Mixed Linear Layouts: Complexity, Heuristics, and Experiments

Philipp de Col, Fabian Klute, and Martin Nöllenburg

Algorithms and Complexity Group, TU Wien, Vienna, Austria
philipp.decol@gmx.at, {fklute,noellenburg}@ac.tuwien.ac.at

Abstract. A k-page linear graph layout of a graph $G = (V, E)$ draws all vertices along a line ℓ and each edge in one of k disjoint halfplanes called pages, which are bounded by ℓ. We consider two types of pages. In a stack page no two edges should cross and in a queue page no edge should be nested by another edge. A crossing (nesting) in a stack (queue) page is called a conflict. The algorithmic problem is twofold and requires to compute (i) a vertex ordering and (ii) a page assignment of the edges such that the resulting layout is either conflict-free or conflict-minimal.

While linear layouts with only stack or only queue pages are well-studied, mixed s-stack q-queue layouts for $s, q \geq 1$ have received less attention. We show NP-completeness results on the recognition problem of certain mixed linear layouts and present a new heuristic for minimizing conflicts.

In a computational experiment for the case $s, q = 1$ we show that the new heuristic is an improvement over previous heuristics for linear layouts.

1 Introduction

Linear graph layouts, in particular book embeddings [1,11] (also known as stack layouts) and queue layouts [8,9], form a classic research topic in graph drawing with many applications beyond graph visualization as surveyed by Dujmović and Wood [5]. A k-page linear layout $\Gamma = (\prec, P)$ of a graph $G = (V, E)$ consists of an order \prec on the vertex set V and a partition of E into k subsets $P = \{P_1, \ldots, P_k\}$ called pages. Visually, we may represent Γ by mapping all vertices of V in the order \prec onto a line ℓ. Each page can be represented by mapping all edges to semi-circles connecting their endpoints in a halfplane bounded by ℓ. If a page P is a stack page, then no two edges in P may cross, or at least the number of crossings should be minimized. More precisely, two edges uv, wx in P cross (assuming $u \prec v$, $w \prec x$, and $u \prec w$) if and only if their vertices are ordered as $u \prec w \prec v \prec x$. Conversely, if a page P is a queue page, then no two edges in P may be nested, or at least the number of nestings should be minimized. Here, an edge wx is nested by an edge uv if and only if their vertices are ordered as $u \prec w \prec x \prec v$ (under the same assumptions as above).

Stack and queue layouts have mostly been studied for planar graphs with a focus on investigating the stack number (also called book thickness) and the queue number of graphs, which correspond to the minimum integer k, for which a graph admits a k-stack or k-queue layout. It is known that recognizing graphs
with queue number 1 or with stack number 2 is \(\text{NP}\)-complete \([1, 9]\). Further, it is known that every planar graph admits a 4-stack layout \([15]\), but it is open whether the stack number of planar graphs is actually 3. Due to their practical relevance, book drawings, i.e., stack layouts in which crossings are allowed, have also been investigated from a practical point of view. Klawitter et al. \([10]\) surveyed the literature and performed an experimental study on several state-of-the-art book drawing algorithms aiming to minimize the number of crossings in layouts on a fixed number of stack pages. Conversely, for queue layouts it was a longstanding open question whether planar graphs have bounded queue number \([8]\); this was recently answered positively by Dujmović et al. \([4]\).

Mixed layouts, which combine \(s \geq 1\) stack pages and \(q \geq 1\) queue pages, are studied less. For an \(s\)-stack \(q\)-queue layout \(\Gamma = (\prec, \mathcal{P})\), the set of pages \(\mathcal{P}\) is itself partitioned into the stack pages \(S = \{S_1, \ldots, S_s\}\) and the queue pages \(Q = \{Q_1, \ldots, Q_q\}\). Heath and Rosenberg \([9]\) conjectured that every planar graph admits a 1-stack 1-queue layout, but this has been disproved recently by Pupyrev \([12]\), who conjectured that instead every bipartite planar graph has a 1-stack 1-queue layout. Pupyrev further provides a SAT-based online tool for testing the existence of an \(s\)-stack \(q\)-queue layout\(^1\).

Contributions. We first show two \(\text{NP}\)-completeness results in Section 2. The first one shows that testing the existence of a 2-stack 1-queue layout is \(\text{NP}\)-complete, and the other proves that an \(\text{NP}\)-complete mixed layout recognition problem with fixed vertex order remains \(\text{NP}\)-complete under addition of stack or queue pages. Next, we focus our attention on 1-stack 1-queue layouts and propose, to the best of our knowledge, the first heuristic targeted at minimizing conflicts in 1-stack 1-queue layouts, see Section 3. In a computational experiment in Section 4 we show that our heuristic achieves fewer conflicts compared to previous heuristics for stack layouts with a straightforward adaptation to mixed layouts.

Statements whose proofs are located in the appendix are marked with \(\).*

2 Complexity

In this section we give new complexity results regarding mixed linear layouts. For Theorem 1 we first make some useful observations, see Appendix A for details. Let \(K_8\) be the complete graph on eight vertices and \(\Gamma = (\prec, \mathcal{P})\) a 2-stack 1-queue layout of a \(K_8\). Using exhaustive search\(^2\) we verified that in such a 2-stack 1-queue layout the three longest edges are in \(S_1 \cup S_2\) and the edges between the first and third, and the sixth and eighth vertex in \(\prec\) are in \(Q\). Finally, for two \(K_8\)'s only the last and first vertex from each \(K_8\) can interleave.

Let \(G_1 = (V_1, E_1)\) and \(G_2 = (V_2, E_2)\) be two distinct \(K_8\)'s. A **double-\(K_8\)** \(G\) is formed, by identifying two so-called **shared** vertices \(u, v\) of \(G_1\) and \(G_2\) with each other and adding one more edge \(wz\) between so-called **outer** vertices \(w \in V_1, z \in V_2\) such that neither \(w\) nor \(z\) is one of the shared vertices, see

\(^1\) http://be.cs.arizona.edu

\(^2\) Source code available at https://github.com/pdecol/mixed-linear-layouts
Corollary 1 (*). Let $G_1 = (V_1, E_1)$ and $G_2 = (V_2, E_2)$ be two double-K_8’s. In a 2-stack 1-queue layout Γ of $G_1 \cup G_2$ with linear order \prec, either $u \prec v$ or $v \prec u$ for all $u \in V_1, v \in V_2$.

Let $G = (V, E)$ be a graph consisting of two double-K_8’s $G_1 = (V_1, E_1)$ and $G_2 = (V_2, E_2)$. Let $w_1 \in V_1$ and $w_2 \in V_2$ be two outer vertices. Further, let $x_1, x_2 \in V_1$ and $y_1, y_2 \in V_2$ be four vertices such that x_1, x_2 are in the same K_8 as w_1, w_2 respectively for y_1, y_2, and none of them is a shared vertex. Finally, add a vertex u to V and the edges x_1y_1, x_2y_2, w_1u, and w_2u to E, see Fig. 1(b).

Lemma 2 (*). Let $G = (V, E)$ be the graph constructed as above. Then in any 2-stack 1-queue layout $\Gamma = (\prec, \{S_1, S_2\}, \{Q\})$ of G we find, w.l.o.g., $w_1 \prec u \prec w_2$ and $w_1u, w_2u \in S_1 \cup S_2$.

Theorem 1. Let $G = (V, E)$ be a simple undirected graph. It is NP-complete to decide if G admits a 2-stack 1-queue layout.

Proof. The problem is clearly in NP. We show the result by a reduction from the problem of deciding the existence of a 2-stack layout, which is NP-complete and equivalent to decide whether a graph is subhamiltonian [1, 2]. Let $G' = (V', E')$ be a graph constructed as in Lemma 2. Identify the special vertex u in V' with any vertex in G and add the rest of G to G'. Clearly, if G has a 2-stack layout, we can construct a 2-stack 1-queue layout of G' as sketched in Fig. 1(b). Conversely, let $\Gamma = (\prec, \{S_1, S_2\}, \{Q\})$ be a 2-stack 1-queue layout of G'. As for u in Lemma 2, we find that $w_1 \prec v \prec w_2$ for every neighbor v in V of u. By induction we find for all $v' \in V$ that $w_1 \prec v' \prec w_2$. Hence all edges in G are nested by x_1y_1 and x_2y_2, which are both in Q. It follows that G has a 2-stack layout. □
Our second complexity result shows that adding stack or queue pages to the specification of an already \(\text{NP}\)-complete mixed linear layout problem with given vertex order \(\prec\) remains \(\text{NP}\)-complete. Note that for \(s = 4\) and \(q = 0\) the problem of deciding if the edges can be assigned to the pages even when the vertex order is fixed is known to be \(\text{NP}\)-complete [14].

Theorem 2 (\textdagger). Let \(G = (V, E)\) be a simple undirected graph and \(\prec\) a fixed order of \(V\). If it is \(\text{NP}\)-complete to decide if \(G\) admits an \(s\)-stack \(q\)-queue layout respecting \(\prec\), then it is also \(\text{NP}\)-complete to decide if \(G\) admits (i) an \(s\)-stack \((q + 1)\)-queue layout or (ii) an \((s + 1)\)-stack \(q\)-queue layout respecting \(\prec\), respectively.

3 Heuristic Algorithm

Most heuristics for minimizing crossings in book drawings work in two steps [10]. First compute a vertex order and then a page assignment. We propose a new page assignment heuristic, specifically tailored to mixed linear layouts. To the best of our knowledge, this is the first heuristic for minimizing crossings and nestings in mixed linear layouts. It uses stack and queue data structures for keeping track of conflicts and estimating possible future conflicts. The design allows us to consider the assigned and unassigned edges at the same time while efficiently processing them to run in \(O(m^2)\) time for a graph with \(m\) edges.

In the following, we describe how the algorithm works for a 1-stack 1-queue layout. We note that it is straightforward to adapt our approach to \(s\)-stack, \(q\)-queue layouts for arbitrary \(s\) and \(q\). A stack (queue) can be used to validate that a given page has no crossings (nestings) by visiting the vertices in their linear order and inserting (removing) each edge when the left (right) end-vertex is visited, respectively [8]. We can use a similar strategy for our heuristic. Here it is allowed to remove edges even if they are not on top of the stack or in front of the queue, but of course this might produce conflicts. Let \(S\) be a stack and \(Q\) a queue. We additionally keep two counters for each edge \(e\), the so called crossing counter \(c(e)\) and the nesting counter \(n(e)\). The vertices are processed from left to right in a given vertex order. For the current vertex \(u\) we insert all edges \(e = uv\) into \(S\) and \(Q\). If there are multiple edges \(uv\), we add them according to their length to \(S\) and \(Q\). For \(S\) we sort them from long to short, for \(Q\) from short to long. Once the second vertex \(v\) of an edge \(e = uv\) is visited, we remove \(e\) from \(S\) and \(Q\), and decide to which page we assign it. Let \(s_e\) be the number of edges on top of \(e\) in \(S\) and \(q_e\) the number of edges in front of \(e\) in \(Q\). Then we assign \(e\) to the stack page if \(c(e) + 0.5s_e \leq n(e) + 0.5q_e\) and update \(c(e')\) for each edge \(e'\) on top of \(e\) in \(S\). Otherwise we assign \(e\) to the queue page and update \(n(e')\) for each edge \(e'\) in front of \(e\) in \(Q\). Intuitively we estimate for each edge \(e\) how many conflicts this edge produces for edges \(e'\) to be processed later. The advantage of this estimation is that we potentially assign the edge to a page that adds more conflicts now, but might create fewer conflicts in the future.
4 Experiments

We denote our algorithm as stack-queue heuristic and compare it with the two page assignment heuristics eLen [3] and ceilFloor [13] that are commonly used with book drawings [10]. Both can be adapted to mixed layouts, while other book drawing heuristics try to explicitly partition the edges into planar sets, which is obviously not suitable for queue pages in mixed layouts. Both process the edges by decreasing length and greedily assign each edge to the page where it causes fewer conflicts at the time of insertion. In case of ties, a stack page is preferred over a queue page. The difference is that eLen computes the length based on the linear vertex order and ceilFloor based on the corresponding cyclic vertex order as follows. Given a vertex order $1 \prec 2 \prec \ldots \prec n$, eLen considers the edge $(1, n)$ first and the edges $(i, i + 1)$ last. In ceilFloor the length of an edge uv is defined as $\min(|u - v|, n - |u - v|)$. All three heuristics run in $O(m^2)$.

The goal of our experiment is to explore the performance differences in terms of the number of conflicts per edge of the adapted book drawing algorithms compared to our new heuristic. We thus measure the resulting number of conflicts per edge for all three algorithms, as well as record for each instance the algorithm with the fewest number of conflicts. We first tested the algorithms on the complete graphs with up to 50 vertices. Furthermore, we generated 500 random graphs for each number of vertices in $\{25, 50, \ldots, 400\}$ from different sparse graph classes, see Fig. 2, since it is known that both, stack and queue page, can contain at most $2n - 3$ conflict-free edges [1,9]. All experiments ran on a Linux cluster (Ubuntu 16.04.6 LTS), where each node has two Intel Xeon E5540 (2.53 GHz Quad Core) processors and 24GB RAM. The running time of one run of each algorithm was relatively low, taking less than one second on average and at most 2.5 seconds for the denser random graphs with 400 vertices.

For the complete graphs stack-queue was the best page assignment heuristic producing about $\frac{2}{3}$ of the conflicts of eLen and ceilFloor. For other graphs, the vertex order has a strong effect on the results. In our experiments we first compared three state-of-the-art vertex order heuristics (breadth-first search (rbfs [13]), depth-first search (AVSDF [7]) and connectivity (conGreedy [10])) before applying the page assignment heuristics. It turned out that for all of them the same vertex order heuristic performed best on the same graph class, so that all experiments could be run without bias on exactly the same input order.

Benchmark graphs. We first generated random (not necessarily planar) graphs of n vertices and either $m = 3n$ or $m = 6n$ edges. The graphs were created by drawing uniformly at random the required number of edges, discarding disconnected graphs. The best vertex order heuristic was conGreedy.

Since 1-stack 1-queue layouts are especially interesting for planar and planar bipartite graphs [12], we generated random planar and maximal planar bipartite graphs. The planar graphs are generated as Delaunay triangulations of n random points in the plane. Since every planar bipartite graph has a 2-stack embedding [6], we randomly generated a vertex order of alternating vertices from both vertex sets to ensure that a Hamiltonian path exists. We then randomly selected two vertices of the two sets and added the edge to the graph if it was possible
to do so without a crossing. We repeated the process of randomly selecting the vertices until the maximum number of $2n - 4$ edges had been reached. The vertex order for the Delaunay triangulations was computed by 	extsc{rbfs} and for maximal planar bipartite graphs by 	extsc{AVSDF}. As it turned out that 	extsc{stack-queue} did not perform as well as 	extsc{ceilFloor} and 	extsc{eLen} on the Delaunay triangulations, which is in contrast to the random and planar bipartite graphs, we wondered whether the presence of many triangles might be the reason. Hence, we considered two graph classes with many triangles and the same maximal edge densities as planar and planar bipartite graphs, respectively, namely planar 3- and 2-trees. For 2-trees the best vertex order was computed by 	extsc{AVSDF} and for 3-trees by 	extsc{conGreedy}.

Results. Aggregated results of our experiments are plotted in Fig. 2 and 4. For random graphs 	extsc{stack-queue} performs best among the three heuristics for almost all instances, even though the difference to 	extsc{ceilFloor} in conflicts per edge is small. For Delaunay triangulations, 	extsc{stack-queue} performs best for small graphs ($n \leq 25$), but for the larger instances 	extsc{ceilFloor} computes better solutions for the majority of instances. In terms of conflicts per edge, however, all three algorithms are quite close together. In the case of planar bipartite graphs, 	extsc{stack-queue} is the best algorithm for up to 300 vertices. Afterwards 	extsc{ceilFloor} performs slightly better, but in both cases, again, the difference in the number of conflicts is small. For 2-trees, the results are more or less evenly split among all three algorithms. Yet, for 3-trees, 	extsc{stack-queue} computes the best solutions for 70–80% of the instances with up to 100 vertices. The differences in the number of conflicts per edge is also more noticeable. For larger instances 	extsc{ceilFloor} catches up with 	extsc{stack-queue}.

Discussion. The results of our experiments showed that the proposed 	extsc{stack-queue} heuristic beats or competes with previously existing and suitably adapted page assignment heuristics for book drawings on most of the tested benchmark graph classes with the exception of Delaunay triangulations, where 	extsc{ceilFloor} performed best. Since the running time of all three algorithms is $O(m^2)$ this does make 	extsc{stack-queue} a suitable method for computing 1-stack 1-queue layouts.

Fig. 2: How many times each algorithm obtained the fewest conflicts in percent.
5 Conclusion

We believe it is possible to adapt our technique from Theorem 1 for \(s > 2 \) and \(q = 1 \). The biggest obstacle is to find such rigid structures as the double-
\(K_8 \). In the algorithmic direction it could be interesting to investigate specialized
heuristics for finding vertex orders in the queue- and mixed layout case. Whether
every planar bipartite graph admits a 1-stack 1-queue layout remains open.

References

1. Bernhart, F., Kainen, P.C.: The book thickness of a graph. J. Comb. Theory, Ser. B 27(3), 320–331 (1979). https://doi.org/10.1016/0095-8956(79)90021-2
2. Chung, F., Leighton, F., Rosenberg, A.: Embedding graphs in books: A layout
problem with applications to VLSI design. SIAM J. Alg. Discr. Meth. 8(1), 33–58
(1987). https://doi.org/10.1137/0608002
3. Cimikowski, R.J.: Algorithms for the fixed linear crossing number problem. Discrete Applied Mathematics 122(1-3), 93–115 (2002).
https://doi.org/10.1016/S0166-218X(01)00314-6
4. Dujmović, V., Joret, G., Mick, P., Morin, P., Ueckerdt, T., Wood, D.R.: Planar
graphs have bounded page-number. CoRR abs/1904.04791 (2019)
5. Dujmović, V., Wood, D.R.: On linear layouts of graphs. Discrete Math. Theor.
Comput. Sci. 6(2), 339–358 (2004)
6. de Fraysseix, H., de Mendez, P.O., Pach, J.: A left-first search algorithm
for planar graphs. Discrete & Computational Geometry 13, 459–468 (1995).
https://doi.org/10.1007/BF02574056
7. He, H., Sykora, O.: New circular drawing algorithms. In: Workshop on Information
Technologies - Applications and Theory (ITAT) (2004)
8. Heath, L.S., Leighton, F.T., Rosenberg, A.L.: Comparing queues and stacks as
mechanisms for laying out graphs. SIAM J. Discret. Math. 5(3), 398–412 (1992).
https://doi.org/10.1137/0405031
9. Heath, L.S., Rosenberg, A.L.: Laying out graphs using queues. SIAM J. Comput.
21(5), 927–958 (1992). https://doi.org/10.1137/0221055
10. Klawsitter, J., Mchedlidze, T., Nöllenburg, M.: Experimental evaluation of book
drawing algorithms. In: Frati, F., Ma, K.L. (eds.) Graph Drawing and Net-
work Visualization (GD’17). LNCS, vol. 10692, pp. 224–238. Springer (2018).
https://doi.org/10.1007/978-3-319-73915-1_19
11. Ollmann, L.T.: On the book thicknesses of various graphs. In: 4th Southeastern
Conference on Combinatorics, Graph Theory and Computing. vol. 8, p. 459 (1973)
12. Pupyrev, S.: Mixed linear layouts of planar graphs. In: Frati, F., Ma, K.L. (eds.)
Graph Drawing and Network Visualization (GD’17). LNCS, vol. 10692, pp. 197–
209. Springer (2018). https://doi.org/10.1007/978-3-319-73915-1_17
13. Satsangi, D., Srivastava, K., Srivastava, G.: K-page crossing number minimization
problem: An evaluation of heuristics and its solution using GESAKP. Memetic
Computing 5(4), 255–274 (2013). https://doi.org/10.1007/s12293-013-0115-5
14. Unger, W.: On the k-colouring of circle-graphs. In: STACS 88, 5th Annual Sym-
posium on Theoretical Aspects of Computer Science, Bordeaux, France, February
11-13, 1988, Proceedings. pp. 61–72 (1988). https://doi.org/10.1007/BFb0035832
15. Yannakakis, M.: Embedding planar graphs in four pages. J. Comput. Syst. Sci.
38(1), 36–67 (1989). https://doi.org/10.1016/0022-0000(89)90032-9
A Omitted Proofs from Section 2

The following observations follow from exhaustively searching over all possible orders of the considered graphs.

Observation 1. Let $\Gamma = (\prec, \{S_1, S_2\}, \{Q\})$ be a 2-stack 1-queue layout of K_8 and let the vertices $\{v_1, \ldots, v_8\}$ be ordered by \prec. Then $v_1v_8, v_3v_7, v_2v_6 \in S_1 \cup S_2$, v_1v_7 and v_2v_8 are not in the same stack, and $v_1v_3, v_6v_8 \in Q$.

Observation 2. Let G and H be two distinct K_8‘s. Of the vertices of G and H only the first and last can interleave in any order of 2-stack, 1-queue layout of $G \cup H$.

Observation 3. Let $G = (V \cup V_2, E)$ be a double-K_8 with shared vertices u, v, outer vertices w, z and $\Gamma = (\prec, \{S_1, S_2\}, \{Q\})$ a 2-stack 1-queue layout of G. We find w.l.o.g. that $w \prec v_1 \prec \ldots \prec v_5 \prec u \prec v_2 \prec \ldots \prec v_8 \prec z$, where $v_i \in V_1$ and $v_i \in V_2$ for all $i \in \{1, \ldots, 5\}$.

Lemma 1 (*). Let $G = (V, E)$ be a double-K_8 with outer vertices w, z and two additional vertices $a, b \in V$ with an edge $ab \in E$. In every 2-stack 1-queue layout $\Gamma = (\prec, \{S_1, S_2\}, \{Q\})$ of G, with $w \prec a \prec z$ and $b \prec w$ or $z \prec b$, it holds that $ab \in Q$ and a is between the first or last three vertices in the double-K_8.

Proof. Let $u, v \in V$ be the shared vertices of the double-K_8 in G. Assume there was a 2-stack 1-queue layout Γ with $w \prec a \prec z$ and $b \prec w$ or $z \prec b$ and $ab \in S_1 \cup S_2$.

Corollary 1 (*). Let $G_1 = (V_1, E_1)$ and $G_2 = (V_2, E_2)$ be two double-K_8‘s. In a 2-stack 1-queue layout Γ of $G_1 \cup G_2$ with linear order \prec, either $u \prec v$ or $v \prec u$ for all $u \in V_1, v \in V_2$.

Proof. Observe that it is not possible to interleave one vertex in V_1 with one in V_2 and vice versa since the edges connecting outermost and shared vertices are all in the stacks. Any other possibility directly contradicts Observation 2. □

Lemma 2 (*). Let $G = (V, E)$ be the graph constructed as above. Then in any 2-stack 1-queue layout $\Gamma = (\prec, \{S_1, S_2\}, \{Q\})$ of G we find, w.l.o.g., $w_1 \prec u \prec w_2$ and $w_1u, w_2u \in S_1 \cup S_2$.

Proof. From Corollary 1 we already know that the vertices of the double-K_8‘s can only come sequentially after each other in \prec. With the same argument as in Lemma 1 we immediately see that x_1, x_2 and y_1, y_2 have to be the two vertices next to the outer vertices w_1 and w_2 in their respective double-K_8‘s. Additionally
we see that the edges x_1y_1 and x_2y_2 have to be in Q from Observations 1 and 3. Thus it follows that they have to cross each other. In the following assume, w.l.o.g., that $x_1 \prec x_2$ and $y_1 \prec y_2$. Finally, with Lemma 1, we know that the only possible placements of u are $x_1 \prec u \prec x_2$, $x_2 \prec u \prec w_1$, $w_1 \prec u \prec w_2$, $w_2 \prec u \prec y_2$, and $y_1 \prec u \prec y_2$.

Now assume u was not between w_1 and w_2, then, again with Observations 1 and 3, we know that either uw_1 or uw_2 has to be in Q. Without loss of generality, let u be between $x_1, x_2,$ and w_1, then $uw_2 \in Q$, but also uw_2 is nested by x_1y_1, a contradiction. □

Theorem 2 (⋆). Let $G = (V, E)$ be a simple undirected graph and \prec a fixed order of V. If it is NP-complete to decide if G admits an s-stack q-queue layout respecting \prec, then it is also NP-complete to decide if G admits (i) an s-stack $(q+1)$-queue layout or (ii) an $(s+1)$-stack q-queue layout respecting \prec, respectively.

Proof. Claim (i) is straightforward. Assume it is NP-complete to determine for a graph G if it has a s-stack, q-queue layout with fixed vertex order \prec. We create a new graph G' by adding a matching M on $2(s+1)$ new vertices to G. Let w be an edge of this matching, then we place u before the vertices in V and v after all vertices in V, i.e., w nests all edges of G. Finally we order the vertices of M such that the edges all pairwise intersect. It is clear that all edges of M can fit on one queue page. Further, since there are $s+1$ many, one such edge needs to be on a queue page, but it cannot be in any queue page together with an edge in E, since it would nest all edges in E. The correctness follows.

For Claim (ii) the reduction is slightly more complicated. Let $G = (V, E)$ be a graph and \prec a linear ordering of V, such that it is NP-complete to determine if an s-stack q-queue layout respecting \prec exists. First we add a star Z on $|V|$ new vertices to G. Let w be the center of this star. We place it to the left of the first vertex of V in \prec. Now we add one of the $|V| - 1$ leaves of Z in between each pair of consecutive vertices in V. Observe that each edge $uv \in E$ intersects at least one edge wz with z being a leaf of Z.
We further add \(q \) matchings \(M_i, i = 1, \ldots, q \) on \(2(s + 2) \) vertices. We place each \(M_i \) between \(w \) and the vertices of \(V \) in \(\prec \), i.e., all edges in all \(M_i \) are nested by all edges of \(Z \). We further place the vertices of \(M_i \) such that the edges of \(M_i \) nest all edges of \(M_j, j = 1, \ldots, i-1 \) and sort them such that the edges pairwise intersect. Finally we add one more matching \(M \) on \(s \) vertices. For \(M \) we place one bipartition to the left of \(w \) in \(\prec \) and the other between the right-most vertex of \(M_q \) and the left-most vertex in \(V \). See Figure 3 for an illustration.

For the correctness we first observe that at least one edge of each \(M_i \) has to go to a queue. It follows that for each queue we find at least one edge of one \(M_i \) and that no edge between vertices of \(M \) can be on a queue page. From this we get that on each stack page we find exactly one edge of \(M \). Finally this means that all edges of \(Z \) must be in one stack, and hence no edge in \(E \) can be in this stack. It follows that if \(G \) has an \(s \)-stack \(q \)-queue layout then we always find a layout of the augmented graph on \(s + 1 \) stacks and \(q \) queues. Conversely, if we find such a layout of the augmented graph by construction all edges in \(E \) are on at most \(s \) stacks and at most \(q \) queues.

\[\square \]

B Additional Plots for Section 4

Figure 4 shows the number of conflicts per edge for our experiments with the heuristically optimized vertex orders. Additionally, Figure 5 shows the number of conflicts per edge for graphs with up to 100 vertices based on a random vertex order instead. Comparing the two figures, it is no surprise that with a random vertex order the conflict numbers increase. Further, for the Delaunay graphs, \(stack-queue \) achieves the lowest conflicts per edge with random vertex order, unlike for the optimized order, where \(ceilFloor \) performs best. Overall, we observe that the error bands in the plots are more clearly separated for the random vertex order and that \(stack-queue \) achieves on average one crossing per edge less than \(ceilFloor \) on all six graph classes for \(n = 100 \). This is not the case for the error bands in Fig. 4 using optimized vertex orders.
Fig. 4: Number of conflicts per edge for the three heuristics and six benchmark graph classes with heuristically optimized vertex orders.
Fig. 5: Number of conflicts per edge for the three heuristics and six benchmark graph classes using random initial vertex orders.