Recyclable MFe$_2$O$_4$ (M = Mn, Zn, Cu, Ni, Co) coupled micro–nano bubbles for simultaneous catalytic oxidation to remove NO$_x$ and SO$_2$ in flue gas

Hongrui Sun and Dengxin Li *

NO$_x$ can be efficiently removed by micro–nano bubbles coupling with Fe$^{3+}$ and Mn$^{2+}$, but the catalyst cannot be reused and the adsorption wastewater should be treated. This work developed a new technology that uses micro–nano bubbles and recyclable MFe$_2$O$_4$ to simultaneously remove NO$_x$ and SO$_2$ from flue gas, and clarified the effectiveness and reaction mechanism. MFe$_2$O$_4$ (M = Mn, Zn, Cu, Ni and Co) prepared by a hydrothermal method was characterized. The results show that MFe$_2$O$_4$ can be activated to produce $^\cdot$OH which can accelerate the oxidation absorption of NO$_x$. Compared with no catalyst, the NO$_x$ conversion rate increased from 32.85% to 83.88% in the NO$_x$–SO$_2$–MFe$_2$O$_4$ micro–nano bubble system, while the removal rate of SO$_2$ can reach 100% at room temperature. The catalytic activities of MFe$_2$O$_4$ showed the following trend: CuFe$_2$O$_4$ > ZnFe$_2$O$_4$ > MnFe$_2$O$_4$ > CoFe$_2$O$_4$ > NiFe$_2$O$_4$. The results provide a new idea for the application of advanced oxidation processes in flue gas treatment.

1. Introduction

With the development of industry, nitrogen oxides (NO$_x$) and sulfur dioxide (SO$_2$) have become the most common atmospheric pollutants. The emission of these pollutants causes various environmentally harmful effects such as acid rain, photochemical smog, ozone depletion and climate warming. At present, the main methods to control NO$_x$s in industry are dry denitration technology and wet denitration technology. Dry denitrification techniques include selective catalytic reduction (SCR) and selective non-catalytic reduction (SNCR). Wet denitrification techniques include oxidation, complexion absorption and acid–base absorption. There are many kinds of pollutants in the actual flue gas, which make it difficult to deal with. It is a new trend to study the oxidation and absorption of various pollutants in flue gas by simple devices. Flue gas desulfurization and denitrification integration refers to the process of simultaneous desulfurization and denitrification in the same equipment. Although this method can effectively improve the flue gas treatment efficiency and reduce the energy consumption, the main research is still in the research and development stage, there is still a long way to go before the large-scale industrialization. Micro–nano bubbles (MNB) coupled oxygen carrier (OCs) technology is a wet flue gas integrated removal technology, which can simplify the system, reduce the cost, and ensure a high removal efficiency of NO$_x$ and SO$_2$, and has a strong application potential. It is a new direction of the comprehensive removal of multi-pollutant flue gas.

Micro–nano bubble technology refers to the bubble with the diameter between tens of microns to hundreds of nanometers when the bubble occurs. Compared with ordinary bubbles, it has the following characteristics: small size leads to large surface area, low rising speed, high internal pressure, large gas solubility, and free radicals formed when crushed. Hydroxyl radicals generated by the breakdown of micro–nano bubbles are an important reactive oxygen species with an oxidation potential of 2.87 V. Xiao et al. used micro–nano bubbles to remove SO$_2$ and NO (1000 mg m$^{-3}$), and NO removal efficiency reached 87.7%. It is well known that Fe$^{2+}$ ions can promote the interaction between NO$_x$ and S(IV) in aqueous solution to form nitrosyl complexes, which lead to enhanced NO$_x$ removal.

Although the activation of transition metals can accelerate the oxidative absorption of NO$_x$, it is not suitable for recycling, and the product is heavy metal wastewater that causes secondary pollution. Therefore, it is necessary to use magnetic solid catalyst instead of ionic catalyst.

Previous studies have shown that spinel ferrite (chemical formula: M$^{2+}$Fe$_3$$^{3+}O_4$) has better mechanical stability, stronger mechanical strength, reoxidation ability and environmental friendliness than single metal oxide. In actual use, MFe$_2$O$_4$ have acted as an oxygen supply and a catalyst. The standard spinel structure is a lattice composed of 32 divalent oxygen ions that form a closed-pack, face-centered cubic arrangement with
64 tetrahedral interstitial sites and 32 octahedral interstitial sites. In the spinel structure, M²⁺ and Fe³⁺ are respectively located in the sites of tetrahedral or octahedron composed of oxygen and have metal synergistic effects which determine good oxygen transferability and catalysis properties. Therefore, spinel ferrites were attractive candidates because of their rich crystal chemistry, low cost, nontoxicity and environmentally friendly properties. Xu et al. found that a small quantity of palladium-doped ferrite spinel could achieve high NO conversion and the catalyst cost reduction. However, the simultaneous use of transition metal oxide and MNB for NO removal in a system has rarely been reported. Furthermore, the synergistic effects of the different metals in ferrites for NO and SO₂ removal have been rarely mentioned.

In this study, the recyclable catalyst MFe₂O₄ (M = Mn, Co, Ni, Cu, Zn) synthesized with hydrothermal method and MNB were used to form the NOₓ-SO₂-MFe₂O₄-MNB system for simultaneous removal of NOₓ and SO₂ from flue gas. The structural, physical, and chemical properties of the as-prepared MFe₂O₄ before and after the reaction were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), the Brunauer-Emmett-Teller (BET) method and X-ray photoelectron spectroscopy (XPS). The removal rates of NO and SO₂ were monitored with the flue gas analyzer and ion chromatography to explore the actions of MNB and the effects of various divalent cations contained in the ferrite. The goal of this study was to evaluate the simultaneous NO and SO₂ removal efficiencies, and elucidate the chemistry and reaction pathways of the NOₓ-SO₂-MFe₂O₄-MNB system.

2. Experimental

2.1. Materials

All the materials used for synthesizing catalysts, including ethylene glycol, poly(ethylene glycol) (PEG), sodium acetate (CH₃COONa), ferric chloride (FeCl₃·6H₂O), manganese chloride (MnCl₂·H₂O), zinc chloride (ZnCl₂), cupric chloride (CuCl₂·2H₂O), nickel chloride (NiCl₂·6H₂O), cobalt chloride (CoCl₂·6H₂O), ethyl alcohol (C₂H₅OH), 5,5-dimethyl-1-pyrroline N-oxide (DMPO), were purchased from Sinopharm Chemical Reagent Co., Ltd. All chemicals were used without further purification.

2.2. Synthesis of MFe₂O₄ (M = Mn, Co, Ni, Cu and Zn) by the hydrothermal method

The MFe₂O₄ (M = Mn, Co, Ni, Cu and Zn) microspheres were synthesized based on the hydrothermal method. Briefly, polyethylene glycol and sodium acetate were added into ethylene glycol under vigorous stirring conditions. Then partial chloride was added to reach the metal cation (Fe³⁺ and M²⁺) molar ratio of 2 : 1. The resultant homogeneous solution was obtained and then placed into the 500 mL Teflon-lined autoclave, reacted at 200 °C for 10 h. The black product was collected with a magnet, washed several times by ethanol and distilled water, and then dried at 80 °C for 6 h under vacuum. Finally, the resulting product was sufficiently grinded to obtain fresh MFe₂O₄ (M = Mn, Co, Ni, Cu and Zn).

2.3. Characterization

A scanning electron microscope (SEM, Hitachi S4800) was adopted to observe the morphologies. Energy dispersive spectrometer (EDS) with Horiba 7593-H was used to confirm the proportion of each element in the catalysts. Powder X-ray diffraction meter (XRD, D/max 2550 PC, Japan Rigaku) operation was completed with Cu Kα radiation in a 2θ angle between 10° and 80° at a rate of 2° min⁻¹ to monitor crystal structure. The surface properties and valence state of the catalysts were determined through X-ray photoelectron spectroscopy (XPS) experiments by using the Escalab 250Xi spectrometer with an Al-Kα radiation source at an energy step size of 1 eV to obtain high-resolution XPS spectra. The spectra were calibrated with respect to C 1s at a binding energy of 284.8 eV. The specific surface area of the samples was determined by using the Brunauer-Emmett-Teller (BET) method on an automated area and pore size analyzer (Autosorb-iQ) based on nitrogen adsorption desorption isotherm. The samples were outgassed at 200 °C for 2 h to remove remaining moisture and then analyzed with N₂ gas as an adsorbent at the temperature of liquid nitrogen. 'OH and 'O₂⁻ in the NOₓ-SO₂-MFe₂O₄-MNB system were detected via electron paramagnetic resonance spectroscopy (EPR, JEOL-FA200), and DMPO was used for capturing 'OH and 'O₂⁻.

2.4. Reactivity measurement in the NOₓ-SO₂-MFe₂O₄-MNB system

Fig. 1 shows the NOₓ-SO₂-MFe₂O₄-MNB system installation diagram. Firstly, NOₓ and SO₂ in the cylinder are fed into the mixture in a certain proportion to mix evenly. Gas flow rate is controlled by the rotameter. The flue gas analyzer (Testo350) was adopted to observe the intake gas concentration. Then a certain amount of MFe₂O₄ is uniformly dispersed in the absorption solution by ultrasonic oscillation. Finally, the configured gas and absorption solution are passed through the micro-nano bubble generator together to form the NOₓ-SO₂-MFe₂O₄-MNB system in the reaction tower, so as to complete the catalytic oxidation and absorption process of NOₓ and SO₂. The removal efficiency of NOₓ was calculated by the concentrations of NOₓ⁻ and NOₓ⁻ in the absorption liquid measured with ion chromatography (ICS-1100 AS11-HC, Thermo Fisher Scientific).

The rated parameters of the micro-nano bubble generator were set as follows: the effluent pressure (0.5 MPa), the inlet water flow (300 mL min⁻¹) and the intake air amount (48 mL min⁻¹). The volume of the oxidation absorption reactor is 1.5 L. MFe₂O₄ was uniformly dispersed in a tubular reactor as a catalyst. A gas mixture containing 5113 mg m⁻³ NOₓ and 3371 mg m⁻³ SO₂ was used as the intake gas. NOₓ is mainly composed of 3795 mg m⁻³ NO and 2021 mg m⁻³ NO₂. In order to explore the practical application performance of the NOₓ-SO₂-MFe₂O₄-MNB system, the effects of the addition of different recyclable MFe₂O₄ catalysts on the integrated desulfurization and denitrification efficiency were discussed by analyzing the IC test results of the absorption solution.
2.5. Analysis methods

The removal efficiency of NO\textsubscript{x} can be calculated as

\[\eta_{\text{NO}_x} = \frac{N_{\text{out}}}{N_{\text{in}}} \times 100\% \]

\[N_{\text{in}} = \frac{c_{\text{NO}} \times q \times t}{M_{\text{NO}}} + \frac{c_{\text{NO}_2} \times q \times t}{M_{\text{NO}_2}} \]

\[N_{\text{out}} = \frac{c_{\text{NO}_2} \times V}{M_{\text{NO}_2}} + \frac{c_{\text{NO}_3} \times V}{M_{\text{NO}_3}} \]

where \(\eta_{\text{NO}_x} \) represents the removal efficiency of NO\textsubscript{x}, \(N_{\text{out}} \) is the amount of NO\textsubscript{2}- and NO\textsubscript{3}- in the absorption liquid, \(N_{\text{in}} \) is the amount of NO\textsubscript{x} entering the system, \(c_{\text{NO}} \) and \(c_{\text{NO}_2} \) are the concentrations of NO and NO\textsubscript{2} in the intake air respectively, \(c_{\text{NO}_2} \) and \(c_{\text{NO}_3} \) are the concentrations of NO\textsubscript{2}- and NO\textsubscript{3}- in the absorption liquid respectively, \(q \) is the air inflow, \(V \) is the volume of water in the reaction tower, \(M \) is the molecular weight, \(t \) is the system running time.

The removal efficiency of SO\textsubscript{2} can be calculated as

\[\eta_{\text{SO}_2} = \frac{N'_{\text{out}}}{N'_{\text{in}}} \times 100\% \]

\[N'_{\text{in}} = \frac{c_{\text{SO}_2} \times q \times t}{M_{\text{SO}_2}} \]

\[N'_{\text{out}} = \frac{c_{\text{SO}_4^{2-}} \times V}{M_{\text{SO}_4^{2-}}} \]

where \(\eta_{\text{SO}_2} \) represents the removal efficiency of SO\textsubscript{2}, \(N'_{\text{out}} \) is the amount of SO\textsubscript{4}2- in the absorption liquid, \(N'_{\text{in}} \) is the amount of SO\textsubscript{2} entering the system, \(c_{\text{SO}_2} \) are the concentrations of SO\textsubscript{2} in the intake air, \(c_{\text{SO}_4^{2-}} \) are the concentrations of SO\textsubscript{4}2- in the absorption liquid.

3. Results and discussion

3.1. Physicochemical characterization

The SEM images of MFe\textsubscript{2}O\textsubscript{4} (M = Mn, Zn, Cu, Ni and Co) are shown in Fig. 2. The five spinel ferrites are similar to each other, exhibiting a spherical structure with a dense surface and abundant fine particles. Among the five OCs, CuFe\textsubscript{2}O\textsubscript{4} and CoFe\textsubscript{2}O\textsubscript{4} exhibited more agglomeration and sintering, possibly due to high temperature calcination and the small-dimension effect. Compared with CuFe\textsubscript{2}O\textsubscript{4} and CoFe\textsubscript{2}O\textsubscript{4}, MnFe\textsubscript{2}O\textsubscript{4}, NiFe\textsubscript{2}O\textsubscript{4} and ZnFe\textsubscript{2}O\textsubscript{4} are spherical with the uniform shape and distribution. Fig. 2 gives a detailed description of MFe\textsubscript{2}O\textsubscript{4}.

EDS analysis results (shown in Table 1) confirmed that the component contents of the samples are in reasonable agreement with the atomic percentages deduced from their molecular formulas. The elemental composition in Table 1 indicates that there are only three elements (O, M and Fe) in the composite. Furthermore, the M/Fe molar ratios of samples were approximately 0.5. The contents of the three elements in each complex MFe\textsubscript{2}O\textsubscript{4} were 10.48 ± 0.99% (M, at%) and 22.18 ± 0.42% (Fe, at%), respectively.

Table 1 shows the specific surface areas of the five spinel catalysts. The five ferrites exhibited different specific surface areas due to their different metal compositions. Among the five OCs, CoFe\textsubscript{2}O\textsubscript{4} had the largest specific surface area (121.352 m2 g-1), followed by NiFe\textsubscript{2}O\textsubscript{4} (72.727 m2 g-1). The ferrites of MnFe\textsubscript{2}O\textsubscript{4}, CuFe\textsubscript{2}O\textsubscript{4} and ZnFe\textsubscript{2}O\textsubscript{4} had the smallest specific surface areas (less than 30 m2 g-1). The smaller the diameter of
MFe$_2$O$_4$ nanoparticles was, the larger the specific surface area was (Fig. 2f and Table 1).

XRD measurements were conducted to identify the crystal structures of the samples. The XRD patterns of MFe$_2$O$_4$ (M = Mn, Zn, Cu, Ni and Co) are shown in Fig. 3. X-ray powder diffraction patterns of MnFe$_2$O$_4$, CoFe$_2$O$_4$, NiFe$_2$O$_4$ and ZnFe$_2$O$_4$ samples were quite similar to those of cubic spinel-type structures belonging to the $Fd\bar{3}m$ (227) space group. The main diffraction reflection peaks included (220), (311), (400), (422), (511) and (440) crystal planes, which well matched with the standard XRD pattern representing the cubic spinel structure (JCPDS no. 38-0430, 22-1086, 10-0325, 34-0425 and 10-1108), indicating the good crystallinity of these MFe$_2$O$_4$.

Unlike these samples, however, CuFe$_2$O$_4$ exhibited a well-defined spinel ferrite structure with a strongest peak reflection peak at the plane (211) that matched well with the standard XRD pattern (JCPDS no. 34-0425) representing a tetragonal system (space group: $I4_1/amd$).

The crystallite size D for each sample was estimated according to the most intense reflection peak (311) with Scherrer’s equation (eqn (7)):\(^{35}\)

$$D = \frac{K\lambda}{\beta \cos \theta}$$

where D is the average crystallite size; K is Scherrer constant, 0.89; corresponds to the wavelength of Cu-K$_\alpha$ radiation, 0.154 nm; β is the full width at half maximum intensity for a reflection maximum; θ is the diffraction angle.

With Scherrer’s Equation, crystallite sizes of MFe$_2$O$_4$ nanocomposites were calculated to be 13 nm (Table 1). The crystallite sizes of these OCs ranged from 10.07 to 15.94 nm. The crystallite sizes of the five MFe$_2$O$_4$ showed the following decreasing sequence: MnFe$_2$O$_4$ > ZnFe$_2$O$_4$ > CuFe$_2$O$_4$ > CoFe$_2$O$_4$ > NiFe$_2$O$_4$.

As the crystal grains of OCs increased, the crystallinity became better, but the probability of agglomeration also increased. CoFe$_2$O$_4$ and NiFe$_2$O$_4$ were most prone to agglomerate because of their smallest grain sizes, which were consistent with the SEM results (Fig. 2).

In order to give an insight into the elemental chemical valence and electronic properties on the surface layers of MFe$_2$O$_4$, XPS measurements of MFe$_2$O$_4$ before and after the reactions were conducted to examine the chemical compositions and electronic structures of the samples. Fig. 4 shows the

Catalysts	S_{BET} (m^2g^{-1})	Elemental composition (atomic percentage, %)	Crystallite size from XRD (nm)		
MnFe$_2$O$_4$	22.243	M cation (Mn/Zn/Cu/Ni/Co) 10.83	22.26	0.487	15.94
CoFe$_2$O$_4$	121.352	Fe 11.94	22.72	0.458	11.61
NiFe$_2$O$_4$	72.727	Mn/Fe 10.21	21.63	0.472	10.07
CuFe$_2$O$_4$	30.009	CuFe$_2$O$_4$ 9.24	21.92	0.422	12.78
ZnFe$_2$O$_4$	20.326	ZnFe$_2$O$_4$ 10.20	22.37	0.456	14.11
XPS spectra of MFe$_2$O$_4$, respectively. In full-scale XPS spectra (Fig. 4a), the apparent peaks of Fe 2p, C 1s, O 1s, Mn 2p, Co 2p, Ni 2p, Cu 2p and Zn 2p illustrated that iron, manganese, cobalt, nickel, copper and zinc were the main elements of MFe$_2$O$_4$. The comparison of the peak differentiation-imitating analysis results of the nano-MFe$_2$O$_4$ before and after the reaction.

Fig. 3 XRD patterns of the investigated spinel catalysts MFe$_2$O$_4$ and their standard profiles.

Fig. 4 XPS patterns of MFe$_2$O$_4$ in the NO$_x$–SO$_2$–MFe$_2$O$_4$–MNB system before and after reactions: full-range scan of the samples (a), Ni 2p$_{3/2}$ (b), Cu 2p$_{3/2}$ (c), and Fe 2p$_{3/2}$ of ZnFe$_2$O$_4$ (d).
(Fig. 4b–e) indicated that the binding energy of M 2p₃/₂ was slightly reduced. After the reaction, the M(II) content in MFe₂O₄ decreased, whereas the M(III) content increased with a variation range of 8.5 ± 4.03%. Fe 2p₃/₂ was found to have characteristic peaks of Fe(II) and Fe(III) before the reaction, and the contents Fe(II) and Fe(III) were 72.46% and 27.53%, respectively. After the reaction, the contents of Fe(II) and Fe(III) were changed to 66.67% and 33.33% (Fig. 4f). The chemical states of Fe were changed in the catalytic process, so the catalyst always maintained a certain activity. These results demonstrated that Fe and M elements were chemically cyclically converted during the catalytic oxidation of NOₓ while generating active sites for free radicals.

3.2. Catalytic performance

The catalytic activities of the prepared samples of ZnFe₂O₄ nanocomposites against NOₓ and SO₂ are shown in Fig. 5a. The ZnFe₂O₄ addition amount of 0.02 g promoted the removal of NOₓ by the NOₓ–SO₂–MFe₂O₄–MNB system, whereas the addition amount of 0.05 g inhibited the removal of NOₓ. The addition of trace catalysts can promote the oxidation absorption of NOₓ. However, excessive catalysts need to consume reactive oxygen species in the process of transformation to high price state, which forms a competitive relationship with the oxidation of NOₓ and SO₂, resulting in the reduction of NOₓ removal rate. In addition, with the increase of the amount of additives, the particle catalyst and micro nano bubbles collide with each other, leading to a part of bubbles in advance rupture, unable to produce hydroxyl radicals, resulting in a reduction of NOₓ removal rate. Therefore, 0.02 g of iron-based spinel samples were separately added to the NOₓ–SO₂–MFe₂O₄–MNB system.

The NOₓ removal efficiency is shown in Fig. 5b. The NOₓ removal efficiency of the NOₓ–SO₂–MFe₂O₄–MNB system was improved after the addition of MFe₂O₄. The combined efficiency of MNB and MFe₂O₄ in removing NOₓ reached 70.23 ± 10.63%, while the efficiency of SO₂ removal reached 100% (eqn (17)–(21)). Oxidative absorption of NOₓ involves two steps. NOₓ is firstly oxidized into NO₂⁻, which is then oxidized to NO₃⁻ (eqn (13)–(16)). MnFe₂O₄, CuFe₂O₄ and ZnFe₂O₄ significantly improved the efficiency of the second step. After adding CuFe₂O₄, the efficiency of converting NO₂ into NO₃⁻ increased by 10.16%, and the conversion into NO₃⁻ was 18.09%. Therefore, the comprehensive efficiency rate of NOx treatment by the NOₓ–SO₂–CuFe₂O₄–MNB system reaches 83.88%. The catalytic activities showed the following decreasing sequence: CuFe₂O₄ > ZnFe₂O₄ > MnFe₂O₄ > CoFe₂O₄ > NiFe₂O₄.

3.3. Free radical identification

EPR test was conducted to detect the radicals and analyze the oxygen species of the NOₓ–SO₂–MFe₂O₄–MNB system. As shown in Fig. 6a, weak signals were observed in MNB solution alone, and an intensive symmetrical four-line peak was detected in the NOₓ–SO₂–MFe₂O₄–MNB system. The four-line peak with the intensity ratio of 1 : 2 : 2 : 1 in the spectrum is the typical spectral shape of the DMPO–•OH adducts, which indicates the existence of •OH in the system. However, the characteristic 1 : 1 : 1 triplet assigned to DMPO–•O₂⁻ adducts formed by •O₂⁻ and DMPO in Fig. 6b was very weak, indicating that the system mainly removes NOₓ through •OH instead of •O₂⁻. The intensity of the peak represents the concentration of •OH in the system, indicating that the concentration of •OH decreases in turn: MNB/CuFe₂O₄ > MNB > H₂O. This result was consistent with the removal rate of NOₓ, which directly proved that •OH oxidized NOₓ is the key to denitrification of flue gas. It can also be proved that MFe₂O₄ can be activated by MNB to produce •OH, which is dominant in the process of NOₓ removal.

3.4. Proposed reaction pathways

It can be found that the NOₓ–SO₂–MFe₂O₄–MNB system has a high catalytic efficiency as a heterogeneous catalytic system, based on characterizing the physical and chemical properties of MFe₂O₄ (M = Mn, Zn, Cu, Ni and Co) before and after the reaction and analyzing the SO₂ and NOₓ removal efficiency. Hydroxyl radical is the main oxidant during the chemical oxidation of SO₂ and NOₓ in aqueous solution. In this system, the sources of hydroxyl radicals are divided into two parts. Some hydroxyl radicals are derived from the rupture of MNB, and the other part is derived from the activation of recyclable

![Fig. 5](image-url) Effect of spinel catalyst on NOₓ and SO₂ removal rate: ZnFe₂O₄ (a), MFe₂O₄ (b).
MFe$_2$O$_4$. The chemistry of simultaneous oxidation of NO$_x$ and SO$_2$ by micro–nano bubbles breakdown and MFe$_2$O$_4$ activation is complex, since it takes place through electron transfer from the lattice oxygen, free radical oxidation reactions via ·OH and ·O$_2^-$, and the direct reaction of the NO$_x$ with HSO$_3$ via \cdotO$_2^-$. The catalytic oxidation mechanism of NO$_x$–SO$_2$–MFe$_2$O$_4$–MNB system is described visually in the reaction scheme shown in Fig. 7. As the MNB slowly rise and shrink in the water, the charge ions (H$^+$, O$_2^-$) rapidly concentrate at the very narrow gas–liquid interface. At the moment of MNB explosion, due to the drastic changes caused by the disappearance of the gas–liquid interface, the concentrated ions on the interface will immediately release the stored chemical energy, thus producing a large number of ·OH. MFe$_2$O$_4$ is a magnetic semiconductor material with spinel structure. Oxygen in molecular state (O$_2$) is adsorbed on the metal surface and then dissociated into adsorbed atoms (O ad) because MFe$_2$O$_4$ is magnetic. The type I adsorbed oxygen atom (O ad[I]) is first formed during dissociation, which is equivalent to a locally adsorbed oxygen atom on the metal surface. The oxygen atom in this state has extremely high reactivity to NO$_x$. In addition, as a semiconductor material, MFe$_2$O$_4$ consists of a low energy valence band full of electrons and an empty high energy conduction band. In the excited state, the valence band electron jumps to the valence band, which is called the conduction band electron (e$_{CB}$). At the same time, a highly active hole in the valence band is generated, which is called the valence band electron hole (h_{VB}^+). The electron hole pair produces a large number of reactive oxygen species such as hydroxyl free radicals and hydrogen peroxide free radicals on the material surface, as shown in eqn (8)–(12). Reactive oxygen species is the main oxidant in the process of removing NO$_x$ and SO$_2$. According to the double reduction oxidation mechanism,

Fig. 6 EPR spectra of the NO$_x$–SO$_2$–MFe$_2$O$_4$–MNB system: DMPO–‘OH (a), and DMPO–‘O$_2^-$ (b).

Fig. 7 Schematic diagram of the NO$_x$–SO$_2$–MFe$_2$O$_4$–MNB reacting system.
a kind of cations (Fe³⁺) perform the function of activating and oxidizing NOₓ and SO₂, and their reoxidation depends on the lattice oxygen (O²⁻) transferred along the lattice. Another metal cation (M²⁺ (M = Mn, Co, Ni, Cu and Zn)) in the reduced state assumes the role of accepting gas-phase oxygen. The main reactions involved in spinel catalytic oxidation are:

\[
\text{MFe}_2\text{O}_4 \rightarrow e_{CB}^- + h_{VB}^+ \quad (8)
\]

\[
e_{CB}^- + O_2 \rightarrow 'O_2^-' \quad (9)
\]

\[
'O_2^- + H_2O \rightarrow HOO^- + OH^- \quad (10)
\]

\[
OH^- + h_{VB}^+ \rightarrow 'OH \quad (11)
\]

\[
2\text{HOO}^- + e_{CB}^- \rightarrow 'OH + O_2 + OH^- \quad (12)
\]

The main reactions involved in the simultaneous oxidation of NOₓ and SO₂ are:

\[
2\text{NO} + O_2 \rightarrow 2\text{NO}_2 \quad (13)
\]

\[
2\text{NO}_2 + H_2O \rightarrow 2H^+ + NO_3^- + NO_2^- \quad (14)
\]

\[
\text{NO} + 'OH \rightarrow H^+ + NO_2^- \quad (15)
\]

\[
\text{NO}_2^- + 'OH \rightarrow \text{NO}_2 + OH^- \quad (16)
\]

\[
\text{NO}_2 + 'OH \rightarrow H^+ + \text{NO}_3^- \quad (17)
\]

\[
\text{NO} + 'O_2^- \rightarrow \text{NO}_3^- \quad (18)
\]

\[
\text{SO}_2 + H_2O \leftrightarrow \text{HSO}_3^- + H^+ \quad (19)
\]

\[
\text{HSO}_3^- \leftrightarrow \text{SO}_3^{2-} + H^+ \quad (20)
\]

\[
\text{HSO}_3^- + 'OH \rightarrow \text{H}_2O + \text{SO}_3^{2-} \quad (21)
\]

\[
\text{SO}_3^{2-} + 'OH \rightarrow \text{SO}_4^{2-} + OH^- \quad (22)
\]

\[
\text{SO}_3^{2-} + 2'OH \rightarrow \text{H}_2O + \text{SO}_4^{2-} \quad (23)
\]

\[
2\text{NO}_2 + \text{SO}_3^{2-} + H_2O \rightarrow 2\text{NO}_2^- + \text{SO}_4^{2-} + 2H^+ \quad (24)
\]

\[
2\text{NO}_2 + 2\text{SO}_3^{2-} + H_2O \rightarrow \text{NO}_2^- + \text{NO}_3^- + 2\text{HSO}_3^- \quad (25)
\]

4. Conclusion

This work developed a new technology that uses micro-nano bubbles and MFe₂O₄ to simultaneously remove NOₓ and SO₂ from flue gas. The physicochemical properties of MFe₂O₄ prepared by the hydrothermal method were characterized. The results indicated that both micro-nano bubbles and MFe₂O₄ improved NOₓ removal, while the removal rate of SO₂ can reached 100% at room temperature. NOₓ removal reached 83.88% in NOₓ-SO₂-CuFe₂O₄-MNB system. At the moment when the MNB burst, the concentrated ions on the gas-water interface will release the stored chemical energy at once, thus producing a large number of hydroxyl radicals. Recyclable MFe₂O₄ (M = Mn, Zn, Cu, Ni and Co) can produce ‘OH and ‘O₂ by being activated, thus accelerating the oxidation and absorption process of NOₓ and SO₂. However, this research also points out many areas that require further research, such as using the system for organic gas and wastewater treatment, which is beyond the scope of current research, but is still the subject of future research.

Conflicts of interest

There are no conflicts to declare.

Acknowledgements

This work was supported by the National Natural Science Foundation of China [grant number U1660107], the Fundamental Research Funds for the Central Universities [grant number 2232020A-10].

References

1 F. X. Qie, J. Y. Zhu, J. F. Rong and B. N. Zong, Biological removal of nitrogen oxides by microalga, a promising strategy from nitrogen oxides to protein production, Bioresour. Technol., 2019, 292, 10.

2 D. L. Goldberg, Z. F. Lu, D. G. Streets, B. de Foy, D. Griffin, C. A. McLinden, L. N. Lamsal, N. A. Krotkov and H. Eskes, Enhanced capabilities of TROPOMI NO₂: estimating NO₂ from north American cities and power plants, Environ. Sci. Technol., 2019, 53, 12594–12601.

3 K. H. Bates and D. J. Jacob, A new model mechanism for atmospheric oxidation of isoprene: global effects on oxidants, nitrogen oxides, organic products, and secondary organic aerosol, Atmos. Chem. Phys., 2019, 19, 9613–9640.

4 J. Q. Xu, H. J. Yu, C. Zhang, F. Guo and J. Q. Xie, Development of cerium-based catalysts for selective catalytic reduction of nitrogen oxides: a review, New J. Chem., 2019, 43, 3996–4007.

5 Z. Y. Wang, H. L. Kuang, J. F. Zhang, L. L. Chu and Y. L. Ji, Nitrogen oxide removal by non-thermal plasma for marine diesel engines, RSC Adv., 2019, 9, 5402–5416.

6 M. Jablonska and R. Palkovits, Perovskite-based catalysts for the control of nitrogen oxide emissions from diesel engines, Catal. Sci. Technol., 2019, 9, 2057–2077.

7 J. M. Shao, C. Q. Xu, Z. H. Wang, J. P. Zhang, R. T. Wang, Y. He and K. F. Cen, NO₂ reduction in a 130 t/h biomass-fired circulating fluid bed boiler using coupled ozonation and wet absorption technology, Ind. Eng. Chem. Res., 2019, 58, 18134–18140.

8 J. Chen, Y. Chen, D. Hynosphan, Y. Mei, H. Pan, J. L. Wu, J. M. Chen and J. C. Yao, Fe-III(EDTA)-NO reduction by Mn powder in wet flue gas denitrification technology coupled with Mn²⁺ recycling: performance, kinetics, and mechanism, Energy Fuels, 2020, 34, 2590–2598.

9 X. Y. Zhu, F. Q. He, M. Xia, H. G. Liu and J. H. Ding, Evaluation of Fe(III)EDTA reduction with ascorbic acid in a wet denitrification system, RSC Adv., 2019, 9, 24386–24393.
37 B. C. Yang, S. X. Ma, R. J. Cui, S. J. Sun, J. Wang and S. C. Li, Simultaneous removal of NO\textsubscript{x} and SO\textsubscript{2} with H\textsubscript{2}O\textsubscript{2} catalyzed by alkali/magnetism-modified fly ash: High efficiency, low cost and catalytic mechanism, Chem. Eng. J., 2019, 359, 233–243.

38 Z. H. Meng, C. Y. Wang, X. R. Wang and H. Q. Li, Efficient and stable catalyst of alpha-FeOOH for NO oxidation from coke oven flue gas by the catalytic decomposition of gaseous H\textsubscript{2}O\textsubscript{2}, RSC Adv., 2020, 10, 8207–8211.

39 M. Takahashi, \(\zeta\) potential of microbubbles in aqueous solutions: Electrical properties of the gas-water interface, J. Phys. Chem. B, 2005, 109, 21858–21864.

40 M. Takahashi, K. Chiba and P. Li, Formation of hydroxyl radicals by collapsing ozone microbubbles under strongly acidic conditions, J. Phys. Chem. B, 2007, 111, 11443–11446.

41 N. Chaibakhsh and Z. Moradi-Shoeili, Enzyme mimetic activities of spinel substituted nanoferrites (MFe\textsubscript{2}O\textsubscript{4}): A review of synthesis, mechanism and potential applications, Mater. Sci. Eng., C, 2019, 99, 1424–1447.

42 S. Chandrasekaran, C. Bowen, P. X. Zhang, Z. L. Li, Q. H. Yuan, X. Z. Ren and L. B. Deng, Spinel photocatalysts for environmental remediation, hydrogen generation, CO\textsubscript{2} reduction and photoelectrochemical water splitting, J. Mater. Chem. A, 2018, 6, 11078–11104.

43 W. K. Zhao, S. L. Zhang, J. Ding, Z. Y. Deng, L. Guo and Q. Zhong, Enhanced catalytic ozonation for NO\textsubscript{x} removal with CuFe\textsubscript{2}O\textsubscript{4} nanoparticles and mechanism analysis, J. Mol. Catal. A: Chem., 2016, 424, 153–161.