INTRODUCTION
Since the discovery of two-dimensional (2D) and 3D topological insulators (TIs), band topology in condensed matter materials has attracted broad interest owing to their rich scientific implications and potential for technological applications (1, 2). Described by \mathbb{Z}_2 topological invariant(s), time-reversal (T) invariant TIs are characterized by an insulating gap in the bulk and T-protected gapless states on the boundary of the system (1, 2). Inspired by the discovery of TIs, it was realized that symmetries play a key role in the classifications of topological phases. On the basis of the absence or presence of T, particle hole, or chiral symmetries, insulators and superconductors have been classified under the so-called 10-fold way (3).

In addition to the aforementioned internal symmetries, the topological classification of band structures has also been extended to include crystalline symmetries (4–6). Because of the vast array of crystal symmetries [encapsulated by the 230 crystalline space groups (SGs)], a massive number of topological crystalline phases (TCPs) have been proposed, such as mirror Chern insulators (7), quantized electric multipole insulators (8), high-order TIs (9, 10), hourglass fermions (11), nodal-chain metals (12), and (semi-)metals with unconventional quasiparticles arising from threefold (or higher) band degeneracies (13).

Despite the large number of theoretically proposed TCPs, the discovered topological compounds represent a very small fraction of the experimentally synthesized materials tabulated in structure databases (14). Such apparent scarcity of topological materials originates from the theoretical difficulty in exhaustively computing topological band invariants in first-principles calculations, which becomes increasingly time consuming because of the expanding set of identified invariants (4–7, 9, 11, 15–23). Hence, the prediction of any realistic topological materials is typically taken as a big achievement (1, 2, 6, 7, 11–13, 24–26).

Recent theoretical advancement has greatly reshaped the landscape of materials discovery. By exploiting the mismatch between the real- and momentum-space descriptions of band structure, novel forms of band topology in the 230 SGs for nonmagnetic compounds (27, 28) and the 1651 magnetic SGs for magnetic materials have been proposed (29). A main advantage of the formalism of symmetry-based indicators of band topology (27) is its compatibility with first-principles calculation: In stark contrast to conventional target-oriented searches, our algorithm does not presuppose any specific phase of matter. Based on symmetry representations, which can be readily computed using standard protocols, one can quickly discern topological (semi-) metals, TIs, and topological crystalline insulators from the database (30). The high efficiency of our method has been demonstrated in (30), in which we discuss many topological materials discovered on the basis of their non-trivial index in space groups with Z_2 or Z_4 strong factor, X_{8S}, in the symmetry indicator (SI) group.

In this work, we focus on SGs with $X_{8S} = Z_2$ or Z_{12}. One particularly interesting aspect of the materials candidates we present in this work is the coexistence of topological surface states originating from bulk-boundary correspondence $(1, 2)$ dictated by various kinds of spatial symmetries (27, 31, 32). These SIs are realized in SGs with a high degree of coexisting symmetries, such as (roto-)inversion, mirror reflection, screw, and glide. There are in total 12 and 6 SGs with strong Z_2 and Z_{12} SI factor groups, respectively (27). Focusing on five SGs with Z_8 or Z_{12} strong SI group (SGs 87, 140, 221, 191, and 194), we search for interesting TCPs in a single sweep of a structure database (14) using the method delineated in (30). We only consider spin orbit (SO)–coupled nonmagnetic materials with ≤ 30 atoms in their primitive unit cell. We find a large number of TCPs with reasonably clean Fermi surfaces. In the following, we present and discuss six representative topological crystalline insulators (TCIs) and list others in Tables 1 and 2. Four good Dirac semimetal candidates are discussed at the end.

REVIEW OF SYMMETRY INDICATORS
We begin by providing a brief review on topological materials discovery using SIs (30). In this paradigm, the topological properties of materials can be assessed by computing the representations of the filled energy bands at high-symmetry momenta, which is a standard protocol in band structure calculations. More concretely, the representation content is encoded in a collection of integers, n_{ik}, which can be written as a formal vector: $n = (v, n_1, n_2, \ldots)$, where v is the total number of the filled energy bands, the subscript k_1, k_2, \ldots, k_v denotes the high-symmetry point (HSP) in the Brillouin zone, the superscript

1National Laboratory of Solid State Microstructures and School of Physics, Nanjing University, Nanjing 210093, China. 2Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210093, China. 3Department of Physics, Harvard University, Cambridge, MA 02138, USA. 4Department of Physics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.

Feng Tang1,2, Hoi Chun Po3,4, Ashvin Vishwanath3, Xiangang Wan1,2*

Crystalline symmetries play an important role in the classification of band structures, and their richness leads to various topological crystalline phases. On the basis of our recently developed method for the efficient discovery of topological materials using symmetry indicators, we explore topological materials in five space groups (SGs), which are diagnosed by large-order symmetry indicators (Z_2 and Z_{12}) and support the coexistence of several kinds of gapless boundary states in a single compound. We predict many candidate materials; some representatives include Pt$_2$Ge (SG 140), graphite (SG 194), XPt$_3$ (SG 221, $X = $ Sn, Pb), Au$_4$Ti (SG 87), and Ti$_2$Sn (SG 194). As by-products, we also find that AgXF$_3$ (SG 140, $X = $ Rb, Cs) and AgAsX (SG 194, $X = $ Sr, Ba) are good Dirac semimetals with clean Fermi surfaces. The proposed materials provide a good platform for studying the novel properties emerging from the interplay between different types of boundary states.

11National Laboratory of Solid State Microstructures and School of Physics, Nanjing University, Nanjing 210093, China. 12Department of Physics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.

Tang et al., Sci. Adv. 2019;5:eaau8725 8 March 2019
1, 2, ..., a_{i}, ... refers to the irreducible representation (irrep) of little group at k_i point (G_{k_i}), and n_{irrep}^a means the number of times an a_i irrep of G_{k_i} appears among the filled bands.

The set of vectors \mathbf{n} forms an abelian group (27, 33). Moreover, for every SG, there exists $d_{\mathbf{n}}$ atomic insulator (AI) basis vectors (a_i, $i = 1, 2, \ldots, d_{\mathbf{A}}$) containing information of the group structure for the SI, denoted by X_{BS} in (27), according to the possible common factor C_i for a_i (27). One can always expand any vector \mathbf{n} with respect to the AI basis vectors \mathbf{a}_i: $\mathbf{n} = \sum_{i=1}^{d_{\mathbf{n}}} q_i \mathbf{a}_i$. The expansion coefficients of \mathbf{n} on the AI basis can be classified into three cases (30). Case 1: The expansion coefficients q_is are all integers; such materials might be adiabatically connected to a trivial AI, so we do not consider materials in this case. Case 2: The expansion coefficients q_i are not all integers, but all $q_i C_i$ are integers; such materials are necessarily topological, and the results of $(q_i C_i \mod C_i)$ give the nonvanishing SI (30). Case 3: The $q_i C_i$ are not all integers; such systems are (semi-)metallic. Specifically, if n_{irrep}^a is non-integer, then there is band crossing happening at k_i point; on the other hand, if all the n_{irrep}^a are integers, then there must be band crossing in the high-symmetry line or plane (30).

Z₈ NONTRIVIAL TCI: Pt₃Ge

We now describe the promising TCM materials candidates we discovered. We first perform our materials search in the nonsymmorphic $SG_{140} (I4/mcm)$, which has seven AI basis vectors: $a_i^{SG_{140}}$, $i = 1, 2, \ldots, 7$ (all the AI bases of the SGs in this work are explicitly given in the Supplementary Materials). Only two AI basis vectors (we label them as a_{140}^{SG} and a_{140}^{SG}) have nontrivial common factors: 2 and 8, respectively. Correspondingly, the SI group of SG_{140} is $X_{\text{BS}}^{SG_{140}} = Z_2 \times Z_8$. We list the relatively good materials belonging to case 2 in Table 1. In the following, we take Pt₃Ge as the example to analyze the detailed topological properties.

Pt₃Ge (ICSD\[14\] 077962) crystallizes in the body-centered tetragonal structure, where Ge occupies the 4h Wyckoff position, and Pt occupies two sets of inequivalent sites in the 4a and 8h Wyckoff positions. There are in total 68 valence electrons in the primitive unit cell. On the basis of ab initio calculation, we calculate the irrep multiplicities n_{irrep}^a for all the HSPs and all the corresponding irreps a for the 68 valence bands. We then expand this calculated vector \mathbf{n} on the seven AI basis vectors $\mathbf{n} = \sum_{i=1}^{7} q_i a_i^{SG_{140}}$ and obtain $q = (8, 0, 0, 1, 2, 1, -\frac{1}{2})$. Thus, this material belongs to case 2 and is a TCI, with SI being $(0, 0, 1, 2, 1, -\frac{1}{2})$. As seen from the electronic band plot in Fig. 1A, this material has large direct gaps through the k path.

While from SI alone we can ascertain that Pt₃Ge is a T(C)I, to resolve the concrete form of band topology it displays, we have to evaluate additional topological indices. First, we note that from the Fu-Kane parity criterion (15), one sees that the material cannot be a strong or a weak TI, and Pt₃Ge must be a TCI. As discussed in (31) and (32), the band topology of a TCI can be understood in terms of a collection of invariants associated to each of the elements of the space group. When the invariant of an element is nontrivial, one finds protected surface states on suitable surface terminations. For instance, if a glide invariant is nontrivial, one finds the hourglass surface states on surfaces respecting the glide symmetry (Σ). For symmetries like inversion and screws, which cannot leave any point invariant on the surface, their nontrivial invariants manifest as hinge states at suitable surface termination.

Table 1. Topological crystalline (TC) insulating materials for SGs 87, 140, and 221. These SGs all own the same strong SI factor group, Z_8, but with different other weak SI factor groups. The numbers in the parenthesis following the name of the material are the nonvanishing SI in the corresponding X_{BS}. The SI is obtained by $q C_i \mod C_i$, where a_i has a common factor larger than 1, which corresponds to the subscript of the factor groups of X_{BS}. The blue color denotes the materials carefully discussed in this work.

SG	X_{BS}	Material (SI)
87	$Z_2 \times Z_8$	AuTi (10), Hf₂Te₄ (11)
140	$Z_2 \times Z_8$	Pt₃Ge (04), SiTa₂ (11)
221	$Z_4 \times Z_8$	Al₅ (X = Sc, Y) (03), XB₆ (X = Ca, Sr, Ba) (03), Be³ (03), CaPd (20), CaPbBr₄ (23), CsGeBr₃ (23), CsSnI₃ (23), Ca₃PbO (22), XPt₃ (X = Pb, Sn) (34)

Table 2. TC insulating materials for SGs 191 and 194. These SGs all own the same strong SI factor group, Z_{12}, but with different other weak SI factor groups. The numbers in the parenthesis following the name of the material are the nonvanishing SI in the corresponding X_{BS}. The SI is obtained by $q C_i \mod C_i$, where a_i has a common factor larger than 1, which corresponds to the subscript of the factor groups of X_{BS}. The blue color denotes the materials carefully discussed in this work.

SG	X_{BS}	Material (SI)
191	$Z_6 \times Z_{12}$	XB₂ (X = Mg, Ca) (52), SrB₂ (15), Ti (33)
194	Z_{12}	AlI (4), AlC₄Te₂ (1), Ca₃Ni (3), Graphite (4), NaₓCₓSnₓ (4), MgP₂ (1), SiS₄ (1), Ti₃Sn (6)

Fig. 1. Electronic band plots of TCIs. (A) Electronic band plot of TCI Pt₃Ge within SG_{140}. (B) Electronic band plot of TCI graphite within SG_{194}.

Tang et al., Sci. Adv. 2019;5:eaau8725 8 March 2019 2 of 5
For Pt₃Ge, we find that the enriched inversion invariant \(\kappa_1 \mod 4 \) (31, 32) is also vanishing. Thus, this material has boundary states protected by symmetry operation containing \(n \)-fold axis (\(n > 1 \)), mirror, and/or glide symmetries (31, 32). Because of the rich point symmetry operations in \(S\Gamma 140 \) (whose point group is \(D_{4h} \)), several topological phases may occur (31, 32). We thus evaluate the mirror Chern numbers for the (001) (Miller indices with respect to the conventional lattice basis vectors) and (110) mirror planes by first-principles calculations. Our ab initio results show that they are also all vanishing. As shown in (32), with the above SI and mirror Chern numbers, the glide, screw, and \(S_i \) invariants are thus nonvanishing (31, 32): It would have glide-protected hourglass surface states in (100) glide symmetric planes as the corresponding invariant is 1. The \(C_{4c} \)-screw invariant is 1; thus, it would protect gapless hinge states along the \(c \) direction. We construct a tight binding (TB) model and fit its electronic structure, the SI, and all the topological invariants with the corresponding first-principles results. By the TB model, we demonstrate the surface hourglass band crossings as shown in the Supplementary Materials.

Z₁₂ NONTRIVIAL TCI: GRAPHITE

We also searched the materials with \(S\Gamma 194 \) (\(P6_3/mmc \), whose point group is \(D_{6h} \)) in the database (14). We find that there are 52 and 254 materials belonging to cases 2 and 3, respectively. It is worth emphasizing that our results indicate that graphite (ICSD [14] 193439) is potentially a nontrivial insulator.

It is well known that graphene (i.e., monolayer of graphite) exhibits 2D massless Dirac excitation near \(K/K' \) points (34). The SO coupling (although small) opens a topological gap \([-0.0008 \text{ meV}] (35)\), making it, in principle, a 2D TI (36). The discovery of crystalline symmetry-protected band topology in graphene, namely, the ABABABAB…Bernal stacking of graphene, demonstrates the possibilities of discovering various topological materials even among the simplest elemental materials. We thus present a detailed discussion in the following for graphite.

The \(S\Gamma 194 \) owns nine AI basis vectors \(a_{SG194}^{Si}, i = 1, 2, \ldots, 9 \), where only the last one has a common factor, which is 12. Thus, \(X_{87}^{SG194} = Z_{12} \).

The 16 valence bands in graphite are found to have the expansion coefficients \(q = (2, 0, -1, -1, 1, 0, 1, 1, 3, \frac{1}{2}) \) on the AI basis. Thus, the SI for graphite is \(4 \in Z_{12} \). The band structure is shown in Fig. 1B, where the SO coupling opens a small gap (around 0.025 meV) at the \(K \) point according to the first-principles calculation. The Fu-Kane strong and weak topological invariants (15) are found to be all vanishing as well as that \(\kappa_1 \mod 4 \) is zero. We then calculate the (001) mirror Chern number at \(k_c = 0 \) by first-principles method and find that it is \(-2\). Thus, there would be gapless Dirac surface states in the (001) mirror symmetric planes in the line \(k_c = 0 \). For another mirror symmetric plane, \(k_c = \frac{5}{2} \) the mirror Chern number must be vanishing: for \(S\Gamma 194 \), \(J \in 1 \) (\(J \) is the inversion) preserves the sign of the mirror eigenvalue, while it reverses the sign of Berry curvature: The Berry curvature for \(+i \) mirror eigenvalue \(\Omega_+ \) should satisfy \(T J \Omega_+ = -\Omega_+ \). We construct a TB model that reproduces the ab initio band structures very well and also gives the same SI and topological invariants to demonstrate the surface states protected by (001) mirror plane in the Supplementary Materials.

To ascertain graphite’s nontrivial topology, we then calculate the (120) plane’s mirror Chern number and find that it is vanishing. Then, graphite would have sixfold screw-protected hinge states (31, 32). It can also have glide- and rotation-protected surface states as dictated by the nonvanishing \(C_{4h}^{31} \) (where the superscript of the point operation part denotes the rotation axis and the subscript denotes the rotation angle) rotation invariant and (010) glide invariant (31, 32). While graphite is generally associated with small Fermi pockets, García et al. (37) proposed, based on the observation of a semiconducting gap in small samples of Bernal graphite, that these may arise from extrinsic effects. Thus, further experimental work would be of great interest.

THE OTHER DISCOVERED TCIS

Weak TI coexisting with TCI in PbPt₃ (SG221) and Au₄Ti (SG87)

The above two TC materials both have vanishing inversion and weak topological invariants. We also discover two materials, i.e., PbPt₃ (ICSD [14] 648399) in \(S\Gamma 221 \) and Au₄Ti (ICSD [14] 109132) in \(S\Gamma 87 \), which have three weak topological indices \((15) \) \(\nu_i = 1 \) for \(i = 1, 2, 3 \) (\(\nu_0 \) is vanishing for both cases); however, they have different inversion topological invariants, i.e., \(\kappa_1 \mod 4 \) (31, 32) is equal to 0 or 2, respectively.

PbPt₃ crystallizes in the cubic structure with a primitive Bravais lattice. The electronic band structure is shown in Fig. 2A. The material has 34 valence electrons in the unit cell. The calculated \(n_k^\alpha \) for these 34 bands can be expanded on the 14 AI basis vectors of \(S\Gamma 221 \), and the expansion coefficients are \(q = (0, 0, 0, 0, -1, 1, 0, 1, -1, -1, -\frac{1}{4}, -\frac{1}{2}) \). The last two AI basis vectors own a common factor 4 and 8, respectively. Thus, the SI is \((3, 4) \in Z_4 \times Z_8 \). On the other hand, the parity calculations show that it is a weak TI (15). To further pin down the precise topological character of the system, we also calculate the two mirror Chern numbers for (001) mirror plane (\(k_c = 0 \) or \(\frac{5}{2} \)) (31, 32) and find that they are both equal to \(-1\). This implies that the screw invariant of \(C_{2h}^{91} \), as discussed in (32), is 1. Note that, as \(S\Gamma 221 \) is symmorphic, the screw \(C_{2h}^{91} \) discussed above is not essential, in the sense that it is really a combination of the rotation \(C_{2h}^{91} \) combined with a lattice translation with a nonzero parallel component along the 011 rotation axis. Nonetheless, on the appropriate surface termination, which, as a whole, respects this screw symmetry, one could find protected hinge states.
Au₄Ti crystallizes in $S\Gamma^{87}$ (I4/m), where Au and Ti occupy 8h and 2a Wyckoff positions, respectively. This material is found to belong to case 2. The electronic band structure is shown in Fig. 2B. We calculate the parities and find that its strong topological invariant (15) and inversion invariant $\chi + 1$ mod 4 (31, 32) are both vanishing, while $\nu_1 = \nu_2 = \nu_3 = 1$, so it is a weak TI. Besides, the newly introduced invariant $\Delta (31)$ is found to be 4 (mod 8). Our first-principles calculations also show that the mirror Chern number for the (001) plane is vanishing. Thus, it is found to be 4 (mod 8). Our first-principles calculations also show that the mirror Chern number for the (001) plane is vanishing. Thus, it can accommodate hourglass surface states in glide $\{M_{010} \parallel 00 \frac{1}{2}\}$ symmetric plane (31, 32). It can also host hinge states along the (001) direction, which are protected by the (nonessential) screws $\{C_{2}^{\infty}[00 \frac{1}{2}]\}$ or $\{C_{6}^{\infty}[00 \frac{1}{2}]\}$ (32).

TCI Ti₂Sn in $S\Gamma^{194}$

Ti₂Sn (ICSD[14] 182428) within $S\Gamma^{194}$ is found to be a TCI. The electronic band structure plot is shown in Fig. 3. It has direct gaps everywhere, except in a small area where there are electron and hole pockets. Our calculations show that the SI is (6). Parity calculations show that the inversion invariant $\chi + 1$ mod 4 (31, 32) is 2, while the strong and weak topological invariants (15) ν_1,ν_2,ν_3 are all vanishing. From first-principles calculation, we find that the mirror Chern number for the (120) plane is -4. This high mirror Chern number indicates that there should be multiple Dirac cones in the (120) mirror symmetric plane. To identify the band topology, we also calculate the mirror Chern number of the (001) mirror plane, which is found to be vanishing. Thus, it can accommodate hourglass surface states in $\{M_{010} \parallel 00 \frac{1}{2}\}$ or $\{M_{010} \parallel 00 \frac{1}{2}\}$ glide symmetric planes (31, 32). C_2 around (010) can also protect surface Dirac cones (31, 32). Besides, inversion and screw $\{C_{6}^{\infty}[00 \frac{1}{2}]\}$ can protect hinge states in corresponding hinges, satisfying the corresponding symmetries (31, 32).

TOPOLOGICAL SEMIMETALS

Other than the TCIs, our method can also filter out topological (semi-) metals as by-products when the expansion coefficients belong to case 3. By further requiring relatively clean Fermi surfaces, we identify AgXF₃ (X = Rb, Cs, $S\Gamma^{140}$; ICSD[14] 023153,023154) as good Dirac semimetals, with Dirac points pinned down to two HSPs (P and N) and AgAsX (X = Sr, Ba; $S\Gamma^{194}$; ICSD[14] 049742,008278) as Dirac semimetals with symmetry-protected band crossing at the high-symmetry line, as shown in Fig. 4. These two materials families realize the two subcases within case 3 that we discussed. For the AgXF₃ family, the HSPs P and N both have only one 4D irrep, while the filling cannot be divided by 4. The filling-enforced Dirac points at P or N are subjected to more symmetry restrictions than those for the Dirac points in the high-symmetry line, and consequently, the Dirac dispersion is more isotropic. For the AgAsX family, in the high-symmetry line Γ-A, the Δ_7 and Δ_9 bands cross each other, resulting in a Dirac point protected by C_{6v}. It is worth pointing out that for AgAsX, the Fermi level exactly threads the Dirac point.

CONCLUSIONS AND PERSPECTIVES

In this work, on the basis of our newly developed algorithm (30), we search for topological materials indicated by Z_8 and Z_{12} strong factors in the SI groups. Focusing on $S\Gamma^{87}, 140, 221, 191,$ and 194, we predict many materials, which exhibit coexistence of various gapless boundary states due to the rich combination of various symmetry operators in these highly symmetric $S\Gamma$s. Breaking the symmetry operation directly affects (move or even gap) the gapless topological boundary state; thus, one may easily tune the novel properties of these predicted topological materials through strain or boundary decoration.

It is worth mentioning that the electronic topological phenomenon is widespread in real materials, and as shown in fig. S3, most of the materials in the five $S\Gamma$s we scanned belong to topological phases indicated by cases 2 and 3. Here, we only discuss the materials with clean Fermi surfaces, since in these materials we expect the transport properties to be dominated by the topologically nontrivial states. Our scheme also finds some good metals with big Fermi surfaces having nonzero SI. One good example is MgB₂. It is interesting to contemplate on the possible interplay between its superconductivity (38) and band topology.

We hope that our proposed materials will enrich the set of realistic topological crystalline materials and stimulate related experiments. With the demonstrated efficiency, our method (30) can be used for a large-scale systematic search of the entire materials database, which could lead to the discovery for many more new topological materials.

Fig. 3. Electronic band plot of TCI Ti₂Sn within $S\Gamma^{194}$.

Fig. 4. Electronic band plots of Dirac semimetals. (A) AgCsF₃ within $S\Gamma^{140}$ owns Dirac points pinned down at P and N points. (B) AgAsBa within $S\Gamma^{194}$ has a Dirac point lying in the high-symmetry line Γ-A. The Dirac point is protected by C_{6v}, and the band crossing arises from two twofold degenerate bands with different irreps (Δ_7 and Δ_9).
METHODS

The electronic band structure calculations were carried out using the full potential linearized augmented plane-wave method as implemented in the WIEN2k package (39). The generalized gradient approximation with Perdew-Burke-Ernzerhof (40) realization was adopted for the exchange-correlation functional.

SUPPLEMENTARY MATERIALS

Supplementary material for this article is available at http://advances.sciencemag.org/cgi/content/full/5/3/eaau8725/DC1

REFERENCES AND NOTES

1. M. Z. Hasan, C. L. Kane, Colloquium: Topological insulators. Rev. Mod. Phys. 82, 3045 (2010).

2. X.-L. Qi, S.-C. Zhang, Topological insulators and superconductors. Rev. Mod. Phys. 83, 1057 (2011).

3. C.-K. Chiu, J. C. Y. Teo, A. P. Schnyder, S. Ryu, Classification of topological quantum matter with symmetries. Rev. Mod. Phys. 88, 035005 (2016).

4. L. Fu, Topological crystalline insulators. Phys. Rev. Lett. 106, 106802 (2011).

5. R.-J. Slager, A. Mesaros, V. Jurิжij, J. Zaanen, The space group classification of topological band-insulators. Nat. Phys. 9, 98–102 (2013).

6. Y. Ando, L. Fu, Topological crystalline insulators and topological superconductors: From concepts to materials. Annu. Rev. Condens. Matter Phys. 6, 361–381 (2015).

7. T. H. Hsieh, H. Lin, J. Liu, W. Duan, A. Bansil, L. Fu, Topological crystalline insulators in the SnTe material class. Nat. Commun. 3, 982 (2012).

8. W. A. Bencazar, B. A. Bernevig, T. L. Hughes, Quantized electric multipole tensors. Science 357, 61–66 (2017).

9. K. Shiozaki, M. Sato, K. Gomi, Atiyah-Hirzebruch spectral sequence in band topology: General formalism and topological invariants for 230 space groups. arXiv:1802.06694 (cond-mat.str-el) (19 February 2018).

10. K. Shiozaki, M. J. Gilbert, B. A. Bernevig, Bulk topological invariants in noninteracting point group symmetric insulators. Phys. Rev. B 86, 115112 (2012).

11. C. Fang, L. Fu, New classes of three-dimensional topological crystalline insulators: Nonsymmetric and magnetic. Phys. Rev. B 91, 161105(R) (2015).

12. X. Wan, A. M. Turner, A. Vishwanath, S. Y. Savrasov, Topological semimetal and Fermi-arc surface states in the electronic structure of pyrochlore iridates. Phys. Rev. B 83, 205101 (2011).

13. H. Weng, C. Fang, Z. Fang, B. A. Bernevig, X. Dai, Weyl semimetal phase in noncentrosymmetric transition-metal monophosphides. Phys. Rev. X 5, 011029 (2015).

14. S.-M. Huang, S.-Y. Xu, I. Belopolski, C.-C. Lee, G. Chang, B. Wang, N. Alidoust, G. Bian, M. Neupane, C. Zhang, S. Jia, A. Bansil, H. Lin, M. Z. Hasan, A Weyl Fermion semimetal with surface Fermi arcs in the transition metal monopnictide TaAs class. Nat. Commun. 6, 7373 (2015).

15. H. C. Po, A. Vishwanath, H. Watanabe, Symmetry-based indicators of band topology in the 230 space groups. Nat. Commun. 8, 50 (2017).

16. B. Bradley, L. Elcoro, J. Cano, M. G. Vergniory, Z. Wang, C. Felser, M. I. Aroyo, B. A. Bernevig, Topological quantum chemistry. Nature 547, 298–305 (2017).

17. H. Watanabe, H. C. Po, A. Vishwanath, Structure and topology of band structures in the 1651117 magnetic space groups. Sci. Adv. 4, eaat8685 (2018).

18. A. H. Castro Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov, A. K. Geim, The electronic properties of graphene. Rev. Mod. Phys. 81, 109 (2009).

19. Y. Yao, Y. Ye, X.-L. Qi, S.-C. Zhang, Z. Fang, Spin-orbit gap of graphene: First-principles calculations. Phys. Rev. B 75, 041401(R) (2007).

20. C. C. J. E. Mele, Quantum spin Hall effect in graphene. Phys. Rev. Lett. 95, 226801 (2005).

21. N. Garcia, P. Esquivazi, J. Barroza-Quixquia, S. Dusari, Evidence for semiconducting behavior with a narrow band gap of Bernal graphene. New J. Phys. 14, 053015 (2012).

22. J. Nagamatsu, N. Nakagawa, T. Muranaka, Y. Zenitani, J. Akimitsu, Superconductivity at 39 K in magnesium diboride. Nature 410, 63–64 (2001).

23. P. Blaha, K. Schwarz, G. Madsen, D. Kvasicka, J. Luitz, WIEN2k: An Augmented Plane Wave Plus Local Orbits Program for Calculating Crystal Properties (Vienna University of Technology, 2001).

24. J. P. Perdew, K. Burke, M. Ernzerhof, Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996).

Acknowledgments

Funding: F.T. and X.W. were supported by the National Key R&D Program of China (nos. 2018YFA0305704 and 2017YFA0303203), the NSFC (nos. 11525417, 11834006, 51721001, 11522884, 11793173, 11890770, and 11933001), and the National Science Foundation of China (nos. 2018YFA0305704 and 2017YFA0303203), the NSFC (nos. 11525417, 11834006, 51721001, 11522884, 11793173, 11890770, and 11933001), and the National Science Foundation of China (nos. 2018YFA0305704 and 2017YFA0303203). The authors declare that they have no competing interests. Data and materials availability: All data needed to evaluate the conclusions in the paper are present in the paper and/or the Supplementary Materials. The codes of symmetry-indicator method are present in https://dash.harvard.edu/harvard/doi:10.5061/dryad.4sh6s. Additional data related to this paper may be requested from the authors.

Submitted 23 July 2018
Accepted 28 January 2019
Published 8 March 2019
10.1126/sciadv.aau8725

Citation: F. Tang, H. C. Po, A. Vishwanath, X. Wan, Topological materials discovery by large-order symmetry indicators. Sci. Adv. 5, eaau8725 (2019).