Modeling of Bias for the Analysis of Receptor Signaling in Biochemical Systems

Larry S. Barak* and Sean Peterson

Department of Cell Biology, Duke University Medical Center, Durham, North Carolina 27710, United States

ABSTRACT: Ligand bias is a recently introduced concept in the receptor signaling field that underlies innovative strategies for targeted drug design. Ligands, as a consequence of conformational selectivity, produce signaling bias in which some downstream biochemical pathways are favored over others, and this contributes to variability in physiological responsiveness. Though the concept of bias and its implications for receptor signaling have become more important, its working definition in biochemical signaling is sufficiently imprecise as to impede the use of bias as an analytical tool. In this work, we provide a precise mathematical definition for receptor signaling bias using a formalism expressly applied to logistic response functions, models of most physiological behaviors. We show that signaling-response bias of biological processes may be represented by hyperbolae, or more generally as families of bias coordinates that index hyperbolae. Furthermore, we show bias is a property of a parametric mapping of these indexes into vertical strings that reside within a cylinder of stacked Poincare disks and that bias factors representing signaling probabilities are the radial distance of the strings from the cylinder axis. The utility of the formalism is demonstrated with logistic hyperbolic plots, by transducer ratio modeling, and with novel examples of Poincare disk plots of Gi and β-arrestin biased dopamine 2 receptor signaling. Our results provide a platform for categorizing compounds using distance relationships in the Poincare disk, indicate that signaling bias is a relatively common phenomenon at low ligand concentrations, and suggest that potent partial agonists and signaling pathway modulators may be preferred leads for signal bias-based therapies.© 2012 American Chemical Society

MATERIALS AND METHODS

Preparation of Theoretical Curves. Equations for the different bias models were added to the library of nonlinear equations in GraphPad Prism 4.0 (GraphPad Software, La Jolla, CA) using the user supplied equations option. Graphs were

Received: August 16, 2011
Revised: November 30, 2011
Published: January 5, 2012
functions \(f \) and \(g \) are defined as
\[
\frac{f}{g} = \frac{1}{1 + \frac{B_{12}^2}{g}}.
\]

Functions \(f \) and \(g \) are chosen as rectangular hyperbolae with different Hill coefficients. For unequal Hill coefficients \((j \neq f)\), set
\[
f = p_1 \left(\frac{\rho_1}{\tau_1 + \rho_1}\right)^{\alpha_1} \quad \text{and} \quad g = p_2 \left(\frac{\rho_2}{\tau_2 + \rho_2}\right)^{\alpha_2}
\]

Then \(\frac{f}{g} = \frac{\rho_1}{\tau_2 + \rho_1} \quad \text{and} \quad \frac{g}{f} = \frac{\rho_2}{\tau_1 + \rho_2} \)

Theoretical Calculations

Form of the Bias Function \(B_{12}^2 \). Conjugate Relationships. For bounded, continuous functions \(f \) and \(g \) over the interval \((c, \epsilon, f(c), g(c), g(\epsilon) \geq 0)\), the bias function is defined as
\[
B_{12}^2 = g \cdot f - g \cdot f
\]

where
\[
\text{for relationships of the form } b = \frac{1 - a}{1 + a}.
\]

\(a = \frac{1 - b}{1 + b} \). Therefore, when \(\frac{1 - f/g}{1 + f/g} \) is defined, then \(B_{12}^2 \) is conjugate to \(\frac{f}{g} \) and
\[
\frac{f}{g} = \frac{1}{1 + \frac{B_{12}^2}{g}}, \quad \frac{g}{f} = \frac{1}{1 + \frac{B_{12}^2}{f}}.
\]

Functions \(f \) and \(g \) Are Chosen as Rectangular Hyperbolae with Different Hill Coefficients. For unequal Hill coefficients \((j \neq f)\), set
\[
f = p_1 \left(\frac{\rho_1}{\tau_1 + \rho_1}\right)^{\alpha_1} \quad \text{and} \quad g = p_2 \left(\frac{\rho_2}{\tau_2 + \rho_2}\right)^{\alpha_2}
\]

Then \(\frac{f}{g} = \frac{\rho_1}{\tau_2 + \rho_1} \quad \text{and} \quad \frac{g}{f} = \frac{\rho_2}{\tau_1 + \rho_2} \)

Theoretical Calculations

Form of the Bias Function \(B_{12}^2 \). Conjugate Relationships. For bounded, continuous functions \(f \) and \(g \) over the interval \((c, \epsilon, f(c), g(c), g(\epsilon) \geq 0)\), the bias function is defined as
\[
B_{12}^2 = g \cdot f - g \cdot f
\]

where
\[
\text{for relationships of the form } b = \frac{1 - a}{1 + a}.
\]

\(a = \frac{1 - b}{1 + b} \). Therefore, when \(\frac{1 - f/g}{1 + f/g} \) is defined, then \(B_{12}^2 \) is conjugate to \(\frac{f}{g} \) and
\[
\frac{f}{g} = \frac{1}{1 + \frac{B_{12}^2}{g}}, \quad \frac{g}{f} = \frac{1}{1 + \frac{B_{12}^2}{f}}.
\]
ligand affinity. Transducer ratios for the two response functions are:

\[r_m = \frac{m}{1 + \frac{1}{2} \frac{r_1}{r_2}; \eta = \frac{K_{A_1}}{K_{A_2} + K_{A_1}}; \epsilon = \frac{K_{A_2}}{K_{A_1}}. \]

Form of the Bias Function \(B^b \) (equal Hill coefficients). From the derivations given above for equal Hill coefficients:

\[g - f = \frac{1 + B^b_1}{1 + B_1} - \frac{1 - B^b_2}{1 + B_2} = \frac{(1 + B^b_1)^2 - (1 - B^b_2)^2}{1 + B_1 + B_2 + B_1B_2} \]

\[= \frac{\epsilon B_2^b}{(1 + B_2^b)(1 + B_2^b)} \text{ and } \frac{\epsilon B_1^b}{(1 + B_1^b)(1 + B_1^b)} \]

The set of points \((B_0 + iB_{∞})\), \(-1 \leq B_0, B_{∞} \leq 1\) reside in a unit square centered on the origin (0,0). For a fixed angle \(θ_B\) from the origin defined by \(tan(θ_B) = \frac{B_{∞}}{B_0}\), each coordinate point \((B_0, B_{∞})\) along the \(θ_B\) vector can be represented as \(aR_{max}^b(cos(θ_B) + i sin(θ_B)) = aR_{max}^b e^{iθ_B}\). The point \(aR_{max}^b e^{iθ_B}\) lies on the edge of or inside the unit disk for \(0 \leq α \leq 1\) and the following definition for \(R_{max}^b\) :

\[R_{max}^b = \begin{cases} \frac{1}{\sin θ_B}, & 0 < θ_B \leq \frac{3π}{4} \\ \frac{1}{cos θ_B}, & \text{otherwise} \end{cases} \]

The bias coordinates \((B_0, B_{∞})\) in the square along the vector defined by \(θ_B\) represent a family of hyperbolae for which \(tan(θ_B) = \frac{B_{∞}}{B_0}\) = constant.

Parametric Map from the Square to the Unit Disk. Define a mapping from the unit square, the points with bias coordinates \((B_0, B_{∞})\) = \(aR_{max}^b e^{iθ_B}\) by:

\[M(α, θ_B, θ_Y) = \frac{cos(θ_B)}{|cos(θ_B)|} aR_{max}^b e^{iθ_B} \]

for \(0 \leq α \leq 1, 0 \leq θ_B \leq 2π, \) and \(0 \leq θ_Y \leq π/2\). This function for a fixed \(θ_Y\) (or equivalently for a fixed \(θ_B\)) maps every coordinate point \((B_0, B_{∞})\) in the unit square to a coordinate point in the unit disk because \(\text{Re}(B^bY) \leq 1, e^{iθ_B} = 1, \) and \(\frac{|cos(θ_B)|}{|cos(θ_B)|} = 1 \). The term \(\frac{cos(θ_B)}{|cos(θ_B)|} = \pm 1 \) of \(M(α, θ_B, θ_Y)\) preserves the orientation between vectors at angle \(θ_B\) in the square to vectors at angle \(θ_B\) in the disk. The bias magnitude that is between \(-1\) and \(1\) defines the position of the coordinate along a unit vector in the disk of orientation \(e^{θ_B}\).

Projection of the Bias onto Unit Vectors. Because \(B^bY\) can be interpreted as either a projection onto \(e^{θ_B}\) or \(e^{θ_B}\), we can consider (i) that a point along a fixed direction vector \(e^{θ_B}\) moves to a different position along \(e^{θ_B}\) as the parameter \(θ_Y\) increases from 0 to \(π/2\). In a second interpretation (ii) we can consider that a point attached to the tip of a vector parallel to
e^{\theta_1} rotates counterclockwise with \(e^{\theta_2} \) as \(\theta_2 \) increases from 0 to \(\pi \), and the length of that vector is the bias and the vector orientation determined by the sign of the bias. Observe that each bias-coefficient coordinate in the unit square is mapped into a stack of disks that form a bias-coordinate cylinder with height \(\frac{\pi}{2} \). The particular disk varies with mapping parameter \(\theta_1 \).

Distances and Mapping in the Unit Disk and Bias-Cylinder. Hyperbolic Distance between Pairs of Complex Points, \(z_1 \) and \(z_2 \) in the Poincare Disk. This distance is:

\[
d(z_1, z_2) = 2\tanh^{-1}\left|\frac{z_1 - z_2}{1 - \bar{z}_1 z_2}\right| = \ln \left|\frac{1 + \frac{z_1 - z_2}{1 - \bar{z}_1 z_2}}{1 - \frac{z_1 - z_2}{1 - \bar{z}_1 z_2}}\right|^{10, 11}.
\]

For \(z_1 = (a_1, b_1) \) and \(z_2 = (a_2, b_2) \) this distance is:

\[
d(z_1, z_2) = \ln \left|\frac{1 + \frac{a_1 - a_2}{1 - \bar{a}_1 a_2} + \frac{b_1 - b_2}{1 - \bar{b}_1 b_2}}{1 - \frac{a_1 - a_2}{1 - \bar{a}_1 a_2} - \frac{b_1 - b_2}{1 - \bar{b}_1 b_2}}\right|^{12}.
\]

For points on the \(x \) or \(y \) axis, \(b_1 = b_2 = 0 \) or \(a_1 = a_2 = 0 \),

\[
d(z_1, z_2) = \ln \left|\frac{1 + \frac{a_1 - a_2}{1 - \bar{a}_1 a_2} + \frac{b_1 - b_2}{1 - \bar{b}_1 b_2}}{1 - \frac{a_1 - a_2}{1 - \bar{a}_1 a_2} - \frac{b_1 - b_2}{1 - \bar{b}_1 b_2}}\right|^{12}, \text{ or}
\]

\[
d(z_1, z_2) = \pm \ln \left(\frac{1 + h_1(1 - h_2)}{1 - h_1(1 + h_2)}\right).
\]

for \(h = a \) or \(b \) where the sign is positive if \(h_1 > h_2 \) and negative if \(h_2 > h_1 \). For,

\[
(a, b) = (B_0, B_\infty) = \left(\frac{1 - \rho m}{1 + \rho m}, \frac{1 - \rho}{1 + \rho}\right) \text{ and,}
\]

\[
B_0 = (B_0^a, 0) \text{ and } B_\infty = (0, B_\infty^a), m = 1, 2;
\]

\[
d(B_0^a, B_\infty^a) = \pm \ln \frac{\rho_1 m_1}{\rho_2 m_2} \text{ and } d(B_\infty^a, B_\infty^a) = \pm \ln \frac{\rho_1}{\rho_2}.
\]

Distance Preserving Mapping of the Unit Disk in the Complex Plane to Itself. The mapping \(w = \frac{z - z_1}{1 - \bar{z}_1 z} \) takes neighborhoods about the point \(z_1 = c + i d \) to neighborhoods about the origin and similarly neighborhoods about the origin to neighborhoods about the point \(-z_1 \). For \(z = a + i b \), this mapping is,

\[
w = \left|\frac{(a - c)(1 - ac - bd) - (b - d)(ad - bc)}{DM} + i \left[\frac{(b - d)(1 - ac - bd) - (a - c)(ad - bc)}{DM}\right]\right|.
\]

\[
DM = (1 - ac - bd)^2 + (ad - bc)^2
\]

Distance Metric in the \(\theta_1 \) Direction. The metric is

\[
\frac{(dy)^2}{\cos^2 \theta_1 dy^2}
\]

because \(y = \tan \theta_1 \). Similar to boundary points, disks near the top of the cylinder are distant from one another even though changes in \(\theta_1 \) may be small.

Relative Probability, Distance, and Bias Factor in the Poincare Disk. Distance from the Origin (zero bias point) and Relative Probability. The distance along the axis to the point \(R > 0 \) is:

\[
d(0, R) = \ln \frac{1 + R}{1 - R} = \frac{1}{\log_2 e} \log_2 \frac{1 + R}{1 - R}.
\]

Define a distance coefficient \(\beta_c^m = \frac{m}{\log_2 e} \). For \(m \geq 0 \) and \(R = 2^m - 1 \), this distance is:

\[
d(0, 2^m - 1) = \gamma_c^m.
\]

Observe that in model \(B_\infty^a \) we can set \(R = \frac{e^{-f}}{e^f} = \frac{2^m - 1}{2^m + 1} \) and solve for “\(m \).” Thus,

\[
\frac{e^f}{e^{-f}} = \frac{2^m}{2^m + 1}
\]

Therefore, for every unit change in \(m \), the relative probability \(\frac{e^f}{e^{-f}} \) doubles while the distance along the axis \(\gamma_c^m = \gamma_1^m \) increases linearly with the change in \(m \). In the Poincare disk the conformal transformations \(w = \frac{z - z_1}{1 - \bar{z}_1 z} \) preserve distance relationships, rotations about the center being a special case. We show in Bias Factor Expression \(\beta \) in Heuristic Modeling that the bias factor \(\beta \) is equivalent to a length along the \(B_0 \) or \(B_\infty \) axis. It can be generalized to the whole disk by rotation for any two points \(z \) and \(z_1 \). \(\beta^c = d(z, z_1) \), and for \(\gamma_1^c = \frac{1}{\log_2 e} \approx 0.69 \),

\[
\beta^c = d(z, z_1) = \gamma_c^m = \gamma_1^m m \approx 0.69 m.
\]

Grouping Bias Coordinates on the Basis of Distance. The distance relationship between the origin and points \(z_1 \) and \(z_2 \) in the disk satisfies:

\[
d(0, z_1) \leq d(0, z_2) + d(z_2, z_1)
\]

\[
d(0, z_2) \leq d(0, z_1) + d(z_1, z_2)
\]

\[
d(z_1, z_2) = d(z_2, z_1)
\]

Let \(z \) be the set of all points in the disk about \(z_1 \) such that \(d(z, z_1) \leq d_i \). From above, \(e^{d_0(z_1)} = \frac{\delta_1}{f_1} \) and \(e^{d_0(z_2)} = \frac{\delta_2}{f_2} \). Therefore,

\[
\frac{\delta_1}{f_1} \leq \frac{\delta_2}{f_2} e^{d(z_1, z_2)}, \text{ and } \frac{\delta_1}{f_1} \leq \frac{\delta_2}{f_2} e^{d(z_1, z_2)}, \text{ and}
\]

\[
\frac{\delta_1 e^{d(z_1, z_2)}}{f_1} \leq \frac{\delta_2}{f_2} e^{d(z_1, z_2)}
\]

indicating all bias coordinates in the neighborhood of \(z_1 \) within the distance \(d_z \) represent response functions \(g_z \) and \(f_z \) having ratios \(\frac{g_z}{f_z} \) within \(e^{d(z, z_1)} \) of \(\frac{\delta_1}{f_1} \). For tan(\(\theta_2\)) = \(B_\infty \) set,
\[z_1 = \langle \text{bias}(B_0, B_\infty, \theta_0, \theta_2) \rangle \cos(\theta_2) e^{i\theta_2}, \text{ where} \]
\[\langle \text{bias}(B_0, B_\infty, \theta_0, \theta_2) \rangle = \int_{\theta_2}^{\theta_2} \text{bias}(B_0, B_\infty, \theta) w(\theta) d\theta \]
and \(\int_{\theta_2} w(\theta) d\theta = 1 \).

Bias Factor Expression \(\beta \) in Heuristic Modeling.

Equi-active Comparison. From Bias Viewed as a Parametric Mapping from a Square to a Disk and Distances and Mapping in the Unit Disk and Bias Cylinder,

\[M(\alpha, \theta_B, 0) = < (B_0, B_\infty) \cdot (1, 0) > \cos(\theta_B) e^{i\theta_B} = \frac{\cos(\theta_B) B_0 e^{i\theta_B}}{\cos(\theta_B)} \]

For coordinates both associated with vector \(\theta_B \),

\[[M(B_0^1, \theta_B, 0) - M(B_0^2, \theta_B, 0)] = \frac{\cos(\theta_B) B_0 e^{i\theta_B}}{\cos(\theta_B)} \]

so that,

\[d(M(B_0^1, \theta_B, 0), M(B_0^2, \theta_B, 0)) = d(B_0^1, B_0^2) = \pm \ln \frac{\rho_{1\theta}}{\rho_{2\theta}} \]

with \(\rho = \frac{P_1}{k_{liq}} \). Identifying \(E_{\text{max}} \) with \(P \), \(EC_{50} \) with \(k \), lig with \(B_0^0 \) and ref with coordinate \(B_0^0 \), we obtain the bias factor:

\[\beta = d(B_0^1, B_0^2) \]

\[= \ln \left(\frac{E_{\text{max,process } i}}{EC_{50,\text{process } j}} \right) \frac{B_\text{lig}^i}{B_\text{ref}^j} \times \left(\frac{E_{\text{max,process } j}}{EC_{50,\text{process } i}} \frac{B_\text{lig}^j}{B_\text{ref}^i} \right) \]

Pharmacological Model. From Bias Viewed as a Parametric Mapping from a Square to a Disk and Distances and Mapping in the Unit Disk and Bias Cylinder,

\[M(\alpha, \theta_B, \frac{\pi}{2}) = < (B_0, B_\infty) \cdot (1, 0) > \cos(\theta_B) e^{i\theta_B} = \frac{\cos(\theta_B) B_\infty e^{i\theta_B}}{\cos(\theta_B)} \]

Therefore, for coordinates with the same \(\theta_B \),

\[[M(B_0^1, \theta_B, \frac{\pi}{2}) - M(B_0^2, \theta_B, \frac{\pi}{2})] = \frac{\cos(\theta_B) B_\infty e^{i\theta_B} - \cos(\theta_B) B_\infty e^{i\theta_B}}{\cos(\theta_B)} = |B_0^1 - B_0^2| \]

so that,

\[d\left(M\left(B_0^1, \theta_B, \frac{\pi}{2}\right), M\left(B_0^2, \theta_B, \frac{\pi}{2}\right)\right) = d(B_0^1, B_0^2) \]

\[= \pm \ln \frac{\rho_{1\theta}}{\rho_{2\theta}} \]

and \(\rho = \frac{\tau_j}{\tau_j + 1} \). Identifying \(i \) and \(j \) with pathways and \(\rho_1 \) and \(\rho_2 \) with lig and ref,

\[d(B_0^1, B_\infty^2) = \ln \left(\frac{\rho_{\text{lig}}}{\rho_{\text{ref}}} \right) \]

Setting \(\beta = d(B_0^1, B_0^2) \) we see that for small transducers for which \(\tau < 1 \) this result reduces to \(\beta = \sigma_{\text{path1}} - \sigma_{\text{path2}} \), \(\sigma_{\text{lig}} = \ln \frac{\rho_{\text{lig}}}{\rho_{\text{ref}}} \), which is the result found in ref 8 (within a multiplicative constant). The bias factor defined in ref 8 is appropriate for small transducers. However, for very large transducers in both pathways, this bias factor should in general approach zero, and this is not guaranteed to occur with \(\beta \) defined using \(\sigma_{\text{lig}} = \ln \frac{\rho_{\text{lig}}}{\rho_{\text{ref}}} \). If the reference ligand is unbiased, then \(\rho_{\text{ref}} = 1 \) and the bias factor \(\beta \) is \(d(B_0^1, 0) = \ln(\rho_{\text{ref}}) \).

Curve Fitting of Bias Parameters for Bias-Coordinate Distance Determinations. Using the definitions of the arctangent as \(\text{Arctg}(w) = \frac{1}{i} \text{Arctg}(iw) = \frac{1}{2i} \frac{1 + iw}{1 - iw} \) and hyperbolic arctangent \(\text{Arth}(w) = \frac{1}{i} \text{Arth}(iw) = \frac{1}{2i} \frac{1 - iw}{1 + iw} \), the above mapping is summarized as a polar co-ordinate transformation. The polar bias coordinates \((\beta, \theta_\beta, \theta_y) \) are shown below where \(\beta \) is the polar distance and \(\theta_\beta \) the polar angle.

\[\beta = 2 \text{Arth}(\text{bias}) = \frac{2}{i} \text{Arctg}(i \times \text{bias}) = \ln \frac{1 + \text{bias}}{1 - \text{bias}} \]

\[\theta_B = \begin{cases} \text{Arctg} \left(\frac{B_\infty}{B_0} \right) + \pi, & B_0 < 0 \\ \frac{1}{2i} \ln \frac{1 + i y}{1 - i y}, & B_0 \geq 0 \end{cases} \]

\[\theta_y = \text{Arctg}(y) = \frac{1}{2i} \ln \frac{1 + iy}{1 - iy} \]

for \(\alpha = 1 \).

The bias co-ordinates in rotated or non-rotated \((n = 1 \text{ or } 0, \text{ respectively}) \) complex notation and Euclidian notation are: \((x, iy) = \text{bias} \times e^{i(\theta_\beta - n\theta_y)} \) and \((x, y) = \text{bias} \cos(\theta_\beta - n\theta_y), \sin(\theta_\beta - n\theta_y) \)\]. Determining the bias parameters from experiment requires fitting to concentration \(c \) and calculating \(\theta_y \), which
cannot be expressed as a simple function of \(c \) alone. The GraphPad Prism macro below will fit the parameters \(B_0 = K = \log EC_{50}, \theta_0 \) and/or \((j, \alpha) \) against the experimental bias \(g = \frac{f - g}{f + g} \). In most cases, \(j \) and \(\alpha \) are fixed to 1. The independent variable is \(X = \log(c) \), and the dependent variable is \(Y = \text{bias} \).

\[
Y_c = 10^{(X-K)}
\]

\[
Y_a = Y_c^{(1-a)}
\]

\[
Y_Z = 2Y_c/(\{1 + B_0 \tan(\theta_b)\}(1 + [(1 - B_0)/(1 + B_0)]\gamma a))
\]

\[
Y_1 = 1/(1 + Y_Z)
\]

\[
Y_2 = Y_Z/(1 + Y_Z)
\]

\[
B_1 = B_0 + ([(1 - Yc)/(1 + Yc)])(1 + B_0(1 - Yc)/(1 + Yc))
\]

\[
B_2 = B_0 \tan(\theta_b)
\]

\[
Y = B_1Y_1 + B_2Y_2
\]

RESULTS

Overview of Strategy. An analysis of biological signaling bias will be presented in four parts. First, a general bias formalism will be developed with paradigms showing procedures that input response functions and output bias-response functions. Second, the number of candidate paradigms will be narrowed to two. Third, a particular class of biological response functions will be chosen and processed by each of the bias paradigms for generation of the corresponding bias function. Last, the bias-response functions will be characterized and applied to the analysis of dopamine receptor 2 signaling. Mathematical detail that is not necessary for moving the main discussion forward has been placed in Theoretical Calculations.

Development of Bias Formalism. We now define the properties of a bias response function using a generating function \(B \) whose domain includes response functions that are bounded, positive, and continuous. \(B \) acts upon paired response functions and by a series of rules creates a corresponding bias function. Specifically, the function \(B(R_1, R_2) \) compares the signaling of response functions \(R_1 \) and \(R_2 \) that represent two processes, \(A_1 \) and \(A_2 \), with respective inducers \(c_1 \) and \(c_2 \). \(R_1 \) and \(R_2 \) are each standardized by normalization with a mutually efficacious inducer, \(c_{1}^{\text{max}} \) and \(c_{2}^{\text{max}} \), producing responses \(E_{1\text{max}} \) and \(E_{2\text{max}} \) respectively. Thus, the relative response \(E_n(c_n)/E_m \) of all other inducers (\(n \neq m \)) of either \(R_1 \) or \(R_2 \) is \(\leq 1 \).

Because bias suggests preference, a function \(B(R_1, R_2) \) for an ordered pair of responses should quantitatively predict an opposite bias exists for the reverse ordered pair, i.e., \(B(R_2, R_1) = -B(R_1, R_2) \). Functions with this property are defined as odd as opposed to even functions \(G \) with the behavior \(G(R_1, R_2) = G(R_2, R_1) \). Additionally, bias implies some difference exists between two responses \(R_1 \) and \(R_2 \), and a simple relationship to reflect difference is subtraction. This leads to a generating function of the form \(B(R_1 - R_2) \times G(R_1, R_2) \), where \(B(R_1 - R_2) \) is odd and \(G(R_1, R_2) \) is even. There are multiple choices for \(B(R_1 - R_2) \) and \(G(R_1, R_2) \), including those that are combinations of integer powers of \(R_1 \) and \(R_2 \). Limited to integer powers, and with the straightforward selection of \(B(R_1, R_2) = R_1 - R_2 \) (first power in the response functions), there are only two fundamental forms for \(G(R_1, R_2) \) (within multiplicative constants) for constructing dimensionless bias functions by \(B(R_2 - R_1) \times G(R_1, R_2) \).

\[
(a) \quad G^o(R_1, R_2) = \frac{1}{R_1(c_1) + R_2(c_2)}
\]

\[
(b) \quad G^b(R_1, R_2) = \frac{1}{R_1(c_1) + R_2(c_2)}
\]

The denominator term in example (a) provides a bounded “probability-like” normalization to \(B^o(R_1, R_2) \). In contrast, the bias \(B^b(R_1, R_2) \), depends upon ratios of the response functions and may become problematic in practice when one response is much larger or smaller than the other.

Characteristics of the \(B^o \) Bias Function. \(B^o(R_1, R_2) \) has two characteristic properties related to interpreting the response bias. When the two responses are equal, the bias is 0, and for positive responses, \(B^o \) is between \(-1 \) and 1. When response \(R_1 \) is unlikely and much smaller than response \(R_2 \), \(B^o \) asymptotically approaches 1 to indicate this, and conversely, \(B^o \) approaches \(-1 \) when response \(R_1 \) is unlikely and much smaller than response \(R_2 \). With the normalization for \(B^o \) provided by \(R_1 + R_2 \), the bias \(B^o \) can be interpreted with a probability formalism where the probability of response \(R_1 \) (prob \(R_1 \), \(R_1/(R_1 + R_2) \) \((i = 1 \text{ or } 2) \), is \((1 - B^o)/2 \) or \((1 + B^o)/2 \) (see the first section of Theoretical Calculations).

Logistic Response Functions. So far, we have not chosen a particular subclass of response functions to plug into the bias formulation from the many positive, bounded, and continuous possibilities. Using ref 6, a plausible candidate is the large cohort of logistic (sigmoid) functions that represent biological processes and are written with Hill parameter \(j \) as

\[
E(c) = \frac{P}{1 + \text{c}^j}
\]

where \(0 \leq P \leq 1 \) as a result of normalization by \(E_{m} \) and \(k' \) equals \(c \) when a half-maximal response occurs. To couple paired response functions, we define the ratios \(\rho = P_1/P_2 \) and \(\eta = k_j/k_i \) from their defining parameters. Even though the response functions may have different Hill coefficients \((j \neq j) \), the following discussion will concentrate on response functions with equal Hill coefficients for the sake of simplicity and because the conclusions carry over to the case of unequal coefficients. It is also no loss of generality to set \(j \) equal to 1, because the effect of the exponent, \(j \), in the ratio \(k'/c \) can be accounted for by defining \(k = k' \) and \(c = c \).
Form of the B_{12}^a Bias Functions. With the selection of logistic response functions described above, the bias function B_{12}^a is a hyperbola that can be conveniently written in one of the three forms shown in eq II. The form $(B_0 + B_\infty y)/(1 + y)$ is used for the majority of the discussion and is defined by normalized concentration variable y, baseline B_0, and asymptote B_∞. Parameter $B_k = B_\infty - B_0$ represents the change in the bias over the interval $y = (0, \infty)$.

$B_{12}^a(R_1, R_2) = \frac{B_0 + B_\infty y}{1 + y} = \frac{B_0 + B_k}{1 + y}
= B_\infty - B_k \frac{1}{1 + y}$

$y = \frac{1 + \rho \ c}{1 + \rho \eta \ k_1} \ ; \ B_\infty = \frac{1 - \rho}{1 + \rho}$

$B_0 = \frac{1 - \rho \eta}{1 + \rho \eta} \ ; \ B_k = \frac{2\rho(\eta - 1)}{(1 + \rho)(1 + \rho \eta)}$ \hspace{1cm} (II)

The bias function B_{12}^a (second section of Theoretical Calculations) is the difference of two hyperbolae, has a relatively more complex parametrization than B_{12}^a and is related to it by the probabilities of R_1 and R_2 as shown in eq III.

For either B_{12}^a or B_{12}^b when the response curves have equal EC_{50} values (i.e., $\eta = 1$), the variation parameter B_k identically equals 0 and the bias is constant over the entire concentration range. The concentration at which the bias B_{12}^a will change from its initial value to halfway toward its final value occurs at

Figure 1. Theoretical bias curves. (A, C, and E) Curves for model B_{12}^a were generated from parameters R_∞ and B_t using GraphPad Prism. Curves shown in panels B, D, and E are the B_{12}^b representations of the curves in panels A, C, and E, respectively, using the parameters ρ and η computed from the values of R_∞ and B_0.

\[B_{12}^b(R_1, R_2) = \frac{B_0^1 + B_\infty^0 y_1}{1 + y_1} + \frac{B_0^2 + B_\infty^2 y_2}{1 + y_2} = \frac{4B_{12}^a}{(1 - B_{12}^a)(1 + B_{12}^a)} \]

\[y_1 = \frac{\eta k_1}{\rho} \ ; \ B_{12}^1 = \frac{1}{\rho} \ ; \ B_0^1 = \frac{1}{\rho \eta} \ ; \ B_k^1 = \frac{1}{\rho \eta} \ ; \ B_\infty^1 = \frac{1 - \eta}{\eta} \]

\[y_2 = \frac{\eta k_1}{k_1} \ ; \ B_{12}^2 = \frac{1}{\rho} \ ; \ B_0^2 = \frac{1}{\rho \eta} \ ; \ B_k^2 = \frac{1}{\rho \eta} \ ; \ B_\infty^2 = \frac{1 - \eta}{\eta} \] \hspace{1cm} (III)

For either B_{12}^a or B_{12}^b when the response curves have equal EC_{50} values (i.e., $\eta = 1$), the variation parameter B_k identically equals 0 and the bias is constant over the entire concentration range. The concentration at which the bias B_{12}^a will change from its initial value to halfway toward its final value occurs at
In Figure 1, parameters ρ and η that determine the values of B_∞ and B_0 defining bias curves B_{12} (panels A, C, and E) also generate the corresponding B_{12} curves (panels B, D, and F). The curves in the two models are generally similar in appearance, but the range over which the bias varies is always greater in model B_{12} (compare especially panels E and F and eq III).

Significantly, the additional inflection point (denoting a change in curvature) in the bias graph of Figure 1F results from model B_{12} requiring a summing of two hyperbolae rather than being represented by a single one, as is B_{12}.

Transducer Ratios and Bias Coefficients. Transducer ratios are useful for explaining the variable responses to stimuli that are observed in complex biological systems such as tissue.6,9 As a consequence of how we defined the normalized responses P_i, we can evaluate the parameters B_0 and B_∞ characterizing the bias functions in terms of transducer ratios8 (see the first section of Theoretical Calculations; for a comprehensive discussion of transducer ratios in signaling, see ref 9). For B_{12} the bias coefficients B_0 and B_∞ in this representation are

$$B_0 = \frac{1 - \tau_2}{1 + \tau_1 + \tau_2}; \quad B_\infty = \frac{1 - \tau_1}{1 + \tau_1 + 2\tau_2}$$ \hspace{1cm} (IVa)

Analogous relationships (eq IVb) can be calculated for the terms describing B_{12} or the relationship in eq III applied. The forms of the coefficients as ratios indicate that changes in their magnitudes can become quite large for disparities in pathway transduction or ligand affinities, somewhat limiting their utility for making comparisons.

$$B_0^1 = \frac{1}{\tau_2} \frac{\tau_2}{\tau_1} B_\infty^1 = \frac{\tau_2(\tau_1 + 1)}{\tau_1(\tau_2 + 1)}; \quad B_0^2 = -\frac{\tau_1}{\tau_2}$$ \hspace{1cm} (IVb)

From Transducer Ratios to Biased Ligands, Affinity or Efficacy. Natural variables for investigating the behavior of the bias coefficients for B_{12} in terms of the transducer ratios are τ_1 and τ_2/τ_1. Panels A–D of Figure 2 show comparative graphs of these relationships for the bias coefficients forming B_{12}^1 (A and C) and B_{12}^2 (B and D). Panels A and B indicate that if one of the transducers such as τ_1 is large, then the bias will approach zero despite some variability in τ_2/τ_1. This occurs because B_∞ in both models asymptotically goes to zero as $1/\tau_1$. It is also evident in panels C and D from the parametric curves that the baseline bias coefficients B_0 are small whenever the product of $\epsilon(\tau_1/\tau_2)$ approaches 1. Thus, relatively low concentrations of ligand in this case would have produced limited to no signaling bias. Comparison of panels B and D demonstrates the B_{12}^1 bias model is subject to wide variations in the zero baseline for changes in ϵ or τ_1/τ_2. Additionally, comparison of panels A and C indicates that the bias coefficients are more uniformly distributed for changes in parameter τ_1/τ_2 in B_{12}^1. Importantly, the curves in panels C and D show that at relatively low ligand concentrations and very small or large values of ϵ, B_0 is appreciable and the bias from affinity differences may not be inconsequential and should be considered with pathway efficacy when characterizing drug behavior. The results also suggest that it may be more difficult to develop drugs targeting efficaciously coupled signaling pathways in tissues where the transducer ratios are relatively large but unequal and the concentrations of the drugs are greater than their respective affinities (K_A). One possible developmental strategy for biased ligands would rely...
up upon identifying a compound with a much higher affinity for one of the signaling pathways (very large or small \(\varepsilon \) in Figure 2C) rather than concentrating solely on differences in efficacy that result from transducer ratios.

Categorization of Ligands on the Basis of Their Bias Coefficients \(B_0 \) and \(B_{\infty} \). Ligand bias coefficients not only define the relative behaviors of dose–response curves but also could potentially represent a means of quantifying differences between ligands; if this is true, what form do the coefficients take in this other role? The following observations present a strategy for answering this question. (1) The set of all pairs of bias coefficients represented in the \(B_{12} \) model are coordinate points that in aggregate compose a unit square, indicating that the unit square is equivalent to a comprehensive index for addressing response hyperbolae. (2) It is not clear what geometry to apply to the unit square because it lacks rotational symmetry because of the corners, whereas the unit disk has been well characterized in terms of nonstandard geometries for making distance comparisons. Therefore, an improved understanding of signaling bias, including insight into response hyperbolae, bias coefficients, bias coordinates, bias, and bias factors, may evolve from a mapping of points of the unit square to points of the unit disk.

Figure 3. Mappings of the square of bias coordinates bounded by \(\pm 1 \) into the Poincare disk. Panels A and B depict the angle preserving nature of the map to the disk that recapitulates the orientation and relative relationships of families of coordinate points that lie along well-defined vectors originating in the center of the square. (C) For an observer sitting on the vector at angle \(\theta_B \) in the disk, it appears that parametrically mapped points move up or down the length of the vector to a position dependent upon the magnitude and sign of the bias. (D) For an observer sitting on and rotating through angle \(\theta_Y \) with the mapping vector \(\vec{Y} \), it appears as if the mapped points \(B'_0 \) and \(B'_{\infty} \) in the Poincare disk are rotating toward the observer. Additionally, these points are projections of the vertical string that curves about the cylinder axis and that represents the signaling response hyperbola immersed in a three-dimensional space. (E) Cartoon depicting how the string that corresponds to the sigmoid response curve from \(-1 \) to \(1 \) (depicted below and at the left) appears in the three-dimensional space of the hyperbolic cylinder. The left-hand cylindrical view depicts the fixed-angle bias interpretation in which the corresponding response string is in a frame where the mapping vector \(\vec{Y} \) is not only rotating but also changing its length as it rotates (see the accompanying graph below the cylinder at the right for the angular dependence of vector length, which is minimal at \(\pi/4 \)). Points are plotted along the fixed vector according to the bias because of the rotation angle of the mapping vector. The right-hand view corresponds to the frame of an observer sitting on the rotation vector that is performing the mapping. In this frame, the disks appear to rotate clockwise as the cylinder and string grow in height with each incremental rotation.
The bias function is expressed as g of coordinate points near the boundary can be quite far apart.

β be written as g change in m (sixth section of Theoretical Calculations).

Calculations). Figure 4B displays the unit square bias coordinates, Poincare disk mapped coordinates, transducer ratio parameters, and relative distances (β^f) from the angle equivalent quinpirole coordinates. Quinpirole is a potent D2R ligand that at low concentrations clearly demonstrates greater efficacy for Gi signaling than β-arrestin recruitment in the standard plot, which is reflected also in the Poincare plots by coordinate proximity to the left-side boundary. Quinpirole demonstrates near zero bias at higher concentrations when it loses signaling preference. This suggests that β-arrestin coupling possesses at least a modest transducer ratio; otherwise, the tilt toward Gi signaling bias would remain. The overexpression of GRK shifts the bias curve uniformly upward toward β-arrestin in the standard plot format, suggesting an increase in the β-arrestin transducer that is reflected by increases in both B_0 and B_{bc} (a clockwise rotation of coordinates toward arrestin in the disk model). Pertussis toxin treatment of cells, by noncompetitively inhibiting Gi signaling, markedly drives the bias toward β-arrestin, and this is readily apparent in the fixed-angle disk model by a shift of points to the first quadrant.

**Bias curves were generated using the maximal response and (projections of cylinder strings onto rectangular grids) and also Data will be displayed in standard dose response curve format (sixth section of Theoretical Calculations)

Three Examples of Relative Bias. The examples in Figure 4 will illustrate bias analyses of dopamine D2 receptor signaling using model B_{12} and experimental results from our laboratory. Data will be displayed in standard dose—response curve format (projections of cylinder strings onto rectangular grids) and also as string projections onto rotated or fixed-angle Poincare disks oriented perpendicular to the cylindrical axis.

Dopamine 2 Receptor and Signaling Pathway Comparison. Figure 4A shows the system bias between Gi and arrestin signaling for the D2R agonist quinpirole in three dose—response projections (standard, rotated disk, and fixed-angle disk). Bias curves were generated using the maximal response and affinity parameters (P_i and EC_{50}) of the individual signaling curves. To demonstrate an alternative method of generating a bias curve, data for quinpirole bias, $(g-f)/(g+f)$, were directly fit [dashed curve, \bullet, $\pm 95\%$ confidence interval (see the eighth section of Theoretical Calculations)], and to demonstrate grouping like coordinates with distance, the oval and circular shaded regions at the two ends of the quinpirole + GRK curve (nonrotated disk view) define neighborhoods of points $\beta^b \leq 0.22$ ($m = 0.32$) of the central coordinates (■ or ●), representing relative probabilities and biases within 25% of those reference coordinates (■ or ● (see the sixth section of Theoretical Calculations)). Figure 4B displays the unit square bias coordinates, Poincare disk mapped coordinates, transducer ratio parameters, and relative distances (β^f) from the angle equivalent quinpirole coordinates. Quinpirole is a potent D2R ligand that at low concentrations clearly demonstrates greater efficacy for Gi signaling than β-arrestin recruitment in the standard plot, which is reflected also in the Poincare plots by coordinate proximity to the left-side boundary. Quinpirole demonstrates near zero bias at higher concentrations when it loses signaling preference. This suggests that β-arrestin coupling possesses at least a modest transducer ratio; otherwise, the tilt toward Gi signaling bias would remain. The overexpression of GRK shifts the bias curve uniformly upward toward β-arrestin in the standard plot format, suggesting an increase in the β-arrestin transducer that is reflected by increases in both B_0 and B_{bc} (a clockwise rotation of coordinates toward arrestin in the disk model). Pertussis toxin treatment of cells, by noncompetitively inhibiting Gi signaling, markedly drives the bias toward β-arrestin, and this is readily apparent in the fixed-angle disk model by a shift of points to the first quadrant.

Dopamine 2 Receptor Bias in a Single Signaling Pathway. Figure 4C demonstrates an increase in quinpirole bias toward β-arrestin in cells expressing additional GRK compared to β-arrestin in cells expressing normal levels of GRK, a result expected on the basis of mass action for upstream receptor/ arrestin modulators. Additionally, GRK phosphorylation might further enhance the bias by stabilizing receptor states with greater affinity for quinpirole (ϵ and η increase with increasing affinity). An increased level of expression of GRK is effective in producing a β-arrestin bias at low quinpirole concentrations, and bias coordinates in the disk plot fall closer to the boundary. GRK-induced bias is lost at high quinpirole concentrations, possibly because the transducer for the process is already moderately sized in the absence of additional GRK. Remarkably, terguride bias toward β-arrestin and GRK remains strong at high terguride concentrations even though terguride is more potent than quinpirole with respect to the receptor. The terguride profile is consistent with that of a partial agonist with a relatively small transducer, as observed for morphine-mediated activation of β-arrestin trafficking by the mu opiate receptor.
olanzapine were biased over one to two decades of the displayed concentration range. Aripiprazole stands out, especially in the Poincare fixed disk-angle plot, as the only compound to undergo the transition from a Gi inhibition bias to a β-arrestin inhibition bias, whereas clozapine is unique in being completely β-arrestin biased; its bias coordinate is at the disk boundary and its bias factor correspondingly infinite. Remarkably, all the drugs are biased at low concentrations, and the biases generally disappear as concentrations increase. Apparently, pathway bias is not an uncommon drug property at lower concentrations where affinities play a role in determining transducer ratios, and aripiprazole-like drugs with smaller transducers may form a more likely pool of biased ligands for use at higher concentrations.\(^{16}\)

DISCUSSION

The recent recognition that altering a receptor’s conformational space has physiological consequences has accelerated searches for biased compounds. This study addresses a lack of formalism in receptor bias analysis by characterizing the mathematical relationship between signaling bias and the hyperbolae that commonly describe biological responses. Specifically, we incorporate the response functions into an axiomatic system that defines signaling bias rather than determining the nature of bias on the basis of the responses. Our study shows that (1) coordinates $(B_{\text{Gi}}B_{\beta})$ of paired bias coefficients form a unit square indexing response hyperbolae, (2) the signaling response hyperbolae form groups of families defined by direction vectors centered about $(0,0)$ in the unit square, (3)

Figure 4. Bias of compounds at the dopamine 2 receptor in different signaling paradigms. (A–D) Responses are plotted for experimental dose–response data as string projections either in standard dose–response curve format or in either a rotating or fixed-angle Poincare disk representation. (A and B) Bias plots for β-arrestin vs Gi signaling with corresponding parameter and coordinate mapping tables for the agonist quinpirole in the absence or presence of a pathway enhancer (GRK) or inhibitor (pertussis toxin). Distances, β, from the corresponding quinpirole point are provided in the table for nonrotated and rotated coordinates. To provide a comparison of two strategies for calculating bias curves, curves for quinpirole have been calculated from (1) fitting the individual Gi and β-arrestin responses, separately determining the individual P_i and K_i, and then calculating the bias curve (orange curve) or (2) directly fitting the two response ratios $(g - f)/(g + f)$ at different concentrations [\pm 95% confidence interval (see the eighth section of Theoretical Calculations)]. Additionally, the first and last coordinates plotted for the quinpirole + GRK curve (green) are bounded by closed curves defining neighborhoods of points within a distance of 0.22 [$m = 0.32$ (see the sixth section of Theoretical Calculations)], or with a <25% difference in the g/f ratio of the bias curves. (C) Plots of the bias of quinpirole and terguride for β-arrestin signaling in the absence and presence of added GRK, a β-arrestin pathway enhancer. (D) Plots representing the bias of different D2 receptor antagonists for inhibiting either the β-arrestin pathway or Gi signaling.
the bias is the position of the mapped bias coordinate along a direction vector in the unit disk determined by the parametric mapping of the square and ranges between −1 and 1, (4) the bias length or bias factor is the distance to the disk center of the mapped bias coordinate in the Poincare metric, (5) the relative probability between two responses is directly related to the bias factor, and (6) the parametric angles defining the unit square mapping of hyperbolae to the bias (Poincare) cylinder are normalized concentrations that span an angular measure from 0 to π/2. Even though this study investigates hyperbolae describing signaling response bias, it can be applied to the normalized hyperbolae in general that represent biological, pharmacological, or biochemical phenomena.

The B_{12}^a formalism provides a novel and innovative way of considering dose–response data. It provides a qualitative platform for identifying and characterizing ligand and pathway bias using projections of hyperbolic strings for plotting in the Poincare disk or in a standard rectangular format. The formalism also provides for detailed quantitative characterizations of signaling behavior, examples being that the bias factors β in the equiactive and pharmacological models can be derived as simple consequences of the analysis, and in calculating bias factors, the B_{12}^a model appropriately handles large transducer ratios that prove to be problematic for the pharmacological model. Additionally, the Poincare plots show that the bias factor alone is not necessarily a good measure of ligand or signaling differences, because it corresponds to only a radial distance and needs to be associated with an angle or family of curves to reflect the distance relationships of bias coordinates. Thus, a novel application of the formalism may be in drug discovery, where Poincare disk distances and polar bias analysis plots may expedite classifying the behaviors of large numbers of lead compounds in SAR analysis.

Our data indicate that signaling bias in drugs is relatively common, occurring frequently at low to moderate concentrations of compounds. Importantly, for ligands with large transducer ratios for both response pathways, good agonists, for example, there is essentially zero signaling bias at high concentrations. This bias is predominantly lost at high ligand concentrations because in many instances transducers reflect the presence of spare receptors for the pathways. While we do not suggest that developing biased compounds with large transducers is not possible, our results suggest that in the search for pharmacological bias it may be expedient to also consider lead compounds with low to modest transducer ratios such as partial agonists, to consider the consequences that many drugs are biased when utilized at concentrations below or near the K_0 and to encourage approaches that modify transducers for selected responses using pathway or receptor modulators that act independently of the primary ligand.

AUTHOR INFORMATION

Corresponding Author

E-mail: L.Barak@cellbio.duke.edu. Telephone: (919) 684-6245. Fax: (919) 681-8641.

Funding

This research was supported by the National Institutes of Health and National Institute on Drug Abuse Grants MH073853 and DA029925.

ACKNOWLEDGMENTS

We thank Professor Marc Caron for stimulating discussions concerning receptor bias and its significance to pharmacology and drug innovation.

REFERENCES

(1) Drake, M. T., Violin, J. D., Whalen, E. J., Wisler, J. W., Shenoy, S. K., and Lekowitz, R. J. (2008) β-Arrestin-biased agonism at the β2-adrenergic receptor. J. Biol. Chem. 283, 5669–5676.

(2) Rajagopal, K., Whalen, E. J., Violin, J. D., Stiber, J. A., Rosenberg, P. B., Premont, R. T., Coffman, T. M., Rockman, H. A., and Lekowitz, R. J. (2006) β-Arrestin2-mediated inotropic effects of the angiotensin II type 1A receptor in isolated cardiac myocytes. Proc. Natl. Acad. Sci. U.S.A. 103, 16284–16289.

(3) Frielle, T., Daniel, K. W., Caron, M. G., and Lekowitz, R. J. (1988) Structural basis of β-adrenergic receptor subtype specificity studied with chimeric β1/β2-adrenergic receptors. Proc. Natl. Acad. Sci. U.S.A. 85, 9494–9498.

(4) Rajagopal, S., Rajagopal, K., and Lekowitz, R. J. (2010) Teaching old receptors new tricks: Biaing seven-transmembrane receptors. Nat. Rev. Drug Discovery 9, 373–386.

(5) Whalen, E. J., Rajagopal, S., and Lekowitz, R. J. (2011) Therapeutic potential of β-arrestin- and G protein-biased agonists. Trends Mol. Med. 17, 126–139.

(6) Black, J. W., and Leff, P. (1983) Operational models of pharmacological agonism. Proc. R. Soc. London. Ser. B 220, 141–162.

(7) Vaideli, N., and Kenakin, T. (2010) The role of conformational ensembles of seven transmembrane receptors in functional selectivity. Curr. Opin. Pharmacol. 10, 775–781.

(8) Rajagopal, S., Ahn, S., Rominger, D. H., Gowen-McDonald, W., Lam, C. M., Dewire, S. M., Violin, J. D., and Lekowitz, R. J. (2011) Quantifying Ligand Bias at Seven-Transmembrane Receptors. Mol. Pharmacol. 80, 367–377.

(9) Kenakin, T. P. (2009) A pharmacology primer: Theory, applications, and methods, 3rd ed., Elsevier Academic Press, Amsterdam.

(10) Nevanlinna, R. H., and Paatero, V. (1969) Introduction to complex analysis, Addison-Wesley Publishing Co., Reading, MA.

(11) Stanoyevitch, A., and Stegenga, D. A. (1994) The geometry of Poincare disks. Complex Variable Theory Appl. 24, 249–266.

(12) Gradsteyn, I. S., Ryzhik, I. M., and Jeffrey, A. (2000) Table of integrals, series, and products, 6th ed., Academic Press, San Diego.

(13) Menard, L., Ferguson, S. S., Zhang, J., Lin, F. T., Lefkowitz, R. J., Caron, M. G., and Barak, L. S. (1997) Synergistic regulation of β2-adrenergic receptor sequestration: Intracellular complement of β-adrenergic receptor kinase and β-arrestin determine kinetics of internalization. Mol. Pharmacol. 51, 800–808.

(14) Bohn, L. M., Dykstra, L. A., Lefkowitz, R. J., Caron, M. G., and Barak, L. S. (2004) Relative opioid efficacy is determined by the complements of the G protein-coupled receptor desensitization machinery. Mol. Pharmacol. 66, 106–112.

(15) Masri, B., Salahpour, A., Didrikson, M., Ghisi, V., Beaulieu, J. M., Gainetdinov, R. R., and Caron, M. G. (2008) Antagonism of dopamine D2 receptor/β-arrestin 2 interaction is a common property of clinically effective antipsychotics. Proc. Natl. Acad. Sci. U.S.A. 105, 13656–13661.

(16) Allen, J. A., Yost, J. M., Setola, V., Chen, X., Sassano, M. F., Chen, M., Peterson, S., Yadav, P. N., Huang, X. P., Feng, B., Jensen, N. H., Che, X., Bai, X., Frey, S. Y., Wetzel, W. C., Caron, M. G., Javitch, J. A., Roth, B. L., and Jin, J. (2011) Discovery of β-Arrestin-Biased Dopamine D2 Ligands for Probing Signal Transduction Pathways Essential for Antipsychotic Efficacy. Proc. Natl. Acad. Sci. U.S.A. 108, 18488–18493.

dx.doi.org/10.1021/bi201308s | J. Biochemistry 2012, 51, 1114–1125