In 2012, London hosted the Olympic and Paralympic Games (the Games), with events occurring throughout the United Kingdom (UK) between 27 July and 9 September 2012. Public health surveillance was performed by the Health Protection Agency (HPA). Collaboration between the HPA and the European Centre for Disease Prevention and Control (ECDC) was established for the detection and assessment of significant infectious disease events (SIDEs) occurring outside the UK during the time of the Games. Additionally, ECDC undertook an internal prioritisation exercise to facilitate ECDC’s decisions on which SIDEs should have preferentially enhanced monitoring through epidemic intelligence activities for detection and reporting in daily surveillance in the European Union (EU). A team of ECDC experts evaluated potential public health risks to the Games, selecting and prioritising SIDEs for event-based surveillance with regard to their potential for importation to the Games, occurrence during the Games or export to the EU/European Economic Area from the Games. The team opted for a multilevel approach including comprehensive disease selection, development and use of a qualitative matrix scoring system and a Delphi method for disease prioritisation. The experts selected 71 infectious diseases to enter the prioritisation exercise of which 27 were considered as priority for epidemic intelligence activities by ECDC for the EU for the Games.

Introduction
A mass gathering (MG) has been defined as a gathering of more than 1,000 persons at a specific location for a specific purpose and for a defined duration [1,2]. As MGs can represent a burden for public health systems, some preparedness planning should be considered in advance to mitigate the unusual pressures. Adverse health events at MGs are relatively rare, but have been described in the literature [3,4].

In 2012, London hosted the Olympic and Paralympic Games (the Games), with events occurring throughout the United Kingdom (UK) between 27 July and 9 September 2012, with the majority in London and the south of England. The organisers expected approximately nine million spectators and 300,000 participants, including athletes, officials, media and workforce [5-7].

The European Centre for Disease Prevention and Control (ECDC) is mandated to identify, assess and communicate current and emerging risks to human health from communicable diseases [8]. Information regarding infectious and non-infectious events is collected by the epidemic intelligence team at ECDC in a database for event-based surveillance named the Threat Tracking Tool. A dedicated indicator-based surveillance database, The European Surveillance System (TESSy), collects data on mandatorily notifiable diseases sent by Member States of the European Union (EU) and European Economic Area (EEA) under Decision 2119/98/EC [9,10]: at the time of the Games, this included 27 EU countries plus Norway, Iceland and Liechtenstein.

Public health surveillance in the UK for London 2012 was coordinated by the Health Protection Agency (HPA), now part of Public Health England. Close collaboration between the HPA’s international team and ECDC was established for detection and assessment of infectious and non-infectious events occurring worldwide during the Games. ECDC reinforced its event-based surveillance activities to enhance detection and assessment of these events relevant to the Games in a timely manner. For this purpose, keywords for tools such as software that aggregates a specific type of information from multiple online sources (media aggregator) had to be selected, to be used for threat detection. Special attention was paid to infectious disease events that are more common than non-infectious environmental events for a MG setting [11]. As the list of infectious diseases representing a risk for public health is long, financial and human resources limited and adverse health events rare, a priority-setting exercise was deemed necessary to facilitate ECDC’s decisions on which infectious diseases should have preferentially
enhanced detection and monitoring, independently of the criteria set by HPA [12]. Non-infectious environmental events were not prioritised. In the absence of a standard method, prioritisation of infectious diseases for event-based surveillance during each MG is usually achieved empirically [11-15].

We aimed to employ a reproducible, transparent, qualitative method to prioritise infectious diseases occurring worldwide and representing a risk for public health during MGs, in order to develop a list of significant infectious disease events (SIDEs) that would enhance event-based surveillance at ECDC for the Games. The use of two independent approaches, one by ECDC and the other by HPA, for the prioritisation of infectious disease events is likely to have increased the overall sensitivity of event-based surveillance during the Games.

Methods
A team composed of three ECDC experts (generic expert team) was assigned to evaluate potential public health threats to the Games, as well as to select and prioritise SIDEs for the event-based surveillance system. To this end, the generic expert team opted for a multilevel approach including the selection of infectious diseases for prioritisation, qualitative scoring of diseases using a consensus-building Delphi method and a risk matrix [16-24].

A total of 56 ECDC experts from seven diseases programmes (disease expert teams) participated in the scoring and Delphi method. The disease programmes covered the following topics: food- and waterborne and zoonoses, vaccine-preventable diseases, emerging and vector-borne diseases, tuberculosis, airborne diseases, human immunodeficiency virus (HIV) and other sexually transmitted infections and antimicrobial resistance and healthcare-associated infections.

Selection of infectious diseases for surveillance
A list of infectious diseases to consider for prioritisation was compiled using the following criteria: (i) mandatorily notifiable infectious diseases that were reported to TESSy in 2010; (ii) potential infectious threats to Europe that had been identified and monitored in the Threat Tracking Tool in June to September of 2005 to 2011 inclusive, i.e. the months surrounding the 2012 Olympic and Paralympic Games; (iii) events reported in the HPA’s weekly epidemiological reports from May to September 2011; (iv) diseases reportable to the World Health Organization according to the International Health Regulations, e.g. poliomyelitis due to wild type poliovirus; and (v) infectious agents with the potential to provoke outbreaks and potential media interest.

The score for likelihood of occurrence ranged from one point (least likely) to five points (most likely). The assigned criteria used to score likelihood of occurrence were the incidence, geographical distribution, seasonal trends, mode of transmission and incubation period. Likelihood of occurrence was scored by the generic team according to three categories in the context of the Games: (i) being imported into the Games; (ii) occurring at the Games; and (iii) being exported from the Games to rest of the EU/EEA. ‘Occurring at the Games’ meant disease transmission during the Games. The disease expert teams were asked to assess only the likelihood of occurrence of diseases for two categories only: those occurring at the Games and being exported from the Games. The disease expert teams received a list of diseases within their field of expertise, the corresponding data from TESSy and the Threat Tracking Tool, a summary of threats monitored in the HPA weekly epidemiological reports and the collated supportive information from the generic expert team. The experts in each disease expert team discussed the scores to be assigned to each disease. Each team was requested to send one response per team to the generic team, indicating the attributed score for the public health impact of each disease within their field of expertise, in the context of the Games at UK and EU/EEA level.

A qualitative risk matrix was used by the generic team to assign for every disease a public health risk score of low, medium, high or highest by taking into account the scores for the public health impact and likelihood of occurrence (Table 1) [16]. A table with the scoring results attributed by the generic expert team and by the disease expert teams was then compiled. When there was a divergence in the scores of the teams, the scores were revised. A consensus was achieved according to Delphi method, through discussions between the generic team and each disease expert team separately.

Diseases with an overall public health risk score of high or highest, whether for diseases being imported to the Games, occurring at or being exported from the Games were then included in the final priority list.
For diseases with the highest impact (a score of 5) and least likely occurrence (a score of 1), the public health impact was considered ‘high’ and for those with the lowest impact (a score of 5) and the most likely occurrence (a score of 1), the public health impact was considered ‘medium’. This arose from the assessment that the risk from a disease with the highest impact on public health but least likely occurrence is considered greater than the risk from the disease with the lowest impact but most likely occurrence.

Results

Selection of diseases for surveillance
A list of 71 infectious diseases (including infectious agents that could be deliberately released) resulted from the selection of diseases to be included in the prioritisation exercise (Table 2).

In 2010, data in TESSy showed that in the EU/EEA, food- and waterborne diseases were the diseases reported most frequently, followed by sexually transmitted and airborne diseases. Measles, pertussis and infections due to *Haemophilus influenzae* were the most commonly reported vaccine-preventable diseases. Travel-related malaria was the predominating vector-borne disease.

According to the 2010 TESSy data for the UK, sexually transmitted diseases predominated, followed by food- and waterborne diseases. With regard to airborne diseases, tuberculosis predominated followed by Legionnaire’s disease. The most commonly reported vaccine-preventable disease was meningococcal disease followed by infections due to *Haemophilus influenzae*. Finally, among vector-borne diseases, reports of imported malaria predominated.

From June to September, between 2005 and 2011, ECDC’s Threat Tracking Tool had monitored 435 threats: among those, 128 were due to food- and waterborne diseases and 100 were related to Legionnaire’s disease.

From June to September 2011, 371 health events were documented in the HPA weekly epidemiological reports: among those, 71 were mentioned as gastroenteritis.

Scoring system and Delphi method

The scores attributed by the generic expert team and by the disease expert teams differed for some diseases while it was similar for others (Table 2). The main differences in the scoring were for food- and waterborne diseases and antimicrobial resistance and healthcare-associated infections. The likelihood of infections due to food- and waterborne diseases within the UK was scored higher by the disease expert team. The antimicrobial resistance and healthcare-associated infections expert team added seven groups of pathogens for surveillance. They considered that carriage of the more common nosocomial infections was likely, although the likelihood of infection would be very low in non-hospitalised attendees at the Games. These included community-acquired and hospital-acquired meticillin-resistant *Staphylococcus aureus*, vancomycin-resistant enterococci and extended-spectrum beta-lactamase-producing *Enterobacteriaceae*.

During consultations, the generic expert team and disease expert teams discussed differences and found consensus scores. The Delphi method resulted in the inclusion of influenza, influenza-like illness and diphtheria, which were not considered relevant in the first round, and also to the modification of the ranking position for some diseases (Table 3).

Compiling list of surveillance priorities

After the application of the risk matrix and Delphi method, 27 diseases were considered as priorities for epidemic intelligence activities (Table 3). Food- and waterborne accounted for eight: *Escherichia coli* infections, campylobacteriosis, typhoid fever, salmonellosis, shigellosis, cholera, hepatitis A and viral gastroenteritis (including norovirus, rotavirus and adenovirus). Zoonoses accounted for four: leptospirosis, rabies, anthrax and arenavirus diseases. Four airborne diseases were selected: influenza, Legionnaires’ disease, tuberculosis and ‘other acute respiratory infections’. Four vaccine-preventable diseases were included – meningococcal disease, measles, pertussis and diphtheria – and three emerging diseases – smallpox, Ebola or Marburg viruses and severe acute respiratory syndrome (SARS). Infections due to invasive group A streptococcal infections and invasive pneumococcal disease were considered as a priority; among sexually transmitted infections, syphilis and HIV infection were included.

Reported events

From all infectious disease signals detected during the Games, 49 SIDEs were selected by ECDC’s epidemiologic intelligence using the priority list (Table 3) and presented to ECDC’s ‘round table’ (a daily expert meeting for monitoring and assessment of threats within ECDC’s mandate, identified though epidemiologic intelligence) as relevant for the Games. Of the 49 SIDEs selected, 11 were reported to HPA by ECDC.

Table 1

Likelihood of occurrence	Public health impact				
	1	2	3	4	5
Lowest impact	Lowest	Low	Medium	Medium	High
Medium	Low	Medium	Medium	Medium	High
Highest impact	Medium	Medium	Medium	High	High
Medium	Medium	Medium	High	High	Highest
Highest impact	Medium	High	High	Highest	Highest

For diseases with the highest impact (a score of 5) and least likely occurrence (a score of 1), the public health impact was considered ‘high’ and for those with the lowest impact (a score of 5) and the most likely occurrence (a score of 1), the public health impact was considered ‘medium’. This arose from the assessment that the risk from a disease with the highest impact on public health but least likely occurrence is considered greater than the risk from the disease with the lowest impact but most likely occurrence.
Table 2a

Generic expert and disease expert team scores for public health risk of infectious diseases (n=71) prioritised for epidemic intelligence screening activity for the 2012 Olympic and Paralympic Games by the European Centre for Disease Prevention and Control

Disease category	Pathogen/disease/syndrome	Overall public health risk of infection/outbreak				
		Generic expert team’s assessment	Disease expert teams’ assessments			
		Imported to the Games	Occurring at the Games	Exported from the Games	Occurring at the Games	Exported from the Games
Airborne diseases	Avian Influenza A(H5N1) in humans	NA3	NA3	NA3	Lowest	Low
	Influenza	Medium	Low	Medium	High	Highest
	Tuberculosis	High	High	High	Medium	High
	Other acute respiratory illness	Low	Low	Medium	Highest	Highest
	Emerging and vector-borne diseases					
	Arenavirus diseases (e.g. Lassa, or New world arenaviruses)	High	NA1	NA1	Highest	Highest
	Chikungunya	Medium	NA1	NA1	High	Medium
	Crimean-Congo haemorrhagic fever	Medium	NA1	NA1	High	Medium
	Dengue	Medium	NA1	NA1	High	Medium
	Ebola or Marburg diseases (Filoviruses)	High	High	High	Highest	Highest
	Hantaviral infections (Old and New world)	Medium	NA1	NA1	Low	Low
	Invasive group A streptococcal (iGAS) infections	High	High	High	ND	ND
	Leishmaniasis/Chagas disease	Medium	NA1	NA1	Low	Lowest
	Louse-borne typhus	Medium	NA1	NA1	Medium	Low
	Lyme disease	Medium	NA1	NA1	Low	Low
	Malaria	Medium	NA1	NA1	High	Medium
	Pneumonic plague	Medium	Medium	Medium	Highest	Highest
	Q-fever	Medium	Medium	Medium	Medium	Low
	Rabies	High	NA4	NA4	Medium	Medium
	Rift Valley fever	Medium	NA1	NA1	Low	Low
	Severe acute respiratory syndrome (SARS)	High	High	High	Highest	Highest
	Smallpox	High	High	High	Highest	Highest
	Tick-borne encephalitis	Medium	NA1	NA1	Low	Lowest
	West Nile fever	Medium	NA1	NA1	Medium	Low
	Yellow fever	Medium	NA1	NA1	High	High
	Food- and waterborne diseases					
	Botulism (in food brought by visitors)	Medium	Medium	Medium	High	Medium
	Brucellosis	Medium	Medium	Medium	Medium	Low
	Campylobacteriosis	High	High	Medium	Medium	Low
	Cholera	High	High	Medium	High	High
	Cryptosporidiosis	Medium	Medium	Medium	Medium	Low
	Escherichia coli infections (including enterohaemorrhagic* E. coli* (EHEC), Shiga toxin-producing *E. coli* (STEC), verocytotoxin-producing *E. coli* (VTEC)*	Highest	Highest	Highest	High	High
	Viral gastroenteritis (including norovirus, rotavirus, adenovirus)	High	High	High	Medium	Medium
	Giardiasis	Medium	Medium	Medium	Low	Medium
	Hepatitis A	High	High	High	High	High
	Hepatitis E	Medium	Medium	Medium	Low	Lowest
	Legionellosis	NA3	High	High	Low	Lowest
	Listeriosis	Medium	Medium	Medium	Medium	Low
	Salmonellosis	High	High	High	High	Medium
	Shigellosis	High	High	High	Medium	Low
	Trichinosis	Medium	Medium	Medium	Low	Lowest
	Typhoid fever	High	High	High	Medium	Medium
	Yersiniosis	Medium	Medium	Medium	Low	Low

NA1: not applicable due to absence of the pathogen, vector or conditions for transmission; NA2: not applicable because persons infected with such pathogens were not likely to visit or participate in the Games; NA3: not applicable because human-to-human disease transmission is either not possible or very limited; NA4: not applicable because of long incubation period; ND, not determined.

Discrepancies in generic expert team and the disease expert team scores were discussed between these groups through the Delphi method to find the consensus.
Table 2b

Generic expert and disease expert team scores for public health risk of infectious diseases (n=71) prioritised for epidemic intelligence screening activity for the 2012 Olympic and Paralympic Games by the European Centre for Disease Prevention and Control

Disease category	Pathogen/disease/syndrome	Overall public health risk of infection/outbreak	Generic expert team's assessment	Disease expert teams' assessment		
		Imported to the Games	Occurring at the Games	Exported from the Games	Occurring at the Games	Exported from the Games
Zoonoses	Anthrax	High	High	High	Medium	Low
	Echinococcosis	Low	Low	Low	Lowest	Lowest
	Leptospirosis	High	High	Medium	Medium	Low
	Toxoplasmosis	Low	Low	Low	Lowest	Lowest
	Tularemia	Medium	Medium	Medium	Low	Low
Sexually transmitted infections	Chlamydia infections	Medium	High	Medium	Medium	Medium
	Gonorrhoea	Low	Medium	Medium	Medium	Medium
	Hepatitis B	Medium	Medium	Medium	Medium	Medium
	Hepatitis C	Medium	Medium	Medium	Medium	Medium
	Human immunodeficiency virus (HIV) infection	High	High	NA4	High	NA4
	Lymphogranuloma venereum (LGV) infection	Medium	Medium	Medium	Medium	Medium
	Syphilis	High	High	High	High	High
Vaccine-preventable diseases	Diphtheria	Medium	Medium	Medium	Medium	Medium
	Invasive Haemophilus influenza	Medium	Medium	Medium	Highest	Highest
	Measles	High	High	High	Medium	Medium
	Invasive meningococcal disease	Highest	Highest	Highest	Highest	Highest
	Mumps	Medium	Medium	Medium	Low	Low
	Pertussis	Medium	High	High	Medium	Medium
	Invasive pneumococcal disease	NA2	NA2	NA2	Lowest	Lowest
	Poliomyelitis	Medium	Medium	Medium	Highest	Highest
	Rubella	Medium	Medium	Medium	Medium	Medium
	Tetanus	Medium	Medium	Medium	Lowest	Lowest
	Varicella	Medium	Medium	Medium	Low	Low
Antimicrobial resistance and healthcare-associated infections	Community-associated meticillin-resistant Staphylococcus aureus (CA-MRSA)	NA2	NA2	NA2	Low	Low
	Healthcare-associated meticillin-resistant Staphylococcus aureus (HA-MRSA)	NA2	NA2	NA2	Low	Low
	Vancomycin-resistant enterococci (VRE)	NA2	NA2	NA2	Low	Low
	Extended-spectrum beta-lactamase (ESBL)-producing Enterobacteriaceae	NA2	NA2	NA2	Low	Low
	Carbapenemase-producing Enterobacteriaceae	NA2	NA2	NA2	Low	Low
	Nosocomial transmission of transmissible spongiform encephalopathies variant (Creutzfeldt–Jakob disease)	NA4	NA4	NA4	NA4	NA4
	Carbapenem-resistant Pseudomonas aeruginosa	NA2	NA2	NA2	Low	Low
	Healthcare-associated infections (in general)	NA2	NA2	NA2	NA2	NA2

NA1: not applicable due to absence of the pathogen, vector or conditions for transmission; NA2: not applicable because persons infected with such pathogens were not likely to visit or participate in the Games; NA3: not applicable because human-to-human disease transmission is either not possible or very limited; NA4: not applicable because of long incubation period; ND, not determined.

Discrepancies in generic expert team and the disease expert team scores were discussed between these groups through the Delphi method to find the consensus.
Discussion

Although epidemiological surveillance during MGs is an important activity of several public health institutions worldwide, few articles provide methodological guidance for event-based surveillance and prioritisation of diseases in this context. Therefore, in preparation for the 2012 Games, we reviewed projects executed for different public health topics but using similar prioritisation methodologies [17-24].

The methodology used to compile a list of SIDEs for the Games was designed to be comprehensive, pragmatic and reproducible. Its representativeness was promoted by considering threats monitored in previous summers in the UK, the EU/EEA and globally. Considering that most events recorded for previous MGs were related to infectious disease outbreaks and very few to environmental hazards, the latter were not included in the prioritisation exercise. The literature confirms that infectious diseases are in fact more common than environmental hazards for the MG setting [11]. The SIDEs that were considered had all already been described in the literature or had been captured by one

Pathogen/disease/syndrome	Imported to the Games	Occurring at the Games	Exported from the Games			
	Risk*	Likelihood / public health impact	Risk*	Likelihood / public health impact	Risk*	Likelihood / public health impact
Meningococcal disease	Highest 5 / 5	Highest 5 / 5	Highest 3 / 5			
Escherichia coli infections (including enterohaemorrhagic E. coli (EHEC), Shiga toxin-producing E. coli (STEC), verocytotoxin-producing E. coli (VTEC))	Highest 5 / 4	Highest 5 / 4	Highest 5 / 4			
Cholera	High 5 / 3	High 5 / 3	Medium 2 / 3			
Salmonellosis	High 5 / 2	High 5 / 2	High 5 / 2			
Viral gastroenteritis (including norovirus, rotavirus, adenovirus)	High 5 / 2	High 5 / 2	High 5 / 2			
Measles	High 4 / 4	High 4 / 4	High 4 / 4			
Typhoid fever	High 4 / 4	High 4 / 4	High 4 / 4			
Campylobacterosis	High 4 / 3	High 5 / 3	Medium 3 / 3			
Shigellosis	High 4 / 3	High 4 / 3	High 4 / 3			
Influenza	High 4 / 2	Medium 2 / 2	Medium 2 / 2			
Other acute respiratory infections	High 4 / 2	Medium 1 / 2	Medium 2 / 2			
Invasive group A streptococcal (iGAS) infections	High 3 / 4	High 4 / 4	High 3 / 4			
Leptospirosis	High 3 / 4	High 3 / 4	Medium 1 / 4			
Syphilis	High 3 / 4	High 3 / 4	High 3 / 4			
Tuberculosis	High 3 / 4	High 3 / 4	High 3 / 4			
Hepatitis A	High 3 / 2	High 4 / 2	High 4 / 2			
Anthrax	High 2 / 5	High 1 / 5	High 1 / 5			
Human immunodeficiency virus (HIV) infection	High 2 / 5	High 2 / 5	NA4	NA4		
Arenavirus diseases (Lassa, Junin, Machupo, Guanarito, Sabiá)	High 1 / 5	NA1	NA1	NA1	NA1	
Ebola or Marburg viruses (filoviruses)	High 1 / 5	High 1 / 5	High 1 / 5			
Rabies	High 1 / 5	NA4	NA4	NA4		
Severe acute respiratory syndrome (SARS)	High 1 / 5	High 1 / 5	High 1 / 5			
Smallpox	High 1 / 5	High 1 / 5	High 1 / 5			
Diphtheria	Medium 5 / 5	Low 4 / 5	Low 2 / 5			
Pneumococcal disease	Medium 2 / 4	High 3 / 4	Medium 1 / 4			
Pertussis	Medium 2 / 3	High 4 / 3	Medium 2 / 3			
Legionnaires’ disease	NA3	NA3	High 4 / 3			

NA1: not applicable due to the absence of the pathogen, vector or conditions for transmission; NA2: not applicable because persons infected with such pathogen were unlikely to visit or participate in London 2012; NA3: not applicable because human-to-human disease transmission is either not possible or very limited; NA4: not applicable because of long incubation period.

* Risk: the public health risk of infection/outbreak for each pathogen/disease/syndrome, calculated from its likelihood and public health impact scores using the risk matrix (Table 1).
of the aforementioned surveillance systems. Therefore, those that were not recorded in these outputs by definition could not be included in the priority list for monitoring, due to this limitation of our methodology. Undoubtedly, unexpected events should always be considered as a potential eventuality during MGs, e.g. the emergence of a worldwide event such as the SARS outbreak in 2003. Therefore, when ensuring preparedness for MGs, surveillance for the unexpected should always be included, e.g. by including syndromic surveillance or by recording numbers of hospitalisations due to unexplained illness.

There were no surprises regarding the prioritisation results, which were similar to those from other MGs [2,11]. Food- and waterborne diseases were considered the most probable to occur followed by airborne. The normal seasonal trend of increased bacterial gastroenteritis during warmer months in the northern hemisphere can explain this ranking. An increase in the number of cholera cases has been reported by infectious disease surveillance systems globally in recent years; the HPA monitored imported cholera in the UK in the summer months of 2011. This fact and possible high media attention contributed to the inclusion of imported cholera among diseases for prioritised surveillance even though it is unlikely that isolated cases of cholera could give rise to outbreaks in the UK or be spread from the UK to other countries. The influenza pandemic of 2009 contributed to influenza’s ranking as a high likelihood of occurrence in the context of a summer Olympics and Paralympics, combined with the expected visitors from southern-hemisphere countries during their influenza season, and the possibility of summer outbreaks of influenza in the UK [36,37]. Indeed, the HPA’s weekly epidemiological reports for summer 2011 included the monitoring of an outbreak of imported influenza A(H1N1)pdm09 virus infections. The high score for meningococcal diseases is also not surprising given their high infectiousness and case-fatality rate. The long incubation period of infectious diseases such as HIV infection and tuberculosis (TB) meant that this was not a priority for the Games; however, given that single cases would attract media and public attention, HIV and TB were considered as a priority for surveillance.

The criteria used to define the likelihood of disease occurrence were the incubation period, incidence, geographical distribution, seasonal trends and mode of transmission, i.e. guided by scientific evidence. The independent scoring of the public health impact and the likelihood of occurrence of a disease, and the use of risk matrix as part of the scoring system maximised the achievable objectivity and added credence to the prioritisation method.

Assessment of public health risk, especially in the context of MGs, presents some difficulties. Ranking of the public health impact of an infectious disease – characterised by its frequency, severity of the outcomes and risk of secondary transmission – can be performed in more or less quantitative terms. Public reaction to infectious disease threats cannot be quantified as easily, however, as it is driven by cultural and emotional conditions. Therefore, diseases such as malaria or hantavirus infection – for which secondary transmission was almost impossible and consequently there was no risk of outbreak – were considered for prioritisation because of the media attention that such a disease could have had. However, both aspects must be considered when assessing the public health impact.

The Delphi method assured a high level of consensus and promoted objectivity in disease prioritisation. Assessment by multidisciplinary disease expert teams allowed the prioritisation to benefit from experts’ specific knowledge, team work and grouping of similar diseases to obtain more comparable scoring.

Expert opinion inherently carries some degree of subjectivity, and experts were asked to provide a semi-qualitative score based on expert judgement and background data. Subjective judgments can be influenced by topical or newsworthy disease trends. The compiled background data, which included descriptors of current trends, were therefore an indispensable tool to reduce subjectivity in the scoring process. Similarly, discussions between the generic team that acquired and collated the data and disease expert teams in a Delphi process ensured that ranking was reconsidered. Although this method demanded time for preparation and committed resources, it strengthens the validity of the prioritisation process.

During the Games, no major SIDEs were detected (data not shown). This may be explained by effectiveness of preparedness measures before the Games, particularly by the UK, aided by an appraisal of the global epidemiological situation.

The priority list of diseases was given to epidemic intelligence tool developers, who, considering HPA criteria [12], ensured that SIDEs keywords were incorporated in different languages into news aggregator and Internet-trawling software used by the epidemic intelligence teams at ECDC for threat detection. There is a scientific prerequisite to have a reliable, transparent and evidence-based method to rely on when setting priorities. To our knowledge, the combination of a risk matrix and Delphi method has not been used yet elsewhere to develop a priority list of diseases for monitoring during MGs. Being completed relatively quickly (one week) with minimal resources (approximately half a working day per expert), this approach provides a scientific tool for a review of diseases when preparing for a MG. Besides its role during these Games, this tool could provide a permanent legacy, as the protocols can be adapted and the methodology repeated with amendments by ECDC or other institutions.
References

1. World Health Organization (WHO). Special groups of travellers. In: International travel and health. Geneva: WHO; 2010. p. 174-5.
2. World Health Organization (WHO). Communicable disease alert and response for mass gatherings: key considerations, June 2008. Geneva: WHO; 2008. Available from: www.who.int/csr/Mass_gatherings52.pdf
3. Richter ML, Chersich MF, Scorgie F, Luchters S, Temmerman M, Bennett AE and PK: generated study design and methodology; collected data; applied methodology; members of generic team; coordinated Delphi process. DD: writing and editorial contribution to article. DC: initiated study; contributed to study design and methodology; member of generic team. All authors have critically reviewed and approved the final article.
4. World Health Organization (WHO). A guide to establishing operational guidance on rapid risk assessment methodology. Stockholm: ECDC; 2011. Available from: http://ecdc.europa.eu/en/publications/Publications/1108_TED_Risk_Assessment_Methology_Guidance.pdf
5. Sibbald SL, Gibson JL, Singer PA, Upshur R, Martin DK. Priority setting: what constitutes success? A conceptual framework for successful priority setting, BMC Health Serv Res. 2009;9:43. http://dx.doi.org/10.1186/1472-6963-9-43
6. European Centre for Disease Prevention and Control (ECDC). Operational guidance on rapid risk assessment methodology. Stockholm: ECDC; 2011. Available from: http://ecdc.europa.eu/en/publications/Publications/1108_TED_Risk_Assessment_Methology_Guidance.pdf
7. Sibbald SL, Singer PA, Upshur R, Martin DK. Priority setting: what constitutes success? A conceptual framework for successful priority setting, BMC Health Serv Res. 2009;9:43. http://dx.doi.org/10.1186/1472-6963-9-43
8. European Centre for Disease Prevention and Control (ECDC). Operational guidance on rapid risk assessment methodology. Stockholm: ECDC; 2011. Available from: http://ecdc.europa.eu/en/publications/Publications/1108_TED_Risk_Assessment_Methology_Guidance.pdf
9. Krause G, Working Group on Prioritisation at the Robert Koch Institute. Prioritisation of infectious diseases in public health—call for comments. Euro Surveill. 2008;13(14):pii=18966.
10. Viergever RF, Olifson S, Ghaffar A, Terry RF. A checklist for health research priority setting: nine common themes of good practice. Health Res Policy Syst. 2010;8:36.
11. World Health Organization (WHO). International Health Regulations (2005). 2nd ed. Geneva: WHO; 2008. Available from: http://www.who.int/ihr/documents/ihr2005english.pdf
12. Botelho-Nevers E, Gautret P. Outbreaks associated to large infectious diseases surveillance—a modified Delphi study. Afr Health Sci. 2011;11 Suppl 1:S93-9. http://dx.doi.org/10.4314/ahs.v11i1.70077
13. Botelho-Nevers E, Gautret P. Outbreaks associated to large infectious diseases surveillance—a modified Delphi study. Afr Health Sci. 2011;11 Suppl 1:S93-9. http://dx.doi.org/10.4314/ahs.v11i1.70077
14. Botelho-Nevers E, Gautret P. Outbreaks associated to large infectious diseases surveillance—a modified Delphi study. Afr Health Sci. 2011;11 Suppl 1:S93-9. http://dx.doi.org/10.4314/ahs.v11i1.70077
15. Botelho-Nevers E, Gautret P. Outbreaks associated to large infectious diseases surveillance—a modified Delphi study. Afr Health Sci. 2011;11 Suppl 1:S93-9. http://dx.doi.org/10.4314/ahs.v11i1.70077
16. European Centre for Disease Prevention and Control (ECDC). Operational guidance on rapid risk assessment methodology. Stockholm: ECDC; 2011. Available from: http://ecdc.europa.eu/en/publications/Publications/1108_TED_Risk_Assessment_Methology_Guidance.pdf
17. Sibbald SL, Singer PA, Upshur R, Martin DK. Priority setting: what constitutes success? A conceptual framework for successful priority setting, BMC Health Serv Res. 2009;9:43. http://dx.doi.org/10.1186/1472-6963-9-43
18. Sibbald SL, Gibson JL, Singer PA, Upshur R, Martin DK. Evaluating priority setting success in healthcare: a pilot study. BMC Health Serv Res. 2010;10:131. http://dx.doi.org/10.1186/1472-6963-10-131
19. Krause G, Working Group on Prioritisation at the Robert Koch Institute. Prioritisation of infectious diseases in public health—call for comments. Euro Surveill. 2008;13(14):pii=18966.
20. Viergever RF, Olifson S, Ghaffar A, Terry RF. A checklist for health research priority setting: nine common themes of good practice. Health Res Policy Syst. 2010;8:36.
21. Reissman DB, Howard J. Responder safety and health: preparing for future disasters. Mt Sinai J Med. 2008;75(2):135-41. http://dx.doi.org/10.1002/msj.20024
22. Lund A, Gutman SJ, Turris SA. Mass gathering medicine: a practical means of assessing disaster preparedness in Canada. CJEM. 2011;13(4):231-6.
23. European Commission. Commission Decision of 18 December 2007 amending Decision No 2119/98/EC of the European Parliament and of the Council and Decision2000/96/EC as regards communicable diseases listed in those decisions. Official Journal of the European Union. Luxembourg: Publications Office of the European Union. 28.12.2007:1-344. Available from: http://eurlex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2007:344:0048:0049:EN:PDF
24. Heymann DL. Control of communicable diseases manual. 19th ed. Washington, DC: American Public Health Association; 2008.
25. Tegnell A, Van Loock F, Baka A, Wallyn S, Hendriks J, Werner A, et al. Development of a matrix to evaluate the threat of biological agents used for bioterrorism. Cell Mol Life Sci. 2006;63(20-22):2223-8. http://dx.doi.org/10.1007/s00018-006-6310-5
26. Public Health England (PHE). Weekly epidemiological updates archive. London: PHE. [Accessed 13 Jul 2012]. Available from: http://www.phe.gov.uk/web/wph/eup/index.html
27. GIDEON. Infectious diseases module. Los Angeles, CA: GIDEON. [Accessed 15 Dec 2012]. Available from: http://www.gideononline.com/infectiousdiseases/
28. Bennett AE and PK: generated study design and methodology; collected data; applied methodology; members of generic team; coordinated Delphi process. DD: writing and editorial contribution to article. DC: initiated study; contributed to study design and methodology; member of generic team. All authors have critically reviewed and approved the final article.