = h(RPW_i||A_i^*)$ // check computed R_i^* equals to the R_i stored in the S.C.

Select a session specific arbitrary number n_i.

Computes $N_i = n_i G$. $SK_i = n_i Y_i$

$M_i = h(R_i^*||TU_i||N_i)$, where N_i is the x-co-ordinate of N_i.

TU_i is the current time stamp.

Selects a cluster head, say CH_u

$T_{in} = TU_i \oplus S_{in}$

$<N_i||ID_i||CID_i||T_{in}||M_i||>$ to the BS, via a public channel.

Login Phase:

U_i computes S_K specific to U_i during registration phase.

Decrpts $D_{SK_U}(ES_{SK_U}(ID_i||CID_i||T_{in}||M_i||))$ to get $\{ID_i, CID_i, T_{in}, M_i\}$.

$S_{in}^* = h(TSU_i||(T_{CH_u} \oplus W_{CH_u}))$

TSU_i is the time stamp at which the BS received the U_i registration request.

$TU_i^* = T_{in} \oplus S_{in}^*$, $M_i^* = h(R_i||TU_i||N_i)$

Check $M_i^* = received M_i$. If both are equal, BS confirms the authenticity of U_i.

BS computes $T1$ = $h(TU_i^*||T_{BS})$

Computes: $EM_{CH_u}(ID_i||CID_i||T_{in}||T_{BS}||N_i||T1||Y_i||TSU_i)$

Authentication Phase:

Base Station (B.S)

Receive: $<N_i||ID_i||CID_i||T_{in}||Y_i||>$ at TSU_i

Computes: $SK_i^* = y_i N_i$.

‘y_i’ is a secret key assigned to U_i by B.S during registration phase.

Decrpts $D_{SK_i}(ES_{SK_i}(ID_i||CID_i||T_{in}||M_i||))$ to get $\{ID_i, CID_i, T_{in}, M_i\}$.

$S_{in}^* = h(TSU_i||(T_{CH_u} \oplus W_{CH_u}))$

TSU_i is the time stamp at which the BS received the U_i registration request.

$TU_i^* = T_{in} \oplus S_{in}^*$, $M_i^* = h(R_i||TU_i||N_i)$

Check $M_i^* = received M_i$. If both are equal, BS confirms the authenticity of U_i.

BS computes $T1$ = $h(TU_i^*||T_{BS})$

Computes: $EM_{CH_u}(ID_i||CID_i||T_{in}||T_{BS}||N_i||T1||Y_i||TSU_i)$

Authentication Phase:

Cluster Head ‘U’ (CH_u)

Receive: $<EM_{CH_u}(ID_i||CID_i||T_{in}||T_{BS}||N_i||T1||Y_i||TSU_i)>$ at TSU_i

Validate CID_i

Check if $|T_{BS}^* - T_{BS}| < \Delta T$, where T_{BS}^* is the received time.

Computes: $S_{in}^* = h(TSU_i||(T_{CH_u} \oplus W_{CH_u}))$ // stored in CH_u memory
Master Key Encryption Phase:

Cluster Head ‘U’ (CHu)

Compute: \(K_3 = (B_u + Y) \mod p \)

\(B_u \) and \(Y \) are stored in CHu memory

\(K_{2u} = (B_u + T_u) \) for all the attributes \(u \in I_u \)

\(K_{iu} = h(CIDu||ID_i||TU_i\|T_{CIDu}), K_{iu} = h(K_{iu}||K3) \)

\(M1 = E_{K3}(M) \)

\(<M1||T_{CIDu}||T_{CHu}||h(ID_i||CIDu||T_{CIDu}||M1)> K_{2u} \) for all \(u \in I_u \)

Data Decryption Phase

User (U_i)

Receive:

\(<M1||T_{CHu}||h(ID_i||CIDu||T_{CIDu}||M1)||K_{2u} \) for all \(u \in I_u \)

Compute: \(h(ID_i||CIDu||T_{CIDu}||M1) \)

Compare the computed hash with the received.

Check \(|T_{CIDu} - T_{CHu}| < \Delta T \)

Retrieve \(W_{CHu} \) from \(T_{CHu} \)

Validate \(W_{CHu} \).

Access(\((K_{iu}U_i + K_{2u}) = ((q_u(0)-t_i)g+(b_i+T_i)) \) (mod p) = \((q_u(0)-t_i)g+(b_i+T_i) \) (mod p) = \((y+b)g \) (mod p) = \(y+3b \) (mod p) = \(K3 \)

where \(q_u(0) = q_{parent(x)}^{index(x)}, q_u(0) = y \) and \(q_u(0) = q_{parent(x)}^{index(x)} \)

\(K_{iu} = h(CIDu||ID_i||TU_i||N_i||T_{CIDu}) \)

\(D_{K3}(M1) = D_{K3}(E_{K3}(M)) = M \)

Cluster Head ‘U’ (CHu)

Step 4. For each deployed sensor node \(S_j \): The B.S assigns a unique identity \(SID_j \) and assigns a set of attributes \(I_j \) from global set \(I \). Assigns a master key \(MKS_j \). B.S pre loads \(SID_j, I_j, MKS_j \) for each sensor node.

B. Registration Phase

This phase is invoked whenever a user \(U_i \) registers with the base station for the first time.

Step 1. The user \(U_i \) selects the identifier \(ID_i \), a random number \(r_i \), and the password \(PW_i \). Then computes \(RPW_i = h(ID_i||PW_i) \). \(U_i \) provides the computed masked password \(RPW_i \) and \(ID_i \) to the base station via a secure channel for registration.

Step 2. On receiving the login request \(\{RPW_i, ID_i\} \) at time \(TSU_i \), the BS computes the following variables for \(U_i, A_i = h(ID_i||TSU_i) \), secret masked information \(R_i = h(RPW_i||A_i) \). B.S also selects a secret key \(y_i \) for each user \(U_i \) and computes the \(U_i \) public key \(Y_i = y_iG \).

Step 3. The B.S selects an access structure \(P_i \) for each user \(U_i \). After receiving the registration information from the valid users, the B.S assigns the access structure \(P_i \) for each \(U_i \). These access structures are implemented through access tree. Every leaf nodes of the access tree is labeled with an
attribute like ‘Doctor’ or ‘Nurse’ etc. The non-leaf nodes are reflected as a threshold gate. The access structures are symbolized using the logic expressions over the attributes. The privilege of user U_i is defined with the help of an access tree. For each node ‘x’ in P_i, the B.S needs to construct a d_i+1 degree polynomial q_k applying the Lagrange interpolation, where d_i is the degree of the node ‘x’.

Step 4. For each non-root node ‘x’ in P_i, it sets $q_k(0) = q_{\text{parent}(x)}(\text{index}(x))$, in which parent(x) is the parent of ‘x’ and index(x) denotes the index(x)-th child element of root node ‘x’. The B.S then assigns $q_k(0) = y$, where $q_k(0)$ is the polynomial of the root of the access tree of the user U_i. Finally the B.S computes $K_{iu} = (q_k(0)-t_i) \mod p$ for each leaf node $i \in P_i$.

Step 5. The B.S then selects ‘m’ deployed cluster heads in the network CH_1, CH_2, \ldots, CH_m, which will be deployed during the initial deployment phase, and computes the m key-plus-id combinations $\{(S_{iu}, CID_{iu}) | 1 <= u <= m \}$. Where $S_{iu} = h(TSU_i) / (T_{CHU_i} \oplus W_{CHU_i})$.

Step 6. For dynamic cluster head addition phase, the m' cluster heads, $CH_{m+1}, CH_{m+2}, \ldots, CH_{m+m'}$, will be deployed later, after the initial deployment in the network, in order to replace some compromised cluster heads, if any, and add some fresh cluster heads along with sensor nodes. For this purpose, the B.S assigns the unique identity CID_{iu} and unique master key MK_{CHU_i}. Similarly the B.S assigns the unique identity SID_{iu} and unique master key MKS_{iu}.

Step 7. Finally, the B.S issues a tamper-proof smart card with the following parameters stored in it: (i) G, (ii) TSU_i, (iii) P_i, (iv) $RU_v(y)$ K_{iu} for each leaf node $u \in P_i$, (v) Y_i, (vi) $h(.)$, and (vii) $m+m'$ key-plus-id combinations $\{(S_{iu}, CID_{iu}) | 1 <= u <= m+m' \}$. The value of $m + m'$ is chosen according to memory availability of the smart card.

Step 8. On receiving the S.C from B.S, U_i inserts r_i into its S.C.

C. Login Phase

Whenever the user U_i wants to access real-time data from a sensor of a deployed WSN, the user U_i needs to perform the following steps:

Step 1. U_i inserts his/her smart card into the card reader of a specific terminal and provides his/her identity ID$_i$, password PW$_i$.

Step 2. The smart card then computes the masked password of the user U_i as $RPW_i^* = h(ID_i || r_i || PW_i), A_i^* = h(ID_i || TSU_i)$, using the time stamp TSU_i stored in U_i. S.C. S.C further computes $R_i^* = h(RPW_i^* || A_i^*), and then checks whether the computed R_i^* equals to the R_i stored in the S.C. If this verification fails, it means U_i provided the incorrect credentials and terminates the session, else the smart card proceeds to perform the following steps.

Step 3. The S.C selects a session specific arbitrary number n_i and computes $N_i = n_i.G$. The S.C computes $SK_i = n_i.Y_i, M_i = h(R_i^* || TU_i || N_i)$, where N_i is the x-co-ordinate of N_i, TU_i is the current time stamp of U_i.

Step 4. The user U_i selects a cluster head, say CHU from which the real time data can be accessed inside WSN. Corresponding to CHU, the smart card computes $T_{iu} = TU_i \oplus S_{iu}$. Finally, the user U_i sends the message $<N_i || E_{SK_i}(ID_i || CID_{iu} || TU_i || M_i)>$ to the BS, via a public channel.

D. Authentication Phase

On receiving the login request message $<N_i || E_{SK_i}(ID_i || CID_{iu} || TU_i || M_i)>$ from the user U_i, the BS performs the following steps in order to authenticate the user U_i.

Step 1. The BS computes $SK_i^* = y_i.N_i$, where y_i is a secret key assigned to U_i by B.S during registration phase. Using this computed key SK_i^*, the BS decrypts $D_{SK_i}(E_{SK_i}(ID_i || CID_{iu} || TU_i || M_i))$ to get $\{ID_i, CID_{iu}, T_{iu}, M_i\}$. If both are equal, B.S confirms the authenticity of U_i.

Step 2. Using the current system time stamp T_{BS}, the BS computes $T_1 = h(TU_i || T_{BS})$ and produces a cipher text message, encrypted using the master key MK_{CHU} of the cluster head CHU as $E_{MK_{CHU}}(ID_i || CID_{iu} || T_{BS} || N_i) = T_1 || Y_i(TSU_i)$. The BS directs the message $<E_{MK_{CHU}}(ID_i || CID_{iu} || T_{BS} || N_i) || T_1 || Y_i(TSU_i)>$ to the corresponding cluster head CHU.

Step 3. After receiving the message in Step3 from the BS, the cluster head CHU decrypts $E_{MK_{CHU}}(ID_i || CID_{iu} || T_{BS} || N_i)$ using its own master key MK_{CHU} as $D_{MK_{CHU}}(E_{MK_{CHU}}(ID_i || CID_{iu} || T_{BS} || N_i)) = (ID_i || CID_{iu} || T_{BS} || N_i) = T_1 || Y_i(TSU_i)$. CHU then checks if retrieved CID_{iu} is equal to its identity i.e CID_{iu}. If both are equal, CHU further checks if $T_{BS} - T_{CHU} < \Delta T$, where T_{BS} is the the received system time stamp of the CHU and ΔT is the allowed valid transmission delay. If it holds good, CHU computes $S_{iu}^* = h(TSU_i) / (T_{CHU_i} \oplus W_{CHU_i})$ using its boot strapped T_{CHU_i} and its expiration time W_{CHU_i}. CHU proceeds to compute $TU_i^* = T_{iu} \oplus T_{CHU_i}$ using the retrieved TU_i^*, CHU computes $T_1^* = h(TU_i || T_{BS})$. If the computed T_1^* equals the received T_1, CHU authenticates B.S. Finally, CHU performs master key encryption phase which forwards the login reply message to U_i. U_i performs the data decryption phase in respond to master encryption phase.

E. Master Key Encryption Phase

In this phase, any user CHU performs the following steps:

Step 1. CHU computes $K_3 = (B_u + Y) \mod p$, based on the stored values of B_u and Y. CHU further computes $K_{2u} = (B_u + T_{iu})$ for all the attributes u, where $u \in I_u$ for that cluster head CHU.
Step 2. As per the user U, request, the cluster head CHu computes $K_{sa} = h(CIDu||ID||TU||N_{sa}||TCHu)$, $K_{sa} = h(K_{sa}||K3)$. CHu encrypts the sensor data M using K_{sa} i.e $M1 = E_{K_{sa}}(M)$.

Step 3. CHu forwards the authentication reply message $<M1||TCHu||W_{CHu}||CIDu||TCHu||M1||K_{sa} >$ for all $u \in I_0 >$ to U_i, where $TSChu$ is the current time stamp of CHu.

F. Data Decryption Phase

Step 1. On receiving the message from the cluster head CHu, during the master key and data encryption phase, the user U_i computes a hash value $h(ID||CIDu||TSChu||M1)$ based on the received values of $TSChu$, $M1$. If the computed hash value equals the received hash value, U_i proceeds further, else terminates the session. U_i further compares $|TSChu - TSChu| < \Delta T$, if it is valid, U_i further computes W_{CHu} from $TCHu \oplus W_{Chu}$ and validates the expiration time i.e. $W_{CHu} >= T_{CHu}$. If the condition is valid, U_i authenticates CHu else terminates the connection.

Step 2. On successful authentication of CHu, U_i starts the decrypts process from leaf nodes of its own access tree, in a bottom to top up approach. U_i computes F_2 for each leaf node ‘i’ in P_i using the following logic: if ‘a’ $\in I_u$, the F_2 = Access ($K_{sa}U_i+K_{2a}$) else $F_2 = 0$ (invalid). For the user U_i, the other user satisfies the access tree P_{sa}, then only we obtain Access ($K_{sa}U_i+g+K_{2a}$) = $(y+b)g$ (mod p), which is shown in the following steps:

Access($K_{sa}U_i+K_{2a}$) = $((q_0(0)-t_0)(g+(b+t_0))g) (mod p) = (y+b)g$ (mod p) = $K3^*$ where $q_0(0) = q_{parent}(x$i$) = q_{parent}(x^{index(x)})$, $q^{(0)} = y$ and $q^{(0)} = q_{parent}(x^{index(x)})$ is executed in a recursive way as discussed in [12].

Step 3. The user U_i computes $K_{sa} = h(CIDu||ID||TU||N_{sa}||TSChu)$ and $K_{sa} = h(K_{sa}||K3^*)$ and then uses the key K_{sa} to decrypt $D_{K_{sa}}(M1) = D_{K_{sa}}(E_{K_{sa}}(M)) = M$.

III. CRYPTANALYSIS OF SANTANU ET AL SCHEME

In this segment, we will cryptanalyze the Santanu et al [10] scheme and illustrate that Santanu et al scheme is vulnerable to privileged insider attacker, node capture attack. Also we will illustrate that Santanu et al scheme consists of few anomalies or inconsistencies which restricts the protocol flow.

Attack Model:

1) An opponent or an attacker or legal user can extract the information cached in the smart card by several techniques such as power consumption or leaked information [10] etc. i.e $S.C = \{ (i) G \ (ii) TSU \ (iii) P_i \ (iv) RU \ (v) K_{sa} \}$ for each leaf node $u \in P_i$, (vi) Y_i, (vii) $h(.)$, and (viii) m^m key-plus-id combinations ((S_{sa}, $CIDu$) | $1 <= u <= m^m$ | r_i) .

2) An opponent can passive monitor or eavesdrop or alter or replay the login request, login reply messages communicated among U_i, B.S, CH over a public channel which is Internet. i.e. \{ $\{N_{i|E_{sk}}||ID||CIDu||T||M\}$ \, \{ $E_{MKCHu}(ID||CIDu||T||BS||N_{i|E_{sk}}||T||M)\}$ \, $\{<M1||TCHu||W_{CHu}||CIDu||TSChu||M1||K_{sa} >$ for all $u \in I_0 >$ \}

A. Huge Data Storage and Computation Requirement for Generating User Smart Card

In Santanu et al. scheme the user smart card memory is stored with ‘m’ key-plus-id combinations $(S_{sa}$, $CIDu)$ | $1 <= u <= m$, where $S_{sa} = h(TSU||W_{CHu})$ of all cluster heads in the WSN. Based on the Santanu et al. discussion, for a total of 20,000 sensor nodes to be deployed and if each cluster head can handle 200 sensor nodes, then there are total $m = 100$ cluster head needed and for dynamic cluster head addition $m^m = 100$ cluster heads are reserved. So a total of $m^m + m^m = 100 + 100 (S_{sa}$, $CIDu)$ details are stored. A total of 200 hash operations need to be performed for each user smart card. If the system contains ‘n’ users, then a total of $(n * 200)$ hash operations need to be performed to load the smart card memory of corresponding user which requires huge computation cost from the BS. The major issue is that, the user may not interested or in need of data from all the cluster heads. Hence storing all the m^m cluster head details is a major drawback in Santanu et al scheme.

Suppose, if any cluster head CHu^* is found to be compromised, the B.S re assigns the master key MK_{CHu^*}, identity CID_u^*, set of identities I^*, $B_{sa} = b_{sa}$, G is known only to B.S), a time stamp T_{CHu^*} and its expiration time W_{CHu^*}. Apart from re assigning the values of compromised CHu^*, the S.C values of all the users whose key-plus-ld combination contains CHu^* must be modified, which requires huge computation cost.

B. Fails to Resist Privileged Insider Attack

As demonstrated by A.K Das et al in their recent work [1], (one of the authors of the Santanu et al [10] scheme), performed an insider attack, we will apply same strategy on Santanu et al scheme, which is described as follows:

Step 1. Assume that the privileged insider ‘E’ stolen or gets the smart card of U_i for a while, then, ‘E’ can launch offline password guessing attack as follows:

Step 2. As discussed in 2.3, during registration phase of U_i, U_i submits the login request $\{RPW_i, ID_i\}$ where $RPW_i = h(ID||T||PW_i)$. From the login request ‘E’ intercepts ID_i, from the stolen smart card of U_i. ‘E’ can get r_i. Now from the intercepted value of $RPW_i = h(ID||T||PW_i)$, ‘E’ can perform guessing attack [1] on U_i password from a moderately small dictionary, over the subsequent steps.

Step 2.1. Choose a guessed password PW_i to be PW_i^*.

Step 2.2. Compute $RPW_i^* = h(ID||T||PW_i^*)$ and compare the computed RPW_i^* with the intercepted value of RPW_i, during
registration phase. If RPW\textsubscript{i}* equals RPW\textsubscript{i}, then the guessed password PW\textsubscript{i}* is the correct one, else ‘E’ proceeds with another guessed password PW\textsubscript{i}* from the dictionary and follows the same steps.

Hence, in Santanu et al scheme, the insider on getting the stolen S.C of U_i can compute the U_i password.

C. Fails to Resists Node Capture Attack

A sensor node capture attack is a WSN specific physical type of attack. As the sensor nodes and cluster heads are not equipped with tamper resistant hardware, the attacker can capture a legitimate sensor node or cluster head in WSN and can extract the secret information stored in it. Each cluster head and sensor node is pre-loaded with the master keys i.e MK\textsubscript{CH} and M.K.S\textsubscript{j} respectively. On receiving the login request $<N_i||E_{SK_{iu}}(ID_i||CID_u||T_{iu}||M_i)>$ from U_i, the base station computes and forwards a message to the corresponding cluster head CH_u which is encrypted with its master key i.e $E_{MK_{CH_u}}(ID_u||CID_u||T_{iu})$. If an attacker captures the cluster head CH_u can retrieve its master key MK_{CH_u} which is stored in its hardware, as discussed above, an attacker ‘E’ can capture all the communications between the protocol entities, hence, ‘E’ can capture the message sent by B.S to CH_u and can decrypt it to get $D_{MK_{CH_u}}(E_{MK_{CH_u}}(ID_u||CID_u||T_{iu})||N_i||T_1||Y_i||TSU_i)$ = $\{ID_u, CID_u, T_{iu}, N_i, T_1, Y_i, TSU_i\}$ which involves the identity of the logged in user i.e ID_u. Therefore, we can conclude that, in Santanu et al scheme, if an attacker captures a cluster head, he can extract the secret key stored in it and can decrypt the messages forwarded to the cluster head to get the identity of the user logged in. Hence, we can conclude that Santanu et al scheme fails to resist identity leakage attack.

IV. ANALYSIS OF INCONSISTENCIES IN SANTANU ET AL SCHEME

In this section, we discuss few anomalies or inconsistencies found in Santanu et al [10] scheme.

A. Inconsistencies in Registration Phase:

In Santanu et al scheme, during registration phase, the Base Station B.S computes the variables $A_i = h(ID_i||TSU_i)$, $R_i = h(RPW_i||A_i)$ where TSU_i is the time at which the B.S received the registration request from U_i. B.S also selects a secret key y_i for U_i and computes the U_i public key $Y_i = y_i.G$.

1) Inconsistency 1:

In Santanu et al scheme, the authors didn’t mentioned clearly on how the base station stores the value ‘R_i’ and the secret key ‘y_i’ assigned to each user in its database, to use these values in authentication phase.

B. Inconsistencies in Authentication Phase:

In this section, we discuss the inconsistencies found in authentication phase of Santanu et al scheme.

1) Inconsistency 1:

In Santanu et al scheme, during the registration phase, S.C submits the login request message $<N_i||E_{SK_{iu}}(ID_i||CID_u||T_{iu}||M_i)>$ to the B.S, in which $N_i = n_i.G$, where ‘n_i’ is an arbitrary number chosen by S.C specific to the current login request. $SK_{iu} = n_i.Y_i$, where $Y_i = y_i.G$ is the U_i public key computed out of a secret key ‘y_i’ assigned to U_i by the B.S. SK_{iu} is the x-co-ordinate of SK_i.

On receiving the login request from U_i, B.S proceeds to compute $SK_i = y_i.N_i$. To compute SK_i, B.S needs ‘y_i’, which is secret key of U_i assigned by B.S. The login request contains two parts N_i, which is a random one and doesn’t contain any clue about the user identity. The second part of login request $E_{SK_{iu}}(ID_i||CID_u||T_{iu}||M_i)$ is encrypted using SK_{iu} which is also a random value and doesn’t contain any clue about the user details. Therefore it is impossible for a B.S to identify from which user, it got the login request. Hence, it is impossible to retrieve ‘y_i’ a user specific value to compute SK_i.

2) Inconsistency 2

In Santanu et al scheme, as discussed in section 2.5 (authentication phase), step 2, the B.S computes $M_i^* = h(R_i || T_{U_i} || N_i, T)$. To compute M_i^*, B.S requires the value ‘R_i’. In Santanu et al scheme, the B.S is computing ‘R_i’ during U_i registration phase, but as discussed in 4.1.2, it is not clear in which format, the B.S stores R_i in its data base. One option for B.S is to compute R_i i.e $R_i = h(RPW_i||A_i^*)$ where $A_i^* = h(ID_i||PRW_i), RPW_i = h(ID_i || r || PW_i)$. B.S doesn’t know U_i password PW_i, identity ID_i, random number chosen by U_i i.e r. Hence, it is impossible to compute R_i^* by B.S. In summary, B.S is not storing R_i and doesn’t have the required parameters to compute R_i^*. Therefore, computing $M_i^* = h(R_i || T_{U_i} || N_i)$ is impossible for B.S.

V. CONCLUSION

Recently Santanu et al. proposed an ECC-based user access control scheme with attribute-based encryption for WSN. Even though it is a novel attempt, after thorough analysis of Santanu et al paper, we demonstrated that their scheme is vulnerable to privilege insider attack and node capture attack. We also established that Santanu et al scheme include major inconsistencies which oppose the correct protocol execution. In future work, we aim to propose a secure and light weight authentication scheme for WSN by eliminating the security pitfalls and inconsistencies found in Santanu et al scheme.

REFERENCES

[1] A.K.Das, ‘A secure and robust temporal credential-based three-factor user authentication scheme for wireless sensor networks,’ springer journal of Peer-to-Peer Networking and Applications, Dec 2014.

[2] Qi.Jiang, Ma. Jianfeng, Lu. Xiang and Tian. Youliang, ‘An efficient two-factor user authentication scheme with unlinkability for wireless sensor networks,’ springer journal of Peer-To-Peer Networking and Applications, jnu 2014.

[3] Li M, Lou W, Ken R. Data security and privacy in wireless body area networks. IEEE Wireless Communications pp: 51–58, 2010.
[4] P.K. Bhaskar, A.R. Pais, 'A Chinese Remainder Theorem Based Key Management Algorithm for Hierarchical Wireless Sensor Network.', Int conf on Distributed Computing and Internet Technology, LNCS pp 311-317, 2015.

[5] Q. Zhou, C. Tang, X. Zhen and C. Rong, 'A secure user authentication protocol for sensor network in data capturing', Journal of Cloud Computing: Advances, Systems and Applications, 4:6 2015.

[6] C.L. Hsu, Y.H. Chuang and C.I. Kuo, 'A Novel Remote User Authentication Scheme from Bilinear Pairings Via Internet.', Springer journal of Wireless Personal Communications, pp 163-174, July 2015.

[7] A.K. Das, 'A Secure and Efficient User Anonymity-Preserving Three-Factor Authentication Protocol for Large-Scale Distributed Wireless Sensor Networks.', Springer journal of Wireless Personal Communications, pp 1377-1404, June 2015.

[8] H. Zhu, X. Hao, 'A provable authenticated key agreement protocol with privacy protection using smart card based on chaotic maps.', Springer journal of Nonlinear Dynamics, pp 311-321, July 2015.

[9] K. Chatterjee, A. De and D. Gupta, 'A Secure and Efficient Authentication Protocol in Wireless Sensor Network', Springer journal of Wireless Personal Communications, pp 17-37, Mar 2015.

[10] S. Chatterjee and A.K. Das, 'An effective ECC-based user access control scheme with attribute-based encryption for wireless sensor networks.', Wiley journal of SECURITY AND COMMUNICATION NETWORKS, Vol 8, pp: 1752–1771, Jun 2015.

[11] S.K.V.L. Reddy, S. Ruj and A. Nayak. 'Data Authentication Scheme for Unattended Wireless Sensor Networks against a Mobile Adversary. IEEE Wireless Communications and Networking Conference, China, 2013.

[12] V. Goyal, O. Pandey, A. Sahai, and B. Waters, 'Attribute based encryption for fine-grained access control of encrypted data', ACM Conference on Computer and Communications Security, 2006, pp : 89–98.