A PROOF OF TWO CONJECTURES OF CHAO-PING CHEN FOR INVERSE TRIGONOMETRIC FUNCTIONS

BRANKO MALEŠEVIĆ 1), BOJAN BANJAC 1,2), IVANA JOVOVIĆ 1)

1) University of Belgrade, Faculty of Electrical Engineering,
Department of Applied Mathematics, Serbia
2) University of Novi Sad, Faculty of Technical Sciences,
Computer Graphics Chair, Serbia

Abstract. In this paper we prove two conjectures stated by Chao-Ping Chen in [Int. Trans. Spec. Funct. 23:12 (2012), 865–873], using a method for proving inequalities of mixed trigonometric polynomial functions.

Keywords: inequalities, inverse trigonometric functions, Taylor series

MSC: 26D05

Wilker in [3] formulated two problems. First one was to prove that
\[
\left(\frac{\sin x}{x} \right)^2 + \frac{\tan x}{x} > 2
\]
holds for \(0 < x < \frac{\pi}{2}\); and second one was to find the largest constant \(c\) such that
\[
\left(\frac{\sin x}{x} \right)^2 + \frac{\tan x}{x} > 2 + cx^3 \tan x,
\]
for \(0 < x < \frac{\pi}{2}\).

Sumner, Jagers, Vowe, and Anglesio in [4] gave an improvement of the inequality (1) in the form
\[
2 + \left(\frac{2}{\pi} \right)^4 x^3 \tan x < \left(\frac{\sin x}{x} \right)^2 + \frac{\tan x}{x} < 2 + \frac{8}{45} x^3 \tan x,
\]
where the constants \(\left(\frac{2}{\pi} \right)^4\) and \(\frac{8}{45}\) were the best possible. Huygens in [2] presented the inequality
\[
2 \frac{\sin x}{x} + \frac{\tan x}{x} > 3,
\]
for \(0 < |x| < \frac{\pi}{2}\).

Neuman, and Sandor in [5] established the relation between inequalities (1) and (2). The relevant papers on the topic are also [5], [7], [10], [11] and [17]. The inverse trigonometric and inverse hyperbolic versions of Wilker and Huygens’s inequalities were considered in [6], [8], [12] and [13]. Recently, the analogue inequalities for the generalized trigonometric functions [14] and different special functions [15] and [18] have been taken into consideration.

Chao-Ping Chen in [1] proved the following two theorems and proposed two open problems.

Emails: Branko Malešević <malesevic@etf.bg.ac.rs>, Bojan Banjac <bojan.banjac@uns.ac.rs>, Ivana Jovovic <ivana@etf.bg.ac.rs>
Theorem 1 If $0 < x < 1$, then
\[2 + \frac{17}{45} x^3 \arctan x < \left(\frac{\arcsin x}{x} \right)^2 + \frac{\arctan x}{x}, \]
where the constant $\frac{17}{45}$ is the best possible.

Considering the previous theorem it was natural to ask what is the best possible constant c such that
\[\left(\frac{\arcsin x}{x} \right)^2 + \frac{\arctan x}{x} < 2 + c x^3 \arctan x, \]
holds, for $0 < x < 1$. The choice of constant $(\frac{\pi^2 + \pi - 8}{\pi})$ is somehow motivated, since it is the limit at $\frac{\pi}{2}$ of the function $x \mapsto \left((\frac{\arcsin x}{x})^2 + (\frac{\arctan x}{x} - 2) \right) / (x^3 \arctan x)$.

Therefore, Chao-Ping Chen in [1] stated the following conjecture.

Conjecture 1 If $0 < x < 1$, then
\[\left(\frac{\arcsin x}{x} \right)^2 + \frac{\arctan x}{x} < 2 + \frac{\pi^2 + \pi - 8}{\pi} x^3 \arctan x, \]
(3)
where the constant $\frac{\pi^2 + \pi - 8}{\pi}$ is the best possible.

In the paper [1] one can also find the following theorem.

Theorem 2 If $0 < x < 1$, then
\[3 + \frac{7}{20} x^3 \arctan x < 2 \left(\frac{\arcsin x}{x} \right)^2 + \frac{\arctan x}{x}, \]
where the constant $\frac{7}{20}$ is the best possible.

And so, there is a matched conjecture.

Conjecture 2 If $0 < x < 1$, then
\[2 \left(\frac{\arcsin x}{x} \right)^2 + \frac{\arctan x}{x} < 3 + \frac{5\pi - 12}{\pi} x^3 \arctan x, \]
(4)
where the constant $\frac{5\pi - 12}{\pi}$ is the best possible.

The proofs of the previous two theorems are based on the usage of the appropriate infinite power series. In the proofs of the stated conjectures a method from [20] will be used and it is based on the usage of the appropriate approximations of some mixed trigonometric polynomials with finite Taylor series. This method presents continuation of Mortici’s method from [9]. The method is also applied on inequalities closely related to presented ones, see [19] and [21].

We follow the notation used in [20]. Let $\varphi : [a, b] \longrightarrow \mathbb{R}$ be a differentiable function on a segment $[a, b]$ and differentiable on a right at $x = a$ an arbitrary number of times. Denote by $T_m^{\varphi, a}(x)$ the Taylor polynomial of the order m of the function φ in the point $x = a$. If there is some $\eta > 0$ such that $T_m^{\varphi, a}(x) \geq \varphi(x)$ holds for $x \in (a, a + \eta) \subset [a, b]$, then we define $T_m^{\varphi, a}(x) = T_m^{\varphi, a}(x)$, and $T_m^{\varphi, a}(x)$ presents an upward approximation of the order m of the function φ in the right neighborhood $(a, a + \eta)$ of the point a. Analogously, if there is some $\eta > 0$ such that $T_m^{\varphi, a}(x) \leq \varphi(x)$ holds for $x \in (a, a + \eta)$ \subset $[a, b]$, then we define $T_m^{\varphi, a}(x) = T_m^{\varphi, a}(x)$, and $T_m^{\varphi, a}(x)$ presents a downward approximation of the order m of the function φ in the right neighborhood $(a, a + \eta)$ of the point a. In the same manner, it is possible to define upward and downward approximations in the left neighborhood of a point.
1. Proof of the Conjecture 1

Let us first observe the inequality (3) of the Conjecture 1 written in the form

\[
2 + \frac{\pi^2 + \pi - 8}{\pi} x^3 \arctan x - \frac{\arctan x}{x} - \left(\frac{\arcsin x}{x}\right)^2 > 0, \tag{5}
\]

for \(x \in (0, 1)\). Substituting \(x = \sin t\) into (5), for \(t \in \left(0, \frac{\pi}{2}\right)\), we obtain

\[
2 + \left(\frac{\pi^2 + \pi - 8}{\pi}\right) \sin^4 t - \frac{\arctan \sin t}{\sin^2 t} - \frac{t^2}{\sin^2 t} > 0. \tag{6}
\]

It is enough to prove that

\[
g(t) = 2 \pi \sin^2 t + \left(\frac{\pi^2 + \pi - 8}{\pi}\right) \sin^4 t \arctan \sin t - \pi \sin t \arctan \sin t - \pi t^2 > 0, \tag{7}
\]

for \(t \in \left(0, \frac{\pi}{2}\right)\). Let us notice that \(t = 0\) is zero of the sixth order and \(t = \frac{\pi}{2}\) is the simple zero of the function \(g\). Furthermore, we differentiate two cases if \(t \in (0, 1, 1] \) or \(t \in (1, 1, \pi/2)\).

(I) \(t \in (0, 1, 1]\) Let us start from the series \(\arctan x = \sum_{k=0}^{\infty} (-1)^k \frac{x^{2k+1}}{2k+1}\), which holds for \(x \in [-1, 1]\). Notice that \(\arctan^0(x) < \arctan x < \arctan^2(x)\) are true for \(x \in (0, 1]\) and \(k_1, k_2 \in \mathbb{N}_0\). By introducing the substitution \(x = \sin t\), we can conclude that

\[
\arctan^0(\sin t) < \arctan(\sin t) < \arctan^2(\sin t),
\]

for \(t \in \left(0, \frac{\pi}{2}\right)\) and \(k_1, k_2 \in \mathbb{N}_0\). For the proof of the Conjecture 1 we will use previous inequalities for \(k_1 = 0 \) and \(k_2 = 1\), i.e. we will only need

\[
\arctan^0(\sin t) < \arctan(\sin t) < \arctan^2(\sin t), \tag{8}
\]

for \(t \in \left(0, \frac{\pi}{2}\right)\). Since \(\arctan^0(\sin t) > 0\) for \(t \in \left(0, \frac{\pi}{2}\right)\) and \(\pi^2 + \pi - 8 > 0\) we have

\[
g(t) > h(t) = 2 \pi \sin^2 t + \left(\frac{\pi^2 + \pi - 8}{\pi}\right) \sin^4 t \arctan^0(\sin t) - \pi \sin t \arctan^2(\sin t) - \pi t^2,
\]

for \(t \in (0, 1, 1]\). It remains to prove that

\[
h(t) = 2 \pi \sin^2 t + \left(\frac{\pi^2 + \pi - 8}{\pi}\right) \sin^4 t \left(\sin t - \frac{1}{3} \sin^3 t\right)
- \pi \sin t \left(\sin t - \frac{1}{3} \sin^3 t + \frac{1}{5} \sin^5 t\right) - \pi t^2 > 0,
\]

for \(t \in (0, 1, 1]\). The function \(h\) is a mixed trigonometric polynomial function. For the proof of the inequality \(h(t) > 0\), for \(t \in (0, 1, 1]\), we use method from the paper [20].

Using trigonometric multiple angle formulas, we obtain

\[
h(t) = \left(-\frac{\pi^2}{384} - \frac{\pi}{384} + \frac{1}{48}\right) \cos 8 t + \left(-\frac{\pi^2}{96} - \frac{\pi}{240} + \frac{1}{12}\right) \cos 6 t
+ \left(\frac{11 \pi^2}{96} + \frac{19 \pi}{160} - \frac{11}{12}\right) \cos 4 t
+ \left(-\frac{31 \pi^2}{96} - \frac{43 \pi}{48} + \frac{31}{12}\right) \cos 2 t
- \pi t^2 + \frac{85 \pi^2}{384} + \frac{301 \pi}{384} - \frac{85}{48},
\]

Inequalities from the paper [20]:

\[T_k^\cos(y) > \cos y \ (k=4, 12, 16) \quad \text{and} \quad \cos y > T_k^\cos(y),\]

3
Let us introduce substitution $z = t^2$, for $z \in (0, 1)$. Hence we prove that

$$P_{10}(t) = \left(\frac{67108864 \pi^2}{1915538625} - \frac{67108864 \pi}{1915538625} + \frac{536870912}{1915538625}\right) t^{16} + (16777216 \pi^2 + 16777216 \pi - 134217728) t^{14} + \frac{945149 \pi^2}{2806650} - \frac{11017201 \pi}{2806650} + \frac{945149}{2806650} t^{12} + \frac{309929 \pi^2}{340200} + \frac{27409 \pi}{34020} - \frac{309929}{42525} t^{10} + \frac{20129 \pi^2}{15120} - \frac{1609 \pi}{1512} + \frac{20129}{1890} t^8 + \frac{1049 \pi^2}{1080} + \frac{23 \pi}{540} - \frac{1049}{135} t^6 > 0$$

holds, for $t \in (0, 1]$. Notice that $P_{10}(t) = \frac{t^6}{30648618000} P_{10}(t)$ for

$$P_{10}(t) = (1073741824 \pi^2 - 1073741824 \pi + 8589934592) t^{10} + (4026531840 \pi^2 + 4026531840 \pi - 322122254720) t^8 + (-12901283850 \pi^2 - 12030783492 \pi + 1032210278080) t^6 + (27921503610 \pi^2 + 24692768100 \pi - 223372028880) t^4 + (40801986225 \pi^2 - 32614832250 \pi + 326415889800) t^2 + (29768891950 \pi^2 + 16629713100 \pi - 328151113200) t^0$$

Let us introduce substitution $z = t^2$, for $z \in (0, 1)$. Hence we prove that $P_z(z) = P_{10}(\sqrt{z}) > 0$. According to the Ferrari’s formulas, the derivative polynomial P_z' does not have real roots. Since $P_z'(0) < 0$ we can assert that $P_z'(z) < 0$, for every $z \in (0, 1)$. Therefore, P_z is strictly decreasing function with unique real root $z_1 = 1.233 \ldots > 1.21$. So we have $P_z(z) > 0$ for $z \in (0, 1)$, i.e. $P_{10}(t) > 0$ for $t \in (0, 1]$.

Finally, we conclude

$$g(t) > h(t) > P_{10}(t) = \frac{t^6}{30648618000} P_{10}(t) > 0,$$

for $t \in (0, 1)$.

(II) $t \in (1, \pi/2)$ We transform the inequality (7), for $t \in \left(1, \frac{\pi}{2}\right)$, to the inequality

$$g_2(t) = g\left(\frac{\pi}{2} - t\right) = \left((\pi^2 + \pi - 8) \cos t - \pi\right) \cos t \arctan(\cos t) - \pi \left(\frac{\pi}{2} - t\right)^2 + 2 \pi \cos^2 t > 0,$$
for $t \in \left(0, \frac{\pi}{2} - 1.1\right) = (0, 0.470 \ldots)$. Let us notice that $(\pi^2 + \pi - 8) \cos^4 t - \pi > 0$ is true for $t \in \left(0, \frac{\pi}{2} - 1.1\right)$. Furthermore, we consider the additional inequality

$$\arctan(\cos t) \geq \frac{\pi}{4} - \frac{t}{2}$$

(9)

for $t \in \left[0, \frac{\pi}{2}\right]$. Equality holds for $t = 0$ or $t = \frac{\pi}{2}$. Obviously

$$(\arctan(\cos t))' = -\frac{\sin t}{\cos^2 t + 1} < 0$$ and $$(\arctan(\cos t))'' = \frac{(\cos^2 t - 3) \cos t}{(\cos^2 t + 1)^2} < 0,$$

for $t \in \left[0, \frac{\pi}{2}\right]$. Therefore, the inequality (9) is a consequence of the fact that is the decreasing concave curve above the secant line over segment $\left[0, \frac{\pi}{2}\right]$. Based on the inequality (9), we have

$$g_2(t) > h_2(t) = \left((\pi^2 + \pi - 8) \cos^4 t - \pi\right) \cos t \left(\frac{\pi}{4} - \frac{t}{2}\right)$$

$$- \pi \left(\frac{\pi}{2} - t\right)^2 + 2 \pi \cos^2 t,$$

for $t \in \left(0, \frac{\pi}{2} - 1.1\right)$. Thus, we need to prove that

$$h_2(t) > 0,$$

for $t \in \left(0, \frac{\pi}{2} - 1.1\right)$. Let us notice that h_2 is one mixed trigonometric polynomial

$$h_2(t) = \left(\left(-\frac{\pi^2}{32} - \frac{\pi}{32} + \frac{1}{4}\right) t + \frac{\pi^3}{64} + \frac{\pi^2}{8}\right) \cos 5t$$

$$+ \left(\left(-\frac{5\pi^2}{32} - \frac{5\pi}{32} + \frac{5}{4}\right) t + \frac{5\pi^3}{64} + \frac{5\pi^2}{8}\right) \cos 3t$$

$$+ \pi \cos 2t + \left(\left(-\frac{5\pi^2}{16} + \frac{3\pi}{16} + \frac{5}{2}\right) t + \frac{5\pi^3}{32} - \frac{3\pi^2}{16} - \frac{5\pi}{4}\right) \cos t$$

$$- \pi t^2 + 2 \pi^2 t - \frac{\pi^3}{4}.$$

For $t \in \left(0, \frac{\pi}{2} - 1.1\right)$ the following inequalities are true:

$$\left(-\frac{\pi^2}{32} - \frac{\pi}{32} + \frac{1}{4}\right) t + \frac{\pi^3}{64} + \frac{\pi^2}{8} > 0,$$

$$\left(-\frac{5\pi^2}{32} - \frac{5\pi}{32} + \frac{5}{4}\right) t + \frac{5\pi^3}{64} + \frac{5\pi^2}{8} > 0,$$

$$\left(-\frac{5\pi^2}{16} + \frac{3\pi}{16} + \frac{5}{2}\right) t + \frac{5\pi^3}{32} - \frac{3\pi^2}{16} - \frac{5\pi}{4} < 0.$$

In the purpose of proving that $h_2(t) > 0$, for $t \in \left(0, \frac{\pi}{2} - 1.1\right)$, we use the inequalities from [20]:

$$\prod_{k=0}^{1} \cos \left(\frac{y}{k}\right) > \cos y \quad (k = 0) \quad \text{and} \quad \cos y > \prod_{k=0}^{1} \cos \left(\frac{y}{k}\right) \quad (k = 2),$$

for $y \in \left(0, \sqrt{(k + 3)(k + 4)}\right)$. Therefore, we get
The proof is completed.

Let us now observe the inequality (4) of Conjecture 2 written in the form

\[2. \text{Proof of the Conjecture 2} \]

It is enough to prove that

\[x \in (0, 1) \], we obtain

\[3 + (\frac{5\pi - 12}{\pi}) \sin^4 t - \arctan(\sin t) - 2 t \sin t > 0. \]

It is enough to prove that

\[g(t) = 3\pi \sin t + ((5\pi - 12) \sin^4 t - \pi) \arctan(\sin t) - 2 t > 0, \]

for \(t \in (0, \frac{\pi}{2}) \). Let us notice that \(t = 0 \) is zero of the fifth order and \(t = \frac{\pi}{2} \) is the simple zero of the function \(g \). Furthermore, we differentiate two cases if \(t \in (0, 1.3) \) or \(t \in (1.3, \frac{\pi}{2}) \).

I \(t \in (0, 1.3] \) Based on the inequality (3), it may be concluded that

\[g(t) > h(t) = 3\pi \sin t + (5\pi - 12) \sin^4 t \arctan(\sin t) - \pi \arctan(\sin t) - 2 \pi t, \]

for \(t \in (0, 1.3) \). Therefore, we just need to prove

\[h_2(t) > P_3(t) = \left(-\frac{\pi^2}{32} t + \frac{\pi^3}{64} \right) T_2^{\cos}(5t) + \left(-\frac{5\pi^2}{32} t + \frac{5\pi^3}{64} \right) T_2^{\cos}(3t) + \frac{\pi T_0^{\cos}(2t)}{4}, \]

for \(t \in \left(0, \frac{\pi}{2} - 1.1\right) \). It is simple to prove that

\[P_3(t) = \left(\frac{35\pi^2}{32} t + \frac{35\pi^3}{64} \right) t^2 + \frac{11\pi}{8} t^2 > 0 \]

for \(t \in \left(0, \frac{\pi}{2} - 1.1\right) \). Therefore, we conclude that

\[g_2(t) > h_2(t) > P_3(t) > 0, \]

for \(t \in \left(0, \frac{\pi}{2} - 1.1\right) \) and consequently that

\[g(t) > 0, \]

for \(t \in \left(1.1, \frac{\pi}{2}\right) \), which proves the inequality (6). The elementary calculus gives

\[\lim_{x \to \frac{\pi}{2}} \frac{(\arcsin x/x)^2 + (\arctan x/x) - 2}{x^3 \arctan x} = \frac{\pi^2 + \pi - 8}{\pi}. \]

The proof is completed. \(\blacksquare \)
\[h(t) = 3\pi \sin t + (5\pi - 12) \sin^4 t \left(\sin t - \frac{1}{3} \sin^3 t \right) - \pi \left(\sin t - \frac{1}{3} \sin^3 t + \frac{1}{5} \sin^5 t \right) - 2\pi t > 0, \]

for \(t \in (0,1.3) \). The function \(h \) is a mixed trigonometric polynomial function. For the proof of the inequality \(h(t) > 0 \), for \(t \in (0,1.3) \), we use method from the paper [20]. Using trigonometric multiple angle formulas, we obtain

\[
h(t) = \left(\frac{5\pi}{192} - \frac{1}{16} \right) \sin 7t + \left(\frac{113\pi}{960} - \frac{5}{16} \right) \sin 5t + \left(-\frac{199\pi}{192} + \frac{39}{16} \right) \sin 3t + \left(\frac{833\pi}{192} - \frac{85}{16} \right) \sin t - 2\pi t.
\]

We also need inequalities from the paper [20]:

\[T_k^{\sin,0}(y) > \sin y \quad (k=9) \quad \text{and} \quad \sin y > T_k^{\sin,0}(y) \quad (k=7,15,19), \]

for \(y \in (0,\sqrt{(k+3)(k+4)}) \). Putting things together, we get

\[
h(t) > P_{19}(t) = \left(\frac{5\pi}{192} - \frac{1}{16} \right) T_9^{\sin,0}(7t) + \left(\frac{113\pi}{960} - \frac{5}{16} \right) T_9^{\sin,0}(5t) + \left(-\frac{199\pi}{192} + \frac{39}{16} \right) T_9^{\sin,0}(3t) + \left(\frac{833\pi}{192} - \frac{85}{16} \right) T_7^{\sin,0}(t) - 2\pi t,
\]

for \(t \in (0,1.3) \). Hence, we only have to prove that

\[
P_{19}(t) = \left(\frac{232630513987207 \pi}{9530037871411200} + \frac{232630513987207}{39720849113088000} \right) t^{19} + \frac{4745615099943 \pi}{278742800793600} + \frac{4745615099943}{11614283664000} \right) t^{17} + \left(\frac{11103412797 \pi}{11103412797} + \frac{11103412797}{612518675071} \right) t^{15} + \left(\frac{25601647131 \pi}{59779399680} + \frac{25601647131}{5660928000} \right) t^{13} + \left(\frac{9953280 \pi}{9953280} + \frac{9953280}{1161216} \right) t^{11} + \left(\frac{473 \pi}{84} + 14 \right) t^{10} + \left(\frac{93 \pi}{20} - 12 \right) t^5 > 0,
\]

for \(t \in (0,1.3) \). Let us notice that \(P_{19}(t) = \frac{t^5}{2335859278495744000} P_{14}(t) \), where

\[
P_{14}(t) = \left(-\frac{56994475926865715 \pi}{13678674224477776} + 13678674224477776 \right) t^{14} + \left(\frac{39779817891823970 \pi}{95471562903497528} - \frac{95471562903497528}{5469977974061251584} \right) t^{12} + \left(-\frac{2272344207942188160 \pi}{3127358974061251584} + \frac{2272344207942188160}{19852461941501696000} \right) t^{10} + \left(\frac{1009054106180860400 \pi}{2414355738833935360} - \frac{2414355738833935360}{81238161686899875840} \right) t^8 + \left(-\frac{3349210908620828160 \pi}{81238161686899875840} + \frac{81238161686899875840}{8120783386638195200 \pi - 19852461941501696000} \right) t^6 + \left(-\frac{131515731413434368000 \pi}{108604475645005209600 \pi - 280270311341948928000} \right)^2 + 108604475645005209600 \pi - 280270311341948928000.
\]
Let us introduce substitution $z = t^2$, for $z \in (0, 1.69]$ and prove $P_7(z) = P_{14}(\sqrt{z}) > 0$. It is enough to observe that the third-order derivative polynomial P''_7 does not have real roots according to the Ferrari’s formula and $P''_7(0) < 0$ yields $P''_7(z) < 0$ for every $z \in (0, 1.69]$. Thus the second-order derivative polynomial P'_7 is strictly decreasing function with unique real root $z_1 = 1.834 \ldots > 1.69$. From $P''_7(1.69) > 0$ follows that $P''_7(z) > 0$ for $z \in (0, 1.69]$, thus derivative polynomial P'_7 is strictly increasing function for $z \in (0, 1.69]$. As $P'_7(1.69) < 0$ then $P'_7(z) < 0$ for every $z \in (0, 1.69]$. From $P'_7(z) < 0$ follows that P'_7 is strictly decreasing function (with real root $z_2 = 1.870 \ldots > 1.69$). As $P_7(1.69) > 0$, we conclude $P_7(z) > 0$ for $z \in (0, 1.69]$, i.e. $P_{14}(t) > 0$ for $t \in (0, 1.3]$. Finally, from

$$g(t) > h(t) > P_{14}(t) = \frac{t^5}{23355859278495744000} P_{14}(t)$$

follows that $g(t) > 0$ for $t \in (0, 1.3]$.

\textbf{(II) $t \in (1.3, \pi/2$)} We transform the inequality \([12]\), for $t \in \left(1.3, \frac{\pi}{2}\right)$, to the inequality

\begin{align*}
g_2(t) &= g\left(\frac{\pi}{2} - t\right) = \left((5\pi - 12)\cos^4 t - \pi\right) \arctan \left(\cos t\right) \\
&+ 3\pi \cos t - 2\pi \left(\frac{\pi}{2} - t\right) > 0,
\end{align*}

for $t \in \left(0, \frac{\pi}{2} - 1.3\right) = (0, 0.270 \ldots)$. Let us notice that $(5\pi - 12)\cos^4 t - \pi > 0$ is true for $t \in \left(0, \frac{\pi}{2} - 1.3\right)$. Based on the inequality \([9]\) we have

\begin{align*}
g_2(t) > h_2(t) &= \left((5\pi - 12)\cos^4 t - \pi\right) \left(\frac{\pi}{2} - t\right) \\
&+ 3\pi \cos t - 2\pi \left(\frac{\pi}{2} - t\right),
\end{align*}

for $t \in \left(0, \frac{\pi}{2} - 1.3\right)$; so it should be proved

$$h_2(t) > 0,$$

for $t \in \left(0, \frac{\pi}{2} - 1.3\right)$. Notice that h_2 is one mixed trigonometric polynomial

\begin{align*}
h_2(t) &= \left((6 - \frac{5\pi}{2}) t + \frac{5\pi^2}{4} - 3\pi\right) \cos^4 t \\
&+ 3\pi \cos t + \frac{5\pi}{2} - \frac{5\pi^2}{4}
\end{align*}

For the proof of the inequality $h_2(t) > 0$, for $t \in (1.3, \pi/2)$, we use method from the paper \([20]\). Using trigonometric multiple angle formulas, we obtain

\begin{align*}
h_2(t) &= \left((6 - \frac{5\pi}{16} + \frac{3}{4}) t + \frac{5\pi^2}{32} - \frac{3\pi}{8}\right) \cos^4 t \\
&+ \left((5\pi - 12) + \frac{5\pi^2}{8} - \frac{3\pi}{2}\right) \cos^2 t \\
&+ 3\pi \cos t \\
&+ \left(\frac{25\pi}{16} + \frac{9}{4}\right) t - \frac{25\pi^2}{32} - \frac{9\pi}{8}
\end{align*}

For $t \in \left(0, \frac{\pi}{2} - 1.3\right)$ we have

\begin{align*}
&\left(6 - \frac{5\pi}{16} + \frac{3}{4}\right) t + \frac{5\pi^2}{32} - \frac{3\pi}{8} > 0, \\
&\left(5\pi - 12 + \frac{5\pi^2}{8} - \frac{3\pi}{2}\right) t + \frac{5\pi^2}{32} + \frac{3\pi}{2} > 0,
\end{align*}
Having in mind inequality from [20]:
\[
\cos y > \frac{1}{T} \cos^2(y),
\]
for \(y \in \left(0, \sqrt{30}\right) \), we conclude that
\[
h_2(t) > P_3(t) = \left(-\frac{5\pi}{16} + \frac{9}{4}\right) t^3 + \frac{5\pi^2}{32} - \frac{3\pi}{8} T^2 \cos^2(4t) + \left(-\frac{5\pi}{4} + 3\right) t + \frac{5\pi^2}{8} - \frac{3\pi}{2} T^2 \cos^0(2t) + 3\pi T \cos^0(t) + \left(\frac{25\pi}{16} + \frac{9}{4}\right) t - \frac{25\pi^2}{32} - \frac{9\pi}{8},
\]
for \(t \in \left(0, \frac{\pi}{2} - 1.3\right) \). It is simple to prove that
\[
P_3(t) = (5\pi - 12) t^3 + \left(-\frac{5\pi^2}{2} + \frac{9\pi}{2}\right) t^2 + 6t > 0,
\]
for \(t \in \left(0, \frac{\pi}{2} - 1.3\right) \). Therefore, we conclude that
\[
g_2(t) > h_2(t) > P_3(t) > 0,
\]
for \(t \in \left(0, \frac{\pi}{2} - 1.3\right) \) and consequently that
\[
g(t) > 0,
\]
for \(t \in \left(1.3, \frac{\pi}{2}\right) \), which proves the inequality (11). The elementary calculus proposes
\[
\lim_{x \to \frac{\pi}{2}} \frac{2(\arcsin x/x) + (\arctan x/x) - 3}{x^3 \arctan x} = \frac{5\pi - 12}{\pi}.
\]
Therefore, the proof of the second conjecture is also completed. □

3. Results, Discussion and Conclusions

Let us emphasize that the method from [20] was here applied for proving two conjectures stated by C.-P. Chen [1]. In the paper [20] the open problem stated by Z.-J. Sun and L. Zhu [10] was also proved in the same manner. We expect that the method will be useful in solving some others problem concerning inequalities which can be reduced to some mixed trigonometric inequalities.

Acknowledgements. The research is partially supported by the Ministry of Education and Science, Serbia, Grants No. 174032 and 44006.
References

[1] C.-P. Chen: Sharp Wilker and Huygens type inequalities for inverse trigonometric and inverse hyperbolic functions, Int. Trans. Spec. Funct. 23: 12, (2012), 865–873.
[2] C. Huygens: Oeuvres Completes 1888-1940, Société Hollandaise des Science, Haga, Sweden, 1940.
[3] J.B. Wilker: Problem E 3306, Amer. Math. Monthly 96 (1989), p. 55.
[4] J.S. Sumner, A.A. Jagers, M. Vowe and J. Anglesio: Inequalities involving trigonometric functions, Amer. Math. Monthly 98 (1991), 264–267.
[5] L. Zhu: A New Simple Proof of Wilker’s Inequality, Math. Inequal. Appl. 4 (2005), 749–750.
[6] L. Zhu: On Wilker-type inequalities, Math. Inequal. Appl. 10 (2007), 727–731.
[7] L. Zhang and L. Zhu: A new elementary proof of Wilker’s inequalities, Math. Inequal. Appl. 11 (2007), 149–151.
[8] E. Neuman and J. Sándor: On some inequalities involving trigonometric and hyperbolic functions with emphasis on the Cusa-Huygens, Wilker, and Huygens inequalities, Math. Inequal. Appl. 13 (2010), 715–723.
[9] C. Mortici: The natural approach of Wilker-Cusa-Huygens inequalities, Math. Inequal. Appl. 14 (2011), 535–541.
[10] Z.-J. Sun and L. Zhu: Some Refinements of Inequalities for Circular Functions, J. Appl. Math. 2011, Article ID 869261., 9 pp.
[11] Z.-J. Sun and L. Zhu: On New Wilker-Type Inequalities, ISRN Math. Anal. 2011, Article ID 681702., 7 pp.
[12] C.-P. Chen and W.-S. Cheung: Wilker- and Huygens-type inequalities and solution to Oppenheim’s problem, Int. Trans. Spec. Funct. 23: 5, (2012), 325–335.
[13] C.-P. Chen and W.-S. Cheung: Sharpness of Wilker and Huygens type inequalities, J. Inequal. Appl. 2012: Art. 72 (2012), 11 pp.
[14] E. Neuman: Wilker and Huygens-type inequalities for the generalized trigonometric and for the generalized hyperbolic functions, Appl. Math. Comput. 230 (2014), 211–217.
[15] E. Neuman: Wilker and Huygens-type inequalities for Jacobian elliptic and theta functions, Int. Trans. Spec. Funct. 25: 3, (2014), 240–248.
[16] C. Mortici: A Subtly Analysis of Wilker Inequality, Appl. Math. Comput. 231 (2014), 516–520.
[17] L. Debnath, C. Mortici, L. Zhu: Refinements of Jordan-Steckin and Becker-Stark inequalities, Results Math. 67 (1), (2015), 207–215.
[18] E. Neuman: Inequalities for the generalized trigonometric, hyperbolic and Jacobian elliptic functions, J. Math. Inequal. 9 (3), (2015), 709–726.
[19] B. Baniac, M. Makragač, B. Malešević: Some notes on a method for proving inequalities by computer, Results Math., doi 10.1007/s00025-015-0485-8, (2015).
[20] B. Malešević, M. Makragač: A Method of Proving a Class of Inequalities of Mixed Trigonometric Polynomial Functions, arXiv:1504.08345 (2015).
[21] M. Nenezic, B. Malešević, C. Mortici: Accurate approximations of some expressions involving trigonometric functions. arXiv:1507.01904 (2015).