Common Variation in With No-Lysine Kinase 1 (WNK1) and Blood Pressure Responses to Dietary Sodium or Potassium Interventions – Family-Based Association Study –

Fuqiang Liu, PhD; Shuhui Zheng, PhD; Jianjun Mu, PhD; Chao Chu, PhD; Lan Wang, PhD; Yang Wang, PhD; Hongyu Xiao, PhD; Dan Wang, PhD; Yu Cao, PhD; Keyu Ren, PhD; Enqi Liu, PhD; Zuyi Yuan, MD, PhD

Background: Common variations in the gene with no-lysine kinase 1 (WNK1) are associated with hypertension, but because of gene-environment interaction, it is difficult to fully identify the genetic contribution of WNK1 gene polymorphism to blood pressure (BP) variability. The aim of this study was to identify the effect of common WNK1 variants on the shift of BP during strict dietary interventions of salt or potassium intake.

Methods and Results: A total of 342 subjects from 126 families were selected and sequentially maintained on normal diet for 3 days at baseline, a low-salt diet for 7 days (3g/day, NaCl), then a high-salt diet for 7 days (18g/day), and high-salt diet with potassium supplementation for another 7 days (4.5g/day, KCl). Five single nucleotide polymorphisms (SNPs) were selected from the WNK1 gene. rs880054 and rs12828016 were associated with diastolic BP (DBP) response during the low- or high-sodium intervention, and rs2301880 was significantly associated with systolic BP, DBP and mean arterial pressure responses to the high-sodium intervention (all P<0.05). Unfortunately, no associations for WNK1 SNPs and the constructed haplotype blocks of WNK1 with BP responses to high-salt-and-potassium supplement intervention reached nominal statistical significance.

Conclusions: The WNK1 gene might be mechanistically involved in the variation in BP response to dietary sodium and potassium intake among individuals, and might contribute to the variation of this complex phenotype. (Circ J 2013; 77: 169–174)

Key Words: Blood pressure; Gene polymorphism; Potassium; Sodium; With no-lysine kinase 1 (WNK1)
implicated as an important modulator of salt homeostasis, regulating the balance between renal sodium reabsorption and potassium excretion. WNK1 is predominantly expressed in the distal nephron of the kidney at sites involved in regulating NaCl reabsorption and studies suggest that increased WNK1 expression would have the net result of increasing NaCl reabsorption, leading to volume expansion-induced hypertension. Mutations in WNK1 cause pseudohypaldosteronism type 2 (PHA2) – a rare autosomal dominant disorder primarily characterized by early onset hypertension and hyperkalemia. Therefore, the possibility has been proposed that genetic mutants in WNK1 affect BP variations and/or susceptibility to essential hypertension (EH). Indeed, there is accumulated evidence of associations between the common variants of WNK1 gene and BP levels. Failure to measure gene–environment interactions, however, especially regarding dietary sodium or potassium, may result in the inability to fully detect the genetic contribution to BP variability in those studies. In present study, the aim was to quantify the effect of common WNK1 variants on the shift of BP during strict dietary interventions of salt or potassium intake.

Methods

Subjects
In Northern China, a community-based BP screening was conducted among persons aged 18–60 years in the study villages to identify potential probands and their families for the study. Those with mean systolic BP (SBP) between 130 and 160 mmHg and/or diastolic BP (DBP) between 85 and 100 mmHg and no use of antihypertensive medications, and their siblings, spouses, or offspring were recruited for the dietary intervention study. Individuals who had stage 2 hypertension, secondary hypertension, a history of CVD, chronic kidney disease or diabetes, used antihypertensive medications, or were pregnant, heavy alcohol users or currently on a low-sodium diet were excluded from the dietary intervention. The institutional ethics committee of Xi’an Jiaotong University Medical School approved the study protocol, and written informed consent for the baseline observation and for the intervention program was obtained from each participant. All of the procedures were performed in accordance with institution guidelines.

Dietary Intervention
The protocol consisted of a series of investigations, including baseline history and physical examination (height, weight, and BP) for 3 days, 7 days on a low-salt diet (51.3 mmol or 3 g NaCl per day), 7 days on a high-salt diet (307.7 mmol or 18 g NaCl per day) and a high-salt diet with potassium supplementation (60 mmol or 4.5 g KCl per day) for another 7 days. During the entire period of the intervention, other dietary nutrient intake remained unchanged and each subject was given detailed dietary instructions to avoid table salt, cooking salt, high-sodium foods, and food rich in nitrite/nitrate for the subsequent 21 days. Total energy intake was varied according to each participant’s baseline energy intake. The study participants came to the study kitchen for their breakfast, lunch, and dinner during the entire intervention period. All foods were cooked without salt and pre-packaged salt was added to the individual study participant’s meal when it was served by the study staff onsite.

BP Measurement and Definition of BP Response to Dietary Intervention
Three random-zero BP measurements were obtained using a Hawksley random-zero sphygmomanometer (Hawksley & Sons, Lancing, UK; zero range 0–20 mmHg) with a 1-min interval during the 3-day baseline observation period, as well as on days 5, 6, and 7 of each intervention period. BP was measured by trained and certified observers according to a common protocol adapted from procedures recommended by the American Heart Association. BP was measured with the participant in the sitting position after 5 min of rest. In addition, participants were advised to avoid alcohol, cigarette smoking, coffee/tea, and exercise for at least 30 min prior to BP measurement. SBP and DBP were determined as the first and fifth phases of Korotkoff sounds, respectively. Mean blood pressure (MBP) was defined as: MBP = DBP + 1/3 × PP. BP at baseline and during the intervention was calculated as the mean of 9 measurements from 3 clinical visits during the 3-day baseline observation or on days 5, 6, and 7 of each intervention phase. Responses were defined as follows: BP response to low sodium=BP on low-sodium diet–BP at baseline; BP response to high sodium=BP on high-sodium diet–BP on low-sodium diet; and BP response to potassium supplement=BP on high-sodium diet with potassium supplementation–BP on high-sodium diet.

Measurement of Sodium and Potassium in 24-h Urine
The sodium and potassium concentrations in the urine were measured on flame photometry. The total sodium and potassium excreted in urine in 24 h were calculated by multiplying their concentration and the total volume of urine in 24 h.

DNA Extraction and Genotyping
Peripheral venous blood was drawn from each participant. Genomic DNA was extracted from whole blood using the Maxwell 16 DNA Purification Kit (Promega, Madison, WI, USA). The choice of single nucleotide polymorphism (SNP) was made according to the results of a prior analysis of WNK1 described. All the genotyping experiments were done by Shanghai Generay Biotech (http://www.generay.com.cn/) using ligase detection reactions (LDR). The target DNA sequences were amplified using multiplex polymerase chain reaction (PCR). After the completion of the amplification, 1 μl Proteinase K (20 mg/ml) was added, then heated at 70°C for 15 min and quenched at 94°C for 15 min. The ligation reaction for each subject was carried out in a final volume of 10 μl containing 2 μl Multi-PCR product, 1 μl probe, 0.125 μl of 40 μl/μl TaqDNA ligase (NEB, USA), 1 μl of 10×Taq DNA ligase buffer and 6 μl H2O. LDR were performed using 25 cycles of 94°C for 30 s and 55°C for 4 min. The fluorescent products of LDR were differentiated using ABI sequencer 377. Additionally, approximately 5% of the samples were randomly selected and retested by direct DNA sequencing on a 3730xl DNA analyzer (Applied Biosystems) and the results were 100% concordant.

Statistical Analysis
The Mendelian consistency of the SNP genotype data was assessed using PLINK and PedCheck on parental SNP data. Departure from Hardy-Weinberg equilibrium was tested with chi-square test on parental SNP data. We used Haploview (version 4.0, http://www.broad.mit.edu/mpg/haplovie.html) to estimate the extent of pairwise linkage disequilibrium between SNPs. We used Family Based Association Test (FBAT; version 2.0.2, http://www.biostat.harvard.edu/fbat/default.html) to test the association of single marker and haplotypes with adjusted phenotypes. Three genetic models (additive, dominant, and recessive) were tested. To assess the effect of genetic variants on the trait value, we used univariate FBAT test was performed for each allele and haplotype. This test provides a
Results

Characteristics and BP Response to Dietary Intervention

Table 1 lists the baseline characteristics and BP responses to the low-salt, high-salt and high-salt-and-potassium supplement intervention among family members. The probands had higher mean baseline SBP and DBP than their siblings, spouses, and offspring, whereas the parents had the highest baseline SBP among all of the groups. Overall, BP decreased from baseline to low-salt intervention but increased from the low-sodium to high-sodium intervention. For both low-salt, high-salt, and high-salt-and-potassium supplement interventions, the probands had greater changes in mean arterial pressure (MAP) than their siblings, spouses, and offspring.

Influence of Dietary Intervention on Urinary Sodium and Potassium Excretion

At baseline, the high sodium and low potassium excretion suggested that the dietary pattern of Northern Chinese people is characterized by high sodium intake and insufficient intake of potassium, in line with our previous survey. To ensure compliance with the intervention program, the total volume of sodium in the urine was calculated at the end of each diet period. As shown in Table 2, it was remarkably higher during the high-salt diet than during the low-salt diet. Meanwhile, potassium...
supplement increased not only urinary potassium excretion but also sodium excretion slightly. The result confirmed the dietary intervention was successful.

Allele Frequencies and Hardy-Weinberg Equilibrium Test

Figure and Table 3 lists the genomic location, allele frequency, and Hardy-Weinberg tests for the 5 WNK1 SNPs analyzed. None of the SNPs deviated statistically significantly from Hardy-Weinberg equilibrium.

Table 3. WNK1 SNPs Genotyped

WNK1 SNP	WNK1 Position	Alleles	Minor allele frequency	Hardy-Weinberg test†	Pearson's χ²	P-value
rs880054	Intron 10	A/G	0.27	0.72	0.396	
rs12828016	Exon 21	Met/Ile	0.25	0.022	0.83	
rs956868	Exon 13	Pro/Thr	0.21	1.83	0.176	
rs2301880	Intron 23	C/T	0.21	0.029	0.865	
rs765250	Intron 1	A/G	0.12	0.004	0.949	

†Parents only (parental generation).
SNP, single nucleotide polymorphism; WNK1, with no-lysine kinase 1.

Table 4. SNPs Significantly Associated With BP Response to Dietary Intervention

SNP	Allele	SBP response	DBP response	MAP response			
		z	P-value	z	P-value	z	P-value
Low-sodium intervention							
rs880054	A	–0.982	0.325	2.261	0.023	–1.873	0.061
rs12828016	G	–0.935	0.357	2.506	0.012	–1.936	0.052
rs956868	A	–1.195	0.232	–1.215	0.224	0.726	0.467
rs2301880	C	–1.142	0.253	0.473	0.636	1.286	0.198
rs765250	A	0.217	0.828	0.240	0.810	0.054	0.957
High-sodium intervention							
rs880054	A	0.463	0.643	2.063	0.039	1.641	0.100
rs12828016	G	0.527	0.598	2.516	0.011	2.013	0.044
rs956868	A	0.753	0.451	–1.931	0.053	–1.548	0.121
rs2301880	C	1.958	0.046	2.228	0.025	2.195	0.028
rs765250	A	–0.067	0.946	–0.329	0.741	–0.256	0.798
High-salt-and-potassium supplement intervention							
rs880054	A	–0.635	0.525	–0.558	0.576	–0.597	0.550
rs12828016	G	–0.527	0.598	–0.380	0.704	–0.858	0.390
rs956868	A	–1.120	0.262	–1.098	0.272	–0.914	0.360
rs2301880	C	–0.805	0.420	–0.646	0.518	–0.713	0.475
rs765250	A	–0.490	0.623	–0.450	0.652	–0.129	0.897

P-values are corrected for multiple testing (FDR<0.05).
DBP, diastolic BP; FBAT, family-based association test; FDR, false discovery rate; MAP, mean arterial pressure; SBP, systolic BP; z, test statistic for FBAT. Other abbreviations as in Tables 1,3.
WNK1 and BP Response to Dietary Intervention

As shown in Table 4, FBAT identified significant associations for rs880054 and rs12828016 with DBP response during the low-sodium or high-sodium intervention. SNP rs2301880 was significantly associated with SBP, DBP and MAP responses to high-sodium intervention (all P<0.05). Unfortunately no associations for WNK1 SNPs with BP responses to high-salt-and-potassium supplement reached nominal statistical significance. Furthermore, we also constructed haplotype blocks of WNK1 SNPs using Haploview, and the 5 SNPs were located in 1 haploblock. No haplotypes, however, were associated with SBP, DBP or MAP responses to dietary intervention (Table 5).

Discussion

In the present study we identified several SNPs in the WNK1 gene, such as rs880054, rs12828016, rs2301880, which were nominally significantly associated with BP responses to dietary sodium intervention. The results indicated that the WNK1 gene might be mechanistically involved in BP salt sensitivity and that these genetic variants might contribute to the variation of this complex phenotype.

The present study had several important strengths. First, the subjects were recruited from several rural neighboring communities that were similar with respect to lifestyle and environmental risk factors, including diet and physical activity. Furthermore, this study was based on the family pedigree. Thus, the confounding of genetic associations due to these factors should be minimized. In addition, BP response to sodium or potassium supplementation was measured under a controlled dietary salt intake or potassium supplementation, which provides a good opportunity to identify dedication of gene polymorphism in the heterogeneity of these responses to BP. At the same time, BP response to dietary sodium or potassium intervention was measured as a continuous variable, rather than being categorized with a cut-point (such that individuals would have been divided into salt- or potassium-sensitive and salt- or potassium-resistant groups), to improve the sensitivity of the detection of the small effect of the gene polymorphisms. Last, participation in the dietary interventions was high, and compliance with the study interventions, as assessed on urinary excretion of sodium and potassium during each intervention period, was excellent.

WNK1 is thought to be a key factor in maintaining sodium and potassium homeostasis in the kidney, and consequently BP regulation. In the kidney, WNK1 is expressed in 2 splicing variants, namely KS-WNK1 and L-WNK1.24,25 L-WNK1 activates the epithelial Na channel (ENaC) and Na+/Cl– cotransporter (NCC), thus motivating sodium reabsorption. KS-WNK1 inhibits WNK1 kinase activity and inhibits its effects on the NCC, presumably through a dominant-negative mechanism. In addition, L-WNK1 also increases NCC activity by antagonizing WNK4-mediated inhibition of this transporter.16–18,26 In addition, WNK1 haploinsufficiency in mice, shown by a 50% reduction in WNK1 RNA expression, has modestly reduced BP (approximately 12-mmHg decrease in MAP).27 It also confirmed that gain of WNK1 function causes BP elevation. Moreover, WNK1 is also a regulator of potassium homeostasis. L-WNK1 reduces potassium excretion by inhibiting renal outer medullary potassium channel (ROMK), whereas KS-WNK1 antagonizes L-WNK1 with respect to its effects on ROMK. Thus a positive ratio of L-WNK1 to KS-WNK1 decreases the rate of K+ secretion via ROMK. Interestingly, recent animal studies have shown that high potassium intake could increase the expression of the mRNA and protein of KS-WNK1 in rats.28 These findings indicate that WNK1 may be a stimulator of sodium reabsorption and potassium excretion, and common variation in WNK1 may lead to the heterogeneity in BP responses to dietary sodium or potassium interventions.

There are several studies indicating that the common variations in WNK1 are associated with hypertension and sodium or potassium homeostasis. Newhouse et al tested for association among 19 WNK1 SNPs and EH in 712 severely hyperten-

| Table 5. Haplotypes and BP Response to Dietary Intervention |
|-----------------|-----------------|-----------------|-----------------|-----------------|
| **SNP** | **SBP response**| **DBP response**| **MAP response**|
| **z** | **P-value** | **z** | **P-value** | **z** | **P-value** |
| **Low-sodium intervention** | | | | | |
| Haplotype 1 | 0.709 | 0.478 | –0.304 | 0.761 | 0.089 | 0.929 |
| Haplotype 2 | –0.966 | 0.334 | 0.047 | 0.963 | –0.342 | 0.732 |
| Haplotype 3 | 0.027 | 0.979 | –0.567 | 0.571 | –0.338 | 0.736 |
| Haplotype 4 | 0.083 | 0.933 | 0.985 | 0.325 | 0.653 | 0.514 |
| Haplotype 5 | 0.743 | 0.458 | 1.108 | 0.268 | 1.038 | 0.299 |
| **High-sodium intervention** | | | | | |
| Haplotype 1 | 1.36 | 0.174 | 0.11 | 0.912 | 0.622 | 0.534 |
| Haplotype 2 | –1.145 | 0.252 | –0.246 | 0.806 | –0.602 | 0.547 |
| Haplotype 3 | –0.185 | 0.853 | 0.406 | 0.685 | 0.179 | 0.858 |
| Haplotype 4 | 0.464 | 0.643 | 0.171 | 0.865 | 0.294 | 0.769 |
| Haplotype 5 | –0.58 | 0.562 | –0.172 | 0.863 | –0.339 | 0.734 |
| **High-salt-and-potassium supplement intervention** | | | | | |
| Haplotype 1 | 1.916 | 0.055 | 1.597 | 0.110 | 1.852 | 0.064 |
| Haplotype 2 | –1.078 | 0.281 | –1.564 | 0.118 | –1.5 | 0.134 |
| Haplotype 3 | –0.714 | 0.475 | 0.379 | 0.705 | –0.069 | 0.945 |
| Haplotype 4 | –0.242 | 0.809 | –0.518 | 0.605 | –0.445 | 0.857 |
| Haplotype 5 | 0.46 | 0.646 | –0.784 | 0.433 | –0.35 | 0.726 |

Abbreviations as in Tables 1,3,4.
sive families, and observed suggestive evidence for an association between variants of WNK1 and severity of hypertension. Moreover, Tobi et al also found that rs880054 in WNK1 contributes to BP variation in a population-based sample of 996 subjects from 250 white European families. Recently, Osada et al reported that not only were rs880054, rs956868, and rs12828016 in the WNK1 gene associated with BP variations in the general Japanese population, but also the constructed haplotypes were associated with Na/K intake ratio, which hints that the part of the variation in BP response to dietary sodium and potassium intake among individuals can be explained by variations in the WNK1 gene. In addition, Manunta et al showed that the WNK1 genotypes produced greater urinary Na and K excretion under acute Na load than WNK1 G carriers in rs880054. In the current study, WNK1 gene variation was nominally significantly associated with BP response to dietary sodium intervention, but not to dietary potassium intervention. Failure to find an effect of the 5 gene polymorphisms on BP response to dietary potassium intervention could be due to genetic heterogeneity across populations, small effect size or low power. We also found no association of haplotype with BP responses to dietary sodium or potassium intervention. WNK1 is a relatively large gene, and although we assumed that the 5 SNPs lie in a single block, it is also possible that the SNPs could span 1 haplotype block, which would lead to the discrepancy of association between gene polymorphism and haplotype.

The present study has some other limitations that should be addressed. Because all of the subjects were recruited from the Northern Chinese population, the present results will require replication in other cohorts to determine generalizability to other ethnicities and to populations with different dietary habits. Furthermore, further studies to identify the causal polymorphism loci along with their functions are also warranted.

Conclusion

rs880054, rs12828016, and rs2301880 in the WNK1 gene were significantly associated with BP response to dietary sodium intervention, and these findings may contribute to a better understanding of the genetic mechanisms underlying BP regulation and may have potential clinical and public health implications.

Acknowledgments

This study was supported by grant 2012CB517804 from the National Program on Key Basic Research Project of China (973 Program) and grants 81070218 and 30071160 from the Natural Science Foundation of China.

References

1. World Health Organization. World Health Report 2002: Reducing risks, promoting healthy life. Geneva: World Health Organization, 2002.

2. Lewington S. Age-specific relevance of usual blood pressure to vascular mortality: A meta-analysis of individual data for one million adults in 61 prospective studies. Lancet 2002; 360: 1903–1913.

3. Lifton RP, Gharavi AG, Geller DS. Molecular mechanisms of human hypertension. Cell 2001; 104: 545–556.

4. Staessen JA, Wang J, Bianchi G, Birkenhager WH. Essential hypertension. Lancet 2003; 361: 1629–1641.

5. Oparil S, Zaman MA, Calhoun DA. Pathogenesis of hypertension and therapeutic aspects. Circ J 2010; 74: 827–835.

6. Hirooka Y, Sagara Y, Kishi T, Sunagawa K. Oxidative stress and central cardiovascular regulation: Pathogenesis of hypertension and therapeutic aspects. Circ J 2010; 74: 827–835.

7. Hirooka Y, Tabara Y, Kobu Y, Okamura T, Miki T, Tomoike H, et al. A genome-wide association study of hypertension-related phenotypes in a Japanese population. Circ J 2010; 74: 2353–2359.

8. Munzel T, Driekie T. A comprehensive review of the salt and blood pressure relationship. Am J Hypertens 1992; 5: 15–42S.

9. He FJ, MacGregor GA. Salt, blood pressure and cardiovascular disease. Curr Opin Cardiol 2007; 22: 298–305.

10. Geleijnse JM, Kok FJ, Grobbee DE. Blood pressure response to changes in sodium in potassium intake: A meta-regression analysis of randomised trials. J Hum Hypertens 2003; 17: 471–480.

11. Mu J, Liu Z, Liu F, Xu X, Liang Y, Zhu D. Family-based randomized trial to detect effects on blood pressure of a salt substitute containing potassium and calcium in hypertensive adolescents. Am J Hypertens 2009; 22: 943–947.

12. Kow KT, Barrett-Connor E. The association between blood pressure, age, and dietary sodium and potassium: A population study. Circulation 1988; 77: 53–61.

13. Weinberger MH. Salt sensitivity of blood pressure in humans. Hypertension 1996; 27: 481–490.

14. Chen J. Sodium sensitivity of blood pressure in Chinese populations. Curr Hypertens Rep 2010; 12: 127–134.

15. He J, Gu DF, Kelly TN, He J, Hixson JE, RAO DC, et al. Genetic variants in the renin-angiotensin-aldosterone system and blood pressure responses to potassium intake. J Hypertens 2011; 29: 1719–1730.

16. Naray-Fejes-Toth A, Snyder PM, Fejes-Toth G. The kidney-specific WNK1 isoform is induced by aldosterone and stimulates epithelial sodium channel-mediated Na+ transport. Proc Natl Acad Sci USA 2004; 101: 17434–17439.

17. Kahle KT, Ring AM, Lipton RF. Molecular physiology of the WNK kinases. Annu Rev Physiol 2008; 70: 329–355.

18. Huang CL, Kuo E. Mechanisms of disease: WNK-ing at the mechanism of salt-sensitive hypertension. Nat Clin Pract Nephrol 2007; 3: 623–630.

19. Wilson FH, Disse-Nicodeme S, Choate KA, Ishikawa K, Nelson-Williams C, Desitter I, et al. Human hypertension caused by mutations in WNK kinases. Science 2001; 293: 1107–1112.

20. Tobin MD, Timpson NJ, Wain LV, Ring S, Jones LR, Emmett PM, et al. Common variation in the WNK1 gene and blood pressure in childhood: The Avon longitudinal study of parents and children. Hypertension 2008; 52: 974–979.

21. Tobin MD, Raleigh SM, Newhouse S, Braund P, Bodycote C, Ogley J, et al. Association of WNK1 gene polymorphisms and haplotypes with ambulatory blood pressure in the general population. Circulation 2005; 112: 3423–3429.

22. Kokubo Y, Kamide K, Inamoto N, Tanaka C, Banno M, Takuchi S, et al. Identification of 108 SNPs in TSC, WNK1, and WNK4 and their association with hypertension in a Japanese general population. J Hum Genet 2004; 49: 507–511.

23. Newhouse SJ, Wallace C, Dobson R, Mein C, Pembroke J, Farrall M, et al. Haplotypes of the WNK1 gene associate with blood pressure variation in a severely hypertensive population from the British genetics of hypertension study. Hum Mol Genet 2005; 14: 1805–1814.

24. O’Reilly M, Marshall E, Speirs HJ, Brown RW. WNK1, a gene within a novel blood pressure and potassium pathway, tissue-specifically generates radically different isoforms with and without a kinase domain. J Am Soc Nephrol 2003; 14: 2447–2456.

25. Delatylo C, Liu J, Houot AM, Disse-Nicodeme S, Gasc JM, Corvel P, et al. Multiple promoters in the WNK1 gene: One controls expression of a kidney-specific kinase-defective isoform. Mol Cell Biol 2003; 23: 9208–9211.

26. Hoom Ej, Lubbe N, Zietes R. The renal WNK kinase pathway: A new link to hypertension. Nephrol Dial Transplant 2009; 24: 1074–1077.

27. Zambrówicz PB, Abuín A, Ramírez-Solís R, Richter LJ, Piggott J, BeltrandRho H, et al. Wnk1 kinase deficiency lowers blood pressure in mice: A gene-trap screen to identify potential targets for therapeutic intervention. Proc Natl Acad Sci USA 2003; 100: 14109–14114.

28. Fang L, Liu J, Li D, Yang CL, Subramanyar AR, Maouy D, et al. WNK1 kinase isoform switch regulates renal potassium excretion. Proc Natl Acad Sci USA 2006; 103: 8558–8563.

29. Osada Y, Miyachi R, Goda T, Kasezawa N, Horiike1 H, Iida M, et al. Variations in the WNK1 gene modulates the effect of dietary intake of sodium and potassium on blood pressure determination. J Hum Hypertens 2009; 23: 14109–14114.

30. Manunta P, Lavery J, Lanzani C, Braun DS, Simonini M, Bodycote C, et al. Physiological interaction between adducin and WNK1-NEDD4L pathways on sodium-related blood pressure regulation. Hypertension 2008; 52: 366–372.