Real-time Monitoring of Fluidized Bed Agglomerating based on Improved Adaboost Algorithm

Junqiu Pang and Zhong Zhao

1 College of Information Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, China.

* corresponding author: zhaozhong@mail.buct.edu.cn

Abstract: In order to detect the polymer agglomeration in fluidized bed reactor (FBR), a method of real-time monitoring of agglomeration in fluidized bed polyolefin reactor based on voiceprint feature recognition is developed. First, the acoustic emission detection technology is applied to collect the acoustic signal generated by the polymer collision on the inner wall of FBR. Then, the voiceprint features of the collected acoustic signal are extracted with the Mel Frequency Cepstrum Coefficients (MFCC) and the Linear Prediction Cepstrum Coefficients (LPCC). To classify the extracted voiceprint features, an improved Adaboost algorithm is proposed to establish the real-time agglomeration classification model. Due to the introduction of cost factor and Gini index decision-making calculation to the Adaboost algorithm, the proposed improved Adaboost algorithm can classify unbalanced small samples with better accuracy and F-score index compared with the traditional Adaboost algorithm. The experiment results in a fluidized bed pilot plant have verified the effectiveness and feasibility of the proposed method.

1. Introduction

Currently, the repaid development of artificial intelligence technology provides more efficient and more accurate method for fault diagnosis. [1-5] Nowadays, the main methods of machine learning include support vector machines[6-11] (SVM) and artificial neural networks[12-15] (ANN). For example, a support vector algorithm modified by genetic algorithm was applied in the fault diagnosis of fan blade icing and exhibited good results[16]. However, the traditional support vector machines is one of the weak classifiers for supervised learning, which is generally used for learning high-dimensional data. More importantly, the support vector machines shows inferiority in the classification of multi-class data sets[17] and poorer generalization ability. Besides, an algorithm based on the extreme learning was proposed and applied in fault diagnosis for power plant, on the other hand, synthetic minority oversampling technique (SMOTE) was used to processing the imbalanced data. Nevertheless, traditional algorithms suffer various disadvantage, including small amount of sample information, fixed data distribution and overfitting, and are not suitable for imbalanced data in the real industrial conditions.

With the rapid development of speech recognition technology, speaker recognition based on voiceprint feature extraction has made great progress. The speaker can be recognized by extracting the individual voiceprint features from different speaker's speech signals. By analyzing the acoustic emission signals in FBRs, different size particles collision can produce acoustic emission signals of different frequencies. The acoustic emission signals in FBRs are relatively stationary in the normal
production. In analogy with speech signals, the voiceprint feature recognition technology could be applied to analyze the acoustic emission signals in FBRs.

Owing to the great advantages, such as high precision, the Adaboost algorithm, which combines the weak classifiers using the addition model, has been widely used in pattern recognition. However, such algorithm shows low accuracy when dealing with imbalanced data, which deserves further research. In actual industrial production, the number of samples in fault state is far less than the number of samples in normal state, and the cost of wrong judgment of fault state is far greater than that of wrong judgment of normal state. In this work, we propose a modified Adaboost algorithm with cost factor and Gini index, which changes the basic decision rule of Adaboost algorithm. Combining the features of MFCC and LPCC increases the difference of the data, thereby increasing the separability. The original Adaboost algorithm and the modified Adaboost algorithm were both employed to monitor the agglomeration state of the polyethylene in fluidized bed. The results reveal that the modified Adaboost algorithm shows higher accuracy and superior efficiency. This work might provide a new strategy for learning algorithms.

2. Experimental section

2.1 Experimental device

![Experimental device](image)

Figure 1. Schematic illustration of experimental device.

As illustrated in Figure 1, the experimental device is consist of fluidized bed, AE sensor, signal shielded line, data acquisition module and computer. The fluidized bed is a simplified simulation device of the industrial fluidized bed, which is designed by Beijing Research Institute of Chemical Industry and can simulate the hydrodynamic behaviour of the polyethylene in the industrial production process.

2.2 Acoustic vibration signals

In this work, PE particles with three different size (1, 2 and 5 mm) were investigated. Under the similar condition (air velocity and bed weight) of industrial production process, the time-domain acoustic vibration signals of PE particles in the fluidized bed were collected using the acoustic emission technology and displayed in Figure 2.

![Acoustic vibration signals](image)

Figure 2. The time-domain acoustic vibration signals of various PE particles.
2.3 The extraction of LPCC

In the Cepstrum domain, Linear Prediction Cepstrum Coefficient (LPCC) is the expression of Linear Prediction Cepstrum Coefficient (LPC) [18-20]. Figure 3 shows the extraction process of LPCC feature.

Figure 3. Schematic illustration of the extraction process of LPCC [20].

The LPCC is a cepstrum coefficient that derived from the linear prediction model and the corresponding LPC coefficient, which can be directly determined according to formula (1).

\[
\begin{align*}
\hat{h}(1) &= a_1 \\
\hat{h}(n) &= a_n + \sum_{i=1}^{\lfloor n/2 \rfloor} \left(1 - \frac{1}{n} \right) a_i \hat{h}(n-i) & 1 < n \leq p \\
\hat{h}(n) &= \sum_{i=1}^{p} \left(1 - \frac{1}{n} \right) a_i \hat{h}(n-i) & n > p
\end{align*}
\]

where, \(a_i\) is the LPC coefficient, \(\hat{h}(n)\) is the LPCC coefficient. According to the previous work, \([19]\) \(a_j\) can be obtained by using auto-correlation method and co-correlation method. In this work, 200 samples of each size (1, 2 and 5 mm) were investigated. Figure 4 displays the extracted LPCC features of the acoustic vibration signals, as it shown, the LPCC features at 1-200 frames, 200-400 frames and 400-600 frames are corresponding to the three different PE particles. Notably, there LPCC features are extracted in 8 different dimensions.

Figure 4. The LPCC features of various acoustic vibration signals.

2.4 The extraction of MFCC

Figure 5 illustrates the extraction process of the MFCC features. As it shown, the energy spectrum \(E(k)\) can be determined according to the formula (2-3).

\[
X(k) = FFT[x(m)]
\]
\[
E(k) = [X(k)]^2
\]
where, \(x(m) \) is the time series of a single frame signal, \(X(k) \) is the frequency spectrum of the corresponding single frame signal. By calculating the energy passing through the Mel triangle filter [32] and performing discrete cosine transform (DCT) on the as-processed signal, the MFCC features can be determined according to the discrete cosine transform (formula 4), which are shown in Figure 6.

\[
\text{MFCC}(i,l) = \sqrt{\frac{2}{M} \sum_{m=0}^{M-1} \log[S(i,m)] \cos \left(\frac{\pi l(2m+1)}{2M} \right)}
\]

(4)

where, \(S(i,m) \) is the energy of the Mel filter.

Figure 6. The MFCC features of various acoustic vibration signals.

According to the Figure 4 and 6 as well as the discussions of the LPCC and MFCC features, we can find that these features are stable and separable. In each dimension, the characteristic values of the different classes of polyethylene voice print fluctuate around a certain value, which would provide possibility for voiceprint recognition in this experiment.

2.5 Adaboost algorithm and modified Adaboost algorithm

Adaboost algorithm is a representative boosting algorithm, which can realize the formation of a strong classifier by continuously modifying the weight of training samples. Typically, by increasing the weight of misclassified samples and decreasing the weight of well-classified samples in the process of each iteration, the misclassified samples can be furthest emphasized, thus, a strong classifier can be obtained after the weighted voting of multiple weak classifiers. The original Adaboost algorithm are listed as followed.

(1) Input.

A training set \(X \) is consist of samples \((x_1,y_1),(x_2,y_2) \ldots (x_n,y_n) \), where \(x \) is the sample feature (\(x \) is the four-dimensional feature value in this experiment), \(y \) is the sample label.

(2) Initialize the weight distribution value of the training data.

\[
D_1 = (\omega_{11}, \ldots, \omega_{1i}, \ldots, \omega_{1N}), \omega_{1i} = \frac{1}{N}
\]

(5)

where, \(D_1 \) is the weight of each sample for the first iteration, \(\omega_{1i} \) is the weight of the first sample for the first iteration, and \(N \) is the sample number.

(3) For M iterations. \(m=1, 2, \ldots, M \), \(m \) is the iterations.

(a) Use the training set with the weight distribution of \(D_m \) to learn and find the basic classifier \(G_m(x) \), the output value of which is \(\{1, -1\} \).

(b) Calculate the classification error rate (\(e_m \)) of \(G_m(x) \). Lower value of \(e_m \) leads to greater role of the basic classifier in the final classifier.
\[
e_m = P(G_m(x_i) \neq y_i) \sum_{i=1}^{N} \omega_{mi} I(G_m(x_i) \neq y_i)
\]
where, the value of \(I(G_m(x_i) \neq y_i) \) can be 0 or 1. If the value if 0, the classification is correct.

(c) Calculate the weight coefficient (\(a_m \)) of \(G_m(x) \).
\[
a_m = \frac{1}{2} \ln \frac{1-e_m}{e_m}
\]
where, the value of \(e_m \) should be less than 0.5 and the value of \(a_m \) increases with the decreasing of \(e_m \).

Currently, the classifier can be indicated as:
\[
f(x) = a_m G_m(x)
\]

(d) Update the sample weight distribution of the training set and use for the \(m+1 \) iteration.
\[
D_{m+1} = (\omega_{m+1,1}, \omega_{m+1,2}, \ldots, \omega_{m+1,1}, \ldots, \omega_{m+1,N})
\]
\[
\omega_{m+1,i} = \frac{\omega_{mi}}{Z_m} \exp \left(-a_m y_i G_m(x_i) \right), i = 1, 2, \ldots, N
\]
\[
Z_m = \sum_{i=1}^{N} \omega_{mi} \exp \left(-a_m y_i G_m(x_i) \right)
\]
where, \(Z_m \) is normalization coefficient.

For two classifications, the output value of the weak classifier \(G_m(x) \) is \{-1, 1\}, and the value of \(y_i \) is \{-1, 1\}, thus, \(y_i G_m(x) > 0 \) and \(y_i G_m(x) < 0 \) present the correct and wrong classification, respectively. Because the value of sample weight is between [0, 1], then, when the classification is correct (wrong), the value of \(\omega \) is small (large). We hope that the training samples with high weight values would get more attention.

(4) Weighted combination of the basic classifiers.
\[
f(x) = \sum_{m=1}^{M} a_m G_m(x)
\]

Thus, the final classifier can be obtained and shown in formula (13).
\[
G_m(x) = \text{sign}(f(x))
\]

However, the samples are always different in the real industrial situations. Especially for polyethylene, the number of normal state polyethylene is much larger than that of micro-agglomeration and serve-agglomeration. Therefore, in order to enhance the application of Adaboost algorithm, the cost factor \(\theta_j \) has been employed to modify the Adaboost algorithm. Typically, the samples are balanced by giving the small sample a higher weight. Considering that the same sample would have various classification results when classified in various classifier, the Gini index is used to optimize the weight updating indicator. In this work, the LP-MFCC voiceprint features are used as the training set, and the Adaboost algorithm is modified by increasing the weight of small samples and considering the Gini index.

The confusion degree of the prediction results (same sample, various classifiers) can be calculated by using Gini index. For the same sample, if the classification result shows a greater difference in various classifier, the Gini index will be larger, indicating that such sample would play a greater role in the whole classification process. The Gini index can be estimated using the formula (14).
\[
\text{GINI} = 1 - \sum_i P_i^2
\]
where, \(P_i \) is the proportion of the classification result in the \(i \) classifier among all the classification results.

Therefore, the modified Adaboost algorithm is shown as follows:

(1) The introduction of cost factor.
The quantity ratio of the three different samples is $m: n: q$ (m, n and q correspond to the normal fluidization state, micro-agglomeration and severe-agglomeration, respectively, and $m>n$, $m>q$), then the cost factor (θ_i) can be estimated using formula (15).

$$\theta_i = \begin{cases} \frac{m}{n} \theta & \text{if } m>n, \\ \frac{m}{q} \theta & \text{if } m>q, \end{cases}$$ (15)

where, the value of θ is customized.

(2) Initialize the sample weights.

$$D_1 = (\omega_{11}, \ldots, \omega_{1i}, \ldots, \omega_{1N}), \omega_{1i} = \frac{\theta_i}{\sum \theta_i}$$ (16)

Thus, the small class samples have greater initial weight and would show greater importance in the classification.

(3) Find the basic classifier $G_m(x)$ by looking for the optimal classifier.

(4) Calculate the classification error rate e_m of $G_m(x)$ using formula (17).

$$e_m = P(G_m(x) \neq y_i) \sum_{i=1}^{N} \omega_{mi} \mathbb{I}(G_m(x) \neq y_i)$$ (17)

(5) Calculate the weight coefficient α_m of $G_m(x)$.

$$\alpha_m = \frac{1}{2} \ln \frac{1-e_m}{e_m}$$ (18)

(6) Calculate the GINI index of each sample.

$$\text{GINI} = 1 - \sum_i P_i^2$$ (19)

(7) Update the sample weight distribution of the training set.

$$\omega_{m+1,i} = \begin{cases} \omega_{mi} e^{-\alpha(k-\theta_i) + \mu \text{GINI}} & \text{if } y_i G_m(x) > 0 \\ \omega_{mi} e^{\alpha \theta_i + \mu \text{GINI}} & \text{if } y_i G_m(x) < 0 \end{cases}$$ (20)

where, k is a constant, $k > \theta_1$, μ is an adjustment parameter.

(8) Weighted combination of the basic classifiers.

$$G_m(x) = \text{sign}(f_{(x)}) = \text{sign}[\sum_{m=1}^{M} \alpha_m G_m(x)]$$ (21)

As can be seen in formula (20), if the classification is correct, the weight of the sample with high θ_i decreases more slowly than the sample with low θ_i, and the sample with a higher Gini index shows a larger weight change. On the other hand, if the classification is incorrect, the weight of the sample with high θ_i shows larger increase, and the sample with a higher Gini index displays a large weight.

3. Results and discussion

According to the principle component analysis (PCA) algorithm, the eight-dimensional LPCC and MFCC features can be changed into a four-dimensional LP-MFCC features. As shown in Figure 7, the LP-MFCC features show the superior stability, better separability and inferior complexity, resulting in prevented over-fitting and improved computational efficiency.
Figure 7. Four-dimensional LP-MFCC features of the acoustic vibration signals.

The LP-MFCC features of the PE with three different states are used as the inputting dataset, of which 80% is training sets and 20% is testing set, and three different PE are classified using original Adaboost algorithm and modified Adaboost algorithm, then, the predicted results of 600 testing sets are exhibited in Figure 8 respectively. As shown in Figure 8, 1.2.3 respectively corresponding to the distribution of the predicted results of PE in three states. there are many errors in the prediction of category 3 in Figure 8a, which category 3 is mispredicted as category 2, while the prediction accuracy in Figure B is significantly higher than that in Figure A, the modified Adaboost algorithm presents higher accuracy of 0.9601, demonstrating its superiority. However, there are some arguments that larger amount of imbalanced data would lead to the higher accuracy, thus, only the accuracy cannot elucidate the advantage of the modified algorithm. To address this issue and obtain an algorithm with great practical significance, the F-score (formula 22) was employed as a model evaluation standard.

![Figure 8](image)

Figure 8. The classification accuracy of the (a) original Adaboost algorithm and (b) the modified Adaboost algorithm.

$$F\text{-score} = \frac{2 \times \text{pre} \times \text{recall}}{\text{pre} + \text{recall}} \quad (22)$$

Table 1-3 display the F-score of the original Adaboost algorithm and the modified Adaboost algorithm.

When the normal fluidization state is positive, and the micro-agglomeration and the severe-agglomeration state are negative, the results are shown in Table 1.

index	Adaboost Algorithm	Modified Adaboost Algorithm

Table 1. F-score when the normal fluidization state is positive.
When the micro-agglomeration state is positive, the normal fluidization and the severe-agglomeration state are negative, the results are shown in Table 2.

index	Adaboost Algorithm	Modified Adaboost Algorithm
pre	0.8666	0.9452
recall	0.9285	0.8625
F-score	0.8964	0.9020

Table 2. F-score when the micro-agglomeration state is positive.

When the severe-agglomeration state is positive, the normal state and the micro-agglomeration state are negative, the results are shown in Table 3.

index	Adaboost Algorithm	Modified Adaboost Algorithm
pre	0.9428	0.9677
recall	0.9428	0.9961
F-score	0.9428	0.9816

Table 3. F-score when severe-agglomeration state is positive.

As shown in Table 1, 2 and 3, the modified Adaboost algorithm present higher F-score in the 3 different state of polyethylene (normal, micro-agglomeration and severe agglomeration), especially for the detection of micro-agglomeration and severe-agglomeration states. Therefore, compared with original Adaboost algorithm, the modified Adaboost algorithm can effectively improve the efficiency of failure prediction.

4. Conclusions
In this work, a modified Adaboost algorithm has been proposed, which significantly improved the monitoring efficiency and accuracy of agglomeration faults in the industrial production process of polyethylene. Typically, the pre-processing process and the combination of LP-MFCC features improved the stability and the separability of the acoustic vibration signals, resulting in excellent classification accuracy and efficiency. Furthermore, the introduction of cost parameter and the Gini index effectively increased the classification accuracy and efficiency of imbalanced data. Such new algorithm shows great perspective in industrial application.

Acknowledgements
This work was supported by Collaborative Innovation Project of Chaoyang District (ZK20170007).

Notes and references
[1] F. A. N. Fernandes and L. M. F, Journal of Applied Polymer Science, 2001, 81, 321-332.
[2] M. L. Mastellone, F. Perugini, M. Ponte and U. Arena, Polymer Degradation and Stability, 2002, 76, 479-487.
[3] O. Vahidi and M. Shahrokhi, Indian Journal of Chemical Technology, 2018, 25, 21-30.
[4] H. L. Zhu, Y. S. Zhang, M. Materazzi, G. Aranda, D. J. L. Brett, P. R. Shearing and G. Manos, Fuel Processing Technology, 2019, 190, 29-37.
[5] K. C. Xie and M. J. Zhao, Energy Sources, 2003, 25, 1073-1081.
[6] Q. Yu, W. Li, H. Zhang and D. Yang. Sustainability, 2020, 12, 6203.
[7] B. Pan, H.F. Duan, S. Meniconi and B. Brunone, *Mechanical Systems and Signal Processing*, 2021, **146**, 107056.

[8] M. M. Dubrovin and V. A. Belyaev, *Instruments and Experimental Techniques*, 2002, **45**, 548-549.

[9] J. Sun, H. Zuo, P. Liu and Z. Wen, *Measurement Science and Technology*, 2013, **24**, 125107.

[10] X. Chen, Y. Zhang and J. Zhang, *J. Chem. Phys.*, 2005, **122**, 184105.

[11] A. Al-Ali, D. Dean, B. Senadji, V. Chandran and G. Naik, *IEEE Access*, 2017, **5**, 15400-15413.

[12] O. C. Ai, M. Hariharan, S. Yaacob and L. S. Chee, *Expert Systems with Applications*, 2012, **39**, 2157-2165.

[13] Q. Li, Y. Yang, T. Lan, H. Zhu, Q. Wei, F. Qiao, X. Liu and H. Yang, *IEEE Access*, 2020, **8**, 48720-48730.

[14] J. Wang, J. Wang and Y. Weng, *Integration-the Vlsi Journal*, 2002, **32**, 111-131.

[15] Q. Meng and Y. Peng, *Physics Letters A*, 2007, **370**, 465-470.

[16] C. Bai and H. Li, *Open Mathematics*, 2018, **16**, 1037-1047.

[17] H. I. Lee, Y. H. In, S. Y. Jeong, J. M. Jeon, J. G. Noh, J. S. So and W. Chang, *Letters in Applied Microbiology*, 2014, **59**, 9-16.