Prevention of occupational hand eczema in healthcare workers during the COVID-19 pandemic: A controlled intervention study

Cara Symanzik1,2 | Lukasz Stasielowicz3 | Richard Brans1,2 | Christoph Skudlik1,2 | Swen Malte John1,2

1Department of Dermatology, Environmental Medicine and Health Theory, Osnabrück University, Osnabrück, Germany
2Institute for Interdisciplinary Dermatological Prevention and Rehabilitation (iDerm), Osnabrück University, Osnabrück, Germany
3Institute of Psychology, Osnabrück University, Osnabrück, Germany

Correspondence
Dr Cara Symanzik, Department of Dermatology, Environmental Medicine and Health Theory and Institute for Interdisciplinary Dermatological Prevention and Rehabilitation (iDerm), Osnabrück University, Am Finkenhügel 7a, D-49076 Osnabrück, Germany.
Email: cara.symanzik@uni-osnabrueck.de

Funding information
Beiersdorf AG, Hamburg, Germany

Abstract
Background: Occupational hand eczema (HE) is common among healthcare workers (HCWs) and has—in some regions of the world—increased during the COVID-19 pandemic due to related hygiene measures.

Objectives: To evaluate the efficacy of an intervention for HE prevention in HCWs during the pandemic.

Methods: A prospective, controlled, unblinded interventional trial was conducted in 302 HCWs. The intervention group (IG) (n = 135) received online-based health education and free access to hand cleansing and hand care products. The control group (CG) (n = 167) did not receive any intervention within the study. At baseline (T0), after 3 (T1) and 6 (T2) months, participants completed standardized questionnaires. The Osnabrück Hand Eczema Severity Index (OHSI) was assessed at T0 and T2.

Results: During the observation period, there were no new HE cases in the IG (n = 115) and 12 cases (8.8%) in the CG (n = 136). OHSI values at T2 were lower in the IG (b = 1.44, \(p < 0.001\)). Daily use of emollients was higher at work (b = 1.73, \(p < 0.001\)) and at home (b = 1.62, \(p < 0.001\)) in the IG at T2.

Conclusions: The intervention was effective in HE prevention and improving skin care behaviour during the COVID-19 pandemic.

KEYWORDS
COVID-19, education, hand eczema, healthcare, hygiene, intervention, occupational, pandemic, prevention, skin care

1 | INTRODUCTION

Healthcare workers (HCWs) are exposed to a considerable amount of wet work1 and thus, at high risk of developing hand eczema (HE), mainly caused by irritant contact dermatitis.2 A 1-year prevalence of HE in HCWs of around 20\% has been reported previously.3 Occupational HE is often chronic, burdensome and associated with impaired quality of life.3–5 In some cases, it may even result in leaving the workforce. Consequently, the health economic burden is high due to direct (e.g., medical treatment costs) and indirect costs (e.g., costs for sickness-related work absences).6,7

Intensified hand hygiene measures have been implemented for containing the coronavirus disease 2019 (COVID-19) pandemic8 which emerged in the beginning of 2020 and has led to increased skin
strain in the general population and particularly in HCWs who face a
double burden due to elevated hygiene measures both in private life
and at work. Accordingly, recent studies from different countries
have demonstrated that prevalence of occupational dermatoses in
HCWs has increased during the COVID-19 pandemic. In our
study period, more than 100,000 occupational COVID-19 infections
in HCWs were reported in Germany leading to further tightening of
hygiene measures and an unprecedentedly high incidence of contact
dermatitis.

In several intervention studies, it has been shown that health
education is effective in the prevention of occupational hand
eczema. Recommendations for preventing occupational HE
include the use of adequate skin cleansing substances and skin
care products, which can be conveyed by health education. This
study aims at evaluating the efficacy of a complex two-part inter-
vention (online-based health education plus provision of adequate
skin products) in HCWs with respect to prevention of incident
hand eczema and improvement of existing skin changes of the
hands. Moreover, skin care behaviour (i.e., frequency of emollient
use) and factors associated with incident hand eczema were
investigated.

2 | MATERIALS AND METHODS

2.1 | Trial design

This study was a monocentric, prospective, interventional, controlled
trial conducted in two hospitals in Lower Saxony, Germany. The study
was conducted in agreement with the principles expressed in the Dec-
laration of Helsinki. Ethic approval was obtained by the sub-
commission on the evaluation of medical research involving human
subjects at the Medical Chamber of Lower Saxony, Hannover,
Germany (procedure number 30/34/2020). The trial was prospec-
tively registered at the German Clinical Trials Register (DRKS) (number
DRKS00022957).

2.2 | Participants

HCWs from 35 wards were recruited in two hospitals in Osnabrück
and in Bad Rothenfelde which are located 30 km away from each
other in Lower Saxony, Germany. After gaining permission from the
hospitals’ hygiene management, nursing directorates, staff councils,
medical directorates and company health management, volunteers of
one hospital (Osnabrück) were allocated to the intervention group
(IG) and volunteers of the other hospital (Bad Rothenfelde) were allo-
cated to the control group (CG). No further randomization among hos-
pitals was done to avoid cross-contamination among the participants
in terms of knowledge and study products. The inclusion criteria were
written informed consent, being of legal age and working in health-
care (e.g., nurses, surgical assistants, physiotherapists). HCWs with
known allergies against fragrances and/or oat flour could not
participate in the IG due to the composition of the provided study
products. Termination criteria were adverse skin reactions from the
study products (only IG) or discontinuation of working in healthcare.

2.3 | Intervention group

The two-part intervention comprised free access to a lipid-containing
syndet and an emollient for use both at work and at home accompa-
nied by free access to an online training course on the prevention of
hand eczema consisting of an e-learning video of 35-min length. An
asynchronous store-and-forward technology was chosen to enable
flexible access to the educational intervention and to avoid face-to-
face education during the COVID-19 pandemic. Schedule planning for
the online-based health education with the indicative target ‘Par-
ticipants implement a considerate and careful skin cleansing and skin
care behaviour within their private and occupational surroundings’ is pro-
vided in Table S1.

After recruitment and baseline data collection, participants
received a handout with the key information about the online-based
health education which included a link and a quick response (QR) code with which the video could be retrieved. Furthermore, par-
ticipants were provided with an information leaflet about HE, includ-
ing a link list with additional helpful short videos about skin cleansing
and skin care (Appendix S2), and additional information sheets about
the appropriate use of protective gloves and adequate skin care
behaviour. Participants initially received a starter kit containing four
packages of the lipid-containing syndet and four packages of the
emollient. Further packages could be demanded by the participants
without limitation over the whole observation period. The ingredients
of the study products are listed in Table S2.

2.4 | Control group

The CG did initially not receive an intervention within the study. No
changes were made to the access to skin products provided by the
hospital (treatment as usual). After the study was completed, the CG
received access to the online-based health education and was pro-
vided with one package each of the lipid-containing syndet and the
emollient.

2.5 | Outcomes and assessment instruments

The primary outcome was presence/absence of HE, which was pri-
marily assessed by using the validated Osnabrueck Hand Eczema
Severity Index (OHSI) at T0 (baseline) and T2 (after 6 months). All
skin examinations in the CG were conducted by a dermatologist ex-
perienced in occupational skin diseases (S.M.J.). The same dermatologist
performed the (unblinded) skin examination in the IG, partially assisted
by two other experienced occupational dermatologists. HE was
defined as the presence of (i) vesicles or (ii) erythema score >2 in
combination with a score >2 for at least one of the following clinical signs on the hands (papules, scaling, fissures) based on the OHSI assessment (modified from Reich et al.21). The primary outcome was additionally assessed by using a paper-based questionnaire, including the question: ‘Do you currently suffer from hand eczema’ as well as additional questions about atopy (‘Have you ever had an itchy rash that has been coming and going for at least 6 months, and at some time has affected skin creases?’), which was designed in consideration of the Nordic Occupational Skin Questionnaire (NOSQ-2002)22 and distributed at T0, T1 (after 3 months) and T2. Individual HE signs assessed by the OHSI and the overall OHSI score were considered in terms of a secondary outcome. Other secondary outcomes were skin care behaviour (i.e., frequency of emollient use at work and at home) which were assessed by using the aforementioned questionnaire at T0, T1 and T2.

2.6 | Statistical methods

Data were analysed in the sense of an intention-to-treat analysis. Multiple imputation (30 imputations) was conducted by applying fully conditional specification23 to counterbalance missing data. In terms of descriptive statistics, frequencies and percentages were calculated for categorical variables and mean ± standard deviation (SD) for continuous variables using IBM SPSS Statistics (version 26). Inferential analyses were performed using R (version 4.0.2). The level of significance was p < 0.05. With respect to the primary and secondary outcomes, linear or logistic multilevel modelling (MLM) was used (Tables S3 and S4). Full R code and output is available at osf (https://osf.io/tyshu/?view_only=dca9217a95d743b1ac8c2cc3fcad6e).

For examining factors possibly related to developing HE in the CG, logistic regression was conducted by using OHSI-based assessment
TABLE 1 Baseline demographic and clinical characteristics of the participants in the intervention group (IG), the control group (CG) and overall

	IG (n = 135)	CG (n = 167)	All (n = 302)
Female gender, n (%)	116 (85.9)	138 (82.6)	254 (84.1)
Age in years, mean ± SD	36.4 ± 13.5	41.1 ± 11.7	39.0 ± 12.7
Highest graduation, n (%)			
None	2 (1.5)	None	2 (0.7)
German Hauptschulabschluss (basic school-leaving certificate)	4 (3.0)	8 (4.8)	12 (4.0)
German Realschulabschluss (intermediate school-leaving certificate)	64 (47.4)	92 (55.1)	156 (51.7)
Specialized A-levels	32 (23.7)	37 (22.2)	69 (22.8)
A-levels	33 (24.4)	30 (18.0)	63 (20.9)
Occupational activity, n (%)			
Nurse	69 (51.1)	98 (58.7)	167 (55.3)
Auxiliary nurse	18 (13.3)	13 (7.8)	31 (10.3)
Physician assistant	5 (3.7)	22 (13.2)	27 (8.9)
Surgical assistant	25 (18.5)	1 (0.6)	26 (8.6)
Technical sterilization assistant	14 (10.4)	2 (1.2)	16 (5.3)
Care assistant	1 (0.7)	7 (4.2)	8 (1.0)
Geriatric nurse	None	3 (1.8)	3 (1.0)
Anaesthesia assistant	1 (0.7)	None	1 (0.3)
Midwife	2 (1.5)	None	2 (0.7)
Chemical-technical assistant	None	1 (0.6)	1 (0.3)
Occupational therapist	None	3 (1.8)	3 (1.0)
Physical therapist	None	9 (5.4)	9 (3.0)
Osteopath	None	1 (0.6)	1 (0.3)
Participants per assigned workplace, n (%)			
Normal ward	109 (80.7)	142 (85.0)	251 (83.1)
Central sterile supply department	21 (15.6)	1 (0.6)	22 (7.3)
Outpatient clinic	5 (3.7)	3 (1.8)	8 (2.6)
Intensive care unit	None	21 (12.6)	21 (7.0)
Duration of the period of occupational activity, n (%)			
<1 year	5 (3.0)	15 (11.1)	20 (6.6)
1–5 years	27 (16.2)	56 (41.5)	83 (27.5)
6–10 years	28 (16.8)	14 (10.4)	42 (13.9)
11–20 years	37 (22.2)	15 (11.1)	52 (17.2)
>20 years	70 (41.9)	35 (25.9)	105 (34.8)
Weekly working hours, mean ± SD	37.4 ± 8.2	35.6 ± 8.8	36.4 ± 8.5
Atopic diathesis, n (%)			
Hay fever	50 (37.0)	55 (32.9)	105 (34.8)
Asthma	14 (10.4)	18 (10.8)	32 (10.6)
Itchy rash that has been coming and going for at least 6 months	32 (23.7)	29 (17.4)	61 (20.2)
If itchy rash: skin creases affected	16 (50.0)	15 (51.7)	31 (50.8)
Smoking cigarettes			
Smokers, n, %	43 (31.9)	40 (24.0)	83 (27.5)
Cigarettes/day, mean ± SD	11.6 ± 6.5	14.0 ± 5.0	11.9 ± 7.0

Abbreviations: CG, control group; IG, intervention group; SD, standard deviation.

*The n mentioned in the preceding line has to be considered for calculating the percentage in this line.
3 RESULTS

3.1 Recruitment

Recruitment started on 1 December 2020 and was finished on 29 January 2021. This recruitment interval was necessary due to organizational reasons (e.g., work schedules, holidays etc.). A total of 302 HCWs were included in this study. Follow-ups were done in 3-month intervals between T0 and T1 as well as T1 and T2 (i.e., 6-month observation period overall for each participant).

3.2 Participant flow

The participant flow—including reasons for losses to follow-up—according to the Consolidated Standards of Reporting Trials (CONSORT) 201024 is provided in Figure 1. Overall, 51 (16.9%) HCWs were lost to follow-up. By most of them (41.2%), the reason for withdrawal was not provided. From 135 participants in the IG, 20 HCWs were lost to follow-up (14.8%) and from 167 participants in the CG, 31 HCWs were lost to follow-up (18.6%).

3.3 Baseline data

The demographic and clinical characteristics of the participants were similar in both groups (Table 1). The IG (n = 135) and CG (n = 167) comprised 85.9% and 82.6% female participants, respectively. Participants were on average 36.4 ± 13.5 years old in the IG and 41.1 ± 11.7 years old in the CG. Most of the participants (47.4% in the IG and 55.1% in the CG) held a German ‘Realschulabschluss’ (intermediate school-leaving certificate). The majority of the participants in the IG (51.1%) and CG (58.7%) were nurses. Most of the participants had been in the occupation for more than 20 years in the IG (41.9%) and 1–5 years in the CG (41.5%). The weekly duration of occupational activity was on average 37.4 ± 8.2 h in the IG and 35.6 ± 8.8 h in the CG. 37.0% of participants in the IG and 32.9% of participants in the CG suffered from hay fever. A similar share of participants of the IG (10.4%) and the CG (10.8%) had asthma. 23.7% and 17.4% of participants in the IG and CG, respectively, reported to have had an itchy rash that has been coming and going for at least 6 months. Involvement of the skin creases was reported by 50.0% and 51.7% of the participants in the IG and CG, respectively. 31.9% of the participants in the IG and 24.0% of the participants in the CG reported to smoke cigarettes.

3.4 Drop-out analysis

According to dropout analysis (Table S5), drop-outs (i.e., participants not completing all measurement occasions) slightly differed from completers (i.e., participants completing all measurement occasions) with respect to some baseline characteristics. On average drop-outs were younger, applied hand cream less frequently, were less likely to report itchy rash and were less likely to be smokers at baseline. Thus, excluding drop-outs from analyses could bias the results. Multiple imputations were conducted to estimate missing values based on the available information (e.g., baseline values, relationships between variables in the data set).

3.5 Utilization of the intervention concept by participants

A total of 1800 lipid-containing syndets and 1800 emollients were distributed to the 135 participants of the IG during the study period. The online training course was accessed by 66.6% of the participants of the IG.

3.6 Presence of hand eczema

At T0, 3 of 135 (2.2%) participants in the IG and 13 of 167 (5.3%) participants in the CG had acute HE, defined as the presence of (i) vesicles or (ii) erythema score >2 in combination with ≥1 of the symptoms papules, scaling, or fissures scoring >2 at the clinical examination with OHSI assessment (modified from Reich et al.21); results are based on pooled data of 30 imputations.

3.7 Calculated hand eczema prevalence within healthcare workers in Germany

For calculating the point prevalence of HE within the target population of HCWs in Germany, Bayesian multilevel regression with

| TABLE 2 Self-reported and dermatologically assessed point prevalence of hand eczema at baseline. Raw and adjusted (for gender and age) prevalence rates are displayed (n = 302) |
|---|---|---|
| Data source | Raw prevalence | Adjusted prevalence |
| Questionnairea | 4.3% | 4.6% |
| Osnabrueck Hand Eczema Severity Index (OHSI)b | 5.3% | 5.8% |

aQuestion about whether the participants who ever had hand eczema have it right now (at baseline).
bHand eczema was defined as (i) vesicles or (ii) erythema scoring >2 combined with ≥1 of the symptoms papules, scaling or fissures scoring >2 at the clinical examination with OHSI assessment (modified from Reich et al.21); results are based on pooled data of 30 imputations.
poststratification (MRP) was deployed (Appendix S6). MRP revealed a point prevalence for HE in HCWs within Germany of 5.8% at T0 based on the dermatologically assessed data, which was slightly larger than the estimate of 4.6% based on self-reported data (Table 2). Self-reported data on HE did merely correlate in a moderate way with the dermatologically assessed data ($r = 0.31$).

3.8 Factors associated with hand eczema

Logistic regression predicting HE (OHSI-based assessment) at T2 in the control group revealed that only an atopic skin diathesis (i.e., itchy rash with skin creases affected) seems to be a relevant predicting factor for higher odds of developing HE (Table 3).

3.9 Clinical signs assessed by the OHSI

At T0, most of the participants showed ≥1 clinical sign of hand eczema assessed with the OHSI (overall: 65.2% of 302; IG: 71.9% of 135; CG: 59.9% of 167). Scaling was noted most frequently. At T2, skin changes were present in 41.7% of the participants in the IG ($n = 115$) and 65.4% of the participants in the CG ($n = 136$). Results concerning the OHSI are displayed in Figure 2. At T0, both groups provided equal or nearly equal values. Regarding the total score which was similar for both groups at T0, there was a statistically significant difference between IG and CG at T2 with lower values in the IG than in the CG ($b = -1.44$, $p < 0.001$) and a statistically significant difference between IG and CG with respect to improvement within the observation period ($b = -0.24$, $p < 0.001$) with decrease of the values.
in the IG and increase of the values in the CG. For scaling a statistically significant difference was observed between IG and CG at T2 with lower values in the IG than in the CG ($b = \beta_0 \cdot 0.74$, $p < 0.001$) as well as a statistically significant difference between IG and CG with regard to improvement within the observation period ($b = \beta_0 \cdot 0.10$, $p < 0.001$) with decrease in the IG and an increase in the CG. In terms of erythema, there was a statistically significant difference between IG and CG at T2 with lower values in the IG than in the CG ($b = \beta_0 \cdot 0.47$, $p < 0.001$) as well as a statistically significant difference between IG and CG with respect to improvement within the observation period with stronger improvement of the values in the IG compared to the CG ($b = \beta_0 \cdot 0.28$, $p < 0.001$).

3.10 | Skin care behaviour

Results on the self-reported daily frequency of emollient use at work and at home are presented in Figure 3. At T0, both groups provided equal or nearly equal values. Regarding self-reported daily frequency of emollient use at work, there was a statistically significant difference between IG and CG at T2 with higher frequency in the IG than in the CG ($b = \beta_0 \cdot 1.73$, $p < 0.001$) and a statistically significant difference between IG and CG at T2 with higher values in the IG than in the CG ($b = \beta_0 \cdot 1.62$, $p < 0.001$) and a statistically significant difference between IG and CG with regard to improvement within the observation period with stronger improvement of the values in the IG compared to the CG ($b = \beta_0 \cdot 0.28$, $p < 0.001$).

4 | DISCUSSION

With this interventional trial in HCWs, we were able to show that a two-part intervention consisting of free access to an adequate hand cleansing product and emollient accompanied by free access to an online-based health education was effective not only in the prevention of incident hand eczema but also in improving the skin condition of the hands. A strength of this study is that regardless of the pandemic circumstances, a dermatological assessment of the skin condition was conducted which provided objective data on the presence of hand eczema and type of skin lesions. Differences in baseline characteristics of the participants in IG and CG were small or negligible. Since drop-out rates in studies with similar cohorts of participants often are high,14–16,25 the rather low drop-out rate of 16.9% is another strength of this work. Due to the slight differences in baseline characteristics of drop-outs and completers, multiple imputation was conducted to estimate missing values based on the available information (e.g., baseline values, relationships between variables in the data set). As can be seen in the listing of the assigned workplaces in the baseline characteristics (Table 1), the vast majority of the participants of both groups was recruited on normal wards. It is plausible to assume that the exposure and risk in terms of developing HE were
similar within the different departments of the clinics, since the COVID-19-associated hygiene measures were the same. Overestimation of intervention effects is thus unlikely. Due to hygiene regulations, we were not allowed to include and examine HCWs working on exclusive COVID-19 wards; however, due to the exponentially rising COVID-19-incidence in the observation period, on most wards, there were COVID-19 diseased patients, at least intermittently. Due to the limited numbers of participants in the various occupational groups, comparison of results was not possible and could be of interest in future studies (e.g., nurses vs. auxiliary nurses).

Bregnhøj et al.26 evaluated the validity of self-reporting of hand eczema in hairdressing apprentices and found that there was good agreement between self-reporting of hand eczema and clinical examination. However, in the present study, analysis of dermatologically assessed (clinical examination, OHSI) and self-reported data on current HE showed that both measurement methods only correlate moderately. This might be related to the definition of HE in this study, but still corroborates the assertion that objective HE data (i.e., clinical examinations) should be preferred over subjective data (i.e., self-reporting).

Compared to the average point prevalence of HE in the general population of approximately 4%,27 the calculated point prevalence (adjusted for gender and age) of HE in HCWs ascertained by clinical examination in our cohort from Germany of 5.8% at T0 is higher indicating that HCWs constitute a high-risk group for the development of occupational HE.28 In previous studies on HCWs, the point prevalence is considerably higher with around 20%.2,29; this difference may be attributed to the disparity between self-reported and clinical examination-based studies. This assumption is also supported by the fact that in our study self-reported data on hand eczema did merely correlate in a moderate way with the dermatologically assessed data, as was also shown in former studies.30

It should be noted that within the study cohort, the prevalence of clinical signs associated with HE was high at T0, whereby scaling as clinical sign of dry skin was most commonly observed. This coincides with current data by Lan et al.11 from China, who report on xerosis cutis being a frequent adverse skin condition in HCWs during the COVID-19 pandemic.

In terms of risk factors, atopic skin diathesis increased odds of developing HE in the control group in the present study. This was to be expected as the relation of an atopic skin diathesis and the development of HE is well described.21 This finding, however, stresses the need for preventative measures, especially in the group of people affected by an atopic skin diathesis. It is important to note that there were only 18 HE cases in the CG at T2. In a sample with a larger number of HE cases, probably further relevant factors could have been identified. This should be monitored in future studies.

Based on the OHSI total score and the OHSI values for scaling and erythema, there was a statistically significant difference between IG and CG at T2 (which was not the case at T0; values at T2 were better—i.e., lower—in the IG) as well as between IG and CG with respect to improvement over the course of the observation period. The circumstance that there is only an improvement in the IG and even an aggravation of the skin condition in the CG indicates that the intervention was effective in improving existing skin changes on the hands. The lack of statistically significant changes for papules and fissures can be explained by the fact that values for these signs were already very low at T0. The statistically significant but descriptively small differences for vesicles and infiltration might be explained by the large sample and are probably not of a practical relevance. The overall low OHSI scores at T0 suggest that primarily participants with mild or no skin changes participated.

In the present study, daily frequency of emollient use at work and at home was considered an indicator for skin care behaviour. For both, statistically significant differences between IG and CG at T2 as well as between IG and CG with respect to the improvement over the course of the observation period were observed. The considerable rise in self-reported frequency of emollient use at work and at home in the IG might have contributed to the improved skin condition at follow-up. Marginal increases of self-reported frequencies of emollient application in the CG might be related to social desirability of the answers and attention towards skin care raised by participation in the study. Ibler et al.16 conducted a randomized clinical trial in which skin care education and individual counselling were compared to treatment as usual in healthcare workers with HE (secondary prevention) and concluded that—in other than in the present study, which has shown that improvements are possible—the two groups did not differ significantly regarding use of emollients at work even though the programme overall improved severity and quality of life and had a positive effect on self-evaluated severity of HE. The mentioned differences could result from the fact that Ibler et al.16 only included people with HE, leading to an already high use of emollients among the participants. In this study, participants who only had mild skin changes or no skin changes were included with possibly greater potential in motivating people to use emollients who have not used it before.

As limiting factors, it should be mentioned that the study was not observer-blinded and not randomized. Moreover, it cannot be fully ensured that all provided study products (i) were only used by participants and were not distributed further to friends, family, etc., and (ii) were only used according to their intended application. Another limitation of this work is that no long-term effects of the intervention were evaluated. The observation period of 6 months is suitable for assessing medium-term effects. A longer observation period was not feasible under the pandemic circumstances this study was conducted in. However, assessing long-term effects seems particularly important in consideration of a randomized clinical trial by Graversgaard et al., who found that effects of health education attenuated over time with no long-term effect on outcomes (in this case: presence and severity of hand eczema, health-related quality of life, skin protective behaviour, knowledge of skin protection and general improvement/worsening of hand eczema), which points to the implication that health education measures should be repeated regularly.16,32

The products used in this study were kindly provided in the sense of proof-of-concept by the manufacturer free of charge over the whole study period in unlimited amounts. The hand washing oil was scented. Generally, from a dermatological and allergological point of view, unscented products are recommendable, even though the scent of a product might have a positive effect on user acceptance.33 As the
hand washing oil is a rinse-off product, it was considered tolerable to have fragrances, also keeping in mind the varying sensitizing potential of different fragrances. The hand cream contained oat flour, which can be a skin sensitizer. However, reports on this allergen are rare and none of the participants had to be excluded due to an allergy to this substance; the same applies for fragrances. Also, we did not observe any adverse skin reactions to the products provided.

The implemented online health education based on an asynchronous store-and-forward technology combined with information sheets (print-outs) enabled a flexible and time-efficient access to the educational contents, as it has already been done in a slightly different manner, for example, by Madan et al. online behavioural change programme plus hard copy/magazine) or Mollerup, Harboe and Johansen (user access to a website). Such an intervention concept seems especially appropriate in HCWs who have a high workload and limitation in time. Further, asynchronous online-based health education also entails time saving for the educator as many recipients could be reached without the effort of face-to-face teaching in smaller groups which would have been particularly difficult during the COVID-19 pandemic. Of course, in the beginning of the study at T0, each participant of the IG had been seen in person by the investigating dermatologist and at this occasion specifically been motivated to make use of the online health education. It must be mentioned, however, that the online-based health education measure was only accessed by 66.6% of the participants in the IG, which is a serious disadvantage of this technology as it does not automatically provide any option to ensure that the content is consumed as desired. As a further development, it would be imaginable to monitor participation and contact participants who did not use the offered measure (closed system in which activity can be monitored). This way it would be possible to monitor missing utilization at every measurement occasion, assess reasons for non-utilization and improve the concept accordingly. For complex interventions, intervention effects cannot be ascribed to specific parts of the intervention but only to the concept as a whole. In future studies, the study design could be modified in terms of adding two more intervention groups (one group only getting online-based health education and one group only getting the products). This would enable examining whether a specific component of the intervention is particularly effective or whether the two-part intervention concept only works as a whole. Moreover, hands-on teaching with practical exercises might be more effective in improving behaviour. Prospectively, the described intervention could be used as is or could—when the pandemic conditions again facilitate face-to-face methods of health education—partly be adapted and integrated into these educational concepts also in order to increase participation. Particularly, healthcare trainees may benefit from such interventions in order to prevent onset of HE at an early career stage.

5 Conclusion

The results of this study highlight that realization of adequate infection control concomitant with appropriate hygiene measures should go hand in hand with the implementation of adapting skin care regimes in order to efficiently promote skin health in HCWs. This may prevent individual suffering and impaired quality of life caused by HE as well as minimize costs of illness for social insurance systems and employers. Additionally, the manpower of HCWs—who are urgently needed—is preserved, which seems especially relevant in light of the ongoing COVID-19 pandemic. The present study contributes to addressing the need of detailed, comprehensive and purposeful interventional studies with the aim of preventing occupational dermatoses in HCWs, which has frequently been demanded by experts. It is conceivable that the intervention might also be effective in various other skin hazardous professions, even beyond the human service sector.

Author Contributions

Cara Symanzik: conceptualization (lead); data curation (lead); formal analysis (lead); investigation (lead); methodology (lead); project administration (lead); visualization (lead); writing – original draft preparation (lead); writing – review & editing (equal); Lukasz Stasielowicz: data curation (equal); formal analysis (equal); software (lead); writing – review & editing (equal); Richard Brans: conceptualization (equal); methodology (equal); writing – review & editing (lead); Christoph Skudlik: conceptualization (supporting); funding acquisition (lead); methodology (supporting); writing – review & editing (equal); Swen M. John: conceptualization (lead); funding acquisition (lead); methodology (lead); project administration (lead); resources (lead); supervision (lead); writing – review & editing (lead).

Acknowledgements

This study was supported by a restricted monetary and material donation (study products) from Beiersdorf AG, Hamburg, Germany. Beiersdorf AG had no role in study design, data collection and analysis, decision to publish or preparation of the manuscript. The authors would like to thank Dr Michaela Kolodziej and Veronika Buß for their assistance in clinical examinations. Open Access funding enabled and organized by Projekt DEAL.

Conflict of Interest

The authors declare no conflict of interest.

Data Availability Statement

The data that support the findings of this study are available from the corresponding author upon reasonable request.

ORCID

Cara Symanzik https://orcid.org/0000-0002-4090-6726
Lukasz Stasielowicz https://orcid.org/0000-0001-7938-4681
Richard Brans https://orcid.org/0000-0002-1245-024X
Christoph Skudlik https://orcid.org/0000-0002-5670-8396
Swen Malte John https://orcid.org/0000-0001-5406-9458

References

1. Antonov D, Schliemann S, Elsner P. Hand dermatitis: a review of clinical features, prevention and treatment. Am J Clin Dermatol. 2015; 16(4):257-270.
2. Ibler KS, Jemec GBE, Flyhvolm M-A, Diepgen TL, Jensen A, Agner T. Hand eczema: prevalence and risk factors of hand eczema in a population of 2274 healthcare workers. Contact Dermatitis. 2012;67(4):200-207.

3. Agner T, Elsner P. Hand eczema: epidemiology, prognosis and prevention. J Eur Acad Dermatol Venereol. 2020;34(suppl 1):4-12.

4. Küster D, Haufe E, Retberg C, Bauer A, Seidler A, Schmitt J. Health utilities for controlled and uncontrolled chronic hand eczema in healthcare employees. Contact Dermatitis. 2018;78(1):18-27.

5. Passlov HM, Pontén Å, Björk J, et al. Hand strength and dexterity in individuals with severe chronic hand eczema. J Eur Acad Dermatol Venereol. 2020;34(12):2856-2862.

6. Diepgen TL, Purwins S, Posthumus J, Kuessner D, John SM, Augustin M. Cost-of-illness analysis of patients with chronic hand eczema in routine care in Germany: focus on the impact of occupational disease. Acta Derm Venereol. 2013;93(5):538-543.

7. Cortesi PA, Scalone L, Belsari A, et al. Cost and quality of life in patients with severe chronic hand eczema refractory to standard therapy with topical potent corticosteroids. Contact Dermatitis. 2014;70(3):158-168.

8. Symanzik C, Kezic S, Jakasa I, et al. Effects of skin washing frequency on the epidermal barrier function and inflammatory processes of the epidermis: an experimental study. Contact Dermatitis. 2022;87:241-246. doi:10.1111/cod.14119

9. Balato A, Ayala F, Bruze M, et al. European task force on contact dermatitis statement on coronavirus disease-19 (COVID-19) outbreak and the risk of adverse cutaneous reactions. J Eur Acad Dermatol Venereol. 2020;34(8):e353-e354.

10. Metin N, Turan C, Ulu Z. Changes in dermatological complaints among healthcare professionals during the COVID-19 outbreak in Turkey. Acta Dermatovenerol Alp Pannonica Adriat. 2020;29(3):115-122.

11. Lan J, Song Z, Miao X, et al. Skin damage among health care workers during the COVID-19 pandemic: do we need specific attention or prevention strategies? Contact Dermatitis. 2020;83(5):422-423.

12. Lin P, Zhu S, Huang Y, et al. Adverse skin reactions among healthcare workers during the coronavirus disease 2019 outbreak: a survey in Wuhan and its surrounding regions. Br J Dermatol. 2020;183(1):190-192.

13. Erden Y, Altunay I, Aksu Çerman A, et al. The risk of hand eczema in healthcare workers during the COVID-19 pandemic: do we need specific attention or prevention strategies? Contact Dermatitis. 2020;83(5):422-423.

14. Ibler KS, Jemec GB, Agner T. Exposures related to hand eczema: a study of healthcare workers. Contact Dermatitis. 2012;66(5):1215-1216.

15. Lin P, Zhu S, Huang Y, et al. Adverse skin reactions among healthcare workers during the coronavirus disease 2019 outbreak: a survey in Wuhan and its surrounding regions. Br J Dermatol. 2020;183(1):190-192.

16. Ibler KS, Jemec GB, Diepgen TL, et al. Skin care education and individual counselling versus treatment as usual in healthcare workers with hand eczema: randomised clinical trial. BMJ. 2012;345:e7822.

17. Thyssen JP, Schutteelaar MLA, Alfonso JH, et al. Guidelines for diagnosis, prevention, and treatment of hand eczema. Contact Dermatitis. 2022;86(5):357-378. doi:10.1111/cod.14035

18. Skudlik C, DULON M, Pohrt U, Appl KC, John SM, Nienhaus A. Osnabrück hand eczema severity index - a study of the interobserver reliability of a scoring system assessing skin diseases of the hands. Contact Dermatitis. 2006;55(1):42-47.

19. DULON M, Nübling M, Skudlik C, Nienhaus A. Validierung des Osnabrück Handekzem-Schwere-Index. Zentralbl Arbeitsmed Arbeitsschutz Prophyl Ergonomie. 2010;60(9):304-305.

20. DULON M, Skudlik C, Nübling M, John SM, Nienhaus A. Validity and responsiveness of the Osnabrück Hand Eczema Severity Index (OHSI): a methodological study. Br J Dermatol. 2009;160(1):137-142.

21. Reich A, Wilke A, Gediga G, et al. Health education decreases incidence of hand eczema in metal work apprentices: results of a controlled intervention study. Contact Dermatitis. 2020;82:350-360.

22. Susitala P, Flyhvolm MA, Meding B, et al. Nordic Occupational Skin Questionnaire (NOSQ-2002): a new tool for surveying occupational skin diseases and exposure. Contact Dermatitis. 2003;49(2):70-76.

23. van Buuren S. Flexible Imputation of Missing Data. Chapman and Hall/CRC; 2018.

24. Moher D, Schulz KF, Altman D. The CONSORT statement: revised recommendations for improving the quality of reports of parallel-group randomized trials. JAMA. 2001;285(15):1987-1991.

25. Soltanipoor M, Rustrumeyer T, Sluter JK, Hines J, Frison F, Kezic S. Evaluating the effect of electronic monitoring and feedback on hand cream use in healthcare workers: healthy hands project. Contact Dermatitis. 2019;80(1):26-34.

26. Bregnhøj A, Sasted H, Menné T, Johansen JD. Validation of self-reporting of hand eczema among Danish hairdressing apprentices. Contact Dermatitis. 2011;65(3):146-150.

27. Quaade AS, Simonsen AB, Halling A-S, Thyssen JP, Johansen JD. Prevalence, incidence, and severity of hand eczema in the general population – a systematic review and meta-analysis. Contact Dermatitis. 2021;84(6):361-374.

28. Skudlik C, DULON M, Wendeler D, John SM, Nienhaus A. Hand eczema in geriatric nurses in Germany - prevalence and risk factors. Contact Dermatitis. 2009;60(3):136-143.

29. Hamмерius N, Svedman C, Bergendorff O, Bjork J, Bruze M, Ponten A. Wet work exposure and hand eczema among healthcare workers: a cross-sectional study. Brit J Dermatol. 2018;178(2):452-461.

30. Smit HA, Coenraads PJ, Lavrijsen APM, Nater JP. Evaluation of a self-administered questionnaire on hand dermatitis. Contact Dermatitis. 1992;26(1):11-16.

31. Dickel H, Bruckner TM, Schmidt A, Diepgen TL. Impact of atopic skin diathesis on occupational skin disease incidence in a working population. J Invest Dermatol. 2003;121(1):37-40.

32. Graversgaard C, Agner T, Jemec GBE, Thomsen SF, Ibler KS. A long-term follow-up study of the hand eczema trial (HET): a randomized clinical trial of a secondary preventive programme introduced to Danish healthcare workers. Contact Dermatitis. 2018;78(5):329-334.

33. Symanzik C, Skudlik C, John SM. Acceptance of skin products in healthcare workers: an empirical investigation. Occup Med. 2022. doi:10.1093/occmed/kqac046. Epub ahead of print.

34. Lidén C, Yazar K, Johansen JD, Karlborg AT, Uter W, White IR. Comparative sensitizing potencies of fragrances, preservatives, and hair dyes. Contact Dermatitis. 2016;75(5):265-275.

35. Criquet M, Roure R, Dayan LA, Lollent V, Bertin C. Safety and efficacy of personal care products containing colloidal oatmeal. Clin Cosmet Investig Dermatol. 2012;5:183-193.

36. Madan I, Parsons V, Ntani G, et al. A behaviour change package to prevent hand dermatitis in nurses working in the National Health Service: results of a cluster randomized controlled trial. Br J Dermatol. 2020;183(3):462-470.

37. Molinerus A, Harboe G, Johansen JD. User evaluation of patient counselling, combining nurse consultation and eHealth in hand eczema. Contact Dermatitis. 2016;74(4):205-216.

38. Araghi F, Tabary M, Geisari M, Abdullahi Majid F, Dadkhahfar S. Hand hygiene among health care workers during COVID-19 pandemic: challenges and recommendations. Dermatitis. 2020;31(4):233-237.

39. Beiu C, Mihai M, Popa L, Cima L, Popescu MN. Frequent hand washing for COVID-19 prevention can cause hand dermatitis: management tips. Cureus. 2020;12(4):7506-7512.
40. Hillier MD. Using effective hand hygiene practice to prevent and control infection. Nurs Stand. 2020;35(5):45-50.

41. Tan SW, Oh CC. Contact dermatitis from hand hygiene practices in the COVID-19 pandemic. Ann Acad Med Sing. 2020;49(9):674-676.

42. Larese Filon F, Pesce M, Paulo MS, et al. Incidence of occupational contact dermatitis in healthcare workers: a systematic review. J Eur Acad Dermatol Venereol. 2021;35(6):1285-1289.

43. Brans R. Hand dermatitis in nurses: is promotion of protective behaviour ineffective? Br J Dermatol. 2020;183(3):411-412.

44. Wachtler B, Neuhauser H, Haller S, et al. The risk of infection with SARS-CoV-2 among healthcare workers during the pandemic. Dtsch Arztebl Int. 2021;118(49):842-843.

SUPPORTING INFORMATION

Additional supporting information can be found online in the Supporting Information section at the end of this article.

How to cite this article: Symanzik C, Stasielowicz L, Brans R, Skudlik C, John SM. Prevention of occupational hand eczema in healthcare workers during the COVID-19 pandemic: A controlled intervention study. Contact Dermatitis. 2022;87(6):500-510. doi:10.1111/cod.14206