Research Paper

Effect of Concurrent Training Order With Electromyostimulation on Physical Performance in Young Elderly Women

Mehri Derakhshannejad 1, Masoud Nikbakht 2, Mohsen Ghanbarzadeh 3, Rouhollah Ranjbar 4

1. Department of Exercise Physiology, Faculty of Sport Sciences, Shahid Chamran University of Ahvaz, Ahvaz, Iran.

ABSTRACT

Objective: Aging is one of the stages of life that needs special attention due to the special conditions of this period of life. Inactivity and myasthenia due to aging are important factors in reducing the physical and functional activities in the elderly, which can affect their quality of life. On the other hand, electromyostimulation (EMS) is one of the modern training methods that can be suitable for disabilities in the elderly. Also, the training sequence in concurrent training is one of the variables of training that can affect its adaptations. This study aimed to compare the effect of exercise sequence in concurrent training with EMS on the motor performance of elderly women.

Materials & Methods In this semi-experimental single-blind study, 50 healthy elderly female volunteers, age range of 60-70 years, were selected by random sampling divided randomly into the following groups (each group of 10 people): Aerobic-resistance training with EMS, resistance-aerobic exercise with EMS, rotational exercise (change of priority periodically in training sessions) with EMS, and rotational and control (without training) groups. The training protocol consisted of twelve weeks of exercise, three sessions per week, and each session three stages of warm-up (10-15 minutes), main exercises (20 minutes) and cooling (10 minutes). The main training program consisted of 20 minutes of parallel combination exercises, which were two 10-minute steps with a 3-5 minute intervals. Aerobic exercises were performed with the intensity of 70%-50% of maximum oxygen consumption and resistance exercises using body weight and elastic bands for different muscle groups. The training schedule was the same for all groups in terms of volume and intensity, with the only difference being in the exercise sequence and EMS presentation. Strength of the upper and lower torso muscles were measured with chest press and seated leg extension, respectively, maximum oxygen consumption (VO2 max) with a one-mile Rockport walking test, muscular endurance with a 2-minute marching on a spot-test and lower torso strength with a walking test on the slope in two stages before and after the intervention. Statistical analysis was performed using dependent t-tests and Covariance Analysis (ANCOVA) and Bonferroni post hoc test using SPSS software V. 22 and P<0.05 was considered statistically significant. Significant increase was observed in all measured dependent variables relative to the baseline values (P<0.001). In the study of intergroup changes, a significant increase was observed in VO2 max level, upper and lower torso strength, and muscular endurance in all of the intervention groups compared to the control group (P<0.001), but lower torso strength was significant only in the intervention groups with EMS compared to the control group (P<0.001). VO2 max changes and the lower torso strength in training groups with EMS were significantly higher than the groups without EMS (P<0.01). Also, the upper torso strength and the endurance of the lower torso muscles in the group with the priority of resistance training with EMS were higher than the combination group without EMS (P<0.01).

Conclusion Based on the results, it can be said that combined concurrent exercises are a useful method in promoting physical fitness and physical performance of elderly women, and the use of EMS can increase the effectiveness of adaptations resulting from exercise, especially lower torso strength in the elderly and can prevent complications associated with myasthenia. On the other hand, the training sequence with the priority of resistance training can be effective in increasing the effect of exercise on the variables of upper torso muscle strength and muscular endurance, but it does not have a significant effect on lower torso strength, cardiorespiratory endurance and lower torso strength.

Corresponding Author:
Mehri Derakhshannejad, PhD.

Address: Department of Exercise Physiology, Faculty of Sport Sciences, Shahid Chamran University of Ahvaz, Ahvaz, Iran.

Tel: +98 (916) 6019534

E-Mail: derakhshan1959@gmail.com
Extended Abstract

Introduction

Aging is a part of the biological process and one of the acute stages of human life, with particular importance [1]. Due to health-related developments, people’s longevity in the community and the number of elderly people is increasing [2]. Due to the synchronicity of sedentary lifestyle and physiological changes, elderly people are more prone to chronic diseases [3], which increases mortality and morbidity in the elderly [4, 5] and indicates the need for special care to prevent diseases. They also increase physical fitness to improve the quality of life [6, 7].

Exercise training can be a preventative measure to reduce chronic diseases and aging complications [10, 11]. Exercise has been reported to reduce mortality by 22 percent in the elderly [12]. One of the most critical public health goals is to reduce age-related disabilities during this period [10, 13]. Recommended physical activity for the elderly is a combination of aerobic exercise to improve cardiovascular capacity and strength training to prevent sarcopenia and improve neuromuscular function [14]. One of the limitations of participating in exercises is training time; some people tend to do combination exercises in one session. Exercise instructions for the elderly emphasize Concurrent training (aerobic-strength) [14, 15]. One of the main variables in simultaneous exercises is the sequence of exercises for which there is limited information about this training variable [16]. The research results regarding the effect of exercise sequence on physiological and functional capacity are also different [16, 22, 23].

The elderly are usually reluctant to exercise at high intensities, and there may also be a risk of injury at high intensities for them [15]. Therefore, complementary training methods such as Electromyostimulation (EMS) can achieve high training intensities [25]. Due to limitations such as low physical fitness and aging complications such as musculoskeletal pain, this type of exercise can help the elderly [13]. EMS training has been reported to increase muscle mass, decrease body fat percentage, and improve functional capacity in the elderly [26]. Also, the results of research by Robles-Gonzalez et al. [31] and Schenk et al. [32] indicate the effectiveness of EMS training in improving cardiovascular function in healthy and sick individuals.

Although research shows that EMS training is essential for improving physical function in the elderly, the need for this study is justified due to the lack of information and inconsistent results on the effect of exercise sequence on physical performance and also the lack of research that specifically examines the effect of exercise sequence in Concurrent training with EMS. According to the above, the present study was designed to investigate the effect of concurrent training sequence with EMS on young, older women’s physical performance.

Materials and Methods

In the present semi-experimental study, 50 older women aged 60-70 were selected by random sampling method and randomly divided into 5 groups of 10 people. The study’s inclusion criteria included being in the low-risk category based on the Physical Activity Readiness Questionnaire (PAR-Q), not taking any medications or supplements, no specific diseases, and sedentary lifestyle. The exclusion criteria also include dissatisfaction to continue the research, non-compliance with the training intervention program and absence in training sessions, and the occurrence of any disease or complication that leads to forbid exercise according to the physician supervisor.

Weight and body mass index were measured using a body composition device, and height was measured using a stadiometer without shoes. The upper limb and lower limb strength were measured by the bench press and seated leg extension machine. Maximum oxygen consumption by Rockport one-mile walk test [36], muscular endurance by Two-minute Step Test [37], and lower limb power by Ramp Power Test [38] were measured.

The training program consisted of twelve weeks of training with 2 Concurrent training sessions per week, including two 10-minute steps with a break between them for 3-5 minutes. The strength-aerobic with EMS group (SAT+EMS) performed resistance exercises, but the aerobic-strength with EMS group (AST+EMS) performed aerobic exercises in the first half of season training. In the circular with the EMS group (CT+EMS), the exercise priority was variable in each session [24]. In the circular without EMS group (CT), the order of exercises was rotational, but the electrical stimulation intervention was not performed.

Aerobic training was performed at 50-70% of the subjects’ maximum oxygen consumption. Strength training included static and dynamic training for various muscle groups, including chest, shoulders, latissimus dorsi, arm, quadriceps and hamstrings, calf, abdomen, and back by the bodyweight, weights, and available equipment, TRX, and elastic bands.

In the present study, a frequency of 15-33 Hz was used for aerobic training. Also, in the strength part, a frequency with
a range of 75-35 Hz was used [33, 42]. Impulse intensity in the present study was 80-100 mA which was individually assigned according to the participants for values of Rate of Perceived Exertion (RPE) and the Berg scale from 5 to 9 [26, 33, 43].

Impulse Width was adjusted between 200 and 400 μsec in different exercise parts [33, 42]. Cycle Duty was planned 50-67% in the strength training section and 99% for the Cycle Duty in aerobic training [13, 33, 44]. The one-way ANOVA was used to examine the differences between groups. Statistical analysis was performed using SPSS V. 22, and a significance level (P≤0.05).

Results

The Shapiro-Wilk and Leven tests showed that data distribution was normal, and there was also a precondition for variance homogeneity between research groups. The table is related to the subjects’ demographic variables, including age, weight, height, and body mass index for pre-test and post-test in the research groups.

After the training period, a significant reduction in weight and body mass index in the groups of aerobic-strength training with EMS (P=0.004), strength-aerobic training with EMS (P=0.010), circular training with EMS (P<0.001), and circular training without EMS (P=0.002) were observed compared to baseline values; Also, a significant increase in weight and body mass index of subjects in the control group without exercise (P=0.010) was observed compared to baseline values (Table 1).

The results of the dependent t-test (Table 2) showed that after twelve weeks of intervention, there was a significant increase in VO2max, upper limb strength, lower limb strength, muscular endurance, and lower limb power in aerobic-strength training with the EMS group (P<0.001), strength-aerobic training with EMS group (respectively: P<0.001, P<0.001, P<0.001, P=0.003), Circular order training with EMS group (P<0.001) and Circular order training without EMS group (respectively: P<0.001, P<0.001, P<0.001, P=0.010) were observed. No significant difference was observed in any studied variables in the control group (P>0.05).

The results of the analysis of covariance (Table 3) showed that there was a significant difference in the variables of VO2max, upper limb strength, lower limb strength, muscle endurance, and lower limb power between the research groups (P<0.001). Bonferroni post hoc test (Table 4) was used for further investigation and location of differences.

Discussion and Conclusion

After twelve weeks, a significant increase was observed in older women’s physical performance in all groups’ intervention compared to the control group. Investigating the
The effect of sequence on aerobic capacity in training with EMS groups was significantly higher than the training without EMS group, but no difference was observed between EMS training groups. The results of research by Robles-Gonzalez et al. [31], Schenk et al. [32] also showed the effect of EMS training on improving VO2max. Karatrantou et al. also stated that the sequence of exercise did not significantly affect changes in VO2max of middle-aged women [45], which is consistent with the results of the present study.

Checking muscle strength was observed that changes in upper limb strength in the Strength-aerobic training with EMS (Table 2).

Table 2. Variables examined in pre-test and post-test

Steps	Variables	Pre-test	Post-test
	VO2max (ml/kg/min)	19.16±2.19	25.80±2.27*
	Upper limb strength (kg)	32.55±4.80	41.74±5.30*
	Lower limb strength (kg)	45.20±7.14	62.64±8.80*
	Muscular endurance (n/2min)	78.90±12.41	101.10±11.81*
	Lower limb Power (W)	116.91±16.41	150.75±13.65*

AST: Aerobic-strength training; SAT: Strength-aerobic training; CT: Circular training; EMS: Electromyostimulation; BMI: Body Mass Index; VO2Max: Maximum oxygen consumption; *P<0.05.

Effect of sequence on aerobic capacity in training with EMS groups was significantly higher than the training without EMS group, but no difference was observed between EMS training groups. The results of research by Robles-Gonzalez et al. [31], Schenk et al. [32] also showed the effect of EMS training on improving VO2max. Karatrantou et al. also stated that the sequence of exercise did not significantly affect changes in VO2max of middle-aged women [45], which is consistent with the results of the present study.

Checking muscle strength was observed that changes in upper limb strength in the Strength-aerobic training with EMS (Table 2).

Table 3. ANCOVA results

Variables	Source	Type III Sum of Squares	df	Mean Square	F	Sig.	Partial Eta Squared
VO2max (ml/kg/min)	Contrast	291.133	4	72.783	41.924	<0.001*	0.792
	Error	76.382	44	1.736	-	-	-
Upper limb strength (kg)	Contrast	868.024	4	217.006	41.322	<0.001*	0.790
	Error	231.071	44	5.252	-	-	-
Lower limb strength (kg)	Contrast	2600.851	4	650.213	40.491	<0.001*	0.786
	Error	706.564	44	16.058	-	-	-
Muscular endurance (n/2min)	Contrast	3994.904	4	998.726	56.424	<0.001*	0.837
	Error	774.812	44	17.700	-	-	-
Lower limb Power (W)	Contrast	9775.202	4	2443.800	7.143	<0.001*	0.394
	Error	5052.690	44	342.107	-	-	-

*P<0.05.
EMS group were significantly more significant than the circular training without EMS group, which indicates the priority role of sequence for upper body strength training at the beginning of training, which is consistent with results if research by Shiatsu et al. [46]. An increase in lower torso strength was more significant in the groups with EMS than the group without EMS. However, no difference was observed between the training with EMS groups, which indicates that the sequence of exercise in EMS training did not affect lower muscles. Murlasits et al. in a meta-analysis, stated that 1RM of lower limbs in strength-endurance sequence training was more than the endurance-strength sequence, which is not consistent with the results of the present study [22]. Although the increase in strength was more significant in the training group with the priority of strength training in the EMS group, this difference was not significant compared to other EMS groups. Probably the reason for the difference in results is due to the difference in the type of exercise and using EMS along with voluntary exercises, which leads to maximum recall in the motor units, and as a result, there is a more significant increase in strength than usual exercises.

The results obtained in the strength-aerobic training with the EMS group were significantly higher than the training without EMS group. The results of the study of Karantantou et al. after eight weeks of training showed no significant difference in muscle endurance between the two groups with different training sequences [45], which was somewhat consistent with the results of the present study. In the present study, although no difference was observed between two groups of aerobic-strength training with the EMS group and strength-aerobic training with the EMS group, compared with the circular training without EMS group, the results indicate the effectiveness of resistance training at the beginning of the concurrent training.

After concurrent training with EMS, a significant increase in Lower limb power in older women was observed compared to the control group, but in the concurrent training without EMS group, no significant difference was observed compared to the control group. Wilhelm et al. did not report a significant difference between the two groups of concurrent training (aerobic and power-like strength training) after 12 weeks [19]. In the present study, in the concurrent training without EMS group, there was no difference in muscle power impaired to control group; however, in the concurrent training with EMS group, although the training time was shorter than Wilhelm’s study, an increase in lower torso power was observed which indicates EMS training was more effective on muscle power than conventional concurrent training. Also, Chitara et al. reported that the sequence of exercise did not significantly affect muscle strength [48], which is consistent with the results of the present study.

Overall, the present study results showed that EMS, along with concurrent training, made better effective. Studying the effect of training sequence showed that although there was no significant difference between the concurrent with EMS groups, the sequence of EMS training with the priority of resistance training had a better effect on the maximum strength of upper body muscles and muscle endurance.

Group 1	Group 2	VO2_max	Upper Limb Strength	Lower Limb Strength	Muscular Endurance	Lower Limb Power
SAT+EMS	1.000	0.104	1.000	1.000	1.000	1.000
CT+EMS	1.000	0.001	1.000	1.000	1.000	1.000
Control	<0.001	0.001	<0.001	<0.001	<0.001	0.002
CT+EMS	1.000	0.325	0.074	1.000	1.000	1.000
SAT+EMS	<0.001	<0.001	<0.001	0.005	0.070	0.003
Control	<0.001	<0.001	<0.001	<0.001	0.003	0.003
CT+EMS	0.002	0.192	0.032	0.139	0.073	
Control	<0.001	<0.001	<0.001	<0.001	<0.001	1.000

*P<0.05.
EMS interventions along with combined exercises are also needed to improve lower limb power. Considering the present study results indicate an increase in motor function and muscle power in older women, this EMS training style can increase muscle power and reduce age-related disabilities in older women.

Ethical Considerations

Compliance with ethical guidelines

This study was approved by the Ethics Committee of the Shahid Chamran University of Ahvaz (Code: EE/98.24.3.60529/ssu.ac.ir). All ethical principles are considered in this article. The participants were informed of the purpose of the research and its implementation stages. They were also assured about the confidentiality of their information and were free to leave the study whenever they wished, and if desired, the research results would be available to them.

Funding

This article was extracted from the PhD. dissertation of the first author at Department of Exercise Physiology, Faculty of Sport Sciences, Shahid Chamran University of Ahvaz, Ahvaz.

Authors’ contributions

Validation, conceptualization, case management: Mehri Derakhshan Nejad, Masoud Nikbakht, Ghanbarzadeh, Rouhollah Ranbar; Methodology, editing, investigation and finalization: Mehri Derakhshan Nejad, Masoud Nikbakht; Drafting: Mehri Derakhshan Nejad.

Conflict of interest

The authors declared no conflict of interest.
This Page Intentionally Left Blank
مقاله پژوهشی

اثر ترتیب تمرين موازی به همراه تحریک الکتریکی عضلانی بر عملکرد جسمانی زنان سالمند جوان

*مهدی درخشانی زاده، محسن یکتباره، توسلان رزگر

1. گروه رئیس ورزشی دانشگاه علوم پزشکی اصفهان بهبود در راه اندازی امروز

3. مقدمه

سالمندی یکی از مراحل زندگی است که به دلیل شرایط ویژه این دوره از زندگی نیاز به توجه ویژه دارد. کم تحرکی و ضعف اهداف عضلانی ناشی از سالمندی از عوامل مهم کاهش آمادگی جسمانی و عملکردی سالمندان هستند که می‌تواند کاهشی در عملکرد بالینی و توانی‌های بدنی نیز داشته باشد. در این مقاله تأکید بر ترکیب تمرین در تمرینات موازی به همراه تحریک الکتریکی عضلانی (EMS) نتایج آن در افزایش عملکرد جسمانی و آمادگی بدنی سالمندان زنان بحث و بررسی شده است.

4. هدف تحقیق

هدف این تحقیق مقایسه اثر ترتیب تمرین در تمرینات موازی به همراه تحریک الکتریکی عضلانی با تمرین ترکیبی (تمرينی هوازی مقاومتی به همراه EMS به روش نمونه گیری تصادفی) بر عملکرد حرکتی زنان سالمند است.

5. روش بررسی

در تحقیق نیمه‌تجربی حاضر که به صورت یک سوکور انجام شد، پنجاه زن سالمند سالم داوطلب با دامنه سنی 70-60 سال در تحقیق پنجمتی انتخاب شدند و به صورت تصادفی به گروه‌های (هر گروه ده نفر) تقسیم شدند. برنامه تمرین شامل دوازده هفته تمرین و سه جلسه تمرین در هفته بود. هر جلسه تمرین شامل سه دقیقه تمرین و سرد کردن بود. برنامه تمرین اصلی شامل 20 دقیقه تمرین بود.

6. نتایج

یافته‌ها نشان داد که تمرینات ترکیبی موازی روش مفیدی در ارتقای آمادگی جسمانی و عملکرد جسمانی زنان سالمند می‌باشد. با توجه به نتایج، در تحقیق که کپی از تیوی از زبان گفتاری در ترکیبی را با تمرین EMS به روش نمونه‌گیری تصادفی انجام داده به طور کلی، برای خلق تمرینات موازی به همراه تحریک الکتریکی عضلانی، باعث افزایش عملکرد جسمانی و آمادگی بدنی زنان سالمند می‌شود. این پژوهش نشان داد که اجرای تمرینات ترکیبی با تحریک الکتریکی عضلانی بهترین روش برای افزایش عملکرد جسمانی و آمادگی بدنی زنان سالمند است.

7. استنباط

به‌طور کلی، این پژوهش نشان داد که تمرینات ترکیبی موازی به همراه تحریک الکتریکی عضلانی بهترین روش برای افزایش عملکرد جسمانی و آمادگی بدنی زنان سالمند می‌باشد. این پژوهش نشان داد که اجرای تمرینات ترکیبی با تحریک الکتریکی عضلانی بهترین روش برای افزایش عملکرد جسمانی و آمادگی بدنی زنان سالمند می‌باشد.
جامعه سالمندان به‌شکل گسترده‌ای در مرور اینهای تمرینی، خوراکی و زندگی در دوران سالمندی به مخاطبین، به‌ویژه ممکن است، اهمیت و کاربرد تکنولوژی‌های جدید در سبک تمرینات را برای سالمندان مفید و ایمن معرفی کنند. این به خصوص تمرینات ترکیبی هم زمان برای افزایش ظرفیت‌های متعددی از اثر بخشی این سبک تمرینات و مطالعات بهره‌برداری قدرت و توان هوازی [21،22] و یکی از درخشان‌ترین مراحل کیفیت آموزش سالمندان است.

از طرف دیگر سالمندان معمولاً به شدت‌های بالایی در سطح فعالیت‌های عصبی و عضلانی در آسیب‌پذیری‌ها با افزایش سن، ناپایداری در کیفیت و مقدار توان‌های عضلانی و توان‌های حساسیت به جریان الکتریکی (Electro Myo Stimulation) و توان‌های حساسیت به بیماری‌های عمده و نفوذپذیری در بهبود قدرت عضلانی و توان‌هوازی می‌تواند برای افراد سالمند نیز کاربرد داشته باشد.

در مورد سالمندی شیوه زندگی دو هزار بیمار و آمارهای بهبودی به دلیل اینکه به افساران اصلی امکانات زندگی خطر حمله قلبی، آرترورز، دیابت نوع 2، سكته مغزی، فشار خون بالا، سایر بیماری‌ها و افزایش سن، احتمالاً می‌تواند داشته باشد. در مطالعاتی که روی این سوال‌های گذشته‌ای در سالمندان که اوغرسی زندگی را داشته‌اند یا در افرادی که با کمبود عضله در زنده بودن از طریق EMS ایجاد می‌کنند، کاهش درد و بهبود کیفیت زندگی در سالمندان بسیار مورد توجه قرار گرفته است.

یکی از مهم‌ترین اهداف سالمندان عمومی، کاهش ناتوانی‌های ویژه و افزایش سطح نمایشی و درک خودآگاهی به‌زودی روز در هر سالمندان می‌تواند موجب افزایش قدرت عضلانی و بهبود توان‌هوازی شود. به‌ویژه در افرادی که با کمبود عضله در زنده بودن از طریق EMS ایجاد می‌کنند، کاهش درد و بهبود کیفیت زندگی در سالمندان بسیار مورد توجه قرار گرفته است.

2. Electro Myo Stimulation (EMS)
کل تمرینات ورزشی سنی است. این تمرین بر روی امکانات و امکانات برترین هر تمرین بر روی امکانات و امکانات برترین H electricزمانی به همراه کل تمرینات ورزشی سنی است. این تمرین بر روی امکانات و امکانات برترین هر تمرین بر روی امکانات و امکانات برترین H electricزمانی به همراه کل تمرینات ورزشی سنی است. این تمرین بر روی امکانات و امکانات برترین H electricزمانی به همراه کل تمرینات ورزشی سنی است. این تمرین بر روی امکانات و امکانات برترین H electricزمانی به همراه کل تمرینات ورزشی سنی است. این تمرین بر روی امکانات و امکانات برترین H electricزمانی به همراه کل تمرینات ورزشی سنی است. این تمرین بر روی امکانات و امکانات برترین H electricزمانی به همراه کل تمرینات ورزشی سنی است. این تمرین بر روی امکانات و امکانات برترین H electricزمانی به همراه کل تمرینات ورزشی سنی است. این تمرین بر روی امکانات و امکانات برترین H electricزمانی به همراه کل تمرینات ورزشی سنی است. این تمرین بر روی امکانات و امکانات برترین H electricزمانی به همراه کل تمرینات ورزشی سنی است. این تمرین بر روی امکانات و امکانات برترین H electricزمانی به همراه کل تمرینات ورزشی سنی است. این تمرین بر روی امکانات و امکانات برترین H electricزمانی به همراه کل تمرینات ورزشی سنی است. این تمرین بر روی امکانات و امکانات برترین H electricزمانی به همراه کل تمرینات ورزشی سنی است. این تمرین بر روی امکانات و امکانات برترین H electricزمانی به همراه کل تمرینات ورزشی سنی است. این تمرین بر روی امکانات و امکانات برترین H electricزمانی به همراه کل تمرینات ورزشی سنی است. این تمرین بر روی امکانات و امکانات برترین H electricزمانی به همراه کل تمرینات ورزشی سنی است. این تمرین بر روی امکانات و امکانات برترین H electricزمانی به همراه کل تمرینات ورزشی سنی است. این تمرین بر روی امکانات و امکانات برترین H electricزمانی به همراه کل تمرینات ورزشی سنی است. این تمرین بر روی امکانات و امکانات برترین H electricزمانی به همراه کل تمرینات ورزشی سنی است. این تمرین بر روی امکانات و امکانات برترین H electricزمانی به همراه کل تمرینات ورزشی سنی است. این تمرین بر روی امکانات و امکانات برترین H electricزمانی به همراه کل تمرینات ورزشی سنی است. این تمرین بر روی امکانات و امکانات برترین H electricزمانی به همراه کل تمرینات ورزشی سنی است. این تمرین بر روی امکانات و امکانات برترین H electricزمانی به همراه کل تمرینات ورزشی سنی است. این تمرین بر روی امکانات و امکانات برترین H electricزمانی به همراه کل تمرینات ورزشی سنی است. این تمرین بر روی امکانات و امکانات برترین H electricزمانی به همراه کل تمرینات ورزشی سنی است. این تمرین بر روی امکانات و امکانات برترین H electricزمانی به همراه کل تمرینات ورزشی سنی است. این تمرین بر روی امکانات و امکانات برترین H electricزمانی به همراه کل تمرینات ورزشی سنی است. این تمرین بر روی امکانات و امکانات برترین H electricزمانی به همراه کل تمرینات ورزشی سنی است. این تمرین بر روی امکانات و امکانات برترین H electricزمانی به همراه کل تمرینات ورزشی سنی است. این تمرین بر روی امکانات و امکانات برترین H electricزمانی به همراه کل تمرینات ورزشی سنی است. این تمرین بر روی امکانات و امکانات برترین H electricزمانی به همراه کل تمرینات ورزشی سنی است. این تمرین بر روی امکانات و امکانات برترین H electricزمانی به همراه کل تمرینات ورزشی سنی است. این تمرین بر روی امکانات و امکانات برترین H electricزمانی به همراه کل تمرینات ورزشی سنی است. این تمرین بر روی امکانات و امکانات برترین H electricزمانی به همراه کل تمرینات ورزشی سنی است. این تمرین بر روی امکانات و امکانات برترین H electricزمانی به همراه کل تمرینات ورزشی سنی است. این تمرین بر روی امکانات و امکانات برترین H electricزمانی به همراه کل تمرینات ورزشی سنی است. این تمرین بر روی امکانات و امکانات برترین H electricزمانی به همراه کل تمرینات ورزشی سنی است. این تمرین بر روی امکانات و امکانات برترین H electricزمانی به همراه کل تمرینات ورزشی سنی است. این تمرین بر روی امکانات و امکانات برترین H electricزمانی به همراه کل تمرینات ورزشی سنی است. این تمرین بر روی امکانات و امکانات برترین H electricزمانی به همراه کل تمرینات ورزشی سنی است. این تمرین بر روی امکانات و امکانات برترین H electricزمانی به همراه کل تمرینات ورزشی سنی است. این تمرین بر روی امکانات و امکانات برترین H electricزمانی به همراه کل تمرینات ورزشی سنی است. این تمرین بر روی امکانات و امکانات برترین H electricزمانی به همراه کل تمرینات ورزشی سنی است. این تمرین بر روی امکانات و امکانات برترین H electricزمانی به همراه کل تمرینات ورزشی سنی است. این تمرین بر روی امکانات و امکانات برترین H electricزمانی به همراه کل تمرینات ورزشی سنی است. این تمرین بر روی امکانات و امکانات برترین H electricزمانی به همراه کل تمرینات ورزشی سنی است. این تمرین بر روی امکانات و امکانات برترین H electricزمانی به همراه کل تمرینات ورزشی سنی است. این تمرین بر روی امکانات و امکانات برترین H electricزمانی به همراه کل تمرینات ورزشی سنی است. این تمرین بر روی امکانات و امکانات برترین H electricزمانی به همراه کل تمرینات ورزشی سنی است. این تمرین بر روی امکانات و امکانات برترین H electricزمانی به همراه کل تمرینات ورزشی سنی است. این تمرین بر روی امکانات و امکانات برترین H electricزمانی به همراه کل T
در کرسی انتخابی 1 میلی‌متری بر اکت با استفاده از EMS در نیمه اول تمرین، تمرین متغیر کم‌مدتی در این جلسه با سطح تمرینی بالا انجام شد. در مرحله اول تمرینات محوطه‌ای انجام شد. در گروه EMS همراه با همکاری گروه محوطه‌ای، تمرینی در مرحله اول انجام شد. در گروه EMS، همراه با همکاری گروه محوطه‌ای، تمرینی در مرحله اول انجام شد. در گروه EMS، همراه با همکاری گروه محوطه‌ای، تمرینی در مرحله اول انجام شد. در گروه EMS، همراه با همکاری گروه محوطه‌ای، تمرینی در مرحله اول انجام شد. در گروه EMS، همراه با همکاری گروه محوطه‌ای، تمرینی در مرحله اول انجام شد. در گروه EMS، همراه با همکاری گروه محوطه‌ای، تمرینی در مرحله اول انجام شد. در گروه EMS، همراه با همکاری گروه محوطه‌ای، تمرینی در مرحله اول انجام شد. در گروه EMS، همراه با همکاری گروه محوطه‌ای، تمرینی در مرحله اول انجام شد. در گروه EMS، همراه با همکاری گروه محوطه‌ای، تمرینی در مرحله اول انجام شد. در گروه EMS، همراه با همکاری گروه محوطه‌ای، تمرینی در مرحله اول انجام شد. در گروه EMS، همراه با همکاری گروه محوطه‌ای، تمرینی در مرحله اول انجام شد. در گروه EMS، همراه با همکاری گروه محوطه‌ای، تمرینی در مرحله اول انجام شد. در گروه EMS، همراه با همکاری گروه محوطه‌ای، تمرینی در مرحله اول انجام شد. در گروه EMS، همراه با همکاری گروه محوطه‌ای، تمرینی در مرحله اول انجام شد. در گروه EMS، همراه با همکاری گروه محوطه‌ای، تمرینی در مرحله اول انجام شد. در گروه EMS، همراه با همکاری گروه محوطه‌ای، تمرینی در مرحله اول انجام شد. در گروه EMS، همراه با همکاری گروه محوطه‌ای، تمرینی در مرحله اول انجام شد. در گروه EMS، همراه با همکاری گروه محوطه‌ای، تمرینی در مرحله اول انجام شد. در گروه EMS، همراه با همکاری گروه محوطه‌ای، تمرینی در مرحله اول انجام شد. در گروه EMS، همراه با همکاری گروه محوطه‌ای، تمرینی در مرحله اول انجام شد. در گروه EMS، همراه با همکاری گروه محوطه‌ای، تمرینی در مرحله اول انجام شد. در گروه EMS، همراه با همکاری گروه محوطه‌ای، تمرینی در مرحله اول انجام شد. در گروه EMS، همراه با همکاری گروه محوطه‌ای، تمرینی در مرحله اول انجام شد. در گروه EMS، همراه با همکاری گروه محوطه‌ای، تمرینی در مرحله اول انجام شد. در گروه EMS، همراه با همکاری گروه محوطه‌ای، تمرینی در مرحله اول انجام شد. در گروه EMS، همراه با همکاری گروه محوطه‌ای، تمرینی در مرحله اول انجام شد. در گروه EMS، همراه با همکاری گروه محوطه‌ای، تمرینی در مرحله اول انجام شد. در گروه EMS، همراه با همکاری گروه محوطه‌ای، تمرینی در مرحله اول انجام شد. در گروه EMS، همراه با همکاری گروه محوطه‌ای، تمرینی در مرحله اول انجام شد. در گروه EMS، همراه با همکاری گروه محوطه‌ای، تمرینی در مرحله اول انجام شد. در گروه EMS، همراه با همکاری گروه محوطه‌ای، تمرینی در مرحله اول انجام شد. در گروه EMS، همراه با همکاری گروه محوطه‌ای، تمرینی در مرحله اول انجام شد. در گروه EMS، همراه با همکاری گروه محوطه‌ای، تمرینی در مرحله اول انجام شد. در گروه EMS، همراه با همکاری گروه محوطه‌ای، تمرینی در مرحله اول انجام شد. در گروه EMS، همراه با همکاری گروه محوطه‌ای، تمرینی در مرحله اول انجام شد. در گروه EMS، همراه با همکاری گروه محوطه‌ای، تمرینی در مرحله اول انجام شد. در گروه EMS، همراه با همکاری گروه محوطه‌ای، تمرینی در مرحله اول انجام شد. در گروه EMS، همراه با همکاری گروه محوطه‌ای، تمرینی در مرحله اول انجام شد. در گروه EMS، همراه با همکاری گروه محوطه‌ای، تمرینی در مرحله اول انجام شد. در گروه EMS، همراه با همکاری گروه محوطه‌ای، تمرینی در مرحله اول انجام شد. در گروه EMS، همراه با همکاری گروه محوطه‌ای، تمرینی در مرحله اول انجام شد. در گروه EMS، همراه با همکاری گروه محاو
جدول شماره ۲: سطوح مختصرهای روندبندی در مطالعه حاضر

جنس	BMI (kg/m²)	VO₂max (ml/kg/min)	تمرین هوازی مقاومتی	تمرین چرخشی	تمرین هوازی مقاومتی و تمرین چرخشی	کنترل
زن	27.8 ± 4.8	27.2 ± 4.8	10	10	10	10
28.9 ± 5.0	27.0 ± 6.0	-	-	-	-	-
30.1 ± 6.2	27.5 ± 6.3	-	-	-	-	-
31.8 ± 7.1	27.8 ± 7.4	-	-	-	-	-

34. Congestive heart failure
چندال ۴، متره‌ها مور و خودکار اثر ترتیب تمرین مختص به حرکات الکتریکی عضلانی بر همبستگی و بازدهی

تمرین	CT	CT+EMS	SAT	SAT+EMS
V0,max (ml/kg/min)	30.5±0.7	30.5±0.7	30.5±0.7	30.5±0.7
قدرت بیشینه بالاتنه (kg)	30.5±0.7	30.5±0.7	30.5±0.7	30.5±0.7
استقامت عضلانی (ا/2min)	30.5±0.7	30.5±0.7	30.5±0.7	30.5±0.7
توان پایین‌ترین (W)	30.5±0.7	30.5±0.7	30.5±0.7	30.5±0.7

یافته‌های Ogasawara 78/2032 نشان می‌دهند که تمرینات ترکیبی حداقل اکسیژن مصرفی

تمرین مختص	CT	SAT	CT+EMS	SAT+EMS
V0,max (ml/kg/min)	30.5±0.7	30.5±0.7	30.5±0.7	30.5±0.7
قدرت بیشینه بالاتنه (kg)	30.5±0.7	30.5±0.7	30.5±0.7	30.5±0.7
استقامت عضلانی (ا/2min)	30.5±0.7	30.5±0.7	30.5±0.7	30.5±0.7
توان پایین‌ترین (W)	30.5±0.7	30.5±0.7	30.5±0.7	30.5±0.7

هری درخشان نژاد و همکاران اثر ترتیب تمرین مختص به حرکات الکتریکی عضلانی بر همبستگی و بازدهی

CT	SAT	CT+EMS	SAT+EMS	
V0,max (ml/kg/min)	30.5±0.7	30.5±0.7	30.5±0.7	30.5±0.7
قدرت بیشینه بالاتنه (kg)	30.5±0.7	30.5±0.7	30.5±0.7	30.5±0.7
استقامت عضلانی (ا/2min)	30.5±0.7	30.5±0.7	30.5±0.7	30.5±0.7
توان پایین‌ترین (W)	30.5±0.7	30.5±0.7	30.5±0.7	30.5±0.7

مکانیسم پاسخ مولکولی

15. Ogasawara
مشکلات استقامت عضلانی به ترتیب در گروه تمرین هوازی مقاومتی به همراه EMS، تمرین هوازی ایجاد می‌شوند. تمرینات ترکیبی در نتایج تحقیق دارای تغییرات گروه تمرین هوازی به صورت داوطلبانه اجرا می‌شود که با نتایج تحقیق در گروه تمرینات ترکیبی موافق است. در پژوهشی که با آزمون 2 دقیقه زاویه‌گیری در چرخ دوگانه‌گیری شد نتیجه نشان داد که بیشترین تغییرات

جدول ۱: نتایج آزمون تکمیلی بار الکتریک

گروه	بهره خوردن	استقامت عضلانی	قدرت چرخشی	VO max
CT + EMS	< 0.01	< 0.01	< 0.01	< 0.01
SAT + EMS	< 0.01	< 0.01	< 0.01	< 0.01
CT	< 0.01	< 0.01	< 0.01	< 0.01
CT + EMS	< 0.01	< 0.01	< 0.01	< 0.01
CT	< 0.01	< 0.01	< 0.01	< 0.01
CT + EMS	< 0.01	< 0.01	< 0.01	< 0.01
CT	< 0.01	< 0.01	< 0.01	< 0.01
CT + EMS	< 0.01	< 0.01	< 0.01	< 0.01
CT	< 0.01	< 0.01	< 0.01	< 0.01
CT + EMS	< 0.01	< 0.01	< 0.01	< 0.01
CT	< 0.01	< 0.01	< 0.01	< 0.01
CT + EMS	< 0.01	< 0.01	< 0.01	< 0.01
CT	< 0.01	< 0.01	< 0.01	< 0.01
CT + EMS	< 0.01	< 0.01	< 0.01	< 0.01
CT	< 0.01	< 0.01	< 0.01	< 0.01
CT + EMS	< 0.01	< 0.01	< 0.01	< 0.01
CT	< 0.01	< 0.01	< 0.01	< 0.01
CT + EMS	< 0.01	< 0.01	< 0.01	< 0.01
CT	< 0.01	< 0.01	< 0.01	< 0.01
CT + EMS	< 0.01	< 0.01	< 0.01	< 0.01
CT	< 0.01	< 0.01	< 0.01	< 0.01
CT + EMS	< 0.01	< 0.01	< 0.01	< 0.01
CT	< 0.01	< 0.01	< 0.01	< 0.01
CT + EMS	< 0.01	< 0.01	< 0.01	< 0.01
CT	< 0.01	< 0.01	< 0.01	< 0.01
CT + EMS	< 0.01	< 0.01	< 0.01	< 0.01
CT	< 0.01	< 0.01	< 0.01	< 0.01
CT + EMS	< 0.01	< 0.01	< 0.01	< 0.01
CT	< 0.01	< 0.01	< 0.01	< 0.01
CT + EMS	< 0.01	< 0.01	< 0.01	< 0.01
CT	< 0.01	< 0.01	< 0.01	< 0.01
CT + EMS	< 0.01	< 0.01	< 0.01	< 0.01
CT	< 0.01	< 0.01	< 0.01	< 0.01
CT + EMS	< 0.01	< 0.01	< 0.01	< 0.01
CT	< 0.01	< 0.01	< 0.01	< 0.01
CT + EMS	< 0.01	< 0.01	< 0.01	< 0.01
CT	< 0.01	< 0.01	< 0.01	< 0.01
CT + EMS	< 0.01	< 0.01	< 0.01	< 0.01
CT	< 0.01	< 0.01	< 0.01	< 0.01
CT + EMS	< 0.01	< 0.01	< 0.01	< 0.01
CT	< 0.01	< 0.01	< 0.01	< 0.01
گروهی با ترتیب تمرین مقاومتی بدون EMS یا EMS گرایشی تمرینی نداشتند، در تحقیق حاضر، گروهی با ترتیب تمرینی مقاومتی بدون EMS یا EMS گرایشی تمرینی نداشتند، در تحقیق حاضر، گروهی با ترتیب تمرینی مقاومتی بدون EMS یا EMS گرایشی تمرینی نداشتند، در تحقیق حاضر، گروهی با ترتیب تمرینی مقاومتی بدون EMS یا EMS گرایشی تمرینی نداشتند، در تحقیق حاضر، گروهی با ترتیب تمرینی مقاومتی بدون EMS یا EMS گرایشی تمرینی نداشتند.
References

[1] Dana A, Fallah Z, Motadi J, Ghalavand A. [The effect of cognitive and aerobic training on cognitive and motor characteristics, and brain-derived neurotrophic factors in elderly men (Persian)]. Journal of Development and Motor Learning. 2019; 10(4):537-52. https://jnlm.ut.ac.ir/article_70246_en.html

[2] Kiani P, Mottaghi M, Ghoddoosy A. [Investigating the relationship between financial abuse and mental health among elderly population in Shahr-e-Kord (Persian)]. Salmard: Iranian Journal of Ageing. 2019; 14(2):121-23. http://salmardj.uowr.ac.ir/article-1-1447-en.html

[3] Ghalavand A, Shakerian S, Zakeriash M, Shahbazian H, Monazam NA. [The Effect of resistance training on anthropometric characteristics and lipid profile in men with type 2 diabetes referred to Golestan Hospital (Persian)]. Jundishapur Scientific Medical Journal. 2015; 13(6):709-20. http://jsmj.ajums.ac.ir/jentashapir/index.php/jentashapir/article/view/article_52171.html?lang=en

[4] Lakha HM, Lakha TA, Tuomilehto J, Salonen JT. Abdominal obesity is associated with increased risk of acute coronary events in men. European Heart Journal. 2002; 23(9):706-13. [DOI:10.1053/ehj.2001.2889] [PMID]

[5] Karami Matin B, Kiani P, Mottaghi M, Ghoddoosy A. [Investigating the relationship between financial abuse and mental health among elderly population (Persian)]. Archives of Rehabilitation. 2001; 19(1):44-53. [DOI:10.21859/jrehab.19.1.44]

[6] Dixon JB. The effect of obesity on health outcomes. Molecular and Cellular Endocrinology. 2016; 316(2):104-8. [DOI:10.1016/j.mce.2009.07.008] [PMID]

[7] Nik-Tabal AR, Shahi-Moridi D. [Risk factors of the hip fractures in elderly patients (Persian)]. Archives of Rehabilitation. 2001; 2(3):39-46. http://rehabilitationj.uowr.ac.ir/article-1-549-en.html

[8] Dixon JB. The effect of obesity on health outcomes. Molecular and Cellular Endocrinology. 2010; 336(2):104-8. [DOI:10.1016/j.mce.2009.07.008] [PMID]

[9] Khoddadadi H, Haghighi AH, Hosseini-Kahki AR. The effect of two programs stretch-balance training with different timings on some of the physical performances in older men. Journal of Paramedical Science and Rehabilitation 2018; 18(3):26-36. http://ipsr.mums.ac.ir/article_11378.html

[10] Radak Z, Torma F, Berkes I, Goto S, Mimura T, Posa S, et al. Exercise effects on physiological function during aging. Free Radical Research. 2016; 10(4):444 [PMID]

[11] Rafagi AG, Esfiabi M, Mindar S. The effect of a nine-weeks training program on the center of pressure indicators with open and closed eyes condition in the elderly male. Archives of Rehabilitation. 2016; 19(1):44-53. [DOI:10.21859/jchab.19.1.44]

[12] Hupin D, Roche F, Gremaux V, Chatard JC, Oriol M, Gaspoz JM, et al. Even a low-dose of moderate-to-vigorous physical activity reduces mortality by 22% in adults aged≥ 60 years: A systematic review and meta-analysis. British Journal of Sports Medicine. 2015; 49(19):1262-7. [DOI:10.1136/bjsports-2014-094306] [PMID]

[13] Kemmler W, Schlifka R, Mayhew JL, von Stengel S. Effects of whole-body electromystimulation on resting metabolic rate, body composition, and maximum strength in postmenopausal women: The training and electromystimulation trial. The Journal of Strength & Conditioning Research. 2010; 24(7):1880-7. [DOI:10.1519/JSC.0b013e3181e86cbe] [PMID]

[14] Wood RH, Reyes R, Welsch MA, Favaloro-Sabatier J, Sabatier M, Lee CM, et al. Concurrent cardiovascular and resistance training in healthy older adults. Medicine & Science in Sports & Exercise. 2001; 33(10):1751-8. [DOI:10.1097/00005768-200110000-00021] [PMID]

[15] Taylor D. Physical activity is medicine for older adults. Postgraduate Medical Journal. 2014; 90(1059):26-32. [DOI:10.1136/postgradmedj-2012-131366] [PMID] [PMCID]

[16] Cadore EL, Izquierdo M, Pinto SS, Alberton CL, Pinto RS, Baroni BM, et al. Neuromuscular adaptations to concurrent training in the elderly: effects of intrasession exercise sequence. Age. 2013; 35(3):891-903. [DOI:10.1007/s11357-012-9405-y] [PMID] [PMCID]

[17] Schumann M, Walker S, Izquierdo M, Newton RU, Kraemer WJ, Hakkensen K. The order effect of combined endurance and strength loadings on force and hormone responses: effects of prolonged training. European Journal of Applied Physiology. 2014; 114:687-80. [DOI:10.1007/s00421-013-2813-6] [PMID] [PMCID]

[18] Bagheri I, Faramarzi M, Ebrahim B, Mardanpour-Shahrekrd Z. A comparison of the effects of three types of combined training on testosterone and cortisol concentration and muscle strength in elderly women (Persian). Journal of Sport Biosciences. 2016; 6(1):123-41. [DOI:10.1136/hsbjoj.2014.11.007] [PMID] [PMCID]

[19] Wilhelm EN, Rech A, Minozzo F, Botton CE, Radicelli R, Texeira BC, et al. Concurrent strength and endurance training exercise sequence does not affect neuromuscular adaptations in older men. Experimental Gerontology. 2014; 60:207-14. [DOI:10.1016/j.exger.2014.11.007] [PMID]

[20] Salehi E, Banitalebi E, Faramarzi M, Bagheri L, Mardanpour-Shahrekordi Z. [Effects of 8-weeks combined training (strength and endurance) on serum levels of AGRP, GH and changes in metabolic profile during concurrent training. [MS. thesis]. Florida: University of South Florida; 2016. https://scholarcommons.usf.edu/etd/6217/]

[21] Eikens L, van Someren K, Howatson G. The role of intra-session exercise sequence in the interference effect: A systematic review with meta-analysis. Sports Medicine. 2018; 48(3):177-88. [DOI:10.1007/s40279-017-0784-1] [PMID] [PMCID]

[22] Murlasits Z, Knefel Z, Thalib L. The physiological effects of concurrent strength and endurance training sequence: A systematic review and meta-analysis. Journal of Sports Sciences. 2018; 36(11):121-9. [DOI:10.1080/02640414.2017.1364405] [PMID]

[23] Davis-Miller TL. The effect of exercise order on body fat loss during concurrent training. [MS. thesis]. Florida: University of South Florida; 2016. https://scholarcommons.usf.edu/etd/6217/}

[24] Chhara M, Chamari K, Chauouchi M, Chauouchi A, Koubaa D, Feki Y, et al. Effects of intra-session concurrent endurance and strength training sequence on aerobic performance and ca-
Effect of mixed exercise training on aerobic capacity and body composition in older women: a randomized clinical trial (Persian). Journal of Shahrekord University of Medical Sciences. 2015;17(3):1-12. http://journal.skums.ac.ir/abstract

Comparison of physical parameters of the individual who have received NASM-OPT Model & EMS training in combination with traditional fitness training applications regularly as Personal Training (PT) for 20 weeks. Journal of Education and Training Studies. 2018; 6(12):158-71. [DOI:10.11114/jets.v6i12.3673]

The effects of electromyostimulation training and basketball practice on muscle strength and jumping ability. International Journal of Sports Medicine. 2000; 21(06):437-43. [DOI:10.1055/s-2000-38373] [PMID] [PMCID]

The effects of electromyostimulation training and endurance training effects on neural drive and muscle architecture. Tohoku Journal of Experimental Medicine. 1997; 181(4):467-75. [DOI:10.1628/tjem.181.467] [PMID] [PMCID]

A comparison of three rating scales for perceived exertion and two different work tests. Scandinavian Journal of Medicine & Science in Sports. 2006; 16(1):57-69. [DOI:10.1111/j.1600-0838.2005.00448.x] [PMID]

The ramp power test: A power assessment during a functional task for older individuals. The Journals of Gerontology Series A: Biological Sciences and Medical Sciences. 2007; 62(11):1266-73. [DOI:10.1093/gerona/62.11.1266] [PMID]

The effect of sequence order of combined training (Strength and Endurance) on some of the factors leading to sarcopenia in older women. Paper presented at: 8th international congress on physical education and sport sciences. 19-20 February 2015, Tehran, Iran.

A meta-analysis of individual patient data from randomized controlled WB-EMS trials. Evidence-Based Complementary and Alternative Medicine. 2017; 52(1):E151-E157. [DOI:10.1152/jasrep19906-00002] [PMID]

A comparison between three rating scales for perceived exertion and two different work tests. Scandinavian Journal of Medicine & Science in Sports. 2006; 16(1):57-69. [DOI:10.1111/j.1600-0838.2005.00448.x] [PMID]

The effects of whole-body electromyostimulation on low back pain in people with chronic unspecific dorsal pain: A meta-analysis of individual patient data from randomized controlled WB-EMS trials. Evidence-Based Complementary and Alternative Medicine. 2017; 52(1):E151-E157. [DOI:10.1152/jasrep19906-00002] [PMID]

The effect of sequence order of combined training (resistance and endurance) on strength, aerobic capacity and body composition in older women: a randomized clinical trial (Persian). Journal of Shahrekord University of Medical Sciences. 2015;17(3):1-12. http://journal.skums.ac.ir/article-1-2054-en.html

Effect of aging on muscle fibre type and size. Sports Medicine. 2004; 34(12):899-24. [DOI:10.2165/00007256-200434120-00002] [PMID]

A comparison between three rating scales for perceived exertion and two different work tests. Scandinavian Journal of Medicine & Science in Sports. 2006; 16(1):57-69. [DOI:10.1111/j.1600-0838.2005.00448.x] [PMID]

The comparison of electromyostimulation-a systematic review of the influence of training regimens and stimulation parameters on effectiveness in electromyostimulation training of selected strength parameters. The Journal of Strength & Conditioning Research. 2011; 25(12):3218-38. [DOI:10.1519/JSC.0b013e3182122c7e] [PMID]

Norms for fitness, performance, and health. Cham: Human Kinetics; 2006. https://books.google.com/books?hl=en&lr=&id=3TzwC4likFoC&oi=fnd&pg=PR9&dq

Effect of behavioral and lifestyle interventions for type 2 diabetes (Persian). Journal of Diabetes Nursing. 2017; 5(1):59-69. http://jdn.zbmu.ac.ir/article-1-156-en.html

Electromyostimulation-a systematic review of the influence of training regimens and stimulation parameters on effectiveness in electromyostimulation training of selected strength parameters. The Journal of Strength & Conditioning Research. 2011; 25(12):3218-38. [DOI:10.1519/JSC.0b013e3182122c7e] [PMID]

Pharmacology, performance, training. Cham: Human Kinetics; 2006. https://books.google.com/books?hl=en&lr=&id=3TzwC4likFoC&oi=fnd&pg=PR9&dq

Archives of Rehabilitation

January 2021. Vol 21. Num 4

Deneshkhouseimad M, et al. Concurrent Training Order With Electromyostimulation on Physical Performance. Rj. 2021; 21(4):508-525.

524
[47] Ogasawara R, Sato K, Matsutani K, Nakazato K, Fujita S. The order of concurrent endurance and resistance exercise modifies mTOR signaling and protein synthesis in rat skeletal muscle. American Journal of Physiology-Endocrinology and Metabolism. 2014; 306(10):E1155-E62. [DOI:10.1152/ajpendo.00647.2013] [PMID]

[48] Chata M, Chaouachi A, Levin GT, Chaouachi M, Chamari K, Amri M, et al. Effect of concurrent endurance and circuit resistance training sequence on muscular strength and power development. The Journal of Strength & Conditioning Research. 2008; 22(4):1037-45. [DOI:10.1519/JSC.0b013e3181816a419]