Distance functions with dense singular sets

Mario Santilli

September 15, 2020

Abstract

We characterize the denseness of the singular set of the distance function from a C^1-hypersurface in terms of an inner ball condition and we address the problem of the existence of viscosity solutions of the Eikonal equation whose singular set (i.e. set of non-differentiability points) is not no-where dense.

1 Introduction

The distance function δ_K from a closed subset $K \subseteq \mathbb{R}^n$ is a viscosity solution of the Eikonal equation $|\nabla u|^2 = 1$ on $\mathbb{R}^n \sim K$ and it plays a central role in the theory of Hamilton-Jacobi equations. The function δ_K is locally semiconcave on $\mathbb{R}^n \sim K$ and it is continuously differentiable on $\mathbb{R}^n \sim (K \cup \Sigma(K))$ with a locally Lipschitz gradient, where $\Sigma(K)$ is the set of non-differentiability points of δ_K. In view of these facts the topological and measure-theoretic properties of the sets $\Sigma(K)$ and $\overline{\Sigma(K)}$ have always been a central theme of research (see [IT01, MM03, LN05, CM07, ACNS13]). The set $\Sigma(K)$ can be covered, outside a set of H^{n-1} measure zero, by the union of countably many C^2 hypersurfaces (see [Zaj79]). Assuming at least that K is a closed C^2 hypersurface, the Lebesgue measure of $\Sigma(K)$ is zero and upper bounds on the Hausdorff dimension of the set $\overline{\Sigma(K)}$ are known ([IT01, MM03, LN05, CM07]); see also [Min16] for the case of $C^{1,1}$ hypersurfaces that are almost C^2. On the other hand a well known example of Mantegazza and Mennucci in [MM03, pag. 10] describes a convex body C with $C^{1,1}$-boundary such that $\overline{\Sigma(\partial C)}$ is a no-where dense subset of C with positive Lebesgue measure. This example raises the natural question to understand if (and under which hypothesis) the set $\overline{\Sigma(K)}$ can have interior points. It is particularly interesting the case $K = \partial C$, where C is a convex body with $C^{1,1}$ boundary, since if this example exists then one can construct by a well known procedure a viscosity solution of the Eikonal equation on all of \mathbb{R}^n whose singular set is not no-where dense. This question was addressed in [Rif08, Theorem 1, footnote pag. 520], which contains the assertion that every viscosity solution of the Eikonal equation on an open subset of \mathbb{R}^n must be differentiable outside a no-where dense set. Unfortunately the proof of this statement is invalid (see [Rif20]) and, as we show in this paper, it turns out that the statement is actually not true.
In this note we aim to establish the existence of a counterexample to the aforementioned assertion in [Rif08, Theorem 1] and to provide geometric conditions on C^1-hypersurfaces K that ensures that $\Sigma(K)$ has non-empty interior. Specifically we prove the following facts:

1. If Ω is an open subset with C^1 boundary then $\Omega \sim \Sigma(\partial \Omega) \neq \emptyset$ if and only if Ω satisfies an inner uniform ball condition on some open subset of $\partial \Omega$ (see 2.7-2.8).

2. If K is a closed and connected C^1 hypersurface that is C^2-unrectifiable, then $\Sigma(K) = \mathbb{R}^n$ (see 2.9).

3. For most of the convex bodies C with C^1 boundary (in the sense of Baire Category) the set $\Sigma(\partial C)$ is dense in C (see 3.1).

4. There exists a convex body C with $C^{1,1}$ boundary such that $\Sigma(\partial C)$ has interior points (see 3.3).

5. There exists viscosity solutions of the Eikonal equation $|\nabla u|^2 = 1$ on all of \mathbb{R}^n that are not differentiable on a set that is not nowhere dense (see 3.3).

Acknowledgements. I wish to thank Professor Ludovic Rifford, who kindly points me out the flaw in the proof of [Rif08, Theorem 1]; see [Rif20].

2 Inner ball condition and dense singular sets

In this section for an open set Ω with C^1 boundary K we characterize the denseness of the set of non differentiability points of δ_K in Ω in terms of an inner ball condition (see 2.7-2.8). We use then this result to show that closed C^1-hypersurfaces that are C^2-unrectifiable have a singular set dense in all of \mathbb{R}^n (see 2.9).

2.1 Definition. Let $k \geq 1$ be an integer, $0 \leq \alpha \leq 1$ and $M \subseteq \mathbb{R}^n$. We say that M is a $C^{k,\alpha}$-hypersurface if and only if for every $a \in M$ there exists an open subset U of \mathbb{R}^n, an $n-1$ dimensional subspace Z of \mathbb{R}^n and a $C^{k,\alpha}$-diffeomorphism $\sigma : U \to \mathbb{R}^n$ such that

$$\sigma(U \cap M) = Z \cap \sigma(U).$$

2.2 Definition. Let $k \geq 1$ be an integer. A k-manifold is an Hausdorff space which is locally homeomorphic to an open subset of \mathbb{R}^k.

Let $K \subseteq \mathbb{R}^n$ be a closed set and let $\xi_K : \mathbb{R}^n \to 2^K$ be the nearest point projection onto K:

$$\xi_K(x) = K \cap \{ a : |x - a| = \delta_K(x) \}$$
for every $x \in \mathbb{R}^n$. The singular set of δ_K is defined as
\[
\Sigma(K) = (\mathbb{R}^n \sim K) \cap \{ x : \delta_K \text{ is not differentiable at } x \}.
\]

2.3 Remark. The reader might wonder what are the points in K where δ_K is not differentiable. In this regard one observes that if $x \in K$ and δ_K is differentiable at x then $\nabla \delta_K(x) = 0$. It follows that if $x \in K$ and the tangent cone (see [Fed59, 4.3]) of K at x is not equal to \mathbb{R}^n then δ_K is not differentiable at x. In particular if K is C^1 hypersurface [resp. K is a convex body] δ_K is not differentiable at all points of K [resp. all points of ∂K].

2.4 Remark. It is well known that δ_K is locally semiconcave in $\mathbb{R}^n \sim K$, see [CS04, 2.2.2]. As a consequence of general structural results on the singular sets of convex functions (see [Zaj79]) we deduce that $\Sigma(K)$ can be covered, outside a set of H^{n-1} measure zero, by the union of countably many C^2-hypersurfaces.

We recall from [CS04, 3.4.5] a well known characterization of $\Sigma(K)$.

2.5 Lemma. Suppose $K \subseteq \mathbb{R}^n$ is closed and $x \notin K$.
Then $x \notin \Sigma(K)$ if and only if $\xi_K(x)$ is a singleton and
\[
\nabla \delta_K(x) = \frac{x - \xi_K(x)}{\delta_K(x)}.
\]

2.6 Definition. For $x \in \mathbb{R}^n$ and $r > 0$ we define
\[
U(x, r) = \mathbb{R}^n \cap \{ y : |y - x| < r \}.
\]

2.7 Definition. Suppose Ω is an open subset of \mathbb{R}^n and $S \subseteq \partial \Omega$. We say that Ω satisfies an inner uniform ball condition on S if and only if there exists $\rho > 0$ such that each $x \in S$ belongs to the boundary of an open ball B of radius ρ which is contained in Ω.

2.8 Theorem. Let $K \subseteq \mathbb{R}^n$ be a closed C^1-hypersurface and let Ω be an open subset of \mathbb{R}^n such that $\partial \Omega = K$.
Then $\Omega \sim \overline{\Sigma(K)} \neq \emptyset$ if and only if Ω satisfies an inner uniform ball condition on a non-empty open subset of K.

Proof. Suppose $\Omega \sim \overline{\Sigma(K)} \neq \emptyset$. Choose $w \in \Omega \sim \overline{\Sigma(K)}$ and $0 < \epsilon < \delta_K(w)$ such that $U(w, \epsilon) \subseteq \Omega \sim \overline{\Sigma(K)}$. Then define
\[
S = U(w, \epsilon) \cap \{ x : \delta_K(x) = \delta_K(w) \}.
\]
Since, by [Fed59] the Lipschitz function δ_K is differentiable at each $x \in U(w, \epsilon)$ and $|\nabla \delta_K(x)| = 1$, we apply the implicit function theorem of Clarke [Class3 7.11] to conclude that S is an $(n-1)$-manifold. Moreover $\xi_K|S$ is continuous by [Fed59 4.8(4)]. We prove that $\xi_K|S$ is an injective map. Suppose $x, y \in S$ such that $\xi_K(x) = \xi_K(y)$. Then
\[
x - \xi_K(x) \in \text{Nor}(K, \xi_K(x)), \quad y - \xi_K(x) \in \text{Nor}(K, \xi_K(x))
\]
and $|x - \xi_K(x)| = |y - \xi_K(x)| = \delta_K(w)$. Since $\dim \text{Nor}(K, \xi_K(x)) = 1$, it follows that either $x - \xi_K(x) = y - \xi_K(x)$ or $x - \xi_K(x) = \xi_K(x) - y$. The latter would imply that

$$|x - y| = |x - \xi_K(x) + \xi_K(x) - y| = 2|x - \xi_K(x)| = 2\delta_K(w)$$

which is clearly impossible, since $|x - y| < \epsilon < 2\delta_K(w)$. Henceforth $x = y$ and $\xi_K|S$ is injective. Since S and $\partial \Omega$ are $(n-1)$-manifolds, we apply Brouwer’s theorem on invariance of domain (see [Do172 IV, 7.4]) to conclude that $\xi_K(S)$ is open in K. Noting that

$$U(x, \delta_K(w)) \subseteq \Omega \quad \text{and} \quad \xi_K(x) \in \partial U(x, \delta_K(w)),$$

for every $x \in S$, we conclude that Ω satisfies an inner uniform ball condition on $\xi_K(S)$.

Suppose $S \subseteq K$ is open in K and Ω satisfies an inner uniform ball condition on S. Let $\nu : K \to S^{n-1}$ be the inner unit normal of Ω. Our hypothesis implies that there exists $\rho > 0$ such that

$$U(a + \rho \nu(a), \rho) \subseteq \Omega \quad \text{for every } a \in S.$$

Define $\phi : S \times (0, \rho) \to \mathbb{R}^n$ by $\phi(a, t) = a + t\nu(a)$ for $(a, t) \in S \times (0, \rho)$. Then $\phi[S \times (0, \rho)]$ is open in \mathbb{R}^n and $\xi_K(x)$ is a singleton for every $x \in \phi[S \times (0, \rho)]$ then it is clear by [2.5] that $\phi[S \times (0, \rho)]$ does not intersect $\Sigma(K)$ and $\Omega \sim \Sigma(K) \neq \emptyset$. To prove the two assertions above we first show that ϕ is injective. Let $(a, t), (b, s) \in S \times (0, \rho)$ such that $a + t\nu(a) = b + s\nu(b)$. We notice that

$$t = \delta_K(a + t\nu(a)) = \delta_K(b + s\nu(b)) = s,$$

$$|a + t\nu(a) - b| = t.$$

If $a \neq b$ then $|a + \rho \nu(a) - b| < \rho$ and $b \in \Omega$, which is a contradiction. Henceforth $a = b$ and ϕ is injective. If $b \in \xi_K(a + t\nu(a))$ for some $(a, t) \in S \times (0, \rho)$ then we notice that $\nu(b) = t^{-1}[(a + t\nu(a) - b)$ and $a = b$ by the injectivity of ϕ. Therefore $\xi_K(x)$ is a singleton for every $x \in \phi[S \times (0, \rho)]$. Moreover, since $S \times (0, \rho)$ is an n-manifold, we conclude that $\phi[S \times (0, \rho)]$ is an open subset of \mathbb{R}^n by [Do172 IV, 7.4].

This corollary shows that every C^1-hypersurface that is C^2-unrectifiable generates a dense singular set.

2.9 Corollary. Suppose K is a closed and connected C^1 hypersurface such that $\mathcal{H}^{n-1}(K \cap M) = 0$ whenever M is a C^2-hypersurface of \mathbb{R}^n.

Then $\Sigma(K) = \mathbb{R}^n$.

Proof. Let U and V the two connected open subsets of \mathbb{R}^n such that $\partial U = \partial V = K$, $U \cap V = \emptyset$ and $U \cup V = \mathbb{R}^n$. It follows from [MS19] that if S is a subset of K such that either U or V satisfies an inner uniform ball condition on S then $\mathcal{H}^{n-1}(S) = 0$. In particular neither U nor V can satisfy an inner uniform ball condition on some non empty open subset of K. Therefore we conclude from [2.5] that $\Sigma(K) = \mathbb{R}^n$.

□
2.10 Remark. Let $0 < \alpha < 1$. It follows from \[Koh77\] that there exists a function $f : \mathbb{R}^{n-1} \to \mathbb{R}$ whose graph K is a closed $C^{1,\alpha}$-hypersurface such that $\mathcal{H}^{n-1}(K \cap M) = 0$ for every C^2-hypersurface $M \subseteq \mathbb{R}^n$.

2.11 Remark. It follows from the theory of sets of positive reach (see \[Fed59, \S 4\]) that if K is a closed $C^{1,1}$-hypersurface then there exists an open neighbourhood U of K such that $\Sigma(K) \cap U = \emptyset$.

3 Convex sets

In this section we show that there exist many $C^{1,1}$ convex hypersurfaces K such that $\Sigma(K)$ has non empty interior. Consequently there exist many viscosity solutions of the Eikonal equation on \mathbb{R}^n such that the singular set is nowhere dense.

Let \mathcal{K}_n^r be the space of all compact convex subsets in \mathbb{R}^n with non empty interior such that ∂C is a $C^{1,1}$ hypersurface. We equip \mathcal{K}_n^r with the Hausdorff metric and we recall (see \[Sch14, 2.7.1\]) that it is a Baire space (i.e. countable intersections of dense open subsets are dense). A subset of a metric space is called meager if and only if it is countable union of nowhere-dense sets and it is called comeager if and only if it is the complementary of a meager set. It is customary to call typical the elements of a comeager subset of a Baire space.

The next statement contains the observation that for a typical convex body $C \in \mathcal{K}_n^r$ the distance function from the boundary ∂C is not differentiable on a dense subset of C. This statement easily follows combining Theorem 2.8 with well known properties of the curvature of a typical convex body.

3.1 Theorem. For all C in \mathcal{K}_n^r, except those belonging to a meager subset of \mathcal{K}_n^r,

$$C = \Sigma(\partial C).$$

Proof. By \[Sch14, 2.7.4\] there exists a comeager T of \mathcal{K}_n^r such that if $C \in T$ then $\text{Int}(C)$ does not satisfy an inner uniform ball condition on a comeager subset of ∂C. It follows from 2.8 that $C \subseteq \Sigma(\partial C)$ for every $C \in T$. On the other hand it is well known that $\delta_{\partial A} \in C^{1,1}_{\text{loc}}(\mathbb{R}^n \sim A)$ for every convex body A (see for instance \[Fed59, 4.8\]) and the conclusion follows.

3.2 Lemma. If C is a convex body then for every $\epsilon > 0$ the set

$$C_\epsilon = \mathbb{R}^n \cap \{x : \delta_C(x) \leq \epsilon\}$$

is convex, ∂C_ϵ is a $C^{1,1}$-hypersurface and $\Sigma(\partial C) \subseteq \Sigma(\partial C_\epsilon)$.

Proof. Evidently C_ϵ is a convex body and is well known that ∂C_ϵ is a $C^{1,1}$ hypersurface (see \[Fed59, 4.8\]). We observe that

$$\delta_{\partial C_\epsilon}(x) = \epsilon + \delta_{\partial C}(x) \quad \text{for } x \in C,$$

and we conclude that $\Sigma(\partial C) \subseteq \Sigma(\partial C_\epsilon)$.

\[In fact \mathcal{K}_n^r is a comeager of the space of all convex bodies (with non empty interior) equipped with the Hausdorff metric.\]
3.3 Theorem. There exists $C \in K_n^r$ such that ∂C is a $C^{1,1}$-hypersurface and $\Sigma(\partial C)$ has non empty interior. Moreover the function $u : \mathbb{R}^n \to \mathbb{R}$ defined by

$$u(x) = \delta_{\partial C}(x) \quad \text{for } x \in C \quad \text{and} \quad u(x) = -\delta_{\partial C}(x) \quad \text{for } x \in \mathbb{R}^n \sim C$$

is a viscosity solution of the Eikonal equation on \mathbb{R}^n and the closure of the set of points where u is not differentiable has non empty interior.

Proof. The existence of a convex body C such that ∂C is a $C^{1,1}$ hypersurface and $\Sigma(\partial C)$ has non empty interior directly follows from 3.1 and 3.2.

It follows from [Fed59, 4.20] that ∂C has positive reach. Therefore one infers from [KPS1, Theorem 2] that there exists an open neighborhood U of ∂C such that u is continuously differentiable on U. Since it is clear that u is continuously differentiable on $\mathbb{R}^n \sim C$, we conclude by 2.5 that

$$|\nabla u(x)|^2 = 1 \quad \text{for every } x \in (\mathbb{R}^n \sim C) \cup U.$$

Moreover u is locally semiconcave on the interior $\text{Int}(C)$ of C and $|\nabla u(x)|^2 = 1$ for \mathbb{L}^n a.e. $x \in \text{Int}(C)$. Henceforth, it follows from [CS04, 5.3.1] that $|\nabla u|^2 = 1$ in the viscosity sense in $\text{Int}(C)$. It is now evident that $|\nabla u|^2 = 1$ in the viscosity sense in \mathbb{R}^n. \qed

References

[ACNS13] P. Albano, P. Cannarsa, Khai T. Nguyen, and C. Sinestrari. Singular gradient flow of the distance function and homotopy equivalence. Math. Ann., 356(1):23–43, 2013.

[Cla83] Frank H. Clarke. Optimization and nonsmooth analysis. Canadian Mathematical Society Series of Monographs and Advanced Texts. John Wiley & Sons, Inc., New York, 1983. A Wiley-Interscience Publication.

[CM07] Graziano Crasta and Annalisa Malusa. The distance function from the boundary in a Minkowski space. Trans. Amer. Math. Soc., 359(12):5725–5759, 2007.

[CS04] Piermarco Cannarsa and Carlo Sinestrari. Semiconcave functions, Hamilton-Jacobi equations, and optimal control, volume 58 of Progress in Nonlinear Differential Equations and their Applications. Birkhäuser Boston, Inc., Boston, MA, 2004.

[Dol72] A. Dold. Lectures on algebraic topology. Springer-Verlag, New York-Berlin, 1972. Die Grundlehren der mathematischen Wissenschaften, Band 200.

[Fed59] Herbert Federer. Curvature measures. Trans. Amer. Math. Soc., 93:418–491, 1959.
[IT01] Jin-ichi Itoh and Minoru Tanaka. The Lipschitz continuity of the distance function to the cut locus. *Trans. Amer. Math. Soc.*, 353(1):21–40, 2001.

[Koh77] Robert V. Kohn. An example concerning approximate differentiation. *Indiana Univ. Math. J.*, 26(2):393–397, 1977.

[KP81] Steven G. Krantz and Harold R. Parks. Distance to C^k hypersurfaces. *J. Differential Equations*, 40(1):116–120, 1981.

[LN05] Yanyan Li and Louis Nirenberg. The distance function to the boundary, Finsler geometry, and the singular set of viscosity solutions of some Hamilton-Jacobi equations. *Comm. Pure Appl. Math.*, 58(1):85–146, 2005.

[Miu16] Tatsuya Miura. A characterization of cut locus for C^1 hypersurfaces. *NoDEA Nonlinear Differential Equations Appl.*, 23(6):Art. 60, 14, 2016.

[MM03] Carlo Mantegazza and Andrea Carlo Mennucci. Hamilton-Jacobi equations and distance functions on Riemannian manifolds. *Appl. Math. Optim.*, 47(1):1–25, 2003.

[MS19] Ulrich Menne and Mario Santilli. A geometric second-order-rectifiable stratification for closed subsets of Euclidean space. *Ann. Sc. Norm. Super. Pisa Cl. Sci. (5)*, 19(3):1185–1198, 2019.

[Rif08] Ludovic Rifford. On viscosity solutions of certain Hamilton-Jacobi equations: regularity results and generalized Sard’s theorems. *Comm. Partial Differential Equations*, 33(1-3):517–559, 2008.

[Rif20] Ludovic Rifford. Erratum: On viscosity solutions of certain Hamilton-Jacobi equations: regularity results and generalized Sard’s theorems. *In preparation*.

[Sch14] Rolf Schneider. *Convex bodies: the Brunn-Minkowski theory*, volume 151 of *Encyclopedia of Mathematics and its Applications*. Cambridge University Press, Cambridge, expanded edition, 2014.

[Zaj79] Luděk Zajíček. On the differentiation of convex functions in finite and infinite dimensional spaces. *Czechoslovak Math. J.*, 29(104)(3):340–348, 1979.

Institut für Mathematik, Universität Augsburg, Universitätsstr. 14, 86159, Augsburg, Germany, mario.santilli@math.uni-augsburg.de