Quid Pro Quo allocations
in Production-Inventory games *

Luis A. Guardiola†, Ana Meca‡ and Justo Puerto§¶

February 5, 2020

Abstract

The concept of Owen point, introduced in Guardiola et al. (2009), is an appealing solution concept that for Production-Inventory games (PI-games) always belongs to their core. The Owen point allows all the players in the game to operate at minimum cost but it does not take into account the cost reduction induced by essential players over their followers (fans). Thus, it may be seen as an altruistic allocation for essential players what can be criticized. The aim this paper is two-fold: to study the structure and complexity of the core of PI-games and to introduce new core allocations for PI-games improving the weaknesses of the Owen point.

Regarding the first goal, we advance further on the analysis of PI-games and we analyze its core structure and algorithmic complexity. Specifically, we prove that the number of extreme points of the core of PI-games is exponential on the number of players. On the other hand, we propose and characterize a new core-allocation, the Omega point, which compensates the essential players for their role on reducing the costs of their fans. Moreover, we define another solution concept, the Quid Pro Quo set (QPQ-set) of allocations, which is based on the Owen and Omega points. Among all the allocations in this set, we emphasize what we call the Solomonic QPQ allocation and we provide some necessary conditions for the coincidence of that allocation with the Shapley value and the Nucleolus.

Key words: Production-Inventory games, core, Omega point, Quid Pro Quo allocations

2000 AMS Subject classification: 91A12, 90B05

*The research of the authors is partially supported by Ministry of Economía and Competitividad/FEDER grants numbers: MTM2016-74983-C02-01, PGC2018-097965-B-I00.
†Departamento de Fundamentos del Análisis Económico, Universidad de Alicante, Alicante 03071, Spain. E-mail: luis.guardiola@ua.es
‡Operations Research Center, Universidad Miguel Hernández, Edificio Torretamarit. Avda. de la Universidad s.n. 03202 Elche (Alicante), Spain. E-mail: ana.meca@umh.es
§Facultad de Matemáticas, Universidad de Sevilla, 41012 Sevilla, SPAIN. e-mail: puerto@us.es
¶Corresponding author.
1 Introduction

Guardiola et al. (2009) introduced Production-Inventory games (henceforth PI-games) as a new class of totally balanced combinatorial optimization games. That paper proposed the so-called Owen point core-allocation that allows all players to operate at minimum cost at the price of not compensating essential users by the cost reduction that they induce over the remaining players (fans). This allocation has proven to be rather appealing and in another paper, Guardiola et al. (2008) analyze its properties and propose three axiomatic characterizations for the Owen point. These papers also contribute to a better knowledge of the core of PI-games. Nevertheless, it was missing a deeper analysis of its complexity. Specifically speaking the two following aspects were not considered: testing core membership and the extreme points structure of the core of these games. Complexity issues in cooperative game theory raise important questions only partially answered for particular classes of games. The core of any convex game is the convex hull of its marginal vectors (Shapley 1971), and the same property holds true for those games satisfying the Co-Ma property which include, among others, assignment and information games, see Hamers et al. (2002) and Kuipers (1993) respectively. It is also well-known that the core of assignment games coincide with the allocations induced by dual solutions and it is a complete lattice with only two extreme points, see Sotomayor (2003). Also, for transportation games, which constitute an extension of the assignment games, some results about the relationship between the core and the allocations induced by dual solutions are provided by Sánchez-Soriano et al. (2001). Moreover, Perea et al. (2012) study cooperation situations in linear production problems. In particular, that paper proposes a new solution concept called EOwen set as an improvement of the Owen set that contains at least one allocation that assigns a strictly positive payoff to players necessary for optimal production plans.

For minimum cost spanning tree games, flow games, linear production games, cooperative facility location games or min-coloring games among others, testing whether a given allocation is in the core is an NP-complete problem (see Faigle et al. (1997), Fang et al. (2002), Goemans and Skutella (2004) and Deng et al. (1999), respectively). On the other hand, there are some classes of games for which testing core membership is polynomially solvable as for instance for routing games, see Derks and Kuipers (1997), s–t connectivity games, r-arborescence games, max matching games, min vertex cover games, min edge cover games or max independent set games, see e.g., Deng et al. (1999). However, for many other classes of cooperative games answering that question is still open, as it is the case of PI-games.

In this paper we investigate the structure of the core of PI-games by determining its algorithmic complexity. Our contribution is to prove that testing core membership is an NP-complete problem and moreover that the number of extreme points of the core of PI-games is exponential on the number of players. Specifically, we characterize an exponential size subset of them. In addition, we look for alternative cost allocations improving the fairness properties of the
Owen point in that they recognize the role of the essential players on reducing the costs of the remaining players.

To present our results the rest of the paper is organized as follows. We start by introducing some preliminary concepts in section 2. In section 3 we prove that testing core membership of PI-games in an NP-complete problem, and we analyze the core structure of PI-games. We define what we call the extreme functions, which help us to prove that the core of a PI-game, in general, has an exponential number of extreme points. In section 4 we introduce a new core-allocation for PI-games, the Omega point, and provide an axiomatic characterization. Finally, in section 5 we define the set of Quid Pro Quo allocations (henceforth, QPQ allocations). Every QPQ allocation is a convex combination of the Owen and the Omega point. We focus then on the equally weighted QPQ allocation, the Solomonic allocation, and we provide some necessary conditions for the coincidence of the latter with the Shapley value and the Nucleolus.

2 Preliminaries

A cost game with transferable utility (henceforth TU cost game) is a pair \((N, c)\), where \(N = \{1, 2, ..., n\}\) is the finite set of players, and the characteristic function \(c : \mathcal{P}(N) \rightarrow \mathbb{R}\), is defined over \(\mathcal{P}(N)\) the set of nonempty coalitions of \(N\). By agreement, it always satisfies \(c(\emptyset) = 0\). For all \(S \subseteq N\), we denote by \(|S|\) the cardinal of the set \(S\).

A distribution of the costs of the grand coalition, usually called cost-sharing vector, is a vector \(x \in \mathbb{R}^N\). For every coalition \(S \subseteq N\) we denote by \(x_S := \sum_{i \in S} x_i\) the cost-sharing of coalition \(S\) (where \(x_\emptyset = 0\)). The core of a TU cost game consists of those cost-sharing vectors \(x\) which allocate the cost of the grand coalition \(N\) in such a way that no coalition \(S\) has incentives to leave \(N\) because \(x(S)\) is smaller than the original cost of \(S\), \(c(S)\). Formally, the core of \((N, c)\) is given by \(\text{Core}(N, c) = \{x \in \mathbb{R}^n / x_N = c(N)\text{ and } x_S \leq c(S)\text{ for all } S \subset N\}\).

In the following, core-allocations will be cost-sharing vectors belonging to the core. A cost game \((N, c)\) is balanced if and only if has a nonempty core (see Bondareva 1963 or Shapley 1967). Shapley and Shubik (1969) describe totally balanced games as those games whose subgames are also balanced; i.e., the core of every subgame is nonempty. A cost game \((N, c)\) is concave if for all \(i \in N\) and all \(S, T \subseteq N\) such that \(S \subseteq T \subset N\) with \(i \in S\), then \(c(S) - c(S \setminus \{i\}) \geq c(T) - c(T \setminus \{i\})\).

The Shapley value (Shapley, 1953) is a linear function on the class of all TU games and for a cost game \((N, c)\) it is defined as \(\phi(N, c) = (\phi_i(N, c))_{i \in N}\) where for all \(i \in N\)

\[
\phi_i(N, c) = \sum_{S \subseteq N \setminus \{i\}} \frac{s!(n - s - 1)!}{n!} \cdot [c(S \cup \{i\}) - c(S)].
\]

The Nucleolus \(\eta(N, c)\) (Schmeidler, 1969) is the allocation that lexicographically minimizes the vector of excesses. It is well-known that the Nucleolus is a
core-allocation provided that the core is nonempty.

Let Q be a bounded convex polyhedron in \mathbb{R}^n. We say that $x \in Q$ is an extreme point if $y, z \in Q$ and $x = \frac{1}{2}y + \frac{1}{2}z$ imply $y = z$. From now on, we denote, respectively, by $Ext(Q)$ and by $\partial(Q)$ the set of extreme points and the boundary of the set of Q. Moreover, for the sake of readability, we use e_i to refer to the i-th element of the canonical basis of \mathbb{R}^n and $val(P)$ stands for the optimal value of the mathematical programming problem P.

It is well-known that $x \in Ext(Q)$ if and only if x satisfies as equalities at least n linearly independent constraints of those defining Q. Since the core is a bounded convex polyhedron, it has a finite number of extreme points. Moreover, the core is a convex set. Therefore, characterizing the extreme core-allocations is important to know its intrinsic structure.

From now on, and for the sake of readability, we follow the same notation as Guardiola et al. (2009) to describe Production-Inventory situations (henceforth: PI-situations) and PI-games. Consider first a situation with several agents facing each one a Production-Inventory problem. Then, they decide to cooperate to reduce costs. Here the cooperation is considered as sharing technologies in production, inventory carrying and backlogged demand. We mean that if a group of agents agree on cooperation then at each period they will produce and pay inventory carrying and backlogged demand at the cheapest costs among the members of the coalition. This situation is called a PI-situation.

Formally, let U be an infinite set, the universe of players. A PI-situation is a 3-tuple (N,D,\mathcal{R}) where $N \subseteq U$ is a finite set of players ($|N| = n$) and D an integer matrix of demands with $D = [d^1, \ldots, d^n]'$, $d^i = [d^i_1, \ldots, d^i_T] \geq 0$, d^i_t is the demand of the player i during period $t \in T$ and T is the planning horizon. In addition, $\mathcal{R} = (H[B|P])$ is a cost matrix, so that $H = [h^1, \ldots, h^n]'$, $B = [b^1, \ldots, b^n]'$ and $P = [p^1, \ldots, p^n]'$; where $h^i = [h^i_1, \ldots, h^i_T] \geq 0$, h^i_t is the unit inventory carrying costs of the player i in period t, $b^i = [b^i_1, \ldots, b^i_T] \geq 0$, b^i_t is the unit backlogging carrying costs of the player i in period t, and $p^i = [p^i_1, \ldots, p^i_T] \geq 0$, p^i_t the unit production costs of the player i in period t, for $t = 1, \ldots, T$. The decision variables of the model, which are required to be integer quantities, are the production during period t (q^i_t), the inventory at hand at the end of period t (I^i_t), and the backlogged demand at the end of period t (E^i_t). We denote by Σ the set of PI-situations (N,D,\mathcal{R}) defined over U, being $n \geq 1, T \geq 1$ and D an integer matrix.

Now given a PI-situation (N,D,\mathcal{R}), we can associate the corresponding TU cost game (N,c) with the following characteristic function c: $c(\emptyset) = 0$ and for any $S \subseteq N$, $c(S) = val(PI(S))$, where $PI(S)$ is given by

\[
(PI(S)) \min_{t=1}^{T} \sum (p^S_t q_t + h^S_t I_t + b^S_t E_t)
\]

s.t. $I_0 = I_T = E_0 = E_T = 0$,

$I_t - E_t = I_{t-1} - E_{t-1} + q_t - d^S_t, \quad t = 1, \ldots, T$,

q_t, I_t, E_t, non-negative, integer, $t = 1, \ldots, T$;
with
\[
p_t^S = \min_{i \in S} \{p_t^i\}, \quad h_t^S = \min_{i \in S} \{h^i_t\}, \quad b_t^S = \min_{i \in S} \{b_t^i\}, \quad d_t^S = \sum_{i \in S} d_i^t.
\]

Every TU cost game defined as above is called a Production-Inventory game. Guardiola et al. (2009) points out that the problem \(PI \) has integer optimal solutions provided that the demands are integer. We know that the dual problem of \(PI(S) \), for any coalition \(S \subseteq N \), is the following mathematical programming problem,

\[
(DLPI(S)) \quad \max \sum_{t=1}^{T} d_t^S y_t \\
\text{s.t. } y_t \leq p_t^S, \quad t = 1, \ldots, T, \\
y_{t+1} + y_t \leq h_t^S, \quad t = 1, \ldots, T - 1, \\
y_{t+1} - y_t \leq b_t^S, \quad t = 1, \ldots, T - 1.
\]

Moreover, Guardiola et al. (2009) also proves that an optimal solution of problem \(DLPI(S) \) is \(y_t^*(S) = \min \left\{ p_t^S, \min_{k < t} \{ p_k^S + h_k^S \}, \min_{k > t} \{ p_k^S + b_k^S \} \right\} \), for all \(t = 1, \ldots, T \), with

\[
p_k^S = \begin{cases} p_1^S & \text{if } k < 1, \\ p_T^S & \text{if } k > T, \end{cases}
\]

\[
h_k^S = \sum_{r=k}^{t-1} h_r^S, \quad \text{for any } k < t, t = 2, \ldots, T; h_k^0 = 0, k < 1,
\]

\[
b_k^S = \sum_{r=t}^{T} b_r^S, \quad \text{for any } k > t, t = 1, \ldots, T - 1; b_{Tk}^S = 0, k > T.
\]

It is important to note that those optimal solutions satisfy a monotonicity property with respect to coalitions: \(y_t^*(S) \geq y_t^*(R) \) for all \(S \subseteq R \subseteq N \) and all \(t \in \{1, \ldots, T\} \). Moreover, the characteristic function of PI-games can be rewritten as follows: for any \(S \subseteq N \), \(c(S) = \sum_{t=1}^{T} d_t^S y_t^*(S) \).

PI-games are not concave in general as shown by Example 4.4 in Guardiola et al. (2009). The allocation \(\left(\sum_{t=1}^{T} d_t^S y_t^*(N) \right)_{i \in N} = Dy^*(N) \) is called the Owen point, and it is denoted by \(Owen(N, D, \mathcal{R}) \). At times, for the sake of simplicity, we use \(o \) to refer to the Owen point. That same paper also proves that the Owen point is a core-allocation which can be reached through a PMAS (Sprumont, 1990); hence every PI-game is a totally balanced game. In some situations we will use \(c^{(N, D, \mathcal{R})}(S) \) instead of \(c(S) \), in order to denote that the game \((N, c) \) comes from the situation \((N, D, \mathcal{R}) \).

We say that a player \(i \in N \) is essential if there exists \(t \in \{1, \ldots, T\} \) with \(d_i^{N \setminus \{i\}} > 0 \) such that \(y_t^*(N \setminus \{i\}) > y_t^*(N) \). An essential player is the one for which there exists at least one period in which he is needed by the rest of players in order to produce a certain demand at a minimum cost. The set of essential
players is denoted by \(E \). Those players not being essential are called inessential. We can easily check that for each inessential player \(i \), \(o_{N \setminus \{i\}} = c(N \setminus \{i\}) \). Guardiola et al. (2009) showed that the core of PI-games shrinks to a single point, the Owen point, just only when all players are inessential for the PI-situation.

Finally, to conclude this section devoted to preliminaries, we recall the class of PS-games introduced by Kar et al. (2009). A PS-game \((N, c)\) is a TU cost game satisfying that for all player \(i \in N \), there exists a real constant \(c_i \) such that \(\Delta_i(S) + \Delta_i(N \setminus (S \cup \{i\}) = c_i \) for all \(S \subseteq N \setminus \{i\} \), where \(\Delta_i(S) := c(S \cup \{i\}) - c(S) \). The above mentioned paper proves that, for this class of games, the Shapley value and the Nucleolus coincide; i.e. \(\phi(N, c) = \eta(N, c) \).

3 Extreme points of the core of PI-games

Guardiola et al. (2009) demonstrated that the core of PI-games without essential players \((E = \emptyset)\) shrinks to a singleton, the Owen point. However, for those PI-games with essential players \((E \neq \emptyset)\), the core is large. We focus here on those PI-games with large cores and study the structure of its core by analyzing its extreme points. First of all, we remark that testing core membership for PI-games cannot be done in polynomial time. One can adapt the reduction proposed in Fang et al. (2002) to prove that checking if an imputation belongs to the core of a PI-game is an NP-complete decision problem. In spite of that, it is important to know the structure of the core and still very little is known about the extreme points complexity of PI-games. This is the goal of this section.

We begin this analysis by defining the essential player fan set. Let \((N, D, \Re) \in \Upsilon\). The essential-fan pair set, denoted by \(\mathcal{P} \), is:

\[\mathcal{P} := \{(i, j) \mid i \in E \text{ and } j \in F_i \} \]

We are now interested in determining the cost that can be transferred within every essential-fan pair with a cost allocation; i.e., the maximum portion of the essential player cost that his fan could assume while maintaining cooperation.
Given a essential-fan pair \(p = (i, j) \in \mathbb{P} \) and a allocation \(x \in \mathbb{R}^n \), the transferred cost induced by \(p \) regarding \(x \) is:

\[
\alpha_p(x) := \min_{R \in \Delta_p} \{c(R) - x_R\},
\]

where

\[
\Delta_{(i,j)} := \{ R \subseteq N \setminus \{i\} \text{ such that } j \in R \}.
\]

\(\alpha_p(x) \) can be interpreted as the maximum portion of cost of player \(i \) that can be awarded by player \(j \) while maintaining the cooperation of the group. It is worth noting that if \(x \in \text{Core}(N, c) \) then \(\alpha_p(x) \geq 0 \).

Next result states that there are always a positive transferred cost within every essential-fan pair with the Owen point.

Theorem 3.1 Let \((N, D, \mathbb{R}) \in \mathcal{Y} \) and \((N, c) \) be the corresponding PI-game. Then \(\alpha_p(o) > 0 \) for all \(p \in \mathbb{P} \).

Proof. As \(\mathcal{E} \neq \emptyset \), we can take \(i \in \mathcal{E} \) and therefore \(F_i \neq \emptyset \). Let \(R \subseteq N \setminus \{i\} \) such that \(R \cap F_i \neq \emptyset \) and let \(j \in R \cap F_i \). By definition, there exists \(t^* \in \{1, ..., T\} \) such that:

\[
y^*_t(N \setminus \{i\}) > y^*_t(N) \quad \text{and} \quad d^*_t > 0.
\]

Moreover,

\[
y^*_t(N) < y^*_t(N \setminus \{i\}) \leq y^*_t(R).
\]

Thus,

\[
o_R < c(R). \quad \text{Hence,} \quad \alpha_p(o) = \min_{R \in \Delta_p} \{c(R) - o_R\} > 0.
\]

We introduce now a function that transforms any cost allocation into a new cost allocation in which a fan player charges with the maximum cost of his essential player. That is, for each \(p = (i, j) \in \mathbb{P} \), the function \(f_p \) transforms any allocation \(x \) into a new allocation \(f_p(x) \), in which the fan player \(j \) assumes as much cost as possible from his essential player \(i \). It is called the extreme function.

Definition 3.2 (extreme function) Let \((N, D, \mathbb{R}) \in \mathcal{Y} \) and \((N, c) \) be the corresponding PI-game. For any \(p = (i, j) \in \mathbb{P} \), the extreme function \(f_p \) is defined by:

\[
f_p(x) = x + \wedge_p(x),
\]

where \(x \in \mathbb{R}^n \) and \(\wedge_p(x) = e_j \cdot \alpha_p(x) - e_i \cdot \alpha_p(x). \)

Let us denote by \(\mathbb{P}^{[\mathbb{P}]} \) the \(|\mathbb{P}| \)-fold cartesian product of the set \(\mathbb{P} \). We consider now the composition of extreme functions. For each \(\sigma \in \mathbb{P}^{[\mathbb{P}]} \) we define the extreme composite function, \(F_{\sigma} \), as the composition of extreme functions for all the pairs in \(\sigma \), that is,

\[
F_{\sigma}(x) := (f_{\sigma_{|\mathbb{P}|}} \circ f_{\sigma_{|\mathbb{P}|-1}} \circ ... \circ f_{\sigma_1})(x).
\]

Notice that if \(\sigma = (p, p, ..., p) \in \mathbb{P}^{[\mathbb{P}]} \) then \(F_{\sigma}(x) = f_p(x) \).

Example 3.3 The following table shows a PI-situation with three periods and three players:
We can easily check that $c(S) = \sum_{t=1}^{3} p_t^S d_t^S$, for all $S \subseteq N$. Hence, the characteristic function of the corresponding PI-game is given in the following table:

P_1	P_2	P_3
10	8	6
10	12	5
5	6	2
1	1	1
1	1	1
1	1	1

In this example, $y^*(N) = (1, 1, 1)$ and $y^*(N \setminus \{1\}) = (2, 1, 1)$ are the optimal solution for $(DLPB(N))$ and $(DLPB(N \setminus \{1\}))$, respectively. Then, the Owen point is $o = (25, 26, 13)$. Moreover, $\mathcal{E} = \{1\}$, $F_1 = \{2, 3\}$ and $\mathcal{P} = \{(1, 2), (1, 3)\}$.

The transferred cost within every essential-fan pair in \mathcal{P} with the Owen point are,

$$\alpha_{(1, 2)}(o) = \min_{R \in \Delta_{(1, 2)}} \{c(R) - o_R\} = 10,$$

$$\alpha_{(1, 3)}(o) = \min_{R \in \Delta_{(1, 3)}} \{c(R) - o_R\} = 12.$$

Therefore, the extreme functions are

$$f_{(1, 2)}(o) = o + \land_{(1, 2)}(o) = (15, 36, 13),$$

$$f_{(1, 3)}(o) = o + \land_{(1, 3)}(o) = (13, 26, 25).$$

In this case, both the extreme functions, $f_{(1, 2)}(o)$, $f_{(1, 3)}(o)$, and the Owen point, o, are extreme points of the core.

The previous example shows that the Owen point is an extreme point of the core, and that the extreme functions transform it into other extreme points of the core. We wonder then if this fact occurs in general for any PI-game. First, we find a very interesting property that relates the extreme functions to the core boundary.

Proposition 3.4 Let $(N, D, \mathcal{R}) \in \Upsilon$ and (N, c) be the corresponding PI-game. For all $p \in \mathcal{P}$

$$f_p(\text{Core}(N, c)) \subseteq \partial(\text{Core}(N, c)).$$
Proof. Let \(p = (i, j) \in \mathbb{P} \) and take \(x \in \text{Core}(N, c) \). Then \(\alpha_p(x) \geq 0 \). Applying the extreme function \(f_p \) at \(x \), we have:

\[
f_p(x) = (x_1, \ldots, x_{i-1}, x_i - \alpha_p(x), x_{i+1}, \ldots, x_{j-1}, x_j + \alpha_p(x), x_{j+1}, \ldots, x_n).
\]

To prove that \(y := f_p(x) \in \text{Core}(N, c) \) we distinguish four possibilities:

- \(i, j \in S \). Then \(y_S = x_S + \alpha_p(x) - \alpha_p(x) = x_S \leq c(S) \).
- \(i, j \notin S \). Then \(y_S = x_S \leq c(S) \).
- \(i \notin S, j \in S \). Then \(y_S = x_S + \alpha_p(x) \leq x_S + c(S) - x_S = c(S) \).
- \(i \in S, j \notin S \). Then \(y_S = x_S - \alpha_p(x) \leq x_S \leq c(S) \).

Hence, \(y \in \text{Core}(N, c) \) since \(y_S \leq c(S) \) for any coalition \(S \subseteq N \). Let us proof now that \(y \) belongs to the frontier of the core.

If \(\alpha_p(x) = 0 \) then there exists \(R \in \Delta_p \) such that \(c(R) = x_R \). Since \(y \) belongs to the core and satisfies as equality one of the constraints defining the core, we can conclude that \(y \in \partial(\text{Core}(N, c)) \).

If \(\alpha_p(x) > 0 \) then for all \(\lambda \in (0, 1), (1-\lambda)x + \lambda y \in \text{Core}(N, c) \). Take \(\lambda = 1+\epsilon \) with \(\epsilon > 0 \) to have

\[
(1-\lambda)x + \lambda y = -\epsilon x + (1+\epsilon)(x + \wedge_p(x)) = x + (1+\epsilon)\wedge_p(x).
\]

We can check that if \(R^* \in \Delta_p \) is such that \(c(R^*) - x_{R^*} = \min_{R \in \Delta_p} \{ c(R) - x_R \} \) then \(x_{R^*} + \alpha_p(x) = c(R^*) \), therefore \(x + (1+\epsilon)\wedge_p(x) \notin \text{Core}(N, c) \). Hence, \(y \) is not an interior point.

It follows straightforward from the above proposition, that \(F_\sigma(\text{Core}(N, c)) \subseteq \partial(\text{Core}(N, c)) \) for all \(\sigma \in \mathbb{P}^{[P]} \).

The main Theorem of this Section provides a partial answer to our previous question about the transformation of the Owen point into extreme points of the core of PI-games. It states that for PI-situations with a single essential player, all the different compositions of extreme functions over the Owen point generate extreme points of the core.

Theorem 3.5 Let \((N, D, \mathbb{R}) \in \mathcal{Y}\) and \((N, c)\) be the corresponding PI-game. If \(\mathcal{E} = \{i\} \), then \(F_\sigma(o) \in \text{Ext}(\text{Core}(N, c)) \) for all \(\sigma \in \mathbb{P}^{[P]} \).

Proof. Let \(j \in F_i \) then the pair \(p_j = (i, j) \in \mathbb{P} \). \(f_{p_j}(o) \) is an extreme point if for any \(y, z \in \text{Core}(N, c) \) such that

\[
f_{p_j}(o) = \frac{1}{2}y + \frac{1}{2}z \text{ we have that } y = z.
\]

By definition, we know that

\[
f_{p_j}(o) = (o_1, \ldots, o_{i-1}, o_i - \alpha_{p_j}(o), o_{i+1}, \ldots, o_{j-1}, o_j + \alpha_{p_j}(o), o_{j+1}, \ldots, o_n).
\]
Let us suppose that $z_k < o_k$ for any $k \neq i, j$ then $z_{N \setminus \{k\}} > o_{N \setminus \{k\}} = c(N \setminus \{k\})$. However this is not possible, therefore $y_k, z_k \geq o_k$ for all $k \neq i, j$.

Now, apply (1) to get that $y_k = z_k = o_k \forall k \neq i, j$. Moreover, $y_j, z_j \leq o_j + \alpha_p(o)$ since $\alpha_p(o) > 0$ is the maximum possible increment for o_j (see Lemma 3.1). Then by (1) we have that $z = y$ and hence $f_{p_j}(o) \in Ext(Core(N, c))$.

Now, we consider $p_i = (i, l) \in \mathbb{P}$, and apply the corresponding extreme function for this pair. We have that

$$f_{p_i} (f_{p_j}(o)) = (o_1, ..., o_i - \alpha_{p_j}(o) - \alpha_{p_i}(f_{p_j}(o)), ..., o_l + \alpha_{p_i}(f_{p_j}(o)), ..., o_j + \alpha_{p_j}(o), ..., o_n).$$

We distinguish two possibilities:

1. $\alpha_{p_j}(o)$ attains its minimum in a coalition R^* that contains player l. In this case $\alpha_{p_i}(f_{p_j}(o)) = 0$, thus $f_{p_i} (f_{p_j}(o)) = f_{p_j}(o)$ and by the argument above $f_{p_i} (f_{p_j}(o))$ is an extreme point of $Core(N, c)$.

2. $\alpha_{p_j}(o)$ attains its minimum in a coalition R^* that does not contain player l. This case implies that $\alpha_{p_i}(f_{p_j}(o)) > 0$. Take $y, z \in Core(N, c)$ and assume that

$$f_{p_i} (f_{p_j}(o)) = \frac{1}{2} y + \frac{1}{2} z. \quad (2)$$

Using the same argument as above we conclude that $y_k = z_k = o_k$ for all $k \neq i, j, l$. Consider now the j-th coordinate. Suppose that $z_j > o_j + \alpha_{p_j}(o)$. The coalition R^* does not contain neither i nor l, which implies $c(R^*) = o_{R^*} + \alpha_{p_j}(o) < z_{R^*}$. Since this is a contradiction, it means that $z_j \leq o_j + \alpha_{p_j}(o)$ (Notice that the same argument applies to y_j and thus $y_j \leq o_j + \alpha_{p_j}(o)$). Therefore, by (2) we get that $y_j = z_j = o_j + \alpha_{p_j}(o)$.

Next, consider the l-th coordinate. Assume that $z_l > o_l + \alpha_{p_i}(f_{p_j}(o))$, and let S^* be the coalition where $\alpha_{p_i}(f_{p_j}(o))$ attains its minimum, then $c(S) = \sum_{k \in S} (f_{p_i}(o))_k + \alpha_{p_i}(f_{p_j}(o)) < z_S$. Again using the same argument as in the j-th coordinate we conclude that $y_l = z_l = o_l + \alpha_{p_i}(f_{p_j}(o))$.

Finally, we get the same conclusion for the i-th coordinate since $f_{p_i} (f_{p_j}(o))$ must be efficient. In conclusion $z = y$. Hence, $f_{p_i} (f_{p_j}(o)) \in Ext(Core(N, c))$. Notice that $f_{p_i} (f_{p_j}(o))$ is different from $f_{p_j}(o)$ since we have assumed that $\alpha_{p_i}(f_{p_j}(o)) > 0$.

This construction can be repeated a finite number of times for each $p \in \mathbb{P}$. Specifically, for any $\sigma \in [\mathbb{P}]^P$, the transformation $F_{\sigma}(o) \in Ext(Core(N, c))$.

Corollary 3.6 Let $(N, D, \emptyset) \in \Upsilon$ with $E = \{i\}$, and (N, c) be the corresponding PI-game. The Owen point is always an extreme point.

Proof. Take $y_k, z_k \geq o_k$ for all $k \in N$, therefore $o = z = y$ and $o \in Ext(Core(N, c))$.

At this point we know that PI-games with a single essential player have, at least, $|\mathbb{P}| + 1$ extreme points. Next example shows that the core of a PI-game, in general, cannot be explicitly described in polynomial time.
Example 3.7 Now we consider a PI-situation with n periods and n players:

Demand	Production	Inventory	Backlogging		
P_1	1 1 ... 1	$\frac{1}{n}$	$\frac{1}{n}$	2 2 ... 2	2 2 ... 2
P_2	1 1 ... 1	1 1 ... 1	2 2 ... 2	2 2 ... 2	
...	
P_n	1 1 ... 1	1 1 ... 1	2 2 ... 2	2 2 ... 2	

The corresponding PI-game is given by $c(S) = \sum_{t=1}^{n} p_t^S d_t^S$, for all $S \subseteq N$. Moreover, it is easy to see that $\mathcal{E} = \{1\}$ and $F_1 = \{2, 3, ..., n\}$. Then, we can rewrite the characteristic function as follows:

$$c(S) = \begin{cases}
|S| & \text{if } 1 \in S, \\
(n \cdot |S|) & \text{if } 1 \notin S.
\end{cases}$$

In this example, the Owen point is $o = (1, 1, ..., 1)$. For all $i \in F_1$,

$$\alpha_{(1,i)}(o) = \min_{R \in \Delta(1,i)} \{c(R) - o_R\} = \min_{R \in \Delta(1,i)} \{n \cdot |R| - |R|\} = n - 1$$

then

$$f_{(1,i)}(o) = (2 - n, 1, ..., 1, \underbrace{n}_{i}, 1, ..., 1).$$

For all $k \neq i, k \in F_1$,

$$\alpha_{(1,k)}(f_{(1,i)}(o)) = \min_{R \in \Delta(1,k)} \left\{c(R) - \sum_{j \in R} \left(f_{(1,i)}(o)\right)_j\right\}$$

$$= \min_{R \in \Delta(1,k)} \left\{n \cdot |R| - |R|, \underbrace{(n - 1) \cdot |R| - n + 1}_{i \in R}\right\} = n - 1,$$

then

$$f_{(1,k)}(f_{(1,i)}(o)) = (3 - 2n, 1, ..., 1, \underbrace{n}_{i}, 1, ..., 1, \underbrace{n}_{k}, 1, ..., 1).$$

Hence, we have as many extreme points as possible ways to place "n" and "1" in $n - 1$ positions; i.e. in this example the core has $2^{n-1} + 1$ extreme points.

Therefore, we can conclude that the cardinality of the extreme points is exponential in the number of players. Hence, we cannot explicitly describe the core of a PI-game in polynomial time.

We propose below an alternative core allocation to the Owen point that recognizes the role played by essential players on reducing the cost of their fans.
4 Omega point

Guardiola et al. (2009) proposed the Owen point as a natural core allocation for PI-games that arises when focusing on shadow prices of each period that each player must pay to meet their demand in that period. It makes it possible for all players in the joint venture to operate at minimum cost. If there is no essential player, the Owen point is the unique core allocation. However, for those PI-situations with at least one essential player, the Owen point reveals the altruistic character of them because of it does not take into account the role that these essential players play in reducing the cost of their fans. As the core of the PI-games with essential players is large, we are looking for a core allocation that motivates the essential players to continue in the joint venture obtaining a reduction in their demand costs in each period.

Let \((N, D, \mathcal{R})\) be a PI-situation with \(D\) being an integer matrix \((\mathcal{R}) \in \Upsilon)\), and \(\mathcal{E} \neq \emptyset\). Remember that for all \(i \in \mathcal{E}\), there is a period \(t^* \in \{1, ..., T\}\) such that \(y^*(N\setminus\{i\}) > y^*(N)\) and there also exists at least one player \(j \in N\setminus\{i\}\) such that \(d^t_{ji} > 0\). We denote by \(E_t\) and \(F_t\) the sets of essential players and fans for every period \(t \in \{1, ..., T\}\). We note in passing that \(E = \bigcup_{t \in T} E_t\).

First, we consider the marginal contribution of the shadow prices of a player \(i\) to the grand coalition \(N\), that is, \(y^*(N\setminus\{i\}) - y^*(N)\). We then define the cost reduction that a player \(i \in N\) can produce in another player \(j \in N\) in a period \(t\) as follows:

\[
q_t(i, j) := \begin{cases}
(y^*(N\setminus\{i\}) - y^*(N)) \cdot d^t_{ji} & \text{if } i \neq j \\
0 & \text{if } i = j
\end{cases}
\]

The reader may notice that \(q_t(i, j) > 0\) only if \(i \in \mathcal{E}^t\) and \(j \in F^t\), otherwise \(q_t(i, j) = 0\). That is to say that only essential players can reduce their fan costs in a given period. Alternatively, the amount of the cost \(q_t(i, j)\) can be interpreted as the maximum cost increase that a fan \(j \in F^t\) is able to assume, in a certain period \(t\), to incentivize the essential player \(i \in \mathcal{E}^t\).

Next we define a new cost allocation rule, the Omega point, that considers the maximum cost increase mentioned above.

Definition 4.1 (Omega point) Let \((N, D, \mathcal{R}) \in \Upsilon\) and \((N, c)\) be the corresponding PI-game. The Omega point \(\omega \in \mathbb{R}^n\) is defined as \(\omega_i = \sum_{t=1}^T \omega^t_i\) for all player \(i \in N\), where for each period \(t = 1, \ldots, T\),

\[
\omega^t_i := \begin{cases}
\sqrt{q_t^2} + q_t(E^t, i) - \sum_{j \in F^t} q_t(i, j) & \text{if } |E^t| = 1 \\
y^*(N)d^t_i & \text{otherwise}
\end{cases}
\]

The Omega point means that, in each of the periods with a single essential player, i.e. without competition, this essential player gets a cost reduction from
his fans. The amount Q_i^t represents the cost reduction or increase, depending on the sign, for player $i \in N$ in the period t. Notice that $Q_i^t < 0$, only if i is an essential player, otherwise $Q_i^t \geq 0$. In addition, $Q^t = (Q_i^t)_{i \in N}$ for all $t \in \{1, \ldots, T\}$.

The reader may also note that $\omega = o + Q$, where $Q \in \mathbb{R}^n$ with $Q_i = \sum_{t=1}^{T} Q_i^t$. It is worth noting that Q_i represents the marginal cost reduction or increase, of player i to the rest players. Moreover, $\sum_{i \in N} Q_i = 0$. In this setting, those players with $Q_i < 0$, would prefer the Omega point to the Owen point. On the contrary, those players with $Q_i > 0$ would like the Owen point more.

The following example illustrates the cost reduction that the Omega point applies to essential players while increasing the cost of fans.

Example 4.2 In example the Owen point is $o = (25, 26, 13)$. Moreover, $E^1 = \{1\}, F^1 = \{2, 3\}, E^2 = E^3 = \emptyset$. The cost reduction for the essential player 1 from his fans 2 and 3 are:

\[q_1(1, 2) = 8; q_1(1, 3) = 6; \]

Therefore,

\[
\begin{align*}
\omega_1 &= o_1 - q_1(1, 2) - q_1(1, 3) = 25 - 8 - 6 = 11 \\
\omega_2 &= o_2 + q_1(1, 2) = 34 \\
\omega_3 &= o_3 + q_1(1, 3) = 19
\end{align*}
\]

In this case $\omega = (11, 34, 19) = (25, 26, 13) + Q$, with $Q = (−14, 8, 6)$. It is also a core-allocation. Note that player 1 obtains a cost reduction of 14 units, while players 2 and 3 are increasing their costs by 8 and 6 units, respectively. Here, the Omega point is a core-allocation that recognizes the essential role of player 1 through a cost reduction assumed by his fans. Next we demonstrate that this always holds for any PI-game.

Proposition 4.3 Let $(N, D, \mathbb{R}) \in \Upsilon$ and (N, c) be the corresponding PI-game. The Omega point is a core-allocation.

Proof. Consider any period t and a coalition $S \subseteq N$. If t does not have essential players or has more than one, then $\omega^t_S = \sum_{i \in S} y^*_t(N)d_i \leq \sum_{i \in S} y^*_t(S)d_i = y^*_t(S)d^S$.

Otherwise, suppose that player k is essential in the period t ($E^t = \{k\}$). we distinguish two possibilities:
• $k \in S$, then

\[\omega^t_S = \omega^t_k + \sum_{i \in S \cap F^t} \omega^t_i + \sum_{i \in S \setminus F^t} \omega^t_i = y^*_i(N) d^t_i - \sum_{j \in F^t} q_t(k, j) \]

\[+ \sum_{i \in S \cap F^t} (y^*_i(N) d^t_i + q_t(k, i)) + \sum_{i \in S \setminus F^t} y^*_i(N) d^t_i \]

\[= y^*_i(N) d^t_i + \sum_{i \in S \cap F^t} q_t(k, i) - \sum_{j \in F^t} q_t(k, j) \]

\[= y^*_i(N) d^t_i - \sum_{j \in F^t \setminus S} q_t(k, j) \leq y^*_i(N) d^t_i \leq y^*_i(S) d^t_i \]

• $k \notin S$, then

\[\omega^t_S = \sum_{i \in S \cap F^t} \omega^t_i + \sum_{i \in S \setminus F^t} \omega^t_i = \sum_{i \in S \cap F^t} (y^*_i(N) d^t_i + q_t(k, i)) + \sum_{i \in S \setminus F^t} y^*_i(N) d^t_i \]

\[= y^*_i(N) d^t_i + \sum_{i \in S \cap F^t} (y^*_i(N \setminus \{k\}) - y^*_i(N)) d^t_i \]

\[= \sum_{i \in S \setminus F^t} y^*_i(N) d^t_i + \sum_{i \in S \setminus F^t} y^*_i(N \setminus \{k\}) d^t_i \]

\[\leq \sum_{i \in S} y^*_i(N \setminus \{k\}) d^t_i \leq \sum_{i \in S} y^*_i(S) d^t_i = y^*_i(S) d^t_i \]

Hence, $\omega^t_S \leq y^*_i(S) d^t_i$ for all $t \in T$. Then, $\omega_S = \sum_{t=1}^T \sum_{i \in S} \omega^t_i = \sum_{t=1}^T \omega^t_S \leq \sum_{t=1}^T y^*_i(S) d^t_i = c(S)$ for any coalition $S \subseteq N$. Moreover, $\omega_N = o_N + \sum_{i \in N} Q_i = o_N = c(N)$. Therefore $\omega \in Core(N, c)$.

4.1 Characterization of the Omega point

To complete the study of the Omega point, we here propose an axiomatic characterization based on a set of desirable properties that make it unique. In order to do that, we denote by φ a generic allocation rule on Υ and consider the following properties, some of which have been used in the literature to axiomatize alternative allocations:

(EF) **Efficiency.** For all $x \in \varphi(N, D, \Re)$ and for any PI-game $(N, D, \Re) \in \Upsilon$, $x_N = c^{(N, D, \Re)}(N)$.

(NE) **Nonemptiness.** For any PI-game $(N, D, \Re) \in \Upsilon$, $\varphi(N, D, \Re) \neq \emptyset$.

(IBC) **Inessential bounded cost.** For any PI-game $(N, D, \Re) \in \Upsilon$ and for all $x \in \varphi(N, D, \Re)$, if i is an inessential player for (N, D, \Re), then $x_i \leq \sum_{t=1}^T y^*_i(N \setminus \{i\}) d^t_i$.

14
(TI) *Tyranny.* For all \((N, D, \mathcal{R}) \in \Upsilon\) and for all \(x \in \varphi(N, D, \mathcal{R})\), if \(k\) is a single essential player then \(x_{N \setminus \{k\}} = c^{(N, D, \mathcal{R})}(N \setminus \{k\})\).

(ACP) *Additive combination of periods’ demands.* For all \((N, D, \mathcal{R}) \in \Upsilon\) and for all \(x \in \varphi(N, D, \mathcal{R})\), there exists \((z_t)_{t \in T} \in (\mathbb{R}^N)^T\) such that \(x = \sum_{t=1}^{T} z_t\) and for all \(t \in T\), \(z_t \in \varphi(N, D_t, \mathcal{R})\) if \(|\mathcal{E}_t| \leq 1\) and \(z_t = Owen(N, D_t, \mathcal{R})\) otherwise, where

\[
D_t = (d_{ip}^t)_{i=1,\ldots,n}^{p=1,\ldots,T}, \quad d_{ip}^t = \begin{cases}
q_t & \text{if } t = p, \\
0 & \text{otherwise.}
\end{cases}
\]

(3)

The first two properties were already used in Guardiola et al. (2008), among many other papers, to characterize the Owen point solution, and they are also important to our new characterization of the Omega point. Recall that *Efficiency* ensures that the total cost of any PI-situation is entirely allocated among the players. Analogously, *Nonemptiness* guarantees that this allocation rule always return a feasible allocation of the overall cost when applied to any PI-situation. *Inessential bounded cost* imposes a maxim cost for every inessential player in situations which an essentials players has left. *Tyranny* implies that a single essential player will assert all his power over the rest so that they assume the maximum possible cost.

Finally, an allocation rule satisfies the property of *Additivity combination of periods’ demands* if it is additive with respect to the demand of the periods that has at most an essential player plus the Owen point of those periods with more than one essential player. We emphasize that this additivity results from the following relationship \(c^{(N, D, \mathcal{R})} = \sum_{t=1}^{T} c^{(N, D_t, \mathcal{R})}\) for all \((N, D, \mathcal{R}) \in \Upsilon\). Thus, we are interested in allocation rules, for PI-situations, compatible with this form of distribution of their demands.

First, we prove that the Omega point satisfies all the properties mentioned above.

Proposition 4.4 The Omega point defined on the set \(\Upsilon\), satisfies EF, NE, IBC, TI and ACP.

Proof. For any PI situation \((N, D, \mathcal{R}) \in \Upsilon\) we know by proposition [4,3] that \(\omega(N, D, \mathcal{R}) \in Core(N, c)\) by . Hence, the Omega point verifies the properties of EF and NE. An inessential player satisfy IBC since if for all \(i \in N\)

\[
\omega_i(N, D, \mathcal{R}) = \sum_{t=1}^{T} \omega_i^t(N, D, \mathcal{R}) = \sum_{t=1}^{T} \omega_i(N, D_t, \mathcal{R})
\]

\[
= \sum_{t \in T/|\mathcal{E}_t| = 1} (q_t^i(N)d_i^t + q_t(\mathcal{E}_t, i)) + \sum_{t \in T/|\mathcal{E}_t| \neq 1} y_t^i(N)d_i^t
\]

\[
= \sum_{t \in T/|\mathcal{E}_t| = 1} y_t^i(N|\mathcal{E}_t|d_i^t) + \sum_{t \in T/|\mathcal{E}_t| \neq 1} y_t^i(N)d_i^t \leq \sum_{t=1}^{T} y_t^i(N|\mathcal{E}_t|d_i^t)
\]

15
If there is only one essential player \(k \), then:

\[
\sum_{t=1}^{T} \omega_{N\setminus\{k\}}^{t} = \sum_{t=1}^{T} \left(y_{i}^{*}(N) d_{t}^{N\setminus\{k\}} + \sum_{j \in N\setminus\{k\}} q_{t}(k, i) \right) = \sum_{t=1}^{T} \left(y_{i}^{*}(N\setminus\{k\}) d_{t}^{N\setminus\{k\}} \right) = \sum_{t=1}^{T} \left(y_{i}^{*}(k) d_{t}^{N\setminus\{k\}} \right) = c^{(N,D,\mathcal{R})}(N \setminus \{k\}).
\]

Then satisfy TI. Finally, considering \(D_{t} \) as it was already defined in (3), we obtain that \(\sum_{t=1}^{T} D_{t} = D \) and

\[
\omega(N, D, \mathcal{R}) = \left(\sum_{t=1}^{T} \omega_{i}^{t}(N, D, \mathcal{R}) \right)_{i \in N} = \sum_{i=1}^{T} (\omega_{i}(N, D_{t}, \mathcal{R}))_{i \in N} = \sum_{t \in T/|\mathcal{E}| \leq 1} \omega_{i}(N, D_{t}, \mathcal{R}) + \sum_{t \in T/|\mathcal{E}| \geq 2} Owen(N, D_{t}, \mathcal{R})
\]

Hence, the Omega point satisfies ACP. ■

Second, we focus on PI-situations without essential players and show that, in this setting, the Omega point matches the Owen point, and both can be characterized by using only three of the previous properties.

Proposition 4.5 Let \((N, D, \mathcal{R}) \in \Upsilon \) be a PI situation with \(|\mathcal{E}| = 0\). Then, \(\varphi(N, D, \mathcal{R}) = \omega(N, D, \mathcal{R}) = Owen(N, D, \mathcal{R}) \) if and only if \(\varphi \) satisfies NE, EF and IBC.

Proof. (If) Immediately follows by Proposition 4.4.

(Only if) By NE, \(\varphi(N, D, \mathcal{R}) \neq \emptyset \). Take \(x \in \varphi(N, D, \mathcal{R}) \). Since all players \(i \in N \) are inessential, by IBC, it holds that \(x_{i} \leq \sum_{t=1}^{T} y_{i}^{*}(N \setminus \mathcal{E}^{t}) d_{t}^{i} = \sum_{t=1}^{T} y_{i}^{*}(N) d_{t}^{i} = \omega_{i}(N, D, \mathcal{R}) \) for each \(i \in N \). Therefore, by EF, \(\varphi(N, D, \mathcal{R}) = \omega(N, D, \mathcal{R}) = Owen(N, D, \mathcal{R}) \). ■

The main Theorem of this section shows that the Omega point is the unique allocation rule that satisfies the aforementioned five properties.

Theorem 4.6 An allocation rule on \((N, D, \mathcal{R}) \in \Upsilon \) satisfies the properties EF, NE, IBC, TI and ACP if and only if it coincides with the Omega point.

Proof. (If) The if part of the proof is direct from Proposition 4.4.

(Only if) Let \(\varphi \) be an allocation rule. The case where the number of essential players is zero, namely \(|\mathcal{E}| = 0\), follows from Proposition 4.5. Then, it remains
to prove the case when $|E| \geq 1$. In this case, we know that $D = D_1 + D_2 + \ldots + D_T$ where D_t is (see (3)):

$$D_t = \begin{pmatrix} 0 & \ldots & 0 & d^t_1 & 0 & \ldots & 0 \\ 0 & \ldots & 0 & d^t_2 & 0 & \ldots & 0 \\ \vdots & \ldots & \vdots & \vdots & \vdots & \ldots & \vdots \\ 0 & \ldots & 0 & d^t_n & 0 & \ldots & 0 \end{pmatrix}.$$

Then for all $t \in T$, (N, D_t, \mathbb{R}) is a PI-situation with D_t an integer matrix. This implies that (N, D_t, \mathbb{R}) belongs to Υ. Therefore, for any $t \in T$, the Omega point for (N, D_t, \mathbb{R}) is $(\omega_i(N, D_t, \mathbb{R}))(i=1,\ldots,n)$.

By NE, $\varphi(N, D_t, \mathbb{R}) \neq \emptyset$. For each situation (N, D_t, \mathbb{R}) we have two cases:

- $|E^t| = 0$, then by Proposition 4.3, $\varphi(N, D_t, \mathbb{R}) = \omega(N, D_t, \mathbb{R}) = Owen(N, D_t, \mathbb{R})$.

- $E^t = \{k\}$. Take $u_t \in \varphi(N, D_t, \mathbb{R})$, by IBC $u_t \leq y^t_i(N, k) d^{N, \{k\}}_i$ for all $i \in N \setminus \{k\}$ and by TY $u_{N \setminus \{k\}} = y^t_i(N, \{k\}) d^{N \setminus \{k\}}_i$. Hence for all $i \in N \setminus \{k\}$ $u_t = y^t_i(N \setminus \{k\}) d^{N \setminus \{k\}}_i = y^t_i(N) k d^{N \setminus \{k\}}_i = y^t_i(N) k d^{N \setminus \{k\}}_i$. Finally, by EF

$u_k = c(N) - c(N \setminus \{k\}) = y^t_i(N) d^{N} - y^t_i(N \setminus \{k\}) d^{N \setminus \{k\}} = y^t_i(N) d^k - (y^t_i(N \setminus \{k\}) - y^t_i(N)) d^{N \setminus \{k\}} = y^t_i(N) d^k - \sum_{j \in F^t} q_t(k, j)$

Therefore, if $x \in \varphi(N, D, \mathbb{R})$ by ACP one has that $x = z_1 + \ldots + z_t$ with $z_t \in \varphi(N, D_t, \mathbb{R})$ for all $t \in T$, and so

$$x = \sum_{t=1}^{T} z_t = \sum_{t \in T/|E^t| \leq 1} \omega(N, D_t, \mathbb{R}) + \sum_{t \in T/|E^t| \geq 2} Owen(N, D_t, \mathbb{R}) = \omega(N, D, \mathbb{R}).$$

The above equation implies that $\varphi(N, D, \mathbb{R}) = \omega(N, D, \mathbb{R})$. \qed

Finally, we prove that all the properties used in Theorem 4.6 are logically independent. That is, the characterization of the Omega point is tight in the sense that no property is redundant.

Example 4.7 Let φ be a solution rule defined on Υ as

$$\varphi(N, D, \mathbb{R}) := \begin{cases} \langle c^{(N, D, \mathbb{R})}(N), \omega(N, D, \mathbb{R}) \rangle, & (N, D, \mathbb{R}) \in \Upsilon^1 \\ \omega(N, D, \mathbb{R}), & otherwise, \end{cases}$$

where

$$\Upsilon^1 := \{(N, D, \mathbb{R}) \in \Upsilon / |N|=2, T=2, E^1 = \{1, 2\}, E^2 = \emptyset \}.$$

$\varphi(N, D, \mathbb{R})$ satisfies EF, NE, IBC and TI, but not ACP.
Example 4.8 Let \(\varphi \) be a solution rule defined on \(\Upsilon \) as

\[
\varphi(N, D, \Re) := \begin{cases}
(c^{(N, D, \Re)}(N), 0), & (N, D, \Re) \in \Upsilon^2 \\
\omega(N, D, \Re), & \text{otherwise,}
\end{cases}
\]

where

\[
\Upsilon^2 := \{(N, D, \Re) \in \Upsilon / |N| = 2, T = 1, E = \emptyset \}.
\]

\(\varphi(N, D, \Re) \) satisfies EF, NE, ACP and TI, but not IBC.

Example 4.9 Let \(\varphi \) be a solution rule defined on \(\Upsilon \) as

\[
\varphi(N, D, \Re) := \text{Owen}(N, D, \Re)
\]

\(\varphi(N, D, \Re) \) satisfies EF, NE, IBC, and ACP, but not TI.

Example 4.10 Let \(\varphi \) be a solution rule defined on \(\Upsilon \) as

\[
\varphi(N, D, \Re) := \begin{cases}
(c^{(N, D, \Re)}(N \setminus \{E^1\}), c^{(N, D, \Re)}(N \setminus \{E^1\})), & (N, D, \Re) \in \Upsilon^3 \\
\omega(N, D, \Re), & \text{otherwise,}
\end{cases}
\]

where

\[
\Upsilon^3 := \{(N, D, \Re) \in \Upsilon / |N| = 2, T = 1, |E^1| = 1 \}.
\]

\(\varphi(N, D, \Re) \) satisfies NE, IBC, TI and ACP, but not EF.

Example 4.11 Let \(\varphi \) be a solution rule defined on \(\Upsilon \) as

\[
\varphi(N, D, \Re) := \emptyset.
\]

\(\varphi(N, D, \Re) \) satisfies EF, ACP, IBC, and TI. but not NE.

5 Quid Pro Quo allocations

As we already mentioned, the Omega point can be considered the natural aspiration of the essential players to achieve the biggest cost reduction while the Owen point reflects their altruistic character. We combine both extreme characteristics and define the \(\lambda \)-agreement \(a(\lambda) := \lambda \omega + (1 - \lambda) o \) with \(\lambda \in [0, 1] \), as the convex linear combination of the Owen point and the Omega point. The parameter \(\lambda \) represents here the weight given to individual behavior, by those players who want to maximize their cost reduction, compared to altruistic behavior (by \(1 - \lambda \)), which benefits the other players.

The set of all the above agreements is called Quid Pro Quo allocation set.
Definition 5.1 (Quid Pro Quo allocation set) Let \((N, D, \Re) \in \Upsilon\) and \((N, c)\) be the corresponding PI-game. We define the Quid pro quo allocation set as follows:

\[QPQ(N, c) := \{ a(\lambda) \text{ such that } \lambda \in [0, 1] \} . \]

The Quid Pro Quo allocation set, henceforth QPQ-set, is a parametric family of core-allocations. That is, \(QPQ(N, c) \subseteq \text{Core}(N, c)\).

The following example illustrate the wealth of the QPQ set of a PI-situation with multiple essential players.

Example 5.2 Let us consider a PI-situation with four players in four periods with demand, and production, inventory and backlogging costs given in the following table:

Demand	Production	Inventory	Backlogging
P1	2 1 2 2	1 2 2 2	1 1 1 2
P2	2 2 1 2	2 1 2 2	1 1 1 2
P3	2 1 2 2	2 2 1 2	1 1 1 2
P4	2 1 1 2	2 2 2 1	1 1 1 2

The above table described a cooperative game with a characteristic function detailed in the following table:

| | \(d_1^c\) | \(d_2^c\) | \(d_3^c\) | \(d_4^c\) | \(p_1^c\) | \(p_2^c\) | \(p_3^c\) | \(p_4^c\) | \(h_1^c\) | \(h_2^c\) | \(h_3^c\) | \(b_1^c\) | \(b_2^c\) | \(b_3^c\) | \(c\) |
|-------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|-------|
| \{1\} | 2 | 1 | 2 | 2 | 1 | 2 | 2 | 1 | 1 | 2 | 2 | 2 | 12 | | |
| \{2\} | 2 | 2 | 1 | 2 | 2 | 1 | 2 | 1 | 1 | 2 | 2 | 2 | 12 | | |
| \{3\} | 2 | 1 | 2 | 2 | 2 | 1 | 2 | 1 | 1 | 2 | 2 | 2 | 12 | | |
| \{4\} | 2 | 1 | 1 | 2 | 2 | 2 | 1 | 1 | 1 | 2 | 2 | 1 | 10 | | |
| \{1,2\}| 4 | 3 | 3 | 4 | 1 | 1 | 2 | 2 | 1 | 1 | 1 | 2 | 2 | 2 | 18 |
| \{1,3\}| 4 | 2 | 4 | 4 | 1 | 2 | 1 | 2 | 1 | 1 | 1 | 2 | 2 | 2 | 20 |
| \{1,4\}| 4 | 2 | 3 | 4 | 1 | 2 | 2 | 1 | 1 | 1 | 2 | 2 | 2 | 18 | |
| \{2,3\}| 4 | 3 | 3 | 4 | 2 | 1 | 1 | 2 | 1 | 1 | 1 | 2 | 2 | 2 | 22 |
| \{2,4\}| 4 | 3 | 2 | 4 | 2 | 1 | 2 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 22 |
| \{3,4\}| 4 | 2 | 3 | 4 | 2 | 2 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 19 |
| \{1,2,3\}| 6 | 4 | 5 | 6 | 1 | 1 | 1 | 2 | 1 | 1 | 1 | 2 | 2 | 2 | 27 |
| \{1,2,4\}| 6 | 4 | 5 | 6 | 1 | 1 | 1 | 2 | 1 | 1 | 1 | 2 | 2 | 2 | 27 |
| \{1,3,4\}| 6 | 3 | 5 | 6 | 1 | 2 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 23 |
| \{2,3,4\}| 6 | 4 | 4 | 6 | 2 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 26 |
| \{1,2,3,4\}| 8 | 5 | 6 | 8 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 27 |

Here, \(y^*(N) = (1, 1, 1, 1)\) and the Owen point is \(o = (7, 7, 7, 6)\). Moreover, \(\mathcal{E} = N\), because of each player is essential just in one period. For example in
period 1, $E^1 = \{1\}$ and $F^1 = \{2, 3, 4\}$. In addition, $q_1(1, j) = 2$ for $j \in F^1$, $Q^1 = (-6, 2, 2, 2), Q^2 = (1, -3, 1, 1), Q^3 = (2, 1, -4, 1)$ and $Q^4 = (2, 2, 2, -6)$.

It is easy to check that $Q = (-1, 2, 1, -2)$ that is, players 1 and 4 are interested in improving the Owen point, and they would prefer the Omega point. However, players 2 and 3, still being essential, get some benefit with the Owen point’s and they would prefer to keep on it.

On the other hand, here the omega point is $\omega = (6, 9, 8, 4)$ and the QPQ set is given by:

$$QPQ(N, c) := \{(7 - \lambda, 7 + 2\lambda, 7 + \lambda, 6 - 2\lambda) \text{ such that } \lambda \in [0, 1]\}$$

If we consider the same weight for both individual and altruistic behaviors, we get the Shapley, which also matches the Nucleolus. That is, for $\lambda = \frac{1}{2}$ the Shapley value and Nucleolus coincides and both are equal to $(\frac{13}{2}, 8, \frac{15}{2}, 5)$.

At this point we wonder whether this coincidence always holds for every PI-game. The answer is no, in general, as example 5.5 reveals.

The main result of this section shows that, if no player can get a cost reduction in any coalition without an essential player, then the equal agreement, $D = (\frac{1}{2})$, coincides with the Shapley value and the Nucleolus. In some sense, it is a Solomonic agreement between the players who demand cost reductions (individual behaviour) and those who do not (altruistic behaviour). For that, we call $D = (\frac{1}{2})$ Solomonic allocation and denote it $\varsigma(N, c)$.

Proposition 5.3 Let $(N, D, \Re) \in \Upsilon$ and (N, c) be the corresponding PI-game. Assume that for each $t = 1, \ldots, T$ the following conditions are simultaneously fulfilled:

(i) $|E^t| \leq 1$,

(ii) $y^*_t(E^t) = y^*_t(N)$ if $E^t \neq \phi$,

(iii) $y^*_t(N \setminus E^t) = y^*_t(\{i\})$ for all $i \in N \setminus E^t$.

Then, $\varsigma(N, c) = \phi(N, c) = \eta(N, c)$.

Proof. Consider $(N, D_t, \Re) \in \Upsilon$ and (N, c^t) be the corresponding PI-game, with, (only period t has demand)

$$D_t = (d^{p^t})_{p=1, \ldots, T}, d^{p^t} = \begin{cases} d^t_p & \text{if } t = p, \\ 0 & \text{otherwise.} \end{cases}$$

We will denote to simplify notation $o(N, D_t, \Re)$ and $\omega(N, D_t, \Re)$ as o^t and ω^t, respectively. By (i) we consider only two cases:

- If $|E^t| = 0$ then $\omega^t = o^t = \text{Core}(N, c^t) = \eta(N, c^t)$ since the Nucleolus always belongs to the core of a game. Moreover, because of the condition (iii) $y^*_t(N) = y^*_t(\{i\})$ for all $i \in N$, then $c^t(S) = o^t_S$ for all $S \subseteq N$. It is easy to verify that all players are dummy players then $\phi(N, c^t) = o^t$.

If $|\mathcal{F}^t| = 1$, $(\mathcal{F}^t = \{k\})$.

Note that if $k \in S$ then $c^t(S \cup \{i\}) - c^t(S) = y^*_i(N)d^t_i$, otherwise ($k \notin S$) then by condition (iii) $c^t(S \cup \{i\}) - c^t(S) = y^*_i(S \cup \{i\})d^t_i - y^*_i(S)d^t_i = y^*_i(N \setminus \mathcal{F}^t)d^t_i$ for all $i \in N \setminus \mathcal{F}^t$.

If $i \in N \setminus \mathcal{F}^t$ then,

$$
\phi_i(N, c^t) = \sum_{S \subseteq N \setminus \{i\}} \gamma(S) \cdot \left[c^t(S \cup \{i\}) - c^t(S) \right] = \\
\sum_{S \subseteq N \setminus \{i\}/k \in S} \gamma(S) \cdot \left[c^t(S \cup \{i\}) - c^t(S) \right] + \\
\sum_{S \subseteq N \setminus \{i\}/k \notin S} \gamma(S) \cdot \left[c^t(S \cup \{i\}) - c^t(S) \right] = \\
\sum_{S \subseteq N \setminus \{i\}/k \in S} \gamma(S) \cdot y^*_i(N)d^t_i + \\
\sum_{S \subseteq N \setminus \{i\}/k \notin S} \gamma(S) \cdot y^*_i(N \setminus \mathcal{F}^t)d^t_i = \\
y^*_i(N)d^t_i \cdot \left(\sum_{S \subseteq N \setminus \{i\}/k \in S} \gamma(S) \right) + y^*_i(N \setminus \mathcal{F}^t)d^t_i \cdot \left(\sum_{S \subseteq N \setminus \{i\}/k \notin S} \gamma(S) \right) = \\
\frac{1}{2} \cdot y^*_i(N)d^t_i + \frac{1}{2} \cdot y^*_i(N \setminus \mathcal{F}^t)d^t_i = \\
\frac{1}{2} \cdot y^*_i(N)d^t_i + \frac{1}{2} \cdot \left(y^*_i(N)d^t_i + (y^*_i(N \setminus \mathcal{F}^t) - y^*_i(N))d^t_i \right) = \\
\frac{1}{2} \cdot o^t_i + \frac{1}{2} \cdot \omega^t_i
$$

By efficiency of Shapley value $\phi_{\mathcal{F}^t}(N, c^t) = \frac{1}{2} \cdot o^t_{\mathcal{F}^t} + \frac{1}{2} \cdot \omega^t_{\mathcal{F}^t}$. Moreover, Shapley value satisfies additivity property, thus for all player $i \in N$

$$
\phi_i(N, c) = \sum_{t=1}^{T} \phi_i(N, c^t) = \sum_{t=1}^{T} \left(\frac{1}{2} \cdot o^t_i + \frac{1}{2} \cdot \omega^t_i \right) = \\
\frac{1}{2} \cdot \sum_{t=1}^{T} o^t_i + \frac{1}{2} \cdot \sum_{t=1}^{T} \omega^t_i = \\
\frac{1}{2} \cdot o_i(N, D, \mathcal{R}) + \frac{1}{2} \cdot \omega_i(N, D, \mathcal{R})
$$

since the Owen point is additive for the demands (demonstrated in Guardiola et al. (2008)) and $\omega_i(N, D, \mathcal{R}) = \omega^t_i(N, D, \mathcal{R})$. Hence, $\varsigma(N, c) = \phi(N, c)$.

Now, we will prove that the Shapley value coincides with the Nucleolus. As we have seen previously if the properties (i), (ii) and (iii) are satisfied
for a period $t = 1, \ldots, T$ and for each $i \in N$ and for all $S \subseteq N \setminus \{i\}$

$$
\Delta^i_t(S) := c^t(S \cup \{i\}) - c^t(S) = \begin{cases}
y^*_t(N)d^*_t & \text{if } \mathcal{E}^t \in S \text{ and } i \notin \mathcal{E}^t
y^*_t(N) - y^*_t(N \setminus \mathcal{E}^t)d^*_t & \text{if } \mathcal{E}^t \notin S \text{ and } i \notin \mathcal{E}^t
y^*_t(N)d^*_t - y^*_t(N \setminus \mathcal{E}^t)d^*_t & \text{if } i \in \mathcal{E}^t
\end{cases}
$$

Similarly we get that

$$
\Delta^i_t(N \setminus (S \cup \{i\})) = \begin{cases}
y^*_t(N \setminus \mathcal{E}^t)d^*_t & \text{if } \mathcal{E}^t \in S \text{ and } i \notin \mathcal{E}^t
y^*_t(N)d^*_t & \text{if } \mathcal{E}^t \notin S \text{ and } i \notin \mathcal{E}^t
y^*_t(N)d^*_t - y^*_t(N \setminus \mathcal{E}^t)d^*_t & \text{if } i \in \mathcal{E}^t
\end{cases}
$$

Hence, $\Delta^i_t(S) + \Delta^i_t(N \setminus (S \cup \{i\})) = y^*_t(N)d^*_t + y^*_t(N \setminus \mathcal{E}^t)d^*_t$ if $i \in N \setminus \mathcal{E}^t$ for all $S \subseteq N \setminus \{i\}$ and $\Delta(S) + \Delta(N \setminus (S \cup \{i\})) = 2 \cdot (y^*_t(N)d^*_t - y^*_t(N \setminus \mathcal{E}^t)d^*_t)$ if $i \in \mathcal{E}^t$ for all $S \subseteq N \setminus \mathcal{E}^t$. We consider $\Delta_i(S) := \sum_{t=1}^{T} \Delta^i_t(S)$ for each $i \in N$ and for all $S \subseteq N \setminus \{i\}$. Then $\Delta_i(S)$ is a constant for all $S \subseteq N \setminus \{i\}$ and for all $i \in N$. Then (N, c) is a PS-game and $\varsigma(N, c) = \phi(N, c) = \eta(N, c)$.

The reader may notice that for those situations in which the properties (i), (ii) and (iii) hold and, in addition, $Q = 0$ (i.e., $\phi = \omega$), then $QPQ(N, c) = \{o(N, D, \mathbb{R})\} = \{\phi(N, c)\} = \{\eta(N, c)\}$. Otherwise, the core is larger.

Finally, we analyze the relationships between conditions (i), (ii), (iii) and concavity of PI-games.

Proposition 5.4 Let $(N, D, \mathbb{R}) \in \Upsilon$ and (N, c) be the corresponding PI-game. If for each $t = 1, \ldots, T$ conditions (i), (ii) and (iii) are fulfilled simultaneously the (N, c) is concave.

Proof. Consider $(N, D, \mathbb{R}) \in \Upsilon$ and (N, c^t) be the corresponding PI-game,

(a) If $|\mathcal{E}^t| = 0$ then $y^*_t(\{i\}) = y^*_t(N)$ for all $i \in N$ henceforth $c^t(S) - c^t(S \setminus \{i\}) = y^*_t(N)d^*_t$ for all $i \in N$ and for all $S \subseteq N$. Hence (N, c^t) is concave.

(b) If $|\mathcal{E}^t| = 1$, let say $\mathcal{E}^t = \{k\}$. Then two cases can be distinguished:

(b1) $k \in S \subseteq T \subseteq N$ then $c^t(S) - c^t(S \setminus \{i\}) = y^*_t(N)d^*_t = c^t(T) - c^t(T \setminus \{i\})$ for all $i \in N \setminus \{k\}$. Finally

$$
c^t(S) - c^t(S \setminus \{k\}) \geq c^t(T) - c^t(T \setminus \{k\});
y^*_t(N)d^S_t - y^*_t(N \setminus \{k\})d^S_t \geq y^*_t(N)d^T_t - y^*_t(N \setminus \{k\})d^T_t \setminus \{k\};
y^*_t(N) \setminus \{k\}d^T_t \setminus \{k\} \geq y^*_t(N) \setminus \{k\} \setminus \{k\}.
$$

It is true since $y^*_t(S) \geq y^*_t(R)$ for all $S \subseteq R \subseteq N$ and all $t \in \{1, \ldots, T\}$.

22
(b2) \(k \notin S \) and \(k \in T \). By condition (iii) \(c^i(S) - c^i(S \setminus \{i\}) = y^*_i(N \setminus \{k\})d^i_k \geq c^i(T) - c^i(T \setminus \{i\}) \) since if \(k \in T \) is satisfied \(c^i(T) - c^i(T \setminus \{i\}) = y^*_i(N) d^i_k \) and if \(k \notin T \) we have that \(c^i(T) - c^i(T \setminus \{i\}) = y^*_i(N \setminus \{k\}) d^i_k \).

Finally, by additivity property of PI-games with respect to periods (see Guardiola et al. (2008)) \((N, c)\) is concave. ■

Next example shows that conditions \((i), (ii), (iii) \), although necessaries, are no sufficient for concavity.

Example 5.5 Let us consider a PI-situation with three players in three periods with demand, and production, inventory and backlogging costs given in the following table:

	Demand	Production	Inventory	Backlogging
P1	10	10	10	1
P2	10	10	10	2
P3	10	10	10	3

Using those data one can obtain the cooperative game with characteristic function described below:

	\(d^i_1 \)	\(d^i_2 \)	\(d^i_3 \)	\(p^i_1 \)	\(p^i_2 \)	\(p^i_3 \)	\(h^i_1 \)	\(h^i_2 \)	\(b^i_1 \)	\(b^i_2 \)	\(b^i_3 \)	\(c \)
\{1\}	10	10	5	1	2	3	1	2	1	1	45	
\{2\}	10	10	10	2	1	3	1	1	1	1	50	
\{3\}	10	10	10	3	3	1	1	1	2	2	70	
\{1,2\}	20	20	15	1	1	3	1	1	1	70		
\{1,3\}	20	20	15	1	2	1	1	1	1	1	75	
\{2,3\}	20	20	20	2	1	1	1	1	1	1	80	
\{1,2,3\}	30	30	25	1	1	1	1	1	1	1	85	

It is easy to check that the above game is concave, but condition (iii) does not hold. Indeed, for the first period, \(E^1 = \{1\} \) but \(y^*_i(\{2,3\}) = 2 < 3 = y^*_i(\{3\}) \).

Moreover, the Nucleolus \(\eta(N,c) = \left(\frac{70}{3}, \frac{85}{3}, \frac{100}{3} \right) \) is lightly different from the Shapley value, \(\phi(N,c) = \left(\frac{125}{6}, \frac{155}{6}, \frac{112}{3} \right) \).

Finally, \(o = (30,30,25), \omega = (25,30,30) \) and so the Solomonic allocation is \(\varsigma(N,c) = \left(\frac{55}{2}, \frac{30}{3}, \frac{55}{2} \right) \).

6 Concluding remarks

This paper completes the study of the PI-games presented in Guardiola et al. (2008, 2009). Those two papers proposed the Owen point as a natural core-allocation, which does not pay attention to the role that essential players play in reducing the costs of their fans. In that sense, essential players could consider the Owen point as an altruistic core-allocation. However, the core was not studied in depth there.
Here we have analyzed carefully the core structure of PI-games, and we have realized that the number of extreme point of its core is exponential in the number of players. Then, we have proposed a new core-allocation, the Omega point, that compensates the essential players for their role in reducing the costs of their fans. Based on the Owen and Omega points we have defined the QPQ-set. Since every QPQ allocation is a convex combination of the Owen and the Omega points, we have paid special attention to the equally weighted QPQ allocation, the Solomonic allocation. Finally, we have provided some necessary conditions for the coincidence of the latter with the Shapley value and the Nucleolus.

References

[1] Bondareva ON (1963) Some applications of linear programming methods to the theory of cooperative games. Problemy Kibernet 10:119-139
[2] Deng X, Ibaraki T, Nagamochi H (1999) Algorithmic aspect of the core of combinatorial optimization games. Mathematics of Operations Research 24:751-766
[3] Derks, J. and Kuipers, J (1997) On the core of routing games. International Journal of Game Theory 26:193-205
[4] Faigle U, Kern W, Fekete SP, Hochstädtler W (1997) On the complexity of testing membership in the core of min-cost spanning tree games. International Journal of Game Theory 26:361-366
[5] Fang Q, Zhu S, Cai M and Deng X (2002) On the computational complexity of membership test in flow games and linear production games. International Journal of Game Theory 31:39-45
[6] Schmeidler, D. 1969. The Nucleolus of a Characteristic Funtion Game, SIAM Journal of Applied Mathematics 17, 1163-1170.
[7] Goemans M and Skutella M (2004) Cooperative facility location games. Journal of Algorithms 50:194-214
[8] Guardiola LA, Meca A, Puerto J (2008) Production-inventory games and PMAS-games: Characterizations of the Owen point. Mathematical Social Sciences 56:96-108
[9] Guardiola LA, Meca A, Puerto J (2009) Production-Inventory games: a new class of totally balanced combinatorial optimization games. Games and Economic Behavior 65:205-219
[10] Hamers H, Klijn F, Solymosi T, Tijs SH, Villar JP (2002) Assignment games satisfy the CoMa-property. Games and Economic Behavior 38:231-239
[11] Perea F, Puerto J, Fernández FR (2012) Avoiding unfairness of Owen allocations in linear production processes. European Journal of Operational Research 220:125-131

[12] Kar A, Mitra M, Mutuswami S (2009) On the coincidence of the prenucleolus and the Shapley value. Mathematical Social Sciences 57:16-25

[13] Kuipers J (1993) On the Core of information graph games. International Journal of Game Theory 21:339-350

[14] Sánchez-Soriano J, López MA, García-Jurado I (2001) On the core of transportation games. Mathematical Social Sciences 41:215-225

[15] Shapley LS (1953) A value for n-person games in Contributions to the Theory of Games II. Annals of Mathematics Studies. 28:307-317

[16] Shapley LS (1967) On Balanced Sets and Cores. Naval Res. Logist. 14:453-460

[17] Shapley LS (1971) Cores of convex games. International Journal of Game Theory 1:11-26

[18] Shapley LS, Shubik M (1969) On market games. Journal of Economics Theory 1:9-25

[19] Sotomayor M (2003) Some further remarks on the core structure of the assignment game. Mathematical Social Sciences 46:261-265

[20] Sprumont Y (1990) Population Monotonic Allocation Schemes for Cooperative Games with Transferable Utility. Games and Economic Behavior 2:378-394