Rotational elastic waves in a cylindrical waveguide with wedge dislocation

M O Katanaev

Steklov Mathematical Institute, ul. Gubkina, 8, Moscow, 119991, Russia

E-mail: katanaev@mi.ras.ru

Received 11 March 2015, revised 13 November 2015
Accepted for publication 9 December 2015
Published 18 January 2016

Abstract

We describe the propagation of rotational elastic waves in a cylindrical waveguide with wedge dislocation in the framework of geometric theory of defects. The defect changes the dispersion relation. For positive deficit angles, it increases the phase velocity and decreases the group velocity of the wave.

Keywords: geometric theory of defects, dislocation, rotational waves

1. Introduction

Ideal crystals are absent in nature, and most of their physical properties, such as plasticity, melting, growth, etc, are defined by defects of the crystalline structure. Therefore, a study of defects is a topical scientific question of importance for applications. At present, a fundamental theory of defects is absent in spite of the existence of dozens of monographs and thousands of articles.

One of the most promising approaches to the theory of defects is based on Riemann–Cartan geometry, which involves nontrivial metric and torsion. In this approach, a crystal is considered as a continuous elastic medium with a spin structure. If the displacement vector field is a smooth function, then there are only elastic stresses corresponding to diffeomorphisms of the Euclidean space. If the displacement vector field has discontinuities, then we are saying that there are defects in the elastic structure. Defects in the elastic structure are called dislocations and lead to the appearance of nontrivial geometry. Precisely, they correspond to a nonzero torsion tensor, equal to the surface density of the Burgers vector. Defects in the spin structure are called disclinations. They correspond to nonzero curvature tensor, curvature tensor being the surface density of the Frank vector.

The idea to relate torsion to dislocations appeared in the 1950s [1–4]. The comprehensive treatment of the problem is given in the book [5] (see also reviews) [6–12].

The problem is that the displacement vector field, the main variable in elasticity theory, is no longer continuous in the presence of dislocations and becomes multivalued. The
mechanism by which multivalued degrees of freedom can be converted into gauge degrees of freedom, so that they can be dealt with by field theory, has been explained in [5, 12].

In the geometric approach to the theory of defects [13–15] we discuss a model that is different in two respects. Firstly, we do not have the displacement vector field and rotational vector field as independent variables because, in general, they are not continuous. Instead, the triad field and \(SO(3) \)-connection are considered as independent variables. If defects are absent, then the triad and \(SO(3) \)-connection reduce to partial derivatives of the displacement and rotational angle vector fields. In this case, the latter can be reconstructed. Secondly, the set of equilibrium equations is different. We propose a purely geometric set which coincides with that of Euclidean three-dimensional gravity with torsion. The nonlinear elasticity equations and principal chiral \(SO(3) \) model for the spin structure enter the model through the elastic and Lorentz gauge conditions [15–17] which allow one to reconstruct the displacement and rotational angle vector fields in the absence of dislocations in full agreement with classical models.

The advantage of the geometric theory of defects is that it allows one to describe single defects as well as their continuous distributions.

In the present paper, we consider the propagation of rotational elastic waves in a cylindrical waveguide with wedge dislocation. It is a classical problem that was solved in the absence of defects long ago within elasticity theory (see, for example, [18]). We show that the wedge dislocation changes the dispersion relation. For positive deficit angles the phase velocity increases and group velocity decreases. Negative deficit angles have opposite consequences.

2. Elastic waves in media with dislocations

Let us introduce notation and recap on necessary facts from differential geometry. We consider elastic media as a topologically trivial manifold which is diffeomorphic to Euclidean space \(\mathbb{R}^3 \). Denote the Cartesian coordinate system by \(x^i, i = 1, 2, 3 \). Without dislocations, the elastic media is described by the Euclidean metric \(\delta_{ij} \). If dislocations are present then the metric becomes nontrivial:

\[
\delta_{ij} \mapsto g_{\mu\nu}(x) = e_{\mu}^i e_{\nu}^j \delta_{ij}, \quad \mu, \nu = 1, 2, 3,
\]

where \(e_{\mu}^i(x) \) is the triad. The triad field defines the orthonormal basis of the tangent spaces at each point \(e_i := e^\mu \partial_\mu \), where \(e^\mu_i \) is the inverse triad. We shall see that this basis is more convenient in applications.

Assume that relative displacements for elastic deformations are much smaller then deformations caused by defects:

\[
\partial_i u^i \ll e_{\mu}^i,
\]

where \(u^i(t, x) \) are components of the displacement vector field with respect to orthonormal basis in the tangent space \(e_i \). Then in the first approximation, the elastic waves propagate in Riemannian space with nontrivial metric produced by dislocations. Here, we neglect changes in the metric produced by elastic waves themselves. Therefore for elastic waves in media with defects we postulate the following wave equation

\[
\rho_0 \ddot{u}^i - \mu \dddot{u}^i - (\lambda + \mu) \nabla_i \nabla^i u^j = 0,
\]

where \(\lambda \) and \(\mu \) are Lamé coefficients, \(\dddot{u}^i = \nabla_j \nabla^j u^i \) is the covariant Laplace–Beltrami operator for the triad field \(e_{\mu}^i \), and \(\nabla_i \) is the covariant derivative. The explicit form of the covariant derivative is
\[\nabla_i u^j := e^{ij} \nabla_{\mu} u^\mu = e^{ij} (\partial_{\mu} u^\mu + u^\mu \omega^\mu_{\nu \lambda}) , \]

where \(\omega^\mu_{\nu \lambda} \) is the \(\mathbb{S}(3) \)-connection constructed for zero torsion.

Note that the displacement vector field \(u^j \) is not the total displacement vector field of points in the media with dislocations. In those regions where defects are absent, the total displacement vector is \(u^j_0 + u^j \) where \(u^j_0 \) is the dislocation part of the displacement vector field, which produces the triad \(e^j_0 := \partial_{\mu} u^\mu_0 \). Note also that the smallness of relative elastic deformations (1) is meaningful at those regions where displacements \(u^j_0 \) are not defined (they are not continuous functions if dislocations are present).

The expression for the deformation tensor \(\sigma_{ij} \) is needed to pose the boundary value problem for wave equation (2). In the presence of defects the deformation tensor is defined as follows

\[\epsilon_{ij} := \frac{1}{2} (e^{ij} \nabla_{\mu} u^\mu + e^{ij} \omega^\mu_{\nu \lambda} u^\lambda) . \]

Thus the existence of dislocations in media results in the introduction of the triad field \(e^j_0(x) \), metric \(g^j_{\nu \lambda}(x) \), and replacement of partial derivatives by covariant ones.

Remember that lowering of Latin indices is performed using the Euclidean metric, \(u_i := \delta_{ij} u^j \), and it commutes with covariant differentiation.

2.1. Rotational waves in a cylindrical waveguide with wedge dislocation

We consider a cylindrical waveguide of radius \(a \) with a wedge dislocation. Its axis is assumed to coincide with the axis of the cylinder. We choose a cylindrical coordinate system \(r, \phi, z \), the \(z \) axis coinciding with the cylinder axis as well. Let the wedge dislocation have deficit angle \(2\pi \theta \) (see figure 1). If \(-1 < \theta < 0 \), then the wedge is cut out from the cylinder. Dislocation is absent for \(\theta = 0 \). For positive deficit angle, \(\theta > 0 \), the wedge of media is added to the cylinder.

The cylinder contains wedge dislocation, and it creates nontrivial metrics. The metric becomes non-Euclidean [16]

\[ds^2 = \left(\frac{r}{a} \right)^{2r-2} \left(dr^2 + \frac{\alpha^2 r^2}{\gamma^2} d\phi^2 \right) + dz^2 , \]

where \(\alpha := 1 + \theta \), and we introduce dimensionless constant

\[\gamma := -\theta b + \sqrt{\theta^2 b^2 + 1 + \theta} . \]

The constant

\[b := \frac{\sigma}{2(1 - \sigma)} \]

is defined by dimensionless Poisson ratio

\[\sigma := \frac{\lambda}{2(\lambda + \mu)} , \]

which characterize elastic properties of media. Thermodynamical arguments restrict possible values of the Poisson ratio to \(-1 \leq \sigma \leq 1/2 \) [19].

The limit

\[\theta \to 0, \quad \alpha \to 1, \quad \gamma \to 1 \]

corresponds to the absence of the dislocation.
Metric (5) is rotationally and translationally invariant. The two-dimensional metric on sections \(z = \text{const} \) is the metric of a conical singularity which arises due to the wedge dislocation. It is important that this metric is written in elastic gauge and therefore is consistent with the elasticity theory \([16]\).

The metric for the wedge dislocation (5) is defined for all defect angles \(\theta > -1 \) and all values of radial coordinate \(0 < r < a \). It is degenerate on the dislocation axis \(r = 0 \). Metric (5) coincides with the induced metric in classical elasticity theory only for small defect angles and near the boundary of the cylinder \(r \sim a \) \([16, 20]\).

The metric for the wedge dislocation defines the triad field which we choose to be diagonal:

\[
e_{\mu}^{\nu} = \left(\frac{r}{a} \right)^{\gamma - 1}, \quad e_{\phi}^{\varphi} = \left(\frac{r}{a} \right)^{\gamma - 1} \frac{\alpha r}{\gamma}, \quad e_{z}^{\xi} = 1, \tag{8}\]

where \(\mu = r, \phi, z \) and \(i = \hat{r}, \hat{\phi}, \hat{z} \). In the absence of dislocation, \(\gamma = 1, \alpha = 1 \), it defines the usual orthonormal basis for tangent spaces in cylindrical coordinates. The inverse triad is

\[
e^{\mu}_{\nu} = \left(\frac{a}{r} \right)^{\gamma - 1}, \quad e^{\varphi}_{\phi} = \left(\frac{a}{r} \right)^{\gamma - 1} \frac{\gamma}{\alpha r}, \quad e^{z}_{\xi} = 1. \tag{9}\]

To find the explicit form of the wave operator, we need to compute Christoffel’s symbols and components of \(\mathfrak{S}\mathfrak{O}(3) \)-connection. Straightforward calculations show that only four Christoffel’s symbols differ from zero:

\[
\Gamma_{rr}^{r} = \frac{\gamma - 1}{r},
\Gamma_{\phi\phi}^{\phi} = \Gamma_{\phi\phi}^{\phi} = \frac{\gamma}{r},
\Gamma_{r\phi}^{\phi} = -\frac{\alpha ^{2} r}{\gamma}.
\tag{10}\]
Triad (8) defines also components of $\mathfrak{SO}(3)$-connection
$$\omega_{\mu\nu} = -\partial_{\mu} e_{\nu} + e_{\nu}^{\mu} \tilde{\Gamma}_{\mu
u}.$$

Only two components differ from zero:
$$\omega_{\varphi \varphi} = -\omega_{\varphi t} = \alpha. \quad (11)$$

Now we can compute the Laplacian
$$\Delta u_{t} = g^{\mu\nu}(\partial_{\mu} u_{\nu} - \omega_{\mu\nu} u_{t}) - g^{\mu\nu} \tilde{\Gamma}_{\mu
u} \omega_{\nu\varphi} u_{t} + g^{\mu\nu} \omega_{\nu\varphi} \omega_{\varphi \varphi} u_{t}.$$

Substitution of Christoffel’s symbols (10) and $\mathfrak{SO}(3)$-connection (11) yields the following expressions:

$$\tilde{\Delta} u_{t} = \left(\frac{a}{r}\right)^{2\gamma-2} \frac{1}{r} \partial_{r}(r \partial_{r} u_{t}) + \left(\frac{a}{r}\right)^{2\gamma-2} \frac{\gamma^2}{\alpha r^2} \partial_{\varphi}^{2} u_{t} + \partial_{\varphi}^{2} u_{t} - \left(\frac{a}{r}\right)^{2\gamma-2} \frac{\gamma^2}{r^2} u_{t} - 2 \left(\frac{a}{r}\right)^{2\gamma-2} \frac{\gamma^2}{\alpha r^2} \partial_{\varphi} u_{t},$$

$$\tilde{\Delta} u_{\varphi} = \left(\frac{a}{r}\right)^{2\gamma-3} \frac{1}{r} \partial_{r}(r \partial_{r} u_{\varphi}) + \left(\frac{a}{r}\right)^{2\gamma-3} \frac{\gamma^2}{\alpha^2 r^2} \partial_{\varphi}^{2} u_{\varphi} + \partial_{\varphi}^{2} u_{\varphi} - \left(\frac{a}{r}\right)^{2\gamma-3} \frac{\gamma^2}{r^2} u_{\varphi} + 2 \left(\frac{a}{r}\right)^{2\gamma-3} \frac{\gamma^2}{\alpha^2 r^2} \partial_{\varphi} u_{t},$$

$$\tilde{\Delta} u_{t} = \left(\frac{a}{r}\right)^{2\gamma-3} \frac{1}{r} \partial_{r}(r \partial_{r} u_{t}) + \left(\frac{a}{r}\right)^{2\gamma-3} \frac{\gamma^2}{\alpha^2 r^2} \partial_{\varphi}^{2} u_{t} + \partial_{\varphi}^{2} u_{t} - \left(\frac{a}{r}\right)^{2\gamma-3} \frac{\gamma^2}{r^2} u_{t}.$$

The corresponding wave equations (2) have many solutions. The simplest one describes rotational waves for which only the angular component u_{φ} differs from zero and does not depend on the angular coordinate φ:

$$u_{t} = 0, \quad u_{\varphi} = u_{\varphi}(t, r, z), \quad u_{z} = 0.$$

It is easy to see that rotational waves occur without media compression

$$\epsilon := \sqrt[i]{\gamma} \mu' = 0.$$

For these oscillations, wave equations $\Box u_{t} = 0$ and $\Box u_{t} = 0$ are identically satisfied, and we are left with one wave equation

$$\frac{1}{c_{T}^{2}} \tilde{\Delta} u_{\varphi} = \left(\frac{a}{r}\right)^{2\gamma-2} \frac{1}{r} \partial_{r}(r \partial_{r} u_{\varphi}) + \partial_{\varphi}^{2} u_{\varphi} = 0. \quad (14)$$

We look for solution of this equation in plain wave form

$$u_{\varphi} = \text{re}(U e^{i(kz-\omega t)}),$$

where $U(r) \in \mathbb{R}$ is the wave amplitude, $k \in \mathbb{R}$ is the wave vector, and $\omega \in \mathbb{R}$ is the wave frequency. Then wave equation (14) takes the form

$$r \partial_{r}(r \partial_{r} U) + k^2 a^2 \left(\frac{r}{a}\right)^{2\gamma} U - \gamma^2 U = 0, \quad (15)$$
where
\[\kappa^2 := \frac{\omega^2}{c_T^2} - k^2. \]
(16)

Now we introduce new radial coordinate
\[r = a r', \quad 0 < r' < 1. \]

Then equation (15) reduces to the Bessel equation
\[r'\frac{d^2U}{dr'^2} + r'\frac{dU}{dr'} + \lambda^2 r'^2 U - U = 0, \]
(17)

where
\[\lambda^2 := \frac{\kappa^2 a^2}{\gamma^2}. \]

A general solution to the Bessel equation has two integration constants. We require it to be finite at \(r = 0 \). Then the amplitude takes the form
\[U = AJ_1 \left(\lambda \left(\frac{r}{a} \right) \right), \]
(18)

where \(A \in \mathbb{R} \) is the integration constant and \(J_1 \) is the Bessel function of the first kind of order one (see, for example, [21]).

If dislocation is absent, \(\gamma = 1 \), then the solution takes the well known form (see, for example, [18])
\[U \to \gamma_{-1} A J_1(\kappa r) \]

To impose boundary conditions on the cylinder surface, we need the explicit form of deformation tensor (4). Straightforward calculations yield the following expressions:
\[
\begin{align*}
\epsilon_{rr} &= \left(\frac{a}{r} \right)^{\gamma-1} \partial_r u_r, \\
\epsilon_{r\phi} &= \frac{1}{2} \left(\frac{a}{r} \right)^{\gamma-1} \left[\partial_r u_\phi + \frac{\gamma}{\alpha r} \partial_\phi u_r - \frac{\gamma}{r} u_\phi \right], \\
\epsilon_{\phi\phi} &= \left(\frac{a}{r} \right)^{\gamma-1} \frac{\gamma}{\alpha r} (\partial_\phi u_\phi + \alpha u_\phi), \\
\epsilon_{zz} &= \partial_z u_z, \\
\epsilon_{\phi\phi} &= \frac{1}{2} \left(\frac{a}{r} \right)^{\gamma-1} \partial_\phi u_{\phi} + \partial_\phi u_\phi.
\end{align*}
\]
(19)

Only two components
\[\epsilon_{r\phi} = \epsilon_{\phi r} = \frac{1}{2} \left(\frac{a}{r} \right)^{\gamma-1} \left[\partial_r u_\phi - \frac{\gamma}{r} u_\phi \right] \]
differ from zero for rotational waves. We require the cylinder surface to be free. Then the elastic forces on the boundary must be zero. It yields the boundary condition
\[\left. \left[\partial_r u_\phi - \frac{\gamma}{r} u_\phi \right] \right|_{r=a}. \]
(20)

For solution (18), it takes the form
\[\lambda J_1'(\lambda) - J_1(\lambda) = 0, \]
where prime denotes differentiation of the Bessel function with respect to its argument. There is the equality
\[J'_\lambda(\lambda) = J_0(\lambda) - \frac{1}{\lambda} J_1(\lambda). \]
Then the boundary condition is equivalent to the equality which defines the dispersion relation
\[\frac{k_a}{\gamma} = \xi \Leftrightarrow \omega = c_T \sqrt{k^2 + \frac{\gamma^2 \xi^2}{a^2}}. \tag{21} \]
where \(\xi \) is a root of the equation
\[J_0(\xi) = 2J_1(\xi). \tag{22} \]
Bessel functions \(J_\nu \) have the following asymptotics for large argument, \(\xi \gg 1, \xi \gg \nu, \)
\[J_0(\lambda) \approx \frac{2}{\sqrt{\pi \lambda}} \cos \left(\lambda - \frac{\pi}{4} \right), \]
\[J_1(\lambda) \approx \frac{2}{\sqrt{\pi \lambda}} \sin \left(\lambda - \frac{\pi}{4} \right). \]
Then equation (21) takes the form
\[\xi \cos \left(\xi - \frac{\pi}{4} \right) = 2 \sin \left(\xi - \frac{\pi}{4} \right) \]
for large argument. This equation has a countable set of roots, each of them defining the dispersion relation.

The phase velocity of rotational waves \(v := \omega/k \) has the form
\[v = c_T \sqrt{1 + \frac{\gamma^2 \xi^2}{a^2 k^2}}. \tag{23} \]
It is not difficult to calculate the group velocity
\[v_g := \frac{d \omega}{dk} = \frac{c_T^2}{\nu}. \tag{24} \]
If dislocation is absent, equation (21) for \(\xi \) remains the same. Relation (24) between phase and group velocities preserves its form. Thus the presence of the wedge dislocation changes only the dispersion relation (21).

For positive deficit angles \(\gamma > 1 \), the phase velocity increases and the group velocity decreases as a consequence of equations (23) and (24).

For small deficit angles the first correction has the form
\[\gamma \approx 1 + \theta \frac{1 - 2\sigma}{2(1 - \sigma)} \]
and
\[\omega \approx c_T \sqrt{k^2 + \frac{\xi^2}{a^2}} \left[1 + \theta \frac{1 - 2\sigma}{2(1 - \sigma)} \frac{1}{1 + \frac{k^2 a^2}{\xi^2}} \right]. \tag{25} \]
It is linear in deficit angle of the dislocation.
3. Conclusion

We showed that the presence of the wedge dislocation in a cylindrical waveguide leads to changing of the dispersion relation for rotational elastic waves. The difference increases as long as the deficit angle increases. For positive deficit angle, the phase velocity of the wave increases and group velocity decreases. For negative deficit angle, the behavior is opposite.

The solution of this problem within classical elasticity encounters essential technical problems. Indeed, relative displacements are not small in the neighborhood of the dislocation axis even for small deficit angles, and the expression for the induced metric is much more complicated \cite{16, 20}. However the solution of this problem within the geometric theory of defects is simpler.

Acknowledgments

This work is supported by the Russian Science Foundation (project 14–11-00687) in the Steklov Mathematical Institute.

References

\[1\] Kondo K 1952 On the geometrical and physical foundations of the theory of yielding Proc. 2nd Japan Nat. Congr. Applied Mechanics (Tokyo, Japan) pp 41–7
\[2\] Nye J F 1953 Some geometrical relations in dislocated media Acta Metall. 1 153
\[3\] Bilby B A, Bullough R and Smith E 1955 Continuous distributions of dislocations: a new application of the methods of non-Riemannian geometry Proc. R. Soc. Lon. A 231 263–73
\[4\] Kröner E 1958 Kontinuums Theories der Versetzungen und Eigenspannungen (Heidelberg: Springer)
\[5\] Kleinert H 2008 Multivalued Fields in Condensed Matter, Electromagnetism, and Gravitation (Singapore: World Scientific)
\[6\] Sedov L I and Berdichevski V L 1957 A dynamical theory of dislocations Mechanics of Generalized Continua, UITAM symposium ed E Kröner (Heidelberg: Springer) pp 214–38
\[7\] Kléman M 1980 The general theory of dislocations Dislocations In Solids vol 5, ed F R N Nabarro (Amsterdam: North-Holland Publishing Company) pp 243–97
\[8\] Kröner E 1981 Continuum theory of defects Physics of Defects: Les Houches, Session XXXV, 1980 ed R Balian et al (Amsterdam: North-Holland) pp 282–315
\[9\] Dzyaloshinskii I E and Volovik G E 1988 Poisson brackets in condensed matter physics Ann. Phys., NY 8 155 67
\[10\] Kadić A and Edelen D G B 1983 A Gauge Theory of Dislocations and Disclinations (Berlin: Springer)
\[11\] Kunin I A and Kunin B I 1986 Gauge theories in mechanics Trends in Application of Pure Mathematics to Mechanics (Lecture Notes in Physics vol 249) (Berlin: Springer) pp 246–9
\[12\] Kleinert H 1990 Gauge Fields in Condensed Matter vol 2 (Singapore: World Scientific)
\[13\] Katanaev M O and Volovich I V 1992 Theory of defects in solids and three-dimensional gravity Ann. Phys., NY 216 1–28
\[14\] Katanaev M O and Volovich I V 1999 Scattering on dislocations and cosmic strings in the geometric theory of defects Ann. Phys., NY 271 203–32
\[15\] Katanaev M O 2005 Geometric theory of defects Phys.—Usp. 48 675–701
\[16\] Katanaev M O 2003 Wedge dislocation in the geometric theory of defects Theor. Math. Phys. 135 733–44
\[17\] Katanaev M O 2004 One-dimensional topologically nontrivial solutions in the Skyrme model Theor. Math. Phys. 138 163–76
\[18\] Sneddon J N and Berry D S 1958 The Classical Theory of Elasticity (Heidelberg: Springer)
\[19\] Landau L D and Lifshitz E M 1970 Theory of Elasticity (Oxford: Pergamon)
\[20\] Kosevich A M 1981 Physical Mechanics of Real Crystals (Kiev: Naukova dumka) [in Russian]
\[21\] Janke E, Emde F and Lösch F 1960 Tafeln Höherer Funktionen 6th edn (Stuttgart: Teubner)