A NOTE ON LIST-COLORING POWERS OF GRAPHS

NICHOLAS KOSAR, SARKA PETRICKOVA, BENJAMIN REINIGER, AND ELYSE YEAGER

Abstract. Recently, Kim and Park have found an infinite family of graphs whose squares are not chromatic-choosable. Xuding Zhu asked whether there is some \(k \) such that all \(k \)th power graphs are chromatic-choosable. We answer this question in the negative.

1. INTRODUCTION

The list-chromatic number of a graph \(G \), denoted \(\chi^\ell(G) \), is the least \(k \) such that for any assignment of lists of size \(k \) to the vertices of \(G \), there is a proper coloring of \(V(G) \) where the color at each vertex is in that vertex’s list. A graph is said to be chromatic-choosable if \(\chi^\ell(G) = \chi(G) \). The \(k \)th power of a graph \(G \), denoted \(G^k \), is the graph on the same vertex set as \(G \) with an edge \(uv \) if and only if the distance from \(u \) to \(v \) in \(G \) is at most \(k \).

The List-Total-Coloring Conjecture (LTCC) asserts that \(\chi^\ell(T(G)) = \chi(T(G)) \) for every graph \(G \), where \(T(G) \) is the total graph of \(G \). The Square List Coloring Conjecture (SLCC) was introduced in [5], as it would imply the LTCC. The SLCC asserts that squares of graphs are chromatic-choosable. However, the SLCC was recently disproved by Kim and Park [4]. Xuding Zhu asked whether there is any \(k \) such that all \(k \)th powers are chromatic-choosable [7]. In this note we give a negative answer to Zhu’s question.

Theorem 3.4. There is a constant \(c \) such that for every \(k \in \mathbb{N} \), there is an infinite family of graphs \(G \) such that

\[
\chi^\ell(G^k) \geq c \chi(G^k) \log(\chi(G^k)).
\]

While preparing this note, it has come to our attention that Kim, Kwon, and Park have arrived at a similar result [3]. We briefly compare results at the end of this note.

2. CONSTRUCTION

The example of Kim and Park [4] for \(k = 2 \) is based on complete sets of mutually orthogonal latin squares. We will use this structure to find examples for all \(k \), but we find the language of affine planes to be more convenient.

Take an affine plane \((\mathcal{P}, \mathcal{L})\) on \(n^2 \) points. Let \(\{L_0, L_1, \ldots, L_n\} \) be the decomposition of \(\mathcal{L} \) into parallel classes. Recall that we call the elements of \(\mathcal{P} \) the points and the elements of \(\mathcal{L} \) the lines of the plane, and that we have the following properties (see for instance [2]):

[1]

Mathematics Dept., University of Illinois, Urbana-Champaign
The authors acknowledge support from National Science Foundation grant DMS 08-38434 “EMSW21-MCTP: Research Experience for Graduate Students”.
Each line is a set of n points.

- For each pair of points, there is a unique line containing them.
- Two lines in the same parallel class do not intersect.
- Two lines in different parallel classes intersect in exactly one point.
- Such a plane exists whenever n is a (positive) power of a prime.

Form the bipartite graph H with parts \mathcal{P} and $B = \mathcal{L} - L_0$, with $p\ell \in E(H)$ if and only if $p \in \ell$. Let a_1, \ldots, a_n denote the lines of L_0. Consider the refinement \mathcal{V}' of the bipartition of H obtained by partitioning \mathcal{P} into a_1, \ldots, a_n and B into L_1, \ldots, L_n. Note that $H[a_i, L_j]$ is a matching for each i and j. In Figure 2, the graph H is shown with $n = 3$. Edges are drawn differently according to which parallel class their line-endpoint belongs to, and the parts of \mathcal{V}' are indicated.

Let $k \geq 2$. Subdivide the edges of H into paths of different lengths: edges incident to L_1 are subdivided into paths of length k, while edges not incident to L_1 are subdivided into paths of length $k + 1$. For an edge $p\ell \in E(H)$, denote the vertices along the subdivision path as $p = (p\ell)_0, (p\ell)_1, (p\ell)_2, \ldots$. If $\ell \in L_1$, then $(p\ell)_k = \ell$, and if $\ell \notin L_1$, then $(p\ell)_{k+1} = \ell$. For a vertex $(p\ell)_i$, say its level is i, its point is p, and its line is ℓ (levels are well-defined, and points and lines of vertices of degree 2 are well-defined). Form the graph G by, for each $\ell \in \bigcup_{2 \leq i \leq n} L_i$, adding edges to make the neighborhood of ℓ a clique and then deleting ℓ. For each $i, j \in [n]$ and $m \in \{0, \ldots, k\}$, let $V_{i,j,m} = \{(p\ell)_m : p\ell \in E(H), p \in a_i, \ell \in L_j\}$; then $\{V_{i,j,m} : i,j \in [n], m \in \{0, \ldots, k\}\}$ is a partition of $V(G)$ into sets of size n, which we call \mathcal{V}. In Figure 2, the graph G is shown. Again we use $n = 3$, and here the parts of \mathcal{V} are indicated.

3. PROOF

Claim 3.1. G^{4k} is multipartite on \mathcal{V}.

Proof. Let p and q be two points in some a_i. Any path from p to q must start by increasing levels, arriving at $(p\ell)_k$. If $\ell \notin L_1$, then the path must move from $(p\ell)_k$ to $(p'\ell)_k$ for some p' not on a_i. Continuing along the path to level 0, we arrive at p'. Since p' is not on a_i, p' and q are on a common line $\ell' \in \bigcup_{i=1}^n L_i$. If $\ell' \in L_1$, the shortest path from p' to q is to increase levels to ℓ' and decrease levels to q. If $\ell' \in \bigcup_{i=2}^n L_i$, the shortest path from p' to q is to increase levels to $(p'\ell')_k$, move over to $(q\ell')_k$, and then decrease levels to q. Notice, if p and p' are on a common
A NOTE ON LIST-COLORING POWERS OF GRAPHS

Figure 2. The graph G when $n = 3$.

Let $\ell_1, \ell_2 \in L_1$. Any path would have to have both ends decrease to level 0. If both ℓ_1 and ℓ_2 connect to points in some a_i, then since these vertices are a distance at least $4k+1$ apart, the path between ℓ_1 and ℓ_2 would have length at least $4k+1$. Otherwise, the paths from ℓ_1 and ℓ_2 arrive at points on different lines in L_0, say p and q, respectively. These two points are on a common line not in L_0 or L_1, say ℓ. The shortest path between p and q is to go from p to $(p\ell)_k$, over to $(q\ell)_k$, and finally to q. However, this results in a path between ℓ_1 and ℓ_2 of length at least $4k+1$.

Let $(p\ell_1)_k, (q\ell_2)_k$ be two vertices in the same part other than L_1; that is, p, q are both on some a_i and ℓ_1, ℓ_2 are two lines in the same parallel line class. If a path joining them starts by decreasing levels from both ends to level 0, that is connects $(p\ell_1)_k$ to p and $(q\ell_2)_k$ to q, then since p and q are a distance at least $4m+1$ apart, the path between $(p\ell_1)_k$ and $(q\ell_2)_k$ would have length at least $4m+1$. Otherwise, at least one of $(p\ell_1)_k$ or $(q\ell_2)_k$ must first go to $(p'\ell_1)_k$ or $(q'\ell_2)_k$. Without loss of generality connect $(p\ell_1)_k$ to $(p'\ell_1)_k$. Now, any path must connect $(p'\ell_1)_k$ to p' and $(q\ell_2)_k$ to q. These are on a common line not in L_0, however, increasing levels from each of p' and q to level k results in a total of at least $4k+1$ steps.

Now consider two degree-two vertices in the same part. Any path joining them has ends that either increase or decrease levels from the endpoint. If the path increases levels from both ends or decreases levels from both ends, then we arrive at different vertices in the same level 0 or level k part. Since the rest of the path must have length at least $4m+1$, the total path must have length at least $4k+1$. Otherwise, one end increases levels and the other decreases levels. The resulting point, p, is not on the resulting line, ℓ. The path must next increase levels from p
to a line. If this line is in the same parallel line class as ℓ, then the resultant path has length over $4k + 1$. Otherwise, since this line is not in the same class as ℓ, these two lines share a common point. The shortest completion of the path is through this point. However, since at least one of these lines is not in L_1, the path must contain at least 3 vertices in level k. Thus, the path has length at least $4k + 1$. \qed

Claim 3.2. The subgraph of G^{4k} induced by the vertices in levels 0 through $k - 1$ is complete multipartite on the parts of \mathcal{V} restricted to those levels.

Proof. Consider two points p, q on different lines in L_0. They are on a common line $\ell \in \bigcup_{i=1}^n L_i$. If $\ell \in L_1$, connect p to ℓ then ℓ to q. If $\ell \notin L_1$, connect p to $(p\ell)_k$ to $(q\ell)_k$ to q. In each case the path has length at most $2k - 1 < 4k$.

Consider two vertices in different parts at level i, $1 \leq i < k - 1$. Either their points are on different lines in L_0 or their lines are from different parallel classes. If their points are from different lines in L_0, go to these points. These points share a common line not in L_0. Connect via the path between this line. This takes at most $2i + 2k + 1 \leq 4k - 1$ steps. If their lines are from different parallel classes, increase levels to level k. These two lines share a common point. By, if necessary, first changing vertices at level k, connecting through this point, we get a path of length at most $2(k - i) + 2 + 2k = 4k - 2i + 2 \leq 4k$.

Finally, consider two vertices in levels i and j, $0 \leq i < j < k$. Start a path joining them by decreasing levels from the lower-level vertex, and increasing levels from the larger-level vertex. Let the point we arrive at from decreasing the lower-level vertex be p. If the increasing from the larger-level vertex takes us to a line in L_1, we can connect from this line to a point on a different line of L_0 than p, say q. Now p and q are on a common line not in L_0. Connecting through this gives us a path of length at most $k - 1 + k + 2k + 1 = 4k$. If instead the increasing from the larger-level vertex takes us to a vertex of the form $(q\ell)_k$, $\ell \notin L_1$, then let ℓ' be the line through p in L_1. ℓ and ℓ' intersect at a point, say q'. We can complete the path by going from $(q\ell)_k$ to $(q'\ell)_k$ to q' to ℓ' to p. This takes a total of at most $k - 1 + 1 + 3k = 4k$ steps. \qed

We will use the following result of Alon.

Lemma 3.3. Let $K_{r,s}$ denotes the complete r-partite graph with each part of size s. There are two constants, d_1 and d_2, such that

$$d_1 r \log s \leq \chi(\mathcal{K}_{r,s}) \leq d_2 r \log s.$$

Everything is now in place to complete the proof.

Theorem 3.4. There is a constant c such that for every $k \in \mathbb{N}$, there is an infinite family of graphs G^* such that

$$\chi(\mathcal{G}^k) \geq c \chi(\mathcal{G}^k) \log(\chi(\mathcal{G}^k)).$$

Proof. Since G^{4k} is multipartite on $kn^2 + 1$ parts, $\chi(G^{4k}) \leq kn^2 + 1$, and so $n \geq \sqrt{\chi(G^{4k}) - 1}/k$.

\
Since G^{4k} contains a complete multipartite subgraph with $(k - 1)n^2$ parts of size n, we have from Lemma 3.3 that
\[
\chi_\ell(G^{4k}) \geq d_1 \left(\frac{k - 1}{k} \right) (\chi(G^{4k}) - 1) \log \left(\frac{\chi(G^{4k}) - 1}{k} \right)
\]
\[
= d_1 \left(\frac{k - 1}{k} \right) (\chi(G^{4k}) - 1) \left((\chi(G^{4k}) - 1) - \log k \right)
\]
\[
\geq d_1 \left(\frac{k - 1}{k} \right) (\chi(G^{4k}) - 1) \left((\chi(G^{4k}) - 1) - \log k \right).
\]
Taking n large enough makes $\chi(G^{4k})$ as large as we like, and so by taking a constant c just smaller than $d_1/4$ and taking n sufficiently large, we obtain
\[
\chi_\ell(G^{4k}) \geq c \chi(G^{4k}) \log \chi(G^{4k}).
\]
The family $\{G_n^4\}$ is an infinite family of graphs whose kth powers satisfy the desired inequality. □

4. Remarks

Using similar constructions, we have found infinite families of graphs G whose kth powers are complete multipartite on roughly $kn^2/4$ parts each of size n, but only when $k \not\equiv 0 \mod 4$. The construction presented here is messier and does not yield complete multipartite powers, but it proves the theorem for all values of k simultaneously.

While preparing this note, it has come to our attention that another team has arrived at a similar result. Kim, Kwon, and Park [3] have found, for each k, an infinite family of graphs G whose kth powers satisfy $\chi_\ell(G^{k}) \geq \frac{10}{9} \chi(G^{k}) - 1$.

Noel [6] asked whether there is an $f(x) = o(x^2)$ such that $\chi_\ell(G^{k}) \leq f(\chi(G^{k}))$ for all G. The example of Kim and Park shows that such an f must satisfy $f(x) = \Omega(x \log x)$. We may ask the same question for larger k:

Question 4.1. Is there an $f_k(x) = o(x^2)$ such that $\chi_\ell(G^{k}) \leq f(\chi(G^{k}))$ for all G?

The present examples show that such an f_k must satisfy $f_k(x) = \Omega(x \log x)$.

Question 4.2. Fix $k \geq 2$. Is there a constant c_k such that $\chi_\ell(G^{k}) \leq c_k \chi(G^{k}) \log(\chi(G^{k}))$ for every graph G? If so, can such c_k be found independent of k?

The authors would like to thank Douglas West for bringing this problem to our attention and helping to improve the exposition of this note.

REFERENCES

[1] Noga Alon. Choice numbers of graphs: a probabilistic approach. Combin. Probab. Comput., 1(2):107–114, 1992.
[2] Charles J. Colbourn and Jeffrey H. Dinitz, editors. The CRC handbook of combinatorial designs. CRC Press Series on Discrete Mathematics and its Applications. CRC Press, Boca Raton, FL, 1996.
[3] Seog-Jin Kim, Young Soo Kwon, and Boram Park. Chromatic-choosability of the power of graphs. arXiv:1309.0888.
[4] Seog-Jin Kim and Boram Park. Counterexamples to the list square conjecture. submitted. arXiv:1305.2566.
[5] Alexandr V. Kostochka and Douglas R. Woodall. Choosability conjectures and multicircuits. Discrete Math., 240(1-3):123–143, 2001.
[6] Jon Noel. Choosability of graph powers, August 2013. http://www.openproblemgarden.org/op/choosability_of_graph_powers.
[7] Xuding Zhu. personal communication.