Rituximab therapy for primary glomerulonephritis: Report on two cases

Fabrizio Fabrizi, Donata Cresseri, Giovanni B Fogazzi, Gabriella Moroni, Patrizia Passerini, Paul Martin, Piergiorgio Messa

Abstract
The evidence in the medical literature on the efficacy and safety of rituximab therapy for primary glomerulonephritis is limited and controversial. We describe two male Caucasian patients with rapidly progressive kidney failure due to primary proliferative glomerulonephritis. Both of them received high-dose intravenous corticosteroids and oral cyclophosphamide with limited benefit. The first patient (hepatitis C virus-negative mixed cryoglobulinemia) underwent plasma-exchange with intravenous immunoglobulins; he showed significant benefit on kidney function (he became dialysis independent with serum creatinine going back to 1.6 mg/dL) after one rituximab pulse even if urinary abnormalities were still present. No improvement in renal function or urinary changes occurred in the second patient. Both these individuals developed sepsis over the follow-up, the first patient died two months after rituximab therapy. This report is in keeping with the occurrence of severe infections after rituximab therapy in patients with renal impairment at baseline and concomitant high-dose steroids.

Key words: Chronic kidney disease; Cryoglobulinemic vasculitis; Membranoproliferative glomerulonephritis; Rituximab

© The Author(s) 2015. Published by Baishideng Publishing Group Inc. All rights reserved.

Core tip: A small but growing body of evidence is emerging on the efficacy and safety of rituximab therapy for primary glomerulonephritis. Various authors have claimed that rituximab for glomerular diseases is effective and has minimal adverse effects. We report on two male Caucasian patients who were refractory to conventional immunosuppressive therapy; each of them received one rituximab pulse and developed sepsis over the follow-up, the first patient died two months after rituximab therapy. The risks (and the predictive...
Primary glomerulonephritis (GN) remains an important cause of end-stage kidney disease. Preliminary trials have recently shown the efficacy of rituximab for adult-onset primary GN\(^{[1]}\); rituximab being a genetically chimeric monoclonal antibody directed to CD20 antigen, a B-cell-specific transmembrane found on immature and mature cells, as well as on malignant B cells. Following treatment with rituximab (RTX), B-cells are prevented from proliferating, and undergo apoptosis and lysis through complement-dependent and -independent mechanisms. B-cell depletion usually persists for 6-9 mo in around 80% of patients, but the degree of depletion is greatly variable. Rituximab is currently approved for treating various malignancies including B cell non-Hodgkin's lymphoma and chronic lymphocytic leukemia; also, it has been licensed for refractory rheumatoid arthritis, granulomatosis with polyangiitis (Wegener's granulomatosis) and microscopic polyangiitis. Rituximab was expected to inhibit the production of autoantibodies involved in the pathogenesis of the disease without the toxicity of nonspecific immunosuppression. It has been the first monoclonal employed for the treatment of glomerular diseases and has been initially used for patients with membranous nephropathy but its use has rapidly spread to other glomerular diseases\(^{[2]}\). Membranous nephropathy and membranoproliferative GN are characterized by glomerular deposition of immune complexes; a crucial role of B cells in membranous (MN) and membranoproliferative glomerulonephritis pathogenesis through autoantibody production and antigen presentation has been mentioned. A small but growing body of literature is emerging on the benefits of rituximab in MN and membranoproliferative glomerulonephritis as primary treatment or as treatment of lesions refractory to other immunomodulatory regimens. In this setting, the drug appears to be well tolerated with small adverse events (Table 1)\(^{[3-8]}\).

We report here our experience on rituximab use in two patients with progressive kidney failure due to primary proliferative GN. Both of them received conventional immunosuppressive therapy with limited benefit on urinary and biochemical abnormalities; then, they underwent one RTX pulse but developed sepsis over the follow-up. A brief review on the safety and efficacy of rituximab for primary GN has been also added.

CASE REPORT

Patient 1

A 51-year-old Caucasian male patient was admitted to hospital for two-week's duration of abdominal pain with vomiting and diarrhoea. His medical history included arterial hypertension and symptomatic hepatitis C virus (HCV)-negative mixed cryoglobulinemia (since three years) with recurrent purpura and peripheral neuropathy at the lower extremities. Skin biopsy had shown leukocytoclastic vasculitis whereas neurological evaluation had revealed mono-neuritis at the left foot with axonal ischemic damage, probably related to cryoprecipitable immune complexes in the vasa nervorum. He had received low dose oral corticosteroids and azathioprine with partial control of cutaneous and neurological abnormalities. A bone marrow biopsy had reported no evidence of malignant lymphoma, and a small expansion of B lymphocytes (10%-15%).

A physical examination showed bilateral edema and hypertension (180/100 mmHg), purpuric rash with ulcers at the legs (Figure 1); no bowel movements were apparent from the clinical standpoint, this being confirmed by an abdomen X-ray. An ultrasound scan of the abdomen showed normal sized kidneys bilaterally, with normal echotexture. At presentation (Table 1), abnormal laboratory results included serum creatinine level of 2.5 mg/dL, proteinuria, 3.6 g/24 h, and hypoalbuminemia (2 g/L). Other pertinent chemistries were: positive cryoglobulins, with a cryocrit of 3% (polyclonal IgG and monoclonal IgM), elevated rheumatoid factor (148 IU/mL) and hypocomplementemia. Serology was negative for hepatitis B virus (HBV), HCV and human immuno-deficiency virus (HIV) markers, polymerase chain reaction tested negative for HCV RNA. Repeat urine sediment, analyzed by phase-contrast microscopy, showed severe microscopic hematuria (> 50 erythrocytes/microscopic field), many dysmorphic erythrocytes and casts (jailine, granular and red cell casts). Bence Jones proteinuria (kappa type) was positive. The search for anti-neutrophil cytoplasmic antibody (proteinase 3 and myeloperoxidase), anti-glomerular basement membrane antibody, extractable nuclear antigen antibody, antinuclear and anti-double stranded DNA tested negative.

Renal biopsy was not performed due to anatomic reasons, and a diagnosis of essential MC with rapidly progressive renal failure due to nephritic/nephrotic syndrome was made. Treatment was initiated with intravenous methylprednisolone (600 mg/d for three days), oral prednisone (50 mg/d on taper), and oral cyclophosphamide (100 mg daily). The progressive deterioration of kidney function (serum creatinine raised to 6.3 mg/dL, blood urea nitrogen to 279 mg/L) led us to make sequential plasma-exchange (nine sessions) and high-dose intravenous immunoglobulins (five procedures); in addition, hemodialysis was started. We...
Fabrizi F et al. Rituximab for primary glomerulonephritis

Table 1 Blood chemistries at presentation and over follow-up (patient 1)

	Admission	Discharge	Middle follow-up	Final follow-up
Creatinine (0.5-1.2, mg/dL)	2.8	1.59	1.76	0.8
Blood urea nitrogen (8-20, mg/dL)	147	104	86	85
AST (5-32, IU/L)	12	24	27	23
ALT (5-31, IU/L)	9	43	39	7
γGT (5-36, IU/L)	12	44	41	69
Cholinesterase (5300-12900, IU/L)	3833	2160	2920	3173
Total bilirubin (0.2-1.1, mg/dL)	0.2	0.25	0.22	0.23
Direct bilirubin (0.0-0.3, mg/dL)	0.09	0.07	0.08	0.16
Total protein (6.6-8.7, g/dL)	3.9	4.6	4.6	4.5
Albumin (3.4-4.8, g/dL)	2.4	3	2.5	3
Prothrombin time (0.88-1.16)	1.08	1.07	1.06	1.08
Partial thromboplastin time (0.85-1.18)	1.01	1	1.03	1.19
C1 (90-180)	20	56	59	99
C1 (10-40)	0	1	3	2
Cryoglobulins	Present	Absent	Absent	Present
Leucocytes (4.8-10.8, 10^3/mmc)	10670	3440	3400	3730
Hemoglobin (12-16, g/dL)	10.8	9.7	10.2	10.5
Platelets (130-400, 10^3/mmc)	313000	159000	153000	73000

AST: Aspartate aminotransferase; ALT: Alanine aminotransferase; γGT: Gamma-glutamyl transpeptidase.

Figure 1 Purpuric rash with ulcers at the leg (patient 1).

Figure 2 Biochemical/serological response to therapy (patient 1). HD: Haemodialysis; MP: High-dose methylprednisolone; PEX: Plasma-exchange; RTX: Rituximab.

observed healing of skin ulcers and improvement of neuropathic pain; GI disorders disappeared but immunosuppressive therapy was complicated by Clostridium Difficile-positive diarrhea, which was successfully treated with oral vancocine. Due to the persistence of severe renal failure (serum creatinine of 4.2 mg/dL), he received one infusion of RTX (375 mg/m²) off-label (Figure 2); by day 6 of the RTX dose, an improvement of urine output occurred. Since then, serum creatinine went back to 1.6 mg/dL, and blood urea nitrogen to 104 mg/dL. At discharge from the hospital, his medications included oral steroids, rabeprazole, amlodipine, furosemide, calcium carbonate, gabapentine, and darbopeoetin.

Two weeks after hospital discharge, serum creatinine was 1.76 mg/dL, blood urea nitrogen, 86 mg/dL, serum albumin 2.5 g/dL; severe and dysmorphic hematuria and non-nephrotic proteinuria (1.43 g/L) being still present. Low white blood cell count after RTX administration (3.4 × 10^3/mm³) occurred. According to flow cytometry, CD20⁺ B cells were 19% of total peripheral blood lymphocytes (before RTX) and fell to 1% (after RTX, since day 6) with no increase over the following weeks.

One month later, he became pyrexial with a temperature around 38℃ and was admitted again to the hospital. Pertinent biochemistry included serum creatinine (0.8 mg/dL), cryoglobulins and rheumatoid factor tested positive. Complete blood count gave the following features: white blood cells 2.67 × 10^3/mm³, erythrocytes 3.57 × 10^6/mm³, platelets 209 × 10^3/mm³. Flow cytometry: lymphocytes 169/mm³, CD3⁺ cells 142 (83.9%), CD19⁺ 0 (0%), natural killer cells 25 (14.9%). Gamma globulins were 0.16 g/L (3.9%, 11%-18.8%). IgA < 4 mg/dL (70-400), IgG 84 mg/dL (700-1600), IgM 108 mg/dL (40-230). Monoclonal component by serum electrophoresis (IgMk + oligoclonal Ig) was again detected. An active urinary sediment with non-nephrotic proteinuria (1.21 g/d) was still present. Sepsis from Enterococcus Spp. was identified whereas the chest radiograph reported multiple pneumonias. The culture of the bronchoalveolar lavage fluid was positive for Candida albicans, thus, we initiated intravenous imipenem and antifungal
medications. Medical and supportive therapy was unsuccessful and the patient ultimately expired due to septic shock (two months after RTX pulse).

Patient 2

A 49-year-old Caucasian male underwent kidney biopsy for evaluation of serum creatinine 1.35 mg/dL (estimated glomerular filtration rate (eGFR) 56 mL/min per 1.73 m² by MDRD equation), 3.2 g of proteinuria on 24-h urine collection and active urinary sediment (severe microscopic hematuria with red blood cell casts). Renal biopsy showed global ilinosis in some glomeruli (5 out of 14); the others had intense glomerular hypercellularity (mainly due to mesangial proliferation), a limited number of mesangial immune deposits and segmental thickening of glomerular basement membrane were also present. Final diagnosis was mesangial proliferative GN with immune deposits of unclear significance. Other pertinent chemistries were: negative cryoglobulins, normal rheumatoid factor and complement fractions; serum protein electrophoresis in the normal range. Serology tested negative for HBV, HCV and HIV markers, polymerase chain reaction was negative for HCV RNA. The search for anti-neutrophil cytoplasmic antibody (proteinase 3 and myeloperoxidase), anti-glomerular basement membrane antibody, extractable nuclear antigen antibody, antinuclear and anti-double stranded DNA tested negative. At discharge from the hospital, his medications included oral steroids, rabeprazole, allopurinol, doxazosine, furosemide, calcium carbonate, and darboepoetin. Partial remission of nephritic/nephrotic syndrome with improvement of kidney function (serum creatinine going back to 1.1 mg/dL) was obtained with intravenous methylprednisolone pulses, oral cyclophosphamide, azathioprine, and mycophenolate mofetil in variable associations. Eight years later, he was again admitted to our unit, showing bilateral lower-extremity edema, arterial hypertension and serum protein electrophoresis in the normal range. Pertinent chemistries were: negative cryoglobulins, normal rheumatoid factor and complement fractions; serum protein electrophoresis in the normal range. Glomerular filtration rate (eGFR) 56 mL/min per 1.73 m² by MDRD equation). Nephrotic proteinuria was demonstrated (proteinuria of 9.2 g/d) with active urinary sediment. A repeat kidney biopsy revealed intracapillary/extracapillary glomerular proliferation with several crescents and fibrinoid necrosis, diffuse arteriolosclerosis, in addition to uniform and diffuse thickening of the glomerular basement membrane. Immunofluorescence demonstrated sporadic and granular deposition of C1q/C3 in the mesangium and capillary walls; fibrinogen in the Bowman space. Renal biopsy was complicated by perirenal hematoma and a few units of red packed cells were given. He received oral antibiotics and adequate hydration. One month after rituximab administration he was again hospitalized (acute pulmonary insufficiency with septic shock); serum creatinine of 4.56 mg/dL (eGFR, 11 mL/min per 1.73 m²). Active urinary sediment and nephrotic proteinuria persisted. Pulmonary aspergillosis was documented- medical plus supportive therapy was initiated and the patient recovered in a few weeks; however, he developed irreversible kidney failure and initiated dialysis acutely. He is currently doing well on maintenance hemodialysis (thrice weekly) treatment.

DISCUSSION

We report here on two patients with rapidly progressive renal failure due to idiopathic proliferative GN who were resistant to conventional immunosuppressive therapy. Both the patients underwent rituximab treatment in off-label condition, RTX infusion was well tolerated by both the patients but sepsis developed over the follow-up, fatal course occurring in patient 1. Numerous case reports and case series have suggested that the addition of rituximab to standard chemotherapy for malignant lymphoma increases the risk of viral infections such as varicella zoster [10], cytomegalovirus [11], HBV [12], parvovirus [12], and enteroviral encephalitis [13]. The risk of HBV reactivation has been added to the existing Boxed Warning of the rituximab label by the Food and Drug Administration in 2013 [14]. Impaired immunity against non-viral pathogen agents such as Pneumocystis jirovecii [15] or cryptococcus after rituximab therapy has been also noted.

A recent systematic review and meta-analysis has shown that rituximab plus standard chemotherapy for malignant lymphoma increases the incidence of severe leucopenia (RR = 1.24; 95%CI: 1.12-1.37) and granulocytopenia (RR = 1.07; 95%CI: 1.02-1.12) even if the overall risk of severe infections has not been increased (RR = 1.0; 95%CI: 0.87-1.14) [17]. We have already reported on a case of cholestatic hepatitis C after rituximab therapy for gastric cancer in a renal transplant recipient [18]. On the other hand, various authors have claimed that rituximab use for glomerular diseases is effective and has minimal adverse effects (Table 2) [11,19,20].

Our first patient presented idiopathic cryoglobulinemic vasculitis which has undefined therapeutic management [21]. There is some evidence on the efficacy and tolerance of RTX in patients with HCV-associated mixed cryoglobulinemia vasculitis who were naïve, resistant or intolerant to antiviral therapy [22-25]. Two randomized controlled trials have compared RTX with conventional immunosuppressive therapy for HCV-related mixed cryoglobulinemia vasculitis [26-27]. As listed in Table 3, evidence in the medical literature on RTX use among patients with non-infectious cryoglobulinemia vasculitis targeting kidneys is extremely limited, and a total of 16 cases were retrieved [28-37]. Patient 1 gives emphasis on the efficacy of RTX, as one RTX pulse made possible the control of renal disease: kidney function normalized, nephrotic syndrome disappeared and only nephritic urinary changes persisted. However, RTX use was complicated by sepsis a few weeks after...
RTX pulse. On the basis of the evidence reported in Table 3, severe infections after RTX treatment are not uncommon [35% (6/17)].

RTX therapy in patients with nonviral cryoglobulinemia vasculitis or membranoproliferative GN raises various questions such as the role of RTX as first-line or rescue therapy, the efficacy/safety of maintenance therapy with RTX, and the tolerance to RTX. In the absence of randomized controlled trials, such questions remain unanswered; as an example, the poor tolerance of our patients after RTX administration remains unclear. The French multicenter CRYOvas survey retrospectively evaluated 242 patients with non-infectious mixed cryoglobulinemia vasculitis, RTX plus corticosteroids had greater therapeutic efficacy compared with corticosteroids alone and corticosteroids plus alkylating agents [38]. However, RTX plus corticosteroids was associated with more frequent infections than corticosteroids alone (HR = 9; 95%CI: 3.1-20, P < 0.001). Prospective data from the AIR (AutoImmunity and Rituximab) registry, which includes data on patients treated with rituximab off-label, have shown that among patients (n = 23) with nonviral cryoglobulinemia vasculitis on RTX, side-effects occurred in almost half of the patients (n = 11), including severe infections [34]. Both our patients had important kidney impairment at baseline and concomitant therapy with intravenous high-dose corticosteroids, among other immunosuppressive agents.

The current study calls for further research on the RTX-based treatment of essential cryoglobulinemic vasculitis or membranoproliferative GN but the low frequency of patients in individual centers would make

Ref.	n	Age (yr)/gender	Treatment prior to RTX	Features	Response to RTX	Side-effects after RTX
Arzoo et al [35]	1	71/F	CS	C, N, R	Remission	None
Ghijels et al [34]	1	48/M	CS, CPH, CHL	C, Ca, R	Remission	None
Koukoulaki et al [36]	1	48/F	CS, CPH	GI, P, R	Partial remission	None
Bryce et al [37]	1	NA	NA	R	No response	None
Rich et al [38]	1	64/M	CS	R	Remission	Cold agglutinin disease, sepsis
Annear et al [39]	1	42/F	CS	C, R	Remission	None
Terrier et al [40]	7	73 ± 5/M (n = 4)	CS (n = 4)	C (n = 6), N (n = 2), A (n = 2), R (n = 3)	Remission (n = 3), partial remission (n = 1), NA (n = 3)	Severe infections (n = 4)
Wink et al [41]	1	72/F	CS, Aza	C, P, R	Remission	None
Choudhry et al [42]	1	61/F	CS, CPH	C, P, R	Remission	None
Kemel et al [43]	1	77/F	CS	C, A, R	Remission	None
Own case	1	51/M	CS, Aza	C, GI, N, R	Remission	Severe infection

A: Arthralgias; Aza: Azathioprine; C: Cutaneous; Ca: Cardiac; CHL: Chlorambucil; CPH: Cyclophosphamide; CS: Corticosteroids; GI: Gastrointestinal; N: Neurological; NA: Not available; P: Pulmonary; R: Renal; RTX: Rituximab.

Table 2: Literature review: Adverse events during rituximab therapy for primary membranous and membranoproliferative glomerulonephritis

Ref.	n	Rituximab treatment dose	Follow-up period	Concomitant therapy	Response to RTX	Side-effects after RTX
Fervenza et al [44]	15	1 g × 2, on days 1 and 15	12 mo	ACE-I + ARB	Complete (n = 2) or partial remission (n = 6)	Nonserious transient AE (n = 10) pneumonia (n = 1)
Segarra et al [45]	13	375 mg/m² once weekly × 4	30 mo	Tac (n = 10), CyA (n = 3), CCS (n = 3)	Partial remission (n = 13)	Nonserious transient AE (n = 11) pneumonia (n = 1)
Fervenza et al [46]	20	375 mg/m² once weekly × 4	24 mo	ACE-I + ARB	Complete (n = 4) or partial remission (n = 12)	Nonserious transient AE (n = 11) pneumonia (n = 1)
Michel et al [47]	28	375 mg/m² once weekly × 2 or 3 or 4 (n = 27)	12 mo	ACE-I + ARB, CCS (n = 1), Tac (n = 1)	Complete (n = 6) or partial remission (n = 13)	Nonserious transient AE (few)
Ruggenenti et al [48]	100	375 mg/m² once weekly × 4	29 mo	CCS	Complete (n = 27) or partial remission (n = 38)	AE (n = 28)
Dillon et al [49]	6	1 g × 2, on days 1 and 15	12 mo	ACE-I + ARB	Complete (n = 2) or partial remission (n = 3)	Nonserious transient AE (n = 6) Pneumonia (n = 1)
Kong et al [50]	13	500 mg × 1 (n = 6)	31.5 mo	CCS (os) (n = 9)	Remission (n = 19)	Nonserious transient AE (n = 6)
Kong et al [51]	13	500 mg × 2 (n = 3) 500 mg × 4 (n = 4)		CyA (n = 2) CCS (iv) (n = 2)		

ACE-I: Angiotensin converting enzyme inhibitors; AE: Adverse events; ARB: Angiotensin receptor blockers; CCS: Corticosteroids [by intravenous (iv) or oral (os) route]; CyA: Cyclosporine; MN: Membranous nephropathy; MPGN: Membranoproliferative glomerulonephritis; Tac: Tacrolimus; RTX: Rituximab.

Table 3: Overview of cases with non-viral hepatitis mixed cryoglobulinemia (and kidney involvement) on rituximab
randomised controlled trials extremely difficult. Rituximab has surfaced as potential treatment option for some primary glomerular diseases and the HCV KDIGO Study Group[39] had already included rituximab among the recommended drugs (steroids, and cyclophosphamide) for the immunosuppressive treatment of HCV-associated kidney disease. The risks (and the predictive factors) of infections in kidney patients on RTX-therapy are not yet understood and are an area of active research. These patients should be monitored over the follow-up to avoid the occurrence of infectious episodes.

COMMENTS

Case characteristics
Two male Caucasian patients with progressive kidney failure.

Clinical diagnosis
Arterial hypertension, bilateral lower-extremity edema.

Differential diagnosis
Progressive kidney failure due to secondary glomerular disease.

Laboratory diagnosis
At presentation serum creatinine ranged between 2.5 and 2.9 mg/dL, proteinuria 3.6 and 9.2 g/dL, microscopic haematuria with dysmorphic erythrocytes and red cell casts.

Imaging diagnosis
Computed tomography scan revealed normal sized kidneys bilaterally with normal echotexture in both the patients.

Pathological diagnosis
Renal biopsy (patient 2) showed intracapillary/extracapillary glomerular proliferation with several crescents and fibrinoid necrosis, in addition to uniform diffuse thickening of the glomerular basement membrane.

Treatment
Both the patients received one infusion of rituximab (375 mg/m²) off-label.

Related reports
Various authors have claimed that rituximab use for glomerular diseases is effective and has minimal adverse effects.

Term explanation
Phase-contrast microscopy is a microscopy technique to analyze the morphology of urine erythrocytes.

Experiences and lessons
The risks and the predictive factors of severe infections in kidney patients on rituximab therapy are still unclear and appear an area of active research.

Peer-review
It is a good article.

REFERENCES

1. Manrique J, Cravedi P. Role of monoclonal antibodies in the treatment of immune-mediated glomerular diseases. *Nefrologia* 2014; 34: 388-397 [PMID: 24798567 DOI: 10.3265/Nefrologia.pre2014.Feb.12506]
2. Fervenza FC, Cosio FG, Erickson SB, Specks U, Herzenberg AM, Dillon JJ, Leung N, Cohen IM, Wochofs DN, Bergstrahl E, Hladuwenich M, Catran DC. Rituximab treatment of idiopathic membranous nephropathy. *Kidney Int* 2008; 73: 117-125 [PMID: 19437078 DOI: 10.1038/sj.ki.6006282]
3. Segarra A, Praga M, Ramos N, Polanco N, Cargol I, Gutierrez-Solis E, Gomez MR, Montoro B, Camps J. Successful treatment of membranous glomerulonephritis with rituximab in calcineurin inhibitor-dependent patients. *Clin J Am Soc Nephrol* 2009; 4: 1083-1088 [PMID: 19478097 DOI: 10.2215/CJN.06411108]
4. Fervenza FC, Abraham RS, Erickson SB, Irazabal MV, Eirin A, Specks U, Nachman PH, Bergstrahl EJ, Leung N, Cosio FG, Hogan MC, Dillon JJ, Hickson LJ, Li X, Catran DC. Rituximab therapy in idiopathic membranous nephropathy: a 2-year study. *Clin J Am Soc Nephrol* 2010; 5: 2188-2198 [PMID: 20705965 DOI: 10.2215/CJN.05080610]
5. Michel PA, Dahan K, Ancel PY, Flayier E, Mojart R, De Seigneux S, Daugas E, Matignon M, Mesnard L, Karras A, Francois H, Pardon A, Caudwell V, Debiec H, Ronco P. Rituximab treatment for membranous nephropathy: a French clinical and serological retrospective study of 28 patients. *Nephron Extra* 2011; 1: 251-261 [PMID: 22470399 DOI: 10.1159/000339068]
6. Ruggenenti P, Cravedi P, Chianca A, Perna A, Ruggiero B, Gaspari F, Rambaldi A, Marasà M, Remuzzi G. Rituximab in idiopathic membranous nephropathy. *J Am Soc Nephrol* 2012; 23: 1416-1425 [PMID: 22822077 DOI: 10.1681/ASN.201202020181]
7. Dillon JJ, Hladuwenich M, Haley WE, Reich NH, Catran DC, Fervenza FC. Rituximab therapy for Type I membranoproliferative glomerulonephritis. *Clin Nephrol* 2012; 77: 290-295 [PMID: 22445472 DOI: 10.5414/CN107299]
8. Kong WY, Swaminathan R, Irish A. Our experience with rituximab therapy for adult-onset primary glomerulonephritis and review of literature. *Int Urol Nephrol* 2013; 45: 795-802 [PMID: 22798030 DOI: 10.1007/s11255-012-0206-0]
9. Bermúdez A, Marco F, Conde E, Mazo E, Recio M, Zubizarreta A. Fatal visceral varicella-zoster infection following rituximab and chemotherapy treatment in a patient with follicular lymphoma. *Haematologica* 2000; 85: 894-895 [PMID: 10942955]
10. Suzan F, Ammor M, Ribrag V. Fatal reactivation of cytomegalovirus infection after use of rituximab for a post-transplantation lymphoproliferative disorder. *N Engl J Med* 2001; 345: 1000 [PMID: 11575282 DOI: 10.1056/NEJM200109273451315]
11. Devrient I, Hober D, Morel P. Acute hepatitis B in a patient with antibodies to hepatitis B surface antigen who was receiving rituximab. *N Engl J Med* 2001; 344: 68-69 [PMID: 11187122 DOI: 10.1056/NEJM200106013440120]
12. Song KW, Mollee P, Patterson B, Brien W, Crump M. Pure red cell aplasia due to parovirus following treatment with CHOP and rituximab for B-cell lymphoma. *Br J Haematol* 2002; 119: 125-127 [PMID: 12358915]
13. Quartier P, Tournilhac O, Archimbaud C, Lazoro L, Chauteil C, Millet P, Peigne-Lafeuille H, Blanche S, Fischer A, Casanova JL, Travade P, Tarteeu M. Enteroctal meningococcalsepsis after anti-CD20 (rituximab) treatment. *Clin Infect Dis* 2003; 36: e47-e49 [PMID: 12539090 DOI: 10.1086/345746]
14. US Food and Drug Administration. FDA Drug Safety Communication: Boxed Warning and new recommendations to decrease risk of hepatitis B reactivation with the immune-suppressing and anti-cancer drugs Arzerra (ofatumumab) and Rituxan (rituximab). Available from: URL: http://www.fda.gov/drugs/drugsafety/ucm366406.htm
15. Ennishi D, Terui Y, Yokoyama M, Mishima Y, Takahashi S, Takeuchi K, Ikeda K, Tanimoto M, Hatake K. Increased incidence of interstitial pneumonia by CHOP combined with rituximab. *Int J Hematol* 2008; 87: 393-397 [PMID: 18409079 DOI: 10.1007/s12185-008-0066-7]
16. Basse G, Ribes D, Kamar N, Mehrenberger M, Sallusto F, Esposito L, Guirtal J, Lavavssiere L, Oksman F, Durand D, Rostaing L. Rituximab therapy for mixed cryoglobulinemia in seven renal transplant patients. *Transplant Proc* 2006; 38: 2308-2310 [PMID: 16980074 DOI: 10.1016/j.transproceed.2006.06.131]
17. Lanini S, Molloy AC, Fine PE, Prentice AG, Ippolito G, Kibbler
Fabrizi F et al. Rituximab for primary glomerulonephritis

CC. Risk of infection in patients with lymphoma receiving rituximab: systematic review and meta-analysis. BMC Med 2011; 9: 36 [PMID: 21481281 DOI: 10.1186/1741-7015-9-36]
18 Fabrizi F, Martin P, Eilli A, Montagnino G, Bani F, Gasserini P, Campese MR, Tarantino A, Ponticelli C. Hepatitis C virus infection and rituximab therapy after renal transplantation. Int J Artif Organs 2007; 30: 445-449 [PMID: 17551909]
19 Bombacco AS, Derbail VK, McGregor JG, Kshirsagar AV, Fally RJ, Nachman PH. Rituximab therapy for membranoproliferative glomerulonephropathy: a systematic review. Clin J Am Soc Nephrol 2009; 4: 734-744 [PMID: 19279120 DOI: 10.2215/CJN.05231008]
20 Tanna A, Tam FW, Pusey CD. B-cell-targeted therapy in adult glomerulonephritis. Expert Opin Biol Ther 2013; 13: 1691-1706 [PMID: 24188581 DOI: 10.1517/14712598.2013.851191]
21 Fabrizi F, Plaisier E, Saadoun D, Martin P, Messa P, Cacoub P. Hepatitis C virus infection, mixed cryoglobulinemia, and kidney disease. Am J Kidney Dis 2013; 61: 623-637 [PMID: 23102733 DOI: 10.1053/j.ajkd.2012.08.040]
22 Zaja F, De Vita S, Mazzaro C, Sacco S, Damiani D, De Marchi G, Micheltelli A, Baccarani M, Fanin R, Ferrarioli G. Efficacy and safety of rituximab in type II mixed cryoglobulinemia. Blood 2003; 101: 3827-3834 [PMID: 12560225 DOI: 10.1182/blood-2002-09-2856]
23 Sansonno D, De Re V, Lalouette G, Tucci FA, Boiocchi M, Dammacco F. Monoclonal antibody treatment of mixed cryoglobulinemia resistant to interferon alpha with an anti-CD20. Blood 2003; 101: 3818-3826 [PMID: 12506023 DOI: 10.1182/blood-2002-10-3162]
24 Roccioletto D, Baldovino S, Rossi D, Giachino O, Mansouri M, Naretto C, Di Simone D, Francia S, Cavallo R, Alpa M, Napoli F, Sena LM. Rituximab as a therapeutic tool in severe mixed cryoglobulinemia. Clin Rev Allergy Immunol 2008; 34: 111-117 [PMID: 18270864 DOI: 10.1007/s12016-007-0819-0]
25 Terrier B, Saadoun D, Séné D, Sellam J, Pérard L, Coppére B, Karras A, Blanc F, Buchler M, Plaisier E, Gilliani P, Rosenzwajg M, Cacoub P. Efficacy and tolerability of rituximab with or without Pegylated interferon alfa-2b plus ribavirin in severe hepatitis C virus-related vasculitis: a long-term followup study of thirty-two patients. Arthritis Rheum 2009; 60: 2531-2540 [PMID: 19644879 DOI: 10.1002/art.24703]
26 Sneller MC, Hu Z, Langford CA. A randomized controlled trial of rituximab following failure of antiviral therapy for hepatitis C virus-associated cryoglobulinemic vasculitis. Arthritis Rheum 2012; 64: 835-842 [PMID: 22147444 DOI: 10.1002/art.33422]
27 De Vita S, Quattrocchi L, Isola M, Mazzaro C, Scaini P, Lenzi M, Campianni M, Nacchiero C, Tanovi A, Pietrogrande M, Ferr C, Mascia MT, Masolini P, Zabotti A, Maset M, Roccaletto D, Zignego AL, Pioletti P, Gabrielli O, Filipinini D, Perrella O, Migliaretti S, Galli M, Bombardieri S, Monti G. A randomized controlled trial of rituximab for the treatment of severe cryoglobulinemic vasculitis. Arthritis Rheum 2012; 64: 843-853 [PMID: 22147661 DOI: 10.1002/art.33431]
28 Arzoo K, Sadeghi S, Liebman HA. Treatment of refractory antibody mediated autoimmune disorders with an anti-CD20 monoclonal antibody (rituximab). Ann Rheum Dis 2002; 61: 922-924 [PMID: 12228164 DOI: 10.1136/ard.61.10.922]
29 Ghijsels E, Lerut E, Vanneste G, Kuyvers D. Anti-CD20 monoclonal antibody (rituximab) treatment for hepatitis C-negative therapy-resistant essential mixed cryoglobulinemia with renal and cardiac failure. Am J Kidney Dis 2004; 43: e34-e38 [PMID: 15112197 DOI: 10.1053/j.ajkd.2003.12.057]
30 Koukoulaki M, Abeygunasekara SC, Smith KG, Jayne DR. Remission of refractory hepatitis C-negative cryoglobulinemia with rituximab. Nephrol Dial Transplant 2005; 20: 213-216 [PMID: 15363253 DOI: 10.1093/ndt/gfh564]
31 Bryce AH, Denissenzi A, Kyle ME, Rajkumar SV, Inwards DJ, Yasenchak CA, Kumar SK, Gertz MA. Response to rituximab in patients with type II cryoglobulinemia. Clin Lymphoma Myeloma 2006; 7: 140-144 [PMID: 17026826 DOI: 10.3186/CLM.2006.n052]
32 Ruch J, McMahon B, Ramsey G, Kwaan HC. Catastrophic multiple organ ischemia due to an anti-Pr cold agglutinin developing in a patient with mixed cryoglobulinemia after treatment with rituximab. Am J Hematol 2009; 84: 120-122 [PMID: 19097173 DOI: 10.1002/ajh.21330]
33 Anneck NM, Cook HT, Atkins M, Pusey CD, Salama AD. Non-hepatitis virus associated mixed essential cryoglobulinemia. Kidney Int 2010; 77: 161-164 [PMID: 19800273 DOI: 10.1038/ki2009.416]
34 Terrier B, Launay D, Kaplanski G, Hot A, Larroche C, Cathébras P, Combe B, de Jaureguiberry JP, Meyer O, Schaeverbeke T, Somogyi A, Tricot L, Zénone T, Ravaud P, Gottenberg JE, Mariette X, Cacoub P. Safety and efficacy of rituximab in nonviral cryoglobulinemia vasculitis: data from the French Autoimmunity and Rituximab registry. Arthritis Care Res (Hoboken) 2010; 62: 1787-1795 [PMID: 20740617 DOI: 10.1002/acr.20318]
35 Wink F, Houtman PM, Jansen TL. Rituximab in cryoglobulinemic vasculitis, evidence for its effectivity: a case report and review of literature. Clin Rheumatol 2011; 30: 293-300 [PMID: 21053035 DOI: 10.1007/s12006-010-1612-2]
36 Choudhry M, Rao N, Juneca R. Successful treatment of cryoglobulinemia with rituximab. Case Rep Nephrol Urol 2012; 2: 72-77 [PMID: 23197929 DOI: 10.1159/000339400]
37 Kamel M, Thajudeen B, Bracamonte E, Madhrira M. Idiopathic Nonviral Cryoglobulinemia Treated Successfully With Rituximab. Am J Ther 2014; Epub ahead of print [PMID: 24914502]
38 Terrier B, Krastinova E, Marie I, Launay D, Lacraz A, Belonetti P, de Saint-Martin L, Quemeneur T, Gottenberg JE, Michelutti A, Baccarani M, Fanin R, Ferraccioli G, de Saint-Martin L, Quemeneur T, Huart A, Bonnet F, Le Guennou G, Kahn JE, Hinscherberger O, Rullier P, Diet E, Lazzaro E, Bridoux F, Zénone T, Carrat F, Hermine O, Léger JM, Mariette X, Senet P, Plaisier E, Cacoub P. Management of noninfectious mixed cryoglobulinemia vasculitis: data from 242 cases included in the CryoVas survey. Blood 2011; 119: 5996-6004 [PMID: 22474249 DOI: 10.1182/blood-2011-12-396028]
39 Kidney Disease: Improving Global Outcomes (KDIGO). KDIGO clinical practice guidelines for the prevention, diagnosis, evaluation, and treatment of hepatitis C in chronic kidney disease. Kidney Int Suppl 2008; (109): S1-99 [PMID: 18382440 DOI: 10.1038/ki.2008.81]
