Estimation of response time of laser complex
data processing nodes

R V Chkalov and D G Chkalova
Vladimir State University Named After Alexander and Nikolay Stoletovs,
87, Gorky street, Vladimir, 600000, Russia

E-mail: darya.vasilchenkova@mail.ru

Abstract. The work is devoted to problem of information exchange between elements and
devices of a telecommunication network for laser technological complex. The laser complex is
a combination of hardware and software designed to carry out operations based on the use of
laser radiation. Laser complex structure provides a possibility of remote control through a client-
server system built on the basis of TCP/IP protocol. The main requirements for industrial
network of the complex are performance and predictability of information delivery time. To
solve this problem, a probabilistic model for calculating the numerical characteristics of the
distribution of requests timeout for external commands from control/monitoring nodes is
proposed.

1. Introduction

Laser systems are a set of technical (hardware) and software tools intended for carrying out operations
based on using of laser radiation. Laser complexes are indispensable for solving modern problems of
industry [1-4], science [5-7] and medicine [8-10].

To carry out work in the field of materials micromachining with femtosecond laser radiation, an
automated laser complex based on a telecommunication network was developed [11-15]. The complex
is intended to work in the format of remote sessions with the involvement of third-party scientific
groups, providing the possibility of cooperation without territorial reference.

As can be seen from the diagram in figure 1, the most loaded element of a telecommunication
network is a server processing unit, which provides bi-directional data transfer between control devices
and hardware of "technological section". Since the main requirements for an industrial network are
performance and predictability of information delivery time [16,17], it is necessary to evaluate the
response time of the developed system's server to requests from external control/monitoring devices.

2. Probabilistic model for estimating a response time of data processing nodes

To solve this problem, a probabilistic model was built for calculating the numerical characteristics of
waiting time distribution for request execution. The total time of a task execution by the server (i.e., the
maximum response time) is a random variable (RV) \(T \), which, in turn, is the sum of a random number
\(N \) of independent RVs \(X_1, X_2, \ldots, X_N \). Here \(X_i \) is execution time of request with number \(i = 1, \ldots, N \). RV
\(N \) accepts positive integer values.
It is necessary to find the numerical characteristics (expected value m_t and variance D_t) of RV $T = \sum_{i=1}^{N} X_i$, if probability density function of RVs $N, X_1, X_2, ..., X_N$ and their parameters are known: m_n, D_n, m_i, D_i, and all these SVs are independent and all X_i have the equal probability density function with expected value $m_i = m_x$ and variance $D_i = D_x$.

So, let the probability density function of RV N be given by the equalities: $P\{N = n\} = p_n$ ($n \in \mathbb{N}$), then its expected value is

$$m_n = \sum_{n=1}^{\infty} np_n.$$

An expected value of RV T provided that $N = n$, is calculated as the sum of expected values of corresponding number X_i:

$$M[T|N = n] = M\left[\sum_{i=1}^{n} X_i\right] = \sum_{i=1}^{n} M[X_i] = \sum_{i=1}^{n} m_x = nm_x.$$

Then the total expected value (for all possible n), or the first moment of RV T will have the form:

$$\alpha_1[T] = m_t = \sum_{n=1}^{\infty} M[T|N = n] \cdot p_n = \sum_{n=1}^{\infty} nm_x p_n = m_x \sum_{n=1}^{\infty} np_n = m_x m_n.$$

To calculate the variance D_t, it is necessary to find the second moment of T, provided that $N = n$:

$$\alpha_2[T|N = n] = M[T^2|N = n] = M\left[\left(\sum_{i=1}^{n} X_i\right)^2\right] = M\left[\sum_{i=1}^{n} X_i^2\right] = M\left[\left(\sum_{i=1}^{n} X_i\right)\left(\sum_{j=1}^{n} X_j\right)\right].$$

Since RVs X_i are independent, then correlation coefficients between X_i and X_j for $i \neq j$ $K_{ij} = 0$, and correlation coefficients $K_{ii} = D_i = D_x$, therefore:
\[\alpha_2[T|N = n] = \sum_{i=1}^{n} \sum_{j=1}^{n} (m_i m_j + K_{ij}) = \sum_{i=1}^{n} \sum_{j=1}^{n} m_i m_j + \sum_{i=1}^{n} K_{ii} = \sum_{i=1}^{n} \sum_{j=1}^{n} m_i m_j + \sum_{i=1}^{n} D_i. \]

A total second moment of RV \(T \) (for all possible \(n \)) is equal

\[\alpha_2[T] = \sum_{n=1}^{\infty} \left(\sum_{i=1}^{n} \sum_{j=1}^{n} m_i m_j + \sum_{i=1}^{n} D_i \right) p_n. \]

Considering \(D_t = \alpha_2[T] - m_t^2 \), \(D_n = \alpha_2[N] - m_n^2 = \sum_{n=1}^{\infty} n^2 p_n - m_n^2 \), the variance \(D_t \) is equal

\[D_t = \sum_{n=1}^{\infty} \left(\sum_{i=1}^{n} \sum_{j=1}^{n} m_i m_j + \sum_{i=1}^{n} D_i \right) p_n - (m_x m_n)^2 = m_x^2 (\alpha_2[N] - m_n^2 + m_x^2) + D_x m_n - m_x^2 m_n^2 = m_x^2 D_n + D_x m_n. \]

Using these formulas, it is possible to construct the interval \((m_t - \alpha, m_t + \alpha)\), into which RV \(T \) will fall with a given probability \(p_\alpha \). Here it is assumed that \(T \) has normal distribution. According to the central limit theorem [18,19], this assumption is based on facts that RVs \(X_i \) are independent and they have comparable scales. For example, for the value \(\alpha = 3\sigma_t \) (\(\sigma_t \) is the standard deviation of RV \(T \)), the corresponding probability will be equal \(p_\alpha \approx 0.9973 \).

Calculations were carried out for various normal distribution parameters of request execution time \(X_i \) and the number of clients \(N \) (see table 1). We estimated the boundaries of intervals \((m_t - 3\sigma_t, m_t + 3\sigma_t)\) and \((m_t - \sigma_t, m_t + \sigma_t)\), in which a response time falls with a probability of 0.9973 and 0.6826, respectively. In other words, 99.7% and 68.2% of requests will be executed in these time intervals.

Table 1. Experiment parameters for calculating request execution time.

Experiment number	1	2	3	4	5
Minimum number of clients	1	2	3	4	5
Maximum number of clients	3	4	5	6	7
Average number of clients \(m_x \)	2	3	4	5	6
Average request processing time \(m_n \), sec	0.3	0.3	0.3	0.3	0.3
Variance of number of clients \(D_x \)	0.111	0.111	0.111	0.111	0.111
Variance of request processing time \(D_n \)	0.001	0.001	0.001	0.001	0.001

In addition to standard deviation, the absolute value of the deviation was also calculated – the variation coefficient \(c_t = (\sigma_t/m_t) \cdot 100\% \). It allows to compare a standard deviation of values with different expected values. The calculation results are shown in table 2.

Table 2. Distribution characteristics of request execution time.

Experiment number	1	2	3	4	5
Average response time \(m_t \), sec	0.6	0.9	1.2	1.5	1.8
Variance \(D_t \)	0.12	1.13	0.014	0.016	0.017
Thus, the calculation results allow us to draw the following conclusions:

- an average response time is directly proportional to the number of clients and varies from 0.6 sec to 1.8 sec with a total number of clients from 3 to 7;
- with an increase in standard deviation, a decrease in variation coefficient of is observed, i.e. variance of the obtained values in relative terms, the less the more clients connect to the server;
- the telecommunication network provides a system operability with an average response time 0.6 sec with a typical case of simultaneous connection of 3 control / monitoring devices to the server, which fully meets both needs of industrial production and experimental research.

3. Conclusion
Thus, the calculation results allow us to draw the following conclusions:

References
[1] Rihakova L and Chmelickova H 2015 Laser micromachining of glass silicon and ceramics Advances in Materials Science and Engineering 2015 1-6
[2] Schaeffer R 2012 Fundamentals of laser micromachining (Boca Raton: CRC press)
[3] Gower M C 2000 Industrial applications of laser micromachining Opt. Express 7(2) 56-67
[4] Subrahmanyan P K 2003 Laser micromachining in the microelectronics industry: emerging applications In Photon Processing in Microelectronics and Photonics II 4977 188-97
[5] Mathis A, Courvoisier F, Froehly L, Furfaro L, Jacquot M, Lacourt P A and Dudley J M 2012 Micromachining along a curve: Femtosecond laser micromachining of curved profiles in diamond and silicon using accelerating beams Appl. Phys. Lett. 101(7) 071110
[6] Hrubiak R, Sinogeikin S, Rod E and Shen G 2015 The laser micro-machining system for diamond anvil cell experiments and general precision machining applications at the High Pressure Collaborative Access Team Rev. Sci. Instrum 86(7) 072202
[7] Qiao L, He F, Wang C, Cheng Y, Sugio Kami and Midorikawa K 2011 A microfluidic chip integrated with a microoptical lens fabricated by femtosecond laser micromachining Appl. Phys A 102(1) 179-83
[8] Miller P R, Aggarwal R, Doraiswamy A, Lin Y J, Lee Y S and Narayan R J 2009 Laser micromachining for biomedical applications JOM 61(9) 35-40
[9] Giorleo L, Ceretti E and Giardini C 2016 Optimization of laser micromachining process for biomedical device fabrication Int. J. Adv. Manuf. Technol. 82 901-7
[10] Al-Shibaany Z Y A, Penchev P, Hedley J and Dimov S 2020 Laser micromachining of lithium niobate-based resonant sensors towards medical devices applications Sensors 20(8) 2206
[11] Chkalov R, Khorkov K and Prokoshev V 2019 Development and application possibilities of multifunctional femtosecond laser complex for precision processing 2019 International Conference on Industrial Engineering, Applications and Manufacturing 1-5
[12] Chkalov R, Khorkov K, Kochuev D, Davydov N, Prokoshev V and Kostrov V 2018 Computerized laser complex for monitoring and controlling of the precision micromachining processes International Conferences on WWW/INTERNET 2018 and APPLIED COMPUTING 395-9
[13] Chkalov R V, Khorkov K S, Kochuev D A, Prokoshev V G and Davydov N N 2018 Thin film elements design: software and possibilities of femtosecond laser techniques In Journal of Physics: Conference Series 1109(1) 012029
[14] Chkalov R V and Chkalova D G 2021 Femtosecond laser micromachining of thin-film coatings in a high-voltage electrostatic field In Journal of Physics: Conference Series 1822(1) 012019
[15] Chkalov R V, Khorkov K S, Kochuev D A, Vasilchenkova D G and Prokoshev V G 2019 Formation of optical antennas interfaces by laser processing of thin metal coatings In Journal of Physics: Conference Series 1331(1) 012011
[16] Decotignie J D 2005 Ethernet-based real-time and industrial communications Proceedings of the IEEE 93(6) 1102-17
[17] Peruzzini M, Marilungo E and Germani M 2015 Structured requirements elicitation for product-service system Int. J. Agil. Syst. Manag. 8 189-218
[18] Fischer H 2010 A history of the central limit theorem: from classical to modern probability theory (Springer Science & Business Media)
[19] Park B U, Kim T Y, Park J S and Hwang S Y 2009 Practically applicable central limit theorem for spatial statistics Mathematical Geosciences 41(5) 555-69