Middle East respiratory syndrome coronavirus (MERS-CoV) is an emerging pathogen, first recognized in 2012, with a high case fatality risk, no vaccine, and no treatment beyond supportive care. We estimated the relative risks of death and severe disease among MERS-CoV patients in the Middle East between 2012 and 2015 for several risk factors, using Poisson regression with robust variance and a bootstrap-based expectation maximization algorithm to handle extensive missing data. Increased age and underlying comorbidity were risk factors for both death and severe disease, while cases arising in Saudi Arabia were more likely to be severe. Cases occurring later in the emergence of MERS-CoV and among health-care workers were less serious. This study represents an attempt to estimate risk factors for an emerging infectious disease using open data and to address some of the uncertainty surrounding MERS-CoV epidemiology.

coronaviruses; emerging infections; MERS-CoV; Middle East respiratory syndrome coronavirus; respiratory infections; zoonotic infections

Abbreviation: MERS-CoV, Middle East respiratory syndrome coronavirus.
(12), was accessed on August 4, 2015. This line listing contained 1,291 cases of MERS-CoV infection pulled from a number of sources, including the World Health Organization and the government of the Kingdom of Saudi Arabia. This data set has often been more up-to-date than official World Health Organization case reports, especially early in the epidemic. The outcomes available are as reported and do not necessarily reflect the final status of the patient after prolonged follow-up, so some misclassification of outcomes is possible. The majority of MERS-CoV cases occurred in Saudi Arabia, South Korea, and the United Arab Emirates (Appendix Table 1). The outbreak in South Korea was excluded from the analysis because of its unique nature, resulting in 1,105 cases after exclusion.

Exposure definition and covariate selection

Outcomes of interest were death and severe disease. The status of the patient as either alive or deceased was determined by whether or not the patient had died at the time of initial reporting. Patients with severe disease were considered those who had either died from their infection or required critical care at the time of initial reporting, as opposed to those who experienced few or less serious complications.

Risk factors considered were the patient’s age, the date of onset of the infection, the presence or absence of any underlying comorbidity such as cardiac or renal disease, reported contact with camels or other animals, whether or not the patient was employed as a health-care worker, whether or not the case was a primary or secondary case (based on reported contact with an existing case), whether or not the case arose in Saudi Arabia (the nation in which the majority of cases originated), the patient’s sex, the number of days since January 1, 2012, and the time between onset of infection and subsequent hospitalization.

Missing data

Because of the emerging nature of the disease, the widely varying sources from which the case reports were drawn, difficulty in case ascertainment, and sparse reporting, the data set used (12) had extensively missing data. There were 920 cases with missing information on 1 or more variables (including outcome variables), making conventional complete-case analysis essentially impossible. Because there was no evidence that these cases were missing data completely at random, estimates could be biased.

We used a bootstrap-based expectation maximization method to multiply impute the missing information (13). One hundred imputations were used, based on the assumption that all data for the variables included in the analysis, missing or observed, came from a multivariate normal distribution. A ridge prior of 1% of the empirical data was used to assist with the numerical stability of the algorithm. The ridge prior in essence adds an additional number of observations equal to 1% of the data set with the same mean and variance as the observed data, but with no covariance. This shrinks the covariance between the variables in the imputation model and assists the algorithm in converging on a stable solution, which is sometimes necessary with high degrees of missingness, as in this case. Priors using 0.5% of the data or 2% of the data did not result in meaningful differences in the results (not shown).

Regression models

Poisson regression models using a robust variance estimator (14) were used to estimate the univariate relative risk of either outcome according to each potential risk factor. These models are comparable to those obtained using binomial regression, though often more computationally tractable. Those variables that were moderately associated ($P < 0.20$) with the outcome were included in a multivariate risk model. All analysis was performed with the R statistical programming language (R Foundation for Statistical Computing, Vienna, Austria) using the Amelia package for multiple imputation (15).

Human subjects approval

Because this work used entirely publicly available information with no personal identifiers, it was determined to not require approval by an institutional review board.

RESULTS

Demographic characteristics

The distribution of patient ages for both fatal and nonfatal cases is shown in Figure 1. The distributions of other variables, including the numbers of missing values, are reported in Table 1.

Risk factors for reported mortality

The estimated relative risk of death and corresponding 95% confidence intervals for the covariates described in the Methods section are shown in Table 2. As with any emerging infection, both the presence and the absence of associations with putative risk factors warrant reporting. Univariate analysis showed that reported contact with camels or other animals, cases occurring in Saudi Arabia, and case type (a case’s being primary vs. secondary) were not associated with reported mortality. Employment as a health-care worker and an increased amount of time between disease onset and hospitalization had minor protective associations with reported mortality. Older age and underlying comorbidity were associated with

![Figure 1. Gaussian kernel-smoothed age distributions of fatal and nonfatal cases of Middle East respiratory syndrome coronavirus from 2012 to 2015.](image-url)
increased risks of mortality, while female patients and cases with a later time of infection onset (in days since January 1, 2012) had lower risks of mortality. Upon multivariate adjustment, most of the estimated associations were attenuated, and neither female sex nor time between disease onset and hospitalization remained an independent risk factor.

Risk factors for reported severe disease

The estimated relative risks of severe disease and corresponding 95% confidence intervals are shown in Table 2.

Variable	All Patients			Severe Cases		
	No.	% (SD)	Mean (SD)	No.	% (SD)	Mean (SD)
Age, years	50 (18)	57 (17)		911 (255)	881 (277)	
Missing data	11 (2.1)			163 (31.8)		
Time of onset (days since Jan 1, 2012)	461 (41.7)	163 (31.8)		143 (27.9)		
Missing data	14 (1.3)			9 (1.8)		
Underlying comorbidity	Yes (51.1)	361 (70.4)		No (47.6)	143 (27.9)	
Missing data	14 (1.3)			9 (1.8)		
Reported animal contact	Yes (9.5)	53 (10.3)		No (25.2)	146 (28.5)	
Missing data	105 (9.5)			163 (31.8)		
Reported camel contact	Yes (7.6)	41 (8.0)		No (21.1)	117 (22.8)	
Missing data	722 (65.3)			314 (61.2)		
Health-care worker	Yes (15.2)	38 (7.4)		No (31.8)	189 (36.8)	
Missing data	168 (15.2)			351 (31.8)		
Case type	Primary (19.5)	130 (25.3)		Secondary (43.8)	151 (29.4)	
Missing data	216 (19.5)			484 (43.8)		
Case origin	Saudi Arabia (86.8)	457 (89.1)		Other country (13.2)	56 (10.9)	
Missing data	959 (86.8)			146 (13.2)		
Sex	Male (66.6)	370 (72.1)		Female (31.3)	132 (25.7)	
Missing data	736 (66.6)			346 (31.3)		
Delay in hospitalization, days	4.91 (4.41)			3.80 (4.39)		
Missing data	577 (52.2)			216 (42.1)		

Abbreviation: SD, standard deviation.

Reported contact with camels or other animals, regardless of whether or not the case arose in Saudi Arabia, and longer delays between disease onset and hospitalization were not associated with an increased risk of severe disease. Increased age and the presence of underlying comorbidity were associated with an increased risk of severe disease. Female sex, having a secondary case, having a case arising later in time, and employment as a health-care worker were protective against severe disease.

As with the risk of reported death, the multivariate associations were largely attenuated from the univariate associations,
allowance for extensively missing data has allowed the identifi-
cation of some previously suggested risk factors that do not
appear to be so upon adjustment for other covariates. For
example, female patients were not necessarily at lower
risk for disease after adjustment, nor were primary cases at
higher risk for fatal infections. Issues of data quality and
“missingness” during outbreaks necessitate the use of robust
techniques for handling missing data.

We found that older age and underlying comorbidity were
associated with increased risks of both death and severe dis-
ease. While not a surprising finding, this does suggest that
older and sicker patients merit heightened vigilance. Addition-
ally, cases arising progressively later during the epidemic
have been associated with lower risks of both death and se-
vere disease at the time of initial reporting, suggesting that
treatment methods for MERS-CoV may be increasing in ef-
ficacy. Alternately, the proportion of mild and asymptomatic
cases has been rising over time, suggesting that less severe
cases are becoming more likely to be ascertained as a result
of epidemiologic investigation. This is supported by temporal
trends in the missingness of the data, which grows less severe
later in the epidemic.

This study was not without limitations, especially those
stemming from the data used. Patient outcomes were identi-
ﬁed at the time of reporting, rather than based on follow-up,
so it is possible that some patients counted as living or with-
out severe disease may have experienced serious or fatal
complications after reporting, which would not have been re-
corded in the data. There is also the possibility of unmeasured
confounding biasing these estimates or the multiple imputa-
tion model not fully addressing the missingness within the
data set. These issues are unlikely to be resolved without
more resource-intensive population-based studies.

Despite these shortcomings, the study represents an at-
tempt to quantify the known risk factors for MERS-CoV
using the best available and open data. While the estimates
are imperfect, they are superior to univariate associations
that do not control for confounding, or allowing paralysis
in the face of difﬁcult and imperfect data to deprive public
health planners of potentially useful information. These esti-
mates can and should be revised as more becomes known
about the disease, but for the moment, they represent the cur-
rent state of our knowledge about MERS-CoV and its impact
on human health outcomes.

ACKNOWLEDGMENTS

Author afﬁliations: Network Dynamics and Simulation Sci-
ence Laboratory, Biocomplexity Institute of Virginia Tech, Vir-
ingia Polytechnic Institute and State University, Blacksburg,
Virginia (Eric T. Lofgren, Caitlin M. Rivers); and Engineering

Variable	Death RR	95% CI	aRR*	95% CI	Severe Disease RR	95% CI	aRR*	95% CI
Age	1.02	1.02, 1.03	1.01	1.00, 1.02	1.02	1.02, 1.02	1.01	1.01, 1.01
Time of onset a	1.00	1.00, 1.00	1.00	1.00, 1.00	1.00	1.00, 1.00	1.00	1.00, 1.00
Underlying comorbidity b	2.51	1.87, 3.37	1.99	1.39, 2.86	2.23	1.93, 2.46	1.65	1.39, 1.97
Animal contact	1.16	0.74, 1.80	1.10	0.89, 1.35	1.10	0.89, 1.37	1.10	0.89, 1.37
Camel contact	1.19	0.73, 1.93	1.10	0.89, 1.37	1.10	0.89, 1.37	1.10	0.89, 1.37
Health-care worker	0.52	0.33, 0.81	0.46	0.28, 0.75	0.49	0.40, 0.60	0.61	0.48, 0.79
Secondary case	0.84	0.60, 1.18	0.60	0.52, 0.70	0.82	0.69, 0.97	0.82	0.69, 0.97
Saudi Arabia	0.85	0.60, 1.21	1.18	0.95, 1.45	1.24	1.02, 1.52	1.24	1.02, 1.52
Female sex	0.75	0.56, 1.00	0.93	0.70, 1.25	0.77	0.66, 0.89	0.92	0.81, 1.06
Hospitalization delay d	0.85	0.81, 0.89	0.99	0.95, 1.03	0.99	0.97, 1.01	0.99	0.97, 1.01

Abbreviations: aRR, adjusted relative risk; CI, conﬁdence interval; RR, relative risk.

* Multivariate model that adjusted for age, presence of comorbidity, reported contact with animals, health-care
worker status, case type (primary vs. secondary), and patient sex.

b Multivariate model that adjusted for age, time of onset, presence of comorbidity, health-care worker status, case
type (primary vs. secondary), and patient sex.

c Days since January 1, 2012.

d Reported number of days between onset and subsequent hospitalization.
REFERENCES

1. Lloyd-Smith JO, George D, Pepin KM, et al. Epidemic dynamics at the human-animal interface. Science. 2009;326(5958):1362–1367.

2. Centers for Disease Control and Prevention. Middle East Respiratory Syndrome (MERS). http://www.cdc.gov/CORONAVIRUS/MERS/. Updated December 2, 2015. Accessed August 7, 2015.

3. Zaki AM. Novel coronavirus—Saudi Arabia: human isolate. ProMED-mail 2012;15 Sept:20120920.1302733. www.promedmail.org/post/1302733. Published September 20, 2012. Accessed August 7, 2015.

4. Alagaili AN, Briese T, Mishra N, et al. Middle East respiratory syndrome coronavirus infection in dromedary camels in Saudi Arabia. MBio. 2014;5(2):e00884–14.

5. World Health Organization. Middle East respiratory syndrome coronavirus (MERS-CoV)—Saudi Arabia. http://www.who.int/csr/don/18-august-2015-mers-saudi-arabia/en/. Published August 18, 2015. Accessed August 18, 2015.

6. European Centers for Disease Control. Severe Respiratory Disease Associated With Middle East Respiratory Syndrome Coronavirus (MERS-CoV). http://www.ecdc.europa.eu/en/publications/Publications/RRA-Middle-East-respiratory-syndrome-coronavirus-update10.pdf. Published May 31, 2014. Accessed August 7, 2015.

7. Al-Abdallat MM, Payne DC, Alqasrawi S, et al. Hospital-associated outbreak of Middle East respiratory syndrome coronavirus: a serologic, epidemiologic, and clinical description. Clin Infect Dis. 2014;59(9):1225–1233.

8. Assiri A, McGeer A, Perl TM, et al. Hospital outbreak of Middle East respiratory syndrome coronavirus. N Engl J Med. 2013;369(5):407–416.

9. Ferguson NM, Van Kerkhove MD. Identification of MERS-CoV in dromedary camels. Lancet Infect Dis. 2014;14(2):93–94.

10. Reusken CBEM, Haagmans BL, Müller MA, et al. Middle East respiratory syndrome coronavirus neutralising serum antibodies in dromedary camels: a comparative serological study. Lancet Infect Dis. 2013;13(10):859–866.

11. Lau EHY, Zheng J, Tsang TK, et al. Accuracy of epidemiological inferences based on publicly available information: retrospective comparative analysis of line lists of human cases infected with influenza A(H7N9) in China. BMC Med. 2014;12:88.

12. Rambaut A. MERS-Cases. https://github.com/rambaut/MERS-Cases. Published June 18, 2013. Updated July 22, 2015. Commit eddf6dca14fc73d861a4b712e8a2afda8f5c97e. Accessed August 4, 2015.

13. Honaker J, King G. What to do about missing values in time-series cross-section data. Am J Pol Sci. 2010;54(2):561–581.

14. Zhu G. A modified Poisson regression approach to prospective studies with binary data. Am J Epidemiol. 2004;159(7):702–706.

15. Honaker J, King G, Blackwell M. Amelia II: a program for missing data. J Stat Softw. 2011;45(7):1–47.

Appendix Table 1. Locations of known cases of Middle East respiratory syndrome coronavirus as of August 4, 2015a

Country	No. of Cases
France	1
Iran	8
Italy	2
Jordan	20
Saudi Arabia	959
Kuwait	3
Lebanon	1
Oman	9
Qatar	15
South Korea	186b
Tunisia	2
United Arab Emirates	77
United Kingdom	2
Yemen	1
Missing	5
Total	1,291

a Data were obtained from a publicly accessible line listing of cases maintained by Dr. Andrew Rambaut (12).

b Cases from South Korea were excluded from the current analysis.