Isolation and Identification of Anticancer Apigenin Glycosides Flavonoids from Plantation White Sugar

VIKESH KUMAR

Department of Chemistry, Awadhesh Pratap Singh University, Rewa, Madhya Pradesh- 486003, India.
*Corresponding author E-mail: vikeshkumaraps@gmail.com

http://dx.doi.org/10.13005/ojc/360326

(Received: May 23, 2020; Accepted: June 20, 2020)

ABSTRACT

Apigenin and its derivatives are biological active flavonoids that are useful in a variety of dietary constituents. These flavonoids may exert some influence over the transition from normal to cancerous, and have value as chemopreventive substance. In this study, a new purification method of three apigenin glycosides flavonoids from Indian plantation white sugar extracts was developed. Three unknown sugar flavonoids were isolated from sugar by using resin based column chromatography. After filtration, the colorant solution was adsorbed on to the gel column at a flow rate of 1 mL/3 min and elution was done with water at the same rate. 10 mL fractions were collected which were then chromatographed on cellulose TLC plates. The pure fractions were completely evaporated and investigated for identification. The detected flavonoids were: apigenin-8-C-b-D-glucopyranoside, apigenin 6-C-b-glucopyranoside and apigenin-7-O-b-glucopyranoside. Ultraviolet and nuclear magnetic resonance spectroscopy introduces an additional analytical dimension for the identification of sugar flavonoids.

Keywords: Flavonoid, Sugarcane Plant Extract, Extraction, Resin.

INTRODUCTION

Sugarcane flavonoids receive considerable attention in the literature, because of their biological, chemotaxonomic markers and physiological importance\(^1\)-\(^2\). Flavonoids are found in nearly every plant type and are ingested in diets routinely\(^2\). Flavonoids have frequently found in sugarcane\(^3\)-\(^4\), cane juice\(^5\)-\(^6\), molasses\(^7\), and mill syrup\(^8\). Sugarcane and cane juice contained various phenolics such as querectin, rutin, morin, and ferulic acids and showed the antibiotic and antioxidant properties\(^9\)-\(^10\). The apigenin flavonoids also occur mainly as C-glycosides in sugarcane, with C-C bonds at the 6 or 8 positions or both in the case of vicenins. Cane sugar by product may contain apigenin as it in case of other mill syrup and molasses. These phenomena developed from another studies dealing with apigenin 5-0-methyl ether in sugarcane flower\(^11\), apigenin 5-0-methyl ether 4'-0-galactoside in peelings\(^12\)-\(^13\), apigenin 5,7-0- dimethyl ether 4'-0-glucoside and apigenin-6-C-glucoside (Isovitexin) in leaf\(^14\), and apigenin-6-C-glucosyl-7-0-methyl ether, apigenin-6-C-glucosyl-8-C-arabinoside, apigenin-6-C-arabinosyl-8-C-glucoside, apigenin-6-C-arabinosyl-8-C-glucoside in mill syrup\(^15\)-\(^16\).
Vitexin, a flavonoid compound found in the sugarcane, possess to have anticancer17, antioxidant18, anti-viral19, anti-inflammatory20, anti-thyroid, anti-arteriosclerotic21, antihypertensive22 and antihepatotoxic properties23. Apigenin and its derivatives exist in sugarcane plants and are found at significant concentrations in many spices, fruits, and herbs24. In sugarcane, the well-known apigenin glycosides are apigenin-7-0-glucoside, apigenin-8-C-glucoside, and apigenin-6-C-glucoside25.

Sugarcane flavonoids may interact with protein molecule and be eliminating protein those are broken during the digestion process26. Apigenin derived from sugarcane has been used to treat various diseases such as inflammatory, neuralgia, and shingles27. An Apigenin derivative has been reported as cancer chemopreventive agents and appears to confer protection against a large variety of cancer as reviewed28.

These flavonoids suppress cell cycle progression, including those of oral squamous carcinoma, esophageal, gastric, and cancer of organs associate with the gastrointestinal tract29. Additional clinical uses include antiviral and antihepatotoxic effects. The antioxidant activity of sugarcane flavonoids leads to the place and sequence of the OH group on the benzenoid ring that inhibits superoxide radicals30-32.

Rare features of flavonoids in sugar cane to develop flower color for entomophilic pollination. Sugarcane flavonoids (Flavonol, flavonone, chalcones) are mostly water soluble. Some flavonoids were identified in mill syrup, bagasse and sugarcane leaves33-34.

Many studies have shown that the sugarcane flavonoids possess antioxidant activities. Individual recovery of flavonoids from sugar has not been done yet. Thus, in this study, individual flavonoids components from plantation white sugar were separated by gel permeation technique and characterized by retardation factor, ultraviolet and nuclear magnetic resonance spectroscopy.

EXPERIMENTAL

\(^{1}H\) spectra of flavonoids were recorded using JEOL AL 500 MHz spectrometer in DMSO-d\textsubscript{6} containing TMS as internal standard reference. The UV-Vis measurements in the range of 200-800 nm were recorded using the Shimadzu UV-1601 spectrophotometer. Plantation white sugar was supplied by different sugar factories. Analytical grade solvents were used for sample preparation, purchased from Merck (Mumbai, India). For recovering of sugar flavonoids a XAD-4 macroporous adsorption resin (polystyrene resin, 20-60 mesh particle size, pore diameter 40 A\textsubscript{0}, surface area =725 m2/g) was used.

Preparation of Plantation white sugar

A 25\textdegree Bx solution of plantation white sugar was filtered and the pH was adjusted to about 4 with concentrated HCl.

Extraction and Isolation

A glass chromatography column (300×20 mm ID), filled with XAD-4 resin was used for flavonoids adsorption. The column was activated with 4 BV of 5\% (v/v) HCl and followed by 4 BV of 5\% (v/v) NaOH, and redistilled water to a neutral pH. Initial concentration of plantation white sugar extract was 0.8 mg/mL, pH of sugar solution was 7 (10 bed volume feeding solution; flow rate 2.5 bed volume per hour). For flavonoids recovery a mixture of methanol: ammonia: water (50:5:45) was used. The desorbed solution of colorants was completely evaporated under vacuum. The solid colorants were completely dried over P\textsubscript{2}O\textsubscript{5} and weighed. The solid colorant was dissolved in about 100 mL water and 1-2 drops of concentrated HCl were added to precipitate any polymeric colorant35. After filtration, the colorant solution was adsorbed on to the gel column at a flow rate of 1 mL/3 min and elution was done with water at the same rate. 10 mL fractions were collected which were then chromatographed on cellulose TLC plates. The pure fractions were completely evaporated and investigated for identification.

RESULTS AND DISCUSSION

The structural characterization of sugar afford three flavonoids (1–3), they are apigenin-8-C-b-D-glucopyranoside (1), apigenin-6-C-b-glucopyranoside (2), and apigenin-7-O-b-
glucopyranoside(3), their structure elucidation was carried out through Rf-values, color reactions (Table 1), and spectral analysis (UV and NMR)16.

Table 1: Rf values and spot appearance of flavonoids

Compound	Rf value	UV light	UV/NH\textsubscript{3}
Apigenin-8-C-b-D-glucopyranoside	0.43 (TBA)	Deep purple	Yellow-green
Apigenin 6-C-b-glucopyranoside	0.57 (TBA)	Deep purple	Yellow-green
Apigenin-7-O-b-glucopyranoside	0.61 (TBA)	Deep purple	Light yellow

Spectral data of the known sugar flavonoids were in good agreement with those previously published11. Compounds 1, 2 and 3 were isolated for the first time from the sugar under investigation (Figure 1, 4, 7).

Compound 1 (UV spectrum) shows two absorption peaks at 270, 334 nm that matched with that reported for apigenin-8-C-b-D-glucopyranoside (Fig. 2). The data of the analysis for flavonoids characterization of sugar are shown in Table 2. The 1H NMR spectra of compound 1 showed H-3 and H-6 signal at \(\delta_H 6.59\) and 6.30 (each 1H). An overlapping complex pattern between 7.7-7.9 (2H) for the C-2’ and C-6’ proton comprising an up field doublet at 6.87 (J=8.4Hz) for the C-3’ and C-5’ proton. The 1H NMR spectrum of compound 1 shows signal for 6’’-O- methyl group at \(\delta_H 3.4\) (Figure 3).

Table 2: The UV Characterization Data of Flavonoids in Plantation White Sugar

Compound	Methyl Sodium	Sodium Methoxide	Aluminum Chloride	Aluminum Chloride Hydrochloric Acid	Sodium Acetate	Sodium Methoxide Hydro Boric Acid
Apigenin-8-C-b-D-glucopyranoside	270 300sh 334	280 330 394	265 274 304	258sh 304 350	275 280 350	272 316sh 352
Apigenin 6-C-b-glucopyranoside	270 330 400	275 330 394	265sh 280 300	264sh 278 300	280 300 350	270 350 400sh
Apigenin-7-O-b-glucopyranoside	266 332 385	250 270 326	273 300sh 300sh	275 296 265sh	260 345 355	265 340 382
Compound 2 UV-Vis maxima 270, 270 (shoulder), 330 and was ascribed to apigenin 6-C-b-glucopyranoside (Fig. 5). The 1H NMR spectra of compound 2 indicated the presence of apigenin 6-C-b-glucopyranoside, chemical shift of H-3, and H-8 at δ_H 6.71(1H) and 6.50 (1H, d, $J = 2.3$). Two aromatic doublet at δ_H 6.89 and 7.86 (each 2H, d, $J = 8.4$) for C-3' and C-5' proton and one doublet at δ_H 7.86 for C-2' and C-6' proton and a methoxyl group at δ_H 3.88 (Fig. 6). These results allowed us to establish apigenin 6-C-b-glucopyranoside as the structure of compound 2.

Compound 3 shows UV-Vis maxima at 266, 332 (Fig. 8). This compound was tentatively assigned as apigenin-7-O-b-glucopyranoside11. The 1H NMR characterization of compound 3 shows an anomeric proton at δ_H 5.08 (1H, d, J=6.85).The compound 3 showed H-3 and H-6 at δ_H 6.41 and 6.61. 1HNMR spectrum of compounds shows doublet at 6.9 (1H, d, $J = 2.3Hz$) for C-3' and C-5' proton. Doublet at 7.81 (2 H, d, $J = 8.4$) for 2' and C-6' proton. Shift at δ_H 6.77 for C-8' proton (Fig. 9). The data allowed us to establish apigenin-7-O-β-glucopyranoside as the structure of the compound by comprising of the spectral data with literature value36.

Various methods have been developed for the identification of apigenin and its glucosides in different plants by spectroscopic and chromatographic
techniques like high-performance thin-layer chromatography, HPLC, and UHPLC-DAD. Color concentration and high performance liquid chromatographic (HPLC) methods have been used to measure the approximate levels of major flavonoid colorants in sugar mill and refinery products using apigenin as an internal standard.

ACKNOWLEDGMENT

The author wishes to acknowledge the support of Prof. V. K. Agrawal, Awadhesh Pratap Singh University, Rewa for this work.

Conflict of interest

The author declares no conflict of interest.

REFERENCES

1. Smith, P.; Paton, N. H. Sugarcane flavonoids. Sugar. Technol. Rev., 1985, 12, 117–142.

2. Yao, L. H., Jiang Y. M.; Shi J, Tomás-Barberán F. A.; Datta, N.; Singanusong, R.; Chen, S.S. Flavonoids in food and their health benefits. Plant. Foods. Hum. Nutr., 2004, 59(3), 113-22.

3. Mc Gie, T.K. Analysis of sugar cane flavonoids by capillary zone electrophoresis. J Chromatogr., 1993, 634, 107–12.

4. Vila, F.C.; Colombo, R.; de Lira, T.O.; Yariwake, J.H. HPLC microfractionation of flavones and antioxidant (radical scavenging) activity of Saccharum officinarum L. J. Braz. Chem. Soc., 2008, 19, 903–908.

5. De Armas, R.; Martínez, M.; Vincente, C.; Legaz, M.E. Free and conjugated polyamines and phenols in raw and alkaline-clarified sugarcane juice. J. Agric. Food. Chem., 1999, 47, 3086–3092.

6. Colombo, R.; Yariwake, J.H.; Queroz, E.F.; Ndjoko, K.; Hostettmann, K. Online identification of minor flavones from sugarcane juice by LC/UV/MS and post-column derivatization. J. Bra. Z. Chem. Soc., 2009, 20, 1574–1579.

7. Takara, K.; Ushijima, K.; Wada, K.; Iwasaki, H.; Yamashita, M. Phenolic compounds from sugarcane molasses possessing antibacterial activity against carcinogenic bacteria. J. Oleo. Sci., 2007, 56, 611–614.

8. Balasundram, N.; Sundram, K.; Samman, S. Phenolic compounds in plants and agri-industrial by-products: Antioxidant activity, occurrence, and potential uses. Food. Chem., 2006, 99, 191–203.

9. Zheng, R.; Su, S.; Li J; Zhao Z.; Wei J; Fu, X.; Liu, R.H. Recovery of phenolics from the ethanolic extract of sugarcane (Saccharum officinarum L.) baggase and evaluation of the antioxidant and antiproliferative activities. Ind. Crops. Prod., 2017, 107, 360–369.

10. Zhao, Y.; Zhu, L.C.; Yu, S.J.; Zhao, Z.G. HPLC-UV-ESI–MS methods for flavonoid profiling of sugarcane juice extract. Sugar. Ind., 2013, 138, 525–531.

11. Farber, L.; and Carpenter, F.G. Plant pigments as colorants in cane sugars', 1972 Tech. Sess. Cane. Sugar. Refining. Res., 1975, 23-31.

12. Kennedy, A.M.; and Smith, P. 'Colour in refineries', Proc. Sugar. Ind. Technol., 1976, 35, 156-160.

13. Dubey, R.C.; and Misra, K. 'Flavonoids of sugarcane', Ind. Chem. Soc., 1974, 51, (6) 653-654.

14. Misra, K. and Mishra, C. S. 'Flavonoids of Saccharum officinarum flowers', Ind. J. Chem., 1979, 18B, 88.

15. Mishra, C.S.; and Misra, K. ‘5-7-Dimethylapigenin 4’-0-D-glucopyranoside from Saccharum officinarum leaves’, Curr. Sci., 1978, 47(5), 152.

16. Mabry, T.J.; Liu, Y.L.; Pearce, J.; Dellamonica, G.; Chopin, J.; Markham, K.R.; Paton, N.H. and Smith, P. 'New flavonoids from sugarcane (Saccharum)', J. Nat. Prod., 1984, 47(1) 127-130.

17. Yang, S.H.; Liao, P.H.; Pan, Y.F.; Chen, S.L.; Chou, S.S.; Chou, M.Y. The novel p53-dependent metastatic and apoptotic pathway induced by vitexin in human oral cancer OC2 cells. Phytother. Res., 2013, 27, 1154–1161.

18. Borghi, S.M.; Carvalho, T.T.; Staurenghi-Ferrari, L.; Hohmann, M.S.; Pinge-Filho, P., Casagrande, R.; Verri Jr.; W.A. Vitexin inhibits inflammatory pain in mice by targeting TRPV1, oxidative stress, and cytokines. J. Nat. Prod., 2013, 76, 1141–1149.

19. Krcatovic, E.; Rusak, G.; Bezic, N.; Krajacic, M. Inhibition of tobacco mosaic virus infection by quercetin and vitexin. Acta. Virol., 2008, 52, 119–124.
20. Bahareh, A.N.; Farid, H.; Mohtaram, A.; Marjan, N.A. Anti-inflammatory effects of quercetin and vitexin on activated human peripheral blood neutrophils. J. Pharmacopuncture., 2017, 20, 127–131.

21. Gaitan, E.; Cooksey, R.C.; Legan, J.; Lindsay, R.H. Antithyroid effects in vivo and in vitro of vitexin: a C-glucosyl 12 flavones in millet. J. Clin. Endocrinol. Metab., 1995, 80, 1144–1147.

22. Prabhakar, M.C.; Bano, H.; Kumar, I.; Shamsi, M.A.; Khan, M.S. Pharmacological investigations on vitexin. Planta. Med., 1981, 43, 396–403.

23. Hoffmann-Bohm, K.; Lotter, H.; Seligmann, O.; Wagner, H. Antitumorotoxic Cglycosylflavones from the leaves of Allophylus edulis var. edulis and gracilis. Planta. Med., 1992, 58, 544–548.

24. Havsteen, B.H. The Biochemistry and Medical Significance of the Flavonoids. Pharmacol. Ther., 2002, 96(2-3), 67-202.

25. Srivastava, J. K.; Gupta, S. Antiproliferative and apoptotic effect of chamomile extract in various human cancer cells. J. Agric. Food. Chem., 2007, 55, 9470-9478.

26. Czubinski, J.; Dwiecki, K.; Singer, A.; Kachlicki, P. Release of flavonoids from lupin globulin proteins during digestion in a model system. J. Agric. Food. Chem., 2012, 60, 1830-1836.

27. Hamon, M., Herbal Medicine. The chamomiles, Can. Pharm. J., 1989, 122, 612-615.

28. Patel, D.; Shukla, S.; Gupta, S. Apigenin and cancer chemoprevention: progress, potential and promise (review). Int. J. Oncol., 2007, 30, 233-245.

29. Wu, K.; Yuan, L.H.; Xia, W. Inhibitory effects of apigenin on the growth of gastric carcinoma SGC-7901 cells. World. J. Gastroenterol., 2005, 11, 4461-4464.

30. Aziba, P.I.; Aadejey, A.; Ekor, M. Analgesic Activity of Peperomia Pellucida Aerial Parts in Mice. Fitoterapia., 2001, 72(1), 57-58.

31. Ragasa, C.Y.; Dumato, M.; Rideout, J.A. Antifungal compounds from Peperomia pellucid. Chem. Res. Commun (ACGC), 1998, 7, 54-61.

32. Xu, S.; Li, N.; Ning, M.M. Bioactive Compounds from Peperomia Pellucida. J. Nat. Prod., 2006, 69(2), 247-250.

33. Williams, C. A.; Harborne, J.B.; Smith, P. The taxonomic significance of leaf flavonoids in Saccharum and related genera. Phytochem., 1997, 13(7), 1141-1149.

34. Chopin, J.; Dellamonica, G.; Harborne, J. B. The Flavonoids, Advances in Research since. Chapman & Hall, London., 1980, 63, 1988.

35. Yinrong, L.; Yeap, F. Polyphenolic constituents of blackcurrant seed residue. Food. Chem., 2003, 80, 71-76.

36. Mabry, T.J.; Markham, K.R.; Thomas, M.B. The Systematic Identification of Flavonoids. (Springer-Verlag. New York 1970).

37. Aussavashai, S.; Donruede, S.; Phanchana, S.; Ian, H.F.; Nalin, W. Quantitative determination of vitexin in Passiflora foetida Linn. Leaves using HPTLC. Asian. Pac. J. Trop. Biomed., 2016, 6, 216–220.

38. Shivraj, H. N., Se, W.P. HPTLC densitometry method for simultaneous determination of flavonoids in selected medicinal plants. Front. Life. Sci., 2015, 8, 97–103.

39. Jin, W.; Feng, T.; Yongde, Y.; Xuefeng, G.; Xi, Y. 2010. Development and validation of an HPTLC method for simultaneous determination of isoorientin, isovitexin, orientin, and vitexin in bamboo-Leaf flavonoids. J. AOAC. Int., 2010, 93, 1376–1383.

40. Chang-He, W.; Yu-Xuan, W.; Hai-Jing, L. Validation and application by HPLC for simultaneous determination of flavonin-200-O-glucoside, vitexin-200-Orhamnoside, rutin, vitexin, and hyperoside. J. Pharm. Anal., 2011, 1, 291–296.

41. Sagaradze, V.; Babaeva, E.; Kalenikova, E. HPLC-UV method for determining flavonoids in hawthorn flowers and leaves. Pharm. Chem. J., 2017, 51, 277–280.

42. Liu, Z.; Wang, L.; Li, W.; Huang, Y. Determination of orientin and vitexin in Trollius chinensis preparation by HPLC. Chi. J. Chin. Mat. Med., 2004, 29(11), 1049–1051.

43. Paula, S.; Geison, M.C.; Diana, M.A.; Freddy, R.; Leonardo, C. Analysis of vitexin in aqueous extracts and commercial products of Andean Passiflora species by UHPLC-DAD. J. Appl. Pharm. Sci., 2018, 8, 81–86.