(Generalized) Post Correspondence Problem and semi-Thue systems

François Nicolas*

November 12, 2008

Abstract

Let PCP(k) denote the following restriction of the well-known Post Correspondence Problem [10]: given alphabet Σ of cardinality k and two morphisms $\sigma, \tau : \Sigma^* \rightarrow \{0, 1\}^*$, decide whether there exists $w \in \Sigma^+$ such that $\sigma(w) = \tau(w)$. Let ACCESSIBILITY(k) denote the following restriction of the accessibility problem for semi-Thue systems: given a k-rule semi-Thue system T and two words u and v, decide whether v is derivable from u modulo T. In 1980, Claus showed that if ACCESSIBILITY(k) is undecidable then PCP($k + 4$) is also undecidable [2]. The aim of the paper is to present a clean, detailed proof of the statement.

We proceed in two steps, using the Generalized Post Correspondence Problem [4] as an auxiliary. Let GPCP(k) denote the following restriction of GPCP: given an alphabet Σ of cardinality k, two morphisms $\sigma, \tau : \Sigma^* \rightarrow \{0, 1\}^*$ and four words $s, t, s', t' \in \{0, 1\}^*$, decide whether there exists $w \in \Sigma^*$ such that $s\sigma(w)t = s'\tau(w)t'$. First, we prove that if ACCESSIBILITY(k) is undecidable then GPCP($k + 2$) is also undecidable. Then, we prove that if GPCP(k) is undecidable then PCP($k + 2$) is also undecidable. (The latter result can also be found in [7].)

To date, the sharpest undecidability bounds for both PCP and GPCP have been deduced from Claus’s result: since Matiyasevich and Sénizergues showed that ACCESSIBILITY(3) is undecidable [9], GPCP(5) and PCP(7) are undecidable.

1 Introduction

A word is a finite sequence of letters. The empty word is denoted by ε. For every word w, the length of w is denoted by $|w|$. A set of words is called a language. Word concatenation is denoted multiplicatively. For every language L, L^+ denotes the closure of L under concatenation, and L^* denotes the language $L^+ \cup \{\varepsilon\}$. An alphabet is a finite set of letters. For every alphabet Σ, Σ^+ equals the set of all non-empty words over Σ, and Σ^* equals the set of all words over Σ including the empty word.

*E-mail address: nicolas@cs.helsinki.fi
Let \(x \) and \(y \) be two words. We say that \(x \) is a prefix (resp. suffix) of \(y \) if there exists a word \(z \) such that \(xz = y \) (resp. \(zx = y \)). A prefix (resp. suffix) of \(y \) is called proper if it is distinct from \(y \). We say that \(x \) occurs in \(y \) if there exists a word \(z \) such that \(zx \) is a prefix of \(y \). The number of occurrences of \(x \) in \(y \) is denoted by \(|y|_x \). Let \(|y|_x \) equals the number of words \(z \) such that \(zx \) is a prefix of \(y \).

1.1 The (Generalized) Post Correspondence Problem

Let \(\Sigma \) and \(\Delta \) be alphabets. A function \(\sigma : \Sigma^* \to \Delta^* \) is called a morphism if \(\sigma(xy) = \sigma(x)\sigma(y) \) for every \(x, y \in \Sigma^* \). Note that any morphism maps the empty word to itself.

Moreover, for every function \(\sigma_1 : \Sigma \to \Delta^* \), there exists exactly one morphism \(\sigma : \Sigma^* \to \Delta^* \) such that \(\sigma(a) = \sigma_1(a) \) for every \(a \in \Sigma \). Hence, although the set of all functions from \(\Sigma^* \) to \(\Delta^* \) has the power of the continuum, the restriction of \(\sigma \) to \(\Sigma \) provides a finite encoding of \(\sigma \) for every morphism \(\sigma : \Sigma^* \to \Delta^* \). From now on such encodings are considered canonical.

The well-known Post Correspondence Problem (PCP) \([10]\) can be stated as follows: given an alphabet \(\Sigma \) and two morphisms \(\sigma, \tau : \Sigma^* \to \{0,1\}^* \), decide whether there exists \(w \in \Sigma^+ \) such that \(\sigma(w) = \tau(w) \). For each integer \(k \geq 1 \), PCP(\(k \)) denotes the restriction of PCP to instances \((\Sigma, \sigma, \tau)\) such that \(\Sigma \) has cardinality \(k \).

The Generalized Post Correspondence Problem (GPCP) \([4]\) is: given an alphabet \(\Sigma \), two morphisms \(\sigma, \tau : \Sigma^* \to \{0,1\}^* \) and four words \(s, t, s', t' \in \{0,1\}^* \), decide whether there exists \(w \in \Sigma^* \) such that \(s\sigma(w)t = s'\tau(w)t' \). Note that if \(st = s't' \) then \(\varepsilon \) is a feasible solution of GPCP on \((\Sigma, \sigma, \tau, s, t, s', t')\), while all feasible solutions of PCP are non-empty words.

Remark 1. For every instance \((\Sigma, \sigma, \tau)\) of PCP, \((\Sigma, \sigma, \tau)\) is a yes-instance of PCP if and only if there exists \(a \in \Sigma \) such that \((\Sigma, \sigma, \tau, \sigma(a), \varepsilon, \tau(a), \varepsilon)\) is a yes-instances GPCP.

For each integer \(k \geq 1 \), GPCP(\(k \)) denotes the restriction of GPCP to instances \((\Sigma, \sigma, \tau, s, t, s', t')\) such that \(\Sigma \) has cardinality \(k \).

1.2 Semi-Thue systems

Formally, a semi-Thue system is a pair \(T = (\Sigma, R) \), where \(\Sigma \) is an alphabet and where \(R \) is a subset of \(\Sigma^* \times \Sigma^* \). The elements of \(R \) are called the rules of \(T \). For every \(x, y \in \Sigma^* \), we say that \(y \) is immediately derivable from \(x \) modulo \(T \), and we write \(x \overset{T}{\rightarrow} y \), if there exist \(s, t, z, z' \in \Sigma^* \) such that \(x = zs; t, y = zt; t' \in R \). For every \(u, v \in \Sigma^* \), we say that \(u \) is derivable from \(v \) modulo \(T \), and we write \(u \overset{T}{\rightarrow} v \), if there exist an integer \(n \geq 0 \) and \(x_0, x_1, \ldots, x_n \in \Sigma^* \) such that \(x_0 = u, x_n = v \), and \(x_i \overset{T}{\rightarrow} x_{i+1} \) for every \(i \in [1, n] \) :

\[
\begin{align*}
 u &= x_0 \quad \overset{T}{\rightarrow} \quad x_1 \quad \overset{T}{\rightarrow} \quad x_2 \quad \overset{T}{\rightarrow} \cdots \quad \overset{T}{\rightarrow} \quad x_n = v .
\end{align*}
\]

In other words, \(\overset{T}{\rightarrow} \) is the reflexive-transitive closure of the binary relation \(\overset{T}{\rightarrow} \). Define the ACCESSIBILITY problem as: given a semi-Thue system \(T \) and two words \(u \) and \(v \) over
the alphabet of T, decide whether $u \overset{\star}{\longrightarrow}_T v$. For every integer $k \geq 1$, define \textsc{Accessibility}(k) as the restriction of \textsc{Accessibility} to instances (T, u, v) such that T has k rules.

1.3 Decidability

Let k be a positive integer. The decidabilities of \textsc{Accessibility}, PCP and GPCP are linked by the following four facts.

Fact 1. If GPCP(k) is decidable then PCP(k) is decidable.

Fact 2. If GPCP$(k + 2)$ is decidable then \textsc{Accessibility}(k) is decidable.

Fact 3. If PCP$(k + 2)$ is decidable then GPCP(k) is decidable.

Fact 4 (Claus’s theorem). If PCP$(k + 4)$ is decidable then \textsc{Accessibility}(k) is decidable.

Fact 1 follows from Remark 1, Fact 3 is [7, Theorem 3.2], and Fact 4 was originally stated by Claus [2, Theorem 2] (see also [6, 8, 7]). To our knowledge, Fact 2 is explicitly stated for the first time in the present paper.

Remark 2. The conjunction of Facts 2 and 3 yields Fact 4.

Since Matiyasevich and Sémizergues have shown that \textsc{Accessibility}(3) is undecidable [9, Theorem 4.1], it follows from Fact 4 that PCP(7) is undecidable [9, Corollary 1]. In the same way Fact 2 yields that GPCP(5) is undecidable (see also [6, Theorem 7]). Those results are the sharpest to date. Indeed, the decidability of each of the following eight problems is still open:

- \textsc{Accessibility}(1), \textsc{Accessibility}(2),
- GPCP(3), GPCP(4),
- PCP(3), PCP(4), PCP(5) and PCP(6).

However, Ehrenfeucht and Rozenberg showed that PCP(2) and GPCP(2) are decidable [4] (see also [3, 5]).

1.4 Organization of the paper

The aim of the paper is to present a clean, detailed proof of Fact 4. We start in Section 2 with some technicalities concerning \textsc{Accessibility}. Then, Fact 2 is proved in Section 3 and Fact 3 is proved in Section 4.
2 More on the decidability of Accessibility

Definition 1. The language \{010^n101 : n \geq 2\} is denoted by \(C\). For each integer \(k \geq 1\), define \(C_k\) as the set of all instances \((T, u, v)\) of Accessibility such that \(u, v \in C^*\) and \(T = ((\{0, 1\}, R)\) for some \(k\)-element subset \(R \subseteq C^+ \times C^+\).

The essential properties of the gadget language \(C\) are: \(C\) is an infinite, binary, comma-free code (see Definitions 5 and 6 below), and no word in \(C\) overlaps the delimiter word 0011.

The aim of this section is to show:

Proposition 1. For every integer \(k \geq 1\), the general Accessibility\((k)\) problem is decidable if and only if its restriction to \(C_k\) is decidable.

The idea to prove Proposition 1 is to construct a many-one reduction based on the following gadget transformation:

Definition 2. Let \(T = (\Sigma, R)\) be a semi-Thue system, let \(\Delta\) be an alphabet, and let \(\alpha : \Sigma^* \rightarrow \Delta^*\). Define the image of \(T\) under \(\alpha\), denoted \(\alpha(T)\), as the semi-Thue system over \(\Delta\) with rule set \(\{(\alpha(s), \alpha(t)) : (s, t) \in R\}\).

The next two lemmas are straightforward.

Lemma 1. Let \(\Sigma\) and \(\hat{\Sigma}\) be alphabets, let \(T\) be a semi-Thue system over \(\Sigma\), let \(\hat{T}\) be a semi-Thue system over \(\hat{\Sigma}\), and let \(\alpha : \Sigma^* \rightarrow \hat{\Sigma}^*\) be such that for every \(x, y \in \Sigma^*\), \(x \xrightarrow{T} y\) implies \(\alpha(x) \xrightarrow{\hat{T}} \alpha(y)\). For every \(u, v \in \Sigma^*\), \(u \xrightarrow{\alpha(T)} v\) implies \(\alpha(u) \xrightarrow{\hat{\alpha}(T)} \alpha(v)\).

Proof. Assume that \(u \xrightarrow{T} v\): there exist an integer \(n \geq 0\) and \(n + 1\) words \(x_0, x_1, \ldots, x_n\) over \(\Sigma\) such that Equation (1) holds. It follows

\[\alpha(u) = \alpha(x_0) \xrightarrow{T} \alpha(x_1) \xrightarrow{T} \alpha(x_2) \xrightarrow{T} \cdots \xrightarrow{T} \alpha(x_n) = \alpha(v),\]

and thus \(\alpha(u) \xrightarrow{\hat{T}} \alpha(v)\). \qed

Lemma 2. In the notation of Definition 2, if \(\alpha\) is a morphism then for every \(u, v \in \Sigma^*\), \(u \xrightarrow{T} v\) implies \(\alpha(u) \xrightarrow{\alpha(T)} \alpha(v)\).

Proof. We apply Lemma 1 with \(\hat{T} := \alpha(T)\). Let \(x, y \in \Sigma^*\) be such that \(x \xrightarrow{T} y\): there exist \(s, t, z, z' \in \Sigma^*\) such that \(x = zsz', y = ztz'\) and \((s, t) \in R\). Since \(\alpha\) is a morphism, \(\alpha(x)\) and \(\alpha(y)\) can be parsed as follows: \(\alpha(x) = \alpha(z)\alpha(s)\alpha(z')\), \(\alpha(y) = \alpha(z)\alpha(t)\alpha(z')\) and \((\alpha(s), \alpha(t))\) is a rule of \(\alpha(T)\). Hence, we get that \(\alpha(x) \xrightarrow{\alpha(T)} \alpha(y)\). \qed

Definition 3. Let \((s, t)\) be a rule of some semi-Thue system: \((s, t)\) is a pair of words. We say that \((s, t)\) is an insertion rule if \(s = \varepsilon\). We say that \((s, t)\) is a deletion rule if \(t = \varepsilon\). A semi-Thue system is called \(\varepsilon\)-free if it has neither insertion nor deletion rule. By extension, an instance \((T, u, v)\) of Accessibility is called \(\varepsilon\)-free if the semi-Thue system \(T\) is \(\varepsilon\)-free.
Note that every instance of ACCESSIBILITY\((k)\) that belongs to \(C_k\) is \(\varepsilon\)-free. The next two gadget morphisms play crucial roles in the proofs of both Lemma 3 and Theorem 2 below.

Definition 4. Let \(\Sigma\) be an alphabet and let \(d\) be a letter. Define \(\lambda_d\) and \(\rho_d\) as the morphisms from \(\Sigma^*\) to \((\Sigma \cup \{d\})^*\) given by: \(\lambda_d(a) := da\) and \(\rho_d(a) := ad\) for every \(a \in \Sigma\).

For instance, \(\lambda_d(01101)\) and \(\rho_d(01101)\) equal \(d0d1d0d1\) and \(0d1d0d1d\), respectively.

Lemma 3. For every integer \(k \geq 1\), ACCESSIBILITY\((k)\) is decidable if and only if the problem is decidable on \(\varepsilon\)-free instances.

Proof. We present a many-one reduction from ACCESSIBILITY\((k)\) in its general form to ACCESSIBILITY\((k)\) on \(\varepsilon\)-free instances.

Let \((T, u, v)\) be an instance of ACCESSIBILITY\((k)\). Let \(\Sigma\) denote the alphabet \(T\), let \(d\) be a symbol such that \(d \notin \Sigma\), and let \(\mu : \Sigma^* \to (\Sigma \cup \{d\})^*\) be defined by: \(\mu(w) := \lambda_d(w)d = d\rho_d(w)\) for every \(w \in \Sigma^*\). Clearly, \((\mu(T), \mu(u), \mu(v))\) is an \(\varepsilon\)-free instance of ACCESSIBILITY\((k)\), and \((\mu(T), \mu(u), \mu(v))\) is computable from \((T, u, v)\).

It remains to check the correctness statement: \(u \xrightarrow{\mu(T)} v\) if and only if \(\mu(u) \xrightarrow{\mu(T)} \mu(v)\).

(only if). Let \(x, y \in \Sigma^*\) be such that \(x \xrightarrow{T} y\): there exist \(s, t, z, z' \in \Sigma^*\) such that \(x = zz'\), \(y = ztz'\) and \((s, t)\) is a rule of \(T\). Clearly, \(\mu(x)\) and \(\mu(y)\) can be parsed as follows: \(\mu(x) = \lambda_d(z)\mu(s)\rho_d(z')\), \(\mu(y) = \lambda_d(z)\mu(t)\rho_d(z')\) and \((\mu(s), \mu(t))\) is a rule of \(\mu(T)\). Hence, we get that \(\mu(x) \xrightarrow{\mu(T)} \mu(y)\). It now follows from Lemma 1 (applied with \(\alpha := \mu\) and \(\hat{T} := \mu(T)\)) that \(u \xrightarrow{\mu(T)} v\) implies \(\mu(u) \xrightarrow{\mu(T)} \mu(v)\).

(if). Let \(\hat{\mu} : (\Sigma \cup \{d\})^* \to \Sigma^*\) denote the morphism defined by: \(\hat{\mu}(a) := a\) for every \(a \in \Sigma\) and \(\hat{\mu}(d) := \varepsilon\). It is clear that \(\hat{\mu}(\mu(w)) = w\) for every \(w \in \Sigma^*\), and thus \(T = \hat{\mu}(\mu(T))\).

Hence, for every \(\hat{u}, \hat{v} \in (\Sigma \cup \{d\})^*\), \(\hat{u} \xrightarrow{\mu(T)} \hat{v}\) implies \(\hat{\mu}(\hat{u}) \xrightarrow{\hat{T}} \hat{\mu}(\hat{v})\) by Lemma 2 (applied with \(\alpha := \hat{\mu}\) and \(T := \mu(T)\)). In particular, \(\mu(u) \xrightarrow{\mu(T)} \mu(v)\) implies \(u \xrightarrow{\hat{T}} \hat{\mu}(\mu(v)) = v\).

\[\square\]

Given an alphabet \(\Sigma\), a semi-Thue system \(T\) over \(\Sigma\), and a subset \(L \subseteq \Sigma^*\), we say that \(L\) is **closed under derivation modulo** \(T\) if for every \(x \in L\) and every \(y \in \Sigma^*\), \(x \xrightarrow{T} y\) implies \(y \in L\). The next lemma is an ad hoc counterpart of Lemma 1.

Lemma 4. Let \(\Sigma\) and \(\hat{\Sigma}\) be alphabets, let \(T\) be a semi-Thue system over \(\Sigma\), let \(\hat{T}\) be a semi-Thue system over \(\hat{\Sigma}\), and let \(\alpha : \Sigma^* \to \hat{\Sigma}^*\) be such that:

1. the range of \(\alpha\) is closed under derivation modulo \(\hat{T}\), and
2. for every \(x, y \in \Sigma^*\), \(\alpha(x) \xrightarrow{T} \alpha(y)\) implies \(x \xrightarrow{T} y\).

For every \(u, v \in \Sigma^*\), \(\alpha(u) \xrightarrow{T} \alpha(v)\) implies \(u \xrightarrow{T} v\).
Proof. Assume that \(\alpha(u) \rightarrow^*_{\tilde{T}} \alpha(v) \): there exist an integer \(n \geq 0 \) and \(n + 1 \) words \(\hat{x}_0, \hat{x}_1, \ldots, \hat{x}_n \) over \(\hat{\Sigma} \) such that
\[
\alpha(u) = \hat{x}_0 \rightarrow_{\tilde{T}} \hat{x}_1 \rightarrow_{\tilde{T}} \hat{x}_2 \rightarrow_{\tilde{T}} \cdots \rightarrow_{\tilde{T}} \hat{x}_n = \alpha(v).
\]
It follows from point \((i)\) that \(\hat{x}_i \) belongs to the range of \(\alpha \) for every \(i \in [0, n] \): let \(x_0 := u \), let \(x_n := v \), and for each \(i \in [1, n-1] \), let \(x_i \in \Sigma^* \) be such that \(\hat{x}_i = \alpha(x_i) \). Now, Equation (2) holds, and thus Equation (1) follows by point \((ii)\). We have thus shown that \(u \rightarrow_{\tilde{T}} v \). \(\square \)

Surprisingly, hypothesis \((i)\) of Lemma 4 is not disposable. Indeed, let \(T = (\Sigma, R) \) be a semi-Thue system, and let \(u_0, v_0 \in \Sigma^* \) be such that \(u_0 \not\rightarrow_{\tilde{T}} v_0 \): a trivial choice for \(R \) is the empty set. Let \(a \) be a symbol such that \(a \notin \Sigma \), and let \(\tilde{T} := (\Sigma \cup \{a\}, R \cup \{(u_0, a), (a, v_0)\}) \). For every \(x, y \in \Sigma^* \), \(x \rightarrow_{\tilde{T}} y \) is equivalent to \(x \rightarrow_{\tilde{T}} y \). However, \(\Sigma^* \) is not closed under derivation modulo \(\tilde{T} \), and \(u \rightarrow_{\tilde{T}} v \) does not imply \(u \rightarrow_{\tilde{T}} v \) for every \(u, v \in \Sigma^* \), since \(u_0 \rightarrow_{\tilde{T}} v_0 \).

Definition 5. Let \(X \) be a language. We say that \(X \) is a code if the property
\[
x_1 x_2 \cdots x_m = y_1 y_2 \cdots y_n \iff (x_1, x_2, \ldots, x_m) = (y_1, y_2, \ldots, y_n)
\]
holds for any integers \(m, n \geq 1 \) and any elements \(x_1, x_2, \ldots, x_m, y_1, y_2, \ldots, y_n \in X \).

Note that \((x_1, x_2, \ldots, x_m) = (y_1, y_2, \ldots, y_n)\) means that both \(m = n \) and \(x_i = y_i \) for every \(i \in [1, m] \). In other words, a language \(X \) is a code if each word in \(X^* \) has a unique factorization over \(X \). A morphism \(\alpha : \Sigma^* \rightarrow \Delta^* \) is injective if and only if \(\alpha \) is injective on \(\Sigma \) and \(\alpha(\Sigma) \) is a code.

Definition 6 (\(\text{[I]} \)). A code \(X \) is called comma-free if for every words \(x, z \) and \(z' \),
\[
(x \in X \text{ and } z x z' \in X^*) \implies (z \in X^* \text{ and } z' \in X^*)
\]

Every comma-free code is a bifix code: no word in the language is a prefix or a suffix of another word in the language. For instance, \(K := \{10^n 1 : n \geq 1\} \) and \(C \) are comma-free codes, but \(K \cup \{11\} \) is a bifix code which is not comma-free.

Lemma 5. In the notation of Definition 2, assume that
\[(i) \ \alpha \text{ is an injective morphism},
(ii) \ \alpha(\Sigma) \text{ is a comma-free code, and}
(iii) \ \tilde{T} \text{ has no insertion rule}.
\]
For every \(u, v \in \Sigma^* \), \(u \rightarrow_{\tilde{T}} v \) is equivalent to \(\alpha(u) \rightarrow_{\alpha(\tilde{T})} \alpha(v) \).
Proof. According to Lemma 2, \(u \xrightarrow{T} v \) implies \(\alpha(u) \xrightarrow{\alpha(T)} \alpha(v) \). Conversely, let us prove that \(\alpha(u) \xrightarrow{\alpha(T)} \alpha(v) \) implies \(u \xrightarrow{T} v \). We rely on Lemma 4.

Let \(\hat{x}, \hat{y} \in \Delta^* \) be such that \(\hat{x} \xrightarrow{\alpha(T)} \hat{y} \): there exist \(\hat{z}, \hat{z}' \in \Delta^* \) and \((s, t) \in R \) such that \(\alpha(x) = \hat{z} \alpha(s) \hat{z}' \) and \(\hat{y} = \hat{z} \alpha(t) \hat{z}' \). Since \(\alpha \) is a morphism, the range of \(\alpha \) equals \(\alpha(\Sigma)^* \). In particular, both \(\alpha(s) \) and \(\hat{z} \alpha(s) \hat{z}' \) belong to \(\alpha(\Sigma)^* \). Furthermore, \(\alpha(s) \) belongs to \(\alpha(\Sigma)^+ \): indeed, \(s \) is a non-empty word because \(T \) has no insertion rule, and thus its image under the injective morphism \(\alpha \) is also a non-empty word. It follows that both \(\hat{z} \) and \(\hat{z}' \) belong to \(\alpha(\Sigma)^* \) because \(\alpha(\Sigma) \) is a comma-free code: there exist \(z, z' \in \Sigma^* \) such that \(\alpha(z) = \hat{z} \) and \(\alpha(z') = \hat{z}' \). We can now write \(\hat{x} \) and \(\hat{y} \) in the forms \(\hat{x} = \alpha(zsz') \) and \(\hat{y} = \alpha(ztz') \). Hence, \(\hat{y} \) belongs to the range of \(\alpha \), which proves that the range of \(\alpha \) is closed under derivation modulo \(\alpha(T) \). Moreover, we also get \(\alpha^{-1}(\hat{x}) = zsz' \xrightarrow{T} ztz' = \alpha^{-1}(\hat{y}) \). Therefore, Lemma 4 applies with \(\hat{T} := \alpha(T) \). \(\square \)

Let us thoroughly examine the hypotheses of Lemma 5. Hypothesis (iii) could be replaced with “\(T \) has no deletion rule”: apply Lemma 5 in its original form to the reversal of \(T \), defined as \(\hat{T} := (\Sigma, \{(t, s) : (s, t) \in R\}) \). However, the following two counterexamples show that neither hypothesis (ii) nor hypothesis (iii) is disposable.

Counterexample 1. Let \(T := (\{a, b\}, \{(a, aa)\}) \) and let \(\alpha : \{a, b\}^* \to \{0, 1\}^* \) be the morphism defined by \(\alpha(a) := 01 \) and \(\alpha(b) := 011 \): \(\alpha(T) = (\{0, 1\}, \{(01, 0101)\}) \). Clearly, \(\alpha \) is injective and \(T \) is \(\varepsilon \)-free. However, \(\alpha(\{a, b\}) \) is not a comma-free code, and \(\alpha(u) \xrightarrow{\alpha(T)} \alpha(v) \) does not imply \(u \xrightarrow{T} v \) for every \(u, v \in \{a, b\}^* \): \(\alpha(b) \xrightarrow{\alpha(T)} \alpha(ab) \) but \(b \xrightarrow{T} ab \).

Counterexample 1 disproves a claim from Claus’s original paper [2, page 57, line -4]. A statement from Harju, Karhumäki and Krob [8, page 43, line 1] is disproved in the same way.

Counterexample 2. Let \(T := (\{a, b, c\}, \{(\varepsilon, a), (b, \varepsilon)\}) \) and let \(\alpha : \{a, b, c\}^* \to \{0, 1\}^* \) be the morphism defined by \(\alpha(a) := 101 \), \(\alpha(b) := 1001 \) and \(\alpha(c) := 10001 \): \(\alpha(T) = (\{0, 1\}, \{\varepsilon, 101\), (1001, \varepsilon)\}) \). Clearly, \(\alpha \) is injective and \(\alpha(\{a, b, c\}) \) is a comma-free code. However, \(T \) admits both insertion and deletion rules, and \(\alpha(u) \xrightarrow{\alpha(T)} \alpha(v) \) does not imply \(u \xrightarrow{T} v \) for every \(u, v \in \{a, b\}^* \): \(c \xrightarrow{T} a \) but \(\alpha(c) \xrightarrow{T} 10101001 \xrightarrow{T} 10101001011 \xrightarrow{T} 1010011 \xrightarrow{T} \alpha(a) \).

Proof of Proposition 7. We present a many-one reduction from ACCESSIBILITY\((k)\) on \(\varepsilon \)-free instances to ACCESSIBILITY\((k)\) on \(\mathcal{C}_k \), so that Lemma 5 applies.

Let \((T, u, v) \) be an \(\varepsilon \)-free instance of ACCESSIBILITY\((k)\). Let \(\Sigma \) denote the alphabet of \(T \). Compute an injection \(\alpha : \Sigma \to \mathcal{C}_k \). The morphism from \(\Sigma^* \) to \(\{0, 1\} \) that extends \(\alpha \) is also denoted \(\alpha \). Clearly, \((\alpha(T), \alpha(u), \alpha(v)) \) belongs to \(\mathcal{C}_k \), and \((\alpha(T), \alpha(u), \alpha(v)) \) is computable from \((T, u, v) \). Moreover, \(u \xrightarrow{T} v \) is equivalent to \(\alpha(u) \xrightarrow{\alpha(T)} \alpha(v) \) by Lemma 5. \(\square \)
3 From GPCP to Accessibility

The key ingredient of the proof of Fact 2 is the accordion lemma (Lemma 7 below).

Definition 7. A word f is called bordered if there exist three non-empty words u, v and x such that $f = xu = vx$.

Equivalently, f is bordered if and only if there exists a word z with $|z| < 2|f|$ such that f occurs twice or more in z.

Definition 8. We say that two words x and y overlap if at least one of the following four assertions hold:

(i) x occurs in y,
(ii) y occurs in x,
(iii) some non-empty prefix of x is a suffix of y, or
(iv) some non-empty prefix of y is a suffix of x.

Since we make the convention that the empty word occurs in every word, the empty word and any other word do overlap. Two non-empty words x and y overlap if and only if there exists a word z with $|z| < |x| + |y|$ such that both x and y occur in z.

We can now state a protoversion of the accordion lemma.

Lemma 6. Let $T = (\Sigma, R)$ be a semi-Thue system, and let $f, u, v \in \Sigma^*$ be such that:

(i) f is unbordered,
(ii) f does not occur in u,
(iii) f does not occur in v, and
(iv) for each rule $(s, t) \in R$, s and f do not overlap.

Then, $u \overset{*}{\rightarrow}_T v$ holds if and only if there exist $x, y \in \Sigma^*$ satisfying both $xfv = uf y$ and $x \overset{*}{\rightarrow}_T y$.

Proof. (only if). If $u \overset{*}{\rightarrow}_T v$ then $x := u$ and $y := v$ are such that $xfv = uf y$ and $x \overset{*}{\rightarrow}_T y$.

(if). Assume that there exist $x, y \in \Sigma^*$ such that $xfv = uf y$ and $x \overset{*}{\rightarrow}_T y$. Let n denote the number of occurrences of f in xfv. Since f is unbordered (hypothesis (i)), those occurrences are pairwise non-overlapping:

$$xfv = uf y = w_0fw_1fw_2\cdots w_nf$$
for some words \(w_0, w_1, \ldots, w_n \in \Sigma^* \). Since \(f \) does not occur in \(v \) (hypothesis \((iii)\)), we have \(v = w_n \) and
\[
 x = w_0fw_1fw_2\cdots fw_{n-1}.
\]
In the same way, \(f \) does not occur in \(u \) either (hypothesis \((ii)\)), and thus we have also \(u = w_0 \) and
\[
 y = w_1fw_2fw_3\cdots fw_n.
\]
Now, remark that \(f \) plays the role of a delimiter with respect to the derivation modulo \(T \) (hypothesis \((iv)\)): \(x \overset{\star}{\mapsto}_T y \) implies
\[
 w_{i-1} \overset{T}{\mapsto} w_i
\]
for every \(i \in [1,n] \). Therefore, \(u \overset{\star}{\mapsto}_T v \) holds.

Let us comment the statement of Lemma \(\[4\] \). Hypothesis \((iv)\) implies that \(T \) has no insertion rule. It could be replaced with “for every \((s,t) \in \mathcal{R}, t \text{ and } f \text{ do not overlap} \)”.
Hypothesis \((ii)\) is in fact disposable: the verification is left to the reader. Let \(\Sigma \) be an alphabet, let \(f \) be a symbol such that \(f \notin \Sigma \), and let \(T \) be a semi-Thue system over \(\Sigma \cup \{f\} \) with rules in \(\Sigma^+ \times \Sigma^* \). An easy consequence of Lemma \(\[4\] \) is that, for every \(u, v \in \Sigma^* \), \(u \overset{T}{\mapsto} v \) holds if and only if there exist \(x, y \in (\Sigma \cup \{f\})^* \) satisfying both \(xfv = ufy \) and \(x \overset{T}{\mapsto} y \).

Definition 9. The word 0011 is denoted by \(f \).

Lemma 7 (Accordion lemma). Let \(k \) be a positive integer. For every \((T,u,v) \in \mathcal{C}_k\), \((T,u,v)\) is a yes-instance of \(\text{ACCESSIBILITY}(k) \) if and only if there exist \(x, y \in \{0,1\}^* \) satisfying both \(xfv = ufy \) and \(x \overset{T}{\mapsto} y \).

Proof. Clearly, \(f \) is unbordered, and for every \(s \in C^+ \), \(s \) and \(f \) do not overlap. Hence, Lemma \(\[6\] \) applies.

The statement of the accordion lemma can be made precise as follows (the verification is left to the reader): for any \((T,u,v) \in \mathcal{C}_k\) and any \(x, y \in \{0,1\}^* \) such that \(xfv = ufy \) and \(x \overset{T}{\mapsto} y \), both \(x \) and \(y \) belong to \((C \cup \{f\})^* \). Besides, if \(C \) and \(f \) were defined as \(C := \{10^n : n \geq 1\} \) and \(f := 11 \) in Definitions \(\[3\] \) and \(\[4\] \) then Proposition \(\[1\] \) and Lemma \(\[4\] \) would hold (the verification is left to the reader). In \cite[Theorem 4.1]{7}, Harju and Karhumäki present a proof of Claus’s theorem that implicitly relies on those variants of Proposition \(\[1\] \) and Lemma \(\[7\] \).

Definition 10. An instance \((\Sigma, \sigma, \tau, s, t, s', t')\) of GPCP is called erasure-free if \(\sigma(\Sigma) \cup \tau(\Sigma) \subseteq \{0,1\}^+ \).

We can now prove a slightly strengthened version of Fact \(\[2\] \).
Theorem 1. Let k be a positive integer. If $\text{GPCP}(k+2)$ is decidable on erasement-free instances then $\text{ACCESSIBILITY}(k)$ is decidable.

Proof. In order to apply Proposition 1, we present a many-one reduction from ACCESSIBILITY(k) on \mathcal{C}_k to GPCP$(k+2)$ on erasement-free instances.

Let (T,u,v) be an element of \mathcal{C}_k: there exist $s_1, s_2, \ldots, s_k, t_1, t_2, \ldots, t_k \in C^+$ such that $T = \{(\{0,1\},(s_1,t_1),(s_2,t_2),\ldots,(s_k,t_k))\}$.

Let a_1, a_2, \ldots, a_k be k symbols such that $\Sigma := \{0,1,a_1,a_2,\ldots,a_k\}$ is an alphabet of cardinality $k+2$. Let $\sigma, \tau : \Sigma^* \to \{0,1\}^*$ be the morphisms defined by:

$$
\sigma(0) := 0, \quad \sigma(1) := 1, \quad \sigma(a_i) := s_i, \\
\tau(0) := 0, \quad \tau(1) := 1, \quad \tau(a_i) := t_i
$$

for every $i \in [1,k]$. Let J denote the instance $(\Sigma, \sigma, \tau, \varepsilon, f_v, u_f, \varepsilon)$ of GPCP$(k+2)$.

It is clear that J is erasement-free and that J is computable from I. It remains to check that I is a yes-instance of ACCESSIBILITY(k) if and only if J is a yes-instance of GPCP$(k+2)$. The proof of the “if part” relies on the accordion lemma while the proof of the “only if part” relies on next lemma.

Lemma 8. For any $x, y \in \{0,1\}^*$ such that $x \xrightarrow{T} y$, there exists $z \in \Sigma^*$ such that $x = \sigma(z)$ and $y = \tau(z)$.

Proof. Let $z', z'' \in \{0,1\}^*$ and let $i \in [1,k]$ be such that $x = z's_i z''$ and $y = z't_i z''$. A suitable choice for z is $z'a_i z''$. □

(only if). Assume that $u \xrightarrow{*T} v$. There exist an integer $n \geq 0$ and $n+1$ words x_0, x_1, \ldots, x_n over $\{0,1\}$ such that Equation 1 holds. Lemma 8 ensures that there exists $z_i \in \Sigma^*$ satisfying $x_{i-1} = \sigma(z_i)$ and $x_i = \tau(z_i)$ for each $i \in [1,n]$. Now, $w := z_1 f_z_2 f_z_3 \cdots f_z_n$ is such that $\sigma(w)f_v = u_f \tau(w)$.

(if). Assume that there exists $w \in \Sigma^*$ such that $\sigma(w)f_v = u_f \tau(w)$. The morphisms σ and τ are defined in such a way that $\sigma(z) \xrightarrow{*T} \tau(z)$ for every $z \in \Sigma^*$. In particular, $x := \sigma(w)$ and $y := \tau(w)$ are such that $x f_v = u_f y$ and $x \xrightarrow{*T} y$. Hence, Lemma 7 yields $u \xrightarrow{*T} v$. □

Combining Theorem 1 and [9, Theorem 4.1] we obtain:

Corollary 1. GPCP(5) is undecidable on erasement-free instances.
4 From PCP to GPCP

Definition 11. An instance \((\Sigma, \sigma, \tau, s, t, s', t')\) of GPCP is called \((\varepsilon, \varepsilon)\)-free if for every \(a \in \Sigma\), \((\sigma(a), \tau(a)) \neq (\varepsilon, \varepsilon)\).

Lemma 9. For every integer \(k \geq 1\), GPCP\((k)\) is decidable if and only if the problem is decidable on \((\varepsilon, \varepsilon)\)-free instances.

Proof. We present a many-one reduction from GPCP\((k)\) to GPCP\((k)\) on \((\varepsilon, \varepsilon)\)-free instances.

Let \(I := (\Sigma, \sigma, \tau, s, t, s', t')\) be an instance of GPCP\((k)\). Compute the set \(\widehat{\Sigma}\) of all letters \(a \in \Sigma\) such that \((\sigma(a), \tau(a)) \neq (\varepsilon, \varepsilon)\). If \(\widehat{\Sigma}\) is empty then solving GPCP\((k)\) on \(I\) reduces to checking whether \(st\) and \(s't'\) are equal. Hence, we may assume \(\widehat{\Sigma} \neq \emptyset\) without loss of generality, taking out of the way cumbersome considerations. Let \(\widehat{\sigma}\) and \(\widehat{\tau}\) denote the restrictions to \(\widehat{\Sigma}\) of \(\sigma\) and \(\tau\), respectively. Let \(J\) denote the septuple \((\widehat{\Sigma}, \widehat{\sigma}, \widehat{\tau}, s, t, s', t')\). Clearly, \(J\) is an \((\varepsilon, \varepsilon)\)-free instance of GPCP\((k)\) and \(J\) is computable from \(I\). Moreover, \(I\) is a yes-instance of GPCP\((k)\) if and only if \(J\) is also a yes-instance of the problem. \(\square\)

Remark that every erasure-free instance of GPCP is \((\varepsilon, \varepsilon)\)-free, but the converse is false in general.

Definition 12. An instance \((\Sigma, \sigma, \tau)\) of PCP is called erasure-free if \(\sigma(\Sigma) \cup \tau(\Sigma) \subseteq \{0, 1\}^+\).

We can now prove Fact 3.

Theorem 2. Let \(k\) be a positive integer.

(i). If PCP\((k + 2)\) is decidable then GPCP\((k)\) is decidable.

(ii). If PCP\((k + 2)\) is decidable on erasure-free instances then GPCP\((k)\) is decidable on erasure-free instances.

Proof. We present a many-one reduction from GPCP\((k)\) to GPCP\((k)\) on \((\varepsilon, \varepsilon)\)-free instances to PCP\((k + 2)\) in order to apply Lemma 9.

Let \(I := (\Sigma, \sigma, \tau, s, t, s', t')\) be an \((\varepsilon, \varepsilon)\)-free instance of GPCP\((k)\). Without loss of generality, we may assume \(b \notin \Sigma\) and \(e \notin \Sigma\): \(\widehat{\Sigma} := \Sigma \cup \{b, e\}\) is an alphabet of cardinality \(k + 2\). Let \(\lambda := \lambda_d\) and \(\rho := \rho_d\) (see Definition 4). Let \(\widehat{\sigma}, \widehat{\tau} : \widehat{\Sigma}^* \to \{0, 1, d, b, e\}^*\) be the two morphisms defined by:

\[
\begin{align*}
\widehat{\sigma}(b) &:= b\lambda(s), & \widehat{\sigma}(e) &:= \lambda(t)de, & \widehat{\sigma}(a) &:= \lambda(\sigma(a)), \\
\widehat{\tau}(b) &:= bd\rho(s'), & \widehat{\tau}(e) &:= \rho(t'e), & \widehat{\tau}(a) &:= \rho(\tau(a))
\end{align*}
\]

for every \(a \in \Sigma\). Let \(j : \{0, 1, d, b, e\}^* \to \{0, 1\}^*\) denote an injective morphism: for instance \(j\) can be given by \(j(0) := 000, j(1) := 111, j(d) := 101, j(b) := 100\) and \(j(e) := 001\).
It is clear that \(J := (\hat{\Sigma}, j \circ \hat{\sigma}, j \circ \hat{\tau}) \) is an instance of PCP\((k + 2)\) computable from \(I \), and that \(J \) is erasement-free whenever \(I \) is erasement-free. Hence, to prove both points \((i)\) and \((ii)\) of Theorem 2 it remains to check that \(I \) is a yes-instance of GPCP\((k)\) if and only if \(J \) is a yes-instance of PCP\((k + 2)\).

Lemma 10. For every \(w \in \Sigma^* \), \(s\sigma(w)t = s't(w)t' \) if and only if \(\hat{\sigma}(bw\epsilon) = \hat{\tau}(bw\epsilon) \).

Proof. Straightforward computations yield
\[
\hat{\sigma}(bw\epsilon) = \hat{\sigma}(b)\hat{\sigma}(w)\hat{\sigma}(\epsilon) = b\lambda(s)\lambda(\sigma(w))\lambda(t)de = b\lambda(s\sigma(w)t)de
\]
and
\[
\hat{\tau}(bw\epsilon) = \hat{\tau}(b)\hat{\tau}(w)\hat{\tau}(\epsilon) = b\rho(s')\rho(\tau(w))\rho(t')de = b\rho(s'\tau(w)t')e.
\]
Since \(\lambda(x)d = d\rho(x) \) for every \(x \in \{0, 1\}^* \), \(s\sigma(w)t = s't(w)t' \) implies \(\hat{\sigma}(bw\epsilon) = \hat{\tau}(bw\epsilon) \), and furthermore, \(\hat{\sigma}(bw\epsilon) = \hat{\tau}(bw\epsilon) \) implies \(\lambda(s\sigma(w)t) = \lambda(s't(\tau(w)t')). \) Since \(\lambda \) is trivially injective, \(\hat{\sigma}(bw\epsilon) = \hat{\tau}(bw\epsilon) \) implies \(s\sigma(w)t = s't(\tau(w)t') \). \(\square \)

If \(I \) is a yes instance of GPCP\((k)\) then it follows from Lemma 10 that \(J \) is a yes-instance of PCP\((k + 2)\). The converse is slightly more complicated to prove.

Lemma 11. For every \(w \in \hat{\Sigma}^* \), the following three assertions are equivalent:

1. \(\hat{\sigma}(we) \) is a prefix of \(\hat{\tau}(we) \),
2. \(\hat{\tau}(we) \) is a prefix of \(\hat{\sigma}(we) \), and
3. \(\hat{\sigma}(we) = \hat{\tau}(we) \).

Proof. The letter \(\epsilon \) occurs once in \(\hat{\sigma}(\epsilon) \) (resp. \(\hat{\tau}(\epsilon) \)) whereas for every \(a \in \Sigma \cup \{b\} \), \(\epsilon \) does not occur at all in \(\hat{\sigma}(a) \) (resp. \(\hat{\tau}(a) \)). Therefore, \(|\hat{\sigma}(x)|_\epsilon = |x|_\epsilon = |\hat{\tau}(x)|_\epsilon \) holds for every \(x \in \hat{\Sigma}^* \). Since \(\epsilon \) is the last letter of \(\hat{\sigma}(\epsilon) \), any proper prefix of \(\hat{\sigma}(we) \) contains less occurrences of \(\epsilon \) than \(\hat{\tau}(we) \). From that we deduce that \(\hat{\tau}(we) \) cannot be a proper prefix of \(\hat{\sigma}(we) \). In the same way, \(\hat{\sigma}(we) \) cannot be a proper prefix of \(\hat{\tau}(we) \). \(\square \)

Lemma 12. For every \(w \in \hat{\Sigma}^* \), the following three assertions are equivalent:

1. \(\hat{\sigma}(bw) \) is a suffix of \(\hat{\tau}(bw) \),
2. \(\hat{\tau}(bw) \) is a suffix of \(\hat{\sigma}(bw) \), and
3. \(\hat{\sigma}(bw) = \hat{\tau}(bw) \).

Proof. Lemma 12 is proved in the same way as Lemma 11. The details are left to the reader. \(\square \)

Claim 1. Let \(a \in \hat{\Sigma} \) be such that \(\hat{\sigma}(a) \neq \epsilon \).

\((i) \) The first letter of \(\hat{\sigma}(a) \) is either \(b \) or \(d \).
(ii). The last letter of $\hat{\sigma}(a)$ is distinct from d.

Claim 2. Let $a \in \hat{\Sigma}$ be such that $\hat{\tau}(a) \neq \varepsilon$.

(i). The first letter of $\hat{\tau}(a)$ is distinct from d.

(ii). The last letter of $\hat{\tau}(a)$ is either d or e.

Assume that J is a yes-instance of PCP($k+2$). Let $w \in \hat{\Sigma}^+$ be such that $\hat{\sigma}(w) = \hat{\tau}(w)$. Let x denote both words $\hat{\sigma}(w)$ and $\hat{\tau}(w)$.

Since I is an (ε, ε)-free instance of GPCP, $(\hat{\sigma}(a), \hat{\tau}(a))$ is distinct from $(\varepsilon, \varepsilon)$ for every $a \in \hat{\Sigma}$, and thus x is a non-empty word. Combining Claims 1(i) and 2(i), we obtain that b is the first letter of x, and thus b is also the first letter of w. In the same way, combining Claims 1(ii) and 2(ii), we obtain that e is the last letter of x, and thus e is also the last letter of w. Hence, w is of the form $b w' e$ with $w' \in \hat{\Sigma}^*$.

Now, assume that w is a shortest non-empty word over $\hat{\Sigma}$ such that $\hat{\sigma}(w) = \hat{\tau}(w)$. Let us check that $w' \in \Sigma^*$. By the way of contradiction suppose that e occurs in w': there exist $w_1, w_2 \in \hat{\Sigma}^*$ such that $w' = w_1 e w_2$. Straightforward computations yield $\hat{\sigma}(b w_1 e) \hat{\sigma}(w_2 e) = x = \hat{\tau}(b w_1 e) \hat{\tau}(w_2 e)$. Therefore, $\hat{\sigma}(b w_1 e)$ is a prefix of $\hat{\tau}(b w_1 e)$ or $\hat{\tau}(b w_1 e)$ is a prefix of $\hat{\sigma}(b w_1 e)$. From Lemma 11 we deduce that $\hat{\sigma}(b w_1 e) = \hat{\tau}(b w_1 e)$. Since $b w_1 e$ is shorter than w, a contradiction follows. Hence e does not occur in w'. Similar arguments based on Lemma 12 show that b does not occur in w' either.

Hence, w' is a word over Σ, and thus Lemma 10 ensures that $s \sigma(w') t = s' \tau(w') t'$. It follows that I is a yes-instance of GPCP(k).

Strictly speaking, the correspondence problem that was originally introduced by Post in his 1946 paper [10] is, in our terminology, the restriction of PCP to erasement-free instances.

Combining Theorems 1 and 2(ii), we obtain a slightly strengthened version of Claus’s theorem (Fact 4).

Corollary 2. Let k be a positive integer. If PCP($k+4$) is decidable on erasement-free instances then ACCESSIBILITY(k) is decidable.

Combining Corollary 2 and [9, Theorem 4.1] we obtain:

Corollary 3. PCP(7) is undecidable on erasement-free instances.

References

[1] J. Berstel and D. Perrin. Theory of Codes. Pure and Applied Mathematics. Academic Press, 1985.

[2] V. Claus. Some remarks on PCP(k) and related problems. The Bulletin of the European Association for Theoretical Computer Science (EATCS), 12:54 – 61, 1980.
[3] A. Ehrenfeucht, J. Karhumäki, and G. Rozenberg. The (generalized) Post correspondence problem with lists consisting of two words is decidable. *Theoretical Computer Science*, 21(2):119–144, 1982.

[4] A. Ehrenfeucht and G. Rozenberg. On the (generalized) Post correspondence problem with lists of length 2. In S. Even and O. Kariv, editors, *Proceedings of the 8th International Colloquium on Automata, Languages and Programming (ICALP’81)*, volume 115 of *Lecture Notes in Computer Science*, pages 408–416. Springer, 1981.

[5] V. Halava, T. Harju, and M. Hirvensalo. Binary (generalized) Post correspondence problem. *Theoretical Computer Science*, 276(1–2):183–204, 2002.

[6] V. Halava, T. Harju, and M. Hirvensalo. Undecidability bounds for integer matrices using Claus instances. *International Journal of Foundations of Computer Science*, 18(5):931–948, 2007.

[7] T. Harju and J. Karhumäki. Morphisms. In G. Rozenberg and A. Salomaa, editors, *Handbook of Formal Languages*, volume 1, pages 439–510. Springer, 1997.

[8] T. Harju, J. Karhumäki, and D. Krob. Remarks on generalized Post correspondence problem. In C. Puech and R. Reischuk, editors, *Proceedings of the 13th Annual Symposium on Theoretical Aspects of Computer Science (STACS’96)*, volume 1046 of *Lecture Notes in Computer Science*, pages 39–48. Springer, 1996.

[9] Y. Matiyasevich and G. Sénizergues. Decision problems for semi-Thue systems with a few rules. *Theoretical Computer Science*, 330(1):145–169, 2005.

[10] E. L. Post. A variant of a recursively unsolvable problem. *Bulletin of the American Mathematical Society*, 52(4):264–268, 1946.