Modification of Jet Erosion Test Rig to Erosion Test Due to Solid-Liquid Mixture

Kalpesh Khairnar
Department of Mechanical Engineering
SSVPS’S B.S.D. College of Engineering,
Dhule, India

Prof. Dr. E. R. Deore
Department of Mechanical Engineering
SSVPS’S B.S.D. College of Engineering,
Dhule, India

Abstract: A Jet erosion is normally used to study the relative erosion behaviour of different material at moderate solid concentration, velocity, and particle size and impact angle. A slurry pot is then fabricated by inserting propeller from the bottom of the cylinder and is rotated at the speed required for uniform distribution. The test specimens are then mounted on test fixture which is fixed and has a provision to move in different angular position to find out the wear for different angles. Erosion of materials is occurs due to the impact of high velocity of slurry which is comes out from the nozzle and impacting on the test specimen. Two different experiments are conducted preliminarily first for repeatability test for fix parameters such as 362.5, particle size 512.5 micron, angle and 10% solid concentration for 60 minutes and another one for authentication. The results were obtained for ductile material and are found in good arrangement with the literature.

Keywords: Authentication, Jet Erosion tester, Nozzle, Repeatability, Slurry erosion, Slurry.

INTRODUCTION
Wear is defined as the progressive volume loss of material from a target surface. It may occur due to corrosion, abrasion or erosion. The wear due to corrosion is caused by chemical reactions, which can be prevented by adopting suitable measures; whereas the wear due to abrasion and/or erosion can only be minimized by controlling the affecting parameters. Erosion wear is a very crucial parameter for selection and design of slurry transportation systems as it affects directly to the economy of hydraulic conveyance of solids. [1] The service life of equipment handling solid-liquid mixtures is limited due to erosion wear and therefore efforts have been made in past few decades to predict the erosion loss of materials. Erosion wear is a complex phenomenon, which depends on large number of parameters. Erosive wear is the dominant process which can be defined as the removal of material from a solid surface. It is due to mechanical interaction between the surface and the impinging particles in a liquid stream. In Erosion process there is a transfer of kinetic energy to the surface. With the increase in kinetic energy of the particles impacting at the target surface, it leads to increase in the material loss due to erosion.[4-6]It depends on the predominant impact angle of particle impingement with the material surface and it will vary from 0to30 degrees. Impact angle depend on both fluid particle and particle – particle interaction. This type of wear can be practically found in slurry pumps, angled pipe bends, turbines, pipes and pipefitting, nozzles, burners etc. The material loss due to erosion increases with the increase in kinetic energy of the particles impacting at the target surface.[3]
the ratio of hardness of target material to the hardness of solid particles. Gandhi et al. (2008) developed a correlation between hardness ratio of particle to metal $K_{HP/HT}$ and erosion rate i.e. $E_{D30} = 6.62 \times K_{HP/HT} \sqrt{0.02} \times d^{1.62} C_W^{-0.285}$

PARTICLE SIZE AND SHAPE:
Particle size and shape is also one of the prominent parameter, which affect erosion wear. Many investigators have considered solid particle size important to erosion. The erosion wear increases with increase in particle size according to power law relationship. The effect of particle shape on the erosion is not very well established due to difficulties in defining the different shape features. Generally roundness factor is taken into consideration. If roundness factor is onethen the particles are perfectly spheres and a lower values show the particle angularity.[14]

SOLID CONCENTRATION:
Concentration is amount of solid particles by weight or by volume in the fluid. As concentration of particle increases more particles strike the surface of impeller which increase the erosion rate, the concentration of slurries can vary from 2% to 50% depending upon the type of slurry. However, at very high concentrations particle interaction increases and this decreases the striking velocity of particle on the surface.[12]

II. DEVELOPMENT OF JET EROSION TESTER

![Fig.1 Photograph of jet erosion tester](image)

This test rig consist of important part namely as slurry pot. This pot has 7.3 lit capacity similar to one which were developed by Desale et al. (2005).the function of this pot is to prepare homogeneous mixture of Narmada sand and water for different particle sizes and different concentrations. To prepare the homogeneous mixtures of different combinations the pot has a stirrer which is to be rotated with the help of 3phase A.C. motor has maximum capacity of 1440 rpm. Rotational speed of a motor is controlled with the help of 3 phase dimmer stat (Transformer).This test rig also contains a centrifugal pump of 0.5Hp capacity made by Kirloskar Pumps. This pump sucks the slurry from slurry pot and supply the high pressure slurry to the converging section of the nozzle having 10 mm diameter where its pressure energy is converted into the velocity of fluid.

There is one control valve also attached to control the mass flow rate of the mixture. It also has a specimen holder (Fixture), which has an arrangement to moves in different angular positions. One tin hopper is also attached to rig which is help to restrict the spreading of mixture into the work environment. This hopper collects the mixture after impacting on the specimen and drops it back into the slurry pot to recirculate the mixture. There is one acrylic plate which covers the slurry pot and gives support to the hopper or holds the hopper; it has holes on it for the hopper opening to put back the mixture in to the slurry pot. And the main part of the test rig is the frame structure which supports or holds the whole assembly and stirrer motor.

III. PARTICLE SIZE DISTRIBUTION

Measurement of particle size distribution is essential to establish the variation in the particles in the solid sample and the percentage of particles present in different size ranges.
For the coarser particles, sieve analysis can be used to determine the particle size distribution. This distribution has been obtained by dry sieve analysis method. A representative sample of the solid particle is taken and sieving is done with a set of sieves. Special care is taken to ensure that the sample is properly dried. The sample retained on each sieve is collected and its percentage is calculated following the standard procedure. \[1\]

The particles of IS sand is selected as solid material for the present investigation and its physical properties are given in Table 1. It is not possible to collect identical size particles of the solid material. The particles are, therefore, sieved using successive sieves sizes and the particles collected between two successive sieves are designated by the mean sieve size.

To collect quartz particles, two grades namely, Grade II and III of Indian standard sand were used. From Grade II, the mean particle size of 512.5 μm was collected as the material retained between the two sieves of 600 μm and 425μm sizes. From Grade III, the mean particle size of 362.5 μm was collected as the material retained between the two sieves of 300 μm and 425μm sizes.

Sr.No	Solid Particle	Chemical formula	Colour	Sp. Gravity	Hardness (vHN)	Par. shape
1	Quartz (IS Sand)	SiO2	whitish	Kg/m3	1100	Sub angular

Sr. No.	Target Material	Element Composition (wt%)
1	Aluminium Alloy 19000	Si 0.30, Cu 0.04, Mg 0.30, Sn 0.08, Zn 0.06, Mn 0.10, Al 99.10

Sr. No.	Targeted Material	Investigation Type	Impact Angle (degree)	Particle Size (μm)
1	Aluminium alloy (19000)	Repeatability	10°, 25°, 40°, 55°, 70°, 85°	512.5
	Solid Particles	Solid concentration % by wt	Time (min.)	
	Quartz (IS sand)	10%	60	

TABLE III RANGE OF PARRAMETERS FOR THE INVESTIGATION ON EROSION BEHAVIOUR OF DUCTILE MATERIAL AA19000

IV. EXPERIMENTAL PROCEDURE

The procedure has to be followed on erosion tester to calculate the erosion wear of different materials is as follow:
1. Weighing the specimen (initial weight).
2. Clamp the specimen in fixture provided in test rig.
3. Setting the fixture at required angle.
4. Weight the required sand as per concentration of slurry.
5. Mixing the proper amount of water and sand in tank.
6. Start the pump.
7. Adjust the flow rate to obtain desired value of mass flow rate and running the test for required time interval.
8. Removing the specimen from the fixture.
9. Cleaning and drying the specimen.
10. Weighing the specimen after erosion to measure the mass loss.
11. Repeat the steps from 1 to 10 as per requirement.

REFERENCES

[1] Satish R More, Bhushan D Nandre, 2014, “Development of pot tester to simulate the erosion wear due to solid-liquid mixture”, IJRSD, Vol.2
[2] Al-Bukhaiti, M.A., S.M. Ahmedb, F.M.F. Badran b, K.M. Emarab, 2007, “Effect of impingement angle on slurry erosion behaviour and mechanisms of 1017 steel and high-chromium white east iron”, Wear, Vol. 262, pp. 1187-1198.
[3] Bree, S. E. M. de, Rosenbrand, W. F., and Gee, A. W. J. de, 1982, “On the erosion resistance in water-sand mixtures of steels for application in slurry pipelines”, Hydrotransport 8, BHRA Fluid Engineering, Johannesburg, (S.A.), Paper C3.
[4] Desale, G. R., Gandhi, B. K., and Jain, S. C., 2005A, “Effect of physical properties of solid particle on erosion wear of ductile materials”, Proceedings of 2005 ASME World Tribology Congress III, Washington, D.C., USA.
[5] Desale, G. R., Gandhi, B. K., and Jain, S. C., 2005B, “Improvement in the design of a pot tester to simulate erosion wear due to solid-liquid mixture”, Wear, Vol. 259, pp. 196-202.
[6] Abbade, N. P., and Cmkovic, S. J., 2000, “Sand-water slurry erosion of API 5L X65 pipe steel as quenched from intercritical temperature”, Tribology International, Vol. 33, pp. 811-816.
[7] Lin, F. Y., and Shao, H. S., 1991A, “Effect of impact velocity on slurry erosion and a new design of a slurry erosion tester”, Wear, Vol. 143, pp. 231-240.
[8] Lin, F. Y., and Shao, H., 1991B, “The effect of impingement angle on slurry erosion”, Wear, Vol. 141, pp. 279-289.
[9] Levy, A. V., 1981, “The solid particle erosion behavior of steel as a function of microstructure”, Wear, Vol. 68, pp. 269-287.
[10] Bitter, J. G. A. 1963A and B, “A study of erosion phenomena Part I”, Wear, Vol. 6, pp. 5-21, pp. 169-130.
[11] Neilson, J. H., and Gilchrist, A., 1968, “Erosion by a stream of solid particles”, Wear, Vol. 11, pp. 111-122.
[12] Gandhi, B. K., Singh, S. N., and Seshadri, V., 1999, “Study of the parametric dependence of erosion wear for the parallel flow of solid-liquid mixtures”, Tribology International, Vol. 32, pp. 275-282.
[13] Gupta, R., Singh, S. N. and Seshadri, V. 1995, “Prediction of uneven wear in a slurry pipeline on the basis of measurements in a pot tester”, Wear, Vol. 184, pp. 169-178.
[14] Gandhi, B. K., Singh, S. N., and Seshadri, V., 1999, “Study of the parametric dependence of erosion wear for the parallel flow of solid-liquid mixtures”, Tribology International, Vol. 32, pp. 275-282.
[15] Desale G.R., Paul C.P., Gandhi B.K., Jain S.C., 2009, “Erosion wear behavior of laser clad surfaces of low carbon austenitic steel”, Wear, Vol. 266, pp. 975-987.
[16] Desale G.R., Paul C.P., Gandhi B. K., 2009, “Slurry Erosion Wear Properties of Laser Cladding”, Kiran, Vol. 20., No. 2., pp.26-33.