Genesis of Olfactory Receptor Neurons In Vitro: Regulation of Progenitor Cell Divisions by Fibroblast Growth Factors

Melinda K. DeHamer,* Jose L. Cuevara,* Kevin Hannon,† Bradley B. Olwin,† and Anne L. Calof*
*Department of Biological Sciences
University of Iowa
Iowa City, Iowa 52242
†Department of Biochemistry
Purdue University
West Lafayette, Indiana 47907

Summary

Olfactory receptor neurons are produced continuously in mammalian olfactory epithelium in vivo, but in explant cultures neurogenesis ceases abruptly. We show that in vitro neurogenesis is prolonged by fibroblast growth factors (FGFs), which act in two ways. FGFs increase the likelihood that immediate neuronal precursors (INPs) divide twice, rather than once, before generating neurons; this action requires exposure of INPs to FGFs by early G1. FGFs also cause a distinct subpopulation of explants to generate large numbers of neurons continually for at least several days. The data suggest that FGFs delay differentiation of a committed neuronal transit amplifying cell (the INP) and support proliferation or survival of a rare cell, possibly a stem cell, that acts as a progenitor to INPs.

Introduction

The mammalian olfactory epithelium (OE) is uniquely suited to studies of how neurogenesis is controlled. In the OE, proliferation of neuronal precursor cells and differentiation of their progeny into olfactory receptor neurons (ORNs) begin during embryogenesis and continue throughout life (Graziadei and Monti Graziadei, 1978). Even in adults, these processes appear to be regulated, since in vivo manipulations that lead to death of ORNs result in increased mitotic activity of neuronal precursors (Monti Graziadei and Graziadei, 1979; Schwartz Levey et al., 1991). Indirect evidence became ORNs, and new INPs did not appear (Calof and Chikaraishi, 1989). Since these studies were carried out in defined, serum-free medium, it seemed that it might be possible to restore continual neurogenesis (as occurs in OE in vivo) by addition of appropriate polypeptide growth factors. Several classes of growth factors and their receptors are highly expressed in or near the early nervous system and are suspected of regulating proliferation and/or differentiation of neuronal precursors (e.g., Klein et al., 1989; Heuer et al., 1990; Maisonnepierre et al., 1990; Reid et al., 1990; Yeh et al., 1991; Schecterson and Bothwell, 1992). Indeed, in vitro studies indicate that polypeptide growth factors and as yet uncharacterized factors affect both the process of neurogenesis and the fates of neural precursor cells (e.g., Gao et al., 1991; Temple and Davis, 1994; Shah et al., 1994).

This manuscript deals with mechanisms by which a major class of polypeptide growth factors, fibroblast growth factors (FGFs), regulates production of ORNs in culture. Several members of the FGF family (FGF1, FGF2, FGF4, and FGF7) were found to prolong significantly the proliferation of ORN progenitor cells, whereas growth factors from several other families did not. Moreover, expression of tyrosine kinase FGF receptors (FGFRs) FGFR1 and FGFR2 was detected in a purified cell fraction consisting solely of INPs and ORNs. Analysis of FGF action indicates that FGFs affect olfactory neurogenesis in at least two ways: first, FGFs enable INPs to undergo two rounds, rather than one round, of division before differentiating into ORNs, and second, FGFs appear to permit progenitor cells that are present in only a small fraction of OE explants to proliferate for several more days before generating ORNs. The first effect of FGFs suggests that the bulk of INPs in OE cultures are transit amplifying cells, i.e., cells committed to both a limited number of divisions and a specific (neuronal) fate. The second effect of FGFs suggests the possible existence of neuronal stem cells in some, but not all, OE explants.

Results

FGFs Promote Late-Occurring Proliferation in OE Explant Cultures

To identify polypeptide growth factors that could prolong OE neurogenesis in vitro, a two-step approach was taken: first, to identify growth factors that in-
creased "late" proliferation among cells likely to be neuronal precursors, and second, to show that late-proliferating cells indeed give rise to ORNs. For the first step, OE explants were cultured in serum-free medium supplemented with 1 of several growth factors for 24 hr (a time by which, in the absence of added growth factors, neuronal precursor proliferation has largely ceased [Calof and Chikaraishi, 1989]). The growth factor was then replenished, and a low level (0.1 μCi/ml) of 3H-thymidine (3H-TdR) was added. After a further 24 hr, cultures were fixed and processed for autoradiography.

Growth factors that were tested represented several families known to affect proliferation of glial and neuronal progenitors, e.g., platelet-derived growth factors, neurotrophins, FGFs, and ciliary neurotrophic factor (CNTF; see Discussion). In addition, some factors known to affect epithelial or neuroepithelial proliferation and differentiation, or previously observed by us to affect proliferation of cells in OE cultures (e.g., epidermal growth factor [EGF] and transforming growth factor β [TGFβs]), were also tested (Calof and Chikaraishi, 1989; Calof et al., 1991; Anchan et al., 1991; Mahanthappa and Schwarting, 1993). An example is shown in Figures 1A–1D. Substantially more 3H-TdR' cells are observed in and around a typical explant grown in FGF2 (A and B) than in and around a comparable explant grown without any added growth factor (C and D). Interestingly, in cultures grown in FGF2, 3H-TdR-incorporating migratory cells often appear in patches of 4 or more labeled cells (B).

Growth factor effects on neuronal precursor proliferation were quantified by examining only the migratory cells in OE explant cultures, i.e., cells that leave the body of the explant and disperse onto the culture substratum. Previous data show that virtually all cells in the migratory fraction are either neurons (ORNs) or neuronal precursors (INPs), whereas the explants themselves also contain other proliferating cell types, primarily keratin+ basal cells (Calof and Chikaraishi,
FGFs Regulate Olfactory Neuron Progenitors

Condition	A. \(^3 \)H-TdR Labeling Index (mean ± SEM)	B. \(^3 \)H-TdR\(^+\) Cells per 30,000 \(\mu m^2 \) Explant (mean ± SEM)	C. Migratory Cells per 30,000 \(\mu m^2 \) Explant (mean ± SEM)	D. Corona Area/Explant Area (mean ± SEM)	E. Labeling Index of Dissociated INPs + ORNs (mean ± SEM)
FGF2 10 ng/ml	11.13% (n = 4680) PF = 3.14	63.91 ± 18.21	560 ± 62	5.22 ± 0.51	3.05 ± 0.19%
No growth factor	3.54% (n = 4977) PF = 3.36	19.59 ± 3.93	505 ± 49	5.59 ± 0.62	0.44 ± 0.27%
NGF 50 ng/ml	2.17% (n = 4640) PF = 0.90	14.52 ± 2.80	467 ± 38	4.91 ± 0.25	ND

(A-D) Explants were analyzed from growth factor screening assays illustrated in Figure 1. (A) Percentage of total migratory cells incorporating \(^3 \)H-TdR, n, number of cells counted; PF, proliferation factor, the experimental labeling index divided by labeling index in no growth factor. (B) \(^3 \)H-TdR labeling index normalized to explant area, calculated as described in Figure 1E. The unit of area used in normalizing the data was 30,000 \(\mu m^2 \), the approximate mean explant area in all conditions. Thus, (B) reflects the number of migratory \(^3 \)H-TdR\(^+\) cells surrounding an average-sized explant. (C) Total number of migratory cells per explant (normalized to average explant area). (D) Ratio of area covered by an explant's migratory cells to area of the explant itself. Labeling index normalized to explant area in FGF2 (B) was significantly different (p < .05) from negative control; labeling index in NGF was not (ANOVA and Dunnett's tests for multiple comparisons against a single control; Glantz, 1992). Neither FGF2 nor NGF showed a significant difference from negative control in the ratios of migratory cells to explant area (C) or area of migration to explant area (D). The apparent paradox that FGF2, a factor which promotes proliferation of migratory cells, does not increase significantly the average total number of migratory cells per explant (C) is in part accounted for by the fact that proliferating INPs constitute only 25%-30% of migratory cells (the rest are postmitotic ORNs; Calof and Lander, 1991). In addition, as later data demonstrate (Figure 5), the observed effect of FGF2 on explant labeling indices requires increased proliferation of only 12%-30% of INPs. Thus, the expected maximum increase in total number of migratory cells in FGF2 is only about 9%. The data in fact show such an increase (C), but the increase was not statistically significant.

(b) \(BrdU \) labeling index of the dissociated neuronal fraction, cultured for 48 hr, with \(BrdU \) present from 24 to 48 hr in culture. The percentage of \(BrdU \)\(^+\) cells was calculated for ten fields in each of triplicate cultures; over 9000 total cells were counted for each condition.

1989; Calof and Lander, 1991). Limiting analysis to migratory cells was also considered justified because available data do not suggest that substantial differences exist between INPs and ORNs that do not migrate (some remain on top of or associated with the edges of explants) and those that do. For example, all or most ORNs and INPs seem to have the ability to migrate. And the proportion of ORNs to INPs is about the same in the migratory cells as in OE cultures as a whole (Calof and Chikaraishi, 1989; Calof and Lander, 1991). Additionally, the dispersal of migratory cells enables their numbers to be counted and their phenotypes to be assessed accurately.

Indices of \(^3 \)H-TdR labeling for migratory cells (also referred to below as “neuronal cells” or “neuronal cell fraction”) initially were calculated as follows: for each explant, the number of \(^3 \)H-TdR\(^+\) cells surrounding it was normalized to explant area (to control for variation in explant size), and data from many explants were averaged to yield a mean explant labeling index. The ratio of the mean explant labeling index for a given growth factor to the mean explant labeling index observed for parallel cultures grown in the absence of added growth factor was then calculated.

This ratio (proliferation factor) depicts the fold increase in \(^3 \)H-TdR labeling caused by the growth factor tested. Thus, a proliferation factor of 1 indicates that a growth factor had no detectable effect. Figure 1E summarizes these results for 14 different growth factors tested. All 4 tested members of the FGF family consistently produced 2- to 4-fold increases in labeling indices that were statistically significant (see legend). In contrast, no other tested growth factor had a significant effect. Because FGF2 showed the greatest effect, this factor was used in subsequent experiments to explore the mechanism of action of members of the FGF family. A dose-response analysis of FGF2's effect on the labeling index (Figure 1F) showed a peak response at 1 ng/ml and EC50 of ~0.1 ng/ml (~6 pM), on the order of what has been observed in other systems (e.g., Olwin and Haushka, 1986). To prove definitively that the effects of FGF2 reflect a real increase in late-occurring proliferation, it was necessary to rule out cell-migratory artifacts. For example, exclusion of nonmigratory cells from the analysis, or normalization of explant labeling indices to explant area, could have biased the data if FGF2 had substantial effects on cell migration or explant spreading (which influences explant area). To address these issues, cultures grown in FGF2 were compared with two types of negative control cultures: no added growth factor and nerve growth factor (NGF). In Table 1, column A shows the true labeling indices for migratory cells, i.e., the fraction of total migratory cells that was \(^3 \)H-TdR\(^+\), in each condition; column B contains labeling indices normalized to explant area, as in Figure 1E. The fold increase in proliferation (proliferation factor) observed in FGF2 was essentially identical regardless of which method of analysis was used (3.14 versus 3.26). Thus, FGF2's effects on proliferation are independent of explant area, and explant labeling indices apparently provide a reasonable measure of proliferation. Column C shows that FGF2 does not alter significantly the number of cells that migrate from each explant or the area covered by migratory cells surrounding each explant.
FGFRs Are Expressed by Neuronal Cells of the OE

Most effects of FGFs are thought to be mediated through FGFRs. To confirm that such receptors are expressed in OE and to identify which ones are present, reverse transcriptase-polymerase chain reaction (RT-PCR) analysis was performed using primers specific for the transmembrane domains of FGFR1, FGFR2, FGFR3, and FGFR4 (Figure 2). When RT-PCR was performed using RNA prepared from either purified OE (Figure 2A) or isolated INPs plus ORNs (Figure 2B), amplification products of the expected size (~450 bp) were obtained with primer sets specific for FGFR1 and FGFR2. Identity of these amplification products with appropriate regions of the FGFR1 and FGFR2 cDNAs (Lee et al., 1989; Dell and Williams, 1992) was confirmed by sequencing. In contrast, we failed to amplify transcripts for FGFR3 and FGFR4 from OE RNA or RNA from the isolated neuronal cell fraction, despite the ability of the primers to amplify correctly sized products from E11 mouse head RNA (data not shown). We conclude that transcripts for FGFR3 and FGFR4 either are not present in embryonic mouse OE or are below the limits of detection.

Expression of FGFR1 and FGFR2 by neuronal cells of the OE is consistent with the observed proliferative effects of FGFs on these cells. Although the PCR primers used in these experiments do not allow us to distinguish among splice variants of FGFR1 and FGFR2 (Givol and Yayon, 1992), all 4 FGFs (FGFR1, FGFR2, FGFR3, and FGFR4) expressed in OE and to identify which ones are present, reverse transcriptase-polymerase chain reaction (RT-PCR) analysis was performed using primers specific for the transmembrane domains of FGFR1, FGFR2, FGFR3, and FGFR4 (Figure 2). When RT-PCR was performed using RNA prepared from either purified OE (Figure 2A) or isolated INPs plus ORNs (Figure 2B), amplification products of the expected size (~450 bp) were obtained with primer sets specific for FGFR1 and FGFR2. Identity of these amplification products with appropriate regions of the FGFR1 and FGFR2 cDNAs (Lee et al., 1989; Dell and Williams, 1992) was confirmed by sequencing. In contrast, we failed to amplify transcripts for FGFR3 and FGFR4 from OE RNA or RNA from the isolated neuronal cell fraction, despite the ability of the primers to amplify correctly sized products from E11 mouse head RNA (data not shown). We conclude that transcripts for FGFR3 and FGFR4 either are not present in embryonic mouse OE or are below the limits of detection.

Expression of FGFR1 and FGFR2 by neuronal cells of the OE is consistent with the observed proliferative effects of FGFs on these cells. Although the PCR primers used in these experiments do not allow us to distinguish among splice variants of FGFR1 and FGFR2 (Givol and Yayon, 1992), all 4 FGFs (FGFR1, FGFR2, FGFR3, and FGFR4) tested in this study have been shown to bind with high affinity to at least 1 variant of FGFR1 or FGFR2 (Dionne et al., 1990; Mansukhani et al., 1990; Rubin et al., 1989).

FGF Stimulates ORN Precursors to Undergo Multiple Divisions before Giving Rise to Neurons

The simplest explanation for the direct effect of FGFs on late proliferation by neuronal cells in OE cultures is that these growth factors act as mitogens. For example, FGFs might cause some cells that had previously been "resting" to enter the cell cycle. Alternatively, FGFs might cause cycling cells to proliferate faster, by decreasing the length of the cell cycle. Both types of mitogenic effect would be expected to cause an
increase in labeling index in an experiment in which cells are exposed for 2 hr to 3H-TdR and then fixed. This experiment was performed on OE explant cultures in FGF2 or no growth factor for various times (up to 12 hr). The results (Table 2) revealed no significant effect of FGF2 on labeling index.

These data provided an early hint that the effect of FGFs might not be on the entry of cells into the cell cycle, nor on cell cycle kinetics, but rather on the number of cycles that cells undergo before terminally differentiating. A stronger indication that this is the case came from analysis of a pulse-chase study designed to follow the fate of proliferating cells in OE cultures in the presence or absence of FGF2.

In this experiment (Figure 3), OE explant cultures—grown in no growth factor, FGF2, or a control growth factor (EGF)—were pulsed with 3H-TdR from 8 to 10 hr in vitro and chased with unlabeled TdR to various time points. The cultures were fixed and analyzed for immunoreactivity to N-CAM (a neuron-specific marker in the OE) in 3H-TdR-labeled cells. As shown in a previous study (Calof and Chikaraishi, 1989), the migratory cells that incorporate 3H-TdR are initially all N-CAM$^\text{+}$.

In the present study, this was found to be true regardless of the presence or absence of growth factors (Figure 3). By 50 hr in culture, more than 90% of 3H-TdR$^\text{+}$ cells in all conditions acquired N-CAM immunoreactivity. Thus, the great majority of proliferating, N-CAM$^\text{+}$ migratory cells gave rise to N-CAM$^\text{+}$ ORNs. The fact that virtually all did so in the presence as well as the absence of FGF2 implies that FGF2 did not divert INPs from the neuronal fate to which they appear to be committed.

Interestingly, however, Figure 3 reveals a marked effect of FGF2 on the rate at which neuronal fate was attained. Compared with untreated or EGF-treated cultures, FGF2-treated cultures showed a distinct lag in N-CAM acquisition by 3H-TdR-labeled cells: at 30 hr in culture, only half as many such cells had begun to express N-CAM in the presence of FGF2 as in control cultures. This apparent delay in neuronal differentiation could be explained most easily if the primary effect of FGF2 were to cause some neuronal precursors (INPs) to undergo additional divisions before terminally differentiating. This effect would also explain why FGFs increase the number of cells that proliferate at late times in culture (Figure 1), without significantly altering the pulse-labeling index at early times in culture (Table 2).

To test this hypothesis, an experiment was performed to detect and quantitate ORNs that were generated as a result of two successive rounds of cell division in culture. This was done (Figure 4) by sequentially labeling OE explant cultures with two S-phase markers, BrdU and 3H-TdR, administered far enough apart in time (>12 hr) that any double-labeled neuron would have had to be the progeny of a cell that passed through two successive S phases in culture. (That 12 hr was a sufficiently long interval is demonstrated in the experiment described in Figure 5, below.) The results, shown in Figure 4, indicate that FGF2 causes a large and significant increase in the number of ORNs generated by two, rather than one, precursor cell divisions. In (A)-(C), examples are shown of cultures grown in FGF2, in which at least 3 N-CAM$^\text{+}$ ORNs have incorporated both BrdU and 3H-TdR in their nuclei (arrows). Figure 4D shows that the incidence of N-CAM$^\text{+}$, BrdU-labeled neurons also labeled by 3H-TdR is 4- to 5-fold greater in FGF2-treated cultures than in controls. Notably, this increase is similar in magnitude to the 3- to 5-fold effect of FGF2 on overall "late" proliferation that was observed in Figure 1E.

To characterize the time course of the second round of precursor division that occurs in FGF, cultures grown in FGF2 were given an early, brief pulse of BrdU (4-6 hr in culture). The BrdU pulse was either overlapped with a 2 hr pulse of 3H-TdR or followed by a 2 hr 3H-TdR pulse at a later time. The results are shown in Figure 5A. Initially, when the pulses of BrdU and 3H-TdR overlap, virtually 100% of the BrdU$^\text{+}$ cells are double-labeled, as expected for a cohort of cells labeled simultaneously with two different S-phase markers. The percentage of double-labeled cells drops rapidly as the BrdU-labeled cells exit S phase and progress through G2, M, and G1 and then increases again to a second peak (~17 hr later, as some cells progress into a second S phase and again become able to incorporate 3H-TdR. In this experiment, ~12% of INPs that could be labeled in a first S phase also underwent a second round of division in FGF.

These data allow an estimation of the INP cell cycle to be made and fit well with a model predicting a total cell cycle length of ~17 hr, with an S phase of ~8

![Figure 3. FGF2 Causes a Delay in Acquisition of N-CAM Immunoreactivity by Olfactory Neuron Precursors](image-url)

Explant cultures were grown continuously in FGF2 (10 ng/ml), EGF (50 ng/ml), or no added growth factors. After 8 hr, cultures were pulsed with 3H-TdR (3 μCi/ml) for 2 hr, then either fixed or re-fed with medium containing 50 μM unlabeled TdR ("chase"). At 10 hr intervals, cultures were fixed and processed for N-CAM immunocytochemistry and autoradiography. Cultures were analyzed at 6300x magnification using phase, epifluorescence, and bright field optics. At least 200 SH-TdR$^\text{+}$ cells in a minimum of ten fields were scored in each culture. Data points are mean ± range from duplicate cultures.

![Figure 4. Results of S-phase marker experiments.](image-url)

These data allow an estimation of the INP cell cycle to be made and fit well with a model predicting a total cell cycle length of ~17 hr, with an S phase of ~8

![Figure 5. Hours in Culture](image-url)

These data allow an estimation of the INP cell cycle to be made and fit well with a model predicting a total cell cycle length of ~17 hr, with an S phase of ~8
Figure 4. FGF2 Promotes Multiple Divisions of Olfactory Neuron Precursors
OE explant cultures were labeled sequentially with BrdU and 3H-TdR to detect successive cellular divisions.

(A-C) Cultures were grown continuously in FGF2 (10 ng/ml) and incubated with BrdU (1:10,000) for 6 hr, followed by 15 hr in unlabeled TdR (50 μM). A second 6 hr pulse of 3H TdR (1 μCi/ml) was then administered, followed by 13 hr in unlabeled TdR (50 μM). Cells were then fixed (total time in culture, 41 hr) and processed for autoradiography and BrdU and N-CAM immunocytochemistry. Arrows indicate 3 cells that were labeled with BrdU, 3H-TdR, and N-CAM. The presence of all three markers indicates that these ORNs are the progeny of precursors that went through two rounds of division before undergoing neuronal differentiation. (A) Rhodamine optics showing BrdU immunoreactivity. (B) Phase-contrast optics showing silver grains over cells that incorporated 3H-TdR. (C) Fluorescein optics showing N-CAM immunoreactivity.

(D) Cultures grown in FGF2 (10 ng/ml) or no growth factor were incubated for 12 hr in BrdU (1:10,000), followed by 12 hr in unlabeled TdR (50 μM), then 24 hr in 3H-TdR (0.1 μCi/ml). At t = 48 hr, cultures were fixed and processed for autoradiography and BrdU and N-CAM immunocytochemistry. A minimum of 100 BrdU+/N-CAM+ cells were counted at 6300× magnification in each culture. Bars represent mean ± SEM.

hr (Figure 5A, inset). Assuming these estimates to be correct, then the interval between successive S phases for cycling INPs should be ~ 9 hr. Thus, the 12 hr gap between BrdU and 3H-TdR pulses in Figure 4D was sufficient to ensure that separate, successive 5 phases were labeled.

To Exert Its Effects, FGF Must Be Present by a Particular Stage in the Precursor Cell Cycle
The information obtained in Figure 5A was used to determine when in the INP cell cycle FGF must be present to exert its effects. In these experiments, a number of identical OE cultures were pulsed with BrdU and then, 15 hr later, with 3H-TdR, to allow precursor cells undergoing two rounds of division to be detected. FGF2 was applied to different cultures at later and later times, and all cultures were fixed at the end of the 3H-TdR pulse (2 days in culture total).

The results (Figure 5B) demonstrate a 3-fold increase in the number of cells that were the products of two divisions when FGF2 was continuously present versus cultures in which it was never present. The dependence of this effect on time of FGF2 addition suggests that the majority of precursors lose the ability to respond to FGF at a specific time after they exit the first (BrdU-labeled) S phase. Alignment of this curve with the information on the INP cell cycle obtained from Figure 5A suggests that this commitment not to divide again (estimated as the half-maximal point on the curve) occurs slightly more than halfway through the window between the end of the first S phase and the beginning of the second S phase. If we assume
Figure 5. Analysis of FGF2 Effects on Cell Cycle Progression by Olfactory Neuron Precursors.
(A and B) A minimum of 200 BrdU+ cells in ten fields were counted in each culture. Data points represent the mean ± range of two cultures.
(A) Explant cultures were grown in FGF2 (10 ng/ml) and pulsed from t = 4 to 6 hr with BrdU (1:5000), then either fixed or chased with unlabeled TdR. At the indicated times, cultures were pulsed for 2 hr with 'H-TdR (5 μCi/ml) and fixed. Times on the abscissa represent the interval between the ends of the BrdU and 'H-TdR pulses. (Inset) The data from (A) are compared with a predicted curve based on a model of cell cycle phase lengths, the parameters of which were adjusted to provide a close fit to the experimental data (for model derivation, see Experimental Procedures). Predicted values are S = 8 hr, G2 + M = 3.5 hr, total cell cycle length = 17 hr, and 12% of precursors divide twice. The predicted curve is defined by a quotient, the numerator of which is the sum of two components: the first has a value of (Lc - t)/Lc for t ≤ Lc and 0 for t > Lc; the second has the value 0 for t < Lc - Ls; 2(Lc - Ls) + (t - Lc) for Lc - Ls < t ≤ Lc; 2(t - Lc) + Ls - t(Ls) for Lc - Ls < t < Lc; and zero for t > Lc + Ls. The denominator of the quotient has a value of Ls/Lc for t < Lc; Q; a value of (Lc + t - Lc - Q)/Lc for Lc + t - Lc - Q ≤ Lc; a value of Lc + Q < t < Lc + Q + Lc; and a value of 2Lc/Lc for t > Lc + Q + Lc. In these equations, t is the time interval between the BrdU and 'H-TdR pulses; Lc is the total length of the cell cycle; Ls = Lc + LcM = 2Q, where Q is the length of S phase; LcM is the length of the BrdU pulse (2 hr), and Q is the interval over which a cell must be exposed to BrdU or 'H-TdR to become detectably labeled; LcM is the combined length of G2 and M phases; and f is the fraction of BrdU+ cells that undergo a second cell cycle.
(B) Cultures were pulsed with BrdU from t = 0 to 6 hr, chased with unlabeled TdR for 15 hr, pulsed with 'H-TdR from t = 21 to 45 hr, then fixed and processed. FGF2 (10 ng/ml) was added to a series of separate, duplicate cultures at 6-hr intervals from 0 to 30 hr in culture. Dotted lines illustrate the anticipated progression of BrdU-labeled cells through the cell cycle, from the parameters given above. Because the population of BrdU+ cells ranges from those that were exiting S phase at t = 0 to those just entering S at t = 6 hr, slanted lines are required to illustrate the time span over which the entire population of labeled cells traverses cell cycle phase boundaries.

Table 3. Decline in Average Numbers of Proliferating INPs per Explant in OE Explant Cultures

3H-TdR Migratory Cells per	30,000 μm² Explant
24-48 hr	15.60 ± 1.11
n = 100	50.03 ± 3.01
48-72 hr	1.91 ± 0.29
n = 60	8.69 ± 2.30
72-96 hr	ND
n = 35	3.69 ± 1.37

Explant cultures were pulsed with 3H-TdR for the indicated 24 hr period, then fixed and processed for autoradiography. Data shown are the mean numbers of 3H-TdR+ cells (±SEM) surrounding each explant, normalized to the average explant area of 30,000 μm² (cf. legend to Figure 1). n, number of explants analyzed in each condition.
The results indicate that, in the absence of added growth factor, labeled cells are distributed among explants in a unimodal fashion that over time merely shifts to the left (i.e., fewer labeled cells per explant are seen; note the change in bin sizes from 48 hr [Figure 6A] to 72 and 96 hr [B and C]). In contrast, in the presence of FGF2, the distribution of labeled cells among explants varies much more widely even at 48 hr, and by 72 hr, it is distinctly bimodal, with 93% of explants containing ≤20 labeled cells per 30,000 μm² (mean = 4.79 cells), but a small fraction (~7%) contain >25 labeled cells (mean = 63.35 cells). This distinction is even sharper at 96 hr in the presence of FGF2, with 91% of explants containing ≤10 labeled cells per 30,000 μm² (mean = 1.50 cells), while ~8.5% contain >30 labeled cells (mean = 50.25 cells).

In FGF2, a small fraction of explants continue to produce large numbers of cells that can take up 3H-TdR as late as 72-96 hr in vitro. The fraction of explants that exhibit this capacity appears to be maintained at the level of ~7%-8% of explants. Importantly, a substantial number of 3H-TdR-incorporating cells in this population of explants continue to give rise to ORNs. This was determined by a pulse-chase experiment in which OE explant cultures, grown continuously in FGF2, were labeled from 48 to 70 hr with 3H-TdR, chased for 12 hr with unlabeled TdR, and then processed for N-CAM immunocytochemistry and autoradiography.

Overall, the data in Figure 6 and Figure 7 are consistent with the view that a small fraction of explants (5%-8%) undergo continuous ORN production for up to 4 days in vitro (the latest time examined so far), in the presence—but not in the absence—of FGF2. Why these explants are different from the rest (for which neuron precursor proliferation essentially ceases, even in FGFs) is not clear, but one possible interpretation is that cells that can be stimulated by FGF2 to undergo continued proliferation in vitro may also be rare in the OE in vivo, such that they are not present in most explants. The apparent rarity of such cells, coupled with the observation that they do not appear to behave like typical INPs (which undergo one or two divisions and then produce postmitotic neuronal progeny) suggests that they may lie significantly upstream of INPs in the neuronal lineage. This point, and its implications, are discussed below.

Discussion

FGFs Prolong Neurogenesis by the OE In Vitro

The fact that the OE, a tissue that undergoes continual neurogenesis in vivo, rapidly ceases to do so in vitro in defined serum-free medium has provided a means to screen for growth factors that play a role in control of neurogenesis. Using an assay designed to detect increases in “late” proliferation of neuronal precur-
FGFs Regulate Olfactory Neuron Progenitors

Figure 7. Explants That Exhibit Late Proliferation in Response to FGFs Give Rise to Neurons

Cultures were grown continuously in FCF2 and pulsed with \(^{3}H\)-TdR (0.1 µCi/ml) from 40 to 70 hr, then chased with unlabeled TdR (50 µM) for 12 hr and fixed and processed for N-CAM immunocytochemistry and autoradiography. \(^{3}H\)-TdR labeling indices were calculated (as in Figure 6) for 100 explants in 5 cultures. The distribution of labeling indices in this experiment was similar to that observed at t = 72 hr with no chase (Figure 6B): 95% of explants had labeling indices <20 (mean = 4.22), while 5% had labeling indices >25 (mean = 108.1). Photographs show a portion of 1 of these explants and cells that have migrated from it; this explant's \(^{3}H\)-TdR labeling index was 329 labeled cells per 30,000 µm\(^2\) (94 \(^{3}H\)-TdR+ cells surrounding an explant with 8565 µm\(^2\) area). (A) Phase-contrast optics. (B) Bright field optics showing silver grains over the nuclei of cells that incorporated \(^{3}H\)-TdR. (C) Rhodamine optics showing N-CAM immunoreactivity. Note the large numbers of \(^{3}H\)-TdR-labeled cells that are also N-CAM+ by the end of the chase, as well as the occasional \(^{3}H\)-TdR+ progenitor cells that are N-CAM- (arrowheads). Bar, 50 µm.

What Is the Mechanism of Action of FGFs?

The early effects of FGFs (i.e., those observed between 24 and 48 hr) are most likely a direct action on INPs, since they are seen in dissociated cultures that are free of basal cells (Table 1E). The fact that these effects can be accounted for by an increase in the fraction of INPs that undergo a second cell division in vitro (Figure 4; Figure 5B), rather than exiting the cell cycle and expressing N-CAM (Figure 3), suggests that the mechanism of action of FGFs may be to repress terminal (neuronal) differentiation, thereby making further divisions possible. The data in Figure 5 also suggest that this action of FGFs must be exerted on INPs by early C1 of their cell cycle, a time at which commitment to terminal differentiation would be expected to occur (Soprano and Cosenza, 1992). This mechanism of action of FGFs on INPs bears similarities to the way FGFs are believed to act on muscle cell precursors. In mouse MM14 myoblasts, for example, FGFs promote myoblast proliferation not by acting on mito-
gens but by repressing terminal differentiation in G1, thereby allowing progression of cells through additional cell cycles (Clegg et al., 1987). It may be the case that FGFs act through similar mechanisms in the immediate precursors of many kinds of differentiated, postmitotic cells.

Although the above discussion casts the role of FGFs in terms of repressing differentiation of INPs into postmitotic ORNs, the data cannot rule out the possibility that, for INPs, the "terminal" differentiation step being repressed by FGFs is actually apoptosis (programmed cell death). In theory, some or all of the INPs that undergo a second round of division in the presence of FGFs could actually be cells that were fated to die, rather than to give rise to neurons. However, this seems unlikely. First, we found that FGF2 treatment increased the ratio of the number of INPs that divide twice to the total number of INPs (Figure 4; Figure 5B). If FGFs acted by preventing cell death, then to be consistent with these data, FGF2 would have had to promote selectively the survival of only those INPs that could undergo a second round of division, or no change in this ratio would have been observed. Second, we have recently combined the use of an in situ labeling technique that detects apoptotic cells (Gavioli et al., 1992) with pulse-chase \(^{3}H\)-TdR incorporation analysis, to determine directly whether apoptosis is the fate of INPs in vitro. We find that the fraction of INPs that undergo apoptosis is very small: ~0.12% of INPs are apoptotic at the time of \(^{3}H\)-TdR incorporation, and only ~6% of their progeny are apoptotic 20 hr later. Moreover, the number of INPs that undergo apoptosis is not changed significantly by the presence of FGF (data not shown). Thus, we believe that the direct actions of FGFs on INPs are not the result of effects on cell survival.

The INPs of ORNs Exhibit Characteristics of Transit Amplifying Cells

The fact that FGF2 drives some INPs to undergo an additional cell division in vitro, but does not divert the progeny of those cells from a neuronal fate, suggests that INPs may be committed progenitors with an inherently limited capacity for self-renewal. Interestingly, in vivo studies by MacKay-Sim and Kittel (1991) provide additional, if indirect, support for this idea: their analysis of \(^{3}H\)-TdR incorporation and dilution by ORN precursors in adult mouse OE indicated that the immediate progenitors of ORNs are rapidly dividing cells that divide only two, or occasionally three, times before undergoing terminal differentiation.

Several characteristics of INPs—apparent restriction of developmental fate and limited proliferative capacity as well as regulation of proliferation by growth factors—typify transit amplifying cells. In other self-renewing tissues, such as epidermis and the hematopoietic system, transit amplifying cells occupy a position between undifferentiated stem cells and the mature, functional cells that characterize the tissue (Hall and Watt, 1989; Potten and Loeffler, 1990).

If INPs function as neuronal transit amplifying cells, then it may be most appropriate to view FGFs as factors which increase the likelihood that these cells complete the fixed number of divisions of which they are intrinsically capable. A consequence of this view is the expectation that not all INPs should exhibit a proliferative response to FGFs, since some of the cells in any collection of INPs should already be only one cell division away from their proliferative limit, and therefore incapable of executing an additional cell cycle. Indeed, since amplifying divisions expand cell numbers exponentially, at any given time transit amplifying cells nearer their proliferative limit should outnumber those that are far from that limit. This may explain why, in the experiments in this study, the fraction of INPs driven to divide twice by FGF2 was sometimes relatively low (e.g., 12% in Figure 5A). It is also possible that other signals, in addition to FGF2, may be needed to ensure that all INPs undergo every division of which they are capable.

Late Effects of FGFs Suggest That Progenitors of INPs Are Present In Vitro

If INPs are transit amplifying cells, then there must be another cell type that acts as a progenitor to INPs. This may be a stem cell (i.e., a self-renewing cell that, on average, generates one INP with each division), or there may be one or more types of transit amplifying cells interposed between the INP and its stem cell. At present, there is no way to know how many divisions lie between ORNs and their ultimate progenitors. However, the more divisions there are, the less abundant the earliest progenitors need be, to be able to generate the full complement of ORNs. Consequently, it is possible that some cells sufficiently far upstream of INPs in the ORN lineage are so rare that they might occur in only a fraction of OE explants. If such cells require FGFs in order to proliferate (or to survive), then that circumstance could provide a simple explanation for the observation that only 5%-8% of OE explants appear to be capable of long-term, FGF-driven neurogenesis (Figure 6; Figure 7). At present, however, we cannot rule out the alternative possibility that these explants do not contain a rare type of stem cell or neuronal progenitor, but instead differ from the majority of explants in another way, e.g., by creating a local environment that acts in combination with FGFs to extend the proliferative capacity of INPs or INP progenitors. Whether the cell type affected by FGF2 in these explants is a stem cell or an amplifying cell may not become clear until much longer-term cultures are studied. However, the data suggest the possibility that neurogenesis in the OE may be a multistep process involving several distinct progenitor cell types, a view of neurogenesis that parallels observations in other stem cell systems (Hall and Watt, 1989; Potten and
It will be interesting to determine whether markers that distinguish among neuronal precursors at different stages in neuronal lineages can be obtained. We have found that one molecule known to be important for ORN production in vivo, the transcription factor MASH1 (Guillemot et al., 1993), is expressed in only a subset of the migratory, N-CAM-positive cells associated with OE explants in vitro, and that these cells proliferate (Calof et al., 1994b; data not shown). It is not yet clear, however, whether expression of this polypeptide marks a distinct position in the ORN lineage.

In Vivo Significance of FGF Effects on Neurogenesis

Information on expression patterns of FGFs in the developing embryo is incomplete, with only some of the 9 known FGFs having been examined so far (reviewed by Baird, 1994). Nonetheless, it is already clear that several FGFs are present in locations where they could potentially influence OE neurogenesis in vivo. For example, FGF2 immunoreactivity has been seen in mesenchyme underlying the OE (as well as in numerous basement membranes) in the rat embryo at E18, a comparable age to the F16 mouse (Gonzalez et al., 1990). FGF7 is expressed in the stroma underlying OE in mouse beginning at E14.5 (Mason et al., 1994), and FGF1 immunoreactivity has been shown around OE in E19 rat (Fu et al., 1991). A characteristic of the FGF family, also known as the heparin-binding growth factor family, is that its members are thought not to be freely diffusible in vivo but rather to be bound to, and presented to cells by, heparin sulfate proteoglycans in extracellular matrix and on cell surfaces (Baird, 1994). It is tempting to speculate that the presence of FGFs in OE basement membrane contributes to the preferential localization of neuronal precursor proliferation in the nasal region of adult OE.

The fact that FGFs can potentially be presented to cells when adsorbed to cell surfaces (as can other heparin-binding growth factors [e.g., Ratner et al., 1988]) also raises the interesting possibility that the presence of endogenous FGFs may contribute to a dependence of neuronal precursor proliferation on cell-cell contact. Such a dependence has been seen in in vitro systems other than OE (e.g., Watanabe and Raff, 1990; Gao et al., 1991; Temple and Davis, 1994), including one (embryonic rat retina) in which the stimulatory effects of high cell density could be mimicked by FGF1 or FGF2 (Lilien and Cepko, 1992). That cell contact stimulates neurogenesis in cultured OE is almost certainly the case as well, as is apparent from the data in Table 1 (in which the true labeling index of the neuronal cell fraction was 8-fold lower for purified, dissociated neuronal cells [column E] than for those in explant cultures [column A]). Moreover, the fact that FGF2 restored the labeling index of dissociated neuronal cells to approximately that seen in explant cultures grown in the absence of growth factors (Table 1) is consistent with the possibility that endogenous FGFs may mediate some of the effects of cell contact and/or density on OE neurogenesis.

Effects of Other Factors on Neurogenesis in the OE

Two other groups have reported stimulatory effects of factors other than FGFs on neuronal production by cultured OE. Pixley (1992) reported that coculture with CNS astrocytes could prolong neurogenesis by neonatal rat OE. Since astrocytes are known to produce FGFs (Woodward et al., 1992; Baird, 1994), it is possible that FGFs account for some or all of the effects observed by this investigator. Recently, Mahanthappa and Schwarting (1993) reported that TGFβ2 stimulates neurogenesis in postnatal rat OE cultures, an effect that was not observed in the present study (Figure 1E). There are several possible explanations for this difference. First, these investigators did not rule out the possibility that TGFβ2 was actually acting as a survival factor specifically for newly generated neurons (only the lack of an effect of TGFβ2 on the total number of cells per culture was reported). Second, growth factor responsiveness of the OE may change between mid-gestation (the time at which OE tissue was taken in the present study) and postnatal day 3–4 (the age used by Mahanthappa and Schwarting). Finally, it may be the case that, in the present study, precursor proliferation was unaffected by TGFβ2, not because cells were unable to respond to this molecule but because they were already being maximally stimulated by it. It is known that cells of embryonic OE contain TGFβ2 mRNA in vivo (Millan et al., 1991), and it can be concluded from data presented by Mahanthappa and Schwarting that postnatal rat OE cultures produce TGFβ2 in sufficient quantity to support a substantial level of neuronal production (although not as much as when exogenous TGFβ2 was added). For a variety of reasons—different tissue age, different species, or different culture conditions—it is possible that the cultures used in the present study might contain a higher concentration of endogenous TGFβ2 than those used by Mahanthappa and Schwarting. It will be interesting to test this latter possibility directly.

Effects of Growth Factors on Neurogenesis

in Other In Vitro Systems

Several groups have reported that FGFs stimulate in vitro proliferation of progenitor cells from several regions of embryonic nervous system, including E10 telencephalon (Murphy et al., 1990; Kilpatrick and Bartlett, 1993), cerebral cortex (Gensburger et al., 1987), corpus striatum (Cattaneo and McKay, 1990; Vescovi et al., 1993), hippocampus (Ray et al., 1993), and retina (Lilien and Cepko, 1992). These findings, together with the observation of FGF1 expression in germinal zones throughout embryonic brain (Heuer et al., 1990), suggest that FGF effects on neurogenesis may be widespread. Growth factors other than FGFs also influence proliferation and differentiation of neural precursors in vitro: EGF and TGFα stimulate prolifera-
tions of embryonic retinal and striatal progenitor cells, which give rise to neurons and glia (Anchan et al., 1991; Lillien and Cepko, 1992; Reynolds et al., 1992). Both EGF and insulin can stimulate proliferation of rat sympathetic ganglion neuron precursors (DiCicco-Bloom et al., 1990). NGF can act in concert with other factors to promote proliferation of progenitor cells from embryonic striatum (Cattaneo and McKay, 1990), and neurotrophin S (NT-3) promotes proliferation of cultured neural crest cells (Kalcheim et al., 1992). In contrast, CNTF apparently inhibits the proliferation of sympathetic neuron progenitors (Erensberger et al., 1989). In many of these systems, it remains to be sorted out whether the growth factors that affect neuronal production do so by acting as mitogens for neuronal precursors, inhibiting terminal differentiation of neuronal precursors, promoting survival of neuronal precursors (Birren et al., 1993; DiCicco-Bloom et al., 1993), influencing fates chosen by bi- or multipotential neuronal precursors (Sieber-Blum, 1991, Anderson, 1993, Shah et al., 1994), or even promoting survival of newly generated neurons.

In this regard, the simplicity of the OE as an experimental system has proved to be a significant advantage. The fact that proliferating neural precursors in the OE seem to be committed to giving rise to a single type of differentiated cell, the ORN, has made it possible to draw conclusions about the times and mechanisms of action of FGFs within this neuronal lineage. Interestingly, the conclusions that we have reached—that INPs behave as transit amplifying cells and that FGFs act both on INPs and another cell that may lie far upstream of INPs—suggest that the progression from stem cell to ORN may involve several distinct cellular stages. Although evidence supporting the notion of multiple steps in neural lineages has been obtained in other in vivo and in vitro systems (e.g., Takahashi et al., 1994; Anderson, 1993), these steps have been thought to parallel the progressive restriction of a multipotential precursor’s fate (cf. Anderson, 1993). In the OE, where no evidence for multipotentiality of neuronal precursors has yet been obtained, the existence of such steps may have more to do with intricacies in the regulation of cell number, rather than cell fate. This idea recalls aspects of the hematopoietic system, in which some unipotential lineages (e.g., the erythroid lineage) progress through multiple precursor stages, each of which exhibits different growth factor requirements (Dexter and Spooner, 1987).

Materials

Recombinant human NGF, brain-derived neurotrophic factor (BDNF), NT-3, and recombinant rat CNTF were obtained from Genentech (generous gifts of David Shelton, John Winslow, Karoly Nikolics, and Gene Burton). Recombinant human acidic FGF (FGF1), basic FGF (FGF2), TGFβ, EGF, and platelet-derived growth factors (PDGF-AA and PDGF-BB) were from US Biochemicals. Recombinant human TGFβ1 and TGFβ2 were from Genzyme. Recombinant human keratinocyte growth factor (KGF or FGF7) was from Collaborative Research. Recombinant human FGF4 was from R & D Systems. Growth factors were stored at −85°C in concentrated stocks made up in 1 mg/ml Clinical Grade bovine serum albumin (CRG-BSA); ICN Biochemicals in calcium- and magnesium-free Hank’s balanced salt solution (CMF-HBSS). BrdU was from Amersham (cell proliferation labeling reagent, BrdU201), and 3H-TdR (70-90 Ci/mmol) was from New England Nuclear. NTβ2 emulsion, D-19 developer, and fixer were from Kodak. Tissue culture media, antibiotics, and merosip (human) were from Gibco-BRL. Unless otherwise noted, all other reagents were from Sigma.

Experimental Procedures

Tissue Culture

OE was purified as described (Calof and Chikaraishi, 1989) from embryos of CD-1 mice (Charles River) at E14.5-E15.5, for which vaginal plug date was designated as E0.5. For explant cultures, pieces of purified OE were plated onto acid-washed glass coverslips (12 mm, #1 thickness; #1200) at 10,000 cells/cm² in low calcium culture medium (LCM) prepared as described (Calof and Lander, 1991), except that BSA was reduced to 1 mg/ml CRG-BSA. For some experimental conditions, a dissociated neuronal cell fraction (INPs + ORNs) was prepared from 6 hr OE suspension cultures as described (Calof and Lander, 1991; Calof et al., 1994a). These cells were plated in LCM at ~2 × 10⁴ cells per well in poly-o-lysine-coated 96 well tissue culture trays (Costar).

Immunocytochemistry and Autoradiography

For visualizing N-CAM, cultures were fixed in room temperature acetone (5 min) or Omnifix II (10 min: AmCon Genetics) and stained with monoclonal antibody Anti-1 (Anti-1) followed by rhodamine goat anti–mouse IgG (1:100; Tago) or biotinylated Anti-1 IgG (10 μg/ml) followed by fluorescein isothiocyanate Zavidin (1:50; Zymed). Alternatively, monoclonal rat anti-N-CAM H28 (kind gift of Christos Gouridis, INSERM-CNRS, Marseilles, France; Gennarini et al., 1984) was used as full-strength hybridoma supernatant applied to cells fixed for 10 min in 3.7% formaldehyde/5% sucrose in Dulbecco’s phosphate-buffered saline (PBS) followed by Texas red goat anti-rat IgG at 1:50 (Jackson). For staining with monoclonal rat anti-BrdU (Sera-Lab clone BlJ1/75 [ICR 1]; Accurate), cultures were fixed in Omnifix II, permeabilized in 0.1% Triton X-100 in PBS, treated with 2 N HCl in water for 15 min, and incubated overnight in anti-BrdU antisera (1:500). BrdU staining was visualized with Texas red goat anti-rat IgG (Jackson; 1:50) or, in cultures grown on plastic dishes, with biotinylated rabbit anti-rat IgG (1:500; Vector) followed by rhodamine goat streptavidin peroxidase (Vectastain ABC-peroxidase kit). Cultures incubated in 3H-TdR were either fixed and processed for immunocytochemistry as specified above or simply fixed in 3.7% formaldehyde/5% sucrose in PBS. Coverslips were dehydrated and dipped in NTR emulsion diluted 1:1 in water, then exposed at −85°C. Cultures pulsed for 2 or 6 hr were exposed for 2 days; those pulsed for 24 hr pulse were exposed for 8 days. Slides were then developed in D-19 developer, and nuclei were stained with Hoechst 33258 (bisbenzimide; 1 μg/ml).

Analysis of FGF Receptor Expression

Total RNA (9-10 μg) was isolated from purified 14.5-15.5 mouse OE or from the dissociated INPs + ORNs cell fraction using the method of Chomczynski and Sacchi (1987). RNA was added to RT buffer (Gibco-BRL) containing 1 mM dNTPs, 200 pmol of random hexamer primer (Pharmacia), and 10 μM dithiothreitol (total volume, 3 μl). To half this mixture, 200 U of MMuLV RT (GIBCO-BRL) was added, then incubated at 37°C for 1 hr. The remaining half was saved as a R-RT control. There, 2 μl of each mixture was added to 18 μl of buffer (50 mM KCl, 10 mM Tris–Cl [pH 8.3], 1.5 mM MgCl₂, 0.001% gelatin) containing 250 μM dNTPs, 1.25 μM each of forward and reverse primers, and 0.125 μl of Taq DNA polymerase (Perkin-Elmer). Cycling parameters were denaturation at 95°C for 45 s, annealing at 55°C for...
30 s, and elongation at 72°C for 1 min. Primers corresponded to transmembrane regions of the receptors (Lee et al., 1989; Dell and Williams, 1992; Ornitz and Leder, 1992; Stark et al., 1991): FR1, 5'-AGAGACCAGCTTGATGA-3' (forward) and 5'-GGCCA-
CCTTTGGTCACCGG-3' (reverse); FR2, 5'-GGAGAGAAGAGATGACC-
CG-3' (forward) and 5'-TGCCACGGTCGACCCTT-3' (reverse); FR3, 5'-TCTGGAAACTGATGCGG-3' (forward) and 5'-GGCCAC-
CGTACCGCTT-3' (reverse); FR4, 5'-CTCGGACACACCTA-
CCC-3' (forward) and 5'-AGCCACGGTCGTTTGG-3' (reverse). Mixtures (15 ± 1) of each were analyzed on 1.3% agarose gels and visualized with ethidium bromide. Amplification products were

Estimations of Cell Cycle Parameters

The predicted curve in Figure 5 (inset) was obtained by fitting data to a simple model, in which the fraction of BrdU' cells that are 'H-TdR' was calculated for each time point by dividing a predicted number of double-labeled cells by a predicted number of BrdU' cells. For any population starting with an arbitrary number of cells in the cell cycle (and having the same cell cycle kinetics), the denominator is determined by the length of the cell cycle, the length of the BrdU pulse, the duration of BrdU incorporation required for detectable labeling, and the length of the G2 + M phases of the cell cycle (Nowakowski et al., 1989). The numerator is the sum of two components: cells that are double-labeled because they were exposed to 'H-TdR before having left the S phase during which they incorporated BrdU and cells that are double-labeled because they were undergoing a second S phase at the time of the 'H-TdR pulse. Calculating these components is straightforward and requires only introduc-
ing a parameter representing the fraction of BrdU' cells that enter a second cell cycle (rather than becoming postmitotic). In addition, it was assumed that the duration of 'H-TdR incorporation required for detectable labeling was similar to that required for detectable labeling by BrdU (neither parameter had a substantial impact on the output of the model).

Acknowledgements

The authors thank Arthur Landers for discussions and mathemati-
cal analysis of cell cycle parameters. This work was supported by U. S. Public Health Service grant NS32174 to A. L. C. and a Muscular Dystrophy Association grant to B. B. O. The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked "advertisement" in accordance with 18 USC Section 1734 solely to indicate this fact.

Received June 6, 1994; revised August 8, 1994.

References

Anchan, R. M., Reh, T. A., Angello, J., Balliet, A., and Walker, M. (1991). EGF and TGF-α stimulate retinal neuroepithelial cell proliferation in vitro. Neuron 6, 923-936.

Anderson, D. J. (1993). Molecular control of cell fate in the neural crest: the sympathetic lineage. Annu Rev Neurosci 16, 129-150.

Baird, A. (1994). Fibroblast growth factors: activities and signific-
ance of non-neurotrophin neurotrophic growth factors. Curr. Opin. Neurobiol. 4, 78-86.

Baserga, R. (1985). The Biology of Cell Reproduction (Cambridge, Massachusetts: Harvard University Press).

Birren, S. J., Lo, L., and Anderson, D. J. (1993). Sympathetic neuro-
blasts undergo a developmental switch in trophic factor depen-
dence. Development 119, 597-610.

Calof, A. L., and Chikaraishi, D. M. (1989). Analysis of neurogen-
esis in a mammalian neuroepithelium: proliferation and differen-
tiation of an olfactory neuron precursor in vitro. Neuron 3, 115-
127.

Calof, A. L., and Lander, A. D. (1991). Relationship between neu-
ronal migration and cell-adhesion molecules. Laminin and mem-
brane proteins mediate adhesion and migration. J. Cell Biol. 115, 779-789.

Calof, A. L., Lander, A. D., and Chikaraishi, D. M. (1991). Regulation of neurogenesis and neuronal differentiation in primary and immortalized cells from mouse olfactory epithelium. In Regener-
ation of Vertebrate Sensory Receptor Cells, Ciba Foundation Symposium 170 (Chichester: Wiley), pp. 249-276.

Calof, A. L., Guevara, J. G., and Delihammer, M. K. (1994a). Mouse olfactory epithelium. In Primary Neuronal Cell Culture: A Prac-
tical Approach, J. Cohen and G. Wilkin, eds. (Oxford: IRL Press), in press.

Calof, A. L., Adusumalli, M. D., DeHamer, M. K., Guevara, J. G., Mummu, J. M., Whitehead, S. J., and Lander, A. D. (1994b). Generation, differentiation, and maturation of olfactory receptor neurons in vitro, in Olfaction and Taste XI, K. Kurihara, N. Suzuki, and H. Ogawa, eds. (Tokyo: Springer-Verlag), pp. 36-40.

Cattaneo, R., and Hecker, M. (1990). Proliferation and differen-
tiation of neuronal stem cells regulated by nerve growth factor. Nature 347, 762-765.

Chomczynski, P., and Sacchi, N. (1987). Single step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform ex-
traction. Anal. Biochem. 162, 156-159.

Clegg, C. H., Linkhart, A. T., Olwin, B. B., and Hauschka, S. D. (1987). Growth factor control of skeletal muscle differentiation: commitment to terminal differentiation occurs in G1 phase and is repressed by fibroblast growth factor. J. Cell Biol. 105, 940-
956.

Dell, K. R., and Williams, L. T. (1992). A novel form of fibroblast growth factor receptor. J. Biol. Chem. 267, 21225-21229.

Dexter, T. M., and Spooner, E. (1987). Growth and differentiation in the hemopoietic system. Annu. Rev. Cell Biol. 3, 471-491.

DiCicco-Bloom, E., Townes-Anderson, E., and Black, I. B. (1990). Neuronal mitosis in dissociated culture: regulation and rela-
tionship to differentiation. J. Cell Biol. 110, 2073-2080.

DiCicco-Bloom, E., Friedman, W. J., and Black, I. B. (1993). NT-3 stimulates sympathetic neuroblast proliferation by promoting precursor survival. Neuron 11, 1101-1111.

DiFiglia, M., Marshall, P., Covault, J., and Yamamoto, M. (1989). Ultrastructural localization of molecular subtypes of immunore-
active neural cell adhesion molecule (NCAM) in the adult rodent striatum. J. Neurosci. 9, 4158-4168.

Dionne, C. A., Cumley, G., Bellot, F., Kaplow, J. M., Scarfoss, G. R., M., Burgess, W. H., Jaye, M., and Schlessinger, J. (1990). Cloning and expression of two distinct high-affinity receptors cross-reacting with acidic and basic fibroblast growth factors. EMBO J. 9, 2685-2692.

Emansberger, U., Sendtner, M., and Rohrer, H. (1989). Proliferation and differentiation of embryonic chick sympathetic neurons: effects of ciliary neurotrophic factor. Neuron 2, 1275-1284.

Fu, Y.-M., Spirito, P., Yu, Z.-X., Biro, S., Sasse, J., Lei, J., Ferrans, V. J., Epstein, S. E., and Cassels, W. (1991). Acidic fibroblast growth factor in the developing rat embryo. J. Cell Biol. 114, 1261-1273.

Gao, W.-Q., Heintz, N., and Hatten, M. E. (1991). Cerebellar gran-
ule cell neurogenesis is regulated by cell-cell interactions in vitro. Neuron 6, 705-715.

Gavrieli, Y., Sherman, Y., and Ben-Sasson, S. A. (1992). Identification of programmed cell death in situ via specific labeling of nuclear DNA fragmentation. J. Cell Biol. 779, 493-501.

Cennarini, G., Rougon, G., Degostini-Bazin, H., Hirn, M., and Goridis, C. (1984). Studies on the transmembrane disposition of the neural cell adhesion molecule NCAM. Eur. J. Biochem. 147, 57-64.

Gensburger, C., Labordette, G., and Sensenbrenner, M. (1987). Brain basic fibroblast growth factor stimulates the proliferation of rat neuronal precursor cells in vitro. FEBS Lett. 217, 1-5.

Givol, D., and Yayon, A. (1992). Complexity of FGFR receptors:
genetic basis for structural diversity and functional specificity. FASEB J. 6, 3362-3369.

Clatz, S. A. (1992). Primer of Biostatistics, 3rd edition (New York: McGraw-Hill).

Gonzalez, A.-M., Buscaglia, M., Ono, M., and Baird, A. (1990). Distribution of basic fibroblast growth factor in the 18-day rat fetus: localization in the basement membranes of diverse tissues. J. Cell Biol. 110, 753-765.

Graziadei, P. C., and Monti Graziadei, G. A. (1978). Continuous nerve cell renewal in the olfactory system. In Handbook of Sensory Physiology, Volume IX, Development of Sensory Systems, J. Jacobson, ed. (New York: Springer-Verlag), pp. 55-83.

Graziadei, P. C., and Monti Graziadei, G. A. (1979). Neurogenesis and neuron regeneration in the olfactory system of mammals I. Morphological aspects of differentiation and structural organization of the olfactory sensory neurons. J. Neurocytol. 8, 1-18.

Hall, P. A., and Watt, F. M. (1989). Stem cells: the generation and maintenance of cellular diversity. Development 106, 670-633.

Heuer, J. G., von Bartheld, C. S., Kinoshita, Y., Evers, P. C., and Bothwell, M. (1990). Alternating phases of FGF receptor and NGF receptor expression in the developing chicken nervous system. Neuron 5, 283-296.

Kalcheim, C., Carmeli, C., and Rosenthal, A. (1992). Neurotrophin 3 is a mitogen for cultured neural crest cells. Proc. Natl. Acad. Sci. USA 89, 1661-1665.

Kilpatrick, T. J., and Bartlett, P. F. (1993). Cloning and growth of multipotential neural precursors: requirements for proliferation and differentiation. Neuron 10, 254-265.

Klein, R., Parada, L. F., Boulier, F., and Barbacid, M. (1989). trkA, a novel tyrosine protein kinase receptor expressed during mouse neural development. EMB J. 8, 5/1/5/99.

Lee, P. L., Johnson, D. E., Cousens, L. L., Fried, V. A., and Williams, J. T. (1989). Purification and complementary DNA cloning of a receptor for basic fibroblast growth factor. Science 245, 57-60.

Lillien, L., and Cepko, C. (1992). Control of proliferation in the retina: temporal changes in responsiveness to FGF and TGFα. Development 115, 253-266.

Mark-Sim, A., and Kittel P. (1991). Cell dynamics in the adult mouse olfactory epithelium: a quantitative autoradiographic study. J. Neurosci. 11, 797-984.

Mahanthappa, N. K., and Schwarting, G. A. (1993). Peptide growth factor control of olfactory neurogenesis and neuron survival in vitro: roles of EGF and TGF-β. Neuron 10, 293-305.

Maisonpierre, P. C., Belluscio, L., Friedman, B., Alderson, R. F., Wiegand, S. J., Furth, M. E., Lindsay, R. M., and Yancopoulos, G. D. (1990). NT-3, BDNF, and NGF in the developing rat nervous system: parallel as well as reciprocal patterns of expression. Neuron 5, 501-509.

Mansukhani, A., Moscatelli, D., Tallarico, D., Levitska, V., and Basilico, C. (1990). A murine fibroblast growth factor (FGF) receptor expressed in CHO cells is activated by basic FGF and kaposi FGF. Proc. Natl. Acad. Sci. USA 87, 4378-4382.

Mason, I. J., Fuller-Pace, F., Smith, R., and Dickson, C. (1994). FGF-1/keratinocyte growth factor expression during mouse development suggests roles in myogenesis, forebrain regionalisation and epithelial-mesenchymal interactions. Mech. Dev. 45, 15-30.

Millan, F. A., Denhze, F., Kordalab, P., and Akhurst, R. (1991). Embryonic gene expression patterns of TGFβ1, β2 and β3 suggest different developmental functions in vivo. Development 111, 131-144.

Monti Graziadei, G. A., and Graziadei, P. P. C. (1979). Neurogenesis and neuron regeneration in the olfactory system of mammals. II. Degeneration and reconstitution of the olfactory sensory neurons after axotomy. J. Neurocytol. 8, 197-213.

Murphy, M., Drago, C., and Bartlett, P. F. (1990). Fibroblast growth factor stimulates the proliferation and differentiation of neural precursor cells in vitro. J. Neurosci. Res. 25, 463-475.

Murray, A., and Hunt, T. (1993). The Cell Cycle (New York: W. H. Freeman and Company).

Nowakowski, R. S., Lewin, S. B., and Miller, M. W. (1989). Bromodeoxyuridine immunohistochemical determination of the lengths of the cell cycle and the DNA-synthetic phase for an anatomically defined population. J. Neurocytol. 18, 311-318.

Olwin, B. B., and Haushka, S. D. (1986). Identification of the fibroblast growth factor receptor of Swiss 3T3 cells and mouse skeletal muscle myoblasts. Biochemistry 25, 3487-3492.

Ornitz, D. M., and Leder, P. (1992). Ligand specificity and heparin dependence of fibroblast growth factor receptors 1 and 3. J. Biol. Chem. 267, 16300-16311.

Paxley, S. K. (1992). CNS glial cells support in vitro survival, division, and differentiation of dissociated olfactory neuronal progenitor cells. Neuron 8, 1191-1204.

Potten, C. S., and Loeffler, M. (1990). Stem cells: attributes, cycles, spirals, pitfalls and uncertainties. Lessons for and from the crypt. Development 110, 1001-1020.

Ratner, N., Hwang, D. I., Herman, M. A., Rong, P. P., and Claver, L. (1990). The neuronal cell-surface molecule mitogenic for Schwann cells is a heparin-binding protein. Proc. Natl. Acad. Sci. USA 85, 6992-6996.

Ray, J., Peterson, D. A., Schinstine, M., and Gage, F. H. (1993). Proliferation, differentiation, and long-term culture of primary hippocampal neurons. Proc. Natl. Acad. Sci. USA 90, 3602-3606.

Reid, H. H., Wilks, A. F., and Bernard, O. (1990). Two forms of the basic fibroblast growth factor receptor-like mRNA are expressed in the developing mouse brain. Proc. Natl. Acad. Sci. USA 87, 1596-1600.

Reynolds, B. A., Tetzlaff, W., and Weiss, A. (1992). A multipotent EGF-responsive striatal embryonic progenitor cell produces neurons and astrocytes. J. Neurosci. 12, 4564-4574.

Rubin, J. S., Osada, H., Finch, P. W., Taylor, W. G., Rudikoff, S., and Aaronson, S. A. (1989). Purification and characterization of a newly identified growth factor specific for epithelial cells. Proc. Natl. Acad. Sci. USA 86, 802-806.

Schwartz-Levy, M. F., and Bothwell, M. (1993). Novel roles for neurotrophins are suggested by BDNF and NT-3 mRNA expression in developing neurons. Neuron 9, 449-463.

Schwartz-Levy, M., Chikaraishi, U. M., and Kaiser, J. S. (1991). Characterization of potential precursor populations in the mouse olfactory epithelium using immunocytochemistry and autoradiography. J. Neurosci. 11, 3536-3544.

Shah, N. M., Marchioni, M. A., Isaacs, I., Stroobant, P., and Anderson, D. J. (1994). Glial growth factor restricts mammalian neural crest stem cells to a glial fate. Cell 77, 349-360.

Sieber-Blum, M. (1991). Role of the neurotrophic factors BDNF and NGF in the commitment of pluripotent neural crest cells. Neuron 6, 949-955.

Sopano, K. J., and Cosentino, S. C. (1992). Cell cycle and cell growth control. In Molecular and Cellular Approaches to the Control of Proliferation and Differentiation, G. S. Stein and J. B. Lian, eds. (San Diego: Academic Press, Inc.), pp. 73-114.

Stark, K. L., McMahon, J. A., and McMahon, A. P. (1991). FGF-4, a new member of the fibroblast growth factor receptor family, expressed in the definitive endoderm and skeletal muscle lineages of the mouse. Development 113, 641-651.

Takakusaki, T., Nowakowski, R. S., and Caviness, V. S., Jr. (1994). Mode of cell proliferation in the developing mouse neocortex. Proc. Natl. Acad. Sci. USA 91, 375-379.

Tempie, S., and Davis, A. A. (1994). Isolated rat cortical progenitor
cells are maintained in division in vitro by membrane-associated factors. Development 170, 996-1008.

Vescovi, A. L., Reynolds, B. A., Fraser, D. D., and Weiss, S. (1993). bFGF regulates the proliferative fate of unipotent (neuronal) and bipotent (neuronal/astroglial) EGF-generated CNS progenitor cells. Neuron 11, 951-966.

Watanabe, T., and Raff, M. C. (1990). Rod photoreceptor development in vitro: intrinsic properties of proliferating neuroepithelial cells change as development proceeds in the rat retina. Neuron 4, 461-467.

Woodward, W. R., Nishi, R., Meshul, C. K., Williams, T. E., Coulombe, M., and Eckenstein, F. P. (1992). Nuclear and cytoplasmic localization of basic fibroblast growth factor in astrocytes and CA2 hippocampal neurons. J. Neurosci. 12, 142-152.

Yeh, H.-J., Ruit, K. G., Wang, Y.-X., Parks, W. C., Snider, W. D., and Deuel, T. F. (1991). PDGF A-chain gene is expressed by mammalian neurons during development and in maturity. Cell 64, 209-216.