LANTERN RELATIONS AND RATIONAL BLOWDOWNS

HISAAKI ENDO AND YUSUF Z. GURTAS

ABSTRACT. We discuss a connection between the lantern relation in mapping class groups and the rational blowing down process for 4-manifolds. More precisely, if we change a positive relator in Dehn twist generators of the mapping class group by using a lantern relation, the corresponding Lefschetz fibration changes into its rational blowdown along a copy of the configuration C_2. We exhibit examples of such rational blowdowns of Lefschetz fibrations whose blowup is homeomorphic but not diffeomorphic to the original fibration.

1. Introduction

Lefschetz fibrations relate the topology of symplectic 4-manifolds to the combinatorics on positive relators in Dehn twist generators of mapping class groups. Fuller introduced a substitution technique for constructing positive relators to obtain an example of non-holomorphic Lefschetz fibrations of genus three [15], [14]. Many constructions of Lefschetz fibrations as positive relators can be interpreted as generalizations of his construction (cf. [5]), while it has been less investigated what such substitutions mean geometrically.

In this paper we study a particular substitution, the lantern substitution (or the $L^±_1$ substitution in short), for positive relators of mapping class groups. The corresponding surgical operation on Lefschetz fibrations turns out to be the rational blowing down process, which was discovered by Fintushel and Stern [6], along a copy of the configuration C_2 (i.e. a -4-framed unknot in Kirby diagrams). Applying a theorem of Usher [19], we give examples of such rational blowdowns of Lefschetz fibrations whose blowup is homeomorphic but not diffeomorphic to the original fibration.

In Section 2 we review the lantern relation in mapping class groups and define the lantern substitution for positive relators. We discuss a relation between lantern relations and rational blowdowns in Section 3 and state the main theorem in Section 4. We then exhibit some examples in Section 5 and end by observing other relations in Section 6.

The authors are grateful to K. Yasui for helpful comments on the rational blowing down process and to N. Monden for drawing beautiful Kirby diagrams in Figure 1 and Figure 2.

Date: August 5, 2008; MSC 2000: primary 57R17, secondary 57N13, 20F38.
Key words and phrases. 4-manifold, mapping class group, symplectic topology, Lefschetz fibration, lantern relation, rational blowdown.

The first author is partially supported by Grant-in-Aid for Scientific Research (No.18540083), Japan Society for the Promotion of Science.
2. Lantern relations and substitutions

Let Σ_g be a closed oriented surface of genus $g \geq 2$ and \mathcal{M}_g the mapping class group of Σ_g. We denote by \mathcal{F} the free group generated by all isotopy classes \mathcal{S} of simple closed curves on Σ_g. There is a natural epimorphism $\varpi : \mathcal{F} \to \mathcal{M}_g$ which sends (the isotopy class of) a simple closed curve a on Σ_g to the right-handed Dehn twist t_a along a. We set $\mathcal{R} := \mathrm{Ker} \varpi$ and call each element of \mathcal{R} a relator in the generators \mathcal{S} of \mathcal{M}_g. A word in the generators \mathcal{S} is called positive if it includes no negative exponents. We put $w(c) := t_{a_1}^{e_1} \cdots t_{a_r}^{e_r}(c) \in \mathcal{S}$ for $c \in \mathcal{S}$ and $W = a_1^{e_1} \cdots a_r^{e_r} \in \mathcal{F}$ ($a_1, \ldots, a_r \in \mathcal{S}, e_1, \ldots, e_r \in \{ \pm 1 \}$), and put $wV := w(c_1) \cdots w(c_n) \in \mathcal{F}$ for $V = c_1 \cdots c_n \in \mathcal{F}$ ($c_1, \ldots, c_n \in \mathcal{S}$).

We begin with a precise definition of the lantern relation [2], [9].

Definition 2.1. Let a and b be simple closed curves on Σ_g with geometric intersection number 2 and algebraic intersection number 0. We orient a and b locally on a neighborhood of each intersection point $p \in a \cap b$ such that the intersection number $(a \cdot b)_p$ at p is $+1$. Resolving all intersection points according to the local orientations, we obtain a new simple closed curve c. A regular neighborhood of $a \cup b$, which can be chosen to include c, is a genus 0 subsurface Σ of Σ_g with four boundary components. We denote simple closed curves parallel to four boundary components of Σ by d_1, d_2, d_3, and d_4. The relation

$$t_{d_1} t_{d_2} t_{d_3} t_{d_4} = t_a t_b t_c$$

is called the lantern relation. We put $L := L(a, b) = abcd_1^{-1}d_2^{-1}d_3^{-1}d_4^{-1} \in \mathcal{R}$.

Let $\varrho \in \mathcal{R}$ ($\varrho \neq 1$) be a positive relator of \mathcal{M}_g. Let a, b, c, d_1, d_2, d_3, and d_4 be curves as in Definition 2.1. Suppose that ϱ includes $d_1 d_2 d_3 d_4$ as a subword:

$$\varrho = U \cdot d_1 d_2 d_3 d_4 \cdot V \quad (U, V \in \mathcal{F})$$

Since ϱ and $U \cdot L \cdot U^{-1}$ are both relators of \mathcal{M}_g, the positive word

$$\varrho' = U \cdot abc \cdot V = U \cdot abcd_1^{-1}d_2^{-1}d_3^{-1}d_4^{-1} \cdot d_1 d_2 d_3 d_4 \cdot V = U \cdot L \cdot U^{-1} \cdot \varrho$$

is also a relator of \mathcal{M}_g. The length of the word ϱ' is equal to that of ϱ minus one.

Definition 2.2. We say that ϱ' is obtained by applying an L-substitution to ϱ. Conversely, ϱ is said to be obtained by applying an L^{-1}-substitution to ϱ'. We also call these two kinds of operations lantern substitutions (cf. [5]).

We next recall a definition of Lefschetz fibrations (cf. [13], [8]).

Definition 2.3. Let M be a closed oriented smooth 4-manifold. A smooth map $f : M \to S^2$ is called a Lefschetz fibration of genus g if it satisfies the following conditions:

(i) f has finitely many critical values $b_1, \ldots, b_n \in S^2$ and f is a smooth fiber bundle over $S^2 - \{ b_1, \ldots, b_n \}$ with fiber Σ_g;

(ii) for each i ($i = 1, \ldots, n$), there exists a unique critical point p_i in the singular fiber $f^{-1}(b_i)$ such that f is locally written as $f(z_1, z_2) = z_1^2 + z_2^2$ with respect to some local complex coordinates around p_i and b_i which are compatible with orientations of M and S^2;

(iii) no fiber contains a -1-sphere.

Remark 2.4. A more general definition can be found in Chapter 8 of [8]. We treat also Lefschetz fibrations with boundary in the proof of Theorem 3.1.
Suppose that \(g \geq 2 \). According to theorems of Kas and Matsumoto, there exists a one-to-one correspondence between the isomorphism classes of Lefschetz fibrations and the equivalence classes of positive relators modulo simultaneous conjugations
\[
c_1 \cdots c_n \sim w(c_1) \cdots w(c_n),
\]
and elementary transformations
\[
c_1 \cdots c_{i+1} \cdots c_n \sim c_1 \cdots c_{i+1} (c_i) \cdots c_n,
\]
where \(c_1 \cdots c_n \in \mathcal{R} \) is a positive relator in the generator \(\mathcal{S} \) and \(w \in \mathcal{F} \). This correspondence is described by using the holonomy (or monodromy) homomorphism induced by the classifying map of \(f \) restricted on \(S^2 - \{b_1, \ldots, b_n\} \) (cf. \([8],[13]\), and \([3]\)). We denote (the isomorphism class of) a Lefschetz fibration associated to a positive relator \(\varrho \in \mathcal{R} \) by \(M_{\varrho} \to S^2 \).

Let \(\varrho, \varrho' \in \mathcal{R} \) be positive relators of \(\mathcal{M}_g \) and \(M_{\varrho}, M_{\varrho'} \) the corresponding Lefschetz fibrations over \(S^2 \), respectively. Suppose that the relator \(\varrho' \) is obtained by applying an \(L \)-substitution to the relator \(\varrho \). The Euler characteristic and the signature of a Lefschetz fibration \(M_{\varrho'} \to S^2 \) with monodromy \(\varrho' \) are computed as follows:
\[
e(M_{\varrho'}) = e(M_{\varrho}) - 1, \quad \sigma(M_{\varrho'}) = \sigma(M_{\varrho}) + 1
\]
([5], Theorem 4.3 and Proposition 3.12). We investigate relations between \(M_{\varrho} \) and \(M_{\varrho'} \) and several properties of them in the subsequent sections.

3. Rational blowdowns via lantern relations

Let \(\varrho, \varrho' \in \mathcal{R} \) be positive relators of \(\mathcal{M}_g \) and \(M_{\varrho}, M_{\varrho'} \) the corresponding Lefschetz fibrations over \(S^2 \), respectively.

Theorem 3.1. If \(\varrho' \) is obtained by applying an \(L \)-substitution to \(\varrho \), then the 4-manifold \(M_{\varrho'} \) is a rational blowdown of \(M_{\varrho} \) along a configuration \(C_2 \subset M_{\varrho} \).

Proof. We take a subsurface \(\Sigma \) of \(\Sigma_g \) and curves \(a, b, c, d_1, d_2, d_3, d_4 \) on \(\Sigma \) as in Definition [21]. Let \(N, N' \) be Lefschetz fibrations over \(D^2 \) with fiber \(\Sigma \) corresponding to the positive words \(d_1 d_2 d_3 d_4, abc \), respectively.

![Figure 1](image)

Drawing a Kirby diagram of \(N \), sliding the central \(-1 \)-framed unknot over other three \(-1 \)-framed unknots, and canceling three 1-handle/2-handle pairs, we obtain a \(-4 \)-framed unknot (Figure 1). Thus \(N \) is diffeomorphic to the total space of a \(D^2 \)-bundle over \(S^2 \) with Euler number \(-4 \), which is denoted by \(C_2 \) in [5] (see also [8], Section 8.5).
Drawing a Kirby diagram of N' and sliding and canceling handles as in Figure 2, we obtain a pair of a dotted circle and a $+1$-framed unknot with linking number +2. This means that N' is diffeomorphic to a rational 4-ball with boundary $L(4,1)$, which is denoted by B_2 in \[\text{(6)}\] (see also \[\text{8}\], Section 8.5).

From construction, N (resp. N') can be considered a submanifold of M_ρ (resp. M_ρ'). It is also easily seen that $M_\rho - \text{int} \ N$ and $M_\rho' - \text{int} \ N'$ are diffeomorphic to each other. Hence we have

$$M_\rho \approx N' \cup_{\partial N} (M_\rho - \text{int} \ N) \approx B_2 \cup_{L(4,1)} (M_\rho - \text{int} \ C_2).$$

This completes the proof of Theorem 3.1. \hfill \Box

4. Smooth structures

Let $\varrho, \varrho' \in \mathcal{R}$ be positive relators of M_ϱ and M_ϱ, M_ϱ' the corresponding Lefschetz fibrations over S^2, respectively. Suppose that ϱ' is obtained by applying k times L-substitutions ($k \geq 1$), elementary transformations, and simultaneous conjugations to ϱ. Suppose also that $e(M_\varrho) + \sigma(M_\varrho) \geq 2$. We choose a positive relator $\zeta \in \mathcal{R}$ ($\zeta \neq 1$) such that $M_\zeta - \nu F$ is simply-connected and either the word ζ includes at least one separating curve as a factor, or $\sigma(M_\varrho) + \sigma(M_\zeta)$ is not divisible by 16. Here νF is an open fibered neighborhood of a regular fiber F of M_ζ. Taking a fiber sum of M_ϱ (resp. M_ϱ') with M_ζ, we obtain a new Lefschetz fibration $M_1 := M_\varrho \#_F M_\zeta$ (resp. $M_2 := M_\varrho' \#_F M_\zeta$) with monodromy $\varrho \cdot W_\zeta$ (resp. $\varrho' \cdot W_\zeta$) for some $W \in \mathcal{F}$ (resp. $W' \in \mathcal{F}$). It is obvious that $\varrho \cdot W_\zeta$ is obtained by applying k times L-substitutions, elementary transformations, and simultaneous conjugations to $\varrho \cdot W_\zeta$.

Theorem 4.1. The 4-manifold M_1 is homeomorphic but not diffeomorphic to a k times blowup $M_2 \# k\mathbb{C}P^2$ of M_2. Moreover, both of these 4-manifolds do not dissolve.

Proof. Let $j : F_i \hookrightarrow M_i$ be the inclusion map from a general fiber F_i into the total space M_i ($i = 1, 2$). The induced homomorphism $j_\# : \pi_1(F_i) \to \pi_1(M_i)$ is surjective and the kernel of $j_\#$ includes the normal subgroup N of $\pi_1(M_i)$ generated by the vanishing cycles of M_i (cf. \[\text{1}\], Lemma 3.2). Since $M_i - \nu F$ is simply-connected and $j_\#$ is the composition of homomorphisms $\pi_1(F_i) \to \pi_1(M_i - \nu F) \to \pi_1(M_i)$, the group $\pi_1(M_i)$ must be trivial ($i = 1, 2$).

M_1 is a non-spin 4-manifold because either it has a component of a separating singular fiber which represents a homology class of square -1, or $\sigma(M_1)$ is not divisible by 16. It is easily seen from the observation above that $e(M_2) = e(M_1) - k$ and $\sigma(M_2) = \sigma(M_1) + k$. By virtue of Freedman’s classification theorem, both of M_1 and $M_2 \# k\mathbb{C}P^2$ is homeomorphic to $\# b_2^+(M_1)\mathbb{C}P^2 \# b_2^-(M_1)\overline{\mathbb{C}P}^2$ because they are simply-connected, non-spin, and have the same Euler characteristic and the same signature.

M_1 is a fiber sum $M_\varrho \#_F M_\zeta$ of non-trivial Lefschetz fibrations M_ϱ and M_ζ. By Gompf’s theorem (\[\text{8}\], Theorem 10.2.18), M_1 admits a symplectic structure with
symplectic fibers. It follows from a theorem of Usher \[19\] that M' is a minimal symplectic 4-manifold. Since $b^+_2(M') = b^+_2(M) - b_1(M) + b^+_2(M) + 2g - 1 > 1$, M' does not contain any smooth -1-sphere as a consequence of Seiberg-Witten theory ([17], [18], cf. [8], Remark 10.2.4(a)). On the other hand, $M_2\#k\mathbb{CP}^2$ has a natural smooth -1-sphere. Hence M_1 and $M_2\#k\mathbb{CP}^2$ cannot be diffeomorphic.

Because M_1 and $M_2\#k\mathbb{CP}^2$ admit symplectic structure and $b^+_2(M) > 1$, these manifolds can not be diffeomorphic to $\#b^+_2(M)\mathbb{CP}^2 + b^-_2(M)\overline{\mathbb{CP}}^2$ ([16], [10], cf. [8], Theorem 10.1.14). □

Remark 4.2. We do not use any explicit property of rational blowdowns to prove Theorem 4.1. The proof above is rather similar to that of Theorem 4.8 of [3]. It is likely that M_0 is homeomorphic but not diffeomorphic to $M_0'\#k\mathbb{CP}^2$ (without taking fiber sums with M_1) in a general setting. On the other hand, a certain rational blowdown along C_2 happens to be diffeomorphic to an honest blowdown of the original 4-manifold: $E(1)_2(\approx E(1)\approx \mathbb{CP}^2\#9\overline{\mathbb{CP}}^2)$ is a rational blowdown of $E(1)\#\overline{\mathbb{CP}}^2\approx \mathbb{CP}^2\#10\overline{\mathbb{CP}}^2$ along C_2 ([6], Proposition 3.2, cf. [8], Theorem 8.5.9 and Theorem 8.3.11).

5. **Examples**

We apply theorems in previous sections to explicit examples.

Example 5.1. Let $\varrho := \tilde{F}^{\text{even}}_{g-h-1}\tilde{F}^{\text{even}}_{h-1}$ and $\varrho' := V_h(2 \leq h \leq g - 2)$ be the relators of $\mathcal{M}_g(g \geq 4)$ constructed in Section 4 of [5] and $\varsigma := Q$ the positive relator of $\mathcal{M}_g(g \geq 2)$ constructed in Section 4 of [3]. Since ϱ' is obtained by applying an L-substitution to ϱ, it turns out from Theorem 3.1 that $M_{\varrho'}$ is a rational blowdown of M_{ϱ} along a copy of C_2. The Euler characteristic and the signature of $M_{\varrho'}$ are equal to $12g^2 + 6g + 8gh - 8h^2 + 7$ and $-6g^2 - 8g - 4gh + 4h^2 - 3$, respectively. $M_{\varsigma} - \nu F$ is simply-connected and ς includes one separating curve. The Euler characteristic and the signature of M_{ϱ} are $2g^2 + 7$ and $-(g^2 + 2g + 3)$ for even g, and $2g^2 + 4g + 7$ and $-(g + 2)^2$ for odd g, respectively. We set $M_1 := M_{\varrho}\#F M_{\varsigma}$ and $M_2 := M_{\varrho}'\#F M_{\varsigma}$. It follows from Theorem 4.1 that M_1 is homeomorphic but not diffeomorphic to $M_2\#\overline{\mathbb{CP}}^2$ and both of these do not dissolve. If we use $Q^n(n \geq 2)$ instead of Q, we obtain infinitely many pairs of homeomorphic but non-diffeomorphic 4-manifolds for a fixed $g (\geq 4)$.

Example 5.2. Let X_3 and $X_{3,3}$ be the Lefschetz fibrations of genus 3 defined in §4 of [3]. A positive relator ϱ (resp. ϱ') representing the monodromy of X_3 (resp. $X_{3,3}$) is given as follows (see Figure 3, Figure 4, and Figure 2 of [3]).

$$
\varrho := (c_1c_2x_1c_3c_6c_4c_3c_2c_5c_6c_7)^3, \quad \varrho' := (\tilde{y}_1x_1ty_5y_2c_8f_1c_8c_2\tilde{x}_3r_3)^3,
$$

where we put $r := f_3^{-1}(c_4)$. We apply elementary transformations and simultaneous conjugations to ϱ as follows.

$$
\varrho = (c_1c_2x_1c_3c_6c_4x_2c_5c_6c_7)^3 = (c_1c_2x_1c_3f_1^{-1}(c_4) \cdot c_8c_2c_4x_2c_5c_6c_7)^3
$$

$$
\sim f_1^{-1}(c_2c_3x_1c_3c_6c_4 \cdot f_1(c_4) \cdot x_2c_5c_6c_7)^3
$$

$$
\sim (c_1c_2) \cdot c_1c_3c_4c_6c_8c_5 \cdot f_1(c_4) \cdot x_2c_5c_6c_7)^3
$$

$$
\sim (c_1c_2) \cdot x_1c_3c_4c_6c_8 \cdot f_1(c_4) \cdot x_2c_5c_6c_7 \cdot c_1)^3
$$
Example 5.3. Let ϱ (resp. ϱ') be a positive relator of \mathcal{M}_2 given as follows (see Figure 5, Figure 6, Figure 7, and Figure 4 of \cite{[4]}).

\begin{align*}
\varrho &= (c_5c_4c_3c_2c_1c_0c_4c_3c_2c_1)^2, \\
\varrho' &= c_3(\delta)_{c_5c_4c_3c_2c_1}(x) \cdot \bar{k}h c_5^{-1}(c_5c_4c_3c_2c_1) \cdot k \cdot c_3^{-1}(h)_{c_5c_4c_3c_2c_1} = \tau' (\bar{y}_1 := c_1(c_2))
\end{align*}

We apply elementary transformations to ϱ' as follows.

\begin{align*}
\varrho' &= (\bar{y}_1 x_1 c_5c_4c_3c_2c_1c_0c_4c_3c_2c_1)^3 = (\bar{y}_1 x_1 c_5c_4c_3c_2c_1c_0c_4c_3c_2c_1)^3 \\
&= (\bar{y}_1 x_1 c_5c_4c_3c_2c_1c_0c_4c_3c_2c_1)^3 \\
&= (\bar{y}_1 x_1 c_5c_4c_3c_2c_1c_0c_4c_3c_2c_1)^3
\end{align*}

Thus τ' is obtained by applying three times L-substitutions to τ by virtue of the lantern relation $f_1tv = c_1c_5c_7$, and $M_2 = X_3$ turns out to be a rational blowdown of $M_0 = X_3$ along three copies of C_2 from Theorem 5.1.

We set $c := (c_1c_2c_3c_4c_5c_6c_7c_8c_9c_{10})^2 \in R$ and put $M_1 := M_0 #_p M_{\bar{c}}$ and $M_2 := M_0 #_p M_{\bar{c}}$. Both of M_1 and $M_2 # 3\mathbb{CP}^2$ are simply-connected and have the Euler characteristic 56 and signature -36. Hence Theorem 4.1 tells us that M_1, $M_2 # 3\mathbb{CP}^2$, and $# 9\mathbb{CP}^2 # 45\mathbb{CP}^2$ are homeomorphic but mutually non-diffeomorphic.

We next exhibit an example of lantern substitution for genus 2 fibrations and pose a problem about it.

\begin{align*}
\varrho := (c_5c_4c_3c_2c_1c_0c_4c_3c_2c_1)^2, \\
\varrho' := c_3(\delta)_{c_5c_4c_3c_2c_1}(x) \cdot \bar{k}h c_5^{-1}(c_5c_4c_3c_2c_1) \cdot k \cdot c_3^{-1}(h)_{c_5c_4c_3c_2c_1} = \tau' (\bar{y}_1 := c_1(c_2))
\end{align*}
Let M_ϱ (resp. M_ϱ') be the corresponding Lefschetz fibration of genus 2 over S^2. It is well-known that M_ϱ is diffeomorphic to $\mathbb{CP}^2 \# 13 \mathbb{CP}^2$ (cf. [8]). ϱ' is obtained by applying elementary transformations and four times L-substitutions to ϱ as follows.

$$\varrho = (c_5 c_4 c_3 e_2 c_1^2 c_2 c_3 c_4 c_5)^2$$

$$\sim c_5 c_4 c_3 e_2 c_1 \cdot c_1 e_2 \cdot c_3 (c_4) \cdot c_3 c_5 \cdot c_2 c_1 \cdot c_1 c_2 c_3 c_4 c_5$$

$$\rightarrow c_5 c_4 c_3 e_2 c_1 \cdot c_1 e_2 \cdot c_3 (c_4) \cdot c_1 c_2 c_3 c_4 c_5$$

$$\sim c_5 c_4 c_3 \cdot c_1^2 \cdot c_3 (c_4) \cdot c_3 c_5 \cdot c_2 c_1 \cdot c_1 c_2 c_3 c_4 c_5$$

$$\rightarrow c_5^2 c_4^2 \cdot c_4 c_3 \cdot e_2 (c_2) \cdot c_2 \cdot c_3 (c_4) \cdot c_1 c_2 c_3 c_4 c_5$$

$$\rightarrow c_3 \delta x \cdot c_4 c_3 \cdot e_2 (c_2) \cdot c_2 \cdot c_3 (c_4) \cdot c_1 c_2 c_3 c_4 c_5$$

$$\sim \delta x c_4 c_3 \cdot e_2^2 (c_2) \cdot c_2 \cdot c_3 (c_4) \cdot c_1 c_2 c_3 c_4 c_5$$

$$\sim \delta x c_4 c_3 \cdot e_2 (c_2) \cdot c_2 \cdot c_3 (c_4) \cdot c_1 c_2 c_3 c_4 c_5$$

$$\sim \delta x c_4 c_3 \cdot e_2 (c_2) \cdot c_2 \cdot c_3 (c_4) \cdot c_1 c_2 c_3 c_4 c_5$$
and has the Euler characteristic 12 and signature χ. Does M generated by all commutativity, all braid, all 2-chain, and all lantern relators. We is a Lefschetz fibration of genus 2 with 6 non-separating, 2 separating singular

$$E$$

where the symbol c and E are simply-connected and have the Euler characteristic 36 and

$$M$$

$$\approx \mathbb{C}P^2 \# 13\mathbb{C}P^2 \# \mathbb{C}P^2$$

along copies of C_2 from Theorem 3.1.

We set $\varsigma := \rho \in \mathcal{R}$ and put $M_1 := M_{\rho} \#_F M_{\varsigma}$ and $M_2 := M_{\rho'} \#_F M_{\varsigma}$. Both of M_1 and $M_2 \# 4\mathbb{C}P^2$ are simply-connected and have the Euler characteristic 36 and signature -24. Hence Theorem 3.1 tells us that $M_1, M_2 \# 4\mathbb{C}P^2$, and $\# 5\mathbb{C}P^2 \# 29\mathbb{C}P^2$ are homeomorphic but mutually non-diffeomorphic.

We denote the manifold $M_{\rho'}$ of Example 4.3 by E. Since E is simply-connected and has the Euler characteristic 12 and signature -8, E is homeomorphic to $E(1) = \mathbb{C}P^2 \# 9\mathbb{C}P^2$ from Freedman’s classification theorem.

Problem 5.4. Does E decompose into a non-trivial fiber sum of other Lefschetz fibrations? Is E isomorphic to a fiber sum of two copies of Matsumoto's fibration?

If E decomposes into a non-trivial fiber sum, then it is not diffeomorphic to $E(1)$ by virtue of Usicher’s theorem [19]. Matsumoto’s fibration (Example B of [13]) is a Lefschetz fibration of genus 2 with 6 non-separating, 2 separating singular fibers, and its total space is diffeomorphic to $S^2 \times T^2 \# 4\mathbb{C}P^2$. It is easy to see that an appropriately twisted fiber sum of two copies of Matsumoto’s fibration is homeomorphic but not diffeomorphic to $E(1)$. Another possible way to examine the manifold E would be to compute the Seiberg-Witten invariants of E by the formula [6] of Fintushel and Stern.

6. OTHER RELATIONS

We finally observe effects of substitutions for other relations. Luo [11] improved Gervais’ infinite presentation [7] of \mathcal{M}_g to show that the set \mathcal{R} of relators is normally generated by all commutativity, all braid, all 2-chain, and all lantern relators. We briefly review definitions of these relations but lantern relation.
Let a, b be disjoint essential simple closed curves on Σ_g. The relation

$$t_a t_b = t_b t_a$$

in \mathcal{M}_g is called a **commutativity relation**. A regular neighborhood Σ of $a \cup b$ is the disjoint union of two annuli.

Let a, b be simple closed curves on Σ_g which intersect transversely at one point. The relation

$$t_a t_b t_a = t_b t_a t_b$$

in \mathcal{M}_g is called a **braid relation**. A regular neighborhood Σ of $a \cup b$ is a torus with one boundary component. Let c be a simple closed curve parallel to the boundary of Σ. The relation

$$(t_a t_b)^6 = t_c$$

in \mathcal{M}_g is called a **chain relation of length 2**, or **2-chain relation** in short.

Both sides of each relation above correspond to Lefschetz fibrations over D^2 with fiber Σ. It is not difficult to draw Kirby diagrams of those manifolds and find out what they are (cf. [8], Chapter 8). We actually obtain the following table.

relation	manifold for LHS	manifold for RHS	common boundary
commutativity	$D^2 \amalg D^2$	$D^2 \amalg D^2$	$S^1 \amalg S^1$
braid	$X(S^2, -2)$	$X(S^2, -2)$	\mathbb{RP}^3
2-chain	$\mathcal{M}_c(2, 3, 6)$	$X(T^2, -1)$	$\Sigma(2, 3, 6)$
lantern	C_2	B_2	$L(4, 1)$

The symbol $X(B, e)$ stands for the total space of a D^2-bundle over B with Euler number e. The Milnor fiber $\mathcal{M}_c(2, 3, 6)$ and the Brieskorn manifold $\Sigma(2, 3, 6)$ are defined by

$$\mathcal{M}_c(2, 3, 6) := \{(x, y, z) \in \mathbb{C}^3 \mid x^2 + y^3 + z^6 = \varepsilon \} \cap D^6,$$

$$\Sigma(2, 3, 6) := \{(x, y, z) \in \mathbb{C}^3 \mid x^2 + y^3 + z^6 = 0 \} \cap S^5$$

(see [8], Figure 8.13 for Kirby diagram). Substitutions for commutativity and braid relations do not change the original manifold (cf. [20], Figure 34 and [3], Appendix A), whereas those for 2-chain and lantern relations do.

It might be interesting to extend the table above to that for various other relations such as chain relations of length n (≥ 3), the star relation, and Matsumoto’s relations [12]. No relation seems to be known to correspond to a rational blowing down process along C_p for $p \geq 3$.

References

[1] J. Amorós, F. Bogomolov, L. Katzarkov, and T. Pantev, Symplectic Lefschetz fibrations with arbitrary fundamental groups, J. Diff. Geom. 54 (2000), 489–545.

[2] M. Dehn, Die Gruppe der Abbildungsklassen, Acta Math. 69 (1938), 135–206.

[3] H. Endo, A generalization of Chakiris’ fibrations, to appear in Groups of Diffeomorphisms, Advanced Studies in Pure Mathematics, the Mathematical Society of Japan, Tokyo, 2008.

[4] H. Endo and Y. Z. Gurtas, Positive Dehn twist expression for a \mathbb{Z}_3 action on Σ_g, preprint.

[5] H. Endo and S. Nagami, Signature of relations in mapping class groups and non-holomorphic Lefschetz fibrations, Trans. Amer. Math. Soc. 357 (2005), 3179–3199.

[6] R. Fintushel and R. J. Stern, Rational blowdowns of 4-manifolds, J. Diff. Geom. 46 (1997), 181–235.

[7] S. Gervais, Presentation and central extensions of mapping class groups, Trans. Amer. Math. Soc. 348 (1996), 3097–3132.
[8] R. E. Gompf and A. I. Stipsicz, 4-manifolds and Kirby calculus, Graduate Studies in Mathematics 20, American Mathematical Society, 1999.
[9] D. Johnson, Homeomorphisms of a surface which act trivially on homology, Proc. Amer. Math. Soc. 75 (1979), 119–125.
[10] D. Kotschick, J. W. Morgan, and C. H. Taubes, Four-manifolds without symplectic structures but with nontrivial Seiberg-Witten invariants, Math. Res. Letters 2 (1995), 119–124.
[11] F. Luo, A presentation of mapping class groups, Math. Res. Lett. 4 (1997), 735-739.
[12] M. Matsumoto, A presentation of mapping class groups in terms of Artin groups and geometric monodromy of singularities, Math. Ann. 316 (2000), 401–418.
[13] Y. Matsumoto, Lefschetz fibrations of genus two – a topological approach, Proceedings of the 37th Taniguchi Symposium on “Topology and Teichmüller Spaces”, World Scientific, Singapore, 1996, pp. 123–148.
[14] B. Ozbagci, Signatures of Lefschetz fibrations, Pacific J. Math. 202 (2002), 99–118.
[15] I. Smith, Lefschetz pencils and divisors in moduli space, Geometry & Topology 5 (2001), 579–608.
[16] C. H. Taubes, The Seiberg-Witten invariants and symplectic forms, Math. Res. Letters 1 (1994), 809–822.
[17] C. H. Taubes, Counting pseudo-holomorphic submanifolds in dimension 4, J. Diff. Geom. 44 (1996), 818–893.
[18] C. H. Taubes, The Seiberg-Witten and Gromov invariants, Math. Res. Letters 2 (1995), 221–238.
[19] M. Usher, Minimality and symplectic sums, Int. Math. Res. Not. 2006, Art. ID49857, 17pp.
[20] K. Yasui, Elliptic surfaces without 1-handles, [arXiv:0802.3372] to appear in Journal of Topology.

DEPARTMENT OF MATHEMATICS, GRADUATE SCHOOL OF SCIENCE, OSAKA UNIVERSITY, TOYONAKA, OSAKA 560-0043, JAPAN
E-mail address: endo@math.sci.osaka-u.ac.jp

DEPARTMENT OF MATHEMATICS AND COMPUTER SCIENCE, ST. LOUIS UNIVERSITY, MO, USA
E-mail address: ygurtas@slu.edu