The specific MYB binding sites bound by TaMYB in the GAPCp2/3 promoters are involved in the drought stress response in wheat

Lin Zhang, Zhiqiang Song, Fangfang Li, Xixi Li, Haikun Ji and Shushen Yang*

Abstract

Background: Drought stress is one of the major abiotic stresses that affects plant growth and productivity. The GAPCp genes play important roles in drought stress tolerance in multiple species. The aim of this experiment was to identify the core cis-regulatory elements that may respond to drought stress in the GAPCp2 and GAPCp3 promoter sequences.

Results: In this study, the promoters of GAPCp2 and GAPCp3 were cloned. The promoter activities were significantly improved under abiotic stress via regulation of Rluc reporter gene expression, while promoter sequence analysis indicated that these fragments were not almost identical. In transgenic Arabidopsis with the expression of the GUS reporter gene under the control of one of these promoters, the activities of GUS were strong in almost all tissues except the seeds, and the activities were induced after abiotic stress. The yeast one-hybrid system and EMSA demonstrated that TaMYB bound TaGAPCp2P/3P. By analyzing different 5' deletion mutants of these promoters, it was determined that TaGAPCp2P (− 1312~ − 528) and TaGAPCp3P (− 2049~ − 610), including the MYB binding site, contained enhancer elements that increased gene expression levels under drought stress. We used an effector and a reporter to co-transform tobacco and found that TaMYB interacted with the specific MYB binding sites of TaGAPCp2P (− 1135 and − 985) and TaGAPCp3P (− 1414 and − 665) were the target cis-elements of TaMYB. The deletion of the specific MYB binding sites in the promoter fragments significantly restrained the drought response, and these results confirmed that these MYB binding sites (AACTAAA/C) play vital roles in improving the transcription levels under drought stress. The results of qRT-PCR in wheat protoplasts transiently overexpressing TaMYB indicated that the expression of TaGAPCp2/3 induced by abiotic stress was upregulated by TaMYB.

Conclusion: The MYB binding sites (AACTAAA/C) in TaGAPCp2P/3P were identified as the key cis-elements for responding to drought stress and were bound by the transcription factor TaMYB.

Keywords: Drought tolerance, Triticum aestivum, TaGAPCp promoter, TaMYB
Background
Glyceraldehyde-3-phosphate dehydrogenase, the key enzyme responsible for the sixth step of glycolysis, is widely present in various biological cells [1]. The enzyme is encoded by the GAPDH gene and has important functions in cells [2, 3]. In plants, GAPDH is often divided into phosphorylated and nonphosphorylated forms. Phosphorylated GAPDH can be divided into GAPA/B, GAPC and GAPCp according to its distribution in cells, in which GAPCp is present in nongreen plastids. Studies have shown that ATGAPCp may play an important role in Arabidopsis ABA signaling pathways [4]. The lack of GAPCp in plants could disrupt the synthesis of major metabolites such as carbon and nitrogen metabolism, glycine and glutamine [5]. Mutations in the GAPCp gene cause metabolic abnormalities in the triose phosphate transporter (TPT) [6]. One of the important functions of GAPCp is to provide 3-phosphoglycerate (3-PGA) for anabolic pathways in heterotrophic cytoplasts [7]. These findings show that stress-inducible GAPCp may play a key role in the abiotic-stress response and signaling pathways. We have identified five GAPCp cDNAs from wheat, and their expression is induced under drought stress [8]. However, the complete regulatory mechanism governing GAPCp expression under drought stress is far from known.

Since gene expression patterns are regulated by promoters, it is very important to identify the cis-acting elements in promoters [9]. The promoter is a DNA sequence upstream of the 5′-flanking region of the structural gene and is capable of specifically recognizing and binding RNA polymerase, which regulates the expression of downstream genes by binding to specific recognition sites of transcription factors [10]. Identification of cis-acting elements bound by specific transcription factors can reveal transcriptional regulatory mechanisms and gene expression patterns involved in environmental adaptation processes [11]. Studies have shown that the response of Arabidopsis HSP26 promoter to high temperature and abiotic stress can be satisfactorily determined by detecting the expression intensity of the GUS reporter gene after deletion of some promoter elements [12]. The repeated 5′-CACC/TCAC-3′ sequence in the AtNCED3 gene promoter of Arabidopsis was confirmed to be an important cis-acting element of this gene in response to drought stress [13]. Recently, drought-related regulatory factors have been identified in wheat including TaRZF38/70/59/74, PIMP1 (MYB transcription factor), TaERA1/ERF3, TaSnRK2.4/2.8, TaWRKY2/9 and TaNAC2a [14–18]. Among them, the MYB proteins are a large family of transcription factors that have different functions in growth and response to environmental stress [19–21].

MYB plays a vital role in the regulation of auxin-regulated genes by binding to its response elements [22]. AtMYB also plays an important role in drought and salt tolerance in Arabidopsis [23, 24]. In rice, the expression of OsMYB2 is induced by cold, drought and salt stress [25]. GbMYB5 increases the response of cotton to drought stress [26]. In wheat, several MYB genes involved in a variety of drought responses have been identified [27], and transgenic Arabidopsis plants overexpressing TaMYB have increased resistance to drought compared with wild type [28].

In this report we cloned and analyzed the promoter regions of the TaGAPCp2 and TaGAPCp3 genes. In transgenic Arabidopsis, the activity of GUS driven by the TaGAPCp2 and TaGAPCp3 promoters was markedly induced under drought stress. Yeast one-hybrid library screening identified one interacting transcription factor, and the interactions between TaGAPCp2P/3P and TaMYB were further confirmed by yeast cotransformation and electrophoretic mobility shift assay (EMSA). By analyzing the sequences and a series of deletion mutants, we identified two MYB binding motifs in the TaGAPCp2 and TaGAPCp3 promoters, which are the key cis-acting elements responding to drought stress.

Results
Cloning and sequence bioinformatics analysis of TaGAPCp2P/3P
1822 bp of TaGAPCp2 5′ regulatory region and 2049 bp of TaGAPCp3 5′ regulatory region were obtained by PCR and cloned into the PGEM-T Easy vector for sequencing. We searched for putative cis-acting elements in the promoter regions of these two genes using the databases Plant Cis-acting Elements (http://www.bioinformatics.psb.ugent.be/webtools/plantcare/html/) and Plant cis-acting regulatory DNA elements (PLACE: http://www.dna.affrc.go.jp/PLACE/) [29]. A number of regulatory elements responsive to drought and ABA were recognized in both gene's promoter region, including ABA-responsive elements (ABREs), dehydration-responsive elements (DREs), W-box elements, and MYB and MYC binding sequences. In addition, gibberelin responsive elements (GAREs) were also identified (Fig. 1, Additional file 1; Figure S1).

Activity detection of TaGAPCp2P/3P via agrobacterium-mediated transient expression analysis
The promoter regions were fused into the GUS reporter vector to detect their activities in tobacco leaves. Histochemical assays were performed and the results are shown in Fig. 2a, which revealed GUS activity in transgenic tobacco leaves. All tobacco leaves were stained blue color except for the wild-type leaves, which demonstrated that TaGAPCp2P/3P could drive the expression of the GUS reporter gene in tobacco leaves. The dual luciferase reporter vector is more accurate and reliable than the mono-luciferase reporter for testing promoter activity. The relative expression of Rluc from the
TaGAPCp2P/3P constructs was significantly increased under water stress compared to the control when normalized by Fluc expression (Fig. 2b, c).

Construction of promoter-reporter plasmids and Arabidopsis transformation

The expressions of hygromycin and the promoters were detected in Arabidopsis transformed with 1301-TaGAPCp2P/3P, but no expression was observed in wild type (Additional file 2: Figure S2). These results confirmed the transgenes were expressed following transformation.

Histochemical staining of transgenic Arabidopsis plants where GUS expression was driven by TaGAPCp2P/3P yielded a whole-plant perspective of promoter activity (Fig. 3). In 15-day-old Arabidopsis plants, strong GUS expression was present throughout the entire plant. GUS expression was much higher in the roots and leaves than

Fig. 1 Location of putative cis-elements in TaGAPCp2 and TaGAPCp3 promoters. Transcriptional start site (+1) is shown in black arrowhead.

Fig. 2 Analysis of TaGAPCp2 and TaGAPCp3 promoters activity under abiotic stresses. **a** GUS staining of TaGAPCp2 and TaGAPCp3 promoters in transiently transformed tobacco leaves. P: positive control (CaMV 35S promoter); WT: wild type. **b** Analysis of RLUC activity for TaGAPCp2 and TaGAPCp3 promoters in transiently transformed tobacco leaves in response to stress. **c** Analysis of RLUC activity for TaGAPCp3 promoter in transiently transformed tobacco leaves in response to stress. The indicated values are the average of three independent experiments. The standard deviation (SD) is indicated at each point. Significant differences between treated and untreated (control) conditions were assessed with one-sided paired t-tests (*, $P < 0.05$; **, $P < 0.01$).
in other parts of the heading stage plant. In the siliques, GUS expression was present in the pods but not in the seeds inside the pods. In the two-week-old transgenic Arabidopsis plants, the GUS activities of TaGAPCp2P/3P were all observably induced after abiotic treatments with for 24 h (Fig. 4). For TaGAPCp2P/3P, the GUS activities increased 1.8-fold and 2.1-fold after PEG treatment. After H$_2$O$_2$ treatment, the GUS activities of TaGAPCp2P/3P were induced to the 2.9-fold and 2.7-fold and after ABA treatment the GUS activities of TaGAPCp2P/3P were induced to the 2.4-fold and 1.7-fold. These results demonstrated that TaGAPCp2P/3P may have some meaningful drought-related cis-elements.

TaGAPCp2/3 could positively respond to drought stress in transgenic Arabidopsis plants

To determine if TaGAPCp2/3 genes were important for drought stress tolerance, we evaluated drought stress responses in transgenic Arabidopsis plants over-expressing TaGAPCp2/3 genes under control of the strong 35S promoter. Three-week-old seedlings of transgenic and WT plants were subjected to water stress for 25 days. We found that, WT plants were more sensitive to drought stress than transgenic lines overexpressing TaGAPCp2 and TaGAPCp3 after 25 days withholding water (Fig. 5a, b). Relative water content (RWC), a relevant tool for the measurement of drought tolerance, allows credible evaluation of the plant water status. The total chlorophyll content reflects the presence or absence of chlorosis. The contents of RWC and chlorophyll in transgenic lines were also higher than in WT after 15 days withholding water (Fig. 5c, d). Malondialdehyde (MDA), an important, indicator of membrane injury, was significantly higher in the WT than in transgenic lines after 15 days withholding water, suggesting that the transgenic plants suffered less membrane damage than WT (Fig. 5e). These results indicate that TaGAPCp2 and TaGAPCp3 all positively respond to drought stress.

TaMYB interacts with TaGAPCp2P/3P

To gain further insight into the mechanism of transcriptional regulation, some Y1H reporter constructs were constructed to screen the wheat leaf cDNA library for gaining transcription factors. This screen indicated that TaMYB may bind to TaGAPCp2P/3P. As shown in Fig. 6b, cotransformation of the bait vector (TaGAPCp2P/3P in pAbAi) together with the individual prey vector of the identified interactor (TaMYB in pGADT7) into Y1H Gold yeast demonstrated interaction.

To determine whether the TaMYB protein directly bound to TaGAPCp2P/3P in vitro, promoter fragments including the binding site at approximately 30 bp were used as probes for EMSA (Fig. 6a). The results showed that TaMYB could directly bind to the promoter fragments, and clearly demonstrated that transcription factor TaMYB can directly bind to TaGAPCp2P/3P and influence the transcription level (Fig. 6b).
TaMYB interacts with a specific binding site to improve the transcription levels of TaGAPCp2P/3P under drought stress

To further validate the contribution of TaMYB to TaGAPCp2/3P transcription levels under drought, a series of vectors with a 5′-deleted TaGAPCp2P/3P fragments and tested for their relative expression of Rluc/Fluc after drought stress (Fig. 7a, b). After 24 h of treatment with 20% PEG 8000, there were significant differences in the relative enzyme activity of Rluc driven by the serially 5′-deleted TaGAPCp2P/3P fragments. Figure 7c indicates that the fragments of TaGAPCp2P (−1312~0) and TaGAPCp3P (−2049~0) had some drought-related cis-elements.

To further investigate which MYB binding site in the above fragments could be bound by TaMYB, we used the effector and reporter to instantaneously cotransform tobacco (Fig. 8a). We found that TaMYB interacted with the specific MYB binding sites of TaGAPCp2P (−1197~−635) and TaGAPCp3P (−1414~−1144 and −718~−610) in plant cells (Fig. 8b, c). The Y1H system and EMSA demonstrated that the MYB binding sites in TaGAPCp2P (−1135 and −985) and TaGAPCp3P (−1414 and −665) were the TaMYB′ target cis-element (Fig. 9). These MYB binding sites connected with transcription activity were further assessed by deleting such site (Fig. 10a). The deletion of the MYB binding site in the promoter fragments all significantly restrained promoter activity responding to water stress (Fig. 10c, d). This confirmed that these MYB binding sites in TaGAPCp2P (−1135 and −985) and TaGAPCp3P (−1414 and −665) played vital roles in improving transcription levels under drought. The MYB binding sites in the TaGAPCp2P (−1135 and −985) and TaGAPCp3P (−1414 and −665) are all 5′-AACTAAA/C-3′ sequences and different from the other MBS. These results confirmed that the 5′-AACTAAA/C-3′ sequences are the TaMYB′ specific target cis-element (Additional file 4: Figure S4).

The expression of TaGAPCp2/3 is regulated by TaMYB in the ABA signaling pathway

Similar to TaGAPCp2/3, the transcription level of TaMYB was also enhanced in wheat responses to abiotic stresses (10 mM H₂O₂, 100 μM ABA and 20% PEG8000) (Fig. 11a). Expression of TaMYB was induced to the highest level (34.26-fold and 29.83-fold) at 8 h after PEG and ABA treatment. TaMYB expression increased 5.52-fold after 2 h of H₂O₂ treatment and reached the highest level (21.33-fold) after 4 h followed by a decrease (Fig. 11a). This indicates that both TaGAPCp2/3 and TaMYB were likely involved in a stress-related signaling pathway. To investigate whether TaMYB was also involved in the ABA-induced upregulation of the expression of TaGAPCp2/3, wheat protoplasts transiently overexpressing TaMYB were used. In the wheat protoplasts overexpressing TaMYB, the relative expression of TaGAPCp2/3 was significantly higher than that in the control group (Fig. 11b). Furthermore, the ABA-induced increase in the expression of TaGAPCp2/3 (the highest level of 13.36-fold and 12.16-fold) in the control protoplast was also enhanced by the TaMYB gene (the highest level of 23.98-fold and 18.42-fold) under ABA stress (Fig. 11b). These results indicate that the TaMYB gene is crucial for ABA-induced upregulation in the expression of TaGAPCp2/3.

Discussion

Drought stress signals undergo transduction and other processes in plants, which eventually cause changes in
transcription factor accumulation and activity [30–32]. The relevant transcription factor binds to a specific cis-acting element on the promoter of the gene and induces expression related tolerance to the drought stress [33–35]. In our previous work, it was discovered that TaGAPCp2 and TaGAPCp3 had different expression patterns under drought stress, although both genes had similar functions in drought tolerance in transgenic Arabidopsis. To further investigate these findings, we cloned and analyzed the promoters of TaGAPCp2 and TaGAPCp3 genes. Bioinformation analysis indicate differences in the cis-acting motifs in the promoters of these two candidate genes, suggestive of certain differences in their regulation.

To study these two promoters in detail, TaGAPCp2P and TaGAPCp3P were subcloned into the pC0390-GUS vector and the pC0390-RUC vector and then transiently transformed into tobacco plants. GUS staining and the Rluc ratio indicated that the activity of the TaGAPCp2 and TaGAPCp3 promoters could be induced by PEG,
ABA and H$_2$O$_2$ stress. At the same time, GUS staining and GUS enzyme activity of Arabidopsis plants transformed with TaGAPCp2P:GUS and TaGAPCp3P:GUS were analyzed to understand the expression patterns of different promoters under abiotic stresses. The activities of the TaGAPCp2 and TaGAPCp3 promoters were almost the same under normal conditions, and they both had stronger activity under drought stress (Fig. 4). This can be considered another line of evidence that supports the role of GAPCp in drought response [36]. For the crop, the seeds are the crucial product for human. Along with the development of plant genetic engineering, protecting the seeds from potential genetic contamination becomes important. In this work, we found that promoters of TaGAPCp2 and TaGAPCp3 had strong activity in almost every tissue except the seeds. This may be useful for application in the genetic engineering of crop.

Regulation of gene expression at the transcriptional level is primarily controlled by a promoter and its cis-acting regulatory elements [37, 38]. Yeast one-hybrid technology is a classical method for studying the interaction between DNA and protein, and allows the effective isolation and identification of proteins that bind to specific DNA sequence [39, 40]. The interaction protein TaMYB of TaGAPCp2P/3P was obtained by yeast one-hybrid system and verified accurately by EMSA assays. Naturally, many MYB binding sites were found on the TaGAPCp2/3 promoter. Several earlier reports have illustrated the important role of TaMYB in drought resistance [41–43]. In wheat, TaGAMYb might participate in the heat stress response [44], TaMYB2A enhanced tolerance to abiotic stresses in transgenic Arabidopsis [45]. TaMYB73 involved in salinity tolerance via regulation of stress-responsive genes [42]. Similar to these reports, in wheat, the transcription level of TaMYB was also enhanced responses to abiotic stresses (Fig. 11a). Thus, the 5′ deleted mutants, and the Y1H and EMSA assays were used to determine the MYB binding sites that could be bound by TaMYB and associated with drought. The TAACTA/G type of MYBR cis-elements was specifically recognized by Arabidopsis MYB96 and might also be specific for the wheat [46]. HvGAMYb bound to the oligonucleotides containing the 5′-TAACAAC-3′ and 5′-CAACTAAC-3′ sequences of the endosperm-specific genes promoter regions to regulate gene expression during endosperm development [47]. This work illustrated that the 5′-AACTAAA/C-3′ type MYB binding sites in TaGAPCp2P (−1135 and −985) and TaGAPCp3P (−1414 and −665) were specifically recognized by TaMYB, which was a member of the R2R3-MYB subfamily and related to AtMYB91(AT2G37630.1) [48] (Additional file 3: Figure S3, Additional file 4: Figure S4).

Conclusions
This study demonstrates that the transcription factor MYB can induce the expression of the TaGAPCp2/3 gene

![Fig. 6 TaMYB is transcriptional activator of TaGAPCp2P and TaGAPCp3P. A Schematic diagram of the probes used for Electrophoretic mobility shift assays (EMSA) and fragments used for Yeast one-hybrid. b Yeast one-hybrid activity in TaGAPCp2 promoter and TaMyb. c TaMYB bound MYB binding sites by EMSA.](image-url)
by binding to the MYB binding site (5'-AACTAAA/C-3') on its promoter, thereby enhancing the resistance of the plant under drought stress. These findings offer a better understanding of the role of the TaGAPCp2/3 genes in response to drought and related abiotic stress in wheat, which could be candidates for improving crop water use efficiency and future biomass production.

Methods

Plant materials and treatments

Wheat (Triticum aestivum L.cv. Chinese Spring), tobacco (Nicotiana tabacum, cv.NC89) and Arabidopsis thaliana (Ecotype, Columbia) seeds were used in this research. The seeds were provided by the D209 laboratory of the College of Life Science. Seeds were surface-sterilized and then cultivated in a glasshouse at 16/8 h (light/dark, 22/20 °C).

To treat the wheat seedlings, 10-day-old wheat seedlings were transferred into Petri dishes containing 20% PEG8000, 10 mM H₂O₂ and 100 μM ABA solution for 24 h. Samples from treated (PEG8000, H₂O₂ and ABA at 0, 2, 4, 6, 8, 12 and 24 h) plants were frozen in liquid nitrogen and stored at −80 °C for RNA isolation. Meanwhile, 10-day-old wheat seedlings grown under normal conditions were sampled as a control. All of the experiments were repeated at least three times.

For the abiotic treatment of infiltrated tobacco plants leaves (injected with the recombinant plasmids), the infiltrated tobacco plants were sprayed with 20% PEG8000 solution, 100 μM ABA and 10 mM H₂O₂. After 24 h of abiotic stress treatments, the treated leaf samples were stored at −80 °C after being frozen in liquid nitrogen until Luciferase activity was assessed. All of the experiments were repeated at least three times.
Wild-type and transgenic Arabidopsis lines overexpressing TaGAPCp2 and TaGAPCp3 were used for drought tolerance analysis. The seeds were sown on 1/2 MS medium containing 30 μg/mL hygromycin for 1 week at 23 °C under a 16 h light/8 h dark cycle. Seedlings in similar at growth states were then transplanted into containers filled with soil and watered regularly for 2 weeks. Three-week-old plants were subjected to water withholding for 25 days. One hundred seedlings from each line or control were used to detect survival after 25 days of detained water. After 15 days of withholding water, fresh seedlings were harvested to measure the
contents of Relative water content (RWC), chlorophyll and Malondialdehyde (MDA).

RNA extraction and qRT-PCR analyses

Total RNA was extracted with TRizol from the wheat seedlings and converted to cDNA using the Prime-Script™ RT reagent kit (TaKaRa, Japan). After treatment of wheat seedlings with drought stress challenges (PEG 8000, ABA and H₂O₂), the expression of specific ESTs in the TaGAPCp2 and TaGAPCp3 gene families was determined through qRT-PCR, which was performed using SYBR® Premix Ex Taq™ (Tli RNaseH Plus) (TaKaRa, Japan) according to the manufacturer’s instructions on a Bio-Rad CFX96 system (Bio-Rad Laboratories, USA). The primers (TaGAPCp2/3-F and TaGAPCp2/3-R, Additional file 5: Table S1) used in qRT-PCR had high specificity as determined by agarose gel electrophoresis and were also confirmed by sequencing PCR products amplified by all primer pairs. The mean expression and standard deviation (SD) were calculated from the results of three independent experiments. Data analyses and quantitation were performed as previously described [49].

Isolation and bioinformatics analysis of TaGAPCp2P/3P

The primers used for promoter cloning were designed based on the sequence of the Triticum cultivar (AOTI010005895.1) and TaGAPCp2/3 genes. The upstream sequences of the TaGAPCp2/3 genes were amplified by the primers named 2PF/R and 3PF/R (Additional file 5: Table S1), named TaGAPCp2P/3P. The PCR products were purified and cloned into a pEASY-T1 vector. Several clones of each reaction were sequenced and analyzed using the Plant CARE database (http://www.bioinformatics.psb.ugent.be/webtools/plantcare/html/) [29] and PLACE (http://www.dna.affrc.go.jp/PLACE/).

Transient activity analysis of the TaGAPCp2P/3P in tobacco

To detect the activity of TaGAPCp2P/3P, we constructed fusion expression vectors by using the pC0390-GUS vector and the pC0390-RUC vector as the main frame.
TaGAPCp2P/3P were cloned into the vectors pC0390-GUS (located before the GUS reporter gene) and pC0390-RUC (located before the Rluc reporter gene) to generate recombinant plasmids. These fusion constructs were transferred into tobacco by agrobacterium-mediated transient assays. The CaMV35S promoter was used as a positive control.

The GUS activity was measured with histochemical assays as described previously [50]. GUS activity was normalized to protein concentration and expressed as nmol 4-methylum-belliferone/min*mg protein. The GUS measurement was repeated at least three times. Transgenic plant leaves were histochemically assayed to determine GUS activity in accordance with the staining procedure described by Jefferson with minor modifications [51]. In brief, samples were incubated in GUS reaction buffer (50 mM Na3PO4, at pH 7.0, 2 mM X-gluc, 0.5 mM K3Fe[CN]6, 0.5 mM K4Fe[CN]6, 10 mM EDTA, and 0.1% Triton X-100) for 24 h at 37 °C. Stained tissues were incubated in 70% ethanol at 37 °C for 6 h to remove chlorophyll and then rinsed in 90% ethanol at 37 °C for 10 h. Finally, GUS histochemical staining was observed under a microscope. Firefly luciferase and renilla luciferase were assayed using the dual luciferase assay reagents (Promega, USA). Data were collected as the ratio of LUC/REN. All transient expression experiments were repeated three times. The data were analyzed using SPSS12.0 software.

Generation and stress treatments of transgenic Arabidopsis

The full-length **TaGAPCp2P/3P** regions were amplified by PCR using specific primers (Ta1301–2/3F and Ta1301–2/3R). Then, the amplified products were cloned into the vector pCAMBIA1301 and located before the GUS reporter gene. The resulting plasmids were separately used in transformation mediated by Agrobacterium (Agrobacterium tumefaciens) to obtain transgenic Arabidopsis lines. Transformed plants were cultured on 1/2 MS medium containing 30 mg/L of hygromycin and 0.8% agar at 22 °C for 2 weeks and then transferred to soil.

Homozygous T3 seeds of transgenic lines were used for the GUS activity analysis. Arabidopsis seeds were grown on 1/2 MS agar plates that were routinely kept in darkness for 3 days at 4 °C to break dormancy and then transferred to a tissue culture room at 22 °C. For abiotic stresses, 2-week-old seedlings were individually transferred to 1/2 MS agar plates containing 20% PEG 8000, 100 uM ABA and 10 mM H2O2 for 24 h. Samples from treated or control plants were frozen in liquid nitrogen and stored at –
80 °C until detecting the activity of GUS. All of the experiments were repeated at least three times.

Yeast one-hybrid screening and electrophoretic mobility shift assays (EMSAs)

Fragments of the TaGAPCp2 and TaGAPCp3 promoters were cloned into plasmid pAbAi (TaKaRa, Japan) to screen the cDNA library, and screening of the cDNA library was performed according to the manufacturer’s instructions (Matchmaker One-Hybrid system; Clontech Laboratories Inc., Palo Alto, CA, USA) in the presence of 20 mM Aureobasidin A (AbA).

A total of 100 ng of a 30 bp double stranded probe and 1 μg of purified TaMYB were used in the EMSA reactions. After incubation at room temperature for 40 min, the samples were loaded onto a 6% native polyacrylamide gel. Then, the gel was poststained with Invitrogen™ SYBR™ Safe DNA Gel Stain and imaged with a Bio-Rad gel documentation system to detect DNA.

Additional files

Additional file 1: Figure S1 Nucleotide sequences of TaGAPCp2 and TaGAPCp3 promoters. (DOCX 658 kb)

Additional file 2: Figure S2 Detection of transgenic plant. a PCR analysis of TaGAPCp2/P transgenic Arabidopsis. b PCR analysis of TaGAPCp3/P transgenic Arabidopsis. (DOCX 159 kb)

Additional file 3: Figure S3 A phylogenetic tree of MYB TFs. A total of 169 sequences were analyzed including one sequences of wheat MYB TFs derived from cDNAs cloned in this work. (GenBank accessions shown in the figure). (PDF 136 kb)

Additional file 4: Figure S4 Analysis of functional MYB cis-elements in the TaGAPCp2 and TaGAPCp3 promoters. (DOCX 246 kb)

Additional file 5: Table S1 Primer and probe sequences used in this study. (DOCX 17 kb)

Abbreviations

3-PGA: 3-phosphoglycerate; ABREs: ABA-responsive elements; DREs: Dehydration-responsive elements; EMSAs: Electrophoretic mobility shift assays; FLUC: Firefly luciferase; GAPCp: Glyceraldehyde-3-phosphate dehydrogenase in non-green plastids; GAPDH: Glyceraldehyde-3-phosphate dehydrogenase; GAREs: Gibberellin responsive elements; MYB: MYB transcription factor; qRT-PCR: Quantitative real time polymerase chain reaction; RLU: Renilla luciferase; TPT: Triose phosphate transporter; Y1H: Yeast one-hybrid

Acknowledgements

We would like to thank the National Natural Science Foundation of China for their financial support.

Authors’ contributions

LZ and ZS designed the experiments. LZ, ZZ and FL performed the experiments and analyzed the corresponding results. ZZ and XL drafted the manuscript. LZ contributed to the revision of manuscript. HJ used software to process data and correct pictures. SY supervised this whole process and reviewed this paper. All authors read and approved the final manuscript.
Funding
Our research was funded by National Natural Science Foundation of China (No. 31271625; NO. 31671609).

Availability of data and materials
The dataset supporting the conclusions of this article is included within the article and its additional files.

Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Received: 20 March 2019 Accepted: 29 July 2019
Published online: 19 August 2019

References
1. Nicholls C, Li H, Liu JP. GAPDH: a common enzyme with uncommon functions. Clin Exp Pharmacol Physiol. 2012;39(8):674–9.
2. Singh R, Green MR. Sequence-specific binding of transfer RNA by glyceraldehyde-3-phosphate dehydrogenase. Science. 1993;259(5093):365–8.
3. Zeng H, Xie Y, Liu G, Lin D, He C, Shi H. Molecular identification of GAPDHs in cassava highlights the antagonistic of MeGAPCs and MeKGDs in plant disease resistance against cassava bacterial blight. Plant Mol Biol. 2018;97(3):301–14.
4. Jesús M-B, Borja C-M, Asunción I-S, Isabel M, Adriano N-N, Alisdair RF, Juan R, Giovana A. The specific role of plastidial glycolysis in photosynthetic and heterotrophic cells under scrutiny through the study of glyceraldehyde-3-phosphate dehydrogenase. Plant Signal Behav. 2016;11(3):e1128614.
5. Flores-Tornero M, Anoman AD, Sara RT, Toujani W, Weber APM, Eisenhut M, Baroja-Fernández E, Alessandro A, Bernd W, Lepiniec L. MYBL2 is a new regulator of flavonoid biosynthesis in Arabidopsis thaliana. Planta. 2013;238(6):949–63.
6. Guo H, Wang L, Yang C, Zhang Y, Zhang C, Wang C. Identification of novel promoters from Ginkgo biloba. Genet Mol Res. 2013;12(1):293–304.
7. Zhang Q, Hong L, Zhang Y, Yang C, Zhang C, Wang C. Characterization of a novel promoter from banana aquaporin family gene (MaTIP2) which responds to drought and salt-stress in transgenic Arabidopsis. J Plant Physiol Biochem. 2018;128:163–9.
8. Xu H, Huang J, Wei J, Xia J, Zhou X, Li H, Xu H, Su H, Duan D. The Wheat MYB Transcription Factor TaMYB38 Is Involved in Drought Stress Responses in Arabidopsis. Front Plant Sci. 2018;9:1426.
9. Tang Y, Yao X, Yang Y, Yang J, Yang Z, Cheng C. Salt-induced transcription factor MYB74 is regulated by the RNA-directed DNA methylation pathway in Arabidopsis. J Exp Bot. 2015;66(19):5997–6008.
10. Requena A, Aragón J, Ordóñez J, Sánchez-Díaz L. Characterization of novel TaNAC genes in wheat and overexpression of TaNAC2a characterizes of novel TaNAC genes in wheat and overexpression of TaNAC2a confers drought tolerance in tobacco. Physiol Plant. 2012;144(3):310–21.
11. Christian D, José LG, Antoine B, Christian D, José LG, Antoine B, Gunnar H, Elodie L, Isabelle D, Jean-Marc R, Alessandro A, Bernd W, Lepiniec L, Baroja-Fernández E, Alessandro A, Bernd W, Lepiniec L, Baroja-Fernández E. Overexpression of a MYB Family Gene, OsMYB6, increases drought and salinity tolerance in transgenic rice. Plant Biol. 2006;57(57):781–803.
12. Pozueta-Romero J, Kuhn J, Segura J, Ros R. Plastidial Glyceraldehyde-3-phosphate dehydrogenase deficiency leads to altered root development and affects the sugar and amino acid balance in Arabidopsis plants. Physiol Plant. 2009;135(6):1156–70.
13. Ryoung S, Burch AY, Huppert KA, Tiwari SB, Murphy AS, Guo Y, et al. The Arabidopsis transcription factor MYB74 modulates auxin signal transduction. Plant Cell. 2007;19(11):440–53.
14. Ryoung S, Burch AY, Huppert KA, Tiwari SB, Murphy AS, Guo Y, et al. The Arabidopsis transcription factor MYB74 modulates auxin signal transduction. Plant Cell. 2007;19(11):440–53.
15. Seki M, Kamei A, Yamaguchi-Shinozaki K, Shinozaki K. Molecular responses to drought, salinity and frost: common and different pathways for plant protection. Curr Opin Biotechnol. 2003;14(2):194–9.
16. Kam J, Greshoff P, Shorter R, Xue GP. Expression analysis of RING zinc finger genes from Triticum aestivum and identification of TaZFP70 that contains four RING-H2 domains and differentially responds to water deficit between leaf and root. Plant Sci. 2007;173(6):650–9.
17. Song S, Xu Y, Huang D, Miao H, Liu J, Jia C, Hu W, Valarezo AV, Xu B, Jin Z. Characterization of novel TaNAC genes in wheat and overexpression of TaNAC2a confers drought tolerance in tobacco. Physiol Plant. 2012;144(3):310–21.
18. Niu CF, Wei W, Zhou QY, Tian AG, Hao YJ, Zhang WK, Ma B, Lin Q, Peng ZB, Zhang JS. Wheat WRKY genes TaWRKY2 and TaWRKY19 regulate abiotic stress tolerance in transgenic Arabidopsis plants. PLoS ONE. 2012;7(3):e35796.
19. Ryoung S, Burch AY, Huppert KA, Tiwari SB, Murphy AS, Guo Y, et al. The Arabidopsis transcription factor MYB74 modulates auxin signal transduction. Plant Cell. 2007;19(11):440–53.
20. Christian D, José LG, Antoine B, Christian D, José LG, Antoine B, Gunnar H, Elodie L, Isabelle D, Jean-Marc R, Alessandro A, Bernd W, Lepiniec L, Baroja-Fernández E, Alessandro A, Bernd W, Lepiniec L, Baroja-Fernández E. Overexpression of a MYB Family Gene, OsMYB6, increases drought and salinity tolerance in transgenic rice. Plant Biol. 2006;57(57):781–803.
21. Xiong L, Zhu JK. Abiotic stress signal transduction in plants: molecular and genetic perspectives. Physiol Plant. 2010;139(2):152–66.
22. Zhao XB, Yan CX, Zhang H, Chun-Juan LI, Xie HF, Shan SH. Differential expression of transcription factor families in Peanut (Arachis hypogaea) under drought stress. J Agric Biotechnol. 2018;26(7):1143–54.
23. Yamaguchi Shinozaki K, Shinozaki K. Transcriptional regulatory networks in cellular responses and tolerance to dehydration and cold stresses. Annu Rev Plant Biol. 2006;57(57):781–803.
24. Weiwei G, Hua Y, Yongqiang L, Yujiao G, Zhongfu N, Huiru P, Mingming X, Zhaorong H, Qixin S, Yingxin Y. The wheat transcription factor TaGAAMYB recruits histone acetyltransferase and activates the expression of a high-molecular-weight glutenin subunit gene. Plant J. 2013;74(2):347–59.
25. Giarola V, Udo NJ, Singh A, Satpathy P, Barretti D. Analysis ofpcC13-promoters predicts a link between cis-element variations and desiccation tolerance in cereal crops. Proc Natl Acad Sci USA. 2017;114(2):315–24.
37. Azimi-Nezhad M, Mirhafiz SR, Stathopoulou MG, Murray H, Ndiaye NC, Bahrami A, Varaste A, Avan A, Bonnefond A, Rancier M. The relationship between vascular endothelial growth factor cis- and trans-acting genetic variants and metabolic syndrome. Am J Med Sci. 2018;355(5):559–65.

38. Mithra SVA, Kulkarni K, Sriniwasan R. Plant promoters: characterization and applications in transgenic technology. 2017.

39. Shu-Ying F, Kazuhisa O, Takashi I. A yeast one-hybrid system to screen for methylated DNA-binding proteins. Nucleic Acids Res. 2010;38(20):e189.

40. Bonaldi K, Li Z, Kang SE, Breton G, Pruneda-Paz JL. Novel cell surface luciferase reporter for high-throughput yeast one-hybrid screens. Nucleic Acids Res. 2017;45(18):e157.

41. Li K, Xing C, Yao Z, Huang X. PbrMYB21, a novel MYB protein of Pyrus betulaefolia, functions in drought tolerance and regulates polygonal lines by regulating arginine decarboxylase gene. Plant Biotechnol J. 2017;15(9):1186–203.

42. He Y, Li W, Lv J, Jia Y, Wang M, Xia G. Ectopic expression of a wheat MYB transcription factor gene, TaMYB73, improves salinity stress tolerance in Arabidopsis thaliana. J Exp Bot. 2012;63(3):1511–22.

43. Li MJ, Yu Q, Li YQ, Shi ZL, Nan Z, Bi CL, Guo JK. A R2R3-MYB transcription factor gene in common wheat (named TaMYB51) involved in enhancement of drought tolerance in transgenic Arabidopsis. J Plant Res. 2016;129(6):1–11.

44. Yu W, Fengkong S, Hua C, Huiru P, Zhongfu N, Qixin S, Yingyi Y. TaMIR159 directed wheat TaGAMYB cleavage and its involvement in anther development and heat response. PLoS One. 2012;7(11):e48445.

45. Mao X, Jia D, Li A, Zhang H, Tian S, Zhang X, Jia J, Jing R. Transgenic expression of TaMYB2A confers enhanced tolerance to multiple abiotic stresses in Arabidopsis. Funct Integr Genomics. 2011;11(3):445–65.

46. Seo PJ, Lee SB, Suah MC, Park M-J, Go YS, Park C-M. The MYB96 transcription factor regulates cuticular wax biosynthesis under drought conditions in Arabidopsis (nematode-Abh1;1). Plant Physiol. 2011;155(3):1138–52.

47. Grit H, Catherine R, Mireille D, Balloufier F, Pierre S, Gilles C, Dominique B, Sascha S, Geiger HH, Andreas G. High level of conservation between genes coding for the GAMYB transcription factor in barley (Hordeum vulgare L.) and bread wheat (Triticum aestivum L.) collections. Theor Appl Genet. 2008;117(3):321.

48. Chen Y, Yang X, He K, Liu M, Li J, Gao Z, Lin Z, Zhang Y, Wang S, Qiu J. A MYB transcription factor superfamily of Arabidopsis: expression analysis and phylogenetic comparison with the rice MYB family. Plant Mol Biol. 2006;60(1):107–24.

49. Liu P, Xu ZS, Pan-Pan L, Hu D, Chen M, Li LC, Ma YZ. A wheat PI4K gene whose product possesses threonine autophosphorylation activity confers tolerance to drought and salt in Arabidopsis. J Exp Bot. 2013;64(20):2915–27.

50. Jefferson RA. Assaying chimeric genes in plants: the gene fusion system. Plant Mol Biol Report. 1987;5(4):387–405.

51. Jefferson RA, Kavanagh TA, Bevan MW. C5′-T7’-based beta-glucuronidase as a sensitive and versatile gene fusion marker in higher plants. EMBO J. 1987;6(13):3901–7.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.