Enhancement of superconductivity by Anderson localization

Igor Gornyi

Karlsruhe Institute of Technology

In collaboration with

Igor Burmistrov (Landau Institute, Chernogolovka)
Alexander Mirlin (KIT)

PRL 108, 017002 (2012)

21 September 2012, Newton Institute, Cambridge
Motivation / Superconductor–Insulator transition

recent review: Gantmakher & Dolgopolov (2010)
Motivation / Experiments on LaAlO$_3$/SrTiO$_3$ interface

Phase diagram of the LaAlO$_3$/SrTiO$_3$ interface Caviglia et al. (2008)

Giant background dielectric constant: Coulomb interaction strongly screened
Anderson Theorem:

- nonmagnetic impurities do not affect s-wave superconductors
- Cooper-instability is the same for diffusive electrons:

\[
T_c^{BCS} \sim \omega_D \exp(-2/\lambda_{e-ph})
\]
Anderson transition

quasi-1D, 2D: metallic \rightarrow localized crossover with increasing L

d > 2: metal-insulator transition
Motivation / Anderson ’59 vs Anderson ’58

Anderson Theorem vs Anderson Localization?

Anderson Theorem vs Anderson Localization?
Motivation / Theory: enhancement of T_c – attraction only

- Superconductivity at 3D Anderson metal-insulator transition (no Coulomb repulsion)

- **Enhancement** of T_c as compared to BCS result $T_c^{BCS} \propto \exp(-2/\lambda)$

$$T_c \propto \lambda^{d/|\Delta_2|}$$

Feigelman, Ioffe, Kravtsov, Yuzbashyan (2007); Feigelman, Ioffe, Kravtsov, Cuevas (2010)

where $\Delta_2 < 0$ – multifractal exponent for inverse participation ratio
Multifractality

Wegner (1980)

- critical wave function:

Evers, Mildenberger, Mirlin

- enhanced correlations in matrix elements $\sim \psi^4$ of Cooper attraction
- stronger attraction \Rightarrow enhancement of T_c

Feigelman, Ioffe, Kravtsov, Yuzbashyan (2007)
Motivation / Theory: suppression of T_c due to Coulomb repulsion

- RG theory for disorder and interactions

 Finkelstein (1983, 1987); Castellani, Di Castro, Lee, Ma (1984)

- Experiments on Mo-Ge films, Graybeal & Beasley (1984)

- 2D: T_c vanishes at the critical resistance

 $$R_{\Box} \sim \left(\ln \frac{1}{T_c^{BCS_T}} \right)^{-2}$$

 Finkelstein (1987)
Motivation / Questions to answer

Can suppression of T_c due to Coulomb repulsion and enhancement of T_c due to multifractality be described in a unified way?

Does weak multifractality enhance T_c in 2D systems?

Does the enhancement of T_c hold if one takes into account short-ranged repulsion in particle-hole channels?
The problem / Microscopic Hamiltonian \(H = H_0 + H_{\text{dis}} + H_{\text{int}} \)

- **Free electrons:**
 \[
 H_0 = \int d^d \mathbf{r} \overline{\psi}_\sigma(\mathbf{r}) \left[-\frac{\nabla^2}{2m} \right] \psi_\sigma(\mathbf{r})
 \]
 where \(\sigma = \pm 1 \) is spin projection

- **Scattering off random potential:**
 \[
 H_{\text{dis}} = \int d^d \mathbf{r} \overline{\psi}_\sigma(\mathbf{r}) V(\mathbf{r}) \psi_\sigma(\mathbf{r})
 \]
 Gaussian white-noise distribution:
 \[
 \langle V(\mathbf{r}) \rangle = 0, \quad \langle V(\mathbf{r}_1) V(\mathbf{r}_2) \rangle = \frac{1}{2\pi \nu_0 \tau} \delta(\mathbf{r}_1 - \mathbf{r}_2)
 \]
 \(\nu_0 \) – thermodynamic density of states
The problem / Microscopic Hamiltonian $H = H_0 + H_{\text{dis}} + H_{\text{int}}$

- Electron-electron interaction:

 $$H_{\text{int}} = \frac{1}{2} \int d^d r_1 d^d r_2 \overline{\psi}_\sigma(r_1) \psi_\sigma(r_1) \ U(r_1 - r_2) \overline{\psi}'_\sigma(r_2) \psi'_\sigma(r_2)$$

 - short-ranged repulsion with BCS-type attraction ($\lambda > 0$)

 $$U(R) = u_0 \frac{a^{2\alpha}}{[a^2 + R^2]^{\alpha}} - \frac{\lambda}{\nu_0} \delta(R), \quad \alpha > 2d, \quad u_0 > 0$$

 - Coulomb (long-ranged) repulsion with BCS-type attraction ($\lambda > 0$)

 $$U(R) = \frac{e^2}{\epsilon R} - \frac{\lambda}{\nu_0} \delta(R)$$
The problem / Interaction Hamiltonian at small momentum transfer

- Particle-hole channel:

\[
H_{\text{int}}^{p-h} = \frac{1}{2\nu_0} \int_{q l \lesssim 1} \frac{d^d q}{(2\pi)^d} \sum_{a=0}^{3} F_a(q) m^a(q) m^a(-q)
\]

where \(m^a(q) = \int \frac{d^d k}{(2\pi)^d} \bar{\psi}(k + q) \sigma_a \psi(k) \)

\[
F_0(q) = F_s, \quad F_1(q) = F_2(q) = F_3(q) = F_t
\]

- Particle-particle channel:

\[
H_{\text{int}}^{p-p} = -\frac{F_c}{\nu_0} \int_{q l \lesssim 1} \frac{d^d q}{(2\pi)^d} \int \frac{d^d k_1}{(2\pi)^d} \int \frac{d^d k_2}{(2\pi)^d} \bar{\psi}_\sigma(k_1) \bar{\psi}_\sigma(-k_1 + q) \psi_{-\sigma}(k_2 + q) \psi_\sigma(-k_2)
\]
Field theory: non-linear sigma-model

\[
S[Q] = \frac{\pi \nu}{4} \int d^{d}r \text{ Tr } [-D(\nabla Q)^{2} - 2i \omega \Lambda Q], \quad Q^{2}(r) = 1
\]

Wegner (1979)

supersymmetry: Efetov (1982)

sigma-model manifold \(\mathcal{M} = \{ \mathcal{M}_{B} \times \mathcal{M}_{F} \} \)

“dressed” by anticommuting variables

\(\mathcal{M}_{B} \) — non-compact, \(\mathcal{M}_{F} \) — compact

with electron-electron interaction: fermionic replicas or Keldysh

Finkelstein (1983), Kamenev, Andreev (1999)
Field theory: interacting non-linear sigma-model

Finkelstein (1983)

\[
S = S_0 + S_{\text{int}}^{(s)} + S_{\text{int}}^{(t)} + S_{\text{int}}^{(c)},
\]

\[
S_0 = -\frac{g}{32} \int d\mathbf{r} \, \text{Tr}(\nabla Q)^2 + 4\pi Tz \int d\mathbf{r} \, \text{Tr} \eta(Q - \Lambda),
\]

\[
S_{\text{int}}^{(s)} = -\frac{\pi T}{4} \Gamma_s \sum_{\alpha, n} \sum_{p=0,3} \int d\mathbf{r} \, \text{Tr} \left[I^\alpha_n t_p Q \right] \text{Tr} \left[I^\alpha_n t_p Q \right],
\]

\[
S_{\text{int}}^{(t)} = -\frac{\pi T}{4} \Gamma_t \sum_{\alpha, n} \sum_{p=0,3} \sum_{j=1}^3 \int d\mathbf{r} \, \text{Tr} \left[I^\alpha_n t_{pj} Q \right] \text{Tr} \left[I^\alpha_n t_{pj} Q \right],
\]

\[
S_{\text{int}}^{(c)} = -\frac{\pi T}{2} \Gamma_c \sum_{\alpha, n} \sum_{p=0,3} (-1)^p \int d\mathbf{r} \, \text{Tr} \left[I^\alpha_n t_p Q I^\alpha_n t_p Q \right],
\]

\[
\Lambda_{\alpha \beta}^{nm} = \text{sgn} \, n \delta_{nm} \delta^{\alpha \beta} t_{00}, \quad \eta_{nm}^{\alpha \beta} = n \delta_{nm} \delta^{\alpha \beta} t_{00}, \quad (I^\alpha_k)_{nm} = \delta_{n-m,k} \delta^{\alpha \beta} \delta^{\alpha \gamma} t_{00}
\]

\[
Q^2 = 1, \quad \text{Tr} \, Q = 0, \quad Q^\dagger = C^T Q^T C, \quad C = it_{12}, \quad C^T = -C
\]

n, m – Matsubara, \(\alpha, \beta \) – replicas, p – particle-hole, j – spin; \(t_{pj} = \tau_p \otimes s_j \)
The problem / Interaction parameters at \(q \to 0 \)

On short scales \(\gamma_{s,t,c} = \Gamma_{s,t,c}/z \) are related to microscopic parameters:

- **Particle-hole channel**

\[
\gamma_s = -\frac{F_s}{1 + F_s}, \quad \gamma_t = -\frac{F_t}{1 + F_t}
\]

- **Cooper channel** (provided \(\omega_D \tau \gg 1 \))

\[
\gamma_c = \frac{1}{\ln T_c^{BCS \tau}}
\]

Coulomb repulsion: \(\gamma_s = -1 \)
2D electrons (orth. symmetry class) / RG equations from σ-model

\[
\begin{align*}
\frac{dt}{dy} &= t^2 \left[1 + f(\gamma_s) + 3f(\gamma_t) - \gamma_c \right] \\
\frac{d\gamma_s}{dy} &= -\frac{t}{2} \left[1 + \gamma_s \right] \left[\gamma_s + 3\gamma_t + 2\gamma_c \right] \\
\frac{d\gamma_t}{dy} &= -\frac{t}{2} \left[1 + \gamma_t \right] \left[\gamma_s - \gamma_t - 2\gamma_c (1 + 2\gamma_t) \right] \\
\frac{d\gamma_c}{dy} &= -\frac{t}{2} \left[\gamma_s - 3\gamma_t + \gamma_c (\gamma_s + 3\gamma_t) \right] - 2\gamma_c^2
\end{align*}
\]

Finkelstein (1984); Castellani, Di Castro, Lee, Ma (1984)

Castellani, DiCastro, Forgacs, Sorella (1984); Ma, Fradkin (1986); Finkelstein (1984)

where $y = \ln \frac{L}{l}$ and $f(x) = 1 - (1 + x^{-1}) \ln(1 + x)$

- lowest order in disorder, $t = 2/\pi g$, g is conductivity in units e^2/h
- exact in γ_s and γ_t
- lowest order in γ_c
2D electrons (orth. symmetry class) / weak short-range interaction

\[
\begin{align*}
\frac{dt}{dy} &= t^2 \left(1 - \left[\gamma_s + 3 \gamma_t + 2 \gamma_c \right]/2 \right) \\
\frac{d}{dy} \begin{pmatrix} \gamma_s \\ \gamma_t \\ \gamma_c \end{pmatrix} &= -\frac{t}{2} \begin{pmatrix} 1 & 3 & 2 \\ 1 & -1 & -2 \\ 1 & -3 & 0 \end{pmatrix} \begin{pmatrix} \gamma_s \\ \gamma_t \\ \gamma_c \end{pmatrix} - \begin{pmatrix} 0 \\ 0 \\ 2 \gamma_c^2 \end{pmatrix}
\end{align*}
\]

- Weak interaction, \(|\gamma_s|, |\gamma_t|, |\gamma_c| \ll 1 \)
- Weak disorder, \(t \ll 1 \).
- Initial values \(\gamma_s(0) = \gamma_{s0} < 0, \gamma_t(0) = \gamma_{t0} > 0, \gamma_c(0) = \gamma_{c0} < 0, t(0) = t_0 \)
2D electrons (orth. symmetry class) / weak short-range interaction

- Moderately strong disorder: $|\gamma_{c0}| \ll t_0 \ll 1$

$$\frac{dt}{dy} = t^2, \quad \frac{d}{dy} \begin{pmatrix} \gamma_s \\ \gamma_t \\ \gamma_c \end{pmatrix} = -\frac{t}{2} \begin{pmatrix} 1 & 3 & 2 \\ 1 & -1 & -2 \\ 1 & -3 & 0 \end{pmatrix} \begin{pmatrix} \gamma_s \\ \gamma_t \\ \gamma_c \end{pmatrix}$$

Eigenvalues and eigenvectors

$$\lambda = 2t \quad : \quad \begin{pmatrix} -1 \\ 1 \\ 1 \end{pmatrix} ; \quad \lambda' = -t \quad : \quad \begin{pmatrix} 1 \\ 1 \\ -1 \end{pmatrix} \quad \text{and} \quad \begin{pmatrix} 1 \\ -1 \\ 2 \end{pmatrix}.$$

- attraction to the (BCS) line $-\gamma_s = \gamma_t = \gamma_c \equiv \gamma$

- Anomalous dimensions of operators with two Q's in NLσM:
 $$\Delta_2 = -\lambda + \ldots \quad \text{and} \quad \mu_2 = -\lambda' + \ldots$$

- $\Delta_2 < 0$ is due to multifractality of electron wave functions without interactions
Projected RG equations:

\[
\frac{dt}{dy} = t^2, \quad \frac{d\gamma}{dy} = 2t\gamma - 2\gamma^2 / 3
\]

\[t(0) = t_0, \quad \gamma(0) = \gamma_0 = (-\gamma_{s0} + 3\gamma_{t0} + 2\gamma_{c0})/6, \quad |\gamma_0| \ll t_0 \ll 1\]

Two-step renormalization

1. \(t > \gamma\): neglect Cooper instability \((\gamma^2)\);
 enhancement of interaction matrix element due to weak multifractality

2. \(\gamma > t\): neglect disorder-induced term \((t\gamma) \implies\) conventional BCS,
 but with the new “bare” coupling constant \(t\) determined by disorder
 \(\implies\) exponential enhancement of the mean-field \(T_c\)
If $t_0 \ll \sqrt{|\gamma_0|} \ll 1$, superconductor wins:

$$|\gamma(y_*)| \sim 1, \quad t(y_*) \sim t_0^2/|\gamma_0| \ll 1, \quad y_* \sim \frac{1}{t_0}$$

superconductor transition temperature $T_c \propto e^{-2/t_0} \gg T_c^{BCS}$

Enhancement of T_c due to weak multifractality!

If $\sqrt{|\gamma_0|} \ll t_0 \ll 1$, insulator wins:

$$t(y_*) \sim 1, \quad |\gamma(y_*)| \sim |\gamma_0|/t_0^2 \ll 1, \quad y_* \sim \frac{1}{t_0}$$
Sketch of phase diagram

Superconductor-Insulator Transition (SIT)
2D electrons (orth. symmetry class) / weak short-range interaction

- Resistivity t near SIT and dependence of T_c on t_0

\[\gamma_{s0} = -0.005, \quad \gamma_{t0} = 0.005, \quad \gamma_{c0} = -0.04, \]
\[t_0 = 0.065, 0.075, 0.085, 0.095, 0.10, 0.105, 0.11, 0.12 \text{ (from bottom to top)} \]
2D electrons: BKT transition

- SC transition in 2D is of Berezinskii-Kosterlitz-Thouless type

- Mean-field T_c differs only slightly from T_c^{BKT} for weak disorder

 Beasley, Mooij, Orlando ’79, Halperin, Nelson ’79

- Future work: effect of multifractality on BKT transition
3D electrons near Anderson transition/ weak short-range interaction

RG equations near free electron fixed point \(t = t_c, \gamma = 0 \)

\[
\frac{dt}{dy} = \frac{1}{\nu}(t - t_c) + \eta \gamma, \quad \frac{d\gamma}{dy} = -\Delta_2 \gamma - A \gamma^2, \quad A \sim 1
\]

\(t(0) = t_0 \) and \(\gamma(0) = \gamma_0 < 0 \) at the UV energy scale \(E_0 \sim 1/(\nu_0 l^d) \)

- Correlation length:
 \[
 \xi = |\tilde{t}_0 - t_c|^{-\nu}
 \]

\(\tilde{t} = t - \eta \nu \gamma /(|\Delta_2| \nu - 1) \) and \(\tilde{t}_0 = \tilde{t}(0) \)

- 3D Anderson transition (orth. symmetry class):
 \(\nu = 1.57 \pm 0.02 \) and \(\Delta_2 = -1.7 \pm 0.05 \)
Schematic phase diagram in the interaction–disorder plane and T_c

\[T_c \]

I: $T_c = E_0 |\gamma_0|^{d/|\Delta_2|}$
II: $T_c = \xi^{-d} E_0 \exp \left(-\frac{d}{a|\gamma_0|\xi|\Delta_2|} \right)$
III: $T_c = T_c^{BCS}$

T_c for region I agrees with Feigelman, Ioffe, Kravtsov, Yuzbashyan (2007)
Conclusions

- **Strong enhancement** of T_c for 2D electrons (short-range interactions)
- **Strong enhancement** of T_c near (free electron) 3D Anderson transition (short-range interactions)
- In both cases enhancement of superconductivity is due to **multifractality**
- **No Coulomb interaction:** Anderson localization facilitates superconductivity \(\Rightarrow \) high-T_c superconductivity?
- Anderson ’59 vs Anderson ’58: Anderson wins!