Safe use of Liver Grafts from Syphilis-Positive Donors in Liver Transplantation and Review of the Literature

Xin Duan
Zhejiang University School of Medicine First Affiliated Hospital

Liting Yan
Zhejiang University School of Medicine First Affiliated Hospital

Chao Qian
Zhejiang University School of Medicine First Affiliated Hospital

Wei Zhang
Zhejiang University School of Medicine First Affiliated Hospital

Yan Shen
Zhejiang University School of Medicine First Affiliated Hospital

Min Zhang
Zhejiang University School of Medicine First Affiliated Hospital

Xue Li Bai
Zhejiang University School of Medicine First Affiliated Hospital

tingbo liang (liangtingbo@zju.edu.cn)
Zhejiang University School of Medicine First Affiliated Hospital

Research

Keywords: Organ transplantation, Treponema pallidum, Marginal graft, Prophylactic antibiotic, Benzathine penicillin

DOI: https://doi.org/10.21203/rs.3.rs-136016/v1

License: ☑️ 🔍 This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License
Abstract

Background: The growing disparity between organ availability and the number of candidates for organ transplantation has urged the use of marginal grafts including grafts from syphilis-positive donors. However, few knowledges could be acknowledged about this due to the rare data from case reports. Therefor we evaluate our data and summarize our experience of the management of liver grafts from syphilis-positive donors.

Methods: From January 2015 to December 2019, 22 adult patients received liver transplantation from syphilis-positive donors while 873 patients got liver transplantation from syphilis-negative donors at our center. Given the imbalance in several baseline variables, propensity score matching was used. The outcomes were compared including complications, hospital stay, recovery of liver function and survival of the two groups and the management of the recipients was reviewed.

Results: There were no differences in complications and hospital stay of the recipients after transplantation. And it showed similar trends in the liver function recovery. Patient and graft survivals were comparable to that of syphilis-negative grafts. And benzathine penicillin is effective to protect the recipients from syphilis.

Conclusions: The use of liver grafts from syphilis-positive donors does not to increase the morbidity and mortality of the recipients. Also, the prophylactic theory of benzathine penicillin is helpful.

Introduction

To date there is no better therapeutic options for patients with end-stage liver disease except for liver transplantation. Nevertheless, the shortage of liver donors does not match the increasing demand for liver grafts, which has led to broadening of acceptance criteria for potential organ donor candidates, in other words, utilizing marginal grafts regardless of the risk of transmission of infection.

Syphilis, caused by Treponema pallidum, has a worldwide distribution. The risk of syphilis in organ donors should not be neglected, and Gibel et al estimate it to be about 0.15%. Unfortunately, the prevalence of syphilis in organ donors should have increased with the substantially growing incidence of syphilis over the past decades.

Although syphilis is mainly transmitted by sexual contract and is infrequent in other ways, it theoretically has the transmission possibility via organ transplantation. In fact, there are two reports documented describing this phenomenon, one after kidney transplantation and the other after liver transplantation. Serologic testing of organ donors for syphilis is recommended but evidence of donor syphilis infection is not considered a contraindication for using organs if prophylactic antibiotics are administered to the recipient. However, no cohort study of liver grafts from syphilis-positive donors in liver transplantation has been reported, as the possibility of syphilitic hepatitis after liver transplantation that may result in poor prognosis.

Hence, we report our promising results on the clinical outcome of liver transplantation using syphilis-positive liver grafts within our mono-center experience. In addition, we performed the useful prophylactic theory of penicillin.

Materials And Methods

From January 2015 to December 2019, 22 adult patients had liver transplantation from syphilis-positive donors at our center while 873 patients underwent liver grafts from syphilis-negative donors. Given the imbalance in several baseline variables, 1:4 propensity score matching was used. Here we reviewed the outcomes of these 22 recipients and took those 88 patients as control in this study. Before transplantation all patients received syphilis-positive liver grafts were notified of potential poor prognosis and the possibility of infection.

Syphilis-positive Donors

Age, sex, and serum features of the syphilis-positive donors are listed in Table 1. The median age is 48 years (range: 22–68). Most donors are male.
Table 1
Main demographic and serovirological features of syphilis-positive donors.

Case ID	Sex	Age	Syphilis IgG EIA	TPPA	RPR (titer)
1#	M	58	+	NT	-
2#	F	43	+		-
3#	M	46	+	NT	+(1:2)
4#	M	22	+	NT	+(1:2)
5#	M	62	+	NT	+(1:2)
6#	M	59	+	NT	-
7#	M	50	+	NT	-
8#	M	58	+	+	-
9#	M	33	+	NT	+(1:1)
10#	M	48	+	NT	+(1:32)
11#	M	44	+	NT	-
12#	F	48	+	NT	-
13#	M	46	+	NT	-
14#	M	55	+	NT	+(1:1)
15#	M	39	+	NT	-
16#	M	39	+	NT	-
17#	M	48	+	NT	+(1:1)
18#	F	61	+	NT	-
19#	M	43	+	NT	-
20#	M	61	+	NT	-
21#	M	68	+	NT	+(1:2)
22#	M	48	+	NT	-

+ = detected; − = not detected; NT = not tested; EIA = Enzyme Immunoassay; TPPA = Treponema Pallidum Particle Agglutination; RPR = Rapid Plasma Reagin.

Prophylactic therapy

Prophylactic antibiotics were given to all recipients of syphilis-positive grafts from the first post-transplant day. Usually we gave them single dose 2.4 MU of benzathine penicillin intramuscularly. Another 2-weekly doses 2.4 MU of intramuscular benzathine penicillin would be given to recipients if they had positive serology results of syphilis at day 5 after transplantation.

Follow-up after transplantation

After transplantation all patients were monitored intensively until they were stable. The evaluation included clinical symptoms, biochemical tests and image surveillance. Serology test for syphilis was monitored at day 5, then month 1, 3, 6 and 12. The evaluation of follow-up after discharge mainly concentrated on liver function, complications, and survival. Computed tomography was conducted every half a year while ultrasound monthly.

Propensity score matching

The R language 3.5.1 was used to match the patients as 1:4 pairing through the propensity score matching (PSM). The matching variables included gender, age, BMI of donors and recipients, making the baseline data of these two groups comparable.

Statistics
The statistical software SPSS 25.0 (SPSS, Inc., Chicago, IL) was used to analyze the data. The mean value and standard deviation of the data were then presented. Statistical analysis methods included Chi-square test, Student’s t test and Kaplan-Meier method with log-rank test. It was considered statistically significant when P < 0.05.

Results

Syphilis-positive grafts did not result in poor prognosis

From January 2015 to December 2019, 22 adult patients had liver transplantations from syphilis-positive donors (positive group) at our center while 88 patients received liver grafts from syphilis-negative donors (negative group) after 1:4 propensity score matching. There were 16 males and 6 females in the positive group while 64 males and 24 females in the negative group. There were no significant differences between two groups on sex, age (47.6 vs. 47.0 p = 0.8), body mass index (BMI) (23.3 vs. 23.6 p = 0.76), calculated Model for End-Stage Liver Disease (MELD) score (23.5 vs. 23.5 p = 0.82), Child-Pugh score (10 vs. 10 p = 0.88), total operation time (309.5 vs. 317.5 min p = 0.75), and cold ischemia time (608.1 vs. 536.4 min p = 0.09). At transplantation 4 patients in the positive group (18.2%) were diagnosed with tumor while the negative group had 23.9% (Table 2).

Table 2
General characteristics of liver transplant recipients who received syphilis-positive liver grafts (positive group) and syphilis-negative liver grafts (negative group) and donors correspondingly.

	Positive group	Negative group	P value
Recipients			
Age (year)	47.6 ± 7.3	47.0 ± 10.7	0.80
Gender (M/F)	16/6	64/24	1.00
BMI	23.3 ± 3.3	23.6 ± 3.4	0.76
Indication for LT			0.79
Cirrhosis	9 (40.9%)	26 (29.5%)	
Acute liver failure	9 (40.9%)	30 (34.1%)	
HCC	4 (18.2%)	21 (23.9%)	
Graft Failure	0	5 (5.7%)	
PSC/PBC	0	4 (4.5%)	
Other	0	2 (2.3%)	
MELD	23.5 (14.5–29.0)	23.5 (11.0–29.8)	0.82
CHILD	10 (9–11)	10 (7–12)	0.88
CIT	608.1 ± 195.9	536.4 ± 169.6	0.09
Hepatitis B virus-related liver disease	17 (77.3%)	70 (79.5%)	1.00
Donors			
Age	49.1 ± 10.7	47.9 ± 12.6	0.69
Gender	19/3	81/7	0.68
BMI	22.8 ± 1.7	23.5 ± 3.1	0.16
WTI	10.1 ± 5.0	8.1 ± 6.9	0.13
HBV	1 (4.5%)	15 (17.0%)	0.25

BMI = Body Mass Index; MELD = Model for End-Stage Liver Disease.
Post-transplantation results showed there were no differences between these two groups concerning hospital stay (21 vs. 21 day, \(p = 0.90 \)) and post-transplant complications, such as primary non-function (4.5% vs. 3.4%, \(P = 1.00 \)), biliary complications (13.6% vs. 15.9%, \(P = 1.00 \)) and renal failure (4.5% vs. 12.5%, \(P = 0.49 \)) (Table 3). As for the liver function recovery after liver transplantation, no significant differences were observed in these two groups. The trends of the mean value of serum liver function markers, for example alanine transaminase, aspartate aminotransferase, international normalized ratio and total bilirubin were similar in both groups after liver transplantation (Fig. 1). No syphilis hepatitis was observed in any patient. What was more, there were no differences between these two groups in patient and graft survival (Fig. 2). All these results above demonstrated that syphilis-positive grafts did not result in poor prognosis or increase the morbidity and mortality.

Table 3
Surgical characteristics in recipients between the two groups.

	Positive group (n = 22)	Negative group (n = 88)	P value
Operative time (mins)	309.5 (279.5–356.0)	317.5 (285.7–365.7)	0.75
Blood loss (ml)	1000.0 (900–1625)	1000 (725–1500)	0.44
Use of blood products			
RBC (units)	5.5 (3.0–7.6)	5.0 (3.1–8.0)	0.72
Hospital stay (days)	21 (17–26)	21 (17–25)	0.90
Overall complication			
Primary nonfunction	1 (4.5%)	3 (3.4%)	1.00
Biliary complications	3 (13.6%)	14 (15.9%)	1.00
Vascular complications	1 (4.5%)	6 (6.8%)	1.00
Intra-abdominal hemorrhage	2 (9.1%)	4 (4.5%)	0.75
Acute rejection	4 (18.2%)	9 (10.2%)	0.51
Renal failure	1 (4.5%)	11 (12.5%)	0.49

Prophylactic therapy of benzathine penicillin is effective

Prophylactic therapy for patients of syphilis-positive grafts was single dose 2.4 MU of intramuscular benzathine penicillin. Serology test for syphilis was monitored at day 5. With positive serology results of syphilis, recipients would get another 2-weekly dose 2.4 MU of benzathine penicillin intramuscularly. Details of serology test results of syphilis for recipient prior and post Liver transplantations are shown in Table 4. Only one of 22 patients (case 13) had positive enzyme immunoassay (EIA) and Treponema pallidum particle agglutination (TPPA) results at day 5 while at month 1 his TPPA results was negative and EIA remained positive. Case 10 had negative EIA at day 5 but had positive EIA and PRP (1:1) at month 1. Afterwards, his PRP became negative and EIA remained positive. Case 14 had weakly positive EIA and negative TPPA at month 1 only once. After reexamination, his EIA became negative. Case 4 and case 20 died from hepatocellular carcinoma recurrence 13 months and 1 month after liver transplantation. Case 4 died from severe sepsis 1 month after transplantation. Case 7 and case 18 died from multiple organ failure within 1 week after transplantation. The serology results of syphilis of these dead cases remained negative all the time until they died. Case 5 had acute rejection reaction after the surgery, so she had re-transplantation and recovered well, but her serology results of syphilis kept negative. Our results of long-term follow-up indicated that with the usage of benzathine penicillin most recipients would not be infected of syphilis. It seems benzathine penicillin is useful and effective.
Table 4
Serology test results of syphilis for recipients prior and post liver transplantation

Case	Before transplantation	Day 5	Month 1	Month 3	Month 6	Month 12										
ID	IgG-EIA	TP	RPR													
1	-	nt	nt													
2	-	nt	nt													
3	-	nt	nt	-	nt											
4	-	nt	nt	-	nt											
5	-	nt	nt	-	nt											
6	-	nt	nt	-	nt											
7	-	nt														
8	-	nt	nt	-	nt											
9	-	nt	nt	-	nt											
10	-	nt	nt	-	nt	nt	+	nt	+	(1:1)	+	nt	-	+	nt	-
11	-	nt	nt	-	nt											
12	-	nt	nt	-	nt											
13	-	nt	nt	+	+	-	nt									
14	-	nt	nt	-	nt	nt	±	-	nt							
15	-	nt	nt	-	nt											
16	-	nt	nt	-	nt	nt	-	nt								
17	-	nt	nt	-	nt											
18	-	nt	nt	-	nt											
19	-	nt	nt	-	nt											
20	-	nt	nt	-	nt	nt	-	nt								
21	-	nt	nt	-	nt	nt	-	nt								
22	-	nt	nt	-	nt	nt	-	nt								

+ = detected; − = not detected; ± = equivocal; nt = not tested; EIA = Enzyme Immunoassay; TPPA = Treponema Pallidum Particle Agglutination; RPR = Rapid Plasma Reagin

Conclusions

The use of liver grafts from syphilis-positive donors does not increase the morbidity and mortality of the recipients which can relatively alleviate the shortage of donor liver. And the prophylactic theory of benzathine penicillin for recipients is helpful.

Discussion

During the last 2 decades, the growing disparity between organ availability and the number of candidates for organ transplantation has compelled the use of sub-optimal or marginal donors. Extensive donor test is recommended to prevent transmission of disease by transplantation. Traditionally, syphilis screening involves a nontreponemal anticardiolipin serological test (eg, Rapid Plasma Reagin [RPR] or Venereal Disease Research Laboratory [VDRL]). Subsequently positive results are confirmed by a specific treponemal test (eg, TPPA)\(^2\). Nowadays, it has the trend to use treponemal-specific EIA for syphilis screening and a nontreponemal test will be taken on
positive results13,14. As we can see in Table 1, we would miss syphilis positivity if we tested our donors in the traditional way. However, the latter method also has its limitation with about 17\% of EIA results false-positives and discordant test results as reported14. Hence, it is recommended that discordant results should be tested using the TPPA test15. So, we use EIA as the initial screening method, and positive results will be confirmed by TPPA and RPR.

The EIA test was negative in all recipients before transplantation. One recipient (case 13) had positive EIA and TPPA at day 5 but his TPPA results was negative and EIA remained positive afterwards. An explanation of this phenomenon may be the passive transmission of antibodies from donor at transplantation or transmission of lymphocytes with the grafts, which has been described already in kidney transplantation16,17. Case 10 had negative EIA at day 5 but had positive EIA and PRP (1:1) at month 1, it was considered that he was infected with syphilis in the past, but had been cured and was not infectious. Afterwards, his PRP became negative and EIA remained positive18. With this recipient (case 10), we should be aware of the possibility of syphilitic hepatitis. It is uncommon in immunocompetent individuals10 while it has been depicted in immunocompromised patients, such as those infected with human immunodeficiency virus (HIV)19. In syphilitic hepatitis, there would be a notable increase in alkaline phosphatase and a modest increase in aspartate aminotransferase, alanine transaminase and bilirubin along with clinical symptoms including rash and hepatomegaly10. Case 14 had weakly positive EIA and negative TPPA at month 1 which was considered false positive. After reexamination, his EIA became negative.

Though positive EIA and TPPA results with negative RPR do not mean active syphilis, it is recommended that recipients of potentially infected organs should be treated with an appropriate course of benzathine penicillin20. Fischer et al20 recommend 3-weekly doses 2.4 MU of intramuscular benzathine penicillin while UK guidelines21 recommend benzathine penicillin 2.4 MU as a single-dose intramuscular injection, or doxycycline 100 mg by mouth twice daily for 14 days, as alternative therapy. Gibel et al3 also recommend a single dose of 2.4 MU of benzathine penicillin. Ko et al22 and Marek al23 utilize 3-weekly doses 2.4 MU of intramuscular benzathine penicillin as the prophylactic therapy. Cortes et al9 consider two doses of intramuscular 2.4MU benzathine penicillin a week apart to be an appropriate regime for prophylaxis and treatment of early syphilis acquired via transplantation. In our case, we split the difference of the above. We recommend single dose 2.4 MU of intramuscular benzathine penicillin with or without another 2-weekly doses 2.4 MU of intramuscular benzathine penicillin according to the serology results of syphilis at day 5 after transplantation.

The follow-up duration of recipients with syphilis-positive liver grafts is unclear. There was no documents especially for this. Ko et al22 monitored their patients using Venereal Disease Research Laboratory (VDRL) and Treponema pallidum hemagglutination (TPHA) at 2, 4, 6, and 12 months after transplantation. Cortes et al9 monitored their patients at 1, 3, 6 and 12 months after transplant using TPPA, RPR and an immunoblot for IgM and IgG. Marek al23 monitored their patients similarly to Cortes et al9.

Summariy, our cohort study illustrates that syphilis-positive liver grafts did not result in poor prognosis or increase the morbidity and mortality of the recipients after liver transplantation. Benzathine penicillin is effective to protect recipients from transmission of syphilis. Furthermore, we summarize and share our experience in the management of recipients with syphilis-positive liver grafts. With the increasing disparity between donors and recipients, it is vital to be aware that syphilis-positive liver grafts are safe for recipients as long as prophylactic antibiotics are administered to the recipients.

Abbreviations

BMI, Body Mass Index; EIA, Enzyme Immunoassay; MELD, Model for End-Stage Liver Disease; RPR, Rapid Plasma Reagin; TPPA, Treponema Pallidum Particle Agglutination.

Declarations

Ethics approval and consent to participate

This study was approved by the Research Ethics Committee of the First Affiliated Hospital, College of Medicine, Zhejiang University.

Consent for publication

Not applicable

Availability of data and materials
The datasets used or analysed during the current study are available from the corresponding author on reasonable request.

Competing interests

The authors declare that they have no competing interests

Funding

Not applicable.

Authors’ contributions

TL and XB conceived of the study, and participated in its design and coordination and helped to draft the manuscript. WZ and MZ participated in the design of the study and collected the data and built the datasets. XD and YS conceived of the study and performed the statistical analysis. LY and CQ performed the statistical analysis and helped to draft the manuscript. All authors read and approved the final manuscript.

Acknowledgements: Not applicable

References

1. Lopez-Navidad A, Caballero F. Extended criteria for organ acceptance. Strategies for achieving organ safety and for increasing organ pool. Clinic Transplantation. 2003;17:308–24. DOI:10.1034/j.1399-0012.2003.00119.x.

2. Afonso RC, Hidalgo R, Paes AT, et al. Impact of cumulative risk factors for expanded criteria donors on early survival after liver transplantation. *Transplantation Proceedings*. 2008;40:800-1. DOI: 10.1016/j.transproceed.2008.03.017.

3. Gibel LJ, Sterling W, Hoy W, et al. Is serological evidence of infection with syphilis a contraindication to kidney donation? Case report and review of the literature. *J Urol.* 1987;138:1226–7. DOI:10.1016/s0022-5347(17)43558-0.

4. Tucker JD, Yin YP, Wang B, et al. An expanding syphilis epidemic in China: epidemiology, behavioural risk and control strategies with a focus on low-tier female sex workers and men who have sex with men. *Sex Transm Infect.* 2011;87(Suppl 2):ii16–8. DOI:10.1136/sti.2010.048314.

5. McCarthy M. Syphilis rate rises in the US. *British Medical Journal*. 2014;349:g7756. DOI:10.1136/bmj.g7756.

6. Mayor S. Syphilis and gonorrhoea increase sharply in England. *British Medical Journal*. 2015;350:h3457. DOI:10.1136/bmj.h3457.

7. Van de Laar M, Spiteri G. Increasing trends of gonorrhoea and syphilis and the threat of drug-resistant gonorrhoea in Europe. *Eurosurveillance*. 2012;17(29). https://www.eurosurveillance.org/content/10.2807/ese.17.29.20225-en.

8. Singh AE, Romanowski B. Syphilis: review with emphasis on clinical, epidemiologic, and some biologic features. *Clinical microbiology reviews*. 1999;12:187–209. https://cmr.asm.org/content/12/2/187.long.

9. Cortes NJ, Afzali B, MacLean D, et al. Transmission of syphilis by solid organ transplantation. *American Journal of Transplantation*. 2006;6:2497–9. DOI:10.1111/j.1600-6143.2006.01461.x.

10. Tariciotti L, Das I, Dori L, et al. Asymptomatic transmission of *Treponema pallidum* (syphilis) through deceased donor liver transplantation. *Transplant Infectious Disease*. 2012;14:321–5. DOI:10.1111/j.1399-3062.2012.00745.x.

11. Len Q, Garzoni C, Lumbresas C, et al. Recommendations for screening of donor and recipient prior to solid organ transplantation and to minimize transmission of donor-derived infections. *Clin Microbiol Infect.* 2014;20(Suppl 7):10–8. DOI:10.1111/1469-0691.12557.

12. Park IU, Chow JM, Bolan G, et al. Screening for syphilis with the treponemal immunoassay: analysis of discordant serology results and implications for clinical management. *Journal of Infectious Diseases*. 2011;204:1297–304. DOI:10.1093/infdis/jir524.

13. French P, Gomberg M, Janier M, et al. IUSTI: 2008 European Guidelines on the Management of Syphilis. *International Journal of STD AIDS*. 2009;20:300–9. DOI:10.1258/ji8a.2008.008510.

14. Syphilis testing algorithms. using treponemal tests for initial screening–four laboratories, New York City, 2005–2006. *Morbidity and mortality weekly report*. 2008;57:872-5. https://www.cdc.gov/mmwr/preview/mmwrhtml/mm5732a2.htm.

15. Hoover KW, Radolf JD. Serodiagnosis of syphilis in the recombinant era: reversal of fortune. *J Infect Dis*. 2011;204:1295–6. DOI:10.1093/infdis/jir528.

16. Dahmen U, Gu Y, Dirsch O, et al. Adoptive transfer of HBV immunity by kidney transplantation and the effect of postoperative vaccination. *Antiviral Research*. 2002;56:29–37. DOI:10.1016/s0166-3542(02)00068-2.

17. Flesland Ø, Pfeffer PF, Solheim BG, et al. Donor lymphocytes transferred with the graft to kidney recipients. Potential for establishing microchimerism. *Transfus Apheres Sci*. 2003;28:125–8. DOI:10.1016/S1473-0502(03)00013-2.
18. Young H. Guidelines for serological testing for syphilis. Sex Transm Infect. 2000;76:403–5. DOI:10.1136/sti.76.5.403.

19. Mullick CJ, Liappis AP, Benator DA, et al. Syphilitic hepatitis in HIV-infected patients: a report of 7 cases and review of the literature. Clin Infect Dis. 2004;39:e100-5. DOI:10.1086/425501.

20. Fischer SA, Avery RK, Practice ASTIDCo. Screening of donor and recipient prior to solid organ transplantation. The American Journal of Gastroenterology. 2009;9(Suppl 4):7–18. DOI:10.1111/j.1600-6143.2009.02888.x.

21. Kingston M, French P, Goh B, et al. UK National Guidelines on the Management of Syphilis 2008. International Journal of STD AIDS. 2008;19:729–40. DOI:10.1258/ijsa.2008.008279.

22. Ko WJ, Chu SH, Lee YH, et al. Successful prevention of syphilis transmission from a multiple organ donor with serological evidence of syphilis. Transplantation Proceedings. 1998;30:3667-8. DOI: 10.1016/s0041-1345(98)01185-3.

23. Marek A, Inkster T. A syphilis-positive organ donor – management of the cardiac transplant recipient: a case report and review of the literature. Sexually transmitted diseases. 2012;39:485–6. DOI:10.1097/OLQ.0b013e318249db35.