Cole, David, Miles, Kim Michelle, Madura, Florian, Holland, Christopher J., Schauenburg, Andrea J. A., Godkin, Andrew James, Bulek, Anna Marta, Fuller, Anna, Akpovwa, Hephzibah, Pymm, Phillip G., Liddy, N., Sami, M., Li, Y., Rizkallah, Pierre, Jakobsen, B. K. and Sewell, Andrew K. 2013. T-cell Receptor (TCR)-Peptide Specificity Overrides Affinity-enhancing TCR-Major Histocompatibility Complex Interactions. Journal of Biological Chemistry 289 (2), pp. 628-638. 10.1074/jbc.M113.522110

Please note:
Changes made as a result of publishing processes such as copy-editing, formatting and page numbers may not be reflected in this version. For the definitive version of this publication, please refer to the published source. You are advised to consult the publisher’s version if you wish to cite this paper.

This version is being made available in accordance with publisher policies. See http://orca.cf.ac.uk/policies.html for usage policies. Copyright and moral rights for publications made available in ORCA are retained by the copyright holders.
Immunology:
T-cell Receptor (TCR)-Peptide Specificity Overrides Affinity-enhancing TCR-Major Histocompatibility Complex Interactions

David K. Cole, Kim M. Miles, Florian Madura, Christopher J. Holland, Andrea J. A. Schauenburg, Andrew J. Godkin, Anna M. Bulek, Anna Fuller, Hephzibah J. E. Akpovwa, Phillip G. Pymm, Nathaniel Liddy, Malkit Sami, Yi Li, Pierre J. Rizkallah, Bent K. Jakobsen and Andrew K. Sewell
J. Biol. Chem. 2014, 289:628-638.
doi: 10.1074/jbc.M113.522110 originally published online November 6, 2013

Access the most updated version of this article at doi: 10.1074/jbc.M113.522110

Find articles, minireviews, Reflections and Classics on similar topics on the JBC Affinity Sites.

Alerts:
• When this article is cited
• When a correction for this article is posted

Click here to choose from all of JBC's e-mail alerts

This article cites 63 references, 18 of which can be accessed free at http://www.jbc.org/content/289/2/628.full.html#ref-list-1
T-cell Receptor (TCR)-Peptide Specificity Overrides Affinity-enhancing TCR-Major Histocompatibility Complex Interactions

Received for publication, September 27, 2013, and in revised form, October 22, 2013 Published, JBC Papers in Press, November 6, 2013, DOI 10.1074/jbc.M113.522110

David K. Cole‡1, Kim M. Miles‡, Florian Madura‡, Christopher J. Holland‡, Andrea J. A. Schauenburg†, Andrew J. Godkin‡, Anna M. Bulek‡, Anna Fuller‡, Hephzibah J. E. Akpovwa‡, Phillip G. Pymm‡15, Nathaniel Liddy‡, Malkit Sam‡, Yi Li†, Pierre J. Rizkallah†, Kent K. Jakobsen‡, and Andrew K. Sewell‡†2

From 1Cardiff University School of Medicine, Heath Park, Cardiff CF14 4XN, the 2Medical Research Council Human Immunology Unit, Weatherall Institute for Molecular Medicine, University of Oxford, Oxford OX3 9DS, and 3ImmunoCore Ltd., 57C Milton Park, Abingdon OX14 4RX, United Kingdom

Background: TCR recognition of bipartite ligands composed of self (MHC) and non-self (peptide) maintains T-cell specificity. Conclusion: TCR-MHC binding affinity requires specific TCR-peptide interactions. Significance: Stabilization of TCR-pMHC engagement by TCR-peptide interactions maintains T-cell specificity and prevents recognition of self-pMHC in the periphery.

αβ T-cell receptors (TCRs) engage antigens using complementarity-determining region (CDR) loops that are either germ line-encoded (CDR1 and CDR2) or somatically rearranged (CDR3). TCR ligands compose a presentation platform (major histocompatibility complex (MHC)) and a variable antigenic component consisting of a short “foreign” peptide. The sequence of events when the TCR engages its peptide-MHC (pMHC) ligand remains unclear. Some studies suggest that the germ line elements of the TCR engage the MHC prior to peptide scanning, but this order of binding is difficult to reconcile with some TCR-pMHC structures. Here, we used TCRs that exhibited enhanced pMHC binding as a result of mutations in either CDR2 and/or CDR3 loops, that bound to the MHC or peptide, respectively, to dissect the roles of these loops in stabilizing TCR-pMHC interactions. Our data show that TCR-peptide interactions play a strongly dominant energetic role providing a binding mode that is both temporally and energetically complementary with a system requiring positive selection by self-pMHC in the thymus and rapid recognition of non-self-pMHC in the periphery.

αβ T-cells protect against pathogens and cellular malignancies by recognizing short peptide fragments bound to major histocompatibility complex (pMHC) molecules (1, 2). The rigorous of T-cell immunity require that TCRs bind to self-pMHC during thymic selection but discriminate between self and non-self-pMHC thereafter by the rapid scanning of huge numbers of potential antigens on the target cell surface (3, 4). Here, we examine how TCR interactions with the variable peptide component of the antigen are balanced against contacts with the MHC to enable T-cells to activate if sensing danger, while remaining tolerant to self.

X-ray crystallographic studies have shown that the αβ TCR docks diagonally across the pMHC class I (pMHCI) peptide binding groove with the TCR α chain contacting the MHCI α2 helix and the TCR β chain contacting the MHCI α1 helix (5). A similar diagonal binding modality has been observed for TCR-pMHCI class II interactions with the TCR α chain contacting the MHCII β1 helix and the TCR β chain contacting the MHCII α1 helix. This fixed polarity is conserved in all published TCR-pMHCI structures to date, although the binding angle and contacts between individual TCR-pMHCI complexes can vary substantially (5). TCR recognition of pMHC is mediated through the TCR complementarity-determining region (CDR) loops. Although not the case with all TCR-pMHCI pairs (6), the current dogma proposes that the germ line-encoded TCR CDR2 loops contact mainly the conserved helical region of the MHC surface (TCR-MHC self-interaction); the somatically rearranged, hypervariable CDR3 loops contact mainly the antigenic peptide (TCR-peptide non-self-interaction), and the CDR1 loops lie in between, contacting both the peptide and the MHC (5).

This binding conformation has led to the suggestion that TCRs contact MHC in a genetically conserved manner (7–10). Indeed, a study by Wu et al. (11) investigating the role of the TCR CDR loops during pMHCI binding concluded that an initial transition state is formed between the TCR and the MHC surface enabling the TCR to scan the antigenic peptide (two-step binding) (12). This two-step binding model is considered to represent an important mechanism of allowing T-cells to sample a diverse array of pMHCI antigens (3, 4, 13). In support
of this notion, combined studies have suggested the existence of so-called "interaction codons" that enable the TCR to contact the MHC surface in a conserved manner (7–10). Furthermore, structural comparison of different TCRs with genetically identical CDR2β loops, in complex with the same pMHC, lends support to the idea that some TCRs may use genetically fixed pairwise interactions to bind to the MHC surface (9, 14). In combination, these data predict that interactions between the TCR and MHC stabilize the initial "encounter complex." However, there is also a body of evidence that contradicts this model of TCR binding (15–21). Thus, there is still much controversy over this central question concerning the nature of T-cell antigen recognition.

The binding affinity of natural TCR-pMHC interactions \((K_D \sim 0.1–500 \mu M)\) (22, 23) is near the limits of detection using current biophysical techniques. This restricts the scope for investigating TCR-pMHC interactions by mutating important contacts, because altering this weak interaction often results in the loss of any detectable binding using surface plasmon resonance (SPR). To examine the roles of the TCR CDR loops when binding to pMHC, we designed a range of enhanced affinity soluble TCRs with mutations in either their CDR2 and/or CDR3 loops. These unique enhanced affinity reagents enabled investigation of the effects of altering specific interactions between the TCR and MHC or TCR and peptide to examine how individual components of the interface between the TCR and pMHC contribute to T-cell antigen recognition. These data shed new light on how T-cells might be selected in the thymus to maintain tolerance to self, the mechanism of T-cell effector function (24), and how individual components of the interface between the TCR and MHC or TCR and peptide to examine how individual components of the interface between the TCR and pMHC contribute to T-cell antigen recognition. These data shed new light on how T-cells might be selected in the thymus to maintain tolerance to self, the mechanism of T-cell effector function (24), and how individual components of the interface between the TCR and MHC or TCR and peptide to examine how individual components of the interface between the TCR and pMHC contribute to T-cell antigen recognition.

EXPERIMENTAL PROCEDURES

Generation of Expression Plasmids—A number of constructs were prepared that contained wild type and high affinity TCRs to the HLA A*0201-restricted antigens, Melan-A/MART-1(26–35) ELAGIGILTV (24) and hTERT(540–548) ILAKFLHWL (25). The HLA A*0201-ELAGIGILTV- and HLA A*0201-ILAKFLHWL-specific wild type TCRs (ME5 and ILA1 TCRs, respectively), the high affinity TCR α and β chains, HLA A*0201 heavy chain, and β2m were generated by PCR mutagenesis (Stratagene) and PCR cloning. All sequences were confirmed by automated DNA sequencing (Lark Technologies). The high affinity HLA A*0201-ELAGIGILTV and HLA A*0201-ILAKFLHWL TCRs were produced using a phage display library as reported previously (26). All of the TCR sequences were constructed implementing a disulfide-linked construct to produce the soluble domains (variable and constant) for both the α (residues 1–207) and β chains (residues 1–247) (27, 28). The HLA A2 heavy chain (residues 1–248) (α1, α2, and α3 domains), tagged with a biotinylation sequence, and β2m (residues 1–100) were also cloned and used to make the pMHCI complexes. The TCR α and β chains, the HLA A2 α chain and β2m sequences were inserted into separate pGMT7 expression plasmids under the control of the T7 promoter (27).

Protein Expression, Refolding, and Purification—Competent Rosetta DE3 Escherichia coli cells were used to produce the TCR α and β chains, HLA A*0201 heavy chain and β2m in the form of inclusion bodies using 0.5 mM isopropyl 1-thio-β-D-galactopyranoside to induce expression as described previously (27, 29, 30).

* pMHCI Biotinylation—Biotinylated pMHCI was prepared as described previously (31).

* SPR Equilibrium Analysis*—The binding analysis was performed using a BIACore T100™ equipped with a CM5 sensor chip as reported previously (32).

* SPR Kinetic Analysis*—Experiments were carried out to determine the \(K_{on}\) and \(K_{off}\) values for the TCRs at 25 °C as reported previously (33). Briefly, for all kinetic experiments, ~300 response units of pMHCI were coupled to the CM5 sensor chip surface. The TCR was then injected at concentrations ranging from 10 times above and 10 times below the known \(K_D\) value of the interaction at 45 μl/min. The \(K_{on}\) and \(K_{off}\) values were calculated assuming 1:1 Langmuir binding \((AB = B\cdot AB_{max}/(K_D + B))\), and the data were analyzed using a global fit algorithm (BIACalculator™ V3.1).

* SPR Kinetic Titration Analysis*—To stringently examine the binding of the TCRs at a greater range of concentrations, we used a new method for analyzing the kinetic parameters of high affinity interactions with long off rates (34). Each TCR was analyzed at five concentrations that represented the greatest range we could accurately achieve around the \(K_D\) value of each interaction. During the analysis, ~300 response units of pMHCI were immobilized onto the CM5 sensor chip surface. Each concentration of TCR was injected at a high flow rate of 45 μl/min for a 240-s association period and a 120-s dissociation period. The final and highest concentration had a longer dissociation period of 600 s. A fast flow rate and a low amount of immobilized pMHCI were used to limit association and dissociation mass transfer limitations as recommended by the experts at BIACore™. The \(K_{on}\) and \(K_{off}\) values were calculated assuming 1:1 Langmuir binding \((AB = B\cdot AB_{max}/(K_D + B))\), and the data were analyzed using the kinetic titration analysis algorithm (BIACalculator™ V3.1) (35).

Crystallization and X-ray Data Collection—α1β1-A2-ILA crystals were grown in 20 mm Tris, pH 7.5, 20% PEG 4000, and 10 mM NaCl. All crystals were soaked in 30% ethylene glycol before cryo-cooling. Data were collected at 100 K at the Diamond Light Source, UK. Reflection intensities were estimated with the XIA2 package (36), and the data were scaled, reduced, and analyzed with SCALA and the CCP4 package (37). Structures were solved with molecular replacement using PHASER (38). Sequences were adjusted with COOT (39), and the models were refined with REFMAC5. Graphical representations were prepared with PyMOL (40). The reflection data and final model coordinates were deposited with the PDB database (α1β1-A2-ILA, PDB 4MNQ).

RESULTS

*Design of a Panel of High Affinity TCRs Specific for Two Different HLA A*0201-restricted Peptides*—Investigating the individual roles of the TCR CDR loops when binding to pMHC has been difficult because the weak binding affinities of natural TCR-pMHC interactions (0.1–500 μM) (22, 23) are close to the limits of detection by SPR. To overcome this problem, we designed a range of soluble TCRs with up to 18,500-fold enhancement in affinity for cognate antigen using CDR loop
mutations selected by phage display (Table 1) (26). We first measured the binding affinity and kinetics of wild type and enhanced affinity TCRs specific for either the HLA A*0201-restricted peptide antigens, Melan-A/MART-1(26–35) (ELAGIGILTV), or hTERT(540–548) (ILAKFLHWL). The HLA A*0201-ELAGIGILTV-specific TCRs with mutated CDR2 or CDR2 and CDR3 loops bound with considerably stronger affinities (K\text{D}s between 12 and 897 times greater) than the parent wild type TCR (MEL5) (Fig. 1 and Table 2). The HLA A*0201-ILAKFLHWL specific TCRs with mutated CDR2 loops bound to cognate antigen with a substantially stronger affinity (K\text{D} values between 1423 and 4066 times greater) compared with the parent wild type TCR (ILA1) (Fig. 2 and Table 3). Similarly, when the mutated CDR2 and CDR3 loop mutations were combined, we observed a further increase in binding affinity (K\text{D} values up to 18,500 times greater than ILA1 TCR), indicating that the mutations could be used cooperatively (Fig. 3 and Table 3). In agreement with our previous findings (26, 34, 41–44), enhanced TCR affinity was due to small increases in the on-rate, and vastly extended off-rates (Tables 2 and 3, Figs. 1–3). The stronger affinities of the high affinity TCRs enabled the modulation of individual components of the TCR-peptide interaction through peptide mutations while maintaining enough residual binding to detect using SPR in later experiments.

TABLE 1
Sequence comparison of high affinity TCRs

TCR	Mutation	CDR2β255–60	CDR3β104–119
MEL5	wildtype	SVGIG	CAWSETGLTGELFG
MEL5β1	CDR2	YGPPG	
MEL5β2	CDR2	WGPPG	
MEL5β3	CDR2	FPGYG	
MEL5β4	CDR2	YGPPG	
MEL5β5	CDR2&3	YGPPG	CAWSETGLGCGWFG
MEL5β6	CDR2&3	YGPPG	CAWSETGLGCGWFG
MEL5β7	CDR2&3	WGPPG	CAWSETGLGCGWFG
MEL5β8	CDR2&3	WGPPG	CAWSETGLGCGWFG

TABLE 1

High Affinity CDR2 Loop Mutated TCRs Do Not Bind to “Null” Peptides—Our recent structure of a high affinity variant of the MEL5 TCR (34) demonstrated that the mutated CDR2α region of the high affinity MEL5-derived TCRs used in this study was in an identical position to the wild type MEL5 TCR (24), distal from the peptide (Fig. 4, A and B). Thus, we concluded that mutations at residues in the peptide were very unlikely to directly affect the high affinity interactions between the MEL5 derived high affinity TCRs and the MHC surface. We reasoned that, because the general dogma of TCR engagement postulates that TCR-MHC interactions bind before TCR-peptide sampling, the high affinity interaction between the MEL5-derived TCRs and the MHC surface should retain some measurable ability to bind to the surface of HLA A2 irrespective of the bound peptide, because the interaction between the TCR and the peptide should only account for a small proportion of the overall binding energy (δG). To investigate the role of pep-
We manufactured two null HLA A*0201-nonamer peptide complexes where nonprimary MHC anchors were substituted with either glycine or alanine. However, we were unable to detect binding of any of the HLA A*0201-ELAGIGILTV- or HLA A*0201-ILAKFLHWL-specific high affinity TCRs tested against the HLA A*0201-GLGGGGGV or HLA A*0201-ALAAAAAV null antigens (Tables 2 and 3). These observations are remarkable when considering that, for example, the CDR2 loop modified ILA1/H9252 TCR bound to HLA A*0201-ILAKFLHWL with an affinity 4000 times greater than the wild type ILA1 TCR (Table 3 and Fig. 2). These data support the notion that specific interactions between the TCR and peptide are required to allow the TCR to effectively engage MHC and demonstrate that changes to the antigenic peptide override mutations in the TCR that enhance contacts with the MHC molecule.

To investigate the role of more conservative peptide modifications on TCR binding affinity, we introduced single alanine substitutions into the HLA A*0201-ELAGIGILTV (MART-1/Melan A-derived) peptide antigen. We substituted residues in the peptide that were very unlikely to directly affect the high affinity regions of the MEL5-derived high affinity TCRs and the MHC surface, according to our structural evidence (Fig. 4, A and B) (24, 34). This enabled the determination of the effect of altering TCR-peptide contacts on TCR-MHC binding. Neither the MEL5 TCR nor any of the high affinity TCRs retained the ability to bind to HLA A*0201-ELAIGILTV, HLA A*0201-ELAGILTV, or HLA A*0201-ELAGILAV (Table 2). This observation that single alanine substitutions in the native peptide can completely abrogate binding of all of the high affinity HLAA*0201-ELAGIGILTV-specific TCRs reaffirms the notion that specific interactions between the TCR and peptide are required in order for optimal docking with the MHC surface to occur, and this is consistent with our previous findings using this system (34).

Table 2: Kinetic and affinity analysis of high affinity HLA-A*0201-ELAGIGILTV-specific TCR binding to alanine- and glycine-substituted peptides

TCR	Mutation	KeM	Kd	Half-life Min	AG kcal/mol
MEL5 wildtype	N/M	N/M	260.1 μM	N/M	-5.83
MEL5Δ2	1.4x10^6	2.6x10^6	1.8x10^4	0.04	-7.31
MEL5Δ2	2x10^6	2x10^6	1.3x10^3	0.04	-7.49
MEL5Δ2	1.8x10^6	1.6x10^6	0.85x10^1	0.07	-7.72
MEL5Δ2	1.6x10^6	2.3x10^6	1.4x10^2	0.05	-7.45
MEL5Δ2	2.5x10^6	5.2x10^6	2.1x10^5	0.02	-7.22
MEL5Δ2	2.9x10^6	6.1x10^6	0.21x10^3	0.19	-8.49
MEL5Δ2	4.6x10^6	2.5x10^6	0.54x10^1	0.46	-7.97
MEL5Δ2	8.1x10^6	1.4x10^6	0.17x10^1	0.82	-8.61

TCR	Mutation	KeM	Kd	Half-life Min	AG kcal/mol
ILA1 wildtype	N/NO-binding	0.99	0.99		
ILA1Δ1	2.9x10^6	9.5x10^6	0.92x10^1	1.53	-7.68
ILA1Δ2	2.9x10^6	9.5x10^6	0.92x10^1	1.53	-7.68
ILA1Δ3	3.2x10^6	8.5x10^6	2.6x10^2	1.35	-7.10
ILA1Δ4	0.9x10^6	2.3x10^6	8.3x10^1	0.37	-6.49
ILA1Δ5	3.4x10^6	2.8x10^6	8.4x10^1	0.04	-6.46

Table 3: Kinetic and affinity analysis of high affinity HLA-A*0201-ILAKFLHWL-specific TCRs binding to alanine- and glycine-substituted peptides

TCR	Mutation	KeM	Kd	Half-life Min	AG kcal/mol
ILA1 wildtype	N/NO-binding	0.99	0.99		
ILA1Δ1	4.4x10^6	4.9x10^6	1.1x10^1	0.23	-6.31
ILA1Δ2	3.9x10^6	7.3x10^6	1.9x10^2	0.16	-6.01
ILA1Δ3	1.0x10^6	5.4x10^6	5.3x10^3	0.21	-6.71
ILA1Δ4	6.3x10^6	1.4x10^7	2.6x10^6	0.82	-3.87
ILA1Δ5	1.5x10^6	4.8x10^6	1.3x10^3	0.23	-6.97

* ΔG° = ΔG° of each TCR binding to HLA A2-ILAKFLHWL alanine variants minus ΔG° of TCR to HLA A2-ILAKFLHWL.
TCR-Peptide Specificity Governs Antigen Recognition

Affinity-enhanced CDR2α Loops of the ILA1-derived TCRs Do Not Contact Alanine-substituted Peptide Residues—Previous structural comparisons of wild type and high affinity TCRs (34, 41–43) show that these molecules adopt a near identical binding mode (Fig. 5). To confirm that alanine substitutions of these peptide residues would not directly impinge on the mutated residues in the high affinity CDR2α loops of the ILA1-derived TCRs, we solved the structure of the ILA1α/β1 TCR in complex with HLA A*0201-ILAKFLHWL. The complex was solved to a resolution of 2.4 Å in space group C121. The resolution was sufficiently high to show that the interface between the two molecules was well ordered and contained well defined electron density. The crystallographic R/R_{free} factors were 20.1 and 24.6%, within the accepted limits shown in the theoretically expected distribution (Table 4) (45). The structure demonstrated that the mutated CDR2α region of the high affinity α/β1 TCR could not directly contact the mutated residues in the peptide (Fig. 4, C and D, and Table 5).

HLA A*0201-ILAKFLHWL Peptide Substitutions Disproportionately Affect the Binding of High Affinity CDR2 Loop Mutated TCRs—We then measured the binding of the HLA A*0201-ILAKFLHWL-specific wild type ILA1 TCR and high affinity derivative TCRs to HLA A*0201-ILAKFLHWL and HLA A*0201-ILAKFAHWL (Table 3 and Fig. 3). The ILA1α1 high affinity TCR bound to HLA A*0201-ILAKFLHWL and HLA A*0201-ILAKFAHWL with 100 and 200 times weaker affinity, respectively, than to HLA A*0201-ILAKFLHWL. This difference corresponded to a ΔΔG value (difference in binding energy, ΔG, between the ILA1α1 high affinity TCR interacting with HLA A*0201-ILAKFLHWL versus HLA A*0201-ILAKFLHWL and HLA A*0201-ILAKFAHWL) of 2.54 and 2.94 kcal/mol, respectively. We then repeated this analysis using the
ILA1α1β1 and ILA1α1β2 TCRs. These TCRs contained modified CDR2 loops but identical CDR3 loops to the ILA1α1 TCR. According to the assumption that TCR-MHC interactions precede TCR-peptide interactions, we reasoned that each of these TCRs should retain their individual TCR-MHC contacts because only the TCR-peptide interaction should be directly affected (as in Fig. 6A). Therefore, the difference in binding affinity observed for the ILA1α1 TCR between HLA A*0201-ILAKFLHWL compared with HLA A*0201-ILAAFLHWL and HLA A*0201-ILAKFQHWL (100 and 200 times weaker affinity, respectively) should be similar to the ILA1α1β1 and ILA1α1β2 TCRs. However, the ILA1α1β1 TCR bound to the HLA A*0201-ILAAFLHWL and HLA A*0201-ILAKFQHWL with 4150 and 1100 times weaker affinity (ΔΔG value of 4.6 and 3.87 kcal/mol−1), respectively (Table 3 and Figs. 3 and 6B). The ILA1α1β2 TCR bound to HLA A*0201-ILAAFLHWL and HLA A*0201-ILAKFQHWL with 2710 and 1065 times weaker affinity (ΔΔG value of 4.37 and 3.85 kcal/mol−1), respectively (Table 3 and Fig. 3). These data demonstrate that TCR interactions with the peptide and MHC are strongly coupled and that modifying the TCR-peptide interaction has a disproportionately strong detrimental energetic effect on TCR-MHC binding.

Discussion

Antigen recognition by the TCR usually involves contacts with both self (MHC) and non-self (the antigenic peptide) (5, 16). To avoid autoreactivity, the self-interaction between the TCR and MHC must not be sufficient to activate peripheral T-cells independently of the non-self TCR-peptide interaction. The current database of TCR-pMHC complex structures

TABLE 4

Data collection and refinement statistics for α1β1-A2-ILA complex structure

PDB code	4MNQ

One crystal was used for solving the structure. Values in parentheses are for the highest resolution shell.

FIGURE 5. Conformation of TCR CDR loops remains very similar between modified high affinity TCRs and their wild type progenitors. Comparison of the CDR loop positions of previously published high affinity and wild type TCRs. A, wild type MEL5-A2-ELA complex (24) (CDR loops in orange ribbon) and the high affinity a24β17-A2-ELA complex (34) (CDR loops in green ribbon). B, wild type A6-A2-LLF complex (27) (CDR loops in orange ribbon) and the high affinity c134-A2-LLF complex (41) (CDR loops in green ribbon). C, wild type 1G4-A2-SLL complex (64) (CDR loops in orange ribbon) and the high affinity c58c62-A2-SLL (CDR loops in cyan ribbon) complexes (42, 43). In all cases, the relative positions of the CDR loops over the pMHC for the wild type TCRs and their high affinity TCR derivative are virtually identical.

**Effect of Peptide Substitutions on the Binding Kinetics of High Affinity CDR2 Loop Mutated TCRs—Kinetic binding analyses were carried out at 25 °C to measure the on-rate (K_{on}) and off-rate (K_{off}) for each TCR-pMHCI interaction (Figs. 1–3 and Tables 2 and 3). These analyses were important to reveal the kinetic basis for the effect of altering the TCR-peptide interactions by modifying the antigenic peptide. Interestingly, although alanine mutations within the central peptide residues reduced the binding affinity of all of the high affinity TCRs tested to a different extent (97–4150-fold reduction in binding affinity), the on-rate was not substantially affected (average decrease of 10 times) (Tables 2 and 3). Conversely, the stability of the TCR-pMHCI complex was affected by a greater extent, as evident by the faster off-rate observed (average increase of 200 times) (Tables 2 and 3). Therefore, a faster off-rate was the major kinetic determinant governing the decrease in binding affinity between the high affinity CDR loop mutated TCRs and the alanine-substituted peptide ligands. These data suggest that in order for the TCR to form a stable long lived interaction with cognate pMHC, the TCR must be able to bind to the peptide to allow optimal MHC docking. Thus, in the systems we have studied, successful TCR-peptide sampling must precede (or occur at the same time as) the stabilizing interaction between the TCR and the MHC surface.
TABLE 5

α1β1-A2-ILA contacts (residues mutated from wild type shown in red)

TCR	Gene Usage	TCR Peptide	MHC	vDW (≤4 Å)	H-bonds (≤3.4 Å)
CDR1α	TRAV22	Asp27⁰⁸²	Thr163⁰⁸¹	4	1
CDR1α	TRAV22	Asp27	Glu166	1	
CDR1α	TRAV22	Ser28	Ala158	1	
CDR1α	TRAV22	Val29	Gln155	5	
CDR1α	TRAV22	Val29	Lys4	2	
CDR1α	TRAV22	Asn30⁰⁸¹	Gln155⁰⁸¹	3	1
CDR2α	TRAV22	Tyr48	Glu155	1	
CDR2α	TRAV22	Pro50	Glu154	1	
CDR2α	TRAV22	Ser51	Glu154	3	
CDR2α	TRAV22	Ser51	Arg157	1	
CDR2α	TRAV22	Gln55^{Nε2}	Glu154⁰⁸²	1	1
FWα	TRAV22	Thr66	Glu166	1	
FWα	TRAV22	Arg68^{NH2}	Glu166⁰⁸²	2	1 salt bridge
CDR3α	TRAJ40	Asp90	Lys4	1	
CDR3α	TRAJ40	Ser91	Lys4	2	
CDR3α	TRAJ40	Ala92	Thr163	1	
CDR3α	TRAJ40	Ala92	Lys4	3	
CDR3α	TRAJ40	Thr93	Lys66	2	
CDR3α	TRAJ40	Thr93	Trp167	1	
CDR3α	TRAJ40	Thr93	Ile1	2	
CDR3α	n/a	Ala94⁰	Lys4^{Nε}	3	1
CDR3α	n/a	Leu95	Gly62	1	
CDR3α	n/a	Leu95	Lys4	2	
CDR3α	n/a	Pro96⁰	Lys4^{Nε}	1	1
CDR3α	TRAJ40	Tyr97	Lys66	2	
CDR3α	TRAJ40	Tyr97	Ala69	1	
CDR3α	TRAJ40	Tyr97	Lys4	11	
CDR3α	TRAJ40	Tyr97	Leu6	4	
CDR1β	TRBV6	Glu30	Trp8	8	
CDR2β	n/a	Ile50	Trp8	5	
CDR2β	n/a	His51	Val76	3	
CDR2β	n/a	His51	Trp8	4	
CDR2β	n/a	Tyr54	Gln72	12	
CDR2β	TRBV6	Asp56⁰⁸²	Arg65^{Nε}	2	1
CDR3β	TRBJ1-1	Tyr95	Lys146	3	
CDR3β	TRBJ1-1	Pro95	Ala150	2	
CDR3β	TRBJ1-1	Gln96	Lys146	1	
CDR3β	TRBJ1-1	Gln96	Trp147	5	
CDR3β	TRBJ1-1	Gln96	Ala150	1	
CDR3β	TRBJ1-1	Gln96	Val152	1	
CDR3β	TRBJ1-1	Gln96	Leu6	2	
CDR3β	TRBJ1-1	Gln96	His7	4	
CDR3β	TRBJ1-1	Gln96	Trp8	2	
CDR3β	TRBJ1	Gly97⁰	Gln155⁰⁸¹	1	
CDR3β	TRBJ1	Thr98⁰⁸¹	Ala150⁰	5	1

* A 3.4-Å cutoff was used for H-bonds and salt bridges, and a 4-Å cutoff was used for van der Waals (vdW).
TCR-Peptide Specificity Governs Antigen Recognition

shows that the interaction between TCR and antigenic peptide can play a minimal structural role, often being responsible for less than a third of the binding interface relative to contacts between the TCR and MHC (5). Thus, the molecular mechanism by which the TCR maintains peptide-specific recognition is not immediately obvious.

To re-examine how the TCR CDR loops co-operatively act to stabilize TCR-pMHC binding, we designed a range of soluble TCRs that exhibited up to a 18,500-fold enhancement in affinity for cognate antigen using CDR loop mutations selected by phage display (26). Previous studies using high affinity TCRs have shown that these artificial reagents retain a high level of antigen specificity similar to their wild type progenitors (34, 46–48). In all cases, the enhanced affinity observed for the mutated TCRs compared with the wild type TCRs was due to small differences in the on-rate but a vastly extended off-rate. The slower off-rate indicated that any initial “transition state” was less important than the formation of a stable complex during high affinity TCR-pMHC binding. These high affinity TCRs enabled modification to the TCR-peptide interaction while retaining a strong enough residual TCR-pMHC affinity to measure using SPR. Furthermore, we were able to incorporate mutations into individual CDR loops to generate a panel of TCRs with an identical sequence except for their CDR2 loops. Structural analyses confirmed that these loops were distal to peptide binding in both wild type and enhanced affinity MEL5 and ILA1 TCRs. Based on some models of TCR engagement (11), we reasoned that HLA A*0201-restricted TCRs with high affinity mutations in their CDR2 loops should retain a residual ability to bind to the surface of HLA A*0201 independently of the peptide because the TCR-peptide interactions should only account for a small proportion of the overall binding energy. In contrast to this prediction, we were unable to show binding to the HLA A*0201-GLGGGGGGGV or HLA A*0201-AAAAAV null antigens with any of the CDR2 loop high affinity TCRs tested. These observations support the notion that specific interactions between the TCR and peptide are required to allow the TCR to effectively engage MHC. Using this system, we were also able to examine whether subtle alterations in the interaction between TCR and peptide were independent of TCR CDR2 loop binding to MHC. To investigate this, we tested the binding affinity of a panel of HLA A*0201-ILAKFLHWL-specific CDR2 loop-modified TCRs to peptides that contained alanine substitutions at positions structurally shown to be key TCR contacts. These data revealed that even minimal changes to the TCR-peptide interaction had a substantial impact on the TCR affinity and binding energy (ΔG). These data show that TCR-peptide contacts are strongly “coupled” to TCR-MHC contacts.

We also performed a kinetic investigation of the effect of altering the TCR-peptide interaction. These data showed that the vastly extended off-rates that governed the enhanced affinity of the high affinity mutated TCRs were effectively nullified by altering the TCR interaction with peptide, although the on-rates remained relatively unchanged. Thus, our data indicate that complex formation is not initiated by TCR-MHC binding. Rather, successful TCR-peptide sampling must precede or occur at the same time as the stabilizing interaction between the TCR and the MHC surface. In support of this notion, our data show that altering the TCR interaction with peptide can override the optimal formation of TCR-MHC interactions resulting in a disproportionate knock-on effect on TCR-pMHC affinity.

Mounting evidence from other studies also contests the notion that conserved interactions between the germ line-encoded loops of the TCR and the MHC initiate TCR-pMHC complex formation. First, Burrows et al. (16) have demonstrated that disrupting conserved interactions between the TCR and MHC surface resulted in the formation of compensatory interactions. In support of these data, Dyson and co-workers (49) extensively diversified CDR1 and CDR2 loops in vivo and demonstrated that the TCR is not genetically hardwired to engage MHC ligands. Second, a number of molecular studies are incompatible with TCR-MHC initiated binding. These include the following: (i) the co-crystal structure of a TCR bound to MHCI complexed with a 13-mer “super-bulged” pep-
TCR-Peptide Specificity Governs Antigen Recognition

FIGURE 7. Structural evidence demonstrating that TCR-peptide contacts precede TCR-MHC contacts. A, co-crystal structure of the SB27 TCR (shown as yellow schematic) bound to the HLA-B*3508 (shown as gray yellow schematic) LPEP super-bulged 13-mer peptide (shown as sticks, colored using Wilson “B” factor) complex. The expanded panel below illustrates the extended conformation of the peptide, making it highly improbable that the SB27 TCR could contact the MHC surface before the peptide (19). B, co-crystal structure of the ELS4 TCR (shown as red yellow schematic) bound to the HLA-B*3501 (shown as gray yellow schematic) EPLP 11-mer peptide (shown as sticks, colored using red complexed to the ELS4 TCR and in blue uncomplexed). The expanded panel below illustrates how the EPLP peptide is bulldozed into a different conformation during TCR binding (before TCR binding is shown in blue and after TCR binding is shown in red), allowing the TCR to contact the MHC surface (20). C, co-crystal structure of the A6 TCR (shown as green schematic) superposited with the B7 TCR (shown as blue schematic) which both bind to the HLA A*0201 (shown as gray schematic) Tax (shown as peach schematic) complex (27, 51, 52). These TCRs share the same p chain germ-line-encoded CDR1 and CDR2 loops, and they bind to the same N-terminal region of the A2-Tax complex. The expanded panel below illustrates that the CDR3 loops engage some of the same residues of the peptide, whereas the CDR1 and CDR2 loops bind to distinct regions of the MHC surface.

FIGURE 8. New models for TCR engagement of pMHC. 1. schematic of a TCR (dark and light gray) proceeding engagement of peptide (black)-MHC (light gray), A, “Scan-clamp” model. Only specific TCR-peptide contacts (light gray and black) (2A) allow the TCR (shown in dark gray) to clamp onto the MHC surface and (3A) complete TCR-pMHC docking, which leads to T-cell activation. B, “synchronized docking” model. TCR contacts the peptide and MHC simultaneously (2B), but TCR-peptide interactions are dominant over TCR-MHC interactions (3B). Only the scan clamp and synchronized docking models for T-cell antigen recognition are permissive with our data.

sent a far greater challenge were TCR-MHC contacts to proceed TCR-peptide interactions (11). Second, accumulated studies that have demonstrated that alloreactive TCR recognition is peptide-dependent (54–56) are favored by models where TCR-pMHC contacts dominate TCR engagement. Third, if TCR-MHC interactions initiate antigen recognition then the extraordinarily rapid kinetics of CD8 and CD4 coreceptor binding might enable aberrant T-cell signaling, bypassing antigenspecific TCR-peptide sampling (57). Fourth, a system where TCR-MHC contacts dominate TCR binding is difficult to reconcile with the kinetic segregation model of T-cell activation (58, 59). In this model, small molecules such as CD2 and CD28 facilitate contact zones to enable the TCR to scan pMHCs. The proximity of the T-cell and target cell membranes in these contact zones excludes large phosphatase molecules, such as CD45, triggering phosphorylation of the TCR and downstream signaling events. Thus, TCR-MHC binding in these contact zones could enable TCR phosphorylation independently of TCR-peptide binding. Finally, a mode of action that requires that the TCR interacts with MHC prior to peptide scanning wastes both time and energy. This is particularly important for a system that requires an individual TCR to scan a multitude of pMHC molecules to locate a cognate peptide.

We propose two new models of TCR-pMHC binding that are accommodated by our data and are both temporally and energetically complementary with a system requiring recognition of self in the thymus and rapid intolerance of non-self in the periphery. First, the “scan-clamp” model, in which the TCR “scans” the peptide before “clamping” onto the MHC surface (Fig. 8A). Second, the “synchronized docking” model, in which there is no temporal separation between the TCR binding to the peptide or MHC, but TCR-peptide interactions are dominant over TCR-MHC interactions (Fig. 8B). These new models are consistent with the requirement for T-cells to target cells based on their antigenspecific peptide, allowing them to expeditiously distinguish aberrant cells from healthy cells (60–63).
In conclusion, it is clear that T-cells have evolved to ensure that TCR-pMHC binding is carefully balanced to guarantee that the fidelity of antigen recognition is permissive for the conserved and universal interactions that lead to T-cell activation. Our new data shed light on the mechanisms controlling the seemingly paradoxical observation that a receptor-ligand (TCR-pMHC) interaction with both a self (TCR-MHC) and non-self (TCR-peptide) component can control T-cells by only forming productive interactions when encountering alien antigen.

Acknowledgments—We thank Anton P. van der Merwe, Simon J. Davis, and David H. Margulies for critical reading of the manuscript and helpful discussions. We thank the staff at Diamond Light Source for providing facilities and support.

REFERENCES

1. Davis, M. M., and Bjorkman, P. J. (1998) T-cell antigen receptor genes and T-cell recognition. Nature 334, 395–402
2. Garcia, K. C., Degano, M., Speir, J. A., and Wilson, I. A. (1999) Emerging principles for T cell receptor recognition of antigen in cellular immunity. Rev. Immunogenet. 1, 75–90
3. Mason, D. (1998) A very high level of crossreactivity is an essential feature of the T-cell receptor. Immunol. Today 19, 395–404
4. Sewell, A. K. (2012) Why must T cells be cross-reactive? Nat. Rev. Immunol. 12, 669–677
5. Rudolph, M. G., Stanfield, R. L., and Wilson, I. A. (2006) How TCRs bind MHCs, peptides, and coreceptors. Annu. Rev. Immunol. 24, 419–466
6. Gras, S., Burrows, S. R., Turner, S. J., Sewell, A. K., McCluskey, J., and Rossjohn, J. (2012) A structural voyage toward an understanding of the MHC-I-restricted immune response: lessons learned and much to be learned. Immunol. Rev. 250, 61–81
7. Dai, S., Huseby, E. S., Rubtsova, K., Scott-Browne, J., Crawford, F., Macdonald, W. A., Marrack, P., and Kappler, J. W. (2009) Crossreactive T cells spotlight the germ line rules for αβ T-cell receptor interactions with MHC molecules. Immunity 28, 324–334
8. Fung, D., Bond, C. J., Ely, L. K., Maynard, J., and Garcia, K. C. (2007) Structural evidence for a germ line-encoded T-cell receptor-major histocompatibility complex interaction “codon.” Nat. Immunol. 8, 975–983
9. Garcia, K. C., Adams, J. J., Feng, D., and Ely, L. K. (2009) The molecular basis of TCR germ line bias for MHC is surprisingly simple. Nat. Immunol. 10, 143–147
10. Scott-Browne, J. P., White, J., Kappler, J. W., Gapsin, L., and Marrack, P. (2009) Germ line-encoded amino acids in the αβ T-cell receptor control thymic selection. Nature 458, 1043–1046
11. Wu, L. C., Tuot, D. S., Lyons, D. S., Garcia, K. C., and Davis, M. M. (2002) Two-step binding mechanism for T-cell receptor recognition of peptide-MHC. Nature 418, 552–556
12. Housset, D., and Malissen, B. (2003) What do TCR-pMHC crystal structures teach us about MHC restriction and allorreactivity? Trends Immunol. 24, 429–437
13. Wooldridge, L., Ekeruche-Makinde, J., van den Berg, H. A., Skowera, A., Miles, J. J., Tan, M. P., Dolton, G., Clement, M., Llewellyn-Lacey, S., Price, D. A., Peakman, M., and Sewell, A. K. (2012) A single autoimmune T cell receptor recognizes more than a million different peptides. J. Biol. Chem. 287, 1168–1177
14. Colf, I. A., Bankovich, A. J., Hanick, N. A., Bowerman, N. A., Jones, L. L., Kranz, D. M., and Garcia, K. C. (2007) How a single T cell receptor recognizes both self and foreign MHC. Cell 129, 135–146
15. Borg, N. A., Ely, L. K., Beddoe, T., Macdonald, W. A., Reid, H. H., Clements, C. S., Purcell, A. W., Kjer-Nielsen, L., Miles, J. J., Burrows, S. R., McCluskey, J., and Rossjohn, J. (2005) The CDR3 regions of an immunodominant T cell receptor dictate the “energetic landscape” of peptide-MHC recognition. Nat. Immunol. 6, 171–180
16. Burrows, S. R., Chen, Z., Archbold, J. K., Tynan, F. E., Beddoe, T., Kjer-Nielsen, L., Miles, J. J., Khanna, R., Moss, D. J., Liu, Y. C., Gras, S., Kostenko, L., Brennan, R. M., Clements, C. S., Brooks, A. G., Purcell, A. W., McCluskey, J., and Rossjohn, J. (2010) Hard wiring of T cell receptor specificity for the major histocompatibility complex is underpinned by TCR adaptability. Proc. Natl. Acad. Sci. U.S.A. 107, 10608–10613
17. Gras, S., Chen, Z., Miles, J. J., Liu, Y. C., Bell, M. J., Sullivan, L. C., Kjer-Nielsen, L., Brennan, R. M., Burrows, J. M., Neller, M. A., Khanna, R., Purcell, A. W., Brooks, A. G., McCluskey, J., Rossjohn, J., and Burrows, S. R. (2010) Allelic polymorphism in the T cell receptor and its impact on immune responses. J. Exp. Med. 207, 1555–1567
18. Sethi, D. K., Schubert, D. A., Anders, A. K., Heroux, A., Bonson, D. A., Thomas, C. P., Sundberg, E. J., Pyrdol, J., and Wucherpfennig, K. W. (2011) A highly tilted binding mode by a self-reactive T cell receptor results in altered engagement of peptide and MHC. J. Exp. Med. 208, 91–102
19. Tynan, F. E., Burrows, S. R., Buckle, A. M., Clements, C. S., Berg, N. A., Miles, J. J., Beddoe, T., Whisstock, J. C., Wilce, M. C., Silins, S. L., Burrows, J. M., Kjer-Nielsen, L., Kostenko, L., Purcell, A. W., McCluskey, J., and Rossjohn, J. (2005) T cell receptor recognition of a “super-bulged” major histocompatibility complex class I bound peptide. Nat. Immunol. 6, 1114–1122
20. Bridgeman, J. S., Sewell, A. K., Miles, J. J., Price, D. A., and Cole, D. K. (2012) Structural and biophysical determinants of αβ T-cell antigen recognition. Immunity 35, 9–18
21. Cole, D. K., Pumphrey, N. J., Boulter, J. M., Sami, M., Bell, J. I., Gostick, E., Price, D. A., Gao, G. F., Sewell, A. K., and Jakobovits, B. K. (2007) Human TCR-binding affinity is governed by MHC class restriction. J. Immunol. 178, 5727–5734
22. Cole, D. K., Yuan, F., Rizkallah, P. J., Miles, J. J., Gostick, E., Price, D. A., Gao, G. F., Jakobovits, B. K., and Sewell, A. K. (2009) Germ line-governed recognition of a cancer epitope by an immunodominant human T-cell receptor. J. Biol. Chem. 284, 27281–27289
23. Purbhuo, M. A., Li, Y., Sutton, D. H., Brewer, J. E., Gostick, E., Bossi, G., Laugel, B., Moyaey, R., Baston, E., Liddy, N., Cameron, B., Bennett, A. D., Ashfield, R., Milicic, A., Price, D. A., Classon, B. J., Sewell, A. K., and Jakobovits, B. K. (2007) The HLA-A*0201-restricted hTERT(540–548) peptide is not detected on tumor cells by a CTL clone or a high-affinity T-cell receptor. Mol. Cancer Ther. 6, 2081–2091
24. Li, Y., Moyaey, R., Molloy, P. E., Vuidepot, A. L., Mahon, T., Baston, E., Dunn, S., Liddy, N., Jacob, J., Jakobovits, B. K., and Boulter, J. M. (2005) Directed evolution of human T-cell receptors with picomolar affinities by phage display. Nat. Biotechnol. 23, 349–354
25. Garboczi, D. N., Ghosh, P., Utz, U., Fan, Q. R., Biddison, W. E., and Wiley, D. C. (1996) Structure of the complex between human T-cell receptor, viral peptide and HLA-A2. Nature 384, 134–141
26. Boulter, J. M., Glick, M., Todorov, P. T., Baston, E., Sami, M., Rizkallah, P., and Jakobovits, B. K. (2003) Stable, soluble T-cell receptor molecules for crystallization and therapeutics. Protein Eng. 16, 707–711
27. Cole, D. K., Dunn, S. M., Sami, M., Boulter, J. M., Jakobovits, B. K., and Sewell, A. K. (2008) T cell receptor engagement of peptide-major histocompatibility complex class I does not modify CD8 binding. Mol. Immunol. 45, 2700–2709
28. Cole, D. K., Rizkallah, P. J., Gao, F., Watson, N. I., Boulter, J. M., Bell, J. I., Sami, M., Gao, G. F., and Jakobovits, B. K. (2006) Crystal structure of HLA-A*2402 complexed with a telomerase peptide. Eur. J. Immunol. 36, 170–179
29. Wyer, J. R., Willcox, B. E., Gao, G. F., Gerth, U. C., Davis, S. J., Bell, J. I., van der Merwe, P. A., and Jakobovits, B. K. (1999) T cell receptor and coreceptor CD8α bind peptide-MHC independently and with distinct kinetics. Immunity 10, 219–225
TCD-69-Peptide Specificity Governs Antigen Recognition

32. Holland, C. J., Rizkallah, P. J., Voller, S., Calvo-Calle, J. M., Madura, F., Fuller, A., Sewell, A. K., Stern, J. J., Godkin, A., and Cole, D. K. (2010) Minimal conformational plasticity enables TCR cross-reactivity to different MHC class II heterodimers. Sci. Rep. 2, 629.

33. Miles, J. I., Bulek, A. M., Cole, D. K., Gostick, E., Schauenburg, A. J., Milton, G., Venturi, V., Davenport, M. P., Tan, M. P., Burrows, S. R., Woolridge, L., Price, D. R., Rizkallah, P. J., and Sewell, A. K. (2010) Genetic and structural basis for selection of a ubiquitous T cell receptor deployed in Epstein-Barr virus infection. PLoS Pathog. 6, e100198.

34. Madura, F., Rizkallah, P. J., Miles, K. M., Holland, C. J., Bulek, A. M., Fuller, A., Schauenburg, A. J., Miles, J. J., Liddy, N., Sami, M., Li, Y., Hosain, M., Baker, B. M., Jakobsen, B. K., Sewell, A. K., and Cole, D. K. (2013) T-cell receptor specificity maintained by altered thermodynamics. J. Biol. Chem. 288, 18766–18775.

35. Karlsson, R., Katsamba, P. S., Nordin, H., Pol, E., and Myszka, D. G. (2006) Analyzing a kinetic titration series using affinity biosensors. Anal. Biochem. 349, 136–147.

36. Winter, G. (2010) sFv: an expert system for macromolecular crystallography data reduction. Acta Crystallogr. D Biol. Crystallogr. 66, 760–763.

37. Collaborative Computational Project No. 4 (1994) The CCP4 suite: protein crystallography data. Acta Crystallogr. D Biol. Crystallogr. 50, 760–763.

38. McCoy, A. J., Grosse-Kunstleve, R. W., Adams, P. D., Winn, M. D., Storoni, L. C., and Read, R. J. (2007) Phaser crystallographic software. J. Appl. Crystallogr. 40, 658–674.

39. Emsley, P., and Cowtan, K. (2004) Coot: model-building tools for molecular graphics. Acta Crystallogr. D Biol. Crystallogr. 60, 2126–2132.

40. Delano, W. L. (2002) The PyMOL Molecular Graphics System, DeLano Scientific LLC, San Carlos, CA.

41. Cole, D. K., Sami, M., Scott, D. R., Rizkallah, P. J., Borbulevych, O. Y., Todorov, P. T., Moysey, R. K., Jakobsen, B. K., Boulter, J. M., Baker, B. M., and Yi, L. (2013) Increased peptide contacts govern high affinity binding of a modified TCR whilst maintaining a native pMHC docking mode. Front. Immunol. 4, 168.

42. Dunn, S. M., Rizkallah, P. J., Baston, E., Mahon, T., Cameron, B., Moysey, R., Gao, F., Sami, M., Boulter, J. M., and Jakobsen, B. K. (2006) Directed evolution of human T cell receptor CDR2 residues by phage display dramatically enhances affinity for cognate peptide-MHC without increasing apparent cross-reactivity. Protein Sci. 15, 710–721.

43. Sami, M., Rizkallah, P. J., Dunn, S., Molloy, P., Moysey, R., Vuidepot, A., Baston, E., Todorov, P. L., Gao, F., Boulter, J. M., and Jakobsen, B. K. (2007) Crystal structures of high affinity human T-cell receptors bound to peptide major histocompatibility complex reveal native diagonal binding geometry. Protein Eng. Des. Sel. 20, 397–403.

44. Varela-Rohena, A., Molloy, P. E., Dunn, S. M., Li, Y., Suboski, M. M., Carroll, R. G., Milicic, A., Mahon, T., Sutton, D. H., Laugel, B., Moysey, R., Cameron, B. J., Vuidepot, A., Purhoo, M. A., Cole, D. K., Phillips, R. E., June, C. H., Jakobsen, B. K., Sewell, A. K., and Riley, J. L. (2008) Control of HIV-1 immune escape by CD8+ T cells expressing enhanced T-cell receptor. Nat. Med. 14, 1390–1395.

45. Tickle, I. J., Laskowski, R. A., and Moss, D. S. (2000) RFree and the RFree ratio. II. Calculation of the expected values and variances of cross-validation statistics in macromolecular least-squares refinement. Acta Crystallogr. D Biol. Crystallogr. 56, 442–450.

46. Donnermeyer, D. L., Weber, K. S., Kranz, D. M., and Allen, P. M. (2006) The study of high-affinity TCRs reveals duality in T cell recognition of antigen: specificity and degeneracy. J. Immunol. 177, 6911–6919.

47. Laugel, B., Boulter, J. M., Lissin, N., Vuidepot, A., Li, Y., Gostick, E., Croty, L. E., Douek, D. C., Hemelaar, J., Price, D. A., Jakobsen, B. K., and Sewell, A. K. (2005) Design of soluble recombinant T cell receptors for antigen targeting and T cell inhibition. J. Biol. Chem. 280, 1882–1892.