Translation invariant diagonal frame decomposition of inverse problems and their regularization

Simon Göppel¹, Jürgen Frikel² and Markus Haltmeier¹,*

¹ Department of Mathematics, University of Innsbruck, Technikerstrasse 13, 6020 Innsbruck, Austria
² Department of Computer Science and Mathematics, Ostbayerische Technische Hochschule Regensburg, Galgenbergstraße 32, 93053 Regensburg, Germany

E-mail: markus.haltmeier@uibk.ac.at

Received 12 August 2022; revised 24 March 2023
Accepted for publication 14 April 2023
Published 5 May 2023

Abstract
Solving inverse problems is central to a variety of important applications, such as biomedical image reconstruction and non-destructive testing. These problems are characterized by the sensitivity of direct solution methods with respect to data perturbations. To stabilize the reconstruction process, regularization methods have to be employed. Well-known regularization methods are based on frame expansions, such as the wavelet–vaguelette decomposition, which are well adapted to the underlying signal class and the forward model and furthermore allow efficient implementation. However, it is well known that the lack of translational invariance of wavelets and related systems leads to specific artifacts in the reconstruction. To overcome this problem, in this paper we introduce and analyze the translation invariant diagonal frame decomposition (TI-DFD) of linear operators as a novel concept generalizing the singular value decomposition. We characterize ill-posedness via the TI-DFD and prove that a TI-DFD combined with a regularizing filter leads to a convergent regularization method with optimal convergence rates. As illustrative example, we construct a wavelet-based TI-DFD for one-dimensional integration, where we also investigate our approach numerically. The results indicate that filtered
TI-DFDs eliminate the typical wavelet artifacts when using standard wavelets and provide a fast, accurate, and stable solution scheme for inverse problems.

Keywords: inverse problems, frame regularization, convergence rates, translation invariance, vaguelettes, operator decomposition

(Some figures may appear in colour only in the online journal)

1. Introduction

In this paper, we study the stable solution of linear inverse problems. Such problems aim at recovering an unknown image or function $f \in L^2(\mathbb{R}^d)$ from data

$$g^\delta = Kf^\delta + \eta.$$ \hfill (1.1)

Here $K: \text{dom}(K) \subseteq L^2(\mathbb{R}^d) \to \mathcal{Y}$ is a closed not necessarily bounded, linear operator between $L^2(\mathbb{R}^d)$ and another Hilbert space \mathcal{Y} and η denotes the unknown data distortion, which in our analysis is assumed to satisfy $||\eta|| \leq \delta$ for the noise level $\delta > 0$. Inverse problems of the form (1.1) are often ill-posed, meaning that the solution is either not well-defined or unstable with respect to data perturbations. In order to stabilize the solution process one has to apply regularization methods [11, 28]. The basic idea of regularization is to incorporate prior information and to relax the exact solution concept to make the inversion process stable.

A common and successful approach for solving inverse problems is variational regularization. In this context, prior information is incorporated in the form of a regularizer R: $L^2(\mathbb{R}^d) \to [0,1]$ acting as penalty and regularized solutions are constructed as minimizers of the generalized Tikhonov functional

$$T_{\alpha, g^\delta}(f) := ||Kf - g^\delta||^2 + \alpha R(f).$$ \hfill (1.2)

A particularly important and well-studied special case is classical Tikhonov regularization where $R(f) = ||f||^2$. In this case, assuming a singular value decomposition (SVD) $(u_\lambda, v_\lambda, \sigma_\lambda)_{\lambda \in \Lambda}$ of the operator K, the minimizer of the Tikhonov functional can be explicitly computed as $f^\delta = \sum_{\lambda \in \Lambda} (\sigma_\lambda/(\sigma_\lambda^2 + \alpha)) \cdot (g^\delta, v_\lambda) u_\lambda$. Opposed to general variational regularization, where the Tikhonov functional (1.2) has to be minimized via iterative methods, the SVD based reconstruction can be evaluated directly and efficiently. The same holds true for more general filter based methods where the Tikhonov filter function $\Phi_\alpha(\sigma) = \sigma/(\sigma^2 + \alpha)$ is replaced by general functions. Another typical choice in that context is the truncation filter $\Phi_\alpha(\sigma) = \chi_{[\alpha, \infty)}(\sigma^2)$ which leads to the also well-known truncated SVD reconstruction method.

1.1. Frame-based regularization

Although the SVD is a very successful tool to design stable inversion schemes for (1.1), it comes with several shortcomings. Firstly, given a particular linear operator, the SVD may not be known analytically and hard to compute numerically. Furthermore, the underlying orthonormal basis elements u_n, v_n of the singular system are derived only from the operator K and are not adapted to signal classes of interest. On the other hand it is well known that different function systems such as wavelet frames are better adapted to functions classes of practical relevance. Therefore researchers studied frame based regularization methods where the regularizer in (1.2) has the form $R(f) = \sum_{\lambda \in \Lambda} r_\lambda(\langle u_\lambda, f \rangle)$ for some frame or basis $(u_\lambda)_{\lambda \in \Lambda}$ of $L^2(\mathbb{R}^d)$ and
univariate functionals r_λ. Such methods have been successful applied and analyzed in various settings [7, 8, 13, 17, 18, 21, 25, 27, 28].

Variational frame based methods have the drawback that they again require computationally costly iterative solution methods. To overcome this issue, diagonal frame decompositions (DFD) have been developed as an alternative tool. A DFD for an operator \mathcal{K} is given as a family $(u_\lambda, v_\lambda, \kappa_\lambda)_{\lambda \in \Lambda}$ where $(u_\lambda)_{\lambda \in \Lambda}$ and $(v_\lambda)_{\lambda \in \Lambda}$ are chosen as frames instead of orthonormal bases as it is in the case of an SVD. Additionally, the κ_λ are generalized singular values or so-called quasi singular values which satisfy $\mathcal{K}^* v_\lambda = \kappa_\lambda u_\lambda$. As proposed and analyzed in [10] such DFDs yield explicit regularization methods in the form of filtered DFDs

$$f_\lambda^\delta = \sum_{\lambda \in \Lambda} \Phi_{\alpha}(\kappa_\lambda) \langle g^\delta, v_\lambda \rangle w_\lambda,$$

(1.3)

where $(\Phi_{\alpha})_{\alpha > 0}$ is a regularizing filter and $(w_\lambda)_{\lambda \in \Lambda}$ a dual frame to $(u_\lambda)_{\lambda \in \Lambda}$. Such filtered DFDs combine advantages of filter based and frame based methods. It may be seen as a generalization of the filtered SVD using redundant frames instead orthogonal bases. Precise definitions of DFDs and regularizing filters are provided in Definitions 2.6 and 3.1 below. DFDs also generalize the wavelet vaguelette decomposition (WVD) introduced in the seminal paper [9]; for related constructions using curvelet and shearlet frames see [3, 5]. DFDs for general frames have been first introduced in [12] where they are analyzed in combination with soft thresholding. A convergence analysis of filtered DFDs for general linear filters has first been provided in [10] and later in [19].

1.2. Proposed translation invariant DFD

Classical frame based reconstruction approaches such as the WVD lack translation invariance of the underlying frame which introduces well-known wavelet artifacts in the reconstruction. Translation invariant wavelet frames are known to perform better in that regard for simple tasks such as denoising [4, 24]. Thus, it is natural to introduce an extension of the concepts to translation invariant frames for general inverse problems as we will do in the present paper. Furthermore, we present a complete convergence analysis for the corresponding filtered translation invariant frame decomposition (TI-DFD).

A translation invariant frame of $L^2(\mathbb{R}^d)$, which is not a frame in the classical sense, consists of a family $(u_\lambda)_{\lambda \in \Lambda} \in L^2(\mathbb{R}^d)^\Lambda$ such that any $f \in L^2(\mathbb{R}^d)$ can be stably analyzed and reconstructed via convolutions with u_λ. In this paper we introduce the TI-DFD of a linear operator as a family $(u_\lambda, V_\lambda, \kappa_\lambda)_{\lambda \in \Lambda}$ where $(u_\lambda)_{\lambda \in \Lambda} \in L^2(\mathbb{R}^d)^\Lambda$ is TI-frame, $V_\lambda : Y \rightarrow L^2(\mathbb{R}^d)$ are suitable linear operators and $\kappa_\lambda > 0$ are generalized singular values with $V_\lambda(f) = \kappa_\lambda \cdot (u_\lambda^* \ast f)$, and $u_\lambda^*(x)$ denotes the complex conjugate of $u_\lambda(-x)$. Given a regularizing filter $(\Phi_{\alpha})_{\alpha > 0}$ and a dual TI-frame $(w_\lambda)_{\lambda \in \Lambda} \in L^2(\mathbb{R}^d)$ we will demonstrate that

$$f_\lambda^\delta = \sum_{\lambda \in \Lambda} \Phi_{\alpha}(\kappa_\lambda) \langle V_\lambda^* g^\delta, w_\lambda \rangle$$

(1.4)

is a regularization method and we additionally derive convergence rates. Precise definitions of TI frames and TI-DFDs are given in definitions 2.1 and 2.8 below. For illustrative purpose, we will construct an example of a TI-DFD for the 1D integration operator using the TI wavelet transform. We will demonstrate that the resulting filtered TI-WVD works well and overcomes wavelet reconstruction artifacts present in the standard WVD.

Note that the operators defined by (1.4) are linear, and as a result, the TI-DFD belongs to the class of linear regularization method after a suitable parameter choice is made [11]. However, it is distinct from existing instances and our results do not follow from previously known
results in that area. Furthermore, optimal convergence rates are dependent on both the chosen method and the set of solutions under consideration. Among other, interesting extensions of our theory involve the filtered TI-DFD with non-linear filters [9] or an analysis in the presence of stochastic noise [22, 30].

1.3. Outline

The remainder of this paper is organized as follows. In section 2 we introduce the novel concept of TI-DFD and provide some of its properties. In section 3 we introduce and analyze the proposed regularization concept in the form of the filtered TI-DFD. We prove regularization properties and derive order optimal convergence rates for an a-priori parameter choice rule. In section 4 we construct a TI-DFD for the 1D integral operator for which we support our theory by numerical simulation. The paper concludes with a short summary and outlook given in section 5.

2. TI-DFD of linear operators

Throughout this paper, let \(K: \text{dom}(K) \subseteq L^2(\mathbb{R}^d) \to \mathbb{Y} \) be a linear, closed and not necessarily bounded operator between \(L^2(\mathbb{R}^d) \) and another Hilbert space \(\mathbb{Y} \).

We write \(u^*(x) := \overline{u(-x)} \), where \(\overline{z} \) is the complex conjugate of \(z \in \mathbb{C} \). The Fourier transform of \(f \in L^2(\mathbb{R}^d) \) is denoted by \(\hat{f} = Ff \) where \(\hat{f}(\xi) := \int_{\mathbb{R}^d} f(x)e^{-i(\xi \cdot x)} \, dx \) for integrable functions. Recall that the Fourier transform turns convolution into multiplication. In particular for \(u, f \in L^2(\mathbb{R}^d) \) with \(u \in L^\infty(\mathbb{R}^d) \), the convolution \(u^* * f \in L^2(\mathbb{R}^d) \) is well defined by \((u^* * f)(x) = \int_{\mathbb{R}^d} u^*(t)f(x-t) \, dt \) and satisfies \(u^* * f = F^{-1}((\hat{u} \cdot \hat{f})) \). Note that \(\tau_a(u * f) = u * (\tau_a f) \) where \(\tau_a u(x) = u(x-a) \) with \(a \in \mathbb{R}^d \) is the translation operator and thus the convolution itself is translation invariant.

2.1. TI-frames

In this subsection we recall the concept of TI-frames and collect properties we will require for our purpose. Related issues can found in [23, section 5.2].

Definition 2.1 (TI-frame). Let \(\Lambda \) be an at most countable index set. A family \((u_\lambda)_{\lambda \in \Lambda} \in L^2(\mathbb{R}^d)^\Lambda \) is called a translation invariant frame (TI-frame) for \(L^2(\mathbb{R}^d) \) if \(\hat{u}_\lambda \in L^\infty(\mathbb{R}^d) \) for all \(\lambda \in \Lambda \) and there exist constants \(A, B > 0 \) such that

\[
A ||f||^2 \leq \sum_{\lambda \in \Lambda} ||u_\lambda^* * f||^2 \leq B ||f||^2.
\]

A TI-frame \((u_\lambda)_{\lambda \in \Lambda} \) is called tight if (2.1) holds with TI-frame bounds \(A = B = 1 \).

Because \(\hat{u}_\lambda \in L^2(\mathbb{R}^d) \cap L^\infty(\mathbb{R}^d) \) and \(\hat{f} \in L^2(\mathbb{R}^d) \), we have \(u_\lambda^* * f = F^{-1}((\hat{f} \cdot \hat{u}_\lambda)) \in L^2(\mathbb{R}^d) \). From Plancherel’s theorem we get \(||u_\lambda^* * f||^2 = (2\pi)^{-d} \int_{\mathbb{R}^d} ||\hat{f}||^2 ||\hat{u}_\lambda||^2 \). The right inequality in the TI-frame property (2.1) therefore in particular implies \((u_\lambda^* * f)_{\lambda \in \Lambda} \in \ell^2(\Lambda, L^2(\mathbb{R}^d))\). Here and below for a Hilbert space \(\mathbb{H} \) we write \(\ell^2(\Lambda, \mathbb{H}) \) for the Hilbert space of all \(\textbf{c} = (c_\lambda)_{\lambda \in \Lambda} \in \mathbb{H}^\Lambda \) satisfying \(\|\textbf{c}\|_\Lambda^2 := \sum_{\lambda \in \Lambda} ||c_\lambda||^2 < \infty \) with inner product \(\langle \textbf{c}, \textbf{d} \rangle_\Lambda := \sum_{\lambda \in \Lambda} \langle c_\lambda, d_\lambda \rangle \).

Along with the definition of a TI-frame, it is convenient to introduce the following TI versions of synthesis, analysis and frame operators.
Definition 2.2 (TI-synthesis, TI-analysis and TI-frame operator). Let \((u_\lambda)_{\lambda \in \Lambda}\) be a TI-frame.

\(U : L^2(\Lambda, L^2(\mathbb{R}^d)) \rightarrow L^2(\mathbb{R}^d) : (c_\lambda)_{\lambda \in \Lambda} \mapsto \sum_{\lambda \in \Lambda} u_\lambda \ast c_\lambda\) is called TI-synthesis operator.
\(U^* : L^2(\mathbb{R}^d) \rightarrow L^2(\Lambda, L^2(\mathbb{R}^d)) : f \mapsto (u_\lambda^* \ast f)_{\lambda \in \Lambda}\) is called TI-analysis operator.
\(UU^*: L^2(\mathbb{R}^d) \rightarrow L^2(\mathbb{R}^d)\) is called TI-frame operator.

\[\text{Proof.}\] Items (a), (b) follow from (2.1) and the Plancherel theorem. Item (c), (d) follow from (a) and straight forward computations. Items (e), (f) hold because the Moore–Penrose inverse is a right inverse and \(UU^*\) is bounded from below. In particular, its Moore–Penrose inverse \((UU^*)^{-1} : L^2(\Lambda, L^2(\mathbb{R}^d)) \rightarrow L^2(\mathbb{R}^d)\) is bounded and given by \((UU^*)^{-1}f = (UU^*)^{-1}Uf\). Finally, \(A = \|UU^*\|^2_2 \text{ and } B = \|U^*\|^2_2\) are the optimal TI-frame bounds for (2.1).

Let us collect some further useful properties.

Proposition 2.3 (Properties of TI-frames). Let \((u_\lambda)_{\lambda \in \Lambda} \in L^2(\mathbb{R}^d)^\Lambda\).

\(\lambda\) (a) \((u_\lambda)_{\lambda \in \Lambda}\) TI-frame with bounds \(A, B > 0 \iff 2\pi A \leq \sum_{\lambda \in \Lambda} |u_\lambda|^2 \leq 2\pi B\).
\(\lambda\) (b) \((u_\lambda)_{\lambda \in \Lambda}\) tight TI-frame \(\iff \sum_{\lambda \in \Lambda} |u_\lambda|^2 = 2\pi\).
\(\lambda\) (c) \((u_\lambda)_{\lambda \in \Lambda}\) TI-frame \(\Rightarrow\) \((u^\lambda)_{\lambda \in \Lambda}\) with \(u^\lambda = \mathcal{F}^{-1}(2\pi/M\lambda |u_\lambda|^2)\) is a TI-frame.
\(\lambda\) (d) \((U^*)^{-1}\) is the synthesis operator of \((u^\lambda)_{\lambda \in \Lambda}\).
\(\lambda\) (e) \((u_\lambda)_{\lambda \in \Lambda}\) tight TI-frame \(\Rightarrow \text{Id} = (U^*)^{-1}U^*\).
\(\lambda\) (f) \((u_\lambda)_{\lambda \in \Lambda}\) tight TI-frame \(\Rightarrow \text{Id} = UU^*\).

\[\text{Proof.}\] Items (a), (b) follow from (2.1) and the Plancherel theorem. Item (c), (d) follow from (a) and straight forward computations. Items (e), (f) hold because the Moore–Penrose inverse is a right inverse and \(UU^*\) is bounded from below. In particular, its Moore–Penrose inverse \((UU^*)^{-1} : L^2(\Lambda, L^2(\mathbb{R}^d)) \rightarrow L^2(\mathbb{R}^d)\) is bounded and given by \((UU^*)^{-1}f = (UU^*)^{-1}Uf\). Finally, \(A = \|UU^*\|^2_2 \text{ and } B = \|U^*\|^2_2\) are the optimal TI-frame bounds for (2.1).

Let us collect some further useful properties.

Definition 2.4 (Dual TI-frame). Let \((u_\lambda)_{\lambda \in \Lambda}, (w_\lambda)_{\lambda \in \Lambda}\) be TI-frames with TI-synthesis operators \(U\) and \(W\). We call \((w_\lambda)_{\lambda \in \Lambda}\) a dual TI-frame to \((u_\lambda)_{\lambda \in \Lambda}\) if \(WU = \text{Id}\).

One easily verifies that the dual frame condition is equivalent to the identity \(\sum_{\lambda}(\mathcal{F}w_\lambda) \cdot (\mathcal{F}u_\lambda) = 2\pi\). Moreover, in this case,

\[\forall f \in L^2(\mathbb{R}^d) : \quad f = \text{Id}U^*f = \sum_{\lambda \in \Lambda} w_\lambda \ast (u_\lambda^* \ast f).\]

The reproducing formula (2.2) in particular holds for \((u^\lambda)_{\lambda \in \Lambda} = (w_\lambda)_{\lambda \in \Lambda}\), which is referred to as the canonical dual TI-frame. From (a), (c) it follows that the frame bounds \(A\) and \(B\) for \((u^\lambda)_{\lambda \in \Lambda}\) give frame bounds \(B^{-1}\) and \(A^{-1}\) of \((u^\lambda)_{\lambda \in \Lambda}\). According to the characterization via the Moore–Penrose inverse, the canonical dual applied to coefficients \(\mathcal{F}\) is \((\mathcal{F}_\lambda)_{\lambda \in \Lambda} \in L^2(\mathbb{R}^d)\) characterized as minimizer of the least square functional \(f \mapsto ||U^*f - c||^2\). In some applications other left inverses and dual TI-frames may be of interest.

We conclude this subsection by drawing some connections to classical frames. This will be part of our reasoning for introducing TI-DFDs as additional tool besides the DFD and SVD.

Remark 2.5 (Frames versus TI-frames). We again point out that a TI-frame is not a frame in the classical sense. A family \((u_{\lambda,k})_{(\lambda,k) \in \Lambda \times Z^d} \in L^2(\mathbb{R}^d)^{\Lambda \times Z^d}\) for some parameter \(n \in Z\) is a frame of \(L^2(\mathbb{R}^d)\) (in the classical sense) if there exist frame bounds \(A, B \in (0, \infty)\) such that

\[\forall f \in L^2(\mathbb{R}^d) : \quad A||f||^2_2 \leq \sum_{\lambda \in \Lambda} \sum_{k \in Z^d} |(f, u_{\lambda,k})|^2 \leq B||f||^2_2.\]
Note that we use the index set $\Lambda \times \mathbb{Z}^n$ for the frame in order to make the comparison with TI frames more obvious and to be closer to the notion of wavelet frames. The identity $u_\Lambda^* \ast f(x) = \langle f, u_\Lambda((\cdot)-x) \rangle$ shows that a TI-frame may be seen as a generalized notion of a frame using the semi-discrete index set $\Lambda \times \mathbb{Z}^d$, frame elements $u_{\lambda,x} = u_\lambda((\cdot)-x)$ and the squared L^2-norm replacing the squared inner ℓ^2-norm in (2.3).

Conversely, classical frames can be obtained from TI-frames by discretizing the convolutions $u_\Lambda^* \ast f$. As an example in the context of wavelet analysis, consider a one-dimensional mother wavelet $u \in L^2(\mathbb{R})$ and set $u_j(x) := 2^j u(2^j x)$. The family $(u_j)_{j \in \mathbb{R}}$ is a TI-frame if $B \leq \sum_{j \in \mathbb{R}} |\hat{u}(2^{-j} \omega)|^2 \leq A$. Under additional assumptions [6] the family $(u_{\lambda,k})_{\lambda,k \in \mathbb{R}}$ defined by $u_{\lambda,k}(x) = 2^{-j/2} u_j(x - 2^j k)$ becomes a frame of $L^2(\mathbb{R})$. Note that the sampling step size 2^j for constructing a frame depends on the scale j, which in particular destroys the translation invariance of the underlying TI-frame.

2.2. Review: diagonal frame decomposition

Before actually introducing TI-DFD in the next subsection, we first review the WVD and more general DFDs of linear operators. The WVD was introduced in [9] for several integral operators. The more general notation of a DFD used below is taken from [10].

Definition 2.6 (DFD). The system $(u_{\lambda,k}, v_{\lambda,k}, \kappa_{\lambda,k})_{(\lambda,k) \in \Lambda \times \mathbb{Z}^n}$, for $n \in \mathbb{Z}$ and countable Λ, is called DFD for \mathcal{K}, if the following properties hold:

1. (DFD1) $(u_{\lambda,k})_{\lambda,k \in \Lambda \times \mathbb{Z}^n}$ is a frame of $L^2(\mathbb{R}^d)$.
2. (DFD2) $(v_{\lambda,k})_{\lambda,k \in \Lambda \times \mathbb{Z}^n}$ is a frame of $\text{ran} \mathcal{K}$.
3. (DFD3) $\forall (\lambda,k) \in \Lambda \times \mathbb{Z}^n : \mathcal{K}^* v_{\lambda,k} = \kappa_{\lambda} u_{\lambda,k}$.

If $(u_{\lambda,k})_{(\lambda,k) \in \mathbb{R} \times \mathbb{Z}^n}$ is a wavelet frame we refer to the DFD as WVD. The elements $v_{\lambda,k}$ in this case are called vaguelettes. With a dual frame $(w_{\lambda,k})_{(\lambda,k) \in \Lambda \times \mathbb{Z}^n}$, the following reproducing formula holds for all $f \in \text{dom}(\mathcal{K})$:

$$f = \sum_{\lambda \in \Lambda} \kappa_{\lambda} \sum_{k \in \mathbb{Z}^n} \langle \mathcal{K} f, v_{\lambda,k} \rangle w_{\lambda,k}. \quad (2.4)$$

The DFD includes the SVD, in which case $n = 0$ and $(u_{\lambda,k})_{\lambda \in \Lambda}$ and $(v_{\lambda,k})_{\lambda \in \Lambda}$ are orthonormal bases, and the WVD where $n = d$ and $(u_{\lambda,k})_{(\lambda,k) \in \Lambda \times \mathbb{Z}^n}$ is a wavelet frame. As mentioned in the introduction the WVD can be better adapted to the signal class compared to the SVD.

Wavelet frames suffer from specific artifacts after coefficient filtering, mainly due to the lack of translation invariance. Therefore we will develop a related concept using TI-frames instead of frames. In order to further motivate our approach, below we give a representation of the WVD using sampled convolutions and point out where TI invariance can be restored.

Remark 2.7 (WVD in sampled convolution form). Consider a 1D orthonormal wavelet basis $(u_{j,k})_{k \in \mathbb{Z}}$ of $L^2(\mathbb{R})$ with $u_{j,k}(x) := 2^{-j/2} u(x - 2^j k)$ and $u_j(x) := 2^j u(2^j x)$ with mother wavelet $u \in L^2(\mathbb{R})$. Moreover, let $(u_{j,k}, v_{j,k}, \kappa_j)_{k \in \mathbb{Z}}$ be the corresponding WVD for \mathcal{K}. For $f \in L^2(\mathbb{R})$ and $a = (a_k)_{k \in \mathbb{Z}} \in \ell^2(\mathbb{Z})$ define the downsampling and upsampling convolutions $(u_j^* \otimes_j a)(k) := 2^{-j/2} \cdot (u_j^* \ast f)(2^j k)$ and $(u_j \otimes_j a)(x) := 2^{-j/2} \sum_{k \in \mathbb{Z}} a_k u_j(x - k 2^j)$ respectively. The WVD reconstruction formula can be written as

$$f = \sum_{j \in \mathbb{Z}} u_j \otimes_j \left(u_j^* \otimes_j f \right), \quad (2.5)$$
\[
u_{i}^{*} \otimes_{j} f = \frac{1}{\kappa_j} ((K_{j}f, v_{i,j}))_{k \in \mathbb{R}}. \tag{2.6}
\]

In particular, level-depending downsampling and upsampling destroys the translational invariance of the system \((u_{i})_{i \in \mathbb{R}}\). Note that (2.5) and (2.6) is equivalent to (2.4). The proposal of this paper can be seen as a way to restore translational invariance by replacing the sampled convolutions in (2.5) by the non-sampled counterparts and to modify (2.6) accordingly.

2.3. Introducing the Ti-DFD

We now introduce the Ti-DFD as the central concept of this paper. We denote by \(B(Y, L^{2}(\mathbb{R}^{d}))\) the space of all bounded linear operators from \(Y\) to \(L^{2}(\mathbb{R}^{d})\).

Definition 2.8 (Ti-DFD). We call the system \((u_{\lambda}, V_{\lambda}^{*}, \kappa_{\lambda})_{\lambda \in \Lambda}\) a translation invariant frame decomposition (Ti-DFD) for \(K\), if the following properties hold:

1. \((\text{T1})\) \((u_{\lambda})_{\lambda \in \Lambda} \in L^{2}(\mathbb{R}^{d})\) is a Ti-frame for \(L^{2}(\mathbb{R}^{d})\).
2. \((\text{T2})\) \(\forall \lambda \in \Lambda\) we have \(V_{\lambda}^{*} \in B(Y, L^{2}(\mathbb{R}^{d}))\) and \(\forall g \in \text{ran} K:\) \(\sum_{\lambda \in \Lambda} ||V_{\lambda}^{*}g||^{2} \leq ||g||^{2}\).
3. \((\text{T3})\) \(\forall \lambda \in \Lambda\) : \(\kappa_{\lambda} \in (0,\infty)\) and \(\forall f \in \text{dom}(K)\) : \(V_{\lambda}^{*}(Kf) = \kappa_{\lambda}(u_{\lambda}^{*} \ast f)\).

Let us compare a Ti-DFD to a regular DFD \((u_{\lambda, k}, v_{\lambda, k}^{*}, \kappa_{\lambda})_{(\lambda, k) \in \Lambda \times Z^{d}}\), where \(u_{\lambda, k}(x) = u_{\lambda}(x - M_{j}k)\) with sampling matrix \(M_{j} \in \mathbb{R}^{d \times d}\). Among others, such forms include WVDs and DDFs with curvelet or shearlet frames. For example, for the 1D wavelet transform (Remark 2.7) we have \(\Lambda = \mathbb{Z}\), and for the 2D wavelet transform we have \(\Lambda = \mathbb{Z} \times \{H, V, D\}\) representing horizontal (H), vertical (V) and diagonal (D) wavelets at scale \(j \in \mathbb{R}\). In such situations, (T11), (T12) replace the frame conditions (DFD1), (DFD2). In item (T13), \(u_{\lambda}^{*} \ast f\) takes over the role of the inner products \(\langle u_{\lambda, k}, f \rangle = \langle u_{\lambda}^{*} \ast f \rangle(M_{j}k)\) and \(V_{\lambda}^{*}g\) takes over the role of \(\langle v_{\lambda, k}^{*}, g \rangle\). Finally, the identity \(V_{\lambda}^{*}Kf = \kappa_{\lambda}u_{\lambda}^{*} \ast f\) replaces the quasi-singular value relation \(\langle v_{\lambda, k}, Kf \rangle = \kappa_{\lambda}\langle u_{\lambda, k}, f \rangle\). In particular, the standard DFD may be seen as kind of discretization of the Ti-frame decomposition, where the discretization depends on the index \(\lambda\).

Remark 2.9 (Operator \(V^{*}\)). According to (T2) there exist constants \(A, B \in (0, \infty)\) such that \(A||g||^{2} \leq \sum_{\lambda \in \Lambda} ||V_{\lambda}^{*}g||^{2} \leq B||g||^{2}\) for all \(g \in \text{ran} K\). Equivalently, the operator

\[V^{*} : Y \to \ell^{2}(\Lambda, L^{2}(\mathbb{R}^{d})) : f \mapsto (V_{\lambda}^{*}f)_{\lambda \in \Lambda}\]

is well defined and bounded from below and above with norm bounds \(||V^{*}|| \leq B^{1/2}\) and \(||V^{*}|| \leq A^{-1/2}\). It plays plays a similar role in \(Y\) as the Ti-analysis operator \(u^{*}\) does in \(L^{2}(\mathbb{R}^{d})\). However, operator \(V^{*}\) is not of the convolution form in general.

Similar to the standard DFD we have the following Ti-DFD reconstruction formula.

Proposition 2.10 (Exact reconstruction formula via Ti-DFD). Let \((u_{\lambda}, V_{\lambda}^{*}, \kappa_{\lambda})_{\lambda \in \Lambda}\) be a Ti-DFD for \(K\) and \((w_{\lambda})_{\lambda \in \Lambda}\) be a dual Ti-frame for \((u_{\lambda})_{\lambda \in \Lambda}\). Then

\[\forall g \in \text{ran} K : \quad K^{-1}g = \sum_{\lambda \in \Lambda} w_{\lambda} \ast (\kappa_{\lambda}^{*}V_{\lambda}^{*}g) = \mathcal{W}(\{\kappa_{\lambda}^{*}V_{\lambda}^{*}g\}_{\lambda \in \Lambda}). \tag{2.8}\]

Proof. With \(g = Kf\), identity (2.8) follows after inserting (T3) into (2.2). \(\square\)

Similar to the SVD and the DFD reconstruction formulas, (2.8) reflects the ill-posedness of \(K^{-1}\) in terms of the quasi-singular values that are potentially accumulating at zero. More precisely, we have the following results.
Theorem 2.11 (Characterization of ill-posedness via TI-DFD). Let \((u_\lambda, \mathcal{V}_\lambda^*, \kappa_\lambda)_{\lambda \in \Lambda}\) be a TI-DFD of \(\mathcal{K}\). Then the following hold.

(a) \(\inf_{\lambda \in \Lambda} \kappa_\lambda > 0 \Rightarrow \mathcal{K}^{-1}\) is bounded.
(b) \(\inf_{\lambda \in \Lambda} \kappa_\lambda = 0\) and \(\inf_{\lambda} ||\mathcal{V}_\lambda^*|| > 0 \Rightarrow \mathcal{K}^{-1}\) unbounded.

Proof. According to the reconstruction formula (2.8) we have the identities \(\mathcal{K}^{-1}g = \mathcal{W}((\kappa_\lambda^{-1}\mathcal{V}_\lambda^*g)_{\lambda \in \Lambda})\) and \(\mathcal{W}^{-1}\mathcal{K}^{-1}g = (\kappa_\lambda^{-1}\mathcal{V}_\lambda^*g)_{\lambda \in \Lambda}\). Therefore, by definition of the operator norm,

\[
\frac{||((\kappa_\lambda^{-1}\mathcal{V}_\lambda^*)_{\lambda \in \Lambda}(g))||}{||\mathcal{W}||} \leq ||\mathcal{K}^{-1}g|| \leq \frac{||\mathcal{W}||||\mathcal{V}_\lambda^*||||g||}{(\inf_{\lambda \in \Lambda} \kappa_\lambda)}. \tag{2.9}
\]

The right inequality gives (a). To verify item (b), suppose \(\inf_{\lambda \in \Lambda} \kappa_\lambda = 0\) and \(\inf_{\lambda} ||\mathcal{V}_\lambda^*|| > 0\). Because \(||((\kappa_\lambda^{-1}\mathcal{V}_\lambda^*)_{\lambda \in \Lambda})|| \geq ||\kappa_\mu^{-1}||||\mathcal{V}_\mu^*||\) for all \(\mu \in \Lambda\) this implies that \((\kappa_\lambda^{-1}\mathcal{V}_\lambda^*)_{\lambda \in \Lambda}\) is unbounded. Together with the left inequality in 2.9 this shows the unboundedness of \(\mathcal{K}^{-1}\).

In summary, under the reasonable assumption that \(\inf_{\lambda} ||\mathcal{V}_\lambda^*|| > 0\), the inverse operator \(\mathcal{K}^{-1}\) is unbounded if and only if the quasi-singular values \(\kappa_\lambda\) accumulate at zero.

We note that for a stable inverse problem a TI-DFD has been constructed in [29, theorem 3.5] in the form of a convolution factorization for the wave equation. An example for a TI-DFD in the ill-posed situation will be constructed in section 4 for the 1D integration operator.

3. Regularization by filtered TI-DFD

Throughout this section, let \((u_\lambda, \mathcal{V}_\lambda^*, \kappa_\lambda)_{\lambda \in \Lambda}\) be a TI-DFD for \(\mathcal{K}\), and \((w_\lambda)_{\lambda \in \Lambda}\) be a dual frame of \((u_\lambda)_{\lambda \in \Lambda}\). Typically, solving inverse problems of the form (1.1) is unstable (see theorem 2.11) and hence need to be regularized. For that purpose, we introduce and analyze the concept of filtered TI-DFD in this section.

3.1. Definition of the filtered TI-DFD

We first recall the definition of regularizing filters. We adopt the definition from [10] which is slightly more general than the standard definition [11].

Definition 3.1 (Regularizing filter). A family \((\Phi_\alpha)_{\alpha > 0}\) of piecewise continuous functions \(\Phi_\alpha : (0, \infty) \rightarrow \mathbb{R}\) is called a regularizing filter if the following hold:

1. \(\forall \alpha > 0: ||\Phi_\alpha||_{\infty} < \infty\).
2. \(\exists C > 0: \sup\{||\kappa \Phi_\alpha(\kappa)||: \alpha > 0 \land \kappa \geq 0\} \leq C\).
3. \(\exists \kappa \in (0, \infty): \lim_{\alpha \rightarrow 0} \Phi_\alpha(\kappa) = 1/\kappa\).

Using the concept of regularizing filters, we study the following filtered versions of the TI-DFD reconstruction formula.

Definition 3.2 (Filtered TI-DFD). Let \((\Phi_\alpha)_{\alpha > 0}\) be a regularizing filter. We call the family \((R_\alpha^\Phi)_{\alpha > 0}\) of operators \(R_\alpha^\Phi : \mathcal{Y} \rightarrow L^2(\mathbb{R}^d)\) defined by

\[
R_\alpha^\Phi g := \sum_{\lambda \in \Lambda} w_\lambda \ast (\Phi_\alpha(\kappa_\lambda) \cdot \mathcal{V}_\lambda^*g) = \mathcal{W}((\Phi_\alpha(\kappa_\lambda) \cdot \mathcal{V}_\lambda^*g)_{\lambda \in \Lambda}) \tag{3.1}
\]

the filtered TI-DFD according to the filter \((\Phi_\alpha)_{\alpha > 0}\) and the TI-DFD \((u_\lambda, \mathcal{V}_\lambda^*, \kappa_\lambda)_{\lambda \in \Lambda}\).

We first show the well-posedness of filtered TI-DFD.
Proposition 3.3 (Existence and stability). Let \((\Phi_\alpha)_{\alpha > 0}\) be a regularizing filter. For any \(\alpha > 0\), the operator \(R^\Phi_\alpha\) as in (3.1) is well defined, linear and bounded with \(||R^\Phi_\alpha|| \leq ||\Phi_\alpha|| \infty ||W|| ||V^*||\).

Proof. Fix \(\alpha > 0\) and let \(g \in \mathcal{Y}\). Clearly \(R^\Phi_\alpha\) is a linear operator. From the upper frame property of \((w_\lambda)_{\lambda \in \Lambda}\), the boundedness of the filters \(\Phi_\alpha\) (see (F1)) and the boundedness of \(V^*\) we obtain \(||R^\Phi_\alpha g|| = ||W((\Phi_\alpha(\kappa_\lambda) \cdot V^*_\lambda g))\lambda \in \Lambda|| \leq ||\Phi_\alpha|| \infty ||W|| ||V^*|| ||g||\). This shows, that \(R^\Phi_\alpha\) is well defined and gives the claimed norm estimate. \(\square\)

3.2. Convergence analysis

For the following, let \((\Phi_\alpha)_{\alpha > 0}\) be a regularizing filter and \((R^\Phi_\alpha)_{\alpha > 0}\) be the filtered TI-DFD defined in (3.1). In what follows, we show that the filtered TI-DFD yields a regularization method. To this end, we first recall the definition of a regularization method.

Definition. Let \((R_\alpha)_{\alpha > 0}\) be a family of bounded linear operators \(R_\alpha: \mathcal{Y} \to L^2(\mathbb{R}^d)\), let \(g \in \text{ran}(K)\) and \(\tilde{\alpha}: (0, \infty) \times \mathcal{Y} \to (0, \infty)\). The pair \(((\alpha, \tilde{\alpha}), \alpha > 0, \tilde{\alpha})\) is a regularization method for the solution of \(Kf = g\), if

\[
\lim_{\delta \to 0} \sup_{\delta \leq \delta} \{\tilde{\alpha}(\delta, g^\delta) | g^\delta \in \mathcal{Y} \land ||g^\delta - g|| \leq \delta\} = 0,
\]

\[
\lim_{\delta \to 0} \sup_{\delta \leq \delta} \{|f - R_\alpha(\delta, g^\delta)|g^\delta|| | g^\delta \in \mathcal{Y} \land ||g^\delta - g|| \leq \delta\} = 0.
\]

In this case, function \(\tilde{\alpha}\) is called admissible parameter choice.

As an auxiliary result we show convergence as \(\alpha \to 0\) for exact data.

Proposition 3.5 (Pointwise convergence). For all \(g \in \text{ran}(K)\) we have \(\lim_{\alpha \to 0} R^\Phi_\alpha g = K^{-1}g\).

Proof. Let \(g \in \text{ran}(K)\) and \(f \in \text{dom}(K)\) with \(Kf = g\). From the reproducing formula (2.2) we have \(f = \sum_{\lambda \in \Lambda} w_\lambda^* u_\lambda^* f\) and from the definition of the filtered TI-DFD together with (TI3) we have \(R^\Phi_\alpha g = \sum_{\lambda \in \Lambda} w_\lambda^* (\Phi_\alpha(\kappa_\lambda) u_\lambda^* f)\). As a consequence,

\[
||f - R^\Phi_\alpha g||^2 \leq ||W||^2 \sum_{\lambda \in \Lambda} \{1 - \Phi_\alpha(\kappa_\lambda) u_\lambda^* f\}^2 \leq ||W||^2 ||\mathcal{U}^*||^2 \times \sup_{\lambda \in \Lambda} |1 - \Phi_\alpha(\kappa_\lambda) u_\lambda^* f|^2.
\]

According to (F3), \(\lim_{\alpha \to 0} |1 - \Phi_\alpha(\kappa_\lambda) u_\lambda^* f| = 0\) pointwise and according to (F2), \(\sup_{\lambda \in \Lambda} |1 - \Phi_\alpha(\kappa_\lambda) u_\lambda^* f|\) is bounded independently of \(\alpha\). Application of the dominated convergence theorem in the sum in (3.2) yield \(||f - R^\Phi_\alpha g|| \to 0\). \(\square\)

As a consequence of Propositions 3.3 and 3.5 we derive the following main regularization result. For convenience of the reader we restate all assumptions on the operator and the filtered DFD in that theorem.

Theorem 3.6 (Filtered TI-DFD is regularization method). Let \((u_\lambda, V^*_\lambda, \kappa_\lambda)_{\lambda \in \Lambda}\) be a TI-DFD for the closed linear operator \(K: \text{dom}(K) \subseteq L^2(\mathbb{R}^d) \to \mathcal{Y}\), \((w_\lambda)_{\lambda \in \Lambda}\) a dual frame of \((u_\lambda)_{\lambda \in \Lambda}\), \((\Phi_\alpha)_{\alpha > 0}\) a regularizing filter and \((R^\Phi_\alpha)_{\alpha > 0}\) defined by (3.1). Let \(\tilde{\alpha}: (0, \infty) \to (0, \infty)\) satisfy

\[
\lim_{\delta \to 0} \tilde{\alpha}(\delta) = \lim_{\delta \to 0} \tilde{\delta}(\delta)||\Phi_\alpha(\delta)||\infty = 0.
\]

Then \(((R^\Phi_\alpha)_{\alpha > 0}, \tilde{\alpha})\) is a regularization method for \(Kf = g\) for any \(g \in \text{ran}(K)\).
According to Propositions 3.3 and 3.5, \((\Phi_\alpha)_{\alpha>0}\) is a family of bounded linear operators that converges point-wise to \(K^{-1}\) on \(\text{dom}(K^{-1})\). Using [11, Propositions 3.4, 3.7] the pair \(((\mathcal{R}_\alpha)_{\alpha>0}, \mathcal{K})\) is a regularization method if \(\hat{\alpha}(\delta), \delta||\mathcal{R}_\alpha(\delta)|| \to 0\) as \(\delta \to 0\). The estimate \(||\mathcal{R}_\alpha^0|| \leq ||\Phi_\alpha||_{\infty}||\mathcal{W}||||\mathcal{V}^*||\) derived in proposition 3.3 then yields the claim. □

3.3. Convergence rates

As the next result we derive convergence rates for filtered TI-DFD, which gives quantitative estimates for the reconstruction error \(||f_* - \mathcal{R}_\alpha g^\delta||\). Due to the ill-posedness of (1.1) such estimates require additional assumptions on the exact unknown for any reconstruction method.

In the following we write \(h = (h_\lambda)_{\lambda \in \Lambda} \in \ell^2(\Lambda, \mathcal{L}^2(\mathbb{R}^d))\). We derive convergence rates under the following assumptions on the exact unknown \(f_* \in \ell^2(\mathbb{R}^d)\) and the regularizing filter \((\Phi_\alpha)_{\alpha>0}\).

Assumption 3.7 (Convergence rates conditions). For \(\mu, \rho > 0\) suppose:

(R1) \(\exists h \in \ell^2(\Lambda, \mathcal{L}^2(\mathbb{R}^d)) : ||h|| \leq \rho \wedge \forall \lambda \in \Lambda : u_\lambda^* f_* = \kappa_\lambda^2 h_\lambda\).

(R2) \(||\Phi_\alpha||_{\infty} = O(\alpha^{-1/2})\) as \(\alpha \to 0\).

(R3) \(\forall \alpha > 0 : \sup(\kappa^\mu(1 - \kappa\Phi_\alpha(\kappa)) \wedge \kappa \in (0, \infty)) \leq C_\rho \alpha^\epsilon\).

Source condition (R1) is an abstract smoothness condition relating the element to be reconstructed with the ill-posedness of the operator characterized by the quasi-singular values. Conditions (R2) and (R3) restrict the class of filters yielding a desired rate. For example, it is well known that the hard truncation filter satisfies these conditions for all \(\mu > 0\).

We have the following result.

Theorem 3.8 (Convergence rates). Suppose \(f_*\) and \((\Phi_\alpha)_{\alpha>0}\) satisfy (R1)–(R3) and make the parameter choice \(\alpha = \hat{\alpha}(\delta, g^\delta) \simeq (\delta/\rho)^{2/(2\mu+1)}\). Then there exists a constant \(c_\mu\) independent of \(f_*\) such that for all \(g^\delta \in \mathbb{R}\) with \(||g^\delta - \mathcal{K}f_*|| \leq \delta\),

\[
||f_* - \mathcal{R}_\alpha^0 (g^\delta)|| \leq c_\mu \delta^{\alpha^{-1/2}} \rho^{\epsilon/2 + 1/4}. \tag{3.4}
\]

Proof. From (R1) and (R2) and the estimate \(||g^\delta - \mathcal{K}f_*|| \leq \delta\) we obtain

\[
||\mathcal{R}_\alpha^0 g^\delta - f_*|| \leq ||\mathcal{R}_\alpha^0 (g^\delta - \mathcal{K}f_*)|| + ||\mathcal{R}_\alpha^0 \mathcal{K}f_* - f_*||
\]

\[
\leq ||\mathcal{R}_\alpha^0|| \delta + \sum_{\lambda \in \Lambda} w_\lambda * ((1 - \Phi_\alpha(1/\kappa_\lambda)) \cdot u_\lambda^* f_*)
\]

\[
\leq ||\Phi_\alpha||_{\infty} ||\mathcal{W}|| ||\mathcal{V}|| \delta + ||\mathcal{W}|| \left(\sum_{\lambda \in \Lambda} |1 - \Phi_\alpha(1/\kappa_\lambda)||^2 ||u_\lambda^* f_*||^2\right)^{1/2}
\]

\[
\leq ||\Phi_\alpha||_{\infty} ||\mathcal{W}|| ||\mathcal{V}|| \delta + ||\mathcal{W}|| \left(\sum_{\lambda \in \Lambda} |1 - \Phi_\alpha(1/\kappa_\lambda)||^2 ||h_\lambda||^2\right)^{1/2}
\]

\[
\leq c_1 \alpha^{-1/2} \delta + C_\rho ||\mathcal{W}|| \alpha^{\epsilon/2} \rho.
\]

With the parameter choice \(\alpha = \hat{\alpha} \simeq (\delta/\rho)^{2/(2\mu+1)}\) this yields (3.4). □

3.4. Order optimality

We next prove that the convergence rates obtained in Theorem 3.8 are optimal. A discussion of order optimality of regularization methods can for example be found in [11, section 3.2]. While the methods we use follow the spirit of [11] our results are different as convergence rates...
and order optimality depends on the source specific set where these properties are studied. For \(\mathcal{M} \subseteq \text{dom}(\mathcal{K}) \) and \(\mathcal{R}: \mathcal{Y} \to L^2(\mathbb{R}^d) \) define
\[
E(\mathcal{M}, \delta, \mathcal{R}) := \sup \{ ||\mathcal{R}(g^\delta) - f|| : f \in \mathcal{M} \land g^\delta \in \mathcal{R} \land ||\mathcal{K}f - g^\delta|| \leq \delta \} \tag{3.5}
\]
\[
\epsilon(\mathcal{M}, \delta) := \sup \{ ||f|| : f \in \mathcal{M} \land ||\mathcal{K}f|| \leq \delta \}. \tag{3.6}
\]
The quantity \(E(\mathcal{M}, \delta, \mathcal{R}) \) is the worst case reconstruction error using the reconstruction method \(\mathcal{R} \) under the a-priori assumption \(f \in \mathcal{M} \) and the error bound \(||\mathcal{R}g^\delta - f|| \leq \delta \). If \(\mathcal{R}(0) = 0 \) one readily verifies that \(E(\mathcal{M}, \delta, \mathcal{R}) \geq \epsilon(\mathcal{M}, \delta) \). A family \(\{\mathcal{R}_\delta\}_{\delta > 0} \) is called order optimal on \(\mathcal{M} \), if \(E(\mathcal{M}, \delta, \mathcal{R}_\delta) \leq c \cdot \epsilon(\mathcal{M}, \delta) \) for some \(c > 0 \) and sufficiently small \(\delta \).

Theorem 3.8 gives an upper bound for the worst case error of filtered TI-DFD on
\[
\mathcal{M}_{\mu, \rho} := \{ f \in \text{dom}(\mathcal{K}) \mid \exists h: ||h|| \leq \rho \land \forall \lambda: \|u^\lambda * f\| = \kappa_0^\lambda \}. \tag{3.7}
\]
In order to show that filtered TI-DFD is order optimal on \(\mathcal{M}_{\mu, \rho} \), we will bound \(\epsilon(\mathcal{M}_{\mu, \rho}, \delta) \) from below. Such an estimate is derived in the following Theorem 3.9, at least for a sequence of noise levels tending to zero. Note that \(\epsilon(\mathcal{M}_{\mu, \rho}, \delta) \) is monotonically increasing in \(\delta \) and therefore we have an error bound for any sufficiently small \(\delta \).

Theorem 3.9 (Order optimality of filtered TI-DFD). Let \((u^\lambda, \lambda)^{\lambda \in \Lambda} \) be a TI-DFD for \(\mathcal{K} \) such that 0 is an accumulation point of \((\kappa^\lambda)_{\lambda \in \Lambda} \) and assume there exists \((e^\lambda)_{\lambda \in \Lambda} \in L^2(\mathbb{R}^d)^\Lambda \) with \(u^\lambda * e^\lambda = 0 \) for \(\lambda \neq \lambda' \) and \(u^\lambda * e^\lambda = 1 \). Then, for some sequence \((\delta_\nu)_{\nu \in \mathbb{N}} \) with \(\delta_\nu \to 0 \),
\[
\epsilon(\mathcal{M}_{\mu, \rho}, \delta_\nu) \geq ||U^\nu||^{-1} ||(V^\nu)^{\frac{1}{2}}||^{-2\mu/(2\mu + 1)} \cdot \delta_\nu^{2\mu/(2\mu + 1)} \cdot \rho^{\frac{2\mu}{2\mu + 1}}. \tag{3.8}
\]
Proof. After extracting a subsequence we can assume \(\Lambda = \mathbb{N} \) and that \((\kappa^\lambda)_{\lambda \in \mathbb{N}} \) converges to zero. For any \(n \in \mathbb{N} \) define \(f^{(n)} := \rho_n^{-2\mu} e_n \). Then \(u^\lambda * f^{(n)} = \kappa_0^\lambda h^{(n)} \) with \(h^{(n)} = 0 \) for \(\lambda \neq n \) and \(h^{(n)} = \rho \cdot (u^\lambda * e^\lambda) \) with \(||h^{(n)}|| = ||h^{(n)}|| = \rho \). In particular, \(f^{(n)} \in \mathcal{M}_{\mu, \rho} \). Moreover,
\[
||\mathcal{K}f^{(n)}|| \leq ||(V^\nu)^{\frac{1}{2}}|| \left(\sum_{\lambda \in \Lambda} ||\lambda^\nu Kf^{(n)}||^2 \right)^{1/2} = ||(V^\nu)^{\frac{1}{2}}|| \left(\sum_{\lambda \in \Lambda} \kappa_0^\lambda ||u^\lambda * f^{(n)}||^2 \right)^{1/2}
\]
\[
= ||(V^\nu)^{\frac{1}{2}}|| \kappa_0^{2\mu + 1} \rho,
\]
\[
||f^{(n)}|| \geq ||U^\nu||^{-1} \left(\sum_{\lambda \in \Lambda} ||u^\lambda * f^{(n)}||^2 \right)^{1/2} = ||U^\nu||^{-1} \kappa_0^{2\mu} \rho.
\]
With \(\delta_\nu := ||(V^\nu)^{\frac{1}{2}}|| \kappa_0^{2\mu + 1} \rho \), the above estimates imply \(||\mathcal{K}f^{(n)}|| \leq \delta_\nu \) and
\[
||f^{(n)}|| \geq ||U^\nu||^{-1} \left(\delta_\nu \right) ||(V^\nu)^{\frac{1}{2}}||^{-1} \rho^{-1} 2\mu/(2\mu + 1) \rho
\]
\[
= ||U^\nu||^{-1} ||(V^\nu)^{\frac{1}{2}}||^{-2\mu/(2\mu + 1)} \delta_\nu^{2\mu/(2\mu + 1)} \rho^{1/(2\mu + 1)}.
\]
Because we have \(f^{(n)} \in \mathcal{M}_{\mu, \rho} \) and \(\epsilon(\mathcal{M}_{\mu, \rho}, \delta_\nu) \geq ||f^{(n)}|| \) which yields (3.8).

From Theorem 3.9 and the monotonicity of \(\epsilon(\mathcal{M}, \cdot) \) one gets \(\epsilon(\mathcal{M}, \delta) \geq c_1 \sum_{\lambda \in \{\lambda_0, \lambda_1\}} \chi_{\delta_{\lambda_0}, \delta_{\lambda_1}}(\delta) \cdot \delta_0^{2\mu/(2\mu + 1)} \) for some for some \(c_1 > 0 \) and \(\delta_0 \approx \kappa_0^{2\mu + 1} \) after ordering the quasi-singular values \(\kappa_0 \) in a descending order. If \(\kappa_0/\kappa_0 + 1 \) remains bounded, this shows \(\epsilon(\mathcal{M}, \delta) \geq c_2 \delta_0^{2\mu/(2\mu + 1)} \) for some \(c_2 > 0 \). Together with Theorem 3.8 this shows \(E(\mathcal{M}, \delta_0, \mathcal{R}_\delta) \leq c_3 \cdot \epsilon(\mathcal{M}, \delta_0) \) for some \(c_3 > 0 \) for the filtered TI-DFD \(\mathcal{R}_\delta \) with a-priori parameter choice which in this case yields an order optimal regularization method.
3.5. Examples for filtered DFDs

We conclude this section by giving two representative examples for regularizing filters and corresponding filtered TI-DFD, namely truncated TI-DFD and Tikhonov-filtered TI-DFD. In particular we show that the convergence rates conditions are satisfied for all \(\mu > 0 \) in case of truncated TI-DFD and for \(\mu \leq 1 \) in case of Tikhonov-filtered TI-DFD. Concrete examples of TI-DFDs for the 1D integration operator are discussed in the following section.

Example 3.10 (Truncated TI-DFD). For \(\alpha > 0 \) consider the truncation filter \(\Phi^{(1)}_\alpha \) defined by \(\Phi^{(1)}_\alpha (\kappa) := \kappa^{-1} \chi_{[\alpha^{1/\alpha}, \infty)} (\kappa) \). Clearly, conditions (F1)-(F3) are satisfied with \(C = 1 \) and \((\Phi^{(1)}_\alpha)_{\alpha > 0} \) is a regularizing filter. Furthermore, \(\sup\{\kappa^2 | 1 - \kappa \Phi^{(1)}_\alpha (\kappa) | | \kappa > 0 \} = \sup\{\kappa^{2\mu} | 1 - \kappa \Phi^{(1)}_\alpha (\kappa) | | \kappa^2 < \alpha \} = \alpha^\mu \) for \(\alpha, \mu > 0 \). Hence (R2), (R3) are satisfied. The corresponding truncated TI-DFD becomes

\[
R^{(1)}_\alpha (y) := \sum_{\kappa^2 > \alpha} w_\lambda \ast (\kappa^{-1} \cdot (V^* \lambda g)).
\]

The considerations above allow application of Theorem 3.6 yielding convergence, and Theorem 3.8 providing the convergence rate \(||f - R^{(1)}_\alpha g^\delta|| = O(\delta^{2\mu/(2\mu+1)} \rho^{1/(2\mu+1)}) \) under (R1).

Next we consider the Tikhonov filter that already appeared in the introduction in the context of classical Tikhonov regularization expressed in terms of the SVD.

Example 3.11 (Tikhonov-filtered TI-DFD). For \(\alpha > 0 \) consider the Tikhonov filter \(\Phi^{(2)}_\alpha (\kappa) := \kappa/(\kappa^2 + \alpha) \). Then \(|\kappa \Phi^{(2)}_\alpha (\kappa)| = |\kappa^2 / (\kappa^2 + \alpha)| \leq 1 \) and \(\lim_{\alpha \to 0} \Phi^{(2)}_\alpha (\kappa) = 1/\kappa \). Further, \(\Phi^{(2)}_\alpha \) is bounded, takes its maximum at \(\kappa^2 = \alpha \) and \(\|\Phi^{(2)}_\alpha\|_\infty = \alpha^{-1/2}/2 \). Hence conditions (F1)-(F3) are satisfied and \((\Phi^{(2)}_\alpha)_{\alpha > 0} \) is a regularizing filter. Moreover, one shows that the convergence rates conditions for Theorem 3.8 are satisfied for \(\mu \in (0, 1] \). However (R3) is not satisfied for \(\mu > 1 \), which means that the Tikhonov filter has qualification \(\mu = 1 \) (see the discussion on [11, p. 76]). Above considerations show that Tikhonov-filtered TI-DFD

\[
R^{(2)}_\alpha (y) := \sum_{\lambda \in \Lambda} w_\lambda \ast \left(\frac{\kappa}{\kappa^2 + \alpha} \cdot (V^* \lambda g) \right)
\]

(3.10)

together with a parameter choice satisfying \(\delta^2 / \tilde{\gamma}(\delta) \to 0 \) yields a regularization method. Moreover, for elements \(f_* \) satisfying the source condition (R1) and parameter choice \(\tilde{\gamma} \asymp \delta \) the convergence rate \(||f_* - R^{(2)}_\alpha g^\delta|| = O(\delta^{2\mu/(2\mu+1)} \rho^{1/(2\mu+1)}) \) holds.

Further examples of filtered TI-DFDs can be constructed via known regularizing filters used in standard SVD-based regularization methods. This includes filters associated to iterative Tikhonov regularization, the Landweber iteration or asymptotic regularization; see [11]. Note however, that the combination of these filters with the TI-DFD results in regularization methods that are different from the classical counterparts. For example, \(R^{(2)}_\alpha \) is different from Tikhonov regularization except for the very specific case that \(U^* \) and \(V^* \) are unitary.

4. Application: stable differentiation

In this section we apply the concept of filtered TI-DFD to stable differentiation, the inverse problem associated to 1D integration. In particular, we use TI-wavelets as underlying TI-frame. While related approaches are known for denoising [4, 24], we are not aware of such methods in
the context of general inverse problems. We consider the one-dimensional integration operator as an unbounded operator on \(L^2(\mathbb{R}) \). While the integration operator would be bounded on a bounded domain, working on \(\mathbb{R} \) allows to use the concept of T1 wavelets and moreover preserves the translation invariance of integration.

4.1. Integration operator on \(L^2(\mathbb{R}) \)

Let \(C_c(\mathbb{R}) \) denote the space of all continuous functions with compact support and zero integral \(\int_{\mathbb{R}} f = 0 \). For functions \(f \in C_c(\mathbb{R}) \), define the primitive \(\mathcal{I}_f : \mathbb{R} \to \mathbb{C} \) by

\[
\forall x \in \mathbb{R} : \quad (\mathcal{I}_f(x)) := \int_{-\infty}^{x} f(t) \, dt.
\]

(4.1)

Note that for all \(f \in C_c(\mathbb{R}) \), the space of all continuous functions with compact support, the primitive \(x \mapsto \int_{-\infty}^{x} f(t) \, dt \) becomes constant for sufficiently large \(x \). Therefore, the additional assumption of zero integral is necessary and sufficient for the primitive being square integrable.

Lemma 4.1 (Integration operator on \(C_c(\mathbb{R}) \)). Operator \(\mathcal{I}_f : C_c(\mathbb{R}) \subseteq L^2(\mathbb{R}) \to L^2(\mathbb{R}) : f \mapsto \mathcal{I}_f \) is well defined, linear, densely defined and unbounded. Moreover, for all \(f \in C_c(\mathbb{R}) \), functions \(F\mathcal{I}_f \) and \(F\mathcal{I}_f \) are continuous with \((F\mathcal{I}_f)(\omega) = (i\omega)^{-1}(Ff)(\omega) \).

Proof. As noted above, \(\mathcal{I}_f f \in L^2(\mathbb{R}) \) for any \(f \in C_c(\mathbb{R}) \) and therefore \(\mathcal{I}_f \) is well defined and clearly linear. In order to show that \(\mathcal{I}_f \) is densely defined it is sufficient to show that \(C_c(\mathbb{R}) \) is dense with respect to the \(L^2 \)-norm in \(C_c(\mathbb{R}) \). For that purpose, let \(g \in C_c(\mathbb{R}) \) and assume without loss of generality that \(\text{supp}(g) \subseteq [-1,0] \). For any \(n \in \mathbb{R} \) define \(g_n(x) = g(x) \) for \(x < 0 \), \(g_n(x) = -g(-x/n) \) for \(x \in [0,n] \) and \(g_n(x) = 0 \) otherwise. Then \(g_n \in C_c(\mathbb{R}) \) and \(\|g - g_n\|^2 \to \|g\|^2 \) as \(n \to 0 \). Hence \(C_c(\mathbb{R}) \) is dense in \(C_c(\mathbb{R}) \). Furthermore \(f, \mathcal{I}_f \) are integrable and therefore \(Ff, F\mathcal{I}_f \) are continuous functions by the standard Fourier integral. Integration by parts shows \(F\mathcal{I}_f(\omega) = \int_{\mathbb{R}} e^{-i\omega x}\mathcal{I}_f(x) \, dx = (i\omega)^{-1} \int_{\mathbb{R}} e^{-i\omega x}f(x) \, dx = (i\omega)^{-1} Ff(\omega) \).

Because \(F \) is an isomorphism, \(C_c(\mathbb{R}) \subseteq L^2(\mathbb{R}) \) is dense, and \(\omega \mapsto \omega^{-1} \) is unbounded, which shows the unboundedness of integration operator \(\mathcal{I}_f \).

Below we extend \(\mathcal{I}_f \) to a closed operator on \(L^2(\mathbb{R}) \) with dense but non-closed domain. For that purpose we recall some basic facts on the adjoint and closure of unbounded operators that we will use for our purpose.

Remark 4.2 (Adjoint and closure of unbounded operators). For a densely defined potentially unbounded operator \(\mathcal{K} : \text{dom}(\mathcal{K}) \subseteq \mathcal{X} \to \mathcal{Y} \) one defines the adjoint domain \(\text{dom}(\mathcal{K}^*) \) as the set of all \(g \in \mathcal{Y} \) such that \(\langle \mathcal{K}(\cdot),g \rangle : \mathcal{X} \to \mathcal{Y} \) is bounded. According to the Riesz representation theorem for any \(g \in \text{dom}(\mathcal{K}^*) \) there exists a unique element \(\mathcal{K}^*g \in \mathcal{X} \) such that \(\langle \mathcal{K}^*(\cdot),g \rangle : \mathcal{Y} \to \mathcal{X} \) defines the adjoint \(\mathcal{K}^* : \text{dom}(\mathcal{K}^*) \subseteq \mathcal{Y} \to \mathcal{X} \). A linear operator is called closable if it has an extension to a closed linear operator. It is known that \(\mathcal{K} \) is closable if and only if \(\text{dom}(\mathcal{K}^*) \) is dense, in which case \(\mathcal{K}^{**} \) is the closure of \(\mathcal{K} \).

Following Remark 4.2, we next extend \(\mathcal{I}_f \) to a closed operator \(\mathcal{I} : \text{dom}(\mathcal{I}) \subseteq L^2(\mathbb{R}) \to L^2(\mathbb{R}) \) and further summarize some basic properties that will be of later use. We call this extension the integration operator on \(L^2(\mathbb{R}) \).

Proposition 4.3 (Integration operator on \(L^2(\mathbb{R}) \)).

(a) \(\mathcal{I}_f \) has a closed extension \(\mathcal{I} : \text{dom}(\mathcal{I}) \subseteq L^2(\mathbb{R}) \to L^2(\mathbb{R}) \).

(b) \(\text{dom}(\mathcal{I}) = \text{dom}(\mathcal{I}^*) = \{ f \in L^2(\mathbb{R}) \mid (i\omega)^{-1} Ff(\omega) \in L^2(\mathbb{R}) \} \).

(c) \(\forall f \in \text{dom}(\mathcal{I}) : F\mathcal{I}f(\omega) = (i\omega)^{-1} Ff(\omega) \).
(d) \(\mathcal{I}^* = -\mathcal{I} \).
(e) \(\mathcal{I} \) is injective with dense range \(\text{ran}(\mathcal{I}) = \{ g \in L^2(\mathbb{R}) \mid (i\omega)\mathcal{F}g(\omega) \in L^2(\mathbb{R}) \} \).
(f) \(\forall g \in \text{ran}(\mathcal{I}) : \mathcal{F}\mathcal{L}^{-1}g(\omega) = (i\omega)\mathcal{F}g(\omega) \).

Proof. By Plancherel’s theorem and lemma 4.1 we have \(\langle \mathcal{L}f, g \rangle = (2\pi)^{-1} \int_{\mathbb{R}} (i\omega)^{-1} \mathcal{F}g(\omega) \). Hence \(\langle \mathcal{L}f, \cdot \rangle \) is bounded iff \((i\omega)^{-1} \mathcal{F}g \in L^2(\mathbb{R}^2) \) and \(\text{dom}(\mathcal{I}^*) = \{ g \in L^2(\mathbb{R}) \mid (i\omega)^{-1} \mathcal{F}g(\omega) \in L^2(\mathbb{R}) \} \). In particular, \(\text{dom}(\mathcal{I}^*) \) is dense which gives (a). Similar arguments show \(\text{dom}(\mathcal{I}) = \text{dom}(\mathcal{I}^*) \) and (b)–(d). Items (e) and (f) are immediate consequences of (b) and (c).

In particular, proposition 4.3(b) implies that elements in the domain of the integration operator have zero mean. Our aim is the stable inversion of the integration operator \(\mathcal{I} \), which is equivalent to the stable evaluation of differentiation. For that purpose we use the concept of filtered TI-DFDs introduced in this paper. In particular we use the TI-wavelet transform.

4.2. TI-DFDs for the integration operator

If \((u_\lambda, \nu_\lambda, k_\lambda)_{\lambda \in \Lambda} \) is a TI-DFD for \(\mathcal{I} \), then the translation invariance of \(\mathcal{I} \) implies the translation invariance of \(\mathcal{L}_\lambda \). We will therefore consider in the following the case where \(\mathcal{L}_\lambda = \nu_\lambda * g \) for a TI-frame \((\nu_\lambda)_{\lambda \in \Lambda} \) of \(L^2(\mathbb{R}) \). We will also refer to \((u_\lambda, \nu_\lambda, k_\lambda)_{\lambda \in \Lambda} \) as a TI-DFD.

Before constructing a wavelet based TI-DFD we start by necessary conditions to be satisfied by the TI-DFDs.

Proposition 4.4 (Necessary condition for TI-DFD). Let \((u_\lambda, \nu_\lambda, k_\lambda)_{\lambda \in \Lambda} \) is TI-DFD for \(\mathcal{I} \). Then \(u_\lambda \) are weakly differentiable with weak derivative \(\partial_x u_\lambda = -\nu_\lambda / k_\lambda \) and

\[
\forall \lambda \in \Lambda: \quad \hat{\nu}_\lambda(\omega) = k_\lambda \cdot (-i\omega) \cdot \hat{u}_\lambda(\omega).
\]

Proof. According to (TI3) we have \(\nu_\lambda^* \ast (\mathcal{I} f) = k_\lambda \cdot (\nu_\lambda^* \ast f) \) for all \(f \in \text{dom}(\mathcal{I}) \). With the Fourier convolution theorem and the Fourier representation of \(\mathcal{I} \) we get \((i\omega)^{-1} \cdot (\mathcal{F} \nu_\lambda) \cdot \mathcal{F} f = k_\lambda \cdot (\mathcal{F} u_\lambda) \cdot \mathcal{F} f \). Since \(\text{dom}(\mathcal{I}) \) is dense this gives (4.2). According to (4.2), \((i\omega) \cdot \hat{u}_\lambda \) are in \(L^2(\mathbb{R}^2) \) and \(u_\lambda \) has weak derivative \(\partial_x u_\lambda = -\nu_\lambda / k_\lambda \).

Proposition 4.4 states that a necessary condition for \((u_\lambda)_{\lambda \in \Lambda} \) to be part of TI-DFD is that all \(u_\lambda \) are weakly differentiable and that there exist constants \(k_\lambda > 0 \) such that \(-k_\lambda \partial_x u_\lambda \) again is a TI-frame. According to proposition 2.3 this means that there are constants \(A_0, B_0 \) such that \(2\pi A_0 \leq \sum_{\lambda \in \Lambda} |k_\lambda \omega u_\lambda(\omega)|^2 \leq 2\pi B_0 \). In the following theorem we provide a class of examples using TI-wavelets \((u_j)_{j \in \mathbb{R}} \) of the form

\[
\forall j \in \mathbb{R}: \quad u_j(x) = 2^j u(2^j x), \tag{4.3}
\]

\[
\forall j \in \mathbb{R}: \quad v_j(x) = -2^{-j} \partial_x u_j(x) = -2^j (\partial_x u)(2^j x). \tag{4.4}
\]

In this case we call the elements \(v_j \) TI-vaguelettes and the corresponding TI-DFD \((u_j, v_j, 2^{-j})_{j \in \mathbb{Z}} \) a translation invariant wavelet–vaguelette decomposition (TI-WVD). Note that system (4.4) is not automatically a TI frame even if \((u_j)_{j \in \mathbb{Z}} \) is. Roughly spoken it requires \(\hat{u}_\lambda \) to be sufficiently well localized such that \(k_\lambda \cdot (-i\omega)\hat{u}_\lambda \) behaved in some sense similar to \(\hat{u}_\lambda \). A more precise condition will be deduced from the proof of the following theorem.

Theorem 4.5 (TI-WVD for \(\mathcal{I} \)). Let \((u_j)_{j \in \mathbb{Z}} \) be a TI-wavelet frame of the form (4.3) such that \(\text{supp}(\hat{u}) \subseteq \{ \omega \in \mathbb{R} \mid a \leq |\omega| \leq b \} \) for some \(a, b > 0 \). Then with \((v_j)_{j \in \mathbb{Z}} \) as in (4.4), the family \((u_j, v_j, 2^{-j})_{j \in \mathbb{Z}} \) is a TI-DFD for \(\mathcal{I} \), named TI-WVD for the integration operator.
Property (TI1) is satisfied by assumption. We now show that (4.5) is indeed a TI-frame, which according to $V^\ast_j g := v^\ast_j * g$ yields (TI2). Equivalently, we have to show $2\pi \sum_{\lambda \in \Lambda} |(2^{-j} \cdot \hat{u}_j(\omega))|^2$. Let $A, B > 0$ be the frame bounds of the $(u_j)_{j \in \mathbb{Z}}$. Since $\text{supp}(\hat{u}) \subseteq \{ \omega \in \mathbb{R} | \ a \leq |\omega| \leq b \}$, the scaled versions $\hat{u}_j(\omega)$ have support in $\{ \omega \in \mathbb{R} | \ a2^j \leq |\omega| \leq b2^j \}$. Therefore, we have $2A |\hat{u}_j(\omega)| \leq |\hat{u}_j(\omega)| \leq 2B |\hat{u}_j(\omega)|$. Together with the frame property of $(u_j)_{j \in \mathbb{Z}}$ this gives $2\pi a_j^2 \leq \sum_{\lambda \in \Lambda} 2^{-2j} |\alpha F u_j(\omega)|^2 \leq 2\pi b_j^2 B$ and concludes the proof. Clearly we have $K^\ast_v v_j = \kappa_j u_j$ which gives (TI3).

Note that we made the restriction in Theorem 4.5 to compactly supported wavelets in order to avoid technical difficulties and to focus on the main ideas. Similar results can be derived under weaker assumptions guaranteeing that $2\pi \sum_{\lambda \in \Lambda} |(2^{-j} \omega) \cdot \hat{u}(2^{-j}\omega)|^2$. Further note that such results can be extended to derivatives and related operators in higher dimension which for example, is important for edge detection of images [14]. Such a derivation is however beyond the scope of this paper.

4.3. Numerical realization

For the numerical simulations presented below we use the Tikhonov-type filter (see example 3.11). The corresponding Tikhonov filtered TI-WVD reads

$$R_\alpha^{(2)}(g) := \sum_{j \in \mathbb{Z}} w_j \ast \left(\frac{2^{-j}}{2^{-2j} + \alpha} \cdot (v^\ast_j * g) \right).$$

(4.5)

The instability of differentiation is reflected in the decreasing quasi-singular values $\kappa_j = 2^{-j}$ with increasing j. The filtered TI-WVD stabilizes the inversion by replacing the inverse quasi-singular coefficients $1/2^{-j}$ by the Tikhonov filtered approximations $2^{-j}/(2^{-2j} + \alpha)$.

The TI-vaguelette coefficients can be computed by $v^\ast_j * g = -2^{-j}(\partial_{\omega} u_j * g) = -2^{-j}(u_j * \partial_{\omega} g)$. The latter form has the advantage that any existing implementation for computing the TI-wavelet coefficients $u_j * g$ can be used for its evaluation. Such a strategy will be employed in this paper. In summary, the Tikhonov filtered TI-WVD reconstruction (4.5) can be implemented by following algorithm.

Algorithm 4.6. (Tikhonov-filtered TI-WVD reconstruction).

Input: Noisy data g^δ.
Parameters: Mother wavelets u, w and regularization parameter $\alpha > 0$.
Output: Regularized reconstruction f^{α}_δ.

(A1) Compute the auxiliary TI-wavelet coefficients $(U^\ast_j g^\delta)_{j \in \mathbb{Z}} = (u_j^\ast * g^\delta)_{j \in \mathbb{Z}}$.
(A2) Obtain the TI-vaguelette coefficients by $(d_j)_{j \in \mathbb{Z}} = (-2^{-j}(\partial_{\omega} U^\ast_j g^\delta))_{j \in \mathbb{Z}}$.
(A3) Multiplication with Tikhonov-filter coefficients: $(c_j)_{j \in \mathbb{Z}} := (2^{-j}/(2^{-2j} + \alpha^2) \cdot d_j)_{j \in \mathbb{Z}}$.
(A4) Application of TI-wavelet synthesis $f^{\alpha}_\delta := W((c_j)_{j \in \mathbb{Z}})$.

For the numerical simulation, functions f, g and corresponding TI-coefficients are given on the interval $[-1, 1]$ and discretized using $N = 512$ equidistant sample points. The TI-wavelet operators U^\ast, W are numerically computed with the PyWavelet package version 1.1.1 [20] in Python 3.8.8. The standard decimated Tikhonov-filtered WVD takes a form similar to (4.5) and reads

$$D_\alpha(g) := \sum_{\lambda \in \Lambda} \frac{2^{-j}}{2^{-2j} + \alpha} \cdot \langle v_\lambda, g \rangle w_\lambda.$$

(4.6)
Compared to TI WVD the inner and outer convolution are replaced by the downsampled and upsampled convolution, respectively (see Remark 2.7) and algorithm 4.6 is adjusted accordingly. In particular the realization of (A1) for the TI case discretizes $u_j^\ast * g_{\delta}$ using the maximal number of N samples, whereas in the decimated uses fewer samples for coarser scales.

The TI-WVD and the decimated WVD have a similar computational expense, taking only a few milliseconds in practice. Theoretical analysis also reveals a similar complexity. Both methods require the decimated (or undecimated) wavelet transform and its inverse. Assuming the use of a compactly supported mother wavelet and computing wavelet coefficients for possible all scales, the wavelet transform requires $O(N)$ FLOPS, while the TI version requires $O(N \log(N))$ FLOPS. Hence they only differ by a logarithmic factor.

4.4. Comparison methods

There is wide range of regularization methods for stable numerical differentiation proposed in the literature [1, 16, 22, 26]. While a detailed discussion on available methods is beyond the scope of this paper, we will compare it to related non TI methods, namely the decimated WVD noted above and a standard projection method using Legendre polynomials $P_k(x) = (k + 1/2)^{1/2}((2k)!)^{-1} \partial^k(x^2 - 1)^k$ taking the form

$$
L_N(g) := \sum_{k=1}^N \langle g^\delta, P_k \rangle \partial_x P_k.
$$

In (4.7) the truncation index N plays the role of the regularization parameter. It is well known $(P_k)_{k \in \mathbb{N}_0}$ forms an ONB of $L^2([-1, 1])$ with respect to the standard inner product $[\cdot, \cdot]$ and have been used as a recommended expansion basis for numerical differentiation for [22]. Note that (4.7) follows the spirit to the filtered DFD using the truncation filter. However it does not fit into the DFD framework in general because $\partial_x P_k$ cannot be rescaled to form a Riesz basis. This is also the reason why we do not use the Tikhonov filter for the Legendre expansion. We conjecture that the frame and Legendre type decompositions can be unified in a more general regularization theory, which we will consider as a future research direction. The Legendre coefficients and the polynomial expansion where calculated using the Numpy package, version 1.20.3.

Finally, we would like to note that in all numerical simulations, it is necessary to truncate the series for all used methods. However, for the wavelet methods we only truncate the series inline with the discretization, meaning that we do not introduce any additional regularization beyond the natural discretization that is inherent in all the methods presented in this paper. While this is an interesting issue, its analysis is beyond the scope of the present manuscript. Opposed to that, in the Legendre method the truncation index is actually the regularization parameter.

4.5. Numerical examples

In this subsection we present reconstruction results for the (Tikhonov) filtered TI-WVD and compare them with the standard decimated WVD and the truncated Legendre expansion. We will demonstrate the feasibility on the three artificial signals. They are also all chosen to have zero mean, as this is a necessary condition for being in the domain of the integration operator on $L^2(\mathbb{R})$. As underlying wavelet frame we chose the Daubechies wavelet with five vanishing moments. Note that these wavelets form a tight frame and thus the dual frame is given by the frame itself. We define the corresponding TI vaguelettes by using equation (4.4). This gives
an easy implementation of (A4) where we can exchange \(W \) by \(U \). Daubechies wavelets are not band-limited, and thus the Theorem 4.5 is not directly applicable in this case. However, we expect the results of this theorem to hold. But, we currently have no proof of this.

Linear filtering: We first present results comparing (4.6) and (4.7) and unregularized finite differences to our TI DFD-based approach (4.5). In all cases, the regularization parameters were chosen via a grid search in order to obtain optimal reconstructions and a fair comparison. The regularization parameter \(\alpha > 0 \) was optimized in terms of the relative \(\ell_2 \)-error \(||f_{\text{rec}} - f||_2/||f||_2 \) where \(f \) is the original signal and \(f_{\text{rec}} \) the reconstruction. We have chosen four decomposition levels.

The three example functions we will use are given as a smooth signal, a piecewise constant signal and a signal containing sections of both (mixed). We have added Gaussian noise to the data \(g^\delta = I f + \eta \) where \(\eta \) is Gaussian white noise with standard deviation \(\sigma = 0.05 \). This results in a relative \(\ell_2 \)-error in the data of 0.11\%, 0.28\% and 0.16\% respectively. Corresponding reconstructions are presented in figure 1, where the black graph always shows the original signal and the blue graph represents the obtained reconstruction for any of the reconstruction methods. The first row, shows the non regularized reconstruction obtained by applying finite differences. The second row shows the reconstructions obtained using the truncated Legendre polynomials. The third and fourth row show the filtered WVD and the filtered TI-WVD reconstructions, respectively. We have chosen two decomposition levels.

For all example signals, the unregularized reconstruction performs worst. For the smooth phantom in the first column, the Legendre approach appears to have the best approximation properties. Besides boundary effects, the signal is recovered almost exactly, whereas the wavelet based WVD methods suffer from small wave like artifacts. For the piecewise constant signal and the mixed signal, however, we see that the Legendre approach does not yield a good approximation method anymore. In particular, close to the jumps the approximation quality is poor. In this case, the TI-WVD has the best reconstruction quality, as the overshoots are reduced the most. These visual findings are confirmed by quantitative evaluation shown in table 1, which shows the relative \(\ell_2 \) reconstruction error for any of the reconstructions. We have also included the reconstruction errors for a noise term with standard deviation \(\sigma = 0.08 \), resulting in a relative \(\ell_2 \) noise level of 0.17\%, 0.45\% and 0.26\%. The results indicate that the proposed TI-WVD approach is more stable and reliable at higher noise levels than the other approaches.

Non-linear filtering: As a second example we want to compare the TI-WVD with the standard decimated WVD more closely. For that purpose we include coefficient thresholding which is known to optimally remove Gaussian white noise [3, 9, 15]. Since we are dealing with multi-scale decompositions we choose level dependent thresholds \(t = 2^{-j/\beta} \) for some fixed \(\beta > 0 \) and replace the vaguelettes coefficients by soft(\(2^{-j/\beta} \), \(\beta \) * \(g \)) with soft-thresholding function \(\text{soft}(\tau, x) := \text{sign}(x) \max(0, |x| - \tau) \). We have chosen four decomposition levels and again performed a parameter sweep for \(\beta > 0 \) to obtain optimal reconstructions. The noise is again constructed using \(\sigma = 0.05 \).

Figure 2 shows reconstruction from noisy measurements using thresholded TI-WVD and thresholded WVD. The results clearly suggest, that the TI-WVD yields more reliable reconstruction as the reconstruction is less perturbed by remaining artifacts. Quantitatively, the \(\ell_2 \) reconstruction error is given by 0.0095 for the TI-WVD, and 0.011 for the decimated WVD. This is inline with reported results for the simple denoising task. Finally, we would like to note that the TI-WVD reconstruction shows reduced wavelet artifacts in comparison to its decimated counterpart. Specifically, the oscillating, well-localized errors are reduced for the TI-WVD.
Figure 1. Reconstructions from noisy data using finite differences (top row), the Legendre approach (second row), WVD (third row) and TI-WVD (bottom row). The original signal is shown in red and the corresponding reconstruction in blue.

Table 1. Comparison of relative ℓ_2 reconstruction errors (best results are bold).

	Smooth signal	Constant signal	Mixed signal
$\sigma = 0.05$			
Unregularized	0.0165	0.0103	0.0142
Legendre approach L_N	**0.0017**	0.0100	0.011
Decimated WVD $D_{\alpha}^{(2)}$	0.0029	0.0096	0.010
Proposed TI-WVD $R_{\alpha}^{(2)}$	0.0021	**0.0089**	**0.0093**
$\sigma = 0.08$			
Unregularized	0.0407	0.0165	0.0272
Legendre approach L_N	0.0029	0.0129	0.0145
Decimated WVD $D_{\alpha}^{(2)}$	0.0037	0.0117	0.0140
Proposed TI-WVD $R_{\alpha}^{(2)}$	**0.0017**	**0.0113**	**0.0129**
5. Conclusion

This work presents a new approach for addressing ill-posed inverse problems, called the translation invariant frame decomposition (TI-DFD). We showed that filtered TI-DFDs yields a regularization method with order optimal rates. Unlike iterative and variational methods, the filtered TI-DFD has an explicit form, which enables efficient implementation. The translation invariant structure of TI-DFDs has been found to improve reconstruction quality and reduce artifacts in the context of wavelet thresholding. To demonstrate the effectiveness of TI-DFDs, we constructed a 1D integration example using wavelet frames (TI-WVD). Our results demonstrate that filtered TI-WVD outperformed the standard WVD method, with significantly reduced wavelet artifacts. In future research, one promising direction is exploring the use of nonlinear filters in TI-DFDs or different parameter selection. Additionally, constructing TI-DFDs for other operators, such as the Radon transform or related transforms using curvelet or shearlet systems are interesting lines of future research.

Data availability statement

All data that support the findings of this study are included within the article (and any supplementary files). https://git.uibk.ac.at/c7021013/tidfd.

Acknowledgment

The contribution by S G is part of a project that has received funding from the European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie Grant Agreement No. 847476. The views and opinions expressed herein do not necessarily reflect those of the European Commission. The work of M H has been supported by the Austrian Science Fund (FWF), project P 30747-N32.

ORCID iDs

Jürgen Frikel https://orcid.org/0000-0002-2391-9859
Markus Haltmeier https://orcid.org/0000-0001-5715-0331
References

[1] Anderssen R S and Bloomfield P 1974 Numerical differentiation procedures for non-exact data Numer. Math. 22 157–82
[2] Arfken G B and Weber H J 1999 Mathematical methods for physicists (American Association of Physics Teachers)
[3] Candès E J and Donoho D L 2002 Recovering edges in ill-posed inverse problems: optimality of curvelet frames Ann. Stat. 30 784–842
[4] Coifman R R and Donoho D L 1995 Translation-invariant de-noising Wavelets and Statistics (Berlin: Springer) pp 125–50
[5] Colonna F, Easley G, Guo K and Labate D 2010 Radon transform inversion using the shearlet representation Appl. Comput. Harmon. Anal. 29 232–50
[6] Daubechies I 1992 Ten Lectures on Wavelets (Philadelphia, PA: SIAM)
[7] Daubechies I, Defrise M and De Mol C 2004 An iterative thresholding algorithm for linear inverse problems with a sparsity constraint Commun. Pure Appl. Math. 57 1413–57
[8] Dicken V and Maass P 1996 Wavelet-Galerkin methods for ill-posed problems J. Inverse Ill-Posed Probl. 4 203–21
[9] Donoho D L 1995 Nonlinear solution of linear inverse problems by wavelet–vaguelette decomposition Appl. Comput. Harmon. Anal. 2 101–26
[10] Ebner A, Frikel J, Lorenz D, Schwab J and Haltmeier M 2023 Regularization of inverse problems by filtered diagonal frame decomposition Appl. Comput. Harmon. Anal. 62 66–83
[11] Engl H W, Hanke M and Neubauer A 1996 Regularization of Inverse Problems vol 375 (Dordrecht: Springer Science & Business Media)
[12] Frikel J and Haltmeier M 2020 Sparse regularization of inverse problems by operator-adapted frame thresholding Mathematics of Wave Phenomena (Berlin: Springer) pp 163–78
[13] Grasmair M, Haltmeier M and Scherzer O 2008 Sparse regularization with ℓ1 penalty term Inverse Problems 24 055020
[14] Göppel S, Frikel J and Haltmeier M 2022 Feature reconstruction from incomplete tomographic data without detour Mathematics 10 1318
[15] Haltmeier M and Munk A 2014 Extreme value analysis of empirical frame coefficients and implications for denoising by soft-thresholding Appl. Comput. Harmon. Anal. 36 434–60
[16] Hanke M and Scherzer O 2001 Inverse problems light: numerical differentiation Am. Math. Mon. 108 512–21
[17] Hubmer S and Ramlau R 2020 A frame decomposition of the atmospheric tomography operator Inverse Problems 36 094001
[18] Hubmer S and Ramlau R 2021 Frame decompositions of bounded linear operators in hilbert spaces with applications in tomography Inverse Problems 37 055001
[19] Hubmer S, Ramlau R and Weissinger L 2022 On regularization via frame decompositions with applications in tomography Inverse Problems 38 055003
[20] Lee G R, Gommers R, Waselewski F, Wohlfahrt K and O’Leary A 2019 Pywavelets: a Python package for wavelet analysis J. Open Source Softw. 4 1237
[21] Lorenz D A 2008 Convergence rates and source conditions for Tikhonov regularization with sparsity constraints J. Inverse Ill-Posed Prob. 16 463–78
[22] Lu S, Naumova V and Pereverzev S V 2013 Legendre polynomials as a recommended basis for numerical differentiation in the presence of stochastic white noise J. Inverse Ill-Posed Prob. 21 193–216
[23] Mallat S 2008 A Wavelet Tour of Signal Processing, Third Edition: The Sparse Way 3rd edn (Amsterdam: Academic, Inc.)
[24] Nason G P and Silverman B W 1995 The stationary wavelet transform and some statistical applications Wavelets and Statistics (Berlin: Springer) pp 281–99
[25] Ramlau R and Teschke G 2006 A Tikhonov-based projection iteration for nonlinear ill-posed problems with sparsity constraints Numer. Math. 104 177–203
[26] Rice J and Rosenblatt M 1983 Smoothing splines: regression, derivatives and deconvolution Ann. Stat. 11 141–56
[27] Rieder A 1997 A wavelet multilevel method for ill-posed problems stabilized by Tikhonov regularization Numer. Math. 75 501–22
[28] Scherzer O, Grasmair M, Grossauer H, Haltmeier M and Lenzen F 2009 *Variational Methods in Imaging* vol 167 (New York: Springer)

[29] Zangerl G and Haltmeier M 2021 Multiscale factorization of the wave equation with application to compressed sensing photoacoustic tomography *SIAM J. Imag. Sci.* 14 558–79

[30] Zhang Y and Chen C 2022 Stochastic asymptotical regularization for linear inverse problems *Inverse Problems* 39 015007