NEUROTRANSMITTER REVIEW

Imperato, A., and Di Chiara, G. Preferential stimulation of dopamine release in the nucleus accumbens of freely moving rats by ethanol. Journal of Pharmacology and Experimental Therapeutics 239:219–228, 1986.

Kitai, S.T., and Surerue, D.J. Cholinergic and dopaminergic modulation of potassium conductances in neostriatal neurons. Advances in Neurology 60:40–52, 1993.

Le Moine, C.; Normand, E.; Guitteny, A.F.; Fouque, B.; Teoule, R.; and Bloch, B. Dopamine receptor gene expression by enkephalin neurons in rat forebrain. Proceedings of the National Academy of Sciences USA 87:230–234, 1990.

Le Moine, C.; Normand, E.; and Bloch, B. Phenotypical characterization of the rat striatal neurons expressing the D1 dopamine receptor gene. Proceedings of the National Academy of Sciences USA 88:4205–4209, 1991.

Lyness, W.H., and Smith F.L. Influence of dopaminergic and serotonergic neurons on intravenous ethanol self-administration in the rat. Pharmacology and Biochemistry of Behavior 42:187–192, 1992.

Martin, L.P., and Waszczak, B.D. Agonist-induced excitation of substantia nigra pars reticulata neurons: Mediation by D1 receptors on striatonigral terminals via a pertussis toxin-sensitive coupling pathways. Neuroscience 14:4494–4506, 1994.

Pontieri, F.E.; Tanda, G.; and Di Chiara, G. Intravenous cocaine, morphine and amphetamine preferentially increase extracellular dopamine in the “shell” as compared with the “core” of the rat nucleus accumbens. Proceedings of the National Academy of Sciences USA 92:12304–12308, 1995.

Pontieri, F.E.; Tanda, G.; Orzi, F.; and Di Chiara, G. Effects of nicotine on the nucleus accumbens and similarity to those of addictive drugs. Nature 382:255–257, 1996.

Robbins, T.W.; Cador, M.; Taylor, J.R.; and Everitt, B.J. Limbic striatal interactions in reward-related processes. Neuroscience and Biobehavioral Reviews 13:155–162, 1989.

Spano, P.F.; Trabucchi, M.; and Di Chiara, G. Localization of nigral dopamine-sensitive adenylate cyclase on neurons originating from corpus striatum. Science 196:1343–1345, 1977.

Starke, K. Presynaptic receptors. Annual Review in Pharmacology and Toxicology 21:7, 1981.

Tanda, G.; Pontieri, F.E.; and Di Chiara, G. Cannabinoid and heroin activation of mesolimbic dopamine transmission by a common m1 opioid receptor mechanism. Science 276:2048–2050, 1997.

Thierry, A.M.; Blanc, G.; Sobel, A.; Stinus, L.; and Glowinski, J. Dopaminergic terminals in the rat cortex. Science 182:499–501, 1973.

Ungerstedt, U. Stereotaxic mapping of the monoamine pathways in the rat brain. Acta Physiologica Scandinavica 367(Suppl.):1–48, 1971.

Weiss, F.; Lorang, M.T.; Bloom, F.E.; and Koob, G.F. Oral alcohol self-administration stimulates dopamine release in the rat nucleus accumbens: Genetic and motivational determinants. Journal of Pharmacology and Experimental Therapeutics 267:250–258, 1995.

Wise, R.A. Neuroleptics and operant behavior: The anhedonia hypothesis. Behavioral and Brain Science 5:39-87, 1982.

SEROTONIN’S ROLE IN ALCOHOL’S EFFECTS ON THE BRAIN

David M. Lovinger, Ph.D.

Serotonin is an important brain chemical that acts as a neurotransmitter to communicate information among nerve cells. Serotonin’s actions have been linked to alcohol’s effects on the brain and to alcohol abuse. Alcoholics and experimental animals that consume large quantities of alcohol show evidence of differences in brain serotonin levels compared with nonalcoholics. Both short- and long-term alcohol exposure also affect the serotonin receptors that convert the chemical signal produced by serotonin into functional changes in the signal-receiving cell. Drugs that act on these receptors alter alcohol consumption in both humans and animals. Serotonin, along with other neurotransmitters, also may contribute to alcohol’s intoxicating and rewarding effects, and abnormalities in the brain’s serotonin system appear to play an important role in the brain processes underlying alcohol abuse.

Key words: acute AODE (alcohol and other drug effects); chronic AODE; serotonin receptors; brain; AODU (alcohol and other drug use) development; neurotransmission; synapse; neurotransmitters; serotonin uptake inhibitors; GABA; dopamine; receptor proteins; AOD abuse; AOD intoxication; AOD dependence; reinforcement; animal model; literature review

Neurotransmitters are chemicals that allow signal transmission, and thus communication, among nerve cells (i.e., neurons). One neurotransmitter used by many neurons throughout the brain is serotonin, also known as 5-hydroxytryptamine (5-HT). Serotonin released by the signal-emitting neuron subtly alters the function of the signal-receiving neurons in a process called neuromodulation. For example, in some neurons serotonin alters the rate at which the cells produce the electrical signals (i.e., action potentials) used for relaying information within the cells, whereas in other neurons it modulates the release of other neurotransmitters. (For more information on the mechanisms underlying signal transmission within and among neurons, see the article “The Principles of Nerve Cell Communication,” pp. 107-108.) Although serotonin’s effect on individual neurons can be rather mod-

David M. Lovinger, Ph.D., is an associate professor in the Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, Tennessee.
Serotonin’s Functions in the Brain

Serotonin is produced in and released from neurons that originate within discrete regions, or nuclei, in the brain (Cooper et al. 1991). Many serotonergic neurons are located at the base of the brain in an area known as the raphe nucleus, which influences brain functions related to attention, emotion, and motivation. The axons of the neurons in the raphe nucleus extend, or project, throughout the brain to numerous regions with diverse functions. These brain regions include the amygdala, an area that plays an important role in the control of emotions, and the nucleus accumbens, a brain area involved in controlling the motivation to perform certain behaviors, including the abuse of alcohol and other drugs. In these brain regions, the axon endings of the serotonergic neurons secrete serotonin when activated. The neurotransmitter then traverses the small space separating the neurons from each other (i.e., the synaptic cleft) and binds to specialized docking molecules (i.e., receptors) on the recipient cell.

The binding of serotonin to its receptors initiates a series of biochemical events that converts the extracellular, chemical signal into an intracellular signal in the recipient cell. For example, the interaction of serotonin with one type of receptor stimulates the formation of small molecules (i.e., second messengers) within the cell. Second messengers interact with other proteins to activate various cellular functions, such as changes in the cell’s electrical activity or in the activity of certain genes (see figure). These changes can result either in the inhibition or the excitation of the signal-receiving neuron, depending on the cell affected. Through these mechanisms, serotonin can influence mood states; thinking patterns; and even behaviors, such as alcohol drinking.

Serotonin’s actions at the synapses normally are tightly regulated by proteins called serotonin transporters, which remove the neurotransmitter from the synaptic cleft after a short period of time by transporting it back into the signal-emitting cell. Consequently, serotonin can affect neighboring neurons only for a short period of time. Any interference with serotonin transporter function extends or diminishes the cells’ exposure to serotonin, thereby disrupting the exquisite timing of nerve signals within the brain. The net result of such disruptions is abnormal brain activity, which can lead to psychological problems or mental illness. One prominent example of a psychological disorder that appears to involve inappropriate serotonin use in the brain is depression (Baldessarini 1996); some of the most effective antidepressant medications act on the serotonin transporters to prolong the neurotransmitter’s activity.

Researchers currently cannot directly measure serotonin concentrations in the human brain or within the synapses in laboratory animals. To gain information about serotonin levels in the brain, physicians and researchers have measured the concentrations of serotonin breakdown products generated after the neurotransmitter has been removed from the synapse (i.e., serotonin metabolites). The concentrations of these metabolites, which can be determined from samples of blood, urine, or the fluid that bathes the brain and spinal cord (i.e., cerebrospinal fluid [CSF]) (LeMarquand et al. 1994a; Pettinati 1996; Virkkunen et al. 1995), provide an indirect measure of changes in the overall serotonin level in the brain.
alcohol exposure alters various aspects of serotonin’s synaptic functions. In humans, for example, the levels of serotonin metabolites in the urine and blood increase after a single drinking session, indicating increased serotonin release in the nervous system (LeMarquand et al. 1994a). This increase may reflect enhanced signal transmission at serotonergic synapses. Animal studies also have found that acute alcohol exposure elevates serotonin levels within the brain (LeMarquand et al. 1994b; McBride et al. 1993), suggesting either that more serotonin is released from the serotonergic axons or that the neurotransmitter is cleared more slowly from the synapses. For example, increased serotonin release after acute alcohol exposure has been observed in brain regions that control the consumption or use of numerous substances, including many drugs of abuse (McBride et al. 1993). Researchers currently are trying to determine the exact mechanisms underlying the alcohol-induced changes. For example, they are investigating whether the net increase in synaptic serotonin levels results from alcohol’s direct actions on molecules involved in serotonin release and uptake or from more indirect alcohol effects.

Alcohol also interferes with the function of serotonin receptors. Several types of these receptors exist, including the 5-HT₁A, 5-HT₁B, 5-HT₂, and 5-HT₃ receptors (see table). When activated by serotonin binding, the 5-HT₃ receptor rapidly increases neuron activity by generating electrical signals (Lovingier and Peoples 1993). Acute alcohol exposure enhances the electrical signals generated by the 5-HT₃ receptor. This change in receptor function likely results from alcohol’s direct action on the receptor protein or on molecules closely associated with the receptor in the cell membrane (Lovingier and Peoples 1993; Lovingier and Zhou 1994). Increased 5-HT₃ receptor function probably causes excessive stimulation of neurons in brain regions receiving information from serotonergic neurons. As a result of this stimulation, the release of other neurotransmitters that play key roles in alcohol intoxication may be increased. The contribution of the 5-HT₃ receptor to the effects of acute and chronic alcohol consumption is discussed later in this article.

The effects of acute alcohol consumption on serotonin receptors also have been investigated in so-called knockout mice, in whom certain genes (e.g., those coding for different serotonin receptors) have been experimentally inactivated so that the animals cannot produce the protein encoded by those genes. By studying knockout mice that lack a particular receptor, researchers can assess that receptor’s role in specific aspects of brain functioning and behavior, including responses to alcohol and alcohol consummatory behavior. For example, scientists have studied a strain of knockout mice lacking the 5-HT₁B receptor with respect to the effects of acute alcohol exposure (Crabbe et al. 1996). These animals exhibited reduced intoxication in response to a single dose of alcohol compared with normal mice, indicating that 5-HT₁B receptor activity produces some of alcohol’s intoxicating effects.

Effects of Chronic Alcohol Exposure on Serotonergic Synaptic Transmission

Long-term, or chronic, alcohol exposure can lead to adaptive changes within brain cells. This process, also called tolerance development, presumably is a mechanism to re-establish normal cell function, or homeostasis, in response to continuous alcohol-induced alterations. For example, if alcohol exposure inhibits the function of a neurotransmitter receptor, the cells may attempt to compensate for continuous inhibition by increasing the receptor numbers or by altering the molecular makeup of receptors or cell membranes so that alcohol no longer inhibits receptor function. The 5-HT₂ receptor appears to undergo such adaptive changes (Pandey et al. 1995). Thus, the number of 5-HT₂ receptor molecules and the chemical signals produced by the activation of this receptor increase in laboratory animals that receive alcohol for several weeks.

Increased serotonin activity at the 5-HT₂ receptor caused by chronic alcohol exposure also may contribute to the alcohol withdrawal syndrome—the pattern of behaviors occurring when alcohol is withheld after chronic use. For example, alcoholics frequently experience increased anxiety levels after cessation of drinking. This withdrawal symptom may involve enhanced serotonin activity at the 5-HT₂ receptors: In animal models of alcohol withdrawal, drugs that blocked the activation of this receptor (i.e., 5-HT₂ antagonists) prevented behavior indicative of increased anxiety (Lal et al. 1993).

The effects of chronic alcohol consumption also were investigated in the 5-HT₁B receptor knockout mice discussed in the previous section. Compared with normal mice, the knockout mice showed less evidence of tolerance to alcohol’s effects (Crabbe et al. 1996). Interestingly, the knockout mice also demonstrated increased aggressive behavior, even in the absence of alcohol consumption. A similar association between alcoholism and aggression exists in some alcoholics. Consequently, the 5-HT₁B receptor knockout mice may serve as a model for the alcoholism subtype that is characterized by an early age at onset and often is associated with impulsive violence and other behavioral disorders (Virkunnen et al. 1995).

Serotonin’s Role in the Development of Alcohol Abuse

Two lines of evidence suggest that serotonin may be a key contributor to the brain dysfunction that leads to alcohol abuse: (1) analyses of serotonin levels in alcoholics and nonalcoholics and (2) studies of drugs that block serotonin receptors and serotonin transporters.

2Generally, alcohol exposure for more than 1 day is considered chronic, because this time period exceeds the usual duration of a single session of drinking and intoxication. In animal experiments, however, chronic exposure periods can last several months, and humans often will drink continuously for months or years at a time.
Serotonin Levels in Alcoholics

The first line of evidence implicating serotonin in the development of alcohol abuse was the discovery of a relationship between alcoholism and the levels of serotonin metabolites in the urine and CSF of human alcoholics. For example, the concentrations of the first serotonin degradation product, 5-hydroxyindoleacetic acid, were lower in the CSF of alcoholics than in nonalcoholics of the same age and general health status (LeMarquand et al. 1994a; Pettinati 1996; Virkunnen et al. 1995), an observation suggesting that alcoholics may have reduced serotonin levels in the brain. Several mechanisms could account for such a decrease in brain serotonin levels. For example, the brain cells could produce less serotonin, release less serotonin into the synapse, or take more serotonin back up into the cells. Alternatively, the serotonin metabolite levels in alcoholics could be reduced, because less serotonin is broken down in the brain. To date, the exact mechanisms underlying the changes in serotonin-metabolite levels are still unknown.

Researchers currently are trying to determine whether alcoholics with abnormal serotonin metabolite levels have specific variations in the gene that codes for the enzyme tryptophan hydroxylase, which produces serotonin from other molecules in the cells. Several variants of the tryptophan hydroxylase gene exist; one variant appears to be particularly common in alcoholics with histories of aggression and suicidal tendencies (Virkkunen et al. 1995).

The relationship between serotonin levels and alcohol consumption also has been investigated in animal models of alcohol abuse. Some of the most intriguing findings have come from work on rats that were selectively bred for alcohol preference (P rats) or nonpreference (NP rats), based on the amounts of alcohol that they would drink when given a choice between alcoholic or nonalcoholic solutions.3

When the concentrations of different neurotransmitters were determined in various brain regions of these animals, the levels of serotonin and its metabolites were lower in P rat brains than in NP rat brains. The differences were particularly pronounced in the nucleus accumbens, a brain area thought to be involved in the rewarding effects of ethanol (LeMarquand et al. 1994b; McBride et al. 1995). Moreover, the P rats had fewer serotonergic neurons in the raphe nucleus compared with the NP rats (Zhou et al. 1994), a finding that could explain the reduced serotonin and serotonin-metabolite levels. The observation that P rats naturally have low serotonin levels supports the hypothesis that heavy drinking may partly represent an attempt to normalize serotonin levels in certain key brain regions, because acute alcohol consumption can elevate serotonin levels. Recent studies also have evaluated the numbers and properties of different serotonin receptors in P and NP rats.

3By breeding rats with similar alcohol-consumption patterns (e.g., high consumption or low consumption) with each other for several generations, researchers created two strains with distinctly different preferences for alcohol.

Effects of Serotonin Uptake Inhibitors

The second line of evidence implicating serotonin in the development of alcohol abuse stems from studies of compounds that interfere with the functions of the transporters that remove serotonin from the synapse. These agents also are called selective serotonin reuptake inhibitors (SSRI’s). One of these agents, fluoxetine (Prozac®), is used widely for treating mood disorders, such as depression (Baldessarini 1996). Experimental animals treated with this and related compounds exhibited reduced alcohol consumption (LeMarquand et al. 1994b; Pettinati 1996). Similarly, alcoholics taking fluoxetine drank less frequently and reduced their alcohol consumption during drinking sessions (LeMarquand et al. 1994a; Litten et al. 1996; Naranjo and Bremner 1994; Pettinati 1996). The alcoholics also reported less desire to drink and fewer pleasurable feelings after drinking. Fluoxetine reduces alcohol consumption in humans only moderately, however, and does not affect all alcoholics (Litten et al. 1996). Moreover, although increased serotonin levels at the synapses in the brain can moderate alcohol consumption, additional factors contribute to continued alcohol abuse. Consequently, SSRI’s cannot be recommended as the sole treatment for alcoholism.

Other drugs that affect serotonergic signal transmission also alter alcohol consumption in animals (LeMarquand et al. 1994b). For example, antagonists of the 5-HT3 and 5-HT1A receptors reduced alcohol ingestion in rodents (Litten...
Serotonin does not act alone within the brain. Instead, serotonergic neurons are parts of larger circuits of interconnected neurons that transmit information within and among brain regions. Many neurons within these circuits release neurotransmitters other than serotonin. Accordingly, some of the serotonin-mediated neuronal responses to alcohol may arise from interactions between serotonin and other neurotransmitters. These neurotransmitters also may be affected by alcohol. Two key neurotransmitters that interact with the serotonergic system are gamma-aminobutyric acid (GABA) and dopamine.

Interactions With GABA

GABA is the major inhibitory neurotransmitter in the brain (Cooper et al. 1991)—that is, it tends to reduce the activity of the signal-receiving neuron. Many drugs that enhance GABA’s actions in the brain (e.g., the benzodiazepine Valium®) cause sedation and intoxication that resemble the effects of alcohol. In fact, alcohol may produce some of its sedative and intoxicating effects by enhancing GABA’s inhibitory function (Samson and Harris 1992). (For more information on alcohol’s effects on GABA-mediated signal transmission, see the article by Mihic and Harris, pp. 127–131.)

Serotonin may interact with GABA-mediated signal transmission by exciting the neurons that produce and secrete GABA (i.e., GABAergic neurons). For example, serotonin can increase the activity of GABAergic neurons in the hippocampal formation (Kawa 1994), a part of the brain that is important for memory formation and other cognitive functions. Consequently, alcohol’s effects on serotonin may alter the activity of GABAergic neurons in the hippocampal formation. These changes may disrupt cognition and possibly contribute to alcohol-induced memory loss and impaired judgment.

To activate hippocampal GABAergic neurons, serotonin binds to the 5-HT3 receptor. This receptor is present in many brain regions (Grant 1995) and may reside on GABAergic neurons. As discussed previously, alcohol increases the activity of this receptor. Increased 5-HT3 activity results in enhanced GABAergic activity, which, in turn, causes increased inhibition of neurons that receive signals from the GABAergic neurons. Other serotonin receptor types might act similarly on GABAergic neurons. Consequently, alcohol’s effects on these receptor subtypes also might influence GABAergic signal transmission in the brain.

Interactions With Dopamine

The activation of serotonin receptors also modifies the activity of the neurotransmitter dopamine, which, like serotonin, modulates neuronal activity. The neurons that produce and secrete dopamine (i.e., dopaminergic neurons) reside at the base of the brain and communicate signals to brain regions involved in the rewarding effects of many drugs of abuse, including alcohol (Koob et al. 1994). For example, alcohol consumption induces a dopamine surge in the brain, which is thought to signal to the brain the importance of this action, thereby indicating that alcohol consumption is an action that should be continued. Such a
response to alcohol ingestion easily could contribute to the development of an addiction to alcohol, because these brain responses would tend to reinforce alcohol drinking and thus increase consumption. (For more information on dopamine-mediated signal transmission, see the article by Di Chiara, pp. 108–114.)

Serotonin can alter dopaminergic signal transmission in several ways. For example, by interacting with the 5-HT₂ receptor, serotonin stimulates the activity of dopaminergic neurons in a brain region called the ventral tegmental area (VTA), thereby enhancing an alcohol-induced increase in the activity of these neurons (Brodie et al. 1995) and causing increased dopamine release (Campbell et al. 1996). The dopaminergic neurons in the VTA are connected to the brain areas thought to mediate rewarding effects. Thus, the serotonin-dependent activation of these neurons could reinforce alcohol-drinking behavior. This scenario suggests that serotonin, through its interaction with the dopaminergic system, may play a pivotal role in producing alcohol’s rewarding effects.

Serotonin also interacts with dopaminergic signal transmission through the 5-HT₃ receptor, which helps control dopamine release in the areas reached by VTA neurons, most notably the nucleus accumbens. Serotonin release in these brain regions can stimulate dopamine release, presumably by activating 5-HT₃ receptors located on the endings of dopaminergic neurons (Campbell and McBride 1995; Grant 1995). Consequently, an alcohol-induced increase in 5-HT₃ receptor activity would enhance dopamine release in these brain regions, thereby contributing to alcohol’s rewarding effects. This hypothesis is supported by the results of studies in animal models (Campbell and McBride 1995; Grant 1995; Wozniak et al. 1990), which also found that 5-HT₃ receptor antagonists interfered with the serotonin-induced dopamine release in the brain’s reward systems. These findings may help explain the antagonists’ ability to reduce drinking behavior.

These examples demonstrate that serotonin interacts with other neurotransmitters in several ways to promote alcohol’s intoxicating and rewarding effects. Serotonin also may interact with additional neurotransmitters that have been found to contribute to alcohol’s effects on the brain.

SUMMARY

Serotonin plays an important role in mediating alcohol’s effects on the brain. Alcohol exposure alters several aspects of serotonergic signal transmission in the brain. For example, alcohol modulates the serotonin levels in the synapses and modifies the activities of specific serotonin receptor proteins. Abnormal serotonin levels within synapses may contribute to the development of alcohol abuse, because some studies have found that the levels of chemical markers representing serotonin levels in the brain are reduced in alcoholic humans and chronically alcohol-consuming animals. Moreover, SSRI’s and receptor antagonists can reduce alcohol consumption in humans and animals, although these agents are only moderately effective in treating alcohol abuse.

Serotonin is not the only neurotransmitter whose actions are affected by alcohol, however, and many of alcohol’s effects on the brain probably arise from changes in the interactions between serotonin and other important neurotransmitters. Thus, one approach researchers currently are pursuing to develop better therapeutic strategies for reducing alcohol consumption focuses on altering key components of the brain’s serotonin system.

REFERENCES

Balducci, R.J. Drugs and the treatment of psychiatric disorders: Depression and mania. In: Hardman, J.G.; Limbird, L.E.; Molinoff, P.B.; Ruddon, R.W.; and Gilman, A.G., eds. Goodman & Gilman’s The Pharmacological Basis of Therapeutics. 9th ed. New York: McGraw-Hill, 1996. pp. 431–460.

Brodie, M.S.; Trifunovic, R.D.; and Sheffner, S.A. Serotonin potentiates ethanol-induced excitation of ventral tegmental area neurons in brain slices from three different rat strains. Journal of Pharmacology and Experimental Therapeutics 273(3):1139–1146, 1995.

Campbell, A.D., and McBride, W.J. Serotonin-3 receptor and ethanol-stimulated dopamine release in the nucleus accumbens. Pharmacology, Biochemistry and Behavior 51(4):835–842, 1995.

Campbell, A.D.; Kohl, R.R.; and McBride, W.J. Serotonin-3 receptor and ethanol-stimulated somatodendritic dopamine release. Alcohol 13:569–574, 1996.

Cooper, J.R.; Bloom, F.E.; and Roth, R.H. The Biochemical Basis of Neuropharmacology. 6th ed. New York: Oxford University Press, 1991.

Crabbe, J.C.; Phillips, T.J.; Feller, D.J.; Hen, R.; Wenger, C.D.; Lessov, C.N.; and Schafer, G.L. Elevated alcohol consumption in null mutant mice lacking 5-HT₁H serotonin. Nature Genetics 14(1):98–101, 1996.

Dövényi, J. 5-HT₁A receptor agonists: Recent developments and controversal issues. Psychopharmacology 121(1):1–26, 1995.

Grant, K.A. The role of 5-HT₃ receptors in drug dependence. Drug and Alcohol Dependence 38:155–171, 1995.

Johnson, B.A.; Camping, G.M.; Griffiths, P.; and Cowen, P.J. Attenuation of some alcohol-induced mood changes and the desire to drink by 5-HT₃ receptor blockade: A preliminary study in healthy male volunteers. Psychopharmacology 112:142–144, 1993.

Kawa, K. Distribution and functional properties of 5-HT₃ receptors in the rat hippocampal dentate gyrus: A patch-clamp study. Journal of Neurophysiology 71:1935–1947, 1994.

Koob, G.F.; Rassnick, S.; Heinrichs, S.; and Weiss, F. Alcohol, the reward system and dependence. ExS 71:103–114, 1994.

Lal, H.; Prather, P.L.; and Rezazadeh, S.M. Potential role of 5-HT₃C and/or 5-HT₃ receptors in the mianserin-induced prevention of anxiogenic behaviors occurring during ethanol withdrawal. Alcoholism: Clinical and Experimental Research 17:411–417, 1993.

LeMarquand, D.; Pihl, R.O.; and Benkelfat, C. Serotonin and alcohol intake, abuse, and dependence: Clinical evidence. Biological Psychiatry 36(5):326–337, 1994a.
LeMarquand, D.; Pihl, R.O.; and Benkelfat, C. Serotonin and alcohol intake, abuse, and dependence: Findings of animal studies. *Biological Psychiatry* 36(6):395–421, 1994b.

Litten, R.Z.; Allen, J.; and Fertig, J. Pharmacotherapies for alcohol problems: A review of research with focus on developments since 1991. *Alcoholism: Clinical and Experimental Research* 20(5):859–876, 1996.

Lovinger, D.M., and Peoples, R.W. Actions of alcohols and other sedative/hypnotic compounds on cation channels associated with glutamate and 5-HT₁ receptors. In: Alling, C.; Diamond, I.; Leslie, S.W.; Sun, G.Y.; and Wood, W.G., eds. *Alcohol, Cell Membranes and Signal Transduction in Brain*. New York: Plenum Press, 1993. pp. 157–168.

Lovinger, D.M., and Zhou, Q. Alcohols potentiate ion current mediated by recombinant 5-HT₁A receptors expressed in a mammalian cell line. *Neuropharmacology* 33:1567–1572, 1994.

McBride, W.J.; Murphy, J.M.; Yoshimoto, K.; Lumeng, L.; and Li, T.-K. Serotonin mechanisms in alcohol drinking behavior. *Drug Development Research* 30:170–177, 1993.

McBride, W.J.; Bodart, B.; Lumeng, L.; and Li, T.-K. Association between low contents of dopamine and serotonin in the nucleus accumbens and high alcohol preference. *Alcoholism: Clinical and Experimental Research* 19(6):1420–1422, 1995.

Naranjo, C.A., and Kadlec, K.E. An evaluation of the clinical effects of serotonin uptake inhibitors in alcoholics. *Biological Psychiatry* 29:510S, 1991.

Naranjo, C.A., and Bremner, K.E. Serotonin-altering medications and desire, consumption and effects of alcohol—treatment implications. In: Jansson, B.; Jornvall, H.; Ryberg, U.; Terenius, L.; and Vallee, B.L., eds. *Toward a Molecular Basis of Alcohol Use and Abuse*. Basel, Switzerland: Birkhauser Verlag, 1994. pp. 209–219.

Pandey, S.C.; Davis, J.M.; and Pandey, G.N. Phosphoinositide system-linked serotonin receptor subtypes and their pharmacological properties and clinical correlates. *Journal of Psychiatry and Neuroscience* 20(3):215–225, 1995.

Pettinati, H.M. Use of serotonin selective pharmacotherapy in the treatment of alcohol dependence. *Alcoholism: Clinical and Experimental Research* 20(7):23A–29A, 1996.

Samson, H.H., and Harris, R.A. Neurobiology of alcohol abuse. *Trends in Pharmacological Sciences* 13:206–211, 1992.

Sellers, E.M.; Toneatto, T.; Romach, M.K.; Some, G.R.; Sobell, L.C.; and Sobell, M.B. Clinical efficacy of the 5-HT₁ antagonist ondansetron in alcohol abuse and dependence. *Alcoholism: Clinical and Experimental Research* 18:879–885, 1994.

Virkkunen, M.; Goldman, D.; Nielson, D.A.; and Linnoila, M. Low brain serotonin turnover rate (low CSF 5-HIAA) and impulsive violence. *Journal of Psychiatry & Neuroscience* 20(4):271–275, 1995.

Wozniak, K.M.; Pert, A.; and Linnoila, M. Antagonism of 5-HT₁ receptors attenuates the effects of ethanol on extracellular dopamine. *European Journal of Pharmacology* 187:287–289, 1990.

Zhou, F.C.; Pu, C.F.; Lumeng, L.; and Li, T.-K. Serotonergic neurons in the alcohol preferring rats. *Alcohol* 11:397–403, 1994.

NEUROTRANSMITTER REVIEW

ALCOHOL AND GLUTAMATE

Rueben A. Gonzales, Ph.D., and Jason N. Jaworski

Excitatory neurotransmitters, the most important of which is glutamate, increase the activity of signal-receiving neurons and play a major role in controlling brain function. Glutamate exerts its effects on cells in part through three types of receptors that, when activated, allow the flow of positively charged ions into the cell. Of these, the N-methyl-D-aspartate (NMDA) receptor plays a particularly important role in controlling the brain’s ability to adapt to environmental and genetic influences. Even low alcohol concentrations can inhibit the excitatory activity of the NMDA receptor. This inhibition of NMDA receptor function may be one of the mechanisms contributing to fetal alcohol syndrome and other more subtle developmental abnormalities. Moreover, alcohol-induced impairment of the NMDA receptor may contribute to alcohol-related learning disabilities, neuronal losses, and cognitive deficits as well as to some of the manifestations of alcohol withdrawal. *Key Words*: glutamate receptors; NMDA receptors; neurotransmission; cell signaling; membrane channel; brain function; neuron; hereditary factors; environmental factors; AODE (alcohol and other drug effects); toxic drug effect; fetal alcohol syndrome; AOD withdrawal syndrome; cognitive process; learning; literature review

Nerve cells, or neurons, transmit signals from the environment to the central nervous system (CNS), among different regions of the CNS, and from the CNS back to other organs (i.e., the periphery). This signal transmission is mediated primarily by small molecules called neurotransmitters. In general, neurotransmitters can be classified as either excitatory or inhibitory. Excitatory neurotransmitters increase and inhibitory neurotransmitters decrease the activity (e.g., the firing rate) of the signal-receiving (i.e., postsynaptic) neuron. Neurons differ in their abilities to recognize, integrate, and pass on the signals conveyed by neurotransmitters. For example, some neurons continually fire at a certain rate and thus can be

Rueben A. Gonzales, Ph.D., is an associate professor and Jason N. Jaworski is a graduate research assistant in the Department of Pharmacology, College of Pharmacy, University of Texas, Austin, Texas.

Support for this work was provided by National Institute on Alcohol Abuse and Alcoholism grant AA–00147.