Effect of 3-Month Yoga on Oxidative Stress in Type 2 Diabetes With or Without Complications

A controlled clinical trial

SHREELAXMI V. HEGDE, PHD1
PRABHA ADHIKARI, MD2
SHASHIDHAR KOTIAN, MSC3

VEENA J. PINTO, MD2
SYDNEY D’SOUZA, MD2
VIVIAN D’SOUZA, MD4

OBJECTIVE—To assess the effect of yoga on anthropometry, blood pressure, glycemic control, and oxidative stress in type 2 diabetic patients on standard care in comparison with standard care alone.

RESEARCH DESIGN AND METHODS—The study involved 123 patients stratified according to groups with microvascular complications, macrovascular complications, and peripheral neuropathy and without complications and assigned to receive either standard care or standard care along with additional yoga for 3 months.

RESULTS—In comparison with standard care alone, yoga resulted in significant reduction in BMI, glycemic control, and malondialdehyde and increase in glutathione and vitamin C. There were no differences in waist circumference, waist-to-hip ratio, blood pressure, vitamin E, or superoxide dismutase in the yoga group at follow-up.

CONCLUSIONS—Yoga can be used as an effective therapy in reducing oxidative stress in type 2 diabetes. Yoga in addition to standard care helps reduce BMI and improve glycemic control in type 2 diabetic patients.

Diabetes Care 34:2208–2210, 2011

Oxidative stress has been implicated as the root cause underlying the development of insulin resistance, β-cell dysfunction, diabetes, and its associated clinical conditions such as atherosclerosis, microvascular complications, and neuropathy (1,2). Yoga has been found to be beneficial in reducing oxidative stress in type 2 diabetes (3,4), but there is a lack of controlled trials to demonstrate the same. This report describes the effect of yoga on oxidative stress, glycemic control, blood pressure control, and anthropometry in type 2 diabetic patients with or without complications compared with control subjects on standard care.

From the 1Department of Biochemistry, Srinivas Institute of Medical Science and Research Centre, Mangalore, Karnataka, India; the 2Department of Medicine, Kasturba Medical College and Hospital, Manipal University, Mangalore, Karnataka, India; the 3Department of Community Medicine, Kasturba Medical College and Hospital, Manipal University, Mangalore, Karnataka, India; and the 4Department of Biochemistry, Kasturba Medical College Hospital, Manipal University, Mangalore, Karnataka, India. Corresponding author: Shreelaxmi V. Hegde, shreelaxmi.hegde@gmail.com. Received 25 December 2010 and accepted 1 July 2011.

Diabetes Care 34:2208–2210, 2011

DOI: 10.2337/dc10-2430. Clinical trial reg. no. CTRI/2011/05/001739, ctric.nic.in.

© 2011 by the American Diabetes Association. Readers may use this article as long as the work is properly cited, the use is educational and not for profit, and the work is not altered. See http://creativecommons.org/licenses/by-nc-nd/3.0/ for details.
CONCLUSIONS—Yoga practitioners achieved a 2% reduction in oxidative stress, which is similar to the findings of Gordan et al. (10). A 6-month intervention conducted by Arroyo et al. (11, 12) using a similar lifestyle intervention also showed a 15% reduction in oxidative stress. Our study is the first to report a 60% reduction in oxidative stress associated with yoga intervention. Other lifestyle interventions such as aerobic exercise and resistance training have been shown to improve antioxidant parameters (11, 12). Antioxidant supplements such as vitamins E and C improved oxidative stress in 60% of the study population compared with standard care.

Yoga practitioners achieved significant improvements in BMI, FG, PPG, HbA1c, malondialdehyde, glutathione, and vitamin C levels and waist circumference. The mean percentage reduction in HbA1c was 2.5% (0.5 ± 0.3%) in the yoga group compared with a 0.8% reduction in the control group. The mean percentage reduction in malondialdehyde was 2.9% (1.4 ± 0.3%) in the yoga group compared with a 0.7% reduction in the control group. Of the 15 patients in the yoga group, only one patient (6.7%) had a 2.4% increase in HbA1c, whereas, in the control group, the mean percentage increase in HbA1c was 0.7% (0.5 ± 0.6%). Significant changes in waist circumference, blood pressure, vitamin E, or superoxide dismutase were not observed in the yoga group compared with control groups. No serious adverse events were observed during the intervention period.

Table 1—Parameters at baseline and after 3 months

Parameter	Baseline	After 3 months
BMI		
FG		
PPG		
HbA1c (%)		
Malondialdehyde (μmol/L)		
Glutathione (μmol/L)		
Waist circumference (cm)		
Diastolic blood pressure (mmHg)		
Systolic blood pressure (mmHg)		

Figure 1—The mean percentage reduction in oxidative stress, in the yoga group compared with the control group. **Figure 2**—Comparison of the mean percentage reduction in oxidative stress between the yoga group and the control group. **Figure 3**—The mean percentage reduction in oxidative stress in the yoga group compared with the control group.
Yoga effect on oxidative stress in diabetes

at several community centers in the city, which made it easy for the patients to attend the classes; in addition, culturally, Indian patients would accept yoga better than the Western population.

Our study is limited by the fact that the allocation to the groups was not randomized. Random allocation in community settings is difficult. In this study, social and environmental factors during these training sessions may have a beneficial influence on oxidative stress. The strength of our study was the stratification of sample according to complications. Participants with various complications may have increased oxidative stress; stratification made the two groups identical.

In conclusion, yoga can be used as an effective therapy in reducing oxidative stress in type 2 diabetes. Yoga is also beneficial in improving glycemic parameters and BMI and can be administered as an add-on therapy to standard lifestyle interventions. Yoga was not beneficial in reducing the blood pressure or waist circumference in this short-term study. Further studies are needed to confirm that yoga is beneficial in preventing the progression of diabetes and its complications.

Acknowledgments—This study was funded by a grant from Manipal University (431/013/2007).

No potential conflicts of interest relevant to this article were reported.

S.V.H. designed the study, acquired and interpreted data, and wrote the manuscript. P.A. developed the protocol, designed the study, interpreted data, and reviewed and edited the manuscript. S.K. analyzed data. V.J.P. acquired data and contributed to discussion. S.D. and V.D. reviewed and edited the manuscript.

The authors thank Laura Prakash, School of Public Health, University of Minnesota, Minneapolis, MN, for her contribution to the study. The authors express appreciation to the participants whose cooperation and dedication made this study possible. The authors also acknowledge International Training and Research in Environmental and Occupational Health (ITREOH) training grant from Fogarty Foundation, which was responsible for their training in medical writing.

References

1. Ceriello A, Motz E. Is oxidative stress the pathogenic mechanism underlying insulin resistance, diabetes, and cardiovascular disease? The common soil hypothesis revisited. Arterioscler Thromb Vasc Biol 2004;24:816–823
2. Robertson RP, Harmon J, Tran PO, Tanaka Y, Takahashi H. Glucose toxicity in β-cells: type 2 diabetes, good radicals gone bad, and the glutathione connection. Diabetes 2003;52:581–587
3. Singh S, Malhotra V, Singh KP, Sharma SB, Madhu SV, Tandon OP. A preliminary report on the role of yoga asanas on oxidative stress in non-insulin dependent diabetes mellitus. Indian J Clin Biochem 2001;16:216–220
4. Mahapure HH, Shete SU, Bera TK. Effect of yogic exercise on superoxide dismutase levels in diabetics. Int J Yoga 2008;1:21–26
5. Stocks J, Dormandy TL. The autooxidation of human red cell lipids induced by hydrogen peroxide. Br J Haematol 1971;20:95–111
6. Beutler E, Duron O, Kelly BM. Improved method for the determination of blood glutathione. J Lab Clin Med 1963;61:882–888
7. Beauchamp C, Fridovich I. Superoxide dismutase: improved assays and an assay applicable to acrylamide gels. Anal Biochem 1971;44:276–287
8. Tietz NW. Methods of determination of ascorbic acid. In Textbook of Clinical Biochemistry. Tietz NW, Ed. Philadelphia, Pennsylvania, Elsevier Saunders, 1986, p. 960–962
9. Bieri JG, Teets L, Belavady B, Andrews EL. Serum vitamin E levels in a normal adult population in Washington, D.C., area. Proc Soc Exp Biol Med 1964;117:131–133
10. Gordon LA, Morrison EY, McGrowder DA, et al. Effect of exercise therapy on lipid profile and oxidative stress indicators in patients with type 2 diabetes. BMC Complement Altern Med 2008;8:21–30
11. Ji LL. Antioxidants and oxidative stress in exercise. Proc Soc Exp Biol Med 1999;222:283–292
12. Laaksonen DE, Atalay M, Niskanen L, Uusitupa M, Hänninen O, Sen CK. Increased resting and exercise-induced oxidative stress in young IDDM men. Diabetes Care 1996;19:569–574
13. Monroe R, Power J, Comer A, Nagarathna R, Dan Dona P. Yoga therapy for NIDDM: a controlled trial. Complement Med Res 2003;23:130–133
14. Agrawal RP, Aradhana, Hussain S, et al. Influence of yogic treatment on quality of life outcomes, glycemic control and risk factors in diabetes mellitus. Int J Diab Dev Countries 2003;23:130–134
15. Skoro-Konidza L, Tai SS, Gadelrab R, Drincevic D, Greenhalgh T. Community based yoga classes for type 2 diabetes: an exploratory randomised controlled trial. BMC Health Serv Res 2009;9:33–40