The Sensitivity of Acoustic-Laser Technique for Detecting the Defects in CFRP-Bonded Concrete Systems

Qiwen Qiu1 · Denvid Lau1,2

Received: 26 May 2015 / Accepted: 15 April 2016 / Published online: 28 April 2016
© Springer Science+Business Media New York 2016

Abstract This paper presents an experimental study to evaluate the sensitivity of acoustic-laser technique in defect detection. The technique is particularly useful towards the detection of near-surface defects in fiber reinforced polymer-bonded concrete by vibrating the material with an acoustic excitation and measuring the vibration signals with a laser beam. However, relatively little is known about the sensitivity of acoustic-laser technique. More research work should be conducted to evaluate the effectiveness of the technique when adopted for defect detection. It is also important to investigate the limits of the technique performance with respect to varying operational conditions so as to determine ways of improving the detectability. For this purpose, operational conditions in terms of acoustic excitation and laser beam incidence are investigated for their effectiveness in detecting near-surface defects and a reliable defect detection scheme using our portable equipment is therefore recommended. This work provides a basis for further improving such technique which can be used in other engineering applications including quality control of materials and product development process.

Keywords Acoustic-laser technique · Defect · Detection · FRP-bonded concrete · Sensitivity

1 Introduction

There are numerous non-destructive testing (NDT) methods for quantifying material condition in reinforced concrete (RC) structures. Acoustic emission (AE), radiography method, and radar (microwave) methodology are some of the examples. AE methodology is based on detecting the elastic waves generated in materials due to plastic deformation, crack expansion and other kinds of material degradation [1–4]. Proper analysis of the elastic waves can provide information concerning the defects within a material. However, AE is a contact method, which requires attaching transducers to materials in order to transmit and receive the acoustic signals [5]. Radiography method is involved in using the short wavelength electromagnetic radiations (i.e. X-rays or neutron rays) which can be absorbed by the materials as they penetrate through the medium [6]. The amount of the absorption is affected by the density and composition of the materials. However, the method poses a radiation hazard towards the users. Radar (microwave) methodology is based on electromagnetic waves within the radio frequency spectrum range (3 Hz to 300 GHz) for rapidly assessing a variety of characteristics in concrete structures [7–9]. A drawback to this technique is that the received signals may be reflected from other regions of no interest due to the defocused microwave.

Apart from the non-destructive testing methods mentioned previously, acoustic-laser technique has emerged as a promising method for detecting the near-surface defects in composite structures such as fiber reinforced polymer (FRP)-bonded concrete structures. The method is particularly suitable for detecting the air voids, cracking, delamination, or debonding under the FRP plate by vibrating the target with an acoustic excitation and characterizing the vibration behavior with a laser beam. Under an adequate acoustic pressure, the defect areas can vibrate more significantly as compared to the
intact regions. The analysis of the vibration signals measured in a frequency spectrum can be used to identify the presence of a defect. Acoustic-laser technique offers numerous advantages over the conventional NDT methods for damage evaluation. Compared to AE, the acoustic-laser technique is a non-contact method which utilizes the acoustic waves propagating at a standoff distance from the object for vibration excitation. The robust non-contact method is suitable to inspect the structures in locations where the operating environments (e.g. high temperature, high tension) are dangerous or prohibitive. The acoustic-laser technique has the ability to detect the objects from relatively large distances due to the high concentration of the laser beam. In contrast to the radiography method, acoustic-laser technique makes use of the optical beam in the measurement which is less harmful to people. In addition, the acoustic-laser technique is capable of detecting small defects because of the focused laser beam of which the radar (microwave) methodology fails to achieve.

Previous work has proven the concept of the acoustic-laser technique for the detection of defects in FRP-bonded concrete [10,11]. However, relatively little is known about the sensitivity of acoustic-laser technique when applied in defect detection. It is important to investigate the limits of the technique performance with respect to varying operational conditions (e.g. distance of acoustic source, sound pressure level, incident angle of acoustic excitation, and incident angle of laser beam) so as to determine the ways of improving the detectability. The intensity of the acoustic excitation is an important factor in the measurement sensitivity because it affects the amount of acoustic waves radiating from the acoustic source towards the target. Sound pressure level (SPL) is another operational parameter that states the level of acoustic excitation. Also, incident angle of acoustic excitation is considered to be a parameter because decomposition of the acoustic pressure will occur if the acoustic excitation is obliquely incident on the FRP surface. In addition to the parameters which are related to the acoustic excitation, the incident angle of laser beam is another parameter that influences the measured response of a target. The objective of this paper is to explore how these operational parameters affect the sensitivity of acoustic-laser technique for defect detection. The operational conditions with varying distance of acoustic source, SPL, incident angle of acoustic excitation, and incident angle of laser beam are measured, and their influence on the measured signals is evaluated in this study.

This paper will first describe the test specimen and describe the overview of the laboratory acoustic-laser technique system. Then, an in-depth description of the operational parameters will be given. Experimental results will be discussed to explain the effects of the operational parameters on the system performance of the acoustic-laser technique. Based on our experimental results, the optimum ranges of the four concerned parameters will be recommended, which can determine a reliable defect detection scheme using our portable equipment. Finally, the highlights of this work and the future study will be outlined. The knowledge and findings provided in this paper will be of prompt use in the structural health monitoring and nondestructive testing community.

2 Material and Methods

2.1 Test Specimen

A carbon fiber-reinforced polymer (CFRP)-bonded concrete panel was fabricated in the laboratory. The CFRP-bonded concrete panel was made with an artificial defect (air block) by means of polystyrene foam. The polystyrene foam was attached to a steel mold with the use of glass cement one day prior to the concrete casting. After demoulding, the concrete was left in a humidity room for 28 days moist curing. Then, the polystyrene foam was removed so that an air cavity was left in the concrete block. Finally, a CFRP plate was bonded to the concrete surface through the use of a commercial epoxy resin. The bonding of the CFRP plate was undertaken through the wet-epoxy layup process and the detailed procedures can be found in the publication [12].

The thickness of the CFRP sheet and the epoxy layer were 0.167 mm and 0.34 mm, respectively. The size of the concrete panel was 250 mm × 250 mm × 50 mm and that of the artificial defect was 50 mm × 50 mm × 30 mm. It should be noted that the defect size can affect the effectiveness of acoustic-laser technique for defect detection in FRP-concrete structure. If defect size is too small, the acoustic wave will not be able to excite the defect region. The defect size is commonly seen 10–20% of the side length of FRP-concrete structural element. Therefore, the defect area 50 mm × 50 mm was considered in this study as a representative size of defect, given that the CFRP-concrete sample has the area of 250 mm × 250 mm. The configuration of the CFRP-bonded concrete panel and the dimension of the artificial defect are shown in Fig. 1. Since the reflective laser beam may be scattered due to the roughness of the FRP surface, special surface preparation on the target was conducted by lamination of retroreflective tape. In this circumstance, a focused return signal from the target is ensured.

2.2 Experimental Setup

The key instruments of the acoustic-laser technique consist of loudspeaker, laser, photoreceiver, data acquisition equipment, and computer. Figure 2 shows the photograph and schematic diagram of the test setup of acoustic-laser technique. The principle of acoustic-laser technique is described as follows. The white noise emitted from the loudspeaker
was used to excite the target to vibrate as it provides acoustic waves with a wide band of frequencies which may contain the resonant frequency of the FRP surface. A laser beam was used to measure the vibration of the target surface. The optical signals carried by the laser beam were transferred into the electrical signals via the photoreceiver. The vibration behavior of the target surface was characterized from the electrical signals as they contain the information of the surface vibration amplitude.

The laser emitted a green optical beam with the wavelength of 532 nm and the spot size of 1.96 mm. The input voltage and the output power of the laser were 220 V and 100 mW, respectively. Specifications of the loudspeaker are given in Table 1. The photoreceiver used in our research was composed of two parts: silicon photodiode and amplification system. The silicon photodiode was used to collect the optical signal and transfer it into the electrical signal. The properties of the silicon photodiode are also given in Table 1. The amplification system was used to enlarge the electrical signals from the photodiode.

In order to examine the capability of acoustic-laser technique to identify the presence of defect in the CFRP-bonded concrete, scanned measurements over the defect region and the surrounding intact region were conducted. With the laser
Table 1: Specification of the loudspeaker and photodiode (From the manufacturer)

Properties	Value	Unit
Loudspeaker		
Crossover frequency	2500	Hz
Overall frequency response	45–40000	Hz
Maximum Output Level	125	dB
Dimensions (W × H × D)	218 × 330 × 235	mm
Weight	12.2	Kg
Power Consumption	100	W
Photodiode		
Active area size	5.8 × 5.8	mm
Reverse voltage	5	V
Operating temperature	−20 to 80	°C
Open circuit voltage	0.3	V
Short circuit voltage	12	μA
Dark current	5	nA
Terminal capacitance	500	pF
Peak wavelength	550	nm

Moving on a tripod by manual adjustment, the surface of the defect region and the surrounding intact region can be easily scanned. Figure 3 depicts the schematic diagram of measurement points on the scanned surface over the defect region and the surrounding intact region. For the intact region, the measurement points at the defect center, the defect boundaries and inside the defect region were tested. In order to generate the contour map of the measurement signals, the triangulation (shown as triangular element in Fig. 3) and the linear interpolation were employed.

2.3 Operational Parameters of the Acoustic-Laser Technique

As previously mentioned, acoustic waves are used in the acoustic-laser technique for vibrating the surface of the structures to be evaluated. The intensity of the acoustic excitation on the target is significantly influenced by the following aspects. Distance of acoustic source can affect the amount of acoustic waves radiating from the loudspeaker towards the FRP surface. SPL states the level of acoustic excitation. Incident angle of acoustic excitation determines the decomposition of the acoustic pressure at the FRP surface. Therefore, several operational parameters related to acoustic excitation are required to be studied including distance of acoustic source, SPL and incident angle of acoustic excitation. Another parameter that should also be considered is the incident angle of laser beam since the measured vibration signals are interpreted by the laser beam reflected from the target. The detailed operational parameters of the acoustic-laser technique are outlined in the following Table 2.

As shown in Fig. 4a, distance of acoustic source refers to the distance between the loudspeaker and the CFRP-bonded concrete panel. The range of the distance started from 15 cm is due to the fact that laser beam will be blocked by the loudspeaker if the distance is too small. Due to the limitation of the working space in the laboratory, the maximum distance...
Table 2 The detailed parameters and their designed ranges in the experimental set up

Parameters	Range	Unit
Distance of acoustic source	15–200	cm
SPL	55–125	dB
Incident angle of acoustic excitation	0–90 degree (°)	
Incident angle of laser beam	15–90 degree (°)	

of acoustic source was set as 200 cm. SPL defines the measure of air pressure deviation caused by a sound wave, related logarithmically to the reference pressure of 20 μPa as given in Eq. (1). An SPL of 80 dB corresponds to an acoustic pressure of 0.2 Pa [13], while 120 dB SPL is equivalent to the pressure of 20 Pa, 100 times as much as the 80 dB. Fig. 4b shows the operational parameter of SPL for acoustic-laser technique. In the test, the volume on the loudspeaker was turned up so as to increase the SPL. Here, a sound level meter was used to measure the SPL. The background SPL in the laboratory was 55 dB. The largest SPL that can be produced by the loudspeaker in this experiment was 125 dB.

\[
SPL = 20 \times \log_{10}\left(\frac{\text{sound pressure in Pascals}}{20\mu Pa}\right)
\] (1)

Fig. 4 Sketch of the experimental set up with different cases of sensitivity studies: a distance of acoustic source; b SPL; c incident angle of acoustic excitation; d incident angle of laser beam
Incident angle of acoustic excitation (ϕ) is the angle between the propagating path of acoustic wave and the normal line of target surface, as shown in Fig. 4c. Incident angle of laser beam (θ) means the angle between the laser beam and the normal line of target surface, shown as Fig. 4d. In our measurement, the incident angle of laser beam starts from 15$^\circ$ due to the presence of the loudspeaker. It is also noteworthy that the laser should not be placed too close to the loudspeaker since the acoustic energy may excite the motions of laser.

3 Results and Discussions

The electrical signals measured by the acoustic-laser technique contain the vibration information of FRP-concrete surface, and the signals can be presented in a time-domain waveform or in a frequency-domain spectrum. But in our measurement, a visual inspection of the original time series will not give any particular insight due to the complexity of the signals [14]. Therefore, in the present study, a fast Fourier transform (FFT) is adopted to map a recorded time-domain waveform into frequency-domain spectrum. It is worth to point out that the flick noise (also called 1/f noise) [15–19] always dominates in the frequency zone before 2000 Hz. Therefore, the signals in the frequency domain of 0–2000 Hz were eliminated. Fig. 5 illustrates the frequency spectrum of electrical signals measured in the intact region, the defect side, and the defect center. The distance of acoustic excitation is 20 cm while the incident angles of acoustic excitation and laser beam are 90$^\circ$ and 45$^\circ$, respectively. Sound pressure levels 110 dB (marked grey) and 120 dB (marked black) are exhibited in Fig. 5. It can be found that the amplitude of electrical signals is quite small for the intact area. But in terms of the defect center, there is a sharp peak at the frequency of about 3670 Hz which may indicate the presence of damage. It is also noteworthy that the electrical signals for the defect side have a peak response with the same resonant frequency as that of the defect center, but the peak amplitude is decreased. In the following discussion, the peak ampli-
Fig. 7 The amplitude of electrical signals versus: a distance of acoustic source; b SPL; c incident angle of acoustic excitation; d incident angle of laser beam.

The amplitude of the electrical signals (at 3670 Hz) obtained from the frequency spectrum is recorded and presented.

In order to assess the ability of acoustic-laser technique to locate the defect and characterize the defect size, a scanning image that reveals the electrical signals over the defect region and the intact region is plotted in Fig. 6. In Fig. 6, distances of acoustic excitation including 20 cm, 40 cm, and 60 cm are plotted respectively. The SPL is 110 dB and the incident angle of laser beam is 45°. It is found from Fig. 6a–c that the signals within the defect region are much more significant than the intact region. The comparison among the Fig. 6a–c suggests that an increase in distance of acoustic excitation lowers the difference of vibration amplitude between the defect region and the surrounding intact region.

The effects of the operational parameters on the sensitivity of the acoustic-laser technique are displayed in Fig. 7. The measurement data collected from the defect center is plotted in this figure. Fig. 7a describes the amplitude of electrical signals at resonant frequency (3670 Hz) plotted against distance of acoustic excitation, with three sound pressure levels 100, 110, and 120 dB. The incident angle of laser beam is kept as 45° and incident angle of acoustic excitation is kept as 90°. As seen from Fig. 7a, measurement results with three sound pressure levels 100, 110, and 120 dB show a similar trend. The amplitude for the defect area decreases with an exponential pattern as the loudspeaker is positioned more and more distant. The phenomenon is attributed to the reduction of the acoustic pressure loading onto the FRP surface. In Fig. 7a, the distances of acoustic excitation between 15 cm and 40 cm can ensure high sensitive measurement response, which are recommended by this paper for the practical application of acoustic-laser technique. Since the down trend pertaining to the distance of acoustic excitation is attributed to the declining acoustic pressure on the object, the following Fig. 7b presents the experimental results of electrical signals against the SPL. It is found that the amplitude goes up with an
increase in the SPL, in which the trend as well follows the exponential manner. Based on the results in Fig. 7b, it is suggested that SPL higher than 100 dB provides more electrical response as compared to that less than 100 dB. To obtain the reliable measurement results with acoustic-laser technique, the loudspeaker should be turned on at least 100 dB.

Following attention is placed on the effect of incident angle of acoustic excitation on the sensitivity of acoustic-laser technique. Fig. 7c shows the amplitude of electrical signals versus the incident angle of acoustic excitation. From 0° to 90°, the vibration amplitude (3670 Hz in the frequency spectrum) decreases with the incident angle. The mechanism may be due to the decomposition of the acoustic wave if the acoustic excitation is not in the direction perpendicular to the FRP surface. In this case, if the loudspeaker is positioned at a normal angle (ϕ = 0°), the acoustic excitation will be the greatest. Based on the results in Fig. 7c, incident angle of acoustic excitation smaller than or equal to 60° can achieve a satisfactory signal strength.

Fig. 7d depicts the effect of incident angle of laser beam on the measurement response. As found in the Fig. 7d, vibration amplitude develops at an increasing rate with increase in the incident angle of laser beam. A possible mechanism contributing to the increasing signals is that the larger incident angle of laser beam leads to the bigger translating distance between the paths of reflected laser beams, as shown in Fig. 8a. Image that a laser beam is normally incident on the surface of the vibrating FRP plate, the path of the reflected laser beam does not change. In this case, no evident response is expected to be measured. From Fig. 7d, it is recommended that the incident angle of laser beam larger than 30° gives a high sensitivity for acoustic-laser technique. However, too oblique incidence of the laser beam leads to the distortion of the laser spot on the FRP plate which may lead to an inaccurate measurement, as shown in Fig. 8b. Here, a flattening factor ρ is used to examine the distortion level of laser spot resulting from the oblique incidence, which is defined by Eq. (2):

\[\rho = \frac{L(\theta)}{L_0} \]

where \(L(\theta) \) is the length of the laser spot at incident angle \(\theta \), \(L_0 \) is the initial length (1.96 mm) of the laser spot at normal incidence (\(\theta = 0° \)). From the definition, the flattening factor \(\rho \) is 1 when the laser beam is normally incident on the FRP surface. The flattening factor \(\rho \) is measured in our experiment and is depicted in Fig. 8c. It is observed that from 0°–60°, the \(\rho \) increases slightly and the value remains in the range of 1–2. But the increasing rate of \(\rho \) is accelerated when the incident angle increases from 60° to 90°. When \(\theta = 75° \), the length of the laser spot is about three times (\(\rho = 3 \)) as big as the initial length of 1.96 mm. The laser spot with excessively elliptical shape can exacerbate the receiving errors of the photoreceiver [20]. From the above discussion, the incident angle of laser beam is suggested to be 30°–60° as it can provide a sensitive measurement response as well as achieving an accurate detection of defect.

Exponential function \(y = a_0 + b_0 e^{c_0x} \) is adopted to fit all the measurement points and the fitted results are satisfied, as shown in Fig. 7. This function can give us the indication that the acoustic-laser technique is very sensitive in a certain value range of the operational parameters. For instance, the sensitivity of the acoustic-laser technique is not changed much when the sound pressure level is smaller than the 100 dB, but the sensitivity can be changed dramatically between the 100 dB and the 125 dB. Based on this, we are suggested...
that the sound pressure level should be kept constant at each time when we repeat the detection of the same target or we detect several targets. Note that a slight modification of SPL can lead to the big difference of the results. From the fitted results, the value of the coefficient \(b_0 \) for distance of acoustic excitation or sound pressure level is positive \((b_0 > 0) \), which indicates that the amplitude of the measurement signals could be increased limitlessly when the parameters are altered in certain range. For instance, the measurement signal is 0.0071 mV when the SPL is 100 dB. When the SPL is changed to 120 dB, the measurement signal is increased to 0.0394 mV which is 5.55 times as that of 100 dB. SPL higher than 120 dB can even leads to larger signal (e.g. 0.0664 mV with 125 dB). However, for parameters related to incident angles the coefficient \(b_0 \) is negative \((b_0 < 0) \), which implies that the measurement signals cannot be increased as much as we expected. For instance, the maximum measurement signal for incident angle of acoustic excitation could be reached is about 0.02 mV. Therefore, the distance of acoustic excitation and SPL will be the more important parameters to be considered if an increase of the measurement sensitivity is attempted.

4 Conclusion and Future Work

The present work focuses on the sensitivity of acoustic-laser technique when applied to inspect the defects in FRP-bonded concrete system. A series of parametric studies are conducted to investigate the performance of the laboratory system under different operational parameters. The paper provides a reference for further research and practical application of the acoustic-laser technique. The following conclusions can be drawn from the experimental work:

1. Acoustic-laser technique has a series of advantages for defect detection. For the FRP-bonded concrete panel used in our research, the electrical signals of the defect region appears a sharp peak at the frequency of 3670 Hz, which indicates the presence of the defect.

2. The results of scanned measurement on the defect region and the surrounding intact region demonstrate that the vibration within the defect region is much more significant than that of the intact region. It is experimentally proved that acoustic-laser technique can identify the location and size of defect in the FRP-bonded concrete structure.

3. Four different operational parameters, namely, distance of acoustic excitation, SPL, incident angle of acoustic excitation, and incident angle of laser beam are found to have considerable effects on the sensitivity of the measurement results. The acoustic-laser technique is effective for defect detection when each of the concerned parameters falls in a certain range. In order to achieve the sensitive and reliable defect detection by using the acoustic-laser technique, the distance of acoustic excitation should be no more than 40 cm; the SPL should be at least 100 dB, the incident angle of acoustic excitation is suggested as 90°, and the incident angle of laser beam is suggested to be within the range of 30°–60°.

The performance of the acoustic-laser technique has been demonstrated by laboratory measurements on an artificially damaged specimen. Further investigation of the technique is required before this technique is confidently used in practice. Some future research directions upon the acoustic-laser technique are listed as follows:

1. According to the experimental results in this study, higher SPL provides more sensitive measurement response by the acoustic-laser technique, but too high SPL can induce the health problems (e.g. hearing impartment and hypertension) [21] to the users who perform the test. Such high SPL may also lead to the significant vibration of the laser and photoreceiver, which makes the results inaccurate. Another issue of using the loudspeaker is that the acoustic energy emitted from the loudspeaker is significantly dissipated in case when the distance of the acoustic source exceeds 200 cm. Therefore, sensitivity of the acoustic-laser technique is very low when the distance is more than 200 cm. An elegant solution to those issues involves in using the parametric acoustic array (PAA) that can provide more focused and powerful acoustic energy over the conventional loudspeaker [13,22]. Future work will focus on studying the effectiveness of PAA as an acoustic source for improvement of acoustic-laser technique.

2. During operations with acoustic-laser technique, the eye safety associated with the use of laser beam is concerned. A study [23] has reported that high power laser can lead to serious injury of the retina, the body tissue which is most vulnerable to laser radiation. It is meaningful to choose a laser with lower power which can reduce the accident injuries of eyes. However, it is essential to evaluate the laser power level for its effect on the sensitivity of acoustic-laser technique.

3. In the experiment, the operational parameters (i.e. distance of acoustic source, sound pressure level, incident angle of acoustic excitation and incident angle of laser beam) are regarded as the independent variables. After having the knowledge of these variables, the coupled effect of the operational parameters will be investigated in the future study.

4. Noise is another issue to be addressed for acoustic-laser technique [24]. As mentioned before, flick noise always
dominates in the frequency zone before 2000 Hz. Such unwanted signal wrapping may lead to the non-effective measurements of the defects having the resonant frequency within 0–2000 Hz. Future work will improve the signal-to-noise ratio (SNR) either by upgrading the quality of the electrical devices (i.e. photoreceiver and laser) or by the use of filtering techniques such as wavelet denoising algorithm.

Acknowledgments The authors are grateful to the financial support from Croucher Foundation through the Start-up Allowance for Croucher Scholars (No. 9500012). The support from the Research Grants Council (RGC) in Hong Kong through the Early Career Scheme (ECS) (No. 139113) is also gratefully acknowledged. We would also like to show our appreciation to Miss Ruiyuan Lin and Mr Tinkei Cheng for providing assistance in assembling the electrical devices and specimen preparation.

References

1. Minemurua, O., Sakatab, N., Yuyama, S., Okamoto, T., Maruyama, K.: Acoustic emission evaluation of an arch dam during construction cooling and grouting. Constr. Build. Mater. 12, 385–392 (1998)
2. Behnia, A., Chai, H.K., Shirotani, T.: Advanced structural health monitoring of concrete structures with the aid of acoustic emission. Constr. Build. Mater. 65, 282–302 (2014)
3. Ghiassi, B., Verstrynge, E., Lourenço, P.B., Oliveira, D.V.: Characterization of debonding in FRP-strengthened masonry using the acoustic emission technique. Eng. Struct. 66, 24–34 (2014)
4. Shirotani, T.: Evaluation of long-term stability for rock slope by means of acoustic emission technique. NDT E Int. 39(3), 217–228 (2006)
5. Arora, V., Wijnant, Y.H., de Boer, A.: Acoustic-based damage detection method. Appl. Acoust. 80, 23–27 (2014)
6. McCann, D.M., Forde, M.C.: Review of NDT methods in the assessment of concrete and masonry structures. NDT E Int. 34, 71–84 (2001)
7. Feng, M.Q., Flaviis, F.D., Kim, Y.J.: Use of microwaves for detection of fiber reinforced polymer-wrapped concrete structures. J. Eng. Mech. 128(2), 172–183 (2002)
8. Yu, T.-Y., Büyükoztürk, O.: A far-field airborne radar NDT technique for detecting FRP debonding in FRP-retrofitted concrete structures. NDT E Int. 41(1), 10–24 (2008)
9. Büyükoztürk, O., Yu, T.-Y.: Far-field radar NDT technique for detecting GFRP debonding from concrete. Constr. Build. Mater. 23(4), 1678–1689 (2009)
10. Lau, D.: One dimensional predictive model of interfacial stiffness in FRP-bonded concrete system using acoustic-laser technique. In: SPIE Proceedings, San Diego (2013)
11. Cheng T.K., Lau, D.: Vibrational characteristics of FRP-bonded concrete interfacial defects in a low frequency regime. In: SPIE Proceedings, San Diego (2014)
12. Mahmoud, A.M., Ammar, H.H., Mukdadi, O.M., Ray, I., Imani, F.S., Chen, A., Davalos, J.F.: Non-destructive ultrasonic evaluation of CFRP-concrete specimens subjected to accelerated aging conditions. NDT E Int. 43(7), 635–641 (2010)
13. Chen, J.G., Haupt, R.W., Büyükoztürk, O.: Operational and defect parameters concerning the acoustic-laser vibrometry method for FRP-reinforced concrete. NDT E Int. 71, 43–53 (2015)
14. Farrar, C.R., Worden, K.: Structural Health Monitoring: A Machine Learning Perspective. Wiley, Chichester (2012)
15. Llopis, O., Azaizia, S., Saleh, K., Slimane, A.A., Fernandez, A.: Photodiode 1/f noise and other types of less known baseband noises in optical telecommunications devices. In: IEEE Noise and Fluctuations (ICNF) (2013)
16. Pandit, S., Syamal, B., Sarkar, C.K.: Analytical modeling of flicker and thermal noise in n-channel DG FinFETs. Solid State Electron. 63(1), 177–183 (2011)
17. Hong, J., Yao, S.X., Li, Z.I., Fang, X.Y., Guo, J.: The effect of flicker noise on the phase noise of opto-electronic oscillator. Optik 125(4), 1572–1574 (2014)
18. Abdelghany, M.A., Pokharel, R.K., Kanaya, H., Yoshida, K.: A low flicker noise direct conversion receiver for IEEE 802.11g wireless LAN using differential active inductor. Microelectron. J. 42(2), 283–290 (2011)
19. Palenskis, V., Matukas, J., Pralgauskait˙e, S.: Light-emitting diode quality investigation via low-frequency noise characteristics. Solid State Electron. 54(8), 781–786 (2010)
20. Qiu, Q., Lau, D.: Experimental evaluation on the effectiveness of acoustic-laser technique towards the FRP-bonded concrete system. In: SPIE Proceedings, San Diego (2015)
21. Passchier-Vermeer, W., Passchier, W.F.: Noise exposure and public health. Environ. Health Perspect. 108, 123–131 (2000)
22. Haupt, R.W., Rolt, K.D.: Standoff acoustic laser technique to locate buried land mines. Linc. Lab. J. 1, 17–22 (2005)
23. Barkana, Y., Belkin, M.: Laser Eye Injuries. Surv. Ophthalmol. 46(6), 459–478 (2000)
24. Yu, T., Cheng, T.K., Zhou, A., Lau, D.: Remote defect detection of FRP-bonded concrete system using acoustic-laser and imaging radar techniques. Constr. Build. Mater. 109, 146–155 (2016)