Ecological and biochemical analyses of the brown alga *Turbinaria ornata* (Turner) J. Agardh from Red Sea coast, Egypt

Mohamed Ali Deyab, Fatma Mohamed Elnabawy Ward*

Department of Botany, Faculty of Science, Damietta University, Damietta, Egypt

OBJECTIVE: To study ecological parameters and biochemical composition of brown seaweed, *Turbinaria ornata* (*T. ornata*) collected from Hurghada shores, Red Sea coast of Egypt during September, October and November, 2015.

METHODS: *T. ornata* and its associated seaweeds were collected, identified and their abundances were estimated. Water of collection site was analyzed physicochemically as well as qualitative and quantitative analyses of phytoplankton. *T. ornata* was analyzed for protein, total carbohydrate, lipids, alginic acid, agar, pigments, minerals and heavy metals.

RESULTS: The results showed that macroalgal species recorded along Hurghada shores belong to Phaeophyta, Rhodophyta and Chlorophyta. At collection site, the moderate temperature, slight alkaline pH, low turbidity, high dissolved oxygen and valuable nutrient content of saline water exerted the massive growth of *T. ornata* with maximum abundance (24%) during October. The phytoplankton community was quite diverse with a maximum numbers of taxa (104.2 × 10^8 cell/L) recorded during October. Analysis of *T. ornata* alga powder showed that high soluble carbohydrate (2.80 ± 0.10 mg/g dry weight) and chlorophyll c (0.0017 ± 0.0001 mg/g fresh weight) contents were recorded during September; while high contents of protein (37.70 ± 0.60 mg/g dry weight), lipids (3.10 ± 0.06 mg/g dry weight), polysaccharides (agar and alginates), carotenoids (0.0160 ± 0.0004 mg/g fresh weight), minerals and heavy metals were recorded during November.

CONCLUSIONS: The study revealed that physicochemical analyses of water were varied slightly during the three months and suitable for the growth of *T. ornata*. It contains high amount of most biochemical constituents during October.

1. Introduction

The marine environment in which seaweed exists possesses great taxonomic diversity and synthesis metabolites with varied structure with interesting biological activities for food material and medical applications. Marine macroalgae grow in harsh environments, with variable water currents, a restricted nutrient supply, and high concentrations of salt, sunlight, and oxygen, which may foster the production of natural compounds[1]. The growth and chemical composition of marine macroalgae are significantly affected by their environmental conditions. The physico-chemical parameters determine the occurrence of particular seaweeds at particular place at particular season[2]. Hence the study of the physico-chemical characters of marine ecosystem is also very important. Marine organisms, especially algae are rich sources of natural bioactive products. Seaweeds have come up step by step starting with using them as food, later as raw material for industrial, medicinal, pharmaceutical and cosmetic purposes[3], associated with their high contents of protein, polysaccharides, minerals, essential fatty acids, carotenoids and vitamins which are related to several environmental factors[4,5]. Marine algae contain more than 60 trace elements in a concentration, which are much higher than that in terrestrial plants and have various pharmacological activities[6]. The Red Sea is a rich and diverse ecosystem. The rich diversity is in part due to the 2000 km of coral reef extending along its coastline. Over 500 species of seaweeds have been recorded in the Red Sea[7]. *Turbinaria ornata (T. ornata)* belongs to kingdom: Chromista, subkingdom: Harosa, infrakingdom: Heterokonta, phylum: Ochrophyta, subphylum: Phaeista, infraphylum: Limnista, superclass: Fucista, class: Phaeophyceae, order: Fucales, family:
Sargassaceae, genus: *Turbinaria*, species: *T. ornata* [8]. This alga is a perennial brown alga native to coral reef ecosystems in tropical areas of the Pacific and Indian Ocean [9]. Biochemical composition of *T. ornata* reveals their suitability to be a good source for human consumption [10].

Brown algae are economically valuable seaweeds as a source of raw material for the extraction of polysaccharides (*e.g.* alginate, laminaran, cellulose and fucoidan) [11]. *T. ornata* was distinctive for its high content of alginic acid [12]. Alginic acid is a complex carbohydrate polymer consisting of D-mannuronic acid and L-guluronic acid residues linked by 1–4 positions. Cell walls of brown seaweeds are made of cellulose and alginic acid. Alginites are comprised of two uronate sugars and the salts of mannnuronic and guluronic acid derived from alginic acid [13].

Therefore the present study was undertaken to investigate ecological parameters and biochemical composition of one commonly occurring brown seaweed. *T. ornata* was collected from Hurghada shores, Red Sea coast of Egypt during September, October and November, 2015.

2. Materials and methods

2.1. Study area

Collection site was along the semi-exposed shores of Hurghada, Red Sea coast of Egypt (Figure 1). It is one of the most important places of interest for algal growth in Egypt. The latitude is 27°13′ N and the longitude is 33°45′ E.

![Map of Red Sea coast of Egypt showing the study site of Hurghada shores.](image)

2.2. Sampling

Water samples, *T. ornata* and its associated seaweeds were collected biweekly during low tide in September, October and November, 2015 (Figure 2). Macroalgae were collected using five quadrates (1 m × 1 m) to record the cover of each species according to Londo-scale [14] and weighing the fresh weight for quantitative assessment of abundance. Identification and nomenclature of macroalgae were based on the following reference [15] and verified with illustrations by De Széchy *et al.* [16].

![Natural habit of *T. ornata*.](image)

2.3. Physico-chemical analysis of water

Temperature, pH, turbidity and salinity were measured directly at the sampling site. Dissolved oxygen was measured in laboratory according to Manivasakam [17]. Biochemical oxygen demand was determined by the method described by American Public Health Association [18]. SO₄⁻ and NO₃⁻ were determined according to Trivedy and Goel [19]. Alkalinity was determined according to Kumar and Shailaja [20]. NH₄⁺ was determined according to Dawes *et al.* [21]. Inorganic PO₄⁻ were determined according to American Public Health Association [18]. Minerals: K, Ca and Na were determined using flame photometer (Department of Botany, Faculty of Science, Damietta University, Egypt) according to Sudharsan *et al.* [22]. Five heavy metals: Cu, Co, Zn, Fe and Mn in water sample were determined using Perkin-Elmer-2380 atomic absorption spectroscopy (Department of Chemistry, Faculty of Science, Damietta University, Egypt) as described by Sudharsan *et al.* [22].

2.4. Qualitative and quantitative analyses of phytoplankton

The preserved water samples were examined microscopically after preparation according to the procedures described by Main *et al.* [23]. Identification of present algal taxa (species and varieties) was made according to Botes [24] and Guiry and Guiry [8]. Finally, the number of each phytoplankton variety was counted by using haemocytometer (Department of Botany, Faculty of Science, Damietta University, Egypt) [25].

2.5. Preparation of *T. ornata* samples

T. ornata was washed with tap water and distilled water to remove all the salt on the surface. The seaweed was shade dried then kept in an oven 60 °C for 4 h. Finally, it was ground and stored in polyethylene bags at room temperature.

2.6. Biochemical analysis of *T. ornata*

The protein content of *T. ornata* was determined
spectrophotometrically according to Bradford[26]. Total carbohydrate was determined spectrophotometrically using anthrone method according to Hedge and Hofreiter[27]. Lipids content was determined according to Van et al.[28]. Alginic acid was determined by the Na alginate method according to Sari-Chmayssem et al.[29] and by the Ca alginate method according to Dawes[30]. Agar was extracted from T. ornata as described by Roberts et al.[31]. Pigments (chlorophyll a, chlorophyll c and carotenoids) were extracted according to the method described by Kumar et al.[32], determined and calculated according to the formula of Lichtenthaler and Buschmann[33], and Jeffrey and Humphrey[34]. The dried algal materials were digested according to Ahmmeda et al.[35]. Minerals (Na, Ca and K) were determined in the digested samples using flame photometer (Department of Botany, Faculty of Science, Damietta University, Egypt) according to Sudharsan et al.[22]. Determination of heavy metals (Cu, Co, Zn, Fe and Mn) in digested algal sample was made directly on each final solution using Perkin-Elmer 2380 atomic absorption spectrometry (Department of Chemistry, Faculty of Science, Damietta University, Egypt) as described by Sudharsan et al.[22]. The concentration of each element was determined with calibration curve and expressed in mg/g dry weight.

Element (mg/g dry weight) = C (mg/L) \times \frac{1}{1000} \times \frac{1}{Volume used} \times \frac{Total volume}{Dry weight}

where C (mg/L) is concentration of element obtained from the calibration curve.

2.7. Statistical analysis of results

All determinations were performed at least in triplicate. All data were expressed in terms of mean ± SD and analyzed for variance and the least significant difference (LSD) using One-way ANOVA (P < 0.05). SPSS version 18.0 for windows was used in this study.

3. Results

3.1. Collection of macroalgal materials

At Hurghada shores, Red Sea coast of Egypt, the quadrates results indicated that the total covering flora was about 28%, 25% and 20% of quadrat meter in September, October and November respectively. The macroalgal species recorded along the study area were Phaeophyta, 7 species as the main group [T. ornata, Cystoseira trinodis (C. trinodis), Cystoseira myrica (C. myrica), Sargassum muticum (S. muticum), Hormophysa cuneiformis (H. cuneiformis), Dictyota dichotoma (D. dichotoma) and Padina minor (P. minor)]; Rhodophyta, 4 species [Laurencia papillosa (L. papillosa), Digenea simplex (D. simplex), Junia rubens (J. rubens) and Corallina officinalis (C. officinalis)] and Chlorophyta, 2 species [Caulerpa racemosa (C. racemosa) and Halimeda tuna (H. tuna)] and seagrass [Halophila johnsonii (H. johnsonii)]. Abundance of T. ornata was 13.0%, 24.0% and 21.5% during September, October and November. Figures 3–5 summarize abundance of T. ornata and its associated seaweeds during September, October and November.
3.2. Physicochemical analysis of water

Table 1 shows that collected water has moderate temperature, slight alkaline pH and low turbidity. Dissolved oxygen and biochemical oxygen demand concentrations were relatively stable with a mean value of (12.600 ± 0.147) mg/L and (1.630 ± 0.010) mg/L respectively. The relative high concentrations of NO₃⁻, SO₄²⁻, NH₄⁺ and inorganic PO₄³⁻ at the study site were recorded during September of (0.070 ± 0.001) mg/L, (310.000 ± 2.510) mg/L, (0.800 ± 0.010) mg/L and (0.290 ± 0.010) mg/L respectively. K and Ca concentrations of water had relatively the same values but Na concentrations were recorded the highest values. Higher minerals content was found during September and lower during November. Concentrations of each heavy metal did not vary much during September, October and November for the study site, while significant variation was recorded with the type of heavy metal. The physicochemical analysis of water indicated that most parameters were significantly changed along the study period ($P < 0.05$).

Table 1

Physicochemical analysis of water during September, October and November.

Parameters	September	October	November
Temperature (°C)	27.00 ± 0.410	25.00 ± 0.620	24.00 ± 0.410
pH	7.80 ± 0.050	8.30 ± 0.060	8.40 ± 0.050
Turbidity (NTU)	13.90 ± 0.060	13.60 ± 0.050	13.50 ± 0.040
TA (meq/L)	2.90 ± 0.060	2.60 ± 0.050	2.30 ± 0.050
Salinity (g/L)	41.00 ± 0.040	40.40 ± 0.040	40.10 ± 0.050
DO (mg/L)	12.30 ± 0.150	12.60 ± 0.170	12.90 ± 0.120
PO₄³⁻ (mg/L)	0.070 ± 0.001	0.070 ± 0.001	0.050 ± 0.001
SO₄²⁻ (mg/L)	310.00 ± 2.510	280.00 ± 2.540	290.00 ± 2.330
NH₄⁺ (mg/L)	0.80 ± 0.010	0.70 ± 0.010	0.70 ± 0.010
PO₄³⁻ (mg/L)	0.290 ± 0.010	0.280 ± 0.010	0.270 ± 0.020
Total K (mg/L)	401.40 ± 3.900	392.20 ± 2.200	379.10 ± 3.100
Total Ca (mg/L)	423.00 ± 2.100	412.00 ± 2.500	399.00 ± 3.900
Total Na (mg/L)	12510.00 ± 4.300	12453.00 ± 5.030	122000.00 ± 5.100
Total CO₂ (mg/L)	1.12 ± 0.020	1.07 ± 0.030	1.03 ± 0.020
Total Zn (mg/L)	0.56 ± 0.003	0.51 ± 0.003	0.47 ± 0.004
Total Fe (mg/L)	0.55 ± 0.020	0.49 ± 0.020	0.46 ± 0.010
Total Mn (mg/L)	0.33 ± 0.005	0.29 ± 0.001	0.28 ± 0.005

TA: Total alkalinity; **DO:** Dissolved oxygen; **BOD:** Biochemical oxygen demand.

3.3. Qualitative and quantitative analyses of phytoplankton

A total of 23 species belong to 18 different algal genera identified at the study station during September, October and November. The phytoplankton community was quite diverse with Bacillariophyta (14 genera, 19 taxa) as the main algal group, followed by Chlorophyta (2 genera, 2 taxa), Cyanophyta (1 genus, 1 taxon) and Dinophyta (1 genus, 1 taxon). As shown in Table 2, the maximum numbers of taxa (104.2 × 10⁸) were recorded during October, while the minimum number of taxa (95.2 × 10⁸) was recorded during September.

Table 2

Qualitative and quantitative analyses of phytoplankton in collected water in September, October and November.

Phytoplankton	Number of cell/L × 10⁸		
September	**October**	**November**	
Bacillariophyta	2.0	2.0	2.4
Nitzschia spp	2.0	2.1	2.6
Nitzschia frustulum	-	1.9	2.5
Nitzschia limnetica	1.8	1.8	-
Fragilariopsis < 0.05	2.0	2.1	2.3
Tabellaria fenestrata	3.6	3.8	4.2
Fragilaria capucina	-	2.0	2.6
Tabellaria fenestrata	1.9	2.0	2.2
Chlorella variabilis	33.0	33.0	37.5
Chlorella sublineata	1.9	2.0	2.6
Chlorella sublineata	1.8	2.1	2.9
Cyanophyceae	2.0	1.8	2.5

Chlorophyll and carotenoid content have been presented in Table 4. Pigments analysis showed that content of chlorophyll a of *T. ornata* was higher than carotenoids. *T. ornata* contained a very small content of chlorophyll c. Content of chlorophyll a of *T. ornata* did not vary much during September, October and November with a mean value (0.0193 ± 0.0002) mg/g fresh weight. Chlorophyll c and carotenoids contents were varied along the three months. Chlorophyll c in *T. ornata* exhibited a range from (0.0009 ± 0.0001) to (0.0017 ± 0.0001) mg/g fresh weight, while carotenoids exhibited a range from (0.0120 ± 0.0006) to (0.0160 ± 0.0004) mg/g F. weight. The relative high content of *T. ornata* of chlorophyll c and carotenoids were recorded during September and November respectively.

Table 3

Biochemical analysis of *T. ornata* mg/g dry weight.

Parameters	Protein	Carbohydrate	Lipid	Na-alginate	Ca-alginate	Agar
September	33.20 ± 0.70	2.80 ± 0.10	2.50 ± 0.05	198.00 ± 2.50	306.00 ± 3.20	83.00 ± 1.50
October	35.40 ± 0.60	2.40 ± 0.10	2.80 ± 0.05	242.00 ± 5.04	370.00 ± 3.10	102.00 ± 1.20
November	37.70 ± 0.60	2.20 ± 0.20	3.10 ± 0.06	253.00 ± 2.80	391.00 ± 2.50	117.00 ± 2.50

Chlorophyll and carotenoid content have been presented in Table 4. Pigments analysis showed that content of chlorophyll a of *T. ornata* was higher than carotenoids. *T. ornata* contained a very small content of chlorophyll c. Content of chlorophyll a of *T. ornata* did not vary much during September, October and November with a mean value (0.0193 ± 0.0002) mg/g fresh weight. Chlorophyll c and carotenoids contents were varied along the three months. Chlorophyll c in *T. ornata* exhibited a range from (0.0009 ± 0.0001) to (0.0017 ± 0.0001) mg/g fresh weight, while carotenoids exhibited a range from (0.0120 ± 0.0006) to (0.0160 ± 0.0004) mg/g F. weight. The relative high content of *T. ornata* of chlorophyll c and carotenoids were recorded during September and November respectively.

Table 4

Pigments analysis of *T. ornata* mg/g fresh weight.

Pigments	Chlorophyll a	Chlorophyll c	Carotenoids
September	0.0190 ± 0.0001	0.0017 ± 0.0001	0.0120 ± 0.0006
October	0.0200 ± 0.0001	0.0011 ± 0.0001	0.0130 ± 0.0002
November	0.0190 ± 0.0003	0.0009 ± 0.0001	0.0160 ± 0.0004

The relative high contents of heavy metals (Cu, Co, Zn, Fe and Mn) and minerals (Na, Ca and K) in *T. ornata* were recorded during...
November, while the relative low contents were recorded during September (Table 5). Minerals in T. ornata were varied slightly between (24.11 ± 0.11) mg/g dry weight to (36.10 ± 0.16) mg/g dry weight for Ca and Na at the study site during September and November respectively. Na, Ca and K were varied significantly (LSD at 0.01 level) during study period. The contents of all heavy metals in T. ornata were higher than their contents in the surrounding water. Heavy metals content showed significant (LSD at 0.01 level) variation during September, October and November according to the type of heavy metal.

Elements	September	October	November
Na	28.91 ± 0.15	30.67 ± 0.11	36.10 ± 0.16
Ca	24.11 ± 0.11	27.16 ± 0.15	29.40 ± 0.15
K	32.44 ± 0.73	33.78 ± 0.64	35.20 ± 0.70
Cu	0.65 ± 0.01	0.71 ± 0.01	0.75 ± 0.01
Co	0.85 ± 0.01	0.88 ± 0.01	0.94 ± 0.01
Zn	0.64 ± 0.01	0.65 ± 0.01	0.69 ± 0.01
Fe	0.46 ± 0.01	0.47 ± 0.01	0.49 ± 0.01
Mn	0.51 ± 0.01	0.55 ± 0.01	0.58 ± 0.01

4. Discussion

In our study, the macroalgal community was quite diverse with Phaeophyta (7 species, 6 genera) as the main group, Rhodophyta (4 species, 4 genera), Chlorophyta (2 species, 2 genera) and sea grass (Halophila)[36]. Recorded 57 species of seaweeds (18 belong to Phaeophyta, 18 species belong to Chlorophyta and 21 species belong to Rhodophyta) inhabit in the Egyptian Red Sea coasts at Hurghada. The decrease of the total species number of seaweeds and variation of seaweeds composition in the same study area may be due to pollution, manual removal of seaweeds vegetation and the concrete structures which greatly changed the habitat of macroalgae[37]. T. ornata varied in its quantitative abundance. The highest growth of T. ornata was 19 kg fresh weight/m² (24%) during October followed by 17 kg fresh weight/m² (21.5%) during November and 10.3 kg fresh weight/m² (13%) during September. This agreed with Nazni and Renuga[38] who concluded that the highest growth of T. ornata was found in October on the semi-exposed shore in Thailand.

In our study, temperature of collected site was changed in a small range [from (24.00 ± 0.41) to (27.00 ±0.41) °C] during study period. Temperature affects the growth stages of macroalgae[39]. Dissolved oxygen in water affects the oxidation-reduction state of nutrients and diversity of aquatic biota[17]. The physicochemical analysis of studied water indicated that all parameters were more or less stable and relative suitable for algal growth. This may be due to the relative stability of ecological parameters of Red Sea during study period. The relative decrease of temperature, total alkalinity, salinity from September to November were parallel with Egyptian climate where water evaporation decreased and ran off beginning during October and increased during November[4]. Low degrees of turbidity, high dissolved oxygen and low biochemical oxygen demand may be due to low water pollution and low wave action at the study area. Unpolluted natural water contain only minute amount of NO₃[19]. Low content of PO₄³–, NO₃ and NH₄⁺ in studied water indicated the oligo-mesotrophic status of water.

The relative high protein ([37.70 ± 0.60] mg/g dry weight) and lipids ([3.10 ± 0.06] mg/g dry weight) in T. ornata were recorded during mature stage of alga in November, while the relative high soluble carbohydrate ([2.80 ± 0.10] mg/g dry weight) was recorded during the high growth rate of alga in September. The relative low content of protein, lipids and carbohydrate in T. ornata may be due to the relative low trophic (oligo-mesotrophic) status of the Red Sea water. Natural products such as Na-alginate, Ca-alginate and agar contents in T. ornata were lower than that obtained by Chee et al.[40] in T. ornata of Port Dickson, Peninsular Malaysia. This was due to difference in wave action and possibly other environmental parameters that can affect algal growth. The results were in agreement with Chee et al.[40] that the Ca-alginate method gave higher percentage yield of alginic acid than the Na-alginate method.

Chlorophyll a content of T. ornata was relatively stable during study period. The decrease of chlorophyll e content in T. ornata was alternate with the increase of carotenoids content gradually from September, October and November. This may be due to the pigment content was influenced by environmental parameters. This was in parallel with increasing the maturation state of T. ornata[38]. Minerals analysis of T. ornata showed that higher contents of Na, K and Ca were recorded during November. Ca was higher than that recorded by Zabia et al.[41]. This high concentration of Ca may be due to the geographic changes of sediment and shores.

The results showed that heavy metals contents in T. ornata were higher during November than their contents during October and September. This may be due to the long-term variations of heavy metals level in the marine environment. Metal content in macroalgae depends on various biological (e.g. species phylogeny, thalus morphology, growth strategy, generation) and environmental factors (e.g. concentration and availability of elements in water, interactions between chemical elements, temperature, season, salinity, pH, light intensity, area geology)[42]. Heavy metals contents in surrounding water were relatively decreased from September to November, which was mainly due to relative decrease of temperature, salinity and other environmental factors. The environmental status of an area, temperature, pH, the level of salinity, the waves of the sea, sun light and season changes, all affect the level of heavy metals concentration. The considerable high heavy metals content in T. ornata than that found in sea water may be due to algal accumulation of heavy metals. This may be attributed to the presence of charged polysaccharides and alganic acid in the cell walls of brown seaweeds[43].

Thus results of the present study concluded that physicochemical analyses of the studied water at Hurghada (Red Sea coast) were varied slightly during the three months. This indicated that water were oligo- or mesotrophic. Biochemical analysis of T. ornata showed its content of vital components (protein, carbohydrates, lipids, minerals and metals) and economic components (algamates and agar). T. ornata can be regarded as an under-exploited source of health benefit molecules for food processing and nutraceutical industry.

Conflict of interest statement

We declare that we have no conflict of interest.

Acknowledgments

The authors would like to express their deep thanks and gratitude to all participants in this study for their valuable advice, guidance and unlimited support throughout the whole work. This study was supported by a grant from the Department of Botany, Damietta University, and Damietta, Egypt as a part of MSc programme (Grant No. 110/2012).

References

[1] Poore AG, Graba-Landry A, Favret M, Sheppard Brennand H, Byrne M, Dworjanyn S. Direct and indirect effects of ocean acidification and
warming on a marine plant-herbivore interaction. Oecologia 2013; 173: 1113-24.
[2] Jung KA, Lim SR, Kim Y, Park JM. Potentials of macroalgae as feedstocks for biorefinery. Bioresour Technol 2013; 135: 182-90.
[3] Chennubhotla VSK, Rao MU, Rao KS. Commercial importance of marine macro algae. Seaweed Res Util 2013; 35(2): 118-28.
[4] Jeeva S, Antonisamy JM, Domettila C, Anantham B, Mahesh M. Preliminary phytochemical studies on some selected seaweeds from Gulf of Mannar, India. Asian Pac J Trop Biomed 2012; 2(Suppl 1): S30-9.
[5] Polat S, Ozogul Y. Seasonal proximate and fatty acid variations of some seaweeds from the northeastern Mediterranean coast. Oceanologia 2013; 55: 375-91.
[6] Dhargalkar VK. Uses of seaweeds in the Indian diet for sustenance and well-being. Sci Cult 2014; 80: 192-202.
[7] Gouda EA. Obstacles to sustainable tourism development on the Red Sea Coast. Int J Innov Educ Res 2015; 3: 165-76.
[8] Guiy MD, Guiry GM. AlgaeBase. Galway: World-wide electronic publication; 2015. [Online] Available from: http://www.algaebase.org/search/species/detail/?species_id=W2e71be855867c31e [Accessed on 21st December, 2015]
[9] Liu F, Pang S. Mitochondrial genome of Sargassum vulgare (Phaeophyceae): comparative mitogenomics of brown algae. Curr Genet 2015; 61: 621-31.
[10] Viswanathan S, Nallamuthu T. Extraction of sodium alginate from selected seaweeds and their physiochemical and biochemical properties. Int J Innov Res Sci Eng Technol 2014; 3: 10998-1003.
[11] Kadam SU, Tiwari BK, O’Donnell CP. Extraction, structure and biofunctional activities of laminarin from brown algae. Int J Food Sci Technol 2015; 50: 24-31.
[12] Subramanian V, Ganapathy K, Dakshinamoorthy B. FT-IR, 1H-NMR and 13C-NMR spectroscopy of alginate extracted from Turbinaria decurrens (Phaeophyta). World J Pharm Sci Pharm Res 2015; 4: 761-71.
[13] Pawar SN, Edgar KJ. Alginate derivatization: a review of chemistry, properties and applications. Biomaterials 2012; 33: 3729-305.
[14] Londo G. The decimal scale for releves of permanent quadrates. In: Knapp R, editor. Sampling methods and taxon analysis in vegetation science. Hague: Handbook of Vegetation Science; 1984, p. 45-9.
[15] De Clerck O, Guiy MD, Lelaiet F, Samyn Y, Verbruggen H. Algal taxonomy: a road to nowhere? J Phycol 2013; 49: 215-25.
[16] De Széchy MTM, Guedes PM, Baeta-Neves MH, Oliveira EN. Verification of Sargassum natans (Linnaeus) Gaillon (Heterokontophyta: Phaeophyceae) from the Sargasso Sea off the coast of Brazil, Western Atlantic Ocean. Check List 2012; 8: 638-41.
[17] Manivasakam N. Industrial effluents origin, characteristics, effects analysis and treatment. Coimbatore: Sakthi Publications; 1997.
[18] American Public Health Association. Standard methods for the examination of water and wastewater. Washington DC: American Public Health Association; 1992, p. 18.
[19] Trivedy RK, Goyal PK. Practical methods in ecology and environmental science. Karad: Environmental Publications; 1987.
[20] Sunil Kumar M, Shailaja R. Water studies: methods for monitoring water quality. Bangalore: Center for Environmental Education; 1998.
[21] Hughes DE, Wimpenny JWT, Lloyd D. The disintegration of micro-organisms. In: Norris JR, Ribbons DW, editors. Methods in microbiology. Vol 5B. London: Academic Press Inc; 1971, p. 4.
[22] Sudharsan S, Seedi V, Ramsamy P, Subhapradha N, Vairamani S, Shanmugam A. Heavy metal accumulation in seaweeds and sea grasses along southeast coast of India. J Chem Pharm Res 2012; 4: 4240-4.
[23] Main C, Doll C, Bianco C, Greenfield DL, Coyne KJ. Effects of growth phase, diel cycle and macronutrient stress on the quantification of Heterosigma akashiwo using qPCR and SHA. Harmful Algae 2014; 37: 92-9.
[24] Botes L. Phytoplankton identification catalogue: Saldanha Bay, South Africa. April 2001. London: IMO, Global Ballast Management Programme; 2003.
[25] El-Din SMB, Hamed AHS, Ibrahim AN, Shatta AKM, Abo-Sededa SA. Phytoplankton in irrigation and draining water canals of East Nile Delta of Egypt. Global J Biol Agric Health Sci 2015; 2: 56-60.
[26] Bradford MM. A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 1976; 72: 248-54.
[27] Hedge JE, Hofreiter BT. Carbohydrate chemistry. 17th ed. New York: Academic Press; 1962.
[28] Van Wychen S, Ramirez K, Laurens LML. Determination of total lipids as fatty acid methyl esters (FAME) by in situ transesterification. Golden: National Renewable Energy Laboratory; 2015, p. 5. [Online] Available from: www.nrel.gov/docs/fy16osti/60958.pdf [Accessed on 21st December, 2015]
[29] Sari-Chmayssem N, Taha S, Mawlawi H, Guégnan JP, Jeffri J, Benvegna T. Extracted and depolymerized alginites from brown algae Sargassum vulgare of Lebanese origin: chemical, rheological, and antioxidant properties. J Appl Physiol 2015; doi: 10.107710811-015-0676-4.
[30] Davies CJ. Marine botany. New York: John Wiley and Sons Inc; 1981.
[31] Roberts DA, Paul NA, Dworjany SA, Hu Y, Bird MI, de Nys R. Gracilaria waste biomass (samphu rumpat laut) as a bioresource for selenium biosorption. J Appl Physiol 2015; 27: 611-20.
[32] Kumar P, Ramakritinan CM, Kumargaru AK. Solvent extraction and spectrophotometric determination of pigments of some algal species from the shore of puthumadam, Southeast Coast of India. Int J Oceans Oceanogr 2010; 4: 29-34.
[33] Lichtenhalter HK, Buschmann C. Chlorophylls and carotenoids: measurement and characterization by UV-vis spectroscopy. In: Wrolstad RE, Acee TE, Decker EA, Penner MH, Reid DS, Schwartz SJ, et al., editors. Current protocols in food analytical chemistry. New York: John Wiley and Sons; 2001, p. 1-8.
[34] Jeffrey SW, Humphrey GF. New spectrophotometric equations for determining chlorophyll a, b, c1 and c2 in higher plants, algae and natural phytoplankton. Biochemie und Physiologie der Pflanzen 1975; 167: 191-4.
[35] Awleda I, Ahmed AY, Smida FA, Elwaahishi SS, Fahej MAS. Determination of heavy metals, Mn, Fe, Co, Cu, Zn, Cd and Pb in Sargassum vulgare and Pterocladiella capillacea Marine Algae in Libyan Coast of Al-Khoms. Int J Adv Res 2015; 3: 384-9.
[36] Negm SNM. Ecological, biological and phytochemical studies on some marine algae from the Red Sea coast of Egypt [dissertation]. Cairo: Cairo University; 1988.
[37] Abouhend AS, El-Moselhy KM. Spatial and seasonal variations of heavy metals in water and sediments at the Northern Red Sea coast. Am J Water Resour 2015; 5: 39-42.
[38] Nazni P, Renuga. Nutrient composition of the selected brown seaweeds from Mandapam Coastal Regions; Southeast Coast of India. Int J Agric Food Sci 2015; 2: 38-42.
[39] Zou DH, Gao KS. The photosynthetic and respiratory responses to temperature and nitrogen supply in the marine green macroalga Ulva conglobata (Chlorophyta). Phycologia 2014; 53: 86-94.
[40] Chee SY, Wong PK, Wong CL. Extraction and characterisation of alginate from brown seaweeds (Fucales, Phaeophyceae) collected from Port Dickson, Peninsular Malaysia. J Appl Physiol 2011; 23: 191-6.
[41] Zubia M, Payri CP, Deslandes E, Guzeznec J. Chemical composition of attached and drift specimens of Sargassum mangarevense and Turbinaria ornata (Phaeophyta: Fucales) from Tahiti, French Polynesia. Bot Mar 2014; 6: 562-71.
[42] Wasi S, Tahrez S, Ahmad M. Toxicological effects of major environmental pollutants: an overview. Environ Monit Assess 2013; 185: 2585-93.
[43] Murugaiyan K, Narasimman S. Elemental composition of Sargassum longifolium and Turbinaria conoides from Pamban Coast, Tamilnadu. Int J Res Biol Sci 2012; 2: 137-40.