Improvement of wear resistance of working elements from gray iron for development of the ground

To cite this article: V A Motorin et al 2019 IOP Conf. Ser.: Earth Environ. Sci. 341 012138

View the article online for updates and enhancements.
Improvement of wear resistance of working elements from gray iron for development of the ground

V A Motorin¹,², D S Gapich¹, A E Novikov¹,², V S Bocharnikov¹ and S D Fomin¹,³

¹Volgograd State Agrarian University, 26, University Avenue, Volgograd, 400002, Russia
²Volgograd State Technical University, 28, Lenina Avenue, Volgograd, 400005, Russia
³All-Russian research institute of irrigated agriculture, 9, Timiryazev Street, Volgograd, 400002, Russia

E-mail: fsd_58@mail.ru

Abstract. The question of increasing the wear resistance and resource of working elements for the development of soil through the use of sound technological methods of manufacturing them from inexpensive materials is considered. Increased tribological characteristics of the working elements are achieved by optimally structuring them into functional areas, depending on the perceived loads and peculiarities of the working conditions. According to the results of research, a promising material for the manufacture of chisel plows bits - gray cast iron is proposed. Gray cast iron SCh 20 with a bleached layer on the working surface with a thickness of about 2 mm has higher tribological characteristics as compared to rolled steel, as well as technological and economic advantages in production due to the use of casting technologies.

1. Introduction
Severe conditions of operation of the working elements of tillage machines predetermine unacceptably low lifespan. Time to failure when limiting wear is reached for the most loaded parts, such as, for example, a chisel plow chisel, does not exceed 5-20 ha [1, 2]. High consumption rates of bits, labor costs for frequent replacement in field conditions, increased fuel consumption due to an increase in traction resistance at blunting the cutting edge of the bit [3] significantly increase the cost of processing of closed soil and aggravate the relevance of improving the reliability of these working elements.

To increase the wear resistance of bits made of mild steel, cladding with sormite alloys is used. However, the deposited layer is prone to cracking and flaking under the action of friction forces and high contact pressures [4].

Recently, recommendations have been made to carry out the wear surfaces of heavily loaded parts of soil-cultivating tools made of Hardox steel from SSAB Oxelosund [5], which is distinguished by good weldability and wear resistance and has been successfully used in mining and mining equipment. However, the consistency of these recommendations did not confirm the results of field trials. In [6], it was shown that the time between failures of bits made of Hardox 450 steel was 4 hectares.

The purpose of this work is to ensure high tribotechnical properties of chisel plow bits by optimally structuring iron castings during heat treatment.

2. Theory of the Question
Bleached structures can be obtained both in the entire volume of the casting, and locally in the specified
zones [7, 8]. Using these features of iron casting, it is possible, through optimal zonal structuring, to create in castings such a complex set of properties that can drastically improve the performance of the chisel plow bits with the minimum cost of their production. [9-25]. A zonal structuring of the bit casting is proposed, providing high wear resistance and sharpness of the cutting edge due to the high hardness of the bleached layer and the realization of the self-sharpening effect during the plow operation.

3. Methods of conducting experiments, materials and methods of analysis

The study was conducted on heat-treated samples (castings) of cast iron SCH20, steel 45, 65G and Hardox 450 widely used for the manufacture of bits of tillage machines. The parameters of heat treatment are given in the Table 1.

Sample number and material	Parameters of heat treatment
No 1. Cast iron SCH20	Regarding mode No. 2 + high frequency current quenching (HDTV) with work surface melting
No 2. Steel 65G	Quenching from $t = 820 \degree C$, then cooled in oil and tempering at $t = 350 \degree C$
No 3. Steel 45	Normalization at $t = 880 \degree C$ for $\tau = 2$ hours, then air cooling
No 4. Steel Hardox 450	Heat treatment from the manufacturer

The structures obtained as a result of heat treatment were examined using a Neophot-21 metallographic microscope on microsections etched with 4% nital. The local hardness of the hardened zones and the individual structural components were determined using a PMT-3 instrument. The total Brinell and Rockwell hardness, as well as Charpy impact strength, were determined by standard methods according to GOST 9012-59, 9013-59 and 9454-78, respectively.

The method of research provided for comparative laboratory tests of the iron and steel under study, heat-treated in different modes, for abrasive wear resistance. The tests were carried out on the friction end machine in accordance with the requirements of GOST 17367-71.

When conducting comparative tests for wear resistance, this steel was used as a reference, its wear resistance was taken as 1.

4. Results and discussion

Hardening of the SCH20 sample by creating on its surface a bleached layer consisting of a cementite eutectic — ledeburite, was carried out during HDTV quenching (Sample No. 1). Under thermal action, the bulk of the metal remained cold. Therefore, after disconnecting the heat source, the thin molten surface layer, due to intensive heat removal to a large cold mass, solidified with a strong supercooling relative to the eutectic solidus with the formation of ledeburite (Figure 1).

The microhardness of the bleached ledeburite layer formed on the cast iron in sample No. 1 was equal to $H50 = 10210 \pm 1403$ MPa. The main difference was the thickness of the bleached layer. In the process of electric arc heating and HDTV the bleached layer was 1.2 mm or more.
Sample No. 2 of 65G steel after quenching and tempering had a microstructure of tempered medium needle martensite, the hardness was HRC 47 ± 1.8, and the impact toughness of KCU was 31 J/cm². The microstructure of sample 3 of steel 45, which is most widely used in the manufacture of chisel plow bits, is a relatively homogeneous mixture of ferrite and pearlite grains characteristic of the normalized state, the steel hardness is HB 185 ± 2.1.

![Microstructure of bleached layer](image)

Figure 1. Microstructure of the bleached layer, obtained as a result of the melting and rapid cooling of the surface of cast iron – Sch 20, HDTV (×500).

Hardox 450 steel (sample No. 4) was not subjected to heat treatment in the manufacture of the bit, since it is supplied in a heat-treated condition, the manufacturer does not disclose heat treatment modes. The microstructure of Hardox 450 steel is a highly dispersive reed sorbitol, hardness – HB 411±4.7.

The dynamics of weight loss by samples of experimental materials when testing for abrasive wear is shown in Figure 2.

![Weight loss graph](image)

Figure 2. Weight loss of samples of experimental materials when testing for abrasive wear resistance (Nos. 1-4, Table.).
The test results showed (Figure 2) that gray cast iron with a bleached working surface has the greatest wear resistance, exceeding the wear resistance of the other materials studied. So, for cast iron SCH20 after quenching with HDTV – $\varepsilon = 4.13$. Hardox 450 steel ($\varepsilon = 1.98$) showed resistance to wear, commensurate with the results of 65G steel ($\varepsilon = 2.05$), heat-treated to a hardness of similar magnitude.

5. Conclusion

Gray cast iron SCH 20 with a bleached layer on the working surface with a thickness of about 2 mm is the most promising material for the manufacture of working bodies of tillage tools for the development of soils having higher tribological characteristics as compared with rolled steel, as well as technological and economic advantages in production due to the use of foundry technology.

Acknowledgments

The research is conducted with the financial support from the Russian Foundation for Basic Research in collaboration Volgograd Regional Authorities (project code RFBR No. 18-48-342004) and as part of the grant of the President of the Russian Federation MK-2870.2019.8

References

[1] Kostyleva L V, Gapich D S, Motorin V A, Novikov A E, Kurbanov D B 2018 Improving the wear resistance of tillage workers through the structuring of high-carbon alloys News of the Nizhnevolzhsky agrouniversity complex: Science and higher professional education 3 283-291
[2] Motorin V A, Gapich D S, Kostyleva L V, Novikov A E 2018 Formation of wear-resistant zonal-distributed structures of parts of implements for tillage from high-strength cast iron News of the Nizhnevolzhsky agrouniversity complex: Science and higher professional education 4 269-276
[3] Dunaev V S, Kipriyanov F A 2013 Steel Hardox (HARDOX) Practice application The first step in science: mater. II annual scientific-practical. conf. 3-6
[4] Perelygin V 2018 Hardox. Understand calmly Fixed Assets 2008 12. - Access mode: https://os1.ru/article/7515-hardox-razberemsya-spokoyno (access date: 26.03.2003)
[5] Makarenko K V 2010 About getting half-cast iron with ausferritic structure from a cast state Foundry production 2 2-6
[6] Novikov A E, Motorin V A, Lamskova M I, Filimonov M I 2018 Abrasive Deterioration Composition and Tribological Properties of Cutting Blades of Tillage Machines under Abrasive Deterioration Journal of Friction and Wear 39(2) 158-163
[7] Kostyleva L V, Gapich D S, Motorin V A 2016 The complex effect of the chemical composition of iron on the structure of the bleached layer of chisel plow bits News of the Nizhnevolzhsky agrouniversity complex: Science and higher professional education 2 221-228
[8] Sicoe G M, Sicoe G M 2018 Researches on the diffusion phenomena in the thermo-chemical treatment of oxy-nitrocarburizing of some grey cast irons Revista de Chimie 69 3367-3371
[9] Pang Z, Zhou H, Chang F, Zhang P, Cong D, Meng C, Wang C, Ren L 2015 Effect of the microhardness difference between base metal and bionic coupling unit on wear resistance of gray cast iron Optics and Laser Technology 75 151-156
[10] Chen Z K, Lu S C, Song X B, Zhang H, Yang W S, Zhou H 2015 Effects of bionic units on the fatigue wear of gray cast iron surface with different shapes and distributions Optics and Laser Technology 66 166-174
[11] Sarkar T, Sutradhhar G 2018 Tribological characterization of copper alloyed austempered grey cast iron (AGI) Materials Research Express 5 N. 066542
[12] Agarwal K, Shivpuri R, Vincent J, Rolinski E, Sharp G 2013 DC pulsed plasma deposition of nanocomposite coatings for improved tribology of gray cast iron stamping dies Journal of Materials Processing Technology 213 864-876
[13] Akdemir A, Kuş R, Şimşir M 2011 Investigation of the tensile properties of continuous steel wire-reinforced gray cast iron composite Materials Science and Engineering A 528 3897-3904
[14] Liu A, Previtali B 2010 Laser surface treatment of grey cast iron by high power diode laser *Physics Procedia* 5 439-448
[15] Collini L, Nicoletto G, Konečná R 2008 Microstructure and mechanical properties of pearlitic grey cast iron *Materials Science and Engineering A* 488 529-539
[16] Bertolino G, Perez-Ipiña J E 2006 Geometrical effects on lamellar grey cast iron fracture toughness *Journal of Materials Processing Technology* 179 202-206.
[17] Oss Giacomelli R, Berti Salvaro D, Binder C, Klein A N, Biasoli de Mello, J D 2018 DLC deposited onto nitrided grey and nodular cast iron substrates: an unexpected tribological behavior *Tribology International* 121 460-467
[18] Oyetunji A, Opaluwa A I 2018 Model development for estimating the aging behaviors of gray cast iron (GCI) alloy at different times and temperatures *International Journal of Advanced Manufacturing Technology* 96 705-715
[19] Mannens R, Delforno A, Trauth D, Kittel M, Klocke F 2017 Analysis of surface defects on industrial casting tools for automotive applications after machine hammer peening *Procedia Engineering* 207 1141-1146
[20] Wang B, Barber G, He M, Slattery B, Seaton P 2016 Study of Ausferrite Transformation Kinetics for Austempered Ductile Irons with and without Ni *SAE Technical Papers* SAE World Congress and Exhibition; Detroit; United States Код 121606
[21] Vadiraj A, Kamaraj M, Sreenivasan V S 2011 Wear and friction behavior of alloyed gray cast iron with solid lubricants under boundary lubrication *Tribology International* 44 1168-1173.
[22] Cueva G, Sinatora A, Guesser W L., Tschiptschin A P 2003 Wear resistance of cast iron used in brake disc rotors *Wear* 255 1256-1260
[23] Zhang Y, Chen Y, He R, Shen B 1993 Investigation of tribological properties of brake shoe materials - phosphorous cast iron with different graphite morphologies *Wear* 166 179-186
[24] Wang Y, Gou J, Chu R, Zhen D, Liu S 2016 The effect of nano-additives containing rare earth oxides on sliding wear behavior of high chromium cast iron hardfacing alloys *Tribology International* 103 102-112
[25] Kostyleva L V, Gapich D S, Motorin V A, Novikov A E 2019 Microstructure and abarizive wear resistance of heavy duty parts from high-strength cast iron in chisel plows *Chernye Metally* 3 37-42