Production of H_3^+ via photodissociation of organic molecules in interstellar clouds

S. Pilling1, D. P. P. Andrade2,3, R. Neves2, A. M. Ferreira-Rodrigues2,3, A. C. F. Santos4, H. M. Boechat-Roberty2

1Laboratório Nacional de Luz Síncrotron, Caixa Postal 6192, CEP 13084-971, Campinas, SP, Brazil.
2Observatório do Valongo, Universidade Federal do Rio de Janeiro - UFRJ, Ladeira Pedro Antônio, 43, CEP 20080-090, Rio de Janeiro, RJ, Brazil.
3Instituto de Química, Universidade Federal do Rio de Janeiro - UFRJ, Ilha do Fundão, CEP 21949-900, Rio de Janeiro, RJ, Brazil.
4Instituto de Física, Universidade Federal do Rio de Janeiro - UFRJ, Ilha do Fundão, Caixa Postal 68528, CEP 21941-972, Rio de Janeiro, RJ, Brazil.

Received / Accepted

ABSTRACT

We present experimental results obtained from photoionization and photodissociation processes of abundant interstellar CH$_3$X type organic molecules like methanol (CH$_3$OH), methylamine (CH$_3$NH$_2$) and acetonitrile (CH$_3$CN) as alternative route for the production of H_3^+ in interstellar and star forming environments. The measurements were taken at the Brazilian Synchrotron Light Laboratory (LNLS), employing soft X-ray photons with energies between 200 and 310 eV and time of flight mass spectrometry. Mass spectra were obtained using the photoelectron-photoion coincidence techniques. Absolute averaged cross sections for H_3^+ production by soft X-rays were determined. We have found that, among the channels leading to molecular dissociation, the H_3^+ yield could reach values up to 0.7% for single photoionization process and up to 4% for process involving double photoionization. The H_3^+ photoproduction cross section due to the dissociation of the studied organic molecules by photons over the C1s edge (200-310 eV) were about 0.2×10^{-15} cm2. Adopting the typical X-ray luminosity $L_X \approx 10^{31}$ erg s$^{-1}$ which best fit the observational data for AFGL 2591 (Stäuber et al. 2005) we derive an estimative for the H_3^+ photoproduction rate due to methyl-compounds dissociation process. The highest value for the H_3^+ column density from methanol dissociation by soft X-rays, assuming a steady state scenario, was about 10^{13} cm$^{-2}$, which gives the fraction of the photoproduced H_3^+ of about 0.05%, as in the case of dense molecular cloud AFGL 2591. Despite the extreme small value, this represent a new and alternative source of H_3^+ into dense molecular clouds and it is not been considered as yet in interstellar chemistry models.

Key words: ISM: molecules - molecular process - molecular data - astrochemistry

1 INTRODUCTION

The H_3^+ ion plays an important role in diverse fields from chemistry to astronomy such as, the chains of reaction that lead to the production of many of complex molecular species observed in the interstellar medium (Hersbt & Klemperer 1973; Dalgarno & Black 1996; Suzuki 1979). The H_3^+ ion was discovered in molecular clouds (McCall et al. 1999; Geballe & Oka 1996) and in the diffuse interstellar medium (Oka et al. 2005; McCall et al. 1998) with column densities of 10^{15} cm$^{-2}$.

As point out by McCall & Oka (2000), observation of H_3^+ can be combined with those of other important molecules such as H$_2$ and CO to characterize the physical and chemical properties of the interstellar clouds. Moreover, the physics and chemistry from H_3^+ analysis, combined with low density and temperature of interstellar space, lead to interesting phenomena like the extraordinary deuterium fractionation, the bistability of chemical models and the radiative thermalization through forbidden rotational transitions. A detailed review about the H_3^+, the simplest stable interstellar polyatomic molecule, can be found in Oka (2006).

The main pathway formation of H_3^+ occurs via ionization of H$_2$ to H$_3^+$ by the ubiquitous cosmic ray or local X-ray, followed by the efficient Langevin reaction (Bowers et al. 1969):

$$\text{H}_2 + \text{H}_2 \rightarrow \text{H}_3^+ + \text{H} \quad (1)$$

The main destruction pathway of H_3^+ occurs via proton-hop reaction:

$$\text{H}_3^+ + X \rightarrow \text{HX}^+ + \text{H}_2 \quad (2)$$
where $X = \text{CO, N}_2, \text{H}_2\text{O, NH}_3$, etc. These reaction have been studied by Burt et al. (1970) and all show Langvin-type behavior. As discussed by Oka (2004), the averaged H^+_3 number density in dense clouds is about $10^{4.7}$ cm$^{-3}$ where $X = \text{CO}$ is the main destroyer. In diffuse clouds, $X = e^-$ is the main destroyer and the averaged H^+_3 number density for these regions is about $10^{4.6}$ cm$^{-3}$. Despite the low rate coefficients, other formation reaction involving species like HeH$^+$, NH$^+$, HCO and CH$_3^+$ have also been proposed (McCall et al. 1999; Millar et al. 1999b).

Miller et al. (1992) have observed the H^+_3 emission in the infrared spectrum of the remnants of Supernova 1987A. Brittain & Rettig (2002) reported a detection of the H^+_3 emission from the Herbig Ae/Be star HD141569 and speculated that it is from a protoplanet in the preplanetary disk, however this detection remains controversial (Oka 2002). The H^+_3 emission has been found recently in other Herbig Be star LkHα 101 by Brittain et al. (2004) with a column density of about 2.2×10^{14} cm$^{-2}$.

The observed ubiquity of H^+_3 in interstellar clouds suggests that it is also observable in many other objects where molecules and ionization abound. The intense $3.7 \mu m$ H^+_3 emission spectrum from Jupiter (Drossart et al. 1989; Oka & Geballe 1990; Connerney et al. 1993), Saturn (Geballe et al. 1993) and Uranus (Traffon et al. 1993) has become a general tool to study planetary ionospheres. It was even suggested that this emission might be detectable from Jupiter-like planets orbiting other stars (Connerney & Satoh 2000).

Planetary nebulae and proto-planetary nebulae are also interesting targets. As pointed by Oka (2004), due to the low metallicity, Magellanic clouds may also be interesting objects to try H^+_3.

The ionized triatomic hydrogen molecule is found as a primary fragment in the photoionization and electron impact mass spectra of several small molecules. Ruhl et al. (1990), have reported one of the first studies on the production of H^+_3 from methyl compounds, via two-body charge separation dissociation process due to the absorption of 40.8eV photons from a toroidal grating monochromator. The authors have pointed out that the formation of double ionized methyl compound molecules requires excitation energies of the order of 30eV. Photon energies of this order of magnitude are not normally available within dense clouds because absorption by the abundant hydrogen species (and possibly by interstellar grains) in the other layers screens the high photons from penetrating deep into the cloud. However, it is recognized that stars can be buried within dense clouds and can act as local high energy sources (Charnley et al. 1988) promoting increase in chemistry complexity.

The H^+_3 peak, appearing at $m/q = 3$ in mass spectra, has also been observed in the dissociation of other methyl compound molecules, due to VUV photons and electrons, as the case of $C_2\text{H}_6, \text{CH}_3\text{CN, CH}_3\text{NCO, CH}_3\text{COOH, HCOOH}_2, \text{CH}_3\text{NH}_2, \text{cyclo-C}_6\text{H}_5, \text{n-C}_3\text{H}_7, \text{CH}_2\text{Cl, CH}_3\text{Br, CH}_3\text{I and others (Eland 1996; Thissen et al. 1994). The rates for rearrangement leading to H^+_3, D^+_3 and HD^+_3 have been studied by Furukawa et al. (2005) in an experiment on methanol and deuterated methanol (CD$_3$OH) under intense laser (800 nm) fields.}$

Recently, Sharma & Bapat (2006) have reported the production of H^+_3 ion by the ionization/dissociation of ethanol molecule by a 1.3keV electron beam. The authors have pointed out the determination of active sites for H atom rearrangement in the dissociation of single and double ionized ethanol (CH$_3$CH$_2$OH) and deuterated ethanol (CH$_3$CD$_2$OD). They also have found that H^+_3 is far more likely to be formed by of rearrangements of H atoms on the CH$_2$ and OH sites, rather than the CH$_3$ site.

In this work, we present a set of experimental results obtained from photoionization and photodissociation processes of abundant CH$_3$-X type interstellar organic molecules like, methanol (CH$_3$OH), methylamine (CH$_3$NH$_2$) and acetonitrile (CH$_3$CN), as another route for the production of H^+_3 ion in star-forming regions. In these environments the radiation field (UV and X-rays) can promote several photophysical and photochemical processes onto molecules, including the photodissociation. The products of organic molecules dissociation (ex. reactive ions and radicals) can also provide the formation of interstellar complex molecules like long carbon chain molecules and amino acids (ex. glycine).

In section 2 we present the experimental setup and the data analysis technique employed. The results are shown and described in section 3. Final remarks and conclusions are present in section 4.

2 EXPERIMENTAL

The measurements were taken at the Brazilian Synchrotron Light Laboratory (LNLS), in Campinas, São Paulo, Brazil. Briefly, soft X-rays photons (100-310 ev) from a toroidal grating monochromator (TGM) beamline (~ 10^{12} photons/s), perpendicularly intersect the gas sample inside a high vacuum chamber. The gas needle was kept at ground potential. The emergent photon beam flux was recorded by a light sensitive diode. The complete description of the experimental setup could be found elsewhere (Boechat-Roberty et al. 2005; Pilling et al. 2006).

Figure 1. Schematic diagram of the time of flight mass spectrometer inside the experimental vacuum chamber and the associated electronics.

Conventional time-of-flight mass spectra (TOF-MS) were obtained using the photoelectron and photon coincidence (PEPICO) technique. The ionized recoil fragments produced by the interaction with the photon beam were accelerated by a two-stage electric field and detected by two micro-channel plate detectors in a chevron configuration, after mass-to-charge (m/q) analysis by a time-of-flight mass spectrometer (297 mm long). They produced up to three stop signals to a time-to-digital converter (TDC) started by the signal from one of the electrons accelerated in the opposite direction and recorded without energy analysis by two micro-channel plate detectors. A schematic diagram of the time of flight spectrometer, mounted inside the experimental vacuum chamber, is shown in Fig. 1 where A1 and A2 are the pre-amplifiers and D1 and D2 are the

1 UMIST gas-phase chemical reaction network (www.ufda.net)
Production of H_3^+ via molecular photodissociation.

the discriminators. The connection to the time-to-digital converter is also shown.

Besides PEPICO spectra, other two kinds of coincidence mass spectra were obtained simultaneously, PE2PICO spectra (photoelectron photoion coincidence) and PE3PICO spectra (photoelectron photoion photoion coincidence) (see details in Pilling 2006b; 2006c). These spectra have ions coming from double and triple ionization processes respectively, that arrive coincidentally with photoelectrons. Of all signals received by the detectors only about 10% come from PE2PICO and 1% from PE3PICO spectra, due to the limited detection efficiencies. This reflect that the majority contribution to data came from aborted double and triple coincidence events. Nonetheless, PEPICO, PE2PICO and PE3PICO signals were taken into account for normalization purposes. Negative ions may also be produced and detected, but the corresponding cross-sections are negligible.

The samples were bought commercially from Sigma-Aldrich with purity greater than 99.5%. No further purification was performed other than degassing the liquid sample by multiple freeze-pump-thaw cycles before admitting the vapor into the chamber.

The base pressure in the vacuum chamber was in the 10$^{-8}$ Torr range. During the experiment the chamber pressure was maintained below 10$^{-5}$ Torr. The pressure at the interaction region (volume defined by the gas beam and the photon beam intersection) was estimated to be \sim 0.1-1 Torr (10^{15} - 10^{16} molecules cm$^{-3}$). The measurements were made at room temperature.

The partial ion yield for H_3^+ (PIY$_{H_3^+}$) or relative intensities of H_3^+ produced due to the photodissociation of the studied organic molecules, was determined directly from PEPICO spectra by the expression

$$PIY_{H_3^+} = \frac{A_{H_3^+}}{A_i\times\sqrt{\frac{A_{H_3^+} + A_i \times ER}{100}}} \times 100\%$$ (3)

where $A_{H_3^+}$ is the area of a H_3^+ peak, the A_i is the total area of the PEPICO spectrum. The $ER = 2-4\%$ is the estimated error factor due to the data acquisition and data treatment.

In a similar manner, for the PE2PICO spectra, we have determined the partial double coincidence yield for H_3^+ (PDCY$_{H_3^+}$), or the relative production of H_3^+ in coincidence with another ion i from the dissociation of double ionized organic molecule, by

$$PDCY_{H_3^+} = \frac{A_{H_3^+}}{A_i\times\sqrt{\frac{A_{H_3^+} + A_i \times ER}{100}}} \times 100\%$$ (4)

where $A_{H_3^+}$ is the number of events in double coincidence of a given ion i and H_3^+ pair and A_i^{2+} is the total number of count of PE2PICO spectra.

The data treatment and analysis of PE2PICO spectra as well the determination of PDCY were performed using the program described elsewhere (Pilling 2006).

The complete results about the photoinitiation and photodissociation of methanol by soft X-rays could be found elsewhere (Pilling et al. 2006c; 2006d). The same experimental study for the other abundant CH$_3$-X type interstellar organic molecules like methylamine and acetonitrile are the subject of future publication.

3 RESULTS AND DISCUSSION

Figure 2 shows a detail of the mass spectrum of the fragments produced by single photoionization (PEPICO) of acetonitrile (Fig. 2a), methanol (Fig. 2b) and methylamine (Fig. 2c) recorded with photons at energies between 200 eV and 310 eV (over the C1s resonance, about \sim 290 eV). The presence of the H_3^+ peak (m/q=3) and its relative intensity (PIY) are indicated in each figure. The other two lightest ions (H^+, H_2^+) are also seen. The insets in both figures represent the fully mass spectra of each molecule for comparison. Our data have shown that about 0.1%, 0.7% and 0.5% of the photodissociation channels of acetonitrile, methanol and methylamine, respectively, lead to the H_3^+ production.

In star-forming regions like Sgr B2, Orion KL and W51, the presence of widespread UV and X-ray fields could trigger the formation of photodissociation regions - PDRs (Tielens & Hollenbach 1985) and X-rays dominated regions - XDRs (Maloney, Hollenbach & Tielens 1996) where many molecules could be detected (ex. Ehrenfreund & Charnley 2000). As pointed out by Casanova et al. (1995), Koyama et al. (1996) and Imanishi et al. (2001), protostars are extremely efficient sources of X-ray photons that are capable of traversing large column densities of gas before being absorbed.
The X-ray-dominated regions (XDRs) in the interface between the
ionized gas and the self-shielded neutral layers could influence the
selective heating of the molecular gas. The complexity of these
regions possibly allows a combination of different scenarios and
excitation mechanisms to coexist (Goicoechea et al. 2004).

In our previous works (Pilling 2006b; 2006c) we reported that
the X-rays can penetrate deeper into the molecular clouds than,
for example, UV photons and affect the gas-phase chemistry even
at large distance from the source.

The averaged cross sections for H$_3^+$ production by soft X-rays
photons in the energy range of 200 to 310 eV, were determined
using the methodology describe elsewhere (Boechat-Roberty et al.
2005; Pilling et al. 2006). The comparison between the partial
double coincidence yield for H$_3^+$ ion (PDCY$_{H_3^+}$) recorded
with VUV and soft X-ray photons is present in Table 1. Despite the
small values on the H$_3^+$ photoproduction by soft X-rays compared
with the VUV photons, inside molecular clouds the soft X-ray field
could be higher than the VUV field.

Thissen (1993) have also reported the presence of H$_3^+$ (and
also D$_3^+$, HD$_3^+$ and H$_2$D$_3^+$) on PE2PICO spectra of methylamine
and deuterated-methylamine species recorded by 30-60 eV photons.
Following the author, the production of H$_3^+$-like species from
dissociation of single ionized methylamine-like molecules at these
photon energies or lower is negligible.

3.1 H$_3^+$ photoproduction cross section and rate in soft X-ray field

As pointed by Stäuber et al. (2005), due to the low absorption cross
section, X-rays can penetrate deeper into the molecular clouds than,
for example, UV photons and affect the gas-phase chemistry even
at large distance from the source.

The averaged cross sections for H$_3^+$ production by soft X-rays
photons in the energy range of 200 to 310 eV, were determined
using the methodology describe elsewhere (Boechat-Roberty et al.
2005; Pilling et al. 2006a). Following the discussion of Chen et
al. (1981) about the negligible fluorescence yield (due to the low
carbon atomic number) and anionic fragments production in the
present photon energy range, we adopted that all absorbed photon
leads to cationic ionizing process. Therefore, in order to put our
data on an absolute scale, after a subtraction of a linear background
and false coincidences coming from aborted double and triple
ionization, we have summed up all the contributions of all cationic
fragments detected and normalized them to the absolute photoab-
sorption cross section taken from literature. For acetonitrile and
methanol, the absolute photoabsorption cross section wereobtained
by Hitchcock et al. (1989) and by Ishii & Hitchcook (1988), respec-
tively. In the case of methylamine, due to the lack of the absolute
photoabsorption measurements on literature, we have used the values
obtained for the methanol (Ishii & Hitchcook 1988) to gives an
estimative of the averaged cross sections for H$_3^+$ production.

Briefly, the photoproduction cross section of H$_3^+$ by the dis-
sociation of single ionized, σ_3^+, and from double ionized, σ_3^{++},
organic molecules are given by

$$\sigma_3^+ = \frac{PIY_{H_3^+}}{100} \quad \text{and} \quad \sigma_3^{++} = \frac{PDCY_{H_3^+}}{100}$$

Table 1. Comparison between the partial double coincidence yield for H$_3^+$
ion (PDCY$_{H_3^+}$) recorded with VUV and soft X-ray photons.

CH$_3$-X molecule	VUVa (40.8 ev)	Soft X-raysb (200-310 eV)
Acetonitrile	1.0	0.1 / 0.1c
Methanol	11.2	3.7 / 0.7c
Methylamine	13.0	3.9 / 0.5c

a Eland (1996); b this work;
c PIY (relatives intensities from single ionization)

recorded with VUV photons (Eland 1996) with soft X-ray photons
from this work is present in Table 1. Despite the small values on the
H$_3^+$ photoproduction by soft X-rays compared with the VUV pho-
tons, inside molecular clouds the soft X-ray field could be higher
than the VUV field.

![Figure 3](image)

Figure 3. Detail of the PE2PICO spectra obtained by the dissociation of
double photoionized molecules a) acetonitrile, b) methanol c) methylamine.
See details in text.
spectra as previously discussed. The estimated experimental error is considered to be lower than 30%.

In general, as discussed by Stäuber et al. (2005), primary X-ray ionization plays only a minor role in the chemistry since reaction are ~1000 times slower compared to the relevant chemical reactions and more than 10 times slower than electron impact ionization as the case of AFGL 2591 model parameters. However, in denser regions inside the molecular clouds, the X-ray ionization rate may exceed the cosmic-ray ionization and become a significative source of photoionization and photodissociation.

The H_3^+ photoproduction rate due to the dissociation of methyl-compound molecules by soft X-rays (200-310 eV) is given by the simple expression:

$$k_{ph} = \int \sigma_{H_3^+} \epsilon F(x) dx - \sigma_{H_3^+} F_{soft} \text{ [s}^{-1}]$$

where $\sigma_{H_3^+} = \sigma_{H_3^+}^{++} + \sigma_{H_3^+}^{+}$ and F_{soft} is the averaged H_3^+ photoproduction cross section and photon flux over the soft X-ray energy (200-310 eV).

Table 2. Averaged H_3^+ photoproduction cross section and photoproduction rate for an X-ray luminosity of $L_x \geq 10^{31}$ erg/s (Stäuber et al. 2005), from the dissociation of methanol, methylamine and acetonitrile by soft X-rays photons over the C1s edge (200-310 eV). See details in text.

CH$_3$-X molecule	$\sigma_{H_3^+}^{++}$ (x10$^{-19}$ cm2)	$\sigma_{H_3^+}^{+}$ (x10$^{-19}$ cm2)	$\sigma_{H_3^+} = \sigma_{H_3^+}^{++} + \sigma_{H_3^+}^{+}$ (x10$^{-18}$ cm2)	k_{ph} (x10$^{-15}$ s$^{-1}$)
Acetonitrile	2.0	0.2	~0.2	400; 0.05c
Methanol	12.0	2.0	1.4	300; 0.4c
Methylaminea	8.0	3.0	1.1	200; 0.3c

a Estimated value.

b At a distance $r \sim 200$ AU (2.5 x 1015 cm) from the central source; $F_{soft} \geq 2 \times 10^5$ photons cm$^{-2}$ s$^{-1}$.

c $r \sim 5000$ AU (7 x 1016 cm); $F_{soft} \geq 3 \times 10^5$ photons cm$^{-2}$ s$^{-1}$.

Production of H_3^+ via molecular photodissociation.

3.2 Photoproduced H_3^+ abundance

Methanol is one of the most abundant molecule in interstellar medium and in dense molecular clouds. Therefore, even despite the reduced production of H_3^+ from X-rays photodissociation process, it is reasonable to expect that at least a fraction of the detected H_3^+ in molecular clouds may be produced from this simple methyl compound molecule. Considering methanol as an alternative source of H_3^+ inside dense molecular clouds, we derive its reaction scheme by:

$$CH_3OH^* + h\nu \xrightarrow{k_{ph}} H_3^+ + COH \quad (or \ H_3^+ + CO^*)$$

$$H_3^+ + CO \xrightarrow{k_{CO}} COX^+ + H_2$$

where $h\nu$ is the soft X-ray photons, k_{ph} is the H_3^+ photoproduction rate [s$^{-1}$] for the dissociation of CH$_3$OH and $k_{CO} \sim 2 \times 10^{-9}$ cm$^{-3}$ s$^{-1}$ is the canonical rate constant for the H_3^+ destruction reaction due to CO molecules. As discussed by McCall et al. (1999), others H_3^+ destruction processes may also occur inside dense molecular clouds, for example, the dissociation due to electron recombination. However, due to the large abundance of CO in comparison with free electrons, inside dense molecular clouds, it becomes the dominant destruction route of H_3^+ (Oka 2006). One can ask about the H_3^+ photodestruction rate by the same X-ray field within the cloud, however it certainly must be lower than its UV photodissociation rate $k_{ph} < 10^{-12}$ s$^{-1}$ (van Dishoeck 1987).

Following the above statements, and assuming the steady-state approximation inside dense molecular cloud, the rate of change in the amount of H_3^+ coming from methanol due to photodissociation by soft X-rays can be described by:

$$\frac{d[H_3^+]}{dt} = k_{ph}[CH_3OH] - k_{CO}[CO] = 0$$

where $[H_3^+]$, [CH$_3$OH] and [CO] is the number density of photoproduced H_3^+, methanol and carbon monoxide inside the molecular cloud.

Assuming a chemical homogeneity into the molecular cloud, Eq. (9) gives the simple relation:

$$N_{H_3^+}^{phot} \sim \frac{k_{ph}}{k_{CO}[CO]} N_{CH_3OH}$$

where $N_{H_3^+}^{phot}$ is the column density of the photoproduced H_3^+ from methanol dissociation due to soft X-ray (200-310 eV), and N_{CH_3OH} is the column density of interstellar methyl alcohol. Following Oka (2006), inside dense molecular clouds the CO number density is about 10-0.1 cm$^{-3}$.

In Table 3 we present the methanol column density and the total H_3^+ column density, $N_{H_3^+}$, from radioastronomical observations, together with the lower limits for the H_3^+ column density resulting from the photodissociation of methanol molecules by soft X-rays inside these clouds. The photoproduced H_3^+ fraction over the total observed H_3^+ is also showed. We have adopted a typical X-ray luminosity $L_X \geq 10^{31}$ erg s$^{-1}$ which best fit the observational data for AFGL 2591 (Stäuber et al. 2005) as a good approximation of the radiation field also for the others dense molecular clouds. Two lower
limit for averaged soft X-ray flux were considered, $F_{\text{softX}} \gtrsim 2 \times 10^5$ and $\gtrsim 3 \times 10^5$ photons cm$^{-2}$ s$^{-1}$, as discussed before. We adopted the averaged CO number density of about 1 cm$^{-3}$. Assuming a steady state scenario, the highest value for the H_3^+ column density from methanol dissociation by soft X-rays was about $N_{H_3^+}^{\text{CH}_3OH} \gtrsim 10^{11}$ cm2, which in the case of AFGL 2591 gives the fraction of the produced H_3^+ due to CH$_3$OH photodissociation, $N_{H_3^+}^{\text{ph}} / N_{H_3^+}^{\text{tot}} \approx 0.05\%$. For the lower soft X-ray photon flux the calculated values were about 3 orders of magnitude lower.

Despite the small value of $N_{H_3^+}^{\text{ph}}$ compared with the H_3^+ column density from radioastronomical observation, this may represent a new source of H_3^+ inside molecular clouds and it is not been considered as yet in interstellar chemistry models. We cannot firmly assert that this will indeed become necessary to create models which fully explain radioastronomical observations, but we consider that our experimental results should be born in mind in those particular circumstances where sources of high energy excitation of extant CH$_3$X could exist.

Based on our experimental data, we expect that in other methanol rich molecular clouds, as pointed out recently in 40 galactic center molecular clouds (Requena-Torres et al. 2006), may also have some amount of H_3^+ coming from the soft X-ray (or VUV) photodissociation process of methyl compound molecules.

4 CONCLUSIONS

As discussed by Ruhl et al. (1990), the formation of double ionized methyl compound molecules and consequently its dissociation via process like the charge separation and others, requires excitation energies of the order of 30 eV. Within dense clouds, the photon energies of this order of magnitude are not normally available because the absorption by the abundant hydrogen species (and possibly by interstellar grains) in the other layers. However, the H-atom absorption cross section at wavelengths less than 124 eV (~ 100 Å) is small enough to allow soft X-rays to penetrate great depths into these clouds. Therefore, the photochemistry induced by soft X-rays and other sources of energetic radiation like cosmic rays or stellar wind particles should be considered within dense clouds.

The present work points out the importance of the dissociation processes promoted by soft X energy photons on the production of interstellar simply stable polyatomic molecule, H_3^+. The production of H_3^+ via the photodissociation of interstellar methyl compound organic molecules has been studied using photoelectron-photoion coincidence techniques using soft X-rays photons (200-310 eV).

We have shown that the photodissociation of CH$_3$-X like organic molecules by soft X-rays, leads to the production of H_3^+, among the several other dissociation channels, by:

$$\text{CH}_3X + h\nu \rightarrow H_3^+ + CX + e^- \quad \text{(or } H_3^+ + CX^+ + 2e^-) \quad (11)$$

where $h\nu$ = soft X-rays and $X = \text{OH, NH}_2$ and CN.

We have shown that about 0.7% and 3.7% of the single and double photodissociation channels of methanol, respectively, lead to the H_3^+ production. As the methanol is one of the most abundant molecule in interstellar medium it is reasonable to expect that at least a fraction of the detected H_3^+ could be resultant of this molecule photodecomposition followed by the rearrangement of the H atoms.

The H_3^+ photoproduction cross section due to the dissociation of the studied organic molecules by photons over the C1s edge (200-310 eV) were about 0.2-1.4 $\times 10^{-18}$ cm2.

Assuming a steady state scenario and a typical X-ray luminosity of $L_x \gtrsim 10^{31}$ erg s$^{-1}$ as the case for AFGL 2591 (Stäuber et al. 2005), the fraction of the produced H_3^+ due to CH$_3$OH photodissociation over the observed value, could reaches up to 0.05%. Despite the extreme small value, this represent a new and alternative source of H_3^+ inside dense molecular clouds and it is not been considered as yet in interstellar chemistry models. Moreover, the energetic ionic products released by dissociation of CH$_3$X molecules, including the H_3^+ ion, become an alternative and efficient route to complex molecular synthesis, since some ion-molecule reactions do not have an activation barrier and are also very exothermic.

We hope that the H_3^+ photoproduction cross section from dissociation of the studied organic molecules by soft X-rays and the photoproduction rate derived in this work will give rise to more precise values for some molecular abundances in interstellar clouds and even in planetary atmosphere models. Better estimative for H_3^+ photoproduction rate depends of more accurate soft X-ray radiation field determinations.

ACKNOWLEDGMENTS

The authors would like to express their gratitude to LNLS staff. This work was supported by the Brazilian funding agencies FUJB (UFRJ), CAPES, CNPq, and FAPERJ. We are indebted to the referee Dr. Jonathan Tennyson for the critical reading and essential suggestions for the manuscript.
REFERENCES

Boechat-Roberty H. M., Pilling S. & Santos A. C. F., 2005, A&A 438, 915.
Bowers M. T., Ellemans D. D. & King J., 1969, J. Chem. Phys, 50, 4748.
Brittain S. D. & Rettig T. W., 2002, Nature, 418, 57.
Brittain S. D., Simon T., Kulesa C. & Rettig T. W., 2004, ApJ, 606, 911.
Burt J. A., Dunn J. L., McEvon M. J., Sutton M. M., Roche A. E. & Schiff H. I., 1970, J. Chem. Phys., 52, 6062.
Casanova S., Montmerle T., Feigelson E. D. & André P., 1995, ApJ, 439, 752.
Connerney J. E. P. & Satoh T., 2000, T. Phil. Trans. R. Soc. Lond. A358, 2359.
Connerney J. E. P., Baron E., Satoh T. & Owen T., 1993, Science, 262, 1035.
Dalgarano A. & Black J. H. 1976, Rep. Prog. Phys. 39, 573.
Drossart P., Maillard J.-P., Caldwell J., Kim S. J., Watson J. K. G., Majewski W. A., Tennyson J., Miller S., Atreya S. K., Clarke J. T., Waite J. H. & Wagener R., 1989, Nature, 340, 539.
Eland J. H. D., 1996, Rapid Communications in Mass Spectrometry, 10, 1560.
Ehrenfreund P. & Charnley S. B., 2000, ARAA, 38, 427.
Furukawa Y., Hoshina K., Yamanouchi K. & Nakano H., 2005, Chemical Physics Letters 414, 117.
Geballe T. R. & Oka T., 1996, Nature, 384, 334.
Geballe T. R., Jagod M. -F. & Oka T., 1993, ApJ, 408, L102.
Goicoechea, J. R., Rodriguez-Fernandez, N. J., & Cernicharo J., 2004 ApJ, 600, 214.
Herbst E. & Klemperer W., 1973, ApJ, 185, 505.
Hitchcock A. P., Tronc M. & Modelli A., 1989, J. Phys. Chem., 93, 3068.
Imanishi K., Koyama K. & Tsuboi Y., 2001, ApJ, 557, 747.
Ishii I. & Hitchcock A. P., 1988, J. El. Spec. 46, 55.
Koyama, K., Hamaguchi, K., Ueno, S., Kobayashi, N. & Feigelson E. D., 1996, PASJ, 48, L87.
Maloney P. R., Hollenbach D. J. & Tielens A. G. G. M., 1996, ApJ, 466, 561.
McCull B. J., Geballe T. R., Hinkle K. H. & Oka T., 1999, ApJ, 522, 338.
McCull B. J., Geballe T. R., Hinkle K. H. & Oka T., 1998, Science, 279, 1910.
McCull B. J. & Oka T., 2000, Science, 287, 1941.
Millar T. J., Farquhar P. R. A. & Willacy K., 1997, A&AS, 121, 139.
Miller S., Tennyson J., Leep S. & Dalgarno A., 1992, Nature, 355, 420.
Oka T. & Geballe T. R., 1990, ApJ, 351, L53.
Oka T., 2002, Nature, 418, 31.
Oka T., 2004, Springer Proceedings in Physics, 91, 37.
Oka T., Geballe T. R., Goto M., Usuda T. & McCull B. J., 2005, ApJ, 632, 882.
Oka T., 2006, PNAS, 103, 12235.
Pilling S. 2006, PhD thesis, IQ-UFRJ, Rio de Janeiro, Brasil.
Pilling S., Santos A. C. F. & Boechat-Roberty H. M., 2006a, A&A, 449, 1289.
Pilling S., Boechat-Roberty H. M., Santos A. C. F., de Souza G. G. B. & Naves de Brito A., 2006b, J. El. Spect. Rel. Phenom., DOI:10.1016/j.elspec.2006.11.023.
Pilling S., Boechat-Roberty H. M., Santos A. C. F. & de Souza G. G. B., 2006c, J. El. Spect. Rel. Phenom. - SCASM edition, in press.
Pilling S., Neves R., Santos A. C. F. & Boechat-Roberty H. M., 2006d, A&A, in press.
Requena-Torres M. A., Martín-Pintado J., Rodríguez-Franco A., Martin S., Rodríguez-Fernandez N. J. & de Vicente P., 2006 A&A 455, 97.
Ruhl E., Price S. D., Leach S. & Eland J. H. D., 1990, Int. J. Mass Spectrom. Ion Process., 97, 175.
Stäuber P., Doty S. D., van Dishoeck E. F. & Benz A. O., 2005, A&A, 440, 949.
Suzuki H., 1979, Prog. Theor. Phys., 62, 936.
Tielens A. G. G. M. & Hollenback D., 1985 ApJ, 291, 722.
Thissen R., Simon M., Hubin-Franskin M. -J., 1994, J. Chem. Phys., 101, 7548.
Thissen R., 1993, PhD thesis, University of Liege, Belgium.
Trafton L. M., Geballe T. R., Miller S., Tennyson J. & Ballester G. E., 1993, ApJ, 4555, 761.
vander Tak F. F. S., van Dishoeck E. F. & Caselli P., 2000, A&A, 361, 327.
van Dishoeck E. F., 1987, Proceedings of IAU Symposium 120: Astrochemistry, 51, Eds: Vardya M. S. & Tarafdar S. P.

This paper has been typeset from a \LaTeX file prepared by the author.