Carotenoids and Pigmentation in Ornamental Fish

Abstract
In recent decades aquaculture has emerged as a globally growing million dollar industry comprising cultivation of various freshwater and marine species of finfish as well as shellfish. Pigmentation is one of the major quality attributes of the aquarium fish for market acceptability. Carotenoids are responsible for pigmentation of muscle in food fish and skin color in ornamental fish. Like all other animals fishes are unable of de novo synthesis of carotenoids and rely on diet for fullfilment of carotenoids. Properly formulated feed is the major backbone of successful culture of ornamental fish in confined environment. In this review paper an attempt has been made to prioritize the importance of carotenoids in aquaculture.

Introduction
Aquarium fish keeping has evolved as an indispensible part of interior decoration in the 21st century [1]. Colour is one of the major factors which determine the price of the ornamental fish in the world market [2,3]. The color of fish skin is primarily dependent on chromatophores (melanophores, xanthophores, erythrophores, iridophores, leucophores, and cyanophores) that contain pigments such as melanins, carotenoids (e.g. astaxanthin, canthaxanthin, lutein, zeaxanthin), pteridines, and purines Goodwin [4,5] established that fish do not possess the ability to synthesize carotenoids. The carotenoid pigmentation of fish results from the pigment present in the diet [6]. Many reports have demonstrated that skin color change over time depended on the level of carotenoid in the diet and differed among species [7-11]. Therefore, to increase the skin and flesh colour in captivity, fish must obtain an optimum level of carotenoids in their diet [12].

Diversity of carotenoids in fish
Species specific carotenoids are known to occur in fishes [13,4]. The diverse carotenoids commonly occurring in fishes with their colours are tunaxanthin (yellow), lutein (greenish yellow), beta carotene (orange), doradexanthins (yellow), zeaxanthin (yellow orange), canthaxanthin (orange red), astaxanthin (red), eichinenone (red) and taraxanthin (yellow) [4,13,14]. Accumulation of carotenoids in fishes mostly occurs in their integuments and gonads [4,5]. With few exceptions of Salmonidace fish where astaxanthin accumulates [8] in muscle [5,9,15]. Moreover in catfish, an esterified form of carotenoids exists in the integuments [5].

Carotenoids Absorption and Transport
There is profound influence of age and physiological state of fish, type of feed and the dwelling environment and not merely species on the absorption and distribution of carotenoids in fishes [15-19]. Being hydrophobic in nature carotenoids are not easily solubilized in the aqueous environment of the gastrointestinal tract. So carotenoids are associated with the lipids to carry out transportation [2,11,20]. Several steps are involved in the intestinal absorption of carotenoids with inclusion of disruption of matrix, followed by dispersion in lipid emulsions and subsequent solubilization into mixed bile salt micelles, before being absorbed in enterocyte brush border [2,21,22]. Moreover the absorption of carotenoids is a much slower process in comparison to other fish nutrients [2]. For example approximately 18 to 30 hours are required for absorption of approximately 35% astaxanthin in Salmonids through the proximal intestine [2,24-30]. In addition the process of passive diffusion is involved in the intestinal absorption from micelles [30,31].

Carotenoids Metabolism and Deposition
In fishes there does not exist any universal pathways for metabolism of carotenoids in tissues and its subsequent transformations [9]. It is suggested that organs such as liver or intestine where metabolites of carotenoids exist the metabolism of carotenoids take place [2,23,27,33,34]. Studies indicate fish classification based on capacity of metabolism of carotenoids [10,23]. One type of fish requires inclusion of specific oxygenated derivatives in diet as it is unable to perform the oxidation of 4 and 4’ positions of astaxanthin and lutein to astaxanthin [10,35].

Enhancement of fish pigmentation
Significant work has been done on pigmentation of many commercial fish species using carotenoids. In this respect, Microalgae such as Chlorella vulgaris is as effective as its synthetic counterpart in pigmentation of two most important ornamental fish species, Cyprinus carpio & Carassius auratus [36]. Enhancement of pigmentation was observed in Xiphophorus helleri when fed with formulated feed containing Calendula officinalis concluding that this lutein can be used as pigmenting source are some examples [37].
Natural sources of carotenoids

Animals are incapable of biosynthesizing carotenoids, so diet is their sole source as only plants, bacteria, fungi and algae have the capacity for its synthesis [38]. However certain synthetic carotenoids are being developed for commercial utilization. However synthetic carotenoids have several limitations, firstly, synthetic processes have only specific carotenoids such as beta carotene; moreover they involve petrochemical solvents causing residual problems. Additionally synthetic carotenoids are costly to be used in many aqua feeds. Contrary to it natural sources contain varieties of carotenoids such as astaxanthin, alpha carotene, beta carotene, zeaxanthin etc. Specific plants such as paprika (Capsicum annuum) only contain Red xanthophylls (capsanthin, capsorubin) possessing pigmentation efficiency of canthaxanthin nearly half to a third [39-41]. Phaffia rhodonzyma a microorganism contain possessing pigmentation efficiency of canthaxanthin nearly half to a third [39-41]. Phaffia rhodonzyma a microorganism contain.

Conclusion and Recommendations

Detailed study on ornamental fish nutrition and colour enrichment is lacking. The above study depicts that carotenoids are indispensable part of commercial ornamental fish industry. Owing to the adverse effects of synthetic carotenoids on aquatic environment, natural plant sources can be harnessed and incorporated in formulated feeds for colour retention or enhancement in captive environment. It will create avenues for promotion of the ornamental fish industry as well as colour enhancer feed industry and employment generation.

References

1. Katia O (2001) Ornamental fish trade. INFOFISH International 3: 14-17.
2. Saxena A (1994) Health coloration of fish. International Symposium on Aquatic Animal Health: Program and Abstracts. University of California, School of Veterinary Medicine, Davis, CA, USA, pp. 94.
3. Torrissen Of (1989) Pigmentation of salmonoids: Interaction of astaxanthin and canthaxanthin on pigment deposition in rainbow trout. Aquaculture 79(1-4): 363-374.
4. Withers PC (1992) Comparative Animal Physiology. Brook Cole-Tomson Learning. Saunders College Publishing/harcourt Brace Jovanovich College, USA, pp. 94.
5. Goodwin TW (1951) Carotenoids in fish. In: The biochemistry of fish. Biochemical Society Symposium, USA.
6. Hata M, Hata M (1973) Studies on astaxanthin formation in some freshwater fishes, Towbo. Journal of Agricultural Research 24(4): 192-196.
7. Duncan PL, Lovell RF (1993) Natural and synthetic carotenoids enhance pigmentation of ornamental fish. Highlights of agricultural research, Alabama Agricultural Experiment Station 40: 8.
8. Storebakken T, P foss, K Schiedt, E Austreng, SL Jensen et al. (1987) Carotenoids in the diets for salmonids IV. Pigmentation of Atlantic salmon with astaxanthin, astaxanthin dipalmitate and canthaxanthin. Aquaculture 65(3-5): 279-292.
9. Chatzifotis S, Pavlidis M, Jimeno CD, Vanlanis G, Sterioli A, et al. (2005) The effect of different carotenoid sources on skin coloration of cultured red porgy (Pagrus pagrus). Aquaculture Research 36: 1517-1525.
10. Dharmanj S, Dhvedendaran K (2011) Application of microbial carotenoids as a source of colouration and growth of ornamental fish Xipphophorus helleri. World Journal of Fish and Marine Sciences 3(2): 137-144.
11. Ho ALFC, Zong S, Lin J (2014) Skin color retention after dietary carotenoid deprivation and dominance mediated skin coloration in clown anemonefish, Amphiprion ocellaris. AACL Bioflux 7(2): 103-115.
12. Sinha A, OA Asimi (2007) China rose (Hibiscus rosa sinensis) petals: a potent natural carotenoid source for goldfish (Carassius auratus L). Aquaculture Research 38(11): 1123-1128.
13. Theis A, Salzburger W, Egger B (2012) The function of anal fin eggspots in the cichlid fish Astototilapia burtoni. PloS ONE 7(1): e29878.
14. National Research Council (NRC) (1993) Nutrient requirements of fish. National Academy Press, Washington DC, USA.
15. Czeczuga B, Dabrowski K, Rosch R, Champinuelle A (1991) Carotenoids in fish. Carotenoids in Gonogonus lavaretus L. Individuals of various populations, Acta Ichth. Piscat, 21(2): 1-95.
16. Foss P, Storebakken T, Llaen Jensen S. (1987) Carotenoids in diets. V. Pigmentation of rainbow trout and sea trout with astaxanthin. Aquaculture 65(3-4): 293-305.
17. Ando S (1986) Studies on the food biochemical aspects of changes in chum Salmon, Oncorhynchus keta during spawning migration, mechanisms of muscle deterioration and nuptial coloration. Reprinted from memries of Faculty of Fisheries, Kokkaid University 33(1-2): 1-95.
18. Bjerkebb B, Storebakken T, Llaen-Jensen S. (1992) Pigmentation of rainbow trout from start feeding to sexual maturation, Aquaculture 108 (3-4): 333-436.
19. Wozniak M (2000) Carotenoid contents in the body of rainbow trout Oncorhynchus mykiss, from different habitats. Fol Univ Agric Sterin 214 Piscaria 27: 215-220.
20. Castenmiller JJM, West CE (1998) Bioavailability and bioconversion of carotenoids. Annu Rev Nutr 18: 19-38.
21. Furr HC, Clark RM (1997) Intestinal absorption and tissue distribution of carotenoids. Nutritional Biochemistry 8(7): 364-377.
22. Tysander V, Lyan B, Borel P (2001) Main factors governing the transfer of carotenoids from emulsion lipid droplets to micelles. Biochimica Biophysica Acta 1533(3): 285-292.
23. Tanaka Y (1978) Comparative biochemical studies on carotenoids in aquatic animals. Mem Fac Fish 27(2): 355-422.
24. Torrissen Of (1986) Pigmentation of salmonoids - a comparison of astaxanthan and canthaxanthan as pigment sources for rainbow trout. Aquaculture 53(3-4): 271-278.
25. Al-Khalifa AS, Simpson KL (1998) Metabolism of astaxanthin in the rainbow trout (Salmo gairdneri). Comparative Biochemistry and Physiology 91(3): 563-568.
26. Torrissen OJ (1989) Pigmentation of salmonids: Interaction of astaxanthin and canthaxanthin on pigment deposition in rainbow trout. Aquaculture 79(1-4): 363-374.
27. White DA, Page GI, Swale J, Moody AJ, Davies SJ (2002) Effect of eutrophication on the absorption of astaxanthin in rainbow trout, *Oncorhynchus mykiss* (Walburn). Aquaculture Research 33: 345-350.
28. March BE, Hajen WE, Deacon G, MacMillan C, Walsh MG (1990) Intestinal absorption of astaxanthin, plasma astaxanthin concentration, body weight, and metabolic rate as determination of flesh pigmentation in salmonids. Fish. Aquaculture 90(3-4): 313-322.
29. Choubert G, Milicua JC, Gomez R (1994) The transport of astaxanthin in immature rainbow trout *Oncorhynchus mykiss* serum. Comparative Biochemistry and Physiology 108(2-3): 245-248.
30. Parker RS (1996) Absorption, metabolism and transport of carotenoids. FASEB J 10(5): 542-551.
31. Storebakken T, Hong KN (1992) Pigmentation of rainbow trout. Aquaculture 100(1-3): 209-229.
32. Hardy RW, Torrissen OJ, Scott TM (1990) Absorption and distribution of C-labelled canthaxanthin in rainbow trout (*Oncorhynchus mykiss*). Aquaculture 87(3-4): 331-340.
33. Aas GH, Bjerkeng B, Storebakken T, Ruyter B (1999) Blood appearance, metabolic transformation and plasma transport proteins of C-astaxanthin in Atlantic salmon (*Salmo salar* L.). Fish Physiology and Biochemistry 21(4): 325-334.
34. Matsuno T, Tsushima M, Maoka T (2001) Salmoxanthin, deepoxy-salmoxanthin and 7,8-didehydrodeepoxy-salmoxanthin from salmon *Oncorhynchus keta*. J Nat Prod 64(4): 507-510.
35. Gouveia L, Rema P, Pereira O, Empis J (2003) Colouring ornamental fish (*Cyprinus carpio* and *Carassius auratus*) with micro algal. Aquaculture Nutrition 9(2): 123-129.
36. Ezhil J, Jeyanthi C, Narayanan M (2008) Effect of formulated pigmented feed on colour changes and growth of red swordtail, *Xiphophorus hellerii*. Turkish Journal of Fisheries and Aquatic Sciences 8(1): 99-101.
37. Schiedt K (1998) Absorption and metabolism of carotenoids in birds, fish and crustaceans. In: Carotenoids Biosynthesis and Metabolism. Britton GS & Pfander H (Eds.). Birkhäuser: Basel, Switzerland, pp. 285-358.
38. Huygebaert G (1993) The utilisation of oxy-carotenoids for egg yolk pigmentation. Thesis of the University of Gent (Belgium).
39. Seemann M (1997) Eidotterpigmentierung: Unterschiede bei natürlichen und synthetischen Carotinoiden? DGS Magazin 49(36): 24-28.
40. Grashorn MA, Steinberg W, Blanch A (2000) Effects of canthaxanthin and saponified capsanthin/capsorubin in layer diets on yolk pigmentation in fresh and boiled eggs. XXI World’s Poultry Congress, Canada, 20-24.
41. Andrewes AG, Starr MP (1976) (3R, 3´R)-astaxanthin from the yeast *Phaffia rhodozyma*. Phytochemistry, 15(6): 1009-1011.
42. Ako H, Tamaru CS, Asano L, Yamamoto (2000) Achieving natural coloration in fish finder culture. In: Spawning and maturation of aquaculture species, Proceeding of the 28th UNJR aquaculture panel symposium, Kihel, Hawaii. 10-12, U NJR Tech Rep, 28: 1-4.