Measurement of the polarization of W bosons with large transverse momenta in W+jets events at the LHC

CMS Collaboration; Chatrchyan, S; Amsler, C; Chiochia, V

Abstract: A first measurement of the polarization of W bosons with large transverse momenta in pp collisions is presented. The measurement is based on 36 pb-1 of data recorded at √s=7 TeV by the CMS detector at the LHC. The left-handed, right-handed, and longitudinal polarization fractions (fL, fR, and f0, respectively) of W bosons with transverse momenta larger than 50 GeV are determined by using decays to both electrons and muons. The muon final state yields the most precise measurement: (fL-fR)=0.240±0.036(stat)±0.031(syst) and f0=0.183±0.087(stat)±0.123(syst) for negatively charged W bosons and (fL-fR)+=0.310±0.036(stat)±0.017(syst) and f0+=0.171±0.085(stat)±0.099(syst) for positively charged W bosons. This establishes, for the first time, that W bosons produced in pp collisions with large transverse momenta are predominantly left-handed, as expected in the standard model. Published by the American Physical Society under the terms of the Creative Commons Attribution 3.0 License. Further distribution of this work must maintain attribution to the author(s) and the published article’s title, journal citation, and DOI. © 2011 CERN, for the CMS Collaboration

DOI: https://doi.org/10.1103/PhysRevLett.107.021802

Posted at the Zurich Open Repository and Archive, University of Zurich
ZORA URL: https://doi.org/10.5167/uzh-58570
Journal Article
Accepted Version

Originally published at:
CMS Collaboration; Chatrchyan, S; Amsler, C; Chiochia, V (2011). Measurement of the polarization of W bosons with large transverse momenta in W+jets events at the LHC. Physical Review Letters, 107(2):021802.
DOI: https://doi.org/10.1103/PhysRevLett.107.021802
Measurement of the Polarization of W Bosons with Large Transverse Momenta in W+Jets Events at the LHC

The CMS Collaboration

Abstract

A first measurement of the polarization of W bosons with large transverse momenta in pp collisions is presented. The measurement is based on 36 pb$^{-1}$ of data recorded at $\sqrt{s} = 7$ TeV by the CMS detector at the LHC. The left-handed, right-handed and longitudinal polarization fractions (f_L, f_R, f_0) of W bosons with transverse momenta larger than 50 GeV are determined using decays to both electrons and muons. The muon final state yields the most precise measurement, $(f_L - f_R)^- = 0.240 \pm 0.036$ (stat.) ± 0.031 (syst.) and $f_0^- = 0.183 \pm 0.087$ (stat.) ± 0.123 (syst.) for negatively charged W bosons, and $(f_L - f_R)^+ = 0.310 \pm 0.036$ (stat.) ± 0.017 (syst.) and $f_0^+ = 0.171 \pm 0.085$ (stat.) ± 0.099 (syst.) for positively charged W bosons. This establishes, for the first time, that W bosons produced in pp collisions with large transverse momenta are predominantly left-handed, as expected in the standard model.

Submitted to Physical Review Letters

*See Appendix A for the list of collaboration members
The measurement of the kinematic properties of W bosons produced at hadron colliders provides a stringent test of perturbative quantum chromodynamics (QCD) calculations as well as being an important prerequisite to searches for physics beyond the standard model. The pp collisions at the Large Hadron Collider (LHC) offer both a new environment and higher energy to study W bosons with large transverse momenta recoiling against several energetic jets. The sizable production cross section results in significant samples of W bosons, while the nature of the initial state leads to an enhancement of the quark-gluon contribution to W+jet production when compared to the Tevatron pp collider, where quark-gluon and antiquark-gluon processes contribute equally. This dominance of quark-gluon initial states, along with the $V - A$ nature of the coupling of the W boson to fermions, implies that at the LHC W bosons with high transverse momenta are expected to exhibit a sizable left-handed polarization. A significant asymmetry in the transverse momentum spectra of the neutrino and charged lepton from subsequent leptonic W decays is therefore expected. This Letter reports the first measurement of the polarization of W bosons with large transverse momenta at the LHC, using a data sample of pp collisions corresponding to an integrated luminosity of $36 \pm 1.4 \text{ pb}^{-1}$ at a center-of-mass energy of 7 TeV, recorded with the Compact Muon Solenoid (CMS) detector.

We measure the polarization of the W boson in the helicity frame, where the polar angle (θ^*) of the charged lepton from the decay in the W rest frame is measured with respect to the boson flight direction in the laboratory frame. The azimuthal angle (ϕ^*) is defined to be zero for the proton which has the smaller θ^* in the boson rest frame. The cross section for W production at a hadron collider with a subsequent leptonic decay, $dN/d\Omega$, is given by [1]

$$ \frac{dN}{d\Omega} \propto (1 + \cos^2 \theta^*) + \frac{1}{2} A_0 (1 - 3 \cos^2 \theta^*) + A_1 \sin 2\theta^* \cos \phi^* + A_2 \sin^2 \theta^* \cos 2\phi^* + A_3 \sin \theta^* \cos \phi^* \cos \phi^* + A_4 \cos \theta^*, $$

where the coefficients A_i ($i = 0, \ldots, 4$) depend on the W boson charge, transverse momentum and rapidity, and make up the elements of the polarization density matrix. Integrating Eq. (1) over ϕ^* yields

$$ \frac{dN}{d\cos \theta^*} \propto (1 + \cos^2 \theta^*) + \frac{1}{2} A_0 (1 - 3 \cos^2 \theta^*) + A_4 \cos \theta^*. $$

The fractions of left-handed, right-handed, and longitudinal W bosons (f_L, f_R and f_0, respectively) are related to the parameters A_i by $A_0 \propto f_0$ and $A_4 \propto \pm (f_L - f_R)$ depending on the W boson charge, where by definition $f_i > 0$ and $f_L + f_R + f_0 = 1$. A priori, the values of the f_i parameters are not expected to be the same for both charges, since for partons which carry a large fraction of the proton’s momentum, the ratio of valence u quarks to sea quarks is higher than that for valence d quarks.

The amount of W boson momentum imparted to the charged decay lepton is determined by $\cos \theta^*$, and hence an asymmetry in the $\cos \theta^*$ distribution leads to an asymmetry between the neutrino and charged-lepton momentum spectra. This can be quantified via a measurement of the A_4 parameter. However, the inability to determine the momentum of the neutrino along the beam axis introduces a two-fold ambiguity in the determination of the momentum of the W boson. Therefore, it is not possible to precisely determine the W boson rest frame required to extract the W decay angles. To overcome this, a variable which exhibits a strong correlation with $\cos \theta^*$ is introduced. The lepton projection variable, L_p, is defined as the projection of the scaled transverse momentum of the charged lepton, $\vec{p}_T(\ell)/|\vec{p}_T(W)|$, onto the normalized transverse momentum of the parent W boson, $\vec{p}_T(W)/|\vec{p}_T(W)|$:.
In the above expression, \(\vec{p}_T(W) \) is estimated from the vectorial sum of the missing transverse energy \(\vec{E}_T \) and \(\vec{p}_T(\ell) \) in the event. Experimentally, \(\vec{E}_T \) is reconstructed as the negative vector sum of the transverse energy vectors of all particles identified in the event using a particle flow algorithm [2]. In the limit of very high \(p_T(W) \), \(L_P \) lies within the range [0,1] and \(\cos \theta^* = 2(L_P - \frac{1}{2}) \).

The central feature of the CMS apparatus is a superconducting solenoid, 13 m in length and 6 m in diameter, which provides an axial magnetic field of 3.8 T. The bore of the solenoid is instrumented with various particle detection systems. Charged particle trajectories are measured by the silicon pixel and strip tracking detectors, covering \(0 < \phi < 2\pi \) in azimuth and \(|\eta| < 2.5 \), where the pseudorapidity is defined as \(\eta = -\ln[\tan(\theta/2)] \), and \(\theta \) is the polar angle of the trajectory of the particle with respect to the counterclockwise beam direction. A crystal electromagnetic calorimeter (ECAL) and a brass/scintillator hadron calorimeter (HCAL) surround the tracking volume and cover the region \(|\eta| < 3 \). The steel return yoke outside the solenoid is in turn instrumented with gas detectors which are used to identify muons. The detector is nearly hermetic, allowing for energy balance measurements in the plane transverse to the beam direction. A more detailed description of the CMS detector can be found elsewhere [3].

The trigger providing the data sample used in this analysis is based on the presence of at least one charged lepton, either an electron or a muon, with a minimum transverse momentum of 22 (15) GeV for the electron (muon). Events passing this trigger are required to have at least one good reconstructed pp interaction vertex [4]. Electrons and muons are reconstructed and selected using the procedure and requirements described in the measurement of the inclusive \(W/Z \) boson cross section [5]. The selection of \(W \) boson candidates requires one electron (muon), with \(p_T > 25 (20) \) GeV in \(|\eta| < 2.4 (2.1) \). High-\(p_T \) leptons are also found in events in which hadronic jets mimic the lepton signature. Such misidentified leptons, as well as non prompt leptons arising from decays of heavy-flavor hadrons or decays of light mesons within jets, are suppressed by imposing limits on the additional hadronic activity surrounding the lepton candidate in an event. The scalar sum of the transverse momenta of all charged particle tracks and the transverse energy in the ECAL and HCAL in a cone of \(\Delta R = \sqrt{(\Delta \phi)^2 + (\Delta \eta)^2} = 0.3 \) centered on the lepton candidate is calculated, excluding the contribution from the candidate itself. The candidate is retained if this sum is less than 4 (10)% of the electron (muon) \(p_T \).

Electrons (muons) from decays of \(Z \) bosons are suppressed by vetoing events containing a second lepton with \(p_T > 15 (10) \) GeV passing looser isolation criteria.

Since the analysis measures the lepton and neutrino momenta from \(W \) boson decays, there is no requirement on the \(\vec{E}_T \) in the event. Instead, to further reduce backgrounds from QCD multijet production, the selection requires \(M_T > 50 (30) \) GeV for the electron (muon) channel, where \(M_T = \sqrt{2|\vec{p}_T(\ell)||\vec{E}_T|(1 - \cos \Delta \phi)} \) and \(\Delta \phi \) is the angle between the missing transverse momentum and the lepton transverse momentum. The requirement on \(M_T \) is higher in the electron channel to compensate for the larger QCD multijet background. Given that the polarization and correlation of \(L_P \) with \(\cos \theta^* \) increase with \(p_T(W) \), while the number of available events decreases sharply with \(p_T(W) \), we require \(p_T(W) > 50 \) GeV as the result of an optimization study based on the expected statistical uncertainty of the \((f_l - f_R)\) measurement. As high-\(p_T \) \(W \) bosons are also produced in top quark decays, only events with up to three reconstructed jets are retained. The jets considered are particle-flow based [6] with \(p_T > 30 \) GeV, \(|\eta| < 5 \), and are clustered using the anti-\(k_t \) algorithm [7] with a distance parameter of 0.5. In data,
a total of 5485 (8626) events pass the selection requirements in the electron (muon) channel. These events are almost entirely W+jets events, with a small contamination from the processes $t\bar{t}$+jets, Z+jets and photon+jets. All these processes, and their expectations, are produced using the MADGRAPH [8, 9] generator, with the CTEQ6L [10] parton distribution function set, and are passed through a full simulation of the CMS detector based on the GEANT4 [11] package. There are 252 ± 93 (266 ± 84) estimated background events from simulation in the electron (muon) channel, where the uncertainty corresponds to the theoretical uncertainty on the relevant cross sections.

In the muon channel, the background from QCD multijet and heavy flavor production is expected to be negligible. In the electron channel, the simulation predicts a higher level of multijet background, and therefore the distribution of the L_P variable for the surviving background events is needed. This distribution is obtained using data enriched in misidentified electrons by reversing some of the electron selection requirements, as in [5]. We refer to this as the “antiselected sample”. As a cross-check, the procedure is also applied to simulated samples. The L_P distribution from the QCD multijet background after all selection cuts is found to be well reproduced by the antiselected electron sample.

The polarization fraction parameters $(f_L - f_R)$ and f_0 are measured using a binned maximum likelihood fit to the L_P variable, separately for W^+ and W^- bosons in the electron and muon final states. The L_P distribution for each of the three polarization states of the W boson is extracted from Monte Carlo samples which are reweighted to the angular distributions expected from each polarization state in the W boson center-of-mass frame. The L_P distributions are simulated in the presence of pile-up events matching the vertex multiplicity distribution observed in data, corresponding to an average of 2.8 reconstructed vertices per event.

The L_P distributions for electrons and muons are shown in Figs. 1 and 2, respectively. Also shown are the results of the fit to the individual components corresponding to the three W polarization states, and to the background. The background consists of an electroweak component and a QCD multijet component, which is negligible in the muon sample. The fit is carried out by keeping the electroweak background contribution fixed to the value predicted by simulation, whereas all other components, including the QCD multijet background, are allowed to vary. The results of the fits, along with the correlations between these extracted parameters, are listed for positively and negatively charged electrons and muons in Table 1. For each W boson charge, the results for electrons and muons are self-consistent. The correlations differ due to the QCD multijet component included in the fit to the electron final state. Also shown are the results from performing a combined fit, simultaneously to both the electron and muon data.

Several experimental and theoretical effects are considered as sources of systematic uncertainty. The most significant sources, which are listed in Table 2, stem from the recoil energy scale and resolution [12] uncertainties, which enter in the measurement of the transverse momentum of the W boson. The recoil energy scale is varied by its measured uncertainty [13] and the effect is propagated through the analysis, resulting in modified L_P distributions. The measurement is repeated and the full difference from the nominal value is quoted as the systematic uncertainty from this source. The effect is smaller for values of L_P close to one, corresponding to low values of \vec{E}_T, and hence the uncertainty is smaller for W^- relative to W^+. The same procedure is followed for the recoil resolution, electron energy, and muon momentum scale. Decays of Z bosons to electrons are used to derive corrections, in bins of the electron pseudorapidity, which calibrate the electron energy scale. An uncertainty of $\pm 50\%$ on these corrections is assumed, in order to cover the full range of variations. Decays of Z bosons to muons are used to constrain the muon momentum scale and an uncertainty of 1% at 100 GeV is found. The
Figure 1: Fit results using 36 pb$^{-1}$ of collision data for the $L_P(e^-)$ (left) and $L_P(e^+)$ (right) distributions. The left-handed, right-handed and longitudinal W components, with normalization as determined by the fit, are represented by the dashed, dotted, and dash-dotted lines respectively. The shaded distributions show the QCD and EWK backgrounds. The solid line represents the sum of all individual components, and can be directly compared with the data distribution (circles).

Figure 2: Fit results using 36 pb$^{-1}$ of collision data for the $L_P(\mu^-)$ (left) and $L_P(\mu^+)$ (right) distributions. The left-handed, right-handed and longitudinal W components, with normalization as determined by the fit, are represented by the dashed, dotted, and dash-dotted lines respectively. The shaded distribution shows the EWK backgrounds. The solid line represents the sum of all individual components, and can be directly compared with the data distribution (circles).
Table 1: A summary of the individual and combined fit results for negatively charged and positively charged electrons and muons. Systematic uncertainties from different sources are combined in quadrature.

	Fit result
$e : (f_L - f_R)^-$	$0.187 \pm 0.069 \text{ (stat.)} \pm 0.066 \text{ (syst.)}$
$e : f_0^-$	$0.130 \pm 0.200 \text{ (stat.)} \pm 0.174 \text{ (syst.)}$
Correlation	$-0.204 \text{ (stat.)}, -0.283 \text{ (stat. + syst.)}$
$e : (f_L - f_R)^+$	$0.277 \pm 0.060 \text{ (stat.)} \pm 0.050 \text{ (syst.)}$
$e : f_0^+$	$0.240 \pm 0.190 \text{ (stat.)} \pm 0.090 \text{ (syst.)}$
Correlation	$-0.295 \text{ (stat.)}, 0.001 \text{ (stat. + syst.)}$
$\mu : (f_L - f_R)^-$	$0.240 \pm 0.036 \text{ (stat.)} \pm 0.031 \text{ (syst.)}$
$\mu : f_0^-$	$0.183 \pm 0.087 \text{ (stat.)} \pm 0.123 \text{ (syst.)}$
Correlation	$0.395 \text{ (stat.)}, -0.308 \text{ (stat. + syst.)}$
$\mu : (f_L - f_R)^+$	$0.310 \pm 0.036 \text{ (stat.)} \pm 0.017 \text{ (syst.)}$
$\mu : f_0^+$	$0.171 \pm 0.085 \text{ (stat.)} \pm 0.099 \text{ (syst.)}$
Correlation	$-0.721 \text{ (stat.)}, -0.269 \text{ (stat. + syst.)}$
Combined: $f_L - f_R$	$0.226 \pm 0.031 \text{ (stat.)} \pm 0.050 \text{ (syst.)}$
Combined: f_0	$0.162 \pm 0.078 \text{ (stat.)} \pm 0.136 \text{ (syst.)}$
Correlation	$0.304 \text{ (stat.)}, -0.326 \text{ (stat. + syst.)}$
Combined: $(f_L - f_R)^+$	$0.300 \pm 0.031 \text{ (stat.)} \pm 0.034 \text{ (syst.)}$
Combined: f_0^+	$0.192 \pm 0.075 \text{ (stat.)} \pm 0.089 \text{ (syst.)}$
Correlation	$-0.660 \text{ (stat.)}, -0.121 \text{ (stat. + syst.)}$
Table 2: Summary of the leading systematic uncertainties for the electron and muon final states, as well as for the combined measurement. The total systematic uncertainties are also shown for reference.

Uncertainty	$(f_L - f_R)^-$	f_0^-	$(f_L - f_R)^+$	f_0^+
Electron channel				
Recoil energy scale	±0.042	±0.150	±0.027	±0.078
Recoil resolution	±0.046	±0.047	±0.037	±0.039
Electron scale	±0.017	±0.014	±0.019	±0.016
Total uncertainty	±0.066	±0.174	±0.050	±0.090
Muon channel				
Recoil energy scale	±0.029	±0.123	±0.011	±0.092
Recoil resolution	±0.012	±0.006	±0.012	±0.004
Muon scale	±0.002	±0.007	±0.004	±0.008
Total uncertainty	±0.031	±0.123	±0.017	±0.099
Combined measurement				
Recoil energy scale	±0.033	±0.133	±0.016	±0.087
Recoil resolution	±0.035	±0.023	±0.027	±0.015
Electron scale	±0.013	±0.011	±0.012	±0.008
Muon scale	±0.002	±0.004	±0.004	±0.004
Total uncertainty	±0.050	±0.136	±0.034	±0.089

The fit range of the lepton projection variable is restricted to $0.0 < L_P < 1.3$, as a result of the minimization of the combined statistical and systematic uncertainties of the measurement.

The uncertainty on the modeling of the QCD background in the electron channel is estimated using the sample of antiselected electrons which yields the shape of the L_P distribution for this background. The fit is repeated multiple times, whilst varying the L_P distribution of the antiselected sample within its statistical uncertainties. The variation in the fit results is then used as an estimate of the systematic uncertainty, which is found to be negligible when compared to the leading systematic uncertainties.

A mismeasurement of the lepton charge dilutes the measurement of the W boson polarization. The misidentification rate is studied as a function of pseudorapidity using Z bosons decaying into a pair of oppositely charged leptons. This effect is found to be negligible for both electron and muon channels.

The systematic uncertainty arising from matching the vertex multiplicity distribution in the simulation to that observed in the data is estimated by varying the former within the statistical uncertainty of the latter, and is found to be negligible.

The effect of the theoretical uncertainties on the normalization of the electroweak background distributions, corresponding to 25% for the Z boson and 50% for the top quark, is included in the fit and found to contribute a negligible systematic uncertainty to the W boson polarization measurement. The lepton projection variable also depends weakly on the values of the polarization parameters A_1, A_2 and A_3, which are not measured. In order to evaluate the magnitude of the effect, these coefficients are varied by $±10\%$ with respect to recent standard model calculations at leading-order QCD [14]. These variations produce a negligible change in the W boson polarization measurement. A similar result is obtained for the shape of the L_P distributions by varying the parton distribution functions using the CTEQ6.6 PDF error set.
Figure 3: The muon fit result (black dot) in the \((f_L - f_R, f_0)\) plane for negatively charged (left) and positively charged (right) leptons. The 68% confidence level contours for the statistical and total uncertainties are shown by the green shaded region and the black contour respectively. The disallowed region is hatched.

The muon fit result, having the smallest total uncertainty, is shown in the \((f_L - f_R, f_0)\) plane for each W charge in Fig. 3. The 68% confidence level contours for both the statistical and total uncertainties are also shown. With the current sensitivity, the values of \((f_L - f_R)\) and \(f_0\) do not differ significantly for \(W^+\) and \(W^-\). When compared to recent standard model calculations [14], the results agree well.

In conclusion, the first measurement of the polarization of W bosons with large transverse momenta at a pp collider has been presented. Using a sample of collision data corresponding to an integrated luminosity of 36 pb\(^{-1}\), the measurement is performed for both charges of the W boson, in the electron and muon final states. The results from both of these channels are consistent, as are the combined fit results. The muon fit result yields the most precise measurement, \((f_L - f_R)^- = 0.240 \pm 0.036\) (stat.) \(\pm 0.031\) (syst.) and \(f_0^- = 0.183 \pm 0.087\) (stat.) \(\pm 0.123\) (syst.) for negatively charged W bosons, and \((f_L - f_R)^+ = 0.310 \pm 0.036\) (stat.) \(\pm 0.017\) (syst.) and \(f_0^+ = 0.171 \pm 0.085\) (stat.) \(\pm 0.099\) (syst.) for positively charged W bosons. This measurement establishes a difference between the left-handed and right-handed polarization parameters with a significance of 7.8 standard deviations for \(W^+\) bosons and 5.1 standard deviations for \(W^-\) bosons. This is the first observation that high-\(p_T\) W bosons produced in pp collisions are predominantly left-handed, as expected in the standard model.

We wish to congratulate our colleagues in the CERN accelerator departments for the excellent performance of the LHC machine. We thank the technical and administrative staff at CERN and other CMS institutes, and acknowledge support from: FMSR (Austria); FNRS and FWO (Belgium); CNPq, CAPES, FAPERJ, and FAPESP (Brazil); MES (Bulgaria); CERN; CAS, MoST, and NSFC (China); COLCIENCIAS (Colombia); MSES (Croatia); RPF (Cyprus); Academy of Sciences and NICPB (Estonia); Academy of Finland, ME, and HIP (Finland); CEA and CNRS/IN2P3 (France); BMBF, DFG, and HGF (Germany); GSRT (Greece); OTKA and NKTH (Hungary); DAE and DST (India); IPM (Iran); SFI (Ireland); INFN (Italy); NRF and WCU (Korea); LAS (Lithuania); CINVESTAV, CONACYT, SEP, and UASLP-FAI (Mexico); PAEC (Pakistan); SCSR (Poland); FCT (Portugal); JINR (Armenia, Belarus, Georgia, Ukraine, Uzbekistan); MST and
MAE (Russia); MSTD (Serbia); MICINN and CPAN (Spain); Swiss Funding Agencies (Switzerland); NSC (Taipei); TUBITAK and TAEK (Turkey); STFC (United Kingdom); DOE and NSF (USA).

References

[1] E. Mirkes, “Angular decay distribution of leptons from W-bosons at NLO in hadronic collisions”, *Nucl. Phys.* **B387** (1992) 3. doi:10.1016/0550-3213(92)90046-E.

[2] CMS Collaboration, “Commissioning of the particle-flow event reconstruction with leptons from J/Ψ and W decays at 7 TeV”, *CMS Physics Analysis Summary CMS-PAS-PFT-10-003* (2010).

[3] CMS Collaboration, “The CMS experiment at the CERN LHC”, *JINST* **03** (2008) S08004. doi:10.1088/1748-0221/3/08/S08004.

[4] CMS Collaboration, “CMS tracking performance results from early LHC operation”, *Eur. Phys. J.* **C70** (2010) 1165. doi:10.1140/epjc/s10052-010-1491-3.

[5] CMS Collaboration, “Measurements of Inclusive W and Z Cross Sections in pp Collisions at $\sqrt{s} = 7$ TeV”, *JHEP* **01** (2011) 080. doi:10.1007/JHEP01(2011)080.

[6] CMS Collaboration, “Particle-Flow Event Reconstruction in CMS and Performance for Jets, Taus, and E_T”, *CMS Physics Analysis Summary CMS-PAS-PFT-09-001* (2009).

[7] M. Cacciari, G. P. Salam, and G. Soyez, “The anti-kt jet clustering algorithm”, *JHEP* **04** (2008) 063. doi:10.1088/1126-6708/2008/04/063.

[8] J. Alwall et al., “MadGraph/MadEvent v4: The New Web Generation”, *JHEP* **09** (2007) 028. doi:10.1088/1126-6708/2007/09/028.

[9] T. Sjöstrand, S. Mrenna, and P. Skands, “PYTHIA 6.4 Physics and Manual”, *JHEP* **05** (2006) 026. doi:10.1088/1126-6708/2006/05/026.

[10] P. M. Nadolsky et al., “Implications of CTEQ global analysis for collider observables”, *Phys. Rev.* **D78** (2008) 013004. doi:10.1103/PhysRevD.78.013004.

[11] S. Agostinelli et al., “GEANT4—a simulation toolkit”, *Nucl. Inst. and Meth.* **A506** (2003) 250. doi:10.1016/S0168-9002(03)01368-8.

[12] CMS Collaboration, “CMS MET Performance in Events Containing Electroweak Bosons from pp Collisions at $\sqrt{s} = 7$ TeV”, *CMS Physics Analysis Summary CMS-PAS-JME-10-005* (2010).

[13] CMS Collaboration, “Determination of the Jet Energy Scale in CMS with pp Collisions at $\sqrt{s} = 7$ TeV”, *CMS Physics Analysis Summary CMS-PAS-JME-10-010* (2010).

[14] Z. Bern et al., “Left-Handed W bosons at the LHC”, *arXiv:1103.5445*.
The CMS Collaboration

Yerevan Physics Institute, Yerevan, Armenia
S. Chatrchyan, V. Khachatryan, A.M. Sirunyan, A. Tumasyan

Institut für Hochenergiephysik der OeAW, Wien, Austria
W. Adam, T. Bergauer, M. Dragicevic, J. Erö, C. Fabjan, M. Friedl, R. Frühwirth, V.M. Ghete, J. Hammer, S. Hänsel, M. Hoch, N. Hörmann, J. Hrubec, M. Jeitler, W. Kiesenhofer, M. Krammer, D. Liko, I. Mikulec, M. Pernicka, H. Rohringer, R. Schöfbeck, J. Strauss, A. Taurok, F. Teischinger, P. Wagner, W. Waltenberger, G. Walzel, E. Widl, C.-E. Wulz

National Centre for Particle and High Energy Physics, Minsk, Belarus
V. Mossolov, N. Shumeiko, J. Suarez Gonzalez

Universiteit Antwerpen, Antwerpen, Belgium
L. Benucci, E.A. De Wolf, X. Janssen, J. Maes, T. Maes, L. Mucibello, S. Ochesanu, B. Roland, R. Roughy, M. Selvaggi, H. Van Haevermaet, P. Van Mechelen, N. Van Remortel

Vrije Universiteit Brussel, Brussel, Belgium
F. Blekman, S. Blyweert, J. D’Hondt, O. Devroede, R. Gonzalez Suarez, A. Kalogeropoulos, M. Maes, W. Van Doninck, P. Van Mulders, G.P. Van Onsem, I. Villella

Université Libre de Bruxelles, Bruxelles, Belgium
O. Charaf, B. Clerbaux, G. De Lentdecker, V. Dero, A.P.R. Gay, G.H. Hammad, T. Hreus, P.E. Marage, L. Thomas, C. Vander Velde, P. Vanlaer

Ghent University, Ghent, Belgium
V. Adler, A. Cimmino, S. Costantini, M. Grunewald, B. Klein, J. Lellouch, A. Marinov, J. Mccartin, D. Ryckbosch, F. Thyssen, M. Tytgat, L. Vanelderen, P. Verwilligen, S. Walsh, N. Zaganidis

Université Catholique de Louvain, Louvain-la-Neuve, Belgium
S. Basegmez, G. Bruno, J. Caudron, L. Cearl, E. Cortina Gil, J. De Favereau De Jeneret, C. Delaere, D. Favart, A. Giannamico, G. Grégoire, J. Hollar, V. Lemaitre, J. Liao, O. Militaru, S. Ovyn, D. Pagano, A. Pin, K. Piotrzkowski, N. Schul

Université de Mons, Mons, Belgium
N. Beliy, T. Caebergs, E. Daubie

Centro Brasileiro de Pesquisas Fisicas, Rio de Janeiro, Brazil
G.A. Alves, D. De Jesus Damiao, M.E. Pol, M.H.G. Souza

Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil
W. Carvalho, E.M. Da Costa, C. De Oliveira Martins, S. Fonseca De Souza, L. Mundim, H. Nogima, V. Oguri, W.L. Prado Da Silva, A. Santoro, S.M. Silva Do Amaral, A. Sznajder, F. Torres Da Silva De Araujo

Instituto de Fisica Teorica, Universidade Estadual Paulista, Sao Paulo, Brazil
F.A. Dias, T.R. Fernandez Perez Tomei, E. M. Gregores, C. Lagana, F. Marinho, P.G. Mercadante, S.F. Novaes, Sandra S. Padula

Institute for Nuclear Research and Nuclear Energy, Sofia, Bulgaria
N. Darmenov, L. Dimitrov, V. Ganchev, P. Iaydjiev, S. Piperov, M. Rodozov, Stoykova, G. Sultanov, V. Tcholakov, R. Trayanov, I. Vankov
University of Sofia, Sofia, Bulgaria
A. Dimitrov, R. Hadjiiska, A. Karadzhinova, V. Kozhuharov, L. Litov, M. Mateev, B. Pavlov, P. Petkov

Institute of High Energy Physics, Beijing, China
J.G. Bian, G.M. Chen, H.S. Chen, C.H. Jiang, D. Liang, S. Liang, X. Meng, J. Tao, J. Wang, J. Wang, X. Wang, Z. Wang, H. Xiao, M. Xu, J. Zang, Z. Zhang

State Key Lab. of Nucl. Phys. and Tech., Peking University, Beijing, China
Y. Ban, S. Guo, Y. Guo, W. Li, Y. Mao, S.J. Qian, H. Teng, L. Zhang, B. Zhu, W. Zou

Universidad de Los Andes, Bogota, Colombia
A. Cabrera, B. Gomez Moreno, A.A. Ocampo Rios, A.F. Osorio Oliveros, J.C. Sanabria

Technical University of Split, Split, Croatia
N. Godinovic, D. Lelas, K. Lelas, R. Plestina³, D. Polic, I. Puljak

University of Split, Split, Croatia
Z. Antunovic, M. Dzelalija

Institute Rudjer Boskovic, Zagreb, Croatia
V. Brigljevic, S. Duric, K. Kadija, S. Morovic

University of Cyprus, Nicosia, Cyprus
A. Attikis, M. Galanti, J. Mousa, C. Nicolaou, F. Ptochos, P.A. Razis

Charles University, Prague, Czech Republic
M. Finger, M. Finger Jr.

Academy of Scientific Research and Technology of the Arab Republic of Egypt, Egyptian Network of High Energy Physics, Cairo, Egypt
Y. Assran⁴, S. Khalil⁵, M.A. Mahmoud⁶

National Institute of Chemical Physics and Biophysics, Tallinn, Estonia
A. Hektor, M. Kadastik, M. Müntel, M. Raidal, L. Rebane

Department of Physics, University of Helsinki, Helsinki, Finland
V. Azzolini, P. Eerola, G. Fedi

Helsinki Institute of Physics, Helsinki, Finland
S. Czellar, J. Härkönen, A. Heikkinen, V. Karimäki, R. Kinnunen, M.J. Kortelainen, T. Lampén, K. Lassila-Perini, S. Lehti, T. Lindén, P. Luukka, T. Mäenpää, E. Tuominen, J. Tuominiemi, E. Tuovinen, D. Ungaro, L. Wendland

Lappeenranta University of Technology, Lappeenranta, Finland
K. Banzuzi, A. Korpela, T. Tuuva

Laboratoire d’Annecy-le-Vieux de Physique des Particules, IN2P3-CNRS, Annecy-le-Vieux, France
D. Sillou

DSM/IRFU, CEA/Saclay, Gif-sur-Yvette, France
M. Besancon, S. Choudhury, M. Dejardin, D. Denegri, B. Fabbro, J.L. Faure, F. Ferri, S. Ganjour, F.X. Gentit, A. Givernaud, P. Gras, G. Hamel de Monchenault, P. Jarry, E. Locci, J. Malcles, M. Marionneau, L. Millischer, J. Rander, A. Rosowsky, I. Shreyber, M. Titov, P. Verrecchia
Laboratoire Leprince-Ringuet, Ecole Polytechnique, IN2P3-CNRS, Palaiseau, France
S. Baffioni, F. Beaudette, L. Benhabib, L. Bianchini, M. Blujić, C. Broutin, P. Busson, C. Charlot, T. Dahms, L. Dobrzynski, S. Elgammal, R. Granier de Cassagnac, M. Haguenauer, P. Miné, C. Mironov, C. Ochando, P. Paganini, D. Sabes, R. Salerno, Y. Sirois, C. Thiebaux, B. Wyslouch, A. Zabi

Institut Pluridisciplinaire Hubert Curien, Université de Strasbourg, Université de Haute Alsace Mulhouse, CNRS-IN2P3, Strasbourg, France
J.-L. Agram, J. Andrea, D. Bloch, D. Bodin, J.-M. Brom, M. Cardaci, E.C. Chabert, C. Collard, E. Conte, F. Drouhin, C. Ferro, J.-C. Fontaine, D. Gelé, U. Goerlach, S. Greder, P. Juillot, M. Karim, A.-C. Le Bihan, Y. Mikami, P. Van Hove

Centre de Calcul de l’Institut National de Physique Nucleaire et de Physique des Particules (IN2P3), Villeurbanne, France
F. Fassi, D. Mercier

Université de Lyon, Université Claude Bernard Lyon 1, CNRS-IN2P3, Institut de Physique Nucléaire de Villeurbanne, France
C. Baty, S. Beauceron, N. Beaupere, M. Bedjidian, O. Bondu, G. Boudoul, D. Boumediene, H. Brun, J. Chasserat, R. Chierici, D. Contardo, P. Depasse, H. El Mamouni, J. Fay, S. Gascon, B. Ille, T. Kurca, T. Le Grand, M. Lethuillier, L. Mirabito, S. Perries, V. Sordini, S. Tosi, Y. Tschudi, P. Verdier

Institute of High Energy Physics and Informatization, Tbilisi State University, Tbilisi, Georgia
D. Lomidze

RWTH Aachen University, I. Physikalisches Institut, Aachen, Germany
G. Anagnostou, M. Edelhoff, L. Feld, N. Heracleous, O. Hindrichs, R. Jussen, K. Klein, J. Merz, N. Mohr, A. Ostapchuk, A. Perieanu, F. Raupach, J. Sammet, S. Schael, D. Sprenger, H. Weber, M. Weber, B. Wittmer

RWTH Aachen University, III. Physikalisches Institut A, Aachen, Germany
M. Ata, W. Bender, E. Dietz-Laursonn, M. Erdmann, J. Frangenheim, T. Hebbeker, A. Hinzmann, K. Hoepfner, T. Klempich, D. Klingebiel, P. Kreuzer, D. Lanské, C. Magass, M. Merschmeyer, A. Meyer, P. Papacz, H. Pieta, H. Reithler, S.A. Schmitz, L. Sonnenschein, J. Steggemann, D. Teyssier

RWTH Aachen University, III. Physikalisches Institut B, Aachen, Germany
M. Bontenackels, M. Davids, M. Duda, G. Flügge, H. Geenen, M. Giffels, W. Haj Ahmad, D. Heydhausen, T. Kress, Y. Kuessel, A. Linn, A. Nowack, L. Perchalla, O. Pooth, J. Rennefeld, P. Sauerland, A. Stahl, M. Thomas, D. Tornier, M.H. Zoeller

Deutsches Elektronen-Synchrotron, Hamburg, Germany
M. Aldaya Martin, W. Behrenhoff, U. Behrens, M. Bergholz, A. Bethani, K. Borras, A. Cakir, A. Campbell, E. Castro, D. Dammann, G. Eckerlin, D. Eckstein, A. Flossdorf, G. Flucke, A. Geiser, J. Hauk, H. Jung, M. Kasemann, I. Katkov, P. Katsas, C. Kleinwort, H. Kluge, A. Knutsson, M. Krämer, D. Krücker, E. Kuznetsova, W. Lange, W. Lohmann, R. Mankel, M. Marienfeld, J.-A. Melzer-Pellmann, A.B. Meyer, J. Mnich, A. Mussgiller, J. Olzem, D. Pitzl, A. Raspereza, A. Raval, M. Rosin, R. Schmidt, T. Schoerner-Sadenius, N. Sen, A. Spiridonov, M. Stein, J. Tomaszewska, R. Walsh, C. Wissing

University of Hamburg, Hamburg, Germany
C. Autermann, V. Blobel, S. Bobrovskyi, J. Draeger, H. Enderle, U. Gebbert, K. Kaschube,
G. Kaussen, R. Klanner, J. Lange, B. Mura, S. Naumann-Emme, F. Nowak, N. Pietsch, C. Sander, H. Schettler, P. Schleper, M. Schröder, T. Schum, J. Schwandt, H. Stadie, G. Steinbrück, J. Thomsen

Institut für Experimentelle Kernphysik, Karlsruhe, Germany
C. Barth, J. Bauer, V. Buege, T. Chwalek, W. De Boer, A. Dierlamm, G. Dirkes, M. Feindt, J. Grusche, C. Hackstein, F. Hartmann, M. Heinrich, H. Held, K.H. Hoffmann, S. Honc, J.R. Komaragiri, T. Kuhr, D. Martschei, S. Mueller, Th. Müller, M. Niegel, O. Oberst, A. Oehler, J. Ott, T. Peiffer, G. Quast, K. Rabbertz, F. Ratnikov, N. Ratnikova, M. Renz, C. Saout, A. Scheurer, P. Schieferdecker, F.-P. Schilling, M. Schmanau, G. Schott, H.J. Simonis, F.M. Stober, D. Troendle, J. Wagner-Kuhr, T. Weiler, M. Zeise, V. Zhukov, E.B. Ziebarth

Institute of Nuclear Physics “Demokritos”, Aghia Paraskevi, Greece
G. Daskalakis, T. Geralis, S. Kesisoglou, A. Kyriakis, D. Loukas, I. Manolakos, A. Markou, C. Markou, C. Mavrommatis, E. Ntomari, E. Petrakou

University of Athens, Athens, Greece
L. Gouskos, T.J. Mertzimekis, A. Panagiotou, E. Stiliaris

University of Ioánnina, Ioánnina, Greece
I. Evangelou, C. Foudas, P. Kokkas, N. Manthos, I. Papadopoulos, V. Patras, F.A. Triantis

KFKI Research Institute for Particle and Nuclear Physics, Budapest, Hungary
A. Aranyi, G. Bencze, L. Boldizsar, C. Hajdu, P. Hidas, D. Horvath, A. Kapusi, K. Krajczar, F. Sikler, G.I. Veres, G. Vesztergombi

Institute of Nuclear Research ATOMKI, Debrecen, Hungary
N. Beni, J. Molnar, J. Palinkas, Z. Szillasi, V. Veszpremi

University of Debrecen, Debrecen, Hungary
P. Raics, Z.L. Trocsanyi, B. Ujvari

Panjab University, Chandigarh, India
S. Bansal, S.B. Beri, V. Bhatnagar, N. Dhingra, R. Gupta, M. Jindal, M. Kaur, J.M. Kohli, M.Z. Mehta, N. Nishu, L.K. Saini, A. Sharma, A.P. Singh, J.B. Singh, S.P. Singh

University of Delhi, Delhi, India
S. Ahuja, S. Bhattacharya, B.C. Choudhary, P. Gupta, S. Jain, S. Jain, A. Kumar, K. Ranjan, R.K. Shivpuri

Bhabha Atomic Research Centre, Mumbai, India
R.K. Choudhury, D. Dutta, S. Kailas, V. Kumar, A.K. Mohanty, L.M. Pant, P. Shukla

Tata Institute of Fundamental Research - EHEP, Mumbai, India
T. Aziz, M. Guchait, A. Gurtoo, M. Maity, D. Majumder, G. Majumder, K. Mazumdar, G.B. Mohanty, A. Saha, K. Sudhakar, N. Wickramage

Tata Institute of Fundamental Research - HECR, Mumbai, India
S. Banerjee, S. Dugad, N.K. Mondal

Institute for Research and Fundamental Sciences (IPM), Tehran, Iran
H. Arfai, H. Bakhshiansohi, S.M. Etesami, A. Fahim, M. Hashemi, A. Jafari, M. Khakzad, A. Mohammad, M. Mohammad Najafabadi, S. Paktinat Mehdiahi, B. Safarzadeh, M. Zeinali
T. Lomtadzea, L. Martinia,22, A. Messineoa,b, F. Pallaa, M. Peruzzia, G. Segneria, A.T. Serbana, P. Spagnoloa, R. Tenchinia, G. Tonellia,b,1, A. Venturia,1, P.G. Verdinia

INFN Sezione di Roma a, Università di Roma “La Sapienza” b, Roma, Italy
L. Baronea,b, F. Cavallaria, D. Del Rea,b, E. Di Marcoa,b, M. Diemoza, D. Francia,b, M. Grassia,1, E. Longoa,b, S. Nourbakhsha, G. Organtinia,b, F. Pandolfia,b,1, R. Paramattia, S. Rahatloua,b, C. Rovelli1

INFN Sezione di Torino a, Università di Torino b, Università del Piemonte Orientale (Novara) c, Torino, Italy
N. Amapanea,b, R. Arcidiaconoa,c, S. Argiroa,b, M. Arneodoa,c, C. Biinoa, C. Bottaia,b,1, N. Cartigliaa, R. Castelloa,b, M. Costaa,b, N. Demariaa, A. Grazianoa,b,1, C. Mariottia, M. Maronea,b, S. Masellia, E. Migliorea,b, G. Milaa,b, V. Monacoa,b, M. Musicha,b, M.M. Obertinoa,c, N. Pastronea, M. Pelliccionia,b, A. Romeroa,b, M. Ruspaa,c, R. Sacchia,b, V. Solaa,b, A. Solanoa,b, A. Staianoa, A. Vilela Pereiraa

INFN Sezione di Trieste a, Università di Trieste b, Trieste, Italy
S. Belfortea, F. Cossuttia, G. Della Riccaa,b, B. Gobboa, D. Montaninoa,b, A. Penzoa

Kangwon National University, Chunchon, Korea
S.G. Heo, S.K. Nam

Kyungpook National University, Daegu, Korea
S. Chang, J. Chung, D.H. Kim, G.N. Kim, J.E. Kim, D.J. Kong, H. Park, S.R. Ro, D. Son, D.C. Son, T. Son

Chonnam National University, Institute for Universe and Elementary Particles, Kwangju, Korea
Zero Kim, J.Y. Kim, S. Song

Korea University, Seoul, Korea
S. Choi, B. Hong, M.S. Jeong, M. Jo, H. Kim, J.H. Kim, T.J. Kim, K.S. Lee, D.H. Moon, S.K. Park, H.B. Rhee, E. Seo, S. Shin, K.S. Sim

University of Seoul, Seoul, Korea
M. Choi, S. Kang, H. Kim, C. Park, I.C. Park, S. Park, G. Ryu

Sungkyunkwan University, Suwon, Korea
Y. Choi, Y.K. Choi, J. Goh, M.S. Kim, E. Kwon, J. Lee, S. Lee, H. Seo, I. Yu

Vilnius University, Vilnius, Lithuania
M.J. Bilinskas, I. Grigelionis, M. Janulis, D. Martisiute, P. Petrov, T. Sabonis

Centro de Investigacion y de Estudios Avanzados del IPN, Mexico City, Mexico
H. Castilla-Valdez, E. De La Cruz-Burelo, I. Heredia-de La Cruz, R. Lopez-Fernandez, R. Magaña Villalba, A. Sánchez-Hernández, L.M. Villasenor-Cendejas

Universidad Iberoamericana, Mexico City, Mexico
S. Carrillo Moreno, F. Vazquez Valencia

Benemerita Universidad Autonoma de Puebla, Puebla, Mexico
H.A. Salazar Ibarguen

Universidad Autónoma de San Luis Potosí, San Luis Potosí, Mexico
E. Casimiro Linares, A. Morelos Pineda, M.A. Reyes-Santos
University of Auckland, Auckland, New Zealand
D. Krofcheck, J. Tam, C.H. Yiu

University of Canterbury, Christchurch, New Zealand
P.H. Butler, R. Doesburg, H. Silverwood

National Centre for Physics, Quaid-I-Azam University, Islamabad, Pakistan
M. Ahmad, I. Ahmed, M.I. Asghar, H.R. Hooran, W.A. Khan, T. Khurshid, S. Qazi

Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Warsaw, Poland
G. Brona, M. Cwiok, W. Dominik, K. Doroba, A. Kalinowski, M. Konecki, J. Krolikowski

Soltan Institute for Nuclear Studies, Warsaw, Poland
T. Frueboes, R. Gokieli, M. Górski, M. Kazana, K. Nawrocki, K. Romanowska-Rybinska, M. Szleper, G. Wrochna, P. Zalewski

Laboratório de Instrumentação e Física Experimental de Partículas, Lisboa, Portugal
N. Almeida, P. Bargassa, A. David, P. Faccioli, P.G. Ferreira Parracho, M. Gallinaro, P. Musella, A. Nayak, P.Q. Ribeiro, J. Seixas, J. Varela

Joint Institute for Nuclear Research, Dubna, Russia
S. Afanasiev, I. Belotelov, P. Bunin, I. Golutvin, A. Kamenev, V. Karjavin, G. Kozlov, A. Lanev, P. Moisenz, V. Palichik, V. Perelygin, S. Shmatov, V. Smirnov, A. Volodko, A. Zarubin

Petersburg Nuclear Physics Institute, Gatchina (St Petersburg), Russia
V. Golovtsov, Y. Ivanov, V. Kim, P. Levchenko, V. Murzin, V. Oreshkin, I. Smirnov, V. Sulimov, L. Uvarov, S. Vavilov, A. Vorobyev, A. Vorobyev

Institute for Nuclear Research, Moscow, Russia
Yu. Andreev, A. Derenenev, S. Gninenko, N. Golubev, M. Kisinov, N. Kraskinov, V. Matveev, A. Pashenkov, A. Toropin, S. Troitsky

Institute for Theoretical and Experimental Physics, Moscow, Russia
V. Epshteyn, V. Gavrilov, V. Kaftanov, M. Kossov, A. Krokhinot, N. Lychkovskaya, V. Popov, G. Safronov, S. Semenov, S. Stolin, E. Vlasov, A. Zhokin

Moscow State University, Moscow, Russia
E. Boos, M. Dubinin, L. Dudko, A. Ershov, A. Gribushin, O. Kodolova, I. Lokhtin, A. Markina, S. Obraztsov, M. Perfilov, S. Petrushanko, L. Sarycheva, V. Savrin, A. Snigirev

P.N. Lebedev Physical Institute, Moscow, Russia
V. Andreev, M. Azarkin, I. Dremin, M. Kirakosyan, A. Leonidov, S.V. Rusakov, A. Vinogradov

State Research Center of Russian Federation, Institute for High Energy Physics, Protvino, Russia
I. Azhgirey, S. Bitioukov, V. Grishin, V. Kachanov, D. Konstantinov, A. Koralev, V. Krychkine, V. Petrov, R. Ryutin, S. Slabospitsky, A. Sobol, L. Tourchanovitch, S. Troshin, N. Tyurin, A. Uzunian, A. Volkov

University of Belgrade, Faculty of Physics and Vinca Institute of Nuclear Sciences, Belgrade, Serbia
P. Adzic, M. Djordjevic, D. Krpic, J. Milosevic

Centro de Investigaciones Energéticas Medioambientales y Tecnológicas (CIEMAT), Madrid, Spain
M. Aguilar-Benitez, J. Alcaraz Maestre, P. Arce, C. Battilana, E. Calvo, M. Cepeda, M. Cerrada,
M. Chamizo Llatas, N. Colino, B. De La Cruz, A. Delgado Peris, C. Diez Pardos, D. Domínguez Vázquez, C. Fernandez Bedoya, J.P. Fernández Ramos, A. Ferrando, J. Flix, M.C. Fouz, P. Garcia-Abia, O. Gonzalez Lopez, S. Goy Lopez, J.M. Hernandez, M.I. Josa, G. Merino, J. Puerta Pelayo, I. Redondo, L. Romero, J. Santaolalla, M.S. Soares, C. Willmott

Universidad Autónoma de Madrid, Madrid, Spain

C. Albajar, G. Codispoti, J.F. de Trocóniz

Universidad de Oviedo, Oviedo, Spain

J. Cuevas, J. Fernandez Menendez, S. Folgueras, I. Gonzalez Caballero, L. Lloret Iglesias, J.M. Vizan Garcia

Instituto de Física de Cantabria (IFCA), CSIC-Universidad de Cantabria, Santander, Spain

J.A. Brochero Cifuentes, I.J. Cabrillo, A. Calderon, S.H. Chung, J. Duarte Campderros, M. Felcini, M. Fernandez, G. Gomez, J. Gonzalez Sanchez, C. Jorda, P. Lobelle Pardo, A. Lopez Virto, J. Marco, R. Marco, C. Martinez Rivero, F. Matorras, F.J. Munoz Sanchez, J. Piedra Gomez, T. Rodrigo, A.Y. Rodriguez-Marrero, A. Ruiz-Jimeno, L. Scodellaro, M. Sobron Sanudo, I. Vila, R. Vilar Cortabitarte

CERN, European Organization for Nuclear Research, Geneva, Switzerland

D. Abbaneo, E. Auffray, G. Auzinger, P. Baillon, A.H. Ball, D. Barney, A.J. Bell, D. Benedetti, C. Bernet, W. Bialas, P. Bloch, A. Bocci, S. Bolognesi, M. Bona, H. Breuker, K. Burkowski, T. Camporesi, G. Cerminara, J.A. Coarasa Perez, B. Curé, D. D’Enterria, A. De Roeck, S. Di Guida, N. Dupont-Sagorin, A. Elliott-Peisert, B. Frisch, W. Funk, A. Gaddi, G. Georgiou, H. Gerwig, D. Gigi, K. Gill, D. Giordano, F. Glege, R. Gomez-Reino Garrido, M. Gouzevitch, P. Govoni, S. Gowdy, L. Guiducci, M. Hansen, C. Hartl, J. Harvey, J. Hegner, H.F. Hoffmann, A. Honma, V. Innocente, P. Janot, K. Kaadze, E. Karavakis, P. Lecomte, D. Lemoine, L. Malgeri, L. Masetti, A. Maurissset, F. Mejiers, M. Mersi, E. Meschi, R. Moser, M.U. Mozer, M. Mulders, E. Nesvold, M. Nguyen, T. Orimoto, L. Orsini, E. Perez, A. Petrilli, A. Pfeiffer, M. Pierini, M. Pimiä, D. Piparo, G. Polese, A. Racz, J. Rodrigues Antunes, G. Rolandi, T. Rommerskirchen, M. Rovere, H. Sakulin, C. Schäfer, C. Schwik, I. Segoni, A. Sharma, P. Siegrist, M. Simon, S. Scolieri, M. Spichal, M. Stoye, M. Tadel, P. Tropea, A. Tsiropou, P. Vichoudis, M. Voutilainen, W.D. Zeuner

Paul Scherrer Institut, Villigen, Switzerland

W. Bertl, K. Deiters, W. Erdmann, K. Gabathuler, R. Horisberger, Q. Ingram, H.C. Kaestli, S. König, D. Kotlinski, U. Langenegger, F. Meier, D. Renker, T. Rohe, J. Sibille, A. Starodumov

Institute for Particle Physics, ETH Zurich, Zurich, Switzerland

P. Bortignon, L. Caminada, N. Chanon, Z. Chen, S. Cittolin, G. Dissertori, M. Dittmar, J. Engster, K. Freudenreich, C. Grab, A. Hervé, W. Hintz, P. Lecomte, W. Lustermann, C. Marchica, P. Martinez Ruiz del Arbol, P. Meridiani, P. Milenovic, F. Moortgat, C. Nagele, P. Nef, F. Nessi-Tedaldi, L. Pape, F. Pauss, T. Punz, A. Rizzi, F.J. Ronga, M. Rossini, L. Sala, A.K. Sanchez, M.-C. Sawley, B. Stieger, L. Tauscher, A. Thea, K. Theofilatos, D. Treille, C. Urscheler, R. Wallny, M. Weber, L. Wehrli, J. Weng

Universität Zürich, Zurich, Switzerland

E. Aguiló, C. Amsler, V. Chiocchia, S. De Visscher, C. Favaro, M. Ivova Rikova, B. Millan Mejias, P. Otiougova, C. Regenfus, P. Robmann, A. Schmidt, H. Snoek

National Central University, Chung-Li, Taiwan
Y.H. Chang, K.H. Chen, S. Dutta, C.M. Kuo, S.W. Li, W. Lin, Z.K. Liu, Y.J. Lu, D. Mekterovic, R. Volpe, J.H. Wu, S.S. Yu

National Taiwan University (NTU), Taipei, Taiwan

P. Bartalini, P. Chang, Y.H. Chang, Y.W. Chang, Y. Chao, K.F. Chen, W.-S. Hou, Y. Hsiung, K.Y. Kao, Y.J. Lei, R.-S. Lu, J.G. Shiu, Y.M. Tzeng, M. Wang

Cukurova University, Adana, Turkey

A. Adiguzel, M.N. Bakirci34, S. Cerci35, C. Dozen, I. Dumanoglu, E. Eskut, S. Girgis, G. Gokbulut, I. Hos, E.E. Kangal, A. Kayis Topaksu, G. Onengut, K. Ozdemir, S. Ozturk, A. Polatoz, K. Sogut36, D. Sunar Cerci35, B. Tali35, H. Topakli34, D. Uzun, L.N. Vergili, M. Vergili

Middle East Technical University, Physics Department, Ankara, Turkey

I.V. Akin, T. Aliev, S. Bilmis, M. Deniz, H. Gamsizkan, A.M. Guler, K. Ocalan, A. Ozpineci, M. Serin, R. Sever, U.E. Surat, E. Yildirim, M. Zeyrek

Bogazici University, Istanbul, Turkey

M. Deliomeroglu, D. Demir37, E. Gulmez, B. Isildak, M. Kaya38, O. Kaya38, S. Ozkorucuklu39, N. Sonmez40

National Scientific Center, Kharkov Institute of Physics and Technology, Kharkov, Ukraine

L. Levchuk

University of Bristol, Bristol, United Kingdom

F. Bostock, J.J. Brooke, T.L. Cheng, E. Clement, D. Cussans, R. Frazier, J. Goldstein, M. Grimes, M. Hansen, D. Hartley, G.P. Heath, H.F. Heath, L. Kreczko, S. Metson, D.M. Newbold41, K. Nirunpong, A. Poll, S. Senkin, V.J. Smith, S. Ward

Rutherford Appleton Laboratory, Didcot, United Kingdom

L. Basso42, K.W. Bell, A. Belyaev42, C. Brew, R.M. Brown, B. Camanzi, D.J.A. Cockerill, J.A. Coughlan, K. Harder, S. Harper, J. Jackson, B.W. Kennedy, E. Olaiva, D. Petyt, B.C. Radburn-Smith, C.H. Shepherd-Themistocleous, I.R. Tomalin, W.J. Womersley, S.D. Worm

Imperial College, London, United Kingdom

R. Bainbridge, G. Ball, J. Ballin, R. Beuselinck, O. Buchmuller, D. Colling, N. Cripps, M. Cutajar, G. Davies, M. Della Negra, W. Ferguson, J. Fulcher, D. Futyan, A. Gilbert, A. Guneratne Bryer, G. Hall, Z. Hatherell, J. Hays, G. Iles, M. Jarvis, G. Karapostoli, L. Lyons, B.C. MacEvoy, A.-M. Magnan, J. Marrouche, B. Mathias, R. Nandi, J. Nash, A. Nikitenko31, A. Papageorgiou, M. Pesaresi, K. Petridis, M. Pioppi43, D.M. Raymond, S. Rogerson, N. Rompotis, A. Rose, M.J. Ryan, C. Seez, P. Sharp, A. Sparrow, A. Tapper, S. Tourneur, M. Vazquez Acosta, T. Virdee, S. Wakefield, N. Wardle, D. Wardrope, T. Whyntie

Brunel University, Uxbridge, United Kingdom

M. Barrett, M. Chadwick, J.E. Cole, P.R. Hobson, A. Khan, P. Kyberd, D. Leslie, W. Martin, I.D. Reid, L. Teodorescu

Baylor University, Waco, USA

K. Hatakeyama

Boston University, Boston, USA

T. Bose, E. Carrera Jarrin, C. Fantasia, A. Heister, J. St. John, P. Lawson, D. Lazic, J. Rohlf, D. Sperka, L. Sulak

Brown University, Providence, USA

A. Avetisyan, S. Bhattacharya, J.P. Chou, D. Cutts, A. Ferapontov, U. Heintz, S. Jabeen,
O. Gutsche, J. Hanlon, R.M. Harris, J. Hirschauer, B. Hooberman, H. Jensen, M. Johnson,
U. Joshi, R. Khatiwada, B. Klima, K. Kousouris, S. Kunori, S. Kwan, C. Leonidopoulos,
P. Limon, D. Lincoln, R. Lipton, J. Lykken, K. Maeshima, J.M. Marraffino, D. Mason, P. McBride,
T. Miao, K. Mishra, S. Mrenna, Y. Musienko, C. Newman-Holmes, V. O’Dell, R. Pordes,
O. Prokofyev, N. Saoulidou, E. Sexton-Kennedy, S. Sharma, W.J. Spalding, L. Spiegel, P. Tan,
L. Taylor, S. Tkaczyk, L. Uplegger, E.W. Vaandering, R. Vidal, J. Whitmore, W. Wu, F. Yang,
F. Yumiceva, J.C. Yun

University of Florida, Gainesville, USA
D. Acosta, P. Avery, D. Bourilkov, M. Chen, M. De Gruttola, G.P. Di Giovanni, D. Dobur,
A. Drozdetskiy, R.D. Field, M. Fisher, Y. Fu, I.K. Furic, J. Gartner, B. Kim, J. Konigsberg,
A. Korytov, A. Kropivnitskaya, T. Kypreos, K. Matchev, G. Mitselmakher, L. Muniz, C. Prescott,
R. Remington, M. Schmitt, B. Scurlock, P. Sellers, N. Skhirtladze, M. Snowball, D. Wang,
J. Yelton, M. Zakaria

Florida International University, Miami, USA
C. Ceron, V. Gaultney, L. Kramer, L.M. Lebolo, S. Linn, P. Markowitz, G. Martinez, D. Mesa,
J.L. Rodriguez

Florida State University, Tallahassee, USA
T. Adams, A. Askev, J. Bochenek, J. Chen, B. Diamond, S.V. Gleyzer, J. Haas,
S. Hagopian, V. Hagopian, M. Jenkins, K.F. Johnson, H. Prosper, L. Quertenmont, S. Sekmen,
V. Veeraraghavan

Florida Institute of Technology, Melbourne, USA
M.M. Baarmand, B. Dorney, S. Guragain, M. Hohlmann, H. Kalakhety, R. Ralich,
I. Vodopiyanov

University of Illinois at Chicago (UIC), Chicago, USA
M.R. Adams, I.M. Anghel, L. Apanasevich, Y. Bai, V.E. Bazterra, R.R. Betts, J. Callner,
R. Cavanaugh, C. Dragoiu, L. Gauthier, C.E. Gerber, S. Hamdan, D.J. Hofman, S. Khalatyan,
G.J. Kunde, F. Lacroix, M. Malek, C. O’Brien, C. Silvestre, A. Smoron, D. Strom, N. Varelas

The University of Iowa, Iowa City, USA
U. Akgun, E.A. Albayrak, B. Bilki, W. Clarida, F. Duru, C.K. Lae, E. McCliment, J.-P. Merlo,
H. Mermerkaya, A. Mestvirishvili, A. Moeller, J. Nachtman, C.R. Newsom, E. Norbeck,
J. Olson, Y. Onel, F. Ozok, S. Sen, J. Wetzal, T. Yetkin, K. Yi

Johns Hopkins University, Baltimore, USA
B.A. Barnett, B. Blumenfeld, A. Bonato, C. Eskew, D. Fehling, G. Giurgiu, A.V. Gritsan, Z.J. Guo,
G. Hu, P. Maksimovic, S. Rappoccio, M. Swartz, N.V. Tran, A. Whitbeck

The University of Kansas, Lawrence, USA
P. Baringer, A. Bean, G. Benelli, O. Grachov, R.P. Kenny Iii, M. Murray, D. Noonan, S. Sanders,
J.S. Wood, V. Zhukova

Kansas State University, Manhattan, USA
A.f. Barfuss, T. Bolton, I. Chakaberia, A. Ivanov, S. Khalil, M. Makouski, Y. Maravin, S. Shrestha,
I. Svintradze, Z. Wan

Lawrence Livermore National Laboratory, Livermore, USA
J. Gronberg, D. Lange, D. Wright

University of Maryland, College Park, USA
A. Baden, M. Boutemeur, S.C. Eno, D. Ferencek, J.A. Gomez, N.J. Hadley, R.G. Kellogg, M. Kirn,
Y. Lu, A.C. Mignerey, K. Rossato, P. Rumerio, F. Santanastasio, A. Skuja, J. Temple, M.B. Tonjes, S.C. Tonwar, E. Twedt

Massachusetts Institute of Technology, Cambridge, USA
B. Alver, G. Bauer, J. Bendavid, W. Busza, E. Butz, I.A. Cali, M. Chan, V. Dutta, P. Everaerts, G. Gomez Ceballos, M. Goncharov, K.A. Hahn, P. Harris, Y. Kim, M. Klute, Y.-J. Lee, W. Li, C. Loizides, P.D. Luckey, T. Ma, S. Nahn, C. Paus, D. Ralph, C. Roland, G. Roland, M. Rudolph, G.S.F. Stephens, F. Stöckli, K. Sumorok, K. Sung, E.A. Wenger, S. Xie, M. Yang, Y. Yilmaz, A.S. Yoon, M. Zanetti

University of Minnesota, Minneapolis, USA
S.I. Cooper, P. Cushman, B. Dahmes, A. De Benedetti, P.R. Dudero, G. Franzoni, J. Haupt, K. Klapoecke, Y. Kubota, J. Mans, V. Rekovic, R. Rusack, M. Sasseville, A. Singovsky

University of Mississippi, University, USA
L.M. Cremaldi, R. Godang, R. Kroeger, L. Perera, R. Rahmat, D.A. Sanders, D. Summers

University of Nebraska-Lincoln, Lincoln, USA
K. Bloom, S. Bose, J. Butt, D.R. Claes, A. Dominguez, M. Eads, J. Keller, T. Kelly, I. Kravchenko, J. Lazo-Flores, H. Malbouisson, S. Malik, G.R. Snow

State University of New York at Buffalo, Buffalo, USA
U. Baur, A. Godshalk, I. Iashvili, S. Jain, A. Kharchilava, A. Kumar, S.P. Shipkowskii, K. Smith

Northeastern University, Boston, USA
G. Alversion, E. Barberis, D. Baumgartel, O. Boeriu, M. Chasco, S. Reucroft, J. Swain, D. Trocino, D. Wood, J. Zhang

Northwestern University, Evanston, USA
A. Anastassov, A. Kubik, N. Odell, R.A. Ofierzynski, B. Pollack, A. Pozdnyakov, M. Schmitt, S. Stoynev, M. Velasco, S. Won

University of Notre Dame, Notre Dame, USA
L. Antonelli, D. Berry, M. Hildreth, C. Jessop, D.J. Karmgard, J. Kolb, T. Kolberg, K. Lannon, W. Luo, S. Lynch, N. Marinelli, D.M. Morse, T. Pearson, R. Ruchti, J. Slaunwhite, N. Valls, M. Wayne, J. Ziegler

The Ohio State University, Columbus, USA
B. Bylsma, L.S. Durkin, J. Gu, C. Hill, P. Killewald, K. Kotov, T.Y. Ling, M. Rodenburg, G. Williams

Princeton University, Princeton, USA
N. Adam, E. Berry, P. Elmer, D. Gerbaudo, V. Halyo, P. Hebda, A. Hunt, J. Jones, E. Laird, D. Lopes Pegna, D. Marlow, T. Medvedeva, M. Mooney, J. Olsen, P. Piroué, X. Quan, H. Saka, D. Stickland, C. Tully, J.S. Werner, A. Zuranski

University of Puerto Rico, Mayaguez, USA
J.G. Acosta, X.T. Huang, A. Lopez, H. Mendez, S. Oliveros, J.E. Ramirez Vargas, A. Zatserklyaniy

Purdue University, West Lafayette, USA
E. Alagöz, V.E. Barnes, G. Bolla, L. Borrello, D. Bortoletto, A. Everett, A.F. Garfinkel, L. Gutay, Z. Hu, M. Jones, O. Koybasi, M. Kress, A.T. Laasanen, N. Leonardo, C. Liu, V. Maroussov, P. Merkel, D.H. Miller, N. Neumeister, I. Shipsey, D. Silvers, A. Svyatkovskiy, H.D. Yoo, J. Zablocki, Y. Zheng
Purdue University Calumet, Hammond, USA
P. Jindal, N. Parashar

Rice University, Houston, USA
C. Boulayouache, V. Cuplov, K.M. Ecklund, F.J.M. Geurts, B.P. Padley, R. Redjimi, J. Roberts, J. Zabel

University of Rochester, Rochester, USA
B. Betchart, A. Bodek, Y.S. Chung, R. Covarelli, P. de Barbaro, R. Demina, Y. Eshaq, H. Flacher, A. Garcia-Bellido, P. Goldenzweig, Y. Gotra, J. Han, A. Harel, D.C. Miner, D. Orbaker, G. Petrillo, D. Vishnevskiy, M. Zielinski

The Rockefeller University, New York, USA
A. Bhatti, R. Ciesielski, L. Demortier, K. Goulianos, G. Lungu, S. Malik, C. Mesropian, M. Yan

Rutgers, the State University of New Jersey, Piscataway, USA
O. Atramentov, A. Barker, D. Duggan, Y. Gershtein, R. Gray, E. Halkiadakis, D. Hits, A. Lath, S. Panwalkar, R. Patel, A. Richards, K. Rose, S. Schnetzer, S. Somalwar, R. Stone, S. Thomas

University of Tennessee, Knoxville, USA
G. Cerizza, M. Hollingsworth, S. Spanier, Z.C. Yang, A. York

Texas A&M University, College Station, USA
R. Eusebi, J. Gilmore, A. Gurrula, T. Kamon, V. Khotilovich, R. Montalvo, I. Osipenkov, Y. Pakhotin, J. Pivarski, A. Safonov, S. Sengupta, A. Tatarinov, D. Toback, M. Weinberger

Texas Tech University, Lubbock, USA
N. Akchurin, C. Bardak, J. Damgov, C. Jeong, K. Kovitanggoon, S.W. Lee, P. Mane, Y. Roh, A. Sill, I. Volobouev, R. Wigmans, E. Yazgan

Vanderbilt University, Nashville, USA
E. Appelt, E. Brownson, D. Engh, C. Florez, W. Gabella, M. Issah, W. Johns, P. Kurt, C. Maguire, A. Melo, P. Sheldon, B. Snook, S. Tuo, J. Velkovska

University of Virginia, Charlottesville, USA
M.W. Arenton, M. Balazs, S. Boutle, B. Cox, B. Francis, R. Hirosky, A. Ledovskoy, C. Lin, C. Neu, R. Yohay

Wayne State University, Detroit, USA
S. Gollapinni, R. Harr, P.E. Karchin, P. Lamichhane, M. Mattson, C. Milstène, A. Sakharov

University of Wisconsin, Madison, USA
M. Anderson, M. Bachtis, J.N. Bellinger, D. Carlsmith, S. Dasu, J. Efron, K. Flood, L. Gray, K.S. Grogg, M. Grothe, R. Hall-Wilton, M. Herndon, P. Klabbers, J. Klukas, A. Lanaro, C. Lazaridis, J. Leonard, R. Loveless, A. Mohapatra, F. Palmonari, D. Reeder, I. Ross, A. Savin, W.H. Smith, J. Swanson, M. Weinberg

†: Deceased
1: Also at CERN, European Organization for Nuclear Research, Geneva, Switzerland
2: Also at Universidade Federal do ABC, Santo Andre, Brazil
3: Also at Laboratoire Leprince-Ringuet, Ecole Polytechnique, IN2P3-CNRS, Palaiseau, France
4: Also at Suez Canal University, Suez, Egypt
5: Also at British University, Cairo, Egypt
6: Also at Fayoum University, El-Fayoum, Egypt
7: Also at Soltan Institute for Nuclear Studies, Warsaw, Poland
8: Also at Massachusetts Institute of Technology, Cambridge, USA
9: Also at Université de Haute-Alsace, Mulhouse, France
10: Also at Brandenburg University of Technology, Cottbus, Germany
11: Also at Moscow State University, Moscow, Russia
12: Also at Institute of Nuclear Research ATOMKI, Debrecen, Hungary
13: Also at Eötvös Loránd University, Budapest, Hungary
14: Also at Tata Institute of Fundamental Research - HECR, Mumbai, India
15: Also at University of Visva-Bharati, Santiniketan, India
16: Also at Sharif University of Technology, Tehran, Iran
17: Also at Shiraz University, Shiraz, Iran
18: Also at Isfahan University of Technology, Isfahan, Iran
19: Also at Facoltà Ingegneria Università di Roma ”La Sapienza”, Roma, Italy
20: Also at Università della Basilicata, Potenza, Italy
21: Also at Laboratori Nazionali di Legnaro dell’ INFN, Legnaro, Italy
22: Also at Università degli studi di Siena, Siena, Italy
23: Also at California Institute of Technology, Pasadena, USA
24: Also at Faculty of Physics of University of Belgrade, Belgrade, Serbia
25: Also at University of California, Los Angeles, Los Angeles, USA
26: Also at University of Florida, Gainesville, USA
27: Also at Université de Genève, Geneva, Switzerland
28: Also at Scuola Normale e Sezione dell’ INFN, Pisa, Italy
29: Also at University of Athens, Athens, Greece
30: Also at The University of Kansas, Lawrence, USA
31: Also at Institute for Theoretical and Experimental Physics, Moscow, Russia
32: Also at Paul Scherrer Institut, Villigen, Switzerland
33: Also at University of Belgrade, Faculty of Physics and Vinca Institute of Nuclear Sciences, Belgrade, Serbia
34: Also at Gaziosmanpasa University, Tokat, Turkey
35: Also at Adiyaman University, Adiyaman, Turkey
36: Also at Mersin University, Mersin, Turkey
37: Also at Izmir Institute of Technology, Izmir, Turkey
38: Also at Kafkas University, Kars, Turkey
39: Also at Süleyman Demirel University, Isparta, Turkey
40: Also at Ege University, Izmir, Turkey
41: Also at Rutherford Appleton Laboratory, Didcot, United Kingdom
42: Also at School of Physics and Astronomy, University of Southampton, Southampton, United Kingdom
43: Also at INFN Sezione di Perugia; Università di Perugia, Perugia, Italy
44: Also at Utah Valley University, Orem, USA
45: Also at Institute for Nuclear Research, Moscow, Russia
46: Also at Los Alamos National Laboratory, Los Alamos, USA
47: Also at Erzincan University, Erzincan, Turkey