Gradients in cellular metabolism regulate development of tonotopy along the cochlea

Thomas S Blacker², James DB O’Sullivan¹, Val Yianni¹, Mohi Ahmed¹, Zoe F Mann⁴.

¹Centre for Craniofacial and Regenerative Biology, King’s College London, SE1 9RT, United Kingdom.
²Department of Physics and Astronomy, University College London, WC1E 6BT United Kingdom.

* Equal primary author contribution

* Corresponding author: zoe.mann@kcl.ac.uk

Zoë F Mann, Ph.D
Centre for Craniofacial and Regenerative Biology
Faculty of Dentistry, Oral & Craniofacial Sciences
Guy’s Hospital
Great Maze Road
London SE1 1UK, U.K.
Gradients in cellular metabolism regulate development of tonotopy along the cochlea

Thomas S Blacker 2#, James DB O’Sullivan 1#, Val Yianni 1, Mohi Ahmed 1, Zoe F Mann 1*.

1 Centre for Craniofacial and Regenerative Biology, King’s College London
2 Department of Physics and Astronomy, University College London
# Equal primary author contribution
* Corresponding author: zoe.mann@kcl.ac.uk

Abstract
In vertebrates with elongated auditory organs, mechanosensory hair cells (HCs) are organised such that complex sounds are broken down into their component frequencies along the basal-to-apical long (tonotopic) axis. To generate the frequency-specific characteristics required at the appropriate positions, nascent HCs must determine their tonotopic properties during development. This relies on complex signalling between the developing HC and its local niche along the axis within the auditory organ. Here we apply NAD(P)H fluorescence lifetime imaging (FLIM) and live imaging of mitochondria to reveal metabolic gradients along the tonotopic axis of the developing cochlea. We further show that re-shaping these gradients during development, by inhibiting cytosolic glucose metabolism, alters normal Bmp7 and Chordin like-1 signalling leading to flattening of tonotopic patterning along the axis.

Our work supports a causal link between morphogen signalling and metabolic reprogramming in specifying tonotopic morphologies in auditory HCs.

Introduction
Hearing relies on the life-long function of mechanosensory hair cells (HCs) and their associated glial-like supporting cells (SCs). In both mammals and birds, complex sounds are separated into component frequencies by the anatomy of the cochlea, so that different frequencies stimulate HCs located at different positions along the basal-to-apical long axis of the epithelium (tonotopy). This phenomenon underlies our ability to differentiate between the high pitch of a mosquito and the low rumbling of thunder. The specific factors regulating tonotopy remain, largely, unclear. A better understanding of how specific factors regulate tonotopy and, therefore, the formation of frequency-specific HC phenotypes will provide insights regarding both congenital auditory defects and HC regeneration. In particular, high frequency HCs show increased vulnerability to insults, including aging 1, noise damage 2,3 and ototoxicity 4. Therefore, information regarding the pathways that specify this HC phenotype could identify potential methods to preserve these cells and/or recover high frequency hearing loss.

Metabolism, encompassing the complex network of chemical reactions that sustain life, has emerged as a key regulator of cell fate and differentiation 5. Instructive roles for glucose metabolism and reprogramming between glycolytic and oxidative pathways has been reported in various systems during development including, for example, delamination and migration in embryonic neural crest 6, hair cells in the zebrafish inner ear 7, specification of trophoderm fate in the mouse embryo 8 and cell fate decisions along the developing body axis 9-11. As a complex tissue containing multiple cell types, investigating how metabolism regulates HC formation within the cochlear niche requires experimental approaches capable of interrogating metabolic pathways in live preparations, with single cell resolution. The classic biochemical approaches from which our knowledge of metabolism has formed involve the destructive extraction of metabolites from a sample for subsequent analysis. Probing metabolism in this way, although valuable, means that the spatial organisation of complex tissues is lost. We have previously exploited the intrinsic fluorescence of reduced nicotinamide
Analysis of metabolic bound effectors proteins

for however, the biochemical relationships linking \( \alpha_{\text{bound}} \) to metabolic phenotype are less established than for \( \tau_{\text{bound}} \). Nevertheless, it is thought that \( \alpha_{\text{bound}} \) reports shifts in the balance between glycolytic and oxidative ATP production, where a lower \( \alpha_{\text{bound}} \) reflects a more glycolytic phenotype. Based on this
hypothesis, the changes in $\alpha_{\text{bound}}$ observed here would indicate dynamic shifts between glycolytic and oxidative pathways throughout BP development (Figure 1J).

Figure 1. A proximal-to-distal metabolic gradient in the developing chick cochlea.

(A) Two-photon fluorescence image showing NAD(P)H in a live BP explant at E14.

(B) Inherent fluorescence from NADH and NADPH results from redistribution of electronic charge across the amide group of the reduced nicotinamide ring.

(C) NAD(P)H FLIM resolves two components corresponding to freely diffusing (shorter lifetime, $\tau_{\text{free}}$) and enzyme bound (longer lifetime, $\tau_{\text{bound}}$). The relative proportion of these components is labelled $\alpha_{\text{bound}}$. Changes in $\tau_{\text{bound}}$ and $\alpha_{\text{bound}}$ imply changes in metabolic state.

(D) Schematic of the chick BP, showing the progressive change in the NADPH/NADH ratio along the tonotopic axis of the BP.

(E-H) FLIM images of the NAD(P)H fluorescence lifetime signal extracted for $\tau_{\text{bound}}$ in the proximal and distal BP regions at E6 and E14. The mean lifetime signal is $\tau_{m} = (1 - \alpha_{\text{bound}})\tau_{\text{free}} + \alpha_{\text{bound}}\tau_{\text{free}}$. A proximal-to-distal gradient is evident in $\tau_{\text{bound}}$ but not $\alpha_{\text{bound}}$ throughout BP development. White asterisks indicate the HCs. Higher magnification images highlight the differences in mean lifetime between proximal and distal HCs at E14.

(I) Quantification of $\tau_{\text{bound}}$ during development shows a shift from NADPH to NADH producing pathways. Line graphs highlight differences in $\tau_{\text{bound}}$ between proximal (black) and distal (grey) BP regions throughout development.

(J) $\alpha_{\text{bound}}$, reflecting the cellular balance between free and enzyme-bound NAD(P)H, increases significantly in both proximal (black) and distal (grey) BP regions between E6 and E14 and decreases significantly between E14 and E16. Line graphs show differences in $\alpha_{\text{bound}}$ in the proximal (black) and distal (grey) regions. The difference in mean NAD(P)H lifetime result from a shift in the cellular balance of NADPH/NADH, and thus in utilisation of the metabolic pathways that produce these cofactors, from high to low frequency regions. Scale bars = 50 µm. Data are mean ± SEM; E6: n = 6, E9: n= 4, E14: n = 7 and E16: n = 6 biological replicates. * p < 0.05 Student’s t-test.

As HCs and SCs are not easily identified at stages before E9 (Figure 1 E, F), the NAD(P)H FLIM data were initially analysed from the whole epithelium along the proximal to distal axis. However, at E14 and E16 we were able to specifically examine $\tau_{\text{bound}}$ and $\alpha_{\text{bound}}$ in HCs and SCs (Figure 2A, B). We found
Figure 2. Metabolic differences between hair cells and supporting cells along the tonotopic axis of the developing chick cochlea.

(A) Total NAD(P)H fluorescence in the proximal and distal regions of the BP at E16.
(B) Mean fluorescence lifetime signal for NAD(P)H in the proximal and distal BP. Images show the lifetime signal for bound NAD(P)H and are mapped using a pseudo colour time scale representing a duration of 2.2 and 4.2 ns. White boxes show the differences in mean lifetime between hair cells (white asterisk, block arrows) and supporting cells (empty arrows).
(C) At E16, $t_{\text{bound}}$ is significantly higher in supporting cells compared to hair cells, indicating distinct metabolic profiles between cell types. The hair-cell-to-supporting cell difference in $t_{\text{bound}}$ is higher in the proximal (black bars) compared to distal (grey bars) BP region.
(D) The cellular proportion of bound NAD(P)H ($\alpha_{\text{bound}}$) is significantly higher in supporting compared to hair cells again reflecting the cell-specific differences in metabolic pathway utilisation.
(E) Schematic showing a cross-sectional view of the BP at E16. The hair cells (orange) and supporting cells (blue) are indicated. Colours reflect the bound lifetime duration in ns shown in (B). Warm colours indicate short lifetimes and cool colours longer lifetimes.

Data are mean ± SEM. * $p < 0.05$, Student’s paired $t$-test, $n = 10$ biological replicates. Scale bars are 50 $\mu$m.

that both parameters differed significantly between cell types at all positions along the proximal-to-distal axis (Figure 2C, D, E). Additionally, the axial gradient in $t_{\text{bound}}$ (NADPH/NADH ratio) (Figure 2C) in SCs but not HCs is consistent with our results from whole epithelial measurements at E6 and E14 (Figure 1E-J), showing the same metabolic differences as a function of tonotopic position along the cochlea.

Differential expression of mRNAs regulating NADPH production along the tonotopic axis.

Having identified a gradient in the cellular balance of NADPH/NADH along the BP at E6, we sought to determine the metabolic pathways underlying the differences in $t_{\text{bound}}$ and $\alpha_{\text{bound}}$. By exploiting our previously generated bulk RNA-seq and Affymetrix microarray data sets we measured differential expression of metabolic mRNAs along the BP at E6.5 and E14 (Figure 3). In these experiments, BPs had been separated, for bulk RNA-seq and Affymetrix microarray analysis, into proximal, middle, and distal thirds prior to isolation of mRNA. Microarray data were analysed to identify transcripts with expression levels at least two-fold higher in the proximal compared to distal half of the BP. We identified multiple genes with differential expression between proximal and distal regions that
Figure 3. Differential expression of mRNAs encoding NADPH and NADH regulatory enzymes in the chick basilar papilla.

(A-B) Bulk RNA-seq data showing differential expression of genes that regulate the cellular NADPH/NADH ratio. Data show the normalised RPKM values in the proximal and distal BP regions at E6.5 (normalised reads per kilobase of transcript per million mapped reads). All genes with a Log$_2$ > 1 are significantly expressed in the distal BP region and all genes with a Log$_2$ < 1 are expressed significantly in the proximal BP region. Statistical significance levels were calculated by one-way ANOVA. For a gene to be considered ‘differential’, at least one region of the BP (proximal, middle or distal) was required to be ≥ 0.5 RPKM. A fold change of ≥ 2 was imposed for the comparison between distal and proximal regions. A final requirement was that middle samples had to exhibit RPKM values midway between proximal and distal regions to selectively capture transcripts with a gradient between the two ends. (C) Affymetrix array data showing the differential expression of mRNAs encoding enzymes that regulate NADPH-production. Data was analysed to show fold change in expression of each transcript at the proximal compared to the distal region of the BP at E14. Microarray signals were normalized using the RMA algorithm. The mRNAs expressed at significantly different levels in distal versus proximal BP were selected based on ANOVA analysis by Partek Genomics Suite software (Partek, St. Charles, MO, USA) * p < 0.05.

ALDH1A3 - Aldehyde Dehydrogenase 1 Family Member A3, GOT2 - Glutamic-Oxaloacetic Transaminase 2, LDHB – Lactate dehydrogenase beta, PFKFB4 - 6-Phosphofructo-2-Kinase/Fructose-2,6-Biphosphatase 4, PKM2 – Pyruvate kinase M2, LDHA – Lactate dehydrogenase alpha, NNT - Nicotinamide Nucleotide Transhydrogenase, IDH3B – Isocitrate dehydrogenase beta, IDH3A - Isocitrate dehydrogenase alpha.

regulate NADPH-producing pathways (Figure 3). The largest contributor of cytosolic NADPH is the oxidative branch of the pentose phosphate pathway (PPP). NADPH can also be generated from mitochondrial tricarboxylic acid (TCA) cycle activity, where levels are maintained through the activity of multiple enzymes. Although the specific mRNAs expressed at E6.5 and E14 differ, at both stages, metabolic genes with the highest differential expression between proximal and distal regions were associated with diversion of glucose into the PPP or towards aerobic respiration in mitochondria (Figure 3A, B). These expression data therefore reflect differences in NADPH-linked metabolism along the BP and are consistent with the higher $\tau_{\text{bound}}$ reported for the proximal BP region (Figure 1).

Tonotopic expression of metabolic effector proteins.

Modulation of metabolic pathways is driven predominantly through post-translational modifications of metabolic effector proteins. Isocitrate dehydrogenase 3 (IDH3) and Lactate dehydrogenase (LDH) have well-defined roles in regulating the switch between glycolytic and oxidative metabolism during Warburg-like reprogramming. They also regulate metabolic flux in the mitochondrial TCA cycle and cytosolic glycolysis respectively (Figure 4A). Therefore, we analysed the expression of IDH3 subunit A and LDH subunit A along the tonotopic axis of the developing BP. There was no difference...
Figure 4. Glucose uptake and mitochondrial metabolism vary with developmental age, cell type and position along the tonotopic axis.

(A) Schematic showing IDH3 activity in the mitochondrial TCA cycle.

(B, C) Developmental expression of the mitochondrial TCA cycle enzyme IDH3A. Images show BP explants at E14 and E16 stained with Phalloidin, as a marker of filamentous Actin and labelled for IDH3 subunit A. Expression of IDH3A was significantly reduced at E14 compared to E7 and E10, both in proximal and distal regions. At E14 a distal-to-proximal gradient in IDH3A expression is established and by E16 this gradient is reversed along the BP.

(D) Quantification of IDH3A expression in proximal (black bars) and distal (grey bars) BP regions throughout development.

(E) 2-NBDG fluorescence in live BP explants shows no difference in glucose uptake along the proximal-to-distal axis or between cell types during development.

(F) Quantification of glucose uptake, as indicated by 2-NBDG fluorescence, in proximal (black bars) and distal (grey bars) BP regions between E7 and E14.

(G) Analysis of 2-NBDG fluorescence in hair cells and supporting cells at E14.

(H) Mitochondrial membrane potential measured (in the same cultures as in panel E) using TMRM fluorescence in single z-planes from image stacks in the proximal and distal regions of live BP explants.

(I) Quantification of TMRM fluorescence indicates a significant increase in mitochondrial activity between E7 and E9, followed by significant decrease between E9 and E14.

(J) TMRM fluorescence is significantly higher in hair cells compared to supporting cells in proximal and distal BP regions at E10 and E14. All data are represented as means ± SEM. For TMRM n = 6 biological replicates for E7, E10, E14. p = 0.04, and 0.002 Student’s t-test. HCs vs SCs, proximal: n = 6 biological replicates, p = 0.035 and 0.039 for proximal and distal regions respectively, Student’s t-test. IDH3A: E7 n=3, E10 n=3, E14 n=5 biological replicates. P < 0.05 Student’s t-test. Scale bars = 40 μm.
in IDH3A expression between proximal and distal regions at early stages. However, between E14 and E16, the expression gradient of IDH3A reversed along the tonotopic axis (Figure 4B, C, Figure 4 supplement 1A). Downregulation of IDH3A has been linked specifically with a switch from oxidative to glycolytic pathways by reducing glucose flux in the mitochondrial TCA cycle \(^{28}\). The distal-to-proximal gradient in IDH3a expression at E14 (Figure 4B, D, Figure 4 supplement 1A) is consistent with a higher cytosolic glucose flux in the low frequency region of the BP. Alongside the higher NADPH/NADH ratio reported for the proximal BP (Figure 1) these findings are consistent with greater PPP activity in the low frequency region and progressively more oxidative metabolic phenotypes towards the distal region. The reversal in the IDH3A gradient at E16 (Figure 4C, D, Figure 4 supplement 1A) indicates a shift in metabolic function along the tonotopic axis as the system matures. Studies in other systems have shown that IDH3A regulates synaptic transmission by controlling vesicle fusion and recycling. Downregulation of IDH3A expression also phenocopies loss of the synaptic Ca\(^{2+}\) sensor synaptotagmin1 \(^{29}\).

The opposing gradient in IDH3A expression at E16 may therefore coincide with the functional refinement of hair cell synapses along the BP at this time. No difference in LDHA expression was seen between proximal and distal regions at any developmental stage. Instead, LDHA expression switched from SCs to HCs between E7 and E10 and was restricted to SCs again between E10 and E14 (Figure 4 supplement 2). The mechanisms regulating these cell-specific changes in LDHA expression are not known. The timing of these switches does however overlap with important stages in HC development. It will therefore be of interest to investigate potential crosstalk between LDHA-linked metabolism and the developmental pathways that instruct HC and SC specification.

**Figure 4 Supplement 1.** Line graphs showing the trends in (A) IDH3A expression, (B) 2-NBDG and (C) TMRM fluorescence and along the proximal-to-distal axis of the developing BP. Data are mean ± SEM, \(p < 0.05\), Student’s \(t\)-test. \(n = 4\) for IDH3A; \(n = 6\) for 2-NBDG; \(n = 6\) for TMRM.
cells. (B) No differences in LDHA expression were evident along the proximal-to-distal axis of the BP at any developmental stage. Indicating a reprogramming of glucose metabolism, the expression of LDHA reduced significantly in the proximal (black bars) but not distal (grey bars) region at E14. Data are mean ± SEM. * p < 0.05 Student’s t-test.

A gradient in glucose uptake is established along the tonotopic axis during BP development.

To further characterise differences in glucose metabolism along the tonotopic axis, we used the fluorescent D-glucose derivative 2-[N-(7-nitrobenz-2-oxa-1,3-diazol-4-yl)-amino]-2-deoxy-D-glucose (2-NBDG) and the potentiometric fluorescent dye tetramethyl-rhodamine-methyl-ester (TMRM). The cellular fluorescence after incubation with 2-NBDG for 2 hours was used as an indicator of glucose uptake. TMRM was used to report mitochondrial membrane potential (ΔΨ̄), itself a read-out of glycolytically-derived pyruvate oxidation in the mitochondrial tricarboxylic acid (TCA) cycle. Explants were dual-loaded with TMRM and 2-NBDG and fluorescence from both dyes was analysed from single cells in live BP explants between E7 and E16 (Figure 4E-I, Figure 4 supplement 1B, C). We observed no tonotopic difference in glucose uptake during early development or between HC and SC subtypes. A significant gradient in glucose uptake was evident however along the proximal-to-distal axis at E14 (Figure 4F). Measuring mitochondrial membrane potential using TMRM, from the same explants, revealed no significant difference in ΔΨ̄ between proximal and distal end at any developmental stage. This indicates a uniform mitochondrial activity along the BP during development. Despite no differences along the tonotopic axis, ΔΨ̄ did change significantly (p < 0.05 Student’s t-test) with developmental age (Figure 4H-J, Figure 4 supplement 1C) reflecting a change in mitochondrial metabolism during HC formation at a stage when cells are becoming post mitotic. The higher ΔΨ̄ observed in HCs compared to SCs from E9 may reflect a unique metabolic state that develops in association with commitment to different cell lineages (Figure 4J). These findings also confirm that the gradient in NADPH/NADH (Figure 1D-I) along the BP originates specifically from tonotopic differences in cytosolic and not mitochondrial metabolism.

Cytosolic glucose metabolism is necessary for tonotopic patterning in the chick cochlea.

Having identified differential NADPH-linked glucose metabolism along the proximal-to-distal axis, we next investigated a functional role for this gradient in the establishment of tonotopy. Using 2-deoxy-D-glucose (2-DOG), to inhibit hexokinase (HK) activity, we blocked glycolysis during development. BP explants were established at E6.5 and maintained for 7 days in vitro in control medium or that containing 2mM 2-DOG with 5mM sodium pyruvate (NaP), ensuring adequate substrate supply to the TCA cycle.
Figure 5. Blocking glycolysis at key stages of cochlear development induces distal-like phenotypes in the proximal BP.

(A-B) Maximum z-projections of BP explants showing Phalloidin and DAPI staining in the proximal and distal regions. Explants were maintained from E6.5 for 7 days in vitro (equivalent to E13.5) in either control medium or medium supplemented with 2mM 2-DOG + 5 mM Sodium Pyruvate (NaP). Phalloidin staining depicts differences in hair cell morphology between proximal and distal regions and DAPI indicates the gradient in hair cell size.

(C) Quantification of these differences. Hair cell luminal surface area was measured in 2500 μm² areas in the proximal (black bars) and distal (grey bars) BP regions for all culture conditions. In controls, mean hair cell luminal surface decreases progressively from the proximal-to-distal region. This gradient is abolished if glycolysis is blocked with 2-DOG between E6.5 and E13.5. 2-DOG caused a significant decrease in hair cell size in the proximal but not distal region. 2-DOG treatments were reduced to 24 or 48 hours to identify the developmental time window during which glycolysis takes effect. Following wash-out of 2-DOG after 24h, explants developed with normal hair cell positional identity and showed a significant decrease in luminal surface area along the proximal-to-distal axis. Explants treated with 2-DOG for 48 hours showed no recovery of positional identity following wash-out indicated by the loss of gradient in hair cell morphology.

(D) The target of 2-DOG inhibition.

Data are mean ± SEM. * p < 0.05 Student’s paired t-test. Controls; n = 4, 2-DOG; n = 5, 24 2-DOG, n = 3 and 48h 2-DOG; n = 3 biological replicates. To ensure adequate substrate supply to the TCA cycle, 2-DOG-treated explants were supplemented with NaP. G6P glucose 6-phosphate, F6P – fructose 6-phosphate, F16BP – fructose 1,6-bisphosphate, 2-DOG – 2-deoxyglucose. Scale bars are 20 μm.

In a normal BP, hair cells are larger in the proximal than the distal region which can be determined morphologically using differences in the HC luminal surface area along the organ. This gradient is recapitulated in BP explant cultures. In these experiments, HC luminal surface area, a morphometric that is tonotopically driven, was used as a read-out of HC size along the BP. The luminal surface area, measured using Phalloidin staining and HC density, estimated with DAPI, provided read-outs of HC phenotypes at different positions along the tonotopic axis (Figure 5 B, C). In control cultures, HCs developed with the normal tonotopic gradient in morphologies (luminal surface area and density)
In contrast, when glycolysis was blocked between E6.5 and E13.5 equivalent, tonotopic patterning was not just abolished, HC phenotypes appeared flattened and uniformly more distal-like along the BP. To further confirm a role for glycolysis in establishing positional identity, we employed a second method to modulate glucose metabolism. Studies in other systems have shown that raising cytosolic levels of the metabolite s-adenosyl methionine (SAM) blocks glycolysis independently of HK activity. As seen in treatments with 2-DOG, tonotopic patterning was flattened in explants cultured with medium containing 50 μM SAM (Figure 5 supplement 1).

Figure 5 Supplement 1. Modulating S-Adenosyl methionine during development abolishes the gradient in hair cell morphology along the tonotopic axis of the BP.

(A-B) Images are maximal z-projections of proximal and distal regions from BP explants maintained for 7 days in vitro in control medium or medium containing 50 μM SAM. Phalloidin staining (A, B top panels) shows the BP surface and hair cell luminal surface areas and DAPI staining (A, B bottom panels) shows the hair cell size and density along the proximal-to-distal axis.

(C) Treatment of explants with SAM from E6.5 for 7 days in vitro abolished the normal gradient in hair luminal surface area along the tonotopic axis. This effect was most pronounced in the proximal compared to distal region.

Hair cell luminal surface areas were measured from 2500 μm² areas in the proximal (black bars) and distal (grey bars) BP regions of control and SAM-treated explants.

(D) Schematic showing how increasing SAM levels indirectly modulates glycolytic flux.

Data are mean ± SEM. * p < 0.05 Student’s paired t-test. Controls: n = 5 and SAM: n = 4 biological replicates.

Scale bars are 20 μm. MYC - MYC Proto-Oncogene, BHLH Transcription Factor, SAM - S-Adenosyl methionine, PP2A – protein phosphatase 2, AKT - Akt serine/threonine kinase family, LKB1/AMPK – serine threonine kinase pathway in volved in metabolic regulation.

A distal-to-proximal gradient of Bmp7 activity is known to establish tonotopy in the BP between E6 and E8. To determine whether glucose metabolism acts during this same developmental window, we treated explants with 2-DOG for defined periods during HC formation. BPs were established at E6.5 and treated with 2-DOG for either 24 or 48 hours followed by wash out with control medium. The tonotopic gradient in HC size developed normally in BPs treated with 2-DOG for 24 hours followed by wash-out but was absent in those treated for 48 hours (Figure 5C). These results suggest that glucose metabolism acts during the same developmental time window as Bmp7, establishing the tonotopic gradient in HC size between E6 and E8.

Glycolysis, the PPP and pyruvate mediated OXPHOS have distinct roles in HC development.

Glucose metabolism encompasses aerobic glycolysis and the PPP in the cytosol and the TCA cycle in mitochondria, all of which are affected by treatment with 2-DOG. Recent studies in other systems have linked both the PPP and TCA cycle with cell fate decisions during development and differentiation.
We therefore sought to further dissect the glycolytic signalling network during specification of tonotopy in the developing BP. To investigate a role for PPP-linked glucose metabolism, BP explants were established as described, and treated with 50 μM 6 Aminonicotinamide (6-AN) between E6.5 and E13.5 equivalent.

Figure 6. Glycolytic flux through the pentose phosphate pathway modulates hair cell development and positional identity along the tonotopic axis of the BP.

(A-B) Maximal z-projections of BP explants cultured from E6.5 for 7 days in vitro with control medium or medium containing 2 μM 6-AN. Images show the epithelial surface in proximal and distal BP regions stained with Phalloidin.

(C) Treatment of explants with 6-AN, a specific blocker of glycolytic flux through the pentose phosphate pathway, caused a significant reduction in proximal compared to distal hair cell luminal surface area. (D) Quantification of hair cell size using measurement of the cuticular plate in defined 2500 μm² areas in the proximal (black bars) and distal (grey bars) BP regions. Hair cell luminal surface area was quantified using Phalloidin staining. Data are mean ± SEM. * p < 0.05 Student’s paired t-test. Controls: n = 5, 6-AN: n = 6 biological replicates. Scale bars are 10 μm. G6P – glucose 6-phosphate, F6P – fructose 6-phosphate, F16BP – fructose 1,6-bisphosphate.

Treatment with 6-AN inhibits the rate-limiting PPP enzyme glucose-6-phosphate dehydrogenase (G6PD) (Figure 6C). By comparison with control cultures, inhibition of PPP metabolism caused a significant decrease in hair cell size within 2500 μm² areas measured in the proximal BP (Figure 6). To determine whether this effect was specific to glucose flux through the PPP we also blocked phosphofructokinase (PFK), a rate limiting enzyme further down in the glycolytic pathway, using 1μM YZ9 (supplementary Figure 4). Blocking PFK activity inhibits the glycolytic cascade involved in pyruvate production but does not change the activity of G6PD in the PPP. Although we observed a reduction in HC size in both BP regions, inhibition of PFK between E6.5 and E13.5 did not alter the intrinsic tonotopic patterning in HCs along the axis of the epithelium (p = 0.01 Student’s t-test proximal versus distal HC size) (Figure 6 supplement 1). These findings suggest that tonotopic patterning and specification of HC positional identity are regulated by metabolic glucose flux occurring upstream of PFK.
Opposing gradients of glucose metabolism and mitochondrial OXPHOS have been described in developing chick embryos, where they regulate elongation of the body axis and specification of cell fates. To investigate a role for the mitochondrial TCA cycle and thus OXPHOS along the tonotopic axis, we blocked the mitochondrial pyruvate carrier (MPC) using UK5099 (Figure 7B). Preventing pyruvate uptake into mitochondria inhibits the TCA cycle and, as a result, impairs OXPHOS (Figure 7). HCs in explants treated with UK5099 between E6.5 and E13.5 did not develop with normal gradients in HC size along the BP and had either immature stereocilial bundles or lacked them completely in both proximal and distal regions (Figure 7A, C, red arrows). To determine whether this effect was due to an overall arrest in HC development, explants were established at E8.5, by which time positional identity is specified but bundles are not yet developed and maintained for 7 days in vitro to the equivalent of E15.5. Compared to control explants, those treated with UK5099 displayed no tonotopic gradient in cell size and HCs at all positions along the BP showed immature bundle morphologies (Figure 7C). Together, these findings suggest that mitochondrial TCA cycle activity and OXPHOS are necessary for the overall progression of HC maturation. The role of these pathways in establishing tonotopy is at present unclear and requires further investigation.
Figure 7. Mitochondrial OXPHOS is necessary for the normal developmental progression of hair cells but not positional identity.

(A) Hair cell morphology at the surface of the BP epithelium in explants stained with Phalloidin. Cultures were established at E6.5 and maintained for 7 days in vitro in control medium of that supplemented with the mitochondrial inhibitor UK5099.

(B) Blocking pyruvate uptake into mitochondria with UK5099 disrupts normal TCA cycle activity and thus mitochondrial OXPHOS by blocking uptake of pyruvate through the mitochondrial pyruvate carrier (MPC1/MPC2).

(C) Blocking mitochondrial metabolism Between E6.5 and E13 resulted in developmental abnormalities in HCs along the BP and a significant reduction in hair cell size in the proximal region. Stereocilia bundles of hair cells in the proximal BP region (red arrows) appeared immature compared to controls and those at the distal end. To determine whether mitochondrial OXPHOS acts during a specific developmental time window, cultures were treated with 1μM UK5099 for 7 days in vitro from E6.5 or for 5 days in vitro from E8.5. These times points are both be equivalent developmentally to E13.5. for Proximal hair cells showed no recovery following UK5099 wash-out. Data are mean ± SEM. * p < 0.05, Student’s t-test.

Glucose metabolism regulates tonotopic expression of Bmp7 and Chdl-1

In many developing systems, gradients of one or more morphogen act to regulate cell fate, growth and patterning along a given axis. In the chick cochlea, reciprocal gradients of Bmp7 and its antagonist Chdl-1 play key roles in determining positional identity. As disruption of both the normal gradient in Bmp7 activity and glucose metabolism induce similar effects on tonotopic patterning (Figure 8A-C), we sought to investigate potential crosstalk between metabolism and known developmental signalling pathways that set up tonotopy. We investigated the regulatory effects of glucose metabolism on the expression gradients of Bmp7 and Chdl-1 along the developing BP. Explants were established at E6.5 and maintained for 72 hours in vitro (equivalent of E9.5) in control medium or that containing 2mM 2-DOG + 5mM sodium pyruvate.
Figure 8. A tonotopic gradient in NAD(P)H producing glucose metabolism specifies hair cell positional identity along the BP by regulating gradients of Bmp7 and Chordin like-1.

(A) Phalloidin staining at the surface of BP explants in the proximal and distal regions. Explants were established at E6.5 and incubated for 7 days in vitro in control medium or medium containing 2-DOG + NaP or Bmp7.

(B–C) Treatment with 2-DOG or Bmp7 induced hair cell morphologies consistent with a more distal phenotype in the proximal BP. Hair cell luminal surface area was determined using Phalloidin staining at the cuticular plate in 2500 μm areas at both proximal and distal ends.

(D) Schematic of the chick BP, showing the graded differences in hair cell size and density along the tonotopic axis. The opposing gradients in Bmp7 activity and the cellular NAD(P)H/NADH ratio are indicated.

(E) Treatment of explant cultures with 2-DOG + NaP from E6.5 for 7 days in vitro disrupts the normal tonotopic expression gradients of Bmp7 and its antagonist Chordin like-1. Images show in situ hybridisation for Bmp7 and Chordin like-1 in BP whole-mounts treated with 2-DOG +NaP from E6.5 for 7 days in vitro. Note the disruption of both gradients when glycolysis is blocked during development. Controls: n=8, 2-DOG: n=6 Data mean ± SEM.

* p < 0.05 Student’s t-test. Scale bars (A) control, DOG are 20 μm and Bmp7 is 50 μm. Scale bars (E) are 10μm.

Disrupting glucose metabolism along the BP altered the normal expression gradients in both Bmp7 and Chdl-1 (Figure 8E). Specifically, following treatment with 2-DOG, the Bmp7 expression increased into the proximal BP region and expression of Chdl-1 decreased along the entire length of the organ. Equalised Bmp7 expression following treatment with 2-DOG caused expansion of HC phenotypes that more closely resembled distal differentiation into the proximal BP. Taken together, our findings
Changes in glucose metabolism do not alter proliferation in the BP

Changes in glucose metabolism have been linked with reduced cellular proliferation in other systems. To determine whether the change in HC morphology observed in 2-DOG treated explants was a result of altered proliferation, the mitotic tracer EdU was added to cultures with 2-DOG for 72 hours. We observed no differences in proliferation in proximal or distal regions following treatment with 2-DOG + 5mM NaP (Figure 8 supplement 1).

Figure 8 Supplement 1. 2-Deoxyglucose does not alter proliferation in the developing BP.
Images are maximal z-projections of the sensory epithelium in BP explants treated for 24 hours in vitro with either control (top) or 2-DOG + sodium pyruvate supplemented (bottom) medium. Cultures are stained with EdU (green) as a marker for proliferation and Hoechst to label cell nuclei (grey). Cultures were established at E7 and treated for 24 hours to in vitro capturing the period of active proliferation in the epithelium.

A role for NADPH-linked metabolism in the developing mouse cochlea

Unlike in the avian auditory system, HCs in the mammalian cochlea cannot spontaneously regenerate after damage. Although we can generate new HCs using organoid models that recapitulate aspects of early inner development, cells produced using these methods are not functionally viable long-term and do not display all features of mature HCs. Identifying novel factors and signalling pathways that regulate the specification and formation of HCs subtypes in the mammalian auditory system is therefore necessary. Metabolism has not been explored in developing HCs and SCs of the mammalian cochlea. We do know, however, that in the adult cochlea HCs and SCs have distinct metabolic states linked to their function. We provide the first characterisation of metabolism in HCs and SCs in living explants of the developing mammalian cochlea. Cells were analysed between E14 and P0, the developmental window for cell fate specification and functional refinement. As observed in the chick cochlea, there was no difference in the NAD(P)H FLIM signal between HCs and SCs at early developmental stages. At later time points however, there was a significant (p < 0.05, Student’s t-test) increase in $\tau_{\text{bound}}$ and $\alpha_{\text{bound}}$ between E14 and E16 indicating a metabolic shift (Figure 9A-F). The divergence in metabolic state between HCs and SCs during development (Figure 9D-F) suggests a possible link between metabolic reprogramming and the progression along distinct cell lineages. Similar metabolic reprogramming has been described in differentiating cell types of other complex tissues.

To investigate the biochemistry underlying metabolic differences between HC and SC sub-types, we interrogated existing single cell datasets derived across 3 developmental time points from the mouse cochlea. HCs were identified using expression of Pou4f3 and lack of Sox2. Conversely, SCs were identified using expression of Sox2. We then performed a comparative analysis using the Seurat (v4) package, in R. As discussed, an increased $\tau_{\text{bound}}$ reflects a higher NADPH/NADH ratio, regulated mainly by the PPP activity in the cytosol. We therefore investigated expression of genes...
encoding enzymes that regulate PPP metabolism. We found that PPP pathway regulatory enzymes are more highly expressed in SCs compared to HCs at all developmental time points (Figure 9G). We observed developmental changes in the expression of regulatory enzymes of NADPH metabolism. Increased expression in cytosolic \textit{Nadk}, (generates NADP\textsuperscript{+} from NAD), in HCs between E14 and E16 (Figure 9G) likely corresponds to the higher anabolic activity associated with differentiation along the cochlea at this time and thus the greater requirement for PPP-derived NADPH \textsuperscript{47}. Additionally at the same time points, we detected a pronounced upregulation in \textit{Pglh}, a major regulator of the PPP and of ribose-5-phosphate production \textsuperscript{48}. Heightened availability of this enzyme would provide the necessary biosynthetic precursors for nucleic acid synthesis during cell differentiation \textsuperscript{48}. We also investigated differences in the expression of genes encoding regulators of mitochondrial NADPH production (Figure 9H). We observed that expression of mitochondrial NADPH-producing enzymes is similar between E14 and E16 in both HCs and SCs but becomes restricted to HCs by P1. This likely reflects progressive commitment along the HC lineage, which we know is associated with enhanced mitochondrial activity \textsuperscript{42}.

**Discussion**

To successfully address hearing and balance defects, we must be able to generate new, functionally viable HCs following damage, aging or ototoxic insult. Additionally, as high frequency HCs are more vulnerable to insult, it is essential we understand the specific factors that specify different HC subtypes along the tonotopic axis. Generating new HCs that recapitulate the features of those in a healthy cochlea requires a detailed knowledge of the cell biology and signalling that drives their formation. Further to this, it is important we resolve how they navigate the path of maturation and survival within their surrounding niche along the cochlea. Previous studies have focused largely on understanding the role of transcription factors in HC formation and how manipulation of these in the adult inner ear can be exploited to promote regeneration \textsuperscript{43,49-52}. Taking a novel approach, we here explored the coordinated regulation of complex signalling between developmental pathways and metabolism in differentiating HCs and SCs of the inner ear.

Using FLIM imaging of cellular NAD(P)H, we observed a proximal-to-distal gradient in glucose metabolism in the developing BP resulting from tonotopic differences in PPP activity. We confirm this gradient using bulk RNA-seq and Affymetrix microarray data, which identified tonotopic expression of mRNAs encoding PPP regulatory enzymes (GOT2 \textsuperscript{53}, PKM2 \textsuperscript{54}, PFKFB4 \textsuperscript{55,56}). High levels of NADPH generated through PPP-linked metabolism have been reported in proliferating cells during development and differentiation in a number of systems where they regulate cell cycle progression and cell size \textsuperscript{57,58}. Graded differences in cell size along the cochlea are important for correct tonotopy and hearing. Cell size is determined by two opposing processes, growth and division \textsuperscript{59} and PPP activity is known to regulate the signalling pathways that coordinate these \textsuperscript{60}. The mechanisms linking cell growth, cell cycle progression and cell size regulation are poorly understood in the context of intact tissues such as the cochlea. In the BP, cell cycle exit is initiated in the distal region at embryonic day 5 (E5). Terminal mitosis then progresses in a wave from distal-to-proximal regions and across the neural-to-abneural axis until E9, when the majority of cells are postmitotic \textsuperscript{31}. As critical cell size and cell cycle progression are determined by environmental factors, one hypothesis is that by differentially regulating growth along the BP and thus timing of cell cycle exit, the gradient in glycolysis could instruct tonotopic differences in HC cell size.
Figure 9. Hair cells and supporting cells in the mammalian cochlea show differential expression of genes regulating cellular NADPH/NADH.

(A-B) NAD(P)H fluorescence in live cochlear explants at E14 and E16. Differences in $\alpha_{\text{bound}}$ show switching between glycolytic and oxidative metabolism during cochlear development. Insets highlight differences in $\alpha_{\text{bound}}$ and thus metabolism between HCs (black bars) and SCs (grey bars) at E16 but not E14. White arrows indicate the SCs and white circles outline the HCs.

(C-D) NAD(P)H lifetime images extracted for $\tau_{\text{bound}}$ at E14 and E16. Differences in $\tau_{\text{bound}}$ indicate a shift in the cellular NADPH/NADH balance as a function of development. At E16, $\tau_{\text{bound}}$ is significantly higher in SCs (grey bars) compared to HCs (black bars) showing metabolic divergence between cell types as a function of development.

(E) $\alpha_{\text{bound}}$ increases in both HCs (black bars) and SCs (grey bars) between E14 and E16 and decrease significantly in both cell types between E16 and P0. The change in $\tau_{\text{bound}}$ indicates a shift in the cellular NADPH/NADH balance as a function of development. At E16, $\tau_{\text{bound}}$ is significantly higher in SCs (grey bars) compared to HCs (black bars) showing metabolic divergence between cell types as a function of development.

(F) $\alpha_{\text{bound}}$, reflects the proportion of cellular NAD(P)H that is bound to either enzymes or cofactors and the balance between glycolysis and OXPHOS. $\alpha_{\text{bound}}$ increases significantly in both hair cells and supporting cells between E14 and E16 but decreases significantly in supporting cells only between E16 and P0. This indicates a reprogramming of metabolic pathways both developmentally and between cell types. Data are mean ± SEM. * p < 0.05 Student’s paired t-test. E14: n = 3, E16: n = 5 and P0, n = 5 biological replicates. Scale bars are 50 μm.

(G-F) Dot plot visualisation of genes encoding key enzymes that regulate cellular levels of NAD(P)H across HCs and SCs at different stages of murine cochlea development. Size of dots encodes percentage of cells expressing...
the named gene, while colour encodes the average expression of that genes across the cells within each group. Genes shown are for NAD(P)H regulation via the pentose phosphate pathway (G) or in the mitochondria (F).

By diverting glucose towards the PPP, nascent HCs within the epithelium would be exposed to lower levels of mitochondrally-derived reactive oxygen species (ROS) thus protecting newly synthesised DNA from ROS-induced damage during cell division. Enhanced PPP activity and increased NADPH levels during HC formation could therefore act to poised cells for the increased anabolic activity associated with differentiation and DNA synthesis. At E9, the time at which cells become postmitotic, we also see a significant increase in mitochondrial metabolism reported by a more polarised membrane potential. This, in combination with the switch in IDH3A expression along the tonotopic axis between E14 and E16, indicates an extensive reprogramming of mitochondrial metabolism in association HC differentiation.

Morphogen signalling gradients have well defined roles in directing cell identity along developing axes, where distinct cell subtypes are determined as a function of morphogen concentration at different positions along them. We show a gradient in glucose metabolism along the proximal-to-distal axis of the developing BP that regulates the morphological properties associated with tonotopic identity in HCs. Disruption of this gradient mimics the effects of altered Shh/Bmp/Chordin signalling, inducing distal-like HC phenotypes in the proximal BP region. Our findings therefore indicate a causal link between developmental and metabolic pathways along the cochlea during HC formation. The mechanisms underlying tonotopy in mammals differ from those in birds and lower vertebrates, however gradients in both Bmp7 and Shh are evident along the auditory organ in both systems during development. We also know that Sonic Hedgehog (Shh) signalling positively regulates Bmp7 expression in the developing BP and regional identity in the developing mouse cochlea and that their downstream targets differ between species. A role for glucose metabolism has not been explored in the mammalian cochlea, but it would be of significant value to determine potential crosstalk between graded metabolism and developmental pathways during HC formation in the mammalian inner ear.

In cells of the presomitic mesoderm, metabolism regulates morphogen signalling such that opposing gradients in glycolytic and oxidative pathways drive elongation of the body axis. Here, glycolysis acts to generate a gradient in intracellular pH (pHi), which in turn, modulates the activity of FGF and Wnt signalling pathways along the developing body axis. Differences in pHi along the body axis determine neuronal and mesodermal cell fate by modulating the acetylation and thus stability of beta catenin. Given the importance of Wnt signalling in cochlear development and HC formation, it would be of interest to determine whether the gradient in glucose metabolism along the developing BP establishes tonotopic differences in pHi and beta catenin acetylation. In the developing drosophila wing, impaired glycolysis upregulation Hedgehog (Hh) signalling by stabilising the membrane protein Smoothed at the primary cilia, but does not alter the normal levels or the expression pattern of Shh protein within the tissue. The distalisation of HCs in the proximal BP region following 2-DOG treatment, may therefore be a consequence of increased Shh activity, which as a consequence enhances Bmp7 signalling. Investigating a regulatory role for glucose metabolism in the Shh-Bmp7-Chdl-1 signalling network along the proximal-to-distal axis of the chick cochlea and Shh signalling along the basal-to-apical axis in the mouse will further our current understanding of HC formation.

Untangling the precise interactions between components of the Sonic Hedgehog-Bmp7-Retinoic acid and glycolytic signalling networks will further our knowledge of how hair cells could be tuned morphologically during their formation. From what we understand about frequency selectivity in vertebrates, recapitulation of tonotopy will also require that any gradients and the signalling networks they instruct, scale correctly in different inner ear sensory patches and across species with
varying head size and cochlear lengths. It will be important to understand how the molecular
mechanisms that link metabolic and developmental pathways during HC scale within different inner
ear sensory patches and across species.

Developmental programming of energy balance within HC and SC lineages is an important
physiological process allowing cells arising from a common progenitor population to differentiate with
unique metabolic states. Extensive changes in cellular redox state occur during the first postnatal week
of functional refinement in cells of the mouse cochlea 12,13. These changes indicate local metabolic
switches during the early phases of HC and SC functional maturation 12. We report cell-specific
differences in metabolic enzyme expression, NAD(P)H FLIM signatures and mitochondrial activity in
the cochlear epithelium from as early as E14 in mouse and E9 in chick. These cell-specific differences
may reflect the developmental origins of metabolic coupling between HCs and SCs. Such cooperation
is observed between neurons and astrocytes in the developing brain16. Neurons and astrocytes
preferentially use different metabolic pathways under physiological conditions, due in part, to cell
specific expression patterns of genes regulating energy metabolism 72. Metabolic coupling is essential
for normal brain function and has also been linked with long-term function and survival of cochlear
hair cells 67,68. Long-term hair cell function is not possible without auxiliary input from supporting cell
neighbours. Understanding the developmental programs and specific factors that determine future HC-
SC coupling within the cochlear niche is essential if we are to recapitulate such mechanisms and
sustain long-term HC viability in regenerative or organoid models.

Materials and Methods

Embryo care and procedures

Fertilized White Leghorn chicken (gallus gallus domesticus) eggs (Henry Stewart & Co. LTD, UK)) were
incubated at 37.5°C in an automatic rocking incubator (Brinsea®) until use at specific developmental
stages between E6 and E16. Embryos were removed from their eggs, staged according to Hamburger
and Hamilton (1951) and subsequently decapitated. All embryos were terminated prior to hatching at
E21. All procedures were performed in accord with United Kingdom legislation outlined in the Animals
(Scientific Procedures) Act 1986.

Preparation of BP and cochleae explants for live imaging studies

Mouse embryos were collected from timed-pregnant females, and cochlear explants were established
at E13 to E16 as previously described 69. For live imaging, the most apical turn of the cochlear duct was
removed prior to culturing. Briefly, auditory bullae were removed and transferred into chilled L-15
medium (Life Technologies). The wall of the bulla was opened and the whole cochlea extracted. The
stria vascularis and Reissner’s membrane were removed. All mice were maintained and handled in
accord with United Kingdom legislation outlined in the Animals (Scientific Procedures) Act 1986.

Explants were placed onto Millicell cell culture inserts (Millipore *) and incubated overnight at 37°C.
Cochlear explants were maintained in Dulbecco’s Modified Eagle medium F-12 (DMEM/F-12) and BP
explants in medium 199 Earl’s salts (M199) (GIBCO, Invitrogen) both containing 2% fetal bovine serum
and 5 mM HEPES buffer (Life Technologies). For live imaging experiments explants were transferred
to glass-bottom 50 mm MatTek dishes and held in place using custom-made tissue harps (Scientifica).
Cultures were maintained in L-15 medium at room temperature throughout the experiment.

Basilar papilla culture

Basilar papillae (BPs) were isolated from embryos incubated for between 6 (E6.0) and 8 E8.0) days and
maintained in chilled Leibovitz’s L-15 media (GIBCO, Invitrogen). Papillae were dissected as described
previously and cultured nerve-side-down on Millicell cell culture inserts (Millipore®). Cell culture inserts were placed into 35 mm culture dishes containing 1.5 mL of medium 199 Earl’s salts (M199) (GIBCO, Invitrogen) supplemented with 5 mM HEPES buffer and 2% fetal bovine serum (FBS). Papillae were maintained in M199 medium plus vehicle (control media) for up to 7 DIV until the equivalent of embryonic day 13.5 (E13.5). For all treatments, a minimum of four samples were analysed. The following factors were applied to experimental BPs in culture at the specified concentrations: 2-Deoxyglucose (2-DOG) 2mM (SIGMA), Sodium Pyruvate (NaP) 5mM (SIGMA), 6-Aminonicotinamide (6AN) 2µM (SIGMA), S-(5′-Adenosyl)-L-methionine chloride dihydrochloride (SAM) 50µM (SIGMA), Y29 1µM (SIGMA). For 2-DOG wash-out experiments, cultures were treated for 24 or 48 hours followed by wash out with control medium for the remainder of the experiment up to 7 days. For paired controls, medium was also changed at 24 and 48 hours in culture. At the conclusion of each experiment (7 days in vitro), cultures were fixed in 4% paraformaldehyde (PFA) for 20 minutes at room temperature, washed thoroughly three times with 0.1 M phosphate buffered saline (Invitrogen) and processed for immunohistochemistry.

Fluorescence lifetime imaging
NAD(P)H FLIM was performed on an upright LSM 510 microscope (Carl Zeiss) with a 1.0 NA 40x water-dipping objective using a 650-nm short-pass dichroic and 460±25 nm emission filter. Two-photon excitation was provided by a Chameleon (Coherent) Ti:sapphire laser tuned to 720 nm, with on-sample powers kept below 10 mW. Photon emission events were registered by an external detector (HPM-100, Becker & Hickl) attached to a commercial time-correlated single photon counting electronics module (SPC-830, Becker & Hickl) contained on a PCI board in a desktop computer. Scanning was performed continuously for 2 min with a pixel dwell time of 1.6µs. Cells and position within the epithelium was determined prior to FLIM analysis using the mitochondrially targeted fluorescent dye tetramethylrhodamine methyl ester (TMRM). The dye was added to the recording medium, at a final concentration of 350 nM, 45 min before imaging. TMRM fluorescence was collected using a 610±30 nm emission filter. Excitation was provided at the same wavelength as NAD(P)H to avoid possible chromatic aberration. The 585±15 nm emission spectrum of TMRM ensured its fluorescence did not interfere with acquisition of the NAD(P)H FLIM images.

FLIM data analysis
Following 5 x 5 binning of photon counts at each pixel, fluorescence decay curves of the form
\[ I(t) = Z + I_0 \left( [1 - \alpha_{\text{bound}}] e^{-t/\tau_{\text{free}}} + \alpha_{\text{bound}} e^{-t/\tau_{\text{bound}}} \right) \]
were fit to the FLIM images using iterative reconvolution in SPCImage (Becker & Hickl), where Z allows for time-uncorrelated background noise. Matrices of the fit parameters \( \tau_{\text{free}}, \alpha_{\text{bound}} \) and \( \tau_{\text{bound}} \) and the total photons counted were at each pixel, were exported and analysed for hair cells and supporting cells, and proximal and distal BP regions, using SPCImage and ImageJ software packages.

2-NBDG and TMRM live imaging
The auditory sensory epithelia were isolated from E7, E9, E14 and E16 chick embryos in chilled L-15 medium. BPs were subsequently incubated in 1mM solution of 2-NBDG (N13195, Thermo Fisher Scientific) in L-15 medium at room temperature for 1 hour. The medium was then replaced with a fresh solution of 1mM 2-NBDG and 350 nm TMRM (T668, Thermo Fisher Scientific) in L-15 and incubated for a further hour at room temperature. Afterwards, epithelia were washed several times with fresh medium containing 350 nM TMRM and were mounted in a 3.5 mm glass bottom MatTek
dish. 3D image stacks with an optical thickness of 1μm were captured using a Leica SP5 confocal microscope with an HCX PL APO 63×/1.3 GLYC CORR CS (21 °C) objective.

**Immunohistochemistry**

Inner ear tissue was collected at various developmental stages, fixed for 20 min to one hour in 0.1 M phosphate buffered saline (PBS) containing 4% paraformaldehyde (PFA), and processed for whole-mounts immunohistochemistry. The auditory sensory epithelium was then fine dissected and permeabilized in PBS containing 0.3% Triton for 30 min before immunostaining using standard procedures. Samples were stained with primary antibodies for LDHA 1:75 (Genetex GTX101416) and IDH3A 1:75 (ab228596, Abcam) and Calbindin 1:50 (ab82812, Abcam). Antibody staining was visualized using secondary antibodies conjugated to either Alexa 488 or Alexa 546 (Invitrogen). Cultures were incubated with all secondary antibodies for 1 hour at room temperature 1:1000, washed thoroughly in 0.1 M PBS. Samples were then incubated for an additional hour with either Alexa Fluor-conjugated Phalloidin-546 (Invitrogen) to label filamentous actin and DAPI 1:1000 to label cell nuclei. Tissue samples were mounted using either Prolong Gold antifade reagent (Invitrogen). 3D image stacks of mounted samples were captured using a Leica SP5 confocal microscope with an HCX PL APO 63×/1.3 GLYC CORR CS (21 °C) objective.

**EdU staining**

Control or 2-DOG-treated cultures were incubated for 48 hours in 10 μM 5-ethyl-2'-deoxyuridine (EdU) from embryonic day 6 (E6) to embryonic day 8 (E8). Cultures were subsequently fixed for 15 minutes in 4% PFA at room temperature and then washed in 0.1M PBS. Explants were then processed for EdU staining following the Click-iT® EdU 488 protocol (Thermo Fischer Scientific).

**Image analysis**

Analysis of z-stacks from IHC stains as well as 2-NBDG and TMRM live imaging experiments was carried out using the Fiji distribution of imageJ. For each sample, a z-plane 2 μm beneath the surface of the epithelium was chosen for further analysis. For each of these selected z-planes, a 100 μm x 100 μm region of interest (ROI) was chosen containing intact tissue in which all HCs were optimally orientated. Mean fluorescence intensity of the tissue was measured for ROIs at E7, E9 and E10 timepoints. At E14 and E16, HCs were manually segmented. HC labels were dilated by 3 μm, which provided selections which included both hair cells and their surrounding SCs. By subtracting the hair cell segmentation from the dilated label, we were thus able to measure the fluorescence intensity of whole HCs separately from their surrounding support cells in the 2-NBDG and LDHA data. A similar approach was adopted when measuring TMRM and IDH3A fluorescence intensity at E14 and E16. However, we noticed that signal was concentrated around the HC periphery. In order to ensure that the fluorescence intensity best reflected only the mitochondria and was not reduced by the low fluorescence from the centre of each HC, we measured mean fluorescence intensity only up to 2 μm from the cell membrane. Likewise, for TMRM and IDH3A data at E7 and E9, mitochondria were segmented using Fiji’s auto-local thresholding (Niblack) prior to intensity measurements, to avoid a biased estimate of fluorescence intensity due to empty space surrounding each mitochondrion.

**Analysis of hair cell morphology**

Data were analysed offline using image J software. Hair cell luminal surface area and cell size were used as indices for HC morphology along the tonotopic axis. To determine the hair cell density, the luminal surfaces of hair cells and cell size, cultures were labelled with phalloidin and DAPI. Then, the number of hair cells in 50 μm x 50 μm regions of interest (2,500 μm² total area) located in the proximal and distal BP regions were determined. Proximal and distal regions were determined based a
calculation of the entire length of the BP or explant. In addition, counting ROIs were placed in the mid-region of the BP along the neural to abneural axis to avoid any confounding measurements due to radial differences between tall and short hair cells. For each sample, hair cells were counted in four separate ROIs for each position along the BP. Luminal surface areas were determined by measuring the circumference of individual hair cells at the level of the cuticular plate.

In situ hybridisation
Inner ear tissue was dissected and fixed in 4% PFA overnight at 4 °C. Tissue was subsequently washed three times for 30 min in 0.1 M PBS and subsequently dehydrated in methanol (25–100%). Tissue was stored at −20 °C until use. Immediately before the in situ protocol, tissue was rehydrated using a reverse methanol gradient (100–25%). Complimentary digoxigenin-labelled RNA probes for Bmp7 were kindly provided by Doris Wu (NIDCD, NIH). Chd-l1 was synthesised as described previously 18. All in situ hybridization reactions were performed as described previously.

Analysis of single cell RNA-seq data sets
Single cell sequencing data was obtained from the study under accession number GSE137299 42. The code to process the data was previously shared by the corresponding authors of the above referenced study (https://github.com/kelleylab/cochlearSEscrnaseq). For the purposes of the current analysis, hair cells were extracted from the above dataset using expression of Pou4f3 and lack of Sox2 as a metric. This was done for all investigated time points. To identify supporting cells, we used expression of Sox2 as a metric. The resulting cells were integrated as described in the results section. Briefly, 2000 variable features were identified per type of cell, per time point, and these were used as anchors for integrating the datasets. Gene expression values were then scaled, normalised, and following linear dimensionality reduction, used for cell clustering to project the cells onto a Uniform Manifold Approximation and Projection for Dimension Reduction (UMAP) plot. Genes of interest were then visualised using Dot Plots across the different time points.

Acknowledgements
The authors wish to thank Matthew Kelley, Dan Jagger, Jeremy Green, Michael Duchen and Gyorgy Szabadkai and Jonathan Gale for providing comments and discussion on earlier versions of the manuscript. This project was supported by funds from the King’s Prize Fellowship (King’s College London) (ZFM) and the Biotechnology and Biological Sciences Research Council (BBSRC) grant BB/V006371/1 (ZFM).

Author contributions
ZFM conceptualised the study and experimental design.
ZFM, TSB, JO, MA developed and executed the methodology.
ZFM, JO, VY analysed and interpreted the data.
ZFM, TSB, JO, VY wrote and edited the manuscript, which was reviewed by all contributing authors.
ZFM is the guarantor of this study, with responsibility for integrity and accuracy of the data.
References

1. Gordon-Salent, S. Hearing loss and aging: new research findings and clinical implications. J Rehabil Res Dev 42, 9-24, doi:10.1682/jrdd.2005.01.0006 (2005).

2. Fettiplace, R. & Nam, J. H. Tonotopy in calcium homeostasis and vulnerability of cochlear hair cells. Hear Res 376, 11-21, doi:10.1016/j.heares.2018.11.002 (2019).

3. Wu, F., Xiong, H. & Sha, S. Noise-induced loss of sensory hair cells is mediated by ROS/AMPKalpha pathway. Redox Biol 29, 101406, doi:10.1016/j.redox.2019.101406 (2020).

4. Forge, A. & Richardson, G. Freeze fracture analysis of apical membranes in cochlear cultures: differences between basal and apical-coil outer hair cells and effects of neomycin. J Neurocytol 22, 854-867, doi:10.1007/BF01186357 (1993).

5. Ito, K. & Ito, K. Metabolism and the Control of Cell Fate Decisions and Stem Cell Renewal. Annu Rev Cell Dev Biol 32, 399-409, doi:10.1146/annurev-cellbio-111315-125134 (2016).

6. Bhattacharya, D., Azambuja, A. P. & Simoes-Costa, M. Metabolic Reprogramming Promotes Neural Crest Migration via Yap/Tead Signaling. Dev Cell 53, 199-211 e196, doi:10.1016/j.devcel.2020.03.005 (2020).

7. Kantarci, H., Gou, Y. & Riley, B. B. The Warburg Effect and lactate signaling augment Fgf-MAPK to promote sensory-neural development in the otic vesicle. Elife 9, doi:10.7554/eLife.56301 (2020).

8. Chi, F., Sharpley, M. S., Nagaraj, R., Roy, S. S. & Banerjee, U. Glycolysis-Independent Glucose Metabolism Distinguishes TE from ICM Fate during Mammalian Embryogenesis. Dev Cell 53, 9-26 e24, doi:10.1016/j.devcel.2020.02.015 (2020).

9. Ogimona, M. et al. A Gradient of Glycolytic Activity Coordinates FGF and Wnt Signaling during Elongation of the Body Axis in Amniote Embryos. Dev Cell 40, 342-353 e310, doi:10.1016/j.devcel.2017.02.001 (2017).

10. Ogimona, M. et al. Intracellular pH controls WNT downstream of glycolysis in amniote embryos. Nature 584, 98-101, doi:10.1038/s41586-020-2428-0 (2020).

11. Bulusu, V. et al. Spatiotemporal Analysis of a Glycolytic Activity Gradient Linked to Mouse Embryo Mesoderm Development. Dev Cell 40, 331-341 e334, doi:10.1016/j.devcel.2017.01.015 (2017).

12. Blacker, T. S. et al. Separating NADH and NADPH fluorescence in live cells and tissues using FLIM. Nat Commun 5, 3936, doi:10.1038/ncomms4936 (2014).

13. Majumder, P., Blacker, T. S., Nolan, L. S., Duchen, M. R. & Gale, J. E. Multiphoton NAD(P)H FLIM reveals metabolic changes in individual cell types of the intact cochlea upon sensorineural hearing loss. Sci Rep 9, 18907, doi:10.1038/s41598-019-55329-x (2019).

14. Blacker, T., Marsh, RJ., Duchen, MR., & Bain, AJ. Activated barrier crossing dynamics in the non-radiative decay of NADH and NADPH. . Chem. Phys. 422, 184-194 (2013).

15. Blacker, T. S. & Duchen, M. R. Investigating mitochondrial redox state using NADH and NADPH autofluorescence. Free Radic Biol Med 100, 53-65, doi:10.1016/j.freeradbiomed.2016.08.010 (2016).

16. Tilney, L. G., Tilney, M. S. & DeRosier, D. J. Actin filaments, stereocilia, and hair cells: how cells count and measure. Annu Rev Cell Dev Biol 8, 257-274, doi:10.1146/annurev.cb.08.110192.001353 (1992).

17. Goodyear, R. & Richardson, G. Pattern formation in the basilar papilla: evidence for cell rearrangement. J Neurosci 17, 6289-6301 (1997).

18. Mann, Z. F. et al. A gradient of Bmp7 specifies the tonotopic axis in the developing inner ear. Nat Commun 5, 3839, doi:10.1038/ncomms4839 (2014).

19. Skala, M. C. et al. In vivo multiphoton microscopy of NADH and FAD redox states, fluorescence lifetimes, and cellular morphology in precancerous epithelia. Proc Natl Acad Sci U S A 104, 19494-19499, doi:10.1073/pnas.0708425104 (2007).
1113 20 Yu, Q. & Heikal, A. A. Two-photon autofluorescence dynamics imaging reveals sensitivity of intracellular NADH concentration and conformation to cell physiology at the single-cell level. *J Photochem Photobiol B* **95**, 46-57, doi:10.1016/j.jphotobiol.2008.12.010 (2009).

1115 21 Gafni, A. & Brand, L. Fluorescence decay studies of reduced nicotinamide adenine dinucleotide in solution and bound to liver alcohol dehydrogenase. *Biochemistry* **15**, 3165-3171, doi:10.1021/bi00660a001 (1976).

1119 22 Sanchez, T., Zhang, M., Needleman, D. & Seli, E. Metabolic imaging via fluorescence lifetime imaging microscopy for egg and embryo assessment. *Fertil Steril* **111**, 212-218, doi:10.1016/j.fertnstert.2018.12.014 (2019).

1122 23 Bradshaw, P. C. Cytoplasmic and Mitochondrial NADPH-Coupled Redox Systems in the Regulation of Aging. *Nutrients* **11**, doi:10.3937/nutrients.2019.20150504 (2019).

1124 24 Ge, T. *et al.* The Role of the Pentose Phosphate Pathway in Diabetes and Cancer. *Front Endocrinol (Lausanne)* **11**, 365, doi:10.3389/fendo.2020.00365 (2020).

1126 25 Hitsosugi, T. & Chen, J. Post-translational modifications and the Warburg effect. *Oncogene* **33**, 4279-4285, doi:10.1038/onc.2013.406 (2014).

1128 26 Fritz, P. J. Rabbit muscle lactate dehydrogenase 5; a regulatory enzyme. *Science* **150**, 364-366, doi:10.1126/science.150.3694.364 (1965).

1130 27 Liu, J. *et al.* Aberrant FGFR Tyrosine Kinase Signaling Enhances the Warburg Effect by Reprogramming LDH Isoform Expression and Activity in Prostate Cancer. *Cancer Res* **78**, 4459-4470, doi:10.1158/0008-5472.CAN-17-3226 (2018).

1133 28 Zhang, D. *et al.* Metabolic reprogramming of cancer-associated fibroblasts by IDH3alpha downregulation. *Cell Rep* **10**, 1335-1348, doi:10.1016/j.celrep.2015.02.006 (2015).

1135 29 Ugur, B. *et al.* The Krebs Cycle Enzyme Isocitrate Dehydrogenase 3A Couples Mitochondrial Metabolism to Synaptic Transmission. *Cell Rep* **21**, 3794-3806, doi:10.1016/j.celrep.2017.12.005 (2017).

1138 30 Yamada, K., Saito, M., Matsuoka, H. & Inagaki, N. A real-time method of imaging glucose uptake in single, living mammalian cells. *Nat Protoc* **2**, 753-762, doi:10.1038/nprot.2007.76 (2007).

1141 31 Katayama, A. & Corwin, J. T. Cell production in the chicken cochlea. *J Comp Neurol* **281**, 129-135, doi:10.1002/cne.902810110 (1989).

1143 32 Barban, S. & Schulze, H. O. The effects of 2-deoxyglucose on the growth and metabolism of cultured human cells. *J Biol Chem* **236**, 1887-1890 (1961).

1145 33 Pascale, R. M., Peitta, G., Simile, M. M. & Feo, F. Alterations of Methionine Metabolism as Potential Targets for the Prevention and Therapy of Hepatocellular Carcinoma. *Medicina (Kaunas)* **55**, doi:10.3390/medicina55060296 (2019).

1148 34 Arnold, P. K. *et al.* A non-canonical tricarboxylic acid cycle underlies cellular identity. *Nature* **603**, 477-481, doi:10.1038/s41586-022-04475-w (2022).

1150 35 Zhong, Y. *et al.* Application of mitochondrial pyruvate carrier blocker UK5099 creates metabolic reprogram and greater stem-like properties in LnCap prostate cancer cells in vitro. *Oncotarget* **6**, 37758-37769, doi:10.18632/oncotarget.5386 (2015).

1152 36 Towers, M., Wolpert, L. & Tickle, C. Gradients of signalling in the developing limb. *Curr Opin Cell Biol* **24**, 181-187, doi:10.1016/j.cceb.2011.11.005 (2012).

1155 37 Averbukh, I., Ben-Zvi, D., Mishra, S. & Barkai, N. Scaling morphogen gradients during tissue growth by a cell division rule. *Development* **141**, 2150-2156, doi:10.1242/dev.107011 (2014).

1158 38 Zhao, J. *et al.* Low-dose 2-deoxyglucose and metformin synergically inhibit proliferation of human polycystic kidney cells by modulating glucose metabolism. *Cell Death Discov* **5**, 76, doi:10.1038/s41422-019-0156-8 (2019).

1160 39 Franco, B. & Malgrange, B. Concise Review: Regeneration in Mammalian Cochlea Hair Cells: Help from Supporting Cells Transdifferentiation. *Stem Cells* **35**, 551-556, doi:10.1002/stem.2554 (2017).
The cell cycle creates homeostasis and flexibility of plant cell size. 

Koehler, K. R., Mikosz, A. M., Molosh, A. I., Patel, D. & Hashino, E. Generation of inner ear sensory epithelia from pluripotent stem cells in 3D culture. *Nature** 500, 217-221, doi:10.1038/nature12298 (2013).

Cliff, T. S. & Dalton, S. Metabolic switching and cell fate decisions: implications for pluripotency, reprogramming and development. *Curr Opin Genet Dev** 46, 44-49, doi:10.1016/j.gde.2017.06.008 (2017).

Kolla, L. et al. Characterization of the development of the mouse cochlear epithelium at the single cell level. *Nat Commun** 11, 2389, doi:10.1038/s41467-020-16113-y (2020).

Driver, E. C. & Kelley, M. W. Development of the cochlea. *Development** 147, doi:10.1242/dev.162263 (2020).

Hume, C. R., Bratt, D. L. & Oesterle, E. C. Expression of LHX3 and SOX2 during mouse inner ear development. *Gene Expr Patterns** 7, 798-807, doi:10.1016/j.modgep.2007.05.002 (2007).

Hao, Y. et al. Integrated analysis of multimodal single-cell data. *Cell** 184, 3573-3587 e3529, doi:10.1016/j.cell.2021.04.048 (2021).

Butler, A., Hoffman, P., Smibert, P., Papalexi, E. & Satija, R. Integrating single-cell transcriptomic data across different conditions, technologies, and species. *Nat Biotechnol** 36, 411-420, doi:10.1038/nbt.4096 (2018).

Ju, H. Q., Lin, J. F., Tian, T., Xie, D. & Xu, R. H. NADPH homeostasis in cancer: functions, mechanisms and therapeutic implications. *Signal Transduct Target Ther** 5, 231, doi:10.1038/s41392-020-00326-0 (2020).

Pelley, J. W. Elsevier's Integrated Review Biochemistry (Second Edition). 75-79, doi: https://doi.org/10.1016/B978-0-323-07446-9.00009-X (2012).

Shu, Y. et al. Renewed proliferation in adult mouse cochlea and regeneration of hair cells. *Nat Commun** 10, 5530, doi:10.1038/s41467-019-13157-7 (2019).

Taylor, R. R. et al. Regenerating hair cells in vestibular sensory epithelia from humans. *Elife** 7, doi:10.7554/eLife.34817 (2018).

Shibata, S. B. et al. Gene therapy for hair cell regeneration: Review and new data. *Hear Res** 394, 107981, doi:10.1016/j.heares.2020.107981 (2020).

Tao, L. et al. Enhancer decomposition imposes an epigenetic barrier to sensory hair cell regeneration. *Dev Cell** 56, 2471-2485 e2475, doi:10.1016/j.devcel.2021.07.003 (2021).

Yang, H. et al. SIRT3-dependent GOT2 acetylation status affects the malate-aspartate NADH shuttle activity and pancreatic tumor growth. *EMBO J** 34, 1110-1125, doi:10.15252/embj.2015109141 (2015).

Dong, G. et al. PKM2 and cancer: The function of PKM2 beyond glycolysis. *Oncol Lett** 11, 1980-1986, doi:10.3892/ol.2016.4168 (2016).

Kotowski, K. et al. Role of PFKFB3 and PFKFB4 in Cancer: Genetic Basis, Impact on Disease Development/Progression, and Potential as Therapeutic Targets. *Cancers (Basel)** 13, doi:10.3390/cancers13040909 (2021).

Yi, M. et al. 6-Phosphofructo-2-kinase/fructose-2,6-biphosphatase 3 and 4: A pair of valves for fine-tuning of glucose metabolism in human cancer. *Mol Metab** 20, 1-13, doi:10.1016/j.molmet.2018.11.013 (2019).

Vander Heiden, M. G., Cantley, L. C. & Thompson, C. B. Understanding the Warburg effect: the metabolic requirements of cell proliferation. *Science** 324, 1029-1033, doi:10.1126/science.1160809 (2009).

Vizan, P. et al. Modulation of pentose phosphate pathway during cell cycle progression in human colon adenocarcinoma cell line HT29. *Int J Cancer** 124, 2789-2796, doi:10.1002/ijc.24262 (2009).

A, R. J. et al. Cell-size dependent progression of the cell cycle creates homeostasis and flexibility of plant cell size. *Nat Commun** 8, 15060, doi:10.1038/ncomms15060 (2017).
Kaplon, J., van Dam, L. & Peeper, D. Two-way communication between the metabolic and cell cycle machineries: the molecular basis. *Cell Cycle* **14**, 2022-2032, doi:10.1080/15384101.2015.1044172 (2015).

Dessaud, E., McMahon, A. P. & Briscoe, J. Pattern formation in the vertebrate neural tube: a sonic hedgehog morphogen-regulated transcriptional network. *Development* **135**, 2489-2503, doi:10.1242/dev.009324 (2008).

Sagner, A. & Briscoe, J. Establishing neuronal diversity in the spinal cord: a time and a place. *Development* **146**, doi:10.1242/dev.009324 (2019).

Son, E. J. *et al.* Conserved role of Sonic Hedgehog in tonotopic organization of the avian basilar papilla and mammalian cochlea. *Proc Natl Acad Sci U S A* **112**, 3746-3751, doi:10.1073/pnas.1417856112 (2015).

Spannl, S. *et al.* Glycolysis regulates Hedgehog signalling via the plasma membrane potential. *EMBO J* **40**, e107925, doi:10.1525/embj.2021107925 (2021).

Gleich, O., Dooling, R. J. & Manley, G. A. Audiogram, body mass, and basilar papilla length: correlations in birds and predictions for extinct archosaurs. *Naturwissenschaften* **92**, 595-598, doi:10.1007/s00114-005-0050-5 (2005).

Belanger, M., Allaman, I. & Magistretti, P. J. Brain energy metabolism: focus on astrocyte-neuron metabolic cooperation. *Cell Metab* **14**, 724-738, doi:10.1016/j.cmet.2011.08.016 (2011).

Majumder, P., Duchen, M. R. & Gale, J. E. Cellular glutathione content in the organ of Corti and its role during ototoxicity. *Front Cell Neurosci* **9**, 143, doi:10.3389/fncel.2015.00143 (2015).

Fetoni, A. R. *et al.* Cx26 partial loss causes accelerated presbycusis by redox imbalance and dysregulation of Nfr2 pathway. *Redox Biol* **19**, 301-317, doi:10.1016/j.redox.2018.08.002 (2018).

Driver, E. C., Sillers, L., Coate, T. M., Rose, M. F. & Kelley, M. W. The Atoh1-lineage gives rise to hair cells and supporting cells within the mammalian cochlea. *Dev Biol* **376**, 86-98, doi:10.1016/j.ydbio.2013.01.005 (2013).

Jacques, B. E. *et al.* The role of Wnt/beta-catenin signaling in proliferation and regeneration of the developing basilar papilla and lateral line. *Dev Neurobiol* **74**, 438-456, doi:10.1002/dneu.22134 (2014).