DATA NOTE

The genome sequence of the buff-tip, Phalera bucephala
(Linnaeus, 1758) [version 1; peer review: awaiting peer review]

Douglas Boyes¹⁺, Peter W. H. Holland²,
University of Oxford and Wytham Woods Genome Acquisition Lab,
Darwin Tree of Life Barcoding collective,
Wellcome Sanger Institute Tree of Life programme,
Wellcome Sanger Institute Scientific Operations: DNA Pipelines collective,
Tree of Life Core Informatics collective, Darwin Tree of Life Consortium

¹ UK Centre for Ecology and Hydrology, Wallingford, Oxfordshire, UK
² Department of Zoology, University of Oxford, Oxford, UK
⁺ Deceased author

First published: 27 Jan 2022, 7:28
https://doi.org/10.12688/wellcomeopenres.17539.1
Latest published: 27 Jan 2022, 7:28
https://doi.org/10.12688/wellcomeopenres.17539.1

Abstract
We present a genome assembly from an individual female Phalera bucephala (the buff-tip; Arthropoda; Insecta; Lepidoptera; Notodontidae). The genome sequence is 933 megabases in span. The majority of the assembly, 99.27%, is scaffolded into 31 chromosomal pseudomolecules, with the W and Z sex chromosome assembled.

Keywords
Phalera bucephala, buff-tip, genome sequence, chromosomal, Lepidoptera

This article is included in the Tree of Life gateway.
Species taxonomy
Eukaryota; Metazoa; Ecdysozoa; Arthropoda; Hexapoda; Insecta; Pterygota; Neoptera; Endopterygota; Lepidoptera; Glossata; Ditrysia; Noctuoidea; Notodontidae; Phalera; Phalera bucephala (Linnaeus, 1758) (NCBI:txid753216).

Background
Phalera bucephala (buff-tip) exhibits one of the most striking examples of camouflage amongst UK moths: the yellow-tipped forewings held tent-like along the body give the convincing appearance of a broken birch twig. The moth is nocturnal and found across the UK, mainland Europe and parts of Asia. The larvae are polyphagous, feeding on the leaves of several deciduous trees including birch, beech and oak. Ford (1967) comments that the larvae can produce a pungent smell, presumably as a defence mechanism. The species can become a transient pest; for example, defoliating trees along the Maidenhead bypass in the UK in the 1970s (Port & Thompson, 1980) and apple trees in Lithuania (Molis, 1970). The species has also been used in studies to assess the effect of multiple stressors (herbivores, powdery mildew and aphids) on oak trees, revealing complex plant-pathogen-insect interactions (van Dijk et al., 2020).

The genome of P. bucephala, was sequenced as part of the Darwin Tree of Life Project, a collaborative effort to sequence all of the named eukaryotic species in the Atlantic Archipelago of Britain and Ireland. Here we present a chromosomally complete genome sequence for P. bucephala, based on one female specimen from Wytham Woods, Oxfordshire, UK.

Genome sequence report
The genome was sequenced from a single female P. bucephala (Figure 1) collected from Wytham Woods, Oxfordshire (biological vice-county: Berkshire), UK (latitude 51.764, longitude -1.327). A total of 34-fold coverage in Pacific Biosciences single-molecule circular consensus HiFi long reads (N50 15 kb) and 51-fold coverage in 10X Genomics read clouds were generated. Primary assembly contigs were scaffolded with chromosome conformation Hi-C data. Manual assembly correction corrected 155 missing/misjoins and removed 4 haplotypic duplications, reducing the assembly size by 0.22% and scaffold number by 45.28%, and increasing the scaffold N50 by 40.20%.

The final assembly has a total length of 933 Mb in 116 sequence scaffolds with a scaffold N50 of 34 Mb (Table 1). Of the assembly sequence, 99.27% was assigned to 31 chromosomal-level scaffolds, representing 29 autosomes (numbered by sequence length), and the W and Z sex chromosome (Figure 2–Figure 5; Table 2). The assembly has a BUSCO v5.1.2 (Manni et al., 2021) completeness of 98.9% (single 97.8%, duplicated 1.0%) using the lepidoptera_odb10 reference set. While not fully phased, the assembly deposited is of one haplotype. Contigs corresponding to the second haplotype have also been deposited.

Methods
Sample acquisition and nucleic acid extraction
A female P. bucephala (iPhaBuce1) and a second specimen of unknown sex (iPhaBuce2) were collected from Wytham Woods, Oxfordshire (biological vice-county: Berkshire), UK (latitude 51.764, longitude -1.327) by Douglas Boyes, UKCEH, using a net. The samples were identified by the same individual and snap-frozen on dry ice.

DNA was extracted from whole organism tissue of iPhaBuce1 at the Wellcome Sanger Institute (WSI) Scientific Operations core from the whole organism using the Qiagen MagAttract HMW DNA kit, according to the manufacturer’s instructions. RNA was extracted from thorax/abdomen tissue of iPhaBuce2 in the Tree of Life Laboratory at the WSI using TRIzol (Invitrogen), according to the manufacturer’s instructions.
RNA was then eluted in 50 μl RNase-free water and its concentration assessed using a Nanodrop spectrophotometer and Qubit Fluorometer using the Qubit RNA Broad-Range (BR) Assay kit. Analysis of the integrity of the RNA was done using Agilent RNA 6000 Pico Kit and Eukaryotic Total RNA assay.

Sequencing

Pacific Biosciences HiFi circular consensus and 10X Genomics Chromium read cloud sequencing libraries were constructed according to the manufacturers’ instructions. Poly(A) RNA-Seq libraries were constructed using the NEB Ultra II RNA Library Prep kit. Sequencing was performed by the Scientific Operations core at the Wellcome Sanger Institute on Pacific Biosciences SEQUEL II (HiFi), Illumina HiSeq X (10X) and Illumina HiSeq 4000 (RNA-Seq) instruments. Hi-C data were generated from head tissue using the Qiagen EpiTect Hi-C kit and sequenced on HiSeq X.

Genome assembly

Assembly was carried out with HiCanu (Nurk et al., 2020). Haplotypic duplication was identified and removed with purge_dups

Table 1. Genome data for *Phalera bucephala*, ilPhaBuce1.2.

Project accession data	
Assembly identifier	ilPhaBuce1.2
Species	*Phalera bucephala*
Specimen	ilPhaBuce1
NCBI taxonomy ID	NCBI:txid753216
BioProject	PRJEB42140
BioSample ID	SAMEA7519921
Isolate information	Female, head/abdomen/thorax

Raw data accessions	
PacificBiosciences SEQUEL II	ERR6594494, ERR6594495
10X Genomics Illumina	ERR6002720-ERR6002727
Hi-C Illumina	ERR6002728-ERR6002730
Illumina polyA RNA-Seq	ERR6002731

Genome assembly	
Assembly accession	GCA_905147815.2
Accession of alternate haplotype	GCA_905147805.2
Span (Mb)	933
Number of contigs	295
Contig N50 length (Mb)	8.5
Number of scaffolds	116
Scaffold N50 length (Mb)	34.1
Longest scaffold (Mb)	43.5
BUSCO* genome score	C:98.9%[S:97.8%,D:1.0%],F:0.3%,M:0.8%,n:5286

*BUSCO scores based on the lepidoptera_odb10 BUSCO set using v5.1.2. C= complete (S= single copy, D=duplicated), F=fragmented, M=missing, n=number of orthologues in comparison. A full set of BUSCO scores is available at https://blobtoolkit.genomehubs.org/view/ilPhaBuce1.2/dataset/CAJHX402/busco.
Figure 2. Genome assembly of *Phalera bucephala*, ilPhaBuce1.2: metrics. The BlobToolKit Snailplot shows N50 metrics and BUSCO gene completeness. The main plot is divided into 1,000 size-ordered bins around the circumference with each bin representing 0.1% of the 933,147,695 bp assembly. The distribution of scaffold lengths is shown in dark grey with the plot radius scaled to the longest scaffold present in the assembly (59,027,677 bp, shown in red). Orange and pale-orange arcs show the N50 and N90 scaffold lengths (34,116,407 and 18,324,721 bp), respectively. The pale grey spiral shows the cumulative scaffold count on a log scale with white scale lines showing successive orders of magnitude. The blue and pale-blue area around the outside of the plot shows the distribution of GC, AT and N percentages in the same bins as the inner plot. A summary of complete, fragmented, duplicated and missing BUSCO genes in the lepidoptera_odb10 set is shown in the top right. An interactive version of this figure is available at https://blobtoolkit.genomehubs.org/view/ilPhaBuce1.2/dataset/CAJHX02/snail.

(Guan *et al.*, 2020). One round of polishing was performed by aligning 10X Genomics read data to the assembly with longranger align, calling variants with freebayes (Garrison & Marth, 2012). The assembly was then scaffolded with Hi-C data.
Figure 3. Genome assembly of *Phalera bucephala*, ilPhaBuce1.2: GC coverage. BlobToolKit GC-coverage plot. Scaffolds are coloured by phylum. Circles are sized in proportion to scaffold length. Histograms show the distribution of scaffold length sum along each axis. An interactive version of this figure is available at https://blobtoolkit.genomehubs.org/view/ilPhaBuce1.2/dataset/CAJHXA02/blob.

(Rao et al., 2014) using SALSA2 (Ghurye et al., 2019). The assembly was checked for contamination and corrected using the gEVAL system (Chow et al., 2016) as described previously (Howe et al., 2021). Manual curation was performed using
Figure 4. Genome assembly of *Phalera bucephala*, ilPhaBuce1.2: cumulative sequence. BlobToolKit cumulative sequence plot. The grey line shows cumulative length for all scaffolds. Coloured lines show cumulative lengths of scaffolds assigned to each phylum using the buscogenes taxrule. An interactive version of this figure is available at https://blobtoolkit.genomehubs.org/view/ilPhaBuce1.2/dataset/CAJHXA02/cumulative.

gEVAL, HiGlass (Kerpedjiev *et al.*, 2018) and Pretex. The genome was analysed and BUSCO scores generated within the BlobToolKit environment (Challis *et al.*, 2020). Table 3 contains a list of all software tool versions used, where appropriate.
Table 2. Chromosomal pseudomolecules in the genome assembly of *Phalera bucephala*, ilPhaBuce1.2.

INSDC accession	Chromosome	Size (Mb)	GC%
LR990610.1	1	43.49	39.2
LR990611.1	2	40.87	39.1
LR990612.1	3	39.81	38.9
LR990613.1	4	39.67	39
LR990614.1	5	39.31	38.7
LR990615.1	6	38.13	39.1
LR990616.1	7	37.74	38.9
LR990617.1	8	37.02	39.2
LR990618.1	9	34.85	39.1
LR990619.1	10	34.54	39.3
LR990620.1	11	34.12	38.9
LR990621.1	12	33.31	39.1
LR990622.1	13	33.06	39
LR990623.1	14	31.29	39.1
LR990624.1	15	29.29	39.3
LR990625.1	16	27.79	39.2
LR990626.1	17	27.27	39.4
LR990627.1	18	27.25	39.4
LR990628.1	19	26.99	39.5
LR990629.1	20	26.05	39.8
LR990630.1	21	22.17	39.6
LR990631.1	22	20.78	40
LR990632.1	23	20.08	39.5
LR990633.1	24	19.01	40
LR990634.1	25	18.32	40.1
LR990635.1	26	14.81	41.3
LR990636.1	27	14.56	40.5
LR990637.1	28	12.96	41
LR990638.1	29	12.86	41.2
LR990639.1	W	7.37	40.7
LR990640.1	Z	59.03	38.4
LR990640.1	MT	0.02	19.3
-	Unplaced	29.32	40.9
Table 3. Software tools used.

Software tool	Version	Source
HiCanu	1.0	Nurk et al., 2020
purge_dups	1.2.3	Guan et al., 2020
SALSA2	2.2	Ghurye et al., 2019
longranger align	2.2.2	https://support.10xgenomics.com/
		genome-exome/software/pipelines/latest/advanced/other-pipelines
freebayes	1.3.1-17-gaa2ace8	Garrison & Marth, 2012
gEVAL	N/A	Chow et al., 2016
PretextView	0.1.x	https://github.com/wtsi-hpg/PretextView
HiGlass	1.11.6	Kerpedjiev et al., 2018
BlobToolKit	2.6.4	Challis et al., 2020

Data availability
European Nucleotide Archive: Phalera bucephala (buff-tip) genome assembly, ilPhaBuce1. Accession number PRJEB42140; https://identifiers.org/ena.embl/PRJEB42140.

The genome sequence is released openly for reuse. The *P. bucephala* genome sequencing initiative is part of the Darwin Tree of Life (DTol) project. All raw sequence data and the assembly have been deposited in INSDC databases. The genome will be annotated and presented through the Ensembl pipeline at the European Bioinformatics Institute. Raw data and assembly accession identifiers are reported in Table 1.

Author information
Members of the University of Oxford and Wytham Woods Genome Acquisition Lab are listed here: https://doi.org/10.5281/zenodo.5746938.

Members of the Darwin Tree of Life Barcoding collective are listed here: https://doi.org/10.5281/zenodo.5744972.

Members of the Wellcome Sanger Institute Tree of Life programme are listed here: https://doi.org/10.5281/zenodo.5744840.

Members of Wellcome Sanger Institute Scientific Operations: DNA Pipelines collective are listed here: https://doi.org/10.5281/zenodo.5746904.

Members of the Tree of Life Core Informatics collective are listed here: https://doi.org/10.5281/zenodo.5743293.

Members of the Darwin Tree of Life Consortium are listed here: https://doi.org/10.5281/zenodo.5638618.

References

Challis R, Richards E, Rajan J, et al.: BlobToolKit - Interactive Quality Assessment of Genome Assemblies. *G3 (Bethesda)*. 2020; 10(4): 1361–74. PubMed Abstract | Publisher Full Text | Free Full Text

Chow W, Brugger K, Caccamo M, et al.: gEVAL - a Web-Based Browser for Evaluating Genome Assemblies. *Bioinformatics*. 2016; 32(16): 2508–10. PubMed Abstract | Publisher Full Text | Free Full Text

van Dijk LJ, Ehrén J, Tack AJM: The Timing and Asymmetry of Plant-pathogen-insect Interactions. *Proc Biol Sci*. 2020; 287(1935): 20201303. PubMed Abstract | Publisher Full Text | Free Full Text

Ford EB: Moths, No. 30, New Naturalist Series. Collins, London, 1967. Reference Source

Garrison E, Marth G: Haplotype-Based Variant Detection from Short-Read Sequencing. *arXiv*: 1207.3907. 2012. Reference Source

Ghurye J, Rhie A, Walenz BP, et al.: Integrating Hi-C Links with Assembly Graphs for Chromosome-Scale Assembly. *PloS Comput Biol*. 2019; 15(6): e1007273. PubMed Abstract | Publisher Full Text | Free Full Text
Guan D, McCarthy SA, Wood J, et al.: Identifying and Removing Haplotypic Duplication in Primary Genome Assemblies. Bioinformatics. 2020; 36(9): 2896–98. PubMed Abstract | Publisher Full Text | Free Full Text

Howe K, Chow W, Collins J, et al.: Significantly Improving the Quality of Genome Assemblies through Curation. GigaScience. 2021; 10(1): giaa153. PubMed Abstract | Publisher Full Text | Free Full Text

Kerpedjiev P, Abdennur N, Lekschas F, et al.: HiGlass: Web-Based Visual Exploration and Analysis of Genome Interaction Maps. Genome Biol. 2018; 19(1): 125. PubMed Abstract | Publisher Full Text | Free Full Text

Manni M, Berkeley MR, Seppey M, et al.: BUSCO Update: Novel and Streamlined Workflows along with Broader and Deeper Phylogenetic Coverage for Scoring of Eukaryotic, Prokaryotic, and Viral Genomes. Mol Biol Evol. 2021; 38(10): 4647–54. PubMed Abstract | Publisher Full Text | Free Full Text

Molis S: The Buff-Tip Moth (Phalera Bucephala L.)-a Pest of Apple Trees. Acta Entomologica Lituanica. 1970; 1: 182–83. PubMed Abstract | Publisher Full Text | Free Full Text

Nurk S, Walenz BP, Rhie A, et al.: HiCanu: Accurate Assembly of Segmental Duplications, Satellites, and Allelic Variants from High-Fidelity Long Reads. Genome Res. 2020; 30(9): 1291–1305. PubMed Abstract | Publisher Full Text | Free Full Text

Port GR, Thompson JR: Outbreaks of Insect Herbivores on Plants Along Motorways in the United Kingdom. J Appl Ecol. 1980; 17(3): 649–56. Publisher Full Text

Rao SS, Huntley MH, Durand NC, et al.: A 3D Map of the Human Genome at Kilobase Resolution Reveals Principles of Chromatin Looping. Cell. 2014; 158(7): 1665–80. PubMed Abstract | Publisher Full Text | Free Full Text