Synthetic Long Peptide Derived from *Mycobacterium tuberculosis* Latency Antigen Rv1733c Protects against Tuberculosis

Mariateresa Coppola, Susan J. F. van den Eeden, Louis Wilson, Kees L. M. C. Franken, Tom H. M. Ottenhoff, Annemieke Geluk

Department of Infectious Diseases, Leiden University Medical Center, Leiden, The Netherlands

Responsible for 9 million new cases of active disease and nearly 2 million deaths each year, tuberculosis (TB) remains a global health threat of overwhelming dimensions. *Mycobacterium bovis* BCG, the only licensed vaccine available, fails to confer lifelong protection and to prevent reactivation of latent infection. Although 15 new vaccine candidates are now in clinical trials, an effective vaccine against TB remains elusive, and new strategies for vaccination are vital. BCG vaccination fails to induce immunity against *Mycobacterium tuberculosis* latency antigens. Synthetic long peptides (SLPs) combined with adjuvants have been studied mostly for therapeutic cancer vaccines, yet not for TB, and proved to induce efficient antitumor immunity. This study investigated an SLP derived from Rv1733c, a major *M. tuberculosis* latency antigen which is highly expressed by “dormant” *M. tuberculosis* and well recognized by T cells from latently infected individuals. In order to assess its *in vivo* immunogenicity and protective capacity, Rv1733c SLP in Cpg was administered to HLA-DR3 transgenic mice. Immunization with Rv1733c SLP elicited gamma interferon–positive/tumor necrosis factor–positive (IFN-γ+/TNF+) and IFN-γ+ CD4+ T cells and Rv1733c–specific antibodies and led to a significant reduction in the bacterial load in the lungs of *M. tuberculosis*-challenged mice. This was observed both in a pre- and in a post-*M. tuberculosis* challenge setting. Moreover, Rv1733c SLP immunization significantly boosted the protective efficacy of BCG, demonstrating the potential of *M. tuberculosis* latency antigens to improve BCG efficacy. These data suggest a promising role for *M. tuberculosis* latency antigen Rv1733c–derived SLPs as a novel TB vaccine approach, both in a prophylactic and in a postinfection setting.

Despite the availability of a vaccine and chemotherapeutic agents, tuberculosis (TB) remains the second leading cause of death from an infectious disease worldwide, annually causing around 9 million new cases and almost 2 million deaths (1). The highest burdens are found in low-income regions: Africa harbors about 25% of the world’s TB cases and more than half have been counted in Asia (1). Furthermore, surveys with tuberculin skin tests (TST) suggest that one-third of the world’s population is latently infected with *Mycobacterium tuberculosis*, which constitutes a huge reservoir with a 3 to 10% lifetime risk of developing TB (1, 2).

It has long been recognized that the efficacy of vaccination with *Mycobacterium bovis* BCG, still the only registered TB vaccine, can be enhanced by a booster or replacement vaccine protecting against reactivating TB from latency (3). *M. tuberculosis* latency antigens (Abs), encoded by the DosR regulon, are upregulated *in vivo* under conditions that tuberculosis bacilli are thought to encounter *in vivo* during persistence in immunocompetent hosts (4) and in mouse models for latent *M. tuberculosis* infection (LTBI) (5). This discovery caused a change in focus in the search for a novel antigen(s) able to enhance long-term vaccine efficacy. Various human cohort studies showed preferential recognition of DosR-encoded proteins, in particular Rv1733c, Rv2029c, Rv2627c, and Rv2628, by T cells from individuals with LTBI and to a lesser extent by TB patients (6–9). Also, latency antigens can induce CD4+ and CD8+ T cells in TST-converted individuals who were infected with *M. tuberculosis* decades ago in the preantibi-otic era and yet never developed TB (10, 11).

In mouse models using chronic, low-dose *M. tuberculosis* infection mimicking human LTBI, the preferential recognition of the DosR regulon in latent infection was further established (5) and provided evidence that BCG fails to induce a significant response to latency antigens despite their presence in the BCG genome. Also, a triple fusion protein, designated H56, including the latency/starvation antigen Rv2660 coupled to the early-stage proteins Ag85B and ESAT-6, provided protection by both pre- and postinfection vaccination in nonhuman primates (12, 13). A similar improvement in long-term protection against *M. tuberculosis* was observed in mice after intradermal inoculation of recombinant BCG expressing the latency-associated antigens Rv2659c, Rv3407, and Rv1733c (14).

Synthetic long peptides (SLPs), administered with adjuvants, are proven efficient vaccines for tumor therapy (15–19). Despite the success of this vaccine strategy, SLPs have not yet been applied to design new TB vaccines. Recognition of cognate antigen presented by either T cells or B cells will lead to an abortive proliferative response and death of the responding T cells.

The immunogenicity of Rv1733c, which was the most commonly recognized latency antigen in *M. tuberculosis*-exposed household contacts from South Africa, Gambia, and Uganda (9), as well as the improved long-term protection against *M. tuberculosis*...
loss in mice by BCG expressing Rv1733c (14), prompted us to investigate the potential of Rv1733c-derived SLPs as vaccines for TB.

Our previous work has shown that HLA-DRB polymorphism controls human T-cell responsiveness (20). In this respect, HLA-DR3, a major class II allele that is present in 20% of the human population, is associated with strong T-cell activity to mycobacterial Ags, in vitro and in vivo, and with high-responder (tuberculous) leprosy (21). Since HLA transgenic (tg) mice are efficient models to study HLA-restricted T-cell responses to mycobacteria in vivo (22–24), SLP vaccine efficacy was tested in vivo in the context of HLA-DR3. For this purpose, we investigated the potency of an Rv1733c-derived SLP in inducing protection in mice and demonstrate an SLP-based vaccine strategy for TB inducing CD4+ T cells that confer protection against a live M. tuberculosis challenge in mice in a prophylactic as well as a postinfection fashion.

MATERIALS AND METHODS

Recombinant proteins. M. tuberculosis genes were amplified by PCR from genomic DNA of M. tuberculosis and cloned using the Gateway technology platform (Invitrogen, Carlsbad, CA) with pDEST17 expression vector containing an N-terminal histidine tag (Invitrogen) (25). Sequencing was performed on selected clones to confirm the identities of all cloned DNA fragments. Recombinant proteins were overexpressed in Escherichia coli BL21(DE3) and purified as described previously to remove protein-nonspecific T-cell stimulation and cellular toxicity in gamma interferon (IFN-γ)–purified protein derivative (PPD)–purified protein derivative (PPD)–specific T cells that confer protection against a live M. tuberculosis strain H37Rv 2 weeks after the third antigen immunization or 12 weeks after BCG immunization. Mice were anesthe-

loidal Rv1733c p61-80 (20-mer; AAAGTAVQDSRSHVYAHQAQ), the synthetic long peptide (SLP) Rv1733c p57-84 (28-mer; IPFAAAAGTAV

Rv1733c SLP Protects against TB

FIG 1 Amino acid sequences of Rv1733c synthetic long peptides (SLPs).
tized with isoflurane [2-chloro-2-(difluoromethoxy)-1,1,1-trifluoroethane; Pharmachem BV, Haarlem, The Netherlands] and intranasally (i.n.) infected with 10⁷ CFU of M. tuberculosis from frozen ampoules. Mice were sacrificed 6 weeks after M. tuberculosis challenge, and spleen and lungs were aseptically removed. The organs were homogenized in sterile PBS, and the number of bacteria was determined by culturing serial dilutions of the homogenates on 7H11 agar plates (BD Biosciences) supplemented with BD BBL Middlebrook oleic acid-albumin-dextrose-catalase (OADC) enrichment (100 ml per bottle; BD Biosciences), PANTA (BD Biosciences; 1 vial per liter containing polymyxin B [6,000 units], amphotericin B [600 µg], nalidixic acid [2,400 µg], trimethoprim [600 µg], azlocillin [600 µg]), and ampicillin (3.4 mg/ml; Vepidian, Denmark). Colonies were counted after 3 weeks of incubation at 37°C. In the case of animals that received M. tuberculosis infection combined with BCG vaccination, 7H11 agar plates containing 2-thiophene carboxylic acid hydrazide (2 µg/ml; Sigma) were used to distinguish BCG colonies from M. tuberculosis colonies. Protective efficacies are expressed as log₁₀ bacterial counts in immunized mice compared to BCG-immunized mice.

In vitro cultures. Splenocytes were isolated from individual animals by homogenizing spleens through a plastic cell strainer (BD Bioscience), and splenocytes (3 × 10⁶ cells/ml) were resuspended in Iscove’s modified Dulbecco’s medium (IMDM) (Invitrogen) supplemented with 2 mM L-glutamine (Invitrogen), 100 U/100 µl penicillin-streptomycin solution (Invitrogen), 8% heat-inactivated fetal calf serum (FCS), and 5 × 10⁻⁵ M β-mercaptoethanol (Sigma). Cell suspensions (100 µl/ml) were added to 96-well round-bottom microtiter plates (Costar; Corning Incorporated). Cells were incubated in quadruplicate with 100 µl of medium, peptide (1 or 10 µg/ml), or recombinant protein (1 or 10 µg/ml). The mitogen concanavalin A (ConA; 2 µg/ml; Sigma) was used in all experiments as a positive control for cell viability. After 6 days, supernatants were taken from each well and quadruplicates were pooled and frozen on the −20°C until performance of enzyme-linked immunosorbent assays (ELISAs).

IFN-γ ELISA. Before ELISAs were performed on supernatants from M. tuberculosis-infected murine material, supernatants or sera were transferred into 0.2-µm filter plates (Corning, NY, USA) and centrifuged for 3 min at 1,300 rpm. The filtered material was collected in clean 96-well plates and transferred out of the biosafety level 3 (BSL3) lab for further analysis. Detection of IFN-γ in culture supernatants of *in vitro*-cultured splenocytes was performed by ELISA (BD Biosciences) according to the manufacturer’s instructions. Optical density (OD) values were converted into concentrations using Microplate Manager software version 5.2.1 (Bio-Rad Laboratories, Veenendaal, The Netherlands). The cutoff value to define positive responses was set beforehand at 100 pg/ml. The assay sensitivity level was 20 pg/ml. Values for unstimulated whole-blood cultures were typically <30 pg/ml.

Intracellular cytokine staining. For polychromatic flow cytometry, splenocytes (3 × 10⁸ cells/ml) were cultured in *vitro* with peptide (5 µg/ml). After 6 days, cells were incubated with medium or fresh peptide (5 µg/ml). After 6 days, cells were incubated with medium or fresh peptide (5 µg/ml). Before 1 h, brefeldin A (Sigma; 5 µg/ml) was added. After 5 h, cells were permeabilized and fixed using Cytofix/Cytoperm (BD Bioscience) according to the manufacturer’s instructions. Flow cytometric analysis (28-mer) showed intracellular IFN-γ production for all peptides. The cutoff value to define positive responses was set beforehand at 100 pg/ml. The assay sensitivity level was 20 pg/ml. Values for unstimulated whole-blood cultures were typically <30 pg/ml.

IFN-γ ELISA. Before ELISAs were performed on supernatants from M. tuberculosis-infected murine material, supernatants or sera were transferred into 0.2-µm filter plates (Corning, NY, USA) and centrifuged for 3 min at 1,300 rpm. The filtered material was collected in clean 96-well plates and transferred out of the biosafety level 3 (BSL3) lab for further analysis. Detection of IFN-γ in culture supernatants of *in vitro*-cultured splenocytes was performed by ELISA (BD Biosciences) according to the manufacturer’s instructions. Optical density (OD) values were converted into concentrations using Microplate Manager software version 5.2.1 (Bio-Rad Laboratories, Veenendaal, The Netherlands). The cutoff value to define positive responses was set beforehand at 100 pg/ml. The assay sensitivity level was 20 pg/ml. Values for unstimulated whole-blood cultures were typically <30 pg/ml.

Ethics statement. Handling of mice was conducted in compliance with European Community Directive 86/609 for the care and use of laboratory animals and in accordance with the regulations set forward by the LUMC animal care committee.

Welfare monitoring. Animals were observed daily to fulfill ethics requirements and to monitor any adverse effects possibly related to vaccinations. *M. tuberculosis*-infected mice were weighed once a week.

Statistical analysis. GraphPad Prism (version 5) software was used for statistical analysis. Bacterial titers were analyzed by the Mann-Whitney U test. *In vitro* cytokine levels were compared using Student’s *t* test. *P* values of ≤0.05 were considered significant.

RESULTS

Rv1733c SLp induces high levels of IFN-γ-producing, Rv1733c-specific CD4⁺ T cells in *vitro*. Previously, the *in vivo* immunogenicity of the HLA-DR3-restricted 15-mer Rv1733c p63-77 was investigated in the context of a multistage polyepitope (18). Based on the 15-mer Rv1733c p63-77 as well as the presence of strong HLA-DR3 binding motifs (33), we constructed the 28-mer Rv1733c p57-84 (Fig. 1) for application of SLp vaccination in HLA-DR3 tg mice. First, Rv1733c p57-84/CpG immunization was used to assess the immunogenicity of Rv1733c-derived, shorter peptides that still contained the HLA-DR3 peptide binding motif. Analysis of intracellular IFN-γ production by splenocytes in response to 6 h of stimulation with equimolar amounts of Rv1733c p63-77 (15-mer), Rv1733c p61-80 (20-mer), and Rv1733c p57-84 (28-mer) showed intracellular IFN-γ production for all peptides with an optimum for the 15-mer Rv1733c p63-77 (Fig. 2A). Immunization of 12 other overlapping SLPs in CpG (28-mers; Fig 1) covering Rv1733c did not show any significant responses in HLA-DR3 tg mice (data not shown).

Comparison of IFN-γ production levels after 6-day *in vitro* cultures of splenocytes from mice immunized either with Rv1733c p57-84 (28-mer) or with Rv1733c p63-77 (15-mer) in CpG showed increased responses after 28-mer (SLP) immunization (Fig 2B and C), possibly since for SLp vaccines, compared to minimal peptide vaccines, the duration of *in vivo* epitope presentation in the antigen-draining lymph nodes is increased and subsequently enhances IFN-γ production by effector T cells (34). These data could also indicate the requirement for processing and presentation by professional antigen-presenting cells of the 28-mer, whereas the 15-mer can be presented directly by HLA-DR⁺ cells, including T cells and B cells, with subsequent futile prolifer-
FIG 2 (A) Rv1733c p57-84/CpG immunization of HLA-DR3 tg mice. Splenocytes derived from mice immunized with SLP Rv1733c p57-84 in CpG were stimulated in vitro with equimolar amounts of Rv1733c p63-77 (15-mer), p61-80 (20-mer), and p57-84 (28-mer) for 6 h. The percentage of CD4+ IFN-γ-producing cells (indicated in each figure) was analyzed by intracellular cytokine staining. (B and C) Rv1733c p57-84/CpG immunization of HLA-DR3 tg mice. Splenocytes derived from mice immunized with Rv1733c p57-84/CpG (B) or with Rv1733c p63-77/CpG (C) were stimulated in vitro with Rv1733c p63-77 (15-mer), p61-80 (20-mer), and p57-84 (28-mer) (0.1- or 1.0- μg/ml final concentration). After 6 days, IFN-γ production was analyzed by ELISA. ConA was used as a positive control for in vitro responsiveness, and recombinant protein HPV16 E6 and hsp65 p1-13 (59) were used as negative protein and peptide controls, respectively. (D) Frequency of polyfunctional CD4+ T cells. Percentages of IFN-γ-, IL-2-, and/or TNF-producing CD4+ T cells in splenocytes of HLA-DR3 mice immunized with Rv1733c p57-84/CpG, analyzed without (left panel) or with (right panel) TNF+ cells. Splenocytes were stimulated in vitro with stimuli indicated above each graph. After 6 days, cells were incubated with fresh antigen. After 4 h, brefeldin A was added for overnight (20 h) incubation, after which cells were permeabilized, fixed, stained, and analyzed for intracellular cytokine production. Each symbol represents one mouse. Only CD4+ populations of >5 × 10⁴ events were analyzed. No significant cytokine production was detected in naive mice or in CD8+ T cells of mice immunized with Rv1733c p57-84/CpG (data not shown). P values were calculated by the Mann-Whitney U test. (E) Frequency of HLA-DR3/p63-77 TM2 CD4+ T cells. For determination of Rv1733c p63-77-specific CD4+ T cells, splenocytes of HLA-DR3 mice immunized with CpG alone (−) or Rv1733c p57-84/CpG were stained for 1 h at RT with HLA-DR3/p63-77 TM2 and phycoerythrin-FITC-conjugated anti-CD4. Groups included four mice. All mice were separately analyzed. P values were calculated by the Mann-Whitney U test.
ative response and death of the responding T cells. Alternatively, besides including an HLA-DR3-restricted epitope, the SLP could also harbor a murine class I-restricted epitope and induce a stronger immune response by activating not only CD4+ but also CD8+ T cells to produce IFN-γ.

Induction of polyfunctional T cells in response to Rv1733c p57-84. The induction of polyfunctional CD4+ Th1 cells likely correlates with vaccine-induced protection in several models (35, 36), despite contradictory results on their role as biomarkers of protection in M. tuberculosis infection either identifying TNF+ CD4+ T cells as specific for active TB (37) or reporting significantly higher levels of IFN-γ+/IL-2+/TNF+ CD4+ T cells in active TB (38, 39). To estimate the contribution of the frequency of cytokine-producing T cells, polyfunctional T-cell analysis was performed in Rv1733c p57-84-immunized HLA-DR3 mice using different in vitro stimuli (Fig. 2D). Splenocytes of Rv1733c p57-84-immunized HLA-DR3 showed the predominant presence of Rv1733c-specific IFN-γ+CD4+ T cells (Fig. 2D). Since splenocytes of immunized mice stimulated in vitro with medium already produced significant amounts of TNF (data not shown), the data are depicted without TNF+ cells, demonstrating a significantly increased number of Rv1733c-specific IFN-γ+CD4+ T cells (Fig. 2D). Spontaneous TNF production has been described in humans as well (40) and thus requires proper attention during the identification of recall T-cell responses responsible for vaccine-induced protection.

Additionally, we assessed the frequency of Rv1733c p63-77-specific, HLA-DR3-restricted CD4+ T cells, using FITC-conjugated tetramers composed of HLA-DR1*0301 and Rv1733c p63-77 (Fig. 2E). The median of TM+/CD4+ splenocytes induced by adjuvanted Rv1733c p57-84 immunization was 1.1%. No TM+CD4+ T cells (0.19%) were observed in splenocytes derived from HLA-DR3 mice immunized with CpG alone.

To estimate the effect of multiple SLPs combined in one vaccine, Rv1733c-specific CD4+ T-cell responses were analyzed after immunization of HLA-A2/DR3 double tg mice with a mixture of Rv1733c p57-84 together with the HLA-A2-restricted epitope Ag85B p143-152 (22) in CpG. As observed for single transgenic animals, CD8+ T cells responded only to the class I-restricted Ag85B epitope and not to the class II-restricted Rv1733c p57-84 (Fig. 3), whereas CD4+ T cells recognized only the HLA-DR3-restricted Rv1733c epitope. These data confirm the HLA-DR3 restriction of the Rv1733c SLP-induced IFN-γ response. Since IFN-γ responses to both antigens in the SLP mixture were similar to those induced by immunization with one antigen in single HLA tg mice, these data also show that the distinct SLPs did not inhibit each other’s responses in HLA-A2/DR3 double tg mice.

Besides producing cytokines, CD4+ T cells are also known to contribute to protection by exerting cytolytic functions. Therefore, similarly immunized HLA-DR3 mice were used to determine whether Rv1733c p57-84 could induce cytotoxic T-lymphocyte (CTL) responses using in vivo cytotoxicity assays (24, 32). For this purpose, mice were immunized with CpG alone or with Rv1733c SLP combined with CpG. Rv1733c SLP immunization induced intermediate cytotoxicity levels (median, 33%) specific for Rv1733c p63-77 15-mer (Fig. 4A). In contrast, the HLA-A2 Ag85B p143-152 showed high in vivo cytotoxicity levels of 95% (Fig. 4B).

Immunization with Rv1733c SLP induces antibodies specific for Rv1733c protein. The paradigm that humoral immunity is not involved in the protection against TB is slowly making space for increasing evidence for antibody-mediated immunity against M. tuberculosis (41). The role of antibody (Ab) responses was previously confirmed by us in in vivo studies using HLA-A2 (24) and HLA-DR3 mice immunized with M. tuberculosis antigens (42, 43). Thus, we next investigated the humoral response induced by the Rv1733c 28-mer. Immunization with Rv1733c SLP/CpG induced high antibody titers to the peptide itself and induced antibodies to only a limited extent to the Rv1733c protein but not to the unrelated human papillomavirus 16 (HPV16) E6 recombinant protein. Mock-immunized mice, on the other hand, did not show any antibody reactivity, indicating that the Rv1733c SLP is capable of inducing cellular as well as humoral immunity (Fig. 5).

Rv1733c SLP induces protection against live M. tuberculosis challenge in HLA-DR3 mice. Previously, we have shown that splenocytes of M. tuberculosis-infected HLA-DR3 tg mice induced distinct IFN-γ production in response to Rv1733c p63-77, although the level was reduced compared to that obtained by stimulation with the HLA-DR3-restricted epitope derived from secreted M. tuberculosis antigens such as Ag85B (42). To assess the vaccine potential of the Rv1733c SLP adjuvanted by CpG, its prophylactic protective effect was evaluated in a live M. tuberculosis
challenge model in mice, by enumerating the CFU in the lungs (Fig. 6). As expected from the immunogenicity studies described above, Rv1733c SLP/CpG vaccination did not reduce the number of CFU in HLA-DR3neg mice (data not shown), confirming the HLA-DR restriction of the T-cell-mediated protection. Reduction of CFU required Rv1733c, since no responses were observed in mice injected with CpG alone (42).

Preinfection immunization with Rv1733c recombinant protein and, to a greater extent, Rv1733c p57-84 significantly reduced the number of CFU from \(3.6 \times 10^5\) to \(1.4 \times 10^2\) \((P = 0.002; 0.41\) log) and \(6.5 \times 10^5\) \((P = 0.0003; 0.75\) log), respectively. When protein was administered after infection, CFU reduction caused by the Rv1733c protein and SLP was still notable but significant only for the SLP (2.3 \(\times 10^5\) \([P = 0.22]\) and 1.96 \(\times 10^5\) \([P = 0.018]\), respectively). Interestingly, when the SLP was used to boost a prior BCG vaccination, mice boosted with Rv1733c SLP had the highest reduction (0.92 log) in bacterial load in their lungs (from \(3.6 \times 10^5\) to \(0.44 \times 10^2; P = 0.0002\)) compared to mice vaccinated only with BCG (from \(3.6 \times 10^5\) to \(0.76 \times 10^5\) CFU; \(P = 0.0004; 0.66\) log). These data indicate that SLP derived from latency-associated protein Rv1733c may have potential as a booster vaccine for TB.

DISCUSSION

Identification of *M. tuberculosis* antigens that induce dendritic cell (DC) activation for subsequent priming of protective CD4\(^+\) and CD8\(^+\) Th1 cell responses is important to the development of new diagnostic tools as well as TB vaccines. Antigen discovery studies have been an essential factor of mycobacterial research for over several decades (44) and were markedly expedited by the availability of the *M. tuberculosis* genome sequence (45). Besides the secreted antigens in clinical trials (Ag85 and ESAT-6) (3), recent studies show that *M. tuberculosis* proteins such as PE_PGRS proteins Rv0978c and Rv0754 (46), secreted protein Rv0577 (47), and cell wall proteins Rv3812 (48) and Rv3425 (49) recognize TLR2, induce maturation, and activate human DCs, enhancing their ability to stimulate Th1 cells. In addition, we demonstrated previously that the *M. tuberculosis* latency antigen Rv1733c was well recognized in diverse human populations, including those in several African regions (9). In addition, recombinant BCG expressing latency antigens showed improved long-term protection against TB in mice (14), and latency antigens can also boost the effect of BCG in nonhuman primates (13).

In the context of therapeutic vaccination, SLPs have been shown to induce better *in vivo* responses and protection against
tumors than short peptides (16, 50). Since short peptides (8 to 11 amino acids in length) can be loaded directly onto HLA class I molecules, their presentation can take place by nonprofessional antigen-presenting cells (such as T cells or B cells) in the absence of costimulatory signals, which may lead to immunological tolerance rather than immunity. On the other hand, the use of SLP ensures that antigen processing will take place by professional antigen-presenting cells such as DCs and that epitopes can be cross presented to T cells in the context of optimal costimulation (50, 51). Furthermore, the use of SLP containing both T helper and a CTL epitope induces epitope presentation to CD4\(^+\) T cells and CD8\(^+\) T cells simultaneously. This cross presentation not only causes an increased effective immune response by generating IFN-\(\gamma\) from both CD4\(^+\) and CD8\(^+\) T cells but also works synergistically, as antigen-specific CD4\(^+\) T helper cells provide direct help to CD8\(^+\) T cells but also trigger DCs to activate CD8\(^+\) T cells to become granule-containing CTL effector cells. Moreover, SLPs also prolong the in vivo epitope presentation in the antigen-draining lymph nodes, which increases clonal expansion and cytokine production by effector T cells (26). Thus, conversion of minimal single epitopes to SLPs may provide an approach to increase immunogenicity. Besides these immunological advantages, however, SLPs have not yet been implemented into new TB vaccination strategies. However, vaccines aimed at treatment of established disease require long-lived presentation of epitopes by HLA on appropriately activated antigen-presenting cells, and thus, SLP would be advantageous for latently infected individuals.

HLA-DRB polymorphism plays an important regulatory role in controlling human T-cell reactivity against mycobacteria (20, 21). Previously, we demonstrated that the 15-mer Rv1733c p63-77 epitope was immunogenic in vivo either alone or as part of an HLA-DR3-restricted multistage polyepitope. Immunization with the latter adjuvanted with CpG generated high IgG levels as well as polyfunctional CD4\(^+\) T cells producing IFN-\(\gamma\), TNF, and IL-2, specific for these HLA-DR3-restricted epitopes. Also, this multistage-polyepitope immunization reduced the number of bacilli in the lungs after M. tuberculosis challenge when administered as a prophylactic vaccine (18). Here, we have explored the application of SLP Rv1733c p57-84 as a novel approach in the design of new TB vaccines.

Rv1733c p57-84 conferred better protection against live M. tuberculosis challenge in HLA-DR3 transgenic mice than did the whole recombinant Rv1733c protein in a preventive setting. However, HLA-DR3\(^{neg}\) mice showed no protection when immunized with SLP, which underscores the specificity of the protection by SLP. Furthermore, SLP booster vaccination significantly improved the protective efficacy of BCG. Since BCG is known not to induce immune responses to M. tuberculosis latency antigens (52, 53), boosting previous BCG vaccination with M. tuberculosis latency antigens is a promising and rational approach. This is supported by the above-mentioned improved long-term protection induced by recombinant BCG expressing latency antigens in mice (14) or by latency antigens as a BCG booster in nonhuman primates (13). However, since BCG does not induce detectable responses to latency antigens (53), it is conceivable that primary SLP
immunization followed by BCG or simultaneous immunization with antigen and BCG (54) generates similar protection.

Since considerable numbers of individuals in developing countries are latently infected with *M. tuberculosis*, therapeutic vaccines preventing progression from latent to reactivated infection are essential as well. According to mathematical models, the combination of mass pre-exposure vaccination with postexposure vaccine administered to people with latent TB infection could prevent two-thirds of TB deaths (55). Still, the majority of TB vaccines in current clinical trials are designed for prophylactic use, and only a few studies have reported subunit vaccines in postchallenge animal models (56), including studies on the multistage H56 subunit vaccine in mice and nonhuman primates (12). Furthermore, administration of fragmented *M. tuberculosis* shortly (4 days) after *M. tuberculosis* challenge reduced the bacillary load in lungs of mice compared to BCG-vaccinated animals (57), while in a lethal *M. tuberculosis* challenge mouse model the ID93 vaccine lowered bacterial burden and lung pathology, which allowed shortening of the chemotherapy period (58).

In this study, we show that immunization with RV1733c SLP p57-84 after *M. tuberculosis* challenge significantly improves control of already-established infection. Thus, immunization with *M. tuberculosis* latency antigen SLPs may also offer new tools for therapeutic vaccination against TB. In this respect, it is important to note that SLP production and purification, especially for membrane proteins such as RV1733c, are much less complicated than those of whole proteins, offering another advantage for vaccination.

Since HLA-DR3 is present in 20% of most populations worldwide, application of SLP vaccine approaches would require expansion of the number of SLPs to accommodate epitopes for multiple HLA alleles when targeting different populations (44). Therefore, it is important to note that simultaneous immunization with two SLPs, derived from RV1733c and Ag85B, did not affect the response to either SLP in HLA-A2/DR3 double tg mice. Thus, our data suggest that multiple SLPs, with variable HLA specificity, can be accommodated in one vaccine without loss of T-cell immunogenicity.

In view of the currently emerging evidence for a contribution of humoral immunity to *M. tuberculosis* infection control (41), SLP vaccines may represent a promising strategy since, besides strong T-cell immunity, also robust antigen-specific humoral responses were induced. These data are in line with our previous findings where we observed strong humoral responses against the protective IVE-TB (*in vivo*-expressed *M. tuberculosis*) antigen Rv2034 following vaccination (43). Thus, the mechanism by which RV1733c SLP reduces the number of bacteria in murine lungs could be based on a combination of induction of CD4+T cells (IFN-γ/TNFα and IFN-γ/IL-12) and RV1733c-specific antibodies and potentially even a minor population of cytotoxic CD4+T cells.

In conclusion, our data support the use of *M. tuberculosis* latency antigen-based SLP approaches as novel TB vaccination approaches, both in prophylactic and in postinfection/therapeutic settings as well as in boosting BCG.

ACKNOWLEDGMENTS

This study was supported by the Bill and Melinda Gates Foundation Grand Challenges in Global Health (GC6#74), Top Institute Pharma (project D-101-1), the European Commission EC FP7 NEWTBVAC (contract no. HEALTH.F3.2009 241745), EC FP7 ADITEC (contract no. HEALTH.2011.1.4-4 280873), EC ITN FP7 VACTRAIN (contract no. 316655), EC HORIZON2020 TBVAC2020 (contract no. 643381), and EC FP7 EURIPRED (FP7-INFRA-2012-312661).

The text represents the authors’ views and does not necessarily represent a position of the Commission, who will not be liable for the use made of such information.

The authors declare themselves to have no financial/commercial conflicts of interests. T.H.M.O. and A.G. are coinventors of an *M. tuberculosis* latency antigen patent, which is owned by LUMC.

REFERENCES

1. World Health Organization. 2014. Global tuberculosis report 2014. World Health Organization, Geneva, Switzerland.

2. Stop TB Partnership. 2011. The global plan to stop TB 2011–2015. Stop TB Partnership, Geneva, Switzerland.

3. Ottenhoff TH, Kaufmann SH. 2012. Vaccines against tuberculosis: where are we and where do we need to go? PLoS Pathog 8:e1002607. http://dx.doi.org/10.1371/journal.ppat.1002607.

4. Voskuil MI, Schmberger D, Visconti KC, Harrell MI, Dolganov GM, Sherman DR, Schoolnik GK. 2003. Inhibition of respiration by nitric oxide induces a Mycobacterium tuberculosis dormancy program. J Exp Med 198:705–713. http://dx.doi.org/10.1084/jem.20030205.

5. Roupie V, Romano M, Zhang L, Korf H, Lin MY, Franken KL, Ottenhoff TH, Klein MR, Huygen K. 2007. Immunogenicity of eight dormancy regulon-encoded proteins of Mycobacterium tuberculosis in DNA-vaccinated and tuberculosis-infected mice. Infect Immun 75:941–949. http://dx.doi.org/10.1128/IAI.01137-06.

6. Leyten EM, Lin MY, Franken KL, Frighen AH, Prins C, van Meijgaardens KE, Voskuil MI, Weldingh K, Andersen P, Schoolnik GK, Arend SM, Ottenhoff TH, Klein MR. 2006. Human T-cell responses to 25 novel antigens encoded by genes of the dormancy regulon of Mycobacterium tuberculosis. Microbes Infect 8:2052–2060. http://dx.doi.org/10.1016/j.micinf.2006.03.018.

7. Esmail H, Barry CE, III, Wilkinson RJ. 2012. Understanding latent tuberculosis: the key to improved diagnostic and novel treatment strategies. Drug Discov Today 17:514–521. http://dx.doi.org/10.1016/j.drudis.2011.12.013.

8. Lin MY, Ottenhoff TH. 2008. Pathogen interactions in latent Mycobacterium tuberculosis infection: identification of new targets for tuberculosis intervention. Endocr Metab Immune Disord Drug Targets 8:15–29. http://dx.doi.org/10.2174/1871508787392839.

9. Black GF, Thiel BA, Ota MO, Parida SK, Adegbofa R, Boom WH, Dockrell HM, Franken KL, Frighen AH, Hill PC, Klein MR, Lalar MK, Mayanja H, Schoolnik G, Stanley K, Weldingh K, Kaufmann SH, Walzl G, Ottenhoff TH. 2008. Immunogenicity of novel DosR regulon-encoded candidate antigens of Mycobacterium tuberculosis in three high-burden populations in Africa. Clin Vaccine Immunol 15:1203–1212. http://dx.doi.org/10.1128/CVI.00111-09.

10. Commandeur S, Lin MY, van Meijgaardens KE, Frighen AH, Franken KL, Drijfhout JW, Korsvold GE, Oftung F, Geluk A, Ottenhoff TH. 2011. Double- and monofunctional CD4 and CD8 T-cell responses to Mycobacterium tuberculosis DosR antigens and peptides in long-term latently infected individuals. Eur J Immunol 41:2925–2936. http://dx.doi.org/10.1002/eji.201141602.

11. Riano F, Arroyo L, París S, Rojas M, Frighen AH, van Meijgaardens KE, Franken KL, Ottenhoff TH, García LF, Barrera LF. 2012. T cell responses to DosR and Rpf proteins in actively and latently infected individuals from Colombia. Tuberculosis (Edinb) 92:148–159. http://dx.doi.org/10.1016/j.tube.2011.12.005.

12. Aagaard C, Hoang T, Dietrich J, Cardona PJ, Izzo A, Dolganov G, Schoolnik GK, Cassidy JP, Billeskov R, Andersen P. 2011. Multistage tuberculosis vaccine that confers efficient protection before and after exposure. Nat Med 17:189–194. http://dx.doi.org/10.1038/nm.2285.

13. Lin PL, Dietrich J, Tan E, Abalos RM, Burgos J, Bigbee C, Bigbee M, Milk L, Gideon HP, Rodgers M, Cochran G, Guinn KM, Sherman DR, Klein E, Jansen C, Flynn JL, Andersen P. 2012. The multistage vaccine H56 boosts the effects of BCG to protect cynomolgus macaques against active tuberculosis and reactivation of latent Mycobacterium tuberculosis infection. J Clin Invest 122:303–314. http://dx.doi.org/10.1172/JCI64252.

14. Reece ST, Nasser-Eddine A, Dietrich J, Stein M, Zedler U, Schommer-Leitner S, Ottenhoff TH, Andersen P, Kaufmann SH. 2011. Improved

September 2015 Volume 22 Number 9

Clinical and Vaccine Immunology
cvi.asm.org 1067
long-term protection against Mycobacterium tuberculosis Beijing/W in mice after intra-dural inoculation of recombinant BCG expressing latency associated antigens. Vaccine 29:8740–8744. http://dx.doi.org/10.1016/j.vaccine.2011.07.144.

15. Welters MJ, Kenter GG, Piersma SJ, Vloos AP, Lokw MJ, Berends-van der Meer DM, Vloon AP, Wafelman AR, Oostendorp J, Fleuren GJ, Offringa R, Melief CJ, van der Burg SH. 2008. Induction of tumor-specific CD4+ and CD8+ T-cell immunity in cervical cancer patients by a human papillomavirus type 16 E6 and E7 long peptide vaccine. Clin Cancer Res 14:178–187. http://dx.doi.org/10.1158/1078-0432.CCR-07-1880.

16. Melief CJ, van der Burg SH. 2008. Immunotherapy of established (pre) malignant disease by synthetic long peptide vaccines. Nat Rev Cancer 8:351–360. http://dx.doi.org/10.1038/nrc2373.

17. Leffers N, Lambeck AJ, Gooden MJ, Hoogboom BN, Wolf R, Hamming IE, Hepkema BG, Willemse PH, Molman BH, Hollema H, Drijfhout JW, Sluiter WJ, Valenti AR, Fathers LM, Oostendorp J, van der Zee AG, Melief CJ, van der Burg SH. 2008. Phase I immunotherapeutic trial with long peptides spanning the E6 and E7 sequences of high-risk human papillomavirus 16 in end-stage cervical cancer patients shows low toxicity and robust immunogenicity. Clin Cancer Res 14:169–177. http://dx.doi.org/10.1158/1078-0432.CCR-07-1881.

18. Kenter GG, Welters MJ, Valenti AR, Lokw MJ, Berends-van der Meer DM, Vloon AP, Drijfhout JW, Wafelman AR, Oostendorp J, Fleuren GJ, Offringa R, van der Burg SH, Melief CJ. 2008. Phase I immunotherapeutic trial with long peptides spanning the E6 and E7 sequences of high-risk human papillomavirus 16 in end-stage cervical cancer patients shows low toxicity and robust immunogenicity. Clin Cancer Res 14:169–177. http://dx.doi.org/10.1158/1078-0432.CCR-07-1881.

19. Rosalia RA, Quakkarla ED, Redeker A, Khan S, Camps M, Drijfhout JW, Silva AL, Jiskoot W, van Hall T, van Veelen PA, Jansen G, Franken K, Cruz J, Tromp A, Oostendorp J, van der Burg SH, Ossendorf F, Melief CJ. 2013. Dendritic cells process synthetic long peptides better than whole protein, improving antigen presentation and T-cell activation. Eur J Immunol 43:2554–2565. http://dx.doi.org/10.1002/eji.201334324.

20. Ottenhoff TH, Elferink DG, Hermans J, de Vries RR. 2007. Identification of major epitopes of Mycobacterium tuberculosis AG85B that are recognized by HLA-A21-restricted CD8+ T cells in HLA-A2 transgenic mice and humans. J Immunol 165:6463–6471. http://dx.doi.org/10.4049/jimmunol.165.11.6463.

21. Geluk A, Van Meijgaarden KE, de Vries RR, Sette A, Ottenhoff TH. 2007. A DR17-restricted T cell epitope from a secreted Mycobacterium tuberculosis antigen only binds to DR17 molecules at neutral pH. Eur J Immunol 27:842–847. http://dx.doi.org/10.1002/eji.1830270406.

22. Ottenhoff TH, Haanen JB, Geluk A, Muts T, Abk Bk, Thole J, van Schooten WC, van den Elsen PJ, van Veeren RJ. 1991. Regulation of mycobacterial heat shock protein-reactive T cells by HLA class II molecules: lessons from leprosy. Immunol Rev 121:171–191. http://dx.doi.org/10.1111/1600-065X.1991.tb00828.x.

23. Caccamo N, Guggino G, Joosten SA, Gelsomino G, Di Carlo P, Titone L, Galati D, Bocchino M, Matarese A, Sanduzzi A, Franken WP, Ottenhoff TH, Dieli F. 2010. Multifunctional TH1 cells define a correlate of vaccine-mediated protection against Leishmania major. Nat Med 16:33–38. http://dx.doi.org/10.1038/nm.2129.

24. Sutherland JS, Adetifa IM, Hill PC, Adegbola RA. 2009. Pattern and diversity of cytokine production differentiates between Mycobacterium tuberculosis infection and disease. Eur J Immunol 39:723–376. http://dx.doi.org/10.1002/eji.200836893.

25. Walker D, Jason J, Wallace K, Slaughter J, Whatley V, Han A, Nwanwynu OC, Kasembe PN, Dobbie H, Archibald L, Jarvis WR. 2002. Spontaneous cytokine production and its effect on induced production. Clin Diag Lab Immunol 9:1049–1056.

26. Achkar JM, Casadevall A. 2007. Control of chronic mycobacterium tuberculosis infection by CD4 KLRG1-IL-2 secreting central memory cells. J Immunol 160:631–6319. http://dx.doi.org/10.4049/jimmunol.1300248.

27. Caccamo N, Guggino G, Joosten SA, Gelsomino G, Di Carlo P, Titone L, Galati D, Bocchino M, Matarese A, Sanduzzi A, Franken WP, Ottenhoff TH, Dieli F. 2010. Multifunctional TH1 cells define a correlate of vaccine-mediated protection against Leishmania major. Nat Med 16:33–38. http://dx.doi.org/10.1038/nm.2129.

28. Sutherland JS, Adetifa IM, Hill PC, Adegbola RA, Ota MO. 2009. Pattern and diversity of cytokine production differentiates between Mycobacterium tuberculosis infection and disease. Eur J Immunol 39:723–729. http://dx.doi.org/10.1002/eji.200836893.

29. Achkar JM, Casadevall A. 2007. Control of chronic mycobacterium tuberculosis infection by CD4 KLRG1-IL-2 secreting central memory cells. J Immunol 160:631–6319. http://dx.doi.org/10.4049/jimmunol.1300248.

30. Durrer D, Neumann DP, Agger EM, Andersson P. 2013. Persistence of chronic mycobacterium tuberculosis infection by CD4 KLRG1-IL-2 secreting central memory cells. J Immunol 160:631–6319. http://dx.doi.org/10.4049/jimmunol.1300248.

31. Caccamo N, Guggino G, Joosten SA, Gelsomino G, Di Carlo P, Titone L, Galati D, Bocchino M, Matarese A, Sanduzzi A, Franken WP, Ottenhoff TH, Dieli F. 2010. Multifunctional TH1 cells define a correlate of vaccine-mediated protection against Leishmania major. Nat Med 16:33–38. http://dx.doi.org/10.1038/nm.2129.

32. Sutherland JS, Adetifa IM, Hill PC, Adegbola RA, Ota MO. 2009. Pattern and diversity of cytokine production differentiates between Mycobacterium tuberculosis infection and disease. Eur J Immunol 39:723–376. http://dx.doi.org/10.1002/eji.200836893.

33. Akhtar JM, Casadevall A. 2013. Antibody-mediated immunity against tuberculosis: implications for vaccine development. Cell Host Microbe 13:250–262. http://dx.doi.org/10.1016/j.chom.2013.02.009.

34. Geluk A, van den Eeden SJ, Blijdijk K, Maldonado C, van der Burg SH, Melief CJ, Ottenhoff TH. 2002. A high-risk human papillomavirus type 16 E6 and E7 long peptides vaccine protects against Mycobacterium tuberculosis infection in HLA-DR3 transgenic mice. Vaccine 30:7513–7521. http://dx.doi.org/10.1016/j.vaccine.2012.10.045.

35. Commandeur S, van den Eeden SJ, Blijdijk K, Clark SO, van Meijgaarden KE, Wilson L, Franken KL, Williams A, Christensen D, Ottenhoff TH. 2014. Innovative strategies to identify M. tuberculosis antigens and epitopes using genome-wide analyses. Front Immunol 5:256. http://dx.doi.org/10.3389/fimmu.2014.00256.
45. Cole ST, Brossch R, Parkhill J, Garnier T, Churcher C, Harris D, Gordon SV, Eiglmeier K, Gas S, Barry CE, III, Teaka F, Badcock K, Basham D, Brown D, Chillingworth T, Connor R, Davies R, Devlin K, Feltwell T, Gentles S, Hamlin N, Holroyd S, Hornsby T, Jagels K, Krogh A, McLean J, Moule S, Murphy L, Oliver K, Osborne J, Quail MA, Rajandream MA, Rogers J, Rutter S, Seeger K, Skelton J, Squares R, Squares S, Sulston JE, Taylor K, Whitehead S, Barrett BG. 1998. Deciphering the biology of Mycobacterium tuberculosis from the complete genome sequence. Nature 393:537–544. http://dx.doi.org/10.1038/31159.

46. Bansal K, Elluru SR, Narayana Y, Chaturvedi R, Patil SA, Kaveri SV, Bayry J, Balaji KN. 2010. PÆ_PGRS antigens of Mycobacterium tuberculosis induce maturation and activation of human dendritic cells. J Immunol 184:3493–3504. http://dx.doi.org/10.4049/jimmunol.0903299.

47. Byun EH, Kim WS, Kim JS, Jung ID, Park YM, Kim HJ, Cho SN, Shin SJ. 2012. Mycobacterium tuberculosis Rv0577, a novel TLR2 agonist, induces maturation of dendritic cells and drives Th1 immune response. FASEB J 26:2695–2711. http://dx.doi.org/10.1096/fj.11-199588.

48. Vani J, Shaila MS, Trinath J, Balaji KN, Kaveri SV, Bayry J. 2013. Mycobacterium tuberculosis cell wall-associated Rv3812 protein induces strong dendritic cell-mediated interferon gamma responses and exhibits vaccine potential. J Infect Dis 208:1034–1036. http://dx.doi.org/10.1093/infdis/jit281.

49. Xu Y, Yang E, Huang Q, Ni W, Kong C, Liu G, Li G, Su H, Wang H. 2013. PPE57 induces activation of macrophages and drives Th1-type immune responses through TLR2. J Mol Med (Berl) 91:645–662. http://dx.doi.org/10.1007/s00109-014-1243-1.

50. Quakkleaar ED, Melief CJ. 2012. Experience with synthetic vaccines for cancer and persistent virus infections in nonhuman primates and patients. Adv Immunol 114:77–106. http://dx.doi.org/10.1016/B978-0-12-396548-6.00004-4.

51. Gowthaman U, Singh V, Zeng W, Jain S, Siddiqui KF, Chodisetti SB, Gurram RK, Parihar P, Gupta P, Gupta UD, Jackson DC, Agrewala JN. 2011. Promiscuous peptide of 16 kDa antigen linked to Pam2Cys protects against Mycobacterium tuberculosis by evoking enduring memory T-cell response. J Infect Dis 204:1328–1338. http://dx.doi.org/10.1093/infdis/jir548.

52. Lin MY, Geluk A, Smith SG, Stewart AL, Friggen AH, Franken KL, Verduyn MJ, van Meijgaardene KE, Voskuil MI, Dockrell HM, Huyneg K, Ottenhoff TH, Klein MR. 2007. Lack of immune responses to Mycobacterium tuberculosis DosR regulon proteins following Mycobacterium bovis BCG vaccination. Infect Immun 75:3523–3530. http://dx.doi.org/10.1128/IAI.01999-06.

53. Geluk A, Lin MY, van Meijgarden KE, Leytem EM, Franken KL, Ottenhoff TH, Klein MR. 2007. T-cell recognition of the HspX protein of Mycobacterium tuberculosis correlates with latent M. tuberculosis infection but not with M. bovis BCG vaccination. Infect Immun 75:2914–2921. http://dx.doi.org/10.1128/IAI.01990-06.

54. Tchilian EZ, Ronan EO, de Lara C, Lee LN, Franken KL, Vordermeier MH, Ottenhoff TH, Beverley PC. 2011. Simultaneous immunization against tuberculosis. PLoS One 6:e27477. http://dx.doi.org/10.1371/journal.pone.0027477.

55. Abu-Raddad LJ, Sabatelli L, Achterberg JT, Sugimoto JD, Longini IM, Jr, Dye C, Halloran ME. 2009. Epidemiological benefits of more-effective tuberculosis vaccines, drugs, and diagnostics. Proc Natl Acad Sci U S A 106:13980–13985. http://dx.doi.org/10.1073/pnas.0901720106.

56. Lowrie DB, Tascon RE, Bonato VL, Lima VM, Faccioli LH, Stavropoulos E, Colston MJ, Hewinson RG, Moelling K, Silva CL. 1999. Therapy of tuberculosis in mice by DNA vaccination. Nature 400:269–271. http://dx.doi.org/10.1038/22326.

57. Vilaplana C, Gil O, Caceres N, Pinto S, Diaz J, Cardona PJ. 2011. Prophylactic effect of a therapeutic vaccine against TB based on fragments of Mycobacterium tuberculosis. PLoS One 6:e20404. http://dx.doi.org/10.1371/journal.pone.0020404.

58. Coker RN, Bertholet S, Pine SO, Orr MT, Reese V, Windish HF, Davis C, Kahn M, Baldwin SL, Reed SG. 2013. Therapeutic immunization against Mycobacterium tuberculosis is an effective adjunct to antibiotic treatment. J Infect Dis 207:1242–1252. http://dx.doi.org/10.1093/infdis/jit425.