Equilibration of two non-extensive subsystems in a parton cascade model

Tamás S. Biró and Gábor Purcsel
KFKI Research Institute for Particle and Nuclear Physics of the Hungarian Academy of Sciences
H-1525 Budapest, P.O.Box 49, Hungary

Abstract
We study the process of equilibration between two non-extensive subsystems in the framework of a particular non-extensive Boltzmann equation. We have found that even subsystems with different non-extensive properties achieve a common equilibrium distribution.

Key words: non-extensive, statistics, Boltzmann equation
PACS: 05.70.Ln, 05.20. Dd

1. Introduction

Power-law tailed spectra occur in a wide range of physical phenomena, re-association in folded proteins [1], fluxes of cosmic rays [2], turbulence [3], finance and economics [4], electron-positron annihilation [5], motion of Hydra cells [6], epilepsy [7], linguistics [8], nuclear physics [9], astrophysics [10], field theories and cosmology [11], scientific citations [12], distributions of individual success of musicians [13], urban agglomerations [14], internet phenomena [15], phase transformations [16], in algorithms for global optimization (e.g., the generalized simulated annealing) and related computational methods [17] and information theory [18].

We are particularly interested in heavy ion collisions where cut power-law distributions describe transverse momentum (pt) spectra at low and intermediate values [19]. The conventional approach [20] to the distribution function fits a Boltzmann-Gibbs exponential characterized by a single temperature and the deviation from the exponential at the tail

Email address: purcsel@rmki.kfki.hu (Gábor Purcsel).

Preprint submitted to Elsevier 2 May 2017
is attained to non-equilibrium effects. A transverse expansion distorts the locally thermal spectra; at low p_T by suppression, at high p_T by a blue shift factor in the temperature.

Some further attempts have been made to interpret power-law tailed spectra as equilibrium phenomena for the whole p_T range: Non-extensive thermodynamics predict such distributions [9,21]. It has been shown, that dynamics among (quasi-) particles can be constructed, leading to power-law tailed stationary distributions [22]. This parton cascade model, referred to as non-extensive Boltzmann equation (NEBE), generates stationary states subject to non-extensive kinetic energy addition rules. We have shown that an infinite class of equilibrium distributions can be established depending on the way we generalize the Boltzmann equation [23]. In this paper we point out that cut power-law distributions play a special role among all possible functions: The rule applied in the non-extensive Boltzmann equation leading to such distributions is the leading term in a low-energy expansion of a general associative rule.

A crucial question towards non-extensive thermodynamics has been discussed in [24], namely how do two non-extensive thermodynamical systems thermalize, if at all. In this article we aim to answer this question by performing momentum-space simulations within the NEBE model.

2. Non-Extensive Boltzmann Equation (NEBE)

In the non-extensive extension of the Boltzmann equation we keep the original factorizing form for the two-body distributions,

$$\frac{\partial}{\partial t} f_1 = \int w_{1234} (f_3 f_4 - f_1 f_2),$$

but in the transition rate

$$w_{1234} = M_{1234}^2 \delta \left((p_1 + p_2) - (p_3 + p_4) \right) \cdot \delta \left(h(E_1, E_2) - h(E_3, E_4) \right),$$

the two-body energy composition is generalized to a rule $h(E_1, E_2)$, which is not necessarily the simple addition. There can be many physical sources for this deformation of the kinetic energy addition rule; the most general being a pair interaction due to a potential whose value differs before and after the two body collision. This way corrections occur, which (e. g. by using a virial theorem) may be expressible in terms of the individual kinetic energies of the colliding subsystems (particles). Here $E_i = \sqrt{p_i^2 + m_i^2}$ are the free kinetic energies of relativistic particles with mass m_i. In a heavy-ion collision they are regarded as the asymptotic energies detected after desintegration of the system.

The energy composition rule $h(E_1, E_2)$ contains contributions stemming from the pair interaction. It is not trivial whether these can always be divided to one-particle contributions, supporting a quasi-particle picture. In the followings we demonstrate that under quite general assumptions about the function $h(x, y)$ the division of the total energy among free particles can be done.

We assume that the generalized energy sum is associative,

$$h \left(h(x, y), z \right) = h(x, h(y, z)).$$

Then due to a mathematical theorem [25] a strict monotonic function $X(h)$ maps the energy composition rule to additivity

$$X(h) = X(x) + X(y).$$
This solution (4) of the functional equation (3) is unique up to a constant multiplicative factor. In this case the stationary solution of the non-extensive Boltzmann equation is given by

\[f(p) = \frac{1}{Z} e^{-X(E)/T}, \]

and \(X(E) \) is regarded as the energy of a quasi-particle.

One finds several examples for the energy composition rule \(h(x, y) \). Some of them lead to thermodynamics where the entropy formula or the distribution function is familiar: e.g. \(h(x, y) = axy \) leads to the Rényi-entropy \(S_R = \frac{1}{1-q} \ln \int f^q \), with \(s = \frac{1}{1-q} q^q, q = 1 - aT, \) and \(X(E) = \frac{1}{a} \ln(aE) \). The distribution function is given by \(f(E) = \frac{1}{Z} (aE)^{-1/(aT)} \).

The energy composition rule

\[h(x, y) = x + y + axy \]

has the solution

\[X(E) = \frac{1}{a} \ln(1 + aE), \]

and leads to the cut power-law stationary distribution

\[f(E) = \frac{1}{Z} (1 + aE)^{-1/(aT)}. \]

(cf. for \(q = 1 - aT \) the \(q-Tsallis \) distribution emerges [23])

This form is the next to leading order expansion of a general associative rule for low energy: By Taylor expanding eq. (4) for low \(x, y \) and \(h \) values and requiring \(h(x, 0) = x, h(0, y) = y \) one arrives at

\[h(x, y) = x + y + \frac{X''(0)}{X'(0)} x y + \ldots. \]

We conclude that the Tsallis-type composition rule with \(a = -X''(0)/X'(0) \) is generic for leading order non-extensive effects at low energy.

3. Non-extensive parton cascade

In order to investigate the equilibration of non-extensive systems we start with two subsystems, equilibrated separately. In order to prepare these systems the non-extensive Boltzmann equation is solved numerically in a parton cascade simulation [22]. We use several different initial momentum distributions, and then make random binary collisions between randomly chosen pairs of particles. By doing so we apply the rules

\[X(E_1) + X(E_2) = X(E_3) + X(E_4), \]

\[p_1 + p_2 = p_3 + p_4. \]

In each step of the simulation we select two particles to collide. Then we find the value for the new momentum of the first particle \((p_3) \) satisfying the above constraints but otherwise random. Then applying eq. (11) we calculate the momentum of the second outgoing particle \((p_4) \). In these particular simulations, this paper reports about, we use the free dispersion relation for massless particles \((E_i(p_i) = |p_i|) \). We proceed with the next
collision repeating the above steps with a new randomly chosen pair of particles. A typical simulation includes $10^6 - 10^7$ collisions among $10^5 - 10^6$ particles. After $3 - 5$ collisions per particle on the average, the one-particle distribution approaches its stationary form sufficiently.

The following quantities are conserved during the simulation:

$$X(E_{tot}) = \sum_{i=1}^{N} X(E_i), \quad P = \sum_{i=1}^{N} p_i, \quad N = \sum_{i=1}^{N} 1. \quad (12)$$

We use eq. (6) for the energy composition rule, where a is called the non-extensivity parameter. Our model reconstructs the traditional Boltzmann-Gibbs thermodynamics in the limit of $a = 0$. More details can be found in [22].

We perform simulations on different systems with particle numbers N_1 and N_2, total (quasi-)energies $X(E_1)$ and $X(E_2)$ and non-extensivity parameters a_1 and a_2. We evolve these systems until they reach their stationary states. The unified system is taken as an initial state with $N = N_1 + N_2$ particles.

Now we have three non-extensivity parameters a_1, a_2 and a_{12}, describing the three possible interaction types in the composed system. a_1 is the parameter of the collisions among particles in the first subsystem, similarly a_2 corresponds to the second subsystem, and finally a_{12} is the non-extensivity parameter in a collision between a particle from the first subsystem and a particle from the second subsystem. We investigate cases with common and different a parameters.

4. Results

![Fig. 1. a, Equilibration of two Boltzmann-Gibbs systems ($a_1 = a_2 = a_{12} = 0$); b, Equilibration of two Tsallis-type non-extensive systems ($a_1 = a_2 = a_{12} = 2$)](image)

Our results show that the subsystems equilibrate, in the final state of the composed system they have a common stationary distribution.
We present examples with different initial conditions. In all of these simulations the particle numbers are the same for each subsystem, \(N_1 = N_2 = 250,000\). The number of collisions in one simulation is \(N_{\text{coll}} = 5,000,000\), so \(N_{\text{coll}}/(N_1 + N_2) = 10\) collisions happen per particle. Figure 1 shows the average energy and quasi-energy versus the number of collisions per particle. On each part of the figures 2 and 3 four curves show the initial (continuous line) and final (dashed line) energy distributions of subsystems 1 and 2. It is hard to distinguish the final states of the subsystems, because the corresponding distributions are very near to each other. Within numerical uncertainties they have a common stationary energy distribution.

Figures 1a and 2a show the equilibration of two Boltzmann-Gibbs systems, where \(a_1\), \(a_2\) and \(a_{12}\) are equal to 0. This simulation was done for test purposes. As expected, in the final state the two subsystems have a common stationary energy distribution with a common temperature. The energy content per particle of the composed system became the arithmetic mean of the respective initial values. On figure 1a the curves for average \(X_{av} = \sum_i X(E_i)/N\) coincides with the curve for \(E_{av} = \sum_i E_i/N\), which comes from the
definition of the quasi-particle energy (cf. eq. (7) with \(a = 0 \)).

The equilibration of two Tsallis-type non-extensive systems with \(a_1 = a_2 = a_{12} = 2 \) is shown on figures 10 and 2b. The initial quasi-energy contents are different but at the end this difference disappears. \(X_{av} \) becomes the arithmetic mean in the composed system. This is illustrated by the constant for \((X_{av}^{initial})^2 / 2 \). The final average kinetic energy per particle, \(E_{final}^{1,av} = E_{final}^{2,av} \neq (E_{1,av}^{initial} + E_{2,av}^{initial}) / 2 \), is slightly below the average of the initial energies.

On the figures 3a and 3b we show the equilibration between two systems with different non-extensivity parameters: A Boltzmann-Gibbs system \((a = 0) \) and another one with \(a = 2 \). In 3a the non-extensivity parameter for a collision between particles coming from different systems is taken to be \(a_{12} = 0 \). In 3b this parameter is given by \(a_{12} = 2 \). In these cases neither \(X_{av} \) nor \(E_{av} \) approaches to the arithmetic mean of the initial \(X_{av} \) or \(E_{av} \) values (actually \(X_{av} \) cannot be defined for the composed system). The final common stationary energy distributions are between the initial energy distributions of the original subsystems (with \(a_1 = 0 \) and \(a_2 = 2 \)); in case \(a_1 = 0 \) it is closer to the Boltzmann-Gibbs system, in case \(a_2 = 2 \) it is closer to the original non-extensive system.

5. Conclusions

We studied the equilibration between two non-extensive systems in the framework of a relativistic parton cascade model, NEBE. We have demonstrated earlier that these systems have non-exponential equilibrium distributions in terms of the free particle kinetic energy, which is dependent on the chosen type of non-extensivity (or equivalently on the details of energy sharing in the two-particle collisions). The composition of different non-extensive systems resulted in a common equilibrium distribution.

We have pointed out that the non-extensive energy addition rule eq. (6), leading to a cut power-law distribution in equilibrium, is the next to leading order low-energy expansion of a general associative rule.

We coupled two subsystems after a separate equilibration both by additive and super-additive rules. The subsystems tend to achieve a common distribution. This process coincides with the equilibration of the temperatures in the case of equal non-extensivity parameters. In the case of different non-extensivity parameters, however, neither the average of original one-particle energies nor the average of the quasi-particle energies is observed. In this case the associativity of the energy composition rule is violated, so actually a quasi-particle energy can not be defined.

Acknowledgments This work has been supported by the Hungarian National Science Fund OTKA (T049466) and the Deutsche Forschungsgemeinschaft.

References
[1] C. Tsallis, G. Bemski and R.S. Mendes, Phys. Lett. A 257, 93 (1999).
[2] C. Tsallis, J.C. Anjos and E.P. Borges, Phys. Lett. A 310, 372 (2003); C. Beck, Physica A 331 (2004) 173
[3] C. Beck, Phys. Rev. Lett. 87, 180601 (2001), Physica A 305 (2002) 209; C. Beck, G.S. Lewis and H.L. Swinney, Phys. Rev. E 63, 035303 (2001). N. Arimitsu and T. Arimitsu, Europhys. Lett. 60, 60 (2002);
[4] L. Borland, Phys. Rev. Lett. 89, 098701 (2002); C. Tsallis, C. Anteneodo, L. Borland and R. Osorio, Physica A 324, 89 (2003)
[5] I. Bediaga, E.M.F. Curado and J. Miranda, Physica A 286, 156 (2000).
[6] A. Upadhyaya, J.-P. Rieu, J.A. Glazier and Y. Sawada, Physica A 293, 549 (2001).
[7] O.A. Rosso, M.T. Martin and A. Plastino, Physica A 313, 587 (2002).
[8] M.A. Montemurro, Physica A 300, 567 (2001).
[9] M. Biyajima, M. Kaneyama, T. Mizoguchi, G. Wilk, Phys. Rev. E 65, 017106 (2002).
[10] C. Beck, Physica A 340 (2004) 459; H. Kohyama and A. Niegawa, Prog. Theor. Phys. 115 (2006) 73.; A. Nakamichi and M. Morikawa, Physica A 311 (2004) 215.; M. P. Leubner, Astrophys. J. 632 (2005) L1.; H. P. de Oliveira, I. Damiao Soares and E. V. Tonini, Phys. Rev. D 67 (2003) 063506.;
[11] C. Tsallis, D. Prato and A.R. Plastino, Astrophys. Space Sci. 290:259-274, 2004.; M. P. Leubner and Z. Voros, Astrophys. J. 618 (2004) 547.; A. Bernui, C. Tsallis and T. Villela, Phys. Lett. A 356 (2006) 426.
[12] P. Jizba and T. Arimitsu, Physica A 365 (2006) 76.; G. Wilk and Z. Wlodarczyk, Acta Phys. Polon. B 35 (2004) 871, ibid. 36 (2005) 2513.
[13] T. S. Biró, G. Purcsei, G. Györgyi, A. Jakovác, J. Phys. G 31, s759, 2005.
[14] M. Nauenberg, Phys. Rev. E 67, 036114 (2003)., Physical Review E 69, 038102(2004).; Physical Review E 69, 038101 (2004).
[15] E. Castillo, A. Iglesias and R. Ruíz-Cobo, Elsevier (2005)