Systematic Review on Wearable Lower-Limb Exoskeletons for Gait Training in Neuromuscular Impairments

Antonio Rodríguez-Fernández1*, Joan Lobo-Prat2,3 and Josep M. Font-Llagunes1,2

Abstract
Gait disorders can reduce the quality of life for people with neuromuscular impairments. Therefore, walking recovery is one of the main priorities for counteracting sedentary lifestyle, reducing secondary health conditions and restoring legged mobility. At present, wearable powered lower-limb exoskeletons are emerging as a revolutionary technology for robotic gait rehabilitation. This systematic review provides a comprehensive overview on wearable lower-limb exoskeletons for people with neuromuscular impairments, addressing the following three questions: (1) what is the current technological status of wearable lower-limb exoskeletons for gait rehabilitation?, (2) what are the benefits and risks for exoskeleton users?, and (3) what is the current evidence on clinical efficacy for wearable exoskeletons?. We analyzed 87 clinical studies focusing on both device technology (e.g., actuators, sensors, structure) and clinical aspects (e.g., training protocol, outcome measures, patient impairments), and make available the database with all the compiled information. The results of the literature survey reveal that wearable exoskeletons have potential for a number of applications including early rehabilitation, promoting physical exercise, and carrying out daily living activities both at home and the community. Likewise, wearable exoskeletons may improve mobility and independence in non-ambulatory people, and may reduce secondary health conditions related to sedentariness, with all the advantages that this entails. However, the use of this technology is still limited by heavy and bulky devices, which require supervision and the use of walking aids. In addition, evidence supporting their benefits is still limited to short-intervention trials with few participants and diversity among their clinical protocols. Wearable lower-limb exoskeletons for gait rehabilitation are still in their early stages of development and randomized control trials are needed to demonstrate their clinical efficacy.

Keywords: wearable exoskeleton; lower-limb; neuromuscular impairment; gait rehabilitation; spinal cord injury; stroke

Background
Gait disorders affect approximately 60% of patients with neuromuscular disorders [1] and generally have a high impact on their quality of life [2]. Moreover, immobility and loss of independence for performing basic activities of daily living results in patients being restricted to a sedentary lifestyle. This lack of physical activity increases the risk of developing secondary health conditions, such as respiratory and cardiovascular complications, bowel/bladder dysfunction, obesity, osteoporosis and pressure ulcers [3–7]; which can further reduce the patients’ life expectancy [3, 4]. Therefore, walking recovery is one of the main rehabilitation goals for patients with neuromuscular impairments [8, 9].

Robotic gait rehabilitation appeared 25 years ago as an alternative to conventional manual gait training. Compared with conventional therapy, robotic gait rehabilitation can deliver highly controlled, repetitive and intensive training in an engaging
environment [10], reduce the physical burden for the therapist, and provide objective and quantitative assessments of the patients’ progression [11]. The use of gait rehabilitation robots began in 1994 [12] with the development of Lokomat [13]. Since then, different rehabilitation robots have been developed and can be classified into grounded exoskeletons (e.g., Lokomat [14], LOPES [15], ALEX [16]), end-effector devices (e.g., Gait Trainer [17], Haptic Walker [18]), and wearable exoskeletons (e.g., ReWalk [19], Ekso [20], Indego [21]) [12]. In addition, there have been recent developments towards “soft exoskeletons” or “exosuits” which use soft actuation systems and/or structures to assist the walking function [22–25]. Despite these developments, to date the optimal type of rehabilitation robot for a specific user and neuromuscular impairment still remains unclear [26].

Wearable exoskeletons are emerging as revolutionary devices for gait rehabilitation due to both the active participation required from the user, which promotes physical activity [27], and the possibility of being used as an assistive device in the community. The number of studies on wearable exoskeletons during the past 10 years has seen a rapid increase, following the general tendency now towards rehabilitation robots [28]. Some of these devices already have FDA approval and/or CE mark, and are commercially available, whereas many others are still under development.

There have been several reviews surveying the state of wearable exoskeletons for gait rehabilitation. Some of these reviews have focused on reviewing the technological aspects of exoskeletons from a general perspective [29, 30], whilst others have focused on specific aspects such as the control strategies [31] or the assistance on certain joints [32]. A selection of reviews have focused on surveying the effectiveness and usability evidence of exoskeletons in clinical neurorehabilitation in general [33, 34], or for a specific pathology such as spinal cord injury (SCI) [30, 34] or stroke [11].

This review provides a comprehensive overview on wearable powered exoskeletons for over-ground training without body weight support, that are intended for use with people who have gait disorders due to neuromuscular impairments. In comparison with other reviews, we analyse a wide range of aspects of wearable exoskeletons, from their technology to their clinical evidence, for different types of pathologies. This systematic review was carried out to address the following questions: (1) what is the current technological status of wearable lower-limb exoskeletons for gait rehabilitation?, (2) what are the benefits and risks for exoskeleton users?, and (3) what is the current evidence on clinical efficacy for wearable exoskeletons?

Methods

Search strategy

We searched for scientific publications in four online databases from 2000 until 18th March 2019 using the following search terms: (exoskeleton OR orthos* OR exoskeletal) AND (robot* OR power* OR active) AND (walk* OR gait) AND ((leg OR lower) AND (limb OR extremity)) AND (rehabilitation* OR clinical* OR pilot) NOT (“body weight support” OR BWS OR treadmill OR upper OR hand OR arm). This literature search resulted in 855 publications, 57 of which were added in a second search for commercially available exoskeletons: 175 in PubMed, 348 in Web
of Science, 296 in Scopus, 36 in IEEE Xplore, and 29 studies from exoskeleton websites.

After removing duplicates, 777 publications were screened first by their title and secondly by their abstract. 127 publications were full-text assessed for eligibility. Finally, 87 studies were included in this review (Figure 1).

Inclusion and exclusion criteria
We only included studies written in English, which provided relevant clinical information aimed at studying the effects of exoskeleton devices on gait rehabilitation. To be included in the analysis, each article had to meet the following three conditions: (1) wearable and powered lower-limb exoskeleton, (2) overground outcome measures, and (3) participants had to have a neuromuscular impairment. It should be made clear that we consider as wearable exoskeletons those that present a rigid external structure. Consequently, soft exoskeletons or exosuits were not included in the present survey. Studies that used body weight support or a treadmill were excluded with the purpose of focusing only on studies that solely investigated the
effect of wearable exoskeleton technology. Note that for the analysis, only data from patients who used the robotic devices were included, i.e., patients in the intervention group.

Approach

The information of each study was classified according to technical aspects of the exoskeleton and clinical aspects. The technical aspects included: (1) exoskeleton design and structure, (2) control methods, and (3) type of actuators. The clinical aspects included: (4) patient demographics, (5) patient impairments, (6) training protocol, (7) outcome measures, (8) the walking aids used during training, and (9) the training environment.

The neuromuscular impairments of the patients were classified into three groups: spinal cord injury (SCI), stroke, and other pathologies. This classification was used to analyse the technical and clinical aspects of the 87 studies. Due to the large number of studies involving SCI patients, we carried out a specific analysis on the level of injury (LOI) building upon the analysis carried out by Contreras-Vidal et al. [30].

The classification of primary and secondary outcome measures were grouped using the five categories proposed by Contreras-Vidal et al. [30] and a sixth additional category: (1) Ambulation assessments, which includes measures to assess locomotor ability based on time or distance measures; (2) balance and level of assistance/independence, which evaluates the stability and the dependency on walking aids; (3) physiological improvements, which considers effects related to pain, skin, bowel/bladder function and spasticity; (4) energy expenditure, which quantifies the effort and metabolic energy consumption needed when using the device; (5) usability and comfort, which evaluates the ergonomics and the subjective feedback of the user; and (6) biomechanics, which contains the kinematic and kinetic metrics.

Review

Wearable exoskeleton technology

This review identified 25 exoskeletons (Figure 2), from which only six have FDA approval and/or CE mark and are commercially available (i.e. Ekso, HAL, Indego, REX, ReWalk and SMA). We found that 16 out of the 25 exoskeletons (64%) actively assist two or more joints (13: hip-knee, 3: hip-knee-ankle), while the rest (36%) actively assist a single joint (1: hip, 6: knee, 2: ankle). In addition, out of the 25 exoskeletons only one is intended for the paediatric population [36]. Table 1 summarizes the main technical aspects of the 25 exoskeletons. For further details on the exoskeleton characteristics see Additional file 2.

From our literature review, we identified that the first clinical study using a wearable exoskeleton was published in 2009 reporting the results of a clinical test with the HAL exoskeleton [37]. The second study did not appear until 2011 with the clinical evaluation of the Vanderbilt Exoskeleton (nowadays commercialized as Indego) [38]. Moreover, we found that Ekso, HAL and ReWalk are the exoskeletons with a considerably higher number of clinical studies (Figure 3D), and together with the Indego exoskeleton they have been the most tested exoskeletons in terms of number of patients (Figure 3E).
Design and structure

We found that the number of degrees of freedom (DOF) in wearable exoskeletons ranges from one to three per leg in the sagittal plane (except for REX which also enables movement in the transverse and frontal planes) and the most frequent number of DOF is two (Figure 2). Joints can be passive, active or, as in the case of the ankle joint, they may also be fixed. From the 25 exoskeletons selected in this review, 22 present an active knee joint (see Table 1), nine present passive joints (8: ankle, 1: hip), 7 present a fixed ankle joint (Indego, ARKE, Arazpour2013a, Arazpour2013b, Kim2013, Chang2017 and AlterG Bionic Leg) and 5 do not present any ankle joint (Vanderbilt Exoskeleton, Curara, SMA, Keoogo and Kawasaki2017).

Exoskeletons with two active joints were tested by 76.4% of the total amount of patients reported in the included studies, and focused mostly on SCI patients (Figure 3A). In contrast, exoskeletons with three active joints were tested by only 4.9% of the patients and also focused on SCI. Finally, exoskeletons with one active joint were tested by 18.7% of the patients and mostly focused on stroke and patients with other pathologies.

In agreement with the trend previously detected by Young & Ferris 2017 [51] and Veale & Xie 2016 [52], we found that the most frequent actuators are electric motors (22 out of the 25 exoskeletons). Only three of the reviewed exoskeletons use hydraulic [46] or pneumatic actuators [50, 53] (see Table 1). Regarding the power supply, we found that batteries are able to reach up to 6 hours of use in the case of the H2 exoskeleton, but generally they are only capable of sustaining 2 to 4 hours of continuous use (Table 1).

Wearable exoskeletons are still heavy and bulky devices due to their rigid structures, actuators and batteries. For example, the average weight of hip-knee exoskeletons is 14.28 kg (7.14 kg per leg), which approximately corresponds to more than half the weight of an average adult human leg (i.e., 10.88 kg [54]). Note that added loads in the legs result in an increase of the net metabolic cost, and the effect is larger when the load is located more distally [55].

Exoskeletons for SCI patients have the highest mean weight (15.15 ± 9.01 kg), independently of the number of active joints (Figure 3A), mainly due to the fact that the two heaviest exoskeletons were used only in SCI (ReWalk: 23.3 kg, and REX: 38 kg). The mean weight of exoskeletons used in stroke (8.90 ± 7.48 kg) and in patients with other pathologies (8.87 ± 7.35 kg) are in the same range. Independently of the pathology, exoskeletons with the same number of active joints have similar weights (Figure 3C). As expected, we found that there is a relationship between number of active joints and the exoskeleton’s weight: an increase of active joints results in a weight increase.

Studies found that misalignment due to suboptimal fitting can increase the metabolic cost and discomfort of the wearer producing pain, injuries [56, 57] and augment the risk of bone fractures [58, 59]. Therefore, the structure of the exoskeleton has to be able to adapt to the anthropometry of the users [60]. Exoskeletons can adapt to the user’s height with a range of approximately 1.45 to 1.95 m (see Table 1), which covers the majority of the population [61]. However, the maximum allowed weight of 100 kg could be a limiting factor due to the fact that people with neuromuscular impairments present a higher rate of obesity [62, 63]. On the
other hand, wearable exoskeletons need to be easy to don/doff in order to prevent users from carrying out hazardous transitions and requiring assistance from caregivers. Doffing time takes around 10 minutes [40, 64, 65] and usually tends to be shorter than donning time, which can reach up to 30 minutes in some cases [66]. In general, patients are unable to don/doff the exoskeleton by themselves [65], often needing to carry out complicated wheelchair-exoskeleton transitions, thus requiring the assistance of caregivers.

Supervision from clinical staff is nearly always required during wearable exoskeletons use. In addition, in order to avoid falls and provide balance, individuals need supportive devices such as crutches, walkers and canes (Figure 5B), which can limit the independence and mobility of the user, and may lead to shoulder pain [67]. In the study by Manns et al. [68], which evaluated the perspective of the participants after training with the ReWalk exoskeleton, several participants emphasized the effort exerted with the arms while using the exoskeleton. From this review, we found that patients with SCI commonly ended up using a walker or crutches whereas post-stroke patients, due to their hemiparesis, used a cane on the unaffected side. In the group of other pathologies, the walker was the most commonly used aid, and in 4 of these studies no aid was needed.

Soft exoskeletons (or exosuits) have recently arisen to mitigate some of the limitations of conventional, rigid wearable exoskeletons mentioned above. Soft exoskeletons stand out for doing away with rigid frames presented in wearable exoskeletons. Standard soft exoskeletons are characterized for being textile devices actuating on user’s joints through Bowden cable-based transmission [69, 70]. The soft structure translates into lighter devices which do not restrict the wearer’s mobility, leading to improved comfort, reduced metabolic cost and improved ease to don and doff [69, 71]. However, the low actuation torques prevent soft exoskeletons from assisting people with severe motor impairments, such as non-ambulatory individuals [22, 72].

Control and sensing

Wearable exoskeletons started implementing rigid control methods based on predefined trajectories [30]. Nevertheless, exoskeleton technology is opening to patients that are not completely paralyzed and thus, in order to encourage active participation of the user [73] and provide more voluntary control, compliant control methods based on user-exoskeleton interaction (e.g., impedance control) are becoming more frequent (see Table 1). In fact, the study by Pérez-Nombela et al. [74] found that patients with incomplete SCI using the H2 exoskeleton presented higher metabolic cost when they walked with a predefined trajectory than with a control method based on user-exoskeleton interaction. We found that approximately 50% of the included exoskeletons use predefined gait trajectories, and the other 50% implement control methods based on user-exoskeleton interaction. We also found that the HAL exoskeleton is the only device that implements an EMG-based control method [75].

Regardless of the type of control, there are two elements that are crucial for the operation of the exoskeleton: the algorithms for gait phase detection and step initiation (see Table 1). We found that all the exoskeletons included in this review use deterministic threshold-based methods (i.e., a given input will always produce the same output). Despite the limited information provided in studies about this
field, we found that the use of ground reaction forces is the most frequent method to
detect gait phases (see Table 1), followed by joint angles and inertial measurements.
In the cases where the intended users preserve locomotor function, exoskeletons also
measure joint torques or EMG signals (see Table 1) generated by the user to trigger
steps. Finally, we also found that several exoskeletons use explicit inputs such as
buttons or joysticks (see Table 1) to control the exoskeleton.

SCI level of injury distribution

Figure 4 builds upon Figure 1 of Contreras-Vidal et al. [30] and shows the LOI
distribution across the clinical studies with SCI patients. In general, the range of
LOIs is widely covered from high cervical levels (C3) to low lumbar lesions (L5), yet
we did not find studies including patients with LOI of C1, C2, S1, S2, S3, S4 and S5.
Patients with thoracic lesions are the most representative (80%) with T10 being the
most studied LOI, followed by T4 and T12. The low representation of cervical (12%)
and sacral (8%) lesions is probably due to the study inclusion/exclusion criteria,
which require patients to be able to use walking aids (e.g., crutches or walkers) and
exclude patients that have a low level of walking impairment, i.e., patients with
sacral lesions. We found that the Ekso and the ReWalk exoskeletons present the
widest range of injuries with the largest number of patients. We also found that
exoskeletons without active hip joint are restricted to patients with incomplete or
low thoracic-complete LOI.

Figure 4 also shows that approximately 67% of SCI patients have a motor
and sensory complete injury (Mc/Sc), 28% have a motor and sensory incom-
plete injury (Mi/Si), and finally only 18 patients (5%) have a motor-complete
sensory-incomplete injury (Mc/Si). This evidence contrasts with data from the Na-
tional Spinal Cord Injury Statistical Center (NSCISC) where incomplete paraple-
gia/tetraplegia affects to 67.5% of the patients with SCI [76]. The bias detected in
the review for complete SCI patients seems to be attributed to the inclusion criteria
of the studies. We identified a great number of studies whose only focus was assess-
ing the impact of exoskeletons on motor-complete SCI or non-ambulatory patients,
thus excluding anyone who was ambulatory at all. The reason for this inclusion
criterion may be due to assist complete SCI subjects with exoskeletons is simpler,
especially with control methods based on predefined trajectories. Conversely, if the
wearer preserves motor function, the exoskeleton has to cooperate with the subject
through user-exoskeleton interaction-based control, which is more complex.
Figure 2 Exoskeletons included in the literature review. From left to right and top to bottom: A diagram showing the locations of the active joints of the exoskeletons included in the literature review, HAL (Image courtesy of Cyberdine, Inc.), WPAL (Reproduced from [39]), H2 (Reproduced from [40]), REX (Reproduced from [41]), Ekso (Image courtesy of Paolo Milia, Prosperius Institute, Neurorehabilitation and Robotic Area, University of Perugia, Umbertide, Italy), ReWalk (Image courtesy of ReWalk Robotics), Robin (Image courtesy of Hyunsup Park, Applied Robot Technology R&D Group, Korea Institute of Industrial Technology, Korea), CUHK-EXO (Reproduced from [42]), ITRI (Reproduced from [43]), Vanderbilt Exoskeleton (Image courtesy of Michael Goldfarb, Vanderbilt University, Nashville), Indego (Reproduced from [44]), ARKE (Image courtesy of Edward Lemaire, Ottawa Hospital Research Institute, Centre for Rehabilitation Research and Development, Ottawa, Canada), Curara (Reproduced from [45]), Arazpour2013a (Image courtesy of Mokhtar Arazpour, Department of orthotics and prosthetics, University of Social Welfare and Rehabilitation Sciences, Tehran, Islamic Republic of Iran), Kim2013 (Image courtesy of Kim Gyoosuk, Korea Workers Compensat & Welf Serv, Rehabil Engn Res Inst, Incheon, South Korea), Chang2017 (Reproduced from [46]), SMA (Reproduced from [47]), Keoogo (Reproduced from [48]), Kinesis (Image courtesy of Antonio J. del Ama, Electronic Technology Department, Rey Juan Carlos University, Spain), Lerner2017 (Image courtesy of Thomas Bulea, Rehabilitation Medicine Department, National Institutes of Health Clinical Center, Bethesda, USA), Alter G Bionic Leg (Image courtesy of Luna Solution, S.L.), Arazpour2013b (Image courtesy of Monireh A. Bani, Department of Orthotics and Prosthetics, University of Social Welfare and Rehabilitation Sciences, Tehran, Islamic Republic of Iran), Kawasaki2017 (Image courtesy of Ohata Koji, Department of Human Health Sciences, Kyoto University Graduate School of Medicine, Japan), Yeung2017 (Reproduced from [49]), and Boes2017 (Reproduced from [50]). Note that Vanderbilt Exoskeleton and Kinesis are the former prototypes from the current commercial version of Indego and H2, respectively.
Figure 3 Overview of wearable exoskeletons regarding studied pathologies and number of studies, patients and active joints. [A] Barplot showing the number of patients that have used exoskeletons with 1, 2 or 3 active joints. [B] Barplot showing the weight of wearable exoskeletons for each pathology: spinal cord injury, stroke or other pathologies. [C] Barplot showing the weight of wearable exoskeletons that use 1, 2 or 3 active joints. [D] Number of studies included in this review for each exoskeleton grouped by triennium. [E] Number of patients studied by each exoskeleton grouped by pathology. Error bars indicate one standard deviation.
Exoskeleton	Actuated joints	Actuator	Sensor	Control method	Gait initiation mode	Device weight (kg)	User height (cm) and weight (kg)	Operation time (h)	Unique features
WPAL [39]	HKA	Electric	JA, JT	Trajectory Interaction	Button	13	145-180 and 80	>1	Alternating use of robot and wheelchair
H2 [40]	HKA	Electric	JA, JT, IT, FF	Trajectory Interaction	Button	12	145-195 and 100	6	-
REX [41]	HKA	Electric	-	Trajectory	Joystick	38	146-195 and 100	1	Joystick and three-button keypad
HAL [37]	HKA*	Electric	EMG, JA, FF, Acc	Trajectory Interaction	EMG-control	14	150-190 and 100	1.5	Independent leg
Ekso [77]	HKA	Electric	JA, FF, Acc	Trajectory Interaction	Weight shifts	23	158-188 and 100	1	FDA for stroke
ReWalk [19]	HKA	Electric	JA, FF, Ori	Trajectory	Weight shifts	23.3	160-190 and 100	2	FDA for home use
Robin [78]	HKA	Electric	FF, Acc, CAcc	-	Weight shifts	11	-	-	-
CUHK-EXO [42]	HKA	Electric	JA, FF, Acc	Trajectory	Phone App	18	155-185 and 100	3	-
TTRI [43]	HKA	Electric	-	Trajectory	Button	20	-	-	-
Vanderbilt Exoskeleton [79]	HK	Electric	JA, Acc, Ori	Trajectory Interaction	CoP (body tilt)	12	-	-	-
Indego [21]	HK†	Electric	JA, Acc, Ori	Trajectory Interaction	CoP (body tilt)	12	155-191 and 113	1.5	FDA for stroke
ARKE [80]	HK†	Electric	JA, FF, Acc, Ori	Trajectory	Weight shifts	-	-	-	-
Exoskeleton	Actuated joints	Actuator	Sensor	Control method	Gait Initiation mode	Device weight (kg)	User height and weight (kg)	Operation time (h)	Unique features
----------------------	-----------------	------------	----------------	----------------	----------------------	--------------------	-------------------------------	-------------------	--
Curara [45]	HK	Electric	JA, JT, IT	Trajectory Interaction	Motion intent	5.8	-	-	-
Arazpour2013a [81]	HK†	Electric	JA	Trajectory	orthosis via joystick	10.1	-	-	-
Kim2013 [53]	HK†	Pneumatic	EMG (arms), FF	-	-	-	-	-	3 Air muscles for hip
Chang2017 [46]	HK†	Hydraulic	JA, FF, Acc, Ori	Trajectory Interaction	Button	7.9	152-193/100	2	Functional Neuro-muscular Stimulation
SMA [47]	H	Electric	JA, JT	Trajectory Interaction	Motion intent	2.7	140-200	1	-
Keeogo [48]	hK	Electric	-	Trajectory Interaction	Motion intent	5.4	Above 155	2.5	Squatting lunging
Kinesis [82]	Ka	Electric	JA, FF, IT, Ori	Trajectory Interaction	Button	9.2	<185/90	-	Hybrid (FES)
Lerner2017 [83]	Ka	Electric	JA, JT, FF	-	-	3.2	Children	1	-
AlterG Bionic Leg [84]	K†	Electric	JA, JT, FF, Acc	Trajectory Interaction	Motion intent	3.5	153-182/136	2-3	Unilateral
Arazpour2013b [85, 86]	K†	Electric	FF	Trajectory	Weight shifts	3.6	-	-	Unilateral
Kawasaki2017 [87]	K	Electric	Acc	Trajectory	Motion intent	3	-	-	Actuator attached to a KAFO, Batteries on a belt
Yeung2017 [49]	A	Electric	FF, Acc, Ori	-	Foot lift off	1	-	5	Battery carried at the waist, Unilateral
Exoskeleton	Actuated joints	Actuator	Sensor	Control method	Gait initiation mode	Device weight (kg)	User height (cm) and weight (kg)	Operation time (h)	Unique features
-------------	----------------	----------	--------	----------------	---------------------	-------------------	-------------------------------	-------------------	----------------
Boes2017 [50]	A	Pneumatic	JA, FF	Trajectory	Weight shifts	3.1	-	-	Unilateral

Sensors: Acc: Acceleration; ACF: Arm crutches force; AJA: Arm crutches force; Cacc: Crutches acceleration; CF: Crutches force/pressure; EMG: Electromyography; FF: Foot contacting force/pressure; IT: Interaction torque; JA: Joint angle; JT: Joint torque; Ori: Orientation

Abbreviations: CoM: Center of mass; CoP: Center of pressure; FES: Functional electrical stimulation; KAFO: Knee-ankle-foot orthosis

* Small letters indicate passive joints
† Indicates fixed ankle joint
Figure 4 Level of injury (LOI) distribution grouped by exoskeleton and study. The number inside each cell indicates the number of patients that were tested in each study. Colors indicate studies that used the same exoskeleton and are ordered according to the device weight from lightest (top) to heaviest (bottom). Left histogram shows the distribution of patients with lesions that are motor and sensory complete (Mc/Sc), motor and sensory incomplete (Mi/Si) and motor-complete and sensory incomplete (Mc/Si). Middle histogram shows the distribution of patients according to LOI, and the right histogram shows the distribution of patients according to the AISA Impairment Scale (AIS) [88]. Cells with a grated pattern indicate patients that present two different LOI (i.e., patients who have two or more injured vertebrae).
Experimental protocol design

This section analyses the characteristics of the studies including: the number of patients and their demographics, the training protocol, and the outcome measures used to assess the patients’ performance. An overview of the characteristics in a table format of each of the 87 studies included in this review is available in the Additional file 3. Note that the results described in this section only consider participants who tested the exoskeletons, and not the participants that were in the control group.

Study design

We found that the total number of sessions shows a large variability (range: 1-120), being the range from 1 to 5 sessions the most common (33%). Concerning the number of sessions per week, 3 sessions was the most common frequency (46%) followed by 5 sessions per week (23%; Figure 5C). We found that 4 out of the 87 studies exceed 2 hours [36, 41, 44, 89]. Regarding the number of patients, studies with 1 to 5 participants were the most common (47%) with about half of these being single case studies. The maximum number of patients enrolled in one study was 52 [90, 91]. The duration time of each session usually ranged between 60 to 90 minutes, including the donning/doffing time and the rest periods. Regarding the gender of patients (see Additional file 3), SCI studies show that 79.6% of the patients were males. Despite the large asymmetry, this result agrees with those from the NSCISC, that shows 78% of new cases are male. In post-stroke patients, the percentage of males was also higher (69%) coinciding with stroke worldwide incidence, which is higher among men [92]. Finally, the group of other pathologies presented slightly lower percentage of males (45.3%) than females.

Knowledge about usability of the exoskeleton is a relevant aspect to take into account when developing protocols, since learning to use an exoskeleton is time consuming and variable among users [93]. To date, few studies have focused on the learning process when using exoskeletons [64, 68]. Learning to use an exoskeleton requires not just physical but also mental effort [68]. Kozlowski et al. [64] quantified the time and effort required by people with SCI to learn to use the ReWalk exoskeleton. They found that the average number of sessions (2 hours each) for walking and developing sit-stand transitions with contact guard assistance (i.e., helper maintains touch or near-touch contact, but provides no assistance) and close supervision were 15 and 18 sessions, respectively. In this regard, there are few studies that showed that the use of biofeedback could accelerate the learning process and reduce the time and effort devoted to learn how to use an exoskeleton [94–97].

As previously concluded by Contreras-Vidal et al. in [30], we found that experimental protocols for clinical validation of exoskeletons present high variability across studies. There is a need for standard clinical guidelines defining protocols for clinical validation of exoskeleton technology. This would also provide the possibility for benchmarking among devices. In this line, the EUROBENCH project aims at establishing standard benchmarking methods for exoskeletons to facilitate comparisons among the available solutions [98].

Training protocol

The training protocol shows a common methodology across the selected studies, and in general studies follow similar methodologies to the one proposed by van
Dijsseldonk et al. [99]. The initial part of the training consists of carrying out baseline measurements on the patient such as spasticity [36], Borg Scale [100] and bone mineral density [43]. Next, patients start familiarizing with the device and develop basic skills to use it properly. In this familiarization phase, participants usually practise standing, sitting, balancing and turning. In case patients were not able to do the baseline measurements by themselves (i.e., they were unable to stand up or walk), the “baseline” measurements were taken wearing the exoskeleton in an early stage of the training protocol and the metrics were compared at different time points of the training.

Most of the studies finish the training protocol after a series of indoor walking sessions, yet there are few studies that continue with training more advanced activities such as outdoor walking, stair climbing, walking on different surfaces (carpet, grass, obstacles or ramps), open doors, or elevator use (Figure 5). We found that, besides indoor walking (done in all the included studies), sit-to-stand transition...
was the most practised activity, followed by outdoor walking and stair climbing. In some studies, patients received additional training (see Additional file 3) apart from using the exoskeleton. Some of the typical additional training methods used were muscle stretching, balancing activities, range of motion improvement, relaxation and meditation.

Outcome measures

Additional file 4 gives an overview of the outcome measures used in the selected studies following the categories proposed by Contreras-Vidal et al. [30], with an additional category that includes metrics related to biomechanics.

We found that outcome measures belonging to the ambulation assessments category were the most used (44%), followed by biomechanics measures (17%), energy expenditure (14%), balance and level of assistance (13%), physiological improvements (8%), and metrics related to usability and comfort (3%; Figure 5D). We found that the most frequent outcome measures were gait speed (57.5% out of the total number of studies), the 10 meter walk test (10MWT, 43.7%), the 6-minute walk test (6MWT, 43.7%) and the timed up and go test (TUG, 25.3%). Interestingly, all of them belong to the ambulation assessments category. The Berg Balance Scale (BBS) was the most common outcome measure of balance and level of assistance category, used mainly for stroke patients, although the main outcome measure in stroke studies was the Fugl-Meyer Assessment (FM). Spasticity and pain were the most frequent outcomes in physiological improvement category. Moreover, this category, together with energy expenditure and usability and comfort categories, was mainly focused on people with SCI. In contrast, outcome measures related to biomechanics was widely studied independently of the pathology, with knee and hip angles being the most interesting biomechanical outcome measures assessed.

As previously mentioned, outcome measures varied across studies and were mainly focused on aspects related to functional mobility, instead of focusing on analyzing physiological and psychological effects. Only a few studies assessed the improvement related to secondary health conditions. For example, Baunsgaard et al. [91] and Juszczak et al. [101] were the only reviewed studies that have measured bowel/bladder function. They were, together with the study by Jayaraman et al. [102], the only studies that analyzed quality of life, with the latter being the only one accounting for level of depression.

Performance assessment

Additional file 3 shows the most common outcome measures used if the study reported an improvement, worsening, no change, or if there was no comparison. In the case of studies focusing on SCI patients, 21 out of 54 studies carried out comparisons of outcome measures. We found that in almost all cases, studies report an improvement from the first to the last session, which is probably due to the fact that through the training sessions patients adapted to the exoskeleton and learned how to use it. Only the results reported by Bishop et al. [84] showed that the participant did not improve in terms of functional mobility. Moreover, we identified three studies that compared the performance of powered exoskeletons with passive knee-ankle-foot orthosis (KAFO) in patients with SCI, and all three showed
better results when using the wearable exoskeletons [43, 103, 104]. In contrast to studies with patients with SCI, studies with post-stroke patients assessed the gait performance, without wearing exoskeleton, after training with the exoskeleton and compared the results with the baseline measurements. In general, we found that the degree of mobility improvement was not as substantial as with the studies focusing on SCI patients: 12 out of 16 studies analyzing gait speed reported an improvement [37, 47, 87, 102, 105–112], and only 3 out of 9 studies analyzing Flugl-Meyer scores reported an improvement [102, 109, 112]. Regarding the group of studies focusing on other pathologies, 4 out of 7 studies analyzing outcome measures related to gait speed reported an improvement [36, 86, 113, 114].

Safety and risks
From the 87 studies screened in this review, only 36 provided information on adverse effects derived from the use of wearable exoskeletons. We found only one study [66] reporting falls, which occurred in three patients: two of them when they were starting to ambulate with forearm crutches, and the other patient fell down during a sit-to-stand transition (because of mechanical programming errors as mentioned in the original study). A total of 18 studies reported mild to moderate adverse events such as orthostatic hypertension [115, 116], skin abrasions [21, 48, 64–66, 90, 110, 117–123], fatigue of the upper extremities [116, 120], low back pain [66, 91], and other adverse events such as urinary tract infections [119], talus fracture [119], dizziness [90], calcaneus fracture [116] and severe knee hyperextension [116]. Studies also described that skin abrasions were reduced using padding and size adjustments, and that fatigue of the upper extremities improved with practice.

Despite the fact that, in general, studies show that wearable exoskeletons are safe devices, these results may not be fully representative. According to He et al. [58], studies tend to omit relevant details when reporting adverse events, differ on the inclusion/exclusion criteria, and do not report explicitly whether adverse events occurred. In the study by van Herpen et al. [59], the authors reported the occurrence of two cases of bone fractures during training with exoskeleton and provided instructions for handling accidental situations such as an unexpected shut down of the control system of the exoskeleton.

Conclusions
In this paper we reviewed the design and clinical evaluation of wearable lower-limb exoskeletons intended to support walking in people with neuromuscular impairments. Since its nascent 20 years ago, the field of wearable exoskeletons has shown significant progress at supporting the walking function for individuals with neuromuscular impairments. However, it is still challenged by its small evidence base, slow acceptability, complex technical problems and inordinate costs for purchasing. We conclude this review paper by summarizing the main conclusions for each of the proposed research questions.

What is the current status of wearable lower-limb powered exoskeleton technology for gait rehabilitation?
Wearable exoskeletons are still heavy and bulky devices that in general require supervision (usually from clinical staff) and the use of walking aids, which hinders
mobility and independence. All the reviewed exoskeletons use deterministic gait phase detection algorithms following button press or a threshold-based approach. For the latter, foot-ground contact force measurement through insole sensors is the most common metric used. The most frequent type of measurement in wearable exoskeletons is joint angle, since the vast majority of actuators are used together with encoders or potentiometers to provide position feedback. Regarding actuation, the most frequent actuators are electric motors, probably due to the fact that they are easy to control and exhibit great precision with high specific power [52]. Control methods based on predefined trajectories were the first ones to be implemented in wearable exoskeletons [30]. Nevertheless, control methods based on user-exoskeleton interaction, which require a more active participation of the user, are becoming more frequent for rehabilitation purposes. Regarding ergonomic aspects, complex mechanical structures may increase the exoskeleton donning/doffing time, which ranges from 10 (doffing) to 30 (donning) minutes. Additionally, joint misalignment is still an issue in current exoskeletons, which may increase metabolic cost and discomfort of the wearer, and it could even generate skin abrasions, ulcers and an increase risk of fractures.

Wearable exoskeletons need to progress towards modular systems capable of adapting to the user’s motor capabilities and limitations. In the same way, control methods should be based on Assist-As-Needed algorithms to conveniently adapt actuation to the user needs according to the rehabilitation process. Moreover, neuronal technology may have an important role for the next generation of wearable exoskeletons. Brain machine interfaces (BMI) allow direct and voluntary control of the devices irrespective of the user capabilities [124] which could enhance the control of exoskeletons [125]. Wearable exoskeletons are intended to be used as assistive devices in daily living activities such as climbing stairs, walking on different surfaces, entering cars and side stepping [126]; however, these functions are poorly covered by current exoskeletons. Finally, the cost of wearable exoskeletons for personal use must be reduced, since their current costs are still prohibitive for the general population [127]. In fact, in the study by Manns et al. [68] nine out of eleven participants said that they would be willing to take the exoskeleton home if the cost of the device was not a factor.

What are the benefits and risks for individuals with gait impairments?

Robotic therapy is progressing toward wearable exoskeletons since they offer the advantages of grounded exoskeletons, as well as providing more active participation of the user. Wearable exoskeletons offer the opportunity to socialize more easily with the environment, increasing quality of life and decreasing depression rate [19, 91, 101, 128]. Likewise, standing has plenty of health benefits such as improved blood circulation, reflex activity, and bowel and bladder function [129]. In addition, there are many psychological and social benefits associated with standing, including improved self-image, eye-to-eye interpersonal contact, and daily living independence [130]. All these benefits favour mainly non-ambulatory patients. In fact, we found that patients with SCI are currently the main users of this technology.

Despite the previous benefits, the optimal type of rehabilitation robot for a specific patient’s needs still remains unclear. Goffredo et al. [131] compared the effects
of treadmill-based and overground exoskeletons to conventional gait training therapy in stroke subjects, and neither the clinical outcomes nor the spatio-temporal gait parameters showed significant differences between robotic and conventional therapies. Only the performance of ambulation assessments (6MWT, 10MWT, and TUG) revealed clinical significance in the robotic groups. Other studies found that trunk muscle activation in SCI patients was higher when using a wearable exoskeleton compared to using a grounded exoskeleton, which may lead to improved balance during sitting and walking [132, 133]. In any case, overground wearable exoskeletons stand out for providing more movement freedom during gait, the opportunity of independent training at home, and the possibility to carry out more activities of daily living such as sitting, turning and climbing stairs. These advantages activate mechanisms of neural plasticity and connectivity re-modulation [110, 134]; which have been proposed as the main factors promoting motor function recovery in SCI and stroke patients [110, 135].

Although results show that wearable exoskeletons are generally safe devices [136], there is always the risk of unforeseen serious adverse events [59]. Thus, more efforts are needed to develop adequate standards and regulations to have a better understanding of the adverse events and risks of using wearable exoskeletons [58].

What is the current evidence of clinical efficacy for wearable exoskeletons?

Clinical validation studies of wearable exoskeletons are currently in their early stages, thus evidence is still limited to short intervention trials with few participants, as it was concluded by a previous study of Mekki et al. [137]. Literature comparing overground wearable exoskeletons with other types of gait therapy is still scarce. Therefore, randomized control trials, comparing overground wearable exoskeletons with other types of robotic gait therapy or conventional gait therapy, are needed to demonstrate both their effectiveness as a rehabilitation device and their impact in psychological and physiological secondary health conditions.

Protocol design and outcome measures vary across studies, which hinders the comparison of results between studies. Outcome measures, despite presenting encouraging results, are mainly focused on ambulation assessments (i.e., 10MWT, 6MWT, TUG) rather than being centered on physiological and psychological changes to improve or avoid secondary health conditions. In conclusion, efforts should be invested in developing lightweight and easy-to-use exoskeletons, which should be validated through well-defined protocols to provide the best patient-specific rehabilitation training and offer the possibility of benchmarking.

List of abbreviations

Acc: Acceleration; ACF: Arm crutches Force; AIS: AIS Impairment Scale; AJA: Arm crutches force; BBS: Berg balance score; BMI: Brain machine interface; Cacc: Crutches acceleration; CF: Crutches force/pressure; CoM: Center of mass; CoP: Center of pressure; DOF: Degrees of freedom; EMG: Electromyography; FES: Functional electrical stimulation; FF: Foot contacting force/pressure; FM: Flugl-Meyer Assessment; IT: Interaction torque; JA: Joint angle; JT: Joint torque; KAFO: Knee-ankle-foot orthosis; LOI: Level of injury; Mc/Sc: Motor and sensory complete injury; Mc/Si: Motor-complete sensory-incomplete injury; Mi/Si: Motor and sensory
incomplete injury; N/A: Not available; NIH: National Institutes of Health; NSCISC: National Spinal Cord Injury Statistical Center; Ori: Orientation; SCI: Spinal cord injury; TUG: Timed up and go test; 10MWT: 10 meter walk test; 6MWT: 6 minute walk test.

Declarations

Ethics approval and consent to participate
Not applicable

Consent for publication
Not applicable

Availability of data and materials
All data generated or analysed during this study are included in this published article and its supplementary information files.

Competing interests
The authors declare that they have no competing interests.

Funding
This research has been partially supported by PhD grant No. 2020 FI_B1 00195 funded by the Agency for Management of University and Research Grants (AGAUR) along with the Secretariat of Universities and Research of the Catalan Ministry of Business and Knowledge and the European Social Fund (ESF), and by grants RTI2018-097290-B-C33 and PTQ2018-010227 funded by the Spanish Ministry of Science and Innovation (MCI) – Agencia Estatal de Investigación (AEI) along with the European Regional Development Fund (ERDF).

Author’s contributions
ARF performed the main review of literature, drafted and wrote the manuscript and collected the information to create the data sheets. JLP and JMFL provided important content, structured the study and were actively involved in the writing process of the manuscript.

Acknowledgements
The authors would like to thank Mark Andrew Wright (Research and Innovation Office, Fundació Institut Guttmann, Barcelona, Spain) for proofreading the final version of the manuscript.

Additional Files
Additional file 1 — Clinical trial identification assessment: Identification of clinical trials among the reviewed studies according to the Clinical Trial definition proposed by the National Institutes of Health (NIH). (.xls 22 kb)

Additional file 2 — Wearable lower-limb exoskeletons: A comprehensive review on mechanical design principles. Technical characteristics of 25 wearable lower-limb exoskeletons reviewed in the article. (.xls 22 kb)

Additional file 3 — Clinical evidence of wearable lower-limb exoskeletons: A comprehensive review on clinical aspects. Clinical characteristics of 87 studies with wearable lower-limb exoskeletons reviewed in the article including information about patient demographics, training protocol, training environment and main outcome measures evidence. (.xls 863 kb)

Additional file 4 — Outcomes measures: Reviewed of the outcome measures used in the clinical studies of the 87 studies with wearable lower-limb exoskeletons reviewed in this article. (.xls 70 kb)

Author details
1 Biomechanical Engineering Lab, Department of Mechanical Engineering and Research Center for Biomedical Engineering, Universitat Politecnica de Catalunya, Diagonal 647, 08028 Barcelona, Spain. 2ABLE Human Motion, Diagonal 647, 08028 Barcelona, Spain. 3Institut de Robòtica i Informàtica Industrial, CSIC-UPC, Llorens i Artigas 4-6, 08028 Barcelona, Spain.

References
1. Stolze, H., Klebe, S., Baecker, C., Zechlin, C., Friege, L., Pohle, S., Deuschl, G.: Prevalence of gait disorders in hospitalized neurological patients. Movement disorders: official journal of the Movement Disorder Society 20(1), 89–94 (2005). doi:10.1002/mds.20266
2. Mahlknecht, P., Kiechl, S., Bloem, B.R., Willeit, J., Scherfler, C., Gasperi, A., Rungger, G., Poewe, W., Seppi, K.: Prevalence and burden of gait disorders in elderly men and women aged 60–97 years: a population-based study. PLoS One 8(7) (2013). doi:10.1371/journal.pone.0069627
3. Booth, F.W., Roberts, C.K., Laye, M.J.: Lack of exercise is a major cause of chronic diseases. Comprehensive Physiology 2(2), 1143–1211 (2011). doi:10.1002/cphy.c110025
4. Knight, J.A.: Physical inactivity: associated diseases and disorders. Annals of Clinical & Laboratory Science 42(3), 320–337 (2012)
5. Baylor, C., Yorkston, K.M., Jensen, M.P., Truit, A.R., Molton, I.R.: Scoping review of common secondary conditions after stroke and their associations with age and time post stroke. Topics in stroke rehabilitation 21(5), 371–382 (2014). doi:10.1310/tps2105-371
6. Sezer, N., Akkus, S., Ugur, F.G.: Chronic complications of spinal cord injury. World journal of orthopedics 6(1), 24 (2015). doi:10.5312/wjo.v6.i1.24
7. Jensen, M., Truit, A., Schomer, K., Yorkston, K., Baylor, C., Molton, I.: Frequency and age effects of secondary health conditions in individuals with spinal cord injury: a scoping review. Spinal Cord 51(12), 882–892 (2013). doi:10.1038/sc.2013.112
8. Harris, J.E., Eng, J.J.: Goal priorities identified through client-centred measurement in individuals with chronic stroke. Physiotherapy Canada 56(4), 171 (2004). doi:10.2310/6640.2004.00017
9. Ditunno, P., Patrick, M., Sinemian, M., Ditunno, J.: Who wants to walk? preferences for recovery after sci: a longitudinal and cross-sectional study. Spinal cord 46(7), 500–506 (2008). doi:10.1038/sj.sc.3102172
10. Carpio, G., Pezzola, A., Urbano, M., Guglielmelli, E.: Assessing effectiveness and costs in robot-mediated lower limbs rehabilitation: a meta-analysis and state of the art. Journal of healthcare engineering 2018 (2018). doi:10.1155/2018/7492024
11. Bruni, M.P., Melegari, C., De Cola, M.C., Bramanti, A., Bramanti, P., Calabrò, R.S.: What does best evidence tell us about robotic gait rehabilitation in stroke patients: a systematic review and meta-analysis. Journal of Clinical Neuroscience 48, 11–17 (2018). doi:10.1016/j.jocn.2017.10.048
12. Gassert, R., Dietz, V.: Rehabilitation robots for the treatment of sensorimotor deficits: a neurophysiological perspective. Journal of neuroengineering and rehabilitation 15(1), 46 (2018). doi:10.1186/s12984-018-0383-x
13. Colombo, G., Moerg, M., Schreier, R., Dietz, V., et al.: Treadmill training of paraplegic patients using a robotic orthosis. Journal of rehabilitation research and development 37(6), 693–700 (2000)
14. Colombo, G., Wirz, M., Dietz, V.: Driven gait orthosis for improvement of locomotor training in paraplegic patients. Spinal Cord 39(5), 252–255 (2001). doi:10.1038/sj.sc.3101154
15. Veneman, J.F., Kruidhof, R., Hekman, E.E., Ekkeklenkamp, R., Van Asseldonk, E.H., Van Der Kooij, H.: Design and evaluation of the lopes exoskeleton robot for interactive gait rehabilitation. IEEE Transactions on Neural Systems and Rehabilitation Engineering 15(3), 379–386 (2007). doi:10.1109/TNSRE.2007.903919
16. Banala, S.K., Kim, S.H., Agrawal, S.K., Scholz, J.P.: Robot assisted gait training with active leg exoskeleton (ales). IEEE transactions on neural systems and rehabilitation engineering 17(1), 2–8 (2008). doi:10.1109/TNSRE.2008.2008280
17. Hesse, S., Uhlenbrock, D., et al.: A mechanized gait trainer for restoration of gait. Journal of rehabilitation research and development 37(6), 701–708 (2000)
18. Schmidt, H., Werner, C., Bernhardt, R., Hesse, S., Krüger, J.: Gait rehabilitation machines based on programmable footplates. Journal of neuroengineering and rehabilitation 4(1), 2 (2007).
19. Esquezani, A., Talaty, M., Packel, A., Saulino, M.: The ReWalk Powered Exoskeleton to Restore Ambulatory Function to Individuals with Thoracic-Level Motor-Complete Spinal Cord Injury. American Journal of Physical Medicine & Rehabilitation 91(11), 911–921 (2012). doi:10.1097/PHM.0b013e318269d9a3
20. Strickland, E.: Good-bye, wheelchair. IEEE Spectrum 49(1), 30–32 (2012). doi:10.1109/MSPEC.2012.6117830
21. Hartigan, C., Kandilias, C., Dalley, S., Clausen, M., Wilson, E., Morrison, S., Etheridge, S., Farris, R.: Mobility Outcomes Following Five Training Sessions with a Powered Exoskeleton. Topics in Spinal Cord Injury Rehabilitation 21(2), 93–99 (2015). doi:10.1310/sci2102-93
22. Awad, L.N., Bae, J., O'Donnell, K., De Rossi, S.M., Hendron, K., Sloot, L.H., Kudzia, P., Allen, S., Holt, K.G., Ellis, T.D., et al.: A soft robotic exsuits improves walking in patients after stroke. Science translational medicine 9(400), 9084 (2017). doi:10.1126/scitranslmed.aai9084
23. Schmidt, K., Duarte, J.E., Grommer, M., Sancho-Puchades, A., Wei, H., Ezzath, O., Riener, R.: The myosuit: Bi-articular anti-gravity exosuit that reduces hip extensor activity in sitting transfers. Frontiers in neurorobotics 11, 57 (2017)
24. Bae, J., Siviy, C., Rouleau, M., Menard, N., O'Donnell, K., Geliana, I., Athanasu, M., Ryan, D., Bibeau, C., Sloot, L., et al.: A lightweight and efficient portable soft exosuit for parietic ankle assistance in walking after stroke. In: 2018 IEEE International Conference on Robotics and Automation (ICRA), pp. 2820–2827 (2018). IEEE
strategies for robot-assisted lower limb rehabilitation. Mechatronics 31, 132–145 (2015).

doi:10.1016/j.mechatronics.2015.04.005

32. Shorter, K.A., Xia, J., Hsiao-Weckslter, E.T., Durfee, W.K., Kogler, G.F.: Technologies for Powered
Ankle-Foot Orthotic Systems: Possibilities and Challenges. IEEE/ASME Transactions on Mechatronics 18(1),
337–347 (2013). doi:10.1109/TMECH.2011.2174799

33. Federici, S., Meloni, F., Braccali, M., De Filippis, M.L.: The effectiveness of powered, active lower limb
exoskeletons in neurorehabilitation: A systematic review. NeuroRehabilitation 37(3), 321–340 (2015).
doi:10.3233/NRE-151265

34. Lajeunesse, V., Vincent, C., Routhier, F., Careau, E., Michaud, F.: Exoskeletons’ design and usefulness
evidence according to a systematic review of lower limb exoskeletons used for functional mobility by people
with spinal cord injury. Disability and Rehabilitation: Assistive Technology 11(7), 535–547 (2015).
doi:10.3109/17438707.2015.1080766

35. NIH’s Definition of a Clinical Trial — grants.nih.gov.
https://grants.nih.gov/policy/clinical-trials/definition.htm Accessed 2020-03-06

36. Lerner, Z.F., Damiano, D.L., Bulea, T.C.: A lower-extremity exoskeleton improves knee extension in children
with crouch gait from cerebral palsy. Science Translational Medicine 9(404), 9145 (2017).
doi:10.1126/scitranslmed.aam9145

37. Kawamoto, H., Hayashi, T., Sakuri, T., Eguchi, K., Sankai, Y.: Development of single leg version of hal for
neurorehabilitation. In 2018 Annual International Conference of the IEEE Engineering in Medicine and Biology
Society, pp. 5038–5043 (2009). doi:10.1109/IEMBS.2009.5333698. IEEE

38. Farris, R.J., Quintero, H.A., Goldberg, M., Quintero, H.A., Goldberg, M., Farris, R.J., Goldberg, M.: Preliminary
Evaluation of a Powered Lower Limb Orthosis to Aid Walking in Paraplegic Individuals. IEEE Transactions on
Neural Systems and Rehabilitation Engineering 19(6), 652–659 (2011). doi:10.1109/TNSRE.2011.2163003

39. Tanabe, S., Hiran, S., Saitoh, E.: Wearable Power-Assist Locomotor (WPAL) for supporting upright walking
in persons with paraplegia. NeuroRehabilitation 33(3), 99–106 (2013). doi:10.3233/NRE-130932

40. Bortole, M., Venkatakrishnan, A., Zhu, F., Moreno, J.C., Francisco, G.E., Pons, J.L., Contreras-Vidal, J.L.: The
H2 robotic exoskeleton for gait rehabilitation after stroke: early findings from a clinical study. Journal of
NeuroEngineering and Rehabilitation 12(1), 54 (2015). doi:10.1186/s12984-015-0048-y

41. Birch, N., Graham, J., Priestley, T., Heywood, C., Sakel, M., Gall, A., Nunn, A., Signal, N.: Results of the
first interim analysis of the RAPPERT II trial in patients with spinal cord injury: ambulation and functional
exercise programs in the REX powered walking aid. Journal of NeuroEngineering and Rehabilitation 14(1), 60
(2017). doi:10.1186/s12984-017-0274-6

42. Chen, B., Zhong, C.-H., Zhao, X., Ma, H., Guan, X., Li, X., Liang, F.-Y., Cheng, J.C.Y., Qin, L., Law, S.-W.,
Liao, W.-H.: A wearable exoskeleton suit for motion assistance to paralysed patients. Journal of Orthopaedic
Translation 11, 7–18 (2017). doi:10.1016/j.jot.2017.02.007

43. Wu, C.-H., Mao, H.-F., Hu, J.-S., Wang, T.-Y., Tsai, Y.-J., Hsu, W.-L.: The effects of gait training using
powered lower limb exoskeleton robot on individuals with complete spinal cord injury. Journal of
NeuroEngineering and Rehabilitation 15(1), 14 (2018). doi:10.1186/s12984-018-0355-1

44. Ekelem, A., Goldberg, M.: Supplemental stimulation improves swing phase kinematics during exoskeleton
assisted gait of sci subjects with severe muscle spasticity. Frontiers in neuroscience 12, 374 (2018).
doi:10.3389/fnins.2018.00374

45. Tsukahara, A., Yoshida, K., Matsushima, A., Ajima, K., Kuroda, C., Mizukami, N., Hashimoto, M.: Effects of
gait support in patients with spinocerebellar degeneration by a wearable robot based on synchronization
control. Journal of NeuroEngineering and Rehabilitation 15(1), 84 (2018). doi:10.1186/s12984-018-0425-4

46. Chang, S.R., Nandor, M.J., Li, L., Krbetic, R., Foglyano, K.M., Schnellenberger, J.R., Audu, M.L., Pinault,
G., Quinn, R.D., Triolo, R.J.: A muscle-driven approach to restore stepping with an exoskeleton for individuals
with paraplegia. Journal of NeuroEngineering and Rehabilitation 14(1), 48 (2017).
doi:10.1186/s12984-017-0258-6

47. Buesing, C., Fisch, G., O’Donnell, M., Shahidi, I., Thomas, L., Mummidisetty, C.K., Williams, K.J.,
Takahashi, H., Rymer, W.Z., Jayaraman, A.: Effects of a wearable exoskeleton stride management assist
system (SMA®) on spatiotemporal gait characteristics in individuals after stroke: a randomized controlled
trial. Journal of NeuroEngineering and Rehabilitation 12(1), 69 (2015). doi:10.1186/s12984-015-0062-0

48. Gibbon, C.A., Sexton, A., Jayaraman, A., Deems-Dluhy, S., Gryfe, P., Novak, A., Dutta, T., Fabara, E.,
Adans-Dester, C., Bonato, P.: Evaluation of the Keego exoskeleton for assisting ambulatory activities in
people with multiple sclerosis: an open-label, randomized, cross-over trial. Journal of NeuroEngineering and
Rehabilitation 14(4), 151 (2017). doi:10.1186/s12984-018-0468-6

49. Yeung, L.-F., Ockenfeld, C., Pang, M.-K., Wai, H.-W., Soo, O.-Y., Li, S.-W., Tong, K.-Y.: Design of an
exoskeleton ankle robot for robot-assisted gait training of stroke patients. In: 2017 International Conference on
Rehabilitation Robotics (ICORR), pp. 211–215 (2017). doi:10.1109/ICORR.2017.8009248. IEEE

50. Shorter, K.A., Kogler, G.F., Loth, E., Durfee, W.K., Hsiao-Weckslter, E.T.: A portable powered ankle-foot
orthosis for rehabilitation. The Journal of Rehabilitation Research and Development 48(4), 459 (2011).
doi:10.1682/JRRD.2010.04.0054

51. Young, A.J., Ferris, D.P.: State of the Art and Future Directions for Lower Limb Robotic Exoskeletons. IEEE
Transactions on Neural Systems and Rehabilitation Engineering 25(2), 171–182 (2017).
doi:10.1109/TNSRE.2016.2521160

52. Veale, A.J., Xie, S.Q.: Towards compliant and wearable robotic orthoses: A review of current and emerging
actuator technologies. Medical Engineering & Physics 38(4), 317–325 (2016).
doi:10.1016/j.medengphy.2016.01.010

53. Kim, G., Kang, S., Kang, S., Ryu, J., Mun, M., Kim, K.: Unlockable knee joint mechanism for powered gait
orthosis. International Journal of Precision Engineering and Manufacturing 10(3), 83–89 (2009).
doi:10.1007/s12951-009-0051-y

54. Plagenhoef, S., Gaynor Evans, F., Abdelnour, T.: Anatomical Data for Analyzing Human Motion. Research
55. Browning, R.C., Modica, J.R., Kram, R., Goswami, A.: The effects of adding mass to the legs on the energetics and biomechanics of walking. Medicine & Science in Sports & Exercise 39(3), 515–525 (2007). doi:10.1249/mss.0b013e3180b3562

56. Schiele, A.: Fundamentals of Ergonomic Exoskeleton Robots. PhD thesis (2008)

57. Niff, M.B., Junius, K., Rosso, R., Rodriguez-Guerrero, C., Vanderborght, B., Lefeber, D.: Misalignment compensation for full human-exoskeleton kinematic compatibility: State of the art and evaluation. Applied Mechanics Reviews 70(5) (2018). doi:10.1115/1.4042523

58. He, Y., Eguren, D., Loo, T.P., Contreras-Vidal, J.L.: Risk management and regulations for lower limb medical exoskeletons: a review. Medical Devices: Evidence and Research 10, 89–107 (2017). doi:10.2147/MDER.S107134

59. van Herpen, F.H.M., van Dijsseloon, R.B., Rijken, H., Keijser, N.L.W., Louwens, J.W.K., van Nes, I.J.W.: Case Report: Description of two fractures during the use of a powered exoskeleton. Spinal Cord Series and Cases 5(1), 99 (2019). doi:10.3109/s41394-019-0244-2

60. Onen, U., Botsali, F.M., Kalyoncu, M., Tinkir, M., Yilmaz, N., Sahin, Y.: Design and Actuator Selection of a Lower Extremity Exoskeleton. IEEE/ASME Transactions on Mechatronics 19(2), 623–632 (2014). doi:10.1109/TMECH.2013.250295

61. Roser, M., Appel, C., Ritchie, H.: Human height: Our world in data (2013)

62. Liou, T.-H., Pi-Sunyer, F.X., Laferrere, B.: Physical Disability and Obesity. Nutrition Reviews 63(10), 321–331 (2005). doi:10.1111/j.1753-4887.2005.tb00110.x

63. Gorey, A., Gater, D.: Prevalence of Obesity After Spinal Cord Injury. Topics in Spinal Cord Injury Rehabilitation 12(4), 1–7 (2007). doi:10.3130/sci1204-1

64. Kozlowski, A., Bryce, T., Dijkers, M.: Time and Effort Required by Persons with Spinal Cord Injury to Learn to Use a Powered Exoskeleton for Assisted Walking. Topics in Spinal Cord Injury Rehabilitation 21(2), 110–121 (2015). doi:10.3130/sci2102-110

65. Tefertiller, C., Hays, K., Jones, J., Jayaraman, A., Hartigan, C., Bushnik, T., Forrest, G.F.: Initial Outcomes from a Multicenter Study Utilizing the Indego Powered Exoskeleton in Spinal Cord Injury. Topics in Spinal Cord Injury Rehabilitation 24(1), 78–85 (2018). doi:10.1310/sci17-00014

66. Kolakowsky-Hayner, S.A., Crew, J., Moran, S., Shah, A.: Safety and feasibility of using the eksoTM bionic exoskeleton to aid ambulation after spinal cord injury. J Spine 4(3) (2013). doi:10.4172/2165-7939.54-003

67. Jain, N.B., Higgins, L.D., Katz, J.N., Garshick, E.: Association of Shoulder Pain With the Use of Mobility Devices in Persons With Chronic Spinal Cord Injury. PM&R 2(10), 896–900 (2010). doi:10.1016/j.pmrj.2010.05.004

68. Manns, P.J., Hurd, C., Yang, J.F.: Perspectives of people with spinal cord injury learning to walk using a powered exoskeleton. Journal of NeuroEngineering and Rehabilitation 16(1), 94 (2019). doi:10.1186/s12984-019-0565-1

69. Asbeck, A.T., De Rossi, S.M., Holt, K.G., Walsh, C.J.: A biologically inspired soft exosuit for walking assistance. The International Journal of Robotics Research 34(6), 744–762 (2015). doi:10.1177/0278364914562476

70. Panizolo, F.A., Galiana, I., Asbeck, A.T., Siviy, C., Schmidt, K., Holt, K.G., Walsh, C.J.: A biologically-inspired multi-joint soft exosuit that can reduce the energy cost of loaded walking. Journal of neuroengineering and rehabilitation 13(1), 43 (2016). doi:10.1186/s12984-016-0150-9

71. Sanchez-Villamafan, M.d.C., Gonzalez-Vargas, J., Torricelli, D., Moreno, J.C., Pons, J.L.: Compliant lower limb exoskeletons: a comprehensive review on mechanical design principles. Journal of NeuroEngineering and Rehabilitation 16(1), 55 (2019). doi:10.1186/s12984-019-0517-9

72. Yang, X., She, H., Lu, H., Fukuda, T., Shen, Y.: State of the Art: Bipedal Robots for Lower Limb Rehabilitation. Applied Sciences 7(11), 1182 (2017). doi:10.3390/app7111182

73. Durandau, G., Farina, D., Asin-Prieto, G., Dimbvyado-Terrer, I., Lerma-Lara, S., Pons, J.L., Moreno, J.C., Sartori, M.: Voluntary control of wearable robotic exoskeletons by patients with paraparesis via neuromechanical modeling. Journal of neuroengineering and rehabilitation 16(1), 91 (2019). doi:10.1186/s12984-019-0559-z

74. Perez-Nombela, S., Del-Ama, A.J., Asin-Prieto, G., Piñuela-Martín, E., Lozano-Berrio, V., Serrano-Muñoz, D., Gli-Aguado, A., Pons, J.L., Moreno, J.C.: Physiological evaluation of different control modes of lower limb robotic exoskeleton h2 in patients with incomplete spinal cord injury. In: Converging Clinical and Engineering Research on Neurorehabilitation II, pp. 343–348. Springer, ??? (2017). doi:10.1007/978-3-319-46669-9_58

75. CYBERDYNE. HAL (Hybrid Assistive Limb). https://www.cyberdyne.jp/english/products/HAL/index.html Accessed 2020-03-09

76. NSCISC 2019. National Spinal Cord Injury Statistical Center Facts and Figures at a Glance. https://www.nscisc.uab.edu/Public/FactsAndFigures2019-Final.pdf Access 2019-05-02

77. Strausser, K.A., Swift, T.A., Zoss, A.B., Kazerooni, H., Bennett, B.C.: Mobile exoskeleton for spinal cord injury: Development and testing. In: ASME 2011 Dynamic Systems and Control Conference and Bath/ASME Symposium on Fluid Power and Motion Control, pp. 419–425 (2011). doi:10.1115/DSCC2011-6042. American Society of Mechanical Engineers Digital Collection

78. Jung, J., Jang, I., Riener, R., Park, H.: Walking intent detection algorithm for paraplegic patients using a robotic exoskeleton walking assistant with crutches. International Journal of Control, Automation and Systems 10(5), 954–962 (2012). doi:10.1007/s12211-012-0512-4

79. Quintero, H.A., Farris, R.J., Goldfarb, M.: Control and implementation of a powered lower limb orthosis to aid walking in paraplegic individuals. In: 2011 IEEE International Conference on Rehabilitation Robotics, pp. 1–6 (2011). doi:10.1109/ICORR.2011.5975481. IEEE

80. Lemaire, E.D., Smith, A.J., Herbert-Copley, A., Sreenivasan, V.: Lower extremity robotic exoskeleton training: Case studies for complete spinal cord injury walking. NeuroRehabilitation 41(1), 97–103 (2017). doi:10.3233/NRE-171461

81. Arapzour, M., Chitsazan, A., Hutchins, S.W., Ghomse, F.T., Mousavi, M.E., Takamjani, E.E., Aminian, G.,
80. Sale, P., Russo, E.F., Scarton, A., Calabro, R.S., Masiero, S., Filoni, S.: Training for mobility with exoskeleton rehabilitation. Journal of NeuroEngineering and Rehabilitation 11(1), 27 (2013). doi:10.1186/1743-0003-11-27

81. Lerner, Z.F., Damiano, D.L., Park, H.-S., Gravunder, A.J., Bulea, T.C.: A Robotic Exoskeleton for Treatment of Crouch Gait in Children With Cerebral Palsy: Design and Initial Application. IEEE Transactions on Neural Systems and Rehabilitation Engineering 25(6), 650–659 (2017). doi:10.1109/TNSRE.2016.2595501

82. Del-Amo, A.J., Gil-Agudo, Á., Pons, J.L., Moreno, J.C.: Hybrid FES-robot cooperative control of ambulatory gait rehabilitation exoskeleton. Journal of NeuroEngineering and Rehabilitation 11(1), 27 (2014). doi:10.1186/1743-0003-11-27

83. Arazpour, M., Chitsazan, A., Bani, M.A., Rouhi, G., Ghomshe, F.T., Hutchins, S.W.: The effect of a knee ankle foot orthosis incorporating an active knee mechanism on gait of a person with poliomyelitis. Prosthetics and Orthotics International 37(5), 411–414 (2013). doi:10.1057/poi.2013.116

84. Chipperfield, C., Walsh, S., Gane, B., Mutma, B., Sherrington, C.: Effect of an exoskeleton on gait in spinal cord injury: a pilot study. Journal of NeuroEngineering and Rehabilitation 12(1), 91 (2015). doi:10.1186/s12984-015-0124-8

85. Farris, R.J., Quintero, H.A., Murray, S.A., Ha, K.H., Hartigan, C., Goldfarb, M.: A Preliminary Assessment of Legged Mobility Provided by a Lower Limb Exoskeleton for Persons With Paraplegia. IEEE Transactions on Neural Systems and Rehabilitation Engineering 22(3), 482–490 (2014). doi:10.1109/TNSRE.2013.2268320

86. Tsukahara, A., Hasegawa, Y., Eguchi, K., Sankai, Y.: Restoration of Gait for Spinal Cord Injury Patients Using...
105. Murray, S.A., Ha, K.H., Hartigan, C., Goldfarb, M.: An Assisitive Control Approach for a Lower-Limb Exoskeleton to Facilitate Recovery of Walking following Stroke. IEEE Transactions on Neural Systems and Rehabilitation Engineering 23(2), 308–318 (2015). doi:10.1109/TNSRE.2014.2364618

106. Li, L.L.L., Ding, L., Chen, N., Mao, Y., Huang, D., Li, L.L.L.: Improved walking ability with wearable robot-assisted training in patients suffering chronic stroke. Bio-Medical Materials and Engineering 26(1), 329–340 (2015). doi:10.3233/BME-151320

107. Mizukami, M., Yoshikawa, K., Kawamoto, H., Sano, A., Koseki, K., Kosaka, Y., Iwamoto, K., Nagata, H., Tsurushima, H., Nakai, K., Marushima, A., Sankai, Y., Matsumura, A.: Gait training of subacute stroke patients using a hybrid assistive limb: a pilot study. Disability and Rehabilitation: Assistive Technology 12(2), 197–204 (2016). doi:10.3109/17438010.2015.1129455

108. Molteni, F., Gasperini, G., Gaffuri, M., Colombo, M., Giovanna, C., Lorenzoni, C., Farina, N., Cannavino, G., Scarano, S., Proserpio, D., Liberali, D., Guarnieri, E.: Wearable robotic exoskeleton for overground gait training in sub-acute and chronic hemiparetic stroke patients: preliminary results. European journal of physical and rehabilitation medicine 53(5), 676–684 (2017). doi:10.23736/S1973-9087.17.04591-9

109. Tan, C.K., Kadone, H., Watanabe, H., Marushima, A., Yamazaki, M., Sankai, Y., Suzuki, K.: Lateral Symmetry of Synergies in Lower Limb Muscles of Acute Post-stroke Patients After Robotic Intervention. Rehabilitation Engineering, 1–1 (2014). doi:10.1109/TNSRE.2014.2346193

110. Yeung, L.-F., Ockenfeld, C., Pang, M.-K., Wai, H.-W., Soo, O.-Y., Li, S.-W., Tong, K.-Y.: Randomized controlled trial of robot-assisted gait training with dorsiflexion assistance on chronic stroke patients wearing ankle-foot-orthosis. Journal of NeuroEngineering and Rehabilitation 15(1), 35 (2018).

111. Conteras-Vidal, J.L., Bortole, M., Zhu, F., Nathan, K., Venkatakrishnan, A., Francisco, G.E., Soto, R., Pons, J.L.: Neural Decoding of Robot-Assisted Gait During Rehabilitation After Stroke. American Journal of Physical Medicine & Rehabilitation 97(8), 541–550 (2019). doi:10.1097/PHM.0000000000001914

112. Matsuda, M., Iwasaki, N., Mataki, Y., Matsuda, M., Iwasaki, N., Kawamoto, H., Wadano, Y., Sankai, Y., Yamazaki, M.: Use of Hybrid Assistive Limb (HAL®) for a postoperative patient with cerebral palsy: a case report. BMC Research Notes 11(1), 201 (2018).

113. Matsuda, M., Iwasaki, N., Mataki, Y., Mutsumaki, H., Yoshikawa, K., Takahashi, K., Matsuda, M., Iwasaki, N., Kawamoto, H., Wadano, Y., Sankai, Y., Yamazaki, M.: Use of Hybrid Assistive Limb (HAL®) for cerebral palsy. Brain and Development 40(6), 642–648 (2018).

114. Gagnon, D.H., Escalona, M.J., Vermette, M., Carvalho, L.P., Karelis, A.D., Duclos, C., Aubertin-Leheudre, M.: Locomotor training using an overground robotic exoskeleton in long-term manual wheelchair users with a chronic spinal cord injury living in the community: Lessons learned from a feasibility study in terms of recruitment, attendance, learnability, performance. Journal of NeuroEngineering and Rehabilitation 15(1), 12 (2018). doi:10.1186/s11086-018-0354-2

115. Spungen, A.M., Asselin, P., Fineberg, D.B., Kornfeld, S.D., Harel, N.Y.: Evaluation of Safety and Feasibility of Hybrid Assistive Limb Robot Suit. Neurologia medico-chirurgica 53(5), 287–90 (2013). doi:10.2176/nmc.53.287

116. Yang, A., Asselin, P., Kezdevcovitch, S., Kornfeld, S., Spungen, A.: Assessment of In-Hospital Walking Velocity and Quality of Life in Patients with Spinal Cord Injury. Journal of Rehabilitation Research and Development 53(2), 100–109 (2016). doi:10.1177/0022077115575166

117. Benabd, A.L., Costealde, T., Eliseyev, A., Charvet, G., Verney, A., Karakas, S., Foerster, M., Lambert, A., Seh, M., Vidal, J.L., Grossman, R.G.: Neurorex: A clinical neural interface roadmap for eeg-based brain-machine interfaces to a lower body robotic exoskeleton. In: 2013 35th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 1579–1582 (2013). doi:10.1109/EMBC.2013.6609816. IEEE
Morinière, B., Abroug, N., Schaeffer, M.C., Moly, A., Sauter-Starace, F., Ratel, D., Moro, C., Torres-Martínez, N., Langar, L., Oddoux, M., Polosan, M., Pezzani, S., Auboiroux, V., Aksenova, T., Mestais, C., Chabardes, S.: An exoskeleton controlled by an epidural wireless brain–machine interface in a tetraplegic patient: a proof-of-concept demonstration. The Lancet Neurology 18(12), 1112–1122 (2019). doi:10.1016/S1474-4422(19)30321-7

126. Chen, B., Ma, H., Qin, L.-Y., Gao, F., Chan, K.-M., Law, S.-W., Qin, L., Liao, W.-H.: Recent developments and challenges of lower extremity exoskeletons. Journal of Orthopaedic Translation 5, 26–37 (2016). doi:10.1016/j.jot.2015.09.007

127. Gorgey, A.S.: Robotic exoskeletons: The current pros and cons. World Journal of Orthopedics 9(9), 112–119 (2018). doi:10.5312/wjo.v9.i9.112

128. Sandrow-Feinberg, H.R., Houlé, J.D.: Exercise after spinal cord injury as an agent for neuroprotection, regeneration and rehabilitation. Brain Research 1619, 12–21 (2015). doi:10.1016/j.brainres.2015.03.052

129. Eng, J.J., Levins, S.M., Townsend, A.F., Mah-Jones, D., Bremner, J., Huston, G.: Use of Prolonged Standing for Individuals With Spinal Cord Injuries. Physical Therapy 81(8), 1392–1399 (2001). doi:10.1093/ptj/81.8.1392

130. Sale, P., Russo, E.F., Russo, M., Masiero, S., Piccione, F., Calabrò, R.S., Filoni, S.: Effects on mobility training and de-adaptations in subjects with Spinal Cord Injury due to a Wearable Robot: a preliminary report. BMC Neurology 16(1), 12 (2016). doi:10.1186/s12883-016-0536-0

131. Goffredo, M., Iacovelli, C., Russo, E., Pournajaf, S., Di Blasi, C., Galafate, D., Pellicciari, L., Agosti, M., Filoni, S., Aprile, I., Franceschini, M.: Stroke gait rehabilitation: A comparison of end-effector, overground exoskeleton, and conventional gait training. Applied Sciences (Switzerland) 9(13) (2019). doi:10.3390/app9132627

132. Chisholm, A.E., Alamro, R.A., Williams, A.M.M., Lam, T.: Overground vs. treadmill-based robotic gait training to improve seated balance in people with motor-complete spinal cord injury: a case report. Journal of NeuroEngineering and Rehabilitation 14(1) (2017). doi:10.1186/s12984-017-0236-z

133. Alamro, R.A., Chisholm, A.E., Williams, A.M.M., Carpenter, M.G., Lam, T.: Overground walking with a robotic exoskeleton elicits trunk muscle activity in people with high-thoracic motor-complete spinal cord injury. Journal of NeuroEngineering and Rehabilitation 15(1), 109 (2018). doi:10.1186/s12984-018-0453-0

134. Brown, A.R., Martinez, M.: From cortex to cord: motor circuit plasticity after spinal cord injury. Neural regeneration research 14(12), 2054 (2019). doi:10.4103/1673-5374.262572

135. Curt, A., Van Hedel, H.J.A., Klaus, D., Dietz, V.: Recovery from a spinal cord injury: Significance of compensation, neural plasticity, and repair. Journal of Neurotrauma 25(6), 677–685 (2008). doi:10.1098/neu.2007.0468

136. Miller, L.E., Zimmermann, A.K., Herbert, W.G.: Clinical effectiveness and safety of powered exoskeleton-assisted walking in patients with spinal cord injury: systematic review with meta-analysis. Medical devices (Auckland, NZ) 9, 455 (2016). doi:10.2147/MEDER.S103102

137. Mekki, M., Delgado, A.D., Fry, A., Putrino, D., Huang, V.: Robotic Rehabilitation and Spinal Cord Injury: a Narrative Review. Neurotherapeutics 15(3), 604–607 (2018). doi:10.1007/s13311-018-0642-3