Sex-dependent differences in adaptation to famine have long been appreciated, thought to hinge on female versus male preferences for fat versus protein sources, respectively. However, whether these differences can be reduced to neurons, independent of typical nutrient depots, such as adipose tissue, skeletal muscle, and liver, was heretofore unknown. A vital adaptation to starvation is autophagy, a mechanism for recycling amino acids from organelles and proteins. Here we show that segregated starvation is autophagy, a mechanism for recycling amino acids and other nutrients, such as mitochondria, the latter sometimes referred to as “mitophagy,” disassembling large proteins and organelles to recycle amino acids and other nutrients, an important response to starvation (12).

It is unknown whether starvation can induce autophagy in the brain; however, there is evidence that critical starvation can result in brain atrophy in humans. It has been reported that ~30% of people during a prolonged hunger strike (mean of 199 days) will show brain tissue loss (13), and brain shrinkage in patients with anorexia nervosa is well documented (14, 15). Although 48 h of food deprivation does not produce detectable autophagy in brains from mice (16), the aforementioned reports are consistent with long durations of starvation as a bona fide stimulus for autophagy in brain. There are recent studies suggesting that other stimuli can induce autophagy in the brain, such as trauma (17) and ischemia (18), and that autophagy may contribute to neuronal death. There is also evidence for autophagy in the human brain after trauma and critical illness (19), which probably includes both elements of malnutrition and systemic stress. A potential role for brain atrophy as a contributor to neurological morbidity in the critically ill and injured is an emerging topic (20).

EXPERIMENTAL PROCEDURES

Sex-specific Neuron-enriched Cultures—Sex-segregated primary cortical neuron cultures were prepared from embryologic day 17 Sprague-Dawley rats as described (21). Embryologic day 17 male and female rats were distinguished by visualization of the penile vessels and sex cords, segregated, and cultured separately. Dissociated cell suspensions were filtered through a...
Starving Neurons Show Sex Difference in Autophagy

70-μm Falcon nylon cell strainer and then seeded in 96-well plates at a density of 5 × 10^4 cells/cm², in plastic dishes coated with 100 μg/ml poly-D-lysine at a density of 1.3 × 10^7 cells/cm², or on glass coverslips coated with poly-D-lysine at a density of 1.3 × 10^7 cells/cm². Each contained Neurobasal™ medium supplemented with B27™ (Invitrogen) and GlutaMax™ (Sigma) for neuron-enriched cultures (22). Cells are incubated at 37 °C in a humidified chamber containing 5% CO₂. On the 2nd and 6th day in vitro the culture medium was replaced with fresh medium. Experiments were done at 8–12 days in vitro, when cultures consist primarily of neurons (>95% MAP2 (microtubule-associated protein-2) immunopositive cells, <5% glial fibrillary acidic protein, GFAP immunopositive cells). Verification of sex segregation of embryos was performed using reverse transcription-PCR for the male rat Sry gene using the primers (left, 5'-GCTCAACAGAATC-CCAGCAT-3'; right, 5'-TTTGTGAGCAACTTCCAG-3') as previously described (21).

Sex-specific Rat Embryonic Fibroblast Cultures—Sex-segregated fibroblast cultures were prepared from embryologic day 17 Sprague-Dawley rat embryos according to a slightly modified method of a protocol from CHEMCON International. Nonbrain cells were grown in Dulbecco’s modified Eagle’s medium (DMEM; Invitrogen) supplemented with antibiotics (100 units/ml penicillin G, 100 μg/ml streptomycin) and 10% fetal calf serum (FCS; Invitrogen) at 37 °C in humidified air with 5% CO₂. After the cultured cells reached semiconfluency, they were harvested using 0.25% trypsin and subcultured with DMEM supplemented with 10% FCS in a 10-cm culture dish. Fibroblasts were cultured in 48-well plates at a density of 6 × 10^4 cells/well or 6-well plates at a density of 1 × 10^5 cells/well for various experiments.

In Vitro Starvation Models—For primary cortical neurons, at 8–12 days in vitro, Neurobasal™ medium and supplements were removed and replaced with custom-made medium lacking d-glucose, sodium pyruvate, L-glutamate, L-glutamine, and L-aspartate (Invitrogen). The supplements B27™ and GlutaMax™ were not added. Nutrient deprivation times ranged from 2 to 72 h. For embryonic fibroblasts, culture medium was replaced with low glucose (1 g/liter) DMEM supplemented with B27™ and GlutaMax™ or on glass coverslips coated with poly-D-lysine at a density of 1.3 × 10^7 cells/cm². Each contained Neurobasal™ medium supplemented with B27™ (Invitrogen) and GlutaMax™ (Sigma) for neuron-enriched cultures (22). Cells are incubated at 37 °C in a humidified chamber containing 5% CO₂. On the 2nd and 6th day in vitro the culture medium was replaced with fresh medium. Experiments were done at 8–12 days in vitro, when cultures consist primarily of neurons (>95% MAP2 (microtubule-associated protein-2) immunopositive cells, <5% glial fibrillary acidic protein, GFAP immunopositive cells). Verification of sex segregation of embryos was performed using reverse transcription-PCR for the male rat Sry gene using the primers (left, 5'-GCTCAACAGAATC-CCAGCAT-3'; right, 5'-TTTGTGAGCAACTTCCAG-3') as previously described (21).

Sex-specific Rat Embryonic Fibroblast Cultures—Sex-segregated fibroblast cultures were prepared from embryologic day 17 Sprague-Dawley rat embryos according to a slightly modified method of a protocol from CHEMCON International. Nonbrain cells were grown in Dulbecco’s modified Eagle’s medium (DMEM; Invitrogen) supplemented with antibiotics (100 units/ml penicillin G, 100 μg/ml streptomycin) and 10% fetal calf serum (FCS; Invitrogen) at 37 °C in humidified air with 5% CO₂. After the cultured cells reached semiconfluency, they were harvested using 0.25% trypsin and subcultured with DMEM supplemented with 10% FCS in a 10-cm culture dish. Fibroblasts were cultured in 48-well plates at a density of 6 × 10^4 cells/well or 6-well plates at a density of 1 × 10^5 cells/well for various experiments.

In Vitro Starvation Models—For primary cortical neurons, at 8–12 days in vitro, Neurobasal™ medium and supplements were removed and replaced with custom-made medium lacking d-glucose, sodium pyruvate, L-glutamate, L-glutamine, and L-aspartate (Invitrogen). The supplements B27™ and GlutaMax™ were not added. Nutrient deprivation times ranged from 2 to 72 h. For embryonic fibroblasts, culture medium was replaced with low glucose (1 g/liter) DMEM in the absence of FCS for 24 h.

3-(4,5-Dimethylthiazol)-2,5-diphenyltetrazolium Bromide (MTT) Assay—MTT (0.5 mg/ml) was added to cells in 96-well plates and incubated for 1 h (21). Duplicate 150-μl samples were aspirated, and formazan crystals were dissolved by DMSO. Optical density was determined using a spectrophotometer (Molecular Devices) at 550 nm test and 690 nm reference wavelengths.

Flow Cytometry—Cells were harvested using trypsin, washed once in ice-cold phosphate-buffered saline (PBS), and resuspended in buffer (10 mM Heps, pH 7.4, 140 mM NaCl, 2.5 mM CaCl₂) (21). Suspensions (100 μl) were transferred into fresh tubes, and 10 μl of propidium iodide (PI) stock solution (50 μg/ml) was added. After 20 min, 400 μl of buffer was added, and samples analyzed on a trilaser FACSCalibur flow cytometer.

Histologic Analysis—Cells grown on glass coverslips were immunostained for the neuronal marker MAP-2, as described (21). Neurons were fixed in 2% paraformaldehyde and then incubated with 5% normal donkey serum and 2% bovine serum albumin in PBS containing 0.2% Triton X-100 for 1 h and then incubated in primary antibodies against MAP-2, followed by appropriate secondary antibodies. Cells were examined using a Leica TCS NT confocal tri-laser-scanning inverted microscope (Wetzlar). A minimum of three separate coverslips were evaluated.

Separation of Subcellular Proteins and Western Blot Analysis—Cells were lysed and resuspended in buffer containing 20 mM Heps, pH 7.4, 10 mM NaCl, 1.5 mM MgCl₂, 1 mM EDTA, 1 mM EGTA, 250 mM sucrose in H₂O (21). Samples were then centrifuged at 600 × g for 10 min at 4 °C. The supernatants were then centrifuged at 20,000 × g for 50 min at 4 °C. These supernatants contained cytosolic proteins (S1). The pellets (P1) were then lysed in buffer and sonicated until frothy, resuspended in lysis buffer, and centrifuged at 16,000 × g for 25 min at 4 °C. The pellets were then washed in 5 μl CaCl₂ and centrifuged at 1600 × g for 10 min. Pellets (P2) enriched in mitochondria, autophagosomes, and other small organelles were again lysed in buffer and sonicated until frothy. Protein concentrations were determined using a Bradford-based method (Bio-Rad). Western blots were performed using a standard technique using a polyclonal antibody against LC3 (MBL International) at a 1:1000 dilution.

Electron Microscopy—Cells were fixed in 2.5% glutaraldehyde in PBS overnight at 4 °C, pelleted, and resuspended in 3% gelatin in PBS, solidified at 4 °C, and then refixed for 15 min. Pellets were washed three times in PBS and then postfixed in 1% OsO₄ and 1% K₃Fe(CN)₆ for 1 h. After three washes, the pellet will be dehydrated through a series of 30–100% EtOH and then incubated in Polybed 812 epoxy resin (Polysciences) and then observed using a JEM 100-B transmission electron microscope (Jeol).

Atg7 RNA Interference—Small interfering RNA (siRNA) targeting rat Atg7 (5'-GCAUCUUCUUGAAGUGA-3'; Sigma) and pooled nontargeting control siRNA (5'-AUGAACGU-GAAUUGCUCA-3', 5'-UAGGGCAUAGAGAC-3', 5'-AUGAUUUGCCGUUAAG-3', and 5'-UAGGCAG-UAAACACAUCA-3'; Dharmacon) were purchased commercially. Primary neurons were transfected on day 4, and fibroblasts were transfected at the time of 50% confluence, with 20 nmol of Atg7 or control siRNA using Lipofectamine 2000 (Invitrogen). The efficacy of ATG7 knockdown was assessed by Western blot using an antibody against ATG7 (Sigma). Experiments were performed 72 h after transfection.

Primary Neuron Cultures from LC3-GFP Reporter Mice—Sex-segregated primary cortical neurons from hemizygous transgenic mice expressing GFP-LC3 (16) were cultured as described above for rat neurons, except only transgenic embryos identified using GFP fluorescent macroscopy were

2 The abbreviations used are: DMEM, Dulbecco’s modified Eagle’s medium; FCS, fetal calf serum; MTT, 3-(4,5-dimethylthiazol)-2,5-diphenyltetrazolium bromide; PI, propidium iodide; PBS, phosphate-buffered saline; siRNA, small interfering RNA; GFP, green fluorescent protein; PLA2, phospholipase A2; A2OCCF3, arachidonyl trifluoromethyl ketone; MAEP, methylarachidonyl fluorophosphonate; Py-2, pyrrolidine-2; HPTLC, high performance thin layer chromatography; ESI, electrospray ionization; MS, mass spectrometry; FFA, free fatty acid; TG, triglyceride; 3-MA, 3-methyladenine; ND, nutrient deprivation; ANOVA, analysis of variance.
used. GFP-LC3 fluorescence was enhanced using anti-GFP Alexa Fluor® 488-conjugated antibody (Invitrogen) and was visualized using an inverted Olympus Fluoview 1000 microscope. Fluorescent intensity above threshold values measured in arbitrary units was quantified in eight areas (3000 x 3000 pixels) per slide from 4 slides/group by an observer blinded to experimental conditions. Lower threshold values were set as the mean fluorescent intensity of control GFP-LC3 cells.

*Time-lapsed Fluorescent Microscopy—Sex-segregated primary cortical neurons from hemizygous transgenic mice expressing GFP-LC3 (16) were cultured in glass-bottomed 25-mm Petri dishes (Mattek Corp.). Subsequently, they were incubated with or without LipidTox Red® (Sigma) at a dilution of 1:2000 for 10 min at 37 °C. The cells were then washed, and medium was replaced with nutrient deprivation medium. Dishes were immediately mounted in a Harvard systems PDMI perfusion chamber at 37 °C and mounted in a fully automated Nikon 2000E2 microscope. The cells were focused using a ¥60 1.45 numerical aperture Plan Apochromat objective (and main-
gene Sry as described (21) (Fig. 1A). A time-dependent reduction in mitochondrial respiration was observed during nutrient deprivation (Fig. 1B), with neurons from males being more sensitive than neurons from females at all durations (<i>n</i> > 9/group). Grossly, reduced neuronal numbers were observed during nutrient deprivation using MAP2 staining (Fig. 1C). Proteolytic cleavage and covalent attachment of phosphatidylethanolamine at the C-terminal glycine of LC3 are essential for cytoplasm-vacuole targeting and are biochemical features of autophagy (24). Lipidation of LC3-I results in a 16-kDa peptide referred to as LC3-II. Western blotting for LC3-I and LC3-II was performed in cell pellets (P2) containing mitochondria and other organelles, including autophagosomes. A relative increase in LC3-II was observed in P2 fractions from neurons from males but not females after 24 h of starvation versus controls (Fig. 1D). At base line, the ratio of LC3-II/LC3-I was 0.17 ± 0.03 versus 0.19 ± 0.06 in neurons from males versus females, respectively. After 24 h of nutrient deprivation, the ratio of LC3-II/LC3-I was 0.31 ± 0.12 versus 0.19 ± 0.04 in neurons from males versus females, respectively (<i>p</i> = 0.1), implying either increased production or reduced turnover of autophagosomes (25). A more prominent reduction in the relative abundance of the mitochondrial protein cytochrome oxidase was also seen in neurons from males versus females after 24 h of starvation (80.3 ± 8.1% versus 90.4 ± 6.9%, <i>p</i> < 0.01, ANOVA with Dunnett’s post hoc test).
versus 98.3 ± 14.2% of control, respectively; *p < 0.05; Fig. 1D), consistent with increased mitophagy.

A pathognomonic feature of autophagy is ultrastructural evidence of autophagosomes (26). We therefore examined starved neurons using electron microscopy to qualitatively confirm the presence of autophagy. Ultrastructural analysis after 24 h of nutrient deprivation showed abundant autophagosomes in neurons from males, infrequently observed in neurons from females (Fig. 1E and F). Swollen, rounded mitochondria were observed in neurons from both sexes after 24 h of nutrient deprivation.

To examine the dynamics of nutrient deprivation-induced autophagy and quantify autophagosome formation, we utilized sex-segregated primary cortical neuron cultures from hemizygous transgenic mice expressing GFP-LC3. GFP-LC3 expression itself does not induce autophagy, but GFP-LC3 localizes to autophagosome membranes similar to endogenous LC3 (26). Rapid formation of autophagosomes was apparent using time-lapsed microscopy, with detection of punctate GFP-enriched vacuoles by 1 h and more so in neurons from males versus females (Fig. 2A and Video S1). For quantification at 2 and 24 h, the fluorescent GFP-LC3 signal was enhanced using anti-GFP antibody. Fluorescence intensity above threshold (defined as mean fluorescence intensity in control GFP-LC3 cells in arbitrary units) was measured in 8 areas (3000 pixels²)/slide, 4 slides/group; mean ± S.D.; *p < 0.05 versus control; †p < 0.05 versus XY; ‡p < 0.05 versus control siRNA; ANOVA with Dunnett’s post hoc test.

FIGURE 2. Quantification of starvation-induced autophagy in sex-segregated neurons. A, time-lapsed images of neurons from male (XY) and female (XX) GFP-LC3/−/− mice showing formation of GFP-enriched vacuoles consistent with autophagosome formation. Times ranged from 0 to 82 min and were captured from Video S1. B and C, three-dimensional quantification of fluorescent intensity in GFP-LC3/−/− mouse cortical neurons transfected with 20 nmol of Atg7 siRNA or a nontargeting scrambled control siRNA 72 h before nutrient deprivation. Atg7 siRNA reduced GFP-LC3 fluorescent intensity in XY neurons at 24 h. AU, arbitrary units; data from 8 regions (3000 pixels²)/slide, 4 slides/group; mean ± S.D.; *p < 0.05 versus control; †p < 0.05 versus XY; ‡p < 0.05 versus control siRNA; ANOVA with Dunnett’s post hoc test.
with lysosomes was observed by 1 h (Fig. 3 and Video S2). To confirm that neurons were undergoing autophagy during nutrient deprivation, knockdown experiments using Atg7 siRNA were performed. Consistent with a sex-dependent increase in autophagy during starvation, transfection of Atg7 siRNA (20 nmol) reduced GFP-LC3 fluorescent intensity in neurons from males after 24 h versus nontargeting scrambled control siRNA (Fig. 2C).

FIGURE 3. Dynamic fusion of autophagosomes and lysosomes. Time-lapsed images of a GFP-LC3-tagged neuron from male mice showing fusion of GFP-enriched vacuoles with LysoTracker Red-labeled lysosomes. Times ranged from 0 to 54 min and were captured from Video 2. AFU, arbitrary fluorescent units.
Inhibition of Autophagy Reduces Cell Death in Starved Neurons

Inhibition of starvation-induced autophagy reduces neuronal death in vitro. A, ND-induced decreases in mitochondrial respiration in neurons from males (XY) but not females (XX) at 24 h were attenuated by the autophagy inhibitor 3-MA (5 mM; n = 6/group). B, cell death measured using PI labeling showing increased cell death in XY versus XX neurons after 24-h deprivation (n = 3/group). Pretreatment with 5 mM 3-MA prevented ND-induced cell death in both sexes. Representative data from each group are shown in C, D, primary rat neurons transfected with 20 nmol of Atg7 siRNA or a nontargeting scrambled control siRNA 72 h before nutrient deprivation. Western blot showing partially effective knockdown of ATG7 in Atg7 siRNA but not scrambled siRNA-treated neurons (n = 3/group). E, cell death measured using PI labeling showing increased cell death in XY versus XX neurons after 24-h deprivation (n = 3/group). Pretreatment with Atg7 siRNA reduced ND-induced cell death in XY neurons at 2 and 24 h and in XX neurons at 24 h. Mean ± S.D.; *, p < 0.05 versus control; †, p < 0.05 versus vehicle; ‡, p < 0.05 versus control; ANOVA with Dunnett’s post hoc test.

Inhibition of Autophagy Reduces Cell Death in Starved Neurons—Nutrient deprivation-induced reduction in mitochondrial respiration was partially inhibited by pretreatment with 3-methyladenine (3-MA; 5 mM; Sigma) in neurons from males but not females at 24 h (Fig. 4A). The amount of cell death occurring after 24 h of nutrient deprivation was quantified using PI labeling and flow cytometry. Nutrient deprivation resulted in 26 ± 2% PI-labeled neurons from males compared with 12 ± 5% neurons from females (Fig. 4, B and C). The effect of 5 mM 3-MA on cell death during nutrient deprivation was also examined using PI, with complete protection from starvation seen in neurons from both sexes. 3-MA is a relatively selective class III phosphatidylinositol 3-kinase inhibitor that inhibits starvation-induced autophagy (9), although 3-MA has other effects, including inhibition of non-class III phosphatidylinositol 3-kinases and promotion of glycogen breakdown in hepatocytes (27).

To confirm that neurons were dying of autophagy during nutrient deprivation, knockdown experiments using Atg7
siRNA (20 nmol) were performed. Effective knockdown of ATG7 72 h after transfection was verified using Western blot, with a 42.9 and 20.9% reduction of ATG7 in control neurons from males and females, respectively (Fig. 4D). Overall ATG7 knockdown was more effective in neurons from males versus females, and ATG7 appears to be down-regulated by 24 h of nutrient deprivation, particularly in neurons from females. ATG7 knockdown reduced PI-labeled neurons from males at 2 and 24 h and PI-labeled neurons from females at 24 h of starvation (Fig. 3E). Taken together, these data show that inhibition of autophagy can prevent starvation-induced cell death in neurons and that neurons from males are more susceptible to autophagic cell death compared with neurons from females.

Sex-dependent Increases in Lipid Droplets and Triglycerides in Starved Neurons—The ultrastructural appearance of lipid droplets after starvation was also seen (Fig. 1E), predominantly in neurons from females versus males at 24 h of starvation (Fig. 3E). Taken together, these data show that inhibition of autophagy can prevent starvation-induced cell death in neurons and that neurons from females are more susceptible to autophagic cell death compared with neurons from females.

Inhibition of Autophagy Increases Cell Death in Starved Fibroblasts—In addition to neurons, the sex-dependent susceptibility to nutrient stress was examined in rat embryonic fibroblasts (Fig. 8A). Fibroblasts were cultured in DMEM with 10% FCS or in low glucose (1 g/liter) DMEM without FCS (nutrient deprivation). After 24 h of nutrient deprivation, fibroblasts from males showed a striking increase in secondary lysosomes, multivesicular bodies, and autophagosomes, compared
with control fibroblasts (Fig. 8B). Fibroblasts from females also showed an increase in secondary lysosomes and multivesicular bodies but to a much lesser degree than fibroblasts from males, with occasional lipid droplets also seen. Fibroblasts were also transfected with 20 nmol of rat Atg7 or nontargeting scrambled control siRNA. In contrast to neurons, ATG7 knockdown increased PI-labeled fibroblasts from males at 2 and 24 h and PI-labeled fibroblasts from females at 24 h of starvation (Fig. 8C). Thus, although similar sex-dependent sensitivity to nutrient deprivation was observed in fibroblasts and neurons, the role of autophagy in the two distinct cell types appears quite different.
Starving Neurons Show Sex Difference in Autophagy

Table 1

Triglyceride molecular species	m/z	Acyl chain composition (acyl/acyl/acyl)
48:1	822.8	C_{14:0}/C_{16:0}/C_{18:1}
50:2	848.7	C_{16:0}/C_{16:0}/C_{18:0}
52:2	876.8	C_{16:0}/C_{18:0}/C_{20:1}
54:2	904.8	C_{18:0}/C_{18:0}/C_{20:1}
56:5	926.6	C_{18:0}/C_{18:0}/C_{20:4}
56:2	932.6	C_{18:0}/C_{18:0}/C_{20:1}
58:7	950.6	C_{18:0}/C_{18:0}/C_{22:6}
58:5	954.6	C_{18:0}/C_{18:0}/C_{22:4}
58:4	956.8	C_{18:0}/C_{18:0}/C_{22:2}

*Total number of carbons in fatty acyls and the total number of double bonds in fatty acyls.

Discussion

The major finding of this study is that during critical nutrient deprivation, neurons from males undergo autophagy, presumably preferring to utilize proteins for fuel, whereas neurons from females have either an increased capacity or preference to store triglycerides, presumably preferring to utilize fats for fuel, allowing for longer survival. This sex-dependent response to starvation appears to be generalizable to nonneuronal cells; however, the role of autophagy and therefore the consequence of its inhibition, appear tissue-dependent. These data are the first to demonstrate that fuel source preferences observed in male and female macro-organisms during nutritional stress can be reduced to individual cells, in isolation from adipocytes, muscle, and the effects of circulating hormones. The relative inability of neurons from males, in contrast to their female counterparts, to utilize lipid stores during starvation may result in increased autophagy and neuronal death. Our data showing that inhibition of autophagy increases tolerance to nutrient deprivation in neurons from males, whereas inhibition of PLA2-dependent lipid droplet formation increases sensitivity to nutrient deprivation in neurons from females, is consistent with this possibility.

To answer the question of whether autophagy may be sex-dependent at the neuronal level, independent of typical nutrient depots, such as glycogen, adipose tissue, and skeletal muscle, we chose to use the classic paradigm of nutrient deprivation in neurons from females, is consistent with this possibility.

Table 1 shows the triglyceride molecular species identified from neurons after nutrient deprivation. The major finding of this study is that during critical nutrient deprivation, neurons from males undergo autophagy, presumably preferring to utilize proteins for fuel, whereas neurons from females have an increased capacity or preference to store triglycerides, presumably preferring to utilize fats for fuel, allowing for longer survival. This sex-dependent response to starvation appears to be generalizable to nonneuronal cells; however, the role of autophagy and therefore the consequence of its inhibition, appear tissue-dependent. These data are the first to demonstrate that fuel source preferences observed in male and female macro-organisms during nutritional stress can be reduced to individual cells, in isolation from adipocytes, muscle, and the effects of circulating hormones. The relative inability of neurons from males, in contrast to their female counterparts, to utilize lipid stores during starvation may result in increased autophagy and neuronal death. Our data showing that inhibition of autophagy increases tolerance to nutrient deprivation in neurons from males, whereas inhibition of PLA2-dependent lipid droplet formation increases sensitivity to nutrient deprivation in neurons from females, is consistent with this possibility.

To answer the question of whether autophagy may be sex-dependent at the neuronal level, independent of typical nutrient depots, such as glycogen, adipose tissue, and skeletal muscle, we chose to use the classic paradigm of nutrient deprivation in primary neurons. The rationale for examining potential sex differences related to autophagy in neurons was based on our previous work showing gender proclivity in response to cytotoxicity and programmed cell death pathways (21) and the recent development of Atg transgenic mice and other molecular tools that have uncovered a role for autophagy in normal central nervous system development (30) and disease (17, 18, 31, 32). Complete genetic disruption of Atg7 and, therefore, autophagy in mice results in accumulation of ubiquitinated bulk proteins and neurodegenerative disease as the animals age (31). In contrast, these same Atg7-deficient mice are protected from hypoxia-ischemia after unilateral carotid artery ligation and hypoxia (18). Thus, in contrast to chronic neurodegenerative diseases, where autophagy seems to play a preventative role (31), autophagy appears to contribute to neuronal death after acute injury, at least in the developing brain. Whether or not these effects were sex-dependent were not addressed in these reports.

It is likely that the source of fatty acids during nutrient deprivation is endogenous, since the starvation medium is devoid of fatty acids (the B27™ supplement containing fatty acids (22), was withheld), although breakdown of fatty acids from dead cells with intracellular transport cannot be excluded. Coincidentally, intracellular transport of fatty acids is more rapid in females *versus* males (33). Treatment with L-carnitine, essential for transport of fatty acids into mitochondria, partially restored mitochondrial respiration and reduced cell death in neurons from both sexes, suggesting that neurons from males retain the capacity to utilize FFA for nutrition. These data point to innate sex-dependent differences in lipid transport and/or metabolism at the cellular level in neurons. In addition to serving as fuel sources, formation of lipid droplets during cellular stress may offer other survival advantages. For example, channeling of saturated fatty acids by unsaturated fatty acids into triglycerides reduces their toxicity (34). Mixtures of both unsaturated and saturated FFA residues were identified in triglycerides (Table 1) with a greater capacity to increase triglyceride pools in neurons from females *versus* males after nutrient deprivation.

Female preferences for fat sources during both normal and nutrient-stressed conditions have long been appreciated (1–5). Although we did not measure lipid metabolism directly, our data suggest that in neurons, the female tolerance to nutrient deprivation is at least related to changes in lipid, triglyceride, and FFA content and/or profile. It should be noted that polyunsaturated and monounsaturated fatty acids have been shown to prevent neuronal death from a number of insults (35–37). Unsaturated fatty acids during starvation may offer other survival advantages. For example, channeling of saturated fatty acids by unsaturated fatty acids into triglycerides reduces their toxicity (34). Mixtures of both unsaturated and saturated FFA residues were identified in triglycerides (Table 1) with a greater capacity to increase triglyceride pools in neurons from females *versus* males after nutrient deprivation.

| Total number of carbons in fatty acyls and the total number of double bonds in fatty acyls. |
FIGURE 6. Sex-specific changes in FFA content and profile during starvation in neurons. A, cytosolic PLA2 activity increased earlier in neurons from females (XX; 2 h) versus males (XY; 24 h) during nutrient deprivation (ND; n = 5/group). B, typical thin layer chromatography separation of lipids (shown are 10 × 10^6 XX neurons 24 h after ND; CL, cardiolipin; LPL, lysophospholipid; NL, neutral lipid; PC, phosphatidylcholine; PE, phosphatidylethanolamine; PS, phosphatidylserine; Sph, sphingolipid). C, typical negative ion ESI-mass spectra of FFA molecular species isolated from 10 × 10^6 XX neurons 24 h after ND. D, FFA content from XY and XX neurons before and after ND (mean ± S.D. from five runs from the pooled samples). E and F, polar plots showing individual log[FFA] profiles from XY and XX neurons at baseline and after 24 h of ND (refer to Table 2 for more complete data). G, pretreatment with 250 μM L-carnitine partially prevented ND-induced reductions in mitochondrial respiration as measured by the conversion of MTT to formazan in XY neurons versus control at 24 h. Pretreatment with 500 μM L-carnitine partially prevented ND-induced reductions in mitochondrial respiration in both XY and XX neurons versus control at 24 h (n = 10/group). H, cell death measured using PI labeling showing increased cell death in XY versus XX neurons after 24 h (n = 3/group). Pretreatment with 250 μM L-carnitine prevented ND-induced cell death in both sexes. Mean ± S.D.; *, p < 0.05 versus control; †, p < 0.05 versus XY; ‡, p < 0.05 versus vehicle; ANOVA with Dunnett’s post hoc test.
Starving Neurons Show Sex Difference in Autophagy

TABLE 2
FFA content (nmol/mg of protein) in neurons from male (XY) and female (XX) rats at base line and at 2 and 24 h of nutrient deprivation

Fatty acid	0 h	2 h	24 h
C_{12:0}	0.399 ± 0.028	0.101 ± 0.007	0.255 ± 0.018
C_{14:0}	0.152 ± 0.011	0.058 ± 0.004	0.119 ± 0.008
C_{16:0}	1.144 ± 0.080	0.486 ± 0.034	0.895 ± 0.063
C_{16:1}	0.111 ± 0.008	0.097 ± 0.007	0.191 ± 0.013
C_{18:0}	1.754 ± 0.123	0.882 ± 0.062	1.259 ± 0.067
C_{18:1}	0.302 ± 0.021	0.291 ± 0.020	0.468 ± 0.033
C_{18:2}	0.159 ± 0.011	0.096 ± 0.007	0.146 ± 0.010
C_{18:3}	0.319 ± 0.022	0.149 ± 0.010	0.186 ± 0.013
C_{20:0}	0.111 ± 0.008	0.086 ± 0.006	0.097 ± 0.007
C_{20:1}	0.111 ± 0.008	0.044 ± 0.003	0.081 ± 0.006
C_{22:0}	0.033 ± 0.002	0.041 ± 0.003	0.051 ± 0.004
C_{22:1}	0.038 ± 0.003	0.070 ± 0.005	0.154 ± 0.011
C_{22:2}	0.019 ± 0.001	0.031 ± 0.002	0.045 ± 0.003
C_{22:4}	0.055 ± 0.004	0.017 ± 0.001	0.027 ± 0.002
C_{22:5}	0.097 ± 0.007	0.072 ± 0.005	0.099 ± 0.007
C_{22:6}	0.038 ± 0.003	0.045 ± 0.003	0.030 ± 0.002

TABLE 2 (continued)

	0 h	2 h	24 h
C_{14:1}	0.001	0.002	0.002
C_{14:0}	0.152	0.058	0.119
C_{16:0}	1.144	0.486	0.895
C_{16:1}	0.111	0.097	0.191
C_{18:0}	1.754	0.882	1.259
C_{18:1}	0.302	0.291	0.468
C_{18:2}	0.159	0.096	0.146
C_{18:3}	0.319	0.149	0.186
C_{20:0}	0.111	0.086	0.097
C_{20:1}	0.111	0.044	0.081
C_{22:0}	0.033	0.041	0.051
C_{22:1}	0.038	0.070	0.154
C_{22:2}	0.019	0.031	0.045
C_{22:4}	0.055	0.017	0.027
C_{22:5}	0.097	0.072	0.099
C_{22:6}	0.038	0.045	0.030

FIGURE 7. Cytosolic phospholipase A2 (cPLA2)-dependent lipid droplet formation during starvation in neurons. A–C, treatment with the relatively selective cytosolic phospholipase A2 inhibitors AACOCF3, MAFP, and Py-2 exacerbated ND-induced reductions in mitochondrial respiration as measured by the conversion of MTT to formazan in neurons from females (XX) and to a lesser extent males (XY) (versus control at 24 h in a dose-dependent manner (n = 4–8/group). D and E, treatment with AACOCF3 (100 μM), MAFP (100 μM), and Py-2 (10 μM) inhibited ND-induced formation of neutral lipid droplets detected using LipidToxTM staining (green) in both XY and XX neurons (n = 12 measurements/condition). Mean ± S.D.; †, p < 0.05 versus control; ‡, p < 0.01 versus control; ANOVA with Dunnett’s post hoc test.

whether esterified into triacylglycerols, yielding their high content in nutrient-deprived neurons. Alternatively, the lack of detectable lysophospholipids could be attributed to activation of phospholipase C.

As with all in vitro paradigms, direct comparisons of these data with whole organisms warrant caution. It is unknown whether starvation can induce autophagy in the brain; however, there is evidence that critical starvation alone can result in brain atrophy in humans (13–15). It is possible that cellular stress coupled with incomplete nutrient deprivation may be additive stimuli for autophagy in brain. Recent studies show that autophagy is increased in the brain after trauma or ischemia in
rodents (17, 18, 42) and trauma or critical illness in humans (19). Results of these studies bring to light the concept of “critical nutrient stress,” where subthreshold degrees of nutrient deprivation in brain tissue, coupled with metabolic disturbances due to injury, may result in brain autophagy. These data may have profound implications for both sexes during times of starvation and may provide clues toward the prevention of neurological morbidities associated with malnourishment, whether due to illness, nutrient deprivation, or famine. These data are also of relevance to diseases where autophagy plays an active role, either adaptive or pathological, and in both males and females.

Acknowledgments—We thank Yaming Chen and Sean Alber for expert technical assistance.

FIGURE 8. Inhibition of starvation-induced autophagic increases cell death in fibroblasts. A, gross morphology of hemotoxylin and eosin-stained fibroblasts under control conditions and 24 h after ND. B, electron micrographs of fibroblasts from males (XY) and females (XX) under control conditions and 24 h after ND. Note the presence of secondary lysosomes, multivesicular bodies (mv) and autophagosomes (a) more profoundly in XY versus XX neurons after 24 h of ND. Insets, higher magnification (i and ii). Note lipid droplets (l) after starvation seen primarily in XX fibroblasts and an autophagosome with a double membrane (arrowhead). Bar, 500 nm. C, inhibition of autophagy using Atg7 siRNA exacerbated cell death in fibroblasts during ND. Fibroblasts were transfected with 20 nmol of Atg7 siRNA or nontargeting scrambled control siRNA 72 h before ND (n = 3/group). Results are mean ± S.D.; *, p < 0.05 versus control; †, p < 0.05 versus vehicle; ANOVA with Dunnett’s post hoc test.
Starving Neurons Show Sex Difference in Autophagy

REFERENCES

1. Widdowson, E. M. (1976) Proc. Nutr. Soc. 35, 175–180
2. Hoyenga, K. B., and Hoyenga, K. T. (1982) Physiol. Behav. 28, 545–563
3. Hill, J. O., Fried, S. K., and DiGirolamo, M. (1984) Am. J. Physiol. 247, R318–R327
4. Bakewell, L., Burdge, G. C., and Calder, P. C. (2006) Br. J. Nutr. 96, 93–99
5. Lamont, L. S., McCullough, A. J., and Kalhan, S. C. (2003) J. Appl. Physiol. 95, 1259–1265
6. Niskanen, L. K., Haffner, S., Karhunen, L. J., Turpeinen, A. K., Miettinen, H., and Uusitupa, M. I. (1997) Eur. J. Endocrinol. 137, 61–67
7. Wolf, I., Sadetzki, S., Kanety, H., Kundel, Y., Pariente, C., Epstein, N., Oberman, B., Catane, R., Kaufman, B., and Shimon, I. (2006) Cancer 106, 966–973
8. Neely, A. N., and Mortimore, G. E. (1974) Biochem. Biophys. Res. Commun. 59, 680–687
9. Seglen, P. O., and Gordon, P. B. (1982) Proc. Natl. Acad. Sci. U. S. A. 79, 1889–1892
10. Ohsumi, Y. (2001) Nat. Rev. Mol. Cell. Biol. 2, 211–216
11. Zeng, X., Overmeyer, J. H., and Maltese, W. A. (2006) J. Cell Sci. 119, 259–270
12. Ichimura, Y., Kirisako, T., Takao, T., Satomi, Y., Shimonishi, Y., Ishihara, N., Mizushima, N., Tanida, I., Kominami, E., Ohsumi, M., Noda, T., and Ohsumi, Y. (2000) Nature 408, 488–492
13. Basoglu, M., Yetimalar, Y., Gurgor, N., Buyukceltas, S., Kurt, T., Secil, Y., and Yeniocak, A. (2006) Eur. J. Neurol. 13, 1089–1097
14. Connan, F., Murphy, F., Connors, S. E., Rich, P., Murphy, T., Bara-Carill, N., Landau, S., Kriljes, S., Ng, V., Williams, S., Morris, R. G., Campbell, I. C., and Treasure, J. (2006) Psychiatry Res. 146, 117–125
15. Katzman, D. K., Christensen, B., Young, A. R., and Zipursky, R. B. (2001) Semin. Clin. Neuropsychiatry 6, 146–152
16. Mizushima, N., Yamamoto, A., Matsu, M., Yoshimori, T., and Ohsumi, Y. (2004) Mol. Biol. Cell 15, 1101–1111
17. Lai, Y., Hickey, R. W., Chen, Y., Bayir, H., Sullivan, M. L., Chu, C. T., Kocheane, P. M., Dixon, C. E., Jenkins, L. W., Graham, S. H., Watkins, S. C., and Clark, R. S. (2008) Am. J. Pathol. 172, 454–469
18. Clark, R. S., Bayir, H., Chu, C. T., Alber, S. M., Kocheane, P. M., and Watkins, S. C. (2008) Autophagy 4, 88–90
19. Hopkins, R. O., Ely, E. W., and Jackson, J. C. (2007) Curr. Opin. Crit. Care 13, 497–502
20. Du, L., Bayir, H., Lai, Y., Zhang, X., Kocheane, P. M., Watkins, S. C., Graham, S. H., and Clark, R. S. B. (2004) J. Biol. Chem. 279, 38563–38570
21. Brewer, G. J., Torricelli, J. R., Evege, E. K., and Price, P. J. (1993) J. Neurosci. Res. 35, 567–576
22. Gubern, A., Casas, I., Barcelo-Torns, M., Barneda, D., de la Rosa, X., Masgrau, R., Piccoste, F., Balsinde, J., Balboa, M. A., and Claro, E. (2008) J. Biol. Chem. 283, 27369–27382
23. Kouno, T., Mizuguchi, M., Tanida, I., Ueno, T., Kanematsu, T., Mori, Y., Shinoda, H., Hirata, M., Kominami, E., and Kawano, K. (2005) J. Biol. Chem. 280, 24610–24617
24. Tanida, I., Minematsu-Ikeguchi, N., Ueno, T., and Kominami, E. (2005) Autophagy 1, 84–91
25. Mizushima, N. (2004) Intl. J. Biochem. Cell Biol. 36, 2491–2502
26. Caro, L. H., Plomp, P. J., Wolvertang, E. J., Kerkhof, C., and Meijer, A. J. (1998) Eur. J. Biochem. 175, 325–329
27. Fujimoto, T., and Ohsaki, Y. (2006) Am. J. Pathol. 168, 104–115
28. McAnoy, A. M., Wu, C. C., and Murphy, R. C. (2005) J. Am. Soc. Mass. Spectrom. 16, 1498–1509
29. Yue, Z., Jin, S., Yang, C., Levine, A. J., and Heintz, N. (2003) Proc. Natl. Acad. Sci. U. S. A. 100, 15077–15082
30. Komatsu, M., Waguri, S., Chiba, T., Murata, S., Iwata, I., Tanida, I., Ueno, T., Koike, M., Uchiyama, Y., Kominami, E., and Tanaka, K. (2006) Nature 441, 880–884
31. Zhu, J. H., Horbinski, C., Guo, F., Watkins, S., Uchiyama, Y., and Chu, C. T. (2007) Am. J. Pathol. 170, 75–86
32. Luxon, B. A., and Weisiger, R. A. (1993) Am. J. Physiol. 265, G831–G841
33. Listenberger, L. L., Han, X., Lewis, S. E., Cases, S., Farese, R. V., Jr., Ory, D. S., and Schaffer, J. E. (2003) Proc. Natl. Acad. Sci. U. S. A. 100, 3077–3082
34. Alkbar, M., Calderon, F., Wen, Z., and Kim, H. Y. (2005) Proc. Natl. Acad. Sci. U. S. A. 102, 10858–10863
35. Kim, H. Y., Alkbar, M., and Lau, A. (2003) Lipids 38, 453–457
36. Rodriguez-Rodriguez, R. A., Tabernerio, A., Velasco, A., Lavado, E. M., and Medina, J. M. (2004) J. Neurochem. 88, 1041–1051
37. Patil, S., and Chan, C. (2005) Neurosci. Lett. 384, 288–293
38. Uloth, J. E., Casiano, C. A., and De Leon, M. (2003) J. Neurochem. 84, 655–668
39. Ballou, L. R., and Cheung, W. Y. (1985) Proc. Natl. Acad. Sci. U. S. A. 82, 371–375
40. Baker, R. R., and Chang, H. Y. (1999) Biochim. Biophys. Acta. 1438, 253–263
41. Liu, C. L., Chen, S., Dietrich, D., and Hu, B. R. (2008) J. Cereb. Blood Flow Metab. 28, 674–683