Plant-conservative agriculture of acid and degraded Raña-grassland enhances diversity of the common soil mites (Oribatida)

Juan Jorrín¹ and Pedro González-Fernández²

¹ Centro IFAPA Alameda del Obispo, Dept. Producción Ecológica y Recursos Naturales, Laboratorio de Entomología. Avda. Menéndez Pidal s/n, 14004-Córdoba. Spain ² Centro IFAPA Alameda del Obispo, Dept. Producción Ecológica y Recursos Naturales, Laboratorio de Suelos. Avda. Menéndez Pidal s/n, 14004-Córdoba. Spain

Abstract

The seminatural prairie of the Raña of Cañamero (Spain) is a degraded and unproductive agrosystem with acid and stony soils, and low coverage of xerophytic grasses. In a project about secondary reconversion of the raña-prairie to a more productive cropland, an experimental field (EF) was established to assess the effect on plot-productivity of the interaction between correction of soil pH (liming) with three cropping systems: a no-tiled and annually fertilized and improved prairies, and a conventionally-tilled forage crop. The EF model of management was designed as plant-conservative, because no herbicide was applied after seeding to preserve the post-emergence of wild herbs and the natural grass diversity of the prairie. Between 2008 and 2012, we analysed the effect of managing factors (initial conventional-tillage, fertilization, liming and cropping) and agricultural predictors (pH, C:N ratio, soil bulk density and herbaceous biomass) on the alpha(α)-diversity of one of the major group of soil animals, the oribatids. In relation to the raña-prairie, all EF-plots improved their soil bulk density (ρ) and herbaceous biomass (t/ha), and enhanced desirable α-diversity values (richness, abundance and community equity). We conclude that the plant-conservative model: i) do not affect statistically the species richness of the prairie; ii) the desirable α-diversity responses are negatively correlated with soil bulk density and positively with herbaceous biomass, and iii) the low input or minimum intervention model, of an initial and conventional till and annual fertilisation, is the threshold and optimal model of agricultural management to improving oribatids diversity of the raña-soil.

Additional key words: Acari; agriculture practices; oribatids; soil biodiversity; Ultisols.

Abbreviations used. D (α-diversity; dominance index); Dβ (β-similarity statistic; squared distance between groups); EF (experimental field); FC (EF-plot of forage crop); FP (EF-plot of fertilized prairie); GLM (general linear model of variance analysis); H (α-diversity index of equity); IP (EF-plot of improved prairie); MCFs (mean cumulative functions of total richness); N (α-diversity; cumulative abundance); NF (natural field; control plots); N (α-diversity; sample abundance); NL (EF-plot without pH-amendment); ρ (soil bulk density); S (α-diversity; expected total richness); SF (EF-plot amended with sugar foam); SP (EF-plot amended with sugar foam plus phosphogypsum).

Citation: Jorrín, J.; González-Fernández, P. (2016). Plant-conservative agriculture of acid and degraded Raña-grassland enhances diversity of the common soil mites (Oribatida). Spanish Journal of Agricultural Research, Volume 14, Issue 1, e0302. http://dx.doi.org/10.5424/sjar/2016141-7654.

Received: 05 May 2015. Accepted: 10 Feb 2016

Copyright © 2016 INIA. This is an open access article distributed under the terms of the Creative Commons Attribution-Non Commercial (by-nc) Spain 3.0 Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Funding: Ministerio de Educación, Cultura y Deporte (Spain), codes AGL2005-07017-C03-02 and 04361-C02 CGL2008-02.

Competing interests: The authors have declared that no competing interests exist.

Correspondence should be addressed to Juan Jorrín: juan.jorrin@juntadeandalucia.es

Introduction

The Raña of Cañamero is one of the typical digitiform or fan-like uplands in the Iberian Peninsula, dated in a Middle-posterior Pliocene with a subtropical climate. Ancient raña-surfaces are formed by alluvial sediments from quartzite massifs located between river basins, the Villuercas Mountains (Espejo-Serrano, 1978). Currently and into the proper xeric regime of the Mediterranean subregion, the raña-environment is relatively humid by its Atlantic influence (annual rainfall about 900 mm). The soil is classified into ultisols as Typical Palexerult (Soil Survey Staff, 2014), with plinthic segregation of the horizon Bt (Peregrina, 2005), and the soil epiptron is fragile with high content in gravel, and acid (pH ≈ 5) with high soluble aluminium content (González-Fernández et al., 2008).

In the middle of the twentieth century, the dominant raña-forest of cork oak’s Quercus suber L. was primarily converted into silvopastoral systems of Quercus silex L., pastures and cereal lands of Secale cereale (L). Traditional agriculture in the raña-land was deter-
the species abundance data, constitute a direct and feasible parameter to biodiversity in soils (Linden et al., 1994; Behan-Pelletier, 1999; André et al., 2002; Gergöcs & Hufnagel, 2009), and are useful to analyse the biological response to a soil disturbance, at local and medium or long-term levels (Beckmann, 1988).

In 2002, a project was started about the promotion of the fertility and consequent productivity of the raña-prairie. The selected model of agriculture was defined as plant-conservative, because herbicidal treatments were excluded to preserve the grass diversity of the prairie, and in contraposition to largely applied soil-conservative models where chemical herbicides are required (e.g. no-till and direct seeding). This paper aims to evaluate the effect of selected agricultural practices (conventional tillage, liming and cropping) on the diversity of soil animals of the prairie, estimated by the oribatid mites demography, and to obtain a model of agricultural practices that integrates a more efficient plant productivity and preservation of the soil biodiversity of the raña-prairie.

Material and methods

Experimental design

The experiment was carried out on an agricultural farm in the Raña of Cañamero (Cáceres, Spain; 39°19’7.76” N, 5°19’26.44” W). The selected site, designed as natural field (NF), was an old cropfield into the farm, without any agricultural management or treatment since 1999 and naturally reconverted to a seminatural prairie of wild herbs (Fig. 1A). During the sampling period 2008-2012, three separated blocks with three plots of 0.1-ha each were delimited as experimental controls.
In autumn 2002, an experimental field (EF) into NF was fenced, conventionally tilled at 20 cm deep with a manual rotavator and divided into 36 (9 x 4) square units (plots) of 40 m² separated by 1.5-m corridors (Fig. 1B). The two-factorial split plot design was set up by grouping the plots into 3 type-blocks repeated 4 times and with 3 plots into each block. For the lime-factor (blocks), each type-block received alternatively an initial and equivalent dose of the three amendments: SF, 4000 kg/ha of sugar foam; SP, 4000 kg/ha of sugar foam plus 7200 kg/ha of phosphogypsum; and NL, control without amendment.

For the crop-factor (plots), each plot into-block received alternatively one of the three cropping treatments:

- FP) fertilized prairie, with spontaneous growth of wild herbs, without tillage in years 2003-2011 and supplied in the preparation for planting with a mineral fertilizer N – P (as P₂O₅) – K (as K₂O) at equivalent dosage 70-70-70 kg/ha and annual fertilisation P – K at 70-70 kg/ha;
- IP) improved prairie; sown land in 2002 with 28 kg/ha of pasture crops mixture (Trifolium subterraneeum L., T. vesiculosum Savii, T. michelianum Savii; Biserrula pelecinus L., Ornithopus compressus L., Lolium rigidum (Gaudin) and Dactylis glomerata L.; 8:3:3:3:3:4:4). No-tillage and fertilisation equal to FP; and
- FC) forage crop; sown land in period 2002-2003 with 210 kg/ha of a mixture of cereals (Secale cereale L., Avena sativa L. and Triticosecale Wittmack; 1:1:1) and in later years 2004-2011, with 150 kg/ha of the same grain mix plus 60 kg/ha of the legume Vicia villosa Roth. Annual conventional tillage 20 cm depth and equal fertilisation to FP in the preparation for planting and annual N – P – K at 35-75-75 kg/ha.

The EF field was designed as plant-conservative and for this, during the experimental period, any herbicidal treatment or till to control the post-emergence of wild herbs was applied.

Sampling

During the sampling period of years 2008-2012, soil samples were extracted by soil corers to obtain soil surface cylinders of 10 cm height and 5.82 cm diameter.

Analyses of soil variables was set up on sieved and dried soil samples of each plot, without materials>2 mm and 3-4% of residual moisture. In 2008, we measured the soil pH of plots (pH-meter; aqueous suspension 1:2.5) and obtained the rate between carbon and nitrogen (C:N; dry combustion analyzer, LECO CN TruSpec St. Joseph, MI, USA). In 2012, the soil bulk density (ρb) was obtained as estimator of density and relative porosity of the soil (Blake & Hartge, 1986). For this purpose, in each plot a volume of soil (Vc=265.7 cm3) was extracted, weighed the fractions of fine soil (materials<2 mm; Ws) and gravel (Wg) and measured the volume occupied by the gravel in water (Vg). The ρb value refers to the volume occupied by the soil mass and estimated by its weight [ρb=(Ws-Wg)/(Vc-Wg)], in g/cm³; gravel: ρg=2.62 g/cm³, water: ρw=1.00 g/cm³.

At harvest of the years 2011 and 2012, the herbaceous production of two 1-m² squares in each plot was weighed and estimated the gross or whole herbaceous biomass in t/ha. In forage crop (EF-FC)-plots, the wild herbs were previously discarded and referring the values as net forage production.

Sampling for oribatids was carried out in two different spring days of years 2008, 2011 and 2012. Each day of sampling, one soil core sample (surface 26.60 cm², 10 cm depth) was extracted in all NF-plots (sample size, n=54) and in the EF field, in 24 of the 36 plots randomly selected in each day of sampling and to finally obtain an equal number of 4 samples for each one of the 36 plot-repetitions during the entire experimental period (sample size, n= 144).

The oribatids were extracted from fresh and whole samples by Berlese-Tullgreen funnel method (Walter & Krantz, 2009), by exposing each sample in one funnel, during ten days to 42 W halogen bulb lamp and at a distance of 25 cm. The recovered adults were counted under stereomicroscope, and sample specimens were cleared in lactic microscopic preparations and identified to species level following published keys (Balogh & Mahunka, 1983; Pérez-Íñigo, 1993; Pérez-Íñigo, 1997; Subías & Arillo, 2001) and reference descriptions.

Data analysis

Statistical analyses (Minitab Inc., 2013) were carried out from the data matrix (i-variables, j-plots) of agricultural data (i-variables pH, C:N, and t/ha), abundance data (nj, number of individuals of each i-species of oribatids) and alpha (α)-diversity values of richness (SJ, total number of species), abundance (NJ, total number of oribatids) and indexes of community structure of Shannon’s or Shannon-Wiener’s equity (Hj) (Spellerberg & Fedor, 2003) and Simpson’s dominance (DJ) (Simpson, 1949). In order to reduce data variability by influence of the year of sampling, species aggregation and null samples (Nj=0), and to allow para-
metric comparisons between factorial groups and responses, data values used were the averages of each plot-repetition during the entire experimental period (NF, n=9 plots; EF, n=36 plots).

The statistical analyses were made by the following procedures:

- First, we obtained the mean cumulative functions (MCFs, trend test of Laplace) of observed cumulative richness (S_o, $ΣS_i$) versus soil sample size (soil surface, in cm2) and expected richness (S_e) versus cumulative abundance (N) or oribatids sample size (N; $N=ΣN_j$) obtained by the rarefaction method (McAleece et al., 1997), and comparing groups (Chi-square test).
- Then we fitted the $α$-parameters to a non-linear function (Anderson-Darling test for a maximum likelihood, p>0.05).
- Multiple regression equations ($\hat{y}=b_0 + b_1x_1 + b_2x_2 +...+b_nx_n$) were obtained to calculate the regression coefficients ($b_{0...n}$) associated to the categorical factors of management ($x_{1...n}$) and the fitted value of each agricultural or $α$-response (\hat{y}) in a crossed and nested model Field-Crop(Field)-Lime(Field)-Crop*Lime (F-test for variance and t-test for coefficients).

Results

Table 1 shows the descriptive statistics for agricultural responses and estimated GLM coefficients associated to plot-treatments. Field factor (EF treatment) affects pH, bulk density and herbaceous biomass (p<0.001), and there is no evidence of effect on C:N ratio (p>0.05). The pH increase was associated exclusively with lime, and the reduction of bulk density and increase of vegetal biomass with crop. Into EF, there were no plot differences in all responses related to crop and lime interaction (p>0.05).

A total of 13698 oribatids belonging to 34 species were collected (Table 2). In NF, 22/34 of the species were detected, *Cosmochthonius reticulatus* and *Minunthozetes* sp. were unique species and *Oribatula* metric comparisons between factorial groups and responses, data values used were the averages of each plot-repetition during the entire experimental period (NF, n=9 plots; EF, n=36 plots).

The statistical analyses were made by the following procedures:

- We obtained the correlation coefficients and applied a model of general regression between the agricultural predictors and $α$-responses.
- Finally, we compared the diversity among groups or beta-similarity by multivariate analyses (discriminant and of two first principal components), and referring the β-statistic to the squared distance between cluster centroids (D2).

Table 1

Plot (Field-Crop-Lime)	Observed (mean ± SE)	GLM coefficient (± SE)		
	pH	C:N	$ρ_s$	t/ha
NF	4.89 ± 0.07 (n=9)	17.98 ± 0.52 (n=9)	0.87 ± 0.05 (n=9)	1.88 ± 0.12 (n=18)
EF-FP-NL	5.03 ± 0.19 (n=4)	19.52 ± 0.93 (n=4)	0.64 ± 0.08 (n=4)	5.54 ± 0.90 (n=8)
EF-FP-SF	5.59 ± 0.11 (n=4)	19.46 ± 1.73 (n=4)	0.67 ± 0.06 (n=4)	7.51 ± 0.54 (n=8)
EF-FP-SP	5.85 ± 0.05 (n=4)	18.67 ± 1.72 (n=4)	0.63 ± 0.08 (n=4)	7.25 ± 0.40 (n=8)
EF-IP-NL	4.88 ± 0.15 (n=4)	18.15 ± 1.20 (n=4)	0.63 ± 0.07 (n=4)	6.80 ± 0.74 (n=8)
EF-IP-SF	5.69 ± 0.13 (n=4)	19.13 ± 0.77 (n=4)	0.48 ± 0.02 (n=4)	7.58 ± 0.66 (n=8)
EF-IP-SP	5.68 ± 0.11 (n=4)	17.67 ± 0.58 (n=4)	0.55 ± 0.04 (n=4)	7.98 ± 0.53 (n=8)
EF-FC-NL	4.99 ± 0.07 (n=4)	18.10 ± 0.91 (n=4)	0.61 ± 0.04 (n=4)	10.02 ± 1.14 (n=8)
EF-FC-SF	5.66 ± 0.09 (n=4)	17.19 ± 0.78 (n=4)	0.50 ± 0.03 (n=4)	11.23 ± 1.69 (n=8)
EF-FC-SP	5.82 ± 0.05 (n=4)	18.28 ± 1.11 (n=4)	0.58 ± 0.03 (n=4)	9.54 ± 1.30 (n=8)
Constant	5.18 ± 0.04***	18.22 ± 0.40***	0.73 ± 0.02***	5.02 ± 0.32***
Field (EF)	0.28 ± 0.04***	NS	-0.14 ± 0.02***	3.14 ± 0.32***
Crop (IP)	NS	NS	NS	1.39 ± 0.40**
Crop (FC)	NS	NS	0.06 ± 0.03*	2.10 ± 0.40***
Lime (SF)	0.18 ± 0.05**	NS	NS	NS
Lime (SP)	0.50 ± 0.07***	NS	NS	NS
Crop*Lime	NS	NS	NS	NS
$σ$; R^2	0.23; 79.98%	2.15; 0.00%	0.12; 46.92%	1.70; 73.75%

GLM ($α$=0.05): not significantly different at p>0.05 (NS) and significantly different at p<0.05 (*), p<0.01 (**) and p<0.001 (***) ; $σ$: variance error; R^2: percentage of determination; NF: natural field, EF: experimental field; FP: fertilized prairie, IP: improved prairie, FC: forage crop; NL: control without amendment, SF: sugar foam, SP: sugar foam plus phosphogypsum.
Plant-conservative agriculture of degraded Raña-grassland enhances Oribatida diversity

Table 2. List of oribatids and their percentage of abundance in raña-prairie fields.

Oribatida Duges, 1834	NF (%)	EF (%)
Aphelacarus acarinus (Berlese, 1910)	0.05	0.01
Brachychniunthius pseudoimmaculatus Subias & Gil, 1991 (Brachychniunthidae) (Bps)	0.01	
Brachychniunthius hirtus Moritz, 1976 (Brachychniunthidae) (Bhi)	0.01	
Sellnickiothius cricoides (WeisFogh, 1948) (Brachychniunthidae) (Ser)	0.03	
(*) Cosmochniunthius (C.) reticulatus Grandjean, 1947 (Cosmochniunthidae) (Cre)	0.09	
(*) Phyllozetes emmae (Berlese, 1910) (Cosmochniunthidae) (Pem)	0.01	
Haplochthonius sanctaeluciae (Bermin, 1973 (Haplochthoniidae) (Hsa)	0.01	
Epilohmannia cylindrica cylindrica (Berlese, 1904) (Epilohmanniidae) (Ecy)	0.05	0.90
Acrotritia ardua ardua (Koch, 1841) (Euphthiracaridae) (Aar)	0.01	
Nothusana anuaensis (Canestrini & Fanzago, 1876 (Malaconothridae) (Nan)	0.23	
(** Nothus pulchellus (Berlese, 1910) (Malaconothridae) (Npu)	0.01	
(** Neoppia discreta Ruiz, Minguez & Subias, 1988 (Oppiidae) (Nd)	0.02	
(** Discoppia (Cylindroppia) cylindrica rostroincisa Subias & Rodriguez, 1986 (Oppiidae) (Dei)	0.02	
Microppia minus (Paoli, 1908) (Oppiidae) (Mmi)	0.18	0.72
Serratoppiella intermedia Subias & Rodriguez, 1988 (Oppiidae) (Sin)	0.09	0.90
Ramusella (Recoppia) striaritii striaritii (Mahunka, 1980) (Oppiidae) (Rst)	2.13	2.28
Ramuselloppia anomala Subias & Rodriguez, 1986 (Oppiidae) (Ran)	6.06	6.98
Hypogoppia terricola terricola Subias, 1981 (Oppiidae) (Hte)	3.12	3.47
Tectocepheus velatus sarekensis Trægårdh, 1910 (Tectocepheidae) (Tve)	0.38	5.32
Scutovertex sculptus Michael, 1879 (Scutoverticidae) (Ssc)	0.01	
(** Bipassalozetes bidactylus (Coggi, 1900) (Passalozeidae) (Bbi)	4.54	1.11
Passalozeida africana Grandjean, 1932 (Passalozeidae) (Paf)	4.97	7.78
Passalozeidae hispanicus Mihelcić, 1955 (Passalozeidae) (Phi)	0.09	0.11
(** Passalozeidae ruderalis Minguez & Subias, 1983 (Passalozeidae) (Pru)	0.02	
Berleszetes ornatissimus minus (Mihelcić, 1956) (Microzetidae) (Bor)	0.14	
Ceratozetes (C.) laticuspidatus Menke, 1964 (Ceratozetidae) (Cla)	4.30	3.04
Trichoribates (Lattimellobates) lattimellatus Mihelcić, 1956 (Ceratozetidae) (Tla)	2.27	0.49
Minunthozetes sp. (Punctoribatidae) (Msp)	0.05	
Oribatula (Zygoperibatula) exarata Berlese, 1916 (Oribatulidae) (Oex)	0.05	
Scheloribates (S.) barbatus Mihelcić, 1956 (Scheloribatidae) (Sba)	0.05	
Lauritzenia (Incabates) sinuata (Perez-Diego Jr., 1990) (Haplozetidae) (Lsi)	0.05	
Galumna (G.) tarsipennata Oudemans, 1914 (Galumnidae) (Gal)	0.09	0.17
(** Pergalumna semistriata Semistriata Perez-Diego Jr., 1990 (Galumnidae) (Pse)	0.01	
Pilogalumna ornatula ornatula Grandjean, 1956 (Galumnidae) (Por)	0.01	

Species nomenclature and systematic ordination according Subias (2015); new geographical locations according Subias et al. (2015), for the Extremadura Region (**) and Cáceres Province (*). Natural field (NF), experimental field (EF).

(Zygoperibatula) exarata is the dominant species with nearly 2/3 of the oribatids population.

Contrary to NF findings, in EF we identified 32/34 of the species detected and two primitive oribatids (Haplochthonius sanctaeluciae and Acrotritia ardua) appeared as unique species. Additionally, O. (Z) exarata numbers were reduced to nearly 1/3 of the abundance and less abundant species in NF increased their numbers, as is in the extreme case of Microppia minus that multiplies in 208 the NF values, reaching nearly a fifth of the total individuals.

The analysis of field MCFs of richness indicates that there was a significant increment of Sj in relation to soil sample size (Fig. 2A, Laplace test, p<0.001) and the lack of significance for field factor (shape ± scale, EF: 2.05 ± 64.15, NF: 2, 30 ± 154.92; Chi-square, p>0.05). Additionally, the increment of Sj is due to oribatids abundance (Fig. 2B, Laplace test, p<0.001) and there was no difference between fields (EF: 1.20 ± 2.13, NF: 1.21 ± 2.32; Chi-square, p>0.05).

For the field factor, the α-responses Sj, Hj and Dj fit adequately to normal distribution and Nj to log-normal one (Table 3, Fig. 3). GLM analyses indicates that all α-parameters are influenced by field factor (p<0.001) and a lack of significance of crop, lime or crop and lime interaction into EF-field (Table 3).

Sample richness was positively correlated with herbaceous biomass (r=0.463, p<0.01) and negatively with bulk density (r=-0.472); sample abundance with biomass (r=0.462, p<0.01); and equity and dominance
with pH, bulk density and biomass (pH: \(H_j \), \(r=0.420 \) and \(D_j \) \(r=-0.589 \) and \(D_j \) \(r=0.495, p<0.001 \)). The optimal regression equations (F and t-tests, \(p<0.05 \), normality of standardized residuals, \(p>0.05 \)) are:

\[
S_j = 6.86 - 3.04 \rho_s + 0.145 t/ha (F, p<0.001; t, constant p<0.001, \rho_s \text{ and } t/ha, p<0.05; s=1.31, R^2=27.0%),
\]

\[
\ln N_j = 3.25 + 0.0670 t/ha (F-test, p<0.01; t-tests, constant, p<0.001, t/ha, p<0.01; s=0.50, R^2=14.7%),
\]

\[
H_j = 1.70 - 0.817 \rho_s \text{ (F-test, } p<0.001; \text{ t-tests, constant, } p<0.001, \rho_s, p<0.001; s=0.19, R^2=33.2%), \text{ and}
\]

\[
D_j = 0.196 + 0.350 \rho_s \text{ (F-test, } p<0.001; \text{ t-tests, constant, } p<0.001, \rho, p<0.001; s=0.08, R^2=32.4%).
\]

Agricultural variables and \(\alpha \)-statistics by separate do not securely discriminate fields (discriminant analysis; agricultural: 95.6% accuracy, \(D^2=17.72; \)

Table 3. Effect of selected agricultural practices in the alpha-diversity responses of the oribatids populations and associated coefficients in the fitted equations of the General Linear Model of variance analysis (GLM).

Plot (Field-Crop-Lime)	Observed (mean ± SE)			
	\(S_j \)	\(\ln N_j \)	\(H_j \)	\(D_j \)
NF (n=9)	3.89±0.13	3.28±0.16	0.88±0.05	0.54±0.03
EF (n=36)	6.41±1.26	3.82±0.51	1.25±0.19	0.39±0.08
EF-FP-NL (n=4)	6.53±0.76	3.85±0.19	1.28±0.12	0.39±0.04
EF-FP-SF (n=4)	7.07±0.59	4.20±0.25	1.22±0.11	0.44±0.05
EF-IP-NL (n=4)	7.31±0.76	4.04±0.39	1.30±0.09	0.40±0.03
EF-IP-SF (n=4)	5.88±0.83	3.46±0.37	1.32±0.12	0.30±0.04
EF-IP-SP (n=4)	6.04±0.67	3.78±0.11	1.28±0.11	0.35±0.05
EF-FC-NL (n=4)	6.20±0.51	3.87±0.15	1.14±0.05	0.43±0.02
EF-FC-SF (n=4)	6.18±0.28	4.17±0.15	1.16±0.07	0.39±0.02
EF-FC-SP (n=4)	5.83±0.28	3.40±0.18	1.23±0.05	0.41±0.03

Factor	GLM coefficient (± SE)			
Constant	5.15±0.22***	3.55±0.09***	1.07±0.03***	0.47±0.01***
Field (EF)	1.26±0.22***	0.27±0.09***	0.19±0.03***	-0.08±0.01***
Crop, Lime, Crop*Lime	NS	NS	NS	NS
\(\sigma; R^2 \)	1.17; 40.96%	0.49; 20.59%	0.19; 35.17%	0.08; 39.53%

GLM (\(\alpha=0.05 \)): not significantly different at \(p>0.05 \) (NS) and significantly different at \(p=0.05 \) (*), \(p=0.01 \) (**) and \(p=0.001 \) (***) ; \(\sigma \): variance error; \(R^2 \): percentage of determination; NF: natural field; EF: experimental field; FP: fertilized prairie, IP: improved prairie, FC: forage crop; NL: control without amendment, SF: sugar foam , SP: sugar foam plus phosphogypsum.
Plant-conservative agriculture of degraded Raña-grassland enhances Oribatida diversity

Discussion

Oribatids from the Raña-prairie of Cañamero are commonly reported in the Iberian Peninsula living in a wide variety of soils in xeric habitats (Pérez-Íñigo, 1993; Pérez-Íñigo, 1997; Subías & Arillo, 2001). Fifteen species are previously cited in the related Villuer-

Figure 3. Fits of α-parameters and 95% confidence levels for field factor. A, C and D: normal distributions. B: log-normal distribution. EF: experimental field, NF: natural field.

Figure 4. First two principal components graph of the combined matrix of species abundance (in black), agricultural variables (in red) and α-parameters (in green). A: scatter graph, B: eigenvectors. EF: experimental field, NF: natural field. Species abbreviations in B follow Table 2.
The upper 10 cm of 0.18 m² of sampled soil of the prairie contains 22 species and 2123 individuals (S=22; N=13000 individuals/m²). Last data fall within the classic range for herbaceous biomes of Wallwork (Wallwork, 1980), close to desert grasslands (S=20, N=13000 individuals/m²) and lower than in temperate ones (S=44, N=32000). Comparing the data with other palearctic grasslands in Europe, the raña-prairie richness and/or abundance was: i) higher than dry and cold steppes of Northern Spain (Arroyo et al., 2005); ii) similar to those of humid regions of northern Spain (Corral-Hernández & Iturrondobeitia, 2012), heathlands in the Netherlands (Kardol et al., 2009), with acid soils in Scotland (Cole et al., 2005), loess soils in Germany (Hülsmann & Wolters, 1998), dry alpine meadows (Schatz, 1996) and with calcareous soils in Switzerland (Baur et al., 1996), and iii) less than dense prairies in wetlands of Europe (Weis-Fogh, 1948; Curry & Momen, 1988; Penttinen et al., 2008).

The raña-prairie can be identified as an infertile and unproductive ecosystem of Wardle et al. (2004), with an acid soil, low herbaceous biomass with xerophytic condition and consequent high soil C:N ratio (Fig. 2A; Table 1). The Oribatida community is adapted to agricultural land use, data supported by the presence of four passalozetids (Table 2), species that are common in Iberian agrosystems (Pérez-Íñigo, 1993). In the raña-prairie, O. (Z.) exarata is the dominant species. This oribatid has a southern Palearctic distribution (Subías et al., 2012), where is a common inhabitant of humid prairies (Pérez-Íñigo, 1993). This species possess a relatively thick cuticle with a striated cerotegumental layer that is distinctive of surface dwellers living in sunny habitats with poor vegetation. The strong influence of this species on the community demography is comparable to those of stony environments and mosses in steppes of Crimea (Ukraine) (Seniczak et al., 2012) and for this, the relative abundance of O. (Z.) exarata may be an indicator for soil compaction for raña-type or humid, sunny and stony prairies in the south of Europe where this species is present. Finally, species less adapted to higher soil density and low vegetation cover have smaller populations, are aggregated in more porous and/or protected locus and their finding depends statistically on the sample size (Fig. 2).

The plant-conservative model of the experimental field, preserves the natural development of the herbaceous community by avoiding herbicide treatment, improving soil structure and increasing herbaceous coverage estimated by it aerial biomass (Table 1). As consequence, EF treatments increased samples richness and abundance and structural equit of oribatids community (Fig. 3, Table 3). In relation to NF, EF samples contain 1.65 times more species, individuals are 1.16 times more abundant, the equity index is 1.42 times higher and decrease the dominance index 1.41 times. Our results agree with the postulate that the oribatid respond to changes in soil edaphic factors and dynamics of habitat resources (Butcher et al., 1971; Wardle, 2002) and their response is favourable to improving soil structure and revegetation (Dong-Hui et al., 2007; Minor & Norton, 2008). The prairie-community prefers this new habitat, where the oribatids population grows; the relative abundance of O. (Z) exarata decreases; new populations of small and/or delicate primitive oribatids are detected; and other oribatids less adapted to the original habitat increase their numbers, are more dispersed and establish more equitable demographic relationships.

By a first and strict point of view, traditional agriculture practices can decrease the heterogeneity, richness and abundance of oribatids (Edwards & Lofty, 1975; Siepel & Van de Bund, 1988; Hülsmann & Wolters, 1998; Pandit & Bhattacharya, 2000; Arroyo & Iturrondobeitia, 2006; Minor & Cianciolo, 2007). Contrasting with last assumption, the recuperation of degraded agrosystems is related to a positive and bi-directional relationship between plant biomass and soil animals (Osler & Beattie, 2001; De Deyn et al., 2003; Wardle et al., 2004; Gormsen, 2006; St John et al., 2006). This relationship follows a chronosequence model suggested by Maharning et al. (2009): in the early stage of recuperation increases the species richness and later, their abundance. Oribatids follow the model of Maharning et al. (2009), with an apparent effect at medium and long term (Zaitsev et al., 2006; Kardol et al., 2009). For the last reasons, an increase of the productivity of the raña-prairie, via soil fertilisation, pH correction and/or cropping more productive herbs, results in a positive effect in oribatids populations.

Kardol et al. (2009) point out that the mesofaunistic restoration of degraded ecosystems depends primarily on the colonization of pioneer species from surrounding habitats. In our case of a moderately degraded agrosystem of the raña-prairie, we interpret an alternative model of in-site recolonization from the same habitat. This model, that is complementary or additive to the Kardol et al. (2009) model, is more consequent at short or medium-term scale with the k-strategy of population growth and low-scale capacity of dispersion in the space of the oribatids, and is supported by the statistical equality of expected and observed cumulative richness (Fig. 2). Additionally, previous authors indicated that the species richness is not determined by the identity or species composition of the herbaceous com-
munity (Osler & Beattie, 2001; Porazinska et al., 2003; St John et al., 2006). Our results agree with last premise: there are cumulative richness equality between fields and involving crop treatment (NF wild herbs=EF cultivated herbs; Fig. 2) and sample richness equality into EF (FP wild herbs = IP and FC wild herbs + forage crops; Table 3).

The oribatids have a specific pattern of vertical distribution in soil layers, that is related to soil depth, compaction (Price & Benham Jr, 1977; Perdue & Crossley Jr, 1990) and pore diameter (Vreeken-Buijs et al., 1998; Ducarme et al., 2004; Nielsen et al., 2008). Bulk density is a simple and reliable estimator of the soil physical condition, of its structure, texture and porosity (Chen et al., 1998; Carter & Ball, 1993) and additionally, of an available place into the soil to live for oribatids. The correlation and regression models show a direct correlation between ρs and α-diversity. In EF plots, increases the space for the ‘structure followers’ and among them, the oppiid M. minus. This species has great ecological plasticity and is common in open biotopes in Central and Northern Spain (Subías & Arillo, 2001; Arroyo et al., 2005). M. minus has tendency to vertical migration and occupies deeper organic layers (Moritz, 1963), is poli- and meso-hygrophilous and in relation to pH is oligo-mesophilic (Rajski, 1968), and as is in oppidi, with a relative great capacity of population increase (Maraun & Scheu, 2000). The relative abundance of M. minus can be used as indicative for a more porous and plant covered raña-microhabitat.

Mineralization increases the richness and abundance of mesoarthropods in low-input grasslands (Marshall, 1977; Cole et al., 2005). In our case of a seminatural and degraded raña-prairie, the low or minimum intervention model, that includes an initial tillage and annual fertilization (EF-FP-NL plots), enhances desirable α-parameters, which are positively related with herbaeious biomass. Bardgett & Cook (1998) indicate that grasslands with low human intervention are self-regulating ecosystems with an optimal biotic diversity. Additionally, in acid grasslands of Scotland, Cole et al. (2005) observed an independent and non-additive effect of fertilization and liming in oribatids demography. In our studied case, the minimum intervention model (plot EF-FP-NL with an unique and initial tillage and annual fertilisation) agrees with the optimum of Bardgett & Cook (1998) and, in line with Cole et al. (2005), suggests that above last optimal threshold of local diversity, if biomass is increased by effect of pH correction or crop, there is no apparent effect in population parameters (Table 3).

The soil pH amendment with sugar foam improves its productivity via correcting soil acidity and related phytotoxicity of the soluble aluminium, and adding new nutrients to soil. This treatment gradually increases the pH 0.7-0.9 points between 0-856 days post-treatment and is effective up to 8-9 years (González-Fernández et al., 2003, 2008). Oribatids exhibit a specific response to pH in natural (Moritz, 1963; Hågvar, 1990) and experimental conditions (Van Stralen & Verhoef, 1997). The raña-community shows adaptation to minor pH variations and its meso-acidophilic condition. Phosphogypsum was utilized as complement of sugar foam and source of phosphorus to the soil. However, this mineral contains 12.3 g/kg of fluorine, element that is phytotoxic in relation to its capacity to solubilize the soil aluminium (Mariscal-Sancho et al., 2009). Oribatids are sensitive to soil contamination with heavy metals and fluorine (Vasiliu et al., 1995; Ivan & Vasiliu, 2009) and in a natural grassland, a concentration of 10-15 ppm of fluorine in soil affects their abundance (Vasiliu et al., 1995). In our test, the application of an equivalent dose of 0.585 kg/ha of fluorine has not valuable significion on populations demography.

Finally, we conclude that, at local-scale and from the standpoint of the oribatids, the plant-conservative model applied is a feasible solution to improve both productivity and biodiversity of degraded and unproductive prairies for extensive agriculture and/or livestock use of pasture lands.

References

André HM, Ducarme X, Lebrun P, 2002. Soil biodiversity: myth, reality or conning? Oikos 96: 3-24. http://dx.doi.org/10.1034/j.1600-0706.2002.11216.x

Arroyo J, Iturrodobeitia JC, Rad C, González-Carcedo S, González-Carcedo S, 2005. Oribatid mite (Acari) community structure in steppe habitats of Burgos Province, Central Northern Spain. J Nat Hist 39: 3453-3470. http://dx.doi.org/10.1080/00222930500240346

Arroyo J, Iturrodobeitia JC, 2006. Differences in the diversity of oribatid mite communities in forests and agrosystems lands. Eur J Soil Biol 42: 259-269. http://dx.doi.org/10.1016/j.ejsobi.2006.01.002

Balogh J, Mahunka S, 1983. Primitive oribatids of the palaeartic region. Elsevier Science BV and Akademiai Kiado Publishers, Amsterdam, 372 pp.

Bardgett RD, Cook R, 1998. Functional aspects of soil animal diversity in agricultural grasslands. Appl Soil Ecol 10: 263-276. http://dx.doi.org/10.1016/S0929-1393(98)00125-5

Baur B, Joshi J, Schmid B, Hänggi A, Hänggi A, Borcard D, Stary J, Pedroli-Christen A, Thommen GH, Luka H, Rust-erholz HP et al., 1997. Variation in species richness of plants and diverse groups of invertebrates in three calcareous grasslands of the Swiss Jura Mountains. Rev Suisse Zool 103: 801-833. http://dx.doi.org/10.5962/bhl.part.79977
Beckmann M, 1988. Die Entwicklung der Bodenmesofauna eines Rudereral-Okosystems und ihre Beeinflussung durch Rekultivierung: 1, Oribatiden (Acari: Oribatei). Pedobiol 31: 391-408.

Behan-Pelletier VM, 1999. Oribatid mite biodiversity in agroecosystems: role for bioindication. Agr Ecosyst Environ 74: 411-423. http://dx.doi.org/10.1016/S0167-8809(99)00046-8

Blake GR, Hartge KH, 1986. Bulk density. In: Methods of soil analysis, agronomy monograph 9, 2nd ed; Klute A (ed). pp: 363-375. ASA and SSSA, Madison, WI, USA.

Butcher JW, Snider R, Snider RJ, 1971. Bioecology of edaphic Collembola and Acarina. Annu Rev Entomol 16: 249-288. http://dx.doi.org/10.1146/annurev.en.16.010171.001341

Carter MR, Ball B, 1993. Soil porosity. In: Soil sampling and methods of analyses; Carter MR (ed). pp: 511-588. Can Soc Soil Sci, Lewis Publ., CRC Press, Boca Raton, FL, USA.

Chen Y, Tessier S, Rouffignat J, 1998. Soil bulk density estimation for tillage systems and soil textures. Trans Am Soc Agric Eng 41: 1601-1610. http://dx.doi.org/10.1030/2013.17328

Cole L, Buckland SM, Bardgett RD, 2005. Relating microarthropod community structure and diversity to soil fertility manipulations in temperate grasslands. Soil Biol Biochem 37: 1707-1717. http://dx.doi.org/10.1016/j.soilbio.2005.02.005

Coleman DC, 2001. Soil biota, soil systems and processes. In: Encyclopedia of biodiversity, vol. 5, pp: 305-314. Academic Press. http://dx.doi.org/10.1016/B0-12-226865-2/00245-5

Convention on Biological Diversity, 2010. Strategic Plan for Biodiversity 2011-2020, including Aichi Biodiversity Targets. United Nations Environment Programme. https://www.cbd.int/sp. [25/02/2015].

Corral-Hernández E, Iturrondo-Beitia JC, 2012. Effects of cattle and industries on oribatid mite communities of grassland soil in the Basque Country (Spain). Int J Acarol 38 (3): 217-229. http://dx.doi.org/10.1080/01647954.2011.632382

Curry JP, Momen FM, 1988. The arthropod fauna of grassland on reclaimed cutaway peat in Central Ireland. Pedobiol 32: 99-109.

De Deyn GB, Raaijmakers CEH, Zoomer R, Berg MP, Berg MP, De Ruiter PC, Verhoef HA, Bezemer TM, Van der Putten WH, 2003. Soil invertebrate fauna enhances grassland succession and diversity. Nature 422: 711-717. http://dx.doi.org/10.1038/nature01548

De Vries FT, Thébault E, Liiri M, Birkhofer K, Birkhofer K, Tsiafouli MA, Bjørnlund L, Jørgensen HB, Brady MV, Christensen S et al., 2013. Soil food web properties explain ecosystem services across European land use systems. Proc Nat Acad Sci USA 110 (35): 14296-14301. http://dx.doi.org/10.1073/pnas.1305198110

Dong-Hui W, Wen-Ying Y, Zhen-Ming Y, 2007. Difference in soil mite community characteristics among different vegetation restoration practices in the moderately degraded pasture of Songnen grassland. Acta Ecol Sin 53(4): 607-615. Edwards CA, Lofty JR, 1975. The influence of cultivations on soil animal populations. In: Progress in soil zoology; Venak J (ed). pp: 399-407. Academia Prague. http://dx.doi.org/10.1007/978-94-010-1933-0_44

Espejo-Serrano R, 1978. Estudio del perfil edáfico y caracterización de las superficies tipo raña del sector Cañamero Horcajo de los Montes. Doctoral Thesis, ETS Ingenieros Agronomos, UPM, Madrid, Spain.

FAOSTAT, 2015. FAOSTAT Database. Food and Agriculture Organization of the United Nations, Statistics Division. http://faostat3.fao.org. [25/02/2015].

García Navarro FJ, Amorós Ortiz-Villajos JA, Sánchez-Jiménez CJ, Bravo Martin-Consuegra S, Bravo Martin-Consuegra S, Márquez Cubero E, Jiménez Ballesta R, 2009. Application of sugar foam to red soils in a semiarid Mediterranean environment. Environ Earth Sci 58(3): 603-611. http://dx.doi.org/10.1007/s12665-009-0058-9

Gergóc V, Hufnagel L, 2009. Application of oribatid mites as indicators (Review). Appl Ecol Environ Res 7(1): 79-98. http://dx.doi.org/10.15666/aear/0701_079098

González-Fernández P, Ordóñez-Fernández R, Espejo-Serrano R, Peregrina-Alonso F, 2003. Cambios en el pH del perfil de un suelo ácido cultivado y enmendado con diversos materiales para incrementar su fertilidad. Estud Zona no Saturada Suelo 6: 373-378.

González-Fernández P, Llanos-Triviño I, Jorrín-Novio J, Ordóñez-Fernández R, 2008. Evolution of organic matter and acidity on cropped, limed-cropped and uncropped Mediterranean ultisols. Adv GeoEcol 39: 427-434.

Gormsden D, Hedlund K, Wang HF, 2006. Diversity of soil mite communities when managing plant communities on set-aside arable land. Appl Soil Ecol 31: 147-158. http://dx.doi.org/10.1016/j.apsoil.2005.03.001

Hågvar S, 1990. Reactions to soil acidification in microarthropods: is competition a key factor? Biol Fertil Soils 9: 178-181. http://dx.doi.org/10.1007/BF00335804

Hülsmann A, Wolters V, 1998. The effects of different tillage practices on soil mites, with particular reference to Oribatida. Appl Soil Ecol 9: 327-332. http://dx.doi.org/10.1016/S0929-1393(98)00084-5

Ivan O, Vasiliiu A, 2009. Oribatid mites (Acari, Oribatida)-Bioindicators of forest soils pollution with heavy metals and fluorine. Ann For Res 52: 11-18.

Kardol P, Newton JS, Bezemer TM, Maraun M, Maraun M, Van der Putten WH, 2009. Contrasting diversity patterns of soil mites and nematodes in secondary succession. Acta Oecologica 35: 603-609. http://dx.doi.org/10.1016/j.actao.2009.05.006

Linden DR, Hendrix PF, Coleman DC, Van Vliet PCJ, Van Vliet PCJ, 1994. Faunal indicators of soil quality. In: Defining soil quality for sustainable environment; Doran JW et al. (eds). pp: 91-106. SSSA Spec Publ, Am Soc Agron, Madison, WI, USA.

Luxton M, 1981. Studies on the oribatid mite communities of beech wood soil. IV, Development biology. Pedobiol 21: 312-340.

Maharning AR, Mills AAS, Adl SM, 2009. Soil community changes during secondary succession to naturalized grasslands. Appl Soil Ecol 41: 137-147. http://dx.doi.org/10.1016/j.apsoil.2008.11.003
Manoj-Kumar S, Hazarika BU, Choudhury TR, Verma BC, Verma BC, Bordoloi LJ, 2012. Liming and integrated nutrient management for enhancing maize productivity on acidic soils of Northeast India. Ind J Hill Farming 25(1): 35-37.

Maraun M, Scheu S, 2000. The structure of oribatid mite communities (Acari, Oribatida): patterns, mechanisms and implications for future research. Ecography 23(3): 384-373. http://dx.doi.org/10.1111/j.1600-0587.2000.tb00294.x

Mariscal-Sanchez I, Espejo R, Peregrina F, 2009. Potentially toxic effects of phosphogypsum on palatablexul in Western Spain. J Soil Sci Soc Am 73(1): 146-153. http://dx.doi.org/10.2136/sssaaj2007.0394

Marshall VG, 1977. Effects of manures and fertilizers on soil fauna: a review. Commonwealth Bureau of Soils, Spec Publ 3, CAB, Slough, UK, 79 pp.

Marshall EJP, 1993. Exploiting semi-natural habitats as part of good agricultural practice. In: Scientific basis for codes of good agricultural practice; Jordan VWL (ed). pp: 95-100. Commission of the European Communities, EUR 14957, Luxembourg.

McAleeece N, Gage JDG, Lambshhead PJD, Paterson GLJ, Paterson GLJ, 1997. BioDiversity professional statistics analysis software. London Natural History Museum and Scottish Association for Marine Science, UK. http://www.sams.ac.uk/peter-lamont/biodiversity-pro. [01/02/2016].

Minitab Inc, 2013. Minitab Statistical Software, Release 16.2, USA, 512 pp.

Minor MA, Cianciolo JM, 2007. Diversity of soil mites (Acari: Oribatida, Mesostigmata) along a gradient of land use types in New York. Appl Soil Ecol 35 (1): 140-153. http://dx.doi.org/10.1016/j.apsoil.2006.05.004

Minor MA, Norton RA, 2008. Effects of weed and erosion control on communities of soil mites (Oribatida and Gamasina) in short rotation willow plantings in Central New York. Can J For Res 38: 1061-1070. http://dx.doi.org/10.1139/X07-207

Moore JC, Walter DE, 1988. Arthropod regulation of microand mesobiota in below-ground detrital food webs. Annu Rev Entomol 33: 419-439. http://dx.doi.org/10.1146/annurev.en.33.010188.002223

Moritz M, 1963. Über Oribatidendengemeinschaften Norddeutscher Laubwaldabunden, unter Besonderer Berücksichtigung der die Verteilung Regelmütten Milieubedingungen. Pedobiol 3: 142-24.

Nielsen UN, Osler GHR, Van der Wal R, Campbell CD, Campbell CD, David FRP, 2008. Soil pore volume and the abundance of soil mites in two contrasting habitats. Soil Biol Biochem 40(6): 1538-1541. http://dx.doi.org/10.1016/j.soilbio.2007.12.029

Osler GH, Beattie AJ, 2001. Contribution of oribatid and mesostigmatid soil mites in ecologically based estimates of global species richness. Austral Ecol 26: 70-79.

Osler GHR, Sommerkorn M, 2007. Toward a complete soil C and N cycle, incorporating the soil fauna. Ecol 88(7): 1611-1621. http://dx.doi.org/10.1890/06-1357.1

Pandit S, Bhattacharyya T, 2000. Species composition and dominance diversity of oribatid mites of cultivated and uncultivated fields in Midnapore District. Proc Zool Soc Calcutta 53 (2): 99-104.

Panttinen R, Siira-Pietikäinen A, Huhta V, 2008. Oribatid mites in eleven different habitats in Finland. In: Integrative acarology; Bertrand M et al., (eds). Proc 6th Cong Eur Assoc Acarol, pp: 237-244.

Perdue JC, Crossley Jr DA, 1990. Vertical distribution of soil mites (Acari) in conventional and no-tillage agricultural systems. Biol Fert Soils 9: 135-138. http://dx.doi.org/10.1007/BF00335796

Peregrina F, 2005. Valoración agronómica de residuos industriales y sus calizos, implicaciones sobre la dinámica del complejo de cambio, la disolución del suelo y la productividad en palerxelutul del Oeste de España. Doctoral Thesis, ETS Ingenieros Agronomos, UPM, Madrid.

Pérez-Ilígo C, 1993. Acari, Oribatei, Poronota. Serie Fauna Ibérica, vol 3, Museo Nacional de Ciencias Naturales, CSIC, Madrid, 320 pp.

Pérez-Ilígo C, 1997. Acari, Oribatei, Gymnonota I. Serie Fauna Ibérica, vol 9, Museo Nacional de Ciencias Naturales, CSIC, Madrid, 374 pp.

Petersen H, Luxton M, 1982. A comparative analysis of soil fauna and their role in decomposition processes. Oikos 39: 287-388. http://dx.doi.org/10.2307/3544689

Porazinska DL, Bardgett RD, Blauw MB, Hunt HW, Hunt HW, Parsons AN, Seasted TR, Wall DH, 2003. Relationships at the aboveground-belowground interface: plants, soil biota, and soil processes. Ecol Monogr 73: 377-395. http://dx.doi.org/10.1890/0012-9615(2003)073[0377:RTAIA]2.0.CO;2

Price DW, Benham Jr GS, 1977. Vertical distribution of soil-inhabiting microarthropods in an agricultural habitat in California. Environ Entomol 6 (4): 575-580. http://dx.doi.org/10.1093/ee/6.4.575

Rajski A, 1968. Autecological-zoogeographical analysis of moss mites (Acari, Oribatei) on the basis of fauna in the Poznan environ, Part II. Fragm Faun 14: 277-405. http://dx.doi.org/10.3161/00159301FF1968.14.12.277

Rhoton FE, 2000. Influence of time on soil response to no-till practices. J Soil Sci Soc Am 64: 700-709. http://dx.doi.org/10.2136/sssaj2000.642700x

Schatz H, 1996. Hommilben (Acari, Oribatida) in Trockenrasenböden des Virgentales (Osttirol, Österreich, Zentralalpen). Wiss Mitt Nationalpark Hohe Tauern 2: 97-114.

Schneider K, Renker C, Scheu S, Maraun M, Maraun M, 2004. Feeding biology of oribatid mites: a minireview. Phytophaga 14: 247-256.

Seasted TR, 1984. The role of microarthropods in decomposition and mineralization processes. Annu Rev Entomol 29: 25-46. http://dx.doi.org/10.1146/annurev.en.29.010184.000325

Seniczak S, Seniczaka A, Kaczmarek B, Zelaznac E, Zelaznac E, 2012. Systematic status of Oribatula Berlese, 1895 (Acari: Oribatida: Oribatulidae) in the light of the ontogeny of three species. Int J Acarol 38 (8): 664-680. http://dx.doi.org/10.1080/1647954.2012.719030

Siepel H, Van de Bund CF, 1988. The influence of management practices on the microarthropod community of grassland. Pedobiol 31: 339-354.

Simpson EH, 1949. Measurement of diversity. Nature 163: 688. http://dx.doi.org/10.1038/163688a0
Van Straalen NM, Verhoef HA, 1997. The development of a bioindicator system for a soil acidity based on arthropod pH preferences. J Appl Ecol 34(1): 217-232. http://dx.doi.org/10.2307/2404860

Vasiliu N, Ivan O, Dumitru M, 1995. Edaphic arthropods as bioindicators of agricultural soil pollution with heavy metals and fluorine. Soil Sci 29(2): 81-90.

Von Uexküll HR, Mutert E, 1995. Global extent, development and economic impact of acid soils. Plant Soil 171: 1-15. http://dx.doi.org/10.1007/BF00009558

Vreeken-Buijs MJ, Hassink J, Brussaard L, 1998. Relationships of soil microarthropod biomass with organic matter and pore size distribution in soils under different land use. Soil Biol Biochem 30(1): 97-106. http://dx.doi.org/10.1016/S0038-0717(97)00064-3

Wallwork JA, 1976. The distribution and diversity of soil fauna. Academic Press, London, 355 pp.

Wallwork JA, 1980. Desert soil microarthropods in an “r”-selected system. In: Soil biology as related to land use practices; Dindal D (ed). Proc Seventh Int Soil Zool Coll, ISSS, Washington DC, pp: 759-769.

Wardle DA, 2002. Communities and ecosystems: linking the aboveground and belowground Components. Princeton University Press, Princeton, USA, 408 pp.

Wardle DA, Bardgett RD, Klironomos JN, Setälä H, Setälä H, Van der Putten WH, Wall DH, 2004. Ecological linkages between aboveground and belowground biota: a review. Science 304: 1629-1633. http://dx.doi.org/10.1126/science.1094875

Woolley TA, 1960. Some interesting aspects of oribatid ecology. Ann Entomol Soc Am 53: 251-253. http://dx.doi.org/10.1093/aea/53.2.251

Zaitsev AS, Wolters V, Waldhart R, Dauber J, Dauber J, 2006. Long term succession of oribatid mites after conversion of croplands to grasslands. Appl Soil Ecol 34: 230-239. http://dx.doi.org/10.1016/j.apsoil.2006.01.005