Interacting electron spins in κ-(BEDT-TTF)$_2$Cu[N(CN)$_2$I investigated by ESR spectroscopy

Lena Nadine Majer, Björn Miksch, Olga Iakutkina, Takuya Kobayashi, Atsushi Kawamoto, and Martin Dressel

1 Institute of Physics, University of Stuttgart, Pfaffenwaldring 57, 70569 Stuttgart, Germany
2 Graduate School of Science and Engineering, Saitama University, Saitama, 338-8570, Japan
3 Department of Condensed Matter Physics, Graduate School of Science, Hokkaido University, Sapporo 060-0810, Japan

(Dated: May 4, 2021)

We performed angular and temperature-dependent electron-spin-resonance measurements in the quasi-two-dimensional organic conductor κ-(BEDT-TTF)$_2$Cu[N(CN)$_2$I. The interlayer spin-diffusion is much weaker compared to the Cl- and Br-analogues, which are antiferromagnetic insulator and paramagnetic metal, respectively; κ-(BEDT-TTF)$_2$Cu[N(CN)$_2$I behaves insulating when cooled below $T = 200$ K. A spin gap ($\Delta \approx 18$ K) opens at low temperatures leading to a spin-singlet state. Due to intrinsic disorder a substantial number of spins ($\sim 1\%$) remains unpaired. We observe additional signals below $T = 4$ K with a pronounced anisotropy indicating the presence of local magnetic moments coupled to some fraction of those unpaired spins.

I. INTRODUCTION

Among the quasi two-dimensional organic (BEDT-TTF)$_2$X salts – where BEDT-TTF denotes the organic cation bis(ethylenedithio)tetrathiafulvalene – the κ-family draws particular attention, as slight modifications of the monovalent anions X lead to a large variety of interesting ground states, reaching from Mott insulator and paramagnetic metal, respectively; κ-(BEDT-TTF)$_2$Cu[N(CN)$_2$I behaves insulating when cooled below $T = 200$ K. A spin gap ($\Delta \approx 18$ K) opens at low temperatures leading to a spin-singlet state. Due to intrinsic disorder a substantial number of spins ($\sim 1\%$) remains unpaired. We observe additional signals below $T = 4$ K with a pronounced anisotropy indicating the presence of local magnetic moments coupled to some fraction of those unpaired spins.

This tendency, however, does not continue by going towards the isostructural κ-(BEDT-TTF)$_2$Cu[N(CN)$_2$I where an even larger halogen atom is incorporated in the polymeric anions; the compound remains insulating at ambient conditions [8] and becomes superconducting with $T_c \approx 8$ K only when hydrostatic pressure of around 100 MPa is applied [8, 10]. From early on it was suggested that the metallic state is suppressed by structural defects [8] rather than electronic correlations [11, 12]. Interestingly, when disorder is intentionally introduced to the amin insulator κ-(BEDT-TTF)$_2$Cu[N(CN)$_2$I by massive x-ray irradiation, the magnetic order is suppressed towards a state resembling the quantum spin liquid state in κ-(BEDT-TTF)$_2$Cu$_2$(CN)$_3$ [13].

Here we tackle the question about the magnetic ground state in κ-(BEDT-TTF)$_2$Cu[N(CN)$_2$I. Triggered by our recent broadband investigations of the quantum spin liquid Mott insulator κ-(BEDT-TTF)$_2$Cu$_2$(CN)$_3$ utilizing electron spin resonance [14], we perform comprehensive temperature and angular-dependent ESR measurements on κ-(BEDT-TTF)$_2$Cu[N(CN)$_2$I single crystals. Due to the strong effect of disorder, our findings differ rather strongly from the ones previously obtained on κ-(BEDT-TTF)$_2$Cu[N(CN)$_2$I and κ-(BEDT-TTF)$_2$Cu[N(CN)$_2$I.

II. EXPERIMENTAL DETAILS

Single crystals of the low-dimensional organic conductor κ-(BEDT-TTF)$_2$Cu[N(CN)$_2$I were prepared electrochemically as described in Ref. 13. κ-(BEDT-TTF)$_2$Cu[N(CN)$_2$I was grown at ambient conditions and crystallize in the space group Pnma [8]. As illustrated in Fig. 1 the BEDT-TTF dimers are tilted with respect to the stacking direction with alternating inclination. Two adjacent organic layers are related by mirror symmetry; in each layer there are four inequivalent

![FIG. 1. Structure of κ-(BEDT-TTF)$_2$Cu[N(CN)$_2$I viewed along the c-direction. In subsequent layers the long axis of the BEDT-TTF dimers is tilted by an alternating angle of $\pm 32^\circ$ with respect to the b-direction. Here the yellow, brown, blue, purple and grey color denotes sulfur, carbon, copper, iodine and nitrogen atoms, respectively. (The atomic positions were taken from [8])](image)
The electron spin resonance (ESR) measurements were performed on a continuous-wave spectrometer (Bruker EMXplus) in X-band (approximately 9.5 GHz). The system is equipped with a goniometer enabling angular dependent measurements. Experiments from room temperature down to \(T = 4 \) K were possible using a continuous He-gas flow cryostat (Oxford instruments ESR 900). In order to reach even lower temperatures \(T > 2 \) K a pumped cryostat (ESR 910) is employed. We observed the principal axes of the \(g \)-tensor to correspond to the \(a \), \(b \) and \(c \)-directions of the lattice (Fig. 1).

III. RESULTS AND DISCUSSION

A. Transport and Magnetic Characterization

A weakly metallic behavior is present in \(\kappa-(\text{BEDT-TTF})_2 \text{Cu}[\text{N(CN)}_2] \text{I} \) only above the shallow minimum around \(T = 200 \) K in the dc resistivity (Fig. 2). Upon further cooling the sample develops an insulating behavior. The anisotropy of the resistivity is temperature-independent. It is not possible to describe the complete behavior of \(\rho(T) \) with a single activation energy \(\Delta \); in the range between 50 and 90 K an Arrhenius fit (blue line) yields approximately \(\Delta \approx 160 \) K with a slight decrease towards lower temperatures in accord with previous reports [3, 10]. As this increase continues towards the lowest temperatures along the \(b \)-axis, no traces of superconductivity are detected down to \(T = 2 \) K, confirming the results of other groups [3, 10].

The spin susceptibility of \(\kappa-(\text{BEDT-TTF})_2 \text{Cu}[\text{N(CN)}_2] \text{I} \) is obtained from fits to the ESR spectra; the results are displayed in Fig. 2 as a function of temperature. The data were normalized to the molar susceptibility extracted from SQUID measurements [15].

In the high-temperature range the spin susceptibility is nearly temperature independent. Coincident with the strong increase of the resistivity \(\rho(T) \) below 90 K, the spin susceptibility \(\chi_S(T) \) starts to decrease, in accord to [18, 21, 22]. Eventually the spin susceptibility exhibits a minimum at low-temperature. The Curie like increase at low \(T \) indicates the presence of localized unpaired spins. Our findings are consistent with magnetization data that exhibit a similar increase upon cooling below 7 K [18].

The low-temperature behavior can be modeled taking into account two contributions

\[
\chi(T) = A \cdot \exp\{-\Delta/T\} + C/T ; \tag{1}
\]

the activated behavior due to the pairing of spins into singlets resulting in a spin gap \(\Delta \); and a Curie contribution accounting for the unpaired spins. Here, \(C \) denotes the Curie constant. A fit to the data shown in Fig. 2 results in the parameters \(A = 4.9 \cdot 10^{-4} \) emu/mol, \(\Delta = 18.2 \) K and \(C = 0.0013 \) emuK/mol. Thus, about 1% of the total spins remain unpaired at low temperatures contributing to the Curie tail.

B. Effects of Disorder

The Hubbard model commonly used to describe the electronic properties of the BEDT-TTF salts, generally predicts some antiferromagnetic order at low temperature in the Mott-insulating phase. Disorder can however prevent long-range magnetic order. On short length scales the formation of spin \(S = 0 \) valence bonds can however still be favored due to the antiferromagnetic exchange. Previous comprehensive \(^{13} \)C-NMR studies on \(\kappa-(\text{BEDT-TTF})_2 \text{Cu}[\text{N(CN)}_2] \text{Cl} \) indeed indicate the presence of antiferromagnetic fluctuations at low temperatures despite the lack of long-range magnetic order [18]. Similar observations have been made for x-ray irradiated samples of \(\kappa-(\text{BEDT-TTF})_2 \text{Cu}[\text{N(CN)}_2] \text{Cl} \) [19]. In this case the irradiation creates disorder within the sample suppress-
FIG. 3. (a) ESR spectra recorded at $T = 2$ K with the magnetic field in the ab-plane. For orientations midway between the a- and b-axes, a splitting of the signal is visible (shown here for 45°). The spectra in the right column demonstrates that also with the external magnetic field in the ab- and bc-planes additional signals can be observed (black arrows); (b) ab-plane when rotated 20° with respect to the a-axis at $T = 4$ K; (c) bc-plane at 16° with respect to the b-axis.

The separation $(\nu_\alpha - \nu_\beta)$ is proportional to the external magnetic field and described by

$$\nu_\alpha - \nu_\beta = (g_\alpha - g_\beta)\mu_B B/h,$$

where μ_B is the Bohr magneton ($\mu_B = e\hbar/2m_e$) and $h = 2\pi\hbar$ the Planck constant. Along the high symmetry directions a and b, the two lines collapse into one.

The full ab-anisotropy is plotted in Fig. 4(a). Both lines show an identical anisotropy, but are shifted in phase by approximately 65°. The minimum resonance field of the two lines occurs symmetrically at $\pm32^\circ$ off the b-axis. This closely resembles the crystal structure of the compound, where in adjacent layers the BEDT-TTF molecules are tilted by an angle of 32° in alternating directions within the ab-plane as depicted in Fig. 4(b). Symmetry requires that both lines coincide along the a- and b-axes. Very similar observations have been reported for the sister compounds κ-(BEDT-TTF)$_2$Cu[N(CN)$_2$]Cl and κ-(BEDT-TTF)$_2$Cu[N(CN)$_2$]Br.15,17

D. Spin Diffusion

As the individual BEDT-TTF dimers are not completely isolated, the spins are subject to exchange interaction. The simple picture of two ESR lines stemming from the crystallographically inequivalent layers α and β does not hold anymore if the interlayer spin hopping ν_\perp is comparable to the separation of the lines $|\nu_\alpha - \nu_\beta|$. Three cases can be distinguished: 22:

1. If $\nu_\perp \ll |\nu_\alpha - \nu_\beta|$, the coupling is weak; hence two slightly modified lines can be resolved.
2. If $\nu_\perp \approx |\nu_\alpha - \nu_\beta|$, the distortion becomes more pronounced.
3. In the limit $\nu_\perp \gg |\nu_\alpha - \nu_\beta|$, one
When carefully inspecting the spectra from Fig. 4(b) and (c) compared to panel (a). The background color corresponds to the ESR signal intensity dP/dB.

In the central panel of Fig. 4(a), we show a fit of two uncoupled Lorentzian signals (orange line) to the split signal in the diagonal direction. The model does not yield a substantial deviation from the measured signal, indicating only a weak coupling between the two lines.

Although there are not sufficient data points to extract even a qualitative relation, we propose a sort of thermally activated hopping of the spins among the organic layers. When carefully inspecting the spectra from Fig. 4(a), we can resolve two lines when they differ by about 1.5 Oe in resonance field. This allows us to estimate an upper limit for the interlayer hopping time for the spins \(\tau_{\perp} = 3.7 \times 10^{-8} \) s following the procedure suggested by Antal et al. \[16, 17\]. For \(T = 4 \) K only lines separated by more than 2 Oe can be distinguished, hence we obtain \(\tau_{\perp} \geq 2.9 \times 10^{-8} \) s. For higher temperatures, it becomes impossible to identify the features reliably since the signals broaden significantly. At a temperature of 2 K the splitting can be better resolved than at \(T = 4 \) K. This can be explained by the larger linewidth at 4 K either due to the lifetime broadening or due to a thermally activated hopping of the spin carrier.

In the case of \(\kappa \)-(BEDT-TTF)\(_2\)Cu[N(CN)\(_2\)]Cl and \(\kappa \)-(BEDT-TTF)\(_2\)Cu[N(CN)\(_2\)]Br, Antal et al. could not observe any splitting by X-band spectroscopy; however, employing high-frequency ESR at 111.2 GHz and 222.4 GHz a clear splitting was identified already at \(T = 250 \) K with no appreciable temperature dependence \[16, 17\]. The authors estimated an upper limit for the interlayer spin hopping time with \(\tau_{\perp} \geq 1.4 \times 10^{-8} \) s – one order of magnitude smaller than our findings in \(\kappa \)-(BEDT-TTF)\(_2\)Cu[N(CN)\(_2\)]I. Applying hydrostatic pressure, and thus shrinking the unit cell of \(\kappa \)-(BEDT-TTF)\(_2\)Cu[N(CN)\(_2\)]Br and \(\kappa \)-(BEDT-TTF)\(_2\)Cu[N(CN)\(_2\)]Cl at 250 K leads to an increase in the interlayer hopping rate \[16, 24\]. If the pressure is sufficiently high, the two ESR lines merge into one, even at higher frequencies. The length of the unit cell of the \(\kappa \)-(BEDT-TTF)\(_2\)Cu[N(CN)\(_2\)]I sample in the interlayer stacking direction \(b \) has a larger value (30.356 Å at \(T = 295 \) K) than in the case of the \(\kappa \)-(BEDT-TTF)\(_2\)Cu[N(CN)\(_2\)]Cl and \(\kappa \)-(BEDT-TTF)\(_2\)Cu[N(CN)\(_2\)]Br samples \[8\], the layers can therefore be expected to be more decoupled which is also evidenced by our ESR results.

The electronic anisotropy can be estimated (in analogy to the sister components \(\kappa \)-(BEDT-TTF)\(_2\)Cu[N(CN)\(_2\)]Br and \(\kappa \)-(BEDT-TTF)\(_2\)Cu[N(CN)\(_2\)]Cl in Ref. \[16\]) via

\[
\frac{\sigma_{\parallel}}{\sigma_{\perp}} = \left(\frac{t_{\parallel}}{t_{\perp}} \right)^2 \cdot \left(\frac{\ell}{b} \right)^2 \;
\]

here \(\ell \) corresponds to the mean free path and \(b \) to the distance between two layers. Using \(t_{\perp} = \frac{b}{\sqrt{2\pi\tau_{\perp}}} \) we can estimate a value \(t_{\parallel} \) for the coupling between the layers \[16, 24\]. Assuming a value of \(t_{\parallel} = 0.1 \) eV for the intralayer transfer integral between the BEDT-TTF dimers and using \(\nu_F \approx 10^3 \) m/s for the Fermi velocity, the anisotropy for \(\kappa \)-(BEDT-TTF)\(_2\)Cu[N(CN)\(_2\)]Br and \(\kappa \)-(BEDT-TTF)\(_2\)Cu[N(CN)\(_2\)]Cl was estimated to \(10^4 \) to \(10^6 \) \[16\]. Applying the same estimate to \(\kappa \)-(BEDT-TTF)\(_2\)Cu[N(CN)\(_2\)]I, we obtain an anisotropy of \(\sigma_{\parallel}/\sigma_{\perp} = 10^6 \). In other words, the anisotropy determined from our ESR measurements has the same order of magnitude as for the Cl- and Br sibling compounds. If this value is compared to the typical dc conductivity anisotropy of this sample family, the value calculated here is significantly larger. For \(\kappa \)-(BEDT-TTF)\(_2\)Cu[N(CN)\(_2\)]Cl and \(\kappa \)-(BEDT-TTF)\(_2\)Cu[N(CN)\(_2\)]Br the dc conductivity anisotropy is typically in the range of \(10^2 \) to \(10^3 \) \[16, 25, 26\].

E. Low-temperature anisotropy

By now we confined ourselves to ESR experiments along the \(ab \)-plane of \(\kappa \)-(BEDT-TTF)\(_2\)Cu[N(CN)\(_2\)]I.
where the small anisotropy is determined by the \(g \)-factor of the tilted the BEDT-TTF molecules, as indicated in Fig. 1. Fig. 3(b) displays an exemplary ESR spectrum measured in the \(ac \)-plane at \(T = 4 \) K recorded when rotating the sample by 20\(^\circ\) with respect to the \(a \)-axis. Besides the main signal, two additional features are observed on both sides that shift in resonance field upon rotation. A similar behavior is found in the \(bc \)-plane as presented Fig. 3(c) for an orientation of 16\(^\circ\) with respect to the \(b \)-axis. In certain directions only one feature can be identified due to distortion in the vicinity of the main signal. In general, the additional lines were more pronounced in the \(ac \)-plane compared to the \(bc \)-plane; within the \(ab \)-plane we could not observe such features.

The full anisotropy at \(T = 2 \) K is shown Fig. 4(b,c) in the \(ac \)- and \(bc \)-planes of \(\kappa \)-(BEDT-TTF)\(_2\)Cu[N(CN)]\(_2\)I single crystals. The resonance field of the main signal is indicated by black squares. The red dots and the blue triangles represent the resonance field of the two additional features. The anisotropy of these lines is approximately two orders of magnitude larger than the anisotropy of the main signal given by the slightly anisotropic \(g \)-tensor due to spin-orbit coupling. The difference of the maximum and minimum resonance field of the main signal is only \(\Delta H_{\text{res, main}} \approx 4 \) Oe, whereas for the additional lines a much larger anisotropy \(\Delta H_{\text{res, imperfections}} \) of about 80 to 100 Oe is observed.

As discussed in section IIIA a spin singlet state is formed at low temperatures as evidenced by the opening of a spin gap; about 1\% of the spins remain unpaired, contributing to the observed Curie tail. However, the number of spins associated with the additional anisotropic ESR feature observed at low temperatures is substantially smaller; for the crystals presented in Figs. 3 and 4 it amounts to only 270 ppm. This implies that only 2.7\% of the unpaired spins contribute to the additional signal.

We suggest that the additional signal is related to magnetic imperfections: some of the unpaired defect spins are formed in the vicinity of these imperfections. Coupling to the imperfections, e.g. via dipolar interaction, can lead to the internal field necessary for the observed large anisotropy. As it is known that the synthesis of \(\kappa \)-(BEDT-TTF)\(_2\)Cu[N(CN)]\(_2\)I is quite demanding compared to the Cl and Br-analogues, magnetic imperfections are likely present in the crystals.

This result is in accord with recent ESR investigations on the quantum spin liquid candidate \(\kappa \)-(BEDT-TTF)\(_2\) Cu\(_2\)(CN)\(_2\)\(_3\) [12]. At low-temperatures Miksch et al. identified a second contribution that splits upon cooling and reveals a rather pronounced anisotropy. From the sample-, temperature-, field-, and angular-dependences, this feature was linked to localized magnetic moments, which do not participate in the formation of spin singlets. These orphan spins couple to Cu\(^{2+}\) impurities in the anion layer via dipole-dipole interaction.

IV. CONCLUSION

We can identify a splitting of the ESR signal caused by the different layers, already at X-band frequencies, indicating an even smaller interlayer spin hopping rate compared to \(\kappa \)-(BEDT-TTF)\(_2\)Cu[N(CN)]\(_2\)Cl and \(\kappa \)-(BEDT-TTF)\(_2\)Cu[N(CN)]\(_2\)Br. In summary, our ESR investigations on \(\kappa \)-(BEDT-TTF)\(_2\)Cu[N(CN)]\(_2\)I single crystals yield an upper limit of the interlayer spin exchange, given by \(\tau_\perp \geq 3.7 \times 10^{-8} \) s at \(T = 2 \) K.

At low temperatures a spin-singlet state with a gap \(\Delta \approx 18 \) K is formed. In addition, our ESR spectra indicate that a substantial amount of the spins (\(\approx 1 \)%) remains unpaired, contributing significantly to the low-temperature susceptibility. In combination with magnetic imperfections a small number of these unpaired spins is responsible for the observed additional strongly anisotropic ESR signal.

ACKNOWLEDGMENTS

This study was initiated by Y. Saito bringing the crystals to Stuttgart. For comparison, crystals were provided by J.A. Schlueter and A.A. Bardin. We are very grateful to A. Pustogow for fruitful discussions, and also thank A. Antal, B. Náfrádi, L. Forró and A. Jánossy. The work was supported by the Deutsche Forschungsgemeinschaft (DFG) via DR228/39-3 and DR228/52-1 and partially by the Japan Society for the Promotion of Science (JSPS) KAKENHI Grant Numbers 19K03758 and 20K14401.

[1] B. J. Powell and R. H. McKenzie, Quantum frustration in organic mott insulators: From spin liquids to unconventional superconductors, Rep. Progr. Phys. 74, 056501 (2011).
[2] M. Dressel and S. Tomić, Molecular quantum materials: electronic phases and charge dynamics in two-dimensional organic solids, Advances in Physics 69, 1 (2020).
[3] H. Wang, K. Carlson, U. Geiser, A. Kini, A. Schultz, J. Williams, L. Montgomery, W. Kwok, U. Welp, K. Vandervoort, S. Boryschuk, A. Crouch, J. Kommers, D. Watkins, J. Schriber, D. Overmayer, D. Jung, J. Novoa, and M.-H. Whangbo, New \(\kappa \)-phase materials, \(\kappa \)-(ET)\(_2\)Cu[N(CN)]\(_2\)X. X=Cl, Br and I. The synthesis, structure and superconductivity above 11 K in the Cl (\(T_c = 12.8 \) K, 0.3 kbar) and Br (\(T_c = 11.6 \) K) salts, Synth. Metals 42, 1983 (1991).
[4] N. Kushch, L. Buravov, A. Khomenko, E. Yagubskii, L. Rosenberg, and R. Shiibaeva, Novel organic superconductor \(\kappa \)-(ET)\(_2\)Cu[N(CN)]\(_2\)Cl\(_{0.5}\)Br\(_{0.5}\) with \(T_c \approx 11.3 \) K.
[5] D. Faltermeier, J. Barz, M. Dunn, M. Dressel, N. Drichko, B. Petrov, V. Semkin, R. Vlasova, C. Mezière, and P. Batail, Bandwidth-controlled Mott transition in \(\kappa-(\text{BEDT-TTF})_2\text{Cu}[\text{N(CN)}_2]_x \text{Br}_y \text{Cl}_{1-x} \): Optical studies of localized charge excitations, Phys. Rev. B 76, 165113 (2007).

[6] M. Dunn, D. Faltermeier, N. Drichko, M. Dressel, C. Mezière, and P. Batail, Bandwidth-controlled Mott transition in \(\kappa-(\text{BEDT-TTF})_2\text{Cu}[\text{N(CN)}_2]_x \text{Br}_y \text{Cl}_{1-x} \): Optical studies of correlated carriers, Phys. Rev. B 79, 195106 (2009).

[7] S. Yasim, M. Dunn, B. Salameh, P. Batail, C. Mezière, and M. Dressel, Transport studies at the Mott transition of the two-dimensional organic metal \(\kappa-(\text{BEDT-TTF})_2\text{Cu}[\text{N(CN)}_2]_x \text{Br}_y \text{Cl}_{1-x} \), Eur. Phys. J. B 79, 383 (2011)

[8] U. Geiser, A. J. Schultz, H. H. Wang, D. M. Watkins, D. L. Stupka, J. M. Williams, J. Schirber, D. Overmyer, D. Jung, J. Novoa, and M.-H. Whangbo, Strain index, lattice softness and superconductivity of organic donor-molecule salts: Crystal and electronic structures of three isotstructural salts \(\kappa-(\text{BEDT-TTF})_2\text{Cu}[\text{N(CN)}_2]_x \text{X} \) (\(\text{X} = \text{Cl}, \text{Br}, \text{I} \)), Physica C 174, 475 (1991)

[9] M. A. Tanatar, S. Kagoshima, T. Ishiguro, H. Ito, V. S. Yefanov, V. A. Bondarenko, N. D. Kushch, and E. B. Yakubskii, Electronic transport properties and structural transformations of \(\kappa-(\text{BEDT-TTF})_2\text{Cu}[\text{N(CN)}_2]_1 \text{I} \), Phys. Rev. B 62, 15561 (2000)

[10] M. A. Tanatar, T. Ishiguro, S. Kagoshima, N. D. Kushch, and E. B. Yakubskii, Pressure-temperature phase diagram of the organic superconductor \(\kappa-(\text{BEDT-TTF})_2\text{Cu}[\text{N(CN)}_2]_2 \), Phys. Rev. B 65, 064516 (2002).

[11] K. Kanoda, Recent progress in NMR studies on organic conductors, Hyperfine Interact. 104, 235 (1997)

[12] T. Mori, H. Mori, and S. Tanaka, Structural Genealogy of BEDT-TTF-Based Organic Conductors II. Inclined Molecules: \(\alpha, \beta, \gamma \) Phases, Bull. Chem. Soc. Jpn. 72, 179 (1999).

[13] T. Furukawa, K. Miyagawa, T. Ito, M. Ito, H. Taniguchi, M. Saito, S. Iuchi, T. Sasaki, and K. Kanoda, Quantum spin liquid emerging from antiferromagnetic order by introducing disorder, Phys. Rev. Lett. 115, 077001 (2015)

[14] B. Mikesch, M. Javaheri Rahim, A. A. Bardin, K. Kanoda, J. A. Schlueter, R. Hübner, M. Scheffler, and M. Dressel, Gapped magnetic ground state in quantum-spin-liquid candidate \(\kappa-(\text{BEDT-TTF})_2\text{Cu}_3[\text{N(CN)}_3]_3 \), arXiv:2010.16155 (2020).

[15] A. Antal, T. Fehér, A. Jánossy, E. Tátrai-Szeker, and F. Fülöp, Spin Diffusion and Magnetic Eigencollectors Confined to Single Molecular Layers in the Organic Conductors \(\kappa-(\text{BEDT-TTF})_2\text{Cu}[\text{N(CN)}_2]_x \text{X} \) (\(\text{X} = \text{Cl}, \text{Br} \)), Phys. Rev. Lett. 102, 086404 (2009)

[16] A. Antal, T. Fehér, B. Náfrádi, R. Gaál, L. Forró, and A. Jánossy, Measurement of interlayer spin diffusion in the organic conductor \(\kappa-(\text{BEDT-TTF})_2\text{Cu}[\text{N(CN)}_2]_x \text{X} \), X = Cl, Br, Physica B 405, S168 (2010)

[17] Á. Antal, T. Fehér, E. Tátrai-Szeker, F. Fülöp, B. Náfrádi, L. Forró, and A. Jánossy, Pressure and temperature dependence of interlayer spin diffusion and electrical conductivity in the layered organic conductors \(\kappa-(\text{BEDT-TTF})_2\text{Cu}[\text{N(CN)}_2]_x \text{X} \) (\(\text{X} = \text{Cl}, \text{Br} \)), Phys. Rev. B 84, 075124 (2011)

[18] T. Kobayashi, A. Suzuta, K. Tsuru, Y. Ishara, and A. Kawamoto, Inhomogeneous electronic state of organic conductor \(\kappa-(\text{BEDT-TTF})_2\text{Cu}[\text{N(CN)}_2]_x \) studied by \(^{13}\text{C} \) NMR spectroscopy, Phys. Rev. B 100, 195115 (2019)

[19] M. Dressel and N. Drichko, Optical properties of two-dimensional organic conductors: Signatures of charge ordering and correlation effects, Chem. Rev. 104, 5689 (2004).

[20] V. Kataev, G. Winkel, N. Knauf, A. Gruetz, D. Khomskii, D. Wohlleben, W. Crump, J. Hahn, and K. Tebbe, ESR study of the electronic properties of the new organic conductors \(\kappa-(\text{BEDT-TTF})_2\text{Cu}[\text{N(CN)}_2]_x \text{X} \) (\(\text{X} = \text{Br}, \text{I} \)), Physica B 179, 24 (1992)

[21] V. Kataev, G. Winkel, D. Khomskii, D. Wohlleben, W. Crump, K. Tebbe, and J. Hahn, ESR of single crystals of \(\kappa-(\text{BEDT-TTF})_2\text{Cu}[\text{N(CN)}_2]_x \text{X} \) (\(\text{X} = \text{Br}, \text{I} \)), Solid State Commun. 83, 435 (1992)

[22] This follows the elegant phenomenological description of lineshapes by Kubo [23], the two-state jump model it is also applied to model the splitting of vibrational lines in charge-order compounds with significant charge fluctuations [24].

[23] A. Antal, Two dimensional spin transport and magnetism in layered organic crystals, Dissertation, Budapest University of Technology and Economics, Budapest, BME (2011).

[24] N. Kumar and A. M. Jayannavar, Temperature dependence of the \(\alpha \)-axis resistivity of high-\(T_c \) layered oxides, Phys. Rev. B 45, 5001 (1992)

[25] V. N. Zurev, A. I. Manakov, S. S. Khasanov, R. P. Shibaeva, N. D. Kushch, A. V. Kazakova, L. I. Buravov, E. B. Yakubskii, and E. Canadell, Transport properties and structural features of the ambient-pressure superconductor \(\kappa-(\text{BEDT-TTF})_2\text{Cu}[\text{N(CN)}_2]_2\text{Cl} \), Phys. Rev. B 74, 104504 (2006)

[26] L.I. Buravov, N.D. Kushch, V.A. Merzhanov, M.V. Osherov, A.G. Khomenko, and E.B. Yakubskii, Anisotropic resistivity and thermopower of the organic superconductor \((\text{ET})_2\text{Cu}[\text{N(CN)}_2]_2\text{Br} \), J. Phys. I (France) 2, 1257 (1992).

[27] N. D. Kushch, M. A. Tanatar, E. B. Yakubskii, and T. Ishiguro, Superconductivity of \(\kappa-(\text{BEDT-TTF})_2\text{Cu}[\text{N(CN)}_2]_2\text{I} \) under pressure, JETP Lett. 73, 429 (2001)

[28] R. Kubo, A stochastic theory of line shapes, Adv. Chem Phys. 15, 101 (1969)

[29] A. Girlando, M. Masino, S. Kaiser, Y. Sun, N. Drichko, M. Dressel, and H. Mori, Spectroscopic characterization of charge order fluctuations in BEDT-TTF metals and superconductors, phys. stat. sol. (b) 249, 953 (2012)