DNS based In-Browser Cryptojacking Detection

Rohit Kumar Sachan*, Rachit Agarwal†, Sandeep Kumar Shukla+
*CSI Hub, IIT Kanpur, Kanpur, India
E-mail: sachan.rohit100@gmail.com
†CSE, IIT Kanpur, Kanpur, India
E-mail: rachitag@cse.iitk.ac.in, sandeeps@cse.iitk.ac.in

Abstract—The metadata aspect of Domain Names (DNs) enables us to perform a behavioral study of DNs and detect if a DN is involved in in-browser cryptojacking. Thus, we are motivated to study different temporal and behavioral aspects of DNs involved in cryptojacking. We use temporal features such as query frequency and query burst along with graph-based features such as degree and diameter, and non-temporal features such as the string-based to detect if a DN is suspect to be involved in the in-browser cryptojacking. Then, we use them to train the Machine Learning (ML) algorithms over different temporal granularities such as 2 hours datasets and complete dataset. Our results show DecisionTrees classifier performs the best with 59.5% Recall on cryptojacked DN, while for unsupervised learning, K-Means with K=2 perform the best. Similarity analysis of the features reveals a minimal divergence between the cryptojacking DNs and other already known malicious DNs. It also reveals the need for improvements in the feature set of state-of-the-art methods to improve their accuracy in detecting in-browser cryptojacking. As added analysis, our signature-based analysis identifies that none-of-the Indian Government websites were involved in cryptojacking during October-December 2021. However, based on the resource utilization, we identify 10 DNs with different properties than others.

Index Terms—Blockchain, Cryptojacking, Domain Name, Security, Machine-Learning

I. INTRODUCTION

Cryptojacking is a distributed mining approach in which cyber-criminals perform cryptocurrency mining activities illegally over the Internet by infecting a user’s device. Here, Crypto-miners illegally control the user’s device computational resources for cryptocurrency mining purposes merely by (a) installing malware that performs mining activities or (b) when a user visits some URL/website, till the time user is active on the URL, in the background execute mining scripts on the user devices. Such techniques facilitate the miners to get financial benefits without compromising their computational resources, cost, and sharing of the mining rewards with the compromised user. Ameliorated with sanctions of a state on the mining processes, environmental concerns [1], and the adoption of cryptocurrencies, cryptojacking is increasing at an alarming pace and becoming a concern for cyber security experts [2], [3]. To limit cryptojacking, some security companies such as Norton have started to provide mining pool services to their users officially.

Besides cryptojacking malware, one of the most common and easy ways to perform cryptojacking is via in-browser cryptojacking. Here, cyber-criminals use JavaScript (JS) and WebAssembly (WASM) to perform cryptojacking. Such a type of cryptojacking is easy to implement but hard to detect. Now defunct, one of the most popular mining scripts was developed by CoinHive [4]. Many website owners (especially those involved in gaming and multimedia content) use such mining scripts on their websites for alternate revenue [5]. In [6], the authors investigated if the discontinuation of CoinHive impacted cryptojacking. Using CMTracker [7], they concluded that attackers evolved and introduced new mining scripts. Thus, it does not impact cryptojacking.

In-browser cryptojacking detection techniques mainly crawl the source code of the websites to extract explicit keywords or signatures [8], [9]. Further, some techniques analyse (a) computational resource utilization (CPU, GPU, memory, disk) [8], [10], (b) scripting code [8], [11], (c) op-code [12], [13], (d) trace network packets [14], [15], and (e) hash function [7], [16] of mining script. On the contrary, for evasion, cryptojackers now use different techniques such as CPU limiting, code obfuscation, payload hiding, and changing the used script frequently to evade naive detection approaches.

Websites also have a unique signature on their metadata. Such metadata includes Domain Name (DN) and Domain Name System (DNS) records (including IP address, NS address, location, and others). Thus, can such metadata (DN and DNS records) help detect websites performing/involved in in-browser cryptojacking? In one of the state-of-the-art approaches [17] (for details, refer to Section III), the authors presented an approach to detect suspicious domains using temporal and non-temporal properties of DNS records in the blockchain ecosystem. They analyzed the DNS traffic records and identified temporal (i.e., time-series based) and non-temporal (i.e., non-time series based) properties to understand the actual behavior of DNs on two temporal granularities (i.e., 2H (sub-datasets of 2 hour duration) and ALL (complete dataset)). As in-browser cryptojacking is one type of malicious/illicit activity, it motivates us to check if the approaches such as [17] can be used to detect in-browser cryptojacking. Here, we check the impact of the metadata information on the detection of cryptojacking websites in two ways on our highly unbalanced dataset, (i) we study and analyze the similarity between the features of in-browser cryptojacking DNs and other malicious DNs and (ii) we validate if existing state-of-the-art methods can detect the in-browser cryptojacking. We observe DecisionTrees classifier performs the best with 59.5% Recall among other supervised ML algorithms, and 228 DNs show high similarity with malicious DNs across different
Further, in the past Indian Government websites have witnessed in-browser cryptojacking [18]. Thus, apart from the above validations, we also perform an analysis of Indian Government websites from the cryptojacking perspective to know if any Indian Government website is under attack. This analysis includes signature crawling and resource utilization analysis (i.e., CPU, device, disk, and network) and whois record. Here, we perform K-Mean clustering (because of the unavailability of ground truth) using resource utilization features to identify the DNs with distinct resource utilization. Note that we understand that cryptojacking is dynamic (source code of websites may change over time), and Wayback Machine archives may provide old snapshots of source codes. Still, Wayback Machine does not log associated scripting codes, which is essential to us. Due to this unavailability of associated scripting codes and associated DNS for all Indian Government websites, we cannot use any state-of-the-art method such as [17] for the analysis. Our analysis reveals that none-of-the website contains a cryptojacking signature in their code. Most of the websites are clustered in one cluster based on our feature set (based on resource utilization, cf. Table II). Our analysis also identifies the distinct resource utilization by 10 Indian DNs, which should be investigated further. From this point forward, we refer to in-browser cryptojacking as cryptojacking interchangeably.

In short, our main contributions are:

- **Comparative study**: We present a comparative study of the various state-of-the-art techniques used to detect in-browser cryptojacking. Here, we compare these state-of-the-art techniques based on the features used, classifier/method, dataset with the size, reported performance, and limitations. We identify that no technique uses DNS records for the in-browser cryptojacking detection.

- **Similarity analysis between cryptojacking DNs and other malicious DNs**: Revealed the minimal divergence between temporal features of malicious DNs and cryptojacking DNs.

- **Effectiveness of the state-of-the-art methods such as [17]**: Towards identifying cryptojacked DNs: Our validations reveal the need for improvement in the feature set of the state-of-the-art methods such as [17] to improve their performance in detecting in-browser cryptojacking.

- **Analysis of Indian Government websites**: Reveals that none-of-the Indian Government websites were involved in cryptojacking during October-December 2021, and the distinct resource utilization by 10 Indian Government DNs.

This section presents the state-of-the-art works related to the detection of in-browser cryptojacking. In [24], the authors presented a survey of the cryptojacking malware detection techniques and an overview of two cryptojacking datasets and 45 significant cryptojacking attack instances. They classified the related techniques as static, dynamic, and hybrid approaches. A static technique uses signature search (or crawling) of known malware's signature in scripting code. It analyzes the script code, op-code (machine level binary code), and hash algorithm to detect cryptojacking. Static tools such as MinerRay [16] infer signatures of the hash function and use an intermediate representation (IR) of both JS, and WASM and inspect interactions between the client and cryptojacking module for detection. A static technique suffers from the obfuscated or unseen signatures problem and requires up-to-date signatures for detection.

Dynamic techniques analyze the computational resources (i.e., processor/CPU, memory, disk, power, and others) and network traffic. These techniques are robust against evasion techniques such as scripting code and throttling and can capture any behavioral changes [7]. In [20], the authors proposed a CPU usage metrics-based detector. In contrast, in [21], the authors proposed an approach-based on the host performance counter-based features (i.e., CPU, memory, network usage, and running processes within a host) and network flow-based features (i.e., inbound/outbound flows from port 80 and 443 as Stratum mining protocol utilizes them). Another dynamic approach-based tool called WebTestbench [19] uses system resources, energy consumption, network traffic, device temperature, and user experience. While other approaches such as [12] analyze the CPU instruction during the op-code execution, and [11] analyze the execution patterns of JS and WASM code and CPU utilization for detection. Similarly, Crypto-Aegis [22] analyzes the network traces generated by the node of Bitcoin, Monero, and ByteCoin under (i) no VPN, (ii) Nord VPN, and (iii) Express VPN, to identify the cryptomining activities (such as pool mining, solo mining, and full active node). Apart from the aforementioned dynamic techniques, MINOS [13] uses image-based classification and deep learning techniques to distinguish between benign and cryptojacked (i.e., those that have WASM script) op-code.

Hybrid approaches are more prominent than the static and the dynamic approaches. Among hybrid approaches, MineSweeper [8] uses signature crawling, WebSocket traffic analysis, CPU usage analysis, code analysis of WebAssembly script, and memory cache events during the execution. While CapJack [10] uses the CapsNet (Capsule Network) technology to measure the abnormal resource utilization. Similarly, approaches in [14] and [15] perform static analysis based on content-based, currency-based, and code-based, while dynamic analysis is based on CPU and battery consumption. A content-based analysis is used to find the nature of websites such as entertainment and sports; a currency-based analysis is used to find the type of cryptocurrencies being mined.
through in-browser cryptojacking. In contrast, the code-based analysis is based on the code complexity of the script. Here, the code analysis includes cyclomatic complexity, cyclomatic complexity density, Halstead complexity, line of code, and maintainability score. The approach’s results reveal 10-20 times higher CPU usage and ≈8 times more battery drainage by cryptojacking scripts. Further, in [9], the authors introduced a cryptojacking campaigns detector based on the crawling and NetFlow data traffic. They used WebAssembly, asm.js (a technique translating high-level code, like C and C++ to JavaScript), WebSockets, and Stratum Mining Protocol to detect cryptojacking.

These state-of-the-art approaches are summarized in Table I with the reported features, classifier/method, dataset used with the size, reported performance, and approach limitations. Our study identifies that none-of-the discussed approaches use DNS records/DNS-based techniques to detect in-browser cryptojacking.

III. METHODOLOGY

Our approach follows the standard ML pipeline steps, including data collection, data pre-processing, feature engineering, ML algorithm, validation, and is motivated by [17], which identifies illicit DNs using temporal (i.e., time-series based) and non-temporal features. The non-temporal features include the string-based and DNS query/response-based features. While the temporal features include the DNS query burst and DNS dynamic graph-based (such as degree and diameter) features. A burst is defined as an over-the-threshold value for a given feature. Consider a graph that links all IPs and NS addresses to the DN. A degree is thus defined as the number of edges (IPs and NS addresses) associated with a DN. Similarly, diameter is the largest shortest path of the graph component in which that DN exists. These temporal features are extracted using two temporal granularities: 2H (2 hours based data segments) and ALL (complete data). On these datasets, we then apply both supervised and unsupervised ML

Technique	Based On	Method	Datasets	Performance / Results	Limitation	
Static	[16]	Crawling	Alexa	1.2M	901 TLDs	Unable to handle obfuscation techniques and Memory overhead
[7]	Threshold-based	RF	VirusShare OpenDNS	853K	ACC=99.0%	Detects only hash modeled signatures
[12]	RF	Alexa BlackLists, Public/WWW, Coinhive, Crypto Loot, JS4M, CoinHave	1K	TPR=99.2%	Performance validated on limited data	
[19]	Hybrid dataset, Alexa, Dynamic	CNN	Alexas, TCL, SMO, MISVM, Random SubSpace Agglomerative	200K	TPR=98.7%	Address exclusively browser-based mining
[11]	CNN	Alexa	47K	TPR=93.07%	Performance validated on limited data	
[20]	RF	Self Generated	Alexa	1.2K	ACC=98.9%	Performance validated on limited data
[21]	RF	Alexas	1.8K	TPR=93.0%	Performance validated on limited data	
[8]	CNN	Alexa	1M	TPR=94.5%	Limited mining samples	
[14]	PCF SVM	Netlab360	5.7K	TPR=95.5%	Scalability issue, Code obfuscation and WASM are not considered	
[15]	CNN	Self Generated	Alexa, Majestic, Public/WWW, [23]	1837 TLDs	TPR=95.4%	Detect only CryptoNight miners, Do not support JS miners
[9]	CNN	Alexa, Majestic, Public/WWW, [23]	204 Campaigns	TPR=95.4%	Exclusive depends on vulnerabilities of CMS providers such as WordPress	

TABLE I: Summary of related studies

* Based on [S] Signature, [P] Processor / CPU, [M] Memory, [D] Disk, [N] Network Analysis, [C] Code Analysis, [O] Op-code, [H] Hashing Algorithm, [DNS] Domain Name System, [Others] Others, • Method: [RF] Random Forest, [CNN] Convolutional Neural Network, [TLC] Two-Level Classification, [FCF] Convolutional Fuzzy C-Means, [SMO] Multiple-Instance Support Vector Machine, [SVM] Sequential Minimal Optimization, [MISVM] Multiple-Instance Support Vector Machine, [TLC] Two-Level Classification, [FCF] Convolutional Fuzzy C-Means, [SMO] Multiple-Instance Support Vector Machine, [SVM] Sequential Minimal Optimization,
models to detect illicit DNs.

In the pre-processing step, we collect the data, label it (as benign, malicious, and cryptojacking) using publicly available sources, and segment it into different temporal granularities. Here, we extract all 48 temporal and non-temporal features (same as those in [17], due to space constraints, we do not list those features) and analyze the similarity (by comparing the probability distribution) between the temporal properties of the cryptojacking DNs and other malicious DNs. For the unsupervised ML, we first apply the reported unsupervised algorithm (as in [17]) to each 2H data set and identify the illicit DNs that have a >99.0% probability of being malicious (computed as a ratio of the number of times a DN behaves maliciously and the total number of times the DN occurs). Then we identify the number of cryptojacked DNs present in our suspicious list identified in the first step. For the supervised ML models, we apply the reported supervised ML model (DecisionTree Classifier in [17]) on ALL data granularity to identify cryptojacked DNs. We also identify the best performing ML model along with the hyperparameters by configuring AutoML tools such as TPOT [25] with 11 different supervised ML algorithms with multiple combinations of their hyperparameters. We use unsupervised learning on 2H temporal granularity datasets as behavioral changes are better captured here than in the All dataset. Applying unsupervised learning to All dataset will only provide one class to the DNs, while in the other case, for each dataset in 2H granularity, we will get a class for each DN. As these classes would be associated with time, behavioral changes are captured over time.

To analyze the Indian Government websites, we crawl the list of URLs present in [26]. We crawl the source code of the page behind the listed URL. Our crawler performs a signature search in the source code of the URL and all script codes associated with the URL. If a signature is found in the source code during crawling, we mark/label it as cryptojacked. Then, we perform resources monitoring (using the "iostat" Linux command) and capture the resource utilization for different URLs. Further, we use the PyShark wrapper to capture different measures from the network traces for each URL. Table II summarizes all list of resources we monitor. We do resource monitoring two times at an interval of 150 seconds and take the average of each measure we capture. We then analyze the collected data based on clustering and graph connectivity. We perform clustering to identify the DNs with distinct resource utilization and graph connectivity to analyze the association between the DNS records.

IV. VALIDATION AND RESULT ANALYSIS

We analyze the similarity between the cryptojacked DNs and malicious DNs and validate the effectiveness of the DN-based state-of-the-art such as [17] to detect the cryptojacking DNs. We use Python and supporting libraries such as Beautiful Soup, Selenium Webdriver, PyShark, tldextract, whois, and DNS Resolver to build our approach. Our methodology is tested on a Linux machine with 1 TB storage, 64 GB RAM, and an I7 Intel core 3.2GHz CPU.

A. Dataset

Our approach is validated on the Cisco Umbrella top 1 million dataset [23] for January 2020. Our month choice is due to the limited computing power available to us and to keep the data the same as [17]. It contains ≈335 million DNS queries. Of these, ≈1.77 million DNS queries are distinct, and 42002 DNS queries have the malicious tag (from [17]). For ground truth on cryptojacking DNs, we use CoinHive BlackList [27], CoinHive Domains [28], CoinHive Pixalate [29], Cryptocurrency Mining List [30], Cryptojacking Campaign List [31], KnownCryptoURL [32], MinerBlock List [33], NoCoin BlackList [34], Top Web Mining Sites [35], and the other websites such as [9]. We understand that some of these lists might be outdated, but we use them for the sake of completeness. There are 29777 unique cryptojacked DNS/TLDs (top-level domains) present in these lists. Only 1188 cryptojacked DNs are present in our dataset with corresponding 21743 DNS queries. Out of these 21743 DNS queries, 9681 DNS queries were unmarked previously and considered benign in [17].

We use [26] to get a list of 8669 Indian Government URLs as of 5th August 2021 for our cryptojacking analysis. Out of these DNs, only 155 DNs are available in our dataset. Due to this limitation, we could not analyze the Indian Government websites using the considered Umbrella dataset. Thus, we perform analysis based on signature crawling, resource utilization, and associated DNS and whois records. We use a list of 66 cryptojacking signatures from studies such as [6], [8]–[10], [15] for signature crawling.

B. Similarity analysis between Cryptojacking DNs and Other Malicious DNs

We compare the distribution of temporal properties such as query frequency, query frequency burst, degree, and diameter associated with cryptojacked DNs and other malicious DNs.
for the similarity analysis. Here, we measure the behavioral similarity between the in-browser cryptojacked DNs (cDNs) and malicious DNs (mDNs) to decide whether a DN-based approach such as [17] can detect cryptojacking DNs. For this, we use ALL granularity data of the Cisco Umbrella dataset.

First, we study the distribution of the number of query frequency (#QFreq) and the maximum query frequency (maxQFreq) to analyze the similarity in query frequency. Figure 1a shows that the exponential distribution fits #QFreq for the mDN class with $x_{min}=1.0$ and $\lambda=0.0400$, while a positive log-normal distribution fits the cDN class with $x_{min}=1.0$, $\mu=1.7092$, and $\sigma=1.4067$. As the two distributions are different, #QFreq may not be a good feature when detecting cryptojacking DNs using [17]. Similarly, for the maxQFreq, Figure 1a shows that the exponential distribution fits for both classes with $x_{min}=1.0$ and $\lambda=\{0.0793, 0.0852\}$, respectively. The KL-Divergence (KLD) in the case of #QFreq is 0.0026, while in the case of maxQFreq is 0.0746. This analysis also indicates that the two classes have the same statistical property with small divergence and will not impact the performance of [17] when detecting cryptojacking DNs.

We next analyze the degree (cf. Figure 1c). Here, we compare the distributions of the number of times degree changes (#chDeg) and the maximum size of degree over time for each class of DNs. Figure 1c shows no valid fits for both classes out of exponential, positive log-normal, truncated-power-law, and power-law distributions for the #chDeg. Similarly, for the maxDeg, the KLD in the case of #chDeg is 0.5244, while in the case of maxDeg is 0.0746. This analysis also indicates that the two classes have the same statistical property with small divergence and will not impact the performance of [17] when detecting cryptojacking DNs.

We next analyze the query frequency burst (cf. Figure 1b). A query frequency burst is the frequency of a DNS query which is more than a predefined value (i.e., 80% of the maximum number of DNS queries of a DN during a time frame). We compare the distributions of the number of query bursts (#bursts) and the maximum size of query burst (maxBurst) for each mDN and cDN class. We observe that truncated-powerlaw best fits both classes and for both the features. For the #bursts, for both the classes, $x_{min}=1.0$, a cut-off parameters, $\beta=\frac{1}{\lambda}$ where $\lambda=\{0.0415, 0.0426\}$, and $\alpha=\{1.0, 1.3878\}$, respectively. Similarly, for the maxBurst, the KLD in the case of #bursts is 0.0746, while in the case of maxBurst is 0.0746. This analysis also indicates that the two classes have the same statistical property with small divergence and will not impact the performance of [17] when detecting cryptojacking DNs.
σ=0.9453, and exponential distribution for cDN class with $x_{min}=1.0$, and $\lambda=0.4683$. As the statistical properties are different here, maxDeg can hamper the performance of [17] when detecting cryptojacking DNs.

Next, we analyze the diameter for both classes (cf. Figure 1d). We study the distributions of the number of times diameter changes ($\#chDia$) and maximum diameter change (maxchDia). We observe the positive log-normal distribution fits for both classes of DNs with $x_{min}=1.0$, $\mu=\{0.1741, 0.0532\}$, and $\sigma=\{0.3773, 0.3986\}$ for the $\#chDia$, respectively. The KLD between the mDN and cDN classes is 0.05. We also observe that positive log-normal distribution fits the best both class with $x_{min}=1.0$, $\mu=\{1.0906, 0.9939\}$, and $\sigma=\{0.2856, 0.2499\}$ for the maxchDia, respectively. The KLD between the distributions of both classes is 0.1036. This small divergence between the classes means that diameter may not hamper the performance of [17] when detecting cryptojacking DNs.

From the above similarity analysis, we observe divergence in some features of the cDNs and mDNs. Thus, the state-of-the-art feature vector (used for detecting the malicious DNs, i.e., [17]) can detect cryptojacking DNs, but some improvements are needed, and new features should be included.

C. Effectiveness of a DN-based method [17]

To understand if there is an impact on the performance of state-of-the-art methods such as [17] in identifying cryptojacked DNs/web pages, we perform validations using reported unsupervised and supervised algorithms.

1) Validation of an unsupervised model of [17]: We apply K-Means (an unsupervised learning method) to each 2H data segment with different values of $K \in [7, 24]$. This range of K is the same as identified in [17]. The obtained results contain a series of labels for each granularity representing the number of times a particular DN showed malicious behavior. Among the 9681 cryptojacked DNs (those previously unmarked in the dataset), 9339 DNs show malicious behavior at least once. While only 228 DNs have the probability of being malicious >99.0%. This implies the 96.5% detection of cryptojacked DNs which shows malicious behavior at least once, and $\approx 2\%$ detection of cryptojacked DNs which have the probability of being malicious >99.0%. Now because we know the ground truth of these 228 DNs is cryptojacked, we can affirmatively say that the approach in [17] is effective and is able to detect cryptojacked DNS. As in this work, we do not propose any new feature, we do not quantify the effectiveness.

2) Validation of the supervised model of [17]: In our dataset, we have 9681 cryptojacked DNs with unmarked tags and 12062 cryptojacked DNs with malicious tags in the ALL data granularity. It means that the reported supervised ML model (DecisionTrees Classifier) in [17] is already trained with cryptojacked DNs. To validate the reported model for detecting the cryptojacked DNs, we perform an 80%-20% split of the dataset as well as the unmarked and cryptojacked DNs. The 80% data is used for training while remaining for testing. This resized dataset has 9681 cryptojacked DNs and 186205 unmarked DNs (a total of 195886 DNs). We apply the DecisionTrees Classifier with the same hyperparameters, i.e., criterion=gini, max_depth=10, min_samples_leaf=13, min_samples_split=12, splitter=best. Here, other hyperparameters have default values used by the Python scikit-learn library. It achieves 79.69% Balance-Accuracy. Here for cDN class precision is 97.0%, Recall is 59.5%, and F1-score is 74.0%. Here, a low Recall on the cDN class signifies the need for improvement in the model [17] for detecting cryptojacking DNs. These validations tests reveal that reported models in [17] are able to detect the DNs which are involved in cryptojacking but with a low Recall. Thus, next, we validate if there is any other supervised ML model that gives improved results?

D. Identification of Improved ML Model

To identify the supervised ML model that provides better results when identifying the cryptojacking DNs, we perform two tests using different data configurations (based on the distribution of cryptojacked DNs in the dataset). Here, we not only identify which supervised ML algorithm performs the best in our case but also report its hyperparameters. For this analysis, we use ALL data granularity. To perform such validation, we use the AutoML tool called TPOT. We configure TPOT to use 11 different supervised algorithms with custom hyperparameters. These supervised algorithms are GaussianNB, BernoulliNB, DecisionTree, RandomForest, ExtraTrees, K-NearestNeighbors, GradientBoosting, NeuralNetwork, SupportVectorMachines, LogisticRegression, and EnsembleBagging. TPOT reports the overall best-identified algorithm in terms of Balanced-Accuracy. We also report Precision, Recall, and F1-score for the cryptojacking class.

We use two data configurations include: (i) no cryptojacked DNs is present in the training dataset, and all cryptojacked DNs (i.e., 21743 DNs) are included in the testing dataset, and (ii) cryptojacked DNs are distributed in an 80-20 ratio between training and testing data. TPOT reports DecisionTree with different hyperparameters as the best classifier in both the test configurations. The results for both data configurations are listed in Table III, along with the respective hyperparameters. The hyperparameters that have default values used by Python scikit-learn are not reported here. Here, the results reveal a low Recall on the cDN class. This is not better than the already reported DecisionTree classifier in [17]. Thus, it certainly signifies the need for improvements in the feature set of [17] to better identify the cryptojacked DNs.

E. Analysis of Indian Government websites

Indian Government websites are one of the preferred targets of cryptojackers because these websites have high traffic and end-user trust [18]. In the past, two Government websites of Andhra Pradesh, a state in India, have witnessed in-browser cryptojacking/criptomining activities [18]. To identify the Indian Government websites that are compromised for cryptocurrency mining, we perform our analysis in three parts, (i) based on the signature crawling, (ii) based on resource utilization, i.e., CPU, Device, Disk, and Network, and (iii)
TABLE III: Reported results by TPOT

Cryptojacking DNs in Dataset	Classifier	Results in (%)			
Train	Test	BAcc	Pre	Rec	F1
100%	DT	67.56	86.00	35.64	50.00
80%	DT	72.92	85.00	44.45	58.00
total		1771626			

- **Train**: Training. **Test**: Testing. **DT**: DecisionTree. **BAcc**: Balance-Accuracy. **Pre**: Precision. **Rec**: Recall. **F1**: F1-score

 † criterion=gini, max_depth=10, min_samples_leaf=13, min_samples_split=13, splitter=best.

 ‡ criterion=entropy, max_depth=7, min_samples_leaf=18, min_samples_split=20, splitter=best.

 Based on the association between the DNS records of websites (i.e., DN, associated IP addresses, Name-Server, and Country).

With signature crawling, we identify the cryptojacking DNs based on the past reported signatures and mark them as suspicious for further analysis. The crawler opens each webpage associated with a DN using selenium webdriver, reads it, and searches for the existence of 66 cryptojacking signatures in its HTML code and associated script codes. Here, against each webpage, we record the matching signatures present on the webpage. We identify 47 webpages have monero keyword, and only 1 URL has a coin keyword. However, none-of-them are associated with cryptomining. All the monero keywords are associated with the font family, and the coin is linked with a widget. This analysis shows that none-of-the Indian webpages currently contain the cryptojacking signature in their code during the mentioned period.

Next, we analyze resource utilization for each webpage using iostat-c to measure the CPU utilization (cf. Figure 1e), iostat-d sda to measure the device utilization (cf. Figure 1f), and dstat-disk-net to measure the disk utilization statistics (cf. Figure 1g). We also use the PyShark wrapper to analyze live network packets (cf. Figure 1h). We set the PyShark timeout to 30 sec, the selenium webdriver timeout to 90 sec, and the time gap between two resource measuring points to 150 sec for resource and network analysis. We perform this analysis from November to December 2021 and record the 19 resource measures (cf. Table II). From Figure 1e, we infer that the truncated-powerlaw best fits cpu_jowait with $\alpha = 1.54$ and $\lambda = 0.118$ and the positive log-normal best fits for cpu_user, cpu_system, and cpu_idle with $\mu = [-5.08, -5.36, -14.24]$, $\sigma = [1.57, 1.53, 3.65]$, respectively. Here, x_{min} is 0.015 for all the four CPU measures. Similarly, from Figure 1f, we infer that the positive log-normal distribution fits sda_tps, sda_kb_reads, and sda_kb_wrt/s with $x_{min} = [0.01, 0.01, 0.02]$, $\alpha = [1.75, 1.47, 1.71]$ and $\lambda = [0.001, 0.0005, 0.06]$, respectively. Next, Figure 1g shows truncated-powerlaw best fits disk_read with $x_{min} = 1.0$, $\alpha = 2.20$ and $\lambda = 2.72$ and a positive log-normal distribution best fits disk_write with $x_{min} = 0.1$, $\mu = 0.19$, $\sigma = 0.54$. Similarly, Figure 1h shows truncated-powerlaw best fits pkt_oth with $x_{min} = 1.0$, $\alpha = 1.0$ and $\lambda = 0.006$ and the positive log-normal best fits for pkt_total, pkt_send, and pkt_rec with $x_{min} = 1.0$, $\mu = [2.82, 1.58, 1.37]$, $\sigma = [1.42, 1.26, 1.28]$, respectively.

Further, we apply the K-Means algorithm to the entire recorded dataset to cluster the DNs with $K \in [2, 15]$. Our choice (range on K) is based on the data size. We choose the best K based on the silhouette score. We check the silhouette score for different values of K and find $K = 2$ provides the best silhouette score of 0.975 (different silhouette scores obtained for different values of K are listed in Table IV). After exploring the clusters obtained for $K = 2$, we find that one cluster has 8624 DNs while the second cluster has only 10 DNs, indicating that these 10 DNs have different properties than the others and should be monitored. Here, $K = 2$ represents the two highly cohesive clusters based on the resource utilization features. Note that we do not use supervised ML algorithms such as DecisionTree for the analysis due to the unavailability of the ground truth of Indian Government websites.

After the signature crawling and resource utilization, we extract features for each DN using the whois and tldextraction. These features are: subdomain, registered_domain, creation_date, updated_date, age, last_updated_age, Country, A Record (IPv4 Address record), AAAA Record (IPv6 Address record), NS (Name Server), MX (Mail Exchanger), TXT (Text), CNAME (Canonical Name), DNAME (Delegation Name), SOA (Start of Authority). Next, we build a graph using IP and NS addresses. We identify 7 connected components in the graph, and 8658 out of 8669 webpages lie in the largest component, where all the DNs are hosted on National Informatics Center servers. We also find that 1839 DNs do not have the Country entry, and the remaining DNs have 21 unique countries. Out of these, DNs of 6728 webpages are hosted in India, DNs of 48 webpages are hosted in the USA, and DNs of 10 webpages are hosted in Estonia. We find one DN each is hosted in countries such as Iceland, Canada, United Kingdom, Singapore, Netherlands, Belize, China, Hong Kong, Hong Kong, Indonesia, Ukraine, Romania, Japan, Panama, Brazil, Belarus, France, and Switzerland.

V. CONCLUSION

Detection of in-browser cryptojacking is essential to safeguard users’ systems from illegal mining activities. Past approaches have used various techniques to detect in-browser cryptojacking, such as signature crawling and resource analysis. Besides these techniques, meta-information attached with a domain name also provides valuable inputs to detect cryptojacking. In this work, we validate a metadata-based technique [17] to detect the in-browser cryptojacking DNs. This technique uses metadata information of DNs and associated temporal and non-temporal properties for malicious DNs detection. We also perform a comparative study of various techniques that detect in-browser cryptojacking DNs.

Our analysis shows behavior similarity exists between the cryptojacking DNs and other suspicious DNs. At the same
time, there is a need for improvement in the feature set of [17] to improve the results of the approach. Our signature-based analysis also identifies that none-of-the Indian Government websites listed in [26] were involved in in-browser cryptojacking from October-December 2021. Our resource utilization analysis finds different resource utilization by 10 DNs. Such DNs require continuous and detailed behavior analysis before marking them as suspects. Finally, we conclude that we need to enhance the feature set of the metadata-based approach with resources and network analysis-based features.

In the future, we would like to improve the metadata-based approach and test it in a large dataset to detect in-browser cryptojacking. We would also like to develop temporal data of Indian Government websites, which will be helpful for the metadata-based approach in the future.

ACKNOWLEDGEMENT

This work is partially funded by the National Blockchain Project at IIT Kanpur, sponsored by the National Cyber Security Coordinator’s office of the Government of India, and partially by the C3i Hub funding from the Department of Science and Technology of the Government of India. We also thank Hugo L. J. Bijnans, for making the cryptojacking dataset available to us.

REFERENCES

[1] S. Tully, “Bitcoin mining is being banned in countries across the globe—and threatening the future of crypto,” 2022. Accessed: 14/02/2022.
[2] C. Cimpanu, “Browser-based cryptojacking sees sudden spike in activity in Q2 2020,” 2020. Accessed: 14/02/2022.
[3] CoinDesk, “The Rise of Illegal Crypto Mining Hijackers – and Big Tech’s Response,” 2022. Accessed: 24/03/2022.
[4] Coinhive, “Monero JavaScript Mining,” 2018. Link unavailable.
[5] B. Krebs, “Who and what is coinhive,” Website https://krebsonsecurity.com/2018/03/who-and-what-is-coinhive, 2018.
[6] S. Varlouglu, B. Gonen, M. Özer, and M. Bastug, “Is cryptojacking dead after coinhive shutdown?,” in 3rd International Conference on Information and Computer Technologies (ICICT), (San Jose, USA), pp. 385–389, IEEE, 05 2020.
[7] G. Hong, Z. Yang, S. Yang, et al., “How you get shot in the back: A systematic study about cryptojacking in the real world,” in SIGSAC Conference on Computer and Communications Security, pp. 1701–1713, ACM, 2018.
[8] R. K. Konoth, E. Vineti, V. Moonsamy, M. Lindorfer, C. Kruegel, H. Bos, and G. Vigna, “MineSweeper: An in-depth look into drive-by cryptocurrency mining and its defense,” in Proceedings of the 2018 ACM SIGSAC Conference on Computer and Communications Security, pp. 1714–1730, 2018.
[9] H. L. J. Bijnans, T. M. Booij, and C. Doerr, “Inadvertently making cyber criminals rich: A comprehensive study of cryptojacking campaigns at internet scale,” in 28th USENIX Security Symposium USENIX Security Symposium 19, pp. 1627–1644, 2019.
[10] R. Ning, C. Wang, C. Xin, J. Li, L. Zhu, and H. Wu, “CicapJack: Capture in-browser crypto-jacking by deep capsule network through behavioral analysis,” in IEEE INFOCOM 2019-IEEE Conference on Computer Communications, pp. 1873–1881, IEEE, 2019.
[11] E. Bursztein, I. Petrov, and L. Invernizzi, “Coinpolice: Detecting hidden cryptojacking attacks with neural networks,” arXiv preprint arXiv:2006.10661, 2020.
[12] D. Carlin, P. O’kane, S. Sezer, and J. Burgess, “Detecting cryptominining using dynamic analysis,” in 2018 16th Annual Conference on Privacy, Security and Trust (PST), pp. 1–6, IEEE, 2018.
[13] F. Naseem, A. Aris, L. Babun, E. Tekiner, and A. S. Uluagac, “Minos*: A lightweight real-time cryptojacking detection system,” in Network and Distributed Systems Security (NDSS) Symposium, pp. 21–25, 2021.
[14] M. Saad, A. Khormali, and A. Mohaisen, “End-to-end analysis of in-browser cryptojacking,” arXiv preprint arXiv:1809.02152, 2018.
[15] M. Saad, A. Khormali, and A. Mohaisen, “Dine and dash: Static, dynamic, and economic analysis of in-browser cryptojacking,” in APWG Symposium on Electronic Crime Research (eCrime) 2019, pp. 1–12, IEEE, 2019.
[16] A. Romano, Y. Zheng, and W. Wang, “Minerray: semantics-aware analysis for ever-evolving cryptojacking detection,” in 2020 35th IEEE/ACM International Conference on Automated Software Engineering (ASE), pp. 1129–1140, IEEE, 2020.
[17] R. K. Sachan, R. Agarwal, and S. K. Shukla, “Identifying malicious accounts in blockchains using domain names and associated temporal properties,” arXiv preprint arXiv:2106.13420, 2021.
[18] N. Christopher, “Hackers mined a fortune from Indian websites,” 2018. Accessed: 28/10/2021.
[19] P. Papadopoulos, P. Ilia, and E. Markatos, “Truth in web mining: Measuring the profitability and the imposed overheads of cryptojacking,” in International Conference on Information Security, pp. 277–296, Springer, 2019.
[20] F. Gomes and M. Correia, “Cryptojacking detection with cpu usage metrics,” in 2020 IEEE 19th International Symposium on Network Computing and Applications (NCA), pp. 1–10, IEEE, 2020.
[21] G. Hong, L. Dias, and M. Correia, “Cryingjackpot: Network flows and performance counters against cryptojacking,” in 2020 IEEE 19th International Symposium on Network Computing and Applications (NCA), pp. 1–10, IEEE, 2020.
[22] M. Caprou, S. Raponi, G. Oligeri, and R. Di Pietro, “Cryptomining makes noise: Detecting cryptojacking via machine learning,” Computer Communications, vol. 171, pp. 126–139, 2021.
[23] OpenINTEL Consortium, “Cisco umbrella 1m,” 01 2019. Accessed: 02/10/2020.
[24] E. Tekiner, A. Acar, A. S. Uluagac, E. Kirda, and A. A. Selcuk, “Sok: Cryptojacking malware,” in IEEE European Symposium on Security and Privacy (EuroS&P), (virtual), pp. 120–139, 09 2021.
[25] R. Olson and J. Moore, “Tpot: A tree-based pipeline optimization tool for automating machine learning,” in Workshop on Automatic Machine Learning, (New York, New York, USA), pp. 66–74, PMLR, 06 2016.
[26] IGOD, “Integrated Government Online Directory.” Accessed: 28/10/2021.
[27] “Top Web Mining Sites.” Accessed: 19/08/2021.
[28] “NoCoin Black List.” Accessed: 29/06/2021.
[29] “Known Crypto URL.” Accessed: 19/08/2021.
[30] “CryptoJacking Campaign List.” Accessed: 19/08/2021.
[31] “Cryptocurrency Mining List.” Accessed: 15/07/2021.
[32] “CoinHive Domains.” Accessed: 29/06/2021.
[33] “CoinHive Pixalate.” Accessed: 18/08/2021.
[34] “Cryptocurrency Mining List.” Accessed: 05/08/2021.
[35] “CoinHive BlackList.” Accessed: 29/06/2021.
[36] “CoinHive Domains.” Accessed: 29/06/2021.
[37] “CoinHive Pixalate.” Accessed: 18/08/2021.
[38] “Cryptocurrency Mining List.” Accessed: 15/07/2021.
[39] “CryptoJacking Campaign List.” Accessed: 19/08/2021.
[40] “Known Crypto URL.” Accessed: 19/08/2021.
[41] “Miner Block List.” Accessed: 29/06/2021.
[42] “NoCoin Black List.” Accessed: 29/06/2021.
[43] “Top Web Mining Sites.” Accessed: 19/08/2021.