Limits of Friendship Networks in Predicting Epidemic Risk

Lorenzo Coviello, Massimo Franceschetti, Manuel García-Herranz, Iyad Rahwan

Abstract

The spread of an infection on a real-world social network is determined by the interplay of two processes – the dynamics of the network, whose structure changes over time according to the encounters between individuals, and the dynamics on the network, whose nodes can infect each other after an encounter. Physical encounter is the most common vehicle for the spread of infectious diseases, but detailed information about said encounters is often unavailable because expensive, unpractical to collect or privacy sensitive. The present work asks whether the friendship ties between the individuals in a social network successfully predict who is at risk. Using a dataset from a popular online review service, we build a time-varying network that is a proxy of physical encounter between users and a static network based on their reported friendship. Through computer simulations, we compare infection processes on the resulting networks and show that, whereas distance on the friendship network is correlated to epidemic risk, friendship provides a poor identification of the individuals at risk if the infection is driven by physical encounter. Our analyses suggest that such limit is not due to the randomness of the infection process, but to the structural differences of the two networks. In addition, we argue that our results are not driven by the static nature of the friendship network as opposed to the time-varying nature of the encounter network, as a static version of the encounter network provides more accurate prediction of risk than the friendship network. In contrast to the macroscopic similarity between processes spreading on different networks – confirmed by our simulations, the differences in local connectivity determined by the two definitions of edges result in striking differences between the dynamics at a microscopic level, preventing the identification of the nodes at risk. Despite the limits highlighted by our analyses, we show that periodical and relatively infrequent monitoring of the real infection on the encounter network allows to correct the predicted infection on the friendship network and to achieve satisfactory prediction accuracy. In addition, the friendship network contains valuable information to effectively contain epidemic outbreaks when a limited budget is available for immunization.

LC and IR: MIT Media Lab. MGH: UNICEF Innovation Unit. MF: University of California San Diego. Email: lorenzoc@mit.edu
Contents

I Introduction
1. Outline .. 7

II The friendship network and the encounter network
1. The friendship network .. 8
2. The encounter network ... 8
3. The static encounter network and the time-varying friendship network .. 10

III Infection dynamics
1. Infection time .. 12
2. Seed selection .. 12
3. Detection time with sensors 12

IV Friendship distance and epidemic risk .. 13

V The limits of the friendship network
1. Metrics ... 17
2. Case 1: certain infection ... 20
3. Case 2: stochastic infection 25

VI Epidemic risk: comparison between the time-varying networks 31

VII Epidemic risk: comparison between the static networks 36

VIII Overcoming the limits of the friendship networks: correction 40

IX Containment of epidemic outbreaks using the friendship network 46

X Epidemics at the macroscopic level: time-varying networks 54
1. Infection Rate .. 54
2. Sensor monitoring .. 56
I. INTRODUCTION

The forecast and mitigation of epidemics is a central theme in public health [22], [30], [31], [32], [39], [47], [61], and events such as the recent ebola epidemic constantly drive the attention and resources of governments, institutions such as the World Health Organization, and the research community [36], [40], [56], [60], [63], [76]. The study of infectious processes on real-world networks is of interests to diverse disciplines, and similar models have been proposed to characterize the spread of information, behaviors, cultural norms, innovation, as well as the diffusion of computer viruses [35], [59], [74], [77], [89]. Therefore, epidemiologists, computer scientists and social scientist have joint forces in the study of contagion phenomena. Due to the impossibility to study the spread of infectious diseases through controlled experiments, modeling efforts have prevailed [41], [52], [55], [73], [74]. Recently, advancements in computation tools determined the emergence of data-driven simulations in the study of epidemic outbreaks and dynamical processes in general [91].

The spread of an infection over a real-world network is determined by the interplay of two processes: the dynamics of the network, whose edges change over time according to the encounters between individuals; and the dynamics on the network, whose nodes can infect each other after they encounter. When the two dynamics operate at comparable time scales, their interdependence appears particularly relevant, the time-varying nature of the network cannot be ignored [38], [46], [53], [75], [81] and specifically devised control strategies are necessary [58]. Aggregating the dynamics of the edges into a static version of the network can provide useful insights [26] but it can introduce bias [44], [75]. Empirical work suggests that the bursty activity patterns of individuals slow down spreading [51], [85], [90], but temporal correlations seem to accelerate the early phase of an epidemic [50], [79].
Physical encounter is the most common vehicle for the spread of infectious diseases (as in the case of airborne diseases), and detailed information about said encounters is fundamental for monitoring and containing outbreaks. Various sources of data can serve as a proxy of physical encounter – checkins on social networking platforms [17], [68], [69], traffic records [7], [87], [88], phone call records [37], [43], [70], wifi and RFID wearable sensors data [14], [42], [48], [71], [80], [85], geographical and non-geographical information shared online [6], [16], surveys and diaries of daily contact [25], [64], [65], and recently multiplex data [86].

However, pervasive and detailed information is rarely available and might be expensive and unpractical to collect (as in the case of sensor technologies [14], [80], [85]), prone to errors (as in the case of survey data [24], [78]), and privacy-sensitive [2], [9], [10], [23], [54], [57], [82], [93]. In general, researchers have to rely on the information in their possession, and in this work we consider the case of self-reported relationships between individuals, such as friendship between the users of an online social network. Recent research has shown that communication records and social ties are useful to explain and predict human dynamics. Location data from cell phone records and online social networks has shown that social relationships can partially explain the patterns of human mobility [18]. Contact tracing based on phone communication activity has been proposed as a proxy of physical interaction in the context of a method to reduce the final size of epidemic outbreaks [28]. Both real-word social relationships (e.g., family, professional, friendship ties) and online social relationships (e.g. Facebook friendship, follower-followee relationships on Twitter) predict the diffusion of behaviors [4], [5], [15], [19], [20]. At a structural level, there is evidence that networks generated from wearable sensor measurements, diaries of daily contacts, online links and self-reported friendship present similar structural properties [62], but contacts recorded by wearable sensors might not be reported in surveys, especially when the contact’s duration is short [83]. In general, it is not clear whether and within which limits friendship can be considered a valid proxy of physical encounter, as a process spreading from an initial seed, or “patient zero”, can reach only the nodes in its set of influence through paths that respect time ordering [45].

Given an infection transmitted by physical encounter on a social network, the present work asks whether the friendship ties between the same individuals successfully predict who is at risk.

Using the Yelp Dataset Challenge dataset [www.yelp.com/dataset_challenge], we build a time-varying network that is a proxy of physical encounter between users and a static network based on
their reported friendship. We refer to these networks as the encounter network and the friendship network, respectively. Through computer simulations, we compare the evolution of Susceptible-Infected (SI) processes [3] on the two networks, in terms of the sets of infected individuals. Given a seed, is the set of nodes infected on the friendship network a good approximation of those infected in the encounter network?

Our contribution is twofold. First, we propose similarity measures to quantify how precisely the set of individuals predicted to be at risk according to a given spreading model (e.g., friendship) approximates the set of individuals at risk according to a different underlying spreading model (e.g., physical encounter). Given a target infection size and a seed present in both networks, we separately simulate infections starting at that seed in both networks and compare the sets of infected nodes. The proposed measures allows disentangling between the randomness of the infection process and the effect of the structural differences between the networks. Given this measure, we show that despite friendship networks produce similar epidemic dynamics at the macro level, friendship provides a poor identification of the individuals at risk if the infection is driven by physical encounter. That is, the sets of individuals infected on the friendship network are in general very different from the corresponding ones on the encounter network. This is true even after controlling for the fact that certain individuals might be connected in one network and not in the other. Our analyses suggest that such difference is primarily determined by the structural differences of the two networks, and due only in part to the randomness of the infection process. Despite the randomness of the infection increases the unpredictability of the set of infected individuals (between independent processes initiated at the same seed on the same network), topological characteristics amplify such unpredictability when considering the two different networks. In addition, our results are not driven by the static nature of the friendship network as opposed to the time-varying nature of the encounter network, as a static version of the encounter network provides more accurate prediction of risk than the friendship network. Also, similar conclusions hold if we compare the encounter network to a time-varying version of the friendship network. The limits of the friendship network in predicting epidemic risk are not simply due to the time ordering of the influence sets determined by physical encounter.

Despite the limits highlighted by our analyses, we show that periodical and relatively infrequent monitoring of the real infection on the encounter network allows to correct the predicted infection on the friendship network and to achieve satisfactory prediction accuracy. This corresponds to
a less extreme scenario in which the researcher has still knowledge of the friendship network, but, in addition, is able to monitor the infected population (on the encounter network) at given times. In particular, we compare the sets of infected individuals on the two networks right before each correction and show that a good level of prediction accuracy is established early in the process and maintained over time. Our results suggest that the ability to periodically monitor the infection on the encounter network is the key to overcome the limits of the friendship network in predicting epidemic risk.

In addition, we show that the friendship network encodes useful information for the containment of epidemic outbreaks. We consider scenarios in which a fixed budget is available for immunization (e.g., limited amount of vaccine) and must be effectively allocated in order to contain the epidemic. In contrast to the simple method of purely random immunization, we consider a strategy that selects random friends of randomly chosen individuals for immunization, a method already proposed to predict the peak of an epidemic outbreak [21] and the spread of information online [33]. This strategy is motivated by the “friendship paradox”, the network property for which the average friend of an individual is more connected than the average individual [29], and is simple, only requiring individuals to name a friend. The strategy allows effective use of the immunization budget, substantially increasing the probability that an infection dies out in its early stage, and strongly reducing the expected final infection size with respect to purely random immunization. Moreover, it only requires a small additional cost to obtain the same effect of an ideal strategy that administers immunization to future encounters rather than friends.

Since seminal work on the structure and growth of complex networks [8], [27], [92], interdisciplinary research has shown that biological networks, social networks and the Internet are governed by similar rules [1], [11], [49], [66], and share similar structure [34], [67], [72]. In particular, very similar models have been proposed to characterize the spread of epidemics, information, behaviors, and cultural norms. Despite the macroscopic similarity between processes spreading on different networks (confirmed by our simulations), our work shows that the differences in local connectivity determined by the two definitions of edges result in striking differences between the dynamics at a microscopic level, which prevent the identification of the nodes at risk.
A. Outline

Section I describes the dataset and introduces the friendship network and the encounter network, as well as a static version of the encounter network and a time-varying version of the friendship network that will be considered in the analyses. Section III introduces the epidemic process, defines the metrics to measure its spread, and describes the sensor selection mechanisms considered in the analysis of the process at the macro level. Section IV shows that, given an infection initiated at a single seed and spreading on the encounter network, nodes at shorter distance from the seed on the friendship network have higher risk of infection. Section V compares processes initiated at the same seed but spreading separately on the encounter network, on the friendship network and on a static version of the encounter network, and highlights the limits of the friendship network in predicting epidemic risk (if the epidemic spreads via physical encounter). To further support that our results are not driven by the static nature of the friendship network as opposed to the time-varying nature of the encounter network, Section VI compares epidemic risk on the encounter network and on the time-varying version of the friendship network, whereas VII compares epidemic risk on the friendship network and on the static version of the encounter network. Section VIII considers the situation in which the estimated set of infected individuals on the friendship network can be periodically corrected to match the set of infected individuals on the encounter network, and shows that even relatively infrequent correction overcomes the limits of the friendship networks in predicting epidemic risk. Section IX considers the problem of effectively containing epidemic outbreaks when a limited budget is available for immunization, and shows that the friendship network contains valuable information to effectively allocate this budget. Section X and Section XI provide a characterization of the epidemics at a macroscopic level. In particular, Section X consider processes spreading on the encounter network and on the time-varying version of the friendship network, and Section XI consider processes spreading on the friendship network and on the static version of the encounter network. We conclude in Section XII.

II. THE FRIENDSHIP NETWORK AND THE ENCOUNTER NETWORK

The Yelp Dataset Challenge dataset (www.yelp.com/dataset_challenge) consists in 1,569,264 reviews and 495,107 tips to 61,184 businesses (in 10 cities around the world) posted by 366,715 users over a period spanning over than 10 years. Within this period, we consider 1,469
consecutive days ranging from 1/1/2011 to 1/8/2015, as reviews before 2011 are less numerous. Each review and tip includes the user who posted it, the reviewed business, and the date it was posted. Yelp users can form friendship ties between each other, and the list of friends of each user is included in the dataset. Time information about the formation of friendship ties is not available. Using the dataset, we define two networks, called the friendship network and the encounter network respectively.

Let \(U \) be the set of users, \(F \subseteq U \times U \) be the set of friendship ties, \(B \) the set of businesses, \(T \) be the set of days, \(R \subseteq U \times B \times T \) be the set of reviews and tips (which we will refer to as reviews). For each user \(u \in U \) let \(F_u \subseteq U \) be the set of friends of \(u \). Therefore \(F = \cup_{u \in U} \{(u, v) : v \in F_u\} \). Each review (or tip) \(r \in R \) is a triple \((u, b, t)\) where \(u \in U, b \in B, t \in T \).

A. The friendship network

Of all users, 174,100 have at least one friend, with an average number of friends per user, or friend degree, 14.8. The friend degree distribution is shown in Figure 1 (triangles).

Let \(N_F = (U, F) \) be the static friendship network. As we consider processes spreading between connected nodes, connectedness is the key property of the networks. Therefore, we restrict our attention to the giant component, as users outside giant components form small components whose dynamics are not relevant. The giant component defined by friendship includes 168,923 users (whereas the second largest component has 8 users). In what follows, we will identify \(N_F \) with its giant component. Observe that this network is static, as its edges do not change over time.

B. The encounter network

The most common vehicle for the spread of infectious diseases is physical contact (rather than friendship) between individuals. Strictly speaking, two users in \(U \) encountered on a given day \(t \) if they visit the same business on day \(t \) at the same time. In the present work, we use reviews as a proxy of physical encounter: an edge is active between two users in \(U \) on day \(t \) if they posted a review to the same business on day \(t \). This constitutes an approximation to real physical encounter, which requires users to visit (rather than review) a business at about the same time. This approximation is justified as the time of a review is a proxy of the time of the visit to a business, and the element that spreads over a network (e.g., a virus or an opinion) does not
necessarily require direct physical contact. For example, in the case of airborne transmission, particles can remain suspended in the air for hours after an infected individual has occupied a room [12]. In the context of our dataset, after an infected user visits a business, the infection might spread to customers who visit the business later in the day. Also, the virus can infect customers which are not included in the dataset, and from them can infect another user who visits the business in a later moment.

In the dataset, 143,780 users have at least one encounter, with an average number of encounters, or encounter degree, of 3.9. The distribution is shown in Figure 1 (circles). Figure 2 shows a heat map of friend degree and encounter degree of users. Despite friend degree and encounter degree are correlated (Pearson product-moment correlation 0.3416, p-value < 2.2 · 10^{-16}), the similarity of the sets of the friends and encounters of an individual is low. Considering the 72,786 users with at least one friend and one encounter, the average Jaccard similarity of their encounter and friend sets is 0.01716, with only 9,527 of them with a value different than zero. Despite epidemic processes spreading on the friendship and on the encounter network evolve in a qualitatively similar way, the differences in local connectivity determined by the two definitions of edges result in very different sets of nodes predicted to be at risk.
Fig. 2. Heat map of friend degree and encounter degree of all users with at least one friend and one encounter (friend degree and encounter degree are limited to 200 in the plot).

For each $t \in T$, $U(t) = \{ u \in U : (u, b, t) \in R \text{ for some } b \in B \}$ is the set of users who wrote a review on day t. We refer to $U(t)$ as the active users on day t.

For each $t \in T$ and $u \in U(t)$, $E_u(t) = \{ v \in U(t), v \neq u : (u, b, t) \in R \text{ and } (v, b, t) \in R \text{ for some } b \in B \} \subseteq U$ is the set of encounters of user u on day t (i.e., users who visited at least one of the businesses visited by u). $E(t) = \bigcup_{u \in U} \{(u, v) : v \in E_u(t)\} \subseteq U \times U$ is the set of encounters on day t.

For each $t \in T$, let $N_E(t) = (U, E(t))$ be the network defined by the encounters on day t. Observe that the node set in the definition is U rather than $U(t)$. The encounter network is the sequence $\{N_E(t)\}_{t \in T}$. As connectedness is the key property in a spreading process, we consider the 133,038 users who had at least one encounter during T.

C. The static encounter network and the time-varying friendship network

To argue that our results are not driven by the static nature of the friendship network as opposed to the time-varying nature of the encounter network, we define a static version of the encounter network and a time-varying version of the friendship network and we will show that similar conclusions hold.
For each $t \in T$, $F(t) = \{(u, v) \in F : u, v \in U(t)\}$ is the set of friendship ties between active users on day t. Observe that friendship ties are not associated to temporal information (i.e., the time in which the edge formed is unknown). For each $t \in T$, let $N_F(t) = (U(t), F(t))$ be the friendship network between active users. Observe that the node set in the definition is U rather than $U(t)$.

The *friendship time-varying network* is the sequence $\{N_F(t)\}_{t \in T}$. We consider the 41,664 users who, during T, had at least an active friend on a day in which they were active.

Let $E_u = \bigcup_{t \in T} E_u(t) \subseteq U$ be the set of encounters of u during T, and $E = \bigcup_{t \in T} \bigcup_{u \in U(t)} \{(u, v) : v \in E(t)\} \subseteq U \times U$ be the set of encounters between users in U. The *static encounter network* is $N_E = (U, E)$. We restrict our attention to the giant component of the static encounter network, which includes 113,187 users (whereas the second largest component has 23 users).

III. Infection dynamics

To model the spread of an infectious disease, we consider a Susceptible-Infected (SI) process [3], in which nodes never recover after being infected. Here, we give a general definition of the process that applies to both the static and the time-varying networks defined above. Given a set of nodes \mathcal{V}, a set of edges $\mathcal{E} \subseteq \mathcal{V} \times \mathcal{V}$ and a set of time indices \mathcal{T}, let $\{N(t)\}_{t \in \mathcal{T}}$ be a sequence of networks, where $N(t) = (\mathcal{V}, \mathcal{E}(t))$ with $\mathcal{E}(t) \subseteq \mathcal{E}$. For a static network, $\mathcal{E}(t) = \mathcal{E}$ for all of $t \in \mathcal{T}$.

Let $I(t)$ denote the set of infected nodes at time t, of cardinality $I(t)$. The infection starts at time $t = 0$ from a set $I(0)$ of infected seeds.

Consider any $t > 0$. The infection spreads from the set of already infected nodes $I(t-1)$ as follows. For each non-infected node $v \in \mathcal{V} \setminus I(t-1)$, let $d_v(t) = |\{u \in I(t-1) : (u, v) \in \mathcal{E}(t)\}|$, that is, the number of neighbors of v at time t which are infected at time $t-1$. Let $B(t) = \{v \in \mathcal{V} \setminus I(t-1) : d_v(t) > 0\}$, that is, the set of susceptible nodes at time t. Each node $v \in B(t)$ gets infected with probability $\beta d_v(t)$, where $\beta \in [0, 1]$ is the rate of infection.

When $\beta = 1$ the infection process is deterministic and, at time t, all non-infected neighbors of the nodes infected by time $t-1$ become infected. For finite values of β, the infection spreads in a stochastic way.

For the time-varying networks defined above (i.e., the encounter network and the time-varying friendship network), $\mathcal{T} = T$. The infection will propagate for $|T|$ time steps, resulting in an infected population $I(|T|)$. For static networks (i.e., the friendship network and static encounter
network, $T = [0, \infty)$ and the infection propagates until $I(t) = \mathcal{V}$ (i.e., until the entire population is infected).

A. Infection time

Given a realization of the infection process, for each $\alpha \in [0, 1]$ let

$$\tau(\alpha) = \min\{t : I(t)/|\mathcal{V}| \geq \alpha\}.$$

$\tau(\alpha)$ is a random variable and represents the first time in which an α-fraction of the nodes \mathcal{V} are infected (once $I(0)$ is fixed, $\tau(\alpha)$ is a degenerate random variable for $\beta = 1$). Given a realization of the SI process on a time-varying network, let $\tau(\alpha) = \infty$ for $\alpha > I(|T|)/|\mathcal{V}|$.

We also consider the number, rather than the fraction, of infected nodes. Given a realization of the infection process, for each $M \in [0, |\mathcal{V}|]$, let

$$t(M) = \min\{t : I(t) \geq M\},$$

The random variable $t(M)$ denotes the first time in which at least M nodes are infected. Given a realization of the SI process on a time-varying network, let $t(M) = \infty$ for $M > I(|T|)$.

B. Seed selection

In a static network, seeds are chosen at random and without replacement. In a time-varying network, the infection can start propagating at the first time t in which there is an edge between an infected seed and a non-infected node, that is, at time

$$t_0(I(0)) = \min\{t : \exists (u, v) \in E(t) \text{ for some } u \in I(0), v \in \mathcal{V}\setminus I(0)\}.$$

As a remark, for $\beta < 1$, it is possible that no node is infected at time t_0. Seeds are selected uniformly at random and without replacement among all nodes $v \in \mathcal{V}$ such that $t_0(|\mathcal{V}|) \leq 500$, that is, nodes that have a neighbor in the time-varying network by time $t = 500$.

C. Detection time with sensors

In real scenarios, it might be infeasible to monitor all nodes in the network. Constraints of different nature (e.g., budget, physical, privacy) might limit the researchers to monitor a subset $S \subset \mathcal{V}$ of all nodes, referred to as sensors. At each time t, let $I_S(t) = I(t) \cap S$ be the set of
infected sensors, and $I_S(t)$ be its cardinality. Assuming as before that the network and the set of seeds are given, for each $\alpha \in [0, 1]$ let

$$\tau_{S}(\alpha) = \min\{t : I_S(t)/|S| \geq \alpha\}.$$

That is, $\tau_{S}(\alpha)$ represents the first time in which an α-fraction of the sensors S are infected. Given a realization of the SI process on a time-varying network, let $\tau_{S}(\alpha) = \infty$ for $\alpha > I_S(|T|)/|S|$.

We consider two types of sensor selection, random sensors and friend sensors, defined as follows. Let m be a fixed parameter. A set S of random sensors is obtained by selecting m nodes from \mathcal{V} uniformly at random and without replacement. A set S of friend sensors is obtained in two steps. First, S is initialized as the empty set, and a set S_0 of random nodes is obtained by selecting m users from \mathcal{V} uniformly at random and without replacement. Then, for each node $u \in S_0$, a friend $v \in \mathcal{V}$ is selected uniformly at random from F_u (i.e., from the set of friends of u) and added to S. We require each friend sensor to be in \mathcal{V} and to be friend of a node in S_0. We remark that, even for encounter networks, friend sensors are selected on the basis of friendship rather than encounter. We make this assumption because explicit relationships (such as friendship, family or professional ties) might be accessible or inferable in a real setting in which the researcher has to select a set of sensors. Observe that, in the case of friend sensors, the size of the resulting set S might be smaller than m.

Given the fact that, on average, people have fewer friends than their friends have (also known as the friendship paradox \[29\]), randomly sampled friends are more connected than randomly sampled individuals and are shown to provide earlier detection of phenomena spreading over complex networks \[21\], \[33\].

IV. FRIENDSHIP DISTANCE AND EPIDEMIC RISK

In this section we show that distance on the friendship network is correlated to epidemic risk. Given and infection initiated at a single seed and spreading on the encounter network, nodes at a shorter distance from the seed on the encounter network have a higher probability of becoming infected. In the rest of the section, we always consider infections spreading on the encounter network and distance defined on the friendship network.

Given nodes s and s' in the friendship network, let $d(s, s')$ denote their distance (i.e., the
length of the shortest path connecting them). Given node s and an integer $d > 0$, let

$$N_d(s) = \{ s : d(s, s') = d \}$$

be the set of nodes at distance d from s, and let $n_d(s)$ be its cardinality. $N_1(s)$ and $n_d(s)$ denote the set of neighbors and the degree of s, respectively.

Let i denote an infection process, and s_i the selected seed. Given an infection initiated at a seed s_i until time T, let $\mathcal{I}(s_i)$ be the set of infected nodes at time T. For each $d > 0$ let

$$\mathcal{I}_d(s_i) = \mathcal{I}(s_i) \cap N_d(s)$$

be the set of infected nodes that are at distance d from s_i on the encounter network. The infection rate of nodes at distance d from s_i is defined as

$$r_d(s_i) = \frac{|\mathcal{I}_d(s_i)|}{n_d(s)}.$$

The empirical average of $r_d(s_i)$ over S simulations is given by

$$\bar{r}_d = \frac{1}{S} \sum_{i=1}^{S} r_d(s_i),$$

and represents the risk of becoming infected if the seed is at distance d.

As the spreading of an infection process depends on the infection rate β, we write $\bar{r}_d(\beta)$ to compare infection processes with different infection rate. Given a node s in the encounter network, we recall that $t_0(\{s\})$ is the first time period in which s has an edge (that is, the smallest t such that $E_u(t) > 0$). As we consider infections spreading on the encounter network and distance on the friendship network, we consider seeds that are present in both networks. In each simulation, a single seed is selected uniformly at random between all nodes $s \in |U_F \cap U_E|$ such that $t_0(\{s\}) \leq 500$ (as infections on time-varying networks spread for a limited number of time steps, we require them to start early enough). For each $\beta \in \{0, 0.1, 0.25, 0.5\}$ we run 10,000 simulations. The empirical estimates of $\bar{r}_d(\beta)$ for $1 \leq d \leq 10$ are shown in Figure 3 and Table I.
TABLE I

Epidemic risk with respect to distance on the friendship network.

β	$\bar{r}_1(\beta)$	$\bar{r}_2(\beta)$	$\bar{r}_3(\beta)$	$\bar{r}_4(\beta)$	$\bar{r}_5(\beta)$	$\bar{r}_6(\beta)$	$\bar{r}_7(\beta)$	$\bar{r}_8(\beta)$	$\bar{r}_9(\beta)$	$\bar{r}_{10}(\beta)$
0.10	3.9 \cdot 10^{-3}	7.1 \cdot 10^{-4}	2.1 \cdot 10^{-4}	7.01 \cdot 10^{-6}	3.2 \cdot 10^{-6}	2.3 \cdot 10^{-6}	1.3 \cdot 10^{-6}	2.1 \cdot 10^{-6}	1.1 \cdot 10^{-6}	0
0.25	0.041	0.027	0.014	0.006	0.003	0.003	0.002	0.003	0.001	1.6 \cdot 10^{-4}
0.50	0.159	0.143	0.095	0.055	0.036	0.031	0.030	0.032	0.025	0.007
1.00	0.343	0.333	0.262	0.182	0.133	0.118	0.116	0.123	0.131	0.049

Fig. 3. Epidemic risk with respect to distance on the friendship network. Empirical estimates of $\bar{r}_d(\beta)$ for $\beta \in \{0.1, 0.25, 0.5, 1\}$ and $1 \leq d \leq 10$. For each value of the infection rate β, 10000 simulations are run, each initiated at a random seed.

V. THE LIMITS OF THE FRIENDSHIP NETWORK

In this section, we consider SI processes on the the (time-varying) encounter network $\{N_E(t)\}_{t \in T}$, the static version of the encounter network N_E and (static) friendship network N_F, initiated at single seeds (i.e., $I(0) = \{s\}$).
As mentioned above, we identify the friendship network and the static encounter network with their giant components. We refer to the corresponding sets of nodes as U_F, with cardinality $n_F = |U_F| = 168,923$ users, and $U_E^{(s)}$, and $n_E^{(s)} = |U_E^{(s)}| = 113,187$. Similarly, for the encounter network, we only consider users who had at least an encounter during the period of observation, that is, u such that $E_u(t) > 0$ for some t. We refer to the set of these users as $U_E^{(t)}$, and $n_E = |U_E^{(t)}| = 133,038$.

Our objective is to compare the infection processes on the three different networks at a microscopic level, with the goal of evaluating both the friendship network and the static encounter network as predictors of epidemic risk on the (time-varying) encounter network. In order to do that, we compare the sets of nodes that become infected on the three networks during independent infection processes starting at the same seed. We therefore consider infection seeds that are present in all networks. Given a node s in the encounter network, we recall that $t_0(\{s\})$ is the first time period in which s has an edge (that is, the smallest t such that $E_u(t) > 0$). In each simulation, a single seed is selected uniformly at random between all nodes $s \in U_F \cap U_E^{(s)} \cap U_E^{(t)}$ such that $t_0(\{s\}) \leq 500$ (as infections on time-varying networks spread for a limited number of time steps, we require them to start early enough).

By considering both certain infection processes ($\beta = 1$) and stochastic infection processes ($\beta < 1$), we characterize how predictions of epidemic risk are affected by the structural differences between the networks, but their time-varying or static nature, and by the randomness of the infection processes. To take into account the different edge density (and therefore the different speed of the infection process) on the encounter and the friendship network, we allow for different infection rates: β_F on the friendship network, $\beta_E^{(t)}$ on the encounter network, and $\beta_E^{(s)}$ on the static encounter network. In Section V-B, we consider the case of $\beta_F = \beta_E^{(t)} = \beta_E^{(s)} = 1$ (certain infection), and show that the friendship network provides less accurate prediction of epidemic risk than the static encounter network. In this case, given a seed, the differences between epidemic processes spreading on the three networks are solely determined by structural differences. Our analyses suggest that the limits of the friendship network in predicting epidemic risk are not only due to its static nature as opposed to the time-varying nature of the encounter network, but also to the topological differences arising from the different semantic of the edges.

In Section V-C, we set $\beta_E^{(t)} = \beta_E^{(s)} = 0.5$ and $\beta_F = 0.01$ (stochastic infection), and show that also in this case the friendship network provides less accurate prediction of epidemic risk than the
static encounter network. Our analyses show that structural differences between friendship and encounter networks introduce more unpredictability than the randomness of the infection process. Randomness introduces a certain amount of unpredictability in the spread of the infection, and two runs of the process on the same network starting from the same seed can result in different sets of infected nodes. However, we observe that the unpredictability within a given network is substantially lower than the unpredictability between the two different networks. Moreover, this unpredictability is not attributable only to the static nature of the friendship network as opposed to the time-varying nature of the encounter network, as the static version of the encounter network provides more accurate prediction of epidemic risk than the friendship network. That is, the limits of the friendship network in predicting epidemic risk are primarily due to the structural differences between the two networks.

A. Metrics

Fixed a seed s_i, let $I_{E_1}(t; s_i)$ and $I_{E_2}(t; s_i)$ denote the set of infected nodes at time t in two independent infection processes on the encounter network starting at s_i. $I_{E_1}(t; s_i)$ and $I_{E_2}(t; s_i)$ (resp. $I_{F_1}(t; s_i)$ and $I_{F_2}(t; s_i)$) are similarly defined by considering the static encounter (resp. friendship) network. Let $I_{E_1}(t; s_i), I_{E_2}(t; s_i), I_{E_1}(t; s_i), I_{E_2}(t; s_i), I_{F_1}(t; s_i), I_{F_2}(t; s_i)$ be their cardinality. For $j = 1, 2$, let

$$t_{E_j}(m; s_i) = \min\{t \in T : I_{E_j}(t; s_i) \geq m\}$$

$$t_{F_j}(m; s_i) = \min\{t \in T : I_{F_j}(t; s_i) \geq m\}$$

be the minimum time at which at least m nodes are infected in the corresponding process. $t_{E_j}(m; s_i)$ is undefined if m nodes never get infected in the corresponding process (on the encounter network), and similar for the other processes.

If $t_{E_j}(m; s_i)$ is defined, then the corresponding infected set is

$$I^*_{E_j}(m; s_i) = I_{E_j}(t_{E_j}(m; s_i)).$$

Instead, $t_{E_j}(m)$ and $t_{F_j}(m)$ are always defined on the static encounter network and on the friendship network (on which the infection process continues until the entire population is
infected), and the corresponding infected sets are
\[
\mathcal{I}_{E_j}^*(m; s_i) = \mathcal{I}_{E_j}^{(t)}(t_{E_j}(m; s_i)).
\]

\[
\mathcal{I}_{F_j}^*(m; s_i) = \mathcal{I}_F(t_F(m; s_i)).
\]

When the relevant values \(\mathcal{I}_{E_j}^*(m; s_i), \mathcal{I}_{E_j}^{*}(m; s_i) \) and \(\mathcal{I}_{F_k}^*(m; s_i) \) for \(j, k \in \{1, 2\} \) are defined, we define the following measures of Jaccard similarity,

\[
J_{E_j, E_k}^{(t)}(m; s_i) = \frac{|\mathcal{I}_{E_j}^{*}(m; s_i) \cap \mathcal{I}_{E_k}^{*}(m; s_i)|}{|\mathcal{I}_{E_j}^{*}(m; s_i) \cup \mathcal{I}_{E_k}^{*}(m; s_i)|},
\]

\[
J_{E_j, F_k}^{(t)}(m; s_i) = \frac{|\mathcal{I}_{E_j}^{*}(m; s_i) \cap \mathcal{I}_{F_k}^{*}(m; s_i)|}{|\mathcal{I}_{E_j}^{*}(m; s_i) \cup \mathcal{I}_{F_k}^{*}(m; s_i)|},
\]

\[
J_{E_j, F_k}^{(t)}(m; s_i) = \frac{|\mathcal{I}_{E_j}^{*}(m; s_i) \cap \mathcal{I}_{F_k}^{*}(m; s_i)|}{|\mathcal{I}_{E_j}^{*}(m; s_i) \cup \mathcal{I}_{F_k}^{*}(m; s_i)|}.
\]

\(J_{E_j, E_k}^{(t)}(m; s_i) \) and \(J_{E_j, E_k}^{(t)}(m; s_i) \) are the similarities between the infected sets (for a target \(m \)) in two infection processes initiated at the same seed but evolving on the two different networks. \(J_{E_j, E_k}^{(t)}(m; s_i) \) is the similarity between the infected sets (for a target \(m \)) in the two independent processes on the encounter network. In the case of \(\beta_E = 1 \), the process on the encounter network is deterministic and \(J_{E_j, E_k}^{(t)}(m; s_i) \) is not considered.

When the relevant values \(\mathcal{I}_{E_j}^{*}(m; s_i), \mathcal{I}_{E_j}^{*}(m; s_i) \) and \(\mathcal{I}_{F_k}^{*}(m; s_i) \) for \(j, k \in \{1, 2\} \) are defined, we
also define the following measures of precision,

\[
P_{E_i^0, E_j^0}(m; s_i) = \frac{|I^*_i (m; s_i) \cap I^*_j (m; s_i)|}{|I^*_i (m; s_i)|},
\]

\[
P_{E_j^0, F_k^0}(m; s_i) = \frac{|I^*_j (m; s_i) \cap I^*_k (m; s_i)|}{|I^*_j (m; s_i)|},
\]

\[
P_{E_i^0, E_k^0}(m; s_i) = \frac{|I^*_i (m; s_i) \cap I^*_k (m; s_i)|}{|I^*_i (m; s_i)|},
\]

\[
P_{E_j^0, E_k^0}(m; s_i) = \frac{|I^*_j (m; s_i) \cap I^*_k (m; s_i)|}{|I^*_j (m; s_i)|},
\]

\[
P_{F_j, E_k^0}(m; s_i) = \frac{|I^*_f (m; s_i) \cap I^*_k (m; s_i)|}{|I^*_f (m; s_i)|}.
\]

For target \(m \), \(P_{E_j^0, F_k^0}(m; s_i) \) is the fraction of nodes infected in the process with index \(j \) in the encounter network that are also infected in the process with index \(k \) in the encounter network (started at the same seed). The other quantities are similarly interpreted.

A comparison between \(J_{E_i^0, F_1^0}(m; s_i) \) and \(J_{E_i^0, E_j^0}(m; s_i) \) is not straightforward for the lack of an upper bound for \(J_{E_i^0, F_1^0}(m; s_i) \). There are \(n_I = 76,933 \) nodes in the intersection of the friendship and encounter network and \(n_U = 225,028 \) nodes in their union. Therefore, for large values of target \(m \), \(J_{E_i^0, F_1^0}(m; s_i) \) is upper bounded by \(n_I/n_U = 0.3419 \). A bound that is independent of \(s_i \) cannot be derived for general values of \(m \), for which \(J_{E_i^0, F_1^0}(m; s_i) \) is not constrained to have small values. However, \(J_{E_i^0, E_j^0}(m; s_i) \) can be as large as 1 for all values of \(m \). To take this into account, we also define a rescaled version of the Jaccard similarity,

\[
\tilde{J}_{E_i^0, F_1^0}(m; s_i) = \frac{J_{E_i^0, F_1^0}(m; s_i)}{\max_{s_i} J_{E_i^0, F_1^0}(m; s_i)},
\]

where \(J_{E_i^0, F_1^0}(m) = \max_{s_i} J_{E_i^0, F_1^0}(m; s_i) \) is the empirical upper bound for \(J_{E_i^0, F_1^0}(m; \cdot) \) (computed over all simulations). We similarly define rescaled versions of the other similarity measures, considering the unions and intersections of the relevant sets of nodes.

The same argument hold for the precision measures for the lack of a straightforward upper bound for \(P_{E_i^0, F_1^0}(m; s_i) \) and \(P_{F_1, E_i^0}(m; s_i) \). For large values of \(m \), \(P_{E_i^0, F_1^0}(m; s_i) \) and \(P_{F_1, E_i^0}(m; s_i) \) are
upper bounded by $n_I/n_E = 0.5782$ and $n_I/n_F = 0.4554$, respectively. Bounds that are independent of s_i cannot be derived for general values of m. However, $P_{E_t^0,F_1}^{(0)}(m; s_i)$ can be as large as 1 for all values of m. To take this consideration into account, we define rescaled version of the precision measures, for example,

$$\tilde{P}_{E_t^0,F_1}^{(0)}(m; s_i) = \frac{P_{E_t^0,F_1}^{(0)}(m; s_i)}{P_{E_t^0,F_1}^{U}(m)},$$

where $P_{E_t^0,F_1}^{U}(m)$ is an empirical upper bound obtained taking the maximum over all simulations. We similarly define rescaled versions of the other similarity measures, considering the intersections of the relevant sets of nodes.

B. Case 1: certain infection

We ran 5000 groups of simulations of the SI process with $\beta_F = \beta_{E_t^0} = \beta_{E_t^0} = 1$. For each group of simulations, a single seed is selected uniformly at random among all nodes $s \in U_F \cap U_{E_t}^i \cap U_{E_t}^{(0)}$ (present in all three networks) such that $t_0(s_i) \leq 500$ (that is, we consider nodes that have an encounter by time $t = 500$). For each choice of the seed, we separately run one infection process on each network. Therefore, each seed selection is associated to three simulations: one on the encounter network (E_t^0), one on the static encounter network (E_t^i), one on the friendship network (F_1). For target set size $m \in \{500, 1000, 2000, 5000, 10000, 20000\}$ and each of the 5000 seeds s_i, we consider the metrics above when they are defined. In particular, we consider the similarity metrics $J_{E_t^0,E_t^0}^{(0)}(m; s_i)$, $J_{E_t^0,F_1}^{(0)}(m; s_i)$, and the precision metrics $P_{E_t^0,E_t^0}^{(0)}(m; s_i)$, $P_{E_t^0,F_1}^{(0)}(m; s_i)$, $P_{E_t^1,E_t^1}^{(0)}(m; s_i)$, $P_{F_1,E_t^0}(m; s_i)$. That is, fixed a seed s_i, we compare the infection processes on the encounter network with those on each static network.

Figure 4 plots the measures $J_{E_t^0,F_1}^{(0)}(m; s_i)$ and $J_{E_t^0,E_t^1}^{(0)}(m; s_i)$ in the left and right panels respectively. Observations for a given value of m constitute a block on the x-axis (larger values of m correspond to x positions on the right) and are represented with the same color. For a fixed value of m, relative x positions are irrelevant. For a given metric and each value m, the black point represents the average of the metric over all observations such that the metric is defined, and the bars represent standard deviations.

Table II reports the averages of the measures $J_{E_t^0,F_1}^{(0)}(m; s_i)$ and $J_{E_t^0,E_t^1}^{(0)}(m; s_i)$, denoted by $\langle J_{E_t^0,F_1}^{(0)}(m) \rangle$ and $\langle J_{E_t^0,E_t^1}^{(0)}(m) \rangle$, together with their normalized versions $\langle \tilde{J}_{E_t^0,F_1}^{(0)}(m) \rangle$ and $\langle \tilde{J}_{E_t^0,E_t^1}^{(0)}(m) \rangle$ and their empirical upper bounds $J_{E_t^0,F_1}^{U}(m)$ and $J_{E_t^0,E_t^0}^{U}(m)$.

DRAFT
TABLE II

SINGLE SEED INFECTION ON THE ENCOUNTER NETWORK AND THE STATIC (ENCOUNTER AND FRIENDSHIP) NETWORKS. CERTAIN INFECTION - SIMILARITY MEASURES.

m	\(\langle J_{E_1^{(i)},F_1}(m) \rangle \)	\(\langle J_{E_1^{(i)},E_1^{(i)}}(m) \rangle \)	\(\langle J_{E_1^{(i)},F_1}(m) \rangle \)	\(\langle J_{E_1^{(i)},E_1^{(i)}}(m) \rangle \)	\(\langle J_{E_1^{(i)},F_1}(m) \rangle \)	\(\langle J_{E_1^{(i)},E_1^{(i)}}(m) \rangle \)
500	0.013	0.050	0.100	0.228	0.133	0.218
1000	0.020	0.062	0.221	0.361	0.091	0.170
2000	0.030	0.083	0.322	0.525	0.094	0.157
5000	0.052	0.128	0.506	0.641	0.103	0.200
10000	0.079	0.185	0.660	0.720	0.120	0.258
20000	0.119	0.273	0.764	0.779	0.157	0.354

For all values of \(m \), two-sample t-tests support the hypotheses that \(J_{E_1^{(i)},E_1^{(i)}}(m) \) has larger average than \(J_{E_1^{(i)},F_1}(m; s_i) \) (p-values < 2.2 \cdot 10^{-16}). For all values of \(m \), two-sample t-tests support the hypotheses that \(\bar{J}_{E_1^{(i)},E_1^{(i)}}(m) \) has larger average than \(\bar{J}_{E_1^{(i)},F_1}(m; s_i) \) (p-values = 0.0116 for \(m = 20000 \), p-values < 2.2 \cdot 10^{-16} for other values of \(m \)). That is, the similarity between the sets of infected nodes on the encounter network and on the static encounter network is larger than the similarity between the sets of infected nodes on the encounter network and on the friendship network.

Table III reports the averages of the precision measures \(P_{E_1^{(i)},F_1}(m) \) and \(P_{E_1^{(i)},E_1^{(i)}}(m) \), their empirical upper bounds, and the averages of the rescaled measures. Table IV reports the averages of the precision measures \(P_{F_1,E_1^{(i)}}(m) \) and \(P_{E_1^{(i)},E_1^{(i)}}(m) \), their empirical upper bounds, and the averages of the rescaled measures. For all values of \(m \), two-sample t-tests support the hypotheses that \(P_{E_1^{(i)},E_1^{(i)}}(m) \) has larger average than \(P_{E_1^{(i)},F_1}(m; s_i) \), and that \(\bar{P}_{E_1^{(i)},E_1^{(i)}}(m) \) has larger average than \(P_{F_1,E_1^{(i)}}(m; s_i) \) (p-values < 2.2 \cdot 10^{-16}). For all values of \(m \), two-sample t-tests support the hypotheses that \(\bar{P}_{E_1^{(i)},E_1^{(i)}}(m) \) has larger average than \(\bar{P}_{E_1^{(i)},F_1}(m; s_i) \), and that \(\bar{P}_{E_1^{(i)},E_1^{(i)}}(m) \) has larger average than \(\bar{P}_{F_1,E_1^{(i)}}(m; s_i) \) (p-values < 2.2 \cdot 10^{-16}). That is, infections on the encounter network are better approximated by infections on the static encounter network than by infection on the friendship network.
TABLE III

SINGLE SEED INFECTION ON THE ENCOUNTER NETWORK AND THE STATIC (ENCOUNTER AND FRIENDSHIP) NETWORKS. CERTAIN INFECTION -

PRECISION MEASURES.

m	$\langle P_{S_{1}}^{(0)}(m) \rangle$	$\langle P_{S_{1}}^{(0)}(m) \rangle$	$\langle P_{S_{1}}^{(0)}(m) \rangle$	$\langle P_{S_{1}}^{(0)}(m) \rangle$	$p_{U_{F_{1}}}^{(0)}(m)$	$p_{U_{E_{1}}}^{(0)}(m)$
500	0.177	0.298	0.388	0.594	0.766	
1000	0.211	0.340	0.435	0.654	0.781	
2000	0.259	0.392	0.478	0.648	0.821	
5000	0.345	0.506	0.647	0.684	0.875	
10000	0.405	0.583	0.647	0.688	0.902	
20000	0.446	0.668	0.714	0.686	0.937	

TABLE IV

SINGLE SEED INFECTION ON THE ENCOUNTER NETWORK AND THE STATIC (ENCOUNTER AND FRIENDSHIP) NETWORKS. CERTAIN INFECTION -

PRECISION MEASURES.

m	$\langle P_{E_{1}}^{(0)}(m) \rangle$	$\langle P_{E_{1}}^{(0)}(m) \rangle$	$\langle P_{E_{1}}^{(0)}(m) \rangle$	$\langle P_{E_{1}}^{(0)}(m) \rangle$	$p_{E_{1}}^{(0)}(m)$	$p_{E_{1}}^{(0)}(m)$
500	0.016	0.064	0.070	0.197	0.230	0.322
1000	0.025	0.078	0.180	0.289	0.137	0.268
2000	0.038	0.104	0.224	0.387	0.168	0.238
5000	0.064	0.159	0.382	0.508	0.168	0.314
10000	0.097	0.225	0.481	0.602	0.202	0.376
20000	0.147	0.327	0.585	0.677	0.252	0.487
Fig. 4. Single seed infection on encounter network and the static (encounter and friendship) networks – Certain infection – Similarity measures. The two panels show the metrics $J_{E,F}(t)$ and $J_{E,E}(s)$, for 5000 random choices of a single seeds, and different values of the target set size m. For each seed, one simulation on the friendship network, one simulation on the encounter network and one simulation on the static encounter network are run separately. Each panel considers, for each of the 5000 seeds, a pair of simulations on two different networks. On the x-axis, observations for a given value of m form a block with a constant color (within the block, the x position is irrelevant). We only consider pairs (m, s_i) for which the metrics are defined. For a given metric and each value m, the black point represents the average of the metric over all observations such that the metric is defined, and the bars represent standard deviations.
Fig. 5. **Single seed infection on encounter network and the static (encounter and friendship) networks – Certain infection – Precision measures.** The four panels show the metrics $P_E(t)$ (top-left), $P_F(s)$ (top-right), $P_{E,F}(t)$ (bottom-left) and $P_{E,F}(s)$ (bottom-right), for 5000 random choices of a single seeds, and different values of the target set size m. For each seed, one simulation on the friendship network, one simulation on the encounter network and one simulation on the static encounter network are run separately. Each panel considers, for each of the 5000 seeds, a pair of simulations on two different networks. On the x-axis, observations for a given value of m form a block with a constant color (within the block, the x position is irrelevant). We only consider pairs (m, s) for which the metrics are defined. For a given metric and each value m, the black point represents the average of the metric over all observations such that the metric is defined, and the bars represent standard deviations.
C. Case 2: stochastic infection

We ran 5000 groups of simulations of the SI process with $\beta_F = 0.01$ and $\beta_{E^{(0)}} = \beta_{E^{(s)}} = 0.5$. For each group of simulations, a single seed is selected uniformly at random among all nodes $s \in U_F \cap U_{E^{(t)}} \cap U_F^{(t)}$ (present in all three networks) such that $t_0(s_t) \leq 500$ (that is, we consider nodes that have an encounter by time $t = 500$). For each choice of the seed, we run two independent infection processes on each network. Therefore, each seed selection is associated to six simulations: one on the encounter network ($E_1^{(t)}, E_2^{(t)}$), one on the static encounter network ($E_1^{(s)}, E_1^{(s)}$), one on the friendship network (F_1, F_2). For target set size $m \in \{500, 1000, 2000, 5000, 10000, 20000\}$ and each of the 5000 seeds s_i, we consider the metrics above when they are defined. In particular, we consider the similarity metrics $J_{E_1^{(t)}, E_2^{(t)}}(m; s_i)$, $J_{E_1^{(s)}, E_1^{(s)}}(m; s_i)$, $J_{E_1^{(s)}, F_1}(m; s_i)$, and the precision metrics $P_{E_1^{(t)}, E_2^{(t)}}(m; s_i)$, $P_{E_1^{(s)}, E_1^{(s)}}(m; s_i)$, $P_{E_1^{(s)}, F_1}(m; s_i)$, $P_{E_1^{(t)}, F_1}(m; s_i)$, $P_{E_1^{(s)}, E_1^{(s)}}(m; s_i)$, $P_{F_1, E_1^{(s)}}(m; s_i)$. That is, fixed a seed s_i, we compare the two infection processes on the encounter network, and the infections on the encounter network with those on each static network.

Figure 6 plots the measures $J_{E_1^{(t)}, E_2^{(t)}}(m; s_i)$, $J_{E_1^{(s)}, E_1^{(s)}}(m; s_i)$ and $J_{E_1^{(s)}, F_1}(m; s_i)$ in the left, middle and right panels respectively. Observations for a given value of m constitute a block on the x-axis (larger values of m correspond to x positions on the right) and are represented with the same color. For a fixed value of m, relative x positions are irrelevant. For a given metric and each value m, the black point represents the average of the metric over all observations such that the metric is defined, and the bars represent standard deviations.

Table V reports the averages of the measures $J_{E_1^{(t)}, E_2^{(t)}}(m; s_i)$, $J_{E_1^{(s)}, E_1^{(s)}}(m; s_i)$ and $J_{E_1^{(s)}, F_1}(m; s_i)$ denoted by $\langle J_{E_1^{(t)}, E_2^{(t)}}(m) \rangle$, $\langle J_{E_1^{(s)}, E_1^{(s)}}(m) \rangle$ and $\langle J_{E_1^{(s)}, F_1}(m) \rangle$, together with their normalized versions $\langle \bar{J}_{E_1^{(t)}, E_2^{(t)}}(m) \rangle$, $\langle \bar{J}_{E_1^{(s)}, E_1^{(s)}}(m) \rangle$, $\langle \bar{J}_{E_1^{(s)}, F_1}(m) \rangle$ and their empirical upper bounds $U_{E_1^{(t)}, E_2^{(t)}}(m)$, $U_{E_1^{(s)}, E_1^{(s)}}(m)$ and $U_{E_1^{(s)}, F_1}(m)$.

For all values of m, two-sample t-tests support the hypotheses that $J_{E_1^{(t)}, E_2^{(t)}}(m)$ has larger average than $J_{E_1^{(s)}, E_1^{(s)}}(m)$ and $J_{E_1^{(s)}, F_1}(m; s_i)$, and that $J_{E_1^{(s)}, F_1}(m)$ has larger average than $J_{E_1^{(t)}, F_1}(m; s_i)$ (p-values $< 2.2 \cdot 10^{-16}$). The similarity of the infected sets on two independent runs of the infection process within the encounter network is larger than the similarities of the infected sets between different networks. In addition, the similarity between the sets of infected nodes on the encounter network and on the static encounter network is larger than the similarity between the sets of infected nodes on the encounter network and on the friendship network. For all values of m,
two-sample t-tests support the hypotheses that $\tilde{J}_{E^{(0)}_{1},E^{(0)}_{2}}(m)$ has smaller average than $\tilde{J}_{E^{(0)}_{1},E^{(0)}_{2}}(m)$ and $\tilde{J}_{E^{(0)}_{1},F_{1}}(m; s_{i})$ (p-values $< 2.2 \cdot 10^{-16}$). The hypotheses that $\tilde{J}_{E^{(0)}_{1},E^{(0)}_{2}}(m)$ has larger average than $\tilde{J}_{E^{(0)}_{1},F_{1}}(m; s_{i})$ is supported for $m \in \{1000, 2000, 5000\}$ (p-values < 0.0248) and the null hypothesis of equal mean cannot be rejected for the other values of m. These analyses support the idea that topological differences accentuate the unpredictability of epidemic risk using the static networks, particularly in the case of the friendship network.

Table VI reports the averages of the precision measures $P_{E^{(2)}_{1},F_{1}}(m), P_{E^{(0)}_{1},E^{(0)}_{2}}(m)$ and $P_{E^{(0)}_{1},E^{(0)}_{2}}(m)$, their empirical upper bounds, and the averages of the rescaled measures. Table VII reports the averages of the precision measures $P_{F_{1},E^{(0)}_{2}}(m), P_{E^{(0)}_{1},E^{(0)}_{2}}(m)$ and $P_{E^{(0)}_{1},E^{(0)}_{2}}(m)$, their empirical upper bounds, and the averages of the rescaled measures (note that $P_{E^{(2)}_{1},E^{(0)}_{2}}(m)$ and $P_{E^{(0)}_{1},E^{(0)}_{2}}(m)$ are practically the same quantity). For all values of m, two-sample t-tests support the hypotheses that $P_{E^{(0)}_{1},E^{(0)}_{2}}(m)$ has larger average than $P_{E^{(0)}_{1},E^{(0)}_{2}}(m), P_{E^{(0)}_{1},F_{1}}(m; s_{i}), P_{E^{(0)}_{1},E^{(0)}_{2}}(m), P_{E^{(0)}_{1},E^{(0)}_{2}}(m; s_{i})$, that $P_{E^{(0)}_{1},E^{(0)}_{2}}(m)$ has larger average than $P_{E^{(0)}_{1},F_{1}}(m; s_{i})$, and that $P_{E^{(0)}_{1},E^{(0)}_{2}}(m)$ has larger average than $P_{E^{(0)}_{1},F_{1}}(m; s_{i})$ (p-values $< 2.2 \cdot 10^{-16}$). For the rescaled measures, For all values of m, two-sample t-tests support the hypotheses that $\tilde{P}_{E^{(0)}_{1},E^{(0)}_{2}}(m)$ has smaller average than $\tilde{P}_{E^{(0)}_{1},E^{(0)}_{2}}(m), \tilde{P}_{E^{(0)}_{1},F_{1}}(m; s_{i}), \tilde{P}_{E^{(0)}_{1},E^{(0)}_{2}}(m), \tilde{P}_{E^{(0)}_{1},E^{(0)}_{2}}(m; s_{i})$ (p-values $< 2.2 \cdot 10^{-16}$), that $\tilde{P}_{E^{(0)}_{1},E^{(0)}_{2}}(m)$ has larger average than $\tilde{P}_{E^{(0)}_{1},F_{1}}(m; s_{i})$ (p-values < 0.00679), and, for $m \neq 10000$, that $\tilde{P}_{E^{(0)}_{1},E^{(0)}_{2}}(m)$ has larger average than $\tilde{P}_{E^{(0)}_{1},F_{1}}(m; s_{i})$ (p-values < 0.00679). For all values of m, two-sample t-tests support the hypotheses that $\tilde{P}_{E^{(0)}_{1},E^{(0)}_{2}}(m)$ has larger average than $\tilde{P}_{E^{(0)}_{1},F_{1}}(m; s_{i})$, and that $\tilde{P}_{E^{(0)}_{1},E^{(0)}_{2}}(m)$ has larger average than $\tilde{P}_{F_{1},E^{(0)}_{2}}(m; s_{i})(p-$values $< 5.8e \cdot 10^{-7}$). As above, these analyses support the idea that topological differences accentuate the unpredictability of epidemic risk using the static networks.

\(m \)	\(\langle J_{E^{(0)}_{1},E^{(0)}_{2}}(m) \rangle \)	\(\langle J_{E^{(0)}_{1},F_{1}}(m) \rangle \)	\(\langle J_{E^{(0)}_{2},E^{(0)}_{2}}(m) \rangle \)	\(\langle J_{E^{(0)}_{2},F_{1}}(m) \rangle \)	\(\langle J_{E^{(0)}_{1},E^{(0)}_{2}}(m) \rangle \)	\(\langle J_{E^{(0)}_{1},F_{1}}(m) \rangle \)
500	0.115	0.039	0.012	0.270	0.315	0.323
1000	0.159	0.056	0.019	0.325	0.561	0.454
2000	0.220	0.082	0.031	0.438	0.716	0.615
5000	0.316	0.129	0.056	0.571	0.776	0.744
10000	0.397	0.178	0.081	0.664	0.790	0.806
20000	0.466	0.249	0.110	0.788	0.835	0.830
TABLE VI
SINGLE SEED INFECTION ON THE ENCOUNTER NETWORK AND THE STATIC (ENCOUNTER AND FRIENDSHIP) NETWORKS. STOCHASTIC INFECTION - PRECISION MEASURES.

m	〈P_{E_1, E_2}^{i, o}(m)〉	〈P_{E_1, F_1}^{i, o}(m)〉	〈P_{E_1, F_1}^{i, o}(m)〉	〈P_{E_1, E_2}^{i, o}(m)〉	〈P_{E_1, E_2}^{i, o}(m)〉	〈P_{E_1, E_2}^{i, o}(m)〉
500	0.194	0.078	0.034	0.323	0.350	0.305
1000	0.257	0.112	0.055	0.391	0.591	0.407
2000	0.338	0.158	0.083	0.506	0.720	0.515
5000	0.456	0.235	0.129	0.641	0.782	0.637
10000	0.551	0.306	0.167	0.737	0.804	0.754
20000	0.631	0.402	0.209	0.849	0.861	0.810

TABLE VII
SINGLE SEED INFECTION ON THE ENCOUNTER NETWORK AND THE STATIC (ENCOUNTER AND FRIENDSHIP) NETWORKS. STOCHASTIC INFECTION - PRECISION MEASURES.

m	〈P_{E_1, E_2}^{i, o}(m)〉	〈P_{E_1, F_1}^{i, o}(m)〉	〈P_{E_1, F_1}^{i, o}(m)〉	〈P_{E_1, E_2}^{i, o}(m)〉	〈P_{E_1, E_2}^{i, o}(m)〉	〈P_{E_1, E_2}^{i, o}(m)〉
500	0.194	0.078	0.034	0.323	0.330	0.299
1000	0.257	0.112	0.055	0.392	0.572	0.417
2000	0.338	0.158	0.083	0.505	0.728	0.577
5000	0.456	0.235	0.129	0.640	0.777	0.706
10000	0.551	0.306	0.167	0.737	0.827	0.802
20000	0.631	0.402	0.209	0.849	0.869	0.833

particularly in the case of the friendship network

The intersection between the infected sets in the friendship network and the encounter network (considering infection started at the same seed) is much larger than the intersection of random sets, for each target set size (two-sample t-tests, p-values < 2.2 · 10^{-16}). Figure 8 shows the Jaccard similarity of the infected sets on the encounter and friendship networks (left, for the 5000 simulations considered above) and of random sets of the given target size sampled from the two networks (right, 5000 pairs of random sets for each target size). Table VIII shows the averages of the metrics J_{E_1, F_1}(m; s), P_{E_1, F_1}(m; s) and P_{F_1, E_1}(m; s) for the 5000 pairs of simulations and the averages of the corresponding metrics for the 5000 pairs of random sets.
TABLE VIII

Comparison with intersection of random sets. Stochastic infection - Similarity and precision measures.

m	$\langle J_{E_1 \times F_1}^{\text{in}}(m) \rangle$	$\langle J_{E_1 \times F_1}^{\text{rand}}(m) \rangle$	$\langle P_{E_1 \times F_1}^{\text{in}}(m) \rangle$	$\langle P_{E_1 \times F_1}^{\text{rand}}(m) \rangle$	$\langle P_{F_1 \times E_1}^{\text{in}}(m) \rangle$	$\langle P_{F_1 \times E_1}^{\text{rand}}(m) \rangle$
500	0.012	0.001	0.020	0.002	0.011	0.002
1000	0.019	0.002	0.031	0.003	0.017	0.003
2000	0.031	0.003	0.047	0.007	0.028	0.007
5000	0.056	0.009	0.071	0.017	0.050	0.017
10000	0.081	0.017	0.086	0.034	0.071	0.034
20000	0.110	0.035	0.092	0.069	0.084	0.069

Fig. 6. Single seed infection on encounter network and the static (encounter and friendship) networks – Stochastic infection – Similarity measures. The three panels show the metrics $J_{E_1 \times E_2}^{\text{in}}(m; s_i)$, $J_{E_1 \times E_2}^{\text{rand}}(m; s_i)$ and $J_{E_1 \times F_1}^{\text{in}}(m; s_i)$, for 5000 random choices of a single seeds, and different values of the target set size m. For each seed, one simulation on the friendship network, two simulations on the encounter network, two on the static encounter network, and two on the friendship network are run separately. Each panel considers, for each of the 5000 seeds, a pair of simulations on two different networks. On the x-axis, observations for a given value of m form a block with a constant color (within the block, the x position is irrelevant). We only consider pairs (m, s_i) for which the metrics are defined. For a given metric and each value m, the black point represents the average of the metric over all observations such that the metric is defined, and the bars represent standard deviations.
Fig. 7. **Single seed infection on encounter network and the static (encounter and friendship) networks – Stochastic infection – Precision measures.** The six panels show the metrics $P_{E_1,E_2}^{m}(m)$ (top-left), $P_{E_1,E_2}^{m,s}(m)$ (top-center), $P_{E_1}^{m}(m)$ (top-right), $P_{E_1}^{m,s}(m)$ (bottom-left), $P_{F_1}^{m,s}(m)$ (bottom-center), $P_{F_1}^{m,s}(m)$ (bottom-right), for 5000 random choices of a single seeds, and different values of the target set size m. For each seed, one simulation on the friendship network, two simulations on the encounter network, two on the static encounter network, and two on the friendship network are run separately. Each panel considers, for each of the 5000 seeds, a pair of simulations on two different networks. On the x-axis, observations for a given value of m form a block with a constant color (within the block, the x position is irrelevant). We only consider pairs (m, s_i) for which the metrics are defined. For a given metric and each value m, the black point represents the average of the metric over all observations such that the metric is defined, and the bars represent standard deviations.
Fig. 8. **Comparison with the intersection of random sets – Stochastic infection – Similarity measures.** The left panel shows the metrics \(J_{E,F}^{(m,s)} \), for 5000 random choices of a single seeds, and different values of the target set size \(m \). For each seed, one simulation on the friendship network and one on the encounter network are run independently. The right panel shows the same metric for pairs of random sets sampled from the two networks (5000 pairs for each target set size). On the \(x \)-axis, observations for a given value of \(m \) form a block with a constant color (within the block, the \(x \) position is irrelevant). For a given metric and each value \(m \), the black point represents the average of the metric over all observations, and the bars represent standard deviations.
VI. EPIDEMIC RISK: COMPARISON BETWEEN THE TIME-VARYING NETWORKS

To argue that our results are not driven by the static nature of the friendship network as opposed to the time-varying nature of the encounter network, in this section we compare the encounter network with the time-varying friendship network defined in Section II-C. In Section VII we compare the friendship network with the static encounter network defined in Section II-C. In both cases, the sets of individuals predicted to be at risk by friendship appear a poor approximation of those at risk in a process spreading according to physical encounter. As before, we consider seed nodes that are present in both the friendship and the encounter network, and we compare the sets of nodes that become infected in independent processes on the two different networks initiated at the same seed.

We ran 5000 groups of simulations of the SI process with $\beta = 0.5$. For each group of simulations, a single seed is selected at random among all nodes s_i such that $t_0(s_i) \leq 500$ in both the encounter and the time-varying friendship networks. For each choice of the seed, we separately run two infection processes on the encounter network and two infection processes on the time-varying friendship network. Therefore, each seed selection is associated to four simulations (referred to as E_1, E_2, F_1, F_2). For target set size $m \in \{500, 1000, 2000, 5000, 10000, 20000\}$ and each of the 5000 seeds s_i, we consider the similarity and precision metrics defined above.

Figure 9 plots the Jaccard similarity measures $J_{E_1,F_1}(m; s_i)$, $J_{E_1,E_2}(m; s_i)$, $J_{F_1,F_2}(m; s_i)$ in the top-left, top-right and bottom panels respectively. Observations for a given value of m constitute a block on the x-axis (larger values of m correspond to x positions on the right) and are represented with the same color. For a fixed value of m, relative x positions are irrelevant. For a given metric and each value m, the black point represents the average of the metric over all observations such that the metric is defined, and the bars represent standard deviations.

For all values of m, two-sample t-tests support the hypotheses that $J_{E_1,F_1}(m; s_i)$ has smaller average than $J_{E_1,E_2}(m; s_i)$ and $J_{F_1,F_2}(m; s_i)$, and that $J_{E_1,E_2}(m; s_i)$ has smaller average than $J_{F_1,F_2}(m; s_i)$ (p-values $< 2.2 \cdot 10^{-16}$). A comparison between $J_{E_1,F_1}(m; s_i)$, $J_{E_1,E_2}(m; s_i)$, and $J_{F_1,F_2}(m; s_i)$ is not straightforward for the lack of an upper bound for $J_{E_1,F_1}(m; s_i)$. There are $n_I = 31,735$ nodes in the intersection of the time-varying friendship and encounter network and $n_U = 142,967$ nodes in their union. Therefore, for large values of target m, $J_{E_1,F_1}(m; s_i)$ is upper bounded by $n_I/n_U = 0.2219$. A bound that is independent of s_i cannot be derived for general values of
TABLE IX
SINGLE SEED INFECTION ON THE TIME-VARYING NETWORKS. JACCARD SIMILARITY MEASURES: AVERAGE OF ORIGINAL MEASURES, AVERAGE OF RESCALED MEASURES.

m	$\langle J_{E_1,F_1}(m; s_i) \rangle$	$\langle J_{E_1,E_2}(m) \rangle$	$\langle J_{E_1,F_2}(m) \rangle$	$\langle J_{E_1,E_2}(m) \rangle$	$\langle J_{E_1,E_2}(m) \rangle$	$\langle J_{E_1,F_2}(m) \rangle$
500	0.3656	0.2597	0.5636	0.0403	0.1194	0.4432
1000	0.4177	0.3437	0.6526	0.0539	0.1655	0.5273
2000	0.4425	0.4504	0.7377	0.0715	0.2287	0.5882
5000	0.5449	0.5936	0.8390	0.1088	0.3270	0.6418
10000	0.6978	0.6813	0.91091	0.1571	0.4037	0.6829
20000	0.8765	0.7951	0.9668	0.19181	0.4695	0.7149

m, for which $J_{E_1,F_1}(m; s_i)$ is not constrained to have small values. However, $J_{E_1,E_2}(m; s_i)$ and $J_{F_1,F_2}(m; s_i)$ can be as large as 1 for all values of m. As before, we consider rescaled versions of the Jaccard similarity. Table IX reports the averages of the original and rescaled measures of Jaccard similarity. Two-sample t-tests support the hypothesis that $\bar{J}_{E_1,F_1}(m; s_i)$ has a larger average than $\bar{J}_{E_1,E_2}(m; s_i)$ for $m \in \{500, 1000, 5000, 10000, 20000\}$ (p-values smaller than 0.0078), whereas the null hypothesis of equal mean is not rejected for $m = 2000$. For all values of m, two-sample t-tests support the hypotheses that $\bar{J}_{E_1,F_1}(m; s_i)$ and $\bar{J}_{E_1,E_2}(m; s_i)$ have a smaller average than $\bar{J}_{F_1,F_2}(m; s_i)$ (p-values $< 2.2 \cdot 10^{-16}$). The rescaled versions of the similarity measures suggest that the differences in local connectivity between the two networks play a major role in the inability of friendship to predict individuals at risk given a process driven by physical encounter.

Figure 10 plots the precision measures $P_{E_1,F_1}(m; s_i)$, $P_{E_1,E_2}(m; s_i)$, $P_{F_1,F_2}(m; s_i)$ in the top-left, top-right and bottom panels respectively. Observations for a given value of m constitute a block on the x-axis (larger m correspond to x positions on the right) and are represented with the same color. For a fixed value of m, relative x positions are irrelevant. For a given metric and each value m, the black point represents the average of the metric over all observations such that the metric is defined, and the bars represent standard deviations.

Table X reports the averages of the original and rescaled precision metrics. For all values of m, two-sample t-tests support the hypotheses that both $P_{E_1,F_1}(m; s_i)$ and $P_{F_1,E_1}(m; s_i)$ have smaller average than both $P_{E_1,E_2}(m; s_i)$ and $P_{F_1,F_2}(m; s_i)$, and that $P_{E_1,E_2}(m; s_i)$ has smaller average than $P_{F_1,F_2}(m; s_i)$ (p-values $< 2.2 \cdot 10^{-16}$). For all vales of m, two-sample t-tests support the
TABLE X

Single seed infection on the time-varying networks. Precision measures: average of original and rescaled measures.

m	$\langle P_{E_1,F_1}(m) \rangle$	$\langle P_{F_1,E_1}(m) \rangle$	$\langle P_{E_1,F_2}(m) \rangle$	$\langle P_{F_1,E_2}(m) \rangle$	$\langle P_{E_2,F_1}(m) \rangle$	$\langle P_{F_2,E_1}(m) \rangle$
500	0.3770	0.3996	0.3149	0.6484	0.07945	0.07527
1000	0.4288	0.4610	0.4075	0.7339	0.1026	0.1010
2000	0.4760	0.4775	0.5187	0.8067	0.1329	0.1325
5000	0.5828	0.5840	0.6604	0.8837	0.1944	0.1945
10000	0.7315	0.7308	0.7490	0.9395	0.2687	0.2688
20000	0.8950	0.8951	0.853	0.9804	0.3213	0.3214

hypothesis that $\tilde{P}_{F_1,F_2}(m; s_i)$ has a larger average than all other precision measures. For $m \in \{500, 1000, 20000\}$, two-sample t-tests support the hypotheses that $\tilde{P}_{E_1,F_1}(m; s_i)$ and $\tilde{P}_{F_1,E_1}(m; s_i)$ have larger average than $\tilde{P}_{E_1,E_2}(m; s_i)$ (all p-values < 0.001). For $m \in \{500, 1000, 20000\}$, two-sample t-tests support the hypotheses that $\tilde{P}_{E_1,F_1}(m; s_i)$ and $\tilde{P}_{F_1,E_1}(m; s_i)$ have smaller average than $\tilde{P}_{E_1,E_2}(m; s_i)$ (all p-values < 0.002). The null hypothesis that $\tilde{P}_{E_1,F_1}(m; s_i)$ and $\tilde{P}_{F_1,E_1}(m; s_i)$ have equal average is rejected only for $m \in \{500, 1000\}$, for which the former has larger average (p-values $< 1e - 10$). The rescaled versions of the precision measures stress the importance of the local connectivity properties between the two networks.
Fig. 9. **Single seed infection on time-varying networks – Jaccard similarity.** The three panels show the metrics $J_{E_1,E_2}(m; s_i)$ (top-left), $J_{E_1,E_3}(m; s_i)$ (top-right) and $J_{F_1,F_2}(m; s_i)$ (bottom), for 5000 random choices of a single seed, and different values of the target set size m. For each seed, two simulations on the time-varying friendship network and two simulations on the encounter network are run separately. The top-left panel considers, for each of the 5000 seeds, a pair of simulations on the two different networks. The top-right panel considers the 5000 pairs of simulations ran on the encounter network. The bottom panel considers the 5000 pairs of simulations ran on the time-varying friendship network. On the x-axis, observations for a given value of m form a block with a constant color (within the block, the x position is irrelevant). We only consider pairs (m, s_i) for which the metrics are defined. For a given metric and each value m, the black point represents the average of the metric over all observations such that the metric is defined, and the bars represent standard deviations.
Fig. 10. **Single seed infection on time-varying networks – Jaccard similarity.** The three panels show the metrics $P_{E_1,F_1}(m; s_i)$ (top-left), $P_{E_1,E_2}(m; s_i)$ (top-right) and $P_{F_1,F_2}(m; s_i)$ (bottom), for 5000 random choices of a single seeds, and different values of the target set size m. For each seed, two simulations on the time-varying friendship network and two simulations on the encounter network are run separately. The top-left panel considers, for each of the 5000 seeds, a pair of simulations on the two different networks. The top-right panel considers the 5000 pairs of simulations ran on the encounter network. The bottom panel considers the 5000 pairs of simulations ran on the time-varying friendship network. On the x-axis, observations for a given value of m form a block with a constant color (within the block, the x position is irrelevant). We only consider pairs m of s_i for which the metrics are defined. For a given metric and each value m, the black point represents the average of the metric over all observations such that the metric is defined, and the bars represent standard deviations.
In this section, we compare the friendship network with the static encounter network defined in Section II-C, in order to argue that our results are not driven by the static nature of the friendship network as opposed to the time-varying nature of the encounter network. Also in this case, by comparing several independent runs of the infection process starting at each seed, we will observe that the unpredictability within a given network is substantially lower than the unpredictability between the two different networks.

We ran 10,000 groups of simulations of the SI process with $\beta = 0.01$ (stochastic infection). For each group of simulations, a single seed is selected at random among all nodes s_i in the intersection of the two networks ($u_I = |U_E \cap U_F| = 71,211$). For each choice of the seed, we separately run two infection processes on the static encounter network and two infection processes on the friendship network (denoted respectively by E_1, E_2, F_1, F_2). For target set size $m \in \{500, 1000, 2000, 5000, 10000, 20000\}$ and each of the 10000 seeds s_i, we consider the similarity and precision metrics defined above. Observe that, as all nodes eventually become infected in a SI process on a static network, these quantities are defined for all choices of s_i and $m \leq n$ (where n is the number of nodes in the network).

Figure 11 plots the Jaccard similarity measures $J_{E_1,F_1}(m; s_i)$, $J_{E_1,E_2}(m; s_i)$, $J_{F_1,F_2}(m; s_i)$ in the top-left, top-right and bottom panels respectively. Figure 12 plots the precision measures $P_{E_1,F_1}(m; s_i)$, $P_{E_1,E_2}(m; s_i)$, $P_{F_1,F_2}(m; s_i)$ in the top-left, top-right and bottom panels respectively. Observations for a given value of m constitute a block on the x-axis (larger m corresponds to x positions on the right) and are represented with the same color. For a fixed value of m, relative x positions are irrelevant. For a given metric and each value m, the black point represents the average of the metric over all the observations and bars represent standard deviations.

$J_{E_1,F_1}(m; s_i)$ has smaller average than $J_{E_1,E_2}(m; s_i)$, $J_{F_1,F_2}(m; s_i)$, and for $m > 500$, $J_{E_1,E_2}(m; s_i)$ has larger average than $J_{F_1,F_2}(m; s_i)$ (two-paired t-tests, p-values$< 2.2 \cdot 10^{-16}$). Similarly, $P_{E_1,F_1}(m; s_i)$ and $P_{F_1,E_1}(m; s_i)$ have smaller average than $P_{E_1,E_2}(m; s_i)$, $P_{F_1,F_2}(m; s_i)$, and for $J_{E_1,E_2}(m; s_i)$ has smaller average than $J_{F_1,F_2}(m; s_i)$ (two-paired t-tests, p-values$< 2.2 \cdot 10^{-16}$).

As before, it is not straightforward to rigorously compare the quantities for all values of m. The metrics $J_{E_1,E_2}(m; s_i)$, $J_{F_1,F_2}(m; s_i)$, $P_{E_1,E_2}(m; s_i)$ and $P_{F_1,F_2}(m; s_i)$ can be as large as 1 for all values of m. Instead, for large m, $J_{E_1,F_1}(m; s_i)$ is upper bounded by $u_I/u_U = 0.338$, $P_{E_1,F_1}(m; s_i)$
TABLE XI

Single seed infection on the static networks. Jaccard similarity measures: empirical upper bounds, average of original measures, average of the rescaled measures.

m	$\langle J_{E_1,F_1}(m) \rangle$	$\langle J_{E_1,E_2}(m) \rangle$	$\langle J_{F_1,F_2}(m) \rangle$	$\langle J_{E_1,F_1}(m) \rangle$	$\langle J_{E_1,E_2}(m) \rangle$	$\langle J_{F_1,F_2}(m) \rangle$
500	0.28350	0.3004	0.4029	0.01296	0.04653	0.05597
1000	0.4047	0.5387	0.5175	0.02113	0.06772	0.1005
2000	0.5531	0.7045	0.6509	0.03415	0.09841	0.1633
5000	0.7493	0.8779	0.8234	0.06123	0.1550	0.2519
10000	0.8521	0.9310	0.9116	0.09064	0.2120	0.30944
20000	0.9290	0.9568	0.9527	0.1286	0.29213	0.36542

is upper bounded by $u_I/u_E = 0.629$, and $P_{F_i,E_i}(m; s_i)$ is upper bounded by $u_I/u_F = 0.422$. For general values of m, tight upper bounds for these quantities depend on s_i and therefore on the network structure. Therefore, we consider the rescaled version of the similarity and precision measures defined above.

Table XI reports the averages of the original and rescaled Jaccard similarity measures. Table XII reports the averages of the original and rescaled precision measures. For all values of m, $\bar{J}_{E_1,F_1}(m; s_i)$ has smaller average than $\bar{J}_{E_1,E_2}(m; s_i)$ and $\bar{J}_{F_1,F_2}(m; s_i)$, and for $m > 500$, $\bar{J}_{E_1,E_2}(m; s_i)$ has larger average than $\bar{J}_{F_1,F_2}(m; s_i)$ (two-sample t-tests, p-values $< 2.2 \cdot 10^{-16}$). For all values of m, $\bar{P}_{E_1,F_1}(m; s_i)$ has smaller average than $\bar{P}_{E_1,E_2}(m; s_i)$ and $\bar{P}_{F_1,F_2}(m; s_i)$, whereas $\bar{P}_{F_1,E_1}(m; s_i)$ has smaller average than $\bar{P}_{F_1,F_2}(m; s_i)$ for $m \in \{500, 1000, 2000, 5000\}$ and larger for $m \in \{10000, 20000\}$ (two-sample t-tests, p-values $< 2.2 \cdot 10^{-16}$). The rescaled measures suggest that the network structure has a large impact on the spread of the infection between the friendship and static encounter networks.
Fig. 11. **Single seed infection on the static networks – Jaccard similarity.** The three panels show the metrics $J_{E_1,F_1}(m; s_i)$ (top-left), $J_{E_1,E_2}(m; s_i)$ (top-right) and $J_{F_1,F_2}(m; s_i)$ (bottom), for 10,000 random choices of a single seed, and different values of the target set size m. For each seed, two simulations on the friendship network and two simulations on the static encounter network are run separately. The top-left panel considers, for each of the 10,000 seeds, a pair of simulations on the two networks. The top-right panel considers the 10,000 pairs of simulations ran on the static encounter network. The bottom panel considers the 10,000 pairs of simulations ran on the friendship network. On the x-axis, observations for a given value of m form a block with a constant color (within the block, the x position is irrelevant). For a given metric and each value m, the black point represents the average of the metric over all the observations and bars represent standard deviations.
Fig. 12. **Single seed infection on the static networks – precision.** The three panels show the metrics $P_{E_1,F_1}(m; s_i)$ (top-left), $P_{E_1,e_1}(m; s_i)$ (top-right) and $P_{F_1,F_2}(m; s_i)$ (bottom), for 10,000 random choices of a single seeds, and different values of the target set size m. For each seed, two simulations on the friendship network and two simulations on the static encounter network are run separately. The top-left panel considers, for each of the 10,000 seeds, a pair of simulations on the two networks. The top-right panel considers the 10,000 pairs of simulations ran on the static encounter network. The bottom panel considers the 10,000 pairs of simulations ran on the friendship network. On the x-axis, observations for a given value of m form a block with a constant color (within the block, the x position is irrelevant). For a given metric and each value m, the black point represents the average of the metric over all the observations and bars represent standard deviations.
VIII. Overcoming the limits of the friendship networks: correction

In the previous sections, in order to evaluate the friendship network as a predictor of epidemic risk on the encounter network, we initiated epidemic processes at a seed present on both networks and let them spread independently on the two networks. This corresponds to a case in which the researcher has access neither to the contacts between individuals nor to the infected population (on the encounter network) and relies exclusively on the information provided by the friendship network. In this section, we consider a less extreme scenario in which the researcher has still knowledge of the friendship network, but, in addition, is able to monitor the infected population (on the encounter network) at given times. In such a situation, the infection propagation can be predicted according to the friendship network as long as information about the real infected population is unavailable. When such information becomes available, the estimated set of infected individuals (on the friendship network) can be updated to the real set of infected individuals (on the encounter network). As we show below, the ability to monitor the infection over time and correct the set of infected individuals overcomes the limits of the friendship networks in predicting epidemic risk highlighted in the previous sections. In particular, we compare the sets of infected individuals on the two networks right before each correction and show that a good level of prediction accuracy is established early in the process and maintained over time. Despite the level of accuracy decreases with larger window size, even relatively infrequent correction overcomes the limits of the friendship networks in predicting epidemic risk.

We proceed as follow. Given a seed s present in both the encounter and the friendship network, we consider two SI processes spreading on the two networks. Let $I^E(t)$ and $I^F(t)$

m	$\langle P_{E_1,F_1}(m) \rangle$	$\langle P_{F_1,E_1}(m) \rangle$	$\langle P_{E_1,F_2}(m) \rangle$	$\langle P_{F_1,F_2}(m) \rangle$	$\langle P_{E_1,E_1}(m) \rangle$	$\langle P_{F_1,F_1}(m) \rangle$
500	0.2672	0.2500	0.3122	0.40680	0.03462	0.02112581
1000	0.3592	0.3707	0.5596	0.4717	0.05561	0.03419
2000	0.5034	0.4567	0.7011	0.5584	0.08577	0.05527
5000	0.6867	0.6927	0.8838	0.7317	0.1362	0.1014
10000	0.7889	0.8461	0.9167	0.8330	0.1811	0.1543
20000	0.8853	0.9207	0.9553	0.9083	0.2371	0.2198
be the sets of infected nodes on the two networks at time \(t \), and let \(I^E(t) \) and \(I^F(t) \) be their cardinality. We have that \(I^E(0) = I^F(0) = \{ s \} \). We assume that every \(W \) time steps the set \(I^E(t) \) is available and therefore \(I^F(t) \) can be corrected accordingly. That is, we consider a “corrected” version of the infection process on the friendship network, whose set of infected nodes satisfies the relationship

\[
I^F(kW) = I^E(kW), \text{ for each } k > 0.
\]

Between time \(kW \) and \((k + 1)W - 1 \) the set \(I^F(t) \) grows according to the ties of the friendship network.

We are interested in comparing the sets \(I^E(t) \) and \(I^F(t) \) at times \(t = kW - 1 \), that is, right before each correction. Let

\[
J_{E,F}(k; s, W) = \frac{I^E(kW - 1) \cap I^F(kW - 1)}{I^E(kW - 1) \cup I^F(kW - 1)},
\]

be the Jaccard similarity of the infected sets on the two networks right before a correction. Similarly, let

\[
P_{F,E}(k; s, W) = \frac{I^E(kW - 1) \cap I^F(kW - 1)}{I^F(kW - 1)},
\]

\[
P_{E,F}(k; s, W) = \frac{I^F(kW - 1) \cap I^E(kW - 1)}{I^E(kW - 1)}.
\]

\(P_{F,E}(k; s, W) \) represents the fraction of infected nodes before a correction on the friendship network that are also infected in the encounter network (precision). \(P_{E,F}(k; s, W) \) represents the fraction of infected nodes in the encounter network which were correctly predicted to be infected before a correction on the friendship network (recall). In addition we consider the relative size of the infected sets on the two networks,

\[
r_{E,F}(k; s, W) = \frac{I^F(kW - 1)}{I^E(kW - 1)},
\]

which compares the two infection from a more coarse point of view. All quantities above depend on the window size \(W \).

For window size \(W \in \{10, 20, 50\} \), we ran 6000 groups of simulations of the SI process with \(\beta_F = 0.0001 \) on the friendship network and \(\beta_E = 0.5 \) on the encounter network (we allow for different infection rates on the two network in order to compensate for their different degree distributions). For each group of simulations, a single seed is selected uniformly at random among all nodes \(s \in U_F \cap U_E \) (present in both networks) such that \(t_0(s) \leq 900 \) (that is, we
consider nodes that have an encounter by time \(t = 900 \). For each choice of the seed, we run one infection process on the encounter network for \(T = 500 \) time steps (that is, from \(t = t_0(s_i) \) to \(t = t_0(s_i) + 500 \)). On the friendship network, the infection process is initiated at the same seed \(s_i \) and spreads according to the ties of the friendship network for \(T = 500 \) time steps (at each time \(t = kW \), it is set \(I^F(kW) = I^E(kW) \)).

Figures 13 to 16 show the average of the defined metrics over all simulations as a function of time and for all choices of \(W \). Note that, as each infection process is run for \(T = 500 \) time steps, the number of corrections (and therefore the number of points in the plots) depends on the choice of \(W \) and equals \(T/W \). The plots show that the ability to periodically observe the infected sets on the encounter network (that is, to correct the set \(I^E(kW) \) at each time window) overcomes the limitations of the friendship network in predicting epidemic risk that was highlighted in the previous sections. Interestingly, good accuracy of the prediction (through the friendship network) emerges early in the process (after the first correction) and is maintained over time with relatively few observations (with only slight degrade or improvement over time). The accuracy decreases with larger window size. However, even the largest considered window size (\(W = 50 \)) guarantees a good prediction accuracy that slowly increases over time. The particular value of the obtained results might partially depend on the choice of the infection rates on the two networks.

In order to compare window sizes \(W = 10 \) and \(W = 20 \), we consider all time steps corresponding to a correction for both choices of \(W \) and ignore the first correction (i.e., we consider times \(20k \) for \(k > 1 \)). The trend of the average of the Jaccard similarity \(J_{E,F}(k; s, W) \) with respect to time \(t \) and window size \(W \) is captured by a linear relationship. OLS with interaction between \(t \) and \(W \) shows that the Jaccard similarity is lower in the case of \(W = 20 \) then \(W = 10 \) (\(-0.0623, p\text{-value}< 2 \cdot 10^{-16} \) and slowly decreases over time (\(-1.126 \cdot 10^{-3} \) every 20 time steps for \(W = 10 \), p-value= \(1.13 \cdot 10^{-15}, -3.73 \cdot 10^{-3} \) every 20 time steps for \(W = 20 \), p-value= \(7.77 \cdot 10^{-7} \)). Similarly, the trend of the average of the precision measure \(P_{E,F}(k; s, W) \) with respect to time \(t \) and window size \(W \) is captured by a linear relationship. OLS with interaction between \(t \) and \(W \) shows that the Jaccard similarity is lower in the case of \(W = 20 \) then \(W = 10 \) (\(-0.0478, p\text{-value}< 2 \cdot 10^{-16} \) and slowly decreases over time (\(-1.117 \cdot 10^{-3} \) every 20 time steps for \(W = 10 \), p-value< \(2 \cdot 10^{-16}, -3.04 \cdot 10^{-4} \) every 20 time steps for \(W = 20 \), p-value= \(2.67 \cdot 10^{-9} \)). The average of the precision measure \(P_{F,E}(k; s, W) \) is lower in the case of \(W = 20 \) (\(-0.0308, p\text{-value}< 2 \cdot 10^{-16} \) and present not statistically significant trend with respect to the time \(t \). The trend of the average of size ratio
Fig. 13. Jaccard similarity of infected sets before corrections. The x-axis shows time. The y-axis shows the measure $J_{E,F}(k; s, W)$ averaged over 6000 pairs of simulations (each associated to an independent choice of the seed). Subplots consider different window sizes W.

$r_{E,F}(k; s, W)$ with respect to time t and window size W is captured by a linear relationship. OLS with interaction between t and W shows that the ratio is lower in the case of $W = 20$ ($-7.66 \cdot 10^{-3}$, p-value $= 8.4 \cdot 10^{-4}$) and slowly decreases over time ($-1.45 \cdot 10^{-3}$ every 20 time steps for $W = 10$, p-value $< 2 \cdot 10^{-16}$, $-8.65 \cdot 10^{-4}$ every 20 time steps for $W = 20$, p-value $= 1.52 \cdot 10^{-4}$).

In order to compare all window sizes $W \in \{10, 20, 50\}$, we consider all time steps corresponding to a correction for all choices of W and ignore the first correction (i.e., we consider times $100k$ for $1 \leq k \leq 5$). The trends of the average of all defined measures with respect to time t and window size W are captured by a linear relationships. In the case of Jaccard similarity $J_{E,F}(k; s, W)$, the metric is lower in the case of $W = 50$ (-0.188 with respect to $W = 10$, p-value $= 2.74 \cdot 10^{-10}$), value for which it increases over time ($3.29 \cdot 10^{-3}$ every 100 time steps, p-value $= 1.27 \cdot 10^{-3}$). Similar trends as the ones above are found in the case of the precision measures $P_{E,F}(k; s, W)$ and $P_{F,E}(k; s, W)$. In the case of the relative size of infected sets $r_{E,F}(k; s, W)$, the largest window size results in a more accurate prediction of the size of the infected set over time ($+0.049$ with respect to $W = 10$, p-value $= 2.55 \cdot 10^{-5}$).
Fig. 14. Fraction of infected nodes in the encounter network that are predicted to be infected in the friendship network, before corrections. The x-axis shows time. The y-axis shows the measure $P_{E,F}(k; s, W)$ averaged over 6000 pairs of simulations (each associated to an independent choice of the seed). Subplots consider different window sizes W.

Fig. 15. Fraction of predicted infected nodes on the friendship network that are infected in the encounter network, before corrections. The x-axis shows time. The y-axis shows the measure $P_{F,E}(k; s, W)$ averaged over 6000 pairs of simulations (each associated to an independent choice of the seed). Subplots consider different window sizes W.
Fig. 16. Relative size of infected sets before corrections. The x-axis shows time. The y-axis shows the measure $r_{E,F}(k; s, W)$ averaged over 6000 pairs of simulations (each associated to an independent choice of the seed). Subplots consider different window sizes W.
IX. Containment of epidemic outbreaks using the friendship network

In this section, we show that the friendship network encodes useful information for the containment of epidemic outbreaks. We consider a scenario in which a fixed budget is available for immunization, corresponding to the number of individuals that can be made immune to the infection. This budget might represent the total amount of vaccine that is available. Immune individuals do not get infected and do not infect other individuals (i.e., according to our framework, they are removed from the network). Our goal is to spend the budget in an effective way, in order to contain the spread of the disease. A simple, straightforward immunization strategy is to select individuals at random (random immunization). This method is unlikely to target the most connected individuals and can result in inefficient allocation of the immunization budget.

We propose the strategy of selecting random friends of randomly chosen individuals (friend immunization). Such strategy is motivated by the “friendship paradox”, the network property for which the average friend of an individual is more connected than the average individual \[29\], and has been proposed to predict the peak of an epidemic outbreak \[21\] and the spread of information online \[33\]. Instead of selecting individuals for immunization at random, the method first selects random individuals and then gives immunization to a random friend of each selected individual, according to the friendship network. The method is simple, as its implementation only requires individuals to name a friend, and is able to target individuals who are more connected on average. In addition, we consider another benchmark, in which immunization is given to encounters of random individuals (encounter immunization). This latter method is similar to the one just described (but selects individuals for immunization according to the static version of the encounter network rather than the friendship network) but requires knowledge of the encounters between individuals, that might be unavailable for the reasons discussed in the introduction. However, given its potential to identify individuals who have a large number of encounters, it represents an upper bound for the capability of outbreak containment. We do not consider more sophisticated methods that require the computation of quantities such as nodes degree or centrality.

We consider infection processes spreading on the encounter network and an immunization budget \(b\) representing the percentage of individuals who can receive immunization. We refer to \(b\) as the immunization rate. The sets of immune individuals depend on the immunization
method and on the randomness of the selection of individuals, friends and encounters. Let $X_R(b)$, $X_F(b)$, $X_E(b)$ be respectively three immunization sets obtained with the three described methods (random, friend and encounter immunization). In the implementation, we guarantee that the three sets have the same cardinality. Obtaining sets of the same cardinality might require sampling more individuals in the case of friend and encounter immunization than random immunization (e.g., the same friend might be named multiple times). However, we don’t consider sampling as a cost and we focus our attention on the immunization rate.

We consider a wide range of immunization rates, $b \in \{1\%, 2\%, 5\%, 10\%, 15\%\}$ and compare them to the case of no immunization ($b = 0\%$). For each value of b, we run 5000 groups of three simulations. For each group of simulations, a seed s_i such that $t_0(s_i) \leq 500$ is selected uniformly at random (that is, we consider nodes that have an encounter by time $t = 500$). Then, three immunization sets $X_R(b; s_i)$, $X_F(b; s_i)$, $X_E(b; s_i)$ are built according to the three methods (with the constraint that the seed s_i cannot receive immunization). Then, three independent SI processes are initiated at s_i and spread on the encounter network. In the first process (denoted by R), individuals in $X_R(b; s_i)$ are immune to the infection. In the second process (denoted by F), individuals in $X_F(b; s_i)$ are immune to the infection. In the third process (denoted by E), individuals in $X_E(b; s_i)$ are immune to the infection. Let $r_R(b; s_i)$, $r_F(b; s_i)$, $r_E(b; s_i)$ be the final infection rates of the three processes, respectively.

Figure 17 shows the fraction of infections with final infection rate above 0.1% as a function of the immunization rate b and for all considered immunization methods (random immunization: red squares, encounter immunization: blue circles, friend immunization: green triangles). We consider a 0.1% target for the final infection rate as an indicator that the infection did not die out. In the case of no immunization ($b = 0\%$), we observe that only 60% of infections hit the 0.1% target. The remaining 40% correspond to infections that die out in their early stage. In the case of random immunization, the fraction of infections that die out is not very sensible to the immunization rate. In both cases of friend immunization and encounter immunization, increasing the immunization rate substantially increases the fraction of infections that die out, suggesting that both methods are effective at preventing outbreaks. The effect is stronger in the case of encounter immunization. However, friend immunization provides a comparatively...
similar effect to encounter immunization, and a substantial improvement with respect to random immunization. The trend in Figure 17 is captured by a linear model that considers the interaction between immunization type and immunization rate. In the case of random immunization, each 1% increase of the immunization rate determines a 0.5% decrease in the fraction of infections above the 0.1% target (p-value= 0.0299). In the case of friend immunization, each 1% increase of the immunization rate determines an additional 3.5% (with respect to random immunization) decrease in the fraction of infections above the 0.1% target (p-value= 4.03 \cdot 10^8). In the case of encounter immunization, each 1% increase of the immunization rate determines an additional 2.36% (with respect to random immunization) decrease in the fraction of infections above the 0.1% target (p-value= 2.77 \cdot 10^6).

Figure 18 shows the average final infection rate among all infections that do not die out (according to the 0.1% target considered above) as a function of the infection start time \(t_0(s_i) \) (i.e., the first time in which the seed is connected in the encounter network, grouped into bins of width equal to 50 time steps), for all immunization methods (random immunization: red squares, encounter immunization: blue circles, friend immunization: green triangles) and immunization rates (subplots). For each value of the immunization rate \(b \), friend immunization provides a substantial reduction of the average final infection rate with respect to random immunization. Encounter immunization results in the lowest infection rates. To analyze the trends in Figure 18, we fit separate models to each subset of simulations with a given immunization rate \(b \), as each \(b \) results in a different number of infections above the 0.1% target (see Figure 17). For example, in the case of \(b = 1\% \), friend immunization results in an average final infection rate 2.4% lower than random immunization (p-value< 2.2 \cdot 10^{16}), and encounter immunization results in an average final infection rate 4.4% lower than random immunization (p-value< 2.2 \cdot 10^{16}). A model considering the interaction of immunization type and infection start time \(t_0(s_i) \) shows similar reduction effects of friend and encounter immunization as above (respectively −2.45%, p-value< 2.14 \cdot 10^{12}, and −4.65% p-value< 2.2 \cdot 10^{16}) and a decreasing final infection rate with respect to \(t_0(s_i) \) (−0.027% for each time step of delay, p-value< 2.2 \cdot 10^{16}), but slopes do not depend on the immunization type. Analyses have a similar flavor for the different choices of the immunization rate \(b \), and the infection containment effect of both friendship and encounter immunization increases for larger \(b \) (fixed effects of linear models). In addition, for larger \(b \), the decrease of the average final infection rate with respect to \(t_0(s_i) \) is less steep in the case of...
both friendship and encounter immunization than random immunization. Interestingly, encounter immunization results in an almost null average final infection rate for immunization rate \(b = 10\% \), and the same is obtained in the case of friend immunization for immunization rate \(b = 15\% \). This highlights the effectiveness of friend immunization, which is able to obtain the same effect as encounter immunization at a small additional cost.

Figure 19 and 20 show (for immunization rate of \(b = 5\% \) and \(b = 10\% \), respectively) the fraction of infections with final rate \((r_R(b, s_i), r_F(b, s_i), r_E(b, s_i))\) above given targets as a function of the infection start time \(t_0(s_i) \), for all immunization methods (random immunization: red squares, encounter immunization: blue circles, friend immunization: green triangles). Each subplot considers a fixed target value of the final infection rate and, for each immunization method, plots the fraction of infections that hit that target. As in the other figures, both friend and encounter immunization provide substantial improvement over random immunization, widely reducing the fraction of infections that hit the targets. The improvement obtained with encounter immunization is larger than that obtained with friend immunization.
Fig. 17. Fraction of infections above 1% final infection rate as a function of immunization rate and immunization method (random immunization: red squares, encounter immunization: blue circles, friend immunization: green triangles). The x-axis shows the immunization rate b (the fraction of immune individuals). The y-axis shows the fraction of infections above the 1% target (5000 simulations for each immunization method and value of b).
Fig. 18. Average final infection rate over infections that do not die out (i.e., final infection rate above 0.1%) as a function of the infection start time $t_0(s_i)$, for all immunization methods (random immunization: red squares, encounter immunization: blue circles, friend immunization: green triangles) and immunization rates b (subplots) The x-axis shows $t_0(s_i)$. The y-axis shows average final infection rate. Bars represent standard errors.
Fig. 19. Fraction of infections whose final rate is above given targets as a function of the infection start time $t_0(s_i)$, for all immunization methods (random immunization: red squares, encounter immunization: blue circles, friend immunization: green triangles) and immunization rate $b = 5\%$. Subplots consider targets of $r_R(b, s_i), r_F(b, s_i), r_E(b, s_i) \in \{1\%, 5\%, 10\%, 15\%, 20\%, 25\%\}$. The x-axis shows $t_0(s_i)$. The y-axis shows fraction of infection above the considered targets.
Fig. 20. Fraction of infections whose final rate is above given targets as a function of the infection start time $t_0(s)$, for all immunization methods (random immunization: red squares, encounter immunization: blue circles, friend immunization: green triangles) and immunization rate $b = 10\%$. Subplots consider targets of $r_R(b, s)$, $r_F(b, s)$, $r_E(b, s) \in \{1\%, 5\%, 10\%, 15\%, 20\%, 25\%\}$. The x-axis shows $t_0(s)$. The y-axis shows fraction of infection above the considered targets.
X. EPIDEMICS AT THE MACROSCOPIC LEVEL: TIME-VARYING NETWORKS

In this section and in Section \[\text{XI} \], we look at the epidemic processes on the different networks from a macroscopic point of view. Rather than comparing the sets of individuals at risk according to the two spreading models (i.e., friendship and encounter), we focus on quantities such as the size of the infected population and the infection detection time. We also consider infection detection time through sensors, as defined in Section \[\text{III-C} \].

Our simulations confirm the idea that the dynamics on different networks present similarities. Both on static and time-varying networks, the fraction of infected nodes increases linearly over time after an initial period of incubation, during which the infected population is small. In the case of time-varying networks (where the infection process runs for a finite number of time steps), we find an inverse relationship between the infection starting time and the final rate of infection, showing that earlier connectivity results in faster infection. Final infection rates are higher on the friendship network, due to it larger density. However, infection rates evolve similarly on the two networks. If we consider the probability that an infection hits a target \(\alpha \)-fraction of the population, some targets are never reached on the encounter network while they are on the friendship network (due to the different density), but the trends are similar on both networks. In the case of static networks (where the infection runs until the entire population is infected), the time to infect a target \(\alpha \)-fraction of the nodes is smaller for seeds with larger degree, confirming that higher connectivity results in faster infection. Even if the infection spreads faster on the friendship network, we observe similar trends on both networks.

In this section, we consider SI processes on the time-varying networks \(\{N_F(t)\}_{t \in T} \) and \(\{N_E(t)\}_{t \in T} \). In Section \[\text{XI} \], we consider SI processes on the static networks \(N_F = (U, F) \) and \(N_E = (U, E) \).

A. Infection Rate

With \(\beta = 1 \), we perform 10,000 simulations on each time-varying network. In each simulation, a single seed is selected uniformly at random between all nodes \(s \) such that \(t_0(\{s\}) \leq 500 \) on the considered network. That is, in the case of the friendship (respectively, encounter) network, we consider potential seeds that have an edge in \(N_F(t) \) (respectively, \(N_E(t) \)) for some \(t \leq 500 \). As infections on time-varying networks spread for a limited number of time steps, we require them to start early enough.
Each simulation \(i \) is therefore associated to a seed \(s_i \) and, as \(\beta = 1 \), the first time in which a node other than \(s_i \) is infected is

\[
t_0(s_i) = \min\{t : \exists (s_i, v) \in E(t) \text{ for some } v \neq s_i\} \in [1, 500].
\]

We refer to \(t_0(s_i) \) as the starting time of the infection. Let \(t_F(s_i) \) be the last time in which a node is infected in an infection starting from \(s_i \) (i.e., the time after which the size of the infected population stops increasing). It holds that \(t_F(s_i) \leq \max T \). At time \(t_F(s_i) \), the infection reaches its peak, infecting a fraction \(r(s_i) \in [0, 1] \) of the population.

The final infection \(r(s_i) \) decreases with increasing infection starting time \(t_0(s_i) \), for both the time-varying friendship network (OLS, coefficient \(-4.255 \cdot 10^{-4}\), p-value \(< 2 \cdot 10^{-16}\), intercept 0.451, p-value \(< 2 \cdot 10^{-16}\)) and the encounter network (OLS, coefficient \(-3.922 \cdot 10^{-4}\), p-value \(< 2 \cdot 10^{-16}\), intercept 0.757, p-value \(< 2 \cdot 10^{-16}\)). Instead, \(t_0(s_i) \) does not predict \(t_F(s_i) \) for either the time-varying friendship network (OLS, coefficient \(-0.03701\), p-value 0.376) or the encounter network (OLS, coefficient \(-0.03662\), p-value 0.381). This suggests that the networks remain connected over time and therefore infections that start earlier do not stop earlier.

Due to higher connectivity, the final rate of infection \(r(s_i) \) is on average 31.5% higher on the time-varying friendship network than on the encounter network (OLS, 0.3149, p-value \(< 2 \cdot 10^{-16}\), when controlling for \(t_0(s_i) \)), see Figure 21 (right panel). Also, the time \(t_F(s_i) \) of maximum infection is reached on average 79 time steps later on the time-varying friendship network than on encounter network (OLS, 79.19, p-value \(< 2 \cdot 10^{-16}\), when controlling for \(t_0(s_i) \)), see Figure 21 (left panel).

The fraction of infected nodes increases linearly over time in both networks (see Figure 22). In particular, we consider all infections that infected at least 1% of the total population (7,888 out of 10,000 simulations in the encounter network, and 9,100 in the time-varying friendship network). The infection spreads faster in the time-varying friendship network (OLS, slope 0.06209, p-value \(< 2 \cdot 10^{-16}\)) than in the encounter network (OLS, slope 0.03187, p-value \(< 2 \cdot 10^{-16}\)), with a significantly different slope difference (OLS, interaction coefficient of 7.57 \cdot 10^{-3}, p-value \(< 2 \cdot 10^{-16}\)). Moreover, even if an infection starts at time \(t \leq 500 \), it still might take a while to infect a significant amount of the population (see Figure 22). There is, therefore, a period of “incubation” during which the fraction of the infected population remains very low.
Fig. 21. SI process on the time-varying friendship network (white circles) and encounter network (grey circles), $\beta = 1$ (certain infection). 10,000 simulations are run on each network, each with a single seed s_i selected at random among all nodes such that $t_0(s_i) \leq 500$. The x-axis represents the infection start time $t_0(s_i)$, rounded to the lower multiple of 10. Point size is proportional to the number of observations for the corresponding value of the x-axis. **Left:** Average of the last time of infection $t_F(s_i)$ (i.e., the time at which the peak of the infection is reached) with respect to $t_0(s_i)$, for both the friendship and encounter networks. **Right:** Average of the final infection $r(s_i)$ with respect to $t_0(s_i)$, for both the friendship and encounters networks.

B. Sensor monitoring

Instead of monitoring the entire population, in each run of the SI process, we consider a random set of sensors composed by 1% of the population. Sensors are selected in the two ways described above: random sensors and friend sensors (where the selection is based on friendship rather than encounter, even when considering a process spreading on the encounter network). We perform 10,000 simulations on each time-varying network and each sensor type, setting $\beta = 1$ (i.e., infection is certain). In each simulation, a single seed is selected uniformly at random between all nodes s_i such that $t_0(s_i) \leq 500$.

Let $r_S(s_i)$ denote the final infection rate of the sensors (considered instead of $r(s_i)$, defined for the entire node set). Also $r_S(s_i)$ linearly decreases with increasing infection start time (Figure 23, left). On average, friend sensors predict an infection rate 9.5% higher than random sensors (OLS, coefficient 0.0953, p-value $< 2 \cdot 10^{-16}$, controlling for infection starting time $t_0(s_i)$ and type of
Each SI process (with $\beta = 1$) is started from a single seed s_i selected at random among all nodes such that $t_0(s_i) \leq 500$. For each network, 60 simulations that infected at least 1% of the population are considered. Colors are not meaningful.

network). As random sensor constitute a random sample of the population, their infection reflects the infection of the entire population. Instead, friends sensors are more connected that average nodes (the friend paradox) and therefore their larger infection constitutes an overestimation of the infection of the population. Such overestimation can be beneficial for early detection of an outbreak. The overestimation effect is larger on the encounter network (OLS, coefficient 0.1197, p-value < $2 \cdot 10^{-16}$, controlling for infection starting time) than on the time-varying friendship network (OLS, coefficient 0.0709e, p-value < $2 \cdot 10^{-16}$, when controlling for infection starting time). However, the sensor type does not significantly affect the slope of the observed linear decrease (OLS: interaction between infection starting time and sensor type, 2.299 \cdot 10$^{-5}$, p-value 0.21). We also observe that, on the time-varying friendship network, the $r_S(s_i)$ is on average 29% higher than on the encounter network (OLS, coefficient -0.2935, p-value < $2 \cdot 10^{-16}$, controlling for infection starting time and type of network). This effect is larger for random sensors (OLS, coefficient 0.2809, p-value < $2 \cdot 10^{-16}$, controlling for infection starting time) than for friend sensors (OLS, coefficient 0.2130, p-value < $2 \cdot 10^{-16}$, controlling for infection starting time).

When restricting our attention to simulations which infected at least 10% of the sensors (on
the encounter network, 7,669 with random sensors, 7,781 with friend sensors, on the friendship network, 9,140 with random sensors, 9,109 with friend sensors), on average, the 10% infection of friends sensors is reached 128 time units earlier than the 10% infection of random sensors (OLS, coefficient \(-128.0\), p-value\(< 2 \cdot 10^{-16}\), controlling for infection starting time and type of network). For the same consideration as above, friend sensors offer earlier detection with respect to the 10% infection of the entire population. This underestimation effect is larger on the encounter network (OLS, coefficient \(-197.3\), p-value\(< 2 \cdot 10^{-16}\), controlling for infection starting time) than on the time-varying friendship network (OLS, coefficient \(-69.2\), p-value\(< 2 \cdot 10^{-16}\), controlling for infection starting time). Also in this case, the sensor type does not affect the slope of the observed linear increase (OLS: interaction between infection starting time and sensor type, \(-2.302 \cdot 10^{-3}\), p-value 0.892). We also observe that, on the time-varying friendship network, the infection of 10% of the sensors requires on average 302 units of time less than on the encounter network (OLS, coefficient \(-302.6\), p-value\(< 2 \cdot 10^{-16}\), controlling for infection starting time and type of sensors). This effect is larger for random sensors (OLS, coefficient \(-3.672\), p-value\(< 2 \cdot 10^{-16}\), controlling for infection starting time) than friend sensors (OLS, coefficient \(-2.384\), p-value\(< 2 \cdot 10^{-16}\), controlling for infection starting time).

Figure 24 plots the fraction of simulations that reached a target sensors’ infection versus the infection starting time (values of the target: 10%, 25%, 50%, 75%, 80%, 85%). We refer to the infections that reached a given target as successful (for the given target). For targets of 10% and 20% (top plots) the observations are the same as above. For a target of 50% (middle left plot), on the encounter network (circles), the fraction of successful infection decreases more steeply for random sensors (grey) than friend sensors (white), with the former, the fraction of successful infections approaches zero for infection starting time above \(t = 350\). This effect is not observed in the case of the time-varying friendship network (triangles) for target of 50%. For a target of 75% (middle right plot), we observe a similar effect also on the time-varying friendship network, on which the success rate decreases faster with random sensors (approaching zero for infection starting times above \(t = 400\)). On the encounter network, there is no successful infection of random sensors, whereas some successful infection of friends sensors happens for infection starting time before \(t = 100\). For targets of 80% and 85% (bottom plots), the observations are similar.
Fig. 23. Infection detection with random sensors and friend sensors on the friendship and encounter time-varying networks. 10,000 simulations, with $\beta = 1$, are run on each network and for each sensor type. Each simulation starts with a seed s_i selected at random among all nodes such that $t_0(s_i) \leq 500$. Sensor size is 1% of the population. The x-axis represents the infection start time $t_0(s_i)$, rounded to the lower multiple of 10. Point size proportional to the number of observations for the corresponding value of the x-axis. **Left**: average final sensor infection versus infection start time, for the time-varying friendship network (triangles) and the encounter network (circles), with random sensors (grey) and friend sensors (white). **Right**: average time to infect 10% of the sensors versus infection start time, considering only the simulations in which at least 10% of the sensors are infected.
Fig. 24. Fraction of simulations that reached a target sensors’ infection versus the infection starting time, for different targets, for the encounter (circles) and time-varying friendship networks (triangles), using random sensors (grey) and friend sensors (white). 10,000 simulations, with $\beta = 1$, are run on each network and for each sensor type. Each simulation starts with a seed s_i selected at random among all nodes such that $t_0(s_i) \leq 500$. Sensor size is 1% of the population. The x-axis represents the infection start time $t_0(s_i)$, rounded to the lower multiple of 10. Point size proportional to the number of observations for the corresponding value of the x-axis.
XI. EPIDEMICS AT THE MACROSCOPIC LEVEL: STATIC NETWORKS

In this section, we consider SI processes on the static networks $N_F = (U, F)$ and $N_E = (U, E)$, started from a single seed, $I(0) = \{s\}$. As mentioned in Section II, we consider the giant components of these networks, consisting in $n_F = 168,923$ nodes in the friendship network and $n_E = 113,187$ nodes in the static encounter network (their union has cardinality $n_U = 210,899$).

A. Infection Rate

We perform 5,000 simulations on each static network, setting $\beta = 0.01$. In each simulation, a single seed s_i is selected uniformly at random between all nodes in the corresponding network. Given that in a SI process nodes never recover from infection, the entire population eventually becomes infected for each $\beta > 0$ and for each seed s_i. Recall that, for $0 \leq \alpha \leq 1$, $\tau(\alpha)$ represents the first time in which a α-fraction of the population is infected (for ease of notation, we omit the dependency on s_i). In this section, we study how the infection grows over time, that is, how $\tau(\alpha)$ grows with α.

Figure 25 relates the degree of the infection seed (i.e., encounter and friend degree) to the time $\tau(\alpha)$ to reach infection targets of $\alpha \in \{0.5\%, 1\%, 5\%, 10\%\}$. Top and bottom panels consider the SI process on the static encounter network and the friendship network, respectively. The x-axis show either the encounter degree (left panels) or the friend degree (right panels) of the seed (with degree at most 25).

In general, for all targets $\alpha \in \{0.5\%, 1\%, 5\%, 10\%\}$, increasing encounter (reps. friendship) degree is related to an initial steep decrease in the infection time on the encounter (reps. friendship) network, that then smooths out when the degree surpasses a threshold.

In the static encounter network (compare Figure 25, top-left panel), encounter degree larger than 10 results in a four-fold decrease of the infection time with respect to degree one, for all values of α (two-sample t-tests, means 188 and 42 for $\alpha = 0.5\%$, 191 and 45 for $\alpha = 1\%$, 201 and 55 for $\alpha = 5\%$, 209 and 62 for $\alpha = 10\%$, p-value $< 2.2 \cdot 10^{-16}$ for all α). The decrease of the infection time with respect to seed degree is slow for degree larger than 15 (OLS, restricted to seeds with encounter degree larger than 15, degree coefficient -0.300 for all α, p-value $< 5.57e - 11$). The effect of the seed’s friend degree on the infection speed on the encounter network is limited (degree coefficient -0.14 for all α, p-value $< 2.48e - 8$; compare Figure 25, top-right panel).
In the friendship network (compare Figure 25, bottom-right panel), friend degree larger than 5 results in a six-fold decrease of the infection time with respect to degree one, for all values of α (two-sample t-tests, means 134.97 and 20.63 for $\alpha = 0.5\%$, 135.60 and 21.23 for $\alpha = 1\%$, 137.48 and 23.11 for $\alpha = 5\%$, 139.37 and 25.01 for $\alpha = 10\%$, p-value < $2.2 \cdot 10^{-16}$ for all α). The decrease of the infection time is slow for degree larger than 10 (OLS, restricted to seed with encounter degree larger than 10, degree coefficient -0.0547 for all α, p-value < $9.63e−14$).

Larger encounter degree is not related to an equally steep decrease of the infection speed on the friendship network (compare Figure 25, bottom-left panel), despite its effect is somewhat (degree coefficient -1.270 for all α, p-value < $2.08e−7$), likely due to the low average encounter degree (mean 2.594).

If we look at how the infection grows over time, we observe an initial “incubation” period, during which the infected population is very small, followed by an explosion of the infection. Figure 25 plots the percentage of the infected population over time (up to 25%) for a sample of 60 randomly selected seeds on the encounter (right panel) network and 60 randomly selected seeds on the friendship network (left panel). Overall, on the friendship network, an infection starting from a single seed takes on average 59.44 time units to infect an initial 0.01% of the population (about 17 nodes), with more connected nodes requiring less time (OLS, degree coefficient -0.273, p-value < $2.2 \cdot 10^{-16}$). On the static encounter network, an infection starting from a single seed takes on average 107.78 time units to infect an initial 0.01% of the population (about 12 nodes), with more connected nodes requiring less time (OLS, degree coefficient -3.384, p-value < $2.2 \cdot 10^{-16}$).

The incubation period is in large part determined by the time required by the seed to infect its first neighbor (and thus depends on the infection rate β). Indeed, the first infection happens, on average, after 39.68 time units in the friendship network (decreasing with degree, OLS, -0.1608, p-value $4.46e−11$), and after 53.07 time units in the static encounter network (decreasing with degree, OLS, -2.011, p-value < $2 \cdot 10^{-16}$).

B. Sensor Monitoring

Instead of monitoring the entire population, in each run of the SI process, we consider a random set of sensors composed by 1% of the population. Sensors are selected in the two ways described above: random sensors and friend sensors (where the selection is based on friendship
Fig. 25. **Infection speed versus degree - static networks.** The plots relate the encounter and friendship degree of a seed node with the infection speed for different target infections α. 5000 simulations with $\beta = 0.01$ are run per network, selecting a seed uniformly at random for each simulation. The left panels relate encounter degree of the seed with infection on the static encounter network (top) and friendship network (bottom), for degree of at most 25. The right panels relate friends degree of the seed with infection on the static encounter network (top) and friendship network (bottom), for degree of at most 25. Point size are proportional to the logarithm of the number of observations for each degree.
Fig. 26. **Growth of the infection over time - static networks.** 60 simulations with $\beta = 0.01$ are shown for the friendship network (left) and for the static encounter network (right). For each simulation, a seed is selected uniform at random and the infection starts at time $t = 0$. Colors are not meaningful. An initial “incubation” period, during which the infection spreads from the seed to its first neighbors, is followed by an explosion of the infection.

rather than encounter, even when considering a process spreading on the encounter network).

We perform 5,000 simulations on each static network and each sensor type, setting $\beta = 0.01$ (stochastic infection). In each simulation, a single seed is selected uniformly at random between all nodes in the network.

Figure 27 plots the average time to detect a 5% infection of the sensors versus the seed degree, on the static encounter network (top panels) and friendship network (bottom panels). The x-axis shows either the encounter degree (left panels) or the friend degree (right panels) of the seed (degree at most 25).

On the static encounter network (compare Figure 27 top panels), friends sensors guarantee earlier detection than random sensors. The average detection time is smaller with friend sensors than with random sensors, both for a 5% infection (135.36 times units versus 141.66, t-test, p-value 0.00487), a 10% infection (139.96 time units versus 149.13, t-test, p-value 4.109 \cdot 10$^{-5}$), and a 25% infection (151.17 time units versus 168.51, t-test, p-value 9.913e – 15). The earlier detection provided by friend sensors over random sensors is not statistically significant for targets
of 0.05% and 1% infection.

On the friendship network (compare Figure 27, bottom panels), despite friend sensors provide a lower average detection time than random sensors, the difference is not statistically significant for any target infection rate.

The results above are driven by the stochastic incubation time needed to get the infection started, driven by the parameter β, as we observed in the previous section. In order to control for such randomness, we perform 5,000 additional simulations for each time-varying network and sensor type, setting $\beta = 1$ (certain infection). This choice allows to study the effect of the structural properties of the selected sensors on the infection detection time. Friend sensors provide faster detection of the infection both on the friendship and the encounter network, and for all targets α.

Figure 28 plots the average time to detect a 25% infection of the sensors versus the seed degree, on the static encounter network (top panels) and friendship network (bottom panels). The x-axis shows either the encounter degree (left panels) or the friend degree (right panels) of the seed (degree at most 25). On the encounter network (compare Figure 28 top panels), the average detection time for a 0.5% infection of friends sensors is 3.3516 time units (versus 3.7426 for random sensors), for a 1% infection is 3.5488 (versus 3.9894), for a 5% infection is 4.1192 (versus 4.5660), for a 10% infection is 4.4008 (versus 4.8526), for a 25% infection is 4.8922 (versus 5.3340), and all value are statistically significant (t-tests, p-values $< 2 \cdot 10^{-16}$). On the friendship network (compare Figure 28 bottom panels), the average detection time for a 0.5% infection of friends sensors is 3.3516 time units (versus 3.7426 for random sensors), for a 1% infection is 2.4748 (versus 2.8432), for a 5% infection is 2.6004 (versus 2.9804), for a 10% infection is 2.9286 (versus 3.6092), for a 25% infection is 3.5142 (versus 3.9056), and all value are statistically significant (t-tests, p-values $< 2 \cdot 10^{-16}$).
Fig. 27. **Sensor infection monitoring versus seed degree - static networks.** The plots show the average time to infect 5% of the sensors versus the degree of the infection seed. 5000 simulations with $\beta = 0.01$ are run per network and per sensor type. For each simulation, a seed is selected uniformly at random, and the sensor size is 1% of the total population. The left panels relate encounter degree of the seed with infection on the static encounter network (top) and friendship network (bottom), for degree of at most 25. The right panels relate friends degree of the seed with infection on the static encounter network (top) and friendship network (bottom), for degree of at most 25. Point size are proportional to the logarithm of the number of observations for each degree.
Fig. 28. **Sensor infection monitoring versus seed degree - static networks.** The plots show the average time to infect 25% of the sensors versus the degree of the infection seed. 5000 simulations with $\beta = 1$ (certain infection) are run per network and per sensor type. For each simulation, a seed is selected uniformly at random, and the sensor size is 1% of the total population. The left panels relate encounter degree of the seed with infection on the static encounter network (top) and friendship network (bottom), for degree of at most 25. The right panels relate friends degree of the seed with infection on the static encounter network (top) and friendship network (bottom), for degree of at most 25. Point size are proportional to the logarithm of the number of observations for each degree.
XII. DISCUSSION

This paper started from the observations that physical encounter is the most common vehicle for the spread of infectious diseases, but pervasive and detailed information about said encounters is often unavailable. Therefore, given an infection driven by physical encounter, we explored the question of whether friendship ties successfully predict the individuals at risk. Through computer simulation, we argued that this is not the case: friendship networks do not provide accurate prediction of epidemic risk. In particular, building a *friendship network* and an *encounter network* between the same set of individuals, we showed that epidemic processes initiated at the same seed but spreading independently on the two networks infect very different sets of nodes, even after controlling for the fact that individuals might be connected in one network and not in the other. The difference is not determined by the randomness of the infection process, but by the differences in local connectivity between the two networks. Also, the difference is not determined by the static nature of the friendship network, whose edges do not change over time, as opposed to the time-varying nature of the encounter network, whose edges are activated when individuals encounter. Our analyses reveal a striking contrast between the similarity at the macroscopic level of processes spreading on different networks (confirmed by our simulations) and the possibly misleading prediction of risk resulting from the chosen definition of edges. However, despite the limits highlighted by our analyses, we show that periodical and relatively infrequent monitoring of the real infection on the encounter network allows to correct the predicted infection on the friendship network and to achieve satisfactory prediction accuracy. In this sense, the ability to periodically monitor the infection on the encounter network is the key to overcome the limits of the friendship network in predicting epidemic risk. In addition, the friendship network allows to effectively employ a given immunization budget (e.g., limited vaccine amount) for the containment of epidemic outbreaks. A simple strategy that gives immunization to random friends of randomly chosen individuals substantially increases the probability that an infection dies out in its early stage and strongly reduces the expected final infection size with respect to purely random immunization.

When it is known who is infected or likely to become infected (e.g., individuals traveling to certain countries who might have come in contact with a pathogen), accurate prediction of the individuals at risk of contagion would allow targeted monitoring and immunization. Despite
friendship and other social relationships might be informative about the encounters between individuals, our work suggests that they do not always give a complete picture of the paths a pathogen might take. Information about future encounters between individuals is likely to be unavailable, at least at a detailed level. However, a feasible approach could use past encounter as a proxy of future encounter. In fact, it is known that human mobility and encounter present high spatial and temporal regularity and predictability [13], [37], [84], [88]. From a practical perspective, networks based on social relationships might be complemented by information about past encounter. Our simulations are based on a dataset that allowed us to build a static friendship network and a time-varying encounter network that is a candidate vehicle for the spread of a pathogen. The dataset considers a large number of individuals and spans several years of activity. In general, other datasets might be available and allow similar analyses. Friendship networks whose edges have a different semantic than that considered in the present work might lead to different observations.

References

[1] Réka Albert and Albert-László Barabási. Statistical mechanics of complex networks. Reviews of modern physics, 74(1):47, 2002.
[2] Yaniv Altshuler, Nadav Aharony, Yuval Elovici, Alex Pentland, and Manuel Cebrian. Stealing reality: when criminals become data scientists (or vice versa). Springer, 2013.
[3] Roy M Anderson and Robert McCredie May. Infectious diseases of humans, volume 1. Oxford university press Oxford, 1991.
[4] Sinan Aral and Dylan Walker. Creating social contagion through viral product design: A randomized trial of peer influence in networks. Management Science, 57(9):1623–1639, 2011.
[5] Sinan Aral and Dylan Walker. Identifying influential and susceptible members of social networks. Science, 337(6092):337–341, 2012.
[6] Lars Backstrom, Eric Sun, and Cameron Marlow. Find me if you can: improving geographical prediction with social and spatial proximity. In Proceedings of the 19th international conference on World wide web, pages 61–70. ACM, 2010.
[7] Duygu Balcan, Vittoria Colizza, Bruno Gonçalves, Hao Hu, José J Ramasco, and Alessandro Vespignani. Multiscale mobility networks and the spatial spreading of infectious diseases. Proceedings of the National Academy of Sciences, 106(51):21484–21489, 2009.
[8] Albert-László Barabási and Réka Albert. Emergence of scaling in random networks. science, 286(5439):509–512, 1999.
[9] Louise Barkhuus. The mismeasurement of privacy: using contextual integrity to reconsider privacy in hci. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, pages 367–376. ACM, 2012.
[10] Louise Barkhuus and Anind K Dey. Location-based services for mobile telephony: a study of users’ privacy concerns. In INTERACT, volume 3, pages 702–712. Citeseer, 2003.
[11] Stefano Boccaletti, Vito Latora, Yamir Moreno, Martin Chavez, and D-U Hwang. Complex networks: Structure and dynamics. *Physics reports*, 424(4):175–308, 2006.

[12] Gabrielle Brankston, Leah Gitterman, Zahir Hirji, Camille Lemieux, and Michael Gardam. Transmission of influenza a in human beings. *The Lancet infectious diseases*, 7(4):257–265, 2007.

[13] Dirk Brockmann, Lars Hufnagel, and Theo Geisel. The scaling laws of human travel. *Nature*, 439(7075):462–465, 2006.

[14] Ciro Cattuto, Wouter Van den Broeck, Alain Barrat, Vittoria Colizza, Jean-François Pinton, and Alessandro Vespignani. Dynamics of person-to-person interactions from distributed rfid sensor networks. *PLOS ONE*, 5(7):e11596, 2010.

[15] Damon Centola. The spread of behavior in an online social network experiment. *science*, 329(5996):1194–1197, 2010.

[16] Zhiyuan Cheng, James Caverlee, and Kyumin Lee. You are where you tweet: a content-based approach to geo-locating twitter users. In *Proceedings of the 19th ACM international conference on Information and knowledge management*, pages 759–768. ACM, 2010.

[17] Zhiyuan Cheng, James Caverlee, Kyumin Lee, and Daniel Z Sui. Exploring millions of footprints in location sharing services. *ICWSM*, 2011:81–88, 2011.

[18] Eunjoon Cho, Seth A Myers, and Jure Leskovec. Friendship and mobility: user movement in location-based social networks. In *Proceedings of the 17th ACM SIGKDD international conference on Knowledge discovery and data mining*, pages 1082–1090. ACM, 2011.

[19] Nicholas A Christakis and James H Fowler. The spread of obesity in a large social network over 32 years. *New England journal of medicine*, 357(4):370–379, 2007.

[20] Nicholas A Christakis and James H Fowler. The collective dynamics of smoking in a large social network. *New England journal of medicine*, 358(21):2249–2258, 2008.

[21] Nicholas A Christakis and James H Fowler. Social network sensors for early detection of contagious outbreaks. *PLOS ONE*, 5(9):e12948, 2010.

[22] Vittoria Colizza, Alain Barrat, Marc Barthélemy, and Alessandro Vespignani. Predictability and epidemic pathways in global outbreaks of infectious diseases: the sars case study. *BMC medicine*, 5(1):34, 2007.

[23] Yves-Alexandre de Montjoye, César A Hidalgo, Michel Verleysen, and Vincent D Blondel. Unique in the crowd: The privacy bounds of human mobility. *Scientific reports*, 3, 2013.

[24] Nathan Eagle, Alex Sandy Pentland, and David Lazer. Inferring friendship network structure by using mobile phone data. *Proceedings of the National Academy of Sciences*, 106(36):15274–15278, 2009.

[25] W John Edmunds, CJ O’callaghan, and DJ Nokes. Who mixes with whom? a method to determine the contact patterns of adults that may lead to the spread of airborne infections. *Proceedings of the Royal Society of London B: Biological Sciences*, 264(1384):949–957, 1997.

[26] Stephen Eubank, Hasan Guclu, VS Anil Kumar, Madhav V Marathe, Aravind Srinivasan, Zoltan Toroczkai, and Nan Wang. Modelling disease outbreaks in realistic urban social networks. *Nature*, 429(6988):180–184, 2004.

[27] Michalis Faloutsos, Petros Faloutsos, and Christos Faloutsos. On power-law relationships of the internet topology. In *ACM SIGCOMM Computer Communication Review*, pages 251–262. ACM, 1999.

[28] Katayoun Farrahi, Remi Emonet, and Manuel Cebrian. Epidemic contact tracing via communication traces. *PLOS ONE*, 9(5):e95133, 2014.

[29] Scott L Feld. Why your friends have more friends than you do. *American Journal of Sociology*, pages 1464–1477, 1991.

[30] Neil M Ferguson, Derek AT Cummings, Simon Cauchemez, Christophe Fraser, Steven Riley, Aronrag Meeyai, Sopon
Iamsirithaworn, and Donald S Burke. Strategies for containing an emerging influenza pandemic in southeast asia. *Nature*, 437(7056):209–214, 2005.

[31] Neil M Ferguson, Derek AT Cummings, Christophe Fraser, James C Cajka, Philip C Cooley, and Donald S Burke. Strategies for mitigating an influenza pandemic. *Nature*, 442(7101):448–452, 2006.

[32] Neil M Ferguson, Matt J Keeling, W John Edmunds, Raymond Gani, Bryan T Grenfell, Roy M Anderson, and Steve Leach. Planning for smallpox outbreaks. *Nature*, 425(6959):681–685, 2003.

[33] Manuel Garcia-Herranz, Esteban Moro, Manuel Cebrian, Nicholas A Christakis, and James H Fowler. Using friends as sensors to detect global-scale contagious outbreaks. *PLOS ONE*, 9(4):e92413, 2014.

[34] Michelle Girvan and Mark EJ Newman. Community structure in social and biological networks. *Proceedings of the National Academy of Sciences*, 99(12):7821–7826, 2002.

[35] William Goffman et al. Generalization of epidemic theory. an application to the transmission of ideas. Technical report, DTIC Document, 1964.

[36] Marcelo FC Gomes, Ana Pastore y Piontti, Luca Rossi, Dennis Chao, Ira Longini, M Elizabeth Halloran, and Alessandro Vespignani. Assessing the international spreading risk associated with the 2014 west african ebola outbreak. *PLOS Currents Outbreaks*, 1, 2014.

[37] Marta C Gonzalez, Cesar A Hidalgo, and Albert-Laszlo Barabasi. Understanding individual human mobility patterns. *Nature*, 453(7196):779–782, 2008.

[38] Thilo Gross and Bernd Blasius. Adaptive coevolutionary networks: a review. *Journal of The Royal Society Interface*, 5(20):259–271, 2008.

[39] M Elizabeth Halloran, Ira M Longini, Azhar Nizam, and Yang Yang. Containing bioterrorist smallpox. *Science*, 298(5597):1428–1432, 2002.

[40] M Elizabeth Halloran, Alessandro Vespignani, Nita Bharti, Leora R Feldstein, KA Alexander, Matthew Ferrari, Jeffrey Shaman, John M Drake, Travis Porco, JN Eisenberg, et al. Ebola: mobility data. *Science (New York, NY)*, 346(6208):433, 2014.

[41] JAP Heesterbeek. *Mathematical epidemiology of infectious diseases: model building, analysis and interpretation*, volume 5. John Wiley & Sons, 2000.

[42] Tracy Heibeck and Alex Pentland. *Honest Signals: How They Shape Our World*. MIT Press, 2010.

[43] Cesar A Hidalgo and C Rodriguez-Sickert. The dynamics of a mobile phone network. *Physica A: Statistical Mechanics and its Applications*, 387(12):3017–3024, 2008.

[44] Till Hoffmann, Mason A Porter, and Renaud Lambiotte. Generalized master equations for non-poisson dynamics on networks. *Physical Review E*, 86(4):046102, 2012.

[45] Petter Holme. Network reachability of real-world contact sequences. *Physical Review E*, 71(4):046119, 2005.

[46] Petter Holme. Information content of contact-pattern representations and predictability of epidemic outbreaks. *Scientific reports*, 5, 2015.

[47] Lars Hufnagel, Dirk Brockmann, and Theo Geisel. Forecast and control of epidemics in a globalized world. *Proceedings of the National Academy of Sciences of the United States of America*, 101(42):15124–15129, 2004.

[48] Pan Hui, Augustin Chaintreau, James Scott, Richard Gass, Jon Crowcroft, and Christophe Diot. Pocket switched networks and human mobility in conference environments. In *Proceedings of the 2005 ACM SIGCOMM workshop on Delay-tolerant networking*, pages 244–251. ACM, 2005.
[49] Hawoong Jeong, Bálint Tombor, Réka Albert, Zoltan N Oltvai, and A-L Barabási. The large-scale organization of metabolic networks. *Nature*, 407(6804):651–654, 2000.

[50] Hang-Hyun Jo, Juan I Perotti, Kimmo Kaski, and János Kertész. Analytically solvable model of spreading dynamics with non-poissonian processes. *Physical Review X*, 4(1):011041, 2014.

[51] Márton Karsai, Mikko Kivelä, Raj Kumar Pan, Kimmo Kaski, János Kertész, A-L Barabási, and Jari Saramäki. Small but slow world: How network topology and burstiness slow down spreading. *Physical Review E*, 83(2):025102, 2011.

[52] Matt J Keeling and Pejman Rohani. *Modeling infectious diseases in humans and animals*. Princeton University Press, 2008.

[53] Mikko Kivelä, Raj Kumar Pan, Kimmo Kaski, János Kertész, Jari Saramäki, and Márton Karsai. Multiscale analysis of spreading in a large communication network. *Journal of Statistical Mechanics: Theory and Experiment*, 2012(03):P03005, 2012.

[54] Predrag Klasić, Sunny Consolvo, Tanzeem Choudhury, Richard Beckwith, and Jeffrey Hightower. Exploring privacy concerns about personal sensing. In *Pervasive Computing*, pages 176–183. Springer, 2009.

[55] Jim Koopman. Modeling infection transmission. *Annu. Rev. Public Health*, 25:303–326, 2004.

[56] Kai Kupferschmidt. Estimating the ebola epidemic. *Science*, 345(6201):1108–1108, 2014.

[57] Scott Lederer, Jennifer Mankoff, and Anind K Dey. Who wants to know what when? privacy preference determinants in ubiquitous computing. In *CHI’03 extended abstracts on Human factors in computing systems*, pages 724–725. ACM, 2003.

[58] Suyu Liu, Nicola Perra, Márton Karsai, and Alessandro Vespignani. Controlling contagion processes in activity driven networks. *Physical review letters*, 112(11):118702, 2014.

[59] Alun L Lloyd and Robert M May. How viruses spread among computers and people. *Science*, 292(5520):1316–1317, 2001.

[60] Eric T Lofgren, M Elizabeth Halloran, Caitlin M Rivers, John M Drake, Travis C Porco, Bryan Lewis, Wan Yang, Alessandro Vespignani, Jeffrey Shaman, Joseph NS Eisenberg, et al. Opinion: Mathematical models: A key tool for outbreak response. *Proceedings of the National Academy of Sciences*, 111(51):18095–18096, 2014.

[61] Ira M Longini, Azhar Nizam, Shufu Xu, Kum Gunn Ungchusak, Wanna Hanshaoworakul, Derek AT Cummings, and M Elizabeth Halloran. Containing pandemic influenza at the source. *Science*, 309(5737):1083–1087, 2005.

[62] Rossana Mastrandrea, Julie Fournet, and Alain Barrat. Contact patterns in a high school: A comparison between data collected using wearable sensors, contact diaries and friendship surveys. *PLoS ONE*, 10(9):e0136497, 2015.

[63] Stefano Merler, Marco Ajelli, Laura Fumanelli, Marcelo FC Gomes, Ana Pastore y Piontti, Luca Rossi, Dennis L Chao, Ira M Longini, M Elizabeth Halloran, and Alessandro Vespignani. Spatiotemporal spread of the 2014 outbreak of ebola virus disease in Liberia and the effectiveness of non-pharmaceutical interventions: a computational modelling analysis. *The Lancet Infectious Diseases*, 2015.

[64] RT Mikolajczyk, MK Akmatov, S Rastin, and Mirjam Kretzschmar. Social contacts of school children and the transmission of respiratory-spread pathogens. *Epidemiology and infection*, 136(06):813–822, 2008.

[65] Joël Mossong, Niel Hens, Mark Jit, Philippe Beutels, Kari Auranen, Rafael Mikolajczyk, Marco Massari, Stefania Salmaso, Gianpaolo Scalia Tomba, Jacco Wallinga, et al. Social contacts and mixing patterns relevant to the spread of infectious diseases. *PLoS Med*, 5(3):e74, 2008.

[66] Mark EJ Newman. The structure and function of complex networks. *SIAM review*, 45(2):167–256, 2003.
[67] Mark EJ Newman and Michelle Girvan. Finding and evaluating community structure in networks. *Physical review E*, 69(2):026113, 2004.

[68] Anastasios Noulas, Salvatore Scellato, Renaud Lambiotte, Massimiliano Pontil, and Cecilia Mascolo. A tale of many cities: universal patterns in human urban mobility. *PLOS ONE*, 7(5):e37027, 2012.

[69] Anastasios Noulas, Salvatore Scellato, Cecilia Mascolo, and Massimiliano Pontil. An empirical study of geographic user activity patterns in foursquare. *ICwSM*, 11:70–73, 2011.

[70] J-P Omnela, Jari Saramäki, Jorkki Hyvönen, György Szabó, David Lazer, Kimmo Kaski, János Kertész, and A-L Barabási. Structure and tie strengths in mobile communication networks. *Proceedings of the National Academy of Sciences*, 104(18):7332–7336, 2007.

[71] Eamonn O'Neill, Vassilis Kostakos, Tim Kindberg, Alan Penn, Danaë Stanton Fraser, Tim Jones, et al. Instrumenting the city: Developing methods for observing and understanding the digital cityscape. In *UbiComp 2006: Ubiquitous Computing*, pages 315–332. Springer, 2006.

[72] Gergely Palla, Imre Derényi, Illés Farkas, and Tamás Vicsek. Uncovering the overlapping community structure of complex networks in nature and society. *Nature*, 435(7043):814–818, 2005.

[73] Romualdo Pastor-Satorras, Claudio Castellano, Piet Van Mieghem, and Alessandro Vespignani. Epidemic processes in complex networks. *arXiv preprint arXiv:1408.2701*, 2014.

[74] Romualdo Pastor-Satorras and Alessandro Vespignani. Epidemic spreading in scale-free networks. *Physical review letters*, 86(14):3200, 2001.

[75] Nicola Perra, Andrea Baronchelli, Delia Mocanu, Bruno Gonçalves, Romualdo Pastor-Satorras, and Alessandro Vespignani. Random walks and search in time-varying networks. *Physical review letters*, 109(23):238701, 2012.

[76] Chiara Poletto, MF Gomes, A Pastore y Piontti, Luca Rossi, L Bioglio, Denis L Chao, Ira M Longini, M Elizabeth Halloran, Vittoria Colizza, Alessandro Vespignani, et al. Assessing the impact of travel restrictions on international spread of the 2014 west african ebola epidemic. *Eurosurveillance*, 19(42), 2014.

[77] Anatol Rapoport. Spread of information through a population with socio-structural bias: I. assumption of transitivity. *The bulletin of mathematical biophysics*, 15(4):523–533, 1953.

[78] Jonathan M Read, Ken TD Eames, and W John Edmunds. Dynamic social networks and the implications for the spread of infectious disease. *Journal of the Royal Society Interface*, 5(26):1001–1007, 2008.

[79] Luis EC Rocha, Fredrik Liljeros, and Petter Holme. Simulated epidemics in an empirical spatiotemporal network of 50,185 sexual contacts. *PLoS Comput Biol*, 7(3):e1001109, 2011.

[80] Marcel Salathé, Maria Kazandjieva, Jung Woo Lee, Philip Levis, Marcus W Feldman, and James H Jones. A high-resolution human contact network for infectious disease transmission. *Proceedings of the National Academy of Sciences*, 107(51):22020–22025, 2010.

[81] Hiroki Sayama, Irene Pestov, Jeffrey Schoolhmidt, Benjamin James Bush, Chun Wong, Junichi Yamanoi, and Thilo Gross. Modeling complex systems with adaptive networks. *Computers & Mathematics with Applications*, 65(10):1645–1664, 2013.

[82] Reza Shokri, George Theodorakopoulos, Jean-Yves Le Boudec, and Jean-Pierre Hubaux. Quantifying location privacy. In *Security and Privacy (SP), 2011 IEEE Symposium on*, pages 247–262. IEEE, 2011.

[83] Timo Smieszek, Victoria C Barclay, Indulaxmi Seen, Jeanette J Rainey, Hongjiang Gao, Amra Uzicanin, and Marcel Salathé. How should social mixing be measured: comparing web-based survey and sensor-based methods. *BMC infectious diseases*, 14(1):136, 2014.
[84] Chaoming Song, Zehui Qu, Nicholas Blumm, and Albert-László Barabási. Limits of predictability in human mobility. Science, 327(5968):1018–1021, 2010.

[85] Juliette Stehlé, Nicolas Voirin, Alain Barrat, Ciro Cattuto, Vittoria Colizza, Lorenzo Isella, Corinne Régis, Jean-François Pinton, Nagham Khanafer, Wouter Van den Broeck, et al. Simulation of an sirf infectious disease model on the dynamic contact network of conference attendees. BMC medicine, 9(1):87, 2011.

[86] Arkadiusz Stopczynski, Vedran Sekara, Piotr Sapiezynski, Andrea Cuttone, Mette My Madsen, Jakob Eg Larsen, and Sune Lehmann. Measuring large-scale social networks with high resolution. PLOS ONE, 9(4):e95978, 2014.

[87] Lijun Sun, Kay W Axhausen, Der-Horng Lee, and Manuel Cebrian. Efficient detection of contagious outbreaks in massive metropolitan encounter networks. Scientific reports, 4, 2014.

[88] Lijun Sun, Kay W Axhausen, Der-Horng Lee, and Xianfeng Huang. Understanding metropolitan patterns of daily encounters. Proceedings of the National Academy of Sciences, 110(34):13774–13779, 2013.

[89] Thomas W Valente. Network models of the diffusion of innovations. Hampton Press Cresskill, NJ, 1995.

[90] Alexei Vazquez, Balazs Racz, Andras Lukacs, and Albert-Laszlo Barabasi. Impact of non-poissonian activity patterns on spreading processes. Physical review letters, 98(15):158702, 2007.

[91] Alessandro Vespignani. Modelling dynamical processes in complex socio-technical systems. Nature Physics, 8(1):32–39, 2012.

[92] Duncan J Watts and Steven H Strogatz. Collective dynamics of small-world networks. Nature, 393(6684):440–442, 1998.

[93] Bin Zhou and Jian Pei. Preserving privacy in social networks against neighborhood attacks. In Data Engineering, 2008. ICDE 2008. IEEE 24th International Conference on, pages 506–515. IEEE, 2008.