Concise Communication

Respiratory virus coinfections with severe acute respiratory coronavirus virus 2 (SARS-CoV-2) continue to be rare one year into the coronavirus disease 2019 (COVID-19) pandemic in Alberta, Canada (June 2020–May 2021)

Jamil N. Kanji MD, DTM&H, FRCP(C)1 2 3 4, Nathan Zelyas MD, MSc, D(ABMM), FRCP(C)4 5, Kanti Pabbaraju MSc1, David Granger MLT1, Anita Wong MSc1, Stephanie A. Murphy BES5 6, Emily Buss BSc (MLS), MPH5, Clayton MacDonald MD, DTM&H, D(ABMM), FRCP(C)5, Byron M. Berenger MD, MSc, FRCP(C)1 3, Mathew A. Diggle PhD, FRCP(C)6 7 8, Natalie C. Marshall PhD, D(ABMM)4 5, John M. Conly MD, FRCP(C)2 3 7 8 and Graham Tipples PhD, D(ABMM)5 9 10

1 Public Health Laboratory, Alberta Precision Laboratories, Foothills Medical Centre, Calgary, Alberta, Canada, 2 Division of Infectious Diseases, Department of Medicine, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada, 3 Department of Pathology and Laboratory Medicine, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada, 4 Department of Laboratory Medicine and Pathology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada, 5 Public Health Laboratory, Alberta Precision Laboratories, University of Alberta, Edmonton, Alberta, Canada, 6 National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Manitoba, Canada, 7 Department of Medical Microbiology & Infectious Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada, 8 Snyder Institute for Chronic Diseases and O’Brien Institute for Public Health, University of Calgary and Alberta Health Services, Calgary, Alberta, Canada, 9 Department of Medical Microbiology and Immunology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada and 10 Li Ka Shing Institute of Virology, University of Alberta, Edmonton, Alberta, Canada

Abstract

To assess the burden of respiratory virus coinfections with severe acute respiratory coronavirus virus 2 (SARS-CoV-2), this study reviewed 4,818 specimens positive for SARS-CoV-2 and tested using respiratory virus multiplex testing. Coinfections with SARS-CoV-2 were uncommon (2.8%), with enterovirus or rhinovirus as the most prevalent target (88.1%). Respiratory virus coinfection with SARS-CoV-2 remains low 1 year into the coronavirus disease 2019 (COVID-19) pandemic.

(Received 15 July 2021; accepted 18 November 2021; electronically published 6 December 2021)

As the coronavirus disease 2019 (COVID-19) pandemic has progressed, multiple reports have highlighted the marked decrease in the incidence of other cocirculating respiratory viruses except rhinovirus.1 The most impressive finding is the near absence of cocirculating seasonal influenza.2 3 The principal hypothesis for the observed declines are the public health and social measures implemented to help control the spread of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2).

During the first 3 months of the pandemic in Alberta, Canada (March–May 2020), when all specimens submitted for SARS-CoV-2 testing also underwent respiratory viral multiplex testing, only 3.4% of those positive for SARS-CoV-2 were found to have a coinfecting respiratory virus.4 The most prevalent of these respiratory viruses was either enterovirus or rhinovirus (ERV); the viral panel utilized could not distinguish them.

Despite the reported low prevalence of concomitant respiratory virus coinfections with SARS-CoV-2, infection control and public health concerns remain that undetected seasonal respiratory viruses could lead to hospital or long-term-care outbreaks. In this study, we assessed changes in frequency of respiratory virus coinfections with SARS-CoV-2 in adult and pediatric patients to determine whether routine on-demand multiplex respiratory virus testing in SARS-CoV-2 positive patients is beneficial later in the coronavirus disease 2019 (COVID-19) pandemic.

Methods

Retrospectively, respiratory virus testing data were extracted from a centralized provincial laboratory information system at the Alberta Public Health Laboratory for samples subjected to both SARS-CoV-2 and a multiplex respiratory virus panel testing on the same sample between June 1, 2020, and May 31, 2021, in
Pediatric patients are defined as those ≤17 years of age; adults are defined as ≥18 years of age.

Table 1. Characteristics of COVID-19 Patients Tested for Additional Respiratory Viruses

Variable	Adults	Pediatric*	Total	\(P\) Value*	
Concomitant testing, no. (%)					
Total	4,569 (94.8)	249 (5.2)	4,818	<.01	
Sex, male	2,415 (52.9)	137 (55.0)	2,552	53.0	.52
Sex, female	2,143 (46.9)	110 (44.2)	2,253	46.8	.41
Sex, unknown	11 (0.2)	2 (0.8)	13 (0.2)	.05	
Age, y					
Mean	57.4	9.1	54.9		
Median	57.0	11	56.0		
Range	18–107	0–17	0–107		
Patient setting, no. (%)					
Community	2,266 (49.6)	165 (66.3)	2,431	50.5	<.01
Emergency	1,130 (24.7)	67 (26.9)	1,197	24.8	.43
Inpatient, non-ICU	859 (18.8)	16 (6.4)	875	18.2	<.01
ICU	154 (3.4)	1 (0.4)	155 (3.2)	<.01	
Nursing home	160 (3.5)	0	160 (3.3)	.01	
Coinfections detected, no. (%)					
Total	109 (2.4)	25 (10.0)	134 (2.8)	<.01	
Influenza A	0	0	0	...	
Influenza B	0	0	0	...	
RSV	3 (2.9)	1 (4.0)	4 (3.0)	.77	
hCoV NL63	2 (1.8)	0	2 (1.5)	.50	
hCoV HKU1	1 (0.9)	0	1 (0.7)	.63	
hCoV OC43	0	0	0	...	
hCoV 229E	0	0	0	...	
HMPV	2 (1.8)	0	2 (1.5)	.50	
PIV 1–4	1 (0.9)	1 (4.0)	2 (1.5)	.25	
ERV	98 (89.9)	20 (80.0)	118 (88.1)	.17	
Adenovirus	2 (1.8)	3 (12.0)	5 (3.7)	.01	
Patient setting of coinfections, no. (%)					
Community	42 (38.5)	13 (52.0)	55 (41.0)	.21	
Emergency	33 (30.3)	7 (28.0)	40 (29.9)	.81	
Inpatient, non-ICU	26 (23.9)	4 (16.0)	30 (22.4)	.40	
ICU	6 (5.5)	1 (4.0)	7 (5.2)	.76	
Nursing home	2 (1.8)	0	2 (1.5)	.50	

Note. ERV, enterovirus/rhinovirus; hCoV, human coronavirus; HMPV, human metapneumovirus; ICU, intensive care unit; PIV, parainfluenza virus; RSV, respiratory syncytial virus.

*Pediatric patients are defined as ≤17 years of age; adults are defined as ≥18 years of age.

*Comparison of adult and pediatric groups.

Discussion

In this retrospective study, we have demonstrated that SARS-CoV-2 coinfection with other respiratory viruses remains uncommon ≥1 year into the COVID-19 pandemic. Coinfection was observed ≥3% of the time, more commonly in children, with ERV being the most prevalent assay target identified.

Our findings are consistent with reports from Australia, Hong Kong, Japan, South Korea, and the United States, where reductions in influenza virus 44%–65% and coinfection rates <5% have been recorded. Notably, although earlier studies did show higher coinfection rates (10%–22%), these were from earlier in the pandemic (January–May 2020), during the tail end of the 2019–2020 influenza and respiratory virus season, and less effect of early
This study now extends our knowledge to June 2021, demonstrating continued low prevalence of most respiratory virus and SARS-CoV-2 coinfection across adult and pediatric groups.

As with other regions, ERV was the most common additional respiratory virus detected among SARS-CoV-2–positive samples, which is consistent with our observations earlier in the pandemic. As ERV is a common single target on multiplex respiratory assays, many studies have not been able to differentiate them. However, published data from Australia, Austria, Canada, and the United Kingdom have demonstrated rhinovirus as the predominant seasonal circulating respiratory virus since the SARS-CoV-2 pandemic started; therefore, we speculate that rhinovirus is likely predominant here. Rhinovirus starkly contrasts with other normally circulating respiratory viruses (including enteroviruses), in which circulation has significantly dropped across the globe during the pandemic. The reasons for rhinovirus persistence with SARS-CoV-2 are not entirely clear, though speculation has included physical distancing measures, similar modes of transmission (droplets and self-inoculation of the eyes and nose), and indirect negative virus–virus interaction through cellular interferon signaling in the infected host (as has been reported between rhinovirus and influenza). The latter may also explain the historically lower proportion of coinfections observed between ERV and influenza viruses versus other respiratory viruses in Table S2.

This study had several limitations. It was retrospective nature and was biased toward individuals seeking health care, which may have led to overrepresentation of symptomatic and more ill patients. Furthermore, additional respiratory virus testing was performed on a small proportion of COVID-19 patients (3.8% of all SARS-CoV-2–positive specimens). This factor reflects province-wide changes in further respiratory virus testing on SARS-CoV-2–positive specimens, due to the limited use of broader testing early in the pandemic. Finally, we focused on coinfection at the time of COVID-19 diagnosis and could therefore miss subsequent respiratory virus superinfection, which has been reported to occur with a low frequency (4%).

In general, active transmission of respiratory viruses with SARS-CoV-2 that were previously common appears to be infrequent, except for ERV. Further study is important to identify clinical scenarios where multiplex viral testing may be most beneficial, given ongoing pressure on clinical laboratories during the pandemic. Maintenance of public health respiratory virus surveillance is critical to understanding changing epidemiology in the face of gradual lifting of public health and travel restrictions, as well as rising COVID-19 and influenza vaccination rates.

Supplementary material. For supplementary material accompanying this paper visit https://doi.org/10.1017/ice.2021.495
Acknowledgments. We thank the Alberta Precision Laboratory technical staff who carried out all the respiratory virus testing during the study period.

Financial support. No financial support was provided relevant to this article.

Conflicts of interest. All authors report no conflicts of interest relevant to this article.

References

1. Musuza JS, Watson L, Parmasad V, Putman-Buehler N, Christensen L, Safdar N. Prevalence and outcomes of coinfection and superinfection with SARS-CoV-2 and other pathogens: a systematic review and meta-analysis. PLoS One 2021;16:e0251170.

2. Doroshenko A, Lee N, MacDonald C, Zelyas N, Asadi L, Kanji JN. Decline of influenza and respiratory viruses with COVID-19 public health measures: Alberta, Canada. Mayo Clinic Proc 2021. PMCID: PMC8450272.

3. Olsen SJ, Azziz-Baumgartner E, Budd AP, et al. Decreased influenza activity during the COVID-19 pandemic—United States, Australia, Chile, and South Africa. 2020 Morb Mortal Wkly Rep 2020; 69: 1305–1309.

4. Marshall NC, Kariyawasam RM, Zelyas N, Kanji JN, Diggle MA. Broad respiratory testing to identify SARS-CoV-2 viral cocirculation and inform diagnostic stewardship in the COVID-19 pandemic. Virol J 2021;18:93.

5. Zelyas N, Pabbaraju K, Croxen MA, et al. Precision response to the rise of the SARS-CoV-2 B.1.1.7 variant of concern by combining novel PCR assays and genome sequencing for rapid variant detection and surveillance. Microbiol Spectr 2021;9:e00315–00321.

6. Kim KW, Deveson IW, Pang CNI, et al. Respiratory viral coinfections among SARS-CoV-2 cases confirmed by virome capture sequencing. Sci Rep 2021;11:3934.

7. Jones N. How COVID-19 is changing the cold and flu season. Nature 2020; 588: 388–390.

8. Poole S, Brendish NJ, Tanner AR, Clark TW. Physical distancing in schools for SARS-CoV-2 and the resurgence of rhinovirus. Lancet Respir Med 2020; 8: e92–e93.

9. Gwaltney JM Jr, Hendley JO. Transmission of experimental rhinovirus infection by contaminated surfaces. Am J Epidemiol 1982; 116: 828–833.

10. Dee K, Goldfarb DM, Haney J, et al. Human rhinovirus infection blocks SARS-CoV-2 replication within the respiratory epithelium: implications for COVID-19 epidemiology. J Infect Dis 2021.