Ownership, Coverage, Utilisation and Maintenance of Long-lasting insecticidal nets (LLINs) in Bamenda, Santa and Tiko Health Districts in Cameroon

Cho Frederick Nchang*,1,3,8, Ngum Fru Paulette Cho-Azieh2,5, Munguh Solange Fri3, Cho Blessing Menyi3, Jokwi Patrick Kofon3, Neh Fru Celestina Tassang4, Nde Fon Peter2,6, Tassang Andrew N2,7

*nchang.cho@gmail.com

1 Department of Biochemistry and Molecular Biology, University of Buea, Buea, Cameroon, 2 Department of Public Health and Hygiene, University of Buea, Buea, Cameroon, 3 Catholic School of Health Sciences, Saint Elizabeth Hospital – P.O. Box 8 Shisong-Nso, 4 Department of Sociology and Anthropology, University of Buea, Buea, Cameroon, 5 District Health Service Tiko, South West Regional Delegation of Health, Ministry of Health, 6 Solidarity Hospital, Buea-Cameroon, 7 Atlantic Medical Foundation, Mutengene-Cameroon, 8 Central African Network for Tuberculosis, HIV/AIDS and Malaria (CANTAM), University of Buea, Buea, Cameroon
ABSTRACT

Introduction: The Bamenda, Santa and Tiko Health Districts are in the highest malaria transmission strata of Cameroon. The purpose of this study was to explore the indicators of ownership and utilisation as well as maintenance of long-lasting insecticidal nets (LLINs) in three health districts in Cameroon.

Methods: A cross-sectional household survey involving 1,251 households was conducted in the Tiko Health District (THD) in July and June 2017 and in Bamenda and Santa Health Districts in March to May 2018. A structured questionnaire was used to collect data on LLIN ownership, utilisation and maintenance as well as demographic characteristics.

Results: The average number of LLINs per household was higher in the Bamenda Health District (BHD) compared to the Tiko Health District (THD) (2.5±1.2 vs. 2.4±1.6) as well as the household ownership at least one LLIN (93.30% vs. 89.00%). The proportion of the de-facto population with universal utilisation was higher in BHD compared to THD (13.1% vs 0.2%). In multinomial regression analysis, households in the SHD (p = 0.007, OR; 2.8, 95% C.I; 1.3 – 5.8), were more likely to own at least one LLIN compared to those in THD.

Conclusion: Ownership of LLINs was low in SHD and THD in comparison to the goal of one for every two household members. Overall LLINs coverage and accessibility was still low after the free MDCs, as only 14.6% of children 0 – 5 years and 16.1% of the entire population used LLIN the night before the survey.

Keywords: LLINs, Ownership, Universal coverage, Utilisation, LLINs Maintenance
INTRODUCTION

Malaria is a preventable and curable disease transmitted by the bites of female Anopheles mosquitoes [1, 2] and it is a serious global public health problem with an estimated 216 million cases in 91 countries in 2016 [2, 3].

Africa is the most affected region, with 90% of all estimated malaria cases and 91% of deaths in 2016 and 15 African countries alone contributing 80% of all cases, Nigeria and the Democratic Republic of the Congo (DRC), being the top two contributors [1, 3].

Cameroon, bordered by the Gulf of Guinea and Nigeria to the west; Chad and the Central African Republic to the east; and Equatorial Guinea, Gabon and the DRC to the south, through the Ministry of Health (MOH), completed her second national universal long-lasting insecticidal nets (LLIN) campaign in 2016. With support from the Global Fund, the MOH has made provision of free LLINs to pregnant women at antenatal care (ANC) clinics since 2008 [4, 5]. In 2011, the Cameroon MOH undertook a nationwide free LLINs distribution campaign from health facilities to all households, with the objective to provide a LLIN with a lifespan of five years, to all household beds or a LLIN for every two individuals per household, to a maximum of three LLINs per household [6, 7]. Malaria continues to be endemic in Cameroon, with an estimated mortality rate of 11.6%, surpassing that of the African region of 10.4% as well as neighbouring countries [4]. It is the first major cause of morbidity and mortality among the most vulnerable groups [5, 8, 9]: children under five years and pregnant women, accounting respectively for 18% and 5% of the total population estimated at 19 million [10].

The main contemporary malaria control interventions are insecticide-treated bed nets (ITNs) and indoor residual spraying (IRS) [1, 5, 11, 12]. Alliance for Malaria Prevention has been instrumental in keeping long-lasting insecticide net (LLIN) campaigns on track: between 2014 and 2016 about 582 million LLINs were delivered globally and in 2017 where there was the successful delivery of over 68 million nets to targeted recipients in Sub-Saharan Africa (SSA).
and beyond [3]. Over 80% of all households have at least one mosquito net, up from 57% in 2011, still, only about 60% of these households have enough nets to cover everyone at night [13]. The proportion of people in SSA sleeping under a LLIN rose from less than 2% to over 50% between 2000-2015, preventing an estimated 450 million malaria cases [14].

Most studies in Cameroon have focused on various aspects of net ownership and utilisation. Effective LLIN use in the prevention of malaria in parts of Mezam Division, North West Region [15], *Plasmodium falciparum* infection in Rural and Semi-Urban Communities in the South West Region [6], predictive factors of ownership and utilisation in the Bamenda Health District (BHD) [16] and socio-demographic factors influencing the ownership and utilization among malaria vulnerable groups in the Buea Health District [17]. However, there is paucity information on the indicators of LLIN ownership and utilisation. This study examines the indicators of net ownership and utilisation as well as maintenance, through analysis of household survey data collected in three health districts in Cameroon and discuss their implications for programmatic interventions designed to increase LLINs ownership and use.

MATERIALS AND METHODS

Study area

The study area consisted of the BHD with an estimated 350,000 residents and the Santa Health District (SHD), 35 Km from the BHD with 73,406 residents in the North West Region and the Tiko Health District (THD), 351 Km from the BHD with an estimated 134,649 residents in the South West Region of Cameroon [18]. Generally, malaria in Cameroon is caused mainly by *Plasmodium falciparum*, with *Anopheles gambiae* as the major vector [5, 10].

The BHD (a semi-urban community) and the SHD (a rural community) are in the high western plateau altitude malaria geographical strata of Cameroon, where malaria transmission is permanent, occurring all year long, sometimes lessened by altitude though never totally absent [10, 19]. It is one of the most densely populated regions of Cameroon [5, 10].
The THD (urban and rural communities) is in the coastal strata, zone of dense hygrophile forest and mangrove swamp with the highest transmission of malaria in the country [5, 10]. Like the Buea health district, the THD has a constant variation in the trends of malaria prevalence all-round the year [20, 21].

Sampling design

This cross-sectional household survey conducted in the THD from June to July 2017 and BHD and SHD from March to May 2018 utilised a stratified multi-stage cluster sampling design. A study sampling frame included all health areas (HAs) in the study area, except those that were inaccessible for security reasons. Within each HA: urban, rural or semi-urban localities were subdivided into quarters (the primary sampling units or clusters in our study). On average, each HA had about five quarters. Sampled HAs in the THD had about 2,089 (35.58%) of the sampled population.

First stage: we randomly selected four HAs in the THD and by probability proportionate to size (PPS) and conveniently sampled one each from the BHD and SHD.

Second stage: within each selected HA we randomly selected at least three quarters and at most eight quarters also by PPS, thus totalling 31 quarters (**Figure 1**) in the sample.

Third stage: within each selected quarter, the survey team mapped and enumerated all households and selected households in each cluster by systematic random sampling (that is, a random start and interval to cover the entire quarter). The estimated number of households in each quarter was obtained from the quarter leader to determine the sampling interval to select the households.

Figure 1: Multi-stage sampling (HA; Health Area, SRS; Simple Random Sampling)
Sample size determination

A minimum sample size of 384 for each health district, was determined with the Cochrane formula [22]:

\[n = \frac{Z^2 \cdot pq}{d^2} \]

Where: \(n \) = minimum sample size, \(Z = 1.96 \), critical \(Z \) value at 95% confidence interval (95% C.I.), \(p = 50\% \) estimated population of households owning mosquito bed nets = 0.5, \(q = 1 - p = 0.5 \), \((p)(q) = (0.5)^2 = 0.25\), \(d \) = acceptable margin of error for proportion being estimated = 0.05.

Recruitment procedures and measures

Interviewers explained the purpose of the study and obtained verbal informed consent from the head of the household or spouse. In cases where neither household head was available, any elderly person who has lived in the house for at least the last 12 months replaced him/her.

Outcome variables

The main LLIN outcome variables were:

1. **LLINs ownership indicators**: *Household LLINs ownership*: proportion of households with at least one LLIN, where the numerator comprises the number of households surveyed with at least one LLIN and the denominator, the total number of households surveyed. *Coverage*: proportion of households with at least a LLIN for every two people, where the numerator comprises all households where the ratio between number of LLINs owned and the number of *de-jure* members of that household, that is, usual members excluding visitors, is 0.5 or higher and the denominator is the total number of sampled households. *Access to LLINs within the household*: proportion of population with access to LLINs (population that could sleep under a LLIN if each LLIN in the household were used by up to two people) and proportion of the *de-facto* household population that slept under a LLIN last night. *De-facto* household members are all people present in the household on night of the survey including visitors [8, 23].
2. LLIN utilisation indicators: *Household universal utilisation:* proportion of population that slept under a LLIN the previous night [8, 23]. *By the vulnerable population in the household:* proportion of children under five (or pregnant women) that slept under a LLIN the previous night [8]. *Regularly sleeping under bed nets:* household heads who reported habitually using nets on a daily basis [24]. *Household head slept under a LLIN last night:* proportion of households in which the household head slept under a LLIN last night, where the numerator comprises the number of households surveyed wherein the household head slept under a LLIN last night and the denominator, the total number of households surveyed.

3. **Independent variables (IV)** considered for association with LLIN ownership, use and maintenance were age, gender, marital status, education, occupation, health district, house type and household composition.

Statistical analysis

We entered data into, and analysed with IBM-SPSS Statistics 21.0 for windows (IBM-SPSS Corp., Chicago USA). The Chi square (χ²) test was used to compare socio-demographic characteristics with the health districts and multivariate logistic regression to identify significant correlates of the main outcomes. *p* values less than 0.05 were considered significant.

Ethics statement

The study, obtained approval from the Institutional Review Board of the Faculty of Health Sciences, University of Buea (No: 624-05). Administrative authorisation was obtained from the South West Regional Delegation of Public Health. Written informed consent was obtained from all participants and confidentiality was maintained at all steps of data collection.
RESULTS

Characteristics of the study participants

A total of 1,251 household heads was sampled with 5,870 *de-facto* residents across six health areas in three health districts. Of the total household residents counted, 1,267 (21.6%) were children 0 – 5 years old and 93 (1.6%) were expectant mothers. There were generally more female (68.0%) household heads than males, with mean (±SD) age of participants of 36.1±10.8. The overall mean household (or family) size was 4.7±2.1 members: 4.6±2.1 in BHD and 5.0±2.5 in THD (Table 1).

Majority of the houses, 804 (64.3%) were made of cement, while households with 1 - 2 bedrooms; mean number of bedrooms 2.0±1.1 were about 1,141 (91.2%). 1,116 (89.2%) of the households were located near mosquito breeding sites: farms/ gardens, bushes or pools of water.
Characteristic	Health district	n (%)	χ²/F	p value		
Age groups (in years)	Bamenda	Santa	Tiko			
20	9	6	15	30 (2.4)	46.484	< 0.001
21 – 30	147	112	199	458 (36.6)		
31 – 40	151	115	96	362 (28.9)		
41 – 50	74	86	58	218 (17.4)		
51 – 60	67	66	50	183 (14.6)		
Mean age	36.2±9.9	38.0±11.0	34.3±11.2	36.1±10.8	12.374	< 0.001
Gender	Bamenda	Santa	Tiko			
Females	282	288	281	851 (68.0)	13.572	0.001
Males	166	97	137	400 (32.0)		
Marital status	Bamenda	Santa	Tiko			
Unmarried	179	232	154	565	52.021	< 0.001
Married	269	153	264	686		
Education	Bamenda	Santa	Tiko			
No formal education (NFE)	70	32	14	116 (9.3)	146.672	< 0.001
Primary	75	105	190	370 (29.6)		
Secondary	157	143	170	470 (37.6)		
Tertiary	146	105	44	295 (23.6)		
Occupation	Bamenda	Santa	Tiko			
Unemployed	0	140	59	199 (15.9)	748.205	< 0.001
Agricultural	163	0	28	191 (15.3)		
Household & domestic	0	0	55	55 (4.4)		
Unskilled	126	188	127	441 (35.3)		
State/ Parastatal	33	57	126	216 (17.3)		
Professional	126	105	44	295 (23.6)		
House type	Bamenda	Santa	Tiko			
Caraboat	16	0	68	84	292.502	< 0.001
Mixed (Block & Plank)	0	44	63	107		
Mud Block	125	131	0	256		
Cement Block	307	210	287	804		
Number of bedrooms	Bamenda	Santa	Tiko			
1 – 3	410	353	378	1,141	0.479	0.787
4 – 7	38	32	40	110		
Mean number of bedrooms	2.0±1.0	1.9±1.1	1.9±1.2	2.0±1.1	0.728	0.483
Environmental factor	Bamenda	Santa	Tiko			
No	85	21	29	135	48.991	< 0.001
Yes	363	364	389	1,116		
Household Composition	Bamenda	Santa	Tiko			
Mean number of children < 5	1.0±1.0	1.2±1.1	0.9±0.9	1.0±1.0	12.765	< 0.001
Mean household size	4.6±2.2	4.5±1.7	5.0±2.5	4.7±2.1	6.734	0.001
Net Ownership	Bamenda	Santa	Tiko			
Mean number of nets in HHs	2.5±1.4	2.2±1.2	2.4±1.6	2.4±1.4	5.357	0.005
Mean number of reserved nets	0.5±0.9	1.3±1.1	0.5±0.9	0.7±1.0	95.293	< 0.001
Number of HHs surveyed	Bamenda	Santa	Tiko			
Children 0 - 5 surveyed	448	465	354	1,267	52.551	< 0.001
Children 6 - 17 surveyed	728	544	704	1,976	101.855	< 0.001
Persons ≥ 18	835	680	1,019	2,534	157.818	< 0.001
Expectant women surveyed	46	35	12	93	19.418	< 0.001
Population surveyed	2,057	1,724	2,089	5,870	90.826	< 0.001
Bednet : Person ratio	0.5	0.5	0.5	0.5		

Bolded: Statistically significant (p value < 0.05), HH = Household
Table 2: LLINs ownership and utilisation indicators in association with health districts

LLINs indicator	Households	De-facto population in households								
	n (%)	BHD	SHD	THD	χ^2	p value	n (%)	BHD	SHD	THD
Ownership										
At least One	1,157 (92.5)	418	367	372	12.23	**0.002**	5,577 (95.0)	2,000	1,680	1,897
Coverage	836 (66.8)	387	214	235	120.46	**< 0.001**	3,913 (66.7)	1,893	937	1,083
Accessibility	865 (69.1)	374	214	277	77.97	**< 0.001**	4,058 (69.1)	1,825	937	1,296
Utilisation										
Children 0 – 5 years	520 (41.6)	250	103	167	381.58	**< 0.001**	859 (14.6)	427	188	244
Entire household	256 (20.5)	193	4	59	238.94	**< 0.001**	942 (16.0)	767	10	165
Regularly	484 (38.7)	87	203	194	112.62	**< 0.001**	1,296 (22.1)	346	297	653
By house head last night	350 (28.0)	152	94	104	12.29	**0.002**	705 (12.0)	356	111	238

LLINs ownership and coverage

1,157 (92.5%) of the 1,251 households sampled, had at least one LLINs while 836 (66.8%) had at least one bednet for every two persons in the household (Table 2). The overall LLIN-to-person ratio was 0.50, that is, one net for every two persons (Table 1), constituting a coverage of 3,913 (66.7%) of the de-facto population. The mean number of LLINs in the households was 2.4±1.4. LLINs ownership and coverage were associated to health districts (Table 3), where households in the THD significantly ($p = 0.007$) owned few nets, while those in the BHD significantly ($p < 0.001$) had more coverage than other district. However, after adjusting with educational and marital status, association to health districts was still significant. Coverage was also associated with gender of the household head and household size (Table 3), where households headed by females ($p = 0.005$) and those of household size of 1 – 4 members ($p = 0.002$) significantly influenced coverage than the others. Secondary educational and unskilled occupational status significantly influenced household ownership of nets ($p < 0.05$).
IV ↓	Ownership	Coverage	Accessibility			
Age groups						
n = 1,157	n = 836	n = 865				
20	26 (2.3)	17 (2.0)	19 (2.2)			
21 – 30	421 (36.4)	308 (36.8)	320 (37.0)			
31 – 40	341 (29.5)	246 (29.4)	249 (28.8)			
41 – 50	199 (17.2)	145 (17.3)	149 (17.2)			
51 – 60	170 (14.7)	120 (14.4)	128 (14.8)			
Gender						
Female	786 (67.9)	582 (69.6)	607 (70.2)			
Male	371 (32.1)	254 (30.4)	258 (29.8)			
Marital status						
Unmarried	512 (44.3)	360 (43.1)	365 (42.2)			
Married	645 (55.7)	476 (56.9)	500 (57.8)			
Education						
NFE	108 (9.3)	94 (11.2)	95 (11.0)			
Primary	346 (29.9)	226 (26.6)	242 (28.0)			
Secondary	421 (36.4)	303 (36.2)	312 (36.1)			
Tertiary	282 (24.4)	217 (26.0)	216 (25.0)			
Occupation						
Unemployed	182 (15.7)	124 (14.8)	130 (15.0)			
Agricultural	174 (15.0)	148 (17.7)	150 (17.3)			
Household & domestic	50 (4.3)	26 (3.1)	33 (3.8)			
Unskilled	408 (35.3)	289 (34.6)	295 (34.1)			
State/ Parastatal	197 (17.0)	121 (14.5)	132 (15.3)			
Professional	146 (12.6)	128 (15.3)	125 (14.5)			
Health District						
Bamenda	418 (36.1)	387 (46.3)	374 (43.2)			
Santa	367 (31.7)	214 (25.6)	241 (24.7)			
Tiko	372 (32.2)	235 (28.1)	277 (32.0)			
House type						
Caraboat	77 (6.7)	52 (6.2)	61 (7.1)			
Mixed	103 (8.9)	66 (7.9)	71 (8.2)			
Mud Block	239 (20.7)	162 (19.4)	162 (18.7)			
Cement Block	738 (63.8)	556 (66.5)	571 (66.0)			
House size						
1 - 3 bedrooms	1055 (91.2)	758 (90.7)	786 (90.9)			
4 - 7 bedrooms	102 (8.8)	78 (9.3)	79 (9.1)			
House composition						
Family Size	Children 0 - 5 SHLN	1 - 2 Children 0 - 5 SHLN	3 - 4 Children 0 - 5 SHLN	Family size 1 – 4	Family size 5 – 7	Family size ≥ 8
-------------	---------------------	---------------------------	---------------------------	-----------------	-----------------	-----------------
	417 (36.0)	639 (55.2)	101 (8.7)	551 (47.6)	478 (41.3)	128 (11.1)
	0.082	0.791	Ref	0.306	0.793	Ref
	0.2 (0.1 - 1.2)	0.8 (0.2 - 3.9)	Ref	0.6 (0.2 - 1.7)	1.2 (0.4 - 3.5)	Ref
	329 (39.4)	439 (52.5)	68 (8.1)	433 (51.8)	322 (38.5)	81 (9.7)
	0.230	0.402	Ref	0.002	0.070	Ref
	0.7 (0.4 - 1.3)	0.8 (0.5 - 1.4)	Ref	2.3 (1.4 - 3.8)	1.5 (1.0 - 2.5)	Ref
	339 (39.2)	456 (52.7)	70 (8.1)	429 (49.6)	347 (40.1)	89 (10.3)
	0.691	0.743	Ref	0.096	0.107	Ref
	0.9 (0.5 - 1.6)	0.9 (0.5 - 1.6)	Ref	1.5 (0.9 - 2.6)	1.5 (0.9 - 2.3)	1.0

DV = Dependent variable, IV = Independent variable
Household accessibility to LLINs

Overall household accessibility to bednets was 865 (69.1%), with a significant association to health districts $\chi^2 (2, N = 1,251) = 77.97, p < 0.001$ (Table 2).

Household accessibility (Table 3) to bednets was associated to gender of the household head and health districts, where household residents in housed headed by females and those in the BHD significantly ($p < 0.001$) had more access to LLINs than the other groups. After adjusting with educational and marital status, the significance between accessibility and gender and health district was maintained. 4,058 (69.1%) of the de-facto population, from 865 (69.1%) of the 1,251 households sampled, had access to LLINs in the household.

Use of LLINs

Of the 1,251 households sampled, 520 (41.6%) and 256 (20.5%) were those in which all children 0 – 5 years and those in which all who slept home last night used bednets, respectively representing 859 (14.6%) and 942 (16.0%) of the 5,870 de facto population that slept home last night (Table 2). Bednet utilisation in households by all children 0 – 5 years and the entire family (Table 4), was associated to age and health district where more households with household heads in the 21 – 30 years age group ($p = 0.021$) and in the BHD ($p < 0.001$) significantly used nets than the other groups. The household utilisation of bednets by all children 0 – 5 years old (Table 4), was also associated to the gender and educational status of the household head where more households with female heads and those with primary and secondary educational status significantly ($p < 0.05$) used the nets last night than the other groups. Bednet utilisation by the entire family (Table 4) was associated to the composition of the household, where more households with no children < 5 and with fewer members (1 – 4) significantly ($p < 0.05$) used nets than the other groups.
Table 4: Multinomial logistic regression of socio-demographic characteristics in association with LLINs use by all children < 5 and entire household

DV →	Children < 5 years old	Entire household				
IV ↓	n (%)	p value	OR (95% C.I.)	n (%)	p value	OR (95% C.I.)
Age groups (in years)						
20	16 (3.1)	0.048	3.0 (1.0 - 8.6)	6 (2.3)	0.147	2.5 (0.7 - 8.6)
21 – 30	184 (35.4)	0.021	1.8 (1.1 - 3.0)	111 (43.4)	0.003	2.6 (1.4 - 4.8)
31 – 40	146 (28.1)	0.306	1.3 (0.8 - 2.2)	76 (29.7)	0.121	1.6 (0.9 - 3.1)
41 – 50	108 (20.8)	0.003	2.4 (1.3 - 4.2)	35 (13.7)	0.173	1.6 (0.8 - 3.3)
51 – 60	66 (12.7)	Ref	1.0	28 (10.9)	Ref	1.0
Gender						
Female	357 (68.7)	0.008	1.6 (1.1 - 2.3)	166 (64.8)	0.689	0.9 (0.6 - 1.4)
Male	163 (31.3)	Ref	1.0	90 (35.2)	Ref	1.0
Marital status						
Unmarried	176 (33.9)	0.010	0.6 (0.5 - 0.9)	98 (38.3)	0.003	0.6 (0.4 - 0.8)
Married	344 (66.2)	Ref	1.0	158 (61.7)	Ref	1.0
Education						
NFE	53 (10.2)	0.576	0.8 (0.5 - 1.6)	34 (13.3)	0.271	1.5 (0.8 - 2.8)
Primary	165 (31.7)	0.002	2.1 (1.3 - 3.4)	60 (23.4)	0.793	1.1 (0.6 - 1.9)
Secondary	194 (37.3)	0.035	1.59 (1.0 - 2.4)	95 (37.1)	0.582	1.1 (0.7 - 1.8)
Tertiary	108 (20.8)	Ref	1.0	67 (26.2)	Ref	1.0
Occupation						
Unemployed	59 (11.4)	0.077	0.5 (0.3 - 1.1)	14 (5.5)	0.114	2.0 (0.8 - 4.9)
Agricultural	115 (22.1)	0.055	1.8 (1.0 - 3.4)	66 (25.8)	0.219	0.7 (0.4 - 1.2)
Household & domestic	31 (6.0)	0.770	1.2 (0.5 - 2.9)	8 (3.1)	0.891	0.9 (0.3 - 2.6)
Unskilled	151 (29.0)	0.067	0.6 (0.3 - 1.0)	77 (30.1)	0.434	0.8 (0.5 - 1.4)
State/ Parastatal	77 (14.8)	0.077	0.7 (0.4 - 1.3)	26 (10.2)	0.177	0.6 (0.3 - 1.2)
Professional	87 (16.7)	Ref	1.0	65 (26.2)	Ref	1.0
Health District						
Bamenda	250 (48.1)	<0.001	3.2 (1.9 - 5.3)	193 (75.4)	<0.001	7.6 (4.3 - 13.3)
Santa	103 (19.8)	<0.001	3.4 (2.0 - 6.0)	4 (1.6)	<0.001	0.1 (0.0 - 0.2)
Tiko	167 (32.1)	Ref	1.0	59 (23.1)	Ref	1.0
House type						
Caraboat	37 (7.1)	0.518	0.8 (0.4 - 1.5)	16 (6.3)	0.895	1.1 (0.5 - 2.1)
Mixed	35 (6.7)	0.013	0.5 (0.3 - 0.9)	7 (2.7)	0.601	0.8 (0.3 - 1.9)
Mud Block	115 (22.1)	0.716	0.9 (0.6 - 1.4)	58 (22.7)	0.960	1.0 (0.6 - 1.6)
Cement Block	333 (64.1)	Ref	1.0	175 (68.4)	Ref	1.0
House size						
1 - 3 bedrooms	470 (90.4)	0.446	1.2 (0.7 - 2.1)	233 (91.0)	0.162	0.6 (0.3 - 1.2)
4 - 7 bedrooms	50 (9.6)	Ref	1.0	23 (8.9)	Ref	1.0
House composition						
0 Children 0 - 5 SHLN	128 (50.0)	0.029	3.5 (1.1 - 10.5)	123 (48.1)	0.062	2.7 (1.0 - 7.6)
1 - 2 Children 0 - 5 SHLN	5 (2.0)	Ref	1.0	5 (2.0)	Ref	1.0
3 - 4 Children 0 - 5 SHLN	113 (21.7)	<0.001	0.0 (0.0 - 0.1)	175 (68.4)	<0.001	8.0 (3.6 - 18.0)
Family size 1 – 4	315 (60.6)	0.007	0.4 (0.2 - 0.8)	70 (27.3)	0.060	2.1 (1.0 - 4.4)
Family size ≥ 8	92 (17.7)	Ref	1.0	11 (4.3)	Ref	1.0
Own at least one LLIN						
No	2 (0.4)	<0.001	0.0 (0.0 - 0.2)	1 (0.4)	<0.001	0.0 (0.0 - 0.2)
Yes	518 (99.6)	Ref	1.0	255 (99.6)	Ref	1.0
Install nets on all beds						
No	124 (23.9)	<0.001	0.5 (0.3 - 0.7)	58 (22.7)	<0.001	0.4 (0.3 - 0.6)
Yes	396 (76.1)	Ref	1.0	198 (77.3)	Ref	1.0
Environmental factor						
No	64 (12.3)	0.019	1.9 (1.1 - 3.3)	46 (18.0)	0.735	1.1 (0.7 - 1.8)
Yes	456 (87.7)	Ref	1.0	210 (82.0)	Ref	1.0

SHLN: Slept Home Last Night
Of the 1,251 households sampled, 484 (38.7%) regularly used bednets on all nights of the week, while 350 (28.0%) had their household heads using bednets last night (Table 2). The use of bednets on all nights of the week and consequently last night (Table 5) by the household head was associated to the age of the household head as well as to the health districts, where more household heads in the 21 – 30 and 31 – 40 age groups, and 20 and 41 – 50 age groups significantly ($p < 0.05$) used bednets regularly and last night than the other age groups. Also, more household heads in the SHD and BHD significantly ($p < 0.05$) used bednets on all nights of the week and last night respectively (Table 5). After adjustments of all utilisation indicators with educational and marital status, significance was maintained.
IV ↓	Regular use of LLIN	Used LLIN last night			
n (%)	p value	OR (95% C.I.)	n (%)	p value	OR (95% C.I.)
Age groups (in years)					
n = 484	n = 350				
20	9 (1.9)	0.701	1.2 (0.5 - 3.1)	12 (3.4)	0.049
21 – 30	189 (39.1)	**0.005**	1.7 (1.2 - 2.9)	131 (37.4)	0.064
31 – 40	151 (31.2)	**0.009**	1.8 (1.2 - 2.8)	105 (30.0)	0.073
41 – 50	75 (15.5)	0.710	1.1 (0.7 - 1.7)	64 (18.3)	**0.040**
51 – 60	60 (12.4)	Ref	1.0	38 (10.9)	Ref
Gender					
Female	347 (71.7)	0.961	1.0 (0.8 - 1.4)	238 (68.0)	0.601
Male	137 (28.3)	Ref	1.0	112 (32.0)	Ref
Marital status					
Unmarried	203 (41.9)	**0.021**	0.7 (0.5 – 1.0)	158 (45.1)	0.533
Married	281 (58.1)	Ref	1.0	192 (54.9)	Ref
Education					
NFE	33 (6.8)	0.631	1.1 (0.7 – 2.0)	27 (7.7)	0.108
Primary	149 (30.8)	0.999	1.0 (0.7 - 1.5)	84 (24.0)	**0.031**
Secondary	206 (42.6)	0.087	1.4 (1.0 - 2.0)	144 (41.1)	0.725
Tertiary	96 (19.8)	Ref	1.0	95 (27.1)	Ref
Occupation					
Unemployed	85 (17.6)	**0.034**	0.5 (0.3 – 1.0)	40 (11.4)	0.541
Agricultural	46 (9.5)	0.998	1.0 (0.6 - 1.7)	54 (15.4)	0.900
Household & domestic	32 (6.6)	0.795	1.1 (0.5 - 2.5)	19 (5.4)	0.057
Unskilled	178 (36.8)	0.199	0.7 (0.4 - 1.2)	122 (34.9)	0.456
State/ Parastatal	101 (20.8)	0.620	0.8 (0.5 - 1.5)	64 (18.3)	0.359
Professional	42 (8.7)	Ref	1.0	51 (14.6)	Ref
Health District					
Bamenda	87 (18.0)	**< 0.001**	0.3 (0.2 - 0.4)	152 (43.4)	**0.021**
Santa	203 (41.9)	**< 0.001**	2.1 (1.4 - 3.2)	94 (26.9)	0.896
Tiko	194 (40.1)	Ref	1.0	104 (29.7)	Ref
House type					
Caraboat	29 (6.0)	0.322	0.8 (0.4 - 1.3)	11 (3.1)	**0.008**
Mixed	60 (12.4)	0.462	1.2 (0.8 - 1.9)	27 (7.7)	0.836
Mud Block	78 (16.1)	**0.046**	0.7 (0.5 – 1.0)	74 (21.1)	0.703
Cement Block	317 (65.5)	Ref	1.0	238 (68.0)	Ref
House size					
1 - 3 bedrooms	156 (32.2)	0.308	0.7 (0.4 - 1.3)	127 (36.3)	0.710
4 - 7 bedrooms	275 (56.8)	0.654	0.9 (0.5 - 1.5)	192 (54.9)	0.985
House composition					
0 Children 0 - 5 SHLN	225 (46.5)	0.654	1.1 (0.7 - 1.9)	169 (48.3)	0.259
1 - 2 Children 0 - 5 SHLN	205 (42.4)	0.459	1.2 (0.6 - 1.9)	135 (38.6)	0.222
3 - 4 Children 0 - 5 SHLN	54 (11.2)	Ref	1.0	46 (13.1)	Ref
Family size 1 – 4	225 (46.5)	0.696	1.1 (0.7 - 1.8)	169 (48.3)	0.268
Family size 5 – 7	205 (42.4)	0.471	1.2 (0.6 - 1.9)	135 (38.6)	0.222
Family size ≥ 8	54 (11.2)	Ref	1.0	46 (13.1)	Ref
Own at least one LLIN					
No	9 (1.9)	**0.001**	0.3 (0.1 - 0.6)	27 (7.7)	0.422
Yes	475 (98.1)	Ref	1.0	323 (92.3)	Ref
Install nets on all beds					
No	98 (20.3)	**< 0.001**	0.4 (0.3 - 0.5)	113 (32.3)	0.171
Yes	386 (79.7)	Ref	1.0	237 (67.7)	Ref
Environmental factor					
No	40 (8.3)	0.835	1.1 (0.7 - 1.7)	44 (12.6)	0.739
Yes	444 (91.7)	Ref	1.0	306 (87.4)	Ref
The other uses, “out of norms”, of LLINs are summarised in Table 6. 28.7% (95% C.I; 26.3 – 31.3) of household heads sampled, admitted that LLINs were put into other diverse uses. These uses ranged from being used as goal post nets by children; 2.8% (95% C.I; 2.0 – 3.9), to yard fences; 22.7% (95% C.I; 20.5 – 25.1). With the exception of harvesting and drying of melon seeds (egussi), all the other “out of norm” uses of LLINs were significantly ($p < 0.05$) associated to the health districts.

Variable	Bamenda	Santa	Tiko	Total (%)	95% C.I.	χ^2	p value
Aware of LLINs misuse	172	6	181	359 (28.7)	26.3 – 31.3	202.731	< 0.001
Missuses							
Fishing	32	11	15	58 (4.6)	3.6 – 6.0	10.160	0.006
Football net	35	0	0	35 (2.8)	2.0 – 3.9	64.540	< 0.001
Harvesting/ Drying egussi	46	40	26	112 (9.0)	7.5 – 10.7	5.755	0.056
Bathing shelter	23	29	5	57 (4.6)	3.5 – 5.9	19.038	< 0.001
Chicken shed/ poultry	58	6	6	70 (5.6)	4.5 – 7.0	71.401	< 0.001
Mesh on windows	83	27	74	184 (14.7)	12.9 – 16.8	26.370	< 0.001
Wall material	0	125	3	128 (10.2)	8.7 – 12.0	299.504	< 0.001
Yard fences/ Garden	153	79	52	284 (22.7)	20.5 – 25.1	59.598	< 0.001

Care and maintenance of LLINs

Out of the 1,251 household heads sampled, 1,089 (87.1%) said, LLINs can be washed, while 627 (50.1%) affirmed the recommended LLINs washing frequency of 2 - 4 times a year.

The question of washing bednets or not (Table 7), was associated to the gender of the household head, where households with females heads significantly ($p = 0.027$) washed them compared to those headed by males. The WHO recommended washing frequency was associated to age of the household head and health district, where households with heads in the 31 – 40 years age group ($p = 0.018$) and those in the BHD ($p < 0.001$) abided more significantly to the recommended washing frequency than those in the other age groups and health districts respectively.
Table 7: Logistic regression of socio-demographic characteristics in association with LLINs maintenance

IV ↓	Can wash LLINs	Recommended wash frequency				
	n (%)	p value	OR (95% C.I.)	n (%)	p value	OR (95% C.I.)
Age groups (in years)						
20	24 (2.2)	0.256	0.6 (0.2 - 1.6)	10 (1.6)	0.335	0.7 (0.3 - 1.5)
21 – 30	396 (36.4)	0.449	0.8 (0.5 - 1.1)	216 (34.5)	0.653	1.1 (0.8 - 1.6)
31 – 40	313 (28.7)	0.278	0.7 (0.4 - 1.3)	208 (33.2)	0.018	1.6 (1.1 - 2.3)
41 – 50	194 (17.8)	0.894	1.0 (0.5 - 1.8)	109 (17.4)	0.272	1.3 (0.8 - 1.9)
51 – 60	162 (14.9)			84 (13.4)		
Gender						
Female	755 (69.3)	0.027	1.5 (1.1 - 2.1)	431 (68.7)	0.056	1.3 (1.0 - 1.9)
Male	334 (30.7)	Ref	1.0	196 (31.3)	Ref	1.0
Marital status						
Unmarried	485 (44.5)	0.477	0.9 (0.6 - 1.3)	263 (41.9)	0.359	0.9 (0.7 - 1.2)
Married	604 (55.5)	Ref	1.0	364 (58.1)	Ref	1.0
Education						
NFE	106 (9.7)	0.079	2.0 (0.9 - 4.2)	62 (9.9)	0.416	0.8 (0.5 - 1.3)
Primary	316 (29.0)	0.483	0.8 (0.5 - 1.4)	171 (27.3)	0.971	1.0 (0.7 - 1.4)
Secondary	416 (38.2)	0.229	1.3 (0.8 - 2.1)	235 (37.5)	0.858	1.0 (0.8 - 1.4)
Tertiary	251 (23.1)	Ref	1.0	159 (25.4)	Ref	1.0
Occupation						
Unemployed	167 (15.3)	0.194	0.6 (0.3 - 1.3)	72 (11.5)	0.246	0.7 (0.4 - 1.3)
Agricultural	163 (15.0)	0.954	1.0 (0.5 - 1.8)	133 (21.2)	0.456	1.2 (0.7 - 2.0)
Household & domestic	54 (5.0)	0.067	7.1 (0.9 - 57.5)	19 (3.0)	0.032	0.4 (0.2 - 0.9)
Unskilled	389 (35.7)	0.924	1.0 (0.6 - 2.0)	202 (32.2)	0.200	0.7 (0.5 - 1.2)
State/ Parastatal	190 (17.5)	0.761	1.1 (0.6 - 2.2)	104 (16.6)	0.738	0.9 (0.6 - 1.5)
Professional	126 (11.6)	Ref	1.0	97 (15.5)	Ref	1.0
Health District						
Bamenda	379 (34.8)	0.181	0.7 (0.4 - 1.2)	306 (48.8)	< 0.001	2.4 (1.7 - 3.5)
Santa	341 (31.3)	0.381	1.3 (0.8 - 2.1)	146 (23.3)	0.321	0.8 (0.6 - 1.2)
Tiko	369 (33.9)	Ref	1.0	175 (27.9)	Ref	1.0

On the recommended LLINs washing frequency, heads in the BHD ($p < 0.001$, OR; 2.4, 95% C.I; 1.7 – 3.5) were significantly more likely, while those in the SHD ($p = 0.321$, OR; 0.8, 95% C.I; 0.6 – 1.2) were insignificantly less likely to respect the recommended LLINs washing frequency compared to those in the THD (Table 6).

DISCUSSION

This study examined the indicators of LLIN ownership, utilization and maintenance in the Bamenda, Santa and Tiko Health Districts. Overall, 92.5% and 20.5% of households interviewed owned at least one LLIN per household and utilisation by entire household last night respectively.
Indicators of household LLINs ownership

Currently, targets in national strategic plans for all three LLINs coverage indicators are usually set for all people at risk of malaria [1, 2], to ≥ 80%. Household ownership of at least one LLIN per household in this study is higher than rates reported elsewhere in Cameroon [6, 7, 9, 13, 15-17] and out of Cameroon [24-33]. It was however, lower than proportions reported in Uganda and Myanmar [34, 35] and in line with the 93.5% reported in Madagascar [27]. The high proportion of owning at least a LLIN per household in these health districts could be attributed to the free LLINs mass distribution campaigns (MDC) [6, 10].

The universal household coverage of 66.8% (overall LLIN: Person ratio of 0.50) though within the WHO range of 39 – 75 % [36], was lower than rates reported elsewhere in Cameroon and Myanmar [13, 35]. It was however, higher compared to rates in Madagascar and Uganda [27, 37] as well as a host of eight African countries [29].

Access to LLINs in the household of 69.1% in this study was lower compared to results reported elsewhere [27, 34], higher than 21% reported in Batwa [38], within the 57.3 – 78.8% in eight African countries [29] and 32.3 – 81.3% reported in a multi-country study [39]. The low household universal coverage and (versus) accessibility in this study, could be attributed to the significant differences amongst the health districts: 86.4% vs 83.5% for the BHD, 55.6% vs 55.6% for the SHD and 56.2% vs 66.3% for the THD; \(\chi^2 (2, N = 1,251) = 120.457, p < 0.001 \) vs \(\chi^2 (2, N = 1,251) = 77.969, p < 0.001 \) and differences in family size vs gender of household head.

Household utilisation of LLINs

Household universal LLINs utilisation of 20.5% (16.0% of the \textit{de facto} population) was very low compared to to previous studies elsewhere in Cameroon [16, 17] and out of Cameroon [24, 27, 31, 34, 35, 37, 40]. This was however high compared to the 6.9 – 15.3% reported in Myanmar [26]. The very low household LLINs utilisation could be attributed to the significant differences amongst the health districts: 43.1% in the BHD, 1.0% in the SHD and 14.1% in the
THD; $\chi^2 (2, N = 1,251) = 240.400, p < 0.001$ as well as household composition and the installation of LLINs on all beds in the household ($p < 0.05$). It could also be due to inadequate education on LLINs utilisation, the socio-political tensions and differences in the different study designs.

Bednet utilisation by all children 0 – 5 years and expectant mothers in the household of 14.6% and 63.4% respectively, is low compared to 63% vs 60% reported in the BHD [16], 52% vs 58% in the national territory [7] and elsewhere in the world [25, 27, 28, 31, 35, 37, 40]. The low LLIN utilisation by all children 0 – 5 years old could be attributed to significant differences in the health districts, age and gender of household heads, educational status of household head as well as the presence or absence of bushes or water pools around dwellings ($p < 0.05$).

Use of LLINs by household head last night of 28.0% was low compared to 58.3% reported in Rural and Semi-Urban communities in the South West Region of Cameroon [6] and 47.2% in China [24]. Meanwhile the regular use of LLINs of 38.7% was low compared to 48.0% reported in China [24]. The low use of LLINs last night by household head and regular use of LLINs, could significantly be attributed to differences in the health districts and ages of the household heads ($p < 0.05$).

LLIN misuse of 2.3 – 22.7% was also similar to the 18.2% reported in Mezam Division [15] and 21% in Kenya [41]. The use of LLINs for other purposes, other than the prevention of mosquito bites could be attributed to: inadequate education on utilisation, lack of good playgrounds, as 2.8% (95% C.I, 2.0 – 3.9) of the households admitted that children used as football goal post nets.

Care and maintenance of LLINs

Out of the 1,251 household heads sampled, 1,089 (87.1%) said, LLINs can be washed, while 627 (50.1%) affirmed the recommended LLIN washing frequency of 2 – 4 times a year. The recommended LLIN wash frequency reported in this study was similar to the 52.0% reported
in Kenya [41]. The optimal LLIN washing frequency could be attributed to the age of the household head as well as the health district.

RECOMMENDATIONS

The populations of the three health districts should be properly educated by community health workers and stakeholders on the regular utilisation of LLINs and by all household occupants.

The MOH should sustain another free MDC since those distributed in 2015 - 2016 will be worn out and ineffective in preventing malaria by 2019.

STRENGTHS AND LIMITATIONS OF THE STUDY

Strengths

The data used in this study was collected by trained surveyors, who had mastery of all the HAs as they are responsible for the coding of houses during the Expanded Programme on Immunisation (EPI) and MDC campaigns. All the health district offices were consulted for the mapping of the HAs, quarters and census list of households used in the last MDC and EPI campaigns. In Cameroon, the MOH carries out seasonal EPI campaigns. The quality of data collected was assured through the multistage sampling strategy to minimize bias and pretesting of questionnaires.

Limitations

This was a cross sectional study, representing the snapshot of the population within the study period and does not show cause and effect since the predictor and outcome variable were measured at the same time. Data was collected through self-reporting and thus there is a possibility of bias where the respondent provides socially acceptable answers. Recall bias can also affect some of the responses and subsequently the results of the study. In this study however,
respondents were required to only recall whether they and occupants of their households slept under a LLIN the previous night, as well as the source and number of LLINs in the household.

Ownership and number of LLINs in the household was not evaluated. Ownership, utilisation and maintenance of LLINs in the three health districts in 2017 and 2018 could not be attributed solely to the 2015 - 2016 MDC, as other sources of LLINs: ANC for pregnant women and free gift from a relation, and our study design could not capture the contribution of each intervention.

CONCLUSIONS

Our findings highlighted low rates of household universal coverage, accessibility and utilisation indicators as well as maintenance amidst high ownership of at least one LLIN per household and the free MDC. However, efforts had reached vulnerable populations in all health districts. Quelling the on-going socio-political crisis and scaling up efforts can lead to increased coverage which may systematically contribute to household universal utilisation and thus reduce malaria morbidity and mortality. Our finding that health districts are strongly associated with LLINs ownership, utilisation and maintenance suggests that MDCs should be complemented by education and behaviour change communication emphasizing that malaria is transmitted by mosquito bites and it can be prevented by sleeping under LLINs.

ABBREVIATIONS: 95% C.I, 95% Confidence Interval; BHD, Bamenda Health District; HA, Health area; LLINs, Long-lasting insecticidal nets; NFE, No Formal Education; OR, Odds Ratio; p, Significance value; RBM, Roll Back Malaria; SD, Standard Deviation; SHD, Santa Health District; THD, Tiko Health District; χ², Chi square

DECLARATIONS

Ethics approval and consent to participate

Ethical clearance was obtained from the IRB-FHS of the University of Buea.
Supporting information

S1 file. Questionnaire (PDF).

S2 file. Raw data and sampling files (Excel).

Funding

Financial assistance was received from the Proprietors of the Atlantic Medical Foundation Tiko road – Mutengene and Solidarity Hospital Buea.

Acknowledgements

We are thankful to the heads of households who participated in this survey, the community health workers and to the field assistants who worked under challenging field conditions.

Competing interests

The authors declare that they have no competing interests.

Authors contributions

CFN, NFPC and NFP conceived and designed the study. CFN, NFPC, MSF, CBM and JPK collected data and CFN analysed it. NFCT and TAN provided resources for the study. NFPC, MSF, CBM and CFN critically reviewed literature and wrote the original draft. NFP supervised the study. All authors contributed to the write up, reviewed the final draft, read and approved the final manuscript.

REFERENCES

1. WHO: Malaria prevention works: Let’s close the gap. In: World Malaria day 2017. Edited by WHO Global Malaria Programme. France: World Health Organization; 2017.
2. WHO: Malaria. In: Edited by News room; Fact sheets. Switzerland: World Health Organisation; 2018.
3. RBM: RBM Partnership to end Malaria. In: RBM Partnership Annual Report 2017. Edited by Mpanju-Shumbusho Winnie. Geneva, Switzerland: RBM Partnership to end Malaria; 2017.
4. Cameroon Malaria Operational Plan FY 2017, USAID, CDC: President’s Malaria Initiative Cameroon. Malaria Operational Plan FY 2017. In.: USAID, CDC; 2017.

5. MOH: Plan Stratégique National de Lutte contre le Paludisme: 2014-2018. Ministère de la Santé Publique, Cameroun In: Edited by Programme National de Lutte contre le Paludisme, vol. 4. Yaoundé: Programme National de Lutte contre le Paludisme; 2014.

6. Apinjoh Tobias O, Anchang-Kimbi Judith K, Mugri Regina N, Tangoh Delphine A, Nyingchu Robert V, Chi Hanesh F, Tata Rolland B, Njunkeng Charles, Njua-Yafi Clarisse, Achidi EA: The Effect of Insecticide Treated Nets (ITNs) on Plasmodium falciparum Infection in Rural and Semi-Urban Communities in the South West Region of Cameroon. PLoS One 2015, 10(2):e0116300.

7. MOH, ONSP, African Health Observatory, WHO: Health Analytical Profile 2016 Cameroon. In. Yaoundé Observatoire National de la Sante Publique; 2017.

8. CDC, USAID, President’s Malaria Initiative, RBM, UNICEF, WHO: Household Survey Indicators for Malaria Control. In. Edited by United States Agency for International Development: CDC, USAID, President’s Malaria Initiative, RBM, UNICEF, WHO; 2013.

9. NIS: Demographic and Health survey and Multiple Indicators Cluster Survey DHS-MICS 2011. In. Yaoundé, Cameroon: National Institute of Statistics; 2012.

10. Wonghi John Ngum, Ongolo-Zogo Pierre, Tallah Esther, Leke Rose, Mbacham W: Initiative of Cameroon coalition against malaria (CCAM) and Centre for development and best practices in health (CDBPH). In. Yaoundé - Cameroon; 2009.

11. Bhatt S, Weiss D. J, Cameron E, Bisanzio D, Mappin B, Dalrymple U, Battle K. E, Moyes C. L, Henry A, Eckhoff P. A et al: The effect of malaria control on Plasmodium falciparum in Africa between 2000 and 2015. Nature 2015, 526(207).

12. WHO: Achieving and maintaining universal coverage with long-lasting insecticidal nets for malaria control. In. Edited by Global Malaria Programme: World Health Organization; 2017.

13. Malaria No More: Cameroon Malaria Knowledge, Attitudes, and Practices. Malaria no more. Final Report, August 2012. In: Progress from 2011 to 2012. Edited by Hannah B. New York; 2012.

14. Ernst & Young LLP, Malaria no more: Global Britain and Ending Malaria: The bottom line. In. Edited by Ernst & Young LLP. United Kingdom: Malaria No More UK; 2017.
15. Ngum Helen Ntonifor, Veyufambom Serophone: **Assessing the effective use of mosquito nets in the prevention of malaria in some parts of Mezam division, Northwest Region Cameroon.** *Malar J* 2016, **15**(390).

16. Fokam B. Eric, Kindzeka F. Germaine, Ngimuh Leonard, Dzi TJ. Kevin, Wanji S: **Determination of the predictive factors of long-lasting insecticide-treated net ownership and utilisation in the Bamenda Health District of Cameroon.** *BMC Public Health* 2017, **17**:263.

17. Kimbi Helen Kuokuo, Nkesa Sarah Bi, Ndamukong-Nyanga Judith Lum, Sumbele Irene Ule Ngole, Atashili Julius, Atanga Mary Bi-Suh: **Socio-demographic factors influencing the ownership and utilization of insecticide-treated bed nets among malaria vulnerable groups in the Buea Health District, Cameroon.** *BMC Res Notes* 2014, **7**.

18. UCCC: **United Councils and Cities of Cameroon.** In: Yaoundé: Ministry of Territorial Administration and Decentralisation; 2014.

19. Ndong C Ignatius, van Reenen Mari, Boakye A Daniel, Mbacham F Wilfred, Grobler AF: **Trends in malaria admissions at the Mbakong Health Centre of the North West Region of Cameroon: a retrospective study.** *Malar J* 2014, **13**(328).

20. Yekabong Renda Colins, Ebile Walter Akoh, Fon Peter Nde, Asongalem EA: **The impact of mass distribution of long lasting insecticide-treated bed-nets on the malaria parasite burden in the Buea Health District in South-West Cameroon: a hospital based chart review of patient’s laboratory records.** *BMC Res Notes* 2017, **10**(534).

21. MOH: **Annual statistics.** In: *Annual report.* Edited by Tiko Health District Service. Tiko - Cameroon: Tiko Health District Services; 2016.

22. Kothari C: **Research Methodology, Methods and Techniques,** 2 edn. New Delhi, Bangalore: New Age International (P) Ltd; 2004.

23. Kilian Albert, Koenker Hannah, Baba Ebenezer, Onyefunafoa Emmanuel O, Selby Richmond A, Lynch KLaM: **Universal coverage with insecticide-treated nets – applying the revised indicators for ownership and use to the Nigeria 2010 malaria indicator survey data.** *Malar J* 2013, **12**(314).

24. Xu J-w, Liao Y-m, Liu H, Nie R-h, Havumaki J: **Use of Bed Nets and Factors That Influence Bed Net Use among Jinuo Ethnic Minority in Southern China.** *PLoS One* 2014, **9**(7):e103780.
25. Ahmed Syed Masud, Zerihun A: Possession and Usage of Insecticidal Bed Nets among the People of Uganda: Is BRAC Uganda Health Programme Pursuing a Pro-Poor Path? *PLoS One* 2010, 5(9):e12660.

26. Aung Tin, Wei Chongyi, McFarland Willi, Aung Ye Kyaw, Khin HSS: Ownership and Use of Insecticide-Treated Nets among People Living in Malaria Endemic Areas of Eastern Myanmar. *PLoS One* 2016, 11(9).

27. Finlay AM BJ, Ranaivoharimina H, Cotte AH, Ramarosandratana B, Rabarijaona H, Tuseo Luciano, Chang Michelle, Vanden Eng Jodi: Free mass distribution of long lasting insecticidal nets lead to high levels of LLIN access and use in Madagascar, 2010: A cross-sectional observational study. *PLoS One* 2017, 12(8):e0183936.

28. Graves M Patricia, Ngondi M Jeremiah, Hwang Jimee, Getachew Asefaw, Gebre Teshome, Mosher W Aryc, Patterson E Amy, Shargie B Estifanos, Tadesse Zerihun, Wolkon Adam *et al.*: Factors associated with mosquito net used by, individuals in households owning nets in Ethiopia. *Malar J* 2011, 10(354).

29. Koenker Hannah, Arnold Fred, Ba Fatou, Cisse Moustapha, Diouf Lamine, Eckert Erin, Erskine Marcy, Florey Lia, Fotheringham Megan, Gerberg Lilia *et al.*: Assessing whether universal coverage with insecticide-treated nets has been achieved: is the right indicator being used? *Malar J* 2018, 17(355).

30. Quive M. Inocencio CB, Diederike Geelhoed: Household survey of availability of long-lasting insecticide-treated nets and its determinants in rural Mozambique. *Malar J* 2015, 14(304).

31. Russell Cheryl L, Sallau Adamu, Emukah Emmanuel, Graves Patricia M, Noland Gregory S, Ngondi Jeremiah M, Ozaki Masayo, Nwankwo Lawrence, Miri Emmanuel, McFarland Deborah A *et al.*: Determinants of Bed Net Use in Southeast Nigeria following Mass Distribution of LLINs: Implications for Social Behavior Change Interventions. *PLoS One* 2015, 10(10):e0139447.

32. Sangaré R. Laura, Weiss S. Noel, Brentlinger E. Paula, Barbra A. Richardson, Staedke G. Sarah, Mpungu S. Kiwuwa, Stergachis A: Determinants of Use of Insecticide Treated Nets for the Prevention of Malaria in Pregnancy: Jinja, Uganda. *PLoS One* 2012, 7(6):e39712.

33. Ye Yazoume, Patton Elizabeth, Albert Kilian, Samantha Dovey, Erin Eckert: Can universal insecticide-treated net campaigns achieve equity in coverage and use? The case of northern Nigeria. *Malar J* 2012.
34. Wanzira Humphrey, Eganyu Thomas, Mulebeke Ronald, Bukenya Fred, Echodu Dorothy, Adoke Y: Long lasting insecticidal bed nets ownership, access and use in a high malaria transmission setting before and after a mass distribution campaign in Uganda. *PLoS One* 2018, 13(1):e0191191.

35. Liu Hui, Xu Jian-wei, Guo Xiang-rui, Havumaki Joshua, Lin Ying-xue, Yu Guo-cui, Zhou D-l: Coverage, use and maintenance of bed nets and related influence factors in Kachin Special Region II, northeastern Myanmar. *Malar J* 2015, 14(212).

36. WHO: Insecticide-treated nets: A WHO Position Statement on ITNs. In. Edited by Programme WGM: World Health Organisation; n.d.

37. Wanzira Humphrey, Katamba Henry, Denis R: Use of long-lasting insecticide-treated bed nets in a population with universal coverage following a mass distribution campaign in Uganda. *Malar J* 2016, 15(311).

38. Clark Sierra, Berrang-Ford Lea, Lwasa Shuaib, Namanya Didacus, Twesigomwe Sebastian, IHACC Research Team, Kulkarni M: A Longitudinal Analysis of Mosquito Net Ownership and Use in an Indigenous Batwa Population after a Targeted Distribution. *PLoS One* 2016, 11(5):e0154808.

39. Zegers de Beyl Celine, Koenker Hannah, Acosta Angela, Onyefunafua Emmanuel Obi, Adegbe Emmanuel, McCartney-Melstad Anna, Richmond Ato Selby, Kilian Albert: Multi-country comparison of delivery strategies for mass campaigns to achieve universal coverage with insecticide-treated nets: what works best? *Malar J* 2016, 15(58).

40. Alemu Melaku Birhanu, Asnake Meles Addisu, Lemma Melaku Yilma, Melak Melkitu Fentie, Yenit MK: Utilization of insecticide treated bed net and associated factors among households of Kola Diba town, North Gondar, Amhara region, Ethiopia. *BMC Res Notes* 2018, 11(575).

41. Mutuku M Francis, Kambira Maureen, Bisanzio Donal, Mungai Peter, Mwanzo Isaac, Muchiri M Eric, King H Charles, Kitron U: Physical condition and maintenance of mosquito bed nets in Kwale County, coastal Kenya. *Malar J* 2013, 12(46).
Figure 1: Multi-stage sampling (HA; Health Area, SRS; Simple Random Sampling)

‡Households sampled by systematic random sampling, †Households sampled by SRS