Fast Green’s function method for ultrafast electron-boson dynamics

Daniel Karlsson,1 Robert van Leeuwen,1 Yaroslav Pavlyukh,2,3 Enrico Perfetto,3,4 and Gianluca Stefanucci3,4

1Department of Physics, Nanoscience Center P.O.Box 35 FI-40014 University of Jyväskylä, Finland
2Institut für Physik, Martin-Luther-Universität Halle-Wittenberg, 06120 Halle, Germany
3Dipartimento di Fisica, Università di Roma Tor Vergata, Via della Ricerca Scientifica 1, 00133 Rome, Italy
4INFN, Sezione di Roma Tor Vergata, Via della Ricerca Scientifica 1, 00133 Rome, Italy

The interaction of electrons with quantized phonons and photons underlies the ultrafast dynamics of systems ranging from molecules to solids, and it gives rise to a plethora of physical phenomena experimentally accessible using time-resolved techniques. Green’s function methods offer an invaluable interpretation tool since scattering mechanisms of growing complexity can be selectively incorporated in the theory. Currently, however, real-time Green’s function simulations are either prohibitively expensive due to the cubic scaling with the propagation time or do neglect the feedback of electrons on the bosons, thus violating energy conservation. We put forward a computationally efficient Green’s function scheme which overcomes both limitations. The numerical effort scales linearly with the propagation time while the simultaneous dressing of electrons and bosons guarantees the fulfillment of all fundamental conservation laws. We present a real-time study of the phonon-driven relaxation dynamics in an optically excited narrow band-gap insulator, highlighting the nonthermal behavior of the phononic degrees of freedom. Our formulation paves the way to first-principles simulations of electron-boson systems with unprecedented long propagation times.

The time-dependent behavior of systems with strongly interacting electrons and bosons (EB) is attracting increasing attention [1]. Plasmon-polariton physics in semiconductors [2–4], light-enhanced electron-phonon (e-ph) driven superconductivity [5–8], electron-magnon hybridization-induced zero-bias anomalies in quantum transport [9, 10], manipulation of the thermoelectricity with cavity photons [11] and the new field of light-driven chemistry [12] which aims at modifying chemical reaction landscapes through strong coupling of matter to quantized photons [13] is a nonexhaustive list of possible applications. A fast and first-principles tool to deal with the quantized nature of bosons is thus an essential requirement for future material-specific predictions. Furthermore, such a tool may also open the way to more sophisticated approximations of purely electronic systems, as the screened Coulomb repulsion can be viewed as a bosonic propagator.

A full-fledged many-body method for realistic time-dependent EB systems is challenging, however, as the quantum nature of both species has to be taken into account on the same footing [14, 15]. Methods such as the direct solution of the Schrödinger equation for the electron-boson wavefunction or quantum Monte Carlo methods [16], scale exponentially with system size and/or time [17], while other methods, such as the time-dependent matrix renormalization group [18] are limited to model systems with a relatively small number of basis functions. A computationally low-cost method is the extension of time-dependent density-functional theory (DFT) to quantized bosons [19–21], with a linear scaling in time and a power-law scaling with system size. Nevertheless, like standard DFT, this extension suffers from a lack of systematicity in generating approximate functionals, as well as issues in including non-adiabatic effects.

EB interactions can instead be treated systematically through diagrammatic [22–24] and non-diagrammatic [25–27] expansions within the non-equilibrium Green’s function (NEGF) formalism [28–33]. NEGF gives access to all time-dependent one-body observables, e.g., particle density, current density, local moments, etc., as well as to the (non)equilibrium spectral functions, and features a power-law scaling with the size. The main drawback of NEGF is numerical rather than formal; the computational effort required to evolve the system by solving the Kadanoff-Baym equations (KBE) [28, 29]—a cubic scaling with the propagation time—limits the simulations to small systems and short times.

In purely electronic systems, the NEGF time scaling can be reduced from cubic to quadratic using the so-called Generalized Kadanoff-Baym Ansatz (GKBA) [34], a controlled approximation which has recently fostered time-dependent studies in inhomogeneous systems, from models [35–38] to atoms [39] and organic molecules [40–42]. An even lower scaling has been achieved this year, by mapping the GKBA (with mean-field propagators) integro-differential equations onto a coupled system of ordinary differential equations (ODE). This ODE scheme scales linearly in time [43, 44], thus making NEGF a competitor to the fastest quantum method currently available, i.e., time-dependent DFT [45]. Due to a lack of an EB GKBA, however, this fast pace of progress is confined to purely electronic systems.

This work reports on a three-fold advance of the NEGF approach to interacting EB systems. First, we derive an EB GKBA, thereby reducing the computational effort for NEGF EB time-propagations from cubic to quadratic. Second, we rewrite the EB GKBA integro-differential equations as a system of ODEs, achieving time-linear scaling for EB systems. Third, we show that the EB GKBA scheme is conserving, i.e., the scheme fulfills all fundamental conservation laws. These ingredients enable us to study e-ph dynamics in an optically excited narrow band-gap insulator and to shed light on the relaxation and nonthermal behavior of acoustic phonons.

The electron-boson Hamiltonian.- We consider an EB system with Hamiltonian \(\hat{H}(t) \) given by

\[
\hat{H}(t) = \hat{H}_{el}(t) + \hat{H}_{bos} + \hat{H}_{el-bos}(t).
\]
a sum of the electronic Hamiltonian $\hat{H}_e(t)$, the bosonic one \hat{H}_{bos}, and the EB interaction $\hat{H}_{\text{el-bos}}(t)$. We do not specify $\hat{H}_e(t)$, which can be any hermitian combination of field operators $\hat{c}_q^\dagger (\hat{c}_q^\dagger)$ annihilating (creating) an electron with quantum number q. We write the free bosonic part using the displacement $\hat{d}_{\mu,1} = (\hat{a}_{\mu}^\dagger + \hat{a}_{\mu})/\sqrt{2}$ and the momentum $\hat{p}_{\mu,2} = i(\hat{a}_{\mu}^\dagger - \hat{a}_{\mu})/\sqrt{2}$, where $\hat{a}_{\mu} (\hat{a}_{\mu}^\dagger)$ annihilates (creates) a boson in mode μ. Introducing the composite index $\tilde{\mu} = (\mu, \xi_\mu)$ with $\xi_\mu = 1, 2$, we have

$$\hat{H}_{\text{bos}} = \sum_{\tilde{\mu}} \Omega_{\tilde{\mu}\tilde{\nu}} \hat{d}_{\mu} \hat{d}_{\nu},$$

(2)

where $[\hat{d}_{\mu}, \hat{d}_{\nu}] = \alpha_{\mu\nu}$ and $\alpha_{\mu\nu} = \delta_{\mu\nu} \left(\begin{array}{cc} 0 & 1 \\ -1 & 0 \end{array} \right)$. For the EB interaction we consider

$$\hat{H}_{\text{el-bos}}(t) = \sum_{\mu_1\mu_2} \lambda_{\mu_1\mu_2}(t) \hat{c}_{\mu_2}^\dagger(t) \hat{c}_{\mu_1}(t),$$

(3)

with the EB coupling strength $\lambda_{\mu_1\mu_2}$. The formalism, however, is not limited to linear coupling in the bosonic modes [46].

The electron-boson KBE.- In the NEGF formalism the fundamental unknowns are the electronic lesser/greater G^\leq and G^\geq single-particle Green’s functions (GF) and the bosonic counterparts, D^\leq. They satisfy the KBE, a system of nonlinear integro-differential equations which for the electronic part read (in matrix form):

$$\left[i\partial_t - h(t) \right] G^\leq(t, t') = \left[G^\leq \cdot G^A + \Sigma^R \cdot G^\geq \right](t, t'),$$

$$G^\geq(t, t') - i\partial_t G^\geq(t, t') = \left[G^\geq \cdot \Sigma^A + G^R \cdot G^\leq \right](t, t'),$$

(4)

where $[A \cdot B](t', t') = \int d\vec{r} A(t', \vec{r}) B(t, \vec{r})$, is a real-time convolution and $X^R/I(t', t') = \pm\theta([t'-t]) \left[X^R(t, t') - X^I(t, t') \right]$ is the retarded/advanced function. The quantity Σ is the correlation part of the self-energy, whereas the time-local mean-field part is incorporated in the single-particle Hamiltonian $h(t) = h_{\text{HF}}(t) + h_{\text{bos}}(t)$, where $h_{\text{HF}}(t)$ is the Hartree-Fock Hamiltonian and $h_{\text{bos},pq}(t) = \sum_\mu \lambda_{pq}(t) \phi_\mu(t)$ is the bosonic potential. The expectation value $\phi_\mu(t) = \langle \hat{\phi}_{\mu}(t) \rangle$ (H denotes the Heisenberg picture) fulfills in matrix form

$$\left[i\alpha \frac{d}{dt} - \hat{\Omega} \right] \phi(t) = \sum_{pq} \lambda_{pq}(t) \rho_{pq}(t).$$

(5)

In Eq. (5) $\hat{\Omega} \equiv \Omega + \Omega^T$ and $\rho(t) \equiv \rho^c(t) = -iG^c(t, t)$ is the electronic single-particle density matrix.

The bosonic GFs are defined using the fluctuation operators $\Delta \hat{\phi}_{H,\mu}(t) = \hat{\phi}_{H,\mu}(t) - \phi_\mu(t)$:

$$D^\leq_{\mu\mu'}(t, t') = -i\langle \Delta \hat{\phi}_{H,\mu}(t') \Delta \hat{\phi}_{H,\mu'}(t) \rangle,$$

(6)

and $D^\geq_{\mu\mu'}(t, t') = D^\leq_{\mu\mu'}(t', t)$. The expectation value of $\Delta \hat{\phi}_{H,\mu}(t)$ is identically zero by construction, a property which simplifies

the bosonic KBE [22, 47]:

$$\left[i\partial_t - \alpha \hat{\Omega} \right] D^\leq(t, t') = \alpha \left[\Pi^\leq \cdot D^A + \Pi^R \cdot D^\geq(t, t') \right],$$

$$D^\geq(t, t') - i\partial_t D^\geq(t, t') = \left[D^\geq \cdot \Pi^A + D^R \cdot D^\leq \right](t, t') \alpha,$$

(7)

where Π is the bosonic self-energy. In the ϕ-field notation, the bosonic KBE are first-order in time. The numerical solution of the coupled Eqs. (4) and (7) is demanding (cubic scaling with the number of time steps) and so far achieved only in small model systems [22, 24, 47, 48]. In this work, we consider the GD approximation shown diagrammatically in Fig. 1, as well as the Gd ($\Pi = 0$) and mean-field ($\Sigma = \Pi = 0$, also known as semi-classical Ehrenfest) approximation.

The electron-boson GKBA.- The KBE can be used to generate an equation of motion (EOM) for the electronic density matrix $\rho(t)$ and its bosonic counterpart $\rho_{b}(t) \equiv \rho_{b}^c(t) = \rho^c(t)$, as $\rho(t)$ and $\rho_{b}(t)$ are single-time functions, their calculation scales quadratically with the number of time steps. Subtracting the two equations in Eq. (4) and Eq. (7) and then letting $t' \to t$ yields

$$\partial_t \rho(t) + i [h(t), \rho(t)] = - (I(t) + I^T(t)),$$

$$\partial_t \rho_{b}(t) + i [\alpha \hat{\Omega}, \rho_{b}(t)] = - (I_{b}(t) + I^{T}_{b}(t)),$$

(8)

with the electronic and bosonic collision integrals defined as

$$I(t) = \int_0^t \int \left[\Sigma^c(t, \tilde{t}) \tilde{G}^c(\tilde{t}, t) - \Sigma^c(t, \tilde{t}) \tilde{G}^c(\tilde{t}, \tilde{t}) \right] \left[\Sigma^c(t, \tilde{t}) \tilde{G}^c(\tilde{t}, \tilde{t}) \right],$$

$$I_{b}(t) = \alpha \int_0^t \int \left[\Pi^c(t, \tilde{t}) \tilde{D}^c(\tilde{t}, t) - \Pi^c(t, \tilde{t}) \tilde{D}^c(\tilde{t}, \tilde{t}) \right] \left[\Pi^c(t, \tilde{t}) \tilde{D}^c(\tilde{t}, \tilde{t}) \right].$$

(9)

Evaluation of the collision integrals requires the time-off-diagonal lesser and greater GFs; hence Eq. (8) is not a closed system of equations for the density matrices. A partial rescue is provided by the electronic GKB [34], i.e.,

$G^\leq(t, t') = \left[G^R(t, t') \rho^c(t') - \rho^c(t) G^A(t, t') \right]$, where $\rho^c(t) \equiv \tilde{\rho}(t)$, taking $G^R(t, t') = -i\theta(t-t')T \left\{ \exp\left(-i \int_{t'}^{t} \hat{h}(\tau) d\tau \right) \right\}$, and $G^A(t, t') = [G^R(t', t)]^T$ at the mean-field level, the
Itives of the Baym functional Eq. (8) as both collision integrals ing[54](49). The EB GKBA allows for closing the system in Σ = provided that the underlying diagrammatic approximation to the noninteracting case [22]) the lesser/greater bosonic GF’s be-
not is particular, it correctly balances the energy transfer from elec-
tated at GF’s proof goes through if the r.h.s. of Eqs. (4) and (7) are evalu-
tion pertains to self-consistent solutions of the KBE the whole proof goes through if the r.h.s. of Eqs. (4) and (7) are.
The electroconservation this fact was pointed out in Ref. [54] for
ge conservation this fact was pointed out in Ref. [54] for

![Image](attachment:image.jpg)

where ρϕ(t) = α + ρb(t). Taking D^{R/A}(t,t’) = ±iaθ[±(t − t’)]e^{-iΩ(t-t’)} at the mean-field level (which coincides with the noninteracting case [22]) the lesser/greater bosonic GF’s become functionals of ρϕ(t). The bosonic GKBA in Eq. (10) applies even if Ω depends explicitly on time (e.g., phonon driving [50]) [49]. The EB GKBA allows for closing the system in Eq. (8) as both collision integrals I and I_b become functionals of ρ and ρϕ. Together with the equation for φ, Eq. (5), the dynamics of any EB system can be simulated.

Conservation laws.- The EB GKBA scheme is conserving, i.e., all fundamental conservation laws are fulfilled provided that the underlying diagrammatic approximation to Σ = Σ[G, D] and Π = Π[G, D] stem from the functional derivatives of the Baym functional Φ[G, D] [51] (for the EB case, see, for example, [52, 53]). Although Baym’s original derivation pertains to self-consistent solutions of the KBE the whole proof goes through if the r.h.s. of Eqs. (4) and (7) are evaluated at GF’s G’ and D’ (and hence at Φ-derivable self-energies Σ’ = Σ[G’, D’] and Π’ = Π[G’, D’]) different from the GF’s G and D appearing in the l.h.s.. In Supp. Mat [49] we show that conservation laws are recovered up to terms proportional to the change of Φ[G’, D’], as G’ and D’ are changed according to the transformation having the conserved quantity as generator. Since Φ is invariant under these special transformations the aforementioned terms vanish. In the context of particle conservation this fact was pointed out in Ref. [54] for G’ the one-shot GF of an electronic system. The argument is, however, more general and holds for all conservation laws, including energy conservation, as well as EB systems, thereby enlarging enormously the class of conserving approximations.

As the GD self-energy is Φ-derivable and the GKBA approximation for G and D is one out of the infinitely many choices for G’ and D’, our scheme is fully conserving and, in particular, it correctly balances the energy transfer from electrons to bosons and viceversa. The Gd approximation instead is not Φ-derivable, bosons do not feel any feedback from the electrons, and energy conservation is jeopardized.

Linear-time scaling of the electron-boson GKBA.- The EB GKBA computational cost scales quadratically with the number of time steps, as the domain of integration for I(t) and I_b(t) grows linearly in time. Remarkably, the time-scaling can be further reduced from quadratic to linear without affecting the scaling with the system size. Let us write the collision in-

teals of Eq. (9) in the GD approximation as

\[I_p(t) = \frac{1}{2} \sum_{p r} \bar{r}^p \left(t \right) G_{p r}^p \left(t \right), \]

\[I_b(t) = -\sum_{r l} \left[\alpha \lambda_{rl} \right] G_{rl} \left(t \right) \]

where we introduced the tensor product \((v \otimes w)_{\bar{p} \bar{q}} = v_{\bar{p}} w_{\bar{q}} \) and the one-time vector \(G_{rl} = G_{rl} - G_{rl}^\dagger \).

Differentiating Eq. (12) with respect to time yields

\[\frac{d}{dt} G_{rl}(t) = \Psi_{rl}(t) + a\tilde{Ω} G_{rl}(t) \]

with \(G_{rl}(t = 0) = 0, \Psi_{rl}(t) = \Psi_{rl}(t) - \Psi_{rl}(t) \), and

\[\Psi_{rl}(t) = \rho_{b}(t) \left(\rho_{b}(t) \right) \rho_{b}(t) \rho_{b}(t) \rho_{b}(t). \]

In obtaining Eq. (13) we used the Leibnitz rule of differentiation, \(\frac{d}{dt} \left(f(t) \right) = \frac{d}{dt} f(t) + f(t) \frac{d}{dt} f(t) \), and the fact that the GKBA GF’s satisfy the mean-field KBE, i.e., \(i\frac{d}{dt} G_{rl}(t,t’) = h(t) G_{rl}(t,t’) \) and \(i\frac{d}{dt} D_{rl}(t,t’) = a\tilde{Ω} D_{rl}(t,t’) \).

The equations for ρ, ρϕ, Eq. (8), and G, Eq. (13), form a closed system of first-order ODEs which is equivalent to the original EB GKBA integro-differential equations. Since no integration over time is needed, the EB ODE scheme scales linearly in time.

Numerical algorithms.- We have numerically checked that the integro-differential and ODE formulations of the EB GKBA yield the same results, up to numerical accuracy. We implemented the former scheme in the CHEERS [55] code. The algorithm for the bosonic case follows the electronic algorithm closely, with the difference that the time-propagation is non-unitary as a and Ω do not commute. However, by defining the hermitian matrices \(h_{r k} = \frac{1}{2} (a\tilde{Ω} + \tilde{Ω} a) \) and \(\Gamma = \frac{1}{2} (a\tilde{Ω} - \tilde{Ω} a) \), inserting them into the bosonic EOM and absorbing \(\Gamma \) into the collision integral, the bosonic equation gets the same structure as the electronic one and can be solved using the same algorithm. The linear-time propagation is done using the fourth-order Runge-Kutta solver. In Supp. Mat. [49], we provide numerical evidence of the performance and accuracy of the method in the paradigmatic Holstein model, a hallmark of strongly interacting EB systems. The EB GKBA is benchmarked against exact results as well as full numerical solution of the EB Kadanoff-Baym equations, finding a satisfactory agreement even in the strong-coupling regime. The scaling with the system size is determined by two parameters: The dimension of the electronic basis, \(N_e \), and the number of bosonic modes, \(N_b \). We emphasize that the method does not scale with the number of electrons or bosons. In particular, the scaling is \(\tilde{O}(N_e^2 \times N_b) \) and \(\tilde{O}(N_e^2 \times N_b^3) \) for computing electronic I and bosonic I_b collision integrals, respectively.
The coupling is momentum-independent, \(\lambda_{cc}^2(k, q) = \lambda_{cc} \). We consider acoustic phonons with linear dispersion characterized by the Debye frequency \(\omega_P \) at the edge of the Brillouin zone \(q = \pm \pi \) (in units of inverse lattice spacing). Initially the system is in the ground state, hence the conduction band and the phonons are not populated, \(n_e(k) = n_{ph}(k) = 0 \). We solve the EB GKA equations using a mesh of \(N_k \) = 1500 points. In the \(k \)-space formulation the scaling with the system size reduces to \(\mathcal{O}(N_k^2) \), see Supp. Mat. [49].

In Fig. 2 we present the \(e-ph \) dynamics triggered by a laser pulse of frequency \(\omega_P = 1.4 \). Because \(\omega_P > \epsilon_g \), the \(e \)-band is populated at nonzero momentum \(\pm k_0 \) (see the two domes at \(t \approx 0 \) in panel a). With electrons in the \(c \)-band, the \(e-ph \) scattering becomes relevant, leading to the creation of phonons, the subsequent redistribution of \(n_e(k) \) and \(n_{ph}(k) \) occupations and, eventually, to the thermalization of the electrons and low-momentum phonons as well as to the generation and re-absorption of nonthermal phonons [58] around the \(\pm k_0 \) hot-spots. For a typical value of the gap \(\epsilon_g = 1.1 \text{ eV} \) the frequency \(\omega_P \) corresponds to the 800nm wave-length of Ti:sapphire laser. The kinetic energy of the conduction electrons immediately after the pulse is then 0.22 eV yielding for the inverse temperature \(\beta = 2.9 \text{ eV}^{-1} \) [59] or approximately \(T_e = 4000 \text{ K} \). At the end of propagation electrons and low-momentum phonons are thermalized, see insets (c,d) in Fig. 2, with \(\beta \approx 80 \), corresponding in our example to \(T_e \approx T_{ph} = 160 \text{ K} \). Signatures of the initially hot phonon-distribution do instead persist for much longer times, as can be seen from the side bands at approximately \(\pm k_0 \). The intermediate stages of the dynamics are more complex, they are characterized by at least two time-scales (associated with \(\omega_D \) and \(\lambda_{cc}^2(\omega_D) \)) describing the rapid creation of the nonequilibrium phonons and their slow thermalization.

This wealth of phenomena cannot be observed in simpler approaches, such as those based on the two-temperature model [60], semiclassical Boltzmann transport equation [61], or even in NEGF theories with frozen phonons [62–64]. The coupled \(e-ph \) dynamics can be studied using the nonequilibrium dynamical mean field theory (DMFT) [65]. However, in this scheme nonlocal correlations are difficult to incorporate [66]. Furthermore, DMFT applications have been so far limited to the Hubbard-Holstein model [67–69] with optical phonons, which simplifies the momentum treatment. Here we demonstrate that it is possible to consider realistic \(e- \) and \(ph \)-dispersions and do the propagation linearly in time. Applications to light enhanced superconductivity [5, 8, 50], formation and melting of the excitonic orders [70], ultrafast band gap control [71] and many other emerging light-induced phenomena [72] are envisaged.
Conclusions: We have derived an EB GKBA approximation for bosonic propagators and put forward a NEGF scheme to simulate the correlated dynamics of EB systems. The formal advantages of the methods are (i) approximations can be systematically improved by a proper selection of Feynman diagrams and (ii) all fundamental conservation laws are fulfilled provided that the self-energy diagrams are \(\Phi \)-derivable. The energy conservation makes the EB GKB\(A \) suitable for studying a plethora of situations where electrons and, for example, phonons can exchange energy; our example being carrier relaxation in a pumped insulator system with acoustic phonons. The computational effort of solving the EB GKBA equations in the \(\mathbf{GD} \) approximation scales linearly in time; they can also be implemented in more advanced diagrammatic approximations using the same strategies outlined in Ref. [44]. The inclusion of \(e-e \) interactions in the linear-scaling scheme, as discussed in Refs. [43, 44], is straightforward. We therefore believe that our proposed method provides an efficient and accurate alternative to the existing computational tools for models as well as first-principles simulations of interacting electrons and bosons out of equilibrium.

D.K. likes to thank the Academy of Finland for funding under Project No. 308697. R.v.L. likes to thank the Academy of Finland for support under grant no. 317139. G.S, E.P and Y.P. acknowledge the financial support from MIUR PRIN (Grant No. 20173B72NB), from INFN through the TIME2QUEST project, and from Tor Vergata University through the Beyond Borders Project ULEXIEK.

[1] Michael Ruggenthaler, Nicolas Tancogne-Dejean, Johannes Flick, Heiko Appel, and Angel Rubio, “From a quantum-electrodynamic light–matter description to novel spectroscopies,” Nat. Rev. Chem. 2, 0118 (2018).
[2] R. Huber, F. Tauser, A. Brodschelm, M. Bichler, G. Abstreiter, and A. Leitenstorfer, “How many-particle interactions develop after ultrafast excitation of an electron-hole plasma,” Nature 414, 286–289 (2001).
[3] R. Huber, C. Kübler, S. Tüb, A. Leitenstorfer, Q. T. Vu, H. Haug, F. Köhler, and M.-C. Amann, “Femtosecond Formation of Coupled Phonon-Plasmon Modes in InP: Ultrabroadband THz Experiment and Quantum Kinetic Theory,” Phys. Rev. Lett. 94, 027401 (2005).
[4] E. Orgiu, J. George, J. A. Hutchison, E. Devaux, J. F. Dayen, B. Douzin, F. Stellacci, C. Genet, J. Schachenmayer, C. Genes, G. Pupillo, P. Samorì, and T. W. Ebbesen, “Conductivity in organic semiconductors hybridized with the vacuum field,” Nat. Mater. 14, 1123–1129 (2015).
[5] R. Mankowsky, A. Subedi, M. Först, S. O. Mariager, M. Chollet, H. T. Lemke, J. S. Robinson, J. M. Gröning, M. P. Minitti, A. Frano, M. Fechner, N. A. Spaldin, T. Loew, B. Keimer, A. Georges, and A. Cavalleri, “Nonlinear lattice dynamics as a basis for enhanced superconductivity in \(\mathrm{YBa}_2\mathrm{Cu}_3\mathrm{O}_6 \),” Nature 516, 71–73 (2014).
[6] M. Mitran, A. Cantaluppi, D. Nicoletti, S. Kaiser, A. Perucchi, S. Lupi, P. Di Pietro, D. Pontiroli, M. Riccò, S. R. Clark, D. Jaksch, and A. Cavalleri, “Possible light-induced superconductivity in \(\mathrm{K}_3\mathrm{C}_6\mathrm{O}_{6} \) at high temperature,” Nature 530, 461–464 (2016).
[7] M. A. Sefet, A. F. Kemper, A. Georges, and C. Kollath, “Theory of light-enhanced phonon-mediated superconductivity,” Phys. Rev. B 93, 144506 (2016).
[8] Mehrdad Babadi, Michael Knap, Ivar Martin, Gil Refael, and Eugene Demler, “Theory of parametrically amplified electron-phonon superconductivity,” Phys. Rev. B 96, 014512 (2017).
[9] V. Drevello, J. Schmalhorst, A. Thomas, and G. Reiss, “Evidence for strong magnon contribution to the TMR temperature dependence in \(\mathrm{MgO} \) based tunnel junctions,” Phys. Rev. B 77, 014440 (2008).
[10] Farzad Mahtouzi and Branislav K. Nikolić, “Signatures of electron-magnon interaction in charge and spin currents through magnetic tunnel junctions: A nonequilibrium many-body perturbation theory approach,” Phys. Rev. B 90, 045115 (2014).
[11] Nizar Rauf Abdullah, Chi-Shung Tang, Andrei Manolescu, and Vidar Gudmundsson, “Effects of photon field on heat transport through a quantum wire attached to leads,” Phys. Lett. A 382, 199–204 (2018).
[12] Herbert Walther, Benjamin T H Varcoe, Berthold-Georg Englert, and Thomas Becker, “Cavity quantum electrodynamics,” Reports Prog. Phys. 69, 1325–1382 (2006).
[13] James a. Hutchison, Tal Schwartz, Cyriaque Genet, Eloïse Devaux, and Thomas W. Ebbesen, “Modifying chemical landscapes by coupling to vacuum fields,” Angew. Chemie – Int. Ed. 51, 1592–1596 (2012).
[14] Basile F. E. Curchod and Todd J. Martínez, “Ab Initio Nonadiabatic Quantum Molecular Dynamics,” Chem. Rev. 118, 3305–3336 (2018).
[15] Benedikt Kloss, David R. Reichman, and Roel Tempelaar, “Multiset Matrix Product State Calculations Reveal Mobile Franck-Condorn Excitations Under Strong Holstein-Type Coupling,” Phys. Rev. Lett. 123, 126601 (2019).
[16] Lode Pollet, “Recent developments in quantum Monte Carlo simulations with applications for cold gases,” Reports Prog. Phys. 75, 094501 (2012).
[17] Guy Cohen, Emanuel Gull, David R. Reichman, and Andrew J. Millis, “Tuning the Dynamical Sign Problem in Real-Time Evolution of Quantum Many-Body Problems,” Phys. Rev. Lett. 115, 266802 (2015).
[18] Haibo Ma, Zhen Luo, and Yao Yao, “The time-dependent density matrix renormalisation group method,” Mol. Phys. 116, 854–868 (2018).
[19] Michael Ruggenthaler, Johannes Flick, Camilla Pellegrini, Heiko Appel, Ilya V. Tokatly, and Angel Rubio, “Quantum-electrodynamic density-functional theory: Bridging quantum optics and electronic-structure theory,” Phys. Rev. A 90, 012508 (2014).
[20] Christian Schäfer, Michael Ruggenthaler, and Angel Rubio, “Ab initio nonrelativistic quantum electrodynamics: Bridging quantum chemistry and quantum optics from weak to strong coupling,” Phys. Rev. A 98, 043801 (2018).
[21] René Jestädt, Michael Ruggenthaler, Micael J. T. Oliveira, Angel Rubio, and Heiko Appel, “Light matter interactions within the ehrenfest-maxwell-pauli-kohn-sham framework: fundamentals, implementation, and nano-optical applications,” Advances in Physics 68, 225–333 (2019).
[22] Niko Säkkinen, Yang Peng, Heiko Appel, and Robert van Leeuwen, “Many-body Green’s function theory for electron-phonon interactions: The Kadomoff-Baym approach to spectral properties of the Holstein dimer,” J. Chem. Phys. 143, 234102 (2015).
[23] Pedro Miguel M. C. de Melo and Andrea Marini, “Unified the-
ory of quantized electrons, phonons, and photons out of equilibrium: A simplified ab initio approach based on the generalized Baym-Kadanoff ansatz,” Phys. Rev. B 93, 155102 (2016).

[24] M. Schüler, J. Berakdar, and Y. Pavlyukh, “Time-dependent many-body treatment of electron-boson dynamics: Application to plasmon-accompanied photoemission,” Phys. Rev. B 93, 054303 (2016).

[25] Philipp Werner and Martin Eckstein, “Phonon-enhanced relaxation and excitation in the Holstein-Hubbard model,” Phys. Rev. B 88, 165108 (2013).

[26] Yuta Murakami, Philipp Werner, Naoto Tsuji, and Hideo Aoki, “Multiple amplitude modes in strongly coupled phonon-mediated superconductors,” Phys. Rev. B 93, 094509 (2016).

[27] Dario Hügel, Philipp Werner, Lode Pollet, and Hugo U. R. Strand, “Bosonic self-energy functional theory,” Phys. Rev. B 94, 195119 (2016).

[28] L. V. Keldysh, “Diagram technique for nonequilibrium processes,” Sov. Phys. JETP 20, 1018–1026 (1965).

[29] L. P. Kadanoff and G. Baym, Quantum Statistical Mechanics (Benjamin, New York, 1962).

[30] P. Danielewicz, “Quantum theory of nonequilibrium processes, I,” Ann. Phys. (N. Y.) 152, 239–304 (1984).

[31] H. Haug and A. P. Jauho, Quantum Kinetics in Transport and Optics of Semiconductors, Solid-State Sciences, Vol. 123 (Springer Berlin Heidelberg, Berlin, Heidelberg, 2008).

[32] G. Stefanucci and R. van Leeuwen, Nonequilibrium Many-Body Theory Quantum Syst. A Mod. Introd. (Cambridge University Press, Cambridge, 2013).

[33] Karsten Balzer and Michael Bonitz, Nonequilibrium Green’s Functions Approach to Inhomogeneous Systems, Lecture Notes in Physics, Vol. 867 (Springer Berlin Heidelberg, Berlin, Heidelberg, 2013).

[34] P. Lipavský, V. Špička, and B. Velický, “Generalized Kadanoff-Baym ansatz for deriving quantum transport equations,” Phys. Rev. B 34, 6933–6942 (1986).

[35] Sebastian Hermans, Niclas Schlünzen, and Michael Bonitz, “Hubbard nanoclusters far from equilibrium,” Phys. Rev. B 90, 125111 (2014).

[36] S. Latini, E. Perfetto, A.-M. Uimonen, R. van Leeuwen, and G. Stefanucci, “Charge dynamics in molecular junctions: Nonequilibrium Green’s function approach made fast,” Phys. Rev. B 89, 075306 (2014).

[37] N. Schlünzen, J.-P. Joost, F. Heidrich-Meisner, and M. Bonitz, “Nonequilibrium dynamics in the one-dimensional fermi-hubbard model: Comparison of the nonequilibrium green-functions approach and the density matrix renormalization group method,” Phys. Rev. B 95, 165139 (2017).

[38] Emil Vinas Boström, Anders Mikkelsen, Claudio Verdozzi, Enrico Perfetto, and Gianluca Stefanucci, “Charge Separation in Donor-Cα Complexes with Real-Time Green Functions: The Importance of Nonlocal Correlations,” Nano Lett. 18, 785–792 (2018).

[39] E. Perfetto, A.-M. Uimonen, R. van Leeuwen, and G. Stefanucci, “First-principles nonequilibrium Green’s-function approach to transient photosorption: Application to atoms,” Phys. Rev. A 92, 033419 (2015).

[40] E. Perfetto, D. Sangalli, A. Marini, and G. Stefanucci, “Ultrafast Charge Migration in XUV Photoexcited Phenyllaline: A First-Principles Study Based on Real-Time Nonequilibrium Green’s Functions,” J. Phys. Chem. Lett. 9, 1353–1358 (2018).

[41] E. Perfetto, D. Sangalli, M. Palummo, A. Marini, and G. Stefanucci, “First-Principles Nonequilibrium Green’s Function Approach to Ultrafast Charge Migration in Glycine,” J. Chem. Theory Comput. 15, 4526–4534 (2019).
[61] Sridhar Sadasivam, Maria K. Y. Chan, and Pierre Darancet, “Theory of Thermal Relaxation of Electrons in Semiconductors,” Phys. Rev. Lett. 119, 136602 (2017).

[62] A.F. Kemper, M. A. Sentef, B. Moritz, J. K. Freericks, and T. P. Devereaux, “Direct observation of Higgs mode oscillations in the pump-probe photoemission spectra of electron-phonon mediated superconductors,” Phys. Rev. B 92, 224517 (2015).

[63] D. Sangalli and A. Marini, “Ultra-fast carriers relaxation in bulk silicon following photo-excitation with a short and polarized laser pulse,” Eurphys. Lett. 110, 47004 (2015).

[64] Yuta Murakami, Michael Schüler, Shintaro Takayoshi, and Philipp Werner, “Ultrafast nonequilibrium evolution of excitonic modes in semiconductors,” Phys. Rev. B 101, 035203 (2020).

[65] J. K. Freericks, V. M. Turkowski, and V. Zlatić, “Nonequilibrium Dynamical Mean-Field Theory,” Phys. Rev. Lett. 97, 266408 (2006).

[66] S. Biermann, F. Aryasetiawan, and A. Georges, “First-Principles Approach to the Electronic Structure of Strongly Correlated Systems: Combining the GW Approximation and Dynamical Mean-Field Theory,” Phys. Rev. Lett. 90, 086402 (2003).

[67] Yuta Murakami, Philipp Werner, Naoto Tsuji, and Hideo Aoki, “Interaction quench in the Holstein model: Thermalization crossover from electron- to phonon-dominated relaxation,” Phys. Rev. B 91, 045128 (2015).

[68] Yuta Murakami, Naoto Tsuji, Martin Eckstein, and Philipp Werner, “Nonequilibrium steady states and transient dynamics of conventional superconductors under phonon driving,” Phys. Rev. B 96, 045125 (2017).

[69] Yuta Murakami, Philipp Werner, Naoto Tsuji, and Hideo Aoki, “Multiple amplitude modes in strongly coupled phonon-mediated superconductors,” Phys. Rev. B 93, 094509 (2016).

[70] S. Hellmann, T. Rohwer, M. Kalläne, K. Hanff, C. Sohrt, A. Stange, A. Carr, M. M. Murnane, H. C. Kapteyn, L. Kipp, M. Bauer, and K. Rossnagel, “Time-domain classification of charge-density-wave insulators,” Nat. Commun. 3, 1069 (2012).

[71] Selene Mor, Marc Herzog, Denis Golež, Philipp Werner, Martin Eckstein, Naoyuki Katayama, Minoru Nohara, Hide Takagi, Takashi Mizokawa, Claude Monney, and Julia Stähler, “Ultrafast Electronic Band Gap Control in an Excitonic Insulator,” Phys. Rev. Lett. 119, 086401 (2017).

[72] D. N. Basov, R. D. Averitt, and D. Hsieh, “Towards properties on demand in quantum materials,” Nat. Mater. 16, 1077–1088 (2017).

[73] Jozef T. Devreese and Alexandre S. Alexandrov, “Fröhlich polaron and bipolaron: recent developments,” Reports Prog. Phys. 72, 066501 (2009).

[74] Phillip Weinberg and Marin Bukov, “QuSpin: a Python package for dynamics and exact diagonalisation of quantum many body systems part I: spin chains,” SciPost Phys. 2, 003 (2017).

[75] Phillip Weinberg and Marin Bukov, “QuSpin: a Python package for dynamics and exact diagonalisation of quantum many body systems. Part II: bosons, fermions and higher spins,” SciPost Phys. 7, 020 (2019).

[76] Marc Puig von Friesen, C. Verdozzi, and C.-O. Almbladh, “Kadanoff-Baym dynamics of Hubbard clusters: Performance of many-body schemes, correlation-induced damping and multiple steady and quasi-steady states,” Phys. Rev. B 82, 155108 (2010).