On the Connection Between Quantum and Classical Descriptions

J. Manjavidze
Joint Institute for Nuclear Research (VBLHEP & LNP, Dubna, Russia)
Andronikashvili Institute of Physics (LThP, Tbilisi State University, Georgia)
e-mail: joseph@jinr.ru

Abstract—The review paper presents generalization of d’Alembert’s variational principle: the dynamics of a quantum system for an external observer is defined by the exact equilibrium of all acting in the system forces, including the random quantum force ψ_j, $\forall \psi$. Spatial attention is dedicated to the systems with (hidden) symmetries. It is shown how the symmetry reduces the number of quantum degrees of freedom down to the independent ones. The sin–Gordon model is considered as an example of such field theory with symmetry. It is shown why the particles S–matrix is trivial in that model.

DOI: 10.1134/S1063779612040053

CONTENTS

1. INTRODUCTION	523
2. SIMPLEST EXAMPLES	526
2.1 Introduction	526
2.2 The generalized stationary–phase method	527
2.3 Complex trajectories	530
2.4 Conclusions	532
3. PATH INTEGRALS ON DIRAC MEASURE	532
3.1 Introduction	532
3.2 Canonical transformation	533
3.3 Selection rule	534
3.4 Coordinate transformation	535
3.5 Conclusions	536
4. REDUCTION OF QUANTUM DEGREES OF FREEDOM	536
4.1 Introduction	536
4.2 Unitary definition of the path–integral measure	537
4.3 Perturbation theory on the cotangent manifold	538
4.4 Cancelation of angular perturbations	540
4.5 Conclusions	542
5. EXAMPLE: H–ATOM	542
5.1 Introduction	542
5.2 Mapping	543
5.3 Reduction	545
5.4 Perturbations	545
5.5 Conclusions	547
6. EXAMPLE: SIN–GORDON MODEL	547

1 The article is published in the original.

1. INTRODUCTION

The basis of the method of calculations is the following [1]. The S–matrix unitarity condition, $S^\dagger S = 1$, in terms of amplitudes, $S = 1 + iA$, looks as follows:

$$iA^\dagger A = (A - A^\dagger).$$ (1.1)

The nonlinearity of this equality points on existence of the cancelations mechanism (of the real part of
amplitude) which reduces quadratic form down the linear one. Our purpose is to show how this reduction removes the “unwanted” contributions.

One may consider the simplest vacuum—into—vacuum transition probability, \(|Z|^2 \), as the main quantity, where \(Z \) is the functional integral over fields,

\[
Z = \int D\phi e^{iS(\phi)}, \quad D\phi = \prod_x d\phi(x).
\]

One may include into the action, \(S \), also the linear over field \(\phi \) term,

\[
\int dx J(x)\phi(x),
\]

to describe production of particles. We will assume on the early stages that \(J = 0 \). Then the vacuum—into—vacuum transition probability

\[
|Z|^2 = \lim_{j = e = 0} \int DMe^{iU(\phi, e)},
\]

where \(\hat{\mathcal{K}} = \hat{\mathcal{K}}(j, e) \) is a definite differential operator over \(j(x) \) and \(e(x) \), see the examples (2.42), (6.7). The expansion of \(\exp\{i\hat{\mathcal{K}}\} \) generates perturbation series. The functional \(U(\phi, e) \) introduces interaction among quantum degrees of freedom and the integral measure is \(\delta \)—functional:

\[
DM = \prod_x d\phi(x) \left(\delta S(\phi) + \delta h(x) \right).
\]

Sometimes the \(\delta \)—like measure [2] is called in mathematical literature as the “Dirac measure”. It follows from (1.6) that

— the quantum system for an external observer looks like classical which is excited by the external random force \(\hbar j, \forall \hbar \).

The established generalized correspondence principle \(^3\) is the main consequence of Eq. (1.1). Therefore

\[^2\] This means that the theory must be formulated directly in terms of probability. But notice that it is the frequently used method of particle physics. For example, one must integrate over unobserved final state in the inclusive approach to the multiple production phenomena. Another example: describing the very high multiplicity (VHM) processes the number of produced particles \(n \) must be considered as the dynamical parameter. In the frame of \(\delta \)—matrix thermodynamics, where the “rough” description of final state is used, one must also integrate over final particles momenta. In all cases one must consider quantities \(\sim |\mathcal{A}|^0 \) directly, where \(\mathcal{A} \) is the corresponding amplitude.

\[^3\] This formulation of the principle was offered by A. Sisakian.

the complete set of acceptable field states for external observer \(^4\) is known having (1.6).

It is important that the restricted problem is considered. We will calculate the imaginary part of amplitude believing that it will be sufficient for us. In this case the unmeasurable phase of amplitude stay undefined. A main mathematical problem in the searching representation (1.5) is to find the way how to find the imaginary part from the modulo square of amplitude. To be more precise, we will find the imaginary part as a result of cancelation of “unwanted” contribution in the modulo square of amplitude.

The \(\delta \)—function (1.6) solves the problem of definition of contributions into the path integral but can not solve the problem completely since the action of operator \(\hat{\mathcal{K}} \) remains unknown. It must be noted that \(\exp\{i\hat{\mathcal{K}}\} \) generates the asymptotic series ordinary in quantum theories [3] and it seems that \(\delta \)—like measure gives nothing new. But this is not entirely so. I would like draw attention to the appearance of source of quantum excitations \(\hbar j \) in the r.h.s. of classical Lagrange equation, i.e. the changes of l.h.s. in equation of motion leads to the change of \(j \). It is crucially important that (1.6) is rightful independently from the value of \(\hbar \).

The theory defined on the Dirac measure (1.6) for this reason has quite unexpected properties, e.g. allows to perform transformation of the path integral variables. So, it will be shown that in theories with symmetry the reduced form of representation (1.5) exists:

\[
|Z|^2 = \lim_{j = e = 0} \int DMe^{iU(\phi, e)},
\]

where \(\hat{\mathcal{K}} \) is again the perturbations generating operator and \(U \) introduces interactions. Note that \(\hat{\mathcal{K}} \) and \(U \) in (1.7) depends on the sets \(\{ j_{\xi_k}, e_{\eta_k} \} \), \(\{ e_{\xi_k}, e_{\eta_k} \} \) of new variables. One must take this auxiliary variables equal to zero at the very end of calculations. At the same time the transformed measure \(DM \) is again \(\delta \)—like:

\[
DM = \prod_k \prod_t d\xi_k(t) d\eta_k(t)
\times \delta \left(\hat{\xi}_k(t) - \frac{\delta h}{\delta \eta_k(t)} \frac{\delta \hat{\eta}_k(t)}{\delta \xi_k(t)} - j_{\xi_k}(t) \right) - j_{\eta_k}(t),
\]

\[^4\] Since the “probability” is considered.

\[^5\] Therewith why must the calculations of unnecessary, i.e. unmeasurable, phase be performed? Just in this sense the unitarity condition (1.1) is a necessary one. It says that the real part is the “unwanted” part of the amplitude.

\[^6\] Looking at the approach from the point of view of the stationary phase methods. In other words, one can think that the present approach gives nothing new to the Bohr’s correspondence principle.
where \(t \) is the time variable and \(h = h(\eta) \) is the transformed Hamiltonian:

\[
h(\eta) = H(\varphi_c),
\]

(1.9)

where \(\varphi_c = \varphi_c(x; \xi, \eta) \) is given solution of Lagrange equation at \(j = 0 \).

The formulae (1.8) is the main result. Therefore, as it follows from it the problem of the quantum field theory with symmetry is reduced down to quantum mechanical one, with potential defined by \(\varphi_c \).

(A) The Dirac measure (1.6) prescribes that \(|Z|^2 \) is defined by the sum of strict solutions of equation of motion:

\[
\frac{\delta S(\varphi)}{\delta \varphi(x)} = hj(x),
\]

(1.10)

in vicinity of \(j = 0 \), i.e. by definition Eq. (1.10) must be solved expanding the solution over \(j \). Following the ordinary rule we obviously leave the contribution which ensures the minimal vacuum energy. On the other hand, having theory on Dirac measure, which calls for the complete set of contributions, we have offered another selection rule in our dynamic theory of \(S \)-matrix. Namely, we simply propose that

— the largest terms in the sum over solutions of (1.10) are significant from the physics point of view.

To be more precise, this selection rule means that if \(G \) is the symmetry of action and \(TG^* \) is the symmetry of the extremum of the action, then in the situation of a general position only the trajectories with the highest dimension factor group, \((G/TG^*) \), are sufficient.

It will be seen that this kind of definition of the “ground state” extracts the maximally “feeling” symmetry contributions since other ones will be realized on a zero measure, or, more precisely, on maximal symmetry breaking field configurations, \(\varphi_c \), are most probable. We will call such solution of the problem the field theory with symmetry. It is the main formal distinction of present approach.

It is important here that the zero width of \(\delta \)-function excludes the interference among contributions from various trajectories. Therefore the formalism naturally takes into account the orthogonality of Hilbert spaces built on various trajectories. This is achieved through the special boundary conditions in the frame of which the total action of the product \(ZZ^* = \langle in|out\rangle\langle out|in\rangle \), always describes a closed path, i.e. the necessary for d’Alembert variational principle time reversible motion. It points to the necessity to be careful with boundary conditions in a considered formalism.

(B) The Dowker’s theorem [5] insists that the semiclassical approximation to be exact for path integrals on the simple Lie group manifolds. For this reason one can expect that the quantum—mechanical problems, as well as the field—theoretical ones, may be at least transparent to the symmetry manifolds.

However we know how to construct correctly the path integral formalism only in the restricted case of canonical variables [6]. At first sight the path integrals in terms of generalized coordinates can be defined through the corresponding transformation. But there is an opinion that it is impossible to perform the transformation of path—integral variables: the naive transformation of coordinates give wrong results because of their stochastic nature in quantum theories. That is why such general principle as the conservation of total probability (1.1) should play important role. Indeed, it is evident that \(\delta \)—like Dirac measure (1.6) allows to perform arbitrary transformation [11] just as in the classical mechanics.

Therefore, the theory on Dirac measure straight away leads to the new for quantum field theory selection rule and latter one gives the theory with symmetry. All this is attained by transition to the appropriate variables, \((\xi, \eta) \in W \) in our notations. The last circumstance means that we go away from ordinary spectral analysis of quantum fluctuations to the description of the classical trajectories topology conserving deformations, since \(\varphi_c(x; \xi, \eta) \) is given, of symmetry manifold, \(W \).

It must be underlined that our method of transformations is rightful for arbitrary case, i.e. not only for simple Lie group manifolds, where the semiclassical approximation is exact.

Next, the dimensions of initial phase space of field and of the transformed space of independent degrees of freedom, i.e. of the symmetry manifold, will not coincide. That means that the mapping to the independent degrees of freedom, \((\xi, \eta) \), will be singular. For this reason the transformation

\[
\varphi_c: \varphi \longrightarrow (\xi, \eta),
\]

9 The necessity to count all possible boundary conditions of a given problem was mentioned to author by L.Lipatov.

10 One can find corresponding examples in [6, 7]. The mostly popular method of transformation of the path—integral variables is a “time—sliced” method [8], which induces corrections to the interaction Lagrangian proportional at least to \(h^2 \) [9], i.e. the problem of transformation is of a quantum nature. For this reason the usage of the “time—sliced” method in general case is cumbersome, see also [10].

11 It will be seen from our selection rule that the measure on which particles mechanics is realized is equal to zero in the field theories with symmetry.
will be irreversible and the notion of particle should be considered as the wrong idea of quantum field theory with symmetry.

(C) It will be shown that the result of action of the operator $\exp\{i\hat{K}\}$ for transformed theories may be expressed as the sum of contributions on all boundaries ∂W:

$$
|Z|_T^2 = |Z|_T^2 + \sum_k \int \xi_k(0) \frac{\partial}{\partial \xi_k(0)} C_\xi + \sum_k \int \eta_k(0) \frac{\partial}{\partial \eta_k(0)} C_\eta,
$$

(1.11)

where the first term presents a semiclassical contribution and C_ξ, C_η contains quantum corrections. This result shows that the quantum corrections greatly depend on the topology of classical trajectory.

This important observation solves a number of problems. For instance, it is known that the Coulomb trajectory is closed because of Bargman–Fock symmetry, independent from the initial conditions. For this reason the corrections on ∂W of Coulomb problem are canceled and the H–atom problem is pure absence of the weak–coupling limit in such theories.

In the end our present aim is
to find representation (1.9);
to investigate the main properties of theory defined on the Dirac measure (1.6);
to investigate the structure of perturbation theory generated by operator \hat{K} on the measure (1.8);
to find particles production probabilities for theories with symmetry.

I understand that the perturbations scheme in terms of new variables, especially in theories with symmetry, is outside the habitual one and for this reason the approach will be describe in more details, giving step–by–step the properties of a new quantization scheme by appropriate examples. I think that such non–formal scheme of the description is much more transparent, although the text may contain reiterations with the used method of description far from completeness.

2. SIMPLEST EXAMPLES

2.1. Introduction

It has mentioned above a technical aspect of our idea is the suggestion to calculate the probability without the intermediate step of calculations of the amplitudes. In present Section we restrict ourselves to the simplest problem—to the motion of a particle in a potential $V(x)$.

Let the amplitude $A(x_2, T; x_1, 0)$ describes the motion of the particle from the point x_1 to the point x_2 during the time T. Using the spectral representation:

$$
A(x_2, T; x_1, 0) = \sum_n \psi_n(x_2) \psi_n^*(x_1) e^{iE_n T},
$$

we have for probability:

$$
W(x_2, T; x_1, 0) = \sum_{n_1, n_2} \psi_{n_1}(x_2) \psi_{n_1}^*(x_1) \psi_{n_2}(x_2) \psi_{n_2}^*(x_1) e^{i(E_{n_1} - E_{n_2}) T}.
$$

(2.2)

Taking into account the orthonormalizability condition:

$$
\int dx \psi_n(x) \psi_m^*(x) = \delta_{n,m},
$$

(2.3)

the total probability:

$$
\int dx_2 dx_1 W(x_2, T; x_1, 0) = \sum_n \delta_{n,n} = \Omega,
$$

(2.4)

is the time independent quantity which coincides with the number of existing physics states. Therefore, the amplitude (2.1) is time dependent, but the total probability (2.4) is not. This means that the time is the unwanted parameter from the point of view of experiment described by the probability (2.4). Notice also the role of boundary condition (2.3).

The quantity (2.4) is of no interest to experiment. Much more interesting the probability $\rho(E)$, where E is the energy experimentally measured. The Fourier transform of $A(x_2, T; x_1, 0)$ with respect to T

$$
a(x_2, x_1; E) = \sum_n \frac{\psi_n(x_2) \psi_n^*(x_1)}{E - (E_n + i\epsilon)},
$$

(2.5)

leads to the probability

$$
\omega(x_2, x_1; E) = |a(x_2, x_1; E)|^2
$$

$$
= \sum_{n_1, n_2} \frac{\psi_{n_1}(x_2) \psi_{n_1}^*(x_1) \psi_{n_2}(x_2) \psi_{n_2}^*(x_1)}{E - (E_{n_1} + i\epsilon) - (E_{n_2} + i\epsilon)}.
$$

(2.6)
and the total probability:

$$\rho(E) = \int dx_1 dx_2 \omega(x_2, x_1; E) = \sum_n \left| \frac{1}{E - E_n - i\epsilon} \right|^2$$

(2.7)

$$= \frac{1}{\epsilon} \sum_n \text{Im} \frac{1}{E - E_n - i\epsilon} = \frac{\pi}{\epsilon} \sum_n \delta(E - E_n).$$

The total probability $\rho(E)$ again coincides with number of existing states but for all that it is seen that the unphysical, i.e. needless, states from the point of view of measurement with $E \neq E_n$ was canceled.\(^{14}\)

Let us use now the proper-time representation:

$$a(x_1, x_2; E) = \sum_n \psi_n(x_1) \psi_n^*(x_2) i \int_0^\infty dT e^{i(E - E_n + i\epsilon)T} \xi^T,$$

(2.8)

to see the integral form of cancelation of unwanted contributions and insert it into definition of total probability ($\epsilon \rightarrow 0$):

$$\rho(E) = \left[\int dx_1 dx_2 |a(x_1, x_2; E)|^2 \right]$$

$$= \sum_n \int_0^\infty dT_+ dT_- e^{(T_+ - T_-)\epsilon} i^{E - E_n} \int_{-\infty}^{\infty} dx e^{i(E - E_n)(T_+ - T_-)}.$$

(2.9)

We will introduce new time variables instead of T_\pm:

$$T_\pm = T \pm \tau,$$

(2.10)

where, as it follows from Jacobian of transformation, $|\tau| \leq T$, $0 \leq T \leq \infty$. But we can put $|\tau| \leq \infty$ since $T \sim 1/\epsilon \rightarrow \infty$ is essential in integral over T. As a result,

$$\rho(E) = 4\pi \sum_n \int_0^\infty dT_+ e^{-2\epsilon T} \int_{-\infty}^{\infty} dx e^{2i(E - E_n)\tau}$$

$$= \frac{\pi}{\epsilon} \sum_n \delta(E - E_n).$$

(2.11)

In the last integral all contributions with $E \neq E_n$ has been canceled and only the acceptable from physics point of view contributions with $E = E_n$ has survived. This peculiarity of considered interference phenomenon which is the consequence of unitarity condition, i.e. its ability to extract only physics states, would have the significant applications.

Note also that the product of amplitudes aa^* was “linearized” after introduction of “virtual” time $t = (T_+ - T_-)/2$, i.e. after transformation (2.10) we start calculation of the imaginary part. The meaning of such variables will be discussed also in Sec. 2.2.

\(^{14}\)Such contributions enter into the real part of $a(x_2, x_1; E)$.

2.2. The Generalized Stationary–Phase Method

1. 0-Dimensional model. Let us practise considering the “0-dimensional” integral:

$$A \int_{-\infty}^{+\infty} \frac{dx}{(2\pi)^{1/2}} e^{-\left(\frac{1}{2}ax^2 + \frac{1}{2}bx^2\right)},$$

(2.12)

with $\text{Im} a \rightarrow +0$ and $b > 0$. This example is useful since it allows to illustrate practically all technical tricks of the approach.

We want to compute the “probability”

$$R = |A|^2 = \int_{-\infty}^{+\infty} \frac{dx_+ dx_-}{2\pi} e^{-2(s^2 + e^2) \text{Im} a} e^{2i(\text{Re} ax + bx^2 + e^2)}.$$

(2.13)

New variables:

$$x_\pm = x \pm e$$

(2.14)

will be introduced to find out the cancelation phenomenon. In result:

$$R = \int_{-\infty}^{+\infty} dx_+ dx_- e^{-2(s^2 + e^2) \text{Im} a} e^{2i(\text{Re} ax + bx^2 + e^2)}.$$

(2.15)

where the prescription that $\text{Im} a \rightarrow +0$ has been used. Note that integrations are performed along the real axis.

We will compute the integral over e perturbatively. For this purpose the transformation:

$$F(e) = \lim_{\substack{j = e \to 0 \quad \epsilon = \epsilon(e) \to 0 \quad \text{Re} a \to \text{Re} a(e)}} \frac{1}{e^{2j\epsilon}} e^{2jej} F(e'),$$

(2.16)

which is valid for any differentiable function, will be used. In (2.16) two auxiliary variables j and e has been introduced and the “hat” symbol means the differential over corresponding quantity:

$$\hat{j} = \frac{\partial}{\partial j}, \quad \hat{e} = \frac{\partial}{\partial e}.$$

(2.17)

The auxiliary variables must be taken equal to zero at the very end of calculations.

Choosing

$$\ln F(e) = -2e^2 \text{Im} a + 2i\frac{b}{3} e^3$$

(2.18)

we will find:

$$R = \lim_{\substack{j = e \to 0 \quad \epsilon = \epsilon(e) \to 0 \quad \text{Re} a \to \text{Re} a(e)}} e^{2je^2}$$

$$\times \int_{-\infty}^{+\infty} dx_+ e^{-2(s^2 + e^2) \text{Im} a} e^{-\frac{b}{3} e^3} \delta(\text{Re} ax + bx^2 + j).$$

(2.19)

Therefore, the destructive interference among two exponents in the product aa^* unambiguously deter-
amines both integrals, over \(x \) and over \(e \). The integral over difference \(e = (x_+ - x_-)/2 \) gives \(\delta \)-function and then this \(\delta \)-function defines the contributions in the last integral over \(x = (x_+ + x_-)/2 \). Following the definition of \(\delta \)-function only a strict solutions of equation

\[
\text{Re}ax + bx^2 + j = 0 \tag{2.20}
\]
gives the contribution into \(R \).

But one can note that this is not the complete solution of the problem: the expansion of operator exponent \(\exp \left(\frac{1}{2} \frac{ie}{a} \right) \) generates the asymptotic series. Note also that it is impossible to remove the source, \(j \), dependence (only harmonic case, \(b = 0 \), is free from \(j \)).

The equation (2.20) at \(j = 0 \) has the solutions, at \(x_1 = 0 \) and at \(x_2 = -a/b \). Performing trivial transformation \(e \rightarrow ie, e \rightarrow -ie \) of auxiliary variable we find at the limit \(\text{Im} a = 0 \) that the contribution from \(x_1 \) extremum (minimum) has the expression:

\[
R = \frac{1}{a} e^{\frac{1}{2} \frac{ie}{a} (1 - 4bj/a^2)^{-1/2}} e^{\frac{b^3}{3a}} \tag{2.21}
\]

and the expansion of an operator exponent gives the asymptotic series:

\[
R = \frac{1}{a} \sum_{n=0}^{\infty} (-1)^n \frac{(6n - 1)!}{n!} \left(\frac{2b}{3a} \right)^n e^{\frac{b^3}{3a}} \tag{2.22}
\]

\[
(-1)^n = 0 \quad n = 1
\]

This series is convergent in Borel’s sense. Therefore the described destructive interference has not an action upon the value of perturbation series convergence radii.

Let us calculate now \(R \) using stationary phase method. The contribution from the minimum \(x_1 \) gives (\(\text{Im} a = 0 \)):

\[
A = e^{-\frac{ie}{2a}} e^{\frac{b}{3a}} (i/a)^{1/2} \tag{2.23}
\]

The corresponding “probability” is

\[
R = \frac{1}{a} e^{-\frac{1}{2} (j_+ - j_-) x_{\pm}^2} e^{\frac{b}{3a} (x_1 - x_2)} \tag{2.24}
\]

Introducing new auxiliary variables:

\[
j_\pm = j \pm j_1, \quad x_\pm = x \pm e \tag{2.25}
\]

and, correspondingly,

\[
j_\pm = (j \mp j)/2, \quad x_\pm = (x \mp e)/2 \tag{2.26}
\]

\[15\] The contribution of \(x_2 \) leads to divergent series.

we find from (2.24):

\[
R = \frac{1}{a} e^{-\frac{1}{2} i j_\pm e^{\frac{b}{3a} e^{\frac{2b}{3a}}}} \tag{2.27}
\]

This expression does not coincide with (2.21) but it leads to the same asymptotic series (2.22). We may conclude that both considered methods of calculation of \(R \) are equivalent since the Borel’s regularization scheme of asymptotic series gives a unique result.

The difference between these two methods of calculation is in different organization of perturbations. So, if \(F(e) \), instead of (2.18), is chosen in the form:

\[
\ln F(e) = -2e^2 \text{Im} a + 2i \frac{b}{3} e^3 + 2ibx^2 e, \tag{2.28}
\]

we may find (2.27) straightforwardly.

Therefore, our method has the freedom in choice of (quantum) source \(j \). Indeed, the transition from perturbation theory with Eq. (2.18) to the theory with Eq. (2.28) formally looks like following transformation of the argument of \(\delta \)-function:

\[
\delta(ax + bx^2 + j) \tag{2.29}
\]

\[16\] This freedom was mentioned firstly by A. Ushveridze.

\[
= \lim_{e \rightarrow f = 0} e^{-\frac{1}{2} j e^{i(bx^2 + j)e}} e^{\hat{\delta}(ax + j)}. \tag{2.29}
\]

Here the transformation (2.16) of the Fourier image of \(\delta \)-function was used. Inserting Eq. (2.29) into (2.19) we easily find (2.27).

During analytic calculations it will be useful to have a corresponding quantum sources of the new dynamical variables. Formally this will be done using transformation (2.29). Note that this transformation will not lead to changing of the Borel’s regularization procedure.

2. 1-Dimensional model. Let us calculate now the probability using the path–integral definition of amplitudes [1]. Calculating the quantity

\[
|A|^2 = \langle \text{in}|\text{out} \rangle \langle \text{in}|\text{out} \rangle^* = \langle \text{in}|\text{out} \rangle \langle \text{out}|\text{in} \rangle, \tag{2.30}
\]

the converging and diverging waves in the product \(AA^* \) interfere in such a way that the continuum of contributions cancel each other. Indeed, the amplitude

\[
A(x_2, T; x_1, 0) = \int_0^T \frac{Dx}{C_T} e^{-i S(x)}, \tag{2.31}
\]

\[
Dx = \prod_{i=0}^{T} \frac{dx(t)}{(2\pi)^{1/2}},
\]

\[16\] This freedom was mentioned firstly by A. Ushveridze.
where the action S_T is given by the expression:

$$S_T(x) = \int_0^T dt \left(\frac{1}{2} \dot{x}^2 - V(x) \right)$$

(2.32)

and C_T is the standard normalization coefficient:

$$C_T = \int_{x(0) = x_i} Dxe^{-iS_T(x_e) + iS_T(x_i)}$$

(2.33)

Let us calculate the quantity

$$R(x_2, T; x_1, 0) = \int_{x(0) = x_i} \frac{Dx_1 Dx_2}{C_T} C_T^* e^{-iS_T(x_e) + iS_T(x_i)}$$

(2.34)

We assume for simplicity that the integration in (2.31) is performed over real trajectories. Later a general case of complex trajectories will be considered.

The convergence of functional integral at that is not important. One may restrict the range of integration for better confidence, or introduce into the Lagrangian ie term, and later remove the restriction in the expression (2.40). It is interesting that the interference phenomena naturally regularize divergent integrals of (2.31) type, accumulating divergence into δ-function.

In order to take into account explicitly the interference between contributions of the trajectories $x_+(t)$ and $x_-(t)$ we shall go over from the integration over two independent trajectories x_+ and x_- to the pair (x, e):

$$x_\pm(t) = x(t) \pm e(t)$$

(2.35)

It must be stressed that the transformation (2.35) is linear and for this reason may be done in the path integral. Substituting (2.35) into (2.34) the argument of the exponent takes the form

$$S_T(x + e) - S_T(x - e)$$

$$= 2 \int_0^T dt (\dot{x}^2 - \dot{V}(x)) - U_T(x, e)$$

(2.36)

where $U_T(x, e)$ is the remainder of the expansion in powers of $e(t)(U_T = O(e^3))$. Note that in (2.36) we have discarded the "surface" term

$$\int_0^T dt \dot{\phi}(e\dot{x}) = e(T)\dot{x}(T) - e(0)\dot{x}(0) = 0,$$

(2.37)

since the boundary points of the trajectories $x_+(0) = x_+(T) = x_2$ are not varied, i.e.

$$e(0) = e(T) = 0.$$

(2.38)

Next,

$$Dx_+Dx_- = J DxD\epsilon = 2\pi \prod_{t=0}^{T} dx(t) \prod_{t \neq 0, T} d\epsilon(t),$$

(2.39)

where J is an unimportant Jacobian of the transformation.

As a result of the replacement (2.35) we have

$$R(x_2, T; x_1, 0) = \int_{x(0) = x_i} \frac{Dx}{|C_T|^2} C_T^* e^{i\int_0^T dx(t)}$$

(2.40)

$$\times \int_{e(0) = 0} De [\epsilon(T) - \epsilon(0)],$$

(2.41)

One can make use of the formulae

$$\mathcal{K}(e, j) = \lim_{e = j \rightarrow 0} \exp \left\{ \frac{-i}{2i} \int_0^T \frac{\delta}{\delta \epsilon(t)} \frac{\delta}{\delta \epsilon(t)} \right\},$$

(2.42)

after which from (2.40) we have found that

$$R(x_2, T; x_1, 0) = 2\pi Je \mathcal{K}(e, j) \int_{x(0) = x_i} \frac{Dx}{|C_T|^2} e^{i\int_0^T dx(t)}$$

(2.43)

$$\times \int_{e(0) = 0} De \exp \left\{ 2i \int_0^T dt (\dot{x} - \dot{V}(x) - j) \right\},$$

(2.44)

where the functional δ-function

$$\prod_{t \neq 0, T} \delta(\dot{x} + V'(x) - j)$$

(2.45)

has arisen as a result of total reduction of unnecessary contributions from the point of view of equation of motion

$$\dot{x}(t) + V'(x) = j(t).$$

The operator (2.42) is Gaussian so that the system is perturbed by the random force $j(t)$.

PHYSICS OF PARTICLES AND NUCLEI Vol. 43 No. 4 2012
If \(x(t) \) is the “true” trajectory and the virtual deviation is \(e(t) \) then the quantity \(e(\hat{x} + \nu'(x) - j) \) coincides with the virtual work. It must be equal to zero in classical mechanics since only the time reversible motion is considered. In result we came to equation of motion since \(e \) is arbitrary in classics.

The difference \(S'_*(x) - S'_*(x) \) in (2.34) with boundary conditions (2.38) coincides with the action of reversible motion. Upon the substitution (2.35) we have identified the mean trajectory, \(x(t) \), and the deviation from it, \(e(t) \). One must integrate over \(e(t) \) in quantum case, in contrast to classical one. In result the measure of the remaining path integral over mean trajectory \(x(t) \) takes the Dirac \(\delta \)-function form which unambiguously chooses the “true” trajectory.

In other words, the proposed definition of the measure of the path integral is generalization of classical d’Alembert’s principle on the quantum case. The theory in the frame of this principle can take into account any external perturbations, \(f(t) \) in our case, if the time reversibility of motion is conserved. In quantum case the reversibility is established through the boundary conditions (2.38). Next, one may generalize the approach adding also the probe force which can lead to dynamical symmetry breaking [16].

In the semiclassical approximation \(\tilde{\mathcal{S}}(e, j) \) and taking the limit \(e = j = 0 \) we find that

\[
R(x_2; T; x_1, 0) = 2\pi J \int \frac{Dx}{|C|^2} \prod_{t
eq 0} \delta(\hat{x} + \nu'(x)).
\]

Let the solution of the homogeneous equation

\[
\dot{x} + \nu'(x) = 0
\]

be \(x_c(t) \), with \(x_c(0) = x_1 \) and \(x_c(T) = x_2 \). Then

\[
R(x_2; T; x_1, 0) = 2\pi J \int \frac{Dx}{|C|^2} \prod_{t
eq 0} \delta(\hat{x} + \nu'(x_c) x).
\]

The remaining integral is calculated by the standard methods. As a result we find

\[
R(x_2; T; x_1, 0) = \left. \frac{1}{2\pi} \frac{\partial^2 S'_*(x_2)}{\partial x_2(0) \partial x_2(T)} \right|_{x_2(0) = x_1, x_2(T) = x_2}.
\]

Next, let us recall that the full derivative of the classical action is

\[
ds = p_2 dx_2 - p_1 dx_1,
\]

where \(p_2 \) and \(p_1 \) are, respectively, the final and initial momentum. Noting this definition,

\[
\left. \frac{\partial^2 S'_*}{\partial x_1 \partial x_2} \right|_{x_2} = dp_1,
\]

and in result we find that

\[
\int dx_1 dx_2 R(x_2, T; x_1, 0) = \int dx_1 dp_1 = \Omega^2,
\]

which coincides with (2.4), i.e. it agree with conservation of total probability since (2.52) again coincides with the total number of physical states.

Deriving (2.52) we somewhat simplify the problem considering a unique solution of Eq. (2.47). A more complicate and important examples will be considered in the next Sections.

2.3. Complex Trajectories

Let us consider the one dimensional motion with fixed energy \(E \) on the complex trajectory. The corresponding amplitude has the form:

\[
A(x_1, x_2; E) = i \int_{x_1}^{x_2} dxe^{iE} D_{c_+} x S_{c_+}(x),
\]

where the action

\[
S_{c_+}(x) = \int_{C_+} dt \left(\frac{1}{2} \dot{x}^2 - \nu(x) \right)
\]

and the measure

\[
D_{c_+} x = \prod_{t \in C_+} \frac{dx(t)}{(2\pi)^{1/2}}
\]

are defined on the shifted in the upper half time plane Mills’ contour \(C_+ = C_+ (T) \) [17]:

\[
t \rightarrow t + i\varepsilon, \quad \varepsilon \rightarrow +0, \quad 0 \leq t \leq T.
\]

Therefore, we will consider integration over real functions of complex variables:

\[
x_*(t) = x(t^*).
\]

It must be underlined also that the boundary conditions in (2.53) have the classical meaning, i.e. they do not vary, and \(x_1, x_2 \) are the real quantities.

\[17\] It is important that if the expectation value of the probe force is not equal to zero then the symmetry is broken. This important possibility will not be considered in present work.

\[18\] Here it is more convenient to represent (2.48) as a production of two Gauss integrals; later on more effective method of calculation of the functional determinant will be offered.

\[19\] The necessity to extend the formalism on the case of complex trajectories was mention to the author by A. Slavnov.
The probability looks as follows:

\[
R(E) = \int_0^\infty e^{iE(t_\tau - t_\tau)} \int D_{x_+} D_{x_-} x_{x_+} x_{x_-} \times e^{iE(x_+ - x_+)} \times e^{iE(x_- - x_-)}
\]

(2.58)

where \(C_{-}(T) = C_{+}^{*}(T) \) is the time contour in the lower half of complex time plane.

New time variables

\[
T_\pm = T \pm \tau
\]

(2.59)

will be used. Considering \(\text{Im} E \rightarrow +0 \) we can consider \(T \) and \(\tau \) as the independent variables:

\[
0 \leq T \leq \infty, \quad -\infty \leq \tau \leq \infty.
\]

(2.60)

We will apply the boundary conditions, see (2.58):

\[
x_1 = x_+(0) = x_-(0), \quad x_2 = x_+(T_+) = x_-(T_-).
\]

(2.61)

Inserting (2.59) one can find in zero order over \(\tau \) from (2.61) that

\[
x_+(0) = x_-(0), \quad x_+(T) = x_-(T),
\]

(2.62)

Now we will introduce also the mean trajectory \(x(t) = (x_+(t) + x_-(t))/2 \) and the deviation \(e(t) \) from \(x(t) \):

\[
x_+(t) = x(t) \pm e(t),
\]

(2.63)

We have consider \(e(t) \) and \(\tau \) as the virtual quantities. The integrals over \(e \) and \(\tau \) will be calculated perturbatively. In zero order over \(e \) and \(\tau \), i.e. in the semicla
sical approximation, \(x \) is the classical path and \(T \) is the total time of classical motion. Note that one can do surely the linear transformations (2.63) in the path integrals.

The higher terms over \(\tau \) put a unphysical constrains on the trajectory \(x(t) \):

\[
d^{2n+1}_T x(T) = 0, \quad n = 0, 1, 2, ..., \]

since \(e(t) \) must be arbitrary. Therefore, to avoid this constraints and since the boundaries have classical unvaried meaning we will use the minimal boundary conditions:

\[
e(0) = e(T) = 0,
\]

(2.64)

which ensures the time reversibility. Note that it is sufficient to have (2.64) if the integrals over \(e(t) \) are calculated perturbatively. At the same time

\[
x(0) = x_1, \quad x(T) = x_2.
\]

(2.65)

Let us extract now the linear over \(e \) and \(\tau \) terms from the closed-path action:

\[
S_{\pm}(T_+ - T_-) - S_{\pm}(T_+ - T_-)
\]

(2.66)

\[
= -2\pi H_T(x) - \int d e(\hat{x} + v'(x))
\]

\[
\tilde{H}_T(x; \tau) - U_T(x, e),
\]

where

\[
C^{(+)} = C_+(T) + C_-(T)
\]

(2.67)

is the total–time path, \(H_T \) is the Hamiltonian:

\[
2H_T(x) = \frac{\partial}{\partial T}(S_{\pm}(T)(x) + S_{\pm}(T)(x)),
\]

(2.68)

and

\[
\tilde{H}_T(x; \tau) - U_T(x, e),
\]

(2.69)

\[
= S_{\pm}(T_+ - T_-)(x) + 2\pi H_T(x),
\]

\[
= S_{\pm}(T)(x + e) - S_{\pm}(T)(x - e)
\]

(2.70)

\[
+ \int d e(\hat{x} + v'(x))
\]

are the remainder terms, where \(v'(x) = \hat{v}(x)/\hat{x} \). Deriving the decomposition (2.66) the definition

\[
C_{-}(T) = C_{+}^{*}(T)
\]

(2.71)

and the boundary conditions (2.64) was used.

One can find the compact form of expansion of

\[
e^{-iH_T(x; \tau) - iU_T(x, e)}
\]

over \(\tau \) and \(e \) using formulae (2.16):

\[
\exp \{-i\tilde{H}_T(x; \tau) - iU_T(x, e)\}
\]

\[
= \exp \left\{ \frac{1}{2i} \hat{\omega}^\tau - i \int d \hat{t} j(t) \hat{e}(t) \right\}
\]

(2.72)

\[
\times \exp \left\{ 2i\omega t + i \int d \hat{t} j(t) e(t) \right\}
\]

\[
\times \exp \{-i\tilde{H}_T(x; \tau) - iU_T(x, e)\}.
\]

At the end of calculations the auxiliary variables \((\omega, \tau^*, j, e^*)\) should be taken equal to zero.
Using (2.66) and (2.72) we find from (2.58) that
\[
R(E) = 2\pi \int_0^\infty dT \exp \left\{ \frac{1}{2l} \delta^2 t - i \int_{c^{(T)}} \ddot{t} \dot{e}(t) \right\} \times \int D\exp \left\{ -iH_T(x; \tau) - iU_T(x, e) \right\} \delta(E + \omega - H_T(x)) \times \prod_{t \in c^{(T)}} \delta(\dot{x} + v'(x) - j).
\]

The expansion over the differential operators:
\[
\frac{1}{2l} \omega^2 \tau - i \int_{c^{(T)}} \ddot{t} \dot{e}(t) = \frac{1}{2l} \left(\frac{\partial^2}{\partial \omega \partial \tau} + \text{Re} \int_{c^{(T)}} \ddot{t} \delta(\dot{t}) \delta(w(t)) \right)
\]
will generate the perturbation series. We propose that it is summable in Borel sense.

The first \(\delta\)-function in (5.33) fixes the conservation of energy:
\[
E + \omega = H_T(x) \tag{2.75}
\]
where \(E\) is the observed energy, \(H_T(x)\) is the energy at the mean trajectory at the time moment \(T\) and \(\omega\) is the energy of quantum fluctuations. The second \(\delta\)-function
\[
\prod_{t \in c^{(T)}} \delta(\dot{x} + v'(x) - j)
\]
\[
= (2\pi)^2 \prod_{t \in c^{(T)}} \frac{d(e(t))}{\pi} \delta(e(0)) \delta(e(T))
\]
\[
\times \exp\left(\frac{-i}{2l \text{Re}(\dot{t})} \int_{c^{(T)}} \ddot{t} \delta(\dot{t}) \delta(w(t)) \right)
\]
\[
\times \prod_{t \in c^{(T)}} \delta(\text{Re}(\dot{x} + v'(x) - j)) \delta(1 \text{Im}(\dot{x} + v'(x) - j))
\]
fixes the function \(x(t)\) of complex argument on \(c^{(T)}\) completely by the equation
\[
\dot{x} + v'(x) = j. \tag{2.77}
\]

The physics meaning of \(\delta\)-function (2.76) was discussed in Sec. 2.3 noting that the unitarity condition of quantum theories plays the same role as the d’Alambert’s variational principle in classical mechanics.

In (2.77) \(j(t)\) describes the external quantum force. The solution \(x(t)\) of this equation will be found expanding it over \(j(t)\):
\[
x_j(t) = x_0(t) + \int dt G(t, t_1) j(t_1) + \ldots \tag{2.78}
\]
This is sufficient since \(j(t)\) is the auxiliary variable. \(^{21}\) In this decomposition \(x_j(t)\) is the strict solution of unperturbed equation:
\[
\dot{x} + v'(x) = 0. \tag{2.79}
\]
Note that the functional \(\delta\)-function in (2.76) does not contain the end-point values of \(x(t)\), at \(t = 0\) and \(t = T\). This means that if we integrate over \(x_j\) and \(x_2\) then the initial conditions to the Eq. (2.79) are not fixed and the integration over them must be performed.

Inserting (2.78) into (2.77) we find the equation for Green function:
\[
(\delta^2 + v''(x_j)) G(t, t'; x_j) = \delta(t - t'). \tag{2.80}
\]
It is too hard to find the exact solution of this equation if \(x_j(t)\) is the nontrivial function of \(t\). We will see that the canonical transformation to the (action–angle)–type variables can help to avoid this problem, see following Section.

2.4. Conclusions

(1) The path integral must be defined on the Mills time contour. This condition will be important in the field theories with high space–time symmetries (such as the Yang–Mills type theory) since it seems that for such theories with symmetry one can not perform surely the analytic continuation over time variable. \(^{22}\)

(2) The quantization can be performed without transition to the canonical formalism, using only the Lagrange one which is more natural for relativistic field theories.

(3) Only the exact solutions of the equation of motion must be taken into account defining the contributions into the functional integral.

3. PATH INTEGRALS ON DIRAC MEASURE

3.1. Introduction

In present Section we will offer two methods which may simplify calculation of path integrals on Dirac measure. They are based on the possibility to perform transformation of the path–integral variables.

\(^{21}\) See also footnote 15.
\(^{22}\) The fact that a theory must satisfy certain conditions upon analytic continuation over time variable is clear from [18].
We will consider two examples. In the first example the transformation to the \((\text{action, angle})\)--type variables will be considered. This example shows how much the calculations of path integrals may be simplified.

In the second part of present Section the coordinate transformation will be described. For the sake of definiteness the transformation to cylindrical coordinates will be considered.

3.2. Canonical Transformation

Let us introduce the first-order formalism. We will insert in (2.73)

\[
1 = \int Dp \prod_i \delta (p - \dot{x}). \tag{3.1}
\]

As a result,

\[
R(E) = 2\pi \int dTe \int DxDp \exp \left(\frac{1}{2i} \int d\tau \left(\dot{\delta} + \Re \int \hat{d}j(t)\dot{e}(t) \right) \right) \times \delta (E + \omega - H_f(x)) \prod_i \delta \left(\dot{x} - \frac{\partial H}{\partial p} \right) \delta \left(\dot{p} + \frac{\partial H}{\partial x} \right), \tag{3.2}
\]

where

\[
H_f = \frac{1}{2} \dot{x}^2 + \nu(x) - jx \tag{3.3}
\]

may be considered as the total Hamiltonian which is time dependent through \(j(t)\). Notice that in present simplest case \(x\) and \(p\) are independent parameters and therefore (3.3) define the Hamiltonian.

Instead of pare \((x(t), p(t))\) we introduce new pare \((\theta(t), h(t))\) inserting in (3.2)

\[
1 = \int d\theta dh \delta \left(h - \frac{1}{2} \dot{p}^2 - \nu(x) \right) \times \delta \left(\theta - \int dx (2(h - \nu(x))) \right)^{1/2}. \tag{3.4}
\]

Note that the integral measures in (3.2) and (3.4) are both \(\delta\)--like, i.e. have the equal power. It allows to change the order of integration and firstly integrate over \((x, p)\). We find that

\[
R(E) = 2\pi \int dTe \int D\theta Dh \exp \left(\frac{1}{2i} \int d\tau \left(\dot{\delta} + \Re \int \hat{d}j(t)\dot{e}(t) \right) \right) \times \delta (E + \omega - h(T)) \prod_i \delta \left(\dot{\theta} - \frac{\partial H}{\partial h} \right) \delta \left(\dot{h} + \frac{\partial H}{\partial \theta} \right), \tag{3.5}
\]

where

\[
H_c = h - jx_c(h, \theta) \tag{3.6}
\]

is the transformed Hamiltonian and \(x_c(h, \theta)\) is the given solution of algebraic equation:

\[
\theta = \int dx (2(h - \nu(x)))^{1/2}, \tag{3.7}
\]

i.e. \(x_c\) is the classical trajectory parametrized in terms of \(h(t)\) and \(\theta(t)\).

As it follows from (3.5) new variables, \(h(t)\) and \(\theta(t)\), are subjected to the action of quantum force \(j(t)\) and the topology of classical trajectory \(x_c\) remains unchanged.

So, instead of Eq. (2.77) we must solve the equations:

\[
\dot{h} = j \frac{\partial x_c}{\partial \theta}, \quad \dot{\theta} = 1 - j \frac{\partial x_c}{\partial h}, \tag{3.8}
\]

which have a simpler structure. Expanding the solutions over \(j\) we will find the infinite set of recursive equations. This is the important peculiarity of used quantization scheme.

Note now that \(j \partial x_c/\partial \theta\) and \(j \partial x_c/\partial h\) in the r.h.s. can be considered as the new sources. We will use this property of Eqs. (3.8) and introduce in the perturbation theory new “renormalized” sources:

\[
j_h = j \frac{\partial x_c}{\partial \theta}, \quad j_0 = -j \frac{\partial x_c}{\partial h}, \tag{3.9}
\]

i.e. \(j_0\) and \(j_h\) are the forces on the cotangent bundle. We will use transformation (2.29):

\[
\prod_i \delta \left(\dot{h} - \frac{\partial x_c}{\partial \theta} \right) = e^{\frac{1}{2i} \Re \int d\tau j_h(t)\dot{e}(t) + 2 \Re \int c_j^* \frac{\partial x_c}{\partial h} \frac{\partial e}{\partial \theta} \right) \tag{3.10}
\]

and

\[
\prod_i \delta \left(\dot{\theta} - 1 - j_0 \right) = e^{\frac{1}{2i} \Re \int d\tau j_0(t)\dot{e}(t) + 2 \Re \int c_j^* \frac{\partial x_c}{\partial h} \frac{\partial e}{\partial \theta} \right) \tag{3.11}
\]

Note that \(j_h\) lead to the re-scaling of auxiliary field \(e\). In the new perturbation theory we will have two sources \(j_h, j_0\) and two auxiliary fields \(e_h, e_0\). Notice that the momentum \(p\) never arose.

PHYSICS OF PARTICLES AND NUCLEI Vol. 43 No. 4 2012
Inserting (3.10), (3.11) into (3.5) we find:

\[R(E) = 2\pi \int_{-\infty}^{\infty} dTe^{-iH(x, t) - \int dt \dot{e}_j(t) \dot{i}_j(t)} + iH(x, t) \]
\[\times \int \delta(E + h(T)) \prod_t (\delta(\dot{h} - j_e)) \]
where
\[e_e = e_h \frac{\partial x_e}{\partial \theta} - e_0 \frac{\partial x_e}{\partial \theta} \]

This result explains the source of chosen selection rule.

\[R(E) = \frac{1}{2\pi} \int_{-\infty}^{\infty} dTe^{-iH(x, t) - \int dt \dot{e}_j(t) \dot{i}_j(t)} \]
\[\times \int \delta(E + h(T)) \prod_t (\delta(\dot{h} - j_e)) \]
where the solutions of eqs. (3.14) was used. In this expression \(e_h, j_h, e_0, j_0 \) are the auxiliary fields. At the very end one must take them equal to zero.

3.3. Selection Rule

Let us consider the theory with Lagrangian
\[L(x) = \frac{1}{2} x^2 - \frac{1}{2} \omega^2 x^2 - \frac{g}{4} x^4. \]
The Dirac measure gives the equation (of motion):
\[\dot{x} + \omega x + gx^3 = j. \]

It has two solutions:
\[x_1(t) = x_e(t) + O(j), \quad x_2(t) = O(j). \]

For this reason
\[R(E) = R_1(E; x_1) + R_2(E; x_2). \]

\[R_1(E; x_1) \sim \int d\theta h 0 e^{-iU_i(x_0, 0)} \delta(E - h_0). \]

Therefore,
\[R_1(E; x_1) \sim \int d\theta h 0 e^{-iU_i(x_0, 0)} \delta(E - h_0). \]

i.e. it is proportional to the volume of group of time translations.

At the same time
\[R_2(E; x_2) = O(1) \]

in the semiclassical approximation. Therefore,
\[R = R_1(1 + O(1/\Omega)). \]

This result explains the source of chosen selection rule.
3.4. Coordinate Transformation

In this section the coordinate transformation of two dimensional quantum mechanical model with potential

\[\nu = \nu((x_1^2 + x_2^2)^{1/2}) \]

(3.28)

will be considered. Repeating calculations of previous sections,

\[R(E) \]

\[= \frac{1}{2\pi i} \int_0^\infty d\phi \phi e^{i\phi r} \int D^2(x) e^{-iH(x, \phi)} \]

(3.29)

where the \(\delta \)-like Dirac measure

\[D^2(x) = \delta(E + \omega - H(x)) \]

(3.30)

In the classical mechanics the problem with potential (3.28) is solved in the cylindrical coordinates:

\[x_1 = r \cos \phi, \quad x_2 = r \sin \phi. \]

(3.31)

We insert into (3.29)

\[1 = \int D\phi D\theta \int_0^\infty d\phi \delta(r - (x_1^2 + x_2^2)^{1/2}) \]

(3.32)

\[\times \delta(\phi - \arctan \frac{x_2}{x_1}) \]

to perform the transformation. Note that the transformation (3.31) is not canonical. In result we will find a new measure:

\[D^2(r, \phi) = \delta(E + \omega - H_r(x)) \]

(3.33)

\[\times \int_0^\infty dr \sin r \phi J(r, \phi), \]

where the Jacobian of transformation

\[J(r, \phi) = \prod_{t} d^2 x \delta(\phi - \arctan \frac{x_2}{x_1}) \delta(r - (x_1^2 + x_2^2)^{1/2}) \]

(3.34)

is the product of two \(\delta \)-functions:

\[J(r, \phi) = \prod_{t} \sin^2 r \phi \phi \delta(\phi - \arctan \frac{x_2}{x_1}) \delta(r - (x_1^2 + x_2^2)^{1/2}) \]

(3.35)

where \(\nu' \) is \(\nu \) in cylindrical coordinates.

It is useful to organize the perturbation theory in terms of \(j_r \) and \(j_\phi \). For this purpose following transformation of arguments of \(\delta \)-functions will be used:

\[\prod_{t} \delta(\rho - \phi^2 r + \nu'(r) - j_r) \]

(3.37)

\[-i \int d\phi_r \int d\phi_r \]

\[= e^{i\phi_r} e^{i\phi_r} \]

(3.38)

Here \(j_r \) and \(j_\phi \) was defined in (3.36). In result, we get to the path integral formalism written in terms of cylindrical coordinates. This is a very simplification which will help to solve a lot of mechanical problems. One can note that in result of mapping our problem reduced to the description of quantum fluctuations of the surface of cylinder:

\[R(E) = \frac{1}{2\pi i} \int_0^\infty d\phi \phi e^{i\phi r} \int D^2(r, \phi) e^{-iH_r(x, \phi)} \]

(3.39)

where

\[D^2(r, \phi) = \delta(E + \omega - H_r(r, \phi)) \]

(3.40)

\[\times \int_0^\infty r^2(t) dt \phi (t) \phi (t) \]

\[\times \delta(\rho - \phi^2 r + \nu'(r) - j_r) \delta(\phi_r^2 - j_\phi) \]

(3.41)

This is the final result. The transformation looks quite classically but (3.39) can not be deduced from naive coordinate transformation of initial path integral for amplitude.

Inserting

\[1 = \int Dp Dl \prod_{t} \delta(p - \rho) \delta(l - \phi^2) \]

(3.42)
into (3.39) we can introduce the motion in the phase space with Hamiltonian

\[H_j = \frac{1}{2} \dot{p}^2 + \frac{\dot{r}^2}{2r^2} + \nu(r) - j_r r - j_\phi \phi. \] (3.43)

The Dirac’s measure becomes four dimensional:

\[
D^{(4)} M(r, \phi, p, l) = \delta(E + \omega - H_f(r, \phi, p, l)) \times \prod_t \delta(r) d\phi(t) dp(t) dl(t)
\] (3.44)

\[
\times \delta\left(l - \frac{\partial H_j}{\partial \phi} \right) \delta\left(\phi - \frac{\partial H_j}{\partial l} \right) \delta\left(\dot{p} - \frac{\partial H_j}{\partial r} \right) \delta\left(l - \frac{\partial H_j}{\partial \phi} \right)
\]

Note absence of the coefficient \(r^2 \) in this expression. This is the result of special choice of transformation (3.38).

Since the Hamilton’s group manifolds are more rich then Lagrange ones the measure (3.44) can be considered as the starting point of farther transformations. One must to note that the (action, angle) variables are mostly useful [12]. Note also that to avoid the technical problems with equations of motion and with functional determinants it is useful to linearize the argument of \(\delta \)-functions in (3.44) hiding nonlinear terms in the corresponding auxiliary variables \(e_c \).

3.5. Conclusions

(1) Our perturbation theory describes the quantum fluctuations of the parameters \((h, \theta) \) of classical trajectory \(x_c \). It is more complicated than canonical one, over an interaction constant [19], since demands investigation of analytic properties of \(4N \)-dimensional integrals, where \(2N \) is the phase space dimension. Indeed, in the considered case with \(N = 1 \) the perturbations generating operator, \(\hat{K} \), see (3. 12), contain derivatives over four auxiliary parameters, \((\hat{J}_h, e_h, J_\theta, e_\theta) \).

Our transformed theory describes the “direct” deformations of classical trajectory \(x_c = x_c(h, \theta) \), i.e. just \(h \) and \(\theta \) are the objects of quantization in the considered example. In another words, the quantum deformations of the invariant hypersurface, \((h, \theta) \), is described in the new quantum theory. This possibility is the consequence of \(\delta \)-likeness of measure, i.e. it based on the conservation of total probability.

Dirac measure allows to perform classical transformations of the measure and to use high resources of classical mechanics. For example, the interesting possibility may arise in connection with Kolmogorov–Arnold–Mozer (KAM) theorem [4]: the system which is not strictly integrable can show the stable motion peculiar to integrable systems. This is the argument in favor of the idea that there may be another, non–topological, mechanism of suppression of the quantum excitations.

(2) One can note that the transformed perturbation theory describes only the retarded quantum fluctuations, see definition of Green function (3.16). This feature of the theory can lead to the imaginary time irreversibility of quantum processes and it must be explained.

The starting expression (2.58) describes the reversible in time motion since total action \(S_C(T, x_c) - S_C(T', x_c) \) is time reversible. But the unitality condition forced us to consider the interference picture between expanding and converging waves. This is fixed by the boundary conditions \(e(0) = e(T) = 0 \). The quantum theory remain time reversible up to canonical transformation to the invariant hypersurface of the constant energy. The causal Green function \(G(t, \ell) \), see (2.80), is able to describe both advanced and retarded perturbations and the theory contains the doubling of degrees of freedom. It means that the theory “keeps in mind” the time reversibility. But after the canonical transformation, using above mentioned boundary conditions, and continuing the theory to the real time, the quantum perturbations were transferred on the inner degrees of freedom of classical trajectory. In result the memory of doubling of the degrees of freedom was disappeared and the theory becomes “time irreversible”.

The key step in these calculations was an extraction of the classical trajectory \(x_c \) which can not be defined without definition of boundary conditions. Just \(x_c \) introduces the direction of motion and the order of quantum perturbations of trajectories inner degrees of freedom play no role, i.e. the mechanical motion is time reversible while the corrections to energy of trajectory, \(h \) and to the phase, \(\theta \), can not be time reversible. Therefore, the considered irreversibility of the quantum mechanics in terms of \((h, \theta) \) seems to be imaginary.

4. REDUCTION OF QUANTUM DEGREES OF FREEDOM

4.1. Introduction

It will be shown in this Section that the quantum fluctuations of angular variables may be removed if the classical motion is periodic. This cancelation mechanism can be used for path-integral explanation of integrability of the quantum-mechanical problems, for example of H-atom problem where the classical trajectories is closed independently from the initial conditions. The main result of present Section is based on the statement that the topology properties of classical trajectory takes special significance.

23The approach may be extended on the case of rigid rotator problem [20]. Last one is isomorphic to the Pochle–Teller problem [21].

24Since the action of perturbations generating operator of transformed theory, \(\hat{K} \), maps quantum corrections on the boundaries of cotangent foliation, \(\partial \hat{W} \), see (4.41).
Our technical problem consist in necessity to extract the quantum angular degrees of freedom. For this purpose we will define path integral in the phase space of action-angle variables. For simplicity the effect of cancelations we will demonstrate on the one-dimensional λx^4 model. In the following subsection the brief description of unitary definition of the path-integration measure will be given. The perturbation theory in terms of action-angle variables will be contracted in Sec. 4.3 (the scheme of transformed perturbation theory was given firstly in [1]). In Sec. 4.4 the cancelation mechanism will be demonstrated.

4.2. Unitary Definition of the Path-integral Measure

We will calculate the probability

$$ R(E) = \left| \int dx_1(dx_2)|A(x_1, x_2; E)|^2 \right|, \quad (4.1) $$

to introduce the unitary definition of path-integral measure [1]. Here

$$ A(x_1, x_2; E) = i \int_0^\infty dt e^{iET} \int_{x(0) = x_1}^{x(T) = x_2} Dx e^{iS(x, T)}, \quad (4.2) $$

is the amplitude of the particle with energy E moving from x_1 to x_2. The action

$$ S(x, T) = \int_{t_1}^{t_2} dt \left(\frac{1}{2} \dot{x}^2 - \frac{\omega_0^2 x^2}{2} - \frac{\lambda x^4}{4} \right) \quad (4.3) $$

denoted on the Mills’ contour [17]:

$$ C_\pm(T) : t \rightarrow t \pm i\epsilon, \quad \epsilon \rightarrow +0, \quad 0 \leq t \leq T. \quad (4.4) $$

So, we will omit the calculation of the amplitude.

Inserting (4.2) into (4.1) we find, see previous Section, that

$$ R(E) = 2\pi \int_0^\infty dt e^{i\phi(t)\dot{\phi}(t)} \int Dx e^{-iH(x; \tau) - iU(x, \epsilon)} \prod_\tau \delta(E + \omega - H_T(x)) $$

$$ \times \delta(\dot{x} + \omega x + \lambda x^3 - j). $$

The “hat” symbol means differentiation over corresponding auxiliary quantity. For instance,

$$ \dot{x} = \frac{\partial}{\partial \dot{x}}, \quad \dot{x}(t) = \frac{\delta}{\delta j(t)}. \quad (4.6) $$

It will be assumed that

$$ \dot{j}(t \in C_\pm)((t' \in C_\pm) = \delta(t - t'), $$

$$ \dot{j}(t \in C_\pm)j(t' \in C_\pm) = 0. \quad (4.7) $$

The time integral over contour $C^{\pm}(T)$ means

$$ \int_{C^{\pm}(T)} = \int_{C_1(T)} \pm \int_{C_2(T)} \int_{C_3(T)}. \quad (4.8) $$

At the end of calculations the limit $(\omega, \tau, j, e) = 0$ must be calculated. The explicit form of $H_T(x; \tau)U_T(x, e)$ will be given later; $H_T(x)$ is the Hamiltonian at the time moment $t = T$.

The functional δ-function unambiguously determines the contributions in the path integral. For this purpose we must find the strict solution $x_j(t)$ of the equation of motion:

$$ \ddot{x} + \omega_0^2 x + \lambda x^3 - j = 0, \quad (4.9) $$

expanding it over j. In zero order over j we have the classical trajectory x_c which is defined by the equation of motion:

$$ \ddot{x} + \omega_0^2 x + \lambda x^3 = 0. \quad (4.10) $$

This equation is equivalent to the following one:

$$ t + \theta_0 = \int dx \{2(h_0 - \omega_0^2 x^2 - \lambda x^4)\}^{-1/2}. \quad (4.11) $$

The solution of this equation is the periodic elliptic function.

Here (h_0, θ_0) are the constants of integration of Eq. (4.10), i.e. (h_0, θ_0) are the coordinates of point on the surface defined by elliptic function. The integration over (h_0, θ_0) is assumed since the integration over all trajectories in (4.2) must be performed, i.e. $(h_0, \theta_0$) takes on all values available by elliptic function. Let W be the corresponding manifold. One can say therefore that classical trajectory belongs W completely.

The mapping of our problem on the action–angle phase space will be performed using representation (4.5) [22]. Using the obvious definition of the action:

$$ I = \frac{1}{2\pi} \int_0^\infty \{2(h - \omega_0^2 x^2 - \lambda x^4)\}^{1/2}, \quad (4.12) $$

and of the angle

$$ \phi = \frac{\partial}{\partial I} \int dx \{2(h - \omega_0^2 x^2 - \lambda x^4)\}^{-1/2} \quad (4.13) $$

variables [12] we easily find from (4.5) that

$$ R(E) = 2\pi \int_0^\infty dt e^{i\phi(t)\dot{\phi}(t)} \int Dx e^{-iH(x; \tau) - iU(x, \epsilon)} \prod_\tau \delta(E + \omega - H_T(I)) $$

$$ \times \delta(\dot{x} + \omega x + \lambda x^3 - j). \quad (4.14) $$
where \(x_c = x_c(I, \phi) \) is the solution of Eq. (4.13) with \(h = h(I) \) as the solution of Eq. (4.12) and the frequency

\[
\Omega(I) = \frac{\partial h}{\partial I}.
\]

(4.15)

Representation (4.14) is not the full solution of our problem: the action and angle variables are still interdependent since they both are exited by the same source \(j(t) \). This reflects the Lagrange nature of the path-integral description of phase-space motion. The true Hamilton's description must contain independent quantum sources of action and angle variables.

4.3. Perturbation Theory on the Cotangent Manifold

The structure of source terms, \(j \partial x_c / \partial \phi \) and \(j \partial x_c / \partial I \), show that the source of quantum fluctuations is the classical trajectories perturbation and \(j \) is the auxiliary variable. It allows to regroup the perturbation series in a following manner. Let us consider the action of the perturbation-generating operators on \(\delta \)-functions:

\[
e^{-i \int \hat{\phi}(t') e^{i I(t')}} e^{-i U_j(x, \epsilon)}
\]

\[
\times \prod_k \delta \left(I - \hat{\phi}(t_k) \right) \delta \left(\hat{\phi} - \Omega(I) + j \hat{\phi} \right) - i \int \delta(t - t') \delta \left(\hat{\phi} - \Omega(I) \right)\]

\[
= \int D \epsilon \epsilon' D \epsilon \delta(\epsilon) e^{-i U_j(x, \epsilon)} e^{-i U_j(x, \epsilon')},
\]

(4.16)

where

\[
\epsilon = (\epsilon_l, \epsilon_h),\quad \epsilon' = (\epsilon'_l, \epsilon'_h)
\]

(4.17)

The integrals over \((\epsilon_l, \epsilon_h)\) will be calculated perturbatively:

\[
e^{-i U_j(x, \epsilon)} = \sum_{n_I, n_h} \frac{1}{n_I! n_h!}
\]

\[
\times \prod_{k=1}^{n_I} (dt_k e_j(t_k)) \prod_{k=1}^{n_h} (dt_k' e_h(t_k'))
\]

\[
\times P_{n_I, n_h}(x_c, t_l, \ldots, t_l, t_h, \ldots, t_h),
\]

(4.18)

where

\[
\epsilon = (\epsilon_l, \epsilon_h),\quad \epsilon' = (\epsilon'_l, \epsilon'_h)
\]

(4.19)

\[
\epsilon = (\epsilon_l, \epsilon_h),\quad \epsilon' = (\epsilon'_l, \epsilon'_h)
\]

(4.20)

\[
\text{R}(E) = 2\pi \int d\epsilon e^{i \epsilon t} e^{-i U_j(x, \epsilon)}
\]

(4.21)

The solutions of Eqs. (4.22) have the form:

\[
I_j(t) = I_0 + \int dt' g(t-t') j(t') \equiv I_0 + I(t),
\]

\[
\phi(t) = \phi_0 + \tilde{\Omega}(I(t)) t + \int dt' g(t-t') j(t')
\]

(4.22)

(4.23)

(4.24)

(4.25)

(4.26)

(4.27)

where

\[
\tilde{\Omega}(I(t)) = \frac{1}{2\pi} \int dt' g(t-t') \Omega(I(t) + I(t')).
\]

(4.26)

(4.27)
which evidently follows from (4.25). In result,

\[F(\phi) = \frac{1}{(2\pi)^{d+1}} \int \frac{d\phi d\bar{\phi}}{\Omega(E)} e^{-\frac{1}{2} \hat{H}(t') \hat{\phi}(t') + \hat{\phi}(t')} \]

and \(\bar{\phi} \) was defined in (4.17). Note that the measure of the integrals over \((\phi_0, \phi)\) was defined without of the Faddeev–Popov’s ansatz and there is not any “hosts” since the Jacobian of transformation is equal to one.

We can extract the Green function into the perturbation-generating operator using the equalities:

\[\hat{j}(t) = \int d't' g(t-t') \hat{I}(t), \quad \hat{j}_\theta = \int d't' g(t-t') \hat{\phi}(t), \]

which evidently follows from (4.25). In result,

\[R(E) = 2\pi \int dTe \]

\[\int d\phi_0 e^{-i\hat{H}_R(x_c; \tau) - iU_\theta(x_c, \epsilon_c)} \delta(E + \omega - h_T(I_0 + I)) \]

where \(x_c \) was defined in (4.28).

We can define the formalism without doubling of the degrees of freedom. One can use fact that the action of perturbation-generating operators and the analytical continuation to the real times are commuting operations. This can be seen easily using the definition (4.7). In result the expression:

\[R(E) = \int d\phi_0 e^{-i\hat{H}_R(x_c; \tau) - iU_\theta(x_c, \epsilon_c)} \delta(E + \omega - h_T(I_0 + I)) \]

where

\[\hat{H}_R(x_c; \tau) = 2 \sum_{n=1}^{\infty} \frac{\tau^{2n+1}}{(2n+1)!} \int dT^{2n} h(I_0 + I(T)) \]

and

\[-iU_\theta(x_c, \epsilon_c) = S(x_c + \epsilon_c) - S(x_c - \epsilon_c) \]

\[-2 \int dte_c \frac{\delta S(x_c)}{\delta x_c} \]

defines quantum theory on the cotangent manifold \(W \).

Now we can use the last \(\delta \)-function:

\[R(E) = 2\pi \int dTe \]

\[\int d\phi_0 e^{-i\hat{H}_R(x_c; \tau) - iU_\theta(x_c, \epsilon_c)} \]

Here

\[x_c (t) = x_c (I_0(E) + I(t) - I(T), \phi_0 + \tilde{\Omega}T + \phi(t)) \]

Eq.(4.34) contains unnecessary contributions: the action of the operator

\[\int dt' g(t-t') \hat{I}(t) \]

on \(\hat{H}_R \), defined in (4.32), leads to the time integrals with zero integration range:

\[\int dt \Theta(T-t) \Theta(t - T) = 0. \]

Using this fact,

\[R(E) = 2\pi \int dTe \]

\[\int d\phi_0 e^{-i\hat{H}_R(x_c; \tau) - iU_\theta(x_c, \epsilon_c)} \]

where

\[h_T(x_c; \tau) = 2 \sum_{n=1}^{\infty} \frac{\tau^{2n+1}}{(2n+1)!} \int dT^{2n} h(I_0 + I(T)) \]

and

\[S(x_c + \epsilon_c) - S(x_c - \epsilon_c) \]

\[-2 \int dte_c \frac{\delta S(x_c)}{\delta x_c} \]

is the periodic function:

\[x_c (I_0(E) + I(t) - I(T), \phi_0 + \tilde{\Omega}T + \phi(t)) \]

\[= x_c (I_0(E) + I(t) - I(T), \phi_0 + \tilde{\Omega}T + \phi(t)) \]

Now we can consider the cancelation of angular perturbations.
4.4. Cancelation of Angular Perturbations

1. Simples example. Introducing the perturbation-generating operator into the integral over \(\phi_0 \):

\[
R(E) = 2\pi \int_0^\infty dTe^{-\frac{1}{2} \int dt \Theta(t')\hat{x}(t') \hat{x}(t')}
\]

(4.40)

\[
R(E) \approx 2\pi \int_0^\infty dI_0 \int_0^{\Omega(E)} \mathcal{D}(\phi_0) e^{-\int dtU_i(x, \epsilon_i)}
\]

(4.41)

and

\[
F(\phi_0 + 2\pi) = F(\phi_0),
\]

(4.42)

then:

\[
R(E) = 2\pi \int_0^{\infty} d\phi_0 \int_0^{\infty} dT dI_0 e^{-\frac{1}{2} \int dt \Theta(t')\hat{x}(t') \hat{x}(t')}
\]

(4.43)

\[
S(x_e + e\hat{x}/\partial \phi_0) - S(x_e + e\hat{x}/\partial \phi_0)
\]

(4.44)

where \(x_e(t) = x_e(I_0(E) + I(t) - I(T), \phi_0 + \hat{\delta}t) \).

Here \(I(t) \) and \(I(T) \) are the auxiliary variables.

The condition (4.42) requires that the classical trajectory \(x_e \) with all derivatives over \(I_0, \phi_0 \) is the periodic function. In the considered case of \((\lambda \xi^4) \) -model \(x_e \) is periodic function with period \(1/\Omega \), see (4.39). Therefore, we can concentrate the attention on the condition (4.41) only.

Expanding \(F(\phi_0) \) over \(\lambda \):

\[
F(\phi_0) = \lambda F_1(\phi_0) + \lambda^2 F_2(\phi_0) + \ldots
\]

(4.47)

we find that

\[
\frac{d}{d\phi_0} F(\phi_0) = \int dt \hat{\phi}(t') B(\phi),
\]

(4.48)

where

\[
B(\phi) = \left\{ \begin{array}{l}
-\frac{6}{(2i)^3} \int dt \hat{\Theta}(t-t')
\times \prod_{k=1}^T (\Theta(t-t'_k) \hat{x}_e(t) \hat{x}_e(t)) e_k^3 \mathcal{S}(x_e(t))
\end{array} \right.
\]

(4.49)

This example shows that the sum over all powers of \(\lambda \) can be written in the form:

\[
\frac{d}{d\phi_0} F(\phi_0) = \int dt \hat{\phi}(t') \hat{B}(\phi),
\]

(4.50)

where, using the definition (4.35),

\[
B(\phi) = \int dt \hat{B}(\phi_0 + \phi(t)).
\]

(4.51)

Therefore,

\[
\hat{\phi}(t') B(\phi) = \frac{d}{d\phi_0} \int dt \hat{\Theta}(t-t') \hat{B}(\phi_0 + \phi(t))
\]

(4.52)

coincides with the total derivative over initial phase \(\phi_0 \), and

\[
F(\phi_0) = \hat{B}(\phi_0 + \phi(t)) \bigg|_{\phi=0}.
\]

(4.53)

This result ends the prove of (4.41).

2. General case. Now we will offer following important statement:
—each order of perturbation theory in the invariant subspace can be represented as the sum of total derivative over the subspace coordinate.

This statement directly follows from structure of perturbations generating operator \mathbf{K} and the assumption (3.18). It explains the statement, offered in Preface.

Let us remind that integration with last δ-function gives the result of action of operator \mathbf{K} written in the form:

$$R(E) = 2\pi \int_{0}^{T} \frac{d\sigma_{0}}{\Omega(E)} e^{-iU_{T}(x_{\sigma},t/2)\sigma_{0}};$$

where the colons mean normal product,

$$\hat{e} = \hat{j}_{0} \frac{\partial x_{\sigma}}{\partial I} - \hat{j}_{I} \frac{\partial x_{\sigma}}{\partial \phi};$$

and by definition U_{T} is the odd over \hat{e}_{c} functional:

$$U_{T}(x_{\sigma},e_{o}) = 2\sum_{0}^{T} \left(\hat{e}_{c}(t)/2i \right) 2^{n+1} + u_{n}(x_{c}),$$

where u_{n} is the function of only x_{c} at the time t. Inserting (4.55) one can write:

$$: e^{-iU_{T}(x_{\sigma},t/2)\sigma_{0}} : = \prod_{n=1}^{T} \prod_{k=0}^{2^{n+1}} e^{-iU_{T}(x_{\sigma},t/2)}}$$

where

$$U_{k,n}(j,x_{c}) = \int dt_{\sigma}^{T} \hat{\sigma}_{0}(t) 2^{n-k+1} \hat{j}_{0}(t) b_{k,n}(x_{c}(t))$$

and the explicit form of $b_{k,n}(x_{c})$ is not important.

Using the evident definition:

$$\hat{j}_{X} = \int_{0}^{T} dt \Theta(t-t') \hat{X}(t') , \quad X = \varphi, I,$$

it is easy to find that

$$j_{X}(t_{1}) b_{k,n}(x_{c}(t_{2})) = \Theta(t_{1}-t_{2}) \partial b_{k,n}(x_{c}(t_{2})) / \partial X_{0},$$

since $x_{c} = x_{c}(X+X_{0})$, or shortly:

$$j_{1} b_{2} = \Theta_{12} \partial_{X_{0}} b_{2} = \partial_{X_{0}}(\Theta_{12} b_{2})$$

since the indexes (k, n) are not important.

Let us start consideration from the first term with $k = 0$. In this case we describe only the angular fluctuations. Noting that $\partial_{X_{0}}$ and \hat{j} commute we can consider the lowest order over \hat{j}. The typical term looks as follows (omitting the index X_{0}):

$$\hat{j}_{1} \hat{j}_{2} \ldots \hat{j}_{m} b_{1} b_{2} \ldots b_{m}.$$

It is sufficient to show that this expression is the total derivative over X_{0}.

Case $m = 1$. In this approximation we have, see (4.59):

$$\hat{j}_{1} b_{1} = \Theta_{11} \partial_{0} b_{1} \neq 0.$$ (4.60)

Here (3.18) was used.

Case $m = 2$. This order is less trivial:

$$\hat{j}_{1} \hat{j}_{2} b_{1} b_{2} = \Theta_{21} b_{1} b_{2} + b_{1} b_{2} + \Theta_{12} b_{1} b_{2}$$

where

$$b_{n} = \partial_{n} b_{1}.$$ (4.62)

At first glance (4.61) is not the total derivative. But inserting

$$1 = \Theta_{12} + \Theta_{21}$$

we can symmetrize it:

$$\hat{j}_{1} \hat{j}_{2} b_{1} b_{2} = \Theta_{21} b_{1} b_{2} + \Theta_{12} b_{1} b_{2}$$

$$= \partial_{0} (\Theta_{21} b_{1} b_{2} + \Theta_{12} b_{1} b_{2})$$

$$= \partial_{0} (b_{1} \partial_{b_{2}} + b_{2} \partial_{b_{1}})$$

since the explicit form of the function is not important. Therefore, the second order term can be also reduced to the total derivative. Notice that (4.63) shows time reversibility.

Case $m = 3$. In this order one can find that

$$\hat{j}_{1} \hat{j}_{2} \hat{j}_{3} b_{1} b_{2} b_{3}$$

$$= \partial_{0} \left\{ \sum_{i \neq j \neq k = 1}^{3} i_{j} \longrightarrow j_{k} \longrightarrow k_{j} \longrightarrow j_{k} \longrightarrow k \right\}$$ (4.64)

The m-th order contribution is also total derivative:

$$\hat{j}_{1} \hat{j}_{2} \ldots \hat{j}_{m} b_{1} b_{2} \ldots b_{m}$$

$$= \partial_{0} \left\{ \sum_{i \neq j \neq \ldots \neq i_{m}}^{3} i_{i_{1}} \longrightarrow i_{i_{2}} \longrightarrow i_{i_{3}} \longrightarrow \ldots \longrightarrow i_{i_{m}} + i_{i_{m}} \longrightarrow i_{i_{1}} \longrightarrow i_{i_{2}} \longrightarrow \ldots \longrightarrow i_{i_{m}} \longrightarrow i_{i_{1}} \right\}$$ (4.65)
Let us consider now the case with \(k \neq 0 \). The typical term looks as follows:

\[
\tilde{f}_1 \cdots \tilde{f}_l \cdots \tilde{f}_j \cdots \tilde{f}_{j+2} \cdots \tilde{f}_m b_1 b_2 \cdots b_m, \quad 0 < l < m,
\]

where, for instance

\[
\tilde{f}_j = \hat{f}_j(t_k), \quad \tilde{f}_k = \hat{f}_k(t_k)
\]

and

\[
\tilde{f}_j b_2 = \Theta_{12} \hat{c}_0 b_2.
\]

Case \(m = 2, l = 1 \). In this case:

\[
\tilde{f}_j \tilde{f}_b b_2 = \Theta_{21}(b_2 \hat{c}_0 \hat{c}_0 b_1 + (\hat{c}_0 \hat{c}_0 b_2)(\hat{c}_0 \hat{c}_0 b_1))
\]

\[
+ \Theta_{12}(b_1 \hat{c}_0 \hat{c}_0 b_2 + (\hat{c}_0 \hat{c}_0 b_2)(\hat{c}_0 \hat{c}_0 b_1))
\]

\[
= \hat{c}_0(\Theta_{12} b_1 \hat{c}_0 b_1 + \Theta_{12} b_1 \hat{c}_0 b_1)
\]

\[
+ \hat{c}_0(\Theta_{21} b_2 \hat{c}_0 b_2 + \Theta_{12} b_1 \hat{c}_0 b_2).
\]

Therefore we have the total-derivative structure yet. This property is conserved in arbitrary order over \(m \) and \(l \) since the time-ordered structure does not depend from upper index of \(\tilde{f} \), see (4.68).

One can conclude that the contribution are defined by topology properties of classical trajectory \(x_c \). We will see that this important property of perturbation theory remains unchanged also for field theories with symmetry.

4.5. Conclusions

1. It was shown that the real-time quantum problem can be semielassial over the part of the degrees of freedom and quantum over another ones. Following to the result of this Section one may introduce the (probably naive) interpretation of the quantum systems integrability (we suppose that the classical system is integrable and can be mapped on the compact hypersurface in the phase space [12]): the quantum system is strictly integrable in result of cancelation of quantum degrees of freedom. The mechanism of cancelation of the quantum corrections is varied from case to case.

For some problems (as the rigid rotator, or the Poeshle-Teller) the cancelation of angular degrees of the freedom is enough since they carry only the angular ones. In an another case (as in the Coulomb problem, or in the one-dimensional models) the problem may be partly integrable since the quantum fluctuations of action degrees of freedom just survive. Theirs absence in the Coulomb problem needs special discussion (one must take into account the dynamical (hidden) symmetry of Coulomb problem [23]).

The transformation to the action-angle variables maps the \(N \)-dimensional Lagrange problem on the \(2N \)-dimensional phase-space torus. If the winding number on this hypertorus is a constant (i.e. the topological charge is conserved) one can expect the same cancelations. This is important for the field-theoretical problems (for instance, for sin-Gordon model [24]).

2. In the classical mechanics following approximated method of calculations is used [12]. The canonical equations of motion:

\[
\dot{I} = a(I, \phi), \quad \dot{\phi} = b(I, \phi)
\]

are changed on the averaged equations:

\[
\dot{J} = \frac{1}{2\pi} \int_0^{2\pi} a(J, \phi), \quad \dot{\phi} = b(J, \phi),
\]

It is possible if the oscillations can be extracted from the systematic evolution of the degrees freedoms.

In our case

\[
a(I, \phi) = j \partial x_c / \partial \phi, \quad b(I, \phi) = \Omega(I) - j \partial x_\omega / \partial I.
\]

Inserting this definitions into (4.71) we find evidently wrong result since in this approximation the problem looks like pure semielassial for the case of periodic motion:

\[
\dot{J} = 0, \quad \dot{\phi} = \Omega(J).
\]

The result of this Section was used here. This shows that the procedure of extraction of the oscillations from the systematic evolution is not trivial and this method should be used carefully in the quantum theories. (This approximation of dynamics is “good” on the time intervals \(\sim 1/\omega \) [12].)

5. Example: H–Atom

5.1. Introduction

The mapping

\[
J : T \longrightarrow W,
\]

where \(T \) is the \(2N \)-dimensional phase space and \(W \) is a linear space solves the mechanical problem iff

\[
J = \otimes^N J_r,
\]

where \(J_r \) are the first integrals in involution, see e.g. [12].

The formalism of reduction (5.1) in classical mechanics is described also in [25].

\[25\] The formalism of reduction (5.1) in classical mechanics is described also in [25].
The "direct" mapping (5.1) used in [26] assumes that \(J \) is known. But it seems inconvenient having in mind the general problem of nonlinear waves quantization, when the number of degrees of freedom \(N = \infty \), or if the transformation is not canonical. We will consider by this reason the "inverse" approach assuming that just the classical flow is known. Then, since the flow belongs to \(J_{n0} \) completely [26], we would be able to find the quantum motion in \(W \). It is the main technical result illustrated in this Section.

The manifold \(J_{n0} \) is invariant relatively to some subgroup \(G_{n0} \) [27] in accordance to topological class of classical flaw. This introduces the \(J_{n0} \) classification and summation over all (homotopic) classes should be performed. Note, the classes are separated by the boundary bifurcation lines in \(W \) [27]. If the quantum perturbations switched on adiabatically then the homotopic group should stay unbroken.

It is the ordinary statement for quantum mechanics, but, generally speaking, this is not true for field theories.

We will calculate the bound state energies in the Coulomb potential. This popular problem was considered by many authors, using various methods, see e.g. [23]. The path-integral solution of this problem was offered firstly in [28].

The classical flaw of this problem can be parameterized by the angular momentum \(l \), corresponding angle \(\varphi \) and by the normalized on total Hamiltonian Runge–Lentz vector length \(n \). So, we will consider the mapping (\(p \) is the conjugate to \(r \) radial momentum in the cylindrical coordinates):

\[
J_{l,n} : (p, l, r, \varphi) \rightarrow (l, n, \varphi)
\]

(5.3)

to construct the perturbation theory in the \(W = (l, n, \varphi) \) space. I.e. \(W \) is not considered as the cotangent foliation on \(T \).

The mapping (5.3) assumes additional reduction of the four-dimensional incident phase space up to three-dimensional linear subspace. Just this reduction phenomena leads to corresponding stability of \(n \) concerning quantum perturbations and will allow to solve our H-atom problem completely.

In Subsec. 5.2 we will show how the mapping (5.3) can be performed for path–integral differential measure. In Subsec. 5.3 the consequence of reduction will be derived and in Subsec. 5.4 the perturbation theory in the \(W \) space will be analyzed. The calculations are based on the formalism offered in previous Sections.

26 We will restrict ourselves by the plane problem. Corresponding phase space \(T = (p, l, r, \varphi) \) is 4-dimensional.

27 \(W \) would not have the simplectic structure. Actually in considered case \(W = R + TW \), where \(R \) is the zero-modes space and \(TW \) is the simplectic subspace.

28 In other words, we would demonstrate that the hidden Bargman–Fock [23] \(O(4) \) symmetry is stay unbroken concerning quantum perturbations.

29 As, for instance, in the Aharonov–Bohm case.
tonian (5.8) contains the energy of radial jr and angular $f_\phi \phi$ excitation independently.

Let us introduce the functional

$$\Delta = \prod_i d^2 \xi d^2 \eta \times \delta(r(t) - r, (\xi, \eta)) \delta(p(t) - p, (\xi, \eta))$$

(5.10)

$$\times \delta(l(t) - l, (\xi, \eta)) \delta(\phi(t) - \phi, (\xi, \eta))$$

which is defined by given functions $(r, p, \phi, l) (\xi, \eta)$. If given functions (ξ, η) zeroes argument of δ-functions in (5.10) then it is assumed that the functional determinant

$$\Delta_c = \prod_i d^2 \xi d^2 \eta \delta \left(\frac{\partial r_c}{\partial \xi} + \frac{\partial r_c}{\partial \eta} \right) \delta \left(\frac{\partial p_c}{\partial \xi} + \frac{\partial p_c}{\partial \eta} \right) \delta \left(\frac{\partial \phi_c}{\partial \xi} + \frac{\partial \phi_c}{\partial \eta} \right)$$

(5.11)

Note that this is the condition only for $(r, p, \phi, l) (\xi, \eta)$.

To perform the mapping we will insert

$$1 = \Delta_c$$

(5.12)

into (5.4) and integrate over $r(t), p(t), \phi(t)$ and $l(t)$. In result we find the measure:

$$DM(\xi, \eta) = \frac{1}{\Delta_c} \delta(E - H_0) \prod_i d^2 \xi d^2 \eta \delta \left(\frac{\partial \tilde{r}}{\partial \xi} - \frac{\partial \tilde{H}}{\partial \tilde{p}} \right)$$

(5.13)

$$\times \delta \left(\frac{\partial \tilde{p}}{\partial \frac{\partial \tilde{r}}{\partial \xi}} + \frac{\partial \tilde{p}}{\partial \frac{\partial \tilde{r}}{\partial \eta}} \right) \delta \left(\frac{\partial \tilde{\phi}}{\partial \xi} - \frac{\partial \tilde{\phi}}{\partial \tilde{p}} \right).$$

Note that the functions $(r, p, \phi, l) (\xi, \eta)$ must obey only one condition (5.11).

A simple algebra gives:

$$DM(\xi, \eta) = \prod_i d^2 \xi d^2 \eta \prod_i d^2 \xi d^2 \eta \times \delta^2 \left(\xi - \left(\tilde{\xi} - \frac{\partial \tilde{h}_j}{\partial \tilde{p}} \right) \right) \delta^2 \left(\eta - \left(\tilde{\eta} - \frac{\partial \tilde{h}_j}{\partial \tilde{p}} \right) \right)$$

(5.14)

The Poisson notation:

$$\{X, h_j\} = \frac{\partial X \partial h_j}{\partial \xi \partial \eta} - \frac{\partial X \partial h_j}{\partial \xi \partial \eta}$$

was introduced in (5.14).

Next, the “auxiliary” quantity h_j have been introduced by following equalities:

$$\{r_c, h_j\} - \frac{\partial H_j}{\partial r_c} = 0, \quad \{p_c, h_j\} - \frac{\partial H_j}{\partial p_c} = 0, \quad \{q_c, h_j\} - \frac{\partial H_j}{\partial q_c} = 0, \quad \{l_c, h_j\} - \frac{\partial H_j}{\partial l_c} = 0.$$

(5.15)

Then the functional determinant Δ_c is canceled and

$$DM(\xi, \eta) = \delta(E - H_0) \prod_i d^2 \xi d^2 \eta$$

(5.16)

$$\times \delta^2 \left(\xi - \frac{\partial \tilde{h}_j}{\partial \tilde{p}} \right) \delta^2 \left(\eta - \frac{\partial \tilde{h}_j}{\partial \tilde{p}} \right).$$

It is the desired result of transformation of the measure for given generating functions $(r, p, \phi, l) (\xi, \eta)$. In this case the “Hamiltonian” $h_j (\xi, \eta)$ is defined by four equations (5.15).

But there is another possibility. Let us assume that

$$h_j (\xi, \eta) = H_j (r, p, \phi, l)$$

(5.17)

and the functions $(r, p, \phi, l) (\xi, \eta)$ are unknown. Then Eqs. (5.15) are the equations for this functions. It is not hard to see that the Eqs. (5.15) simultaneously with equations fixed by δ–functions in (5.16) are equivalent of incident equations if the equality (5.17) is hold. Indeed, for example,

$$r_c = \frac{\partial r_c}{\partial \xi} + \frac{\partial r_c}{\partial \eta} = \{r_c, h_j\} = \frac{\partial H_j}{\partial p_c},$$

(5.18)

where (5.16) and (5.15) was used successively.

So, incident dynamical problem was divided on two parts. First one defines the trajectory in the W space through Eqs. (5.15). Second one defines the dynamics, i.e. the time dependence, through the equations fixed by δ–functions in the measure (5.16).

Therefore, we should consider r, p, ϕ, l as the solutions in the ξ, η parametization. The desired parametrization of classical orbits has the form (one can find it in arbitrary textbook of classical mechanics):

$$r_c = \frac{\eta_1^2 \eta_2^2 + \eta_2^2}{(\eta_1^2 + \eta_2^2)^{1/2}}, \quad p_c = \frac{\eta_1 \sin \xi_1}{\eta_1 (\eta_1^2 + \eta_2^2)^{1/2}}, \quad \phi_c = \xi_1, \quad l_c = \eta_1.$$
i.e. r_c and p_c are ξ_2 independent. At the same time,

$$h_j = \frac{1}{2(\eta_1^2 + \eta_2^2)^{1/2}} - j_r r_c - j_{\omega} \xi_1$$

(5.20)

$$= h(\eta) - j_r r_c - j_{\omega} \xi_1.$$

Noting that the derivatives of h_j over ξ_2 are equal to zero, we find that

$$DM(\xi, \eta) = \delta(E - h(T)) \prod_i d^2 \xi_d^2 \eta$$

$$= \delta(\xi_i - \omega_1 + j_r r_c \xi_1) \delta(\xi_2 - \omega_2 + j_r r_c \xi_1)$$

(5.21)

$$\times \delta(\eta_1 - j_r r_c \xi_1 - j_{\omega} \xi_2) \delta(\eta_2),$$

where

$$\omega_i = \partial h / \partial \eta_i$$

(5.22)

are the conserved in classical limit $j_r = j_{\omega} = 0$ “velocities” in the W space.

5.3. Reduction

We see from (5.21) that the length of Runge–Lentz vector is not perturbated by the quantum forces j_r and j_{ω}. To investigate the consequence of this fact it is useful to project this forces on the axis of W space. This means splitting of j_r, j_{ω} on j_{ξ}, j_{η}. The equality

$$\prod_i \delta(\xi_i - \omega_1 + j_r r_c \xi_1) = e^{2 \int j_{\xi} \delta(\xi_1 - \omega_1) - j_{\eta} \xi_2}$$

(5.23)

becomes evident if the Fourier representation of δ-function is used (see also [26]). The same transformation of arguments of other δ-functions in (5.21) can be applied. Then, noting that the last δ-function in (5.21) is source-free, we find the same representation as (5.4) with

$$\hat{K}(j, e) = \int_0^T dt \hat{j}_\xi \hat{e}_\xi + \hat{j}_\eta \hat{e}_\eta,$$

(5.24)

where the operators \hat{j} are defined by the equality:

$$\hat{j}_x(t) = \int_0^T dt' \Theta(t - t') \hat{X}(t').$$

(5.25)

and $\Theta(t - t')$ is the Green function of our perturbation theory [26].

We should change also

$$e_r \rightarrow e_{\xi_1} = e_{\omega_1} \frac{\partial r_c}{\partial \xi_1} - e_{\xi_2} \frac{\partial r_c}{\partial \eta_1},$$

$$e_{\omega} \rightarrow e_{\xi_2},$$

(5.26)

in the Eq.(5.9). The differential measure takes the simplest form:

$$DM(\xi, \eta) = \delta(E - h(T)) \prod_i d^2 \xi_d^2 \eta$$

$$\times \delta(\xi_1 - \omega_2 - j_{\omega}, \delta(\xi_2 - \omega_2 - j_{\omega}, \eta_1 - j_{\eta}, \delta(\eta_2).$$

Note now that the ξ_1, η_1 variables are contained in r_c only:

$$r_c = r_c(\xi_1, \eta_1, \eta_2).$$

This means that the action of the operator \hat{j}_ξ gives identical to zero contributions into perturbation theory series. And, since $\hat{\xi}_2$ and $\hat{\eta}_2$ are conjugate operators, see (5.23), we can put

$$\hat{j}_\xi = e_\xi = 0.$$

This conclusion ends the reduction:

$$\hat{K}(j, e) = \int_0^T dt \hat{j}_\xi \hat{e}_\xi + \hat{j}_\eta \hat{e}_\eta,$$

(5.27)

$$e_r = e_{\omega_1} \frac{\partial r_c}{\partial \xi_1} - e_{\xi_2} \frac{\partial r_c}{\partial \eta_1},$$

(5.28)

The measure has the form:

$$DM(\xi, \eta) = \delta(E - h(T)) d\xi_2(0) d\eta_2(0)$$

$$\times \prod_i d\xi_1 \delta(\xi_1 - \omega_1 - j_{\omega}) \delta(\eta_1 - j_{\eta})$$

(5.29)

since $V = V(r_c, e, \xi_1)$ is ξ_2 independent and

$$\int_0^\infty dX(t) \delta(X) = \int_0^\infty dX(0).$$

5.4. Perturbations

One can see from (5.29) that the reduction can not solve the H-atom problem completely: there are non-trivial corrections to the orbital degrees of freedom ξ_1, η_1. By this reason we should consider the expansion over \hat{K}.

Using last δ-functions in (5.29) we find, see also [26] (normalizing $\rho(E)$ on the integral over $\xi_2(0) \eta_2(0)$):

$$\rho(E) = \int_0^\infty dTe^{-iU(r_c, e)} \int_0^\infty dMe^{-iU(r_c, e)},$$

(5.30)
where
\[dM = \frac{d\xi}{\omega(E)}. \] (5.31)

The operator \(\hat{K} (j, e) \) was defined in (5.27) and
\[
U(r_c, e_c) = -s_0(r) + \int \left(\frac{1}{\sqrt{(r_c + e_c)^2 + r_c^2 e_c^2}} \right) dt
\]
\[
- \frac{1}{\sqrt{(r_c - e_c)^2 + r_c^2 e_c^2}} = \frac{1}{2} \left(\frac{e_c}{r_c} \right)^{1/2}
\] (5.32)

with \(e_c, e_{\xi_1} \) was defined in (5.28), (5.25) and
\[
r_c(t) = r_c(\eta_1 + \eta(t), \eta_2(E, T), \xi_1 + \omega_1(t) + \xi(t))
\] (5.33)

where \(\eta_2(E, T) \) is the solution of equation \(E = h(\eta_1 + \eta(T), \eta_2) \).

The integration range over \(\xi_1 \) and \(\eta_1 \) is as follows:
\[
0 \leq \xi_1 \leq 2\pi, \quad -\infty \leq \eta_1 \leq +\infty
\] (5.34)

First inequality defines the principal domain of the angular variable \(\varphi \) and second ones take into account the clockwise and anticlockwise motions of particle on the Kepler orbits.

We can write:
\[
\rho(E) = \int_{\eta_1}^{\eta_1} dT \int dM : e^{-i\eta_1 r_c e_c^2} : \] (5.35)

since the operator \(\hat{K} \) is linear over \(\hat{e}_{\xi_1}, \hat{e}_{\eta_1} \). The colons means “normal product” with differential operators staying to the left of functions and \(U(r_c, e) \) is the functional of operators:
\[
2i\hat{e}_c = \hat{e}_{\eta_1} \frac{\partial}{\partial \xi_1} - \hat{e}_{\eta_1} \frac{\partial}{\partial \eta_1}, \quad 2i\hat{e}_{\xi_1} = \hat{e}_{\eta_1}
\] (5.36)

Expanding \(U(r_c, e) \) over \(\hat{e}_c \) and \(\hat{e}_{\eta_1} \) we find:
\[
U(r_c, e) = -s_0(r) + 2 \sum_{n,m=1}^{+\infty} C_{n,m} dte_c e_{\eta_1} \frac{1}{r_c^{2n+2}}
\] (5.37)

where \(C_{n,m} \) are the numerical constants. We see that the interaction part presents expansion over \(1/r_c \) and, therefore, the expansion over \(U \) generates an expansion over \(1/r_c \).

In result, see Sec. 4.5,
\[
\rho(E) = \int_{0}^{\infty} dT \int dM \{ e^{i\eta_1 r_c} + B_{\eta_1}(\xi_1, \eta_1) + B_{\eta_1}(\xi_1, \eta_1) \}
\] (5.38)

The first term is the pure semielassical contribution and last ones are the quantum corrections. The functional \(B \) are the total derivatives:
\[
B_{\eta_1}(\xi_1, \eta_1) = \frac{\partial}{\partial \xi_1} b_{\eta_1}(\xi_1, \eta_1),
\] (5.39)
\[
B_{\eta_1}(\xi_1, \eta_1) = \frac{\partial}{\partial \eta_1} b_{\eta_1}(\xi_1, \eta_1).
\]

This means that the mean value of quantum corrections in the \(\xi_1 \) direction are equal to zero:
\[
\int_{0}^{2\pi} d\xi_1 \frac{\partial}{\partial \xi_1} b_{\eta_1}(\xi_1, \eta_1) = 0
\] (5.40)

since \(r_c \) is the closed trajectory independently from initial conditions, see (5.19).

In the \(\eta_1 \) direction the motion is classical:
\[
\int_{-\infty}^{+\infty} d\eta_1 \frac{\partial}{\partial \eta_1} b_{\eta_1}(\xi_1, \eta_1) = 0
\] (5.41)

since (i) \(b_{\eta_1} \) is the series over \(1/r_c^2 \) and (ii) \(r_c \to \infty \) when \(|\eta_1| \to \infty \). Therefore,
\[
\rho(E) = \int_{0}^{\infty} dT \int dMe^{i\eta_1 r_c}
\] (5.42)

This is the desired result.

Noting that
\[
s_0(r_c) = kS_1(E), \quad k = \pm 1, \pm 2, \ldots,
\]

where \(S_1(E) \) is the action over one classical period \(T_1 \):
\[
\frac{\partial S_1}{\partial E} = T_1(E),
\]

and using the identity [22]:
\[
\sum_{-\infty}^{+\infty} e^{inS_1(E)} = 2\pi \sum_{-\infty}^{+\infty} \delta(S_1(E) - 2\pi n),
\]

we find:
\[
\rho(E) = \pi \Omega \sum_{n} \delta(E + 1/2n^2)
\] (5.43)

where \(\Omega \) is the zero–modes volume.
5.5. Conclusions

The demonstrated above mechanism of reduction is universal: one can introduce from the very beginning the arbitrary number of coordinates \((\xi, \eta)\). But later on the formalism automatically, through dependence of classical trajectory on coordinates of \(W\), will extract the necessary set of variables \((\xi, \eta)\). At the same time \(\dim(\xi, \eta) = \dim W\) and the integrals over other ones will give the volume

\[V_0 = \prod \, d\xi(0)d\eta(0), \]

see (5.29) where \(\dim V_0 = 2\).

Notice that appearance of the “0-dimensional” integral measure

\[d\xi(0)d\eta(0) \]

in (5.29) reflects the hidden \(O(4)\) symmetry of H-atom problem [23]. Therefore, following our selection rule, we must consider in a first place the classical trajectory which leads to the maximal value of \(\dim V_0\), i.e. we must consider the contributions with maximal number of zero modes.

6. EXAMPLE: SIN-GORDON MODEL

6.1. Introduction

First of all we will describe “canonical” transformation in the path-integral formalism. The method of canonical transformations in spite of its expected effectiveness is unpopular in quantum theories since on this way exist the problem: it is necessary to find the transformation from Lagrangian to Hamiltonian. This transition in general is very difficult if \(\varphi(x)\) and \(\hat{\varphi}(x) = p(x)\) are not the independent quantities [13]. But we may use following trick. We start from the simplest verse of the canonical formalism introducing the “first-order” description \(^3\) and after transformation come to independent canonically conjugate pairs, \((\xi, \eta)\), i.e. come to Hamiltonian description. It is evident that in general the transformation

\[\varphi_c : (\varphi, p) \rightarrow (\xi, \eta) \]

will not be canonical. The formalism of present Section is the same as in the H-atom problem but there is some distinction.

We will continue in this Section description of influence of the phase-space structure on the result of quantum-mechanical measurements started in previous Sections. Now we will calculate the expectation value of the “order parameter” (mass-shell particles production vertex) \(\Gamma(q; u)\) [29]:

\[\rho(q) = \langle |\Gamma(q; u)|^2 \rangle_u, \]

where \(q\) is the mass-shell \((q^2 = m^2)\) particles momentum and \(\langle \rangle_u\) means averaging over the field \(u(x, t)\). Just the procedure of averaging would be the object of our interest considering the quantum Hamiltonian system with symmetry \(G\). By definition, \(\rho\) is the probability to find one mass-shell particle. Certainly, \(\rho(q) = 0\) on the sourceless vacuum but, generally speaking, \(\rho(q) \neq 0\) in a field with nonzero energy density.

Calculations will be illustrated by the integrable \((1 + 1)\)-dimensional model with non-polynomial Lagrangian

\[L = \frac{1}{2}(\partial_\mu u)^2 + \frac{m^2}{\lambda^2}(\cos(\lambda u) - 1), \]

We will consider following formulation of the problem. Formally nothing prevents to linearize partly our problem considering the Lagrangian

\[L = \frac{1}{2}(\partial_\mu u)^2 - m^2 u^2 + \frac{m^2}{\lambda^2}(\cos(\lambda u) - 1 + \frac{\lambda^2}{2} u^2) \]

\(\equiv L_0(u) - \nu(u)\)

to describe creation (and absorption) of the mass \(m_h\) particles. Then the last term in (6.2),

\[\nu(u) = \frac{m^2}{\lambda^2}(\cos(\lambda u) - 1 + \frac{\lambda^2}{2} u^2), \]

describes interactions. The corresponding to this theory order parameter is

\[\Gamma(q; u) = \int dx dt e^{iqx} (\partial^2 + m_h^2)u(x, t), \]

\(q^2 = m_h^2\).

It will be shown by explicit calculations that

\[\rho(q) = 0 \]

as the consequence of unbroken \(s(2, C)\) Kac–Moody algebra on which the solitons of theory (6.1) live. \(^3\) see e.g. [31] and references cited therein. \(^3\) The solution (6.5) seems interesting since it can be interpreted as the explicit demonstration of field \(u(x, t)\) confinement. The main purpose of this paper is to investigate how the solution (6.5) appears.

We will be able to find exact equality (6.5) since the model (6.1) possess infinite number of integrals of

\(^3\)Trivialness of soliton S-matrix was shown in [30].

\(^3\) It may be useful at this point to compare our approach with ordinary thermodynamics of ferromagnetic. The external magnetic field is \(\langle \mu \rangle\), where the order parameter \(\langle \mu \rangle\) is the mean value of the spin, and the phase transition means that \(\langle \mu \rangle \neq 0\), i.e. \(\langle \mu \rangle = 0\) means that corresponding symmetry stay unbroken.

We will suppose that the mean value of \(\langle |\Gamma(q; u)|^2 \rangle\), which is the function of external fields parameter \(q\), play the same role for field theories with symmetry, i.e. \(\langle |\Gamma(q; u)|^2 \rangle\) means that corresponding symmetry-stay unbroken. Therefore in our approach only the “external” display of symmetry can be described.
motion. It is well known that each integral of motion in
involution allows to shrink a number of phase space
\(\gamma \) variables on two units, see e.g. [12]. Resulting phase
space \(\psi \) is called as the reduced phase space [25]. The
summation over all reduced phase space topological
classes [27] is assumed.

By this way the field-theoretical problem will be
reduced to the quantum-mechanical one. We would
consider \(\gamma \) as the “particles” generalized momentum
and would introduce \(\xi \) as the conjugate to \(\gamma \) coordi-
nate of soliton. The \(2N \)-dimensional phase space
cotangent manifold \(\gamma \) with local coordinates \((\xi, \eta)\)
on it has natural symplectic structure, and \(DM(\gamma_N) =
D^\gamma M(\xi, \eta) \) in practical calculations (see Subsec. 6.2).
The summation over \(N \) is assumed.

The quantum corrections to semiclassical approxi-
mation of transformed theory are simply calculable
since \(\gamma \) are conserved in the classical limit. This is the
particularity of solitons dynamics (solitons momenta
is the conserved quantities). One can consider the
developed in this paper formalism as the path-integral
version of nonlinear waves (solitons in our case) quan-
tum theory (the canonical quantization of \(\gamma \)-Gordon
model in the soliton sector was described also in [14]).

In Subsec. 6.3 we will demonstrate Eq. (6.5). It will
be shown that this solution is consequence of the pre-
viously developed proposition (we would justify it in
Subsec. 6.2) that the semiclassical approximation is
exact for \(\gamma \)-Gordon model [11]. The semiclassical
approximation in the \(\gamma_N \) phase space will be consid-
ered in Subsec. 6.2.

We would not use the complicated algebra to show
the reduction procedure explicitly noting that all solu-
tions of model (6.1) are known [24]. Then, using the
\(\delta \)-likeness of measure \(DM(\gamma_N) \), we will find in Subsec.
6.2 \(DM(\gamma_N) \) considering the mapping as an ordinary
transformation to useful variables. 34 Corresponding
perturbation theory, see Subsec. 6.3, in the moment-

34We will apply inverse reduction procedure. Let \(G \) be a group of
canonical transformations acting on the simplectic manifold \(\gamma \)
and let \(G \) be the Lie algebra of \(G \) with \(G^\ast \) dual of it. Then the
momentum [32] mapping \(J: \gamma \rightarrow G^\ast \) introduces the integrals of
motion which reduces the \(\gamma \) manifold. Noting that the set of levels
\(\gamma^{-1}(\eta) \) (solution of equations \(J(\pi) = \eta, \pi \in \gamma \) is a manifold
then \(\gamma_N = \gamma^{-1}(\eta) / G_{\eta} \) is the reduced phase space, where \(G_{\eta} \) is
the co-adjoint isotropy subgroup of \(G \). Therefore, the differential
measure \(dM = dM(\eta, \gamma_N) \) for reduced phase space. For integrable
generic systems (infinite dimensional as well, see e.g. [24]) \(\gamma_N \)
shrinks to the point and in this case \(dM = dM(\eta) \) is the measure
of momentum manifold. Just this simplest case would be
considered working with Lagrangian (6.1) and more general and
interesting case with measure \(dM = dM(\eta, \gamma_N) \), \(\gamma_N \neq \emptyset \), will be consid-
ered later. So, the reduction procedure of our Hamiltonian
system with symmetry \(G \) looks like canonical transformation [31].
This problem is nontrivial since, generally speaking, \(\dim \gamma \) and
\(\dim \gamma_N \) are not the same for model (6.1).

6.2. Reduction Procedure

6.2.1. Introduction into formalism. Our aim is to
calculate the integral:

\[
\rho(q) = e^{-iK(j, e)} \langle \Gamma(q'; u) \rangle^2 e^{iS_0(u) - iU(u, e)}, (6.6)
\]

where \(\Gamma(q'; u) \) was defined in (6.4). In this expression
the expansion over operator

\[
\hat{K}(j, e) = \text{Re} \int_{C^+} dxd\tau \frac{\delta^2}{\delta j(x, \tau) \delta e(x, \tau)}
\]

(6.7)
generates the perturbation theory series. We will
assumed that this series exist. The functional \(U(u, e) \)
and \(S_0(u) \) are defined by the equalities:

\[
V(u + e) - V(u - e) = U(u, e) + \int d\varepsilon \psi(x, \varepsilon) \varepsilon'(u),
\]

\[
S_0(u + e) - S_0(u - e) = S_0(u) + \int d\varepsilon \psi(x, \varepsilon) \times (\beta^2 + m^2) u(x, t).
\]

(6.8)
The action \(S_0(u) \) corresponds to the free part
of Lagrangian (6.1) and \(V(u) \) describes interactions. The
quantity \(S_0(u) \) is not equal to zero since the soliton
configurations have nontrivial topological charge (see
also [11]). All time integrals in this expressions were
defined on the Mills time contour [17]:

\[
2 \text{Re} \int_{C^+} = \int_{C^+} + \int_{C^-}
\]

and

\[
C_{\pm} : t \rightarrow t \pm i\epsilon, \quad \epsilon \rightarrow +0, \quad -\infty < t \leq +\infty,
\]

to avoid the possible light-cone singularities of the
perturbation theory. The variational derivatives in
(6.7) are defined by the following way:

\[
\delta u(x, t \in C_j) = \delta u(x' - x) \delta(t - t'), \quad i, j = +, -.
\]

The auxiliary variables \((j, e)\) must be taken equal to
zero at the very end of calculations.
Considering the first order formalism with new coordinates \((u, p)\) the measure \(DM(u, p)\) has the form:

\[
DM(u, p) = \prod_{x,t} du(x, t) dp(x, t) \delta \left(\frac{\delta H(u, p)}{\delta p} - \frac{\delta H(u, p)}{\delta u} \right) \tag{6.9}
\]

with the total “Hamiltonian”

\[
H(u, p) = \int dx \left\{ \frac{1}{2} p^2 + \frac{1}{2} (\partial_x u)^2 - \frac{m^2}{\lambda^2} \cos(\lambda u) - 1 \right\} \tag{6.10}
\]

The problem will be considered assuming that \(u(x, t)\) belongs to Schwartz space:

\[
u(x, t)\big|_{|x| = \infty} = 0 \left(\text{mod} \frac{2\pi}{\lambda} \right). \tag{6.11}
\]

This means that \(u(x, t)\) tends to zero \(\left(\text{mod} \frac{2\pi}{\lambda} \right)\) at \(|x| \to \infty\) faster than any power of \(1/|x|\). Note that \(\dot{u} = p\), i.e. \(u\) and \(p\) are not the independent quantities.

The measure (6.9) allows to perform arbitrary transformations. But, as was explained in Introduction, we will use the analog of canonical transformation which conserves the form of equations of motion. Hence, it is sufficient for this stage of calculations to know only the fact that this transformation exist [24]. One may propose that in result we should find for \(N\)-soliton topology:

\[
\Delta^N M(\xi, \eta) = \prod_{i} d^N \xi(t) d^N \eta(t) \delta \left(\frac{\delta h_j(\xi, \eta)}{\delta \xi(t)} - \frac{\delta h_j(\xi, \eta)}{\delta \eta(t)} \right) \tag{6.12}
\]

where \(h_j\) must obey the Poisson conditions:

\[
\{ u_e(x, t), h_j \} = \frac{\delta H_j}{\delta p_e(x, t)}, \tag{6.15}
\]

\[
\{ p_e(x, t), h_j \} = \frac{\delta H_j}{\delta u_e(x, t)},
\]

One can see choosing

\[
h_j(\xi, \eta) = H_j(u_e, p_e) \tag{6.16}
\]

that the initial equations have been restored:

\[
\dot{u}_e = \frac{\partial u_e}{\partial \xi} \dot{\xi} + \frac{\partial u_e}{\partial \eta} \dot{\eta} = \{ u_e, h_j \} = \frac{\delta H_j}{\delta p_e}.
\]

The same we will have for \(\dot{p}_e\). Therefore \((u_e, p_e)\) are solutions of equations of motion (6.14), if the equality (6.16) is hold.

The field theory case in (1 + 1)–dimensional configuration space needs additional explanations. First of all, the analog of (5.10) must be introduced:

\[
\Delta(u, p) = \prod_{x,t} d^N \xi(t) d^N \eta(t) \times \delta(u(x, t) - u_e(x; \xi, \eta)) \delta(p(x, t) - p_e(x; \xi, \eta)) \tag{6.17}
\]

if the \(N\)-soliton configuration is considered. Notice that the one-dimensional \(\delta\)-functions are introduced in (6.17) and \(u_e, p_e\) are the functions of sets \((\xi, \eta)\), \(\text{dim}(\xi, \eta) = 2N\). Introducing (6.16) we make the attempt to “hide” the time dependence entirely into the set of independent variables \((\xi, \eta)\).

Comparing (6.9) and (6.12) one can note that \(x\) dependence disappeared and the transformed measure depends on the number \(N = 1, 2, \ldots\) Therefore, occurs the reduction of the quantum degrees of freedom since the power of the coordinate set is continuum and the number of solitons \(N\) is the countable set. This means that the proposed transformation to coordinates of solitons will be unavoidably singular.

Notice then that the \(x\) dependence of \(\Delta(u, p)\) remain unimportant since last one always appear under the integrals over all \(u(x, t)\) and \(p(x, t)\). At the same time it is important that introduced in previous Section \(\Delta\), disappeared in the final result, if the integral form of Poisson brackets (6.15) are hold.

One can try to propose also the local form of canonical commutators (6.15), if the definition (6.16)

\[
35\text{See previous Section.}
\]

\[
36\text{See the transformation (5.12), described in previous Section. For more confidence one can introduce the appropriate cells in the } x \text{ space [24].}
\]

\[
\text{PHYSICS OF PARTICLES AND NUCLEI} \quad \text{Vol. 43} \quad \text{No. 4} \quad 2012
\]
is hold. Indeed, one can find inserting (6.16) into (6.15) that:

\[\{ u,(x,t), H_j(u_x,p_x) = \frac{\delta H}{\delta p_x(x,t)} \] (6.18)

\[\{ p,(x,t), H_j(u_x,p_x) = \frac{\delta H}{\delta u_x(x,t)} \].

This equalities must hold for arbitrary \(j \). Making use the definition:

\[H_j(x,p) = \int dy H(x,p) \]

where \(H_j \) is the Hamiltonian density, one can write from (6.18):

\[\int dy \{ u(x; \xi, \eta), u(y; \xi, \eta) \} \frac{\delta H_j}{\delta u_x(y,t)} \]
\[+ \int dy \{ u(x; \xi, \eta), p_x(y; \xi, \eta) \} \frac{\delta H_j}{\delta p_x(y,t)} \]
\[- \int dy \{ u_x(y; \xi, \eta), p_x(y; \xi, \eta) \} = \delta(x-y) \]
\[\times \frac{\delta \tilde{H}_j}{\delta u_x(y,t)} = 0 \]

and

\[\int dy \{ p_x(x; \xi, \eta), p_x(y; \xi, \eta) \} \frac{\delta H_j}{\delta p_x(y,t)} \]
\[- \int dy \{ u_x(x; \xi, \eta), p_x(y; \xi, \eta) \} \frac{\delta H_j}{\delta u_x(y,t)} \]
\[\times \frac{\delta \tilde{H}_j}{\delta u_x(y,t)} = 0 \]

Then one can propose the solutions of these equations:

\[\{ u_x(x; \xi, \eta), u_y(x; \xi, \eta) \} = \{ p_x(x; \xi, \eta), u_x(y; \xi, \eta) \} = 0, \]
\[\{ u_x(x; \xi, \eta), p_x(y; \xi, \eta) \} = \delta(x-y). \] (6.19)

But it is interesting that the local commutators (6.19) are not satisfied. One can see this inserting the soliton solution into (6.19). On the other hand the integral form (6.18) is satisfied. All this means that \(u \) and \(p \) are not the completely independent variables. It must be stressed that the local relations (6.19) are not the necessary conditions in our formalism.

In our terms, the quantum force \(j(x,t) \) excites the \((\xi, \eta) \) manifold only, leaving the topology of classical trajectory \((u, p)\), unchanged. We can use them immediately since the complete set of canonical coordinates \((\xi, \eta)\) of sin–Gordon model is known, see e.g. [24].

37 That circumstances was mentioned firstly by V. Voronyuk.

6.2.3. Perturbation theory on the cotangent bundle.

The classical Hamiltonian \(H_j \) is the sum:

\[H_j(\eta) = \int dp \sigma(r) \sqrt{r^2 + m^2} \sum_{i=1}^{N} h(\eta_i) \] (6.20)

where \(\sigma(r) \) is the continuous spectrum and \(h(n) \) is the soliton energy. Note absence of interaction energy among solitons.

New degrees of freedom \((\xi, \eta)(t)\) must obey the equations (6.14):

\[\dot{\xi} = \Omega(\eta) - \int dx j(x, t) \frac{\partial u_N(x; \xi, \eta)}{\partial \eta_i}, \]
\[\dot{\eta}_i = \int dx j(x, t) \frac{\partial u_N(x; \xi, \eta)}{\partial \xi}, \]

Hence the sources of quantum perturbations are proportional to the time-local fluctuations of soliton configurations

\[\frac{\partial u_N(x; \xi, \eta)}{\partial \eta_i}, \frac{\partial u_N(x; \xi, \eta)}{\partial \xi}. \]

One can split the Lagrange source onto “Hamiltonian” ones:

\[j(x, t) \rightarrow (j_x, j_\eta). \]

This gives weight functional \(U_u(\eta; e^{\xi}, e^{\eta}) \) and operator

\[\hat{K}(e^{\xi}, e^{\eta}; j_x, j_\eta). \]

In result:

\[\rho(q) = \sum_N \int e^{-i \phi(q; e^{\xi}, e^{\eta})} \int D^{N} M(\xi, \eta) \]
\[\times e^{i \phi(q; e^{\xi}, e^{\eta})} d^{N} \]
\[\prod_{i=1}^{N} d\xi(t) d\eta_i(t) \]

where, using vector notations,

\[\hat{K}(e^{\xi}, e^{\eta}; j_x, j_\eta) \]
\[= \frac{1}{2} \int dt \{ j_x(t) \hat{e}_x(t) + j_\eta(t) \hat{e}_\eta(t) \}. \] (6.23)

The measure takes the form:

\[D^{N} M(\xi, \eta) = \prod_{i=1}^{N} \prod_{\xi(t), \eta(t)} \]
\[\times \delta(\xi - \Omega(\eta_i) - j_x(t)) \delta(\eta_i - j_\eta(t)) \] (6.24)

The effective interaction potential

\[U_u(\eta; e^{\xi}, e^{\eta}) = \frac{-2m^2}{\lambda^2} \int dx dt \sin \lambda u_N(\sin \lambda e - \lambda e) \] (6.25)
with
\[e(x, t) = e(t) \frac{\partial u_N(x; \xi, \eta)}{\partial \eta(t)} - e(t) \frac{\partial u_N(x; \xi, \eta)}{\partial \xi(t)}. \] (6.26)

Performing the shifts:
\[\xi_j(t) \longrightarrow \xi_j(t) + \int dt' g(t-t') j_{\xi_j}(t') \equiv \xi_j(t) + \xi_j(t'), \]
\[\eta_j(t) \longrightarrow \eta_j(t) + \int dt' g(t-t') j_{\eta_j}(t') \equiv \eta_j(t) + \eta_j(t'), \] (6.27)
we can move the Green function \(g(t-t') \) into the operator:
\[\mathbb{K}(e_z, e_n; j_{\xi_j}, j_{\eta_j}) = \frac{1}{2} \int dt dt' g(t-t') \times \{ \hat{\xi}(t') \hat{\xi}_j(t') + \hat{\eta}(t') \hat{\eta}_j(t') \}. \] (6.28)

Notice that the Green function \(g(t-t') \) of Eqs. (6.21) is again the step function:
\[g(t-t') = \Theta(t-t') \] (6.29)
Its imaginary part is equal to zero for real times and this allows to shift \(C_\pm \) to the real-time axis (see [26]).

In result:
\[D^N M(\xi, \eta) = \prod_{i=1}^{N} \prod_{j=1}^{N} d\xi_j(t) d\eta_j(t) \]
\[\times \delta(\hat{\xi}_j - \Omega(\eta_j + \eta_j')) \delta(\eta_j) \] (6.30)
with
\[u_N = u_N(x; \xi + \xi', \eta + \eta'). \] (6.31)
The equations:
\[\hat{\xi}_j = \Omega(\eta_j + \eta_j') \] (6.32)
are trivially integrable. In quantum case \(\eta_j' \neq 0 \) this equation describes the motion on nonhomogeneous and anisotropic manifold. So, the expansion over \(\{ \hat{\xi}_j', \hat{\xi}_j', \hat{\eta}_j', \hat{\eta}_j' \} \) generates the local in time deformations of \(N \) manifold, \((\xi, \eta) \in \gamma_N \) completely. The weight of this deformations is defined by \(\mathcal{U}(u_N; \xi_j, \eta_j) \).

Using the definition:
\[\int D x \delta(x) = \int dx(0) = \int dx \] functional integrals are reduced to the ordinary integrals over initial data \((\xi_j, \eta_j)_0 \). This integrals define the zero modes volume.

6.3. Quantum Corrections

The proof of (6.5) would divide on two parts. First of all we would consider the semielassial approximation (Sec. 6.3.1) and in Sec. 6.3.2. we will show that this approximation is exact.

6.3.1. Introduction and definitions

The \(N \)-soliton solution \(u_N \) depends from \(2N \) parameters. Half of them \(N \) can be considered as the position of solitons and other \(N \) as the solitons momentum. Generally at \(|t| \rightarrow \infty \) the \(u_N \) solution decomposed on the single solitons \(u_s \) and on the double soliton bound states \(u_b \) [24]:
\[u_N(x, t) = \sum_{j=1}^{n_s} u_s(x, t) + \sum_{k=1}^{n_b} u_b(x, t) + O(e^H) \]
We will see later that main elements of our formalism are the one soliton \(u_s \) and two-soliton bound state \(u_b \) configurations. Its \((\xi, \eta) \) parameterizations, confirmed to Eqs. (6.15), have the form:
\[u_s(x; \xi, \eta) = -\frac{4}{\lambda} \arctan \{ \exp(m_x \cosh \beta \eta - \xi) \}, \]
\[\beta = \frac{\lambda^2}{8} \]
and
\[u_b(x; \xi, \eta) \]
\[= -\frac{4}{\lambda} \arctan \left\{ \frac{\tan \frac{\beta \eta_2}{2} \cosh \frac{\beta \eta_1 + \beta \eta_2 - \xi_2}{2}}{\cosh \frac{\beta \eta_1}{2} \cosh \frac{\beta \eta_2 - \xi_1}{2}} \right\} \] (6.34)

The \((\xi, \eta) \) parametrization of solitons individual energies \(h(\eta) \) takes the form:
\[h_s(\eta) = \frac{m_s}{\beta} \cosh \beta \eta, \quad h_b(\eta) = \frac{m_b}{\beta} \cosh \frac{\beta \eta_1 + \beta \eta_2 - \xi_2}{2} \geq 0. \]
The bound-states energy \(h_b \) depends from \(\eta_1 \) and \(\eta_2 \). First one defines inner motion of two bounded solitons and second one the bound states center of mass motion. Correspondingly we will call this parameters as the internal and external ones. Note that the inner motion is periodic, see (6.24).

Performing last integration in (6.22) with measure (6.30) we find:
\[\rho(q) = \sum_n \prod_{i=1}^{N} \{ d\xi_0 d\eta_0 \} e^{-\sum_{\mu=1}^{N} \sum_{\nu=1}^{N} \delta_{\mu \nu} (u_N; \xi, \eta)} \times \Gamma(q; u_N) \] (6.35)
where
\[u_N = u_N(\eta_0 + \eta', \xi_0 + \Omega(\eta_0 + \eta')) \] (6.36)
and
\[\Omega(t) = \int d\tau(\tau - t') \Omega(\eta_0 + \eta'(t)) \] (6.37)
In the semiclassical approximation $\tilde{\xi}' = \eta' = 0$ we have:

$$u_N = u_N(x; \eta_0, \xi_0 + \Omega(\eta_0)t). \tag{6.38}$$

Note now that if the surface term

$$\int e^{i q x} \hat{c}_{\mu}(e^{i q x} \hat{c}^\mu u_N) = 0 \tag{6.39}$$

then

$$\int d^2xe^{i q x}(\hat{c}^2 + m^2_\eta)u_N(x, t) = -(q^2 - m^2_\eta) \tag{6.40}$$

since q^2 belongs to mass shell by definition. The condition (6.39) is satisfied since u_N belong to Schwartz space (the periodic boundary condition for $u(x, t)$ do not alter this conclusion). Therefore, in the semiclassical approximation (6.5) is hold.

Expanding the operator exponent in (6.35) we will find the expansion over

$$\rho_{n,m}(q) = \frac{(1/2i)^n}{n!} \frac{(1/2i)^m}{m!}$$

$$\times \lim_{(\xi', \eta; e_\xi, e_\eta) \to 0} \int d^2\eta_0 d^2\eta \left\{ \int dt dt' \Theta(t - t') \tilde{\xi}'(t') \right\} \left\{ \int dt dt' \Theta(t - t') \tilde{\eta}'(t') \right\}$$

$$\times \left\{ \prod_{i=1}^{n+1} \hat{e}_\xi(t_i) \hat{e}_\eta(t_i) e^{-i U(u_N; e_\xi, e_\eta)} \right\}$$

$$\times \left\{ \prod_{j=1}^{m} \hat{e}_\xi(t_j) \hat{e}_\eta(t_j) e^{-i U(u_N; e_\xi, e_\eta)} \right\} \left(\xi, \eta \right)$$

$$\left(6.41\right)$$

where $U(u_N; e_\xi, e_\eta)$ was defined in (6.25), (6.26). Notice that the action of operators $\hat{\xi}'$, $\hat{\eta}'$ create terms

$$\int d^2xe^{i q x}(\hat{c}^2 + m^2_\eta)u_N(x, t) \neq 0. \tag{6.42}$$

6.3.2. Quantum corrections. Now we will show that The semiclassical approximation is exact in the soliton sector of (6.1), (6.11) theory.

The structure of the perturbation theory is readily seen in the “normal-product” form:

$$\rho(q) = \sum_{N} \prod_{i=1}^{N} \left\{ \int d^2\eta_0 d\eta \right\} e^{-i U(u_N; e_\xi, e_\eta)} e^{i X_0(u_N)}$$

$$\times \left\{ \prod_{i=1}^{n+1} \hat{e}_\xi(t_i) \hat{e}_\eta(t_i) \right\} \left\{ \prod_{j=1}^{m} \hat{e}_\xi(t_j) \hat{e}_\eta(t_j) \right\} \left(\xi, \eta \right)$$

$$\left(6.43\right)$$

where

$$\hat{\sigma} = \hat{j}_N \frac{\partial u_N}{\partial \eta} - \hat{j}_N \frac{\partial u_N}{\partial \xi} = \frac{\partial \sigma}{\partial X} \frac{\partial u_N}{\partial X} \tag{6.44}$$

and

$$\hat{j}_x = \int dt' \Theta(t - t') \tilde{\lambda}(t') \tag{6.45}$$

with $2N$-dimensional vector $X = (\tilde{\xi}, \eta)$. In Eq. (6.44) σ is the ordinary simplectic matrix.

The colons in (6.43) mean that the operator \hat{j} should stay to the left of all functions. The structure (6.44) shows that each order over \hat{j} is proportional at least to the first order derivative of N over conjugate to X variable.

The expansion of (6.43) over \hat{j} can be written [26] in the form of total derivatives (omitting the semiclassical approximation):

$$\rho(q) = \sum_{N} \prod_{i=1}^{N} \left\{ \int d^2\eta_0 d\eta \right\} \left\{ \sum_{i=0}^{2n} \frac{\partial}{\partial X_{0i}} P_X(u_N) \right\}.$$

$$(6.46)$$

where $P_X(u_N)$ is the infinite sum of “time-ordered” polynomials (see [26]) over u_N and its derivatives. The explicit form of $P_X(u_N)$ is complicated since the interaction potential is non-polynomial. But it is enough to know, see (6.44), that

$$P_X(u_N) \sim \omega \frac{\partial u_N}{\partial X_{0j}}.$$

$$(6.47)$$

Therefore,

$$\rho(q) = 0 \tag{6.48}$$

since (i) each term in (6.46) is the total derivative, (ii) we have (6.47) and (iii) u_N belongs to Schwartz space.

We can conclude that the equality (6.48) is hold since

$$\frac{\partial u_N}{\partial X_{0j}} = 0 \text{ at } X_0 \in \partial W,$$

$$(6.49)$$

where ∂W is the boundary of W.

In our consideration we did not touch the continuous spectrum contributions. In considered approach this contributions are absent since they are realized on zero measure: theirs contributions are $\sim \{\text{volume of } \gamma_N\}^{-1}$.

7. SUMMARY

Let as summarize the general results of present and of the previous sections.
(1) The m- into n-particles transition (non-normalized) probability R_{mn} would have on the Dirac measure the following symmetrical form:

$$\rho_{mn}(p_1, \ldots, p_m, \ldots, q_m) = \langle \prod_{k=1}^{m} \Gamma(q_k; u) \rangle^2 \prod_{k=1}^{n} \Gamma(p_k; u) \rangle^2$$

$$= e^{-i\mathcal{K}(j, e)} \int \mathcal{D}M(u) e^{iS_0(u) - I(u, e)} (7.50)$$

$$\times \langle \prod_{k=1}^{m} \Gamma(q_k; u) \rangle^2 \prod_{k=1}^{n} \Gamma(p_k; u) \rangle^2$$

$$= \hat{\mathcal{O}}(u) \langle \prod_{k=1}^{m} \Gamma(q_k; u) \rangle^2 \prod_{k=1}^{n} \Gamma(p_k; u) \rangle^2.$$

Here $\rho(q)$ are the in(out)--going particle momenta. It should be underlined that this representation is strict and is valid for arbitrary Lagrange theory of arbitrary dimensions.

(2) The operator $\hat{\mathcal{O}}$ contains three element. The Dirac measure $\mathcal{D}M$, the functional S_0, $U(x, e)$ and the operator $\hat{\mathcal{K}}(j, e)$.

The expansion over the operator

$$\hat{\mathcal{K}}(j, e) = \frac{1}{2} \text{Re} \int \frac{dx dt}{c} \delta \frac{\delta}{\delta j(x, e)} \frac{\delta}{\delta e(x, t)}$$

$$= \frac{1}{2} \text{Re} \int \frac{dx dt}{c} \delta \frac{\delta}{\delta j(x, t)} \hat{e}(x, t)$$

(7.51) generates the perturbation series. We will assume that this series exist (at least in Borel sense).

(3) The functional $U(x, e)$ and $S_0(u)$ are defined by the equalities:

$$S_0(u) = (S_0(u + e) - S_0(u - e))$$

$$+ 2 \text{Re} \int \frac{dx dt}{c} (\hat{\mathcal{O}}^2 + m^2) u(x, t),$$

$$U(x, e) = V(u + e) - V(u - e)$$

$$- \text{Re} \int \frac{dx dt}{c} \mathcal{V}'(u),$$

(7.52) (7.53) where $S_0(u)$ is the free part of the Lagrangian and $V(u)$ describes interactions. The quantity $S_0(u)$ is not equal to zero if u have nontrivial topological charge.

(4) The measure $\mathcal{D}M(u, p)$ has the Dirac form:

$$\mathcal{D}M(u, p) = \int_{x, t} \mathcal{D}u(x, t) \mathcal{D}p(x, t) \delta^2 (\hat{u} - \frac{\delta H(u, p)}{\delta \mathcal{P}})$$

$$\times \delta^2 (\hat{p} - \frac{\delta H(u, p)}{\delta u})$$

(7.54) with the total Hamiltonian

$$H(u, p) = \int dx \left\{ \frac{1}{2} p^2 + \frac{1}{2} (\nabla u)^2 + \mathcal{V}(u) - j u \right\}.$$

(7.55)

This last one includes the energy j_u of quantum fluctuations.

(5) Dirac measure contains following information:

a. Only strict solutions of equations

$$\dot{u} - \frac{\delta H(u, p)}{\delta \mathcal{P}} = 0,$$

$$\dot{p} + \frac{\delta H(u, p)}{\delta u} = 0$$

(7.56) with $j = 0$ should be taken into account. This “rigidity” of the formalism means the absence of pseudo-solutions (similar to multi-instanton, or multi-Kink) contribution.

b. ρ_{mn} is described by the sum of all solutions of Eq. (7.56), independently from their “nearness” in the functional space;

c. ρ_{mn} did not contain the interference terms from various topologicals nonequivalent contributions. This displays the orthogonality of corresponding Hilbert spaces;

d. The measure (7.54) includes $j(x)$ as the external adiabatic source. Its fluctuation disturbs the solutions of Eq. (7.56) and vice versa since the measure (7.54) is strict;

e. In the frame of the adiabatical condition, the field disturbed by $j(x)$ belongs to the same manifold (topology class) as the classical field defined by (7.56) [26].

f. The Dirac measure is derived for real–time processes only, i.e. (7.54) is not valid for tunnelling ones. For this reason, the above conclusions should be taken carefully.

g. It can be shown that theory on the measure (7.54) restores ordinary (canonical) perturbation theory.

(6) The parameter $\Gamma(q; u)$ plays the role of particle production vertex. It is connected directly with external particle energy, momentum, spin, polarization, charge, etc., and is sensitive to the symmetry properties of the interacting fields system. For the sake of simplicity, $u(x)$ is the real scalar field. The generalization would be evident.

As a consequence of (7.54), $\Gamma(q; u)$ is the function of the external particle momentum q and is a linear functional of $u(x)$:

$$\Gamma(q; u) = -\int dx e^{iqx} \frac{\delta S_0(u)}{\delta u(x)}$$

(7.57)

$$= \int dx e^{iqx} (\hat{\mathcal{O}}^2 + m^2) u(x), \quad q^2 = m^2,$$

for the mass m field. This parameter presents the momentum distribution of the interacting field $u(x)$ on the remote hypersurface σ_x if $u(x)$ is the regular func-
The construction (7.57) means, because of the Klein-Gordon operator and since the external states being mass-shell by definition [33], the solution \(p_{nm} = 0 \) is possible for a particular topology (compactness and analytic properties) of quantum field \(u(x) \). So, \(\Gamma(q; u) \) carries the following remarkable properties:

— it directly defines the observables,

— it is defined by the topology of \(u(x) \),

— it is the linear functional of the actions symmetry group element \(u(x) \).

If (7.56) have nontrivial solution \(u_c(x, t) \), then this “extending objects” quantization problem arises. We solve it introducing convenient dynamical variables [34]. Then the measure (7.54) admits the transformation:

\[
u_c : (u, p) \longrightarrow (\xi, \eta) \in W = G/G_c.
\]

and the transformed measure has the form:

\[
DM(u, p) = \prod_{x, \rho} d\xi(t) d\eta(t) \delta(\xi - \frac{\delta h_c(\xi, \eta)}{\delta \eta})(\eta - \frac{\delta h_c(\xi, \eta)}{\delta \xi}),
\]

where \(h_c(\xi, \eta) = H_c(u_c, p_c) \) is the transformed Hamiltonian.

It is evident that \((\xi, \eta) \) are parameters of integration of Eqs. (7.56) and they form the factor space \(W = G/G_c \). As a result of mapping of the perturbation generating operator \(\hat{H}_c \) on the manifold \(W \) the equations of motion became linearized:

\[
DM \equiv \prod_t \delta(\xi - \frac{\delta h_c(\xi, \eta)}{\delta \eta} - j_\xi) \delta(\eta - j_\eta).
\]

If Feynman’s \(i\epsilon \)-prescription is adopted, then the Green function of Eq. (7.60)

\[
g(t - t') = \Theta(t - t')
\]

with boundary property:

\[
\Theta(0) = 1.
\]

(7) Expansion of \(\exp\{\hat{H}_c(j, e)\} \) gives the “strong coupling” perturbation series. Its analysis shows that the action of the integro-differential operator \(\hat{U} \) leads to the following representation:

\[
\rho_{nm}(p, q) = \int_w \left\{ d\xi(0) \frac{\partial}{\partial \xi(0)} \rho_{nm}(p, q) + d\eta(0) \frac{\partial}{\partial \eta(0)} \rho_{nm}(p, q) \right\}.
\]

This means that the contributions into \(R_{nm}(p, q) \) are accumulated strictly on the boundary, “bifurcation manifold”, \(W \), i.e. depends directly on the topology property of \(W \).

(8) It was shown that the MP is absent in the frame of Lagrangian (6.1). For this purpose one should modify the sin-Gordon Lagrangian adding for instance the term:

\[
\frac{1}{2}(\hat{\Phi}^2) - \frac{1}{2}M^2\Phi^2 - \zeta u\Phi^2
\]

to describe collision of “external” field \(\Phi \) on the solitons. This model allows to introduce the nontrivial probabilities \(\rho(q_1, q_2, ...) \) considering creation (and absorption) of the field \(\Phi \). Note that field \(u(x) \) is still “confined” even with this adding.

8. CONCLUSIONS

The final goal of present approach is to construct the workable at arbitrary distances, i.e. for arbitrary momenta of produced hadrons, \(S \)-matrix formalism for theories with (hidden) symmetry. But this aim remains unachieved in present paper. In subsequent papers more realistic field models in \(4d \) Minkowski space-time metric will be described. But one should not consider the demonstrated examples of Yang–Mills \(S \)-matrix as the definite proves since I am note sure that the used \(O(4) \times O(2) \) solution of Yang–Mills equation in the Minkowski in the situation of general position guarantee the largest contribution. Moreover, only the \(SU(2) \) theory will be considered. Unfortunately we can not find in the frame of t’Hooft ansatz [35] the solution for larger \(SU(N) \) group [36].

It will be to shown how one or another physical phenomena may be seen in the field theory with symmetry. Namely,

— no plain waves production exist in theories with symmetry,

i.e. for instance the gluons can not be seen in a free state since simply the last ones are absent in quantum theory of the symmetry manifolds, or, in other words, since the gluon states and the “states” of the symmetry manifold belong to the orthogonal Hilbert spaces. The quark fields will not be included in this simplest example. But more realistic model with quarks shows that
inclusion of matter can not change previous conclusion that the gluons can not be created.

In the other example we will show how the binding potential may arise among quarks.

Here the situation of general position selection rule will be extremely important: it will be used that the situation when \((q\bar{q}) \) potential is independent from the scale of Yang–Mills fields is mostly probable.

The quantum field theory with constraints will obey following important property:

—the perturbation theory of quantum systems with symmetry may be free from any divergences,

i.e. it may be right at arbitrary distances, for VHM case as well. It is the evident consequence of lessening of the number of dynamical degrees of freedom because of symmetry constraints.

Exist also the intriguing question of asymptotic freedom. The point is that there is no running coupling constants in our strong coupling perturbation theory without divergences. On the other hand the asymptotic freedom is the experimental fact. We will show how

—the effect of asymptotic freedom may arise

in our quantum theory of the symmetry manifolds. The main question here is to find the experimentally observable corrections to the asymptotic freedom law.

In summary, the aim of future publications would be the question: is the offered approach complete from physical point of view? It is important since offered quantization scheme in the situation of general position on Dirac measure must be true for arbitrary distances, since it is free from arbitrary scale parameters.

ACKNOWLEDGMENTS

First of all I am thankful to Alexei Sisakian for fruitful conversations during the work upon the topology conserving perturbation theories ideology. The offered text was arranged under last, before his sudden death, proposition to put in order my present-day understanding of the approach. I would like to note the significant role of E. Levin and L. Lipatov in realization of discussed formalism. I am grateful to V. Kadyshevski for interest to the discussed in the paper questions. Various parts of the approach were offered to auditory of many Institutes and Universities and I am grateful for theirs interest and comments.

REFERENCES

1. J. Manjavidze, Sov. J. Nucl. Phys. 45, 442 (1987).
2. M. V. Fedoryuk, Asymptotics: Integrals and Series (Nauka, Moscow, 1987).
3. G. Parisi and Y. Wu, Ecientia Sinica 24, 483 (1981); A. A. Migdal and T. A. Kozhamkulov, Sov. J. Nucl. Phys. 39, 1012 (1983).
4. A. N. Kolmogorov, Dokl. Akad. Nauk SSSR 98, 527 (1954); V. I. Arnold, Izv. Akad. Nauk SSSR 25, 21 (1961); V. I. Arnold, Usp. Mat. Nauk 18, 81 (1963); Yu. Mozer, Math. Phys. 11a, 1 (1962).
5. J. S. Dowker, Ann. Phys. (N.Y.) 62, 361 (1971).
6. M. S. Marinov, Phys. Rep. 60, 1 (1980).
7. S. F. Edwards and Y. Gulyaev, Proc. R. Soc. London, Ser. A 279, 229 (1964).
8. R. P. Feynman and A. R. Hibbs, Quantum Mechanics and Path Integrals (McGraw–Hill, New York, 1965).
9. C. Grosche, Path Integrals, Hyperbolic Spaces, and Selberg Trace Formulae (World Scientific, Singapore, NJ, London, Hong Kong, 1995).
10. H. Kleinert, Path Integrals in Quantum Mechanics, Statistics and Polymer Physics, and Financial Markets (World Scientific, Singapore, 1989).
11. R. Dashen, B. Hasslacher, and A. Neveu, Phys. Rev. D: Part. Fields 10, 4114 (1974).
12. V. I. Arnold, Mathematical Methods of Classical Mechanics (Springer-Verlag, New York, 1978).
13. P. A. M. Dirac, Lectures on Quantum Mechanics (Yeshiva Univ., New York, 1964).
14. V. E. Korepin and L. D. Faddeev, Sov. Teor. Mat. Fiz. 25, 147 (1975).
15. L. Faddeev and V. Korepin, Phys. Rep. C 42, 3 (1978); J. Goldstone and R. Jackiw, Phys. Rev. D 11, 1486 (1975); V. A. Rubakov, Classical Theory of Gauge Fields (Editorial URSS, Moscow, 1999) [in Russian].
16. S. Coleman, Phys in Subnuclear Physics, Ed. by Zichichi (Ettore Majorana School, Italy, Erice, 1976).
17. R. Mills, Propagators of Many-Particle Systems (Gordon Breach, London, 1969).
18. K. Osterwalder and E. Seiler, Ann. Phys. (N.Y.) 110, 440 (1978).
19. J. Manjavidze and A. Sissakian, Theor. Math. Phys. 130, 153 (2002).
20. I. H. Duru, Phys. Rev. D: Part. Fields 30, 143 (1984).
21. G. Pochle and E. Teller, Z. Phys. 83, 143 (1933).
22. J. Manjavidze, J. Math. Phys. 41, 5710 (2000).
23. V. Fock, Z. Phys. 98, 145 (1935); V. Bargman, Z. Phys. 99, 576 (1935); V. S. Popov, High Energy Physics and Elementary Particles Theory (Naukova Dumka, Kiev, 1967) [in Russian].
24. L. A. Takhtajan and L. D. Faddeev, Hamiltonian Methods in the Theory of Solitons (Nauka, Moscow, 1986) [in Russian].
25. R. Abraham and J. E. Marsden, *Foundations of Mechanics* (Benjamin, Cummings Publ., Reading, MA, 1978).
26. J. Manjavidze, “Perturbation Theory on the Invariant Subspace,” hep-th/9801188.
27. S. Smale, Inv. Math. 10, 305 (1970); Inv. Math. 11, 45 (1970).
28. I. H. Duru and H. Kleinert, Phys. Lett. B 84, 185 (1979).
29. J. Manjavidze and A. Sissakian, Phys. Rep. 346, 1 (2001).
30. A. B. Zamolodchikov and A. B. Zamolodchikov, Phys. Lett. B 72, 503 (1978).
31. *Solitons*, Ed. by R. K. Bullough and J. Caudry (Springer-Verlag, Berlin, Heidelberg, New York, 1980); T. D. Lee, Phys. Scr. 20, 440 (1979); R. Jakiw, Rev. Mod. Phys. 49, 681 (1977); J. Goldstone and R. Jackiw, Phys. Rev. D 11, 1485 (1975); R. Rajaraman, *Solitons and Instantons* (North-Holland, Amsterdam, New York, Oxford, 1982).
32. J. M. Souriau, *Structure des Systems Dynamiques* (Dunod, Paris, 1970).
33. L. Landau and R. Peierls, Z. Phys. 69, 56 (1931).
34. J. Manjavidze and A. Sissakian, J. Math. Phys. 42, 641 (2001).
35. G. ‘t Hooft, “Computation of the Quantum Effects Due to a Four-Dimensional Pseudoparticle,” Phys. Rev. D: Part. Fields 14, 3432 (1976).
36. J. Manjavidze and V. Voronyuk, Phys. Part. Nucl. Lett. 3, 391 (2006).