Pairing-excitation versus intruder states in 68Ni and 90Zr

D. Pauwels,1 J.L. Wood,2 K. Heyde,3 M. Huyse,1 R. Julin,4 and P. Van Duppen1

1Instituut voor Kern- en Stralingsfysica, K.U. Leuven, Celestijnenlaan 200D, B-3001 Leuven, Belgium
2School of Physics, Georgia Institute of Technology, Atlanta, Georgia 30332-0430, USA
3Department of Physics and Astronomy, Proeftuinstraat 86, B-9000 Gent, Belgium
4University of Jyväskylä, Department of Physics, PO Box 35, FI-40014 Jyväskylä, Finland

(Dated: May 26, 2010)

Abstract

A discussion on the nature of the 0^+ states in 68Ni ($Z = 28, N = 40$) is presented and a comparison is made with its valence counterpart 90Zr ($Z = 40, N = 50$). Evidence is given for a 0^+ proton intruder state at only ~ 2.2 MeV excitation energy in 68Ni, while the analogous neutron intruder states in 90Zr reside at 4126 keV and 5441 keV. The application of a shell-model description of 0^+ intruder states reveals that many pair-scattered neutrons across $N = 40$ have to be involved to explain the low excitation energy of the proton-intruder configuration in 68Ni.

PACS numbers: 21.10.-k, 21.60.Cs, 27.50.+e, 27.60.+j
I. INTRODUCTION

The nucleus 68Ni was initially considered as a semi-magic nucleus arising from a major $Z = 28$ proton-shell closure and a $N = 40$ neutron subshell closure. This interpretation was inferred from the high energy of the first-excited 2^+ state (2033 keV [1]) in contrast with the low energy of the first-excited 0^+ state (1770 keV [2]). Conflicting observations arose, however, as mass measurements do not reveal a clear neutron shell gap at $N = 40$ [3, 4] and the $B(E2; 0^+_1 \rightarrow 2^+_1)$ mean value of $3.2(6)$ W.u. [5, 6] is too large for a pronounced $N = 40$ subshell gap [7].

Currently, it is qualitatively understood that the apparent semi-magic properties of 68Ni are not caused by a strong $N = 40$ subshell closure and a corresponding large energy gap, but rather follow from the parity change between the pf shell and the $1g_{9/2}$ orbital across $N = 40$, prohibiting quadrupole excitations [8]. The $B(E2)$ value is explained by strong pair scattering across $N = 40$ [5], which indicates that the stabilizing effect is subtle.

Despite these qualitative insights, the structure of 68Ni and the region around is not yet fully understood. While the focus was, so far, mainly on neutron excitations across $N = 40$, little is known about proton excitations across $Z = 28$. Although separation energies give evidence for a major $Z = 28$ shell closure at $N = 40$, a proton two-particle-two-hole $\pi(2p-2h)$ 0^+ state could appear nonetheless at lower excitation energies due to pairing correlations and proton-neutron $\pi-\nu$ residual interactions [9–11]. Its excitation energy will depend critically, however, on the stabilizing properties of the $N = 40$ gap as the quadrupole part of the $\pi-\nu$ interaction depends on the number of valence neutron particles or holes.

Since the valence counterpart of 68Ni, 90Zr ($Z = 40, N = 50$), is a stable isotope, it has been investigated in numerous transfer reactions and thus its structure is better known than the one of 68Ni. In the present paper, the low-energy structures of both nuclei, and the 0^+ states in particular, are compared based on experimental information available in the literature (see Fig. 1). While most properties are similar in 68Ni and 90Zr, possible $\pi(2p-2h)$ excitations in 68Ni will behave different from the $\nu(2p-2h)$ excitations in 90Zr. In the following, a candidate for a $\pi(2p-2h)$ 0^+ is discussed on the basis of a shell-model approach of intruder states [10], after which implications for the stabilizing properties of the $N, Z = 40$ gaps are discussed.
II. LOW-ENERGY STRUCTURE OF 68Ni AND 90Zr

A. The active valence nucleons

At low excitation energies, the 68Ni and 90Zr valence nucleons (neutrons and protons, respectively) are expected to be predominantly active in the $2p_{1/2}$ and $1g_{9/2}$ space, and to a smaller degree in the $1f_{5/2}$ and $2p_{3/2}$ space. The energy difference between the $2p_{1/2}$ and $1g_{9/2}$ orbitals constitutes the $N, Z = 40$ energy gap in 68Ni and 90Zr, respectively.

In a simplified picture, the ground state of 68Ni and 90Zr is expected to exhibit a $(2p_{3/2})^4(1f_{5/2})^6(2p_{1/2})^2$ character, while excited 0^+ states could be created by promoting a nucleon pair from the $2p_{1/2}$ or $1f_{5/2}$ to the $1g_{9/2}$ orbital. It has been observed that the 0^+_2 state in 68Ni and 90Zr feature remarkable similarities. Their respective excitation energies of 1770 and 1761 keV are almost identical, as well as their respective monopole $\rho^2(E0)$ transition strengths of $4.4(10) \cdot 10^{-3}$ and $3.46(14) \cdot 10^{-3}$ \cite{15}.

Using spectroscopic factors from transfer reactions \cite{23}, and mean-square radii $\langle r^2 \rangle_{2p_{1/2}}$ and $\langle r^2 \rangle_{1g_{9/2}}$ determined from the 90Zr(t,α)80Y reaction \cite{24}, the measured $\rho^2(E0)$ transition strength in 90Zr can be reproduced with a simple two-component model allowing for strong $\pi 2p_{1/2}$ (59\%) and $\pi 1g_{9/2}$ (41\%) configuration mixing \cite{25}. This gives substantial evidence for a strongly mixed 0^+_1 ground state and 0^+_2 excited state. Recent shell-model calculations

FIG. 1: Low-energy structure of 68Ni and 90Zr \cite{2, 12–14}. The arrows denote $\rho^2(E0) \cdot 10^3$ transition strengths \cite{15}. The estimated excitation energies of the respective π and $\nu (2p-2h)$ configurations, based on 1p-2h and 2p-1h excitation energies of the $Z \pm 1$ and $N \pm 1$ nuclei \cite{16–22}, respectively, are represented by the dashed lines.
confirm these observations \cite{26,27}. Although the similar $\rho^2(E0)$ transition strength in ^{68}Ni is not understood, the similar excitation energy suggests comparable 0^+_1 and 0^+_2 configurations, involving now the neutrons.

The 0^+ state arising from $(1f_{5/2})^{-2}$ has not been identified in ^{68}Ni nor in ^{90}Zr. The (0^+_3) state, which has been observed in ^{68}Ni at 2511 keV \cite{13}, might be a possible candidate, although such a state is not observed in ^{90}Zr in spite of the more extensive spectroscopic information.

The 2^+, 4^+, 6^+, and 8^+ levels in ^{68}Ni at respective excitation energies of 2033, 3147, 3999, and 4208 keV are good candidates for the $g_{9/2}$ $v = 2$ seniority levels. In ^{90}Zr, a similar structure is observed with the respective $v = 2$ seniority levels at excitation energies of 2186, 3077, 3450, and 3589 keV.

B. Intruders across the $Z = 28$ or $N = 50$ gap

The excitation energy of 2p-2h 0^+ intruder states in nuclei at a major closed shell Z (or N) can be estimated from summing the $\pi(\nu)(2p-1h)$ and $\pi(\nu)(1p-2h)$ intruder excitation energies in the $Z + 1(N + 1)$ and $Z - 1(N - 1)$ nuclei \cite{28} (see Ref. \cite{29} for details). Using this prescription, the excitation energies of, e.g., $\pi(2p-2h)$ 0^+ states in $Z = 82$ lead and $Z = 50$ tin nuclei are generally reproduced within 100 keV.

In ^{89}Zr, it is shown by the $^{91}\text{Zr}(p,t)$ reaction \cite{20} that the $\nu(1p-2h)$ configuration is mainly distributed over two states at excitation energies of 1627 and 1834 keV \cite{12}. The $^{88}\text{Sr}(\alpha,n\gamma)$ \cite{21}, (p,p'), and $^{92}\text{Zr}(p,d)$ reactions \cite{22} show that the major fraction of the $\nu(2p-1h)$ configuration in ^{91}Zr resides in the 2914-keV state \cite{12}. By using the above mentioned prescription and averaging the excitation energies of the two $\nu(1p-2h)$ ^{89}Zr levels, an expected excitation energy of 4644 keV for the $\nu(2p-2h)$ state in ^{90}Zr can be deduced. The situation is depicted by the dashed lines in Fig. [II]

It has been shown by a $^{92}\text{Zr}(p,t)$ reaction \cite{14} that the $\nu(2p-2h)$ configuration is mainly concentrated in the 0^+ states at 4126 and 5441 keV excitation energy. The average of both excitation energies is 4784 keV, which differs only by 140 keV from the estimate.

The same reasoning can be applied to ^{68}Ni. The $\pi(2p-1h)$ character of the 1711-keV level in ^{69}Cu is suggested by a large spectroscopic factor in the $^{70}\text{Zn}(d,^3\text{He})$ reaction \cite{17} and a small B(E2) transition strength to the ^{69}Cu ground state observed in Coulomb excitation.
From a recent 67Fe β-decay study [16], the $\pi(1p-2h)$ state in 67Co was identified at 491 keV, giving rise to an estimated excitation energy of the $\pi(2p-2h)\ 0^+$ state in 68Ni at only 2202 keV.

A good candidate for a $\pi(2p-2h)\ 0^+$ configuration would be the (0^+_3) state in 68Ni, which is also a possible candidate for a $\nu 1f_{5/2}^2$ state. From the presently available experimental data, however, it is not possible to differentiate between the two possible configurations. Although extremely challenging, future transfer and multi-Coulomb-excitation experiments can deliver crucial information to investigate this state and other low-energy levels in 68Ni.

In spite of their very similar excitation spectrum, there is thus a large difference in excitation energy of the 2p-2h intruder states across $Z = 28$ or $N = 50$ in respectively 68Ni and 90Zr. The possible reasons for this difference will now be investigated.

III. SHELL-MODEL DESCRIPTION FOR 2p-2h 0$^+$ STATES IN 68NI AND 90ZR

The 0^+_2 excitation energies in 68Ni and 90Zr suggest nearly identic structures of their 0^+_1 and 0^+_2 states. On the other hand, the summed excitation energy of the $\pi(1p-2h)$ and $\pi(2p-1h)$ levels in 67Co and 69Cu, respectively, is very different from the $\nu(2p-2h)$ excitation energy in 90Zr. The shell-model approach of Ref. [10] provides a quantitative description of $\pi(2p-2h)$ and $\nu(2p-2h)\ 0^+$ states, which can explain this apparent paradox in 68Ni and 90Zr.

A. Framework and results

Intruder states result from particle-hole excitations across major closed shells. Nevertheless, they appear at low excitation energy because of both strong pairing and $\pi-\nu$ correlations. For the 2p-2h 0$^+$ intruder states, this is expressed [10] as

$$E_{intr}(0^+) = 2(\varepsilon_p - \varepsilon_h) - \Delta E_{pairing} + \Delta E_{\pi\nu},$$

where $E_{intr}(0^+)$ is the excitation energy of the 0^+ intruder state, $\varepsilon_p - \varepsilon_h$ the single-particle shell-gap energy with the respective subscripts p and h denoting particles and holes, $\Delta E_{pairing}$ the nucleon pairing energy, and $\Delta E_{\pi\nu}$ the $\pi-\nu$ residual-interaction energy.

The shell-gap and pairing energies for 68Ni and 90Zr are deduced from measured one- and two-nucleon separation energies [3, 30] (see Ref. [10] for details). Starting from the
experimental 2p-2h 0+ excitation energies, the respective π-ν residual energies can be extracted, using equation 1. These values are listed in Table I. It is important to note that the $E_{\text{intr}}(0^+)$ values in the table are subject to mixing, and no transfer data are known for 68Ni. The excitation energy of the 90Zr ν(2p-2h) configuration, e.g., is taken as the average of the 4126- and 5441-keV levels, which are strongly populated in the 92Zr(p,t) reaction [14].

TABLE I: 68Ni and 90Zr are compared starting from their $E_{\text{intr}}(0^+)$ values arising from 2p-2h excitations across the indicated neutron and proton gaps. Also the corresponding $\varepsilon_p - \varepsilon_h$, $\Delta E_{\text{pairing}}$, and $\Delta E_{\pi\nu}$ values are compared.

Isotope	Gap	$E_{\text{intr}}(0^+)$	$\varepsilon_p - \varepsilon_h$	$\Delta E_{\text{pairing}}$	$\Delta E_{\pi\nu}$
		(keV)	(keV)	(keV)	(keV)
68Ni	$Z = 28$	2202a	5270(320)	4500(700)	-3838(1000)
68Ni	$N = 40$	1770	3050(100)	4705(14)	380(200)
90Zr	$Z = 40$	1761	2670(90)	3593(8)	20(190)
90Zr	$N = 50$	4126	4445(8)	4093(12)	-670(20)
	av.	4784	4445(8)	4093(12)	-10(20)

aEstimate from summing π(2p-1h) and π(1p-2h) excitation energies.

The extracted π-ν residual-interaction energy mainly results from quadrupole correlations. Fig. 2 shows a schematic representation of the quadrupole π-ν energy ΔE_Q [10] as a function of neutron (proton) number between the closed shells at $N(Z) = 28$ and $N(Z) = 50$ assuming two extreme cases: $Z(N) = 40$ is a closed (dashed lines) and open (full line) shell configuration. In the latter case, the contribution of quadrupole correlations is strongest around $N = 39$, and intruder states are expected lowest in excitation energy. On the other hand, if $Z(N) = 40$ represents a shell closure, the contribution of quadrupole correlations becomes negligible around $Z(N) = 39$, and pairing-excitation states at high excitation energy might be observed.
FIG. 2: Schematic representation of the quadrupole π-ν energy ΔE_Q as a function of neutron (proton) number between the closed shells at $N(Z) = 28$ and $N(Z) = 50$ assuming two extreme cases: $N(Z) = 40$ is a closed (dashed lines) and $N(Z) = 40$ is an open (full line) shell configuration.

B. Discussion

The $\nu(2p-2h)$ and $\pi(2p-2h)$ 0^+ states in 68Ni reside at respective excitation energies of 1770 keV and \sim 2.2 MeV, which are rather similar, even though the $Z = 28$ shell gap is about 2.2 MeV larger than the $N = 40$ subshell gap. For both gaps, a large gain in pairing energy (4500 and 4705 keV, respectively) exists. For $N = 40$, it fully explains the low $\nu(2p-2h)$ excitation energy. The low excitation energy of the $\pi(2p-2h)$ state, on the other hand, requires a strong gain in binding energy from the π-ν residual interactions ($-3.8(10)$ MeV). This means that many valence neutrons must be available, i.e., $N = 40$ tends to behave rather as an open shell configuration, as given by the full line in Fig. 2.

As noticed already, the $\pi(2p-2h)$ 0^+ state in 90Zr appears at a remarkably similar excitation energy to the $\nu(2p-2h)$ state in 68Ni. Table II reveals, however, that the larger shell-gap energies at $N = 40$ compared to $Z = 40$ is mainly compensated by a stronger gain in pairing energy. So, although both excitation energies are almost identical, the situations at $N = 40$ and $Z = 40$ are different. Like the $\pi(2p-2h)$ state in 90Zr, the low excitation energy of the $\nu(2p-2h)$ 0^+ state in 68Ni is explained by the gain in pairing energy, which is consistent with a good $Z = 28$ shell closure.
The $\nu(2p-2h)$ configuration in 90Zr is centered at a significantly higher excitation energy (4784 keV) than the $\pi(2p-2h)$ state in 68Ni (2.2 MeV), despite a 0.8-MeV smaller $N = 50$ shell gap and similar pairing energy. This implies a much weaker π-ν residual interactions in the $\nu(2p-2h)$ states of 90Zr: the average excitation energy of 4784 keV is consistent with essentially no π-ν residual interaction. In contrast to $N = 40$ in the nickel isotopes, $Z = 40$ behaves as a closed shell configuration, as depicted in Fig. 2 by the dashed lines.

It can be seen from Table I that the open and closed character as observed in the $0^+ \pm 2$ properties of the $N = 40$ and $Z = 40$ subshell is caused by a stronger pair scattering of neutrons across $N = 40$ than protons across $Z = 40$: at $N = 40$, the pairing energy is about 1.65 MeV larger than the shell gap, while at $Z = 40$, this amounts only to about 0.9 MeV. Moreover, the difference in pairing energies compensates the difference in unperturbed shell-gap energies giving rise to almost identical excitation energies of the 0^+_2 states in 68Ni and 90Zr.

In 71,73Cu, the $\pi(2p-1h) 7/2^-$ levels are identified at 981 and 1010 keV, respectively, based on the particle-core model [18] and the small B(E2) transition strength [19]. This is \sim 700 keV lower in excitation energy with respect to the $\pi(2p-1h)$ state in 69Cu. Extrapolating this trend to the nickel and cobalt isotopes, means that the intruder configuration might reside at even lower excitation energies in 70,72Ni and become even the ground state in 69,71Co.

IV. CONCLUSION

The 68Ni and 90Zr low-energy structures have been compared in the framework of 2p-2h configurations across the $Z = 28$, $N = 40$ and $Z = 40$, $N = 50$ (sub)shell gaps. The discussion was triggered by recent experimental data obtained in 67Cu [19] and 67Co [16]. Strong similarities are observed between the two valence counterparts, but also important differences. The 0^+_2 states in the respective nuclei feature almost identical excitation energies and monopole ρ^2(E0) transition strengths. Based on the summing prescription of the $\pi(1p-2h)$ and $\pi(2p-1h)$ levels in 67Co and 69Cu, respectively, the $\pi(2p-2h)$ 0^+ state in 68Ni is estimated at only 2.2-MeV excitation energy, while the $\nu(2p-2h)$ 0^+ state in 90Zr is centered around 4784 keV.

In an attempt to understand the origin of this difference in 68Ni and 90Zr, the shell-model description of 0^+ intruder states [10] has been applied. It shows that the excitation energies
of the 0^+_2 states in 68Ni and 90Zr are similar in spite of the difference in the unperturbed single-particle shell-gap energies, as it is compensated to a large extent by the difference in pairing energies. Moreover, it shows that stronger neutron pair scattering in 68Ni gives rise to more active valence neutrons, which strongly interact with proton excitations across $Z = 28$. As a result, the $\pi(2p-2h)$ state in 68Ni is strongly pushed down by $\pi-\nu$ residual interactions by as much as 3.8(10) MeV, while the $\nu(2p-2h)$ state in 90Zr is hardly affected by $\pi-\nu$ residual interactions. These findings highlight the fact that neutron pair scattering across $N = 40$ around 68Ni is far more important than proton pair scattering across $Z = 40$ around 90Zr.

Acknowledgments

This work was supported by FWO-Vlaanderen (Belgium), GOA/2004/03 (BOF-K.U.Leuven), the Interuniversity Attraction Poles Programme – Belgian State – Belgian Science Policy (BriX network P6/23), the European Commission within the Sixth Framework Programme through I3-EURONS (contract no. RII3-CT-2004-506065).

[1] R. Broda et al., Phys. Rev. Lett. 74, 868 (1995).
[2] M. Bernas et al., Phys. Lett. B 113, 279 (1982).
[3] S. Rahaman et al., Eur. Phys. J. A 34, 5 (2007).
[4] C. Guénaut et al., Phys. Rev. C 75, 044303 (2007).
[5] O. Sorlin et al., Phys. Rev. Lett. 88, 092501 (2002).
[6] N. Bree et al., Phys. Rev. C 78, 047301 (2008).
[7] K. Langanke, J. Terasaki, F. Nowacki, D.J. Dean, and W. Nazarewicz, Phys. Rev. C 67, 044314 (2003).
[8] H. Grawe et al., in AIP Conf. Proc. No. 561, edited by M. Arnould et al. (Melville, NY, USA, 2001), p. 287.
[9] K. Heyde, P. Van Isacker, M. Waroquier, J. L. Wood, and R. A. Meyer, Phys. Rep. 102, 291 (1983).
[10] K. Heyde, J. Jolie, J. Moreau, J. Ryckebusch, and M. Waroquier, Nucl. Phys. A 466, 189
(1987).

[11] J. L. Wood, K. Heyde, W. Nazarewicz, M. Huyse, and P. Van Duppen, Phys. Rep. 215, 101 (1992).

[12] URL: http://www.nndc.bnl.gov/ensdf/.

[13] W. F. Mueller et al., Phys. Rev. C 61, 054308 (2000).

[14] J. Ball, R. Auble, and P. Roos, Phys. Rev. C 4, 196 (1971).

[15] T. Kibédi and R. H. Spear, At. Data Nucl. Data Tables 89, 77 (2005).

[16] D. Pauwels et al., Phys. Rev. C 78, 041307(R) (2008).

[17] B. Zeidman and J.A. Nolen, Jr, Phys. Rev. C 18, 2122 (1978).

[18] A. M. Oros-Peusquens and P. F. Mantica, Nucl. Phys. A 669, 81 (2000).

[19] I. Stefanescu et al., Phys. Rev. Lett. 100, 112502 (2008).

[20] J. Ball, Phys. Rev. C 6, 2139 (1972).

[21] J. Glenn, H. Baer, and J. Kraushaar, Nucl. Phys. A 165, 533 (1971).

[22] H. Blok, L. Hulstman, E. Kaptein, and J. Blok, Nucl. Phys. A 273, 142 (1976).

[23] M. Cates, J. Ball, and E. Newman, Phys. Rev. 187, 1682 (1969).

[24] A. Warwick, R. Chapman, J. Durell, J. Mo, and S. Sen, Phys. Lett. B 88, 55 (1979).

[25] J. Wood, E. Zganjar, C. D. Coster, and K. Heyde, Nucl. Phys. A 651, 323 (1999).

[26] K. Sieja, F. Nowacki, K. Langanke, and G. Martínez-Pinedo, Phys. Rev. C 79, 064310 (2009).

[27] K. Sieja, F. Nowacki, K. Langanke, and G. Martínez-Pinedo, Phys. Rev. C 80, 019905(E) (2009).

[28] P. Van Duppen, E. Coenen, K. Deneffe, M. Huyse, K. Heyde, and P. Van Isacker, Phys. Rev. Lett. 52, 1974 (1984).

[29] K. Heyde, J. Ryckebusch, M. Waroquier, and J. Wood, Nucl. Phys. A 484, 275 (1988).

[30] G. Audi, A. H. Wapstra, and C. Thibault, Nucl. Phys. A 729, 337 (2003).