SARS-CoV-2 setting-specific transmission rates: a systematic review and meta-analysis

Hayley A Thompson1*, Andria Mousa1, Amy Dighe1, Han Fu1, Alberto Arnedo-Pena2,3, Peter Barrett4,5, Juan Bellido-Blasco2,3,6, Qifang Bi7, Antonio Caputi9, Liling Chaw9, Luigi De Maria8, Matthias Hoffmann10, Kiran Mahapure11, Kangqi Ng12, Jagadesan Raghuram12, Gurpreet Singh13, Biju Soman13, Vicente Soriano14, Francesca Valent15, Luigi Vimercati8, Liang En Wee16, Justin Wong17,9, Azra C Ghani1, Neil M Ferguson1

1. MRC Centre for Global Infectious Disease Analysis & WHO Collaborating Centre for Infectious Disease Modelling, Abdul Latif Jameel Institute for Disease and Emergency Analytics, Imperial College London, London, UK
2. Sección de Epidemiología. Centro de Salud Pública de Castellón, Valencia, Spain
3. Centro de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), Valencia, Spain
4. School of Public Health, University College Cork, Cork, Ireland
5. Irish Centre for Maternal and Child Health Research (INFANT), University College Cork, Cork, Ireland
6. Facultad de Ciencias de la Salud, Universitat Jaume I (UJI), Castelló, Spain
7. Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
8. Interdisciplinary Department of Medicine, University of Bari, Unit of Occupational Medicine, University Hospital of Bari, Bari, Italy
9. PAPRSB Institute of Health Sciences, Universiti Brunei Darussalam, Jalan Tungku Link, Brunei
10. Division of General Internal Medicine, Infectious Diseases and Hospital Epidemiology, Cantonal Hospital Olten, Switzerland
11. Department of Plastic Surgery, Dr Prabhakar Kore Hospital and MRC, Belgaum, Karnataka, India

© The Author(s) 2021. Published by Oxford University Press for the Infectious Diseases Society of America. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.
12. Changi General Hospital, Singapore

13. Sree Chitra Tirunal Institute for Medical Sciences and Technology, Thiruvananthapuram, Kerala, India

14. UNIR Health Sciences School & Medical Center, Madrid, Spain

15. SOC Istituto di Igiene ed Epidemiologia Clinica, Azienda Sanitaria Universitaria Friuli Centrale, Udine, Italy.

16. Department of Infectious Diseases, Singapore General Hospital, Singapore, Singapore

17. Disease Control Division, Ministry of Health, Brunei

Corresponding author: Hayley A Thompson, MRC Centre for Global Infectious Disease Analysis & WHO Collaborating Centre for Infectious Disease Modelling, Imperial College London, Norfolk Place, London, W2 1PG, United Kingdom, hayley.thompson12@imperial.ac.uk

Summary: In this review we systematically explore factors that affect transmission of SARS-CoV-2, such as age, symptom status, setting and duration of contact. Our results highlight the importance of targeting interventions in settings where close and prolonged contacts occur.
Abstract

Background

Understanding the drivers of SARS-CoV-2 transmission is crucial for control policies but evidence of transmission rates in different settings remains limited.

Methods

We conducted a systematic review to estimate secondary attack rates (SAR) and observed reproduction numbers (R_{obs}) in different settings exploring differences by age, symptom status, and duration of exposure. To account for additional study heterogeneity, we employed a Beta-Binomial model to pool SARs across studies and a Negative-binomial model to estimate R_{obs}.

Results

Households showed the highest transmission rates, with a pooled SAR of 21.1% (95%CI:17.4%-24.8%). SARs were significantly higher where the duration of household exposure exceeded 5 days compared with exposure of ≤5 days. SARs related to contacts at social events with family and friends were higher than those for low-risk casual contacts (5.9% vs. 1.2%). Estimates of SAR and R_{obs} for asymptomatic index cases were approximately a seventh, and for pre-symptomatic two thirds of those for symptomatic index cases. We found some evidence for reduced transmission potential both from and to individuals under 20 years of age in the household context, which is more limited when examining all settings.
Conclusions

Our results suggest that exposure in settings with familiar contacts increases SARS-CoV-2 transmission potential. Additionally, the differences observed in transmissibility by index case symptom status and duration of exposure have important implications for control strategies such as contact tracing, testing and rapid isolation of cases. There was limited data to explore transmission patterns in workplaces, schools, and care-homes, highlighting the need for further research in such settings.

Keywords: SARS-CoV-2, COVID-19, transmission, secondary attack rate, contact tracing
Introduction

The SARS-CoV-2 virus which emerged in China in late 2019 has since spread rapidly around the world, with over 90 million confirmed cases and over 2 million deaths reported globally by January 2021 [1]. The severity of the infection, particularly in the oldest age-groups [2,3], has resulted in many countries implementing socially disruptive interventions to prevent onward spread. Early interventions focused on case isolation alongside identification of close contacts. In countries where these measures were insufficient to contain the virus, other non-pharmaceutical interventions (NPI) were introduced, including “stay-at-home” recommendations, closing schools, working from home and wearing face-masks. Governments are continually faced with the challenge of balancing social and economic harms caused by these NPI against the resurgence of cases. It is therefore critical to improve understanding of where transmission is taking place so that public health interventions can be better targeted.

To date, there have been relatively few detailed systematic epidemiological studies on transmission of the SARS-CoV-2 virus, with most published studies from the early epidemic in China and reviews focusing on household transmission [4,5]. These studies provide valuable information on key epidemiological statistics: the secondary attack rate (SAR), defined as the probability of onward infection from an index case among a defined group of close contacts and the observed reproduction number (R_{obs}), defined as the observed average number of secondary cases per index case. Quantifying these parameters can help us understand the relative role that different settings play in sustaining transmission through identifying the location and types of contacts that constitute higher transmission potential.

Here we present a systematic review to estimate SAR and R_{obs} of SARS-CoV-2 in households, schools, workplaces, healthcare facilities and social settings. In addition, we examine differences in these
parameters by age of index cases and their contacts, duration of household exposure to the index case, household size and symptom status of index cases.

Methods

Systematic Review

Data Source and Search Strategy

We searched MEDLINE, Embase, MedRxiv, BioRxiv, arXiv and Wellcome Open Research with no language restrictions up to July 6th 2020, using the search strategy: (“COVID-19” OR “Coronavirus” OR “SARS-CoV-2” OR “2019-nCoV”) AND (“attack rate” OR “contact” OR “cluster”), adapted for the preprint servers by removing Boolean operators and testing all possible search-term combinations. Studies were screened according to titles and abstracts, and then by review of full-texts and their bibliographies. Two reviewers (HAT and AM) screened the studies independently, using predetermined criteria. Differences were resolved through consensus and discussion with a third reviewer (AD). The study protocol can be accessed through PROSPERO (registration number: CRD42020200177).

Inclusion criteria

Eligible studies for review met the following criteria: 1) provided a definition of the case-contact setting, and 2) reported the number of index cases (defined as the first identified case), the number of secondary cases and the total number of contacts or a SAR and total number of contacts. Studies were included in the meta-analysis if they met two additional criteria 1) tested all contacts for SARS-CoV-2 infection regardless of symptom status and 2) reported on over one index case (to minimise publication bias in single case studies towards reporting larger outbreaks).
Data Extraction

We extracted summary data on study design, contact definition, testing method (RT-PCR/serology), testing strategy (all contacts irrespective of symptoms, symptomatic contacts only or a subset of contacts), and the number of index cases, contacts identified, contacts tested and secondary cases. Where available, we additionally extracted the following: age of index case, age of contacts, household size, duration of household exposure to an index case and symptom status of the index case. Data were obtained directly from the reports, but when not explicitly stated, we obtained additional data from study authors. Studies were assessed for risk of bias using a critical appraisal tool checklist for prevalence studies, adapted to this study [6]. Articles were given a quality score to reflect methodological rigour, clarity and transparency in reporting relevant to this study’s outcomes.

Statistical Analysis

Articles eligible for meta-analysis were stratified into the following settings: households, schools, workplaces, healthcare, group-living, and social contacts. Within household contacts we undertook a subgroup analysis stratifying by household size and the duration between symptom onset/confirmation and isolation or hospitalisation of the index case. We explored age-dependent differences in infectivity and susceptibility across all contact locations and household contacts (stratified by ages 0-19 years and 20 years-plus). Finally, we examined differences in transmissibility by symptom status of index cases across all exposure locations due to limited studies stratifying by symptom status and exposure location. Stratifications were chosen to maximise the available data across studies.

Due to potential within-study correlation (e.g. individuals in the same locations experiencing the same public health interventions and country-specific home, travel and work practices) and between-study heterogeneity due to study and population differences, we employed a Beta-
Binomial model to pool SARs and a Poisson-Gamma mixture model to pool R_{obs} across studies (Supplementary Methods)[7–9].

Results

We identified 1,872 published studies, 78 of which were included after full-text screening (Figure 1). A further 22 eligible studies were identified through pre-print servers and bibliography screening. Of these 97 studies, summarised in Supplementary Tables 1-7, 67 tested all contacts regardless of symptom status. Among those, 45 reported data from >1 index case and were included in the meta-analysis.

Household

We identified 29 eligible studies reporting household contacts [10–38], with over half carried out in China (Supplementary Table 1). Household definitions were broadly consistent across studies, requiring contacts to be living in the same residence as the index case. One study additionally included non-resident contacts who spent ≤ 24 hours in the same residence as the index case [22](Supplementary Table 1), but its inclusion had no significant impact on the pooled SAR estimate.

Study estimates of household SARs ranged from 6.1%[25] to 51.2%[38] with a pooled estimate of 21.1% (95%CI:17.4%-24.8%)(Figure 2A). The relationship between the number of secondary cases and the number of index cases is shown in Supplementary Figure 1. R_{obs} varied across studies from 0.05 [25] to 5.5 [38], with a pooled household R_{obs} of 0.96 (95%CI:0.67-1.32)(Supplementary Table 8). The SAR increased with longer durations of exposure (14.2% [95%CI:5.8%-22.5%] with ≤ 5 days of exposure to an index case versus 34.9% [95%CI:16.3%-53.6%] with >5 days of exposure; p=0.05; Figure 2B). Longer durations of exposure were similarly associated with an increased pooled R_{obs} (0.40 [95%CI:0.21-0.72] with ≤ 5 days to 1.91 [95%CI:0.86-3.55] with >5 days, p<0.001)(Supplementary Table 9). There was a trend for decreasing transmission with increasing
household size, but this was not statistically significant (p=0.29)(Supplementary Figure 2). Study-level estimates for the small subset of studies reporting household sizes were highly variable.

Workplaces

Seven studies reported workplace contacts (Supplementary Table 3)[13,27,28,31,39–41]. Three of these studies were cluster investigations from a single index case, including a boardroom meeting in Germany (SAR: 91.7% [95%CI:61.5%-99.8%, 11/12][41], supermarket employees in China (SAR: 9.2% [95%CI:4.7%-15.8%, 10/120][28] and call centre colleagues in South Korea (SAR: 43.5% [95%CI:36.8%-50.4%, 94/216][40]. Excluding those, the pooled SAR reduced from 12.3% (95%CI:1.3%-22.5%) (Supplementary Figure 3) to 1.9% (95%CI:0.0%-3.9%)(Figure 3A). Workplace contacts likely represented a variety of sectors across studies, and only one study provided a detailed definition [40].

Healthcare Facilities

Twenty-eight studies reported healthcare-based contacts, 10 of which met our inclusion criteria for meta-analysis (Supplementary Table 4)[30,33,39,42–46], including index case populations of patients [30,33,39,42,44,45], healthcare workers [43] or both [21,46]. Study-level SARs varied from 0.0%-17.1% resulting in a pooled estimate among any healthcare contacts of 3.6% (95%CI:1.0%-6.9%)(Figure 3B). There was no significant difference in the pooled SAR between patient or healthcare staff contact subgroups (p=0.64; Figure 3B). The estimated R_{obs} in healthcare settings was 1.18 (95%CI:0.65-2.04) but ranged between 0.0 to 4.5 (Supplementary Table 10, Supplementary Figure 1).
Social Settings

Twenty-two studies were identified with social contact settings including travelling, religious events, fitness classes, shopping, entertainment venues and events with family and friends (Supplementary Table 6). Of these, 13 fulfilled the criteria for meta-analysis [10,11,39,45,47,13,17,26–28,30,31,37]. We estimate low SARs in low-contact events with casual contacts or strangers, with a pooled SAR of 1.2% (95%CI:0.3%-2.1%)(Figure 3C). In contrast, in settings with more familiar and prolonged contact such as events with family and friends, the pooled SAR was 5.9% (95%CI:3.8%-8.1%) and R_{obs} was 0.38 (95%CI:0.18-0.64)(Supplementary Table 11, Supplementary Figure 1). Travel-related contacts had an estimated SAR of 5.0% (95%CI:0.3%-9.8%), similar to that in social events with family and friends (Figure 3C, Supplementary Table 6). R_{obs} could not be estimated for any other contact groups due to insufficient data. Several other social settings with high levels of transmission were identified but could not be pooled (Supplementary Results).

Exposure Location Summary

Table 1 summarises the pooled estimates of SAR and R_{obs} across different exposure locations. While the highest SARs were estimated for household contacts and in familial settings, the highest R_{obs} was estimated for healthcare settings. Pooled estimates for schools and care-homes were not possible due to scarcity of studies (Supplementary Results).

Age Effects

Ten studies provided age breakdowns of index cases and contacts [10,12,16,22,25,31,33,37,45,48] meeting the inclusion criteria. Pooling across all exposure locations we found no significant differences in transmissibility or susceptibility by age of index cases or contacts (Figure 4 and Supplementary Table 12, Supplementary Figures 4-5).

However, we observed weak evidence for a difference in transmissibility and a significant difference in susceptibility by age in household studies (index 0-19 years: 4.4% [95%CI:0.0%-10.8%] vs. index
≥20 years: 10.0% [95% CI: 8.2%-11.8%], p=0.07 and contact 0-19 years: 6.16% [95% CI: 4.1%-8.2%] vs. contact ≥20 years: 13.7% [95% CI: 8.7%-18.7%], p=0.01 (Figure 4A, Figure 4C). When further disaggregating age groups, the trend for SARs to increase with increasing age of index cases and contacts was maintained (Figure 4B, Figure 4D). We note that across contact age groups the SARs increased at a higher rate for household contacts (Figure 4D).

Symptom Status of Index Case

From 18 studies [18,19,44,45,47,49–53,22,27,29–31,33,39,40] SAR was lowest for asymptomatic index cases at 1.9% (95% CI: 0.5%-3.1%) (Figure 5) (asymptomatic definitions and follow-up durations for included studies shown in Supplementary Table 13). SARs were significantly higher for pre-symptomatic and symptomatic index cases, estimated at 9.3% (95% CI: 4.5%-14.0%, p=0.01) and 13.6% (95% CI: 9.7%-17.5%, p<0.001), respectively (Figure 5), with similar patterns observed for pooled R_{obs} estimates. Asymptomatic index cases resulted in the lowest R_{obs} of 0.17 (95% CI: 0.04-0.45), followed by pre-symptomatic index cases (R_{obs}=0.78 [95% CI: 0.36-1.44], p=0.004) and symptomatic index cases (R_{obs}=1.01 [95% CI: 0.57-1.61], p<0.001) (Supplementary Table 14, Supplementary Figure 1).

Discussion

This systematic review provides an indication of the types and places of contacts and index case/contact characteristics that facilitate SARS-CoV-2 transmission. We found evidence to suggest that more familiar prolonged contact increases the potential for transmission, as does the presence or potential for symptoms with moderate age-dependent effects observed at the household level. However, there was limited data to allow exploration of transmission patterns in workplaces, schools, and care-homes.

Sustained daily contact within households may explain the high SAR (21.1%) which is comparable to the pooled estimate of an earlier systematic review (18.1%) [5]. Our estimate hides substantial
heterogeneity between studies, with reported SARs ranging between 0%-51%. This is similar to influenza household transmission, where SARs ranged from 1%-38% [54,55], but higher than those for SARS-1 (6-8%) [56,57]. We found evidence of reduced SARs and R_{obs} when index cases were isolated within 5 days of symptom onset, suggesting that household transmission characteristics are influenced by contact tracing and isolation policies. While SARs could not be estimated in other residential settings, it is not unexpected that these locations report high study-specific attack rates. Elderly residents living in care homes are particularly vulnerable populations with high risk of severe outcomes and COVID-19-related mortality [2,3], and. Understanding dynamics of transmission in these environments is vital to prevent further outbreaks. With many countries continuing to recommend “stay-at-home” measures, with cases isolating inside households, it is likely that this location will continue to be important in sustaining transmission.

We estimated a relatively low SAR (3.6%) in healthcare settings, substantially lower than that observed during the early stages of the SARS-1 epidemic [58–60]. This is potentially driven by the large number of identified and tested contacts per index case and stricter measures such as mask mandates and austere visitor policies. Although the probability of onward infection per individual contact is low in healthcare settings, the high number of contacts can lead to more opportunities for infection, which may explain the higher R_{obs} (1.18) in this setting. It is plausible that sufficient infection control and personal protective equipment (PPE) limited transmission potential in these settings but could not be explored due to insufficient data. Notably, all studies took place in high- and middle-income countries where PPE is likely more widely available which, in addition to the diversity of these healthcare systems, make generalisations about SARS-CoV-2 transmission rates in healthcare facilities difficult.

Despite a relatively low transmission potential in index cases who do not develop symptoms (SAR 1.9%), our findings suggest that SAR from exposure to pre-symptomatic index cases is similar to that of symptomatic cases (9.3% vs 13.6%, $p=0.08$). The difficulty in identifying pre-symptomatic cases,
who have been estimated to account for 47% of onward transmission [61], is particularly challenging for control policies. Our results highlight the continued need for physical distancing policies and widescale testing and contact tracing to identify and isolate those cases not yet showing symptoms. With asymptomatic transmission rates estimated to be significantly lower, this could have positive implications for vaccines which protect against symptomatic disease, potentially reducing the risk of transmission also.

While studies reporting on the age breakdown of index cases and contacts were limited, we found evidence for age-dependence in transmissibility and susceptibility in the household context, which was more limited when pooling across all settings. There is significant uncertainty around these estimates due to the sparsity of data. Therefore, understanding potential age-dependent effects in transmissibility and susceptibility remains challenging. Observed age differences could relate to behavioural, contextual or biological factors which are not yet fully understood [62]. There is growing evidence to suggest that children tend to experience mild or asymptomatic infections [63–67], which may explain the potential differences observed in SAR from cases aged under 20 years old. Further to this, symptomatic testing policies may fail to detect childhood infections or identify children as index cases which could bias estimates.

In contrast to influenza in which schools are clearly important contributors to transmission [68,69], school-based studies on SARS-CoV-2 are limited due to reactive school closures. In addition to schools closing, many countries have and continue to encourage working-from-home practices. Furthermore, workplace settings vary greatly not just by country, but also between sectors, with some more able to facilitate Covid-19 safety measures, highlighting the difficulty in ascertaining a universal workplace SAR. Currently there is insufficient information to explore SARs in different types of schools, workplaces or sectors.

We estimate relatively low R_{obs} across all settings, suggesting that the use of contact tracing and isolation activities in these studies is an effective measure at reducing onward transmission.
However, low numbers of studies were pooled and therefore there was considerable uncertainty in these estimates. Additionally, large cluster outbreaks can occur, as evidenced in several studies [28,31,38,40,41,47,70–73] and often, these events have the potential to overwhelm surveillance systems. The aggregate nature of the data used for our \(R_{\text{obs}} \) estimates likely hides substantial individual-level heterogeneity in transmission potential, hindering estimation of the overdispersion factor relating to SARS-CoV-2 transmission. Characterising this potential for ‘super-spreading-events’ will be critical for further informing where to direct contact tracing efforts. Early evidence suggests that transmission is overdispersed with around 19% of cases resulting in 80% of transmission in Hong Kong [74] and modelling studies based on reported global cluster sizes which suggested that as few as 10% of cases could account for 80% of all SARS-CoV-2 transmission [75]. The large cluster outbreaks identified in this review tend to be reported in indoor social or workplace settings, potentially highlighting these locations as facilitating super-spreading-events [76].

There are several limitations to this study. As in any active outbreak response, data collected from multiple teams under different country guidelines are subject to variations in definitions, follow-up time and testing protocols, limiting interpretation of pooled data. Furthermore, individual studies suffer from reporting and recall bias in identifying all contacts of a confirmed case. Across settings, index cases were commonly enrolled after presenting for medical attention and therefore can be biased towards infections that result in symptomatic or more serious illness, potentially distorting transmission pathways [54]. Without phylogenetic sequencing it is difficult to confidently resolve these pathways which could bias SARs estimates, for example if the index case was asymptomatic and is instead identified as a secondary case of the symptomatic case that first presented for testing or if transmission occurs outside the household but is attributed to a household index case. Globally, there is still a lack of detailed data from contact tracing studies to fully explore differing transmission potential by more precise exposure locations or individual characteristics. In this meta-analysis the majority of studies came from China, where strict control policies were implemented, possibly limiting the generalisability of estimates. In addition these studies were performed prior to the
identification of new virus variants with potentially enhanced transmission potential [77]. It will be important to contrast our estimates with studies distinguishing between variants when available. Finally, evidence is continually emerging from newspaper articles, government reports and press-conferences that report on large outbreaks in care-homes, schools, workplaces and hospitals. Such sources cannot be systematically searched or reliably cited, and this information is not translated into published contact tracing studies due to limited public health resources and the prioritisation of the ongoing emergency response.

In conclusion, early data suggest that SARS-CoV-2 transmission is highest in locations in which sustained and prolonged contacts are made, including households and other residential locations. With many countries continuing to issue stay-at-home measures, ensuring sufficient and early isolation of cases from other household members will be crucial to prevent spread. The identified similar transmission potential from pre-symptomatic and symptomatic cases is also challenging for control policies and highlights the importance of enhanced contact testing, that is not reliant on symptom status, rapid isolation, and physical distancing of both symptomatic and asymptomatic cases, as well as the continued use of appropriate PPE. Further research on transmission in different social settings, as well as in schools and workplaces, in which there are limited data to date, is required to continue to inform transmission reduction strategies.
Notes

Acknowledgements

We thank the following authors for providing information on primary studies included in this review and extracting additional relevant data: Dr Rachel Burke, Dr Hao-Yuan Cheng, Dr Tasuku Hara, Dr Hsien-Ho Lin, and all of their colleagues involved in the original publications. We would also like to acknowledge all members of the Imperial College COVID-19 Response Team.

Disclaimer

The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. The views expressed are those of the authors and not necessarily those of the United Kingdom (UK) Department of Health and Social Care, the National Health Service, the National Institute for Health Research (NIHR), Public Health England (PHE), UK MRC, UKRI or European Union.

Funding

This work was supported by the National Institute for Health Research Health Protection Research Unit (NIHR HPRU) in Modelling and Health Economics, a partnership between Public Health England, Imperial College London and the London School of Hygiene and Tropical Medicine (Grant number: NIHR200908). We acknowledge funding from the Medical Research Council (MRC) Centre for Global Infectious Disease Analysis (Grant number: MR/R015600/1), jointly funded by the UK Medical Research Council and the UK Foreign, Commonwealth & Development Office (FCDO), under the MRC/FCDO Concordat agreement and is also part of the EDCTP2 programme supported by the European Union. In addition, HAT and AM are supported by a UK Medical Research Council Studentship (Grant number: G98669).
Conflicts of Interest

ACG reports grants from Medical Research Council during the conduct of the study; grants from Bill and Melinda Gates Foundation, Wellcome Trust, NIH, PATH, Medicines for Malaria Venture, and Integrated Vector Control Consortium and personal fees from Malaria programming from The Global Fund, outside the submitted work.

NMF reports serving as PI of a grant for the MRC Centre for Global Infection Disease Analysis (UK Medical Research Council), a grant funding the NIHR Health Protection Research Unit for Mathematical Modelling and Health Economics (UK National Institute of Health Research), and a grant funding the Jameel Institute of Disease and Emergency Analytics at Imperial College (Community Jameel), during the conduct of the study. NMF also reports serving as PI of a NIH U01 grant under the NIGMS MIDAS program (NIH NIGMS), as the Co-I on a grant modelling antivirals against dengue (Janssen Pharmaceuticals), as the PI of two grants from the Bill and Melinda Gates Foundation, including one funding the Vaccine Impact Modelling Consortium (Bill and Melinda Gates Foundation), and a grant from Gavi, funding the Vaccine Impact Modelling Consortium (Gavi, the Vaccine Alliance), outside the submitted work.

All other authors declare no conflicts of interest.
References

1. World Health Organization. WHO Coronavirus Disease (COVID-19) Dashboard. 2020. Available at: https://covid19.who.int/.

2. Verity R, Okell LC, Dorigatti I, et al. Estimates of the severity of coronavirus disease 2019: a model-based analysis. Lancet Infect Dis 2020;

3. Salje H, Kiem CT, Lefrand N, et al. Estimating the burden of SARS-CoV-2 in France. Science (80-) 2020;

4. Madewell ZJ, Yang Y, Longini IM, Halloran ME, Dean NE. Household transmission of SARS-CoV-2: a systematic review and meta-analysis of secondary attack rate. medRxiv Prepr Serv Heal Sci 2020; Available at: http://www.ncbi.nlm.nih.gov/pubmed/32766596. Accessed 17 November 2020.

5. Koh WC, Naing L, Chaw L, et al. What do we know about SARS-CoV-2 transmission? A systematic review and meta-analysis of the secondary attack rate and associated risk factors. PLoS One 2020; 15:e0240205. Available at: https://dx.plos.org/10.1371/journal.pone.0240205. Accessed 10 November 2020.

6. Institute JB. The Joanna Briggs Institute critical appraisal tools for use in JBI systematic reviews: checklist for prevalence studies. Crit Apprais Checkl Preval Stud 2017;

7. Williams DA. 394: The Analysis of Binary Responses from Toxicological Experiments Involving Reproduction and Teratogenicity. Biometrics 1975; 31:949.

8. Pham T V., Piersma SR, Warmoes M, Jimenez CR. On the beta-binomial model for analysis of spectral count data in label-free tandem mass spectrometry-based proteomics. Bioinformatics 2009; 26:363–369.
9. Young-Xu Y, Chan KA. Pooling overdispersed binomial data to estimate event rate. BMC Med Res Methodol 2008; 8:58. Available at:
https://bmcmedresmethodol.biomedcentral.com/articles/10.1186/1471-2288-8-58.
Accessed 13 November 2020.

10. Bi Q, Wu Y, Mei S, et al. Epidemiology and transmission of COVID-19 in 391 cases and 1286 of their close contacts in Shenzhen, China: a retrospective cohort study. Lancet Infect Dis 2020; 20:911–919. Available at: https://pubmed.ncbi.nlm.nih.gov/32353347.

11. Böhmer MM, Buchholz U, Corman VM, et al. Investigation of a COVID-19 outbreak in Germany resulting from a single travel-associated primary case: a case series. Lancet Infect Dis 2020; 20:920–928. Available at: https://pubmed.ncbi.nlm.nih.gov/32422201.

12. Park YJ, Choe YJ, Park O, et al. Contact Tracing during Coronavirus Disease Outbreak, South Korea, 2020. Emerg Infect Dis 2020; 26.

13. Pollán M, Pérez-Gómez B, Pastor-Barriuso R, et al. Prevalence of SARS-CoV-2 in Spain (ENE-COVID): a nationwide, population-based seroepidemiological study. Lancet 2020; 396:535–544.

14. Rosenberg ES, Dufort EM, Blog DS, et al. COVID-19 Testing, Epidemic Features, Hospital Outcomes, and Household Prevalence, New York State-March 2020. Clin Infect Dis 2020; :ciaa549. Available at: https://pubmed.ncbi.nlm.nih.gov/32382743.

15. Sun WW, Ling F, Pan JR, et al. [Epidemiological characteristics of 2019 novel coronavirus family clustering in Zhejiang Province]. Zhonghua Yu Fang Yi Xue Za Zhi 2020; 54:E027.

16. van der Hoek W, Backer JA, Bodewes R, et al. [The role of children in the transmission of SARS-CoV-2]. Ned Tijdschr Geneeskd 2020; 164.

17. Wang X, Pan Y, Zhang D, et al. Basic epidemiological parameter values from data of real-world
in mega-cities: the characteristics of COVID-19 in Beijing, China. 2020;

18. Wang Y, Tian H, Zhang L, et al. Reduction of secondary transmission of SARS-CoV-2 in households by face mask use, disinfection and social distancing: a cohort study in Beijing, China. BMJ Glob Heal 2020; 5:e002794. Available at: https://pubmed.ncbi.nlm.nih.gov/32467353.

19. Wang X, Zhou Q, He Y, et al. Nosocomial outbreak of COVID-19 pneumonia in Wuhan, China. Eur Respir J 2020; 55:2000544. Available at: https://pubmed.ncbi.nlm.nih.gov/32366488.

20. Wu J, Huang Y, Tu C, et al. Household Transmission of SARS-CoV-2, Zhuhai, China, 2020. Clin Infect Dis 2020; Available at: https://doi.org/10.1093/cid/ciaa557.

21. Wu Y, Song S, Kao Q, Kong Q, Sun Z, Wang B. Risk of SARS-CoV-2 infection among contacts of individuals with COVID-19 in Hangzhou, China. Public Health 2020; 185:57–59. Available at: http://www.sciencedirect.com/science/article/pii/S0033350620301785.

22. Burke RM, Balter S, Barnes E, et al. Enhanced contact investigations for nine early travel-related cases of SARS-CoV-2 in the United States. PLoS One 2020; 15.

23. Xin H, Jiang F, Xue A, et al. Risk factors associated with occurrence of COVID-19 among household persons exposed to patients with confirmed COVID-19 in Qingdao Municipal, China. Transbound Emerg Dis 2020;

24. Yousaf AR, Duca LM, Chu V, et al. A prospective cohort study in non-hospitalized household contacts with SARS-CoV-2 infection: symptom profiles and symptom change over time. Clin Infect Dis 2020;

25. Yung CF, Kam K-Q, Chong CY, et al. Household Transmission of Severe Acute Respiratory Syndrome Coronavirus 2 from Adults to Children. J Pediatr 2020; 225:249–251.

26. Zhang J, Litvinova M, Liang Y, et al. Changes in contact patterns shape the dynamics of the
COVID-19 outbreak in China. Science (80-) 2020; 368:1481–1486. Available at: https://science.sciencemag.org/content/sci/368/6498/1481.full.pdf.

27. Zhang W, Cheng W, Luo L, et al. Secondary Transmission of Coronavirus Disease from Presymptomatic Persons, China. Emerg Infect Dis 2020; 26:1924–1926.

28. Zhang JZ, Zhou P, Han DB, et al. [Investigation on a cluster epidemic of COVID-19 in a supermarket in Liaocheng, Shandong province]. Zhonghua Liu Xing Bing Xue Za Zhi 2020; 41:E055. Available at: http://europepmc.org/abstract/MED/32340093.

29. Li W, Zhang B, Lu J, et al. Characteristics of Household Transmission of COVID-19. Clin Infect Dis 2020; Available at: https://doi.org/10.1093/cid/ciaa450.

30. Luo L, Liu D, Liao X, et al. Modes of contact and risk of transmission in COVID-19 among close contacts. medRxiv 2020; :2020.03.24.20042606. Available at: https://www.medrxiv.org/content/medrxiv/early/2020/03/26/2020.03.24.20042606.full.pdf.

31. Chaw L, Koh WC, Jamaludin SA, Naing L, Alikhan MF, Wong J. Analysis of SARS-CoV-2 Transmission in Different Settings, Brunei. Emerg Infect Dis J 2020; 26. Available at: https://wwwnc.cdc.gov/eid/article/26/11/20-2263_article.

32. Li J, Gong X, Wang Z, et al. Clinical features of familial clustering in patients infected with 2019 novel coronavirus in Wuhan, China. Virus Res 2020; 286:198043. Available at: https://pubmed.ncbi.nlm.nih.gov/32502551.

33. Cheng H-Y, Jian S-W, Liu D-P, et al. Contact Tracing Assessment of COVID-19 Transmission Dynamics in Taiwan and Risk at Different Exposure Periods Before and After Symptom Onset. JAMA Intern Med 2020; Available at: https://doi.org/10.1001/jamainternmed.2020.2020.

34. Dattner I, Goldberg Y, Katriel G, et al. The role of children in the spread of COVID-19: Using household data from Bnei Brak, Israel, to estimate the relative susceptibility and infectivity of
35. Dawson P, Rabold EM, Laws RL, et al. Loss of Taste and Smell as Distinguishing Symptoms of Coronavirus Disease 2019. Clin Infect Dis 2020; Available at: https://doi.org/10.1093/cid/ciaa799.

36. Dong XC, Li JM, Bai JY, et al. [Epidemiological characteristics of confirmed COVID-19 cases in Tianjin]. Zhonghua Liu Xing Bing Xue Za Zhi 2020; 41:638–641. Available at: http://europepmc.org/abstract/MED/32164400.

37. Jing Q-L, Liu M-J, Zhang Z-B, et al. Household secondary attack rate of COVID-19 and associated determinants in Guangzhou, China: a retrospective cohort study. Lancet Infect Dis 2020;

38. Mahapure KS, Kulkarni NS. Asymptomatic Transmission of Severe Acute Respiratory Syndrome-Coronavirus 2 within a Family Cluster of 26 Cases: Why Quarantine is Important? J Glob Infect Dis 2020; 12:115–116. Available at: https://pubmed.ncbi.nlm.nih.gov/32774003.

39. Chen Y, Wang A, Yi B, et al. Epidemiological analysis of infection among close contacts of novel coronavirus pneumonia in Ningbo. Chinese J Epidemiol 2020; 41.

40. Park SY, Kim YM, Yi S, et al. Coronavirus Disease Outbreak in Call Center, South Korea. Emerg Infect Dis 2020; 26:1666–1670.

41. Hijnen D, Marzano AV, Eyerich K, et al. SARS-CoV-2 Transmission from Presymptomatic Meeting Attendee, Germany. Emerg Infect Dis J 2020; 26:1935. Available at: https://wwwnc.cdc.gov/eid/article/26/8/20-1235_article.

42. Wee LE, Hsieh JYC, Phua GC, et al. Respiratory surveillance wards as a strategy to reduce nosocomial transmission of COVID-19 through early detection: The experience of a tertiary-care hospital in Singapore. Infect Control Hosp Epidemiol 2020; 1–6. Available at:
43. Pini R, Faggioli G, Vacirca A, et al. Is it Possible to Safely Maintain a Regular Vascular Practice During the COVID-19 Pandemic? Eur J Vasc Endovasc Surg 2020; 60:127–134. Available at: https://pubmed.ncbi.nlm.nih.gov/32499169.

44. Chen Y, Tong X, Wang J, et al. High SARS-CoV-2 antibody prevalence among healthcare workers exposed to COVID-19 patients. J Infect 2020; 81:420–426. Available at: https://pubmed.ncbi.nlm.nih.gov/32504745.

45. Liu T, Liang W, Zhong H, et al. Risk factors associated with COVID-19 infection: a retrospective cohort study based on contacts tracing. Emerg Microbes Infect 2020; 9:1546–1553. Available at: https://doi.org/10.1080/22221751.2020.1787799.

46. Lombardi A, Consonni D, Carugno M, et al. Characteristics of 1,573 healthcare workers who underwent nasopharyngeal swab for SARS-CoV-2 in Milano, Lombardy, Italy. Clin Microbiol Infect 2020;

47. Jang S, Han SH, Rhee JY. Cluster of Coronavirus Disease Associated with Fitness Dance Classes, South Korea. Emerg Infect Dis 2020; 26:1917–1920.

48. Kwok KO, Wong VWY, Wei WI, Wong SYS, Tang JW-T. Epidemiological characteristics of the first 53 laboratory-confirmed cases of COVID-19 epidemic in Hong Kong, 13 February 2020. Eurosurveillance 2020; 25:2000155. Available at: https://www.eurosurveillance.org/content/10.2807/1560-7917.ES.2020.25.16.2000155.

49. Han X, Wei X, Alwalid O, et al. Severe Acute Respiratory Syndrome Coronavirus 2 among Asymptomatic Workers Screened for Work Resumption, China. Emerg Infect Dis 2020; 26.

50. Hong L-X, Lin A, He Z-B, et al. Mask wearing in pre-symptomatic patients prevents SARS-CoV-2 transmission: An epidemiological analysis. Travel Med Infect Dis 2020; 36:101803. Available
at: http://www.sciencedirect.com/science/article/pii/S1477893920302994.

51. Jiang XL, Zhang XL, Zhao XN, et al. Transmission Potential of Asymptomatic and Paucisymptomatic Severe Acute Respiratory Syndrome Coronavirus 2 Infections: A 3-Family Cluster Study in China. J Infect Dis 2020; 221:1948–1952.

52. Liu Z, Chu R, Gong L, Su B, Wu J. The assessment of transmission efficiency and latent infection period on asymptomatic carriers of SARS-CoV-2 infection. Int J Infect Dis 2020; Available at: http://www.sciencedirect.com/science/article/pii/S1201971220304719.

53. Stein-Zamir C, Abramson N, Shoob H, et al. A large COVID-19 outbreak in a high school 10 days after schools’ reopening, Israel, May 2020. Euro Surveill 2020; 25:2001352. Available at: https://pubmed.ncbi.nlm.nih.gov/32720636.

54. Tsang TK, Lau LLH, Cauchemez S, Cowling BJ. Household Transmission of Influenza Virus. Trends Microbiol. 2016; 24:123–133. Available at: /pmc/articles/PMC4733423/?report=abstract. Accessed 19 October 2020.

55. Lau LLH, Nishiura H, Kelly H, Ip DKM, Leung GM, Cowling BJ. Household transmission of 2009 pandemic influenza A (H1N1): A systematic review and meta-analysis. Epidemiology. 2012; 23:531–542. Available at: /pmc/articles/PMC3367058/?report=abstract. Accessed 19 October 2020.

56. Lau JTF, Lau M, Kim JH, et al. Probable Secondary Infections in Households of SARS Patients in Hong Kong. Emerg Infect Dis 2004; 10:235–243. Available at: /pmc/articles/PMC3322902/?report=abstract. Accessed 19 October 2020.

57. Goh DLM, Lee BW, Chia KS, et al. Secondary Household Transmission of SARS, Singapore. Emerg Infect Dis 2004; 10:232–234. Available at: /pmc/articles/PMC3322927/?report=abstract. Accessed 19 October 2020.
58. Ho AS, Sung JJY, Chan-Yeung M. An Outbreak of Severe Acute Respiratory Syndrome among Hospital Workers in a Community Hospital in Hong Kong. Ann Intern Med 2003; 139. Available at: https://pubmed.ncbi.nlm.nih.gov/14530227/. Accessed 19 October 2020.

59. Varia M, Wilson S, Sarwal S, et al. Investigation of a nosocomial outbreak of severe acute respiratory syndrome (SARS) in Toronto, Canada. CMAJ 2003; 169:285–292. Available at: www.cmaj.ca. Accessed 19 October 2020.

60. World Health Organization. Consensus document on the epidemiology of severe acute respiratory syndrome (SARS). 2003.

61. Buitrago-Garcia D, Egli-Gany D, Counotte MJ, et al. Occurrence and transmission potential of asymptomatic and presymptomatic SARS-CoV-2 infections: A living systematic review and meta-analysis. PLoS Med 2020; 17:e1003346. Available at: https://doi.org/10.1371/journal.pmed.1003346. Accessed 19 October 2020.

62. Moghadas SM, Fitzpatrick MC, Sah P, et al. The implications of silent transmission for the control of COVID-19 outbreaks. Proc Natl Acad Sci U S A 2020; 117:17513–17515. Available at: www.pnas.org/cgi/doi/10.1073/pnas.2008373117. Accessed 19 October 2020.

63. Ecdc. COVID-19 in children and the role of school settings in COVID-19 transmission. 2020. Available at: https://www.ecdc.europa.eu/sites/default/files/documents/COVID-19-schools-transmission-August 2020.pdf. Accessed 19 October 2020.

64. Patel NA. Pediatric COVID-19: Systematic review of the literature. Am J Otolaryngol - Head Neck Med Surg 2020; 41:102573.

65. Han MS, Choi EH, Chang SH, et al. Clinical Characteristics and Viral RNA Detection in Children with Coronavirus Disease 2019 in the Republic of Korea. JAMA Pediatr 2020; Available at: https://jamanetwork.com/. Accessed 19 October 2020.
66. Raba AA, Abobaker A, Elgenaidi IS, Daoud A. Novel coronavirus infection (COVID-19) in children younger than one year: A systematic review of symptoms, management and outcomes. Acta Paediatr 2020; 109:1948–1955. Available at: https://onlinelibrary.wiley.com/doi/10.1111/apa.15422. Accessed 19 October 2020.

67. Götzinger F, Santiago-García B, Noguera-Julián A, et al. COVID-19 in children and adolescents in Europe: a multinational, multicentre cohort study. Lancet Child Adolesc Heal 2020; 4:653–661. Available at: www.thelancet.com/child-adolescent. Accessed 19 October 2020.

68. Zhang L, Peres TG, Silva MVF, Camargos P. What we know so far about Coronavirus Disease 2019 in children: A meta-analysis of 551 laboratory-confirmed cases. Pediatr Pulmonol 2020; 55:2115–2127. Available at: https://onlinelibrary.wiley.com/doi/abs/10.1002/ppul.24869. Accessed 19 October 2020.

69. Zhao H, Joseph CA, Phin N. Outbreaks of influenza and influenza-like illness in schools in England and Wales, 2005/06. Eurosurveillance 2007; 12:3–4. Available at: http://www.eurosurveillance.org/content/10.2807/esm.12.05.00705-en. Accessed 19 October 2020.

70. Kar-Purkayastha I, Ingram C, Maguire H, Roche A. The importance of school and social activities in the transmission of influenza A(H1N1)v: England, April - June 2009. Euro Surveill 2009; 14. Available at: https://pubmed.ncbi.nlm.nih.gov/19712642/. Accessed 19 October 2020.

71. Danis K, Epaulard O, Bénet T, et al. Cluster of Coronavirus Disease 2019 (COVID-19) in the French Alps, February 2020. Clin Infect Dis 2020; 71:825–832. Available at: https://doi.org/10.1093/cid/ciaa424.

72. Pavli A, Smeti P, Papadima K, et al. A cluster of COVID-19 in pilgrims to Israel. J Travel Med 2020; Available at: https://doi.org/10.1093/jtm/taaa102.
73. Yusef D, Hayajneh W, Awad S, et al. Large Outbreak of Coronavirus Disease among Wedding Attendees, Jordan. Emerg Infect Dis 2020; 26.

74. Huang L, Zhang X, Zhang X, et al. Rapid asymptomatic transmission of COVID-19 during the incubation period demonstrating strong infectivity in a cluster of youngsters aged 16-23 years outside Wuhan and characteristics of young patients with COVID-19: A prospective contact-tracing study. J Infect 2020; 80:e1–e13.

75. Adam DC, Wu P, Wong JY, et al. Clustering and superspreading potential of SARS-CoV-2 infections in Hong Kong. Nat Med 2020; Available at: https://doi.org/10.1038/s41591-020-1092-0.

76. Endo A, Abbott S, Kucharski AJ, Funk S. Estimating the overdispersion in COVID-19 transmission using outbreak sizes outside China. Wellcome Open Res 2020; 5:67. Available at: /pmc/articles/PMC7338915/?report=abstract. Accessed 11 November 2020.

77. Qian H, Miao T, Liu L, Zheng X, Luo D, Li Y. Indoor transmission of SARS-CoV-2. Indoor Air 2020; :ina.12766. Available at: https://onlinelibrary.wiley.com/doi/10.1111/ina.12766. Accessed 17 November 2020.
Table 1 Summary table of the pooled SAR and R_{obs} for the exposure locations considered in this study. Where values are missing there was not enough data available to estimate a pooled value. SAR: Secondary Attack Rate; R_{obs}: observed reproduction number.

Setting	Pooled SAR (%)	95% Confidence Interval (%)	Pooled R_{obs}	95% Confidence Interval
Households	21.1	17.4 - 24.8	0.96	0.67 - 1.32
Social gatherings with family and friends	5.9	3.8 - 8.1	0.38	0.18 - 0.64
Travel	5.0	0.3 - 9.8	-	-
Healthcare	3.6	1.0 - 6.9	1.18	0.65 - 2.04
Workplace	1.9	0.0 - 3.9	-	-
Casual close contacts	1.2	0.3 - 2.1	-	-
Figure Legends

Figure 1. PRISMA flow diagram of study selection

Figure 2. A) Pooled overall household Secondary Attack Rates. Studies are ordered by the number of index cases reported in the study. Studies of large household contact tracing investigations were included irrespective of whether the number of index cases was reported in the study. B) Stratified by duration of household exposure to symptomatic index case. Studies are ordered by the number of index cases reported in the study as this was not given by exposure duration. Study level point estimates and binomial confidence intervals are shown along with the pooled beta-binomial summary across studies. Exposure duration to the index case before isolation or hospitalisation categories (≤5 days and >5 days) were selected to maximize usage of data.

Figure 3. Secondary attack rates stratified by exposure locations. A) Workplace based contacts. B) Healthcare based contacts. Beta-binomial summary estimates are presented for patient and healthcare staff contacts of index-cases and a combined (non-disaggregated) contacts category. This ‘combined contacts’ summary estimate was pooled across all studies in the healthcare setting and includes two studies where disaggregated contact groups were not reported. C) Social contact environments. Studies are ordered by the number of index cases reported at the study level. Large population-level studies were included irrespective of whether the number of index cases was reported by the study.

Figure 4. Pooled estimates of Secondary Attack Rates by age of the index case and contacts stratified by contact location. (A) Index cases stratified by 0-19 and 20+ age brackets and exposure location to the index case (B) index cases stratified by 10-,20- and 40-year age brackets. C) Contacts stratified by 0-19 and 20+ age brackets and exposure location (D) contacts stratified by 10, 20- and 40-year age brackets. Point estimates were obtained from fitting a beta-binomial model to pooled study data, with 95% Confidence Intervals shown by horizontal and vertical bars. All contacts combine studies regardless of exposure locations, and household only those studies relating to household transmission. The pooled household SAR for ages 60+ is not shown as there was insufficient data for this age group.

Figure 5. Estimated Secondary Attack Rates from asymptomatic, pre-symptomatic and symptomatic index cases. Studies are ordered by the number of index cases reported in the study as shown in the figure. Pooled estimates combine all exposure locations listed. Combined exposure locations relate to contact tracing studies where close contacts were not disaggregated by exposure location. Asymptomatic index cases were defined as those with a positive SARS-CoV-2 RT-PCR test and no reported clinical symptoms up to discharge or end of follow-up (at least 14 days). Pre-symptomatic index cases were defined as those not reporting symptoms at the time of testing or during exposure but later developed symptoms. Symptomatic index cases reported COVID-19-associated symptoms at the time of sampling and/or during exposure.
Figure 1

Records identified through database searching (n = 7,383)

Records after duplicates removed and publication before 2020 (n = 1,872)

Title and abstract screening (n = 1,872)

Records excluded (n = 1,650)

Full-text articles assessed for eligibility (n = 222)

Full-text articles excluded – not meeting the inclusion criteria (n = 147)

Studies included in qualitative synthesis (n = 75)

Additional records identified through other sources – preprint servers (identified: n = 117 included: n = 2), bibliography screening and other review papers: (included: n = 20)

Studies included in quantitative synthesis (n = 97)

And those meeting inclusion criteria for meta-analysis (n = 45)
Figure 2

A

Study	Country	Index cases	Secondary cases	Total contacts	Secondary Attack rate
Mahapure et al	India	4	22	43	0.51 (95% CI: 0.35–0.67)
Burke et al	USA	9	2	15	0.13 (95% CI: 0.02–0.40)
Zhang et al	China	13	12	63	0.13 (95% CI: 0.07–0.21)
Bohnert et al	Germany	16	5	24	0.21 (95% CI: 0.07–0.42)
Chau et al	Brunei	19	16	123	0.13 (95% CI: 0.00–0.20)
Wang et al	China	25	10	43	0.23 (95% CI: 0.12–0.39)
Dawson et al	USA	26	16	64	0.26 (95% CI: 0.15–0.37)
Ding et al	China	26	13	259	0.20 (95% CI: 0.16–0.28)
Xin et al	China	31	10	105	0.18 (95% CI: 0.11–0.27)
Wu et al	China	35	18	148	0.32 (95% CI: 0.25–0.41)
Zhang et al	China	38	10	92	0.16 (95% CI: 0.06–0.28)
van der Heek et al	Netherlands	54	40	174	0.28 (95% CI: 0.22–0.35)
Cheng et al	Taiwan	100	10	151	0.07 (95% CI: 0.03–0.12)
Li et al	China	105	64	382	0.16 (95% CI: 0.13–0.20)
Wang et al	China	124	77	355	0.22 (95% CI: 0.18–0.28)
Zhang et al	China	136	339	956	0.36 (95% CI: 0.32–0.39)
Wu et al	China	144	50	280	0.18 (95% CI: 0.14–0.23)
Sun et al	China	149	169	599	0.32 (95% CI: 0.26–0.35)
Rosenberg et al	USA	155	131	343	0.38 (95% CI: 0.33–0.44)
Chen et al	China	187	37	279	0.13 (95% CI: 0.10–0.18)
Jing et al	China	215	103	784	0.13 (95% CI: 0.11–0.16)
Yang et al	Singapore	223	13	213	0.06 (95% CI: 0.03–0.10)
Luo et al	China	347	96	946	0.10 (95% CI: 0.06–0.12)
Bi et al	China	391	77	668	0.11 (95% CI: 0.06–0.14)
Wang et al	China	602	111	714	0.16 (95% CI: 0.13–0.18)
Dattner et al	Israel	637	673	2716	0.32 (95% CI: 0.30–0.34)
Park et al	South Korea	5706	1248	10692	0.12 (95% CI: 0.11–0.12)
Pollan et al	Spain	293	860	1153	0.33 (95% CI: 0.30–0.36)
Yousef et al	USA	47	195	0.24 (95% CI: 0.18–0.31)	

Beta-Binomial Summary

\[
\text{y} = 0.034
\]

\[
\text{Secondary Attack rate} = 0.21 (95\% \text{ CI: 0.17–0.25})
\]

B

Study	Country	Index cases	Secondary cases	Total contacts	Secondary Attack rate
Cheng et al	Taiwan	100	3	77	0.04 (95% CI: 0.01–0.11)
Li et al	China	165	24	139	0.17 (95% CI: 0.11–0.25)
Bohnert et al	Germany	16	2	20	0.10 (95% CI: 0.01–0.32)
Chau et al	Brunei	19	14	106	0.13 (95% CI: 0.07–0.21)
Wu et al	China	35	31	93	0.33 (95% CI: 0.24–0.44)
Burke et al	USA	9	0	13	0.00 (95% CI: 0.00–0.25)

Beta-Binomial Summary

\[
\text{y} = 0.071
\]

\[
\text{Secondary Attack rate} = 0.14 (95\% \text{ CI: 0.09–0.23})
\]

Over 5 days exposure

Study	Country	Index cases	Secondary cases	Total contacts	Secondary Attack rate
Cheng et al	Taiwan	100	7	74	0.09 (95% CI: 0.04–0.19)
Li et al	China	105	40	253	0.16 (95% CI: 0.12–0.21)
Bohnert et al	Germany	19	3	4	0.75 (95% CI: 0.19–0.99)
Chau et al	Brunei	19	2	14	0.14 (95% CI: 0.02–0.43)
Wu et al	China	35	17	41	0.41 (95% CI: 0.26–0.58)
Mahapure et al	India	4	22	43	0.51 (95% CI: 0.35–0.67)
Burke et al	USA	9	2	2	1.00 (95% CI: 0.16–1.00)

Beta-Binomial Summary

\[
\text{y} = 0.166
\]

\[
\text{Secondary Attack rate} = 0.35 (95\% \text{ CI: 0.16–0.54})
\]
Figure 3

A

Study	Country	Index cases	Secondary cases	Total contacts	Secondary Attack rate
Park et al	South Korea	2	6	84	0.00 (95% CI: 0.00-0.00)
Chen et al	Brunei	19	6	648	0.01 (95% CI: 0.00-0.02)
Zhang et al	China	38	0	119	0.00 (95% CI: 0.00-0.03)
Chen et al	China	187	1	47	0.02 (95% CI: 0.00-0.11)
Pollan et al	Spain	118		1461	0.08 (95% CI: 0.07-0.10)
Beta-Binomial Summary					**0.02 (95% CI: 0.00-0.04)**

\(\gamma = 0.024 \)

B

Study	Country	Index cases	Secondary cases	Total contacts	Secondary Attack rate
Woe et al	Singapore	5	1	13	0.08 (95% CI: 0.00-0.36)
Chen et al	China	187	4	225	0.02 (95% CI: 0.00-0.04)
Beta-Binomial Summary					**0.02 (95% CI: 0.01-0.03)**

\(\gamma = 0.000 \)

Study	Country	Index cases	Secondary cases	Total contacts	Secondary Attack rate
Pic et al	Italy	2	0	14	0.00 (95% CI: 0.00-0.23)
Chen et al	China	4	18	105	0.17 (95% CI: 0.10-0.26)
Chen et al	China	187	0	72	0.00 (95% CI: 0.00-0.05)
Luo et al	China	347	7	679	0.01 (95% CI: 0.00-0.02)
Liu et al	China	1158	2	573	0.00 (95% CI: 0.00-0.01)
Lombardi et al	Italy	139		1573	0.09 (95% CI: 0.07-0.10)
Beta-Binomial Summary					**0.05 (95% CI: 0.00-0.10)**

\(\gamma = 0.095 \)

Study	Country	Index cases	Secondary cases	Total contacts	Secondary Attack rate
Cheng et al	Taiwan	100	5	690	0.01 (95% CI: 0.00-0.02)
Zhang et al	China	138	7	572	0.01 (95% CI: 0.00-0.03)
Combined Beta-Binomial Summary					**0.04 (95% CI: 0.01-0.07)**

\(\gamma = 0.000 \)

C

Study	Country	Index cases	Secondary cases	Total contacts	Secondary Attack rate
Casual contacts	China	11	2	8224	0.00 (95% CI: 0.00-0.00)
Chae et al	Brunei	19	4	446	0.01 (95% CI: 0.00-0.02)
Zhang et al	China	38	1	122	0.01 (95% CI: 0.00-0.04)
Chen et al	China	187	10	566	0.02 (95% CI: 0.01-0.03)
Luo et al	China	347	11	675	0.01 (95% CI: 0.00-0.02)
Wang et al	China	602	75	3363	0.02 (95% CI: 0.02-0.03)
Liu et al	China	1158	41	3344	0.01 (95% CI: 0.01-0.02)
Beta-Binomial Summary					**0.01 (95% CI: 0.00-0.02)**

\(\gamma = 0.010 \)

Study	Country	Index cases	Secondary cases	Total contacts	Secondary Attack rate
Family and friends	Germany	16	11	217	0.05 (95% CI: 0.03-0.09)
Chae et al	Brunei	19	5	144	0.03 (95% CI: 0.01-0.08)
Zhang et al	China	38	1	86	0.02 (95% CI: 0.03-0.08)
Chen et al	China	187	32	724	0.07 (95% CI: 0.06-0.09)
Jing et al	China	215	31	1314	0.02 (95% CI: 0.02-0.03)
Bi et al	China	391	81	707	0.09 (95% CI: 0.07-0.11)
Pollan et al	Spain	146		1284	0.11 (95% CI: 0.10-0.13)
Beta-Binomial Summary					**0.06 (95% CI: 0.04-0.08)**

\(\gamma = 0.073 \)

Study	Country	Index cases	Secondary cases	Total contacts	Secondary Attack rate
Travel	China	136	22	326	0.07 (95% CI: 0.04-0.10)
Chen et al	China	187	28	236	0.12 (95% CI: 0.08-0.17)
Luo et al	China	347	1	618	0.00 (95% CI: 0.00-0.01)
Bi et al	China	391	18	318	0.06 (95% CI: 0.03-0.09)
Liu et al	China	1158	31	2038	0.02 (95% CI: 0.01-0.02)
Beta-Binomial Summary					**0.05 (95% CI: 0.00-0.10)**

\(\gamma = 0.056 \)
Figure 4

A

B

C

D

Contact Group

Age of Index case

All contacts

0-19

20+

Household contacts

Pooled Secondary Attack rate

Age Group Index Case

Secondary Attack Rate

Estimate

Beta-Binomial Summary

Contact group

All contacts

0-19

20+

Household contacts

Pooled Secondary Attack rate

Age Group Contact

Secondary Attack Rate
Figure 5

Study	Country	Exposure Location	Index Secondary cases	Total contacts	Secondary Attack rate
asymptomatic					
Jang et al	China	combined	8	1	0.14 (95% CI 0.01-0.49)
Han et al	China	combined	16	0	0.00 (95% CI 0.00-0.22)
Choe et al	South Korea	household	10	2	0.06 (95% CI 0.01-0.48)
Chen et al	China	combined	30	6	0.04 (95% CI 0.02-0.39)
Zheng et al	China	combined	83	1	0.01 (95% CI 0.00-0.06)
Park et al	South Korea	household	97	0	0.00 (95% CI 0.00-0.00)
Liu et al	China	combined	147	24	0.03 (95% CI 0.02-0.04)
Luo et al	China	combined	347	1	0.00 (95% CI 0.00-0.02)
Beta-Binomial Summary					0.02 (95% CI 0.01-0.03)
pre-symptomatic					
Jang et al	South Korea	social-fitness	6	57	0.26 (95% CI 0.21-0.33)
Jang et al	China	combined	8	4	0.04 (95% CI 0.01-0.09)
Hong et al	China	combined	12	14	0.10 (95% CI 0.06-0.15)
Chee et al	Brunei	household	10	4	0.08 (95% CI 0.05-0.19)
Zheng et al	China	combined	83	11	0.04 (95% CI 0.02-0.06)
Park et al	South Korea	household	97	0	0.00 (95% CI 0.00-0.00)
Cheng et al	Taiwan	household	100	4	0.04 (95% CI 0.01-0.10)
Liu et al	China	combined	167	23	0.10 (95% CI 0.06-0.14)
Liu et al	China	combined	1158	12	0.03 (95% CI 0.02-0.04)
Beta-Binomial Summary					0.09 (95% CI 0.05-0.14)
symptomatic					
Stern-Zeml et al	Israel	school	2	178	0.14 (95% CI 0.12-0.16)
Chen et al	China	healthcare	4	18	0.17 (95% CI 0.10-0.26)
Jang et al	China	combined	8	2	0.13 (95% CI 0.02-0.40)
Burki et al	USA	household	9	2	0.13 (95% CI 0.02-0.40)
Choe et al	Brunei	household	19	10	0.24 (95% CI 0.12-0.40)
Wang et al	China	household	25	10	0.24 (95% CI 0.12-0.39)
Park et al	South Korea	household	97	34	0.16 (95% CI 0.11-0.22)
Cheng et al	Taiwan	household	100	3	0.06 (95% CI 0.01-0.18)
Li et al	China	household	103	64	0.16 (95% CI 0.13-0.20)
Wang et al	China	household	124	77	0.22 (95% CI 0.18-0.26)
Chen et al	China	combined	187	130	0.06 (95% CI 0.03-0.07)
Lue et al	China	combined	1158	411	0.07 (95% CI 0.06-0.08)
Beta-Binomial Summary					0.14 (95% CI 0.10-0.17)