Scale-depended Choice of Scanning Rate for AFM Measurements

Ştefan Țălu¹*, Dinara Sobola²,³, Shahram Solaymani⁴, Rashid Dallaev⁵ and Jitka Brüstlová²

¹The Technical University of Cluj-Napoca, The Directorate of Research, Development and Innovation Management (DMCDI), Constantin Daicoviciu Street, No. 15, Cluj-Napoca, 400020, Cluj county, Romania
²Brno University of Technology, Faculty of Electrical Engineering and Communication, Physics Department, Technická 8, 616 00 Brno, Czech Republic
³Central European Institute of Technology, Purkyňova 123, 61600 Brno, Czech Republic
⁴Department of Physics, Science and Research Branch, Islamic Azad University, Tehran, Iran
⁵Dagestan State University, Faculty of Physics, 367015 Makhachkala, M. Gadjieva 43-a, Dagestan Republic, Russia

*Corresponding author

Keywords: Fractal dimension, Micromorphology, Statistical parameters, Topography.

Abstract. Three samples with different high of topography features were measured at different scanning rate. We also presented statistical and fractal analyses for definition of the surface morphometrics. They can be used for calculation and evaluation of the images' distortion that takes place during scanning rate and proved to be helpful while controlling the measurement. Basing on the results we came to the conclusion that fractal analysis, the statistical surface roughness parameters and AFM may provide us with a deeper understanding of the physical phenomena taking place in the sample-tip interface. This is why, fractal analysis and statistical surface roughness parameters are useful information for the further improvement of calibration system. This approach can be applied for choosing scanning parameters properly, taking into consideration the geometry of the sample and for the microscope calibration by geometrical sizes of features.

Introduction

The accurate estimation of geometric sizes is one of the problems of nanometrics [1-3]. Chemical, mechanical and electrical properties of the elements are affected by surface condition [4-8]. This is why the accurate surface examination is an important task at number engineering areas [9-14].

Surface topography can be studied by many methods and microscopy techniques [15-19]. But none of these methods is free of its own set of artifacts and that must be taken into consideration during data evaluation [20-24]. The reasons of the occurrence of the measurement artifacts may differ: external and internal noises, wrong choice of measurement parameters, improper sample preparation etc. [25-30]. In order to achieve the right results interpretation on the following solutions may be applied: using of filter, careful data processing, fitting techniques etc [31-34].

Atomic force microscope (AFM) is a modern solution which grants additional advantages to the geometrical data with true values of surface features in Z-coordinate and it is one of the substantial tools for nanotechnology. It allows us to obtain the real information about geometrical sizes of the surface features [35-37]. The surface with nanoscale resolution can be also investigated by using AFM. Moreover, it gives us a possibility to study chemical (surface imperfections) and physical (mechanical, electrical) properties. It also enables us to investigate processes of changing of domain structures, self-assembly, chemical adsorption. In addition, we can modify the surface of the sample and prepare nano-structures.

There are other modern techniques for imaging (SEM, etc.) and they too demand compromises between rate of imaging and data results quality. We define here that during the scanning rate
selection the shape of the surface features should also be considered. It is crucial to take into account the slope of the sample. Furthermore, it is necessary to consider geometrical properties of surface features taking into account all mentioned problems. We can investigate the contribution of sample shape in order to improve the reliability of data with following increase in speed of samples studying. A complete evaluation of surface can't be realized basing on average value and divergence of heights.

Fractal and 3D (three dimensional) statistical parameters of the surface, however, can give us more information than 2D (two dimensional) image of the surface form [38-40].

Materials and Methods

We did all the measurements on former calibration grades. They are impaired by time and treatment during measurements. Nevertheless they represent periodical structures with predefined characteristics of topography. According to producer [41], the characters of the structures are following: TGZ1 – 20.0±1.5 nm TGZ2 - 110±2 nm TGZ3 - 520±3 nm.

The measurements were carried out by AFM Ntegra Prima (NT-MDT, Moscow, Russia). HA-NC probes were used of the same producer. The measurements were performed on scanning areas of 30 x 30 μm². Every measurement was done with similar image size and resolution and at two different scan rates. The experiment was implemented with no changes in microscopy setup and at the same ambient conditions so as to maintain the same conditions of measurements. In order to stabilize laser signal the microscope had been turned on for an hour. Closed loop scanner was used for the scanning. Any filtering was also avoided (Figure 1).

Figure 1. The representative 3-D topographic AFM images, for scanning square area of 30 x 30 μm².
Surface Roughness and 3-D Texture

The purpose of all experiments was to come up with parameters more suitable for describing the artifacts induced by scanning rate. Before computing the surface parameters we didn't make any corrections. The statistical parameters for all three measurements were computed at two measurement rates (Table 1) [42]. The base of computations is the matrix of the image. Registration of interaction between nanosized tip and the surface result in data matrix. Interaction is also influenced by the shape of the surface.

The basic properties of the height values distribution of the surface samples	TGZ1-30x30-61 um per sec	TGZ1-30x30-314 um per sec	TGZ2-30x30-61 um per sec
Ra (Sa) [nm]	0.401	0.414	0.225
Rms (Sq) [nm]	0.464	0.479	0.272
Skew (Ssk) [-]	-0.114	-0.113	-0.092
Kurtosis (Sku) [-]	-1.16	-1.18	-0.618
Inclination θ [°]	3.1	3.0	1.8
Inclination φ [°]	84.4	92.9	148.3

The basic properties of the height values distribution of the surface samples	TGZ2-30x30-314 um per sec	TGZ3-30x30-61 um per sec	TGZ3-30x30-314 um per sec
Ra (Sa) [nm]	0.184	0.225	0.184
Rms (Sq) [nm]	0.226	0.272	0.226
Skew (Ssk) [-]	-0.21	-0.092	-0.21
Kurtosis (Sku) [-]	-0.464	-0.618	-0.464
Inclination θ [°]	1.4	1.8	1.4
Inclination φ [°]	135.2	148.3	135.2

Table 1. The basic properties of the height values distribution (including its variance, skewness and kurtosis) of the surface samples.

Parameters	TGZ1-30x30-61 um per sec	TGZ1-30x30-314 um per sec	TGZ2-30x30-61 um per sec
D	2.06	2.02	2.10
R²	0.991	0.991	0.993

Parameters	TGZ2-30x30-314 um per sec	TGZ3-30x30-61 um per sec	TGZ3-30x30-314 um per sec
D	2.10	2.10	2.10
R²	0.992	0.993	0.992

Resolution of image could add the error component and is a significant factor for computation of statistical parameters. There’s no dependence between fractal parameters and data resolution. So, for extraction more values about the surface and its distortion both approaches could be applied.

Computation of the surface statistical parameters and fractal analysis aids to characterize the damage of geometrical data of nanoscale texture. Due to existence of a large number of components contributing to the image distortion by using scanning rate (such as drift) the investigation becomes rather practical (because of prediction difficulties). The time for tool calibration and further measurements can be greatly reduced by using the given approach.

Conclusion

In this paper the dependence of AFM-data reliability on scanning rate was studied. Also, we carried out researches on three-dimensional (3-D) surface topography of the samples with micro-motifs of different high. The surface metrics analysis for estimation of artifacts that occur due to inappropriate scanning rate is given in this article as well.

Cube counting method was utilized to perform fractal analysis and AFM-data were used for implementing the evaluation of statistical metrics. Thus, the distortion of the images against scanning...
rate could be characterized with this approach which subsequently can be also applied for
dependences of the other parameters of measurement.

The article expounds the relevance and comparison of fractal and statistical surface parameters for
characterization of data distortion caused by inappropriate choice of scanning rate.

Acknowledgment

Research described in the paper was financially supported by the Ministry of Education, Youth and
Sports of the Czech Republic under the project CEITEC 2020 (LQ1601), by the Grant Agency of
the Czech Republic under no. GACR 15-05259S and by the National Sustainability Program under
grant LO1401. For the research, infrastructure of the SIX Center was used.

References

[1] Ş. Ţălu, Micro and nanoscale characterization of three dimensional surfaces. Basics and
applications. Cluj-Napoca: Napoca Star Publishing House, Romania, 2015. ISBN 978-606-690-
349-3.

[2] S. Stach, D. Dallaeva, Ş. Şălu, P. Kaspar, P., Tománek, S. Giovananza, L. Grmela,
“Morphological features in aluminum nitride epilayers prepared by magnetron sputtering,” Mater
Sci-Poland, vol. 33(1), pp. 175-184, 2015. DOI: 10.1515/msp-2015-0036.

[3] S. Ramazanov, Ş. Şălu, D. Sobola, S. Stach, G. Ramazanov, “Epitaxy of silicon carbide on
silicon: Micromorphological analysis of growth surface evolution,” Superlattices microstruct., vol.
86, pp. 395-402, 2015. DOI: 10.1016/j.spmi.2015.08.007.

[4] Ş. Şălu, S. Stach, J. Zaharieva, M. Milanova, D. Todorovsky, S. Giovananza, “Surface
roughness characterization of poly(methyliethacrylate) films with immobilized Eu(III) β-
Diketonates by fractal analysis,” Int. J. Polym. Anal. Charact. vol. 19(5), pp. 404-421, 2014.
DOI:10.1080/1023666X.2014.904149.

[5] A. Méndez, Y. Reyes, G. Trejo, K. Stepień, Ş. Şălu, “Micromorphological characterization of
zinc/silver particle composite coatings,” Microsc. Res. Tech., vol. 78, pp. 1082-1089, 2015. DOI:
10.1002/jemt.22588.

[6] S. Stach, W. Sapota, Ş. Şălu, A. Ahmadpourian, C. Luna, N. Ghabadi, A. Arman, M. Ganji, “3D
Surface stereometry studies of sputtered TiN thin films obtained at different substrate
temperatures,” J Mater Sci: Mater Electron., vol. 28(2), pp. 2113-2122, 2017. DOI:
10.1007/s10854-016-5774-9.

[7] N. Naseri, S. Solaymani, A. Ghaderi, M. Bramowicz, S. Kulesza, Ş. Şălu, M. Pourreza, S.
Ghasemi, “Microstructure, morphology and electrochemical properties of Co nanoflake water
oxidation electrocatalyst at micro- and nanoscale,” RSC Advances, vol. 7, pp. 12923-12930, 2017.
DOI: 10.1039/c6ra28795f.

[8] S. Berezina, A.A. Il’icheva, L.I. Podzorova, Ş. Şălu, “Surface micromorphology of dental
composites [CE-TZP] - [AL2O3] with Ca²⁺ modifier,” Microsc. Res. Tech., vol. 78, pp. 840-846,
2015. DOI: 10.1002/jemt.22548.

[9] D. Dallaeva, Ş. Şălu, S. Stach, P. Škarvada, P. Tománek, L. Grmela, “AFM imaging and fractal
analysis of surface roughness of AlN epilayers on sapphire substrates,” Appl. Surf. Sci., vol. 312,
pp. 81-86, 2014. DOI: 10.1016/j.apsusc.2014.05.086.

[10] Ş. Şălu, S. Stach, D. Raoufi, F. Hosseinpanahi, “Film thickness efect on fractality of tin-doped
In2O3 thin films,” Electronic Materials Letters, vol. 11(5), pp. 749-757, 2015. DOI:
10.1007/s13391-015-4280-1.
[11] A. Arman, Ş. Țălu, C. Luna, A. Ahmadpourian, M. Naseri, M. Molamohammadi, “Micromorphology characterization of copper thin films by AFM and fractal analysis,” J Mater Sci: Mater Electron, vol. 26(12), pp. 9630-9639, 2015. DOI: 10.1007/s10854-015-3628-5.

[12] Y. Reyes-Vidal, R. Suarez-Rojas, C. Ruiz, J. Torres, Ş. Țălu, A. Méndez, G. Trejo, “Electrodeposition, characterization, and antibacterial activity of zinc/silver particle composite coatings,” Appl. Surf. Sci., vol. 342, pp. 34-41, 2015. DOI: 10.1016/j.apsusc.2015.03.037.

[13] A. Méndez, S.G. González-Arellano, Y. Reyes-Vidal, J. Torres, Ş. Țălu, B. Cercado, G. Trejo, “Electrodeposited chrome/silver particles (Cr/AgPs) composite coatings: characterization and antibacterial activity,” J. Alloys Compd., vol. 710, pp. 302-311, 2017. DOI: 10.1016/j.jallcom.2017.03.226.

[14] Ş. Țălu, M. Bramowicz, S. Kulesza, S. Solaymani, A. Shafikhani, A. Ghaderi, M. Ahmadirad, “Gold Nanoparticles Embedded in Carbon Film: Micromorphology Analysis,” J Ind Eng Chem., vol. 35, pp. 158-166, 2016. DOI: 10.1016/j.jiec.2015.12.029.

[15] Ş. Țălu, S. Stach, M. Ikram, D. Pathak, T. Wagner, J.-M. Nunzi, “Surface roughness characterization of ZnO:TiO₂ - organic blended solar cells layers by atomic force microscopy and fractal analysis,” International Journal of Nanoscience, vol. 13 (3), pp. 1450020-1, 2014.

[16] Ş. Țălu, A.J. Ghazai, S. Stach, A. Hassan, Z. Hassan, M. Țălu, “Characterization of surface roughness of Pt Schottky contacts on quaternary n-Al₀.₀₀In₀.₀₀Ga₀.₈₄N thin film assessed by atomic force microscopy and fractal analysis,” J. Mater. Sci. Mater. El., vol. 25(1), pp. 466-477, 2014. DOI: 10.1007/s10854-013-1611-6.

[17] Ş. Țălu, S. Solaymani, M. Bramowicz, S. Kulesza, A. Ghaderi, S. Shahpouri, S.M. Elahi, “Effect of electric field direction and substrate roughness on three-dimensional self-assembly growth of copper oxide nanowires,” J Mater Sci: Mater Electron., vol. 27, pp. 9272–9277, 2016.

[18] Ş. Țălu, S. Solaymani, M. Bramowicz, N. Naseri, S. Kulesza, A. Ghaderi, “Surface micromorphology and fractal geometry of Co/CP/X (X = Cu, Ti, SM and Ni) nanoflake electrocatalysts,” RSC Advances, vol. 6, pp. 27228-27234, 2016. DOI: 10.1039/C6RA01791F.

[19] Ş. Țălu, S. Stach, A. Mahajan, D. Pathak, T. Wagner, A. Kumar, R.K. Bedi, “Multifractal analysis of drop-casted copper (II) tetrasulphophthalocyanine film surfaces on the indium tin oxide substrates,” Surf. Interface Anal., vol. 46 (6), pp. 393–398, 2014.

[20] Ş. Țălu, S. Stach, S. Solaymani, R. Moradian, A. Ghaderi, M.R. Hantehzadeh, S.M. Elahi, Ž. Garczyk, S. Izadyar, “Multifractal Spectra of Atomic Force Microscope Images of Cu/Fe Nanoparticles Based Films Thickness,” J Electroanal. Chem., vol. 749, pp. 31-41, 2015.

[21] Ş. Țălu, S. Stach, “Multifractal characterization of unworn hydrogel contact lens surfaces,” Polym. Eng. Sci., vol. 54(5), pp. 1066–1080, 2014. DOI: 10.1002/pen.23650.

[22] Ş. Țălu, “Characterization of surface roughness of unworn hydrogel contact lenses at a nanometric scale using methods of modern metrology,” Polym. Eng. Sci., vol. 53(10), pp. 2141-2150, 2013. DOI: 10.1002/pen.23481.

[23] Ş. Țălu, N. Papež, D. Sobola, A. Achour, S. Solaymani, “Micromorphology investigation of GaAs solar cells: case study on statistical surface roughness parameters,” J. Mater. Sci., vol. 28, pp. 15370-15379, 2017. DOI: 10.1007/s10854-017-7422-4.

[24] D. Elenkova, J. Zaharieva, M. Getsova, I. Manolov, M. Milanova, S. Stach, Ş. Țălu, “Morphology and Optical Properties of SiO₂-Based Composite Thin Films with Immobilized Terbium(III) Complex with a Biscoumarin Derivative,” Int. J. Polym. Anal. Charact., vol. 20, pp. 42–56, 2015. DOI:10.1080/1023666X.2014.955400.
[25] Ş. Ţălu, S. Stach, S. Valedbagi, S.M. Elahi, R. Bavadi, “Surface morphology of titanium nitride thin films synthesised by DC reactive magnetron sputtering,” Mater. Sci. Poland, vol. 33(1), pp. 137-143, 2015. DOI: 10.1515/msp-2015-0010.

[26] Ş. Ţălu, S. Stach, A. Mahajan, D. Pathak, T. Wagner, A. Kumar, R.K. Bedi, “Multifractal analysis of drop-casted copper (II) tetrasulfophthalocyanine film surfaces on the indium tin oxide substrates,” Surf. Interface Anal., vol. 46, pp. 393–398, 2014. DOI: 10.1002/sia.5492.

[27] Ş. Ţălu, M. Bramowicz, S. Kulesza, S. Solaymani, A. Shafiekhani, A. Ghaderi, M. Ahmadirad, “Gold nanoparticles embedded in carbon film: Micromorphy analysis,” J. Ind. Eng. Chem., vol. 35, pp. 158-166, 2016. DOI: 10.1016/j.jiec.2015.12.029.

[28] Ş. Ţălu, C. Luna, A. Ahmadpourian, A. Achoeur, A. Arman, S. Naderi, N. Ghobadi, S. Stach, B. Safibonab, “Micromorphology and fractal analysis of nickel–carbon composite thin films,” J. Mater. Sci. Mater. Electron, vol. 27(11), pp. 11425–11431, 2016. DOI: 10.1007/s10854-016-5268-9.

[29] S. Stach, Ž. Garczyk, Ş. Ţălu, S. Solaymani, A. Ghaderi, R. Moradian, N.B. Nezafat, S.M. Elahi, H. Gholamali, “Stereometric Parameters of the Cu/Fe NPs Thin Films,” J. Phys. Chem. C, vol. 119(31), pp. 17887-17898, 2015. DOI: 10.1021/acs.jpcc.5b04676.

[30] Ş. Ţălu, S. Stach, A. Méndez, G. Trejo, M. Ţălu, “Multifractal characterization of nanostructure surfaces of electrodeposited Ni-P coatings,” J Electrochem Soc., vol. 161, pp. D44-D47, 2014.

[31] Ş. Ţălu, M. Bramowicz, S. Kulesza, A. Ghaderi, V. Dalouji, S. Solaymani, M. Fathi Kenari, M. Ghoranneviss, “Fractal features and surface micromorphology of diamond nanocrystals,” Journal of Microscopy, vol. 264, pp. 143-152, 2016.

[32] Ş. Ţălu, S. Stach, T. Ghodselahi, A. Ghaderi, S. Solaymani, A. Boochani, Z. Garczyk, “Topographic characterization of Cu–Ni NPs @ a-C: H films by AFM and multifractal analysis,” J. Phys. Chem. B, vol. 119, pp 5662–5670, 2015. DOI: 10.1021/acs.jpcb.5b00042.

[33] Ş. Ţălu, Z. Markovic, S. Stach, B.T. Markovic, M. Ţălu, “Multifractal characterization of single wall carbon nanotube thin films surface upon exposure to optical parametric oscillator laser irradiation,” Appl. Surf. Sci., vol. 289, 97-106, 2014. DOI: 10.1016/j.apsusc.2013.10.114.

[34] Ş. Ţălu, M. Bramowicz, S. Kulesza, A. Shafiekhani, A. Ghaderi, F. Mashayekhi, S. Solaymani, “Microstructure and tribological properties of FeNPs@a-C:H films by micromorphology analysis and fractal geometry,” Ind. Eng. Chem. Res., vol. 54, pp. 8212–8218, 2015. DOI: 10.1021/acs.iecr.5b02449.

[35] Ş. Ţălu, M. Bramowicz, S. Kulesza, A. Ghaderi, S. Solaymani, H. Savaloni, R. Babaei, “Micromorphology analysis of specific 3-D surface texture of silver chiral nanoflower sculptured structures,” Ind. Eng. Chem. Res., vol. 43, pp. 164–169, 2016. DOI: 10.1021/ie5008088.

[36] Ş. Ţălu, M. Bramowicz, S. Kulesza, V. Dalouji, S. Solaymani, S. Valedbagi, “Fractal features of carbon–nickel composite thin films,” Microsc. Res. Tech., vol. 79 (12), pp. 1208-1213, 2016. DOI: 10.1002/jemt.22779.

[37] Ş. Ţălu, M. Bramowicz, S. Kulesza, S. Solaymani, A. Ghaderi, L. Dejam, A. Boochani, S.M. Elahi, “Microstructure and micromorphology of ZnO thin films: case study on Al doping and annealing effects,” Superlattices and Microstructures, vol. 93, pp. 109-121, 2016.

[38] Ş. Ţălu, M. Bramowicz, S. Kulesza, A. Shafiekhani, M. Rahmati, A. Ghaderi, M. Ahmadirad, S. Solaymani, “Microstructure of nickel nanoparticles embedded in carbon films: case study on annealing effect by micromorphology analysis,” Surface and Interface Analysis, vol. 49(3), pp. 153-160, 2016. DOI: 10.1002/sia.6074.
Appendix

Statistical analysis was carried out with the software SPSS 14 for Windows (Chicago, Illinois, USA). One-way analysis of variance was applied for verification of results with Scheffé post-hoc tests. Statistically significant differences are assumed to be 0.05 or less. The statistical parameters were expressed by Ra (average roughness), Rq (root-mean-square deviation), Ssk (skew), Sku (kurtosis), angles (θ, ϕ) (inclination).

In detail, these parameters have following meaning [42]:

- **RMS value of the height irregularities**: this quantity is computed from data variance.
- **Ra value of the height irregularities**: this quantity is similar to RMS value with the only difference in exponent (power) within the data variance sum. As for the RMS this exponent is $q = 2$, the Ra value is computed with exponent $q = 1$ and absolute values of the data (zero mean).
- Height distribution skewness: computed from 3rd central moment of data values.
- Height distribution kurtosis: computed from 4th central moment of data values.
- Mean inclination of facets in area: computed by averaging normalized facet direction vectors.
- Variation, which is calculated as the integral of the absolute value of the local gradient.