The association of muscle size, strength and exercise capacity with all-cause mortality in non-dialysis-dependent CKD patients

Emma L. Watson 1 | Rupert W. Major 2,3 | Thomas J. Wilkinson 2 | Neil J. Greening 4 | Douglas W. Gould 2 | Jonathan Barratt 1,3 | Alice C. Smith 2,3

Abstract

Background/Objective: Patients with chronic kidney disease (CKD) are commonly reported to exhibit skeletal muscle wasting, reduced strength and exercise capacity. Evidence from patients with end-stage renal disease (ESRD) demonstrates these factors are associated with mortality, but it is unclear whether this relationship exists earlier in the illness. Our objective was to determine whether muscle size, strength or exercise capacity was associated with all-cause mortality, unscheduled hospital admissions or time to ESRD in patients not requiring dialysis.

Methods: This is a prospective cohort study of 89 patients with CKD stages 3b-5 not requiring renal replacement therapy with a mean follow-up period of 3.3 years in which the contribution of predictors of rectus femoris muscle size, muscle strength, exercise capacity to all-cause mortality rates, progression to ESRD and time to first hospitalization were investigated.

Results: Unadjusted analysis suggested each 1 cm² increase in quadriceps muscle size (measured by ultrasonography cross-sectional area) was associated with a 38% reduced risk for death ($p = .006$), and a 10 m improvement on the incremental shuttle walk test was associated with a 3% reduced risk for death ($p = .04$). However, this relationship was not present in analysis adjusted for age, gender and eGFR. No association was seen between any factor for the development of ESRD or time to first hospitalization.

Conclusion: These results suggest that in this small cohort, muscle size and exercise capacity are associated with mortality when considered alone, but this relationship was not present in adjusted analyses. Further investigation in a larger patient group is warranted.

Keywords
death, fitness, hospitalization, kidney disease, muscle mass
Chronic kidney disease (CKD) is a global health concern with an estimated worldwide prevalence of 11%–13%, with the majority of patients falling within stage 3 (Coresh et al., 2007; Eckardt et al., 2013; Hill et al., 2016). It is well documented that patients with CKD experience skeletal muscle wasting, reduced exercise capacity and poor levels of physical functioning which can contribute to a downward spiral of physical inactivity and deconditioning (Carrero et al., 2008; Harada et al., 2017; Hiraki et al., 2013; John, Sigrist, Taal, & McIntyre, 2013; Painter, 2005; Roshanravan, Gamboa, & Wilund, 2017; Roshanravan et al., 2013). Though these debilitating consequences are associated with reduced quality of life (Tsai et al., 2017) and impact upon independent living, there is also evidence to show they are clinically important and contribute to poor outcomes (Carrero et al., 2008; Desmeules et al., 2004; Dong et al., 2008; Harada et al., 2017; Isoyama et al., 2014).

Muscle mass has consistently been associated with mortality in patients with end-stage renal disease (ESRD), with a higher muscle mass associated with reduced mortality (Carrero et al., 2008; Desmeules et al., 2004; Dong et al., 2008; Isoyama et al., 2014). However, there is conflicting evidence from the non-dialysis population depending upon the method used to determine muscle mass. Some studies report an association between low muscle mass and poor survival (Di Micco et al., 2013; Pereira et al., 2015; Wilson et al., 2014), but this is not always confirmed using objective measures of muscle mass (Navaneethan, Kirwan, Arrigain, & Schold, 2014).

Likewise, better handgrip strength has been associated with reduced mortality in ESRD (Chang et al., 2011; Vogt, Borges, Goes, & Caramori, 2016). Using an adjusted model, dialysis patients with a low handgrip strength had a 98% greater risk of death irrespective of their level of muscle mass. This suggests that muscular strength potentially has a stronger relationship with mortality than the degree of muscle mass (Isoyama et al., 2014). However, again, there is conflicting evidence from the non-dialysis population with some studies observing a relationship between handgrip strength and renal outcomes (Chang et al., 2011; Pereira et al., 2015), but this is not always replicated (Roshanravan et al., 2013).

In addition to strength, performance in physical function tests has also been associated with clinical outcome (Mackinnon et al., 2018). In patients with CKD stages 2–4, every 0.1 m/s decrement in gait speed was associated with a 26% greater risk of death and every one-second reduction in the “timed-up-and-go” assessment with an 8% increased risk of death; results of both tests were at least 30% below normative values (Roshanravan et al., 2013). Finally, exercise capacity, which is reduced in CKD patients (Faria Rde et al., 2013; Johansen & Painter, 2012), has also been shown to be a good predictor of mortality (Myers et al., 2002; Sietsema, Amato, Adler, & Brass, 2004). Sietsema and colleagues demonstrated a VO$_{2peak}$ > 17.5 ml/kg/min was a powerful predictor of survival in dialysis patients, but data on the association between exercise capacity and mortality in patients at earlier stages of CKD are lacking.

Research has shown that cardiorespiratory fitness, assessed using a Bruce protocol, may modify the association between eGFR and mortality (Gulati, Black, Arnsdorf, Shaw, & Bakris, 2012). Furthermore, muscle mass, strength and physical functioning are all modifiable risk factors that can be easily targeted with relatively low-cost interventions such as exercise. Understanding the contributions these factors make to clinical outcomes in CKD patients not yet requiring dialysis would be vital to identifying patients at greater risk, and whom would benefit from such intervention. However, at the present time this information is lacking. This study provides these additional data on whether such relationships exist at this earlier stage of the illness.

The aim of the current study was to determine whether muscle size, strength or exercise capacity was associated with patient outcomes of all-cause mortality, unscheduled hospital admissions or time to ESRD. We hypothesized that measurements of muscle size, muscular strength and exercise capacity would be associated with all-cause mortality, unscheduled hospital admission and time to ESRD in patients with CKD stages 3b-5.

2 | METHODS

2.1 | Study design and patient recruitment

This is a secondary analysis of baseline data collected as part of two exercise training studies conducted by our group (Watson et al., 2015, 2018). Patients were recruited to ethically approved studies, and all measures and follow-up were performed prospectively. Both studies were approved by a national research ethics committee (approval numbers: 10/H0406/50; 13/EM/0344) and were conducted in accordance with the declaration of Helsinki.

The first cohort of CKD patients (stages 3b-4) were recruited between November 2010 and February 2012. The second cohort (stages 3b-5) were recruited between December 2013 and April 2016. Both cohorts were recruited from nephrology outpatient clinics at Leicester General Hospital, UK. Exclusion criteria included <40 years in cohort 1 (Watson et al., 2015) <18 years in cohort 2 (Watson et al., 2018), myocardial infarction within the last 6 months, any unstable chronic condition, physical impairment that would prevent them from taking part in the intervention, insufficient command of English and/or an inability to give informed consent.

2.2 | Assessments

Upon entry to the study, both cohorts underwent the following baseline assessments of muscle size, strength and exercise capacity.

2.3 | Quadriceps muscle size

Rectus femoris anatomical cross-sectional area (RF-ACSA) was determined using B-mode 2-D ultrasonography (Hitachi EUB-6500; probe frequency 7.5 MHz) (Watson et al., 2015, 2018; Wilkinson, Gould, WATSON ET AL.
Nixon, Watson, & Smith, 2018) which has recently been validated against MRI (Gould et al., 2019). Images were captured at the mid-point between the greater trochanter and the superior aspect of the patella on the midsagittal plane of the thigh. Three images were acquired with <10% variation, and the mean ACSA in cm² was recorded and RF-ACSA index calculated (RF-ACSA corrected to height m²). This is an easy measure to carry out that requires minimal training and can be performed at the patient’s bedside or at a routine clinic appointment. The rectus femoris quadriceps muscle was chosen because of its ease to be measured by ultrasound and involvement in walking and functional tasks, such as rising from a chair. Therefore, decrements in the size and/or function of this muscle could impact upon physical functioning and engagement in physical activity.

2.4 | Exercise capacity

Exercise capacity was assessed using the 10-m progressive incremental shuttle walk test (ISWT) described previously (Watson et al., 2015, 2018; Wilkinson et al., 2019) and has been used in a variety of illnesses (Andersen, Vinther, Poulsen, & Mellemgaard, 2011; Singh, Morgan, Scott, Walters, & Hardman, 1992; Walker et al., 2000). We recently validated the ISWT against VO²peak in non-dialysis CKD (Wilkinson et al., 2019). Following a familiarization, patients were played standardized instructions and asked to walk for as long as possible along the 10-m course keeping up with the externally paced beeps which became progressively quicker. The test was terminated upon failure to maintain the required pace, or when patients reached exhaustion. Total distance covered in metres was recorded.

2.5 | Muscular strength

Patients performed either a 5-repetition maximum (5-RM) (Watson et al., 2018) or 10-repetition maximum tests (10-RM) (Watson et al., 2015) on leg extension equipment (Technogym, Italy) in order to predict maximal strength. This was the weight that patients were unable to lift more than 5 or 10 times with good form. Maximal leg extension strength (e1-RM) was estimated using predication equations (Brzycki, 1993).

2.6 | Patient outcomes

The most recently recorded blood and urine test results prior to the patient’s consent date were extracted from the electronic patient records. This included serum creatinine and urine protein to creatinine ratio (PCR). Estimated glomerular filtration rate (eGFR) was calculated from the serum creatinine using the EPI-CKD formula. Patients were then followed from consent until 4 December 2017 when data relating to death, dialysis initiation (criteria for which was a clinical decision), or transplantation, and the date of first emergency hospitalization following study consent were extracted from hospital records.

2.7 | Statistical analysis

A composite endpoint of either death, hospitalization or progression to ESRD during the follow-up period was used as the primary measure in this study. Data are reported for continuous outcomes as mean ± standard deviation (SD) and for categorical variables as counts and percentage. Spearmann’s correlation coefficient was used to assess the association between muscle size, strength, exercise capacity and age, eGFR and PCR. Unadjusted (Model 1) and adjusted (Model 2) hazard ratios for mortality, time to first hospitalization and development of end-stage renal disease were calculated using Cox proportional hazard models for the available outcomes. Adjusted models included the individual measures of RF-ACSA, e1-RM and ISWT as well as the potential confounders of age, gender and EPI eGFR. The proportional hazards assumption was tested using log–log survival plots, observed Kaplan–Meier survival curves versus Cox predicted curves and Schoenfeld residuals. All statistical analysis was performed using Stata 15.0, with p < .05 considered statistically significant.

3 | RESULTS

3.1 | Cohort characteristics

In total, 89 patients were included in the analysis, 38 from cohort 1 and 51 from cohort 2. The mean age of the entire cohort was 62.8 ± 11.0 years (with only 3 patients in cohort 2 aged between 18–40 years) and 45% were female. The mean eGFR was 23.9 ± 8.4 ml/min/1.73 m², with 25% of patients falling within stage 3b (n = 22), 67% within stage 4 (n = 60) and 8% within stage 5 (n = 7), but not yet requiring dialysis. These small numbers prevented further sub-group analysis. The mean follow-up time was 3.3 ± 1.8 years. There was no loss to follow-up. Full patient characteristics can be found in Table 1.

3.2 | Associations with all-cause mortality

Results from Cox proportional hazard models can be found in Table 2 and Figures 1 and 2. 16 patients (18% of the total cohort) died during the follow-up period. The strongest predictor of death in this cohort was age (HR 1.16, 95% CI 1.08–1.25, p < .001). Model 1 showed every 1 cm² increase in RF-ACSA was associated with a reduced risk of death by approximately 38% (HR 0.62, 95% CI 0.44–0.87, p = .006), an association that strengthened when muscle size was corrected for body surface area. An improved performance in the ISWT by 10 m was also significantly associated with a reduced risk of death by approximately 3% (HR 0.97, 95% CI 0.94–1.00, p = .04). There was an association seen between strength and mortality (HR 0.95, 95% CI 0.89–1.01, p = .09) whereby a 1 kg increase in maximum strength reduced mortality risk by 5%, but this was not significant. These associations were no longer observed when adjusting for confounding variables (Model 2).
TABLE 1 Patient characteristics of the total cohort

Characteristics	Mean/n	SD/%
n	89	
Age (years)	62.8	11.0
Female (n)	40	44.9%
EPI eGFR (ml/min/1.73 m²)	23.9	8.4
Median EPI eGFR (ml/min/1.73 m²)	23.1	18.0–29.6
Ethnicity (n)	66	74.2%
White British (n)	20	22.5%
South Asian (n)	2	2.2%
Black Caribbean (n)	1	1.1%
Other		
Median PCR	127.0	42.9–242.6
Hypertension (n)	55	61.8%
Diabetes mellitus (n)	22	24.7%
Cardiovascular disease (n)	20	22.5%
Cause of chronic kidney disease		
Glomerulonephritis	22	23.9%
Interstitial nephritis	7	7.6%
Cardiovascular disease	6	6.5%
Polycystic kidney disease	6	6.5%
Diabetic nephropathy	5	5.4%
Other	4	4.4%
Unknown aetiology	39	43.8%
Physical function assessment		
ISWT (m)	375	193
RF-ACSA (cm²)	7.2	2.6
RF-ACSA index (cm²/m²)	2.6	0.8
e-1RM (kg)	47.0	21.7
Outcomes		
Follow-up (years)	3.3	1.8
Median follow-up (years)	2.8	2.0–4.1
Deaths (n)	16	18.0%
ESRD (n)	21	23.6%
Hospitalization (n)	51	51.7%

Note: Data for categorical variables are presented as n and percentage, and data for continuous variables are presented as mean ± standard deviation unless otherwise stated.

Abbreviations: e-1RM, estimated one-repetition maximum; eGFR, estimated glomerular filtration rate; ESRD, end-stage renal disease; ISWT, incremental shuttle walk test; PCR, protein/creatinine ratio; RF-CSA, rectus femoris cross-sectional area.

3.3 Associations with ESRD and hospitalization rates

Within the follow-up period, 21 patients (24% of the total cohort) reached ESRD. The strongest predictor of ESRD was level of renal function at study consent (HR 0.90, 95% CI 0.85–0.96, p = .001). Other factors that showed an association with ESRD were age (HR 0.96, 95% CI 0.92–1.00, p = .05), presence of cardiovascular disease (HR 0.14, 95% CI 0.02–1.05, p = .05) and hypertension (HR 2.74, 95% CI 0.92–8.2, p = .07).

Neither model showed any associations between muscle size (p = .4), strength (p = .1) or exercise capacity (p = .3; Table 3) and the development of ESRD. The rate of unplanned hospital admissions within this cohort was relatively high, 51 patients (57%) had an unscheduled admission within the follow-up period. There were also no associations between muscle size (p = .2), strength (p = .4) or exercise capacity (p = .5) and time to first admission and either before or after adjustment for confounders (Table 3).

3.4 Association with clinical data

A small, but significant association was seen between age and RF-ACSA index (rho = −0.47; p < .001), and ISWT performance (rho = −0.44, p < .001). A significant association was seen between RF-ACSA index and ISWT performance (rho = 0.40; p < .001) and e-1RM (rho = 0.55; p < .001). No associations were seen between strength and any of the clinical data, or between PCR or eGFR and any measure of physical function (Table 3).

4 DISCUSSION

The aim of the current study was to determine whether quadriceps muscle size, strength or exercise capacity was associated with patient outcomes defined as all-cause mortality, development of ESRD and unscheduled hospital admissions. The results presented here demonstrate that when considered alone, reduced quadriceps size and exercise capacity are both associated with higher mortality rates in patients with CKD stages 3b-5; however, this association is no longer present once adjustments for age, gender and eGFR were made. This suggests that whilst muscle size and exercise capacity may be important contributors to mortality, they are not the predominant factors. These data did show that muscle size and exercise capacity have a profound relationship with age, as would be expected.

Previous evidence suggests that a strong relationship exists between the degree of muscle mass and mortality in dialysis patients (Carrero et al., 2008; Desmeules et al., 2004; Dong et al., 2008; Isoyama et al., 2014), with fewer studies investigating this relationship in patients not yet requiring renal replacement therapy. These earlier stage patients make up a significant proportion of the CKD population and for whom there may be an opportunity for early intervention. Recently, Androga and colleagues (Androga, Sharma, Amodu, & Abramowitz, 2017) have shown in an adjusted analysis, that sarcopenia was associated with increased mortality in predialysis CKD patients, but that this relationship was modified by the presence of obesity. Two studies using urinary creatinine as an approximate of muscle mass have reported an association between a low urinary creatinine level and reduced patient survival in an
adjusted analysis, but questions remain over the validity of using this to accurately predict muscle mass in this population (Di Micco et al., 2013; Wilson et al., 2014). Pereira and colleagues (Pereira et al., 2015) demonstrated that sarcopenia was an independent predictor of mortality in an adjusted model with sarcopenic patients exhibiting a three-fold greater risk of mortality than patients with a greater muscle mass.

However, not all studies report such an association. Navaneethan and colleagues reported an association between lean body mass, measured by DXA and mortality in non-CKD but not CKD patients (Navaneethan et al., 2014). Our data suggest a greater quadriceps cross-sectional area is associated with an increased likelihood of survival, but only when considered alone. We observed that every 1 cm² increase in RF-ACSA conferred a 38% reduction in mortality risk. To put this into context, we have recently reported 12 weeks of combined aerobic and resistance exercise resulted in mean increase in RF-ACSA of 0.7 cm² with a maximum increase of 2.0 cm² observed (Watson et al., 2018). Following adjusted analysis, the magnitude of risk associated with low muscle mass was still large (18% increase in mortality for every 1 cm² reduction in muscle size), albeit not significant. This suggests that in these patients, other factors, such as age, are stronger predictors of mortality, but nevertheless, muscle size may still be an important target for early intervention to reduce mortality in CKD.

TABLE 2
Unadjusted and adjusted hazard ratios and confidence intervals for the development of ESRD, time to first unscheduled hospitalization and all-cause mortality in relation in muscle size (RF-ACSA, RF-ACSA index), muscular strength (e-1RM) and exercise capacity (ISWT) per unit of measurement

	Model 1: Unadjusted analysis	Model 2: Adjusted analysis		
	HR (95% CI)	p Value	HR (95% CI)	p Value
Development of ESRD				
RF-ACSA (per cm²)	0.92 (0.76–1.10)	.4	0.90 (0.71–1.14)	.4
RF-ACSA index (per cm²/m²)	0.81 (0.44–1.50)	.5	0.66 (0.29–1.48)	.3
e-1RM (per kg)	0.98 (0.95–1.00)	.1	0.98 (0.95–1.02)	.4
ISWT (per 10 m)	1.01 (0.99–1.03)	.3	1.02 (1.02–1.05)	.1
Time to first hospitalization				
RF-ACSA (per cm²)	0.92 (0.82–1.05)	.2	0.92 (0.79–1.08)	.3
RF-ACSA index (per cm²/m²)	0.71 (0.47–1.07)	.1	0.75 (0.46–1.23)	.3
e-1RM (per kg)	0.99 (0.98–1.01)	.4	0.99 (0.97–1.01)	.2
ISWT (per 10 m)	1.00 (0.98–1.01)	.5	0.99 (0.98–1.01)	.6
All-cause mortality				
RF-ACSA (per cm²)	0.62 (0.44–0.87)	.006†	0.82 (0.56–1.20)	.3
RF-ACSA index (per cm²/m²)	0.15 (0.05–0.45)	.001†	0.48 (0.15–1.55)	.2
e-1RM (per kg)	0.95 (0.89–1.01)	.09	0.96 (0.89–1.04)	.3
ISWT (per 10 m)	0.97 (0.94–1.00)	.04†	1.00 (0.99–1.00)	.8

Abbreviations: 95% CI, 95% confidence interval; e-1RM, estimated one-repetition maximum; HR, hazard ratio; ISWT, incremental shuttle walk test; Model 2: adjusted multivariable analysis adjusted for age, gender and EPI eGFR; RF-ACSA, rectus femoris anatomical cross-sectional area. Model 1: unadjusted analysis.

* Denotes p < .05.
† Denotes p < .001.
previously demonstrated that patients exhibited a 32 m and 28 m improvement ISWT performance following 12 weeks of combined exercise and aerobic-only exercise, respectively (Watson et al., 2018), suggesting that exercise interventions may beneficially impact upon patient outcome. However, this association also disappeared following adjusted analysis, suggesting that while distance walked during this test is a marker of increased mortality risk, there are other factors to consider. Associations between exercise capacity and mortality have been made before. Roshanravan and colleagues (Roshanravan et al., 2013) previously observed in a fully adjusted analysis every 0.1 m/s decrement in gait speed was associated with a 26% increase in mortality risk and for every second longer patients took to complete the “timed-up-and-go” assessment there was an increased risk of 8% in CKD patients’ stages 2–4. Recently Greenwood and colleagues reported an improvement of 50 m in the ISWT was associated with a 40% reduction in the risk of morbidity and mortality (Greenwood et al., 2019).

The relationship between strength and mortality has been investigated previously, but the results are conflicting depending upon patients studied and the method by which muscle strength was assessed, which was largely by handgrip strength. Interestingly, Isoyama and colleagues (Isoyama et al., 2014) found that the association between muscular strength and mortality was stronger than that for muscle mass. Unlike these previous studies, we have measured lower extremity strength. To our knowledge, the relationship between lower extremity strength and mortality has not been investigated previously in CKD. We did not include healthy participants in our analysis, so are unable to comment whether the lack of an observation of a relationship between strength and mortality can be explained by a lack of a decrement of strength in patients at this stage of CKD. This would be an important comparison to make.

This study is limited by a relatively small sample size, meaning it may be underpowered to detect more complex relationships in multivariate analyses. The relationships we have observed here were only seen in unadjusted analysis and are therefore not as strong as those observed in previous studies where relationships have been seen in adjusted analysis. It might be that relationships only emerge when patients are stratified into low and adequate muscle size for example, as previously observed in chronic obstructive pulmonary disease (COPD) (Greening et al., 2015). Diabetes is highly prevalent in CKD and was confirmed in 25% of our cohort. Diabetes is associated with metabolic derangement, which is likely to also impact upon the outcomes we have defined here. Unfortunately, our sample size has prevented us from performing these sub-group analyses, but they remain an important future research question. Our study is also limited by a lack of ethnic diversity. The majority of patients in our cohort were White British which may limit the results’ generalizability.

In conclusion, we have shown that in CKD patients’ stages 3b-5 not requiring dialysis, muscle size and exercise capacity are associated with mortality when considered alone, but in adjusted analysis this relationship was not present. Given our small sample size, we believe the investigation into the role of muscle size and exercise capacity on clinical outcomes in larger cohorts of non-ESRD patients is warranted. Previous studies in dialysis patients clearly show a relationship between muscle size, strength and exercise capacity with patient outcomes and it is therefore reasonable to consider early intervention in a predialysis population to reduce the effects of CKD-associated muscle wasting and decrements in physical functioning.

FIGURE 2 Kaplan–Meier survival curve for mortality and performance in the ISWT. ISWT, incremental shuttle walk test

TABLE 3 Spearman’s correlation coefficient to test the association between measures of muscle size corrected for body surface area (RF-ACSA/height²), strength (e-1RM) and exercise capacity (ISWT) with EPI eGFR, age and PCR

Test	Age	eGFR	PCR	RF-ACSA index		
	rho	p	rho	p	rho	p
RF-ACSA index	-0.47	.001	0.22	.5	-0.11	.44
e-1RM	-0.22	.07	0.09	.5	-0.25	.1
ISWT	-0.44	.001	0.1	.3	-0.03	.8

Abbreviations: e-1RM, estimated one-repetition maximum; eGFR, estimated glomerular filtration rate; ISWT, incremental shuttle walk test; PCR, protein/creatinine ratio; RF-ACSA, rectus femoris anatomical cross-sectional area.

Denotes p < .001.
ACKNOWLEDGMENTS

The authors would like to thank Soteris Xenophontos and Barbara Perez Vogt for their contribution to the collection of some of the outcome measures presented here. This report is independent research supported by the National Institute for Health Research Leicester Biomedical Research Centre. The views expressed are those of the author(s) and not necessarily those of the NHS, the National Institute for Health Research Leicester BRC or the Department of Health. Dr Greening is funded by a NIHR postdoctoral fellowship (PDF-2017-10-052). Dr Emma Watson is funded by Kidney Research UK (PDF2/2015). Dr Major is funded by Kidney Research UK (TF2/2015). We gratefully acknowledge funding support from the Stoneygate Trust.

CONFLICT OF INTEREST

The authors state there are no financial conflicts of interest.

ORCID

Emma L. Watson https://orcid.org/0000-0002-3869-8972

REFERENCES

Andersen, A. H., Vinther, A., Poulsen, L. L., & Mellemgaard, A. (2011). Do patients with lung cancer benefit from physical exercise? Acta Oncologica, 50(2), 307–313. https://doi.org/10.3109/0284186X.2010.529461

Androga, L., Sharma, D., Amodu, A., & Abramowitz, M. K. (2017). Sarcopenia, obesity, and mortality in US adults with and without chronic kidney disease. *Kidney International Reports*, 2(2), 201–211. https://doi.org/10.1016/j.ekir.2016.10.008

Bryzcki, M. (1993). Strength testing–predicting a one-rep max from reps to fatigue. *Journal of Physical Education, Recreation & Dance*, 64, 88–90. https://doi.org/10.1080/07303084.1993.10606684

Carrero, J. J., Chmielewski, M., Axelsson, J., Snaeda, S., Heimburger, O., Barany, P., ... Qureshi, A. R. (2008). Muscle atrophy, inflammation and clinical outcome in incident and prevalent dialysis patients. *Clinical Nutrition*, 27(4), 557–564. https://doi.org/10.1016/j.clnu.2008.04.007

Chang, Y. T., Wu, H. L., Guo, H. R., Cheng, Y. Y., Tseng, C. C., Wang, M. C., ... Sun, J. M. (2011). Handgrip strength is an independent predictor of renal outcomes in patients with chronic kidney diseases. *Nephrology, Dialysis, Transplantation*, 26(11), 3588–3595. https://doi.org/10.1093/ndt/gfr013

Coresh, J., Selvin, E., Stevens, L. A., Manzi, J., Kusek, J. W., Eggers, P., ... Levey, A. S. (2007). Prevalence of chronic kidney disease in the United States. *JAMA*, 298(17), 2038–2047. https://doi.org/10.1001/jama.298.17.2038

Desmeules, S., Levesque, R., Jaussent, I., Leray-Moragues, H., Chalabi, L., & Canaud, B. (2004). Creatinine index and lean body mass are excellent predictors of long-term survival in haemodialysis patients. *Nephrology, Dialysis, Transplantation*, 19(5), 1182–1189. https://doi.org/10.1093/ndt/gfh016

Di Micco, L., Quinn, R. R., Ronksley, P. E., Bellizzi, V., Lewin, A. M., Cianciaruso, B., ... Alberta Kidney Disease Network (AKDN) (2013). Urine creatinine excretion and clinical outcomes in CKD. *Clinical Journal of the American Society of Nephrology*, 8(11), 1877–1883. https://doi.org/10.2215/CJN.01350213

Dong, J., Li, Y. J., Lu, X. H., Gan, H. P., Zuo, L., & Wang, H. Y. (2008). Correlations of lean body mass with nutritional indicators and mortality in patients on peritoneal dialysis. *Kidney International*, 73(3), 334–340. https://doi.org/10.1038/sj.ki.5002644

Eckardt, K. U., Coresh, J., Devuyst, O., Johnson, R. J., Kottgen, A., Levey, A. S., & Levin, A. (2013). Evolving importance of kidney disease: From subspeciality to global health burden. *Lancet*, 382(9887), 158–169. https://doi.org/10.1016/S0140-6736(13)60439-0

Faria Rde, S., Fernandes, N., Lovisi, J. C., Reboredo Mde, M., Marta, M. S., Pinheiro Bdo, V., & Bastos, M. G. (2013). Pulmonary function and exercise tolerance are related to disease severity in pre-dialytic patients with chronic kidney disease: A cross-sectional study. *BMC Nephrology*, 14, 184–2369-14-184. https://doi.org/10.1186/1471-2369-14-184

Gould, D. W., Watson, E. L., Wilkinson, T. J., Wormleighton, J., Xenophontos, S., Viana, J. L., & Smith, A. C. (2019). Ultrasound assessment of muscle mass in response to exercise training in chronic kidney disease: A comparison with MRI. *Journal of Cachexia, Sarcopenia and Muscle*, 10(4), 748–755. https://doi.org/10.1002/jcm.12429

Greening, N. J., Harvey-Dunstan, T. C., Chaplin, E. J., Vincent, E. E., Morgan, M. D., Singh, S. J., & Steiner, M. C. (2015). Bedside assessment of quadriceps muscle by ultrasound after admission for acute exacerbations of chronic respiratory disease. *American Journal of Respiratory and Critical Care Medicine*, 192(7), 810–816. https://doi.org/10.1164/rccm.201503-0353OC

Greenwood, S. A., Castle, E., Lindup, H., Mayes, J., Waite, I., Grant, D., ... MacLaughlin, H. L. (2019). Mortality and morbidity following exercise-based renal rehabilitation in patients with chronic kidney disease: The effect of programme completion and change in exercise capacity. *Nephrology, Dialysis, Transplantation*, 34(4), 618–625. https://doi.org/10.1093/ndt/gfy351

Gulati, M., Black, H. R., Arnsdorf, M. F., Shaw, L. J., & Bakris, G. L. (2012). Kidney dysfunction, cardiorespiratory fitness, and the risk of death in women. *Journal of Women’s Health* (2002), 21(9), 917–924.

Harada, K., Suzuki, S., Ishii, H., Aoki, T., Hirayama, K., Shibata, Y., ... Shimbo, Y. (2017). Impact of skeletal muscle mass on long-term adverse cardiovascular outcomes in patients with chronic kidney disease. *The American Journal of Cardiology*, 119(8), 1275–1280.

Hill, N. R., Fatoba, S. T., Oke, J. L., Hirst, J. A., O’Callaghan, C. A., Lasserson, D. S., & Hobbs, F. D. (2016). Global prevalence of chronic kidney disease – A systematic review and meta-analysis. *PloS One*, 11(7), e0158765. https://doi.org/10.1371/journal.pone.0158765

Hiraki, K., Yasuda, T., Hotta, C., Izawa, K. P., Morio, Y., Watanabe, S., ... Kimura, K. (2013). Decreased physical function in pre-dialysis patients with chronic kidney disease. *Clinical and Experimental Nephrology*, 17(2), 225–231. https://doi.org/10.1007/s10157-012-0681-8

Isoyama, N., Qureshi, A. R., Avesani, C. M., Lindholm, B., Barany, P., Heimburger, O., ... Carrero, J. J. (2014). Comparative associations of muscle mass and muscle strength with mortality in dialysis patients. *Clinical Journal of the American Society of Nephrology*, 9(10), 1720–1728. https://doi.org/10.2215/CJN.01052013

Johansen, K. L., & Painter, P. (2012). Exercise in Individuals with CKD. *Journal of Physical Education, Recreation & Dance*, 50(2), 201–211. https://doi.org/10.3109/0284186X.2010.529461

John, S. G., Sigrist, M. K., Taal, M. W., & McIntyre, C. W. (2013). Natural history of skeletal muscle mass changes in chronic kidney disease stage 4 and 5 patients: An observational study. *PloS One*, 8(5), e56572. https://doi.org/10.1371/journal.pone.0056572

MacKinnon, H., Wilkinson, T. J., Clarke, A. L., Gould, D. W., O’Sullivan, T. F., Xenophontos, S., ... Smith, A. C. (2018). The association of physical function and physical activity with all-cause mortality and adverse clinical outcomes in non-dialysis chronic kidney disease: A systematic review. *Therapeutic Advances in Chronic Disease*, 9(11), 209–226.

Myers, J., Prakash, M., Frielicher, V., Do, D., Partington, S., & Atwood, J. E. (2002). Exercise capacity and mortality among men referred for exercise testing. *The New England Journal of Medicine*, 346(11), 793–801. https://doi.org/10.1056/NEJMoa011858
Navaneethan, S. D., Kirwan, J. P., Arrigain, S., & Schold, J. D. (2014). Adiposity Measures, Lean Body Mass, Physical Activity and Mortality: NHANES 1999–2004. BMC Nephrology, 15, 108–2369-15-108.

Painter, P. (2005). Physical functioning in end-stage renal disease patients: Update 2005. Hemodialysis International, 9(3), 218–235. https://doi.org/10.1111/j.1523-1755.2005.01136.x

Pereira, R. A., Cordeiro, A. C., Avesani, C. M., Carrero, J. J., Lindholm, B., Amparo, F. C., ... Kamimura, M. A. (2015). Sarcopenia in chronic kidney disease on conservative therapy: Prevalence and association with mortality. Nephrology, Dialysis, Transplantation, 30(10), 1718–1725. https://doi.org/10.1093/ndt/gfv133

Roshanravan, B., Gamboa, J., & Wilund, K. (2017). Exercise and CKD: Skeletal muscle dysfunction and practical application of exercise to prevent and treat physical impairments in CKD. American Journal of Kidney Diseases, 69(6), 837–852. https://doi.org/10.1053/j.ajkd.2017.01.051

Roshanravan, B., Robinson-Cohen, C., Patel, K. V., Ayers, E., Littman, A. J., de Boer, I. H., ... Seliger, S. (2013). Association between physical performance and all-cause mortality in CKD. Journal of the American Society of Nephrology, 24(5), 822–830. https://doi.org/10.1681/ASN.2012070702

Sietsema, K. E., Amato, A., Adler, S. G., & Brass, E. P. (2004). Exercise capacity as a predictor of survival among ambulatory patients with end-stage renal disease. Kidney International, 65(2), 719–724. https://doi.org/10.1111/j.1523-1755.2004.00411.x

Singh, S. J., Morgan, M. D., Scott, S., Walters, D., & Hardman, A. E. (1992). Development of a shuttle walking test of disability in patients with chronic airways obstruction. Thorax, 47(12), 1019–1024. https://doi.org/10.1136/thx.47.12.1019

Tsai, Y. C., Chen, H. M., Hsiao, S. M., Chen, C. S., Lin, M. Y., Chiu, Y. W., ... Kuo, M. C. (2017). Association of physical activity with cardiovascular and renal outcomes and quality of life in chronic kidney disease. PLoS One, 12(8), e0183642. https://doi.org/10.1371/journal.pone.0183642

Vogt, B. P., Borges, M. C. C., Goes, C. R., & Caramori, J. C. T. (2016). Handgrip strength is an independent predictor of all-cause mortality in maintenance dialysis patients. Clinical Nutrition (Edinburgh, Scotland), 35(6), 1429–1433. https://doi.org/10.1016/j.clnu.2016.03.020

Walker, R. D., Nawaz, S., Wilkinson, C. H., Saxton, J. M., Pockley, A. G., & Wood, R. F. (2000). Influence of upper- and lower-limb exercise training on cardiovascular function and walking distances in patients with intermittent claudication. Journal of Vascular Surgery, 31(4), 662–669. https://doi.org/10.1067/mva.2000.104104

Watson, E. L., Gould, D. W., Wilkinson, T. J., Xenophonotos, S., Clarke, A. L., Vogt, B. P., ... Smith, A. C. (2018). Twelve-week combined resistance and aerobic training confers greater benefits than aerobic training alone in nondialysis CKD. American Journal of Physiology. Renal Physiology, 314(6), F1188–F1196. https://doi.org/10.1152/ajprenal.00012.2018

Watson, E. L., Greening, N. J., Viana, J. L., Aulakh, J., Bodicoat, D. H., Barratt, J., ... Smith, A. C. (2015). Progressive resistance exercise training in CKD: A feasibility study. American Journal of Kidney Diseases, 66(2), 249–257. https://doi.org/10.1053/j.ajkd.2014.10.019

Wilkinson, T. J., Gould, D. W., Nixon, D. G., Watson, E. L., & Smith, A. C. (2018). Quality over quantity? Association of skeletal muscle myoatosis and myofibrosis on physical function in chronic kidney disease. Nephrology, Dialysis, Transplantation, 33(8), 1344–1353. https://doi.org/10.1093/ndt/gfy139

Wilkinson, T. J., Xenophonotos, S., Gould, D. W., Vogt, B. P., Viana, J. L., Smith, A. C., & Watson, E. L. (2019). Test-retest reliability, validation, and "Minimal Detectable Change" scores for frequently reported tests of objective physical function in patients with non-dialysis chronic kidney disease. Physiotherapy Theory and Practice, 35(6), 565–576. https://doi.org/10.1080/09593985.2018.1455249

Wilson, F. P., Xie, D., Anderson, A. H., Leonard, M. B., Reese, P. P., Delafontaine, P., ... Feldman, H. I. (2014). Urinary creatinine excretion, bioelectrical impedance analysis, and clinical outcomes in patients with CKD: The CRIC study. Clinical Journal of the American Society of Nephrology, 9(12), 2095–2103. https://doi.org/10.2215/CJN.03790414

How to cite this article: Watson EL, Major RW, Wilkinson TJ, et al. The association of muscle size, strength and exercise capacity with all-cause mortality in non-dialysis-dependent CKD patients. Clin Physiol Funct Imaging. 2020;40:399–406. https://doi.org/10.1111/cpf.12655