Optimal switching problems with an infinite set of modes: an approach by randomization and constrained backward SDEs

M.-A. Morlais (LMM - IRA, Le Mans Université, France)
 j.w.w. M. Fuhrman (Milano, Italy)

9th BSDE international Colloquium
Université Savoie Mont Blanc (27/06 - 01/07/2022)
Outline of the talk

I- Preliminaries & motivations
 • The Optimal Switching problem (OSP): primal vs dual formulation.
 • Assumptions for the dual formulation.
 • Why choosing the "dual" approach ?

II- Main results & perspectives
 • The two main results:
 (i): equality between the two value functions;
 (ii): new BSDE characterization.
 • Perspectives
Motivations & preliminaries

I.1 Primal optimal switching problem and value function

On a standard prob. space $(\Omega, \mathcal{F}, \mathbb{P})$, let

- \mathcal{W}: standard d-dim. Brownian Motion, \mathcal{W} \mathcal{F}-adapted. usually: $\mathcal{F} = \mathcal{F}^\mathcal{W} \vee \mathcal{N}$.
- T fixed finite horizon; A set of modes (possibly infinite).
- $\forall (x_0, e) \in \mathbb{R}^n \times A$, let X^e proc. s.t.

\[\forall t \in [0, T], \quad X_t^e = x_0 + \int_0^t (b^e(s, X^e)ds + \sigma^e(s, X^e)dW_s), \]
Motivations & preliminaries

1.1 Primal optimal switching problem and value function

On a standard prob. space \((\Omega, \mathcal{F}, \mathbb{P})\), let

- \(\mathcal{W} \): standard \(d\)-dim. Brownian Motion, \(\mathcal{W} \) \(\mathcal{F}\)-adapted. usually: \(\mathcal{F} = \mathcal{F}^\mathcal{W} \lor \mathcal{N} \).

- \(T \) fixed finite horizon; \(A \) set of modes (possibly infinite).

- \(\forall (x_0, e) \in \mathbb{R}^n \times A \), let \(X^e \) proc. s.t.

\[
\forall t \in [0, T], \quad X^e_t = x_0 + \int_0^t \left(b^e(s, X^e) \, ds + \sigma^e(s, X^e) \, dW_s \right),
\]

Let \((f^e)_e, (g^e)_e\) and \((c_{e,e'})_{(e,e')}\): 3 families of (possib. random) real-valued data

(i) \(f^e(s, X.) \): instant. profit (when system in mode \(e \))

(ii) \(g^e(X.) \): payoff at time \(T \) when syst. in mode \(e \),

(iii) \(c_{e,e'}(s, X.) \): nonnegative penalty costs incurred at time \(s \) when switching from \(e \) to \(e' \).
Motivations & preliminaries

I.1 Primal optimal switching problem and value function

► Mathematical assumptions:
 • A: Borel set (example: any subspace of \mathbb{R}^d);
 • Both $(b^e, \sigma^e)_e, (f^e, g^e), (c_{e,e'})_{e,e'}$ may be path-dependent;
 • Let \mathbb{C}^n: set of continuous paths $(s \mapsto x(s))_{s \in [0, T]}$
 Topology on \mathbb{C}^n: $|x|_* = \sup_{s \in [0, T]} |x(s)|$
I.1 Primal optimal switching problem and value function

Mathematical assumptions:

- A: Borel set (example: any subspace of \mathbb{R}^d);
- Both $(b^e, \sigma^e)_e$, (f^e, g^e), $(c_{e,e'})_{e,e'}$ may be path-dependent;
- Let C^n: set of continuous paths $(s \mapsto x(s))_{s \in [0,T]}$
 Topology on C^n: $|x|_\ast = \sup_{s \in [0,T]} |x(s)|$

- Measurability
 $(t, \omega, e) \mapsto b^e(t, x(\omega), \omega)$, $\sigma^e(t, \omega, x(\omega), e)$ are $\text{Prog}(C^n) \otimes \mathcal{B}(A)$ meas.; (similar for $f^e, g^e, c_{e,e'}$)
 $\text{Prog}(C^n)$: σ-algebra of prog. measurable maps on $[0, T] \times \Omega$.
I.1 Primal optimal switching problem and value function

Math. Assumptions (cont'):

- For every \(t \in [0, T] \),

 \((x, e) \mapsto b_t(x, e) \sigma_t(x, e), f_t(x, e), g(x, e) \) are continuous on \(\mathbb{C}^n \times A \) \((x, e, e') \mapsto c_t(x, e, e') \) is continuous on \(\mathbb{C}^n \times A \times A \).

- Regularity & growth assumpt (wrt \(x \)):
 \[\exists K > 0 \text{ s.t. } \forall (t, x, x', e, e') \in [0, T] \times \mathbb{C}^n \times \mathbb{C}^n \times A \times A, \]

 \((i) \ |b_t(x, e) - b_t(x', e)| + |\sigma_t(x, e) - \sigma_t(x', e)| \leq K|x - x'|_t^* \)

 Similar for other data.

 \((ii) \ |b(t, 0, e)| + |\sigma(t, 0, e)| \leq K; \)
I.1 Primal optimal switching problem and value function

- Growth assumpt wrt x (cont’)

$\exists \ r, \ K > 0 \text{ s.t. } \forall (t, x, x', e, e') \in [0, T] \times \mathbb{C}^n \times \mathbb{C}^n \times A \times A,$

$|f(t, x, e) + |g(x, e)| + |c(t, x, e, e')| \leq K(1 + |x|_{t*})$
Motivations & preliminaries

I.1 Primal optimal switching problem and value function

- Growth assumpt wrt x (cont’)

$\exists \ r, \ K > 0 \text{ s.t. } \forall \ (t, x, x', e, e') \in [0, T] \times \mathbb{C}^n \times \mathbb{C}^n \times A \times A,$

(iii) $|f(t, x, e) + |g(x, e)| + |c(t, x, e, e')| \leq K(1 + |x|^r t^*)$

Comment

(i)-(iii) standard to obtain estim.

(a) Estim. (of Hilbertian norm) of process X^e (see Cosso-Confortola-Fuhrman ’18);
(b) Estim. of the value function (well known in Markovian case).
I.1 Primal optimal switching problem and value function

1. Let $\alpha = (\tau^n, \xi^n)_{n \geq 1}$ with $\tau^1 > 0$. $\alpha = \textit{management}$ strategy
2. To α, we associate the state proc. a as follows

$$a_s = \xi^1 1_{s < \tau_1} + \sum_{n \geq 1} \xi^{n+1} 1_{\tau^n \leq s < \tau_{n+1}} 1_{\tau^n < T}$$

a: piecewise constant proc. A-valued
By abuse, one may replace α by a.
I.1 Primal value function: Admissible set \mathcal{A}

$a = (\tau^n, \xi^n)$ is said *admissible* (a in \mathcal{A}) if

$H_1 \quad (\tau^n(\cdot), \xi^n(\cdot))_{n=1}^{\infty} \times \mathbb{R}^+ \times \mathcal{A}$-valued \mathbb{F}-adapt. such that

$\tau_n(\omega) \to +\infty$ and $\tau^n < \tau^{n+1}$, \mathbb{P}-a.s

Simultaneous switchings prohibited: equivalent to

$$\forall (a_1, a_2, a_2) \in \mathcal{A}^3, \quad c_{a_1,a_2}(t, x) + c_{a_2,a_3}(t, x) > c_{a_1,a_3}(t, x)$$

Stronger than the no-loop property (in finite case).
I.1 Primal value function: Admissible set \mathcal{A}

$a = (\tau^n, \xi^n)$ is said admissible (a in \mathcal{A} if

H_1 $(\tau^n(\cdot), \xi^n(\cdot))_{n}\in\mathbb{R}^+ \times \mathcal{A}$-valued \mathbb{F}-adapt. such that

$\tau_n(\omega) \to +\infty$ and $\tau^n < \tau^{n+1}$, \mathbb{P}-a.s

simultaneous switchings prohibited: equivalent to

$$\forall (a_1, a_2, a_3) \in \mathcal{A}^3, \quad c_{a_1,a_2}(t, x) + c_{a_2,a_3}(t, x) > c_{a_1,a_3}(t, x)$$

Stronger than the no-loop property (in finite case).

H_2 H_1 implies: $N^a_\tau(\omega) = \text{Card}\{\tau^n(\omega), \tau^n < T\} < \infty$, \mathbb{P}-a.s

H_3 Impose $\tau^n \neq T$: no switching at terminal time.

In finite case, equivalent to:

$$\forall (i, j) \in \mathcal{A} \times \mathcal{A}, \quad g^i(X^i_T) > g^j(X^j_T) - c_{i,j}(T, X_T).$$
I.1 Primal optimal switching problem and value function

1. For a in \mathcal{A}, let X^a (or X^a) the controlled proc. s.t.

$$dX^a = b^a(s, X^a)ds + \sigma^a(s, X^a_s)dW_s$$

with $b^a(s, x) = b^{\xi_0}(s, x)1_{s < \tau^1} + \sum_{n \geq 1} b^{\xi_n}(s, x)1_{\tau^n \leq s < \tau^{n+1}}$.

Similar definition for $\sigma^a(s, x)$.

Remark: b and σ path-dependent \Rightarrow X^a no more Markovian (PDE approach not available).
I.1 Primal control problem and (primal) value function

1. Primal value function \mathcal{V}

$$\mathcal{V} = \sup_{\alpha \in \mathcal{A}} (J(\alpha)),$$

where

$$J(\alpha) = \mathbb{E} \left(g^{a_T} (x.) + \int_0^T f^{a_s} (s, x^a) ds - \sum_{n \geq 1, \tau_n < T} c_{\xi_{n-1}, \xi_n} (\tau^n, x^{a_{\tau^n}}) \right)$$

$$= J_1(\alpha) - J_2(\alpha)$$

Objective: choose the best a (or α) to optimize $J(\alpha)$ and minimize $J_2(\alpha)$.
Motivations & preliminaries

A (non exhaustive) review of the literature

(1) **OSP with finite set of modes:**
 (i) Using PDE approaches: Ishii-Koike ’91, Yong-Zhou ’99, Ludkowski ’05, Carmona-Ludkovski ’07-08, ...
 (ii) Using BSDE and analyt. tools: Hamadène-Jeanblanc ’02, Djehiche-Hamadene-Popier ’08, Hu-Tang ’07 Chassagneux-Elie Kharroubi; Elie-Kharroubi ’08 ’11, ...
 (iii) **Standard OSP with refinements:** infinite horizon, partial information, non positive costs: Lundstrom -Olofsson, R. Martyr, B. El Asri, ..

(2) **Connection between "finite" OSP & constrained BSDE:**
 (a) Ma-Pham-Kharroubi ’08 (Markovian setting)
 (b) Elie-Kharroubi (’14) (Non Markovian case)
1.2 Randomized set-up & dual formulation

1. On $(\Omega', \mathcal{F}', \mathbb{P}')$ let $\mu = \sum_{n \geq 0} \delta_{\sigma^m, \zeta^m}$ be a Poisson random meas. s.t.

 (i) Random dates & marks $(\sigma^m, \zeta^m)_m \mathbb{R}^+ \times A$-valued;
 (ii) μ indep. of W with $\hat{\mu}(de, ds) = \lambda(de)ds$ s.t

 (a) $\tilde{\mu} = \mu - \hat{\mu}$ is a martingale measure;
 (b) $\lambda(de)$ has full support and $\lambda(A) < +\infty$.
Motivations & preliminaries

1.2 Randomized set-up & dual formulation

1. On \((\Omega', \mathbb{F}', \mathbb{P}')\) let \(\mu = \sum_{n \geq 0} \delta_{\sigma^m, \zeta^m}\) be a Poisson random meas. s.t.

 (i) Random dates & marks \((\sigma^m, \zeta^m)_m \mathbb{R}^+ \times A\)-valued;
 (ii) \(\mu\) indep. of \(W\) with \(\hat{\mu}(de, ds) = \lambda(de)ds\) s.t
 (a) \(\tilde{\mu} = \mu - \hat{\mu}\) is a martingale measure;
 (b) \(\lambda(de)\) has **full support** and \(\lambda(A) < +\infty\).

2. The randomized dual set up := \((\overline{\Omega}, \overline{\mathbb{P}}, \overline{\mathbb{F}}, \overline{W}, \overline{\mu})\):

 (2.i) Let \(\overline{\Omega} := \Omega \times \Omega', \overline{\mathbb{P}} = \mathbb{P} \otimes \hat{\mathbb{P}}'\) and \(\overline{\mathbb{F}} = \mathbb{F}^{W, \mu}\), with

 \[
 \mathbb{F}^{W, \mu} := (\mathbb{F}^W \vee \mathbb{F}^\mu) \vee \mathcal{N}
 \]

 (2.ii) \(\overline{W}(\omega, \omega') = W(\omega)\) remains a \(\mathbb{F}^{W, \mu}\)- Brownian motion;
 \(\overline{\mu} := (\overline{\sigma}^m, \overline{\zeta}^m)_m\) Poisson r.m. with \(\mathbb{F}^{W, \mu}\)-prog. meas random marks and **same determ. compensator** \(\hat{\mu} = \tilde{\mu} = \hat{\mu}\).
I.2. The randomized set-up and dual formulation

1. Let \mathcal{I} (resp. \mathcal{I}^\prime) the Poisson point proc. assoc. with μ (resp. μ^\prime) as follows

\[\forall \ t \in [0, T], \ I_t = \zeta^0 \mathbf{1}_{t<\sigma^1} + \sum_{m \geq 1} \zeta^m \mathbf{1}_{\sigma^m \leq t < \sigma^{m+1}}. \]

Note that $N^I_T := \text{Card}\{m \geq 1, \ \sigma^m(\omega') < T\} < \infty$, \mathbb{P}'-a.s.

On randomized prob. space, $(\mathcal{I}, X^\mathcal{I})$ is a **forward uncontrolled proc.** with

\[X^\mathcal{I}_t = x_0 + \int_0^t \left(b^\mathcal{I}(s, X^\mathcal{I})ds + \sigma^\mathcal{I}(s, X^\mathcal{I})dW_s \right) \]
I.2. The randomized set-up and dual formulation

1. To any proc. \(\nu \) \(\mathcal{F}, \mu \)-meas., associate process \(\kappa_{\nu} \)

\[
\kappa_{\nu} = \mathcal{E}_T((\nu - 1) \ast \mu) = e^{-\int_0^T \int_A (\nu_s(e)-1) \lambda(de)ds} \prod_{m \geq 1} \nu_{\sigma m}(\zeta^m)
\]

2. Let \(\bar{P}^{\nu} \) with density \(\kappa_{\nu} \), i.e. \(\frac{d\bar{P}^{\nu}}{d\bar{P}} = \kappa_{\nu} \)
then, under \(\bar{P}^{\nu} \),
(a) \(\bar{I} \) remains Poisson point proc.;
(b) New compensated meas. \(\bar{\nu}_s(e) \lambda(de)ds \)

3. Set of dual controls

\[
\mathcal{A}^R := \{ \nu : \Omega \times [0, T] \times A \mapsto]0; \infty[\text{ meas. and essentially bounded} \}
\]
1.2 The randomized set-up: dual formulation

1. Let \(\nu_0^R = \sup_{\nu \in A^R} J^R(\nu) \) be the dual value function with

\[
J^R(\nu) = \mathbb{E}^\nu \left(g(X^I, I_T) + \int_t^T f(s, X^I, I_s)ds \right)
\]

\[
= J_1^R(\nu)
\]

\[
- \mathbb{E}^\nu \left(\sum_{m \geq 1} c_{\zeta_{m-1}, \zeta_m}(\sigma^m, X_{\sigma^m}) \right)
\]

\[
= J_2^R(\nu)
\]

\(\mathbb{E}^\nu \) stands for expectation under meas. \(\mathbb{P}^\nu \).
I.2 The randomized set-up: Major comments

1. Unique assumption on A: it is a **Borel** space
 No compactness assumption.
 Desirable properties: A both **metric and separable**.

2. Exogeneous proc. X (resp. \bar{X}) not necess. Markovian

3. The controlled volatility process may be degenerate
 (contrary to papers using PDE approaches).

4. If b, σ only depends on (x, a) not on ω, then the pair (I, X^I)
 is a Markov process.
Il First main result & comments

Under all previous assumptions on the primal & dual version of the OSP, one claims

$$\mathcal{V}_0 = \mathcal{V}_0^R = \nu_0(x_0, a_0).$$

This deterministic common value function only depends on $X_0 = x_0$ and initial mode a_0 and not of the choice of the randomized set up:
(i.e. neither on the construction of the extended dual set-up nor on the choice of intensity measure λ).
II. Second main result: BSDE characterization

Let Y^R_t be the *minimal* solution of following BSDE

\[
\begin{align*}
Y^R_t &= g(X_t, I_T) + \int_t^T f_s(X_s, I_s) \, ds + K_T - K_t \\
&\quad - \int_t^T Z_s \, dW_s - \int_{(t,T]} \int_A U_s(a) \tilde{\mu}(ds \, da), \\
U_t(a) &\leq c_t(X_t, I_{t-}, a), \quad \lambda(da)ds \, \mathbb{P} \text{- a.s.}
\end{align*}
\]

then it holds

\[Y^R_0 = V^R_0.\]

Remark: (1) is a BSDE with constrained jumps & non decreas. proc K: K *only càdlàg*.

$Y^R_t \in \mathcal{F}_t^W, \mu$-adapted.
I.3. Why choosing randomization to study the OSP?

1. when A infinite (even uncountable), the *infinite* system of RBSDEs does not seem well posed (at least to us..)
1.3. Why choosing randomization to study the OSP?

1. When A infinite (even uncountable), the infinite system of RBSDEs does not seem well posed (at least to us..)

2. For the primal OSP, many ingredients deeply use the finiteness of A.
I.3. Why choosing randomization to study the OSP ?

1. when A infinite (even uncountable), the *infinite* system of RBSDEs does not seem well posed (at least to us..)

2. For the primal OSP, many ingredients *deeply* use the finiteness of A.

3. the randomized set up allows to tackle general cases: path-dependency, possibly degenerate diffusions, case of an infinite set of modes.
I.3. Why choosing randomization to study the OSP?

1. when A infinite (even uncountable), the *infinite* system of RBSDEs does not seem well posed (at least to us..)

2. For the primal OSP, many ingredients *deeply* use the finiteness of A.

3. the randomized set up allows to tackle general cases: path-dependency, possibly degenerate diffusions, case of an infinite set of modes.

4. Another motivation: in the Markovian setting, connection already proved by R.Elie & I.Kharroubi ('09, ’10).
Main results: comments

Connection with BSDE associated with the OSP (finite set of modes)

Let \mathcal{J} set of modes and let $(Y^i)_{i \in \mathcal{J}}$ solving

$$
\begin{align*}
Y^i_t &= g(X_T, i) + \int_t^T f_s(X_s, i) \, ds + K^i_T - K^i_t \\
&\quad - \int_t^T Z^i_s \, dW_s,
Y^i_s &\geq \max\{j \in \mathcal{J} \setminus \{i\} \} \left(Y^j_s - c_{i,j}(s, X_s) \right) \quad \text{and} \\
\int_0^T (Y^i_s - \max\{j \in \mathcal{J} \setminus \{i\} \} \left(Y^j_s - c_{i,j}(s, X_s) \right) \, dK^i_s &= 0
\end{align*}
$$

If BSDE system (2) has a solution, the \textit{minimal} solution of dual BSDE (1) is s.t.

$$
Y^R_t = Y^l_t \quad \text{and} \quad U_t(i) = Y^i_t - Y^l_t^{-}.
$$
Main results: the BSDE characterization

The minimal BSDE

Let Y the *minimal* solution of following BSDE

$$
\begin{align*}
Y^R_t &= g(X, I_T) + \int_t^T f_s(X, I_s) \, ds + K_T - K_t \\
& \quad - \int_t^T Z_s \, dW_s - \int_{(t,T]} \int_A U_s(a) \, \tilde{\mu}(ds \, da), \\
U_s(a) &\leq c_s(X, I_{s-}, a), \quad \lambda(da) \, ds \quad \mathbb{P} - \text{a.s.}
\end{align*}
$$

(3)

then it holds: $Y^R_0 = \mathcal{V}^R_0$. Combined with first main result

$$
Y^R_0 = \mathcal{V}^R_0 = \mathcal{V}_0 = \sup_{\alpha \in \mathcal{A}} \mathcal{J}(\alpha).
$$

Y^R: obtained as the increasing limit of penalized scheme.
Main results: the BSDE characterization

Probabilistic representation

Let \((Y^n)\) solving

\[
\begin{align*}
Y^n_t &= g(X_t, I_T) + \int_t^T f_s(X_s, I_s) \, ds + K^n_T - K^n_t \\
&\quad - \int_t^T Z^n_s \, dW_s - \int_{(t,T]} \int_A U^n_s(a) \tilde{\mu}(ds \, da), \\
\text{with } dK_s^n &= n \int_A (U^n_s(a) - c_s(X_s, I_s, a))^+ \lambda(da) \, ds.
\end{align*}
\]
Main results: the BSDE characterization

Probabilistic representation

Let \((Y^n)\) solving

\[
\begin{cases}
Y^n_t = g(X, I_T) + \int_t^T f_s(X, I_s) \, ds + K^n_T - K^n_t \\
- \int_t^T Z^n_s \, dW_s - \int_{(t, T]} \int_A U^n_s(a) \, \tilde{\mu}(ds \, da),
\end{cases}
\]

with \(dK^n_s = n \int_A (U^n_s(a) - c_s(X, I_s, a))^+ \lambda(da) \, ds\).

It holds

\[
Y^n_t = \text{ess sup}_{\nu \in \mathcal{A}^{\mathbb{R}}} \left\{ \mathbb{E}^{\nu} \left[g(X_T, I_T) + \int_t^T f_r(X, I_r) \, dr \right. \right.
\]

\[
\left. - \int_t^T \int_A c_r(X_r, I_{r-}, a) \mu(da, ds) \bigg| \mathcal{F}_t^{W,\mu} \right\}.
\]

(5)
Concluding remarks

Some perspectives: theoretical & numerical

1. Stability results: Approximating the general OSP by the OSP with finite number of modes
 Objective: explicit rate of convergence

2. Refinements in Markovian setting ((I, X^I) Markov process)

3. Numerical perspectives
 Numerical solving of the "dual" BSDE.

 Note when Card(A) $< \infty$ but too large, simulating the solution of multidim BSDE system becomes unfeasible.
Concluding remarks

Some perspectives: theoretical & numerical

1. **Stability results**: Approximating the general OSP by the OSP with finite number of modes
 Objective: explicit rate of convergence

2. Refinements in Markovian setting ((I, X^I) Markov process)

3. **Numerical perspectives**
 Numerical solving of the "dual" BSDE.
 Note when $\text{Card}(A) < \infty$ but too large, simulating the solution of multidim BSDE system becomes unfeasible.

Thanks for your attention!