Diabetes mellitus, insulin resistance and hepatitis C virus infection: A contemporary review

Anne-Claire Desbois, Patrice Cacoub

Received: October 3, 2016
Peer-review started: October 7, 2016
First decision: October 28, 2016
Revised: November 10, 2016
Accepted: February 7, 2017
Article in press: February 8, 2017
Published online: March 7, 2017

Abstract

AIM
To summarise the literature data on hepatitis C virus (HCV)-infected patients concerning the prevalence of glucose abnormalities and associated risk.

METHODS
We conducted a PubMed search and selected all studies found with the key words “HCV” or “hepatitis C virus” and “diabetes” or “insulin resistance”. We included only comparative studies written in English or in French, published from January 2000 to April 2015. We collected the literature data on HCV-infected patients concerning the prevalence of glucose abnormalities [diabetes mellitus (DM) and insulin resistance (IR)] and associated risk [i.e., severe liver fibrosis, response to antivirals, and the occurrence of hepatocellular carcinoma (HCC)].

RESULTS
HCV infection is significantly associated with DM/IR compared with healthy volunteers and patients with hepatitis B virus infection. Glucose abnormalities were associated with advanced liver fibrosis, lack of sustained virologic response to interferon alfa-based treatment and with a higher risk of HCC development. As new antiviral therapies may offer a cure for HCV infection, such data should be taken into account, from a therapeutic and preventive point of view, for liver and non-liver consequences of HCV disease. The efficacy of antidiabetic treatment in improving the response to...
antiviral treatment and in decreasing the risk of HCC has been reported by some studies but not by others. Thus, the effects of glucose abnormalities correction in reducing liver events need further studies.

CONCLUSION
Glucose abnormalities are strongly associated with HCV infection and show a negative impact on the main liver related outcomes.

Key words: Hepatitis C virus; Diabetes mellitus; Insulin resistance; Liver fibrosis; Treatment

© The Author(s) 2017. Published by Baishideng Publishing Group Inc. All rights reserved.

Core tip: Hepatitis C virus (HCV) infection is associated with increased rates of glucose abnormalities, including diabetes mellitus and insulin resistance. The presence of glucose abnormalities in HCV infected patients, including diabetes mellitus and insulin resistance, is associated with negative liver-related outcomes (i.e., severe liver fibrosis, decreased response to antivirals, and increased occurrence of hepatocellular carcinoma).

INTRODUCTION
Hepatitis C virus (HCV) infection is a major health problem. The World Health Organization (WHO) estimates that at least 150-170 million people, approximately 3% of the world’s population, are chronically infected. These patients are known to be at risk of liver related complications, i.e., cirrhosis and hepatocellular carcinoma (HCC), with an estimated liver-related mortality of 350000 people/year. The total risks of morbidity and mortality are underestimated, because they do not take into account extrahepatic consequences of HCV infection. Numerous extrahepatic manifestations have been reported, suggesting that HCV is more a systemic disease than just a liver disorder. In large prospective cohort studies, up to two-thirds of patients with HCV infection experienced extra-hepatic manifestations[1]. The majority of available data concern HCV-related autoimmune and/or lymphoproliferative disorders, from benign mixed cryoglobulinemia to frank lymphomas, which is consistent with HCV lymphotropism[2]. More recently, other HCV-associated disorders have been reported including cardiovascular, renal, central nervous system and metabolic diseases[3]. Among the latter, some studies assessed the risk of diabetes mellitus (DM) or insulin resistance (IR) while others evaluated the impact of DM/IR on the main liver-related HCV infection outcomes (i.e., liver fibrosis, cirrhosis, HCC). However, the results appear to be conflicting, with great heterogeneity between studies.

In the present study, based on a literature data review, we aimed to analyse: (1) the risk of glucose abnormalities (GA) in HCV-infected patients; and (2) the impact of GA on the main liver-related HCV outcomes, i.e., liver fibrosis, response to interferon alfa-based treatment, and HCC.

MATERIALS AND METHODS
We conducted a PubMed search and selected all studies found with the key words “HCV” or “hepatitis C virus” and “diabetes” or “insulin resistance”. We included only comparative studies written in English or in French, published from January 2000 to April 2015. We selected surveys that had evaluated the risk of Type 2 DM or IR in HCV-infected patients compared with healthy controls or with patients with hepatitis B virus (HBV) infection. The definition of DM was usually based on a fasting plasma glucose > 1.26 g/L, or a history of diabetes mellitus, or use of oral antidiabetic agents or insulin. The definition of IR was based on the Homeostasis Model Assessment for Insulin Resistance (HOMA-IR) according to the formula: HOMA-IR = fasting glucose (mmol/L) × fasting insulin (mIU/L)/22.5. We also included studies that assessed the association between the presence of glucose abnormalities (DM or IR) and the main HCV infection outcomes (i.e., liver fibrosis, cirrhosis, response to antiviral treatment, HCC). Conversely, studies that evaluated the impact of antiviral treatment on glucose abnormalities were included. We excluded studies with patients infected with the HBV or human immunodeficiency virus, and those for whom the entire manuscript was not available.

RESULTS
Is HCV infection associated with an increased prevalence of glucose abnormalities?
We included two types of studies: (1) those that assessed the HCV prevalence in diabetic patients compared with non-diabetics; and (2) studies that assessed the prevalence of DM and/or IR in HCV-infected patients compared with controls (healthy volunteers or HBV carriers) (Table 1).

Six studies evaluated HCV prevalence rates in diabetic patients compared with non-diabetic healthy volunteers. The number of participants ranged from 180 to 13000. Four out of the six studies showed a significant increased prevalence of HCV infection markers [HCV antibodies (n = 3), HCV RNA (n = 1)] in DM patients, with an odds ratio (OR) between 2.87 and 3.03[4-7]. Of note, only one study used multivariate...
Table 1: Glucose abnormalities and hepatitis C virus infection

Ref.	Study design	Year	Country	Patients controls	Controls number	Testing for HCV Endpoint	Statistical methods	Association	OR or HR	95% CI	p	p correction
[4]	Case-control	2000	Italy	DM	654	HCV	Univariate	Yes	OR = 2.87 [1.51, 5.46]	p < 0.001	NS	27% to 55%
[5]	Retrospective	2006	Taiwan	DM	1000	HCV	Univariate	Yes	OR = 3.771 [1.8, 7.9]	p = 0.02	NS	62% to 76%
[6]	Cross-sectional	2010	Pakistan	DM	1000	HCV	Multivariate	Yes	OR = 3.05 [1.5, 6.4]	p = 0.01	NS	35% to 52%
[7]	Case-control	2008	Brazil	DM	206	HCV	Multivariate	Yes	OR = 1.35 [1.06, 1.73]	p = <0.001	NS	11% to 12%
[8]	Cross-sectional	2009	India	DM	1072	HCV	Multivariate	Yes	OR = 1.68 [1.19, 2.35]	p = 0.02	NS	23% to 35%
[9]	Cross-sectional	2010	Egypt	DM	1000	HCV	Multivariate	No	OR = 1.80 [1.09, 2.92]	p = 0.04	NS	25% to 37%
[10]	Cross-sectional	2013	United States	DM	1000	HCV	Multivariate	No	OR = 1.208 [1.09, 2.92]	p = 0.04	NS	25% to 37%

Desbois AC et al. Diabetes, insulin resistance and HCV

Volume 23 | Issue 9 | WJG | www.wjgnet.com | March 7, 2017 | 1699
logic regression analysis, while another adjusted the risk for age, gender, body mass index (BMI), and alanine aminotransferase (ALT) levels. One study showed an increased HCV antibody prevalence rate in DM patients with abnormal ALT levels.

Thirty-two studies evaluated DM and/or IR prevalence rates in HCV patients compared with either healthy volunteers (n = 20) or HBV patients (n = 12). The size of the cohorts ranged from 50 to 39,506 subjects. All but four studies assessed DM/IR prevalence in HCV-RNA positive patients. In 10 out of 20 studies that compared HCV patients with healthy volunteers, DM was found more frequently in the HCV group (25.9% vs 3.6%, p = 0.04). In another study, DM was found more frequently in HCV patients (8.8%) compared with HBV patients (2.8%). A recent study found a higher risk of DM only in patients older than 40 years of age.

When compared with HBV infected patients, 7 out of 11 studies found a significant association of HCV with DM. In one meta-analysis, a positive HCV viremia was associated with a higher risk of DM (OR = 1.28 to 13.72). Three of the four negative studies were done on small cohorts. There were some differences related to HCV genotypes, but no systematic relationship was found.

Are diabetes mellitus or insulin resistance associated with liver fibrosis severity in HCV infected patients?

Do diabetes mellitus and insulin resistance have an impact on the virological response to HCV treatment?
Table 2 Glucose abnormalities and severe liver fibrosis in hepatitis C virus-infected patients

Ref.	Year	Country	Number of HCV patients	Patient profile	Glucose abnormality	Statistical method	Association with severe fibrosis	Genotypes	Statistics
Konrad et al \[53\]	2000	Germany	10	Non DM	FPG	Multivariate	Yes	All	P = 0.01
Sud et al \[53\]	2004	Australia	170	-	HOMA-IR	Multivariate	Yes	All	OR = 1.47 [1.14, 1.89]; P = 0.003
Muzzi et al \[56\]	2005	Switzerland	221	Non DM	HOMA-IR	Multivariate	Yes	All (except G3)	OR = 1.57 [1.04, 2.39]; P = 0.001
D’Souza et al \[56\]	2005	United Kingdom	59	-	HOMA-IR	Multivariate	Yes	All	P = 0.01
Taura et al \[56\]	2006	Japan	83	-	HOMA-IR	Multivariate	Yes	All	OR = 7.32 [1.59, 33.73]; P = 0.01
Leandro et al \[52\]	2006	Italy	3068	DM	Multivariate	Yes	G1	OR = 4.52 [1.07, 19.11]; P = 0.011	
Bugianesi et al \[56\]	2006	Italy	132	G3 with steatosis	HOMA-IR	Multivariate	Yes	G3	OR = 2.98 [1.13, 7.99]; P = 0.026
Kita et al \[71\]	2007	Japan	68	Post transfusion hepatitis	DM	Multivariate	Yes	All	OR = 8.4 [2.23, 31.54]; P = 0.002
Petta et al \[56\]	2008	Italy	201	G1	DM	Multivariate	Yes	G1	OR = 2.69 [1.46, 4.95]; P < 0.001
Moucari et al \[56\]	2008	France	500	-	HOMA-IR	Multivariate	Yes	All	OR = 1.8 [1.16, 2.81]; P = 0.009
Cua et al \[72\]	2008	Australia	346	G1, G3, untreated	IR	Multivariate	Yes	G3	OR = 3.15 [1.56, 6.35]; P < 0.001
Hsu et al \[74\]	2009	Taiwan	528	G1, G2	FPG	Multivariate	Yes	G1	OR = 13.72 [2.15, 87.7]; P < 0.05
Moucari et al \[74\]	2009	France	226	G4	HOMA-IR	Multivariate	Yes	G4	OR = 3.86 [1.85, 8.034]; P < 0.001
Persico et al \[77\]	2009	Italy	726	-	DM	Multivariate	Yes	All	P < 0.05
Hung et al \[79\]	2011	Taiwan	1470	-	DM	Univariate	Yes	All	P < 0.001
Patel et al \[79\]	2011	Asia	263	G2, G3	HOMA-IR	Multivariate	Yes	G2 and G3	OR = 8.42 [2.1, 34.3]; P < 0.003
Mohamed et al \[79\]	2011	Egypt	50	G4	HOMA-IR	Multivariate	Yes	G4	OR = 3.73; P = 0.001
Miyaaki et al \[79\]	2011	Japan	171	-	DM	Multivariate	Yes	All	OR = 8.739 [2.85, 26.85]; P = 0.0002
Conjeevaram et al \[79\]	2011	United States	341	G1	HOMA-IR	Multivariate	Yes	G1	OR = 1.28 [1.07, 1.51]; P = 0.005
Petta et al \[79\]	2011	Italy	170	G1	HOMA-IR	Multivariate	Yes	G1	OR = 2.64 [1.11, 6.28]; P = 0.02
Khattab et al \[79\]	2012	Egypt	107	G4	HOMA-IR	Multivariate	Yes	G4	OR = 1.87 [1.09, 8.29]; P = 0.04
Ziada et al \[79\]	2012	Egypt	140	Non DM	HOMA-IR	Multivariate	Yes	All	OR = 1.92 [0.97, 3.4]; P = 0.049
Thompson et al \[79\]	2012	United States	1038	Non DM	HOMA-IR	Multivariate	Yes	All	OR = 1.6 [1.1, 2.33]; P = 0.02
Alfaleh et al \[79\]	2013	Saudi Arabia	157	-	DM	Multivariate	Yes	All (except G4)	OR = 0.37 [0.148, 0.927]; P = 0.034
Dokmeci et al \[79\]	2014	Turkey	104	-	HOMA-IR	Multivariate	Yes	All	OR = 3.36 [1.32, 31.25]; P = 0.021
Huang et al \[79\]	2015	Taiwan	1077	-	DM	Multivariate	Yes	All	OR = 1.81 [1.14, 2.65]; P = 0.002
Faroux et al \[81\]	2005	France	141	Non DM	HOMA-IR	Multivariate	No	No	NS
Elgouhari et al \[81\]	2008	United States	183	-	DM	Multivariate	No	No	NS
Petta et al \[81\]	2009	Italy	156	Non DM	HOMA-IR	Multivariate	No	No	NS
Rueger et al \[81\]	2014	Switzerland	1461	-	DM	Multivariate	No	No	NS

\[56\] Severe liver fibrosis: F3 or F4 in Metavir scoring system. HCV: Hepatitis C virus infection; G1: Genotype 1; SVR: Sustained virological response; HOMA-IR: Homeostasis Model Assessment of Insulin Resistance; IR: Insulin resistance; DM: Diabetes mellitus; FPG: Fasting plasma glucose; NS: Not significant.

What is the impact of interferon alfa-based treatment on glucose abnormalities?

Twenty studies assessed the impact of interferon-based antiviral treatment on DM/IR, either as an improvement of GA after treatment or as the occurrence of GA after antiviral treatment (Table 4).

Improvement of GA after antiviral treatment was analysed in fifteen surveys that included 13 to 1038 HCV treated patients. Most of these studies performed univariate analyses. A significant decreased prevalence of GA was noted in 12 out of 15 studies. Eleven of these 12 studies reported a significant change of IR.
only in patients who achieved a SVR. One survey found a significant change of IR after antiviral treatment only in patients who achieved a SVR.

Five studies evaluated the risk of GA occurrence according to antiviral treatment response. They included 202 to 2842 HCV treated patients, and all performed multivariate analyses. Four out of five studies showed a significant association between GA occurrence and the absence of SVR.

Do glucose abnormalities increase the risk of HCC in HCV infected patients?

Sixteen studies assessed the association between HCC and DM/IR in HCV infected patients (Table 5). These studies included from 120 to 5186 HCV patients, both treated and non-treated. Most of them (10/16)
Table 4 Glucose abnormalities after interferon alpha based treatment

Ref.	Year	Country	Number of HCV patients	Patient profile	Glucose metabolism parameter	Statistical method	Significant association or difference	Genotypes	Statistics
Improvement of glucose abnormalities after HCV treatment									
Konrad et al.[24]	2000	United States	13	DM, non cirrhotic	FPG and F1	Univariate	Yes	All	P < 0.05 and P < 0.01
Romero-Gomez et al.[11]	2005	Spain	50	DM, non cirrhotic	HOMA-IR	Univariate	Yes	All	In SVR, P < 0.05
Kawaguchi et al.[25]	2007	Japan	89	DM, non cirrhotic	HOMA-IR	Univariate	Yes	All	In SVR, P < 0.01
Chehadeh et al.[30]	2009	Kuwait	181	DM, non cirrhotic	FPG	Univariate	Yes	G4	In SVR, P < 0.001
Kim et al.[31]	2009	Korea	28	DM, non cirrhotic	HOMA-IR	Multivariate	Yes	G1, G2	In SVR, OR of decreased IR 50 [3.74, 668.35]; P = 0.003
Conjeevaram et al.[28]	2011	United States	341	DM, non cirrhotic	HOMA-IR	Univariate	Yes	G1	In SVR; P = 0.001
Khattab et al.[29]	2012	Egypt	107	DM, non cirrhotic	HOMA-IR	Univariate	Yes	G4	In SVR; P = 0.01
Thompson et al.[32]	2012	United States	1038	DM, non cirrhotic	HOMA-IR	Multivariate	Yes	All	In G1 SVR; P = 0.007
Serfaty et al.[33]	2012	France	161	DM, non cirrhotic	HOMA-IR	Univariate	Yes	G1	In SVR; P < 0.05
Ziada et al.[34]	2012	Egypt	140	DM, non cirrhotic	HOMA-IR	Univariate	Yes	All	P = 0.009
Chan et al.[35]	2013	Australia	86	DM, non cirrhotic	HOMA-IR	Univariate	Yes	All	In SVR, P = 0.04
Jung et al.[36]	2014	South Korea	60	DM, non cirrhotic	HOMA-IR	Univariate	Yes	All	In SVR, P = 0.036
Mello et al.[37]	2006	Brazil	30	DM, non cirrhotic	HOMA-IR, SI and ISI	Univariate	Yes	G1, G2	In SVR; P = 0.002 and ISI P = 0.009
Kawaguchi et al.[38]	2009	Japan	72	DM, non cirrhotic	HOMA-IR	Univariate	Yes	All	In SVR, SI P = 0.002 and ISI P = 0.009
Brandman et al.[39]	2012	United States	23	Non cirrhotic	SSGP	Univariate	No	No	NS

Occurrence of glucose abnormalities after HCV treatment

Ref.	Year	Country	Number of HCV patients	Patient profile	Glucose metabolism parameter	Statistical method	Significant association or difference	Genotypes	Statistics
Simó et al.[40]	2006	Spain	234	DM or IGT	FPG and F1	Multivariate	Yes	All	In SVR, OR = 0.48 [0.24, 0.84]; P = 0.04
Romero-Gomez et al.[41]	2008	Spain	1059	DM or IGT	DM or IGT	Multivariate	Yes	All	In SVR, OR = 0.44 [0.2, 0.97]; P = 0.04
Arase et al.[42]	2009	Japan	2842	DM	DM	Multivariate	Yes	All	In SVR, HR = 0.36 [0.24; 0.56]
Aghemo et al.[43]	2012	Italy	339	DM	HOMA-IR	Multivariate	Yes	All	In SVR, OR = 0.36 [0.18, 0.72]; P = 0.004
Giordanino et al.[44]	2008	Italy	202	DM	DM or IGT	Multivariate	Yes	All	NS

1Association with SVR. HCV: Hepatitis C virus infection; G1: Genotype 1; SVR: Sustained virological response; HOMA-IR: Homeostasis Model Assessment of Insulin Resistance; IR: Insulin resistance; DM: Diabetes mellitus; FPG: Fasting plasma glucose; F1: Fasting insulin; IGT: Impaired glucose tolerance; ISI: Insulin sensitivity index; SI: Serum insulin; SSGP: Steady-state plasma glucose; NS: Not significant.

Many studies have evaluated the association between HCV chronic infection, insulin-resistance and diabetes mellitus. The abnormalities of carbohydrate metabolism, including hyperinsulinemia and IR, known to be per se related to chronic hepatic diseases, were the rationale for speculation on this relationship. Insulin-resistance is an often undetected condition, commonly coexisting with obesity and metabolic syndrome, and possibly progressing to type 2 diabetes. HCV-related type 2 diabetes mellitus may arise from a complex interaction between IR, steatosis and inflammatory processes. Epidemiologic studies supporting the association between type 2 diabetes and HCV infection were

Five studies looked for the presence of DM/IR in HCV infected patients with HCC compared with HCV patients without HCC. Four out of five studies found a significant association between DM/IR and HCC (as compared with non-HCC) (OR from 2.0 to 11.6).

Nine out of eleven other studies found a significant association between the presence of DM/IR and the development of HCC in the follow-up of HCV infected patients (HR from 1.10 to 6.9). One study found a higher risk of HCC in diabetic patients only with SVR and without cirrhosis[14], while 2 others reported an increased risk of HCC only in diabetic patients with advanced fibrosis[15,16].
Desbois AC et al. Diabetes, insulin resistance and HCV

Table 5 Glucose abnormalities and hepatocellular carcinoma in hepatitis C virus-infected patients

Ref.	Year	Country	Patient number	Patient profile	Association	Statistical method	Association DM and HCC	Statistics
Diabetes mellitus/insulin resistance in HCV-related HCC								
K-Kutala et al[[13]]	2014	France	162	HCC, not treated for HCV	DM and HCC	Multivariate	Yes³	HR = 3.13 [1.17, 8.38]; P = 0.022²
Hung et al[[29]]	2010	Taiwan	188	59 HCC; 129 non-HCC	DM and HCC	Multivariate	Yes	OR = 11.6 [2.500, 53.800]; P = 0.002
Hung et al[[29]]	2010	Taiwan	188	59 HCC; 129 non-HCC	HOMA-IR and HCC	Multivariate	Yes	OR = 2.0 [1.35, 3]; P = 0.001
Khattab et al[[30]]	2012	Egypt	294	147 HCC; 147 non-HCC	HOMA-IR and HCC	Multivariate	Yes	OR = 2.5 [1.7, 3.69]; P = 0.001
Mohamed et al[[31]]	2011	Egypt	100	50 HCC; 50 non-HCC	HOMA-IR and HCC	Multivariate	No	NS
Diabetes mellitus/insulin resistance and development of HCC in HCV-infected patients								
Chen et al[[32]]	2008	Taiwan	1095	-	DM and HCC	Multivariate	Yes	OR = 3.52 [1.29, 9.24]
Veldt et al[[33]]	2008	Europe	541	-	DM and HCC	Multivariate	Yes³	OR = 3.28 [1.35, 7.97]; P = 0.009²
Konishi et al[[34]]	2009	Japan	197	Non DM, treated for HCV	DM² and HCC	Multivariate	Yes	HR = 4.63 [1.677, 12.766]; P = 0.003
Hung et al[[35]]	2010	Taiwan	1470	Treated for HCV	DM and HCC	Multivariate	Yes³	HR = 4.32 [1.23, 15.25]; P = 0.023²
Nkontchou et al[[36]]	2010	France	248	Cirrhotics	HOMA-IR and HCC	Multivariate	Yes	HR = 4.10 [1.01, 1.21]; P = 0.026
Takahashi et al[[37]]	2011	Japan	203	Non DM, treated for HCV	DM² and HCC	Multivariate	Yes	HR = 6.9 [1.7, 28.4]; P < 0.05
Arase et al[[38]]	2013	Japan	4302	Non treated for HCV	DM and HCC	Multivariate	Yes	HR = 1.73 [1.3, 2.3]; P < 0.001
Elkrief et al[[39]]	2014	France	348	Cirrhotics	DM	Multivariate	Yes	HR = 1.938 [1.129, 3.328]; P = 0.016
Toyoda et al[[40]]	2015	Japan	522	Patients with SVR	DM and HCC	Multivariate	Yes	HR = 2.08 [1.0170, 4.0133]; P = 0.045
Lai et al[[41]]	2006	Taiwan	2141	-	DM and HCC	Multivariate	No	NS
Chen et al[[42]]	2013	Taiwan	5186	-	DM and HCC	Multivariate	No	NS

¹Association of abnormal post-challenge hyperglycaemia and HCC; 2 Only in SVR patients without cirrhosis; ³Only in advanced liver fibrosis. HCV: Hepatitis virus infection; HCC: Hepatocellular carcinoma; SVR: Sustained virological response; HOMA-IR: Homeostasis Model Assessment of Insulin Resistance; IR: Insulin resistance; DM: Diabetes mellitus; NS: Not significant.

first published in the early 1990s. More recently, larger epidemiologic studies gave more in-depth analyses of the relationship between HCV chronic infection and glucose abnormalities and were included in the present analysis.

HCV infection is associated with increased rates of glucose abnormalities, including diabetes mellitus and insulin resistance

In the present analysis, most studies found a significant association between HCV infection (whether active HCV RNA positive, or not i.e., HCV Ab positive) and diabetes mellitus or insulin resistance. This tight association was confirmed in both directions by the increased rates of HCV infection markers in DM/IR patients and the high rates of glucose abnormalities in HCV infected patients. The consistency of this association was supported by the confirmation of such results compared with different control groups, such as healthy volunteers or HBV carriers[6,8,12,17-34]. The variability of HOMA-IR cut-offs used (between 1.8 and 2.5 generally) may explain the heterogeneous results reported in the literature. Confounding factors might have also led to significant bias. Indeed, some studies comparing HCV patients with healthy volunteers did not perform multivariate analysis or adjust for confounding factors. However, seven out of ten multivariate analyses found a significant increased risk of DM/IR in HCV patients (OR = 1.2-3.7), after adjusting for confounding variables such as age, gender, BMI, ethnicity and education level.

How are we able to explain the increased risk of DM in HCV infected patients? Some authors have suggested that diabetic patients might have been infected by HCV due to injections or nosocomial transmission. The association of HCV infection with IR and the widespread use of universal precautions nowadays in hospitals to avoid virus transmission probably dis-
qualify this hypothesis. There are a variety of other possible mechanisms of increased risk of DM/IR in HCV patients. As shown in this study, glucose abnormalities in HCV patients are associated with liver fibrosis severity. Severe liver fibrosis and cirrhosis are well-known conditions that are able to induce glucose metabolism impairment. However, studies with other liver diseases, including cirrhosis, still showed an excess of risk in HCV patients compared with HBV patients.[6,12,17,31-34] The ability of HCV, particularly genotype 3 viruses, to induce liver steatosis on its own, which might in turn increase the risk of DM/IR, has also been suggested in previous studies.35,36 Other underlying mechanisms may involve HCV per se. Experimental data suggest the role of inflammation. Increased HOMA-IR has been correlated with soluble Tumor Necrosis Factor Receptor 1 (sTNFR1) and sTNFR2 levels.37 Increased abnormal HOMA-IR was not associated with elevated serum levels of TNF\(_\alpha\), IL6 and adiponectin in another study.38 Other studies have also suggested an impairment of glucose uptake in HCV-infected patients. Glucose uptake and the surface expression of Glucose Transporters (GLUT1 and 2) were suppressed in cells infected by HCV compared with controls.39 Interferon alpha restored glucose uptake, GLUT2 surface expression, mRNA expression and GLUT2 promoter activities. HCV has also been shown to impair glucose uptake and to promote IR by increasing suppressor of cytokine signalling 3 (SOCS3), which inhibits insulin phosphorylation of AKT and phosphoinositide 3-kinase (PI3K)40. HCV may be involved in the regulation of phosphorylation of insulin receptor substrate 1 (ISR-1), implicated in the insulin pathway.41 In HCV core transgenic mice, the viral protein was able to induce increasing TNF\(_\alpha\) levels in the liver, which in turn promoted the induction of IR. The high levels of TNF\(_\alpha\) inhibited the ISR-1, causing IR and its possible progression to diabetes. A decreased expression of ISR-1 and ISR-2 mediated by ubiquitination was observed and was inversely proportional to the liver fibrosis stage.

Interferon alpha use might lead to glucose metabolism impairment and is a potential bias. However, increased DM/IR rates have been also reported in HCV patients not taking interferon alpha.20,22-25,34 Many studies found a decreased rate of glucose abnormalities in HCV patients who showed a SVR after interferon alpha-based therapy, and even in non virological responders in one study.42 This strongly suggests a direct/indirect role of HCV on glucose metabolism impairment. As eradication of HCV seems to be effective in decreasing the occurrence rate of DM/IR, it will very be interesting to analyse the impact of new direct antiviral agents (DAAs) for preventing DM/IR and eventually cardiovascular disorders. Indeed, in a recent study, IFN-free antiviral regimen resulted in rapid changes in serum lipid profiles and intrahepatic expression of lipid-related genes in G1 patients.43

Presence of glucose abnormalities in HCV infected patients, including diabetes mellitus and insulin resistance, is associated with negative liver-related outcomes

Severe liver fibrosis, the absence of SVR after interferon alpha-based treatment, and the development of HCC are the main negative outcomes of chronic HCV infection. Interestingly, the presence of DM or IR in HCV patients showed a pejorative impact on each of these end points. Most studies found an independent association of glucose abnormalities with advanced liver fibrosis, absence of SVR after antiviral treatment and HCC occurrence. Only few studies did not confirm such associations. This might be explained by the small size cohort of such studies, the heterogeneity of criteria for DM or HOMA-IR and the very high prevalence of other metabolic risk factors (such as elevated BMI) which may underestimate the impact of DM/IR. Our data is consistent with recent studies that demonstrated that DM increases cumulative incidence of decompensated cirrhosis.44 In another recent survey, diabetes was independently associated with transplantation-free survival, development of ascites, renal dysfunction, bacterial infections, and HCC during the follow-up.45

Experimental data suggest that increased insulin levels after hyperglycaemia leads to interferon signalling impairment. Insulin may inhibit the ability of interferon alpha to block HCV replication due to the activation of PI3K by insulin, thus leading to inhibition of STAT-1, which is involved in the interferon alpha pathway.40

The impact of glucose abnormalities on virological response needs to be further evaluated with new DAA, interferon-free combinations. To date, there is very few data on the impact of GA on virological response to new DAA. Preliminary results suggest that the presence of diabetes does not appear to be predictive of treatment failure in G1 patients.46,47 Further studies are needed to confirm these data and to evaluate the impact of DM on SVR in patients without poor prognostic factors.

Should glucose abnormalities be corrected to increase SVR rates?

A prospective study, including 155 HCV genotype 1 patients with IR, showed no difference in SVR rates after peginterferon alfa and ribavirin were given, regardless of whether or not patients had received pioglitazone, an antidiabetic drug.48 Of note, most glycemic control indexes improved significantly in the pioglitazone group except for HbA1c. Another study found higher SVR rates in G4 patients treated with pioglitazone.49 Pioglitazone may alter NK cell functions and thus impair clearance of infected hepatocytes.48 A retrospective cohort from Taiwan (19349 diabetic patients, 1.7% HCV positive) showed that patients taking metformin and thiazolidinediones had the lowest risk of HCC (HR 0.49 and 0.56, respectively).
after adjusting for age, gender and comorbidities\cite{55}. Consistently, in a prospective cohort of 100 HCV patients with ongoing cirrhosis, metformin treatment was independently associated with a decrease of HCC occurrence and liver-related death or transplantation\cite{54}. In a two-year prospective follow-up of 85 patients with HCV-related HCC, HCC recurrence-free survival was increased in diabetics taking pioglitazone vs non-treated diabetics (44.2% vs 36.5%, respectively, $P = 0.37$)\cite{55}. A significant decrease in HCC recurrence was observed in the pioglitazone group for patients with a BMI > 24.

We acknowledge some limitations of this study. Although we tried to include all published studies, we may have missed others in non-English literature or data only presented at meetings. Some studies were done with a limited number of patients. For some studies included in the present analysis, it is possible that there are some remaining bias and residual confounding factors. Despite multivariate analyses, the association between glucose abnormalities and improved and improved outcome may have been influenced by unmeasured confounding factors. Such final confirmation should arise from controlled clinical trials with long-term follow-up.

In conclusion, HCV chronic infection is associated with an increased risk of DM or IR, by a likely direct effect on glucose metabolism. In such patients, DM and IR are associated with a pejorative liver-related prognosis, as shown by increased rates of severe liver fibrosis, HCC occurrence, and decreased SVR rates after interferon-based therapy. This tight relationship between DM/IR and HCV infection needs to be further analysed with new DAAs, interferon-free combinations, with special attention to improvement in glucose abnormalities and long-term follow-up.

REFERENCES

1. Cacoub P, Poynard T, Ghillani P, Charlotte F, Olivi M, Piette J-C, Opolon P. Extrahepatic manifestations of chronic hepatitis C. MULTIVIRC Group. Multidisciplinary Virus C. Arthritis Rheum 1999; 42: 2204-2212 [PMID: 10524695 DOI: 10.1002/1529-0131(199910#42)

2. Cacoub P, Comarmond C, Domont F, Savey L, Saadoun D. Cryoglobulinemia Vasculitis. Am J Med 2015; 128: 950-955 [PMID: 25837517 DOI: 10.1016/j.amjmed.2015.02.017]

3. Cacoub P, Gragnani L, Comarmond C, Zigone AG. Extrahepatic manifestations of chronic hepatitis C virus infection. Dig Liver Dis 2014; 46 Suppl 5: S165-S173 [PMID: 25458776 DOI: 10.1016/j.dld.2014.10.005]

4. Sangiorgio L, Attardo T, Gangemi R, Rubino C, Barone M, Lunetta M. Increased frequency of HCV and HBV infection in type 2 diabetic patients. Diabetes Res Clin Pract 2006; 74: 147-151 [PMID: 16802152 DOI: 10.1016/j.diabetres.2006.02.007]

5. Chen HF, Li CY, Chen P, See TT, Lee HY. Seroprevalence of hepatitis B and C in type 2 diabetic patients. J Clin Med Assoc 2006; 69: 146-152 [PMID: 16681994 DOI: 10.1016/S1726-4901(09)70195-9]

6. Huang JF, Dai CY, Hwang SJ, Ho CK, Hsiao PJ, Hsieh MY, Lee LP, Lin ZY, Chen SC, Hsieh MY, Wang LY, Shih SJ, Chang WY, Chuang WL, Yu ML. Hepatitis C viremia increases the association with type 2 diabetes mellitus in a hepatitis B and C endemic area: an epidemiological link with virological implication. Am J Gastroenterol 2007; 102: 1237-1243 [PMID: 17531012 DOI: 10.1111/j.1572-0241.2007.01181.x]

7. Jaddoo NA, Shahzad MA, Yaqoob R, Hussain M, Ali N. Seroprevalence of hepatitis C in type 2 diabetes: evidence for a positive association. Viriod J 2010; 7: 304 [PMID: 21054842 DOI: 10.1186/1743-422X-7-304]

8. Mehta SH, Brancati FL, Sulkowski MS, Strathdee SA, Szlko M, Thomas DL. Prevalence of type 2 diabetes mellitus among persons with hepatitis C virus infection in the United States. Ann Intern Med 2000; 133: 592-599 [PMID: 11033586 DOI: 10.7326/0003-4819-133-8-200010170-00009]

9. Montenegro L, De Michina A, Miciaigna G, Guerra V, Di Leo A. Virus C hepatitis and type 2 diabetes: a cohort study in southern Italy. Am J Gastroenterol 2013; 108: 1108-1111 [PMID: 23567360 DOI: 10.1038/ajg.2013.90]

10. Mehta SH, Brancati FL, Strathdee SA, Pankow JS, Netkoi D, Coresh J, Szlko M, Thomas DL. Hepatitis C virus infection and incident type 2 diabetes. Hepatology 2003; 38: 50-56 [PMID: 12829986 DOI: 10.1053/jhep.2003.50291]

11. Stepanova M, Lam B, Younossi Y, Shrshord MK, Younossi ZM. Association of hepatitis C with insulin resistance and type 2 diabetes in US general population: the impact of the epidemic of obesity. J Viral Hepat 2012; 19: 341-345 [PMID: 22497813 DOI: 10.1111/j.1365-2893.2011.01554.x]

12. White DI, Ratziu V, El-Serag HB. Hepatitis C infection and risk of diabetes: a systematic review and meta-analysis. J Hepatol 2008; 49: 831-844 [PMID: 18814931 DOI: 10.1016/j.jhep.2008.08.006]
2007; Hernández C, Genescà J, Simó R. Proinflammatory cytokines, insulin resistance and diabetes mellitus on the risk of coronary heart disease events. Am J Cardiol 2014; 114: 1841-1845 [PMID: 25438910 DOI: 10.1016/j.amjcard.2014.09.020]

18 Veldt BJ, Chen W, Heathcote EJ, Wedemeyer H, Reichen J, Heathcote EJ, Wedemeyer H, Reichen J, Pothineni NV, Delongchamp R, Vallurupalli S, Ding Z, Dai Y, Hagedorn CH, Mehta J. Impact of hepatitis C seropositivity on the risk of coronary heart disease events. Am J Cardiol 2014; 114: 1841-1845 [PMID: 25438910 DOI: 10.1016/j.amjcard.2014.09.020]

19 Knobler H, Schimhanter R, Zifroni A, Fenakel G, Schattner A. Increased risk of type 2 diabetes in noncirrhotic patients with chronic hepatitis C virus infection. Mayo Clin Proc 2000; 75: 355-359 [PMID: 10761489 DOI: 10.4065/75.4.355x]

20 Marzouk D, Sash J, Bakr I, El Hosseiny M, Abdel-Hamid M, Rekacewicz C, Chaturvedi N, Mohamed MK, Fontanet A. Metabolic and cardiovascular risk profiles and hepatitis C virus infection in rural Egypt. Gut 2007; 56: 1105-1110 [PMID: 18506898 DOI: 10.1002/hep.22251]

21 Shaheen M, Echeverry D, Oblad MG, Montoya MI, Teklehaimanot S, Akhtar AJ. Hepatitis C, metabolic syndrome, and inflammatory markers: results from the third National Health and Nutrition Examination Survey [NHANES III]. Diabetes Res Clin Pract 2007; 75: 320-326 [PMID: 16956918 DOI: 10.1016/j.diabres.2006.09.038]

22 Park SK, Cho YK, Park JH, Kim HJ, Park DI, Sohn CI, Jeon WK, Kim BL. Change of insulin sensitivity in hepatitis C patients with normal insulin sensitivity: a 5-year prospective follow-up study variation of insulin sensitivity in HCV patients. Intern Med J 2010; 40: 503-511 [PMID: 19712201 DOI: 10.1111/j.1445-5994.2009.02042.x]

23 Huang JF, Yu ML, Dai CY, Hsieh MY, Huang MJ, Hsiao PJ, Lee LP, Lin L, Hsueh PY, Hsye MY, Wang LY, Shin SJ, Chang WY, Chuang WL. Reappraisal of the characteristics of glucose abnormalities in patients with chronic hepatitis C infection. J Gastroenterol 2008; 43: 1933-1940 [PMID: 18637090 DOI: 10.1002/1521-7394(200804)43:7<1933::AID-JGHE>3.0.CO;2-8]

24 Mohamed HR, Abdel-Aziz MY, Zalata KR, Abdel-Razik AM. Relation of insulin resistance and liver fibrosis progression in patients with chronic hepatitis C virus infection. Int J Health Sci (Qassim) 2009; 3: 177-186 [PMID: 19475353 DOI: 10.221143/ijhsq.2009.03.03-6]

25 Duseja A, Dhiman RK, Chawla Y, Thumabur K, Kumar A, Das A, Bhadada S, Bhandari S. Insulin resistance is common in patients with predominantly genotype 3 chronic hepatitis C. Dig Dis Sci 2009; 54: 1778-1782 [PMID: 19153842 DOI: 10.1007/s10620-009-0844-y]

26 Fonseca A, Mostafa A, Mohamed MK, Saeed M, Hasan A, Fontanet A, Godsland I, Coady E, Etnall G, El-Hoseiny M, Abdul-Hamid M, Hughes A, Chaturvedi N. Hepatitis C infection and clearance: impact on atherosclerosis and cardiometabolic risk factors. Gut 2010; 59: 1135-1140 [PMID: 20584782 DOI: 10.1136/gut.2009.202317]

27 Miyajima I, Kawaiuchi T, Fukuwai A, Nagao Y, Adachi H, Sasaki S, Imaiizu T, Sata M. Chronic HCV infection was associated with severe insulin resistance and mild atherosclerosis: a population-based study in an HCV hyperendemic area. J Gastroenterol Hepatol 2013; 28: 18-23 [PMID: 23083794 DOI: 10.1111/j.1440-1746.2013.09712.x]

28 Asselah T, Cazals-Hatem D, Voitot H, Boyer N, Chuang WL, Yu ML, Yu SH, Huang CF, Huang CI, Lee LP, Lin ZY, Chen SC, Hsieh MY, Wang LY, Shin SJ, Chang TT, Chou P. Hepatitis C virus infection and diabetes mellitus in Korean patients. Korean J Intern Med 2001; 16: 18-23 [PMID: 11417308 DOI: 10.3904/kjim.2001.16.1.18]

29 Park SK, Cho YK, Park JH, Kim HJ, Park DI, Sohn CI, Jeon WK, Kim BL. Change of insulin sensitivity in hepatitis C patients with normal insulin sensitivity: a 5-year prospective follow-up study variation of insulin sensitivity in HCV patients. Intern Med J 2010; 40: 503-511 [PMID: 19712201 DOI: 10.1111/j.1445-5994.2009.02042.x]

30 Huang JF, Yu ML, Dai CY, Hsieh MY, Huang MJ, Hsiao PJ, Lee LP, Lin L, Hsueh PY, Hsye MY, Wang LY, Shin SJ, Chang WY, Chuang WL. Reappraisal of the characteristics of glucose abnormalities in patients with chronic hepatitis C infection. J Gastroenterol 2008; 43: 1933-1940 [PMID: 18637090 DOI: 10.1002/1521-7394(200804)43:7<1933::AID-JGHE>3.0.CO;2-8]

31 Mohamed HR, Abdel-Aziz MY, Zalata KR, Abdel-Razik AM. Relation of insulin resistance and liver fibrosis progression in patients with chronic hepatitis C virus infection. Int J Health Sci (Qassim) 2009; 3: 177-186 [PMID: 19475353 DOI: 10.221143/ijhsq.2009.03.03-6]

32 Duseja A, Dhiman RK, Chawla Y, Thumabur K, Kumar A, Das A, Bhadada S, Bhandari S. Insulin resistance is common in patients with predominantly genotype 3 chronic hepatitis C. Dig Dis Sci 2009; 54: 1778-1782 [PMID: 19153842 DOI: 10.1007/s10620-009-0844-y]

33 Fonseca A, Mostafa A, Mohamed MK, Saeed M, Hasan A, Fontanet A, Godsland I, Coady E, Etnall G, El-Hoseiny M, Abdul-Hamid M, Hughes A, Chaturvedi N. Hepatitis C infection and clearance: impact on atherosclerosis and cardiometabolic risk factors. Gut 2010; 59: 1135-1140 [PMID: 20584782 DOI: 10.1136/gut.2009.202317]

34 Miyajima I, Kawaiuchi T, Fukuwai A, Nagao Y, Adachi H, Sasaki S, Imaiizu T, Sata M. Chronic HCV infection was associated with severe insulin resistance and mild atherosclerosis: a population-based study in an HCV hyperendemic area. J Gastroenterol Hepatol 2013; 28: 18-23 [PMID: 23083794 DOI: 10.1111/j.1440-1746.2013.09712.x]

35 Park SK, Cho YK, Park JH, Kim HJ, Park DI, Sohn CI, Jeon WK, Kim BL. Change of insulin sensitivity in hepatitis C patients with normal insulin sensitivity: a 5-year prospective follow-up study variation of insulin sensitivity in HCV patients. Intern Med J 2010; 40: 503-511 [PMID: 19712201 DOI: 10.1111/j.1445-5994.2009.02042.x]

36 Huang JF, Yu ML, Dai CY, Hsieh MY, Huang MJ, Hsiao PJ, Lee LP, Lin L, Hsueh PY, Hsye MY, Wang LY, Shin SJ, Chang WY, Chuang WL. Reappraisal of the characteristics of glucose abnormalities in patients with chronic hepatitis C infection. J Gastroenterol 2008; 43: 1933-1940 [PMID: 18637090 DOI: 10.1002/1521-7394(200804)43:7<1933::AID-JGHE>3.0.CO;2-8]

37 Mohamed HR, Abdel-Aziz MY, Zalata KR, Abdel-Razik AM. Relation of insulin resistance and liver fibrosis progression in patients with chronic hepatitis C virus infection. Int J Health Sci (Qassim) 2009; 3: 177-186 [PMID: 19475353 DOI: 10.221143/ijhsq.2009.03.03-6]
Desbois AC et al. Diabetes, insulin resistance and HCV

10.3748/wjg.v12.i4.7075

Banerjee S, Saito K, Att-Goughmoule M, Meyer K, Ray BB, Ray R. Hepatitis C virus core protein upregulates serine phosphorylation of insulin receptor substrate-1 and impairs the downstream akt/protein kinase B signaling pathway for insulin resistance. J Viral 2008; 82: 2606-2612 DOI: 10.1186/JVL01672-07

Konrad T, Zeuzem S, Vicini P, Toffolo G, Briem D, Lormann J, Herrmann G, Berger A, Kusterer K, Teuber G, Cobelli C, Usadel KH. Evaluation of factors controlling glucose tolerance in patients with HCV infection before and after 4 months therapy with interferon-alpha. Eur J Clin Invest 2000; 30: 111-121 DOI: 10.1046/j.1365-2262.2000.00608.x

Meissner EG, Lee YJ, Osinumi A, Sims Z, Qin J, Streundert D, McHutchison J, Subramanian M, Sampson M, Naggie S, Patel K, Remaley AT, Masur H, Kottitel S. Effect of sofosbuvir and ribavirin treatment on peripheral and hepatic lipid metabolism in chronic hepatitis C virus, genotype 1-infected patients. Hepatology 2015; 61: 790-801 DOI: 10.1002/hep.27242

Huang YW, Yang SS, Fu SC, Wang TC, Hsu CK, Chen DS, Hu JT, Kao JH. Increased risk of cirrhosis and its decomposition in chronic hepatitis C patients with new-onset diabetes: a nationwide cohort study. Hepatology 2014; 60: 807-814 DOI: 10.1002/hep.27212

Elkrief L, Chouinard P, Bendersky N, Hajage D, Larroque B, Cosson E, Aout M, Mahmoudi A, Bourcier V, Belperio PS, Shahoumian TA, Loomis TP, Mole J, Menke A, Cowie CC, Everhart JE. Relationship of hepatitis C virus infection with diabetes in the U.S. population. Hepatology 2016; 54: 1139-1149 DOI: 10.1002/hep.27047

Petta S, Cammà C, Di Marco V, Macaluso FS, Maida M, Pizollanti G, Belmonte B, Cabibi D, Di Stefano R, Ferraro D, Guarinotta C, Venezia G, Craxi A. Hepatic steatosis and insulin resistance are associated with severe fibrosis in patients with chronic hepatitis caused by HBV or HCV infection. Liver Int 2011; 31: 507-515 DOI: 10.1111/j.1478-3231.2011.02453.x

Imazeki F, Yosukosa O, Fukai K, Kanda T, Kojima H, Saisho H. Prevalence of diabetes mellitus and insulin resistance in patients with chronic hepatitis C: comparison with hepatitis B virus-infected and hepatitis C virus-cleared patients. Liver Int 2008; 28: 355-362 DOI: 10.1111/j.1478-3231.2007.01630.x

Tanaka N, Nagaya T, Komatsu M, Horiiuchi S, Tsrutra S, Shirakawa H, Uemura T, Ichijo T, Matsumoto A, Yoshizawa K, Aoyama T, Kiyoysawa K, Tanaka E. Insulin resistance and hepatitis C virus: a case-control study of non-obese, non-alcoholic and non-steatotic hepatitis virus carriers with persistently normal serum aminotransferase. Liver Int 2008; 28: 1104-1111 DOI: 10.1111/j.1478-3231.2008.01737.x

Mavrogiannaki A, Karamanos B, Manesis EK, Papatheodoridis GV, Koskinas J, Archimandritis AJ. Prevalence of glucose intolerance in patients with chronic hepatitis B or C: a prospective case-control study. J Viral Hepat 2009; 16: 430-436 DOI: 10.1111/j.1365-2893.2009.01077.x

Persico M, Masarone M, La Mura V, Persico E, Moschella F, Svelto M, Bruno S, Torella R. Clinical expression of insulin resistance in hepatitis C and B virus-related chronic hepatitis: differences and similarities. World J Gastroenterol 2009; 15: 462-466 DOI: 10.1192/wjg.v15.i4.462

Sud A, Hui JM, Farrell GC, Bandara P, Kench JG, Fung C, Lim R, Samarasinghe D, Liddle C, McCaughan GW, George J. Improved prediction of fibrosis in chronic hepatitis C using measures of insulin resistance in a probability index. Hepatology 2004; 39: 1239-1247 DOI: 15122752 DOI: 10.1002/hep.20207

Muzzi A, Leandro G, Rubbia-Brandt L, James R, Keiser O, Malinverni R, Dufour JF, Hellbling B, Hadengue A, Coussis JV, Müller B, Cerny A, Mondelli MU, Negro F. Insulin resistance is associated with liver fibrosis in non-diabetic chronic hepatitis C patients. J Hepatol 2005; 42: 41-46 DOI: 10.1016/j.jhep.2004.04.029

D’Souza R, Sabin CA, Foster GR. Insulin resistance plays a significant role in liver fibrosis in chronic hepatitis C and in the response to antiviral therapy. Am J Gastroenterol 2005; 100: 1509-1515 DOI: 15984973 DOI: 10.1111/j.1572-0241.2005.41043.x

Taura N, Ichikawa T, Hamasaki K, Nakao K, Nishimura D, Goto T, Fukuta M, Kawashima H, Fujimoto M, Kusumoto T, Yamao H, Shibuta H, Aburiz Y, Yamashita H, Eguchi K. Association between liver fibrosis and insulin sensitivity in chronic hepatitis C patients. Am J Gastroenterol 2006; 101: 2752-2759 DOI: 17026566 DOI: 10.1111/j.1572-0241.2006.00835.x

Leandro G, Mangia A, Hui J, Fabris P, Rubbia-Brandt L, Collodoro G, Adinolfi LE, Asselah T, Jonssson JR, Smedile A, Terrault N, Piazzerna V, Giordani MT, Giostra E, Sonzogni A, Ruggiero G, Marcellin P, Powell EE, George J, Negro F. Relationship between steatosis, inflammation, and fibrosis in chronic hepatitis C: a meta-analysis of individual patient data. Gastroenterology 2006; 130: 1636-1642 DOI: 16697727 DOI: 10.1053/j.gastro.2006.03.014

Bugianesi E, Marchesini G, Gentilcore E, Cua IH, Vanni E, Rizzetto M, George J. Fibrosis in genotype 3 chronic hepatitis C and nonalcoholic fatty liver disease: Role of insulin resistance and hepatic steatosis. Hepatology 2006; 44: 1648-1655 DOI: 17133473 DOI: 10.1002/hep.21429

Kita Y, Mizukoshi E, Takamura T, Sakurai M, Takata Y, Araki

Risk factor for diabetes type 2: lack of evidence in a hospital in central-west Brazil. Braz J Infect Dis 2008; 12: 24-26 DOI: 18553010 DOI: 10.1590/S1413-86702008000100007

Ruhl CE, Menke A, Cowie CC, Everhart JE. Relationship of hepatitis C virus infection with diabetes in the U.S. population. Hepatology 2014; 60: 1139-1149 DOI: 24500979 DOI: 10.1002/hep.20747

Bocchini-Coppola P, Loomis TP, Mole J, Menke A, Cowie CC, Everhart JE. Relationship of hepatitis C virus infection with diabetes in the U.S. population. Hepatology 2014; 60: 1139-1149 DOI: 24500979 DOI: 10.1002/hep.20747
between insulin resistance and hepatic fibrosis in patients with diabetes mellitus on prognosis of patients infected with hepatitis C virus. *Metabolism* 2007; 56: 1682-1688 [PMID: 17998021 DOI: 10.1016/j.metabol.2007.07.011]

68 Petta S, Cannà C, Di Marco V, Alessi N, Cabibi D, Caldarella R, Licità A, Massenti F, Tarantino G, Marchesini G, Craxi A. Insulin resistance and diabetes increase fibrosis in the liver of patients with genotype 1 HCV infection. *Am J Gastroenterol* 2008; 103: 1136-1144 [PMID: 18477344 DOI: 10.1111/j.1572-0241.2008.01813.x]

69 Cua IH, Hui JM, Kench JG, George J. Genotype-specific interactions of insulin resistance, steatosis, and fibrosis in chronic hepatitis C. *Hepatology* 2008; 48: 723-731 [PMID: 18688878 DOI: 10.1002/hep.22392]

70 HSU CS, Liu CH, Liu CJ, Hsu SJ, Chen CL, Hwang JJ, Lai MY, Chen PJ, Chen DS, Kao JH. Association of metabolic profiles with hepatic fibrosis in chronic hepatitis C patients with genotype 1 or 2 infection. *J Gastroenterol Hepatol* 2010; 25: 970-977 [PMID: 20546452 DOI: 10.1111/j.1440-1746.2009.06186.x]

71 Mocauri R, Ripault MP, Martinot-Peignoux M, Voitot H, Cardoso AC, Stem C, Boyer N, Maylin S, Nicolas-Chanoine MH, Vidaud M, Valla D, Bedossa P, Marcellin P. Insulin resistance and geographical origin: major predictors of liver fibrosis and response to peginterferon and ribavirin in HCV-4. *Gut* 2009; 58: 1662-1669 [PMID: 19671541 DOI: 10.1136/gut.2008.150747]

72 Patel K, Thompson AJ, Chuang WL, Lee CM, Peng CY, Shanmuganathan G, Thongsawat S, Tanwandee T, Mahachai V, Pramoolsinsap C, Cho M, Han KH, Shah SR, Foster GR, Clark PJ, Pulkstenis E, Subramanian GM, McHutchison JG. Insulin resistance is independently associated with significant hepatic fibrosis in Asian chronic hepatitis C genotype 2 or 3 patients. *J Gastroenterol Hepatol* 2011; 26: 1182-1188 [PMID: 21410752 DOI: 10.1111/j.1440-1746.2011.06722.x]

73 Mohamed AA, Loutfy SA, Craik JD, Hashem AG, Siam I. Chronic hepatitis C genotype-4 infection: role of insulin resistance in hepatocellular carcinoma. *Virology* 2011; 41: 496 [PMID: 22404490 DOI: 10.1186/422X-4-946]

74 Miyakai H, Ichikawa T, Taura N, Miura S, Shibata H, Isomoto H, Takehima F, Nakao K. Predictive value of the fibrosis scores in patients with chronic hepatitis C associated with liver fibrosis and metabolic syndrome. *Intern Med* 2011; 50: 1137-1141 [PMID: 21628926 DOI: 10.2169/internalmedicine.50.4447]

75 Conjeevaram HS, Wahed AS, Afshd N, Howell CD, Everhart JE, Hoofnagle JH. Changes in insulin sensitivity and body weight during and after peginterferon and ribavirin therapy for hepatitis C virus infection. *Gastroenterology* 2011; 140: 469-477 [PMID: 21070775 DOI: 10.1053/j.gastro.2010.11.002]

76 Khattab MA, Eslam M, Shatat M, Abd-Aalhalim H, Mousa YI, Samir F, Aly H, Shaker O, Shaker Y. Changes in adipocytokines and insulin sensitivity during and after antiviral therapy for hepatitis C. *J Gastrointestin Liver Dis* 2012; 21: 59-65 [PMID: 22457861]

77 Ziada DH, El Saadany S, Enaba M, Ghazy M, Hasan A. The interaction between insulin resistance, liver fibrosis and early virological response in Egyptian patients with chronic hepatitis C. *Can J Gastroenterol* 2012; 26: 325-329 [PMID: 22720272 DOI: 10.1155/2012/291457]

78 Alfaleh FZ, Alswat K, Helmy A, Alhamoudi W, El-sharkawy M, Omar M, Shalaby A, Bedewi MA, Hadad Q, Ali SM, Alfaleh A, Abdo AA. The natural history and long-term outcomes in patients with chronic hepatitis C genotype 4 after interferon-based therapy. *Liver Int* 2013; 33: 871-883 [PMID: 23490034 DOI: 10.1111/liv.12127]

79 Dökmeci A, Ustündag Y, Hulaglu S, Tuncer I, Akdoğan M, Demirsoy H, Kölkü S, Güzélbulut F, Doğan I, Demir A, Akarsu M, Yüceyar H, Ozdoğan OC, Ozdener F, Erdoğan S. The association between insulin resistance and hepatic fibrosis in patients with chronic hepatitis C: an observational, multicenter study in Turkey. *Turk J Gastroenterol* 2014; 25: 546-552 [PMID: 25417617 DOI: 10.5152/tjg.2014.7829]
of HCV improves insulin resistance, beta-cell function, and hepatic expression of insulin receptor substrate 1 and 2. *Am J Gastroenterol* 2007; 102: 570-576 [PMID: 17222321 DOI: 10.1111/j.1572-0241.2006.00105.x]

107 Chechadeh W, Abdella N, Ben-Nakhil A, Al-Arooj M, Al-Nakib W. Risk factors for the development of diabetes mellitus in chronic hepatitis C virus genotype 4 infection. *J Gastroenterol Hepatol* 2009; 24: 42-48 [PMID: 18717762 DOI: 10.1111/j.1440-1746.2008.05053.x]

108 Kim HJ, Park JH, Park DI, Cho YK, Sohn CJ, Jeon WK, Kim BI. Clearance of HCV by Combination Therapy of Pegylated Interferon alpha-2a and Ribavirin Improves Insulin Resistance. *Gut Liver* 2009; 3: 108-115 [PMID: 20431732 DOI: 10.5009/gnl.2009.3.2.108]

109 Chan CH, Hansen RD, Gilliver RS, Jones BE. Sustained virological response following chronic hepatitis C treatment is associated with improvement in insulin resistance. *Intern Med J* 2013; 43: 656-662 [PMID: 23506416 DOI: 10.1111/imj.12136]

110 Mello V, Cruz T, Nuñez G, Simões MT, Ney-Oliveira F, Braga H, Araújo C, Cunha S, Schinoni MI, Cruz M, Parana R. Peripheral insulin resistance during treatment of chronic hepatitis C with pegylated interferon plus ribavirin. *J Med Virol* 2006; 78: 1406-1410 [PMID: 16998579 DOI: 10.1002/jmv.20712]

111 Kawaguchi Y, Mizuta T, Oza N, Takahashi H, Ario K, Yoshimura T, Eguchi Y, Otsuki I, Hisatome A, Fujimoto K. Eradication of hepatitis C virus by interferon improves whole-body insulin resistance and hyperinsulinaemia in patients with chronic hepatitis C. *Liver Int* 2009; 29: 871-877 [PMID: 19302179 DOI: 10.1111/j.1478-3231.2009.01993.x]

112 Simó R, Lecube A, Genesca J, Esteban JL, Hernández C. Sustained virological response correlates with reduction in the incidence of glucose abnormalities in patients with chronic hepatitis C virus infection. *Diabetes Care* 2006; 29: 2462-2466 [PMID: 17065685 DOI: 10.2337/dcc2006-0456]

113 Arase Y, Suzuki F, Suzuki Y, Akuta N, Kobayashi M, Kawamura Y, Yatsuji H, Sezaki H, Hosaka T, Hirakawa M, Ikeda K, Kumada H. Sustained virological response reduces incidence of onset of type 2 diabetes in chronic hepatitis C. *Hepatology* 2009; 49: 739-744 [PMID: 19127513 DOI: 10.1002/hep.22703]

114 Giordano C, Bugianesi E, Smedile A, Ciancio A, Abate ML, Olivero A, Pellicano R, Cassader M, Gambino R, Bo S, Ciccone G, Rizzetto M, Saracco G. Incidence of type 2 diabetes mellitus and glucose abnormalities in patients with chronic hepatitis C infection by response to treatment: results of a cohort study. *Am J Gastroenterol* 2008; 103: 2481-2487 [PMID: 18702647 DOI: 10.1111/j.1572-0241.2008.02002.x]

115 Hung CH, Wang JH, Hu TH, Chen CH, Chang KC, Yen YH, Kuo YH, Tsai MC, Lu SN, Lee CM. Insulin resistance is associated with hepatocellular carcinoma in chronic hepatitis C infection. *World J Gastroenterol* 2010; 16: 2265-2271 [PMID: 20458764 DOI: 10.3748/wjg.v16.i18.2265]

116 Khattab MA, Eslam M, Mousa YI, El-adawy N, Fathy S, Shatat M, Abd-Aalhalim M, Kamal A, Sharawe MA. Association between metabolic abnormalities and hepatitis C-related hepatocellular carcinoma. *Ann Hepatol* 2011; 11: 487-494 [PMID: 22700630]

117 Chen CL, Yang HI, Yang WS, Liu CJ, Chen PJ, You SL, Wang LY, Sun CA, Lu SN, Chen DS, Chen CJ. Metabolic factors and risk of hepatocellular carcinoma by chronic hepatitis B/C infection: a follow-up study in Taiwan. *Gastroenterology* 2008; 135: 111-121 [PMID: 18506590 DOI: 10.1053/j.gastro.2008.03.073]

118 Konishi I, Hiasa Y, Shigematsu S, Hirooka M, Furukawa S, Abe M, Matsura B, Michitaka K, Horiguchi N, Onji M. Diabetes pattern on the 75 g oral glucose tolerance test is a risk factor for hepatocellular carcinoma in patients with hepatitis C virus. *Liver Int* 2009; 29: 1194-1201 [PMID: 19422477 DOI: 10.1111/j.1478-3231.2009.02043.x]

119 Nkotchou G, Bastard JP, Ziol M, Aout M, Cosson E, Ganne-Carrie N, Grando-Lemaire V, Roulot D, Capeau J, Trinchet JC, Vicaut E, Beaugrand M. Insulin resistance, serum leptin, and adiponectin levels and outcomes of viral hepatitis C cirrhosis. J
Hepatol 2010; 53: 827-833 [PMID: 20728234 DOI: 10.1016/j.jhep.2010.04.035]

120 Takahashi H, Mizuta T, Eguchi Y, Kawaguchi Y, Kuwashiro T, Oeda S, Isoda H, Oza N, Iwane S, Izumi K, Anzai K, Ozaki I, Fujimoto K. Post-challenge hyperglycemia is a significant risk factor for the development of hepatocellular carcinoma in patients with chronic hepatitis C. J Gastroenterol 2011; 46: 790-798 [PMID: 21331763 DOI: 10.1007/s00535-011-0381-2]

121 Arase Y, Kobayashi M, Suzuki F, Suzuki Y, Kawamura Y, Akuta N, Kobayashi M, Sezaki H, Saito S, Hosaka T, Ikeda K, Kumada H, Kobayashi T. Effect of type 2 diabetes on risk for malignancies includes hepatocellular carcinoma in chronic hepatitis C. Hepatology 2013; 57: 964-973 [PMID: 22991257 DOI: 10.1002/hep.26087]

122 Toyoda H, Kumada T, Tada T, Kiriyama S, Tanikawa M, Hisanaga Y, Kanamori A, Kitahatake S, Ito T. Risk factors of hepatocellular carcinoma development in non-cirrhotic patients with sustained virologic response for chronic hepatitis C virus infection. J Gastroenterol Hepatol 2015; 30: 1183-1189 [PMID: 25678094 DOI: 10.1111/jgh.12915]

123 Lai MS, Hsieh MS, Chiu YH, Chen TH. Type 2 diabetes and hepatocellular carcinoma: A cohort study in high prevalence area of hepatitis virus infection. Hepatology 2006; 43: 1295-1302 [PMID: 16729295 DOI: 10.1002/hep.21208]

124 Chen CT, Chen JY, Wang JH, Chang KC, Tseng PL, Kee KM, Chen PF, Tsai LS, Chen SC, Lin SC, Lu SN. Diabetes mellitus, metabolic syndrome and obesity are not significant risk factors for hepatocellular carcinoma in an HBV- and HCV-endemic area of Southern Taiwan. Kaohsiung J Med Sci 2013; 29: 451-459 [PMID: 23906236 DOI: 10.1016/j.kjms.2012.12.006]
