Философия в техническом вузе: стратегии развития в цифровую эпоху

Актуальность исследования. Развитие информационных технологий привело к радикальным темпам трансформации технологической и, как следствие, социально-экономической инфраструктуры современного общества. В этих условиях приобретает особую актуальность вопрос о модели высшего инженерного образования, позволяющей отвечать на новые вызовы, связанные с непредсказуемостью в сфере занятости, формированием новых информационных привычек, а также экологическим кризисом. Современный специалист должен обладать широким кругом знаний, навыков и умений, включающим в себя, среди прочего, компетенции этико-эстетического характера.

Цель исследования. Выявление роли гуманитарной составляющей, и, в первую очередь, курса философии, в профессиональном образовании студентов технических направлений подготовки.

Методология исследования. Исследование осуществлено с использованием методов критического и сравнительно-исторического анализа, аксиологического и герменевтического метода с опорой на релевантную зарубежную и отечественную научную литературу.

Результаты и обсуждение. Продемонстрировано, что современный курс философии должен быть ориентирован не столько на усвоение знаний, сколько на развитие личности студента. Предлагается трехчастная модель содержания курса, подразумевающая традиционный уровень знания историко-философского материала, уровень развития навыков и компетенций критического мышления, аргументации и дискуссии, а также уровень навыков личностного развития и заботы о себе. Для содержательного насыщения третьего уровня предложено обращение к современным философско-эстетическим концепциям и практикам, таким как сомаэстетика Р. Шустермана и повседневная эстетика Ю. Сайто. В результате эксплицирована возрастающая значимость гуманитарных дисциплин в образовании для негуманитарных специальностей.

Ключевые слова: информационное общество, философия образования, цифровая трансформация, образование инженера, философия в техническом вузе, сомаэстетика, этико-эстетические ценности

Ссылка для цитирования:
Шестакова И. Г., Беззубова О. В., Рыбаков В. В. Философия в техническом вузе: стратегии развития в цифровую эпоху // Перспективы науки и образования. 2022. № 1 (55). С. 186-199. doi: 10.32744/pse.2022.1.12
I. G. SHESTAKOVA, O. V. BEZZUBOVA, V. V. RYBAKOV

Philosophy in a technical university: development strategies in the digital age

The relevance of research. The development of information technologies has led to a radical pace of transformation of the technological and, as a result, the socio-economic infrastructure of modern society. In these conditions, the question of a model of higher engineering education becomes especially relevant, which makes it possible to respond to new challenges associated with unpredictability in the field of employment, the formation of new information habits, and the environmental crisis. The modern professional must possess a wide range of knowledge, skills and abilities, including, but not limited to, competencies of an ethical and aesthetic nature.

Purpose of the study. Revealing the role of the humanitarian component, and, first of all, the philosophy course, in the professional education of students in technical areas of training.

Research methodology. The research was carried out using the methods of critical and comparative historical analysis, axiological and hermeneutic methods based on relevant foreign and domestic scientific literature.

Results and discussion. It is demonstrated that a modern philosophy course should be focused not so much on the assimilation of knowledge, but on the development of the student’s personality. A three-part model of the course content is proposed, implying the traditional level of knowledge of historical and philosophical material, the level of development of skills and competencies of critical thinking, argumentation and discussion, as well as the level of skills of personal development and self-care. For the content saturation of the third level, it is proposed to turn to modern philosophical and aesthetic concepts and practices, such as the somaesthetics of R. Shusterman and the everyday aesthetics of Yu. Saito. As a result, the growing importance of humanitarian disciplines in education for non-humanitarian specialties has been explicated.

Keywords: information society, philosophy of education, digital transformation, engineering education, philosophy at a technical university, somaesthetics, ethical and aesthetic values

For Reference:
Shestakova, I. G., Bezzubova, O. V., & Rybakov, V. V. (2022). Philosophy in a technical university: development strategies in the digital age. Perspektivy nauki i obrazovania – Perspectives of Science and Education, 55 (1), 186-199. doi: 10.32744/pse.2022.1.12
The emergence of digital civilisation of which we are witnesses has led to radical transformation of the technological and, consequently, socio-economic infrastructure. The present world faces both unprecedented opportunities and new serious problems (which are probably not recognised yet because of the pace of their occurrence), affecting virtually all segments of human life and society. One of the spheres of the society that are principally problematised by the emergence of the digital world is the sphere of education. In turn, specific challenges to engineering and technical education can be highlighted in the context of the problems in the educational sphere.

These challenges, for the first time in human history, are associated with the radical constricting of forecasting horizons. The vision of the future eludes our gaze in fact as soon as it appears [44]. Training of specialists in various fields has always been one of the key functions of education: the young people, after graduating from an educational institution, are supposed to get organically integrated into the society and live a successful life. But, according to Yu. Harari, “Today we have no idea what China or the rest of the world will represent in 2050. We do not know how people will earn their living, we do not know how the army or bureaucracy will function, we do not know how the relations between the sexes will be formed. <...> Therefore, much of what children learn today will become unnecessary in 2050” [13, p. 314].

The ultrafast socio-technological transformation leads to the urgent need to review the fundamental pedagogical problems as to the choice of means and methods of learning/teaching. In terms of engineering education problems, this means the increased uncertainty of the status of engineering professions, problematisation of not only the content of engineering education, but also the need for it, at least within the framework that has been established by the present moment.

However, the information society is characterised not only by the radical increase in the rate of change and the growing uncertainty of the future, but also by its own information content which has a fundamental impact on the way of existence of contemporary man, the structure of his thoughts, feelings, actions and habits. Possibly, this involves not just the formation of new patterns of behaviour and habits, but a new type of mentality and way of existence. For instance, A. Sekatsky, comparing the media environment with the transpersonal matrices of the Antiquity, introduces the concept of “being in touch” [11, p. 312] to characterise the basic way of existence of a present-day man whose subjectivity is embodied not so much in ego as in eli (“electronic personality” or “electronic identification”) [11, p. 312]. Considering that a new type of conscience and a special way of being-in-the-world is now formed in the information society, we should pay special attention to this issue and find out what changes are required in educational approaches in the conditions of digital transformation.

Anyway, contemporary man (and especially young boys and girls – modern students) is characterised by a number of specific features: permanent immersion in media environment overloaded with information, the tendency to perceive all kinds of knowledge as information, preferring a “quick-viewing” mode of perception as basic, difficulty concentrating, frequent switching of attention, etc. Some of these traits create additional difficulties for learning since they do not contribute to development of attentiveness,
thoughtfulness, concentration, immersion and interest – key skills necessary for successful learning in any domain.

However, the information society also preserves the fundamental problems of the 20th century, such as excessive irrational consumption, exploitation of natural resources and destruction of living organisms. The level of “rational irrationality” [3, p. 272] of the industrial world is not decreasing. This means a certain thing for modern education: whatever it is, it must contribute to the formation of a person capable of taking concrete measures aimed at solving the global ecological crisis. In this aspect it is not just the matter of responsibility of the educational system to people and the society – this concerns the world as a whole.

All these issues must somehow be addressed by educational programmes and be offered to students at specific courses for reflection. Obviously, humanities are of key and increasing importance in these terms, in particular, philosophy that has a potential to take a broad view of things, encompassing a whole variety of aspects, problems and nuances, where other disciplines dwell only on specific aspects of a chosen field. Moreover, it is evident that this function of philosophy should cover not only humanities but also technical sciences taught at universities, in particular, as concerns training of engineers. However, the modern philosophy course seems not to match the pace of the transformation processes.

In our opinion, most of philosophy courses in today’s world (and in modern Russia in particular) are still committed to pedagogical configurations and standards created in the former, pre-digital environment, therefore they need serious revision.

The key objective of the article is to clarify the role of humane studies and, in the first place, the course of philosophy in professional education of students trained in technical areas. The achievement of the set objective involves solving a number of specific tasks, such as identifying key challenges faced by the modern society in the conditions of total uncertainty of development paths, analysis of existing approaches to training engineers, both foreign and national, assessment of the potential of philosophy as an academic discipline in the context of challenges faced by the modern society, development of an innovative approach to construction of a philosophy course. In the course of the research, the authors developed and proposed a three-part model of a philosophy course that makes it possible to conceptualise the goals and objectives of philosophy as an academic discipline in a new way.

Materials and methods

The interdisciplinary status of the research problem area required a synthesis of methods for comprehensive analysis of the current situation. The work is based on socio-philosophical principles and methods of cognition, in particular, the method of comparative historical analysis, dialectical systemic approach, axiological and hermeneutic analysis.

The source base of the research is represented by the national and foreign scholarly literature devoted to the problems of philosophical education in general and the role of philosophy in engineering training in particular; materials of symposia and conferences, works of leading world specialists in the field of educational philosophy, social philosophy and aesthetics. The use of the participatory observation method made it possible to review a number of phenomena and trends manifested currently in the “lifeworld” of a man and the society in the conditions of radical acceleration of scientific and technological progress and dramatic increase in the rate of transformation of socio-economic infrastructure.
Research results

The issue of the engineer’s role in the modern world has been actively discussed in the academic community for several decades. In particular, this problem was considered in thematic compendia devoted to prospects of engineering development [50] and issues of future engineering education [17], engineer identity and values of the engineering profession [18], role of engineer’s profession in the rapidly changing world [27; 28]. The researchers tend to agree that today the engineering profession involves the solution of a number of issues pertaining to humane studies. The need for a broader approach to engineering training is emphasised, in particular, in the works by S. Beder [14; 15] and R. Williams [52]. At the same time, a number of authors discussing this issue accentuate the key importance of philosophy – not only its contribution to the development of general cultural competences, but also its influence on professional practices and professional identity [32]. It is also noted that in-depth knowledge of philosophy can make professional activities more conscious [30], promote mutual understanding between specialists of different scientific disciplines working over interdisciplinary projects [31]. Modern theorists of higher education are convinced that today employers need not only competent technical specialists, but rather professionals endowed with critical faculty and creative reasoning. The new conditions of work include increased labour mobility, enhanced mutual dependence of national economies [40], growing importance of information, globalisation of economy and culture, increased influence of multinational corporations, decentralisation of power, destruction of traditional hierarchies, increasing complexity of social relations [25], rapid development of technologies [12]. These changes cumulatively represent a new challenge for all spheres of human activity, and engineering is no exception [16]. This raises the issue of choosing an acceptable methodology having specific flexibility [43], the need to identify what educational strategies are optimal in current conditions [45], how to combine professional narrow-specialisation training with the required broad-mindedness [49].

The problem of educational standards and the place of philosophy in them in terms of engineering education was a subject of discussion at the seminars – WPE (Workshop on Philosophy and Engineering) in Delft (2007) [53] and in London (2008) [54]; at the conference “Frontiers in Education” [33; 34]; in collections of articles addressing both the general issues of engineering training [21] and the place of philosophy in engineering education [22]. The issues of engineering education and the role of philosophy in engineering training were also discussed at the level of governments and intergovernmental organisations.

The problems of liberal-arts education for engineers have been in the focus of UNESCO’s attention since the 1960s. In particular, a number of conferences and studies under the auspices of UNESCO have been devoted to this subject [23]. H. Knepler, Professor of Illinois Institute of Technology, compiling editor of collection of papers in the mentioned research area, consultant of technology research and higher education sector of UNESCO, repeatedly noted in his publications of the 1970s that the growing concern about the possible environmental crisis requires revision of the traditional approach to training of engineering staff [35-37].

A striking example of governmental initiative to introduce philosophy into professional training programmes is the Danish experience: the inclusion of methodology and philosophy of science into educational programmes has been one
of the criteria of Danish universities’ accreditation since 2006 [20]. In the USA, in the absence of a system of state control, when the key requirements to engineering training programmes are formulated by non-governmental organisations (in particular, ABET (Accreditation Board for Engineering and Technology) and American Society for Engineering Education), the problem of liberal-arts education for engineers is also widely discussed in the professional community. Moreover, the USA is one of the leaders in the field of inclusion of humanities in technical specialists’ training programmes. A notable example of applying a new approach towards development of training programmes is the experience of Massachusetts Institute of Technology (MIT) that was one of the first technical universities where a department of humanities was established (1932), subsequently transformed into School of Humanities and Social Sciences (1959, since 2000 – School of Humanities, Social Sciences and Arts) [41].

The actual review of ideas about the engineering profession makes some experts talk even about its crisis [51]. Modern studies show that the image of engineer is losing its attractiveness in many countries. According to P. Dias, the engineering profession today is no longer connected with progress [26]. There are concerns about the technological crisis endangering both the environment and the society, which highlights the issue of ethics in the engineer’s activity. The interrelationship of ethics and the topical issues of the engineering profession was discussed in the works by S. Christensen, E. Ernø-Kjølhede [19] and M. Davis. The latter emphasises that ethics for engineers should focus on real problems arising from concrete practice, including the problems of impact of technologies on people and the environment [24]. It is also noted that ethics in the engineering practice today is no less important than restricted professional competencies [39].

Accordingly, almost all reputable educational institutions introduce courses on ethics in their curricula that are not confined to classical ethical and social concepts or discussion of already known cases. Modern ethics for engineers, in addition to general issues, is focused on real-world problems arising in the course of specific practice, including the impact of technology on humans and the environment.

Today many authors agree with S. Christensen and E. Ernø-Kjølhede sharing their view that the study of philosophy can be useful in terms of developing the ability to formulate questions, to classify and identify patterns, to split complex problems into a number of particular assignments [20, p. 140]. Moreover, some researchers emphasise that one of the most important skills to be acquired through the study of philosophy is the ability to systemically organise one’s thoughts, ideas and views, to identify correlations [32]. As noted by D. Goldberg [29], modern students often lack the ability to formulate questions, to outline technological and design objectives, to collect and organise data. Goldberg sees the reason of the listed deficiencies in the fact that students have never been taught these skills. Answering how philosophy can help to solve these problems, Goldberg states that these gaps can be closed (directly or indirectly) through better understanding of intellectual history and the philosophical method.

It is also important to remember that any knowledge is historically and socially conditioned. Due understanding of this postulate should help students to better understand the place of science in the modern world. These principles are embodied in the UNESCO’s Declaration on Science and the Use of Scientific Knowledge [1] adopted at a conference in Budapest in 1999. The declaration specifically emphasises that “science education curricula should include science ethics, as well as due training in history, philosophy and cultural aspects of science” [1, p. 270], as well as reflect the need for active cooperation “in all
areas of scientific creation pertaining to such domains as physics, biology, Earth sciences, biomedicine, engineering, social sciences and humanities” [1, p. 266].

The philosophy teaching history in Russia prior to the 20th century differed from that in the West in many respects. The actual tradition of university education was borrowed from Europe in the 18th century, but it was not until the Soviet period that philosophy became a compulsory subject for students of all specialties, for the first time in the history of the national education. At the same time, however, the only officially allowed doctrine was Marxist-Leninist philosophy, which determined its status as an ideological discipline.

Significant changes took place in the post-Soviet period, when, on the one hand, the ideological restrictions were lifted and the teachers were allowed to deliver courses at their own discretion, but, on the other hand, the status of philosophical knowledge deprived of support of the official ideology began to decline rapidly. Today, philosophy is one of the disciplines included in the Federal State Education Standard [8]; however, there is not any unified concept as to the course content. The suggested tentative programme of the course [9] is difficult to realise, considering the real number of class hours (the standard course of philosophy at a technical university most often comprises 17 lecture hours and 34 hours of practical work).

The described situation is also characteristic of postgraduate education where philosophy remained among the mandatory examinations covered by the minimum requirements for the Candidate (PhD) degree. The decision, taken in 2004, to replace the general philosophy course with the discipline “History and philosophy of science” was an attempt to streamline the situation and bring the studied material closer to learners’ scope of interest. However, the realisation of this decision involved a number of difficulties, including the lack of due-quality accessible academic literature, the need to retrain a large number of specialists, as well as uncertainty regarding the model of philosophy of science that should be adopted as the fundamental one. Thus, the role of philosophical knowledge and, in particular, the discipline “History and philosophy of science” in the national system of higher and postgraduate education is so far unclear, while the course as such represents a synthesis of the Soviet philosophy of science, based on the principles of dialectical materialism, and the post-Soviet philosophical quests largely determined by the desire to assimilate and integrate the achievements of Western philosophy of the 20th century. Although this problem has been a subject of numerous discussions and scientific forums, in particular, the conference “What kind of philosophy of science do we need?” held in 2007 and 2009 at the Faculty of Philosophy of St. Petersburg State University [2; 4] with the participation of leading national philosophers – experts in this sphere, as well as a number of scientific publications by the staff of Department of Philosophy of St. Petersburg State Mining University (one of the key technical universities in Russia), it can by no means be considered as finally resolved. In these terms, M.I. Mikeshin notes in his works that teaching philosophy of science should not be reduced to students’ memorising certain metaphysical structures; “it is necessary to teach them to treat technical sciences and work within them from meta-theoretical and philosophical positions, to analyse the methods and objectives of their work, to compare them with other problems in a broad and diverse socio-cultural context” [5, p. 362]. Further, he raises an issue of importance of philosophy as an educational discipline in the conditions of competence approach [7], which in turn leads to the need to update the programmes and methods of teaching the science philosophy course [6]. B.Ya. Pukhanskiy [10, p. 200] also stresses the necessity for synthesis of technical and liberal-arts knowledge. The acquaintance with the existing educational literature makes it possible to state that the
official version of philosophical knowledge in Russia has stagnated at the level of the 1980s and in no way reflects the modern trends in the development of philosophical knowledge or the current problems of our time.

The analysis of foreign experience of structuring philosophy courses shows that in order to increase the relevance and practical framework of this subject, teachers turn in the first place to ethical issues and consideration of different ethical concepts as well as political issues as an extension of applied ethics. However, it is not less relevant, in the authors’ view, to address another practical philosophical discipline, namely, aesthetics – at least some of its current trends.

Indeed, one can state that many of the fundamental problems identified above, as posed by the informatisation and the environmental crisis, are of ethical and aesthetic nature. How to protect oneself from information noise, how to preserve sensitivity (perceptual and emotional) to physical stimuli of the external world and events of the social world, how to combine openness to change and ability to preserve oneself – all these are questions of existential and practical nature that lie at the intersection of ethos and aesthesis. The development of a number of trends in contemporary aesthetics proved to be a response to the increasing relevance of these issues in the contemporary world, represented, in particular, by R. Shusterman’s somaesthetics and Yu. Saito’s version of everyday aesthetics.

Richard Shusterman, the founder of somaesthetics, treats this area as a special discipline including both theoretical and practical aspects. Somaesthetics lies at the intersection of philosophy, aesthetics and pedagogy. According to Shusterman’s definition of somaesthetics, it has a pedagogical orientation and can be treated as “a pragmatist philosophy of education – a discipline concerned with improving our ability to learn by improving the use of the soma (in perception and performance) as the indispensable tool, general site, and subject of learning” [48, p. 286-287]. Shusterman not only views somaesthetics as a section of philosophy, but also insists that philosophy returns to its foundations and roots through somaesthetics, to what it used to be in ancient Greece and what it remains in its core as long as it exists: “critical, meliorative art of living” [46, p. 187].

Thus, from the practical point of view, somaesthetics can be interpreted as a “toolkit” for self-care, self-education and self-development. Its inclusion in the philosophy course will add relevance and practical orientation to it, will release philosophy from false understanding of its nature as an abstract theoretical discipline that has little to do with reality (such understanding of philosophy is still common among students, especially at technical universities). At the same time, it will become possible to bring the consideration of the fundamental nature of knowledge and the difference between knowledge and information to a proper, higher level – which is probably the most important issue in the conditions of the information society. Philosophy as art of life treats knowledge not as just information stored in memory, but rather as something that contradicts to it – as realisation of personality, transformation of human life. Cognition of virtuous truth for philosophers like Socrates, Plato, Aristotle, Seneca and others, if truly realised, leads simultaneously to transformation of the individual: a cognitive act is an ontological act. This is what somaesthetics accentuates, revealing philosophy as “a distinctive way of life, a critical, disciplined care of the self that involves self-knowledge and self-cultivation” [47, p. 15].

As the name of the discipline suggests, somaesthetics focuses on the body (soma) as an object and simultaneously a substratum of human learning. Shusterman’s pathos lies in his belief that everything that in fact is supposed to educate and transform us is fixed at the level of patterns of behaviour and habits that are rooted in the body, bodily habits.
Accordingly, one of the main principles of effective education should represent cultivation of the ability to consciously work with the body and transform the bodily habits.

The information society of the present day gives rise to a set of habits that are often natural for the younger generation and that interfere in the learning process, being unnoticed by students. In particular, these are the habits of permanent distraction and reacting to extraneous information stimuli. The tendency to browse through information quickly, as well as permanently distracted attention is reflected in the habit, developed in many young people, to “check” their phones all the time. Somaesthetics should develop the students’ ability to notice and evaluate the mental and bodily habits they already have and to gradually replace them with other ones. In this regard, somaesthetics can be viewed as a practice of awareness, which is fully consistent with the basic philosophical values. Students can better control, through the use of somaesthetics, their bodily habits, state of mind and lifestyle in general, get rid of existing negative addictions and prevent their formation in the future.

In his works, Shusterman gives examples of possible practical exercises that, without requiring any special training or equipment, can be performed right at the philosophy class. One of such somaesthetic exercises, not requiring any special equipment or training, is a “seated body scan” [48, p. 115-117]. Its technique supposes that the students, taking a quiet sitting position at their desks for about twenty minutes, consistently concentrate their mental attention on various parts of the body and sensations in them, and further analyse them. According to Shusterman, such exercises “can be useful more generally in teaching philosophy because they relate to the central issue of self-knowledge that has so powerfully shaped philosophy” [48, p. 113).

Shusterman rightly observes that “the more information and sensory stimulation our new technologies provide us, the greater the need for cultivating a somaesthetic sensitivity to detect and deal with threats of stressful overload” [47, p. 13]. Somaesthetics is able to furnish modern students not only with the competence of mindfulness and self-cognition, but also with ascesis, detachment from information flows, which will lead to rediscovery of the world and new potentialities of living it.

One more area of contemporary aesthetics that, in our view, can be efficiently incorporated into philosophy teaching programmes is everyday aesthetics. One of the researchers who see pedagogical and ethical potential in everyday aesthetics and manifest it directly is Yu. Saito. She draws attention to “the power of the aesthetic” [42, p. 141], meaning that our everyday life is strongly imbued with aesthetic considerations, values and habits.

Saito’s position focuses on the assumption that not all of our aesthetic habits are positive, even if they are motivated by values of something pleasing and harmonious at first glance. For instance, the aesthetic value of beauty and “propriety” plays a fundamental role in capitalist consumerism. Choosing fruit and vegetables, we are guided by aesthetic values of attractiveness, symmetry, uniformity, etc. As a result, the products we see on the shelves meet certain aesthetic criteria after targeted selection. As a rule, we do not think about the fact that up to one third of grown vegetables and fruits are simply thrown away before they reach the shops [42, p. 144] – not because of their poor taste or improper nutritional quality, but only because they do not meet the accepted aesthetic criteria. The foodstuffs discharged onto dump sites get rotten, causing methane emission contributing to climate change and environmental degradation. This is just one example of how the aesthetic value of beauty reduced to patterned attraction models becomes a reason of hazardous wastefulness at the global scale. People having no aesthetic reflection competence will not even be able to realise the abnormality of this situation.
Another example is our pursuit of stylish and new things, gadgets, appliances. We buy a new thing not because the old one has malfunctioned, but because the prevailing aesthetic patterns of behaviour dictate conformity with a certain level of style and novelty. But in this case, aesthetic values get enslaved by the irrational logic of capitalism, and we become involved in undue exploitation of nature.

Saito states that ultimately our ethic and aesthetic values which we share consciously or unconsciously have a tremendous influence on how we behave and how we create our life worlds. As to consumerist aesthetics, “it is highly probable that this prevalent aesthetics stunts the development of people’s aesthetic sensibility” [42, p. 149]. Saito advocates the need to enhance and develop our “aesthetic literacy regarding everyday life” – as part of educational practices. “We need to recognize that and how the quality of life and the state of the world are affected, sometimes determined, by the aesthetic considerations in our daily life” [42, p. 196], in order to be able to reshape our aesthetic habits in accordance with the ethic values of care, involvement, consideration and love. This will simultaneously mean the development of ecology-sensitive mentality and behaviour.

Discussion

The authors attempted in their research not only to substantiate the relevance of a due philosophy course for present-day students of technical specialities, but also to suggest a concrete option with a certain content that would meet the key temporal challenges of digital transformation of technological and socio-economic infrastructure. From this point of view, the obtained results have not only theoretical, but also practical importance, since they can directly be used by teachers in the course of pedagogical practice.

On the whole, the proposed study continued the research line of the authors who realised, as early as in the late 20th century, the importance of a due philosophy course for students of specialties other than liberal arts [30; 32; 33]. The authors tried to show that the relevance of philosophy as such and philosophy as an academic discipline is not decreasing over time, but, on the contrary, is increasing. Philosophy develops broad-mindedness, mental adaptivity and flexibility of response, which appears to be a principal advantage of a person living in the modern world characterised by changeability and unprecedented information load.

However, while many authors, namely [20; 29; 32], focus their attention primarily on the role of philosophy in the development of intellectual abilities (such as the ability to formulate a problem, to analyse, criticise, argue, etc.), we tried to actualise the practical aspect of philosophy, to reveal philosophy as an art of living and its actual practice.

The version of philosophy course with updated content as proposed by the authors is in line with the latest trends found in philosophy itself. One trend is the increased attention to pedagogical issues; the other is the desire to actualise the importance of philosophy as a practical, not merely theoretical discipline. Both of these tendencies are expressed in R. Shusterman’s somaesthetics [47] and in everyday aesthetics of Yu. Saito [42]. From this position, the value of the given research can be viewed in the fact that it helps to shift from the general understanding of importance of philosophy in teaching practice (traditionally developed in the works by foreign and national authors as reviewed above) to specific content and concrete measures aimed at modernising the philosophy course that would meet both the latest challenges of our time and the current trends in philosophy itself.
Conclusion

Reviewing the results of the above analysis, the authors would like to emphasise that, as believed by them, philosophy should be regarded of as one of the most relevant and useful academic disciplines in the modern world. Philosophy represents a unique combination of theory and practice. It aims not only at developing the critical faculty—one of the basic values and grounds for independent personality’s existence, – but also the other fundamental competences, including the competence of self-education and self-development. The philosophy curricula should be consistent with its content and spirit.

In this regard, we would like to propose a three-part model for a philosophy course. The first level is related with acquisition of knowledge. The value of knowledge has been never questioned, therefore, being educated used to mean being a bearer of a certain body of knowledge. However, today, due to the development of information technologies, the content of a course aimed at transfer of knowledge is no longer deemed to be singular and sufficient.

The second level should be connected with specific practical competences formed and nurtured by philosophy. They can be divided into two groups: thinking competences and value competences. On the one hand, these are competences implying critical reasoning, discussion and argumentation, the ability to listen to an interlocutor and to present one’s own viewpoint, to verify a thesis and provide sound arguments to support it. On the other hand, the value-attitude competences involve the ability to form one’s attitude to life problems and situations and, eventually, to work on one’s worldview. Both of these groups form a set of competencies aimed at development of learner’s personality.

Finally, the third level, as the authors believe, should directly involve response to specific and characteristic challenges of the digital world. Continuing the idea of personal development, the philosophy course should be oriented at formation of competences and skills that would contribute to the development of human personality outright.

The main issue to be addressed is preservation of the personality substance, adherence to own principles, on the one hand, combined with flexibility, openness to formation of new abilities, on the other hand. At the same time, the given level of competence should contain the ability to take care of oneself in the conditions of over-medialisation and over-affectation. To some extent, this involves informational ecology and even asceticism— that should be included in a broader set of conscious attitudes and practices aimed at developing different types of attention, concentration, self-management and self-formation. Finally, environment-friendly consciousness should be directed not only at the individual, but also at the world. The looming ecological crisis leaves neither choice nor time. The need for formation of not only environmental consciousness, but also one’s behaviour is obvious. Today there is a lot of talk but little action. For the new generations to behave differently at the root, environmental consciousness should be instilled and formed in them from the inception, being taken for granted— then they will not waste extra effort to convince themselves of the need for ecological-friendly behaviour, but will live according to the new principles. The approach to constructing a philosophy course proposed in this paper should serve towards solution of this paramount task.

Funding

The study was carried out at the expense of a subsidy for the fulfillment of the state task in the field of scientific activity for 2021 No. FSRW-2020-0014
REFERENCES

1. Declaration on science and the use of scientific knowledge. *Bulletin of the Russian Academy of Sciences*, 200, vol. 70, no. 3, pp. 266-270.
2. What kind of philosophy of science do we need? *Working Papers of Scientific Conference*, St. Petersburg, 2007, June 8-9, 2007. St. Petersburg, Publishing house of St. Petersburg State University.
3. Marcuse, H. *Eros and Civilisation. One-Dimensional Man*, Studies in the Ideology of Advanced Industrial Society. Moscow, AST Publ., 2003.
4. Materials of the second scientific conference “What kind of philosophy of science do we need?”. Saint Petersburg, Publishing house of St. Petersburg State University, 2009.
5. Mikeshin, M.I. History and philosophy of science in technical, mining and geological education in modern Russia. Proceedings of the Mining Institute, 2016, 218, pp. 359-364.
6. Mikeshin, M.I. Perception of science and philosophy of science by students of technical universities. *Bulletin of Pushkin Leningrad State University*, 2018, no. 1, pp. 13-22.
7. Mikeshin, M.I. Philosophy and its competences at a technical university. *Modern educational technologies in training specialists for the mineral resource sector. Collection of scientific papers of II All-Russian scientific conference* (pp. 770-775). St. Petersburg, Publishing house of St. Petersburg Mining University, 2018.
8. Order of Ministry of Education and Science of the Russian Federation No. 96 as of February 9, 2018 “On approval of the federal state educational standard of higher education – Bachelor’s degree in the field of training 21.03.01 “Oil and gas engineering” (as amended). Revision as amended No. 1456 as of 26.11.2020. Retrieved October 10, 2021, from: http://fgosvo.ru/uploadfiles/FGOS%20VO%203%2015062021.pdf.
9. Tentative programme of the discipline “Philosophy”. Retrieved October 10, 2021, from: http://fgosvo.ru/uploadfiles/ppd/20110329000946.pdf.
10. Beder S. Beyond technicalities: Expanding engineering thinking. *Journal of Professional Issues in Engineering*, 1999, no. 125 (1), pp. 12–18.
11. Sekatsky, A. *Sacrifice and Meaning: Essays*. In: Foundation for Promotion of Modern Literature. People and Books. Saint Petersburg, 2020.
12. Shrestakova, I.G. Progressophobia in the New Temporality of the Digital World. *Philosophy Issues*, 2021, no. 7, pp. 61-71. DOI: 10.21146/0042-8744-2021-7-61-71
13. Harari, Yu.N. 21 lessons for the 21st century. Moscow, Sindbad Publ., 2019.
14. Bylieva D., Zamorev A., Lobatyuk V., Anosova N. *Ways of Enriching MOOCs for Higher Education: A Philosophy Course*. PCSF 2020, CSIS 2020. *Lecture Notes in Networks and Systems*, 2021, vol. 184. Springer, Cham. DOI: 10.1007/978-3-030-65857-1_29
15. Christensen S. H., Didier C., Jamison A., Meganck M., Newberry B. (eds.) *International Perspectives on Engineering Education. Engineering Education and Practice in Context*. Vol. 1. Berlin, Springer, 2015. 551 p.
16. Christensen S. H., Didier C., Jamison A., Meganck M., Mitcham C., Newberry B. (eds.) *Engineering Identities, Epistemologies and Values. Engineering Education and Practice in Context*. Vol. 2. Berlin, Springer, 2015. 416 p.
17. Christensen S. H., Ernø-Kjølhede E. *Ontology, epistemology, and ethics. Galaxies away from the engineering world? European Journal of Engineering Education*, 2008, no. 33 (5–6). October–December, pp. 561–571.
18. Christensen S. H., Ernø-Kjølhede E. Implementing Liberal Arts in Engineering Education in Denmark // *Christensen S. H., Delahousse B., Meganck M. (Eds.) Engineering in Context*. Aarhus, Academica, 2009. Chapter 6, pp. 129–146.
19. Christensen J., Henriksen L. B., Kolmos A. (eds.) *Engineering Science, Skills and Bildung*. Aalborg, Aalborg Universitetsforlag, 2006. 235 p.
20. Christensen S. H., Meganck M., Delahousse B. (eds.) *Philosophy in Engineering*. Århus, Academica, 2007. 430 p.
21. Davis M. Thinking Like an Engineer: Studies in the Ethics of a Profession. Oxford, Oxford University Press, 1998. 256 p.
22. Devon R., Liu J. Global change and the management of engineering education. *World Transactions on Engineering and Technology Education*, 2002, no. 1 (1), pp. 85–89.
23. Dias P. *The Engineer’s Identity Crisis. Homo Faber versus Homo Sapiens. WPE-2008. Workshop on Philosophy and Engineering. Abstracts*. London, Royal Academy of Engineering, 2008, pp. 23–24.
24. Duderstadt J. *Engineering for a changing world. A Roadmap to the Future of Engineering Practice, Research, and
Education. University of Michigan, Millennium Project, 2008. 131 p.
28. Educating the Engineer of 2020: Adapting Engineering Education to the New Century. Washington, DC: National Academies Press, 2005. 209 p.
29. Goldberg D. What Engineers Don’t Learn and Why They Don’t Learn It, and How Philosophy Might Be Able to Help // WPE-2008. Workshop on Philosophy and Engineering. Abstracts. London, Royal Academy of Engineering, 2008. pp. 85–86.
30. Grimson W., Christensen S. H., Ernø-Kjølhede E., Murphy M. Philosophy matters in engineering studies. Proceedings of the annual ASEE/IEEE Frontiers in Education Conference, October 22–25. New York, Saratoga Springs, 2008, pp. T1A-1-8.
31. Heywood J. “Think… about how others think”. Liberal education and engineering. Proceedings of the 37th ASEE/ IEEE Frontiers in Education Conference. October 10–13. Milwaukee, 2007, pp. T3C-20-24.
32. Heywood J., Grimson W., Korte R. Teaching Philosophy to Engineering Students. Proceedings of Frontiers in Education Conference. 2009. November, pp. M4A-2–M4A-6.
33. Heywood J., McGrann R., Smith K. Special session — Can philosophy of engineering education improve the practice of engineering education? 37th Annual Frontiers in Education Conference. New York, Saratoga Springs, 2007, pp. T1f-1-2.
34. Heywood J., McGrann R., Smith K. Special Session — Continuing the FIE 2007 Conversation on: Can philosophy of engineering education improve the practice of engineering education? 38th Annual Frontiers in Education Conference. New York: Saratoga Springs, 2008, pp. T1A-1-2.
35. Knepler H. Engineering Education and the Humanities in America. Leonardo, 1973, vol. 6, no. 4 (Autumn), pp. 305–309.
36. Knepler H. Comportement humain et technologie: Les sciences sociales et humaines dans la formation des ingénieurs aux États-Unis d’Amerique. Les sciences sociales et humaines dans la formation des ingénieurs. Études monographique et communication présentées au Colloque international sur le rôle des sciences sociales et humaines dans la formation des ingénieurs (Bucarest, septembre 1972). Paris, Les Presses de l’Unesco, 1974. pp. 83–114.
37. Knepler H. The New Engineers. Change, 1977, vol. 9, no. 6 (June), pp. 30–35.
38. Les sciences sociales et humaines dans la formation des ingénieurs. Études monographique et communication présentées au Colloque international sur le rôle des sciences sociales et humaines dans la formation des ingénieurs (Bucarest, septembre 1972). Paris, Les Presses de l’Unesco, 1974. 144 p.
39. Michelfelder D. Artes Liberales and Ethics for Engineers. WPE-2008. Workshop on Philosophy and Engineering. Abstracts. London, Royal Academy of Engineering, 2008, pp. 58–59.
40. Ponomarenko T. V., Nevskaya M. A., Marinina O. A. Innovative learning methods in technical universities: The possibility of forming interdisciplinary competencies. Espacios, 2019, no. 40 (41), p. 16.
41. Russo M. T. The Newcomers: Humanities in Engineering Education. Rasul M. (Ed.) Developments in Engineering Education Standards: Advanced Curriculum Innovations. Hershey, PA: IGI Global, 2012, pp. 285–300.
42. Saito Yu. Aesthetics of the Familiar: Everyday Life and World-Making. Oxford, Oxford University Press, 2017.
43. Serkova V. The Digital Reality: Artistic Choice. IOP Conference Series: Materials Science and Engineering, 2020, vol. 940 (1). pp. 012154. DOI: 10.1088/1757-899X/940/1/012154
44. Shusterman R. To the question of the limits of progress: is singularity possible? Vestnik of Saint Petersburg University. Philosophy and Conflict Studies, 2018, vol. 34, issue 3, pp. 391–401. DOI: 10.21638/11701/spbu17.2018.307
45. Shipunova O. D., Berezovskaya I. P. Organization technology of professional interactions in the engineering environments. International Journal of Civil Engineering and Technology, 2019, no. 9 (10), pp. 2020–2028.
46. Shusterman R. Performing Live: Aesthetic Alternatives for the End of Art. Ithaca, Cornell University Press, 2000.
47. Shusterman R. Body Consciousness: A Philosophy of Mindfulness and Somaesthetics. Cambridge, Cambridge University Press, 2008.
48. Shusterman R. Thinking Through the Body: Essays in Somaesthetics. Cambridge, Cambridge University Press, 2012.
49. Steiner C. J. Educating for innovation and management: The engineering educators’ dilemma. IEEE Transactions on Education, 1998, no. 41 (1). February, pp. 1–7.
50. The Engineer of 2020: Visions of Engineering in the New Century. Washington, DC: National Academies Press, 2004. 119 p.
51. Williams R. Education for the profession formerly known as engineering. The Chronicle of Higher Education, 2003. Iss. January 24, pp. 88–96.
52. Williams R. H. Retooling. A historian confronts technological change. Massachusetts, The MIT Press, 2002. 270 p.
53. WPE-2007. Workshop on Philosophy and Engineering. Abstracts. Delft, University of Delft, 2008. 124 p.
54. WPE-2008. Workshop on Philosophy and Engineering. Abstracts. London, Royal Academy of Engineering, 2008. 130 p.
Информация об авторах

Шестакова Ирина Григорьевна
(Россия, Санкт-Петербург)
Доцент, доктор философских наук, профессор кафедры философии
Санкт-Петербургский горный университет
E-mail: Irina_Shestakova@inbox.ru
ORCID ID: 0000-0003-1430-9415
Scopus Author ID: 57204657838;
Researcher ID: AAJ-2039-2021

Беззубова Ольга Владимировна
(Россия, Санкт-Петербург)
Доцент, кандидат философских наук, доцент кафедры философии
Санкт-Петербургский горный университет
E-mail: Bezzubova_OV@pers.spmi.ru
ORCID ID: 0000-0002-0494-3386
Researcher ID: A-5893-2019

Рыбаков Всеволод Вячеславович
(Россия, Санкт-Петербург)
Кандидат философских наук, доцент
Санкт-Петербургский горный университет
E-mail: vsrybakov@yandex.ru
ORCID ID: 0000-0003-3687-460X
Researcher ID: K-7778-2013

Information about the authors

Irina G. Shestakova
(Russia, Saint-Petersburg)
Associate Professor, Doctor of Philosophy, Professor of the Department of Philosophy
St. Petersburg Mining University
E-mail: Irina_Shestakova@inbox.ru
ORCID ID: 0000-0003-1430-9415
Scopus Author ID: 57204657838;
Researcher ID: AAJ-2039-2021

Olga V. Bezzubova
(Russia, Saint-Petersburg)
Associate Professor, PhD in Philosophical Sciences, Associate Professor of the Department of Philosophy
St. Petersburg Mining University
E-mail: Bezzubova_OV@pers.spmi.ru
ORCID ID: 0000-0002-0494-3386
Researcher ID: A-5893-2019

Vsevolod V. Rybakov
(Russia, Saint-Petersburg)
PhD in Philosophical Sciences, Associate Professor
St. Petersburg Mining University
E-mail: vsrybakov@yandex.ru
ORCID ID: 0000-0003-3687-460X
Researcher ID: K-7778-2013