Interactions between insect vectors and plant pathogens span the parasitism–mutualism continuum

Ma. Francesca M. Santiago, Kayla C. King and Georgia C. Drew

Department of Biology, University of Oxford, Oxford OX1 2JL, UK
MFMS, 0000-0002-6819-074X; GCD, 0000-0002-9604-1821

Agricultural crops infected with vector-borne pathogens can suffer severe negative consequences, but the extent to which phytopathogens affect the fitness of their vector hosts remains unclear. Evolutionary theory predicts that selection on vector-borne pathogens will favour low virulence or mutualistic phenotypes in the vector, traits facilitating effective transmission between plant hosts. Here, we use a multivariate meta-analytic approach on 115 effect sizes across 34 unique plant–vector–pathogen systems to quantify the overall effect of phytopathogens on vector host fitness. In support of theoretical models, we report that phytopathogens overall have a neutral fitness effect on vector hosts. However, the range of fitness outcomes is diverse and span the parasitism–mutualism continuum. We found no evidence that various transmission strategies, or direct effects and indirect (plant-mediated) effects, of phytopathogens have divergent fitness outcomes for the vector. Our finding emphasizes diversity in tripartite interactions and the necessity for pathosystem-specific approaches to vector control.

1. Introduction

Many viral and bacterial pathogens that cause plant disease epidemics rely on herbivorous insect vectors for transmission [1,2]. Vector-borne pathogens should be selected to enhance their transmission to plant hosts, via direct effects in the vector host or indirectly by manipulating the host plant [3]. However, high virulence to the vector can negatively impact transmission as phytopathogens rely on the mobility of the vector for transmission and dispersal to non-motile plant hosts [4–6]. Consequently, evolutionary theory predicts that vector-borne agents will be relatively less virulent to the vector or even have beneficial phenotypes in the vector host [7–10]. Despite predictions, a wide range of fitness effects have been reported across vector species. Squash vein yellowing virus (SqVYV) improves the longevity and fecundity of its whitefly vector [11], whereas Watermelon bud necrosis virus (WBNV) reduces these fitness-associated parameters in its vector Thrips palmi [12]. Contradictory results have also been reported within the same taxa: Candidatus Liberibacter asiaticus positively affects the citrus psyllid’s fecundity [13,14], but negatively affects survival and longevity [14,15], underscoring the complexity of vector–pathogen interactions. The extent to which phytopathogens affect the fitness of vector hosts remains unquantified (figure 1a), despite the importance for the ecology and evolution of these pathosystems (a plant–pathogen–vector association) [3].

The majority of attention has focused on the nature of pathogen tropism, retention and replication in the vector (referred to as transmission mode) [3]. Non-circulative pathogens are restricted to the vector’s stylet or foregut for short periods. Circulative viruses, and all bacteria, enter the haemocoel and

Electronic supplementary material is available online at https://doi.org/10.6084/m9.figshare.c.6215267.

© 2023 The Authors. Published by the Royal Society under the terms of the Creative Commons Attribution License http://creativecommons.org/licenses/by/4.0/, which permits unrestricted use, provided the original author and source are credited.
render the vector infectious for longer periods [16], with some also propagating within the vector [17]. Consequently, it has been suggested that non-circulative, non-persistent pathogens will predominantly have indirect effects on vector fitness, for example by affecting the volatile profile of infected plants [18] or altering plant defence against herbivory [19]. By contrast, circulative, propagative viruses and bacteria are more likely to affect vector fitness directly, for example by hijacking the vector's cellular machinery; in addition to plant-mediated indirect effects. The outcome of vector–pathogen interactions may be affected by additional factors such as pathogen and vector taxonomy [20,21], differences in study methods [22], and whether vertical transmission occurs in the vector (see electronic supplementary material, table S1 for hypotheses).

Previous vote-counting studies highlight a positive effect of phytopathogens on their vectors [3,23,24]; these have focused either exclusively on viruses or included effects on vector behaviour. Here, we use a meta-analytic approach to test the hypothesis that vector-borne bacterial and viral phytopathogens benefit their insect vectors. We include only fitness-associated metrics to assess the scope for mutualism in these interactions. Further analysis tests for ecological drivers of variation in vector–pathogen interactions. Our synthesis of 34 pathosystems suggests the mean effect of infection on vector fitness is neutral, but the range of outcomes is considerable and spans the parasitism–mutualism continuum. As fitness costs affect the abundance and population dynamics of insect vectors, an improved understanding of vector–pathogen interactions will be critical for preventing plant disease epidemics.

2. Methods
(a) Literature review
We searched Web of Science for relevant studies and retrieved 888 papers published up to July 2021 (electronic supplementary material, information and figure S3). Studies on plant pathosystems were included when each experiment had a treatment and control group with independent samples; an infection challenge, where greater than or equal to 70% of individuals were infected; a standardized way to quantify fitness; and greater than or equal to five observations. Studies that evaluated the effects of temperature, co-infections, or starvation, and studies testing the effect of infection on host preference and feeding behaviours, were excluded. Overall, 26 studies were included covering 34 unique pathosystems.

(b) Calculation of effect sizes
Of the 115 effect sizes extracted, 85 were in count form and 30 were dichotomous. To combine the datasets, dichotomous data were represented as mean effect sizes due to sampling variation within and between studies reported within the study ID allowed for differentiation of the effect sizes. A difference of less than 0.1354 is significant (95% CI: 0.8088–0.5381) (b). Mean effect and 95% confidence intervals are plotted in black. Effect sizes reported according to vector species (c), pathogen species (d) and plant host species (e). Individual effect sizes are jittered and coloured by family. Point size represents study sample size.

Figure 1. Crops infected with vector-borne phytopathogens suffer negative consequences, but the extent to which phytopathogens affect the fitness of their vector hosts is unclear (a). Vector–phytopathogen interactions are diverse and range from parasitic to mutualistic (SMD = −0.1354, 95% CI: −0.8088–0.5381) (b). Mean effect and 95% confidence intervals are plotted in black. Effect sizes reported according to vector species (c), pathogen species (d) and plant host species (e). Individual effect sizes are jittered and coloured by family. Point size represents study sample size.
material, table S1). Omnibus tests were used to assess differences in mean effect size between groups, and likelihood ratio tests using maximum-likelihood estimation were used to assess the significance of each predictor.

(d) Assessing bias
Publication bias was visually assessed using funnel plots (electronic supplementary material, figure S4). The weighted Rosenberg method [34] was used to calculate a fail-safe number, which estimates the number of studies averaging a null result that would have to be added to the dataset to reduce the significance level to a target alpha level (e.g. 0.05). The fail-safe number was 581, which is not greater than the threshold considered for a robust analysis (nfs > 5 N + 10 where N = no. effect sizes). These results suggest that the dataset could be affected by bias towards positive results. However, as noted by others [23], negative results would be biologically interesting in this case and less likely to remain unpublished.

3. Results
All 34 pathosystems included domesticated crop hosts and insect vectors, 29% of the vector-borne agents were bacteria and 71% were viruses (table 1).

(a) Neutral effect of infection on vector host
The mean effect of phytopathogen infection on vector hosts was neutral (figure 1b), but highly variable (full model: SMD = −0.1354, s.e. = 0.3346, 95% CI: −0.8088, 0.5381, p = 0.6936) with interactions spanning from parasitic to mutualistic. Heterogeneity across studies was high (Q(df = 114) = 1090.6284, p < 0.0001).

(b) Subgroup analysis according to phylogeny
Mean effects were calculated for taxonomic subgroups at the family level and most showed neutral effects overall. However, associations in the vector family Triozidae (jumping plant lice) were associated with a negative impact on vector fitness, (SMD = −1.2066, s.e. = 0.5329, 95% CI: −2.2511, −0.1621, p = 0.0236) and in the pathogen family Tombusviridae (single-stranded RNA viruses) a positive effect was observed (SMD = 2.0543, s.e. = 0.2404, 95% CI: 1.5831, 2.5255, p < 0.0001).

(c) Biological predictors
We tested multiple ecological factors to assess if they accounted for variation in the effect of infection on vector fitness (figure 2). Fitness effects did not vary between bacterial and viral pathogens (QM(df = 1) = 0.2041, p = 0.6514), and transmission mode did not significantly affect the fitness of the vector host (QM(df = 3) = 0.7933, p = 0.8511). Estimates for vector fitness were not impacted by pathogens that are also transmitted vertically in the vector (horizontal/mixed-mode transmission, QM(df = 1) = 0.0090, p = 0.9244). We did not detect significant differences between the measures used to estimate fitness (e.g. longevity, fecundity, fertility and survival (QM(df = 3) = 1.0689, p = 0.7846). Pathosystems were classified by whether the infections were expected to directly affect fitness as they infect the vector host (Direct effects); indirectly affect fitness by altering plant host defences to herbivory and/or facilitating predation (Indirect effects); a certain combination of direct and indirect effects (Both) or a likely combination of the two (Likely both). For classification criteria see electronic supplementary material, figure S2. We were unable to detect significant differences in the fitness outcomes conferred by infections across these categories (QM(df = 3) = 0.6531, p = 0.8842).

Overall, sex was not a significant driver of variation in vector–phytopathogen outcomes (QM(df = 2) = 5.5433, p = 0.0626). However, infected males were generally more negatively affected by infection (SMD = −0.9706, 95% CI = −1.9570, 0.0159) than females (SMD = −0.2159, 95% CI = −0.9220, 0.4902) or mixed groups (SMD = 0.1208, 95% CI = −0.6425, 0.8842).

(d) Methodological predictors
We found limited evidence that methodological factors influenced the effect of infection on vector host fitness. The method of pathogen inoculation to the vector host did not significantly affect fitness outcomes (QM(df = 2) = 0.2068, p = 0.9018), and for studies that inoculated the plant host no effect of inoculation method was detected (QM(df = 3) = 2.2931, p = 0.5138). The parties experimentally infected during the study also did not have a significant impact on the infection outcome (QM(df = 2) = 0.6016, p = 0.7402). However, vector fitness was more negatively affected in studies where both plant and vector hosts, or only the vector host was infected (SMD = −0.1619, 95% CI: −1.276, 0.9522; SMD = −0.3198, 95% CI: −1.1064, 0.4668), whereas vectors showed neutral fitness effects in studies where only the plant host was infected (SMD = −0.0189, 95% CI: −0.7388, 0.7011).

Finally, the amount of time allotted for the vector to acquire the pathogen (acquisition time) did not significantly affect the outcome of infection (QM(df = 2) = 3.7372, p = 0.1543). That said, vectors that had shorter acquisition periods of a week or less generally had reduced fitness (SMD = −1.0049, 95% CI = −2.1278, 0.118) but those with longer acquisition periods (adult to death/lifetime) showed neutral fitness effects (SMD = 0.0542, 95% CI: −0.8832, 0.9917; SMD = 0.2564, 95% CI: −0.5433, 1.0561).

4. Discussion
Evolutionary theory suggests that vector-borne pathogens will be selected for low virulence or even beneficial phenotypes in the vector host, as mobility of this host is crucial for transmission [5,6,56]. Across 34 pathosystems, we show the average effect of infection on vector fitness is neutral, in line with theoretical models [7–10]. However, our analysis shows vector–pathogen interactions span the symbiosis continuum, like many other host–microbe interactions [57], with infections ranging from beneficial to highly detrimental for vectors.

Phylogeny is frequently an important predictor of host–microbe interactions [20,21]. Our analysis revealed some differences in infection outcomes among pathogen and vector families; however, the number of species represented was limited. Sex-specific differences also drive variation in host–parasite interactions [58], and in our study male vectors appeared to suffer more from associations. The negative trend for males may be influenced by differences in immunocompetence [59]; alternatively, less harm may be favoured in females who are generally the dominant transmitters [60].
Table 1. Summary of pathosystems included.

Plant host	Vector	Pathogen	Fitness effects	Effect	References
Allium ampeloprasum (wild leek)	*Thrips tabaci* (onion thrips)	Tomato spotted wilt virus (TSWV)	Adult longevity, fecundity	Both	[35]
Allium cepa (onion)	*Thrips tabaci*	Tomato spotted wilt virus (TSWV)	Adult longevity, survival	Both	[35]
Arachis hypogaea (groundnut)	*Frankliniella fusca* (tobacco thrips)	Tomato spotted wilt virus (TSWV)	Fecundity	Likely both	[36]
Capsicum annuum L. (red pepper)	*Frankliniella fusca* (tobacco thrips)	Cucumber mosaic virus (CMV)	Fecundity	Indirect	[37]
Capsicum annuum L.	*Frankliniella fusca*	Tomato spotted wilt virus (TSWV)	Fecundity	Likely both	[37]
Capsicum annuum L.	*Myzus persicae* (green peach aphid)	Cucumber mosaic virus (CMV)	Fecundity	Indirect	[37]
Cucurbita pepo (pumpkin)	*Aphis gossypii* (melon aphid)	Papaya ring spot virus (PRSV)	Fecundity	Indirect	[38]
Cucurbita pepo	*Bemisia tabaci* (whitefly)	Squash vein yellowing virus (SqVVY)	Adult longevity, fecundity	Indirect	[11]
Glycine max (soya bean)	*Aphis glycines* (soya bean aphid)	Soya bean mosaic virus (SMV)	Fecundity	Indirect	[39, 40]
Gossypium hirsutum (cotton)	*Bemisia tabaci* (whitefly)	Tomato yellow leaf curl virus (TYLCCNV)	Fecundity	Direct	[41]
Gossypium hirsutum	*Bemisia tabaci*	Tomato yellow leaf curl virus (TYLCV)	Adult longevity, fecundity	Likely both	[42]
Hordeum vulgare (barley)	*Laodelphax striatellus* (small brown planthopper)	Maize Iranian mosaic virus (MIMV)	Adult longevity, fecundity	Direct	[43]
Medicago sativa (alfalfa)	*Acyrthosiphon pisum* (pea aphid)	Bean leafroll virus (BLRV)	Survival	Likely both	[44]
Nicotiana tabacum (tobacco)	*Bemisia tabaci* (whitefly)	Tomato yellow leaf curl virus (TYLCCNV)	Adult longevity, fecundity	Likely both	[41]
Oryza sativa (rice)	*Recilla dorsalis* (zigzag leafhopper)	Rice gall dwarf virus (RGDV)	Adult longevity, fecundity, survival	Direct	[45]
Oryza sativa (rice)	*Sogatella furcifera* (white-backed planthopper)	Southern rice black-streaked dwarf virus (SRBSDV)	Fecundity, fertility	Direct	[46]
Pisum sativum (pea plant)	*Acyrthosiphon pisum* (pea aphid)	Bean leafroll virus	Survival	Both	[44]
Pisum sativum	*Acyrthosiphon pisum*	Pea enation mosaic virus (PEMV)	Fecundity, survival	Likely both	[47]
Solanum lycopersicum (tomato)	*Bemisia tabaci* (whitefly)	Tomato chlorosis virus (ToCV)	Adult longevity, fecundity, fertility, survival	Indirect	[48]
Solanum lycopersicum	*Bemisia tabaci*	Tomato severe rugose virus (ToSRV)	Adult longevity, fecundity, fertility, survival	Indirect	[48]

(Continued.)
For the systems studied herein, circulative pathogens had similar fitness effects on vectors to those that do not circulate within the host. Similarly, we found no evidence that direct effects of infection differ significantly from indirect effects. These findings, contrary to our initial hypothesis, come with two caveats: the number of studies remains relatively small, and vectors typically acquire pathogens by feeding on infected plants, making it challenging to disentangle the direct and indirect effects of the pathogen on the insect vector. Some studies limited the contribution of indirect effects by infecting vectors in vitro \cite{14,41,43,45,46,50,53–55} or transferring them regularly onto unexposed plants \cite{50}.

For most other studies, whether effects were direct, indirect, likely both, or certainly both were inferred based on pathogen transmission mode and the experimentally infected party (electronic supplementary material, figure S2). More studies are needed that distinguish the direct and indirect effects of plant pathogens on vectors, and establish whether mutualistic phenotypes evolve more readily within a given effect class.

Methodological differences frequently drive variation in study outcomes. For example, plant hosts inoculated mechanically versus vector inoculated will not induce processes such as herbivore effector-triggered immunity or other changes to plant chemical composition \cite{61–63}. However, inoculation method explained little of the variation in vector fitness, suggesting methods may be relatively comparable. Notably, negative fitness outcomes were slightly more prevalent if the vector was the only party infected in

plant host	vector	pathogen	fitness effects\(^a\)	effect\(^b\)	references
Solanum lycopersicum	Bemisia tabaci	tomato yellow leaf curl virus (TYLCCNV)	adult longevity, fecundity, survival	likely both	\cite{49}
Solanum lycopersicum	Bemisia tabaci	tomato yellow leaf curl virus (TYLCV)	adult longevity, fecundity, survival	likely both	\cite{42,49}
Vigna unguiculata	Thrips palmi (melon thrips)	groundnut bud necrosis virus (GBNV)	adult longevity, fecundity	direct, likely both	\cite{50}
Vigna unguiculata	Thrips palmi	WBNV	adult longevity, fecundity	likely both	\cite{12}
Zea mays L. (corn)	P. maidis	maize mosaic virus (MMV)	adult longevity, fecundity	both	\cite{51}
	(corn planthopper)				
Bacterial pathosystems					
Citrus flamea	Diaphorina citri	Candidatus Liberibacter asiaticus	adult longevity, fecundity, survival	both	\cite{14}
(shatangju)					
Citrus macrophylla	Diaphorina citri	Candidatus Liberibacter asiaticus	adult longevity	likely both	\cite{15}
(alemow)					
Citrus reticulata	Diaphorina citri	Candidatus Liberibacter solanacearum	adult longevity, fecundity, fertility, survival	likely both	\cite{52}
(tangerine)					
Citrus sinensis	Diaphorina citri	Candidatus Liberibacter asiaticus	fecundity, fertility, survival	both	\cite{13}
(sweet orange)					
Citrus sunki	Diaphorina citri	Candidatus Liberibacter solanacearum	adult longevity, fecundity, fertility, survival	likely both	\cite{52}
(sour mandarin)					
Solanum elaeagnifolium	Bactericera cockerelli	Candidatus Liberibacter solanacearum	adult longevity, fecundity, survival	direct	\cite{53}
(silverleaf nightshade)					
Solanum lycopersicum	Bactericera cockerelli	Candidatus Liberibacter solanacearum	fecundity, fertility	direct	\cite{54,55}

\(^a\)Measure/proxy of vector fitness.

\(^b\)Whether the study tested direct effects of phytopathogen association with vector (Direct); indirect effects driven by altered plant host state (Indirect); a combination of direct and indirect effects when both vector and plant were confirmed infected (Both); or a likely combination of the two in cases where the plant was infected but vector may have gained infection (but not confirmed) from feeding (Likely both). See electronic supplementary material, figure S2 for detail.
the experiment. This suggests that beneficial phenotypes in the vector may depend upon the interaction of both direct and plant-mediated (indirect) effects of a pathogen. To disentangle the contribution of direct and indirect effects, studies must infect each party individually and in combination.

Domesticated crop hosts that are closely related, and grown in dense, low diversity, cultures are overrepresented here. These characteristics likely shape the interaction between vector and phytopathogen. Non-domesticated pathosystems differ greatly in these characteristics [64], and would be a valuable point of comparison for the evolution of tripartite interactions. Such systems are underrepresented in the literature. Given the controlled conditions of experiments, it is also likely that context-dependent cost/benefits for vector hosts are unaccounted for here.

Our study formally quantifies the effect of agriculturally important phytopathogens on insect vectors. We report an overall neutral fitness effect, but one that is underpinned by considerable diversity in both parasitic and mutualistic phenotypes. This finding highlights the value of vector–phytopathogen systems for exploring the evolution of tripartite symbiotic interactions and emphasizes the necessity for pathosystem-specific approaches to vector control.

Data accessibility. All data, code and supplementary files associated with the manuscript are publicly available at: https://doi.org/10.6084/m9.figshare.c.6215267.v2 [65].

Acknowledgements. We thank Kim Hoang and Jingdi Li for sharing code, anonymous reviewers for their comments. K.C.K. is funded by a European Research Council Starter Grant (COEVOPRO 802242) and Natural Environment Research Council Standard Grant (NE/X000540/1). M.F.M.S. is funded by a Jardine Scholarship.

Conflict of interest declaration. We declare we have no competing interests.

Funding. K.C.K. is funded by a European Research Council Starter Grant (COEVOPRO 802242) and Natural Environment Research Council Standard Grant (NE/X000540/1). M.F.M.S. is funded by a Jardine Scholarship.

References

1. Whitfield AE, Falk BW, Rotenberg D. 2015 Insect vector-mediated transmission of plant viruses. Virology 479–480, 278–289. (doi:10.1016/j.viro.2015.03.026)
2. Perilla-Henao L, Casteel C. 2016 Vector-borne bacterial plant pathogens: interactions with hemipteran insects and plants. Front Plant Sci. 7, 1163. (doi:10.3389/fpls.2016.01163)
3. Eigenbrode SD, Bosque-Pérez NA, Davis TS. 2018 Insect-borne plant pathogens and their vectors: ecology, evolution, and complex interactions. Annu. Rev. Entomol. 63, 169–191. (doi:10.1146/annurev-ento-020117-043119)
4. Cunniffe NJ, Taylor NP, Hamelin FM, Jeger MJ. 2021 Epidemiological and ecological consequences of virus manipulation of host and vector in plant virus transmission. PLoS Comput. Biol. 17, e1009759. (doi:10.1371/journal.pcbi.1009759)
5. Orlovskis Z, Canale MC, Thole V, Pecher P, Lopes JR, Hogenhout SA. 2015 Insect-borne plant pathogenic bacteria: getting a ride goes beyond physical contact. Curr. Opin. Insect Sci. 9, 16–23. (doi:10.1016/j.cois.2015.04.007)
6. Allen LJ, Bokil VA, Cunniffe NJ, Hamelin FM, Hilker FM, Jeger MJ. 2019 Modelling vector transmission and epidemiology of co-infecting plant viruses. Viruses 11, E1153. (doi:10.3390/v11121153)
7. Elliot SL, Adler FR, Sabelis MW. 2003 How virulent should a parasite be to its vector? Ecology 84, 2568–2574. (doi:10.1890/02-8013)
8. Jeger MJ, Holt J, Van Den Bosch F, Madden LV. 2004 Epidemiology of insect-transmitted plant viruses:
modelling disease dynamics and control interventions. *Physiol. Entomol.* **29**, 291–304. (doi:10.1111/j.1365-2028.2004.00394.x)

9. Holt J, Jeger MJ, Thresh JM, Otam-Nape GW. 1997 A model of plant virus disease dynamics incorporating vector population processes: its application to the control of African cassava mosaic disease in Uganda. *J. Appl. Ecol.* **34**, 793–806. (doi:10.2307/2404924)

10. Madden L, Jeger M, Bosch F. 2000 A theoretical assessment of the effects of vector-virus transmission mechanism on plant virus disease epidemics. *Phytopathology* **90**, 576–594. (doi:10.1094/PHYD.2000.90.6.576)

11. Shrestha D, Michalasne HJ, Adkins ST, Smith HA, Dafault N, Cole J, Webb SE. 2017 Host-mediated effects of semipersistent transmitted *Squash vein yellowing virus* on sweetpotato whitefly (Hemiptera: Aleyrodidae) behavior and fitness. *J. Econ. Entomol.* **110**, 1433–1441. (doi:10.1093/jee/tox161)

12. Ghosh A, Basavaraj YB, Jangra S, Das A. 2019 Exposure to watermelon bud necrosis virus and groundnut bud necrosis virus alters the life history traits of their vector, *Thrips palmi* (Thysanoptera: Thripidae). *Ann. Entomol. Soc. Am.* **109**, 371–376. (doi:10.1093/ideas/sav007)

13. Ren SL, Li YH, Zhou YT, Xu WM, Cuthbertson AGS, De Mares CM, Mescher MC. 2012 Transmission mechanisms shape pathogen effects on host–vector interactions: evidence from plant viruses. *Func. Ecol.* **26**, 1162–1175. (doi:10.1111/j.1365-2435.2012.02026.x)

14. Eigenbrode SD, Ding H, Shiel P, Berger PH. 2002 Southern rice black-streaked dwarf virus (SRBSDV) by aphid vectors. *Mol. Plant Pathol.* **3**, 541–545. (doi:10.1046/j.1364-503X.2002.00699.x)

15. Mauck K, Bosque-Pérez NA, Eigenbrode SD, De Mores CM, Mescher MC. 2012 Transmission mechanisms shape pathogen effects on host–vector interactions. *Plant Cell* **34**, 1514–1531. (doi:10.1093/pcell/koa058)

16. Deeks JI, Higgins JP, Altman DJ. 2022 Chapter 10: Analysing data and undertaking meta-analyses. In *Cochrane handbook for systematic reviews of interventions*, version 6.3 (updated February 2022). London, UK: Cochrane. See https://training.cochrane.org/handbook/current/chapter-10 (accessed 5 September 2022).

17. Hiago JP, Li T, Deeks JI. 2022 Chapter 6: Choosing effect measures and computing estimates of effect. In *Cochrane handbook for systematic reviews of interventions*, version 6.3 (updated February 2022). London, UK: Cochrane. See https://training.cochrane.org/handbook/current/chapter-06 (accessed 5 September 2022).

18. Rohtagi A. 2021 *WebPlotDigitizer*: extract data from plots, images, and maps, version 4.5. See https://automeris.io/WebPlotDigitizer/ (accessed 5 September 2022).

19. Rosenberg MS, Rothstein HR, Gurevitch J. 2013 *The file-drawer problem revisited*: a general weighted method for calculating false-positive numbers in meta-analysis. *Evolution* **59**, 464–468.

20. Inoue T, Sakurai T. 2006 Infection of tomato spotted wilt virus (TSWV) shortens the life span of its vector, Frankliniella fusca (Thysanoptera: Thripidae). *Appl. Entomol. Zool.* **41**, 239–246. (doi:10.13110/ae.2006.239)

21. Shrestha A, Sinivasan R, Riley DG, Culbreath AK. 2012 Direct and indirect effects of a thrips-transmitted *Toxoplasma* on the preference and fitness of its vector, *Frankliniella fusca*. *Entomol. Exp. Appl.* **145**, 260–271. (doi:10.1111/eea.12011)

22. Gautam S, Mugerwa H, Sundaraj S, Gadhave KR, Murphy IF, Dutta B, Sinivasan R. 2020 Specific and spillover effects on vectors following infection of two RNA viruses in pepper plants. *Insects* **11**, E602. (doi:10.3390/insects11090602)

23. Gadhave KR, Dutta B, Coolong T, Sinivasan R. 2019 A non-persistent aphid-transmitted *Potyvirus* differentially alters the vector and non-vector biology through host plant quality manipulation. *Sci. Rep.* **9**, 2503. (doi:10.1038/s41598-019-39256-5)

24. Li H, Liu X, Liu X, Michaud JP, Zhi H, Li K, Li X, Li Z. 2018 Host plant infection by soybean mosaic virus reduces the fitness of its vector, *Aphis glycines* (Hemiptera: Aphididae). *J. Econ. Entomol.* **111**, 2017–2023. (doi:10.1093/jeet/oyy165)

25. Cassone BJ, Michel AF, Stewart LR, Bansal R, Mian MAR, Redinbaugh MG. 2014 Reduction in fecundity and shifts in cellular processes by a native virus on an invasive insect. *Genome Biol. Evol.* **6**, 873–885. (doi:10.1093/gbe/evu057)

26. Liu J, Li M, Li JM, Huang CJ, Zhou XP, Xu FC, Liu SS. 2010 Viral infection of tobacco plants improves performance of *Bemisia tabaci* but more so for an invasive than for an indigenous biotype of the whitefly. *J. Zhejiang Univ. Sci. B* **11**, 30–40. (doi:10.1615/jzus.B0900213)

27. Li M, Liu J, Liu SS. 2011 Tomato yellow leaf curl virus infection of tomato does not affect the performance of the Q and ZH2 biotypes of the viral vector *Bemisia tabaci*. *Insect Sci.* **18**, 40–49. (doi:10.1111/j.1744-7917.2010.01354.x)

28. Moeini P, Afsnarfar A, Izadpanah K, Sadeghi SE, Eigenbrode SD. 2020 Maize Iranian mosaic virus (family Rhambdoviridae) improves biological traits of its vector *Loa loa* *philax striatellus*. *Arch. Virol.* **165**, 169–178. (doi:10.1007/s00705-019-04450-3)

29. Davis TS, Wu Y, Eigenbrode SD. 2017 The effects of bean leafroll virus on life history traits and host selection behavior of specialized pea aphid (*Acyrthosiphon pisum*, Hemiptera: Aphididae) genotypes. *Environ. Entomol.* **46**, 68–74.

30. Chen Y, Lu C, Li M, Wu W, Zhou G, Wei T. 2016 Adverse effects of rice gall dwarf virus upon its insect vector *Reclusa dorsalis* (Hemiptera: Cicadellidae). *Plant Dis.* **100**, 784–790. (doi:10.1094/PDIS-06-15-0713-RE)

31. Xu H, He X, Zheng X, Yang Y, Tian J, Lu Z. 2014 Southern rice black-streaked dwarf virus (SRBSDV)
directly affects the feeding and reproduction behavior of its vector, *Sogatella furcifera* (Horváth) (Hemiptera: Delphacidae). *Virul. J.* **11**, 55. (doi:10.1186/1743-422X-11-55)

47. Hodge S, Powell G. 2010 Conditional facilitation of an aphid vector, *Acyrthosiphon pisum*, by the plant pathogen, pea enation mosaic virus. *Insect Sci. Online*. **10**, 155.

48. Maluta N, Fereres A, Lopes JRS. 2019 Plant-mediated indirect effects of two viruses with different transmission modes on *Bemisia tabaci* feeding behavior and fitness. *J. Pest Sci.* **92**, 405–416. (doi:10.1007/s10340-018-1039-0)

49. Liu J, Zhao H, Jiang K, Zhou XP, Liu SS. 2009. *00366.x*)

50. Dainelli G, Raina HS, Devi PP, Saurav GK, Renukadevi P, Malathi VG, Senthilraja C, Mandal B, Rajagopal R. 2009. *00366.x*)

51. Liu J, Zhao H, Jiang K, Zhou XP, Liu SS. 2009. *00366.x*)

52. Wu F, Qureshi JA, Huang J, Fox EGP, Deng X, Wan F, Liang G, Cen Y. 2018 Host plant-mediated interactions between *Candidatus Liberibacter asiaticus* and its vector *Diaphorina citri* Kuwayama (Hemiptera: Liviidae). *J. Econ. Entomol.* **111**, 2038–2045.

53. Thimakanar J, Yang XB, Munyaneza JE, Rush CM, Henne DC. 2015 Comparative biology and life tables of *Candidatus Liberibacter solanacearum*-infected and -free *Bactericera cockerelli* (Hemiptera: Triozidae) on potato and silverleaf nightshade. *Ann. Entomol. Soc. Am.* **108**, 459–467. (doi:10.1093/aeas/soa030)

54. Albuquerque Tomilhero Frias A, Ibanez F, Mendoza A, de Carvalho Nunes WM, Tamborindeguy C. 2020 Effects of *Candidatus Liberibacter solanacearum* (haplotype B) on *Bactericera cockerelli* fitness and vitellogenesis. *Insect Sci.* **27**, 58–68. (doi:10.1111/1744-7917.12599)

55. Nachappa P, Levy J, Pierson E, Tamborindeguy C. 2014 Correlation between *Candidatus Liberibacter solanacearum* infection levels and fecundity in its psyllid vector. *J. Invertebr. Pathol.* **115**, 55–61. (doi:10.1016/j.jip.2013.10.008)

56. Gutiérrez S, Michalakis Y, Van Munster M, Blanc S. 2017 Influence of groundnut bud necrosis virus on the life history traits and feeding preference of its vector, *Thrips palmi*. *Phytopathology* **107**, 1440–1445. (doi:10.1094/PHYTO-08-16-0296-R)

57. Higashi CHW, Bressan A. 2013 Influence of a propagative plant virus on the fitness and wing dimorphism of infected and exposed insect vectors. *Oecologia* **172**, 847–856. (doi:10.1007/s00442-012-2540-2)

58. Thimakanar J, Yang XB, Munyaneza JE, Rush CM, Henne DC. 2015 Comparative biology and life tables of *Candidatus Liberibacter solanacearum*-infected and -free *Bactericera cockerelli* (Hemiptera: Triozidae) on potato and silverleaf nightshade. *Ann. Entomol. Soc. Am.* **108**, 459–467. (doi:10.1093/aeas/soa030)

59. Retschnig G, Williams GR, Mehmeh MM, Yaize O, de Miranda JR, Neumann P. 2014 Sex-specific differences in pathogen susceptibility in honey bees (*Apis mellifera*). *PLoS ONE* **9**, e85261. (doi:10.1371/journal.pone.0085261)

60. Kellen WR, Chapman HC, Clark TB, Lindegreen JE. 1965 Host–parasite relationships of some *Thelohania* from mosquitoes (*Nosematidae: Microsporida*). *J. Invertebr. Pathol.* **7**, 161–166. (doi:10.1016/0022-2011(65)90030-3)

61. Cui H, Tsuda K, Parker JE. 2015 Effector-triggered immunity: from pathogen perception to robust defense. *Annu. Rev. Plant Biol.* **66**, 487–511. (doi:10.1146/annurev-arplant-050213-040012)

62. Naalden D, van Kleeft PJA, Dangol S, Mastop M, Corkill R, Hogenhout SA, Kant MR, Schuurink RC. 2021 Spotlight on the roles of whitefly effectors in insect–plant interactions. *Front. Plant Sci.* **12**, 661141. (doi:10.3389/fpls.2021.661141)

63. Hogenhout SA, Bos JIB. 2011 Effector proteins that modulate plant–insect interactions. *Curr. Opin. Plant Biol.* **14**, 422–428. (doi:10.1016/j.pbi.2011.05.003)

64. Stukkenbrok EH, McDonald BA. 2008 The origins of plant pathogens in agro-ecosystems. *Annu. Rev. Phytopathol.* **46**, 75–100. (doi:10.1146/annurev.phyto.010708.154114)

65. Santiago MFM, King KC, Drew GC. 2023 Interactions between insect vectors and plant pathogens–span the parasitism-mutualism continuum. Figshare. (doi:10.6084/m9.figshare.c.6215267)