Supplementary Information for
De novo determination of near-surface electrostatic potentials by NMR

Binhan Yu, Channing C. Pletka, B. Montgomery Pettitt, and Junji Iwahara

Corresponding author: Junji Iwahara

Email: j.iwahara@utmb.edu

This PDF file includes:

- Supplementary text
- Figures S1 to S6
- Tables S1 to S3
- SI References
Supplementary Information Text

1. Additional information about Eq. 1

Here, we consider paramagnetic relaxation enhancement (PRE) for macromolecular 1H nuclei due to their dipole-dipole interactions with unpaired electrons of paramagnetic cosolutes in the same solution. For this type of PRE, which is often referred to as solvent PRE (1), the paramagnetic relaxation rates depend on the concentration of the paramagnetic cosolutes, the diffusional properties of the macromolecule and the cosolutes, and the electron relaxation time (2, 3). According to the Solomon-Bloembergen theory (4, 5), the PRE rate Γ_2 for the transverse 1H nuclear magnetization is given by:

$$\Gamma_2 = 4 \frac{G^2}{15} \frac{\mu_B^2}{4\pi a^2} g^2 P(S + 1) \left[f(0) + \frac{3}{4} f(\omega_H) \right]$$

where μ_B is the vacuum permeability; γ is the 1H nuclear gyromagnetic ratio; g is the electron g-factor; μ_B is the Bohr magneton; S is the electron spin quantum number for the paramagnetic group ($S = \frac{1}{2}$ for PROXYL); and ω_H is the 1H Larmor frequency in rad s$^{-1}$ units. Recently, Okuno, Szabo, and Clore advanced the theory for solvent PRE (2). According to their theory, the spectral density function $J(\omega)$ has a value at the zero frequency as follows:

$$J(0) = \frac{N_c}{(r^{-6})}$$

N_c is the number of cosolute molecules; γ is the correlation time for the dipole-dipole interaction between the macromolecular 1H nuclear spin and the cosolute unpaired electron spin; r is the distance between the spins; and $<r^{-6}>$ represents the ensemble average of r^6. The correlation time γ depends on the diffusion coefficient of the cosolute, the rotational correlation time of the macromolecule, and the electron relaxation time (2, 3). Explicit expression of γ is model-dependent, but that is not important for our current method because γ is canceled out in Eq. 3 in the main text. With the potential of mean force $U(r)$, in which r represents the position vector for the unpaired electron spin with respect to the 1H spin, the ensemble average $<r^{-6}>$ is given by (2):

$$<r^{-6}> = V^{-1} \int_0^\infty 4\pi r^{-4} \exp \left(-\frac{U(r)}{kT} \right) dr$$

where V represents the volume. $J(\omega_H)$ can be approximated by:

$$J(\omega_H) = \frac{J(0)}{(1+a\omega_H+b\sqrt{\omega_H})^2}$$

in which a and b are empirically determined parameters (2). Eq. 1 in the main text is obtained through combining Eqs. s1-4 together with $N_c V = 1000 Na c_p$, where Na is Avogadro’s number and c_p is the concentration of the paramagnetic cosolute in mol/L units. Thus, the parameter ξ in Eq. 1 is:

$$\xi = 200Na \left(\frac{\mu_B^2}{4\pi a^2} \gamma g^2 \mu_B^2 \right) \left[1 + \frac{3}{4} \frac{1}{(1+a\omega_H+b\sqrt{\omega_H})^2} \right]$$

For PROXYL derivatives, a and b were reported to be $\sim 6 \times 10^{-10} s$ and $\sim 2 \times 10^{-6} s$, respectively (2). With a and b on these orders, the first term in the square brackets is predominant in Eq. s5. Therefore, the parameter ξ for PRE Γ_2 data is insensitive to variations in the parameters a and b. This nature of Γ_2 rates is important for de novo determination of near-surface electrostatic potentials because the ratio $\Gamma_2/S\Gamma_2$ is unaffected even if values of a and b are different for amino-methyl-PROXYL and carboxy-PROXYL.

We should point out that PRE rates Γ_1 for longitudinal 1H nuclear magnetizations are less suitable for our current method. The equations for the Γ_1 rate and its coefficient corresponding to ξ are as follows:

$$\Gamma_1 = \frac{2 \pi}{5} \left(\frac{\mu_B^2}{4\pi a^2} \gamma g^2 \mu_B^2 \right) \left[1 + \frac{3}{4} \frac{1}{(1+a\omega_H+b\sqrt{\omega_H})^2} \right]$$

Unlike Γ_2 data, as Eq. s7 suggests, Γ_1 data are relatively sensitive to variations in the parameters a and b, which may be slightly different between amino-methyl-PROXYL and carboxy-PROXYL. Due to this problem, Γ_1 data are less suited for the de novo determination of near-surface electrostatic potentials.
2. Diffusion measurements for PROXYL derivatives in the reduced form

The PRE correlation time t_c in Eq. 1 in the main text depends on the diffusional properties of PROXYL derivatives. To investigate the diffusional properties of amino-methyl-PROXYL and carboxy-PROXYL molecules, we used NMR to measure the diffusion coefficients for the reduced forms of these compounds, which have a hydroxylamine group instead of a nitroxide radical (Fig. S1a). This reduction can readily be achieved by using ascorbic acids (6) and it converts each paramagnetic molecule into a diamagnetic molecule, allowing us to observe 1H NMR signals for the diffusion measurements. The reduced PROXYL derivatives were made by adding ascorbic acid to solutions of 20 mM amino-methyl or carboxy-PROXYL. The final concentrations were 40 mM for ascorbic acid and 16 mM for a PROXYL derivative. For each diffusion measurement, 11 gradient strengths were used: 1.0, 6.1, 11.1, 16.1, 21.1, 26.1, 31.2, 36.2, 41.2, 46.2, and 51.2 gauss/cm. The pulsed field gradients were calibrated using the self-diffusion of liquid N,N-dimethylformamide (DMF) at 25°C as a reference, for which the diffusion coefficient is 1.63×10^{-5} cm2 s$^{-1}$. The diffusion coefficient D was determined through fitting calculations using the following relationship between the signal intensity I and the pulse field gradient G (8):

$$I = I_0 \exp[-Dy^2G^2\delta^2(\Delta - \delta/3 - \tau/2)]$$

where δ is the total length of a pair of bipolar gradients; Δ, the time between the beginning points of two spin echo periods; and τ, the time between two gradients in each spin echo. The determined values of the diffusion coefficient D are shown in Fig. S1b. The diffusion coefficients D were virtually identical for amino-methyl-PROXYL and carboxy-PROXYL. This supports our assumption for Eq. 3 (main text) that the correlation time t_c is identical for solvent PRE rates $\Gamma_{2,+}$ and $\Gamma_{2,-}$.

3. Optimization of the accessibility radius for the paramagnetic center

When Eqs. 3 and 4 in the main text are used to calculate ϕ_{ENS}^{PB} potentials, the grid points inaccessible for the PROXYL paramagnetic center should be excluded. For this exclusion, we used the criterion of $d_{min} < r_{VDW} + r_{pc}$, where d_{min} is the distance to the closest macromolecular atom; r_{VDW} is its van der Waals radius; and r_{pc} is the effective radius that defines the accessibility of the PROXYL paramagnetic center. To empirically optimize r_{pc}, we examined RMSDs between the experimental ϕ_{ENS} data for rigid regions of ubiquitin (PDB 1UBQ) and the corresponding ϕ_{ENS}^{PB} data obtained using various r_{pc} values (Fig. S3). The smallest RMSD was found when $r_{pc} = 3.5$ Å. This value of r_{pc} seems reasonable, considering that the nitroxide group of the PROXYL group is surrounded by four methyl groups. Based on these results, we used $r_{pc} = 3.5$ Å for all other calculations of ϕ_{ENS}^{PB}.

4. ϕ_{ENS}^{PB} potentials for structure ensembles

We calculated ϕ_{ENS}^{PB} potentials for backbone H$_N$ atoms using the ensemble of 10 NMR structures of ubiquitin (PDB code 1D32)(9). Fig. S4a shows the averages and standard deviations of ϕ_{ENS}^{PB} potentials for individual residues. Larger variations were observed in the loop regions and the C-terminal tail. To further investigate impacts of structural fluctuation, we also generated 100 structures with altered side-chain conformers and loop backbone conformations while keeping the backbone atoms fixed at the coordinates of the 1.8 Å resolution crystal structure (1UBQ) (10). The structures were generated with the Xplor-NIH software (11) using a simulating annealing protocol in a torsion angle space under the influence of conformational database potentials (12). Fig. S4b shows the average and standard deviation of ϕ_{ENS}^{PB} potentials for individual residues in these 100 structures.
Fig. S1. Diffusion data on the reduced forms of amino-methyl-PROXYL and carboxy-PROXYL. To observe NMR signals without the influence of paramagnetic relaxation enhancement, the compounds were reduced with ascorbic acid. (a) Chemical structures of the reduced forms of the PROXYL derivatives. (b) NMR-based diffusion data for the reduced forms of amino-methyl-PROXYL and carboxy-PROXYL. Uncertainties in diffusion coefficients represent standard errors of means for three replicates. See Section 2 in Supplementary Text for additional information.

Compound	$D \text{ (cm}^2 \text{s}^{-1})$
Reduced amino-methyl-PROXYL	$(5.20 \pm 0.02) \times 10^{-6}$
Reduced carboxy-PROXYL	$(5.45 \pm 0.02) \times 10^{-6}$
Fig. S2. Example of 1H 1D NMR spectrum for the reduced form of amino-methyl-PROXYL for quantification of PROXYL compounds. Integrals for the 1H signals from two methyl groups of DMSO and four methyl groups of completely reduced amino-methyl-PROXYL (diamagnetic) are indicated. To observe intensities representing the Boltzmann equilibrium, the 1H spectrum was recorded with a single scan without any dummy scans. See Materials and Methods for experimental details.
Fig. S3. RMSD between the experimental ϕ_{ENS} data and computational ϕ_{ENS}^{PB} data as a function of the accessibility radius r_{pc} for the PROXYL paramagnetic center. Experimental data for 53 NH groups located in rigid regions and the computational data for the 1.8-Å resolution crystal structure of ubiquitin (PDB 1UBQ) were used. Based on the order parameters S^2 determined by Tjandra et al. (13), the ϕ_{ENS} potential data for NH groups for which the order parameter $S^2 < 0.8$ were excluded in order to avoid a bias due to conformational flexibility or structural uncertainties. See Section 3 in Supplementary Text for additional information.
Fig. S4. The effective near-surface potentials \(\phi_{\text{ENS}} \) predicted for H\(_{N}\) atoms using structure ensembles. (a) Results for the 10 NMR structures of ubiquitin (PDB code 1D3Z). Each green bar indicates the average and the standard deviation of the \(\phi_{\text{ENS}} \) potentials calculated for the NMR structure ensemble. (b) Results for 100 structures generated from the 1.8-Å resolution crystal structure (PDB code 1UBQ) by varying side-chain conformers and loop backbone conformations through simulated annealing under the influence of conformational database potentials (12) while keeping the secondary structure backbone atoms fixed. Each green bar indicates the average and the standard deviation of the \(\phi_{\text{ENS}} \) potentials calculated for the ensemble of 100 structures. In each panel, experimental \(\phi_{\text{ENS}} \) data and the \(\phi_{\text{ENS}} \) potentials predicted for the crystal structure 1UBQ at the ionic strength of 30 mM are also shown in red and blue, respectively. See Section 4 in Supplementary Text for additional information.
Fig. S5. Effective near-surface electrostatic potentials ϕ_{ENS} determined from NMR PRE data for ubiquitin at pH 7.5 and the ionic strength of 130 mM. (a) 1H PRE rates Γ_2 measured with cationic and anionic PROXYL derivatives (10 mM). (b) Experimental ϕ_{ENS} potentials (red) determined from the PRE data for individual residues. Theoretical effective near-surface electrostatic potentials ϕ_{ENS}^P (blue) and ϕ_{ENS}^{PB} (green) predicted from the 1.8-Å resolution crystal structure (PDB 1UBQ) are also plotted (see the main text for the definitions). (c) Correlation between the experimental ϕ_{ENS} data and the theoretical ϕ_{ENS}^{PB}. Data points for the secondary structure regions are shown in black and those for loop regions are shown in gray.
Fig. S6. Impact of variation in the protein interior dielectric constant ε_i on the prediction of effective near-surface electrostatic potentials ϕ_{ENS}^{PB} for ubiquitin (PDB 1UBQ) at pH 7.5 and the ionic strength of 30 mM. (a) ϕ_{ENS}^{PB} potentials calculated for $^{1}H_N$ nuclei of ubiquitin with $\varepsilon_i = 2$, 4, 10, and 20. This set covers a typical range of ε_i for protein interior regions (14). All other parameters were set as described in the main text. (b) Correlation between ϕ_{ENS}^{PB} potentials calculated with $\varepsilon_i = 2$ and those calculated with $\varepsilon_i = 20$. The RMSD was 1.1 mV. Linear regression is represented by a red line, with a slope of 0.91.
Table S1. PRE Γ_2 rates for backbone $^1{\text{H}}_N$ nuclei of ubiquitin at the ionic strength of 30 mM

Residue	$\Gamma_2,\; (s^{-1})^a$	$\Gamma_2,\; (s^{-1})^b$	Residue	$\Gamma_2,\; (s^{-1})^a$	$\Gamma_2,\; (s^{-1})^b$
Q 2	1.37 ± 0.07	1.64 ± 0.07	Q 41	1.31 ± 0.08	2.35 ± 0.08
I 3	1.13 ± 0.10	1.06 ± 0.09	R 42	1.55 ± 0.09	5.02 ± 0.08
F 4	1.10 ± 0.11	1.88 ± 0.10	L 43	1.23 ± 0.10	4.10 ± 0.09
V 5	1.09 ± 0.10	1.78 ± 0.09	I 44	2.34 ± 0.10	10.92 ± 0.10
K 6	1.50 ± 0.09	4.96 ± 0.09	F 45	2.25 ± 0.09	10.00 ± 0.09
T 7	1.85 ± 0.07	4.46 ± 0.07	A 46	n.d. 3	1.71 ± 0.07
L 8	16.65 ± 1.53	26.69 ± 1.86	G 47	14.88 ± 0.16	64.43 ± 0.64
T 9	n.d. 1	n.d. 1	K 48	3.31 ± 0.07	15.01 ± 0.07
G 10	n.d. 3	8.01 ± 0.69	Q 49	14.55 ± 0.14	51.48 ± 0.40
K 11	-0.75 ± 0.21	4.98 ± 0.22	L 50	1.56 ± 0.10	5.45 ± 0.09
T 12	n.d.	13.97 ± 1.46	E 51	1.97 ± 0.10	3.66 ± 0.09
I 13	0.96 ± 0.10	2.01 ± 0.09	D 52	8.35 ± 0.07	33.38 ± 0.10
T 14	3.94 ± 0.09	8.75 ± 0.08	G 53	n.d. 1	n.d. 1
L 15	0.79 ± 0.09	1.16 ± 0.08	R 54	2.67 ± 0.07	1.79 ± 0.07
E 16	9.01 ± 0.09	5.30 ± 0.08	T 55	2.22 ± 0.09	1.76 ± 0.09
V 17	0.86 ± 0.08	0.59 ± 0.07	L 56	0.80 ± 0.09	0.88 ± 0.09
E 18	1.86 ± 0.09	0.81 ± 0.08	S 57	1.29 ± 0.06	1.12 ± 0.06
S 20	2.40 ± 0.08	0.98 ± 0.07	D 58	1.67 ± 0.08	1.50 ± 0.07
D 21	1.71 ± 0.07	0.76 ± 0.07	Y 59	1.62 ± 0.09	2.93 ± 0.09
T 22	4.49 ± 0.09	1.15 ± 0.08	N 60	1.57 ± 0.08	3.86 ± 0.08
I 23	1.14 ± 0.10	0.83 ± 0.09	I 61	1.34 ± 0.08	2.05 ± 0.08
E 24	n.d. 3	n.d. 3	Q 62	1.43 ± 0.08	2.42 ± 0.07
N 25	3.90 ± 0.09	0.79 ± 0.08	K 63	12.90 ± 0.10	20.69 ± 0.10
V 26	2.10 ± 0.08	0.86 ± 0.08	E 64	1.24 ± 0.11	1.71 ± 0.10
K 27	1.71 ± 0.09	1.19 ± 0.08	S 65	0.97 ± 0.07	1.19 ± 0.06
A 28	4.61 ± 0.07	1.71 ± 0.07	T 66	11.67 ± 0.10	20.88 ± 0.10
K 29	5.47 ± 0.08	1.76 ± 0.08	L 67	1.00 ± 0.11	3.15 ± 0.11
I 30	2.49 ± 0.10	1.42 ± 0.09	H 68	2.52 ± 0.10	12.26 ± 0.10
Q 31	2.47 ± 0.08	1.74 ± 0.08	L 69	2.15 ± 0.10	9.69 ± 0.09
D 32	4.28 ± 0.07	1.65 ± 0.06	V 70	2.13 ± 0.10	10.14 ± 0.09
K 33	2.83 ± 0.07	1.48 ± 0.06	L 71	11.25 ± 0.08	32.50 ± 0.11
E 34	3.00 ± 0.10	1.81 ± 0.09	R 72	1.51 ± 0.08	9.02 ± 0.08
G 35	7.15 ± 0.10	2.62 ± 0.09	L 73	5.46 ± 0.48	41.71 ± 1.12
I 36	4.36 ± 0.08	4.12 ± 0.07	R 74	n.d. 1	n.d. 1
D 39	2.63 ± 0.08	0.75 ± 0.07	G 75	n.d. 1	n.d. 1
Q 40	1.77 ± 0.09	2.28 ± 0.08	G 76	1.38 ± 0.05	5.31 ± 0.05

aSolvent PRE arising from 10 mM amino-methyl-PROXYL; bSolvent PRE arising from 10 mM carboxyl-PROXYL; 1The signal was too broad; 2PRE was too large to measure; 3Error was too large.
Table S2. PRE Γ_2 rates for backbone 1H nuclei of ubiquitin at the ionic strength of 130 mM

Residue	$\Gamma_2^+ \text{ (s}^{-1}\text{)}^a$	$\Gamma_2^- \text{ (s}^{-1}\text{)}^b$	Residue	$\Gamma_2^+ \text{ (s}^{-1}\text{)}^a$	$\Gamma_2^- \text{ (s}^{-1}\text{)}^b$
Q 2	-0.04 ± 0.10	0.17 ± 0.11	Q 41	1.03 ± 0.12	1.50 ± 0.12
I 3	0.78 ± 0.14	0.77 ± 0.15	R 42	1.34 ± 0.13	3.19 ± 0.13
F 4	0.98 ± 0.16	1.32 ± 0.17	L 43	0.60 ± 0.15	2.29 ± 0.15
V 5	0.82 ± 0.15	1.28 ± 0.16	I 44	2.69 ± 0.15	7.82 ± 0.16
K 6	1.44 ± 0.14	3.26 ± 0.14	F 45	2.23 ± 0.14	7.11 ± 0.15
T 7	1.13 ± 0.10	2.86 ± 0.11	A 46	1.46 ± 4.77	9.22 ± 6.19
L 8	13.22 ± 1.21	20.83 ± 1.43	G 47	17.43 ± 0.21	40.21 ± 0.48
T 9	n.d.1	n.d.1	K 48	3.32 ± 0.10	10.47 ± 0.11
G 10	n.d.3	0.06 ± 0.58	Q 49	16.35 ± 0.18	36.57 ± 0.37
K 11	-0.43 ± 0.22	0.78 ± 0.23	L 50	1.20 ± 0.14	3.37 ± 0.14
T 12	3.09 ± 1.04	6.45 ± 1.21	E 51	1.02 ± 0.14	2.36 ± 0.14
I 13	0.72 ± 0.15	0.95 ± 0.16	D 52	9.46 ± 0.10	29.35 ± 0.16
T 14	2.31 ± 0.12	5.83 ± 0.13	G 53	n.d.1	n.d.1
L 15	0.41 ± 0.13	0.39 ± 0.14	R 54	1.19 ± 0.10	0.52 ± 0.11
E 16	6.97 ± 0.12	5.05 ± 0.12	T 55	1.01 ± 0.13	0.79 ± 0.14
V 17	0.32 ± 0.12	-0.06 ± 0.12	L 56	0.42 ± 0.13	0.14 ± 0.14
E 18	1.07 ± 0.12	0.86 ± 0.13	S 57	0.12 ± 0.09	0.36 ± 0.10
S 20	0.42 ± 0.11	-0.49 ± 0.11	D 58	0.24 ± 0.11	0.13 ± 0.11
D 21	0.69 ± 0.11	0.18 ± 0.11	Y 59	0.89 ± 0.13	1.43 ± 0.14
T 22	2.60 ± 0.12	0.47 ± 0.13	N 60	0.62 ± 0.12	2.82 ± 0.13
I 23	0.61 ± 0.14	0.62 ± 0.15	I 61	0.61 ± 0.12	1.13 ± 0.13
E 24	n.d.3	n.d.3	Q 62	0.65 ± 0.11	1.25 ± 0.11
N 25	2.03 ± 0.12	0.27 ± 0.12	K 63	11.34 ± 0.13	19.15 ± 0.17
V 26	1.25 ± 0.12	0.90 ± 0.13	E 64	1.12 ± 0.16	1.01 ± 0.16
K 27	1.23 ± 0.12	0.81 ± 0.13	S 65	-0.03 ± 0.10	0.06 ± 0.10
A 28	3.68 ± 0.11	1.54 ± 0.11	T 66	12.39 ± 0.14	15.64 ± 0.16
K 29	4.48 ± 0.12	1.81 ± 0.12	L 67	0.96 ± 0.17	2.13 ± 0.17
I 30	1.58 ± 0.14	0.70 ± 0.15	H 68	2.94 ± 0.15	9.00 ± 0.16
Q 31	1.54 ± 0.12	1.16 ± 0.13	L 69	2.28 ± 0.14	7.26 ± 0.15
D 32	3.54 ± 0.10	1.82 ± 0.11	V 70	2.69 ± 0.15	7.39 ± 0.16
K 33	2.16 ± 0.10	1.30 ± 0.10	L 71	12.80 ± 0.11	25.04 ± 0.16
E 34	2.87 ± 0.14	2.02 ± 0.14	R 72	0.79 ± 0.11	4.93 ± 0.12
G 35	6.18 ± 0.15	2.09 ± 0.15	L 73	7.97 ± 0.44	28.94 ± 0.80
I 36	4.12 ± 0.11	3.51 ± 0.12	R 74	n.d.1	n.d.1
D 39	0.32 ± 0.10	n.d.3	G 75	n.d.1	n.d.1
Q 40	0.94 ± 0.13	1.10 ± 0.13	G 76	-0.60 ± 0.07	0.50 ± 0.08

aSolvent PRE arising from 10 mM amino-methyl-PROXYL; bSolvent PRE arising from 10 mM carboxyl-PROXYL;

1The signal was too broad; 2PRE was too large to measure; 3Error was too large.
Table S3. Γ_2 rates for Antp-DNA complex at the ionic strength of 30 mM

Residue	$\Gamma_2^a (s^{-1})$	$\Gamma_2^b (s^{-1})$	Residue	$\Gamma_2^a (s^{-1})$	$\Gamma_2^b (s^{-1})$
K	23.24 ± 0.24	2.30 ± 0.16	I	8.33 ± 0.17	3.61 ± 0.18
R	19.62 ± 0.15	0.60 ± 0.11	E	10.80 ± 0.15	5.12 ± 0.15
G	35.62 ± 0.27	2.92 ± 0.13	I	12.46 ± 0.19	2.59 ± 0.19
R	22.09 ± 0.14	0.48 ± 0.10	A	8.12 ± 0.14	3.32 ± 0.15
Q	7.77 ± 0.19	0.20 ± 0.20	H	21.42 ± 4.95	1.63 ± 4.87
T	31.28 ± 0.20	3.05 ± 0.12	A	n.d.	n.d.
Y	5.25 ± 0.15	-0.05 ± 0.16	L	12.46 ± 0.20	3.99 ± 0.21
T	12.23 ± 0.21	3.18 ± 0.21	S	9.03 ± 0.14	4.80 ± 0.15
R	38.40 ± 4.51	14.68 ± 2.68	L	10.09 ± 0.15	4.77 ± 0.16
Y	21.62 ± 0.20	11.33 ± 0.19	T	18.14 ± 0.21	4.99 ± 0.20
Q	26.67 ± 0.28	7.45 ± 0.23	E	n.d.	n.d.
T	8.47 ± 0.16	1.72 ± 0.16	R	77.21 ± 0.99	18.85 ± 0.22
L	13.72 ± 0.15	2.76 ± 0.15	Q	36.16 ± 0.37	3.25 ± 0.23
E	9.00 ± 0.17	2.81 ± 0.18	I	8.06 ± 0.20	1.69 ± 0.21
L	7.18 ± 0.22	2.01 ± 0.23	K	11.27 ± 0.19	0.74 ± 0.19
E	14.16 ± 0.19	2.99 ± 0.20	I	13.15 ± 0.25	-0.10 ± 0.24
K	26.09 ± 0.19	6.32 ± 0.15	W	3.36 ± 0.18	-1.00 ± 0.20
E	16.34 ± 0.19	3.02 ± 0.19	F	3.06 ± 0.26	-0.75 ± 0.28
F	8.59 ± 0.23	1.53 ± 0.24	Q	5.18 ± 0.20	-1.00 ± 0.21
H	18.83 ± 0.19	4.27 ± 0.18	N	3.42 ± 0.19	-0.97 ± 0.21
F	16.53 ± 0.16	2.52 ± 0.15	R	7.06 ± 0.18	-0.93 ± 0.19
N	12.84 ± 0.14	1.39 ± 0.14	R	7.39 ± 0.22	-0.39 ± 0.24
R	12.71 ± 0.13	6.05 ± 0.11	M	7.79 ± 0.19	-0.41 ± 0.21
Y	89.03 ± 1.16	11.43 ± 0.19	K	12.08 ± 0.18	0.51 ± 0.18
L	32.10 ± 0.37	-0.40 ± 0.24	W	13.33 ± 0.20	0.14 ± 0.20
T	38.70 ± 0.35	0.58 ± 0.18	K	21.62 ± 0.16	0.99 ± 0.13
R	n.d.	5.19 ± 0.71	K	20.96 ± 0.13	0.76 ± 0.11
R	34.17 ± 0.24	8.19 ± 0.15	E	22.26 ± 0.12	1.67 ± 0.10
R	12.83 ± 0.17	1.82 ± 0.16	N	20.38 ± 0.07	1.00 ± 0.06
R	9.54 ± 0.16	1.17 ± 0.17	n.d.	n.d.	n.d.

aSolvent PRE arising from 10 mM amino-methyl-PROXYL; bSolvent PRE arising from 10 mM carboxyl-PROXYL; 1The signal was too broad; 2PRE was too large to measure; 3Error was too large.
SI References

1. Clore GM, Iwahara J (2009) Theory, practice, and applications of paramagnetic relaxation enhancement for the characterization of transient low-population states of biological macromolecules and their complexes. Chem Rev 109:4108-4139.

2. Okuno Y, Szabo A, Clore GM (2020) Quantitative Interpretation of Solvent Paramagnetic Relaxation for Probing Protein-Cosolute Interactions. J Am Chem Soc 142:8281-8290.

3. Pintacuda G, Otting G (2002) Identification of protein surfaces by NMR measurements with a paramagnetic Gd(III) chelate. J Am Chem Soc 124:372-373.

4. Bloembergen N, Morgan LO (1961) Proton relaxation times in paramagnetic solution. J Chem Phys 34:842-850.

5. Solomon I (1955) Relaxation processes in a system of two spins. Phys Rev 99:559-565.

6. Paleos CM, Dais P (1977) Ready reduction of some nitroxide free radicals with ascorbic acid. J Chem Soc Chem Commun 1977:345-346.

7. Holz M, Weingartner H (1991) Calibration in accurate spin-echo self-diffusion measurements using 1H and less-common nuclei. J Magn Reson 92:115-125.

8. Johnson CS (1999) Diffusion ordered nuclear magnetic resonance spectroscopy: principles and applications. Prog NMR Spect 34:203-256.

9. Cornilescu G, Marquardt JL, Ottiger M, Bax A (1998) Validation of Protein Structure from Anisotropic Carbonyl Chemical Shifts in a Dilute Liquid Crystalline Phase. J Am Chem Soc 120:6836-6837.

10. Vijay-Kumar S, Bugg CE, Cook WJ (1987) Structure of ubiquitin refined at 1.8 A resolution. J Mol Biol 194:531-544.

11. Schwieters CD, Kuszewski JJ, Tjandra N, Clore GM (2003) The Xplor-NIH NMR molecular structure determination package. J Magn Reson 160:65-73.

12. Clore GM, Kuszewski J (2002) Chi(1) rotamer populations and angles of mobile surface side chains are accurately predicted by a torsion angle database potential of mean force. J Am Chem Soc 124:2866-2867.

13. Tjandra N, Feller SE, Pastor RW, Bax A (1995) Rotational diffusion anisotropy of human ubiquitin from N-15 NMR relaxation. J Am Chem Soc 117:12562-12566.

14. Li L, Li C, Zhang Z, Alexov E (2013) On the Dielectric "Constant" of Proteins: Smooth Dielectric Function for Macromolecular Modeling and Its Implementation in DelPhi. J Chem Theory Comput 9:2126-2136.