Methodology of Threat Assessment of Municipalities and Districts

Metodyka oceny zagrożenia gmin i powiatów

ABSTRACT

Aim: The aim of the article is to discuss theoretical and practical aspects of the emergence and use of the method of assessment of threat occurring in areas of particular municipalities and districts in the activities of organizational units of the State Fire Service. One of the reasons for returning to this topic is the modification of the method finalized last year, in order to include within it another factor of fire danger, which are non-forest terrestrial ecosystems. Moreover, updates in this area have been made to allow those who have not previously had the opportunity to learn about the subject matter.

Introduction: Last year, a new regulation of the Minister of Internal Affairs and Administration of 17 September 2021 on the detailed organization of the national rescue and firefighting system (Polish Journal of Laws: Dz.U. 2021 poz. 1737) came into force. In relation to the content of the previously existing regulation, it has changed the methodology on how to assess the risks that may occur on the area of the district and the province, in which the analysis is subject to risk factors occurring respectively in the areas of individual municipalities, making their subsequent aggregation at the level of the districts. Taking into account the fact that it has been ten years since the original inclusion of this tool in the regulations on the functioning of the national rescue and firefighting system (KSRG), it is considered a good moment to share with the readers some of the author’s reflections on both theoretical and practical aspects of its creation and application in the activities of organizational units of the State Fire Service.

Methodology: The paper uses the results of the author’s own work in creating the aforementioned hazard assessment method, based on the theoretical foundation of hazard analysis and risk assessment. Fire experience was also used, including data analysis of incidents that occurred.

Conclusions: As a result of the carried out work, a method of assessment of hazards occurring in individual municipalities and districts was created, implemented in 2011, used for the preparation and annual update of district and provincial rescue plans. In practice, its results are directly applicable in the process of determining standards of additional equipment for district and city fire stations of the State Fire Service, requirements for the organization of specialized rescue groups and methodology of building a plan for the network of volunteer fire departments to be included in the national and rescue firefighting system. Ten years of using this method and its recent extension with a new risk factor are the reasons to formulate the thesis that it has been positively verified in terms of practical usefulness of its results. There is also a possibility of its further improvement, e.g. in the context of introducing additional tools that could increase the quality of the obtained results, e.g. enabling its stronger connection with currently available geospatial databases.

Keywords: threat assessment, threat levels, national rescue and firefighting system, State Fire Service

Type of article: review article

Received: 03.03.2022; Reviewed: 29.03.2022; Accepted: 29.03.2022;
Author’s ORCID ID: P. Janik – 0000-0003-4498-7575;
Please cite as: SFT Vol. 59 Issue 1, 2022, pp. 142–156, https://doi.org/10.12845/sft.59.1.2022.8;
This is an open access article under the CC BY-SA 4.0 license (https://creativecommons.org/licenses/by-sa/4.0/).
Wstęp

We wrześniu 2021 r. weszło w życie nowe rozporządzenie Ministra Spraw Wewnętrznych i Administracji w sprawie szczegółowej organizacji krajowego systemu ratowniczo-gaśniczego (Dz.U. 2021 poz. 1737) [1]. W jego ramach dokonano między innymi nowelizacji metodyki w zakresie sposobu oceny zagrożeń mogących wystąpić na obszarze powiatu i województwa. Biorąc pod uwagę fakt, iż nastąpiło to po upływie równo dziesięciu lat od pierwotnego zawarcia przedmiotowego narzędzia w przepisach dotyczących funkcjonowania KSRG uznamy, iż jest to dobry moment na podzielenie się z czytelnikami kilkoma autorskimi refleksjami dotyczącymi zarówno teoretycznych, jak i praktycznych aspektów jego powstania oraz stosowania w działalności jednostek organizacyjnych Państwowej Straży Pożarnej.

Obowiązek sporządzania analizy zagrożeń, będącej jedną z podstaw tworzenia powiatowych i wojewódzkich planów ratowniczych, istniał już wcześniej. Niemniej do czasu opublikowania rozporządzenia Ministra Spraw Wewnętrznych i Administracji z dnia 18 lutego 2011 r. w sprawie szczegółowych zasad organizacji krajowego systemu ratowniczo-gaśniczego (Dz.U. 2011 Nr 46, poz. 239) [2], wytyczne co do jej zakresu były sformułowane jedynie w sposób ogólny. Poprzednie prawodawstwo w tym zakresie sformułowane było na podstawie rozporządzenia Ministra Spraw Wewnętrznych i Administracji z dnia 29 grudnia 1999 r. w sprawie szczegółowych zasad organizacji krajowego systemu ratowniczo-gaśniczego. Na szczególną uwagę zasługuje zapis §5 ust.1 pkt 1 tego rozporządzenia, z którego wynikało, że opracowanie wspomnianych wcześniej planów poprzedza się analizą zagrożeń występujących na danym obszarze, przy uwzględnieniu gęstości zaludnienia, warunków geograficzno-topograficznych, stanu infrastruktury oraz zagrożeń z obszarów sąsiadujących,

dotyczących funkcjonowania KSRG uznamy, iż jest to dobry moment na podzielenie się z czytelnikami kilkoma autorskimi refleksjami dotyczącymi zarówno teoretycznych, jak i praktycznych aspektów jego powstania oraz stosowania w działalności jednostek organizacyjnych Państwowej Straży Pożarnej.

Metodologia

W pracy wykorzystano wyniki własnych prac autora w zakresie tworzenia wspomnianej powyżej metody oceny zagrożenia, opartych na podbudowie teoretycznej z zakresu analizy zagrożeń oraz oceny ryzyka. Wykorzystano również doświadczenia pożarnicze, w tym analizy danych z zaistniałych zdarzeń.

Wnioski

Wyniki przeprowadzonych prac powstały, wdrożone w 2011 r., metoda oceny zagrożeń występujących w poszczególnych gminach i po-wiatach, wykorzystywała potrzebę przygotowania i korzystania z aktualizacji powiatowych i wojewódzkich planów ratowniczych. W praktyce jej wyniki mają bezpośrednie zastosowanie m.in. w procesie określania standardów dodatkowego wyposażenia komend powiatowych i miejskich Państwowej Straży Pożarnej, wymagań w zakresie organizacji grup ratownictwa specjalistycznego oraz metodyki budowy planu sieci jednostek Ochotniczych Straży Pożarnych przewidzianych do włączenia do krajowego systemu ratowniczo-gaśniczego. Dziejesiecieletni okres stosowania tej metody oraz dokonana w ostatnim czasie w zakresie jej rozbudowy o nowy czynnik zagrożenia, stanowią przesłankę do sformułowania tezy, iż przeszła ona pozytywną weryfikację w aspekcie praktycznej przydatności jej wyników. Istnieje również możliwość jej dalszego doskonalenia, m.in. w kontekście wprowadzenia dodatkowych narzędzi, które mogłyby podnosić jakość uzyskiwanych wyników, np. umożliwiających jej silniejsze powiązanie z dostępnymi obecnie bazami danych geoprzestrzennych.

Słowa kluczowe: ocena zagrożeń, stopnie zagrożenia, krajowy system ratowniczo-gaśniczy, Państwowa Straż Pożarna

Typ artykułu: artykuł przeglądowy

Przyjęty: 03.03.2022; Zareczniony: 29.03.2022; Zaakceptowany: 29.03.2022;
Identyfikator ORCID autora: P. Janik – 0000-0003-4498-7575;
Proszę cytować: SFT Vol. 59 Issue 1, 2022, pp. 142–156, https://doi.org/10.12845/sft.59.1.2022.8;
Artykuł udostępniony na licencji CC BY-SA 4.0 (https://creativecommons.org/licenses/by-sa/4.0/).
mining law, military training areas, coastal waters and areas of the neighbouring countries” [3].

With such vague guidelines, the analyses prepared at that time were characterized by great diversity, and the obtained results were often difficult to compare. Consequently, their practical usefulness in the context of use for operational planning was also limited.

Recognizing these shortcomings, within the framework of the amendment of the regulations mentioned above concerning the functioning of KSRG, an attempt has been made to create a method of assessment of the threats mentioned above, which would allow to identify them in a more precise and systematized way as well as to assess the potential that accompanies the occurrence of each of them. As a result of the analysis of the palette of approaches to the issue of threat assessment, or more broadly, risk assessment [4–6] characterized in literature, taking into account the specificity of the expected use of the results of the assessment in question, it was decided to propose a method in the form of an index [7]. Within its framework, firefighting experience was used, both in the area of control and reconnaissance, as well as operational and rescue activities. Therefore, in this case we can also speak of a method based on a deterministic approach to the analysed and evaluated phenomena.

The work began with the identification of the most important threat factors that affect, among others, the needs for equipment and issues of appropriate operational and tactical preparation of fire protection units. It was then proposed to define qualitative-quantitative criteria that would allow their quantification and grading. As a result, the process originally evaluated sixteen (now seventeen) of these risk factors: fifteen that relate explicitly to population, certain types of facilities or sites, and their characteristics; and one that provides an opportunity to consider the degree of risk from other risk factors not explicitly identified that are specific to the evaluated area. As mentioned in the introduction, the analytical work of several years were finalized in 2011, in the content of annex no. 1 to the regulation of the Minister of Internal Affairs and Administration of 18 February 2011 on detailed principles of organization of the national rescue and firefighting system (Polish Journal of Laws: Dz.U. 2011 Nr 46, poz. 239) [2].

The details of the mentioned methodology are discussed below. Also presented are examples of practical application of its results for the needs of the national rescue and firefighting system, both in relation to the organizational units of the State Fire Service and Volunteer Fire Brigades.

Degrees of threats

At the outset, it is assumed that in this method the magnitude of the threat will be expressed on a five-point scale using the following ranks:

- \(Z_1 \) – very low threat,
- \(Z_2 \) – low threat,
- \(Z_3 \) – moderate threat,
- \(Z_4 \) – high threat,
- \(Z_5 \) – very high threat.

In this case, it is assumed that the results of the assessment of the threat, expressed by the index, will be translated into a number from 1 to 5, in such a way that a lower number will indicate a lower threat. The methodology is based on the assessment of the degree of the threat by the number of population, specific categories of the facility, and other risk factors.

Stopnie zagrożenia

Na wstępie przyjęto, iż w ramach niniejszej metody wielkość zagrożenia będzie wyrażana w pięciostopniowej skali, za pomocą następujących stopni:

- \(Z_1 \) – bardzo małe zagrożenie,
- \(Z_2 \) – małe zagrożenie,
- \(Z_3 \) – średnie zagrożenie,
- \(Z_4 \) – duże zagrożenie,
- \(Z_5 \) – bardzo duże zagrożenie.
Spreadsheets

The key findings in terms of the degrees of threat listed above are formulated in spreadsheets dedicated for this purpose, relating to the areas of individual municipalities and districts. For large cities, it is possible to produce sheets separately for each of the neighbourhoods.

As far as the structure of the basic sheet, which refers to the threats occurring in a municipality or a city neighbourhood, its columns list the threat criteria (factors), while the rows include the degrees of threat mentioned above. Each of the resulting cells of the sheet has been provided with indications that are intended to make it easier for the person assessing a given factor to qualify it for one of the threat levels in question. For instance, in terms of the criterion of the number of inhabitants of the municipality, clearly outlined quantitative thresholds were adopted in the various degrees of threat:

- \(Z_1 \) – below 10 thousand,
- \(Z_2 \) – 10–20 thousand,
- \(Z_3 \) – 20–50 thousand,
- \(Z_4 \) – 20–100 thousand,
- \(Z_5 \) – above 100 thousand.

A slightly different approach was taken in terms of building height. In this case, the qualification of a municipality for a particular degree of threat is made on the basis of more qualitative guidance that provides only generally defined quantitative guidelines:

- \(Z_m \) – low-rise buildings only,
- \(Z_n \) – predominance of low-rise buildings, single cases of medium-rise buildings,
- \(Z_s \) – significant number of mid-rise buildings, no high or high-rise buildings,
- \(Z_v \) – large number of medium-high buildings, single cases of high-rise buildings, no high-rise buildings,
- \(Z_r \) – large number of high buildings and or presence of high-rise buildings.

Obviously, when using terms related to the mentioned height of buildings, formal definitions included in technical and construction regulations were used [8].

Since the framework of this article does not allow for a full list of the guidelines in question, I would refer interested readers to reading annex no. 1 to the regulation of the Minister of Internal Affairs and Administration of 2021 mentioned in the introduction. However, a full catalogue of threat factors being evaluated will be presented later in the article when the district spreadsheet is presented.

During the discussion of the final form of the spreadsheet for the municipality area, the inaccuracy of some of the indications, illustrated among others in the second cited example, was pointed out as its shortcoming. However, it was finally agreed that in order to ensure the universality and relative simplicity of

Arkusze kalkulacyjne

Kluczowe ustalenia w zakresie wyszczególnionych powyżej stopni zagrożenia formułowane są w dedykowanych temu celowi arkuszach kalkulacyjnych, odnoszących się do terenów poszczególnych gmin oraz powiatów. W przypadku dużych miast istnieje możliwość sporządzania arkuszy odrębnie dla każdej z dzielnic.

Jeśli chodzi o konstrukcję podstawowego arkusza, odnoszącego się do zagrożeń występujących na terenie gminy bądź dzielnicy miasta, w jego kolumnie wymieniono kolejno kryteria (czynnika) zagrożenia, zaś w wierszach ujęto przywołane powyżej stopnie zagrożenia. Każdą z powstałych w ten sposób komórek arkusza opatrzono wskazówkami, których celem jest ułatwienie osobie dokonującej oceny danego czynnika, jego zakwalifikowania do jednego z przedmiotowych stopni zagrożenia. Na przykład w zakresie kryterium liczby mieszkańców gminy, w poszczególnych stopniach zagrożenia przyjęto wyraźnie zarysowane progi ilościowe:

- \(Z_1 \) – poniżej 10 tysięcy,
- \(Z_2 \) – 10–20 tysięcy,
- \(Z_3 \) – 20–50 tysięcy,
- \(Z_4 \) – 20–100 tysięcy,
- \(Z_5 \) – powyżej 100 tysięcy.

Nieco inaczej postąpiono w kontekście wysokości budynków. W tym przypadku kwalifikacji danej gminy do określonego stopnia zagrożenia dokonuje się w oparciu o wskazówki o charakterze bardziej jakościowym, które zawierają jedynie ogólnie określone wytwarzane ilościowe:

- \(Z_m \) – wyłącznie budynki niskie,
- \(Z_n \) – przewaga budynków niskich, pojedyncze przypadki budynków średniowyższych,
- \(Z_s \) – znaczna liczba budynków średniowysokich, brak budynków wysokich lub wysokościowych,
- \(Z_v \) – duża liczba budynków średniowysokich, pojedyncze przypadki budynków wysokich, brak budynków wysokościowych,
- \(Z_r \) – duża liczba budynków wysokich i/lub występujące budynki wysokościowych.

Oczywiście używając pojęć dotyczących wspomnianej wysokości budynków, posłużono się definicjami formalnymi zawartymi w przepisach techniczno-budowlanych [8].

Ponieważ ramy niniejszego artykułu nie pozwalają na przytoczenie pełnej listy przedmiotowych wskazówek, zainteresowanych czytelników odsyłam do lektury załącznika nr 1 do wspomnianego wstępnie rozporządzenia MSWiA z 2021 r. Natomiast pełny katalog poddawanych ocenie czynników zagrożenia będzie przedstawiony w dalszej części artykułu, przy okazji prezentacji arkusza kalkulacyjnego dla terenu powiatu.

W trakcie dyskusji nad ostatecznym kształtem arkusza kalkulacyjnego dla obszaru gminy, jako jego mankament wskazywano zilustrowaną m.in. w drugim z przytoczonych przykładów, niedokładność niektórych wskazówek. Jednak ostatecznie zgodzono
Threat assessment according to this method, as well as the possibility of its practical application without the need for complex tools, the guidelines in question should be left unchanged.

At the same time, the text of the regulations indicates that the classification to the threat level is made not only on the basis of the criteria indicated in the sheet, but also taking into account local conditions, including the number and size of events corresponding to the individual threat factors. This leaves a certain amount of discretion to the evaluators, given that the determinations in question will be made primarily by experienced firefighters from district and city fire stations of the State Fire Department. These people will be able to make the final classification of a given factor into a specific level of threat also using the experience mentioned above, on the basis of the so-called professional judgement, known from the already cited literature on the subject. Practice has confirmed that said judgment has played and continues to play an important positive role in the process under consideration.

At this point it should be noted that in case of ensuring the criterion of comparability of the assessments made, discussing their results during staff meetings at the level of provincial HQs of the PSP turned out to be a good practice. During the deliberations, if it was noted that there was too much disparity in a given assessment compared to assessments in other districts, it was usually adjusted by consensus, in consultation with the author.

The form and content of a spreadsheet for a district is shown in Table 1.

Filling out the worksheet above results in the aggregation of findings made therein for individual municipalities (city neighbourhoods) within the county. For this purpose, the individual boxes indicate the number of qualified municipalities for a given threat level in terms of individual criteria (factors).

As already mentioned, the spreadsheets prepared for individual municipalities and districts are a key component of the methodology presented in this paper. It can be stated that the information collected in them constitutes a kind of a set of metadata, which can be later and are in practice used for the purposes of various detailed (partial) analyses. As mentioned in the introduction, examples of such application will be discussed later in this paper.

Threat criteria (factors)

While creating a catalogue of threat factors that will be subject to analysis and evaluation, an attempt was made to include those that significantly affect the needs for operational and technical preparedness of KSRG units. Therefore, in this catalogue, in addition to issues relating to the number of residents, there are also objects and areas whose construction, purpose and method of use makes it necessary to ensure readiness to take specialized actions related to combating the effects of fires, including fires in residential buildings, public buildings, factories and forest,...
No. / Lp.	Threat criterion (factor) / Kryterium (czynnik) zagrożenia	Number of municipalities in which a given criterion has been assigned to a given threat level / Liczba gmin, w których dane kryterium zostało przyporządkowane do danego stopnia zagrożenia
1	Number of inhabitants of the municipality / Liczba mieszkańców gminy	ZI ZII ZIII ZIV ZV
2	Type of housing / Rodzaj zabudowy	ZI ZII ZIII ZIV ZV
3	Flammability of building structures / Palność konstrukcji budynków	ZI ZII ZIII ZIV ZV
4	Height of buildings / Wysokość budynków	ZI ZII ZIII ZIV ZV
5	Category of human threat / Kategoria zagrożenia ludzi	ZI ZII ZIII ZIV ZV
6	Industrial plants, including warehouses, river and seaports / Zakłady przemysłowe, w tym magazynowe oraz porty rzeczne i morskie	ZI ZII ZIII ZIV ZV
7	Pipelines for transport of crude oil and petroleum products and gas pipelines / Rurociągi do transportu ropy naftowej i produktów naftowych oraz gazociągi	ZI ZII ZIII ZIV ZV
8	Roads / Drogi	ZI ZII ZIII ZIV ZV
9	Railroads / Linie kolejowe	ZI ZII ZIII ZIV ZV
10	Road transport of hazardous materials / Transport drogowy materiałów niebezpiecznych	ZI ZII ZIII ZIV ZV
11	Railroad transport of hazardous materials / Transport kolejowy materiałów niebezpiecznych	ZI ZII ZIII ZIV ZV
12	Watercourses and hydrotechnical structures (danger of flooding) / Cieki wodne i budowle hydrotechniczne (zagrożenie powodziowe)	ZI ZII ZIII ZIV ZV
13	Watercourses and reservoirs (danger of drowning) / Cieki i zbiorniki wodne (zagrożenie utonięciami)	ZI ZII ZIII ZIV ZV
14	Threat of forest fires / Zagrożenie pożarami lasów	ZI ZII ZIII ZIV ZV
15	Non-forest terrestrial ecosystems of particular fire threat / Stwarzające szczególne zagrożenie pożarowe nieleśne ekosystemy lądowe	ZI ZII ZIII ZIV ZV
16	Airports, airport operating areas and heliports / Lotniska, rejony operacyjne lotnisk oraz lądowiska dla śmigłowców	ZI ZII ZIII ZIV ZV
17	Other threats / Pozostałe zagrożenia	ZI ZII ZIII ZIV ZV

Source: Own elaboration based on annex no. 1 to the regulation [1].

Zródło: Opracowanie własne na podstawie załącznika nr 1 rozporządzenia [1].
complexes, as well as activities in high-altitude, chemical, technical or water rescue. At the same time, despite the closure of the catalogue in question, conditioned, among others, by calculation needs related to the determination of accident indicators discussed in the further part of the article, it was emphasized that the construction of the method under consideration allows for its extension by other factors. According to the author, it is satisfactory that this opportunity has been taken advantage of twice. This first occurred as early as the original legislative process, finalized in 2011, when, at the request of one of the ministries, the threat of helipads was included in the sheet. The second case is the 2021 amendment mentioned in the introduction.

It included a spreadsheet on "non-forest terrestrial ecosystems posing a particular fire threat", following, among other things, the experience gained during the rescue operations associated with extinguishing a very large fire in the Biebrza National Park, specifying the following qualification guidance:

\[Z_{1} \] – complexes with an area up to 50 ha,
\[Z_{2} \] – complexes with an area from 50 to 100 ha,
\[Z_{3} \] – complexes with an area from 100 to 300 ha,
\[Z_{4} \] – complexes with an area from 300 to 1000 ha,
\[Z_{5} \] – complexes with an area of over 1000 ha.

As a consequence of the above changes, a total of 17 threat factors are included in the current spreadsheet (see Table 1).

Threat indicators and accident threat rates of municipalities and districts

In the preceding paragraphs, the essential part of the considered methodology of threat assessment of municipalities and districts was discussed, i.e. the threat factors under assessment and the way of grading their potential. On the other hand, this part of the article will introduce the uncomplicated calculation part, which enables to determine the accidental degrees of threat of municipalities and districts.

The first of the relationships included in the analysed method and the cited regulation of the Ministry of Internal Affairs and Administration is the equation resulting in the determination of the accident threat rate of a municipality:

\[H_{p} = \sum_{i=1}^{v} \frac{N_{i}}{L_{Bj}} \] \hspace{1cm} (1)

The individual components of the above equation mean:

- \(H_{p} \) – municipal threat index,
- \(n_{i} \) – the number of threat criteria (factors) that have been classified into the \(i \)-th threat level,
- \(L_{Bj} \) – the base number (weight) for the \(i \)-th threat level.

The index determined based on the above equation is derived from the weighted average resulting from the degrees of threat into which each threat factor was classified in the municipality.
In terms of severity (see Table 2), a simple relationship was assumed that it is inversely proportional to the magnitude of the threat. According to this principle, one threat factor classified for instance as Z_V is balanced by five factors classified as Z_I.

Degree of threat / Stopień zagrożenia	Value of base number L_{Bi} / Wartość liczby bazowej L_{Bi}
Z_V	$L_{V}=5$
Z_{II}	$L_{II}=4$
Z_{III}	$L_{III}=3$
Z_{IV}	$L_{IV}=2$
Z_{V}	$L_{V}=1$

Table 2. Values of base number (weight) L_{Bi}

W zakresie wagi (zob. tab. 2) przyjęto prostą zależność, iż jest ona odwrotnie proporcjonalna do wielkości stopnia zagrożenia. Według tej zasady jeden czynnik zagrożenia zakwalifikowany np. do stopnia Z_V jest równoważony przez pięć czynników zakwalifikowanych do stopnia Z_I.

The municipality’s threat level (accidental) / Stopień zagrożenia gminy (wypadkowy)	Ranges of values of the H_G threat index of a municipality / Przedziały wartości wskaźnika zagrożenia gminy H_G
Z_{I}	3.4–3.83
Z_{II}	3.83–4.96
Z_{III}	4.96–7.08
Z_{IV}	7.08–12.75
Z_{V}	12.75–17

Table 3. Accidental degree of danger of the munisipality

The H_G determined in this manner is then the basis for determining the municipality’s accident threat rate (from Z_{I} to Z_{V}).

The ranges of values of a specific threat index, which later determine the accidental threat level of the district, were defined proportionally between the minimum value (which may occur in case of qualifying all threat factors to the Z_{I} level) and the maximum (which may occur in case of qualifying all threat factors to Z_{V} level).

Source: Own elaboration based on annex no. 1 to the regulation [1].

źródło: Opracowanie własne na podstawie załącznika nr 1 rozporządzenia [1].
the Z_ν level), concentrating their resources (except in the cases of the aforementioned values: minimum and maximum) around points corresponding to the values that the H_p index would adopt if all threat factors were classified according to the degree of threat Z_ν, Z_ν, and Z_ν. The accident threat rate for the district is determined in a similar manner. In this case, the relationship determining the H_p district threat rate is determined by:

$$H_p = \sum_{i=1}^{V} \frac{N_i}{L_Bi} \cdot L_G$$

(2)

The individual components mean:

- H_p – district threat index,
- N_i – the number of threat criteria (factors) that were classified to the i-th degree of threat in all municipalities in the district,
- L_Bi – the base number (weight) for the i-th threat level,
- L_G – the number of municipalities in the district.

The accident threat rate of a district is determined according to the value of the district threat index, as shown in Table 4.

Table 4. Accidental degree of danger of the district

Degree of threat to the district / Stopień zagrożenia powiatu	Ranges of values of H_p, district threat index / Przedziały wartości wskaźnika zagrożenia powiatu H_p
Z_ν	3.4–3.83
Z_ν	3.83–4.96
Z_ν	4.96–7.08
Z_ν	7.08–12.75
Z_ν	12.75–17

Source: Own elaboration based on annex no. 1 to the regulation [1].

As is not difficult to see, the ranges of the values of the district’s threat index contained in the above Table are, for obvious reasons, identical to the ranges indicated in Table 3, relating to the municipality’s threat index.

Presentation of results

Annex no. 1 to the regulation of the Ministry of Internal Affairs and Administration [2], which has been mentioned many times, also defines the way of presenting the results of the evaluation mentioned above in the district and voivodeship rescue plans. One of them is a graphic form, which boils down to the preparation of administrative maps of districts with the marked degree of threat, pointing out for each range of the H_p index the value of the threat index for the district. This form is used in the District Plan of Rescue and Fire Prevention, it is a graphic form for showing the accident threat rate for the district.

Prezentacja wyników

Przywoływany już niejednokrotnie załącznik nr 1 do rozporządzenia MSWiA [2] określa również sposób prezentacji wyników omówionej powyżej oceny w powiatowych i wojewódzkich planach ratowniczych. Jednym z nich jest forma graficzna, sprostowana do sporządzania odpowiednio map administracyjnych powiatów z zaznaczonymi stopniami zagrożenia gmin oraz...
of threat to municipalities and administrative maps of provinces with the marked degree of threat to individual districts. The manner of the aforementioned threat rating on district maps is shown in Figure 1. In case of maps of voivodeships, the way of marking is analogous.

Figure 1. Method of marking the threat level of the municipality on the district map
Rycina 1. Sposób zaznaczania stopnia zagrożenia gminy na mapie powiatu
Source: Own elaboration based on annex no. 1 to the regulation [1].
Źródło: Opracowanie własne na podstawie załącznika nr 1 rozporządzenia [1].

Application of the results of the threat assessment of municipalities and districts

The use of analytical findings characterized above would not be complete if limited to the form of graphical presentation of their results on maps that are annexes to district and provincial rescue plans. In fact, the practical usefulness of the data collected as a result of the discussed method is reflected at the level of in-depth analyses, which are used to develop various technical and organizational solutions to improve the functioning of KSRG. The following are selected examples in the subject.

One of the forms of practical application of the results of the threat assessment of municipalities and districts are the arrangements for the establishment of a standard of minimum additional equipment of district (city) PSP headquarters. They are presented in §2 sec. 2 and annex no. 2 to the regulation of the Minister of Internal Affairs of 21 November 2014 on detailed rules of equipment of organizational units of the State Fire Service (Polish Journal of Laws: Dz.U. 2014 poz. 1793) [9].

The said standard takes into account six types of threats:
- fire in residential and public buildings (P1),
- fire in industrial plants, fuel depots, gas-ports and in the transport of dangerous goods (P2),
- fire in forests (P3),
- chemical (Ch),
- flood (Rpow),
- related to technical disasters in road and rail traffic (RT1).

In each of the groups mentioned above, the considered standard of additional equipment (within the scope of providing additional fire vehicles, fire pumps, water-foam cannons, contaminated water pumps, jump-ropes, protective clothing, foam agent reserves and others) is differentiated depending on the so-called normative (symbols NII and NII). One of the bases for setting the normative is the just discussed threat assessment.

Aplikacja wyników oceny zagrożenia gmin i powiatów

Wykorzystanie scharakteryzowanych powyżej ustaleń analitycznych nie byłoby pełne, gdyby poprzestać jedynie na formie graficznej prezentacji ich wyników na mapach stanowiących załączniki do powiatowych i wojewódzkich planów ratowniczych. W rzeczywistości praktyczna użyteczność danych zgromadzonych w wyniku omówionej metody znajduje swoje odzwierciedlenie na poziomie pogłębionych analiz, służących wypracowaniu różnorakich rozwiązań technicznych i organizacyjnych w celu doskonalenia funkcjonowania KSRG. Poniżej przedstawiono wybrane przykłady w przedmiotowym zakresie.

Jedną z form praktycznej aplikacji wyników oceny zagrożenia gmin i powiatów są ustalenia dotyczące ustanowienia standardu minimalnego dodatkowego wyposażenia komend powiatowych (miejskich) PSP. Zmaterializowano je w §2 ust. 2 oraz załączniku nr 2 do rozporządzenia Ministra Spraw Wewnętrznych z dnia 21 listopada 2014 r. w sprawie szczegółowych zasad wyposażenia jednostek organizacyjnych Państwowej Straży Pożarnej (Dz.U. 2014 poz. 1793) [9].

Wspomniany standard uwzględnia sześć rodzajów zagrożeń:
- pożarowe w obiektach mieszkalnych i obiektach użytkowości publicznej (P1),
- pożarowe w zakładach przemysłowych, bazach paliw, gazoportach i w transporcie towarów niebezpiecznych (P2),
- pożarowe w lasach (P3),
- chemiczne (Ch),
- powodziowe (Rpow),
- dotyczące katastrof technicznych w ruchu drogowym i kolejowym (RT1).

W każdej z wymienionych grup rozpatrywany standard wyposażenia dodatkowego (w zakresie zapewnienia dodatkowych pojażdż pożarniczych, pomp pożarniczych, działek wodno-pianowych,
To be more precise, the normative level (from NI to NIII) is determined on the basis of the 5 x 5 matrix, where on one axis the degrees of the threat of the district are mapped (from Z_I to Z_V) according to the threat criteria (factors) determining the specific needs for a given type of rescue.

In this case, each type of threat is assigned an appropriate degree of that threat, which is the resultant (calculated using equations constructed on the same principles as discussed above), taking into account in turn the following criteria (factors) of the threat in question:

- P1 – number of residents, type of housing, flammability of building construction, building height and the category of threat to human life,
- P2 – industrial plants, including warehouses and river and seaports,
- P3 – threat of forest fires,
- Ch – industrial plants, including storage facilities and river and seaports, as well as pipelines for the transport of crude oil and petroleum products and gas pipelines,
- Rpow – watercourses and hydrotechnical structures (threat of flooding),
- RT1 – roads, railroads, transport of dangerous goods by road and transport of dangerous goods by rail.

In turn, the second axis of the matrix reflects the data on the number of events with a division into five levels (from SI to SV), determined in relation to the multiplicity of the national average intervention of the KSRG units in a given (corresponding to a specific type of threat) group of events – fires in a given group or groups of objects or local threats (chemical-ecological, technical, flood, etc.). On the basis of a detailed analysis of the statistical database concerning the mentioned interventions of PSP from the period of ten years, the following thresholds were assumed, which are the basis for assigning a given district to a specific S level:

- SI – from 0 to 0.4 of the national average,
- SII – from 0.4 and 0.8 of the national average,
- SIII – from 0.8 to 1.6 of the national average,
- SIV – from 1.6 to 3.2 of the national average,
- SV – above 3.2 of the national average.

A hypothetical example of the matrix in question is shown in Figure 2.
As a result of the findings, if in a given district a given type of threat is found in the area of NII normative (blue fields) or NIII normative (red fields), it means the necessity to provide appropriate, additional equipment in accordance with the provisions of the previously quoted annex no. 2 to the regulation of the Ministry of Internal Affairs and Administration [9]. For threats that fall within the matrix fields provided for N normative (green fields), command equipment established within the minimum (basic) equipment standard set forth in annex no. 1 of this regulation is provided to combat their effects.

The analytical mechanism discussed above is also used for the organization of specialized rescue groups (chemical, technical, water-diving, high altitude, etc.) within KRSG. Confirmation of this fact, although without indicating the details, can be found in the content of documents available on the website of the Headquarters of the State Fire Service defining the principles of the said organization [10]. In each of these documents, containing among others details concerning categorization of particular groups, criteria of their dislocation, standards of equipment, times of achieving operational readiness, etc., it is also mentioned that organization of a particular type of rescue should

Figure 2. Equipment matrix
Rycina 2. Matryca wyposażenia
Source: Own elaboration.
źródło: Opracowanie własne.

	Z_I	Z_{II}	Z_{III}	Z_{IV}	Z_V	
SV	X	X	N II	N III	N III	
SIV	X	X	N II	N II	N II	N III
SIII	N I	N I	N I	N II	N II	X
SII	N I	N I	N I	N I	X	
SI	N I	N I	N I	N I	X	

LEGEND / LEGENDA:
N I–N III – equipment normative / normatywy wyposażenia
X – areas of improbable combinations and degrees of threat and number of events / obszary nieprawdopodobnych kombinacji zagrożenia i liczby zdażeń
P1, P2, P3, Ch, Rpow., RT1 – types of threat / rodzaje zagrożenia

Jeśli w wyniku dokonanych ustaleń, w określonym powiecie dany rodzaj zagrożenia znajdzie się w obszarze normatywu NII (polo niebieskie) lub NIII (polo czerwone), oznacza to konieczność zapewnienia odpowiedniego, dodatkowego wyposażenia zgodnie z postanowieniami cytowanego wcześniej załącznika nr 2 do rozporządzenia MSWiA [9]. W przypadku zagrożeń mieszczących się w polach matrycy przewidzianych dla normatywu NI (polo zielone), do walki z ich skutkami przewidziane jest wyposażenie komend ustalone w ramach minimalnego (podstawowego) standardu wyposażenia, określonego w załączniku nr 1 do przedmiotowego rozporządzenia.

Omówiony powyżej mechanizm analityczny wykorzystywany jest również na potrzeby organizacji w ramach KRSG grup ratownictwa specjalistycznego (chemicznego, technicznego, wodno-nurkowego, wysokościowego itd.). Potwierdzenie tego faktu, chociaż bez wskazywania szczegółów, można znaleźć w treści dostępnych na stronie internetowej Komendy Głównej PSP dokumentów określających zasady wspomnianej organizacji [10]. W każdym z tych dokumentów, zawierających m.in. detale dotyczące kategorizacji poszczególnych grup, kryteria ich dyslokacji, standardy wyposażenia, czasy osiągania gotowości operacyjnej itd., nadmienia się,
be preceded by an analysis of threats and operational security in the protected area, referred to in the current regulation of the Ministry of Internal Affairs and Administration on detailed organization of KSRG. One more example of practical use of the presented methodology of threat assessment is its application in the process of building a plan of a network of volunteer fire departments, planned to be included into the national rescue and firefighting system [11]. In this case, as one of the main bases influencing the findings on the level of operational security of the municipality (the final, resulting calculation variable, on the basis of which recommendations are formulated for the inclusion of volunteer fire departments in KSRG) is the resultant degree of threat to the municipality. The mentioned degree is determined based on the matrix shown in Figure 3.

In this application, as was the case in the examples discussed earlier, the five degrees of hazard derived from the number of events are reflected on one axis of the matrix, while the other axis also reflects the five degrees determined by the threat assessment methodology which is under consideration. In this case, however, the administrative unit of reference is only the area of the municipality.

![Figure 3. Matrix for determining the accident threat level of the municipality](image-url)

Legend / Legenda:

- **WSZG I** Very low level of threat to the municipality / Bardzo niski stopień zagrożenia gminy
- **WSZG II** Low level of threat to the municipality / Niski stopień zagrożenia gminy
- **WSZG III** Average level of threat to the municipality / Średni stopień zagrożenia gminy
- **WSZG IV** High level of threat to the municipality / Wysoki stopień zagrożenia gminy
- **WSZG V** Very high level of threat to the municipality / Bardzo wysoki stopień zagrożenia gminy

Source: Own elaboration based on data from the Headquarters of the State Fire Service.

Zródło: Opracowanie własne na podstawie danych KG PSP.
Summary

The Ten-year period of practical use of the methodology of assessment of threats characterized above occurring in the areas of individual municipalities (districts of cities) and districts for the functioning of the national rescue and firefighting system allows to formulate a thesis, that in this case we can talk about a positive verification of the assumptions, which were adopted at the stage of creating the concept of this methodology and its initial implementation in force. From this perspective, taking into account the lack of conclusions from the end users as to the need of introducing essential corrections in the area mentioned above, we can talk about a kind of validation of the obtained results. This resolved initial concerns – not least of all those of the author – as to the adequacy of the guidelines set out within its framework for determining the classification of individual risk factors to the appropriate degrees of that risk or the apparatus allowing for the determination of accident degrees in relation to the actual scale of the threat.

In this context, the support given to the author by many experts both at the stage of creating the concept of the method and later works related to its pilot implementation proved invaluable. I hereby extend my heartfelt thanks for this support.

The circumstance that undoubtedly significantly affects the reliability of the obtained results is also the decision to introduce at the stage of partial analysis, additional criteria related to the number of events that occurred in the area, requiring the intervention of rescue and firefighting units. Although, as mentioned earlier, the comments to the methodology in question indicate the need to subject to analysis the number of events that have occurred, it is only by specifying the criteria in this regard on one of the axes of the matrices used in the examples of sub-analyses discussed above that a uniform consideration of their impact is guaranteed. This provided both an assessment of the threat potential and that part of it that materialized in the form of occurring contingencies.

Of course, despite the positive experience of years of actual use of the results of the threat assessment discussed above, it would be a mistake to fall into an uncritical state of complacency. Therefore, all informal postulates concerning the need to develop the presented methodology in the direction of introducing additional tools that could improve the quality of the obtained results, such as those suggesting its stronger connection with the currently available geospatial databases, are still being analyzed with full attention. If the postulates mentioned above take on a more expressive shape, those who make them can count on the full support of the author of this methodology, as was the case with the implementation of the proposal discussed in this article concerning the inclusion of another threat factor related to the fire hazard of non-forest terrestrial ecosystems.

Podsumowanie

Dziesięcioletni okres praktycznego wykorzystywania schrakteryzowanej powyżej metodyki oceny zagrożeń występujących na obszarach poszczególnych gmin (dzielnic miast) oraz powiatów na potrzeby funkcjonowania krajowego systemu ratowniczego-gaśniczego pozwala na sformułowanie tezy, iż w tym przypadku możemy mówić o pozytywnej weryfikacji założeń, jakie przyjęto na etapie tworzenia koncepcji tej metodyki i jej pierwotnego wdrożenia w życie. Z tej perspektywy, biorąc pod uwagę również dotychczasowy brak formułowania przez użytkowników końcowych wniosków, co do potrzeby wprowadzania zasadniczych korekt w powyższym obszarze, można mówić o dokonaniu się swego rodzaju walidacji uzyskanych wyników. Rozwiało to początkowe obawy – nie tylko autora – co do adekwatności określonych w jej ramach wskazówek determinujących kwalifikację poszczególnych czynników zagrożenia do odpowiednich stopni tego zagrożenia czy aparatu pozwalającego na wyrządzanie stopni wypadków w odniesieniu do rzeczywistej skali zagrożenia.

W tym kontekście bezcenne okazało się udzielone autorowi przez wielu ekspertów wsparcie zarówno na etapie tworzenia koncepcji metody, jak i późniejszych prac związanych z pilotażowym jej wdrażaniem. Niniejszym za to wsparcie serdecznie dziękuję.

Okolicznością, która bez wątpienia znacząco wpływa na wiaręgodność uzyskiwanych wyników, jest także podjęcie decyzji o wprowadzeniu na etapie analiz cząstkowych, dodatkowych kryteriów związanych z liczbą zdarzeń drażniących na danym obszarze, wymagających interwencji jednostek ratowniczego-gaśniczego. Chociaż, jak wspomniano już wcześniej, w komentarzach do przedmiotowej metodyki wskazano na potrzebę poddania pod analizę liczby drażniących zdarzeń, to dopiero sprezygowanie kryteriów w tym zakresie na jednej z osi macierzy stosowanych w omówionych przykładach analiz cząstkowych, daje gwarancję jednolitego uwzględnienia ich wpływu. W ten sposób zapewniono zarówno ocenę potencjału zagrożenia, jak i tej jej części, którą zmaterializowała się w postaci drażniących zdarzeń losowych.

Oczywiście pomimo pozytywnych doświadczeń związanych z wieloletnim, rzeczywistym wykorzystywaniem wyników omówionej powyżej oceny zagrożeń, błędem byłoby popadać nie w bezkrytyczny stan samozadowolenia. Stąd nadal z pełną uwagą analizowane są wszelkie pojawiające się nieformalne postulaty odnośnie potrzeby rozwoju przedstawionej metodyki w kierunku wprowadzenia dodatkowych narzędzi, które mogłyby podnieść jakość uzyskiwanych wyników, jak chociażby te sugerujące jej silniejsze powiązanie z dostępnymi obecnie bazami danych geoprzestrzennych. Jeśli wspomniane postulaty nabiorą bardziej wyraźstzych kształtów, osoby je zgłaszające mogą liczyć na to, że jak to miało miejsce w przypadku wdrożenia omówionego w niniejszym artykule wniosku dotyczącego uwzględnienia kolejnego czynnika zagrożenia związanego z zagrożeniem pożarowym nielesnych ekosystemów lądowych – na pełne wsparcie ze strony autora niniejszej metodyki.
Literature / Literatura

[1] Rozporządzenie Ministra Spraw Wewnętrznych i Administracji z dnia 17 września 2021 r. w sprawie szczegółowej organizacji krajowego systemu ratowniczo-gaśniczego (Dz.U. 2021 poz. 1737).
[2] Rozporządzenie Ministra Spraw Wewnętrznych i Administracji z dnia 18 lutego 2011 r. w sprawie szczegółowych zasad organizacji krajowego systemu ratowniczo-gaśniczego (Dz.U. 2011 Nr 46, poz. 239).
[3] Rozporządzenie Ministra Spraw Wewnętrznych i Administracji z dnia 29 grudnia 1999 r. w sprawie szczegółowych zasad organizacji krajowego systemu ratowniczo-gaśniczego (Dz.U. 1999 Nr 111, poz. 1311, z późn. zm.).
[4] Wróblewski D., Zarządzanie ryzykiem. Przegląd wybranych metodyk, CNBOP-PiB, Józefów 2018.
[5] Markowski A.S., Bezpieczeństwo procesów przemysłowych, Politechnika Łódzka, Łódź 2017.
[6] Abgarowicz G., Pamięć przyszłości. Analiza ryzyka dla zarządzania kryzysowego, CNBOP-PiB, Józefów 2015.
[7] Janik P., Metoda oceny zagrożenia gminy i powiatu, „Przegląd Pożarniczy” 2006, 2, 14–16.
[8] Rozporządzenia Ministra Infrastruktury z dnia 12 kwietnia 2002 r. w sprawie warunków technicznych, jakim powinny odpowiadać budynki i ich usytuowanie (Dz.U. 2019 poz. 1065, z późn. zm.).
[9] Rozporządzenie Ministra Spraw Wewnętrznych z dnia 21 listopada 2014 r. w sprawie szczegółowych zasad wyposażenia jednostek organizacyjnych Państwowej Straży Pożarnej (Dz.U. 2014 poz. 1793).
[10] Zasady organizacji ratownictwa chemicznego i ekologicznego w krajowym systemie ratowniczo-gaśniczym, Warszawa 2021, s. 10–11, https://www.gov.pl/web/kgpsp/wyzwania/ksrg [dostęp: 10.03.2022].
[11] Metodyka budowy planu sieci jednostek Ochotniczych Straży Pożarnych przewidzianych do włączenia do krajowego systemu ratowniczo-gaśniczego, Warszawa, listopad 2020, s. 13–15, https://www.gov.pl/web/kgpsp/metodyka-budowy-planu-sieci-jednostek-ochotniczych-strazy-pozarnych-planowanych-do-wlaczenia-do-krajowego-systemu-ratowniczo-gasniczego [dostęp: 10.03.2022].

SENIOR BRIG. PAWEŁ JANIK, PH.D. ENG. – he completed his master’s studies at the Main School of Fire Service in Warsaw and doctoral studies at the Poznań University of Economics (now Poznań University of Economics), as well as post-graduate studies in IT at the Łódz University of Technology and crisis management at the Central School of the Fire Service. Since 2018, he has been the director of CNBOP-PiB. Specialty: safety science.

ST. BRYG. DR INŻ. PAWEŁ JANIK – ukończył studia magisterskie w Szkołe Głównej Służby Pożarniczej w Warszawie oraz studia doktoranckie w Akademii Ekonomicznej w Poznaniu (obecnie Uniwersytet Ekonomiczny w Poznaniu), a także studia podyplomowe z zakresu informatyki na Politechnice Łódzkiej oraz zarządzania kryzysowego w SGSP. Od 2018 r. jest dyrektorem CNBOP-PiB. Specjalność: nauki o bezpieczeństwie.