Review Article

Does low back pain or leg pain in gluteus medius syndrome contribute to lumbar degenerative disease and hip osteoarthritis and vice versa? A literature review

MASAHIRO KAMEDA, MD1,*, HIDEYUKI TANIMAE, BSc2, AKINORI KIHARA, MS3, FUJIRO MATSUMOTO, MD, PhD4

1) Senshunkai Hospital: 2-14-26 Kaiden, Nagaokakyo, Kyoto 617-0826, Japan
2) Kichijoji Taishido Manual Medicine Office, Japan
3) Kuretake Gakuen Clinical Research Institute of Oriental Medicine, Japan
4) Takanodai Matsumoto Clinic, Japan

Abstract. [Purpose] Gluteus medius syndrome is one of the major causes of back pain or leg pain and is similar to greater trochanteric pain syndrome, which also presents with back pain or leg pain. Greater trochanteric pain syndrome is associated with lumbar degenerative disease and hip osteoarthritis. The objective of this review was to demonstrate gluteus medius syndrome as a disease entity by reviewing relevant articles to elucidate the condition. [Methods] Gluteus medius syndrome was defined as myofascial pain syndrome arising from the gluteus medius. We performed a search of the literature using the following keywords: “back pain”, “leg pain”, “greater trochanteric pain syndrome”, “degenerative lumbar disease”, “hip osteoarthritis”, and “gluteus medius”. We reviewed articles related to gluteus medius syndrome and described the findings in terms of diagnosis and treatment based on the underlying pathology. [Results] A total of 135 articles were included in this review. Gluteus medius syndrome is similar as a disease entity to greater trochanteric pain syndrome, which presents with symptoms of low back pain and leg pain. Gluteus medius syndrome is also related to lumbar degenerative disease, hip osteoarthritis, knee osteoarthritis, and failed back surgery syndrome. [Conclusion] Accurate diagnosis of gluteus medius syndrome and appropriate treatment could possibly improve lumbar degenerative disease and osteoarthritis of the hip and knee, as well as hip-spine syndrome and failed back surgery syndrome.

Key words: Gluteus medius syndrome, Low back pain, Greater trochanteric pain syndrome

(This article was submitted Sep. 19, 2019, and was accepted Nov. 7, 2019)

INTRODUCTION

Medical expenditures for the management of degenerative disease are increasing because of population aging around the world1, 2). Degenerative disease and chronic pain have been well investigated to decrease the costs and social resources required for proper management of degenerative disease and its associated pain. However, the mechanism of pain in degenerative disease is often of unknown origin3, 4).

As causes of back pain, leg pain, or hip pain, lumbar disk herniation, lumbar spinal canal stenosis (LSCS), or hip osteoarthritis can be considered differential diagnoses. In daily clinical practice, the prevalence of these conditions is not so high5, 6), and sometimes the source of the pain cannot be readily identified. Other causes of low back pain such as degenerative disk disease and degenerative facet joint disease are difficult to identify as sources of pain because the diagnosis is usually
resource-intensive, with high cost and risk in terms of proper diagnosis and management. As a result of these factors, undiagnosed back pain or leg pain is widespread in daily clinical practice; consequently, there remains a great need for improvement in pain management systems.

The term “gluteus medius syndrome (GMedS)” appeared in several reports8–11) as the gluteus medius (GMed) was identified as the muscle most commonly associated with low back pain or leg pain and the diagnosis of myofascial pain syndrome (MPS)11, 12). MPS is simply defined as pain accompanied by confirmation of pain trigger points in specific muscles13, 14). However, the causes of back pain are various, and diagnosis is difficult based on confirmation of trigger points only5). Low back pain is usually accompanied by lumbar disk or facet joint degeneration or several other conditions5). A diagnosis of MPS does not necessarily rule out other pathology and usually the presence of a various pathologies tends to complicate pain management5). Although the MPS complication rate is very high in pain management, the relationship between MPS and degenerative disease is still unknown. Various hypotheses regarding MPS have been proposed based on the muscle sliding theory, nerve compression theory, and the muscle energy theory14–17). Recently trigger point block injection under ultrasound guidance has allowed visualization of muscle sliding and has facilitated symptomatic relief18) and this may confirm the role of muscle sliding in the improvement of symptoms, but this is yet to meet consensus.

The prevalence of MPS within the context of chronic back pain or non-specific back pain is about 70–90%11, 19, 20), while the prevalence of myofascial trigger points (MTrPs) in GMed namely GMedS within the context of chronic low back pain or non-specific low back pain is about 38–68%11, 20, 21). GMedS is treated by physiotherapy, manual trigger point therapy, or trigger point block injection10, 11, 22), and in difficult cases by surgical decompression of the GMed or the cluneal nerve10, 23).

Related conditions include the greater trochanteric pain syndrome (GTPS) or trochanteric bursitis, which are similar to GMedS. GTPS presents with pain around the hip and is often accompanied by low back pain or leg pain and could be associated with hip osteoarthritis or lumbar degenerative disease (LDD)24–33). The pathology may be caused by trochanteric bursitis or gluteal tendinopathy. LDD has been reported to be related to GTPS34, 35), and GMedS is also accompanied by low back pain and some symptoms of LDD are possibly attributed to GMedS. Numerous reports have pointed out that hip osteoarthritis is related to GTPS or decreased GMed strength36–40). Thus, some symptoms of hip osteoarthritis can be possibly attributed to GMedS.

The objective of this review was to demonstrate GMedS as a disease entity, which is a major cause of low back pain or leg pain, and associated with LDD and hip osteoarthritis. Relevant articles were searched for and reviewed to clarify the diagnosis and treatment of GMedS.

METHODS

GMedS was defined as a form of MPS arising from the GMed often accompanied by low back pain, leg pain, or hip pain. A literature review was carried out in PubMed electronic databases for related English-language articles using the following keywords during the period of 1 to 31 May 2019.

1. “back pain” and “gluteus medius”
2. “leg pain” and “gluteus medius”
3. “greater trochanteric pain syndrome” and “gluteus medius”
4. “hip osteoarthritis” and “gluteus medius”
5. “lumbar degenerative disease” and “gluteus medius”
6. “lumbar degenerative disease” and “greater trochanteric pain syndrome”

Titles and abstracts were reviewed to identify articles related to GMedS. Articles related to GMedS were subjected to a full-text review and their reference lists were checked for other articles related to GMedS. Relevant articles from the reference lists were also screened and included as appropriate. Our search yielded 135 articles, and the resulting literature were divided into 6 categories.

1. Relation between GTPS and GMedS.
2. Relation between back pain and GMed.
3. Relation between LDD and GMed.
4. Relation between hip osteoarthritis and GMed.
5. Relation between leg pain and GMed.
6. Surgery-related symptoms related to GMed.

Inclusion criteria

- The keywords “gluteus medius” or “hip abductor” are included in the title or abstract.
- Exclusion criteria
 - Case reports with fewer than 5 cases.
 - Surgical treatment with total hip arthroplasty (THA).
 - No values/figures that are clearly related to GMed and back pain or leg pain.
RESULTS

A total of 135 articles were included in this review (Tables 1–1241–167). As described in the Introduction, GTPS presents with chief complaints of pain around the hip and is related to hip osteoarthritis or LDD caused by gluteal tendinopathy or trochanteric bursitis24–32 (Table 1). The prevalence of GTPS was reported to be about 1.8% among patients in a primary care clinic51, and about 20% of patients with hip pain or low back pain59, 60). However, the definition or pathology of GTPS differs depending on the era of the report or and also differs between reports30, 31). Thus, it may be difficult to consider all such presentations as the same disease entity. The prevalence of cases of GTPS with trochanteric bursitis is reported to be rather low; the prevalence of gluteal tendinopathy is 14% on all MRI in cases of hip pain44 and about 8% for cases of trochanteric bursitis46). There are strong imaging diagnostic correlations to GTPS46, 49, 52, however, gluteal tendinopathy has also been reported poorly in relation to hip pain53, 54. Still many reports adopt simple diagnostic criteria for GTPS like pain with tenderness around the hip26, 30, 31, 64, 168, 169, and may be related to the gluteal muscles (GMed and gluteus minimus). It is then possible that GTPS is part of the symptomatology of GMedS because GTPS is similar to GMedS.

Hip abductor strength, and walking speed were decreased in GTPS cases comparison with healthy controls59, 60. Hip range of motion on the affected side compared with the contralateral side was significantly decreased in GTPS58), and muscle strength is useful for diagnosing GTPS.

GTPS is treated using various methods including rest, reduced weight-bearing, medication, exercise, corticosteroid injection, extracorporeal shockwave therapy (ESWT), and surgical intervention29–32) (Tables 2 and 3). Treatments related to the GMed include corticosteroid injection, ESWT, exercise, and surgical intervention. Better results were obtained with ESWT or exercise than with corticosteroid injection60. For cases unresponsive to conservative treatment, surgical treatment is also reported to be successful (Table 3).

Low back pain is defined as pain extending from the lowest rib to the gluteal groove. Nevertheless, GMedS is often complicated with MPS of the multifidus or quadratus lumborum or other muscles11, 20. Usually pain is not limited to the affected region in the GMed or simple low back pain in GMedS or GTPS.

The prevalence of GMedS within the context of chronic back pain or nonspecific back pain is high, as noted in the Introduction section, and many reports suggest that the GMed is involved in back pain (Table 4). In chronic back pain, muscle strength of hip abductor or GMed is significantly decreased20, 88–90, 93. On electromyography (EMG), the amplitude of GMed was significantly increased by back pain provoked group87, 92, 96, and EMG co-activation of the GMed was more significantly observed in a provoked pain group91, 96. GMed contraction evaluated using ultrasound was significantly decreased in a low back pain group99. GMed is significantly associated with back pain93), and is the most commonly involved muscle in back pain and low back pain11, 12).

Report	Cases	References to GMedS
Swezey RL41)	Patients with LBP (n=70)	31/70 (44.3%) were diagnosed with TB
	Patients with TB (n=31)	LDD was a complication in 31/31 (100%)
Collée G et al.42)	Patients with LBP (n=100)	35% were diagnosed as TB/GTPS
Collée G et al.43)	Patients with LBP (n=40, 124, 40)	18–45% were diagnosed with GTPS
Kingzett-Taylor A. et al.44)	Patients with buttock, lateral hip, and groin pain (n=250)	GMed tear was confirmed in 14% on MRI
Howell GE et al.45)	OA hips that underwent arthroplasty (n=176)	20% of cases had confirmed degenerative pathology of the hip abd.
Bird PA et al.46)	Patients with chronic GTPS (n=24)	GMed tear was confirmed in 45.8% on MRI
		GMed tenosynovitis was confirmed in 62.5% on MRI
		TB was confirmed in 8% on MRI
Tortolani PJ et al.47)	Patients with LBP (n=247)	20% was diagnosed with GTPS
Connell DA et al.48)	Patients with greater trochanteric pain (n=75)	53 (74.7%) patients showed evidence of GMed tenosynovitis on ultrasonography
Cvitanic O et al.49)	Hips with gluteal tendon tear (n=15)	8 (10.7%) patients had fluid pooling in the trochanteric bursa
Sayegh F et al.50)	Patients with GTPS (n=300)	Diagnostic accuracy of gluteal tendon tear on MRI was 91%
		Leg pain was a complication in 77.7%
		LDD was a complication in 79.4%
Table 1. Continued.

Report	Cases	References to GMedS
Lievense A et al.⁵¹	Patients with greater trochanteric pain (n=164)	Prevalence of GTPS was 1.8% among all primary care patients
		14.6% had hip OA
		8.5% had LBP
		9.8% had knee OA
Walker P et al.⁴⁴	Patients with GTPS (n=97)	TB was found in 43.3% on SPECT
		Gluteal tendinopathy was found 36.1% on SPECT
		LDD was found in 76.3% on SPECT
		Active articular hip disease was found in 2% on SPECT
		Occurrence of gluteus tendinitis was correlated with spinal disease
Segal NA et al.²⁶	Patients with lateral hip pain (n=1,786)	Prevalence of GTPS was 23.5%
		Prevalence of bilateral GTPS was 15.0%
		Bilateral GTPS was significantly associated with physical activity (20-m walk time and chair stand time)
		Ipsilateral and contralateral knee OA was significantly correlated with GTPS
Lequesne M et al.⁵²	Patients with persistent GTPS (n=17)	94.1% of patients had GMed tear and trochanteric bursitis on MRI
Woodley SJ et al.⁵³	Patients with unilateral hip pain (n=40)	Difficulty with diagnosing GTPS on MRI
		Bursitis was confirmed in 33% who were symptomatic and 46% who were asymptomatic
		Gluteal tendon pathology was confirmed in 53% who were symptomatic and 28% who were asymptomatic
Blankenbaker DG et al.⁵⁴	Hip MRI (n=131)	Asymptomatic gluteal tear was confirmed in 33.1% of cases on MRI
		Gluteal tear was not associated with hip pain
Iagnocco A et al.⁵⁵	Patients with hip OA (n=75)	22.7% of cases had gluteal tendinopathy
Long SS et al.⁵⁶	Patients with greater trochanteric pain (n=877)	20.2% had trochanteric bursitis; 49.9% had gluteal tendinopathy
Lindner D et al.⁵⁷	Patients with lateral hip pain who underwent GMed repair surgery (n=47)	100% had partial or complete gluteal tears and 91% had trochanteric bursitis
Ebert JR et al.⁵⁸	Patients with symptomatic hip abd. tear (n=149)	Patients with hip abd. tears demonstrated significantly lower abd. strength and active ROM on the affected limb
Allison K et al.⁵⁹	Patients with chronic unilateral abductor tear (n=50)	Significantly decreased hip abd. strength in the GTPS group
Faron A et al.⁶⁰	Patients with GTPS (n=538)	GTPS and OA group had significantly lower walking speeds compared with asymptomatic controls
	Patients with hip OA (n=20)	GTPS and OA groups had significantly higher pain levels compared with asymptomatic controls
		GTPS and OA groups had significantly worse SLS results compared with asymptomatic controls
Pozzi G et al.⁶¹	Patients with FAI (n=189)	Gluteal tendinopathy was confirmed in 72 cases (38.1%) on MRI; GTPS was confirmed in 74 cases (39.2%)
Ganderton C et al.⁶²	Post-menopausal patients with chronic GTPS (n=8)	GMed and GMin were significantly activated on EMG in GTPS group
		Significantly decreased peak torque strength of hip abduction in GTPS group
Tan L et al.³⁵⁵	Patients with LDD (n=273)	50.5% had GTPS

GTPS: greater trochanteric pain syndrome; GMed: gluteus medius; Gmin: gluteus minimus; LBP: low back pain; TB: trochanteric bursitis; LDD: lumbar degenerative disease; OA: osteoarthritis; abd.: abductor; FAI: Femoroacetabular impingement; SLS: single-leg squat test; MRI: magnetic resonance imaging; SPECT: single-photon emission computed tomography.
Table 4 shows the treatment results of LBP in terms of GMed. Treatment of back pain originating from the GMed is typically by trigger point injection (TPI), which was found to significantly improve pain assessed using the numerical rating scale (NRS) (Table 5). For cases unresponsive to conservative treatment, GMed decompression surgery was found to significantly improve pain NRS score and function (Japanese Orthopaedic Association/Roland-Morris Disability Question-
always reveal the source of the osteoarthritic pain 4). Pain from hip osteoarthritis is regarded as very wide ranging, often leg pain include the GMed and gluteus minimus11, 13). The prevalence of GMedS is higher than that of MPS of the piriformis et al. reported that 62.7% of GTPS patients diagnosed by spine surgeons were misdiagnosed 47)

LDD is related to GTPS and LDD is possibly related to the GMed and GMedS. Tan et al. reported that 50.5% of LDD cases had GTPS and 49.3% of cases were responsive to corticosteroid injection to the trochanteric bursa35). LDD is related to GTPS and LDD. GTPS and LDD. LDD is related to the GMed and LDD should also be related to the GMed.

Table 3. Operative treatments of GTPS related to GMed

Report	Cases	Treatment	Outcomes
Brooker AF76)	Patients with refractory TB (n=5)	Decompression by fenestration of bursa	All cases achieved pain relief and average HHS score was improved
Kagan A77)	Patients with unresponsive TB (n=7)	GMed repair/fasciectomy	All cases achieved pain relief and one case had weakness of the GMed
Govaert LH et al.78)	Patients with chronic TB (n=12)	Trochanteric osteotomy	Outcomes were very good in 6/12 (50%) and good in 5/12 (41.7%)
*5 cases refractory to bursectomy	Pain and physical function (Merle d’Aubigné and Postel Method) were significantly improved		
Baker CL et al.79)	Patients with refractory TB (n=42)	Endoscopic bursectomy	44/45 (97.8%) had improved symptoms/postoperative average JOA score
Davies H et al.80)	Patients with GTPS unresponsive to conservative treatment (n=16)	GMed/GMin repair and bursectomy	11/16 had significant reduction of hip symptoms; 5/16 had relapse
Voos JE et al.81)	Patients with GMed tear (n=10)	Endoscopic glutus medius repair	All cases had complete resolution of pain; MMT of hip abd. was improved
Walsh MJ et al.82)	Patients with GTPS unresponsive to conservative treatments (n=72)	Gluteal tendon repairs	More than 90% of cases were pain-free or had minimal pain; repair surgery significantly improved hip score
Davies H et al.83)	Patients with unresponsive TB with tear of hip abd. by MRI (n=23)	Open gluteal tendon repair	23/23 had significant improvement in VAS, OHS, and SF-36 PCS
Chandrasekaran S et al.84)	Patients who underwent endoscopic GMed repair (n=24)	Endoscopic GMed repair	Age-matched non-surgery group had significantly greater strength than the surgery group; GMed strength is a possible risk factor for surgical intervention

TB: trochanteric bursitis; GTPS: greater trochanteric pain syndrome; Cs: corticosteroid; abd.: abductor; ESWT: extracorporeal shockwave therapy; PRP: platelet-rich plasma; GMed: glutus medius; GMin: glutus minimus; LDD: lumbar degenerative disease; JOA: Japanese Orthopaedic Association; VAS: visual analogue scale; HHS: Harris Hip Score; OHS: Oxford Hip Score; SF-36: MOS Short-Form 36-Item Health Survey.

 naïve scores10, 23) (Table 6). Many articles discussed the diagnosis and treatment with respect to the relationship between low back pain and the GMed. Because low back pain is related to the GMed and LDD is related to back pain, LDD should also be related to the GMed. However, there are only few reports on the association between LDD and GMedS (Table 1). Walker et al. performed single-photon emission computed tomography (SPECT) in patients with GTPS, and found about 48.4% of cases of GTPS had LDD, the majority of which were facet joint disease34). Swezey et al. and Sayegh et al. also reported on the relationship between TB/GTPS and LDD. Tan et al. reported that 50.5% of LDD cases had GTPS and 49.3% of cases were responsive to corticosteroid injection to the trochanteric bursa35). LDD is related to GTPS and LDD is possibly related to the GMed and GMedS.

Hip osteoarthritis has characteristic radiological features. However, images of hip osteoarthritis on X-ray films do not always reveal the source of the osteoarthritic pain36). Pain from hip osteoarthritis is regarded as very wide ranging, often radiating around the knee and it is sometimes hard to distinguish between osteoarthritis of the knee and the hip. Numerous reports have pointed out the relationship between the GMed and hip osteoarthritis (Table 7). GTPS is complicated by hip osteoarthritis 2–20%

GMed tear was confirmed in 20% of cases following THA39. Hip abductor muscle strength and GMed volume were significantly decreased and GMed intensity on ultrasound was significantly higher in hip osteoarthritis10, 11, 111–118, 125, 128, 129). Moreover, EMG activity of the GMed was significantly increased109, 120, 128). In terms of treatment of hip OA, physiotherapy and manual therapy involving the hip abductors significantly improved hip function and relieved pain (Table 8)134–136.

GMed-responsive radiating pain lesions have been reported around the hip131, but GMedS causes pain radiating from the knee to the lower leg or even the foot130. The pain in GMedS is not limited to pain around the hip as it is in GTPS. About 30% of cases of leg pain are reported to be GMedS and 50% of GMedS cases present with leg pain131. While 77.7% of GTPS is complicated by leg pain30, 44.2% of trochanteric bursitis involved leg pain radiating around the knee25). Tortolani et al. reported that 62.7% of GTPS patients diagnosed by spine surgeons were misdiagnosed47). It is sometime difficult to diagnose GTPS or GMedS.

Most known cases of MPS with radiating lower leg pain are piriformis syndrome71, 172). Other muscles responsible for leg pain include the GMed and glutus minimus11, 13). The prevalence of GMedS is higher than that of MPS of the piriformis
Table 4. Characteristics of LBP related to GMed

Report	Cases	References to GMedS
Njoo KH et al. [85]	Patients with chronic LBP (n=61)	MTrPs of GMed constituted 34% of cases
Farasyn A et al. [86]	Patients with LBP (n=42)	PPT of GMed was significantly decreased in the LBP group
Nelson-Wong E et al. [87]	Healthy participants without LBP after exercise loading test (n=23)	EMG amplitude was significantly higher in the LBP-provoked group
Bewyer KJ et al. [88]	Pregnant female patients with LBP (n=16)	GMed strength was lower in the LBP group
Arab AM et al. [89]	Patients with LBP (n=200)	Hip abd. strength was significantly weaker than in controls
Kendall KD et al. [90]	Patients with nonspecific LBP (n=10)	Hip abd. strength was significantly weaker than in controls
Marshall PW et al. [91]	Healthy participants without LBP after exercise loading test (n=24)	GMed coactivation on surface EMG was significantly higher in the LBP-provoked group
Chen CK et al. [92]	Patients with LBP (n=126)	80/126 (63.5%) had MPS
Iglesias-González JJ et al. [21]	Patients with nonspecific LBP (n=42)	MTrPs of GMed recognized in 35%/38% (affected side/contralateral side)
Santos FG et al. [93]	Female patients with CLBP after exercise loading test (n=39)	Latent MTrPs of GMed identified in 17.0%
Pennyey T et al. [94]	Patients with CLBP (n=21)	EMG amplitude of GMed significantly decreased and peak time significantly slower during protocol
Kuniya H et al. [95]	Patients with LBP and leg pain (n=834)	113/834 (13.5%) were diagnosed as having superior cluneal nerve entrapment
Cooper NA et al. [96]	Patients with CLBP (n=150)	MMT of GMed was significantly decreased
Takla MK et al. [97]	Patients with MPS (n=50)	MTrPs of GMed was identified in 68.1% of cases
Bussey MD et al. [98]	Female hockey players with LBP after exercise loading test (n=14)	MPS had significantly lower GMed pressure/pain threshold
Imamura M. et al. [12]	Patients with CLBP (n=124)	GMed coactivation was confirmed by surface EMG and significantly higher in the LBP-provoked group
Skorupska E et al. [99]	Patients with CLBP and leg pain (n=71)	PPT of GMed had the highest correlation to VAS and RMQ compared with other muscles
Farahpour N et al. [100]	Patients with LBP and pronated-foot	GMax, GMin, and Piri muscle size were significantly decreased on the affected side compared with the contralateral side
Aboufazeli M et al. [101]	Female patients with LBP (n=30)	EMG activation of GMed was significantly higher during walking
Viggiani D et al. [102]	Healthy participants without LBP after standing loading test (n=40)	GMed contraction was significantly decreased in the LBP group on US
Psycharakis SG et al. [103]	Patients with CLBP exercise aquatic protocol (n=20)	The pain group developed hip abd. fatigue before the no-pain group
Kameda M et al. [13]	Patients with LBP (n=83)	EMG amplitude of GMed was significantly decreased in aquatic exercise compared with land exercise
		EMG amplitude of GMed was not significantly different compared with controls
		MPS was identified in 65/83 (78.3%)
		GMedS was identified in 32/83 (38.6%)

LBP: low back pain; CLBP: chronic LBP; MTrPs: muscle trigger points; GM: gluteus maximus; GMed: gluteus medius; GMin: gluteus minimus; Piri: piriformis; MPS: myofascial pain syndrome; LSCS: lumbar spinal canal stenosis; abd.: abductor; MMT: manual muscle test; EMG: electromyography; VAS: visual analogue scale; PPT: pressure pain threshold; RMQ: Roland Morris questionnaire; US: ultrasonography.
Constriction of peripheral nerves such as the middle cluneal nerve is known to contribute to gluteal pain\(^{11, 94}\). Leg pain including patellofemoral pain syndrome (PFPS) is also related to the GMed (Table 9). Pain in knee osteoarthritis was reported to be related to GTPS\(^{26}\) \(^{26}\). GMed strength was significantly decreased in patients with patellofemoral (PF) osteoarthritis\(^{154}\) \(^{154}\). Hip abductor muscle strength was also significantly decreased \(^{137, 139, 142, 143, 148}\) \(^{137, 139, 142, 143, 148}\). GMedS is also possibly related to knee OA and PFPS. Treatment of GMedS with leg pain, physiotherapy and manual therapy including hip abductors significantly improved hip function and relieved pain \(^{11, 143, 161, 162}\) \(^{11, 143, 161, 162}\) (Table 10), and patients with recalcitrant gluteal pain were successfully treated with cluneal nerve decompression surgery \(^{94}\) \(^{94}\).

Symptoms of GTPS have been noted postoperatively following THA in about 4\%\(^{164, 165}\) \(^{164, 165}\) (Table 11). The prevalence is lower in the posterior approach \(^{164}\) \(^{164}\), and most cases recovered after steroid injection \(^{164, 165}\) \(^{164, 165}\). Failed back surgery syndrome (FBSS) is defined as recurrence of symptoms after spine surgery \(^{173}\) \(^{173}\). MPS is implicated in 85\% of cases of FBSS; the proportion of GMed was about 19\% \(^{166}\) \(^{166}\). It is reported that cases of FBSS were treated successfully by GMed decompression and peripheral nerve decompression \(^{167}\) \(^{167}\) (Table 12).

DISCUSSION

This review found the three following results: (1) GMedS is a disease entity similar to GTPS, one of the major causes of LBP and leg pain; (2) GTPS shows relations with LDD and hip OA; (3) LBP, GTPS, and hip OA show relations with GMed. Thus, GMedS is one of the major causes of low back pain and leg pain, is related to LDD and hip OA based on this review. MPS of GMed origin has a simple pathology, but this simple pathology appears to have a big impact. Thus, understanding the MPS basis of diagnosis and treatment, the evaluation of target muscles and adjacent peripheral nerve constriction is vital \(^{11, 23, 94, 103}\).

In most cases, both most of GTPS and GMedS cases respond to conservative treatment; however, there are still unresponsive cases. These treatment methods of GTPS and GMeds possibly affect each other. Further study is needed on treatments for GMedS such as ASTR, TPI, gluteal muscle decompression surgery, and nerve decompression for GTPS. Corticosteroid injection for GTPS has been shown to have less satisfactory long-term results compared with physiotherapy. Intra-tendinous corticosteroid injection possibly may result in some complications and so should not be the first choice of treatment. ESWT and platelet-rich plasma injection are other treatments available for GMedS and should be considered as treatment options. Decompression surgery for GTPS has been already reported with beneficial results \(^{79}\) \(^{79}\), however there were also refractory cases to surgical decompression \(^{79}\). Thus, an appropriate surgical strategy should be established including peripheral nerve decompression or other effective treatment procedures. Nevertheless, physiotherapy targeting the GMed or hip abductors
Report	Cases	References to GMedS
Širka A et al.104)	Patients with hip OA (n=56)	GMed atrophy grade was significantly higher in the OA group
Shih CH et al.105)	Patients with unilateral hip OA (n=20)	Hip abd. strength was lower but not significantly.
Hurwitz DE et al.106)	Patients with unilateral hip OA (n=19)	Hip abd. kinematics were not significantly lower in the OA group (p=0.087)
Watanabe H et al.107)	Female patients with unilateral hip OA (n=84)	GMed EMG amplitude was not significantly changed
Watelain E et al.108)	Patients with unilateral hip OA (n=22)	Hip abd. joint moment was not significantly changed
Sims KJ et al.109)	Patients with unilateral hip OA (n=19)	GMed EMG amplitude was significantly increased (p=0.037) compared with controls
Arokoski MH et al.110)	Patients with hip OA (n=27)	Hip isometric abd. strength was significantly lower than in controls
Rasch A et al.111)	Patients with unilateral hip OA (n=11)	Hip abd. strength was significantly decreased in OA group
Eimre M et al.112)	Patients with hip OA who underwent GMed biopsy (n=60)	OA was associated with increased sensitivity of mitochondrial respiration to ADP
Kubota M et al.113)	Patients with bilateral hip OA (n=12)	Peak abd. angle was significantly lower in OA
Amaro A et al.114)	Patients with hip OA (n=41)	Peak abd. joint moment was significantly lower in OA
Rasch A et al.115)	Patients with unilateral hip OA (n=22)	Hip abd. strength was significantly decreased in the OA group
Grimaldi A et al.116)	Patients with advanced hip OA (n=6)	GMed atrophy was correlated with pain score and pain score was correlated with radiographic signs of OA
Rasch A et al.117)	Patients with unilateral hip OA (n=6)	Hip abd. strength was significantly lower on the affected side compared with the contralateral side in the OA group
Youdas JW et al.118)	Patients with unilateral hip OA (n=20)	Hip abd. strength was significantly lower in the OA group
Fukumoto Y et al.119)	Patients with hip OA (n=24)	GMed echo intensity was significantly higher (p<0.05)
Dwyer MK et al.120)	Patients with unilateral Hip OA (n=13)	GMed EMG amplitude was significantly increased (p=0.037)
Judd DL et al.121)	Patients with unilateral end-stage hip OA (n=26)	Hip abd. strength was not significantly lower in the OA group (p=0.23)
Hatton A et al.122)	Patients with symptomatic hip chondropathy diagnosed by endoscopy (n=63)	Dynamic single-leg standing balance was significantly reduced in the OA group
Rutherford DJ et al.123)	Patients with hip OA (n=20)	Ambulatory individuals with severe OA had less dynamic gluteus medius activation compared with the other two groups.
French HP et al.124)	Patients with hip OA (n=13)	GMed EMG amplitude was significantly greater in the OA group during step-up and -down exercises
Zacharias A et al.125)	Patients with unilateral hip OA (n=20)	Hip abd. strength was significantly decreased compared with the contralateral side and with controls.
(severe cases n=13)		GMed size was smaller on the affected side in severe OA than on the contralateral side or in controls
Nankaku M et al.126)	Female patients with unilateral THA (n=74)	Preoperative gluteus medius atrophy was correlated to limping after THA
Momose T et al.127)	Patients with unilateral hip OA (n=50)	Hip abd. strength was correlated to HHS/CT density
Zacharias A et al.128)	Patients with unilateral hip OA (n=20)	Hip abd. strength was significantly decreased compared with the contralateral side
		Gluteal muscle atrophy was associated with clinical severity of OA
Physiotherapy is thus the most recommended first-line treatment option for both GTPS and GMedS with low back pain and LDD. Several articles discussed back pain in relation to the GMed. Several degenerative lumbar diseases like facet joint syndrome, disc herniation, and lumbar spinal canal stenosis can cause low back pain but a simple TPI can alleviate the symptoms. Most cases of low back pain are possibly complications secondary to MPS. LDD is a major cause of low back pain, therefore GMedS is possibly related to LDD. Involvement of muscles adjacent to the GMed is significantly correlated to low back pain, and functional disorders such as GMed atrophy or dysfunction of GMedS are possibly related to poor body posture and could worsen low back pain.

Radicular pain exacerbates the symptoms of MPS. However, MPS cases with radicular pain are also responsive to acupuncture and dry needling. There is a possibility that MPS treatment also improves radicular pain. Therefore, accurate diagnosis and treatment of GMedS possibly also treat radicular pains. It is natural that cases of LSCS with impaired hip abductor strength were improved by L5 laminectomy. Radicular pathology or facet joint pain exacerbates GMed dysfunction, which in turn worsens LDD and LDD, then this worsens radicular or facet joint pain. Breaking these vicious cycles may be the key to treatment of chronic back pain or leg pain.

GMedS is often complicated by piriformis syndrome or MPS of the piriformis, moreover both GMed and gluteus minimus are adjacent to piriformis. Piriformis syndrome is accompanied by adhesions to adjacent muscles such as GMed. MTrPs may be responsible for nerve constriction directly or indirectly by muscle adhesions.

In cases of MTrPs caused by contraction of the GMed and gluteus minimus, it is sometimes difficult to distinguish between the GMed and gluteus minimus as the source of MTrPs clinically; they are the same pathology. This may be reflected in the fact that both the GMed and the gluteus minimus are involved in the pathology of GTPS. It is difficult to diagnose the GMed and gluteus minimus as the source by physical examination alone. For accurate diagnosis, ultrasound guidance may be necessary.

Constriction of the cluneal nerves is a differential diagnosis of hip pain. The symptoms and site of cluneal nerve constriction are similar in presentation to those of MTrPS of the gluteus maximus. Sometimes even water-diluted local

Table 7. Continued.	Report	Cases	Treatment	Outcomes
Hoeksma HL et al.131	Patients with symptomatic hip OA (n=109)	Manual therapy vs. exercise therapy	Manual therapy was significantly superior in improvement of pain (VAS), ROM, HHS, and walking speed	
Stener-Victorin E et al.132	Patients with symptomatic hip OA (n=45)	Electroacupuncture (n=15)	VAS and DRI were significantly decreased by treatment at 6 months after the last treatment	
	Hydrotherapy (n=15)	VAS and DRI were significantly decreased by treatment at 3 months after the last treatment		
Veenhof C et al.133	Patients with hip or knee OA (n=51)	Behavioral graded activity program vs. exercise therapy and advice	No significant differences were noted between the programs	
Wang TJ et al.134	Patients with hip or knee OA (n=20)	Aquatic exercise including hip abd.	Hip ROM and GMed strength were improved	
Hinman RS et al.135	Patients with hip or knee OA (n=36)	Aquatic exercise including hip abd.	Significant improvements in pain (VAS/WOMAC) and function (WOMAC)	
Steinhilber B et al.136	Patients with hip OA (n=70)	Tübingen exercise therapy including hip abd.	Tübingen exercise therapy has a significant positive effect on HMS	

OA: osteoarthritis; VAS: visual analog scale; abd.: abductor; ROM: range of motion; HHS: Harris Hip Score; WOMAC: Western Ontario and McMaster Universities Osteoarthritis Index.
Table 9. Characteristics of leg pain related to GMed

Report	Cases	References to GMedS
Robinson RL et al.¹³⁷)	Female patients with PFPS	Hip abd. and external rotation strength were significantly decreased compared with the contralateral side and with controls
Bolgla LA et al.¹³⁸)	Female patients with PFPS	PFPS group generated significantly less hip abd. torque
Willson JD et al.¹³⁹)	Female patients with PFPS	Hip abd. strength was significantly lower compared with controls
Franettovich M et al.¹⁴⁰)	Female patients with exercise-related leg pain (n=14)	Individuals with a history of exercise-related leg pain demonstrated significantly lower EMG peak activation and lower average EMG activation of GMed
Costa RA et al.¹⁴¹)	Patients with symptomatic unilateral knee OA (n=25)	Hip abd. strength (peak torque) was significantly decreased compared with the contralateral side
Hinman RS et al.¹⁴²)	Patients with symptomatic knee OA (n=89)	Hip abd. strength was significantly decreased compared with controls
Sled EA et al.¹⁴³)	Patients with symptomatic medial knee OA (n=40)	Isokinetic hip abd. strength was significantly decreased in the knee OA group
Nakawaga TH et al.¹⁴⁴)	Female patients with anterior knee pain (n=9)	No significant EMG activation of GMed was observed
Bolgla LA et al.¹⁴⁵)	Female patients with PFPS	PFPS group generated significantly less hip abd. torque
Nakawaga TH et al.¹⁴⁶)	Patients with chronic PFPS	Patients with PFPS generated less peak eccentric hip abd. torque; EMG amplitude of the GMed was significantly greater in female controls than in female patients with PFPS
Crossley KM et al.¹⁴⁷)	Patients with symptomatic PFJ OA (n=60)	Individuals with PFJ OA ambulated with significantly lower peak hip abd. muscles than controls
Baert IA et al.¹⁴⁸)	Female patients with knee OA (n=40)	Hip abd. strength was decreased compared with controls, but not significantly
Bley AS et al.¹⁴⁹)	Female patients with PFPS	PFPS group generated significantly greater EMG activity of GMed and greater hip abd. moment than controls
Izumi M et al.¹⁵⁰)	Hypertonic saline injection	GMed PPT was increased
Rutherford DJ et al.¹⁵¹)	Patients with moderate knee OA (n=54)	No clear relationship of hip abd. muscle strength with specific amplitude and temporal KAM characteristics was found
Motealleh A et al.¹⁵²)	Athletes with PFPS (n=28)	Onset and amplitude of GMed EMG activity were earlier and higher in the manipulation group than in the control group
Tevald MA et al.¹⁵³)	Patients with knee OA (n=35)	Hip abd. significantly contributed to physical performance
Sritharan P et al.¹⁵⁴)	Patients with symptomatic OA (n=39)	Calculated GMed force was significantly decreased compared with controls
Orozco-Chaves I et al.¹⁵⁵)	Female patients with PFP	PFP group had significantly later onset of GMed EMG, and showed no adaptation to velocity variation
Kalytczak MM et al.¹⁵⁶)	Female patients with PFP	EMG values for the GMax and GMed were significantly higher in the eccentric phase than in the concentric phase
Mirzaie GH et al.¹⁵⁷)	Male patients with PFP (n=18)	Significant differences were found in GMed activity in loading tasks
Fuentes-Márquez P et al.¹⁵⁸)	Female patients with chronic pelvic pain (n=40)	MTrPs of GMed was present in 55–87.5% of patients with chronic pelvic pain
Kameda M et al.¹⁵⁹)	Patients with leg pain or hip pain (n=66)	45/66 (69.0%) cases had MPS
Ackland DC et al.¹⁶⁰)	Patients with patellofemoral joint OA (n=51)	20/29 (68.9%) cases had GMedS

GMax: gluteus maximus; GMedS: gluteus medius syndrome; GMed: gluteus medius; PFP: patellofemoral pain; PFPS: patellofemoral pain syndrome; OA: osteoarthritis; abd.: abductor; PPT: pressure pain threshold; MPS: myofascial pain syndrome; EMG: electromyography; MTrPs: muscle trigger points.
anesthesia or normal saline is effective as TPI for treating MPS11, 18, 182, which may have little or no results of nerve block effects. The appropriate diagnosis to identify the pathology of the pain in terms of muscle sliding or nerve constriction is required in daily clinical practice. Since, both of these pathologies are hypothetically designated as MPS.

Many reports support the association of hip osteoarthritis with GMed dysfunction (Tables 7 and 8). GMed dysfunction possibly exacerbates hip osteoarthritis. THA is an effective treatment strategy for hip osteoarthritis, but THA also involves manipulation of the GMed. It is thus undeniable that this manipulation of GMed is a partial cause of pain or symptom recurrence in THA. Further research is needed on this topic.

Fearon et al. argued that pain itself rather than GMed tendinopathy is the cause of decreased GMed strength60). Alleviating pain possibly improves gluteal tendinopathy or hip osteoarthritis, and additional physiotherapy, manual therapy, TPI, and other pain release methods may be important in treatment of hip osteoarthritis. The question remains as to whether hip pain exacerbates GMed dysfunction or whether GMed dysfunction worsens hip articular pressure, hip pain, or prognosis of hip osteoarthritis, or whether these vicious cycles constitute the pathology of hip osteoarthritis. Proper diagnosis and treatment of GMedS could possibly protect the hip from osteoarthritis, and possibly reduce the number of cases of THA. Further study on this topic is required.

Table 10. Treatments of leg pain related to GMed

Report	Cases	Treatment	Outcomes
Bennell KL et al.160	Patients with symptomatic knee OA (n=119)	Isometric contraction of gluteal muscles	No significant difference was found compared with placebo
Veenhof C et al.133	Patients with hip or knee OA (n=101)	Behavioral graded activity program vs exercise therapy and advice	No significant difference was found between programs
Sled EA et al.143	Patients with symptomatic medial knee OA (n=40)	8-week home strengthening program for the hip abd. muscles	Strengthening program decreased pain (WOMAC)
Bennell KL et al.163	Patients with symptomatic medial knee OA and pain (n=45)	Hip strengthening training for 13 weeks	Training significantly improved pain (WOMAC) and function (WOMAC)
Foroughi N et al.162	Patients with knee OA (n=54)	Strengthening exercise with and without hip abd./hip adduction/knee extension	Strengthening exercise significantly improved pain (WOMAC) and difficulty (WOMAC); there were no significant differences between groups
Glaviano NR et al.163	Female patients with chronic PFPS (n=15)	Patterened electrical neuromuscular stimulation (PENS) vs. sham	PENS group had significantly improved pain (VAS) in load testing, with improvement of hip abduction and significant improvement in GMed activation
Kameda M e al.11	MPS patients with leg pain or hip pain (n=14)	ASTR or TPI	Combination treatment of ASTR or TPI significantly improved pain (NRS)
Bennell KL et al.161	Patients with symptomatic medial knee OA and pain (n=45)	Hip strengthening training for 13 weeks	Training significantly improved pain (WOMAC) and function (WOMAC)

OA: osteoarthritis; PFPS: patellofemoral pain syndrome; abd.: abductor; WOMAC: Western Ontario and McMaster Universities Osteoarthritis Index; VAS: visual analogue scale; NRS: numerical rating scale; ASTR: active soft tissue release; TPI: trigger point injection.

Table 11. Characteristics of surgery-related symptoms related to GMed

Report	Cases	References to GMedS
Iorio R et al.164	Patients with postoperative (THA) lateral hip pain (n=24)	24/543 LTP (4.4%) Postoperative GTPS in 5% of cases, direct lateral approach
Farmer KW et al.165	Patients with postoperative TB (n=32)	32 cases of postoperative GTPS among 689 cases of primary THA (4.6%)
Teixeira MJ et al.166	Patients with FBSS (n=56)	85% of FBSS cases were complicated with MPS
Matsumoto J et al.167	Patients who underwent lumbar surgery (n=74)	20/74 (27%) FBSS patients

GMedS: gluteus medius syndrome; TB: trochanteric bursitis; LTP: Lateral trochanteric pain; GTPS: greater trochanteric pain syndrome; THA: total hip arthroplasty; GMed: gluteus medius; MPS: myofascial pain syndrome; FBSS: failed back surgery syndrome; MTrPs: muscle trigger points.

OA anesthesia or normal saline is effective as TPI for treating MPS11, 18, 182, which may have little or no results of nerve block effects. The appropriate diagnosis to identify the pathology of the pain in terms of muscle sliding or nerve constriction is required in daily clinical practice. Since, both of these pathologies are hypothetically designated as MPS.
Knee osteoarthritis is related to GMed and interventions for GMed improved function and pain of knee osteoarthritis and PFPS (Tables 9 and 10). Vasilevska et al. and Grimaldi et al. described GTPS and the iliotibial band32, 183). Furthermore, the strength involving the hip abductors improved the prognosis of knee osteoarthritis 184), and thus some part of knee osteoarthritis possibly attributed to GMedS.

In some cases, hip OA is complicated by LDD and treatment is unsuccessful even after surgical intervention. Even the combination of THA and spine surgery could not achieve pain relief but rather reduces activities of daily living of patients. Degenerative hip disease is often accompanied by LDD, and this combination was named hip-spine syndrome 185, 186).

It was demonstrated that GMedS and GTPS elicit both back pain and hip or leg pain and are related to LDD and hip osteoarthritis. This implies that GMedS or GTPS is possibly the main cause of hip-spine syndrome. Proper diagnosis and treatment of GMedS before surgery may decrease postoperative complications.

The prevalence of FBSS is reported to be 10–40% 167, 173, 187). Most cases of FBSS are complicated by MPS 166). The fact that most FBSS cases are adequately treated by GMed decompression and nerve decompression167 might indicate that FBSS is a component of MPS. Proper diagnosis and treatment of MPS and GMedS might decrease the likelihood of FBSS and further research is needed in terms of safety and cost-effectiveness.

The clinical features of GMedS was reviewed in terms of diagnosis and treatment on this article. GMedS is associated with low back pain, leg pain, LDD, and hip osteoarthritis. Moreover, we identified a new treatment strategy for GMedS and GTPS. Proper diagnosis of GMedS may improve LDD and osteoarthritis of the hip and knee, as well as hip-spine syndrome and FBSS. Further research is warranted to clarify these issues.

This research review was conducted by searching for articles using only simple keywords, which may not have captured the full scope of the topic. This may have led to overlooking or not identifying some important factors. Also, the quality of evidence was not assessed in the included articles, and so the reliability of the review may have been lessened by combining certain and uncertain research. There were few reviews on this topic, and this might limit the conclusiveness of our review.

Funding
This research received no specific grant from any funding agency in the public, commercial, or not-for-profit sectors.

Conflict of interest
The authors have no conflicts of interest to declare.

ACKNOWLEDGEMENT

The authors would like to thank Mr. Masakazu Kutsunugi and Dr. Tadashi KOBAYASHI for the advice during the drafting of this manuscript.

REFERENCES

1) Dagenais S, Caro J, Haldeman S: A systematic review of low back pain cost of illness studies in the United States and internationally. Spine J, 2008, 8: 8–20. [Medline] [CrossRef]
2) The Arthritis Foundation of Australia: The prevalence, cost, and disease burden of arthritis in Australia. Access Economics Pty Limited Canberra ACT March 2001 https://arthritisaustralia.com.au/wordpress/wp-content/uploads/2017/09/Access_Economics_2001.pdf (Accessed Oct. 1, 2019)
3) Koes BW, van Tulder MW, Thomas S. Diagnosis and treatment of low back pain. BMJ, 2006, 332: 1430–1434. [Medline] [CrossRef]
8) Bewyer DC, Bewyer KJ: Rationale for treatment of hip abductor pain syndrome. Iowa Orthop J, 2003, 23: 57–60.
9) Goldie I: Att förebygga sjukdomar i rörelseorganen. Socialstyrelsen, 1987, 14: 129–139.
10) Ishimoto Y, Yoshimura N, Muraki S, et al.: Prevalence of symptomatic lumbar spinal stenosis and its association with physical performance in a population-based cohort in Japan: the Wakayama Spine Study. Osteoarthritis Cartilage, 2012, 20: 1103–1108. [Medline] [CrossRef]
11) Kameda M, Tanihata H: Effectiveness of active soft tissue release and trigger point block for the diagnosis and treatment of low back and leg pain of predominantly gluteus medius origin: a report of 115 cases. J Phys Ther Sci, 2019, 31: 141–148. [Medline] [CrossRef]
12) Imamura M, Alfieri FM, Filippo TR, et al.: Pressure pain thresholds in patients with chronic nonspecific low back pain. J Back Musculoskeletal Rehabil, 2016, 29: 327–336. [Medline] [CrossRef]
13) Simons DG, Travell JG, Simons LS: Travell & Simons’ myofascial pain and dysfunction: the trigger point manual, 2nd ed. Baltimore: Lippincott Williams & Wilkins, 1999.
14) Stecco A, Gesi M, Stecco C, et al.: Fascial components of the myofascial pain syndrome. Curr Pain Headache Rep, 2013, 17: 352. [Medline] [CrossRef]
15) Shah JP, Gilliams EA: Uncovering the biochemical milieu of myofascial trigger points using in vivo microdialysis: an application of muscle pain concepts to myofascial pain syndrome. J Bodyw Mov Ther, 2008, 12: 371–384. [Medline] [CrossRef]
16) Quintner JL, Cohen ML: Referred pain of peripheral nerve origin: an alternative to the “myofascial pain” construct. Clin J Pain, 1994, 10: 243–251. [Medline] [CrossRef]
17) Simons DG, Travell JG: Myofascial origins of low back pain. 1. Principles of diagnosis and treatment. Postgrad Med, 1983, 73: 66, 68–70, 73 passim. [Medline] [CrossRef]
18) Kobayashi T, Kimura H: Atarashii gainen “Kinmakuseisittuushoukougun (MPS)”. In: The seikeinaika. Tokyo: Nanzando, 2016, pp 37–49.
19) Chen CK, Nizar AJ: Myofascial pain syndrome in chronic back pain patients. Korean J Pain, 2011, 24: 100–104. [Medline] [CrossRef]
20) Cooper NA, Scavo KM, Strickland KJ, et al.: Prevalence of gluteus medius weakness in people with chronic low back pain compared to healthy controls. Eur Spine J, 2016, 25: 1258–1265. [Medline] [CrossRef]
21) Iglesias-González JJ, Muñoz-Garcia MT, Rodrigues-de-Souza DP, et al.: Myofascial trigger points, pain, disability, and sleep quality in patients with chronic nonspecific low back pain. Pain Med, 2013, 14: 1964–1970. [Medline] [CrossRef]
22) Cooper NA: Gluteus medius dysfunction in chronic low back pain. PhD thesis, University of Iowa, 2017. https://doi.org/10.17077/etd.076f6 (Accessed Oct. 1, 2019)
23) Matsubara J, Isu T, Kim K, et al.: Surgical treatment of middle cluneal nerve entrapment neuropathy: technical note. J Neurosurg Spine, 2018, 29: 208–213. [Medline] [CrossRef]
24) Anderson TP: Trochanteric bursitis: diagnostic criteria and clinical significance. Arch Phys Med Rehabil, 1958, 39: 617–622. [Medline] [CrossRef]
25) Gordon EJ: Trochanteric bursitis and tendinitis. Clin Orthop, 1961, 20: 193–202. [Medline] [CrossRef]
26) Segal NA, Felson DT, Torner JC, et al. Multicenter Osteoarthritis Study Group: Greater trochanteric pain syndrome: epidemiology and associated factors. Arch Phys Med Rehabil, 2007, 88: 989–992. [Medline] [CrossRef]
27) Williams BS, Cohen SP: Greater trochanteric pain syndrome: a review of anatomy, diagnosis and treatment. Anesth Analg, 2009, 108: 1662–1670. [Medline] [CrossRef]
28) Strauss EJ, Nho SJ, Cohen SP: Greater trochanteric pain syndrome. Sports Med Arthrosc Rev, 2010, 18: 113–119. [Medline] [CrossRef]
29) Lustenberger DP, Ng VY, Best TM, et al.: Efficacy of treatment of trochanteric bursitis: a systematic review. Clin J Sport Med, 2011, 21: 447–453. [Medline] [CrossRef]
30) Mulligan EP, Middleton EF, Brunette M: Evaluation and management of greater trochanter pain syndrome. Phys Ther Sport, 2015, 16: 205–214. [Medline] [CrossRef]
31) Reid D: The management of greater trochanteric pain syndrome: a systematic literature review. J Orthop, 2016, 13: 15–28. [Medline] [CrossRef]
32) Grimaldi A, Fearon A: Gluteal tendinopathy: integrating pathomechanics and clinical features in its management. J Orthop Sports Phys Ther, 2015, 45: 910–922. [Medline] [CrossRef]
33) Torres A, Fernández-Fairen M, Sueiro-Fernández J: Greater trochanteric pain syndrome and gluteus medius and minimus tendinosis: nonsurgical treatment. Pain Manag, 2018, 8: 45–55. [Medline] [CrossRef]
34) Walker P, Kannagara S, Bruce WJ, et al.: Lateral hip pain: does imaging predict response to localized injection? Clin Orthop Relat Res, 2007, 457: 144–149. [Medline] [CrossRef]
35) Tan LA, Benkli B, Tuchman A, et al.: High prevalence of greater trochanteric pain syndrome among patients presenting to spine clinic for evaluation of degenerative lumbar pathologies. J Clin Neurosci, 2018, 55: 89–91. [Medline] [CrossRef]
36) French HP, Gilsenan C, Cusack T: Gluteal muscle dysfunction and the role of specific strengthening in hip osteoarthritis: a review. Phys Ther Rev, 2008, 13: 333–344. [CrossRef]
37) Loureiro A, Mills PM, Barrett RS: Muscle weakness in hip osteoarthritis: a systematic review. Arthritis Care Res (Hoboken), 2015, 65: 340–352. [Medline] [CrossRef]
38) Zacharias A, Green RA, Semciw AI, et al.: Efficacy of rehabilitation programs for improving muscle strength in people with hip or knee osteoarthritis: a systematic review with meta-analysis. Osteoarthritis Cartilage, 2014, 22: 1752–1773. [Medline] [CrossRef]
39) Marshall AR, Noronha M, Zacharias A, et al.: Structure and function of the abductors in patients with hip osteoarthritis: systematic review and meta-analysis. J Back Musculoskeletal Rehabil, 2016, 29: 191–204. [Medline] [CrossRef]
40) Lawrenson PR, Crossley KM, Vicenzino BT, et al.: Muscle size and composition in people with articular hip pathology: a systematic review with meta-
analysis. Osteoarthritis Cartilage, 2019, 27: 181–195. [Medline] [CrossRef]

41) Swezey RL: Pseudo-radiculopathy in subacute trochanteric bursitis of the subgluteus maximus bursa. Arch Phys Med Rehabil, 1976, 57: 387–390. [Medline]

42) Collée G, Dijkmans BA, Vandenbroucke JP, et al.: A clinical epidemiological study in low back pain. Description of two clinical syndromes. Br J Rheumatol, 1990, 29: 354–357. [Medline] [CrossRef]

43) Collée G, Dijkmans BA, Vandenbroucke JP, et al.: Greater trochanteric pain syndrome (trochanteric bursitis) in low back pain. Scand J Rheumatol, 1991, 20: 262–266. [Medline] [CrossRef]

44) Kingzett-Taylor A, Tirman PF, Feller J, et al.: Tendinosis and tears of gluteal muscles and gluteus minimus as a cause of hip pain: MR imaging findings. AJR Am J Roentgenol, 1999, 173: 1123–1126. [Medline] [CrossRef]

45) Howell GE, Biggs RE, Bourne RB: Prevalence of abductor mechanism tears of the hips in patients with osteoarthritis. J Arthroplasty, 2001, 16: 121–123. [Medline] [CrossRef]

46) Bird PA, Oakley SP, Shnier R, et al.: Prospective evaluation of magnetic resonance imaging and physical examination findings in patients with greater trochanteric pain syndrome. Arthritis Rheum, 2001, 44: 2138–2145. [Medline] [CrossRef]

47) Tortolani PJ, Carbone JJ, Quartararo LG: Greater trochanteric pain syndrome in patients referred to orthopedic spine specialists. Spine J, 2002, 2: 251–254. [Medline] [CrossRef]

48) Connell DA, Bass C, Sykes CA, et al.: Sonographic evaluation of gluteus medius and minimus tendinopathy. Eur Radiol, 2003, 13: 1339–1347. [Medline] [CrossRef]

49) Cvitamic O, Henzle G, Skezas N, et al.: MRI diagnosis of tears of the hip abductor tendons (gluteus medius and gluteus minimus). AJR Am J Roentgenol, 2004, 182: 137–143. [Medline] [CrossRef]

50) Sayegh E, Potoupni M, Kapetanos G: Greater trochanter bursitis pain syndrome in females with chronic low back pain and sciatica. Acta Orthop Belg, 2004, 70: 423–428. [Medline]

51) Lievense A, Bierma-Zeinstra S, Schouten B, et al.: Prognosis of trochanteric pain in primary care. Br J Gen Pract, 2005, 55: 199–204. [Medline] [CrossRef]

52) Lequesne M, Djian P, Vuillemin V, et al.: Prospective study of refractory greater trochanter pain syndrome. MRI findings of gluteal tendon tears seen at surgery. Clinical and MRI results of tendon repair. Joint Bone Spine, 2008, 75: 458–464. [Medline] [CrossRef]

53) Woodley SJ, Nicholson HD, Livingstone V, et al.: Lateral hip pain: findings from magnetic resonance imaging and clinical examination. J Orthop Sports Phys Ther, 2008, 38: 313–328. [Medline] [CrossRef]

54) Blankenbaker DG, Ullrick SR, Davis KW, et al.: Correlation of MRI findings with clinical findings of trochanteric pain syndrome. Skeletal Radiol, 2008, 37: 903–906. [Medline] [CrossRef]

55) Iagnocco A, Filippucci E, Riente L, et al.: Ultrasound imaging for the rheumatologist XLI. Sonographic assessment of the hip in OA patients. Clin Exp Rheumatol, 2012, 30: 652–657. [Medline] [CrossRef]

56) Long SS, Surrey DE, Nazarian LN: Sonography of greater trochanteric pain syndrome and the rarity of primary bursitis. AJR Am J Roentgenol, 2013, 201: 1083–1086. [Medline] [CrossRef]

57) Lindner D, Shohat N, Botzer I, et al.: Clinical presentation and imaging results of patients with symptomatic gluteus medius tears. J Hip Preserv Surg, 2015, 2: 310–315. [Medline] [CrossRef]

58) Ebert JR, Retheesh T, Mutreja R, et al.: The clinical, functional and biomechanical presentation of patients with symptomatic hip abductor tendon tears. Int J Sports Phys Ther, 2016, 11: 725–737. [Medline] [CrossRef]

59) Allison K, Vicenzino B, Wrigley TV, et al.: Hip abductor muscle weakness in individuals with gluteal tendinopathy. Med Sci Sports Exerc, 2016, 48: 346–352. [Medline] [CrossRef]

60) Fearon A, Neeman T, Smith P, et al.: Pain, not structural impairments may explain activity limitations in people with gluteal tendinopathy or hip osteoarthritis: a cross sectional study. Gait Posture, 2017, 52: 237–243. [Medline] [CrossRef]

61) Pozzi G, Lanza E, Parra CG, et al.: Incidence of greater trochanteric pain syndrome in patients suspected for femoroacetabular impingement evaluated using magnetic resonance arthrography of the hip. Radiol Med (Torino), 2017, 122: 208–214. [Medline] [CrossRef]

62) Ganderton C, Pizzari T, Harle T, et al.: Assessment of gluteus medius muscle activation during gait in post-menopausal women with and without greater trochanteric pain syndrome. J Electromyogr Kinesiol, 2017, 33: 39–47. [Medline] [CrossRef]

63) Ege Rasmussen KJ, Fanø N: Trochanteric bursitis. Treatment by corticosteroid injection. Scand J Rheumatol, 1985, 14: 417–420. [Medline] [CrossRef]

64) Shbeeb MI, O’Duffy JD, Mickeal CJ Jr, et al.: Evaluation of glucocorticosteroid injection for the treatment of trochanteric bursitis. J Rheumatol, 1996, 23: 2104–2106. [Medline] [CrossRef]

65) Estrela GQ, Furtado R, Natour J, et al.: Blinded vs ultrasound-guided corticosteroid injections for the treatment of greater trochanteric pain syndrome. J Arthroplasty, 2014, 29: 1127–1131. [Medline] [CrossRef]

66) Rompe JD, Segal NA, Cacchio A, et al.: Home training, local corticosteroid injection, or radial shock wave therapy for greater trochanteric pain syndrome. Am J Sports Med, 2009, 37: 1806–1813. [Medline] [CrossRef]

67) Lee JJ, Harrison JR, Boachie-Adjei K, et al.: Platelet-rich plasma injections with needle tenotomy for gluteus medius tendinopathy: a registry study with prospective follow-up. Orthop J Sports Med, 2016, 4: 2325967116671692. [Medline] [CrossRef]

68) Ribeiro AG, Ricioli W, Silva AR, et al.: PRP in the treatment of trochanteric syndrome: a pilot study. Acta Ortop Bras, 2016, 24: 208–212. [Medline] [CrossRef]
108) Watelain E, Dujardin F, Babier F, et al.: Pelvic and lower limb compensatory actions of subjects in an early stage of hip osteoarthritis. Arch Phys Med Rehabil, 2001, 82: 1705–1711. [Medline] [CrossRef]

109) Sims KJ, Richardson CA, Brauer SG: Investigation of hip abductor activation in subjects with clinical unilateral hip osteoarthritis. Ann Rheum Dis, 2002, 61: 687–692. [Medline] [CrossRef]

110) Arokoski MH, Arokoski JP, Haara M, et al.: Hip muscle strength and muscle cross sectional area in men with and without hip osteoarthritis. J Rheumatol, 2002, 29: 2185–2195. [Medline]

111) Rasch A, Dalen N, Berg HE: Test methods to detect hip and knee muscle weakness and gait disturbance in patients with hip osteoarthritis. Arch Phys Med Rehabil, 2005, 86: 2371–2376. [Medline] [CrossRef]

112) Eimre M, Puhke R, Avek K, et al.: Altered mitochondrial apparent affinity for ADP and impaired function of mitochondrial creatine kinase in gluteus medius of patients with hip osteoarthritis. Am J Physiol Regul Integr Comp Physiol, 2006, 290: R1271–R1275. [Medline] [CrossRef]

113) Kubota M, Shimada S, Kobayashi S, et al.: Quantitative gait analysis of patients with bilateral hip osteoarthritis excluding the influence of walking speed. J Orthop Sci, 2007, 12: 451–457. [Medline] [CrossRef]

114) Amaro A, Amado F, Duarte JA, et al.: Gluteus medius muscle atrophy is related to contralateral and ipsilateral hip joint osteoarthritis. Int J Sports Med, 2007, 28: 1035–1039. [Medline] [CrossRef]

115) Rasch A, Bystrom AH, Dalen N, et al.: Reduced muscle radiological density, cross-sectional area, and strength of major hip and knee muscles in 22 patients with hip osteoarthritis. Acta Orthop, 2010, 81: 183–188. [Medline] [CrossRef]

116) Grimaldi A, Richardson C, Stanton W, et al.: The association between degenerative hip joint pathology and size of the gluteus medius, gluteus minimus and piriformis muscles. Man Ther, 2009, 14: 605–610. [Medline] [CrossRef]

117) Rasch A, Byström AH, Dalen N, et al.: Muscle strength, gait, and balance in 20 patients with hip osteoarthritis followed for 2 years after THA. Acta Orthop, 2010, 81: 183–188. [Medline] [CrossRef]

118) Youdas JW, Madson TJ, Hollman JH: Usefulness of the Trendelenburg test for identification of patients with hip joint osteoarthritis. Physiother Theory Pract, 2010, 26: 184–194. [Medline] [CrossRef]

119) Fukumoto Y, Ikezoe T, Tateuchi H, et al.: Muscle mass and composition of the hip, thigh and abdominal muscles in women with and without hip osteoarthritis. Ultrasound Med Biol, 2012, 38: 1540–1545. [Medline] [CrossRef]

120) Dwyer MK, Stafford K, Mattacola CG, et al.: Comparison of gluteus medius muscle activity during functional tasks in individuals with and without osteoarthrits of the hip joint. Clin Biomech (Bristol, Avon), 2013, 28: 757–761. [Medline] [CrossRef]

121) Judd DL, Thomas AC, Dayton MR, et al.: Strength and functional deficits in individuals with hip osteoarthritis compared to healthy, older adults. Disabil Rehabil, 2014, 36: 307–312. [Medline] [CrossRef]

122) Hatton AL, Kemp JL, Brauer SG, et al.: Impairment of dynamic single-leg balance performance in individuals with hip chondroathy. Arthritis Care Res (Hoboken), 2014, 66: 709–716. [Medline] [CrossRef]

123) Rutherford DJ, Moreside J, Wong I: Hip joint motion and gluteal muscle activation differences between healthy controls and those with varying degrees of hip osteoarthritis during walking. J Electromyogr Kinesiol, 2015, 25: 944–950. [Medline] [CrossRef]

124) French HP, Huang X, Cumminskey A, et al.: Normalisation method can affect gluteus medius electromyography results during gait: a case control study. Gait Posture, 2015, 41: 470–475. [Medline] [CrossRef]

125) Zacharias A, Pizzari T, English DJ, et al.: Hip abductor muscle volume in hip osteoarthritis and matched controls. Osteoarthritis Cartilage, 2016, 24: 1727–1735. [Medline] [CrossRef]

126) Zacharias A, Pizzari T, Semciw AI, et al.: Comparison of gluteus medius and minimus activity during gait in people with hip osteoarthritis and matched controls. Scand J Med Sci Sports, 2019, 29: 696–705. [Medline] [CrossRef]

127) Ziegenfus JE, Fornasier LM, Sperling MR: Patellar pain syndrome: A prospective study of injection therapy. J Bone Joint Surg Am, 2000, 82-A: 1705–1711. [Medline] [CrossRef]

128) Zacharias A, Pizzari T, English DJ, et al.: Hip abductor muscle volume in hip osteoarthritis and matched controls. Osteoarthritis Cartilage, 2016, 24: 1727–1735. [Medline] [CrossRef]

129) Steinhilber B, Haupt G, Miller R, et al.: Exercise therapy in patients with hip osteoarthritis: Effect on hip muscle strength and safety aspects of exercise-results of a randomized controlled trial. Phys Ther, 2007, 87: 32–43. [Medline] [CrossRef]

130) Proctor E, Jorgensen K, Ponsford J, et al.: A randomised controlled trial of exercise and manual therapy for hip osteoarthritis. J Adv Nurs, 2007, 57: 141–152. [Medline] [CrossRef]

131) Winters TJ, Belza B, Elaine Thompson F, et al.: Effects of aquatic exercise on flexibility, strength and aerobic fitness in adults with osteoarthritis of the hip or knee. J Adv Nurs, 2007, 57: 141–152. [Medline] [CrossRef]

132) Steiner-Victorin E, Kruse-Smidtje C, Jung K: Comparison between electro-acupuncture and hydrotherapy, both in combination with patient education and patient education alone, on the symptomatic treatment of osteoarthritis of the hip. Clin J Pain, 2004, 20: 179–185. [Medline] [CrossRef]

133) Robinson RL, Nee RJ: Analysis of hip strength in females seeking physical therapy treatment for unilateral patellofemoral pain syndrome. J Orthop Sports Phys Ther, 2007, 37: 232–238. [Medline] [CrossRef]

134) Bolgla LA, Malone TR, Umerberger BR, et al.: Hip strength and hip and knee kinematics during stair descent in females with and without patellofemoral pain syndrome. J Orthop Sports Phys Ther, 2008, 38: 12–18. [Medline] [CrossRef]
139) Willson JD, Davis IS: Lower extremity strength and mechanics during jumping in women with patellofemoral pain. J Sport Rehabil, 2009, 18: 76–90. [Medline] [CrossRef]

140) Franetovich M, Chapman AR, Blanch P, et al.: Altered neuromuscular control in individuals with exercise-related leg pain. Med Sci Sports Exerc, 2010, 42: 546–555. [Medline] [CrossRef]

141) Costa RA, Oliveira LM, Watanabe SH, et al.: Isokinetic assessment of the hip muscles in patients with osteoarthritis of the knee. Clinics (Sao Paulo), 2010, 65: 1253–1259. [Medline] [CrossRef]

142) Hinman RS, Hunt MA, Creaby MW, et al.: Hip muscle weakness in individuals with medial knee osteoarthritis. Arthritis Care Res (Hoboken), 2010, 62: 1190–1193. [Medline] [CrossRef]

143) Sled EA, Khoja L, Deluzio KJ, et al.: Effect of a home program of hip abductor exercises on knee joint loading, strength, function, and pain in people with knee osteoarthritis: a clinical trial. Phys Ther, 2010, 90: 895–904. [Medline] [CrossRef]

144) Nakagawa TH, Baldon RM, Muniz TB, et al.: Relationship among eccentric hip and knee torques, symptom severity and functional capacity in females with patellofemoral pain syndrome. Phys Ther Sport, 2011, 12: 133–139. [Medline] [CrossRef]

145) Bolgla LA, Malone TR, Umberger BR, et al.: Comparison of hip and knee strength and neuromuscular activity in subjects with and without patellofemoral pain syndrome. Int J Sports Phys Ther, 2011, 6: 285–296. [Medline] [CrossRef]

146) Nakagawa TH, Moriya ET, Maciel CD, et al.: Trunk, pelvis, hip, and knee kinematics, hip strength, and gluteal muscle activation during a single-leg squat in males and females with and without patellofemoral pain syndrome. J Orthop Sports Phys Ther, 2012, 42: 491–501. [Medline] [CrossRef]

147) Crossley KM, Dorn TW, Ozturk H, et al.: Altered hip muscle forces during gait in people with patellofemoral osteoarthritis. Osteoarthritis Cartilage, 2012, 20: 1243–1249. [Medline] [CrossRef]

148) Baert IA, Jonkers I, Staes F, et al.: Gait characteristics and lower limb muscle strength in people with early and established knee osteoarthritis. Clin Biomech (Bristol, Avon), 2013, 28: 40–47. [Medline] [CrossRef]

149) Bley AS, Correa JC, Dos Reis AC, et al.: Propulsion phase of the single leg triple hop test in women with patellofemoral pain syndrome: a biomechanical study. PLosOne, 2014, 9: e97606. [Medline] [CrossRef]

150) Izzani M, Petersen KK, Arendt-Nielsen L, et al.: Pain referral and regional deep tissue hyperalgesia in experimental human hip pain models. Pain, 2014, 155: 792–800. [Medline] [CrossRef]

151) Rutherford DJ, Hubble-Kezey C, Stanish W: Hip abductor function in individuals with medial knee osteoarthritis: Implications for medial compartment loading during gait. Clin Biomech (Bristol, Avon), 2014, 29: 545–550. [Medline] [CrossRef]

152) Motealheh A, Gheyasri E, Shoeki E, et al.: The immediate effect of lumbopelvic manipulation on EMG of vasti and gluteus medius in athletes with patellofemoral pain syndrome: a randomized controlled trial. Man Ther, 2016, 22: 16–21. [Medline] [CrossRef]

153) Tevald MA, Murray A, Luc BA, et al.: Hip abductor strength in people with knee osteoarthritis: a cross-sectional study of reliability and association with function. Knee, 2016, 23: 57–62. [Medline] [CrossRef]

154) Srisaran P, Lin YC, Richardson SE, et al.: Musculoskeletal loading in the symptomatic and asymptomatic knees of middle-aged osteoarthritis patients. J Orthop Res, 2017, 35: 321–330. [Medline] [CrossRef]

155) Orozco-Chavez I, Mendez-Rebolledo G: Effect of squatting velocity on hip muscle latency in women with patellofemoral pain syndrome. J Phys Ther Sci, 2018, 30: 381–386. [Medline] [CrossRef]

156) Kalytezyck MM, Lucarelli PR, Dos Reis AC, et al.: Female FFP patients present alterations in eccentric muscle activity but not the temporal order of activation of the vastus lateralis muscle during the single leg triple hop test. Gait Posture, 2018, 62: 445–450. [Medline] [CrossRef]

157) Fuentes-Márquez P, Valenza MC, Cabrera-Martos I, et al.: Trigger points, pressure pain hyperalgesia, and mechanosensitivity of neural tissue in women with chronic pelvic pain. Pain Med, 2019, 20: 5–13. [Medline] [CrossRef]

158) Mirzaie GH, Rahimi A, Kajbafvala M, et al.: Electromyographic activity of the hip and knee muscles during functional tasks in males with and without patellofemoral pain. J Bodyw Mov Ther, 2019, 23: 54–58. [Medline] [CrossRef]

159) Ackland DC, Denton M, Schache AG, et al.: Hip abductor muscle volumes are smaller in individuals affected by patellofemoral joint osteoarthritis. Osteoarthritis Cartilage, 2019, 27: 266–272. [Medline] [CrossRef]

160) Bennell KL, Hinman RS, Metcalfe BR, et al.: Efficacy of physiotherapy management of knee joint osteoarthritis: a randomised, double blind, placebo controlled trial. Ann Rheum Dis, 2005, 64: 906–912. [Medline] [CrossRef]

161) Bennell KL, Hunt MA, Wrigley TV, et al.: Comparison of hip and knee strength and neuromuscular activity in individuals with and without patellofemoral pain syndrome: a randomized controlled trial. Osteoarthritis Cartilage, 2010, 18: 621–628. [Medline] [CrossRef]

162) Foroughi N, Smith RM, Lange AK, et al.: Lower limb muscle strengthening does not change frontal plane moments in women with knee osteoarthritis: a randomized controlled trial. Osteoarthritis Cartilage, 2018, 26: 167–174. [Medline] [CrossRef]

163) Glaviano NR, Huntsman S, Dembeck A, et al.: Improvements in kinematics, muscle activity and pain during functional tasks in females with patellofemoral pain following a single patterned electrical stimulation treatment. Clin Biomech (Bristol, Avon), 2016, 32: 20–27. [Medline] [CrossRef]

164) Iorio R, Healy WL, Warren PD, et al.: Lateral trochanteric pain following primary total hip arthroplasty. J Arthroplasty, 2006, 21: 233–236. [Medline] [CrossRef]

165) Farmer KW, Jones LC, Brownson KE, et al.: Trochanteric bursitis after total hip arthroplasty: incidence and evaluation of response to treatment. J Arthroplasty, 2010, 25: 208–212. [Medline] [CrossRef]

166) Teixeira MJ, Yeng LT, Garcia OG, et al.: Failed back surgery pain syndrome: therapeutic approach descriptive study in 56 patients. Rev Assoc Med Bras, 2019, 57: 282–287. [Medline] [CrossRef]

167) Matsumoto J, Isu T, Kim K, et al.: Impact of additional treatment of paralumbar spine and peripheral nerve diseases after lumbar spine surgery. World Neurosurg, 2018, 112: e778–e782. [Medline] [CrossRef]

168) Genth B, Von Düring M, Von Engelhardt LV, et al.: Analysis of the sensory innervations of the greater trochanter for improving the treatment of greater trochanteric pain syndrome. Clin Anat, 2012, 25: 1080–1086. [Medline] [CrossRef]

169) Karpinski MR, Piggott H: Greater trochanteric pain syndrome. A report of 15 cases. J Bone Joint Surg Br, 1985, 67: 762–763. [Medline] [CrossRef]
171) Sayson SC, Ducey JP, Maybrey JB, et al.: Sciatic entrapment neuropathy associated with an anomalous piriformis muscle. Pain, 1994, 59: 149–152. [Medline] [CrossRef]

172) Vassalou EE, Katonis P, Karantanas AH: Piriformis muscle syndrome: a cross-sectional imaging study in 116 patients and evaluation of therapeutic outcome. Eur Radiol, 2018, 28: 447–458. [Medline] [CrossRef]

173) Schofferman J, Reynolds J, Herzog R, et al.: Failed back surgery: etiology and diagnostic evaluation. Spine J, 2003, 3: 400–403. [Medline] [CrossRef]

174) Stephens G, O’Neill S, French HP, et al.: A survey of physiotherapy practice (2018) in the United Kingdom for patients with greater trochanteric pain syndrome. Musculoskelet Sci Pract, 2019, 40: 10–20. [Medline] [CrossRef]

175) Russo VM, Dhawan RT, Baudracco I, et al.: Hybrid bone SPECT/CT imaging in evaluation of chronic low back pain: correlation with facet joint arthropathy. World Neurosurg, 2017, 107: 732–738. [Medline] [CrossRef]

176) Sebro R, O’Brien L, Torriani M, et al.: Assessment of trunk muscle density using CT and its association with degenerative disc and facet joint disease of the lumbar spine. Skeletal Radiol, 2016, 45: 1221–1226. [Medline] [CrossRef]

177) Sari H, Akarirmak U, Uludag M: Active myofascial trigger points might be more frequent in patients with cervical radiculopathy. Eur J Phys Rehabil Med, 2012, 48: 237–244. [Medline] [CrossRef]

178) Hatakeyama Y, Miyakoshi N, Senma S, et al.: Quantitative measurements of hip abduction strength in lumbar surgery patients. J Orthop Sci, 2019, 24: 400–403. [Medline] [CrossRef]

179) Chang C, Varacallo M: Anatomy, bony pelvis and lower limb, piriformis muscle. StatPearls Publishing; https://www.ncbi.nlm.nih.gov/books/NBK519497/ (Accessed Oct. 1, 2019)

180) Windisch G, Braun EM, Anderhuber F: Piriformis muscle: clinical anatomy and consideration of the piriformis syndrome. Surg Radiol Anat, 2007, 29: 37–45. [Medline] [CrossRef]

181) Fusco P, Di Carlo S, Scimia P, et al.: Ultrasound-guided dry needling treatment of myofascial trigger points for piriformis syndrome management: a case series. J Chiropr Med, 2018, 17: 198–200. [Medline] [CrossRef]

182) Frost FA, Jessen B, Siggaard-Andersen J: A control, double-blind comparison of mepivacaine injection versus saline injection for myofascial pain. Lancet, 1980, 1: 499–500. [Medline] [CrossRef]

183) Vasilievski V, Szeimies U, Stähler A: Magnetic resonance imaging signs of iliobibial band friction in patients with isolated medial compartment osteoarthritis of the knee. Skeletal Radiol, 2009, 38: 871–875. [Medline] [CrossRef]

184) Chang AH, Chmiel JS, Almagor O, et al.: Hip muscle strength and protection against structural worsening and poor function and disability outcomes in knee osteoarthritis. Osteoarthritis Cartilage, 2019, 27: 885–894. [Medline] [CrossRef]

185) Offerski CM, MacNab I: Hip-spine syndrome. Spine, 1983, 8: 316–321. [Medline] [CrossRef]

186) Fogel GR, Esses SI: Hip spine syndrome: management of coexisting radiculopathy and arthritis of the lower extremity. Spine J, 2003, 3: 238–241. [Medline] [CrossRef]

187) Sebaaly A, Lahoud MJ, Rizkallah M, et al.: Etiology, evaluation, and treatment of failed back surgery syndrome. Asian Spine J, 2018, 12: 574–585. [Medline] [CrossRef]