Intimate atomic Cu-Ag interfaces for high CO₂RR selectivity towards CH₄ at low over potential

Chungseok Choi¹,§, Jin Cai¹,§, Changsoo Lee¹,²,³,§, Hyuck Mo Lee², Mingjie Xu⁴,⁵, and Yu Huang¹

¹ Department of Materials Science and Engineering, University of California, Los Angeles, CA 90095, USA
² Hydrogen Energy Department, Korea Institute of Energy Research, 152 Gajeong-ro, Yuseong-gu, Daejeon 34129, Republic of Korea
³ Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
⁴ Irvine Materials Research Institute (IMRI), University of California, Irvine, CA 92697, USA
⁵ Department of Materials Science and Engineering, University of California, Irvine, CA 92697, USA

© The Author(s) 2021
Received: 10 March 2021 / Revised: 25 May 2021 / Accepted: 2 June 2021

ABSTRACT
Developing highly efficient electrochemical catalysts for carbon dioxide reduction reaction (CO₂RR) provides a solution to battle global warming issues resulting from ever-increasing carbon footprint due to human activities. Copper (Cu) is known for its efficiency in CO₂RR towards value-added hydrocarbons; hence its unique structural properties along with various Cu alloys have been extensively explored in the past decade. Here, we demonstrate a two-step approach to achieve intimate atomic Cu-Ag interfaces on the surface of Cu nanowires, which show greatly improved CO₂RR selectivity towards methane (CH₄). The specially designed Cu-Ag interfaces showed an impressive maximum Faradaic efficiency (FE) of 72% towards CH₄ production at −1.17 V (vs. reversible hydrogen electrode (RHE)).

KEYWORDS
electrochemical CO₂ reduction reaction, catalyst, copper, silver, bimetallic interface

1 Introduction
Humanity is at the brink of fossil fuel exhaustion and faces challenges of global climate change. Carbon dioxide (CO₂) emission is a primary driver of global warming and the reducing pH levels of the ocean. Meanwhile fossil fuels are not renewable and will eventually deplete. Creating a closed-loop process to recycle CO₂ to value-added fuels is a promising option to mitigate global warming and grant inexhaustible energy sources [1–4]. Developing efficient electrochemical catalysts for CO₂ reduction reaction (CO₂RR) is a prerequisite for establishing a carbon recycle loop and renewable energy technologies.

In the past decade, electrochemical CO₂RR has remarked prominent achievements in both scientific apprehension and technological developments. Among many electrocatalysts, copper (Cu) is the only known electrochemical catalyst to convert CO₂ to alternative energy fuels and hydrocarbons (especially methane (CH₄)) with sufficient current density and selectivity [5]. However, a mixture of primary products, competition with hydrogen evolution reaction (HER), and required high overpotential for CO₂RR on monometallic Cu still poses challenges. Therefore, designing Cu-based catalysts with high selectivity at low overpotentials is of great interest [6].

The prior art of research has improved Cu catalyst's modulation of structure defects [7–10], shapes [11–13], size [14], and chemical states [15–20] of Cu. For example, grain boundaries (GBs) exhibited ~ 2.5 times higher CO₂RR activity with less competitive reaction (HER) [21]. Cheng et al. reported that Cu’s surface steps, having a combination of one strong and one weak CO binding site, enhance CO₃ productions with reduced formation energy of the rate determining step (OCCOH) to 0.52 eV [22]. Alloying Cu with a second metal is another attractive way to design catalysts [23]. However, Cu usually lost its extraordinary CO₂RR capability of producing hydrocarbon and oxygenates, having C₂ and C₃ carbons by forming an alloy with other elements [24–27]. Thus, interface Cu with neighboring unmixable second elements has been proposed to design Cu-based catalysts to retain the Cu’s unique CO₂RR capability [27, 28]. Because of this complexity, the research in CuM (M denotes another metal element) alloy catalysts for electrochemical CO₂RR has not been sufficiently explored or compared with pure Cu. Silver (Ag) is a promising candidate to achieve such an unmixable Cu-M interface design because Ag and Cu are known for their thermodynamical immiscibility over all compositions at room temperature [29–34]. For example, Huang et al. reported that the interface between Cu catalysts and Ag catalysts was the crucial active site to enhance CO₂RR over pure Cu catalysts [34]. However, the interface between Cu and Ag has been limited because the boundary was miserly obtained between Cu and Ag catalysts. Maximizing the Cu and Ag interfaces at the atomic level is highly desired but challenging.

Herein, we report a two-step approach to build the interface
between Cu and Ag at the atomic level (Fig. 1). Cu nanowires (CuNWs) were first synthesized and followed by galvanic replacement from Cu to Ag to achieve in situ formation of CuAg ensembles, which builds CuNWs with rich Cu-Ag interfaces. The attractive Cu-Ag interfaces showed a dramatic change in CO2RR selectivity from CH4 to C2H4, which remarked a 63.29% ± 4.85% FECH4 (FE means Faradaic efficiency) at −1.12 ± 0.01 V (vs. reversible hydrogen electrode (RHE), referenced to all potentials) and an impressive maximum FECH4 of 72% at low potential of −1.17 V.

![Figure 1](image)

Figure 1: Schematic of preparing CuAgNWs. (a) The pure CuNWs are synthesized. (b) Galvanic replacement is conducted to partially replace Cu surface to Ag surface. (c) Atomic interfaces between Cu and Ag are further generated through in situ formation of CuAg ensembles during the electrochemical CO2RR.

2 Results

We synthesized bimetallic CuAg nanowires (CuAgNWs) through a synthesis of CuNWs followed by galvanic replacement of Cu to Ag (Figs. 1(a) and 1(b)). To be specific, 22 mg of CuCl2·2H2O, 50 mg of glucose, and 180 mg of hexadecylamine (HDA) were mixed in 10 mL of deionized (DI) water (18.2 MΩ/cm) under sonication for 15 min, then heated at 100 °C for 8 h in an oil bath. After the reaction solution cooled down to room temperature, 1.21 mg of AgCH3CO2 and 0.84 mg of imidazole were added to the CuNW solution, which was kept at 50 °C for 25 or 60 min without stirring for galvanic replacements from Cu to Ag. The relatively high standard reduction potential of Ag (Ag+ + e− → Ag(s), E° = 0.80 V) (standard hydrogen electrode) compared to Cu (Cu2+ + 2e− → Cu(s), E° = 0.34 V (standard hydrogen electrode)) [35] drives replacements from Cu to Ag on the surface of CuNWs. The synthesized CuAgNWs were washed five times with hexane/ethanol mixture and were collected by centrifuge. The CuAgNWs were characterized by transmission electron microscopy (TEM), Cs-corrected high-angle annular dark-field imaging scanning transmission electron microscope (HAADF STEM), energy-dispersive X-ray spectroscopy (EDX), and powder X-ray diffraction (PXRD).

![Figure 2](image)

Figure 2: PXRD of CuNWs and bimetallic CuAgNWs after the galvanic replacement for 25 and 60 min (red_pure CuNWs, green_CuAgNWs after 25 min galvanic replacement, and blue_CuAgNWs after 60 min galvanic replacement).

Table 1 The atomic composition of CuNWs and CuAgNWs by ICP and XPS

Min.	Notation	ICP measurement Cu (at.%)	XPS measurement Cu (at.%)
0 min	Cu	100	100
25 min	Cu9Ag1	90.39 ± 6.03	89.08 ± 3.37
		9.61 ± 6.03	10.93 ± 3.37
60 min	Cu8.2Ag1.8	82.11 ± 2.95	68.13 ± 3.65
		17.89 ± 2.95	31.87 ± 3.65
We further found that electrochemical treatment of the as-prepared Cu9Ag1NWs can drive Cu to the surface of Cu9Ag1NWs and generate atomic Cu-Ag interfaces with more exposed Cu surface. The Cu9Ag1NW catalysts were prepared by mixing 4 mg of the CuAgNWs in 1 mL ethanol and 10 μL of 5% Nafion 117. We dropped 10 μL catalyst ink on the 1 cm diameter glassy carbon electrode. Subsequently, by using a high reduction bias (V = −1.05 V), we activated the CuAgNWs in CO2-saturated 0.1 M KHCO3 solution for 2 h. After such treatment, Fig. 3 showed the generated atomic Cu-Ag interfaces on the surface of Cu9Ag1NWs. EDX maps showed that Cu rose above the top of Ag-covered surface of as-prepared Cu9Ag1NWs (Figs. 3(a) and 3(d), and Fig. S6 in the ESM). The interfaces between Cu ensembles and Ag layers were quite prominent in EDX maps of Cu component in Figs. 3(b) and 3(e), and Ag component in Figs. 3(c) and 3(f).

The migration of Cu atoms outward to the surface of the NWs can be understood based on the differential binding strengths of Cu and Ag to CO2RR intermediates or products. Back et al. [37] reported that Cu(211) has −0.77 eV of CO binding energy (E\textsubscript{B[CO]}), −0.16 eV of H binding energy (E\textsubscript{B[H]}), and −0.07 eV of OH binding (E\textsubscript{B[OH]}), which are all stronger than Ag(211) (−0.15 eV of E\textsubscript{B[CO]}, 0.30 eV of E\textsubscript{B[H]}, and 0.56 eV of OH binding E\textsubscript{B[OH]}). Zhong et al. [38] also reported that the Cu has stronger E\textsubscript{B[H]} and E\textsubscript{B[CO]} than Ag. The Cu under Ag surface could go to the top surface because of Cu’s stronger binding energies with hydrogen, carbon monoxide, and hydroxide compared with Ag. To confirm the molecules’ types for the generation of the unique Cu-Ag surface ensembles structures, we carried out the activation process by changing purging gas of CO2, CO, and H2 at −1.05 V (vs. RHE) for 30 min, respectively. Figure S7 in the ESM illustrates that the Cu component went to the top surface at all purging conditions. Interestingly, in the Cu8.2Ag1.8NWs, the Cu and Ag elements separated into Cu particles and Ag straw structures (Fig. S8 in the ESM). This indicates a thick enough Ag surface layer might limit the movement of Cu towards the surface to rise above the Ag surface.

We conducted CO2RR with CO2-saturated 0.1 M KHCO3 (pH 6.8) in a gas-tight H-cell at room temperature under atmospheric pressure. We analyzed effluent gas/liquid products at different applied potentials between −1.02 and −1.25 V (vs. RHE). To compare the CO2RR performance of pure Ag, we also synthesized and conducted CO2RR test of AgNPs (Fig. S9 in the ESM).

It is found that with increasing Ag content in the CuAgNWs, the electrochemically active surface area (ECSA) normalized current densities decreased (Fig. S10 in the ESM). Because liquid products from CO2RR of these catalysts were less than 10%, we focused the discussion of Faradaic efficiency on gas-phase products (Fig. 4 and Tables S1–S3 in the ESM). Figure 4 shows FEs of CuNWs (Fig. 4(a)), Cu9Ag1NWs (Fig. 4(b)), Cu8.2Ag1.8NWs (Fig. 4(c)), and AgNPs (Fig. 4(d)). The pure CuNWs exhibited high selectivity of 60.37% ± 4.46% of FE\textsubscript{CH4} at −1.06 V (vs. RHE), and 55.01% ± 7.58% of FE\textsubscript{CH4} at −1.23 V (vs. RHE) (Fig. 4(a)). However, Cu9Ag1NWs showed very different product selectivity. Cu9Ag1NWs suppressed CH4 productions to less than ~21% at all measured potentials (Fig. 4(b)). At the same time, the CH4 production from Cu9Ag1NWs started to rise at ~−1.12 V (vs. RHE) with FE\textsubscript{CH4} 63.29% ± 4.85%, which continued to rise to an impressive maximum FE\textsubscript{CH4} 72% at low potential of −1.17 V, and maintained at 66.36% ± 4.18% of FE\textsubscript{CH4} at −1.20 V (Fig. 4(b)). Importantly, Cu9Ag1NWs remarkably retrenched −0.13 V applied potential to produce 60% FE\textsubscript{CH4} compared with CuNWs (Fig. S11 in the ESM).

The reaction pathways of CH4 and C2H4 share a common *COH intermediate, which deviates to CH4 with *HCOH and CH3H with *OCO-COH ([active sites of catalysts]) [39]. Thus, catalyst’s availability to adsorb H (H\textsubscript{ad}) compared to adsorb CO (CO\textsubscript{ad}) induces higher CH4 selectivity over C2H4 selectivity. Chen et al. reported that hydrogen binding energy increases by ~1 eV/V while the CO binding energy varies little with applied potentials [39]. Assuming dominant hydrogen coverage at more negative than ~0.8 V (vs. RHE) [39], at ~1.12 V (vs. RHE) on the surface of CuAgNWs, the Cu portion would be covered by hydrogen (Cu-H+) while the surface of Ag was still dominant by CO (Ag-CO−). CO dominance on Ag surface was consistent with our observation of FE\textsubscript{CO} over 90% at ~−1.13 V (vs. RHE) on AgNPs (Fig. 4(d)). On CuAgNWs, the diffusion of CO from Ag section to the Cu section is likely more efficient due to the short diffusion length. Thus, efficient feeding of CO to hydrogen-covered Cu surface could make it favorable to generate *COH, and the dominant hydrogen coverage on the Cu surface might drive *COH to *HCOH and finally CH4.

"Figure 3" Electron microscopy analysis of Cu9Ag1NWs after CO2RR at ~−1.05 V (vs. RHE) for 2 h. (a) EDX mapping of Cu K and Ag L on Cu9Ag1NWs. (b) Cu component and (c) Ag component in the EDX image of Cu9Ag1NWs. (d) EDX mapping of a Cu ensemble with Ag on the surface of Cu9Ag1NWs (zoom in the blue square in (a)). (e) Cu component and (f) Ag component in the EDX image of Cu and Ag ensemble on the surface of Cu9Ag1NWs. Yellow indicates Cu, and purple indicates Ag.

"Figure 4" Electrochemical CO2RR performance in 0.1 M KHCO3 at room temperature and atmosphere pressure: (a) FEs of CuNWs, (b) FEs of Cu9Ag1NWs, (c) FEs of Cu8.2Ag1.8NWs, and (d) FEs of AgNPs.
To further investigate the importance of the different interfaces between Cu and Ag components for high CH₄ generation, we compared FEs of Cu9Ag1NWs and Cu8.2Ag1.8NWs. Both Cu9Ag1NWs and Cu8.2Ag1.8NWs showed higher selectivity of CO (> 60% FE₃CO) at ~ –1.05 V (vs. RHE) than pure CuNWs (Figs. 4(a)–4(c)), confirming *CO contribution from the Ag component. However, the Cu8.2Ag1.8NWs still showed high CO selectivity (53.21% ± 20.00%) with low CH₄ production (10.55% ± 9.15%) at ~1.13 V ± 0.02% V (vs. RHE) (Tables S1 and S2 in the ESM), while Cu9Ag1NWs already demonstrated over 60% FE₃CO, HRTEM and EDX showed larger separations between Cu and Ag components in Cu8.2Ag1.8NWs (Fig. S8 in the ESM) than Cu9Ag1NWs (Fig. S3 in the ESM).

This indicates that an intimate atomic level Cu-Ag interface between the Cu and Ag components is necessary to promote the synergistic effect of CO-Ag* and H-Cu* for high CH₄ selectivity. To the best of our knowledge, the Cu9Ag1NWs provide the highest FE₃CH₄ at the lowest applied potential 72% of FE₃CH₄ at ~ –1.17 V (vs. RHE) in H-cell with standard glassy carbon electrode at room temperature and atmospheric pressure (0.1 M KHCO₃) compared to all other materials reported in the literature to date (Table 2).

Table 2 Summary of CO₂RR to CH₄ production on all other materials

Catalyst	Applied potentials V (vs. RHE)	Max. FE₃CH₄	Electrolyte	Cell	Source
Cu9Ag1NWs	~1.17	72%	0.1 M KHCO₃	H-cell	This work
CuNWs	~1.25	55%	0.1 M KHCO₃	H-cell	[40]
Single atom Cu on CeO₂	~1.8	58%	0.1 M KHCO₃	H-cell	[41]
Cu electrode	~1.2	62%	0.1 M KHCO₃	H-cell	[42]
CRD-Cu3Pd	~1.2	40.6%	0.1 M KHCO₃	H-cell	[43]
Cu/CoO₂₋₋₋	~1.2	54%	0.1 M KHCO₃	H-cell	[44]
CuO@CuHHTP	~1.4	73%	0.1 M KHCO₃	H-cell	[45]
La₆Cu₆O₁₄	~1.4	56.3%	0.1 M KHCO₃	H-cell	[46]

3 Conclusion

We successfully generated atomic Cu-Ag ensembles via *ex-situ* galvanic replacement from Cu to Ag, followed by an *in-situ* electrochemical activation approach. The atomic Cu-Ag ensemble interfaces showed a change of CO₂RR selectivity from C₅H₅ to CH₄, which remarked the highest FE₃CH₄ at the lowest applied potential 72% of FE₃CH₄ at ~–1.17 V (vs. RHE) in H-cell. These findings suggest an effective way to generate unmixable atomic ensemble Cu-Ag interfaces to enhance CH₄ selectivity with lower over potential under operando conditions. This approach can be expanded to other unmixable metal atoms to engineer the atomic ensemble interfaces for desired catalytic properties.

Acknowledgements

TEM work was conducted using the facilities in the electron imaging center of California NanoSystems Institute at the University of California Los Angeles and the Irvine Materials Research Institute at the University of California Irvine. C. C., J. C. and Y. H. acknowledge support by the Office of Naval Research (ONR) (No. N000141712608). C. S. L. and H. M. L. acknowledge support by a National Research Foundation (NRF) of Korea grant funded by the Korean Government (Nos. NRF-2017 R1A1A03071049 and NRF-2020R1A5A6017701).

Electronic Supplementary Material: Supplemental material

(further details of the synthesis process, TEM image, materials and electrical measurements) is available in the online version of this article at https://doi.org/10.1007/s122741-3639-x.

Open Access

This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.

The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

[1] Schreier, M.; Héroguel, F.; Steier, L.; Ahmad, S.; Lutterbacher, J. S.; Mayer, M. T.; Luo, J. S.; Grätzel, M. Solar conversion of CO₂ to CO using Earth-abundant electrocatalysts prepared by atomic layer modification of CuO. Nat. Energy 2017, 2, 17087.

[2] Lin, S.; Diercks, C. S.; Zhang, Y. B.; Kornienko, N.; Nichols, E. M.; Zhao, Y. B.; Paris, A. R.; Kim, D.; Yang, P. D.; Yaghi, O. M. Covalent organic frameworks comprising cobalt porphyrins for catalytic CO₂ reduction in water. Science 2015, 349, 1208–1213.

[3] Gao, S.; Lin, Y.; Jiao, X. C.; Sun, Y. F.; Luo, Q. Q.; Zhang, W. H.; Li, D. Q.; Yang, J. L.; Xie, Y. Partially oxidized atomic cobalt layers for carbon dioxide electroreduction to liquid fuel. Nature 2016, 529, 68–71.

[4] Dinh, C. T.; Burdyny, T.; Kibria, G.; Seifiokaldani, A.; Gabardo, C. M.; De Arquer, F. P. G.; Kiani, A.; Edwards, J. P.; De Luna, P.; Bushuyev, O. S. et al. CO₂ electroreduction to ethylene via hydroxide-mediated copper catalysis at an abrupt interface. Science 2018, 360, 783–787.

[5] Yoshio, H.; Katsuei, K.; Shin, S.; Production of CO and CH₄ in electrochemical reduction of CO₂ at metal electrodes in aqueous hydrogen carbonate solution. Chem. Lett. 1985, 14, 1695–1698.

[6] Cheng, T.; Xiao, H.; Goddard III, W. A. Reaction mechanisms for the electrochemical reduction of CO₂ to CO and formate on the Cu(100) surface at 298 K from quantum mechanics free energy calculations with explicit water. J. Am. Chem. Soc. 2016, 138, 13802–13805.

[7] Verdaguer-Casadevall, A.; Li, C. W.; Johannson, T. P.; Scott, S. B.; McKeown, J. T.; Kumar, M.; Stephens, I. E. I.; Kanan, M. W.; Chorkendorff, I. Probing the active surface sites for CO reduction on oxide-derived copper electrocatalysts. J. Am. Chem. Soc. 2015, 137, 9808–9811.

[8] Feng, X. F.; Jiang, K. L.; Fan, S. S.; Kanan, M. W. Grain-boundary-dependent CO₂ electroreduction activity. J. Am. Chem. Soc. 2015, 137, 4606–4609.

[9] Li, C. W.; Ciston, J.; Kanan, M. W. Electroreduction of carbon monoxide to liquid fuel on oxide-derived nanocrystalline copper. Nature 2014, 508, 504–507.

[10] Li, C. W.; Kanan, M. W. CO₂ reduction at low overpotential on Cu electrodes resulting from the reduction of thick CuO films. J. Am. Chem. Soc. 2012, 134, 7231–7234.
[11] Ma, M.; Djanashvili, K.; Smith, W. A. Controllable hydrocarbon formation from the electrochemical reduction of CO2 over Cu nanowire arrays. *Angew. Chem., Int. Ed.* 2016, 55, 6860–6864.

[12] Loidl, A.; Lobaccaro, P.; Kamali, E. A.; Thao, T.; Huang, B. H.; Ager, J. W.; Buonsanti, R. Tailoring copper nanocrystals towards C2 products in electrochemical CO2 reduction. *Angew. Chem., Int. Ed.* 2016, 55, 5789–5792.

[13] Raciti, D.; Livi, K. J.; Wang, C. Highly dense Cu nanowires for low-overpotential CO2 reduction. *Nano Lett.* 2015, 15, 6829–6835.

[14] Reske, R.; Mistry, H.; Behafarid, F.; Cuena, B. R.; Strasser, P. Particle size effects in the catalytic electroreduction of CO2 on Cu nanoparticles. *J. Am. Chem. Soc.* 2014, 136, 6978–6986.

[15] Mistry, H.; Varela, A. S.; Bonifacio, C. S.; Zegkinoglou, I.; Sinev, I.; Choi, Y. W.; Kisslinger, K.; Stach, E. A.; Yang, J. C.; Strasser, P. et al. Highly selective plasma-activated copper catalysts for carbon dioxide reduction to ethylene. *Nat. Commun.* 2016, 7, 12123.

[16] Lum, Y. W.; Ager, J. W. Stability of residual oxides in oxide-derived copper catalysts for electrochemical CO2 reduction investigated with 18O labeling. *Angew. Chem., Int. Ed.* 2018, 57, 551–554.

[17] Lum, Y. W.; Yue, B. B.; Lobaccaro, P.; Bell, A. T.; Ager, J. W. Optimizing C-C coupling on oxide-derived copper catalysts for electrochemical CO2 reduction. *J. Phys. Chem. C* 2017, 121, 14191–14203.

[18] Gao, D. F.; Zhang, Y.; Zhou, Z. W.; Cai, F.; Zhao, X. F.; Huang, W. G.; Li, Y. S.; Zhu, J. F.; Liu, P.; Yang, F. et al. Enhancing CO2 electroreduction with the metal-oxide interface. *J. Am. Chem. Soc.* 2017, 139, 5652–5655.

[19] Favaro, M.; Xiao, H.; Cheng, T.; Goddard III, W. A.; Yano, J.; Cumlin, E. J. Subsurface oxide plays a critical role in CO2 activation by Cu(111) surfaces to form chemisorbed CO2, the first step in reduction of CO2 by Cu. *Proc. Natl. Acad. Sci. USA* 2017, 114, 6706–6711.

[20] Xiao, H.; Goddard III, W. A.; Cheng, T.; Liu, Y. Y. Cu metal embedded in oxidized matrix catalysts to promote CO2 activation and CO dimerization for electrochemical reduction of CO2. *Proc. Natl. Acad. Sci. USA* 2017, 114, 6685–6688.

[21] Mariano, R. G.; McKelvey, K.; White, H. S.; Kanan, M. W. Selective CO2 reduction revealed by Ag-Cu nanodimers. *J. Am. Chem. Soc.* 2019, 141, 2490–2499.

[22] Reger, D. L.; Goode, S. R.; Mercer, E. E. Chemistry, Principles & Practice, 2nd ed.; Saunders College Pub., 1997.

[23] Shinotsuka, H.; Tanuma, S.; Powell, C. J.; Penn, D. R. Calculations of electron inelastic mean free paths. X. Data for 41 elemental solids over the 50 eV to 200 keV range with the relativistic full Penn algorithm. *Surf. Interface Anal.* 2015, 47, 871–888.

[24] Back, S.; Kim, H.; Jung, Y. Selective heterogeneous CO2 electroreduction to methanol. *ACS Catal.* 2015, 5, 965–971.

[25] Zheng, M.; Tran, K.; Min, Y. M.; Wang, C. H.; Wang, Z. Y.; Dinh, C. T.; De Luna, P.; Yu, Z. Q.; Rasoulizadeh, A. S.; Brodersen, P. et al. Accelerated discovery of CO2 electrocatalysts using active machine learning. *Nature 2020, 581*, 178–183.

[26] Cheng, T.; Xiao, H.; Goddard III, W. A. Full atomistic reaction mechanism with kinetics for CO reduction on Cu(100) from ab initio molecular dynamics free-energy calculations at 298 K. *Proc. Natl. Acad. Sci. USA* 2017, 114, 1795–1800.

[27] Li, Y. F.; Cui, F.; Ross, M. B.; Kim, D.; Sun, Y. C.; Yang, P. D. Structure-sensitive CO2 electroreduction to hydrocarbons on ultrathin 5-fold twinned copper nanowires. *Nano Lett.* 2017, 17, 1312–13172.

[28] Wang, Y. F.; Chen, Z.; Han, P.; Du, Y. H.; Gu, Z. X.; Xu, X.; Zheng, G. F. Single-atomic Cu with multiple oxygen vacancies on ceria for electrocatalytic CO2 reduction to CH4. *ACS Catal.* 2018, 8, 7113–7119.

[29] Ren, D.; Fong, J. H.; Yeo, B. S. The effects of currents and potentials on the selectivities of copper toward carbon dioxide electroreduction. *Nat. Commun.* 2018, 9, 925.

[30] Zhu, W. J.; Zhang, L.; Yang, P. P.; Chang, X. X.; Dong, H.; Li, A.; Hu, C. L.; Huang, Z. Q.; Zhao, Z. J.; Gong, J. L. Morphological and compositional design of Pd–Cu bimetallic nanocatalysts with controllable product selectivity toward CO2 electroreduction. *Small 2018*, 14, 1703314.

[31] Varandil, S. B.; Huang, J. F.; Oveisi, E.; De Gregorio, G. L.; Mensi, M.; Strach, M.; Vavra, J.; Gadiyar, C.; Bhomik, A.; Buonsanti, R. Synthesis of CuO2 nanocrystalline heterodimers with interfacial active sites to promote CO2 electroreduction. *ACS Catal.* 2019, 9, 5035–5046.

[32] Yi, J. D.; Xie, R. K.; Xie, Z. L.; Chai, G. L.; Liu, T. F.; Chen, R. P.; Huang, Y. B.; Cao, R. Highly selective CO electroreduction to CH4 by in situ generated Cu-O single-type sites on a conductive MOF: Stabilizing key intermediates with hydrogen bonding. *Angew. Chem., Int. Ed.* 2020, 59, 23641–23648.

[33] Chen, S. H.; Su, Y. Q.; Deng, P. L.; Qi, R. J.; Zhu, J. X.; Chen, J. X.; Wang, Z. T.; Zhou, L.; Guo, X. P.; Xia, B. Y. Highly selective carbon dioxide electroreduction on structure-evolved copper perovskite oxide toward methane production. *ACS Catal.* 2020, 10, 4640–4646.