Noise Recycling

Alejandro Cohen*, Amit Solomon*, Ken R. Duffy†, and Muriel Médard*
*RLE, MIT Cambridge, MA 02139, USA, {cohenale,amitsol,medard}@mit.edu
†Hamilton Institute Maynooth University, Ireland, ken.duffy@mu.ie

Abstract—We introduce Noise Recycling, a method that enhances decoding performance of channels subject to correlated noise without joint decoding. The method can be used with any combination of codes, code-rates and decoding techniques. In the approach, a continuous realization of noise is estimated from a lead channel by subtracting its decoded output from its received signal. This estimate is then used to improve the accuracy of decoding of an orthogonal channel that is experiencing correlated noise. In this design, channels aid each other only through the provision of noise estimates post-decoding. In a Gauss-Markov model of correlated noise, we constructively establish that noise recycling employing a simple successive order enables higher rates than not recycling noise. Simulations illustrate noise recycling can be employed with any code and decoder, and that noise recycling shows Block Error Rate (BLER) benefits when applying the same predetermined order as used to enhance the rate region. Finally, for short codes we establish that an additional BLER improvement is possible through noise recycling with correlation and with the number of orthogonal channels.

Index Terms—Noise Recycling, Channel Decoding, Correlated Noise, Orthogonal Channels.

I. INTRODUCTION

The use of orthogonal channels is commonplace in applications from wired to wireless channels. Examples include the wide-spread use of orthogonal frequency division multiplexing (OFDM) [1], [2], and of orthogonal schemes in multiple access, such frequency division multiplexing access (FDMA), time-division multiple access (TDMA), or orthogonal code-division multiple access (CDMA), see for instance [3]. In OFDM or FDMA, channels separated by less than a coherence band will experience correlated noise. Joint decoding of all orthogonal channels can, in theory, make use of such correlation to improve performance, but it is challenging to implement efficiently in practice and, indeed, runs counter to the reason for seeking orthogonality in the first place.

As detailed in Section II, we consider a particular type of correlated noise model across orthogonal channels, Gauss-Markov (GM) [4] noise. The Gauss-Markov process has been used to model progressive decorrelation of noise with growing separation among channels [5]–[8] in time, frequency, or both. Within that model, we introduce a novel approach that embraces noise correlation to significantly improve decoding performance while maintaining separate decoding over orthogonal channels.

In interference cancellation in multiple access channels, decoded codewords are subtracted from the received signal to remove interference [3], [9]. In contrast, in noise recycling modulated decoded codewords are subtracted from the received signal to recover noise estimates. That noise estimate is a component of the noise in another as-yet undecoded orthogonal channel due to correlation across channels. A proportion of the estimate can, therefore, be subtracted from the received signal on the orthogonal channel before decoding, reducing the latter’s effective noise.

Figure 1 provides an illustration of the technique. It shows two independent channel inputs, \(\vec{x}_1, \vec{x}_2\) from potentially different codebooks, on orthogonal channels that are corrupted by correlated real-valued additive symmetric Gaussian noise \((\vec{Z}_1, \vec{Z}_2)\) with correlation \(\rho\). This results in correlated random real-valued channel outputs \((\vec{Y}_1, \vec{Y}_2) = (\hat{\vec{x}}_1, \hat{\vec{x}}_2) + (\vec{Z}_1, \vec{Z}_2)\). For a particular realization of outputs, \((\vec{y}_1, \vec{y}_2)\), on decoding the lead channel \(\vec{y}_1\) to \(\hat{\vec{x}}_1\), the decoder estimates the noise realization experienced on the lead channel by subtracting the decoded codeword from the received signal \(\hat{\vec{x}}_1 = \vec{y}_1 - \hat{\vec{x}}_1\). The second receiver updates its channel output to \(\vec{y}_2 = \vec{y}_2 - \rho \hat{\vec{x}}_1\), eliminating part of the additive noise experienced on the second channel \(\vec{x}_2\), before decoding. This noise recycling results in the second channel output being a less noisy version of the channel input \(\vec{x}_2\), which in turn leads to improved decoding performance.

We consider both the rate gain and Block Error Rate (BLER) improvements yielded by noise recycling vis-à-vis independently decoding the channels. For rate gain, we provide a proof of achievability with an ordering for the successive decoding of orthogonal channels using noise recycling in Section III-B. We evaluate rate gains numerically, which improve both with correlation and with the number of orthogonal channels for a given correlation.

Fig. 1: In noise recycling, a noise estimate is created from a lead channel by subtracting its modulated decoding from the received signal. That estimate is used to reduce noise on a channel subject to correlated noise prior to decoding.
For BLER improvements, we illustrate that noise recycling can work with any codes at any rates using any decoders on any channels, since noise recycling only uses noise estimates. We consider two cases. The first, discussed in Section IV-A, is similar in spirit to the approach presented in Section III-I to achieve rate gains where a low rate code is reliably decoded on a lead channel, giving an accurate estimate of the noise on that channel, whereupon a second, higher rate, code can be more reliably decoded on an orthogonal channel subject to correlated noise.

The second case of BLER improvement, presented in Section IV-B, does not pre-determine which of the orthogonal channels is decoded first. Instead, the decoders of orthogonal channels are run in parallel, in effect racing each other. The first decoder to terminate provides the initial noise estimate on that channel, whereupon a second, higher rate, code can achieve rate gains where a low rate code is reliably decoded on a lead channel, giving an accurate estimate of the noise correlation.

For BLER improvements, we illustrate that noise recycling can work with any codes at any rates using any decoders on any channels, since noise recycling only uses noise estimates. We consider two cases. The first, discussed in Section IV-A, is similar in spirit to the approach presented in Section III-I to achieve rate gains where a low rate code is reliably decoded on a lead channel, giving an accurate estimate of the noise on that channel, whereupon a second, higher rate, code can be more reliably decoded on an orthogonal channel subject to correlated noise.

The second case of BLER improvement, presented in Section IV-B, does not pre-determine which of the orthogonal channels is decoded first. Instead, the decoders of orthogonal channels are run in parallel, in effect racing each other. The first decoder to terminate provides the initial noise estimate on that channel, whereupon a second, higher rate, code can achieve rate gains where a low rate code is reliably decoded on a lead channel, giving an accurate estimate of the noise correlation.
first codeword of the \(j \)-th codebook. We bound \(P(\mathcal{E}_j \mid C_{j-1}) \) in a similar fashion to the single case:

\[
P(\mathcal{E}_j \mid C_{j-1}) \leq P(E_{0,j} \mid C_{j-1}) + P(E'_{1,j} \mid C_{j-1}) + \sum_{i=2}^{2^n R_j} P(E_{i,j} \mid C_{j-1}) \leq \epsilon + \epsilon + \sum_{i=2}^{2^n R_j} P(E_{i,j} \mid C_{j-1}) = 2\epsilon + \sum_{i=2}^{2^n R_j} P(E_{i,j} \mid C_{j-1}),
\]

for \(n \) sufficiently large, where the first inequality follows from the union bound, and the second inequality from the law of large numbers and joint typicality. We bound \(P(E_{i,j} \mid C_{j-1}), i > 1 \)

\[
P(E_{i,j} \mid C_{j-1}) = P(E_{i,j} \mid X_1, Y_1, \ldots, X_{j-1}, Y_{j-1}) = P(E_{i,j} \mid X_{j-1}, Y_{j-1}) \leq 2^{-n(I(X_j; Y_j | X_{j-1}, Y_{j-1}) - R_j - 3\epsilon)}
\]

using the Markov property, and

\[
I(X_j; Y_j | X_{j-1}, Y_{j-1}) = I(X_j; Y_j | X_{j-1}, X_j - 1 + Z_{j-1}) = I(X_j; Y_j | Z_{j-1})
\]

\[
= h(X_j | Z_{j-1}) + h(Y_j | Z_{j-1}) - h(X_j, Y_j | Z_{j-1})
\]

\[
= h(X_j) + h(X_j + \rho Z_{j-1} + \Xi_j | Z_{j-1}) - h(X_j, X_j + \Xi_j)
\]

\[
= I(X_j; X_j + \Xi_j) - I(X_j; Y_j')
\]

using the fact that \(X_j \perp Z_{j-1} \). Therefore, \(P(E_{i,j} \mid X_{j-1}, Y_{j-1}) \leq 2^{-n(I(X_j; Y_j') - R_j - 3\epsilon)} \). Picking \(R_j < I(X_j; Y_j') - 3\epsilon \) yields \(P(\mathcal{E}_{i,j} \mid C_{j-1}) \leq 3\epsilon \). Ultimately, we get \(P(\mathcal{E}_{i,j} \mid C_{j-1}) \geq 1 - 3\epsilon \) which concludes the proof as \(\epsilon \) can be made arbitrarily small.

IV. NOISE RECYCLING BLER IMPROVEMENT

In Section III we determined the rate-gains available from noise recycling through the use of random codebooks and joint typicality. Here we illustrate that BLER performance is enhanced by noise recycling for existing codes and decoders.

We demonstrate the technique with CRC-Aided Polar (CA-Polar) Codes [10], [11], which are Polar codes [12], [13] with an outer CRC code and will be in 5G NR control channel communications [14], and Random Linear Codes (RLCs) which are known to be capacity achieving [15], but have been little investigated owing to the absence of efficient decoders that can work at high rates until recent developments. For decoders, we use the state-of-the-art CA-Polar-specific CRC-Aided Successive Cancellation List decoder (CA-SCL) [10], [11], [16]–[18] as implemented in MATLAB’s Communications Toolbox. We also use two soft-information variants [19], [20] of the recently introduced Guessing Random Additive Noise Decoder (GRAND) [21], [22], both of which can decode any block code and are well suited to short, high-rate codes. In simulations, we employ the GM channel described in Section II with Binary Phase Shift Keying (BPSK) modulation.

A. Predetermined decoding order approach

We first consider a sequential decoding scheme akin to the one described in Section III where a lead channel is decoded and a subsequent channel that has a higher rate is decoded using noise recycled information. Block-errors are counted separately on both the lead and subsequent channels as it is possible that the subsequent channel decodes correctly, even if the lead channel is in error.

In the first simulation, the lead channel encodes its data using A CA-Polar code [256, 170] with rate \(R_1 \approx 2/3 \). The second, orthogonal channel uses a higher rate CA-Polar code, either [256, 180] or [256, 190] giving \(R_2 \approx 0.7 \) or 0.74 respectively. The noise correlation is set to \(\rho = 0.5 \) and is known to the second decoder. Both channels are decoded with CA-SCL, with the second channel benefiting from noise recycling, where before decoding the noise estimate of the lead orthogonal channel is subtracted after multiplication by the noise correlation factor \(\rho \).

Figure 5 reports BLER vs Eb/N0. The black dashed line corresponds to the lead channel, while the dashed blue and red lines give the performance curves should noise recycling not be used, corresponding to independent decoding of all
channels. As the second orthogonal channel runs at a higher rate than the lead channel, if decoded independently the second channel would experience higher BLER than the lead channel. The solid blue and red lines report the performance of the second decoder given noise recycling. Despite using a higher rate code than the lead channel, with noise recycling the second channel experiences better BLER vs Eb/N0 performance. Notably, owing to the better Eb/N0 (i.e. the energy per information bit used in the transmission) that comes from running a higher rate code, the rate 0.74 code provides better BLER than the rate 0.7 code. For a commonly used target BLER of 10^{-2}, noise recycling results in ≈ 1 dB gain for the [256, 190] code.

Figure 3 reports an analogous simulation, but where $\rho = 0.8$, the lead channel’s code is a [128, 105] CA-Polar code, $R_1 = 0.82$, and the second channel is one of three RLCs ranging in rate from 0.85 to 0.98. Both channels are decoded with the recently proposed Ordered Reliability Bits Guessing Random Additive Noise Decoding (ORBGRAND) [20]. ORBGRAND is a soft detection decoder that has been reported to provide more accurate decodings of CA-Polar codes than CA-SCL for short codes. As with all the GRAND algorithms, it can decode any code, making it viable for use with RLCs. A similar phenomenology to the previous figure can be seen, where the impact of noise recycling is even more dramatic, allowing the second channel code to use reliably a much higher rate than the lead channel.

B. Additional gains for short codes by racing

While previous sections identified rate and BLER improvements that are available from running a pre-determined lead channel with a lower rate code so that an accurate inference of a noise realization could be obtained to aid the signal at a higher rate second channel, here we consider an alternate design that leverages a significant effect only observable with short codes. The principle behind noise recycling with racing is that all channels use the same code-rate and orthogonal channels initially attempt to decode their outputs contemporaneously. For certain types of decoder, speed of decoding provides a measure of confidence in the decoding accuracy and hence the precision of the noise estimate. Thus once one decoder has identified a codeword, it is determined to be the lead channel, other decoders cease their decodings, remove the recycled noise estimate from the lead channel from their received signal and decode. Noise recycling continues until all orthogonal channel outputs have been decoded.

This decoding procedure is described in Algorithm 1. For example, suppose there are $m = 3$ orthogonal channels. At the first step, all decode in parallel. If decoder 2 is the first to finish decoding, it is declared the winner of the race. The winner acts as lead channel and provides an estimate $\hat{\vec{z}}_2$ to the decoders 1 and 3, which repeat the process. Mixing-and-matching of decoders, even at different stages of the race, is still possible. This offers, for example, the possibility of using at the race phase a decoder that is highly accurate, but with potentially poor in worst-case runtime. As the race winner will terminate generally quickly, a decoder with uncertain termination time may not necessarily be deleterious in the race phase. Substituting a different deciding algorithm after noise recycling is then a possibility.

We demonstrate the race approach using a recently proposed technique, Soft GRAND with ABannonment (SGRANDAB) [19], that has the required feature. SGRANDAB aims to identify the noise that corrupted a transmission from which the codeword can be inferred, rather than identifying the codeword directly. It does this by

Fig. 3: BLER vs. Eb/N0 for 256 bit CA-Polar codes decoded with CA-SCL, uses a list size of $L = 32$, with and without noise recycling. Dashed lines correspond to independent decoding, and solid lines to decoding after noise recycling. The lead orthogonal channel is encoded with a rate 2/3 code. The second channel uses either a rate 0.7 or 0.74 code.

Fig. 4: BLER vs. Eb/N0 for codes of length $n = 128$ decoded with ORBGRAND with and without noise recycling. Dashed lines correspond to independent decoding, and solid lines to decoding after noise recycling. Data on the lead orthogonal channel is encoded with a rate 0.82 CA-Polar code. The second channel uses rate 0.85, 0.91 or 0.98 RLCs.
removing possible noise effects, from most likely to least likely as determined by soft information, from a received signal and querying whether what remains is in the codebook. The first instance that results in success is a maximum likelihood decoding. If no codeword is found before a given number of codebook queries, SGRANDAB abandons decoding and reports an error. The channel that is decoded given number of codebook queries, SGRANDAB wins the decoding race, or instead use CA-SCL. These results again shows a gain of more than 1 dB can be achieved, even for codes of the same rate, by racing noise recycling. Figure 5(b) reports the BLER of a decoder without noise recycling for $\rho = 0.6$ and $m = 3, 5$ or 8, the race winner with noise recycling, and all m decoders after noise recycling, where all decoders use SGRANDAB. This shows a significant improvement in BLER for all values of m. For example there is a gain of about 1.7 dB for $m = 8$ at a target BLER of 10^{-6}. While this race advantage disappears as a consequence of averaging for long codes, it can be seen to provide a significant advantage for short codes.

V. CONCLUSION AND DISCUSSION

We presented a novel way to recycle noise in orthogonal channels in order to improve communication performance for any combination of codes. The performance improvement is twofold, we proved its rate gain aspect and showed empirical evidence of its reliability improvement aspect. We analyzed orthogonal correlated channels, i.e. channels in which data that is sent on different channels is independent. A natural extension is considering the use of noise recycling in wireless communications, and the consequences of uncertainty in it. Noise recycling points to the benefit of correlation among orthogonal channels, opening an interesting vein of investigation where orthogonal channels, say in OFDM or TDMA, are chosen with a preference for noise correlation among them, with attendant effects in terms of rate and power allocation among orthogonal channels.
REFERENCES

[1] R. v. Nee and R. Prasad, OFDM for Wireless Multimedia Communications, 1st ed. USA: Artech House, Inc., 2000.
[2] Hongwei Yang, “A road to future broadband wireless access: Mimo-ofdm-based air interface,” IEEE Commun. Mag., vol. 43, no. 1, pp. 53–60, Jan 2005.
[3] R. Gallager, “A perspective on multiaccess channels,” IEEE Tran. Inf. Theory, vol. 31, no. 2, pp. 124–142, March 1985.
[4] B. D. Anderson and J. B. Moore, Optimal filtering. Courier Corporation, 2012.
[5] I. Nevat and J. Yuan, “Channel tracking using pruning for mimo-ofdm systems over gauss-markov channels,” in ICASSP, vol. 3, 2007, pp. 193–196.
[6] I. Abou-Faycal, M. Médard, and U. Madhow, “Binary adaptive coded pilot symbol assisted modulation over rayleigh fading channels without feedback,” IEEE Tran. Commun., vol. 53, no. 6, pp. 1036–1046, 2005.
[7] M. Médard and R. G. Gallager, “Bandwidth scaling for fading multipath channels,” IEEE Tran. Inf. Theory, vol. 48, no. 4, pp. 840–852, 2002.
[8] S. Akin and M. C. Gursoy, “Training optimization for Gauss-Markov Rayleigh fading channels,” in IEEE ICC, 2007, pp. 5999–6004.
[9] T. M. Cover and J. A. Thomas, Elements of information theory. John Wiley & Sons, 2012.
[10] I. Tal and A. Vardy, “List decoding of polar codes,” in IEEE Int. Symp. Inf. Theory, 2011, pp. 1–5.
[11] ——, “List decoding of polar codes,” IEEE Tran. Inf. Theory, vol. 61, no. 5, pp. 2213–2226, 2015.
[12] E. Arikan, “Channel polarization: A method for constructing capacity-achieving codes,” in IEEE Int. Symp. Inf. Theory, 2008, pp. 1173–1177.
[13] ——, “Channel polarization: A method for constructing capacity-achieving codes for symmetric binary-input memoryless channels,” IEEE Tran. Inf. Theory, vol. 55, no. 7, pp. 3051–3073, 2009.
[14] 3GPP TS 38.212, 5G-NR-Multiplexing and channel coding,” https://www.etsi.org/deliver/etsi_ts/138200_138299/138212/15.02.00_60/ts_138212v150200p.pdf, [Online].
[15] R. Gallager, “The random coding bound is tight for the average code (corresp.),” IEEE Tran. Inf. Theory, vol. 19, no. 2, pp. 244–246, 1973.
[16] K. Niu and K. Chen, “CRC-aided decoding of polar codes,” IEEE Commun. Letters, vol. 16, no. 10, pp. 1668–1671, 2012.
[17] A. Balatsoukas-Stimming, M. B. Parizi, and A. Burg, “LLR-based successive cancellation list decoding of Polar codes,” IEEE Trans. Signal Process., vol. 63, no. 19, pp. 5165–5179, 2015.
[18] X. Liang, J. Yang, C. Zhang, W. Song, and X. You, “Hardware efficient and low-latency ca-scl decoder based on distributed sorting,” in IEEE GLOBECOM, 2016, pp. 1–6.
[19] A. Solomon, K. R. Duffy, and M. Mérard, “Soft Maximum Likelihood Decoding using GRAND,” preprint arXiv:2001.03089, 2020.
[20] K. R. Duffy, “Ordered Reliability Bits Guessing Random Additive Noise Decoding,” preprint arXiv:2001.00546, 2020.
[21] K. R. Duffy, J. Li, and M. Mérard, “Guessing noise, not code-words,” in IEEE Int. Symp. Inf. Theory, 2018, pp. 671–675.
[22] ——, “Capacity-achieving Guessing Random Additive Noise Decoding,” IEEE Tran. Inf. Theory, vol. 65, no. 7, pp. 4023–4040, 2019.