Waiting for the Top Quark Mass, $K^+ \to \pi^+ \nu \bar{\nu}$, $B^0_s - \bar{B}^0_s$ Mixing and CP Asymmetries in B-Decays

Andrzej J. BURAS1,2, Markus E. LAUTENBACHER1, Gaby OSTERMAIER1,†

1 Physik Department, Technische Universität München, D-85748 Garching, Germany.
2 Max-Planck-Institut für Physik – Werner-Heisenberg-Institut, Föhringer Ring 6, D-80805 München, Germany.

Abstract

Anticipating improved determinations of m_t, $|V_{ub}/V_{cb}|$, B_K and $F_B \sqrt{B_B}$ in the next five years we make an excursion in the future in order to find a possible picture of the unitarity triangle, of quark mixing and of CP-violation around the year 2000. We then analyse what impact on this picture will have the measurements of four possibly cleanest quantities: $BR(K^+ \to \pi^+ \nu \bar{\nu})$, x_d/x_s, $\sin(2\alpha)$ and $\sin(2\beta)$. Our analysis shows very clearly that there is an exciting time ahead of us.

In the course of our investigations we extend the analysis of the unitarity triangle beyond the leading order in λ and we derive several useful analytic formulae for quantities of interest.

*Supported by the German Bundesministerium für Forschung und Technologie under contract 06 TM 732 and the CEC Science project SC1-CT91-0729.

†e-mail: buras, lauten, gosterma@feynman.t30.physik.tu-muenchen.de
1 Introduction

Among the quantities studied in the rich field of rare and CP-violating decays [1–7] the branching ratio $BR(K^+ \rightarrow \pi^+ \nu \bar{\nu})$, the ratio x_d/x_s of $B_d^0 - \bar{B}_d^0$ to $B_s^0 - \bar{B}_s^0$ mixing and a class of CP-asymmetries in neutral B-decays, all being essentially free from any hadronic uncertainties, stand out as ideally suited for the determination of the CKM parameters. Simultaneously they appear to be in the reach of experimentalists in the next five to ten years. The decays $K_L \rightarrow \pi^0 \nu \bar{\nu}$ and $B \rightarrow X_s \nu \bar{\nu}$ are also theoretically very clean but much harder to measure.

$BR(K^+ \rightarrow \pi^+ \nu \bar{\nu})$ and x_d/x_s are probably the best quantities for the determination of the CKM element V_{td} and consequently play important roles in constraining the shape of the unitarity triangle.

The decay $K^+ \rightarrow \pi^+ \nu \bar{\nu}$ is dominated by short distance loop diagrams involving the heavy top quark and receives also sizable contributions from internal charm quark exchanges. The QCD corrections to this decay have been calculated in the leading logarithmic approximation long time ago [8–10]. The recent calculation [11] of next-to-leading QCD corrections reduced considerably the theoretical uncertainty due to the choice of the renormalization scales present in the leading order expression. Since the relevant hadronic matrix element of the operator $\bar{s}\gamma_\mu(1-\gamma_5)d\bar{\nu}\gamma_\mu(1-\gamma_5)\nu$ can be measured in the leading decay $K^+ \rightarrow \pi^0 e^+\nu$, the resulting theoretical expression for $BR(K^+ \rightarrow \pi^+ \nu \bar{\nu})$ is only a function of the CKM parameters, the QCD scale $\Lambda_{\overline{MS}}$ and the quark masses m_t and m_c. Moreover due to the work of ref. [11] the scales in m_t and m_c are under control so that the sensitivity of $BR(K^+ \rightarrow \pi^+ \nu \bar{\nu})$ to m_c stressed in refs. [12, 13] is considerably reduced. The long distance contributions to $K^+ \rightarrow \pi^+ \nu \bar{\nu}$ have been considered in refs. [14–16] and found to be very small: two to three orders of magnitude smaller than the short distance contribution at the level of the branching ratio.

The top quark mass dependence and the QCD corrections to $B^o - \bar{B}^o$ mixing cancel in the ratio x_d/x_s which depends only on the CKM parameters and SU(3)-flavour breaking effects in the relevant hadronic matrix elements. These SU(3) breaking effects contain much smaller theoretical uncertainties than the hadronic matrix elements present in x_d and x_s separately. The measurement of x_d/x_s gives then a good determination of the ratio $|V_{td}/V_{ts}|$ and consequently of one side of the unitarity triangle.

The CP-asymmetry in the decay $B_d^0 \rightarrow \psi K_S$ allows in the standard model a direct measurement of the angle β in the unitarity triangle without any theoretical uncertainties [3]. Similarly the decay $B_d^0 \rightarrow \pi^+ \pi^-$ gives the angle α, although in this case strategies involving other channels are necessary in order to remove hadronic uncertainties related to penguin contributions [17–21]. The determination of the angle γ from CP asymmetries in neutral B-decays is more difficult but not impossible [22].

At present $BR(K^+ \rightarrow \pi^+ \nu \bar{\nu})$, x_d/x_s and the CP asymmetries in neutral B-decays given by $\sin(2\phi_i)$ ($\phi_i = \alpha, \beta, \gamma$) can be predicted using

- the values of $|V_{ub}/V_{cb}|$ and $|V_{cb}|$ extracted from tree level B-decays
- the analysis of the parameter ϵ_K describing the indirect CP violation in $K \rightarrow \pi \pi$ decays

and
the analysis of $x_d = (\Delta M)_B / \Gamma_B$ describing the size of $B_d^0 - \bar{B}_d^0$ mixing

All these ingredients are subject to theoretical uncertainties related to non-perturbative parameters entering the relevant formulae. Moreover the last two require the value of m_t. Consequently the existing predictions for $BR(K^+ \rightarrow \pi^+ \nu \bar{\nu})$, x_s and CP-asymmetries in B-decays are rather uncertain.

In this paper we would like to address the following questions:

• What accuracy of theoretical predictions for $BR(K^+ \rightarrow \pi^+ \nu \bar{\nu})$, x_s, sin(2ϕ_i) and the unitarity triangle could one expect around the year 2000 assuming reasonable improvements for the values of $|V_{cb}|$, $|V_{ub}/V_{cb}|$, m_t and the non-perturbative parameters in question?

• What would be the impact of a measurement of $BR(K^+ \rightarrow \pi^+ \nu \bar{\nu})$ on the CKM parameters and in particular on the value of $|V_{td}|$?

• What would be the impact of a measurement of x_s?

• What would be the impact of a measurement of sin(2β) and how important would be simultaneous measurements of sin(2α) and sin(2γ)?

• How well should one measure $BR(K^+ \rightarrow \pi^+ \nu \bar{\nu})$, sin(2$\beta$), V_{cb}, m_t and x_d/x_s in order to obtain an acceptable determination of the CKM matrix on the basis of these five quantities alone?

As byproducts of these studies:

• we will update the analysis of $BR(K^+ \rightarrow \pi^+ \nu \bar{\nu})$, x_s, sin(2ϕ_i) and of the unitarity triangle in view of theoretical and experimental developments which took place in 1993,

• we will extend the analysis of the unitarity triangle beyond the leading order in the expansion parameter $\lambda = |V_{us}|$

and

• we will derive several approximate analytic formulae and bounds which should be useful in following the developments in this field in the 90’s.

Our paper is organized as follows. In Section 2 we extend the Wolfenstein parametrization and the analysis of the unitarity triangle beyond the leading order in λ and we give improved formulae for sin(2ϕ_i). In Section 3 we collect the formulae for ε_K, $B^0 - \bar{B}^0$ mixing and $BR(K^+ \rightarrow \pi^+ \nu \bar{\nu})$ beyond leading order in λ. In Section 4 we list several analytic results which can be derived using Wolfenstein parametrization beyond leading λ, which to a very good accuracy represent exact numerical analysis. In Section 5 we systematically address the questions posed above. We end the paper with a brief summary and a number of conclusions.
2 Cabibbo-Kobayashi-Maskawa Matrix

2.1 Standard Parametrization

We will dominantly use the standard parametrization \[23\]

\[
V = \begin{pmatrix}
c_{12}c_{13} & s_{12}c_{13} & s_{13}e^{-i\delta} \\
-s_{12}c_{23} - c_{12}s_{23}s_{13}e^{i\delta} & c_{12}c_{23} - s_{12}s_{23}s_{13}e^{i\delta} & s_{12}s_{23}
\end{pmatrix}
\]

(2.1)

where \(c_{ij} = \cos \theta_{ij}\) and \(s_{ij} = \sin \theta_{ij}\) with \(i, j = 1, 2, 3\). \(c_{ij}\) and \(s_{ij}\) can all be chosen to be positive. The measurements of the CP violation in \(K\) decays force \(\delta\) to be in the range \(0 < \delta < \pi\).

The extensive phenomenology of the last years has shown that \(s_{13}\) and \(s_{23}\) are small numbers: \(O(10^{-3})\) and \(O(10^{-2})\), respectively. Consequently to an excellent accuracy \(c_{13} = c_{23} = 1\) and the four independent parameters are given as follows

\[
s_{12} = |V_{us}|, \quad s_{13} = |V_{ub}|, \quad s_{23} = |V_{cb}|, \quad \delta,
\]

(2.2)

with the phase \(\delta\) extracted from CP violating transitions or loop processes sensitive to \(|V_{td}|\). The latter fact is based on the observation that for \(0 \leq \delta \leq \pi\), as required by the analysis of CP violation, there is a one–to–one correspondence between \(\delta\) and \(|V_{td}|\) given by

\[
|V_{td}| = \sqrt{a^2 + b^2 - 2ab \cos \delta}, \quad a = |V_{cd}V_{cb}|, \quad b = |V_{ud}V_{ub}|
\]

(2.3)

2.2 Wolfenstein Parameterization Beyond Leading Order

We will also use the Wolfenstein parametrization \[24\]. It is an approximate parametrization of the CKM matrix in which each element is expanded as a power series in the small parameter \(\lambda = |V_{us}| = 0.22\):

\[
V = \begin{pmatrix}
1 - \frac{\lambda^2}{2} & \lambda & A\lambda^3(\varrho - i\eta) \\
-\lambda & 1 - \frac{\lambda^2}{2} & A\lambda^2 \\
A\lambda^3(1 - \varrho - i\eta) & -A\lambda^2 & 1
\end{pmatrix} + O(\lambda^4)
\]

(2.4)

and the set \((2.2)\) is replaced by

\[
\lambda, \quad A, \quad \varrho, \quad \eta
\]

(2.5)

The Wolfenstein parameterization has several nice features. In particular it offers in conjunction with the unitarity triangle a very transparent geometrical representation of the structure of the CKM matrix and allows to derive several analytic results to be discussed below. This turns out to be very useful in the phenomenology of rare decays and of CP violation.

When using the Wolfenstein parametrization one should remember that it is an approximation and that in certain situations neglecting \(O(\lambda^4)\) terms may give wrong results. The question then arises how to find \(O(\lambda^4)\) and higher order terms? The
point is that like in any perturbative expansion the $O(\lambda^4)$ and higher order terms are not unique. This is the reason why in different papers in the literature different $O(\lambda^4)$ terms can be found. The non-uniqueness of higher order terms in λ is not troublesome however. As in any perturbation theory different choices of expanding in λ will result in different numerical values for the parameters in (2.3) extracted from the data without changing the physics when all terms are summed up. Here it suffices to find an expansion in λ which allows for simple relations between the parameters (2.2) and (2.3). This will also restore the unitarity of the CKM matrix which in the Wolfenstein parametrization as given in (2.4) is not satisfied exactly.

To this end we go back to (2.1) and we impose the relations

$$s_{12} = \lambda \quad s_{23} = A\lambda^2 \quad s_{13}e^{-i\delta} = A\lambda^3(\varrho - i\eta)$$

(2.6)

to all orders in λ. In view of the comments made above this can certainly be done. It follows that

$$\varrho = \frac{s_{13}}{s_{12}s_{23}} \cos \delta \quad \eta = \frac{s_{13}}{s_{12}s_{23}} \sin \delta$$

(2.7)

We observe that (2.6) and (2.7) represent simply the change of variables from (2.2) to (2.3). Making this change of variables in the standard parametrization (2.1) we find the CKM matrix as a function of $(\lambda, A, \varrho, \eta)$ which satisfies unitarity exactly! We also note that in view of $c_{13} = 1 - O(\lambda^6)$ the relations between s_{ij} and $|V_{ij}|$ in (2.2) are satisfied to high accuracy. The relations in (2.7) have been first used in ref. [25]. However, our improved treatment of the unitarity triangle presented below goes beyond the analysis of these authors.

The procedure outlined above gives automatically the corrections to the Wolfenstein parametrization in (2.4). Indeed expressing (2.1) in terms of Wolfenstein parameters using (2.6) and then expanding in powers of λ we recover the matrix in (2.4) and in addition find explicit corrections of $O(\lambda^4)$ and higher order terms. V_{ub} remains unchanged. The corrections to V_{us} and V_{cb} appear only at $O(\lambda^7)$ and $O(\lambda^8)$, respectively.

For many practical purposes the corrections to the real parts can also be neglected. The essential corrections to the imaginary parts are:

$$\Delta V_{cd} = -iA^2\lambda^5\eta \quad \Delta V_{ts} = -iA\lambda^4\eta$$

(2.8)

These two corrections have to be taken into account in the discussion of CP violation. On the other hand the imaginary part of V_{cs} which in our expansion in λ appears only at $O(\lambda^6)$ can be fully neglected.

In order to improve the accuracy of the unitarity triangle discussed below we will also include the $O(\lambda^5)$ correction to V_{td} which gives

$$V_{td} = A\lambda^3(1 - \bar{\varrho} - i\bar{\eta})$$

(2.9)

with

$$\bar{\varrho} = \varrho(1 - \frac{\lambda^2}{2}) \quad \bar{\eta} = \eta(1 - \frac{\lambda^2}{2}).$$

(2.10)

In order to derive analytic results we need accurate explicit expressions for $\lambda_i = V_{td}V_{ts}^*$ where $i = c, t$. We have

$$Im\lambda_t = -Im\lambda_c = \eta A^2\lambda^5$$

(2.11)

\[Re\lambda_c = -\lambda(1 - \frac{\lambda^2}{2}) \] \hspace{1cm} (2.12)

\[Re\lambda_t = -(1 - \frac{\lambda^2}{2})A^2\lambda^5(1 - \bar{\vartheta}) \] \hspace{1cm} (2.13)

Expressions (2.11) and (2.12) represent to an accuracy of 0.2% the exact formulae obtained using (2.1). The expression (2.13) deviates by at most 2% from the exact formula in the full range of parameters considered. In order to keep the analytic expressions in sections 3 and 4 in a transparent form we have dropped a small \(O(\lambda^7)\) term in deriving (2.13). After inserting the expressions (2.11)–(2.13) in exact formulae for quantities of interest, further expansion in \(\lambda\) should not be made.

2.3 Unitarity Triangle Beyond Leading Order

The unitarity of the CKM-matrix provides us with several relations of which

\[V_{ud}V_{ub}^* + V_{cd}V_{cb}^* + V_{td}V_{tb}^* = 0 \] \hspace{1cm} (2.14)

is the most useful one. In the complex plane the relation (2.14) can be represented as a triangle, the so-called “unitarity–triangle” (UT). Phenomenologically this triangle is very interesting as it involves simultaneously the elements \(V_{ub}, V_{cb}\) and \(V_{td}\) which are under extensive discussion at present.

In the usual analyses of the unitarity triangle only terms \(O(\lambda^3)\) are kept in (2.14) \([4, 5, 13, 25–27]\). It is however straightforward to include the next-to-leading \(O(\lambda^5)\) terms. We note first that

\[V_{cd}V_{cb}^* = -A\lambda^3 + O(\lambda^7). \] \hspace{1cm} (2.15)

Thus to an excellent accuracy \(V_{cd}V_{cb}^*\) is real with \(|V_{cd}V_{cb}^*| = A\lambda^3\). Keeping \(O(\lambda^5)\) corrections and rescaling all terms in (2.14) by \(A\lambda^3\) we find

\[\frac{1}{A\lambda^3}V_{ud}V_{ub}^* = \bar{\varrho} + i\bar{\eta}, \quad \frac{1}{A\lambda^3}V_{td}V_{tb}^* = 1 - (\bar{\varrho} + i\bar{\eta}) \] \hspace{1cm} (2.16)

with \(\bar{\varrho}\) and \(\bar{\eta}\) defined in (2.10). Thus we can represent (2.14) as the unitarity triangle in the complex \((\bar{\varrho}, \bar{\eta})\) plane. This is shown in fig. 1. The length of the side \(CB\) which lies on the real axis equals unity when eq. (2.14) is rescaled by \(V_{cd}V_{cb}^*\). We observe that beyond the leading order in \(\lambda\) the point \(A\) does not correspond to \((\varrho, \eta)\) but to \((\bar{\varrho}, \bar{\eta})\). Clearly within 3% accuracy \(\bar{\varrho} = \varrho\) and \(\bar{\eta} = \eta\). Yet in the distant future the accuracy of experimental results and theoretical calculations may improve considerably so that the more accurate formulation given here will be appropriate. For instance the experiments at LHC should measure \(\sin(2\beta)\) to an accuracy of 2–3% \([28]\).

Using simple trigonometry one can calculate \(\sin(2\beta)\) in terms of \((\bar{\varrho}, \bar{\eta})\) with the result:

\[\sin(2\alpha) = \frac{2\bar{\eta}(\bar{\eta}^2 + \bar{\varrho}^2 - \bar{\varrho})}{(\bar{\varrho}^2 + \bar{\eta}^2)((1 - \bar{\varrho})^2 + \bar{\eta}^2)} \] \hspace{1cm} (2.17)

\[\sin(2\beta) = \frac{2\bar{\eta}(1 - \bar{\varrho})}{(1 - \bar{\varrho})^2 + \bar{\eta}^2} \] \hspace{1cm} (2.18)
\[
\sin(2\gamma) = \frac{2\bar{\varrho}\bar{\eta}}{\bar{\varrho}^2 + \bar{\eta}^2} = \frac{2\varrho\eta}{\varrho^2 + \eta^2}
\]

The lengths \(CA\) and \(BA\) in the rescaled triangle of fig. 1 to be denoted by \(R_b\) and \(R_t\), respectively, are given by

\[
R_b \equiv \frac{|V_{ud}V_{ub}^*|}{|V_{cd}V_{cb}^*|} = \sqrt{\bar{\varrho}^2 + \bar{\eta}^2} = (1 - \lambda^2) \frac{1}{\lambda} |V_{ub}| \quad (2.20)
\]

\[
R_t \equiv \frac{|V_{td}V_{tb}^*|}{|V_{cd}V_{cb}^*|} = \sqrt{(1 - \bar{\varrho})^2 + \bar{\eta}^2} = \frac{1}{\lambda} |V_{td}| \quad (2.21)
\]

The expressions for \(R_b\) and \(R_t\) given here in terms of \((\bar{\varrho}, \bar{\eta})\) are excellent approximations. Clearly \(R_b\) and \(R_t\) can also be determined by measuring two of the angles \(\phi_i\):

\[
R_b = \frac{\sin(\beta)}{\sin(\alpha)} = \frac{\sin(\alpha + \gamma)}{\sin(\alpha)} = \frac{\sin(\beta)}{\sin(\gamma + \beta)} \quad (2.22)
\]

\[
R_t = \frac{\sin(\gamma)}{\sin(\alpha)} = \frac{\sin(\alpha + \beta)}{\sin(\alpha)} = \frac{\sin(\gamma)}{\sin(\gamma + \beta)} \quad (2.23)
\]

3 Basic Formulae

3.1 Constraint from \(\varepsilon_K\)

The usual box diagram calculation together with the experimental value for \(\varepsilon_K\) specifies a hyperbola in the \((\varrho, \eta)\) plane with \(\eta > 0\) [13, 23]. With our new coordinates \((\bar{\varrho}, \bar{\eta})\) we get

\[
\bar{\eta} \left[(1 - \bar{\varrho})A^2\eta_2 S(x_t) + P_0(\varepsilon)\right] A^2 B_K = 0.223
\]

Here

\[
P_0(\varepsilon) = [\eta_3 S(x_c, x_t) - \eta_1 x_c] \frac{1}{\lambda^4} \quad (3.2)
\]

\[
S(x_c, x_t) = x_c \left[\ln \frac{x_t}{x_c} - \frac{3x_t}{4(1 - x_t)} \left(1 + \frac{x_t}{1 - x_t} \ln x_t\right)\right] \quad (3.3)
\]
\[S(x_t) = x_t \left[\frac{1}{4} + \frac{1}{4} \left(1 - x_t \right) - \frac{3}{2} \left(1 - x_t \right)^2 \right] + \frac{3}{2} \left(\frac{x_t}{x_t - 1} \right)^3 \ln x_t \]

(3.4)

where \(x_i = m_i^2/M_W^2 \). \(B_K \) is the renormalization group invariant non-perturbative parameter describing the size of \(< \bar{K}^0 | (\bar{s}d)_{V-A} \bar{K}^0 | K^0 > \) and \(\eta_i \) represent QCD corrections to the box diagrams.

In our numerical analysis we will use

\[\eta_1 = 1.1 \ [29], \quad \eta_2 = 0.57 \ [30], \quad \eta_3 = 0.36 \ [31-34] \text{(leading order)} \]

(3.5)

The values for \(B_K \) are specified below.

3.2 \(B^0 - \bar{B}^0 \) Mixing

The experimental knowledge of the \(B^0_d - \bar{B}^0_d \) mixing described by the parameter \(x_d = \Delta M / \Gamma_B \) determines \(|V_{td}| \). Using the usual formulae for box diagrams with top quark exchanges one finds

\[x_d = |V_{td}|^2 P(B^0_d - \bar{B}^0_d) S(x_t) \]

(3.6)

where

\[P(B^0_d - \bar{B}^0_d) = 3.89 \cdot 10^3 \left[\frac{\tau_B}{1.5 \text{ ps}} \right] \left[\frac{F_{B_d} \sqrt{B_{B_d}}}{200 \text{ MeV}} \right]^2 \left[\frac{\eta_B}{0.55} \right] \]

(3.7)

and consequently

\[|V_{td}| = A \lambda^3 R_t, \quad R_t = 1.63 \cdot \frac{R_0}{\sqrt{S(x_t)}}. \]

(3.8)

Here

\[R_0 = \sqrt{\frac{x_d}{0.72} \left[\frac{200 \text{ MeV}}{F_{B_d} \sqrt{B_{B_d}}} \right] \left[\frac{0.038}{\kappa} \right] \left[\frac{0.55}{\eta_B} \right]} \]

(3.9)

and

\[\kappa \equiv |V_{cb}| \left[\frac{\tau_B}{1.5 \text{ ps}} \right]^{0.5} \]

(3.10)

with \(\tau_B \) being the B-meson life-time. \(\eta_B \) is the QCD factor analogous to \(\eta_2 \) and calculated to be \(\eta_B = 0.55 \ [30] \). \(F_{B_d} \) is the B-meson decay constant and \(B_{B_d} \) denotes a non-perturbative parameter analogous to \(B_K \). The values of \(x_d, F_{B_d} \sqrt{B_{B_d}} \) and \(|V_{cb}| \) will be specified below.

It is well known (see for instance [22]) that the accuracy of the determination of \(|V_{td}| \) and \(R_t \) can be considerably improved by measuring simultaneously the \(B^0_s - \bar{B}^0_s \) mixing described by \(x_s \). Defining the ratio

\[R_{ds} = \frac{\tau_{B_d}}{\tau_{B_s}} \cdot \frac{m_{B_d}}{m_{B_s}} \left[\frac{F_{B_d} \sqrt{B_{B_d}}}{F_{B_s} \sqrt{B_{B_s}}} \right]^2 \]

(3.11)

we find

\[R_t = \frac{1}{\sqrt{R_{ds}}} \sqrt{\frac{x_d}{x_s} \lambda \sqrt{1 - \lambda^2(1 - 2\varrho)}} \]

(3.12)
and using (3.8) the matrix element $| V_{td} |$. The last factor in (3.12) describes small departure of $| V_{ts} |$ from $| V_{cb} |$. The g dependence in (3.12) can safely be neglected. In this way R_t does not depend neither on m_t nor on $| V_{cb} |$. Since it is easier to calculate R_{ds} than R_0, formula (3.12) gives a much more reliable determination of R_t than (3.8) provided x_s has been measured.

3.3 The Rare Decay $K^+ \rightarrow \pi^+ \nu \bar{\nu}$

The $K^+ \rightarrow \pi^+ \nu \bar{\nu}$ branching ratio for one single neutrino flavor l ($l = e, \mu, \tau$) is given by

$$BR(K^+ \rightarrow \pi^+ e^+ \nu) = \frac{\alpha^2 BR(K^+ \rightarrow \pi^+ e^+ \nu)}{V_{us}^2 2\pi^2 \sin^2 \theta_W} \cdot | V_{us}^* V_{cd} X_{NL}^l + V_{ts}^* V_{td} X(x_t) |^2$$

(3.13)

Summing over three neutrino flavors, using eqs. (2.11)–(2.13) and setting $\alpha = \frac{1}{128}$, $\sin^2 \theta_W = 0.23$, $BR(K^+ \rightarrow \pi^+ e^+ \nu) = 4.82 \cdot 10^{-2}$

we obtain

$$BR(K^+ \rightarrow \pi^+ \nu \bar{\nu}) = 4.64 \cdot 10^{-11} A^4 X^2(x_t) \frac{1}{\sigma} \left[(\sigma \bar{\eta})^2 + \frac{2}{3} (\bar{\sigma}^2 - \bar{\rho}^2)^2 + \frac{1}{3} (\bar{\sigma}^2 - \bar{\rho}^2)^2 \right]$$

(3.15)

with

$$\bar{\sigma} = \left(\frac{1}{1 - \frac{A^2}{2}} \right)^2$$

(3.16)

The function $X(x_t)$ is given as follow

$$X(x_t) = \eta_X \cdot X_0(x_t)$$

(3.17)

$$X_0(x_t) = \frac{x}{8} \left[-\frac{2 + x}{1 - x} + \frac{3x - 6}{(1 - x)^2} \ln x \right] \quad \text{with} \quad \eta_X = 0.985$$

(3.18)

where η_X is the NLO correction calculated in ref. [35]. For determining P_0^l given in tab. II we take the NLO results for X_{NL}^l of ref. [11]. Here $m_c \equiv \overline{m}_c(m_c)$.

$\Lambda_{\overline{\text{MS}}} [\text{MeV}]$	$m_c [\text{GeV}]$	P_0^e	P_0^μ	P_0^τ
1.25	0.20	0.457	0.494	0.531
	0.25	0.441	0.477	0.515
	0.30	0.425	0.461	0.498
	0.35	0.408	0.444	0.480

Table 1: Values of P_0^l for various $\Lambda_{\overline{\text{MS}}}$ [MeV] and m_c [GeV].
The measured value of $\text{BR}(K^+ \to \pi^+ \nu \bar{\nu})$ determines an ellipse in the $(\bar{\varrho}, \bar{\eta})$ plane centered at $(\varrho_0, 0)$ with

$$\varrho_0 = 1 + \frac{\bar{P}_0(K^+)}{A^2X(x_t)} \quad \bar{P}_0(K^+) = \frac{2}{3}P^e_0 + \frac{1}{3}P^\tau_0$$

(3.19)

and having the axes squared

$$\bar{\varrho}_1^2 = r_0^2 \quad \bar{\eta}_1^2 = \left(\frac{r_0}{\sigma}\right)^2$$

(3.20)

where

$$r_0^2 = \frac{1}{A^4X^2(x_t)} \left[\frac{\sigma \cdot \text{BR}(K^+ \to \pi^+ \nu \bar{\nu})}{4.64 \cdot 10^{-11}} - \frac{2}{9} (P^e_0 - P^\tau_0)^2 \right].$$

(3.21)

The last term in (3.21) is very small and can safely be neglected.

The ellipse defined by r_0, ϱ_0 and σ given above intersects for the allowed range of parameters with the circle (2.20). This allows to determine $\bar{\varrho}$ and $\bar{\eta}$ with

$$\bar{\varrho} = \frac{1}{1 - \sigma^2} \left(\varrho_0 - \sqrt{\varrho_0^2 - (1 - \sigma^2)(\varrho_0^2 - r_0^2 + \sigma R_b^2)} \right) \quad \bar{\eta} = \sqrt{R_b^2 - \varrho^2}$$

(3.22)

and consequently

$$R_t^2 = 1 + R_b^2 - 2\bar{\varrho}$$

(3.23)

where $\bar{\eta}$ is assumed to be positive.

In the leading order of the Wolfenstein parametrization

$$\sigma \to 1 \quad \bar{\eta} \to \eta \quad \bar{\varrho} \to \varrho$$

(3.24)

and $\text{BR}(K^+ \to \pi^+ \nu \bar{\nu})$ determines a circle in the (ϱ, η) plane centered at $(\varrho_0, 0)$ and having the radius r_0 of (3.21) with $\sigma = 1$. Formulae (3.22) and (3.23) simplify then to

$$R_t^2 = 1 + R_b^2 + \frac{r_0^2 - R_b^2}{\varrho_0} - \varrho_0 \quad \varrho = \frac{1}{2} \left(\varrho_0 + \frac{R_b^2 - r_0^2}{\varrho_0} \right)$$

(3.25)

in accordance with ref. [11].

3.4 B^0-Decays and Superweak Models

Although the CP-asymmetries in B^0-decays in which the final state is a CP eigenstate offer a way to measure the angles of the unitarity triangle, they may in principle fail to distinguish the standard model from superweak models. As discussed by Gérrard and Nakada [33] and by Liu and Wolfenstein [34], non-vanishing asymmetries are also expected in superweak scenarios. In order to rule out superweak models one has to measure the asymmetries in two distinct channels and find that they differ from each other. As an example consider $B^0 \to \psi K_S$ ($CP = -1$) and $B^0 \to \pi^+\pi^-$ ($CP = 1$) for which the time integrated asymmetries are

$$A_{CP}(\psi K_S) = -\sin(2\beta) \frac{x_d}{1 + x_d^2}, \quad A_{CP}(\pi^+\pi^-) = -\sin(2\alpha) \frac{x_d}{1 + x_d^2}$$

(3.26)
Generally these two asymmetries could differ in the standard model both in sign and magnitude. In a superweak model however these asymmetries differ only by the sign of the CP-parity of the final state. Yet as emphasized by Winsten [38] if \(\sin 2\beta = -\sin 2\alpha \) it will be impossible to distinguish the standard model result from superweak models. This will happen for any \(\bar{\rho} > 0 \) and \(\bar{\eta} \) given by [38]

\[
\bar{\eta} = (1 - \bar{\rho}) \sqrt{\frac{\bar{\rho}}{2 - \bar{\rho}}}
\]

(3.27)

as can be easily verified using (2.17) and (2.18). Consequently \((\bar{\rho}, \bar{\eta})\) must lie sufficiently away from the curve of eq. (3.27) in order to rule out the superweak scenario on the basis of \(B^0\)-decays to CP eigenstates. We will investigate in section 5 whether this is likely to happen in the future experiments.

4 Analytic Results

Now, we want to give a list of results following from the formulae above which can be presented in an analytic form. Some of these results appeared already in the literature.

4.1 Lower Bounds on \(m_t\) and \(B_K\) from \(\varepsilon_K\)

The hyperbola (3.1) intersects the circle given by (2.20) in two points. It is usually stated in the literature that one of these points corresponds to \(\bar{\rho} < 0\) and the other one to \(\bar{\rho} > 0\). For most values of \(A, B_K\) and \(m_t\) this is in fact true. However, with decreasing \(A, B_K\) and \(m_t\), the hyperbola (3.1) moves away from the origin of the \((\bar{\rho}, \bar{\eta})\) plane and both solutions can appear for \(\bar{\rho} < 0\). For sufficiently low values of these parameters the hyperbola and the circle only touch each other at a small negative value of \(\bar{\rho}\). In this way a lower bound for \(m_t\) as a function of \(B_K\), \(V_{cb}\) and \(|V_{ub}/V_{cb}|\) can be found.

With an accurate approximation for \(S(x_t)\)

\[
S(x_t) = 0.784 \cdot x_t^{0.76}
\]

(4.1)

one can derive an analytic lower bound on \(m_t\) [39], which to an accuracy of 2% reproduces the exact numerical result. It is given by

\[
(m_t)_{\min} = M_W \left[\frac{1}{2A^2} \left(\frac{1}{A^2 B_K R_b} - 1.2 \right) \right]^{0.658}
\]

(4.2)

A detailed analysis of (4.2) can be found in ref. [39]. Here we want to stress that once \(m_t\) has been determined, the same analysis gives the minimal value of \(B_K\) consistent with measured \(\varepsilon_K\) as a function of \(|V_{cb}|\) and \(|V_{ub}/V_{cb}|\). We find

\[
(B_K)_{\min} = \left[A^2 R_b \left(2x_t^{0.76} A^2 + 1.2 \right) \right]^{-1}
\]

(4.3)

Choosing \(m_t = 180\) GeV we show \((B_K)_{\min}\) as a function of \(|V_{cb}|\) for different values of \(|V_{ub}/V_{cb}|\) in fig. 2. For lower values of \(m_t\) the bound is stronger. We observe that for \(m_t \leq 180\) GeV, \(|V_{ub}/V_{cb}| \leq 0.10\) and \(|V_{cb}| \leq 0.040\) only values \(B_K > 0.55\) are consistent with \(\varepsilon_K\) in the framework of the standard model.
Figure 2: Lower bound on B_K for $|V_{ub}/V_{cb}| = 0.06$ (a), $|V_{ub}/V_{cb}| = 0.08$ (b), $|V_{ub}/V_{cb}| = 0.10$ (c) from ε_K and $m_t < 180 GeV$.

4.2 Upper Bound on $\sin(2\beta)$

For the present range of R_b the angle β is smaller than 45°. This allows to derive an upper bound on $\sin(2\beta)$, which depends only on R_b. As shown in fig. 3 it is found to be

$$\langle \sin(2\beta) \rangle_{\text{max}} = 2R_b\sqrt{1 - R_b^2} \tag{4.4}$$

Figure 3: Determination of $\langle \sin(2\beta) \rangle_{\text{max}}$.

This implies

$$\langle \sin(2\beta) \rangle_{\text{max}} = \begin{cases}
0.795 & (\beta_{\text{max}} = 26.3^\circ) \\
0.663 & (\beta_{\text{max}} = 20.8^\circ) \\
0.513 & (\beta_{\text{max}} = 15.4^\circ)
\end{cases} \quad |V_{ub}/V_{cb}| = 0.10$$

$$\begin{cases}
0.663 & (\beta_{\text{max}} = 20.8^\circ) \\
0.513 & (\beta_{\text{max}} = 15.4^\circ)
\end{cases} \quad |V_{ub}/V_{cb}| = 0.08$$

$$\begin{cases}
0.513 & (\beta_{\text{max}} = 15.4^\circ)
\end{cases} \quad |V_{ub}/V_{cb}| = 0.06$$
A lower bound on $\sin(2\beta)$ can only be found numerically as it depends on $\bar{\eta}$. The result can be inferred from our numerical analysis in section 5.

4.3 $\sin(2\beta)$ from ε_K and $B^o - \bar{B}^o$ Mixing

Combining (3.1) and (3.8) one can derive an analytic formula for $\sin(2\beta)$. We find

$$\sin(2\beta) = \frac{1}{1.33 \cdot A^2 \eta_2 R_0^2} \left[\frac{0.223}{A^2 B_K} - \bar{\eta} P_0(\varepsilon) \right].$$ (4.6)

$P_0(\varepsilon)$ is weakly dependent on m_t and for $150 \leq m_t \leq 180$ GeV one has $P_0(\varepsilon) \approx 0.26 \pm 0.02$. As $\bar{\eta} \leq 0.45$ for $|V_{ub}/V_{cb}| \leq 0.1$ the first term in parenthesis is generally by a factor of 2–3 larger then the second term. Since this dominant term is independent of m_t, the values for $\sin(2\beta)$ extracted from ε_K and $B^o - \bar{B}^o$ mixing show only a weak dependence on m_t as stressed in particular in ref. [6].

4.4 Ambiguity in $\bar{\eta}$

It is well known that in the analysis of ε_K with fixed $|V_{ub}/V_{cb}|$ and V_{cb} one gets two solutions for $(\bar{\eta}, \bar{\bar{\eta}})$ with $\bar{\bar{\eta}}$ being larger for the solution with larger $\bar{\eta}$. The solution of this ambiguity in $\bar{\eta}$ is very important for CP-violating decays $K^0_L \to \pi^0 e^+ e^-$, $K^+ \to \pi^+ \nu \bar{\nu}$ and the CP-asymmetries in B-decays governed by $\sin(2\beta)$, because $BR(K^0_L \to \pi^0 e^+ e^-)$, $BR(K^0_L \to \pi^0 \nu \bar{\nu})$ and $\sin(2\beta)$ are larger for the solution with larger $\bar{\eta}$. The preferred solution in searches of CP violation corresponds in most cases to $\bar{\eta} \geq 0$.

This should be contrasted with any CP conserving transition sensitive to $|V_{td}|$, such as $B^o - \bar{B}^o$ mixing, $K^+ \to \pi^+ \nu \bar{\nu}$, $K^0_L \to \mu \bar{\mu}$, $B \to \mu \bar{\mu}$ which for given values of m_t, $F_B \sqrt{B_B}$, V_{cb}, x_d determine uniquely the value of $\bar{\eta}$.

Although several analysis of this determination have been presented in the literature (see in particular ref. [13]) , we think it is useful to have simple analytic expressions helping to answer immediately, whether the favored solution $\bar{\eta} \geq 0$ is chosen.

4.4.1 $B^o - \bar{B}^o$ Mixing

We require that $R_t \leq \sqrt{1 + R_b^2}$. Then for a given value of R_b one gets a positive $\bar{\eta}$. Using the analytic formula (4.1) and introducing the “scaling” variable

$$z(B^o_d) = m_t \left[\frac{\kappa}{0.038} \right]^{1.32}$$ (4.7)

we find using (3.8) and (3.9) the condition

$$F_{B_d} \sqrt{B_{B_d}} \geq \sqrt{\frac{0.55}{\eta_B}} \sqrt{\frac{x_d}{0.72}} \left[\frac{179 \text{ GeV}}{z(B^o_d)} \right]^{0.76} \cdot \frac{200 \text{ MeV}}{\sqrt{1 + R_b^2}}.$$ (4.8)

When this inequality is satisfied the favored solution with $\bar{\eta} \geq 0$ is bound to be chosen. Setting $\eta_B = 0.55$ we plot in fig. 4 the smallest value of $F_B \sqrt{B_B}$ consistent with (4.8) as a function of $z(B^o_d)$ for different values of $|V_{ub}/V_{cb}|$ and $x_d = 0.72$. We
observe that for \(z(B_d^0) \leq 180 \text{ GeV} \) one needs \(F_{B_d} \sqrt{B_{B_d}} \geq 180 \text{ MeV} \) in order to have \(\bar{\varrho} \geq 0 \).

Using (3.12) we can also find a minimal value for \(x_s \) consistent with \(R_t \leq \sqrt{1 + R_b^2} \). One gets to a very good approximation

\[
(x_s)_{\text{min}} = \frac{x_d}{R_{ds} \lambda^2} \cdot \frac{1}{\sqrt{1 + R_b^2}}
\]

(4.9)

For \(R_{ds} = 1 \) and \(R_b = 1/3 \) we have \((x_s)_{\text{min}} \simeq 18.6 \cdot x_d\).

\[
\begin{align*}
\text{Figure 4: Lower bound on } F_{B_d} \sqrt{B_{B_d}} 	ext{ for } & |V_{ub}/V_{cb}| = 0.06 \ (a), \ |V_{ub}/V_{cb}| = 0.08 \ (b), \\
& |V_{ub}/V_{cb}| = 0.10 \ (c) \text{ necessary for } \bar{\varrho} \geq 0.
\end{align*}
\]

\subsection{4.4.2 \(K^+ \to \pi^+ \nu \bar{\nu} \)}

An analogous condition can be derived from the decay \(K^+ \to \pi^+ \nu \bar{\nu} \) by requiring \(\sqrt{\varrho_0^2 + (R_b \sigma)^2} \geq r_0 \) with \(\varrho_0 \) and \(r_0 \) defined in (3.19) and (3.21), respectively. Neglecting the tiny contribution of the second term in (3.21), using the formula

\[
X(x_t) = 0.65 \cdot x_t^{0.575}
\]

(4.10)

which reproduces the function \(X(x_t) \) to an accuracy of 0.5\% for the range of \(m_t \) considered in this paper and introducing the variable \[\[\]
\[
\begin{align*}
z(K^+) = m_t \cdot \left[\frac{V_{cb}}{0.038} \right]^{1.74}
\end{align*}
\]

(4.11)

we find the condition

\[
\begin{align*}
BR(K^+ \to \pi^+ \nu \bar{\nu}) & \leq 4.64 \cdot 10^{-11} \frac{1}{\sigma} \left\{ 0.40 \left(\frac{z(K^+)}{M_W} \right)^{1.15} + P_0(K^+) \right\}^2 \\
& \quad + 0.16 \left(\frac{z(K^+)}{M_W} \right)^{2.30} (R_b \sigma)^2
\end{align*}
\]

(4.12)
This bound is shown in fig. 5 as a function of the variable \(z(K^+) \). Although this solution is welcome in searches for CP violation, the experimental bound on \(BR(K^+ \rightarrow \pi^+\nu\bar{\nu}) \), which could be reached in the coming years [10], will be most probably above it.

![Graph](graph.png)

Figure 5: Upper bound on \(BR(K^+ \rightarrow \pi^+\nu\bar{\nu}) \) for \(|V_{ub}/V_{cb}| = 0.06 \) (a), \(|V_{ub}/V_{cb}| = 0.08 \) (b), \(|V_{ub}/V_{cb}| = 0.10 \) (c) necessary for \(\bar{\rho} \geq 0 \).

5 Phenomenological Analysis

5.1 First Look

In order to describe the situation of 1994 after a possible top quark discovery we make first the following choices for the relevant parameters:

Parameter	Value		
\(V_{cb}	\)	0.038 ± 0.004
\(B_K\)	0.7 ± 0.2		
\(\sqrt{B_{B_d}F_{B_d}}\)	(200 ± 30) MeV		
\(x_d\)	0.72 ± 0.08		
\(m_t\)	(165 ± 15) GeV		

The values of \(|V_{cb}|\) and \(|V_{ub}/V_{cb}|\) given here are consistent with the recent summary in [11]. The values of \(B_K\) cover comfortably the range of most recent lattice (\(B_K = 0.825 \pm 0.027\)) [12] and \(1/N\) (\(B_K = 0.7 \pm 0.1\)) [13] results. They also touch the range of values obtained in the hadron duality approach (\(B_K = 0.4 \pm 0.1\)) [14]. \(\sqrt{B_{B_d}F_{B_d}}\) given here is in the ball park of various lattice and QCD sum rule estimates [15]. \(x_d\) is in accordance with the most recent average of CLEO and ARGUS data [16] and it is compatible with the LEP data. We set \(\tau_B = 1.5\) ps [10] in the whole analysis because the existing small error on \(\tau_B\) (\(\Delta \tau_B = \pm 0.04\) ps) has only a very small impact on our numerical results.
The choice for m_t requires certainly an explanation. The high precision electroweak studies give in the standard model typically $m_t \simeq 165 \pm 30 \text{ GeV}$ where the central value corresponds to $m_H = 300 \text{ GeV}$ \cite{47}. Since we work in the standard model we expect that m_t will be found in this range. A top quark discovery at TEVATRON will certainly narrow this range by at least a factor of two. It is of interest to see what impact this would have for the phenomenology considered here. At this level of accuracy one has to state how m_t is defined. The QCD corrections to ε_K, $B^o - \bar{B}^o$ mixing and $K^+ \to \pi^+ \nu \bar{\nu}$ used here correspond to the running top quark mass in the \overline{MS} scheme evaluated at m_t i.e. m_t in (5.1) and in all formulae of this paper stands for $m_t(m_t)$. The physical top quark mass as the pole of the renormalized propagator is then given by

$$m_t^{\text{phys}}(m_t) = m_t \left[1 + \frac{4\alpha_s(m_t)}{3\pi} \right]$$

(5.2)

For the range of m_t considered here m_t^{phys} is by $7 \pm 1 \text{ GeV}$ higher than m_t.

For $\Lambda_{\overline{MS}}$ and m_c affecting $BR(K^+ \to \pi^+ \nu \bar{\nu})$ we use

$$\Lambda_{\overline{MS}} = (0.275 \pm 0.075) \text{ GeV} \quad m_c \equiv m_c(m_c) = (1.3 \pm 0.05) \text{ GeV}$$

(5.3)

Note of caution to the reader of the preprint version:
Due due limitations of our plot program the labels in figs. 6, 7, 8 and 9 read $\bar{\rho}$ and $\bar{\eta}$ but in fact should read $\bar{\varrho}$ and $\bar{\eta}$.

In fig. 6 we show the resulting unitarity triangle . To this end the analysis of ε_K and of $B^o_d - \bar{B}^o_d$ mixing have been used. In tab. 2 we show the resulting ranges for δ, $\sin(2\phi_i)$, $BR(K^+ \to \pi^+ \nu \bar{\nu})$, $|V_{td}|$ and x_s corresponding to the choice of the parameters in (5.1). In calculating x_s we have set $R_{ds} = 1$.

We observe:

- The uncertainty in the value of $\sin(2\beta)$ is moderate. We find $\sin(2\beta) \simeq 0.59 \pm 0.21$. Consequently a large asymmetry $A_{CP}(\psi K_s)$ is expected. In particular $\sin(2\beta) \geq 0.38$.

- The uncertainties in $\sin(2\alpha)$ and in $\sin(2\gamma)$ are huge.

- Similarly the uncertainties in the predicted values of $BR(K^+ \to \pi^+ \nu \bar{\nu})$, $|V_{td}|$ and x_s are large

5.2 A Look in the Future

It is to be expected that the uncertainties in (5.1) will be reduced in the next five years through the improved determinations of $|V_{cb}|$ and $|V_{ub}/V_{cb}|$ at CLEO II \cite{48}, the improved measurements of x_d and the discovery of top. We also anticipate that the extensive efforts of theorists, in particular using the lattice methods, will considerably reduce the errors on B_K and $\sqrt{B_B F_B}$.

We consider the following ranges of parameters:
Table 2: Ranges for scan of basic parameters for range I as of eq. (5.1), split according to the two different solutions for the CKM phase δ in the first and second quadrant

	1. Quadrant	2. Quadrant		
δ	44.5	90.0		
$\sin(2\alpha)$	-0.67	0.74		
$\sin(2\beta)$	0.50	0.80		
$\sin(2\gamma)$	0	1.00		
$	V_{td}	\cdot 10^3$	6.9	10.0
x_s	10.8	24.2		
$BR(K^+ \to \pi^+ \nu \bar{\nu}) \cdot 10^{10}$	0.62	1.39		

Range II

| $|V_{cb}|$ | $|V_{ub}/V_{cb}|$ | B_K | $\sqrt{B_{B_d}F_{B_d}}$ | m_t |
|----------|-----------------|-------|-------------------------|-------|
| 0.040 \pm 0.002 | 0.08 \pm 0.01 | 0.75 \pm 0.07 | (185 \pm 15) MeV | (170 \pm 7) GeV |
| x_d | 0.72 \pm 0.04 |

Range III

| $|V_{cb}|$ | $|V_{ub}/V_{cb}|$ | B_K | $\sqrt{B_{B_d}F_{B_d}}$ | m_t |
|----------|-----------------|-------|-------------------------|-------|
| 0.040 \pm 0.001 | 0.08 \pm 0.005 | 0.75 \pm 0.05 | (185 \pm 10) MeV | (170 \pm 5) GeV |
| x_d | 0.72 \pm 0.04 |

For $\Lambda_{\overline{MS}}$ and m_c we use

$$\Lambda_{\overline{MS}} = 0.3 \text{ GeV} \quad m_c = 1.3 \text{ GeV} \quad (5.6)$$

For each range we repeat the analysis of subsection 5.1. The results are given in fig. 3(II) and (III) and tabs. 3 and 4.

We observe:

- The uncertainty in the value of $\sin(2\beta)$ has been considerably reduced. We find

$$\sin(2\beta) = \begin{cases} 0.60 \pm 0.14 & \text{(range II)} \\ 0.61 \pm 0.09 & \text{(range III)} \end{cases} \quad (5.7)$$

- The uncertainties in $\sin(2\alpha)$ and $\sin(2\gamma)$ although somewhat reduced remain very large.

- For $|V_{td}|$, x_s and $BR(K^+ \to \pi^+ \nu \bar{\nu})$ we find

$$|V_{td}| = \begin{cases} (9.5 \pm 1.4) \cdot 10^{-3} & \text{(range II)} \\ (9.4 \pm 1.0) \cdot 10^{-3} & \text{(range III)} \end{cases} \quad (5.8)$$
Figure 6: Unitarity triangle in the ($\bar{\rho}, \bar{\eta}$) plane determined by ε_K, $|V_{ub}/V_{cb}|$ and x_d using ranges (I)–(III) as of eqs. (5.1), (5.4) and (5.5), respectively.

\[
x_s = \begin{cases}
13.3 \pm 4.3 & \text{(range II)} \\
12.9 \pm 2.8 & \text{(range III)}
\end{cases} \quad (5.9)
\]

\[
BR(K^+ \to \pi^+ \nu\bar{\nu}) = \begin{cases}
(1.07 \pm 0.24) \cdot 10^{-10} & \text{(range II)} \\
(1.03 \pm 0.15) \cdot 10^{-10} & \text{(range III)}
\end{cases} \quad (5.10)
\]

This exercise implies that if the accuracy of various parameters given in (5.4) and (5.5) is achieved the determination of $|V_{td}|$ and the predictions for $\sin(2\beta)$ and $BR(K^+ \to \pi^+ \nu\bar{\nu})$ are quite accurate. A sizable uncertainty in x_s remains however.

Another important message from this analysis is the inability of a precise determination of $\sin(2\alpha)$ and $\sin(2\gamma)$ on the basis of ε_K, $B^o - \bar{B}^o$, $|V_{cb}|$ and $|V_{ub}/V_{cb}|$ alone.
Although the great sensitivity of $\sin(2\alpha)$ and $\sin(2\gamma)$ to various parameters has been already stressed by several authors, in particular in refs. [26, 27, 48, 49], our analysis shows that even with the improved values of the parameters in question as given in (5.4) and (5.5) a precise determination of $\sin(2\alpha)$ and $\sin(2\gamma)$ should not be expected in this millennium.

The fact that $\sin(2\beta)$ can be much easier determined than $\sin(2\alpha)$ and $\sin(2\gamma)$ is easy to understand. Since R_t is generally by at least a factor of two larger than R_b, the angle β is much less sensitive to the changes in the position of the point $A = (\bar{\rho}, \bar{\eta})$ in the unitarity triangle than the remaining two angles.

5.3 The Impact of $BR(K^+ \to \pi^+\nu\bar{\nu})$ and x_d/x_s

$BR(K^+ \to \pi^+\nu\bar{\nu})$ and x_d/x_s determine $|V_{td}| \cdot 10^3$ and R_t. If our expectations for the ranges discussed above are correct we should be able to have a rather accurate prediction for $BR(K^+ \to \pi^+\nu\bar{\nu})$ using the analysis of ε_K and of $B^o_d - \bar{B}^o_d$ mixing. Measuring $BR(K^+ \to \pi^+\nu\bar{\nu})$ to similar accuracy would either confirm the standard model predictions or indicate some physics beyond the standard model.
We infer from tabs. 3 and 4 that measurements of $BR(K^+ \rightarrow \pi^+ \nu\bar{\nu})$ with the accuracy of $\pm 10\%$ would be very useful in this respect.

The accuracy of predictions for x_s are poorer as seen in (5.9). A measurement of x_s at a $\pm 10\%$ level will have therefore a considerable impact on the determination of the CKM parameters and in particular R_t (see (3.12)) provided R_{ds} is known within 10% accuracy. A numerical exercise is presented in subsection 5.3.

5.4 The Impact of CP-asymmetries in B-decays

Measuring the CP-asymmetries in neutral B-decays will give the definitive answer whether the CKM description of CP violation is correct. Assuming that this is in fact the case, we want to investigate the impact of the measurements of $\sin(2\phi_i)$ on the determination of the unitarity triangle.

Since in the rescaled triangle of fig. 1 one side is known, it suffices to measure two angles to determine the triangle completely.

It is well known that the measurement of the CP-asymmetry in the decay $B^0 \rightarrow \psi K_s$ should give a measurement of $\sin(2\beta)$ without any theoretical uncertainties. One expects that prior to LHC experiments the error on $\sin(2\beta)$ should amount roughly to $\Delta \sin(2\beta) = \pm 0.06 [4,50,51]$. The measurement of $\sin(2\alpha)$ is more difficult. It requires in addition the measurement of several channels in order to eliminate the penguin contributions. An error $\Delta \sin(2\alpha) = \pm 0.10$ prior to LHC could however be achieved at a SLAC B-factory [50].

In fig. 7 we show the impact of such measurements and also plot the curve (3.27) which represents superweak models. Specifically we take

$$\sin(2\beta) = \begin{cases} 0.60 \pm 0.18 & \text{a) } \\ 0.60 \pm 0.06 & \text{b) } \end{cases}$$

(5.11)

as an illustration of two measurements of $\sin(2\beta)$ with two different accuracies. Next we take the following three choices for $\sin(2\alpha)$

$$\sin(2\alpha) = \begin{cases} -0.20 \pm 0.10 & \text{I) } \\ 0.10 \pm 0.10 & \text{II) } \\ 0.70 \pm 0.10 & \text{III) } \end{cases}$$

(5.12)

In fig. 8 we replace the impact of $\sin(2\alpha)$ by the impact of a measurement of $\sin(2\gamma)$ keeping $\sin(2\beta)$ unchanged. We choose the following values:

$$\sin(2\gamma) = \begin{cases} -0.50 \pm 0.10 & \text{I) } \\ 0 \pm 0.10 & \text{II) } \\ 0.50 \pm 0.10 & \text{III) } \end{cases}$$

(5.13)

We observe that the measurement of $\sin(2\alpha)$ or $\sin(2\gamma)$ in conjunction with $\sin(2\beta)$ at the expected precision will have a large impact on the accuracy of the determination of the unitarity triangle and of the CKM parameters. In order to show this more explicitly we take as an example:

$$\sin(2\beta) = 0.60 \pm 0.06 \quad \sin(2\alpha) = 0.10 \pm 0.10$$

(5.14)
Figure 7: Determination of the unitarity triangle in the $\bar{\rho}, \bar{\eta}$ plane by measuring $\sin(2\beta)$ and $\sin(2\alpha)$ as of eqs. (5.11) and (5.12), respectively. For $\sin(2\alpha)$ we always find two solutions in $(\bar{\rho}, \bar{\eta})$ and for $\sin(2\beta)$ we only use the solution consistent with $|V_{ub}/V_{cb}| \leq 0.1$.

and give in tab. the predicted ranges for $\delta, \sin(2\gamma), BR(K^+ \rightarrow \pi^+\nu\bar{\nu}), |V_{td}|$ and x_s corresponding to the values of $\sin(2\beta)$ and $\sin(2\alpha)$ given in (5.14) and $|V_{cb}|, x_d$ and m_t of (5.4). We use only the solution of $\sin(2\beta)$ consistent with $|V_{ub}/V_{cb}| \leq 0.1$.

It should be stressed that this impressive accuracy can only be achieved by measuring $\sin(2\alpha)$ or $\sin(2\gamma)$ in addition to $\sin(2\beta)$. This is easy to understand in view of the fact that the expected accuracy of the measurements of $\sin(2\alpha)$ and $\sin(2\gamma)$ is considerably higher than the corresponding accuracy of the predictions on basis of ε_K, $B^o - \bar{B}^o$ mixing, $|V_{ub}/V_{cb}|$ and $|V_{cb}|$ alone.
5.5 $K^+ \rightarrow \pi^+ \nu \bar{\nu}, \sin(2\beta), |V_{cb}|, m_t$ and x_d/x_s

We would like to address now our last question posed in the introduction:

How well should one measure $BR(K^+ \rightarrow \pi^+ \nu \bar{\nu}), \sin(2\beta), |V_{cb}|, m_t$ and x_d/x_s in order to obtain an acceptable determination of the CKM matrix on the basis of these five quantities alone. As we stated at the beginning of this paper $K^+ \rightarrow \pi^+ \nu \bar{\nu}$ and $\sin(2\beta)$ are essentially free of any theoretical uncertainties. $|V_{cb}|$ on the other hand is easier to determine than $|V_{ub}/V_{cb}|$ and once the top quark is discovered m_t should be known relatively well. Finally x_d/x_s determines directly R_t by means of eq. (3.12).
Table 5: Predicted ranges for various quantities calculated by restricting \(\sin(2\alpha) \) and \(\sin(2\beta) \) to the ranges of (5.14) and using \(|V_{cb}| \), \(x_d \) and \(m_t \) of (5.4). There is no allowed solution for the second quadrant.

	Min	Max		
\(\delta \)	69.5	77.8		
\(\sin(2\gamma) \)	0.42	0.66		
\(V_{td}	\cdot 10^3 \)	8.4	9.1
\(x_s \)	15.0	17.5		
\(BR(K^+ \rightarrow \pi^+\nu\bar{\nu}) \cdot 10^{10} \)	0.90	1.12		

In fig. 9 we show the result of this exercise taking (5.6) and

\[
\sin(2\beta) = 0.60 \pm 0.06 \quad |V_{cb}| = 0.040 \pm 0.001 \quad \text{GeV}
\]

\[
BR(K^+ \rightarrow \pi^+\nu\bar{\nu}) = \begin{cases}
(1.0 \pm 0.2) \cdot 10^{-10} & (I) \\
(1.0 \pm 0.1) \cdot 10^{-10} & (II)
\end{cases}
\]

In tab. 6 we give the predicted ranges of various quantities for the two cases considered.

Table 6: Ranges of various quantities calculated with constraints from eqs. (5.15) and (5.16).

	(I)	(II)				
\(\sin(2\alpha) \)	-0.917	0.978	-0.691	0.973		
\(\sin(2\gamma) \)	-0.704	1.000	-0.418	0.976		
\(V_{td}	\cdot 10^3 \)	6.9	10.3	7.6	9.7

In addition we show in fig. 9 the result of a possible measurement of \(x_d/x_s \) corresponding to \(R_t = 1.0 \pm 0.1 \). We observe that provided the expected accuracy of measurements is achieved we should have a respectable determination of \(|V_{td}| \) this way. Fig. 9 indicates that for the \(\Delta V_{cb} \) and \(\Delta m_t \) assumed here, \(BR(K^+ \rightarrow \pi^+\nu\bar{\nu}) \) must be measured with a precision of \(\pm 10\% \) to be competitive with \(\Delta R_t = \pm 10\% \) extracted hopefully one day from \(x_d/x_s \). The uncertainty in the predictions for \(\sin(2\alpha) \) and \(\sin(2\gamma) \) is very large as in the analysis of subsection 5.2.

5.6 \(\varepsilon_K \), \(B_d^0 - \bar{B}_d^0 \) Mixing, \(\sin(2\beta) \) and \(\sin(2\alpha) \)

It is useful to combine the results of subsections 5.1, 5.2 and 5.4 by making the customary \(\sin(2\beta) \) versus \(\sin(2\alpha) \) plot. This plot demonstrates very clearly the correlation between \(\sin(2\alpha) \) and \(\sin(2\beta) \). The allowed ranges for \(\sin(2\alpha) \) and \(\sin(2\beta) \) corresponding to the choices of the parameters in (5.1), (5.4) and (5.5) are shown in fig. 10 together.
Figure 9: Allowed ranges in the $(\bar{\rho}, \bar{\eta})$ plane with constraints from eqs. (5.15) and (5.16) for $BR(K^+ \rightarrow \pi^+ \nu \bar{\nu})$ and $R_t = 1.0 \pm 0.1$.

with the results of the independent measurements of $\sin(2\beta) = 0.60 \pm 0.06$ and $\sin(2\alpha)$ given by (5.12). The latter are represented by dark shaded rectangles. The black rectangles illustrate the accuracy of future LHC measurements ($\Delta \sin(2\alpha) = \pm 0.04$, $\Delta \sin(2\beta) = \pm 0.02$) [28].

Figure 10: $\sin(2\alpha)$ versus $\sin(2\beta)$ plot corresponding to the parameter ranges I-IV as of (5.1), (5.4), (5.5) and (5.17) and the dark shaded rectangles given by (5.12) and (5.11) (b). The black rectangles illustrate the accuracy of future LHC measurements.

We also show the results of an analysis in which the accuracy of various parameters is as in (5.4) but with the central values modified:
Range IV

\[
\begin{align*}
|V_{cb}| &= 0.038 \pm 0.002 & |V_{ub}/V_{cb}| &= 0.08 \pm 0.01 \\
B_K &= 0.70 \pm 0.07 & \sqrt{B_{B_d}F_{B_d}} &= (185 \pm 15) \text{ MeV} \\
x_d &= 0.72 \pm 0.04 & m_t &= (165 \pm 7) \text{ GeV}
\end{align*}
\] (5.17)

In addition we show the prediction of superweak theories which in this plot is represented by a straight line.

There are several interesting features on this plot:

- The impact of the direct measurements of \(\sin(2\beta)\) and \(\sin(2\alpha)\) is clearly visible in this plot.

- In cases III and IV we have examples where the measurements of \(\sin(2\alpha)\) are incompatible with the predictions coming from \(\varepsilon_K\) and \(B^0 - \bar{B}^0\) mixing. This would be a signal for physics beyond the standard model. The measurement of \(\sin(2\alpha)\) is essential for this.

- The case IV shows that for a special choice of parameters the predictions for the asymmetries coming from \(\varepsilon_K\), \(B^0 - \bar{B}^0\) mixing, \(|V_{cb}|\) and \(|V_{ub}/V_{cb}|\) can be quite accurate when these four constraints can only be satisfied simultaneously in a small area of the \((\bar{\rho}, \bar{\eta})\) space. Decreasing \(|V_{cb}|\), \(|V_{ub}/V_{cb}|\) and \(m_t\) and increasing \(F_B\) would make the allowed region in the case IV even smaller.

- We also observe that the future measurements of asymmetries and the improved ranges for the parameters relevant for \(\varepsilon_K\) and \(B^0 - \bar{B}^0\) mixing will probably allow to rule out the superweak models.

6 Summary and Conclusions

The top quark discovery and the measurements of \(BR(K^+ \to \pi^+\nu\bar{\nu})\), \(x_s\) and of CP violating asymmetries in B-decays will play crucial roles in the determination of the CKM parameters and in the tests of the standard model. Similarly the improvements in the determination of the CKM elements \(V_{ub}\) and \(V_{cb}\) in tree level B-decays and the improved calculations of the non-perturbative parameters like \(B_K\) and \(\sqrt{B_B}F_B\) will advance our understanding of weak decay phenomenology. In this paper we have made an excursion in the future trying to see what one could expect in this field in the coming five to ten years prior to LHC experiments.

In the first part of the numerical analysis we have investigated how the top quark discovery together with the improved determinations of \(|V_{ub}/V_{cb}|\), \(|V_{cb}|\), \(B_K\) and \(\sqrt{B_B}F_B\) would allow for the determination of the unitarity triangle and more accurate predictions for \(K^+ \to \pi^+\nu\bar{\nu}\), \(B_s^0 - \bar{B}_s^0\) mixing and \(\sin(2\phi_1)\). Our main findings in this part can be summarized as follows:

- We expect that around the year 2000 satisfactory predictions for \(|V_{td}|\), \(\sin(2\beta)\) and \(BR(K^+ \to \pi^+\nu\bar{\nu})\) should be possible.
• A sizeable uncertainty in x_s and huge uncertainties in $\sin(2\alpha)$ and in $\sin(2\gamma)$ will remain however.

In the second part of our analysis we have investigated the impact of future measurements of $BR(K^+ \rightarrow \pi^+ \nu \bar{\nu})$, x_s and $\sin(2\phi_i)$. Our main findings in this second part can be summarized as follows:

• The measurements of $\sin(2\alpha)$, $\sin(2\beta)$ and $\sin(2\gamma)$ will have an impressive impact on the determination of the CKM parameters and the tests of the standard model.

• This impact is further strengthened by combining the constraints considered in the two parts of our analysis as seen most clearly in fig. 10.

• Future LHC B-physics experiments around the year 2005 will refine these studies as evident from fig. [10] and ref. [28].

In our analysis we have concentrated on quantities which have either been already measured (ε_K, x_d) or quantities which are practically free from theoretical uncertainties such as x_d/x_s, $K^+ \rightarrow \pi^+ \nu \bar{\nu}$ and certain asymmetries in B-decays. We however stress at this point that the measurements of ε'/ε, $B \rightarrow s\gamma$, $K_L \rightarrow \mu^+\mu^-$, $K_L \rightarrow \pi^0 e^+ e^-$, $K_L \rightarrow \pi^0 \nu \bar{\nu}$ and other rare decays discussed in the literature are also very important for our understanding of weak decays. In particular a measurement of a non-zero $Re(\varepsilon'/\varepsilon)$ to be expected in few years from now, will give most probably first signal of direct CP violation. Unfortunately, all these decays are either theoretically less clean than the decays considered here or they are more difficult to measure. Clearly some dramatic improvements in the experimental techniques and in non-perturbative methods could change this picture in the future.

We hope that our investigations and the analytic formulae derived in this paper will facilitate the waiting for m_t, $K^+ \rightarrow \pi^+ \nu \bar{\nu}$, $B_s^0 - \bar{B}_s^0$ mixing and CP asymmetries in B-decays. There is clearly a very exciting time ahead of us.

Acknowledgement

A.J. Buras would like to thank the members of the CP-B panel at the Max-Planck-Institut in Munich for exciting discussions.
References

[1] B. Winstein and L. Wolfenstein, Rev. Mod. Phys. 65 (1993) 1113.

[2] J. L. Ritchie and S. G. Wojcicki, Rev. Mod. Phys. 65 (1993) 1149.

[3] L. Littenberg and G. Valencia, Ann. Rev. Nucl. Part. Phys. 43 (1993) 729.

[4] A. J. Buras and M. K. Harlander, A Top Quark Story, in Heavy Flavours, eds. A.J. Buras and M. Lindner, World Scientific (1992) , page 58.

[5] Y. Nir, CP-Violation, SLAC-PUB-5874.

[6] J. L. Rosner, in B Decays ed. by S. Stone, World Scientific, Singapour.

[7] D. G. Cassel, B Physics: Status and Prospects for Understanding CP-Violaton, talk given at Max-Planck Institute, Munich, Dec. 15, 1993 .

[8] J. Ellis and J. S. Hagelin, Nucl. Phys. B 217 (1983) 189.

[9] C. O. Dib, I. Dunietz, and F. J. Gilman, Mod. Phys. Lett. A 6 (1991) 3573.

[10] G. Buchalla, A. J. Buras, and M. K. Harlander, Nucl. Phys. B349 (1991) 1.

[11] G. Buchalla and A. J. Buras, Nucl. Phys. B412 (1994) 106.

[12] C. O. Dib, Phys. Lett. B 282 (1992) 201.

[13] G. R. Harris and J. L. Rosner, Phys. Rev. D 45 (1992) 946.

[14] D. Rein and L. M. Sehgal, Phys. Rev. D 39 (1989) 3325.

[15] J. S. Hagelin and L. S. Littenberg, Prog. Part. Nucl. Phys. 23 (1989) 1.

[16] M. Lu and M. B. Wise, CALT-68-1911 (1994).

[17] M. Gronau and D. London, Phys. Rev. Lett. 65 (1990) 3381.

[18] M. Gronau and D. London, Phys. Lett. 253 B (1991) 483.

[19] Y. Nir and H. Quinn, Phys. Rev. D 42 (1990) 1473.

[20] Y. Nir and H. Quinn, Phys. Rev. Lett. 67 (1991) 541.

[21] R. Aleksan, I. Dunietz, B. Kayser, and F. L. Diberder, Nucl. Phys. B 361 (1991) 141.

[22] R. Aleksan, B. Kayser, and D. London, NSF-PT-93-4 and refs. therein .

[23] Particle Data Group, Phys. Lett. 239 B (1990) 1.

[24] L. Wolfenstein, Phys. Rev. Lett. 51 (1983) 1945.

[25] M. Schmidttler and K. R. Schubert, Z.Phys. C 53 (1992) 347.

[26] C. O. Dib, I. Dunietz, F. J. Gilman, and Y. Nir, Phys. Rev. D 41 (1990) 1522.

[27] A. Ali and D. London, DESY preprint DESY-93-022.
[28] L. Camilleri, *CERN preprint CERN-PPE/93-159*.

[29] S. Herrlich and U. Nierste, *Technical University Munich preprint TUM-T31-49/93*; Bulletin Board: [hep-ph 9310311](http://arxiv.org/abs/hep-ph/9310311), to appear in *Nuc. Phys. B*.

[30] A. J. Buras, M. Jamin, and P. H. Weisz, *Nucl. Phys. B347* (1990) 491.

[31] W. A. Kaufman, H. Steger, and Y. P. Yao, *Mod. Phys. Lett. A3* (1988) 1479.

[32] G. Buchalla, A. J. Buras, and M. K. Harlander, *Nucl. Phys. B337* (1990) 313.

[33] A. Datta, J. Fröhlich, and E. A. Paschos, *Zeitschr. f. Physik C46* (1990) 63.

[34] J. M. Flynn, *Mod. Phys. Lett. A5* (1990) 877.

[35] G. Buchalla and A. J. Buras, *Nucl. Phys. B400* (1993) 225.

[36] J.-M. Gérard and T. Nakada, *Phys. Lett. 261 B* (1991) 474.

[37] J. Liu and L. Wolfenstein, *Phys. Lett. 197 B* (1987) 536.

[38] B. Winstein, *EFI 91-54*.

[39] A. J. Buras, *Phys. Lett. B 317* (1993) 449.

[40] Y. Kuno, *KEK preprint 92-128*.

[41] S. Stone, in *B Decays* ed. by S. Stone, World Scientific, Singapore; HEPSY 93-11.

[42] G. W. Kilcup, S. R. Sharpe, and R. Gupta, *University of Washington preprint UW/PT-93-25*.

[43] W. Bardeen, A. J. Buras, and J.-M. Gérard, *Phys. Lett. 211B* (1988) 343.

[44] J. Prades et al., *Zeitschr. f. Physik C51* (1991) 287.

[45] A. S. Kronfeld and P. B. Mackenzie, *Ann. Rev. Nucl. Part. Sci. 43* (1993) 30.

[46] V. Lüth, *summary talk presented at the XVI. International Symposium on Lepton Photon Interactions, Cornell University, August 1993*.

[47] W. Hollik, Status of the Electroweak Standard Model, *Max-Planck-Institute preprint MPI-Ph/93-83*.

[48] F. J. Gilman and Y. Nir, *Ann. Rev, Nucl. Part. Sci. 40* (1990) 213.

[49] M. Lusignoli, L. Maiani, G. Martinelli, and L. Reina, *Nucl. Phys. B369* (1992) 139.

[50] BaBar collaboration - Status Report, *SLAC preprint SLAC-419* (June 1993).

[51] H. Albrecht et al. (HERA-B), *DESY preprint DESY-PRC 92/04* (1992).