Garkusha, Grigory

Reconstructing rational stable motivic homotopy theory. (English) Zbl 1475.14046
Compos. Math. 155, No. 7, 1424-1443 (2019).

Summary: Using a recent computation of the rational minus part of $SH(k)$ by Ananyevskiy, Levine and Panin, a theorem of Cisinski and Déglise and a version of the Röndigs and Østvær theorem, rational stable motivic homotopy theory over an infinite perfect field of characteristic different from 2 is recovered in this paper from finite Milnor-Witt correspondences in the sense of Calmès and Fasel.

MSC:
14F42 Motivic cohomology; motivic homotopy theory
14F08 Derived categories of sheaves, dg categories, and related constructions in algebraic geometry

Keywords:
Motivic homotopy theory; generalized correspondences; triangulated categories of motives

Full Text: DOI arXiv

References:
[1] Al Hwaeer, H.; Garkusha, G., Grothendieck categories of enriched functors, J. Algebra, 450, 204-241, (2016) - Zbl 1333.18014
[2] Ananyevskiy, A.; Garkusha, G.; Panin, I.
[3] Ananyevskiy, A.; Levine, M.; Panin, I., Witt sheaves and the \mathbb{S}-inverted sphere spectrum, J. Topology, 10, 370-385, (2017) - Zbl 1378.14021
[4] Bachmann, T., Motivic and real étale stable homotopy theory, Compos. Math., 154, 883-917, (2018) - Zbl 1496.14019
[5] Calmès, B.; Fasel, J.
[6] Cisinski, D. C.; Déglise, F., Local and stable homological algebra in Grothendieck abelian categories, Homology Homotopy Appl., 11, 219-260, (2009) - Zbl 1175.18007
[7] Cisinski, D. C.; Déglise, F.
[8] Day, B., On closed categories of functors, Reports of the midwest category seminar, IV, 1-38, (1970), Springer: Springer, Berlin
[9] Dundas, B.; Röndigs, O.; Østvær, P. A., Motivic functors, Doc. Math., 8, 489-525, (2003) - Zbl 1042.55006
[10] Déglise, F.; Fasel, J.
[11] Elmanto, E.; Kolderup, H.
[12] Fasel, J., Groupes de Chow-Witt, Mém. Soc. Math. Fr. (N.S.), 113, (2008) - Zbl 1190.14001
[13] Fasel, J.; Østvær, P. A.
[14] Garkusha, G., Comparing motives of smooth algebraic varieties, C. R. Math. Acad. Sci. Paris, 356, 1100-1105, (2018) - Zbl 1408.19006
[15] Garkusha, G.; Neshitov, A.; Panin, I.
[16] Garkusha, G.; Panin, I., K-motives of algebraic varieties, Homology Homotopy Appl., 14, 211-264, (2012) - Zbl 1284.14029
[17] Garkusha, G.; Panin, I., The triangulated category of K-motives $\text{DK}(-,k)_{eff}(-,k)$, J. K-theory, 14, 103-137, (2014) - Zbl 1327.14106
[18] Garkusha, G.; Panin, I.
[19] Garkusha, G.; Panin, I., On the motivic spectral sequence, J. Inst. Math. Jussieu, 17, 137-170, (2018) - Zbl 1386.14087
[20] Hoyois, M., Spectra and symmetric spectra in general model categories, J. Pure Appl. Algebra, 165, 63-127, (2001) - Zbl 1008.55006
[21] Hoyois, M.; Kelly, S.; Østvær, P. A., The motivic Steenrod algebra in positive characteristic, J. Eur. Math. Soc. (JEMS), 19, 3813-3849, (2017) - Zbl 1386.14087
[22] Jardine, J. F., Motivic symmetric spectra, Doc. Math., 5, 445-552, (2000) - Zbl 1056.19004
[23] Kolderup, H.
[24] Levine, M.; Yang, Y.; Zhao, G.
[25] Morel, F., An introduction to A1 -homotopy theory, 357-442, (2003), Abdus Salam International Centre for Theoretical Physics: Abdus Salam International Centre for Theoretical Physics, Trieste

[26] Morel, F., On the motivic \mathbb{E}_0 of the sphere spectrum, Enriched and motivic homotopy theory, 219-260, (2004), Kluwer: Dordrecht - Zbl 1130.14019

[27] Morel, F., The stable A1 -connectivity theorems, K-theory, 35-1-68, (2006)

[28] Morel, F.; Voevodsky, V., A1 -homotopy theory of schemes, Publ. Math. Inst. Hautes Études Sci., 90, 45-143, (1999) - Zbl 0983.14007

[29] Neeman, A., The Grothendieck duality theorem via Bousfield’s techniques and Brown representability, J. Amer. Math. Soc., 9, 205-236, (1996) - Zbl 0864.14008

[30] Robinson, A., The extraordinary derived category, Math. Z., 196, 231-238, (1987) - Zbl 0628.18007

[31] Röndigs, O.; Östvær, P. A., Modules over motivic cohomology, Adv. Math., 219, 689-727, (2008) - Zbl 1180.14015

[32] Röndigs, O.; Östvær, P. A., A1 -homotopy theory of schemes, Publ. Math. Inst. Hautes Études Sci., 90, 45-143, (1999) - Zbl 0983.14007

[33] Schwede, S.; Shipley, B., Algebras and modules in monoidal model categories, Proc. Lond. Math. Soc. (3), 80, 491-511, (2000) - Zbl 1026.18004

[34] Serre, J.-P., Groupes d’homotopie et classes de groupes abéliens, Ann. of Math. (2), 58, 258-294, (1953) - Zbl 0052.19303

[35] Suslin, A., On the Grayson spectral sequence, Tr. Mat. Inst. Steklova, 241, 218-253, (2003) - Zbl 1019.14010

[36] Suslin, A.; Voevodsky, V., Bloch-Kato conjecture and motivic cohomology with finite coefficients, The arithmetic and geometry of algebraic cycles (Banff, AB, 1998), 117-189, (2000), Kluwer: Dordrecht - Zbl 1005.19001

[37] Voevodsky, V.; Voevodsky, V.; Suslin, A.; Friedlander, E., Cohomological theory of presheaves with transfers, Cycles, transfers and motivic homology theories, (2000), Princeton University Press: Princeton University Press, Princeton, NJ - Zbl 1019.14010

[38] Voevodsky, V.; Voevodsky, V.; Suslin, A.; Friedlander, E., Triangulated category of motives over a field, Cycles, transfers and motivic homology theories, (2000), Princeton University Press: Princeton University Press, Princeton, NJ

[39] Voevodsky, V.

[40] Walker, M. E.

This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.