A collection of enhancer trap insertional mutants for functional genomics in tomato

Fernando Pérez-Martín¹⁺, Fernando J. Yuste-Lisbona¹⁺, Benito Pineda², María Pilar Angarita-Díaz², Begoña García-Sogo², Teresa Antón², Sibilla Sánchez², Estela Giménez¹, Alejandro Atarés², Antonia Fernández-Lozano¹, Ana Ortíz-Atienza¹, Manuel García-Alcázar¹, Laura Castañeda¹, Rocío Fonseca¹, Carmen Capel¹, Geraldine Goergen², Jorge Sánchez², Jorge L. Quispe¹, Juan Capel¹, Trinidad Angosto¹, Vicente Moreno² and Rafael Lozano¹,*

¹ Centro de Investigación en Biotecnología Agroalimentaria (BITAL). Universidad de Almería, 04120 Almería, Spain.
² Instituto de Biología Molecular y Celular de Plantas (UPV-CSIC), Universidad Politécnica de Valencia. 46022 Valencia, Spain.
⁺ These authors contributed equally to this work.
* Corresponding author: rlozano@ual.es

Prof. Rafael Lozano
Dept. Biología y Geología
Universidad de Almería
04120 Almería, Spain
Tel. +34 950 01 5111
Figure S1. Schematic representation of the T-DNA insertional mutagenesis programme described in this work. (a) Development of the enhancer trap collection using *Agrobacterium*-mediated transformation protocol with the binary vector pD991. (b) Phenotypic and GUS histochemical characterization of enhancer trap lines. (c) Molecular characterization of T-DNA integration sites.
Figure S2. Graphical representation of the distribution of T-DNA insertions (orange arrows) on tomato chromosomes (Ch). Black ovals on the chromosomes indicate the centromere and horizontal lines represent the size in megabases (Mb). Green plots represent the percentage of heterochromatin (% nucleotides per 500kb) and blue plots display the percentage of euchromatin (% nucleotides per 500kb).
Figure S3. Complementation test of 1381ETMM and lyrate mutations. F1 progeny obtained from a cross between wild-type heterozygous plants, one bearing the 1381ETMM mutation (female parent) and the other carrying the lyrate mutation (lyr2, accession number LA2923, male parent) showed the expected 3:1 segregation (18 WT : 8 mut; $\chi^2 = 0.50, P = 0.46$) of wild-type (WT) and mutant phenotypes. Mutant F1 plants were affected in the development of leaves (a), flowers (b) and fruits (c). Scale bar = 5 cm in (a); and 1 cm in (b) and (c).
Figure S4. Phenotypic characterization of RNA interference (RNAi) lines for the *Solyc11g011960*, which was the gene tagged by the T-DNA insertion in the 2477ETMM line. Leaves of the T1 RNAi - 2477ETMM plants displayed evident necrosis symptoms and a reduction of plant growth either under *in vitro* (a) or greenhouse (b) conditions, similar to those showed by the 2477ETMM insertional mutant. Scale bar = 1 cm in (a); and 10 cm in (b).
Table S1. Transformation efficiency in two tomato cultivars.

Cultivar	Inoculated explants	Transgenic plants \((2n + 4n)\)	Transgenic plants \((2n)\)	Ratio \(2N : 4N\)	Transf. frequency\(^a\)	% transgenic plants \((2n)\)
P73	4200	1816	1021	1 : 0.78	43.2%	56.2%
Moneymaker	18500	6026	4539	1 : 0.33	32.6%	75.3%
Total	22700	7842	5560	1 : 0.41	34.6%	70.9%

\(^a\)Transformation frequency was estimated as the number of independent transgenic events divided by the total number of inoculated leaf explants, then multiplied by 100.
Table S2. Summary of reporter GUS expression.

Sample	Number of lines showing GUS expression in \(^a\)	Number of lines showing GUS expression restricted to \(^b\)
Vegetative structures		
Root	16	4
Stem	141	23
Rachis	117	4
Petiole	151	4
Leaflet	164	14
Flowers		
Sepal	56	1
Petal	48	3
Stamen	359	219
Pistil	158	24
Stigma	38	4
Style	43	9
Ovary	56	7
Ovule	25	2
Immature fruits		
Pericarp	227	78
Placenta	103	13
Mucilage	49	6
Embryo	199	92

\(^a\)Number of lines showing GUS expression in the evaluated tissue.

\(^b\)Number of lines displaying GUS staining restricted to the evaluated tissue.
Table S3. Primer sequences used for anchor PCR, genotyping and qRT-PCR analyses.

A. Primers used for anchor PCR analysis

Primer name	Primer sequence (5’-3’)
Ad1	CTAATACGACTCACTATAGGC
Ad2	CTATAGGGCTCGAGCGGC
Ad3	AGCGGCGGGGAGGT
ARB-1	ACAGTTTTTCGCGATCCAGAC
ARB-2	GGTCTTGCAGAGATAGTGG
ARB-3	CTGGCGTAATAGCGAAGAGG
ALB-1	TTGGCGTGTCAGCTATCTA
ALB-2	ATCGGTCgCTAATGCAAAAGG
ALB-3	ATAATAACCGCTGCGACATCTAC

B. Primers used for genotyping analysis

Primer name	Primer sequence (5’-3’)
Gt5-F	AAGGAAGCTAGGAATCAACAAGA
Gt5-R	ATTTCTCGGTGAAGGGGTTC
Gt6-F	TGCTCAATGAGTGTCGAAA
Gt6-R	TTGAATATATGGTCCCTGAA
Gt11-F	GAAGTGCGGGCAAGTGCTTTCA
Gt11-R	GAGGCGCGGGATCTATCTTTCC

C. Primers used for qRT-PCR assays

Primer name	Primer sequence (5’-3’)
1381_Fz	CATCCCCAACATGCTATTCTT
1381_Rz	ATGCAGTGAAACCCCTCCATC
2477_Fz	ATCCCGCGAAACGAAAGAGAG
2477_Rz	GTGCATCCCATTGTTGTTC
Ubiquitine3_Fz	CACACTTACCTTGCTTGCTGT
Ubiquitine3_Rz	TAGTCTTTCCGGTGAGAGTCTTTCA