Arthropod pests and their management, natural enemies and flora visitors associated with castor (Ricinus communis), a biofuel plant: a review

Guillermo López-Guillén1; Jaime Gómez-Ruiz2; Juan F. Barrera3

Abstract: Interest in bioenergetic crops, such as the castor oil plant Ricinus communis (Euphorbiaceae), for production of biodiesel has increased in recent years. In this paper, phytophagous arthropods, their natural enemies and floral visitors associated with this plant in the world are reviewed. Despite its insecticidal properties, arthropods have been reported feeding on Ricinus communis plants. The arthropod pests of Ricinus communis damage all parts of the plant, including the seeds, where some toxic compounds are even more concentrated. In the scientific databases, we found reports of 193 arthropods associated to Ricinus communis in different parts of the world. This information obtained in the scientific databases was concentrated in a database and analyzed according to the coevolutive hypothesis, which allows us to predict that the greatest wealth and abundance of phytophagous arthropods is found in the center of origin by Ricinus communis. According to this review, Achaea janata, Spodoptera littura, Edinisiana flavescens, Liriomyza trifolii, S. obliqua, Apis mellifera, T. australicum, T. dormini, T. preitosum, T. evanescens, Microplitis rufiventris, M. maculipennis, M. ophiussae, Telenomus remus, T. proditor, Stethorus siphonulus and S. histrio. Apis mellifera is recorded as the main insect pollinator of Ricinus communis. Pest management methods used against the arthropod pests of Ricinus communis include biological, ethological, mechanic, cultural, genetic, and chemical control.

Keywords: Castor-oil plant, biodiesel, pests, entomophagous organisms, pollinators.

Resumen: El interés por los cultivos bioenergéticos, tales como Ricinus communis (Euphorbiaceae) para producir biodiesel ha aumentado en años recientes. En este documento se hace una revisión sobre los artrópodos fitófagos, enemigos naturales y visitantes florales asociados a esta planta en el mundo. A pesar de las propiedades insecticidas de Ricinus communis, existen registros sobre artrópodos que se alimentan de él. Los artrópodos de Ricinus comunis dañan toda la planta, incluso las semillas, donde se localizan compuestos tóxicos más concentrados. En las bases de datos científicas, se encontró registro de 193 artrópodos asociados a Ricinus communis en diferentes partes del mundo. Esta información se concentró en una base de datos y se analizó de acuerdo con la hipótesis coevolutiva, la cual permite predecir que la mayor riqueza y abundancia de artrópodos fitófagos, se encuentra en el centro de origen de Ricinus communis. De esta revisión se desprende que entre las plagas más devastadoras en Asia se encuentran Achaea janata, Spodoptera littura, Edinisiana flavescens, Liriomyza trifolii, S. obliqua, Apis mellifera, T. australicum, T. dormini, T. preitosum, T. evanescens, Microplitis rufiventris, M. maculipennis, M. ophiussae, Telenomus remus, T. proditor, Stethorus siphonulus y S. histrio. Apis mellifera es registrado como el principal insecto polinizador de Ricinus communis. Métodos de manejo de plagas utilizados contra los artrópodos de Ricinus communis incluyen control biológico, etológico, mecánico, cultural, genético y químico.

Palabras clave: Higuerrilla, biodiesel, plagas, entomófagos, polinizadores.
Introduction

The castor-oil plant, *Ricinus communis* L., is an oleaginous plant belonging to the Euphorbiaceae family, which comprises 280 genera. This species has been cultivated for more than 6000 years on the Asian continent, and more recently on the African and American continents (Govaerts et al. 2000; Salihu et al. 2014). *R. communis* is a non-edible plant, mainly used in chemical, pharmaceutical, and automobile industries, where it has numerous applications (Savy 2005; Barnes et al. 2009; Severino et al. 2010). All parts of this plant contain lectin ricin – one of the most potent lethal natural poisons known – but is particularly concentrated in the seeds and pods (Audi et al. 2005).

In recent years, *R. communis* oil has acquired importance as a biofuel, due to the possibility of its use in producing biodiesel (Baldwin and Cossar 2009; César and Batalha 2010). *R. communis* is distributed in tropical and subtropical regions and is also adaptable to temperate zones (Lima et al. 2011). The principal producer countries of *R. communis* seeds are India, China, and Mozambique; whereas the countries with the highest consumption of the products of this plant are Holland, Japan, and Italy (Faostat 2015). India, China, and Brazil contribute approximately 95 % of the world production of seeds (Sailaja et al. 2008).

Ricinus communis seeds are outstanding for their high oil content, between 40 and 60 %, compared with sunflower (*Helianthus annuus* L.) seeds with 38 to 48 %, soybean (*Glycine max* (L.) Merr.) between 18 and 19 %, moringa (*Moringa oleifera* L.) with 14 to 24 %, neem (*Azadirachta indica* (Juss)) between 17 and 39 %, and cotton (*Gossypium hirsutum* L.) with 15 to 19 % (Kittock and Williams 1970; Severino 2006; Melo et al. 2007; Baldwin and Cossar 2009; Martin et al. 2010), a characteristic that makes this plant very attractive as a source of biofuel, particularly biodiesel.

The extensive cultivation of varieties and hybrids of *R. communis* under different management practices has made the plant vulnerable to biotic and abiotic factors. *R. communis* plants may lose leaves, seeds and pods for different reasons: damage by pests, diseases, wind, hail, traffic of machinery, and inappropriate use of herbicides and defoliation (Severino et al. 2010). Even though a castor-oil plant can recover from severe defoliation, the damage suffered by the leaves may reduce the production. It is estimated that for 1 m² of lost leaf area, seed production diminishes by 37.8 g and oil production by 24.4 g (Lakshmamma et al. 2009; Lakshmi 2010; Severino et al. 2010). Continuous sowing of *R. communis* in the same areas, as well as the lack of intercropping has increased the occurrence of pests and diseases. There are reports that more than 100 species of insects in different parts of the world feed on *R. communis* and can cause serious damage (Barteneva 1986; Kolte 1995). In India, for example, insect pests caused losses in seed production from 35 to 50 % (Kolte 1995). Integrated pest management programs are therefore important to prevent losses that can affect the economy of producer-countries.

The present literature reviewed focuses on the phytophagous arthropods associated with *R. communis* in different parts of the world, as well as, their natural enemies and natural visitors. The information was obtained through extensive search of scientific literature on these subjects published in the Web of Science database, Ebsco database and Google Scholar, using appropriate key words (e.g. ‘insects on *Ricinus communis*’ ‘arthropods on *Ricinus communis*’, ‘pests of *Ricinus communis* or castor-oil’); the search was conducted until January 2019. Afterwards, the information collected was analyzed from the perspective of the co-evolutionary hypothesis following the approach of literature review analysis of arthropod herbivory on physic nut (*Jatropha curcas* L.) conducted by Lama et al. (2015).

Specifically, we set out to answer the following questions regarding the arthropods associated with *R. communis*: (1) What is the diversity of arthropod taxa associated with this plant? (2) In what geographic area does the greatest richness of associated arthropod species occur? (3) What are the parts of the plant most preferred by the herbivorous arthropods? and (4) What mouthpart classes of the arthropods associated with *R. communis* can be identified? According to the co-evolutionary hypothesis, it would be expected to find greater richness of native arthropod species in Asia and Africa, the origin area of *R. communis*, in comparison with those areas where this plant has been introduced or cultivated more recently.

Phytophagous arthropods associated with *R. communis*

Ricinus communis has been considered tolerant and/or resistant to pest attack due to the toxic compounds present in different parts of the plant. Some of the most common compounds found in this plant species are ricin, ricinine, N-demethylricinicine, flavonoids, gallic acid, gentisic acid, coumaric acid, syringic acid, cinnamic acid, vanillic acid and rutin, and allergen proteins such as Ric c1 and Ric c3 (Usha Rani et al. 2006; Gahukar 2010; Vandenborre et al. 2011; Usha Rani and Pratyusha 2014). Some of these are toxic compounds that may even have insecticidal or antifeedant properties against insect pests of other crops (Rossi et al. 2012; Amoabeng et al. 2014; Dinesh et al. 2014). Despite the insecticidal properties of *R. communis*, there are reports of arthropods that feed on several parts of this plant. Ricinine, for example, one of its main alkaloids that has shown insecticidal effect on some insect pests of other plants (Bigi et al. 2004; Liu and Li 2006; Rossi et al. 2012) does not have any detrimental effect on certain specialist phytophagous insects that are common pests of *R. communis*, such as *Achaea janata* (L., 1758) (Lepidoptera: Noctuidae), *Spodoptera littura* (F., 1775) (Lepidoptera: Noctuidae) and others (Prabhakar et al. 2003; Usha Rani and Pratyusha 2014). This is due to the presence of enzymes in the midgut of these insects that are able to degrade toxins and thus breakdown the plants' natural defenses (Yasur et al. 2009; Usha Rani and Pratyusha 2014).

The arthropod pests of *R. communis* damage all parts of the plant, including the seeds, where some toxic compounds such as lipases, the alkaloid ricinine (including the protein ricin) and glycosides of ricinoleic, isoricinoleic, stearic and dihydroxystearic acids are even more concentrated (Jena and Gupta 2012). The type of pest and damage varies from place to place; some pests of *R. communis* can be present in different regions. Table 1 presents information published in the literature on arthropods that attack *R. communis*.

According to Table 1, 59 % of the arthropod species feed on foliage, 20 % on roots and seedlings, 17 % on flowers, fruits and seeds, and 5 % on stems and branches. The low percentage of arthropods feeding on seeds and roots can be explained in part by the high concentration of ricinine in these parts of the plant (Salihu et al. 2014). To feed on seeds and roots, these arthropods have had to develop highly efficient mechanisms of detoxification (Yasur et al. 2009).
Table 1. Order, family and geographical distribution of the phytophagous arthropod species that attack cultivated *Ricinus communis*.

Order	Family	Species	Geographical distribution	References
Coleoptera	Curculionidae	*Protostrophus* spp.	Africa	Salihu et al. (2014)
	Elateridae	*Agriotes* sp.	Costa Rica	Anónimo (1991)
Scarabeidae		*Amphimallon solstitialis* (Linnaeus, 1758)	Russia	Arkangel’Skii and Romanova (1930)
		Holotrichia consanguinea Blanchard, 1850	India	Gahukar (2018)
		Phyllophaga sp.	Colombia and Costa Rica	Anónimo (1991); Londoño-Zuluaga (2008)
		Holochelus aequinoctialis (Herbst, 1790)	Russia	Arkangel’Skii and Romanova (1930)
Diptera	Agromyzidae	*Liriomyza trifoli* (Burgess, 1880)	India	Anjani et al. (2007)
Lepidoptera	Noctuidae	*Agrotis ipsilon* (Hüfnagel, 1766)	Colombia and Egypt	Saldarriaga Cardona et al. (2011)
		Helicoverpa zea (Boddie, 1850)	USA	Wene (1933)
		Spodoptera frugiperda (J. E. Smith, 1797)	Colombia	Saldarriaga et al. (2011)
		Spodoptera marima (Schaus, 1904)	Brazil	Ribeiro and Costa (2008)
		Spodoptera spp.	Brazil	Ribeiro and Costa (2008)
	Sphingidae	*Erinnis ello* (Linnaeus, 1758)	Brazil	
Orthoptera	Gryllidae	*Brachypterus* spp.	Africa	Salihu et al. (2014)
	Pyrgomorphidae	*Chrotogonus* spp.	Africa	Salihu et al. (2014)
		Zonocerus variegatus (Linnaeus, 1758)	Africa	Salihu et al. (2014)
Isoptera	Termitidae	*Odontotermes obesus* (Rambur, 1842)	India	Gahukar (2018)

Order	Family	Species	Geographical distribution	References
Coleoptera	Curculionidae	*Naupactus glaucus* Perty, 1832	Brazil	Cavalcante et al. (1974)
		[= *Pantomorus glaucus* Perty, 1830]		
Diptera	Agromyzidae	*Liriomyza sativae* Blanchard, 1938	China	Zhang et al. (2006)
		Liriomyza subpusilla Frost, 1943	USA	Wene (1933); Parkman et al. (1989)
		Liriomyza trifoli Burgess, 1880	India	Galande et al. (2005)
Hemiptera	Aleyrodidae	*Bemisia tabaci* (Gennadius, 1889)	Costa Rica and Africa	Anónimo (1991); Salihu et al. (2014)
		Trialeurodes ricini (Misra, 1924)	India	Idriss et al. (1997); Sarma et al. (2005); Raghavaiah (2011)
	Aphrophoridae	*Pseudaphis glycines* (Fabricius, 1842)	Uganda	Darling (1946)
Cicadellidae	*Amrasca (Amrasca) biguttula* (Ishida, 1913)	[= *Amrasca biguttula biguttula* (Ishida, 1912)]	India	Sharma and Singh (2002); Raghavaiah (2011)
	Agallia sp.		India	Durán et al. (2010)
	Edwardiana flavescens (Fabricius, 1794)	[= *Empousa flavescens* (Fabricius, 1794)]	India	Jayaraj (1964); Sarma et al. (2005); Lakshmi et al. (2005); Jyothsna et al. (2009)
	Empousa (Empousa) solana Delong, 1931	(= *Empousa solana Delong, 1931*)	USA	Wene (1933)
	Empousa sp.		Costa Rica and Egypt	Anónimo (1991)
	Empousa sp.		Africa	Salihu et al. (2014)
	Jacobiasca farcystylus (Ramakrishnan y Menon, 1972)		India	Parmar et al. (2006)
Miridae	Falcidae	*Falcinae antioquiensis* Carvalho, 1987	Colombia	Saldarriaga Cardona et al. (2011)
	Polymeridae	*Polymerus cognatus* Fieber, 1858	Russia	Arkangel’Skii and Romanova (1930)
Pentatomidae	Acrosternum pallidoconspersum (Stål, 1858)		Egypt	Jannone (1952)
Pseudococcidae	Paracoccus marginatus Williams and Granara de Willink, 1992		Costa Rica and Egypt	Jannone (1952); Anónimo (1991)
Tingidae	Corythucha gossypi* (Fabricius, 1794)		USA, Colombia, Mexico, and Cuba	Miller and Nagamine (2005); Londoño-Zuluaga (2008); Saldarriaga Cardona et al. (2011), López-Guillén et al. (2012)

Lepidoptera

Order	Family	Species	Geographical distribution	References
Arctidae	*Amsacta moorei* Butler, 1876		India	Sarma et al. (2005)
	Amsacta albistrixa Walker, 1864		India	Sarma et al. (2005)
	Pericallia ricini (Fabricius, 1775)		India	Mathur et al. (1994); Neelanarayanan and Indira (2010)
	Spilosoma obliqua Walker, 1855		India and Pakistan	Singh and Grewal (1982); Khattak et al. (1991); Sarma et al. (2005)

continue...
Dalceridae
Anacraga citrinopsis Dyar, 1927
Brazil
Lourenço *et al.* (1989)

Limaecodidae
Parasa lepida Cramer, 1799
India
Raghavaiah (2011)

Lymantridae
Dasychira sp.
Africa
Salihu *et al.* (2014)

Exproctis fraterna Moore, 1883
India
Paul *et al.* (2000); Suganthy (2010)

Noctuidae
Achaea janata (Linnaeus, 1758)
India, USA, and China
Hua (1984); Delaya *et al.* (1985); Basappa and Lingappa (2001); Mau and Kessing (2007)

Helicoverpa armigera (Hübner, 1803-1808)
Brazil and USA
Wene (1933); Ribeiro and Costa (2008)

Spodoptera cosmioides (Walker, 1858)
Brazil
Bavaresco *et al.* (2003)

Spodoptera exigua (Hübner, 1808)
Egypt
Ribeiro and Costa (2008)

Spodoptera ornithogalli (Guenée, 1852)
Brazil
Ribeiro and Costa (2008)

Spodoptera sp.
Costa Rica
Anónimo (1991)

Nymphalidae
Ariadne merione Cramer, 1779
($= Ergolis merione$ Cramer, 1779)
India
Ghosh (1914); Sarma *et al.* (2005)

Saturniidae
Samia ricini (Drury, 1773)
Egypt, India, and Brazil
El-Shaarawy *et al.* (1975); Negreiros *et al.* (1998)

Orthoptera
Acrididae
Chrotogonus (Chrotogonus) *robertsi* Kirby & W. F., 1914
India
Sarma *et al.* (2005)

Thysanoptera
Retithrips syriacus (Mayet, 1890)
India
Sarma *et al.* (2005)

Arianea merione Cramer, 1779
($= Ergolis merione$ Cramer, 1779)
India
Ghosh (1914); Sarma *et al.* (2005)

Acarina
Tetranychidae
Eutetranychus orientalis (Klein, 1936)
India
Ahuja (1994)

Eutetranychus sp.
India
Raghavaiah (2011)

Tetranychus piercei McGregor, 1950
China
Lui and Lui (1986)

Heliothis sp.
Costa Rica
Anónimo (1991); Golden and Follett (2006)

Stems and branches

Coleoptera	Buprestidae	Sphenoptera sp.	Africa	Salihu *et al.* (2014)
Tenebrionidae	Blaptinus sp.	USA	De Ong (1918)	

Hemiptera
Membracidae
Oxyrhachis taranda (Fabricius, 1798)
India
Ali *et al.* (2006)

Lepidoptera
Cossidae
Strigocossus capensis (Walker, 1856)
($= Xyleutes capensis$ (Walker, 1856))
Africa
Salihu *et al.* (2014)

Flowers, fruits and seeds

Coleoptera	Anobiidae	Lastiodermara serricorne* (Fabricius, 1792)	India and Africa	Hussain and Khan (1966); Salihu *et al.* (2014)
Tribolium castanenum (Herbst, 1797)	Africa	Salihu *et al.* (2014)		

Hemiptera
Cicadellidae
Empoasca sp.
Costa Rica
Anónimo (1991)

Miridae
Euryystylus sp.
Africa
Salihu *et al.* (2014)

Helopeltis sp.
Africa
Salihu *et al.* (2014)

Pentatomidae
Nezara viridula (Linnaeus, 1758)
Costa Rica, and USA
Anonymous (1991); Golden and Follett (2006)

Scutelleridae
Calidea sp.
Africa
Salihu *et al.* (2014)

Lepidoptera
Crambidae
Conogethes punctiferalis (Guénée, 1854)
($= Dichocrocis punctiferalis$ (Guénée, 1854))
India and Australia
Anonymous (1913); Sharma *et al.* (1995); Jyothisa *et al.* (2009); Patel and Patel (2009); Hedge *et al.* (2009)

Noctuidae
Achaea janata (Linnaeus, 1758)
India, USA, and China
Hua (1984); Delaya *et al.* (1985); Basappa and Lingappa (2001); Mau and Kessing (2007)

Heliothis sp.
Costa Rica
Anónimo (1991)

Helicoverpa armigera (Hübner, 1803-1808)
India, and USA
Wene (1933); Geetha *et al.* (2003); Satyanarayana and Sing (2003)

Spodoptera sp.
Costa Rica
Anónimo (1991)

Pyralidae
Cadra cautella (Walker, 1863)
($= Ephesia cautella$ (Walker, 1863))
Africa
Salihu *et al.* (2014)

Tortricidae
Thaumatomita leucotreta (Meyrick, 1913)
($= Cryptophlebia leucotreta$ Meyrick, 1913)
Africa
Salihu *et al.* (2014)
A total of 76 species of phytophagous arthropods associated to cultivated plants of *R. communis* is found worldwide (Table 1). Before the present literature review, the report was of 60 species (Raoof et al. 2003). The arthropods reported in Table 1 belong to eight orders and 38 families; 40% of these species belong to Lepidoptera, 27% to Hemiptera, 14% to Coleoptera and 19% to other orders. The species that belong to Lepidoptera, Hemiptera and Coleoptera represent 81% of the total. These phytophagous arthropods are distributed geographically in Asia (39%), America (34%), Africa (25%) and Europe (2%). As it was supposed, it was not uncommon to find that the greatest richness of arthropods associated to *R. communis* occurred in Asia and Africa, continents considered as the center of origin of this plant (Govaerts et al. 2000). 63% of the species had mandibulate mouthparts (Lepidoptera, Coleoptera, Orthoptera, Isotreta and Diptera) and 37% were piercing-and-sucking mouthpart classes (Hemiptera, Thysanoptera and Acarina).

Of the pests listed in Table 1, the castor semilooper *A. janata*, the tobacco caterpillar *S. litura*, the green leafhopper *Edwardsiana flavescens* (F., 1794) [= *Empeosca flavescens* (F., 1794)] (Hemiptera: Cicadellidae), the serpentine leafminer *Liriomyza trifolii* Burgess, 1880, the vegetable leafminer *L. sativae* Blanchard, 1938 (Diptera: Agromyzidae), the Bihai hairy caterpillar *Spilosoma obliqua* Walker, 1855 (Lepidoptera: Arctiidae), the shoot and capsule borer *Conogethes punctiferalis* (Gueneé, 1854) [= *Dichocrocis punctiferalis* (Gueneé, 1854)] (Lepidoptera: Crambidae), the cowbug *Oxyrhachis taranda* (F., 1798) (Hemiptera: Membracidae), and the cotton bullworm *Helicoverpa armigera* (Hübner, 1803-1808) (Lepidoptera: Noctuidae), among others, are the most devastating pests in Asia. In Africa, the black cutworm *Acrietes spp.*, some defoliator larvae including *S. litura**cotton bullworm* *R.* *communis* *Phyllonorycter rosaceana* (F., 1798) (Olethreutidae), among others, are mentioned as the most important. In Asia and Africa, continents considered as the center of origin of this plant (Govaerts et al. 2000). 63% of the species had mandibulate mouthparts (Lepidoptera, Coleoptera, Orthoptera, Isotreta and Diptera) and 37% were piercing-and-sucking mouthpart classes (Hemiptera, Thysanoptera and Acarina).

Such insects were observed feeding on leaves of *R. communis* plants, and even though some species have been reported as pests of *R. communis* in other countries, most of them cause no considerable damage. However, they have the potential of becoming pests of *R. communis* if it is cultivated as a monoculture or, *R. communis* could be a host plant for important pests as the invasive ambrosia beetle *Euwallacea* sp. (Coleoptera: Curculionidae) (Boland 2016; Egonyu et al. 2017). Among these potential pests are insect and mite species of various families of Lepidoptera, Hemiptera, Orthoptera, and others (Table 2).

Pollinator insects and floral visitors in *R. communis*

Ricinus communis is a monoecious cross-pollinating plant, cultivated as a hybrid in India, Brazil, China, and other countries because they produce better yields than pure lines or varieties (Moll et al. 1962; Birchler et al. 2003; Reif et al. 2007). Several studies demonstrate that certain species of pollinator insects may improve seed production of *R. communis*. For example, it is mentioned that *Apis mellifera* (L., 1758) (Hymenoptera: Apidae) contributes to increasing *R. communis* crop productivity by incrementing fruit numbers as well as oil content in seeds (Freitas and Cruz 2010).

Among the pollinator insects of *R. communis*, *A. mellifera* is recorded as the main pollinating insect. It is also mentioned that this insect feeds on the nectar produced by the plant’s extrafloral nectar glands (Rizzardo et al. 2012; Waters et al. 2014). *A. mellifera* is the principal pollinating insect of *R. communis*, and laboratory work has demonstrated that the pollen of this plant reduces bee survival (Junior et al. 2011). According to these studies, expansion of *R. communis* as a crop in the semi-arid region of Brazil for biodiesel production represents a risk for the native and domestic bees used for honey production.

As shown in Table 3, a total of 36 species of pollinator insects and floral visitors of non-cultivated plants of *R. communis* is found in the world. These species belong to four orders and 16 families. 25% of the species belong
to Lepidoptera (19 %) and Hemiptera (6 %), while 75 % belong to Hymenoptera (67 %) and Diptera (8 %). 55 % of the arthropod species registered in Table 3 are distributed geographically in Asia (33 %) and Africa (22 %), while 45 % are registered in America; no records were found for Europe.

In Mexico, Cameroon, USA, India, and Brazil, entomopathogenic Hymenoptera, as well as several species of Lepidoptera, Diptera, and Hemiptera have been reported to feed on nectaries and flowers of *R. communis*; however, only *A. mellifera* has been reported as a pollinator. Therefore, it is necessary to carry out studies on pollination and floral ecology in order to determine if there are other insect pollinators of *R. communis* that should be protected or may be used to increase crop yield (Table 3).

Some pests can affect pollinators through herbivory. In the case of *R. communis*, Wäckers et al. (2001) showed that plants damaged by larvae of *Spodoptera littoralis* (Boisd., 1833) (Lepidoptera: Noctuidae) increased the total amount of nectar produced by extrafloral nectaries compared to undamaged plants. De Sibio and Rossi (2016) found a similar result for the herbivory of *S. frugiperda* on *R. communis*. The secretion of carbohydrates through extrafloral nectaries is considered an indirect strategy of plant defense because it serves to attract parasitoids and predators (Heil 2008). Unlike floral nectar, extrafloral nectaries do not participate in pollination, however, in plants pollinated by insects, extrafloral nectaries can negatively affect the effectiveness of pollination by distracting pollinators away from floral nectaries or when the ants that are attracted by the nectar attack the floral visitors (Wäckers et al. 2001; Turlings and Wäckers 2004).

Natural enemies of the pests of *R. communis*

Among the natural enemies of the key pests of cultivated *R. communis*, there are parasitoids, predators, and entomopathogens such as fungi, bacteria, nematodes, and viruses, which are used as biological control agents or have been found parasitizing, depredating, or naturally infecting some pests of the crop. An extensive list of natural enemies of phytophagous arthropods of *R. communis* grouped by taxa with information of their host or prey and geographical distribution is shown in Table 4; as it can appreciate in this table, the most commonly reported natural enemies in countries like India, Brazil, China, and USA, are *Bacillus* spp., *Trichogramma* spp., *Microplitis* spp., *Telenomus* spp., *Sethorus* spp., and other species attacking pests such as *A. janata*, *S. litura*, *Anacranga citrinopsis* Dyar, 1927, *S. obliqua*, *Phyllophaga* sp., *Eutetranychus banksi* (McGregor, 1914), *Tetranychus picei* McGregor, 1950, *Zaniathrips ricini* Bhatti, 1967, and other species. Table 4 shows a total of 61

Order	Family	Species	Geographical distribution	References
Coleoptera	Bostrichidae	*Prostephanus truncatus* (Horn, 1878)	Mexico	Bourne-Murrieta et al. (2014)
	Chrysomelidae	*Diabrotica grammee Baly, 1886*	Puerto Rico	Woloott (1917)
	Scarabaeidae	*Leptodores sinicus* Burmeister, 1855 (= *Adoretas sinicus* Burmeister, 1855)	USA	McQuate y Jameson (2011)
	Scolytidae	*Euraclia sp.*	Uganda and USA	Boland (2016), Egonyu et al. (2017)
Hemiptera	Aleyrodidae	*Aleuridicus dispersus* Russell, 1965	Cape Verde	Monteiro et al. (2005)
Cicadellidae	*Amrasca (Amrasca) giganta* (Ishida, 1913)		India	Jacob et al. (2000)
Cicadellidae	*Emoasca (Emoasca) kerri* Singh-Pruthi, 1940 (= *Emoasca kerri Pruthi*, 1940)		India, Singh et al. (1991), Jacob et al. (2000)	
	Emoasca (Emoasca) motii Singh-Pruthi, 1940 (= *Emoasca motii Singh-Pruthi*, 1940)		India	Jacob et al. (2000)
Flatidae	*Metacra pruinosa* (Say, 1830)		Spain	Pons et al. (2002)
Miridae	*Apolygus lucorum* (Meyer-Dür, 1843)		China	Lu et al. (2010)
Lepidoptera	Arctiidae	*Amstacella moorei* Butler, 1876	India	Singh et al. (1989)
Cosmopterigidae	*Pyrodexes rileyi* (Walsingham, 1882) (= *Sathrobota rileyi* Walsingham, 1882)		Egypt	Oshaibah et al. (1986)
Lymantriidae	*Euproctis lunata* Walker, 1855		Bangladesh	Islam et al. (1988)
Noctuidae	*Agrotis ipsilon* (Hüfnagel, 1766)		Egypt	Younis (1992)
Pyralidae	*Phycita diaphana* (Staudinger, 1870)		Spain	Huertas Dionisio (2002), Ylla et al. (2008)
Tortricidae	*Thaumatomitabia lecotreata* (Meyrick, 1913) (= *Cryptophlebia lecotreata* Meyrick, 1913)		South Africa	Kirkman and Moore (2007)
Orthoptera	Acrididae	*Melanoplus differentialis* (Thomas, 1865)	USA	Spain (1940)
Acarina	Tetranychidae	*Eutetranychus banksi* (McGregor, 1914)	USA	McGregor (1914)
Acarina	Tetranychidae	*Eutetranychus orientalis* (Klein, 1936)	Palestine and Egypt	Klein (1936)
Acarina	Tetranychidae	*Tetranychus grovesi* Banks, 1900 (= *Tetranychus quinquenychus* McGregor, 1914)	USA	McGregor (1914)
natural enemies of phytophagous insects of *R. communis*. Three species are bacteria belonging to the same genus; four species are nematodes of different genera; two species are fungi of different genera; two reports are viruses; 36 species are parasitoids of eight families of Hymenoptera and one family of Diptera; and 14 species are predators of six different families and order 74 % of the species is distributed geographically in Asia, 24 % in America, 2 % in Africa and 0 % in Europe.

An example of natural enemies of pest of *R. communis* is presented by Basappa (2009). According to this author, parasitoids, insect predators, spiders, insectivorous birds and some microbial organisms are important natural enemies of the pest complex of *R. communis* ecosystem in India. In the case of *A. janata*, *Trichogramma chilonis* Ishii, 1941, *Trichogramma achaeae* Nagaraja and Nagarkatti, 1970, *Telenomus* sp. and *Trissolcus* sp. were recorded from eggs; *Microplitis maculipennis* (Szépligeti, 1900), *Euplectrus*...
Table 4. Natural enemies of phytophagous arthropods of *Ricinus communis*.

Species	Host and/or prey	Geographical distribution	References
Entomopathogens			
Bacillus thuringiensis var. kurstaki (Berliner, 1915)	Larvae of *Achaea janata*	India	Vimala Devi and Sudhakar (2006)
Bacillus cereus (Manson, Pollock & Tridgell, 1954)	Larvae of *Achaea janata*	India	Kattegoudar et al. (1994)
Bacillus popilliae Dutky, 1940	Larvae of Phyllophaga sp.	Colombia	Saldarriaga Cardona et al. (2011)
Nematodes			
Hexamermis dactylocercus Poinar and Linares, 1985	Larvae of *Amsacta albistriga*	India	Prabhakar et al. (2010)
Steinernema carpocapsae (Weiser, 1955)	Larvae of *Spodoptera litura*	India	Raveendranath et al. (2008)
Heterorhabditis indica Poinar, Karunaka y David, 1992	Larvae of *Spodoptera litura*	India	Raveendranath et al. (2008)
Mermis sp.	Larvae of *Achaea janata*	India	Sujatha et al. (2011)
Fungi			
Metarhizium rileyi (Farl.) Kepler, S.A.Rehner & Humber, 2014 [= Nomuraea rileyi (Farlow) Samson, 1974]	Larvae of *Spodoptera litura*	India and USA	Mau and Kessing (2007)
Beauveria bassiana (Balsamo) Vuillemin, 1912	Larvae of *Achaea janata* and *Cogenethes punctiferalis*	India	Duraimurugan et al. (2015)
Nucleopolyhedrovirus	Larvae of *Spodoptera litura*	India	Basappa (2009)
Granulovirus	Larvae of *Achaea janata* and *Spodoptera litura*	India	Naveen Kumar et al. (2013)
Parasitoids			
INSECTA			
Hymenoptera			
Aphelinidae			
Encarsia formosa Gahan, 1924	Nymphs of *Trialeurodes ricini*	China	Wang et al. (2016)
Braconidae			
Habrobracon hebetor (Say, 1836)	Larvae of *Cogenethes punctiferalis*	India	Basappa (2003)
Apanteles hyposidrae Wilkinson, 1928	Larvae of *Achaea janata*	India	Basappa (2009)
Apanteles ricini Bhatnagar, 1948	Larvae of *Cogenethes punctiferalis*	India	Basappa (2003)
Cotesia flavipes (Cameron, 1891) [Apanteles flavipes (Cameron, 1891)]	Larvae of *Spilosoma obliqua* and *Spodoptera litura*	India	Yadav et al. (2010); Basappa (2009)
Glyptapanteles dalosoma de Santis, 1987	Larvae of *Anacraga citrinopsis*	Brazil	Lourenço et al. (1989)
Microplitis (= Microgaster) rufiventris Kokujev, 1914	Larvae of *Spodoptera litoralis*	Egypt	Shalaby et al. (1988)
Microplitis maculipennis (Szepillegti, 1900) (= Microplitis ophiusae Aiyar, 1921)	Larvae of *Achaea janata*	India	Suganthy (2010); Naik et al. (2010)
Chalcididae			
Brachymeria euploeae (Westwood, 1837)	Pupae of *Cogenethes punctiferalis*	India	Sujatha et al. (2011)
Eulophidae			
Cerausimus menes (Walker, 1839)	2º instar nymph of *Zaniothrips ricini*	India	Daniel et al. (1983)
Euplectrus maternus Bhatnagar, 1952	Larva of *Achaea janata*	India	Basappa (2009)
Tetrastrichus howardi (Olliff, 1893) (= *Tetrastrichus ayyari* Rohwer, 1921)	Pupae of *Spodoptera litura* and *Achaea janata*	India	Basappa (2009)
Trichosphus pseudoviviporus Ferrière, 1930	Pupae of *Spodoptera litura* and *Achaea janata*	India	Basappa (2009)
Trichogrammatidae			
Trichogramma achaeae Nagaraja and Nagarkatti, 1970	Eggs of *Achaea janata*	India	Basappa (2009)
Trichogramma chilonis Ishii, 1941	Eggs of *Achaea janata* and *Spodoptera litura*	India	Singh et al. (2008); Suganthy (2010); Naik et al. (2010)
Trichogramma minutum Riley, 1879	Eggs of *Achaea janata*	USA	Mau and Kessing (2007)
Trichogramma australicum Girault, 1912	Eggs of *Achaea janata*	China	Hua (1984)
Trichogramma dendrolimi Matsumura, 1926	Eggs of *Achaea janata*	China	Hua (1984)
Trichogramma pretiosum Riley, 1879	Eggs of *S. cosmioides*	Brazil	Cabezas et al. (2013)
Trichogramma evanescens Westwood, 1833	Eggs of *Achaea janata*	India	Basappa (2009)
Scelionidae

- *Telenomus remus* Nixon, 1937
 - Eggs of *Spodoptera litura*, *Spodoptera cosmioides* and *Spodoptera frugiperda*
 - India: *Satyanarayana et al.* (2005); *Pomari et al.* (2013)
 - USA: *Mau and Kessing* (2007)

- *Telenomus proditor* Nixon, 1937
 - Eggs of *Lepidoptera*
 - India: *Basappa* (2009)

- *Telenomus sp.*
 - Eggs of *Achaea janata*
 - India: *Basappa* (2009)

- *Trissolcus sp.*
 - Eggs of *Achaea janata*

Vespidae

- *Polistes sp.*
 - Larvae of *Phyllophaga sp.*, *Agrotis sp.* and *Spodoptera spp.*
 - Costa Rica: *Anónimo* (1991)

Ichneumonidae

- *Campoletis chlorideae* Uchida, 1957
 - Larvae of *Spodoptera litura*
 - India: *Satyanarayana et al.* (2005)

- *Charops obtusus* Morley, 1913
 - Larvae of *Spilosoma obliqua* and *Achaea janata*
 - India: *Basappa* (2009)

- *Hyposoter exiguae* (Viereck, 1912)
 - Larvae of *Achaea janata*
 - USA: *Mau and Kessing* (2007)

- *Diadegma ricini* Row & Kurian, 1950
 - Larvae of *Cogenethes punctiferalis*
 - India: *Basappa* (2003)

- *Theronia sp.*
 - Larvae of *Cogenethes punctiferalis*
 - India: *Basappa* (2003)

- *Iadromas monterai* (Costa Lima, 1948)
 - Larvae of *Anacraga citrinopsis*
 - Brazil: *Lourenção et al.* (1989)

Tachinidae

- *Palexorista parachrysops* Bezzi, 1925
 - Larvae of *Cogenethes punctiferalis*
 - India: *Kalra* (1984)

- *Eucelatoria armigera* (Coquillett, 1889)
 - Larvae and pupae of *Achaea janata*
 - USA: *Mau and Kessing* (2007)

- *Chaetogaedia monticola* (Bigot, 1887)
 - Larvae and pupae of *Achaea janata*
 - USA: *Mau and Kessing* (2007)

Predators

Coleoptera

Carabidae

- *Calosoma sp.*
 - Larvae of *Phyllophaga sp.*, *Agrotis sp.* and *Spodoptera spp.*
 - Costa Rica: *Anónimo* (1991)

Coccinellidae

- *Cheilomenes sexmaculata* (Fabricius, 1781)
 - Eggs larvae of *Achaea janata* and *Spodoptera litura*
 - India: *Basappa* (2009)

- *Micraspis cardoni* (Weise, 1892)
 - Zaniothrips ricini
 - Palestine and Egypt: *Klein* (1936)

- *Scymnus sp.*
 - *Eutetranychus orientalis*
 - USA: *McGregor* (1914)

- *Stethorus sp.*
 - *Eutetranychus banksi*
 - USA: *Lui and Lui* (1986)

- *Stethorus histrio* Chazeau, 1974
 - *Tetranychus urticae*
 - Chile: *Aguilera* (1987)

Hemiptera

Pentatomidae

- *Eoanticleona furcellata* (Wolff, 1811)
 - *Achaea janata*
 - India: *Rao* (1977); *Usha Rani* (2009)

Reduviidae

- *Rhynocoris kumarii* Ambrose and Livingstone, 1986
 - Eggs larvae of *Achaea janata* and *Spodoptera litura*
 - India: *Basappa* (2009)

Thysanoptera

Aeolothripidae

- *Frankliniorthris megalops* (Trybom, 1912)
 - Zaniothrips ricini
 - India: *Daniel et al.* (1983)

- *Mymarothrisc garuda* Ramakrishna and Margabandhu, 1931
 - Zaniothrips ricini
 - India: *Daniel et al.* (1983)

Neuroptera

Chrysopidae

- *Chrysoperla carnea* (Stephens, 1836)
 - *Tetranychus urticae*
 - India: *Rajasekhar et al.* (1999)

- *Chrysoperla sp.*
 - Eggs and larvae of *Achaea janata* and *Spodoptera litura*
 - India: *Basappa* (2009)

Mantodea

Mantidae

- *Haldwania lilliputana* Beier, 1930
 - Zaniothrips ricini
 - India: *Daniel et al.* (1983)

ARACHNIDA / Acari

Phytoseiidae

- *Sciulus sp.*
 - Eutetranychus banksi
 - USA: *McGregor* (1914)
Pest management methods used to control the principal arthropod pests of *R. communis* include cultural, genetic, ethological, biological, and chemical control.

Cultural control is the use of agronomical practices designed to reduce the presence of pests in crops of *R. communis*. Intercropping is a type of cultural control recommended to diminish the damage caused by insect pests in *R. communis*. Srinivasa Rao et al. (2012) found that plants of *Cynamopsis tetragonoloba* (L.) Taub., 1891, *Vigna unguiculata* (L.) Walp., 1845, *Vigna mungo* (L.) Hepper, 1956, and *Arachis hypogaea* L., 1753, intercropped with *R. communis* in a 1:2 proportion, decreased the incidence of insect pests such as *A. janata*, *E. flavescens*, and *C. punctiferalis*. Moreover, a more considerable presence of natural enemies of these pests was observed in these intercropping systems. Patel and Patel (2009) recommended intercropping *R. communis* with *Vigna radiata* (L.) Wilczek, 1952, *Sesamum indicum* L., 1753, *Vigna aconitifolia* (Jacq.) Marechal, 1969, and *V. unguiculata*, to reduce damage by *C. punctiferalis*. When *R. communis* was monocropped, *C. punctiferalis* caused 53 % damage, but when intercropped with the above-mentioned species, the damage was between 35 and 53 %. Sowing date is another cultural method for reducing damage and the presence of pests. Salihu et al. (2014) suggest that the correct time for planting *R. communis* crop must be related to the rainy season, which is more important than any other pest control measure in Africa, since the rains decrease the presence of certain pests.

Genetic control includes the use of cultivars resistant to insect pests, however, according to Singh et al. (2015), breeding *R. communis* is complicated by limited sources of pest resistance. In India, there are *R. communis* varieties that are tolerant or resistant to attack by pests of greater economic importance, such as *E. flavescens*, *T. ricini*, *S. litura*, *A. janata*, *C. punctiferalis*, and *L. trifolioli* (Anjani et al. 2010; Anjani 2012). Resistant or tolerant plants have high oil content (between 40 and 49 %) and yields that oscillate between 540 and 1,580 kg/ha (Lavanya et al. 2012). It is mentioned that the cultivars having purple leaves are resistant to the attack of *L. trifolioli*, while those with green leaves are

Pest management of phytophagous arthropods in *R. communis*

Research is being carried out on the use of transgenic plants of *R. communis*. In India, two transgenic varieties of *R. communis*, Jyothi and VP1, developed by genetic engineering induce *A. janata* mortality above 88 % due to the *Bacillus thuringiensis* gene CryAb (Malathi et al. 2006).

A little explored method for monitoring and massive trapping of *R. communis* pests has been the use of pheromones, kairomonal attractants and light traps. In India, the pheromone compounds of some pests of economic importance have been identified and used for monitoring and massive trapping of *C. punctiferalis*, *S. litura*, *A. janata*, and *S. obliqua* (Cork and Hall 1998). In this country, an important prerequisite for successful management of *S. litura*, the most destructive insect pest of *R. communis* damaging the crop from July-October during the south-west monsoon (kharif season), has been the implementation of an intensive monitoring program of *S. litura* population using sex pheromone traps (Satyagopal et al. 2014). Setting twelve traps baited with pheromone compounds per hectare for massive trapping of *S. litura* is recommended (Nandagopal and Rathod 2007; Raghavaiah 2011). In Brazil, researchers are now taking the first steps toward identifying the pheromone compounds of *C. gossypiella* (Fregadelli et al. 2012) with the aim of developing a commercial pheromone. In India, the kairomonal compounds of the most destructive lepidopteran insect pest of *R. communis*, *S. litura*, *A. janata*, and *C. punctiferalis* have been identified for trapping. In field experiment, water trap baited with phenyl acetaldehyde + 2-phenyl ethanol recorded significantly higher moth catches of *S. litura* (6.8 moths/trap/wk) and *C. punctiferalis* (5.8 moths/trap/wk) (Duraimurugan et al. 2017). Recently, Duraimurugan and Alivelu (2018), determined the relationship of pheromone trap catches corresponding to the economic threshold level of 25 % defoliation of *S. litura* on *R. communis*, which was estimated to be 81.4 moths/trap/week. Light traps using ultraviolet black-blue spectrum have also been suggested to capture *Phyllophaga* sp. adults as a measure of ethological control (Cardona et al. 2011).

Biological control (spraying entomopathogenic microorganisms and releasing entomophagous insects) has been implemented in the control of key *R. communis* pests in countries such as India and Colombia. In India, for example, parasitism rates between 10.4 and 28.7 % of *M. maculipennis* and *Cotesia* sp. were recorded on larvae of *A. janata* and *S.
In Colombia, Saldarriaga Cardona et al. (2011) recommended application of baits poisoned with carbaryl at a dose of 2 to 3 g/L for the control of *A. ipsilon* and *S. frugiperda*; the same authors recommended application of liquid chlorpyrifos at the base of the plants at a dose of 1.5 - 2.0 cc/L.

The most recommendable strategy of *R. communis* pest control is Integrated Pest Management (IPM). Most of the IPM programs have been directed against key pests of *R. communis*, such as *S. litura*, *C. punctiferalis*, and *A. janata* (Prabhakar et al. 2003; Singh et al. 2006; Basappa 2009). In India, the growers increased seed production of *R. communis* up to 28 %, by implementing IPM programs with insecticides, crop rotation, insect traps, application of neem extract, and intercropping (Basappa 2007). The results of research in India demonstrate that IPM is an efficient strategy for the control of *A. janata* and *S. litura*, two of the key pests of *R. communis*. It is possible to decrease populations of these pests by using the recommended IPM program, which includes the use of bird perches for predatory birds to rest and to look for preys, foliar applications of 5 % neem seed extracts, biological insecticide consisting of nuclear polyhedrosis virus (*S. litura* NPV 100 LE/ha), monocrotophos at 0.5 %, and manual removal of larvae (Suganth 2010). The pest control effectiveness of carbaryl 50W 0.2 %, endosulfan 35 EC 0.05 %, triazophos 40 EC 0.05 %, spinosad 45 SC 0.018 %, fipronil SSC 0.01 %, extract of neem seeds 5 % (weight/volume), *B. thuringiensis* 0.1 %, and a control without applying the dose of 500 L/ha, was evaluated under field conditions 30 and 45 days after establishing a plantation of a *R. communis* variety susceptible to leafminer *L. trilofi*. The results showed that the least damage (lowest number of insect mines) was found when spinosad and triazophos were applied and, at the same time, the best yield was obtained with both treatments (883 and 835 kg seed/ha, respectively) (Akashe et al. 2009). On the other hand, natural enemy impact has been proven to be greatest at sites adopting biointensive IPM (BIPM); par example, studies conducted by Basappa (2009) shown that BIPM modules were safer to *A. janata* eggs (*T. chilonis*) and larvae (*M. maculipennis*) parasitoids with 16.1 and 66.1 % average field parasitism, compared to chemical pesticide intensive integrated pest management modules with 6.9 and 21.2 % parasitism, respectively.

Conclusions

There is a wide range of arthropods that damage *R. communis* in different parts of the world where this plant is cultivated; many of these are considered pests of economic importance. Likewise, they are reports of a great variety of natural enemies, which have been used in biological control programs. According to the coevolutive hypothesis, it was found that the greatest richness and abundance of arthropods associated with *R. communis* is in Asia and Africa, considered as the center of origin of this plant. Most phytophagous arthropods feed on leaves. The natural enemies with more abundance and richness are the parasitoids that mostly attack the larvae of phytophagous arthropods. With respect to pollinators, *A. mellifera* is the principal pollinating insect, however, more research on pollination and floral ecology in *R. communis* is needed, in order to determine what other floral visitors may act as pollinators, and how they can be protected or manipulated to increase crop yield. The pest management...
programs of phytophagous arthropods of *R. communis* must be directed toward promoting and preserving natural enemies and pollinating insects by means of environment-friendly pest management techniques, for which use of wide-spectrum insecticides must be avoided.

Acknowledgements

We are grateful to Fernando E. Vega [Insect Biocontrol Laboratory, US Department of Agriculture, Agricultural Research Service (USDA-ARS), Beltsville, MD] for suggestions leading to improvement the first version of the manuscript.

Literature cited

ABDULLAH, N. M. M.; MARTIN, J. 2007. New record for four additional whitelies species from Yemen. Arab Journal of Plant Protection 25: 33-34.

AGUILERA, P. A. 1987. New localities for *Stethorus histrio Chazeau* (Coleoptera Coccinellidae) in Chile. Revista Chilena de Entomología 15: 33-36.

AHUJA, D. B. 1994. Seasonal incidence and chemical control of *Eutetranychus orientalis* (Klein) on castor. Indian Journal of Entomology 56: 1-5.

AKASHE, V. B.; GUD, M. A.; SHINDE, S. K.; DESHPANDE, A. N. 2009. Bio-elicacy of botanicals and chemical insecticides for control of leaf miner (*Liriomyza trifolii* Burges) under dry land condition. An Asian Journal of Soil Science 4: 315-317.

ALI, M. S.; KUMAR, K.; SINGH, R. 2006. Host range of *Oxyrhachis tarandus* Fabriscus (Homoptera: Membracidae) in woody trees and shrubs of Bihar. Environment and Ecology (Kalyani) 24S: 14-16.

ÁLVAREZ, P. C.; REYES, F. 1987. Himenópteros entomófagos adultos que se alimentan en los nectarios de algunas malezas comunes en Nuevo León, México. The Southwestern Entomologist 12: 205-210.

AMOABENG, B. W.; GURR, G. M.; GITAU, C. W.; STEVENSON, P. C. 2014. Cost: benefit analysis of botanical insecticide use in cabbage: Implications for smallholder farmers in developing countries. Crop Protection 57: 71-76. https://doi.org/10.1016/j.cropro.2013.11.019

ANJANI, K. 2012. Castor genetic resources: A primary gene pool for exploitation. Industrial Crops and Products 35 (1): 14. https://doi.org/10.1016/j.indcrop.2011.06.011

ANJANI, K.; PALLAVI, M.; SUDHAKARA BABU, S. N. 2007. Uniparental inheritance of purple leaf and the associated resistance to leaffminer in castor bean. Plant Breeding 126 (5): 515-520. https://doi.org/10.1111/j.1439-0523.2007.01395.x

ANJANI, K.; PALLAVI, M.; SUDHAKARA BABU, S. N. 2010. Biochemical basis of resistance to leaffminer in castor (*Ricinus communis L*). Industrial Crops and Products 31 (1): 192-196. https://doi.org/10.1016/j.indcrop.2009.10.005

ANJANI, K.; RAOOF, M. A.; LAKSHMI PRASAD, M. S.; DURAIMURUGAN, P.; LUCOSE, V.; YADAV, P.; PRASAD, R. D.; JAWAHAR LAL, J.; SARADA, C. 2018. Trait-specific accesses in global castor (*Ricinus communis L.*) germplasm core set for utilization in castor improvement. Industrial Crops and Products 112: 766-774. https://doi.org/10.1016/j.indcrop.2018.01.002

ANÓNIMO. 1991. Dirección General de Investigación y Extensión Agropecuaria. Ministerio de Agricultura y Ganadería. San José, Costa Rica, 571 p.

ANONYMOUS. 1913. Insects injurious to papaw apples in Queensland. Queensland Agricultural Journal 27: 33-35.

ARKHANGEL’SKII, N. N.; ROMANOV, N. P. 1930. Pests of sunflower and castor in the north Caucasian Region. Bulletin of the North Caucasian Plant Protection Station vi-vii: 199-216.

AUDI, J.; BELSON, M.; PATEL, M.; SCHIER, J.; OSTERLOH, J. 2005. Ricin poisoning. A comprehensive review. Journal of the American Medical Association 294 (18): 2342-2351. https://doi.org/10.1001/jama.294.18.2342

BALDWIN, B. S.; COSSAR, R. D. 2009. Castor yield in response to planting date at four locations in the south-central United States. Industrial Crops and Products 29 (2-3): 316-319. https://doi.org/10.1016/j.indcrop.2008.06.004

BARNES, D. J.; BALDWIN, B. S.; BRAASCH, D. A. 2009. Degradation of ricin in castor seed meal by temperature and chemical treatment. Industrial Crops and Products 29 (2-3): 509-515. https://doi.org/10.1016/j.indcrop.2008.09.006

BARTENEVA, R. V. 1986. Diseases and pests of castor and their control. pp. 101-101. In: Moskvin, V. A. (Ed.). Castor. Oxionix Press Pvt Ltd. New Delhi. 284 p.

BASAPPA, H. 2003. Integrated pest management in Castor. Hyderabad: Directorate of Oilseeds Research (ICAR), India, 52 p.

BASAPPA, H. 2007. Validation of integrated pest management modules for castor (*Ricinus communis*) in Andra Pradesh. The Indian Journal of Agricultural Sciences 77: 357-362.

BASAPPA, H. 2009. Impact of integrated pest management modules on the activity of natural enemies in castor ecosystem. Journal of Biological Control 23: 221-228.

BASAPPA, H.; LINGAPPA, S. 2001. Damage potential of *Achaea funana* Linn at different phenological stages of castor. Indian Journal of Plant Protection 29: 17-24.

BAVARESCO, A.; SILVEIRA, G. A.; DIONEI, G. R.; FORESTI, J.; RINGENBERG, R. C. 2003. Compared biology of *Spodoptera cosmoides* (Walk.) (Lepidoptera: Noctuidae) in onion, castor oil plant, soybean and bean. Ciência Rural, Santa Maria 33 (6): 993-998. https://doi.org/10.1590/S0103-84782003000600001

BIGI, M. F.; TORKOMIAN, V. L. V.; DE GROOTE, S. T. C. S.; HEBLING, M. J. A.; BUENO, O. C.; PAGNOCCA, F. C.; FERNANDES, J. B.; VIEIRA, P. C.; SILVA, M. F. 2004. Activity of *Ricinus communis* (Euphorbiaceae) and ricin from the leaf-cutting ant *Atta sexdens rubropilosa* (Hymenoptera: Formicidae) and the symbiotic fungus *Leucoagaricus gongylophorus*. Pest Management Science 60 (9): 933-938. https://doi.org/10.1002/ps.892

BIRCHLER, J. A.; AUGER, D. L.; RIDDLE, N. C. 2003. In search of the molecular basis of heterosis. The Plant Cell 15: 2236-2239. https://doi.org/10.1105/tpc.151030

BOLAND, J. M. 2016. The impact of an invasive ambrosia beetle on the riparian habitats of the Tijuana River Valley, California. PeerJ 4: e2141. https://doi.org/10.7717/peerj.2141

BOURNE-MURRIETA, R. L.; WONG-CORRAL, F. J.; BORBOA-FLORES, J.; CINCO-MOROYOQUI, F. J. 2014. Daños causados por el barrendero mayor de los granos *Prostephanus truncatus* (Horn) (Coleoptera: Bostrichidae) en maíz y ramas de plantas silvestres. Revista Chapingo. Serie ciencias forestales y del ambiente 20 (1): 63-75. https://doi.org/10.5154/r.chsfa.2013.03.008

CABEZAS, G. F.; MELO, M.; GARCÍA, M. S.; DIEZ-RODRÍGUEZ, G. I.; NAVA, D. E. 2013. Parasitismo de *Trichogramma pretiosum* (Hymenoptera: Trichogrammatidae) sobre *Spodoptera cosmoides* (Lepidoptera: Noctuidae) a diferentes temperaturas. Revista Colombiana de Entomología 39: 216-220.

CANGARDEL, H. 1954. Experiments on the control of the castor bean red spider. Essais de lutte contre l’araignée rouge du ricin. Terre Mame 28: 53-55.

CAVALCANTE, R. D.; PEDROSA, F. N. T.; DE ARAUJO, F. E. 1974. *Pantomorus glaucus* (Perty, 1830), a pest of various crops in the State of Ceará. Fitossanidade 1: 22.

CÉSAR, A. da S.; BATALHA, M. O. 2010. Biodiesel production from castor oil in Brazil: A difficult reality. Energy Policy 38 (8): 4031-4039. https://doi.org/10.1016/j.enpol.2010.03.027
biochemical characterization and efficiency of geminivirus transmission. Journal of Applied Entomology 121 (1-5): 501-509. https://doi.org/10.1111/j.1439-0418.1997.tb01440.x

ISLAM, W.; NARGIS, A.; JOARDER, O. I. 1998. Biology, seasonal occurrence, host range and damage potential of the castor hairy caterpillar, Europicris lunata Walk. (Lymenitiadae: Lepidoptera). Crop Protection 7 (5): 332-335. https://doi.org/10.1016/0261-2194(88)90081-6

JACOB, P. S.; RAMASUBBARAO, V.; PUNNAIAH, K. C. 2000. Leafhopper fauna associated with oilseed crops in Andhra Pradesh, India. Pest Management and Economic Zoology 8: 11-27.

JANNONE, G. 1952. Studies and researches on agricultural entomology in Eritrea and Ethiopia. VIII. The phytopathological condition of crops on a farm in the Fadis territory (Harar, Ethiopia) with particular reference to an infestation of Aphids on safflower. Rivista di Agricultura Subtropicale e Tropicale 46: 132-137.

JAYARAJ, S. 1964. Influence of a phytotoxemia on the activities of catalase and free auxins of castor bean varieties in relation to their resistance to Empoasca flavescens (F.) (Homoptera, Jassidae). Zeitschrift für Angewandte Entomologie 63 (1-4): 32-39. https://doi.org/10.1111/j.1439-0418.1969.tb04360.x

JENA, J.; GUPTA, A. K. 2012. Ricinus communis Linn: A phytopharmacological review. International Journal of Pharmacy and Pharmaceutical Sciences 4: 25-29.

JOSEPH, B.; SUJATHA, S.; JEEVITHA, M. V. 2010. Screening of pesticidal activities of some marine sponge extracts against chosen pests. Journal of Biopesticides 3: 495-498.

JUNIOR, E. M. de A.; FERNANDES, I. M. dos S.; SANTOS, C. S.; LIMA, R. L.; JUNIO, G. M.; LANJAR, A. G.; RAHOO, G. M.; MAHAR, A. N. 1997. Seasonal population and host plants of Spodoptera litura (F.) in lower Sindh. Pakistan Entomologist 19: 53-57.

LAMHA, A. D.; YANG, Y. M.; CHAN, Y. H.; CHAN, W. W. 2006. A comparison of the properties of penicillinase produced by Bacillus thuringiensis with and without addition Bacillus cereus. Journal of General Microbiology 11 (3): 493-505.

LAMHA, A. D.; YANG, Y. M.; CHAN, Y. H.; CHAN, W. W. 2006. A comparison of the properties of penicillinase produced by Bacillus thuringiensis with and without addition Bacillus cereus. Journal of General Microbiology 11 (3): 493-505.

MANSFIELD, R. A.; MILLS, L. M.; MORGAN, J. C. 1995. Fractional purification and characterization of the phytotoxic compound from Ricinus communis L. Journal of Agricultural and Food Chemistry 43: 620-623.

MARTÍNEZ, M. A.; BLANCO, E.; SURÍS, M. 2005. Fauna de interés: I. plantas arbóreas. Revista de Protección Vegetal 20: 33-38.

MARTÍN, C.; MOURE, A.; MARTÍN, G.; CARRILLO, E.; DOMÍNGUEZ, H.; PARAJÓ, J. C. 2010. Fractional purification and characterization of the phytotoxic compound from Ricinus communis L. Journal of Agricultural and Food Chemistry 43: 620-623.
Pericallia ricini Fabricius (Lepidoptera: Arctiidae). Journal of Entomological Research (New Delhi) 18: 95-104.

MAU, R. F. L.; KESSING, J. L. M. 2007. *Achaea janata* (Linnaeus). Available in: http://Achaea janata.mht [Review date: 05 October 2015].

McGREGOR, E. A. 1914. Four new tetranychids. Annals of the Entomological Society of America 7 (4): 354-364. https://doi.org/10.1093/esa/7.4.354

McQUATE, G. T.; JAMESON, M. L. 2011. Control of Chinese rose beetle through the use of solar-powered nighttime illumination. Entomologia Experimentalis et Applicata 141 (3): 187-96. https://doi.org/10.1111/j.1570-7489.2011.01186.x

MEAD, F. W. 1989. Cotton lace bug, *Jacobiassa furcolestis* (Ramakrishnan and Menon), on castor. Indian Journal of Entomology 68: 107-112.

MILLER, L. T.; NAGAMINE, W. T. 2005. First records of *Corythucha gossypii* (Hemiptera: Tingidae) in Hawaii, including notes on host plants. Proceedings of the Hawaiian Entomological Society 37: 85-88.

MOLL, R. H.; SALHUANA, W. S.; ROBINSON, H. F. 1962. Heterosis and genetic diversity in variety crosses of maize. Crop Science 2 (3): 197-198. https://doi.org/10.2135/cropsci1962.001183X00020030005x

MONTEIRO, A. H. R. R.; GOMES, S.; GOMES, I.; QUEIROZ, P. R.; LIMA, L. H. C.; OLIVEIRA, M. R. V. 2005. Current status of the whitefly *Aulacorthum dispersus* as an invasive pest in the Cape Verde Islands. pp. 261-262. In: Alford, D. V.; Backhaus, G. F. (Eds.). Plant protection and plant health in Europe: Introduction and spread of invasive species, held at Humboldt University, Berlin, Germany, 9-11 June 2005, 441 p.

MONA, H. A.; MOHAMED, H. A.; HAFEZ, S. F. M. 2005. Biological and physiological effects of bioinsecticide Spinosad on the cutworm, *Agrostis ipsilon* (Hüfner). Egyptian Journal of Biological Pest Control 15: 139-145.

NASS, L. L.; PEREIRA, P. A. A.; ELLIS, D. 2007. Biofuels in Brazil: An overview. Crop Science 47 (6): 2228-2237. https://doi.org/10.2135/cropsci2007.03.0166

NEELANARAYANAN, P.; INDIRA, P. 2010. Effect of *Calotropis gigantean* leaves extract on the feeding activities of pest of castor woolly bear, *Pericallia ricini*. Insect Environment 28: 558-563.

PARKMAN, P.; DUSKY, J. A.; WADDILL, V. H. 1989. Biological Studies of *Liriomyza sativae* (Diptera, Agromyzidae) on castor bean. Environmental Entomology 18 (5): 768-772. https://doi.org/10.1093/ee/18.5.768

PAVINI, R. D.; VYAS, H. J.; RATHOD, R. R. 2006. Bionomics of leaf hopper, *Jacobiassa furcolestis* (Ramakrishnan and Menon), on castor. Indian Journal of Entomology 68: 107-112.

PATEL, B. S.; PATEL, I. S. 2009. Management of shoot and capsule borer, *Conogathes punctiferalis* L. in castor by intercropping. Trends in Biosciences 2 (2): 66-67.

PARMAR, P. D.; VYAS, H. J.; SINGH, N. B. (Eds.). Castor in India. Directorate of Oilseeds Research, Rajendranagar, Hyderabad, India. 118 p.

ROZSAH, A. A.; BADR, M. A.; HUSSEIN, H. R.; AL-GAMAL, M. M. 1986. Identification of *Sathruthbra rileyi* (Wals.) (Lep.-Cosmopterigidae as a new record in Egypt). Agricultural Research Review 61: 273-283.

RIZZARDO, R. A. G.; MILFONT, M. O.; SILVA, E. M. S.; FREITAS, B. M. 2012. *Apsis mellifera* pollination improves agronomic productivity of anemophilous castor bean (*Ricinus communis*). Anais da Academia Brasileira de Ciências 84 (4): 1137-1145. https://doi.org/10.1590/S0001-37652012005000057

ROSSI, G. D.; SANTOS, C. D.; CARVALHO, G. A.; ALVES, D. S.; PEREIRA, L. L. S.; CARVALHO, G. A. 2012. Biochemical analysis of a castor bean leaf extract and its insecticidal effects
USHA RANI, P.; PRATYUSHA, S. 2014. Role of castor plant phenolics on performance of its two herbivores and their impact on egg parasitoid behaviour. BioControl 59: 513-524. https://doi.org/10.1007/s10526-014-9590-y

USHA RANI, P.; RAJASEKHARreddy, P. 2009. Toxic and antifeedant activities of Sterculia foetida (L.) seed crude extract against Spodoptera litura (F.) and Achaea janata (L.). Journal of Biopesticides 2: 161-164.

USHA RANI, P.; SUDHEER, S. D.; PADMINI, G.; LAVANYA, C. 2006. Nutrient-allelochemical interactions of castor, Ricinus communis (L.) plants, resistant and susceptible to infestation of green leaf hopper, Empoasca flavescens (Fabr.). Journal of Applied Zoological Researches 17: 1-8.

VANDENBORRE, G.; SMAGGHE, G; VAN DAMME, E. J. M. 2011. Plant lectins as defense proteins against phytophagous insects. Phytochemistry 72 (13): 1538-1550. https://doi.org/10.1016/j.phytochem.2011.02.024

VARÓN, E. H.; MOREIRA, M. D.; CORREDOR, J. P. 2010. Efecto de Corythucha gossypii sobre las hojas de higuera: criterios para su muestreo y control con insecticidas. Corpoica Ciencia y Tecnología Agropecuaria 11 (1): 41-47. https://doi.org/10.21930/reta.vol11_num1_art:193

VIMALA DEVI, P. S. V.; SUDHAKAR, R. 2006. Effectiveness of a local strain of Bacillus thuringiensis in the management of castor semilooper, Achaea janata on castor (Ricinus communis). Indian Journal of Agricultural Sciences 76: 447-449.

WÄCKERS, F. L.; ZUBER, D.; WUNDERLIN, R.; KELLER, F. 2001. The Effect of herbivory on temporal and spatial dynamics of foliar nectar production in cotton and castor. Annals of Botany 87 (3): 365-370. https://doi.org/10.1006/anbo.2000.1342.

WANG, X. S.; CHEN, Q. Z.; ZHANG, S. Z.; LIU, T. X. 2016. Parasitism, host feeding and immature development of Encarsia formosa reared from Trialeurodes vaporariorum and Bemisia tabaci on Trialeurodes ricini. Journal of Applied Entomology 140 (5): 346-352. https://doi.org/10.1111/jen.12271

WATERS, T.; CHIRIKIAN, D.; CARMONA-GALINDO, V. D. 2014. Insect visitation of peduncular and petiolar extrafloral nectar glands on castor bean (Ricinus communis L.) plants in southern California. Journal of Evolutionary Biology Research 6 (2): 5-8. https://doi.org/10.5897/JEBR2014.0058

YADAV, R.; YADAV, N.; YADAV, R.; KATIYAR, R. R. 2010. Natural parasitization by certain parasitoids on the pests of field crops. International Journal of Plant Protection 3: 408-409.

YASUR, J.; MATHUR, K.; RANI, P. 2009. Effects of herbivore feeding on biochemical and nutrient profile of castor bean, Ricinus communis L. plants. Allelopathy Journal 24: 131-142.

YLLA, J.; MACIÀ, R.; HUERTAS DIONISIO, M. 2008. Piráldidos y Crámbidos detectados en Almería, España (Lepidoptera: Pyraloidea). SHILAP Revista de Lepidopterología 36: 191-204.

YOUNIS, A. M. 1992. Effect of constant temperatures on development and survival of the immature stages of the black cutworm Agrotis ipsilon (Hübner) Lepidoptera: Noctuidae. Assiut Journal of Agricultural Sciences 23: 291-301.

ZHANG, H. J.; DUAN, G. Q.; ZHANG, Z. B.; LIANG, Z. J.; ZHIANG, D. M.; XI, Q.; WANG, X. M.; XI, A. L.; LIU, Z. 2006. Effect of leaf mining by Liriomyza sativa larvae Photosynthesis of some crops. Acta Entomologica Sinica 40: 100-105.

Origin and funding

This work was part of a project on pests of Ricinus communis in Mexico and was supported by Secretaría de Agricultura, Ganadería, Desarrollo Rural, Pesca y Alimentación (SAGARPA, Mexico).

Author contribution

Guillermo López-Guillén, Jaime Gómez Ruiz and Juan F. Barrera defined the content of the study, conducted the literature review and wrote the manuscript. All authors read and approved the final manuscript.