Urotensin-II Receptor Stimulation of Cardiac L-type Ca\(^{2+}\) Channels Requires the \(\beta\gamma\) Subunits of Gi/o-protein and Phosphatidylinositol 3-Kinase-dependent Protein Kinase C \(\beta1\) Isoform*

Received for publication, September 29, 2014, and in revised form, February 2, 2015. Published, JBC Papers in Press, February 12, 2015, DOI 10.1074/jbc.M114.615021

Yuan Zhang**,1 Jiaqiao Ying***1, Dongsheng Jiang**1, Zhigang Chang1, Hua Li***1, Guoqiang Zhang1, Shan Gong8, Xinghong Jiang‡, and Jin Tao‡2

From the *Department of Physiology and Neurobiology, Medical College of Soochow University, Suzhou 215123, China, †Department of Geriatrics and Institute of Neuroscience, the Second Affiliated Hospital of Soochow University, Suzhou 215004, China, ‡Department of Emergency Medicine, China-Japan Friendship Hospital, Beijing 100029, China, §Department of Dermatology and Allergic Diseases, University of Ulm, Ulm 89081, Germany, and **National Shanghai Center for New Drug Safety Evaluation and Research, Shanghai 201203, China

Background: Regulation of L-type Ca\(^{2+}\) channels has important roles in determining the electrical properties of cardiomyocytes.

Results: U-II potentiates \(I_{\text{Ca,L}}\) via U-IIR that couples to the PI3K-dependent PKC\(\beta_1\) isoform.

Conclusion: U-IIR stimulation of \(I_{\text{Ca,L}}\) contributes to the increase in the amplitude of sarcomere shortening.

Significance: Regulation of \(I_{\text{Ca,L}}\) by U-IIR plays important roles in cardiovascular actions including cardiac positive inotropic effects and increasing cardiac output.

Recent studies have demonstrated that urotensin-II (U-II) plays important roles in cardiovascular actions including cardiac positive inotropic effects and increasing cardiac output. However, the mechanisms underlying these effects of U-II in cardiomyocytes still remain unknown. We show by electrophysiological studies that U-II dose-dependently potentiates L-type Ca\(^{2+}\) currents (\(I_{\text{Ca,L}}\)) in adult rat ventricular myocytes. This effect was U-II receptor (U-IIR)-dependent and was associated with a depolarizing shift in the voltage dependence of inactivation. Intracellular application of guanosine-5’-O-(2-thiodiphosphate) and pertussis toxin pretreatment both abolished the stimulatory effects of U-II. Dialysis of cells with the QHEA peptide, but not scrambled peptide SKEE, blocked the U-II-induced response. The phosphatidylinositol 3-kinase (PI3K) inhibitor wortmannin as well as the class I PI3K antagonist CH132799 blocked the U-II-induced \(I_{\text{Ca,L}}\) response. Protein kinase C antagonists calphostin C and chelerythrine chloride abolished the U-II-induced responses, whereas PKC\(\alpha\) inhibition or PKA blockade had no effect. Exposure of ventricular myocytes to U-II markedly increased membrane PKC\(\beta_1\) expression, whereas inhibition of PKC\(\beta_1\) pharmacologically or by shRNA targeting abolished the U-II-induced \(I_{\text{Ca,L}}\) response. Functionally, we observed a significant increase in the amplitude of sarcomere shortening induced by U-II; blockade of U-IIR as well as PKC\(\beta_1\) inhibition abolished this effect, whereas Bay K8644 mimicked the U-II response. Taken together, our results indicate that U-II potentiates \(I_{\text{Ca,L}}\) through the \(\beta\gamma\) subunits of Gi/o-protein and downstream activation of the class I PI3K-dependent PKC\(\beta_1\) isoform. This occurred via the activation of U-IIR and contributes to the positive inotropic effect on cardiomyocytes.

Urotensin-II (U-II) is a cyclic peptide first identified in the goby urophysis, an endocrine organ homologous in structure to the mammalian hypothalamoneurohypophysial axis (1). Following the cloning of carp U-II cDNAs (2), U-II has since been cloned from additional vertebrates including humans (3). The orphan G-protein-coupled receptor GPR14 (3), subsequently redesignated the urotensin-II receptor (U-IIR) (4), has been identified as the endogenous receptor for U-II. Consistent with the broad distribution of U-IIR in the central nervous system (CNS) and peripheral organs (2, 5), U-II exerts a large array of behavioral effects and regulates a variety of physiological processes including stimulation of prolactin and thyrotropin release (6), modulation of immune function (7), enhancement

**This work was supported by National Natural Science Foundation of China Grants 81171056, 31271258, 81200852, and 81371229; National Natural Science Foundation of China-CNRS Joint Program Grant 813111030114; Natural Science Foundation of Jiangsu Province Grant BK2011293; Natural Science Funding for Colleges and Universities in Jiangsu Province Grant 12KJB8320010; Scientific Research Foundation for the Returned Overseas Chinese Scholars of State Education Ministry (to J. T.); Dong-Wu Scholar Funding of Soochow University (to J. T.); National University Student Innovation Programs (to Hong Jin); and a project funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions.

1 These authors contributed equally to this work.
2 To whom correspondence should be addressed: Dept. of Physiology and Neurobiology, Medical College of Soochow University, 199 Ren-Ai Rd., Suzhou 215123, China. Tel./Fax: 86-512-65880126; E-mail: taoj@suda.edu.cn.

The abbreviations used are: U-II, urotensin-II; U-IIR, urotensin-II receptor; \(I_{\text{Ca,L}}\), L-type Ca\(^{2+}\) current; PTK, pertussis toxin; G\(\beta\gamma\), G-protein \(\beta\gamma\) subunit; GDP-\(\beta\)-S, guanosine-5’-O-(2-thiodiphosphate); BAPTA, 1,2bis(2amino- phenoxy)ethaneN,N,N’,N’-tetraacetic acid; dn-BAPTA, 5,5’-dinitro-BAPTA; HB2DDE, 2,2’,3,3’,4,4’-hexahydroxy-1,1’-biphenyl-6,6’-dimethanol di-methyl ether; NC, negative control.
of rapid eye movement sleep duration (8), and energy balance (5). In the cardiovascular system, particularly in the heart, both U-II and the U-IIR are endogenously expressed (2), suggesting that U-II may be an endogenous modulator of mammalian cardiovascular function. Indeed, U-II has been shown to exert potent contractile force of cardiac muscle in vitro (9). U-II has also been reported to increase cardiac output in healthy humans and in patients with heart failure (10–12) independently of serotonin or β-adrenergic receptors (9). In addition, U-II has a positive inotropic effect and improves cardiac performance in rats with congestive heart failure as indicated by increases in left ventricular maximum dP/dT (an index of myocardial contractility) and left ventricular fractional shortening (2,5,13,14). However, the mechanisms underlying these effects of U-II in cardiomyocytes remain unknown.

L-type Ca$^{2+}$ channels are voltage-dependent channels that open in response to membrane depolarization, permitting entry of Ca$^{2+}$ into the cell (15). Ca$^{2+}$ entry through L-type Ca$^{2+}$ channels is critical in the control of excitation-contraction coupling of cardiac, skeletal, and smooth muscle cells and contributes to physiological frequency regulation in the sinus node (16–18). Furthermore, the L-type Ca$^{2+}$ channel is important for determining the duration of the plateau phase of the action potential and refractoriness. It is also involved in Ca$^{2+}$ release from the sarcoplasmic reticulum, raising the free intracellular Ca$^{2+}$ concentration and allowing cell contraction (18–21). Importantly, these channels are modulated by a variety of hormones and transmitters operating via G-protein-coupled receptors and second messengers (22), thereby profoundly affecting target tissue functions.

However, little is known about the mechanism(s) involved in the effect of U-II on L-type Ca$^{2+}$ channels in the heart. Therefore, the present study sought to elucidate the signaling pathways implicated in L-type Ca$^{2+}$ channel modulation by U-II in adult rat ventricular myocytes.

EXPERIMENTAL PROCEDURES

Pharmacological Agents—All the chemicals were obtained from Sigma-Aldrich unless otherwise stated. QEHA and SKEE peptides (23) were synthesized by GenScript Corp. βIV5-3 (24) and βIVV5-3 (24, 25) were synthesized by American Peptide, Inc. Stock solutions of U-II, GDP-β-S, pertussis toxin (PTX), choleratoxin, chelerythrine chloride, Ro31-8220, BAPTA, and dn-BAPTA were prepared in distilled deionized water. Stock solutions of wortmannin, calphostin C, KT-5720, forskolin, LY333531, CH5132799, Bay K8644, HBDDE, and palosuran were prepared in dimethyl sulfoxide (DMSO). The final concentration of DMSO in the bath solution was less than 0.01% and had no functional effects on L-type Ca$^{2+}$ channel currents (data not shown).

Isolation of Ventricular Myocytes—All the procedures and protocols conformed to the Guide for Care and Use of Laboratory Animals published by the National Institutes of Health, and the local institutional ethical committee approved the study. Left ventricular myocytes were enzymatically dissociated from rat hearts using a modified method described previously (26, 27). Briefly, male Sprague-Dawley rats (200–300 g) were injected with heparin (1000 IU intraperitoneally) and then euthanized in a CO$_2$ chamber. The heart was dissected out and transferred to ice-cold Tyrode’s solution. The aorta was cannulated and the heart was mounted on a Langendorff apparatus and perfused with prewarmed (37 °C) and oxygenated Tyrode’s solution containing protease type XIV and collagenase type I for 12 min until the heart was flaccid. The left ventricles were dissected out, cut into small pieces, and gently bathed in Tyrode’s solution. Isolated cells were filtered and maintained in oxygenated Krb-Bruehe (KB) solution. Cells with a rod shape and clear cross-striation were used for experiments. For short hairpin RNA (shRNA) knockdown experiments, primary cultures of adult rat ventricular myocytes were cultured in serum-free Medium 199 (Invitrogen) containing taurine (5 mM), creatine (5 mM), L-carnitine (5 mM), and sodium bicarbonate (26 mM) and plated in 24-well plates onto 12-mm glass coverslips coated with matrigel (BD Biosciences). All the media used for the cell culture contained 50 IU penicillin and 50 μg/ml streptomycin, and the cells were incubated under sterile conditions at 5% CO$_2$ and 37 °C.

Reverse Transcription-PCR (RT-PCR)—Total RNA was extracted from rat ventricular myocytes using the RNAeasy kit (Qiagen) according to the manufacturer’s instructions. Reverse transcription was performed using SuperScript™ II (Invitrogen) as described previously (23, 28, 29). Control reactions without reverse transcriptase were performed for determining contamination, if any, in the samples. The primer sequences used in this study were as follows: U-IIR: sense, 5′-cagctccc-tgaagaccttg-3′; antisense, 5′-acaatgctgtgccaagag-3′; and GAPDH: sense, 5′-atgggaagctggtcatcaac-3′; antisense, 5′-gggacacgtgctcagc-3′.

Western Blotting—Western blot analysis was performed as described previously (30, 31). Briefly, total cellular protein was extracted from rat ventricular myocytes using homogenization buffer. Equivalent amounts of proteins (20 μg) were separated by 7.5% SDS-PAGE and transferred onto polyvinylidene difluoride (PVDF) membranes (Amersham Biosciences). Membranes were blocked using 5% (w/v) skimmed milk in phosphate-buffered saline (PBS) for 1 h at room temperature. Membranes were then probed using the following primary antibodies: rabbit anti-U-IIR (1:600; Santa Cruz Biotechnology), rabbit anti-G$_{q}$ (1:1000; Santa Cruz Biotechnology), rabbit anti-phosphorylated Akt (1:500; Cell Signaling Technology), rabbit anti-total Akt (1:500; Cell Signaling Technology), rabbit anti-PKCα (1:600; Santa Cruz Biotechnology), mouse anti-PKCβ$_2$ (1:600; Sigma), rabbit anti-PKCβ$_2$ (1:1000; Sigma), rabbit anti-PKCγ (1:1000; Santa Cruz Biotechnology), and rabbit anti-GAPDH (1:2000; Cell Signaling Technology). After washing in Tris-buffered saline (TBS) and Tween 20 (TBS-T), the membranes were incubated with horseradish peroxidase-conjugated anti-rabbit or anti-mouse IgG (1:10,000) for 2 h at room temperature. Chemiluminescence signals were generated using a SuperSignal West Pico trial kit (Pierce). Quantification software (Bio-Rad) was used for background subtraction and for analyzing the immunoblotting data.

Protein Kinase A (PKA) Activity Assay—PKA activity in homogenates from isolated cardiac myocytes was determined by enzyme-linked immunosorbent assay (ELISA; Promega, Madison, WI) according to the manufacturer’s instructions. Briefly,
U-IIR Activates L-type Ca2+ Channels

the cells were pretreated with either vehicle or KT-5720 for 30 min followed by treatment with either vehicle (0.1% DMSO) or forskolin for 15 min. The cells were washed with ice-cold PBS, placed on ice, and incubated with 200 μl of lysis buffer. After a 10-min incubation on ice, the cells were transferred to microcentrifuge tubes. Cell lysates were centrifuged for 15 min, and aliquots of the supernatants containing 0.2 μg of protein were assayed for PKA activity. The activity is expressed as relative light units \(^{-1}\)/amount of protein.

Determination of PKC Activity—The cells were pretreated with either vehicle or calphostin C for 30 min at 37 °C followed by treatment with either vehicle or U-II for 15 min. Cells were resuspended in 50 μl of buffer A (20 μM Tris, 2 μM EDTA, 0.5 μM EGTA, and 1 μM PMSF, pH 7.4) containing 50 μM 2-mercaptoethanol and 25 μl of 10% Nonidet P-40 followed by sonication for 45 s. The cell lysates were centrifuged at 100,000 g for 1 h and stored at −20 °C. PKC activity was determined using the PepTag PKC assay kit (Promega) according to the manufacturer’s instructions.

Phosphatidylinositol 3-Kinase (PI3K) Activity Assay—Cells were stimulated with or without U-II (0.1 μM) for 15 min. After stimulation, PI3K activity was determined using a phosphatidylinositol 3-kinase ELISA kit according to the manufacturer’s instructions (Tian-Ao Biotechnology). The absorbance of samples was measured at 450 nm with an EL 340 Bio Kinetic Reader (Bio-Tek Instruments).

Adenovirus Transduction—Three shRNAs targeting the sequence of PKCβ\(_1\) (GenBankTM accession number NM_012713.3) or G\(_q\) (GenBank accession number Y17161.1) were designed, and the best knockdown effects of shRNA for G\(_q\) (5′-CGCGGAGAUCGAAGAAGAAG-3′) and PKCβ\(_1\) (5′-CACAUCCCAAGUUUGCGUUCUA-3′) were selected for subsequent experiments. Additional scrambled sequences were designed as negative controls (NCs) (G\(_q\) AGAUGAGAGGAGCACACCGG; PKCβ\(_1\) GUACUCACCCGACCAU-CAUCAAGCAG). The recombinant adenoviruses containing G\(_q\) shRNA (Ad-G\(_q\)-shRNA) or PKCβ\(_1\) shRNA (Ad-PKCβ\(_1\)-shRNA) were packaged by GeneChem (Shanghai, China) using the pAdEasy system with pAdtrack-CMV-GFP as a shuttle vector and pAdEasy-1 as an adenoviral backbone. The virus was purified on two consecutive cesium chloride gradients, dialyzed, and titered. pAdeasy-1 as an adenoviral backbone. The virus was purified on two consecutive cesium chloride gradients, dialyzed, and titered. pAdeasy system with pAdtrack-CMV-GFP as a shuttle vector and

Measurement of Myocyte Contraction—Cell shortening of ventricular myocytes was assessed by a video-based edge detection system (IonOptix Corp.). The cells were placed in a perfusion chamber mounted on the stage of an inverted microscope (Zeiss IM). The cells were field-stimulated with 20% suprathreshold voltage at a frequency of 0.5 Hz with a pair of platinum electrodes. The myocyte being studied was displayed on the computer monitor with the help of an IonOptix MyoCam charge-coupled device camera, which was attached to the sidearm of the microscope. SoftEdge acquisition software (IonOptix Corp.) captured and converted the changes in sarcomere length to digital signals. Only rod-shaped myocytes with clear edges were selected for experiments. Signals were recorded when steady-state contraction was reached in each experimental medium.

Electrophysiology and Data Analysis—Whole cell patch electrophysiology was used to measure the L-type Ca2+ currents (\(I_{\text{Ca,L}}\)) in rat ventricular myocytes. Cells were placed in a recording dish and perfused with a bath solution containing 140 mM tetraethylammonium chloride, 2 mM CaCl\(_2\), 0.5 mM MgCl\(_2\), 5.5 mM glucose, 5 mM CsCl, and 10 mM HEPES, pH 7.35 with CsOH. Recordings were performed at room temperature (22–24 °C) using a MultiClamp 700B amplifier (Molecular Devices). Recording pipettes (World Precision Instruments) had 2–3-megohm resistance when filled with internal solution containing 110 mM CsCl, 4 mM Mg-ATP, 0.3 mM Na\(_2\)-GTP, 10 mM EGTA, and 25 mM HEPES, pH 7.3 with CsOH. pClamp 10.2 was used to acquire and analyze all data. \(I_{\text{Ca,L}}\) were recorded in voltage clamp mode, and signals were filtered at 1 kHz using a low pass Bessel filter and digitized at 5 kHz. Series resistance and capacitance readings were taken directly from the amplifier after electronic subtraction of capacitive transients. Series resistance was compensated to the maximal extent (at least 75%). Current traces were corrected using on-line P/6 trace subtraction. In experiments in which cells were dialyzed with compounds or peptides, current measurements were started at least 5 min after breaking the patch. \(I_{\text{Ca,L}}\) were measured at their peak amplitude within the 200-ms test pulse and used to determine the percentage of \(I_{\text{Ca,L}}\) increase. Concentration-response curves were fitted by the following sigmoidal Hill equation:

\[
Y = \frac{X}{IC_{50} + 1/(1 + \frac{IC_{50}}{IC_{50}})}
\]

where \(X\) is the dexamethasone concentration at which the half-maximum effect occurs, and \(n_H\) is the Hill coefficient. Activation data were fitted by the following modified Boltzmann equation:

\[
G/G_{\text{max}} = \frac{1}{1 + \exp \left(-\frac{V_{\text{half}} - V_{m}/k}{K} \right)}
\]

where \(G_{\text{max}}\) is the fitted maximal conductance, \(V_{\text{half}}\) is the membrane potential for half-activation, and \(k\) is the slope factor. Steady-state inactivation of \(I_{\text{Na}}\) was fitted with the following negative Boltzmann equation:

\[
I/I_{\text{max}} = \frac{1}{1 + \exp \left(-\frac{V_{\text{half}} - V_{m}/k}{K} \right)}
\]

where \(I_{\text{max}}\) is maximal current, \(V_{\text{half}}\) is the membrane potential for half-inactivation, and \(k\) is the slope factor. Summary data are expressed as mean ± S.E. GraphPad Prism 5.0 was used to analyze the data. Statistical significance was determined using Student’s \(t\) test when two groups were compared and one-way analysis of variance with a post hoc Bonferroni test when three or more groups were compared. Results were considered statistically significant at a \(p\) value of <0.05.

RESULTS

U-II Enhances \(I_{\text{Ca,L}}\)—Whole-cell currents were elicited by a 200-ms stepping voltage from a holding potential of −60 to 0 mV. These currents can be blocked by nicardipine (5 μM), a specific L-type Ca2+ channel blocker (data not shown). Addition of U-II (0.1 μM) to the bath caused a significant increase in peak \(I_{\text{Ca,L}}\) to 28.3% of the basal level (\(n = 8\); Fig. 1, A and B). Following removal of U-II, the amplitude of \(I_{\text{Ca,L}}\) recovered partially within 5 min (Fig. 1, B and C). Further examination of the U-II effect demonstrated that U-II increased \(I_{\text{Ca,L}}\) in a concen-
U-IIR Mediates U-II-induced Increase in \(I_{\text{Ca,L}} \)—U-IIR is the functional receptor for U-II in vivo (2). We examined U-IIR participation in \(I_{\text{Ca,L}} \) responses to U-II by examining the expression profile in rat ventricular myocytes. RT-PCR analysis demonstrated that the transcripts for U-IIR (predicted size of amplicon is 537 bp) were present in adult rat ventricular myocytes. Negative control reactions in which reverse transcriptase was excluded from the RT step did not yield any PCR products.

U-IIR Activates L-type Ca\(^{2+}\) Channels

To determine the voltage dependence of activation, tail currents were elicited by repolarization to \(-60 \) mV after 40-ms test pulses from the holding potential of \(-60 \) to \(+40 \) mV in increments of 10 mV. I, summary of results showing the effects of 0.1 \(\mu \text{M} \) U-II on \(V_{\text{half}} \) of the activation and inactivation curves. ***, \(p < 0.001 \) versus 0.1 \(\mu \text{M} \) U-II; ##, \(p < 0.01 \) versus control. Error bars represent S.E. pF, picofarad.

FIGURE 1. U-II stimulates L-type Ca\(^{2+}\) channels in adult rat ventricular myocytes. A, time course of changes in \(I_{\text{Ca,L}} \) amplitude mediated by 0.1 \(\mu \text{M} \) U-II. Letters (a–c) indicate which points were used for sample traces. B and C, representative traces and summary data of \(I_{\text{Ca,L}} \) under control conditions (a), during exposure to 0.1 \(\mu \text{M} \) U-II (b), and during washout (c) \((n = 8) \). \(I_{\text{Ca,L}} \) were elicited by a 200-ms-long depolarizing step pulse from the holding potential of \(-60 \) to 0 mV. D, dose response of U-II on the stimulation of \(I_{\text{Ca,L}} \). The dotted line represents the line of best fit to the sigmoidal Hill equation. The relationship between U-II concentration and the degree of increase observed is described by a logistic equation where the concentration of U-II is indicated in parentheses. E, current-voltage plot showing the current density of \(I_{\text{Ca,L}} \) versus test voltage recorded before and after treatment with 0.1 \(\mu \text{M} \) U-II \((n = 12) \). F, summary of results showing the current density of \(I_{\text{Ca,L}} \) at 0 mV as indicated in E. G–I, U-II did not significantly alter the steady-state activation curve of L-type Ca\(^{2+}\) channels \((H; n = 9) \) but caused a rightward shift of the steady-state inactivation curve \((G; n = 11) \). To determine the steady-state inactivation, \(I_{\text{Ca,L}} \) was evoked by a 100-ms test pulse to 0 mV after the 3-s conditioning pulses ranging from \(-80 \) to \(+30 \) mV with 10-mV increments. To determine the voltage dependence of activation, tail currents were elicited by repolarization to \(-60 \) mV after 40-ms test pulses from \(-50 \) to \(+40 \) mV in increments of 10 mV. I, summary of results showing the effects of 0.1 \(\mu \text{M} \) U-II on \(V_{\text{half}} \) of the activation and inactivation curves. ***, \(p < 0.001 \) versus 0.1 \(\mu \text{M} \) U-II; ##, \(p < 0.01 \) versus control. Error bars represent S.E. pF, picofarad.

Next, we determined whether the biophysical properties of \(I_{\text{Ca,L}} \) were affected by U-II. A current-voltage curve was evoked by a series of depolarizing pulses from a holding potential of \(-60 \) mV to test potentials between \(-60 \) and \(+50 \) mV. Population data showed that 0.1 \(\mu \text{M} \) U-II significantly down-shifted the current-voltage curve \((n = 12; \text{Fig. 1E}) \), and at 0 mV, the current density increased from 6.8 \(\pm 0.7 \) to 9.1 \(\pm 0.6 \) pA/picofarad \((p < 0.01; n = 12; \text{Fig. 1F}) \). Further effects mediated by U-II including the voltage dependences of activation and inactivation were examined. We observed a significant shift of the steady-state inactivation potentials of \(I_{\text{Ca,L}} \) by 8.5 mV in the depolarized direction \((V_{\text{half}} \text{ from } -32.6 \pm 0.6 \text{ to } -24.1 \pm 0.8 \text{ mV}, n = 11; \text{Fig. 1G, I and J}) \), whereas the activation potential did not change significantly \((V_{\text{half}} \text{ from } -12.6 \pm 0.5 \text{ to } -12.8 \pm 0.8 \text{ mV}, n = 9; \text{Fig. 1H and I}) \). These results suggest that the increase in \(I_{\text{Ca,L}} \) observed after the application of U-II may be due to the retention of a decreased proportion of inactivated channels.

U-IIR Activates L-type Ca\(^{2+}\) Channels

The relationship between U-II concentration and the degree of increase observed is described by a logistic equation where the concentration of U-II producing half-maximal increase \((I_{C_{50}}) \) is 62.7 nM, the apparent Hill coefficient is 0.86, and the maximal stimulatory effect is 45.2 \(\pm 1.8\% \) \((n = 9; \text{Fig. 1D}) \).
U-IIR Activates L-type Ca\(^{2+}\) Channels

![Image](image_url)

FIGURE 2. U-II increases I_{Ca,L} via the activation of U-IIR. A, detection of U-IIR mRNA in adult rat ventricular myocytes. Total RNA from rat testis was used as a positive control. −RT, negative control. RT-PCR without the addition of enzyme. B, Western blot analysis showed the expression of U-IIR protein in rat ventricular myocytes. GAPDH was used as a loading control. The blots shown are representative of three experiments. C and D, time course (C) and summary of results (D) showing that treatment of ventricular myocytes with palosuran (pal) (1 \(\mu\)M for 30 min) completely abolished the increase in I_{Ca,L} induced by 0.1 \(\mu\)M U-II (n = 9). Application of palosuran (1 \(\mu\)M) alone had no significant effect on I_{Ca,L} (n = 7). Letters (a and b) indicate the points used for sample traces. ***, p < 0.001 versus 0.1 \(\mu\)M U-II. Error bars represent S.E. VM, ventricular myocytes.

(Fig. 2A). Protein levels of U-IIR were assessed by immunoblotting with subunit-specific antibodies. Immunoblotting analysis revealed that U-IIR is endogenously expressed in adult rat ventricular myocytes. The rat testis expresses U-IIR and was therefore used as a positive control (Fig. 2B). We next determined the involvement of U-IIR in U-II-induced changes in I_{Ca,L}. Palosuran (1 \(\mu\)M), a specific U-IIR antagonist, alone had no significant effect on I_{Ca,L} in adult rat ventricular myocytes (increase of 1.5 ± 1.2%, n = 7), whereas pretreatment of cells with palosuran (1 \(\mu\)M) completely abolished the U-II-induced increase in I_{Ca,L} (increase of 2.6 ± 1.3%, n = 9, p < 0.001; Fig. 2, C and D), suggesting that the U-II-induced increase in I_{Ca,L} was dependent on U-IIR.

U-II-induced Changes in I_{Ca,L} Require the \(\beta\gamma\) Subunits of G_{i/o}. U-IIR is a G-protein-coupled receptor and has been shown to couple to G_{i/o} in the cardiomyocytes (2, 32). To investigate the potential involvement of heterotrimeric G-proteins, cells were dialyzed with the non-hydrolyzable GDP analog GDP-\(\beta\)-S (1 mM). GDP-\(\beta\)-S completely abolished the increase in I_{Ca,L} induced by U-II (increase of 2.7 ± 1.1%, n = 8; Fig. 3A), indicating the requirement for G-protein activation. We next determined the involvement of G_{i/o} in the response mediated by U-IIR. Because of a lack of commercially available specific G_{i/o} inhibitors, an adenovirus-based shRNA knockdown approach was used to examine the effect of U-II on I_{Ca,L} in G_{i/o}-silenced ventricular myocytes. Western blot analysis showed that the expression of G_{i/o} was significantly reduced in cells transduced with G_{i/o} shRNA (Ad-G_{i/o}-shRNA) compared with the cells transduced with control shRNA (Ad-NC-shRNA; Fig. 3B). Knockdown of G_{i/o} did not affect the U-II-induced increase in I_{Ca,L} (increase of 27.9 ± 1.7%, n = 12; Fig. 3C), and there was no significant difference in the I_{Ca,L} density between control shRNA and non-transduced control cells (Figs. 1F and 3C). These results support the hypothesis that the U-II-induced increase in I_{Ca,L} is independent of G_{i/o} in adult rat ventricular myocytes. In cultured ventricular myocytes (48 h), the current density of I_{Ca,L} slightly, but not significantly, decreased at 0 mV (6.6 ± 0.4 pA/picofarad for control, n = 9; 5.9 ± 1.1 pA/picofarad for cultured cells, n = 11; Fig. 3D). In addition, the voltage dependence of I_{Ca,L} activation and inactivation was also measured in control and in cultured cells. Similar values for half-maximal activation and inactivation voltage (V_{1/2} (activation) and V_{1/2} (inactivation) from −13.1 ± 0.4 mV to −12.3 ± 0.6 mV for activation curve, n = 9; V_{1/2} (inactivation) from −29.7 ± 0.7 mV to −28.6 ± 0.9 mV for inactivation curve, n = 12; Fig. 3E) and slope factor (k) (k from 7.7 ± 0.6 to 7.5 ± 0.9 mV for activation curve, n = 9; k from 8.9 ± 0.6 to 9.1 ± 0.8 mV for inactivation curve, n = 12; Fig. 3E) were obtained in both groups. We next examined the involvement of different G-protein subtypes in the U-II-mediated modulation of I_{Ca,L}. Inactivation of G_{i} by pretreating ventricular myocytes with cholera toxin (0.5 \(\mu\)g/ml for 24 h) did not affect the ability of U-II to increase I_{Ca,L} (increase of 32.2 ± 3.1%, n = 10; Fig. 3F). Conversely, inhibition of G_{i/o} by pretreating ventricular myocytes with PTX (0.2 \(\mu\)g/ml for 24 h) abolished the stimulatory effect of U-II (increase of 1.3 ± 2.1%, n = 9; Fig. 3F). These results indicate that G_{i/o} is involved in the transduction pathways leading to the increase in I_{Ca,L} in response to U-II stimulation.

The potential role of the native \(\beta\gamma\) subunits (G_{i/o}) in the U-II-mediated increase of I_{Ca,L} was examined further. Intracellular infusion of synthetic peptide QEHA was used to bind G_{i/o} subunits released after receptor activation, thus preventing the activation of the upstream effectors. Application of QEHA (10 \(\mu\)M) through the recording pipette blocked the U-II-induced response (increase of 2.8 ± 3.2%, n = 9; Fig. 3, G and H), whereas similar dialysis of a scrambled peptide, SKEE (10 \(\mu\)M), did not alter the ability of U-II to increase I_{Ca,L} (increase of 27.5 ± 1.5%, n = 10; Fig. 3H). Together, these findings suggest that the G_{i/o} subunit of the G_{i/o}–protein complex mediates the U-II-induced increase in I_{Ca,L}.

U-II-mediated Stimulation of I_{Ca,L} Involves the Class I PI3K but Not Akt. Next, we investigated in detail the mechanism underlying the U-II-mediated I_{Ca,L} increase. Examination of the potential involvement of intracellular signaling pathways revealed no evidence for the involvement of PKA. Preincubation of cells with the PKA inhibitor KT-5720 (1 \(\mu\)M) did not alter the ability of U-II to increase I_{Ca,L} (increase of 27.6 ± 1.8%, n = 10; Fig. 4, A and C). Similar results were obtained following addition of another PKA inhibitor, protein kinase inhibitor 5–24 (increase of 28.2 ± 2.1%, n = 9; Fig. 4, B and C). Pretreatment of ventricular myocytes with 1 \(\mu\)M KT-5720 abolished the ability of forskolin (20 \(\mu\)M) to increase PKA activity (Fig. 4D), thus confirming the inhibitory effect of KT-5720. Previous studies have shown that the immediate downstream mediator of G_{i/o} is PI3K; therefore, to examine the role of PI3K in the response mediated by U-II, we first determined PI3K activity in ventricular myocytes. U-II significantly induced phosphatidylinositol 3,4,5-trisphosphate accumulation, and this effect was blocked by pretreatment of the cells with the PI3K inhibitor.
We assayed the activity of Akt in ventricular myocytes treated with 0.1 M U-II and examined whether U-II action is mediated by Akt activation. We further investigated the role of PKC in U-II-induced response (likely via the class I PI3K) but independently of PKA or Akt signaling. PKC activation has been shown to modulate L-type Ca\(^{2+}\) channels (22, 36) and can act as a downstream effector of G\(\beta\gamma\) activation (37).

U-IIR-induced Stimulation of I\(_{\text{Ca,L}}\)

PKC—PKC activation has been shown to modulate L-type Ca\(^{2+}\) channels (22, 36) and can act as a downstream effector of G\(\beta\gamma\) activation (37). We further investigated the role of PKC in U-II-induced changes in I\(_{\text{Ca,L}}\): U-II (0.1 M) significantly increased PKC activity (~2.3-fold) in rat ventricular myocytes (Fig. 5A). This response was abolished in cells pretreated with the class I PI3K inhibitor CH5132799 (1 M), an inhibitor of both novel and classic PKC isoforms, abolished the ability of U-II to increase I\(_{\text{Ca,L}}\) (increase of 1.5 ± 1.6%, n = 10; Fig. 5B). Similar results were obtained with another classic and novel PKC antagonist, chelerythrine chloride (1 M) (increase of 1.3 ± 2.9%, n = 9; Fig. 5B). Interestingly, the inhibition of PKC on U-II-induced responses by these antagonists was reproduced by Ro 31-8220 (2 M), which blocks only classic PKC isoforms (increase of 1.9 ± 1.8%, n = 10; Fig. 5B). Application of calphostin C (50 nM), chelerythrine chloride (1 M), or Ro 31-8220 (2 M) alone had no significant effect on I\(_{\text{Ca,L}}\) in adult rat ventricular myocytes (increase of −1.7 ± 1.9% for calphostin C, n = 6; increase of −2.1 ± 2.3% for chelerythrine, n = 5; increase of −1.0 ± 2.1% for Ro 31-8220, n = 6; Fig. 5B). In contrast to novel PKC isoforms, activation of classic PKC isoforms requires cytoplasmic Ca\(^{2+}\). Intracellular dialysis of the fast Ca\(^{2+}\) chelator BAPTA (20 M), but not the inactive analog dn-BAPTA, completely abolished the U-II-mediated response (increase of 1.3 ± 2.1% for BAPTA, n = 10; increase of 27.5 ± 3.6% for dn-BAPTA, n = 8; Fig. 5C and D), thus supporting the involvement of classic PKC isoforms in this process.
U-II Activates L-type Ca\(^{2+}\) Channels

The Classic PKCB1 Isoform Is Involved in U-II Response—Next, we aimed to determine the exact PKC isoform involved in the U-II-induced \(I_{\text{Ca,L}}\) increase. To achieve this, we first investigated the protein expression profiles of classic PKC isoforms in rat ventricular myocytes. Western blot analysis revealed that PKCe, PKC\(\beta_1\), and PKC\(\beta_2\) are expressed in adult rat ventricular myocytes, whereas PKC\(\gamma\) could not be detected (Fig. 6A). Rat brain expresses all four classic PKC isoforms and was used as a positive control for the various PKC isoform antisera (Fig. 6A). Pretreatment of cells with HBDDE (1 \(\mu M\)), a PKCe and PKC\(\gamma\) inhibitor, did not affect the stimulatory effects of U-II on \(I_{\text{Ca,L}}\) (increase of 26.9 \(\pm\) 3.3\%, \(n = 10\); Fig. 6B and D). In contrast, pretreating ventricular myocytes with the PKC\(\beta_1\) antagonist LY333531 (0.2 \(\mu M\)) abolished the U-II-mediated change in \(I_{\text{Ca,L}}\) (increase of 1.8 \(\pm\) 2.1\%, \(n = 9\); Fig. 6C and D). In addition, dialysis of cells with \(\beta\)IV5-3 (0.1 \(\mu M\)), a PKCB\(\gamma\)-specific inhibitor, completely blocked the U-II-induced increase in \(I_{\text{Ca,L}}\) (increase of 0.9 \(\pm\) 1.2\%, \(n = 9\); Fig. 6E). Application of scrambled \(\beta\)IV5-3 (0.1 \(\mu M\)) (increase of 28.1 \(\pm\) 1.9\%, \(n = 9\); Fig. 6E) or the PKCB\(\gamma\)-specific inhibitor (0.1 \(\mu M\)) (increase of 27.3 \(\pm\) 3.1\%, \(n = 10\); Fig. 6E) did not elicit this effect. Together, these results suggest that PKC\(\beta_1\) may be involved in the U-II-induced increase in \(I_{\text{Ca,L}}\). To confirm this, we used an adenovirus-based shRNA approach to knock down PKC\(\beta_1\) in

FIGURE 4. U-II-mediated \(I_{\text{Ca,L}}\) increase requires PI3K. A and B, time course of changes in \(I_{\text{Ca,L}}\) amplitude mediated by 0.1 \(\mu M\) U-II in the presence of either KT-5720 (1 \(\mu M\) for 30 min; A) or protein kinase inhibitor (PKI) 5–24 (1 \(\mu M\) intracellular application; B). C, summary of results showing the effects of U-II on \(I_{\text{Ca,L}}\) in the presence of either KT-5720 (\(n = 10\)) or protein kinase inhibitor 5–24 (\(n = 9\)) as indicated in A and B. D, bar graph showing the activity of PKA in control cells, in ventricular myocytes treated with 20 \(\mu M\) forskolin, and in ventricular myocytes preincubated with KT-5720 (KT) (1 \(\mu M\) for 30 min) and then treated with 20 \(\mu M\) forskolin. E, U-II (0.1 \(\mu M\)) induced a significant increase in PI3K activity in the ventricular myocytes. This was blocked by the pretreatment of cells with wortmannin (wort) (0.5 \(\mu M\) for 30 min). All experiments were performed in triplicate with similar results. F and G, time course showing the stimulatory effects of 0.1 \(\mu M\) U-II on \(I_{\text{Ca,L}}\) in the presence of wortmannin (0.5 \(\mu M\) for 30 min; F) and CH5132799 (1 \(\mu M\) for 30 min; G). H, summary of results showing that treatment of ventricular myocytes with either wortmannin (\(n = 9\)) or CH5132799 (\(n = 9\)), but not Akt inhibitor III (10 \(\mu M\), \(n = 11\)), completely abolished the 0.1 \(\mu M\) U-II-induced \(I_{\text{Ca,L}}\) increase. I, pretreatment of cells with Akt inhibitor III (10 \(\mu M\)) abolished 0.1 \(\mu M\) U-II-induced Akt phosphorylation. The blots shown are representative of three experiments. ***, \(p < 0.001\) versus 0.1 \(\mu M\) U-II; #, \(p < 0.05\) versus vehicle; ##, \(p < 0.01\) versus vehicle; &; \(p < 0.05\) versus 20 \(\mu M\) forskolin. Error bars represent S.E. RLU, relative light units; p-Akt, phosphorylated Akt; t-Akt, total Akt; PIP3, phosphatidylinositol 3,4,5-trisphosphate.

FIGURE 5. U-II increases \(I_{\text{Ca,L}}\) through activation of PKC. A, bar graph showing the activity of PKC in control cells, in ventricular myocytes treated with 0.1 \(\mu M\) U-II, and in ventricular myocytes pre-incubated with CH5132799 (CH) (1 \(\mu M\) for 30 min) and then treated with 0.1 \(\mu M\) U-II. B, summary of results showing the effect of 0.1 \(\mu M\) U-II on \(I_{\text{Ca,L}}\) in the presence of calphostin C (50 \(\mu M\) for 30 min; \(n = 10\)), chelerythrine chloride (1 \(\mu M\) for 30 min; \(n = 9\)), and Ro 31-8220 (2 \(\mu M\) for 30 min; \(n = 9\)). Application of calphostin C (50 \(\mu M\); \(n = 6\)), chelerythrine chloride (1 \(\mu M\); \(n = 5\)), or Ro 31-8220 (2 \(\mu M\); \(n = 6\)) alone had no significant effect on \(I_{\text{Ca,L}}\). C and D, time course and summary of results showing the effect of U-II (0.1 \(\mu M\)) on the \(I_{\text{Ca,L}}\) amplitude in the presence of BAPTA (20 \(\mu M\) intracellular application; \(n = 10\)) or dn-BAPTA (intracellular application; \(n = 8\)). **, \(p < 0.01\) versus 0.1 \(\mu M\) U-II; ***, \(p < 0.001\) versus 0.1 \(\mu M\) U-II; ##, \(p < 0.01\) versus vehicle. Error bars represent S.E.
ventricular myocytes. Western blot analysis revealed that the expression of PKCβ1 was substantially reduced in cells transfected with PKCβ1-specific shRNA (Ad-PKCβ1-shRNA) compared with the cells transfected with control shRNA (Ad-NC-shRNA) (Fig. 6F), whereas the expression of PKCβ2 was not affected. Knockdown of PKCβ1 in ventricular myocytes almost completely eliminated the U-II-mediated increase in \(I_{\text{Ca,L}} \) (increase of 1.3 ± 0.7%, \(n = 9 \); Fig. 6G). Cellular activation of PKC is linked to its translocation and binding to the plasma membrane. Therefore, to support the results from the previous experiments, we examined the translocation of PKCβ1 from the cytosol to the membrane fractions of the cell following treatment with U-II. Western blot analysis indicated an increase of membrane-bound PKCβ1 and a decrease in the cytosolic fraction following stimulation with U-II (0.1 \(\mu M \); Fig. 6H). Collectively, these results suggest that the U-II-mediated increase in \(I_{\text{Ca,L}} \) occurs through the classic PKCβ1 pathway.

U-II Increased the Amplitude of Sarcomere Shortening—L-type Ca\(^{2+}\) channels are at the top of a cascade of events that initiate excitation-contraction coupling and thus regulate the strength of cardiac contraction (18–20). L-type Ca\(^{2+}\) channel blockers can cause a negative inotropism; conversely, any agent that increases \(I_{\text{Ca,L}} \) might, in theory, serve as a positive inotrope (20). To further examine the functional implications of the \(I_{\text{Ca,L}} \) increase induced by U-II, we tested the effects of U-II on cardiomyocyte contractility in rat ventricular myocytes. Our results showed that application of U-II (0.1 \(\mu M \)) resulted in a rapid (usually within 5 min after administration) increase in the amplitude of sarcomere shortening (increase of 30.8 ± 3.1%, \(n = 12 \) from five hearts; Fig. 7A and B). The effects of U-II on cardiomyocyte shortening in response to depolarizing pulses were reversible after washout of U-II from the bath solution (Fig. 7B). We next determined the involvement of U-IIR in U-II-induced changes in cardiomyocyte shortening. Our results showed that pretreatment of cells with palosuran (1 \(\mu M \)), a specific U-IIR antagonist, abolished the U-II-induced response (increase of 2.1 ± 1.7%, \(n = 6 \) from three hearts; Fig. 7C), suggesting the involvement of U-IIR in the U-II-induced increase in the amplitude of sarcomere shortening. Furthermore, pretreating ventricular myocytes with the PKCα antagonist LY333531 (0.2 \(\mu M \)) completely abolished the U-II-mediated change in sarcomere shortening (increase of 3.5 ± 2.8%, \(n = 6 \) from three hearts; Fig. 7C), whereas the PKCα inhibitor HBDDDE (1 \(\mu M \)) elicited no such effect (increase of 27.6 ± 1.9%, \(n = 10 \) from six hearts; Fig. 7D). To further verify this that U-II-induced response was mediated by the \(I_{\text{Ca,L}} \) increase, we investigated whether Bay K8644, an L-type Ca\(^{2+}\) channel agonist, would occlude the U-IIR-mediated increase in the amplitude of sarcomere shortening. Indeed, Bay K8644 at 0.5 \(\mu M \) induced a significant increase in \(I_{\text{Ca,L}} \) (increase of 37.6 ± 3.1%, \(n = 7 \); Fig. 7D). Application of Bay K8644 (0.5 \(\mu M \)) to ventricular myocytes mimicked the U-II-induced increase in the amplitude of sarcomere shortening (Fig. 7, E and F). Notably, application of U-II (0.1 \(\mu M \)) after the maximum Bay K8644-induced
U-IIR Activates L-type Ca\(^{2+}\) Channels

FIGURE 7. U-II increases the amplitude of sarcomere shortening. A and 8, representative recordings (A) and summary data (8) of sarcomere shortening of ventricular myocytes under control conditions, exposure to 0.1 μM U-II for 5 min, and washout (n = 12). The vertical axis shows absolute sarcomere length in micrometers. C, effect of U-II (0.1 μM) on cardiomyocyte contractility in the presence of palosuran (1 μM for 30 min; n = 6), HBDDE (1 μM for 30 min; n = 10), and LY333531 (0.2 μM for 30 min; n = 6). D, summary of results showing the effect of U-II (0.1 μM) on ICa,L in the absence of BayK8644 (Bay.) (0.5 μM for 30 min; n = 7). E and F, representative recordings (E) and summary data (F) showing the effect of U-II (0.1 μM) on sarcomere shortening in the presence of BayK8644 (0.5 μM; n = 11). *p < 0.05 versus U-II at 0.1 μM; **p < 0.01 versus U-II at 0.1 μM; & p < 0.05 versus control. Error bars represent S.E.

response failed to produce any further increase either in ICa,L (increase of 35.9 ± 6.5%, n = 7; Fig. 7D) or in the amplitude of sarcomere shortening (Fig. 7, E and F). These results together suggest that U-II increased the amplitude of sarcomere shortening through a U-IIR-dependent PKCβ and L-type Ca\(^{2+}\) channel pathway.

DISCUSSION

The present study provides mechanistic data describing a novel functional role of U-II in modulating L-type Ca\(^{2+}\) channels as well as sarcomere shortening in adult rat ventricular myocytes. These results suggest that this response is mediated by U-IIR coupled to the βγ subunits of G\(_{i/o}\)-proteins and subsequent activation of the class I PI3K-dependent PKCβ1 isoform. A schematic diagram of this proposed pathway is shown in Fig. 8.

U-IIR activation is detected through PTX-insensitive G-protein G\(_{q,11}\) coupling sequentially to phospholipase C (2, 32). Interestingly, in adult rat ventricular myocytes, we found that the βγ subunits of PTX-sensitive G\(_{i/o}\)-protein are involved in the U-IIR-mediated L-type Ca\(^{2+}\) channel stimulation because 1) the effect was blocked by the nonselective G-protein inhibitor GDP-β-S and 2) pretreatment with PTX, but not cholera toxin, abolished the response to U-II, indicating the involvement of G\(_{i/o}\) in rat ventricular myocytes. It has been suggested previously that G\(_{i/o}\) can interact directly with L-type Ca\(^{2+}\) channels (38); however, such a mechanism is unlikely to be involved in our system. We did find the involvement of Gβγ subunits in the U-II-induced response because pipette application of the peptide QHEA, which disrupts interactions between Gβγ subunits and Ca\(^{2+}\) channels, but not its scrambled peptide SKEE abolished U-II-induced stimulation. However, Gβγ did not seem to interact with the L-type Ca\(^{2+}\) channels because the U-II-induced response was further blocked by the inhibition of downstream protein kinases. Importantly, the outcome of Gβγ regulation of Cav1.2 was a reduction in ICa,L due to direct interaction with the N terminus of α1C subunits (39). The apparent independence of Gβγ subunits in the modulation of L-type calcium channels may indicate that rat ventricular myocytes express a Ca\(^{2+}\) channel that is insensitive to the Gβγ subunits of G\(_{i/o}\). An alternative hypothesis is that different Cav1.2 channel splice variants are able to generate different L-type Ca\(^{2+}\) channel functions (40). For example, alternative splicing of the Cav1.2 channel changes the sensitivity of the L-type Ca\(^{2+}\) channel to dihydropyridines (41). In addition, it is possible that U-IIR-mediated Gβγ activation does not result in a functional increase in L-type Ca\(^{2+}\) channel current in adult rat ventricular myocytes.

Presently, it is unclear how Gβγ stimulates L-type Ca\(^{2+}\) channel activity. Gβγ subunits can activate PKA to modulate various targets including calcium channels (42, 43). For example, ICa,L recorded from isolated cardiomyocytes were shown to be increased by β-adrenergic receptors via the cAMP/PKA-dependent pathway (44). In contrast, ICa,L inhibition by CB1 cannabinoid receptor activation was prevented by the application of PKA inhibitors (45). Similarly, Cav1.2 current inhibition by integrin receptor activation was blocked by the addition of the PKA inhibitor H89 (46). However, in the present study, we found that the stimulatory effect of U-II on ICa,L was independent, in which suggests that other non-cAMP/PKA-dependent mechanisms are involved in the stimulatory effect of U-II. PI3K (particularly PI3Kγ) is a known downstream target of Gβγ, and there is evidence that Gβγ stimulates Cav1.2 via PI3K (47). In this study, we found that the response to U-II was abolished by the selective PI3K inhibitors, suggesting that PI3K also participates in the U-IIR/Gβγ pathway in rat ventricular myocytes. In contrast, the stimulatory effect of U-II on PKC activity was abolished by PI3K blockade, suggesting that PKC is downstream of PI3K rather than the reverse.

Next, we wished to determine how PI3K activates PKC. Phosphatidylinositol 3,4,5-trisphosphate, the lipid product of PI3K, targets several different second messengers (48, 49) including PKC. Furthermore, PI3Kγ itself has serine kinase activity, and this could lead to PKC activation (50–53). The Gβγ/PI3K pathway has been reported to regulate chloride channels in oocytes and has been linked to phosphatidylinositol 3,4,5-trisphosphate-dependent activation of PKCζ, an atypical PKC that is insensitive to both Ca\(^{2+}\) and diacylglycerol (54, 55). In addition, the Gβγ/PI3K pathway has been shown to activate...
FIGURE 8. Proposed signaling pathway involved in the effect of U-II on L-type Ca2+ channels. U-II binds to U-IIR, which is coupled to the G-protein \(G_{\text{i/o}} \), causing it to release the \(\beta y \) subunits. Activation of PI3K by the \(\beta y \) subunit causes an increase in PKCa, activity and subsequent stimulation of the L-type Ca2+ channels. PI3K catalyzes the conversion of phosphatidylinositol 4,5-bisphosphate (\(PIP_2 \)) to phosphatidylinositol 3,4,5-trisphosphate (\(PIP_3 \)), which serves as a second messenger that helps to activate Akt. Neither PKA, Akt, PKC\(\beta_1 \) nor direct interaction between \(\beta y \) and L-type Ca2+ channel is necessary for the U-IIR-mediated increase of \(I_{\text{Ca,L}} \). Whether PKC\(\beta_1 \) directly phosphorylates L-type Ca2+ channels or acts on an intermediate protein remains unclear.

REFERENCES

1. Pearson, D., Shively, J. E., Clark, B. R., Geschwind, I. I., Barkley, M., Nishikawa, R. S., and Bern, H. A. (1980) Urotensin II: a somatostatin-like peptide in the caudal neurosecretory system of fishes. *Proc. Natl. Acad. Sci. U.S.A.* 77, 5021–5024

2. Vaudry, H., Do Rego, J. C., Le Mevel, J. C., Chatenet, D., Tostivint, H., Fournier, A., Tonon, M. C., Pelletier, G., Conlon, J. M., and Leprince, J. (2010) Urotensin II, from fish to human. *Ann. N.Y. Acad. Sci.* 1200, 53–66

3. Ames, R. S., Sarau, H. M., Chambers, J. K., Willette, R. N., Aiyar, N. V., Romanic, A. M., Louden, C. S., Foley, J. J., Sauermelch, C. F., Coatney, R. W., Ao, Z., Disa, J., Holmes, S. D., Stadel, J. M., Martin, J. D., Liu, W. S., Glover, G. I., Wilson, S., McNulty, D. E., Ellis, C. E., Elshourbagy, N. A., Shaban, U., Trill, J. J., Hay, D. W., Ohlstein, E. H., Bergsma, D. J., and Douglas, S. A. (1999) Human urotensin-II is a potent vasoconstrictor and agonist for the orphan receptor GPR14. *Nature* 401, 282–286

4. Sainsbury, C., Cahana, J., Holloran, B. J., Escher, E., Lavigne, P., and Leduc, R. (2014) Identification of transmembrane domain 1 & 2 residues that contribute to the formation of the ligand-binding pocket of the urotensin-II receptor. *Biochem. Pharmacol.* 92, 280–288

5. Herold, C. L., Behm, D. J., Buckley, P. T., Foley, J. J., Wixted, W. E., Sarau, H. M., and Douglas, S. A. (2003) The neuromedin B receptor antagonist, BIM-23127, is a potent antagonist at human and rat urotensin-II receptors. *Br. J. Pharmacol.* 139, 203–207

6. Gartlon, J., Parker, F., Harrison, D. C., Douglas, S. A., Ashmeade, T. E., Riley, G. J., Hughes, Z. A., Taylor, S. G., Munton, R. P., Hagan, J. I., Hunter, J. A., and Jones, D. N. (2001) Central effects of urotensin-II following ICV administration in rats. *Psychopharmacology* 155, 426–433

A novel PKC isofrom in rabbit portal vein myocytes (50). Conversely, the U-IIR-induced response is blocked with calphostin C. Calphostin C inhibits both classic and novel PKCs but not atypical PKCs. Furthermore, the effects of U-II in the present study were also inhibited when selective antagonists of classic PKCs and a fast intracellular calcium chelator were used, leading us to the conclusion that classic PKC isoforms are involved.

The following data suggest that PKC\(\beta_1 \) is involved in the U-II-induced increase in \(I_{\text{Ca,L}} \): 1) Pharmacological inhibition of PKC\(\beta_1 \) but not PKC\(\alpha \) completely abolished the increase of U-II on \(I_{\text{Ca,L}} \). 2) PKC\(\beta_1 \) has been identified in rat ventricular myocytes, and U-II increases the membrane expression of PKC\(\beta_1 \). 3) Pharmacological inhibition of PKC\(\beta_1 \) or knockdown with shRNA blocked the U-II-induced \(I_{\text{Ca,L}} \) response. These results are supported by previous studies showing that PKC activation increases \(I_{\text{Ca,L}} \) in neonatal mouse ventricular myocytes (56). It has also been shown that PKC phosphorylates the Cav1.2 \(\alpha C \) calcium channel subunit, resulting in the up-regulation of L-type Ca2+ channel activity (57). Similar results have been reported in rat portal vein myocytes (50). In contrast, a PKC\(\beta_1 \)-induced \(I_{\text{Ca,L}} \) decrease has been described in the heart (58, 59) and cerebral artery smooth muscle cells (60). Biphasic effects of PKC and no effect of PKC activation on L-type Ca2+ channels have also been reported (61, 62). Although the regulation of L-type Ca2+ channels by PKC remains controversial, the differential modulation of L-type Ca2+ channel activity by PKC may also involve different parameters. First, the expression and/or activation of endogenous PKC isoforms is tissue/cell-specific, and remarkable heterogeneity across PKC-dependent signal transduction pathways exists including that for ion channel modulation (63, 64). As described in the present study, we suggest that the PKC\(\beta_1 \) isofrom is involved in the U-II-induced \(I_{\text{Ca,L}} \) response. Second, PKC modulation of L-type Ca2+ channels may involve PKC-interacting proteins; this is the case for the Cav2.2 N-type channel (65). PKC-interacting proteins confer specificity on individual PKC isoforms by regulating their activity and cellular location, endowing isoforms with the ability to mediate specific cellular functions (66, 67). Finally, cell-specific splice variants of Cav1.2 \(\alpha C \) (68) or \(\beta \) subunits (69) might modulate the pharmacological properties of L-type Ca2+ channels in different ways. Therefore, we cannot exclude the possibility that an intermediate protein, phosphorylated by a different PKC isofrom, may be involved in the observed U-IIR-mediated response.

In conclusion, the present study provides evidence of new mechanisms involved in the modulation of L-type Ca2+ channels by U-II in adult rat ventricular myocytes. We propose that the marked increase in \(I_{\text{Ca,L}} \) induced by U-II is mediated through U-IIR and involves the \(\beta y \) subunits of \(G_{\text{i}} \), and downstream class I PI3K-dependent activation of the PKC\(\beta_1 \) pathway. We found no evidence of a role for PKA and Akt signaling. This novel mechanism may contribute to the physiological functions of U-II including ventricular contraction in the mammalian cardiovascular system.

Acknowledgments—We thank Drs. Xiaofei Zhou and Kun Chen for technical assistance and invaluable comments.
U-IIR Activates L-type Ca^{2+} Channels

7. Do-Rego, J. C., Chatenet, D., Orta, M. H., Naudin, B., Le Cudennec, C., Leprince, J., Scalbert, E., Vaudry, H., and Costentin, J. (2005) Behavioral effects of urotensin-II centrally administered in mice. Psychopharmacology 183, 103–117

8. Huitrón-Resendiz, S., Kristensen, M. P., Sánchez-Alavez, M., Clark, S. D., Grupke, S. L., Tyler, C., Suzuki, C., Noahcker, H. P., Civelli, O., Criado, J. R., Henriksen, S. I., Leonard, C. S., and de Lecca, L. (2005) Urotensin II modulates rapid eye movement sleep through activation of brainstem cholinergic neurons. J. Neurosci. 24, 5465–5474

9. Russell, F. D., Molenaar, P., and O’Brien, D. M. (2001) Cardiostimulant effects of urotensin-II in human heart in vitro. Br. J. Pharmacol. 132, 5–9

10. Douglas, S. A., Tayara, L., Ohlstein, E. H., Halawa, N., and Giaid, A. (2002) Plasma urotensin in human systolic heart failure. Circulation 106, 2877–2880

11. Lin, Y., Tsuchihashi, T., Matsumura, K., Fukuhara, M., Ohya, Y., Fujii, K., and lida, M. (2003) Central cardiovascular action of urotensin II in spontaneously hypertensive rats. Hypertens. Res. 26, 839 – 845

12. Ng, L. L., Loke, I., O’Brien, R. J., Squire, I. B., and Davies, J. E. (2002) Plasma secreted by Agrobacterium induces sensory neuronal hyperexcitability through the phosphatidylinositol 3-kinase and extracellular signal-regulated kinase 1/2 pathways, independently of Akt. Endocrinology 155, 168–179

13. Tao, J., Hildebrand, M. E., Liao, P., Liang, M. C., Tan, G., Li, S., Snutch, T. P., and Soong, T. W. (2008) Activation of corticotropin-releasing factor 1 selectively inhibits CaV3.2 T-type calcium channels. J. Biol. Chem. 283, 35133–35142

14. Niederst, M. I., and Engelmann, J. A. (2013) Bypass mechanisms of resistance to receptor tyrosine kinase inhibition in lung cancer. Sci. Signal. 6, re6

15. Vidal, P., Macrez, N., Mironneau, C., and Mironneau, J. (2001) Involvement of both G protein α and βγ subunits in β-adrenergic stimulation of vascular L-type Ca^{2+} channels. Br. J. Pharmacol. 132, 669 – 676

16. Pérez-Garcí, E., Larkum, M. E., and Nevian, T. (2013) Inhibition of den-ritic Ca^{2+} spikes by GABAB receptors in cortical pyramidal neurons is mediated by a direct G_{i/o}-G protein subunit interaction with Cav1 channels. J. Physiol. 591, 1599–1612

17. Ivanina, T., Blumenstein, Y., Shistik, E., Barzilai, R., and Dascal, N. (2000) Modulation of L-type Ca^{2+} channels by Glu and calmodulin via interactions with N and C terminus of α1C. J. Biol. Chem. 275, 39846–39854

18. Zhang, H. Y., Liao, P., Wang, J. J., Yu de, J., and Soong, T. W. (2010) Alternative splicing modulates δtazimenz sensitivity of cardiac and vascular smooth muscle Ca_{1,2} calcium channels. Br. J. Pharmacol. 160, 1631–1640

19. Liao, P., Yu, D. L., Li, G., Yong, T. F., Soon, J. L., Chua, Y. L., and Soong, T. W. (2007) A smooth muscle Cav1.2 calcium channel splice variant underlies hyperpolarized window current and enhanced state-dependent inhibition by nifedipine. J. Biol. Chem. 282, 35133–35142

20. Hu, C., Depuy, S. D., Yao, J., McIntire, W. E., and Barrett, P. Q. (2009) Protein kinase A activity controls the regulation of T-type Cav3.2 channels by Gβγ dimers. J. Biol. Chem. 284, 7465–7473

21. Zhang, Y., Jiang, D., Zhang, J., Wang, F., Jiang, X., and Tao, J. (2010) Activation of neuromedin U type 1 receptor inhibits L-type Ca^{2+} channel currents via phosphatidylinositol 3-kinase-dependent protein kinase C epsilon pathway in mouse hippocampal neurons. Cell. Signal. 22, 1660–1668

22. Kamp, T. J., and Hell, J. W. (2000) Regulation of cardiac L-type calcium channels by protein kinase A and protein kinase C. Circ. Res. 87, 1095–1102

23. Hoddah, H., Marcantoni, A., Comunanza, V., Carabelli, V., and Carbone, E. (2009) L-type channel inhibition by CB1 cannabinoid receptors is mediated by PTX-sensitive G proteins and cAMP/PKA in GT1–7 hypothalamic neurons. Cell Calcium 46, 303–312

24. Gu, P., Wu, H., Liu, X., Lin, S., Stott, S. C., Winkfein, J. R., Wilson, E., Davis, G. E., Braun, A. P., Zamponi, G. W., and Davis, M. J. (2006) Integrin receptor activation triggers converging regulation of Cav1.2 calcium channels by α2C- and protein kinase A pathways. J. Biol. Chem. 281, 14015–14025

25. Vidal, P., Exner, T., Maier, U., Mironneau, J., Nürnberg, B., and Macrez, N. (1999) Gβγ dimers stimulate vascular L-type Ca^{2+} channels via phospho-
nositide 3-kinase. FASEB J. 13, 685–694
48. Bonneau, B., Nougarède, A., Prudent, J., Popgeorgiev, N., Peyriéras, N., Rimokh, R., and Gillet, G. (2014) The Bcl-2 homolog Ntrz inhibits binding of TP3 to its receptor to control calcium signaling during zebrafish epiboly. Sci. Signal. 7, ra14
49. Tao, J. J., Castel, P., Radosevic-Robin, N., Elkahets, M., Auricchio, N., Radosevic-Robin, N., Elkabets, M., Cantley, L. C., and Balk, S. P. (2013) Tyrosine kinase BMX phosphorylates phosphotyrosine-primed motif mediating the activation of multiple receptor tyrosine kinases. Sci. Signal. 6, ra105
50. Callaghan, B., Koh, S. D., and Keef, K. D. (2004) Muscarinic M2 receptor stimulation of Cav1.2b requires phosphatidylinositol 3-kinase, protein kinase C, and c-Src. Circ. Res. 94, 626–633
51. Diaz-Flores, E., Goldschmidt, H., Pepeilpe, P., Ng, V., Akutagawa, J., Krisman, K., Crone, M., Burgess, M. R., Williams, O., Houseman, B., Shokat, K., Sampath, D., Bollag, G., Roose, J. P., Braun, B. S., and Shannon, K. (2013) PLC-γ and PI3K link cytokines to ERK activation in hematopoietic cells with normal and oncogenic Kras. Sci. Signal. 6, ra40
52. Chen, S., Jiang, X., Gewinner, C. A., Asara, J. M., Simon, N. I., Cai, C., Cantley, L. C., and Balk, S. P. (2013) Tyrosine kinase BMX phosphorylates phosphotyrosine-primed motif mediating the activation of multiple receptor tyrosine kinases. Sci. Signal. 6, ra40
53. Mohan, M. L., Iha, B. K., Gupta, M. K., Vasudevan, N. T., Martelli, E. E., Mosinski, J. D., and Naga Prasad, S. V. (2013) Phosphoinositide 3-kinase γ inhibits cardiac GSK-3 independently of Akt. Sci. Signal. 6, ra40
54. Wang, Y. X., Dhulipala, P. D., Li, L., Benovic, J. L., and Kotlikoff, M. I. (1999) Coupling of M2 muscarinic receptors to membrane ion channels via phosphoinositide 3-kinase gamma and atypical protein kinase C. J. Biol. Chem. 274, 13859–13864
55. Kusne, Y., Carrera-Silva, E. A., Perry, A. S., Rushing, E. J., Mandell, E. K., Bergamaschi, A., Maheswaran, S., Ng, T., Pennalt-Llorca, F., Lewis, J. S., Carey, L. A., and Marx, S. O. (2005) Ser1928 is a common site for Cav1.2 phosphorylation by protein kinase C isoforms. J. Biol. Chem. 280, 207–214
56. Alden, K. J., Goldspink, P. H., Ruch, S. W., Buttrick, P. M., and Garcia, J. (2002) Enhancement of L-type Ca2⁺ current from neonatal mouse ventricular myocytes by constitutively active PKC-ßIII. Am. J. Physiol. Cell Physiol. 282, C768–C774
57. Yang, L., Liu, G., Zakharov, S. I., Morrow, J. P., Rybin, V. O., Steinberg, S. F., and Marx, S. O. (2005) Ser1928 is a common site for Cav1.2 phosphorylation by protein kinase C isoforms. J. Biol. Chem. 280, 207–214
58. Zhao, J. H., Johnson, J. A., Chen, L., El-Sherif, N., Mochly-Rosen, D., and Boutidir, M. (1997) C2 region-derived peptides of β-protein kinase C regulate cardiac Ca2⁺ channels. Circ. Res. 80, 720–729
59. El Khoury, N., Mathieu, S., and Fiset, C. (2014) Interleukin-1β reduces L-type Ca2⁺ current through protein kinase C activation in mouse heart. J. Biol. Chem. 289, 21896–21908
60. Wu, B. N., Chen, M. L., Dai, Z. K., Lin, Y. L., Yeh, J. L., Wu, J. R., and Chen, I. J. (2009) Inhibition of voltage-gated L-type calcium channels by labepinidilol-A involves protein kinase C in rat cerebrovascular smooth muscle cells. Vasc. Pharmacol. 51, 65–71
61. Tseng, G. N., and Boyden, P. A. (1991) Different effects of intracellular Ca and protein kinase C on cardiac T and L Ca currents. Am. J. Physiol. Heart Circ. Physiol. 261, H364–H379
62. Walsh, K. B., and Kass, R. S. (1988) Regulation of a heart potassium channel by protein kinase A and C. Science 242, 67–69
63. Dempsey, E. C., Newton, A. C., Mochly-Rosen, D., Fields, A. P., Rayland, M. E., Insel, P. A., and Messing, R. O. (2000) Protein kinase C isoforms and the regulation of diverse cell responses. Am. J. Physiol. Lung Cell. Mol. Physiol. 279, L429–L438
64. Sonkusare, S. K., Dalsgaard, T., Bonev, A. D., Hill-Eubanks, D. C., Kotlikoff, M. I., Scott, J. D., Santana, L. F., and Nelson, M. T. (2014) AKAP150-dependent cooperative TRPV4 channel gating is central to endothelium-dependent vasodilation and is disrupted in hypertension. Sci. Signal. 7, ra66
65. Maeno-Hikichi, Y., Chang, S., Matsumura, K., Lai, M., Lin, H., Nakagawa, N., Kuroda, S., and Zhang, J. F. (2003) A PKCε-ENH-channel complex specifically modulates N-type Ca2⁺ channels. Nat. Neurosci. 6, 468–475
66. Poole, A. W., Pula, G., Hers, I., Crosby, D., and Jones, M. L. (2004) PKC-interacting proteins: from function to pharmacology. Trends Pharmacol. Sci. 25, 528–535
67. Farren, M. R., Carlson, L. M., Netherby, C. S., Lindner, I., Li, P. K., Gabriovich, D. I., Abrams, S. I., and Lee, K. P. (2014) Tumor-induced STAT3 signaling in myeloid cells impairs dendritic cell generation by decreasing PKCßIII abundance. Sci. Signal. 7, ra16
68. Liao, P., Yu, D., Lu, S., Tang, Z., Liang, M. C., Zeng, S., Lin, W., and Soong, T. W. (2004) Smooth muscle-selective alternatively spliced exon generates functional variation in Cav1.2 calcium channels. J. Biol. Chem. 279, 50329–50335
69. Lao, Q. Z., Kobrinsky, E., Harry, J. B., Ravindran, A., and Soldatov, N. M. (2008) New determinant for the CaVβ2 subunit modulation of the CaV1.2 calcium channel. J. Biol. Chem. 283, 15577–15588