Trial watch: chemotherapy-induced immunogenic cell death in immuno-oncology

Izaure Vanmeerbeek, Jenny Sprooten, Dirk De Ruyscher, Sabine Tejpár, Peter Vandenbergh, Jitka Fucikova, Radek Spisek, Laurence Zitvogel, Guido Kroemer, Lorenzo Galluzzi, and Abhishek D. Garg

Cell Death Research & Therapy (CDRT) unit, Department of Cellular & Molecular Medicine, KU Leuven, Leuven, Belgium; *Maastericht University Medical Center, Department of Radiation Oncology (MAASTRO Clinic), GROW-School for Oncology and Developmental Biology, Maastricht, Netherlands; †Department of Oncology, KU Leuven, Leuven, Belgium; ‡UZ Leuven, Leuven, Belgium; ‡Department of Haematology, UZ Leuven, and Department of Human Genetics, KU Leuven, Leuven, Belgium; §Sotio, Prague, Czech Republic; ‡Department of Immunology, 2nd Faculty of Medicine and University Hospital Motol, Charles University, Prague, Czech Republic; ‡Gustave Roussy Comprehensive Cancer Institute, Villejuif, France; †INSERM, U1015, Villejuif, France; °Center of Clinical Investigations in Biotherapies of Cancer (ICIBT) 1428, Villejuif, France; ‡Université Paris Sud/Paris XI, Le Kremlin-Bicêtre, France; ‡Equipe labellisée par la Ligue contre le cancer, Centre de Recherche des Cordeliers, Université de Paris, Sorbonne Université, INSERM U1138, Paris, France; °Metabolomics and Cell Biology Platforms, Gustave Roussy Comprehensive Cancer Institute, Villejuif, France; °Pôle de Biologie, Hôpital Européen Georges Pompidou, AP-HP, Paris, France; °Suzhou Institute for Systems Medicine, Chinese Academy of Medical Sciences, Suzhou, China; °Department of Women’s and Children’s Health, Karolinska University Hospital, Stockholm, Sweden; ‡Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, USA; ‡Sandra and Edward Meyer Cancer Center, New York, NY, USA; °Caryl and Israel Englander Institute for Precision Medicine, New York, NY, USA; ‡Department of Dermatology, Yale School of Medicine, New Haven, CT, USA; ‡Université de Paris, Paris, France

ABSTRACT
The term ‘immunogenic cell death’ (ICD) denotes an immunologically unique type of regulated cell death that enables, rather than suppresses, T cell-driven immune responses that are specific for antigens derived from the dying cells. The ability of ICD to elicit adaptive immunity heavily relies on the immunogenicity of dying cells, implying that such cells must encode and present antigens not covered by central tolerance (antigenicity), and deliver immunostimulatory molecules such as damage-associated molecular patterns and cytokines (adjuvanticity). Moreover, the host immune system must be equipped to detect the antigenicity and adjuvanticity of dying cells. As cancer (but not normal) cells express several antigens not covered by central tolerance, they can be driven into ICD by some therapeutic agents, including (but not limited to) chemotherapeutics of the antitumoral family, oxaliplatin and bortezomib, as well as radiation therapy. In this Trial Watch, we describe current trends in the preclinical and clinical development of ICD-eliciting chemotherapy as partner for immunotherapy, with a focus on trials assessing efficacy in the context of immunomonitoring.

Introduction
It has been more than a decade since the concept of boosting the immunogenic potential of cancer cells by eliciting an immunogenic variant of regulated cell death (RCD), i.e. immunogenic cell death (ICD), has been proposed.1–9 A substantial number of subsequent studies have shed light on the intricate molecular and cellular mechanisms that underlie the ability of cancer cells to undergo (and the host immune system to detect) ICD.8,10–21 Based on a series of fundamental studies, preclinical validations and clinical biomarker assessments19–21 ICD can be defined as a functionally unique RCD subtype that is sufficient for the elicitation of adaptive immunity specifically directed toward antigens derived from cell “corpses.”4,9,12,15,21,25–36 It is now well acknowledged that, upon antigenic priming coupled to the emission of damage-associated molecular patterns (DAMPs) and immunostimulatory cytokines,8,9,12,15,19–21,27–29,31,36–50 cancer cells undergoing ICD effectively enable the expansion of (mostly preexisting but possibly also de novo) T cells specific for tumor-associated antigens (TAAs) and/or tumor-specific antigens (TSAs; also known as tumor neoantigens, TNAs).4,12,15,21,51–57 Nevertheless, based on currently available evidence, it is safe to assume that although ICD-elicited antigen-specific T cell clones might be “rich” in terms of TCR diversity (i.e. overall amount of T cells with unique antigen-reactive TCRs),58–63 their “evenness” (i.e. uniform distribution of unique TCR-possessing T cells) might be limited due to various constraints specific to oncological contexts.56,64–67 Such constraints include: (1) the heterogeneous expression of TAAs and TSAs within the same tumor and/or across primary tumors and their metastatic lesions,68–76 (2) the differential ‘editing’ of T cells bearing TAA-directed TCRs by central (e.g. thymic) or peripheral (e.g. tissue) tolerance;77–86 (3) the relatively limited avidity of TAA-specific (and sometimes also TSA-specific) TCRs;87–96 and (4) the ability of cancer cells to compromise cellular fitness and/or effector functions of T cells, hence driving ‘exhaustion’ or ‘anergy’.97–109

CONTACT Abhishek D. Garg abhishek.garg@med.kuleuven.be Cell Death Research & Therapy (CDRT) unit, Department of Cellular & Molecular Medicine, KU Leuven, Campus Gasthuysberg, O&N1, Herestraat 49, Leuven 3000, Belgium; Lorenzo Galluzzi deadoc80@gmail.com Weill Cornell Medical College, Stich Radiation Oncology, 525 East 68th Street, New York, NY 10065, USA

*Share co-corresponding/co-senior authorship.

© 2020 The Author(s). Published with license by Taylor & Francis Group, LLC. This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial License (http://creativecommons.org/licenses/by-nc/4.0/), which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Two main criteria should be met for any treatment modality to be classified as a *bona fide* ICD inducer. First, ICD-eliciting agents must exhibit superior therapeutic efficacy when employed against mouse tumors growing in immunocompetent, syngeneic hosts (as compared to immunodeficient) hosts. Second, cancer cells undergoing ICD must provide tumor-naive, syngeneic hosts with immunomediated prophylactic protection against a subsequent challenge with living cancer cells of the same (but not different) type. Here, it is important to note that the first approach, while relatively straightforward, cannot be employed to discriminate ICD inducers (*i.e.* agents that kill cancer cells in an immunogenic manner) from immunostimulatory chemotherapies (*i.e.* agents that boost immune functions by acting on the host immune system). An additional experimental approach to detect ICD, which can be used only for localized treatments such as radiation therapy (RT) or intra-tumoral drug delivery, consist in assessing the response of non-treated rodent tumors that have been established contra-laterally to treated lesions (*so-called* “abscopal response”) in immunocompetent, syngeneic hosts. Some ICD inducers are indeed potent at eliciting adaptive anticancer immunity even in the presence of the immunosuppressive circuitries that are established by developing tumors, and not only in tumor-naive settings.

In addition to these *in vivo* experiments, which obligatorily rely on rodent cancer cells established in immunocompetent, syngeneic hosts, some *in vitro* or *ex vivo* proxy methods are available to estimate the immunogenic potential of dying cancer cells (as long as all appropriate positive and negative controls are thoroughly evaluated). The main advantage of these methods is that they can be employed for both rodent and human cancer cells. In this context, cancer cells potentially undergoing ICD can be examined for the release or exposure of ICD-associated DAMPs (see below) and/or co-cultured with myeloid cells such as dendritic cells (DCs) and/or MHC Class II molecules, which are typically assessed for: (1) phagocytic activity, (2) surface activation markers (*e.g.* CD80, CD83, CD86, CD83, CD40 and/or MHC Class II molecules), (3) secretory activity, with specific reference to interleukin 1 beta (IL1B), IL6, IL12 and tumor necrosis factor (TNF), (4) T-cell cross-priming, and (5) active or passive release of ATP, which operates as a short-range “find me” signal and inflammasome activator; (6) active or passive release of the non-histone chromatin-binding protein high-mobility group box 1 (HMGB1), which operates as an agonist of Toll-like receptor 4 (TLR4) and Advanced glycosylation end-product specific receptor (AGER); (7) active or passive release of annexin A1 (ANXA1), a formyl peptide receptor 1 (FPR1) agonist; (8) active secretion of immunostimulatory and chemotactic cytokines, including type I interferon (IFN), C-C motif chemokine ligand 2 (CCL2), C-X-C motif chemokine ligand 1 (CXCL1) and CXCL10; and (6) passive release of nucleic acids, which can engage TLR3, TLR7/8 and/or TLR9. These danger signals have been robustly associated with ICD elicited by cyclophosphamide and bortezomb. Moreover, ICD driven by other cellular stressors including RT, photodynamic therapy, extracorporeal phototherapy and oncolytic virotherapy is not necessarily associated with the emission of the same DAMPs, cytokines and chemokines. Altogether and in combination with an increased microenvironmental availability of TAAs or TSAs, ICD-associated DAMPs pave the way to: (1) abundant recruitment of antigen-presenting cells (APCs) or their precursors (as in the case of the CRP, CCL2, CXCL1, ANXAI and/or T cells (as in the case of CXCL10) to the tumor microenvironment; (2) efficient phagocytic uptake of dead/dying cancer cells and fragment thereof in the context of immunostimulatory signaling (as in the case of the CRP); and, (3) potent functional activation of APCs (as in the case of the CRP, HMGB1 and nucleic acids).

Ultimately, APCs engulfing TAAs or TSAs and receiving these immunostimulatory cues acquire an extraordinary ability to cross-present TAA- or TSA-derived epitopes to CD4+ and/or CD8+ T cells in the context of co-stimulation, which enables TAA/TSA-targeting immunity.

In multiple oncological settings, cancer cells capable of undergoing ICD in response to microenvironmental or therapeutic stress are subjected to increased immunological pressure, resulting in the selection of poorly immunogenic tumor variants displaying: (1) reduced antigenicity (due to TAA/TSA loss or defects in MHC Class I expression); (2) genetic or epigenetic annihilation of the intracellular stress pathways that support the emission of ICD-associated DAMPs, cytokines or chemokines, and/or epigenetic silencing of specific DAMPs (*e.g.* CALR) or type I IFN. Alongside general immunological defects, there can also exist disruption in the detection of DAMPs that are normally emitted by cancer cells undergoing ICD. Such conditions include: (1) a prominent immunological tolerance determined by the specific anatomical location
of the tumor (as in the case of the brain, mucosal surfaces and other immunologically privileged sites),129,257–259 (2) an abundant and persistent release of immunosuppressive cytokines such as IL10;260–264 (3) a robust production of factors that favor immune exclusion, such as transforming growth factor beta 1 (TGFB1);265–270 (4) abundant tumor infiltration by immunosuppressive immune cells like myeloid-derived suppressor cells (MDSCs);271–281 (5) elevated expression of co-inhibitory receptors, such as programmed cell death 1 (PDCD1, best known as PD-1) and hepatitis A virus cellular receptor 2 (HAVCR2, best known as TIM-3);271–273,282–284 (6) lymphoid T cell depletion as a consequence of vascular exclusion;277,279,289,285–287 and (7) cancer cell resistance to RCD driven by immune effector cells.271,285,288

Not surprisingly, only a few chemotherapeutic agents can cause the immunogenic demise of cancer cells.12,21,130 Moreover, there is no clear structure-function relationship to assist the prediction of ICD inducers. Thus, even though cisplatin and oxaliplatin exhibit considerable structural overlap and share \textit{modus operandi} as for their capacity to elicit ICD,289 the latter but not the former drives \textit{bona fide} ICD.290

Similar observations apply to the DNA alkylating agents, melphalan (which is unable to cause ICD) and cyclophosphamide (\textit{a bona fide} ICD inducer).291 The differential ability of cisplatin (or melphalan) and oxaliplatin (or cyclophosphamide) to promote ICD reflects their uneven capacity to cause endoplasmic reticulum (ER) stress and hence favor the exposure of CALR and other ER chaperones on the surface of dying cells.290–294

Common chemotherapeutics that have been demonstrated to cause ICD include (but may not be limited to): (1) idarubicin, which is generally employed for the treatment of acute myeloid leukemia (AML);3,21,295–297 (2) epirubicin, which is used in women with breast cancer;4,214,296,297 (3) doxorubicin, which is approved for the treatment of AML, acute lymphoblastic leukemia (ALL), Wilms’ tumors, breast cancer, lymphoma, gastric cancer, small cell lung carcinoma, neuroblastoma, multiple myeloma, thyroid cancer, sarcomas, ovarian cancer, and bladder cancer;4,214,298–304 (4) mitoxantrone, which is licensed for use in patients with AML, non-Hodgkin’s lymphoma (NHL), breast cancer, and prostate carcinoma;4,214,296,297 (5) oxaliplatin, which is commonly employed in combinatorial regimens against colorectal carcinoma;289,290,305–311 (6) bortezomib, which is approved for the clinical management of mantle cell lymphoma and multiple myeloma;312–322 (7) cyclophosphamide, which is frequently employed in patients with AML, ALL, chronic myeloid leukemia (CML), chronic lymphocytic leukemia (CLL), lymphoma, multiple myeloma, ovarian cancer, breast cancer, neuroblastoma and retinoblastoma.318,332–333 Finally, some chemotherapeutic agents can enhance the immunogenic potential of RCD to some degree, but not sufficiently to drive robust ICD, owing to a variety of limiting circumstances. This applies to taxanes (e.g. paclitaxel, docetaxel), bleomycin and vinca alkaloids.15,113,333

Of note, even though ICD is a major immunostimulatory pathway activated by the aforementioned chemotherapies (at least in preclinical settings), the same molecules can also boost anticancer immunity by, (1) targeting nonmalignant cells (e.g. immune cells, stromal cells, endothelial cells), and/or (2) by improving the immunogenicity of cancer cells independently of their demise (e.g. by activating the expression of NK cell-activatory ligands).15,141,334–339 Finally, most immuno-oncology trials do not select chemotherapeutics based on their immunostimulatory potential (which in many cases does not manifest at clinically employed dose regimens), but rather based on their use a standard-of-care for selected indications. At least in some cases, such a design precludes the activation of clinically meaningful anticancer immune responses and hence limits the clinical benefit of combinatorial regimens.

In this edition of the Trial Watch series, we discuss recent preclinical and clinical developments on ICD induction by anticancer chemotherapeutics in the context of immuno-oncology. Of note, other inducers of ICD including RT,215–217 \textit{in situ} virotherapy,340 high hydrostatic pressure,12,15,346 photodynamic therapy and extracorporeal photochemotherapy,119,215,256,237,347 will not be discussed herein.

Recent preclinical advances

Since the publication of the latest Trial Watch dealing with ICD elicited by chemotherapy (September 2017),20 several preclinical studies on this topic have been published in peer-reviewed scientific journals. Amongst these studies, we found the following ones to be of particular (representative) importance.

As compared to past decade (which was dominated by fundamental studies aimed at elucidating the molecular and cellular mechanisms underlying ICD and its detection),20 the majority of the studies published in the last 2 years had a translational approach, largely reflecting the trend of immuno-oncology at large.348,349 That said, at least a few studies provided fresh insights into the fundamentals of ICD. For instance, Bezu et al. (Center de Recherche des Cordeliers, Paris, France) observed that prototypical ICD inducers such as anthracyclines cause the phosphorylation of eukaryotic translation initiation factor 2A (EIF2A, best known as eIF2α) without consistently triggering other manifestations of ER stress, and that EIF2A phosphorylation strongly correlates with surface CALR exposure, \textit{de facto} constituting a pathognomonic marker of ICD.350 Lecciso and colleagues (University of Bologna, Bologna, Italy) documented that the release of extracellular ATP from daunorubicin-treated AML cells can elicit immunosuppressive (rather than immunostimulatory) effects within the tumor microenvironment by favoring the persistence of the regulatory T (T\textsubscript{REG}) cells,351 which can be distinguished by increased expression of PD-1, and tolerogenic DCs, which can be identified by increased indoleamine 2,3-dioxygenase 1 (IDO1) and ectonucleoside triphosphate diphosphohydrolase 1 (ENTPD1, best known as CD39) expression.352 These studies highlight the need for better understanding the ‘plasticity’ associated with ICD-linked danger signaling especially in the context of resistance to immunotherapy.353,354

On the translational side, several preclinical studies reported the generation of nanoparticles or other nanoformulations for the improved delivery of ICD-inducing chemotherapies.355
Mastria et al. (Duke University, Durham, NC, USA) documented that a nanoparticle preparation of doxorubicin, i.e. chimeric polypeptide doxorubicin, efficiently enhances anticancer immunity as it favors tumor infiltration by T cells (including CD8+ T cells) and limits primary tumor growth as well as metastatic spread.356 Yang and collaborators (National Institutes of Health, Bethesda, MD, USA) observed that an integrated polymersomal nanoformulation (consisting of a chimeric, cross-linked polymersome encapsulating doxorubicin and a photosensitizer that can be activated via photodynamic therapy) drives in situ, DC-dependent anticancer vaccination, hence retarding the progression of mouse MC38 colorectal tumors.357 Lu and collaborators (University of California, Los Angeles, CA, USA) conjugated an IDO1 inhibitor (indoximod)360 to oxaliplatin-bearing nanovesicles, and demonstrated that this nano-enabled approach (delivered through vaccination, intravenous or intratumoral injection) induces potent anticancer immunity in an orthotopic pancreatic ductal adenocarcinoma (PDAC) mouse model.358 Huang et al. (Hainan Medical College, Haikou, China) developed a system for the ultrasound-controlled release of doxorubicin by liposome-microparticle complexes, resulting in superior ICD induction in lung (LL/2) and colorectal cancer (CT26) syngeneic murine models.365 Finally, Liu and collaborators (University of North Carolina at Chapel Hill, Chapel Hill, NC, USA) achieved the targeted delivery of mitoxantrone and celastrol (a triterpenoid) via a tumor microenvironment-sensitive nanocarrier, hence efficiently causing ICD-dependent therapeutic effects in vivo that halted cancer progression, and repressed metastatic spread.359

Beyond these nanotechnology-oriented studies, most of the other translational studies on ICD-inducing chemotherapies published over the past 2 years focused on combining ICD induction with immunotherapy or targeted anticancer agents, in keeping with current clinical trends.360 D’Amico et al. (University of Basel, Basel, Switzerland) found that an antibody specific for Erb-B2 receptor tyrosine kinase 2 (ERBB2, also known as HER2) conjugated to an anthracycline derivate exerts potent anticancer effects that depend on cytotoxic T cells in an ERBB2-expressing syngeneic breast cancer model resistant to standard anti-ERBB2 therapy, and that this therapeutic effect can be further enhanced by PD-1 blockade.205 Fend and collaborators (Gustave Roussy Cancer Campus, Villejuif, France) reported that an engineered oncolytic vaccinia virus, VVWR-RR FcU1, can mediate ICD-dependent therapeutic effects (as documented by type I IFN signaling, increased CD8+ T cell infiltration, and improved ratio of effector CD4+ T cells to TREG cells in the tumor microenvironment) that can be potentiated by ICD-inducing chemotherapeutics or immune checkpoint blockers (ICBs).361 Camillo and colleagues (Oslo University Hospital, Oslo, Norway) documented that combining the oncolytic peptide LTX-315 with doxorubicin elicits anticancer immune responses that limit tumor growth along with increased infiltration of CD4+ and CD8+ T cells.362 Groza et al. (University of Vienna, Vienna, Austria) combined “bacterial ghosts” (i.e. empty envelopes of Gram-negative bacteria) with oxaliplatin to elicit therapeutically relevant T cell responses against CT26 mouse colorectal tumors coupled to the establishment of long-term immunological memory.363 Gao and collaborators (University of Science and Technology of China, Hefei, China) found that, as compared to the either agent delivered as standalone therapy, the co-administration of doxorubicin and a small molecule IDO1 inhibitor (NLG919) profoundly inhibits the growth of 4T1 mouse mammary tumors in vivo.364 Gebremeskel and colleagues (Beatrix Hunter Cancer Research Institute, Halifax, Nova Scotia, Canada) combined cyclophosphamide, gemcitabine and α-galactosylceramide (α-GalCer)-loaded DCs (which potently activate NKT cells), achieving disease eradication and long-term immunological protection in mice bearing 4T1 tumors, as demonstrated by their ability to reject a subsequent challenge with the same cancer cells.365 Nam et al. (Korea University, Seoul, Republic of South Korea) employed ICD-inducing chemotherapy, as they boosted the phagocytic activity of APCs by blocking rho-associated coiled-coil containing protein kinase 1 (ROCK1), to activate effectual anti-tumor immunity (distinguished by improved T cell priming by DCs), causing considerable inhibition of tumor growth in multiple mouse models.208 Combes and coauthors (Université de Montpellier, Montpellier, France) found that the resistance of colorectal cancer cells to oxaliplatin can be circumvented by inhibition of ATR serine/threonine kinase (ATR), resulting in robust therapeutic effects that largely depend on immune effectors.366 Finally, Truxova et al. (Sotio, Prague, Czech Republic) demonstrated that AML patients whose blasts naturally expose CALR on the plasma membrane experience a survival advantage that is associated with improved NK cell functions downstream of superior type I IFN secretion and IL15 trans-presentation by myeloid cells.205,216

Altogether, these studies demonstrate that ICD-inducing chemotherapy can initiate robust anticancer immunity, which can be further potentiated by multiple immunotherapeutic regimens currently employed in the clinic. That said some cancers display immunological alterations that prevent the activation of tumor-targeting immunity by malignant cells undergoing ICD. This constitutes a major obstacle to efficacy of ICD-inducing chemotherapy, and further preclinical studies are required for the development of efficacious combinatorial regimens.

Finalized clinical studies

Subsequent to the publication of our previous Trial Watch on ICD-inducing chemotherapeutics (September 2017),20 various clinical studies have assessed the efficacy of bona fide ICD-inducing chemotherapeutics (i.e. doxorubicin, epirubicin, idarubicin, mitoxantrone, bortezomib, cyclophosphamide or oxaliplatin), most often in combination with immunotherapy and in the context of immunomonitoring programs. These clinical reports were identified by querying PubMed (http://www.ncbi.nlm.nih.gov/pubmed) with the string “(cancer OR tumor OR tumor OR neoplasm) AND (oxaliplatin OR cyclophosphamide OR bortezomib OR doxorubicin OR epirubicin OR idarubicin OR mitoxantrone) AND (immune OR immunogenic OR “immunogenic cell death” OR immunological)”, accompanied by an article-type filter (Article types>Clinical trial) and
followed by a manual selection of articles for direct relevance to this Trial Watch.

Voorwerk et al. (The Netherlands Cancer Institute, Amsterdam, the Netherlands) treated 67 patients with metastatic triple-negative breast cancer (TNBC), with a PD-1-targeting ICB (nivolumab) in combination with various conventional cancer treatments including ICD inducers (RT, cyclophosphamide, doxorubicin) as well as a non-ICD inducer (cisplatin). In the context of this Phase II trial (TONIC), the best objective response rates (ORRs) were achieved by nivolumab plus doxorubicin (35%), which was superior to nivolumab plus cisplatin (23%). In consideration of the multi-arm design of this clinical study, we interpret these data as convincing clinical evidence in favor of combining bona fide ICD-inducing chemotherapeutics with ICBS, at least in the context of TNBC. Scurr and collaborators (Cardiff University, Cardiff, UK) reported the results of a randomized Phase I/II study enrolling 55 metastatic colorectal cancer patients. In this context, cyclophosphamide combined with a modified vaccinia virus Ankara-5T4 (MVA-5T4) elicited robust anticancer immunity (as assessed by humoral immunological markers as well as by circulating TREG depletion), culminating with protracted patient survival in the absence of severe toxicities. Federico and colleagues (University of Tennessee Health Science Center, Memphis, TN, USA) documented that the combination of various chemotherapeutic regimens (cyclophosphamide plus topotecan, irinotecan plus temozolomide and ifosfamide plus carboplatin plus etoposide) with a monoclonal antibody specific for ganglioside G2 (hu14.18K322A), recombinant cytokines, and adoptively transferred NK cells not only is feasible in children suffering from refractory/recurrent neuroblastoma, but also exhibits robust clinical activity, as demonstrated by an ORR of 61.5%.

Bota et al. (University of California Irvine, Irvine, CA, USA) reported that combining an allogeneic/autologous vaccine (ERC1671) with recombinant colony stimulating factor 2 (CSF2, best known as GM-CSF), cyclophosphamide and bevacizumab (a monoclonal antibody specific VEGFA) results in a clinically-relevant survival benefit in glioblastoma patients (12 months vs. 7.5 months for patients receiving bevacizumab only). Kanekiyo and colleagues (Yamaguchi University Graduate School of Medicine, Yamaguchi, Japan) combined a vaccine based on 5 HLA-A*24:02-restricted peptides with oxaliplatin in patients with colorectal cancer, finding humoral responses to multiple peptides that were associated with cytotoxic T-cell responses and/or improved overall survival (OS). Geyer and collaborators (Memorial Sloan Kettering Cancer Center, New York, NY, USA) employed CD19-targeting chimeric antigen receptor (CAR) T cells in patients afflicted by residual CLL upon chemotherapy with pentostatin (is a pure analog that inhibits nucleic acid synthesis), cyclophosphamide and rituximab (a CD20-targeting monoclonal antibody). This approach achieved 38% ORR, with two patients exhibiting complete responses exceeding 28 months in the absence of severe cytokine release syndromes.

Other clinical studies focused on assessing biomarkers of immune activation in patients receiving ICD-inducing chemotherapeutics. Fokakis et al. (Karolinska University Hospital, Stockholm, Sweden) documented that clinical responses to anthracycline-based neoadjuvant chemotherapy amongst 109 patients with breast cancer were more frequent when tumors were characterized by a transcriptional signature that the authors named “immune module score.” Similarly, Kwa and collaborators (NYU Langone Medical Center, New York, NY, USA) observed that the administration of cyclophosphamide plus exemestane (an aromatase inhibitor, belonging to the class of anti-estrogens agents) to women with breast cancer resulted in clinical responses that were accompanied by increases in the circulating levels of various effector T cell subsets (but limited changes in blood-borne TREG cells). Conversely, Werter and colleagues (VU University Medical Center, Amsterdam, The Netherlands) were unable to document (in the context of a Phase I clinical trial) any clinical benefit for patients with renal cell carcinoma receiving cyclophosphamide plus everolimus (an mTORC1 inhibitor) despite successful depletion of circulating TREG cells. Along similar lines, Toulmonde et al. (Institut Bergonié, Bordeaux, France) found that a PD-1-targeting ICB combined with cyclophosphamide has limited clinical activity in patients with advanced soft-tissue sarcoma and gastrointestinal stromal tumor (GIST). These latter findings have been attributed to the elevated degree of immunosuppression that characterize at least some subsets of soft-tissue sarcoma and GIST, which are characterized by robust infiltration by macrophages and prominent IDO1 activity. Stevens and colleagues (Radboudumc, Nijmegen, The Netherlands) reported that wild-type enhancer of zeste 2 polycomb repressive complex 2 subunit (EZH2) status, chiasm 18 gain, and low amounts of CD68+CD163+ cells were potent predictors of therapeutic failure of multimodal, cyclophosphamide- and doxorubicin-based chemotherapy plus rituximab in patients with follicular lymphoma. Finally, Aspeslagh et al. (Gustave Roussy Cancer Campus, Villejuif, France) documented, (1) that cancer patients receiving first-line ICBS against PD-1 or CD274 (best known as PD-L1) obtain limited therapeutic benefit from the subsequent administration of conventional chemotherapy (irrespective of their ability to induce ICD), and that (2) prior exposure to ICD-inducing chemotherapeutics (e.g. oxaliplatin, cyclophosphamide, doxorubicin, epirubicin, bortezomib) did not seem to improve the activity of ICBS administered subsequently.

Importantly, some clinical studies lent support to the notion that the failure of ICD-inducing chemotherapy does not compromise the activity of immunotherapy, at least in some settings. Thus, Overman et al. (MD Anderson Cancer Center, Houston, TX, USA) treated patients with defective mismatch repair (dMMR) or microsatellite instability-high (MSI-H) metastatic colorectal cancer progressing on standard-of-care chemotherapeutics (including oxaliplatin) with nivolumab, observing 68.9% (51/74) patients on tumor control exceeding 12 weeks.

Taken together, these studies reveal that ICD-inducing chemotherapy may provide immunological benefits to cancer patients that are accompanied by clinical activity, at least in some settings and especially in the context of immunotherapy. However, there are oncological indications in which the immunological and clinical effects of ICD-inducing
chemotherapeutics remain debatable. It will therefore be critical to identify the precise oncological indications and/or contexts in which the initiation of ICD by chemotherapy provides maximal therapeutic advantage. Current evidence points to breast carcinoma and colorectal carcinoma as putative settings in which ICD inducers can be favorably combined with immunotherapy for optimal clinical activity.

Ongoing clinical studies

When the current Trial Watch was redacted the ClinicalTrials.gov database (http://www.clinicaltrials.gov/) listed no less than 103 clinical studies that matched the following criteria: (1) they involved at least one bona fide ICD-inducing chemotherapeutic agent; (2) they were implemented in the context of immunomonitoring; and (3) they were initiated after July 2017 (when the latest Trial Watch on this topic was published) (Figure 1c, Tables 1 and 2).

In this context, multiple immunological biomarkers (including several biomarkers of ICD) are being examined (Figure 1a, Tables 1 and 2), including: (1) T-cell immunoprofiling, including assessment of T cell activation, suppression, phenotype, and exhaustion, as well as the quantification of tumor-infiltrating or circulating T cells; (2) quantification of immunosuppressive ligands (e.g. PD-L1) and/or their receptors (e.g. PD-1, TIM-3) in the tumor microenvironment; (3) assessment of humoral immune responses specific for TAAs; (4) quantification of blood-borne cytokines relevant for anti-tumor immunity, including (but not limited to) IL6, TNF, interferon beta 1 (IFNB1), and interferon gamma (IFNG); and (5) immunological assessment of CAR T cell number and activity (mostly in the circulation). In addition, multiple ongoing clinical studies are evaluating immunological biomarkers in an unbiased fashion by harnessing omics approaches such as bulk or single-cell RNA sequencing and multispectral immunohistochemistry. These clinical studies are expected to provide valuable information on genetic signatures or functional patterns that are associated with T cell activation and clinical activity downstream of ICD induction by chemotherapy, potentially leading to the development of prognostic or predictive biomarkers.

In line with previously documented trends, breast carcinoma is one of the most common oncological indications for the use of ICD-inducing chemotherapy in combination with immunotherapy. In addition, multiple relatively nonselective “basket trials” have been initiated to test this therapeutic paradigm in cohorts of patients with various solid and hematological malignancies, including gastric and (gastro)esophageal cancer, myeloma, lymphoma, colorectal carcinoma and others (Figure 1b, Tables 1 and 2). Overall, clinical trials enrolling individuals with solid tumors are more common as compared to studies accruing patients with hematological malignancies. Although multiple reasons may underlie such an apparent discrepancy, it is tempting to speculate that overall disease incidence and responsiveness to standard-of-care treatment may play a prominent role in this scenario. Of note, ICD-inducing chemotherapeutics are being tested in subjects with hematological tumors most often in combination with CAR T cells, in order to maximize the clinical activity of the latter and/or to expand it to specific malignancies that are not particularly sensitive upfront, such as liver, lung, ovarian or prostate cancers (amongst others).

Most of the clinical studies charted in this survey plan to administer cyclophosphamide, oxaliplatin, doxorubicin, epirubicin, or bortezomib, not only as archetypically on-label interventions but also as components of standard-of-care regimens (Figure 1c, Tables 1 and 2). In a limited fraction of cases, assessment of ICD induction by treatment is a primary objective of the study. Cyclophosphamide is often being used with the principal aim of inhibiting or depleting tumor-infiltrating or circulating T_cells (Table 2). Common combinatorial partners for ICD-eliciting chemotherapeutics include other (non-chemotherapeutic) ICD inducers such as RT, as well as chemotherapeutic agents that boost the immunogenic potential of cancer cells without inducing ICD, such as melphalan, doxetaxel or paclitaxel (Tables 1 and 2).

Moreover, in line with the contemporary immuno-oncology landscape, most oncologists are combining ICD-inducing chemotherapeutics with active or passive immunotherapy (Figure 1d, Tables 1 and 2). These generally consist of: (1) ICBs targeting PD-1, such as nivolumab, pembrolizumab, or SHR-1210; PD-L1, like atezolizumab, durvalumab, or avelumab; cytotoxic T-lymphocyte associated protein 4 (CTLA4); such as ipilimumab or tremelimumab; or killer cell lectin-like receptor C1 (KLRC1, best known as NKG2A, such as monalizumab; (2) immunostimulatory monoclonal antibodies such as CD40 agonistic antibodies; (3) tumor-targeting antibodies specific for CD38, CD20, epidermal growth factor receptor (EGFR), VEGFA, IL6, or ERBB2; (4) adoptively transferred T cells, including T cells engineered to express TAA-specific CARs; (5) immunostimulatory cytokines including GM-CSF, CSF3, IL2, IFNA or IRX-2 (a cell-free mixture of IL1B, IL2, IL6, IL8, IL10, IL12, TNF and IFNG); (6) DC-based vaccines, amongst others (Figure 1d, Tables 1 and 2). These trends deviate from those we documented in the previous Trial Watch dealing with ICD-inducing chemotherapy in that ICBs and CAR T cells have substituted immunostimulatory cytokines as the most common combinatorial partner for ICD inducers. Overall, these trends mirror current expectations on the ability of various immunotherapeutic agents, notably ICBS, to achieve optimal efficacy once ICD is initiated by optimal chemotherapeutic regimens, especially in oncological indications that are poorly sensitive to either approach employed alone. Ongoing clinical studies will shed some light on this possibility, with specific reference to which precise ICD inducer should be employed in combination with which immunotherapeutic agent, for which indication and according to which schedule.

Concluding remarks

Multiple chemotherapeutic agents that induce bona fide ICD are presently approved by regulatory authorities worldwide for use in patients with a wide variety of malignant disorders (encompassing hematological and solid tumors). However, these chemotherapeutics have been largely developed (preclinically) in human xenografts established in highly immunodeficient mice and translated to the clinic according to ever more...
Figure 1. Current clinical studies testing immunogenic cell death (ICD)-inducing chemotherapy in combination with immunotherapy for oncological indications. Clinical studies were classified based on: (a) immunomonitoring approach, (b) indication, (c) ICD-inducing drug, and (d) combinatorial immunotherapy. CAR, chimeric antigen receptor; CRC, colorectal carcinoma; DC, dendritic cell; DTH, delayed-type hypersensitivity; GBM, glioblastoma; HPV, human papillomavirus; IHC, immunohistochemistry; NK, natural killer; NKT, natural killer T; TIL, tumor-infiltrating lymphocyte; TLR, toll-like receptor.
obsolete concept of maximum tolerated dose (MTD), in the absence of any immunomonitoring.

Thus, ICD inducers are currently employed according to doses and treatment schedules that ensure maximal cytotoxicity in the context of limited side effects on normal tissues, but do not consider potential inputs from the host immune systems. In line with this notion, two of the most common side effects of chemotherapy are neutropenia and lymphopenia, implying that the ICD inducers employed according to current standards are toxic to immune cells and favor (at least some degree of) immunodeficiency.
Table 2. Contemporary clinical studies assessing the therapeutic and immunological characteristics of cyclophosphamide.

Indication(s)	Phase	Status	Notes	Ref.
B cell lymphoma	II	Recruiting	Combined with pembrolizumab and DPX-survivax	NCT03394950
Breast cancer	I	Withdrawed	Combined with doxorubicin and glemabatumum vedotin	NCT03183659
	I/II	Recruiting	Combined with SV-BR-GM, pembrolizumab and interferon inoculation	NCT03328026
	II	Recruiting	Combined with doxorubicin, nivolumab and ipilimumab	NCT03409198
		Not yet recruiting	Combined with multimodal chemotherapy, pertuzumab, atezolizumab, trastuzumab emtansine and surgical resection	NCT03894007
		Recruiting	Combined with epirubicin, nab-paclitaxel and pembrolizumab	NCT03289819
		Recruiting	Combined with multimodal chemotherapy and pembrolizumab	NCT03515798
	III	Recruiting	Combined with multimodal chemotherapy and atezolizumab	NCT03197935
	NA	Recruiting	Combined with doxorubicin and alpha lipoxic acid	NCT03908528
Gastroesophageal cancer	II	Recruiting	Combined with pembrolizumab and IRX-2	NCT03918499
		Recruiting	Combined with fludarabine, temozolomide, TTRNA-DC vaccine with GM-CSF, TTRNA-xALT, autologous HSC and Td vaccine	NCT03396575
		Recruiting	Combined with fludarabine, GINA4KT cells	NCT02439788
	I/II	Recruiting	Combined with surgical resection and lysate-loaded dendritic cell vaccine	NCT03879512
Hematological malignancies		II Recruiting	Combined with multimodal chemotherapy, ASCT, EBRT, sargramostim, dinutuzimab and aldesleukin	NCT03786783
		Recruiting	Combined with multimodal chemotherapy, total body irradiation and cord blood stem cells	NCT03885947
		Not yet recruiting	Combined with fludarabine and CAR-aNKT cells	NCT03774654
	I/II	Recruiting	Combined with fludarabine, ALLO-501 and ALLO-647	NCT03939026
		Withdrawed	Combined with GM-CSF and TAPA-pulsed DC vaccine	NCT02223312
		Active, not recruiting	Combined with GM-CSF and TAPA-pulsed DC vaccine	NCT02709993
	II	Recruiting	Combined with fludarabine and axicabtagen cilioucel	NCT03761056
		Recruiting	Combined with multimodal chemotherapy, nivolumab and rituximab	NCT03749018
		Recruiting	Combined with cord blood transplantation	NCT03802773
Leukemia	I	Recruiting	Combined with fludarabine phosphate and CD19/CD22 CAR-T cell therapy	NCT03233854
		Not yet recruiting	Combined with fludarabine, CD19 CAR-T cells and PD-1 KO engineered T cells	NCT03298628
		Recruiting	Combined with tacrolimus, allogenic HSC transplantation, filgrastim and total marrow irradiation	NCT03467868
		Recruiting	Combined with fludarabine and omimune	NCT03790072
		Recruiting	Combined with leukapheresis, fludarabine and huCAR1	NCT03103971
		Recruiting	Combined with fludarabine and anti-C19/CD22 CAR-T cells	NCT03919526
	I/II	Recruiting	Combined with fludarabine and KTE-X19	NCT03624036
	III	Recruiting	Combined with multimodal chemotherapy, TBRT, G-CSF and peripheral blood transplant	NCT03480360
	NA	Recruiting	Combined with multimodal chemotherapy, thymoglobuline, cyclophosphorine, lymphocyte injection of prophylactic donor and transfusion graft of peripheral stem cells	NCT03035422
Liver cancer	I	Recruiting	Combined with fludarabine and GAP-T cells	NCT03655002
		Active, not recruiting	Combined with fludarabine and GAP-T cells	NCT02932956
	I/II	Recruiting	Combined with IMA970A and CV8102	NCT03203005
		Recruiting	Combined with fludarabine and MUC-1 CAR-T cells	NCT03633773
	II/III	Recruiting	Combined with INKT cells and human recombinant IL-2	NCT04011033
Lung cancer	I	Recruiting	Combined with radiation, G-CSF and PBMCs	NCT02579005
		Not yet recruiting	Combined with fludarabine and PD-1 CAR-T cells	NCT03330834
Melanoma	I	Recruiting	Combined with fludarabine, IL-2, nivolumab and adoptive transfer of autologous TILs	NCT03475134
		Recruiting	Combined with fludarabine, autologous TILs, aldesleukin and ipilimumab	NCT03526185
Myeloid malignancies	II	Recruiting	Combined with multimodal chemotherapy cyclophosphorine, tacrolimus and HSC transplantation	NCT03270748
Myeloma	I	Recruiting	Combined with fludarabine and SLAM7 CAR-T therapy	NCT03710421
		Recruiting	Combined with fludarabine, gamma secretase inhibitor LY3039478, BCMA specific CAR-T cells	NCT03502577
		Recruiting	Combined with fludarabine, BCMA CART and huCAR-T19,	NCT03549442
		Recruiting	Combined with fludarabine and BCMA T cells	NCT03716856
	NA	Recruiting	Combined with fludarabine and CAR-BMA T cells	NCT03380039
Osteosarcoma	II	Recruiting	Combined with fludarabine, fludarabine phosphate, aldesleukin and TILs	NCT03449108
Ovarian cancer	I	Recruiting	Combined with decitabine, aldesleukin, genetically engineered NY-ESO 1 specific T lymphocytes	NCT03017131
		Recruiting	Combined with fludarabine and anti-meso CAR-T cells	NCT03799913
	II	Withdrawn	Combined with anti-CSF1 mAb PD-036032	NCT02948101
Pancreatic cancer	I	Recruiting	Combined with GVAX, pembrolizumab and IMC-CS4	NCT03153410

(Continued)
Table 2. (Continued).

Indication(s)	Phase	Status	Notes	Ref.
Prostate cancer	I	Recruiting	Combined with fludarabine, fludarabine phosphate and autologous anti-PSCA-CAR-T-cells	NCT03873805
Sarcoma	II	Withdrawn	Combined with pembrolizumab, GS3377794 and fludarabine	NCT03697824
Solid and hematomal	I/I	Recruiting	Combined with CAR-T cell therapy	NCT03838206
malignancies				
Solid malignancies	I	Recruiting	Combined with GM-CSF and TAPA-pulsed DC vaccine	NCT02705701
	II	Recruiting	Combined with RT, aspirin, nivolumab and ipilimumab	NCT03728179
		Recruiting	Combined with fludarabine and PD-1 expressing mesoCAR-T cells	NCT03615313
		Recruiting	Combined with imiquimid topical cream and TAPA-pulsed DC vaccine	NCT02224599
	II	Recruiting	Combined with pembrolizumab and PXK-surivialax	NCT03836352

NCC, allogenic; ASCT, autologous hematopoietic stem cell transplantation; CAR-anKt cells, CAR allogenic natural killer T cells; CAR, chimeric antigen receptor; DC, dendritic cell; CSF-1, colony stimulating factor 1; EBR, external beam radiation therapy; GAP, glypican 3; GINAKIT cells, GD2-specific CAR- and interleukin 15-expressing autologous NKT cells; G-CSF, granulocyte-colony stimulating factor; GM-CSF, granulocyte-macrophage colony-stimulating factor; HSC, hematopoietic stem cell; IL, interleukin; mAb, monoclonal antibody; Meso-CAR-T cells, mesothelin-directed chimeric antigen receptor T cell; NK cells, invariant NKT cells; KO, knock-out; NA, not applicable; NS, not specified; PBMC, peripheral blood mononuclear cell; PSC, pluriptent stem cells; RT, radiotherapy; TAPA, tumor-associated peptide antigen; TBRT, total body Dipheria; TIL, tumor-infiltrating lymphocyte; TRRNA, total tumor RNA; xALT, autologous lymphocyte transfer.

Even beyond the induction of ICD, several chemotherapeutics have been shown to elicit on-target or off-target immunostimulatory doses, especially when employed at low doses and/or according to revisited treatment protocols. As we stand at the apex of the immunotherapy revolution, the immunomodulatory effects of traditional anticancer agents, including chemotherapy, RT and others, can no longer be ignored. Thus, preclinical studies based on immunocompetent models followed by well-designed and highly immunomonitored clinical trials are urgently awaited to identify new doses and treatment schedules that enable maximal immunostimulation by chemotherapy and hence set an optimal stage for combination with ICBs and other forms of immunotherapy.

Acknowledgments

ADG is supported by Research Foundation Flanders’ (FWO) Excellence of Science (EOS) grant (30837538) for the ‘DECODE’ consortium and the EU Leuven via the C1 grant (C14/19/098) as well as the POR award funds (POR/16/040). ST is supported by Research Foundation Flanders’ (FWO) as a Senior Clinical Investigator and by the Stichting tegen Kanker. KG is supported by the Ligue contre le Cancer (Equipe Labelisée); Agence National de la Recherche (ANR) – Projets blancs; ANR under the frame of E-Rare-2, the ERA-Net for Research on Rare Diseases; Association for the research on the cancer (ARC); Cancéropôle Ile-de-France; Chancellerie des universites de Paris (Legs Poix), Fondation pour la Recherche Médicale (FRM); a donation by Elior; European Research Area Network on Cardiovascular Diseases (ERA-CVD, MINOTAUR); Gustave Roussy Oydesya, the European Union Horizon 2020 Project Oncobiome; Fondation Carrefour; Highend Foreign Expert Program in China (GD20171100085 and GDW20181100051), Institut National du Cancer (INCa); Inserm (HTE); Institut Universitaire de France; Le Ducq Foundation; the LabEx Immuno-Oncology; the RHU Torino Lumière; the Seerave Foundation; the SIRIC Stratified Oncology Cell DNA Repair and Tumor Immune Elimination (SOCRATE); and the SIRIC Cancer Research and Personalized Medicine (CARPEM). The LG lab is supported by a Breakthrough Level 2 grant from the US Department of Defense (DoD), Breast Cancer Research Program (BCRP) (#BC180476P1), by a startup grant from the Dept. of Radiation Oncology at Weill Cornell Medicine (New York, US), by industrial collaborations with Lytxis (Oslo, Norway) and Phosplatin (New York, US), and by donations from Phosplatin (New York, US), the Luke Heller TECPR2 Foundation (Boston, US) and Sotio a.s. (Prague, Czech Republic).

Disclosure of potential conflicts of interest

DDR received financial assistance from Boehringer Ingelheim, Bristol-Myers Squibb, AstraZeneca, Philips and Olink. He is also in the advisory board of Bristol-Myers Squibb, Celgene, Merck/Pfizer, Roche/Genentech, AstraZeneca, MSD and Seattle Genetics. DDR has been involved in advisory capacity (non-financial) with NOXXON and MOLOGEN. Other authors have no particular conflict of interests to declare with relation to this particular manuscript. LG provides remunerated consulting to Astra Zeneca, Boehringer Ingelheim, Inzen, OmniSEQ, and the Luke Heller TECPR2 Foundation, and receives research funding from Lytxis, Phosplatin and Sotio.

ORCID

Laurence Zitvogel http://orcid.org/0000-0003-1596-0998
Guido Kroemer http://orcid.org/0000-0002-9334-4405
Lorenzo Galluzzi http://orcid.org/0000-0003-2257-8500
Abhishek D. Garg http://orcid.org/0000-0002-9976-9922

References

1. Zhou J, Wang G, Chen Y, Wang H, Hua Y, Cai Z. Immunogenic cell death in cancer therapy: present and emerging inducers. J Cell Mol Med. 2019;23:4854–4865. doi:10.1111/jcmm.2019.23.issue-8
2. Bezu L, Sauvat A, Humeau J, Leduc M, Kepp O, Kroemer G. eIF2alpha phosphorylation: A hallmark of immunogenic cell death. Oncoimmunology. 2018;7:e1431089. doi:10.1080/21624202X.2018.1413089.
3. Twumasi-Boateng K, Pettigrew JL, Kwok YYE, Bell JC, Nelson BH. Oncolytic viruses as engineering platforms for combination immunotherapy. Nat Rev Cancer. 2018;18:419–432. doi:10.1038/s41568-018-0009-4.
4. Casares N, Pequignot MO, Tesniere A, Ghiringhelli F, Roux S, Chaput N, Schmitt E, Hamai A, Hervas-Stubbs S, Obeid M, et al. Caspase-dependent immunogenicity of doxorubicin-induced tumor cell death. J Exp Med. 2005;202:1691–1701. doi:10.1083/jem.20050915.
5. Fang S, Agostinis P, Salven P, Garg AD. Decoding cancer cell death-driven immune cell recruitment: an in vivo method for site-of-vaccination analyses. Methods Enzymol Acad Press. 2019. doi:10.1016/bis.mie.2019.04.013.
6. Russ A, Hua AB, Montfort WR, Rahman B, Riaz IB, Khalid MU, Carew JS, Nawrocki ST, Persky D, Anwer F, et al. Blocking “don’t eat me” signal of CD47-SIRPalpha in hematological malignancies, an in-depth review. Blood Rev. 2018;32:480–489. doi:10.1016/j.blre.2018.04.005.
7. Syn NL, Teng MWL, Mok TSK, Soo RA. De-novo and acquired resistance to immune checkpoint targeting. Lancet Oncol. 2017;18:e731–e41. doi:10.1016/S1470-2045(17)30607-1.

8. Galluzzi L, Vitale I, Aaronson SA, Abrams JM, Adam D, Agostinis P, Alnemri E.S., Alucci L., Amelio I., Andrews D.W. Molecular mechanisms of cell death: recommendations of the nomenclature committee on cell death 2018. Cell Death Differ. 2018;25:486–511.

9. Tran E, Robbins PF, Rosenberg SA. 'Final common pathway' of human cancer immunotherapy: targeting random somatic mutations. Nat Immunol. 2017;18:255–262. doi:10.1038/ni.3682.

10. Janicka M, Gubernator J. Use of nanotechnology for improved pharmacokinetics and activity of immunogenic cell death inducers used in cancer chemotherapy. Expert Opin Drug Deliv. 2014;11:1059–1075. doi:10.1080/17425247.2014.1266333.

11. Radogna F, Diederich M. Stress-induced cellular responses in immunogenic cell death: implications for cancer immunotherapy. Biochm Pharmacol. 2018;135:12–23. doi:10.1016/j.bcp.2018.02.006.

12. Galluzzi L, Buque A, Kepp O, Zitvogel L, Kroemer G. Immunogenic cell death in cancer and infectious disease. Nat Rev Immunol. 2017;17:97–111. doi:10.1038/nri.2016.107.

13. Darragh LB, Oweida AJ, Karam SD. Overcoming resistance to combination radiation-immunotherapy: a focus on contributing pathways within the tumor microenvironment. Front Immunol. 2018;9:3154. doi:10.3389/fimmu.2018.03154.

14. Petrie EJ, Czabotar PE, Murphy JM. The structural basis of necroptotic cell death signaling. Trends Biochem Sci. 2019;44:53–63. doi:10.1016/j.tibs.2018.11.002.

15. Garg AD, Galluzzi L, Apetoh L, Baert T, Birge RB, Bravo-San Pedro JM, Breckpot K, Brough D, Chaurio R, Cirone M, et al. Molecular and translational classifications of damps in immunogenic cell death. Front Immunol. 2015;6:588. doi:10.3389/fimmu.2015.00588.

16. Zhao X, Subramanian S. Intrinsic resistance of solid tumors to immune checkpoint blockade therapy. Cancer Res. 2017;77:817–822. doi:10.1158/0008-5472.CAN-16-2379.

17. Wilson AL, Plebanski M, Stephens AN. New trends in anti-cancer therapy: combining conventional chemotherapeutics with novel immunomodulators. Curr Med Chem. 2018;25:4758–4784. doi:10.2174/0929867613466617030094922.

18. Wang Q, Ju X, Wang J, Fan Y, Ren M, Zhang H. Immunogenic cell death in anticancer chemotherapy and its impact on clinical studies. Cancer Lett. 2018;438:17–23. doi:10.1016/j.canlet.2018.08.028.

19. Kepp O, Senovilla L, Vitale I, Vacchelli E, Adjemian S, Agostinis P, Apetoh L, Aranda F, Barnaba V, Bloy N, et al. Consensus guidelines for the detection of immunogenic cell death. Oncoimmunology. 2014;3:e955691. doi:10.4161/21624011.2016.140205.

20. Goodman AM, Kato S, Cohen PR, Boichard A, Brampton G, Miller V, Stephens PJ, Daniels GA, Kurzrock R. Genomic landscape of advanced basal cell carcinoma: implications for precision treatment with targeted and immune therapies. Oncoimmunology. 2017;6:e1404217. doi:10.1080/2162402X.2017.1404217.

21. Aoto K, Mimura K, Okayama H, Saito M, Chida S, Noda M, Nakajima T, Saito K, Abe N, Ohki S, et al. Immunogenic tumor cell death induced by chemotherapy in patients with breast cancer and esophageal squamous cell carcinoma. Oncol Rep. 2018;39:151–159.

22. Khagi Y, Kurzrock R, Patel SP. Next generation predictive biomarkers for immune checkpoint inhibition. Cancer Metastasis Rev. 2017;36:179–190. doi:10.1007/s10611-016-9965-y.

23. Byun DJ, Wolchok JD, Rosenberg LM, Girotra M. Cancer immune checkpoint blockade and associated endocrinopathies. Nat Rev Endocrinol. 2017;13:195–207. doi:10.1038/nrendo.2016.205.

24. Sjøgreen T, Skuland T, Hjermstad MJ, Berstad A. Immune checkpoint inhibitors in cancer treatment: taking cancer vaccines to the next level. Front Immunol. 2018;9:610. doi:10.3389/fimmu.2018.00610.

25. Lee J, Lee Y, Xu L, White R, Sullenger BA. Differential induction of immunogenic cell death and interferon expression in cancer cells by structured ssRNAs. Mol Ther. 2017;25:1295–1305. doi:10.1038/mt.2017.304.

26. Zhang Y, Zhang C, Zhang Y, Zhang W, Zhang Q, Tang Y, et al. Inhibiting caspase-3 and caspase-7 in squamous cell cancer cell lines induces immunogenic cell death. Sci Rep. 2019;9:1386. doi:10.1038/s41598-019-41378-z.

27. Liu RY, Li H, Liu Y. Immunogenic cell death. Int J Dev Biol. 2019;63:103–111. doi:10.1389/ijdb.2019.00011.

28. He Y, Wang Z, Zhao X, You L, Li H, Wang Q, et al. Immunogenic cell death: a potential therapeutic target for cancer immunotherapy. Cancer Immunol. 2019;2019:262–270. doi:10.1158/0008-5472.CAN-18-2018.

29. Li Y, Li H, Wang Z, Zhao X, You L, Li H, et al. Immunogenic cell death: a potential therapeutic target for cancer immunotherapy. Cancer Immunol. 2019;2019:262–270. doi:10.1158/0008-5472.CAN-18-2018.

30. Wang Z, Zhao X, You L, Li H, Wang Q, et al. Immunogenic cell death: a potential therapeutic target for cancer immunotherapy. Cancer Immunol. 2019;2019:262–270. doi:10.1158/0008-5472.CAN-18-2018.

31. Li Y, Li H, Wang Z, Zhao X, You L, Li H, et al. Immunogenic cell death: a potential therapeutic target for cancer immunotherapy. Cancer Immunol. 2019;2019:262–270. doi:10.1158/0008-5472.CAN-18-2018.

32. Wang Z, Zhao X, You L, Li H, Wang Q, et al. Immunogenic cell death: a potential therapeutic target for cancer immunotherapy. Cancer Immunol. 2019;2019:262–270. doi:10.1158/0008-5472.CAN-18-2018.

33. Li Y, Li H, Wang Z, Zhao X, You L, Li H, et al. Immunogenic cell death: a potential therapeutic target for cancer immunotherapy. Cancer Immunol. 2019;2019:262–270. doi:10.1158/0008-5472.CAN-18-2018.

34. Wang Z, Zhao X, You L, Li H, Wang Q, et al. Immunogenic cell death: a potential therapeutic target for cancer immunotherapy. Cancer Immunol. 2019;2019:262–270. doi:10.1158/0008-5472.CAN-18-2018.

35. Wang Z, Zhao X, You L, Li H, Wang Q, et al. Immunogenic cell death: a potential therapeutic target for cancer immunotherapy. Cancer Immunol. 2019;2019:262–270. doi:10.1158/0008-5472.CAN-18-2018.

36. Wang Z, Zhao X, You L, Li H, Wang Q, et al. Immunogenic cell death: a potential therapeutic target for cancer immunotherapy. Cancer Immunol. 2019;2019:262–270. doi:10.1158/0008-5472.CAN-18-2018.

37. Wang Z, Zhao X, You L, Li H, Wang Q, et al. Immunogenic cell death: a potential therapeutic target for cancer immunotherapy. Cancer Immunol. 2019;2019:262–270. doi:10.1158/0008-5472.CAN-18-2018.
43. Relja B, Land WG. Damage-associated molecular patterns in trauma. Eur J Trauma Emerg Surg. 2019.

44. Escandell I, Martin JM, Jorda E. Novel immunologic approaches to melanoma treatment. Actas Dermosifiliogr. 2017;108:708–720. doi:10.1016/j.ad.2017.01.017.

45. Fleisher M, Cattaneo CR. Exosomes, DAMPs and miRNA: features of stress physiology and immune homeostasis. Trends Immunol. 2017;38:768–776. doi:10.1016/j.tim.2017.08.002.

46. Rodriguez-Nuevo A, Zorzano A. The sensing of mitochondrial DAMPs by non-immune cells. Cell Stress. 2019;3:195–207. doi:10.15698/cst.

47. Ventura MT, Casciaro M, Gangemi S, Buquicchio R. Immunosenescence in aging: between immune cells depletion and cytokines up-regulation. Clin Mol Allergy. 2017;15:21. doi:10.1186/s12948-017-0077-0.

48. Montico B, Nigro A, Casoloro V, Dal Col J. Immunogenic apoptosis as a novel tool for anticancer vaccine development. Int J Mol Sci. 2018;19.

49. Fischer S. Pattern recognition receptors and control of innate immunity: role of nucleic acids. Curr Pharm Biotechnol. 2018;19:1203–1209. doi:10.2174/138920112804583087.

50. Patel S. Danger-Associated Molecular Patterns (DAMPs): the derivatives and triggers of inflammation. Curr Allergy Asthma Rep. 2018;18:63. doi:10.1007/s11882-018-0817-3.

51. Paroli M, Bellati F, Videtta M, Focaccetti C, Mancone C, Donato T, Antonilli M, Perniola G, Accapezzato D, Napoletano C, et al. Discovery of chemotheraphy-associated ovarian cancer antigens by interrogating memory T cells. Int J Cancer. 2014;134:1823–1834. doi:10.1002/ijc.28515.

52. Palombo F, Focaccetti C, Barnaba V. Therapeutic implications of immunogenic cell death in human cancer. Front Immunol. 2014;4:503. doi:10.3389/fimmu.2013.00503.

53. Gameiro SR, Jammeh ML, Wattenberg MM, Tsang KY, Ferrone S, Hodge JW. Radiation-induced immunogenic modulation of tumor cells enhances killing of cytotoxic T lymphocytes and is distinct from immunogenic cell death. Int J Cancer. 2013;133:624–636. doi:10.1002/ijc.v133.3.

54. Dutoit V, Migliorini D, Ranzanici G, Marinari E, Widmer V, Lobrinus J, Rimoldi D, Accapezzato D, Napoletano C, et al. T-cell recognition receptors and control of innate immunity: role of nucleic acids. Curr Pharm Biotechnol. 2018;19:1203–1209. doi:10.2174/138920112804583087.

55. Hodge JW, Garnett CT, Farsacci B, Palena C, Tsang KY, Ferrone S, Gameiro SR. Chemotherapy-induced immunogenic modulation of tumor cells enhances killing of cytotoxic T lymphocytes and is distinct from immunogenic cell death. Int J Cancer. 2013;133:624–636. doi:10.1002/ijc.v133.3.

56. De Simone M, Rossetti G, Pagani M. Single cell t cell receptor sequencing: techniques and future challenges. Front Immunol. 2018;9:1638. doi:10.3389/fimmu.2018.01638.

57. Jandus C, Usatorre AM, Vigano S, Zhang L, Romero P. The vast universe of T cell diversity: subsets of memory cells and their differentiation. Methods Mol Biol. 2017;1514:1–17.
preclinical data and insight into future developments. Curr Opin Oncol. 2019;31:430–438. doi:10.1097/CCO.0000000000000562.

77. Ott PA, Hu Z, Keskin DB, Shukla SA, Sun J, Bozym DJ, Zhang W, Luoma A, Giobbie-Hurder A, Peter L, et al. An immunogenic personal neoantigen vaccine for patients with melanoma. Nature. 2014;512:217–221. doi:10.1038/nature13299.

78. Leonard JD, Gilmore DC, Dilepan T, Nawrocka WI, Chao JL, Schoenbach MH, Jenkins MK, Adams EJ, Savage PA. Identification of natural regulatory T cell epitopes reveals convergence on a dominant autoantigen. Immunity. 2017;47:107–17 e8. doi:10.1016/j.immuni.2017.06.015.

79. Kumai T, Fan A, Harabuchi Y, Celis E. Cancer immunotherapy: moving forward with peptide T cell vaccines. Curr Opin Immunol. 2017;47:57–63. doi:10.1016/j.coi.2017.07.003.

80. Meng YM, Liang J, Wu C, Xu J, Zeng DN, Yu XJ, Ning H, Xu L, Zheng L. Monocytes/Macrophages promote vascular CXCR4 expression via the ERK pathway in hepatocellular carcinoma. Oncoimmunology. 2018;7:e1408745. doi:10.1080/20162402.2017.1408745.

81. Ferretti E, Di Carlo E, Ognio E, Fraternali-Oricioni G, Corcione A, Belmonte B, Ravetti JL, Tripodo C, Ribatti D, Pistoia V, et al. IL-25 dampens the growth of human germinal center-derived B-cell non Hodgkin lymphoma by curtailing neoangiogenesis. Oncoimmunology. 2017;6:e1397249. doi:10.1080/20162402.2017.1397249.

82. Bakhru P, Zhu M-L, Wang -H-H, Hong LK, Khan I, Mouchess M, Gulati AS, Starmer J, Hou Y, Sailer D, et al. Cish genetically silences TCR signaling in CD8+ T cells to maintain tumor cell-mediated immune surveillance. J Immunol. 2015;195:356–366. doi:10.4049/jimmunol.1500635.

83. Blank CU, Haining WN, Hild W, Hogan PG, Kershaw MH, Schreiber RD, Smyth MJ. Natural innate and adaptive immunity to cancer. Annu Rev Immunol. 2011;29:235–271. doi:10.1146/annurev-immunol-031210-101324.
malignancies: A large-scale meta-analysis. Oncoimmunology. 2016;5:e1069938. doi: 10.1080/2162402X.2016.1069938.

150. Musetti S, Huang L. Nanoparticle-mediated remodeling of the tumor microenvironment to enhance immunotherapy. ACS Nano. 2018;12:11760–11775. doi: 10.1021/acsnano.8b05893.

151. Wu D, Wiedermann V, Han M, Stieber P, Nagel D, Holdenrieder S. Circulating nucleosomes and immunogenic cell death markers HMGB1, sRAGE and DNase in patients with advanced pancreatic cancer undergoing chemotherapy. Int J Cancer. 2013;133:2619–2630. doi: 10.1002/ijc.28294.

152. Siddiqui I, Sereti M, Zinn-Zinnenburg M, Michlmayr A, Michlmayr V, Heinegård D, Rotter J, Schiefenhövel W, El Fattah H, Zickenhauer A, et al. Differential role of interleukin-1 and interleukin-6 in K-Ras-driven pancreatic carcinoma undergoing mesenchymal transition. Oncoimmunology. 2018;e1388485. doi: 10.1080/2162402X.2018.1388485.

153. Exner R, Sachet M, Arnold T, Zinn-Zinnenburg M, Michlmayr A, Dubsky P, Bartsch R, Steger G, Gnant M, Bergmann M, et al. Prognostic value of HMGB1 in early breast cancer patients under neoadjuvant chemotherapy. Cancer Med. 2016;5:2350–2358. doi: 10.1002/cam4.1593.

154. Garg AD, Coulie PG, Van den Eynde BJ, Agostinis P. Integrating tolerogenic phagocytosis during anticancer therapy: mechanisms and clinical translation. Cell Death Differ. 2016;23:938–951. doi: 10.1038/cdd.2016.5.

155. Morioka S, Perry JSA, Raymond MH, Medina CB, Zhu Y, Zhao L, Serbulea V, Onenget-Gumuscu S, Leitinger N, Kucenas S, et al. Efferocytosis induces a novel SLC program to promote glucose uptake and lactate release. Nature. 2018;563:714–718. doi: 10.1038/s41586-018-0735-5.

156. Chaoul N, Tang A, Desrues B, Oberkampf M, Fayolle C, Ladan D, Sainz-Perez A, Leclerc C. Lack of MHC class II molecules favors CD8(+) T-cell infiltration into tumors associated with an increased control of tumor growth. Oncoimmunology. 2018;7:e104213. doi: 10.1080/2162402X.2017.1404213.

157. McDonnell AM, Cook A, Robinson BWS, Lake RA, Nowak AK. Serial immunomonitoring of cancer patients receiving combined antagonistic anti-CD40 and chemotherapy reveals consistent and cyclical modulation of T cell and dendritic cell parameters. BMC Cancer. 2017;17:417. doi: 10.1186/s12885-017-3403-5.

158. Chen L, Hasni MS, Jondal M, Yakimuch K. Modification of anti-tumor immunity by tolerogenic dendritic cells. Autoimmun. 2017;50:370–376. doi: 10.1080/08969343.2017.1344837.

159. Castelli L, Sabatino M, Ren J, Terabe M, Khoo H, Wood I, Berzofsky JA, Stroczek DF Expression of CD14, IL10, and tolerogenic signature in dendritic cells inversely correlate with clinical and immunologic response to TARP vaccination in prostate cancer patients. Autoimmunity. 2017;23:3332–3364.

160. Van den Bergh J, Willemsen L, Lion E, Van Acker H, De Reu H, Cato-Tobin G, et al. Transpresentation of interleukin-15 by IL-15/IL-15Ra mRNA-engineered human dendritic cells boosts antitumoral natural killer cell activity. Oncotarget. 2015;6:44123–44133. doi: 10.18632/oncotarget.6536.

161. Nagoaka K, Hosoi A, Iino T, Morishita Y, Matsushita H, Kakimi K. Dendritic cell vaccine induces antigen-specific CD8(+) T cells that are metabolically distinct from those of peptide vaccine and is well-combined with PD-1 checkpoint blockade. Oncoimmunology. 2018;7:e1395124. doi: 10.1080/2162402X.2017.1395124.

162. Duggan MC, Campbell AR, McMichael EL, Opheim KS, Levine KM, Bhave N, Culbertson MC, Noel T, Yu L, Carson WE, et al. Co-stimulation of the fcy receptor and interleukin-12 receptor on human natural killer cells leads to increased expression of cd25. Oncoimmunology. 2018;e1388183. doi: 10.1080/2162402X.2017.1381813.

163. Briseno CG, Haldar M, Kretzer NM, Wu X, Theisen DJ, Kc W, Durai V, Grajales-Reyes G, Iwata A, Bagadia P, et al. Distinct transcriptional programs control cross-priming in classical and monocyte-derived dendritic cells. Cell Rep. 2016;15:2462–2474. doi: 10.1016/j.celrep.2016.05.025.

164. Zhang Y, Chen G, Liu Z, Tian S, Zhang J, Carey CD, Murphy KM, Storkus WJ, Faldo LD, You Z, et al. Genetic vaccines to potentiate the effective CD103+ dendritic cell-mediated cross-priming of antitumor immunity. J Immunol. 2015;194:5937–5947. doi: 10.4049/jimmunol.1500899.

165. Osmond TL, Farrand KJ, Kaiser GF, Ruedl C, Petersen TR, O’Riley M, et al. Nanoparticle-mediated remodeling of the tumor microenvironment to enhance immunotherapy. ACS Nano. 2018;12:11760–11775. doi: 10.1021/acsnano.8b05893.

166. Li F, Lv B, Liu Y, Hua T, Han J, Sun C, Xu L, Zhang Z, Feng Z, Cai Y, et al. Blocking the CD47-SIRPalpha interaction prevents tumor immune evasion and favors CD8+ T-cell infiltration into tumors associated with an increased control of tumor growth. Oncoimmunology. 2018;7:e1391973. doi: 10.1080/2162402X.2017.1391973.

167. Garg AD, Romano E, Rufo N, Agostinis P. Immunogenic versus tolerogenic phagocytosis during anticancer therapy: mechanisms and clinical translation. Cell Death Differ. 2016;23:938–951. doi: 10.1038/cdd.2016.5.
I. VANMEERBEEK ET AL.

179. Gamrekelashvili J, Kapanadze T, Han M, Wissing J, Ma C, Jaensch L, Manns MP, Armstrong T, Jaffe E, White AO, et al. Peptidases released by necrotic cells control CD8+ T cell cross-priming. J Clin Invest. 2013;123:4755–4768. doi: 10.1172/JCI65698.

180. Watson AM, Mylin LM, Thompson MM, Schell TD. Modification of a tumor antigen determinant to improve peptide/MHC1 stability is associated with increased immunogenicity and cross-priming a larger fraction of CD8+ T cells. J Immunol. 2012;189:5549–5560. doi: 10.4049/jimmunol.1102221.

181. Valentine FT, Golomb FM, Harris M, Roses DF. A novel immunization strategy using cytokine/chemokines induces new effective systemic immune responses, and frequent complete regressions of human metastatic melanoma. Oncoimmunology. 2018;7: e1386827. doi: 10.2217/imt-2016-0127.

182. Anwer F, Shaukat -A-A, Zahid U, Husnain M, McBride A, Persky P, L, and others. Optimized depletion of chimeric antigen receptor T cells transplantion. Front Immunol.

183. Filliol A, Piquet-Pellorce C, Raguenes-Nicol C, Dion S, Faroq M, Lucas-Clerc C, Vandenbeyele P, Bertrand MJM, Le Seyec J, Samson M, et al. RIPK1 protects hepatocytes from Kupffer cells-mediated TNF-induced apoptosis in mouse models of PAMP-induced hepatitis. J Hepatol. 2017;66:1205–1213. doi: 10.1016/j.jhep.2017.01.005.

184. Huang AC, Postow MA, Orlowski RJ, Mick R, Bengsch B, Manne S, Xu W, Harmon S, Giles JR, Wenz B, et al. T-cell invigoration to tumour burden ratio associated with anti-PD-1 response. Nature. 2018;554:65–65. doi: 10.1038/nature22079.

185. Liu D, Jenkins RW, Sullivan RJ. Mechanisms of resistance to immune checkpoint blockade. Am J Clin Dermatol. 2019;20:41–54. doi: 10.1007/s40257-018-0389-y.

186. Pawelec G. Immune signatures predicting responses to immuno-modulatory antibody therapy. Curr Opin Immunol. 2018;51:91–96. doi: 10.1016/j.coi.2018.03.003.

187. Stanczak MA, Siddiqui SS, Trefny MP, Thommen DS, Bolgian KF, von Gunten S, Tzankov A, Tietze I, Lardinois D, Heineze, K. et al. Self-associated molecular patterns mediate cancer immune evasion by engaging siglec’s on T cells. J Clin Invest. 2018;128:4912–4923. doi: 10.1172/JCI120612.

188. Wang B, Zhang W, Jankovic V, Golubov J, Poon P, Oswald EM, Gurer C, Wei J, Ramos I, Wu Q, et al. Combination cancer immunotherapy targeting PD-1 and GITR can rescue CD8(+) T cell dysfunction and maintain memory phenotype. Sci Immunol. 2018;3:eau7061. doi: 10.1126/sciimmunol.aat7061.

189. Foerster F, Boegel S, Heck R, Pickert G, Rust J, Rosigk S, Bros M, Strubl S, Kaps L, Aslam M, et al. Enhanced protection of C57 BL/6 vs Balb/c mice to melanoma liver metastasis is mediated by NK cells. Oncoimmunology. 2018;7:e1409929. doi: 10.2217/imt-2018-04607-9.

190. Nam G-H, Lee EJ, Kim YK, Hong Y, Choi Y, Ryu M-J, Woo J, Cho Y, Ahn DJ, Yang Y, et al. Combined Rho-kinase inhibition and immunogenic cell death triggers and propagates immunity against cancer. Nat Commun. 2018;9:2165. doi: 10.1038/s41467-018-04607-9.

191. Kuryk L, Moller AW, Jaderberg M. Combination of immunogenic oncolytic adenovirus ONCOS-102 with anti-PD-1 pembrolizumab exhibits synergistic antitumor effect in humanized A2058 melanoma huN OG mouse model. Oncoimmunology. 2018;7:e1532763. doi: 10.2217/imt-2016-0127.

192. Banas B, et al. TIGIT+ iTregs elicited by human regulatory macrophages control T cell immunity. Nat Commun. 2018;9:2858. doi: 10.1038/s41467-018-05167-8.

193. Kuryk L, Moller AW, Jaderberg M. Combination of immunogenic oncolytic adenovirus ONCOS-102 with anti-PD-1 pembrolizumab exhibits synergistic antitumor effect in humanized A2058 melanoma huN OG mouse model. Oncoimmunology. 2018;7:e1532763. doi: 10.2217/imt-2016-0127.

194. Banas B, et al. TIGIT+ iTregs elicited by human regulatory macrophages control T cell immunity. Nat Commun. 2018;9:2858. doi: 10.1038/s41467-018-05167-8.

195. Liu D, Jenkins RW, Sullivan RJ. Mechanisms of resistance to immune checkpoint blockade. Am J Clin Dermatol. 2019;20:41–54. doi: 10.1007/s40257-018-0389-y.

196. Kuryk L, Moller AW, Jaderberg M. Combination of immunogenic oncolytic adenovirus ONCOS-102 with anti-PD-1 pembrolizumab exhibits synergistic antitumor effect in humanized A2058 melanoma huN OG mouse model. Oncoimmunology. 2018;7:e1532763. doi: 10.2217/imt-2016-0127.

197. Banas B, et al. TIGIT+ iTregs elicited by human regulatory macrophages control T cell immunity. Nat Commun. 2018;9:2858. doi: 10.1038/s41467-018-05167-8.

198. Banas B, et al. TIGIT+ iTregs elicited by human regulatory macrophages control T cell immunity. Nat Commun. 2018;9:2858. doi: 10.1038/s41467-018-05167-8.

199. Banas B, et al. TIGIT+ iTregs elicited by human regulatory macrophages control T cell immunity. Nat Commun. 2018;9:2858. doi: 10.1038/s41467-018-05167-8.
210. Nuka E, Ohnishi K, Terao J, Kawai Y. ATP/P2X7 receptor signaling as a potential anti-inflammatory target of natural polyphenols. PLoS One. 2018;13:e0204229. doi: 10.1371/journal.pone.0204229.

211. Parkes EE, Walker SM, Taggart LE, McCabe N, Knight LA, Wilkinson R, McCloskey KD, Buckley NE, Savage KJ, Salto-Tellez M, et al. Activation of STING-dependent innate immune signaling by S-phase-specific DNA damage in breast cancer. J Natl Cancer Inst. 2017;109.

212. Suek N, Campesato LF, Merghouh T, Khalil DN. Targeted APC chemotheray and radiation therapy. Nat Rev Clin Oncol. 2010;7:191–6. doi: 10.1038/nrclinonc.2010.66.

213. Yamit N, Cullen S, Albert ML. Dying cells actively regulate adaptive immune responses. Nat Rev Immunol. 2017;17:262–275. doi: 10.1038/nri.2017.9.

214. Obeid M, Tesniere A, Ghiringhelli F, Fimia GM, Apetoh L, Benlagha K, Taupin DP, Kroemer G, et al. Pannexin 1 channels mediate nucleotides release by apoptotic cells act as a find-me signal to stimulate immune responses. Nat Rev Immunol. 2010;10:2684–2686. doi: 10.1038/nri2829.

215. De Waele J, Marcq E, Van Audenaerde JR, Van Loenhout J, Bogaerts J, Van den Eynde B, et al. Autocrine signaling as a potential anti-inflammatory target of natural polyphenols. PLoS One. 2018;13:e0197340. doi: 10.1371/journal.pone.0197340.

216. Truxova I, Kasikova L, Salec K, Hensler M, Lysak D, Holicek P, et al. Calreticulin exposure dictates the immunogenicity of cancer cell death. Nat Med. 2007;13:54–61. doi: 10.1038/nm1523.

217. Garg AD, Elsen S, Krysko DV, Vandenabeepe P, de Witte P, Agostinis P. Resistance to anticancer vaccination is controlled by a cancer cell-autonomous phenotype that disrupts immunogenic phagocytic removal. Oncotarget. 2015;6:26841–26860. doi: 10.18632/oncotarget.6219.

218. Chokeni FB, Trampont PC, Lazarowicz ER, Kadla A, Walk SF, Park D, Woodson RI, Ostankovich M, Sharma P, et al. Nucleotides released by apoptotic cells act as a find-me signal to promote phagocytic clearance. Nature. 2009;461:282–286. doi: 10.1038/nature08296.

219. Villalva A, Galluzzi L. Pharmacological modulation of nucleic acid sensors - therapeutic potential and persisting obstacles. Nat Rev Drug Discov. 2019. doi: 10.1038/s41573-019-0043-2.

220. Galluzzi L, Buque A, Kepp O, Zitvogel L, Kroemer G. Immunological Effects of Conventional Chemotherapy and Targeted Anticancer Agents. Cancer Cell. 2015;28:690–714. doi: 10.1016/j.ccc.2015.10.012.

221. De lau N, Villiand M, Boisgerault N, Dutort S, Vignard V, Munz C, Gammage N, Drôné B, Vaiuoke K, Piana D, et al. Oncolytic viruses sensitize human tumor cells for NY-ESO-1 tumor antigen recognition by CD4+ effector T cells. Oncoviruses. 2018;2017:1407899. doi: 10.1038/2162402X.2017.1407899.

222. Krombach J, Henriol R, Brix N, Orth M, Schoetz U, Ernst A, Schuster J, Zurchriegel G, Reichel CA, Bierschenk S, et al. Priming anti-tumor immunity by radiotherapy: dying tumor cell-derived DAMPs trigger endothelial cell activation and recruitment of myeloid cells. Oncoimmunology. 2019;1:el913997. doi: 10.1080/2162402X.2019.1523097.

223. De lae W, Marcq E, Van Audenaerde JR, Van Looenj H, Deben C, Zwaenepoel K, Van de Kelt E, Van der Plancken D, Menovsky T, Van den Bergh JM, et al. Poly(I:C) primes primary human globulatoma cells for an immune response invigorated by PD-1 blockade. Oncoimmunology. 2018;7:e1407899. doi: 10.1038/2162402X.2017.1407899.

224. Galluzzi L, Tuque A, Kepp O, Zitvogel L, Kroemer G. Targeted APC modenolisation of nucleic acid sensors - therapeutic potential and persisting obstacles. Nat Rev Drug Discov. 2019. doi: 10.1038/s41573-019-0043-2.

225. Galluzzi L, Tuque A, Kepp O, Zitvogel L, Kroemer G. Targeted APC modenolisation of nucleic acid sensors - therapeutic potential and persisting obstacles. Nat Rev Drug Discov. 2019. doi: 10.1038/s41573-019-0043-2.

226. Galluzzi L, Tuque A, Kepp O, Zitvogel L, Kroemer G. Targeted APC modenolisation of nucleic acid sensors - therapeutic potential and persisting obstacles. Nat Rev Drug Discov. 2019. doi: 10.1038/s41573-019-0043-2.

227. Galluzzi L, Tuque A, Kepp O, Zitvogel L, Kroemer G. Targeted APC modenolisation of nucleic acid sensors - therapeutic potential and persisting obstacles. Nat Rev Drug Discov. 2019. doi: 10.1038/s41573-019-0043-2.

228. Galluzzi L, Tuque A, Kepp O, Zitvogel L, Kroemer G. Targeted APC modenolisation of nucleic acid sensors - therapeutic potential and persisting obstacles. Nat Rev Drug Discov. 2019. doi: 10.1038/s41573-019-0043-2.

229. Galluzzi L, Tuque A, Kepp O, Zitvogel L, Kroemer G. Targeted APC modenolisation of nucleic acid sensors - therapeutic potential and persisting obstacles. Nat Rev Drug Discov. 2019. doi: 10.1038/s41573-019-0043-2.

230. Galluzzi L, Tuque A, Kepp O, Zitvogel L, Kroemer G. Targeted APC modenolisation of nucleic acid sensors - therapeutic potential and persisting obstacles. Nat Rev Drug Discov. 2019. doi: 10.1038/s41573-019-0043-2.

231. Galluzzi L, Tuque A, Kepp O, Zitvogel L, Kroemer G. Targeted APC modenolisation of nucleic acid sensors - therapeutic potential and persisting obstacles. Nat Rev Drug Discov. 2019. doi: 10.1038/s41573-019-0043-2.

232. Galluzzi L, Tuque A, Kepp O, Zitvogel L, Kroemer G. Targeted APC modenolisation of nucleic acid sensors - therapeutic potential and persisting obstacles. Nat Rev Drug Discov. 2019. doi: 10.1038/s41573-019-0043-2.

233. Galluzzi L, Tuque A, Kepp O, Zitvogel L, Kroemer G. Targeted APC modenolisation of nucleic acid sensors - therapeutic potential and persisting obstacles. Nat Rev Drug Discov. 2019. doi: 10.1038/s41573-019-0043-2.

234. Galluzzi L, Tuque A, Kepp O, Zitvogel L, Kroemer G. Targeted APC modenolisation of nucleic acid sensors - therapeutic potential and persisting obstacles. Nat Rev Drug Discov. 2019. doi: 10.1038/s41573-019-0043-2.
on human dendritic cells results in efficient MHC class II-
restricted antigen presentation. Blood. 2010;116:2277–2285.
doi:10.1182/blood-2010-02-268425.

242. Nagahara K, Arikawa T, Oomizu S, Kontani K, Nobumoto A, Tateno
H, Watanabe K, Niki T, Katoh S, Miyake M, et al. Galectin-9 increases
Tumor-specific dendritic and CD8+ T cells and enhances antitumor
immunity via galectin-9-Tim-3 interactions. J Immunol. 2008;
181:7660–7669. doi:10.4049/jimmunol.181.11.7660.

243. Keller AM, Scheldemacht A, Xiao Y, van den Broek M, Brost J.
Expression of costimulatory ligand CD70 on steady-state dendritic
cells breaks CD8+ T cell tolerance and permits effective immunity.
Immunity. 2008;29:934–946. doi:10.1016/j.immuni.2008.10.009.

244. Idorn M, Olsen M, Halldorsdottir HR, Skadborg SK, Pedersen M,
Hogdall C, Hogdall E, Met Ö, thor Straten P. Improved migration
of tumor ascites lymphocytes to ovarian cancer microenvironment
by CXCR2 transduction. Oncoimmunology. 2018;7:e1412029.
doi:10.1080/2162402X.2017.1412029.

245. Sprooten J, Ceusters J, Coosemans A, Agostinis P, De Vleeschouwer S,
Zitvogel L, Kroemer G, Galluzzi L, Gadd AD. Trial watch: dendritic cell vaccination for cancer immunotherapy.
Curr Opin Immunol. 2011;23:293–298. doi:10.1016/j.coi.2010.12.005.

246. Schmid DA, Irving MB, Posevitz V, Hebeisen M, Posevitz-Fejfar A,
Sarria JC, Gomez-Eerland R, Thome M, Schumacher TNM,
Romero P, et al. Evidence for a TCR affinity threshold delimiting
maximal CD8 T cell function. J Immunol. 2010;184:4936–4946.
doi:10.4049/jimmunol.1000173.

247. Meije CB, Swart GW, Lepoole C, Das PK, Van den Oord JJ.
Antigenic profiles of individual-matched pairs of primary and
melanoma metastases. Hum Pathol. 2009;40:1399–1407.
doi:10.1016/j.humpath.2008.11.018.

248. Gubin MM, Artyomov MN, Mardis ER, Schreiber RD. Tumor
neoantigens: building a framework for personalized cancer immu-
otherapy. J Clin Invest. 2019;135:3413–3421. doi:10.1172/
JCI100008.

249. Zhang Y, Kurupati R, Liu L, Zhou XY, Zhang G, Hudaibed A,
Filisio F, Giles-Davis W, Xu X, Karakousis GC, et al. Enhancing
CD8+ T cell fatty acid catabolism within a metabolically challeng-
ing tumor microenvironment increases the efficacy of melanoma
immunotherapy. Cancer Cell. 2017;32:377–91.e9. doi:10.1016/j.
cell.2017.08.004.

250. Wennhold K, Thelen M, Schlosser HA, Haustein N, Reuter S,
Garcia-Marquez M, Lechner A, Kobold S, Rataj F, Utermöhlen O,
et al. Using antigen-specific B cells to combine antibody and T
cell-based cancer immunotherapy. Cancer Immunol Res. 2017;
5:730–743. doi:10.1158/2326-6066.CIR-16-0326.

251. Patel SJ, Sanjana NE, Kishton RJ, Eidizadeh A, Niki T, Miyak
H, Watanabe K, Niki T, Katoh S, Miyake M, et al. Galectin-9 increases
Tumor-specific dendritic and CD8+ T cells and enhances antitumor
immunity via galectin-9-Tim-3 interactions. J Immunol. 2008;
181:7660–7669. doi:10.4049/jimmunol.181.11.7660.

252. Keller AM, Scheldemacht A, Xiao Y, van den Broek M, Brost J.
Expression of costimulatory ligand CD70 on steady-state dendritic
cells breaks CD8+ T cell tolerance and permits effective immunity.
Immunity. 2008;29:934–946. doi:10.1016/j.immuni.2008.10.009.

253. Idorn M, Olsen M, Halldorsdottir HR, Skadborg SK, Pedersen M,
Hogdall C, Hogdall E, Met Ö, thor Straten P. Improved migration
of tumor ascites lymphocytes to ovarian cancer microenvironment
by CXCR2 transduction. Oncoimmunology. 2018;7:e1412029.
doi:10.1080/2162402X.2017.1412029.
deficiency impairs tumor-immune surveillance via immune-checkpoint inhibition. Oncoimmunology. 2016;5:e1164918. doi:10.1080/2162402X.2016.1164918.

275. Wu M-Z, Cheng W-C, Chen S-F, Nieh S, O’Connor C, Liu C-L, Tsai W-W, Wu C-J, Martin L, Lin Y-S, et al. miR-25-93 mediates hypoxia-induced immunosuppression by repressing eNOS. Nat Cell Biol. 2017;19:1286–1296. doi:10.1038/ncb3615.

276. Turtle CJ, Hay KA, Hanafi LA, Li D, Cheriyan S, Chen X, Wood B, Lozanski A, Byrd JC, Heimfeld S, et al. Durable molecular remissions in chronic lymphocytic leukemia treated with CD19-specific chimeric antigen receptor-modified T cells after failure of ibrutinib. Nat Cell Biol. 2017;35:3010–3020.

277. Manguso RT, Pope HW, Zimmer MD, Brown FD, Yates KB, Miller BC, Collins NB, Bi K, LaFleur MW, Junea VR, et al. In vivo CRISPR screening identifies Ptpn2 as a cancer immunotherapy target. Sci Signal. 2017;547:413–418.

278. Grinberg-Bleyer Y, Oh H, Desrichard A, Bhat DM, Caron R, Chan TA, Schmid RM, Klein U, Hayden MS, Ghosh S, et al. NF-kappaB c-Rel is crucial for the regulatory T cell immune checkpoint in cancer. Cell. 2017;170:1096–1013. doi:10.1016/j.cell.2017.08.004.

279. Burr ML, Sparbier CE, Chan YC, Williamson JC, Woods K, Beavis PA, Lam EYN, Henderson MA, Bell CC, Stolzenburg S, et al. CMTM6 maintains the expression of PD-L1 and regulates anti-tumour immunity. Nature. 2017;549:101–105. doi:10.1038/nature23643.

280. Buahu S, Schaar DA, Li Y, Toledo-Crow R, Panagasz K, Yang X, Zhong H, Houghton AN, Silverstein SC, Merghoub T, et al. Blockade of surface-bound TGF-beta on regulatory T cells abrogates suppression of effector T cell function in the tumor microenvironment. Sci Signal. 2017;10.1016/j.scsignal.aa9702.

281. Kamran N, Li Y, Sierra M, Alghamri MS, Kadivala P, Appelman HD, Edwards M, Lowenstein PR, Castro MG. Melanoma induced hypoxia-induced immunosuppression by repressing cGAS. Nat Cell Biol. 2017;523:205–216. doi:10.1016/j.cell.2015.03.030.

282. Iyengar NM, Patil S, Chen C, Abbruzzi A, Lehman R, Morris PG, Prajapati HJ, Xing M, Spivey JR, El-Rayes BF, Kauh JS, Spell J, Kiel J, Spisek R. Human tumor cells killed by anthracyclines induce a tumor-specific immune response. Cancer Res. 2011;71:4821–4833. doi:10.1158/0008-5472.CAN-11-0950.

283. Fucikova J, Kralikova P, Fialova A, Brtnicky T, Rob L, Bartunkova M, Sun J, Shi J, Geng C. Dexamethasone improves cardiac autonomic function in epirubicin-treated breast cancer patients with type 2 diabetes. Medicine. 2016;95:e5228. doi:10.1097/MD.00000000000005228.

284. Hemdan T, Johansson R, Johnsson S, Hellstrom P, Tasdemir I, Malmstrom PU. 5-year outcome of a randomized prospective study comparing bacillus Calmette-Guerin with epirubicin and interferon-alpha2b in patients with T1 bladder cancer. J Urol. 2014;191:1244–1249. doi:10.1016/j.juro.2013.11.005.

285. Berry V, Basson L, Bogaert E, Mir O, Blay JY, Italiano A, Bertucci F, Chevreau C, Claus-Delaine S, Liegl-Anztger B, et al. REGOSARC: regorafenib versus placebo in doxorubicin-refractory soft-tissue sarcoma–A quality-adjusted time without symptoms of progression or toxicity analysis. Cancer. 2017;123:2294–2302. doi:10.1002/cncr.v123.12.

286. Tap WD, Jones RL, Van Tine BA, Chmielowski B, Das AD, Adkins D, Aguilnik M, Cooney MM, Livingston MB, Pennock G, et al. Olaratumab and doxorubicin versus doxorubicin alone for treatment of soft-tissue sarcoma: an open-label phase 1b and randomised phase 2 trial. Lancet. 2016;388:488–497. doi:10.1016/S0140-6736(16)30587-6.

287. Orlowski RZ, Nagler A, Sonneveld P, Blade J, Hajek R, Spencer A, Robak T, Dmoszynska A, Horvath N, Spica I, et al. Final overall survival results of a randomized trial comparing bortezomib plus pegylated liposomal doxorubicin with bortezomib alone in patients with relapsed or refractory multiple myeloma. Cancer. 2016;122:2050–2056. doi:10.1002/cncr.v122.13.

288. Choy E, Flaman Y, Balasubramanian S, Butynski JE, Harmon DC, George S, Cote GM, Wagner AJ, Morgan JA, Sirisawad M, et al. Phase I study of oral abexinostat, a histone deacetylase inhibitor, in combination with doxorubicin in patients with metastatic sarcoma. Cancer. 2015;121:1223–1230. doi:10.1002/cncr.v121.8.

289. Prajapati HJ, Xing M, Spivey JR, Hanish SI, El-Rayes BF, Kauh JS, Chen Z, Kim HS. Survival, efficacy, and safety of small versus large doxorubicin drug-eluting beads TACE chemoembolization in patients with unresectable HCC. AJR Am J Roentgenol. 2014;202:W706–14. doi:10.2214/AJR.13.12308.

290. Morris PG, Iyengar NM, Patil S, Chen C, Abbruzzi A, Lehman R, Steingart R, Oeffinger KC, Lin N, Moy B, et al. Long-term cardiac safety and outcomes of dose-dense doxorubicin and cyclophosphamide followed by paclitaxel and trastuzumab with and without lapatinib in patients with early breast cancer. Cancer. 2013;119:3934–3951. doi:10.1002/cncr.28284.

291. Lipszulewicz SE, Miller TL, Lipsitz SR, Neuberg DS, Dahlberg SE, Colan SD, Silverman LB, Henkel JM, Franco VI, Cushman LL, et al.抗肿瘤免疫力的维持和促进。Nature. 2015;523:231–235. doi:10.1038/nature14404.

292. Dunn GP, Bruce AT, Ikeda H, Old LJ, Schreiber RD. Cancer immunoeediting: from immunosurveillance to tumor escape. Nat Immunol. 2002;3:991–998. doi:10.1038/ni1102-991.
al. Continuous versus bolus infusion of doxorubicin in children with ALL: long-term cardiac outcomes. Pediatrics. 2012;130:1003–1011. doi: 10.1542/peds.2012-0277.

305. Gulhati P, Raghav K, Shroff RT, Vaadhachary GR, Kopetz S, Javle M, Qiao W, Wang H, Morris J, Wolff RA, et al. Bevacizumab combined with capectabine and oxaliplatin in patients with advanced adenocarcinoma of the small bowel or ampulla of vater: A single-center, open-label, phase 2 study. Cancer. 2017;123:1011–1017. doi: 10.1182/bcr.30445.

306. Meulendijks D, de Groot JW, Los M, Boers JE, Beepoot PV, Pole ME, Beeker A, Portielje JEA, Goey SH, de Jong RS, et al. Bevacizumab combined with docetaxel, oxaliplatin, and capectabine, followed by maintenance with capectabine and bevaxuzumab, as first-line treatment of patients with advanced HER2-negative gastric cancer: A multicenter phase 2 study. Cancer. 2016;122:1434–1443. doi: 10.1002/cncr.21229.

307. Leone F, Marino D, Cereda S, Filippi R, Belli C, Spadi R, Nasti G, Montano M, Amato A, Aprile G, et al. Panitumumab in combination with gemcitabine and oxaliplatin does not prolong survival in wild-type KRAS advanced biliary tract cancer: A randomized phase 2 trial (Verci-BIL study). Cancer. 2016;122:574–581. doi: 10.1002/cncr.21224.

308. O’Reilly EM, Perelshyten A, Jarnagin WR, Schattner M, Gerdes H, Capanu M, Targ LH, LaValle J, Winston C, DeMatteo RP, et al. A single-arm, nonrandomized phase II trial of neoadjuvant gemcitabine and oxaliplatin in patients with resectable pancreas adenocarcinoma. Ann Surg. 2014;260:142–148. doi: 10.1097/SLA.0000000000001251.

309. Leone F, Artale S, Marino D, Cagnazzo C, Cascini S, Pinto C, Fornarini G, Tampilmini D, Di Fabio F, Sartore Bianchi A, et al. Panitumumab in combination with infusional oxaliplatin and oral capectabine for conversion therapy in patients with colon cancer and advanced liver metastases. The metapan study. Cancer. 2013;119:3429–3435. doi: 10.1002/cncr.28283.

310. Kim EJ, Ben-Josef E, Herman JM, Bekai-Saab T, Dawson LA, Griffith KA, Francis IR, Greenson JK, Simeone DM, Lawrence TS, et al. A multi-institutional phase 2 study of neoadjuvant gemcitabine and oxaliplatin with radiation therapy in patients with pancreatic cancer. Cancer. 2013;119:2692–2700. doi: 10.1002/cncr.28217.

311. Kidwell KM, Yothers G, Ganz PA, Land SR, Ko CY, Cecchini RS, Kopec JA, Wolmark N. Long-term neurotoxicity effects of oxaliplatin added to fluorouracil and leucovorin as adjuvant therapy for colon cancer: results from national surgical adjuvant breast and bowel project trials C-07 and LTS-01. Cancer. 2012;118:5614–5622. doi: 10.1002/cncr.27593.

312. Attal M, Lauwers-Cances V, Hulin C, Leleu X, Caillot D, Esc OFFRE D, Arnulf B, Macro M, Belhadj K, Garderet L, et al. Lenalidomide, bortezomib, and dexamethasone with transplantation for myeloma. N Engl J Med. 2012;366:2562–2572. doi: 10.1056/NEJMoa1205087.

313. Palumbo A, Chanan-Khan A, Weisel K, NooKAK, Massi T, Beksan M, Spicka I, Hungria V, Munder M, Matoe MS, et al. Daratumumab, bortezomib, and dexamethasone for multiple myeloma. N Engl J Med. 2016;375:754–766. doi: 10.1056/NEJMoa1606038.

314. Kumar SK, LaPlant BR, Reeder CB, Roy V, Halvorson AE, Buadi F, Gertz MA, Bergsagel PL, Dispensieri A, Thompson MA, et al. Randomized phase 2 trial of ixazomib and dexamethasone in relapsed multiple myeloma not refractory to bortezomib. Blood. 2016;128:2415–2422. doi: 10.1182/blood-2016-05-717769.

315. Jakubowiak A, Offidani M, Pegourie B, De La Rubia J, Garderet L, Laribi K, Bosi A, Marasca R, Laubach J, Mohracher A, et al. Randomized phase 2 study: elotuzumab plus bortezomib/dexamethasone vs bortezomib/dexamethasone for relapsed/refractory MM. Blood. 2016;127:2833–2840. doi: 10.1182/blood-2016-01-694604.

316. Chari A, Hutt M, Zonder JA, Fay JW, Jakubowiak AJ, Levy JB, Lau K, Burt SM, Tunquist BJ, Hilder BW, et al. A phase 1 dose-escalation study of filanesib plus bortezomib and dexamethasone in patients with recurrent/refractory multiple myeloma. Cancer. 2016;122:3327–3335. doi: 10.1182/cancer.30174.
I. VANMEERBEEK ET AL.

2017

74. doi:

2019

4157. doi:

Overman MJ, McDermott R, Leach JL, Lonardi S, Lenz HJ, Morse

2018

209.

10.1080/

2018

2946.

10.1021/

6449.

10.1080/

67. doi:

2392. doi:

1423. doi:

2018

928. doi:

blockade

2018

798.

e1703449-22

364. Gao J, Deng F, Jia W. Inhibition of indoleamine 2,3-dioxygenase

367. Voorwerk L, Slagter M, Horlings HM, Sikorska K, van de Vijver

366. Combes E, Andrade AF, Tosi D, Michaud HA, Coquel F,

363. Groza D, Gehrig S, Kudela P, Holcmann M, Pirker C, Dinhof C,

362. Camilio KA, Wang M-Y, Mauseth B, Waagene S, Kvalheim G,

361. Fend L, Yamazaki T, Remy C, Fahrner C, Gantzer M, Nourtier V,

359. Liu Q, Chen F, Hou L, Shen L, Zhang X, Wang D, Huang L.

358. Lu J, Liu X, Liao YP, Salazar F, Sun B, Jiang W, Chang CH, Jiang

370. Bota DA, Chung J, Dandekar M, Carrillo JA, Kong XT, Fu BD,

371. Kanekiyo S, Hazama S, Takenouchi H, Nakajima M, Shindo Y,

375. Werter IM, Huijts CM, Lougheed SM, Hamberg P, Polee MB,

376. Toulmonde M, Penel N, Adam J, Chevreau C, Blay JY, Le Cesne

373. Foukakis T, Lovrot J, Matikas A, Zerdes I, Lorent J, Tobin N,

374. Kwa M, Li X, Novik Y, Oratz R, Jhaveri K, Wu J, Gu P, Meyers M,

378. Aspeslagh S, Matias M, Palomar V, Dercle L, Lanoy E, Soria JC,

379. •

381. Sabatos-Peyton CA, Nevin J, Brock A, Venable JD, Tan DJ,

382. Vanpouille-Box C, Lhuillier C, Bezu L, Aranda F, Yamazaki T, Kepp O,

383. Raikar SS, Fleischer LC, Moot R, Fedanov A, Paik NY, Knight KA,

384. FucikovaJ , SpisekR , DemariaS , FormentiSC , et al . Trial watch: the extremity and trunk in response to radiotherapy: rationale for combination neoadjuvant immune checkpoint inhibition and radiotherapy. Oncocommunology. 2018;7:e1385689. doi:10.1007/s00262-019-02313-z.

385. Overman MJ, McDermott R, Leach JL, Lonardi S, Lenz HJ, Morse MA, Desai J, Hill A, Axelson M, Moss RA, et al. Nivolumab in patients with metastatic DNA mismatch repair-deficient or microsatellite instability-high colorectal cancer (CheckMate 142): an open-label, multicentre, phase 2 study. Lancet Oncol. 2017;18:1182–1191. doi:10.1016/S1470-2045(17)30422-9.

386. Keung EZ, Tsai JW, Ali AM, Cormier JN, Bishop AJ, Gusadaloglu BA, Torres KE, Somaiah N, Hunt KK, Wargo JA, et al. Analysis of the immune infiltrate in undifferentiated pleomorphic sarcoma of the extremity and trunk in response to radiotherapy: rationale for combination neoadjuvant immune checkpoint inhibition and radiotherapy. Oncoimmunology. 2018;7:e1385689. doi:10.1007/s00262-019-02313-z.

387. Toulmonde M, Penel N, Adam J, Chevreau C, Blay JY, Le Cesne

388. Bota DA, Chung J, Dandekar M, Carrillo JA, Kong XT, Fu BD,

389. Fucikova J, Spisek R, Demaria S, Formenti S, et al. Trial watch: the extremity and trunk in response to radiotherapy: rationale for combination neoadjuvant immune checkpoint inhibition and radiotherapy. Oncocommunology. 2018;7:e1385689. doi:10.1007/s00262-019-02313-z.

390. Vanpouille-Box C, Lhuillier C, Bezu L, Aranda F, Yamazaki T, Kepp O, Pucikova J, Spisek R, Demaria S, Formenti SC, et al. Trial watch: immune checkpoint blockers for cancer therapy. Oncoimmunology. 2017;6:1373237. doi:10.2147/PPonium.2017.1373237.

391. Walker SS, Fleischman CM, Feike SA, Paik NY, Knight KA, Doering CB, Spencer HT. Development of chimeric antigen receptors targeting T-cell malignancies using two structurally different anti-CD5 antibody binding domains in NK and
384. Priceman SJ, Gerdts EA, Tilakawardane D, Kennewick KT, Murad JP, Park AK, Jeang B, Yamaguchi Y, Yang X, Urank R, et al. Co-stimulatory signaling determines tumor antigen sensitivity and persistence of CAR T cells targeting PSCA+ metastatic prostate cancer. Oncoimmunology. 2018;7:e1380764. doi:10.1080/2162402X.2017.1380764.

385. Pettitt D, Arshad Z, Smith J, Stanic T, Hollander G, Brindley D. CAR-T cells: a systematic review and mixed methods analysis of the clinical trial landscape. Mol Ther. 2018;26:342–353. doi:10.1016/j.ymthe.2017.10.019.

386. Pol J, Vacchelli E, Aranda F, Castoldi F, Eggermont A, Cremer I, Sautes-Fridman C, Fucikova J, Galon J, Spisek R, et al. Trial watch: immunogenic cell death inducers for anticancer chemotherapy. Oncoimmunology. 2015;4:e1008866. doi:10.1080/2162402X.2015.1008866.

387. Morano WF, Aggarwal A, Love P, Richard SD, Esquivel J, Bowne WB. Intraperitoneal immunotherapy: historical perspectives and modern therapy. Cancer Gene Ther. 2016;23:373–381. doi:10.1038/cgt.2016.49.

388. Shekarian T, Valsesia-Wittmann S, Caux C, Marabelle A. Paradigm shift in oncology: targeting the immune system rather than cancer cells. Mutagenesis. 2015;30:205–211. doi:10.1093/mutage/geu073.

389. Lazzari C, Bulotta A, Ducceschi M, Vigano MG, Brioschi E, Corti F, Gianni L, Gregorc V. Historical evolution of second-line therapy in non-small cell lung cancer. Front Med. 2017;4:4. doi:10.3389/fmed.2017.00004.

390. Kerbel RS, Shaked Y. The potential clinical promise of 'multimodality' metronomic chemotherapy revealed by preclinical studies of metastatic disease. Cancer Lett. 2017;400:293–304. doi:10.1016/j.canlet.2017.02.005.

391. Chen YL, Chang MC, Cheng WF. Metronomic chemotherapy and immunotherapy in cancer treatment. Cancer Lett. 2017;400:282–292. doi:10.1016/j.canlet.2017.01.040.

392. Weiss T, Weller M, Roth P. Immunological effects of chemotherapy and radiotherapy against brain tumors. Expert Rev Anticancer Ther. 2016;16:1087–1094. doi:10.1080/14737140.2016.1229600.

393. Cook AM, Lesterhuis WJ, Nowak AK, Lake RA. Chemotherapy and immunotherapy: mapping the road ahead. Curr Opin Immunol. 2016;39:23–29. doi:10.1016/j.coi.2015.12.003.

394. Fucikova J, Truxova I, Hensler M, Becht E, Kasikova L, Moserova I, Vosahlikova S, Klouckova J, Church SE, Cremer I, et al. Calreticulin exposure by malignant blasts correlates with robust anticancer immunity and improved clinical outcome in AML patients. Blood. 2016;128:3113–3124. doi:10.1182/blood-2016-08-731737.