Growing lesions (n > 1) at time of intervention (50.0%) versus those treated with surgery (15.2%) (p < 0.05). Likewise, pre-treatment KPS was lower in patients with BMI < 18.5 kg/m² (OS 6 months, 95% CI 15.2–24.8; weight loss < 5% 22.0 months, 95% CI 19.2–24.8; weight loss < 5% 14.0 months, 95% CI 11.9–16.1). CONCLUSIONS: Despite being associated with a worse cardiovascular risk profile, high BMI is associated with preferable and underweight with poor outcome in BM patients. Conversely, weight loss above median may be a predictor of poor outcome. Future studies need to address the question whether vigorous treatment of tumor cachexia, e.g. by specific nutrition management, might improve outcome of BM patients. In contrast, regimens that are associated with weight loss such as ketogenic diet may be detrimental.

MLTI-09. UNDERWEIGHT AND WEIGHT LOSS ARE PREDICTORS OF POOR OUTCOME IN PATIENTS WITH BRAIN METASTASIS

Michael Wellington, Anna Larea, Robert Terzi, Bettina Grossenbacher, Nicolaus Andreschutz, Patrick Roth, Sabine Rohrmann, Rolf Stahl, Matthias Guckenberger, Emile Le Rhuin, and Fabian Wolfert, Department of Neurology and Brain Tumor Center, University Hospital and University of Zurich, Zurich, Switzerland, Department of Neurology and Brain Tumor Center, University Hospital and University of Zurich, Zurich, Switzerland, Department of Radiation Oncology, University Hospital and University of Zurich, Zurich, Switzerland, Cancer Registry for the Canton of Zurich, University Hospital and University of Zurich, Zurich, Switzerland, Department of Oncology, University Hospital and University of Zurich, Zurich, Switzerland, Department of Neurology and Brain Tumor Center, University Hospital and University of Zurich, Switzerland

BACKGROUND: Despite increased risk of comorbidities, overweight may be associated with improved outcome in patients with metastatic cancer. Conversely, tumor cachexia has been identified as a negative predictor of outcome in patients with brain metastasis (BM) from lung cancer. Here, we evaluate the association of BMI and weight change with outcome in patients with BM from different primary tumors. METHODS: Patients with a diagnosis of BM diagnosed and treated at the University Hospital Zurich (n=703) were assessed for associations of BMI, weight change, comorbidities and survival. RESULTS: Patients with normal BMI of 18.5–24.9 kg/m² who experienced a median overall survival (OS) of 9 months (95% confidence interval (CI) 7.5–10.5), OS was inferior in patients with BM< 18.5 kg/m² (95% CI 6.9–10.3, p=0.04), but survival was similar in patients with BMI ≥ 25 kg/m² (OS 13 months, 95% CI 11.0–15.0; p=0.033). For patients with documented weight course (n=173 of 703), we report a median relative weight loss of 5% within the first 6 months of BM diagnosis (95% CI 3.3–6.5). Reduction above the median was associated with an unfavorable outcome in this subgroup (weight loss ≥ 25% 22.0 months, 95% CI 19.2–24.8; weight loss < 5% 14.0 months, 95% CI 11.9–16.). CONCLUSIONS: Despite being associated with a worse cardiovascular risk profile, high BMI is associated with preferable and underweight with poor outcome in BM patients. Conversely, weight loss above median may be a predictor of poor outcome. Future studies need to address the question whether vigorous treatment of tumor cachexia, e.g. by specific nutrition management, might improve outcome of BM patients. In contrast, regimens that are associated with weight loss such as ketogenic diet may be detrimental.
~50 patients have been seen with excellent patient satisfaction response and reduced time to treatment. ~20% patients had major change in treatment plan following multi-disciplinary evaluation. Additional efforts to develop a central BM database along with clinical and translational research programs are on-going. CONCLUSIONS: Establishment of a multi-disciplinary BMC to facilitate care and centralize research programs addresses a critical need for coordinated patient-centered BM management. This endeavor has enhanced patient experience through multi-specialty collaboration. Our program demonstrates the feasibility and effectiveness of a dedicated BMC in the treatment of this complex patient population.

MLTI-11. IMPLANTABLE POLYMERIC BCNU AS AN ADJUNCT TO SURGERY FOR METASTATIC INTRACRANIAL DISEASE
Timothy Ryken and Linton Evans; Dartmouth-Hitchcock Medical Center, Lebanon, NH, USA

SUMMARY: One hundred and thirty cases of craniotomy for tumor utilizing BCNU implantable chemotherapy were performed by the authors between including 23 cases for metastatic intracranial disease. The series included 12 women and 11 men with an average age of 56.9 years. The diagnoses were as follows: non-small lung carcinoma (13), breast cancer (6), small-cell lung cancer (1), colon cancer (1), unknown primary (2). Patients undergoing resection plus implantable chemotherapy following whole brain radiotherapy (3 patients) or following stereotactic radiosurgery (3 patients) were included in the series. Only patient oncologist possible local recurrence (3%). Complications included two cerebrospinal fluid leaks with associated complications requiring reoperations (11%) both following whole brain radiotherapy and 3 patients (17%) with thromboembolic episodes (3 deep venous thrombosis with a pulmonary embolus and subdural hematoma). In this challenging population, local implantable chemotherapy appears relatively safe and a reasonable consideration as a surgical adjunct.

MLTI-12. TIMING OF SYSTEMIC THERAPY ADMINISTRATION RELATIVE TO STEREOTACTIC RADIOSURGERY AND DEVELOPMENT OF RADIATION NECROSIS IN PATIENTS WITH BRAIN METASTASES
Lubna Hammoud, Daniel Cagney, and Avi Aizer; Brigham and Women’s Hospital, Dana-Farber Cancer Institute, Boston, MA, USA

PURPOSE: The mainstay of oncologic therapy for patients with brain metastases involves brain-directed radiation, increasingly given via stereotactic radiosurgery (SRS), and systemic therapy for extracranial disease control. We sought to investigate the association between the timing of systemic therapy and SRS administration on development of radiation necrosis among patients with brain metastases. METHODS: We retrospectively identified 429 patients treated at Brigham and Women’s Hospital/Dana-Farber Cancer Institute with SRS for newly-diagnosed brain metastases between 2001–2015. Systemic therapy was tiered into 4 categories: chemotherapy, immunotherapy, hormonal therapy, and targeted therapy. All images were manually annotated using the two radiation oncologists to tum mors to assess the presence versus absence of radiographic necrosis. Patients with radiographic necrosis who harbored associated neurologic symptoms or were managed with steroids/bevacizumab/resection were considered to have symptomatic radiation necrosis. Data were analyzed using univariable Cox regression in SAS v9.4. The median follow-up in surviving patients was 1.79 years. RESULTS: In total, 252/429 and 361/429 patients received systemic therapy pre and/or post SRS, respectively. Patients receiving systemic therapy ≤5 days before SRS displayed higher rates of radiographic [HR 2.48, 95% CI 1.06–5.81, p=0.04] and symptomatic [HR 3.74, 95% CI 1.08–12.98, p=0.04] necrosis; a similar association was seen in patients receiving systemic therapy ≤5 days after SRS [HR 1.72, 95% CI 0.84–3.53, ps=14 and HR 4.42, 95% CI 1.75–11.14, p=0.02, respectively]. Trends towards increased necrosis risk were noted when comparing systemic therapy administration ≤5 days versus 6–10 days before/after SRS. The above 4 associations were significant when restricting the cohort to patients receiving targeted systemic therapy (HR-range 3.57–21.49, p-range 0.01–0.04). CONCLUSIONS: The evidence guiding the treatment of brain metastases from breast cancer. METHODS: MEDLINE, EMBASE, Cochrane Controlled Register of Trials, ClinicalTrials.gov, and Web of Science were searched from inception to October 2018 for RCTs comparing treatments for breast cancer BM. We screened studies, extracted data, and assessed risk of bias independently and in duplicate. Outcomes assessed were overall survival (OS), progression-free survival (PFS), and adverse events (Grade ≥3). RESULTS: Among 3188 abstracts, 53 RCTs (N=4123) with 3328 patients met inclusion criteria. The studies were phase II or III open-label parallel superiority trials. Inclusion criteria among these trials consisted of age ≥18 with radiologic evidence of ≥1 BM. Exclusion criteria consisted of ps=14, mean sample size per group ≥40, and Inclusion criteria were identified. The studies were phase II or III open-label parallel superiority trials. Inclusion criteria among these trials consisted of age ≥18 with radiologic evidence of ≥1 BM. Exclusion criteria consisted of various factors (including performance status ≤2 or ≥1). The treatment groups included whole-brain radiation therapy (WBRT) vs WBRT + Temozolomide, WBRT vs WBRT + Etaf askalax, and Afatinib vs Vinorelbine vs investigators’ choice (66% of these patients received WBRT or SRS prior to study enrollment). While two trials found no significant difference in OS, one trial found significant improvement in OS with Etafaskalax in addition to WBRT compared to WBRT alone (HR 0.52; 95%CI 0.332–0.816). No significant differences were found with PFS or rate of adverse events amongst treatment groups. CONCLUSION: Considering the high prevalence of breast cancer BM and our improved understanding of genomic/ molecular features of these tumors, a greater number of RCTs dedicated to this disease are needed.

MLTI-14. A SYSTEMATIC REVIEW OF TREATMENT PARADIGMS FOR PATIENTS WITH BREAST CANCER AND ONE OR MORE BRAIN METASTASES
Yosef Ellenbogen, Karanbir Brar, Nebras Warsi, Jetan Badiwala, and Alireza Mansouri; University of Toronto, Toronto, ON, Canada

BACKGROUND: Upwards of 50% of patients with advanced breast cancer are diagnosed with brain metastases (BM). Treatment options for these patients have been rapidly evolving due to increased understanding of the tumor pathophysiology and its genetic underpinnings. This systematic review of randomized controlled trials (RCTs) aims to clarify the evidence guiding the treatment of brain metastases from breast cancer.

METHODS: MEDLINE, EMBASE, Cochrane Controlled Register of Trials, ClinicalTrials.gov, and Web of Science were searched from inception to October 2018 for RCTs comparing treatments for breast cancer BM. We screened studies, extracted data, and assessed risk of bias independently and in duplicate. Outcomes assessed were overall survival (OS), progression-free survival (PFS), and adverse events (Grade ≥3). RESULTS: Among 3188 abstracts, 53 RCTs (N=4123) with 3328 patients met inclusion criteria. The studies were phase II or III open-label parallel superiority trials. Inclusion criteria among these trials consisted of age ≥18 with radiologic evidence of ≥1 BM. Exclusion criteria consisted of various factors (including performance status ≤2 or ≥1). The treatment groups included whole-brain radiation therapy (WBRT) vs WBRT + Temozolomide, WBRT vs WBRT + Etafaskalax, and Afatinib vs Vinorelbine vs investigators’ choice (66% of these patients received WBRT or SRS prior to study enrollment). While two trials found no significant difference in OS, one trial found significant improvement in OS with Etafaskalax in addition to WBRT compared to WBRT alone (HR 0.52; 95%CI 0.332–0.816). No significant differences were found with PFS or rate of adverse events amongst treatment groups. CONCLUSION: Considering the high prevalence of breast cancer BM and our improved understanding of genomic/ molecular features of these tumors, a greater number of RCTs dedicated to this disease are needed.

MLTI-15. A CASE SERIES OF PRE-OPERATIVE GAMMA-KNIFE RADIOSURGERY FOR RESECTABLE BRAIN METASTASES
Tatsuya Takezaki, Haruaki Yamamoto, Naoki Shinogima, Jun-ichiro Yamada, Shigeo Yamashiro, and Akitake Mukasa; Kumamoto University Hospital, Kumamoto, Japan

Recent advances in the systemic treatment of various cancers have resulted in longer survival and higher incidence of brain metastases. Phase 3 trials in North America and in Japan have demonstrated that stereotactic radiosurgery will be a standard adjuvant modality following surgery for resectable brain metastases. However, we don’t know the optimal sequence of this combination therapy. We hypothesized that pre-operative stereotactic radiosurgery for resectable brain metastases provides favorable rates of local

Abstracts

NEURO-ONCOLOGY ADVANCES • August 2019