Chemical Synthesis and Biological Activities of Novel Pleuromutilin Derivatives with Substituted Amino Moiety

Ruofeng Shang1, Shengyu Wang2, Ximing Xu3, Yunpeng Yi1, Wenzhu Guo1, YuLiu1, Jianping Liang1*

1 Key Laboratory of New Animal Drug Project of Gansu Province, Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agriculture, Lanzhou Institute of Animal Science and Veterinary Pharmaceuticals Science, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, China, 2 University Hospital of Gansu Traditional Chinese Medicine, Lanzhou, Gansu, China, 3 Université Paris Diderot, Sorbonne Paris Cité, Unité de Biologie Fonctionnelle et Adaptative, CNRS, Paris, France

Abstract

Novel pleuromutilin derivatives designed based on the structure of valnemulin were synthesized and evaluated for their in vitro antibacterial activities. These pleuromutilin derivatives with substituted amino moiety exhibited excellent activities against methicillin-resistant Staphylococcus aureus, methicillin-resistant Staphylococcus epidermidis, Escherichia coli, and Streptococcus agalactiae. Compound 5b showed the highest antibacterial activities and even exceeded tiamulin. Moreover, the docking experiments provided information about the binding model between the synthesized compounds and peptidyl transferase center (PTC) of 23S rRNA.

Citation: Shang R, Wang S, Xu X, Yi Y, Guo W, et al. (2013) Chemical Synthesis and Biological Activities of Novel Pleuromutilin Derivatives with Substituted Amino Moiety. PLoS ONE 8(12): e82595. doi:10.1371/journal.pone.0082595

Editor: Patrick M. Schlievert, University of Iowa Carver College of Medicine, United States of America

Received August 13, 2013; Accepted October 25, 2013; Published December 23, 2013

Copyright: © 2013 Shang et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: This work was supported by Basic Scientific Research Funds in Central Agricultural Scientific Research Institutions (number 1610322013004) and “Five-Year” plan of national science and technology projects in rural areas (number 2011AA10A214). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: liangjp100@sina.com

Introduction

In the last three decades the abuse of antibiotics has made more pathogenic bacteria resistant to drugs, which leads to many available drugs reducing or losing curative effect [1]. Drug-resistance bacteria, especially the Staphylococcus aureus, Staphylococcus pneumoniae, Mycobacterium tuberculosis, etc. endanger human health and poses an economic problem seriously [2]. The rapid emergence of drug-resistant bacteria urges research workers to identify and develop new antibacterial agents with novel mechanisms of action against drug-resistant bacterial strains.

Pleuromutilin (1) (Figure 1) was first isolated in a crystalline form from cultures of two species of basidiomycetes, Pleurotus mutthus and P. passeckerianus in 1951 [3]. Pleuromutilin is a diterpene, constituted of a rather rigid 5–6–8 tricyclic carbon skeleton with eight stereogenic centers [4,5]. Molecular modifications of the C-14 glycolic acid chain of pleuromutilin have led to two pleuromutilin derivatives, tiamulin and valnemulin (Figure 1) [6]. The two compounds have been successfully developed as therapeutic agents for veterinary use [7,8]. During the early 1980s, extensive effort was made to formulate azamulin (Figure 1) for human use. Although azamulin showed good activity in vitro against many clinical isolates, it did not go into the stage for further clinic trial because of strongly inhibition of cytochrome P450 and terrible solubility in water [9,10]. Retapamulin (Figure 1) became the first pleuromutilin approved for human use in 2007 by Food and Drug Administration (FDA) [11,12]. Besides retapamulin, BC-3781, BC-3205 and BC-7013 (Figure 1) are developing for Food and Drug Administration (FDA) [11,12]. Besides retapamulin, BC-3781, BC-3205 and BC-7013 (Figure 1) are developing for further clinic trial because of strongly inhibition of cytochrome P450 and terrible solubility in water [9,10]. Retapamulin (Figure 1) became the first pleuromutilin approved for human use in 2007 by Food and Drug Administration (FDA) [11,12].

Further studies have shown that pleuromutilin derivatives interfered with bacterial protein synthesis via a specific interaction with the 23S rRNA of the 50S bacterial ribosome subunit [13,16]. The domain V of 23S rRNA at the peptidyl transferase center (PTC) is mutilins derivatives binding site, in which the tricyclic core of the pleuromutilin is positioned in a pocket close to the A-site RNA binding site, whereas the C-14 extension points toward the P-site RNA binding site [17]. Thus these compounds prevent the correct positioning of the tRNAs for peptide transfer, and inhibit the peptidyl transferase [6,10].

Structure activity relationship (SAR) studies show that the presence of thioether group at C-22 position of pleuromutilin enhances antibacterial activity [19,20]. The thioether group moiety is key to their pharmacological properties, especially with side chain [7,17]. For example, antibacterial activity of valnemulin containing dimethyl propane moiety is more effective than that of tiamulin in vitro as well as in vivo [21,22]. Previous work in our group has led to the synthesis and analysis of antibacterial activity of 17 semisynthetic pleuromutilin derivatives bearing dimethyl propane moiety [23]. Based on the bioactivity studies it was proposed that the antibacterial activity of these compounds is connected with the alkaline group at the end of side chain.

As a part of our research work on the development of useful synthetic molecules, we have planned to introduce tertiary amine at the end of dimethyl propane moiety attached to the side chain at C-14 of pleuromutilin. Thus, the present study reports the synthesis, antibacterial studies, molecular docking of the synthesized compounds against methicillin-resistant Staphylococcus aureus, methicillin-resistant Staphylococcus epidermidis, Escherichia coli, and Streptococcus agalactiae.
understand its conformational feature and supramolecular assembly. It helps in understanding the exact 3D conformation of the molecule which would help in further studying the mechanism of action of the drug and also in docking studies with receptor.

Results and Discussion

Synthesis

The reaction pathways used to synthesize the designed compounds (5a-f) were described in Figure 2. The pleuromutilin
1 was converted into the known p-toluenesulfonyl ester 2, which by a nucleophilic substitution was further converted into an intermediate, 14-O-[(1-amino-2-methylpropane-2-yl)thioacetyl] mutilin 3, in the manner previously reported by us [23]. The key intermediate, 14-O-[(2-chloroacetamide-2-methylpropane-2-yl)thioacetyl] mutilin 4, was prepared by commercial available chloracetyl chloride and intermediate 3 with an aim to construct acetamide linker between the tertiary amine and 2-methylpropane. Then, intermediate 4 reacted with a series of secondary amines by the nucleophilic reaction in the presence of triethylamine to afford the corresponding target compounds 5a–f. All the formed tertiary amines were treated by distilled water and saturated NaHCO₃ washing, followed by purification with column chromatography and characterized by means of IR, ¹H NMR, ¹³C NMR and HRMS spectral analysis (Details are provided in Figure S1).

Biological Evaluation

The synthesized pleuromutilin derivatives 5a–f were tested for their *in vitro* antibacterial activity against MRSA, MRSE, E.coli, and Sagalactia by agar dilution method according to the National Committee for Clinical Laboratory Standards (NCCLS), 1997. Minimum inhibitory concentration (MIC) is defined as the minimum concentration of the compound required to completely inhibit the bacterial growth. The determination of MIC values was performed in triplicate at pH 7.40. The MICs of the synthesized compounds 5a–f along with pleuromutilin and tiamulin which were used as reference drugs are depicted in Table 1. The MICs of new pleuromutilin derivatives *in vitro* against MRSA, MRSE, E.coli, and Sagalactia ranged from 4 to 0.25 µg/mL, 32 to 1 µg/mL, 32 to 4 µg/mL, and 16 to 1 µg/mL respectively.

Antibacterial activity for all the synthesized compounds was evaluated against the above mentioned four bacterial strains. Oxford cup assay was carried out and the zones of inhibition for different concentrations of the synthetic compounds were measured. Data are reported as diameters of growth inhibition (mm) and the results are given in Table 2. Also pleuromutilin and tiamulin were used as reference drugs.

Among all the pleuromutilin derivatives examined, compound 5b showed the highest antibacterial activities than the other

Compound	MRSA	MRSE	E. coli	S.agalactia
5a	2	16	8	16
5b	0.25	1	4	1
5c	2	16	16	8
5d	2	8	16	4
5e	4	32	32	16
5f	4	16	32	8
pleuromutilin	4	16	32	8
Tiamulin	0.5	2	2	2

Table 1. MIC (µg/mL) of 5a–f for MRSA, MRSE, E. coli and S.agalactia.

Figure 2. Scheme for the synthesis of target compounds 5a–f. doi:10.1371/journal.pone.0082595.g002
The docking results reveal the binding free energies of tiamulin, a native ligand which is embedded in cocrystallized and shows a superposition of the six docked compounds and the experimental binding mode with RMSD of 0.99. The hydrogen bonding plays an important role in the binding of compounds and 1XBP. As shown in Table S1 and Figure 4, all the six compounds are found to bind with the same hydrogen bondings formed between the hydroxyl group of eight-membered ring and residue of G-2484, and with the ester of side chain and residue of G-2044. Moreover, a cation–π interaction formed between tertiary amine of 5b and A-2045 play an important role in increasing the binding affinity. The geometry of the interaction further, confirming that cation–π interactions are strongest when the cation is situated perpendicular to the plane of atoms [27]. We presume that the conformation of 5b make its tertiary amine perpendicular to the purine ring of A-2045. Although compounds 5c-f also bear a tertiary amine at the terminal of side chain, no cation–π interaction is found by PoseView, a software tool that can automatically create two-dimensional diagrams of complexes with known 3D structure according to the docking results [28].

Table 2. Zone of Inhibition of 5a–f for MRSA, MRSE, E. coli and S.agalactia (in mm).

Compound	MRSA (μg/mL)	MRSE (μg/mL)	E. coli (μg/mL)	S.agalactia (μg/mL)
	320	160	320	160
5a	16.83	15.49	13.57	11.83
5b	19.32	17.52	18.52	17.45
5c	16.20	15.73	13.34	12.37
5d	17.06	15.81	13.47	12.36
5e	15.28	13.65	12.36	11.45
5f	13.95	13.74	11.67	10.85
pleuromutilin	14.78	14.01	13.86	11.93
Tiamulin	18.02	17.15	16.42	15.38

X-ray Crystallographic Study of Intermediate 4

Compound 5a-f were all synthesized starting from intermediate 4, so its crystallographic structure is necessary and useful to understand the approximate structures and 3D conformations of compounds 5a-f in the molecular modeling. Single crystal of X-ray diffraction study was carried out on the intermediate 4 to understand the nature of its conformational and molecular assembly. Intermediate 4 forms clear light colorless block shaped crystal from a solution of acetone and ethanol by slow evaporation method at room temperature. The crystal structure of 4 was built up of C29H41ClNO5S molecules containing a 5–6–8 tricyclic carbon skeleton, in which all bond lengths and angles were in normal ranges. The crystalline displayed a monoclinic symmetry and the p 1211 space group. The five-membered ring (C(6), C(7), C(9) ~ C(11)) is not planar and the dihedral angles formed by C(6) ~ C(9) ~ C(10) and C(6) ~ C(7) ~ C(11) is 43.727. The eight-membered ring (C(1), C(2) ~ C(8)) exhibits a boat conformation, while the six-membered ring (C(6), C(7), C(8), C(14), C(13) and C(12)) exhibits a chair conformation. The crystalline conformations of tricyclic carbon skeleton of 4 are very similar to that of the reported pleuromutilin derivative: 14-O-[(3-chlorobenzamido-2-methylpropane-2-y) thioacetate] Mutilin [29], Perspective views of the title molecules with atomic numbering scheme are shown in Figure 5A, and its packing diagrams are depicted in Figure 5B.

The synthesized chloroacetamide and 2-methylpropane moiety exhibits zig-zag conformation. The crystal is formed by three different intermolecular H-bonds, namely O(1)-H(1)⋯O(6)\(^{\alpha}\), C(21)-H(21B)⋯O(1)\(^{\alpha}\) and C(25)-H(25A)⋯O(2)\(^{\alpha}\) (\(\alpha: -1+x, y, z\), i\(\alpha: -x, -1/2+y, 1-z\); ii\(\alpha: -x, 1/2+y, -z\), with d (D⋯A) = 2.880(4) Å, 3.412(3) and 3.402(4) Å, respectively [hydrogen bond information see in Table S2]). Those intermolecular interactions/H-bonds link the molecules into an infinite 3-dimensional supramolecular
network structure and play key roles in stabilizing the crystal packing.

Materials and Methods

Chemistry

All reagents were purchased from Aladdin (China) and used without further purification. All compounds were synthesized in our lab and identified by IR, NMR and HRMS. Melting points were determined on a Tianda Tianfa YRT-3 apparatus (China) with open capillary tubes and are uncorrected. IR spectra were recorded as KBr pellets and absorptions are reported in cm⁻¹. Chemical shifts (δ) were expressed in parts per million (ppm) relative to the tetramethylsilane. ¹³C NMR spectra were recorded using Bruker-400 MHz spectrometers. Chemical shifts were recorded in appropriate solvents. Chemical shifts (δ) were expressed in parts per million (ppm) relative to the tetramethylsilane. ¹³C NMR spectra were recorded using Bruker 400 MHz spectrometers. ¹³C NMR spectra (Δ) were recorded in appropriate solvents. High-resolution NMR spectra were recorded using Bruker 400 MHz spectrometers. High-resolution mass spectra (HRMS) were determined on a Bruker Daltonics APEX II 47e mass spectrometer equipped with an electrospray ion source. All reactions were monitored by TLC on 0.2 mm thick silica gel GF254 pre-coated plates. After elution, plate was visualized under UV illumination at 254 nm for UV active materials. Further visualized was achieved by staining with 0.5% phosphomolybdic acid. Column chromatography was carried out on silica gel (200–300 mesh). The products were eluted in appropriate solvent mixture under air pressure. Concentration and evaporation of the solvent after reaction or extraction was carried out on a rotary evaporator.

Synthesis of 14-O-(p-toluene sulfonyl)acetyl mutilin 2.

14-O-(p-toluene sulfonyl)acetyl mutilin 2 was synthesized as described previously [23]. mp: 147–148°C. It was used in the next step without further purification. IR (KBr): 3446, 2924, 2863, 1734, 1721, 1634, 1456, 1373, 1274, 1209, 1112, 1033, 982, 955, 941, 916 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 0.73 (d, 3H, J = 7.2 Hz), 0.87 (d, 3H, J = 7.2 Hz), 1.09–1.16 (m, 1H), 1.23 (s, 6H), 1.30–1.38 (m, 2H), 1.45 (s, 1H), 1.52–1.53 (m, 7H), 1.55–1.60 (m, 1H), 1.63–1.69 (m, 2H), 1.74–1.78 (q, 1H, J = 0.8 Hz), 2.04–2.10 (q, 2H), 2.18–2.25 (m, 2H), 2.32–2.59 (q, 1H, J = 1.2 Hz), 3.09 (s, 2H), 3.13–3.17 (t, 2H, J = 1.6 Hz), 3.35 (d, J = 6.4 Hz), 3.67–3.70 (m, 1H), 3.85–3.97 (m, 2H), 4.23–4.28 (m, 2H), 4.31–4.35 (m, 2H), 4.40 (s, 2H), 4.57–5.22 (q, 1H, J = 1.6 Hz), 5.31–5.34 (q, 1H, J = 1.2 Hz), 5.64–6.51 (q, 1H, J = 1.2 Hz), 6.43 (d, J = 17.4, 11.0 Hz), 6.73 (d, J = 17.4, 11.0 Hz), 7.05 (d, J = 17.4, 11.0 Hz), 7.45 (d, J = 17.4, 11.0 Hz). ¹³C NMR (100 MHz, CDCl₃) δ 216.7, 164.8, 145.2, 138.6, 132.5, 129.9, 127.9, 117.2, 74.2, 70.2, 64.9, 57.9, 45.3, 44.4, 43.9, 41.7, 36.4, 35.9, 34.3, 30.2, 26.7, 26.3, 24.7, 21.6, 16.4, 14.6, 11.4. HRMS (ESI) of C₂₉H₄₃NO₅S[M⁺]⁺ calcd, 533.2501; found, 533.2507.

Synthesis of 14-O-[1-amino-2-methylpropan-2-yl]thioacetamido] mutilin 3.

14-O-[1-amino-2-methylpropan-2-yl]thioacetamido] mutilin 3 was synthesized as described previously [20,23]. mp: 154–155°C; IR (free base, KBr): 3351, 2956, 2864, 1734, 1721, 1634, 1456, 1373, 1274, 1209, 1112, 1033, 982, 955, 941, 916 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.74 (d, 1H, J = 8.4 Hz), 6.44–6.51 (q, 1H, J = 17.2 Hz, 10.8 Hz); 5.35–5.37 (d, 2H, J = 4.0 Hz), 5.17–5.22 (q, 1H, J = 1.6 Hz), 5.46–5.47 (d, 2H, J = 4.0 Hz). ¹³C NMR (100 MHz, CDCl₃) δ 216.7, 164.8, 145.2, 138.6, 132.5, 129.9, 127.9, 117.2, 74.2, 70.2, 64.9, 57.9, 45.3, 44.4, 43.9, 41.7, 36.4, 35.9, 34.3, 30.2, 26.7, 26.3, 24.7, 21.6, 16.4, 14.6, 11.4. HRMS (ESI) of C₂₉H₄₃NO₅S[M⁺]⁺ calcd, 466.2986; found, 466.2995.

Synthesis of 14-O-[2-chloroacetamidemethoxy]methyl] mutilin 4.

To a solution of 14-O-[1-amino-2-methylpropan-2-yl]thioacetamido] mutilin (1.40 g, 3 mmol) and N-methylmorpholine (0.61 g, 6 mmol) in 20 mL dry DCM, CIC₂H₅COCl (0.51 g, 4.5 mmol) in 5 mL dry DCM was slowly dropped at 0°C. The reaction mixture was stirred for 2.5 h. After the reaction, the solution was washed with water three times, and then the organic layer was dried with MgSO₄ filtered, concentrated, and purified by column chromatography (petroleum ether: ethyl acetate = 1:1) to yield 4 as a white solid (1.38 g, yield: 85%). mp: 171–173°C; IR (KBr): 3449, 3371, 2977, 2924, 2836, 1738, 1713, 1547, 1456, 1414, 1383, 1285, 1265, 1221, 1131, 1114, 1024, 976, 953, 919, 770, 727, 667, 592 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.45, 6.44 (dd, J = 17.4, 11.0 Hz, 1H), 5.71 (d, J = 8.4 Hz, 1H), 5.27 (d, J = 11.0 Hz, 1H), 5.16 (d,
\[J = 17.4 \text{ Hz, } 1H), 4.05 (s, 2H), 3.47–3.06 (m, 5H), 2.50–1.94 (m, 5H), 1.69 (dd, \ J = 35.6, 13.1 \text{ Hz, } 2H), 1.63–1.17 (m, 15H), 1.17–0.90 (m, 4H), 0.85 (d, \ J = 6.9 \text{ Hz, } 3H), 0.69 (d, \ J = 6.9 \text{ Hz, } 3H).
\]

\[^{13}C\text{ NMR (101 MHz, CDCl}_3\] d 216.77, 169.79, 166.12, 139.01, 117.13, 74.56, 69.98, 58.10, 47.79, 45.93, 44.37, 43.98, 42.68, 41.79, 36.69, 36.01, 34.41, 31.50, 30.40, 29.64, 26.87, 26.12, 24.82, 16.83, 14.86, 11.47. HRMS (ESI) of C\text{\textsubscript{28}H\textsubscript{44}ClNO\textsubscript{5}S} [M\text{+Na}]^+ calcd, 564.2521; found, 564.2526.

General procedure for the synthesis of compounds 15a–f. Secondary amines (4.5 mmol) was added to the solutions of compound 4 (1.63 g, 3 mmol) and triethylamine (0.61 g, 6 mmol) in tetrahydrofuran (60 mL) and stirred at 45\(^\circ\)C for the specified time. Then the tetrahydrofuran was evaporated in vacuum from the reaction mixture. The residue was added ethyl acetate (60 mL) and quenched with saturated aqueous NH\textsubscript{4}Cl (30 mL). The organic layer was separated, washed with water (20 mL for three times), dried with anhydrous Na\textsubscript{2}SO\textsubscript{4} and rotary evaporated to dryness. Crude residue was purified over silica gel column chromatography afford the desired compounds.

14-O-[[2- isopropylaminoacetyl –2-methylpropane-2-yl]thioacetate]Mutilin (5a). Compound 5a was prepared according to the general procedure with a reaction time of 3.5 hours. The crude product was purified over silica gel column chromatography (petroleum ether: ethyl acetate = 1:1.5) yielding 5a.
(69%, 1.17 g) as a white solid. mp: 105–107 °C; IR (KBr): 3437, 2933, 1732, 1668, 1538, 1456, 1416, 1384, 1283, 1152, 1117, 1017, 981, 939, 916 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.69 (s, 1H), 6.42 (dd, ³J = 17.2, 11.2 Hz, 1H), 5.73 (d, ³J = 8.0 Hz, 1H), 5.16 (d, ³J = 17.2 Hz, 1H), 5.15 (d, ³J = 17.3 Hz, 1H), 3.38–3.12 (m, 6H), 2.63 (s, 4H), 2.38–2.14 (m, 3H), 2.12–2.00 (m, 2H), 1.76 (d, ³J = 24.6 Hz, 5H), 1.60 (dd, ³J = 19.4, 8.6 Hz, 3H), 1.51 (d, ³J = 13.5 Hz, 1H), 1.43 (s, 4H), 1.28 (dd, ³J = 36.9, 11.4 Hz, 9H), 1.18–1.05 (m, 4H), 0.85 (d, ³J = 6.7 Hz, 3H), 0.70 (d, ³J = 6.7 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 216.56, 170.71, 168.97, 138.73, 116.82, 74.29, 69.22, 58.78, 57.90, 54.24, 46.78, 46.63, 46.15, 44.53, 43.63, 41.51, 36.44, 35.77, 34.13, 32.17, 30.14, 26.53, 26.19, 24.55, 23.75, 23.49, 16.50, 14.59, 11.14. HRMS (ESI) of C₃₁H₅₂N₂O₅S [M+H]+ calcd, 565.3592; found, 565.3599.

14-O-[(2-(bis (ethyl) amino) acetamido-2-methylpropane-2-yl) thioacetate]Mutilin (5b). Compound 5b was prepared according to the general procedure with a reaction time of 3 hours. The crude product was purified over silica gel column chromatography (petroleum ether: ethyl acetate = 1:1) yielding 5b (78%, 1.35 g) as a white solid. mp: 142–145 °C; IR (KBr): 3444, 2933, 1732, 1667, 1519, 1455, 1417, 1385, 1282, 1207, 1116, 1065, 1021, 981, 935, 916 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 6.41 (dd, ³J = 16.4, 10.2 Hz, 1H), 5.74 (dd, ³J = 35.0, 7.6 Hz, 1H), 5.27 (s, 1H), 5.15 (d, ³J = 17.3 Hz, 1H), 3.20 (dd, ³J = 60.8, 26.5 Hz, 5H), 2.91 (d, ³J = 8.5 Hz, 1H), 2.70–2.39 (m, 3H), 2.40–1.92 (m, 7H), 1.75 (d, ³J = 24.2 Hz, 3H), 1.56 (dd, ³J = 44.4, 11.4 Hz, 5H), 1.41 (s, 5H), 1.36–1.18 (m, 7H), 1.18–1.00 (m, 6H), 0.95 (t, ³J = 6.6 Hz, 2H), 0.84 (d, ³J = 5.9 Hz, 3H), 0.69 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 216.90, 169.19, 159.00, 117.09, 74.58, 69.48, 58.20, 48.70, 47.67, 47.35, 45.44, 44.82, 43.90, 41.80, 36.76, 36.06, 34.42, 31.56, 30.44, 27.44, 26.91, 26.45, 24.84, 24.04, 16.81, 14.88, 12.55, 11.43. HRMS (ESI) of C₃₂H₅₄N₂O₅S [M+H]+ calcd, 579.3826; found, 579.3835.

14-O-[(2-(bis (propyl) amino) acetamido-2-methylpropane-2-yl) thioacetate]Mutilin (5c). Compound 5c was prepared according to the general procedure with a reaction time of 3 hours. The crude product was purified over silica gel column chromatography (petroleum ether: ethyl acetate = 1:1) yielding 5c (78%, 1.35 g) as a white solid. mp: 142–145 °C; IR (KBr): 3444, 2933, 1732, 1667, 1519, 1455, 1417, 1385, 1282, 1207, 1116, 1065, 1021, 981, 935, 916 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 6.41 (dd, ³J = 16.4, 10.2 Hz, 1H), 5.74 (dd, ³J = 35.0, 7.6 Hz, 1H), 5.27 (s, 1H), 5.15 (d, ³J = 17.3 Hz, 1H), 3.20 (dd, ³J = 60.8, 26.5 Hz, 5H), 2.91 (d, ³J = 8.5 Hz, 1H), 2.70–2.39 (m, 3H), 2.40–1.92 (m, 7H), 1.75 (d, ³J = 24.2 Hz, 3H), 1.56 (dd, ³J = 44.4, 11.4 Hz, 5H), 1.41 (s, 5H), 1.36–1.18 (m, 7H), 1.18–1.00 (m, 6H), 0.95 (t, ³J = 6.6 Hz, 2H), 0.84 (d, ³J = 5.9 Hz, 3H), 0.69 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 216.90, 169.19, 159.00, 117.09, 74.58, 69.48, 58.20, 48.70, 47.67, 47.35, 45.44, 44.82, 43.90, 41.80, 36.76, 36.06, 34.42, 31.56, 30.44, 27.44, 26.91, 26.45, 24.84, 24.04, 16.81, 14.88, 12.55, 11.43. HRMS (ESI) of C₃₂H₅₄N₂O₅S [M+H]+ calcd, 579.3826; found, 579.3835.

Figure 5. Crystal structure of compound 4. (a) ORTEP diagram for compound 4 with ellipsoids set at 50% probability (hydrogen atoms were omitted for clarity). (b) A perspective view of the molecular packing of 4 viewed along the a axis.

doi:10.1371/journal.pone.0082595.g005
reaction time of 3 hours. The crude product was purified over silica gel column chromatography (petroleum ether: ethyl acetate = 1:1) yielding 5e (62%, 1.13 g) as a white solid. mp: 102–104 °C; IR (KBr): 3412, 2931, 2860, 1729, 1652, 1529, 1454, 1425, 1385, 1297, 1191, 1165, 1138, 1024, 983, 953, 916; 1H NMR (400 MHz, CDCl3) δ 7.94 (s, 1H), 6.47 (dd, J = 6.9, 2H), 2.14–2.02 (m, 2H), 1.74 (d, J = 14.4, 2H), 1.62–1.55 (m, 6H). 13C NMR (101 MHz, CDCl3) δ 216.88, 169.29, 139.08, 117.08, 74.52, 69.38, 58.13, 55.99, 53.86, 51.89, 49.76, 46.32, 45.38, 45.30, 44.75, 43.87, 41.74, 36.71, 35.99, 34.37, 30.38, 26.78, 26.40, 24.79, 23.75, 17.59, 16.79, 14.85, 11.39. CHRM (ESI) of C20H22N2O5S[M+H]+ calcd, 593.3619; found, 593.3624.

Antibacterial activity

The minimum inhibitory concentration (MIC) studies were performed on MRSA, MRSE, E. coli, and S. agalactiae which were all separated from the clinic using agar dilution method according to NCCLS. 12800 μg synthesized compounds and pleuromutilin were used as a reference drug were weighed accurately and dissolved in about 5 mL ethanol. Then distilled water was added to the solution to 10 mL. Tiamulin fumarate used as another reference drug was dissolved in 10 mL distilled water directly. Then all the solutions were diluted with distilled water by two fold to provide 10 dilutions down to the lowest concentration of 0.625 μg/mL. 2 mL of the 2-fold serial dilutions of each test compound/drug were incorporated into 18 mL hot Mueller-Hinton agar medium, which resulted in the final concentration of each dilutions decreasing tenfold. Inoculum of MRSA, MRSE, E. coli, and S. agalactiae were prepared from blood slants and adjusted to approximate 10^7–10^8 CFU/mL with sterile saline (0.9% NaCl). 10 μL amount of bacterial suspension was spotted into Mueller-Hinton agar plates containing serial dilutions of compounds/drugs. The plates were incubated at 36.5 °C for 48 h. The MIC is defined as the minimum concentration of compound to give complete inhibition of bacterial growth. The same procedure was repeated in triplicate.

Oxford cup assay was performed to evaluate the rate of inhibition in the growth of bacteria. Inoculum was prepared in 0.9% saline using McFarland standard and spread uniformly on nutrient agar plates. All the compounds were diluted to 320 and 160 μg/mL and the resulting solutions were added to the Oxford cups which were placed at equidistance on the above agar surface. The zone of inhibition for each compound was measured after 24 h incubation at 37 °C.

Molecular modeling

The crystal structure of 50S ribosomal subunit from *Deinococcus radiodurans* in complex with tiamulin (PDB ID: 1XBP) [24] was used for all simulations with Homdock software [25] combining of a Graph based molecular alignment (GMA) tool and a Monte-Carlo/Simulated Annealing (MC/SA) algorithm based docking (GlamDock) tool.

Molecular docking was performed with Homdock software in Chil2 package [25], which introduced a similarity based docking. In this study, tiamulin was the template for flexible molecular alignment, and the interaction was optimized by GlamDock according to the Chil2 Score scoring function based on Chem-Score with smooth, improved potential. All the compounds were prepared with Avogadro software [30], including 5000 steps Steepest Descent and 1000 steps Conjugate Gradients geometry optimization based on MMFF94 force field. 50S ribosomal subunit was extracted from crystal structure of 1XBP and transformed to mol2 format. The docking position was set to the binding site of tiamulin. All the compounds were superposed to
tiamulin by the GMA, and of compounds were optimized by a MC/SA algorithm in Gladmock according to ChillScore. During docking, the steps of local gradient based minimization was set to 20, the number of MC/SA runs was set to 10, and 500 steps for each MC/SA run. All the other parameters were kept to be default.

As a result of calculations we obtained the output files of the acceptor-ligand complex with flexible residues, and the similarity of docked structures was measured by computing the RMSD between the coordinates of the atoms. The binding affinity between compounds and receptor was estimated by Autodock 4.2. The colorless single crystals of compound 4 suitable for X-ray structure determination were obtained by slowly evaporating a mixed solvent of acetone and ethanol for about twenty days at room temperature. A single crystal with dimensions of 0.34 mm \(\times \) 0.32 mm \(\times \) 0.21 mm was selected and mounted in air onto thin glass fibers. X-ray intensity data were measured at 293 (2) K on an Agilent SuperNova-CCD diffractometer equipped with a mirror-monochromatic MoK\(\alpha\) radiation. A total of reflections were collected in the range of 3.12 \(\leq \theta \leq \) 26.37\(^\circ\) (index ranges: \(-16 \leq l \leq 16, \ -9 \leq k \leq 10, \ -15 \leq \ell \leq 16\)) by using a \(\phi\) scan mode with 4839 independent ones \((R_{\text{int}} = 0.0157)\), of which 4361 with \(I > 2\sigma (I)\) were considered as observed and used in the succeeding refinements. The structure was refined with SHELXL [32] and HRMS analysis. As a result of calculations we obtained the output files of the structures and SHELXL [32] was used for packing diagrams. The non-hydrogen atoms were refined anisotropically, and hydrogen atoms were determined with theoretical calculations. A full-precision least-squares refinement gave the final \(R = 0.0373, wR = 0.0869\) \((w = 1/\sigma^2 (F^2) + 0.0340P^2 + 0.2946P^2, P = (F^2 + 2F^2)/3)\), \(\delta = 1.039, \langle \Delta P \rangle_{\text{max}} = 0.229\), and \(\langle \Delta P \rangle_{\text{min}} = -0.212\) e/\AA\(^3\) (see Table S3). PLATON 1.17 [33] was used for molecular representations and SHELXL [32] was used for packing diagrams.

Supporting Information

Figure S1 IR, \(^1\)H and \(^{13}\)C NMR spectra of compounds 1–5f (PDF)

Table S1 Bind free energy, number of noncovalent molecular interaction and RMSD. (DOCX)

Table S2 Hydrogen bond lengths (\(\AA\)) and bond angles (\(^\circ\)) of compound 4. (DOCX)

Table S3 Crystallographic Data for Intermediate 4. (DOCX)

Acknowledgments

Authors thank Dr Zhijun Xin (Institute of Modern Physics, Chinese Academy of Sciences, China) for his kindly help in \(^1\)H NMR, \(^{13}\)C NMR and HRMS analysis.

Author Contributions

Conceived and designed the experiments: RS SW JL. Performed the experiments: YY XX RS SW WG YL. Analyzed the data: SW YY XL. Wrote the paper: RS JL.

References

1. Yeh PJ, Hegenerus MJ, Aiden AP, Kühnny R (2009) Drug interactions and the evolution of antibiotic resistance. Nat Rev Microbiol 7: 460–466.
2. WenczelWS TA, Yang BY, Rudloff JR, Oliver AG, Miller MJ (2011) N-O chemistry for antibiotics: discovery of N-Alkyl-N-(pyridin-2-y)hydroxylamine scaffolds as selective antibacterial agents using nitroso Diels-Alder and ene chemistry. J Med Chem 54: 6843–6853.
3. Kavanagh F, Hervey A, Robbins WM (1951) Antibiotic Substances From Bacillus erianus Pilat. Proc Natl Acad Sci USA 37: 570–574.
4. Arigoni D (1962) Structure of a new type of terepene. Gazz Chim Ital 92: 894–901.
5. Birch A, Holzapfel CW, Richards RW (1963) Diterpenoid nature of pleuromutilin. Chem Ind 5: 374–375.
6. Dreier I, Kumar S, Sondergaard H, Rasmussen ML, Hansen LH, et al. (2012) A click chemistry approach to pleuromutilin derivatives, part 2: conjugates with acyclic nucleosides and their ribosomal binding and antibacterial activity. J Med Chem 55: 2667–2677.
7. Hunt E (2000) Pleuromutilin Antibiotics Drugs. Drugs Future 25: 1163–1168.
8. Schlunzen F, Pytian E, Fucini P, Younath A, Harms JM (2004) Inhibition of peptide bond formation by pleuromutilins: the structure of the 50S ribosomal subunit from Deinococcus radiodurans in complex with tiamulin. Mol Microbiol 54: 1287–1294.
9. Hildebrandt JF, Böer H, Lauer G, Turnowsky F, Schutze E (1982) A new semisynthetic pleuromutilin-derivative with antibacterial activity: in vitro evaluation. Curr Chem Immunol 346: 347.
10. Ling Y, Wang X, Wang H, Yu J, Tang J, et al. (2012) Design, synthesis, and antibacterial activity of novel pleuromutilin derivatives bearing an amino thiazolyl ring. Arch Pharm 345: 638–646.
11. Tang YZ, Liu YH, Chen JX (2012) Pleuromutilin and its derivatives-the lead compounds for novel antibiotics. Mini Rev Med Chem 12: 53–61.
12. Moody MN, Morrison LK, Tyring SK (2010) Retapamulin: what is the role of this topical antimicrobial in the treatment of bacterial infections in atopic dermatitis? Skin Therapy Lett 15: 1–4.
13. Sader HS, Paukner S, Slevec-Schoenfeld Z, Biedenbach DJ, Schmitz BJ, et al. (2012) Antibacterial activity of the novel pleuromutilin antibiotic BC-3781 against amoxicillin-resistant responsible for community-acquired respiratory tract infections (CARTIs). J Antimicrob Chemother 67: 1170–1175.
14. Novak R, Shihars DM (2010) The pleuromutilin antibiotics: a new class for human use. Curr Opin Investig Drugs 11: 182–191.
15. Davidovich C, Bashan A, Auerbach-Nevo T, Yagge RJ, Gontarek RR, et al. (2007) Induced-fit tightens pleuromutilins binding to ribosomes and remote interactions enable their selectivity. Proc Natl Acad Sci USA 104: 4291–4296.
16. Long KS, Hansen LH, Jakobsen L, Vester B (2006) Interaction of pleuromutilin derivatives with the ribosomal peptidyl transferase center. Antimicrobial Agents Chemother 50: 1438–1442.
17. Novak R (2011) Are pleuromutilin antibiotics finally fit for human use? Ann N Y Acad Sci 1241: 71–81.
18. Jacob Boling SMP, Berti V, Katherine S (2003) Resistance to the PepD peptidyl-transferase inhibitor Tiamulin Caused by Mutation of Ribosomal Protein L3. Antimicrobial Agents Chemother 47: 2092–2096.
19. Egger H, Reinshagen H (1976) New pleuromutilin derivatives with enhanced antimicrobial activity. II. Structure-activity correlations. J Antibiot (Tokyo) 29: 925–927.
20. Xu P, Zhang YY, Sun XY, Liu JH, Yang B, et al. (2009) Novel pleuromutilin derivatives with excellent antibacterial activity against Staphylococcus aureus. Chim Biol Drug Des 73: 655–660.
21. Gonçalves RSB, Souza MVN (2010) Recent Developments in Pleuromutilin Derivatives: A Promising Class. Against Bacterial Respiratory Disease. J Cur Resp Med Rev 6: 91–101.
22. Wang R, Yuan LG, He LM, Zhu LX, Luo XY, et al. (2011) Pharmakokinetics and bioavailability of valnemulin in broiler chickens. J Vet Pharmacol Therap 34: 231–238.
23. Shang RF, Liu Y, Xin ZJ, Guo WZ, Guo ZT, et al. (2013) Synthesis and antibacterial evaluation of novel pleuromutilin derivatives. Eur J Med Chem 63: 231–236.
24. Schlunzen F, Pytian E, Fucini P, Younath A, Harms JM (2004) Inhibition of peptide bond formation by pleuromutilins: the structure of the 50S ribosomal subunit from Deinococcus radiodurans in complex with tiamulin. Mol Microbiol 54: 1287–1294.
25. Marialek J, Tietze S, Apostolakis J (2008) Similarity based docking. J Chem Inf Model 48: 186–196.
26. Omaima MA, Kamela MA, Hamed IA, Mohamed MA, Rasha ZB (2012) Synthesis of new 7-oxycoumarin derivatives as potent and selective monoamine oxidase A inhibitors. J Med Chem 55: 247–251.
27. Marshall MS, Steele RP, Thanhirawat KS, Sherrill CD (2009) Potential Energy Curves for Cation–π Interactions: Off-Axis Configurations Are Also Attractive. J Phys Chem A 104: 13628–13632.
28. Stierand K, Maaß P, Rarey M (2006) Molecular Complexes at a Glance: Automated Generation of two-dimensional Complex Diagrams. Bioinformatics 22: 1710–1716.

29. Shang RF, Liang JP, Guo WZ (2013) Crystal structure of 14-O-[(3-chlorobenzamide-2-methylpropane-2-yl) thioacetate] Mutilin, C33H46ClNO5S. Z Kristallogr NCS 228: 135–137.

30. Marcus DH, Donald EC, Tim V, Eva Z, et al. (2012) Avogadro: an advanced semantic chemical editor, visualization, and analysis platform J Cheminform 4: 17.

31. Delano WL, Ultsch MH, De Vos AM, Wells JA (2000) Convergent solutions to binding at a protein-protein interface. Science 287: 1279–83.

32. Sheldrick GM (2008) A short history of SHELX. Acta Cryst A 64: 112–122.

33. Sluis P, Spek AL (1990) BYPASS: an effective method for the refinement of crystal structures containing disordered solvent regions. Acta Cryst A 46: 194–201.