EXTENSION OF EUCLIDEAN OPERATOR RADIUS INEQUALITIES

MOHAMMAD SAL MOSLEHIAN1, MOSTAFA SATTARI1 AND KHALID SHEBRAWI2

Abstract. To extend the Euclidean operator radius, we define w_p for an n-tuples of operators (T_1, \ldots, T_n) in $\mathcal{B}(\mathcal{H})$ by $w_p(T_1, \ldots, T_n) := \sup_{\|x\|=1} (\sum_{i=1}^{n} |\langle T_i x, x \rangle|^p)^{\frac{1}{p}}$ for $p \geq 1$. We generalize some inequalities including Euclidean operator radius of two operators to those involving w_p. Further we obtain some lower and upper bounds for w_p. Our main result states that if f and g are nonnegative continuous functions on $[0, \infty)$ satisfying $f(t)g(t) = t$ for all $t \in [0, \infty)$, then

$$w_p^r (A_1^* T_1 B_1, \ldots, A_n^* T_n B_n) \leq \frac{1}{2} \left\| \sum_{i=1}^{n} \left([B_i^* f^2 (|T_i|) B_i]^{rp} + [A_i^* g^2 (|T_i^*|) A_i]^{rp} \right) \right\|$$

for all $p \geq 1$, $r \geq 1$ and operators in $\mathcal{B}(\mathcal{H})$.

1. Introduction

Let $\mathcal{B}(\mathcal{H})$ be the C^*-algebra of all bounded linear operators on a Hilbert space $(\mathcal{H}, \langle \cdot, \cdot \rangle)$. The numerical radius of $A \in \mathcal{B}(\mathcal{H})$ is defined by

$$w(A) = \sup \{|\langle Ax, x \rangle| : x \in \mathcal{H}, \|x\| = 1\}.$$

It is well known that $w(\cdot)$ defines a norm on $\mathcal{B}(\mathcal{H})$, which is equivalent to the usual operator norm $\| \cdot \|$. Namely, we have

$$\frac{1}{2} \|A\| \leq w(A) \leq \|A\|.$$

for each $A \in \mathcal{B}(\mathcal{H})$. It is known that if $A \in \mathcal{B}(\mathcal{H})$ is self-adjoint, then $w(A) = \|A\|$. An important inequality for $w(A)$ is the power inequality stating that $w(A^n) \leq w^n(A)$ for $n = 1, 2, \ldots$. There are many inequalities involving numerical radius; see [2, 3, 4, 10, 11, 12] and references therein.

The Euclidean operator radius of an n-tuple $(T_1, \ldots, T_n) \in \mathcal{B}(\mathcal{H})^{(n)} := \mathcal{B}(\mathcal{H}) \times \cdots \times \mathcal{B}(\mathcal{H})$ is defined as

$$\rho_{\text{euclid}}(T_1, \ldots, T_n) := \inf \{ r \geq 0 : w_p(T_1, \ldots, T_n) \leq r \}$$

for $p \geq 1$. The main result of this paper is to extend the Euclidean operator radius to w_p for an n-tuples of operators (T_1, \ldots, T_n) in $\mathcal{B}(\mathcal{H})$ by $w_p(T_1, \ldots, T_n) := \sup_{\|x\|=1} (\sum_{i=1}^{n} |\langle T_i x, x \rangle|^p)^{\frac{1}{p}}$ for $p \geq 1$.
\[w_e(T_1, \ldots, T_n) := \sup_{\|x\|=1} \left(\sum_{i=1}^{n} \langle T_i x, x \rangle \right)^{\frac{1}{2}}. \]

The particular cases \(n = 1 \) and \(n = 2 \) are numerical radius and Euclidean operator radius. Some interesting properties of this radius were obtained in [9]. For example, it is established that

\[\frac{1}{2\sqrt{n}} \left(\sum_{i=1}^{n} T_i^* T_i \right)^{\frac{1}{2}} \leq w_e(T_1, \ldots, T_n) \leq \left(\sum_{i=1}^{n} T_i^* T_i \right)^{\frac{1}{2}}. \] \hspace{1cm} (1.1)

We also observe that if \(A = B + iC \) is the Cartesian decomposition of \(A \), then

\[w_e^2(B, C) = \sup_{\|x\|=1} \{ |\langle B x, x \rangle|^2 + |\langle C x, x \rangle|^2 \} = \sup_{\|x\|=1} |\langle A x, x \rangle|^2 = w^2(A). \]

By the above inequality and \(A^* A + AA^* = 2(B^2 + C^2) \), we have

\[\frac{1}{16} \| A^* A + AA^* \| \leq w^2(A) \leq \frac{1}{2} \| A^* A + AA^* \|. \]

We define \(w_p \) for \(n \)-tuples of operators \((T_1, \ldots, T_n) \in \mathbb{B}(\mathcal{H})^{(n)} \) for \(p \geq 1 \) by

\[w_p(T_1, \ldots, T_n) := \sup_{\|x\|=1} \left(\sum_{i=1}^{n} |\langle T_i x, x \rangle|^p \right)^{\frac{1}{p}}. \]

It follows from Minkowski’s inequality for two vectors \(a = (a_1, a_2) \) and \(b = (b_1, b_2) \), namely,

\[(|a_1 + b_1|^p + |a_2 + b_2|^p)^{\frac{1}{p}} \leq (|a_1|^p + |a_2|^p)^{\frac{1}{p}} + (|b_1|^p + |b_2|^p)^{\frac{1}{p}} \quad \text{for} \quad p > 1 \]

that \(w_p \) is a norm.

Moreover \(w_p, p \geq 1, \) for \(n \)-tuple of operators \((T_1, \ldots, T_n) \in \mathbb{B}(\mathcal{H})^{(n)} \) satisfies the following properties:

(i) \(w_p(T_1, \ldots, T_n) = 0 \Leftrightarrow T_1 = \ldots = T_n = 0. \)

(ii) \(w_p(\lambda T_1, \ldots, \lambda T_n) = |\lambda| w_p(T_1, \ldots, T_n) \) for all \(\lambda \in \mathbb{C}. \)

(iii) \(w_p(T_1 + T_1', \ldots, T_n + T_n') \leq w_p(T_1, \ldots, T_n) + w_p(T_1', \ldots, T_n') \) for \((T_1', \ldots, T_n') \in \mathbb{B}(\mathcal{H})^{(n)}. \)

(iv) \(w_p(X^* T_1 X, \ldots, X^* T_n X) \leq \|X\|^2 w_p(T_1, \ldots, T_n) \) for \(X \in \mathbb{B}(\mathcal{H}). \)

Dragomir [1] obtained some inequalities for the Euclidean operator radius \(w_e(B, C) = \sup_{\|x\|=1} \{ |\langle B x, x \rangle|^2 + |\langle C x, x \rangle|^2 \}^{\frac{1}{2}} \) of two bounded linear operators in a Hilbert space. In section 2 of this paper we extend some his results including inequalities for the Euclidean operator radius of linear operators to \(w_p \) \((p \geq 1). \) In addition, we apply some known inequalities for getting new inequalities for \(w_p \) in two operators.
In section 3 we prove inequalities for w_p for n-tuples of operators. Some of our result in this section, generalize some inequalities in section 2. Further, we find some lower and upper bounds for w_p.

2. Inequalities for w_p for two operators

To prove our generalized numerical radius inequalities, we need several known lemmas. The first lemma is a simple result of the classical Jensen inequality and a generalized mixed Cauchy–Schwarz inequality [7, 8, 6].

Lemma 2.1. For $a, b \geq 0, 0 \leq \alpha \leq 1$ and $r \neq 0$,

(a) $a^{\alpha}b^{1-\alpha} \leq (1 - \alpha)b \leq \alpha a + (1 - \alpha)b^{\frac{1}{r}}$ for $r \geq 1$,

(b) If $A \in B(H)$, then $|\langle Ax, y \rangle|^2 \leq \langle |A|^2 x, x \rangle \langle |A^*|^2 (1-\alpha)y, y \rangle$ for all $x, y \in H$, where $|A| = (A^*A)^{\frac{1}{2}}$.

(c) Let $A \in B(H)$, and f and g be nonnegative continuous functions on $[0, \infty)$ satisfying $f(t)g(t) = t$ for all $t \in [0, \infty)$. Then

$$|\langle Ax, y \rangle| \leq \|f(|A|)x\| \|g(|A^*|)y\|$$

for all $x, y \in H$.

Lemma 2.2 (McCarthy inequality [5]). Let $A \in B(H)$, $A \geq 0$ and let $x \in H$ be any unit vector. Then

(a) $\langle Ax, x \rangle^r \leq \langle A^r x, x \rangle$ for $r \geq 1$,

(b) $\langle A^r x, x \rangle \leq \langle Ax, x \rangle^r$ for $0 < r \leq 1$.

Inequalities of the following lemma were obtained for the first time by Clarkson[7].

Lemma 2.3. Let X be a normed space and $x, y \in X$. Then for all $p \geq 2$ with $\frac{1}{p} + \frac{1}{q} = 1$,

(a) $2(||x||^p + ||y||^p)^{q-1} \leq ||x + y||^q + ||x - y||^q$,

(b) $2(||x||^p + ||y||^p) \leq ||x + y||^p + ||x - y||^p \leq 2^{p-1}(||x||^p + ||y||^p)$,

(c) $||x + y||^p + ||x - y||^p \leq 2(||x||^q + ||y||^q)^{p-1}$.

If $1 < p \leq 2$ the converse inequalities hold.

Making the transformations $x \rightarrow \frac{x+y}{2}$ and $y \rightarrow \frac{x-y}{2}$ we observe that inequalities (a) and (c) in Lemma 2.3 are equivalent and so are the first and the second inequalities of (b). First of all we obtain a relation between w_p and w_e for $p \geq 1$.

Proposition 2.4. Let $B, C \in \mathcal{B}(\mathcal{H})$. Then

$$w_p(B, C) \leq w_q(B, C) \leq 2^{\frac{1}{q} - \frac{1}{p}} w_p(B, C)$$

for $p \geq q \geq 1$. In particular

$$w_p(B, C) \leq w_e(B, C) \leq 2^{\frac{1}{2} - \frac{1}{p}} w_p(B, C)$$ \hspace{1cm} (2.1)

for $p \geq 2$, and

$$2^{\frac{1}{q} - \frac{1}{p}} w_p(B, C) \leq w_e(B, C) \leq w_p(B, C)$$

for $1 \leq p \leq 2$.

Proof. An application of Jensen’s inequality says that for $a, b > 0$ and $p \geq q > 0$, we have

$$(a^p + b^p)^{\frac{1}{p}} \leq (a^q + b^q)^{\frac{1}{q}}.$$

Let $x \in \mathcal{H}$ be a unit vector. Choosing $a = |\langle Bx, x \rangle|$ and $b = |\langle Cx, x \rangle|$, we have

$$\left(|\langle Bx, x \rangle|^p + |\langle Cx, x \rangle|^p \right)^{\frac{1}{p}} \leq \left(|\langle Bx, x \rangle|^q + |\langle Cx, x \rangle|^q \right)^{\frac{1}{q}}.$$

Now the first inequality follows by taking the supremum over all unit vectors in \mathcal{H}. A simple consequence of the classical Jensen’s inequality concerning the convexity or the concavity of certain power functions says that for $a, b \geq 0, 0 \leq \alpha \leq 1$ and $p \geq q$, we have

$$(\alpha a^q + (1 - \alpha) b^q)^{\frac{1}{q}} \leq (\alpha a^p + (1 - \alpha) b^p)^{\frac{1}{p}}.$$

For $\alpha = \frac{1}{2}$, we get

$$(a^q + b^q)^{\frac{1}{q}} \leq 2^{\frac{1}{q} - \frac{1}{p}} (a^p + b^p)^{\frac{1}{p}}.$$

Again let $x \in \mathcal{H}$ be a unit vector. Choosing $a = |\langle Bx, x \rangle|$ and $b = |\langle Cx, x \rangle|$ we get

$$\left(|\langle Bx, x \rangle|^q + |\langle Cx, x \rangle|^q \right)^{\frac{1}{q}} \leq 2^{\frac{1}{q} - \frac{1}{p}} \left(|\langle Bx, x \rangle|^p + |\langle Cx, x \rangle|^p \right)^{\frac{1}{q}}.$$

Now the second inequality follows by taking the supremum over all unit vectors in \mathcal{H}. \hfill \square

On making use of inequality (2.1) we find a lower bound for w_p ($p \geq 2$).

Corollary 2.5. If $B, C \in \mathcal{B}(\mathcal{H})$, then for $p \geq 2$

$$w_p(B, C) \geq 2^{\frac{1}{q} - 2} \|B^*B + C^*C\|^\frac{1}{2}.$$
Proof. According to inequalities (1.1) and (2.1) we can write
\[w_e(B, C) \geq \frac{1}{2\sqrt{2}} \|B^*B + C^*C\|^\frac{1}{2} \]
and
\[w_p(B, C) \geq 2^{\frac{1}{p} - \frac{1}{2}} w_e(B, C), \]
respectively. We therefore get desired inequality. □

The next result is concerned with some lower bounds for \(w_p \). This consequence has several inequalities as special cases. Our result will be generalized to \(n \)-tuples of operators in the next section.

Proposition 2.6. Let \(B, C \in \mathbb{B}(\mathcal{H}) \). Then for \(p \geq 1 \)
\[w_p(B, C) \geq 2^{\frac{1}{p} - \frac{1}{2}} \max (w(B + C), w(B - C)). \quad (2.2) \]
This inequality is sharp.

Proof. We use convexity of function \(f(t) = t^p \ (p \geq 1) \) as follows:
\[
\left(|\langle Bx, x \rangle|^p + |\langle Cx, x \rangle|^p \right)^{\frac{1}{p}} \geq 2^{\frac{1}{p} - 1} \left(|\langle Bx, x \rangle| + |\langle Cx, x \rangle| \right)
\]
\[
\geq 2^{\frac{1}{p} - 1} |\langle Bx, x \rangle \pm \langle Cx, x \rangle|
\]
\[
= 2^{\frac{1}{p} - 1} |\langle (B \pm C)x, x \rangle|.
\]
Taking supremum over \(x \in \mathcal{H} \) with \(\|x\| = 1 \) yields that
\[w_p(B, C) \geq 2^{\frac{1}{p} - 1} w(B \pm C). \]
For sharpness one can obtain the same quantity \(2^{\frac{1}{p}} w(B) \) on both sides of the inequality by putting \(B = C \). □

Corollary 2.7. If \(A = B + iC \) is the Cartesian decomposition of \(A \), then for all \(p \geq 2 \)
\[w_p(B, C) \geq 2^{\frac{1}{p} - 1} \max (\|B + C\|, \|B - C\|), \]
and
\[w(A) \geq 2^{\frac{1}{p} - 2} \max (\|(1 - i)A + (1 + i)A^*\|, \|(1 + i)A + (1 - i)A^*\|) \]

Proof. Obviously by inequality (2.2) we have the first inequality. For the second we use inequality (2.1). □
Corollary 2.8. If \(B, C \in \mathcal{B}(H) \), then for \(p \geq 1 \)
\[
 w_p(B, C) \geq 2^{\frac{1}{p}-1} \max \{ w(B), w(C) \}.
\] (2.3)

In addition, if \(A = B + iC \) is the Cartesian decomposition of \(A \), then for \(p \geq 2 \)
\[
 w(A) \geq 2^{\frac{1}{p}-2} \max \left(\| A + A^* \|, \| A - A^* \| \right).
\]

Proof. By inequality (2.2) and properties of the numerical radius, we have
\[
 2^\frac{1}{p} w_p(B, C) \geq 2 - 2 \max \left\{ w(B + C), w(B - C) \right\}.
\]
So
\[
 w_p(B, C) \geq 2^{\frac{1}{p}-1} w(B).
\]
By symmetry we conclude that
\[
 w_p(B, C) \geq 2^{\frac{1}{p}-1} \max(w(B), w(C)).
\]
While the second inequality follows easily from inequality (2.1). □

Now we apply part (b) of Lemma 2.3 to find some lower and upper bounds for \(w_p \) \((p \geq 1)\).

Proposition 2.9. Let \(B, C \in \mathcal{B}(H) \). Then for all \(p \geq 2 \),

(i) \(2^\frac{1}{p}-1 w_p(B + C, B - C) \leq w_p(B, C) \leq 2^{-\frac{1}{p}} w_p(B + C, B - C) \);
(ii) \(2^\frac{1}{p}-1 (w^p(B + C) + w^p(B - C))^\frac{1}{p} \leq w_p(B, C) \leq 2^{-\frac{1}{p}} (w^p(B + C) + w^p(B - C))^\frac{1}{p} \).

If \(1 < p \leq 2 \) these inequalities hold in the opposite direction.

Proof. Let \(x \in H \) be a unit vector. Part (b) of Lemma 2.3 implies that for any \(p \geq 2 \)
\[
 2^{1-p}(|a + b|^p + |a - b|^p) \leq |a|^p + |b|^p \leq \frac{1}{2}(|a + b|^p + |a - b|^p) .
\]
Replacing \(a = |\langle Bx, x \rangle| \) and \(b = |\langle Cx, x \rangle| \) in above inequalities we obtain the desired inequalities. □

Remark 2.10. In inequality (2.3), if we take \(B + C \) and \(B - C \) instead of \(B \) and \(C \), then for \(p \geq 1 \)
\[
 w_p(B + C, B - C) \geq 2^{\frac{1}{p}-1} \max \{ w(B + C), w(B - C) \} .
\]

By employing the first inequality of part (i) of Proposition 2.9, we get
\[
 w_p(B, C) \geq 2^{\frac{2}{p}-2} \max \{ w(B + C), w(B - C) \} .
\]
for $p \geq 1$.

Taking $B + C$ and $B - C$ instead of B and C in the second inequality of part (ii) of Proposition 2.9, we reach

$$w_p(B + C, B - C) \leq 2^{1 - \frac{1}{p}} (w^p(B) + w^p(C))^\frac{1}{p}.$$

for all $p \geq 1$.

Now by applying the second inequality of part (i) of Proposition 2.9, we infer for $p \geq 1$ that

$$w_p(B, C) \leq 2^{1 - \frac{2}{p}} (w^p(B) + w^p(C))^{\frac{1}{p}}.$$

So

$$2^{\frac{2}{p} - 2} \max\{w(B + C), w(B - C)\} \leq w_p(B, C) \leq 2^{1 - \frac{2}{p}} (w^p(B) + w^p(C))^{\frac{1}{p}}.$$

Moreover if B and C are self-adjoint, then

$$2^{\frac{2}{p} - 2} \max\{\|B + C\|, \|B - C\|\} \leq w_p(B, C) \leq 2^{1 - \frac{2}{p}} (\|B\|^{p} + \|C\|^{p})^{\frac{1}{p}}$$

for all $p \geq 1$.

In the following result we find another lower bound for w_p ($p \geq 1$).

Theorem 2.11. Let $B, C \in \mathbb{B}(\mathcal{H})$. Then for $p \geq 1$

$$w_p(B, C) \geq 2^{\frac{1}{p} - 1} w^\frac{1}{p} (B^2 + C^2).$$

Proof. It follows from (2.2) that

$$2^{\frac{2}{p} - 2} w^2(B \pm C) \leq w^2_p(B, C).$$

Hence

$$2w_p^2(B, C) \geq 2^{\frac{2}{p} - 2} \left[w^2(B + C) + w^2(B - C) \right] \geq 2^{\frac{2}{p} - 2} \left[w \left((B + C)^2 \right) + w \left((B - C)^2 \right) \right] \geq 2^{\frac{2}{p} - 2} \left[w \left((B + C)^2 + (B - C)^2 \right) \right] = 2^{\frac{2}{p} - 1} w(B^2 + C^2).$$

It follows that

$$w_p(B, C) \geq 2^{\frac{1}{p} - 1} w^\frac{1}{p} (B^2 + C^2).$$

□
Corollary 2.12. If $A = B + iC$ is the Cartesian decomposition of A, then
\[w_p(B, C) \geq 2^{\frac{1}{p} - 1} \|B^2 + C^2\|^{\frac{1}{p}}. \]

And
\[w(A) \geq 2^{\frac{1}{p} - \frac{3}{2}} \|A^*A + AA^*\|^{\frac{1}{p}}. \]
for any $p \geq 2$.

Proof. The first inequality is obvious. For the second we have $A^*A + AA^* = 2(B^2 + C^2)$. Now by using inequality (2.1) the proof is complete. □

Corollary 2.13. If $B, C \in B(H)$, then for $p \geq 2$
\[w_p(B, C) \geq 2^{\frac{2}{p} - \frac{3}{2}} w^{\frac{1}{2}}(B^2 + C^2). \]

Proof. By choosing $B + C$ and $B - C$ instead of B and C in Theorem 2.11 and employing part (i) of Proposition 2.9 we conclude that the desired inequality. □

The following result providing other bound for $w_p (p > 1)$ may be stated as follows:

Proposition 2.14. Let $B, C \in B(H)$. Then
\[w_p(B, C) \leq w_q \left(\frac{B + C}{2}, \frac{B - C}{2} \right). \]
for any $p \geq 2, 1 < q \leq 2$ with $\frac{1}{p} + \frac{1}{q} = 1$. If $1 < p \leq 2$, the reverse inequality holds.

Proof. Let $x \in H$ be a unit vector. Part (a) of Lemma 2.3 implies that
\[|a|^p + |b|^p \leq 2^{\frac{1}{p}} \left(|a + b|^q + |a - b|^q \right)^{\frac{1}{q - 1}}. \]
So
\[(|a|^p + |b|^p)^{\frac{1}{p}} \leq 2^{\frac{1}{p(p + q)}} \left(|a + b|^q + |a - b|^q \right)^{\frac{1}{q - 1}}. \]
Now replacing $a = \langle Bx, x \rangle$ and $b = \langle Cx, x \rangle$ in the above inequality we conclude that
\[(\|Bx, x\|^p + \|Cx, x\|^p)^{\frac{1}{p}} \leq \left(\left(\left(\frac{B + C}{2} \right) x, x \right)^q + \left(\left(\frac{B - C}{2} \right) x, x \right)^q \right)^{\frac{1}{q}}. \]
By taking supremum over $x \in H$ with $\|x\| = 1$ we deduce that
\[w_p(B, C) \leq w_q \left(\frac{B + C}{2}, \frac{B - C}{2} \right) \]
for any $p \geq 2, 1 < q \leq 2$ with $\frac{1}{p} + \frac{1}{q} = 1$. □
Corollary 2.15. Inequality (2.4) implies that
\[w_p(B, C) \leq \left(w^q \left(\frac{B + C}{2} \right) + w^q \left(\frac{B - C}{2} \right) \right)^{\frac{1}{q}}. \]
for any \(1 < q \leq 2, p \geq 2 \) with \(\frac{1}{p} + \frac{1}{q} = 1 \). Further, if \(B \) and \(C \) are self-adjoint, then
\[w_p(B, C) \leq \frac{1}{2} (\|B + C\|^q + \|B - C\|^q)^{\frac{1}{q}}. \]
If \(1 < p \leq 2 \), the converse inequalities hold.

Corollary 2.16. If \(B, C \in \mathcal{B}(\mathcal{H}) \), then
\[w_q \left(\frac{B + C}{2}, \frac{B - C}{2} \right) \leq 2^\frac{1}{p} w_p \left(\frac{B + C}{2}, \frac{B - C}{2} \right). \]
for all \(1 < p \leq 2 \) with \(\frac{1}{p} + \frac{1}{q} = 1 \). If \(p \geq 2 \), the above inequality is valid in the opposite direction.

Proof. By Proposition 2.14 we have
\[w_q \left(\frac{B + C}{2}, \frac{B - C}{2} \right) \leq w_p(B, C). \]
for all \(1 < p \leq 2 \) with \(\frac{1}{p} + \frac{1}{q} = 1 \). Proposition 2.9 follows that
\[w_p(B, C) \leq 2^\frac{1}{p-1} w_p(B + C, B - C) = 2^\frac{1}{p} w_p \left(\frac{B + C}{2}, \frac{B - C}{2} \right). \]
We therefore get the desired inequality. \(\square \)

3. Inequalities of \(w_p \) for \(n \)-tuples of Operators

In this section, we are going to obtain some numerical radius inequalities for \(n \)-tuples of operators. Some generalization of inequalities in the previous section are also established. According to the definition of numerical radius, we immediately get the following double inequality for \(p \geq 1 \)
\[w_p(T_1, \ldots, T_n) \leq \left(\sum_{i=1}^{n} w^p (T_i) \right)^{\frac{1}{p}} \leq \sum_{i=1}^{n} w (T_i). \]
An application of Holder’s inequality gives the next result, which is a generalization of inequality (2.2).
Theorem 3.1. Let \((T_1, \ldots, T_n) \in B(\mathcal{H})^{(n)}\) and \(0 \leq \alpha_i \leq 1\), \(i = 1, \ldots, n\), with \(\sum_{i=1}^{n} \alpha_i = 1\). Then

\[w_p(T_1, \ldots, T_n) \geq w \left(\alpha_1^{\frac{1}{p}} T_1 \pm \alpha_2^{\frac{1}{p}} T_2 \pm \cdots \pm \alpha_n^{\frac{1}{p}} T_n \right) \]

for any \(p > 1\).

Proof. In the Euclidean space \(\mathbb{R}^n\) with the standard inner product, Holder’s inequality

\[\sum_{i=1}^{n} |x_i y_i| \leq \left(\sum_{i=1}^{n} |x_i|^p \right)^{\frac{1}{p}} \left(\sum_{i=1}^{n} |y_i|^q \right)^{\frac{1}{q}} \]

holds, where \(p\) and \(q\) are in the open interval \((1, \infty)\) with \(\frac{1}{p} + \frac{1}{q} = 1\) and \((x_1, \ldots, x_n), (y_1, \ldots, y_n) \in \mathbb{R}^n\). For \((y_1, \ldots, y_n) = (\alpha_1^{\frac{1}{p}}, \ldots, \alpha_n^{\frac{1}{p}})\) we have

\[\sum_{i=1}^{n} |\alpha_i^{\frac{1}{p}} x_i| \leq \left(\sum_{i=1}^{n} |x_i|^p \right)^{\frac{1}{p}} \left(\sum_{i=1}^{n} |\alpha_i^{\frac{1}{p}}|^q \right)^{\frac{1}{q}} \]

Thus

\[\left(\sum_{i=1}^{n} |x_i|^p \right)^{\frac{1}{p}} \geq \sum_{i=1}^{n} |\alpha_i^{\frac{1}{p}} x_i| \]

Choosing \(x_i = |\langle T_i x, x \rangle|, i = 1, \ldots, n\), we get

\[\left(\sum_{i=1}^{n} |\langle T_i x, x \rangle|^p \right)^{\frac{1}{p}} \]

\[\geq \sum_{i=1}^{n} \left| \langle \alpha_i^{\frac{1}{p}} T_i x, x \rangle \right| \]

\[\geq \left| \langle \alpha_1^{\frac{1}{p}} T_1 x, x \rangle \pm \langle \alpha_2^{\frac{1}{p}} T_2 x, x \rangle \pm \cdots \pm \langle \alpha_n^{\frac{1}{p}} T_n x, x \rangle \right| \]

\[= \left| \langle \alpha_1^{\frac{1}{p}} T_1 \pm \alpha_2^{\frac{1}{p}} T_2 \pm \cdots \pm \alpha_n^{\frac{1}{p}} T_n \rangle x, x \rangle \right| \]

Now the result follows by taking the supremum over all unit vectors in \(\mathcal{H}\). \(\square\)

Now we give another upper bound for the powers of \(w_p\). This result has several inequalities as special cases, which considerably generalize the second inequality of \(1.1\).
Theorem 3.2. Let \((T_1, \ldots, T_n), (A_1, \ldots, A_n), (B_1, \ldots, B_n) \in \mathbb{B}(\mathcal{H})^{(n)}\) and let \(f\) and \(g\) be nonnegative continuous functions on \([0, \infty)\) satisfying \(f(t)g(t) = t\) for all \(t \in [0, \infty)\). Then

\[
w_p^r (A_1^* T_1 B_1, \ldots, A_n^* T_n B_n) \leq \frac{1}{2} \left\| \sum_{i=1}^n \left[B_i^* f^2(|T_i|) B_i \right]^{rp} + \left[A_i^* g^2(|T_i^*|) A_i \right]^{rp} \right\|
\]

for \(p \geq 1\) and \(r \geq 1\).

Proof. Let \(x \in \mathcal{H}\) be a unit vector.

\[
\sum_{i=1}^n |\langle A_i^* T_i B_i x, x \rangle|^p
\]

\[
= \sum_{i=1}^n |\langle T_i B_i x, A_i x \rangle|^p
\]

\[
\leq \sum_{i=1}^n \|f(|T_i|) B_i x\| \|g(|T_i^*|) A_i x\|^p \quad \text{(by Lemma 2.1(c))}
\]

\[
= \sum_{i=1}^n \langle f(|T_i|) B_i x, f(|T_i|) B_i x \rangle^{\frac{p}{2}} \langle g(|T_i^*|) A_i x, g(|T_i^*|) A_i x \rangle^{\frac{p}{2}}
\]

\[
= \sum_{i=1}^n \langle B_i^* f^2(|T_i|) B_i x, x \rangle^{\frac{p}{2}} \langle A_i^* g^2(|T_i^*|) A_i x, x \rangle^{\frac{p}{2}}
\]

\[
\leq \sum_{i=1}^n \langle (B_i^* f^2(|T_i|) B_i)^p x, x \rangle^{\frac{p}{2}} \langle (A_i^* g^2(|T_i^*|) A_i)^p x, x \rangle^{\frac{p}{2}}
\]

(by Lemma 2.2(a))

\[
\leq \sum_{i=1}^n \left(\frac{1}{2} \left(\langle (B_i^* f^2(|T_i|) B_i)^p x, x \rangle + \langle (A_i^* g^2(|T_i^*|) A_i)^p x, x \rangle \right) \right)^{\frac{1}{p}}
\]

(by Lemma 2.1(a))

\[
\leq \sum_{i=1}^n \left(\frac{1}{2} \left(\langle (B_i^* f^2(|T_i|) B_i)^{rp} + (A_i^* g^2(|T_i^*|) A_i)^{rp} \rangle x, x \right) \right)^{\frac{1}{p}}
\]

(by Lemma 2.2(a))

\[
\leq \left(\frac{1}{2} \left(\sum_{i=1}^n \left(\langle (B_i^* f^2(|T_i|) B_i)^{rp} + (A_i^* g^2(|T_i^*|) A_i)^{rp} \rangle x, x \right) \right) \right)^{\frac{1}{p}}
\]
Thus
\[
\left(\sum_{i=1}^{n} |(A_i^* T_i B_i x, x)|^p \right)^\frac{r}{p} \leq \frac{1}{2} \left(\sum_{i=1}^{n} \left((B_i^* f^2 (|T_i|) B_i)^{rp} + (A_i^* g^2 (|T_i^*|) A_i)^{rp} \right) x, x \right)
\]

Now the result follows by taking the supremum over all unit vectors in \(\mathcal{H} \).

Choosing \(A = B = I \), we get.

Corollary 3.3. Let \((T_1, \ldots, T_n) \in \mathfrak{B} (\mathcal{H})^{(n)}\) and let \(f \) and \(g \) be nonnegative continuous functions on \([0, \infty)\) satisfying \(f (t) g (t) = t \) for all \(t \in [0, \infty) \). Then
\[
w_p^{(r \alpha)} (T_1, \ldots, T_n) \leq \frac{1}{2} \left\| \sum_{i=1}^{n} \left(f^{2rp} (|T_i|) + g^{2rp} (|T_i^*|) \right) \right\|
\]
for \(p \geq 1 \) and \(r \geq 1 \).

Letting \(f (t) = g (t) = t^{\frac{1}{2}} \), we get.

Corollary 3.4. Let \((T_1, \ldots, T_n), (A_1, \ldots, A_n), (B_1, \ldots, B_n)\) are in \(\mathfrak{B} (\mathcal{H})^{(n)} \). Then
\[
w_p^{(r \alpha)} (A_1^* T_1 B_1, \ldots, A_n^* T_n B_n) \leq \frac{1}{2} \left\| \sum_{i=1}^{n} \left(B_i^* |T_i| B_i)^{rp} + (A_i^* |T_i^*| A_i)^{rp} \right) \right\|
\]
for \(p \geq 1 \) and \(r \geq 1 \).

Corollary 3.5. Let \((A_1, \ldots, A_n), (B_1, \ldots, B_n) \in \mathfrak{B} (\mathcal{H})^{(n)} \). Then
\[
w_p^{(r \alpha)} (A_1^* B_1, \ldots, A_n^* B_n) \leq \frac{1}{2} \left\| \sum_{i=1}^{n} \left(|B_i|^{2rp} + |A_i|^{2rp} \right) \right\|
\]
for \(p \geq 1 \) and \(r \geq 1 \).

Corollary 3.6. Let \((T_1, \ldots, T_n) \in \mathfrak{B} (\mathcal{H})^{(n)} \). Then
\[
w_p (T_1, \ldots, T_n) \leq \frac{1}{2} \left\| \sum_{i=1}^{n} \left(|T_i|^{2p} + |T_i^*|^{2(1-\alpha)p} \right) \right\|
\]
for \(0 \leq \alpha \leq 1 \), and \(p \geq 1 \). In particular,
\[
w_p (T_1, \ldots, T_n) \leq \frac{1}{2} \left\| \sum_{i=1}^{n} \left(|T_i|^p + |T_i^*|^p \right) \right\|.
\]
Corollary 3.7. Let $B, C \in \mathbb{B}(\mathcal{H})$. Then
\[
wp(B, C) \leq \frac{1}{2} \left\| |B|^{2\alpha} + |B^*|^{2(1-\alpha)} + |C|^{2\alpha} + |C^*|^{2(1-\alpha)} \right\|
\]
for $0 \leq \alpha \leq 1$, and $p \geq 1$. In particular,
\[
wp(B, C) \leq \frac{1}{2} \left\| |B|^p + |B^*|^p + |C|^p + |C^*|^p \right\|.
\]

The next results are related to some different upper bounds for w_p for n-tuples of operators, which have several inequalities as special cases.

Proposition 3.8. Let $(T_1, \ldots, T_n) \in \mathbb{B}(\mathcal{H})^n$. Then
\[
w_p(T_1, \ldots, T_n) \leq \frac{1}{2} \left\| \sum_{i=1}^{n} \left(|T_i|^{2\alpha} + |T_i^*|^{2(1-\alpha)} \right) \right\|^{\frac{1}{p}}
\]
for $0 \leq \alpha \leq 1$, and $p \geq 1$.

Proof. By using the arithmetic-geometric mean, for any unit vector $x \in \mathcal{H}$ we have
\[
\sum_{i=1}^{n} |\langle T_i x, x \rangle|^p \leq \sum_{i=1}^{n} \left(|\langle T_i^{2\alpha} x, x \rangle|^{\frac{1}{2}} \langle |T_i^{2(1-\alpha)} x, x \rangle^{\frac{1}{2}} \right)^p
\]
(by Lemma 2.1(b))
\[
\leq \frac{1}{2p} \sum_{i=1}^{n} \left(|\langle T_i^{2\alpha} x, x \rangle| + |\langle T_i^{2(1-\alpha)} x, x \rangle| \right)^p
\]
\[
= \frac{1}{2p} \sum_{i=1}^{n} \left(|\langle T_i^{2\alpha} + |T_i^{2(1-\alpha)}| x, x \rangle| \right)^p.
\]
\[
\leq \frac{1}{2p} \sum_{i=1}^{n} \left(|\langle T_i^{2\alpha} + |T_i^{2(1-\alpha)}| x, x \rangle| \right)^p.
\]
(by Lemma 2.2(a))

Now the result follows by taking the supremum over all unit vectors in \mathcal{H}. \qed

Proposition 3.9. Let $(T_1, \ldots, T_n) \in \mathbb{B}(\mathcal{H})^n$. Then
\[
w_p(T_1, \ldots, T_n) \leq \left\| \sum_{i=1}^{n} (\alpha |T_i|^p + (1 - \alpha) |T_i^*|^p) \right\|^{\frac{1}{p}}
\]
for $0 \leq \alpha \leq 1$, and $p \geq 2$.
Proof. For every unit vector $x \in \mathcal{H}$, we have

$$\sum_{i=1}^{n} |\langle T_i x, x \rangle|^p = \sum_{i=1}^{n} (|\langle T_i x, x \rangle|^2)^{\frac{p}{2}} \leq \sum_{i=1}^{n} \left(\langle |T_i|^{2\alpha} x, x \rangle \langle |T_i^*|^{2(1-\alpha)} x, x \rangle \right)^{\frac{p}{2}} \text{ (by Lemma 2.1(b))}$$

$$\leq \sum_{i=1}^{n} \langle |T_i|^{\alpha p} x, x \rangle \langle |T_i^*|(1-\alpha)^p x, x \rangle \text{ (by Lemma 2.2(a))}$$

$$\leq \sum_{i=1}^{n} \langle |T_i|^p x, x \rangle^\alpha \langle |T_i^*|^p x, x \rangle^{(1-\alpha)} \text{ (by Lemma 2.2(b))}$$

$$\leq \sum_{i=1}^{n} \left(\alpha \langle |T_i|^p x, x \rangle + (1-\alpha) \langle |T_i^*|^p x, x \rangle \right) \text{ (by Lemma 2.1(a))}$$

$$\leq \sum_{i=1}^{n} \left(\alpha |T_i|^p + (1-\alpha) |T_i^*|^p \right) x, x \right)$$

$$= \left\langle \left(\sum_{i=1}^{n} \left(\alpha |T_i|^p + (1-\alpha) |T_i^*|^p \right) \right) x, x \right\rangle.$$

Now the result follows by taking the supremum over all unit vectors in \mathcal{H}. □

Remark 3.10. As special cases,

1. For $\alpha = \frac{1}{2}$, we have

$$w_p^p (T_1, \ldots, T_n) \leq \frac{1}{2} \left\| \sum_{i=1}^{n} \left(|T_i|^p + |T_i^*|^p \right) \right\|.$$

2. For $B, C \in \mathcal{B}(\mathcal{H}), 0 \leq \alpha \leq 1$, and $p \geq 1$, we have

$$w_p^p (B, C) \leq \|\alpha |B|^p + (1-\alpha) |B^*|^p + \alpha |C|^p + (1-\alpha) |C^*|^p \|.$$

In particular,

$$w_p^p (B, C) \leq \frac{1}{2} \left\| |B|^p + |B^*|^p + |C|^p + |C^*|^p \right\|.$$

The next result reads as follows.

Proposition 3.11. Let $(T_1, \ldots, T_n) \in \mathcal{B}(\mathcal{H})^n, 0 \leq \alpha \leq 1, r \geq 1$ and $p \geq 1$. Then

$$w_p^p (T_1, \ldots, T_n) \leq \left(\sum_{i=1}^{n} \|\alpha |T_i|^{2r} + (1-\alpha) |T_i^*|^{2r} \|^\frac{p}{2r} \right)^\frac{1}{p}.$$
Proof. Let \(x \in \mathcal{H} \) be a unit vector.

\[
\sum_{i=1}^{n} |\langle T_i x, x \rangle|^p = \sum_{i=1}^{n} \left(|\langle T_i x, x \rangle|^2 \right)^{\frac{p}{2}} \leq \sum_{i=1}^{n} \left(|\langle T_i^2 x, x \rangle|^{2(1-\alpha)} x, x \rangle \right)^{\frac{p}{2}} \tag{by Lemma 2.1(b)}
\]

\[
\leq \sum_{i=1}^{n} \left(\alpha |\langle T_i^2 x, x \rangle|^{r} + (1 - \alpha) \langle |T_i^*|^2 x, x \rangle \right)^{\frac{p}{2r}} \tag{by Lemma 2.1(a)}
\]

\[
\leq \sum_{i=1}^{n} \langle |T_i|^2 + (1 - \alpha) |T_i^*|^2 \rangle x, x \rangle^{\frac{p}{2r}}. \tag{by Lemma 2.2(a)}
\]

Now the result follows by taking the supremum over all unit vectors in \(\mathcal{H} \). \(\square \)

Remark 3.12. Some special cases can be stated as follows:

1. For \(\alpha = \frac{1}{2} \), we have

\[
w_p (T_1, \ldots, T_n) \leq \left(\frac{1}{2^{\frac{1}{2r}}} \sum_{i=1}^{n} \| |T_i|^2 + |T_i^*|^2 \|^{\frac{r}{p}} \right)^{\frac{p}{r}}.
\]

2. For \(B, C \in \mathbb{B}(\mathcal{H}), 0 \leq \alpha \leq 1 \), and \(p \geq 1 \), we have

\[
w_p (B, C) \leq \left(\| \alpha |B|^2 + (1 - \alpha) |B^*|^2 \| \right)^{\frac{r}{p}} + \| \alpha |C|^2 + (1 - \alpha) |C^*|^2 \| \right)^{\frac{r}{p}}.
\]

In particular,

\[
w_p (B, C) \leq \frac{1}{2^{\frac{1}{2r}}} \left(\| |B|^2 + |B^*|^2 \| \right)^{\frac{r}{p}} + \| |C|^2 + |C^*|^2 \| \right)^{\frac{r}{p}}.
\]
References

1. S. S. Dragomir, *Some inequalities for the Euclidean operator radius of two operators in Hilbert Spaces*, Linear Algebra and Its Appl., 419 (1) (2006), 256–264.

2. K. E. Gustufson and D. K. M. Rao, *Numerical Range*, Springer-Verlag, New York, 1997.

3. O. Hirzallah, F. Kittaneh and K. Shebrawi, *Numerical radius inequalities for certain 2 × 2 operator matrices*, Integral Equations Operator Theory 71 (2011), no. 1, 129–147.

4. O. Hirzallah and F. Kittaneh, *Numerical radius inequalities for several operators*, Math. Scand. 114 (2014), no. 1, 110-119.

5. J. Pečarić, T. Furuta, J. Mićić Hot and Y. Seo, *Mond-Pečarić Method in Operator Inequalities*, Element, Zagreb, 2005.

6. F. Kittaneh, *Notes on some inequalities for Hilbert space operators* Publ. Res. Inst. Math. Sci. 24 (1988), no. 2, 283–293.

7. D. S. Mitrović, J. E. Pečarić and A. M. Fink, *Classical and new inequalities in analysis*, Kluwer Academic Publishers, 1993.

8. J. I. Fujii, M. Fujii, M. S. Moslehian, J. E. Pečarić and Y. Seo, *Reverses Cauchy–Schwarz type inequalities in pre-inner product C∗-modules*, Hokkaido Math. J. 40 (2011), 1–17.

9. G. Popescu, *Unitary invariants in multivariable operator theory*, Mem. Amer. Math. Soc., Vol. 200, no 941, 2009.

10. A. Salemi and A. Sheikhhosseini, *Matrix Young numerical radius inequalities*, Math. Inequal. Appl. 16 (2013), no. 3, 783–791.

11. T. Yamazaki, *On upper and lower bounds for the numerical radius and an equality condition*, Studia Math. 178 (2007), no. 1, 83–89.

12. T. Yamazaki, *On numerical range of the Aluthge transformation*, Linear Algebra Appl. 341 (2002), 111–117.

1 Department of Pure Mathematics, Center Of Excellence in Analysis on Algebraic Structures (CEAAS), Ferdowsi University of Mashhad, P. O. Box 1159, Mashhad 91775, Iran

E-mail address: moslehian@um.ac.ir
E-mail address: msattari.b@gmail.com

2 Department of Applied Sciences, Al-Balqa’ Applied University Salt, Jordan; Department of Mathematics, College of Science, Qassim University, Qassim, Saudi Arabia

E-mail address: khalid@bau.edu.jo