Scalable and customizable arbitrary waveform generator for superconducting quantum computing

Cite as: AIP Advances 9, 115309 (2019); https://doi.org/10.1063/1.5120299
Submitted: 17 July 2019 . Accepted: 04 November 2019 . Published Online: 18 November 2019

Jin Lin, Fu-Tian Liang, Yu Xu, Li-Hua Sun, Cheng Guo, Sheng-Kai Liao, and Cheng-Zhi Peng
Scalable and customizable arbitrary waveform generator for superconducting quantum computing

Jin Lin,1,2 Fu-Tian Liang,1,2 Yu Xu,1,2 Li-Hua Sun,1,2 Cheng Guo,1,2 Sheng-Kai Liao,1,2,a) and Cheng-Zhi Peng 2

AFFILIATIONS
1 Hefei National Laboratory for Physical Sciences at the Microscale and Department of Modern Physics, University of Science and Technology of China, Hefei 230026, China
2 Chinese Academy of Sciences (CAS) Center for Excellence and Synergetic Innovation Center in Quantum Information and Quantum Physics, University of Science and Technology of China, Shanghai 201315, China

a) Electronic mail: skliao@ustc.edu.cn

ABSTRACT

Superconducting quantum processors are manufactured based on a semiconductor process, which makes qubit integration possible. At the same time, this kind of qubit exhibits high-performance fidelity and decoherence time and requires a programmable arbitrary waveform generator (AWG). This paper presents the implementation of an AWG with a sampling rate of two-gigabit samples per second as well as 16-bit vertical resolution digital-to-analog converters. The AWGs are designed for a scaled-up usage scenario by integrating them with separate microwave devices onto a single backplane. A special waveform sequence output controller is designed to realize seamless waveform switching and arbitrary waveform generation. The jitter of multiple AWG channels is around 10 ps, and the integral nonlinearity and differential nonlinearity are both about 2 least significant bits. This customizable AWG has been used in several superconducting quantum processors, and the result of multiple qubits’ measurement verifies that the AWG is qualified for controlling tens of superconducting qubits.

I. INTRODUCTION

Superconducting qubits exhibit excellent performance in fidelity, decoherence time, and integration, making them one of the most feasible quantum computing schemes. Qubit controlling and reading can be achieved via commercial 1 gigabit samples per second (GSPS) digital-to-analog converters (DACs) and analog-to-digital converters (ADCs) by combining them with separate microwave devices onto a single backplane. A special waveform sequence output controller is designed to realize seamless waveform switching and arbitrary waveform generation. The jitter of multiple AWG channels is around 10 ps, and the integral nonlinearity and differential nonlinearity are both about 2 least significant bits. This customizable AWG has been used in several superconducting quantum processors, and the result of multiple qubits’ measurement verifies that the AWG is qualified for controlling tens of superconducting qubits.
with the qubits. Typically, the ratio between the channel numbers of the qubit control and the qubit readout is around 4–10. Every qubit needs 3 AWG channels (I, Q, and fast bias) for its control. This means that the proportion between the channel numbers of AWGs and DAQs is about 10 to 1. Hence, a high-speed, high-precision AWG and its synchronization control represent the primary challenge in such a system. The required synchronization accuracy between the channels of superconducting qubits is on the order of picoseconds.

Effective designs for a superconducting qubit chip are constantly being explored, and new control requirements continue to emerge. For example, current research must grapple with rapid calibration of modulation waveforms, specific rapid demodulation algorithms, and rapid feedback control required by fault-tolerant quantum computing. An effective control device of this nature requires a highly customized system.

Several groups, such as those in UCSB, IBM, ETH Zurich, Yale, and BBN Technologies, have recently implemented superconducting quantum computing control platforms.\(^4\)\(^-\)\(^6\) Moreover, control systems have been realized in ultralow temperature environments.\(^7\)\(^,\)\(^8\) However, commercially available devices cannot satisfy the growing demand for a programmable and compact product. Therefore, in order to realize large-scale production of quantum computer, it is desirable to develop a programmable, compact, and extensible AWG. This paper presents an AWG framework and waveform output sequence controller with extensible capabilities. To validate the AWG design, we conduct a series of tests on the AWG and use it for controlling multiple superconducting processors.

II. AWG IMPLEMENTATION

Every superconducting qubit has its own frequency which is about 4–8 GHz. Thus, the decoherence time of most available qubits is about 10–100 μs. In order to properly measure superconducting qubits, an ensemble test is required; in other words, a qubit test is conducted by repeatedly transmitting a set of modulated pulses to the qubit and then measuring the response. AWGs together with IQ mixers significantly improve the flexibility of generating the qubit modulation pulse. With the flexibility of field-programmable gate arrays (FPGAs), the AWGs can be customized to meet the varying requirements of superconducting qubit control, such as quantum feedback and quantum error correction.

A. Hardware

The bandwidth of the AWG is usually around DC \(\sim 300\) MHz. In order to achieve the qubit test with 99.9% fidelity, the AWG’s adjustable accuracy is required to be higher than five times the fidelity requirement or 1/5000. As shown in Fig. 2, the AWG unit is composed of a Xilinx FPGA (XCKU040-FFVA156-2-E) and two commercially available high-performance DAC chips (from Analog Devices, Inc.). Such an AWG is capable of providing four arbitrary waveform output channels, each of which can operate at 2 GSPS and provide 16-bit resolution output. We use the JESD204B protocol to achieve transmission of the high-speed digital data. Sixteen lanes are used in an AWG unit, where each lane runs at a rate of 10 Gbps, and the total rate is 160 Gbps.

Bipolar signals are achieved by passing the outputs through low-pass filters and differential amplifiers (from Analog Devices, Inc.). An RC low-pass filter, consisting of resistors and capacitors, is used to filter out frequency noise equal to that of the sampling clock in the waveform generated by the DAC chip. Since the DAC chip is current-type, its output is unipolar. The signal then enters a low-noise differential amplifier circuit to achieve bipolar output with a voltage range of ±1 V. The signal is the direct coupled input to the differential amplifier circuit and enables the adjustment of the output signal’s bias voltage. The adjustable bias voltage can be used to address the IQ mixer leakage issue that is caused by the imbalance IQ input. Reliable communication is ensured by a gigabit Ethernet running on the Transmission Control Protocol/Internet Protocol (TCP/IP) protocol. An external input clock that enables multiboards to be synchronized by one synchronous source is fanned out and distributed equally to the FPGA and DACs. Another external input trigger, which is synchronized to the same clock source, can provide accurate synchronous control. An extensible AWG...
array may be achieved by simple integrating multiple AWGs with a synchronization control module.

To reduce the size of the system, we integrate the AWG with individual IQ mixers (Sinolink SIQM0408) and power splitters onto a single backplane and constrain the height to 1U of a standard server rack. As displayed in Fig. 2, two channels from the same DAC chip are used as I/Q signals and are wired to the IQ mixer’s corresponding inputs. A common microwave source is connected to the power splitter, and four outputs are separately fanned out to four IQ mixers’ LO inputs. Every compensative channel exiting from the differential amplifier is used for monitoring or fast bias controlling.

B. FPGA implementation

Figure 3 depicts the block diagram of the signal flow in the FPGA. A Xilinx MicroBlaze processor generated using Vivado software is embedded in the FPGA to communicate with all peripherals through the Advanced eXtensible Interface (AXI) bus. The software running on the processor communicates reliably with the host computer through a lightweight TCP/IP stack. The software also configures the operating parameters through the SPI/GPIO IPs on the AXI bus to the peripheral chips and function modules. Meanwhile, the working state of the AWG is periodically sent to a local area network (LAN) through User Datagram Protocol (UDP) broadcast.
packets so that the system states may be monitored by any host in the same LAN. Key waveform output control data are also transmitted through the network and sent to the waveform output control module.

The waveform output control module operates under a 250 MHz clock which functions from the external clock interface. The same clock input allows multiple AWG modules to operate under one clock source. The module interface with the DAC chip is completed by the Xilinx JESD204B IP core, which operates with a 10-Gbps rate under subclass 1. The JESD204B subclass 1 protocol supports deterministic delay control and realizes the computable time delay of the waveform data from the JESD204B IP core input to the DAC output. In the present design, the deterministic delay of the JESD204B protocol is 191 ns.

C. AWG control

We implement a waveform output sequence controller for each channel. Each controller is composed of three parts—waveform data memory (WDM), sequence data memory (SDM), and a finite state machine (FSM) for reading and controlling. As shown in Fig. 4, the memory data are set by the host computer and provide a direct arbitrary waveform output. According to the flag bits of the sequence data, the FSM reads the waveform data from the WDM and determines the output mode of the waveform data. The output control mode includes the start address, length, trigger source, counter value, etc. Owing to qubit's decoherence time limit, the length of the control pulse generally does not exceed the qubit’s decoherence time. According to the current reported qubit time, this value is

Instruction type	Function
Direct output	Directly output a waveform in the waveform area without any condition; the output length is determined by the address field and the length field in the instruction
Wait output	Delay output command; delay count is determined by the 16 bit counter field, and the maximum delay time is \(\sim 250 \mu s \)
Trigger output	Instruction starts executing on the rising edge of the input trigger. There is also a 16 bit wait counter after the trigger signal arrives.
Qubit state output	The qubit state is divided into 0, 1, 2, and NULL. The waveform corresponding to each state is stored in different regions of WDM. The input qubit state selects which waveform to be output.
Loop begin	The loop begin instruction starts the loop execution of multiple instructions and outputs the waveform at the same time. There are 4 loop levels, and the loop repeat time can be supported up to 65535. One loop can be nested in other loop level to achieve more complex waveform output.
Loop end	The loop end instruction ends the corresponding loop level after reaching the loop count that is specified in the loop begin instruction. Otherwise, it jumps to the corresponding loop begin instruction to start the next loop. Other types of instructions can be inserted in the middle of any pair of loop instructions.
FIG. 5. Example executing flow of seven instructions. At first, the “Trigger output” instruction executes at the rising edge of an input trigger. Second, the “Loop begin level 1” instruction executes and sets the “Loop count 1.” Then, the “Wait output” instruction executes after its wait counter reached. Next is another “Loop begin level 2” instruction which executes and sets the “Loop count 2.” Followed is a “Qubit state output” instruction, it will execute according to the qubit information that it has received. Next is “Loop end level 2” instruction that is corresponding to “Loop begin level 2” instruction, and this instruction counts down the “Loop count 2.” If the “Loop count 2” equals 0, the next instruction is “Loop end level 1,” else the executing flow will jump to “Loop begin level 2.” The last instruction is “Loop end level 1.” It counts down the “loop count 1.” If “Loop count 1” equals 0, the executing flow will end when the “Total repeat count” equals 0 or jump to the first instruction and count down the “Total repeat count” when the “Total repeat count” is not 0. If “Loop count 1” is not 0, the executing flow will jump to “Loop begin level 1.”

When running an arbitrary waveform output, the resources are ready and waiting for the first instruction to be executed. When an instruction begins to run, the FSM prefetches the next instruction to determine and prepare the required resources. Hence, the resources are ready for every instruction to be executed, and the FSM can seamlessly switch to the next instruction without delay. However, a constraint arises where the output length of each waveform area cannot be less than four. As a result, it can be ensured that the prefetching action/stage has sufficient time for the resources of the next instruction to be well prepared.

III. TESTING

A series of tests have been conducted on the present AWG design, including static tests, dynamic tests, and qubit tests. A Keysight 34470A 7½ multimeter is used for integral nonlinearity/differential nonlinearity (INL/DNL) static test. A Keysight N9030B 8.4 GHz bandwidth spectrum analyzer is used in spurious
free dynamic range (SFDR) and phase noise test. A Keysight DSO-X 6004A 1 GHz Bandwidth Oscilloscope is used in the synchronization test. Finally, the AWG present in this paper is used to conduct the qubit control on a real qubit system.

A. INL/DNL

The AWG delivers 16 bit vertical resolution, that is, 65,536 codes. The INL/DNL test requires traversing all of the codes. We set a digital code and used a high-precision multimeter to measure the output voltage. The digital code is then continuously increased until all of the codes are traversed. The test takes about 0.1 s for one code and about 2 h to go through all of the codes for a single channel. The high precision multimeter supports an external trigger and can store 50,000 samples. The AWG output 65,535 steps with the duration of 1 ms for each step, each of which is synchronized to a trigger signal. The trigger signal is connected to the external trigger input of the multimeter. To collect the measured data, the host computer controls the AWG as well as the multimeter and carries out the INL and DNL analysis. By improving the testing scheme, the test time of a single code value is reduced to 1 ms, and the whole test time is reduced to 1 min. The results of the test demonstrate that the AWG DNL and INL are within 2 least significant bits (LSBs).

B. Phase noise

Figure 6 illustrates the phase noise of one AWG channel at seven distinct frequencies, i.e., 10, 20, 40, 50, 100, 200, and 250 MHz. Noise floor with a frequency offset greater than 10 MHz tends to be consistent. Increasing the signal frequency yields downward movement of the phase noise curve. In particular, the phase noise curve moves ~6 dB when the frequency is doubled, which is theoretically consistent.

C. Spurious free dynamic range (SFDR)

In the SFDR measurement, the harmonic noise represents the main spurious noise source, especially when the measurement signal is a monosyllabic sine wave. If the RF attenuation setting of the spectrum meter is not reasonable, a considerable difference between the tested harmonic noise and the actual harmonic noise will be observed. We considered the lowest output as the gain of the AWG and set the frequency spectrum instrument input attenuation to 0 dB. As shown in Fig. 7, the SFDR curve is plotted by 25 frequency points, i.e., from 10 MHz to 250 MHz with 10 MHz step size. It must be noted that the SFDR test results here include harmonic noise in the range of 10–500 MHz. If harmonic noise is not considered, the SFDR test results are −68.8 dBc in the range of 10–500 MHz and −83.2 dBc at 100 MHz. The test results are consistent with the chip's datasheet.

D. Synchronization

We test the jitter among AWG channels by simultaneously outputting square signals from multiple AWG channels to the oscilloscope and then recording the delays and standard deviations between two AWG channels. Figure 8 displays the jitters of 40 arbitrary waveform output channels on 10 AWGs. The minimum and maximum standard deviations are 9.22 ps and 10.89 ps, respectively, with the mean value of 9.9 ps. The skew among the channels is ~100 ps. The large skew is due to the different signal line delay from the clock signals input to the AWGs and the different signal line delay from the AWG output to the oscilloscope input. The skew is deterministic and may be adjusted by cable length.
E. Qubit test

The AWG reveals a series of characteristics such as 14 effective number of bits (ENOB), −68.8 dBc SFDR across 10–500 MHz, and 10 ps jitter among different channels. We further test the AWG’s function by measuring the qubit decoherence time (T1 and T2*) which is a critical parameter for qubits.10,11 The schematic diagram of the test system is shown in Fig. 1.

We use the AWG design presented in this paper to test T1 and T2* of a qubit. The T1 test varies different Z bias voltage and gets a statistic mean value. As shown in Fig. 9, the T1 test result is ∼12 μs. The color bar is the measured population of the |1⟩ state after a given time on the y-axis, and the x-axis is the Z bias which tunes the qubit frequency. The qubit tuning frequency range is hundreds of megahertz. As can be seen from Fig. 9, the T1 is symmetric about 0 bias and at maximum frequency. Figure 10 shows the T2* test results produced by the AWG. The T2* measurement results are calculated by fitting the envelope of successive Ramsey experiments; these data are recorded at qubit’s maximum frequency that is tuned by Z bias. The T1 and T2* tests verify that the AWG is qualified for controlling the superconducting quantum processor.

The qualification of the AWG for qubit control is further characterized by the measurement of qubit fidelity. By testing three superconducting quantum processors and extracting the fidelity of the single-qubit gate through Randomized Benchmarking (RB), the average single-qubit gate fidelity of AWG-controlled qubits is over 0.995. In the genuine 12-qubit entanglement experiment12 where 40 AWG channels are used, the average single-qubit gate fidelity of 12 qubits is 0.998. On another 12-qubit superconducting processor, 38 AWG channels are used to implement strongly correlated quantum walks,13 and the average-qubit gate fidelity of the 12 qubits is 0.997. On a 24-qubit superconducting processor, 80 AWG channels are used to control this processor, and the average single-qubit gate fidelity is 0.995.14 Furthermore, in order to verify that the AWG’s synchronization is suitable for a scalable quantum computer, we perform the two-qubit CZ gate fidelity test. In a genuine 12-qubit entanglement experiment, the tested average CZ gate fidelity is 0.939.12

The above results show that the AWG is qualified in both the single-qubit fidelity test and the two-qubit CZ coupling test. At the same time, multiple qubits’ experiments also verify the scalability of the AWG in controlling tens of qubits.

IV. CONCLUSION

We introduce a scalable and highly integrated AWG array for a superconducting quantum computing control system. The AWG consists of two DACs, one FPGA, and a gigabit Ethernet transceiver. The designed AWG has 2-GSPS and 16-bit vertical resolution. With the programmable waveform instruction set, the AWG can feasibly output waveform with deterministic latency. 40 and 80 AWG channels are used to construct a 12-qubit and a 24-qubit superconducting quantum processor control system separately. The test results show that the average single-qubit gate control fidelity is over 0.995 and the average two-qubit CZ gate control fidelity is over 0.939. With a feasible instruction structure, this AWG is also used in the Twin-Field Quantum Key Distribution (TFQKD) experiment to modulate the source pulse.15

In summary, this AWG lays the foundation for the superconducting quantum processor experiment and yields possibilities for customizable quantum control circuits.
ACKNOWLEDGMENTS

This work has been supported by Chinese Academy of Sciences (CAS) Center for Excellence and Synergetic Innovation Center in Quantum Information and Quantum Physics, Shanghai Branch, University of Science and Technology of China, National Natural Science Foundation of China (U1738202); Youth Innovation Promotion Association of the Chinese Academy of Sciences (2017500).

REFERENCES

1. Y. Chen, D. Sank, P. O’Malley, T. White, R. Barends, B. Chiaro, J. Kelly, E. Lucero, M. Mariantoni, A. Megrant et al., “Multiplexed dispersive readout of superconducting phase qubits,” Appl. Phys. Lett. 101, 182601 (2012).

2. N. Ofek, A. Petrenko, R. Heeres, P. Reinhold, Z. Leghtas, B. Vlastakis, Y. Liu, L. Frunzio, S. Girvin, L. Jiang et al., “Extending the lifetime of a quantum bit with error correction in superconducting circuits,” Nature 536, 441 (2016).

3. E. Jeffrey, D. Sank, J. Y. Mutus, T. C. White, J. Kelly, R. Barends, Y. Chen, Z. Chen, B. Chiaro, A. Dunsworth, A. Megrant, P. J. J. O’Malley, C. Neill, P. Roushan, A. Vainsencher, J. Wenner, A. N. Cleland, and J. M. Martinis, “Fast accurate state measurement with superconducting qubits,” Phys. Rev. Lett. 112, 190504 (2014).

4. T. Kaufmann, T. J. Keller, J. M. Franck, R. P. Barnes, S. J. Glaser, J. M. Martinis, and S. Han, “DAC-board based X-band EPR spectrometer with arbitrary waveform control,” J. Magn. Reson. 235, 95–108 (2013).

5. D. Castelvecchi, “IBM’s quantum cloud computer goes commercial,” Nature 543, 159 (2017).

6. C. A. Ryan, B. R. Johnson, D. Ristè, B. Donovan, and T. A. Ohki, “Hardware for dynamic quantum computing,” Rev. Sci. Instrum. 88, 104703 (2017).

7. H. Homülle, S. Visser, and E. Charbon, “A cryogenic 1 GSa/s, soft-core FPGA ADC for quantum computing applications,” IEEE. Trans. Circuits Syst. I 63, 1854–1865 (2016).

8. H. Homülle, S. Visser, B. Patra, G. Ferrari, E. Prati, F. Sebastiani, and E. Charbon, “A reconfigurable cryogenic platform for the classical control of quantum processors,” Rev. Sci. Instrum. 88, 045103 (2017).

9. J. Bergeron, “Analyzing and managing the impact of supply noise and clock jitter on high speed DAC phase noise,” visit www.analogdialogue.com, Vol. 150, p. 30.

10. R. R. C. Bialczak, Development of the Fundamental Components of a Superconducting Qubit Quantum Computer (University of California, Santa Barbara, 2011).

11. C. Song, K. Xu, W. Liu, C.-p. Yang, S.-B. Zheng, H. Deng, Q. Xie, K. Huang, Q. Guo, L. Zhang et al., “10-qubit entanglement and parallel logic operations with a superconducting circuit,” Phys. Rev. Lett. 119, 180511 (2017).

12. M. Gong, M.-C. Chen, Y. Zheng, S. Wang, C. Zha, H. Deng, Z. Yan, H. Rong, Y. Wu, S. Li, F. Chen, Y. Zhao, F. Liang, J. Lin, Y. Xu, C. Guo, L. Sun, A. D. Castellano, H. Wang, C. Peng, C.-Y. Lu, X. Zhu, and J.-W. Pan, “Genuine 12-qubit entanglement on a superconducting quantum processor,” Phys. Rev. Lett. 122, 110501 (2019).

13. Z. Yan, Y.-R. Zhang, M. Gong, Y. Wu, Y. Zheng, S. Li, C. Wang, F. Liang, J. Lin, Y. Xu, C. Guo, L. Sun, C.-Z. Peng, K. Xia, H. Deng, H. Rong, J.-Q. You, F. Nori, H. Fan, X. Zhu, and J.-W. Pan, “Strongly correlated quantum walks with a 12-qubit superconducting processor,” Science 364, 753 (2019).

14. Y. Ye, Z.-Y. Ge, Y. Wu, S. Wang, M. Gong, Y.-R. Zhang, Q. Zhu, R. Yang, S. Li, F. Liang, J. Lin, Y. Xu, C. Guo, L. Sun, C.-Z. Peng, K. Xia, H. Deng, H. Rong, J.-Q. You, F. Nori, H. Fan, X. Zhu, and J.-W. Pan, “Propagation and localization of collective excitations on a 24-qubit superconducting processor,” Phys. Rev. Lett. 123, 050502 (2019).

15. Y. Liu, Z.-W. Yu, W. Zhang, J.-Y. Guan, J.-P. Chen, C. Zhang, X.-L. Hu, H. Li, C. Jiang, J. Lin, T.-Y. Chen, L. You, Z. Wang, X.-B. Wang, Q. Zhang, and J.-W. Pan, “Experimental twin-field quantum key distribution through sending or not sending,” Phys. Rev. Lett. 123, 100505 (2019).