Realizing the strongly correlated d-Mott state in a fermionic cold atom optical lattice

Michael R. Peterson, Chuanwei Zhang, Sumanta Tewari, S. Das Sarma
Condensed Matter Theory Center, Department of Physics,
University of Maryland, College Park, MD 20742
(Dated: October 9, 2008)

We show that a new state of matter, the d-Mott state (introduced recently by H. Yao, W. F. Tsai, and S. A. Kivelson, Phys. Rev. B 76, 161104 (2007)), which is characterized by a non-zero expectation value of a local plaquette operator embedded in an insulating state, can be engineered using ultra-cold atomic fermions in two-dimensional double-well optical lattices. We characterize and analyze the parameter regime where the d-Mott state is stable. We predict the testable signatures of the state in the time-of-flight measurements.

PACS numbers: 03.75.Ss, 71.10.Fd

Experimental realizations of degenerate Bose [1, 2] and Fermi gases [3, 4, 5, 6] in cold atom optical lattices has led to increasing interaction between the atomic and condensed matter physics communities. In fact, these atomic systems have become a proverbial “playground” where, in principle, custom Hamiltonians [7, 8, 9] can be made to order, enabling optical lattice emulations of strongly correlated condensed matter phenomena. Particularly exciting, in this context, is the creation of a fermionic Hubbard model in ultra-cold atomic systems, since the Hubbard model is a paradigm for theoretical studies of strong correlations. The two-dimensional fermionic Hubbard model, a model woefully difficult to “solve”, is of great interest since it is thought to hold the key to understanding high-temperature (high-T_C) superconductivity [10]. In fact, the cold atom systems allow for versatile tuning of the Hamiltonian parameters where the hopping (or tunneling) matrix element between nearest neighbor sites (through laser intensity tuning), the on-site interaction between particles (from attractive to repulsive by tuning the Feshbach resonance), and the dimensionality (from one to three) of the model can all be varied and controlled [7]. Such versatility in tuning the Hamiltonian makes cold atom systems particularly attractive in studying novel quantum phases and transitions between them.

The possible d-wave character of the ground state in the Hubbard model is an important concept in relation to the high-T_C cuprate superconductors [10]. Studying the Hubbard model experimentally in the cold atomic gases could, in principle, be an effective and accurate analog simulation of high-T_C superconductivity. Eventually it would be very important to test whether or not the fermionic Hubbard model, in its full generality, allows for d-wave superfluidity [11, 12, 13], a controversial conjecture not yet settled theoretically. In this work, we study the model in a controlled limit in which there is (i) an exactly solvable point where a true new state of matter, the so-called d-Mott state recently discovered by Yao, et al. [14] exists as the ground state of the checkerboard Hubbard model (see below), and (ii) a parameter which can be varied to destroy the d-Mott state. The d-Mott state [14] is a special Mott insulating state with a non-zero expectation value $\langle -1 \rangle$ of a local plaquette operator, D_P (see below), which cyclically rotates the sites by an angle $\pi/2$. In other words, the state is an insulator with a local plaquette d-wave symmetry—in analogy with the d-wave superconductor—characterized by a non-zero expectation value $\langle D_P \rangle$. Realizing this state in an optical lattice has its own intrinsic appeal because it is a true new state of matter not adiabatically connected to any other known insulating states [13]. Furthermore, since this is the ground state arising out of an exact solution of the Hubbard model in a controlled limit, it would serve as an important benchmark for the accuracy of experiments aimed at studying the general Hubbard model. For this purpose, we propose and analyze how the distinctive signatures of the d-Mott state could be observed in the usual time-of-flight measurements. An alternative proposal was provided in Ref. [14].

We consider a system of fermionic atoms (^{40}K) where the two atomic internal hyperfine states, $| F = 9/2, m_F = -9/2 \rangle$ and $| F = 9/2, m_F = -7/2 \rangle$, are taken as the effective spin states $\sigma = \uparrow, \downarrow$. The atoms are loaded into a two dimensional superlattice, produced

![FIG. 1: (Color online) (a) Two-dimensional checkerboard Hubbard model. Solid (dashed) bonds represent hopping amplitudes t (t'). (b) “Ladder” cluster we exactly diagonalize with periodic boundary conditions imposed in the “x”-direction and open boundary conditions in the “y”-direction. The numbers label the sites of a single plaquette.]()
by superimposing a long and a short period lattice in the x- and y-direction such that an array of square plaquettes is created. The dynamics of the atoms can be described by the so-called checkerboard Hubbard model \cite{17} defined as

$$H = - \sum_{\mathbf{r}, \sigma} t_{\mathbf{r}}(\delta)c_{\mathbf{r} \sigma}^\dagger c_{\mathbf{r} + \delta \sigma} + U \sum_{\mathbf{r}} n_{\mathbf{r} \uparrow} n_{\mathbf{r} \downarrow}. \quad (1)$$

Here, $c_{\mathbf{r} \sigma}$ ($c_{\mathbf{r} \sigma}^\dagger$) is the particle destruction (creation) operator at lattice site \mathbf{r} with spin (or magnetic sublevel) σ, $t_{\mathbf{r}}(\delta)$ is the hopping amplitude for a particle at site \mathbf{r} hopping to site $\mathbf{r} + \delta$, where site $\mathbf{r} + \delta$ is a nearest neighbor site, U is the usual on-site interaction energy, and $n_{\mathbf{r} \sigma} = c_{\mathbf{r} \sigma}^\dagger c_{\mathbf{r} \sigma}$ is the number operator. The checkerboard Hubbard model is defined by choosing $t_{\mathbf{r}}(\delta) = t$ when δ connects sites within a square plaquette, and $t_{\mathbf{r}}(\delta) = t'$ when δ connects sites between two neighboring square plaquettes, see Fig. 1.

When $t' = 0$ the ground state of this model can be obtained exactly for all U/t and all band-fillings or densities (dopings) by solving the single plaquette problem exactly (either by brute force \cite{18} or through numerical exact diagonalization) and constructing the full many-plaquette state as a product state of the plaquette basis states. At exactly half filling (or zero doping, the case considered throughout this work), the ground state for $U/t > 0$ is an insulator with d-wave symmetry on the plaquette, the so-called d-Mott state \cite{13}: the plaquette state is odd under $\pi/2$ rotations about the plaquette center.

To measure the symmetry characteristic of the d-Mott state on a plaquette we propose an operator, D_P, which, when operating on a state, rotates a plaquette by $\pi/2$ about its center or, alternatively, translates each particle by one site along the four-site “ring”. More concretely, for a particular basis state for demonstrative purposes, the single four-particle four-site plaquette (such as the lattice labeled in Fig. 1(b)) occupation could be $|n_1 n_2 n_3 n_4\rangle = |1100; 0110\rangle$ where sites 1 and 2 are occupied with spin-up particles and 2 and 3 are occupied with spin-down. The result of operating D_P on this state is $D_P|1100; 0110\rangle = |0110; 0011\rangle$. The particle at site 1 moves to 2, 2\rightarrow3, 3\rightarrow4, and 4\rightarrow1 (the last through periodic boundary conditions on the plaquette). It is easy to see that the possible eigenvalues of D_P are ± 1, $\pm i$ since $(D_P)^4 = 1$.

For $t' = 0$ and $U/t = 0$ the ground state is six-fold degenerate and the operation of D_P yields ± 1 or $\pm i$ for each degenerate ground state. When $t' = 0$ and $U/t > 0$, the degeneracy is broken and a gap Δ opens up. The operation of D_P onto the ground state now yields an eigenvalue equal to -1 indicating the existence of d-wave symmetry—the state has a non-zero value of the d-Mott operator $\langle D_P \rangle$. In Fig. 2 we plot the gap Δ with respect to U/t. The gap is zero for $U = 0$ due to the degeneracy of the ground state while with finite U the degeneracy is lifted and the gap becomes nonzero. However, the gap also approaches zero in the limit $U/t \rightarrow \infty$ where there is no phase coherence between the atoms at different sites and the ground state is again degenerate. At a finite $U/t \approx 6$, the gap is maximum.

We now consider what happens when $t' \neq 0$. An important point to note is that D_P does not commute with the Hamiltonian for $t' \neq 0$, therefore eigenstates of H will not be eigenstates of D_P, although H retains a global C_4 symmetry about the center of any plaquette. However, there are clearly defined regimes for non-zero values of t'. As mentioned, for $t' = 0$ and $U/t > 0$, the ground state is gapped and it is an eigenstate of H and D_P (with eigenvalue -1). For $t' \ll \Delta$ the ground state is approximately a product state of single plaquette ground states and, hence, remains approximately a simultaneous eigenstate of H and D_P (by this we mean that the ground state will have the largest amplitude from basis states that are D_P eigenstates with eigenvalue -1). Thus, it is conceivable that the average value of D_P for any given plaquette will continue to be nonzero and close to -1 for a non-zero range of t'. On the other hand, when $t' \sim t$, the Hamiltonian is approximately the standard Hubbard model. Thus, the ground state is an essentially equal superposition of D_P eigenstates, so one expects the value of $\langle D_P \rangle$, for any given plaquette, to be zero, since $1 - (1) + i + (-i) = 0$.

The question now becomes exactly what happens for $U/t > 0$ and $t' \approx \Delta$ when the particles are first able to hop to the neighboring plaquettes. To answer this question we exactly diagonalize H for eight particles on an eight-site square lattice ladder with periodic boundary conditions in the “y'”-direction depicted in Fig. 1(b) and vary both U/t and t'/t from zero to $t'/t = 1$ and beyond. (Note that a fully periodic system–torus–requires 16 sites with a quite large Hilbert space ~ 100 million states—which is not necessary for establishing the qualitative and

![Figure 2](image-url)
FIG. 3: (Color online) Ground state expectation value of the d-Mott operator, $\langle D_P \rangle$, as a function of t'/U (left) and t'/Δ (right) for the eight-site square lattice system for the checkerboard Hubbard model at half filling for various values of U/t.

semi-quantitative conclusions presented here.) The d-Mott character is examined by calculating the average $\langle D_P \rangle$. In Fig. 3 we plot $\langle D_P \rangle$ as a function of t'/U (left panel) and t'/Δ (right panel) for various values of U/t (weakly to strongly interacting). From the left panel we see that the behavior is largely universal when plotted versus t'/U and the value drops well below -1 for $t' \approx t$. However, the physics is better elucidated in the right panel. Here it is clearly seen that once t' becomes equal to, and exceeds, the single plaquette gap Δ the d-Mott order is quickly lost. Thus, the optimal parameter regime for observing the d-Mott state is at $U/t \approx 6$, where the gap Δ reaches the maximum and the d-Mott state, with a non-zero expectation value of the local plaquette operator D_P, is most stable against the inter-plaquette coupling t'. See the inset of Fig. 2 for a plot showing the region in (U/t)-t'/t space where the d-Mott state is expected.

We now turn to how, in a cold atomic gas, the d-Mott state could be observed via time-of-flight measurements. First, we suggest a method to generate the d-Mott state in experiments. To begin, the potential depth of the short period optical lattice is ramped up to a large value $V_s = 20 E_R$ to form a Mott state with one atom per lattice site $\{1\}$, where E_R is the photon recoil energy. The potential depth of the long period optical lattice is then ramped up to $V_l = 17 E_R$. In the Mott state, we have $t = t' \approx 0$. To create the d-Mott state, the potential depth of the short period optical lattice is then ramped down to a small value (for instance, $V_s = 3 E_R$) to enhance the tunneling t inside the plaquettes. The potential barrier between plaquettes is $V_l + V_s = 20 E_R$, therefore $t' \approx 0$. There are now four atoms in each plaquette, which corresponds to the half filled case discussed above. Non-zero t' can be obtained by lowering V_l and the interaction strength U can be adjusted in experiments using Feshbach resonance $\{4\}$. With this method, various parameter regimes can be reached with different U/t and t'/t. For the regime of $U/t = 6$, $t'/\Delta \ll 1$ (i.e. $t'/t \ll 0.3$ from Fig. 2), a stable d-Mott state is obtained. We now address the question of the experimental observation of this state.

Interestingly, the phase coherence in each plaquette in the d-Mott state can be experimentally identified in the time-of-flight (TOF) measurements. The d-Mott state in a single plaquette can be written as $|\chi \rangle = \sum_\alpha f_\alpha |\alpha \rangle$ where $|\alpha \rangle$ is a basis state such that the action of D_P on a state rotates it to another basis state and the d-wave symmetry of the ground state wavefunction has been incorporated into the eigen-coefficients f_α. In the TOF experiment, we can measure the density of the spin up and spin down atoms separately. The TOF density distribution for spin up atoms is

$$\langle n_1 (Q(r)) \rangle \propto \sum_{I,I',\psi} \psi^*_I \psi_{I'} \left\langle b_{I'}^\dagger b_I \right\rangle$$

where $Q(r) = mx/ht$ (m and t being the atomic mass and time of measurement, respectively), I is the index of plaquettes,

$$\psi_I \propto e^{-iQ(r) \cdot R_I} \Phi(Q) \sum_\alpha e^{-iQ(r) \sum_\beta \beta_{\alpha j} = \gamma_j} f_\alpha$$

is the wavefunction of spin up atoms in plaquette I after TOF, b_I^\dagger is the creation operator of the d-Mott state in the plaquette I, R_I is the position of the center of plaquette I, $j = 1, 2, 3, 4$ correspond to four lattice sites at each plaquette (see Fig. 2a) with $s_1 = (-a/2,-a/2)$, $s_2 = (a/2,-a/2)$, $s_3 = (a/2,a/2)$, $s_4 = (-a/2,a/2)$, a is the lattice spacing, $\beta_{\alpha j}$ is the spin state of atoms at site j and basis state α, and $\Phi(Q)$ is the Fourier transform of the Wannier function at each site. In the d-Mott state, we have $\left\langle b_{I'}^\dagger b_I \right\rangle \propto \delta_{II'}$, yielding

$$\langle n_1 (Q(r)) \rangle \propto \sum_\alpha e^{-iQ(r) \sum_\beta \beta_{\alpha j} = \gamma_j} f_\alpha^2$$

In a single plaquette, we find that the d-Mott ground state can be written as

$$|\chi_P \rangle = \sum_{i=1}^4 (-D_P)^{i-1} (|\lambda - \gamma \rangle |1100; 0011\rangle + |\lambda + \gamma \rangle |1100; 1011\rangle + |1010; 1010\rangle + |1010; 0011\rangle$$

$$+ |1010; 1001\rangle + |1010; 1010\rangle + 2|\lambda - \gamma \rangle |1010; 0101\rangle$$

where λ, γ and ξ are parameters determined by (U,t,t') and satisfy normalization $(16\xi^2 + 12(\lambda - \gamma)^2 + 4\gamma^2 = 1)$.

When $U \to \infty$, $\lambda \to \sqrt{3}/6$, $\xi \to 0$, $\gamma \to 0$ and the state becomes

$$|\chi_P\rangle \to \frac{\sqrt{3}}{6} |(1100;0011) - (0110;1001) + (0011;1100)
- |(1001;1010) + \sqrt{\frac{3}{3}}(1010;0101)
- |(0101;1010)\rangle,$$

(6)

which has no double occupancy. Under the operation of D_P onto $|\chi_P\rangle$ (either Eq. 5 or Eq. 6), it is seen that an eigenvalue of -1 is obtained. Using the wavefunction (Eq. 5 and Eq. 6), we find

$$\langle n_1 (\mathbf{Q} (\mathbf{r})) \rangle \propto 4\lambda^2 |\cos(Q_x a) - \cos(Q_y a)|^2.$$

(7)

Note that the ground state of H (Eq. 1 with finite t') is approximately the d-Mott state when $\langle D_P \rangle \approx -1$ and, hence, it is approximately described by a product state of single plaquette ground states (Eq. 5) with a TOF density distribution given by Eq. 7.

In Fig. 2(b), we plot the density distribution for the d-Mott state in TOF measurements with the image showing interference peaks at $Q_x + Q_y = N\pi/a$, where N is an odd integer and Q_x and Q_y are multiples of π/a. We want to emphasize that these peaks disappear in the TOF for a pure Mott state where one should observe a flat background, and this would be a way to contrast the present state from a regular Mott insulator. Further, the behavior of $\langle D_P \rangle$ as a function of t' (Fig. 3) is exactly indicative of the “d-Mott”-ness of the ground state of H with a TOF signature shown in Fig. 2(b). Therefore, monitoring the TOF interference peaks while varying U/t and t'/t would be an effective way to observe the d-Mott state.

In Fig. 4 we plot the coefficient $4\lambda^2$ with respect to the onsite energy U and find that the signal strength increases reaching $4/3$ for $U \to \infty$. However, the d-Mott state signal may not be observable for large U because the gap Δ is small at large U (see Fig. 2), where a small interplaquette tunneling t' may mix the d-Mott state with other states (see Fig. 3(b)), destroying the order and removing the interference signal. This is expected because for $U \to \infty$, the system is in a pure Mott state where no interference peaks are expected. Another possible road-block in the path of observing the interference pattern is that the temperature of the system must also be below Δ so that thermal fluctuations do not destroy the d-Mott order. But using $U/t \approx 5-6$ and keeping $k_B T \ll \Delta$ should lead to the experimental observation of the d-Mott state.

To conclude, we have described a scenario where a new state of matter, the d-Mott insulator, could be observed in a fermionic optical lattice via TOF measurements. Furthermore, we have provided semi-quantitative parameter values where the state should most likely be seen ($U/t \approx 6$ and $t'/t < 0.3$). This could also serve as a rigorous benchmark in further experimental studies toward the realization of the general two-dimensional square lattice Hubbard model in relation to its utility in the study of high-T_C cuprate superconductors. We believe that the direct TOF observation of the hitherto-unobserved d-Mott quantum insulator in a fermionic optical lattice would go a long way in establishing cold atomic gases as a useful optical lattice emulator of novel strongly correlated phases.

This work is supported by ARO-DARPA.

[1] M. Greiner et al., Nature 415, 39 (2002).
[2] D. Jaksch et al., Phys. Rev. Lett. 81, 3108 (1998).
[3] M. Modugno et al., Phys. Rev. A 68, 011601(R) (2003).
[4] M. Köhl, et al., Phys. Rev. Lett. 94, 080403 (2005).
[5] J.-K. Chin et al., Nature 443, 961 (2006).
[6] R. Jordens et al., arXiv:0804.4009 (2008).
[7] I. Bloch et al., arXiv:0704.3011 Rev. Mod. Phys (in press) (2007).
[8] M. Lewenstein et al., Adv. Phys. 56, 243 (2007).
[9] L.-M. Duan, Phys. Rev. Lett. 95, 0043202 (2005).
[10] P.A. Lee, N. Nagaosa, and X.-G. Wen, Rev. Mod. Phys. 78 , 17 (2006).
[11] W. Hofstetter et al., Phys. Rev. Lett. 89, 220407 (2002).
[12] S. Trebst et al., Phys. Rev. Lett. 96, 250402 (2006).
[13] B. Paredes and I. Bloch, Phys. Rev. A 77, 023603 (2008).
[14] H. Yao, W.-F. Tsai, and S. A. Kivelson, Phys. Rev. B 76, 161104 (2007).
[15] S. Trotzky et al., Science 319, 295 (2008).
[16] J. Sebby-Strabley et al., Phys. Rev. A 73, 033605 (2006).
[17] W.-F. Tsai and S. A. Kivelson, Phys. Rev. B 73, 214510 (2006).
[18] R. Schumann, Annalen der Physik 11, 49 (2001).
[19] E.H. Lieb and F.Y. Wu, Phys. Rev. Lett. 20, 1145 (1968).