Joint Formation of Supermassive Black Holes and Galaxies

MARTIN G. HAHNELT
Institute of Astronomy, Cambridge

Abstract

The tight correlation between black hole mass and velocity dispersion of galactic bulges is strong evidence that the formation of galaxies and supermassive black holes are closely linked. I review the modeling of the joint formation of galaxies and their central supermassive black holes in the context of the hierarchical structure formation paradigm.

1.1 Supermassive Black Holes in Galactic Bulges

1.1.1 SMBHs — Commonplace Rather Than Rare Disease

The suggestion that galaxies may harbor supermassive black holes (SMBHs) at their centers dates back to the 1960s (Lynden-Bell 1969; see Rees 1984 for a review of the older literature). Initially black holes were suggested to explain the large efficiencies of transforming matter into radiation necessary to sustain the large luminosities of bright active galactic nuclei (AGNs). For a long time the evidence for the presence of SMBHs was mainly due to observations of such “active” SMBHs. However, the space density of bright AGNs is about a factor of 100 to 1000 smaller than that of normal galaxies. For several decades it was thus a lively debated question whether all normal galaxies (including our own) contain “dormant” SMBHs, or whether only a small fraction of all galaxies and which galaxies may exhibit such a “disease” (see Rees 1990 for a discussion).

The discovery of the tight correlation between black hole mass and the velocity dispersion of the bulge component of galaxies (Gebhardt et al. 2000; Ferrarese & Merritt 2000), enabled by the increased resolution of HST, has decided this question beyond any doubt in favor of most galactic bulges containing black holes. Note that this also finally rules out the possibility that bright QSOs are long-lived (e.g., Small & Blandford 1992; Choi, Yang, & Yi 1999). In light of the faint-level AGN activity that has been detected in many galaxies for some time (see Ho, this volume, for a review), this may not come too much as a surprise. It even appears now that not only most galaxies with a bulge contain SMBHs holes, but also that most of such galaxies show activity (see Heckman and Ho, this volume).

The fact that the mass of the black hole appears to scale with the mass of the galactic bulge rather than the mass of the galaxy or its dark matter (DM) halo is likely to be a major new clue in understanding the formation of galactic bulges and central SMBHs.
M. G. Haehnelt

1.1.2 The $M_\bullet-\sigma_*$ Relation: An Undeciphered Clue?

The tight correlation of the black hole mass with global structural properties of the galaxy, such as the velocity dispersion of its bulge, came as a big surprise. The $M_\bullet-\sigma_*$ relation is generally taken as strong evidence that the growth of SMBHs and the formation of galaxies go hand in hand. This is reflected in the fact that this idea has become the theme of this conference.

Many suggestions have been made as to what may determine the mass of SMBHs in galaxies. The models can be broadly grouped as follows.

- Simple scaling models: The mass of the black holes is assumed to scale with certain properties of the galaxy or its DM halo (e.g., Haehnelt & Rees 1993; Haiman & Loeb 1998).
- Supply-driven models: The mass of accreted gas scales with the amount of available (low-angular momentum) fuel (e.g., Kauffmann & Haehnelt 2000; Adams, Graff, & Richstone 2001; Volonteri, Haardt, & Madau 2002).
- Self-regulating models: The energy output during accretion or the influence of the black hole on the galactic gravitational potential limits the fuel supply (e.g., Norman & Silk 1983; Small & Blandford 1992; Silk & Rees 1998; Haehnelt, Natarajan, & Rees 1998; Sellwood & Moore 1999; Wyithe & Loeb 2002; El-Zant et al. 2003).
- “Exotic” models: Accretion of collisional DM or accretion of stars (e.g., Hennawi & Ostriker 2003; Zhao, Haehnelt, & Rees 2002).

Most of these models succeed in explaining the observed scaling relations. Nevertheless, none appears likely to be the final answer. Some of them fall short of specifying the physical mechanism at work. The rest invoke fine-tuning or only moderately plausible assumptions of some kind or another. Most puzzling in that respect is the remarkable tightness of the observed correlation of the black hole mass with the stellar velocity dispersion on large radii. This correlation is significantly tighter than, for example, the correlation of stellar velocity dispersion and bulge luminosity (Haehnelt & Kauffmann 2000). It appears that either the tightness of the relation for the current sample of nearby galactic bulges is a statistical fluke or that we have not yet fully unravelled the clue it may give us as to how SMBHs grow and form.

1.2 The Assembly of SMBHs

1.2.1 The Observed Accretion History of SMBHs

The next important piece of observational evidence on how SMBHs have assembled comes from the demography of the active population. The observed energy density U_X emitted by active black holes at redshift z in band X can be used to estimate the overall black hole mass density in remnant black holes using Sołtan’s (1982) argument

$$\rho_\bullet = \epsilon_{\text{acc}} f_X^{-1} \int \frac{dU_X(z)}{dz}(1+z)dz.$$ \hspace{1cm} (1.1)

This elegant argument only requires assumptions about the efficiency of turning accreted rest-mass energy into radiated energy ϵ_{acc} and the factor f_X, which relates the total emissivity to the emissivity in the chosen band. For optically bright QSOs these estimates have been done for some time and the black hole mass density associated with accretion in optically bright QSOs is well determined. The remnant black hole mass density attributable to optically “obscured” accretion, as traced by hard X-ray sources, is much less well known.
In the last couple of years it has been claimed that the total mass accreted in optically obscured sources may exceed that accreted in optically bright QSOs by a large factor (Fabian & Iwasawa 1999; Elvis, Risaliti, & Zamorani 2002). However, the bolometric correction factors were large ($\gtrsim 30$) and uncertain, and the redshift distribution was not yet determined. As discussed by Fabian (this volume), with the data on hard X-ray selected active SMBHs rapidly accumulating, a more moderate contribution to the integrated black hole mass density appears more plausible. With this more moderate contribution and the reduced estimates of the black hole mass density in nearby galactic bulges that accompanied the discovery of the $M_\bullet-\sigma_*$ relation, it appears that optically bright QSOs are a reasonably faithful tracer of the integrated mass accretion history of SMBHs. Figure 1.1 shows schematically how in the last few years estimates of the black hole mass density in nearby galactic bulges and in active SMBHs have converged to within a factor of 2 to the value estimated for accretion in optically bright QSOs (Haehnelt & Kauffmann 2001; Merritt & Ferrarese 2001; Aller & Richstone 2002; Yu & Tremaine 2002; Comastri 2003; Fabian, this volume).
1.2.2 Theoretical Models for the Assembly of SMBHs

A wide variety of formation mechanisms for SMBHs has been suggested, which are nicely summarized in the famous flow chart of Martin Rees (Rees 1977, 1978, 1984). The suggestions vary from the collapse of a (rotating) supermassive stars, to the evolution of a dense star cluster, to the direct collapse of a gas cloud, and various combinations thereof. The main message of the flow chart, that there is no lack of plausible routes to a SMBH, is as valid today as it was when it was first compiled. However, for most of the processes the large formation efficiency of \(\sim 0.2\% \) of the baryonic mass in a galactic bulge and the tight correlation with the stellar velocity dispersion of the galactic bulge are surprising.

Have we, then, made progress and can we exclude large parts of the diagram? Probably not much. What has been established so far is that the majority of galactic bulges contain SMBHs and that emission of optically bright QSOs trace the mass accretion history well. We further know from our theoretical understanding of the hierarchical build-up of galaxies that mergers of SMBHs have to play an important role in their build-up. However, at the same time, bright, high-redshift QSOs tell us that about 10% of the black hole mass density in SMBHs had already been assembled at redshift 4, and some black black holes already had a mass of \(10^9 M_\odot \) even at redshift 6.

Thus, a consistent picture for the growth history of SMBHs at redshift \(z \lesssim 5 \) appears to be in place. The more difficult and also more interesting problem of how SMBHs have formed in the first place is, however, still largely unconstrained by observations.

1.3 Hierarchical Galaxy Formation

1.3.1 The Standard Paradigm of Structure Formation

The joint theoretical and observational effort of the last three decades has led to a determination or, maybe better, reconstruction of the spatial power spectrum of the initial density fluctuations, which is reliable to better than 20% on scales from a few Mpc to the Hubble radius (see Spergel et al. 2003 for a recent summary). This power spectrum of density fluctuations is hierarchical in nature: fluctuations on large scales are smaller than those on small scales. The power spectrum is tantalizingly close to the \(\Lambda \)CDM variant of the cold dark matter (CDM) scenario, which postulates DM particles with random velocities too small to affect structure formation. Such a power spectrum results in a hierarchical build-up of structures with small objects forming first and larger objects building up by merging. In this model the first pregalactic structures form at redshift 20 to 5, while the first DM halos capable of hosting big galaxies assemble between redshift 5 and 2, and the formation of galaxy clusters occurs at redshift 1 to 0.

1.3.2 Hierarchical Build-up of Galaxies and Merger Tree Models

The hierarchical structure formation paradigm has profound implications for the way galaxies and active nuclei form and evolve (White & Rees 1978; Blumenthal et al. 1984; White & Frenk 1991; Haehnelt & Rees 1993). Galaxies typically double their mass in about 20% of the Hubble time. A key ingredient of hierarchical galaxy formation models is thus the frequent merging of DM halos and galaxies. Kauffmann and collaborators were the first to model in detail the basic processes governing galaxy formation following the merging history of DM halos (Kauffmann, White, & Guiderdoni 1993). Gas cooling, star formation, and stellar feedback were described with simple recipes, and the merger hi-
tory was modeled with extensive Monte Carlo simulations. This model soon became known as the “semi-analytical model” of galaxy formation. It was shown to be consistent with a wealth of observations at low redshift if the parameterization of the physical processes are chosen in an appropriate way (e.g., Cole et al. 1994; Kauffmann et al. 1999a; Somerville & Primack 1999; Somerville, this volume). High-redshift observations have removed some, but not all, of the parameter degeneracies that exist (Kauffmann et al. 1999b; Somerville, Primack, & Faber 2001). The detailed comparison with the luminosity function and clustering properties of galaxies in different bands nevertheless gives confidence that the models are a fair representation of the hierarchical build-up of the mass of observed galaxies, their bulges, and their DM halos. Details of the predicted star formation history, luminosities, and colors at high redshift are, however, much less certain.

Despite their success in reproducing many observed properties of galaxies, the fact that stellar populations in early-type galaxies are generally very old regardless of their location in galaxy clusters or in the field (e.g., van Dokkum et al. 2001) has not yet been fully understood in the context of hierarchical galaxy formation models. I will discuss later how
this may be related to a similar problem of understanding the rapid decline of the QSO emissivity at low redshift.

1.4 SMBHs in Hierarchically Merging Galaxies

1.4.1 SMBHs in DM Halos

The merging histories and dynamical evolution of DM halos in CDM-like structure formation models has been well established by analytical calculations and numerical simulations (e.g., Jenkins et al. 1998). As mentioned in the last section, the evolution of the baryonic component of these DM halos is more difficult to predict. It is thus reasonable to try to link the evolution of the population of (active) SMBHs directly to the evolution of the population of DM halos, especially at high redshift where our knowledge about the host galaxies of SMBHs has only recently started to build up. When CDM-like models were first seriously discussed, it was not obvious that the rather late emergence of galaxy-size structures in these models was not in conflict with the existence of bright, high-redshift QSOs, which were found in large numbers at the end of the 1980s. Efstathiou & Rees (1988) showed that this is not the case. Haehnelt & Rees (1993) pointed out that in CDM models the build up of galactic-size structures coincides with the peak in AGN activity at redshift 2.5 and that the emergence of the QSO population between redshift 5 and 2.5 arises naturally in CDM-like cosmogonies (see also Cavaliere & Szalay 1986). They further showed that the evolution of the QSO emissivity at $0 < z < 3$ can be reproduced if a suitable scaling of black hole mass with the virial velocity of newly formed halos and redshift was assumed (Fig. 1.2). The formation rate of galactic nuclei was modeled as the time derivative of the space density of DM halos times a "lifetime" t_Q of the QSO phase, while the luminosity was assumed to scale with the Eddington luminosity:

$$
N_{QSO} = N_{halo} t_Q, \quad L_{QSO} = \alpha_{Edd} L_{Edd}(M_\bullet), \quad M_\bullet = g(M_{halo}, z) = g(\upsilon_{circ}, z)
$$

Haehnelt & Rees (1993) had to choose the scaling with redshift such that the black hole formation efficiency dropped very quickly with decreasing redshift. They argued that this is because at redshifts smaller than 2.5 the amount of available fuel in galaxy-size halos decreases with the decreasing ability of the gas to cool at low redshift (see also Cavaliere & Vittorini 2000 and see Monaco, Salucci, & Danese 2000 for an alternative interpretation). They further found that $t_Q \approx 10^8$ yr gives a good match to the QSO luminosity function for their assumed scaling of black hole formation efficiency with virial velocity of the DM halo. In a similar spirit, Haiman & Loeb (1998) suggested that the black hole mass scales linearly with halo mass and showed that the QSO luminosity function can then be reproduced with a very short lifetime $t_Q \approx 10^6$ yr. Haehnelt et al. (1998) showed that a consistent picture for the high-redshift star-forming (“Lyman-break”) galaxies and the AGN population arises within this framework if Lyman-break galaxies host the SMBHs responsible for the observed QSO activity (see Granato et al. 2001 for a discussion of the possible connection between QSOs and sub-mm sources). Haehnelt et al. (1998) showed that the scaling of black hole mass with halo mass or circular velocity is degenerate with the assumed lifetime t_Q. The QSO luminosity function can be matched either with a steep relation between black hole mass and halo mass ($M_\bullet \propto M_{halo} \propto \upsilon_{circ}^5$), more massive halos for a given black hole mass and
Fig. 1.3. “Merger tree” models of galaxies with black holes: Monte Carlo realization of the merging histories of DM halos plus simple recipes for gas cooling, star formation, stellar feedback accretion, and dynamics of galaxies and black holes.

A longer lifetime or a shallower relation between black hole and halo mass \(M_\bullet \propto M_{\text{halo}} \propto v_{\text{circ}}^3 \), less massive halos and a shorter lifetime. Haehnelt et al. (1998) further showed that this degeneracy can be broken with a study of the clustering properties of AGNs, which is sensitive to the absolute mass scale of the DM halos hosting QSOs. They found that a scaling \(M_\bullet \propto v_{\text{circ}}^5 \) and \(t_Q \approx 10^7 \) yr did fit best the QSO luminosity function and the then still rather scarce information on the clustering of high-redshift QSOs. Haiman & Hui (2001) and Martini & Weinberg (2001) investigated in more detail what constraints on the lifetime can be obtained from upcoming QSO surveys (see Martini, this volume, for a summary of this and other constraints on QSO lifetimes). Wyithe & Loeb (2002) showed that a scaling \(M_\bullet \propto v_{\text{circ}}^5 \) is also consistent with the new high-redshift data from the SDSS QSO survey and the luminosity function of X-ray selected AGNs.

1.4.2 SMBHs in Merger Tree Models

When Magorrian et al. (1998) published a large sample of black hole mass estimates for nearby galaxies and confirmed the suggestion that black hole mass and bulge mass are strongly correlated with a nearly linear relation (Kormendy & Richstone 1995), the idea that the formation of galaxies and black holes are closely linked became more widely accepted. Cattaneo, Haehnelt, & Rees (1999) demonstrated that a hierarchical merger tree model could reproduce the observed slope and scatter of the “Magorrian relation,” provided
Fig. 1.4. Redshift evolution of the space density of QSOs with $M_B < -24$ mag in the model of Kauffmann & Haehnelt (2000). (Reproduced from Haehnelt & Kauffmann 2001.)

that star formation and the growth of black holes are closely linked. They thereby enforced a rapid drop of the gas available in both shallow and very deep potential wells to mimic the effect of feedback on small halos and the inability of the gas to cool in the very massive halos. Kauffmann & Haehnelt (2000) combined the full merger tree models of galaxies with the idea that the SMBHs form from the cold gas available in major mergers and assumed that the accretion of gas leads to QSO activity of duration $t_Q \approx 10^7$ yr. They demonstrated that such a model is consistent with the evolution of the QSO emissivity (Fig 1.4.), the Magorrian relation, the present-day luminosity function, and global star formation history of galaxies and the evolution of cold gas as probed by damped Lyα systems. It is interesting to note that to match the observations Kauffmann & Haehnelt (2000) had to change the feedback prescription compared to the previous modeling of Kauffmann et al., such that galaxies become progressively more gas rich at high redshift. Kauffmann & Haehnelt (2000) also made some predictions for the luminosities of QSO host galaxies at high redshift. In the model of Kauffmann & Haehnelt the rather steep decline of the QSO emissivity with decreasing redshift can be attributed to a combination of a decrease in the merger rate, a decrease of the amount of cold gas available for fueling, and an increase in the accretion time scale.

Haehnelt & Kauffmann (2000) showed that the Kauffmann & Haehnelt (2000) model is also consistent with the M_\bullet–σ_* relation (Fig. 1.5). Somewhat surprisingly, the model also reproduces the tightness of the relation, despite the frequent merging. This is because the black holes move along the M_\bullet–σ_* relation during mergers and the cold gas available for accretion during major mergers scales explicitly with the depth of potential well rather than with the mass of the galaxy in their model. One should, however, keep in mind that the dynamical processes were modeled in a simplistic fashion. More detailed modeling of the dynamics of the galaxy and black hole merger most likely will introduce additional scatter. Kauffmann & Haehnelt (2002) investigated the clustering properties of galaxies
and QSOs in the model and found that a lifetime of 10^7 yr is also consistent with the 2dF clustering data. They further pointed out that study of the galaxy-QSO correlation function may give further clues on how QSO activity is triggered. The spin distribution of black holes may give another handle on determining the merger history of black holes (Hughes & Blandford 2003). Cattaneo (2002) investigated the expected evolution of the spin of black holes hosted by hierarchically merging DM halos for a variety of assumptions for the spin-up and spin-down processes. Unfortunately, observationally we know very little about the spin of SMBHs even though it has been suggested that the jets in radio-loud AGNs may be powered by the rotational energy of their central black hole (Blandford & Znajek 1977).

Despite their success in reproducing many observed properties, hierarchical models generally struggle to reproduce the rapid decline of QSO activity toward low redshift. As mentioned earlier, this difficulty is most likely connected to a similar difficulty in explaining the very rapid decrease of star formation activity in galactic bulges. In galactic bulges both the
star formation activity and the accretion onto the black holes seem to be “switched off” at higher redshift than star formation in other galaxies. This suggests that the presence of a supermassive black hole is the physical reason (see Granato et al. 2001 for a model along those lines). Feedback effects like radiation pressure, radiative heating, energetic particles, and kinetic energy due to accretion have a large impact on the surrounding (forming) host galaxy and beyond (see Begelman, this volume, for a review). A better understanding of AGN feedback may thus be key to resolving some of the difficulties encountered by the current models (see also Somerville, this volume). Supermassive black holes may so be an essential ingredient in shaping the Hubble sequence of galaxies.

1.4.3 Binary/Multiple SMBHs and the Core Properties of Galactic Bulges

If galaxies merge hierarchically and all galactic bulges contain black holes the formation of supermassive binary and multiple black holes is expected to be common. When two galaxies of moderate mass ratio merge, a hard binary will form quickly (e.g., Milosavljević & Merritt 2001). There are two processes that can shrink the separation of hard binaries: accretion of gas and hardening by three-body interaction with stars (Begelman, Blandford, & Rees 1980). Stellar hardening of supermassive binaries requires the ejection of several times the mass of the binary black hole. Binary black holes may thus play an important role in shaping the core profiles of galactic bulges (Ravindranath, Ho, & Filippenko 2002; Milosavljević et al. 2002; Merritt, this volume). Disk accretion of cold gas following minor mergers has been argued to be an efficient mechanism to merge binary black holes with a small ratio of secondary to primary mass (Armitage & Natarajan 2002). The formation and evolution of a supermassive binary black hole in a major merger of gas rich galaxies has not yet been studied, but it seems likely that gas accretion will also lead to rapid hardening in this case.

Whether binary black holes in typical low-redshift galaxies can reach the separation at which emission of gravitational radiation leads to coalescence within a Hubble time is somewhat uncertain (Yu & Tremaine 2002), but it appears likely that they do in all but the most massive elliptical galaxies (Haehnelt & Kauffmann 2002; Milosavljević & Merritt 2003). Observationally hard binary black holes are difficult to detect, and observational evidence so far is circumstantial (Merritt & Ekers 2002; see Komossa 2003 for a review).

In hierarchically merging galaxies there is a significant probability that a third black hole will fall in before a hard binary black hole has coalesced. This will normally lead to gravitational slingshot ejection of the lightest black hole (Saslaw, Valtonen, & Aarseth 1974; Hut & Rees 1992). The binary will also get a kick velocity. If all three black holes have similar masses, the kick velocity will be sufficient to kick the binary into the outer parts of the galaxy or even to eject it entirely (Hut & Rees 1992; Xu & Ostriker 1994). As discussed by Redmount & Rees (1989), at coalescence supermassive binaries will also get a kick due to the radiation-reaction forces predicted by general relativity. The kick velocity due to the resulting recoil should scale linearly with the mass ratio of the coalescing binary for small mass ratios. The absolute values of the kick velocities are uncertain. They will depend strongly on the radius of the last stable orbit and therefore on the spin and orbital orientation of the binary (Fitchett & Detweiler 1984). While the expected value for a Schwarzschild hole is small for rapidly spinning black holes, the kick velocity may be as large as a few hundred km s$^{-1}$ and may remove the merged binary from small and maybe even big galaxies in some cases. Note that in the case of two spinning black holes the asymmetry of the
radiation with respect to the plane of the orbit may result in a recoil along the direction of the orbital angular momentum (Redmount & Rees 1989). Three-body interaction and the gravitational-radiation recoil of SMBHs in hierarchically merging galaxies may thus lead to a population of black holes outside galaxies (see also Haehnelt & Kauffmann 2002; Volonteri et al. 2002).

1.5 Early Evolution

1.5.1 Do Intermediate-mass Black Holes Form in Shallow Potential Wells?

While the accretion history of SMBHs between redshift 5 and 0 seems now reasonably well constrained, little is known about the the accretion/formation history at higher redshifts. At redshift 5 the mass of a typical DM halo in the ΛCDM model is about $10^{11}M_\odot$. In the ΛCDM model the matter fluctuation spectrum extends to smaller masses, and hierarchical growth of structure starts at much earlier times. The recent detection of a large polarization signal in the CMB at large scales by the WMAP satellite requires that a large volume fraction of the Universe was reionized at $z \approx 20$ (Kogut et al. 2003); however, note that the measurement error is still large. If confirmed, this is strong observational evidence that the matter fluctuation power spectrum extends to scales as small as 10^6M_\odot, or even smaller. On these scales nonlinear structures form at $z > 20$. Should we expect hierarchical growth at similarly early times to contribute significantly to the build-up of SMBHs?
This depends crucially on what happens in shallow potential wells with circular velocities $v_c \lesssim 100 \text{ km s}^{-1}$. Modeling of the galaxy luminosity function in a CDM-like hierarchical structure formation model requires that the star formation efficiency drops rapidly in shallow potential wells. Otherwise the faint-end slope of the luminosity function would be much steeper than observed (White & Frenk 1991). The effect of stellar feedback and/or the effect of heating due to photoionization is generally invoked as explanation. It appears plausible that SMBHs assemble from the same low-angular momentum tail of the cold gas reservoir that also fuels star formation. This was, for instance, assumed in the model of Kauffmann & Haehnelt (2000), in which SMBHs only form efficiently in halos with $v_c > 100 \text{ km s}^{-1}$.

As a result, the mass function of black holes turns over at masses $\lesssim 10^7 M_\odot$ (Fig. 1.6), and the hierarchical build-up of black holes only starts at redshift $z \lesssim 6 - 8$ in their model (Fig 1.7). Nevertheless, some star formation has to occur in more shallow potential if reionization starts as early as implied by the large electron optical depth found by WMAP. Madau & Rees (2001) suggested that the black hole remnants of massive stars formed in these shallow potential wells will lead to the formation of a population of intermediate-mass black holes. Volonteri et al. (2002, 2003) followed the merging of DM halos containing SMBHs from $z > 20$. They found that hierarchical build-up starting from stellar-mass seed black holes can contribute significantly to the population of SMBHs at redshift five if the black holes merge efficiently (see also Islam, Taylor, & Silk 2003). Whether black holes can merge in these shallow potential is, however, very uncertain. It requires rapid sinking of the seed black holes to the center of merged pregalactic structures plus either a dense stellar system to provide a sufficient number of stars for binary hardening or the accretion of cold gas. Stars and the cold gas from which they form are, however, expected to be in short supply in shallow potential wells. Furthermore, even if the gravitational radiation recoil were too
Fig. 1.8. **Top:** Merging rate of galaxies forming supermassive binary black holes for a range of primary black hole mass and mass ratio in the models of Kauffmann & Haehnelt (2000). (Reproduced from Haehnelt 2003.) **Bottom:** Merging rate of DM halos hosting SMBHs predicted by Wyithe & Loeb (2002).

Small to affect the hierarchical build-up of SMBHs in normal galaxies, it may nevertheless efficiently remove a significant fraction of coalescing binary black holes from pregalactic structures with shallow potential wells, should they exist. Currently our best bet to make further progress in this area is to study how the $M_\bullet-\sigma_*$ relation extends to smaller galaxies. There are a number of observational claims for the detection of intermediate-mass black holes (King et al. 2001; Gebhardt, Rich, & Ho 2002; Filippenko & Ho 2003; van der Marel, this volume). Should these detections consolidate, the next step will be to establish whether intermediate-mass black holes have formed with similarly large efficiency as the SMBHs in deep potential wells. This would argue for a continuous hierarchical build-up from stellar-mass seeds at very high redshift. With JWST it should be possible to probe some of this directly (see Haiman, this volume).

1.5.2 **LISA and the Assembly of SMBHs at $z > 5$**

A somewhat longer shot to establish how the SMBHs observed at redshifts $\gtrsim 5$ did assemble will be observations with the space-based gravitational wave interferometer LISA, expected to be launched in the next decade. LISA will be sensitive to gravitational waves with frequencies below 1 Hz, which are not accessible from the ground because of seismic noise.
The typical dynamical time at the Schwarzschild radius of a SMBHs is \(t_{\text{dyn}} \sim 3(M/10^5 M_\odot) \) s. The detection of black hole-black hole mergers involving SMBHs is thus a prime objective of LISA. The long baseline achievable in space means that for SMBHs LISA will not be so much sensitivity limited but rather event-rate limited instead. LISA will be sensitive enough to detect equal-mass mergers of \(10^4 - 10^7 M_\odot \) black holes at \(z < 20 \). LISA will even be able to determine the luminosity distance and spin for some coalescing binary black holes (Bender 2003). However, if the black hole formation efficiency drops rapidly in potential wells with \(v_{\text{circ}} < 100 \text{ km s}^{-1} \), event rates are only \(0.3 - 1 \text{ yr}^{-1} \) (Fig. 1.8). If hierarchical build-up extends to smaller DM halos, event rates could be as large as few tens to a hundred per year (Haehnelt 2003; see also Haehnelt 1994, 1998; Menou, Haiman, & Narayanan 2001; Wyithe & Loeb 2002). Note, however, that this would predict a mass function that rapidly rises toward smaller masses (Fig. 1.6). LISA has the exiting prospect to finally settle the question of how the SMBHs that power high-redshift AGNs were assembled.

1.6 Open Questions

The recent observational progress has led to big improvements in our understanding on how black holes were assembled in hierarchically merging galaxies. There is, nevertheless, a long list of unanswered questions. The following is a certainly incomplete version of such a list:

1. Is AGN activity really triggered by mergers (beginning, end, multiple)? What is the time scale of QSO activity? What determines it? Why is it apparently shorter than the merging time scale of galaxies?
2. How much room is there for dark or obscured accretion? Can the accretion rate exceed the Eddington limit?
3. What is the physical origin of the \(M_* - \sigma_* \) relation? Is it as tight as claimed, and if so, why? Does it evolve with redshift?
4. Does AGN activity affect the cooling/heating budget during galaxy formation in a global sense? What role do SMBHs play in defining the Hubble sequence of galaxies?
5. Are (hard) supermassive binary black holes common? On which time scale do they merge? Are supermassive binary black holes responsible for the core properties of galactic bulges? Do black holes receive kick velocities that eject them from (small) galaxies?
6. Do intermediate-mass black holes form in shallow potential wells? Does the \(M_* - \sigma_* \) relation extend to smaller black hole masses? Does the hierarchical build-up of SMBHs extend to pregalactic structures at very high redshift?

Many of these questions are already under intense scrutiny. Progress in answering them will hopefully bring us closer to a more complete understanding of the physical processes responsible for the formation of SMBHs.

1.7 Summary

Models where black holes grow by a combination of gas accretion traced by short-lived (\(\sim 10^7 \text{ yr} \)) QSO activity and merging in hierarchically merging galaxies are consistent with a wide range of observations in the redshift range \(0 < z < 5 \). The rapid decline of both the QSO activity and star formation in galactic bulges suggests that SMBHs may play a bigger role in shaping the Hubble sequence of galaxies than previously anticipated. The frequent merging of galaxies will lead to the ubiquitous formation of supermassive binary
black holes. These are generally expected to merge in all but the most massive galaxies by gas infall and stellar hardening. Gravitational slingshot in triple black holes and gravitational radiation recoil of coalescing binaries may lead to a substantial population of SMBHs outside of galaxies. The actual formation of SMBHs is still poorly constrained observationally. Direct collapse of a gas cloud to seed black holes of $10^5 - 10^6 M_\odot$ and extension of the hierarchical merging all the way to stellar-mass seed black holes from Population III stars mark two extreme ends of the list of viable possibilities. Further observational and theoretical study of intermediate-mass black holes, and eventually the study of the merging history of black holes with JWST and the planned space-based gravitational wave interferometer LISA should help to answer the question of how SMBHs formed.

Acknowledgements. I would like to thank Luis Ho for his patient persistence in urging me to write this review. Thank is also due to Stuart Wyithe for providing Figure 8b.

References

Adams, F. C., Graff, D. S., & Richstone, D. O. 2001, ApJ, 551, L31
Aller, M. C., & Richstone, D. O. 2002, AJ, 124, 3035
Armitage, P. J., & Natarajan, P. 2002, ApJ, 567, L9
Begelman, M. C., Blandford, R. D., & Rees, M. J. 1980, Nature, 287, 307
Bender, P. L, 2003, in Carnegie Observatories Astrophysics Series, Vol. 1: Coevolution of Black Holes and Galaxies, ed. L. C. Ho (Pasadena: Carnegie Observatories, [http://www.ociw.edu/ociw/symposia/series/symposium1/proceedings.html])
Blandford, R. D., & Znajek, R. L. 1977, MNRAS, 179, 433
Blumenthal G. R., Faber, S. M., Primack, J. R., & Rees, M. J. 1984, Nature, 311, 517
Burkert, A., & Silk, J. 2001, ApJ, 554, L151
Cattaneo, A. 2002, MNRAS, 333, 353
Cattaneo, A., Haehnelt, M. G., & Rees, M. J. 1999, MNRAS, 308, 77
Cavaliere, A., & Szalay, A. S. 1986, ApJ, 311, 589
Cavaliere, A., & Vittorini, V. 2000, ApJ, 543, 599
Choi, Y., Yang, J., & Yi, I. 1999, ApJ, 518, L77
Cole, S., Aragón-Salamanca, A., Frenk, C. S., Navarro, J. F., & Zepf, S. E. 1994, MNRAS, 271, 781
Comastri, A. 2003, in The Astrophysics of Gravitational Wave Sources, ed. J. M. Centrella (AIP: New York), in press
Efstathiou, G., & Rees, M. J. 1988, MNRAS, 230, L5
Elvis, M., Risaliti G., & Zamorani G. 2002, ApJ, 565, L75
El-Zant, A., Shlosman I., Begelman, M., & Frank, J. 2003, ApJ, submitted [astro-ph/0301338]
Fabian, A. C., & Iwasawa, K. 1999, ApJ, 303, L34
Ferrarese, L., & Merritt, D. 2000, ApJ, 539, L9
Filippenko, A. V., & Ho, L. C. 2003, ApJ, 588, L13
Fitchett, M. J., & Detweiler 1984, MNRAS, 211, 933
Gebhardt, K., et al. 2000, ApJ, 539, L13
Gehardt, K., Rich, R. M., & Ho, L. C. 2002, ApJ, 578, L41
Granato, G. L., Silva, L., Monaco, P., Panuzzo, P., Salucci, P., De Zotti, G., Danese, L. 2001, MNRAS, 324, 757
Haehnelt, M. G. 1994, MNRAS, 269, 199
——. 1998, in Second International LISA Symposium, ed. W. M. Folkner (AIP: New York), 45
——. 2002, in A New Era in Cosmology, ed. N. Metcalfe & T. Shanks (San Francisco: ASP), 95
——. 2003, in Proceedings of 4th LISA Symposium, Special Issue Classical and Quantum Gravity, 20, S31
Haehnelt, M. G., & Kauffmann G. 2000, MNRAS, 318, L35
——. 2001, in Black Holes in Binaries and Galactic Nuclei, ed. L. Kaper, E. P. J. van den Heuvel, & P. A. Woudt (Berlin: Springer), 364
——. 2002, MNRAS, 336, L51
Haehnelt, M. G., Natarajan, P., & Rees, M. J. 1998, MNRAS, 300, 817
