Study of reversible changes of the coercive force of Nd-Fe-B-based alloys subjected to cyclic heat treatments

A S Lileev¹, V A Sein², and E S Khotulev²

¹National University of Science and Technology “MISIS”, Moscow, Russian Federation, magnito@mail.ru
²JSC SPETSMAGNIT”, Moscow, Russian Federation

Abstract. Results of the investigation of the reversibility of the magnetic properties of two Nd(Dy)-Fe(Co)-B alloys during cyclic treatments at temperatures of 1050-700°C and subsequent rapid cooling and annealing at 500-600°C are reported. It is shown that, after a significant decrease in the coercive force for magnetization (H_c), which is caused by heating to high temperatures, its recovery begins after 5-min aging at 500°C; the complete restoration of H_c takes place after 1-2 h exposure.

1. Introduction

The Nd-Fe-B system alloys are widely used owing to the combination of high magnetic properties and fairly low costs of the alloy components. However, the mechanism of formation of structural components, which allow one to reach the high coercive force magnitudes, is ambiguously interpreted and remains unclear. In particular, the causes for the substantial changes of the coercive force in the course of heat treatments under different conditions are unknown.

It is known that, after realization of complete manufacturing cycle, a short-time heating of magnets to a high temperature leads to the abrupt degradation of magnetic properties, in particular, a decrease in the coercive force. Low-temperature annealings allow one to restore the magnetic properties. An analysis of literature data shows that the phenomenon of reversibility of the coercive force magnitude during cyclic heat treatments is typical of almost all kinds of industrial magnets (ticonal, magnico-type, SmCo₅, Sm-Co-Cu-Fe-Zr) [1-3]. Taking into account the substantial differences in structural transformations, origin of the high-coercivity state, and magnetization-reversal mechanisms, and as well as the fact that the coercive force is the structure-sensitive properties, it is of importance to study in detail the phenomenon of the coercive force reversibility for the Nd-Fe-B alloys in order to understand the regularities of formation of magnetic properties of these magnets.

The present study is aimed at the effect of temperature and time of annealing on the process of reversible restoration of the coercive force magnitude of Nd-Fe-B alloys after its decrease during heating to high temperatures.

2. Experimental

Table 1 shows the compositions of studied alloys.

Metallographic studies of the alloys were performed using a CarlZeissAxio Lab.A1 optical microscope. The magnetic properties of magnets were measured on a MN-50 hysteresisgraph; the magnetization reversal curve and a protocol of properties were recorded automatically. The error of
measurements is ± 2%. The chemical composition of alloys was determined by X-ray fluorescent analysis.

Table 1 Chemical composition of alloys A and B (wt %).

	Nd	Pr	Dy	Tb	Co	Ti	Al	Cu	B
A	28.8	1.0	1.7	2.3	5.7	0.7	0.3	0.1	1.2
B	23.1	3.6	5.6	-	-	-	0.5	0.2	1.0
									Balance

Samples of magnets were prepared by traditional powder metallurgy technique, which includes milling of alloy in isopropyl alcohol (to an average particle size of 3 µm), subsequent pressing in a transverse magnetic field of to 15 kOe, sintering at T=1100°C, and low-temperature treatment with 1-h holding at T=500°C.

Samples of alloy A were heated to a temperature of 1050°C, held for 1 h, and subsequently cooled to room temperature at a rate of 20°C/min. These samples were subjected to annealing in a temperature range of 500 – 600°C with different holdings at these temperatures. Alloy B was used to study the reversibility of magnetic properties after heat treatments at temperatures of 700 – 1000°C.

Subsequently, the heating to high temperatures, which leads to the decrease in the coercive force, is referred as “deteriorating”; the heat treatments resulting in the increase in coercive force are the “restoring”.

3. Results and discussion

Table 2 show changes of the magnetic properties of alloy A samples after “deteriorating” during heating to 1050°C and “restoring” at 500°C for 5, 30, 60, and 120 min. It should be noted that, in terms of the present study, the coercive force for magnetization (H_c) is the most interesting property since just this characteristic determines the physics of magnetization reversal process and the nature of its reversibility.

Table 2 Changes of the magnetic properties of alloy A during heat treatment at 1050°C + 500°C.

Properties	Starting state	Temperature and time of annealing				
	1050°C 1 h	500°C 5 min	500°C 30 min	500°C 1 h	500°C 2 h	
H_c, kA/m	1384	948	1011	1097	1262	1516
B_r, kA/m	860	837	826	840	875	790
B_r, T	1,11	1,11	1,09	1,11	1,17	1,09
$(BH)_{max}$, kJ/m³	237	239	225	233	256	211

It follows from Table 2 that the coercive force of alloy A not only completely restores after 2-h annealing at 500°C but also increases as compared to the value obtained after traditional heat treatment. Table 3 shows changes in the magnetic properties of alloy A after "deteriorating" during heating to 1050°C and "restoring" at 600°C for 5, 30, 60, and 120 min. As is seen from Table 3, the "restoring" of properties during holding at 600°C is incomplete, and after 2-h annealing the degradation the properties takes place.

It should be noted that the coercive force for magnetization demonstrates the more substantial reversible changes. Variations of the other properties are not so significant, and no marked regularities are observed.

It is of interest to monitor the reversibility of the coercive force at different temperatures of "deteriorating" annealing. Table 4 shows changes of the magnetic properties of alloy B subjected to "deteriorating" heating to 700-1000°C for 1 h and subsequent "restoring" 1-h annealing at 500°C.
Table 3 Changes of the magnetic properties of alloy A during heat treatment at 1050°C + 600°C.

Properties	Starting state	Temperature and time of annealing
		1050°C 600°C
		1 h 5 min 30 min 1 h 2 h
\(H_c\), kA/m	1384	981 1047 1148 1146 1149
\(B_b\), kA/m	860	849 777 827 840 654
\(B_r\), T	1,11	1,10 1,09 1,15 1,18 1,03
(BH)\(_{\text{max}}\), kJ/m³	237	233 217 239 254 157

Table 4 Changes of the magnetic properties of alloy B in the course of "deteriorating" annealing at 700-1000°C and "restoring" 1-h annealing at 500°C.

Properties	Starting state	Temperatures of "deteriorating" and "restoring" annealings
		700°C 500°C 800°C 500°C 900°C 500°C 1000°C 500°C
\(H_c\), kA/m	1755	1328 1760 1367 1764 1343 1722 1247 1689
\(B_b\), kA/m	890	903 881 922 896 917 905 953 891
\(B_r\), T	1,22	1,23 1,22 1,22 1,22 1,22 1,23 1,26 1,25
(BH)\(_{\text{max}}\), kJ/m³	275	272 263 284 270 283 277 304 273

It is of interest to note that, whatever the "deteriorating" annealing temperature, the reversible change of the coercive force is the same in value; with allowance for the measurement error, the change is 30%. According to metallographic and X-ray diffraction data, no changes in the phase and structural states of the alloys were found.

4. Conclusions
The independence of the reversible change of the coercive force on the heating temperature allows us to conclude that the reversible changes of the coercive force are not related to changes of the phase composition of magnet and processes occurred at grain boundaries. In the case of grain-boundary processes, the coercive force should be dependent on the "deteriorating" annealing temperature. It is likely that the phenomenon of "deteriorating" and "restoring" changes of magnetic properties of the alloys is related to the atomic ordering of the main magnetic phase since the reversibility assumes the short-range diffusion.

5. References
[1] Lileev A S, Menushenkov V P, Sumin V I 1973 *Fiz. Met. Metalloved.* Study of reversible changes of magnetic properties of YuNDK35T5 alloy after "deteriorating-restoring" annealing 36 (1) 183-186
[2] Khabarov V I, Pakzanova T Z, Shur Ya S, Makarov G I, Magat L M, Popov A G, Maikov V G, Elokhina L V 1979 *Fiz. Met. Metalloved.* Reversible changes of the coercive force and structural state of the Sm-Co-Cu-Zr alloy during low-temperature treatment 48 (5) 921-926
[3] Arinicheva O A, Lileev A S, Raizner M, Kubel F, Sein V A 2014 *Term. Obrab. Met.* Effect of cyclic heat treatments in a temperature range of 800-400°C on the properties of sintered Sm(Fe,Co,Cu,Zr)z-based magnets (11) 16-20
[4] Woodcock T G, Bitner F, Mix T, Muller K-H, Swatzki S, Gutfleisch O 2014 *J. Magn. Magn. Mater.* On the reversible and fully repeatable increase in coercive field of sintered Nd–Fe–B magnets following post sinter annealing *J. Magn. Magn. Mater.* 360 157–164