Development of Bubble Chambers With Enhanced Stability and Sensitivity to Low-Energy Nuclear Recoils

W.J.Boltea, J.I.Collara, M.Crislerb, J.Halla, D.Holmgrenb, D.Nakazawaa, B.Odoma, K.O’Sullivana, R.Plunkettb, E.Rambergb, A.Raskinb, A.Sonnenscheina and J.D.Vieiraa

aEnrico Fermi Institute and Kavli Institute for Cosmological Physics, University of Chicago, IL, USA
bFermi National Accelerator Laboratory, Batavia, IL, USA

The viability of using a Bubble Chamber for rare event searches and in particular for the detection of dark matter particle candidates is considered. Techniques leading to the deactivation of inhomogeneous nucleation centers and subsequent enhanced stability in such a detector are described. Results from prototype trials indicate that sensitivity to low-energy nuclear recoils like those expected from Weakly Interacting Massive Particles can be obtained in conditions of near total insensitivity to minimum ionizing backgrounds. An understanding of the response of superheated heavy refrigerants to these recoils is demonstrated within the context of existing theoretical models. We comment on the prospects for the detection of supersymmetric dark matter particles with a large CF_3I chamber.

PACS number(s): 95.35.+d, 29.40.-n, 05.70.Fh, 68.55.Ac

* Corresponding author. E-mail: collar@uchicago.edu

The positive identification of sporadic signals from among comparatively frequent backgrounds is common to any experiment at the forefront of particle physics. The challenge faced by direct searches for cold dark matter particles \cite{1} is in this respect extraordinary: signal rates as small as one low-energy nuclear recoil (few keV) per ton of detector mass per year are predicted for the nuclear scattering of supersymmetric Weakly Interacting Massive Particle (WIMP) candidates, if they comprise the bulk of dark matter halos able to explain galactic evolution and dynamics \cite{2}. A number of detector techniques have been developed during the last two decades for this purpose \cite{1}. Simplicity of design, optimal target materials, rapid scaling to the ton regime and an excellent background rejection are desirable qualities for the next-generation of detectors that should soon explore the vast range of WIMP masses and couplings still allowed.

The use of moderately superheated liquids has been proposed as a possible fast route towards this goal \cite{3,4}. A concentrated energy deposition from certain particles can lead in these to the rupture of metastability and the formation of visible bubbles. Two experiments, SIMPLE \cite{5} and PICASSO \cite{6} exploit this approach, benefiting from an intrinsic insensitivity to most backgrounds, discussed below. Both experiments implement the method using superheated droplet detectors \cite{7} (SDDs, a.k.a. bubble detectors), where small drops (r \textasciitilde 10\mu m) of the active liquid are dispersed in an insoluble gel or viscoelastic medium. In a SDD the gel provides a smooth liquid-liquid interface that impedes the continuous triggering (inhomogeneous nucleations) on surface defects, gaskets, motes, etc. that is observed even in the cleanest bubble chambers. As a result, the lifetime of the superheated state is considerably extended, to the point that a WIMP search can be performed.

The goal of the present study is to assess the feasibility of employing bulk quantities of superheated liquid instead, i.e., to use a conventional bubble chamber, an alternative for WIMP searches first put forward by Hahn \cite{8}. Large, stable bubble chambers have been previously proposed for other rare-event searches (e.g., nucleon decay, superheavy elements \cite{9}) but no dedicated attempt to extend the superheated times was made. The rapid uncontrollable foaming of a conventional chamber following its decompression was bypassed in accelerator experiments by a precise timing of the pulsed beam injection to coincide with the few ms of usable radiation-sensitive superheated time in each pressure cycle. The motivation to explore this apparently more problematic approach arises from the difficulty to manufacture SDDs out of the most interesting available industrial refrigerants, e.g., CF_3I and CF_3Br. These liquids constitute ideal supersymmetric WIMP targets \cite{10} due to the presence of both fluorine (optimal for spin-dependent neutralino couplings \cite{11}) and a heavy nucleus (maximally sensitive to coherent spin-independent couplings) \cite{12,13}. Their density is nevertheless severely mismatched with respect to that of a water-based SDD gel matrix, leading to inhomogeneous, unstable emulsions during the fabrication process. Saturation of the matrix with inorganic salts can help alleviate this issue, but leads to exacting requirements on the alpha-emitter radiopurity of the gel \cite{6}, exacerbated by the observed tendency of complex actinide salts to migrate to the droplet-gel boundary \cite{12,14}, where their ability to create an undesirable alpha-recoil background is the greatest. A first attempt to measure the attainable stability of bulk superheated liquid was made within the context of the SIMPLE experiment, using a rudimentary plastic chamber where the active fluid was fully encapsulated by a thick sheath of viscoelastic liquid \cite{15} to avoid evaporation and nucleations on chamber walls. The chamber held 30 g of R-115 (C_2ClF_5) superheated for up
to 12 hours at an underground depth of 1,500 m.w.e. [16], with no other precautions against neutron or radon backgrounds. This behavior revealed the possibility to control the sources of instability in a bubble chamber and prompted the further experimentation described here.

The mechanism leading to the nucleation of the gaseous phase and possible ensuing phase transition in the bulk of a superheated liquid (homogeneous nucleation) is described by a classical theory [17] where the probability of spontaneously generating a protobubble of radius larger than r_c is described by a classical theory [17] where the probability of spontaneously generating a protobubble of radius larger than r_c is given by

$$P \sim \exp\left(-\frac{1}{\pi \sigma_{av}^2} \frac{A V}{m r_c^3}
ight),$$

where A is the surface area of the cavity, V is the cavity volume, and the factor $\exp(-1/\pi \sigma_{av}^2)$ is a function of pressure, temperature, and thermophysical properties of the liquid. If this critical radius is reached or surpassed, the vapor nucleus grows unchecked and metastability is lost. Protopbubbles smaller than r_c collapse back onto themselves, producing no phase transition. In the case of a radiation-induced nucleation, the local heating (“hot spike” [18]) from a particle’s energy deposition can be responsible for the formation of a critically-sized nucleus, only if this energy is concentrated over a small enough region, comparable to r_c. This leads to the mentioned insensitivity to most backgrounds by imposing a threshold in stopping power, amply surpassed by nuclear recoils but not by minimum-ionizing particles (MIPs) [3,4]. For moderate degrees of superheat like those necessary to sensitize the liquid to low-energy nuclear recoils, r_c is typically few tens of nm, and the rate of homogeneous nucleation is entirely negligible as a source of instability ($<10^{-20}$ bubbles/kg/day [17]).

Nucleations can nevertheless also occur on microcavities, scratches or imperfections naturally present even in the smoothest surfaces (e.g., glass) or in motes, partially or totally wetted by the liquid. The (inhomogeneous) nucleation rate on these cavities is only minimally increased with respect to the extremely small (homogeneous) bulk rate if the fluid has a zero contact angle with the surface, i.e., if the cavity is well wetted [17,19]. The actual source of the inhomogeneous nucleations that limit a bubble chamber’s stability is instead any entrapped gas in these cavities [20], which can act as a vaporization initiator, allowing mass transfer from the fluid to the unwetted cavity volume [19,21]. Once nucleation is initiated in such a cavity, the superheat required to sustain boiling on it drops to a much lower value than what is required for homogeneous nucleation [19,21], i.e., destabilization occurs. It is however important to distinguish between cavities filled by superheated fluid vapor and those filled by non-condensable gas or a binary. In the first case, cooling or pressurization can lead to nucleation site deactivation by recondensing the trapped vapor. In the second, and in particular for reentrant cavities, deactivation can be arduous, albeit continued boiling may lead to an eventual depletion of the gaseous volume [19].

Once the nature of the problem is understood, precautions can be taken that lead to an enhanced bubble chamber stability: i) only smooth glass or quartz surfaces are allowed to be wetted by the superheated liquid, thereby reducing the number of available cavities. ii) A layer of a low-density buffer liquid can be allowed to form a “lid” above the (immiscible) active liquid [22], with all rough metallic parts (bellows, diaphragms, gaskets) coming in contact with the buffer only. iii) This same buffer liquid can be used to create a layer that fills cavities, previously evacuated to remove noncondensable gases (Fig. 1, left) [21]. Cavity filling can be improved by transferring the buffer (a step prior to the addition of the denser active liquid) by slow condensation of its vapor into the chamber rather than pouring. This ensures maximum wetting of even reentrant cavities [19,25] (Fig. 1, right). In the particular case of CF_3I, the shape of the meniscus at the interface with the buffer “lid” reveals a highly preferential wetting of quartz by the (water) buffer, a positive indication of its effectiveness. To some extent, these methods reproduce the advantages of the smooth liquid-liquid interfaces in SDDs. iv) Exhaustive cleaning of glass surfaces [23] in clean-room conditions and ultrafiltration of all gases and fluids lead to a reduction in the number of large motes present (cavities smaller than $O(r_c)$ cannot in principle act as nucleation centers). Some known cleaning techniques also have the desirable effect of improving surface wetting by the buffer [24]. v) Application of these techniques in the chambers and operating conditions described below, a periodic long recompression (~ 200 s) is observed to effectively deactivate the few boiling centers that can still sporadically appear due to mass transfer through the buffer layer, or cavity exposure to vapor during radiation-induced boiling.

Small bubble chamber prototypes up to 50 c.c. in active volume can be built for moderately-superheated refrigerants using commercially available pressure-resistant quartz vials [26]. Pressure cycling is achieved with a three-way valve or its equivalent and temperature control by means of a double-bath [27]. Fast triggering (<10 ms) of bubble photography and recompression can be

FIG. 1. Left: Use of a buffer liquid to isolate microscopic surface cavities able to act as inhomogeneous nucleation centers in a bubble chamber [21]. Mass transfer into the cavity can still lead to boiling, but deactivation is possible in the absence of noncondensable (nc) gas (see text). Right: Direct pouring of a liquid during chamber filling can lead to vapor entrapment in cavities when the advancing contact angle θ_a is larger than the groove angle 2γ [19]. Filling by slow vapor condensation after evacuation instead leads to efficient wetting of cavities, including those reentrant.
performed by use of a piezoelectric microphone to detect the acoustic emission that accompanies nucleations [12] or by monitoring the pressure increase caused by bubble growth. These simple devices have been used to study chamber stability and response to radiation sources.

![Graph showing response of a CF$_3$I chamber to radiation sources and comparison with theoretical models.](Image)

FIG. 2. Response of a CF$_3$I chamber to radiation sources and comparison with theoretical models. Lines indicate the pressure below which full sensitivity to the source is expected according to different theoretical models (the experimental points represent the appearance of the first bubble upon decompression, see text). Insensitivity to gamma interactions in conditions that nevertheless afford good sensitivity to low-energy nuclear recoils has been demonstrated (see text).

Calibrations using neutron sources having a well-defined maximum energy (11.1 MeV for 241Am/Be) or monochromatic neutron emission (152 keV for 88Y/Be) have allowed measurement of the response of the liquids to nuclear recoils down to 4 keV in the case of CF$_3$I and to establish agreement with theoretical models of this response. Data points in Fig. 2 represent the appearance of the first bubble nucleation upon decompression in the presence of each source (i.e., as the energy threshold for radiation-induced nucleation is reduced), each point corresponding to a compression/decompression cycle. For sufficiently-high source intensities and/or slow decompression rates this bubble is the result of a recoil with an energy close to the well-defined maximum that these sources can produce. These maximum recoil energies are indicated by labels in the figure, for each recoiling species. Solid lines represent the theoretical expectations (Seitz model [18,28]) for the onset of sensitivity to maximum-energy recoils, i.e., should trace the top boundary of the data points. Their dispersion towards lower pressures is expected from a progressive onset of sensitivity, which is not well described by a step-function [6] as naively assumed in the Seitz model. The effect of Moliere electron straggling [29] was included in the calculation of 88Y (gamma) response. A review of the theoretical background leading to these predictions can be found in [12]. A good agreement with the data is observed by best-fitting the single free parameter in this model. The best value obtained (\(a \approx 4\) in the notation of [12]) is compatible with previous [28] and most recent [30] studies. Since the predicted onset of response to the source for each recoiling species is not exactly the same (differing by a fraction of an atm), the lines represent the first species expected to react to the source (Br and F, closely matched, for CF$_3$Br). A calibration is planned where tagging of gamma rays emitted in inelastic 2.4 MeV neutron scattering will allow to separate the contributions from each species. Dotted lines correspond to the 241Am/Be and 88Y/Be predictions of a modern phenomenological “reduced superheat” theory, the forte of which is its simplicity. It generates remarkably accurate predictions for lighter refrigerants used in SDDs [31], but appears to need further refinement for CF$_3$Br and CF$_3$I [32].

The photonuclear 88Y/Be source employed emitted a mixed field of \(\sim 10^8\) high-energy gammas and just \(3.5 \times 10^3\) monochromatic neutrons per second: Fig. 2 illustrates the much higher degree of superheat (lower pressure at a given temperature) necessary to become sensitive to the gamma component once the Be sheath, the actual neutron emitter, is removed from the source. This allows for a dramatic demonstration of insensitivity to photoelectrons in operating conditions that nevertheless would ensure an optimal response to WIMP interactions. For instance, from the figure, at \(-10^\circ\)C and 1 atm no response to MIPs is observed, while sensitivity to WIMP-induced recoils more energetic than the maximum recoil energies produced by 88Y/Be seems guaranteed. A recently procured 124Sb/Be source (\(E_n = 24\) keV) will be used to calibrate response to recoil energies \(\sim 1\) keV in CF$_3$I, an unprecedented test of a WIMP detector.

Prototypes containing a few tens of c.c. of active liquid remain superheated for periods of several minutes on the average in a shallow-depth laboratory (6 m.w.e.). The reduced ambient neutron flux in this site was characterized using a 3He detector surrounded by several configurations of neutron moderator and absorber (Bonner spheres) calibrated using known neutron sources, and deconvolved following an approach similar to [33]. Taking the measured fast neutron spectrum as input to a MCNP-POLIMI simulation [34] of the energy depositions in the chamber, the observed spontaneous nucleation rate is found to be in agreement with the expected neutron-induced recoils at this depth (Fig. 3). For superheated times \(t_{SH}\) longer than a few seconds, no observable excess of nucleations on walls can be inferred from bubble photography using two orthogonal cameras, which allows for 3-D reconstruction of nucleation sites with \(\sim 1\) mm precision. For shorter \(t_{SH}\) a small excess of wall events, evident in the figure, is observed. Sporadic boiling sites can be deactivated as previously described. The duty (live) time was \(\sim 65\%\) during these runs. The insensitivity (rejection factor) to MIPs at \(-10^\circ\)C and 1 atm is \(\gtrsim 10^9\) from the absence of any observable reaction to the...
\(\sim 10^6 \) gamma interactions per second induced by the \(^{88}Y\) source within the active volume (Fig. 3). As discussed above, good sensitivity to WIMP-recoils is nevertheless expected in these conditions. This intrinsic rejection factor can be compared with the best (\(\sim 10^4 \)) achieved using complex cryogenic WIMP detectors [1]. It should permit construction of much larger chambers in the ton or multi-ton regime essentially without any concern for MIPs, including from elevated concentrations of \(^{14}C\).

The encouraging outcome from these tests has lead to the construction of a steel recompression chamber housing 2 kg of \(CF_3I\) in an inner quartz vessel [35]. A bellows mechanism compensates the pressure inside and outside of this vessel, which is both sealed against Rn penetration and low in its emanations, measures against alpha-recoil backgrounds. Provisions to ensure the long-term stability of this fire-extinguishing compound at the envisioned running temperature (40\(^\circ\)C) are in place [36]. The behavior of this chamber at 6 m.w.e. (\(<t_{SH}>\sim 60\) s) remains in agreement with the simulated ambient neutron contribution. Ongoing tests of \(CF_3I\) neutron and gamma response yield similar results to those discussed. To further assess the prospects of this new approach to WIMP detection, this chamber will be operated during decompression, all cases depicted yield \(\tau \sim 1220\) s.

We are indebted to F.d’Errico, J.Ely, D.Jordan, E.Padovani, D.Quéré, and in particular to R.Hildebrand for being a constant source of inspiration. Work supported by the Kavli Institute for Cosmological Physics (NSF grant PHYS-0114422) and NSF CAREER award 0239812.

[1] R.J. Gaitskell, An. Rev. Nucl. Part. Sci. 54, 315 (2004).
[2] G. Bertone et al., Phys. Rep. 405, 279 (2005).
[3] V. Zacek, Nuovo Cimento A107, 291 (1994).
[4] J.I. Collar, Phys. Rev. D54, R1247 (1996).
[5] J.I. Collar et al., Phys. Rev. Lett. 85, 3083 (2000).
[6] N. Boukhira et al., Astroph. Phys. 14, 227 (2000); Nucl. Phys. B (Proc. Suppl.) 143, 537 (2005).
[7] R.E. Apfel, Nucl. Instr. Meth. 162, 603 (1979).
[8] B. Hahn, Nucl. Phys. B (Proc. Suppl.) 36, 459 (1994).
[9] G. Harigel et al., Nucl. Instr. Meth. 216, 355 (1983); K. Behringer et al., Phys.Rev. C9, 48 (1974).
[10] J.I. Collar et al., Procs. 1st Workshop on the Identification of Dark Matter, Sheffield (1996), World Scientific.
[11] J. Ellis and R.A. Flores, Phys. Lett. B263, 259 (1991).
[12] J.I. Collar et al., New J. Phys. 2, 141 (2000).
[13] F. Mayet et al., Phys. Lett. B538, 257 (2002); V.A. Bednyakov et al., Phys.Rev. D63, 095005 (2001).
[14] L.K. Pan et al., Nucl. Instrum. Meth. A420, 345 (1999).
[15] Aquasonic, Parker laboratories, Fairfield, NJ.
[16] J. Puibasset, Ph.D. thesis (Université Paris VI, 2000).
[17] M. Blander and J.L. Katz, AIChE J. 21, 833 (1975).
[18] F. Seitz, Phys. Fluids 1, 1 (1958).
[19] V.P. Carey, "Liquid-Vapor Phase-Change Phenomena", (Hemisphere, Washington, 1992).
[20] M.G. Buivid and M.V. Sussman, Nature 275, 203 (1978).
[21] P. Reinke, Exp. Heat Transfer 10, 133 (1997); P. Reinke, Ph.D. thesis (Swiss Federal Institute of Technology, 1996).
[22] M.A. Gromlins and H.K. Fauske, in Procs. 5th Intl. Heat Transfer Conference, Tokyo (1974).
[23] J. Bardina in “Particles on Surfaces”, K.L. Mittal ed., (Plenum Press, NY, 1988), and references therein.
[24] M.D. Lelah et al., Ceram. Bull. 58, 1121 (1979).
[25] D. Quégré, private communication.
[26] Griffin-Worden vessel, Kontes Glass Co., Vineland NJ.
[27] I.Bond et al., Nucl. Phys.B (Proc. Suppl.) 138, 68 (2005).
[28] M. Harper, PhD thesis (U. of Maryland, 1991), Nucl. Sci. Eng. 114, 118 (1990), Nucl. Instr. Meth. A336, 220 (1993); Ch. Peyrou in ”Bubble and Spark Chambers”, R.P. Shutt ed., (Academic Press, NY, 1967); S.C. Roy et al., Nucl. Instr. and Meth. A255, 199 (1987).
[29] H. Niedrig, J. Appl. Phys. 53, R15 (1982).
[30] M. Das et al., Nucl. Instr. and Meth. A531, 577 (2004).
[31] F. d’Errico, Nucl. Instr. Meth. B184, 229 (2001).
[32] F. d’Errico, private communication.
[33] P. Belli et al., Nuovo Cimento A101, 959 (1989).
[34] S.A. Pozzi et al., Nucl. Instr. Meth. A513, 550 (2003).
[35] J. Bolte et al., Procs. 5th Workshop on the Identification of Dark Matter, Edinburgh (2004), World Scientific.
[36] M.K. Donnelly et al., NIST Technical Note 1452.