Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website.

Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.
COVID 19 and the risk of gastro-intestinal perforation:
A case series and literature review

Dr. Joris Paul Bultea,⁎, Drs. Nynke Postmab,c, Drs. Menno Beukemac,d, Drs. Bas Inberg a, Drs. Abe Gerrit Stegemanb,c, Prof. Dr. Hans van der Hoeven e

a Queen Beatrix Regional Hospital: Streekziekenhuis Koningin Beatrix, General Surgery, the Netherlands
b Queen Beatrix Regional Hospital: Streekziekenhuis Koningin Beatrix, Anesthesiology, the Netherlands
c Queen Beatrix Regional Hospital: Streekziekenhuis Koningin Beatrix, Intensive Care, the Netherlands
d Queen Beatrix Regional Hospital: Streekziekenhuis Koningin Beatrix, Internal Medicine, the Netherlands
e Radboudumc, Intensive Care, the Netherlands

Abstract

Keywords:
COVID19
Complication
Gastro-intestinal perforation
IL-6 inhibition

Background: COVID19 is a viral disease with pneumonia as its most common presentation. Many presentations and complications have been reported, but gastro-intestinal perforation has not received much attention.

Methods: three cases from our hospital are presented, and the current literature was reviewed.

Results, cases: All three patients were admitted to the ICU with respiratory failure due to COVID19 pneumonia and intubated. Our first patient was treated with steroids, and subsequently diagnosed with rectal perforation on day 34 of his hospital admission. The second patient was treated with steroids and tocilizumab, and diagnosed with colonic perforation 1 day after neostigmine administration, on day 14 of his hospital admission. Our third patient was treated with steroids and tocilizumab, and diagnosed colonic perforation 4 days after neostigmine administration, on day 14 of his hospital admission.

Results, literature: 25 more cases were found in current literature, both upper GI and lower GI perforations, either as a presenting symptom or during the course of hospitalization. These were often associated with treatment with steroids, interleukin 6 inhibitors, or both.

Conclusions: Gastro-intestinal perforation is a rare but dangerous complication of COVID19. Treatment with tocilizumab and steroids may both increase the risk of this complication, and hamper diagnosis.

© 2021 Elsevier Inc. All rights reserved.

1. Cases

We present three cases of colorectal perforation in patients with COVID 19, two of which previously treated with steroids and tocilizumab.

A 65 year old male with a history of percutaneous coronary revascularization was admitted to our ICU with COVID 19 pneumonia, and intubated on day 5, for respiratory failure. From day 16 on he had recuring fevers despite multiple antibiotics. Prednisolone was started on day 22: 120 mg daily for five days, then tapered over 19 days. On day 28 rectal bleeding was noticed, a lower rectum perforation with perirectal abscess was diagnosed on day 34. A diverting colostomy was performed. He was discharged from the ICU on day 49. His ICU treatment was complicated by an ischemic stroke, hampering his recovery. He was discharged to a rehabilitation facility on day 90. Last follow-up was on day 370, patient has returned home but has not yet fully recovered. Imaging and endoscopy suggest the defect has fully healed, restoration of intestinal continuity is under consideration.

A 58 year old male with a history of mild obesity was transferred to our ICU with COVID 19 pneumonia. He was intubated and received dexamethasone 6 mg/day continued for 19 days, starting one day previous to intubation. He also received tocilizumab (8 mg/kg, on day of intubation). On day 13, neostigmine was administered (2 mg/h for 24 h) because of increasing abdominal distension and failure to pass stool, with rapid result. On day 14 a CT scan of the chest and abdomen (performed to rule out pulmonary embolus) showed a distended caecum and marked intraperitoneal air, without free fluid or signs of focal inflammation. Because of a lack of sepis, and a high risk of worsening his pulmonary status with surgery, we initially opted for a diagnostic peritoneal lavage, which was negative. 36 h later he developed signs of sepis, and a repeat CT showed increased free air, and focal inflammation of the caecal region. Exploratory laparotomy showed perforation of focal necrosis/ischemia of the caecum. Llooaecetomy was performed, and an end-ileostomy created. He was extubated 10 days...

⁎ Corresponding author.
E-mail address: jorisbulte@gmail.com (J.P. Bulte).

https://doi.org/10.1016/j.jcrc.2021.10.020
0883-9441/© 2021 Elsevier Inc. All rights reserved.
Table 1

Author / Case	Period / Age	Time of perforation	IL antagonist	Steroids	Location	Specifics	Treatment	outcome
Lower GI perforation								
Nahas (6)	1 / 92	Before COVID diagnosis	none	None	Transverse colon	5 days postoperative after colostomy for obstructive rectal cancer	Resection	Deceased
Giuffre / A (4)	1 / 87	Before hospital admission	none	None	Lower rectum	Conservative	Deceased	
Santana (7)	2 / 43	Before hospital admission	none	none	Terminal ileum	Medical history of crohn’s disease	Resection	Recovered
Costanzi (3)	2 / 64	Before hospital admission	none	none	Sigmoid	Diverticulitis	Resection	Recovered
Verma / B (8)	2 / 24	After hospital admission	none	none	Coecum	5 days post caesarean section	Primary closure and defunctioning ileostomy	Recovered
Neto (2)	1 / 80	Before hospital admission	none	None	Sigmoid	Resection	Recovered	
Bulit / A	1 / 65	After ICU admission	Dexamethasone tapering dose	Prednisolone	Mid rectum	Defunctioning colostomy	Resection	Recovered
Baiu (1)	2 / 66	Before hospital admission	none	Dexamethasone	Coecum	After clostridium difficile infection	Resection	Recovered
Verma / A (8)	2 / 60	Before hospital admission	none	‘steroids’	Upper rectum	Primary closure and defunctioning colostomy	Resection	Recovered
Bulit / B	3 / 58	After ICU admission	Methylprednisolone 6 mg/kg daily	Tocilizumab	Coecum	Neostigmine use, very distended ascending colon	Resection	Discharged to rehabilitation facility
Bulit / C	3 / 57	After ICU admission	Methylprednisolone 6 mg/kg daily	Tocilizumab	Transverse colon	Neostigmine use	Resection	Recovered
Rojo (18)	1 / 54	After ICU admission	Methylprednisolone	Tocilizumab	Ascending colon	Resection	Deceased	
Bruce-Hickman (20)	1 / 43	After ICU admission	Methylprednisolone 100 mg (previously)	Tocilizumab	Coecum	After embolization of bleeding ulcer	Resection	NR b
Guardiola (16)	2 / 66	After ICU admission	Methylprednisolone 1 mg/kg/day	Tocilizumab	Ascending colon	Resection	NR b	
Montorfano (17)	1 / 54	After ICU admission	Methylprednisolone 2 mg (single dosage)	Tocilizumab	Coecum	Resection	Discharge to long-term care facility	
De Nardi (10)	1 / 53	After ICU discharge	Anakinra	Tocilizumab	Coecum	Very distended ascending colon	Resection and anastomosis	Resection
Schwab (19)	2 / 34	After ICU admission	IL-6 receptor agonist	Tocilizumab	Coecum	Resection	Deceased	
Giuffre / B (5)	1 / 68	After hospital admission	NR b	Not reported	Rectum	Conservative	Deceased	
Giuffre / C (5)	1 / 84	After hospital admission	NR b	None	Rectum	Conservative	Deceased	
Bhayana (9)	1 / NR b	After hospital admission	NR b	NR b	Ileum	NR b	NR b	
Upper GI perforation								
Verma / C (8)	2 / 21	Before hospital admission	NR b	None	Stomach	Primary closure and graham patch	Recovered	
Kangas (13)	1 / 74	After ICU admission	none	None	Presumed upper GI	Refused surgery	Conservative	Deceased
Lee (15)	1 / 73	After hospital admission	none	None	Duodenum	After embolization of a bleeding ulcer	Primary closure, pyloric exclusion and gastrojejunostomy	Recovered
He (12)	1 / 71	After hospital admission	none	None	Duodenum	Primary closure	Recovered	
Marcucci (14)	1 / 71	After ICU admission	none	None	Stomach	After bag-mask ventilation, large defect	Surgically, not specified	Deceased
Galvez (11)	1 / 59	After hospital admission	Methylprednisolone 1 mg/kg/day	None	Gastrjejunostal anastomosis	After RYGB	Graham patch repair	Recovered

(continued on next page)
postoperatively. A perisplenic abscess was drained percutaneously on day 14, he was discharged from the ICU 19 days postoperatively. Histology showed circumscribed ulceration with transmural abscess formation and necrosis.

A 57 year old male with a history of mild obesity was admitted with a COVID 19 pneumonia, and started on dexamethasone, 6 mg/day, continued for 17 days. On day 2 he was admitted to our ICU with impending respiratory failure, and intubated on day 3. He received tocilizumab (8 mg/kg on day 3). Because of increasing abdominal distension and failure to pass stool on day 10, a CT scan was performed to rule out mechanical obstruction. This showed a distended colon and distal small intestine, a small amount of ascites, no free air. Neostigmine was started (2.5 mg/h for 24 h) with rapid result. On day 14 an abdominal CT was performed because of progressive abdominal distension without signs of sepsis, and found a moderately distended caecum, massive intraperitoneal air. Exploratory laparotomy showed a distended proximal colon, fixed to the ventral abdominal wall, with perforation of the distal transverse colon. An extended right hemicolectomy was performed, and an end-ileostomy created. He was extubated two days postoperatively and discharged from the ICU on postoperative day 4. He was discharged to a rehabilitation facility on postoperative day 19. Histology of the colon showed abrupt transitions from normal tissue to non-specific ischemic necrotic changes with a regenerative response. Elective stoma reversal was performed 189 days post initial admission.

2. Discussion

Table 1 shows a number of intestinal perforations in COVID patients have been reported, but considering the worldwide incidence of COVID, this appears to be a rare complication. A review of the literature to date (April 2021) showed a total of 25 gastro-intestinal perforations. We found 18 perforations in patients not treated with IL-6 inhibitors. Of these 18 cases, 12 were lower GI perforations (1-10), 6 were perforated gastroduodenal ulcers (8,11-14). One of these after embolization of a bleeding ulcer (15). Seven cases occurred after treatment with tocilizumab or sarilumab: an additional 5 cases of lower GI perforation (16-19), including one subclinical perforation after embolization of a bleeding ulcer (20). One additional upper GI perforation was found, also after embolization of a bleeding ulcer (21). One was only reported as ‘gastro-intestinal perforation’ (22). When looking at the use of steroids: treatment with steroids was reported in 10 cases. Of these 10 cases, six received concurrent treatment with tocilizumab. Including the present report, 13 patients recovered, 9 patients died, outcome was not reported for 6 patients. While the reporting might very well be biased, prognosis of gastro-intestinal perforation in COVID patients is not abysmal.

Intestinal perforation is a well-known complication of tocilizumab in rheumatoid arthritis, affecting approximately 3/1000 patient years (23,24). Risk is increased with concurrent steroid treatment (24). The pathophysiology of perforation is unknown.

Based on this data in rheumatoid arthritis, when tocilizumab was first used in COVID 19, it was hypothesized that perforation might complicate treatment (25). Our cases and the review of the literature indicate a risk of perforation in COVID19 patients not treated with tocilizumab as well. Whether this association is enhanced by tocilizumab treatment remains unsure.

Perforation complicating neostigmine treatment for Ogilvie’s syndrome has also been reported a few times (26-29). Though there was no evidence of mechanical obstruction in our patients, the use of neostigmine could also have been contributory.

Tocilizumab is increasingly used in the treatment of severe COVID 19, and this is likely to increase further since the publication of the results of the REMAP-CAP trial (401 patients on IL-6 inhibitors, 402 controls) and the RECOVERY trial (2022 patients on tocilizumab, 2094 controls) (30,31). Both studies report only low numbers of serious adverse events, neither study reports any perforations. It is generally combined with steroids, compounding perforation risk. Whenever possible, other risk factors (e.g. the use of neostigmine, colonic instrumentation) should be avoided. While the benefits of tocilizumab may well justify its use in severe COVID19 patients, health care providers should be mindful of potential intestinal perforation in patients with COVID, perhaps even more so when they are also treated with tocilizumab. Specifically: classic signs of abdominal sepsis might not be apparent due to the immunosuppressive nature of tocilizumab and concurrent steroid use. Tocilizumab is a powerful suppressor of CRP, but not leukocytosis (32). This can make it extra challenging to differentiate between gastro-intestinal perforation, and pneumoperitoneum from other causes, e.g. alveolar barotrauma (the Macklin effect) (33,34). Similar to perforation in non-COVID patients, rapid diagnosis and surgical treatment is of the utmost importance, and can lead to favorable outcomes.

Declarations

Ethics approval for case report is not required under Dutch law.

Consent for publication

All included patients consented to the use of their data.

Availability of data and materials

Not applicable.

Competing interests

None.

Funding

None.

Authors’ contributions

JPB: Conceptualization, data curation, formal analysis, writing - original draft and review & editing. NP, MB, BI and AGS data curation,
writing - review & editing. HvdlH took Ceonceptualization, formal analysis, writing - review & editing.

Take home message

Gastro-intestinal perforation is a rare but dangerous complication of COVID19. Treatment with tocilizumab and steroids possibly increase the risk of this complication, and hamper its diagnosis.

Tweet

Gastro-intestinal perforation: a rare but dangerous complication of COVID19. Tocilizumab and steroids possibly increase risk, hamper diagnosis.

Acknowledgements

None.

References

[1] Baiu I, Forgo E, Kin C, Weiser TG. Cec and you shall find: Cecal perforation in a patient with COVID-19. Dig Dis Sci. 2021;66(11):3731–4.
[2] Correa Neto IF, Fortes Viana K, Braga Soares da Silva M, Mariano da Silva L, de Oliveira G, Rossi da Silva Cecchini A, et al. Perforated acute abdomen in a patient with covid-19: an atypical manifestation of the disease. J Coloproctol (RIO J). 2020;40(3):269–72.
[3] Costanzo A, Monteleone M, Confalonieri M, Colletti G, Frattarulo C, Magni C, et al. COVID-19 and acute perforated diverticulitis: management and surgical timing. Minerva Chir. 2020;75(6):468–70.
[4] Giuffre M, Rozzato AM, Di Bella S, Occhipinti AA, Martingano P, Cavallaro MFM, et al. Spontaneous rectal perforation in a patient with SARS-CoV-2 infection. J Pers Med. 2020;10(4).
[5] Giuffre M, Di Bella S, Sambartaro G, Zerbato V, Cavallaro M, Occhipinti AA, et al. COVID-19-induced thrombosis in patients without gastrointestinal symptoms and elevated fecal calprotectin: hypothesis regarding mechanism of intestinal damage associated with COVID-19. Trop Med Infect Dis. 2020;5(3).
[6] Nahas SC, Meira JJD, Sobrado LF, Sorbello M, Segatelli V, Abdala E, et al. Intestinal perforation caused by Covid-19. Arq Bras Cir Dig. 2020;33(2):e1515.
[7] Santana GO, de Santana AC, Pleiisticker VB. Ileum perforation in Crohn’s disease patient during SARS-CoV-2 infection. JAMA Surg. 2021;176(4):e42.
[8] Verma D, Sharma S, Kishore Garg L, Taweesedt PT, Ratnani I, Surani S. An intriguing case of pneumoperitoneum in a patient with COVID-19: do all pneumoperitoneum cases need surgery? Cureus. 2020;12(12):e12279.
[9] Hayashi JA. Pneumoperitoneum in a covid-19 patient due to the macklin effect. Int J Colorectal Dis. 2021;384(16):1491–502.
[10] De Nardi P, Parolini DC, Ripa M, Racca S, Rosati R. Bowel perforation in a Covid-19 patient. Int J Colorectal Dis. 2020;35(9):1797–800.
[11] Galvez A, King K, Xhanlou N, Hoesterey D, et al. Occult colonic perforation in a patient with coronavirus disease 2019 after interleukin-6 receptor antagonist therapy. Open Forum Infect Dis. 2020;7(11):ofaa424.
[12] Bruce-HICKMAN D, Sajedi SM, Pang YH, Seow CS, Chen W, Gulati Kansal M. Bowel ulceration following tocilizumab administration in a COVID-19 patient. BMJ Open Gastroenterol. 2020;7(1).
[13] Rojo M, Cano-Valderrama O, Picazo S, Saez C, Gomez L, Sanchez C, et al. Gastrointestinal perforation after treatment with tocilizumab: an unexpected consequence of COVID-19 pandemic. Am Surg. 2020;86(5):605–606.
[14] Mireskandari P, Baharvand K, Niyazi MM, Salarpour M. Spontaneous perforation of the duodenal bulb in a Patient with COVID-19. J Pers Med. 2021;11(9):1637–45.
[15] Investigators R-C, Gordon AC, Mouncey PR, Al-Beidh F, Rowan KM, Nichol AD, et al. Interleukin-6 receptor antagonists in critically ill patients with COVID-19. N Engl J Med. 2021;384(16):1491–502.
[16] Hofmaenner DA, Wendel Garcia PD, Ganter CC, Brugger SD, Buchler PK, David S. What every intensivist should know about tocilizumab. Crit Care. 2021;25(1):262.
[17] Shlyaeva R, Taweesedt PT, Ratnani I, Surani S. An intriguing case of pneumoperitoneum in a patient with COVID-19: do all pneumoperitoneum cases need surgery? Cureus. 2020;12(12):e12279.
[18] Vidrio Duarte R, Vidrio Duarte R, Gobierno Ochoa J, Gaviria Leiva MC, Pimentel-Hayah JA. Pneumoperitoneum in a covid-19 patient due to the macklin effect. Cureus. 2021;13(2):e13200.