Serum proteome modulations upon treatment provides biological insight on response to treatment in relapsed mantle cell lymphoma

Lavanya Lokhande | Venera Kuci Emruli | Christian Winther Eskelund | Arne Kolstad | Martin Hutchings | Riikka Räty | Carsten Utoft Niemann | Kirsten Grønbæk | Mats Jerkeman | Sara Ek

1Department of Immunotechnology, Lund University, Lund, Sweden
2Department of Haematology, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
3Biotech Research and Innovation Centre BRIC, University of Copenhagen, Copenhagen, Denmark
4Oslo University Hospital, Oslo, Norway
5Department of Hematology, Helsinki University Central Hospital, Helsinki, Finland
6Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
7The Danish Stem Cell Center (Danstem), Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
8Department of Oncology, Lund University, Lund, Sweden

Correspondence
Sara Ek, Department of Immunotechnology, Lund University, Lund, Sweden.
Email: sara.ek@immun.lth.se

Funding information
Cancerfonden, Grant/Award Numbers: 2016/465, 2019/0309; Fru Berta Kamprads Stiftelse, Grant/Award Number: FBKS-2018-7-1149; Horizon 2020 Framework Programme, Grant/Award Number: EUH2020-MSCA-COFUND-2016-754299

Abstract

Background: The possibility to monitor patient's serum proteome during treatment can provide deepened understanding of the biology associated with response to specific drugs. Non-invasive serum sampling provides an opportunity for sustainable repetitive sampling of patients, which allows for more frequent evaluation of the biological response and enhanced flexibility in treatment selection in contrast to tissue biopsies.

Aim: To pin-point biologically relevant changes in pre- and on-treatment serum proteome samples in relapsed mantle cell lymphoma (MCL) patients, leading to insight into mechanisms behind response to treatment in sub-groups of patients.

Methods: Pre- and on-treatment serum samples from relapsed MCL patients treated with a triple combination therapy of rituximab, ibrutinib and lenalidomide were available for the study, together with detailed clinicopathological information. A microarray technology targeting 158 serum proteins using 371 antibody-fragments was used to compare the serum proteome at the two time-points.

Results: Proteins modulated by the treatment were shown to be associated to a MCL sub-group with ATM/TP53 alterations, which emphasizes the importance of treatment stratification. Absolute values of serum protein levels in on-treatment samples were highly variable and showed no correlation to outcome. To circumvent the challenge of variability in absolute serum protein levels, the velocity of change of individual serum proteins was used to identify proteins associated with clinical response. Increased values of TGF-β1, CD40 and complement component 4 comparing pre- and on-treatment samples were associated with remaining minimal residual disease (MRD) and increased BTK was associated with short progression-free survival (PFS).

Conclusion: We show that the genetic sub-type of MCL affects the biological response to treatment in serum and that the change in defined serum proteins reveals the biology associated with clinical response.

Keywords
biomarker discovery, mantle cell lymphoma (MCL), serum proteins
1 | INTRODUCTION

Mantle cell lymphoma (MCL) remains a subtype of non-Hodgkin’s lymphoma (NHL) with high relapse rates and poor prognosis. Over the last few decades, the increase in understanding of the molecular pathogenesis of this disease has enabled development of new therapeutic regimens with emphasis on anti-CD20 monoclonal antibody immunotherapies in conjugation with prevalent chemotherapeutic strategies. This has improved the overall survival and lowered the progression rate. However, further improvement in combinatorial therapeutics is needed for better outcome, particularly in patients with relapsed/refractory (R/R) MCL.

To aid in this process, improved insight of how the current therapies modulate the biology is essential. Using serum, it is possible to analyze the effect on the systemic immune profile by various treatments, as samples across multiple time-points easily can be collected. Changes in serum proteome can then be used to gain clinically relevant insights. This is especially important for aggressive systemic diseases like MCL where repeated invasive sampling through tissues biopsies is not feasible.

Serum proteins have proven to be extremely valuable to gain diagnostic and prognostic information in various cancer types with several biomarkers being clinically implemented; either as individual markers (e.g., prostate-specific antigen [PSA] for prostate cancer diagnosis and prognosis) or combined signatures (e.g., OVA1 five protein panel for ovarian cancer). The focus of serum analysis in most published studies is on pre-treatment cohorts for biomarker discovery in relation to diagnosis and treatment outcome predictions. As serum proteins are in a state of constant flux, especially when the patient’s treatment status changes, there is additional information to be collected in on-treatment sampling for improved understanding of disease progression. Few studies have analyzed the on-treatment modulation of serum proteins for B-cell lymphomas before and during treatment, and none for MCL.

In the present study, we took benefit of the combined collection of pre- and on-treatment serum samples and clinicopathological information from the Nordic MCL6-Philemon clinical trial for relapsed/refractory (R/R) MCL. The trial includes immunomodulatory treatment with lenalidomide, BTKi ibrutinib and anti-CD20 antibody rituximab. In a previous study, a prognostic signature (RIS; relapsed immune signature) based on 11 serum proteins correlated to overall survival was developed using the pre-treatment samples. Clinical and biological information was integrated and the MCL international index/relapsed immune signature (MIPIrel) was developed and showed improved stratification of patients into three risk groups. A separate previous study has also investigated the most common genetic alterations, including ATM and TP53 and their correlation to clinical outcome in MCL. In this follow-up study, the IMMray™ protein microarray technology was used to investigate changes in serum proteome pre- and on-treatment.

The aim of the study is to pin-point changes in pre- and on-treatment serum proteome samples, leading to improved biological insight of relapsed MCL and response to treatment.

2 | METHODS

2.1 | Patient samples and information

Serum samples were collected from patients included in R/R MCL6-Philemon clinical trial (NCT02460276) conducted by the Nordic Lymphoma group (patients enrolled 2015–2016, with last follow-up date in December 2019). The patients received induction treatment with lenalidomide, ibrutinib and rituximab (12 cycles, 28 days each). This was followed by a maintenance phase of rituximab and ibrutinib. Samples were collected pre-treatment (Baseline samples, n = 44), and on-treatment (at cycle 4, after 12 weeks of treatment, n = 36) which is the second time-point used for serum analyses in the present study. Samples from eight patients were lacking at the second time point. Five samples were lacking due to death of the patients, whereas three serum samples were not available and hence, not evaluated in the microarray (Figure 1). Serum samples were stored at −80°C until the day of the experiment. The overall patient characteristics are shown in Figure 1 and in Table S1.

The patient information and material collected from this trial was previously used to assess the treatment regimen efficacy and to identify gene mutations or deletions. Serum analysis on the pre-treatment samples has been published, which led to the formation of a prognostic serum protein signature strengthening the established MIPI, and the development of the MIPIrel. The current study is a follow-up of the previous serum analysis to study the effect of treatment on the serum proteome, and which biological information can be retrieved on response to therapy in the relapsed setting. The experimental setup is identical to the published study and explained in detail in Lokhande et al, 2020.

For this cohort of patients (n = 44), the median follow-up time is around 5 years, with a median survival of 40.3 months and a median progression free survival of 17.6 months. Additionally, 25% of patients (n = 11) had ATM mutation and 52% (n = 23) of patients had TP53 aberrations (mutations or deletions; Figure 1). In total, 15.9% (n = 7) of patients had aberrations in both ATM and TP53 (Figure 1). The mutation status was analyzed from DNA extracted from bone marrow samples, using a custom-designed multiplex Ion Ampliseq panel (Ampliseq designer, Thermo Fischer Scientific, Waltham, MA) described in Eskelund et al. As reported previously, no significant correlation between survival and TP53 aberrations was seen, in contrast to studies where patients have been treated with chemotherapy-based regimens in which TP53 mutations is a poor prognostic marker. To determine minimal residual disease (MRD), PCR amplification of immunoglobulin heavy chain genes (IGH) and CCND1-IGH t(11;14) translocations were assessed from bone marrow derived DNA, as previously described.

2.2 | Serum protein microarray and data pre-processing

The serum samples (n = 80) were analyzed using an antibody microarray platform with 371 single chain antibody fragments targeting
The generated dataset was quality controlled, and the most important outcome and clinicopathological parameters including OS, PFS, survival event at latest follow-up, ATM and TP53 aberrations, Ki-67, MRD, MIPI, MIPIs and gender (upper panel). Patients are sorted according to OS (low (black) to high (pink)). Likewise, PFS is also represented in a range (low (black) to high (orange)). NA (gray) represents missing data points. The minimal residual disease (MRD) status (*) was measured at 6 months after treatment initiation using bone marrow. For each patient, the time to progression is shown as a color code (lower panel). The remaining graphs and other analysis (Kaplan-Meier curve, log-rank tests) were created using R and R studio (www.r-project.org) to remove batch effects.

2.3 | Data analysis

Two-group comparison and p-value filtering (α-cutoff = .05) using Qlucore (Qlucore, Lund, Sweden) was used to identify differentially regulated proteins in paired samples (B vs. C4). GraphPad prism 9 (GraphPad software, San Diego, CA) was used to create the box-and-whisker plots and to perform two-tailed paired t-test for assessing the intensity distribution before and after-treatment. The difference was defined as the log ratio of signal intensity of paired samples ($n = 36$), hereafter named as velocity of change or δ_{C4}, representing the rate of change in serum expression comparing pre and on-treatment expression profiles. Thus, $\delta_{C4} < 0$ indicated higher expression and $\delta_{C4} > 0$ indicated lower expression in the on-treatment samples in comparison to the pre-treatment samples. Qlucore omics explorer (Version 3.6, Qlucore, Lund, Sweden) was used for heatmap, volcano plot and feature reduction using group comparison with a p-value cutoff of .05. To identify key biomarkers in relation to time-to-progression (TTP), patients were grouped based on PFS (Figure S1(A)). Early progression and late progression were classified as patients that progressed within the first year ($n = 17$) and during/post fourth year ($n = 16$), respectively (Figure S1).

The remaining graphs and other analysis (Kaplan–Meier curve, time-series graph, log-rank tests) were created using R and R studio (www.r-project.org). For functional analysis of proteins, pathway analysis was performed using STRING: The Search Tool for the Retrieval of Interacting Genes/Proteins (http://stringdb.org). The entire analysis workflow for the study is given in Figure S2.

3 | RESULTS

3.1 | Differentially expressed biomarkers between pre- and on-treatment samples are associated with specific genetic subtypes

With the aim of increasing biological understanding of disease progression, we performed comparative analysis of serum proteins in pre- and on-treatment samples to find differentially regulated proteins. Feature reduction of the entire antibody panel in conjunction with paired ($n = 35$) two-group comparison (Qlucore), yielded three statistically significantly ($p < .05$) differentially regulated proteins: Poly(ADP-Ribose) Polymerase 1 (PARP1), Aprataxin, PNK-like factor (APLF) and Golgi reassembly-stacking protein 2 (GOLPH6; Figure 2(A)). The three proteins had reduced expression in the on-treatment samples. However, this decrease was exclusively contributed by patients with aberrations of TP53 and/or ATM (Figure 2(B)). Concurrent ATM/TP53 aberrations showed association with decreased expression for both GOLPH6 and PARP1 ($p \sim .0008$ and $p \sim .0017$ respectively) (Figure 2(B),(D)). APLF showed decreased serum expression at C4 with the most significant difference in the ATM mutated patients ($p \sim .0005$; Figure 2(C), (D)). The non-mutated patients did not exhibit any differential profile between pre- and on-treatment samples for the three identified proteins (Figure 2(D)). The association to ATM and TP53 mutations indicates that genomic status plays a role in treatment-dependent protein modulation.
3.2 | Evaluation of previously defined RIS-signature

To evaluate if the previously defined RIS-signature is stable at on-treatment, the signature was evaluated using the serum protein levels in on-treatment samples. We show that the trend with higher expression of the RIS-proteins in the low-risk group remains the same (Figure S3). However, when using absolute values and comparing high/low-risk MIPIRIS groups, no analytes were significantly regulated within the MIPIRIS subgroups in the on-treatment samples, while more than 200 analytes (data not shown) were statistically differentially regulated between high/low MIPIRIS in pre-treatment samples. Thus, we concluded that although trends identified in pre-treatment samples remain the same in on-treatment samples, the biological variation induced by the treatment causes a major challenge in using absolute values in on-treatment samples.
3.3 Velocity profile (δ_{C4}) circumvents heterogeneity in protein modulation and pinpoints additional biomarkers associated to MRD and progression

To be able to analyze the patient specific response independent of absolute serum protein values, we exploited a strategy of using the velocity of change between pre- and on-treatment samples. This strategy has successfully been employed previously in a similar dataset obtained by the IMMray™ technology for breast cancer clinical cohort study for prediction of metastasis. By assessing the panel of proteins using δ_{C4}, and associating it to outcome and important clinical parameters, we identified three proteins that were differentially regulated between MRD+ and MRD− patients. TGF-β1 was the most significant (p-value = 0.0186) analyte followed by CD40 (p-value = 0.0275) and complement component 4 (p-value = 0.048). Overall, MRD+ were associated with increased protein expression in on- compared to pre-treatment samples for the significantly de-regulated proteins (Figure 3).

To identify key biomarkers in relation to TTP, patients were categorically classified as early and late progression as defined in the Methods section. Using δ_{C4} and the two-group comparison in Qucore™, we identified the top 20 differentially regulated serum proteins comparing early and later progression. These proteins mainly consisted of inflammatory cytokines, chemokines and proteins belonging to the complement cascade and can be directly correlated to the immunomodulatory treatment (Figure 4(A)). Among the top 20 proteins, BTK (p = 0.026) was significantly modulated between the

![Figure 3](image-url)

Figure 3 Heatmap showing the expression of the three proteins differentially regulated between patients with MRD (Yellow) and without MRD (Blue) using δ_{C4}. MRD was measured using bone marrow samples 6 months after treatment initiation. δ_{C4} < 0 indicates higher expression and δ_{C4} > 0 indicates lower expression in the on-treatment samples in comparison to the pre-treatment samples.

![Figure 4](image-url)

Figure 4 Serum proteins associated with time to progression. (A) Pathway analysis of the top 20 serum proteins differentially modulated (δ_{C4}) comparing patients with early and late progression. The identified proteins are broadly associated with interleukin signaling (red), complement cascade (blue) or in signal transduction (yellow). (B) Volcano plot identifying BTK to be significantly (p-value cutoff = 0.05) overexpressed (comparing on- and pre-treatment samples) in patients with early progression. (C) Heatmap of the top 20 serum proteins sorted in accordance with decreasing p-value. The heatmap shows the formation of two major clusters based on the protein expression profile of the velocity of change. Various clinical parameters including mutational status, progression and survival have been mapped to the cluster distribution. δ_{C4} < 0 indicates higher expression and δ_{C4} > 0 indicates lower expression in the on-treatment samples in comparison to the pre-treatment samples. *Represents protein identified by second antibody clone. ^C4/C5 represents complement component 4/5, respectively.
early and late progression (Figure 4(B) and Figure S4). Heatmap visualization led to the formation of two clusters of patients with either higher (C4 > B (n = 13)) or lower expression of these top 20 proteins comparing pre- and on-treatment samples (C4 < B (n = 11)) (Figure 4(C)). In general, patients with early progression (87.5%) showed increased expression upon treatment for proteins associated with time to progression. In the group with high expression of the top 20 proteins identified by hierarchical clustering, 53% of the patients died during the treatment period, with an average OS of 26.9 months. Contrarily, only 9% of the patients associated with low expression of the top 20 proteins died during the same time period and had an average OS of 43.1 months. The differences in OS were not explained by the frequency of TP53 mutations (data not shown). Based on the above, we conclude that increasing serum levels of BTK is indicative of continued tumor growth and associated with progression before 12 months. Increasing serum expression of BTK is indicative of poor response to treatment and results in early progression and lower survival (Figure 4 and Figure S4).

4 | DISCUSSION

A biologically oriented approach to treatment selection and adaptation is a must to improve outcome in relapsed MCL. Here we explored the biology behind treatment response through investigations of pre- and on-treatment samples from a clinical trial including a combination of targeted and immune-stimulatory agents. By measuring serum proteins, a global view of both the systemic immune response against the tumor as well as the proteins secreted or leaked from the tumor can be assessed, and the non-invasive sampling allows repetitive collection over time.

Based on our study, we conclude that, (a) MCL subtypes with specific mutations in TP53 and ATM affect the way that the serum proteome changes upon treatment, emphasizing that the response is dependent on specific features of the tumor biology. (b) Using the rate of change/velocity profile, which circumvents the heterogeneity of absolute protein serum levels, serum protein changes associated with early progression and MRD status could be identified.

Comparing pre- and on treatment serum samples, we show that three proteins, that is, PARP1, APLF, GOLPH6 were differentially regulated with lower expression after 3 months of treatment and the reduction was primarily seen in patients with alterations in either TP53 and/or ATM. Thus, it seems that MCL patients with a specific mutational spectrum respond more homogenously to the treatment. In particular, PARP1 has been extensively studied in various cancer types, with a focus towards PARP1 inhibitors and synthetic lethality. The efficacy of these inhibitors in inducing lethality in ATM and ATM-TP53 double deficient MCL was previously validated using in vitro and in vivo models. Thus, the modulation in PARP1 expression in ATM-TP53 aberrated MCLs could be a result of the increased DNA repair burden and targeting PARP1 in these tumors is an interesting clinical option. A potential cause of decreased PARP1 serum expression could be a result of tumor reduction upon treatment, which needs to be further investigated. Ibrutinib that is included in the treatment is known to activate caspase signaling that in the next step causes PARP1 cleavage, a known hallmark of cell death through apoptosis. In this study, the antibody-fragment used targeting PARP1 is directed to the C-terminal part of the protein and will thus detect either the full protein or the 89 kDa caspase-cleaved subunit, both including the C-terminal domain.

APLF and GOLPH6, have not previously been studied in relation to Ibrutinib/Lenalidomide or Rituximab. However, APLF functions together with PARP1 in DNA repair mechanisms and there is also evidence that GOLPH6 is cleaved by caspase-3 during apoptosis. Thus, we speculate that the serum expression profile of these three proteins is a result of increased apoptosis of tumor cells.

To improve the biological understanding of treatment effect on serum proteome, as a surrogate marker for local response in the tumor, comparative analysis of the change in serum levels for pre- and on-treatment samples was performed. We showed that the absolute values in on-treatment samples were highly variable and no correlation to outcome was seen, thus the velocity of change in serum protein levels was used to assess changes more robustly. The concept of using the velocity of change has been extensively studied, especially for prostate-specific antigen (PSA), since the most common problem with PSA has been its variable detection, which leads to overdiagnosis and thus, overtreatment. The use of PSA velocity (PSAV) has been proposed and comprehensively reviewed.

In our study, we show that the velocity of change of TGF-β1 serum protein along with CD40 and complement component 4 was different comparing patients with/without MRD at 6 months of treatment. TGF-β1 has been demonstrated to negatively contribute to persistent MRD positive status in several types of cancer. TGF-β1 can act as a metastatic driver, inducer of EMT transition and impair anti-tumorigenic response. Thus, our results where increased serum TGF-β1 at 3 months of treatment predicts 6-months MRD status suggest that targeting and/or using TGF-β1 to monitor MCL patients is an interesting prognostic tool.

Furthermore, we show that the velocity of change of BTK was associated with disease progression. As there is no evidence that BTK is secreted, the serum profile could be a result of the proteins being released from lymphoma cells upon treatment. The possibility to measure BTK in serum as a surrogate marker for tumor burden is an attractive alternative that should be further studied.

In summary, in this conceptually novel study of pre- and on-treatment serum samples in relapsed MCL, we were able to pin-point novel biological findings with a tentative future clinical implication. We show that the genetic background influences the way that the serum proteome changes upon treatment, confirming that genetic testing is important for treatment selection. We further conclude that using velocity of change between pre- and on-treatment samples enables us to circumvent the heterogeneity in absolute serum levels of biologically interesting markers. Thus, we propose that non-invasive sampling of serum is useful to monitor patients and provides the possibility to adjust treatment based on biological response. Serum sampling at/or before 12 weeks of treatment should be...
introduced in future clinical trials to allow similar studies for a wider set of treatment regimens. Based on our data, we conclude that a risk score combining MIPI, key genetic alterations including TP53 and ATM, and velocity of change of key serum markers, is a way forward to reach more personalized MCL treatment plans.

ACKNOWLEDGMENTS
We acknowledge the support from several participants: Each of the patients taking part in the Philemon clinical trial. Technical assistance by Corinna Richter and Lisa Theorin with antibody and slide production. Immunovia AB for providing support with microarray preparations. Funding for this project was received from the European Community’s Horizon 2020 Framework Programme for Research and Innovation (EU-H2020-MSCA-COFUND-2016-754299) for part of doctoral student salary, Cancerfonden 2016/465 for part of doctoral student salary and running cost and 2019/0309 and Fru Berta Kamprad FBKS-2018-7-(149) for part of doctoral student salary and running cost.

CONFLICT OF INTEREST
S.E. is an original co-founder, and stockholder of Immunovia that provided the antibody-microarrays used in the study. C.U.N. received research funding and/or performed consultancies for Abbvie, AstraZeneca, CSL Behring, Sunesis, Janssen, Roche, Genmab outside this work. Janssen and Celgene provided study drug and financial support for the MCL6-Philemon trial.

AUTHOR CONTRIBUTIONS
All authors had full access to the data in the study and take responsibility for the integrity of the data and the accuracy of the data analysis. Conceptualization, L.L., M.J., S.E.; Methodology, L.L.; Investigation, L.L.; Formal Analysis, L.L., V.K.E.; Resources, C.W.E., A.K., M.H., R.R., C.U.N., K.G., M.J., S.E.; Writing—Original Draft, L.L.; S.E.; Writing—Review & Editing, L.L.; S.E.; Visualization, L.L.; Supervision, V.K.E., M.J., S.E.; Funding Acquisition, S.E.; Data Curation, L.L., C.W.E., A.K., M.H., R.R., C.U.N., K.G., M.J.

ETHICAL STATEMENT
The study was approved according to national and international law by the regional ethic committee at Lund University (Lund regional ethic committee, Dnr 2014-709), and included written informed consent from all participants.

DATA AVAILABILITY STATEMENT
The data that support the findings of this study are available from the corresponding author upon reasonable request.

ORCID
Lavanya Lokhande https://orcid.org/0000-0002-0045-8076

REFERENCES
1. Cheminant M, Dreyling M, Hermine O. Recent advances in the first-line treatment of mantle cell lymphoma. Ann Lymphoma. 2020;4:2-2.
2. Jain P, Wang M. Mantle cell lymphoma: 2019 update on the diagnosis, pathogenesis, prognostication, and management. Am J Hematol. 2019;94(6):710-725.
3. Ulz P, Heitzel E, Geigl JB, Speicher MR. Patient monitoring through liquid biopsies using circulating tumor DNA. Int J Cancer. 2017;141(5):887-896.
4. Bai Y, Zhao H. Liquid biopsy in tumors: opportunities and challenges. Ann Transl Med. 2018;6(51):589-589.
5. de Angelis G, Rittenhouse HG, Mikolajczyk SD, Blair Shamel L, Semjonow A. Twenty years of PSA: from prostate antigen to tumor marker. Rev Urol. 2007;9(3):113-123.
6. Nolen BM, Lokshin AE. Biomarker testing for ovarian cancer: clinical utility of multiple assays. Mol Diagn Ther NIH Public Access. 2013;17:139-146.
7. Che YQ, Wang D, Liu P, et al. Rapid identification of novel independent serum biomarkers in diffuse large B-cell lymphoma. Transl Cancer Res. 2020;9(8):4534-4541.
8. Pauly F, Fjordén K, Leppä S, Holte H, Björkholm M, et al. Plasma immunoprofiling of patients with high-risk diffuse large B-cell lymphoma: a Nordic Lymphoma Group study. Blood Cancer J. 2016;6(11):e501.
9. Späth F, Wibom C, Krop EJM, et al. Biomarker dynamics in B-cell lymphoma: a longitudinal prospective study of plasma samples up to 25 years before diagnosis. Cancer Res. 2017;77(6):1408-1415.
10. Jerkeman M, Hutchings M, Räty R, et al. Ibrutinib-Lenalidomide-rituximab in patients with relapsed/refractory mantle cell lymphoma: final results from the Nordic lymphoma group MCL6 (PHILEMON) phase II trial. Blood. 2020;136(1):36-36.
11. Jerkeman M, Eskelund CW, Hutchings M, et al. Ibrutinib, lenalidomide, and rituximab in relapsed or refractory mantle cell lymphoma (PHILEMON): a multicentre, open-label, single-arm, phase 2 trial. Lancet Haematol. 2018;5(3):e109-e116.
12. Lokhande L, Kuci Emruli V, Kolstad A, et al. Immune-related protein signature in serum stratified relapse mantle cell lymphoma patients based on risk. BMC Cancer. 2020;20(1):1202.
13. Eskelund CW, Dahl C, Hansen JW, et al. TP53 mutations identify younger mantle cell lymphoma patients who do not benefit from intensive chemoimmunotherapy. Blood. 2017;130(17):1903-1910.
14. Nordström L, Sembo S, Eden P, et al. SOX11 and TP53 add prognostic information to MIPI in a homogenously treated cohort of mantle cell lymphoma—a Nordic lymphoma group study. Br J Haematol. 2014;164(1):98-108.
15. Ferrero S, Rossi D, Rinaldi A, et al. KMT2D mutations and TP53 disruptions are poor prognostic biomarkers in mantle cell lymphoma receiving high-dose therapy: a FIL study. Haematologica. 2019;2018:214056.
16. Carlsson A, Wingren C, Kristensson M, et al. Molecular serum portraits in patients with primary breast cancer predict the development of distant metastases. Proc Natl Acad Sci U S A. 2011;108(34):14252-14257.
17. Schiewer MJ, Knudsen KE. Transcriptional roles of PARP1 in cancer. Molecular cancer research. Am Assoc Cancer Res Inc. 2014;12:1069-1080.
18. Schiewer MJ, Goodwin JF, Han S, et al. Dual roles of PARP-1 promote cancer growth and progression. Cancer Discov. 2012;2(12):1134-1149.
19. OSSOVSKAYA V, KOO IC, KALDJIAN EP, ALVARES C, SHERMAN BM. Upregulation of poly (ADP-ribose) polymerase-1 (PARP1) in triple-negative breast cancer and other primary human tumor types. Genes Cancer. 2010;1(8):812-821.
20. Chaitanya GV, Alexander JS, Babu PP. PARP-1 cleavage fragments: signatures of cell-death proteases in neurodegeneration. Cell Commun Signal BioMed Central. 2010;8:31.
21. Diamantopoulos PT, Sofotasio M, Papadopoulou V, Polonyi K, Iliakis T, Viniou NA. PARP1-driven apoptosis in chronic lymphocytic leukemia. Biomed Res Int. 2014;2014:1-6.
22. Topatana W, Juengpanich S, Li S, et al. Advances in synthetic lethality for cancer therapy: cellular mechanism and clinical translation. J Hematol Oncol. 2020;13:118.
23. Williamson CT, Muzik H, Turhan AG, et al. ATM deficiency sensitizes mantle cell lymphoma cells to poly(ADP-ribose) polymerase-1 inhibitors. Mol Cancer Ther. 2010;9(2):347-357.
24. Golla RM, Li M, Shen Y, et al. Inhibition of poly(ADP-ribose) polymerase (PARP) and ataxia telangiectasia mutated (ATM) on the chemosensitivity of mantle cell lymphoma to agents that induce DNA strand breaks. Hematol Oncol. 2012;30(4):175-179.
25. Weston VJ, Oldreive CE, Skowronska A, et al. The PARP inhibitor olaparib induces significant killing of ATM-deficient lymphoid tumor cells in vitro and in vivo. Blood. 2010;116(22):4578-4587.
26. Williamson CT, Kubota E, Hamill JD, et al. Enhanced cytotoxicity of olaparib and a PARP inhibitor for mantle cell lymphoma cells in vitro and in vivo. Blood. 2011;116(22):4578-4587.
27. Kiel PJ, Overholser BR, Feng H, et al. Olaparib induced moderate killing of ATM-deficient mantle cell lymphoma cells in vitro and in vivo. Ann Hematol Oncol. 2019;6(2):1233.
28. Wang X, Wong J, Sevinsky CJ, et al. Bruton’s tyrosine kinase inhibitors prevent therapeutic escape in breast cancer cells. Mol Cancer Ther. 2016;15(9):2198-2208.
29. Prabaharan CB, Yang AB, Chidambaram D, Rajamanickam K, Napper S, Sakharkar MK. Ibrutinib as a potential therapeutic option for HER2 overexpressing breast cancer—the role of STAT3 and p21. Invest New Drugs. 2020;38(4):909-921.
30. Herman SEM, Gordon AL, Hertlein E, et al. Bruton tyrosine kinase represents a promising therapeutic target for treatment of chronic lymphocytic leukemia and is effectively targeted by PCI-32765. Blood. 2011;117(23):6287-6296.
31. Tewari M, Quan LT, O’rourke K, et al. Yama/CPP32, a mammalian homolog of CED-3, is a CrmA-inhibitable protease that cleaves the death substrate poly(ADP-ribose) polymerase. Cell. 1995;81:801-809.
32. Margolin N, Raybuck SA, Wilson KP, et al. Substrate and inhibitor specificity of interleukin-1β-converting enzyme and related caspases. J Biol Chem. 1997;272:7223-7228.
33. Kaufmann SH, Desnoyers S, Ottaviano Y, Davidson NE, Poirier GG. Specific proteolytic cleavage of poly(ADP-ribose) polymerase: an early marker of chemotherapy-induced apoptosis. Cancer Res. 1993;53(17):3976-3985.
34. Rutenberg SL, Cortes-Ledesma F, Guo L, Iles NJ, Caldecott KW. APLF (C2orf13) is a novel component of poly(ADP-ribose) signaling in mammalian cells. Mol Cell Biol. 2008;28(14):4620-4628.
35. Lane JD, Lucoco J, Pryde J, et al. Caspase-mediated cleavage of the stacking protein GRASP65 is required for Golgi fragmentation during apoptosis. J Cell Biol. 2002;156(3):495-509.
36. Gulati R, Mariotto AB, Chen S, Gore JL, Etzioni R. Long-term projections of the harm-benefit trade-off in prostate cancer screening are more favorable than previous short-term estimates. J Clin Epidemiol. 2011;64(12):1412-1417.
37. Heijnsdijk EAM, der Kinderen A, Wever EM, Draisma G, Roobol MJ, de Koning HJ. Overdetection, overtreatment and costs in prostate-specific antigen screening for prostate cancer. Br J Cancer. 2009;101(11):1833-1838.
38. Javaeed A, Ghauri SK, Ibrahim A, Doheim MF. Prostate-specific antigen velocity useful in early detection of prostate cancer? A critical appraisal of the evidence. J Nat Cancer Inst. 2007;99(20):1510-1515.
39. Nassir AM. A piece in prostate cancer puzzle: Future perspective of novel molecular signatures. Saudi J Biol Sci. 2020;27:1148-1154.
40. Nair RR, Tolentino J, Hazlehurst LA. The bone marrow microenvironment as a sanctuary for minimal residual disease in CML. Biochem Pharmacol. 2010;80:602-612.
41. Tachtsidis A, McInnes LM, Jacobsen N, Thompson EW, Saunders CM. Minimal residual disease in breast cancer: an overview of circulating and disseminated tumour cells. Clin Exp Metastasis. 2016;33:521-550.
42. Murray NP. Minimal residual disease in prostate cancer patients after primary treatment: theoretical considerations, evidence and possible use in clinical management. Biol Res. 2018;51:32.
43. Badia-Ramentol J, Linares J, Gómez-Llónin A, Calon A. Minimal residual disease, metastasis and immunity. Biomolecules. 2021;11:1-20.
44. Nicolini A, Rossi G, Ferrari P, Carpi A. Minimal Residual Disease in Advanced or Metastatic Solid Cancers: the G0-G1 State and Immuno-therapy Are Key to Unwinding Cancer Complexity. Seminars in Cancer Biology. 2020;51:1044-1079X(20);30075-4.
45. Pardali K, Moustakas A. Actions of TGF-β as tumor suppressor and pro-metastatic factor in human cancer. Biochim et Biophys Acta Rev Cancer. 2007;1775:21-62.

SUPPORTING INFORMATION
Additional supporting information may be found online in the Supporting Information section at the end of this article.

How to cite this article: Lokhande L, Kuci Emruli V. Eskelund CW, et al. Serum proteome modulations upon treatment provides biological insight on response to treatment in relapsed mantle cell lymphoma. Cancer Reports. 2022;5(7):e1524. https://doi.org/10.1002/cnr2.1524