Synthesis and Photocatalytic Activity of Polyhedral BiVO₄

Jianfei Chen¹, Ranbo Yu¹, Zumin Wang²

¹ School of Metallurgical and Ecological Engineering, University of Science and Technology Beijing, Beijing 100083
² State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190 China

Abstract: Polyhedral BiVO₄ was prepared by hydrothermal-calcination two-step method. The physicochemical properties of polyhedral BiVO₄ were characterized by XRD, TG/DTA, SEM and UV-vis DRS. The photocatalytic properties of the samples were investigated by using 10 mg/L methylene blue (MB) as the target degradant. The experimental results showed that the prepared polyhedral BiVO₄ is monoclinic. The morphology is about 10 μm polyhedral block. The pure phase BiVO₄ has strong visible light absorption capacity. Under visible light irradiation, the prepared BiVO₄ can degrade 90% of MB within 40 min. Moreover, the photocatalytic performance was further improved by forming a BiVO₄/BiOCl heterojunction, and the kinetic reaction rate was 1.5 times that of the pure phase BiVO₄.

Keywords: Material Science; BiVO₄; BiVO₄/BiOCl; Photocatalytic

Introduction

With the development of industry, environmental problems caused by wastewater discharge have received more and more attention in the past few decades. In order to remove organic pollutants from wastewater, the traditional methods are mainly adsorption or biodegradation, but they cannot remove organic pollutants quickly and effectively.¹⁻³ In order to achieve better results, people try to use sunlight as energy, in the appropriate half conductor photocatalyst can degrade organic pollutants into harmless compounds.⁴⁻⁶ Photocatalytic degradation of organic pollutants has the advantages of environmental protection, energy saving and high efficiency compared with traditional methods, and has been extensively studied.

External light response cannot utilize the visible light with the most energy in the solar light, so a more suitable visible light catalyst is needed for degradation reaction.⁷⁻⁸ BiVO₄ is environmentally friendly due to its narrow forbidden band width, suitable valence band position, stable chemical properties is widely used in photocatalytic degradation of organic pollutants.⁹⁻¹⁰ But BiVO₄ has a low photocatalytic activity due to its low efficiency of photo-generated electron-hole separation and easy recombination, which affects its application in photocatalysis. In order to improve the photocatalytic efficiency of BiVO₄, different researchers have carried out a lot of research on controlling morphology¹¹, ion doping¹², and constructing heterojunction¹³.

In this paper, we have successfully prepared polyhedral massive BiVO₄ by hydrothermal-calcination method, which has good optical and photocatalytic properties. BiVO₄/BiOCl heterojunction structure has been synthesized by changing the ratio of raw materials to make the catalytic performance of 45 has been further improved.

1. Experimental part

1.1 Chemical raw materials
Vanadium chloride (VCl₃) was purchased from Shanghai Saen Chemical Technology Co., Ltd. Anhydrous bismuth nitrate (Bi(NO₃)₃·5H₂O) was purchased from Guoyao Chemical Reagent Co., Ltd. Methylene blue (C₁₆H₁₈ClN₃S₃H₂O) was purchased from Tianjin Zinko Fine Chemical Research Institute. Terephthalic acid (H₂BDC) and absolute ethanol were purchased from Beijing Chemical Reagent Company. All chemicals are analytically pure and have not been further purified.

1.2 BIVO₄ preparation

BIVO₄ was synthesized by hydrothermal-calcination two-step method. The experimental synthesis process is as follows:

Hydrothermal synthesis step: dissolve 8 mmol VCl₃ and 4 mmol H₂BDC in 20 mL anhydrous ethanol, after stirring evenly, continue to add 11.2 mmol Bi(NO₃)₃·5H₂O, continue to stir 30 min, put the mixed solution into a 50 mL teflon lined reaction kettle, 120 °C temperature hydrothermal reaction 48 h, cool to room temperature, and use the intermediate product deionized water and absolute ethyl alcohol are alternately washed and dried overnight in a 80 °C drying oven to obtain a calcined precursor. Calcination step: placing the precursor obtained by hydrothermal synthesis in the previous step in a crucible, placing the precursor in a muffle furnace, and adding 5 °C/min.

The heating rate of is increased from room temperature to 450 °C, and the polyhedron BIVO₄ is obtained by keeping the temperature at 450 °C for 2h.

1.3 Material characterization

The phase composition, purity and crystallinity of the sample were determined by a PANalytical XPert PRO MPD diffractometer with Cu Kα radiation (λ= 0.15405nm). The tested working current was 40 mA, the tested working voltage was selected as 40 kV, and the scanning speed was 5 min⁻¹. In order to obtain the size and morphology information of the material, SEM analysis was performed using a Hitachi S4800 scanning electron microscope with an operating voltage of 10 kV and a current of 10 mA. In order to obtain a suitable calcination temperature for the precursor, Germany is used.

The TG/GTA6300 comprehensive thermal analyzer of 65 NETZSCH company performs thermogravimetric (TG) and differential thermal (DSC) analysis at the heating rate of 5 °C/min, the atmosphere is air. The absorbance of the material was characterized by TU-190T UV-visible diffuse reflection from Beijing General Instruments Co., Ltd. In addition, the real content of Bi, V and O in the synthesized catalyst was tested by SEM-EDS.

1.4 Photocatalytic performance test

The 300 W xenon lamp was used as the light source, and the ultraviolet light below 420 nm was filtered out by a filter to serve as the simulated visible light source.

Experimental steps: weigh 0.05 g catalyst, add it to 50 mL and 10 mg/L methylene blue solution, stir under dark conditions mix for 0.5 h to reach the adsorption-desorption equilibrium. After the light is turned on, centrifuge the 4 mL solution every 20 min and test the supernatant with an ultraviolet-visible spectrophotometer.

The concentration of methylene blue was determined by monitoring the ultraviolet-visible absorption spectrum of the reaction solution. The ultraviolet-visible spectrophotometer uses TU-190T and uses a fixed sample cell to contain the test solution. Select 300-800 nm for the wavelength range to be tested and scan. The tracing step is set to 1 nm and the spectral bandwidth is set to 1 nm. The scanning mode is Abs absorbance, and the whole test is conducted at room temperature.

2. Results and discussions

2.1 Representation

The successful synthesis of polyhedron BIVO₄ is influenced by reaction temperature, reactant addition ratio and other factors. In this experiment, 80 carried out thermogravimetric-differential thermal analysis on the hydrothermal precursor in order to initially obtain the appropriate calcination temperature of the precursor. Figure 1 is the thermogravimetric-differential thermal curve of the front drive. It can be seen from Figure 1 that 30-350 °C mainly refer to the removal of water in the precursor. In the range of 350-410 °C, there is a sharp endothermic peak, and the
rapid weight loss is about 20%, which is analyzed as the decomposition of terephthalic acid in the precursor.\cite{14} After 410 °C, the weight does not change any more, indicating that most of terephthalic acid is completely decomposed to generate BIVO$_4$. According to the thermogravimetric curve, the calcination temperature of the precursor is determined to be 450°C.

![TG-DSC curves of the precursor.](image1)

During the preparation of precursor, the addition of raw materials must be strictly controlled, and the final calcined product can be controlled by changing the addition of V/Bi. As shown in Figure 2, when the V/Bi (amount ratio of substances) in the reactant is strictly controlled at 1.4, the final calcined product is pure monoclinic phase BiVO$_4$, which is very matched with the XRD results of BiVO$_4$ prepared by different methods in other literatures.\cite{15-16} When the ratio of V/Bi changes, the calcined product can successfully synthesize monoclinic phase BiVO$_4$, but other substances V$_2$O$_5$ or BiOCl appear. When the V/Bi ratio reaches 1.2, the calcined product is mainly monoclinic phase BiVO$_4$, but there is a V$_2$O$_5$ phase (denoted as BIVO$_4$/V$_2$O$_5$). When the V/Bi ratio reaches 1.6, the calcined product is mainly monoclinic phase BIVO$_4$, but there is a BiOCl phase (marked BIVO$_4$/BiOCl).

![XRD pattern of the synthesized sample.](image2)

Figure 3a is a scanning electron microscope picture of pure phase BIVO$_4$, the prepared BIVO$_4$ is a massive polyhedron, most of which is angular and about 10 μm in size. The obtained BIVO$_4$/V$_2$O$_5$ is a sheet-like spherical shape with a diameter of about 200-400 nm. (Figure 3b) It can be seen from Figure 3c that the bivo4/biocl product is similar to bivo4 in microscopic morphology and is a massive polyhedron with a size of about 10-15 μm. The element bi can be seen through EDS: v: o has a ratio of about 1:1:4, which is very close to the element ratio of the molecular formula of bivo4, further confirming the successful preparation of bivo4.
Absorption is an important factor that determines the performance of photocatalyst. In order to measure the absorption of three different synthesized products BiVO$_4$, BiVO$_4$/V$_2$O$_5$, and BiVO$_4$/BiOCl, the absorbance of the three materials was measured by ultraviolet-visible diffuse reflection, and the forbidden band width was calculated. As can be seen from Figure 4a, bivo4/biocl has the strongest absorbance in the ultraviolet-visible range, while bivo$_4$/v$_2$o$_5$ has the weakest absorbance.

Figure 3. SEM images of (a) BiVO$_4$; (b) BiVO$_4$/V$_2$O$_5$; (c) BiVO$_4$/BiOCl and EDS images of BiVO$_4$.

2.2 Photocatalytic performance test

In order to explore the photocatalytic performance of three different materials, methylene blue solution of 10 mg/L was selected as the target pollutant in this experiment to compare the degradation performance of three different materials under visible light. The degradation rate of methylene blue of the three materials in 100 min under visible light irradiation is shown in Figure 5a.
The improvement of photocatalytic performance of BIVO$_4$/BiOCl compared with BIVO$_4$ can be attributed to the formation of heterojunction. Compared with a single BIVO$_4$, the formation of heterojunction effectively enhances the separation of photo-generated electron-hole pairs, inhibits the recombination of electron-holes during migration, and greatly improves photocatalytic activity. However, the relatively low photocatalytic performance of BIVO$_4$/V$_2$O$_5$ can be revealed from the relevant literature. The obvious excess of V$_2$O$_5$ in the BIVO$_4$/V$_2$O$_5$ compound blocks light for BIVO$_4$ and cannot excite the catalyst to generate electron holes. The active substances for photocatalysis are greatly reduced and the photocatalytic performance is obviously reduced.

3. Conclusion

In this paper, polyhedral BIVO$_4$ photocatalyst is prepared by hydrothermal-calcination two-step method, and the samples are characterized and photo-catalytic properties are tested. The results show that the synthesized product is monoclinic, with a polyhedral block shape of 10 μm in size, has strong absorption ability to visible light, and can degrade 90% methylene blue within 40 min. BIVO$_4$/BiOCl heterojunction was successfully prepared by changing the ratio of raw material V/Bi, which improved the photocatalytic activity of the catalyst. And the kinetic reaction rate
reaches 1.5 times of that of single BiVO$_4$ and the degradation efficiency within 40 min reached 95%.

References

1. VAN LEEUWEN J, SRIDHAR A, HARRATA A K, et al. Improving the biodegradation of organic pollutants with ozonation during biological wastewater treatment[J]. Ozone: Science & Engineering, 2009, 31(2): 63-70.
2. YU X, WEI C, WU H, et al. Improvement of biodegradability for coking wastewater by selective adsorption of hydrophobic organic pollutants[J]. Separation and Purification Technology, 2015, 151: 23-30.
3. ZHANG M H, ZHAO Q L, BAI X, et al. Adsorption of organic pollutants from coking wastewater by activated coke[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2010, 362(1-3): 140-146.
4. DI J, XIA J, GE Y, et al. Novel visible-light-driven CQDs/Bi2WO6 hybrid materials with enhanced photocatalytic activity toward organic pollutants degradation and mechanism insight[J]. Applied Catalysis B: Environmental, 2015, 168: 51-61.
5. CHEN F, LIU H, BAGWASI S, et al. Photocatalytic study of BiOCl for degradation of organic pollutants under UV irradiation[J]. Journal of Photochemistry and Photobiology A: Chemistry, 2010, 215(1): 76-80.
6. HE Y, LI D, XIAO G, et al. A new application of nanocrystal In2S3 in efficient degradation of organic pollutants under visible light irradiation[J]. The Journal of Physical Chemistry C, 2009, 113(13): 5254-5262.
7. GUPTA V K, JAIN R, MITTAL A, et al. Photochemical degradation of the hazardous dye Safranin-T using TiO2 catalyst[J]. Journal of colloid and interface science, 2007, 309(2): 464-469.
8. YU J, XIONG J, CHENG B, et al. Fabrication and characterization of Ag-TiO2 multiphase nanocomposite thin films with enhanced photocatalytic activity[J]. Applied Catalysis B: Environmental, 2005, 60(3-4): 211-221.
9. KUDO A, UEDA K, KATO H, et al. Photocatalytic O2 evolution under visible light irradiation on BiVO4 in aqueous AgNO3 solution[J]. Catalysis Letters, 1998, 53(3-4): 229-230.
10. WALS H A, YAN Y, HUDA M N, et al. Band edge electronic structure of BiVO4: elucidating the role of the Bi s and V d orbitals[J]. Chemistry of Materials, 2009, 21(3): 547-551.
11. ZONG L, CUI P, QIN F, et al. Heterostructured bismuth vanadate multi-shell hollow spheres with high visible-light-driven photocatalytic activity[J]. Materials Research Bulletin, 2017, 86: 44-50.
12. ZHOU B, ZHAO X, LIU H, et al. Visible-light sensitive cobalt-doped BiVO4 (Co-BiVO4) photocatalytic composites for the degradation of methylene blue dye in dilute aqueous solutions[J]. Applied Catalysis B.
13. YAN M, WU Y, YAN Y, et al. Synthesis and characterization of novel BiVO4/Ag3VO4 heterojunction with enhanced visible-light-driven photocatalytic degradation of dyes [J]. ACS Sustainable Chemistry & Engineering, 2015, 4(3): 757-766.
14. LUO F, LUO M B, TONG X L. The Ln-Cu (II)-Hpic-H2BDC system showing interesting production variety upon different reaction conditions: hydrothermal synthesis, structures, thermostability, and magnetism[J]. Journal of Coordination Chemistry,
15. LI H, LIU G, DUAN X. Monoclinic BiVO4 with regular morphologies: hydrothermal synthesis, characterization and photocatalytic properties[J]. Materials Chemistry and Physics, 2009, 115(1): 9-13.
16. YIN W, WANG W, ZHOU L, et al. CTAB-assisted synthesis of monoclinic BiVO4 photocatalyst and its highly efficient degradation of organic dye under visible-light irradiation[J]. Journal of Hazardous Materials, 2010, 173(1-3): 194-199.
17. SU J, ZOU X X, LI G D, et al. Macroporous V2O5–BiVO4 composites: effect of heterojunction on the behavior of photogenerated charges[J]. The Journal of Physical Chemistry C, 2011, 115(16): 8064-8071.