An integrable generalization of the super Kaup-Newell soliton hierarchy and its bi-Hamiltonian structure

Beibei Hua,b,, Tiecheng Xiab, Ling Zhanga

\textit{a.School of Mathematics and Finance, Chuzhou University, Anhui, 239000, China}
\textit{b.Department of Mathematics, Shanghai University, Shanghai 200444, China}

Abstract

An integrable generalization of the super Kaup-Newell (KN) isospectral problem is introduced and its corresponding generalized super KN soliton hierarchy are established based on a Lie super-algebra B(0,1) and super-trace identity in this paper. And the resulting super soliton hierarchy can be put into a super bi-Hamiltonian form. In addition, a generalized super KN soliton hierarchy with self-consistent sources is also presented.

PACS: 02.30.Ik, 05.45.Yv, 11.30.Pb

Keywords: Super KN soliton hierarchy; Super Hamiltonian structure; Self-consistent Sources

1 Introduction

As we all know, With the development of soliton theory, super integrable systems associated with Lie super algebra have been paid growing attention, many classical integrable equations have been extended to be the super completely integrable equations [1-12]. Among those, Hu 12 and Ma 13 has made a great contribution. Hu 12 proposed the super-trace identity, which is an effective tool to constructing super Hamiltonian structures of super integrable equations. In 2008, Ma given the proof of the super-trace identity and the super Hamiltonian structure of many super integrable equations is established by the super-trace identity 13, 14.

*Corresponding author. E-mail address: hu.chzu@163.com(B.-b. Hu).
The soliton equation with self-consistent sources play an important role in discussing the integrability for soliton hierarchy. They are relevant to some problems related to hydrodynamics, solid state physics, plasma physics, and they are also usually used to describe interactions between different solitary waves [16-18]. Very recently, self-consistent sources for super integrable equation hierarchy are constructed [19-30].

In Ref.[30], Yan considered a hierarchy of generalized KN equations, where the spatial spectral problem is given by

$$\phi_x = U \phi, U = \begin{pmatrix} \lambda + \mu qr & q \\ r & -\lambda - \mu qr \end{pmatrix}, \phi = \begin{pmatrix} \phi_1 \\ \phi_2 \end{pmatrix}, u = \begin{pmatrix} q \\ r \end{pmatrix}, \quad (1.1)$$

where q and r are both scalar potentials, λ is the spectral parameter, and μ is an arbitrary constant. The case of $\mu = 0$ Eq.(1.1) reduces to the well-know Kaup-Newell spectral problem [31], and $\mu = -\frac{1}{2}$ the Eq.(1.1) becomes the one considered by Qiao[32] by using the spectral gradient method and nonlinearization approach. Another three versions of generalized KN equations were also discussed in refs.[34-39]. The same idea to generalize the AKNS hierarchy [40-42] and the Wadati-Konno-Ichikaw(WKI) hierarchy [42], whose bi-Hamiltonian structures were constructed. Inspired by those generalizations, we would, in this paper, like to construct a generalized super KN hierarchy.

Organization of this paper. In Section 2, we shall construct a generalized super KN hierarchy based on a Lie super-algebra. In Section 3, the super bi-Hamiltonian form will be presented for the obtained generalized super KN hierarchy by making use of the super trace identity and a generalized super KN hierarchy with self-consistent sources generated from the variational derivative of spectra. And some conclusions and discussions are given in the last Section.

2 A hierarchy of generalized super KN equations

In this section, we shall construct a generalized super KN hierarchy starting from a Lie super-algebra. Consider the following spatial spectral problem

$$\phi_x = M \phi, M = \begin{pmatrix} \lambda + \omega & q & \alpha \\ \lambda r & -\lambda - \omega & \lambda \beta \\ \lambda \beta & -\alpha & 0 \end{pmatrix}, \phi = \begin{pmatrix} \phi_1 \\ \phi_2 \\ \phi_3 \end{pmatrix}, u = \begin{pmatrix} q \\ r \\ \alpha \\ \beta \end{pmatrix}, \quad (2.1)$$

where $\omega = \mu(qr + 2\alpha \beta)$ with μ is an arbitrary even constant, λ is the spectral parameter, q and r are even potentials, and α and β are odd potentials. Obviously, the spatial spectral problem (2.1) with $\mu = 0$ reduces to the standard super KN case [8, 21].
And associated with the Lie super-algebra \(G_1 = \{\sum_{i=1}^{5} \lambda_i, \lambda_i \in A, i = 1, 2, 3, 4, 5\}\).

\[
e_1 = \begin{pmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 0 \end{pmatrix}, e_2 = \begin{pmatrix} 0 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}, e_3 = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix},
\]
\[
e_4 = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}, e_5 = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix}.
\]

which satisfy the following relationship

\[
[e_1, e_2] = -2e_2, [e_1, e_3] = 2e_3, [e_2, e_3] = -e_1,
\]

\[
[e_5, e_1] = [e_2, e_4] = e_5, [e_3, e_4] = [e_2, e_5] = 0, [e_3, e_5] = [e_1, e_4] = e_4,
\]

\[
[e_4, e_4]_+ = -2e_3, [e_5, e_5]_+ = 2e_2, [e_4, e_5]_+ = [e_5, e_4]_+ = e_1. \quad (2.2)
\]

where \(e_1, e_2, e_3\) are even and \(e_4, e_5\) are odd, \([., .]\) and \([., .]_+\) denote the commutator and the anticommutator, meanwhile \(q, r\) are even elements and \(\alpha, \beta\) are odd elements in (2.2).

From the Tu format, We setting

\[
N = \begin{pmatrix} A & B & \rho \\ \lambda C & -A & \lambda \delta \\ -\rho & 0 & 0 \end{pmatrix} = \sum_{m=0}^{n} \begin{pmatrix} a_m & b_m & \rho_m \\ \lambda c_m & -a_m & \lambda \delta_m \\ \lambda \delta_m & -\rho_m & 0 \end{pmatrix} \lambda^{-m}, \quad (2.3)
\]

the corresponding \(A, B, C\) are even elements and \(\rho, \delta\) are odd elements, if we want to get the super integrable system, we solve the stationary zero curvature equation at first

\[
N_x = [M, N]. \quad (2.4)
\]

Substituting \(M\) in (2.1) and \(N\) in (2.3) into Eq.(2.4) and comparing the coefficients of \(\lambda^{-m}(m \geq 0)\), we obtain

\[
\begin{align*}
& a_{m,x} = q c_{m+1} - r b_{m+1} + \alpha \delta_{m+1} + \beta \rho_{m+1},
& b_{m+1} = \frac{1}{2} b_{m,x} + q a_m + \alpha \rho_m - \omega b_m,
& c_{m+1} = -\frac{1}{2} c_{m,x} + r a_m + \beta \delta_{m+1} - \omega c_m,
& \rho_{m+1} = \rho_{m,x} + \alpha a_m + \beta b_{m+1} - q \delta_{m+1} - \omega \rho_m,
& \delta_{m+1} = -\delta_{m,x} + \beta a_m - \alpha c_m + r \rho_m - \omega \delta_m.
\end{align*} \quad (2.5)
\]

which leads to a recursive relationship

\[
\begin{align*}
& (c_{m+1}, b_{m+1}, \delta_{m+1}, \rho_{m+1})^T = L(c_m, b_m, \delta_m, \rho_m)^T,
& a_m = \partial^{-1}\left(-\frac{1}{2} q c_{m,x} - \frac{1}{2} r b_{m,x} - \alpha \delta_{m,x} + \beta \rho_{m,x} - q \omega c_m + r \omega b_m - \alpha \omega \delta_m - \beta \omega \rho_m\right).
\end{align*} \quad (2.6)
\]
Where the recursion operator L has the following form

$$L = (L_{ij})_{4 \times 4}, \quad i, j = 1, 2, 3, 4,$$

with

$$L_{11} = -\beta \alpha - (\omega + \frac{1}{2} \partial) - r \partial^{-1} q(\omega + \frac{1}{2} \partial), \quad L_{12} = r \partial^{-1} q(\omega - \frac{1}{2} \partial),$$

$$L_{13} = -r \partial^{-1} \alpha(\partial + \omega) - \beta(\partial + \omega), \quad L_{14} = r \partial^{-1} \beta(\partial - \omega) + r \beta, \quad L_{21} = -q \partial^{-1} q(\omega + \frac{1}{2} \partial),$$

$$L_{22} = q \partial^{-1} r(\omega - \frac{1}{2} \partial) + \frac{1}{2} \partial - \omega, \quad L_{23} = -q \partial^{-1} \alpha(\partial + \omega), \quad L_{24} = q \partial^{-1} \beta(\partial - \omega) + \alpha,$$

$$L_{31} = -\beta \partial^{-1} q(\omega + \frac{1}{2} \partial) - \alpha, \quad L_{32} = \beta \partial^{-1} r(\omega - \frac{1}{2} \partial), \quad L_{33} = -\beta \partial^{-1} \alpha(\partial + \omega) - (\partial + \omega),$$

$$L_{34} = \beta \partial^{-1} \beta(\partial - \omega) + r, \quad L_{41} = q \alpha - \alpha \partial^{-1} q(\omega + \frac{1}{2} \partial), \quad L_{42} = \alpha \partial^{-1} r(\omega - \frac{1}{2} \partial) - \beta(\omega - \frac{1}{2} \partial),$$

$$L_{43} = -\alpha \partial^{-1} \alpha(\partial + \omega) + q(\partial + \omega), \quad L_{44} = \alpha \partial^{-1} \beta(\partial - \omega) + (\partial - \omega) - qr. \quad (2.7)$$

For a given initial value $a_0 = k_0 \neq 0, b_0 = c_0 = \rho_0 = \delta_0 = 0$, the $a_j, b_j, c_j, \rho_j, \delta_j (j \geq 1)$ can be calculated by the recursion relation (2.6). Here we list the several values

$$a_1 = -\frac{1}{2} k_0 (qr + 2 \alpha \beta), \quad b_1 = k_0 q, \quad c_1 = k_0 r, \quad \rho_1 = k_0 \alpha, \quad \delta_1 = k_0 \beta,$$

$$a_2 = k_0 \left[\frac{3}{8} q^2 r^2 + \frac{3}{2} q r \alpha \beta + (qr + 2 \alpha \beta) \omega + \frac{1}{4} (qr_x - q_x r) + (\alpha \beta_x - \alpha_x \beta) + \frac{3}{2} q \beta \beta_x \right],$$

$$b_2 = k_0 \left[\frac{1}{2} q_x - \frac{1}{2} q (qr + 2 \alpha \beta) - q \omega \right], \quad c_2 = -k_0 \left[\frac{1}{2} r_x + \frac{1}{2} r (qr + 2 \alpha \beta) + r \omega + \beta \beta_x \right],$$

$$\rho_2 = k_0 (\alpha_x - \frac{1}{2} q r + \frac{1}{2} \beta q_x + q \beta_x - \omega \alpha), \quad \delta_2 = -k_0 (\beta_x + \frac{1}{2} \beta q r + \omega \beta), \ldots \ldots .$$

Then, consider the auxiliary spectral problem associated with the spectral problem (2.1)

$$\phi_{tn} = N^{(n)} \phi$$

where

$$N^{(n)} = N^{(n)}_+ + \Delta_n = \sum_{m=0}^{n} \begin{pmatrix} a_m & b_m & \rho_m \\ \lambda c_m & -a_m & \lambda \delta_m \\ \lambda \delta_m & -\rho_m & 0 \end{pmatrix} \lambda^{n-m} + \begin{pmatrix} a & b & e \\ c & -a & f \\ f & -c & 0 \end{pmatrix}, \quad (2.8)$$

with Δ_n being the modification term, substituting Eq.(2.1) and Eq.(2.8) into the following zero curvature equation

$$M_{tn} - N^{(n)}_+ + [M, N^{(n)}] = 0, \quad (2.9)$$
where \(n \geq 0 \). Making use of Eq. (2.9), we have

\[
\begin{cases}
\omega_{t_n} = a_x, b = c = e = f = 0, \\
q_{t_n} = b_{n+1} + 2q_n + 2\alpha \rho_n - 2\omega b_n + 2q \rho = 2b_{n+1} + 2q \rho, \\
r_{t_n} = c_{n+1} - 2r_n + 2\beta \delta_{n+1} + 2\omega c_n - 2r \rho = -2c_{n+1} + 2r \rho, \\
\alpha_{t_n} = \rho_{n+1} + \alpha a_n + \beta_{n+1} - q \delta_{n+1} - \omega \rho_n + \alpha = \rho_{n+1} + \alpha a, \\
\beta_{t_n} = \delta_{n+1} - \beta a_n + \alpha c_n - r \rho_n + \omega \delta_n - \beta a = -\delta_{n+1} - \beta a.
\end{cases}
\tag{2.10}
\]

which guarantees the following identity:

\[
(qr + 2\alpha \beta)_{t_n} = -2(qc_{n+1} - rb_{n+1} + \alpha \delta_{n+1} + \beta \rho_{n+1}) = -2a_{n,x}
\tag{2.11}
\]

Choosing \(a = -2\mu a_n \), we can obtain the following hierarchy:

\[
u_{t_n} = \begin{pmatrix} q \\ r \\ \alpha \\ \beta \end{pmatrix} = \begin{pmatrix} 2b_{n+1} - 4\mu q \rho_n \\ -2c_{n+1} + 4\mu r \rho_n \\ \rho_{n+1} - 2\mu \alpha a_n \\ -\delta_{n+1} + 2\mu \beta a_n \end{pmatrix}.
\tag{2.12}
\]

where \(n \geq 0 \). The case of Eq. (2.12) with \(\mu = 0 \) is exactly the super KN hierarchy [8 21]. Therefore, Eq. (2.12) is called the generalized super KN hierarchy.

Taking \(k_0 = 2, n = 2 \) in Eq. (2.12) and by using symbolic computation software (Maple), we obtain the first non-trivial flow is given by as follows:

\[
\begin{cases}
q_{t_2} = q_{xx} - 3qq_x r + \frac{3}{2} q^2 r^2 + 4\alpha \alpha x + 8q \alpha \beta x - 4 \alpha q \beta x + 6q^2 \beta \beta x + 6q^2 \alpha \beta \\
+ \mu(3q^3 r^2 - 4q^2 r_x - 4qv r - q^2 \alpha \beta x - 8q \alpha \beta x + 8q \alpha \beta + 12q^2 \beta \beta x \\
+ 12q^2 \alpha \beta - 4\mu q^2 r (qr + 4\alpha \beta), \\
r_{t_2} = -r_{xx} - 3qq r_x - \frac{3}{2} q^2 r^2 - 6\beta \beta x - 2q^2 \alpha \beta - 10qr \beta \beta x - 4r \alpha \beta \\
+ \mu(-3q^2 r^2 - 4q r_x r - 4qr r - 8r_x \alpha \beta + 8r \alpha \beta x - 8q \alpha \beta x + 4qr \beta \beta x \\
- 4q^2 \alpha \beta + 4\mu q^2 r (qr + 4\alpha \beta), \\
\alpha_{t_2} = 2\alpha_{xx} + 2q \alpha \beta_x + \frac{3}{2} q_{xx} \beta - \frac{3}{2} q r_x \alpha - \frac{3}{2} qr \alpha - \frac{3}{2} q^2 \alpha \beta x - 2qr \alpha x - 3q \alpha \beta x - 3q x \beta + \mu(\frac{3}{2} q^2 r^2 \alpha - 4q^2 \beta \beta x - 2qr \alpha x \\
- 3q r_x \alpha - q r x \alpha - 3q^2 r_x \beta - 6qq r \beta - 14q \beta \alpha \beta) - 2\mu q^2 r^2 \beta, \\
\beta_{t_2} = -2\beta_{xx} - r_{xx} \alpha - 2r \alpha \beta - 2qr \beta x - \frac{3}{2} qr \alpha \beta - \frac{3}{2} qr \beta x - \frac{3}{2} q^2 r^2 \beta + 4q^2 \beta \beta x \\
+ \mu(-3q r_x \beta - qr \beta x - 2qr \beta x - \frac{3}{2} q^2 r^2 \beta + 2\mu q^2 r^2 \beta, \\
\end{cases}
\tag{2.13}
\]

whose Lax pair are \(M \) in Eq. (2.11) and \(N^{(2)} \) has the following form

\[
N^{(2)} = \begin{pmatrix}
N_{11}^{(2)} & N_{12}^{(2)} & N_{13}^{(2)} \\
N_{12}^{(2)} & -N_{11}^{(2)} & N_{13}^{(2)} \\
N_{21}^{(2)} & -N_{11}^{(2)} & N_{23}^{(2)} \\
N_{23}^{(2)} & -N_{13}^{(2)} & 0
\end{pmatrix}
\tag{2.14}
\]
with
\[
\begin{align*}
N^{(2)}_{11} &= 2\lambda^2 - \lambda(qr + 2\alpha\beta) + (2 - 4\mu)[\frac{3}{8}q^2r^2 + \frac{3}{2}qr\alpha\beta + (qr + 2\alpha\beta)\omega \\
+ \frac{1}{2}(qr_x - q_xr) + (\alpha\beta_x - \alpha_x\beta) + \frac{3}{2}q\beta_x], \\
N^{(2)}_{12} &= 2q\lambda + q_x - q(qr + 2\alpha\beta) - 2q\omega, \\
N^{(2)}_{13} &= 2\lambda\alpha + 2\alpha_x - qr\alpha + q\beta_x + 2q\beta_x - 2\omega\alpha, \\
N^{(2)}_{21} &= 2\lambda^2r - \lambda(r_x + r(qr + 2\alpha\beta) + 2r\omega + 2\beta_x), \\
N^{(2)}_{23} &= 2\lambda^2\beta - \lambda(2\beta_x + qr\beta + 2\omega\beta).
\end{align*}
\]
when \(\mu = \beta = \alpha = 0 \) and \(t_2 = t \), Eq. (2.13) just reduces to the well-know KN equation hierarchy \[43\]
\[
\begin{align*}
q_t &= q_{xx} - 3qq_x r + \frac{3}{2}q^3 r^2, \\
r_t &= -r_{xx} - 3qrr_x - \frac{3}{2}q^2 r^3.
\end{align*}
\]

3 Super bi-Hamiltonian structures

In what follows we shall find super bi-Hamiltonian structures of the generalized super KN hierarchy \[2.12\]. To this end, we shall use the super trace identity, which proposed by Hu in \[12\] and rigorously proved by Ma et al. in ref. \[13\]:
\[
\frac{\delta}{\delta u} \int Str(N \frac{\partial M}{\partial \lambda}) dx = (\lambda^{-\gamma} \frac{\partial}{\partial \lambda} \lambda^\gamma) Str(\frac{\partial M}{\partial u} N),
\]
where \(Str \) denotes the super trace. It is not difficult to find that
\[
Str(N \frac{\partial M}{\partial \lambda}) = 2A + rB, Str(\frac{\partial M}{\partial q} N) = 2\mu rA + \lambda C, Str(\frac{\partial M}{\partial r} N) = 2\mu qA + \lambda B,
\]
\[
Str(\frac{\partial M}{\partial \alpha} N) = 4\mu \beta A + 2\lambda \delta, Str(\frac{\partial M}{\partial \beta} N) = 4\mu \alpha A - 2\lambda \rho,
\]
Substituting Eq. (3.2) into Eq. (3.1), and comparing the coefficient of \(\lambda^{-n-1} \) of both sides of Eq. (3.1) yields
\[
\left(\begin{array}{c}
\frac{\delta}{\delta q} \\
\frac{\delta}{\delta r} \\
\frac{\delta}{\delta \alpha} \\
\frac{\delta}{\delta \beta}
\end{array} \right) \int (2a_{n+1} + rb_{n+1}) dx = (\gamma - n) \left(\begin{array}{c}
c_{n+1} + 2\mu r a_n \\
b_{n+1} + 2\mu q a_n \\
2\delta_{n+1} + 4\mu \beta a_n \\
-2\rho_{n+1} + 4\mu \alpha a_n
\end{array} \right).
\]
To fix the vaule of \(\gamma \), we let \(n = 0 \) in Eq. (3.3) and find that (1) when \(\mu = -\frac{1}{2} \), \(\gamma \) is arbitrary constant; (2) when \(\mu \neq -\frac{1}{2} \), \(\gamma = 0 \). Thus, we taking \(\mu \neq -\frac{1}{2} \) yields
\[
\left(\begin{array}{c}
c_{n+1} + 2\mu r a_n \\
b_{n+1} + 2\mu q a_n \\
2\delta_{n+1} + 4\mu \beta a_n \\
-2\rho_{n+1} + 4\mu \alpha a_n
\end{array} \right) = \frac{\delta H_n}{\delta u}, \quad \tilde{H}_n = \int \frac{2a_{n+1} + rb_{n+1}}{n} dx.
\]
Moreover, it is easy to know that

\[
\begin{pmatrix}
c_{n+1} \\
b_{n+1} \\
\delta_{n+1} \\
\rho_{n+1}
\end{pmatrix} = R \begin{pmatrix}
c_{n+1} + 2\mu r a_n \\
b_{n+1} + 2\mu q a_n \\
2\delta_{n+1} + 4\mu \beta a_n \\
-2\rho_{n+1} + 4\mu \alpha a_n
\end{pmatrix}
\] \tag{3.5}

where \(R \) is given by

\[
R = \begin{pmatrix}
1 - 2\mu r \partial^{-1} q & 2\mu r \partial^{-1} r & -\mu r \partial^{-1} \alpha & \mu r \partial^{-1} \beta \\
-2\mu q \partial^{-1} q & 1 + 2\mu q \partial^{-1} r & -\mu q \partial^{-1} \alpha & \mu q \partial^{-1} \beta \\
-2\mu \alpha \partial^{-1} q & 2\mu \beta \partial^{-1} r & \frac{1}{2} - \mu \beta \partial^{-1} \alpha & \mu \beta \partial^{-1} \beta \\
-2\mu \alpha \partial^{-1} q & 2\mu \alpha \partial^{-1} r & -\mu \alpha \partial^{-1} \alpha & -\frac{1}{2} + \mu \alpha \partial^{-1} \beta
\end{pmatrix}
\]

Thus, the hierarchy of generalized super KN \((2.12) \) possesses the following super-Hamiltonian structure

\[
u_{t_n} = Q R = Q \begin{pmatrix}
c_{n+1} + 2\mu r a_n \\
b_{n+1} + 2\mu q a_n \\
2\delta_{n+1} + 4\mu \beta a_n \\
-2\rho_{n+1} + 4\mu \alpha a_n
\end{pmatrix} = J \frac{\delta \tilde{H}_n}{\delta u}, n \geq 1. \tag{3.6}
\]

where

\[
Q = \begin{pmatrix}
-4\mu q \partial^{-1} q & 2 + 4\mu q \partial^{-1} r & -4\mu q \partial^{-1} \alpha & -4\mu q \partial^{-1} \beta \\
-2 + 4\mu r \partial^{-1} q & -4\mu r \partial^{-1} r & 4\mu r \partial^{-1} \alpha & 4\mu r \partial^{-1} \beta \\
-2\mu \alpha \partial^{-1} q & 2\mu \alpha \partial^{-1} r & -2\mu \alpha \partial^{-1} \alpha & 1 - 2\mu \alpha \partial^{-1} \beta \\
2\mu \beta \partial^{-1} q & -2\mu \beta \partial^{-1} r & -1 + 2\mu \beta \partial^{-1} \alpha & 2\mu \beta \partial^{-1} \beta
\end{pmatrix}
\]

and

\[
J = QR = \begin{pmatrix}
-8\mu q \partial^{-1} q & 2 + 8\mu q \partial^{-1} r & -4\mu q \partial^{-1} \alpha & 4\mu q \partial^{-1} \beta \\
-2 + 8\mu r \partial^{-1} q & -8\mu r \partial^{-1} r & 4\mu r \partial^{-1} \alpha & -4\mu r \partial^{-1} \beta \\
-4\mu \alpha \partial^{-1} q & 4\mu \alpha \partial^{-1} r & -2\mu \alpha \partial^{-1} \alpha & -\frac{1}{2} + 2\mu \alpha \partial^{-1} \beta \\
4\mu \beta \partial^{-1} q & -4\mu \beta \partial^{-1} r & -\frac{1}{2} + 2\mu \beta \partial^{-1} \alpha & -2\mu \beta \partial^{-1} \beta
\end{pmatrix} \tag{3.7}
\]

here \(J \) is a super Hamiltonian operator.

Specially, by making use of the recursive relationship \((2.6) \), the generalized super KN hierarchy \((2.12) \) possesses the following super-bi-Hamiltonian structure

\[
u_{t_n} = Q L \begin{pmatrix}
c_n \\
b_n \\
\delta_n \\
\rho_n
\end{pmatrix} = Q LR \begin{pmatrix}
c_{n+1} + 2\mu r a_n \\
b_{n+1} + 2\mu q a_n \\
2\delta_{n+1} + 4\mu \beta a_n \\
-2\rho_{n+1} + 4\mu \alpha a_n
\end{pmatrix} = P \frac{\delta \tilde{H}_{n-1}}{\delta u}, n \geq 2. \tag{3.8}
\]
where the second compatible super-Hamiltonian operator $P = QLR = (P_{ij})_{4 \times 4}, i, j = 1, 2, 3, 4$, is given by

\[
P_{11} = 4(\omega - \frac{1}{2}\partial)\mu q^{-1}q + 2q\Delta_1, \quad P_{12} = -4(\omega - \frac{1}{2}\partial)\mu q^{-1}r - 2(\omega - \frac{1}{2}\partial) - 2q\Delta_2, \\
P_{13} = 2(\omega - \frac{1}{2}\partial)\mu q^{-1}\alpha + q\Delta_3, \quad P_{14} = -2(\omega - \frac{1}{2}\partial)\mu q^{-1}\beta - \alpha - q\Delta_4, \\
P_{21} = -4(\omega + \frac{1}{2}\partial)\mu r^{-1}q - 4\mu_3 \beta q^{-1}q + 2(\omega + \frac{1}{2}\partial) - 2\alpha\beta - 2r\Delta_1, \\
P_{22} = 4(\omega + \frac{1}{2}\partial)\mu r^{-1}r + 4\mu_3 \beta q^{-1}r + 2r\Delta_2, \\
P_{23} = -2(\omega + \frac{1}{2}\partial)\mu r^{-1}\alpha - 2\mu_3 \beta q^{-1}\alpha + \beta(\omega + \partial) - r\Delta_3, \\
P_{24} = 2(\omega + \frac{1}{2}\partial)\mu r^{-1}\beta + 2\mu_3 \beta q^{-1}\beta + r\beta + r\Delta_4, \\
P_{31} = q\alpha + 2\mu_\omega \alpha^{-1}q - \mu_3 \beta q^{-1}q - 2\mu q^{-1}q - 2\mu\alpha\alpha^{-1} + \alpha\Delta_1, \\
P_{32} = -\beta(\omega - \frac{1}{2}\partial) - 2\mu_\omega \alpha^{-1}r + \mu_3 \beta q^{-1}r - 2\mu q^{-1}r + 2\mu\alpha \beta^{-1}r - \alpha\Delta_2, \\
P_{33} = \frac{1}{2}q(\omega + \partial) + \mu_\omega \alpha^{-1}\alpha - \frac{1}{2}\mu_3 \beta q^{-1}\alpha - \mu q^{-1}q^{-1}\alpha - \mu_\alpha\alpha^{-1}\alpha + \frac{1}{2}\alpha\Delta_3, \\
P_{34} = \frac{1}{2}(\omega - \partial) + \frac{1}{2}\mu r - \mu_\omega \alpha^{-1}\beta + \frac{1}{2}\mu_3 \beta q^{-1}\beta + \mu q^{-1}q^{-1}\beta + \mu_\alpha\alpha^{-1}\beta - \frac{1}{2}\alpha\Delta_4, \\
P_{41} = -2\mu\beta\alpha^{-1}q - 2\mu_\omega \beta^{-1}q + \alpha - \beta\Delta_1, \quad P_{42} = 2\mu\beta\alpha^{-1}r - 2\mu_\omega \beta^{-1}r - \beta\Delta_2, \\
P_{43} = -\mu\beta\alpha^{-1}\alpha - \mu\omega \beta^{-1}\alpha - \frac{1}{2}\beta\Delta_3, \quad P_{44} = \mu_\beta \beta^{-1}\beta + \mu_\omega \beta^{-1}\beta + \frac{1}{2}r - \frac{1}{2}\beta\Delta_4.
\]

with

\[
\Delta_1 = (2\mu - 1)\partial^{-1}q(\omega + \frac{1}{2}\partial) - \mu(2\mu - 1)\Delta\partial^{-1}q, \\
\Delta_2 = (2\mu - 1)\partial^{-1}r(\omega - \frac{1}{2}\partial) - \mu(2\mu - 1)\Delta\partial^{-1}r, \\
\Delta_3 = (2\mu - 1)\partial^{-1}\alpha(\omega + \partial) - \mu(2\mu - 1)\Delta\partial^{-1}\alpha, \\
\Delta_4 = (2\mu - 1)\partial^{-1}\beta(\omega - \partial) - \mu(2\mu - 1)\Delta\partial^{-1}\beta,
\]

and

\[
\Delta = \partial^{-1}q\partial r + \partial^{-1}r\partial q + 2\partial^{-1}\alpha\partial\beta - 2\partial^{-1}\beta\partial\alpha.
\]

Next, we are construct the generalized super KN hierarchy with self-consistent sources. At the super-isospectral problem

\[
\phi_x = M\phi, \quad \phi_t = N\phi. \quad (3.9)
\]

Let $\lambda = \lambda_j$, the spectral vector corresponding ϕ remember to ϕ_j, we obtain the the linear
system as following

\[
\begin{pmatrix}
\phi_{1j} \\
\phi_{2j} \\
\phi_{3j}
\end{pmatrix}_x = M_j \begin{pmatrix}
\phi_{1j} \\
\phi_{2j} \\
\phi_{3j}
\end{pmatrix},
\begin{pmatrix}
\phi_{1j} \\
\phi_{2j} \\
\phi_{3j}
\end{pmatrix}_t = N_j \begin{pmatrix}
\phi_{1j} \\
\phi_{2j} \\
\phi_{3j}
\end{pmatrix},
\]

(3.10)

where \(M_j = M|_{\lambda=\lambda_j}, N_j = N|_{\lambda=\lambda_j}, j = 1, 2...N\). By

\[
\frac{\delta \hat{H}_n}{\delta u} = \sum_{j=1}^{N} \frac{\delta \lambda_j}{\delta u} = \sum_{j=1}^{N} \begin{pmatrix}
Str(\Psi_j \frac{\delta \lambda_j}{\delta q}) \\
Str(\Psi_j \frac{\delta \lambda_j}{\delta r}) \\
Str(\Psi_j \frac{\delta \lambda_j}{\delta \alpha}) \\
Str(\Psi_j \frac{\delta \lambda_j}{\delta \beta})
\end{pmatrix} = \begin{pmatrix}
< \Phi_2, \Phi_2 > +2\mu r < \Phi_1, \Phi_2 > \\
-< \Lambda \Phi_1, \Phi_1 > +2\mu q < \Phi_1, \Phi_2 > \\
-2 < \Phi_2, \Phi_3 > +4\mu \beta < \Phi_1, \Phi_2 > \\
2 < \Lambda \Phi_1, \Phi_3 > +4\mu \alpha < \Phi_1, \Phi_2 >
\end{pmatrix},
\]

(3.11)

where \(\Phi_j = (\phi_{j1}, \cdots, \phi_{jN})^T, j = 1, 2, 3\). So the generalized super KN hierarchy with self-consistent sources is proposed

\[
u_t = \begin{pmatrix}
q \\
r \\
\alpha \\
\beta
\end{pmatrix} = J \begin{pmatrix}
c_{n+1} +2\mu r a_n \\
b_{n+1} +2\mu q a_n \\
2\delta_{n+1} +4\mu \beta a_n \\
-2\rho_{n+1} +4\mu \alpha a_n
\end{pmatrix} + J \begin{pmatrix}
< \Phi_2, \Phi_2 > +2\mu r < \Phi_1, \Phi_2 > \\
-< \Lambda \Phi_1, \Phi_1 > +2\mu q < \Phi_1, \Phi_2 > \\
-2 < \Phi_2, \Phi_3 > +4\mu \beta < \Phi_1, \Phi_2 > \\
2 < \Lambda \Phi_1, \Phi_3 > +4\mu \alpha < \Phi_1, \Phi_2 >
\end{pmatrix},
\]

(3.12)

where \(J\) is a super Hamiltonian operator given by in (3.7).

4 Conclusion and discussions

Starting from Lie super algebras, we may get super equation hierarchy. With the help of variational identity, the Hamiltonian structure can also be presented. Based on Lie super algebra, the self-consistent sources of a generalized super Kaup-Newell hierarchy can be obtained. It enriched the content of self-consistent sources of super soliton hierarchy. The methods in this study can be applied to other super soliton hierarchy to get more super hierarchies with self-consistent will be discussed in our future work.

Acknowledgement

This work is supported by the National Natural Science Foundation of China under Grant Nos. 11601055, 11271008 and 61072147.

References

[1] Li YS, Zhang LL. Super AKNS scheme and its infiniteconserved currents. Nuovo Cimento A 1986;93:175-83.
[2] Shaw JC, Tu MH. Binary Darboux-Bäcklund transformations for the Manin-Radul super KdV hierarchy. J Math Phys 1998;39:4773-84.

[3] Gomes JF, Ymai LH, Zimerman AH. Soliton solutions for the super mKdV and sinh-Gordon hierarchy. Phy Lett A 2006;359:630-7.

[4] Belitsky AV. Fusion hierarchies for $n = 4$ super-Yang-Mills theory. Nucl Phys B 2008;803:171-93.

[5] Aratyn H, Gomes JF, Ymai LH, Zimerman AH. A class of soliton solutions for the $n = 2$ super mKdV/sinh-Gordon hierarchy. J Phys A 2008;41:312001.

[6] Tao SX, Xia TC. Lie algebra and Lie super algebra for integrable coupling of C-KdV hierarchy. Chin Phys Lett. 2010;27:040202.

[7] Tao SX, Xia TC. Two super-integrable hierarchies and their super-Hamiltonian structures, Commun Nonlinear Sci Numer Simulat 2011;16:127-32.

[8] Tao SX, Xia TC, Shi H. Super-KN hierarchy and its super-Hamiltonian structure. Comm. Theor. Phys 2011;55:391-5.

[9] Dong HH, Zhao K, Yang HW, Li YQ. Generalised (2+1)-Dimensional Super MkdV Hierarchy For Integrable Systems In Soliton Theory. East Asian Journal on Applied Mathematics 2015;5:256-72.

[10] Yu J, Ma WX, Han JW, Chen ST. An integrable generalization of the super AKNS hierarchy and its bi-Hamiltonian formulation. Commun Nonlinear Sci Numer Simulat. 2017;43:151-7.

[11] Han JW, Yu J. A generalized super AKNS hierarchy associated with Lie superalgebra $sl(2|1)$ and its super bi-Hamiltonian structure. Commun Nonlinear Sci Numer Simulat. 2017;44:258-65.

[12] Hu XB. An approach to generate super extensions of integrable systems. J. Phys. A 1997;30:619-632.

[13] Ma WX, He JS, Qin ZY. A super trace identity and its applications to super integrable systems. J. Math. Phys 2008;49:033511.

[14] Ma WX. Variational identities and Hamiltonian structures/W. X. Ma, X. B. Hu and Q. P. Liu, Nonlinear and Modern Mathematical Phasics. Melville, NY: American Institute of Physics 2010;1-27.

[15] Doktrov EV, Vlasov RA. Optical solitons in media with resonant and nonresonant self-focusing nonlinear waves. Opt. Acta. 1983;30:223-32.

[16] Zakharov VE, Kuznetsov EA. Multi-scale expansions in the theory of systems integrable by the inverse scattering transform. Phys. D 1986;18:455-63.

[17] Mernikov VK. Intersection of the Korteweg-de Vries equation with a source. Inverse Probl 1990;6:233-46.
[18] Li L. Conservation laws and self-consistent sources for a super-CKdV equation hierarchy. Physics Letters A 2011;375:1402-06.
[19] Tao SX. Self-consistent sources and conservation laws for super coupled Burgers equation hierarchy. International Journal of Applied Physics and Mathematics 2013;3:252-6.
[20] Wang H, Xia TC. Conservation laws for a super G-J hierarchy with self-consistent sources. Commun Nonlinear Sci Numer Simulat 2012;17:566-72.
[21] Wang H, Xia TC. Conservation laws and self-consistent sources for a super KN hierarchy. Appl. Math. Comput 2013;219:5458-64.
[22] Wang H, Xia TC. Super Jaulent-Miodek hierarchy and its super Hamiltonian structure, conservation laws and its self-consistent sources. Front. Math. China 2014;9:1367-79.
[23] Wei HY, Xia TC, Li YK. Self-Consistent Sources and Conservation Laws for a Super Broer-Kaup-Kupershmidt Equation Hierarchy. Journal of Applied Mathematics 2013; 913758.
[24] Wang YH, Chen Y. Conservation laws and self-consistent sources for a super integrable equation hierarchy. Commun Nonlinear Sci Numer Simulat 2012;17: 2292-8.
[25] Yu J, Han JW. Two-Component Super AKNS Equations and Their Finite-Dimensional Integrable Super Hamiltonian System. Abstract and Applied Analysis 2014;507540.
[26] Hu BB, Zhang L, Fang F. Super-Li Spectrum Problems and Its Self-consistent Source. Journal of Jilin University(Science Edition) 2015:53:229 -34.
[27] Hu BB, Xia TC. The Binary Nonlinearization of the Super Integrable System and Its Self-Consistent Sources. International Journal of Nonlinear Sciences and Numerical Simulation. 2017;18:285-92.
[28] Wei HY, Xia TC. A new six-component super soliton hierarchy and its self-consistent sources and conservation laws. Chin. Phys. B 2016;25:010201.
[29] Dong HH, Guo BY, Yin BS. Generalized Fractional Supertrace Identity For Hamiltonian Structure of Nls-Mkdv Hierarchy With Self-Consistent Sources. Analysis and Mathematical Physics. 2016;6:199-09.
[30] Yan ZY. A hierarchy of the Lax integrable system, its bi-Hamiltonian structure, finite-dimensional integrable system and involution solution. Chaos, Solitons and Fractals. 2002;13(4):741-8.
[31] Sirendoreji. r-matrix for the constrained system of a evolution equation hierarchy. Applied Mathematics A Journal of Chinese Universities. 1998;14(1):5-10.
[32] Qiao ZJ. Completely integrable system related to a new hierarchy of isospectral evolution equations. Physics Letters A 1994;192:316-22.
[33] Geng XG, Ma WX. A generalized Kaup-Newell spectral problem, soliton equations and finite-dimensional integrable systems. Il Nuovo Cimento A 1995;108(4):477-86.
[34] Wu YT, Wu XM, Zhu SM, Geng XG. Darboux Transformation of the Generalized Kaup-Newell Spectral Problem. Nuovo Cimento Della Societa Italiana Di Fisica A. 1999;112(12):1453-462.

[35] Fan EG. A Liouville integrable Hamiltonian system associated with a generalized Kaup-Newell spectral problem. Physica A. 2001;01:105-13.

[36] Xia TC, Fan EG. The multicomponent generalized Kaup-Newell hierarchy and its multicomponent integrable couplings system with two arbitrary functions. J. Math. Phys 2005;46:043510 (8pp).

[37] Dong HH, Zhang N, Yang JM. Generalized KN Hierarchy and Its Hamiltonian Structure. College Mathematics 2005;21(2):69-72.

[38] Ma WX, Shi CG, Appiah EA, Li CX, Shen SF. An integrable generalization of the Kaup-Newell soliton hierarchy. Phys Scripta 2014;89:085203 (8pp).

[39] Gerdjikov VS, Ivanov MI. The quadratic bundle of general form and the nonlinear evolution equations. i. expansions over the ‘squared’ solutions are generalized Fourier transforms. Bulgarian J Phys 1983;10(1):13-26.

[40] Geng XG. A hierarchy of non-linear evolution equations, its Hamiltonian structure and classical integrable system. Physics A 1992;180(1-2):241-51.

[41] Tu GZ, Xu BZ. The trace identity, a powerful tool for constructing the Hamiltonian structure of integrable systems (III). Chin Ann Math B 1996;17(4):497-506.

[42] Zhu HY, Yu SM, Shen SF, Ma WX. New integrable sl(2, R)-generalization of the classical Wadati-Konno-Ichikawa hierarchy. Commun Nonlinear Sci Numer Simulat 2015;22(1-3):1341-9.

[43] Kaup DJ, Newell AC. An exact solution for a derivative nonlinear Schrödinger equation. J. Math. Phys. 1978;19(4):798-801.