Unlocking the full potential of probiotics: refocusing on microbial demands

Marie Joossens

Department of Biochemistry and Microbiology (WE10), Laboratory of Microbiology, Ghent University, Ghent 9000, Belgium.

During the past decade, huge advantages have been made in mapping and understanding the human-associated intestinal microbiome and its relation with human health. The vast amount of microorganisms that reside in our gastrointestinal tract is being acknowledged for its role in human physiology and due to this role, it has even been referred to as an additional organ.[1] As a result of the revelation of links between diseases and changes in the intestinal bacterial composition, medical interest in the deliberate use of bacteria or their products in treating diseases, called bacteriotherapy, has mounted likewise. Currently, bacteriotherapy comprises (fecal) microbial transfer, where stools or microbial stool-derivates like washed microbiota[2] from a donor are administered to treat an illness in an acceptor on the one hand, and probiotics on the other. According to the definition, probiotics are “live microorganisms which when administered in adequate amounts confer a health benefit on the host.”[3] These benefits occur through interaction with the (local) immune system, through the production of desired metabolites and cross-feeding with present microorganisms but are also linked with increasing the bacterial load. Many different bacterial and yeast strains have been studied for their probiotic effects. Probiotics are generally administered in doses of up to 10^{10} viable microorganisms which are added to the estimated 10^{14} bacteria in the human gastrointestinal tract.[4] Upon administration, probiotics are considered to exert a transient effect, without permanent colonization of the host after the treatment has been ceased. In general, wash-out periods of 2 to 4 weeks are being used in clinical trials. Although the term ‘probiotics’ is highly useful to describe this type of microorganism based therapy, it also leads to misconceptions. After all, the term probiotic covers many different microorganisms that have very different properties. Taxonomically, probiotics cross even different domains as both unicellular prokaryotic (bacteria) and complex cell eukaryotic (yeast) probiotic strains are being used. Moreover, health benefits of probiotics have been described for different indications and their mode of action is divers. As a result, caution is needed when summarizing the published research results to evaluate the efficacy of probiotics. If we want to improve the potency of probiotic use, there is an urgent need to also recognize the microbial view-point. Here, probiotics are approached from a microbiologist perspective and pinpointed to bacterial probiotics for intestinal applications. The focus lays on the impact of specific supplementation of bacterial strains to an existing microbial ecosystem, starting with the probiotic strain itself.

Different probiotic strains are used and common features of probiotics can be observed across taxonomic groups, but the strain-specificity of a feature is often neglected. However, apart from increasing microbial load and thereby promoting niche competition with pathogens, most effects of microorganisms on human health are strain specific. This strain specificity of probiotics is well-described for in vitro and animal models, where examples of strain specificity are reported for probiotics belonging to different bacterial phyla. So has strain-specific inhibiting of acute colitis in mice been described for Bifidobacterium longum[5] and strain-specific anti-inflammatory properties of Lactobacillus murinus[6] in a Caco-2 cell model. Also, for different strains of Akkermansia muciniphila, similar anti-inflammatory effects were observed in vitro; however, when assessing these effects in vivo in mouse models with chronic colitis, strain-specific anti-inflammatory properties were again observed.[7] Despite the fact that two different A. muciniphila strains had similar probiotic features in vitro, these features did thus not translate likewise to mouse models with a complex microbiome background. These examples illustrate the strain specificity of probiotic features and also partly explain why convincing animal

Access this article online

Quick Response Code:
Website: www.cmj.org
DOI: 10.1097/CM9.000000000000849
data on the effect of probiotics do not always translate easily to the clinic. After all, these examples highlight that the conditions created in a lab environment do not correspond with the situation in the human intestinal tract. When performing in vitro experiments, conditions are created to, on the one hand enable scientific conclusions, and on the other hand to make the bacteria assessed thrive. Co-cultivation of different fastidious intestinal bacterial strains in a laboratory setting is challenging. Moreover, we still lack a lot of information on bacteria residing in the human tract and the majority of conclusions, and on the other hand to make the bacteria are created to, on the one hand enable scienti
c
preferences. Therefore, in the context of probiotic ef
promoting effect. Behavioral changes, in general, are hard
needs of the probiotic to thrive and exert a desired health-
substrates in the intestines. Either directly or via cross-
the host will have an in

different recipients. Evidently, the nutritional habits of
comprehend the difference in potency of a probiotic strain
as the
utritiona lh a b i t s s h o u l d t h u s b e a c k n o w l e d g e d o t
the underlying host factors like genetic background as well as
underlying host factors like genetic background as well as
nutritional habits, thus should be acknowledged to further
comprehend the difference in potency of a probiotic strain in
different recipients. Evidently, the nutritional habits of
the host will have an influence on the availability of specific
substrates in the intestines. Either directly or via cross-
feeding these substrates can accommodate the nutritional
needs of the probiotic to thrive and exert a desired health-
promoting effect. Behavioral changes, in general, are hard
to effectuate and this is certainly the case for dietary
preferences. Therefore, in the context of probiotic efficacy,
nutritional habits should probably be considered as
unalterably host factors. The same is true for the genetic
background of the host. Despite the fact that tools for
deliberate and specific alterations of a host-genetic
background become available, the links between host
genetics and microbiome composition can likewise be
addressed as unchangeable at this moment. Based on
cohort studies, links between the human genetic back-
ground and the composition of the microbiome are being
uncovered and by accounting for these links, studies on
probiotics will further improve. So has a decrease in
Roseburia in healthy controls significantly been associated
with genetic risk variants for inflammatory bowel
disease.[11] As Roseburia is a genus comprising well-known
butyrate-producing strains and patients with ulcerative
colitis have been shown to be depleted in butyrate-
producing Roseburia,[12] the straightforward assessment of
a butyrate-producing Roseburia strain as probiotic in
ulcerative colitis appears tempting. However, preselecting
ulcerative colitis patients without genetic risk variants for
inflammatory bowel disease that are significantly associated
with a decrease in Roseburia, will markedly facilitate
the assessment of the potency of a butyrate-producing
Roseburia strain in ulcerative colitis treatment. Indeed,
preferring patient subgroups, also based on host-genetic
features will help to improve the assessment but also the use
of probiotics, in line with personalized medicine. Instead of
generic use of probiotics for health improvement, there is a
need to evolve more tailored probiotics where the host
background is matched to the metabolic needs of the
probiotic to enable an adequate therapeutic effect.

Also, for the therapeutic effect, considering the microbial
point-of-view can improve results. One of the broadly
supported indications for probiotic use is for the
prevention of antibiotic-associated diarrhea. Evidence
for this comes from a large meta-analysis where studies
with different types of antibiotics and also different types
of probiotics were summarized.[13] Antibiotic-associated
diarrhea is thought to result from destabilizing the
intestinal ecosystem by the antibiotic effect of the treatment
likewise on the intestinal microbiota. This is substantiated by
the fact that patients are also more prone to pathogens infection and fungal overgrowth upon
antibiotic therapy. The intake of probiotics will allow
the repopulation of the intestines with a chosen microbial
strain to prevent colonization with potential pathogens.
After all, the probiotic strain will compete for intestinal
niches with potential pathogenic strains. By generalizing
both the effects of different types of antibiotics on the host
microbial community, as well as the effects of different
probiotic strains belonging to bacteria and fungi, antibiotic
treatment is thus considered as intestinal reduction of
bacteria and probiotic supplementation as a way to
increase the microbial load to enhance local immunity.
However, niche-competition of the probiotics is not
limited to pathogens and has been shown to also hinder
the recovery of the intestinal microbiome after antibiotic
intake.[14] By selectively supplementing the impaired
intestinal community with selected strains, the reconstruc-
tion of the initial microbiome after antibiotic usage can be
harmed instead of facilitated. The use of autologous fecal
transfer has been proposed as a therapeutic way out to
speed up microbiome reconstruction after antibiotic
intake; however, this is rather cumbersome and obviously
not possible if the indication for antibiotic treatment was a
bowel infection. However, by transplanting an autologous
microbial community, two important prerequisites dis-
cussed here are met. An inherently compatible “probiotic
cocktail” is given, with on the one hand host-specific
features tailored to the bacteriotherapy and on the other
hand, a functional ecosystem with existing roles for each of
the administered bacterial constituents in the metabolic
interaction network.

10 10
In conclusion, instead of one uniform therapy, the term “probiotics” covers a diverse range of microorganisms and per unique microorganism inter-individual effects are expected based on the indigenous complex microbial ecosystem and host features. For probiotics to become a full component of evidence-based therapy, important changes are needed. These changes can be summarized as a call for matching both the desired probiotic feature and the needs of the probiotic strain to thrive in the human host. To improve the efficacy of probiotics, underlying host factors need thus to be acknowledged, as well as the needs of the selected strains. By enhancing the environmental conditions for a selected probiotic, it will be enabled to thrive and exert its desired health-promoting properties. By preselecting patients, the real potency of specific strains can be evaluated in receptive hosts. In the coming years, this combined approach will help to identify truly health-promoting microorganisms in targeted patient groups.

Funding

Marie Joossens is supported by a fellowship of the Research Foundation - Flanders (FWO).

Conflicts of interest

None.

References

1. O’Hara AM, Shanahan F. The gut flora as a forgotten organ. EMBO Rep 2006;7:688–693. doi: 10.1038/sj.embr.7400731.
2. Zhang T, Lu G, Zhao Z, Liu Y, Shen Q, Li P, et al. Washed microbiota transplantation vs. manual fecal microbiota transplantation: clinical findings, animal studies and in vitro screening. Protein Cell 2020;11:251–266. doi: 10.1007/s13238-019-00684-8.
3. Joint FAO/WHO expert consultation. Probiotics in food Health and nutritional properties and guidelines for evaluation. Rome: Food and Agriculture Organization, World Health Organization, 2006. Available from: http://www.fao.org/3/a-a0512e.pdf. [Accessed March 21, 2020]