Integrability of geodesic flows for metrics on suborbits of the adjoint orbits of compact groups

Ihor V. Mykytyuk
email: mykytyuk_i@yahoo.com

February 27, 2014

Abstract
Let G/K be an orbit of the adjoint representation of a compact connected Lie group G, σ be an involutive automorphism of G and \tilde{G} be the Lie group of fixed points of σ. We find a sufficient condition for the complete integrability of the geodesic flow of the Riemannian metric on $\tilde{G}/(\tilde{G}\cap K)$, which is induced by the bi-invariant Riemannian metric on \tilde{G}. The integrals constructed here are real analytic functions, polynomial in momenta. It is checked that this sufficient condition holds when G is the unitary group $U(n)$ and σ is its automorphism defined by the complex conjugation.

Introduction

Let G/K be a homogeneous space of a compact Lie group G. We consider the problem of the complete integrability of the geodesic flow of the Riemannian metric on G/K, which is induced by a bi-invariant Riemannian metric on G. This problem was solved for some types of homogeneous manifolds, including symmetric spaces, spherical spaces, Stiefel manifolds, flag manifolds, orbits of the adjoint actions and others (see [Mi], [GS], [My2], [MS], [BJ1], [BJ3], [MP]). Here we consider a new family of homogeneous manifolds – suborbits of orbits of the adjoint actions.

This paper is motivated by the paper [DGJ], where were constructed integrable geodesic flows of \tilde{G}-invariant metrics on the homogeneous space $\tilde{G}/\tilde{K} = SO(n)/(SO(k_1) \times SO(k_2) \times \cdots \times SO(k_r))$, $k_1 + k_2 + \cdots + k_r \leq n$. The method of the proof in [DGJ] is based on investigations of bi-Poisson structures on the Lie algebras $\mathfrak{u}(n)$ and $\mathfrak{so}(n)$ associated with Lie algebra deformations. We consider the Lie-algebraic aspects of the integrability problem for such homogeneous spaces. Our approach is based on the following observation: the space \tilde{G}/\tilde{K} is a G-suborbit of the adjoint orbit $G/K = U(n)/(U(k_1) \times U(k_2) \times \cdots \times U(k_r))$ of the Lie algebra $\mathfrak{u}(n)$ of the unitary group, i.e. $\tilde{G}/\tilde{K} = \text{Ad}(\tilde{G})(a)$, where $a \in \mathfrak{u}(n)$.

This research is partially supported by Ministry of Economy and Competitiveness, Spain - CSIC, under Project MTM2011-22528.
and \(G/K = \text{Ad}(G)(a) \). Moreover, \(\tilde{G} \) is the group of fixed points of the involutive automorphism \(\sigma \) of \(U(n) \) induced by the complex conjugation. In other words, the space \(G/K \) is defined uniquely by the pair \((G/K, \sigma)\), where \(G/K = \text{Ad}(G)(a) \) is an arbitrary adjoint orbit of the Lie group \(G \) in its Lie algebra \(g \) with \(a \in (1 - \sigma_\ast)g \), \(\sigma_\ast \) is the tangent automorphism of the Lie algebra \(g \).

Let \(G \) be an arbitrary compact connected Lie group \(G \) with an involutive automorphism \(\sigma : G \to G \) and let \(\tilde{G} \) be the set of fixed points of \(\sigma \). In the article we investigate the integrability of the geodesic flow on the cotangent bundle \(T^\ast(\tilde{G}/\tilde{K}) \) defined by a \(\tilde{G} \)-invariant metric on \(\tilde{G}/\tilde{K} \), which is induced by a bi-invariant Riemannian metric on \(\tilde{G} \). As a homogeneous space \(\tilde{G}/\tilde{K} \) we consider the homogeneous space associated with the adjoint orbit \(G/K = \text{Ad}(G)(a) \) of arbitrary point \(a \in (1 - \sigma_\ast)g \), i.e. \(\tilde{K} = \tilde{G} \cap K \). We found a sufficient purely algebraic condition for the integrability of this geodesic flow on the symplectic manifold \(T^\ast(\tilde{G}/\tilde{K}) \) (Theorem 2.17). We prove that this sufficient condition holds when \(G \) is the unitary group \(U(n) \) and \(\sigma \) is its automorphism defined by the complex conjugation (Theorem 2.18). Our approach is based on the fact that \(G/K \subset G/K \) is a totally real (Lagrangian) submanifold of the homogeneous Kähler manifold \((G/K, \sigma)\) (the compact orbit) \(G/K \) and \(T(G/K) \subset T(G/K) \) is a totally real submanifold of \(T(G/K) \). But to simplify calculations we reformulate this fact in some algebraic terms (not explicitly, since explicit reformulation is very complicated from the point of view of calculations on \(T(T(G/K)) \)).

One calls a Hamiltonian system on \(T^\ast M \) (completely) integrable if it admits a maximal number of independent integrals in involution, i.e. \(\dim M \) functions commuting with respect to the Poisson bracket on \(T^\ast M \) whose differentials are independent in an open dense subset of \(T^\ast M \). By Liouville's theorem the integral curves of an integrable Hamiltonian system under a certain additional compactness hypothesis are quasiperiodic (are the orbits of a constant vector field on an invariant torus).

Let \(A^G \) be the set of all \(G \)-invariant real analytic functions on the cotangent bundle \(T^\ast M \) of \(M = G/K \). This space is an algebra with respect to the canonical Poisson bracket on the symplectic manifold \(T^\ast M \). The natural extension of the action of \(G \) on \(M \) to an action on the symplectic manifold \(T^\ast M \) is Hamiltonian with the moment mapping \(\mu^\text{can} : T^\ast M \to g^\ast \). The functions of type \(h \circ \mu^\text{can} : g^\ast \to \mathbb{R} \), are integrals for any \(G \)-invariant Hamiltonian flow on \(T^\ast M \), in particular, for the geodesic flow corresponding to any \(G \)-invariant Riemannian metric on \(M \). In general, a maximal involutive subset of \(\{ h \circ \mu^\text{can}, h : g^\ast \to \mathbb{R} \} \) is not a maximal involutive subset of the algebra \(C^\infty(T^\ast M) \). But for the compact Lie group \(G \) the problem of constructing of a maximal commutative set of real analytic functions on \(T^\ast(M/K) \) is reduced to the problem of a finding of a maximal commutative set of real analytic functions from the set \(A^G \) (see [My], [BJ], Lemma 3, [Pa]). This is true also for the group \(\tilde{G} \) and the corresponding algebra \(\tilde{A}^G \subset C^\infty(T^\ast(\tilde{G}/\tilde{K})) \).

The algebra of functions \(A^G \) on \(T^\ast(G/K) \), where, recall, \(G/K \) is an adjoint orbit, contains some maximal involutive subset \(F \) of \(A^G \) consisting of independent functions (MP Theorem 3.10), see also [BJ], [BJ1]. The homogeneous space \(\tilde{G}/\tilde{K} \), as we remarked above, is a submanifold of \(G/K \) and therefore \(T(\tilde{G}/\tilde{K}) \) is a submanifold of \(T(G/K) \). Moreover, \(T(\tilde{G}/\tilde{K}) \) is a symplectic submanifold of \(T(G/K) \), where the symplectic structures on these spaces are defined via iso-
morphisms $T(G/K) \simeq T^*(G/K)$ and $T(G/K) \simeq T^*(G/K)$ using a standard G-invariant metric on G/K and its restriction to G/K (see Proposition 1.14). The set $\tilde{\mathcal{F}} = \{ f \mid T(\tilde{G}/\tilde{K}), f \in \mathcal{F} \}$ of restrictions is an involutive subset of the algebra $A^\tilde{G}$.

This involutiveness of the functions from $\tilde{\mathcal{F}}$ is a consequence of the fact that G/\tilde{G} is a symmetric space and follows easily from results published in [MF], [TF]. The following observation is crucial in our approach:

if the functions from the set \mathcal{F} are independent at some point of the symplectic submanifold $T(\tilde{G}/\tilde{K}) \subset T(G/K)$, then the set $\tilde{\mathcal{F}}$ is a maximal involutive subset of the algebra $A^\tilde{G}$.

Therefore we describe explicitly some open dense subset O of $T(G/K)$, where all functions from the set \mathcal{F} are independent (Theorem 2.13) in the paper [MP] only the existence of such a set was proved). We prove that $O \cap T(\tilde{G}/\tilde{K}) \neq \emptyset$ if G is the unitary group $U(n)$ and σ is its automorphism defined by the complex conjugation (Theorem 2.18).

1 G-invariant bi-Poisson structures and moment maps

1.1 Some definitions, conventions, and notations

All objects in this paper are real analytic, X stands for a connected manifold, $\mathcal{E}(X)$ for the space of real analytic functions on X.

We will say that some functions from the set $\mathcal{E}(X)$ are independent if their differentials are independent at each point of some open dense subset in X. For any subset $\mathcal{F} \subset \mathcal{E}(X)$ denote by $\dim_x \mathcal{F}$ the maximal number of independent functions from the set \mathcal{F} at a point $x \in X$. Put $\dim_x \mathcal{F} \equiv \max_{x \in X} \dim_x \mathcal{F}$.

Let η be a Poisson bi-vector on X and let $\mathcal{A} \subset \mathcal{E}(X)$ be a Poisson subalgebra of $(\mathcal{E}(X), \eta)$, i.e. \mathcal{A} is a vector space closed under the Poisson bracket $\{ , \}$: $(f_1, f_2) \mapsto \eta(df_1, df_2)$ on X. Put $(DA)_x \equiv \{ df_x : f \in \mathcal{A} \} \subset T_x^* X$ for any $x \in X$. Let B_x denote the restriction of η_x to this subspace $(DA)_x$. We say that a subset $\mathcal{F} \subset \mathcal{A}$ is a maximal involutive subset of the algebra (\mathcal{A}, η) if at each point x of some open dense subset in X the subspace $V_x = \{ df_x : f \in \mathcal{F} \} \subset (DA)_x$ is a maximal isotropic with respect to the form B_x, i.e. $B_x(V_x, V_x) = 0$ and $B_x(v, V_x) = 0$ for $v \in (DA)_x$ implies $v \in V_x$. In particular, any two functions $f_1, f_2 \in \mathcal{F}$ are in involution on X, i.e. $\{ f_1, f_2 \} = 0$.

Definition 1.1. A pair (η_1, η_2) of linearly independent bi-vector fields (bi-vectors for short) on a manifold X is called Poisson if $\eta^t \equiv t_1 \eta_1 + t_2 \eta_2$ is a Poisson bi-vector for any $t = (t_1, t_2) \in \mathbb{R}^2$, i.e. each bi-vector η^t determines on X a Poisson structure with the Poisson bracket $\{ , \}^t : (f_1, f_2) \mapsto \eta^t(df_1, df_2)$; the whole family of Poisson bi-vectors $\{ \eta^t \}_{t \in \mathbb{R}^2}$ is called a bi-Poisson structure.

A bi-Poisson structure $\{ \eta^t \}$ (we shall often skip the parameter space) can be viewed as a two-dimensional vector space of Poisson bi-vectors, the Poisson pair (η_1, η_2) as a basis in this space.
The set X_A of all points $x \in X$ for which $\dim_x A = \dim A$ is an open dense subset in X. But sometimes the exact description of this set is impossible or not constructive. Therefore we will consider some greater open subset $R_A \subset X$ containing X_A and such that there exists a smooth subbundle $\mathbb{C}_x \subset T^*_x X$, $x \in R_A$ of dimension $\dim \mathbb{C}_x$ of the cotangent bundle $T^*(R_A)$, where $D_x = (DA)_x$ if $x \in X_A$.

Suppose that a linear subspace $A \subset E$ is a Poisson subalgebra of $(E(X), \eta)$ for each $t \in \mathbb{R}^2 \setminus \{0\}$. Let B^*_x denote the restriction of η_x to the subspace D_x, $x \in R_A$.

Definition 1.2. We say that the pair $(A, \{\eta^t\})$ is Kronecker at a point $x \in R_A \subset X$ if the linear space $\{B^*_x, t \in \mathbb{C}^2\}$ is two dimensional and $\text{rank}_{\mathbb{C}} B^*_x$ is constant with respect to $(t_1, t_2) \in \mathbb{C}^2 \setminus \{0\}$. We mean $B^*_t, t \in \mathbb{C}^2$, as the complex bilinear form $t_1 B^*_x(\cdot, 1) + t_2 B^*_x(\cdot, 1)$ on the complexification $D^*_x \subset (T^*x)^{\mathbb{C}}$. We say that $(A, \{\eta^t\})$ is micro-Kronecker if it is Kronecker at any point of some open dense subset in X.

It is evident that this (micro)definition is independent of the choice of this greater open dense subset $R_A \subset X$.

The definitions above are motivated by the following assertion of Bolsinov which is fundamental for our considerations.

Proposition 1.3. [35] Let B_1 and B_2 be two linearly independent skew-symmetric bilinear forms on a vector space V. Suppose that the kernel of each form $B^t = t_1 B_1 + t_2 B_2, t \in \mathbb{R}^2$, is non-trivial, i.e. $0 < r = \min_{t \in \mathbb{R}^2} \dim \ker B^t$. Put $T = \{t \in \mathbb{R}^2 : \dim \ker B^t = r\}$.

Then

1. the subspace $L \defeq \sum_{t \in T} \ker B^t$ is isotropic with respect to any form B^t, $t \in \mathbb{R}^2$, i.e. $B^t(L, L) = 0$;
2. the space L is maximal isotropic with respect to any form B^t, $t \in T$, i.e.

$$
\dim L = \frac{1}{2}(r + \dim V) \text{ and } B^t(v, L) = 0, v \in V \implies v \in L,
$$

iff $\dim_{\mathbb{C}} \ker B^t = r$ for all $t \in \mathbb{C}^2 \setminus \{0\}$.

Suppose that the Poisson bi-vector η on X is non-degenerate. Then there exists a unique symplectic form ω on X such that $\eta(df_1, df_2) = -\omega(\xi_{f_1}, \xi_{f_2})$, where $\xi_{f_i}, i = 1, 2$ are the Hamiltonian vector fields of the functions f_i ($df_i = -\omega(\xi_{f_1}, \cdot)$). In other words, $\eta(\cdot, \cdot) = -\omega(\omega^{-1}(\cdot), \omega^{-1}(\cdot))$, where $\omega : TX \to T^*X$ is the natural isomorphism given by the contraction with the 2-form ω on the second index. Such a Poisson bi-vector η will be denoted by ω^{-1}.

Let G be a connected Lie group acting on a symplectic manifold (X, ω) and preserving its symplectic structure ω. Let \mathfrak{g} be the Lie algebra of G. For each vector $\xi \in \mathfrak{g}$ denote by ξ the fundamental vector field on X generated by the one-parameter diffeomorphism group $\exp(t\xi) \subset G$. The group G acts on the symplectic manifold (X, ω) in a Hamiltonian fashion if there is a G-equivariant map $\mu : X \to \mathfrak{g}^*$ such that for each $\xi \in \mathfrak{g}$ the field ξ is the Hamiltonian vector field with the Hamiltonian function $f_\xi : X \to \mathbb{R}, x \mapsto \mu(x)(\xi)$, i.e. $df_\xi = -\omega(\xi, \cdot)$. The equivariance property $\mu(g^{-1}x)(\xi) = \mu(x)(\text{Ad}(g)\xi)$, where $g \in G, x \in X$, of the moment map μ implies the identity $\{f_\xi, f_\eta\} = f_{\{\xi, \eta\}}$, where $\xi, \eta \in \mathfrak{g}$ and $\{,\}
is the Poisson bracket associated with \(\omega^{-1} \). In other words, the mapping \(\mu \) is canonical with respect to the Poisson structure \(\omega^{-1} \) on \(X \) and the standard linear Poisson structure on \(\mathfrak{g}^* \). Moreover, by definition \(\{ f, h \circ \mu \} = 0 \) for any \(G \)-invariant function \(f \) on \(X \) and \(h \in \mathcal{E}(\mathfrak{g}^*) \).

Consider a connected Riemannian manifold \((M, g)\) and its connected Riemannian submanifold \((\tilde{M}, \tilde{g})\), where \(\tilde{g} = g|\tilde{M} \). The cotangent bundles \(T^* M \) and \(T^* \tilde{M} \) are symplectic manifolds with canonical symplectic structures \(\Omega \) and \(\tilde{\Omega} \) respectively. Using the metric \(g \) (resp. \(\tilde{g} \)) we can identify \(T^* M \) with \(T^* \tilde{M} \) (resp. \(T^* \tilde{M} \)) with \(T^* \tilde{M} \)) the corresponding diffeomorphism. Let \(p : TM \to M \) (resp. \(\tilde{p} : T\tilde{M} \to \tilde{M} \)) be the natural projection and let \(\theta \) (resp. \(\tilde{\theta} \)) be the canonical 1-form on \(T^* M \) (resp. on \(T^* \tilde{M} \)).

Proposition 1.4. The symplectic manifold \((T\tilde{M}, \tilde{\varphi}^*\tilde{\Omega})\) is a symplectic submanifold of \((TM, \varphi^*\Omega)\), i.e. \(\tilde{\varphi}^*\Omega = \varphi^*\Omega|T\tilde{M} \). Moreover, \(\tilde{\varphi}^*\tilde{\theta} = \varphi^*\theta|T\tilde{M} \).

Proof. By definition, \(\theta_{x'}(Z') = x'((\pi_{x'}Z')) \), where \(\pi : T^* M \to M \) is the natural projection, \(x' \in T^*_q M \), \(q = \pi(x') \). Putting \(x' = \varphi(x) \in T^*_q M \) (to simplify notation) and taking into account that \(\pi \circ \varphi = p \) we obtain that for any \(Z \in T_q T M \)

\[
(\varphi^*\theta)x(Z) \overset{\text{def}}{=} \theta_{\varphi(x)}(\varphi_\ast xZ) \overset{\text{def}}{=} x'(\pi_{x'}(\varphi_\ast xZ)) = x'((\pi \circ \varphi)_\ast xZ) = x'(p_\ast xZ) = g_q(x, p_\ast xZ).
\]

Similarly, we obtain that

\[
(\tilde{\varphi}^*\tilde{\theta})\tilde{x}(\tilde{Z}) = \tilde{g}_{\tilde{q}}(\tilde{x}, \tilde{p}_\ast \tilde{Z}) \quad \text{for any} \quad \tilde{q} \in \tilde{M}, \; \tilde{x} \in T\tilde{q} \tilde{M}, \; \tilde{Z} \in T_{\tilde{x}} T\tilde{M}.
\]

In other words \(\tilde{\varphi}^*\tilde{\theta} = \varphi^*\theta|T\tilde{M} \), because \(\tilde{p}|T\tilde{M} = \tilde{p} \) and \(g|\tilde{M} = \tilde{g} \). Now to complete the proof it is sufficient to note that \(\Omega = d\theta \) and \(\tilde{\Omega} = d\tilde{\theta} \).

1.2 Hamiltonian actions on cotangent bundles and maximal involutive sets of functions

Let \(G \) be a compact connected Lie group with a closed subgroup \(K \). Denote by \(\mathfrak{g} \) and \(\mathfrak{t} \) the Lie algebras of the Lie groups \(G \) and \(K \). Let \(\Omega \) be the canonical symplectic form on the cotangent bundle \(X = T^* M \), where \(M = G/K \). The natural action of \(G \) on \((X, \Omega)\) is Hamiltonian with the moment map \(\mu^{\mathrm{can}} : X \to \mathfrak{g}^* \). This equivariant moment map \(\mu^{\mathrm{can}} \) has the form \(\mu^{\mathrm{can}}(x)(\xi) = \theta(\xi_X)(x) \), where \(\theta \) is the canonical 1-form on \(X = T^*(G/K) \).

Since the canonical form \(\Omega \) is \(G \)-invariant, the set \(A^G_X \) of \(G \)-invariant function on \(X \) is a subalgebra of \((\mathcal{E}(X), \eta^{\mathrm{can}})\), \(\eta^{\mathrm{can}} = \Omega^{-1} \). As we remarked above, the moment map \(\mu^{\mathrm{can}} \) is a Poisson map and therefore the set \(\{ h \circ \mu^{\mathrm{can}}, h \in \mathcal{E}(\mathfrak{g}^*) \} \) is also a subalgebra of \((\mathcal{E}(X), \eta^{\mathrm{can}})\). The following assertion is known [My3, §2], [BJJ] Lemma 3], [Pa], but here we formulate it in terms of maximal involutive subsets of Poisson algebras:

Proposition 1.5. Suppose that there exist a set of functions \(F \subset A^G_X \) which is a maximal involutive subset of the algebra \((A^G_X, \eta^{\mathrm{can}})\). Then there is a set \(\mathcal{H} \) of
polynomial function on g^* such that the set $\mathcal{F} \cup \{ h \circ \mu^\text{can}, h \in \mathcal{H} \}$ form maximal involutive set of independent functions on $T^*(G/K)$.

2 The integrability of geodesic flows

In this section for any compact Lie algebra a by $z(a)$ we will denote its center and by a_s its maximal semisimple ideal, i.e. $a = z(a) \oplus a_s$; for any real vector space or Lie algebra a by $a^\mathbb{C}$ we will denote its complexification.

2.1 Commutator on A^K_m induced by canonical Poisson structure on $T^*(G/K)$

Let $M = G/K$ be a homogeneous space of a compact connected Lie group G with the Lie algebra g. There exists a faithful representation χ of g such that its associated bilinear form Φ^χ is negative-degenerate on g (if g is semi-simple we can take the Killing form associated with the adjoint representation of g). Let $m = k^\perp$ be the orthogonal complement to k with respect to Φ^χ. Then $g = k \oplus m$, $[k, m] \subset m$.

The form $\langle \cdot, \cdot \rangle = -\Phi^\chi$ defines a G-invariant metric on G/K. This metric identifies the cotangent bundle $T^*(G/K)$ and the tangent bundle $T(G/K)$. Thus we can also talk about the canonical 2-form Ω on the manifold $T(G/K)$ (extension of the action of G on G/K).

We can identify the tangent space $T_o(G/K)$ at the point $o = p(e)$ with the space m by means of the canonical projection $p : G \to G/K$. Let A^G (resp. A^K_m) be the set of all G-invariant (resp. $\text{Ad}(K)$-invariant) functions on $T(G/K)$ (resp. on m). There is a one-to-one correspondence between G-orbits in $T(G/K)$ and $\text{Ad}(K)$-orbits in m. Thus we can identify naturally the spaces of functions A^G and A^K_m. For any smooth function f on m write $\text{grad}_m f$ for the vector field on m such that

$$df(y) = \langle \text{grad}_m f(x), y \rangle \quad \text{for all} \quad y \in m.$$

The Poisson bracket of two functions f_1, f_2 from the set $A^K_m = A^G$ with respect to the canonical Poisson structure η^can (determined by the canonical 2-form Ω) has the form [MP] Lemma 3.1:

$$\{f_1, f_2\}^\text{can}(x) = -\langle x, [\text{grad}_m f_1(x), \text{grad}_m f_2(x)] \rangle, \quad x \in m. \quad (2.2)$$

Now, let us consider an important for our considerations subset of m. For any $x \in m$ define the subspace $m(x) \subset m$ putting

$$m(x) \overset{\text{def}}{=} \{ y \in m : [x, y] \in m \} = \{ y \in m : \langle y, \text{ad} x(t) \rangle = 0 \}, \quad (2.3)$$

in particular,

$$\text{ad} x(m(x)) \subset m \quad \text{and} \quad m(x) \oplus \text{ad} x(t) = m. \quad (2.4)$$
For any element $x \in \mathfrak{g}$ denote by g^x its centralizer in \mathfrak{g}, i.e. the set of all $z \in \mathfrak{g}$ satisfying $[x, z] = 0$. Put $\mathfrak{k} \subseteq \mathfrak{g}^z \cap \mathfrak{k}$. Consider in \mathfrak{m} a nonempty Zariski open subset:

$$R(\mathfrak{m}) = \{x \in \mathfrak{m} : \dim \mathfrak{g}^x = q(\mathfrak{m}), \dim \mathfrak{k} = p(\mathfrak{m})\},$$

where $q(\mathfrak{m})$ (resp. $p(\mathfrak{m})$) is the minimum of dimensions of the spaces \mathfrak{g}^y (resp. \mathfrak{t}^y) over all $y \in \mathfrak{m}$. Put $r(\mathfrak{m}) = q(\mathfrak{m}) - p(\mathfrak{m})$. Remark that the number $p(\mathfrak{m})$ is determined only by Ad-representation of \mathfrak{k} in \mathfrak{m}.

Let $(\cdot)_m$ be the projection in \mathfrak{g} into \mathfrak{m} along \mathfrak{k}. For each $x \in R(\mathfrak{m})$ the spaces $\mathfrak{m}(x)$ and $(\mathfrak{g}^x)_m \subset \mathfrak{m}(x)$ have the same dimensions

$$\dim \mathfrak{m}(x) = \dim \mathfrak{m} - (\dim \mathfrak{k} - p(\mathfrak{m})) \quad \text{and} \quad \dim((\mathfrak{g}^x)_m) = \dim \mathfrak{g}^x - \dim \mathfrak{k} = r(\mathfrak{m}).$$

Moreover, for each $x \in R(\mathfrak{m})$ the maximal semi-simple ideal $\mathfrak{g}_x^x = [\mathfrak{g}^x, \mathfrak{g}^x]$ of \mathfrak{g}^x is contained in the algebra \mathfrak{k}^x, i.e.

$$\mathfrak{g}_x^x = [\mathfrak{g}^x, \mathfrak{g}^x] = [\mathfrak{k}^x, \mathfrak{k}^x] = \mathfrak{k}^x,$$

if $x \in R(\mathfrak{m})$, (2.6) (see [My3, Prop.10] or [Mi]). Therefore, $\dim(\mathfrak{g}^x/\mathfrak{k}^x) = \mathfrak{g} - \mathfrak{k}^x$, i.e.

$$\dim \mathfrak{g}^x = \mathfrak{g} - \mathfrak{k}^x + (\dim \mathfrak{k}^x - \dim \mathfrak{k}^x), \quad \text{if} \ x \in R(\mathfrak{m}).$$

It is clear that for any $f \in \mathcal{A}^K_m$ grad$_m f(x) \in \mathfrak{m}(x)$. Moreover, since the Lie group K is compact, for each x from some nonempty Zariski open subset of \mathfrak{m} the space $\mathfrak{m}(x)$ is generated by vectors grad$_m f(x)$, $f \in \mathcal{A}^K_m$. Taking into account relation (2.2) and that $\dim V^0_x = r(\mathfrak{m})$ for $x \in R(\mathfrak{m})$, where

$$V^0_x \overset{\text{def}}{=} \{y \in \mathfrak{m}(x) : \langle y, [y, \mathfrak{m}(x)] \rangle = 0 \} = \{y \in \mathfrak{m}(x) : \langle [x, y], \mathfrak{m}(x) \rangle = 0 \}$$

$$= \{y \in \mathfrak{m}(x) : [x, y] \in \mathfrak{ad} x(\mathfrak{k}) \} = (\mathfrak{g}^x)_m \cap \mathfrak{m}(x) = (\mathfrak{g}^x)_m,$$

we obtain that the number

$$\frac{1}{2} (r(\mathfrak{m}) + \dim \mathfrak{m}(x)) = \frac{1}{2} (r(\mathfrak{m}) + \dim \mathfrak{m} - \dim \mathfrak{k} + p(\mathfrak{m}))$$

is a maximal number of functions in involution from the set \mathcal{A}^K_m functionally independent at the point x.

For arbitrary element $x \in R(\mathfrak{m})$ we have [My3, Prop.9]

$$[\mathfrak{m}(x), \mathfrak{k}^x] = 0. \quad (2.8)$$

Remark 2.1. The subspace $\mathfrak{m}(x) \subset \mathfrak{m}$ in some sense characterizes the Ad-action of K on \mathfrak{m} because $\mathfrak{ad} K(\mathfrak{m}(x)) = \mathfrak{m}$ (for any $y \in \mathfrak{m}$ the function $f_y : k \mapsto \langle \mathfrak{ad} k(y), x \rangle$ on the compact Lie group K takes its maximum value at some point $k_1 \in K$ and therefore $\mathfrak{ad} k_1(y) \perp \mathfrak{ad} x(\mathfrak{t})(\text{see [My2, Lemma 2.1]}))$. By the dimension arguments (see (2.7) from (2.8) and definition (2.5) we get that for $x \in R(\mathfrak{m})$ and each element $y \in \mathfrak{m}(x) \cap R(\mathfrak{m})$: $\mathfrak{t}^y = \mathfrak{k}^x$.

The compact Lie algebra \mathfrak{k} is a direct sum $\mathfrak{k} = \mathfrak{z}(\mathfrak{k}) \oplus \mathfrak{k}$, of the center and of the semisimple ideal. The center $\mathfrak{z}(\mathfrak{k})$ of \mathfrak{k} we will denote simply by \mathfrak{z} for short. Then we have the following orthogonal splittings with respect to the invariant form $\langle \cdot, \cdot \rangle$

$$\mathfrak{t} = \mathfrak{z} \oplus \mathfrak{t}_s, \quad \mathfrak{g} = \mathfrak{m} \oplus \mathfrak{z} \oplus \mathfrak{t}_s, \quad \mathfrak{m}_3 = \mathfrak{z} \oplus \mathfrak{m}, \quad \mathfrak{g} = \mathfrak{m}_3 \oplus \mathfrak{t}_s,$$
which serve as definition for m_3 (if $j = 0$ then $m_3 = m$ and $t_s = t$).

Consider the set $R(m_3)$ determined by (2.8) for the pair (g, t_s). Then for any $z + x \in m_3$ such that $z \in m_3, x \in R(m)$ and $z + x \in R(m_3)$ we have $t_{s+x} = t_{s+x}^*$ because $[3, t] = 0$. But t_s is the maximal semi-simple ideal of the compact Lie algebra (centralizer) t^x, and therefore $(\dim t^x - \text{rank } t^x) = (\dim t_{s+x}^* - \text{rank } t_{s+x}^*)$.

Thus by (2.7)

$$q(m) = \dim g^x = \text{rank } g + (\dim t^x - \text{rank } t^x) = \text{rank } g + (\dim t_{s+x}^* - \text{rank } t_{s+x}^*)$$

$$= \text{rank } g + (\dim t_{s+x}^* - \text{rank } t_{s+x}^*) = 0.$$

In other words, the following lemma is proved:

Lemma 2.2. The subset $R(m) \cap R(3 \oplus m) \subset m$ is a nonempty Zariski open subset of the vector space m and this set coincides with the set

$$\{x \in m : \dim g^x = q(m), \ \dim t^x = \min_{y \in m} \dim t^y, \ \dim t_{s+x}^* = \min_{y \in m} \dim t_{s+x}^y\}. \quad (2.9)$$

Remark that in the last condition in relation (2.9) describing the set $R(m) \cap R(3 \oplus m)$ we choose $y \in m$.

The following proposition is Proposition 2.3 from [MP] adapted to the case of compact Lie algebras.

Proposition 2.3. [MP] Assume that $x_0 \in R(m)$. Let g_0 and t_0 be the centralizers of t^{x_0} in g and t respectively. Let $m_0 = \{y \in g_0 : (y, t_0) = 0\}$. Then

1. $m_0 = g_0 \cap m$ (this set contains x_0 by definition);
2. for any $x \in m_0 \cap R(m)$ (this set contains x_0) we have $m_0(x) = m(x)$;
3. for any $x \in m_0 \cap R(m)$ we have $t^x = t^{x_0}$ and the centralizer t_{s+x}^0 is contained in the center $z(g_0)$ of the compact Lie algebra g_0.
4. any element $x \in m_0 \cap R(m)$ is a regular element of the compact Lie algebra g_0 and $x \in R(m_0)$ (i.e. $(m_0 \cap R(m)) \subset R(m_0)$).

Remark 2.4. Recall that a subalgebra $a \subset g$ is regular if its normalizer $N(a)$ in g has maximal rank, i.e. rank $N(a) = \text{rank } a$. It is well known that the centralizer g^x of the element $x \in R(m)$ is a regular subalgebra of g of maximal rank (containing some Cartan subalgebra of a), and, consequently, rank $g = \dim g^{x_0} + \text{rank } g_{s+x_0}$, where recall g^{x_0} is the center of g^x, $g_{s+x_0} = [g^x, g^x]$ is its maximal semisimple ideal and $g^x = g^{x_0} \oplus g_{s+x_0}$. In particular, the semisimple Lie algebra g_{s+x_0} is a regular subalgebra of g.

Corollary 2.5. The Lie algebra g_0 is a regular subalgebra of g and $g^{x_0} = g^{x_0}_0 \oplus t_{s+x_0}$ for any element x from the nonempty Zariski open subset $m_0 \cap R(m) \subset m_0$. In particular, rank $g_0 = \text{rank } g - \text{rank } t^{x_0}$ and $r(m) = \text{rank } g_0 - \dim t_{s+x_0}^y$.

Proof. As we remarked above, $g^{x_0} = 3(g^x) \oplus g_{s+x_0}^x$ and $t^{x_0} = 3(t^x) \oplus t_{s+x_0}^x$. But by (2.8) $g_{s+x_0}^x$ coincides with the maximal semisimple ideal $t_{s+x_0}^x$ of t^x. Therefore $3(t^x) \subset 3(g^x)$ and, consequently, $[3(g^x), t^x] = 0$. But by item (3) above $t^x = t^{x_0}$. Thus $[3(g^x), t^{x_0}] = 0$.

In other words, $3(g^x) \subset g_0 \cap t^{x_0} = g_0$. The intersection $g_0 \cap t^{x_0} = 0$ vanishes because the Lie algebra $t_{s+x_0}^x$ is semisimple. Since

$$\text{rank } g_0^x = \text{rank } g_0 \leq (\text{rank } g - \text{rank } t^{x_0}) = (\text{rank } g - \text{rank } g_{s+x_0}^x) = \dim 3(g^x),$$
we obtain that $\mathfrak{z}(\mathfrak{g}^{\ast}) = \mathfrak{g}^{\ast}_{0}$ and rank $\mathfrak{g}_{0} = \text{rank } \mathfrak{g} - \text{rank } \mathfrak{g}^{\ast}_{0}$. The last equality means that \mathfrak{g}_{0} is a regular subalgebra of \mathfrak{g}. By dimension arguments $\mathfrak{k}_{0} = \mathfrak{z}(\mathfrak{t}^{\ast})$. So that $\mathfrak{t}^{\ast}_{0} = \mathfrak{z}(\mathfrak{t}^{\ast})$ because $\mathfrak{t}^{\ast} = \mathfrak{t}^{\ast}_{0}$.

2.2 The bi-Poisson structure $\{\eta^{i}(\omega_{O})\}$: exact formulas and involutive sets of functions

Consider the adjoint action Ad of G on the Lie algebra \mathfrak{g}. Suppose now in addition that the Lie subgroup K is an isotropy group of some element $a \in \mathfrak{g}$, i.e. $K = \{g \in G : \text{Ad } g(a) = a\}$ and $\mathfrak{t} = \mathfrak{g}^{\ast}$. Moreover, now by invariance of the form $\langle \cdot, \cdot \rangle$

$$\mathfrak{t} = \mathfrak{z} \oplus \mathfrak{t}_{a}, \quad a \in \mathfrak{z}, \quad \text{and } \text{ad } a(\mathfrak{m}) \subset \mathfrak{m}.$$

Using the invariant form $\langle \cdot, \cdot \rangle$ on the Lie algebra \mathfrak{g}, we identify the dual space \mathfrak{g}^{\ast} and \mathfrak{g}. So the orbit $O = G/K$ is a symplectic manifold with the Kirillov-Kostant-Souriau symplectic structure ω_{O}. By definition the form ω_{O} is G-invariant and at the point $a \in O$ we have

$$\omega_{O}(a)([a, \xi_{1}], [a, \xi_{2}]) = -\langle a, [\xi_{1}, \xi_{2}] \rangle, \quad \forall \xi_{1}, \xi_{2} \in \mathfrak{g},$$

where we consider the vectors $[a, \xi_{1}], [a, \xi_{2}] \in T_a \mathfrak{g} = \mathfrak{g}$ as tangent vectors to the orbit $O \subset \mathfrak{g}$ at the point $a \in O$. Let $\tau : TO \rightarrow O$ be the natural projection. Using the closed 2-form $\tau^{\ast} \omega_{O}$ on TO (the lift of ω_{O}) we construct a bi-Poisson structure on TO.

Consider on TO two symplectic forms: $\omega_{1} = \Omega$ and $\omega_{2} = \Omega + \tau^{\ast} \alpha$. Write $\eta_{1} = \omega_{1}^{-1}, \eta_{2} = \omega_{2}^{-1}$ for the inverse Poisson bi-vectors. Then the family $\{\eta^{i}(\omega_{O}) = \eta^{i} = t_{1}\eta_{1} + t_{2}\eta_{2}, t_{1}, t_{2} \in \mathbb{R}\}$, is a bi-Poisson structure [MP Prop.1.6]. Putting $t_{2} = \lambda, t_{1} = 1 - \lambda, \lambda \in \mathbb{R}$ or $t_{1} = -1, t_{2} = 1$ we exclude a considering of proportional bi-vectors. The corresponding bi-vectors we denote by $\eta^{\lambda}, \lambda \in \mathbb{R}$ and η^{a} (the singular bi-vector). The Poisson bracket of two functions f_{1}, f_{2} from the set $A^{K}_{\mathfrak{m}} = A^{G} \subset \mathcal{E}(TO)$ with respect to the Poisson structure $\eta^{\lambda}, \lambda \in \mathbb{R}$ or η^{a} has the form [MP Lemma 3.1]:

$$\{f_{1}, f_{2}\}^{\lambda}(x) = -\langle x + \lambda a, [\text{grad}_{\mathfrak{m}} f_{1}(x), \text{grad}_{\mathfrak{m}} f_{2}(x)]\rangle,$$

$$\{f_{1}, f_{2}\}^{a}(x) = -\langle a, [\text{grad}_{\mathfrak{m}} f_{1}(x), \text{grad}_{\mathfrak{m}} f_{2}(x)]\rangle. \quad (2.10)$$

Remark that the structure $\eta^{0} (\lambda = 0)$ is the canonical Poisson structure (see [22]). Since the set $R(\mathfrak{m}) \subset \mathfrak{m} = T_{o}(G/K)$ is Ad K-invariant, the set of G-orbits $G \cdot R(\mathfrak{m})$ in $X = T(G/K)$ is an open dense subset of X such that its intersection with $\mathfrak{m} = T_{o}(G/K)$ is equal $R(\mathfrak{m})$. Let $X_{A^{G}}$ be the set of all points $x \in X = T(G/K)$ for which $\text{ddim} _x A^{G} = \text{ddim} A^{G}$. It is clear that for any $f \in A^{K}_{\mathfrak{m}} \quad \text{grad}_{\mathfrak{m}} f(x) \in \mathfrak{m}(x)$. Moreover, since the Lie group K is compact, for each x from some nonempty Zariski open subset of \mathfrak{m} the space $\mathfrak{m}(x)$ is generated by vectors $\text{grad}_{\mathfrak{m}} f(x), f \in A^{K}_{\mathfrak{m}}$, i.e. $\text{ddim} A^{G} = \text{dim } \mathfrak{m}(y), y \in R(\mathfrak{m})$. Thus we can choose as an open dense subset $R_{A^{G}} \subset X$ containing $X_{A^{G}}$ the set $G \cdot R(\mathfrak{m})$ (see definition in subsection 1.1). We will investigate points in $R(\mathfrak{m})$, where the pair $(A^{K}_{\mathfrak{m}}, \eta^{i})$ is Kronecker.

Let x be an element of $R(\mathfrak{m}) = R_{A^{G}} \cap T_{o}(G/K)$, i.e an element of \mathfrak{m} for which

$$\text{dim } \mathfrak{g}^{\ast} = q(\mathfrak{m}), \quad \text{dim } \mathfrak{t}^{\ast} = p(\mathfrak{m}), \quad \text{dim } \mathfrak{m}(x) = \text{dim } \mathfrak{m} - (\text{dim } \mathfrak{t} - p(\mathfrak{m})). \quad (2.11)$$
The bi-Poisson structure \(\{ \eta^t = \eta^t(\omega_G) \} \) determines at this point \(x \in m = T_o(G/K) \) the bilinear forms \(B^t_x : D_x \times D_x \to \mathbb{R} \), where recall that \(B^t_x \) is the restriction \(\eta^t|_{D_x} \) \((D_x = (DA^t)^x) \) if \(x \in X_{AG} \subset R_{AG} \subset X \), see subsection [1.1]. Since we identified the spaces \(A^G \) and \(A^G_m \), \(B^t_x \) defines the following complex-valued bilinear forms (which we denote also by \(B^t_x, B^\lambda_x \) and \(B^{ei}_x \) for short) on \(m(x) \times m(x) \) [MP (3.11)]:

\[
\begin{align*}
B^t_x : (y_1, y_2) & \mapsto -((t_1 + t_2)x + t_2a, [y_1, y_2]), \ t_1, t_2 \in \mathbb{C}, \\
B^\lambda_x : (y_1, y_2) & \mapsto -(x + \lambda a, [y_1, y_2]), \ \lambda \in \mathbb{C}, \\
B^{ei}_x : (y_1, y_2) & \mapsto -a, [y_1, y_2]).
\end{align*}
\]

(2.12)

Let \(m^C(x) \) be the complexification of the space \(m(x) \), \(x \in R(m) \). It is easy to see that the kernel of the form \(B^\lambda_x \) in \(m^C(x) \) is the subspace of \(m^C(x) \) given by

\[
ker B^\lambda_x = \{ y \in m^C(x) : [x + \lambda a, y] \in \text{ad} x(t^C) \}
\]

\[
= \{ y \in m^C(x) : [x + \lambda a, y] \in \text{ad}(x + \lambda a)(t^C) \}
\]

because \(\text{ad} x(t^C) = (m^C(x))^\perp \) in \(m^C(x) \) and \([a, t^C] = 0 \). Thus

\[
ker B^\lambda_x = ((g^C)^{x+\lambda a})_{m^C} \cap m^C(x),
\]

where \((\cdot)_{m^C}\) denotes the projection onto \(m^C \) along \(t^C \). But \(((g^C)^{x+\lambda a})_{m^C} \subset m^C(x)\) because \([a, m^C] \subset m^C, [a, t^C] = 0, \text{ad} x(t^C) \subset m^C \) and by [2.3] \(y \in m^C \) is an element of \(m^C(x) \) iff \([x, y] \in m^C \). Thus

\[
ker B^\lambda_x = ((g^C)^{x+\lambda a})_{m^C}, \ \lambda \in \mathbb{C}.
\]

(2.13)

In particular, for \(\lambda = 0 \) (for the canonical Poisson structure on \(T(G/K) \)),

\[
ker B^0_x = ((g^C)^x)_{m^C} = ((g^+)^C).
\]

Since \(x \in R(m) \), a (real) dimension of the space \((g^+)_m \) is equal to the constant \(r(m) = q(m) - p(m) \). Therefore a maximal isotropic subspace of the space \(m(x) \) with respect to the form \(B^0_x \) has dimension \(\frac{1}{2}(r(m) + \dim m(x)) \). It is clear that

\[
ker B^{ei}_x = \{ y \in m^C(x) : [a, y] \in \text{ad} x(t^C) \} = m^C(x) \cap (\text{ad}_a^{-1}\text{ad} x(t^C)),
\]

(2.14)

where \(\text{ad}_a^{-1} \) \(\overset{\text{def}}{=} \text{ad} a|_{m^C}^{-1} \). As an immediate consequence of Proposition [1.3] we obtain

Proposition 2.6. The pair \((A^G, \eta^t(\omega_G)) \) is Kronecker at the point \(x \in R(m) \) iff

1. \(\dim_{\mathbb{C}}((g^C)^{x+\lambda a})_{m^C} = r(m) \) for each \(\lambda \in \mathbb{C} \) and
2. \(\dim_{\mathbb{C}} ker B^{ei}_x = r(m) \).

Denote by \(I(g) \) the space of all \(\text{Ad}(G) \)-invariant polynomials on \(g \). If \(h \in I(g) \) then it is clear that the function \(h^\lambda : g \to \mathbb{R} \), \(h^\lambda(y) = h(y + \lambda a), \lambda \in \mathbb{R} \), is \(\text{Ad}(K) \)-invariant on \(g \). Therefore the set \(\mathcal{F} = \{ h^\lambda | m, h \in I(g), \lambda \in \mathbb{R} \} \) is a subset of \(A^K_m = A^G \) (of \(G \)-invariant function on \(T(G/K) \)). The following assertion was proved in [MP] (see Proposition 3.6, Lemma 3.3 and Theorem 3.9).
Theorem 2.7. Let \mathcal{F} be a maximal involutive subset of the Poisson algebra (A^G, η^G) and in this set \mathcal{F} there are $\frac{1}{2}(r(m) + \dim m - \dim \mathfrak{k} + p(m))$ functions functionally independent at each point of some nonempty Zariski open subset O^F of $m = T_o(G/K)$.

The pair $(A^G, \eta^G(\omega_G))$ is micro-Kronecker, in particular, it is Kronecker at each point of some nonempty Zariski open subset O^K_r of $m = T_o(G/K)$.

But in our paper [MP] the subsets O^F and O^K_r of m are not described explicitly. Nevertheless, using Theorem 2.7 we prove that each of these sets contains the subset $R(m) \cap R(\mathfrak{z} \oplus m) \cap Q_\alpha(m)$ of m, where

$$Q_\alpha(m) = \{x \in m : \dim_{\mathbb{C}} \ker B^\alpha_x = r(m)\}$$

$$= \{x \in m : \dim m(x) \cap (\text{ad}_a^{-1} \text{ad}_x(t)) = r(m)\}. \quad (2.15)$$

By relations (2.14) and by Proposition 2.6 the set $Q_\alpha(m)$ contains the open subset $O^K_r \subset m$, in particular,

$$r(m) = \min_{x \in m} \dim \left(m(x) \cap (\text{ad}_a^{-1} \text{ad}_x(t))\right). \quad (2.16)$$

Since $m(x) = (\text{ad}_x(t))^\perp$ in m, the set $Q_\alpha(m)$ is a nonempty Zariski open subset of m.

Theorem 2.8. The pair $(A^G, \eta^G(\omega_G))$ is Kronecker at each point of the nonempty Zariski open subset $R(m) \cap R(\mathfrak{z} \oplus m) \cap Q_\alpha(m)$ of $m = T_o(G/K)$.

Proof. Let us consider in the complex spaces $(\mathfrak{z} \oplus m)^C = m_3^C$ and m^C nonempty Zariski open subsets $R(m_3^C)$ and $R(m^C)$ defined as $R(m_3)$ and $R(m)$ in the real case (see (2.5)). For example,

$$R((\mathfrak{z} \oplus m)^C) = \{y \in (\mathfrak{z} \oplus m)^C : \dim_{\mathbb{C}}(g_{\mathbb{C}})^y = q(m_3^C), \dim_{\mathbb{C}}((t_\mathfrak{z})^C)^y = p(m_3^C)\},$$

where $q(m_3^C)$ (resp. $p(m_3^C)$) is the minimum of (complex) dimensions of the spaces $(g_{\mathbb{C}})^y$ (resp. $(t_\mathfrak{z})^C)^y$ over all $y \in m_3^C$. It is clear that $q(m_3^C) = q(m_3)$ and $p(m_3^C) = p(m_3)$, $q(m^C) = q(m)$ and $p(m^C) = p(m)$ (a complex polynomial function which vanishes on a real form of a complex space vanishes identically on this complex space).

Lemma 2.9. Let $y \in R(m) \cap R(\mathfrak{z} \oplus m)$. Then $\dim_{\mathbb{C}}((g_{\mathbb{C}})^{y + \lambda a})_{m^C} = r(m)$ for each $\lambda \in \mathbb{C}$ iff the complex affine line $l(y; a) = \{y + \lambda a, \lambda \in \mathbb{C}\}$ is a subset of the set $R((\mathfrak{z} \oplus m)^C)$.

Proof. It is clear that $(t_\mathfrak{z})^{y + \lambda a} = (t_{\mathbb{C}})^y$ and $((t_\mathfrak{z})^C)^{y + \lambda a} = ((t_{\mathbb{C}})^C)^y$ because $[a, t] = [a, \mathfrak{z}] = 0$. Therefore

$$\dim_{\mathbb{C}}((t_{\mathbb{C}})^{y + \lambda a} = p(m) \quad \text{and} \quad \dim_{\mathbb{C}}((t_{\mathbb{C}})^C)^{y + \lambda a} = p(m_3) \quad \text{for all} \quad \lambda \in \mathbb{C}$$

by definitions of the sets $R(m)$ and $R(m_3)$ containing y. Then $\dim_{\mathbb{C}}((g_{\mathbb{C}})^{y + \lambda a})_{m^C} = r(m) = q(m) - p(m)$ iff $\dim_{\mathbb{C}}((g_{\mathbb{C}})^{y + \lambda a})_{m^C} = q(m)$. But $q(m) = q(m_3)$ by (2.4). Now taking into account that $p(m_3^C) = p(m_3)$ and $q(m^C) = q(m_3)$, we complete the proof. □
Fix some element $x \in R(m) \cap R(\mathfrak{j} \oplus m) \cap Q_\alpha(m)$. If $x \in O^{Kr}$, the assertion of the theorem is evident. Suppose that $x \notin O^{Kr}$ and choose some point $x_0 \in O^{Kr} = R(m) \cap R(\mathfrak{j} \oplus m) \cap O^{Kr}$. Since O^{Kr} is a Zariski open subset of m and $x_0 \in O^{Kr}$, the whole real affine line $\{y_t = x_0 + t(x - x_0), \; t \in \mathbb{R}\}$ with the exception of a finite set of points with $t \in T_N = \{t_1, \ldots, t_N\}$ belongs to $O^{Kr} \subset O^{Kr}$. In other words, at each point $y_t, \; t \in \mathbb{R} \setminus T_N$ the pair $(A^G, \eta^F(\omega_0))$ is Kronecker and therefore by Proposition 2.6, $\dim C((\mathbb{C}^{\infty})^{\mu} \setminus \lambda_0)_{m^C} = r(m)$ for all $\lambda \in \mathbb{C}$. Since each such $y_t \in O^{Kr}$ is an element of $R(m) \cap R(\mathfrak{j} \oplus m)$, by Lemma 2.9 the set $R((\mathfrak{j} \oplus m)^C)$ contains each complex affine line $l(y_t; a), \; t \in \mathbb{R} \setminus T_N$.

Consider the complex affine plane $\pi(x_0; x; a) = \{x_0 + \lambda a + \mu(x - x_0), \; \lambda, \mu \in \mathbb{C}\}$ in $(\mathfrak{j} \oplus m)^C$ containing the points x_0 and x. But $R((\mathfrak{j} \oplus m)^C)$ is a Zariski open subset, i.e. is defined by a finite family $\{P_1, \ldots, P_k\}$ of complex polynomial functions. The restriction $p_j \overset{\text{def}}{=} P_j|\pi(x_0; x; a), \; j = 1, \ldots, k$ is a polynomial function of the two variables $\lambda, \mu \in \mathbb{C}$. Since $l(y_t; a) \subset R((\mathfrak{j} \oplus m)^C), \; t \in \mathbb{R} \setminus T_N$, then each polynomial p_j is constant on such a line $l(y_t; a)$. In other words, $p_j(\lambda, \mu)_{\mu \neq t} = c_j(t)$ for all $t \in \mathbb{R} \setminus T_N$, where $c_j(t) \in \mathbb{C}$. Since the set $t \in \mathbb{R} \setminus T_N$ is infinite, the polynomial $p_j, \; j = 1, \ldots, l$ is a function of only one variable μ, i.e. $p_j(\lambda, \mu) = c_j(\mu)$, where $c_j(\mu)$ is a polynomial.

Suppose that the complex affine line $l(x; a) = l(y_t; a) \subset \pi(x_0; x; a)$ is not a subset of the set $R((\mathfrak{j} \oplus m)^C)$. Then all polynomials $P_j, \; j = 1, \ldots, k$ vanish in some point $x + \lambda_0 a$ of this line, and, consequently, vanish identically on this line: $0 = p_j(\lambda_0, 1) = c_j(1)$ for all $j = 1, \ldots, k$. But $x \in R(\mathfrak{j} \oplus m) \subset R((\mathfrak{j} \oplus m)^C)$, i.e. $P_j(x) = p_j(0, 1) = c_j(1) \neq 0$ for some $1 \leq j \leq k$, the contradiction. Thus the line $l(x; a)$ is a subset of the set $R((\mathfrak{j} \oplus m)^C)$. But $x \in Q_\alpha(m)$, i.e. $\dim C \ker B_x^0 = r(m)$. Now the assertion of theorem follows immediately from Lemma 2.9 and Proposition 2.6.

Theorem 2.10. The set \mathcal{F} is a maximal involutive subset of the Poisson algebra (A^G, η^F). For each point x from the nonempty Zariski open subset $R(m) \cap R(\mathfrak{j} \oplus m) \cap Q_\alpha(m)$ of m there are $\frac{1}{2}(r(m) + \dim m(x))$ functions from the set \mathcal{F} functionally independent at x.

Proof. Our proof of the theorem is based on the proof of Proposition 3.6. in [MP]. Let $x \in R(m) \cap R(\mathfrak{j} \oplus m) \cap Q_\alpha(m)$. By Theorem 2.8 the pair $(A^G, \eta^F(\omega_0))$ is Kronecker at x. Then by Proposition 1.3 the space $L_x = \sum_{t \in \mathbb{R}^2 \setminus \{0\}} V_x^t$, where $V_x^t = \ker B_x^t \subset m(x)$, is a maximal isotropic subspace of $m(x)$ with respect to the form $B_x^{1,0} = B_x^0$ (of maximal rank) corresponding to the canonical Poisson structure η^F. Here for $t \in \mathbb{R}^2$ we consider B_x^t as a real form on $m(x)$ with \mathbb{C}-linear extension described by relations (2.12).

But the space L_x is generated by a finite subset of spaces from the set $\{V_x^t\}$. Since by the first relation in (2.12) the family V_x^t depends smoothly on the parameter $t \in \mathbb{R}^2 \setminus \{0\}$, we can suppose that this finite subset of spaces does not contain the kernel of the singular form B_x^0. In other words, $L_x = \bigoplus_{j=1}^N V_x^j$, where each space $V_x^i = \ker B_x^i$ is defined by (2.13) with $\lambda_j \in \mathbb{R}, \; j = 1, N$. Moreover, since $x \in R(\mathfrak{j} \oplus m)$ and $R(\mathfrak{j} \oplus m)$ is a Zariski open subset of $\mathfrak{j} \oplus m$, we can choose these numbers $\{\lambda_j\}$ such that each $x + \lambda_j a \in R(\mathfrak{j} \oplus m)$.

Let $h \in I(g)$ and $y \in g$. Then $[y, \text{grad}_g b(h)] = 0$ by invariance of the form \langle , \rangle, i.e. $\text{grad}_g b(h) \in g^\theta$. But since y is a semisimple element of the reductive Lie
sections on where ˜
\[\langle \eta \rangle \]

Let \(\sigma \) through this element \(a \). Denote by ˜
\[G \]

g, respect of an arbitrary automorphism of \(\{ \text{the vectors} \} \)

For any point \(x \in R(m) \cap R(\mathfrak{z} \oplus m) \cap Q_e(m) \) the subspace \(L_x = \{ \text{grad}_m f(x), f \in \mathcal{F} \} \subset m(x) \) is a maximal isotropic subspace of \(m(x) \), i.e. \(\langle x, y, L_x \rangle = 0 \) and \(y \in m(x) \) implies \(y \in L_x \).

2.3 Adjoint orbits and involutive automorphisms

Let \(\sigma \) be an involutive automorphism of \(\mathfrak{g} \) and let \(\mathfrak{g} = \tilde{\mathfrak{g}} \oplus \mathfrak{g}' \) be the decomposition of \(\mathfrak{g} \) into the eigenspaces of \(\sigma \) for the eigenvalues \(+1\) and \(-1\) respectively:

\[[\tilde{\mathfrak{g}}, \tilde{\mathfrak{g}}] \subset \tilde{\mathfrak{g}}, \quad [\mathfrak{g}', \mathfrak{g}'] \subset \mathfrak{g}', \quad [\tilde{\mathfrak{g}}, \mathfrak{g}'] \subset \mathfrak{g}'. \] (2.17)

Denote by \(\tilde{G} \) the closed connected subgroup of \(G \) with the Lie algebra \(\tilde{\mathfrak{g}} \). Fix some element \(a \in \mathfrak{g}' \) (\(\sigma(a) = -a \)) and consider the orbit \(\tilde{O} = \text{Ad}(\tilde{G})(a) = \tilde{G}/\tilde{K} \) in \(\mathfrak{g} \) through this element \(a \). It is clear that \(\tilde{O} \) is a submanifold (\(\tilde{G} \)-suborbit) of the \(G \)-orbit \(O = G/K \) of \(a \) and \(\tilde{K} = \tilde{G} \cap K \).

Since \(\sigma(a) = -a \), the algebra \(\mathfrak{k} = \mathfrak{g}'' \) is \(\sigma \)-invariant. Suppose that the form \(\langle , \rangle = -\Phi_\chi \) is also \(\sigma \)-invariant (if \(\mathfrak{g} \) is semi-simple its Killing form is invariant with respect of an arbitrary automorphism of \(\mathfrak{g} \)). Then \(\sigma(m) = m \) and we have in addition to \((2.17) \) the following orthogonal decompositions of algebras \(\mathfrak{g}, \tilde{\mathfrak{g}}, \mathfrak{k} \) with respect to the form \(\langle , \rangle \)

\[\mathfrak{g} = \mathfrak{k} \oplus \mathfrak{k}^\perp \oplus \tilde{m} \oplus m', \quad \tilde{\mathfrak{g}} = \mathfrak{k} \oplus \tilde{m}, \quad [\mathfrak{k}, \tilde{m}] \subset \tilde{m}, \quad [\mathfrak{k}, m'] \subset m', \quad \mathfrak{k} = \mathfrak{k} \oplus \mathfrak{k}', \] (2.18)

where \(\mathfrak{k}, \tilde{m} \) are subspaces of \(\mathfrak{g}, \mathfrak{k}', \mathfrak{m}' \) are subspaces of \(\mathfrak{g}' \). In particular, \((\mathfrak{k}, \mathfrak{k}') \) is a symmetric pair of compact Lie algebras, i.e. \(\mathfrak{k} \) is the fixed point set of the involutive automorphism \(\sigma|\mathfrak{k} \).

Since \(\ker \text{ad} a = \mathfrak{k} \) and \(m = \mathfrak{k}^\perp \) in \(\mathfrak{g} \), then \(\text{ad} a(m) = m \) and the operator \(\text{ad} a|m : m \to m \) is invertible. Moreover, for \(m' \subset m \) and \(\tilde{m} \subset m \) we have

\[\text{ad} a(m') \subset [\mathfrak{g}', m'] \cap m \subset \tilde{\mathfrak{g}} \cap m \subset m, \quad \text{ad} a(\tilde{m}) \subset [\mathfrak{g}', \tilde{m}] \cap m \subset \mathfrak{g}' \cap m \subset m', \]

and therefore \(\dim \tilde{m} = \dim m' \). Since \(\ker(\text{ad} a|m) = 0 \), we have

\[\text{ad} a(m') = \tilde{m}, \quad \text{ad} a(\tilde{m}) = m'. \] (2.19)

Let \(A^\tilde{G} \) (resp. \(A^\tilde{K} \)) be the set of all \(\tilde{G} \)-invariant (resp. \(\text{Ad}(\tilde{K}) \)-invariant) functions on \(T(\tilde{G}/\tilde{K}) \) (resp. on \(\tilde{m} \)). The Poisson bracket of two functions \(\tilde{f}_1, \tilde{f}_2 \in A^\tilde{K} \) with respect to the canonical Poisson structure \(\tilde{\mathfrak{g}}^\text{can} \) (determined by the canonical 2-form \(\Omega \) on \(T\tilde{O} \)) has the form (see \((2.2) \)):

\[\{ \tilde{f}_1, \tilde{f}_2 \}^\text{can}(x) = -\langle x, [\text{grad}_m \tilde{f}_1(x), \text{grad}_m \tilde{f}_2(x)] \rangle, \quad x \in \tilde{m}. \] (2.20)
Since \(\sigma(a) = -a \) the center \(\mathfrak{z} \) of the reductive Lie algebra \(\mathfrak{k} = \mathfrak{g}^0 \) is \(\sigma \)-invariant, i.e. \(\mathfrak{z} = \mathfrak{z} + \mathfrak{g}' \), where \(\mathfrak{z} = \mathfrak{g} \cap \mathfrak{g}' \). It is clear that \(a \in \mathfrak{z}' \). Then for each element \(b \in \mathfrak{z}' \) we can consider the endomorphism \(\varphi_{a,b} : \mathfrak{g} \to \mathfrak{g} \) on \(\mathfrak{g} \) putting \(\varphi_{a,b}(x) = \text{ad}_a^{-1}(\{b, x\}) \) for \(x \in \mathfrak{m} \) and \(\varphi_{a,b}(z) = z \) for \(z \in \mathfrak{k} \), where, recall, \(\text{ad}_a^{-1} \overset{\text{def}}{=} (\text{ad} |_{\mathfrak{m}})^{-1} \). Remark that \(\varphi_{a,b}(\mathfrak{m}) \subset \mathfrak{m} \) because \(\{b, \mathfrak{k}\} = 0 \). Moreover, \(\varphi_{a,b}(\mathfrak{m}) \subset \mathfrak{m} \) and \(\varphi_{a,b}(\mathfrak{m}') \subset \mathfrak{m}' \) because \(a, b \in \mathfrak{g}' \) (see also (2.19)).

It is clear that the endomorphism \(\varphi_{a,b} \) is symmetric and the group \(\text{Ad}(\mathbf{K}) \) commutes elementwise with \(\varphi_{a,b} \) on \(\mathfrak{m} \). Therefore the operator \(\varphi_{a,b}(\mathfrak{m}) \) is also symmetric and the group \(\text{Ad}(\mathbf{K}) \) commutes elementwise with \(\varphi_{a,b} \) on \(\mathfrak{m} \). So the function \(\tilde{H}_{a,b}(x) = \frac{1}{2}\langle x, \varphi_{a,b}(x) \rangle \), \(x \in \mathfrak{m} \) is \(\text{Ad}(\mathbf{K}) \)-invariant. Then \(\tilde{H}_{a,b} \) (as a function on \(T(G/\mathbf{K}) \) from the set \(A^{G} = A^{\mathbf{K}}_{\mathfrak{m}} \) is a Hamiltonian function of the geodesic flow of some pseudo-Riemannian metric on \(
abla G/\mathbf{K} \) if \(\varphi_{a,b}|_{\mathfrak{m}} \) is non-degenerate.

Consider the space \(I(\mathfrak{g}) \) of all \(\text{Ad}(G) \)-invariant polynomials on \(\mathfrak{g} \). As we remarked in the previous subsection for each \(h \in I(\mathfrak{g}) \) the function \(h^{\lambda} : \mathfrak{g} \to \mathbb{R} \), \(h^{\lambda}(y) = h(y + \lambda a) \), \(\lambda \in \mathbb{R} \), is an \(\text{Ad}(\mathbf{K}) \)-invariant function on \(\mathfrak{g} \). Therefore the set \(F = \{ h^{\lambda} |_{\mathfrak{m}}, h \in I(\mathfrak{g}), \lambda \in \mathbb{R} \} \) is a subset of \(A^{K}_{\mathfrak{m}} = A^{G} \) (of \(G \)-invariant function on \(T(G/\mathbf{K}) \)) and the set \(\tilde{F} = \{ \tilde{h}^{\lambda} |_{\mathfrak{m}}, h \in I(\mathfrak{g}), \lambda \in \mathbb{R} \} \) is a subset of \(A^{G}_{\mathfrak{m}} = A^{G} \) (of \(G \)-invariant function on \(T(G/\mathbf{K}) \)). Put \(H^{\lambda} = h^{\lambda}|_{\mathfrak{m}} \) and \(\tilde{H}^{\lambda} = \tilde{h}^{\lambda}|_{\mathfrak{m}} \). The following lemma follows easily from the results of \cite{MP} (see also [TF] Ch.6.16.Lemma) or [DGJ] sec.3).

\begin{lemma}[DGJ] \begin{enumerate}
\item For any functions \(h_1, h_2, h \in I(\mathfrak{g}) \) and arbitrary parameters \(\lambda_1, \lambda_2, \lambda \in \mathbb{R} \) we have \(\{ H_1^{\lambda_1}, H_2^{\lambda_2} \}^{\text{can}} = 0 \) and \(\{ H^{\lambda}, H_{a,b} \}^{\text{can}} = 0 \).
\end{enumerate}
\end{lemma}

\begin{proof}
Mainly to fix notations we shall prove this lemma here. Since \(\sigma \) is an automorphism of \(\mathfrak{g} \) and \(\text{Ad}(G) \) is a normal subgroup of \(\text{Aut}(\mathfrak{g}) \), we have \(f = h \circ \sigma \in I(\mathfrak{g}) \) if \(h \in I(\mathfrak{g}) \). But

\[2 \text{grad}_{\mathfrak{g}} h(x + \lambda a) = \text{grad}_{\mathfrak{g}} h(x + \lambda a) + \text{grad}_{\mathfrak{g}} f(x - \lambda a) \quad \text{for any} \quad x \in \mathfrak{g}, \quad (2.21) \]

because \(\sigma(a) = -a \) and \(\sigma(x) = x \). The five functions \(h_{1}^{\lambda_1}, h_{2}^{\lambda_2}, f_{1}^{-\lambda_1}, f_{2}^{-\lambda_2}, h_{a,b} \) commute pairwise on \(\mathfrak{g} \simeq \mathfrak{g}' \) with respect to the standard (linear) Lie-Poisson bracket on \(\mathfrak{g} \) \cite{MP}. This means that for any pair of functions \(F_1, F_2 \) from this set we have

\[\langle x, [\text{grad}_{\mathfrak{g}} F_1(x), \text{grad}_{\mathfrak{g}} F_2(x)] \rangle = 0 \quad \text{for all} \quad x \in \mathfrak{m} \subset \mathfrak{g}. \]

Then by (2.21)

\[\langle x, [\text{grad}_{\mathfrak{g}} h_{1}^{\lambda_1}(x), \text{grad}_{\mathfrak{g}} h_{2}^{\lambda_2}(x)] \rangle = 0 \quad \text{for all} \quad x \in \mathfrak{m} \subset \mathfrak{g}. \]

Now taking into account that \(\text{grad}_{\mathfrak{m}} H_1^{\lambda_1}(x) \in \mathfrak{m}(x), [x, \mathfrak{m}(x)] \subset \mathfrak{m} \) for \(x \in \mathfrak{m} \) and \(\mathfrak{m} \perp \mathfrak{k} \), we obtain that

\[\langle x, [(\text{grad}_{\mathfrak{g}} h_{1}^{\lambda_1}(x))_{\mathfrak{m}}, (\text{grad}_{\mathfrak{g}} h_{2}^{\lambda_2}(x))_{\mathfrak{m}}] \rangle = 0, \]

i.e. \(\{ \tilde{H}_1^{\lambda_1}, \tilde{H}_2^{\lambda_2} \}^{\text{can}}(x) = 0 \). Similarly we can show that \(\{ \tilde{H}^{\lambda}, \tilde{H}_{a,b} \}^{\text{can}} = 0 \). \(\square \) \(\square \)
As follows from the lemma above the set \tilde{F} is an involutive subset of $(A_m^K, \tilde{\eta}^\text{can})$. Put
\[\hat{O} = R(m) \cap R(j \oplus m) \cap Q_a(m) \cap \tilde{m} \subset \tilde{m}, \] (2.22)
Let us define the numbers $q(\tilde{m})$, $p(\tilde{m})$, $r(\tilde{m})$ and the subset $R(\tilde{m}) \subset \tilde{m}$ similarly to the numbers $q(m)$, $p(m)$, $r(m)$ and the subset $R(m) \subset m$ but for the pair of algebras $(\tilde{m}, \tilde{\eta})$ (see (2.3)).

Theorem 2.13. Suppose that the Zariski open subset \hat{O} of \tilde{m} is nonempty. Then the set \tilde{F} is a maximal involutive subset of the algebra $(A_m^K, \tilde{\eta}^\text{can})$. For each point x from the nonempty Zariski open subset $\hat{O} \cap R(\tilde{m}) \subset \tilde{m}$ there are $\frac{1}{2}(r(\tilde{m}) + \dim \tilde{m}(x))$ functions from the set \tilde{F} functionally independent at x.

Proof. Fix some point $x \in \hat{O} \cap R(\tilde{m}) \subset \tilde{m}$. Put
\[L_x = \{ \text{grad}_m f(x), f \in F \} \subset m(x) \subset m, \quad \tilde{L}_x = \{ \text{grad}_{\tilde{m}} \tilde{f}(x), \tilde{f} \in \tilde{F} \} \subset \tilde{m}(x) \subset \tilde{m}. \]
It is evident that $\tilde{L}_x = (L_x)_{\tilde{m}}$, where $(\cdot)_{\tilde{m}}$ denotes the projection onto \tilde{m} along m' in $m = \tilde{m} \oplus m'$. Moreover, since $x \in \tilde{m}$ and $\tilde{\eta} = \tilde{\eta} \oplus \tilde{\eta}'$, we have $\text{ad} \ x(\tilde{\eta}) = \text{ad} x(\tilde{\eta}) \oplus \text{ad} x(\tilde{\eta}')$, where $\text{ad} x(\tilde{\eta}) \subset \tilde{m}$ and $\text{ad} x(\tilde{\eta}') \subset m'$, and therefore
\[m(x) = \tilde{m}(x) \oplus (m(x) \cap m'). \] (2.23)

By Lemma 2.12 the space $\tilde{L}(x)$ is an isotropic subspace of $\tilde{m}(x)$ with respect to the form $\tilde{B}_x : (y_1, y_2) \rightarrow \langle x, [y_1, y_2] \rangle$ on $\tilde{m}(x)$ associated with Poisson bracket (2.20). So that to prove the theorem it is sufficient to show that this subspace is maximal isotropic.

To this end suppose that $\langle x, [y, \tilde{L}_x] \rangle = 0$ for some $y \in \tilde{m}(x)$. Then $\langle [x, y], \tilde{L}_x \rangle = 0$ by invariance of the form \langle , \rangle. Taking into account that $[x, \tilde{m}(x)] \subset \tilde{m}$ by definition (2.23) and $\tilde{m} \perp m'$, we obtain that
\[0 = \langle [x, y], \tilde{L}_x \rangle = \langle [x, y], L_x \rangle = \langle x, [y, L_x] \rangle. \]
But $y \in m(x)$ by (2.23). Also by Corollary 2.11 the space L_x is a maximal isotropic in $m(x)$ and, consequently, $y \in L_x$. Then $y \in \tilde{L}_x$, because $y \in \tilde{m}$ and $L_x \cap \tilde{m} \subset (L_x)_{\tilde{m}} = \tilde{L}_x$. In other words, L_x is a maximal isotropic subspace in $\tilde{m}(x)$ with respect to the form \tilde{B}_x. \square

As follows from Theorem 2.13 we have to establish when the set \hat{O} (2.22) is nonempty. It is clear that \hat{O} is nonempty iff $R(m) \cap R(j \oplus m) \cap \tilde{m} \neq \emptyset$ and $Q_a(m) \cap \tilde{m} \neq \emptyset$. Therefore we consider these two Zariski open subsets in more detail.

Suppose that the set $R(m) \cap R(j \oplus m) \cap \tilde{m}$ is nonempty and that x_0 is a common element of this set and the set $R(\tilde{m})$. Let \mathfrak{t}_0 be the centralizer of the Lie algebra \mathfrak{t}^0 in \mathfrak{t}, put $\mathfrak{k}_0 = \mathfrak{t}_0 \cap \mathfrak{k}$. Since $\sigma(x_0) = x_0$, then $\sigma(\mathfrak{t}^0) = \mathfrak{t}^0$ and, consequently, $\sigma(\mathfrak{k}_0) = \mathfrak{k}_0$. We have the following splitting of $\mathfrak{k}_0 = \mathfrak{t}_0 \oplus \mathfrak{k}_0$, $[\mathfrak{t}_0, \mathfrak{t}_0] \subset \mathfrak{k}_0$, associated with σ. Let K_0 and \tilde{K}_0 be the connected Lie subgroups of K with the Lie algebras \mathfrak{t}_0 and $\tilde{\mathfrak{t}}_0$ respectively. These subgroups are closed in K and K_0/\tilde{K}_0 is a symmetric space. Let V be a some vector subspace of the space m. Put
\[m_a(V) = \min_{x \in V} \dim \left(m(x) \cap (\text{ad}^{-1} \text{ad} x(\mathfrak{t})) \right), \] (2.24)
where, recall, \(\text{ad}^{-1}_a \overset{\text{def}}{=} (\text{ad} \circ \langle \cdot, \cdot \rangle)^{-1} \). By (2.16) \(m_a(m) = r(m) \) and \(m_a(V) \geq r(m) \).

Proposition 2.14. Suppose that \(R(m) \cap R(j \oplus m) \cap \tilde{m} \neq \emptyset \) and choose arbitrary point \(x_0 \in R(m) \cap R(j \oplus m) \cap R(\tilde{m}) \). Then

\[
m_a(\tilde{m}) = \min_{\alpha \in t_0} \dim f^\alpha - \dim f^\alpha_0 = \min_{\alpha \in t_0} \dim f^\alpha_0 - \dim f^\alpha.
\]

(2.25)

Proof. By Remark 2.1 \(\text{Ad}(K)(\langle m(x_0) \rangle) = m \). Since \(\text{Ad} k(a) = a \) for all \(k \in K \), we obtain that \(m_a(m) = m_a(m(x_0)) = r(m) \). Similarly, since \(\text{Ad}(K)(\langle \tilde{m}(x_0) \rangle) = \tilde{m} \) and \(\tilde{K} = K \cap \tilde{G} \subset K \), then

\[
m_a(\tilde{m}) = m_a(\tilde{m}(x_0)).
\]

(2.26)

We will use the moment map theory to calculate the number \(m_a(\tilde{m}) \) (this method was proposed in [Pa]). For our aim it is convenient to use the moment map constructed in our previous paper [MP]. So here we briefly describe main properties of this moment map [MP, Remark 3.2].

Consider on the vector space \(m \) the non-degenerate bilinear form

\[
\beta(y_1, y_2) = \langle y_1, \text{ad}_a^{-1}(y_2) \rangle, \quad y_1, y_2 \in m.
\]

Since the endomorphism \(\text{ad} a| m : m \to m \) is skew-symmetric (with respect to the form \(\langle \cdot, \cdot \rangle \)), the form \(\beta \) is also skew-symmetric. Identifying the tangent space \(T_x m \) with \(m \) for each \(x \in m \), we can consider \(\beta \) as a symplectic form on \(m \). Since the \(\text{Ad} \)-action of \(K \) on \(m \) preserves the form \(\beta \), this action of \(K \) is Hamiltonian with the \(K \)-equivariant moment map \(\mu^\beta : m \to \mathfrak{t}^* \), \(\mu^\beta(x)(\zeta) = -\frac{1}{2} \langle \text{ad}_a^{-1}(x), [\zeta, x] \rangle, \forall \zeta \in \mathfrak{t} \) (see [MP, Remark 3.2]). In particular, for each \(\zeta \in \mathfrak{t} \) the vector field \(\zeta X(x) = [\zeta, x] \in T_x m \) is the Hamiltonian vector field of the function \(f_\beta(x) = \mu^\beta(x)(\zeta) \) on the manifold \(X = m \).

Let \(x \in m \), \(W_x \subset T_x m \) be the tangent space to the \(K \)-orbit in \(m \) and let \(W_x^\beta \) be the (skew)orthogonal complement to \(W_x \) in \(T_x m \) with respect to the form \(\beta \). It is easy to see that \(W_x = \text{ad} x(\mathfrak{t}) \) and \(W_x^\beta = \text{ad} a(m(x)) \), i.e.

\[
\dim(W_x \cap W_x^\beta) = \dim(\text{ad} a(\langle m(x) \rangle)) \cap \text{ad} x(\mathfrak{t})).
\]

But by the \(K \)-equivariance of the moment map \(\mu^\beta \), \(\zeta X(x) \in W_x \cap W_x^\beta \) iff \(\text{ad}^{*} \zeta(\alpha) = 0 \), where \(\alpha = \mu^\beta(x) \) [CS]. In other words, \(\dim(W_x \cap W_x^\beta) + \dim\{\zeta \in \mathfrak{t} : \zeta X(x) = 0\} \) equals to codimension of the orbit \(\text{Ad}^{*}(K) \cdot \alpha \) in \(\mathfrak{t}^* \).

Identifying the space \(\mathfrak{t} \) with its dual \(\mathfrak{t}^* \) using the form \(\langle , \rangle \), we obtain that

\[
\mu^\beta : m \to \mathfrak{t}, \quad \mu^\beta(x) = \frac{1}{2} \langle x, \text{ad}_a^{-1}(x) \rangle \mathfrak{t}
\]

(2.27)

and \(\dim(W_x \cap W_x^\beta) = \dim f^\alpha - \dim f^\alpha_0 \), because \(\zeta X(x) = 0 \) iff \(\zeta \in \mathfrak{t}^\alpha \). Thus

\[
m_a(V) = \min_{x \in \mathfrak{t}}(\dim f^\alpha(x) - \dim f^\alpha), \quad \text{where} \quad \alpha(x) = \mu^\beta(x) \in \mathfrak{t}.
\]

(2.28)

Fix some element \(x_0 \in R(m) \cap R(j \oplus m) \cap R(\tilde{m}) \). Since \(x_0 \in \tilde{m} \subset m \), we have that \(\tilde{m}(x_0) \subset m(x_0) \) (see definition (2.23) or proof of (2.23)). Let \(g_0 \) and \(t_0 \)
be the centralizers of \mathfrak{t}^{x_0} in \mathfrak{g} and \mathfrak{t} respectively. Let $\mathfrak{m}_0 = \mathfrak{t}_0 \subset \mathfrak{g}_0$. Then by Proposition 2.3

$$\mathfrak{m}_0 = \mathfrak{g}_0 \cap \mathfrak{m}, \quad \tilde{\mathfrak{m}}(x_0) \subset \mathfrak{m}(x_0) \subset \mathfrak{m}_0 \subset \mathfrak{g}_0, \quad x_0 \in \mathfrak{m}_0 \cap R(\mathfrak{m}) \subset R(\mathfrak{m}_0),$$

(2.29)

the centralizer $\mathfrak{t}_0^{x_0}$ of x_0 in \mathfrak{t}_0 is the center $\mathfrak{z}(\mathfrak{t}^{x_0})$ of the Lie algebra \mathfrak{t}^{x_0} and a subalgebra of the center $\mathfrak{z}(\mathfrak{g}_0)$ of the Lie algebra \mathfrak{g}_0:

$$\mathfrak{t}_0^{x_0} \overset{\text{def}}{=} (\mathfrak{g}_0 \cap \mathfrak{t}) \cap \mathfrak{t}^{x_0} = \mathfrak{g}_0 \cap \mathfrak{t}^{x_0} = \mathfrak{z}(\mathfrak{t}^{x_0}) \subset \mathfrak{z}(\mathfrak{g}_0), \quad \mathfrak{t}_0 \cap \mathfrak{t}^{x_0} = \mathfrak{z}(\mathfrak{t}) = \mathfrak{t}_0^{x_0}. \quad (2.30)$$

But as we remarked above, $\sigma(\mathfrak{t}^{x_0}) = \mathfrak{t}^{x_0}$ because $\sigma(x_0) = x_0$ and $\sigma(\mathfrak{t}) = \mathfrak{t}$. It is clear also that the spaces \mathfrak{g}_0, \mathfrak{t}_0 and \mathfrak{m}_0 are σ-invariant, i.e.

$$\mathfrak{g}_0 = \mathfrak{g}_0 \cap \mathfrak{t}^{x_0}, \quad \mathfrak{g}_0 = \mathfrak{g}_0 \cap \mathfrak{t}^{x_0}, \quad [\mathfrak{g}_0, \mathfrak{m}_0] \subset \mathfrak{m}_0, \quad [\mathfrak{g}_0, \mathfrak{m}_0'] \subset \mathfrak{m}_0', \quad \mathfrak{t}_0 = \mathfrak{t}_0 \cap \mathfrak{t}^{x_0},$$

where $\tilde{\mathfrak{g}}_0$, $\tilde{\mathfrak{t}}_0$, $\tilde{\mathfrak{m}}_0$ are subspaces of \mathfrak{g} and $\tilde{\mathfrak{g}}_0'$, $\tilde{\mathfrak{t}}_0'$, $\tilde{\mathfrak{m}}_0'$ are subspaces of \mathfrak{g}'. Also by (2.20)

$$\sigma(\mathfrak{t}^{x_0}) = \mathfrak{t}^{x_0}. \quad \text{As } \tilde{\mathfrak{m}}(x_0) \subset \mathfrak{m}_0 \cap \tilde{\mathfrak{g}} = \tilde{\mathfrak{m}}_0 \text{ by (2.29) and } \mathfrak{m}_0 \subset \tilde{\mathfrak{m}} \text{ by definition, it follows from (2.20) that}$$

$$m_\alpha(\tilde{\mathfrak{m}}) = m_\alpha(\tilde{\mathfrak{m}}(x_0)) = m_\alpha(\tilde{\mathfrak{m}}_0). \quad (2.31)$$

It is evident that $a \in \mathfrak{g}_0$ and $\ker(\operatorname{ad} a|\mathfrak{g}_0) = \mathfrak{t}_0$, $\operatorname{ad}(a|\mathfrak{m}_0) = \mathfrak{m}_0$ and the operator $\operatorname{ad} a|\mathfrak{m}_0$ is invertible. Then by (2.27) $\mu^\beta(\mathfrak{m}_0) \subset (\mathfrak{g}_0)\mathfrak{t} = \mathfrak{t}_0$. We can prove also that

$$\operatorname{ad} a|\mathfrak{m}_0 = \mathfrak{m}_0', \quad \operatorname{ad} a|\mathfrak{m}_0' = \tilde{\mathfrak{m}}_0 \quad (2.32)$$

using the same arguments as in the proof of relations (2.19).

Taking into account that $\dim \mathfrak{t}^{x_0}$ is the minimum of dimensions of centralizers \mathfrak{t}^y, $y \in \mathfrak{m}$ and $x_0 \in \tilde{\mathfrak{m}}(x_0) \subset \mathfrak{m}_0 \subset \tilde{\mathfrak{m}}$, using (2.28) and (2.31), we conclude that

$$m_\alpha(\mathfrak{m}) + \dim \mathfrak{t}^{x_0} = \min_{x \in \mathfrak{m}} \dim \mathfrak{t}^{x_0}(x) = \min_{x \in \mathfrak{m}_0} \dim \mathfrak{t}^{x_0}(x), \quad \text{where } \alpha(x) = \mu^\beta(x) \in \mathfrak{t}.$$

As we remarked above $\mu^\beta(\mathfrak{m}_0) \subset \mathfrak{t}_0$ and the operator $\operatorname{ad} a|\mathfrak{m}_0$ is invertible. Therefore it is naturally to consider on the vector space \mathfrak{m}_0 the non-degenerate skew-symmetric form $\beta_0(y_1, y_2) = (y_1, \operatorname{ad}_{a^{-1}}(y_2))$, where $y_1, y_2 \in \mathfrak{m}_0$. It is clear that the pair $(\mathfrak{m}_0, \beta_0)$ is a symplectic submanifold of the symplectic manifold (\mathfrak{m}, β). Since the Ad-action of K_0 on \mathfrak{m}_0 preserves the form β_0, this action of K_0 is Hamiltonian with the K_0-equivariant moment map $\mu^\beta_0 : \mathfrak{m}_0 \to \mathfrak{t}_0$, $\mu^\beta_0(x) = \frac{1}{2}[x, \operatorname{ad}_{a^{-1}}(x)]|_{\mathfrak{t}_0}$, i.e. $\mu^\beta_0 = \mu^\beta|\mathfrak{m}_0$.

But the Lie algebra $\mathfrak{t}_0^{x_0}$ is a subalgebra of the center $\mathfrak{z}(\mathfrak{g}_0)$ of the Lie algebra \mathfrak{g}_0 and is σ-invariant (see (2.30)). In particular, $\mathfrak{t}_0^{x_0} = \mathfrak{z}(\mathfrak{t}^{x_0})$ is subalgebra of the center $\mathfrak{z}(\mathfrak{g}_0)$ of the Lie algebra \mathfrak{g}_0. Therefore, the orthogonal complement to $\mathfrak{t}_0^{x_0}$ in \mathfrak{t}_0 is a compact σ-invariant Lie subalgebra \mathfrak{t}_c of \mathfrak{t}_0 and $\mathfrak{t}_0 = \mathfrak{t}_c \perp \mathfrak{t}_0^{x_0}$. Let us prove that $\mu^\beta_0(\mathfrak{m}_0)$ is subset of the Lie algebra \mathfrak{t}_c ("effective part"). Indeed, as we remarked above $[\mathfrak{t}_0^{x_0}, \mathfrak{g}_0] = 0$ and $[\mathfrak{m}_0, \operatorname{ad}_{a^{-1}}(\mathfrak{m}_0)] \subset \mathfrak{g}_0$. Then by invariance of the scalar product $\langle [\mathfrak{m}_0, \operatorname{ad}_{a^{-1}}(\mathfrak{m}_0)]|_{\mathfrak{t}_c}, \mathfrak{t}_0^{x_0} \rangle = \langle [\mathfrak{m}_0, \operatorname{ad}_{a^{-1}}(\mathfrak{m}_0)], \mathfrak{t}_0^{x_0} \rangle = 0$.

To determine the number $\min_{x \in \mathfrak{m}_0} \dim \mathfrak{t}^{x_0}(x)$ we will show that the image $\mu^\beta_0(\tilde{\mathfrak{m}}_0)$ contains an open subset in the space $\mathfrak{t}_c' \overset{\text{def}}{=} (1 - \sigma)\mathfrak{t}_c = \mathfrak{t}_c \cap \mathfrak{t}_0'$. It is easy to calculate that for any tangent vector $y \in \mathfrak{m}_0 = T_{x_0}\mathfrak{m}_0$

$$D_{x_0}(y) \overset{\text{def}}{=} \mu^\beta_0(x_0)(y) = \frac{1}{2}[y, \operatorname{ad}_{a^{-1}}x_0]|_{\mathfrak{t}_0} + \frac{1}{2}[x_0, \operatorname{ad}_{a^{-1}}y]|_{\mathfrak{t}_0}.$$
Taking into account relations (2.32) and (2.18) and the inclusion $x_0 \in \tilde{m}_0 \subset \tilde{g}$, we obtain that
\[D_{x_0}(m_0') \subset ([m'_0, ad_{a_0}^{-1} m_0] + [\tilde{m}_0, ad_{a_0}^{-1} m_0'])_{t_0} \subset [m'_0, m_0]_{t_0} \subset (\tilde{g})_{t_0} \subset \tilde{t}_0. \]
and, similarly, $D_{x_0}(\tilde{m}_0) \subset (\tilde{g}')_{t_0} \subset \tilde{t}_0$. In other words, $D_{x_0}(m_0) = D_{x_0}(m_0') \oplus D_{x_0}(\tilde{m}_0)$.

The image $\mu^{\beta_0}(T_{x_0}m_0) \subset t_0$ of the tangent map of the moment map μ^{β_0} at x_0 coincides with the annihilator in $t_0^\ast \simeq t_0$ of the Lie algebra t_0^\ast of the isotropy group $\{ k \in K_0 : Ad k(x_0) = x_0 \}$ of $x_0 \in m_0$ [GS]. Since this annihilator coincides with t_σ, then $t_\sigma = D_{x_0}(m_0)$. Since the Lie algebra t_σ is σ-invariant, then $t_\sigma \overset{\text{def}}{=} t_\sigma \cap t_0' = D_{x_0}(m_0) \cap t_0 = D_{x_0}(\tilde{m}_0)$. Thus $\mu^{\beta_0}(x_0)(\tilde{m}_0) = t_\sigma'$ and, consequently, the set $\mu^{\beta_0}(\tilde{m}_0) = \mu^{\beta_0}(\tilde{m}_0)$ contains some open subset in $t_\sigma' = t_\sigma \cap t_0'$. Therefore
\[m_\alpha(\tilde{m}_0) = \min_{\alpha \in t_\sigma'} \dim \mathfrak{t}^\alpha - \dim \mathfrak{t}^{t_0}. \] (2.33)

It is not evident that $\min_{\alpha \in t_\sigma'} \dim \mathfrak{t}^\alpha = \min_{\alpha \in t_0} \dim \mathfrak{t}^\alpha$, where, recall, $t_0 = t_\sigma \oplus t_0^\ast$. We will prove this fact, using the moment map μ^{β_0}. To this end first of all remark that since $\tilde{m}_0 \cap R(m)$ is nonempty Zariski open subset of \tilde{m}_0 (containing x_0)
\[\min \dim(\text{ad } a(m(x)) \cap \text{ad } x(\mathfrak{t})) = \min \dim(\text{ad } a(m(x)) \cap \text{ad } x(\mathfrak{t})). \]
Choose an arbitrary element $x \in m_0 \cap R(m)$. By item (2) of Proposition 2.3 $m(x) = m_0(x) \subset m_0$ and by (2.4) $m_0 = m(x) \oplus \text{ad } x(t_0)$ and $m = m(x) \oplus \text{ad } x(t)$. Therefore $\text{ad } a(m(x)) \subset m_0$ and $\text{ad } x(\mathfrak{t}) \cap m_0 = \text{ad } x(t_0)$. In other words,
\[m_\alpha(\tilde{m}_0) \overset{\text{def}}{=} \min_{x \in m_0 \cap R(m)} \dim(\text{ad } a(m(x)) \cap \text{ad } x(\mathfrak{t})). \]
Let $W_x \subset T_x m_0$ be the tangent space to the K_0-orbit in m_0 and let $W_x^{\beta_0 \perp}$ be the (skew)orthogonal complement to W_x in $T_x m_0$ with respect to the form β_0. It is easy to see that $W_x = \{ [\zeta, x], \zeta \in t_0 \} = \text{ad } x(t_0)$ and $W_x^{\beta_0 \perp} = \text{ad } a(m(x))$ because $m_0(x) = m(x)$, i.e.
\[\dim(W_x \cap W_x^{\beta_0 \perp}) = \dim(\text{ad } a(m(x)) \cap \text{ad } x(t_0)). \]
Now we can apply the method used above to prove expression (2.28) changing the moment map μ^β by μ^{β_0}. By the K_0-equivariance of the moment map μ^{β_0}, $[\zeta, x] \in W_x \cap W_x^{\beta_0 \perp}$ iff $\text{ad } \zeta(\alpha) = 0$, where $\alpha = \mu^{\beta_0}(x)$. In other words, $\dim(W_x \cap W_x^{\beta_0 \perp}) = \dim([\zeta, x] = 0)$ equals to codimension of the orbit $\text{Ad}(K_0) \cdot \alpha$ in t_0. In other words, $\dim(W_x \cap W_x^{\beta_0 \perp}) = \dim(t_0^\ast - \dim t_0^\ast$ and thus
\[m_\alpha(\tilde{m}_0) = \min_{x \in m_0 \cap R(m)} (\dim t_0^\ast(\alpha(x) = \alpha(\mu^{\beta_0}(x)) \in t_0). \] (2.34)
Since $\dim t_0^\ast \leq \dim t_0^\ast$ for all $y \in m_0$ and the image $\mu^{\beta_0}(\tilde{m}_0) \subset t_\sigma'$ contains an open subset of t_σ', we can rewrite (2.34) as
\[m_\alpha(\tilde{m}_0) = \min_{\alpha \in t_\sigma'} \dim t_0^\ast - \dim t_0^\ast. \] (2.35)
Let us compare expressions (2.33) and (2.35) (by (2.31) \(m_\gamma(m_0) = m_\alpha(m) \)). The algebra \(t^{x_0} \) is the center \(z(t^{x_0}) \) of \(t^{x_0} \), and
\[
t^{x_0} = t^{x_0}_0 \oplus t^{x_0}_e, \quad t_0 = t_e \oplus t^{x_0}_e, \quad [t_0, t^{x_0}] = 0, \quad t_0 \cap t^{x_0} = t^{x_0}_0.
\]

Since for any element \(\alpha \in t'_e \subset t_0 \) its centralizer \(t^\alpha \) contains the algebra \(t^\alpha \oplus t^{x_0}_0 \oplus t^{x_0}_e \), we obtain, comparing the dimensions in (2.33) and (2.35), that \(t^\alpha = t^\alpha_0 \oplus t^{x_0}_0 \oplus t^{x_0}_e \subset t \) for almost all \(\alpha \in t'_e \). Taking into account that \(t^{x_0}_0 \) is a subalgebra of the center of \(t^e \oplus t^{x_0}_0 \oplus t^{x_0}_e \), we can replace the space \(t^\alpha_e \) in expressions (2.33) and (2.35) by the space \(t^{x_0}_0 \oplus t^{x_0}_e \). As a result we obtain (2.25). Remark also that the algebra \(t^e \oplus t^{x_0}_0 \oplus t^{x_0}_e \) is the normalizer \(N(t^{x_0}) \) of \(t^{x_0} \) in \(t \).

As an immediate consequence of the proof we have

Corollary 2.15. For all elements \(\alpha \) from some nonempty Zariski open subset of the space \(t'_0 \subset t_0 \) the centralizer \(t^\alpha \) belongs to the subalgebra \(t_0 + t^{x_0} = N(t^{x_0}) \subset t \).

Corollary 2.16. Suppose that \(R(m) \cap R(1 \oplus m) \cap \tilde{m} \neq \emptyset \) and choose arbitrary point \(x_0 \in R(m) \cap R(1 \oplus m) \cap R(\tilde{m}) \). The set \(Q_\alpha(m) \cap \tilde{m} \) is nonempty, i.e. \(m_\alpha(\tilde{m}) = r(m) \), iff one of the following equivalent conditions holds:

1. for some element \(\alpha \in t'_0 \) \(\dim t^\alpha = \dim g^{x_0} \);
2. the subspace \(t^{x_0}_0 \subset t^e \) contains regular elements of the Lie algebra \(t_0 \).

Proof. To prove item (1) it is sufficient to remark that by definition \(m_\alpha(\tilde{m}) \geq m_\alpha(m) = r(m) \), \(m(\tilde{m}) = \dim g^{x_0} - \dim t^{x_0} \), and by (2.25) for all \(\gamma \) from some nonempty Zariski open subset of \(t'_0 \) we have

\[
\dim t^\gamma = m_\alpha(\tilde{m}) + \dim t^{x_0} = (m_\alpha(\tilde{m}) - r(m)) + \dim g^{x_0}.
\]

By Corollary 2.16 \(r(m) = \rank g_0 - \dim t^\alpha_0 \) and \(x_0 \) is a regular element of the Lie algebra \(g_0 \), i.e. \(g^{x_0}_0 \) is a Cartan subalgebra of \(g_0 \). As above for all \(\gamma \) from some nonempty Zariski open subset of \(t'_0 \) we have

\[
\dim t^{x_0}_0 = m_\alpha(\tilde{m}) + \dim t^{x_0}_0 = (m_\alpha(\tilde{m}) - r(m)) + \dim g^{x_0}_0.
\]

By definition the algebra \(g_0 \) contains the element \(a \in g' (\sigma(a) = -a) \) and \(t = g^a \). Therefore \(t_0 = t \cap g_0 = g^a_0 \), i.e. the Lie algebra \(t_0 \) is a subalgebra of \(g_0 \) of maximal rank: \(\rank t_0 = \rank g_0 \). Therefore, \(\dim t^{x_0}_0 = \dim g^{x_0}_0 \) for some \(\alpha \in t'_e \) iff \(t^{x_0}_0 \) is a Cartan subalgebra of \(t_0 \).

2.4 Integrable geodesic flows

Here we will use notations of Subsections 2.2 and 2.3. Consider the suborbit \(\tilde{O} = \Ad(G) \cdot a \simeq \hat{G}/K \) of the adjoint orbit \(O = \Ad(G) \cdot a \simeq G/K \) in the compact Lie algebra \(g \).

Theorem 2.17. Suppose that the Zariski open subset \(O = R(m) \cap R(1 \oplus m) \cap \tilde{m} \) of \(\tilde{m} \) is nonempty and the subspace \(t'_e \) contains regular elements of the Lie algebra \(t_0 \). Here \(t_0 \) is the centralizer of \(t^{x_0} \) for arbitrary \(x_0 \in O \), \(t_0 = (1 - \sigma)t_0 \).

Then there exists a maximal involutive set of independent real analytic functions on \((T(\hat{G}/K), \Omega) \). These functions are integrals for 1) the geodesic flow determined by the Riemannian metric \(\langle , \rangle \) on \(\hat{G}/K \); 2) the Hamiltonian flow with the Hamiltonian function \(H_{a,b} \) on \(T(\hat{G}/K) \).

19
Proof. By Corollary 2.16 and by Theorem 2.13 there exists $m = \frac{1}{2}(r(\tilde{m}) + \text{ddim} A^{\tilde{G}})$ independent involutive functions from the set $A^{\tilde{G}}$. These functions form a maximal involutive subset of independent functions in the algebra $A^{\tilde{G}} = A_m^{\tilde{G}}$ with respect to the canonical Poisson structure on $T(\tilde{G}/\tilde{K})$. Moreover, by Lemma 2.12 these functions are integrals of 1) the geodesic flow on $T(\tilde{G}/\tilde{K})$ determined by the form \langle , \rangle; 2) the Hamiltonian flow with the Hamiltonian function \tilde{H}_{ab} on $T(\tilde{G}/\tilde{K})$. Now the assertion of the theorem follows immediately from Proposition 1.5.

2.5 Integrable geodesic flows on $SO(n)/(SO(n_1) \times \cdots \times SO(n_p))$

In this subsection we show that the conditions of Theorem 2.17 hold for the homogeneous space $SO(n)/(SO(n_1) \times \cdots \times SO(n_p))$.

Consider the symmetric space $G/K = U(n)/SO(n)$, where $n \leq 4$, with the involution σ on the Lie algebra of skew-hermitian matrices $\mathfrak{g} = u(n)$ defined by the complex conjugation. Then the Lie algebra $\mathfrak{g} = (1+\sigma)\mathfrak{g}$ is the Lie algebra $\mathfrak{so}(n)$ of all real skew-symmetric $n \times n$ matrices. The space $\mathfrak{g}' = (1-\sigma)\mathfrak{g}$ coincides with the set $i\text{sym}(n)$, where $\text{sym}(n)$ is the space of all real symmetric $n \times n$ matrices.

Fix some element $a \in \mathfrak{g}'$, $a = \text{diag}(i\lambda_1, \ldots, i\lambda_1, i\lambda_2, \ldots, i\lambda_2, \ldots, i\lambda_p, \ldots, i\lambda_p)$, where all real numbers $\lambda_1, \ldots, \lambda_p$ are pairwise different and the multiplicity of each $i\lambda_j$ is equal to $n_j \geq 1$, $n_1 + \cdots + n_p = n$. Without loss of generality (to simplify calculations) we may assume that $1 \leq n_1 \leq n_2 \leq \cdots \leq n_p < n$.

It is clear that the Lie algebra $\mathfrak{k} = \mathfrak{g}^*$ is the Lie algebra $u(n_1) \oplus \cdots \oplus u(n_p)$ (with the standard block-diagonal embedding) and \mathfrak{k} is the real part of this Lie algebra, i.e. \mathfrak{k} coincides with $\mathfrak{so}(n_1) \oplus \cdots \oplus \mathfrak{so}(n_p)$ ($\mathfrak{so}(1) = 0$). In this case $G/K = SO(n)/(SO(n_1) \times \cdots \times SO(n_p))$.

Putting $(X, Y) = -\text{Tr} XY$ (using the trace-form) we define an invariant scalar product on \mathfrak{g}. To describe the space $\mathfrak{m} = \mathfrak{k}^\perp$ consider any matrix $X \in \mathfrak{g}$ as a block-matrix consisting of rectangle elements $X^{k,l}$, which are rectangle complex $n_k \times n_l$ matrices, $1 \leq k, l \leq p$. It is clear that $(X^{k,l})^* = -X^{l,k}$ and therefore any element of $u(n)$ is defined by its blocks $X^{k,l}$ with $k \leq l$. As a space the Lie algebra $\mathfrak{g} = u(n)$ is a direct sum of its block-type subspaces $V^{k,l}$, $1 \leq k \leq l \leq p$. In this notation the Lie subalgebra \mathfrak{k} is the direct sum $\bigoplus_{j=1}^p V^{j,j}$ and $\mathfrak{m} = \bigoplus_{1<k<l \leq p} V^{k,l}$. We will denote the corresponding to $X^{k,l}$ element of the space $V^{k,l}$ by $\varphi(X^{k,l})$. Each subspace $V^{k,l}$ is \mathfrak{k}-module, i.e. $[V^{k,l}, \mathfrak{k}] \subset V^{k,l}$.

First of all consider the simplest case when $p = 2$. In this case $G/K = U(n_1 + n_2)/(U(n_1) \times U(n_2))$ is a Hermitian symmetric space. Therefore there exists a Cartan subspace \mathfrak{a} in $V^{1,2} = \mathfrak{m}$ (a maximal commutative subspace in $V^{1,2}$) consisting of real matrices (belonging to $\mathfrak{so}(n)$) [He, Ch.X, sec.2.1]. This n_1-dimensional Cartan subspace \mathfrak{a} can be described by the "diagonal" matrices $X^{1,2}$, $j = 1, \ldots, n_1 \leq n_2$, in which all entries vanish with the exception of n_1 entries $X^{1,2}_{j,j}$, $j = 1, \ldots, n_1 \leq n_2$, which are arbitrary real numbers. Then the centralizer $\mathfrak{g}^\mathfrak{a}$ of a regular element $x_0 = \varphi(X^{1,2}) \in \mathfrak{m} \subset V^{1,2}$ in $u(n_1) \oplus u(n_2) = V^{1,1} \oplus V^{2,2}$ is a direct sum $\mathfrak{h}_* \oplus \mathfrak{b}_*$, where $\mathfrak{b}_* \simeq u(n_2 - n_1)$ and \mathfrak{h}_* is a commutative algebra of dimension n_1, consisting of diagonal matrices $\text{diag}(ix_1, \ldots, ix_{n_1}, ix_{n_1}, \ldots, ix_{n_1}, 0, \ldots, 0)$, $\forall x_j \in \mathbb{R}$. Remark that the maximal semisimple ideal of \mathfrak{h}_* coincides with the maximal semisimple ideal of the centralizer of \mathfrak{h}_* in $u(n_1) \oplus u(n_2)$. It is easy to check that the (real) regular element $x_0 = \varphi(X^{1,2})$ belongs to the set $R(\mathfrak{m}) \cap R(\mathfrak{z} \oplus \mathfrak{m})$ (\mathfrak{z} is a two-dimensional center.
of \mathfrak{k}. The centralizer \mathfrak{z}_0 of \mathfrak{k}°_0} in \mathfrak{k} is the commutative Lie algebra of dimension $2n_1$ consisting of diagonal matrices $\text{diag}(i\lambda_1,\ldots,i\lambda_{n_1},0,\ldots,0)$. Since \mathfrak{z}_0 is commutative, each element from $\mathfrak{z}_0 = \mathfrak{k} \subset \mathfrak{g}'$ is regular in \mathfrak{k}_0. Thus the conditions of Theorem 2.17 hold.

Suppose now that $p \geq 3$ and $n_p \leq n_1 + \ldots + n_{p-1}$. We claim that for some element $x_0 \in \mathfrak{m}$ its centralizer \mathfrak{z}_0 is the one-dimensional center $\mathfrak{j}(\mathfrak{g})$ of $\mathfrak{g} = \mathfrak{u}(n)$. To simplify our calculations remark that each space $V^{k,k} \oplus V^{l,l} \oplus V^{k,l}$, $k < l$ is a Lie subalgebra of $\mathfrak{u}(n)$ isomorphic to $\mathfrak{u}(n_k + n_l) \oplus \mathfrak{u}(n_l)$ and $[V^{k,l}, V^{k,l}] \subset V^{k,k} \oplus V^{l,l}$. But $U(n_k + n_l)/(U(n_k) \times U(n_l))$ is a Hermitian symmetric space and therefore we can use our calculation for the case $p = 2$. Since each subspace $V^{k,l}$ is \mathfrak{k}-module, we will construct the element x_0 selecting step by step its $V^{k,l}$-entries. For our aim it is enough to consider the submodule $\sum_{j=1}^{p-1} V^{j,j+1} \oplus \sum_{j=1}^{p-2} V^{j,j} \oplus V^{j,p}$ of \mathfrak{m}. Choosing in each k-module $V^{j,j+1}$ of the first component the "diagonal" element $\varphi(X^{j,j+1})$ as above, we obtain that their common isotropy algebra is a direct sum $\mathfrak{h}_s \oplus \mathfrak{b}_s$, where $\mathfrak{h}_s \simeq \mathfrak{u}(n_p - n_{p-1})$ and \mathfrak{h}_s is of commutative algebra of dimension n_{p-1}, consisting of diagonal matrices $\text{diag}(i\lambda_1,\ldots,i\lambda_{n_1},0,\ldots,0)$, $\lambda_1,\ldots,\lambda_{n_1} \in \mathbb{R}$. Remark that the maximal semisimple ideal of \mathfrak{b}_s coincides with the maximal semisimple ideal of the centralizer of \mathfrak{h}_s in \mathfrak{k}. Now we consider $V = \sum_{j=1}^{p-2} V^{j,j} \oplus V^{j,p}$ as a $\mathfrak{h}_s \oplus \mathfrak{b}_s$-module (not as \mathfrak{k}-module) of complex dimension $N \times n_p$. Then V is direct sum of $\mathfrak{h}_s \oplus \mathfrak{b}_s$-modules $V^{(1)} \oplus V^{(2)}$, $V^{(1)} \perp V^{(2)}$, where $V^{(1)}$ (of complex dimension $N \times n_{p-1}$) is trivial \mathfrak{b}_s-module, and therefore the isotropy subalgebra \mathfrak{h}_s in the diagonal subalgebra \mathfrak{h}_s of a real generic point from $V^{(1)}$ is one-dimensional (consisting of elements of \mathfrak{h}_s with $x_1 = x_2 = \ldots = x_{n_{p-1}} = \lambda$). Considering the module $V^{(2)}$ as the space of complex $N \times (n_p - n_{p-1})$ matrices with elements B, the ad-representation of $\mathfrak{h}_s \oplus \mathfrak{b}_s$ in $V^{(2)}$ is described as follows: $(i\lambda,A) \cdot B = i\lambda B - BA$, $A \in \mathfrak{u}(n_p - n_{p-1})$. Since the number of rows N in B is greater then $n_p - n_{p-1}$ by our assumption, then for any real B of maximal rank $i\lambda B - BA = 0$ iff $A = i\lambda$ (is a scalar matrix). Therefore $\mathfrak{k}_0^{(0)} = \mathfrak{j}(\mathfrak{g})$ for some real matrix $x_0 \in \mathfrak{m}$ and $\mathfrak{k}_0 = \mathfrak{k}$. This element belong to the set $R(\mathfrak{m}) \cap R(\mathfrak{j} \oplus \mathfrak{m})$. Since the space $\mathfrak{k}_0 = \mathfrak{k}_0 = \mathfrak{sym}(n_1) \oplus \ldots \oplus \mathfrak{sym}(n_p)$ contains a regular elements of $\mathfrak{u}(n_1) \oplus \ldots \oplus \mathfrak{u}(n_p)$, the conditions of Theorem 2.17 hold.

Suppose now that $p \geq 3$ and $n_p > n_1 + \ldots + n_{p-1}$. In this case, since the last component $\mathfrak{g}_p \simeq \mathfrak{u}(n_p)$ of \mathfrak{g} is dominant in \mathfrak{k}, the calculation problem can be reduced to the previous case with $n_p = n_1 + \ldots + n_{p-1}$. To this end we consider the representation of the Lie group $K_p \subset K$ with the Lie algebra $\mathfrak{g}_p \simeq \mathfrak{u}(n_p)$ in the \mathfrak{k}-submodule $V = \sum_{j=1}^{p-1} V^{j,p}$ of \mathfrak{m}. Identifying V with the space of complex $N \times n_p$, $N = n_1 + \ldots + n_{p-1}$ matrices with elements B, the Ad-action of K_p in V is described as follows: $k \cdot B = Bk^{-1}$, $k \in K_p = U(n_p)$. Since the number of rows N in B is less then its number of columns n_p, then the Ad(K_p)-orbit of B in V contains an matrix in which last $n_p - N$ columns vanish. In other words, each element of \mathfrak{m} is Ad(K) conjugated to some element of the first component \mathfrak{g}_2 of the Lie algebra $\mathfrak{u}(2N) \oplus \mathfrak{u}(n_p - N) \subset \mathfrak{u}(n)$. Taking into account that the pair \mathfrak{g}_2 and $\mathfrak{g}_2 = \mathfrak{g}_2 \cap \mathfrak{g}'$ has the properties considered above, the space $\mathfrak{m} \cap \mathfrak{g}_2$ contains a real matrix x_0 with $\mathfrak{k}_0^{(0)} \simeq \mathfrak{g}_2$ because x_0 is regular element of \mathfrak{g}_2 by property 2.17 and therefore $\mathfrak{k}_0^{(0)} \simeq \mathfrak{g}_2 \cap \mathfrak{g}_2 \simeq \mathfrak{g}_2 \cap \mathfrak{g}_2$. It can be checked easily that the conditions of Theorem 2.17 hold. The following
theorem is proved:

Theorem 2.18. There exists a maximal involutive set of independent real analytic functions on \((T(\tilde{G}/\tilde{K}), \Omega) \), where \(\tilde{G} = SO(n) \) and \(\tilde{K} = (SO(n_1) \times \cdots \times SO(n_p)) \) with the standard embedding of \(\tilde{K} \subset \tilde{G} \). These functions are integrals for 1) the geodesic flow determined by the Riemannian metric \(\langle \cdot, \cdot \rangle \) on \(\tilde{G}/\tilde{K} \); 2) the Hamiltonian flow with the Hamiltonian function \(\tilde{H}_{a,b} \) on \(T(\tilde{G}/\tilde{K}) \).

References

[DGJ] V. Dragović, B. Gajić, B. Jovanović, *Singular Manakov flows and geodesic flows on homogeneous spaces of* \(SO(N) \), *Transformation Groups*, 14 (2009), no. 3, 513–530.

[BJ1] A. V. Bolsinov and B. Jovanovich, *Integrable geodesic flows on homogeneous spaces*, Matem. Sbornik 192 (2001), no. 7, 21–40.

[BJ2] A. V. Bolsinov and B. Jovanovic, *Non-commutative integrability, moment map and geodesic flows*, Annals of Global Analysis and Geometry 23 (2003), no. 4, 305–322.

[BJ3] A. V. Bolsinov and B. Jovanovic, *Complete involutive algebras of functions on cotangent bundles of homogeneous spaces*, Mathematische Zeitschrift, 246, n. 1-2, 213–236.

[Bo] A. V. Bolsinov, *Compatible Poisson brackets on Lie algebras and the completeness of families of functions in involution*, Izv. Akad. Nauk SSSR, Ser. Mat. 55 (1991), no. 1, 68–92 (Russian); Engl. transl.: Math. USSR Izvestiya, 38 (1992), no. 1, 69–90.

[GS] V. Guillemin and S. Sternberg, *On collective complete integrability according to the method of Thimm*, Ergod. Theory and Dynam. Syst. 3 (1983), no. 2, 219–230.

[He] S. Helgason, *Differential geometry, Lie groups, and symmetric spaces*, Academic Press, New York, San Francisco, London, 1978.

[Ma] S. V. Manakov, *Note on the integration of Euler’s equations of the dynamics of an n-dimensional rigid body*, Funct. Anal. Appl., 10 (1977), 328–329.

[MF] A. S. Mishchenko and A. T. Fomenko, *Euler equations on finite-dimensional Lie groups*, Izv. Acad. Nauk SSSR, Ser. matem. 42 (1978), no. 2, 396–415 (Russian); Engl. transl.: Math. USSR-Izv. 12 (1978), no. 2, 371–389.

[Mi] A. S. Mishchenko, *Integration of geodesic flows on symmetric spaces*, Mat. Zametki 31 (1982), no. 2, 257–262 (Russian); Engl. transl.: Math. Notes, 31 (1982), no. 1-2, 132–134.

[MS] I. V. Mykytyuk and A. M. Stepin, *Classification of almost spherical pairs of compact simple Lie groups*, Banach Center Publications, 51 (2000), 231–241.
[MP] I. V. Mykytyuk, A. Panasyuk, *Bi-Poisson structures and integrability of geodesic ows on homogeneous spaces*, Transformin Groups, 9 (2004), no. 3, 289–308.

[My1] I. V. Mikityuk, *Homogeneous spaces with integrable G-invariant hamiltonian flows*, Izvestiya Akad. Nauk USSR, Ser. Matem. 47 (1983), no. 6, 1248–1262 (Russian); Engl. transl.: Math. USSR Izvestiya, 23 (1984), no. 3, 511–523.

[My2] I. V. Mikityuk, *On the integrability of invariant hamiltonian systems with homogeneous configuration spaces*, Matem. Sb. 129(171) (1986), no. 4, 514–534 (Russian); Engl. transl.: Math. USSR. Sbornik, 57 (1987), no. 2, 527–546.

[My3] I. V. Mykytyuk, *Actions of Borel subgroups on homogeneous spaces of reductive complex Lie groups and integrability*, Compositio Math. 127 (2001), no. 1, 55–67.

[Pa] A. Panasyuk, *Projections of Jordan bi-Poisson structures that are Kronecker, diagonal actions, and the classical Gaudin systems*, Journ. Geom. Phys. 47 (2003), 379–397.

[TF] V. V. Trofimov, A. T. Fomenko, *Algebra and geometry of integrable Hamiltonian differential equations*, Moskva, Faktorial, 1995 (in Russian).