Membrane Proteomics of Arabidopsis Glucosinolate Mutants cyp79B2/B3 and myb28/29

Islam Mostafa1,2,3, Mi-Jeong Yoo1,2, Ning Zhu1,2, Sisi Geng1,2,4, Craig Dufresne5, Maged Abou-Hashem3, Maher El-Domiaty3 and Sixue Chen1,2,4,6*

1 Department of Biology, University of Florida, Gainesville, FL, USA, 2 Genetics Institute, University of Florida, Gainesville, FL, USA, 3 Department of Pharmacognosy, Faculty of Pharmacy, Zagazig University, Zagazig, Egypt, 4 Plant Molecular and Cellular Biology Program, University of Florida, Gainesville, FL, USA, 5 Thermo Fisher Scientific, West Palm Beach, FL, USA, 6 Interdisciplinary Center for Biotechnology Research, University of Florida, Gainesville, FL, USA

Glucosinolates (Gls) constitute a major group of natural metabolites represented by three major classes (aliphatic, indolic, and aromatic) of more than 120 chemical structures. In our previous work, soluble proteins and metabolites in Arabidopsis mutants deficient of aliphatic (myb28/29) and indolic Gls (cyp79B2/B3) were analyzed. Here we focus on investigating the changes at the level of membrane proteins in these mutants. Our LC/MS-MS analyses of tandem mass tag (TMT) labeled peptides derived from the cyp79B2/B3 and myb28/29 relative to wild type resulted in the identification of 4,673 proteins, from which 2,171 are membrane proteins. Fold changes and statistical analysis showed 64 increased and 74 decreased in cyp79B2/B3, while 28 increased and 17 decreased in myb28/29. As to the shared protein changes between the mutants, one protein was increased and eight were decreased. Bioinformatics analysis of the changed proteins led to the discovery of three cytochromes in glucosinolate molecular network (GMN): cytochrome P450 86A7 (At1g63710), cytochrome P71B26 (At3g26290), and probable cytochrome c (At1g22840). CYP86A7 and CYP71B26 may play a role in hydroxyl-indolic Gls production. In addition, flavone 3′-O-methyltransferase 1 represents an interesting finding as it is likely to participate in the methylation process of the hydroxyl-indolic Gls to form methoxy-indolic Gls. The analysis also revealed additional new nodes in the GMN related to stress and defense activity, transport, photosynthesis, and translation processes. Gene expression and protein levels were found to be correlated in the cyp79B2/B3, but not in the myb28/29.

Keywords: Arabidopsis, membrane proteome, glucosinolate, stress and defense, molecular networks

INTRODUCTION

Glucosinolates (Gls) as natural anticancer compounds are represented by three major classes of chemical structures (aliphatic, indolic, and aromatic; Yan and Chen, 2007; Sønderby et al., 2010). In addition to their anti-carcinogenic activities, they have a distinct role in plant defense against herbivores (Halkier and Gershenzon, 2006; Yan and Chen, 2007) and pathogens (Kissen et al., 2009). The activities are attributed to their hydrolysis products, such as isothiocyanates, thiocyanates, and nitriles (Halkier and Gershenzon, 2006). Gls biosynthesis starts from methionine,
tryptophan or phenylalanine to produce aliphatic, indolic, or aromatic Gls, respectively (Yan and Chen, 2007; Sonderby et al., 2010). Briefly, the substrate amino acid is converted to aldoxime, then to aci-nitro compounds, thiohydroximates, and desulfoglucosinolates. After sulfation, the core Gls structure is formed. In aliphatic Gls biosynthesis, the methionine chain-elongation and the core structure biosynthesis are under the control of three transcriptional factors MYB28, MYB29, and MYB76 (Yan and Chen, 2007; Feriglmann et al., 2012). In the core pathway, the formation of aldoximes is catalyzed by cytochrome P450s CYP79F1 and CYP79F2, and that of the aci-nitro compounds by CYP83A1 (Grubb and Abel, 2006). Then glutathione S-transferase U20 forms thiohydroximates, which are in turn rearranged to desulfoglucosinolate by UGT74B1 (Sonderby et al., 2010), followed by sulfation by SOT17 and SOT18 to produce intact Gls (Sonderby et al., 2010; Mostafa et al., 2016). Similar for indolic Gls, CYP79B2, CYP79B3, and CYP83B1 are responsible for aldoximes and aci-nitro compounds formation, followed by conversion to thiohydroximates by glutathione S-transferase F10, rearrangement to desulfoglucosinolates and sulfation to indolic Gls by SOT16 (Grubb and Abel, 2006; Mostafa et al., 2016). It is clear that the cytochrome P450s play a central role in the Gls biosynthesis, and these proteins are membrane localized (Neve and Ingelman-Sundberg, 2010).

Several studies have reported the relationship between the Gls biosynthetic pathway and other biological pathways in plants, e.g., amino acid and carbohydrate pathways using CYP79F1 RNAi lines (Chen et al., 2012), auxin biosynthesis using cyp79B2/B3 mutant (Zhao et al., 2002) and stress response pathways through environmental perturbation (Martinez-Ballesta et al., 2013). In our previous work, we used Arabidopsis double mutants (cyp79B2/B3 deficient in indolic Gls production and myb28/29 deficient in aliphatic Gls production), and discovered new nodes in the glucosinolate molecular network (GMN) that include stress and defense related proteins like glucan endo-1,3-beta-glucosidase, glutathione S-transferase, cytochrome P450s CYP79B2, CYP79B3, and CYP83B1 are responsible for aldoximes and aci-nitro compounds formation, followed by conversion to thiohydroximates by glutathione S-transferase F10, rearrangement to desulfoglucosinolates and sulfation to indolic Gls by SOT16 (Grubb and Abel, 2006; Mostafa et al., 2016). It is clear that the cytochrome P450s play a central role in the Gls biosynthesis, and these proteins are membrane localized (Neve and Ingelman-Sundberg, 2010).

Since many known glucosinolate proteins such as the cytochrome P450s are membrane or membrane associated proteins, here we investigated how perturbation of Gls metabolism using the aforementioned mutants affects the Arabidopsis membrane proteome using Tandem Mass Tag (TMT) labeling LC-MS/MS based quantitative proteomics. Analyses of protein interaction networks using STRING and functional enrichment of the identified proteins using agrigo allowed us to discover new nodes and edges in the GMN. With qRT-PCR, we were able to determine the correlation between gene transcripts and membrane proteins in the two mutants. Together with our published soluble proteomics work (Mostafa et al., 2016), this study enables a comprehensive understanding of the Arabidopsis GMNs.

MATERIALS AND METHODS

Plant Genotyping, Growth, and Sample Collection

Arabidopsis thaliana (L.) Heynh ecotype Columbia (Col-0) seeds were obtained from the Arabidopsis Biological Resource Center (Columbus, OH, USA). The seeds of cyp79B2/B3 and myb28/29 were kindly provided by Dr. John Celenza (Boston University, Boston, MA, USA) and Dr. Masami Hirai (RIKEN Plant Science Center, Yokohama, Japan), respectively. The mutant genotyping and chemotyping were reported in our previous study (Mostafa et al., 2016). Seed germination and seedling growth were conducted as previously described (Mostafa et al., 2016). Leaves from 5-week old wild type (WT), cyp79B2/B3 and myb28/29 were collected, frozen in liquid nitrogen and stored at −80°C. Four replicates were included per genotype, and each replicate contains 2 g leaves pooled from 12 plants.

Protein Extraction and Peptide TMT Labeling

Protein was extracted according to Pang et al. (2010) by grinding the leaf tissues in liquid nitrogen and then homogenizing on ice in 10 mM Tris-HCl (pH 7.4), 10 mM KCl, 1.5 mM MgCl₂, 10 mM dithiothreitol (DTT), 0.5 M sucrose, and 10 mM phenylmethylsulfonyl fluoride (PMSE). The protein extracts were filtered through cheesecloth and centrifuged at 800 g for 10 min at 4°C. The supernatant was transferred to ultracentrifuge tubes and centrifuged again at 100,000 g for 1.5 h at 4°C. The formed microsomal membrane was washed with 100 mM sodium carbonate using a glass dounce homogenizer, followed by centrifugation at 100,000 g for 1.5 h at 4°C. The microsome pellets were rinsed with 500 µl resuspension buffer containing 100 mM HEPES (pH 7), 1% triton X-100 and 0.5 M sucrose, and centrifuged at 800 g for 10 min at 4°C. Protein was precipitated using 5 volumes ice cold 90% acetone overnight at −20°C, followed by washing the pellets once with ice cold 90% acetone and twice with ice cold acetone before solubilizing in 7 M urea, 2 M thiourea, 4% CHAPS, and 0.25% Triton X-100. The protein amount was assayed using an EZQ assay kit (Invitrogen Inc., Eugene, OR, USA).

A total of 50 µg protein from each replicate was precipitated with ice cold 90% acetone at −20°C overnight, followed by 20,000 g centrifugation at 4°C for 15 min. After washing with ice cold 90% acetone, the pellets were solubilized, reduced, alkylated and digested with modified trypsin (Promega, Madison, WI, USA) at a 1:25 (w/w) ratio for 16 h at 37°C, followed by TMT labeling according to the TMT 6-plex kit manual (Thermo Scientific Inc., San Jose, CA, USA). The WT replicates were labeled with 126 and 127 tags, cyp79B2/B3 replicates with 128 and 129 tags and myb28/29 replicates with 130 and 131 tags at room temperature for 2 h. After quenching with 8 µl 5% hydroxylamine for

Abbreviations: Gls, glucosinolate; GMN, glucosinolate molecular network; GO, Gene Ontology; TMT, tandem mass tags; WT, *Arabidopsis thaliana* wild type.
30 min, the labeled samples were combined and lyophilized. Two independent experiments and four biological replicates each sample were performed.

Peptide Desalting, Strong Cation Exchange Fractionation, and LC-MS/MS Analysis

The TMT labeled peptides were desalted on Macrospin C-18 reverse phase mini-column (The Nestgroup Inc., Southborough, MA, USA) and fractionated using an Agilent HPLC 1260 strong cation exchange system as previously described (Mostafa et al., 2016). A total of 12 fractions were collected from each experiment. Each fraction was lyophilized, solubilized in solvent A (0.1% formic acid and 3% acetonitrile), and analyzed using an Easy-nLC 1000 system coupled to a Q-Exactive Orbitrap Plus MS (Thermo Fisher Scientific, Bremen, Germany) according to Mostafa et al. (2016) with minor modifications: The mobile phase gradient was ramped from 2 to 30% of solvent B (0.1% formic acid and 99.9% acetonitrile) in 57 min, then to 98% of solvent B in 6 min and maintained for 12 min. Mass analysis was performed in positive ion mode with high collision dissociation energy. The scan range was 400–2,000 m/z with full MS resolution of 70,000 and 200–2,000 m/z with MS² resolution of 17,500. The first mass was fixed at 115 m/z, and 445.12003 m/z (polysiloxane ion mass) was used for real-time mass calibration.

Protein Identification and Quantification

The MS data were searched using Proteome Discoverer 1.4 (Thermo Scientific, Bremen, Germany) against the Arabidopsis TAIR10 database with 35,386 entries. The searching parameters were set to 300 and 5,000 Da as minimum and maximum precursor mass filters, digestion with trypsin with two missed cleavages, Carbamidomethylation of cysteine was set as a static modification, and TMT6plex of N terminus, TMT6plex of lysine, phosphorylation of SYT (serine, threonine, and tyrosine) and methionine oxidation were set as dynamic modifications. Precursor mass tolerance was 10 ppm, fragment mass tolerance was 0.01 Da, spectrum grouping maximum retention time difference was 1.1 and false discovery rate was 0.01 at the peptide level. Proteins quantification based on labeled unique peptides intensities and statistical analyses were performed as previously described (Chen et al., 2012; Mostafa et al., 2016; Sun et al., 2017). The proteomics data were deposited to ProteomeXchange repository (accession number: PXD005781).

String Bioinformatics Analysis and Gene Ontology Enrichment

The relationship between the significantly changed proteins and Gls metabolic pathways (Chen et al., 2011; Mostafa et al., 2016) was analyzed using STRING bioinformatics tool (Baldrianová et al., 2015; Ji et al., 2016; Lim et al., 2017). The resulted networks were visualized in the confidence view relying on gene neighborhood, fusion, co-occurrence, co-expression, literature, and available data. To determine the enriched pathways, we performed Singular Enrichment Analysis (SEA) for the changed proteins and the results were compared using a cross comparison of SEA (SEACOMPARE) in the agriGO database (Silva-Sanchez et al., 2013).

Quantitative Real-Time Polymerase Chain Reaction (qRT-PCR)

To determine whether protein expression levels were correlated with transcript levels, we conducted qRT-PCR of 44 genes selected based on the proteomics data (32 for cyp79B2/B3 and 22 for myb28/29). This list of primers used in qRT-PCR is provided in Supplementary Table 1. Total RNA was extracted using a RNeasy Plant Mini Kit (Qiagen, Valencia, CA, USA) and cDNA was synthesized with ProtoScript® II Reverse Transcriptase (New England BioLabs, Ipswich, MA, USA). qRT-PCR was performed with VeriQuest SyBr and a fluorescent kit (Affymetrix, Santa Clara, CA, USA) using CVFX96 (Bio-Rad, Hercules, CA, USA) as described previously (Koh et al., 2012). For each reaction, three technical and three biological replicates were included. Relative expression of the target genes was calculated using the comparative Ct method (Applied Biosystems, Framingham, USA). The differences in Ct values (ΔCt) between the target gene and two internal controls (AT4G34270 and AT5G44200) were calculated to normalize differences in the starting materials. The expression ratios of cyp79B2/B3 and myb28/29 to WT were calculated and compared to the ratios from the protein data using Pearson’s r.

RESULTS

cyp79B2/B3 and myb28/29 Membrane Proteomes

Based on the MS/MS spectra of high confidence peptides derived from the WT, cyp79B2/B3 and myb28/29, we identified 4673 proteins in two independent experiments using Proteome Discoverer (Supplementary Table 2). Out of these proteins, 3,132 were identified in both experiments, while 1,076 and 465 were unique to experiments 1 and 2, respectively (Figure 1A). A total of 4,655 proteins were available for quantification based on unique TMT labeled peptides, highlighting the high efficiency of labeling. PD enrichment analysis (based on TAIR and Uniprot annotations) of the identified proteins showed 2,171 to be membrane proteins (Figure 1B and Supplementary Table 2). Comparative analysis of the protein expression changes between the mutants and WT at a fold change cutoff (>1.2 and <0.8), a p < 0.05 and transmembrane domain analysis revealed 93 proteins to be increased (Figure 1C) and 99 to be decreased (Figure 1D). Transmembrane domain analysis revealed that 175 out of the 192 differentially expressed proteins contained at least one transmembrane domains. The rest deemed to be membrane associated proteins (Supplementary Table 3). Correlating the changed proteins to those involved in Gls metabolism using STRING showed new nodes and edges (Figures 2, 3). The new nodes can be categorized according to their positions in the network as directly correlated or indirectly correlated to Gls metabolism. They can also be classified according to their biological roles as secondary (stress related) and tertiary (other biological process) connections (Detailed in next sections).
Common Changes of Membrane Proteins between the *cyp79B2/B3* and *myb28/29*

Nine membrane proteins showed common changes between the two mutants relative to WT, with only one protein increased while the other eight decreased (Table 1). By STRING mapping of the significantly changed proteins (Figures 2, 3), we found seven of the nine proteins represented new connections with the glucosinolate metabolic network (GMN). The role of probable cytochrome c (CYC2) and plastocyanin minor isosform (PETE) in electron transport process (Pesaresi et al., 2009; Welchen et al., 2012) makes them biologically relevant tertiary connections in GMN in a way similar to cytochrome B5 isomerase C and cytochrome c oxidase subunit 5b-2 (Mostafa et al., 2016). Photosystem I reaction center subunit IV B (PSAE2), 14-3-3-like protein GF14 nu (GRF7), adenine phosphoribosyltransferase 1 (APT1), alba DNA/RNA-binding protein (F28N24.7) and triose phosphate/phosphate translocator (APE2) form other tertiary nodes. Out of this group, APT1 was the only protein directly connected to the GMN (Figures 2, 3).

Specific Changes of *cyp79B2/B3* Membrane Proteins

Sixty-four and 74 membrane proteins showed unique increases and decreases, respectively, in the *cyp79B2/B3* mutant (Table 2). Seventy-seven new nodes were discovered by the STRING mapping of these *cyp79B2/B3* proteins to the GMN (Figure 2). It was obvious that perturbation of the indolic Gls metabolism affected a group of stress-related membrane proteins forming new secondary nodes.

Representative examples from this group are calmodulin-like protein 12 (CML12; Cazzonelli et al., 2014), mediator of RNA polymerase II transcription subunit 37c (MED37C; Lee et al., 2009), SNAP25 homologous protein (SNAP33; Eschen-Lippold et al., 2012), dynamin-related protein 1E (DRP1E; Minami et al., 2015), protein ILIYTHIA (ILA; Monaghan and Li, 2010), glyceraldehyde-3-phosphate dehydrogenase (GAPC2; Guo et al., 2012), L-ascorbate peroxidase 3 (APX3; Narendra et al., 2006), Ras-related protein (RABA4B; Antignani et al., 2015), annexin D1 (ANN1; Gorecka et al., 2005; Jia et al., 2015), hypoxia-responsive family protein (At5g27760), and malate dehydrogenase 2 (mMDH2; Jones et al., 2006).

The role of cytochromes P450s 86A7 (CYP86A7) and 71B26 (CYP71B26) in oxidation reduction reaction and oxygen binding (Duan and Schuler, 2005) makes them biologically relevant tertiary nodes in the GMN (Figures 2, 4). Other interesting new tertiary nodes related to Gls metabolism include division protein FtsZ homologs 1 (FTSZ1), 2-1 (FTSZ2-1), 2-2 (FTSZ2-2), curculin-like (mannose-binding) lectin family protein (At5g18470), isoform 3 of dihydrolipoamide-residue succinyltransferase component of 2-oxoglutarate dehydrogenase complex 2 (At4g26910), elongation factor Tu (TUFa), ATP sulfurylase 1 (APS1), ABC transporter B family member 26 (ABCB26), flavone 3’-O-methyltransferase 1 (OMT1), Ras-related protein (RABA4A), Ras-related protein (RABB1C), endoglucanase 10 (AT1G5680), dicarboxylate/tricarboxylate transporter (DTC), probable monodehydroascorbate reductase isoform 3 (At3g52880), vesicle transport v-SNARE 11 (VTI11), DnaJ/Sec63 Br1 domains-containing protein (ATERDJ2B), and glycosylphosphatidylinositol-anchored lipid protein transfer 6 (At1g55260). Myrosin cells (myrosinase storage sites) endocytosis is controlled by SYP22 from SNARE complex and VPS9A (Shirakawa et al., 2016). Here the decrease of VTI11 from this family is in agreement with the reduced myrosinase, nitrile specifier protein and Gls levels in the soluble proteome (Mostafa et al., 2016) and supports the cross talk between Gls and its hydrolyzing enzymes.

Out of these new nodes, 15 formed direct edges with the GMN: FTSZ1, CML12, FTSZ2-2, At5g18470, At4g26910, TUFa, MED37C, APS1, SNAP33, ILA, GAPC2, OMT1, CYP71B26, ANN1, and mMDH2 in addition to the membrane associated protein (20 kDa chaperonin, CPN21). As we detected a side network correlated to indolic GMN (Mostafa et al., 2016), here we also found a side network strongly correlated to indolic Gls metabolism as it contains nine stress-related proteins out of eleven. These proteins are xyloglucan endotransglucosylase/hydrolase protein 4 (XTH4; Campbell and Braam, 1999), aquaporin PIP1-2 (Javot, 2003; Tournaire-Roux et al., 2003), probable aquaporin PIP1-5 (Weig et al., 1997), aquaporin PIP2-3 (Daniels et al., 1994), probable aquaporin PIP1-4 (Li et al., 2015), plasma membrane intrinsic protein 1B (PIP1B; Alexandersson et al., 2005), aquaporin PIP1-3 (Kammerloher et al., 1994), probable aquaporin PIP2-6 (Alexandersson et al., 2010), and aquaporin PIP2-7 (Weig et al., 1997). Other members...
FIGURE 2 | STRING analysis of cyp79B2/B3 changed proteins in relation to known proteins in Gls biosynthesis. Known Gls biosynthetic proteins are indicated by red balls, new proteins in the GMN are indicated by gray balls, proteins changed in both mutants are indicated by italic labeling, and uniquely changed proteins in cyp79B2/B3 are indicated by non-italic labeling. Proteins involved in Gls biosynthesis, stress and defense, and other processes are labeled with green, brown, and violet labels, respectively. Connections strength are proportional to edges thickness as derived from neighborhood, gene fusion, co-occurrence, co-expression, previous experiments, and text-mining information at medium confidence score. Asterisk (*) indicates manual connections based on literature. Double asterisk (**) indicates known nodes in both mutants (Mostafa et al., 2016), and triple asterisk (***) indicates known nodes in cyp79B2/B3 (Mostafa et al., 2016). Full names of the mapped proteins can be found in the abbreviation and protein name columns in Tables 1, 2.
FIGURE 3 | STRING analysis of myb28/29 changed proteins in relation to known proteins in Gls biosynthesis. Known Gls biosynthetic proteins are indicated by red balls, new proteins in GMN are indicated by gray balls, proteins changed in both mutants are indicated by italic labeling, and uniquely changed proteins in myb28/29 are indicated by non-italic labeling. Proteins involved in Gls biosynthesis, stress and defense, and other processes are labeled with green, brown, and violet labels, respectively. Connections strength are proportional to edges thickness as derived from neighborhood, gene fusion, co-occurrence, co-expression, previous experiments, and text-mining information at medium confidence score. Asterisk (*) indicates manual connections based on literature. Double asterisk (**) indicates known nodes in both mutants (Mostafa et al., 2016). Full names of the mapped proteins can be found in the abbreviation and protein name columns in Tables 1, 2.

in this side network are bifunctional inhibitor/lipid-transfer protein (At2g45180; which has a proteolytic action) and a tetraspanin-18 (TOM2AH2) with unknown functions.

Specific Changes of myb28/29 Membrane Proteins

Membrane proteomics of the myb28/29 mutant showed 28 and 17 proteins to be significantly increased and decreased, respectively (Table 3). STRING analysis of the increased and decreased myb28/29 specific membrane proteins revealed 21 new nodes in the GMN (Figure 3). Except for the directly connected and stress-related GTP-binding nuclear protein (RAN1; Jiang et al., 2007), other connections including 17 ribosomal proteins [e.g., 60S ribosomal protein L14-2 (RPL14B), 40S ribosomal protein S15-1 (RPS15) and 40S ribosomal protein S15-4 (RPS15D)], and actin-11 (ACT11), ADP/ATP carrier protein 1 (AAC1) and eukaryotic translation initiation factor 3 subunit F (TIF3F1) formed tertiary nodes. These tertiary nodes are connected to the GMN through two bridges (directly connected nodes) which are 60S ribosomal protein L15-1 (RPL15A) and 60S ribosomal protein L13-1 (BBC1). The expression changes in ribosomal proteins reflect a correlation between aliphatic Gls perturbation and the translation process in A. thaliana.

Gene Ontology Analysis of the Significantly Changed Membrane Proteins

AgriGO enrichment analysis of the changed proteins was conducted at the biological processes (BP), cellular components (CC), and molecular functions (MF) levels. By annotating 147 changed membrane proteins in the cyp79B2/B3 using SEA, we got 302 enriched GO terms for BP (Supplementary Figure 1), 63 for CC (Supplementary Figure 2), and 47 for MF (Supplementary Figure 3). SEA of 54 changed membrane proteins in the myb28/29 showed 45 enriched GO terms for BP (Supplementary Figure 4), 56 for CC (Supplementary Figure 5) and 2 for MF (Supplementary Figure 6). SEACOMPARE of the mutant revealed 271 BP, 21 CC, and 46 MF GO terms to be enriched specifically in cyp79B2/B3, while 14 BP, 14 CC, and one MF were the specifically enriched GO terms in myb28/29 (Supplementary Table 4). From this BP analysis, it was obvious that responses to stimuli including abiotic, chemical and stress were highly enriched in cyp79B2/B3 in addition to transport, photosynthesis and metabolic processes. In myb28/29, the most enriched BP terms were those related to translation process. This observation supported our results concerning the stimuli and translation-related proteins in the cyp79B2/B3 and myb28/29, respectively (Supplementary Table 4). On the level of CC, the high enrichment of membrane GO terms supported
the effectiveness of our membrane preparation procedure (Supplemental Figures 2, 5).

Comparison of Protein Expression Data with Transcription Data

To determine whether protein level changes correlated with gene transcription changes, we examined the transcript levels of 32 and 22 genes from cyp79B2/B3 and myb28/28, respectively (Supplementary Table 5). The two mutants exhibited different patterns of correlation. In comparison of cyp79B2/B3 to WT, the genes investigated showed a positive correlation between transcript and protein levels in both direction and degree of expression ($r = 0.6579, p = 4.269e^{-55}$; Supplementary Figure 7). However, in comparison of myb28/29 to WT, the genes did not show correlation between the transcript and protein levels ($r = 0.0887, p = 0.6945$; Supplementary Figure 7). The difference in the degree of correlation in these two mutants implies that different regulatory mechanisms are involved in the transcriptional and posttranscriptional processes in different genotypes (Marmagne et al., 2010; Koh et al., 2012).

DISCUSSION

As a result of Gls metabolism perturbation, many changes in the levels of soluble (Mostafa et al., 2016) and membrane proteins took place. It was interesting to discover new cytochromes to be involved in the GMN. In addition, several groups of stress and defense-related proteins as well as binding and transport activity proteins were related to the indolic and aliphatic GMNs, in addition to a group of ribosomal proteins in the myb28/29 mutant.

Three New Cytochromes in the Glucosinolate Molecular Network

Cytochromes play a key role in Gls biosynthesis. In aliphatic Gls biosynthesis, CYP79F1 and CYP79F2 catalyze the conversion of chain-elongated methionines to aldoximes, which are metabolized by another cytochrome (CYP83A1) to aci-nitro compounds, precursors of desulphoglucosinolates (Grubb and Abel, 2006). As to indolic Gls biosynthesis, CYP79B2 and CYP79B3 convert tryptophan to aldoximes, that are metabolized by CYP83B1 to form the aci-nitro compounds (Grubb and Abel, 2006). In addition, there is another CYP81F2 catalyzing the conversion of indolic-3-glucosinate to 4-hydroxy-indolic-3-glucosinate (Sonderby et al., 2010). Furthermore, CYP71A12 and CYP71A13 can metabolize indolic aldoximes to indole acetonitrile and subsequently indole acetic acid derivatives (Nafisi et al., 2007). In our previous study, we reported cytochrome B5 isofrom C and cytochrome c oxidase subunit 5b-2 to be new nodes in the aliphatic and indolic GMNs, respectively (Mostafa et al., 2016). Here we discovered cytochrome P450 86A7 (CYP86A7) in redox reaction and metabolism of fatty
Accession	Locus tag	Protein name	Abbreviation*	FC^b	p-value^b	Function	TMD^c
Q42545	At5g55280	Cell division protein FtsZ homolog 1	FTSZ1	2.225	0.016	Division of chloroplast and protein binding	D, T
P25071	At2g41100	Calmodulin-like protein 12	CML12	2.074	0.012	Stimuli response	D, T
Q9S726	At3g04790	Probable ribose-5-phosphate isomerase 3	RR3	2.034	0.005	Bacterial response and management of pentose phosphate cycle	D, H, T
Q82333	At3g96250	Cell division FtsZ homolog 2-1	FTSZ2-1	2.032	0.012	Division of chloroplast and protein binding	D, H, T
Q9LX00	At3g25770	Cell division FtsZ homolog 2-2	FTSZ2-2	1.823	0.031	Division of chloroplast and protein binding	D, H, T
Q82660	At5g31210	Photosystem II stability/assembly factor HCF136	HCF136	1.770	0.010	Photosynthesis process	D, H, T
Q94K76	At5g18470	Curculin-like (Mannose-binding) lectin family protein	AT5G18470	1.769	0.035	Binding of carbohydrate	D, H, S, T, M
Q93V7	At5g14910	Fts1	At5g14910/F2G14_30	1.752	0.036	Metal transport	Membrane associated
P53492	At5g09810	Actin-7	ACT7	1.752	0.004	Stress response and growth	D, T
P66757	At5g00120	ATP synthase subunit alpha	ATPA1	1.750	0.044	Bacterial and cold response and synthesis of ATP	T
F4JRH9	At4g12880	Early nodulin-like protein 19	ENODL19	1.715	0.010	Stimuli response and electron carrier	D, H, S, T, M
P23954	At5g02490	Probable mediator of RNA polymerase II subunit 37c	MED37D	1.683	0.017	Bacterial, viral and heat response and transcription control	D, H, T
POCJ46	At2g37620	Actin-1	Act1	1.676	0.003	Growth and ATP binding	Uniprot
P19366	At1g00480	ATP synthase subunit beta	ATPB	1.661	0.050	Fungal and cold response and ATP metabolism	D, T
Q9AST9	At1g73110	At1g73110/F3N23_39	AT1G73110	1.614	0.036	Hydrolysis process and binding of ATP	D, H, T
Q8LEQ0	At5g47700	60S acidic ribosomal protein P1-3	RPP1C	1.594	0.023	Translation and binding of protein	D, H, T
Q9SUS3	At4g11380	Beta-acting-like protein B	BETAB-AD	1.588	0.010	Transport of protein	D, T
F4HR88	At1g33590	Leucine-rich repeat (LRR) protein	AT1G33590	1.582	0.004	Defense process	D, H, T, M
Q9LPV8	At1g12920	Eukaryotic peptide chain release factor subunit 1-2	ERF1-2	1.577	0.027	Termination of translation	D, T
Q8H107-3	At4g26910	Isomerase 3 of dihydrodipicolinate-residue succinyltransferase	AT4G26910	1.577	0.024	L-lysine catabolism and a member of tricarboxylic acid cycle	D, H, T
P17745	At4g20360	Elongation factor Tu	TUF4	1.563	0.006	Translation, binding of GTP and Cys nitrosylation	D, T
Q9LHA8	At3g12580	Mediator of RNA polymerase II transcription subunit 37c	MED37C	1.543	0.003	Response to stress	D, T
Q940B8	At3g16630	Kinesin-13A	KINESIN-13A	1.524	0.027	Binding of ATP	D, H
F4HV29	At1g08450	Caleptocin-3	CTR3	1.520	0.010	Defense process	D, H, S, T, M
P23321	At5g66570	Oxygen-evolving enhancer protein	PSBO1	1.514	0.019	Bacterial response and photosynthesis process	D, H, T
Q8L940	At5g01410	Pyridoxal biosynthesis protein PDX1-3	PDX13	1.467	0.020	Stress response	T

(Continued)
Accession	Locus tag	Protein name	Abbreviation*	FCa	p-valueb	Function	TMDs	References
Q96402	At5g18780	Actin-2	ACT2	1.463	0.003	Red light response and root growth	D, T	Kandasamy et al., 2002; Tair
Q95431	Q8VZC7-2	At5g45510	Isoform 2 of Probable disease resistance protein	1.455	0.018			
Q95431	Q8VZC7-2	At5g45510	Isoform 2 of Probable disease resistance protein	1.455	0.018			
Q95431	Q8VZC7-2	At5g45510	Isoform 2 of Probable disease resistance protein	1.455	0.018			
Q95431	Q8VZC7-2	At5g45510	Isoform 2 of Probable disease resistance protein	1.455	0.018			
Q95431	Q8VZC7-2	At5g45510	Isoform 2 of Probable disease resistance protein	1.455	0.018			
Q95431	Q8VZC7-2	At5g45510	Isoform 2 of Probable disease resistance protein	1.455	0.018			
Q95431	Q8VZC7-2	At5g45510	Isoform 2 of Probable disease resistance protein	1.455	0.018			
Q95431	Q8VZC7-2	At5g45510	Isoform 2 of Probable disease resistance protein	1.455	0.018			
Q95431	Q8VZC7-2	At5g45510	Isoform 2 of Probable disease resistance protein	1.455	0.018			
Q95431	Q8VZC7-2	At5g45510	Isoform 2 of Probable disease resistance protein	1.455	0.018			
Q95431	Q8VZC7-2	At5g45510	Isoform 2 of Probable disease resistance protein	1.455	0.018			
Q95431	Q8VZC7-2	At5g45510	Isoform 2 of Probable disease resistance protein	1.455	0.018			
Q95431	Q8VZC7-2	At5g45510	Isoform 2 of Probable disease resistance protein	1.455	0.018			
Q95431	Q8VZC7-2	At5g45510	Isoform 2 of Probable disease resistance protein	1.455	0.018			
Q95431	Q8VZC7-2	At5g45510	Isoform 2 of Probable disease resistance protein	1.455	0.018			
Q95431	Q8VZC7-2	At5g45510	Isoform 2 of Probable disease resistance protein	1.455	0.018			
Accession	Locus tag	Protein name	Abbreviation*	FCa	p-valueb	Function	TMDs	References
-----------	-----------	--------------	---------------	----------------	-----------------	----------	------	------------
Q9FN5	At3g60190	Dynamin-related protein 1E	DRP1E	1.246	0.005	Cold response	D, T	Mnami et al., 2015; tair
Q8YV46	At1g70610	ABC B family member 26	ABCB26	1.237	0.007	Transport activity	D, H, S, T, M	Tair
Q39142	At2g54430	Light-harvesting chlorophyll protein complex II subunit B1	Lhb1B1	1.232	0.049	Photosynthetic process	D, H, S, T	Tair
P92549	AtMg01190	ATP synthase subunit alpha	ATPA2	1.227	0.005	Oxidative stress response	D, T	Sweetlove et al., 2002
Q9SA78	At1g30630	Coatomer subunit epsilon-1	AT1G30630	1.226	0.006	Transport process	D, T	Tair
F4J0B1	At3g28520	AAA-type ATPase family protein	ATPA2	1.226	0.039	Binding and hydrolysis of ATP	D, T	Tair
Q92PH9	At4g00750	Probable methyltransferase PMT15	AT4G00750	1.218	0.024	Stress response and methylation process	D, H, S, T, M	Tair
F4894	At1g64790	Protein ILITYHIA	ILA	1.217	0.017	Immunity process	D, H, S, T	Monaghan and Li, 2010
O49676	At4g22310	AHg22310	AT4G22310	1.213	0.007	Transport of pyruvate	D, T	Tair
P56754	Atcg00420	NAD(P)H-quinone oxidoreductase subunit J	NDHJ	1.207	0.036	Oxidation reduction and response to sulfur deficiency	D, T	Tair
Q9FX54	At1g34440	Glyceraldehyde-3-phosphate dehydrogenase GAPC2	GAPC2	0.798	0.013	Stress response	D, T	Guo et al., 2012
P19456	At4g30190	ATPase 2, plasma membrane-type	AHA2	0.798	0.048	ATP metabolism	D, H, S, T, M	Tair
P42761	At2g30870	Glutathione-S-transferase F10	GSTF10	0.798	0.025	Indolic glucosinolate biosynthesis	D, H, T	Mostafa et al., 2016
Q5LNH6	At1g8240	Novel plant SNARE 12	NPSN12	0.793	0.006	Transport of protein	D, H, S, T, M	Tair
F4ICF5	At1g52590	RHOMBOID-like protein 10	RBL10	0.790	0.001	Root and flower growth	Plasma membrane	
O65282	At5g20720	20 kDa chaperonin	CPN21	0.789	0.021	Defense process	D, T	Thompson et al., 2012
Q84MC0	At3g6035	Uncharacterized GPI-anchored protein	AT3G6035	0.788	0.035	Precursor for glycoprotein	D, H, S, T, M	Tair
Q9FK25	At5g54160	Flavone 3'-O-methyltransferase 1	OMT1	0.787	0.003	Flavonoid metabolism	D, T	Muzac et al., 2000
Q9FJN8	At5g5270	Ras-related protein RABA4a	RABA4A	0.786	0.003	Binding of GTP and pollen tube growth	D, T	Tair; Szumianski and Nielsen, 2009
P92963	At4g17170	Ras-related protein RABB1c	RABB1C	0.785	0.029	Binding of GTP and transport activity	D, T	Tair
P56759	At1g00130	ATP synthase subunit b	ATPF	0.783	0.012	Respiration process	D, H, T	Jang et al., 1997
P93934	At2g19860	Hexokinase-2	HKX2	0.782	0.047	Phosphorylation of hexoses	D, H, S, T, M	Duan and Schuler, 2005
Q9CAD6	At1g63710	Cytochrome P450 86A7	CYP86A7	0.781	0.023	Oxidation reduction and metabolism of fatty acid	D, H, S, T, M	Tair
O81016	At2g26910	ABC transporter G family member 32	ABCG32	0.780	0.037	Transport activity and cuticle formation	D, H, S, T, M	Tair; Besseire et al., 2011
A8MQG9	At1g73650	Uncharacterized protein	AT1G73650	0.779	0.021	Oxidation reduction reactions and lipid metabolism	D, H, S, T, M	Tair
Q9O6X2	At1g32050	Secretory carrier-associated membrane protein 4	SCAMP4	0.778	0.025	Carrier activity	D, H, S, T, M	Law et al., 2012
Q96282	At5g49890	Chloride channel protein CLC-c	CLC-C	0.777	0.002	Salt stress	D, H, S, T, M	Jossier et al., 2010
A8MQG9	At1g73650	Uncharacterized protein	AT1G73650	0.779	0.021	Oxidation reduction reactions and lipid metabolism	D, H, S, T, M	Tair
Q9O6X2	At1g32050	Secretory carrier-associated membrane protein 4	SCAMP4	0.778	0.025	Carrier activity	D, H, S, T, M	Law et al., 2012
Accession	Locus tag	Protein name	Abbreviation*	FC^a	p-value^b	Function	TMDs	References
-----------	-----------	--------------	---------------	---------------	----------------	----------	------	------------
Q96282	At5g49890	Chloride channel protein CLC-c	CLC-C	0.777	0.002	Salt stress	D, H, S, T, M	Jossier et al., 2010
Q9ST2	At3g47810	Vacuolar protein sorting-associated protein 29	VPS29	0.776	0.044	Transport activity	Membrane-associated	Zelany et al., 2013
Q42564	At4g35000	L-ascorbate peroxidase 3	APX3	0.775	0.041	Antioxidant action and stress response	D, H, T, M	Narendra et al., 2006; tair
Q8VZM7	At3g52940	Putative ion channel POLLUX-like 1	T5G02940	0.774	0.043	Transport of ions	D, H, S, T, M	Knopf and Adam, 2012
Q8LB17	At3g58460	Uncharacterized protein	T3G58460	0.774	0.030	Proteolytic action	D, H, S, T, M	Tair
Q8LGP6	At1g75680	Endogluccanase 10	T1G75680	0.773	0.000	Cellulase and hydrolase action	D, H, S, T, M	Tair
Q94C17	At5g27350	Sugar transporter ERD6-like 17	SP1	0.772	0.012	Carbohydrate transport	D, H, S, T, M	Quirino et al., 2001
Q90999	At2g06850	Xyloglucan endotransglycosylase/hydrolase protein 4	XTH4	0.770	0.027	Stimuli response, cell wall development and hydrolase action	D, H, S, T, M	Campbel and Braam, 1999; tair
Q944A7	At4g35220	Probable serine/threonine-protein kinase	AT4G35220	0.763	0.026	Immunity process and phosphorylation of proteins	D, T	Shi et al., 2013; tair
Q949R9	At5g20090	Mitochondrial pyruvate carrier 1	T5G20090	0.763	0.046	Transport of pyruvate	D, H, T	Li et al., 2014
Q9LT0	At3g26290	Cytochrome P450 71B26	CY71B26	0.760	0.028	Binding of oxygen	D, H, S, T, M	Tair
Q9SMQ6	At4g39990	Ras-related protein RABA4b	RABA4B	0.754	0.017	Defense process	D, T	Antignani et al., 2015
Q9CSM0	At5g19760	Dicarboxylate/tricarboxylate transporter DTC	DTC	0.750	0.021	Dicarboxylate transport	D, H, T	Picault et al., 2002
Q92204	At2g19730	60S ribosomal protein L28-1	RPL28A	0.748	0.032	Translation	Tar	Lisenbee et al., 2005
Q9LFA3	At3g28880	Probable monodehydroascorbate reductase isoform 3	AT3G28880	0.745	0.024	Oxidation reduction	D, H, T	tair
Q95EL6	At5g39510	Vesicle transport v-SNARE 11	VTI11	0.740	0.001	Transport	D, H, S, T, M	Tair
Q9LPZ3	At1g11410	G-type lectin S-receptor-like serine/threonine-protein kinase	AT1G11410	0.733	0.049	Kinase and binding activities	D, H, S, T, M	Tair
Q9LE26	At2g38480	CASP-like protein A2g38480	AT2G38480	0.729	0.002	Water deficiency response and transport	D, H, S, T, M	Javot, 2003; Tournare-Roux et al., 2003; tair
P43287	At2g37170	Aquaporin PIP2-2	PIP2-2	0.725	0.011	Water deficiency response and transport	D, H, S, T, M	tair
Q9SYT0	At1g35720	Annexin D1	ANN1	0.719	0.046	Salt stress, binding and transport activities	D	Gorecka et al., 2005; Jia et al., 2015
Q9M1E7	At3g56600	Tetraspanin-3	TET3	0.719	0.042	Member of aging process	D, H, S, T, M	tair
Q39101	At5g01600	Ferritin-1	FER1	0.713	0.027	Bacterial and stress response and iron homeostasis	D, H, T	tair
F4JP88	At4g17615	Calcinurin B-like protein 1	CBL1	0.712	0.029	Stress response	Associated with membrane kinase	Ren et al., 2013; Feng et al., 2015
F4JIN3	At4g21180	DnaJ / Sec63 BII domains-containing protein	ATERDJD2B	0.712	0.044	Transport of protein	D, H, S, T, M	Tair
O23482	At4g16370	Oligopeptide transporter 3	OPT3	0.705	0.035	Transport activity	D, H, S, T, M	Wintz et al., 2003
Q9C9Q6	At1g30360	Early-responsive to dehydration stress protein	T4K22.4	0.703	0.007	Water deficiency (stress) response and ion transport	D, H, S, T, M	Rai et al., 2016; tair
Accession	Locus tag	Protein name	Abbreviation*	FC^a	p-value^b	Function	TMDs	References
-----------	-----------	--------------------------------------	---------------	------	-----------	---	------------	----------------------------
Q8LSZ1	At4g15630	CASP-like protein At4g15630	AT4G15630	0.701	0.024	Binding of protein	D, H, S, T, M	Tair
Q9FYK0	At1g24650	Leucine-rich repeat protein kinase	LRR-RBK	0.701	0.043	Growth process.	D, S, T, M	Dai et al., 2013
Q8GW3P	At2g26975	Copper transporter 6	COPT6	0.700	0.005	Transport of copper	D, H, S, T, M	Garcia-Molina et al., 2013
Q8LG60	At1g27760	Hypoxia-responsive family protein		0.698	0.029	Oxygen deficiency response	D, H, T	Tair
Q9FF88	At5g23920	At5g23920	AT5G23920	0.695	0.038	D, H, S, T, M	Tair
Q8LA6	At4g23400	Probable aquaporin PIP1-5	PIP1-5	0.694	0.049	Controls water channels, salt stress	D, H, S, T, M	Wieg et al., 1997; Tair
Q930Y5	At2g02030	Tetraplatin-18	TOM2AH2	0.690	0.049	D, H, S, T, M	Tair
P20302	At2g37180	Aquaporin PIP2-3	PIP2-3	0.685	0.003	Salt stress and water deficiency	D, H, S, T, M	Daniels et al., 1994
Q8RWZ6	At2g01420	Auxin efflux carrier component 4	PIN4	0.683	0.019	Transport of auxin	D, H, S, T, M	Zhang et al., 2015
A1XJK0	At1g18320	Mitochondrial inner membrane translocase subunit TIM22-4	TIM22-4	0.668	0.044	Transport of protein	D, H, S, T, M	Tair
Q39196	At4g04430	Probable aquaporin PIP1-4	PIP1-4	0.667	0.006	Water deficiency response and transport	D, H, S, T, M	Li et al., 2015; Tair
Q9LZ2	At3g62830	UDP-glucuronic acid dehydrogenase 2	UXS2	0.664	0.049	Xylose metabolism	D, H, S, T, M	Harper and Bar-Beled, 2002
Q9LIL4	At3g22845	Transmembrane emp24 domain-containing protein p24beta3	AT3G22845	0.652	0.038	Transport activity	D, H, T	Tair
Q9CAN1	At1g63120	RHOMBOD-like protein 2	F16M19.4	0.646	0.018	Proteolytic activity	D, H, S, T, M	Kanaoka et al., 2005
Q9LUM2	At4g32390	Probable sugar phosphate/phosphate translocator	AT4G32390	0.640	0.019	Transport activity	D, H, S, T, M	Tair
Q8GVN5	At3g25070	RPM1-interacting protein 4	RIN4	0.633	0.043	Bacterial response and immunity process	D	Actell and Staakawicz, 2003
Q9LVE0	At2g21670	Plasma membrane intrinsic protein 1B, At2g45960 protein	PIP1B	0.615	0.005	Water deficiency	D, H, S, T, M	Alexandersson et al., 2009
Q9LF3S	At5g16010	3-oxo-5-alpha-sterol 4-dihydrolase family protein	F1N13_150	0.621	0.007	Oxidation reduction reactions and lipid metabolism	D, H, S, T, M	Tair
Q9FO24	At3g5005	Protein TONNEAU 1b	TON1B	0.617	0.001	Growth process and organization of microtubule	D	Azizmazdeh et al., 2008
B9DPR9	At2g45960	Plasma membrane intrinsic protein 1B, At2g45960 protein	PIP1B	0.615	0.005	Water deficiency	D, H, S, T, M	Tair
O23596	At4g17550	Putative glyceraldehyde-3-phosphate transporter	AT4G17550	0.613	0.009	Transport activity	D, H, S, T, M	Tair
Q9LVM5	At5g6220	Allantoin synthase/uric acid degradation bifunctional protein	TTL	0.611	0.030	Cell growth control, allantoin biosynthesis and catabolism of urate	D, H, T	Tair
Q8733	At1g01620	Aquaporin PIP1-3	PIP1-3	0.601	0.020	Water deficiency response and transport	D, H, S, T, M	Tair
Q8VZ3Q3	At1g7200	CASP-like protein At1g7200	AT1G7200	0.590	0.016	Binding activity	D, H, S, T, M	Tair
Q9M386	At3g54200	Late embryogenesis abundant hydroxylproline-rich glycoprotein	F24B22.160	0.588	0.004	D, H, S, T, M	Tair

(Continued)
Stress Related Membrane Protein Changes as a Secondary Result of Glucosinolate Metabolism Perturbation

Plant Gls metabolism is responsive to stress conditions, e.g., temperature and light stress (Martínez-Ballesta et al., 2013), water stress (Khan et al., 2010), salt stress (Guo et al., 2013), and microbial stress (Clay et al., 2009). In our previous study, glucan endo-1,3-beta-glucosidase, glutathione S-transferase F2 and glutathione S-transferase F7 in addition to others as stress-related proteins were found to connect to the Gls pathway (Mostafa et al., 2016). Here we found the levels of 51 stress-related proteins changed significantly in the cyp79B2/B3 mutant and six with changes in the myb28/29 mutant. In the cyp79B2/B3 membrane proteome, a group of general stimuli response-related proteins exhibited significant changes compared to WT (Table 2). Among them, the following are examples to directly connect with Gls enzymes: calmodulin-like protein 12 (CML12; Cazzonelli et al., 2014; connected to the indolic GMN via MYB122 and CYP81F2), mediator of RNA polymerase II transcription subunit 37c (MED37C; Lee et al., 2009; connected via GSTF9 to GMN, with possible role in thiohydroximate formation), and glyceraldehyde-3-phosphate dehydrogenase (GAPC2; Guo et al., 2012; formed edges with GMN through MYB28, MYB29, MYB76, and MYB34, suggesting roles in methionine chain-elongation and tryptophan synthesis; Figures 2, 4). It is known that GAPC2 participates in the oxidation of glyceraldehyde-3-phosphate to glycerate acids (Duan and Schuler, 2005), and cytochrome P450 71B26 (CYP71B26) as new nodes in the indolic GMN. Based on STRING analysis, CYP71B26 is connected to CYP81F2 through a direct edge, while CYP86A7 is connected indirectly to CYP81F2 through lectin family proteins (At5g03350 and At5g18470; Figures 2, 4). Given that their connection to a specific and key enzyme in indolic Gls biosynthetic pathway (CYP81F2) and their expression levels were decreased in the cyp79B2/B3 mutant (Table 2), it is reasonable to hypothesize that CYP86A7 and CYP71B26 play specific roles in 4-hydroxy indolic-3-glucosinolate production (Figure 4). Especially their precursor (indolic-3-glucosinolate) and the product were decreased in cyp79B2/B3 mutant as revealed in our previous study (Mostafa et al., 2016). Also by similarity, we can predict a role for the enzymes in hydroxy indolic-1-glucosinolate production (Figure 5) as its synthesizing enzymes are not known (Sønderby et al., 2010). The third new cytochrome discovered in this study is a probable cytochrome c At1Gg22840 (CYC2), which plays a role in electron transport process (Welchen et al., 2012). CYC2 is in the shared decreased protein category, forming new connections with aliphatic GMN through ADP/ATP carrier protein 1 (AAC1) and 60S ribosomal protein L15-1 (RPL15A), which is connected to GSTF9, GSTF10 and GSTF11, and with indolic GMN through eukaryotic peptide chain release factor subunit 1–2 (ERF1-2), 60S ribosomal protein L28-1 (RPL28A) and adenine phosphoribosyltransferase 1 (APT1). APT1 is connected to GGP1 and SUR1. Although the CYC2 function awaits for further studies, it might play a role in the conversion of aci-nitro compounds to thiohydroximates.
from which pyruvate is formed. The pyruvate can be converted to acetylCoA for methionine chain-elongation in aliphatic Gls biosynthesis or for synthesis of tryptophan in indolic Gls pathway (Mann, 1987). Both glucosinolate classes were decreased in the cyp79B2/B3 mutant in our previous study (Mostafa et al., 2016) together with GAPC2 in this study. Therefore, the connection between GAPC2 and MYBs in the STRING maps reflects functional relationship and does not necessarily indicate direct physical interaction. Another stress related group showing expression level changes was the salt stress and water deficiency group represented by chloride channel protein CLC-c (Jossier et al., 2010), aquaporin PIP2-2 (Javot, 2003; Tournaire-Roux et al., 2003), annexin D1 (ANN1; Gorecka et al., 2005; Jia et al., 2015; formed edge with GSTF9), early-responsive to dehydration stress protein (Rai et al., 2016), probable aquaporin PIP1-5 (Weig et al., 1997), aquaporin PIP2-3 (Daniels et al., 1994), probable aquaporin PIP1-4 (Li et al., 2015), plasma membrane intrinsic protein 1B (Alexandersson et al., 2005), aquaporin PIP1-3 (Kammerloher et al., 1994), probable aquaporin PIP2-6 (Alexandersson et al., 2010), and aquaporin PIP2-7 (Weig et al., 1997; Figures 2, 4). The decreased expression of this group of aquaporins (Table 2) confirms crosstalk between indolic Gls production and water deficiency enzymes (Khan et al., 2010). The mechanism underlying such crosstalk is intriguing. The reduction in aquaporins potentiates our observation of retarded growth of Gls mutants (Mostafa et al., 2016). The decreased Gls production resulted in stress status, which led to decreased water uptake and decreased expression of aquaporins, and thus growth retardation.

The immunity and defense process was also affected by Gls perturbation, and it is represented by changes in the directly connected nodes: SNAP25 homologous protein (SNAP33; Eschen-Lippold et al., 2012; connected by MYB51 in tryptophan synthesis and CYP81F2 to GMN), protein ILITYHIA (ILA; Monaghan and Li, 2010; playing a role in methionine chain elongation by forming edges with IMD1, IMD2, and IMD3) and a 20 kDa chaperonin (CPN21; Takáč et al., 2014; connected to GMN by the edge GGP1; Figures 2, 4). Another protein exhibiting expression changes and connected to GMN is malate dehydrogenase 2 (mMDH2), which participates in bacterial defense (Jones et al., 2006; Figures 2, 4). In myb28/29, a GTP-binding nuclear protein Ran-1 (Jiang et al., 2007) was found to connect MYB28, MYB29, MYB76, MYB34, MYB51, and MYB122, suggesting its role in methionine chain-elongation and tryptophan synthesis (Figures 3, 4 and Table 3).

Effects of Glucosinolate Metabolism Perturbation on Other Processes and Nodes

Gls biosynthetic pathway is organelle specific and involves transport starting from methionine chain-elongation, sulfate transport, and ending with Gls storage in the seeds (Sønderby et al., 2010; Gigolashvili and Kopriva, 2014; Jørgensen et al., 2015). Here we report a decrease in ABC transporter B family member 19 (Lin and Wang, 2005) in both mutants (Table 1). In addition to their role in sulfate transport, ABC transporters are involved in transporting Gls hydrolysis products (Kang...
Accession number	Locus tag	Protein name	Abbreviation*	FC^a	p-value^b	Function	TMDs	References
P51422	At3g55750	60S ribosomal protein L35a-4	RPL35AD	1.972	0.025	Translation and RNA binding	Tair	Tair
Q9T043	At4g27090	60S ribosomal protein L14-2	RPL14B	1.928	0.040	Translation and RNA binding	D	Tair
Q8LST0	At5g60160	AT5g60160/h15s12_20	AT5G60160	1.686	0.026	Proteolytic activity	D, H, T	Tair
Q9LZ57	At5g02450	60S ribosomal protein L36-3	RPL36C	1.653	0.024	Translation	D	Tair
Q9M0E2	At4g29410	60S ribosomal protein L28-2	RPL28C	1.593	0.009	Translation and RNA binding	Tair	Tair
F4I472	At1g04270	40S ribosomal protein S15-1	RPS15	1.501	0.025	Translation	D, H, T	Tair
Q8W463	At4g17560	50S ribosomal protein L19-1	AT4G17560	1.488	0.030	Translation	D, H, T	Tair
Q9FY64	At5g09510	40S ribosomal protein S15-4	RPS15D	1.461	0.036	Translation	D, H, T	Tair
O23515	At4g16720	60S ribosomal protein L15-1	RPL15A	1.417	0.016	Translation	Tair	Tair
Q9LZ41	At5g02610	60S ribosomal protein L35-4	RPL35D	1.411	0.010	Translation	D	Tair
F4HRB4	At1g45201	Triacylglycerol lipase-like 1	TLL1	1.374	0.025	Hydrolysis of lipids	D, H, S, T, M	Tair
Q9SUJ1-2	At3g05710	isoform 2 of Syntaxin-43	SYP43	1.372	0.026	Fungal response and transporter activity	D, H, S, T, M	Zheng et al., 1999; Nielsen and Thordal-Christensen, 2012
Q93VG5	At5g20290	40S ribosomal protein S8-1	RPS8A	1.359	0.028	Translation	D	Tair
B9DGY1	At3g07700	ABC1 kinase	AT3G07700	1.351	0.012	Oxidative stress response	D, H, T, M	Yang et al., 2012
A8MQA1	At3g49010	60S ribosomal protein L13-1	BBC1	1.349	0.041	Translation and RNA binding	Tair	Tair
P49693	At4g02230	60S ribosomal protein L19-3	RPL19C	1.331	0.023	Translation and RNA binding	Tair	Tair
O22795	At2g33450	50S ribosomal protein L28	RPL28	1.331	0.032	Translation and RNA binding	Tair	Tair
Q9CS14	At1g48830	40S ribosomal protein S7-1	RPS7A	1.327	0.031	Translation	D	Tair
P49657	At1g70600	60S ribosomal protein L27a-3	RPL27AC	1.274	0.006	Translation and RNA binding	Tair	Tair
F4IHJ8	At2g21580	40S ribosomal protein S25-2	AT2G21580	1.273	0.032	Translation	D	Tair
P53496	At3g12110	Actin-11	ACT11	1.267	0.014	Cytoskeleton component, Binding of ATP	D, T	McDowell et al., 1996; Jia et al., 2013
Q9FH02	At5g42270	ATP-dependent zinc metalloprotease FTSH 5	FTSH5	1.240	0.012	Leaf coloration and photo-inhibition	D, H, T	Sakamoto et al., 2002
P31167	At3g08580	ADP, ATP carrier protein 1	AAC1	1.238	0.015	Transport activities	D, H, T, M	Tair
P51418	At2g34480	60S ribosomal protein L18a-2	RPL18AB	1.229	0.028	Translation	Tair	Tair
Q9LVJ9	At3g17810	Putative dehydrogenase	PYD1A	1.224	0.016	Oxidation reduction reactions, pyrimidine and uracil metabolism	D, T	Zrenner et al., 2009

(Continued)
et al., 2011). This result indicates the decrease in glucosinolate levels in the mutants feedback regulate the ABC transporter level. In cyp79B2/B3, a curculin-like (mannose-binding) lectin family protein (At5g18470) involved in carbohydrate binding forms connections with MYB51 and CYP81F2 (Figures 2, 4). How this lectin family protein function is not known.

TABLE 3 | Continued

Accession number	Locus tag	Protein name	Abbreviation*	FC\(^a\)	\(p\)-value\(^b\)	Function	TMDs	References
Q8RWAS	At1g25380	Nicotinamide adenine dinucleotide transporter 2	NDT2	1.223	0.043	Transport activities	D, H, T	Bedhomme et al., 2005
Q8W486	At1g04910	O-fucosyltransferase family protein	AT1G04910	1.213	0.042	Glycosyl groups transfer	D, H, S, T, M	Voxeur et al., 2012
P51427	At3g11940	40S ribosomal protein S5-2	RPS5B	1.206	0.002	Translation and RNA binding	D, T	Tair
O04202	At2g39990	Eukaryotic translation initiation factor 3 subunit F	TIF3F1	0.799	0.029	Translation and development of embryo	D, T	Xia et al., 2010
Q9FQ25	At3g55000	Protein TONNEAU 1a	TON1A	0.782	0.046	Cell division and cytoskeleton organization	D, T	Azimzadeh et al., 2008
Q84LG4	At3g09800	Coatamer subunit zeta-2	AT3G09800	0.773	0.049	Transport of protein	D, H, T	Tair
P41916	At5g20010	GTP-binding nuclear protein Ran-1	RAN1	0.770	0.002	Salt stress response and GTP binding	D, T	Jiang et al., 2007
Q92VA2	At1g78830	At1g78830/F9K20_12	F9K20.12	0.767	0.017	Binding of carbohydrate	D, H, S, T, M	Tair
Q9FFX1	At5g39730	AtG2-like protein	AT5G39730	0.740	0.021	Salt stress response	D	Tair
Q9LS26	At5g46570	At5g46570	BSK2	0.740	0.036	Kinase activity	D, T	Tair
Q93ZH0-2	At1g21880	Isoform 2 of LysM domain-containing GPI-anchored protein 1	LYM1	0.738	0.005	Immunity and defense activity	D, H, S, T, M	Willmann et al., 2011
Q94EG6	At5g02240	Uncharacterized protein	AT5G02240	0.734	0.040	Abscisic acid response	D, T	Ghels et al., 2008
Q0WSY2	At1g19835	Filament-like plant protein 4	FPP4	0.725	0.036	D	Tair	
Q9CS00	At1g47200	WPP domain-containing protein 2	WPP2	0.716	0.049	Growth of lateral roots and mitotic division	D	Patel, 2004
Q9FJ2	At5g47890	NADH dehydrogenase 1 alpha subcomplex subunit 2	AT5G47890	0.690	0.050	Oxidation reduction reactions	Mitochondrial membrane	Michalecka et al., 2003, Murray et al., 2003
Q9FPJ4	At5g47200	Ras-related protein RABD2b	RABD2B	0.687	0.013	Binding of GTP	D, T	Tair
Q94F08	At5g62630	HIPL2 protein	HIPL2	0.678	0.004	Binding of carbohydrate and oxidation reduction reaction	D, H, S, T	Tair
Q9S2Z51	At4g31840	Early nodulin-like protein 15	ENODL15	0.666	0.017	Stimuli response and electron carrier	D, H, S, T, M	Tair
P48421	At4g13770	Cytochrome P450 83A1	CYP83A1	0.664	0.033	Glucosinolate biosynthesis, insect response	D, H, S, T, M	Mostafa et al., 2016
Q9SK39	At2g24940	Probable steroid-binding protein 3	MP3	0.376	0.031	Binding of steroid and heme	Membrane associated	Tair, Yang et al., 2005

*Abbreviations for unique proteins in Figure 3.

\(^a\)Fold change at cut-off point >1.2 or <0.8.

\(^b\)\(p\) < 0.05.

TMDs, transmembrane domains; D, Das; H, HMMTOP; S, SOSUI; T, TMPred; M, TMHMM.
Another biological process affected by the Gls perturbation is photosynthesis as revealed by the increase of photosystem I reaction center subunit IV B in both mutants (Table 1), and increases in cyp79B2/B3 photosystem II stability/assembly factor HCF136 (Meurer et al., 1998), protein curvature thylakoid 1B, NAD(P)H-quinone oxidoreductase subunit H, light-harvesting complex I chlorophyll a/b binding protein 1 and light-harvesting chlorophyll protein complex II subunit B1 (Table 2). The increased activity in the photosynthetic process could be a strategy to compensate for the internal stress in the mutants as indicated by changes of many stress-related proteins (Tables 2, 3; Mostafa et al., 2016). It was obvious that aliphatic Gls metabolism perturbation activated the ribosomal protein expression as reflected by the increased levels of 18 ribosomal proteins in the myb28/29 (Table 3). The biological implication of this change is not known although we can correlate it to the regulation of aliphatic Gls biosynthetic pathway by MYB28 and MYB29 (Li et al., 2013).

In both mutants, adenine phosphoribosyltransferase 1 (APT1) acting on adenine phosphorylation (Allen et al., 2002) showed connections with GGP1 and SUR1, so it might have a role in thiohydroximate formation (Figures 2–4). Its decrease in levels may be a feedback of the decreased Gls production in the mutants. In cyp79B2/B3, FtsZ homolog 1 (FTSZ1) involved in chloroplast division and protein binding (Osteryoung et al., 1998) was found to connect with BCAT3 and GSTF9, suggesting it may affect methionine chain-elongation and thiohydroximate synthesis. Interestingly, another FtsZ homolog 2-2 (FTSZ2-2; McAndrew et al., 2008) was also connected with GSTF9 (Figures 2, 4). Isoform 3 of dihydrolipoyllysine-residue succinyltransferase component of 2-oxoglutarate dehydrogenase complex 2 (At4g26910) is a member of tricarboxylic acid cycle and can affect methionine biosynthesis and its coupling to acetylCoA in the chain elongation process. Interestingly, it was found to form multiple connections with GMN via BAT5, BCAT3, IMD1, IMD2, IMD3, GSTF9, and SUR1 (Figures 2, 4). In addition, ATP sulfurylase 1 (APS1), a hydrogen sulfide biosynthesis enzyme, formed edges with GGP1 and SUR1, suggesting its potential role in thiohydroximate synthesis (Figures 2, 4). The increased levels of the aforementioned proteins may reflect a feedback mechanism to compensate for reduced Gls levels in the cyp79B2/B3. Flavone 3'-O-methyltransferase 1 (OMT1) in flavonoid metabolism (Muzac et al., 2000) was connected with FMO1, so it could participate in sulfinyl Gls formation (Figures 2, 4). This finding provides another line of evidence for the pathway interaction between phenylpropanoids and glucosinolates. Previously, methionine derived aldoximes were shown to directly or indirectly inhibit caffeic acid O-methyltransferase (COMT) and caffeoyl-CoA O-methyltransferase CCoAOMT), leading to low levels of phenylpropanoid metabolites (Hemm et al., 2003). Here the decreased levels of OMT1 in cyp79B2/B3 may contribute to the decreased production of sulfinyl Gls in the mutant. The data support our metabolomics finding concerning the decreased shikimate level (Mostafa et al., 2016). Another possibility of the OMT1 activity is methylation of hydroxy-indolyl Gls to form methylated indolic Gls (unknown before, Sønderby et al., 2010) in a way similar to methylation of quercetin into

FIGURE 5 | Hypothesized roles of CYP86A7 and CYP71B26 in the hydroxylation of indolic-1-glucosinolate (top panel) and the potential dual functions of flavone 3'-O-methyltransferase in flavonoid and Gls metabolism. Circles indicate chemical modifications to the substrates.
isorhamnetin (Figure 5). In myb28/29, 60S ribosomal proteins L13-1 (BBC1) and L15-1 (RPL15A) might be a component in thiohydroximate synthesis through the connections with GSTF9, GSTF10 and/or GSTF11. Both proteins were increased, presumably to compensate for the deficiency of aliphatic Gls in the mutant (Mostafa et al., 2016).

The Proteome and Transcriptome Correlation

In the cyp79B2/B3, the defense and stress-related genes calreticulin 3 (At1g08450; Sun et al., 2014), calmodulin (At2g41100; Cazzonelli et al., 2014), lectin (At5g03350; Armijo et al., 2013), and SNAP25 (At5g61210; Eschen-Lippold et al., 2012) showed significant upregulation in the transcriptome and increases in the proteome. Malate dehydrogenase 2 expression was decreased at both the transcript and protein levels, and it is known to be involved in bacterial defense (Jones et al., 2006). These data have provided additional evidence for the relationship between indolic glucosinolates and stress responses. The overall positive correlation between protein and gene expression levels in the cyp79B2/B3 indicates transcriptional regulation of indole glucosinolates. In myb28/29, although there was no overall correlation between transcript and protein levels, isoform 2 of LysM (At1g21880; Willmann et al., 2011) and AIG2 (avirulence induced gene, At5g39730) exhibited similar downregulation patterns as their corresponding proteins. Both genes are involved in cellular stress responses (Jiang et al., 2007; Willmann et al., 2011). Post-transcriptional and post-translational regulations may contribute to the non-correlation between the expression of some of the genes and their encoded proteins in myb28/29.

CONCLUSIONS

Glucosinolate biosynthetic process is controlled by several cytochrome proteins known to be localized to the membrane, but little is known about how Gls metabolism would affect the membrane proteome. In this study, we aim to address this important question utilizing the TMT labeling based quantitative proteomics of two genetic mutants, i.e., cyp79B2/B3 as the indolic Gls mutant and myb28/29 as the aliphatic Gls mutant. We identified 4,673 proteins, out of which 2,171 were membrane proteins. From these membrane proteins and after transmembrane domain analysis, 192 exhibited different levels relative to WT, with cytochrome P450 86A7, cytochrome P450 71B26 and probable cytochrome c representing new cytochromes potentially involved in GMN. Based on our analyses, the first two might play a role in hydroxyl-indolic Gls production. In addition, a flavone 3′-O-methyltransferase 1 is hypothesized to participate in the methylation process of the hydroxy-indolic Gls to form methoxy-indolic Gls. GO functional enrichment revealed important processes related to stress response, transport activities and photosynthesis in the cyp79B2/B3 and those related to protein translation in the myb28/29. A transcription profiling of both mutants showed a strong correlation between transcript and protein levels in cyp79B2/B3, and no significant correlation in myb28/29. Overall, the new nodes and edges discovered in the GMNs are useful resources for future hypothesis-testing experiments and ultimately toward engineering and breeding of Gls profiles with positive impacts on human health and plant defense.

AUTHOR CONTRIBUTIONS

IM performed the experiments, data analysis and paper drafting; MY performed qRT-PCR experiment and data analysis; NZ participated in protein extraction and peptides labeling; SG conducted the statistical analysis; CD contributed in LC/MS analysis of peptides; MA and ME provided supervision and advice, and SC designed the experiments, supervised the work and finalized the manuscript.

ACKNOWLEDGMENTS

We would like to thank Chen laboratory members for their support and co-operation. The US National Science Foundation (NSF CAREER 0845162), University of Florida, and the Egyptian Government represented by the Egyptian Cultural and Educational Bureau at Washington DC are acknowledged for funding this project.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found online at: http://journal.frontiersin.org/article/10.3389/fpls.2017.00534/full#supplementary-material

Supplementary Figure 1 | Biological process GO enrichment of membrane proteins differentially expressed in cyp79B2/B3 compared to WT.

Supplementary Figure 2 | Cellular component GO enrichment of membrane proteins differentially expressed in cyp79B2/B3 compared to WT.

Supplementary Figure 3 | Molecular function GO enrichment of membrane proteins differentially expressed in cyp79B2/B3 compared to WT.

Supplementary Figure 4 | Biological process GO enrichment of membrane proteins differentially expressed in myb28/29 compared to WT.

Supplementary Figure 5 | Cellular component GO enrichment of membrane proteins differentially expressed in myb28/29 compared to WT.

Supplementary Figure 6 | Molecular function GO enrichment of membrane proteins differentially expressed in myb28/29 compared to WT.

Supplementary Figure 7 | Correlation between transcript and protein levels inferred from 32 to 22 genes for cyp79B2/B3 and myb28/29, respectively. Pearson correlation \(r = 0.8579 \) (p = 4.226e-102) for cyp79B2/B3 and \(r = 0.0887 \) (p = 0.8945) for myb28/29.

Supplementary Table 1 | Primer information used in qRT-PCR.

Supplementary Table 2 | Proteomics data from two independent experiments (the data were generated using Proteome Discoverer 1.4 by searching the raw data against the Arabidopsis tair 10 database).

Supplementary Table 3 | Transmembrane domains prediction analyses.

Supplementary Table 4 | GO enrichment of proteins differentially expressed in cyp79B2/B3 and myb28/29 mutants relative to WT using Agrigo SEACOMPARE.

Supplementary Table 5 | Gene expression at transcript and protein levels in cyp79B2/B3 and myb28/29 relative to WT.
Halkier, B. A., and Gershenzon, J. (2006). Biology and biochemistry of glucosinolates. Annu. Rev. Plant Biol. 57, 303–333. doi: 10.1146/annurev.arplant.57.032905.105228

Harper, A. D., and Bar-Feled, M. (2002). Biosynthesis of UDP-xylene. Cloning and characterization of a novel Arabidopsis gene family, UX5, encoding soluble and putative membrane-bound UDP-glucuronic acid decarboxylase isozymes. Plant Physiol. 130, 2188–2198. doi: 10.1104/pp.009654

Hemm, M. R., Ruegger, M. O., and Chapelle, C. (2003). The Arabidopsis ref2 mutant is defective in the gene encoding CYP83A1 and shows both phenylpropanoid and glucosinolate phenotypes. Plant Cell 15, 179–194. doi: 10.1105/tpc.006544

Iglesias, J., Trigueros, M., Rojas-Triana, M., Fernández, M., Albar, J. P., Bustos, R., et al. (2013). Proteomics identifies ubiquitin–proteasome targets and new roles for chromatin-remodeling in the Arabidopsis response to phosphate starvation. J. Proteomics 94, 1–22. doi: 10.1016/j.jprot.2013.08.015

Jia, Y., Cong, R., Li, S., Li, R., Qin, Z., Li, Y., et al. (2016). Comparative proteomic analysis of NaCl stress-responsive proteins in Arabidopsis roots. Plant Cell Physiol. 58, 3591–3607. doi: 10.1093/pcp/pcw157

Jia, H., Li, J., Zhu, J., Fan, T., Qian, D., Zhou, Y., et al. (2013). Arabidopsis CROLIN1, a novel plant actin-binding protein, functions in cross-linking and stabilizing actin filaments. J. Biol. Chem. 288, 32277–32288. doi: 10.1074/jbc.M113.539544

Jiang, Y., Yang, B., Harris, N. S., and Deyholos, M. K. (2007). Comparative proteomics of the recently and recurrently formed natural allopolyploid Tragopogon mirus (Asteraceae) and its parents. New Phytol. 179, 292–305. doi: 10.1111/j.1469-8137.2012.04251.x

Law, A. H., Chow, C. M., and Jiang, L. (2012). Secretory carrier membrane proteins. Prototranscript 249, 263–269. doi: 10.7709/i1-01-0295-0

Lee, C., Lee, D. W., Lee, Y., Meyer, U., Stierhof, Y. D., Lee, S., et al. (2009). Heat shock protein cognate 70-4 and an E3 ubiquitin ligase, CHIP, mediate plastid-destined precursor degradation through the ubiquitin-26S proteasome system in Arabidopsis. Plant Cell 21, 3984–4001. doi: 10.1105/tpc.109.071548

Li, C. L., Wang, M., Ma, X. Y., and Zhang, W. (2014). NRG1, a putative mitochondrial pyruvate carrier, mediates ABA regulation of guard cell ion channels and drought stress responses in Arabidopsis. Mol. Plant 7, 1508–1521. doi: 10.1093/mp/suu061

Lee, K., Wang, H., Gago, J., Cui, H., Qian, Z., Kodama, N., et al. (2015). Harpin Hpa1 interacts with aquaporin PIP1;4 to promote the substrate transport and photosynthesis in Arabidopsis. Sci. Rep. 5:17207. doi: 10.1038/srep17207

Li, Y., Sawada, Y., Hirai, A., Sato, M., Kuwahara, A., Yan, X., et al. (2013). Novel insights into the function of Arabidopsis RZ3-MYB transcription factors regulating aliphatic glucosinolate biosynthesis. Plant Cell Physiol. 54, 1333–1344. doi: 10.1093/pcp/pct085

Lim, T. K., Le, K. P. U., Lin, Q., and Nguyen, T. T. H. (2017). ITRAQ-based proteome analysis of fluoroquinolone-resistant Staphylococcus aureus. J. Glob. Antimicrob. Resist. 8, 82–89. doi: 10.1016/j.jgar.2016.11.003

Lin, R., and Wang, H. (2005). Two homologous ATP-binding cassette transporter proteins, AtMDR1 and AtPGP1, regulate Arabidopsis photomorphogenesis and root development by mediating polar auxin transport. Plant Physiol. 138, 949–964. doi: 10.1104/pp.105.061572

Lisensee, C. S., Lingard, M. J., and Trelease, R. N. (2005). Arabidopsis peroxisomes possess functionally redundant membrane and matrix isoforms of monodehydroascorbate reductase. Plant J. 43, 900–914. doi: 10.1111/j.1365-315X.2005.02503.x

Mann, J. (1987). Secondary Metabolism, Vol. 2. Oxford, New York, NY: Clarendon Press.

Marangine, A., Brabant, P., Thiellement, H., and Alix, K. (2010). Analysis of gene expression in resynthesized Brassica napus allotetraploids: transcriptional changes do not explain different protein regulation pattern. New Phytolet. 186, 216–227. doi: 10.1111/j.1469-8137.2009.03139.x

Martinez-Ballesta, M. D.-C., Moreno, D. A., and Carvajal, M. (2013). The physiological importance of glucosinolates on plant response to abiotic stress in Brassica. Int. J. Mol. Sci. 14, 11607–11625. doi: 10.3390/ijms140611607

McAndrew, R. S., Olson, B. J., Kadrian-Kalbach, D. K., Chi-Ham, C. L., Vitha, S., Froehlich, J. E., et al. (2008). In vivo quantitative relationship between plastid division proteins FtsZ1 and FtsZ2 and identification of ARC6 and ARC3 in a native FtsZ complex. Biochem. J. 412, 367–378. doi: 10.1042/BJ20071354

McDowell, J. M., An, Y. Q., Huang, S., McKinney, E. C., and Meagher, R. B. (1996). The Arabidopsis ACT7 actin gene is expressed in rapidly developing tissues and responds to several external stimuli. Plant Physiol. 111, 699–711. doi: 10.1104/pp.111.3.699

Meurer, J., Plücken, H., Kowallik, K. V., and Westhoff, P. (1998). A nuclear-encoded protein of prokaryotic origin is essential for the stability of photosystem II in Arabidopsis thaliana. EMBO J. 17, 5286–5297. doi: 10.1093/emboj/17.18.5286

Michalka, M., Svensson, A., Johansson, F. I., Agius, S. C., Johansson, U., Brennicke, A., et al. (2003). Arabidopsis genes encoding mitochondrial type II NAD(P)H dehydrogenases have different evolutionary origin and show distinct responses to light. Plant Physiol. 133, 642–652. doi: 10.1104/pp.103.024208
Minami, A., Tominaga, Y., Furuto, A., Kondo, M., Kavamura, Y., and Uemura, M. (2015). Arabidopsis dynamin-related protein 1E in sphingolipid-enriched plasma membrane domains is associated with the development of freezing tolerance. Plant J. 83, 501–514. doi: 10.1111/pj.12909

Monaghan, J., and Li, X. (2010). The heat repeat protein ILIYTHHA is required for plant immunity. Plant Cell Physiol. 51, 742–753. doi: 10.1093/pcp/pqc338

Mostafa, I., Zhu, N., Yoo, M. J., Balmant, K. M., Misra, B. B., Dufresne, C., et al. (2016). New nodes and edges in the glucosinolate molecular network revealed by proteomics and metabolomics of Arabidopsis myb28/29 and cyp79c2/B3 glucosinolate mutants. J. Proteomics 138, 1–19. doi: 10.1016/j.jprot.2016.02.012

Mukherjee, A. K., Carp, M. J., Zuchman, R., Ziv, T., Horwitz, B. A., and Geppstein, S. (2010). Proteomics of the response of Arabidopsis thaliana to infection with Alternaria brassicicola. J. Proteomics 73, 709–720. doi: 10.1016/j.jprot.2009.10.005

Murakami, R., Ifuku, K., Takabayashi, A., Shikanai, T., Endo, T., and Sato, F. (2002). Characterization of an Arabidopsis thaliana mutant with impaired psbO, one of two genes encoding extrinsic 33-kDa proteins in photosystem II. FEBS Lett. 523, 138–142. doi: 10.1016/S0014-5793(02)02963-0

Murray, J., Zhang, B., Taylor, S. W., Oglesbee, D., Fahy, E., Marusich, M. F., et al. (2016). New nodes and edges in the glucosinolate molecular network revealed by proteomics and metabolomics of Arabidopsis thaliana glucosinolate mutants – gene discovery and beyond. J. Proteome Res. 15, 283–290. doi: 10.1021/acs.jproteome.5b00588

Pesaresi, P., Scharfenberg, M., Weigel, M., Granlund, I., Schröder, W. P., Finazzi, G., et al. (2009). Mutants, overexpressors, and interactors of Arabidopsis thaliana plastocyanin isoforms: revised roles of plastocyanin in photosynthetic electron flow and thylakoid redox state. Mol. Plant 2, 236–248. doi: 10.1093/mp/son041

Picault, N., Palmieri, L., Pisano, L., Hedges, M., and Palmieri, F. (2002). Identification of a novel transporter for dicarboxylates and tricarboxylates in plant mitochondria bacterial expression, reconstitution, functional characterization, and tissue distribution. J. Biol. Chem. 277, 24204–24211. doi: 10.1074/jbc.M202702200

Quirino, B. R., Reiter, W. D., and Amasino, R. D. (2001). One of two tandem Arabidopsis genes homologous to monosaccharide transporters is senescence-associated. Plant Mol. Biol. 46, 447–457. doi: 10.1023/A:1011063901595

Rai, A. N., Tamirisai, S., Rao, K. V., Kumar, V., and Suprasanna, P. (2016). Brassica RNA binding protein ERD4 is involved in conferring salt, drought tolerance and enhancing plant growth in Arabidopsis. Plant Mol. Biol. 90, 375–387. doi: 10.1007/s11103-015-9423-x

Rama Devi, S., Chen, X., Oliver, D. J., and Xiang, C. (2006). A novel high-throughput genetic screen for stress-responsive mutants of Arabidopsis thaliana reveals new loci involving stress responses. Plant J. 47, 652–663. doi: 10.1111/j.1365-313X.2006.02814.x

Ramón, N. M., and Bartel, B. (2010). Interdependence of the peroxisome-targeting receptors in Arabidopsis thaliana: PEX7 facilitates PEX5 accumulation and import of PTS1 cargo into peroxisomes. Mol. Biol. Cell. 21, 1263–1271. doi: 10.1091/mbc.E09-08-0677

Ren, X. L., Qi, G. N., Feng, H. Q., Zhao, S., Zhao, S. S., Wang, Y., et al. (2013). Calcineurin B-like protein CBL10 directly interacts with AKT1 and modulates K+ homeostasis in Arabidopsis. Plant J. 74, 258–266. doi: 10.1111/j.1365-3125.2011.t01213

Sakamoto, W., Tamura, T., Hanba-Tomita, Y., and Murata, M. (2002). The VAR1 locus of Arabidopsis encodes a chloroplastic FtsH and is responsible for leaf variation in the mutant alleles. Genes Cells 7, 769–780. doi: 10.1046/j.1365-2443.2002.00558.x

Shi, H., Chen, Q., Qi, Y., Yan, H., Nie, H., Chen, Y., et al. (2013). BR-signaling kinase1 physically associates with flagellin sensing2 and regulates plant innate immunity in Arabidopsis. Plant Cell 25, 1143–1157. doi: 10.1105/tpc.112.107904

Shirakawa, M., Ueda, H., Shimada, T., and Harashishimura, I. (2016). FAMA - a molecular link between stomata and myrosin cells. Trends Plant Sci. 21, 861–871. doi: 10.1016/j.tplants.2016.07.003

Silva-Sanchez, C., Chen, S., Zhu, N., Li, Q. B., and Chourey, P. S. (2013). Proteomic comparison of basal endosperm in maize miniature1 mutant and its wild-type M1. Front. Plant Sci. 4:211. doi: 10.3389/fpls.2013.00211

Sokolenko, A., Pojdaeva, E., Zinchenko, V., Panichkin, V., Glaser, V. M., Herrmann, R. G., et al. (2002). The gene complement for proteolysis in the cyanobacterium Synechocystis sp. PCC 6803 and Arabidopsis thaliana chloroplasts. Curr. Genet. 41, 291–310. doi: 10.1007/s00294-002-0039-0

Sonderby, I. E., Geu-Flores, F., and Halkier, B. A. (2010). Biosynthesis of glucosinolates - gene discovery and beyond. Trends Plant Sci. 15, 283–290. doi: 10.1016/j.tplants.2010.02.005

Sun, L., Xu, D., Xu, Q., Sun, J., Xing, L., Zhang, L., et al. (2017). iTRAQ reveals proteomic changes during intestine regeneration in the sea cucumber Apostichopus japonicus. Comp. Biochem. Physiol. Part D. 22, 39–49. doi: 10.1016/j.tbed.2017.02.004

Sun, T., Zhang, Q., Gao, M., and Zhang, Y. (2014). Regulation of SOBIR1 accumulation and activation of defense responses in bim1–1 by specific components of ER quality control. Plant J. 77, 748–756. doi: 10.1111/pj.12425

Sweetlove, L. J., Heazlewood, J. L., Herald, V., Holtzapffel, R., Day, D. A., Leaver, C. J., et al. (2002). The gene complement for proteolysis in Arabidopsis thaliana chloroplasts. Curr. Genet. 41, 291–310. doi: 10.1007/s00294-002-0039-0

Teo, J., Wang, X., Mao, J., Qin, K., Li, X., and Wang, J. (2013). Identification of a novel transporter for dicarboxylates and tricarboxylates in plant mitochondria bacterial expression, reconstitution, functional characterization, and tissue distribution. J. Biol. Chem. 277, 24204–24211. doi: 10.1074/jbc.M202702200

Takáč, T., Šamajová, O., Vadovič, P., Pechan, T., Košútová, P., Ovečka, M., et al. (2014). Proteomic and biochemical analyses show a functional network of proteins involved in antioxidant defense of the Arabidopsis anp2anp3 double mutant. J. Proteome Res. 13, 5347–5361. doi: 10.1021/pr50088c
Weig, A., Deswarte, C., and Chrispeels, M. J. (1997). The major intrinsic
Walter, B., Pieta, T., and Schünemann, D. (2015).
Arabidopsis thaliana
Willmann, R., Lajunen, H. M., Erbs, G., Newman, M., Kolb, D., and
Tsuda, K. (2011). Mediate bacterial peptidoglycan sensing and immunity
to bacterial infection.
Proc. Natl. Acad. Sci. U.S.A.
Wintz, H., Fox, T., Wu, Y. Y., Feng, V., Chen, W., Chang, H. S., et al. (2012). Lack of cytochrome c in Arabidopsis decreases stability of Complex IV and modifies redox metabolism without affecting Complexes I and III.
Biochim. Biophys. Acta
Willemann, R., Lajunen, H. M., Erbs, G., Newman, M., Kolb, D., and
Tsuda, K. (2011). Mediate bacterial peptidoglycan sensing and immunity
to bacterial infection.
Proc. Natl. Acad. Sci. U.S.A.
Wintz, H., Fox, T., Wu, Y. Y., Feng, V., Chen, W., Chang, H. S., et al. (2012). Lack of cytochrome c in Arabidopsis decreases stability of Complex IV and modifies redox metabolism without affecting Complexes I and III.
Biochim. Biophys. Acta
Xia, C., Wang, Y. J., Li, W. Q., Chen, Y. R., Deng, Y., Zhang, X. Q., et al. (2010). The Arabidopsis eukaryotic translation initiation factor 3 subunit F (AtelF3f), is required for pollen germination and embryogenesis.
Plant J.
Xia, C., Wang, Y. J., Li, W. Q., Chen, Y. R., Deng, Y., Zhang, X. Q., et al. (2010). The Arabidopsis eukaryotic translation initiation factor 3 subunit F (AtelF3f), is required for pollen germination and embryogenesis.
Plant J.
Yang, S., Zeng, X., Li, T., Liu, M., Zhang, S., Gao, S., et al. (2012). AtACDO1, an ABC1-like kinase gene, is involved in chlorophyll degradation and the response to photooxidative stress in Arabidopsis.
J. Exp. Bot. 63, 3959–3973.
doi: 10.1093/jxb/ers072
Yang, X. H., Xu, Z. H., and Xue, H. W. (2005). Arabidopsis membrane steroid binding protein 1 is involved in inhibition of cell elongation.
Plant Cell 17, 116–131. doi: 10.1105/tpc.104.028581
Zelazny, E., Santambrogio, M., Pourcher, M., Chambrier, P., Berne-Dedieu, A., Fobis-Loisy, I., et al. (2013). Mechanisms governing the endosomal membrane recruitment of the core retromer in Arabidopsis. J. Biol. Chem. 288, 8815–8825.
doi: 10.1074/jbc.M112.440503
Zhang, M., Wang, C., Lin, Q., Liu, A., Wang, T., Feng, X., et al. (2015). A tetratricopeptide repeat domain-containing protein SSR1 located in mitochondria is involved in root development and auxin polar transport in Arabidopsis. Plant J. 83, 582–599. doi: 10.1111/tbj.12911
Zhao, Y., Hull, A. K., Gupta, N. R., Goss, K. A., Alonso, J., Ecker, J. R., et al. (2002). Trp-dependent auxin biosynthesis in Arabidopsis: involvement of cytochrome P450s CYP79B2 and CYP79B3. Genes Dev. 16, 3100–3112.
doi: 10.1101/gad.1035402
Zheng, H., Bassham, D. C., da Silva Conceição, A., and Raikhel, N. V. (1999). The syntaxin family of proteins in Arabidopsis: a new syntaxin homologue shows polymorphism between two ecotypes. J. Exp. Bot. 50, 915–924.
doi: 10.1093/jxb/50.Special_Issue.915
Zrenner, R., Riegler, H., Marquard, C. R., Lange, P. R., Geserick, C., Bartosz, C. E., et al. (2009). A functional analysis of the pyrimidine catabolic pathway in Arabidopsis. New Phytol. 183, 117–132. doi: 10.1111/j.1469-8137.2009.02843.x
Conflict of Interest Statement: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.
The reviewer XH and handling Editor declared their shared affiliation, and the handling Editor states that the process nevertheless met the standards of a fair and objective review.
Copyright © 2017 Mostafa, Yoo, Zhu, Geng, Dufresne, Abou-Hashem, El-Domiaty and Chen. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction which does not comply with these terms.