Introduction

The speckle tracking echocardiography has been introduced as an advent to measure myocardial deformation with angle independent quantification of left ventricular (LV) twist. This technique is based on frame-by-frame tracking of natural acoustic markers that are generated by B-mode images. However, there are very few data in pediatrics.

LV rotation, rotation rate, and radial displacement were directly measured using speckle tracking echocardiographic software from short axis views of the LV apex and base. Rotation was defined as circumferential rotation around the long axis of the left ventricle during systole, and rotation rate was the speed at which rotation occurred.

Traditionally, research in clinical cardiac mechanics involved analysis of short axis and long axis LV function and ejection fraction, but it has been advanced to three-dimensional ventricular deformation studies, including LV torsion. LV torsional deformation, based on helical myocardial fiber architecture, plays an important role with respect to LV ejection and filling performance. During the cardiac cycle, there is a systolic twisting and an early diastolic untwisting of the LV about its long axis due to opposite apical and basal rotations. The magnitude and characteristics of this torsional deformation are well established, and it is known that LV rotation is sensitive to changes in regional and global LV function.

Therefore, interpretation of LV rotation represents a logical approach to quantifying LV function. However, there is no comprehensive study describing its normal development during childhood with respect to age-related change.

Background:

The speckle tracking echocardiography can benefit to assess the regional myocardial deformations. Although, previous reports suggested no significant change in left ventricular (LV) torsion with aging, there are certain differences in LV rotation at the base and apex. The purpose of this study was to evaluate the change and relationship of LV rotation for torsion with aging in children.

Methods:

Forty healthy children were recruited and divided into two groups of twenty based on whether the children were preschool-age (2–6 years of age) or school-age (7–12 years of age). After obtaining conventional echocardiographic data, apical and basal short axis rotation were assessed with speckle tracking echocardiography. LV rotation in the basal and apical short axis planes was determined using six myocardial segments along the central axis.

Results:

Apical and basal LV rotation did not show the statistical difference with increased age between preschool- and school-age children. Apical radial strain showed significant higher values in preschool-age children, especially at the anterior (52.8 ± 17.4% vs. 34.7 ± 23.2%, *p* < 0.02), lateral (55.8 ± 20.4% vs. 36.1 ± 22.7%, *p* < 0.02), and posterior segments (57.1 ± 17.6% vs. 38.5 ± 21.7%, *p* < 0.01). The torsion values did not demonstrate the statistical difference between two groups.

Conclusion:

This study revealed the tendency of higher rotation values in preschool-age children than in school-age children. The lesser values of rotation and torsion with increased age during childhood warrant further investigation.

Keywords: Children • Left ventricular rotation • Left ventricular torsion • Age difference.
The neonatal myocardium develops less force than that of the adult, and cardiocytes have been shown to increase both myofibrillar and sarcoplasmic reticulum contents after birth.

LV torsion and untwisting show age-related increases in general, and when normalized by LV length, they demonstrate larger values in infancy and middle age. Notomi et al. has suggested that net LV torsion increases gradually from infancy to adulthood, but the determinants of this remain unclear.

The neonatal myocardium develops less force than that of the adult, and cardiocytes have been shown to increase both myofibrillar and sarcoplasmic reticulum contents after birth.

Large changes in hemodynamic load occur during cardiac development and are associated with increased contractility resulting from alterations in the relative expression of sarcoplasmic protein isoforms. The giant sarcoplasmic protein ‘spring’ both resists passive stretch and helps the myocyte to recoil after contraction. In addition to these cardiac changes, arterial distensibility decreases from childhood to adulthood, which represents a stiffening of the arterial tree that increases afterload even in normotensive individuals.

In this study, we sought to investigate the alterations in LV torsional behavior from preschool age to school age in normal children.

METHODS

STUDY PARTICIPANTS

The participant children were recruited in the outpatient clinic from January to July 2014, when schedules to undergo clinically indicated echocardiography or volunteers. They were 2 to 14 years, without heart disease. The children with unstable hemodynamics and cardiac arrhythmias were excluded. They were divided into two groups: one group of twenty preschool-age children (2 to 6 years, mean age 4.5 ± 1.2) and the other group of twenty school-age children (7 to 14 years, mean age 10.5 ± 2.7).

Children were recruited from a group of pediatric patients referred for electrocardiography (ECG) or echocardiography to evaluate cardiac murmur, chest pain, and syncope. All subjects were normotensive and clinically well from a cardiovascular standpoint. Additionally, they showed normal sinus rhythm with a normal surface ECG and no structural or functional abnormalities on transthoracic echocardiography. They were free of past or present systemic disease.

ECHOCARDIOGRAPHY

The main echocardiographic examinations were performed by one expert with Vivid 7 scanner (GE Vingmed Ultrasound, Horten, Norway) equipped with a phased-array transducer. Transducer frequencies, sampling rates, and sector width were adjusted for optimal speckle quality of the recordings, and LV short axis recordings were acquired. A 2D ultrasound STI analyzing software packages (EchoPac PC, version 6.0, GE Healthcare, Horten, Norway) provided by the manufacture was used for offline analysis.

In this study, the proper short axis levels were defined at the basal level by the presence of the mitral valve and at the apical level by the LV cavity alone with no papillary muscles. The LV cross section was made as circular as possible. In each child, 3 consecutive cardiac cycles were acquired, and the data at end-expiration on the respiratory trace were selected.

The analyses were performed on a computer with customized software within the EchoPac platform (GE Medical Systems, Milwaukee, WI, USA).

Conventional echocardiograms were evaluated for LV systolic and diastolic function. After completion of standard comprehensive examinations to assess LV longitudinal myocardial motion, tissue Doppler imaging (TDI) analysis was performed offline, and the myocardial tissue velocity profile was obtained from an optimal measuring position set at the basal segment of the septum and LV lateral wall from apical four chamber projections. The mean frame rate was 150–180 frames per second, and the velocity range was 12–20 cm/sec to avoid aliasing for TDI acquisition. The measurements of maximal systolic and early diastolic velocities were obtained.

In addition, at the basal and apical short axis levels, radial transverse and circumferential strain values were obtained using the EchoPac program (GE Medical Systems).

LV ROTATION AND TORSION

Spectral tracking echocardiography was performed for offline analysis, and LV rotation was then defined as angular displacement of the left ventricle about its central axis in the short-axis image (Fig. 1). These data were measured in degrees.

LV torsion was defined as the net difference of global LV rotation between apical and basal short axis planes at each time point and was calculated by the following equation:

\[\text{Global torsion} = \text{apical global rotation} - \text{basal global rotation} \]

Peak global torsion was defined as the maximal value of global torsion during the cardiac cycle.

STATISTICAL ANALYSIS

All data were expressed as mean ± SD. Statistical analysis was performed by Student’s t-test. Relationships were considered statistically significant when \(p \) was less than 0.05.
RESULTS

We divided the study population into 2 groups: twenty preschool-age children (2–6 years) and the other twenty school-age children (7–14 years). From conventional echocardiographic measures, LV ejection fraction (67.0 ± 2.0% vs. 66.5 ± 5.4%, p = NS) was not different between two groups.

LV ROTATION PATTERN

Apical rotation, which is consistently counterclockwise and is presented as a positive value, changed slightly from preschool age to school age without statistical significance, whereas basal rotation, which occurs in a clockwise direction and is represented by a negative value, changed significantly with aging (p < 0.05), especially at the inferior and septal segments (p < 0.02).

Global mean value of basal rotation was greater in preschool-age than in school-age children (-6.3 ± 3.0° vs. -4.4 ± 2.3°, p < 0.05). All of the six observed segments on short axis images, antero-septal, anterior, lateral, and posterior segments demonstrated a tendency of higher rotation in preschool-age children (antero-septal: -3.6 ± 2.5° vs. -2.6 ± 2.2°, anterior: -4.4 ± 2.4° vs. -3.4 ± 3.4°, lateral: -6.5 ± 2.8° vs. -5.6 ± 3.3°, posterior: -7.7 ± 4.0° vs. -5.9 ± 3.6°, p = NS, respectively), and inferior and septal segments exhibited statistically significant higher rotation in preschool-age children (inferior: -9.2 ± 3.5° vs. -6.6 ± 3.0°, septal: -8.0 ± 3.1° vs. -5.3 ± 3.6°, p < 0.02, respectively) (Table 1, Fig. 2).

Although there was no statistical significance, global mean apical rotation was also higher in preschool-age children (7.7 ± 5.1° vs. 6.8 ± 7.0°, p = NS). For the same six segments on short axis images, apical rotation data showed tendency of larger measurement in preschool-age children than in school-age children (antero-septal: 9.5 ± 4.5° vs. 8.0 ± 6.2°, anterior: 9.6 ± 5.1° vs. 8.1 ± 6.6°, lateral: 9.1 ± 5.6° vs. 7.7 ± 7.6°, posterior: 8.2 ± 5.3° vs. 6.5 ± 7.9°, inferior: 6.6 ± 5.0° vs. 6.1 ± 7.3°, septal: 8.4 ± 4.0° vs. 7.2 ± 7.0°, p = NS, respectively) (Table 1, Fig. 2).

Table 1. Rotation data comparison with speckle tracking echocardiography at basal and apical view between preschool and school age children

Rotation (°)	Mean	Antero-septal	Anterior	Lateral	Posterior	Inferior	Septal
Basal rotation							
Preschool age	-6.3 ± 3.0	-3.6 ± 2.3	-4.4 ± 2.4	-6.5 ± 2.8	-7.7 ± 4.0	-9.2 ± 3.5	-8.0 ± 3.1
School age	-4.4 ± 2.3	-2.6 ± 2.2	-3.4 ± 3.4	-5.6 ± 3.3	-5.9 ± 3.6	-6.6 ± 3.0	-5.3 ± 3.6
p-value	< 0.05	NS	NS	NS	NS	< 0.02	< 0.02
Apical rotation							
Preschool age	7.7 ± 5.1	9.5 ± 4.5	9.6 ± 5.1	9.1 ± 5.6	8.2 ± 5.3	6.6 ± 5.5	8.4 ± 4.0
School age	6.8 ± 7.0	8.0 ± 6.2	8.1 ± 6.6	7.7 ± 7.6	6.5 ± 7.9	6.1 ± 7.3	7.2 ± 7.0
p-value	NS	NS	NS	NS	NS	NS	NS
Radial strain and circumferential strain with speckle tracking echocardiography

Basal radial strain was not different between segments (antero-septal: 31.5 ± 11.7% vs. 36.5 ± 18.6%, anterior: 40.3 ± 17.2% vs. 44.1 ± 19.8%, lateral: 54.1 ± 15.2% vs. 50.2 ± 20.5%, posterior: 58.7 ± 18.0% vs. 52.4 ± 23.7%, inferior: 53.3 ± 20.5% vs. 47.2 ± 24.4%, septal: 39.8 ± 18.3% vs. 32.2 ± 21.9%, p = NS, respectively). Apical radial strain showed statistically significant higher values in preschool-age children, especially at the anterior (52.8 ± 17.4% vs. 34.7 ± 23.2%, p < 0.02), lateral (55.8 ± 20.4% vs. 36.1 ± 22.7%, p < 0.02), and posterior segments (57.1 ± 17.6% vs. 38.5 ± 21.7%, p < 0.01) (Table 2).

Meanwhile, differences in basal circumferential strain were not statistically significant between segments (antero-septal: -26.7 ± 6.7% vs. -25.7 ± 8.2%, anterior: -13.9 ± 6.8% vs. -16.6 ± 5.7%, lateral: -17.4 ± 8.2% vs. -14.7 ± 5.7%, posterior: -18.3 ± 9.0% vs. -17.0 ± 6.3%, inferior: -24.6 ± 5.4% vs. -21.5 ± 7.2%, septal: -29.1 ± 6.2% vs. -25.9 ± 8.0%, p = NS). Apical circumferential strain did not show the significant difference between segments (antero-septal: -24.9 ± 4.7% vs. -25.5 ± 7.7%, anterior: -20.4 ± 6.8% vs. -20.8 ± 9.6%, lateral: -17.9 ± 7.2% vs. -18.4 ± 6.6%, posterior: -16.7 ± 6.4% vs. -18.4 ± 7.0%, inferior: -19.8 ± 4.3% vs. -21.0 ± 7.6%, septal: -23.1 ± 9.0% vs. -25.3 ± 7.8%, p = NS) (Table 3).

LV torsion pattern

With the torsion calculation from these basal and apical rotation data, LV torsion did not show the statistical difference between preschool-age children and school-age children. However, the preschool-age children had the larger measurements (12.6 ± 5.8°/cm vs. 9.5 ± 6.9°/cm, p = NS) (Table 4).

Discussion

Modulation of LV torsion appears to reflect myocardial mechanical maturation in childhood, which is influenced by contractility, loading conditions, and possible myogenetic changes through children's growth in life.

Table 2. Radial strain data comparison with speckle tracking echocardiography at basal and apical view between preschool and school age children

Radial strain (%)	Antero-septal	Anterior	Lateral	Posterior	Inferior	Septal
Basal						
Preschool age	31.5 ± 11.7	40.3 ± 17.2	54.1 ± 15.2	58.7 ± 18.0	53.3 ± 20.5	39.8 ± 18.3
School age	36.5 ± 18.6	44.1 ± 19.8	50.2 ± 20.5	52.4 ± 23.7	47.2 ± 24.4	32.2 ± 21.9
p-value	NS	NS	NS	NS	NS	NS
Apical						
Preschool age	35.2 ± 19.9	52.8 ± 17.4	55.8 ± 20.4	57.1 ± 17.6	52.6 ± 17.2	38.3 ± 21.1
School age	35.7 ± 24.3	34.7 ± 23.2	36.1 ± 22.7	38.5 ± 21.7	41.7 ± 21.6	37.7 ± 20.6
p-value	NS	< 0.02	< 0.02	< 0.01	NS	NS

Table 3. Circumferential strain data comparison with speckle tracking echocardiography at basal and apical view between preschool and school age children

Circumferential strain (%)	Antero-septal	Anterior	Lateral	Posterior	Inferior	Septal
Basal						
Preschool age	-26.7 ± 6.7	-13.9 ± 6.8	-17.4 ± 8.2	-18.3 ± 9.0	-24.6 ± 5.4	-29.1 ± 6.2
School age	-25.7 ± 8.2	-16.6 ± 5.7	-14.7 ± 5.7	-17.0 ± 6.3	-21.5 ± 7.2	-25.9 ± 8.0
p-value	NS	NS	NS	NS	NS	NS
Apical						
Preschool age	-24.9 ± 4.7	-20.4 ± 6.8	-17.9 ± 7.2	-16.7 ± 6.4	-19.8 ± 4.3	-23.1 ± 9.0
School age	-25.3 ± 7.7	-20.8 ± 9.6	-18.4 ± 6.6	-18.4 ± 7.0	-21.0 ± 7.6	-25.3 ± 7.8
p-value	NS	NS	NS	NS	NS	NS

Table 4. Torsion data comparison from basal and apical rotation data with speckle tracking echocardiography between preschool and school age children

Torsion (°/cm)	Mean	Antero-septal	Anterior	Lateral	Posterior	Inferior	Septal
Preschool age	12.6 ± 5.8	9.9 ± 7.1	11.0 ± 7.6	12.0 ± 8.8	13.1 ± 8.4	13.0 ± 7.1	13.0 ± 6.5
School age	9.5 ± 6.9	9.0 ± 7.0	9.7 ± 7.2	10.9 ± 7.5	10.8 ± 6.9	11.0 ± 6.8	10.8 ± 8.1
p-value	NS	NS	NS	NS	NS	NS	NS
In this study, all forty enrolled children (2- to 14-year-old) showed no significant difference in LV ejection fraction. Basal rotations in inferior and septal wall significantly increased in preschool-age children. Otherwise, without statistical significance, basal and apical rotations of preschool-age children were higher than those of school-age children. From these rotation data, calculated LV torsion was larger in preschool-age children, without statistical difference. These results can suggest that myocardial activity might be more dynamic with the larger rotation and torsion in younger preschool-age children in comparison to older school-age children. Notomi et al. suggested that LV torsion was higher in infants (n = 9, 9 ± 11 month, < 2 year) than in older children (n = 8, 7 ± 3 year), adolescents (n = 8, 16 ± 2 year), and young adults (n = 10, 28 ± 3 year), which correlates with the finding that contractility is higher in children under 2 years of age due to higher metabolic demand in comparison to older children. Although we did not include infants in this study, it is possible that younger preschool-age children demonstrated higher torsion for the same reasons that infants exhibit higher contractility. Meanwhile, the right ventricles of newborn infants are hypertrophied compared with those of older school-age children and adults due to the systemic pressure and resistance of the right ventricle. However, the basal rotation was greater at the inferior and septal segments in younger preschool-age children (Table 1), which was caused from noticeable tendency of higher strain at the exact inferior and septal segments in radial and circumferential directions (Table 2 and 3). Perhaps at base level, both of the radial and circumferential myocardial fibers may affect LV rotation and torsion with equivalent importance.

Meanwhile, the apical radial strain at anterior, lateral, and posterior segments were significantly higher in preschool-age children (Table 2); however, apical circumferential strain was not different between the two groups at anteroseptal, anterior, lateral, posterior, inferior, or septal segments on short axis images (Table 3). Even though the higher apical rotation values seen in preschool-age children were not statistically significant, these values might be affected much more by circumferential deformation rather than radial deformation (Table 1). The fact that apical circumferential strain was found to be greater than radial deformation may have an impact on apical rotation and torsion. At the apex, circumferential myocardial deformation may be more important for myocardial performance.

We observed that rotation did not change much between 2 to 14 years old, while the age-related decrease in LV torsion during childhood resulted from a subtle change in radial and circumferential strain of basal and apical segment myocardial deformation.

In terms of future clinical impacts, having normal control reference values for children's LV torsion could be useful for assessing the status of various myocardial diseases. LV torsion might be a useful measurement of cardiac performance, which may allow for better understanding of the myocardium in the following conditions: cardiomyopathy, hypertension, postoperative congenital heart disease, and other myocardial changes. Furthermore, this systolic torsion study may provide new insight into the mechanistic manifestation of diastolic characteristics in childhood growth.

The limitation of this study is the very small sample size, and including some of subclinical patient group for normal children with reasonable ejection fraction, such as chest pain group and syncope.

In conclusion, rotation values were found to be higher tendency in preschool-age children than in school-age children. We observed a decreasing trend in rotation and torsion values with increasing age from 2 to 14 years old. Although there was no statistically significant age-related change in LV rotation between these two groups, the decreasing trend in rotation and torsion twist values during childhood warrants further investigation.

REFERENCES

1. Buckberg GD, Weisfeldt ML, Ballester M, Beyer R, Burkhoff D, Coghlan HC, Doyle M, Epstein ND, Gharib M, Ideker RE, Ingels NB, LeWinter MM, Mc Culloch AD, Pohost GM, Reinlib LJ, Sahn DJ, Sopko G, Spinale FG, Spornitz HM, Torrent-Guasp F, Shapiro EP. Left ventricular form and function: scientific priorities and strategic planning for development of new venues of disease. Circulation 2004;110:e333-e6.

2. Notomi Y, Lysyansky P, Setser RM, Shiota T, Popovic ZB, Martin-Miklovic MG, Weaver JA, Oryszak SJ, Greenberg NL, White RD, Thomas JD. Measurement of ventricular torsion by two-dimensional ultrasound speckle tracking imaging. J Am Coll Cardiol 2005;45:2034-41.

3. McDonald IG. The shape and movements of the human left ventricle during systole. A study by omniangiography and by cineangiotherapy of papillary markers. Am J Cardiol 1970;26:221-30.

4. Rademakers FE, Buchalter MB, Rogers WJ, Zerhouni EA, Weisfeldt ML, Weiss JL, Shapiro EP. Dissociation between left ventricular untwisting and filling. Accentuation by catecholamines. Circulation 1992;85:1572-81.

5. Gibbons Knoeker CA, Ter Keurs HE, Knudtson ML, Tyberg JV, Beyer R. An optical device to measure the dynamics of apex rotation of the left ventricle. Am J Physiol 1993;265(4 Pt 2):H1444-9.

6. Moon MR, Ingels NB Jr, Daughters GT 2nd, Stinson EB, Hansen DE, Miller DC. Alterations in left ventricular twist mechanics with inotropic stimulation and volume loading in human subjects. Circulation 1994;89:142-50.
7. Hansen DE, Daughters GT 2nd, Alderman EL, Ingels NB, Stinson EB, Miller DC. Effect of volume loading, pressure loading, and isotropic stimulation on left ventricular torsion in humans. Circulation 1991;83:135-26.

8. Yun KL, Nicyperon MA, Daughters GT 2nd, Ingels NB Jr, Stinson EB, Alderman EL, Hansen DE, Miller DC. Alterations in left ventricular diastolic twist mechanics during acute catecholamine, ischemia, and pacing. Circulation 1994;90:629-39.

9. Maer SE, Fischer SE, McKinnon GC, Hess OM, Krayenbuehl HP, Boesiger P. Evaluation of left ventricular segmental wall motion in hypertrophic cardiomyopathy with myocardial tagging. Circulation 1992;86:1919-28.

10. Buchalter MB, Radermakers FE, Weiss JL, Rogers WJ, Weisfeldt ML, Shapiro EP. Rotational deformation of the canine left ventricle measured by magnetic resonance tagging: effects of catecholamines, ischemia, and pacing. Circulation 1994;90:629-39.

11. DeAnda A Jr, Kornelsa M, Nikolic SD, Daughters GT 2nd, Ingels NB, Miller DC. Left ventricular function, twist, and recoil after mitral valve replacement. Circulation 1995;92:9458-66.

12. Gibbons Kroeker CA, Tyberg JV, Beyar R. Effects of load manipulations, heart rate, and contractility on left ventricular apical rotation. An experimental study in anesthetized dogs. Circulation 1995;92:3539-48.

13. Kroeker CA, Tyberg JV, Beyar R. Effects of ischemia on left ventricular apex rotation. An experimental study in anesthetized dogs. Circulation 1995;92:3539-48.

14. Knudtson ML, Galbraith PD, Hildebrand KL, Tyberg JV, Beyar R. Dynamics of left ventricular apex rotation during angioscopy: a sensitive index of ischemic dysfunction. Circulation 1997;96:801-8.

15. Stuber M, Scheidegger MB, Fischer SE, Nagel E, Steinemann F, Hess OM, Boesiger P. Alterations in the local myocardial motion pattern in patients suffering from pressure overload due to aortic stenosis. Circulation 1999;100:361-8.

16. Nagel E, Stuber M, Lakatos M, Scheidegger MB, Boesiger P, Hess OM. Cardiac rotation and relaxation after anterolateral myocardial infarction. Circ Arrhythm Electrophysiol 2006;11:261-7.

17. Sandstre JJ, Johnson T, Hurre K, Beer M, Hofmann S, Puls T, Kern W, Voehler W, Neubauer S, Hahn D. Cardiac systolic rotation and contraction before and after valve replacement for aortic stenosis: a myocardial tagging study using MR imaging. AJR Am J Roentgenol 2002;178:953-8.

18. Fuchs E, Muller MF, Oswald H, Thony H, Mohacsi P, Hess OM. Cardiac rotation and relaxation in patients with chronic heart failure. Eur J Heart Fail 2004;6:715-22.

19. Tiffayan FA, Rodriguez E, Langer F, Zasio MK, Bailey L, Liang D, Daughters GT, Ingels NB Jr, Miller DC. Alterations in left ventricular torsion and diastolic recoil after myocardial infarction with and without chronic myocardial ischemia. Circulation 2004;110(11 Suppl 1):II109-14.

20. Wagner RF, Smith SW, Sandrik JM, Lopez H. Statistics of speckle in ultrasound B-scans. IEEE Trans Sonics Ultrasonics 1983;30:156-63.

21. Bohs LN, Trahey GE. A novel method for angle independent ultrasonic imaging of blood flow and tissue motion. IEEE Trans Biomed Eng 1991;38:280-6.

22. Meumier J, Bertrand M. Ultrasonic texture motion analysis: theory and simulation. IEEE Trans Med Imaging 1995;14:295-300.

23. Suhling M, Janin C, Arigovindan M, Buser P, Marsch S, Unser M, Hunziker P. Multiscale motion mapping: a novel computer vision technique for quantitative, objective ultrasound motion measurement independent of Doppler: first clinical description and validation. Circulation 2004;110:3093-9.

24. Notomi Y, Srinath G, Shiota T, Martin-Miklowic MG, Beachler L, Howell K, Oryszak SJ, Deserranno DG, Freed AD, Greenberg NL, Younoszai A, Thomas JD. Maturational and adaptive modulation of left ventricular torsional biomechanics: Doppler tissue imaging observation from infancy to adulthood. Circulation 2006;113:2534-41.

25. Stopfkuchen H. Changes of the cardiac system during the perinatal period. Eur J Pediatr 1987;146:545-9.

26. Wulfsohn D, Nyergaard JR, Tang Y. Postnatal growth of cardiomyocytes in the left ventricle of the rat. Anat Res A Discov Mol Cell Evol Biol 2004;277:236-47.

27. Siedner S, Krüger M, Schroeter M, Metzler D, Roell W, Fleischmann BK, Hescheler J, Pfizer G, Stehle R. Developmental changes in contractility and sarcomeric proteins from the early embryonic to the adult stage in the mouse heart. J Physiol 2003;548(Pt 2):493-505.

28. Lahmers S, Wu Y, Gall DR, Labert S, Grunzher H. Developmental control of titin isoform expression and passive stiffness in fetal and neonatal myocardium. Circ Res 2004;94:505-13.

29. Senzaki H, Akagi M, Hishi T, Ishizawa A, Yanagisawa M, Masutani S, Kobayashi T, Awa S. Age-associated changes in atrial elastic properties in children. Eur J Pediatr 2002;161:547-51.

30. Ozenhann H, Sharpe N. Cardiovacular aging and heart failure. Eur J Heart Fail 2003;5:427-34.

31. Setser RM, Kasper JM, Lieber ML, Starling RC, McCarthy PM, White RD. Persistent abnormal left ventricular systolic torsion in dilated cardiomyopathy after partial left ventriculectomy. J Thorac Cardiocirc Surg 2003;126:48-55.

32. Notomi Y, Setser RM, Shiota T, Martin-Miklowic MG, Weaver JA, Popovic ZB, Yamada H, Greenberg NL, White RD, Thomas JD. Assessment of left ventricular torsional deformation by Doppler tissue imaging: validation study with tagged magnetic resonance imaging. Circulation 2005;111:1141-7.

33. Colan SD, Parness IA, Spevak PJ, Sanders SP. Developmental modulation of myocardial mechanics: age- and growth-related alterations in aortic stenosis and contractility. J Am Coll Cardiol 1992;19:639-29.

34. Harada K, Suzuki T, Shimada K, Takada G. Role of left ventricular mass/volume ratio on transmitral flow velocity patterns from infancy to childhood. Int J Cardiol 1998;63:9-14.

35. Nidorf SM, Picard MH, Trizuli MO, Thomas JD, Newell J, King ME, Weisman AE. New perspectives in the assessment of cardiac chamber dimensions during development and adulthood. J Am Coll Cardiol 1992;19:983-8.