Expression of 4E-BP1 and phospho-4E-BP1 correlates with the prognosis of patients with clear cell renal carcinoma

Feng Li1,2,§
Qingshui Wang3,§
Xiaoxue Xiong3
Chenyi Wang3
Xiaohua Liu4
Ziqiang Liao3
Ke Li3
Bifeng Xie5
Yao Lin3

1Department of Pathology, Provincial Clinical Medical College, Fujian Medical University, Fuzhou, Fujian Province, People’s Republic of China; 2Department of Pathology, Fujian Provincial Hospital, Fuzhou, Fujian Province, People’s Republic of China; 3Provincial University Key Laboratory of Cellular Stress Response and Metabolic Regulation, College of Life Sciences, Fujian Normal University, Fuzhou, Fujian Province, People’s Republic of China; 4Department of Obstetrics, Anxi County Hospital, Anxi, Fujian Province, People’s Republic of China; 5College of Life Sciences, Fujian Normal University, Fuzhou, Fujian Province, People’s Republic of China

§These authors contributed equally to this work

Background: Eukaryotic translation initiation factor 4E (eIF4E) is a key regulator of protein synthesis. Changes in eIF4E activity disproportionally affect the translation of a subset of oncogenic mRNAs in some cancers.

Materials and methods: We have assessed the expression levels of vascular endothelial growth factor C (VEGFC), eIF4E, eIF4E-binding proteins (4E-BPs) and phospho-4E-BP1 in clear cell renal carcinoma (ccRCC; n=101) using immunohistochemistry and analyzed the relevant mRNA levels and survival using online databases.

Results: The protein levels of VEGFC, an eIF4E-regulated gene, were upregulated in ccRCC tissues compared with adjacent normal renal tissues, indicating an enhanced eIF4E activity in ccRCC. The expression of eIF4E had no significant changes in ccRCC tissues. However, 4E-BP1 and phospho-4E-BP1 were found to be overexpressed in ccRCC tissues (P<0.05), and the high mRNA and protein levels of 4E-BP1 and phospho-4E-BP1 correlated with an unfavorable clinical outcome in ccRCC patients. Meanwhile, the mRNA expression of PIK3CD and PIK3CG were enhanced in ccRCC.

Conclusion: From these results, we could infer that the increase in eIF4E activity may be caused by the increased phospho-4E-BP1 level, which was probably due to the activation of phosphoinositide 3-kinase (PI3K) pathway.

Keywords: eIF4E, 4E-BP1, phospho-4E-BP1, VEGFC, PI3K, ccRCC

Introduction

Kidney cancer is one of the most common tumors in the urinary system. In the past 2 decades, the amount of kidney cancer has been increasing. Kidney cancer consists of multiple types, including transitional cell carcinoma of kidney, renal cell carcinoma (RCC), inverted papilloma and kidney lymphoma. Among the four types of kidney cancer, RCC accounts for the largest proportion. RCC contains multiple pathological categories, including chromophobe RCC, clear cell renal carcinoma (ccRCC) and papillary RCC. Among them, ccRCC accounts for the highest proportion with ~75% of cases.1

The translations of mRNAs need to be tightly controlled in cells as the imbalance of translation leads to cancer occurrence and development.2-4 At the transcription elongation step, nuclear-transcribed mRNAs have 5′-cap added. Translation in eukaryotic cells begins with binding between 5′-cap and the eukaryotic translation initiation factor 4F (eIF4F).5,6 eIF4F complex includes eIF4A, eukaryotic translation initiation factor 4E (eIF4E) and eIF4G. eIF4E is able to recognize and bind to 5′-cap of mRNA, allowing the translation initiation.7,8 Changes in eIF4E activity only have
a tiny influence on the mRNA translation of house-keeping genes such as glyceraldehyde-3-phosphate dehydrogenase (GAPDH).9 Most house-keeping mRNAs have short and low complexity 5'-untranslated regions (UTRs). Unlike them, some 5'-cap-dependent mRNAs own long 5'-UTRs with a high complexity, whose protein translation is tightly controlled by elf4E including the mRNAs of cyclin D3, phosphoribosyl pyrophosphate synthetase 2 (PRPS2) and vascular endothelial growth factor (VEGF).1,10–13

Besides the amplification of elf4E, elf4E activity is also controlled by elf4E-binding proteins (4E-BPs) such as 4E-BP1, 4E-BP2 and 4E-BP3.14 4E-BP1 is the most common isoform of 4E-BPs. 4E-BPs and elf4G compete with elf4E for the same binding site.15–17 The phosphoinositide 3-kinase (PI3K) pathway can phosphorylate 4E-BPs, causing the separation of 4E-BPs and elf4E.6 Therefore, the phosphorylated 4E-BP1 is able to promote protein translation. PI3K can phosphorylate phosphatidylinositol 3,4 (PIP2) and activate the AKT.18,19 The activity of AKT can be inhibited by phosphatase and tensin homolog (PTEN).6,20,21 PI3Ks belong to three distinct categories called Class I, II and III.22 PI3K class I consists of multiple genes including PIK3CA, PIK3CB, PIK3CD and PIK3CG.

The expression level of elf4E or 4E-BP1 is deregulated in many cancers such as bladder, ovary and prostate.23–33 In the present study, we focused on the expression and active levels of 4E-BP1 and elf4E to confirm the prognostic values of these factors in ccRCC.

Materials and methods
Expression and clinical data obtained from Gene Expression Omnibus (GEO), The Cancer Genome Atlas (TCGA) and The Cancer Proteome Atlas (TCPA) databases
In the research, ccRCC datasets were extracted from the GEO database (http://www.ncbi.nlm.nih.gov/geo/). Four datasets with >400 specimens, GSE40435,34 GSE46699,35 GSE1564136 and GSE66272,37 were obtained. The probe ID was converted into a gene symbol first. When a gene was mapped to different probes, the genic expression value was calculated by the average expression value. Next, the data were translated into log, logarithms, and the median normalization was performed using the robust multichip averaging method.38 We compared the normal control vs cancer datasets using the Student’s t-test. A P value of <0.05 was considered as statistically significant. The clinical data and mRNA expression data of elf4E and 4E-BP1 in ccRCC were extracted from the TCGA database.39,40 The survival analysis of elf4E and 4E-BP1 protein expression was directly obtained from the TCPA database (http://www.tcpaportal.org/tcpa/index.html).41–44 According to the median value of gene or protein expression, samples were divided into low- and high-expression groups.

Patients and specimens
The research consisted of 202 samples from 101 patients with ccRCC. All the patients had a renal resection at the Fujian Provincial Hospital between January 2016 and June 2017. The standard requirements for patients included in the study were 1) histologically confirmed ccRCC; 2) no history of other malignancy, and 3) no prior neoadjuvant chemotherapy. The study was performed with the approval of the ethics committee of Fujian Provincial Hospital. Written informed consent was given by the patients for their information, and specimens were stored in the hospital database and used for research.

Immunohistochemical staining
Paraffin blocks that contained sufficient formalin-fixed tumor specimens were serial sectioned at 3 μm and mounted on silane-coated slides for immunohistochemical staining analysis. Dimethylbenzene rehydrated through 100% ethanol, 95% ethanol, 85% ethanol and 75% ethanol were applied to deparaffinize. In all, 0.01 mol/L of sodium citrate buffer (pH 6.0) was used to the progress of antigen retrieval treatment (autoclaved at 121°C, 2 min). Then, 3% H2O2 was applied to block endogenous peroxidase at room temperature for 10 min. The sections were washed in PBS solution subsequently and blocked with 10% goat serum (ZhongShan Biotechnology, Beijing, China) for 30 min and incubated with anti-elf4E (ab33766, 1:100 dilution, monoclonal; Abcam, Cambridge, MA, USA) or anti-elf4E-BP1 (ab32024, 1:100 dilution, monoclonal; Abcam) antibody or anti-vascular endothelial growth factor C (VEGFC; ab83905, 1:100 dilution, polyclonal; Abcam, Cambridge, MA, USA) at 4°C for 12 h. The sections were washed in PBS solution three times and incubated with HRP-conjugated secondary antibody for 30 min at room temperature. All slides were counterstained with diaminobenzidine (DAB) solution and 20% hematoxylin and dehydrated. The primary antibody diluent was regarded as negative control.

Evaluation of immunostaining intensity
Immunohistochemical staining tissue sections were reviewed and scored by two independent pathologists. The score was
calculated according to the proportion of stained tumor cells and intensity of cellular staining. The intensity of cellular staining was scored between 0 and 3: 0, no staining; 1, weak staining; 2, moderate staining; and 3, strong staining. The proportion of stained tumor cells was scored between 1 and 4: 1, 0–25%; 2, 26–50%; 3, 51–75% and 4, 75–100%. The multiplication of these two variables was calculated as the final score. The staining was divided into five grades according to the final score as follows: 0 score, 0; 1 score, 1–2; 2 score, 3–4; 3 score, 6–8 and 4 score, 9–12.

Statistical analyses
In the research, the student’s t-test was used to calculate the mRNA expression level in ccRCC tissues and adjacent normal renal tissues by using GraphPad Prism 5 (GraphPad Software, Inc., La Jolla, CA, USA). Log-rank test was used to calculate the survival analysis by using IBM SPSS version 19.0 (IBM Corporation, Armonk, NY, USA). Multivariate survival analysis was performed by using stepwise Cox proportional hazards regression model. P value of <0.05 was considered as statistically significant.

Results
Expression levels of eIF4E were not changed in ccRCC
In order to explore the expression of eIF4E in ccRCC patients, a total of four related publications were used. Based on these datasets (GSE40435, GSE46699, GSE15641, GSE66272; Table S1), no change in eIF4E expression was observed in the tissues of ccRCC compared with adjacent normal renal tissues (Figure 1A–D). These results suggested that the mRNA of eIF4E expression did not change in ccRCC. Moreover, the expression of eIF4E protein in 101 tissues of ccRCC and their adjacent normal renal tissues was detected by immunohistochemical staining. Representative immunohistochemical-stained tissue sections and the frequency distributions of the immunohistochemical scores are presented (Figure 1E–G). The mean scores of eIF4E proteins in ccRCC and adjacent normal renal tissues were 2.11 and 2.29, respectively (Figure 1H), consistent with the conclusion from mRNA analysis that the level of eIF4E did not change in ccRCC.

Protein expression level of VEGFC was upregulated in ccRCC
VEGFC, an important downstream target of eIF4E, is regulated by eIF4E activity. In order to further investigate the activity of eIF4E in ccRCC, we set out to evaluate the expression of VEGFC protein in ccRCC. The expression of VEGFC protein in 101 tissues of ccRCC and their adjacent normal renal tissues was detected by immunohistochemical staining. Representative immunohistochemical-stained tissue sections and the frequency distributions of the immunohistochemical scores are presented (Figure 2A–C). The mean scores of

Figure 1 The mRNA and protein level of eIF4E in ccRCC.
Notes: The mRNA expression level of eIF4E in ccRCC was measured. Four mRNA datasets were used including GSE40435 (A), GSE46699 (B), GSE15641 (C) and GSE66272 (D). The protein expression level of eIF4E in 101 ccRCCs was measured using immunohistochemical staining. Representative adjacent normal renal tissues’ staining (E), ccRCC tissues’ staining (F), frequency distributions of protein expression across the cohort (G) and the average score of immunohistochemical staining for eIF4E (H) are shown. (E and F) Magnification ×100.
Abbreviations: ccRCC, clear cell renal carcinoma; eIF4E, eukaryotic translation initiation factor 4E; IHC, immunohistochemistry; NS, not significant.
VEGFC proteins in ccRCC and adjacent normal renal tissues were 2.09 and 0.97, respectively (Figure 2D), suggesting that although elf4E expression levels were unchanged, the activity of elf4E in ccRCC tissues was enhanced.

Expression levels of phospho-4E-BP1 and 4E-BP1 were enhanced in ccRCC

In order to investigate how the activity of elf4E was enhanced in ccRCC, we next investigated the expression and activity of 4E-BP1. To our surprise, the mRNA and protein expression of 4E-BP1 were overexpressed in ccRCC tissues based on four datasets (GSE40435, GSE46699, GSE15641, GSE66272; Figure 3A–D and Table S1) and immunohistochemical staining of 4E-BP1 in 101 ccRCC tissues and their adjacent normal renal tissues. Representative immunohistochemically stained tissue sections of 4E-BP1 and the frequency distributions of these scores are presented (Figure 3E–G). The mean scores of 4E-BP1 proteins in ccRCC and adjacent normal renal tissues were 3.10 and 0.19, respectively (Figure 3H).

Then, we detected the protein expression of phospho-4E-BP1 in the 101 sample cohort. Representative immunohistochemically stained tissue sections of phospho-4E-BP1 and the frequency distributions of these scores are presented (Figure 4A–C). The mean scores of phospho-4E-BP1 in ccRCC and adjacent normal renal tissues were 2.52 and 0.18, respectively (Figure 4D), suggesting that both 4E-BP1 and phospho-4E-BP1 levels were much higher in ccRCC tissues.

Expression levels of PIK3CD and PIK3CG were upregulated in ccRCC

4EBPs could be phosphorylated due to the activation of PI3K pathway. Phosphorylated 4EBPs enable the assembly of elf4F by dislodging 4EBPs from elf4E. In order to further investigate the mechanisms underlying elf4E activation in ccRCC, the expression levels of PIK3CA, PIK3CB, PIK3CD, PIK3CG and PTEN were examined (Table S2). The mRNAs of PIK3CD and PIK3CG were upregulated in ccRCC tissues based on the TCGA database (Figure 5).
Figure 3 The mRNA and protein expression of 4E-BP1 in ccRCC.

Notes: The mRNA expression level of 4E-BP1 in ccRCC was measured. Four mRNA datasets were used including GSE40435 (A), GSE46699 (B), GSE15641 (C) and GSE66272 (D). The protein expression level of 4E-BP1 in ccRCC was measured using immunohistochemical staining. Representative adjacent normal renal tissues' staining (E), ccRCC tissues' staining (F), frequency distributions of protein expression across the cohort (G) and the average score of immunohistochemical staining (H) are shown. (E and F) Magnification ×100. ***P<0.001.

Abbreviations: ccRCC, clear cell renal carcinoma; eIF4E, eukaryotic translation initiation factor 4E; BP, binding protein.

Figure 4 The protein expression of phospho-4E-BP1 in ccRCC.

Notes: The protein expression level of phospho-4E-BP1 in ccRCC was measured using immunohistochemical staining. Representative adjacent normal renal tissues' staining (A), ccRCC tissues' staining (B), frequency distributions of protein expression across the cohort (C) and the average score of immunohistochemical staining (D) are shown. (A and B) Magnification ×100. ***P<0.001.

Abbreviations: BP, binding protein; ccRCC, clear cell renal carcinoma; IHC, immunohistochemistry.
Expression levels of 4E-BP1 and phospho-4E-BP1 were strongly associated with ccRCC survival

In the TCGA ccRCC cohort, we observed that patients with advanced stage and grade were at significantly increased risk of death. Patients with age >60 years, laterality=left, pharmaceutical therapy and radiation therapy also have a high risk of death in ccRCC (Table 1).

The survival analyses of 4E-BP1 and eIF4E mRNA are shown in Figure 6A and B. We found that the mRNA expression of 4E-BP1 (Figure 6A), but not eIF4E (Figure 6B), was associated with the clinical outcomes of ccRCC patients (Table S3), after adjusting for tumor location, grade, stage and patients’ age, gender and race (Table 2). The survival analyses of 4E-BP1, eIF4E and phospho-4E-BP1 protein were obtained from the TCPA database. With the cutoff value

Figure 5 The mRNA expression of PIK3s and PTEN in ccRCC.

Notes: The mRNA expression levels of PIK3CA (A), PIK3CB (B), PIK3CD (C), PIK3CG (D) and PTEN (E) in ccRCC were analyzed using the TCGA database. **P<0.01; ***P<0.001.

Abbreviations: PTEN, phosphatase and tensin homolog; ccRCC, clear cell renal carcinoma; TCGA, The Cancer Genome Atlas; NS, not significant.
Table 1

Variables	Patients (n)	MST (days)	Log-rank test	P-value
Age (years)				
≤60	261	NA		
>60	261	2415	13.256	0.000b
Gender				
Female	182	2564	0.04	0.841
Male	340	2830		
Location				
Left	246	2343	4.657	0.031b
Right	275	3695		
Race				
White	463	2752	0.284	0.594
Other	59	1913		
Tumor stage				
I/II	314	NA	76.153	0.000b
III/IV	205	1133		
Histologic grade				
G1/G2	242	NA	34.145	0.000b
G3/G4	280	1913		
Pharmaceutical therapy				
Yes	73	1378		
No	85	2830	11.489	0.001b
Radiation therapy				
Yes	45	927		
No	116	2764	17.13	0.000b
Surgery locoregional procedure				
Yes	16	1724	0.103	0.748
No	146	1964		
Surgery metastatic procedure				
Yes	31	1567	0.996	0.318
No	132	1964		

Note: *P<0.05, statistical significance.

Abbreviations: ccRCC, clear cell renal carcinoma; TCGA, The Cancer Genome Atlas; MST, median survival time, NA, not available.

set at the median, we found that the protein expression of 4E-BP1 (Figure 6C) and phospho-4E-BP1 (Figure 6D), but not elf4E (Figure 6D), was also associated with the clinical outcomes of 445 ccRCC patients.

Discussion

In this study, the expression and prognostic relevance of elf4E, 4E-BP1 and phospho-4E-BP1 in ccRCC were examined. Our analysis included four datasets with >400 specimens from the GEO database, one web tool for interactively exploring survival correlations performed by the TCPA database and one ccRCC cohort (n=101) with immunohistochemistry (IHC) analyses.

eIF4E is highly elevated and deregulated in many cancers such as lung and breast.45,46 Surprisingly, no association was found between eIF4E expression and survival (Figure 6B and D), whereas the protein level of VEGFC (Figure 2) was upregulated in ccRCC tissues compared with adjacent normal renal tissues. The protein translation of VEGFC mRNA was regulated by elf4E. Our results indicated that elf4E activity is upregulated in ccRCC.

In a simple model to calculate the regulatory effect toward elf4E activity, one phospho-4E-BP1 protein could eliminate the inhibitory effect of two 4E-BP1 proteins on elf4E activity,47,48 suggesting that phospho-4E-BP1 plays a greater role than unphosphorylated 4E-BP1 in the regulation of elf4E activity. In our study, high mRNA and protein expression level of 4E-BP1 were observed in ccRCC tissues compared with adjacent normal renal tissues (3.10 vs 0.19, tumor vs normal; Figure 3). At the same time, a strong phosphorylation status of the 4E-BP1 in ccRCC was also observed (2.52 vs 0.18, tumor vs normal; Figure 4). Therefore, the increased elf4E activity observed in our study may be due to an enhanced proportion of phospho-4E-BP1 in ccRCC compared with adjacent normal renal tissues (Figure 7). As we know, elf4E activity can be controlled by the phospho-4E-BP1 and the expression levels of elf4E, and the increased elf4E activity drives cancer progression. Therefore, phosphorylated 4E-BP1 and elf4E overexpression synchronously drive disease progression in ccRCC.49

The simultaneous increase in 4E-BP1 protein expression and phosphorylation may be due to the malfunction of the feedback loop between 4E-BP1 and elf4E. When elf4E is overactivated, the enhanced 4E-BP1 is supposed to suppress its activity. However, due to the upregulation of the PI3K pathway, i.e., overexpression of PIK3CD and PIK3CG mRNA (Figure 5), most of newly synthesized 4E-BP1 proteins were phosphorylated and lost the ability to suppress elf4E activity. Thus, the protein expression of 4E-BP1 cannot be restored and remained high in ccRCC; albeit most of the 4E-BP1 protein were phosphorylated and inactive.

Collectively, our data displayed enhanced activity of elf4E in ccRCC, which is probably due to the increased ratio of phospho-4E-BP1 against 4E-BP1 (Figure 7). In addition, there was a significantly unfavorable influence of 4E-BP1 and phospho-4E-BP1 expression on the survival (Figure 6). These results suggested that 4E-BP1, elf4E and phospho-4E-BP1 are important determinants of diagnosis and disease progression in ccRCC.
Figure 6 The prognostic value of 4E-BP1, eIF4E and phospho-4E-BP1 in ccRCC.

Notes: The Kaplan–Meier survival analyses of 4E-BP1 (A) and eIF4E (B) mRNA expression of the overall survival time of ccRCC patients using the OncoLnc database. The Kaplan–Meier survival analyses of 4E-BP1 (C), eIF4E (D) and phospho-4E-BP1 (E) protein expression of the overall survival time of ccRCC patients using the TCPA database.

Abbreviations: BP, binding protein; eIF4E, eukaryotic translation initiation factor 4E; ccRCC, clear cell renal carcinoma; TCPA, The Cancer Proteome Atlas.
Table 2: Multivariate analysis of the correlation between clinicopathological parameters and survival of ccRCC patients in the TCGA cohort

Covariates	Coefficient	Standard error	HR	95% CI for HR	P-value
Gender (female vs male)	0.067	0.161	1.070	0.780–1.467	0.676
Age (≤60 vs >60 years)	0.425	0.159	0.654	0.479–0.893	0.008*
Race (white vs other)	0.100	0.301	1.105	0.613–1.993	0.739
Location (left vs right)	0.372	0.152	1.450	1.073–1.959	0.015*
Tumor stage (I/II vs III/IV)	1.118	0.301	0.532	0.372–0.762	0.001*
Histologic grade (G1/G2 vs G3/G4)	0.631	0.183	1.105	0.613–1.993	0.000*
eIF4E expression (low vs high)	0.212	0.154	0.809	0.598–1.093	0.168
4E-BP1 expression (low vs high)	0.463	0.167	1.589	1.146–2.204	0.006*

Note: *P<0.05, statistical significance.

Abbreviations: ccRCC, clear cell renal carcinoma; HR, hazard ratio; TCGA, The Cancer Genome Atlas; eIF4E, eukaryotic translation initiation factor 4E; BP, binding protein.

Figure 7: A diagram illustrating the potential molecular mechanisms underlying the regulation of eIF4E activity by 4E-BP1 and phospho-4E-BP1 in ccRCC.

Notes: In normal renal tissue, most eIF4E activity is inhibited due to the combination of eIF4E and 4E-BP1. This ensures that the translations of cap-dependent associated mRNA are tightly controlled. In ccRCC, the mRNA level of eIF4E does not change. However, the PI3K pathway was activated and 4E-BP1 was phosphorylated, leading to the release of 4E-BP1 from eIF4E and the increased activity of eIF4E. The increased activity of eIF4E actively promoted cap-dependent translation. eIF4F complex, eIF4E-eIF4G-eIF3-eIF4A-eIF4B.

Abbreviations: eIF4E, eukaryotic translation initiation factor 4E; BP, binding protein; ccRCC, clear cell renal carcinoma; PI3K, phosphoinositide 3-kinase; VEGFC, vascular endothelial growth factor C.

Acknowledgment
This work was funded by the Youth Scientific Research Project of Fujian Provincial Heath Department, China (2015-1-2); the International S&T Cooperation Program of China (2016YFE0121900) and the Scientific Research Innovation Team Construction Program of Fujian Normal University (IRTL1702).

Author contributions
Feng Li and Qingshui Wang performed the experiments, wrote the paper and prepared figures and/or tables.
Xiaoxue Xiong and Chenyi Wang performed the experiments and analyzed the data.
Xiaohua Liu, Ziqiang Liao, and Bifeng Xie contributed to reagents/analysis tools.
Yao Lin conceived and designed the experiments, wrote the paper and prepared figures and/or tables.

All authors contributed toward data analysis, drafting and revising the paper and agree to be accountable for all aspects of the work.

Disclosure

The authors report no conflicts of interest in this work.

References

1. Nickerson ML, Jaeger E, Shi Y, et al. Improved identification of von Hippel-Lindau gene alterations in clear cell renal tumors. Clin Cancer Res. 2008;14(15):4726–4734.

2. Ruggiero D. Translational control in cancer etiology. Cold Spring Harb Perspect Biol. 2013;5(2):152–158.

3. Silvera D, Formenti SC, Schneider RJ. Translational control in cancer. Annu Rev Cell Dev Biol. 2008;24:21176–21180.

4. Pause A, Belsham GJ, Gingras AC, et al. Insulin-dependent stimulation of mRNA recruitment to ribosomes and regulators of translation. Proc Natl Acad Sci U S A. 2013;110(33):13339.

5. Topisirovic I, Svitkin YV, Sonenberg N, Shatkin AJ. Cap and cap-binding proteins in the control of gene expression. Wiley Interdiscip Rev RNA. 2011;2(2):277–298.

6. Siddiqui N, Sonenberg N. Signalling to eIF4E in cancer. Biochem Soc Trans. 2015;43(5):763–772.

7. Sonenberg N. eIF4E, the mRNA cap-binding protein: from basic discovery to translational research. Biochem Cell Biol. 2008;86(2):178.

8. And NKG, Wickens M. Control of translation initiation in animals. Annu Rev Dev Biol. 1998;14:399.

9. Cunningham JT, Moreno MV, Lodi A, Ronen SM, Ruggero D. Protein kinases and tumour initiation factor 4E: implications for tumor angiogenesis. Proc Natl Acad Sci U S A. 2003;100(12):7005–7010.

10. Rosenwald IB, Kaspar R, Rousseau D, et al. Eukaryotic translation initiation factor 2A is a target of the PI3K pathway and is regulated by mTOR. Oncogene. 2005;24(18):3307–3316.

11. Pause A, Belsham GJ, Gingras AC, et al. Insulin-dependent stimulation of mRNA recruitment to ribosomes and regulators of translation. Annu Rev Biochem. 1998;67:913.

12. Bhat M, Robichaud N, Hulea L, Sonenberg N, Pelletier J, Topisirovic I. Targeting the translation machinery in cancer. Nat RevDrug Discov. 2015;14:261–278.

13. Gingras AC, Raught B, Sonenberg N. eIF4 initiation factors: effectors of mRNA recruitment to ribosomes and regulators of translation. Annu Rev Biochem. 1999;68:913.

14. Hay N, Sonenberg N. Translation initiation factor eIF-4E binds to a common motif shared by the translation factor eIF-4 gamma and the translational repressors 4E-binding proteins. Mol Cell Biol. 1995;15(9):4990–4997.

15. Pause A, Belsham GJ, Gingras AC, et al. Insulin-dependent stimulation of protein synthesis by phosphorylation of a regulator of 5’-cap function. Nature. 1994;371(6500):762.

16. Poulin F, Gingras AC, Olsen H, Chevalier S, Sonenberg N. eIF-4B3, a new member of the eukaryotic initiation factor 4E-binding protein family. J Biol Chem. 1998;273(22):14002–14007.

17. Hay N, Sonenberg N. Upstream and downstream of mTOR. Genes Dev. 2004;18(16):1926.

18. Cantley LC. The phosphoinositide 3-kinase pathway. Science. 2002;296:1655–1657.

19. Yuan TL, Cantley LC. PI3K pathway alterations in cancer: variations on a theme. Oncogene. 2008;27(41):5497.

20. Pearce LR, Huang X, Boudeau J, et al. Identification of Protor as a novel Rictor-binding component of mTOR complex-2. Biochem J. 2007;405(3):513–522.

21. Faes S, Dormond O, PI3K and AKT: unfaithful partners in cancer. Int J Mol Sci. 2015;16(9):21138–21152.

22. Nathan CO, Carter P, Liu L, et al. Elevated expression of eIF4E and FGF-2 isoforms during vascularization of breast carcinomas. Oncogene. 1997;15(9):1087–1094.

23. Nathan CO, Liu L, Li BD, Abreo FW, Nandy I, De Benedetti A. Detection of the proto-oncogene eIF4E in surgical margins may predict recurrence in head and neck cancer. Oncogene. 1997;15(9):579.

24. De BA, Harris AL. eIF4E expression in tumors: its possible role in progression of malignancies. Int J Biochem Cell Biol. 1999;31(1):59–72.

25. Crew JP, Fuggle S, Bicknell R, Cranston DW, de Benedetti A, Harris AL. Eukaryotic initiation factor-4E in superficial and muscle invasive bladder cancer and its correlation with vascular endothelial growth factor expression and tumour progression. Br J Cancer. 2000;82(1):161–166.

26. Berkel HJ, Turbat-Herrera EA, Shi R, de Benedetti A. Expression of the translation initiation factor eIF4E in the polyp-cancer sequence in the colon. Cancer Epidemiol Biomarkers Prev. 2001;10(6):663–666.

27. Li BD, Gruner JS, Abreo F, et al. Prospective study of eukaryotic initiation factor 4E protein expression and breast cancer outcome. Ann Surg. 2002;235(5):738–739.

28. Seki N, Takasu T, Mandai K, et al. Expression of eukaryotic initiation factor 4E in atypical adenomatous hyperplasia and adenocarcinoma of the human peripheral lung. Clin Cancer Res. 2002;8(10):3046–3053.

29. Lee JW, Choi JJ, Lee KM, et al. eIF-4E expression is associated with histopathologic grades in cervical neoplasia. Hum Pathol. 2005;36(11):1197–1203.

30. Matthews-Greer J, Caldito G, de Benedetti A, et al. eIF4E as a marker for cervical neoplasia. Appl Immunohistochem Mol Morphol. 2005;13(4):367–370.

31. Culjkovic B, Borden KL. Understanding and targeting the eukaryotic translation initiation factor eIF4E in head and neck cancer. J Oncol. 2009;2009:981679.

32. Pettersson F, Yau C, Dobocan MC, et al. Ribavirin treatment effects on breast cancers overexpressing eIF4E, a biomarker with prognostic specificity for luminal B-type breast cancer. Clin Cancer Res. 2011;17(9):2574–2587.

33. Wozniak MB, Le Calvez-Kelm F, Abedi-Ardekani B, et al. Integrative genome-wide gene expression profiling of clear cell renal cell carcinoma in Czech Republic and in the United States. PLoS One. 2013;8(3):e57886.

34. Eckel-Passow JE, Serie DJ, Bot BM, et al. Somatic expression of ENRAGE is associated with obesity status among patients with clear cell renal cell carcinoma. Carcinogenesis. 2014;35(4):822.

35. Jones J, Otu H, Spentzos D, et al. Gene signatures of progression and metastasis in renal cell cancer. Clin Cancer Res. 2005;11:5730–5739.

36. Wotschoksky Z, Gunnilich L, Liep J, et al. Integrated microRNA and mRNA signature associated with the transition from the locally confined to the metastasized clear cell renal cell carcinoma exemplified by miR-146-5p. PLoS One. 2016;11(2):e0148746.

37. Iriarriya RA, Hobbs B, Collin F, et al. Exploration, normalization, and summaries of high density oligonucleotide array probe level data. Bioinformatics. 2003;19(2):249–264.

38. Cancer Genome Atlas Research Network, Weinstein JN, Collisson EA, et al. The Cancer Genome Atlas Pan-Cancer analysis project. Nat Genet. 2013;45(10):1113.

39. Anaya J. Oncolnc: linking TCGA survival data to mRNAs, miRNAs, and IncRNAs. PeerJ Comput Sci. 2016;2:e67.

40. Uhlen M, Oksvold P, Fagerberg L, et al. Towards a knowledge-based Human Protein Atlas. Nat Biotechnol. 2010;28(12):1248–1250.

41. Uhlen M, Zhang C, Lee S, et al. A pathology atlas of the human cancer transcriptome. Science. 2017;357(6352):eaan2507.

42. Li J, Lu Y, Akbani R, et al. TCPA: a resource for cancer functional proteomics data. Nat Methods. 2013;10(11):1046.
44. Yoshihara K, Shahmoradgoli M, Martínez E, et al. Inferring tumour purity and stromal and immune cell admixture from expression data. *Nat Commun*. 2013;4:2612.

45. Wang R, Geng J, Wang JH, Chu XY, Geng HC, Chen LB. Overexpression of eukaryotic initiation factor 4E (eIF4E) and its clinical significance in lung adenocarcinoma. *Lung Cancer*. 2009;66(2):237–244.

46. Heikkinen T, Korpela T, Fagerholm R, et al. Eukaryotic translation initiation factor 4E (eIF4E) expression is associated with breast cancer tumor phenotype and predicts survival after anthracycline chemotherapy treatment. *Breast Cancer Res Treat*. 2013;141(1):79–88.

47. Millican-Slater RA, Sayers CD, Hanby AM, Hughes TA. Expression of phosphorylated eIF4E-binding protein 1, but not of eIF4E itself, predicts survival in male breast cancer. *Br J Cancer*. 2016;115(3):339–345.

48. Coleman LJ, Peter MB, Teall TJ, et al. Combined analysis of eIF4E and 4E-binding protein expression predicts breast cancer survival and estimates eIF4E activity. *Br J Cancer*. 2009;100(9):1393.

49. Campbell L, Jasani B, Griffiths DF, Gumbleton M. Phospho-4e-BP1 and eIF4E overexpression synergistically drives disease progression in clinically confined clear cell renal cell carcinoma. *Am J Cancer Res*. 2015;5(9):2838.