SEC62 and SEC63 Expression in Hepatocellular Carcinoma and Tumor-Surrounding Liver Tissue

Markus Caspera Maximilian Linxweilerb Johannes Linxweilerc
Richard Zimmermannb Matthias Glanemannc Frank Lammerta
Susanne N. Webera

aDepartment of Medicine II, Saarland University Medical Center, Homburg, Germany; bDepartment of Medical Biochemistry and Molecular Biology, Saarland University Medical Center, Homburg, Germany; cDepartment of Urology and Pediatric Urology, Saarland University Medical Center, Homburg, Germany

\textbf{Keywords}

Chronic liver disease · Endoplasmic reticulum · Gene expression · Hepatocarcinogenesis · Immunohistochemistry · Intracellular signaling · Liver cancer · Liver tumor

\textbf{Abstract}

\textit{Introduction:} The endoplasmic reticulum transmembrane proteins Sec61, Sec62, and Sec63 are responsible for the intracellular trafficking of precursor proteins and affect intracellular signaling. SEC62 overexpression has been linked to various human cancers. Our aim was to investigate SEC62 and SEC63 expression in hepatocellular carcinoma (HCC) and surrounding liver tissue. \textbf{Patients and Methods:} Primary liver tissue was collected from 11 consecutive patients (70 ± 9 years; 10 men) who underwent HCC resection. In the HCC and the tumor-surrounding liver tissue we investigated SEC62 and SEC63 mRNA expression using quantitative real-time PCR. For Sec62, immunohistochemistry was performed. \textbf{Results:} SEC62 and SEC63 total mRNA contents were significantly (\(p = 0.001\)) higher in HCCs (CT 22.5 ± 0.4 and 22.6 ± 0.3) when compared to the surrounding tissue (CT 24.6 ± 0.6 and 25.1 ± 0.9). Using the comparative CT method, SEC62 and SEC63 expression in HCC was increased 5- and 8.1-fold, respectively, in comparison to surrounding tissue. For Sec62 immunohistochemistry, the mean immunoreactive scores (IRS) were 7.9 ± 2.9 for HCC and 4.8 ± 1.2 for non-tumorous liver (\(p = 0.027\)). The mean IRS in HCC were 5.7 ± 3.5 and 8.9 ± 2.3 for patients without (\(n = 3\)) and with tumor recurrence (\(n = 8\)), respectively. \textbf{Conclusions:} Overexpression of SEC62 and SEC63 is a common feature of HCC. The role of Sec62 as a prognostic marker for tumor recurrence after surgery and its potential role in treatment stratification must be addressed in future studies.

\textbf{Introduction}

Hepatocellular carcinoma (HCC) is the sixth most common cancer worldwide with increasing incidence rates, and one of the leading causes of cancer-related death [1, 2]. Cirrhosis is the strongest risk factor for HCC development and often limits treatment options because of significantly impaired liver function. However, 20% of HCCs develop into non-cirrhotic livers, especially in patients with chronic hepatitis B virus infection or non-alcoholic fatty liver disease [3].

Over the last decades our understanding of hepatocarcinogenesis has rapidly improved. The molecular and genetic landscape of HCC is very heterogeneous and multiple signaling pathways and genes as well as microRNAs...
have been found to be involved [4]. The trafficking of precursor polypeptides into or across the endoplasmic reticulum (ER) membrane is essential for the biogenesis of transmembrane and secretory proteins [5]. The ER transmembrane proteins Sec61 complex, Sec62, and Sec63 are core components of the protein translocation machinery responsible for the co- and posttranslational protein transport [5, 6]. Moreover, Sec proteins can affect intracellular signaling: Sec62 induces the process of recovery of cells from ER stress, and Sec61 complex also acts as a calcium leak channel [6, 7].

Overproduction of Sec proteins and mutations in the corresponding genes have been linked to human disease: mutations in SEC63 are associated with autosomal-dominant polycystic liver disease [8], and SEC63 may act as a tumor suppressor gene. SEC63 frame-shift mutations are common in microsatellite unstable colonic and gastric cancers and small-bowel carcinomas [6, 9, 10]. The strongest evidence for a causative role in carcinogenesis exists for Sec62. SEC62 overexpression in tumor tissue (mRNA and/or protein level) was demonstrated for prostate cancer [11, 12], lung cancer, thyroid cancer [13], head and neck squamous cell carcinoma [14], cervical cancer [15], and breast cancer [16].

High SEC62 expression in HCC tissue and peripheral blood mononuclear cells of patients with HCC has been shown to indicate increased risk for early HCC recurrence after resection [17, 18]. So far, no study has analyzed SEC62 and SEC63 expression levels in HCC and tumor adjacent liver tissue.

Materials and Methods

Patients

Eleven consecutive patients with HCC who underwent resection of HCC at the Saarland University Medical Center were prospectively recruited for the study. The follow-up time for recurrence was 5 years for each patient. All of them had non-metastatic disease BCLC (Barcelona clinic liver cancer) stage A. Only 3 patients had histologically confirmed liver cirrhosis (Child-Pugh class A). Table 1 provides the patient characteristics. Immediately after resection representative HCC tissue samples were stored in RNAlater in the operating room (Qiagen, Hilden, Germany). Coronal sections of tumor adjacent liver tissue were also collected from tumor-surrounding non-tumorous liver tissue. Afterwards all samples were stored at −80 °C. The surgical specimen was stored in formalin and breast cancer [16].

Gene Expression Analyses

RNA was isolated from frozen livers using an RNeasy Mini Kit (Qiagen). One microgram of RNA was transcribed to cDNA using the High-Capacity cDNA Reverse Transcription kit (Life Technologies, Darmstadt, Germany). Expression of SEC62 (Hs00162786_m1) and SEC63 (Hs00273093_m1) was determined on the Taqman® 7500 Fast Real-Time PCR system (Life Technologies). The following genes were used as endogenous controls: GAPDH (Hs02758991_g1), 18S (Hs99999901_s1), and HMBS (Hs00900675_m1) and SRSF4 (Hs00609396_g1; Life Technologies). Relative expressions of SEC62 and SEC63 were calculated using the ΔΔCT method [19] and normalized to controls (surrounding liver tissue).

Immunohistochemistry

Tissue samples (HCC and tumor-free adjacent tissue) from each of the 11 patients were previously hematoxylin and eosin stained and evaluated by a pathologist. Sections were transferred onto Superfrost Ultra Plus Microscope Slides (Menzel-Gläser, Braunschweig, Germany) and incubated at 37 °C overnight. On deparaffinization, heat-induced epitope retrieval was performed by microwave treatment in 10 mmol of citrate buffer (pH 6.0), and nonspecific protein binding sites were blocked by incubation in blocking solution (80 mL of 0.1 M Tris-HCl, pH 7.2, 3 g of bovine serum albumin, and 20 mL of FBS; Sigma-Aldrich Chemie GmbH) for 30 min at room temperature. Subsequently, primary antibody incubation was performed with a 1:200 solution (diluted in PBS/0.3% BSA) of an affinity purified Sec62 polyclonal rabbit antibody (provided by the Institute of Medical Biochemistry and Molecular Biology) for 1 h at room temperature. The antibody was directed against the carboxy terminal undecapeptide of human Sec62 (plus an additional amino terminal cysteine) and previously demonstrated to be specific under denaturing and native conditions [13]. Each staining series included a positive control and two negative controls (either without primary antibody or with incubation in a 1:200 solution of the pre-immune serum). Visualization was performed using the DAKO Real Detection System (DAKO, Glostrup, Denmark) according to the manufacturer’s instructions, and slides were counterstained with hematoxylin. Sec62 protein levels were evaluated using the immunoreactive score (IRS) according to Remmele and Stegner [20] as a well-established and unbiased semiquantitative validation system. In this system, staining intensity is classified as no staining (0), weak (1), intermediate (2), or strong (3). The number of stained cells is clas-

Table 1. Baseline characteristics of the study cohort

Characteristic	Value
Age, years	70±9
Male/female	10/1
Liver disease	
NAFLD	4
Alcoholic liver disease	3
Hepatitis B	2
Hepatitis C	2
Liver fibrosis stage	
F1–3	8
F4	3
Liver function tests	
ALT, U/L	59.6±48.7
Bilirubin, U/L	0.9±0.3
Albumin, g/L	42.9±3.0
INR	1.1±0.1
Tumor characteristics	
Multifocal/unifocal disease	3/8
Diameter of largest nodule, mm	51±27
Grading G1/G2/G3	1/9/1
Tumor recurrence	7

Data are presented as the mean ± SD or n. ALT, alanine aminotransferase; INR, international normalized ratio; NAFLD, non-alcoholic fatty liver disease.

Visc Med 2021;37:110–115 DOI: 10.1159/000513293

SEC62 and SEC63 in HCC
sified as no stained cells (0), below 10% (1), 10–50% (2), 51–80% (3), or more than 80% (4). The product of the scores for staining intensity and number of stained cells is defined as the IRS. Scores of 0–2 were valued as negative, 3–4 as weak, 6–8 as moderate, and 9–12 as strong.

Statistical Analysis

For statistical analysis, Wilcoxon matched-pairs signed-rank tests were used with Prism 5.0 software (GraphPad, San Diego, CA, USA). *p* < 0.05 was considered statistically significant.

Results

Sec62 Immunohistochemistry in HCC and Adjacent Liver Tissue

Sec62 protein levels were evaluated by Sec62 immunohistochemistry and quantified using the IRS by Remmele and Stegner. There was an elevated Sec62 protein level in HCCs as compared to the adjacent non-tumorous tissue in 9 out of 11 patients (Fig. 1). Sec62 protein levels were lower in HCC or equal in HCC and non-tumorous tissue.
in one patient each. The mean IRS was 7.9 ± 2.9 for HCC and 4.8 ± 1.2 for non-tumorous liver. The Wilcoxon matched-pairs signed-rank test revealed a significant (p = 0.027) difference in Sec62 protein levels between HCC and non-tumorous tissue.

In 8 out of 11 patients, tumor recurrence occurred after resection. The mean time interval between initial treatment and HCC recurrence was 31 months (range 7–64). The three patients without tumor recurrence included the 2 patients who showed lower or identical Sec62 protein levels in their HCC when compared to non-tumorous liver tissue (Fig. 1; patients 5, 7, 9). The mean IRS in HCC was 5.7 ± 3.5 and 8.9 ± 2.3 for patients without and with recurrence, respectively. Seven of 8 patients (87.5%) with an IRS ≥ 8 developed HCC recurrence.

SEC62 and SEC63 mRNA Levels in HCC and Adjacent Liver Tissue

Using quantitative real-time PCR SEC62 and SEC63 mRNA levels were measured in the 11 HCCs and tumor-free surrounding liver tissue. SEC62 total mRNA contents were significantly (p = 0.001) higher in HCC (C_T 22.5 ± 0.4) as compared to the surrounding tissue (C_T 24.6 ± 0.6). For SEC63, we also found a significant (p = 0.001) upregulation of mRNA levels in HCC (C_T 22.6 ± 0.3) in comparison to surrounding liver tissue (C_T 25.1 ± 0.9). In order to calculate the relative expressions of SEC62 and SEC63 in HCC compared to matched surrounding tissue, we converted C_T values to the linear form using the comparative C_T method (n-fold difference = 2^{(mean C_T HCC – mean C_T surrounding liver tissue)}). For HCC, a 5-fold increase (±3.5) of SEC62 expression and an 8.1-fold (±5.1) increase of SEC63 expression was observed. Figure 2 plots the values for individual patients.

mRNA Levels of Housekeeping Genes in HCC and Surrounding Liver Tissue

For the housekeeping genes GAPDH (glyceraldehyde-3-phosphate dehydrogenase), 18s (18s ribosomal RNA), HBMS (hydroxymethyl-bilane synthase), and SFRS4 (arginine/serine-rich splicing factor 4) mRNA levels were measured in HCC and tumor-surrounding liver tissue. As shown in online supplementary Figure 1 (see www.karger.com/doi/10.1159/000513293 for all on-
ΔΔC_T method [19]. However, it has been shown that the amplification of a housekeeping gene and the normalization of expression for the target gene using the overall transcriptional activities. One common approach is the amplification of a housekeeping gene and the normalization of expression for the target gene using the ΔΔC_T method [19]. However, it has been shown that genes typically used as reference genes are differentially expressed in tumorous and non-tumorous tissue [23] and can thus confound data as well. Here, in addition to the common housekeeping genes GAPDH and 18s, we evaluated the genes SFRS4 and HMBS that have been previously reported to show stable expression levels in HCC and surrounding liver tissue [24, 25]. In contrast to these reports, in our series SFRS4 and HMBS as well as GAPDH and 18s were upregulated in HCCs. Since the quantity of the starting material may be the most relevant confounding factor, and we used stable RNA concentrations after measurement, comparison of raw C_T values may be appropriate in this setting.

It has been shown that high expression of Sec62 in HCC tissue and peripheral blood mononuclear cells is an independent risk factor for HCC recurrence after liver resection [17, 18]. In line with these observations, Sec62 was shown to be a prognostic biomarker in prostate cancer, head and neck-cancer, and lung cancer, as well as breast cancer [12, 13, 15, 16, 26]. Several studies indicate a role of Sec62 in cell migration and invasion processes [13, 14, 18], which may explain its role as a prognostic factor. In our study, we also found stronger SEC62 expression confirmed by immunohistochemistry in patients with recurrent HCC. Interestingly, in the only 2 patients without SEC62 overexpression in HCC in comparison to surrounding tissue, HCC did not recur. An IRS ≥ 8 was observed in 33% of patients without but 88% of patients with recurrence. However, due to the small study sample, these results and the cut-off value should be studied in larger cohorts.

Besides its potential role as a prognostic marker, Sec62 may also be a therapeutic target. One potential mechanism is the treatment with calmodulin antagonists (e.g., trifluoperazine; TFP) antagonizing the calmodulin-mediated Sec61 closure and thus increasing the passive Ca^{2+} efflux from the ER lumen, compatible with a functional Sec62 knockdown [6, 26, 27]. Interestingly, there is evidence for a potential therapeutic effect of TFP in hepatoma cell lines [28, 29]. The most recent study showed that treatment of HCC cell lines with TFP impaired tumor cell vitality, invasion, and migration, and induced apoptosis [29]. TFP might thus be an interesting antitumor agent in SEC62 overexpressing HCC. In particular, its potential role in avoiding tumor recurrence after curative resection could be investigated in the adjuvant setting.

Acknowledgements

We thank Prof. Dr. Yoo-Jin Kim for histopathological evaluation of specimens and Annika Bohner (Department of Medicine II) for excellent technical assistance.
Statement of Ethics

The study was approved by the local ethics board (Ethikkommission der Ärztekammer des Saarlandes; approval No. 79/12). The patients provided written informed consent, and the study was conducted in accordance with the Declaration of Helsinki.

Conflict of Interest Statement

The authors declare that they have no conflicts of interest or financial interests related to the manuscript.

References

1 Bertuccio P, Turati F, Carioli G, Rodriguez T, La Vecchia C, Malvezzi M, et al. Global trends and predictions in hepatocellular carcinoma mortality. J Hepatol. 2017;67(2):302–9.
2 McGlynn KA, Petrick JL, El-Serag HB. Epidemiology of hepatocellular carcinoma. Hepatology. 2020. doi:10.1002/hep.31288.
3 Desai A, Sandhu S, Lai JP, Sandhu DS. Hepatocellular carcinoma in non-cirrhotic liver: a comprehensive review. World J Hepatol. 2019 Jan;11(1):1–18.
4 Erstad DJ, Fuchs BC, Tanabe KK. Molecular mechanisms of hepatocellular carcinoma: A step toward rationally designed cancer therapy. Cancer. 2018;124(15):3084–104.
5 Lang S, Pfeiffer S, Lee PH, Cavalié A, Helms V, Förster F, et al. An update on Sec61 channel functions, mechanisms, and related diseases. Front Physiol. 2017;8:887.
6 Linxweiler M, Schick B, Zimmermann R. Let’s talk about Sec61, Sec62 and Sec63 in signal transduction, oncology and personalized medicine. Signal Transduct Target Ther. 2017;2(1):17002.
7 Fumagalli F, Noack J, Bergmann TJ, Ceboliero E, Pisoni GB, Basana E, et al. Translocon component Sec62 acts in endoplasmic reticulum turnover during stress recovery. Nat Cell Biol. 2016;18(11):1173–84.
8 Davila S, Furu L, Gharavi AG, Tian X, Oneo T, Qian Q, et al. Mutations in SEC63 cause autosomal dominant polycystic liver disease. Nat Genet. 2004;36(6):575–7.
9 Mori Y, Sato F, Saluram FM, Oloru A, Perry K, Kimos MC, et al. Instabilotyping reveals unique mutational spectra in microsatellite-unstable gastric cancer. Cancer Res. 2002;62:3641–5.
10 Schummann K, Brasc FE, Kunstmann E, Engel C, Pagenstecher C, Vogelsang H, et al.; German HNPCC Consortium. HNPCC-associated small bowel cancer: clinical and molecular characteristics. Gastroenterology. 2005;128(3):590–9.
11 Jung V, Kindich R, Kamrath J, Jung M, Müller M, Schulz WA, et al. Genomic and expression analysis of the 3q25-26 amplification unit reveals TLOCI1/SEC62 as a probable target gene in prostate cancer. Mol Cancer Res. 2006;4(3):169–76.
12 Greiner M, Kreutzber B, Lang S, Jung V, Cavalié A, Unteregger G, et al. Sec62 protein level is crucial for the ER stress tolerance of prostate cancer. Prostate. 2011;71(10):1074–83.
13 Linxweiler M, Linxweiler J, Barth M, Benedix J, Jung V, Kim YJ, et al. Sec62 bridges the gap from 3q amplification to molecular cell biology in non-small cell lung cancer. Am J Pathol. 2012;180(2):473–83.
14 Linxweiler M, Bochen F, Schick B, Wemmert S, Al Kabad B, Greiner M, et al. Identification of SEC62 as a potential marker for 3q amplification and cellular migration in dysplastic cervical lesions. BMC Cancer. 2016;16(1):676.
15 Wemmert S, Lindner Y, Linxweiler J, Wagenpfel S, Bohle RM, Niewald M, et al. Sec62 as a new biomarker for poor prognosis in advanced head and neck squamous cell carcinoma. Oncol Lett. 2016;11:1661–70.
16 Takacs FZ, Radosa JC, Linxweiler M, Kasoja M, Bohle RM, Bochen F, et al. Identification of 3q oncogene SEC62 as a marker for distant metastasis and poor clinical outcome in invasive ductal breast cancer. Arch Gynecol Obstet. 2019;299(3):1405–13.
17 Weng L, Du J, Zhou Q, Cheng B, Li J, Zhang D, et al. Identification of cyclin B1 and Sec62 as biomarkers for recurrence in patients with HBV-related hepatocellular carcinoma after surgical resection. Mol Cancer. 2012;11(1):39.
18 Du J, Zhao Z, Zhao H, Liu D, Liu H, Chen J, et al. Sec62 promotes early recurrence of hepatocellular carcinoma through activating integrina/C1AV1 signalling. Oncogenesis. 2019;8(12):74.
19 Radonic A, Thulke S, Mackay IM, Landt O, Siegert W, Nitsche A. Guideline to reference gene selection for quantitative real-time PCR. Biochem Biophys Res Commun. 2004;313(4):856–62.
20 Remmele W, Stegner HE. Recommendation for uniform definition of an immunoreactive score (IRS) for immunohistochemical estrogen receptor detection (ER-ICA) in breast cancer tissue. Patholologic. 1987;8:138–40.

Author Contributions

All authors fulfill the criteria of authorship and approved the final version of the manuscript. M.C.: study design, interpretation of the results, manuscript preparation. M.L.: immunohistochemistry, interpretation of the results, revision of the manuscript, J.L.: immunohistochemistry, interpretation of the results, revision of the manuscript. R.Z.: interpretation of the results, revision of the manuscript. M.G.: patient and tissue recruitment, revision of the manuscript. F.L.: study design, interpretation of the results, revision and editing of the manuscript. S.N.W.: mRNA expression analysis, data interpretation, manuscript preparation.

Funding Sources

There was no funding source relevant to this work.

SEC62 and SEC63 in HCC

Visc Med 2021;37:110–115
DOI: 10.1159/000513293

115