Augmented Reduced-Intensity Regimen Does Not Improve Postallogeneic Transplant Outcomes in Acute Myeloid Leukemia

Charles Craddock, MD1;2; Aimee Jackson, Bsc;2; Justin Loke, MD1; Shamyla Siddique, Bsc2; Andrea Hodgkinson, PhD2; John Mason, Bsc2; Georgia Andrew, Bsc;3; Sandeep Nagra, MBCHB3; Ram Malladi, MD;4; Andrew Peniket, MD5; Maria Gilleece, MD5; Rahuman Salim, MD;6; Eleni Tholouli, MD7; Victoria Potter, MD;8; Charles Crawley, MD;8; Keith Wheatley, DPhil;9; Rachel Protheroe, MD10;11; Paresh Vyas, MD12; Ann Hunter, MD13; Anne Parker, MD14; Keith Wilson, MD15; Jiri Pavlu, MD16; Jenny Byrne, MD17; Richard Dillon, MD18; Naeem Khan, PhD11; Nicholas McCarthy, PhD19; and Sylvie D. Freeman, MD1

PURPOSE Reduced-intensity conditioning (RIC) regimens have extended the curative potential of allogeneic stem-cell transplantation to older adults with high-risk acute myeloid leukemia (AML) and myelodysplasia (MDS) but are associated with a high risk of disease relapse. Strategies to reduce recurrence are urgently required. Registry data have demonstrated improved outcomes using a sequential transplant regimen, fludarabine/amascrine/cytarabine-busulphan (FLAMSA-Bu), but the impact of this intensified conditioning regimen has not been studied in randomized trials.

PATIENTS AND METHODS Two hundred forty-four patients (median age, 59 years) with high-risk AML (n = 164) or MDS (n = 80) were randomly assigned 1:1 to a fludarabine-based RIC regimen or FLAMSA-Bu. Pretransplant measurable residual disease (MRD) was monitored by flow cytometry (MFC-MRD) and correlated with outcome.

RESULTS There was no difference in 2-year overall survival (hazard ratio 1.05 [85% CI, 0.80 to 1.38] P = .81) or cumulative incidence of relapse (CIR) (hazard ratio 0.94 [95%CI, 0.60 to 1.46] P = .81) between the control and FLAMSA-Bu arms. Detectable pretransplant MFC-MRD was associated with an increased CIR (2-year CIR 41.0% vs 20.0%, P = .01) in the overall trial cohort with a comparable prognostic impact when measured by an unsupervised analysis approach. There was no evidence of interaction between MRD status and conditioning regimen intensity for relapse or survival. Acquisition of full donor T-cell chimerism at 3 months abrogated the adverse impact of pretransplant MRD on CIR and overall survival.

CONCLUSION The intensified RIC conditioning regimen, FLAMSA-Bu, did not improve outcomes in adults transplanted for high-risk AML or MDS regardless of pretransplant MRD status. Our data instead support the exploration of interventions with the ability to accelerate acquisition of full donor T-cell chimerism as a tractable strategy to improve outcomes in patients allografted for AML.

J Clin Oncol 39:768-778. © 2020 by American Society of Clinical Oncology

Creative Commons Attribution Non-Commercial No Derivatives 4.0 License

INTRODUCTION Allogeneic stem-cell transplantation (allo-SCT) is an increasingly important treatment modality in adults with acute myeloid leukemia (AML) and myelodysplasia (MDS). The advent of reduced-intensity conditioning (RIC) regimens has permitted the extension of a potentially curative graft-versus-leukemia (GVL) effect to older patients in whom transplantation using myeloablative conditioning (MAC) is precluded by excess toxicity.1 Indeed, the majority of allografts performed in the United States now use an RIC regimen.

In patients with AML and MDS, the use of an RIC regimen is associated with a higher rate of disease relapse than is observed with myeloablative transplants.2 Despite the fact that relapse remains the dominant cause of transplant failure, no effective strategies have yet been identified to reduce the risk of disease recurrence after an RIC allograft. Indeed, although a multiplicity of RIC regimens have been developed, most using a fludarabine backbone,3,4 there have been very few randomized studies to inform choice of regimen, and as a result, clinical practice worldwide is heterogeneous. Single-arm studies using a sequential fludarabine/amascrine/cytarabine regimen, in which amsacrine-based cytoreductive chemotherapy is delivered 7-14 days prior to a conventional RIC allograft incorporating either low dose total body irradiation or busulphan (Bu), have been reported to reduce the risk of relapse in high-risk AML.5-7 However, despite the widespread adoption of this regimen in the management of high-risk AML, its benefits have never been examined in a randomized trial.

The presence of measurable residual disease (MRD) measured by flow cytometry, quantitative polymerase chain reaction, or more recently next-generation
The FIGARO study is the first prospective trial to examine the impact of an intensified conditioning regimen (FLAMSA-Bu) alongside the impact of pretransplant flow cytometric measurable residual disease (MRD) on transplant outcome in patients allografted for acute myeloid leukemia (AML) or myelodysplasia (MDS).

Key Objective
The results of FIGARO demonstrate that pretransplant flow cytometric MRD is correlated with an increased risk of disease relapse after a reduced-intensity allograft by both conventional and unsupervised MRD analyses. Random assignment to an intensified sequential conditioning regimen failed to improve transplant outcome regardless of pretransplant MRD status.

Relevance
Our data do not support the use of an intensified sequential conditioning regimen as a strategy to improve transplant outcome, regardless of pretransplant MRD status. The results further demonstrate the importance of flow cytometry-determined MRD as a pretransplant risk characteristic in patients with AML or high-risk MDS.

sequencing (NGS) is an important determinant of disease relapse in adults with AML treated with intensive chemotherapy. Although retrospective studies have shown that the presence of pretransplant MRD is associated with an increased risk of relapse post-transplant, the reported effect size varies widely and prospective studies addressing the prognostic value of pretransplant flow cytometric MRD, the most commonly used and widely applicable AML MRD technology, are lacking. Hourigan et al recently reported that the presence of pretransplant MRD in the peripheral blood, determined by an innovative flow cytometric MRD, the most commonly used and widely applicable AML MRD technology, are lacking. The FIGARO trial compared the outcomes of patients with high-risk AML and MDS transplanted using an intensified FLAMSA-Bu regimen with those receiving a conventional fludarabine-based RIC regimen. The impact of flow cytometric MRD on transplant outcomes was prospectively determined in trial patients.

Patients and Methods

Study Design
FIGARO, an open label phase II randomized trial, was performed in 20 UK transplant centers and recruited patients from October 2013 to February 2017. The trial Protocol (online only; EudraCT 2012-005538-12) was approved by the UK research ethics service, National Research Ethics Service (NRES). An independent data monitoring committee oversaw the trial. Patients were randomly assigned in a one-to-one ratio via a minimization algorithm stratified by underlying disease, cytogenetic risk group, disease status at transplant, intended control transplant regimen, age, and donor type.

Patients
Patients were eligible for trial entry if they had a WHO-defined diagnosis of AML or high-risk MDS, were undergoing their first allo-SCT from a matched sibling or unrelated donor, and had been deemed ineligible for a MAC regimen on the grounds of age or comorbidity. Patients were of age 22 to 75, had a Hematopoietic Cell Transplant-Comorbidity Index (HCT-CI) score of 0-6, and were transplanted using peripheral blood– or bone marrow (BM)–derived stem cells from an HLA identical (HLA-A/-B/-C/DRbeta1) matched sibling or ≥ 7/8 HLA-A/-B/-C/DRbeta1 adult-unrelated donor. All patients with AML were in complete remissions (CR1 and CR2) or had primary refractory AML (defined by failure to achieve a morphological CR after two courses of induction chemotherapy). High-risk MDS was defined as patients with an International Prognostic Scoring System score of intermediate-1 with > 5% blasts or intermediate-2 or high risk who had < 5% blasts at the time of random assignment. Cytogenetic risk group was classified as described previously.

Conditioning Regimens and GVHD Prophylaxis
Patients were randomly assigned 1:1 to a control arm determined by the investigator’s choice of Flu/B2/antithymocyte globulin (ATG), Flu/Mel/alemtuzumab (A), or Flu/Bu2/A (details given in the Data Supplement, online only) versus an experimental arm of FLAMSA-Bu (Flu, cytarabine [araC] 2 g/m2 once a day × 4 days, amsacrine [AMSAl 100 mg/m2 once a day × 4 days, intravenous Bu total dose 11.2 mg/kg) and ATG 5 mg/kg over 3 days. Patients of age > 60 years received an adjusted FLAMSA-Bu regimen using a reduced dose of araC (1g/m2 once a day × 4 days) and Bu (8 mg/kg total). However, after the first 31 patients had received treatment on the experimental arm, additional safety information was published with regard to the FLAMSA-Bu regimen in patients of age ≥ 60 years.
The experimental regimen in the subsequent 77 patients was modified to Flu, araC 1 g/m² once a day × 4 days, AMSA 100 mg/m² once a day × 4 days, and Bu 6.4 mg/kg for those patients who were > 60 years.

All patients received ciclosporin graft-versus-host-disease (GVHD) prophylaxis. Supportive care was according to institutional guidelines. All patients were formally reviewed at day + 100, 6, and 12 months post-transplant. BMs to determine remission status were reviewed at day + 42, and months 3, 6, 9, and 12 post-transplant. T-cell lineage chimerism was assessed at months 3, 6, 9, and 12 post-transplant.

MRD Quantitation

BMs for multiparameter flow cytometric (MFC) detection of MRD were obtained pretransplant (within 4 weeks of transplant) and at day + 42 post-transplant. Sample logistics, processing, and analysis strategy are provided in the Data Supplement. MFC-MRD analysis was performed centrally, using a standardized manual gating strategy that screened blasts for different-from-normal leukemia-associated immunophenotypes (LAIPs) and any previously identified baseline LAIPs when available. Samples were reported as MRD-negative if no baseline and/or different-from-normal LAIP cells could be quantitated above the limit of detection (approximately 0.02%-0.05%). The results were not reported to treating clinicians.

Recognizing the potential for variation in manual MFC-MRD analysis, an unsupervised approach was applied as an independent measurement of LAIPs. This incorporated (1) a multidimensional clustering algorithm to maximize information from the LAIP marker combinations and (2) statistical criteria to discriminate blast subpopulations that were immunophenotypically most aberrant (compared with reference ranges established from 40 control BMs) and above the limit of quantitation (Data Supplement). The analytic method, similar to standard different-from-normal MFC-MRD, did not require diagnostic samples. Unsupervised MFC-MRD percentages were higher than conventional MFC-MRD as the former surmatted all quantifiable nonoverlapping abnormal blast subpopulations from an antibody combination, whereas conventional MFC-MRD values are from a single LAIP. Concordance between methods was strongest at higher MRD levels (Data Supplement). The unsupervised MFC-MRD combined test criteria included results from a third antibody combination (stem and progenitor) in addition to standard LAIP markers; positivity required detection of aberrant blasts in at least two of the three antibody combinations (Data Supplement).

Outcomes

The primary outcome was overall survival (OS) defined on an intention-to-treat basis. A sensitivity analysis was conducted to assess OS in a per-protocol population. Secondary outcome measures included event-free survival (EFS), cumulative incidence of relapse (CIR), incidence of GVHD, and transplant-related mortality (TRM). Acute and chronic GVHD were scored according to published criteria. Nonhematological grade 3-4 adverse events were classified according to Common Terminology Criteria for Adverse Events Version 4.0.

Statistical Analysis

The sample size was calculated on the basis of previously published data and clinical judgment. Assuming a 2-year OS in the control arm of 25%, to detect a 15% improvement in the experimental arm, a total of at least 214 patients (two-sided α = 0.15 and β = 0.16) were required. To account for the likelihood that 10% of randomly assigned patients would not proceed to transplant, the trial aimed to recruit a minimum of 240 patients. Analysis was conducted in line with the predefined statistical analysis plan on the intention-to-treat population unless otherwise stated. Per-protocol population analysis was restricted to patients who had commenced the conditioning regimen. Standard analysis methods were employed as further outlined in the Data Supplement.

Additional analysis in the per-protocol populations was conducted to assess the effect on OS, CIR, and TRM of pretransplant MRD by the different MFC-MRD analysis methods and for various MRD thresholds. No adjustment for multiple testing was made within the MRD threshold analysis; however, the results are interpreted with caution and focused on identifying the highest level of discrimination from a range of significant results.

RESULTS

Enrollment

Of 255 patients screened for trial entry, 244 fulfilled eligibility criteria and were randomly assigned to receive trial therapy (Fig 1). Twenty-eight randomly assigned patients did not receive their allocated treatment (two deaths, 14 withdrawn because of clinical deterioration or patient or physician choice, and 12 relapses prior to transplant). Of the 108 patients who were transplanted on the control arm, 63 received Flu/Bu/ATG, 31 Flu/Mel/A, and 14 Flu/Bu/A. The median follow-up was 35 months. Patient and transplant characteristics of randomly assigned patients are summarized in Table 1. One hundred sixty-four patients had an initial diagnosis of AML of whom 154 were in CR1 or CR2 and nine had primary refractory AML at the time of random assignment. Eighty patients had high-risk MDS. The median age of the study population was 59 years (range, 22-75 years).

Survival

The 2-year OS was 58.8% in patients treated on the control arm and 60.9% in patients assigned to FLAMSA-Bu (hazard ratio [HR] 1.05 [95% CI, 0.80 to 1.38] log-rank P value = .81; Fig 2A). The EFS at 2 years was 48.7% in the
control arm versus 54.2% for FLAMSA-Bu (HR 0.96 [95% CI, 0.68 to 1.35] log-rank P value = .82; Fig 2B). Two-year OS and EFS were similar between both arms in a per-protocol sensitivity analysis (Data Supplement). In the preplanned subgroup analysis, no survival benefit of the FLAMSA-Bu regimen was evident in patients diagnosed with either AML or MDS, in patients with AML according to cytogenetic risk category, or in patients under or over 60 years of age. No difference in outcome was evident when analysis was restricted to patients over 60 in the experimental arm after adoption of the Protocol amendment.

Transplant-Related Mortality, GVHD, and Disease Relapse

The 1-year TRM was 16.8% in the control arm and 20.5% in the experimental arm (HR 1.20 [95% CI, 0.68 to 2.13], Gray’s test P value = .53). There were no statistically significant differences in the cumulative incidences of acute GVHD at day + 100 (with death and relapse as competing events) between the control and FLAMSA-Bu arms (grades 2-4, 10.1% v 8.3%, Gray’s test P value = .93; grade 3-4, 1.7% v 5.8%, Gray’s test P value = .23). The cumulative incidence of chronic GVHD at 1 year was

FIG 1. Trial CONSORT diagram. FBA, fludarabine/busulphan/alemtuzumab; FB-ATG, fludarabine/busulphan/antithymocyte globulin; FMA, fludarabine/melphalan/alemtuzumab; FLAMSA-Bu, fludarabine/arms-crine/cytarabine-busulphan.
Twenty-eight patients received DLI in the control arm (19 for mixed chimerism from day 115, nine for relapse) and 14 in the experimental arm (10 for mixed chimerism from day 104, four for relapse) (Data Supplement). There was no evidence of DLI impact on the incidence of GVHD with eight and five episodes of chronic GVHD post-DLI in the control and FLAMSA-Bu arms, respectively (Gray’s test P value = .53). Twenty-eight patients received DLI in the control arm (19 for mixed chimerism from day 115, nine for relapse) and 14 in the experimental arm (10 for mixed chimerism from day 104, four for relapse) (Data Supplement). There was no evidence of DLI impact on the incidence of GVHD with eight and five episodes of chronic GVHD post-DLI in the control and FLAMSA-Bu arms, respectively.

The 2-year CIR was 29.5% in patients in the control arm and 26.7% in patients assigned FLAMSA-Bu (Fig 2C) (Gray’s test P value = .81). There was no statistically significant effect of disease (AML v MDS), patient age, and...
Outcomes From RIC Intensification in AML With Pretransplant MRD

Treatment arm (including by different control regimens) on relapse risk (Data Supplement).

Pretransplant MRD Status and Post-Transplant Outcome

Pretransplant MRD data, excluding inadequate BMs, were available in 176 randomly assigned patients of whom 156 proceeded to transplant (Data Supplement, distribution of clinical characteristics by MRD status in Data Supplement). MRD at any level was detected by flow cytometry in 43% of the 156 patients (38 of 79 receiving control regimens and 29 of 77 receiving FLAMSA-Bu) (median MRD level of 0.2%, range 0.02%-12.3%). In randomly assigned patients, pretransplant MRD positivity was associated with an increased relapse risk (2-year CIR 41.0% vs 20.0% (HR 1.97 [95% CI, 1.18 to 3.28], Gray's test P value = .01) and a borderline significant reduction in 2-year OS (70.1%-51.4% log-rank P value = .05) (Data Supplement). No statistically significant difference was observed in TRM (2-year TRM 12.1% MRD-positive vs 21.6% MRD-negative (HR 0.60 [95% CI, 0.29 to 1.27], Gray's test P value = .18). There was no interaction between MRD status and conditioning intensity in the preplanned subgroup survival analysis (heterogeneity test P = .56) or on relapse risk (treatment MRD interaction term P = .92). No difference in post-transplant MRD clearance was apparent between treatment arms from MRD results at day + 42 (Data Supplement). Although flow cytometric methodology represents the most widely applicable MRD assay in AML, its reliance on operator analysis expertise is a recognized limitation that may potentially contribute to variation in its prognostic value.27 We therefore used an unsupervised computational approach to analyze flow cytometric sample files to obtain independent evaluation of the impact of conventionally determined MFC-MRD (Data Supplement) on outcome in the transplanted cohort. Twenty patients with pretransplant conventional MFC-MRD results were excluded since their samples had fewer than the minimum requirement of 1,000 blast events. Outcomes (Table 2, Fig 3) and test accuracy for relapse prediction (Data Supplement) were comparable between both methods in transplanted patients, supporting reproducibility of the prognostic effect from immunophenotypic MRD. The prognostic significance of pretransplant MRD above the thresholds that provided the most discrimination in this RIC allo-SCT setting (0.2% by conventional analysis, 1% by unsupervised) (Figs 3B and 3C, Table 2) was retained for relapse in an analysis adjusted for additional factors with the potential to determine transplant outcome (Table 2). To further test the robustness of these MFC-MRD-predicted outcomes, we applied stringent criteria (quantifiable, unsupervised MFC-MRD in at least 2 different antibody...
TABLE 2. Conventional and Unsupervised MRD Comparison: Outcomes by Pretransplant MRD Status

Pretransplant MRD status	2-Year CIR (95% CI)	Unadjusted HR (95% CI)	Adjusted HR (95% CI)	2-Year TRM (95% CI)	2-Year OS (95% CI)	Unadjusted HR (95% CI)	Adjusted HR (95% CI)
MRD-negative n = 73	20.7% (12.2 to 30.7)	1.8 (0.94 to 3.42) .034	16.6% (9.1 to 26.1) .63	.08	1.54 (0.88 to 2.7)		
MRD-positive n = 63	38.3% (26.3 to 50.2)	12.9% (6 to 22.6) .051	53% (39.9 to 64.6) .018	1.22 (0.69 to 2.15)	.49		
UnSup MRD-negative n = 86	22.1% (14 to 31.4)	1.82 (1.00 to 3.34) .022	16.5% (9.5 to 25.2) .82	66.9% (55.7 to 75.8) .12	1.22 (0.69 to 2.15)		
UnSup MRD-positive n = 50	40.5% (26.6 to 53.9)	12.2% (4.9 to 23) .051	57% (41.9 to 69.5) .018	1.22 (0.69 to 2.15)	.49		
MRD < 0.2% n = 104	22.2% (14.7 to 30.7)	2.39 (1.23 to 4.61) .001	16.5% (10.1 to 24.4) .79	67.8% (57.8 to 75.9) .037	1.73 (0.95 to 3.15) .076		
MRD ≥ 0.2% n = 32	50% (31.5 to 66.4)	9.6% (2.4 to 23) .01	48.2% (30 to 64.3) .018	1.73 (0.95 to 3.15) .076	1.73 (0.95 to 3.15) .076		
UnSup MRD < 1% n = 103	21.4% (14 to 29.8)	< .001	17.8% (11 to 25.9) .35	66.2% (56.1 to 74.6) .11	1.41 (0.77 to 2.58) .28		
UnSup MRD ≥ 1% n = 33	52% (33.3 to 67.8)	6.1% (1 to 17.9) .006	54% (35.5 to 69.2) .04	1.41 (0.77 to 2.58) .28	1.41 (0.77 to 2.58) .28		
UnSup-combined MRD-negative or equivocal n = 102	20.6% (13.3 to 28.9)	< .001	15.9% (9.5 to 23.7) .86	68.2% (58.1 to 76.3) .007	2.03 (1.13 to 3.63) .018		
UnSup-combined MRD-positive n = 34	50.5% (32.2 to 66.2)	12% (3.7 to 25.5) .12	51.7% (33.7 to 67) .075	2.03 (1.13 to 3.63) .018	2.03 (1.13 to 3.63) .018		

NOTE. Conventional and unsupervised (computational) MRD comparisons are in transplanted patients. Adjusted results are the results of cox proportional hazard models adjusted for age, cytogenetic risk, FLT3-ITD presence, treatment arm, and HCT comorbidity.

Abbreviations: CIR, cumulative incidence of relapse; HR, hazard ratio; MRD, measurable residual disease (flow cytometric); TRM, transplant-related mortality; UnSup, unsupervised (computational) MRD analysis; UnSup-combined MRD, unsupervised MRD applying criteria of MRD-positive = aberrant blasts in at least 2 of the 3 antibody combinations (standard and stem cell), MRD-negative or equivocal = aberrant blasts in 0-1 of 3 antibody combinations.

Combinations) to select patients with the most extensive immunophenotypic blast aberrancies. Most patients with test positivity by these criteria had conventional MRD levels ≥ 0.2% (Data Supplement). The 2-year CIR after transplant for patients with a positive test was 50.5% compared with 20.6% for patients with a negative or equivocal test (Gray’s test P value < .001) (Fig 3D, Table 2), and the overall accuracy for relapse prediction was 73% (Data Supplement).

Chimerism and Transplant Outcome

To explore the contribution of a putative GVL effect to post-transplant outcome, we studied the impact of acquisition of full donor T-cell chimerism (FDTCC) on transplant outcome. Acquisition of FDTCC was similar in control and experimental arms and not affected by pretransplant MRD status (Data Supplement). Acquisition of FDTCC at 3 months post-transplant was associated with a comparable outcome with that achieved by patients without detectable pretransplant MRD (Fig 4).

DISCUSSION

Strategies with the potential to reduce the risk of relapse in patients with AML or MDS transplanted using RIC include both intensification of the antitumor properties of the conditioning regimen5,35 and optimization of the GVL effect.5 The cytoreductive properties of distinct RIC regimens vary considerably, and relapse rates ranging from 30% to 60% have been reported in patients using commonly adopted transplant protocols.3,36 In unrandomized phase II trials and retrospective registry data, the FLAMSA-Bu protocol, which incorporates additional cytoreductive chemotherapy prior to a fludarabine-based RIC regimen, has been reported to reduce relapse and improve outcome in high-risk AML or MDS and as a consequence has become widely adopted despite its attendant substantially increased in-patient stay and potential toxicity.5,7 Our data, however, show no impact on either relapse rate or survival in patients transplanted using this intensified regimen. Differences in control regimens and age-related FLAMSA-Bu dose adjustments constitute potential limitations to this analysis,
but we did not detect a differential effect on outcomes from any of these variables. Of particular note, FLAMSA-Bu did not result in improved survival in predefined subgroups including patients with an adverse-risk karyotype.

In exploratory studies, pretransplant MRD, measured using a widely used flow cytometric methodology, was prospectively examined as a prognostic determinant of transplant outcome. Pretransplant MRD status was identified as an important prognostic factor for relapse in multivariable analysis, confirming previous retrospective analyses. However, although the US CTN 0901 trial identified the presence of NGS-determined pretransplant MRD as a predictor of outcome in patients transplanted using a reduced intensity but not a MAC regimen, in the FIGARO trial, we observed no benefit accruing in MRD-positive patients from intensification of RI conditioning. Of interest, the risk of relapse after transplant in the RIC arm of US-CTN 0901 (48% at 18 months) was strikingly higher than that observed in the FIGARO trial despite both trials using similar RIC regimens.

One of the major limitations of the widely used flow cytometric MRD assays has been the inevitable subjectivity from manual gating of immunophenotypic raw data. Using a novel unsupervised analysis approach as independent evaluation of conventional flow cytometric MRD, we were able to confirm the reproducibility of the prognostic significance of immunophenotypic pretransplant MRD in this older age group typically considered for RIC regimens.

There is much debate concerning the benefit of an RIC allograft in patients with evidence of pretransplant MRD. It is therefore of interest that approximately 50% of FIGARO patients with evidence of pretransplant MRD did not relapse, confirming the validity of transplantation using an RIC regimen as a therapeutic strategy in high-risk

FIG 3. (A) CIR by conventional MFC-MRD status, (B) CIR by conventional MFC-MRD with 0.2% cutoff, (C) CIR by unsupervised (computational) MFC-MRD with 1% cutoff, (D) CIR by unsupervised (computational) combined MFC-MRD test status. Impact of flow cytometric MRD on outcomes of transplanted patients is shown with comparison of results from conventional and unsupervised (computational) analysis approaches. Unsupervised MFC-MRD cutoff is lower than conventional MFC-MRD as the former values summate all quantifiable nonoverlapping abnormal blast subpopulations from an antibody combination, whereas conventional MFC-MRD values are from a single LAIP. UnSup-combined MRD is unsupervised MRD applying criteria of MRD-positive = aberrant blasts in at least two of the three antibody combinations (standard and stem cell) and MRD-negative or equivocal = aberrant blasts in 0-1 of 3 antibody combinations. CIR, Cumulative incidence of relapse; LIAP, leukemia-associated immunophenotype; MFC-MRD, flow cytometric measurable residual disease; UnSup, unsupervised (computational) MRD analysis.
AML—even in patients with detectable MRD. There is compelling evidence of a potent GVL effect in patients with AML allografted using an RIC regimen. The observation that the adverse prognostic impact conferred by the presence of pretransplant MRD was mitigated by the acquisition of FDTCC at 3 months requires further prospective examination and identifies optimization of the GVL effect as an important approach to improve outcome in patients transplanted using an RIC regimen. Such strategies include using a T replete graft, a rapid taper of post-transplant immunosuppression, or early administration of pharmacological agents such as azacitidine, decitabine, or DLI.

FIG 4. (A) OS by month 3 Chimerism with pretransplant MRD status and (B) CIR by month 3 Chimerism with pretransplant MRD status. Outcomes are for transplanted patients who were alive and relapse-free at day +100. MRD status is by conventional flow MRD. Negative—full, pretransplant MRD-negative and month 3 full donor T-cell chimerism. Positive—full, pretransplant MRD-positive and month 3 full donor T-cell chimerism. Negative—mixed, pretransplant MRD-negative and month 3 mixed donor T-cell chimerism. Positive—mixed, pretransplant MRD-positive and month 3 mixed donor T-cell chimerism. CIR, Cumulative incidence of relapse; MRD, measurable residual disease; OS, overall survival.

AFFILIATIONS

1Centre for Clinical Haematology, Queen Elizabeth Hospital, Birmingham, United Kingdom
2Cancer Research UK Clinical Trials Unit, University of Birmingham, United Kingdom
3Institute of Immunology and Immunotherapy, University of Birmingham, United Kingdom
4Addenbrookes Hospital, Cambridge, United Kingdom
5Churchill Hospital, Oxford, United Kingdom
6St James’s Hospital, Leeds, United Kingdom
7Royal Liverpool University Hospital, United Kingdom
8Manchester Royal Infirmary, Manchester, United Kingdom
9Kings College Hospital, London, United Kingdom
10Bristol Haematology and Oncology Centre, United Kingdom
11Leicester Royal Infirmary, United Kingdom
12Queen Elizabeth University Hospital, Glasgow, United Kingdom
13University Hospital Wales, United Kingdom
14Imperial College Hospital, London, United Kingdom
15Centre for Clinical Haematology, Nottingham, United Kingdom
16Department of Medical and Molecular Genetics, King’s College, London, United Kingdom

CORRESPONDING AUTHOR

Charles Craddock, MD, Centre for Clinical Haematology, Queen Elizabeth Hospital, Birmingham B15 2TH; e-mail: Charles.Craddock@uhb.nhs.uk.

SUPPORT

Supported by Blood Cancer UK and Cure Leukemia. Pierre Fabre and Eurocept provided busulphan and amasacrine for trial purposes in addition to unrestricted educational support.

CLINICAL TRIAL INFORMATION

FIGARO

AUTHORS’ DISCLOSURES OF POTENTIAL CONFLICTS OF INTEREST

Disclosures provided by the authors are available with this article at DOI https://doi.org/10.1200/JCO.20.02308.

AUTHOR CONTRIBUTIONS

Conception and Design: Charles Craddock, Aimee Jackson, Shamyla Siddique, Sandeep Nagra, Andrew Peniket, Eleni Tholouli, Sylvie D. Freeman, Keith Wheatley, Paresh Vyas, Ann Hunter

Administrative support: Shamyla Siddique

Provision of study material and patients: Sandeep Nagra, Ram Malladi, Andrew Peniket, Maria Gilleece, Rahuman Salim, Eleni Tholouli, Victoria Potter, Charles Crawley, Rachel Protheroe, Paresh Vyas, Ann Hunter, Anne Parker, Jenny Byrne

Collection and assembly of data: Charles Craddock, Aimee Jackson, Justin Loke, Andrea Hodgkinson, John Mason, Sandeep Nagra, Ram Malladi, Andrew Peniket, Maria Gilleece, Rahuman Salim, Eleni Tholouli, Victoria Potter.
REFERENCES

1. Jethava YS, Sica S, Savani B, et al: Conditioning regimens for allogeneic hematopoietic stem cell transplants in acute myeloid leukemia. Bone Marrow Transpl 52:1504-1511, 2017

2. Scott BL, Pasquini MC, Logan BR, et al: Myeloablative versus reduced-intensity hematopoietic cell transplantation for acute myeloid leukemia and myelodysplastic syndromes. J Clin Oncol 35:1154-1161, 2017

3. Beeßen DW, Trenscheil R, Steljes M, et al: Treosulfan or busulfan plus fludarabine as conditioning treatment before allogeneic haemopoietic stem cell transplantation for older patients with acute myeloid leukaemia or myelodysplastic syndrome (MC-FludT. 14/L): A randomised, non-inferiority, phase 3 trial. Lancet Haematol 7:e298-e309, 2020

4. Ciurea SO, Kongtimp P, Varma A, et al: Is there an optimal conditioning for older patients with AML receiving allogeneic hematopoietic cell transplantation? Blood 135:449-452, 2020

5. Schmid C, Schleuning M, Ledderose G, et al: Sequential regimen of chemotherapy, reduced-intensity conditioning for allogeneic stem-cell transplantation, and prophylactic donor lymphocyte transfusion in high-risk acute myeloid leukemia and myelodysplastic syndrome. J Clin Oncol 23:5675-5687, 2005

6. Schmid C, Schleuning M, Schwerdtfeger R, et al: Long-term survival in refractory acute myeloid leukemia after sequential treatment with chemotherapy and reduced-intensity conditioning for allogeneic stem cell transplantation. Blood 108:1092-1099, 2006

7. Malard F, Labopin M, Stuhler G, et al: Sequential intensified conditioning regimen allogeneic hematopoietic stem cell transplantation in adult patients with intermediate- or high-risk acute myeloid leukemia in complete remission: A study from the Acute Leukemia Working Party of the European Group for Blood and Marrow Transplantation. Biol Blood Marrow Transpl 23:278-284, 2017

8. Maurillo L, Buccisano F, Del Principe MI, et al: Toward optimization of postremission therapy for residual disease-positive patients with acute myeloid leukemia. J Clin Oncol 25:4944-4951, 2008

9. Terwijn M, van Putten WL, Kelder A, et al: High prognostic impact of flow cytometric minimal residual disease detection in acute myeloid leukemia: Data from the HOVON/SAKK AML 42A study. J Clin Oncol 31:3889-3897, 2013

10. Freeman SD, Hills RK, Virgo P, et al: Measurable residual disease at induction redefines partial response in acute myeloid leukemia and stratifies outcomes in patients at standard risk without NPM1 mutations. J Clin Oncol 36:1486-1497, 2018

11. Balbast R, Renneville A, Thomas X, et al: Postinduction minimal residual disease predicts outcome and benefit from allogeneic stem cell transplantation in acute myeloid leukemia with NPM1 mutation: A study by the Acute Leukemia French Association Group. J Clin Oncol 35:185-193, 2017

12. Ivey A, Hills RK, Simpson MA, et al: Assessment of minimal residual disease in standard-risk AML. N Engl J Med 374:422-433, 2016

13. Jongen-Lavrencic M, Grob T, Hanekamp D, et al: Molecular minimal residual disease in acute myeloid leukemia. N Engl J Med 378:1189-1199, 2018

14. Monta K, Kantarjian HM, Wang F, et al: Clearance of somatic mutations at remission and the risk of relapse in acute myeloid leukemia. J Clin Oncol 36:1788-1797, 2018

15. Rucker FG, Agrawal M, Corbacioglu A, et al: Measurable residual disease monitoring in acute myeloid leukemia with t(8;21)(q22;q22.1): Results from the AML Study Group. Blood 134:1608-1618, 2019

16. Schuurhuis GJ, Heuser M, Freeman S, et al: Minimal/measurable residual disease in AML: A consensus document from the European LeukemiaNet MRD Working Party. Blood 131:1275-1291, 2018

17. Walter RB, Buckley SA, Pagel JM, et al: Significance of minimal residual disease before myeloblastic allogeneic hematopoietic cell transplantation for AML in first and second complete remission. Blood 122:1813-1821, 2013

18. Walter RB, Gooley TA, Wood BL, et al: Impact of pretransplantation minimal residual disease, as detected by multiparametric flow cytometry, on outcome of myeloblastic hematopoietic cell transplantation for acute myeloid leukemia. J Clin Oncol 29:1190-1197, 2011

19. Araki D, Wood BL, Othus M, et al: Allogeneic hematopoietic cell transplantation for acute myeloid leukemia: Time to move toward a minimal residual disease-based definition of complete remission? J Clin Oncol 34:329-336, 2016

20. Oran B, Jorgensen JL, Marin D, et al: Pre-transplantation minimal residual disease with cytogenetic and molecular diagnostic features improves risk stratification in acute myeloid leukemia. Haematologica 102:110-117, 2017

21. Anthias C, Dignan FL, Morilla R, et al: Pre-transplant MRD predicts outcome following reduced-intensity and myeloablative allogeneic hematopoietic SCT in AML. Bone Marrow Transpl 49:679-683, 2014

22. Buccisano F, Maurillo L, Piciocchi A, et al: Pre-transplant persistence of minimal residual disease does not contraindicate allogeneic stem cell transplantation for adults with acute myeloid leukemia. Bone Marrow Transpl 52:473-475, 2017

23. Ustun C, Courville EL, DeFor T, et al: Myeloblastic, but not reduced-intensity, conditioning overcomes the negative effect of flow-cytometric evidence of leukemia in acute myeloid leukemia. Biol Blood Marrow Transpl 22:669-675, 2016

24. Gillessen MH, Labopin M, Yakoub-Agha I, et al: Measurable residual disease, conditioning regimen intensity, and age predict outcome of allogeneic hematopoietic cell transplantation for acute myeloid leukemia in first remission: A registry analysis of 2292 patients by the Acute Leukemia Working Party European Society of Blood and Marrow Transplantation. Am J Hematol 93:1142-1152, 2018

25. Walter RB, Gyurko Z, Storer BE, et al: Comparison of minimal residual disease as outcome predictor for AML patients in first complete remission undergoing myeloblastic or nonmyeloblastic allogeneic hematopoietic cell transplantation. Leukemia 29:137-144, 2015

26. Gatta BM, Devlin SM, Levine RL, et al: Multicolor flow cytometry and multigene next-generation sequencing are complementary and highly predictive for relapse in acute myeloid leukemia after allogeneic transplantation. Biol Blood Marrow Transpl 23:1064-1071, 2017

27. Buckley SA, Wood BL, Othus M, et al: Minimal residual disease prior to allogeneic hematopoietic cell transplantation in acute myeloid leukemia: A meta-analysis. Haematologica 102:865-873, 2017
28. Guolo F, Minetto P, Clavio M, et al: Combining flow cytometry and WT1 assessment improves the prognostic value of pre-transplant minimal residual disease in acute myeloid leukemia. Haematologica 102:e348-e351, 2017
29. Dillon R, Hills R, Freeman S, et al: Molecular MRD status and outcome after transplantation in NPM1-mutated AML. Blood 135:680-688, 2020
30. Thol F, Gabriouline R, Liebich A, et al: Measurable residual disease monitoring by NGS before allogeneic hematopoietic cell transplantation in AML. Blood 132: 1703-1713, 2018
31. Hourigan CS, Dillon LW, Gui G, et al: Impact of conditioning intensity of allogeneic transplantation for acute myeloid leukemia with genomic evidence of residual disease. J Clin Oncol 38:1273-1283, 2020
32. Grimwade D, Hills RK, Moorman AV, et al: Refinement of cytogenetic classification in acute myeloid leukemia: Determination of prognostic significance of rare recurring chromosomal abnormalities among 5876 younger adult patients treated in the United Kingdom Medical Research Council Trials. Blood 116:354-365, 2010
33. Przepiorka D, Weisdorf D, Martin P, et al: 1994 consensus conference on acute GVHD grading. Bone Marrow Transpl 15:825-828, 1995
34. Shulman HM, Sullivan KM, Weiden PL, et al: Chronic graft-versus-host syndrome in man. A long-term clinicopathologic study of 20 Seattle patients. Am J Med 69:204-217, 1980
35. Rambaldi A, Grassi A, Masciulli A, et al: Busulfan plus cyclophosphamide versus busulfan plus fludarabine as a preparative regimen for allogeneic haemopoietic stem-cell transplantation in patients with acute myeloid leukaemia: An open-label, multicentre, randomised, phase 3 trial. Lancet Oncol 16: 1525-1536, 2015
36. Blaise D, Tabrizi R, Boher JM, et al: Randomized study of 2 reduced-intensity conditioning strategies for human leukocyte antigen-matched, related allogeneic peripheral blood stem cell transplantation: Prospective clinical and socioeconomic evaluation. Cancer 119:602-611, 2013
37. Craddock C, Nagra S, Peniket A, et al: Factors predicting long-term survival after T-cell depleted reduced intensity allogeneic stem cell transplantation for acute myeloid leukemia. Haematologica 95:989-995, 2010
38. Craddock C, Jilani N, Siddique S, et al: Tolerability and clinical activity of post-transplantation azacitidine in patients allografted for acute myeloid leukemia treated on the RICAZA trial. Biol Blood Marrow Transpl 22:385-390, 2016
39. de Lima M, Oran B, Champlin RE, et al: CC-486 maintenance after stem cell transplantation in patients with acute myeloid leukemia or myelodysplastic syndromes. Biol Blood Marrow Transpl 24:2017-2024, 2018
40. Gao L, Zhang Y, Wang S, et al: Effect of rhG-CSF combined with decitabine prophylaxis on relapse of patients with high-risk MRD-negative AML after HSCT: An open-label, multicenter, randomized controlled trial. J Clin Oncol 38:4249-4259, 2020
AUTHORS’ DISCLOSURES OF POTENTIAL CONFLICTS OF INTEREST

Augmented Reduced-Intensity Regimen Does Not Improve Postallogeneic Transplant Outcomes in Acute Myeloid Leukemia

The following represents disclosure information provided by authors of this manuscript. All relationships are considered compensated unless otherwise noted. Relationships are self-held unless noted. I = Immediate Family Member, Inst = My Institution. Relationships may not relate to the subject matter of this manuscript. For more information about ASCO’s conflict of interest policy, please refer to www.asco.org/lwc or ascopubs.org/jco/authors/author-center.

Open Payments is a public database containing information reported by companies about payments made to US-licensed physicians (Open Payments).

Charles Craddock
Honoraria: Abbvie, Celgene, Jazz Pharmaceuticals, Janssen, Pfizer, Daichi Sankyo, Amgen, Astellas Pharma
Consulting or Advisory Role: Daichi Sankyo, Abbvie, Janssen, Novartis, Bristol-Myers Squibb, Pfizer, Astellas Pharma, Daichi Sankyo, eurocept
Speakers’ Bureau: Abbvie, Janssen, Novartis, Roche, Bristol-Myers Squibb, Pfizer, Astellas Pharma, Daichi Sankyo, Eurocept
Research Funding: Celgene, Jazz Pharmaceuticals, Kite Pharma, Jazz Pharmaceuticals
Expert Testimony: Daichi Sankyo
Travel, Accommodations, Expenses: Celgene, Jazz Pharmaceuticals, Daichi Sankyo

Justin Loke
Honoraria: Amgen, Janssen-Cilag
Travel, Accommodations, Expenses: Novartis, Daichi Sankyo Europe GmbH

Shamyla Siddique
Honoraria: Celgene

Ram Malladi
Consulting or Advisory Role: Roche
Travel, Accommodations, Expenses: Amgen, Novartis, Gilead Sciences

Andrew Peniket
Consulting or Advisory Role: Jazz Pharmaceuticals
Speakers’ Bureau: Merck

Maria Gilleece
Stock and Other Ownership Interests: GlaxoSmithKline
Consulting or Advisory Role: Jazz Pharmaceuticals
Speakers’ Bureau: Jazz Pharmaceuticals
Travel, Accommodations, Expenses: Gilead sciences, Jazz Pharmaceuticals

Eleni Tholouli
Consulting or Advisory Role: Novartis, Gilead Sciences, Daichi Sankyo, Jazz Pharmaceuticals, Astellas Pharma, Celgene, Pfizer
Speakers’ Bureau: Novartis, Kite/Gilead, Jazz Pharmaceuticals, Pfizer, Janssen
Travel, Accommodations, Expenses: Jazz Pharmaceuticals, MSD

Victoria Potter
Consulting or Advisory Role: Eurocept, Jazz Pharmaceuticals
Speakers’ Bureau: Pfizer

Charles Crawley
Travel, Accommodations, Expenses: Funding for attending ASH meeting in dec 2019

Keith Wheatley
Research Funding: Roche

Rachel Protheroe
Honoraria: Astellas Pharma, Jazz Pharmaceuticals, Gilead Sciences, Abbvie, Hartley Taylor Medical
Consulting or Advisory Role: Kiadis Pharma
Travel, Accommodations, Expenses: Astellas Pharma, Kite/Gilead, Jazz Pharmaceuticals

Paresh Vyas
Stock and Other Ownership Interests: OxStem
Honoraria: Celgene, Pfizer, Jazz Pharmaceuticals, Abbvie, Daiichi Sankyo
Research Funding: Celgene, Forty Seven

Patents, Royalties, Other Intellectual Property: Patent for flow cytometric detection of leukaemic stem cells

Anne Parker
Consulting or Advisory Role: MSD, Pfizer, Gilead Sciences
Speakers’ Bureau: Jazz Pharmaceuticals
Travel, Accommodations, Expenses: Gilead Sciences, MSD

Keith Wilson
Honoraria: Kite/Gilead, Novartis
Consulting or Advisory Role: Kite/Gilead
Speakers’ Bureau: Kite/Gilead
Travel, Accommodations, Expenses: Kite/Gilead

Jiri Pavlu
Consulting or Advisory Role: Jazz Pharmaceuticals, Daichi Sankyo
Speakers’ Bureau: Jazz Pharmaceuticals
Travel, Accommodations, Expenses: Jazz Pharmaceuticals, Daichi Sankyo

Jenny Byrne
Honoraria: Novartis Pharmaceuticals UK Ltd, ARIAD/Incyte, Jazz Pharmaceuticals

Richard Dillon
Honoraria: Abbvie, Pfizer, Novartis, Jazz Pharmaceuticals, Astellas Pharma
Consulting or Advisory Role: Abbvie, Novartis, Pfizer, Jazz Pharmaceuticals
Research Funding: Amgen, Abbvie

Naeem Khan
Research Funding: Oxford Biomedica

Sylvie D. Freeman
Speakers’ Bureau: Jazz Pharmaceuticals, Novartis
Patents, Royalties, Other Intellectual Property: Vyas P, Goardon N, Freeman S: Detection of Acute Myeloid Leukaemia, 2011. US Patent Application 13/995347. Granted 2018
Travel, Accommodations, Expenses: BD Biosciences

No other potential conflicts of interest were reported.