Reliability and Reproducibility of the Cryogenic Sapphire Oscillator Technology

Christophe Fluhr, Benoît Dubois, Guillaume Le Tetu, Valérie Soumann, Julien Paris, Enrico Rubiola, Member, IEEE, and Vincent Giordano

Abstract—The cryogenic sapphire oscillator (CSO) is a highly specialized machine, which delivers a microwave reference signal exhibiting the lowest frequency fluctuations [Allan deviation (ADEV) \(\sigma_y(\tau)\)] for the integration time \(\tau\) between 1 and \(10^5\) s, indeed four decades. In such interval, good units feature \(\sigma_y(\tau) < 10^{-15}\), with \(\tau < 10^{-14}\) drift in one day. The oscillator is based on a sapphire monocrystal resonating at 10 GHz in a whispering-gallery mode, cooled at \(\approx 6\) K for zero thermal coefficient and optimal quality factor \(Q\). We report on the progress accomplished in implementing 11 CSOs in about ten years since the first sample was delivered to the Malargüe station of the European Space Agency (ESA) in Argentina. Short-term stability is improved by a factor of 3–10, depending on \(\tau\), and the refrigerator’s electric power is reduced to a 3-kW single-phase line. Frequency stability and overall performances are reproducible, with unattended operation between scheduled maintenance every two years. The CSO is now a semicommercial product suitable to scientific applications requiring extreme frequency stability with the reliable unattended long-term operation, like the flywheel for primary frequency standards, the ground segment of global navigation satellite system (GNSS), astrometry, very long baseline interferometry (VLBI), and radio astronomy stations.

Index Terms—Cryogenic oscillators, frequency stability, sapphire resonator, time and frequency metrology, ultrastable oscillators.

I. INTRODUCTION

AFTER pioneering work on the superconducting cavity \cite{1}, \cite{2}, it was the cryogenic sapphire-loaded cavity that caught the researchers’ attention. Significant work was carried on mainly at the Jet Propulsion Laboratory (JPL) \cite{3}, at The University of Western Australia (UWA) \cite{4}, at the National Physical Laboratory (NPL) \cite{5} and at the Laboratoire de Physique et Métrologie des Oscillateurs \cite{6} (now the Franche-Comté Electronique Mécanique Thermique et Optique–Sciences et Technologies (FEMTO-ST) Institute). In the late 1990s, cryogenic sapphire oscillators (CSOs) demonstrated short-term fractional frequency stability of the order of \(10^{-15}\) Allan deviation (ADEV) \(\sigma_y(\tau)\) with the resonator in liquid-He bath \cite{7}, \cite{8}. Then, breakthrough performances and early uses in time and frequency metrology have been demonstrated in the early 2000s, still with He bath \cite{9}, \cite{10}, \cite{11}, \cite{12}, \cite{13}. The JPL pioneered the implementation with pulse-tube (PT) cryocoolers \cite{14} and we followed, keeping the frequency stability at the state of the art \cite{15}.

Eventually, NPL and JPL lost interest in the field, and the Australian research moved to the University of Adelaide starting a business under the brand QuantaX (formerly Cryoclock) \cite{16}.

On the French side, we focused on engineering. We improved the immunity to environmental perturbations \cite{17}, \cite{18}, rationalized the design, and improved the long-term stability \cite{19}. However, the toughest challenge was to reduce the power needed by the refrigerator from 380-V, 6–8-kW three-phase of the first prototypes to 3-kW single-phase \cite{20}, so that the CSO can be powered by a regular outlet (230 V 50 Hz, or 117 V, 60 Hz). Our CSOs evolved into a semicommercial product code named ULISS-2G, available from FEMTO-Engineering (a non-profit company owned by UFC, a Government university) to qualified users. Describing the (in)stability as the ADEV \(\sigma_y(\tau)\) of the fractional frequency \(y\) as a function of the measurement time \(\tau\), ULISS-2G features \(\sigma_y(\tau) < 3 \times 10^{-15}\) at \(\tau = 1\) s, decreasing to parts in \(10^{-16}\) at longer \(\tau\), and limited by a drift of \(10^{-14}\) max at one day. It can run unattended for years of continuous operation, with only simple maintenance every second year.

The integration time \(1\) s \(< \tau < 10^2\) s is a challenging region, where there is no competing technology. The hydrogen maser and the laser stabilized to a Fabry–Pérot cavity are the closest options, but they are not a valid replacement for the CSO. The maser is a mature commercial product requiring 0.5 m\(^2\) footprint, which may run unattended for ten years on 100–200-W electric power. However, its short-term instability is significantly higher than the CSO, starting from \(\sigma_y(\tau) \approx 10^{-13}\) at \(\tau = 1\) s, decreasing at longer \(\tau\), and equating the CSO at \(\tau\) of the order of 1 h. The laser stabilized to...
a cryogenic Fabry–Pérot cavity may outperform the CSO at short τ [21], [22], yet with similar or higher drift. However, the main problem is that such machines are laboratory experiments, with no commercial option available. The resonator, a Fabry–Pérot étalon, is a bulky piece of semiconductor-grade silicon, typically 10–20 cm long, placed in a liquid-He refrigerator which is likely larger than ours. Additionally, a metrological femtosecond comb is required to deliver an RF or microwave signal locked to the laser. The unattended operation is limited by the occasional random unlocking of the laser or the comb. Commercial lasers stabilized on a room-temperature ultralow expansion (ULE) Fabry–Pérot étalon approach the short-term stability of the CSO at short τ, but the drift is still $10^{-11} \cdots 10^{-12}/$day [23], [24], and the femtosecond comb is necessary to get an RF signal.

The CSO shines in applications where extremely low-instability $\sigma_y(\tau)$ is critical, for measurement time τ up to 10^4 s, and reliable unattended long-term operation is required. This is the case of the flywheel for primary frequency standards and of the ground segment of the global navigation satellite system (GNSS). Other applications are found in astrometry, very long baseline interferometry (VLBI), and radio astronomy stations. Best stability at $1 < \tau < 10^4$ s means that the CSO is a great candidate for the exploration of the solar system. For reference, light travels the Moon’s semimajor axis in 1.3 s, one Astronomical Unit AU (or the semimajor axis of the Earth orbit) in 499 s, and Jupiter’s and Uranus’ semimajor axis in 2595 and 9576 s, respectively.

After a review of the key points of the technology and the historical development, we provide unique information about the reproducibility and reliability gathered in 15 years of experience, namely: 1) the spread of resonant frequency, turnover temperature, and quality factor of 17 resonators from three manufacturers, tested at liquid-He temperature; 2) the ADEV $\sigma_y(\tau)$ of 11 CSOs, for τ from 1 s to one day; and 3) anecdotal facts about transporting such CSOs, with or without disassembling.

II. FEMTO-ST CSO DESIGN

Fig. 1 shows the block diagram of the CSO. The high-Q sapphire resonator is maintained near 6 K in a cryostat cooled by an autonomous PT cryocooler. The CSO is a Pound–Galani oscillator, where the resonator is used in the transmission mode in a regular oscillator loop and the reflection mode as the discriminator of the classical Pound servo. The sustaining stage and the control electronics are at room temperature. The CSO output signal at the resonator frequency ν_0 drives the synthesizer, which delivers 10 GHz, 100 MHz, and 10 MHz output frequencies in a typical implementation. The synthesizer outputs can be disciplined in long term on an external 100-MHz signal, for example, from a hydrogen maser. A computer records continuously the parameters relevant to the CSO status. The technological choices relating to the various subsets have already been described in previous publications to which we refer the reader [25], [26], [27], [28]. Here, we recall the key features making the originality of our design.

A. Sapphire Resonator

The resonator (see Fig. 2) is a cylinder of sapphire monocrystal of 54-mm diameter and 30-mm high, resonating in the quasitransverse magnetic whispering-gallery mode $\text{WGH}_{15,0,0}$ at $\nu_0 = 9.99$ GHz \pm 5 MHz. This choice greatly simplifies the design of the frequency synthesis (see below). The resonant frequency shows a turnover temperature T_0 near 6 K, where the resonator sensitivity to temperature nulls at first order. Such turning point results from paramagnetic impurities of Cr$^{3+}$ or Mo$^{3+}$ in the Al$_2$O$_3$ lattice, whose typical mass concentration is well below 1 ppm. The exact value of T_0 is a specific parameter of each resonator, typically found between 5 and 9 K in the high-quality crystals we use [29]. At T_0, the unloaded Q factor is up to two billion, depending on the crystal quality, the resonator adjustment, and cleaning. The spindle seen in Fig. 2 is machined from the bulk together with the resonator. This geometry ensures that the resonator can be mounted with no stress in the circumferential region, where the microwave energy is located.

The resonator is inserted in the center of a cylindrical cavity made of standard oxygen-free high-thermal-conductivity (OFHC) copper, electromagnetically coupled to 2.2-mm semirigid cables via two small loops. Optimal operation requires critical coupling at the resonator input so that the reflection
Fig. 3. Reflection coefficient $|S_{11}|$ of the WGH$_{15,0,0}$ mode at liquid-He temperature.

coefficient is $S_{11}(\nu_0) \approx 0$. The technical difficulty is that the resonator coupling is proportional to Q, which is multiplied by some 10,000 when the temperature is decreased from room to ≈ 6 K. We developed a specific procedure requiring only two cool-down iterations. Fig. 3 shows the reflection coefficient at the input port, close to optimal coupling. Near-critical coupling proved to be stable for years and resistant to travel.

Since 2009, we have purchased more than 25 sapphire resonators from several manufacturers selected after preliminary tests on samples. Only 17 of such resonators were actually tested at liquid-He temperature. Fig. 4 shows the spread of the key values, ν_0, T_0, and unloaded Q of such resonators, and discussed below. The brands are labeled A (Crystal System, Llc., USA), B (Precision Sapphire Technologies, Ltd., Lithuania), and C (Shinkosha Company Ltd., Japan).

1) **Resonant Frequency ν_0:** Tight machining tolerances ensure that the resonant frequency is $\nu_0 = 9.99$ GHz ± 5 MHz. This is intended to simplify the design of frequency synthesis (CF Section II-C). The resonators slightly out of specs are still usable without compromising the frequency stability, after minor modifications to the synthesis.

2) **Turnover Temperature T_0:** The minimum value is 4.6 K. A resonator having a lower turnover temperature cannot be used in the new ULISS-2G design, because the low-power refrigerator cannot safely cool it down with a sufficient margin for proper temperature stabilization. Oppositely, $T_0 > 8$ K results in degraded short-term stability, $\sigma_\nu > 3 \times 10^{-15}$ up to $\tau = 100$ s (see Section IV).

3) **Unloaded Quality Factor Q_0:** The gain of the Pound frequency discriminator is proportional to the loaded quality factor Q_L, which, in our case, is half of the unloaded quality factor Q_0. For the fractional frequency instability at the CSO output to be lower than $\sigma_\nu(\tau) = 1 \times 10^{-15}$ at $\tau = 1$ s, the minimum quality factor is $Q_0 = 5 \times 10^8$ [29]. All the resonators tested fulfill this requirement. Besides crystal quality, the presence of small particles stuck on the resonator surface limits the Q factor. We developed a cleaning method, done in a class 100 clean room.

B. Sustaining Loop

The sustaining amplifier is at room temperature. It has 80-MHz bandwidth, determined by an internal bandpass filter centered on 9.99 GHz. Gain and phase lag are set independently by two external near-dc voltages, which are the actuator inputs for the power control and the Pound frequency control. The phase modulation at the resonator input, necessary for the Pound control, has a frequency of 100 kHz. An internal coupler derives part of the loop signal to get the 10 dBm ± 1 dB reference signal driving the frequency synthesizer.

The components in the cryostat near the resonator are the most critical. Microwave isolators and circulators are commercial SMA connectorized components that we selected after low-temperature tests and cycling. The tunnel diodes for the power control and the Pound control [30] are electrically fragile because of the small bandgap. To prevent degradation, we limit the power at the cryostat input to -5 dBm.

In some CSO designs [31], the frequency stability is affected by the residual amplitude modulation (RAM) in the Pound
interrogation signal, which results in a frequency offset. This phenomenon is negligible in our case, thanks to the low reflection coefficient at the resonator input. Thus, we do not implement a RAM suppression control.

C. Frequency Synthesis

The frequency synthesizer is shown in Fig. 5. A 2.5-GHz DRO selected for its low phase noise is frequency-multiplied to 10 GHz and phase-locked on the CSO output. The (10 ± 5) MHz gap between the 9.99-GHz sapphire output and multiplied DRO is compensated by adding the output of a low-noise 48-bit DDS clocked at \(v_{ck} = 100 \text{ MHz} \). The frequency resolution of the DDS is \(\Delta v = v_{ck}/2^{47} = 7.1 \times 10^{-7} \text{ Hz} \) (only 47 bits of the 48 bit register contribute to the resolution). So, the fractional frequency resolution at the CSO output is \(\Delta v/v_0 = 7.1 \times 10^{-17} \). The 100- and 10-MHz output signals are generated by frequency division. The 100-MHz signal can also be sent to the phase comparator (PCO) driven by an external reference signal. A digital control word is thus obtained to control the DDS frequency and discipline in the long term of the CSO synthesizer output signal.

D. Overview of 15 Years of Our Cryocooled CSOs

Since 2009, we built and validated 11 CSOs. Our first unit was built in the frame of the ELISA project, funded by the European Space Agency (ESA). In 2010, ELISA demonstrated for the first time a state-of-the-art frequency stability with an autonomous cryocooler, replacing the liquid helium bath [15]. As we will see in Sections III and IV, our technology evolved in 2015 with the new design of a low-power cryocooler. Table I shows a summary of these CSOs.

III. ULISS-1G: First Generation of Cryocooled CSOs

The tradeoff in the cryostat design is to ensure proper thermal conduction between the resonator and the cold source while limiting the transfer of mechanical vibrations arising from the cryocooler. The ULISS-1G cryostat is shown in Fig. 6. We opted for simple solutions, favoring passive thermal filtering and mechanical decoupling by flexible links. The resonator is held by stiff rods attached to a rigid frame and thermally connected to the cold source by a set of copper braids. The fundamental frequency of the PT thermal cycle is typically \(\sim 1.4 \text{ Hz} \). The low-frequency vibration from the cold finger to the resonator is attenuated by the stiffness ratio of the copper braids to the holding rods. Moreover, the temperature variations on the cold finger are passively filtered by the thermal ballast constituted by the stainless-steel top flange of the second-stage thermal shield. The thermal mass of the ballast and the thermal resistance of the braids are equivalent to a first-order filter.

For ULISS-1G, we opted for a powerful cryocooler providing at least 500-mW cooling power at 4 K. Such a cooling...
power simplified the design and relaxed the constraints in the material and geometry of the holding rods and the residual stiffness of the flexible thermal links. Thus, a temperature of 4 K and a residual displacement below 1 µm at the resonator level are easily reached.

ELISA was validated in 2010 in our lab, disassembled and packed, moved, and reassembled at the ESA Deep Space Antenna Station DSA-3 in Malargüe, Argentina. More in detail, ELISA was transported by truck to Paris, by plane to Buenos Aires, and again by truck to destination, with the last 30 km on unpaved road. It did not suffer from vibrations and shocks. The resonator, the most fragile part, showed perfect coupling with no need for fine adjustment. Finally, ELISA was put into operation only two days after arrival.

Encouraged by the success of ELISA, we decided to build three units for Oscillator instability measurement platform (IMP), our platform of metrology [32]. These three CSOs were implemented between 2010 and 2014, progressively installed in a controlled environment, and stabilized to 22 °C ± 0.5 °C by a proportional-integral-derivative (PID) control. Since then, they have been running almost continuously. Both, Pound and frequency stability is limited by the residual temperature fluctuations affecting the resonator. In [28], we have shown that no accidental loss of control ever detected. Several short stops were scheduled, for: 1) routine replacing a filter in the helium compressor every second year; 2) maintenance of the electrical installation in the building; and 3) energy saving, during the first two weeks of August, when the lab is closed. We had only two failures, detailed in Section V.

Fig. 7 shows the fractional frequency stability of the ULISS-1G CSOs. The best unit features a short-term frequency stability of $5 \times 10^{-16} \tau^{-1/2}$, limited by a flicker floor of 1.5×10^{-16} between 100 and 5000 s.

One of these CSOs (see Fig. 8) was specifically designed to be transported in a small truck, intended to test the technology and to evaluate its potential for real applications. In a few years, ULISS accomplished nine roundtrips visiting seven different European locations, the farthest of which is Goteborg, Sweden, and traveled more than 10 000 km [33]. No damage, degradation of stability loss, has ever occurred after partial disassembling and reassembling the CSO to fit it in the truck.

The ULISS *Odyssey* was the opportunity to meet potential users, with the obvious purpose of understanding their needs and the difficulties related to the installation of a CSO in their lab [34], [35], [36]. This experience revealed that the high electrical power needed by the compressor (380-V three-phase line, 6-kW stationary) is the major problem, together with the amount of heat generated—albeit the latter is mitigated by the fact that the compressor is generally located outside the controlled metrological area. Such problems hinder the deployment of CSO technology.

IV. ULISS-2G: SECOND GENERATION OF CRYOCOOLED CSOs

The ULISS-2G project was launched to solve the high electrical power required by the first-generation CSOs. The cryostat was redesigned and optimized for the new spec of 3 kW, single-phase, matching the available power from a regular 230-V, 16-A outlet. This means the capability to maintain a temperature down to ~4 K with the cooling power of 250 mW of the Cryomech PT403 PT [37]. This was achieved by improving the thermal shielding, the conductance and the flexibility of copper braids, and by designing new 3-D-printed Mylar holding rods. Designing a new cryostat was also an opportunity to shrink the size and rationalize the assembly: the supporting frame was suppressed and replaced with the vacuum can itself, now more rigid [20]. This allowed us to place the cryostat in a 19” rack, together with the control electronics and the frequency synthesizer. Fig. 9 shows ULISS-2G with its water-cooled compressor.

Since 2017, we build and validated six ULISS-2G CSOs of identical design. The only notable difference between them is the value of the resonator turnover temperature T_0. Fig. 10 shows the ADEV of these CSOs, obtained by comparing the CSO under test to two first-generation CSOs of Oscillator IMP, with the three-cornered-hat configuration. The ADEV of all the ULISS-2G CSOs is better than 3×10^{-15} for $1 \leq \tau \leq 10\,000$ s, with a drift below 1×10^{-15} per day.

At short term, $1 \leq \tau \leq 100$ s, none of the CSOs is limited by the noise of the Pound frequency discriminator, which is always below $7 \times 10^{-15} \tau^{-1/2}$. Here, the CSO frequency stability is limited by the residual temperature fluctuations affecting the resonator.
Fig. 9. ULISS-2G, the second-generation CSO. Notice the He compressor is significantly smaller than that of Fig. 8, which takes 3 kW and can be powered from a common 230-V, 16-A outlet.

how unexpected time lag in the thermal system and the relative slowness of the digital temperature control induce small and slow temperature modulation in the resonator. This modulation originates bumps in the ADEV curve of five CSOs, clearly visible in Fig. 7 between 5 and 100 s. Our confidence in this interpretation is supported by the fact that the best two ULISS-2G CSOs, #04 and #05, are characterized by a resonator turnover temperature of 5.1 and 5.2 K, and the turnover of units #6–#10 occurs between 6.2 and 7.3 K.

Curve #X was obtained with a noncompliant resonator characterized by $T_0 \sim 9$ K. Despite the high Q, $Q = 10^9$, the short-term ADEV is higher than the ULISS-2G spec $\sigma_1(\tau) \leq 3 \times 10^{-15}$. This resonator was discarded.

The CSO #10, the last implemented, has been started in March 2022, and it is still being tested at FEMTO-ST, catching attention because of the very good medium-term stability, close to 1×10^{-16} around 200 s. The turnover temperature is 6.2 K.

The differences between the nearly identical CSOs can be explained by considering the temperature sensitivity of the following parameters.

1) **Residual Thermal Sensitivity of the Resonator**: Near T_0, the resonator frequency is well approximated by the quadratic law $f(T) = f(T_0)\left[1 + \alpha(T - T_0)^2\right]$, where $\alpha < 0$ is the curvature, in K$^{-2}$. Thus, the thermal sensitivity close to the turning point is

$$\frac{1}{v_0} \frac{\Delta v}{\Delta T} = 2\alpha(T - T_0).$$

The curvature α depends on T_0, and in the considered temperature range $\alpha \propto T_0^2$. Thus, α increases by a factor of two from 5 to 7 K.

2) **Sensitivity of the Temperature Sensor**: The cryogenic sensors we use are zirconium-nitride thin-film resistors. Their typical sensitivity, in Ω/K, decreases by a factor of 1/5 from 5 to 7 K [38].

3) **Physical Properties of Materials**: The thermal conductivity k, in W·m$^{-1}$·K$^{-1}$, and the heat capacity C_p, in J·kg$^{-1}$·K$^{-1}$, of virtually all materials increase significantly from 5 to 7 K [39]. For copper, $k \propto T$ has relatively little importance, but C_p doubles from 5 K to 7 K. For sapphire, k and C_p are both proportional to T^3.

All the above-described phenomena indicate that the lowest turning point is advantageous in that the temperature control is more efficient: lower temperature sensitivity of the resonator, smaller thermal time constants, and higher sensitivity of the temperature sensor.

In the long term, $\tau > 100$ s, the frequency stability is mainly limited by the ambient temperature variations. For slow variations, the estimated sensitivity is 1×10^{-14} K$^{-1}$. All CSOs of Fig. 10 were tested in a workshop with usual on–off air-conditioning. Depending on the sunlight, the temperature near the cryostat varies by several degrees during the day. Moreover, the workshop is free access for the laboratory staff, which makes it impossible to keep the environment unperturbed for the duration of the measurement (few days).

V. MAINTENANCE, MECHANICAL ROBUSTNESS, AND FAILURE REPORT

The electronics needs no maintenance, and we never experienced a failure in the Pound control or the power control. That said, metrology at this level of stability obviously requires continuous monitoring. The refrigerator requires replacing every second year a helium filter at the input of the compressor. The operation is easily done by the user. It requires 30-min manpower, but the compressor is stopped for 1 h. In the end, the cryostat is still cold enough for the CSO to be operational at full stability after half a day.

The experience with ELISA, delivered to Malargüe, and with the nine roundtrips of ULISS are per se a proof of mechanical robustness. We experienced only two failures since the beginning of the experience reported, the rotary valve of a PT, and a tunnel diode. In both cases, the CSO recovered at full stability.

The rotary valve caused the refrigerator not to restart after a scheduled stop. It could have failed at a different time stopping.
the machine, but fortunately, it did not. Having the spare part on the shelf, the replacement took 30-min working time. Anomalous mechanical wear is the most accredited reason.

A tunnel diode in the power control had to be replaced after showing a progressive degradation of sensitivity. This let us time to schedule a stop without sudden signal loss, but the replacement required disassembling the cryostat and restarting the vacuum and cooling. Thermal stress is the most accredited reason, given the fact that this type of diode is not specified for the cryogenic environment by the manufacturer, but it was qualified in our lab after appropriate tests. The diode, installed in a machine intended for R&D tests whose cryostat has been disassembled numerous times, has undergone an excess of thermal cycles. For this reason, we do not consider such failure a risk under normal circumstances.

VI. SUMMARY

We reported on our experience building a dozen of CSOs since 2009. Describing the stability as ADEV $\sigma_v(\tau)$ of the fractional frequency ν as a function of the measurement time τ, the CSO outperforms all other technologies in the region defined by $1 < \tau < 10^6$ s, where $\sigma_v(\tau) < 3 \times 10^{-15}$ (specs), down to parts in 10^{-16} in the central part. The maximum drift is 1×10^{-14} over one day. Some of the CSOs have been running continuously for years with no noticeable aging.

All CSOs proved to be reliable in the long term and resistant to intercontinental travel. In this long experience, we had only two failures, in development prototypes that have been disassembled and reassembled multiple times.

The new design, which reduces the need for electrical power from 6–8 kW three-phase to 3-kW single-phase, is now a semicommercial product available to qualified users.

REFERENCES

[1] S. Stein and J. Turneaure, “Superconducting-cavity-stabilised oscillator of high stability,” Electron. Lett., vol. 13, no. 8, pp. 321–323, 1972.
[2] S. R. Stein, “Space applications of superconductivity: Resonators for high stability oscillators and other applications,” Cryogenics, vol. 20, no. 7, pp. 363–371, Jul. 1980.
[3] D. Strayer, G. Dick, and E. Tward, “Superconductor-sapphire cavity for an all-cryogenic SCSO,” IEEE Trans. Magn., vol. MAG-19, no. 3, pp. 512–515, May 1983.
[4] D. Blair and S. Jones, “High-Qsapphire loaded superconducting cavities and application to ultrafast clocks,” IEEE Trans. Magn., vol. MAG-21, no. 2, pp. 142–145, Mar. 1985.
[5] C. D. Langham and J. C. Gallop, “Development of a high stability cryogenic sapphire dielectric resonator,” IEEE Trans. Instrum. Meas., vol. 42, no. 2, pp. 96–98, Apr. 1993.
[6] O. Di Monaco, W. Daniau, I. Lajoie, Y. Gruson, M. Chaubet, and V. Giordano, “Mode selection for a whispering gallery mode resonator,” Electron. Lett., vol. 32, pp. 669–670, Mar. 1996.
[7] A. D. Luiten, A. G. Mann, and D. G. Blair, “Cryogenic sapphire microwave resonator-oscillator with exceptional stability,” Electron. Lett., vol. 30, pp. 417–418, Mar. 1994.
[8] R. T. Wang and J. Dick, “Cryocooled sapphire oscillator with ultrahigh stability,” IEEE Trans. Instrum. Meas., vol. 48, no. 2, pp. 528–531, Apr. 1999.
[9] G. Santarelli et al., “Quantum projection noise in an atomic fountain: A high stability cesium frequency standard,” Phys. Rev. Lett., vol. 82, no. 23, pp. 4619–4622, Jun. 1999.
[10] S. Chang, A. G. Mann, and A. N. Luiten, “Improved cryogenic sapphire oscillator with exceptionally high frequency stability,” Electron. Lett., vol. 36, no. 5, pp. 480–481, Mar. 2000.
[11] P. Wolf, S. Bitze, A. Clairon, A. N. Luiten, G. Santarelli, and M. E. Tobar, “Tests of Lorentz invariance using a microwave resonator,” Phys. Rev. Lett., vol. 90, Feb. 2003, Art. no. 060402.
[12] Y. Bourgeois, F. Launet-Vieudrin, Y. Kersalé, N. Bazin, M. Chaubet, and V. Giordano, “Ultra-low drift microwave cryogenic oscillator,” Electron. Lett., vol. 40, pp. 1–2, May 2004.
[13] P.-Y. Bourgeois, Y. Kersalé, N. Bazin, M. Chaubet, and V. Giordano, “A cryogenic open-cavity sapphire reference oscillator with low spurious mode density,” IEEE Trans. Ultrason., Ferroelectr., Freq. Control, vol. 51, no. 10, pp. 1232–1239, Oct. 2004.
[14] J. Dick and N. T. Wang, “Stability and phase noise tests of two cryocooled sapphire oscillators,” IEEE Trans. Ultrason., Ferroelectr., Freq. Control, vol. 47, no. 5, pp. 1098–1101, Sep. 2000.
[15] S. Grop et al., “ELISA: A cryocooled 10 GHz oscillator with 10−15 frequency stability,” Rev. Sci. Instrum., vol. 81, no. 2, Feb. 2010, Art. no. 025102.
[16] Quantel Labs is a Privately-Owned Australian Company Supplying High-Precision Timing and Quantum Sensor Technologies. Accessed: Jun. 5, 2023. [Online]. Available: https://www.quantelabs.com/
[17] V. Giordano, S. Grop, P.-Y. Bourgeois, Y. Kersalé, and E. Rubiola, “Influence of the electron spin resonance saturation on the power sensitivity of cryogenic sapphire resonators,” J. Appl. Phys., vol. 116, no. 5, Aug. 2014, Art. no. 054901.
[18] V. Giordano, C. Fluur, and B. Dubois, “Magnetic sensitivity of the microwave cryogenic sapphire oscillator,” J. Appl. Phys., vol. 127, no. 18, May 2020, Art. no. 184101.
[19] S. Grop et al., “Unprecedented long-term frequency stability with a microwave resonator oscillator,” IEEE Trans. Ultrason., Ferroelectr., Freq. Control, vol. 58, no. 8, pp. 1694–1697, Aug. 2011.
[20] C. Fluur, B. Dubois, S. Grop, J. Paris, G. Le Têt, and V. Giordano, “A low power cryocooled autonomous ultra-stable oscillator,” Cryogenics, vol. 80, pp. 164–173, Dec. 2016.
[21] T. Kessler et al., “A sub-80-mHz linewidth laser based on a silicon single-crystal optical cavity,” Nature Photon., vol. 6, no. 10, pp. 687–692, Oct. 2012.
[22] J. M. Robinson et al., “Crystalline optical cavity at 4 K with thermal-noise-limited instability and ultralow drift,” Optica, vol. 6, no. 2, pp. 240–243, 2019.
[23] Menlo Systems GmbH is a German Company Supplying Instrumentation for Precision Metrology. Accessed: Jun. 5, 2023. [Online]. Available: https://www.menlosystems.com/products/ultrastable-lasers/ors/
[24] Stable Laser Systems is an US Company Supplying Components and Systems for Frequency Stabilized Lasers. Accessed: Jun. 5, 2023. [Online]. Available: https://www.stabl lasers.com/
[25] S. Grop, P.-Y. Bourgeois, R. Boudot, Y. Kersalé, E. Rubiola, and V. Giordano, “10 GHz cryocooled sapphire oscillator with extremely low phase noise,” Electron. Lett., vol. 46, no. 6, pp. 420–422, Mar. 2010.
[26] S. Grop et al., “Frequency synthesis chain for ESA deep space network,” Electron. Lett., vol. 47, pp. 386–388, Mar. 2011.
[27] V. Giordano, S. Grop, C. Fluur, B. Dubois, Y. Kersalé, and E. Rubiola, “The autonomous cryocooled sapphire oscillator: A reference for frequency stability and phase noise measurements,” J. Phys., Conf. Ser., vol. 723, Jun. 2016, Art. no. 012030.
[28] C. Fluur, S. Grop, B. Dubois, Y. Kersalé, E. Rubiola, and V. Giordano, “Characterization of the individual short-term frequency stability of cryogenic sapphire oscillators at the 10−16 level,” IEEE Trans. Ultrason., Ferroelectr., Freq. Control, vol. 63, no. 6, pp. 915–921, Jun. 2016.
[29] V. Giordano, C. Fluur, S. Grop, and B. Dubois, “Tests of sapphire crystals manufactured with different growth processes for ultra-stable microwave oscillators,” IEEE Trans. Microw. Theory Techn., vol. 64, no. 1, pp. 78–85, Jan. 2016.
[30] C. Fluur, S. Grop, B. Dubois, and E. Rubiola, “Characterization of zero-bias microwave diode power detectors at cryogenic temperature,” Rev. Sci. Instrum., vol. 87, no. 8, Aug. 2016, Art. no. 084702.
[31] C. R. Locke, E. N. Ivanov, J. G. Hartnett, P. L. Stanwix, and M. E. Tobar, “In-flight article: Design techniques and noise properties of ultrastable cryogenically cooled sapphire-dielectric resonator oscillators,” Rev. Sci. Instrum., vol. 79, no. 5, May 2008, Art. no. 051301.
[32] The FEMTO-Engineering Team Gives Access to the OSCILLATOR IMP Platform for Measuring Noise, Fluctuation and Short-Term Stability of Oscillators, Components and Associated Devices in the Radio-Frequency, Microwave and Optical Spectrum. Accessed: Jun. 5, 2023. [Online]. Available: https://www.femtoengineering.fr/en/equipment/oscillator-instability-measurementplatform/
Christophe Fluhr received the master’s degree in microsystem engineering with a specialization in embedded electronics from the Université de Franche-Comté, Besançon, France, in 2012, and the Ph.D. degree in engineering science from the Université Bourgogne Franche-Comté, Besançon, in 2017.

During his thesis, he developed a new generation of the cryogenic sapphire oscillator (CSO) based on a low-power consumption cryostat. He currently works as an Electrical Engineer with the Time and Frequency Department, Franche-Comté Electronique Mécanique Thermique et Optique–Sciences et Technologies (FEMTO-ST) Institute, Besançon. His main task is the manufacturing and commercialization of CSO. He is also involved in oscillator IMP, the platform dedicated to the measurement of phase noise and frequency stability.

Benoît Dubois received the master’s degree in electrical engineering from Joseph Fourier University, Grenoble, France, in 2005, and the Ph.D. degree in electrical engineering from the University of Strasbourg, Strasbourg, France, in 2009. Since 2011, he has been with the Franche-Comté Electronique Mécanique Thermique et Optique–Sciences et Technologies (FEMTO-ST) Institute, FEMTO Engineering, Besançon. His current research interests include ultrahigh stability microwave oscillators, AM and PM noise, noise in digital systems, time and frequency metrology.

Guillaume Le Tetu was born in Seoul, South Korea, in May 1974. He received the Engineering degree in mechanics from the Institut Supérieur de l’Aéronautique et de l’Espace ISAE-Supmae, St Ouen, France, in 1998. From 1999 to 2006, he first worked in car engineering for Renault, Guyangcourt, France, as a CAD Engineer and then with Esiolor, St Maur des Fossés, France, as an Ophthalmic Lens Manufacturing Research Engineer. Since 2007, he has been working with the Franche-Comté Electronique Mécanique Thermique et Optique–Sciences et Technologies (FEMTO-ST) Institute, Besançon, France, as an Engineer in mechanical simulation and design.

Valerie Soumann received the B.S. degree in matériaux et procédés en plasturgie from the University of Metz, Metz, France, in 1995.

In 2002, she was hired in the Technical Staff of Microfabrication for MEChanics, Nanosciences, Thermal and Optics (MIMENTO), Franche-Comté Electronique Mécanique Thermique et Optique–Sciences et Technologies (FEMTO-ST) Institute, Besançon, France, as an Associate Researcher with the Istituto Nazionale di Ricerca Metrologica (INRiM), Turin, Italy. She founded the Oscillator IMP Project in 2012, a platform for the measurement of short-term frequency stability and AM/PM noise. She founded the European Frequency and Time Seminar (http://efts.eu) in 2013, a non-profit crash course in time and frequency, where he has been chairing and running it since. His primary research interests are high-purity oscillators, AM and PM noise, noise in digital systems, time and frequency metrology, frequency synthesis, Allan variances, microwave photonics, and precision electronics. He is known for AM/PM noise measurement instruments with ultimate sensitivity, for the theory of the “Leeson effect,” for the statistics of Π, Ω and Ω frequency counters, and for hacking oscillators from phase noise.

Julien Paris, photograph and biography not available at the time of publication.

Enrico Rubiola (Member, IEEE) is currently a Professor of electronics with the Université de Franche Comté (UFC), Besançon, France, a Researcher with the Franche-Comté Electronique Mécanique Thermique et Optique–Sciences et Technologies (FEMTO-ST) Institute, Besançon, and an Associated Researcher with the Istituto Nazionale di Ricerca Metrologica (INRiM), Turin, Italy. He founded the Oscillator IMP Project in 2012, a platform for the measurement of short-term frequency stability and AM/PM noise. He founded the European Frequency and Time Seminar (http://efts.eu) in 2013, a non-profit crash course in time and frequency, where he has been chairing and running it since. His primary research interests are high-purity oscillators, AM and PM noise, noise in digital systems, time and frequency metrology, frequency synthesis, Allan variances, microwave photonics, and precision electronics. He is known for AM/PM noise measurement instruments with ultimate sensitivity, for the theory of the “Leeson effect,” for the statistics of Π, Ω and Ω frequency counters, and for hacking oscillators from phase noise.

Pro. Rubiola, in 2018, has received the IEEE W. G. Cady Award “for groundbreaking contributions” in the field. A wealth of free articles and lecture notes is available on http://rubiola.org.

Vincent Giordano was born in Besançon, France, in February 1962. He received the Engineering degree (five years degree) in mechanics from the Ecole Supérieure de Mécanique et des Microtechniques, Besançon, in 1984, and the Ph.D. degree in physical sciences from Paris XI University, Orsay, France, in 1987.

From 1984 to 1993, he was a Researcher of the Permanent Staff with the Laboratoire de l’Horloge Atomique, Orsay, where he worked on a laser diode optically pumped cesium beam frequency standard. In 1993, he joined the Laboratoire de Physique et de Métrologie des Oscillateurs (LPMO), Besançon. Franche-Comté Electronique Mécanique Thermique et Optique–Sciences et Technologies (FEMTO-ST) Institute was founded in January 2004 from the merger of five different laboratories active in different fields of engineering science: mechanics, optics and telecommunications, electronics, time–frequency, energetics, and fluids. Time and Frequency Department was created in 2006 grouping all the activities related to time and frequency metrology and microacoustics components and systems. His current research interests include ultrahigh stability microwave oscillators based on sapphire resonators, microwave and optical atomic clocks, and time and frequency metrology.