Genome-wide identification of rubber tree (*Hevea brasiliensis* Muell. Arg.) aquaporin genes and their response to ethephon stimulation in the laticifer, a rubber-producing tissue

Zhi Zou*, Jun Gong†, Feng An†, Guishui Xie, Jikun Wang, Yeyong Mo and Lifu Yang*

**Abstract**

**Background:** Natural rubber, an important industrial raw material, is specifically synthesized in laticifers located inside the rubber tree (*Hevea brasiliensis* Muell. Arg.) trunk. Due to the absence of plasmodesmata, the laticifer water balance is mediated by aquaporins (AQPs). However, to date, the characterization of *H. brasiliensis* AQPs (HbAQPs) is still in its infancy.

**Results:** In this study, 51 full-length AQP genes were identified from the rubber tree genome. The phylogenetic analysis assigned these AQPs to five subfamilies, including 15 plasma membrane intrinsic proteins (PIPs), 17 tonoplast intrinsic proteins (TIPs), 9 NOD26-like intrinsic proteins (NIPs), 4 small basic intrinsic proteins (SIPs) and 6 X intrinsic proteins (XIPs). Functional prediction based on the analysis of the aromatic/arginine (ar/R) selectivity filter, Froger’s positions and specificity-determining positions (SDPs) showed a remarkable difference in substrate specificity among subfamilies. Homology analysis supported the expression of 44 HbAQP genes in at least one of the examined tissues. Furthermore, deep sequencing of the laticifer transcriptome in the form of latex revealed a key role of several PIP subfamily members in the laticifer water balance, and qRT-PCR analysis showed diverse expression patterns of laticifer-expressed HbAQP genes upon ethephon treatment, a widely-used practice for the stimulation of latex yield.

**Conclusions:** This study provides an important genetic resource of HbAQP genes, which will be useful to improve the water use efficiency and latex yield of *Hevea*.

**Keywords:** Rubber tree (*Hevea brasiliensis* Muell. Arg.), Laticifer, Transcriptome, Aquaporin, Plasma membrane intrinsic protein, Water balance
Hevea brasiliensis

Escherichia coli

2

108

2

TM6) connected

70 % of total latex upon

cis

23, 26

): an aromatic residue at P1, an acidic residue at P2, a

35

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
the rubber tree genome of clone RY7-33-97 or RRIM600, respectively (data not shown). Since all AQP-encoding loci identified in the RRIM600 genome were found in the genome of RY7-33-97 and some genes from RRIM600 are incomplete and/or the sequences have a high number of “N”s, the AQP genes identified from the RY7-33-97 genome were selected for further analyses. After discarding loci encoding partial AQP-like sequences which are truncated and lacking any of the NPA motifs, 51 full-length AQP genes were retained and the gene models are available in Additional file 1.

To analyze the evolutionary relationship and their putative function, an unrooted phylogenetic tree was constructed from the deduced amino acid sequences of HbAQPs together with that from Arabidopsis (AtAQPs) and poplar (PtAQPs) (the Phytozome accession numbers are available in Additional file 2). The reasons for choosing these two species are mainly as follows: the complete set of AQP genes in Arabidopsis was firstly identified and then well characterized; the well-studied wood plant poplar harbors one more subfamily (XIP) that is not found in Arabidopsis. According to the phylogenetic analysis, 51 HbAQPs were grouped into five subfamilies, i.e. PIP (15), TIP (17), NIP (9), SIP (4) and XIP (6) (Table 1; Fig. 1). Following the nomenclature of Arabidopsis and poplar [3, 36], the HbPIP subfamily was further divided into two phylogenetic subgroups (5 HbPIP1s and 10 HbPIP2s), the HbTIP subfamily into five subgroups (8 HbTIP1s, 4 HbTIP2s, 2 HbTIP3s, 1 HbTIP4 and 2 HbTIP5s), the HbNIP subfamily into seven subgroups (2 HbNIP1s, 1 HbNIP2, 1 HbNIP3, 2 HbNIP4s, 1 HbNIP5, 1 HbNIP6 and 1 HbNIP7), the HbSIP subfamily into two subgroups (3 HbSIP1s and 1 HbSIP2) and the HbXIP subfamily into three subgroups (4 HbXIP1s, 1 HbXIP2 and 1 HbXIP3) (Fig. 1). Although the closest homolog of HbNIP2;1 and HbNIP3;1 is not AtNIP2;1 or AtNIP3;1, their counterparts in poplar are available in Additional file 1.

Structural features of HbAQPs

Sequence analysis showed that 51 deduced HbAQPs consist of 227–305 amino acids, with a theoretical molecular weight of 23.78–32.28 kDa and a pl value of 4.59–9.74. Homology analysis revealed a high sequence diversity existing within and between the five subfamilies. The sequence
| Gene | CDS | EST hits in GenBank |
|------|-----|---------------------|
| HbPIP1;1 | 1161 | 864 | 3 | 10 | Yes | RT-PCR | AT4G00430 | Pt_0010s19930 |
| HbPIP1;2 | 1155 | 864 | 3 | 6 | Yes | RT-PCR | AT4G00430 | Pt_0010s19930 |
| HbPIP1;3 | 2952 | 864 | 3 | 0 | Yes | RT-PCR | AT4G00430 | Pt_0003s12870 |
| HbPIP1;4 | 2285 | 864 | 3 | 4 | Yes | RT-PCR | AT4G00430 | Pt_0003s12870 |
| HbPIP1;5 | 1370 | 810 | 3 | 2 | Yes | RT-PCR | AT4G00430 | Pt_0016s12070 |
| HbPIP2;1 | 1150 | 867 | 3 | 4 | Yes | RT-PCR | AT4G00430 | Pt_0006s12980 |
| HbPIP2;2 | 1174 | 867 | 3 | 2 | Yes | RT-PCR | AT4G00430 | Pt_0006s12980 |
| HbPIP2;3 | 1801 | 861 | 3 | 2 | Yes | RT-PCR | AT4G00430 | Pt_0006s12980 |
| HbPIP2;4 | 1590 | 861 | 3 | 0 | Yes | RT-PCR | AT4G00430 | Pt_0006s12980 |
| HbPIP2;5 | 1673 | 858 | 3 | 0 | Yes | RT-PCR | AT4G00430 | Pt_0010s22950 |
| HbPIP2;6 | 2927 | 861 | 3 | 0 | Yes | RT-PCR | AT4G00430 | Pt_0010s22950 |
| HbPIP2;7 | 1263 | 837 | 3 | 15 | Yes | RACE | AT4G00430 | Pt_0004s18240 |
| HbPIP2;8 | 1263 | 843 | 3 | 1 | Yes | RT-PCR | AT4G00430 | Pt_0004s18240 |
| HbPIP2;9 | 1120 | 843 | 3 | 0 | Yes | RT-PCR | AT4G00430 | Pt_0004s18240 |
| HbPIP2;10 | 1401 | 858 | 3 | 0 | Yes | RT-PCR | AT4G00430 | Pt_0005s11110 |

**TIP**

| Gene | CDS | EST hits in GenBank |
|------|-----|---------------------|
| HbTIP1;1 | 853 | 759 | 1 | 1 | Yes | RT-PCR | AT2G36830 | Pt_0006s12350 |
| HbTIP1;2 | 851 | 759 | 1 | 0 | Yes | RT-PCR | AT2G36830 | Pt_0006s12350 |
| HbTIP1;3 | 848 | 762 | 1 | 0 | Yes | RT-PCR | AT2G36830 | Pt_0009s01070 |
| HbTIP1;4 | 820 | 684 | 1 | 0 | Yes | RT-PCR | AT2G36830 | Pt_0009s01070 |
| HbTIP1;5 | 931 | 759 | 2 | 2 | Yes | RT-PCR | AT4G01470 | Pt_0008s05050 |
| HbTIP1;6 | 974 | 759 | 2 | 0 | Yes | RT-PCR | AT4G01470 | Pt_0008s05050 |
| HbTIP1;7 | 1189 | 759 | 2 | 0 | Yes | RT-PCR | AT4G01470 | Pt_0008s05050 |
| HbTIP1;8 | 997 | 759 | 2 | 0 | Yes | RT-PCR | AT4G01470 | Pt_0008s05050 |
| HbTIP2;1 | 1574 | 747 | 2 | 0 | Yes | RT-PCR | AT3G16240 | Pt_0001s18730 |
| HbTIP2;2 | 1165 | 747 | 2 | 0 | Yes | RT-PCR | AT3G16240 | Pt_0001s18730 |
| HbTIP2;3 | 1010 | 753 | 2 | 0 | Yes | RT-PCR | AT4G17340 | Pt_0003s07550 |
| HbTIP2;4 | 1009 | 753 | 2 | 0 | Yes | RT-PCR | AT4G17340 | Pt_0003s07550 |
| HbTIP3;1 | 967 | 774 | 2 | 0 | Yes | RT-PCR | AT1G17810 | Pt_0017s03540 |
| HbTIP3;2 | 915 | 742 | 2 | 0 | Yes | RT-PCR | AT1G17810 | Pt_0017s03540 |
| HbTIP4;1 | 1010 | 756 | 2 | 0 | Yes | RT-PCR | AT2G5810 | Pt_0006s25620 |
| HbTIP5;1 | 1181 | 759 | 2 | 0 | Yes | RT-PCR | AT3G47440 | Pt_0001s00690 |
| HbTIP5;2 | 1119 | 744 | 2 | 0 | Yes | RT-PCR | AT3G47440 | Pt_0001s00690 |

**NIP**

| Gene | CDS | EST hits in GenBank |
|------|-----|---------------------|
| HbNIP1;1 | 1582 | 861 | 4 | 0 | Yes | RT-PCR | AT4G18910 | Pt_0011s06770 |
| HbNIP1;2 | 1993 | 864 | 4 | 0 | Yes | RT-PCR | AT4G18910 | Pt_0011s06770 |
| HbNIP2;1 | 2930 | 858 | 4 | 0 | Yes | RT-PCR | AT5G37820 | Pt_0017s03060 |
| HbNIP3;1 | 1249 | 849 | 4 | 0 | Yes | RT-PCR | AT5G37820 | Pt_0017s03060 |
| HbNIP4;1 | 1237 | 804 | 4 | 0 | Yes | RT-PCR | AT5G37820 | Pt_0017s03060 |
| HbNIP4;2 | 1268 | 846 | 4 | 0 | Yes | RT-PCR | AT5G37820 | Pt_0017s03060 |
| HbNIP5;1 | 1932 | 897 | 3 | 0 | Yes | RT-PCR | AT4G10380 | Pt_0001s45920 |
| HbNIP6;1 | 3371 | 927 | 4 | 0 | Yes | RT-PCR | AT1G80760 | Pt_0001s45920 |
| HbNIP7;1 | 1359 | 897 | 4 | 0 | Yes | RT-PCR | AT3G06100 | Pt_0008s20750 |
similarities of 66.4–99.3% were found within HbPIPs, 49.8–98.4% within HbTIPs, 45.3–93.1% within HbXIPs, 44.6–90.6% within HbNIPs, and 40.6–95.0% within HbSIPs. HbPIPs share the highest sequence similarity of 35.2–49.0% with HbTIPs, 34.0–41.8% with HbXIPs, 30.2–36.8% with HbNIPs, and the lowest of 22.9–32.5% with HbSIPs. HbTIPs show 28.7–46.4%, 28.1–39.9% and 24.2–41.1% sequence similarities with HbPIPs, HbXIPs and HbSIPs, respectively. HbNIPs share sequence similarities of 26.0–35.0% and 23.0–32.2% with HbXIPs and HbSIPs, whereas HbSIPs share the lowest similarity of 20.8–33.7% with HbXIPs (Additional file 4).

Topological analysis showed that all HbAQPs were predicted to harbor six transmembrane helical domains (Table 2), which is consistent with the results from multiple alignments with structure proven AQPs (see Additional file 5). The subcellular localization of each HbAQP was also predicted (Table 2). HbPIPs with an average pl value of 8.47 are localized to plasma membranes. HbTIPs with an average pl value of 5.81 are mainly localized to vacuoles (known as laticifers in laticifers with a natural pH of about 6), though several members were predicted to be localized to endoplasmic reticulum (ER), chloroplast and cytosol. HbNIPs with an average pl value of 7.60 are mostly localized to plasma membranes, but HbNIP2;1 and HbNIP3;1 were predicted to be localized to the membrane of vacuole and chloroplast, respectively. Two members (HbSIP1;2 and HbSIP1;3) of the SIP subfamily (with an average pl value of 9.06) were predicted to be localized to plasma membranes, whereas HbSIP1;1 and HbSIP2;1 are localized to the membrane of vacuole and chloroplast, respectively. Although the XIP subfamily harbors only six members (with an average pl value of 7.95), the predicted localizations are diverse, including the vacuole, chloroplast, plasma membrane and cytosol. To learn more about the putative function of HbAQPs, the conserved residues typical of dual NPA motifs, the ar/R filter, five Froger’s positions and nine SDPs were also identified (Tables 2 and 3).

**HbPIP subfamily**

All HbPIPs were identified to have similar sequence length, however, HbPIP2s (278–288 residues) can be distinguished from HbPIP1s (269–287 residues) by harboring relatively shorter N-terminal and longer C-terminal sequences (Additional file 5). The five HbPIP1s have sequence similarities of 79.2–99.3%, whereas the similarity percents of ten HbPIP2s are 77.4–98.3%. Between HbPIP1 and HbPIP2 members, sequence similarities of 59.1–65.9% are observed (Additional file 4). The dual NPA motifs, ar/R filter (F-H-T-R), and four out of five Froger’s positions are highly conserved in HbPIPs (Table 2). In contrast, the P1 position is more variable with the appearance of an E, Q or M residue (Table 2). In addition, two phosphorylation sites corresponding to S115 and S274 in SoPIP2;1 [13] are invariable in HbPIP2s, and the former one is even highly conserved in all HbPIPs, HbTIPs and HbXIPs except for the S→T substitution in several members (Additional file 5), implying their regulation by phosphorylation.

**HbTIP subfamily**

HbTIPs consist of 227–257 residues. Those belonging to HbTIP1s (227–253 residues) share 73.1–98.0% sequence similarities, whereas HbTIP2s (248–250 residues) have sequence similarities of 83.2–98.4% (Table 2). Members of the HbTIP1 subgroup exhibit sequence similarities of 56.1–76.6%, 59.1–70.6%, 52.7–67.3% and 49.8–64.3%.
with subgroups HbTIP2, HbTIP3, HbTIP4 and HbTIP5, respectively. HbTIP2s share sequence similarities of 61.1–68.9 %, 59.6–65.1 % and 63.1–68.4 % with HbTIP3s, HbTIP4 and HbTIP5s, respectively. HbTIP3s share sequence similarities of 61.1–63.8 % and 58.0–60.5 % with HbTIP4 and HbTIP5s, respectively (Additional file 4). HbTIP3 shares 59.0 % and 60.2 % sequence similarities with HbTIP5;1 and HbTIP5;2, respectively. Dual NPA motifs and P3, P4 and P5 positions are highly conserved in HbTIPs (Table 2). Residue substitution is observed at the P1 and P2 positions: T is replaced by A in HbTIP2;4 or I in HbTIP5s at the P1 position, and S is replaced by A in HbTIP3s and HbTIP5s (Table 2). Of the ar/R filter, H at H2 and I at H5 positions are replaced by N and V in HbTIP5s, respectively; A is found to be conserved in HbTIP1s, HbTIP3s, and HbTIP4 and G in HbTIP2s and HbTIP5s at the LE1 position, respectively; and residues at the LE2 position are more variable, mainly V, R, S or C (Table 2).
HbNIP subfamily

HbNIPs consist of 267–305 residues (Table 2). With the exception of HbNIP1 and HbNIP4 subgroups that contain two members, each of the other five subgroups harbors a single member. HbNIP1;1 shares the highest sequence similarity of 90.6 % with HbNIP1;2, whereas HbNIP4;1 shares a similarity of 69.4 % with HbNIP4;2. HbNIP1s show sequence similarities of 54.5–55.7 %, 56.5–57.0 %, 59.9–63.8 %, 51.8 %, 50.0–50.6 % and 47.0 % within the subgroups of HbNIP2, HbNIP3, HbNIP4, HbNIP5, HbNIP6 and HbNIP7, respectively. HbNIP2 shows 54.8 %, 52.2–53.7 %, 49.1 %, 48.0 % and 45.4 % sequence similarities with HbNIP3, HbNIP4s, HbNIP5, HbNIP6 and HbNIP7, respectively. The HbNIP3 shows 52.1–55.0 %, 48.4 %, 47.3 % and 45.2 % sequence similarities with HbNIP4s, HbNIP5, HbNIP6

Fig. 2 Exon-intron structures of the 51 HbAQPs genes. Shown is a graphic representation of the gene models of all 51 HbAQPs identified in this study using GSDS. UTRs are shown as gray boxes, exons are shown as white boxes and introns are shown as black lines.
Table 2 Structural and subcellular localization analysis of the HbAQPs

| Name      | Len | Mw (KDa) | pI  | TM<sup>a</sup> | TM<sup>b</sup> | TM<sup>c</sup> | Loc<sup>d</sup> | Ar/R selectivity filter | NPA motifs | Froger's positions |
|-----------|-----|----------|-----|----------------|----------------|----------------|-------------|------------------------|-------------|--------------------|
| HbPIP1;1  | 287 | 30.80    | 8.59| 6 6 6          | Plas           | F              | H           | T R                    | NPA NPA E S A F W |
| HbPIP1;2  | 287 | 30.80    | 8.59| 6 6 6          | Plas           | F              | H           | T R                    | NPA NPA E S A F W |
| HbPIP1;3  | 287 | 30.74    | 8.24| 6 6 6          | Plas           | F              | H           | T R                    | NPA NPA E S A F W |
| HbPIP1;4  | 287 | 30.78    | 8.62| 6 6 6          | Plas           | F              | H           | T R                    | NPA NPA E S A F W |
| HbPIP1;5  | 269 | 28.92    | 8.60| 5 6 5          | Plas           | F              | H           | T R                    | NPA NPA Q S A F W |
| HbPIP2;1  | 288 | 30.71    | 7.61| 6 6 6          | Plas           | F              | H           | T R                    | NPA NPA Q S A F W |
| HbPIP2;2  | 288 | 30.71    | 8.20| 6 6 6          | Plas           | F              | H           | T R                    | NPA NPA Q S A F W |
| HbPIP2;3  | 286 | 30.58    | 8.50| 6 6 6          | Plas           | F              | H           | T R                    | NPA NPA Q S A F W |
| HbPIP2;4  | 286 | 30.61    | 8.19| 6 6 6          | Plas           | F              | H           | T R                    | NPA NPA Q S A F W |
| HbPIP2;5  | 285 | 30.34    | 9.18| 6 6 6          | Plas           | F              | H           | T R                    | NPA NPA Q S A F W |
| HbPIP2;6  | 286 | 30.39    | 9.06| 6 6 6          | Plas           | F              | H           | T R                    | NPA NPA Q S A F W |
| HbPIP2;7  | 278 | 29.56    | 9.11| 6 6 6          | Plas           | F              | H           | T R                    | NPA NPA M S A F W |
| HbPIP2;8  | 270 | 29.76    | 8.97| 6 6 6          | Plas           | F              | H           | T R                    | NPA NPA M S A F W |
| HbPIP2;9  | 280 | 29.84    | 6.51| 6 6 6          | Plas           | F              | H           | T R                    | NPA NPA M S A F W |
| HbPIP2;10 | 285 | 30.45    | 9.05| 6 6 6          | Plas           | F              | H           | T R                    | NPA NPA M S A F W |
| HbTIP1;1  | 252 | 25.91    | 5.91| 7 6 7          | Vacu           | H              | I            | A V                    | NPA NPA T S A Y W |
| HbTIP1;2  | 252 | 26.07    | 5.70| 7 6 7          | Vacu           | H              | I            | A V                    | NPA NPA T S A Y W |
| HbTIP1;3  | 253 | 26.44    | 6.27| 6 6 6          | Cyto           | H              | I            | A V                    | NPA NPA T S A Y W |
| HbTIP1;4  | 227 | 23.78    | 6.18| 3 6 4          | Vacu           | H              | I            | A V                    | NPA NPA T S A Y W |
| HbTIP1;5  | 252 | 25.88    | 4.96| 7 6 6          | Vacu/Cyto      | H              | I            | A V                    | NPA NPA T S A Y W |
| HbTIP1;6  | 252 | 25.79    | 5.70| 7 6 7          | Cyto           | H              | I            | A V                    | NPA NPA T S A Y W |
| HbTIP1;7  | 252 | 25.90    | 4.97| 6 6 6          | Vacu/Cyto      | H              | I            | A V                    | NPA NPA T S A Y W |
| HbTIP1;8  | 252 | 25.72    | 4.79| 6 7 6          | Vacu/Cyto      | H              | I            | A V                    | NPA NPA T S A Y W |
| HbTIP2;1  | 248 | 25.40    | 5.33| 7 6 6          | Vacu           | H              | I            | G R                    | NPA NPA T S A Y W |
| HbTIP2;2  | 248 | 25.34    | 5.59| 7 6 7          | Vacu           | H              | I            | G R                    | NPA NPA T S A Y W |
| HbTIP2;3  | 250 | 25.31    | 4.87| 6 6 6          | Vacu           | H              | i            | G R                    | NPA NPA T S A Y W |
| HbTIP2;4  | 250 | 25.31    | 4.59| 4 6 5          | Vacu/Plas      | H              | i            | G S                    | NPA NPA A S A Y W |
| HbTIP3;1  | 257 | 27.38    | 6.43| 6 6 6          | Cyto           | H              | I            | A R                    | NPA NPA T A A Y W |
| HbTIP3;2  | 243 | 25.66    | 9.74| 6 6 6          | Cyto           | H              | I            | A R                    | NPA NPA T A A Y W |
| HbTIP4;1  | 251 | 26.24    | 5.91| 6 6 7          | Vacu           | H              | i            | A R                    | NPA NPA T S A Y W |
| HbTIP5;1  | 252 | 25.95    | 6.71| 5 6 6          | ER             | N              | V            | G C                    | NPA NPA I A A Y W |
| HbTIP5;2  | 247 | 25.32    | 5.13| 6 6 6          | Chlo           | N              | V            | G C                    | NPA NPA I A A Y W |
| HbNIP1;1  | 286 | 30.41    | 7.57| 6 6 6          | Plas           | W              | V            | A R                    | NPA NPA F S A Y L |
| HbNIP1;2  | 287 | 30.39    | 8.94| 6 6 6          | Plas           | W              | V            | A R                    | NPA NPA F S A Y I |
| HbNIP2;1  | 285 | 29.88    | 8.72| 6 6 6          | Plas           | G              | S            | G R                    | NPA NPA L S A Y I |
| HbNIP3;1  | 282 | 30.20    | 8.34| 6 6 5          | Chlo           | W              | V            | A R                    | NPA NPA F S A F I |
| HbNIP4;1  | 267 | 28.80    | 5.28| 6 6 6          | Plas           | W              | V            | G R                    | NPA NPA L S A Y I |
| HbNIP4;2  | 281 | 29.60    | 5.71| 6 6 6          | Plas           | W              | V            | A R                    | NPA NPA F S A Y I |
| HbNIP5;1  | 298 | 30.98    | 8.65| 6 6 5          | Plas           | A              | i            | G R                    | NPA NPA L S A Y I |
| HbNIP6;1  | 305 | 31.58    | 8.68| 6 6 5          | Plas           | T              | i            | A R                    | NPA NPA L S A Y I |
| HbNIP7;1  | 298 | 31.85    | 6.50| 6 6 6          | Plas           | A              | V            | G R                    | NPA NPA Y S A Y I |
| HbSIP1;1  | 239 | 25.35    | 9.54| 6 6 5          | Vacu           | A              | V            | P N                    | NPA NPA M A A Y W |
| HbSIP1;2  | 239 | 25.97    | 7.74| 6 6 6          | Plas           | F              | V            | P N                    | NPA NPA M A A Y W |
Table 2 Structural and subcellular localization analysis of the HbAQPss (Continued)

| Unigene ID | Length | FasteDB AC | Accession | Orientation | HbXIP1;1 | HbXIP1;2 | HbXIP1;3 | HbXIP1;4 | HbXIP1;5 | HbXIP1;6 | HbXIP1;7 | HbXIP2;1 | HbXIP2;2 | HbXIP2;3 | HbXIP3;1 | HbXIP3;2 | HbXIP3;3 |
|------------|--------|------------|-----------|-------------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|
| HbSIP1;3   | 239    | 25.83      | 9.36      | 6           | 6         | 6         | 5         | Plas      | V         | V         | P         | N         | NPT       | NPA       | M         | A         | A         | Y         | W         |
| HbSIP2;1   | 240    | 26.40      | 9.60      | 4           | 6         | 6         | 5         | Chlo      | S         | H         | G         | S         | I NPI     | NPA       | F         | V         | A         | Y         | W         |
| HbXIP1;1   | 289    | 31.23      | 6.36      | 6           | 6         | 6         | 6         | Cyto      | V         | V         | V         | R         | SPV       | NPA       | M         | C         | A         | F         | W         |
| HbXIP1;2   | 296    | 32.13      | 8.06      | 6           | 7         | 6         | 6         | Chlo      | V         | V         | V         | R         | SPI       | NPA       | M         | F         | A         | F         | W         |
| HbXIP1;3   | 276    | 29.63      | 7.50      | 5           | 6         | 5         | 6         | Cyto      | V         | I         | P         | R         | NPT       | NPA       | M         | C         | A         | F         | W         |
| HbXIP1;4   | 276    | 29.50      | 8.31      | 5           | 6         | 5         | 6         | Vacu      | V         | I         | A         | R         | NPT       | NPA       | M         | C         | A         | F         | W         |
| HbXIP2;1   | 305    | 32.28      | 8.61      | 6           | 6         | 6         | 6         | Plas      | V         | V         | V         | NPA       | V C A F W  |          |           |           |           |           |           |
| HbXIP3;1   | 256    | 27.16      | 8.87      | 6           | 7         | 5         | Vacu      | V         | V         | A         | R         | NPL       | NPA       | V C A F W  |          |           |           |           |           |           |

**Notes:**
- All lengths are in amino acids.
- **HbSIP** represents the HbSIP subgroup, **HbSIP2** the HbSIP2 subgroup, **HbXIP** the HbXIP subgroup, and **HbXIP2** the HbXIP2 subgroup.
- **Plas** indicates plasma membrane, **Vacu** vacuolar membrane.

Transcriptional profiles of HbAQP genes in the laticifer and their response to ethephon stimulation

The rubber tree laticifer is a single-cell-type tissue specifically for natural rubber biosynthesis. To identify the AQP genes expressed in the laticifer and determine the most important members in the laticifer water balance, the latex representing the laticifer cytoplasm was collected and high-quality total RNAs (260/280 value between 1.95 and 2.00, 28S/18S value between 3.0 and 3.2 and RIN value between 8.9 and 9.1) were isolated from three biological replicates, respectively. Then, RNAs were pooled and subjected to Illumina RNA sequencing. Approximate 5.49 gigabase pairs of raw data (100 nt paired-read) were generated. After cleaning and quality checks, the average length of 95 nt were retained and assembled into 74,102 Unigenes longer than 200 bp, with an average length of 775 bp and N50 of 1260 bp (i.e. 50 % of the assembled bases were incorporated into Unigenes of more 1260 bp). Expression profiling showed that 19 out of the 51 identified HbAQP genes were detected in the laticifer transcriptome, including genes coding for 10 PIPs (sort by abundance, **HbPIP2;7**, **HbPIP1;4**, **HbPIP2;5**, **HbPIP1;3**, **HbPIP2;3**, and **HbPIP2;1**).
Table 3 Summary of typical SDPs and those identified in the HbAQPs

| Aquaporins | SDP1 | SDP2 | SDP3 | SDP4 | SDP5 | SDP6 | SDP7 | SDP8 | SDP9 |
|------------|------|------|------|------|------|------|------|------|------|
| Typical transporter | H | F | E/E/E | A/C/E | L/M | A/C/E | G/S | G/S | N |
| HbFP1 | H | F | F | L | ? | G | G | N |
| HbFP1 | H | F | F | L | ? | G | G | N |
| HbFP1 | H | F | F | L | ? | G | G | N |
| HbFP1 | H | F | F | L | ? | G | G | N |
| HbFP1 | H | F | F | L | ? | G | G | N |
| HbFP1 | H | F | F | L | ? | G | G | N |
| HbFP1 | H | F | F | L | ? | G | G | N |
| HbFP1 | H | F | F | L | ? | G | G | N |
| HbFP1 | H | F | F | L | ? | G | G | N |
| HbFP1 | H | F | F | L | ? | G | G | N |
| HbFP1 | H | F | F | L | ? | G | G | N |
| HbFP1 | H | F | F | L | ? | G | G | N |
| HbFP1 | H | F | F | L | ? | G | G | N |
| HbFP1 | H | F | F | L | ? | G | G | N |
| HbFP1 | H | F | F | L | ? | G | G | N |
| HbFP1 | H | F | F | L | ? | G | G | N |
| HbFP1 | H | F | F | L | ? | G | G | N |
| HbFP1 | H | F | F | L | ? | G | G | N |
| HbFP1 | H | F | F | L | ? | G | G | N |
| HbFP1 | H | F | F | L | ? | G | G | N |
| HbFP1 | H | F | F | L | ? | G | G | N |
| HbFP1 | H | F | F | L | ? | G | G | N |
| HbFP1 | H | F | F | L | ? | G | G | N |
| HbFP1 | H | F | F | L | ? | G | G | N |
| HbFP1 | H | F | F | L | ? | G | G | N |

The SDPs (specificity-determining positions) in rubber tree aquaporins differing from typical SDPs determined in this study are highlighted in red.
HbPIP1;1, HbPIP2;4, HbPIP1;5 and HbPIP1;2, the same as follows), 3 TIPs (HbTIP1;2, HbTIP2;2 and HbTIP1;6), 4 NIPs (HbNIP1;2, HbNIP3;1, HbNIP6;1 and HbNIP1;1) and 2 SIPs (HbSIP2;1 and HbSIP1;2) (Fig. 3). Based on the RPKM value, the total expression level of PIP members was 1306, 225, 104 folds more than the NIP, TIP or SIP members, respectively, indicating a crucial role of the PIP subfamily in the laticifer water balance. Among ten laticifer-expressed PIP genes, HbPIP2;7, HbPIP1;4, HbPIP2;5, HbPIP1;3 and HbPIP2;3 were considerably more abundant, counting about 418-, 306-, 204-, 30- and 15-folds higher than the well-studied HbPIP1;1. Whereas, HbSIP2;1, the sixth laticifer-abundant AQp gene, expressed relatively more than any other non-PIP members (Fig. 3).

Given the important role and wide application of ethephon stimulation on rubber yield promotion, the response of the above 19 laticifer-expressed HbAQp genes subjected to ethephon treatment was analyzed using qRT-PCR over a time course (6–40 h). As described before, treating the rubber tree bark with ethephon was shown to induce a huge increase in latex yield, starting as early as 6 h after the treatment, and the yield increase was about 2.2-, 3.1-, 2.9- and 4.4-folds higher than the control at 6, 16, 24, and 40 h after the treatment, respectively; the TSC was significantly decreased at the time points of 24 and 40 h; and the latex flow duration was significantly prolonged from the time point of 16 h [22]. As shown in Fig. 4, except for HbNIP6;1, ethephon treatment had significant effects on all other tested HbAQp genes at one or more time points, implying their regulation by ethylene. At the early stage of ethephon treatment, i.e. 6 h, the transcriptional levels of 13 HbAQp genes were significantly affected, including two up-regulated (HbPIP1;2 and HbSIP2;1) and eleven down-regulated (HbPIP1;1, HbPIP1;4, HbPIP1;5, HbPIP2;1, HbPIP2;4, HbPIP2;7, HbTIP1;2, HbNIP1;1, HbNIP1;2, HbNIP3;1 and HbSIP1;2) genes. At 16 h post treatment, 16 HbAQp genes were significantly regulated, including eight up-regulated (HbPIP1;4, HbPIP1;5, HbPIP2;3, HbPIP2;5, HbTIP1;6, HbNIP1;2, HbNIP3;1 and HbSIP2;1) and eight down-regulated (HbPIP1;1, HbPIP1;3, HbPIP2;1, HbPIP2;4, HbTIP1;2, HbTIP2;2, HbNIP1;1 and HbSIP1;2) genes. At 24 h post treatment, 17 HbAQp genes were significantly regulated, including thirteen up-regulated (HbPIP1;1, HbPIP1;2, HbPIP1;3, HbPIP1;4, HbPIP1;5, HbPIP2;3, HbPIP2;5, HbTIP1;2, HbTIP1;6, HbTIP2;2, HbNIP1;1, HbNIP1;2 and HbSIP2;1) and four down-regulated (HbPIP2;1, HbPIP2;7, HbNIP3;1 and HbSIP2;1) genes. At 40 h post treatment, 14 HbAQp genes were significantly regulated, including thirteen up-regulated (HbPIP1;5, HbPIP2;5, HbTIP1;2, HbTIP1;6, HbNIP1;1, HbNIP1;2 and HbSIP2;1) and seven down-regulated (HbPIP1;1, HbPIP1;2, HbPIP1;3, HbPIP2;1, HbPIP2;7, HbNIP3;1 and HbSIP1;2) genes. Although the time points of 16 and 24 h post treatment harbored similar significantly regulated genes, the later had relatively more genes (especially PIP subfamily members) that were up-regulated. Although the expression patterns of the regulated genes were diverse, they could be classified into seven groups: the cluster 1 that includes HbPIP2;5 was gradually increased upon ethephon stimulation; the cluster 2 including HbPIP2;3 and HbSIP2;1 were firstly increased and then decreased, which is like a clock; the cluster 3 including HbTIP1;6 was firstly increased, subsequently decreased and increased at the last time point tested; the cluster 4 including HbPIP1;2 was firstly increased, subsequently decreased, then increased and finally decreased; the cluster 5 including HbNIP1;1 and
HbSIP1;2 were firstly decreased and then increased; the cluster 6 that includes 9 genes (i.e. HbPIP1;1, HbPIP1;3, HbPIP1;4, HbPIP2;1, HbPIP2;4, HbPIP2;7, HbTIP1;2, HbTIP2;2 and HbNIP3;1) were firstly decreased, subsequently increased and finally decreased; the cluster 7 that includes HbPIP1;5 and HbNIP1;2 were firstly decreased, subsequently increased, then decreased and finally increased. At 24 h post ethephon stimulation, eight genes (i.e. HbPIP1;1, HbPIP1;2, HbPIP1;3, HbPIP2;3, HbPIP2;4, HbTIP1;2, HbTIP2;2 and HbSIP2;1) exhibited the highest expression levels, whereas the highest expression of six genes (i.e. HbPIP1;5, HbPIP2;5, HbTIP1;6, HbNIP1;1, HbNIP1;2 and HbNIP6;1) occurred at 40 h. Moreover, the transcript abundance of HbPIP2;5 and HbNIP1;1 were similar at the time points of 24 h and 40 h (Fig. 4). As described above, HbPIP2;5, HbPIP2;3 and HbPIP1;3 were among the top 5 highly abundant AQP genes expressed in laticifers (Fig. 3). In addition, another highly abundant AQP genes (i.e. HbPIP1;4) was expressed most at 16 h post ethephon stimulation (Fig. 4).

Discussion

High abundance and diversity of HbAQP genes

A total of 51 full-length AQP genes were identified from the rubber tree genome, which is comparable to 55 members reported in poplar (a tree species also belongs to Malpighiales) [7, 36]; more than 23 in grapevine [6], 33 in rice [5], 35 in Arabidopsis [3], 36 in maize [4], 41 in potato [10] and 47 in tomato [9]; less than 66 in soybean [11] and 71 in cotton [8]. Since the AQP genes in Arabidopsis and poplar were well characterized, their deduced proteins were added in the phylogenetic analysis of HbAQP genes, which assigned them to five subfamilies. With the exception of the XIP subfamily, the further classification of HbAQP subfamilies into subgroups is consistent with Arabidopsis, i.e. two PIP subgroups, five TIP subgroups, seven NIP subgroups and two SIP subgroups. Nevertheless, classing AtNIP2;1 and AtNIP3;1 into the NIP1 subgroup was proposed. As shown in Fig. 1, AtNIP2;1 and AtNIP3;1 were clustered with the NIP1 subgroup, sharing the highest similarity with
AtNIP1;2 in *Arabidopsis*, HbNIP1;2 or HbNIP1;1 in rubber tree, PtNIP1;2 or PtNIP1;1 in poplar, respectively. Thereby, no NIP2s and NIP3s were retained in *Arabidopsis* as seen in rubber tree and poplar (Fig. 5). Since no XIP homologs were found in the *Arabidopsis* genome, the nomenclature for poplar proposed by Lopez et al. [36] was adopted to divide HbXIPs into three subgroups. Besides supported by high bootstrap values, XIP1s are characterized by the ar/R filter of V-M-V/P/A-R, XIP2s by I-I-V-R and XIP3s by V-K-A-R.

Gene pairs were identified not only in rubber tree, but also in poplar and *Arabidopsis* (Fig. 1). For example, five AtPIP1s were clustered together apart from PIP1s of rubber tree and poplar; HbPIP1;1 and HbPIP1;2 were clustered with PtPIP1;1 and PtPIP1;2. These results suggest the occurrence of more than one gene duplication events. Previous studies indicated that poplar underwent one whole-genome triplication event (designated ‘γ’) and one doubling event, whereas *Arabidopsis* underwent the same γ event and two independent doubling events, though the *Arabidopsis* genome encodes relatively less AQP genes due to massive gene loss and chromosomal rearrangement after genome duplications [40–42]. The γ duplication occurred at approximate 117 million years ago, shortly before the origin of core eudicots [43]. As a core eudicot plant, the rubber tree appears to share the γ duplication. However, another one as the data suggested is likely to be a doubling event independent from both *Arabidopsis* and poplar, probably occurred after the divergence of Euphorbiaceae and Salicaceae. A genome-wide comparative analysis may provide more information.

**Functional inference of HbAQPs**

Although plant AQPs firstly raised considerable interest for their high water permeability, when heterologously expressed in *Xenopus* oocytes or yeast cells, increasing evidence has shown that some of them are also participated in the transport of other small molecules such as glycerol, urea, boric acid, silicic acid, NH$_3$, CO$_2$ and H$_2$O$_2$ [44]. Based on atomic resolution structures and molecular dynamics stimulations of GlpF, AqpZ, AQP1 and other MIPs, several structural features determining their transport selectivity were identified, e.g. the two opposite NPA motifs, the ar/R filter and the amino acid residues at Froger’s positions for discriminating between AQPs and GLPs [14, 45]. As shown in Table 2, most HbAQPs exhibit an AqpZ-like Froger’s positions to favor the permeability of water. In contrast, HbSIP2;1 and NIP subfamily members possess mixed key residues of GlpF for P1 and P5, and AqpZ for P2–P4. The glycerol permeability of GmNOD26 and *Arabidopsis* NIPs was reported [46, 47], however, the potential glycerol transport ability of HbSIP2;1-like SIPS have not be confirmed by experimental means yet.

In addition to high permeability to water, plant PIPs were reported to transport urea, boric acid, CO$_2$ and H$_2$O$_2$ [48]. As shown in Table 2, all HbPIPs represent the F-H-T-R ar/R filter as observed in AqpZ which harbors an extremely narrow and hydrophilic pore (diameter 2.8 Å) [45], suggesting their high water permeability. However, when expressed in *Xenopus*, extremely low water permeability of HbPIP1 members such as HbPIP1;1 and HbPIP1;4 was observed [22, 26] as seen in many other plant species [49]. Based on the SDP analysis proposed by Hove and Bhave [15], all HbPIPs represent urea-type SDPs (H-P-F/L-F/L-P-G-G/S-N); HbPIPs represent boric acid-type SDPs (T-I-H-P-E-L-L-T-P); HbPIP1;3 represents CO$_2$-type SDPs (I-I-C-A-I-D-W-D-W); HbPIPs except for HbPIP2;9 represent H$_2$O$_2$-type SDPs (A-G-V-F/V-I-H/Q-Y/V-A-P) (Table 3), supporting their similar functionality.

Although highly variable in the ar/R filter, plant TIPs were shown to transport water as efficiently as PIPs [21].

![Fig. 5 Distribution of the 51 HbAQP genes and their Arabidopsis and poplar homologs in subgroups](image-url)
Additionally, they also allow urea, NH$_3$ and H$_2$O$_2$ through [50]. As shown in Table 3, all HbTIPs except for HbTIP2:4 and HbTIP4:1 represent urea-type SDPs (H-P-F/L-F/L-A/P-G-S-N), whereas HbTIP1:5, HbTIP1:6, HbTIP5:1 and HbTIP5:2 represent H$_2$O$_2$-type SDPs (S-A-L-A/L-V-I/H-Q-Y-V-P), indicating similar functionality. Compared with typical NH$_3$-SDPs (F/T-K/L/N-V/F-T-V/L-T-A-D/S-A/H/L-E/P/S-A/R/T), HbTIP2:2 seems to represent novel SDPs with the substitution of S for A/R/T at SDP9.

Besides glycerol and water, plant NIPs have been found to transport urea, boric acid, silicic acid, NH$_3$ and H$_2$O$_2$ [50–52]. As shown in Table 3 and Additional file 6, HbNIP5:1 is promised to be a urea and boronic acid transporter with nine SDPs of H-P-I-A-L-P-G-S-N or T-I-H-P-E-L-L-A-P. HbNIP2:1 represent typical urea SDPs (H-P-T-A-M-P-G-S-N), and SDPs of V-V-H-P-E-I-L-A-P with the substitution of V for I at SDP2 in comparison to typical boric acid SDPs (T/V-I-H-P-E-I/L-I/A-T/A/G/P). Compared with typical urea and boric acid SDPs, HbNIP6:1 seems to represent novel SDP types with the substitution of Q for A/P at SDP6 or Q for A/P/G at SDP9. Although characterized as an NIP III member, the silicic acid transport ability of HbNIP2:1 needs to be experimentally validated since it seems to represent novel SDPs (S-F-V-H-G-N-R-T-Q in contrast to typical C/S-F/Y-A/E/L-H/R/Y-G-K/N/T-R-E/S-T-A/K/P/T) similar to that of GmNIP2:1 and GmNIP2:2 (S-Y-E-R-G-N-R-T-P) [53]. Although GmNOD26 was reported to transport NH$_3$ [54], whether its close rubber tree homologs (i.e. HbNIP1:1, HbNIP1:2, HbNIP3:1, HbNIP4:1 and HbNIP4:2) represent novel SDP types still needs to be tested. HbNIP3:1, HbNIP4:2 and HbNIP5:1 represent H$_2$O$_2$-type SDPs (A/S-A-L/L-V-I/V-L-Y-V-P) slightly different from AtNIP1:2 (S-A-L-L-V-L-Y-V-P) [50].

As a recently identified AQP subfamily, plant XIPs were shown to transport water, glycerol, urea, boric acid and H$_2$O$_2$ [36, 55]. According to phylogenetic relationships, XIPs are split into two independent clusters termed XIP-A and XIP-B, where XIP-A includes only XIP1 subgroup and XIP-B contains at least four subgroups, i.e. XIP2, XIP3, XIP4, and XIP5 [36]. Consistent with poplar XIPs (two XIP1, one XIP2 and three XIP3), six HbXIPs can be assigned to subgroups XIP1 (4), XIP2 (1) and XIP3 (1) (Fig. 4). When expressed in Xenopus oocytes, PtXIP2:1 and PtXIP3:3 transported water while other PtXIPs did not. Although the mechanism why PtXIP1s, PtXIP3:1 and PtXIP3:2 do not transport water is still unclear, the close homologs of PtXIP1s in Nicotiana tabacum and potato were also reported to have undetectable water permeability. In contrast, Solanaceae XIPs showed high permeability to glycerol [55]. Therefore, although exhibiting an AqpZ-like Froger's positions, all HbXIPs maybe transport glycerol. Meanwhile, HbXIP2:1 and HbXIP3:3 are probably capable of transporting water. As shown in Table 3, HbXIP1:1, HbXIP1:2, HbXIP2:1 and HbXIP3:1 are promised to be urea transporters with nine SDPs of H-P-F/L-A-L-G-G-N; HbXIP1:3, HbXIP1:4 and HbXIP2:1 may represent novel boric acid SDPs with the substitution of Q for T for A/G/K/P at SDP9; HbXIP1:3 and HbXIP1:4 harbor H$_2$O$_2$-type SDPs (A-G-L-V-L-H-Y-V-P) with a slight difference from some Solanaceae XIPs (S-A-V-A-V-L-Y-V-P) [55].

**A crucial role of HbPIPs in the water balance of laticifers**

As a unique site for rubber biosynthesis, the laticifers are present in a wide variety of rubber tree tissues, including shoots, roots, stems, leaves, flowers, fruits, cotyledons, inner seed coats, etc., and can be divided into primary and secondary laticifers according to their origin [16]. Compared with the procambium-derivation of primary laticifers, the secondary laticifers, mainly located in the soft inner bark of the rubber tree trunk, are periodically differentiated from the vascular cambium and serve as a sole source for the commercial latex [56]. During the differentiation and maturation process, laticifer mother cells articulate with each other and further anastomose together into a successive vertical network (called rings or mantles) arranged as concentric sheaths in the secondary phloem [56]. Unlike other cells such as neighboring parenchyma cells, the mature laticiferous cells are totally devoid of plasmodesmata [25], and thus its water exchanges with surrounding cells are mainly governed by AQPs. Upon bark tapping, the laticifer cytoplasm is expelled in the form of latex due to the high turgor pressure inside [57]. Generally, latex flow can continue for several hours until coagulation processes lead to the plugging of severed laticifers [58]. During the latex flow, a progressive decrease in DRC was observed [21–23], indicating rapid water influx and latex dilution inside laticifers caused by the activity of HbAQPs. Given that of HbPIPs and HbTIPs account for more than 62.7 % of the total HbAQPs and their AqpZ-like Froger's positions favoring the high water permeability, we initially prospect that these two subfamilies may play important roles in the laticifer water balance: the plasma membrane-targeted HbPIPs facilitate the water transport from the extracellular space to the laticifer cytoplasm, whereas the lutoid-targeted HbTIPs play an essential role in maintaining the cell osmotic balance as observed in most plant cells [59]. However, in contrast to the mature plant cells characterized by a large central vacuole which occupies 80 % or more of the intracellular space, the lutoids in laticifers are polydispersed microvacuoles occupying only 12 % of the total latex [60], arguing the central role of HbTIPs in the laticifer water balance,
though their potential role in the lutoid stability and latex vessel plugging should be noted. To address this issue, the transcriptome of such a single-cell-type tissue was deeply sequenced. Results showed that PIP members were the main AQP genes expressed in the laticifer (similar results were also observed when the recently available laticifer transcriptome of clone RRIM928 was analyzed, see Additional file 7), suggesting their crucial role, especially the highly abundant \( HbPIP2;7 \), \( HbPIP1;4 \) and \( HbPIP2;5 \), in the laticifer water balance. When expressed in \textit{Xenopus} oocytes, our previous study showed that \( HbPIP2;5 \) could transport water as efficiently as \( HbPIP2;1 \) \cite{21, 23}; in contrast, \( HbPIP1;4 \) and \( HbPIP2;7 \) were shown to be less efficient \cite{22}. In addition, as a PIP1 member, the poor efficiency of \( HbPIP1;1 \) was also observed \cite{26}. Therefore, the exact role of \( HbPIP2;7 \), \( HbPIP1;4 \) and \( HbPIP2;5 \) in the water balance of rubber tree laticifers needs further investigations.

To profile the AQP genes in response to ethylene stimulation in laticifers, the latex at different time points after ethephon treatment was collected from rubber tree clone PR107. Similar to PB217, PR107 clone is characterized as a relatively late mature variety which has a high TSC, short latex flow duration and low latex metabolism, however, ethephon stimulation could significantly prolong its latex flow duration and enhance latex yield \cite{22, 23}. Our qRT-PCR analysis showed that the expression levels of most laticifer-expressed genes significantly changed at least one tested time point after ethephon application (Fig. 4), indicating their involvements in the ethephon enhanced water influx into laticifers. Among these time points, the latex collected at 24 and 40 h (especially 24 h) after ethephon treatment was shown to harbor the most abundant transcripts, which include four of the five highly abundant \( HbPIP1;3 \), \( HbPIP2;3 \), \( HbPIP1;4 \) and \( HbPIP2;5 \), corresponding to the significantly decreased TSC, the longest latex flow duration and the highest latex yield as reported by Wang et al. who utilized the same materials \cite{22}. Besides, similar effects of ethephon on latex yield and latex TSC of the PB217 clone were also observed by Tungngeo et al., although they used mature virgin trees as materials \cite{21}.

### Conclusions

To our knowledge, this is the first genome-wide study of the rubber tree AQP gene family and using systematic nomenclature assigned 51 HbAQPs into five subfamilies based on the sequence similarity and phylogenetic relationship with their \textit{Arabidopsis} and poplar counterparts. Furthermore, their structural and functional properties were investigated based on the analysis of the ar/R filter, Froger’s positions and SPDs, which suggested the potentially key role of HbPIPs and HbTIPs in the laticifer water balance. Most importantly, the laticifer transcriptome was deeply sequenced to identify the most important AQPs in such a single-cell-type tissue, and qRT-PCR analysis was also performed to investigate the expression profiles of laticifer-expressed HbAQP genes upon ethephon stimulation. Our results revealed that \( HbPIPs \) were the mainly AQP genes expressed in the laticifer. Among 19 HbAQP genes detected in the laticifer, most of them were significantly regulated by ethylene. Consistent with the significantly decreased TSC and increased latex yield, most laticifer-expressed PIP genes were considerably induced at the time point of 24 h after ethephon application, supporting their crucial roles in the water balance of laticifers in the case of ethephon stimulation. This study provides an important genetic resource of HbAQP genes, which will be useful to improve the water use efficiency and latex yield of \textit{Hevea}.

### Methods

#### Identification of rubber tree aquaporin genes

The deduced amino acids of HbAQPs available in the NCBI GenBank were used as queries to search the available RRIM600 genome and our in-house RY7-33-97 genome for rubber tree homologs. Sequences with an E-value of less than 1e\(^{-5}\) in the tBlastn search \cite{61} were selected for further analyses. The gene structures were firstly predicted using GeneMark.hmm \cite{62}, and the gene models were further validated with ESTs and raw RNA sequencing reads available at GenBank. The exon-intron structures of AQP genes detected in the laticifer transcriptome were also confirmed by aligning the cloned cDNAs to the corresponding gene sequences. Gene structures were displayed using GSDS \cite{63}. Homology search for nucleotides or Sanger ESTs was performed using Blastn, and sequences with an identity of more than 98 % were taken into account. RNA sequencing reads were mapped using Bowtie 2 \cite{64} with default parameters, and mapped read number of more than one was counted as expressed. Unless specific statements, the tools used in this study were performed with default parameters.

#### Sequence alignments and phylogenetic analysis

Multiple sequence alignment using deduced proteins was performed with ClustalX \cite{65}, and the unrooted phylogenetic tree was constructed by the maximum likelihood method using MEGA6 \cite{66}. The reliability of branches in the resulting tree was supported with 1,000 bootstrap resamplings. Classification of AQPs into subfamilies and subgroups was done as described before \cite{3, 36}.

### Structural features of rubber tree aquaporins

Biochemical features of HbAQPs were determined using ProtParam (http://web.expasy.org/protparam/).
The subcellular localization was predicted using WoLF PSORT [67]. The transmembrane regions were detected using TOPCONS [68], TMPRED [69] and TMHMM [70]. Functional prediction was carried out based on dual NPA motifs, ar/R filters (H2, H5, LE1, LE2), Froger’s positions (P1–P5) and specificity-determining positions (SDP1–SDP9) from alignments with the structure resolved Spinacia oleracea PIP2;1 and functionally characterized AQPs as collected by Hove and Bhave [15].

Plant materials and field experiments
PR107, the male parent of rubber tree clone RY7-33-97, was planted at the experimental farm of Chinese Academy of Tropical Agricultural Sciences (Danzhou, China) in 2002. Six batches of three trees with similar growth performance and latex yield were selected for this study. The trees had been tapped for 3 years on the s/2 d 3 system (tapping every 3 days with half spiral) without ethephon stimulation. For ethephon stimulation, five batches of trees were treated with 1 g of 2.5 % (w/w) ethephon in carboxyl methyl cellulose (CMC, 1 %) for 6, 16, 24, and 40 h before the sampling. The sixth batch was treated with 1 % CMC as a control.

Latex collection and total RNA extraction
The latex was collected through tapping the bark at around 6:00 am, and samples representing three biological replicates were subjected for total RNA isolation as described by Tang et al. [71]. Briefly, the latex within the first 45 min was dropped into liquid nitrogen after discarding the first 5 drops. The frozen latex was suspended with extraction buffer (0.3 M LiCl, 0.01 M disodium salt EDTA, 10 % (W/V) SDS, 0.1 M Tris—HCl), and equal volume of water-saturated phenol/chloroform/isoamyl alcohol (PCI) (25:24:1) was added and vigorously shaken. Then, the mixture was centrifuged at 12,000 × g for 10 min at 4 °C, and the aqueous phase was collected and subjected to one more PCI and one chloroform/isoamyl alcohol (24:1) extraction. The supernatant was precipitated with 8 M LiCl solution for twice. The pellet was dissolved with H2O, and 3 M NaAc (pH 5.2) and absolute alcohol were added to precipitate the RNA. After washed with 75 % ethanol, the RNA was dissolved with H2O. The concentration and integrity of total RNA was confirmed using a 2100 Bioanalyzer (Agilent, Palo Alto, CA, USA).

For the expression analysis, the first-strand cDNA was synthesized from 2 μg of total RNA to a final 20 μL reaction mixture using PrimeScript® RT reagent kit with gDNA Eraser (Takara, Dalian, China) according to the manufacturer’s instruction, and then stored at −20 °C.

For Illumina sequencing, magnetic beads with biotin-Oligo (dT) were used to isolate poly(A) mRNA according to the manufacturer’s protocol of Illumina TruSeqTM RNA sample preparation kit (Qiagen GmbH, Hilden, Germany).

Expression analysis based on Illumina sequencing
RNA sequencing was performed as described previously [72] using Illumina HiSeq™ 2000 (Illumina Inc., San Diego, CA, USA) at Beijing Genomics Institute (Shenzhen, China). The raw data were filtered by the Illumina pipeline to remove adaptor sequences, adaptor-only reads, reads with “N” rate larger than 10 % (“N” representing ambiguous bases) and low quality reads containing more than 50 % bases with Q-value ≤ 5. Assembly of clean reads was carried out using SOAP de novo [73] (Luo et al. 2012). The trimmed reads were mapped to Unigenes using Bowtie 2 [64], and the RPKM (reads per kilo bases per million reads) method [74] was used for the expression annotation.

qRT-PCR analysis
HbYLS8, the most stably expressed genes in response to ethephon stimulation [75], was selected as the reference gene in this study. The gene-specific primers are listed in Additional file 8, and the PCR reaction was performed using the SYBR-green Mix (Takara, Dalian, China) and the Real-time Thermal Cycler (Type 5100, Thermal Fisher Scientific Oy, Finland). All qRT-PCR assays were performed in triplicate for each biological sample. The amplification efficiency of each primer pair was estimated via melting curve analysis, and PCR products were confirmed by Sanger sequencing. The relative abundance of each transcript was estimated with the 2−ΔΔCt method after normalization against HbYLS8 using PikoReal2.0 software unless otherwise specified. Statistical analyses were executed using the Data Processing System software v11.0. The differences among means were tested following Duncan’s one-way multiple-range post hoc ANOVA (P < 0.05).

Additional files
Additional file 1: The gene models for the 51 HbAQPs genes identified in this study. (PDF 447 kb)
Additional file 2: List of the Phytozome accession numbers of the AQPs genes identified in Arabidopsis (35) and poplar (55). (xls 62 kb)
Additional file 3: Percent identity of the identified HbAQPs gene pairs at the nucleotide and amino acid levels. (xls 28 kb)
Additional file 4: Percent similarity within and between five subfamilies of the HbAQPs. (xls 37 kb)
Additional file 5: Alignment of predicted amino acid sequences of rubber tree aquaporins with structure determined Spinach SoPIP2.1. (PDF 275 kb)
Additional file 6: SDP analysis of the HbAQPs based on the sequence alignment with AQPs transporting non-aqua substrates. (PDF 165 kb)
Expression profiles of the 51 HbAQP genes in the laticifer of rubber tree clone RRIM929. (FCR: 36 kb)

Additional file 8: qRT-PCR primers of the 19 HbAQP genes expressed in laticifers. (OXS: 11 kb)

Abbreviations
AQP: Aquaporin; Ar/R: Aromatic/arginine; DRC: Dry rubber content; EST: Expressed sequence tag; GLP: Aquaglyceroporin; MIP: Major intrinsic protein; NIP: NOD26-like intrinsic protein; NPA: Asparagine-proline-alanine; ORF: Open reading frame; PIP: Plasma membrane intrinsic protein; P1-PS: Residues at P1 to P5 positions; RPKM: Reads per kilo bases per million reads; SDP: Specificity-determining position; SIP: Small basic intrinsic protein; TIP: Tonoplastic intrinsic protein; TM: Transmembrane helix; TSC: Total solid content; XIP: X intrinsic protein.

Competing interests
The authors declare that they have no competing interests.

Authors' contributions
The study was conceived and directed by ZZ. All the experiments and analysis were directed by ZZ and carried out by ZZ, JG, FA, JW and YM. ZZ and LY wrote the paper. All the authors read and approved the final manuscript.

Acknowledgments
This work was supported by the Natural Science Foundation of Hainan Province (3121062), the National Natural Science Foundation of China (31371556), the Fundamental Research Funds for Rubber Research Institute, CATAS (1630022015004 and 163002015013) and the Earmarked Fund for Modern Agro-industry Technology Research System (CARS-3-GWS). We thank Drs. Minal Bhave and Runyararo Memory Hove from Swinburne University of Technology for their help on function prediction of H. brasiliensis aquaporins. The authors also appreciate those contributors who make the rubber tree transcriptome data accessible in public databases.

Received: 19 September 2015 Accepted: 27 October 2015
Published online: 25 November 2015

References
1. Maurel C, Verdoucq L, Luu DT, Santoni V. Plant aquaporins: membrane channels with multiple integrated functions. Annu Rev Plant Biol. 2008;59:595–624.
2. Abascal F, Irisarri I, Zardoya R. Diversity and evolution of membrane intrinsic proteins. Biochim Biophys Acta. 2014;1845(6):1468–81.
3. Johanson U, Karlsson M, Johansson I, Gustavsson S, Sjövall S, Fraysse L, et al. The complete set of genes encoding major intrinsic proteins in Arabidopsis provides a framework for a new nomenclature for major intrinsic proteins in plants. Plant Physiol. 2001;126(4):1358–69.
4. Chaumont F, Barrieu F, Wojcik E, Chrisepsis MJ, Jung R. Aquaporins constitute a large and highly divergent protein family in maize. Plant Physiol. 2001;125(3):1206–15.
5. Sakurai J, Ishikawa F, Yamaguchi T, Uemura M, Maeshima M. Identification of 33 rice aquaporin genes and analysis of their expression and function. Plant Cell Physiol. 2005;46(9):1568–77.
6. Sheldan M, Howitt S, Kaiser B, Tyerman S. Identification and functional characterisation of aquaporins in the grapevine, Vitis vinifera. Funct Plant Biol. 2009;36(12):1065–78.
7. Gupta AB, Sankaramakrishnan R. Genome-wide analysis of major intrinsic proteins in the tree plant Populus trichocarpa: characterization of XIP subfamily of aquaporins from evolutionary perspective. BMC Plant Biol. 2009;9:134.
8. Park W, Scheffer BE, Bauer PJ, Campbell BT. Identification of the family of aquaporin genes and their expression in upland cotton (Gossypium hirsutum L.). BMC Plant Biol. 2010;10:142.
9. Reuscher S, Akiyama M, Mori C, Aoki K, Shibata D, Shiraite K. Genome-wide identification and expression analysis of aquaporins in tomato. PLoS One. 2013;8(11):e79052.
10. Venkatase J, Yu JW, Park SW. Genome-wide analysis and expression profiling of the Solanum tuberosum aquaporins. Plant Physiol Biochem. 2013;73:592–404.
11. Zhang DY, Ali Z, Wang CB, Xu L, Yi JX, Xu ZL, et al. Genome-wide sequence characterization and expression analysis of major intrinsic proteins in soybean (Glycine max L.). PLoS One. 2013;8(2):e56312.
12. Anderberg HI, Hjelldom P, Johansson U. Annotation of Selaginella moellendorffii major intrinsic proteins and the evolution of the protein family in terrestrial plants. Front Plant Sci. 2012;3:33.
13. Törnroth-Horsefeldt S, Wang Y, Hedfalk K, Johanson U, Karlsson M, Tjokhorsid E, et al. Structural mechanism of plant aquaporin gating. Nature. 2006;439(7077):688–94.
14. Froger A, Tallur B, Thomas D, Delamarche C. Prediction of functional residues in water channels and related proteins. Protein Sci. 1998;7(8):1458–68.
15. Hove RM, Brave M. Plant aquaporins with non-aqua functions: deciphering the signature sequences. Plant Mol Biol. 2011;79:5143–53.
16. de Faiy E, Jacob JL. Anatomical organisation of the laticiferous system in the bark. In: d’Azurac J, Jacob JL, Chrestin L, editors. Physiology of rubber tree latex. Boca Raton: CRC Press; 1989. p. 3–14.
17. d’Azurac J, Jacob JL. The composition of latex from Hevea brasiliensis as a laticiferous cytoplasm. In: d’Azurac J, Jacob JL, Chrestin L, editors. Physiology of rubber tree latex. Boca Raton: CRC Press; 1989. p. 59–96.
18. Chang C, Bleeker AB. Ethylene biology. More than a gas. Plant Physiol. 2004;136(2):2895–9.
19. Chen YF, Etheridge N, Schaller GE. Ethylene signal transduction. Ann Bot. 2005;95(6):901–15.
20. Zhu J, Zhang Z. Ethylene stimulation of latex production in Hevea brasiliensis. Plant Signal Behav. 2009;4(11):1072–4.
21. Tungnogoen K, Konagawadaworakul P, Viboonjun U, Katsuura M, Brunel N, Sakr S, et al. Involvement of HbPIP2;1 and HbTIP1;1 aquaporins in ethylene stimulation of latex yield through regulation of water exchanges between inner liber and latex cells in Hevea brasiliensis. Plant Physiol. 2009;151:843–56.
22. Wang J, An F, Cai XQ, Zou Z, Zhang W, Lin WF. Function characterization and expression analysis of aquaporins (HbPIP1;1 and HbPIP2;1) in Hevea brasiliensis. Scientia Silvae Sinicai. 2014;5069–75.
23. An F, Zou Z, Cai XQ, Wang J, Rooks J, Lin W, et al. Regulation of HbPIP2;1, a latex-abundant water transporter, is associated to the latex dilution and latex yield in rubber trees (Hevea brasiliensis Muell. Arg.). PLoS One. 2015;10:e0125595.
24. Jacob JL, Prévôt JC, Roussel D, Lacotte R, Seres E, d’Azurac J, et al. Yield limiting factors, latex physiological parameters, latex diagnosis, and clonal typology. In: d’Azurac J, Jacob JL, Chrestin L, editors. Physiology of rubber tree latex. Boca Raton: CRC Press; 1989. p. 345–82.
25. de Faiy E, Sanier C, Hebart C. The distribution of plasmodesmata in the phloem of Hevea brasiliensis in relation to laticifer loading. Protoplasma. 1989;141:51–62.
26. Tungnogoen K, Viboonjun U, Konagawadaworakul P, Katsuura M, Julien JL, Sakr S, et al. Hormonal treatment of the bark of rubber trees (Hevea brasiliensis) increases latex yield through latex dilution in relation with the differential expression of two aquaporin genes. J Plant Physiol. 2011;168:253–62.
27. Zhuang HF, An F, He Z, Ding X, Wu HP, Xu ZJ, et al. Molecular cloning and sequence analysis of cDNAs encoding aquaporins in Hevea brasiliensis. Acta Botanica Sinica. 2010;30:861–8.
28. Zou Z, Wang DH, Mo YY, An F, Yang LF. Molecular cloning and sequence analysis of an aquaporin gene related to tapping panel dryness occurrence in Hevea brasiliensis. Agr Biotechnol. 2014;3:17–20.
29. Zou Z, Mo YY, Wang DH, An F, Yang LF. Molecular cloning and sequence analysis of an aquaporin gene related to tapping panel dryness in the rubber tree (Hevea brasiliensis Muell. Arg.). Agr Biotechnol. 2014;3:93–4.
30. Rahman AY, Usharraj AO, Misra BB, Thottathil GP, Jayasekaran K, Feng Y, et al. Draft genome sequencing of the rubber tree (Hevea brasiliensis, Muell. Arg.). BMC Genomics. 2013;14:75.
31. Tripathyakom K, Chathkulaparin K, Kanjanawattanawong S, Sapnhet S, Yoocha T, Singsakul D, et al. Transcriptomic sequencing of Hevea brasiliensis for development of microsatellite makers and construction of a genetic linkage map. DNA Res. 2011;18:471–82.
32. Chow KS, Mat-Isa MN, Bahari A, Ghazali AK, Alias H, Mohd-Zainuddin Z, et al. Metabolic routes affecting rubber biosynthesis in Hevea brasiliensis latex. J Exp Bot. 2011;63:1863–71.
33. Chow KS, Ghazali AK, Hoh CC, Mohd-Zainudin Z. RNA sequencing read depth requirement for optimal transcriptome coverage in Hevea brasiliensis. BMC Res Notes. 2014;7;69.

34. Duan CF, Argout X, Gébelin V, Summo M, Dufayard JF, Lercher J, et al. Identification of the Hevea brasiliensis AP2/ERF superfamily by RNA sequencing. BMC Genomics. 2013;14:30.

35. Mantello CC, Cardoso-Silva CB, da Silva CC, de Souza LM, Scaloppi Junior EJ, de Souza GP, et al. De novo assembly and transcriptome analysis of the rubber tree (Hevea brasiliensis) and SNP markers development for rubber biosynthesis pathways. PLoS One. 2014;9:e102665.

36. Lopez D, Bronner G, Brunel N, Auguin D, Bourgerie S, Brignolas F, et al. Insights into Populus XIP aquaporins: evolutionary expansion, protein functionality, and environmental regulation. J Exp Bot. 2012;63(S5):2217–30.

37. Soto G, Alleve K, Mazzea MA, Armodeo G, Muschietti JP, AtIP3;3 and AtIP5;1, the only highly expressed Arabidopsis pollen-specific aquaporins, transport water and urea. FEBS Lett. 2008;582(29):4077–82.

38. Li T, Choi WG, Wallace IS, Baudry J, Roberts DM. Arabidopsis thaliana NIP7;1, an anther-specific basic acid transporter of the aquaporin superfamily regulated by an unusual tyrosine in helix 2 of the transport pore. Biochimie. 2011;93(5):633–41.

39. Guenther JF, Chamanviane N, Galetovic MP, Wallace IS, Cobb JA, Roberts DM. Phosphorylation of soybean nodulin 26 on serine 260 enhances water permeability and is regulated developmentally and by osmotic signals. Plant Cell. 2003;15(6):981–91.

40. Bowers JE, Chapman BA, Rong J, Paterson AH. Unraveling angiosperm genome evolution by phylogenetic analysis of chromosomal duplication events. Nature. 2003;422(6930):433–8.

41. Blanc G, Wolfe KH. Functional divergence of duplicated genes formed by polyploidy during Arabidopsis evolution. Plant Cell. 2004;16(7):79–91.

42. Tuskan GA, Difazio S, Jansson S, Bohlmann J, Grigoriev I, Helfsten U, et al. The genome of black cottonwood, Populus trichocarpa Torr. & Gray). Populus trichocarpa T7 and SNP markers development for rubber biosynthesis pathways. Plant Physiol. 2007;145:1371–7.

43. Jiao Y, Leebens-Mack J, Ayyampalayam S, Bowers JE, McKain MR, McNeal J, et al. The genome of black cottonwood, Populus trichocarpa Torr. & Gray). BMC Genomics. 2009;10:3):110–21.

44. Gomes D, Agasse A, Thébaud P, Delrot S, Gerós H, Chaumont F. Aquaporins are multifunctional water and solute transporters highly divergent in living eudicots. Genome Biol. 2012;13(1):R3.

45. Deshmukh RK, Vivancos J, Guérin V, Sonah H, Labbé C, Belzile F, et al. Channel-mediated permeation of ammonia gas through the perilactiferous membrane of soybean nodules. FEBS Lett. 2000;485(2–3):110–4.

46. Dean RM, Rivers RL, Zeidel ML, Roberts DM. Purification and functional characterization of Maize plasma membrane aquaglyceroporin channels. Biochemistry. 2005;44(51):16826–34.

47. Bienert GP, Heinen RB, Berny MC, Chaumont F. Solanaceae XIPs are plasma membrane aquaporins that facilitate the transport of many uncharged substrates. Plant J. 2011;66(2):306–17.

48. Hao BZ, Wu JL. Laticifer differentiation in Hevea brasiliensis induction by exogenous jasmonic acid and linolenic acid. Ann Bot. 2000;85:37–43.

49. Batterby BR, Boatman SG. Effect of tapping, wounding and growth regulators on turgor pressure in Hevea brasiliensis Mutl. Arg. J Exp Bot. 1967;18644–59.

50. Yeang HY. The kinetics of latex flow from the rubber tree in relation to latex vessels plugging and turgor pressure. J Rubber Res. 2005;8:160–81.

51. Hunter PR, Craddock CP, Di Benedetto S, Roberts LM, Frigerio L. Fluorescent reporter proteins for the tonoplast and the vacuolar lumen identify a single vacuolar compartment in Arabidopsis cells. Plant Physiol. 2007;145:1371–82.

52. Wang KC, Shi M, Wang D, Chen Y, Cai F, Zhang S, et al. Comparative proteomics of primary and secondary laticifers reveals that chitinase and glucanase play a crucial combined role in rubber particle aggregation in Hevea brasiliensis. J Proteome Res. 2013;12:5146–59.

53. Atchulf SL, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W, et al. Gapped BLAST and PSIBLAST: a new generation of protein database search programs. Nucleic Acids Res. 1997;25(17):3389–402.

54. Lomsadze A, Ter-Hovhannissyan V, Chernoy YO, Borodovsky M. Gene identification in novel eukaryotic genomes by self-training algorithm. Nucleic Acids Res. 2005;33:6494–506.

55. Hu B, Jin J, Guo A, Zhang H, Luo J, Gao G. GDS2 2.0: an upgraded gene feature visualization server. Bioinformatics. 2014;31:1296–7.

56. Langmead B, Salzberg SL. Fast gapped-read alignment with Bowtie 2. Nat Methods. 2012;9(4):357–9.

57. Thompson JD, Higgins D, Gibson TJ. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 1994;22(22):4673–80.

58. Tamura K, Stecher G, Peterson O, Filipski A, Kumar S. MEGA6: Molecular Evolutionary Genetics Analysis version 6.0. Mol Biol Evol. 2013;30(12):2725–9.

59. Horton P, Park KJ, Oyabashi T, Fujita N, Harada H, Adams-Collier CJ, et al. WoLF PSORT: protein localization predictor. Nucleic Acids Res. 2007;35(Web Server Issue):W585–8.

60. Bemsel A, Viklund H, Hennerdal A, Elfors H. ATCONS: consensus prediction of membrane protein topology. Nucleic Acids Res. 2009;37(Web Server Issue):W465–8.

61. Hofmann K, Stoffel W. TMbase-A database of membrane spanning proteins to complete genomes. J Mol Biol. 2001;305:1596–604.

62. Duan CF, Argout X, Gébelin V, Summo M, Dufayard JF, Leclercq J, et al. Identification of the only highly expressed Arabidopsis pollen-specific aquaporins, transport water and urea. FEBS Lett. 2008;582(29):4077–82.

63. Bernsel A, Viklund H, Hennerdal A, Elfors H. ATCONS: consensus prediction of membrane protein topology. Nucleic Acids Res. 2009;37(Web Server Issue):W465–8.

64. Hoffmann K, Stoffel W. TMbase-A database of membrane spanning proteins segments. Bio Chem Hoppe Seyler. 1993;374:166.

65. Krogh A, Larsson B, von Heijne G, Sonnhammer EL. Predicting transmembrane protein topology with a hidden Markov model application to complete genomes. J Mol Biol. 2001;305:567–80.

66. Tamura K, Stecher G, Peterson O, Filipski A, Kumar S. MEGA6: Molecular Evolutionary Genetics Analysis version 6.0. Mol Biol Evol. 2013;30(12):2725–9.

67. Hartung P, Park KJ, Oyabashi T, Fujita N, Harada H, Adams-Collier CJ, et al. WoLF PSORT: protein localization predictor. Nucleic Acids Res. 2007;35(Web Server Issue):W585–8.

68. Bernsel A, Viklund H, Hennerdal A, Elfors H. ATCONS: consensus prediction of membrane protein topology. Nucleic Acids Res. 2009;37(Web Server Issue):W465–8.

69. Hoffmann K, Stoffel W. TMbase-A database of membrane spanning proteins segments. Bio Chem Hoppe Seyler. 1993;374:166.

70. Krogh A, Larsson B, von Heijne G, Sonnhammer EL. Predicting transmembrane protein topology with a hidden Markov model application to complete genomes. J Mol Biol. 2001;305:567–80.

71. Tang CR, Qi JY, Li HP, Zhang C, Wang Y. A convenient and efficient protocol for isolating high-quality RNA from latex of Hevea brasiliensis (para rubber tree). J Biochem Biophys Methods. 2007;70:749–54.

72. Mortazavi A, Williams BA, McCue K, Schaeffer L, Wold B. Mapping and quantifying mammalian transcriptomes by RNA-seq. Nat Methods. 2008;5(7):621–2.

73. Li D, Deng Z, Qin B, Liu X, Men Z. De novo assembly and characterization of bark transcriptome using Illumina sequencing and development of EST-SSR markers in rubber tree (Hevea brasiliensis Mutl. Arg.). BMC Genomics. 2012;13:192.

74. Li HP, Qin YX, Xiao XH, Tang CR. Screening of valid reference genes for real-time RT-PCR normalization in Hevea brasiliensis and expression validation of a sucrase transporter gene HbSUFT. Plant Sci. 2011;181:132–9.

Submit your next manuscript to BioMed Central and take full advantage of:• Convenient online submission• Thorough peer review• No space constraints or color figure charges• Immediate publication on acceptance• Inclusion in PubMed, CAS, Scopus and Google Scholar• Research which is freely available for redistributionSubmit your manuscript at www.biomedcentral.com/submit