phytoplankton photosynthesis does increase with temperature and, oxygen evolution data across the global ocean suggests that realized rates of metabolic activity and growth. An analysis of nature show the same degree of temperature dependence in their
approximately 2 within the tolerable temperature range [10–13]. Maritim de la Barceloneta 37–49, Barcelona, Spain, 3 Department of Chemical and Biological Engineering, The University of Sheffield, Sheffield, United Kingdom

Abstract

The universal temperature dependence of metabolic rates has been used to predict how ocean biology will respond to ocean warming. Determining the temperature sensitivity of phytoplankton metabolism and growth is of special importance because this group of organisms is responsible for nearly half of global primary production, sustains most marine food webs, and contributes to regulate the exchange of CO₂ between the ocean and the atmosphere. Phytoplankton growth rates increase with temperature under optimal growth conditions in the laboratory, but it is unclear whether the same degree of temperature dependence exists in nature, where resources are often limiting. Here we use concurrent measurements of phytoplankton biomass and carbon fixation rates in polar, temperate and tropical regions to determine the role of temperature and resource supply in controlling the large-scale variability of in situ metabolic rates. We identify a biogeographic pattern in phytoplankton metabolic rates, which increase from the oligotrophic subtropical gyres to temperate regions and then coastal waters. Variability in phytoplankton growth is driven by changes in resource supply and appears to be independent of seawater temperature. The lack of temperature sensitivity of realized phytoplankton growth is consistent with the limited applicability of Arrhenius enzymatic kinetics when substrate concentrations are low. Our results suggest that, due to widespread resource limitation in the ocean, the direct effect of sea surface warming upon phytoplankton growth and productivity may be smaller than anticipated.

Introduction

Temperature governs the metabolism of all organisms. Within favourable thermal ranges, there exists a positive, often exponential, increase in metabolic rate as temperature rises [1,2]. On-going and predicted ocean warming [3] prompts the question of how phytoplankton photosynthetic activity and growth may respond to increasing sea surface temperatures [4–6]. This response will be relevant for the functioning of the Earth system as a whole, because phytoplankton sustain most marine food webs and, being responsible for nearly half of the global primary production [7], contribute to control the exchange of CO₂ and other radiatively active gases between the ocean and the atmosphere [8,9].

Laboratory work with cultures growing under optimal conditions has shown that the maximum growth rates of phytoplankton, and thus their maximum rate of biomass-specific production, increase exponentially with temperature with a Q₁₀ of approximately 2 within the tolerable temperature range [10–13]. However, it is not clear whether phytoplankton assemblages in nature show the same degree of temperature dependence in their realized rates of metabolic activity and growth. An analysis of in vitro oxygen evolution data across the global ocean suggests that phytoplankton photosynthesis does increase with temperature and, furthermore, that the degree of temperature dependence is similar to that predicted by the metabolic theory of ecology [14]. Similarly, an eco-evolutionary model predicts that phytoplankton living in tropical regions sustain faster growth rates than their counterparts living in temperate and polar regions [6]. These studies, however, did not consider the role of resource supply, which is included in applications of the metabolic theory of ecology [1,15] and limits phytoplankton production and growth in most of the open ocean [16]. Nutrient limitation has been shown to reduce the temperature sensitivity of carbon fixation by phytoplankton [17–19]. If resource limitation attenuates the temperature dependence of metabolic rates, different regions where phytoplankton experience different degrees of resource limitation may show contrasting productivity responses to warming, and models that use laboratory-based values of Q₁₀ are likely to overestimate the direct effects of temperature upon algal growth.

Understanding the variability and controlling factors of phytoplankton growth rates is key to predict the response of ocean biology to external forcings such as climate variability [20]. However, in spite of decades of observation [10,20–23], a general picture of phytoplankton growth variation over broad spatial scales in the ocean remains elusive. Here, we use concurrent data of
phytoplankton carbon biomass and photosynthetic carbon fixation, determined in coastal and open-ocean waters of polar, temperate and tropical biomes, to investigate the large-scale variability of phytoplankton metabolic rates, represented by the biomass-specific rate of carbon fixation [10,24]. Our analysis allows us to characterize biogeographic patterns in phytoplankton growth and to assess the relative role of temperature and resource availability in the control of marine primary productivity.

Materials and Methods

Data acquisition

We compiled data on phytoplankton carbon biomass concentration and primary production rate that were determined concurrently in surface assemblages of coastal and open-ocean regions. Coastal observations (number of sampling visits, n = 26) were conducted throughout the year at a central station (depth = 40 m) in the Ría de Vigo (NW Iberian Peninsula), a highly productive embayment subject to frequent upwelling events, particularly in spring and summer [23,26]. Open-ocean stations (n = 38) were visited in April-May 1996 and September-October 1996 along the Atlantic Meridional Transect, which crosses temperate, subtropical and tropical regions in the north and south Atlantic Ocean [27]. The data from the AMT stations were grouped according to their latitude into north temperate (35–49°N), south temperate (35–48°S), north oligotrophic (20–31°N), south oligotrophic (10–34°S) and equatorial and Mauritanian upwelling (5°S–20°N). Additional data (n = 8) were obtained from the Soirée (Southern Ocean Iron Release Experiment) study, conducted in open-ocean, polar waters of the Australasian-Pacific Southern Ocean [28–30]. To minimise the effects of vertical variability in irradiance upon phytoplankton photosynthetic activity, the present analysis uses only data from surface samples (0–5 m in coastal waters, 0–20 m in open-ocean waters).

Phytoplankton biomass and production

Phytoplankton carbon biomass was estimated from measurements on fixed samples of cell abundance and biovolume, determined with flow cytometry for the picophytoplankton and with an inverted microscope for the nano- and micro-phytoplankton, following protocols that are detailed elsewhere [26,27,30]. Biovolume data were transformed into carbon biomass by applying appropriate conversion factors. Primary production rate was determined with the 14C-uptake technique using on-deck incubations which simulated in situ temperature and irradiance conditions [26,27,29]. Phytoplankton biomass turnover rates (d⁻¹), equivalent to intrinsic growth rates [10,24], were calculated by dividing the daily carbon fixation rate by phytoplankton carbon biomass.

Hydrography data

Vertical profiles of temperature and salinity were obtained with a CTD probe attached to a rosette sampling system. Density was calculated from temperature and salinity by using the standard UNESCO equation. The concentration of dissolved nitrate in the euphotic layer was determined by segmented-flow analysis using an automatic analyser and standard colorimetric protocols [26,27,31]. The detection limit of this analysis (0.03 μmol L⁻¹) was sufficient to measure nitrate concentration at the base of the euphotic layer, which was always >0.2 μmol L⁻¹. The depth of the euphotic layer was determined from vertical profiles of irradiance obtained with a PAR Li-Cor sensor.

Index of resource supply

We computed a resource supply index (RSI) that takes into account the concentration of nitrate at the base of the euphotic zone (NO₃₁%PAR), the density difference between the surface and the base of the euphotic zone (Δσt), the depth of the euphotic zone, defined as the 1% PAR level (1%PARz), and the depth of the upper mixed layer (UMLz), defined as the first depth at which σt is 0.125 units higher than the surface value [32]:

\[
RSI = \frac{NO₃[1%PAR]}{Δσt} \times \frac{1%PARz}{UMLz} \quad (1)
\]

The first term in Eq. 1 reflects the fact that nutrient transport to the upper layer increases with increasing nutrient concentration below, but also that this transport becomes progressively more limited as vertical stratification intensifies. The second term in Eq. 1 serves to differentiate conditions in which phytoplankton are confined to a shallow upper mixed layer, relative to the depth of the euphotic zone, and thus experience relatively high average irradiances, from conditions in which intense mixing results in mixed layers whose depth equals or exceeds the penetration of irradiance into the water column, potentially resulting in light limitation of phytoplankton growth. Our index of resource supply is not intended to provide an accurate estimate of local-scale resource availability, but is used here to depict broad differences between regions with widely contrasting hydrographic regimes. RSI was not calculated for the stations sampled in the Soirée study, where, in addition to macronutrients and irradiance, iron was a limiting factor for phytoplankton production and growth [28].

Statistical analyses

Pearson’s r was calculated to assess the existence of linear dependence between variables. We applied reduced major-axis regression to determine the linear relationship between log₁₀-transformed variables. Ninety-five percent confidence intervals for the regression parameters were calculated by bootstrapping over cases (2,000 repetitions). The non-parametric Mann-Whitney U test was used to compare means between groups of stations.

Results

Phytoplankton biomass and production

Across all studied regions, which showed widely contrasting hydrographic properties (Table 1), carbon fixation rates covaried closely with phytoplankton standing stocks, represented either by carbon biomass (Fig. 1a) or by chlorophyll a concentration (chl a) (Fig. 1b). The range of variability in phytoplankton production rates was >5 orders of magnitude, compared with approximately 2 orders of magnitude for phytoplankton carbon biomass and chl a. The key feature of these relationships is that in both cases the slope of the fitted line is significantly higher than 1, taking a value of 1.46 (95% confidence interval: 1.35, 1.58) in the production–carbon biomass regression and 1.29 (1.19, 1.39) in the production–chl a regression. This result implies that, as phytoplankton standing stocks increase, primary production rates increase at a faster rate. From oligotrophic regions to coastal waters, mean phytoplankton chl a and biomass increased by a factor of 20–30,
whereas primary production increased by a factor of >100 (Table 2).

The relationship between chl \(a\) and phytoplankton carbon (Fig. 1c) was remarkably robust, considering the uncertainties involved in estimating biomass from biovolume and the fact that the samples were analysed by several independent laboratories. The slope of the log-log regression between phytoplankton carbon and chl \(a\) (0.89; 95% CI: 0.83, 0.94) was significantly lower than 1, indicating that the C:Chl \(a\) ratio tends to decrease as phytoplankton standing stocks increase from open-ocean oligotrophic to open-ocean temperate and then coastal waters (Table 2). This pattern likely reflects the fact that in temperate and coastal waters phytoplankton are acclimated to lower mean irradiances, which results in increased chl \(a\) cellular content.

Temperature and phytoplankton growth

We found no overall relationship between phytoplankton growth rate, represented by the biomass turnover rate (P \(C\)), and temperature (Pearson’s \(r = -0.045, p > 0.5, n = 72\) (Fig. 2)). The highest P \(C\) values (>1 d\(^{-1}\)) were measured in coastal waters, despite the fact that their temperature was 10–15°C lower than that of subtropical and tropical oligotrophic regions (Table 1). Some of the coldest and the warmest waters analysed had similarly low P \(C\) values (<0.4 d\(^{-1}\)). During the Soiree study, P \(C\) inside the iron-fertilised patch took higher values than in surrounding waters with the same temperature. The stations within the Atlantic upwelling region tended to have higher P \(C\) values than oligotrophic stations with similar temperatures.

Resource supply and phytoplankton growth

P \(C\) increased with chl \(a\) (Fig. 3a), suggesting that an enhanced supply of resources, necessary to sustain larger standing stocks, leads to faster phytoplankton growth. Groups of samples with mean chl \(a\) above 2 mg m\(^{-3}\) had mean P \(C\) values higher than 1.2 d\(^{-1}\), whereas samples with mean chl \(a\) below 0.2 mg m\(^{-3}\) showed P \(C\) values below 0.4 d\(^{-1}\). These differences were statistically significant (Mann-Whitney’s U test, \(p < 0.05\)). The role of resource supply in controlling phytoplankton biomass turnover was confirmed by the positive correlation between the resource supply index (RSI) and P \(C\) (Pearson’s \(r = 0.45, p < 0.001, n = 59\); Fig. 3b). RSI was calculated as a function of nitrate concentration at the base of the euphotic layer, the density difference between sea surface and the base of the euphotic layer, and the depths of the upper mixed layer and the euphotic zone (see Material and Methods). RSI varied widely, reflecting large across-system differences in nutrient concentration and water column stratification (Table 1). The oligotrophic regions showed low RSI values (<10 mmolN kg\(^{-1}\)) (Fig. 3c), mainly due to their low nitrate concentration at the base of the euphotic layer (Table 1). Higher nitrate concentration in the temperate regions resulted in RSI values above 20 mmolN kg\(^{-1}\). The highest RSI values were determined in the Ria de Vigo, where high nitrate concentrations
Table 1. Physical and chemical properties of the studied regions.

Location	Temp.	1% PARz	UMLz	NO3[1%PAR]
Temperate N	15.9	0.6	69	67.7
Temperate S	13.4	0.4	6	94.4
Oligotrophic N	24.4	0.6	6	94.4
Oligotrophic S	27.3	0.6	6	94.4
Upwelling	27.3	0.6	6	94.4
Coastal	27.3	0.6	6	94.4
Standard deviation				

\[\text{Table 1.} \]

at the base of the euphotic layer co-occur with upper mixed layers that are shallow relative to the depth of the euphotic layer (Table 1). Despite having similar nitrate concentration at the base of the euphotic zone, the temperate regions had lower RSI values than the oligotrophic regions and in turn the coastal waters showed faster growth rates than all other regions. The oligotrophic stations of the south Atlantic gyre, characterized by the lowest RSI values, showed mean PC values that were significantly lower than those determined in the temperate and upwelling open-ocean regions and in the coastal waters (Mann-Whitney's U test, \(p < 0.05 \)). The differences in PC between coastal waters and all other regions were also statistically significant (Mann-Whitney's U test, \(p < 0.05 \)).

The relationship between temperature and phytoplankton growth rate could be masked due to the fact that most of the variability in PC was due to changes in resource supply. To test this possibility, we plotted temperature against PC in groups of stations which had similar resource supply conditions, as indicated by their RSI values, and covered a temperature range of at least 10°C (Fig. 4). In both low-RSI and intermediate-RSI stations, we found no significant relationship between temperature and PC.

Discussion

Our results suggest that the large-scale variability of realized mass-specific carbon fixation rates, and hence intrinsic growth rates [33,34], of marine phytoplankton is not controlled by seawater temperature, but depends primarily on resource supply. Given that under resource-saturated conditions phytoplankton growth does show a clear temperature dependence [10,13,35], our observations imply that temperature and resource limitation effects in phytoplankton are not independent. We hypothesise that the lack of effect of temperature upon phytoplankton metabolic rate under resource-limited conditions arises because the applicability of Arrhenius kinetics is limited when substrate concentration are low [36]. The maximum reaction rate (\(V_{\text{max}} \)) of an enzyme increases with temperature, up to an optimal temperature, due to higher substrate kinetic energy and enhanced collision rate between reactants. However, an increase in temperature also causes reduced ligand binding ability [37], and as a result the Michaelis-Menten constant (\(K_m \)) of most enzymes also increases with temperature [38–40]. Thus, the temperature sensitivities of \(V_{\text{max}} \) and \(K_m \) can neutralize each other and give way to \(Q_{10} \) values near 1 (absence of temperature-dependence) when substrate concentrations are around or below \(K_m \) [36,41]. Our hypothesis is consistent with the analysis of Raven and Geider [12], who concluded that nutrient limitation leads to a smaller temperature dependence of growth, compared with nutrient-saturated conditions. Moreover, experimental studies with natural phytoplankton assemblages have shown that under nutrient limitation the temperature dependence of photosynthetic rate is reduced [17] or disappears altogether [18].
The lack of relationship between temperature and phytoplankton growth rate in our data may seem at odds with the results of some experimental studies in open-ocean waters which have shown that phytoplankton metabolism responds to temperature changes [42,43]. However, these manipulation experiments reflect short-term, transient responses in phytoplankton physiology and therefore do not capture the large acclimation potential of phytoplankton [44]. The present results are also in contrast to the findings of Regaudie-de-Gioux and Duarte [14], who concluded that there is a strong temperature dependence of phytoplankton photosynthesis in the sea. The discrepancy is likely to result from the fact that in their analysis these authors pooled together data obtained throughout the euphotic zone, thus introducing irradiance as a covarying factor. Samples near the base of the euphotic zone, where temperatures are colder than at the surface, will necessarily show lower rates of photosynthesis, not as a result of the lower temperature but as a result of lower irradiance. In addition, photosynthetic rates in the study by Regaudie-de-Gioux and Duarte were normalised by chlorophyll a instead of carbon biomass. However, it is well-established that the cellular content of chlorophyll a increases with decreasing irradiance and increasing nutrient availability [45–47]. Therefore, normalising metabolic rates by chlorophyll a results in biased patterns of temperature dependence whenever there is covariation between temperature, nutrient availability and irradiance.

Our observations depict a consistent, broad-scale pattern in phytoplankton growth rates, which increase from oligotrophic gyres to temperate, open-ocean regions and then to coastal, productive waters. This resource-driven pattern is associated with changes in community structure [26,27], as oligotrophic waters are dominated by small cells (picocyanobacteria and picoeukaryotes) with relatively low biomass turnover rates, whereas the most productive waters are dominated by fast-growing diatoms. Warm temperatures and a tight coupling between zooplankton-mediated nutrient regeneration and phytoplankton uptake could, in principle, result in an absence of nutrient limitation and near-maximal phytoplankton growth rates in the nutrient-impoverished subtropical gyres [20,21,23]. This possibility, however, contrasts with the experimental evidence showing physiological stress of the dominant picophytoautotrophs in the oligotrophic Atlantic, which is alleviated upon addition of nitrogen [16,40,49]. Our results support the existence of nutrient limitation of both standing stocks and growth rates in the oligotrophic gyres [50], i.e. a situation in which both Liebig’s and Blackman’s types of limitation apply [16,51]. This limitation appears to be less acute in temperate open-ocean regions, which are subject to seasonal nutrient injections through vertical mixing, and in the upwelling open-ocean region, where upward water motion enhances the nutrient supply to the euphotic zone. In the coastal, productive waters of Ria de Vigo, high resource supply results in growth rates that are, on average, similar to the maximum growth rates expected given in situ temperatures. These resource-driven biogeographic patterns imply a predominantly bottom-up control of phytoplankton growth in the ocean.

A previous study [52] has shown that phytoplankton growth rates in coastal, nutrient-rich waters show a degree of temperature dependence comparable to that observed in laboratory cultures, which confirms that temperature sets an upper limit to the maximum growth rates that phytoplankton can achieve under resource-saturated conditions. In addition, nutrient stoichiometry and pigment content have been shown to be temperature-dependent, reflecting intracellular changes in the abundance of macromolecules involved in light harvesting, photochemistry and
Furthermore, inter-species differences in thermal tolerance ranges and optimal temperature for growth [55] contribute to explain changes in species distribution, community structure and associated ecosystem functioning over multiple temporal and spatial scales [56–59]. Nevertheless, as far as the large-scale variability in phytoplankton production and growth rates is concerned, temperature seems to be unimportant whereas resource supply plays a crucial role. This result may have important consequences for the modelling of ocean ecosystem responses to climate change. Biogeochemical models typically estimate phytoplankton growth rates as a multiplicative function of nutrient concentration, irradiance, and temperature-dependent maximum growth rate [5,60,61]. This formulation assumes that temperature effects on growth are independent of resource supply status, so that for a given condition of resource availability, an increase in temperature will necessarily result in faster phytoplankton growth. In contrast, our observations indicate that resource limitation drastically reduces the temperature dependence of phytoplankton metabolism. Similarly, the growth [62] and extracellular enzymatic activities [63] of natural marine bacterial assemblages show only a very limited response to temperature when resources are in low supply. Hence, the sensitivity of microbial metabolic rates to sea surface warming,
particularly in open-ocean, nutrient-limited regions, may be smaller than anticipated [4,14,64,65].

Acknowledgments

We thank D. S. Harbour for the phytoplankton data from the AMT cruises and P. W. Boyd and M. P. Goll for the phytoplankton and productivity data from the SOIREE study. Comments from two anonymous reviewers are also acknowledged.

Author Contributions

Conceived and designed the experiments: EM. Performed the experiments: EM PG BMCS TRR MHO. Analyzed the data: EM PG BMCS. Wrote the paper: EM.

References

1. Brown JH, Gillooly JF, Allen AP, Savage VM, West GB (2004) Toward a metabolic theory of ecology. Ecology 83: 1771–1789.
2. Wilson TW, Hoekstra Y (2012) Phytoplankton size structure and primary production in a highly dynamic coastal ecosystem (Ria de Vigo, NW Spain): Seasonal and short-time scale variability. Est Coast Shelf Sci 44: 291–305.
3. Cerveno PE, Marañon E, Perez V, Serret R, Fernandez E, et al. (2006) Phytoplankton size structure and primary production in a highly dynamic coastal ecosystem (Ria of Vigo, NW Spain). Est Coast Shelf Sci 44: 291–305.
4. Boyd PW, Watson AJ, Lau CS, Abraham ER, Trull T, et al. (2000) A mesoscale phytoplankton bloom in the polar Southern Ocean stimulated by iron fertilization. Nature 407: 695–702.
5. Brown JH, Gillooly J, Harvey SC, Lima ID (2010) Response of ocean phytoplankton community structure to climate change over the 21st century: partitioning the effects of nutrients, temperature and light. Biogeosciences 7: 3941–3959.
6. Thomas MK, Kremer CT, Klaasmeier CA, Litchman E (2012) A global pattern of thermal adaptation in marine phytoplankton. Science 338: 1083–1086.
7. Field C, Behrenfeld M, Randerson J, Falkowshi EL (1998) Primary production of the biosphere: integrating terrestrial and oceanic components. Science 281: 237–240.
8. Falkowski PG (2012) The power of plankton. Nature 483: S17–S20.
9. Falkowski PG, Barber R, Smetacek V (1998) Biogeochemical controls and processes and patterns of oceanic nutrient limitation. Nature Geosci 6: 701–710.
10. Falkowski PG (2012) Calculating microbial growth rates from data on photosynthesis. Ecol Lett 12: 369–384.
11. Goldman JC, Carpenter EJ (1974) A kinetic approach to the effect of nutrient limitation on primary production and standing stocks. Mar Ecol Prog Ser 233: 303–306.
12. Laws EA (2013) Evaluation of in situ phytoplankton growth rates: a synthesis of techniques and patterns of oceanic nutrient limitation. Limnol Oceanogr 58: 1063–1085.
13. Leavitt UV (1978) Phytoplankton primary production and productivity in the oligotrophic sub-tropical North Atlantic. Limnol Oceanogr 33: 525–530.
14. Logatcheva DA, Sintes E, Richardson MA, Smetacek V, Paasche T, et al. (2002) Carbon fixation and primary production in the Central and Northwest Atlantic. Deep-Sea Res II 49: 16803–16821.
15. Marañon E, Holligan PM, Varela M, Mourino B, Bale AJ (2000) Basin-scale variability of phytoplankton biomass, production and growth in the Atlantic Ocean. Deep-Sea Res I 47: 825–857.
16. Moore CM, Mills MM, Arrigo KR, Berman-Frank I, Bopp L, et al. (2013) Control of photosynthesis, respiration and growth of natural phytoplankton. Nature 495: 441–461.
17. Marañon E, Holligan PM, Varela M, Mourino B, Bale AJ (2000) Basin-scale variability of phytoplankton biomass, production and growth in the Atlantic Ocean. Deep-Sea Res II 49: 16803–16821.
18. O'Connor MI, Piehler MF, Leech DM, Anton A, Bruno JF (2009) Warming and growth of phytoplankton in the Southern Ocean Iron RElease Experiment (SOIREE). Deep-Sea Res II 48: 2551–2570.
19. Roe F, Bowie A, Croot P, Pickmere S (2001) Macromutrient and trace-metal geochemistry of an in situ iron-induced Southern Ocean bloom. Deep-Sea Res II 48: 2467–2481.
20. O'Connor MI, Piehler MF, Leech DM, Anton A, Bruno JF (2009) Warming and growth of phytoplankton in the Southern Ocean Iron RElease Experiment (SOIREE). Deep-Sea Res II 48: 2551–2570.
21. Roe F, Bowie A, Croot P, Pickmere S (2001) Macromutrient and trace-metal geochemistry of an in situ iron-induced Southern Ocean bloom. Deep-Sea Res II 48: 2467–2481.
22. O’Connor MI, Piehler MF, Leech DM, Anton A, Bruno JF (2009) Warming and growth of phytoplankton in the Southern Ocean Iron RElease Experiment (SOIREE). Deep-Sea Res II 48: 2551–2570.
23. Roe F, Bowie A, Croot P, Pickmere S (2001) Macromutrient and trace-metal geochemistry of an in situ iron-induced Southern Ocean bloom. Deep-Sea Res II 48: 2467–2481.
24. O’Connor MI, Piehler MF, Leech DM, Anton A, Bruno JF (2009) Warming and growth of phytoplankton in the Southern Ocean Iron RElease Experiment (SOIREE). Deep-Sea Res II 48: 2551–2570.
25. Roe F, Bowie A, Croot P, Pickmere S (2001) Macromutrient and trace-metal geochemistry of an in situ iron-induced Southern Ocean bloom. Deep-Sea Res II 48: 2467–2481.
26. O’Connor MI, Piehler MF, Leech DM, Anton A, Bruno JF (2009) Warming and growth of phytoplankton in the Southern Ocean Iron RElease Experiment (SOIREE). Deep-Sea Res II 48: 2551–2570.
27. Roe F, Bowie A, Croot P, Pickmere S (2001) Macromutrient and trace-metal geochemistry of an in situ iron-induced Southern Ocean bloom. Deep-Sea Res II 48: 2467–2481.
28. O’Connor MI, Piehler MF, Leech DM, Anton A, Bruno JF (2009) Warming and growth of phytoplankton in the Southern Ocean Iron RElease Experiment (SOIREE). Deep-Sea Res II 48: 2551–2570.
29. Roe F, Bowie A, Croot P, Pickmere S (2001) Macromutrient and trace-metal geochemistry of an in situ iron-induced Southern Ocean bloom. Deep-Sea Res II 48: 2467–2481.
55. Boyd PW, Rynearson TA, Armstrong EA, Fu F, Hayashi K, et al. (2013) Marine phytoplankton temperature versus growth responses from polar to tropical waters – outcome of a scientific community-wide study. PLOS ONE 8: e63091.
56. Moisan JR, Moisan TA, Abbott MR (2002) Modelling the effect of temperature on the maximum growth rates of phytoplankton populations. Ecol Model 153: 197–213.
57. Boyd PW, Strzepek R, Fu F, Hutchins DA (2010) Environmental control of open-ocean phytoplankton groups: Now and in the future. Limnol Oceanogr 55: 1353–1376.
58. Litchman E, Edwards KF, Klausmeier CA, Thomas MK (2012) Phytoplankton niches, traits and co-evolutionary responses to global environmental change. Mar Ecol Prog Ser 470: 233–248.
59. Flombaum P, Gallegos JL, Gordillo RA, Rincón J, Zabala LL, et al. (2013) Present and future global distributions of the marine cyanobacteria Prochlorococcus and Synechococcus. Proc Natl Acad Sci USA 110: 9824–9829.
60. Doney SC, Glover DM, Najjar RG (1996) A new coupled, one-dimensional biological-physical model for the upper ocean: Applications to the JGOFS Bermuda Atlantic Time-series Study (BATS) site. Deep-Sea Res II 43: 591–624.
61. Schmittner A, Oschlies A, Giraud X, Eby M, Simmons HL (2005) A global model of the marine ecosystem for long-term simulations: Sensitivity to ocean mixing, buoyancy forcing, particle sinking, and dissolved organic matter cycling. Glob Biogeochem Cy 19 doi:10.1029/2004GB002283.
62. Degerman R, Dinasquet J, Riemann L, Sjostedt de Luna S, Andersson A (2013) Effect of resource availability on bacterial community responses to increased temperature. Aqu Microb Ecol 68: 131–142.
63. Wohlers-Zollner J, Breithaupt P, Walthier K, Jorgens K, Riebesell U (2012) Temperature and nutrient stoichiometry interactively modulate organic matter cycling in a pelagic algal-bacterial community. Limnol Oceanogr 2011: 599–610.
64. López-Urrutia A, San Martin E, Harris RP, Irigoien X (2006) Scaling the metabolic balance of the oceans. Proc Natl Acad Sci USA 103: 8739–8744.
65. Yvon-Durocher G, Jones JL, Trimmer M, Woodward G, Montoya JM (2010) Warming alters the metabolic balance of ecosystems. Proc Roy Soc Lond B Bio 365: 2117–2126.