RADIATIVE FORCING BY CO₂ OBSERVED AT TOP OF ATMOSPHERE FROM 2002-2019

C. P. Rentsch

November 26, 2019

Abstract

Spectroscopic measurements at top-of-atmosphere are uniquely capable of attributing changes in Earth’s outgoing infrared radiation field to specific greenhouse gasses. The Atmospheric Infrared Sounder (AIRS) placed in orbit in 2002 has spectroscopically resolved a portion of Earth’s outgoing longwave radiation for 17 years. Concurrently, atmospheric CO₂ rose from 373 to 410 ppm, or 28% of the total increase over pre-industrial levels. The IPCC Fifth Assessment Report predicted 0.508±0.102 Wm⁻² additional radiative forcing from this CO₂ increase. Here it is shown that global measurements under nighttime, cloud-clear conditions reveal 0.358±0.067 Wm⁻² of CO₂-induced radiative forcing, or 70% of IPCC model predictions.

Introduction

Increasing infrared absorption caused by rising CO₂ is the foundational physical mechanism underpinning the anthropogenic global warming hypothesis. Despite numerous studies on global temperature trends and rising greenhouse gas concentrations, very few investigations offer long term spectrophotometric measurement of CO₂ altering Earth’s outgoing longwave radiation (OLR). Harries compared 529 OLR spectra measured by the IRIS satellite in 1970 to 4,061 spectra measured by IMG in 1996 over the Pacific Ocean. Feldman reported increasing downwelling longwave radiation (DLR) in two 1.6° conical upward views of the atmosphere between 2000 and 2010 (figure 1). Neither study provides a global assessment of CO₂-induced radiative forcing. The Atmospheric Infrared Spectrophotometer (AIRS) offers the longest record among all current or previous satellite spectrophotometers and has measured Earth’s OLR while atmospheric CO₂ concentration rose from 373 to 410 ppm, 28% of the total increase since 1750. This work examines 50.7 billion global nighttime, cloud-clear spectral radiance measurements (hereafter: radiances) made by AIRS during the last seventeen years. Figure 2 exemplifies a single OLR spectrum comprised of 2,378 radiances. AIRS does not have measurement capability at <649.6 cm⁻¹, 1136-1217 cm⁻¹ or 1614-2181 cm⁻¹.

Data Selection

The majority of satellite views of Earth contain clouds that reflect or absorb up-welling infrared (IR). Cloud-clear scenes are preferred to avoid attributing cloud-induced OLR reductions to CO₂. The AIRS version 6 level 2 data product quantifies fractional cloud content ranging from 0.00 to 1.00. This work utilizes radiances with 0.00 cloud fraction; only 11% or radiances meet this criterion. Although AIRS Level 2 measurements are a cloud-cleared data product, only naturally cloud-clear radiances with no mathematical adjustments contribute to this analysis. Figure 3 provides a cloud-clear se-

1Tot_Cld4_CCfinal field in AIRS2CCF.006
Figure 2: [a] AIRS nighttime, cloud-clear OLR spectrum and 293K Planck distribution, [b] 650-680 cm$^{-1}$ subset, [c] HITRAN spectral absorbance lines for CO$_2$. Note the excellent coincidence between AIRS detected radiance peaks and HITRAN CO$_2$ absorbance lines.

Solar longwave infrared radiation reflected by clouds or Earth's surface will combine with terrestrial OLR, contaminating daytime measurements. To eliminate this source of error, only nighttime measurements were utilized. When the AIRS solar zenith angle (SZA) is $<90^\circ$ AIRS observes the sunlit side of Earth, when $90^\circ < \text{SZA} < 108^\circ$ it observes the twilight region and when SZA $\geq 108^\circ$ it observes the nighttime region. Only measurements at SZA $\geq 108^\circ$ were utilized.

Solar longwave infrared radiation reflected by clouds or Earth’s surface will combine with terrestrial OLR, contaminating daytime measurements. To eliminate this source of error, only nighttime measurements were utilized. When the AIRS solar zenith angle (SZA) is $<90^\circ$ AIRS observes the sunlit side of Earth, when $90^\circ < \text{SZA} < 108^\circ$ it observes the twilight region and when SZA $\geq 108^\circ$ it observes the nighttime region. Only measurements at SZA $\geq 108^\circ$ were utilized.

The AIRS mirror scans $\pm 49.5^\circ$ from nadir and higher scan angles observe IR emission from higher in the atmosphere. Radiiances from scan swath edges are significantly warmer or colder than nadir observations in the bands of radiatively-active gases. To reduce the effects of this anisotropy, only radiances at scan angles $\leq 25^\circ$ were utilized.

The 2,378 individual channels comprising the AIRS IR sensor are monitored for quality and flags are raised (0-2) whenever any should degrade. Measurements with quality value 0 “highest quality” and 1 “useful for scientific measurement” were utilized, while quality value 2 “do not use” were excluded. Radiance measurements flagged as dust-contaminated were similarly excluded, though these were rare ($<0.01\%$).

Method

All AIRS radiance measurements meeting the selection criteria were analyzed in this study (not a subset). Radiances for a given wavenumber channel were binned by month, sub-binned in 10° latitude increments, then averaged. For example, 4,554 nighttime, cloud-clear radiances at 650.814 cm$^{-1}$ measured between 0° and 10°N contribute to the average radiance for January 2013 (figure 4 inset). 28.8% of sub-bins contain no data due to heavy clouds, lack of nighttime measurements (e.g., polar summers) or failed detector channels. An additional 1.2% of all sub-bins containing fewer than 25 radiances meeting the selection criteria were excluded to prevent trend skew by only a few measurements. The median
hemisphere as evidenced by positive spectral radiance warming detectable by AIRS occurred in the northern CO
fective emission elevation—a consequence of rising atmospheric temperatures or rising ef-
trends at 800-1000 cm$^{-1}$. Negative spectral radiance trends at 650-756 cm$^{-1}$ are presumed the effect of rising atmospheric CO$_2$ concentration. These negative trends are most apparent below 30°N and in the winter arctic.

A single global composite radiance trend (figure 6) was produced by weighting radiance trend values in the 18 latitude bins according to their corresponding fractional Earth area. For example, trend values at 0°-10°N contribute 8.68% to the global composite while those at 80°-90°N contribute 0.76%. From figure 6 it is evident that from 2002-2019 Earth’s OLR intensity diminished in the CO$_2$ v_2 band and intensified in the atmospheric window. AIRS does not characterize the entire emission spectrum so a complete energy balance is not attainable.

CO$_2$ Radiative Forcing Reducions in OLR at 650-756 cm$^{-1}$ are presumed the result of rising atmospheric CO$_2$ concentration. The reductions at detectable portions of the CO$_2$ P, Q, and R-branches (650-682 cm$^{-1}$) are minor compared to 687-756 cm$^{-1}$ where the majority of detectable OLR reduction coincides with one of the CO$_2$ wings. OLR flux density change δE (Wm$^{-2}$) was produced by integrating the spectral radiance trend \dot{L}_ν over the range of CO$_2$-affected wavenumbers, then multiplying by 17 years and by π sr, regarding the atmosphere as a Lambertian emitter at these optically-thick channels:

$$\delta E_{PQR} = 17\pi \int_{682.0\,\text{cm}^{-1}}^{649.6\,\text{cm}^{-1}} \dot{L}_\nu d\tilde{\nu} = -0.031 \pm 0.014 \text{Wm}^{-2}$$

(1)

$$\delta E_{\text{wing}} = 17\pi \int_{756.3\,\text{cm}^{-1}}^{787.6\,\text{cm}^{-1}} \dot{L}_\nu d\tilde{\nu} = -0.164 \pm 0.033 \text{Wm}^{-2}$$

(2)

Integrals are depicted in the figure 6 inset, shaded regions. The majority of detectable flux density change is attributable to the increasing wing absorption at 687-756 cm$^{-1}$. The symmetrical wing at 580-650 cm$^{-1}$ is outside of AIRS measurement range (see figure 7). Consequently, (1) + (2) is only a partial measurement of δE caused by rising CO$_2$ and δE_{total} must be estimated. The P-branch and R-branch absorption lines flanking the Q-branch are nearly symmetrical and rising CO$_2$ caused nearly-identical reductions in radiance. By extension, it is a reasonable prediction that the unmeasured 580-650 cm$^{-1}$ wing has undergone OLR reduction by an amount similar to the measured 687-756 cm$^{-1}$ wing. Therefore, total OLR flux density reduction due to rising CO$_2$ is

![Figure 4: Least-squares regression fit to average monthly radiances for four AIRS channels in 0°-10° latitude bin. Remaining channels in all latitude bins were fit similarly.](image)

Results Spectral radiance trends for 650-1614 cm$^{-1}$ are given in figure 5. At optically-thin channels (800-1000 cm$^{-1}$) positive trend values indicate warming of the surface or lower troposphere, negative indicate cooling. At optically-thick channels (650-720 cm$^{-1}$) detected emissions are from the atmosphere. Negative trend values indicate either falling atmospheric temperatures or rising effective emission elevation—a consequence of rising CO$_2$ concentration—or both. The majority of surface warming detectable by AIRS occurred in the northern hemisphere as evidenced by positive spectral radiance trends at 800-1000 cm$^{-1}$. Negative spectral radiance trends at 650-756 cm$^{-1}$ are presumed the effect of rising atmospheric CO$_2$ concentration. These negative trends are most apparent below 30°N and in the winter arctic.

A single global composite radiance trend (figure 6) was produced by weighting radiance trend values in the 18 latitude bins according to their corresponding fractional Earth area. For example, trend values at 0°-10°N contribute 8.68% to the global composite while those at 80°-90°N contribute 0.76%. From figure 6 it is evident that from 2002-2019 Earth’s OLR intensity diminished in the CO$_2$ v_2 band and intensified in the atmospheric window. AIRS does not characterize the entire emission spectrum so a complete energy balance is not attainable.

CO$_2$ Radiative Forcing Reductions in OLR at 650-756 cm$^{-1}$ are presumed the result of rising atmospheric CO$_2$ concentration. The reductions at detectable portions of the CO$_2$ P, Q, and R-branches (650-682 cm$^{-1}$) are minor compared to 687-756 cm$^{-1}$ where the majority of detectable OLR reduction coincides with one of the CO$_2$ wings. OLR flux density change δE (Wm$^{-2}$) was produced by integrating the spectral radiance trend \dot{L}_ν over the range of CO$_2$-affected wavenumbers, then multiplying by 17 years and by π sr, regarding the atmosphere as a Lambertian emitter at these optically-thick channels:

$$\delta E_{PQR} = 17\pi \int_{682.0\,\text{cm}^{-1}}^{649.6\,\text{cm}^{-1}} \dot{L}_\nu d\tilde{\nu} = -0.031 \pm 0.014 \text{Wm}^{-2}$$

(1)

$$\delta E_{\text{wing}} = 17\pi \int_{756.3\,\text{cm}^{-1}}^{787.6\,\text{cm}^{-1}} \dot{L}_\nu d\tilde{\nu} = -0.164 \pm 0.033 \text{Wm}^{-2}$$

(2)

Integrals are depicted in the figure 6 inset, shaded regions. The majority of detectable flux density change is attributable to the increasing wing absorption at 687-756 cm$^{-1}$. The symmetrical wing at 580-650 cm$^{-1}$ is outside of AIRS measurement range (see figure 7). Consequently, (1) + (2) is only a partial measurement of δE caused by rising CO$_2$ and δE_{total} must be estimated. The P-branch and R-branch absorption lines flanking the Q-branch are nearly symmetrical and rising CO$_2$ caused nearly-identical reductions in radiance. By extension, it is a reasonable prediction that the unmeasured 580-650 cm$^{-1}$ wing has undergone OLR reduction by an amount similar to the measured 687-756 cm$^{-1}$ wing. Therefore, total OLR flux density reduction due to rising CO$_2$ is
Figure 5: Nighttime, cloud-clear spectral radiance trend 2002-2019 in 10° latitude increments. ±1σ shaded.
Figure 6: Global composite nighttime, cloud-clear spectral radiance trend 2002-2019. ±1σ shaded. Inset illustrates the integrals assessed to determine OLR reduction attributable to rising CO₂.

Figure 7: HITRAN2016 CO₂ v₂ absorption lines and AIRS measurement ranges estimated as:

\[\delta E_{total} = \delta E_{PQR} + 2\delta E_{wing} = -0.358 \pm 0.067 \text{ W m}^{-2} \]

(3)

The computed flux density change, with reversed sign, is termed radiative forcing (RF). It is reasonable to view (1) + (2) as a partial global measurement of nighttime, cloud-clear CO₂ RF and (3) as an empirically-derived estimation of total nighttime, cloud-clear CO₂ RF added between 2002-2019.

Measurement of the atmospheric CO₂ concentration increase that produced this additional forcing was supplied by the NOAA ESRL’s global monitoring division. The combination of empirical measurement of TOA RF and CO₂ concentration change permits a direct comparison to the climate model predictions of CO₂-induced effective radiative forcing (ERF) taken from the IPCC’s Fifth Assessment Report (AR5). ERFs for 2000-2020 (368.9-412.1 ppm CO₂) were interpolated for 2002-2019 (373.1-410.5 ppm CO₂) and compared to AIRS measurements in Table 1.

AR5 ERFs were computed while holding surface temperature constant, a condition that does not hold for Earth. Therefore, an additional comparison was sought to AIRS measurements of locations where surface/lower tropospheric temperatures did not significantly change. Window wavenumber trends in Figure 5 indicate this is largely true for 10°N-40°S and the area-weighted average forcing for this latitude range was included in Table 1. In either case, AR5 climate models appear to over-predict CO₂ RF.

Table 1: Radiative Forcing from +37 ppm CO₂

Source	CO₂ RF, −δE_{total} ± 1σ
AIRS 90°N-90°S	0.358±0.067 Wm⁻²
AIRS 10°N-40°S	0.434±0.047 Wm⁻²
IPCC AR5 ERF	0.508±0.102 Wm⁻²

Sources of Error Radiance and flux density changes in the CO₂ v₃ band (2300-2380 cm⁻¹) were not characterized since less than 0.01% of the Earth’s infrared radiant exitance occurs in this band.

The AIRS instrument measurement gap at 681.993-687.601 cm⁻¹ prevents trend quantification in a narrow portion of the v₂ R-branch. Interpolation from adjacent channels yields 0.0038 Wm⁻² of forcing was not measured, causing underestimate of δE_{total} by 1.2%.

The unmeasured 580-650 cm⁻¹ wing was assumed to undergo radiance reduction identical to the mea-
sured wing, however, the 580-650 cm$^{-1}$ wing overlaps with stronger water vapor absorption lines. The assumption of symmetry is conservatively high and actual OLR reductions at 580-650 cm$^{-1}$ are expected to be lower than at 687-756 cm$^{-1}$. Trend asymmetry between the two wings was observed in DLR reported by Feldman[2]: the 580-650 cm$^{-1}$ wing showed less forcing change over time relative to the 687-756 cm$^{-1}$ wing, particularly in the southern great plains where atmospheric moisture content is higher.

Over 17 years, detector stability is more important than absolute accuracy as unbiased noise does not preclude long-term trend analysis. One possible cause of trend bias is gradual accumulation of molecular contaminants on the AIRS detector mirror. A hypothetical 100-A contamination layer is predicted to increase the mirror emissivity variation by 0.001, producing cold scene brightness temperatures at 650-800 cm$^{-1}$ that are 0.1-0.2 K warmer than reality[7]. If such a contamination layer were gradually building up during the observation period, warming trends could be amplified and cooling trends (including forcing) could be diminished. Evidence of mirror contamination between 2002-2010 has been reported[8] to affect AIRS midwave IR channels (2181-2665 cm$^{-1}$) which were not utilized in this study.

This analysis assumed isotropic atmospheric emissions despite radiances from scan swath edges measuring significantly warmer or colder than nadir observations. Over time, if proportionally more (or fewer) swath edge measurements meet the quality and cloud-clear selection criteria, trend bias will result. As a check, trend fits and integrals were recomputed with a wider and narrower scan angle ranges, including and excluding larger portions of scan swath edges. Fewer total measurements contribute to a restricted scan angle analysis with a commensurate increase in uncertainty. Results in table 2 indicate that including scan swath edges causes overestimation of forcing: δE_{total} produced from $\pm 25^\circ$ and $\pm 49.5^\circ$ measurements are 3.8% and 10.4% higher than from $\pm 12.5^\circ$ measurements, respectively.

Conclusion Seventeen years of AIRS nighttime, cloud-clear OLR measurements reveal 0.358±0.067 Wm$^{-2}$ additional radiative forcing induced by +37 ppm atmospheric CO$_2$. Unfortunately, AIRS lacks measurement capability at 580-650 cm$^{-1}$ for complete CO$_2$ v_2 band characterization, therefore this empirical estimate of increased forcing was devised by presuming CO$_2$ v_2 wing symmetry and doubling the observed wing’s radiative forcing. The IPCC Fifth Assessment Report predicted 0.508±0.102 Wm$^{-2}$ RF resulting from this CO$_2$ increase, 42% more forcing than actually observed. The lack of quantitative long-term global OLR studies may be permitting inaccuracies to persist in general circulation model forecasts of the effects of rising CO$_2$ or other greenhouse gasses.

Acknowledgments The author acknowledges Robert Amour and Leon de Almeida for analysis program creation, Nolan Nicholson for the custom data plotting program and Steven J. Martin for the many informative conversations. All code for data assimilation and analysis is available at https://github.com/rentcp/Heatwave.

References

[1] John E Harries, Helen E Brindley, Pretty J Sago, and Richard J Bantges. Increases in greenhouse forcing inferred from the outgoing longwave radiation spectra of the earth in 1970 and 1997. *Nature*, 410(6826):355, 2001.

[2] Daniel R Feldman, William D Collins, P Johnathan Gero, Margaret S Torn, Eli J Mlawer, and Timothy R Shippert. Observational determination of surface radiative forcing by co2 from 2000 to 2010. *Nature*, 519(7543):339, 2015.

[3] Ioulli E Gordon, Laurence S Rothman, Christian Hill, Roman V Kochanov, Y Tan, Peter F Bernath, Manfred Birk, V Boudon, Alain Campargue, KV Chance, et al. The hitran2016 molecular spectroscopic database. *Journal of Quantitative Spectroscopy and Radiative Transfer*, 203:3–69, 2017.

[4] AIRS Science Team/Joao Teixeira. AIRS/Aqua L2 Cloud-Cleared Infrared Radiances (AIRS-only) V006. https://doi.org/10.5067/Aqua/AIRS/DATA205. Accessed 10-2019.

Table 2: Swath Edge Radiance Impact
Scan Angle

$\pm 49.5^\circ$
$\pm 25.0^\circ$
$\pm 12.5^\circ$
[5] Ed Dlugokencky and Pieter Tans, NOAA/ESRL. www.esrl.noaa.gov/gmd/ccgg/trends/ Accessed 11-2019.

[6] Thomas F Stocker, Dahe Qin, Gian-Kasper Plattner, Melinda Tignor, Simon K Allen, Judith Bochung, Alexander Nauels, Yu Xia, Vincent Bex, Pauline M Midgley, et al. Climate change 2013: The physical science basis. 2013.

[7] HH Aumann, D Gregorich, S Gaiser, D Hagan, T Pagano, L Strow, and D Ting. Airs algorithm theoretical basis document. *Level 1B, Part*, 1:70, 2000.

[8] Hartmut H Aumann, Evan M Manning, and Steve Broberg. Radiometric stability in 16 years of airs hyperspectral infrared data. In *Earth Observing Systems XXIII*, volume 10764, page 107640O. International Society for Optics and Photonics, 2018.