Comparative Exoproteomics and Host Inflammatory Response in *Staphylococcus aureus* Skin and Soft Tissue Infections, Bacteremia, and Subclinical Colonization

Yun Khoon Liew, Rukman Awang Hamat, Alex van Belkum, Pei Pei Chong, Vasanthakumari Neela

Department of Medical Microbiology and Parasitology, Universiti Putra Malaysia, Serdang, Malaysia
School of Pharmacy, International Medical University, Kuala Lumpur, Malaysia; bioMérieux, La Balme Microbiology Unit, La Balme les Grottes, France; Department of Biomedical Sciences, Universiti Putra Malaysia, Serdang, Malaysia

The exoproteome of *Staphylococcus aureus* contains enzymes and virulence factors that are important for host adaptation. We investigated the exoprotein profiles and cytokine/chemokine responses obtained in three different *S. aureus*-host interaction scenarios by using two-dimensional gel electrophoresis (2-DGE) and two-dimensional immunoblotting (2D-IB) combined with tandem mass spectrometry (MS/MS) and cytometric bead array techniques. The scenarios included *S. aureus* bacteremia, skin and soft tissue infections (SSTIs), and healthy carriage. By the 2-DGE approach, 12 exoproteins (the chaperone protein DnaK, a phosphoglycerate kinase [Pgk], the chaperone GroEL, a multisensor hybrid histidine kinase, a 3-methyl-2-oxobutanoate hydroxymethyltransferase [PanB], cysteine synthase A, an N-acetyltransferase, four isoforms of elongation factor Tu [EF-Tu], and one signature protein spot that could not be reliably identified by MS/MS) were found to be consistently present in more than 50% of the bacteremia isolates, while none of the SSTI or healthy-carrier isolates showed any of these proteins. By the 2D-IB approach, we also identified five antigens (methionine aminopeptidase [MetAPs], exotoxin 15 [Set15], a peptidoglycan hydrolase [LytM], an alkyl hydroperoxide reductase [AhpC], and a haptoglobin-binding heme uptake protein [HarA]) specific for SSTI cases. Cytokine and chemokine production varied during the course of different infection types and carriage. Monokine induced by gamma interferon (MIG) was more highly stimulated in bacteremia patients than in SSTI patients and healthy carriers, especially during the acute phase of infection. MIG could therefore be further explored as a potential biomarker of bacteremia. In conclusion, 12 exoproteins from bacteremia isolates, MIG production, and five antigenic proteins identified during SSTIs should be further investigated for potential use as diagnostic markers.

S. aureus is capable of causing a wide range of infections, including skin and soft tissue infections (SSTIs), bacteremia, osteomyelitis, and more. However, certain sequence types (STs) of *S. aureus* may better colonize and infect patients. For instance, necrotizing pneumonia or sepsis is commonly associated with ST1 of clonal cluster 1 (CC1) (1). In addition, the burden of multidrug-resistant (MDR) *S. aureus* renders infection control challenging in hospital settings. Furthermore, non-MDR strains may also cause severe staphylococcal infections (2–4).

In *S. aureus*, exoproteins play a major role in virulence, particularly during invasion and host tissue damage. *S. aureus* produces exogenous phenol-soluble modulins that exhibit strong cytolytic activity against human neutrophils, erythrocytes, and monocytes (5). The exoprotein LukGH was recently reported to exhibit synergistic effects with Panton-Valentine leukocidin on human neutrophil lysis (6). Similarly, the exoprotein SasX facilitates intercellular aggregation and promotes biofilm formation (7). A continuous search for new *S. aureus* virulence factors is ongoing, and comparative exoproteomics of strains isolated from different infection types may help in the identification of additional virulence factors.

Several studies have reported heterogeneous virulence gene expression in strains from different infection types and different clones (8, 9). These studies also reported exoproteome heterogeneity likely due to genetic regulation, posttranslational modification, or targeted protein degradation or stabilization. Such heterogeneity complicates the identification of potential biomarkers or vaccine candidates for *S. aureus*.

It is well known that some exoproteins are antigenic. This antigenicity has been shown in both *S. aureus*-infected patients and healthy carriers (10, 11). The exoproteins Hla, IsdB, IsaA, and ClfA elicit significantly higher levels of antibodies in patients than in healthy carriers. Such immunogens play key roles in host protection by enhancing opsonic activity and inducing cytokine and chemokine production to promote immune cell recruitment (12, 13). Unfortunately, the efficacy of these protective actions has not been transformed into a licensed vaccine, underscoring the need for a better understanding of host responses to the different types of infection caused by *S. aureus*. A comprehensive analysis of exoproteome variations and immunoproteomics may allow correlations between different infection types and host immune profiling to be discovered. In turn, this knowledge may help to identify new disease-specific protein markers.
Here, we described the first pilot study of differentially expressed S. aureus exoproteins from different strains and detected during different infections. Until now, most staphylococcal immunoproteomic studies have focused mainly on proteins in the pI range of 6 to 11, as this range is known to cover the majority of well-known virulence factors (11, 14, 15). We investigated exoproteins at lower pI values of 4 to 7 in order to get a clearer picture of all of the proteins involved. In order to investigate the S. aureus-induced patterns of cytokines or chemokines, we analyzed their concentrations during SSTIs, bacteremia, and healthy colonization events by using the cytometric bead array (CBA) and the BD LSRFortessa flow cytometer. Ultimately, our study aimed to determine the protein signatures corresponding to various infection types and to identify biomarkers for the clinical detection of S. aureus infections.

MATERIALS AND METHODS

S. aureus strains. This study was conducted with the approval of the Faculty of Medicine and Health Sciences of the Universiti Putra Malaysia, the Clinical Research Centre of Hospital Serdang, and the Ministry of Health Malaysia Medical Research Ethics Committee. It was conducted at the Universiti Putra Malaysia, and the samples were obtained from patients at Hospital Serdang. Six isolates each were collected from patients with bacteremia and SSTIs and from healthy carriers. SSTIs included superficial skin infections (such as impetigo, folliculitis/furunculosis, and mastitis) that can progress to more complicated skin infections (such as cellulitis, surgical wound infections, subcutaneous abscesses, and necrosis). All isolates were confirmed as being S. aureus by standard methods, which included Gram staining (Gram-positive cocci in clusters), mannitol fermentation, and coagulase and DNase production. All S. aureus isolates were stored in Luria-Bertani broth containing 20% (vol/vol) sterile glycerol at −70°C.

S. aureus strain characterization. All 18 isolates were subjected to meca PCR for the detection of methicillin resistance. Staphylococcal cassette chromosome mec (SCCmec) typing was performed for the meca-positive isolates according to a protocol optimized by Ghaznavi-Rad et al. (16).

Multilocus sequence typing (MLST) and staphylococcal protein A (spa) typing were performed as previously described (17, 18). Pulsed-field gel electrophoresis (PFGE) was performed to investigate the genetic relationships among the 18 isolates (19). The Smal restriction fragment patterns were analyzed with BioNumerics software (Applied Maths, Ghent, Belgium), and the percent similarities were determined by the unweighted-pair group method using average linkages based on Dice coefficients.

Each isolate was screened by PCR for 15 virulence factors involved in attachment, tissue invasion, evasion of host defense, and possible toxin production. The panel of genes included cna (20), fnbA (21), icaA, icaD (22), pvf (23), arginine catabolic mobile element-associated arcA (24), seg, seh, sei (25), seA, seB, sec, eta, etb, and tssT (26).

Sera. Patients admitted to the hospital were randomly chosen for this study. For the bacteremia study, the patients were monitored daily on the basis of their symptoms, which included persistent high fever, chills, low blood pressure, and a high total white blood cell count. Only patients who had no symptoms of bacteremia during their first day in the hospital were selected. Blood was drawn from the patients once they were suspected to have bloodstream infections. Generally, serum samples were collected from two groups (those with SSTIs and those with bacteremia) at day 1 and at day 14, after the infection was considered cured. Serum was collected from healthy carriers upon their identification as carriers. Samples were collected only from those participants who had provided signed informed consent.

The criteria for inclusion in this study were an age of >18 years, consent to be included in the study, and willingness to participate in regular clinical follow-ups. Immunocompromised subjects and patients with renal insufficiency were not included in this study. Additionally, patients who died during the study or were diagnosed with bacteremia, diabetes mellitus, eczema, or polymicrobial infection at the time of admission were excluded.

Exoprotein extraction. An overnight broth culture of the S. aureus strains collected during the clinical study was pipetted into 500 ml of tryptic soy broth supplemented with 0.001 M 2,2'-dipyridyl. The optical density at 600 nm of the culture was adjusted to 0.03 to 0.04, and the culture was grown at 37°C with constant agitation at 150 rpm. Once the culture reached the postexponential phase, the exoproteins from 500 ml of culture were precipitated by the addition of ice-cold ethanol-trichloroacetic acid. The precipitated exoproteins were dried at room temperature and solubilized in rehydration buffer containing 8 M urea, 2 M thiourea, 2.0% (wt/vol) 3-[1-(3-cholamidopropyl)-dimethylammonio]-1-propanesulfonate (CHAPS), 0.2% (vol/vol) Bio-Lyte 3/10 ampholytes, and 50 mM dithiothreitol (DTT) to a final volume of 150 µl. The exoprotein solution was then centrifuged at 21,000 × g at room temperature for 10 min to remove insoluble proteins. The concentration of the exoprotein was determined with the RC-DC (reducing agent- and detergent-compatible) Protein Assay (Bio-Rad).

2-DGE. Analytical two-dimensional (2D) gel electrophoresis (2-DGE) was performed as described previously (27). A total of 6 µg of exoproteins solubilized in 125 µl of rehydration buffer (8 M urea, 2 M thiourea, 2.0% [wt/vol] CHAPS, 0.2% [vol/vol] Bio-Lyte 3/10 ampholytes, 50 mM DTT) was loaded onto 7-cm immobilized pH gradient (IPG) strips (linear, pI 4 to 7; Bio-Rad) and passively rehydrated for 14 h. Subsequent isoelectric focusing, followed by second-dimension electrophoresis and silver staining, was carried out as previously described (27). Briefly, the absorbed protein inside the IPG strips was isoelectrically focused for a total of 14,000 Vh in a PROTEAN isoelectric focusing cell (Bio-Rad) and processed to equilibration steps with equilibration buffer I (6 M urea, 2% [wt/vol] SDS, 20% [vol/vol] glycerol, 2% [wt/vol] DTT, 50 mM Tris-HCl, pH 8.8) and equilibration buffer II (buffer I with 2.5% [wt/vol] iodoacetamide instead of 2% DTT). For second-dimension separation, equilibrated IPG strips were embedded in a 1-mm-thick SDS-PAGE gel (12.5% T) with overlay agarose (Bio-Rad) and subjected to electrophoresis in a Mini Dodeca-Cell (Bio-Rad) for 45 min at a constant 200 V in Laemmli SDS-PAGE running buffer. The gels were subjected to silver staining with the ProteoSilver Silver Stain kit (Sigma-Aldrich), scanned with a calibrated densitometer GS-800 (Bio-Rad), and analyzed with the PDQuest Advanced 8.0.1 2D Gel Analysis software. Technical triplicates were performed with each sample.

2D immunoblotting (2D-IB). A total of 12 µg of pooled exoproteins for each strain in the different groups was separated by 12.5% 2-DGE as described above. The separated exoproteins and methanol-pretreated polyvinylidene difluoride (PVDF) membranes were incubated in Towbin buffer (25 mM Tris, 190 mM glycine, 20% [vol/vol] methanol [pH 8.3]) for 10 min. Trans-Blot membranes were also rinsed with Towbin buffer. The exoproteins on the 2D electrophoresis gels were then blotted onto PVDF membranes for 30 min at a constant 25 V with a Trans-Blot SD semidry blotting device according to the manufacturer’s instructions (Bio-Rad). A prestained protein ladder was used to confirm transfer efficiency. The PVDF membranes with the blotted exoproteins were then blocked overnight in a solution of 5% nonfat dry milk in TBST (Tris-buffered saline–Tween containing 20 mM Tris-HCl, 137 mM NaCl, and 0.1% [vol/vol] Tween 20 [pH 7.6]) at 4°C. This blocking step was followed by five washes with TBST buffer prior to overnight incubation of the PVDF membranes with various human sera at a 1:10,000 dilution in 5% nonfat dry milk–TBST buffer at 4°C in the dark. Five washes with TBST buffer were performed, and the bound human IgG was detected by incubation with peroxidase-conjugated goat anti-human IgG (H+L) diluted 1:50,000 in 5% nonfat dry milk–TBST buffer for 1 h at room temperature. Five washes with TBST buffer were then performed. The membranes were then incubated with SuperSignal West Pico substrate for 5 min. Visual-
ization was performed with an Alphalmager with a 5-min recording time. Three independent experiments were performed for each patient, and acute- and convalescent-phase serum samples were always analyzed in the same experiment. The acquired images were imported into PDQuest for quantitative comparison.

Pooled human serum samples from each clinical group were used to determine the total immune proteome. The 2D-IEF image was matched with silver-stained 2-DGE images of the corresponding pooled exoproteins. We aimed to ensure that the immunoreactive protein spots of interest were accurately excised and subjected to tandem mass spectrometry (MS/MS) analysis.

Protein identification. For identification of proteins by liquid chromatography (LC)-electrospray ionization (ESI) MS/MS, the silver-stained protein spots were manually excised from 2D electrophoresis gels. The proteins were trypsin digested, and the peptides were extracted according to standard techniques (28). ESI MS analysis of the peptides was performed with an Ultimate 3000 high-performance liquid chromatography system (Dionex) coupled to a 4000 Q TRAP mass spectrometer (Applied Biosystems, Foster City, CA). Briefly, peptides were eluted with an increasing gradient of acetonitrile with the mobile phase containing 0.1% formic acid at 300 nl/min. The mass spectrometer was set to perform information-dependent acquisition to acquire fragmentation data on the three most intense ions with the following criteria: a mass range of 400 to 2,800, a charge 1 to 3, an intensity of 5e4 counts, and exclusion of former target ions for 300 s. The spectra were analyzed to identify proteins of interest with the Mascot sequence matching software (Matrix Science, London, United Kingdom) and the Ludwig NR database.

The spectra were analyzed to determine the total immune proteome. The 2D-IB image was matched with silver-stained 2-DGE images of the corresponding pooled exoproteins. We aimed to ensure that the immunoreactive protein spots of interest were accurately excised and subjected to tandem mass spectrometry (MS/MS) analysis.

Cytokine and chemokine assays. To investigate cytokine and chemokine production patterns, patient serum was analyzed with the BD CBA human Th1/Th2/Th17 cytokine kit and the BD CBA Human Chemokine kit as recommended by the manufacturer. The cytokine and chemokine molecules detected by this kit include interferon (IFN-γ), interferon-inducible protein 10 (IP-10), monocyte chemoattractant protein 1 (MCP-1), monokine induced by IFN-γ (MIG), and regulated upon activation of normal T cell expressed and secreted protein (RANTES). Before the CBA was started, the cytometer setup beads provided by the manufacturer were used for the photomultiplier tube voltage and compensation settings in the BD LSFRfortessa flow cytometer. The singlet bead population was obtained by adjustment of the forward and side light scatter voltages. The individual beads were then separated by using the optimal allopregocyanin and fluorescein isothiocyanate voltages, approximately 70,000 and 75 V, respectively. After the setting, a mixture of the recombinant standards (standards included all of the recombinant cytokines or chemokines tested) was reconstituted and serially diluted in assay diluent to obtain a standard curve (either 20 to 5,000 pg/ml of the cytokine standards or 10 to 2,500 pg/ml of the chemokine standards). For the cytokine assay, 50 μl of the diluted recombinant cytokine standards or 50 μl of individual human sera (diluted 1:8 or undiluted) was incubated with 50 μl of serum-enhanced pretreated cytokine-mixed capture beads and human Th1/Th2/Th17 phycocerthrin (PE) detection reagent (containing PE-conjugated detection antibodies) for 3 h at room temperature and protected from light. Following incubation, washing, and acquisition of fluorescence data (through FACSDiva software), the results were analyzed with the FCAP Array software. In order to facilitate the analysis of samples with the FCAP Array software, recombinant cytokine standards were acquired from the lowest to the highest concentration, followed by the most concentrated test sample. The level of each cytokine was measured on the basis of PE and 300 events and was recorded per analyte by using the singlet population as the storage and stopping gates. The standard curve was plotted by using a four-parameter logistic model (FCAP Array software). During analysis, the mean fluorescence intensity (MFI) of each population of cytokine capture beads was recorded. The intensity measurement with PE is proportional to the cytokine concentration. The cytokine concentrations were then quantified by comparison of the MFI’s of samples to a standard curve. Most of the steps in the chemokine assay were similar to those used in the cytokine assay; however, serum enhancement for capture beads was omitted and signal detection was dependent on the human chemokine PE detection reagent instead of the human Th1/Th2/Th17 PE detection reagent.

Statistics. Statistical analyses were conducted with SPSS Statistics (version 17.0). For each protein spot, antigenic protein signal, or cytokine concentration, the mean value of technical replicates was calculated from three independent experiments. The spot intensities or cytokine concentrations of the different study groups were then assessed with Student’s t test. The Mann-Whitney U test or Wilcoxon signed-rank test for paired samples was performed if the data were not normally distributed. Fisher’s exact test was also used for categorical data. A P value (two tailed) of ≤0.05 was considered statistically significant.

RESULTS

Eighteen subjects of mixed ethnicity (Chinese, Indian, and Malay) participated in this study. Twelve participants developed *S. aureus* infections, while six were only nasally colonized without any clinical symptoms (see Table S1 in the supplemental material).

Molecular characterization of *S. aureus* isolates. According to the DNA sequence-based typing and PFGE results, the isolates were diverse. Eighteen isolates comprised 10 STs, eight clonal lineages (Table 1), and 11 pulsotypes (A to K). Of these 18 isolates, 3 were resistant to methicillin and harbored the *mecA* gene; 2 of these 3 were hospital associated (2W and 5W; ST239-t037-SCCmec III hospital-associated methicillin-resistant *S. aureus* [MRSA]) and genetically indistinguishable, while the other isolate was community-associated MRSA (4B; ST80-t1452-SCCmec IVc).

The combinations of virulence genes harbored by the isolates tested are listed in Table 1 (see also Table S2 in the supplemental material). Most of the isolates, even those with similar genetic backgrounds, harbored clearly different combinations of virulence genes (Table 1). Only a few isolates that shared the same genotype (methicillin-susceptible *S. aureus* ST1-t127, isolates 5B and 4W) showed the same virulence gene pattern (*sea seh can fubA icaA icaD pvl*).

Acidic and neutral exoproteome of *S. aureus*. All 18 of the isolates studied showed a vast heterogeneity in their *in vitro* exoproteome (2-DGE). This exoprotein expression heterogeneity was more commonly observed among isolates from different infection types, even when the isolates belonged to the same clonal complex, such as CC1 (Fig. 1). In this study, we observed that at least half of the bacteremia isolates contained a large number of extracellular proteins with complex spot patterns and high-intensity signals when expressed *in vitro*, in contrast to SSTIs and carrier isolates (Fig. 1). Exoprotein spots specific to each infection group (either SSTI or bacteremia isolates) were very difficult to define. However, we still identified 12 exoprotein spots with moderate intensity that were expressed only by the bacteremia isolates. Eleven of these unique exoprotein spots were successfully identified by LC MS/MS (Fig. 2); these exoproteins included the chaperone protein DnaK, a phosphoglycerate kinase (SAO11_2521, also referred as Pk), the molecular chaperone GroEL, a multisensor hybrid histidine kinase (Ana109_2543), a 3-methyl-2-exoobutanoate hydroxymethyltransferase (PanB), cysteine synthase A (SATG_02657), an N-acetyltransferase (SA21209_0471), and elongation factor Tu (EF-Tu).

Humoral response to *S. aureus* exoproteins. The antibodies...
from more than half of the participants in each group frequently reacted with nine exoprotein spots (see Fig. S1 and Tables S3 and S4 in the supplemental material). These exoproteins included staphylococcal secretory antigen (SsaA), flavin mononucleotide-dependent NADH-azoreductase (AzoR), and several isoforms of the immunodominant antigen A (IsaA). We found highly significant (P ≤ 0.05) signals for the majority of the IsaA isoforms in patients, in contrast to healthy carriers (Fig. 3; see Fig. S1 in the supplemental material). Although very few antigenic protein spots were observed in bacteremia patients, in contrast to SSTI patients and healthy carriers, bacteremia strains generated comparatively more signals during the convalescent phase (see Fig. S1 in the supplemental material). While the newly developed spots were not very intense, they correlated with various proteins, such as IsaA isoforms 3, 4, and 6 and DnaK isoform 1, as well as two unidentified proteins (SSP0002 and SSP6001). Superimposition of 2-DGE and 2D-IB images successfully identified the immuno-

| Table 1 Characterization of S. aureus isolates |

Isolate	MLST* result	CC	spa type	Allelic profile	spa repeat succession	Kreiswirth ID	Virulence gene profile
1B	ST1899	101	t7760	3-1-14-15-11-22-3	04-13-12-17-20-17-12-17	ZEGMDMGMM	fnbA, iacA, iacD
2B	NA*	NA	t127	NA	07-23-21-16-34-33-13	UJFKBPE	fnbA, iacA, iacD
3B	ST1179	97	t359	144-1-1-1-1-5-3	07-23-12-21-17-34-33-34	UJGFMBBP	fnbA, iacA, iacD
4B	ST80	80	t1452	1-3-14-11-51-10	07-23-12-02-12-34-34	UJGAGBBP	fnbA, iacA, iacD, pvl, mecA
5B	ST1	1	t127	1-1-1-1-1-1-1	07-23-21-16-34-33-13	UJFKBPE	sea, seh, fnbA, iacA, iacD, pvl
6B	ST1	1	t127	1-1-1-1-1-1-1	07-23-21-16-34-33-13	UJFKBPE	sea, seh, fnbA, iacA, iacD, mecA
1W	ST30	30	t021	2-2-2-2-6-3-2	15-12-16-02-16-02-25-17-24	WGKAKOMQ	sea, fnbA, iacA, iacD, pvl
2W	ST239	239	t037	2-3-1-1-4-4-3	15-12-16-02-25-17-24	WGKAKOMQ	sea, fnbA, iacA, iacD
3W	ST1290	Singletons	t131	1-4-1-1-11-1-3	07-23-21-34-33-34	UJGBKBP	sea, fnbA, iacA, iacD, pvl
4W	ST1	1	t127	1-1-1-1-1-1	07-23-21-16-34-33-13	UJFKBPE	sea, fnbA, iacA, iacD, mecA
5W	ST239	239	t037	2-3-1-1-4-4-3	15-12-16-02-25-17-24	WGKAKOMQ	sea, fnbA, iacA, iacD, mecA
6W	ST1	1	t127	1-1-1-1-1-1-1	07-23-21-16-34-33-13	UJFKBPE	sea, seh, fnbA, iacA, iacD, mecA
1H	ST1963	101	t714	69-1-14-11-19-3	04-13-21-12-17	ZEGFM	seh, fnbA, iacA, iacD, tssT
2H	ST8	8	t7758	3-3-1-1-4-4-3	11-19-21-17-21-34-23-25	YHFMFBJO	seh, fnbA, iacA, iacD, mecA
3H	ST1964	121	t159	3-5-6-2-7-14-5	14-44-13-12-17-23-17-18-17	I222EGMMJH2	seh, fnbA, iacA, iacD, mecA
4H	ST8	8	t7759	3-3-1-1-4-4-3	11-10-34-33-25	YC2BPO	seh, fnbA, iacA, iacD, mecA
5H	NA*	NA	t7463	11-10-34-33-25	259-25-17-16-16-16-16-16-16-16-16	OMMKKKKMKKKK	seh, fnbA, iacA, iacD
6H	ST30	30	t318	2-2-2-2-6-3-2	15-12-16-02-16-02-25-17-24	WGKAKOMQ	seh, fnbA, iacA, iacD

* Cultured S. aureus isolates from 18-68 patients were characterized as bacteremia strains. S. aureus isolates from 1W-6W patients were grouped as SSTI strains, and S. aureus isolates harvested from healthy 1H-6H participants were recognized as colonizer strains.

* NA, not available. Seven sequences of internal fragments of housekeeping genes in the 2B S. aureus isolate were totally different from the alleles in the database; the aroE gene of the SH isolate was not detected in this study.

* MLST is a nucleotide sequence-based characterization of isolates that uses the sequences of internal fragments of seven housekeeping genes that are translated into a specific ST for each isolate.

* CCs are defined as clusters of closely related STs with up to a single difference in the allelic profile.

* spa type, Staphylococcus protein A gene typing is defined by polymorphic direct repeat regions in the spa gene. The repeats are assigned a numerical code, and the order of specific repeats is translated into a specific spa type for each isolate by the Ridom system (17).

* Kreiswirth ID (18) is another nomenclature-based method of spa typing that assigns letters (A to Z, A2, B, and more) to each repeat sequence rather than a numerical code. Subsequently, the combination of all of the letters is translated into a spa type motif.

Serum cytokine levels in patients and healthy carriers. Cytokine and chemokine expression patterns were investigated to see if there were any biomarkers specific to staphylococcal infections in addition to the antigenic protein signatures corresponding to the
defined infection types. As shown in Fig. 5, IL-6 expression levels were significantly higher in most of the *S. aureus*-infected patients than in healthy carriers (*P* < 0.035). Most of the patients showed reduced IL-6 levels during the convalescent phase of infection. However, bacteremia patients still displayed higher serum IL-6 levels (59.53 ± 34.48 pg/ml) than SSTI patients in the convalescent phase (21.45 ± 7.02 pg/ml, *P* = 0.044). We found that the majority of the *S. aureus*-infected patients exhibited higher concentrations of IL-17A during the acute phase of infection (Fig. 5A). In the convalescent phase, the IL-17A production in bacteremia patients was reduced 4.9-fold and was significantly different from that observed in SSTI patients (*P* = 0.043).

Serum chemokine levels in patients and healthy carriers. Significantly higher IL-8 levels were observed in the patient groups than in healthy carriers (*P* = 0.016). In SSTI patients, a rise in the chemokine MCP-1 concentration (254.7 ± 91.21 pg/ml) was detected during the convalescent phase that was significantly different from the values of healthy carriers (143.59 ± 55.66 pg/ml). Conversely, elevation of MIG and IP-10 levels during the convalescent phase was observed in the bacteremia patients, and these increased levels were significantly different from the levels observed in both the SSTI group and the healthy carriers (Fig. 5B). The MIG levels in the bacteremia patients were significantly higher than those observed in SSTI patients in both the acute and convalescent phases (*P* = 0.036 and 0.028, respectively).

DISCUSSION

To date, several proteomic studies have been reported and this improved our understanding of staphylococcal cell physiology, virulence, and associated host responses (9, 13, 29, 30). However, most of these studies were carried out with a single strain or infection type with limited follow-up using data on patient serum antibodies. In addition, most of these studies used IPG strips with pHs ranging from 3 to 10 to cover a wide range of proteins or pH 6 to 11, as most of the immunoreactive proteins are resolved in this range (9, 15). 2-DGE in a pH range of 3 to 10 displayed a crowded appearance and low resolution of protein spots, especially for pH values between 4 and 7 (31). Thus, in this study, we compared different infection types and healthy carriers with 7-cm IPG strips at pHs of 4 to 7 by using a modified 2-DGE silver staining method (27) to get better resolution and to identify the acidic and neutral proteins for which information is still limited. For example, in this study, we identified HarA, MetAPs, Set15, AhpC, DnaK, EF-Tu, LytM, PanB, AzoR, and SsaA, which have not been identified in earlier studies that focused on the pH range of 6 to 11. In previous studies, the changes in the human serum cytokine or chemokine profiles over the disease course or between different infection types have also been relatively underexplored. It is important to target the cytokine or chemokine patterns, as these might generate novel diagnostic information to implement early and appropriate treatment. Therefore, the present study addressed SSTIs, bloodstream infections, and subclinical colonization, albeit in a small sample. Hence, our observations are exploratory and generate hypotheses that need to be validated in a larger patient cohort.

First, we performed a molecular characterization of isolates. In the limited number of isolates studied, we were not able to define any specific correlation between clones and disease types. Although two studies have reported that no single staphylococcal genotype is specifically associated with a defined infection type (32, 33), two other studies have shown CC5 and
CC30 to be associated with infectious endocarditis and osteomyelitis (34, 35).

Second, the heterogeneous exoprotein expression patterns of S. aureus strains made it difficult to identify exoproteins specific to strains or particular infection types. Here we successfully identified only 12 protein spots that were specifically found in bacteremia isolates. Surprisingly, most of these proteins (EF-Tu, DnaK, PanB, Pgk, GroEL, SATG_02657, SA21209_0471, and Anae109_2543) were found to be located in the cytoplasm and play roles in protein synthesis and degradation, metabolism, stress response, amino acid biosynthesis, transcription, and replication. Possibly, this is caused by cellular autolysis in patient blood or these proteins may be released through nonclassical secretion pathways (36–38). In addition, these proteins may be involved in other functions. For example, EF-Tu is also known to be a plasminogen or fibronectin binding protein (39, 40) and might be involved in reducing the phagocytosis activity of immune cells (41). Plasminogen is a glycoprotein that circulates in the blood. In this study, EF-Tu, which binds host plasminogen on its surface, was found in strains that cause bacteremia. It was speculated that this activity could help S. aureus to disseminate in the blood and cause invasive infections. On the other hand, DnaK and GroEL are very important in ensuring the survival of S. aureus under various stress conditions such as heat, oxidative, and antibiotic stress (42, 43). For the individual bacteremia patient, the heat shock protein of S. aureus (DnaK), which mediates the solubilization of denatured protein, might have been induced in response to the elevated temperature during fever. More recently, DnaK has been shown to be involved in biofilm formation on medical devices and this contributes to intravascular-catheter-related bacteremia in patients (44). Unfortunately, there is not much information about the relevance of PanB in S. aureus. PanB has been proven to be an essen-

![FIG 2 The proteome signatures of bacteremia isolates detected by 2-DGE.](http://cvi.asm.org/Downloaded from http://cvi.asm.org)
tial virulence factor in Mycobacterium tuberculosis pathogenesis (45). It is interesting that these data indicate that the secreted cytoplasmic proteins may also be involved in staphylococcal virulence.

Unfortunately, none of the 12 protein spots unique to the bacteremia isolates appeared to be antigenic. One of the explanations for this could be denaturation of epitopes during 2D-IB because of the reducing agent DTT. Moreover, there is no native 2D-IB approach with high resolution that could be performed. However, some proteins (such as IsaA isoforms 1 to 8) that were commonly present in both infection types and healthy carriers showed antigenicity (2D-IB) but with various intensities. This result is in agreement with data from other studies (11, 46), where serum from patients showed antistaphylococcal antibody titers higher than those of serum from healthy carriers. Therefore, it is likely that healthy carriers do not depend solely on the humoral immune responses for protection against (auto)infection.

In the present study, anti-IsaA antibody was detected in almost all individual human sera as this protein is expressed by the majority of S. aureus strains (11, 47, 48). Some of the antibodies against IsaA isoforms appeared only in the convalescent phase after bacteremia. This clearly shows that all isoforms of a protein should be taken into account during the design of vaccines or therapeutic agents. IsaA is one of the major antigens of S. aureus that are located either in the cell wall or secreted extracellularly. IsaA has a putative hydrophilic lytic domain and may have specific peptidoglycan hydrolysis activity when close to the cell wall, which indirectly assists in cell wall turnover, staphylococcal growth, and hence microbial survival (49). Therefore, IsaA is produced by most S. aureus strains during colonization or infection. Consequently, high titers of antibody to IsaA protein in patients have been reported in several earlier studies (50, 51). In addition, SsaA- and AzoR-specific IgGs were also found to be common in our study subjects. The high levels of anti-SsaA antibody observed in the 2D-IB assay were in accordance with the results of a previous study (11). The role of anti-SsaA antibody in pathogenesis is not clearly understood; however, SsaA has been postulated to be involved in biofilm-associated infections (11, 52). AzoR was recently proven to play a role in providing resistance to thiol-specific stress (53).

Here, we report for the first time the antigenicity of MetAPs and Set15 in immunoblot assays of SSTI isolates. In addition, antigenicity for LytM, AhpC, and HarA (known as IsdH or SasI) was also specifically found in SSTI isolates. The presence of antigenicity indicates that certain exoproteins are expressed in vivo and may be prerequisites for infection. For example, MetAPs play a main
role in protein maturation by catalyzing N-terminal methionine excision from newly synthesized proteins. Inhibitors of MetAPs have been shown to significantly limit the growth of MRSA (54). Additionally, MetAPs were also reported to be involved in the recycling pathway of methionine and production of polyamines which are important for SSTIs (55, 56). Although very few data on Set15 are available, it has been shown to be immunoreactive and important in the survival of S. aureus. set15 mutants isolated from murine kidney abscesses were found to be low in number compared with the wild type (57, 58). It was recently demonstrated that Set proteins act as inhibitors of polymorphonuclear leukocyte adherence. Consequently, this might prevent the recruitment of circulating neutrophils to the site of skin infection. Infected skin produces hydrogen peroxide (H₂O₂), which is an important factor in wound healing (59). Therefore, S. aureus might produce AhpC to protect itself against H₂O₂ (60). In the present study, antibody against LytM was detected in patients with SSTIs, but only during the convalescent phase. A previous study has shown that higher levels of IgGs against LytM may prevent an S. aureus infection from becoming bacteremia (61), and none of our SSTI patients progressed to bacteremia. Interestingly, HarA was found to be produced only in vivo by SSTI isolates. HarA is a protein in the Isd system (including IsdABCDEFGI) that is upregulated under iron-restricted conditions. HarA has also been shown to protect S. aureus from opsonophagocytosis, and it inhibits neutrophil rolling on the endothelial surface of blood vessels close to the site of infection (62). Immunization with IsdH induced protection against S. aureus mastitis (63). However, Isd was not shown to be antigenic in all of the patients and controls in our study. This is in agreement with the previous findings of Kolata et al. demonstrating that Isd proteins such as IsdH, IsdA, and IsdB could not be identified in bacteremia patients (15). Taken together, these results may help to explain the failure of V710 (vaccine containing IsdB) in clinical trials (64). Vaccine preparations using Isd proteins should be reevaluated to determine their coverage against an array of staphylococcal infections.

Ultimately, the kinetics of cytokine and chemokine production indicated that a variety of human immune responses may contribute to the outcome of S. aureus-human interactions. The serum IL-6 levels were higher in patients than in healthy carriers. IL-6 plays a major role in inflammation and acute-phase reactions, affecting both B and T cells (65, 66). The IL-17A level was significantly higher in SSTI patients than in bacteremia patients, even after 2 weeks of infection. An increase in the IL-17A titer during cutaneous S. aureus infections has been previously described (67). Abnormal functioning of IL-17A may increase host susceptibility to S. aureus skin infection (68, 69). IL-17A stimulates the production of proinflammatory cytokines, chemokines, and adhesion molecules in keratinocytes to promote neutrophil maturation and to recruit additional neutrophils to infection sites (70). Overall, the production of cytokines may trigger the release of chemokines to recruit additional immune cells to the infection site.

We found that bacteremia patients possessed higher average MIG and IP-10 titers than SSTI patients and healthy carriers during the convalescent phase. This result is in agreement with previous reports showing that both of these specific chemokines are highly induced in S. aureus bacteremia, where they act as specific chemoattractants for Th1 cells (71–73). Luster et al. showed that elevated expression of IP-10 in the epidermis causes delayed wound healing (74).

Significantly elevated MIG titers in bacteremia patients during the acute phase suggest that MIG could be a candidate diagnostic
was found to be significantly high during bacteremia onset, which over the course of infection. Production of the chemokine MIG pattern will aid the understanding of staphylococcal disease types. The differential expression of Isd proteins in different infection types will aid in the basis of both bacterial and host marker molecules. Although our current understanding of the importance of proteome signatures for bacteremia and SSTIs is incomplete, the present study confirmed that the expression of Staphylococcus aureus exoproteins is highly variable, irrespective of strain relatedness, and documents new common protein signatures that warrant further study. Most of the immunoproteome signatures were found to be produced in vitro by most of the isolates. The differential expression of 1sd proteins in different infection types should be taken into consideration when designing future therapeutic agents. The diversity in the cytokine and chemokine response pattern will aid in the understanding of staphylococcal disease types over the course of infection. Production of the chemokine MIG was found to be significantly high during bacteremia onset, which shows its potential for use as a marker for early diagnosis. However, whether MIG is specific for Staphylococcus aureus or whether it could be used as a more generic marker of bacterial sepsis must be evaluated by using larger sample panels. In conclusion, we confirm here that the interactions between Staphylococcus aureus and its human host are very complex. The fact that we did not find reliable prospective infective markers suggests that widening the scope of the present study will, in the end, result in the definition of highly individual infection and colonization scenarios that will be difficult to predict on the basis of both bacterial and host marker molecules. Although our current understanding of the importance of proteome signatures for bacteremia and SSTIs is incomplete, the present study has revealed the pattern of protein expression during the course of an infection. In light of the observations listed above, these protein signatures need to be validated in large populations comprising different infection types. Each protein signature should then be characterized by using in vitro models to determine its potential for use as a vaccine or a biomarker. Overall, this strategy has important clinical implications since targeting of proteome signatures shows promise as a preventive and therapeutic strategy to achieve complete bacterial clearance.

ACKNOWLEDGMENTS

Special thanks to Julia Kolata, University of Greifswald, Greifswald, Germany, for her excellent technical assistance in 2D-IB. We are grateful to Richard Goering from Creighton University Medical Center, Omaha, NE, for commenting on and proofreading the manuscript.

This work was supported by Universiti Putra Malaysia through the Research University Grant Scheme (04-02-12-1756RU).

REFERENCES

1. Gordon RJ, Lowy FD. 2008. Pathogenesis of methillin-resistant Staphylococcus aureus infection. Clin Infect Dis 46:S350–S359. http://dx.doi.org/10.1086/533591.
2. David MZ, Daum RS. 2010. Community-associated methillin-resistant Staphylococcus aureus: epidemiology and clinical consequences of an emerging epidemic. Clin Microbiol Rev 23:616–687. http://dx.doi.org/10.1128/CMR.00081-09.
3. David MZ, Glikman D, Crawford SE, Peng J, King KJ, Hostetler MA, Boyle-Vavra S, Daum RS. 2008. What is community-associated methillin-resistant Staphylococcus aureus? J Infect Dis 197:1235–1243. http://dx.doi.org/10.1086/533502.
4. Mongkolrattanathai K, Aldag JC, Mankin P, Gray BM. 2009. Epidemiology of community-onset Staphylococcus aureus infections in pediatric patients: an experience at a Children’s Hospital in central Illinois. BMC Infect Dis 9:112. http://dx.doi.org/10.1186/1471-2334-9-112.
5. Cheung GYC, Duong AC, Otto M. 2012. Direct and synergistic hemolysis caused by Staphylococcus phenol-soluble modulins: implications for diagnosis and pathogenesis. Microb Infect 14:380–386. http://dx.doi.org/10.1111/j.1365-2958.2009.07490.x.
6. Dumont AL, Nygaard TK, Watkins RL, Smith A, Kozhaya L, Kreiswirth BN, Shopsin B, Unutuz D, Voyich JM, Torres VJ. 2011. Characterization of a new cytotoxin that contributes to Staphylococcus aureus pathogenesis. Mol Microbiol 79:814–822. http://dx.doi.org/10.1111/j.1365-2958.2010.07490.x.
7. Li M, Du X, Villaruz AE, Diep BA, Wang D, Song Y, Tian Y, Hu J, Yu F, Lu Y, Otto M. 2012. MRSA epidemic linked to a quickly spreading colonization and virulence determinant. Nat Med 18:816–819. http://dx.doi.org/10.1038/nm.2692.
8. Liu Q, Han L, Li B, Sun J, Ni Y. 2012. Virulence characteristics and MLST-agr genetic background of high-level mupirocin-resistant, MRSA isolates from Shanghai and Wenzhou, China. PLoS One 7e37005. http://dx.doi.org/10.1371/journal.pone.0037005.
9. Ziebandt A, Kusch H, Degner M, Jaglitz S, Sibbald MJ, Arends JP, Chlebovicz MA, Albrecht D, Pantucke R, Doskar J, Ziebuhr W, Bröker BM, Hecker M, van Dijl JM, Engelmann S. 2010. Proteomics uncovers extreme heterogeneity in the Staphylococcus aureus exoproteome due to genomic plasticity and variant gene regulation. Proteomics 10:1634–1644. http://dx.doi.org/10.1002/pmic.200900313.
10. Prevaes SM, van Wamel WJ, de Vogel CP, Veenhouven RH, van Gils EL, van Belkum A, Sandkuijl EA, Bogaert D. 2012. Nasopharyngeal colonization elicits antibody responses to staphylococcal and pneumococcal proteins that are not associated with a reduced risk of subsequent carriage. Infect Immun 80:2186–2193. http://dx.doi.org/10.1128/IAI.00037-12.
11. Holtfreter S, Nguyen TT, Wertheim H, Steil L, Kusch H, Truong QP, Engelmann S, Hecker M, Volker U, van Belkum A, Bröker BM. 2009. Human immune proteome in experimental colonization with Staphylococcus aureus. Clin Vaccine Immunol 16:1604–1614. http://dx.doi.org/10.1128/CVI.00263-09.
12. Malachowa N, Kobayashi SD, Braughton KR, Whitney AR, Parnell MJ, Gardner DJ, DeLeo FR. 2010. Staphylococcus aureus leukotoxin GH promotes inflammation. J Infect Dis 206:1185–1193. http://dx.doi.org/10.1093/infdis/jiq495.
13. Pozz C, Wilk K, Lee JC, Gening M, Nifantiev N, Pier GB. 2012. Oposinic and protective properties of antibodies raised to conjugate vaccines targeting six Staphylococcus aureus antigens. PLoS One 7e46648. http://dx.doi.org/10.1371/journal.pone.0046648.
14. Holtfreter S, Jursa-Kulesza J, Masluk H, Verkaik NJ, de Vogel C, Kolata J, Nowosiad M, Steil L, van Wamel W, van Belkum A, Volker U, Giedrys-Kalemba S, Bröker BM. 2011. Antibody responses in furunculosis patients vaccinated with autologous formalin-killed Staphylococcus aureus. Eur J Clin Microbiol Infect Dis 30:707–717. http://dx.doi.org/10.1007/s10096-010-1136-3.
15. Kolata J, Bode LG, Holtfreter S, Steil L, Kusch H, Holtfreter B, Albrecht D, Hecker M, Engelmann S, van Belkum A, Volker U, Bröker BM. 2011. Distinctive patterns in the human antibody response to Staphylococcus aureus bacteremia in carriers and non-carriers. Proteomics 11:3914–3927. http://dx.doi.org/10.1002/pmic.201000760.
16. Ghaznavi-Rad E, Nor Shamsudin M, Sekawi Z, van Belkum A, Neela V. 2010. A simplified multiplex PCR assay for fast and easy discrimination of globally distributed staphylococcal cassette chromosome mec types in meticillin-resistant Staphylococcus aureus. J Med Microbiol 59:1135–1139. http://dx.doi.org/10.1099/jmm.0.021956-0.
17. Enright MC, Day NPJ, Davies CE, Peacock SJ, Spratt BG. 2000. Multilocus sequence typing for characterization of meticillin-resistant and meticillin-susceptible clones of Staphylococcus aureus. J Clin Microbiol 38:1008–1015.
18. Shopsin B, Gomez M, Montgomery SO, Smith DH, Waddington M, Dodge DE, Bost DA, Riehman M, Naidich S, Kreiswirth BN. 1999. Evaluation of protein A gene polymorphic region DNA sequencing for typing of Staphylococcus aureus strains. J Clin Microbiol 37:3556–3563.
19. Goering RV. 2010. Pulsed field gel electrophoresis: a review of application and interpretation in the molecular epidemiology of infectious disease. Infect Genet Evol 10:866–875, http://dx.doi.org/10.1016/j.meegid.2010.07.023.
20. Montanaro L, Ariciola CR, Baldassarri L, Borsetti E. 1999. Presence and expression of collagen adhesin gene (cna) and slime production in Staphylococcus aureus.
Staphylococcus aureus strains from orthopaedic prosthesis infections. Biomaterials 20:1945–1949. http://dx.doi.org/10.1016/S1359-4327(00)00702-1.

20. Zhou H, Xiong ZY, Li HP, Zheng YL, Jiang YQ. 2006. An immunogenicity study of a newly fusion protein Cna-FnBP vaccinated against *Staphylococcus aureus* infections in a mice model. Vaccine 24:4830–4837. http://dx.doi.org/10.1016/j.vaccine.2006.03.020.

21. Archola CR, Baldassarri J, Montanaro L. 2001. Presence of *icaA* and *icaD* genes and slime production in a collection of staphylococcal strains from cathereter-associated infections. J Clin Microbiol 39:2151–2156. http://dx.doi.org/10.1128/JCM.39.6.2151-2156.2001.

22. Lina G, Piémont Y, Godail-Gamot F, Bes M, Peter MO, Gauduchon V, Vandenfeshe E, Etienne J. 1999. Involvement of Panton-Valentine leukocidin-producing *Staphylococcus aureus* in primary skin infections and pneumonia. Clin Infect Dis 29:1128–1132. http://dx.doi.org/10.1086/313461.

23. Ellington MJ, Yearwood I, Ganner M, East C, Kearns AM. 2008. Distribution of the ACME-arcA gene among methicillin-resistant *Staphylococcus aureus* from England and Wales. J Antimicrob Chemother 63:73–77. http://dx.doi.org/10.1093/jac/dkm422.

24. Jarraud S, Cozon G, Vandenesch F, Bes M, Etienne J, Lina G. 1999. Involvement of enterotoxins G and I in staphylococcal toxic shock syndrome and staphylococcal scarlet fever. J Clin Microbiol 37:2426–2439.

25. Johnson WM, Tyler SD, Ewan EP, Ashton FE, Pollard DR, Rozee KR. 1991. Detection of genes for enterotoxins, exfoliative toxins, and toxic shock syndrome toxin 1 in *Staphylococcus aureus* by the polymerase chain reaction. J Clin Microbiol 29:426–430.

26. Liew YK, Neela V, Hamat RA, Nordin SA, Chong PP. 2004. Extensive proteomic profiling of the secretome of European community acquired methicillin-resistant *Staphylococcus aureus* by a proteomic approach. J Bacteriol 186:2151–2156. http://dx.doi.org/10.1128/JB.05897-11.

27. Nieves W, Heang J, Asakrah S, Höner zu Bentrup K, Roy CJ, Morici LA. 2010. Immunospecific responses to bacterial elongation factor Tu during Burkholderia infection and immunization. PLoS One 5:e41361. http://dx.doi.org/10.1371/journal.pone.0041361.

28. Dallo SF, Kannan TR, Blaylock MW, Baseman JB. 2002. Elongation factor Tu and E1 β subunit of pyruvate dehydrogenase complex act as fibronectin binding proteins in *Mycoplasma pneumoniae*. Mol Microbiol 46:1041–1051. http://dx.doi.org/10.1046/j.1365-2983.2002.03207.x.

29. Schaumburg J, Diekmann O, Hagendorff P, Bergmann S, Rohde M, Hammerschmidt S, Jänsch L, Wehland J, Küst R. 2004. The cell wall subproteome of Listeria monocytogenes. Proteomics 4:2991–3006. http://dx.doi.org/10.1002/pmic.200400928.

30. Yamaguchi M, Terao Y, Mori Y, Hamasda K, Kawabata S. 2008. PfNA, a novel plasmin- and fibronectin-binding protein of *Streptococcus pneumoniae*, contributes to fibronectin-dependent adhesion and antigenphagocytosis. J Biol Chem 283:36272–36279. http://dx.doi.org/10.1074/jbc.M070872000.

31. Singh VK, Jayaswal RK, Wilkinson BJ. 2001. Cell wall-active antibiotic induced proteins of *Staphylococcus aureus* identified using a proteomic approach. FEMS Microbiol Lett 199:79–84. http://dx.doi.org/10.1111/j.1112.1995.tb20527.x.

32. Kubota H, Hynes G, Willison K. 1995. The chaperonin containing t-complex polypeptide I (TCP-1). Eur J Biochem 230:6–16. http://dx.doi.org/10.1111/j.1432-1033.1995.tb20527.x.

33. Singh VK, Syring M, Singh A, Singhal K, Dalecki A, Johansson T. 2012. An insight into the significance of the DnaK heat shock system in *Staphylococcus aureus*. Int J Med Microbiol 302:242–252. http://dx.doi.org/10.1016/j.ijmm.2012.05.001.

34. Pearce MJ, Arora P, Festa RA, Butler-Wu SM, Gokhale RS, Darwin KH. 2006. Identification of substrates of the *Mycobacterium tuberculosis* proteosome. EMBO J 25:5423–5432. http://dx.doi.org/10.1038/sj.emboj.7600965.

35. Verkaik NJ, de Vogel CP, Boelens HA, Grumann D, Hoogenboezem T, Vink C, Hooijkaas H, Foster TJ, Verbrugh HA, van Belkum A, van Wamel WJ. 2009. Anti-staphylococcal humoral immune response in persistent nasal carriers and noncarriers of *Staphylococcus aureus*. J Infect Dis 199:625–632. http://dx.doi.org/10.1086/596743.

36. Liew YK, Neela V. 2012. Comparative extraproteome profile of MRSA-ST9 isolated from pigs and pig handler. Indian J Microbiol 52:507–509. http://dx.doi.org/10.1007/s12088-011-0262-2.

37. Lorenz U, Ohlsen K, Karch H, Thiede A, Hacker J. 2000. Immunodominant proteins in human sepsis caused by methicillin resistant *Staphylococcus aureus*. Adv Exp Med Biol 485:273–278. http://dx.doi.org/10.1007/978-1-4020-46840-9_36.

38. Stapleton MR, Horsburgh MJ, Hayhurst EJ, Wright L, Jonsson L, Tarkowski A, Kokai-Kun JF, Mond JJ, Foster SJ. 2007. Characterization of *IsaA* and *SceD*, two putative lytic transglycosylases of *Staphylococcus aureus*. J Bacteriol 189:7316–7325. http://dx.doi.org/10.1128/JB.00734-07.

39. Clarke SR, Brumwell KJ, Horsburgh MJ, McDowell PW, Mohamad SA, Stapleton MR, Acevedo J, Read RC, Day NP, Peacock SJ, Mond JJ, Kokai-Kun JF, Foster SJ. 2006. Identification of in vivo expressed antigens of *Staphylococcus aureus* and their use in vaccinations for protection against nasal carriage. J Infect Dis 193:1098–1108. http://dx.doi.org/10.1086/501471.

40. Vytvytska O, Nage E, Blüggel M, Meyer HE, Kurzauer R, Huber LA, Klade CS. 2002. Identification of vaccine candidate antigens of *Staphylococcus aureus* by serological proteome analysis. Proteomics 2:580–590. http://dx.doi.org/10.1002/pmic.200200420.3.3.CO2-G.

41. Lang S, Livesley MA, Lambert PA, Littler WA, Elliott TS. 2000. Identification of a novel antigen from *Staphylococcus epidermidis*. FEMS Immunol Med Microbiol 29:213–220. http://dx.doi.org/10.1111/1574-695X.2000.tb01525.x.

42. Liu G, Zhou J, Fu QS, Wang J. 2009. The Escherichia coli azodicarboxylate group is involved in resistance to thiol-specific stress caused by electro-philicquinones. J Bacteriol 191:6394–6400. http://dx.doi.org/10.1128/JB.00552-09.

43. Chai SC, Wang W, Ding D, Ye Q. 2011. Growth inhibition of *Escherichia coli* and methicillin-resistant *Staphylococcus aureus* by targeting cellular methionine aminopeptidase. Eur J Med Chem 46:3537–3540. http://dx.doi.org/10.1016/j.ejmech.2011.04.056.
55. Kao RY, Yuen KY, Che CM, Siu FM. 2011. Methionine aminopeptidase as a novel target for antibiotic therapy against Staphylococcus aureus: a proteomic approach. Hong Kong Med J 17(Suppl 2):S29–S31.

56. Bao Y, Li Y, Jiang Q, Zhao L, Xue T, Hu B, Sun B. 2013. Methyliothioadenosine/S-adenosylhomocysteine nucleosidase (P6S) of Staphylococcus aureus is essential for the virulence independent of LuxS/AI-2 system. Int J Med Microbiol 303:190–200. http://dx.doi.org/10.1016/j.ijjim.2013.03.004.

57. Langley R, Arcus V, Fraser J. 2003. Virulence factors from Staphylococcus aureus: tools to study innate and adaptive immunity. Aust Biochemist 34:11–18.

58. Schneider WP, Ho SK, Christine J, Yao M, Marra A, Hromockyj AE. 2002. Virulence gene identification by differential fluorescence induction analysis of Staphylococcus aureus gene expression during infection-simulating culture. Infect Immun 70:1326–1333. http://dx.doi.org/10.1128/IAI.70.3.1326-1333.2002.

59. Loo AE, Ho R, Halliwell B. 2011. Mechanism of hydrogen peroxide-induced keratinocyte migration in a scratch-wound model. Free Radic Biol Med 51:886–892. http://dx.doi.org/10.1016/j.freeradbiomed.2011.06.001.

60. Cosgrove K, Coutts G, Jonsson I, Tarkowski A, Kokai-Kun JF, Mond J, Foster SJ. 2007. Catalase (KatA) and alkyl hydroperoxide reductase (AhpC) have compensatory roles in peroxide stress resistance and are required for survival, persistence, and nasal colonization in Staphylococcus aureus. J Bacteriol 189:1025–1035. http://dx.doi.org/10.1128/JB.01524-06.

61. Sweda P, Schielmann M, Kotowski R, Gorczyca G, Zalewska M, Milewski S. 2012. Peptidoglycan hydrolases—potential weapons against Staphylococcus aureus. Appl Microbiol Biotechnol 96:1157–1174. http://dx.doi.org/10.1007/s00253-012-4484-3.

62. Visai L, Yanagisawa N, Joseffson E, Tarkowski A, Pezzali I, Rooijakkers SH, Foster TJ, Speziale P. 2009. Immune evasion by Staphylococcus aureus Foster SJ. 2007. Virulence factors from Staphylococcus aureus: tools to study innate and adaptive immunity. Aust Biochemist 34:11–18.

63. Ster C, Beaudoin F, Diarra MS, Jacques M, Malouin F, Lacasse P. 2010. Interferon beta 2/B-cell stimulatory factor type 2 shares identity with Interferon beta 2/B-cell stimulatory factor type 2. Science 337:1115–1119. http://dx.doi.org/10.1126/science.1225152.

64. Korn T, Bettelli E, Oukka M, Kuchroo VK. 2009. IL-17 and Th17 cells. Annu Rev Immunol 27:485–517. http://dx.doi.org/10.1146/annurev.immunol.021908.132710.

65. Lawr FN, Simpson AJH, Prins JM, van Deventer SJH, Chaoagul W, White NJ, van der Poll T. 2001. The CXC chemokines gamma interferon (IFN-γ)-inducible protein 10 and monokine induced by IFN-γ are released during severe melioidosis. Infect Immun 68:3888–3893. http://dx.doi.org/10.1128/IAI.68.7.3888-3893.2000.

66. Ng PC, Li K, Chui KM, Leung TF, Wong RPO, Chu WC, Wong E, Fok TF. 2007. IP-10 is an early diagnostic marker for identification of late-onset bacterial infection in preterm infants. Pediatr Res 61:93–98. http://dx.doi.org/10.1203/pdr.0000000000000207.95723.96.

67. Esche C, Stellato C, Beck LA. 2005. Chemokines: key players in innate and adaptive immunity. J Invest Dermatol 125:615–628. http://dx.doi.org/10.1111/j.0022-202X.2005.23841.x.

68. Luster AD, Cardiff RD, MacLean JA, Crowe K, Granstein RD. 1998. Delayed wound healing and disorganized neovascularization in transgenic mice expressing the IP-10 chemokine. Proc Assoc Am Physicians 110:183–196.