We analyze the coherence properties of a cold or a thermal neutron by utilizing the Wigner quasidistribution function. We look in particular at a recent experiment performed by Badurek et al., in which a polarized neutron crosses a magnetic field that is orthogonal to its spin, producing highly non-classical states. The quantal coherence is extremely sensitive to the field fluctuation at high neutron momenta. A “decoherence parameter” is introduced in order to get quantitative estimates of the losses of coherence.

PACS: 03.65.Bz; 03.75.Be; 03.75.Dg

1 Introduction

Highly non-classical, Schrödinger-cat-like neutron states can be produced by coherently superposing different spin states in an interferometer and with neutron spin echo [1, 2]. We analyze here an interesting recent experiment [3] in which a polarized neutron crosses a magnetic field that is orthogonal to its spin, producing Schrödinger-cat-like states. Our main purpose is to investigate the decoherence effects that arise when the fluctuations of the magnetic field are considered.

2 Squeezing and squashing

Let us start by looking at the coherence properties of a neutron wave packet and concentrate our attention on the losses of coherence provoked by a fluctuating magnetic field. To this end, we introduce the Wigner quasidistribution function

\[W(x, k) = \frac{1}{2\pi} \int d\xi \ e^{-ikx} \psi \left(x + \frac{\xi}{2} \right) \psi^* \left(x - \frac{\xi}{2} \right), \]

(1)
where \(x \) is position, \(p = \hbar k \) momentum and \(\psi \) the wave function of the neutron in the apparatus. The Wigner function is normalized to one and its marginals represent the position and momentum probability distributions

\[
\int dx \, dk \, W(x, k) = 1; \quad P(x) = \int dk \, W(x, k), \quad P(k) = \int dx \, W(x, k). \tag{2}
\]

We shall work in one dimension. We assume that the neutron wave function is well approximated by a Gaussian

\[
\psi(x) = \frac{1}{(2\pi\delta^2)^{1/4}} \exp \left[-\frac{(x - x_0)^2}{4\delta^2} + ik_0x \right], \tag{3}
\]

\[
\phi(k) = \frac{1}{(2\pi\delta_k^2)^{1/4}} \exp \left[-\frac{(k - k_0)^2}{4\delta_k^2} - i(k - k_0)x_0 \right] = \left(\frac{2\delta^2}{\pi} \right)^{1/4} \exp \left[-\delta^2(k - k_0)^2 - i(k - k_0)x_0 \right], \tag{4}
\]

where \(\delta \) is the spatial spread of the wave packet, \(\delta_k = 1/2 \), \(x_0 \) is the initial average position of the neutron and \(p_0 = \hbar k_0 \) its average momentum. The two functions above are related by a Fourier transformation and are both normalized to one. Normalization will play an important role in our analysis and will never be neglected.

The Wigner function for the state (3)-(4) is readily calculated

\[
W(x, k) = \frac{1}{\pi} \exp \left[-\frac{(x - x_0)^2}{2\delta^2} \right] \exp \left[-2\delta^2(k - k_0)^2 \right] \tag{5}
\]

and turns out to be a positive function. In the language of quantum optics [4], we shall say that the neutron is prepared in a coherent state if \(\delta = \delta_k = 1/\sqrt{2} \) and in a squeezed state if \(\delta \neq \delta_k \). An illustrative example is given in Figure 1.

Consider now a polarized neutron that crosses a constant magnetic field, parallel to its spin, of intensity \(B \) and contained in a region of length \(L \). Since the total energy is conserved, the kinetic energy of the neutron in the field changes by \(\Delta E = \mu B > 0 \), where \(-\mu \) is the neutron magnetic moment. This implies a change in average momentum \(\Delta k = m\mu B/\hbar^2 k_0 \) and an additional shift of the neutron phase proportional to \(\Delta \equiv L\Delta k/k_0 \). The resulting effect on the Wigner function is \(W(x, k) \rightarrow W(x - \Delta, k) \).

Assume now that the intensity of the \(B \)-field fluctuates around its average \(B_0 \) according to a Gaussian law. This fluctuation is reflected in a fluctuation of the quantity \(\Delta \) according to the distribution law

\[
w(\Delta) = \frac{1}{\sqrt{2\pi}\sigma^2} \exp \left[-\frac{(\Delta - \Delta_0)^2}{2\sigma^2} \right], \tag{6}
\]

where \(\sigma \) is the standard deviation. The ratio \(\sigma/\Delta_0 \) is simply equal to the ratio \(\delta B/B_0 \), \(\delta B \) being the standard deviation of the fluctuating \(B \)-field. The average Wigner function, when the neutron has crossed the whole \(B \) region of length \(L \), represents a “squashed” state, that has partially lost its quantum coherence:

\[
W_m(x, k) = \int d\Delta \, w(\Delta) \, W(x - \Delta, k). \tag{7}
\]
Neutron coherence

This function is represented in Figure 1 for $\Delta_0 = 0$ (vanishing average magnetic field) and increasing values of σ. The above Wigner function can be calculated explicitly, but its expression is a bit cumbersome; however, its marginals (2) are simple:

\[
P(x) = \frac{1}{\sqrt{2\pi(\delta^2 + \sigma^2)}} \exp \left[-\frac{(x - x_0 - \Delta_0)^2}{2(\delta^2 + \sigma^2)} \right],
\]

\[
P(k) = \sqrt{\frac{2\delta^2}{\pi}} \exp \left[-2\delta^2(k - k_0)^2 \right].
\]

Notice that the momentum distribution (9) is unaltered $|\phi(k)|^2$ in (4): obviously, the energy of the neutron does not change. Observe the additional spread in position $\delta' = (\delta^2 + \sigma^2)^{1/2}$ and notice that the Wigner function and its marginals are always normalized to one. The uncertainty principle yields $\delta_k \delta' = \frac{1}{2}\sqrt{1 + \sigma^2/\delta^2} > 1/2$.

3 Schrödinger-cat states in a fluctuating magnetic field

Let us now look in more detail at the experiment [3]. A polarized (+y) neutron enters a magnetic field, perpendicular to its spin, of intensity $B_0 = 0.28\text{mT}$, confined in a region of length $L = 57\text{cm}$. Due to Zeeman splitting, the two neutron spin states travel with different speeds in the field. The average neutron wavenumber is $k_0 = 1.7 \cdot 10^{10}\text{m}^{-1}$.
and its coherence length (defined by a chopper) is $\delta = 1.1 \cdot 10^{-10} \text{m}$. By travelling in the magnetic field, the two neutron spin states are separated by a distance $\Delta_0 = 2m\mu B_0/\hbar^2k_0 = 16.1 \cdot 10^{-10} \text{m}$, one order of magnitude larger than δ (notice the factor 2, absent in the definition of the previous section). Observe that the neutron wave packet itself has a natural spread $\delta_t = (\delta^2 + (\hbar t/2m\delta)^2)^{1/2} \simeq 15 \text{cm}$ (due to its free evolution for a time $t \simeq mL/\hbar k_0$); however, we shall neglect this additional effect, because it is irrelevant for the loss of quantum coherence.

After the neutron has crossed the B-field only the $+y$ spin-component is observed and its Wigner function is readily computed

$$W(x, k) = \frac{1}{4\pi} \exp[-2\delta^2(k - k_0)^2]$$

$$\times \left[\exp \left(-\frac{(x - \frac{\Delta_0}{2})^2}{2\delta^2} \right) + \exp \left(-\frac{(x + \frac{\Delta_0}{2})^2}{2\delta^2} \right) + 2\exp \left(-\frac{x^2}{2\delta^2} \right) \cos(k\Delta) \right].$$

(10)

Notice that for $\Delta = 0$ (no B-field) one obtains (5). Our interest is to investigate the loss of quantum coherence if the intensity of the B-field fluctuates, like in the previous section, yielding a random shift according to the law (6). In such a case, the average Wigner function reads

$$W_m(x, k) = \int d\Delta \ w(\Delta) \ W(x, k) = \frac{1}{4\pi} \exp[-2\delta^2(k - k_0)^2]$$

$$\times \left[\sqrt{\frac{\delta^2 + \frac{\sigma^2}{4}}{\delta^2 + \frac{\sigma^2}{4}}} \exp \left(-\frac{(x - \frac{\Delta_0}{2})^2}{2(\delta^2 + \frac{\sigma^2}{4})} \right) + \sqrt{\frac{\delta^2 + \frac{\sigma^2}{4}}{\delta^2 + \frac{\sigma^2}{4}}} \exp \left(-\frac{(x + \frac{\Delta_0}{2})^2}{2(\delta^2 + \frac{\sigma^2}{4})} \right) \right.$$

$$+ 2\exp \left(-\frac{x^2}{2\delta^2} \right) \exp \left(-\frac{\sigma^2k^2}{2} \right) \cos(k\Delta_0) \right].$$

(11)

and the momentum distribution function yields

$$P(k) = \sqrt{\frac{\delta^2}{2\pi}} \exp[-2\delta^2(k - k_0)^2] \left[1 + \exp \left(-\frac{\sigma^2k^2}{2} \right) \cos(k\Delta_0) \right].$$

(12)

Notice also that, since only the $+y$-component of the neutron spin is observed, the normalization reads

$$N = \int dx \ dk \ W_m(x, k)$$

$$= \frac{1}{2} \left[1 + \sqrt{\frac{\delta^2}{\delta^2 + \frac{\sigma^2}{4}}} \exp \left(-\frac{\Delta_0 + 4\delta^2\sigma^2k_0^2}{8(\delta^2 + \frac{\sigma^2}{4})} \right) \cos \left(\frac{\Delta_0}{2(\delta^2 + \frac{\sigma^2}{4})} \right) \right].$$

(13)

Obviously, $N = 1$ when no magnetic field is present ($\sigma = \Delta_0 = 0$). The Wigner function (11) is plotted in Figure 2 for some values of σ. The off-diagonal part of the Wigner function ("trustee" of the interference effects) is very fragile at high values of momentum. This was already stressed in [2, 3] and is apparent in the structure of the marginal distribution (12): the term $\exp(-\sigma^2k^2/2)$ strongly suppresses the interference effects at high k's.
4 Decoherence parameter

One can give a quantitative estimate of the loss of quantum coherence by introducing a “decoherence parameter,” in the same spirit of Refs. [5]. To this end, remember that the Wigner function can be expressed in terms of the density matrix \(\rho \) as

\[
W(x, k) = \frac{1}{2\pi} \int d\xi \ e^{-ik\xi} \langle x + \xi/2 | \rho | x - \xi/2 \rangle,
\]

(14)

and that \(\text{Tr}(\rho^2) = \text{Tr}\rho = 1 \) for a pure state, while \(\text{Tr}(\rho^2) < \text{Tr}\rho = 1 \) for a mixture. Define therefore the \textit{decoherence parameter}

\[
\varepsilon(\sigma) = 1 - \frac{\text{Tr}(\rho^2)}{(\text{Tr}\rho)^2} = 1 - \frac{2\pi \int dx \ dk \ W_m(x, k)^2}{(\int dx \ dk \ W_m(x, k))^2}.
\]

(15)
Fig. 3. Decoherence parameter. Left: ϵ as a function of δ and σ (both in units 10^{-10}m). Notice the peculiar behavior when $\delta > 3$ and $1 < \sigma < 2$. Right: ϵ vs σ (in 10^{-10}m) for $\delta = 1.1 \cdot 10^{-10}$m (experimental value in [3]).

This quantity is expected to vanish for $\sigma = 0$ (no fluctuation of the B-field and quantum coherence perfectly preserved) and to become unity when $\sigma \to \infty$ (large fluctuations of the B-field and quantum coherence completely lost). Figure 3 confirms these expectations, that can also be proven analytically from (11). In Ref. [3], $\delta = 1.1 \cdot 10^{-10}$m and σ is (presumably) very small, being the intensity of the B field controlled with high accuracy. It is remarkable that the decoherence parameter is not a monotonic function of the noise σ, when $\delta > 3 \cdot 10^{-10}$m and $1 \cdot 10^{-10}$m $< \sigma < 2 \cdot 10^{-10}$m. This may be due to our very definition (15) or to some physical effect we do not yet understand.

Acknowledgments: We thank G. Badurek, H. Rauch and M. Suda for many useful discussions. This work was partially supported by the TMR Network “Perfect Crystal Neutron Optics” (ERB-FMRX-CT96-0057) of the European Union.

References

[1] H. Rauch and M. Suda, *Physica* B141-143 (1998) 157
[2] H. Rauch, M. Suda and S. Pascazio, *Decoherence, dephasing and depolarization, Physica B*, in print
[3] G. Badurek, H. Rauch, M. Suda and H. Weinfurter, *Identification of a coherent superposition of spin-up and spin-down states in neutron spin-echo systems*, preprint 1999
[4] H. Rauch and M. Suda, *Appl. Phys. B60* (1995) 181; R.J. Glauber, *Phys. Rev. 130* (1963) 2766
[5] M. Namiki and S. Pascazio, *Phys. Rev. A44* (1991) 430; M. Namiki, S. Pascazio and H. Nakazato, *Decoherence and Quantum Measurements* (World Scientific, Singapore, 1997)