CHARACTERISTIC POLYNOMIALS OF SIMPLE
ORDINARY ABELIAN VARIETIES OVER FINITE FIELDS

LENNY JONES

(Received 1 December 2020; accepted 15 January 2021; first published online 19 February 2021)

Abstract

We provide an easy method for the construction of characteristic polynomials of simple ordinary abelian varieties A of dimension g over a finite field \mathbb{F}_q, when $q \geq 4$ and $2g = \rho^{b-1}(\rho - 1)$, for some prime $\rho \geq 5$ with $b \geq 1$. Moreover, we show that A is absolutely simple if $b = 1$ and g is prime, but A is not absolutely simple for any prime $\rho \geq 5$ with $b > 1$.

2020 Mathematics subject classification: primary 11G25; secondary 14G15, 14K05.

Keywords and phrases: simple ordinary abelian variety, absolutely simple abelian variety, finite field, characteristic polynomial.

1. Introduction

For positive integers g and q, we say $f(t) \in \mathbb{Z}[t]$ is a q-polynomial if

$$f(t) = t^{2g} + a_1 t^{2g-1} + \cdots + a_g t^g + a_{g-1} q t^{g-1} + \cdots + a_1 q^{g-1} t + q^g$$

$$= t^{2g} + a_g t^g + q^g + \sum_{j=1}^{g-1} a_j (t^{2g-j} + q^{g-j} t^j), \quad (1.1)$$

and all zeros of $f(t)$ have modulus $q^{1/2}$. Not all polynomials of the form (1.1) are q-polynomials since the condition on the moduli of the zeros of $f(t)$ imposes severe restrictions on its coefficients. For example,

$$f(t) = t^6 + t^5 + t^4 + 5t^3 + 2t^2 + 4t + 8$$

has the form (1.1) with $g = 3$ and $q = 2$, and although $f(t)$ has four zeros with modulus $2^{1/2}$, $f(t)$ has two real zeros, neither of which has modulus $2^{1/2}$.

Most likely, D. H. Lehmer [14] in 1932 was the first mathematician to investigate q-polynomials. He was mainly interested in q-polynomials with the property that all zeros have the form $q^{1/2} \zeta$, for some root of unity ζ. Lehmer called such polynomials quasi-cyclotomic. Since then, certain q-polynomials, including Lehmer’s quasi-cyclotomics, have become central to the study of abelian varieties over finite fields.

© 2021 Australian Mathematical Publishing Association Inc.
Throughout this paper we let k denote the finite field \mathbb{F}_q, where $q = p^n$ for some prime p and positive integer n. It is well known from the Honda–Tate theorem [10, 18–20] that the isogeny class of an abelian variety \mathcal{A} of dimension g over k is determined by the characteristic polynomial $f_{\mathcal{A}}(t) \in \mathbb{Z}[t]$ of its Frobenius endomorphism [18, 20]. With a slight abuse of terminology, we refer here to $f_{\mathcal{A}}(t)$ as the characteristic polynomial of \mathcal{A}. It follows from the Weil conjectures [9, 21] (conjectured in 1949 by Weil and subsequently proven by Dwork [4], Grothendieck [5], Deligne [2] and others) that $f_{\mathcal{A}}(t)$ has the form in (1.1) [17], and all zeros of $f_{\mathcal{A}}(t)$ have modulus $q^{1/2}$. In other words, $f_{\mathcal{A}}(t)$ is a q-polynomial. If a q-polynomial $f(t)$ is such that $f(t) = f_{\mathcal{A}}(t)$, for some abelian variety \mathcal{A} over k, then $f(t)$ is called a Weil polynomial. Not every q-polynomial is a Weil polynomial, since additional restrictions on the coefficients of $f_{\mathcal{A}}(t)$ are imposed by the Honda–Tate theorem.

Remark 1.1. We caution the reader that while we have chosen to follow [12] in making no distinction between Weil polynomials and characteristic polynomials $f_{\mathcal{A}}(t)$, certain authors [7, 8, 15] have given a broader definition for Weil polynomials.

For small dimensions, explicit necessary and sufficient conditions on the coefficients of (1.1) have been given [7, 8, 15–17, 20] to determine which irreducible q-polynomials actually arise as characteristic polynomials of abelian varieties. Typically, Newton polygons are useful in the derivation of such conditions. For larger dimensions, however, this task becomes increasingly difficult and a complete characterisation in arbitrary dimension seems infeasible.

An abelian variety \mathcal{A} over k of dimension g is called simple if \mathcal{A} has no proper nontrivial subvarieties over k, and \mathcal{A} is called absolutely simple if \mathcal{A} is simple over the algebraic closure of k. Additionally, \mathcal{A} is called ordinary if the rank of its group of p-torsion points over the algebraic closure of k equals g.

It is the purpose of this paper to present an easy method for the construction of characteristic polynomials $f_{\mathcal{A}}(t)$, where \mathcal{A} is a simple ordinary abelian variety of dimension g over k such that $q \geq 4$ and $2g = \rho^{b-1}(\rho - 1)$ for some prime $\rho \geq 5$ with $b \geq 1$. More precisely, we prove the following result.

Theorem 1.2. Let $\rho \geq 5$ be a prime, let $b \geq 1$ be an integer and let $2g = \rho^{b-1}(\rho - 1)$. Let r be a prime such that r is a primitive root modulo ρ^2. Let p be a prime and let n be a positive integer such that $q := p^n \geq 4$ and $q \equiv 1 \pmod{r}$. Let m be an integer such that $m \neq -1/r \pmod{p}$ and

$$0 \leq m \leq \frac{2q^{b-1/2}(q^{b-1/2} - 1) - 1}{r}.$$
Define

\[f(t) := t^{2g} + (mr + 1)t^g + q^g + \sum_{j=1}^{g-1} a_j(t^{2g-j} + q^{g-j}t^j), \tag{1.2} \]

where

\[a_j = \begin{cases} 1 & \text{if } j \equiv 0 \pmod{\rho^{b-1}} \\ 0 & \text{otherwise} \end{cases} \quad \text{for } j \in \{1, 2, \ldots, g-1\}. \tag{1.3} \]

Then \(f(t) \) is the characteristic polynomial \(f_A(t) \) of a simple ordinary abelian variety \(A \) of dimension \(g \) over the field \(k = \mathbb{F}_q \). Furthermore,

1. if \(b = 1 \) and \(g \) is prime, then \(A \) is absolutely simple;
2. if \(b > 1 \) and \(\rho \) is arbitrary, then \(A \) is not absolutely simple.

2. Preliminaries

For any integer \(N \geq 1 \), let \(\Phi_N(x) \) denote the cyclotomic polynomial of index \(N \).

Theorem 2.1 [6]. Let \(r \) be a prime such that \(r \nmid n \). Let \(\text{ord}_n(r) \) denote the order of \(r \) modulo \(n \). Then \(\Phi_n(x) \) factors modulo \(r \) into a product of \(\phi(n)/\text{ord}_n(r) \) distinct irreducible polynomials, each of degree \(\text{ord}_n(r) \).

Corollary 2.2. Let \(\rho \geq 3 \) and \(r \) be primes such that \(r \) is a primitive root modulo \(\rho^2 \). Let \(b \geq 1 \) be an integer. If \(f(x) \in \mathbb{Z}[x] \) is monic with \(f(x) \equiv \Phi_{\rho^b}(x) \pmod{r} \), then \(f(x) \) is irreducible over \(\mathbb{Q} \).

Proof. Since \(r \) is a primitive root modulo \(\rho^2 \), \(r \) is a primitive root modulo \(\rho^e \) for all \(e \geq 1 \) [1]. That is, \(\text{ord}_{\rho^e}(r) = \phi(\rho^e) \). Thus, it follows from Theorem 2.1 that \(f(x) \) is irreducible modulo \(r \) and hence irreducible over \(\mathbb{Q} \). \(\square \)

Definition 2.3. We say that \(f(x) \in \mathbb{R}[x] \) is reciprocal if \(f(x) = x^{\deg f} f(1/x) \).

Theorem 2.4 [13]. Let \(N \geq 2 \) be an integer and let

\[P_N(x) = \sum_{j=0}^{N} c_j x^j \in \mathbb{R}[x] \]

be reciprocal with \(c_N \neq 0 \). If there exists \(\delta \in \mathbb{R} \) with \(c_N \delta \geq 0 \) and \(|c_N| \geq |\delta| \), such that

\[|c_N + \delta| \geq \sum_{j=1}^{N-1} |c_j + \delta - c_N|, \]

then all zeros of \(P_N(x) \) are on the unit circle.

Theorem 2.5 [3]. Let \(n \) and \(g \) be positive integers. Let \(p \) be a prime and let \(q = p^n \). Suppose that \(f(t) \in \mathbb{Z}[t] \) is monic with \(\deg(f) = 2g \) and that \(a_g \) is the coefficient of \(t^g \).
If all zeros of $f(t)$ have modulus $q^{1/2}$ and $\gcd(a_g, p) = 1$, then $f(t)$ is the characteristic polynomial $f_{\mathcal{A}}(t)$ of an ordinary abelian variety \mathcal{A} of dimension g over k.

By the Honda–Tate theorem, we have the following result.

Theorem 2.6 [11, 12]. Let \mathcal{A} be an ordinary abelian variety of dimension g over k, and let $f_{\mathcal{A}}(t)$ be the characteristic polynomial of \mathcal{A}. Then \mathcal{A} is simple if and only if $f_{\mathcal{A}}(t)$ is irreducible.

The following theorem gives an easy test for determining whether a simple ordinary abelian variety \mathcal{A} of dimension 2 over k is absolutely simple.

Theorem 2.7 [12, 15]. Let \mathcal{A} be a simple ordinary abelian variety of dimension 2 over k with characteristic polynomial $f_{\mathcal{A}}(t) = t^4 + a_1 t^3 + a_2 t^2 + a_1 q t + q^2$. Then \mathcal{A} is absolutely simple if and only if $a_1^2 \notin \{0, q + a_2, 2a_2, 3a_2 - 3q\}$.

Proposition 2.8 [12, Lemma 5]. Let θ be an algebraic number with minimal polynomial $f \in \mathbb{Q}[x]$, and suppose that d is a positive integer such that the field $\mathbb{Q}(\theta^d)$ is a proper subfield of $\mathbb{Q}(\theta)$ and such that $\mathbb{Q}(\theta^z) = \mathbb{Q}(\theta)$ for all positive integers $z < d$. Then either $f \in \mathbb{Q}[x^d]$ or there is a primitive dth root of unity ζ_d such that $\mathbb{Q}(\theta) = \mathbb{Q}(\theta^d, \zeta_d)$.

The following theorem addresses when a simple ordinary abelian variety \mathcal{A} of arbitrary dimension over k is absolutely simple.

Theorem 2.9 [12]. Let \mathcal{A} be a simple ordinary abelian variety over k with characteristic polynomial $f_{\mathcal{A}}(t)$. Suppose that $f_{\mathcal{A}}(\theta) = 0$. Then \mathcal{A} is absolutely simple if and only if $\mathbb{Q}(\theta) = \mathbb{Q}(\theta^d)$ for all integers $d > 0$.

3. Proof of Theorem 1.2

We first prove that $f(t)$ is a q-polynomial. To accomplish this task, it is enough to show that all zeros of $f(t)$ have modulus $q^{1/2}$, since it is obvious that $f(t)$ has the form (1.1). Let $a_g := mr + 1$. Since

$$\left\lceil \frac{g - 1}{\rho^{b-1}} \right\rceil = \frac{g}{\rho^{b-1}} - 1 = \frac{\rho - 3}{2},$$

we have from (1.3) that

$$f(t) = t^{2g} + a_g t^g + q^g + \sum_{u=1}^{(\rho-3)/2} (t^{2g-qp^{b-1}} + q^{g-qp^{b-1}}).$$

Thus

$$F(t) := f(q^{1/2}t) = q^{g} t^{2g} + q^{g/2} a_g t^g + q^g + \sum_{u=1}^{(\rho-3)/2} q^{(2g-qp^{b-1})/2} (t^{2g-qp^{b-1}} + tp^{b-1})$$
is reciprocal. Let

\[S = |c_N + \delta| - \sum_{j=1}^{N-1} |c_j + \delta - c_N|, \]

where \(N = 2g \), \(c_N = \delta = q^j \) and \(c_j \) is the coefficient of \(t^j \) in \(F(t) \), for \(j = 1, 2, \ldots, N - 1 \). Then, using the fact that

\[a_g \leq 2q^{b-1/2}(q^{b-1/2} - 1), \]

we have

\[
S = 2q^g - 2(q^{[2g - \rho b - 1]/2} + q^{[2g - (\rho - 3)/2]q^{b-1}/2} + \cdots + q^{[2g - (\rho - 3)/2]q^{b-1}/2}) - a_g q^g/2 \\
= 2q^g - 2q^{[2g - (\rho - 3)/2]q^{b-1}/2}((q^{b-1/2})^{(\rho - 3)/2} + \cdots + q^{b-1/2}) - a_g q^g/2 \\
= 2q^g - 2q^{[2g - (\rho - 3)/2]q^{b-1}/2}((q^{b-1/2})^{(\rho - 3)/2} - 1)\frac{q^{b-1/2} - 1}{q^{b-1/2}} - a_g q^g/2 \\
\geq 2q^g - 2q^{[2g - (\rho - 3)/2]q^{b-1}/2}((q^{b-1/2})^{(\rho - 3)/2} - 1)\frac{q^{b-1/2} - 1}{q^{b-1/2} - 1} \\
= 2q^{(2g + 3\rho - 1)/2} - 4q^g - 2q^{(g + 3\rho - 1)/2} + 4q^{(g + 2\rho - 1)/2} \\
\geq 2q^{(2g + 3\rho - 1)/2} - 1 \\
\]

since \(g \geq 2\rho - 1 \) and \(q \geq 4 \). Hence, from Theorem 2.4, all zeros of \(F(t) \) are on the unit circle, and consequently, all zeros of \(f(t) \) have modulus \(q^{1/2} \).

We now show that \(f(t) \) is a Weil polynomial. In particular, we prove that \(f(t) = f_{\mathcal{A}}(t) \) for a simple ordinary abelian variety of dimension \(g \) over \(k \). Observe that \(\gcd(a_g, \rho) = 1 \) since \(m \not\equiv -1/r \) (mod \(p \)), and so we deduce from Theorem 2.5 that \(f(t) = f_{\mathcal{A}}(t) \), where \(\mathcal{A} \) is an ordinary abelian variety of dimension \(g \) over \(k \). Since \(r \) is a primitive root modulo \(p^2 \) and \(f_{\mathcal{A}}(t) \equiv \Phi_{\rho r}(t) \) (mod \(r \)), it follows from Corollary 2.2 that \(f_{\mathcal{A}}(t) \) is irreducible over \(Q \). Therefore, since \(\mathcal{A} \) is ordinary, we conclude that \(\mathcal{A} \) is simple by Theorem 2.6.

For part (1), suppose that \(b = 1 \) and \(g \) is prime. Since all zeros of \(f_{\mathcal{A}}(t) \) have modulus \(q^{1/2} \), the only possible real zeros of \(f_{\mathcal{A}}(t) \) are \(\pm q^{1/2} \). Clearly, \(q^{1/2} \) is not a zero since \(f_{\mathcal{A}}(q^{1/2}) > 0 \). If \(f_{\mathcal{A}}(-q^{1/2}) = 0 \), then the zero \(-q^{1/2} \) has even multiplicity since \(\deg(f_{\mathcal{A}}) \equiv 0 \) (mod 2), which contradicts the fact that \(f_{\mathcal{A}}(t) \) is separable. Thus, \(f_{\mathcal{A}}(t) \) has no real zeros. It follows that \(Q(\theta^d) \) is a CM-field for every integer \(d \geq 1 \). By way of contradiction, assume that \(d \) is the smallest positive integer such that \(Q(\theta^d) \) is a proper subfield of \(Q(\theta) \). Let \(K \) be the maximal real subfield of \(Q(\theta^d) \), so that \([Q(\theta^d) : K] = 2\). Thus, since \(g \) is prime, it follows that \(K = Q \) and

\[
[Q(\theta) : Q(\theta^d)] = g. \tag{3.1}
\]
Since $f_A \not\in \mathbb{Q}[x^d]$, we conclude from Proposition 2.8 that $\mathbb{Q}(\theta) = \mathbb{Q}(\theta^d, \zeta_d)$ for some primitive dth root of unity ζ_d. Hence,

$$[\mathbb{Q}(\theta) : \mathbb{Q}(\theta^d)] = \phi(d).$$

Combining (3.1) and (3.2), we see that $\phi(d) = g$. Consequently, $g = 2$. In this case we have from (1.2) that

$$f_A(t) = r^4 + r^3 + (mr + 1)t^2 + qt + q^2,$$

where $a_1 = 1$ and $a_2 = mr + 1$. Thus, it is easy to check from Theorem 2.7 that \mathcal{A} is absolutely simple, and hence $\mathbb{Q}(\theta^d) = \mathbb{Q}(\theta)$ by Theorem 2.9. This contradiction proves (1).

Finally, to establish (2), suppose that $f_A(\beta) = 0$. Since $b > 1$, it follows from (1.2) and the irreducibility of $f_A(t)$ that the minimal polynomial of $\beta^{b^{-1}}$ has degree $\rho - 1$. Hence, $\mathbb{Q}(\beta^{b^{-1}}) \neq \mathbb{Q}(\beta)$, and \mathcal{A} is not absolutely simple by Theorem 2.9.

4. Examples

We give two examples to illustrate Theorem 1.2. The first example, with $b = 1$, gives the characteristic polynomial of an absolutely simple ordinary abelian variety \mathcal{A} of dimension 3 over \mathbb{F}_{11^2}. The second example, with $b = 3$, gives the characteristic polynomial of an ordinary abelian variety \mathcal{A} of dimension 50 over \mathbb{F}_7, which is simple but not absolutely simple.

EXAMPLE 4.1. Let $b = 1$ and $\rho = 7$, so that $g = 3$ is prime. Since $\text{ord}_{49}(5) = 42 = \phi(49)$, we see that $r = 5$ is a prime primitive root modulo ρ^2. Let $n = 2$ and $p = 11$. Then $q = 11^2 \equiv 1 \pmod{5}$. Finally, we choose $m = 1$, noting that

$$m \not\equiv -1/r \equiv -1/5 \equiv 2 \pmod{11}.$$

Thus, $mr + 1 = 6$. Since $\rho^{b^{-1}} = 1$, we have $a_j = 1$ for $j \in \{1, 2\}$ in (1.3). Therefore,

$$f_A(t) = r^6 + 6r^3 + (11^2)^3 + \frac{2}{11^2} \left((t^{b-j} + (11^2)^{3-j}t^j) \right)$$

$$= r^6 + r^5 + r^4 + 6t^3 + 112t^2 + (11^2)^2t + (11^2)^3$$

$$= r^6 + r^5 + r^4 + 6t^3 + 121t^2 + 14641t + 1771561.$$

EXAMPLE 4.2. Let $b = 3$ and $\rho = 5$, so that $g = \rho^2(\rho - 1)/2 = 50$. Since $\text{ord}_{25}(2) = 20 = \phi(25)$, we see that $r = 2$ is a prime primitive root modulo ρ^2. Let $n = 1$ and $p = 7$. Then $q = 7 \equiv 1 \pmod{2}$. Finally, we choose $m = 9$, noting that

$$m \equiv 2 \not\equiv 3 \equiv -1/2 \equiv -1/r \pmod{7}.$$

Thus, $mr + 1 = 19$. Since $\rho^{b^{-1}} = 25$, it follows that $a_j = 1$ for $j = 25$ and $a_j = 0$ for $j \in \{1, 2, \ldots, 49\} \setminus \{25\}$ in (1.3). Therefore,

$$f_A(t) = t^{100} + t^{75} + 19t^{50} + 7^{25}t^{25} + 7^{50}.$$
Acknowledgement

The author thanks the anonymous referee for helpful comments.

References

[1] D. Burton, *Elementary Number Theory*, 7th edition (McGraw-Hill, New York, 2011).
[2] P. Deligne, ‘La conjecture de Weil. I’, *Inst. Hautes Études Sci. Publ. Math.* **43** (1974), 273–307.
[3] S. A. DiPippo and E. W. Howe, ‘Real polynomials with all roots on the unit circle and abelian varieties over finite fields’, *J. Number Theory* **73**(2) (1998), 426–450.
[4] B. Dwork, ‘On the rationality of the zeta function of an algebraic variety’, *Amer. J. Math.* **82** (1960), 631–648.
[5] A. Grothendieck, ‘Formule de Lefschetz et rationalité des fonctions *L*’, *Séminaire Bourbaki*, **9**, Exp. No. 279 (Société Mathématique de France, Paris, 1995), 41–55.
[6] W. J. Guerrier, ‘The factorization of the cyclotomic polynomials mod *p*’, *Amer. Math. Monthly* **75** (1968) 46.
[7] S. Haloui, ‘The characteristic polynomials of abelian varieties of dimensions 3 over finite fields’, *J. Number Theory* **130**(12) (2010), 2745–2752.
[8] S. Haloui and V. Singh, ‘The characteristic polynomials of abelian varieties of dimension 4 over finite fields’, *Arithmetic, Geometry, Cryptography and Coding Theory*, Contemporary Mathematics, 574 (American Mathematical Society, Providence, RI, 2012), 59–68.
[9] R. Hartshorne, *Algebraic Geometry*, Graduate Texts in Mathematics, 52 (Springer-Verlag, New York, 1977).
[10] T. Honda, ‘Isogeny classes of abelian varieties over finite fields’, *J. Math. Soc. Japan* **20** (1968), 83–95.
[11] E. W. Howe, ‘Principally polarized ordinary abelian varieties over finite fields’, *Trans. Amer. Math. Soc.* **347** (1995), 2361–2401.
[12] E. W. Howe and H. J. Zhu, ‘On the existence of absolutely simple abelian varieties of a given dimension over an arbitrary field’, *J. Number Theory* **92**(1) (2002), 139–163.
[13] P. Lakatos and L. Losonczi, ‘Circular interlacing with reciprocal polynomials’, *Math. Inequal. Appl.* **10**(4) (2007), 761–769.
[14] D. H. Lehmer, ‘Quasi-cyclotomic polynomials’, *Amer. Math. Monthly* **39**(7) (1932), 383–389.
[15] D. Maisner and E. Nart, ‘Abelian surfaces over finite fields as Jacobians’, with an appendix by Everett W. Howe, *Experiment. Math.* **11**(3) (2002), 321–337.
[16] H. Rück, ‘Abelian surfaces and Jacobian varieties over finite fields’, *Compositio Math.* **76**(3) (1990), 351–366.
[17] V. Singh, G. McGuire and A. Zaytsev, ‘Classification of characteristic polynomials of simple supersingular abelian varieties over finite fields’, *Funct. Approx. Comment. Math.* **51**(2) (2014), 415–436.
[18] J. Tate, ‘Endomorphisms of abelian varieties over finite fields’, *Invent. Math.* **2** (1966) 134–144.
[19] W. C. Waterhouse, ‘Abelian varieties over finite fields’, *Ann. Sci. École Norm. Sup. (4)* **2** (1969), 521–560.
[20] W. C. Waterhouse and J. S. Milne, ‘Abelian varieties over finite fields’, *Proc. Sympos. Pure Math.* **20** (1971), 53–64.
[21] A. Weil, ‘Numbers of solutions of equations in finite fields’, *Bull. Amer. Math. Soc.* **55** (1949), 497–508

LENNY JONES, Professor Emeritus of Mathematics, Department of Mathematics, Shippensburg University, Shippensburg, PA 17257, USA

e-mail: lkjone@ship.edu