Monitoring of Various Crucial Parameters and Control of Salinity Damage in Banana Crop (Banntex) using WSN and IoT

Lina Desai, R.P. Singh, D.G. Khairnar

Abstract—In India 60 percent of total cultivated land is fully dependent on rain and if there is less than average rain fall than it results into significant reduction in the overall agricultural production and it leads heavy losses to farmers and ultimately it affects the overall gross domestic production of India. Banana is an important fruit and it is one of good cash crop in India. In this research work, our aim is to design and implement Banana Crop System (Banntex) to sense crucial parameters and early detection of diseases and control using Wireless Sensor Networks (WSN) and Internet of Things (IoT). To implement Banntex we uses advancement of new technology like Internet of Things (IoT), Sensors development and Improved Wireless Sensor Networks, we can design and developed Precision Agriculture systems in which various sensors are used to measure the different parameters like temperature of air and soil, relative humidity, water potential of banana field, pH value of soil, Electric conductivity of soil, salinity of banana field soil, Moisture changes in soil, soil quality, fertility of soil, ground water quality and crop growth. Based on the measured parameters this system can be used to control and automate the farming processes. This precision system empowers farmers to keep updated, early detection of soil parameters and take necessary steps to improve it further. It results to improve the biomass, roots and overall growth of banana crops and finally it increases productivity and improved quality of farming with minimum manual tasks. Experimental results will show the significant improvement in the Banana crop production and Quality of Banana Fruit using our proposed Banntex System.

Keywords—Monitoring System, Banntex, Wireless Sensor Networks, Parameters, soil temperature, relative humidity, water potential of banana field, pH value of soil, Electric conductivity of soil, salinity of banana field soil, Moisture changes in soil, Cloud Database Server, Banana Crops, Productivity.

I. INTRODUCTION

Now a day due to WSN and IoT, the precision agriculture technologies are taking front row seats in agriculture research [1, 2, 3, 4, 5 and 6]. The research in this field include the monitoring and supply of required parameters with precision to the crop which can prevent the diseases and increase the productivity with minimal and precise input. Precision Agriculture provides the one kind of decision support system for farm management [6, 7, 8, 9, 10, 11, 12 and 13].

In this research, we build and develop of precision agriculture system for monitoring different parameters and uses of it to take necessary action so that it improves the growth of Banana Crops and results into significant improvement of banana crop yields [14, 15, 16, 17, 18, 19 and 20]. The monitoring system for banana crop using wireless sensors will be use for sensing and measuring various crucial parameters. Afterwards these sense parameters will be use to take necessary steps to control and automation of Precision Monitoring System of Banana Crop (Banntex) using WSN and IoT.

II. PROBLEM DESCRIPTION AND IMPORTANCE OF SOIL PROPERTIES AND VARIOUS PARAMETERS FOR BANANA CROPS GROWTH

In this research work, we formulate the problem and discussed the importance of various parameters and banana field properties. A major constrain to optimum growth of banana crop and productivity is due to unbalance soil properties and fertility. Soil fertility and properties can be measured and corrected using our proposed Banntex system using IoT. But farmers must be aware and they need precision parameter monitoring system to arrive at the correct decisions regarding required nutrition’s and supply of fertilizers to balance soil properties and other parameters. Banana crop grows well in a certain air and soil temperature range, it needs correct relative humidity. Irrigation of water whenever required is also very much important for banana crop [21, 22, 23 and 24]. For banana cultivation, deep, rich loamy soil with correct pH value is at most important. Soil for banana crop should have good drainage, adequate fertility and soil moisture is essential for the optimum growth of banana plants. Saline solid, calcareous soils are not suitable for banana crop cultivation [25, 26, 27 and 28].

If soil contains more salt or water it causes the stress and subsequent stress is visible [29, 30, 31 and 32]. Figure 1 shows the effect of soil with more salinity in banana crops.
There are many conventional or traditional methods for measuring and evaluating status of soil properties and contains. To decide requirements of fertilizer for the specific crop e.g. Effects soil parameters and contents of nutrient. Experiments using field pot, testing of soil and analysis of plants. In these traditional methods, soil samples are sent to a testing laboratory where the researches operate the equipments, it is time consuming, labor intensive and costly. There are few more demerits like high threshold, more cost, more steps and costly equipments required. It is impossible to measure the soil salinity and other contents quickly. In our proposed method we can overcome all these demerits [33, 34, 35, 36, 37 and 38]. In this research work, we developed Precision Monitoring System for Banana Crop Using IoT and WSN (Banntex). A soil which is neither too acidic nor too alkaline, rich in organic material with balance salinity content is good for banana crops. Our aim is to increased productivity of banana fruits (Production Yield). We can measure and take necessary actions to balance requirements using our proposed Precision Monitoring System for Banana Crop so that there is complete growth of plants with good productivity.

III. BANNTEX SYSTEM BLOCK DIAGRAM

Banntex system consists of four layers: physical or sensor layer, network management or communication layer, service support or monitoring layer and IoT application or services layer. Each and every layer is very important and has certain roles and responsibilities in Banntex System. Sensor or physical layer is used for crucial information collection and it consists of various sensors, actuators etc. Crucial sensors are helps to sense and measure the various parameters like temperature of air and soil, relative humidity, water potential of banana field, pH value of soil, Electric conductivity of soil, salinity of banana field soil, Moisture changes in soil, soil quality, and fertility of soil, water ground quality, and crop growth in the real field. Network management or communication layer acts as second important layer of Banntex system. This layer consists of various communication technologies such as Routers, Gateways, NFC, RFID, GSM, Wi-Fi, 3G, 4G, UMTS, Bluetooth, BLE, ZigBee, SLowPAN, Wireless Metropolitan Access Networks, Broadband Wireless Access (BWA) WiMax, etc. Various Gateways, Routing Addressing, Networking and Transportation protocols are used as enabling technologies for smooth functioning of this layer. Internet Connectivity, strong and proper security and monitoring are very crucial and necessary and it is supported and provided by third layer called as Service support or monitoring layer. Roles and responsibilities executed and maintained in this layer are data formation, classification and creation, proper monitoring and correct decision making etc. are happened in service support or monitoring layer. IoT Application and services is the fourth layer in Banntex. In this layer all Precision Agriculture applications are monitored, operated and integrated so that it can be used for user friendly interface applications. In this layer various end users like farmers, smart phones, and personal controlling devices are used to monitor and control the precision agriculture fields. With the help of this user friendly layer, farmers can take prompt and correct decision to take necessary actions to protect their crops from various unbalance parameters and can also find out the soil or nutritional deficiencies if any and supply the balanced fertilizers to make crops more and more healthy and produces better fruits or food production with excellent yield. Figure - 2: Structural Diagram of Precision Monitoring System of Banana Crop (Banntex) Using IoT and WSN.

Figure–1: Soil with More Salinity Starts Damages in Banana crops.

Figure–2: Structural Diagram of Precision Monitoring System of Banana Crop (Banntex).
technologies [18, 19, and 20].

Figure 3-(b)

Figure 3: (a & b) Block Diagram of Hardware and Software Architecture of Banntex Using Wireless Communication Protocols

IV. EXPERIMENTAL RESULTS AND ITS ANALYSIS

In this research, our aim is to increase the productivity of banana fruits (Production Yield) with the help of proposed improved precision agriculture system (Banntex). Initially we focused on most important parameters, like air temperature, soil temperature, relative humidity, relative moisture of banana fields soil, pH value, water potential of banana field soil, Electric Conductivity of soil, salinity of banana field soil etc. Our proposed system is used to sense and measure all these important parameters and further it is utilized for monitoring, controlling and actuation purpose. Data Sensing and Measuring stage consists of many data sensing, monitoring and measuring sensor nodes. Various sensors are deployed at many locations to sense, measure and monitor required parameters. Different crucial sensors are temperature, humidity, soil sensors to measure quality of soil, temperature of soil and air, moisture of soil, soil quality, Salinity of soil and fertility of soil etc. Selection of right sensor is done after study of detailed technical specifications and necessary features.

Subsection – IV.1 Measurement Of Temperature And Relative Humidity Of Real Time Banana Field

In our experiments, initially we focused on two most important parameters, like temperature and relative humidity of real time banana fields. Banana Field Monitoring and Measuring: In our research and experimental arrangement, banana field was monitored and measured and monitored the actual temperature and relative humidity. Measured real time data is transmitted to coordinator (sink node) and all measured data was scanned at 15 seconds time interval and through Gateways it is transmitted using wireless network protocol to the cloud at every 10 minutes interval.

Figure 4: Measured Temperature from Various Sensors from Three Different Locations in Real Time Banana Field.

The sensor nodes and coordinator (Sink Node) is around 20 to 25 meters and it was increased or decreased on the basis of reliable and robust connection establishment. We also found that, the reliable distance between sensor nodes and coordinators (Sink Nodes) is around 22 meters. Banana field real time arrangement measures and monitored the actual temperature and relative humidity. Measured real time data is transmitted to coordinator (sink node) and all measured data was scanned at 15 seconds time interval and through Gateways it is transmitted using wireless network protocol to the cloud at every 10 minutes interval.

Figure 5: Relative Humidity Measurement Using Three Sensors in Real Time Banana Field.

Various Measured values of temperatures and relative humidity in real time banana field are presented in Figure 4 and Figure 5. There are many sensors to measure the temperature and relative humidity values from 9 am to 6 pm at regular interval of time. The minimum temperature measured was 11.50°C and maximum temperature recorded was...
37.60°C. Similarly, minimum and maximum relative humidity measured was 52% and 78% respectively. A banana plant grows well in 15 to 35°C temperature range and 75 to 85% of a relative humidity. Due to optimum growth of banana plant results into significant increase in banana Yield.

Subsection – Iv.Ii Measurements Of Soil Properties In Real Time Banana Crop
In these research experiments, we used various sensors to measured the different parameters like temperature of air and soil, relative humidity, water potential of banana field, pH value of soil, Electric conductivity of soil, salinity of banana field soil, Moisture changes in soil, soil quality, fertility of soil, ground water quality and crop growth in field.

Figure 6: Measurement of Water Potential of Banana Field Soil (kPa) for the Duration of January 2019 to December 2019.

Our Banntex system using IoT allows us to measure the soil properties in real time and we recorded all the results. Sensors used to measure Water Potential are buried under the soil in banana field for the period of twelve months (from January 2019 to December 2019). The other parameters like Air temperature and other factors are also used as references.

Figure 7: Variation in Measured Electric Conductivity (μS/cm) of Banana Field Soil (January 2019 to December 2019)

Figure 6 and 7 demonstrated the measurements and variations of Water Potential of Banana field soil (kPa) and Electric Conductivity (μS/cm) of banana field soil from January 2019 to December 2019. These measured parameters results help us for the measurement of various soil properties. Measured soil properties are further useful for various precision agriculture and banana crop cultivation decisions. Variations in these parameters are because of many events like rain fall, irrigation, fertilization and we can correlate these changes for further decisions and actuation purposes with the help of our proposed Banntex System using IoT.

Figure 8: Measured Air and Soil Temperature for one Year Duration (2019)

Figure 8: shows the example of measured air temperatures and soil temperatures of banana field for duration of complete one year 2019. From the presented example we can conclude that, variations in measured air temperature are much higher than the measured soil temperature. It is because of banana fields soil heat capacity is relatively higher than air and there are variations in soil temperature due to water content in soil changed due natural events like rain or hot summer and artificial activities like irrigation and fertilization by farmers.

Subsection – Iv.Iii Measurements Of Ph Value And Comparasion Of Effect Of Salinity Soil In Banana Crop Biomass Using Banntex.

Optimum Yield Production Formula: We defined the optimum yield production formula for our precision agriculture system

\[
Y = \text{Temperature} (T) \times \text{Soil Moisture} (M) \times \text{Area of Banana Crop Field} (A) \times 100
\]

T = Optimal Temperature Range (Banana Crops) 15 to 35°C.

M = Soil Moisture Suitable Temperature Range (Banana Crops) 75 to 85%

In India, four months of monsoon June to September with an average rainfall is most important for vigorous vegetative growth of banana plant. Figure 9 shows example of pH value Measurement of Banana Field Soil from January 2019 to December 2019. Deep, rich loamy soil with pH value between 6.5 to 7.5 is most preferred for banana cultivation. Soil for banana should have good drainage, adequate fertility and moisture. Saline solid, Calcareous soils are not suitable for banana cultivation. A soil which is neither too acidic nor too alkaline, rich in organic material with high nitrogen content, adequate phosphorus level and plenty of potash is good for banana.
Since in real-time banana plants needs correct soil parameters to get the maximum growth and yield of banana fruits, in our experiments we measured all soil properties present in banana field using our proposed Banntex method using IoT and WSN and experimental results are compared with conventional method. As shown in graphical results we conducted different sets of experiments, using conventional method and our Banntex method. We observed effect of salinity soil (variation from 0 to 12 [EC ds/m]) in banana crop biomass (Dry matter relative 100% =0.9 ds/m).

As shown in Figure 10, banana plants biomass is more in case of Banntex using IoT and WSN method compared to conventional method. There is Banana crop and root mass reduction because of increase in salinity in soil. Salinity makes reverse impact on root growth of banana plant afterwards stress it is clearly visible. Proposed Banntex method also helps to reduce stress in banana plant and it clearly visible.

V. CONCLUSION

Due to advancement of new technology like Internet of Things (IoT), Sensors development and Improved Wireless Sensor Networks, we can design and developed Precision Agriculture Systems named as Banntex in which various sensors are used to measure the different parameters like temperature of air and soil, relative humidity, water potential of banana field, pH value of soil, Electric conductivity of soil, salinity of banana field soil, Moisture changes in soil, soil quality, fertility of soil, ground water quality and crop growth the banana field. Experimental results of the proposed Banntex system using IOT & WSN indicated that, the performance of Banntex system is much better than conventional method. There is significant increase in the root growth and crop biomass of banana plant. Banntex method also helps to reduce stress in banana plant and it clearly visible. Research Experiments have illustrated that, there is significant improvement in banana plants yield using Banntex method compared to traditional method. The proposed system is helping farmers to take a decision at right time so that they can properly balanced soil properties and maintain in real time banana field and it results to achieve the optimum yields of banana fruits. At the end, it can be concluded that in every situations the Banntex approach is found to be perform better than conventional method. Therefore Banntex using IoT and WSN is definitely a better approach for the precision agriculture.

Funding: This study was not funded.

Conflict of Interest: The authors are declaring that they have no conflict of interest.

REFERENCES

1. R. F. Maia, and A.L. Tran, “Precision Agriculture Using Remote Monitoring System in Brazil”, 2017, 987-1-5090-6046-7/17, IEEE.
2. S. Ko, Y. Cho, S. Kim, D. Jin, H. Song, J. Chung, D. Yim, A. Smith, “LoRa Network Performance Comparison between Open Area and Tree Farm based on PHY Factors”,2018, 978-1-5386-2092-2/18, IEEE.
3. S. Aashi, S. Shilpi, “Analysis on data mining models for internet of things”, International Conference on I-SMAC (IoT in Social Mobile Analytics and Cloud) (I-SMAC) IEEE, vol. 2, no. 2, 2017, pp. 94-100.
4. M. Donatelli, R. D. Magarey, S. Bregaglio, L. Willocquet, J. P. M. Whish, S. Savary, Modelling the impacts of pests and diseases on agricultural systems, Research Center for Agriculture and Environment, Elsevier, 2017, pp. 213-224.
5. T. Thomas, D. Anh, W. Khan, “An IoT environmental data collection system for fungal detection in crop field”, 30th Canadian Conference on Electrical and Computer Engineering (CCECE) IEEE, 2017, pp. 1-4.
6. A. Saeed, N. Adnan, B. Abdul, “Pest detection and control techniques using wireless sensor network: A Review”, Journal of Entomology and Zoology Studies Research Gate, 2015, pp. 92-99.
7. C. Archan, K. J. Vijay, M. Debajyoti, ”Using IoT for integrated pest management”, International Conference on Internet of Things and Applications (IOTA) IEEE, 2016, pp. 17-22.
8. P.P. Fathima Dheena, G.S. Raj, G. Dutt, V.J. S, ”IOT Based Smart Street Light Management System”, 2017 IEEE Int. Conf. Circuits Syst. IOT, 2017, pp. 368-371.
9. P.B. Jarande, S.P. Murarak, N.S. Vast, Ubaale N P, S.S. S, ”Robotic Vacuum Cleaner Using Arduino with wifi”, 2018 Second Int. Conf. Inven. Commun. Comput. Technol., 2018, pp. 1513-1517.
10. S. Athani, C. Tejeshwar, M.M. Patil, P. Patil, R. Kulkarni, ”Soil moisture monitoring using IoT enabled arduino sensors with neural networks for improving soil management for farmers and predict seasonal rainfall for planning future harvest in North Karnataka - India”, Int. Conf. I-SMAC (IoT Soc. Mobile Anal. Cloud), 2017 pp. 43-48.
11. H.V. Bhatnagar, P. Kumar, S. Rawat, T. Choudhury, “Implementation model of Wi-Fi based Smart Home System”, 2018 Int. Conf. Adv. Comput. Commun. Eng., 2018, pp. 23-28.
12. M. Caria, J. Schudrowitz, A. Jukan, N. Kemper, "Smart farm computing systems for animal welfare monitoring", 40th International Conference on Information and Communication Technology Electronics and Microelectronics (MIPRO) , 2017.
13. D. T. Hai, L. H. Son, T. L. Vinh, “Novel fuzzy clustering scheme for 3D wireless sensor networks”, Applied Soft Computing, vol. 54, 2017, pp. 141-149.
14. C. XianYi, J. Zhi Gang, Y. Xiong, “Design of Tropical crops pests monitoring system based on wireless sensor network”, Consumer Electronics, Communications and Networks (CECENet), 2012.
15. U. Shafi, R. Mumtaz, J. G. Nieto, S. A. Hassan, S.A. Zaidi and N. Iqbal, “Precision Agriculture Techniques and Practices:From Considerations to Applications”, Journal of Sensors, 19, 2019, 3796; doi:10.3390/s19173796.
16. N. Kaewnard, S. Saiyoi, “Sensor Data Collection and Irrigation Control on Vegetable Crop Using Smart Phone and Wireless Sensor Networks for Smart Farm”, IEEE Conference on Wireless Sensors (ICWSEN), Subang, Malaysia, October, 26-28, 2014.

17. W. Chieh Taa, Y. Chuan Tseng, J. Chiang, Y. Sin Lin, W. Yaw Chung, K. Chiu Wu, Y. Han Yeh, “Development of a Multi-parameter Plant Growth Monitoring and Control System for Quality Agriculture Application ”, Proceedings of the IEEE International Conference on Applied System Innovation.IEEE-ICASI -Meen, Prior & Lann (Eds), 2017.

18. Y. S. Research on the Model for Crop Water Requirements in Wireless Sensor Networks”, International Conference on Management of e-Commerce and e-Government, 2012, pp. 234 – 237.

19. J. Huchtkoetter,A. Reinhardt, U. Kulau, “PULSEHV: Opportunistic Data Transmissions over High Voltage Pulses for Smart Farming Applications”, IEEE International Conference on Distributed Computing in Sensor Systems, 2018.

20. M. Culman, M. T. Jesus, C. Bayona, C. Miceli de Farias, “PalmNET: an open-source wireless sensor network for oil palm plantations”, IEEE International Conference on Networking, Sensing and Control, 2017.

21. S. Parvin, A. Gawanmeh, S. Venkatraman, “Optimised Sensor Based Smart System for Efficient Monitoring of Grain Storage”, IEEE International Conference on Communications Workshops (ICC Workshops), 2018.

22. J. Huchtkoetter,A. Reinhardt, U. Kulau, “PULSEHV: Opportunistic Data Transmissions over High Voltage Pulses for Smart Farming Applications”, IEEE International Conference on Distributed Computing in Sensor Systems, 2018.

23. S. Renugumman, S. Phongsuasworn, P. Sureratanakorn, Applied Internet of Things for Smart Hydroponic Farming Ecosystem (HFE) : IEEE 10th International Conference on Ubi-media Computing and Workshops (Ubi-Media), 2017.

24. B. Bhanu, R. Rao, J.V.N. Ramesh and M. Ali husain, “Agriculture Field Monitoring and analysis using Wireless Sensor Networks for improving Crop Production”, Eleventh International Conference on Wireless and Optical Communications Networks (WOCN) 2014.

25. R. Khan, I. Ali, M. Zakarya, M. Ahmad, M. Imran, and M. Shoaib, “Technology-Assisted Decision Support System for Efficient Water Utilization: A Real-Time Test bed for Irrigation Using Wireless Sensor Networks”, IEEE Access, Multidisciplinary Rapid Review Open Access Journal, Volume 6, 2018, pp. 25666 -25679.

26. R. Kamath, M. Balachandra, and S. Prabhu, “Raspberry Pi as Visual Sensor Nodes in Precision Agriculture: A Study”, IEEE Access , Multidisciplinary Rapid Review Open Access Journal, Volume 7, 2019, pp. 45110 -45122.

27. K. P. Seng, L. M. Ang, L. M. Schmidtke, and S. Y. Rogies, “Computer Vision and Machine Learning for Viticulture Technology”, IEEE Access, Multidisciplinary Rapid Review Open Access Journal, Volume 6, 2018, pp. 67494-67510.

28. F. Viani, M. Bertolli, M. Salucci, and A. Polo,”Low-Cost Wireless Monitoring and Decision Support for Water Saving in Agriculture”, IEEE Sensors Journal, Vol. 17, No.13, July 2017, pp. 4299 –4309.

29. S. Aashi, S. Shilpi, “Analysis on data mining models for internet of things”, International Conference on I-SMART (IoT in Social Mobile Analytics and Cloud) (I-SMAC) IEEE, vol. 2, no. 2, 2017, pp. 94-100.

30. F.S. Melton, L.F. Johnson etc., “Satellite Irrigation Management Framework for Integration of Satellite and Surface Observations to Support Improvements in Agricultural Water Resource Management”, IEEE Journal Of Selected Topics In Applied Earth Observations And Remote Sensing, Vol. 5, No. 6, December 2012, pp. 1709 – 1721.

31. B. Wang, X. Deng, W. Liu And L.T. Yang, H. C. Chao, “Confident Information Coverage In Sensor Networks For Field Reconstruction”, IEEE Wireless Communications, December 2013, pp. 74 – 81.

32. Y. Kim, R. G. Evans, and W. M. Iverson, “Remote Sensing and Control of an Irrigation System Using a Distributed Wireless Sensor Network”, IEEE Translations On Instrumentation and Measurement, Vol. 57, No. 7, July 2008, pp. 1379 – 1387.

33. W. Qiu, F. Wang, L. Dong, H. Yan, “Design of Intelligent Greenhouse Environment Monitoring System Based on ZigBee and embedded technology”, IEEE, 2014, 978-1-4799-47576.

34. L. Dan, C. Xin, H. Chongwei, J. Liangliang, “Intelligent Agriculture Greenhouse Environment Monitoring System Based on IOT Technology”, International Conference on Intelligent Transportation, Big Data & Smart City, 2015, pp. 487 – 490.

35. T. Wang, G. Zhang, X. Yang, L. Huang, “A New Architecture in greenhouse Soil Solution Monitoring System Based on ZigBee Protocol”, Journal of Network, 2014, pp.2622 – 2628.

36. C. Radu, O. Hancu, I. Alexandra, “Smart Monitoring of Potato Crop:A Cyber-Physical System Architecture Model in the Field of Precision Agriculture” International Conference, on Agriculture for Life, Life for Agriculture, 2015, pp.73-79.

37. S. Ko, Y. Cho, S. Kim, D. Jin, H. Song, J. Chung, D. Yim, A. Smith, “LoRa Network Performance Comparison between Open Area and Bee Farm based on PHY Factors”, 978-1-5386-2092-2/18, 2018, IEEE.

38. P. Abouzarr, D.G. Michelson, and Maziyar Hamdi, “RSSI-Based Distributed Self-Localization for Wireless Sensor Networks Used in Precision Agriculture”, IEEE Transactions On Wireless Communications, Vol. 15, No. 10, October 2016.

39. A. Saeed, N. Adnan, B. Abdul, “Pest detection and control techniques using wireless sensor network: A Review”, Journal of Entomology and Zoology Studies Research Gate, 2015, pp. 92-99.

AUTHOR PROFILE

Lina D. Desai: She is a Ph.D. Research Scholar at Sri Satya Sai University of Technology & Medical Sciences, Sehore, MP, India. She has more than ten years experience in R & D and Teaching field. She holds the B.E. degree in Electronics & Telecommunication Engineering from University of Dr. BAMU 2009, Master of Engineering from Department of Electronics & Telecommunication Engineering, from Pune University, India , in 2012. From 2010 to 2013 she was approved full-time Assistant Professor in E&T Department at D.Y. Patil college of Engineering, Amravati, India. From 2013 to 2016, she was Assistance Professor in Department of E&T Engineering at Sri Satya Sai University, Sehore (M.P.). She was Professor at Maulana Azad National Institute of Technology, Bhopal, MP. From July 2013 he is Vice Chancellor of Sri Satya Sai University, Sehore (M.P.). He holds the B.E. degree in Electrical Engineering from Maulana Azad National Institute of Technology, Bhopal, MP. He has more than 44 years of experience in Teaching, Research and Administration at various levels. He has made significant contributions in the field of Electronics Engineering and its applications to solve real time problems. His broad area of research interests are Microwave, Communication Systems, signal processing, image processing, multimedia communication, wireless sensor networks and wireless communications, and has published extensively in many areas. He has been a chief investigator for a number of sponsored and consultancy projects. He has served as a consultant to both private industries and government organizations. He is a reviewer for many leading international and national journals and conferences.

Dr. R.P.Singh: Received his BSc Electronics in ENGG (with distinction) in 1973 and M.Sc Electronics (Microwave , Communication System) in 1977 both Graduation and Post Graduation Degrees from Indian Institute of Technology (B.H.U.), Varanasi, UP, India and Ph.D. in Engineering from Maulana Azad National Institute of Technology, Bhopal, MP. From July 2013 he is Vice Chancellor of Sri Satya Sai University, Sehore (M.P.). He has been a chief investigator for a number of sponsored and consultancy projects. He has served as a consultant to both private industries and government organizations. He is a reviewer for many leading international and national journals and conferences.

Dr. D.G. Khairmar: Received the B.E. degree in Electronics Engineering from University of Pune in 1993, Master of Technology from Department of Electrical Engineering, Indian Institute of Technology, Bombay, India, in 2000 and the Ph.D. degree in Electronics and Telecommunication Engineering from Indian Institute of Technology, Powai, Bombay, India in 2008. From 1994 to 1996 he was Research and Development Engineer in Specialty Metals
From 1999 to 2000, he was Research Assistant in Department of Electrical Engineering at IIT, Bombay, India. He was the session chair for 4th International Conference on Information Technology: New Generations (ITNG’07), Nevada, Las Vegas, USA. He was Technical Committee member in 5th ITNG-2008, USA. He was selected and successfully completed AICTE UKIERI Technical Leadership and Management Program conducted by AICTE in collaboration with British Council for the joint operation of the activities under UK India Education and Research Initiative (UKIERI) Phase-III in 2018-19. He was approved full-time Principal and Professor in E & TC from 2010 to 2013 in Dr. D.Y. Patil College of Engineering, Ambi, Talagao-Dabhade, Pune, India. His research interests are in Digital Signal Processing, Internet of Things and Neural Networks, with current focus on Internet of Things using Wireless Sensor Networking. Presently he is Head of the Department and working as Professor in Electronics and Telecommunication Engineering from 2013 to till date at D.Y. Patil College of Engineering, Akurdi, Pune, Affiliated under Savitribai Phule Pune University, India. He is also recognized as Ph.D. Research Guide under Savitribai Phule Pune University.