In Cohen generic extension, every countable OD set of reals belongs to the ground model

Vladimir Kanovei

April 19, 2022

Abstract

It is true in the Cohen generic extension of L, the constructible universe, that every countable ordinal-definable set of reals belongs to L.

Theorem 1. Let $a \in \omega^\omega$ be a Cohen-generic real over L. Then it is true in $L[a]$ that if $X \subseteq \omega^\omega$ is a countable OD set then $X \in L$.

One may expect such a result of any homogeneous forcing notion. For instance, Theorem 1 is true for the Solovay model (the extension of L by Levy cardinal collapse up to an inaccessible cardinal [4]) — but by a different argument. One hardly can doubt that any typical homogeneous extension (Solovay-random, Sacks, Hehler, and the like) also satisfies the same result, but it’s not easy to manufacture a proof of sufficient generality.

On the contrary, non-homogeneous forcing notions may lead to models with countable OD non-empty sets of reals with no OD elements [2], and such a set can even have the form of a Π^1_2 E_0-equivalence class [3].

Proof. Let $C = \omega^{<\omega}$ be the Cohen forcing. First of all, it suffices to prove that (it is true in $L[a]$ that) if $X \subseteq \omega^\omega$ is a countable OD set then $X \subseteq L$. Indeed, as the Cohen forcing is homogeneous, any statement about sets in L, the ground model, is decided by the weakest condition.

There is a formula $\varphi(x)$ with an unspecified ordinal α_0 as a parameter, such that $X = \{x \in \omega^\omega : \varphi(x)\}$ in $L[a]$, and then there is a condition $p_0 \in C$ such that $p_0 \subset a$ and p_0 C-forces that $\{x \in \omega^\omega : \varphi(x)\}$ is a countable set. Suppose to the contrary that $X \not\subseteq L$, so that p_0 also forces $\exists x (x \notin L \land \varphi(x))$.

There is a sequence $\{t_n\}_{n<\omega} \in L$ of C-names, such that if $b \in \omega^\omega$ is Cohen generic and $p_0 \subset b$ then it is true in $L[b]$ that $\{x \in \omega^\omega : \varphi(x)\} = \{t_n[b] : n < \omega\}$.

*IITP RAS and MIIT, Moscow, Russia, kanovei@googlemail.com — contact author.
where \(t[\alpha] \) is the interpretation of a \(C \)-name \(t \) by a real \(x \in \omega^\omega \). Let \(T \in L \) be the \(C \)-name for \(\{ t_n[\dot{a}] : n < \omega \} \). Thus we assume that \(p_0 \) forces

\[
T[\dot{a}] = \{ t_n[\dot{a}] : n < \omega \} = \{ x \in \omega^\omega : \varphi(x) \} \not\subseteq L,
\]

where \(\dot{a} \) is the canonical name for the \(C \)-generic real.

Let \(\dot{a}_{\text{lef}}, \dot{a}_{\text{rig}} \) be canonical \((C \times C)\)-names for the left, resp., right, of the terms of a \((C \times C)\)-generic pair of reals \(\langle a_{\text{lef}}, a_{\text{rig}} \rangle \).

Corollary 2. The pair \(\langle p_0, p_0 \rangle \) \((C \times C)\)-forces over \(L \) that \(T[\dot{a}_{\text{lef}}] \neq T[\dot{a}_{\text{rig}}] \).

Proof. \(L[a_{\text{lef}}] \cap L[a_{\text{rig}}] \cap \omega^\omega \subseteq L \) due to the mutual genericity of \(a_{\text{lef}}, a_{\text{rig}} \). \(\square \)

Now pick a regular cardinal \(\kappa > \alpha_0 \). Consider, in \(L \), a countable submodel \(M \) of \(L_\kappa \) containing \(\alpha_0 \) and all names \(t_n \) and \(T \). Let \(\pi : M \rightarrow \overline{M} \) be the Mostowski collapse onto a transitive set \(\overline{M} \).

Corollary 3. It is true in \(\overline{M} \) that \(\langle p_0, p_0 \rangle \) \((C \times C)\)-forces \(T[\dot{a}_{\text{lef}}] \neq T[\dot{a}_{\text{rig}}] \).

Proof. By the elementarity, this holds in \(M \). Further we have \(\pi(t_n) = t_n \) and \(\pi(T) = T \) because the names \(t_n \) and \(T \) belong to the transitive part of \(M \). \(\square \)

Corollary 4. If \(\langle a_{\text{lef}}, a_{\text{rig}} \rangle \) is a \((C \times C)\)-generic pair over \(\overline{M} \) with \(p_0 \subseteq a_{\text{lef}} \) and \(p_0 \subseteq a_{\text{rig}} \), then \(T[\dot{a}_{\text{lef}}] \neq T[\dot{a}_{\text{rig}}] \).

By the countability, there is a real \(z \in \omega^\omega \cap L \) satisfying \(z(j) = 0 \) for all \(j < \text{dom} \, p_0 \) and \(C \)-generic over \(\overline{M} \), so that \(\overline{M}[z] \) is a set in \(L \). Let \(x \in \omega^\omega \) be \(C \)-generic over \(L \), with \(p_0 \subseteq x \). Then, as \(z \in L \), the real \(y \) defined by \(y(k) = z(k) + x(k) \), \(\forall k \), is \(C \)-generic over \(L \) as well, and we have \(L[x] = L[y] \) and still \(p_0 \subseteq y \). It follows from (1) that \(T[\dot{a}_{\text{lef}}] = T[\dot{a}_{\text{rig}}] \) (an OD set of reals in \(L[x] = L[y] \)).

But on the other hand by the product forcing theorem and the choice of \(z \), the pair \(\langle x, y \rangle \) is \((C \times C)\)-generic over \(\overline{M} \), and hence \(T[\dot{a}_{\text{lef}}] \neq T[\dot{a}_{\text{rig}}] \) by Corollary 4 which is a contradiction. \(\square \) (Theorem 1)

Remark 5. The Solovay model \([4] \) admits a somewhat stronger result established in \([1] \), namely, any countable non-empty OD set of sets of reals consists of OD elements (sets of reals). We don’t know whether this is true in the Cohen generic extension \(L[a] \). \(\square \)

Remark 6. Is Theorem 1 true for other popular forcing notions like e.g. the random forcing? The proof above crucially employs the countability of the Cohen forcing. \(\square \)
References

[1] V. Kanovei. OD elements of countable OD sets in the Solovay model. *ArXiv e-prints*, March 2016.

[2] V. Kanovei and V. Lyubetsky. A countable definable set of reals containing no definable elements. *ArXiv e-prints, 1408.3901*, August 2014.

[3] Vladimir Kanovei and Vassily Lyubetsky. A definable E_0 class containing no definable elements. *Arch. Math. Logic*, 54(5-6):711–723, 2015.

[4] R.M. Solovay. A model of set-theory in which every set of reals is Lebesgue measurable. *Ann. Math. (2)*, 92:1–56, 1970.