Identification of Genes in the σ^{22} Regulon of Pseudomonas aeruginosa Required for Cell Envelope Homeostasis in Either the Planktonic or the Sessile Mode of Growth

Lynn F. Wooda,b and Dennis E. Ohmana,b

Department of Microbiology and Immunology, Virginia Commonwealth University Medical Center, Richmond, Virginia, USAa, and McGuire Veterans Affairs Medical Center, Richmond, Virginia, USAb

ABSTRACT The Pseudomonas aeruginosa extracytoplasmic functioning (ECF) sigma factor σ^{22} is encoded by algT/algU and is inhibited by anti-sigma factor MucA. σ^{22} was originally discovered for its essential role in the expression of the exopolysaccharide alginate by mucoid strains associated with chronic pulmonary infection. However, σ^{22} is now known to also have a large regulon associated with the response to cell wall stress. Our recent transcriptome analysis identified 293 open reading frames (ORFs) in the σ^{22} stress stimulon that include genes for outer envelope biogenesis and remodeling, although most of the genes have undefined functions. To better understand the σ^{22}-dependent stress response, mutants affected in 27 genes of the σ^{22} stimulon were examined and expression was studied with lacZ fusions. Mutants constructed in the 27 genes showed no major change in response to cell wall-acting antibiotics or growth at elevated temperatures nor in alginate production. The mutants were examined for their effects on the expression of the σ^{22}-dependent promoter of the alginate biosynthetic operon (PalgD) as a measure of σ^{22} derepression from MucA. By testing PalgD expression under both planktonic and sessile growth conditions, 11 genes were found to play a role in the stress response that activates σ^{22}. Some mutations caused an increase or a decrease in the response to cell wall stress. Interestingly, mutations in 7 of the 11 genes caused constitutive PalgD expression under nonstressed conditions and thus showed that these genes are involved in maintaining envelope homeostasis. Mutations in PA0062 and PA1324 showed constitutive PalgD expression during both the planktonic and the sessile modes of growth. However, the PA5178 mutation caused constitutive PalgD expression only during planktonic growth. In contrast, mutations in PA2717, PA0567, PA3040, and PA0920 caused constitutive PalgD expression only in the sessile/biofilm mode of growth. This provides evidence that the σ^{22} stimulon for cell envelope homeostasis overlaps with biofilm control mechanisms.

IMPORTANCE During chronic lung infections, such as in cystic fibrosis patients, Pseudomonas aeruginosa produces the exopolysaccharide alginate and forms biofilms that shield the organisms from the immune response and increase resistance to antibiotics. Activation of alginate genes is under the control of an extracytoplasmic stress response system that releases an alternative saccharide alginate and forms biofilms that shield the organisms from the immune response and increase resistance to antibiotics (2) and to confer increased resistance to phagocytic killing and antibody-dependent bactericidal mechanisms (3–5). The ability of P. aeruginosa to form biofilms is another important factor in establishing chronic infections in the lungs of CF patients (6, 7). Mucoid P. aeruginosa in a biofilm is more resistant to killing by human leukocytes in the presence of gamma interferon than is its isogenic nonmucoid form, suggesting that alginate plays an important role in protecting mucoid P. aeruginosa biofilm bacteria from the human immune system (3).

The master regulator for alginate production in mucoid P. aeruginosa is the extracytoplasmic functioning (ECF) sigma fac-
tor, σ22 (8, 9). This 22-kDa alternative sigma factor, encoded by \textit{algT} (also known as \textit{algU}), is essential for expression of the \textit{algD} promoter (\textit{PalgD}), which controls the expression of the 12-gene algin biosynthetic operon (\textit{algD-alg8-alg44-algKEGXLJFA}) (10–12). Three additional positive regulatory proteins under σ22 control are required for \textit{PalgD} expression: the two-component response regulators \textit{AlgB} and \textit{AlgR} (13–15) and a small ribonucleic-helix-helix family DNA-binding protein, \textit{AmrZ} (16).

σ22 is encoded by the \textit{algT/U-mucABC} operon along with posttranslational regulatory proteins (Fig. 1A). \textit{MucA} is an anti-sigma factor and primary inhibitor of σ22 activity; it acts by sequestering the sigma factor at the cytoplasmic membrane. Mutations in \textit{mucA} are the most common cause of the constitutive expression of alginate observed in CF isolates of mucoid \textit{P. aeruginosa} (17). \textit{MucA} spans the inner membrane with the N-terminal cytoplasmic domain binding σ22 and the C-terminal periplasmic domain binding \textit{MucB} (18, 19) (Fig. 1B). The formation of this macromolecular membrane complex results in diminished expression of σ22-regulated genes. The \textit{mucD} gene encodes an HtrA/DegP-like periplasmic protease that apparently degrades peptide signals that lead to σ22 release and thus helps maintain the integrity of the σ22-MucAB complex. The \textit{mucD} gene is also under the control of an internal promoter within \textit{mucC}, a gene of unknown function (20).

Liberation of σ22 from the inner membrane complex and the resultant increase in σ22-mediated transcription occur by regulated intramembrane proteolytic (RIP) destruction of MucA (Fig. 1B). Cell wall stress triggers the activation of this process, such as by exposure to cell wall-active antibiotics (e.g., \textit{d-cycloserine}) or compounds that disrupt biological membranes (e.g., Tween and triclosan) or by overproduction of certain outer membrane proteins (e.g., \textit{MucE}) (19, 21, 22). \textit{AlgW} is an inner membrane endo- protein that senses envelope stress conditions by binding sequence-specific polypeptide signal molecules at its PDZ domain, which relieves steric inhibition of the catalytic domain and allows \textit{AlgW} to cleave MucA in the periplasmic domain (18). The initiating AlgW-dependent cleavage of MucA is followed by further degradation of the truncated anti-sigma polypeptide through the actions of \textit{RseP} (YaeL) and several cytoplasmic ClpXP proteases, resulting in the ultimate release of σ22 so that it can complex with core RNA polymerase and direct transcription of its target genes (18, 21–23).

We have analyzed the transcriptional profiles of genes upregulated by σ22 activation in response to cell wall stress (19). Exposing \textit{P. aeruginosa} PAO1 to \textit{d-cycloserine}, which directly targets peptidoglycan synthesis, results in the increased expression of 293 genes that are dependent on σ22 deregulation. Among those upregulated are the genes for alginate biosynthesis and its regulation. Other members of the σ22 stimulon include genes involved in peptidoglycan biosynthesis (\textit{mdoH, mrcB, and mpl}), lipopolysaccharide (LPS) biosynthesis (\textit{wzz, rmlD, wbpH, and wbpD}), and genes encoding proteins with known adaptive or protective functions, such as bacteriain resistance protein (BacA), chloroperoxidase (Cpo), and two mechanosensitive channels encoded by \textit{PA4394} and \textit{PA4614} (19). A number of lipoproteins that are σ22 dependent have predicted roles in outer membrane repair and/or maintenance. However, the large majority of genes in the σ22 stimulon encode hypothetical or conserved hypothetical proteins for which limited biological information is known. It has also been shown that a mutation in \textit{algT/algU}, which disrupts the whole σ22 stimulon of 293 genes, also results in less robust (i.e., less shear-resistant) biofilms (24). However, it is unknown which genes of the stimulon are involved with biofilm formation.

In this study, we sought to better understand the σ22-mediated stress response by characterizing mutants with defects in specific σ22-dependent genes for potential roles in maintaining cell envelope integrity. This analysis revealed that several gene products play a role in envelope homeostasis and thus affect the stress response system itself. Further study revealed that some of these genes demonstrate this effect only in either the planktonic (free-swimming) or the sessile (biofilm) mode of growth.

RESULTS

Construction of σ22 stress stimulon mutants. There are 293 known genes in the σ22 stress stimulon of strain PAO1 as determined by a transcriptome analysis of planktonically grown bacteria subjected to cell wall stress with \textit{d-cycloserine} (19). In this study, we selected a set of undercharacterized genes within the σ22
TABLE 1 Verification that selected genes were σ^{22} dependent by using a lacZ fusion analysis of each promoter in algT (σ^{22}-deficient) and mucA (anti-sigma-factor-deficient) backgrounds

Gene	Gene product description	Stress induction (15/60 min)	P-lacZ WT/algT/mucA activity
PA0059	OsmC, redox protein, osmotically induced	9.9/8.9	156:13:450
PA0062	Hypothetical, predicted Type I lipoprotein	11.4/10.5	ND
PA0460	Hypothetical, predicted periplasmic	18.9/7.7	1,569:116:5,161
PA0567d	Proteolipid homolog, membrane integrity	6.0/6.2	220:142:976
PA0854	FumC2, fumarate hydrase	4.7/10.7	ND
PA0919	Hypothetical, predicted secretion usher	3.0/2	Operon
PA0920d	Aminooacyl-phosphatidylglycerol synthase	3.0/2	3,264:2,825:5,239
PA1243	Predicted transcriptional regulator, PAS domain	2.0/2	87:30:307
PA1323	Hypothetical, DUF883 family	19.8/15.9	269:13:1,278
PA1324	Predicted to bind/transport polysaccharides	19.1/14.3	Operon
PA2167	Hypothetical, unclassified	$<$2/20.7	72:21:470
PA2176	Hypothetical, unclassified	$<$2/7.0	76:19:296
PA2177d	Predicted sensor response hybrid, PAS domain	2.2/2	99:10:1,244
PA2717	Cyo, chloroperoxidase	$<$2/14.4	ND
PA3040d	Hypothetical, DUF883 family	7.1/6.2	1,352:1,073:3,148
PA3459d	Predicted glutamine amidotransferase	4.4/1	402:415:839
PA3691	Hypothetical, predicted lipoprotein	15.7/17.8	608:13:2,216
PA3795d	Predicted oxido-reductase	5.2/8.8	707:665:1,593
PA3819	SlyB homolog, outer membrane protein	10.3/8.2	1,221:568:3,351
PA4311	Predicted glycosyltransferase	4.0/6.9	ND
PA4394	Predicted mechanosensitive channel, McsS	3.0/4.0	130:15:797
PA4717d	Predicted periplasmic metalloprotease	5.3/6.3	1,404:1,001:3,215
PA5107d	Lipocalin Blc, outer membrane protein	8.1/4.4	Operon
PA5108	Hypothetical, predicted lipoprotein	7.5/3.0	714:387:3,732
PA5178	Hypothetical, LysM domain	9.6/7.1	452:284:5,332
PA5212	Hypothetical, unclassified	15.9/7.8	1,555:44:5,789
PA5424d	Hypothetical, predicted inner membrane protein	8.3/7.4	807:660:3,904

a PAO1 gene names and descriptions were obtained from the Pseudomonas Genome Database (33) and are listed numerically. Sequence-defined transposon insertions in each gene were purchased from the University of Washington Genomic Center. All were transduced into the PAO1/PDO1 reference isolate and verified by PCR analysis.

b Stress induction shows data previously described (19) for the fold increase of the genes’ transcriptional activity expressed from the PAO1 chromosome when treated with D-cycloserine (400 μg/ml) for 15 or 60 min as determined by microarray analysis.

c PDO1 (wild type [WT]), PDO-LS586 (algT), and PDO3511 (mucA) strains containing each lacZ fusion plasmid were grown in L broth at 37°C with aeration, collected during logarithmic growth, and assayed for β-galactosidase activity. Data show each gene's promoter activity (Miller units) when fused to lacZ (P-lacZ) when expressed in the wild type or in an algT or mucA mutant. "Operon" indicates that the gene is in an operon of a gene already tested. ND, not determined.

d The mutant did not show the predicted σ^{22}-dependent phenotype until tested under cell wall stress conditions (see Table 2).

stress stimu-lon (Table 1) for a mutant analysis to shed light on the output of this complex stress response system. These genes can be under the direct or indirect control of σ^{22}; previous studies show that at least two of them (PA0059 and PA3819) have promoter regions with the σ^{22} consensus sequence (25). Transposon insertion mutants of PAO1 with sequence-defined insertions in genes of the σ^{22} stress stimu-lon were obtained from the University of Washington Genomics Resource Center (WGRC). To ensure a consistent PAO1 strain background, which is known to show some diversity among laboratory strains (26), each WGRC transposon-mutated allele was transduced into this laboratory’s reference PAO1 isolate (also known as PDO1). In all, 27 transduced transposon insertions were constructed for study and are shown in Table 1 along with their stress induction values from the microarray analyses (19). Each was tested by PCR to verify that the transposon was in the correct gene (see Materials and Methods).

Verification of membership in the σ^{22} stress stimu-lon. To verify that the genes in Table 1 were indeed upregulated by σ^{22} activation, plasmids that contained each gene’s upstream promoter region transcriptionally fused to lacZ using broad-host-range vector pSS269 were constructed (27). All the reporter plasmids showed β-galactosidase activity in wild-type PAO1 (Table 1), indicating that their promoters had been cloned to form lacZ fusions. Compared to PAO1, the promoter activity of σ^{22} regulon members should show reduced expression in an algT mutant (PDO-LS586) devoid of σ^{22} and high expression in a mucA mutant (PDO3511) lacking the anti-sigma factor for σ^{22}. In general, these genes’ promoter reporters (P-lacZ) showed this predicted expression pattern, indicating that they were directly or indirectly under the control of σ^{22} (Table 1).

Many of the promoters fused to lacZ (P-lacZ) showed a dramatic reduction in β-galactosidase activity in the algT mutant (i.e., devoid of σ^{22}) as expected, but some had only a modest reduction or none in the algT mutant (i.e., PA0567, PA0920, PA2177, PA3040, PA3459, PA3795, PA4717, and PA5424) (Table 1). Thus, their P-lacZ reporters were examined under conditions of cell wall stress in wild-type PAO1 and in an algT (PDO-LS586) mutant (Table 2). The results showed that all but one (PA0567) had a >5-fold increase in β-galactosidase activity in PAO1 as a result of exposure to D-cycloserine, which as predicted was not observed in the algT mutant. With PA0567-lacZ, β-galactosidase activity rose by only 2.3-fold following cell wall stress and then activity actually increased instead of decreasing in the algT mutant, suggesting that the regulation of PA0567 is more complex. Nevertheless, we kept this gene in our study because PA0567-lacZ transcriptional activity was markedly elevated in the mucA mutant (Table 1), indicating that this gene was under σ^{22} control.
TABLE 2 Confirmation of σ^{22}-dependent gene expression during cell wall stress for selected promoters

Promoter-lacZ fusiona	Fold increase in β-galactosidase activity due to d-cycloserine treatment
PA0567-lacZ	2.3
PA0920-lacZ	5.6
PA2177-lacZ	14.2
PA3040-lacZ	10.0
PA3459-lacZ	9.0
PA3795-lacZ	11.4
PA4717-lacZ	8.8
PA5424-lacZ	19.2

a Listed are promoter-lacZ fusions from Table 1 that did not yield the predicted phenotypes under unstressed conditions in algT and/or mucA mutant backgrounds. Here they were compared for β-galactosidase activity under cell wall stress conditions in PAO1 and an algT mutant by exposure to d-cycloserine. Bacteria were grown under routine lab conditions (L broth with aeration at 37°C) to an OD$_{600}$ of 0.3 and treated with a sub-MIC level (400μg/ml) of d-cycloserine for 60 min. The fold increase in β-galactosidase activity (Miller units) shown is a comparison to that of untreated control cultures. In PAO1 containing functional σ^{22}, all 8 promoter fusions above showed an increase in transcriptional activity when exposed to d-cycloserine. None of these promoters, except PA0567-lacZ, showed high induction in the σ^{22} knockout, PAO1ΔalgT, indicating their dependence on σ^{22} for increased expression during cell wall stress.

Phenotypes of σ^{22} stress stimulon mutants. Because the genes of the σ^{22} stress stimulon were discovered by their upregulation following peptidoglycan damage, we looked at the mutants for changes in sensitivity to cell wall-inhibiting antibiotics (i.e., d-cycloserine, fosfomycin, and carbenicillin [Cb]); however, none showed an altered zone of inhibition compared to parent strain PAO1 in a standard disk diffusion assay (data not shown). Sensitivity to elevated growth temperatures is also a common phenotype of mutants defective in the ability to recover from stress, but the pattern of growth at 43°C in L broth with aeration showed no change from that of wild-type PAO1 (data not shown). However, when the growth temperature was raised to 45°C, the PA0062 and PA1324 mutants did show slightly lower growth rates than did PAO1 (Fig. 2). Because previous studies indicate a link between the σ^{22} stimulon and the regulation of biofilm formation (24), we looked for biofilm defects in the mutants with knockouts in genes of the σ^{22} stimulon. We examined microbial adherence to the walls of polystyrene tubes (24-h incubation at 37°C) and at the ability to form air-to-medium interface flocculation in statically grown culture (over 12 days at 25°C) using methods previously described (28). However, no obvious alteration from the wild-type PAO1 biofilm phenotypes could be observed with any of the mutants (data not shown).

The σ^{22} stress stimulon genes are coregulated with those for alginate production, so we examined the possibility that some of the mutations might be altered in envelope homeostasis that would activate AlgW protease sufficiently to cause alginate biosynthesis. However, none showed a mucoid phenotype on agar plates, nor was production of alginate measurably above background PAO1 levels (data not shown). To determine if any of these mutations might cause a block in alginate production, the gene-specific transposon insertions (Tc*) were transduced into the chromosome of an isogenic mucoid strain, PDO351 (mucA::Gm*). However, all of these double mutants retained the mucoid phenotype and produced levels of alginate similar to that produced by PDO351 (data not shown), indicating that none of the genes under study was required for high-level alginate production.

Effect of mutations in the σ^{22} stimulon on PalgD induction in planktonic or sessile culture. To determine whether any of the selected genes in the σ^{22} stress stimulon have a role in envelope homeostasis, we examined the mutants for effects on σ^{22} activation, which responds with high sensitivity to disturbances in the cell wall. Expression of PalgD, a well-characterized σ^{22}-dependent promoter for an important virulence factor, was examined using a lacZ transcriptional fusion (PalgD-lacZ) as an indicator of the σ^{22} activity level under unstressed and stressed conditions. When wild-type PAO1 carried a PalgD-lacZ reporter plasmid (pLW149a) and was grown under planktonic conditions (i.e., L broth with aeration), it produced only a low level of β-galactosidase (13 ± 7 Miller units), but when stressed by exposure to d-cycloserine at a sub-MIC for 60 min, expression increased ~100-fold (1,161 ± 231 Miller units). Thus, when normalized to 100%, the planktonic PalgD-lacZ untreated/treated ratio of expression in PAO1 was typically ~1:100 (Table 3). This 1:100 ratio was then compared to the expression of PalgD-lacZ in the mutants of the σ^{22} stress stimulon under the same conditions.

We also employed another tool for measuring PalgD induction, but under sessile conditions using a plate bioassay (22). Here, a low-copy-number reporter plasmid (pLW117, Gm*) has the algD promoter fused to a promoterless cat gene (PalgD-cat) such that growth occurs in the presence of chloramphenicol (Cm) when PalgD is activated. When a culture of PAO1(pLW117) was
spread onto an L agar plate containing Cm (50 μg/ml) and D-cycloserine was spotted in the center of the plate, a ring of growth formed around the antibiotic due to the activation of the PalgD-cat fusion (Fig. 3, PA01). When the PalgD-cat fusion was tested in a mucA mutant (PDO351), a lawn of growth on the Cm plate was observed because σ^{22} is constitutively active (Fig. 3, mucA).
mucA); this lawn phenotype did not require stress for induction (data not shown). These PalgD-cat phenotypes allowed us to test \(\sigma^{22} \) activity under sessile (i.e., biofilm-like) conditions for comparison to the above PalgD-lacZ phenotypes under planktonic culture conditions.

The PalgD-lacZ and PalgD-cat reporter plasmids (pLW149a and pLW117, respectively) were transferred to each of the mutant strains for comparison of the effects of planktonic and sessile conditions. When grown under the same planktonic conditions, most of them produced \(\beta \)-galactosidase at the same \(\sim 1:100 \) untreated/treated ratios, similar to the wild type. Likewise, in the sessile state of growth, most showed the same ring of growth as did the wild type upon exposure to \(\beta \)-cycloserine. However, there were 11 mutants that showed distinguishing phenotypes compared to the wild type and are presented in Table 3. Four mutants showed wild-type levels of PalgD-lacZ activity under nonstressed conditions but showed alterations in the response to cell wall stress. Two (PA3459 and PA5424) showed reduced responsiveness to stress in the planktonic assay; in the sessile assay, they also displayed a consistently weaker ring of growth (data not shown). Two other mutants (PA1243 and PA5107) showed an increased response to stress when in planktonic culture, although a normal ring of growth was seen in the plate assay rather than an enlarged ring, which might have been predicted.

Three mutants (PA0062, PA1324, and PA5178) had activity higher than that of the wild-type PalgD-lacZ under planktonic and nonstressed conditions (Table 3), indicating that loss of this gene product caused \(\sigma^{22} \) activation even without stress. This suggests that the loss of these gene products affected envelope homeostasis such that AlgW-mediated degradation of MucA is increased. Two of these (PA0062 and PA1324) showed the same results under sessile-biofilm conditions when carrying PalgD-cat and produced a lawn (Fig. 3), which was consistent with \(\sigma^{22} \) activation in the absence of stress. Both of these mutants also showed a temperature-sensitive phenotype at 45°C (Fig. 2). Interestingly, the PA5178 mutant produced a wild-type ring of growth when PalgD-cat was induced by \(\beta \)-cycloserine, rather than a lawn, indicating that its role in envelope homeostasis was observable only under planktonic conditions.

There were four other mutants (PA0567, PA3040, PA2717, and PA0920) with elevated \(\sigma^{22} \) activity that grew as a lawn when expressing \(\text{algD-cat} \) (Fig. 3), indicating constitutive PalgD-cat expression under unstressed sessile conditions. However, all showed normal PalgD-lacZ activity under unstressed planktonic conditions (Table 3). Thus, the roles of these \(\sigma^{22} \) stimulon gene products in maintaining envelope homeostasis were dependent on the sessile-biofilm state of growth.

DISCUSSION

The \(\sigma^{22} \) stimulon is a large stress response system in *P. aeruginosa* that includes the genes for the production of alginate, an important virulence factor; however, most of the gene products in the stimulon have undefined functions (19). Here we sought to better understand the \(\sigma^{22} \) stress response system by examining the expression of 27 undercharacterized genes of this stimulon and the phenotypes resulting from their mutations. Interestingly, none of the mutations of this stress response stimulon had a major effect on typical stress-related phenotypes like growth rate, temperature sensitivity, or alginate production.

We considered the recent observation that a mutation in \(\text{algT/U} \), which disrupts the whole \(\sigma^{22} \) stimulon, results in less robust (i.e., less shear-resistant) biofilms (24). Biofilm growth of *P. aeruginosa* occurs on natural surfaces in the environment and during human infections, such as in the lungs of CF patients, causing chronic bronchopneumonia (6, 7). The development of a biofilm is initiated by planktonic (freely moving) bacteria that attach to a surface (become sessile) and form microcolonies that produce a polymeric matrix and become increasingly tolerant to antibiotics (29). When we compared the 293 genes in the \(\sigma^{22} \) stimulon (19) to those activated during biofilm development (30), we found that 39% of the \(\sigma^{22} \) stimulon genes were in common. Among the genes selected in our study, all but one (PA0919) are upregulated in PA01 biofilms as determined by cluster analysis of whole-genome expression profiles of PA01 transcriptomes derived from planktonic cultures that developed into mature biofilms (30). In addition, a recent screen of a strain PA14 transposon insertion library for biofilm defects revealed that mutants in 3 of the genes studied here (PA0854, PA1243, and PA4394) exhibit reduced biofilm formation as observed by microscopic analysis (31). Given this link between the \(\sigma^{22} \) stimulon and biofilm formation, we examined our \(\sigma^{22} \) stimulon mutants for biofilm defects. However, no obvious alteration from the wild-type biofilm phenotypes was observed using simple biofilm models. Instead, our studies focused on potential effects that the mutations might have on envelope homeostasis, as measured by \(\sigma^{22} \) activity on the alginate operon promoter, PalgD, during planktonic and sessile growth conditions.

We expected that many of the genes in the \(\sigma^{22} \) stimulon would contribute to cell envelope homeostasis because their expression was upregulated during extracytoplasmic stress induced by exposure to \(\beta \)-cycloserine. This is an antibiotic that directly causes disruption of the peptidoglycan cell wall. Disruption of envelope homeostasis results in the activation of \(\sigma^{22} \), which can be measured by the expression of a \(\sigma^{22} \) promoter. One such \(\sigma^{22} \) promoter is PalgD, the promoter of the alginate operon. Like other characterized ECF sigma factors, such as \(\sigma^{s} \) in *Escherichia coli* (32), \(\sigma^{22} \) is known to be activated by stress conditions via signal RIP degradation of the anti-sigma factor that normally sequesters the sigma factor, thus releasing or “activating” sigma factor activity (Fig. 1).

We have previously shown that in *P. aeruginosa* PA01, \(\sigma^{22} \) activation is highly responsive to cell wall stress (19, 22). Indeed, our mutant analysis of 27 genes of the \(\sigma^{22} \) stimulon revealed that over one-third of them (i.e., 11 of 27) had effects on \(\sigma^{22} \) activation under conditions of stress or nonstress.

Four mutants that altered the ability of *P. aeruginosa* to respond to cell wall stress with \(\sigma^{22} \) activation were found. Mutations in PA3459 and PA5424 reduced PalgD responsiveness to cell wall stress under planktonic and sessile conditions. This suggests that their gene products are required for full activation of the stress response system involved in \(\sigma^{22} \) control. PA3459 is the first gene of a three-gene operon (33) that putatively encodes functions involved in the synthesis of a cytoplasmic osmoprotectant, \(N \)-acetylglutamyl-glutamine amide (NAGGN) and is upregulated in response to osmotic stress (34). Thus, loss of this osmoprotectant resulted in a reduced ability to respond to cell wall stress in both planktonic and sessile states of growth. PA5424 encodes a small (81-amino-acid) conserved hypothetical protein predicted to contain 3 transmembrane helices and to localize to the inner membrane. Its closest homolog is the hypothetical protein YeaQ in *E. coli*, sharing 61% similarity, but for which little else is known.
Mutants with defects in PA1243 and PA5107 showed elevated expression during cell wall stress that could be measured during planktonic growth. PA1243 is predicted to encode a sensor/response regulator hybrid protein, located in the cytoplasmic membrane. It contains both a histidine kinase domain and a sensory domain (with a PAS motif). Thus, PA1243 may directly control a subset of genes in the σ^{22} stimulon under conditions recognized by its sensor domain. Interestingly, it was reported that a transposon insertion in PA1243 of strain PA14 exhibits reduced biofilm formation (31). PA5107 is predicted to encode a bacterial lipocalin (Blc), which is an outer membrane lipoprotein. Blc in E. coli is known to be expressed under cell envelope stress conditions caused by high osmolarity (35). Recent reports indicate that E. coli Blc is a dimer with a binding preference for lysophospholipids, which suggests a role for this protein in the storage/transport of lipids important for membrane biogenesis and repair (36).

Of particular interest to this study were the 7 mutants that demonstrated elevated σ^{22} activation even in the absence of stress: PA0062, PA1324, PA5178, PA2717, PA0567, PA3040, and PA0920. This suggests that these gene products are important for maintaining envelope homeostasis and/or preventing AlgW from spontaneously activating the σ^{22} stress response (Fig. 4). Mutations in PA0062 and PA1324 caused higher expression of PalgD with and without stress induction, and this was observed under planktonic and sessile conditions. Interestingly, mutations in PA0062 or PA1324 also caused mild temperature-sensitive growth defects at 45°C. PA0062 encodes a hypothetical uncharacterized protein that is probably a lipoprotein. The PA1324 open reading frame (ORF) is classified in the Pseudomonas Genome Database (33) as an unknown hypothetical protein with a predicted type II lipoprotein signal. Recently, a nuclear magnetic resonance (NMR) structure of the PA1324 protein predicted a pre-albumin-like fold, and based on ligand screening studies, it is postulated to be involved in the binding and/or transport of polysaccharides (37).

The PA5178 mutant showed higher constitutive and induced expression of PalgD only during planktonic growth, while induced and uninduced PalgD expression appeared normal under sessile conditions. Thus, PA5178 plays a role in envelope homeostasis primarily during the planktonic mode of growth. PA5178 encodes an unclassified hypothetical protein that is predicted to contain one LysM domain, which is a widely distributed peptidoglycan-binding domain (38), suggesting that it acts directly on the cell wall. It also has a BON domain, which is a putative phospholipid-binding region (39). A proteomic analysis of P. aeruginosa outer membranes shows that the cellular concentration of this protein is increased with increasing resistance to several antibiotics, including ampicillin (40).

The rest of the mutants (PA0920, PA0567, PA3040, and PA2717) showed defects in unstressed envelope homeostasis that could be observed only in the sessile state of growth (Fig. 4). Mutations in PA0567 and PA3040 had no effect on PalgD expression and induction during planktonic growth but caused constitutive PalgD expression under sessile growth. Thus, the effects due to the loss of these gene products were severe enough to trigger the σ^{22} stress response only in adherent cultures. PA0567 encodes a small, 52-amino-acid, hydrophobic peptide with 2 predicted transmembrane helices. It shares 78% similarity with the proteolipid YqaE of E. coli, and both are members of the Pfam domain UPS0057. UPS0057 proteolipids have been characterized in yeast and plants as stress-responsive proteins that help maintain membrane integrity under environmental conditions of high salinity and low temperatures (41). PA3040 encodes an ortholog of the DUF883 family of membrane proteins. It is the first gene of a three-gene operon expressing hypothetical proteins. Interestingly, another member of the DUF883 protein family is PA1323, which was also included in this study of σ^{22} stimulon members, although its inactivation did not lead to any apparent alteration in σ^{22} activity.

PA2717 is predicted to encode a cytoplasmic chloroperoxidase (Cpo). The PA2717 mutant was normal for unstressed PalgD activity under planktonic conditions, but elevated PalgD expression was seen under planktonic stressed conditions. It formed a lawn in the plate assay, indicating constitutive PalgD activity under sessile conditions, suggesting that it normally attenuates σ^{22} activation in the absence of stress.

The mutation in PA0920 was especially interesting in that under planktonic conditions PalgD expression was normal if unstressed but showed lower responsiveness (i.e., ~50% PalgD-lacZ activity) upon cell wall stress. However, the PA0920 mutation had the opposite effect under sessile growth and caused constitutive...
PalgD expression. PA0920 has recently been shown to encode an integral inner membrane enzyme required for the production of 2'-alanyl-phosphatidylglycerol in P. aeruginosa membranes (42). A PA0920 mutant analysis showed that alanyl-phosphatidylglycerol in P. aeruginosa PAO1 membranes confers increased resistance to the toxic effects of the heavy metal Cr³⁺, the osmolyte sodium lactate, the cationic peptide protamine sulfate, and cefsulodin, a β-lactam that impedes cross-linking of peptidoglycan. PA0920 is induced under acidic growth conditions, and here we show that it is also induced 5-fold by 0.5-cycloserine as part of the σ²² stimulon. Changing the amount of alanyl-phosphatidylglycerol in P. aeruginosa membranes is a mechanism to control the fluidity and permeability of the cellular membranes, which are essential to maintaining envelope homeostasis (42). Here we also observed that loss of alanyl-phosphatidylglycerol in PAO1 membranes resulted in a disruption of envelope homeostasis leading to σ²² activation, but only under sessile/biofilm conditions.

In conclusion, we have found σ²²-dependent genes whose loss resulted in altered stress responsiveness or constitutive activation of the σ²² sensory system that monitors cell envelope homeostasis. The effects were often dependent upon whether P. aeruginosa was in a planktonic or a sessile state of growth, suggesting an overlap with biofilm control mechanisms. Continued studies on the role of σ²² stimulon genes may reveal other links to the biofilm mode of growth and potential solutions for disrupting biofilms that often lead to antibiotic tolerance and persistence during infection.

MATERIALS AND METHODS
Bacterial strains and growth conditions. Strains of P. aeruginosa used in this study are shown in Table 4. The PAO1 parent strain used in this study, also known as PDO1 (22), is a spontaneous Cm⁵ isolate of the original Cm⁵ PAO1 strain obtained from B. W. Holloway (43). E. coli DH5α was used for routine plasmid manipulations. Bacteria were routinely cultured in L broth (10 g tryptone, 5 g yeast extract, and 5 g NaCl each per liter) or on L agar. LPIA plates were a 1:1 mix of L agar and Pseudomonas isolation agar (Difco) and were used to countselect against E. coli following conjugal plasmid transfers to P. aeruginosa.

Antibiotics (Sigma) were used at the concentrations indicated: gentamicin (Gm), 20 μg/ml and 100 μg/ml for E. coli and P. aeruginosa, respectively; tetracycline (Tc), 20 μg/ml and 60 μg/ml for E. coli and P. aeruginosa, respectively; kanamycin (Km), 30 μg/ml, and ampicillin (Ap), 100 μg/ml, both for E. coli; and carbenicillin (Cb), 100 μg/ml for P. aeruginosa.

Mutant strain construction. Mutants of P. aeruginosa PAO1 with sequence-defined transposon (Tn5-derived, Tc⁻) insertions of Tn5-lacz or Tn5-phoA were purchased from the University of Washington Genome Resource Center (WGRC, http://www.gs.washington.edu/labs/manoil/libraryindex.htm). Such Tn5-marked alleles were transduced into this laboratory’s PAO1 reference isolate (PDO1) with selection for tetracycline resistance (Tc⁻). Plate lysates with the generalized transducing phage F116L (43) were made with each WGRC mutant by incubating 10 ml F116L lysate at various 1:10 dilutions with 0.1 ml of an overnight L broth culture containing 10 mM MgSO₄ and 5 mM CaCl₂, which was then incubated at room temperature for 10 min to permit adsorption. Molten top agar at 50°C (3 ml L broth with 0.7% agar) was added to each tube and immediately poured onto the surface of an L agar plate. After 24 h at 37°C, 3 ml of L broth was added to a plate showing confluent plaques, the top agar was extracted with a sterile spreader, and the mix was centrifuged to remove the agar and bacterial cells. The supernatant was passed through a 0.45-μm filter to remove any residual bacteria. For transductions, 0.1 ml of a transducing lysate was mixed with 0.2 ml of the P. aeruginosa host strain grown overnight in L broth, which was incubated at room temperature for 15 min and then shaken at 225 rpm at 37°C for 1 h; the culture was then plated onto L agar containing selective antibiotics and incubated at 37°C until colonies were observed. All transduced transposon insertions were examined by PCR to verify that each insertion was in the correct gene. For this, primers specific for Tn5-lacz (LacZ148, GG GTAACGCCAGGTGTCTTC) or Tn5-phoA (PhoA138, CGGGTGCACT AAATGCAGG) and primers specific for the 5' and 3' ends of the gene of interest using sequences obtained from the Pseudomonas Genome Database (33) were used in standard PCRs with Taq polymerase; the probes were observed using agarose gel electrophoresis for size analysis. To examine the effect of such mutations on the mucoid phenotype, Tn5 (Tc⁻)-mutated alleles were transduced into PDO351 (i.e., mucl:Gm). There were some F116L lysates of WGR Tn5 mutants (i.e., PA0062, PA567, PA920, PA1323, PA1324, PA2717, PA3040, PA3819, PA4717, PA5107, and PA5424) where transductants were rare, in which case the mucl::aacC (Gm-) allele from PDO351 was transduced into verified PA O1/PDO1::Tn5 (Tc⁻) mutants instead. Information on domains in proteins of interest was found in the Pseudomonas Genome Database (33) found at http://www.pseudomonas.com.

Disk diffusion assay. The relative level of resistance to antibiotics by mutants was compared to that of the wild type by a standard disk diffusion assay. A sample (0.1 ml) of culture in the early logarithmic phase was spread onto an L agar plate, and then a 5-mm paper disk impregnated with the antibiotic was placed in the center to permit radial diffusion. After 24 h of incubation at 37°C, the diameter of the ring of growth inhibition was measured.

Assay for alginate. P. aeruginosa strains were grown on L agar plates at 37°C for 48 h, and then the growth was resuspended in saline. Bacterial cells were removed by centrifugation, and then the supernatant was tested for alginate (which is composed of two uronic acids) using the carbazole-spectrophotometric method for the assay of uronic acids described by Knutson and Jeanes (44). Alginic acid from Macrocystis pyrifera (Sigma) was used as the standard.

Promoter-lacZ reporter plasmids. High-fidelity Pfu Turbo (Stratagene) was used to amplify DNA by PCR with all primers custom synthesized by Eurofins MWG Operon using sequences available in the Pseudomonas Genome Database (33). Promoter regions obtained by PCR amplification included DNA ~0.5 kb upstream of each selected ORF, which was cloned into the broad-host-range transcriptional lacZ reporter pSS269 (27). Reporter plasmids were transferred from E. coli to P. aeruginosa strains by triparental mating as described elsewhere (27) using helper plasmid pKK2013 to mobilize the oriT-containing plasmids to P. aeruginosa with selection on LIA plates containing an appropriate selective antibiotic. It was observed that reporter plasmids in some Tn5 mutants (i.e., PA0062, PA9020, PA1243, PA1324, PA2177, and PA3819) were somewhat unstable, and so fresh conjugations of reporter plasmids into these mutants were followed immediately by β-galactosidase assays in order to obtain consistent results. Transcriptional activity of reporter constructs was determined by measuring β-galactosidase activity, reported in Miller units, from promoter-lacZ fusions. For assays verifying σ²² dependence, strains were grown in L broth to an optical density at 600 nm (OD₆₀₀) of 1.0, at which time 0.1-ml aliquots were assayed. To determine promoter activation in response to cell wall stress induced by β-cycloserine, strains were grown in 25 ml L broth at 37°C to an OD₆₀₀ of 0.3; cultures were split in half, β-cycloserine was added to one half (400 μg/ml), and then both were incubated for an additional 60 min, at which time 0.1-ml samples of untreated and treated cultures were assayed for β-galactosidase activity.

Bioassay for PalgD induction on a solid substrate. Plasmid pKK61 with an algD-cat fusion in low-copy-number vector pLAFR1 (Tc⁻) was previously described (45). Because the mutants in this study were Tc⁻ due to the transposon insertions, a Gm⁻ derivative of pKK61 named pLW117 was constructed to permit selection of the plasmid transferred to the mutant strains. pLW117 was constructed by cloning an aacC1 (Gm⁻) cartridge (46) into the HindIII site of pKK61. Bioassays of PAO1/PDO1::Tn strains (Gm⁻) carrying pLW117 were performed as previously described.
TABLE 4 P. aeruginosa strains and plasmids used in this study

Strain or plasmid	Genotype/phenotype	Source or reference
P. aeruginosa		
PAO1/PDO1	Wild type, Cm⁺	This laboratory
PDO-LS586	algI::aacC1	47
PDO351	musA::aacC1 (Gm⁺) Alg⁺	22
PDO358	algV::aacC1	22
PDO-PA0059	PDO1, PA0059::Tn (Tc⁺) (transduced)	This study
PDO-PA0062	PDO1, PA0062::Tn (Tc⁺) (transduced)	This study
PDO-PA0460	PDO1, PA0460::Tn (Tc⁺) (transduced)	This study
PDO-PA0567	PDO1, PA0567::Tn (Tc⁺) (transduced)	This study
PDO-PA0854	PDO1, PA0854::Tn (Tc⁺) (transduced)	This study
PDO-PA0919	PDO1, PA0919::Tn (Tc⁺) (transduced)	This study
PDO-PA0920	PDO1, PA0920::Tn (Tc⁺) (transduced)	This study
PDO-PA1243	PDO1, PA1243::Tn (Tc⁺) (transduced)	This study
PDO-PA1323	PDO1, PA1323::Tn (Tc⁺) (transduced)	This study
PDO-PA1324	PDO1, PA1324::Tn (Tc⁺) (transduced)	This study
PDO-PA2167	PDO1, PA2167::Tn (Tc⁺) (transduced)	This study
PDO-PA2176	PDO1, PA2176::Tn (Tc⁺) (transduced)	This study
PDO-PA2177	PDO1, PA2177::Tn (Tc⁺) (transduced)	This study
PDO-PA2717	PDO1, PA2717::Tn (Tc⁺) (transduced)	This study
PDO-PA3040	PDO1, PA3040::Tn (Tc⁺) (transduced)	This study
PDO-PA3459	PDO1, PA3459::Tn (Tc⁺) (transduced)	This study
PDO-PA3691	PDO1, PA3691::Tn (Tc⁺) (transduced)	This study
PDO-PA3795	PDO1, PA3795::Tn (Tc⁺) (transduced)	This study
PDO-PA3819	PDO1, PA3819::Tn (Tc⁺) (transduced)	This study
PDO-PA4311	PDO1, PA4311::Tn (Tc⁺) (transduced)	This study
PDO-PA4394	PDO1, PA4394::Tn (Tc⁺) (transduced)	This study
PDO-PA4717	PDO1, PA4717::Tn (Tc⁺) (transduced)	This study
PDO-PA5107	PDO1, PA5107::Tn (Tc⁺) (transduced)	This study
PDO-PA5108	PDO1, PA5108::Tn (Tc⁺) (transduced)	This study
PDO-PA5178	PDO1, PA5178::Tn (Tc⁺) (transduced)	This study
PDO-PA5212	PDO1, PA5212::Tn (Tc⁺) (transduced)	This study
PDO-P5424	PDO1, PA5424::Tn (Tc⁺) (transduced)	This study

Plasmids

pKK61	pCP19 (oriVgc, Te⁺) PalgD-cat	22
plW117	pKK61 aacC1 (Gm⁺) Palg-D-cat	This study
plW127	pSS269, PA0059aacC1 (−239/+50)-lacZ	19
plW148	pSS269, PA5178 (−501/+50)-lacZ	This study
plW149a	pSS269, PA3540 algD (−925/+50)-lacZ	19
plW150	pSS269, PA4394 (−255/+60)-lacZ	This study
plW152	pSS269, PA3819 (−660/+70)-lacZ	This study
plW155	pSS269, PA3691 (−372/+59)-lacZ	19
plW166	pSS269, PA5108 (−163/+70)-lacZ	19
plW168	pSS269, PA4717 (−1130/+50)-lacZ	19
plW179	pSS269, PA1323 (−450/+50)-lacZ	This study
plW182	pSS269, PA2176 (−450/+50)-lacZ	This study
plW183	pSS269, PA2177 (−450/+50)-lacZ	This study
plW185	pSS269, PA2167 (−500/+50)-lacZ	This study
plW186	pSS269, PA0460 (−500/+50)-lacZ	This study
plW187	pSS269, PA0567 (−500/+50)-lacZ	This study
plW188	pSS269, PA0920 (−500/+50)-lacZ	This study
plW189	pSS269, PA3040 (−500/+50)-lacZ	This study
plW190	pSS269, PA3459 (−500/+50)-lacZ	This study
plW191	pSS269, PA3795 (−500/+50)-lacZ	This study
plW194	pSS269, PA5212 (−500/+50)-lacZ	This study
plW195	pSS269, PA5424 (−500/+50)-lacZ	This study
pRK2013	ColE1-Tra(RK2) × Km²	48
pSS269	lacZ SF Ap²	27

a All P. aeruginosa strains were derived from PDO1, a spontaneous Cmr isolate of strain PAO1 previously described (28). Abbreviations: Gm⁺, aacC1-encoded gentamicin resistance; Ap⁺, ampicillin/carbenicillin resistance; Km⁺, kanamycin resistance; Alg⁺, mucoid due to alginate overproduction; lacZ, β-galactosidase reporter in transcriptional fusions; SF, stabilization fragment for replication in P. aeruginosa. Numbers in parentheses before lacZ indicate the promoter region in base pairs relative to the start of translation (+1) of the open reading frame used to make the transcriptional reporter.

(22). Briefly, expression of algD-cat was tested by incubating cultures to an OD₆₀₀ of 1.2, at which time a 1.5-ml sample was centrifuged, and the bacterial cell pellet was resuspended in 10 mM MgSO₄ to an OD₆₀₀ of 0.2. A 25-µl sample of this cell suspension was spread onto an L agar plate containing chloramphenicol at 50 µg/mL. A 5-mm filter disk impregnated with 1 mg d-cycloserine (i.e., 10 µl of a 100-mg/ml stock solution) was

May/June 2012 Volume 3 Issue 3 e00094-12
placed in the center of the plate. The test plates were then incubated at 25°C for 3 days and examined for a ring of Cmr growth around the disk, indicating induced expression of algD-cat.

Biofilm assays. Static L broth cultures of PAO1 and mutant derivatives were compared for their abilities to adhere to the walls of polystyrene tubes after a 24-h incubation at 37°C as previously described (28). Also, the ability to form an air-to-medium interface flocculation during static-growth culture at 25°C was performed as previously described (28), and the flocculation was examined daily over a 12-day period.

ACKNOWLEDGMENTS

We gratefully acknowledge the VCU Nucleic Acids Core Facility for assistance in the microarray analyses.

This work was supported by Public Health Service grant AI-19146 from the National Institute of Allergy and Infectious Diseases (D.E.O.) and in part by Veterans Administration medical research grant I01BX000477 (D.E.O.).

REFERENCES

1. Lyczak JB, Cannon CL, Pier GB. 2000. Establishment of *Pseudomonas aeruginosa* infection: lessons from a versatile opportunist. Microbes Infect. 2:1051–1060.

2. Govan JR, Deretic V. 1996. Microbial pathogenesis in cystic fibrosis: mucoid *Pseudomonas aeruginosa* and Burkholderia cepacia. Microbiol. Rev. 60:539–574.

3. Leid JG, et al. 2005. The exopolysaccharide alginate protects *Pseudomonas aeruginosa* biofilm bacteria from IFN-gamma-mediated macrophage killing. J. Immunol. 175:7512–7518.

4. Pier GB, Coleman F, Grout M, Franklin M, Ohman DE. 2001. Role of alginate O acetylation in resistance of mucoid *Pseudomonas aeruginosa* to opsonic phagocytosis. Infect. Immun. 69:1893–1901.

5. Schwarzmann S, Boring JR, III. 1971. Antiphagocytic effect of slime from *Pseudomonas aeruginosa* in cystic fibrosis: environmental stress and regulation of bacterial virulence. J. Bacteriol. 104:547–558.

6. Moreau-Marquis S, Stanton BA, O’Toole GA. 2008. *Pseudomonas aeruginosa* biofilm formation in the cystic fibrosis airway. Pulm. Pharmacol. Ther. 21:595–599.

7. Jain S, Ohman DE. 2004. Alginate biosynthesis. p 53–81. In Ramos JL (ed), *Pseudomonas, vol 3*. ASM Press, Washington, D.C.

8. Martin DW, et al. 1994. Mechanism of conversion to mucoidy which is modulated by alginate gene expression which is modulated by algT. J. Bacteriol. 166:7007–7014.

9. Wozniak DJ, Ohman DE. 1994. Mucoid-to-nuccmucoid conversion in alginate-producing *Pseudomonas aeruginosa* often results from spontaneous mutations in algT, encoding a putative alternative sigma factor, and shows evidence for autoregulation. J. Bacteriol. 176:6677–6687.

10. Wood LF, Ohman DE. 2006. Use of cell wall stress to characterize sigma 22 (AlgT/U) activation by regulated proteolysis and its role in *Pseudomonas aeruginosa*. Mol. Microbiol. 72:183–201.

11. Wood LF, Ohman DE. 2006. 2006. Independent regulation of mucD, an HtrA-like protease in *Pseudomonas aeruginosa*, and the role of its proteolytic motif in alginate gene regulation. J. Bacteriol. 188:3134–3137.

12. Qi D, Eisinger VM, Rowen DW, Yu HD. 2007. Regulated proteolysis controls mucoid conversion in *Pseudomonas aeruginosa*. Proc. Natl. Acad. Sci. U. S. A. 104:581–587.

13. Wozniak DJ, Ohman DE. 2008. Cell wall-inhibitory antibiotics activate the alginate biosynthesis operon in *Pseudomonas aeruginosa*: roles of sigma (AlgT) and the AlgW and Prc proteases. Mol. Microbiol. 62:412–426.

14. Qi D, Eisinger VM, Head NE, Pier GB, Yu HD. 2008. ClpXP proteases positively regulate alginate overexpression and mucoid conversion in *Pseudomonas aeruginosa*. Microbiology 154:2119–2130.

15. Klose J, et al. 2001. The sigma factor AlgU plays a key role in formation of robust biofilms by nonmucoid *Pseudomonas aeruginosa*. J. Bacteriol. 193:3001–3010.

16. Fioredo AM, Boucher JC, Deretic V. 2002. Global genomic analysis of AlgU (sigma(E))-dependent promoters (sigmulon) in *Pseudomonas aeruginosa* and implications for inflammatory processes in cystic fibrosis. J. Bacteriol. 184:1057–1064.

17. Davis CR, Leid J, Ohman DE. 2004. Development of tools for the genetic manipulation of *Pseudomonas aeruginosa*. J. Microbiol. Methods 58:203–212.

18. Friedman L, Kolter R. 2004. Genes involved in matrix formation in *Pseudomonas aeruginosa* PA14 biofilms. Mol. Microbiol. 51:675–690.

19. Monds RD, O’Toole GA. 2009. The developmental model of microbial biofilms: ten years of a paradigm up for review. Trends Microbiol. 17:73–87.

20. Waite RD, et al. 2006. Clustering of *Pseudomonas aeruginosa* transcription from planktonic cultures, developing and mature biofilms reveals distinct expression profiles. BMC Genomics 7:162.

21. Müller HG, Böttcher S, Dötsch A, Fischer R, Häussler S. 2009. Adaptation of *Pseudomonas aeruginosa* to various conditions includes tRNA-dependent formation of alanyl-phosphatidylglycerol. Mol. Microbiol. 71:551–565.
43. Holloway BW. 1969. Genetics of *Pseudomonas*. Bacteriol. Rev. 33:419–443.
44. Knutson CA, Jeanes A. 1968. A new modification of the carbazole analysis: application to heteropolysaccharides. Anal. Biochem. 24:470–481.
45. Wozniak DJ, Ohman DE. 1991. *Pseudomonas aeruginosa* AlgB, a two-component response regulator of the NtrC family, is required for *algD* transcription. J. Bacteriol. 173:1406–1413.
46. Schweizer HP. 1993. Small broad-host-range gentamicin resistance gene cassettes for site-specific insertion and deletion mutagenesis. Biotechniques 15:831–833.
47. Silo-Suh L, Suh SJ, Sokol PA, Ohman DE. 2002. A simple alfalfa seedling infection model for *Pseudomonas aeruginosa* strains associated with cystic fibrosis shows AlgT (sigma-22) and RhlR contribute to pathogenesis. Proc. Natl. Acad. Sci. U. S. A. 99:15699–15704.
48. Figurski DH, Helinski DR. 1979. Replication of an origin-containing derivative of plasmid RK2 dependent on a plasmid function provided in trans. Proc. Natl. Acad. Sci. USA 76:1648–1652.