Analysis of Some Failure Reduction on Primary Pile in The Secant Pile System

D N Sunjaya* and A J Susilo**
Department of Civil Engineering, Universitas Tarumanagara, Jakarta, Indonesia

*desi.325160011@stu.untar.ac.id , **alfred@ft.untar.ac.id

Abstract. Retaining wall is a very important structure in the basement construction process. The planning of the retaining wall, whether in the design or in the processing step should be precise, otherwise, it can be disastrous. In the construction process, problems sometimes happen when the excavation process is going on. Therefore, the role of retaining wall is crucial. If the retaining wall doesn’t function well, the soil around the excavation site will shift and move and it can cause a rift or even more fatal failures to the structure. The analysis on this study is the failure analysis on retaining wall type secant pile. This analysis will be focusing on the failure that happen on primary pile. The analysis is done by reducing the strength of the primary pile based on the potential failure that might happen. This aims to test the deformation on the secant pile system, if there’s a failure on the primary pile. It will be done in two different types of soil, clay and sand.

1. Introduction
One of the civil engineering projects is the construction of high rise buildings. It will be used for shops, offices, apartments and others. In urban areas that have limited land, buildings are built vertically because it can’t be built sideways. Vertical building construction is an effort to optimize the land that is densely populated and getting expensive every year. Vertical building construction can be done vertically up or vertically down to the underground.

Underground building construction is usually used for basement. Basement can be used for various purposes, such as utility rooms, warehouses, and parking lots. The planning of basement itself must have the right design and the step of construction must be precise so it didn’t cause failure in the building and surrounding buildings. In the construction of a basement, retaining walls are needed. Retaining wall is needed in order to hold the soil during the basement excavation process. In densely populated city centers, the number of excavations increases every year [1]. Structures in the immediate vicinity of excavations, dense traffic scenario, presence of underground obstructions and utilities have made excavations a difficult task to execute [2].

Therefore, one of the important thing in the construction of a basement is the need for a solid retaining wall structure so that the stability of the soil around the basement is maintained and does not cause movement or deformation in the surrounding buildings that can cause cracks, damage or collapse in the building. In the implementation, damage or failure in the structure of the retaining wall may occur. Failure can occur due to errors in the wall design or in the construction process.

This study will analyze the failure of the retaining wall structure, especially retaining wall type secant pile. Secant pile consists of two different pile characteristics, first is primary pile that contain
bentonite cement and the second is secondary pile, which is a pile made of reinforced concrete. In this study, only the failure on primary pile will be analyzed because bentonite cement require special works compared to reinforced concrete.

2. Method and Materials

2.1. Sample preparation
The sample consists of two different types of soil, sand and clay. The data that used in this analysis are boring log and laboratory result. If the laboratory result is incomplete, then the correlation of soil data is used to get the desired soil parameter. The soil parameter that used are cohesion (c), angle of friction (ϕ), and unit weight (γ′).

Here are the soil data and parameters that will be used in the calculation:

Depth (m)	High (m)	N-SPT	c (kN/m²)	ϕ (°)	γ′ (kN/m³)	
0	4	4	7	19	27.5	16
4	5.5	1.5	64	194	27.5	20
5.5	7	1.5	19	70	27.5	18
7	10	3	57	194	27.5	20
10	13	3	28	108	27.5	20
13	16	3	4	18	27.5	14
16	22	6	11	40	27.5	17
22	23.5	1.5	22	82	27.5	19

Depth (m)	High (m)	N-SPT	c (kN/m²)	ϕ (°)	γ′ (kN/m³)	
0	3.5	3.5	2	0	26	13
3.5	6	2.5	57	0	35	23
6	8	2	38	0	34	17
8	9.5	1.5	28	0	18	16
9.5	12.5	3	42	0	36	18
12.5	14	1.5	60	0	35	23
14	17	3	45	0	37	19
17	20	3	60	0	35	23

The secant pile wall is used for three story basement, with a 3.2 meter height for each story, so the total height of the retaining wall is 9.6 m and 10 m wide. The diameter of the secondary pile is 0.8 m and the primary pile is 0.4 m. The distance between each secondary pile is 1.2 m. The ground water level is at 0.0 m. The depth of secant pile is calculated until it reaches the hard soil. For clay, the depth of secant pile is 23.5 m and 20 m for sand.
2.2. Method
This analysis is done by reducing the strength of the primary pile based on the potential failure that might happen. There are some potential failure that might happen as:

1. Crack and void : 5-10%
2. Necking dan bulging : 10-15%
3. Inclusion of foreign material : 20-25%
4. Imperfect overlap between the pile : 30-35%
5. Casting error of the bentonite cement : 40-45%

This percentage of reduction is based on the failed area on the pile from the whole pile. The percentage will be calculated every five percent increase.

This analysis started with the calculation of active and passive earth pressure, based on the Rankine Theory [3]. These are the formula for active and passive earth pressure:

\[K_a = \tan^2 \left(45 - \frac{\phi}{2} \right) = \frac{1 - \sin \phi}{1 + \sin \phi} \]
(1)

\[K_p = \tan^2 \left(45 + \frac{\phi}{2} \right) = \frac{1 - \sin \phi}{1 + \sin \phi} \]
(2)

After the earth pressure was calculated, the soil pressure should be calculated as well. There are two different formula for the soil pressure. For non-cohesive soil, at the depth of H, pressure P stated in:

\[P = \frac{1}{2} \times \gamma_s \times H^2 \times K \]
(3)

As for cohesive soil, P stated in:

\[P = \frac{1}{2} \times \gamma_s \times H^2 \times K + 2c \times H \times \sqrt{K} \]
(4)

All overall stability failure modes must be thoroughly checked on the retaining wall, such as:

1. Check for overturning : \(SF = \frac{\Sigma Mb}{\Sigma Mo} \)
 Where:
 \(\Sigma Mb = \) sum of the moments of forces tending to overturn
 \(\Sigma Mo = \) sum of the moments of forces tending to resist overturning
2. Check for sliding: \(SF = \frac{\Sigma V_b}{\Sigma V_o} \)

Where:
\(\Sigma V_b \) = sum of the horizontal resisting force
\(\Sigma V_o \) = sum of the horizontal driving forces

The safety factor for overturning and sliding on clay is 2 and 1.5 for sand [4].

3. Check for bearing capacity failure: \(SF = \frac{qu}{\sigma} \geq 3 \)

Where:
\(qu = c.Nc.Fcd.Fci + q.Nq.Fqd.Fqi + \frac{1}{2} yb.Ny. Fyd. Fyi \)
\(\sigma = \frac{V}{b}(1 \pm \frac{6e}{D}) \)
\(e = \frac{b}{2} - \left(\frac{\Sigma Mb - \Sigma Mo}{V} \right) \)
\(Fcd = 1 + 0.4 \left(\frac{D}{D_b} \right) \)
\(Fqd = 1 + 2 \tan \phi (1 - \sin \phi)^2 \left(\frac{D}{D_b} \right) \)
\(Fci, Fqi = (1 - \frac{\psi}{90})^2 \)
\(Fyi = (1 - \frac{\phi}{90})^2 \)
\(\psi = \tan^{-1} \left(\frac{pa}{V} \right) \)

Permitted Deflection:
This deflection on the secant pile will be compared with permission limit tolerance based on SNI 8460:2017 [5]. The maximum deflection that permitted is 0.5\%H, where H is the depth of the retaining wall. The deflection is calculated with reducing the moment of inertia of the primary pile.

Table 3. Inertia Reduction

Percentage (%)	Inertia (m^4)
0	0.010053
5	0.009550
10	0.009048
15	0.008545
20	0.008042
25	0.007540
30	0.007037
35	0.006535
40	0.006032
45	0.005529

3. Results

3.1. The result on clay
The results of the stability check on the retaining wall as follows:
- SF overturning = 2.88 \(\geq 2 \) (OK)
- SF sliding = 0.74 \(< 2 \) (Not OK)
- SF bearing capacity = 0.005 \(< 3 \) (Not OK)
Table 4. Deflection Results on Clay

Percentage (%)	Deflection (cm)	Total (cm)	Permitted Deflection (cm)	Check	
	Soil	Water			
0	4.36	4.15	8.51	11.75	OK
5	4.37	4.16	8.53	11.75	OK
10	4.39	4.17	8.56	11.75	OK
15	4.40	4.19	8.58	11.75	OK
20	4.41	4.20	8.61	11.75	OK
25	4.42	4.21	8.63	11.75	OK
30	4.43	4.22	8.66	11.75	OK
35	4.45	4.23	8.68	11.75	OK
40	4.46	4.24	8.70	11.75	OK
45	4.47	4.26	8.73	11.75	OK

3.2. The result on sand

The results of the stability check on the retaining wall as follows:
- SF overturning = 7.90 > 1.5 (Ok)
- SF sliding = 1.41 < 1.5 (Not OK)
- SF bearing capacity = 0.0001 < 3 (Not OK)

Table 5. Deflection Results on Sand

Percentage (%)	Deflection (cm)	Total (cm)	Permitted Deflection (%)	Check	
	Soil	Water			
0	18.73	2.27	21.00	10	Not OK
5	18.79	2.27	21.06	10	Not OK
10	18.84	2.28	21.12	10	Not OK
15	18.89	2.28	21.18	10	Not OK
20	18.94	2.29	21.24	10	Not OK
25	19.00	2.30	21.30	10	Not OK
30	19.05	2.30	21.36	10	Not OK
35	19.11	2.31	21.42	10	Not OK
40	19.16	2.32	21.48	10	Not OK
45	19.21	2.32	21.54	10	Not OK

4. Conclusion

The check of retaining wall stability shows that both on clay and sand, the secant pile wall is safe against overturning but it can’t resist the sliding and bearing capacity of the soil behind the wall. Furthermore, on sand, the deflection did not fulfill the permitted deflection so any failure should not happen on the pile. Otherwise, on clay, the deflection did fulfill the permitted deflection on those five failure that had been mention before ao the failure may occur on the pile. It can be strengthened in several ways, such as grouting to fill cavities on walls and the use of ring beam or anchor reinforcement.
5. References

[1] Ergun, M. (2008). Deep Excavations. *Electronic Journal of Geotechnical Engineering*, 1-34.

[2] Manish, K. (2008). Deep Support Systems Using Diaphragm Walls and Contiguous Piles. *National Seminar On Deep Excavation in Urban Environment, Mumbai*, 1-18.

[3] Das, B. M. (2007). *Principles of Foundation Engineering*. United States: Chris Carson.

[4] E.Bowles, J. (1997). *Foundation Analysis and Design*. McGraw-Hill

[5] Badan Standardisasi Nasional. 2017. *SNI Geoteknik 8460:2017-Persyaratan Perancangan Geoteknik*. Badan Standardisasi Nasional. Jakarta.