Introduction

Taking statistics from the USA as an example of the evolution of lung cancer in developed countries, it is clear that the prevention and cure of this particular type of cancer needs to improve. The projections for 2014 are 159,260 deaths due to lung cancer (27.2% of all cancer deaths) while this cancer causes more deaths than the sum of the three next most common cancers (colon, breast and prostate) [1]. Further, the evolution of the lung cancer five-year survival rates, estimated to be about 12%, 13% and 16% in the periods 1975–77, 1987–89 and 2001–2007 respectively [2], has been clearly unsatisfactory.

Estrogens are involved in the development of several types of cancer: breast, endometrial, ovarian, thyroid, and lung [3–8]. In the lung, estrogens induce cell proliferation through the activation of certain growth factor genes such as epidermal growth factor and insulin-like growth factor, mediators of mitogenesis in lung tumors [9]. They exert their function through two different specific estrogen receptors, estrogen receptor-α (ERα) and estrogen receptor-β (ERβ), members of the nuclear receptor superfamily of transcription factors [10], and through two different pathways, genomic and non-genomic, with the same biological effects: proliferation, growth, apoptosis, differentiation and angiogenesis. ERS1 and ERS2 genes are expressed in most of the more common cancers, lung, breast, digestive and endocrine, but their role can vary greatly depending on the tumor type [10–16].

Production of the two most abundant and important estrogens (estradiol and estrone) is catalyzed by cytochrome p450 19A1 (aromatase), the product of CYP19A1 gene, that is active in lung tissues. In addition, there is a feedback loop, because estrogens induce the activation of epidermal growth factor that leads to an
increase in aromatase expression and activity [17], in turn, enhancing estrogen production. Clearly, these facts indicate that aromatase plays a notable role in cancer development, and it has been hypothesized that its elevated expression indicates a poorer prognosis [18].

This work try to confirm (or reject) if any of these genes expressions is useful as prognostic tool and to clarify the disagreement between past studies based mainly in immunohistochemistry (IHC) methods [6,12,19], and more recent ones that have used real time PCR technique to determine gene expression [20,21]. In this sense different expression levels groups will be established and related to survival.

Materials and Methods

1.-Ethics Statement

This study was approved by the Ethics Committee for Clinical Research of Cruces University Hospital (CEIC/Hospital de Cruces) and was performed according to the declaration of Helsinki. Written informed consent was obtained from every patient after full explanation of the purpose and nature of all procedures used.

2.-Patients

Among 110 recruited patients, only 96 patients fulfilled the selection criteria. To be included patients should be diagnosed with NSCLC and underwent resection surgery; patients receiving neoadjuvant chemotherapy and patients whose primary tumor

Table 1. Patient Characteristics.
SEX
Male/Female
SMOKING STATUS
Smoker
Formerly smoker
Non-smoker
Unknown
ADJUVANT CT* TREATMENT
Yes/No
RECURRENT
Yes/No
Local/Metastatic (n = 41)
HISTOLOGY
Adenocarcinoma
Squamous
Bronchioalveolar
Others
PATHOLOGICAL STAGE
I
II
III
IV

*Chemotherapy.

Table 2. Medians for the three genes (ERS1, ERS2, and CYP19A1) relative expression (RQ) measures, N = 96, and aromatase protein concentration, N = 85.

ERS1	ERS2	CYP19A1	ARO*			
T	NT	T	NT	T	NT	
Median	0.05	0.13	1.21	1.51	0.11	0.13
p-value	0.0001	0.3640	0.3205	4.05	1.86	

Also includes p-values for Mann-Whitney tumor/non-tumor RQ comparison. T = Tumor; NT = Non-tumor. ARO* = Protein concentration ELISA values, ng/ml.

doi:10.1371/journal.pone.0109659.t001
was not located in the lung were excluded. Their clinical characteristics are described in Table 1. For each participant, tumor and non-tumor fresh tissue samples were prepared by an anatomopathologist. Samples were obtained through macro dissection and non-tumor tissue corresponded to adjacent normal lung tissues.

3. Techniques

3.1-Real Time RT-PCR

Total RNA from tumor and non-tumor tissue was extracted with RNeasy Plus Mini Kit (Qiagen). One-step real-time RT-PCRs were performed using a Platinum Quantitative RT-PCR Thermoscript One-Step System and 7900HT Fast Real-Time PCR System (both from Life Technologies). Estrogen receptors and aromatase expression assays as well as RPLPO (endogenous control) were purchased from Life Technologies: ERS1/Hs00174860_m1, ERS2/Hs00230957_m1, CYP19A1/Hs00903411_m1 and RPLPO/NM_035275.3. Each assay amplifies a number of different transcripts. Detailed information about transcript length, associated protein length, probe exon-exon boundary, amplicon amplification and protein functionality is included in File S1.

Total RNA was added to obtain a concentration of 100 µg/µl in a final volume of 10 µl reaction. A standard time/temperature profile was used. A positive control was included in each plate: RNA samples extracted from MCF-7 cells (HTB22), purchased (November 2009) from ATCC. HTB22 was chosen as a reference (calibrator) sample for comparative quantization (by the Delta Delta Cq method). Gene expression is reported as RQ values obtained from comparative quantification, where RQ = Normalized Relative Quantity = 2^-ΔΔCq.

3.2-ELISA

Enzyme-linked immunosorbent assay kits for human aromatase (ARO) (USCN Life Science Inc.) were used for aromatase protein detection. Protein was extracted from tumor and non-tumor samples, following this kit protocol. For this procedure, tissues were available from 85 patients. Protein concentration was measured in a Polar Star Microplate Reader (BMG Labtech) using the bicinchoninic acid protein method. Data were analyzed using Four Parameter Logistic Fit, developed by MyAssays, Analysis Software Solutions.

4-Statistical analysis

For statistical analysis, SPSS/v.17, Graphpad-Prism/v.3 and MedCalc/12.7.5 software packages were selected. In brief, these were used for calculating descriptive statistics, and for performing: Kolmogorov-Smirnov tests for normality, non-parametric tests (Mann-Whitney, Kruskal Wallis) when comparing medians, correlation, survival and Cox regression analysis. All tests were two sided and significance level was 0.05. For survival analysis, Kaplan-Meier curves were constructed and the significance was assessed using the Log Rank (Mantel-Cox) test. To assess the influence of variables on overall survival, Cox Regression analysis was performed. First, pairwise comparisons were made and any variables with a significance of less than 0.2 were retained in a second general analysis. Then, they were eliminated, one-by-one, if the significance exceeded the threshold of 0.05. The analysis was repeated after the removal of each variable. The overall survival (OS) was calculated from the date of surgery/resection to the date of last follow-up or death, in months.

Results

1-ERS1

The first comparison, between non-tumor and tumor tissue ERS1 levels obtained a p<0.0001, considered extremely significant. Statistics of RQ comparison results are shown in Table 2. As can be seen, ERS1 gene expression was significantly lower in tumor than non-tumor tissues.

For analysis of the relationship between survival and ERS1 gene expression, samples were split into two groups, according to the median expression levels (Low for lower values than median, high for higher values than median values Kaplan-Meier survival curves were calculated for both, revealing significant differences within the tumor samples; Log Rank = 0.050, figure 1a. For the tumor tissues, the median survival was 28.0 months in the lower ERS1 expression group, and 34.0 months in the higher ERS1 expression group (Table 3); a Mann-Whitney test showed this to be a significant difference, p = 0.042, pointing to a relationship between higher ERS1 gene expression in tumor tissue and longer patient survival.

To confirm, or rule out, on the basis of survival results whether gene expression was altered in the tumor samples, the same analysis was performed for non-tumor samples from the same patients, and no significant differences in survival were found between these subgroups; Log Rank = 0.524; p = 0.815.

ERS1 expression in tumor samples was the only variable, within the three genes and the protein, which was significant when developing a Cox regression model: The total significance level was 0.031 for the model, p = 0.027 for the ERS1 tumor mRNA level with an Exp (B) of 0.002. P-value for non-tumor tissue samples was 0.529, not significant, so it was not included in the model. As the ratio tumor/non-tumor, that passed first round, p = 0.105, but then appears not to be significant. Just histology (including merely adenocarcinomas and squamous-cell carcinomas) was also significant with a p = 0.007 and an Exp (B) of 0.462.

2-ERS2

ERS2 gene expression was compared in the tumor/non-tumor tissues and in this case no significant differences were found (Mann-Whitney test, p = 0.364). It can be seen in Table 2, the gene expression results were very similar in the two types of tissue. Analyzing survival as a function of ERS2 gene expression level as previously (Figure 1a), no significant differences were found between Low and High expression subgroups of tumor (p = 0.253) or non-tumor (p = 0.078) samples. It was a notable trend toward better survival in patients with lower ERS2 levels in their non-tumor tissue samples, suggesting a possible lower expression/lower survival association.

Keeping these data in mind, the significance of differences in OS was also assessed with a Mann-Whitney test. As can be seen in Table 3, the pattern in tumor samples was the inverse of that in non-tumor samples: the median OS rates in low/tumor group were considerably lower than those in high/tumor group, though these differences were not significant (p = 0.11). In contrast, the median rates were considerably higher in the low/non-tumor group than the high/non-tumor group, 33.1 versus 25.9 months respectively, and this difference was significant (p = 0.024).

Combining tumor and non-tumor and low and high classes, four categories are created. The differences in OS between these
categories were significant (Kruskal Wallis p = 0.017; Log Rank = 0.021), with the lowest survival rate in the category low tumor+high non-tumor, i.e., patients with ERS2/low expression in tumor tissue and ERS2/high expression in non-tumor tissue (median = 16.6 months), and the highest survival rate in high tumor+low non-tumor, i.e., those with ERS2/high expression in tumor tissue and ERS2/low expression in non-tumor tissue (median = 36.9 months).

None of ERS2 related variables was included in Cox model because their initial Cox univariate tests exceed 0.2 treshold: p = 0.278, p = 0.990 and p = 0.691 for tumor tissues, non-tumor tissues and ratio tumor/non tumor respectively.

3-CYP19A1/Aromatase

As reported in Table 2, aromatase was measured both at mRNA and protein levels (ng/ml). There were no significant differences between tumor and non-tumor samples when measuring mRNA, p = 0.32. In contrast, comparing protein levels the difference was found to be highly significant, p < 0.001. To analyze any relationship between individual mRNA expression levels and protein concentrations a correlation test was performed, but no significant results were obtained (Spearman, p = 0.133).

For survival analysis, again, the total patient sample was divided into low and high (lower and higher than median) expression/concentration groups. Kaplan-Meier tests did not detect any significant differences either for gene expression, tumor samples p = 0.154 (Figure 1b), non-tumor samples log-rank p = 0.578, or protein concentration, tumor samples p = 0.266 (Figure 1b) and non-tumor samples log-rank p = 0.532.

Although in survival analysis there were no significant differences, Table 3 shows that the pattern in gene expression and protein concentration was fairly similar: Low expression groups tended to have a longer survival, while high expression groups tended to have shorter survival. Subdividing the total sample into early stage NSCLC (I-II) and late stage (III-IV) NSCLC, there was a significant difference in survival rates within the early-stage cases between low (median = 31.4 months) and high (median = 25.0 months) aromatase gene expression groups: Log Rank = 0.07; Mann-Whitney p = 0.016. There was no such difference when non-tumor tissues samples were compared, or considering aromatase protein concentration.

As happened with ERS2, none of CYP19A1 or aromatase protein related variables was included in final Cox regression model, although one of them passed initial analysis (p<0.200): CYP19A1 tumor tissues p = 0.966, CYP19A1 non-tumor tissues p = 0.810, CYP19A1 tumor/non tumor ratio p = 0.727, aromatase tumor tissues p = 0.240, aromatase non-tumor tissues p = 0.692 and aromatase tumor/non-tumor ratio p = 0.038.

4-Combined gene expression–survival analysis

Recently, it has been shown [22] that combinations of different gene expression results can define in detail the general situation in NSCLC. As previously a given variable is divided into low and high groups, and then, if two variables are combined, four subgroups can be defined; for ERS1 and ERS2, the subgroups are Low-ERS1+Low-ERS2, Low-ERS1+High-ERS2, High-ERS1+Low-ERS2 and High-ERS1+High-ERS2. When comparing samples, see Table 4, those with the highest expression of the two genes were the ones with highest OS. The difference between Low-ERS1+Low-ERS2 and High ERS1+High-ERS2 groups was significant, Mann-Whitney test p = 0.025, however a Kaplan-Meier OS test was not, p = 0.057 (Figure 1e). Medians for subgroups Low-ERS1+High-ERS2 and High-ERS1+Low ERS2 (26.63 and 28.80 months respectively) were close to those for the
Low-ERS1+Low-ERS2 group; though the comparisons of the four categories did not detect any significant differences, the pattern obtained tends to suggest that high expression of the two genes is associated with better survival.

Then, CYP19A1 expression and aromatase protein concentrations were considered. There were no significant differences between Low-CYP19A1+Low-aromatase protein and High-CYP19A1+High aromatase protein groups (Table 4). In this case, higher expression and concentrations tended to be associated with shorter survival, although not significant, p = 0.089 (Figure 1c).

Finally, expression levels of estrogen receptor genes were combined with aromatase gene expression and protein concentrations, and median OS rates assessed (Table 5). Again, four categories were considered in the analysis. The strongest association was found for ERS1 combined with CYP19A1 gene expression: the highest OS rates were found for categories High-ERS1/Low-CYP19A1 and High-ERS1/High CYP19A1 (both of them containing the ERS1-High expression group), while that for category Low-ERS1/High-CYP19A1 was considerably lower. These differences were significant (Kaplan-Meier Log Rank = 0.0001; Kruskal-Wallis p = 0.011).

To quantify the extent to which survival was lower in the Low-ERS1/High-CYP19A1 category, the other three categories were merged into one set and a Cox regression was performed. The results were highly significant: p = 0.000007; Exp (B) = 4.041. In this Low-ERS1+High-CYP19A1 category, a patient’s probability of survival was four times lower than for the rest of the patients (regrouped in one set). On the other hand, considering aromatase protein concentration rather than gene expression, the differences were no longer significant.

For the ERS2/CYP19A1 four-category comparison, no significant differences were found (see Table 5). The lowest survival corresponded to category Low-ERS2+High-CYP19A1 far from the remaining categories. In fact, repeating the Kaplan-Meier test for Low-ERS2+High-CYP19A1 and other categories individually, the three pairwise comparisons did yield significant differences (Low-ERS2+Low-CYP19A1 vs. Low-ERS2+High-CYP19A1 p = 0.031; High-ERS2+Low-CYP19A1 vs. Low-ERS2+High-CYP19A1 p = 0.045; and High-ERS2+High-CYP19A1 vs. Low-ERS2+High-CYP19A1 p = 0.035). As was the case for ERS1, the comparison of categories Low-ERS2/High-CYP19A1, High-ERS2/High-CYP19A1 and High-ERS2-Low-CYP19A1 regrouped in just one set, with category Low-ERS2+High-CYP19A1, using Cox regression to quantify survival differences, gave a highly significant result: p = 0.009, Exp (B) = 2.307.

Considering protein concentration in place of CYP19A1 gene expression, the category with the lowest survival was again Low-ERS2+High-aromatase, but rates were dramatically higher for High-ERS2+Low-aromatase and notably lower for categories Low-ERS2+Low-aromatase and High-ERS2+High-aromatase. Differences among the four categories were not significant with the Kaplan-Meier’s test (p = 0.093), but they were with Kruskal-Wallis test (p = 0.049).

Discussion

Although real time RT-PCR has been used previously to determine estrogen receptors expression in lung tumor samples, these studies have been limited due to the small sample size used [23] or because they were restricted to cell cultures [9,24]. Further, IHC has been the method most commonly employed to detect the presence of ERα and ERβ proteins and variations in their concentration. Research into aromatase has followed a similar pattern [11,18,25].

To date, there have been considerable discrepancies in the IHC results reported (even using same antibody, technique and tissue type): detection rates vary from 0 to 80% for ERα, 30 to 100% for ERβ and 60 to 100% for aromatase. Gomez-Fernandez et al. [26], Raso et al. [27] and Miki et al. [28] discussed the problem, establishing a source of these discrepancies: the different antibodies that act against different epitopes. Brueckl et al. [21] and Atmaca et al. [20], published their ERS1 expression results based on RT-PCR method and human samples (including larger collection of patients), adding a new discrepancy source, the multiplicity of splicing variants of ESR1 mRNAs.

The ERS1 gene was expressed in 100% of tumor and non-tumor samples. Within the tumor samples there was a significant pattern in survival: those with higher ERS1 gene expression had longer survival and this contrasts with previous studies. For example, in Fasco et al. [23] no correlation was found, maybe due to the small cohort of patients, while Olivo-Marston et al. [29] reported an inverse correlation between ER-α positive expression and survival in serum samples and in one of the two tissue cohorts studied. The different results may be explained, in part, by the approach to analysis: they took the first tertile as negative expression and the other two as positive. Previous studies have tended to use IHC methods and the results have been very mixed, ranging from no proteins detected to the presence of ER-α associated with poorer survival, alone or in combination with the epidermal growth factor receptor [6,12,19,22,30,31]. Other
Table 5. Statistics of overall survival (months) of tumor samples for ERS1 gene expression, ERS2 gene expression, CYP19A1 gene expression and aromatase protein concentration (ARO) for each combination of low and high expression groups (lower and higher than median).

Class	ERS1 - CYP19A1	ERS1 - ARO	ERS2 - CYP19A1	ERS2 - ARO
Low	31.0	29	30.5	26
High	33.6	19	39.4	23
Low	31.2	22	22.4	23
High	22.2	23	21.4	22
Log Rank	0.001	0.011	0.003	0.049
Kruskal-Wallis	0.383	0.167	0.318	0.126

Our ERS1 expression results related with survival are in agreement with Brueckl et al. [21] and Atmaca et al. [20]. Actually they used an analysis approach similar to what it has been used here, the Delta Cq method, using the median to divide the patients in low and high expression subgroups.

Regarding ERS2 gene expression, patients with high and low ERS2 expression in tumor and non-tumor tissue respectively tend to have higher survival rates; and those with the opposite expression profile (Low ERS2 in tumor/high ERS2 in non-tumor tissue) have the poorest prognosis. Some authors did not find any relationship between ER-β protein expression and survival [22,23,33] while others, in agreement with our results, observed that presence of the ER-β protein is related to better prognosis. When including in Cox regression multivariate model ERS2 expression in tumor, non-tumor and its ratio did not yield any significant results. Concerning CYP19A1 expression, early stage patients expression groups (Low/High) survival results are in concordance with those of Mah et al. [18], although their results were based on IHC methods for protein detection As with ERS2, none of CYP19A1 or aromatase variables were included in Cox multivariate model.

Bearing in mind gene/protein expression combinations, High-ERS1/High-ERS2 clearly predicts higher OS and could be used as prognostic factor. Previous reports that used this approach were based on IHC methods and they obtained significant comparisons by combining variables describing the presence of ER-β and aromatase proteins [22,34,35].

The most powerful gene combination was found to be Low-ERS1+High-CYP19A1 expressions and this was associated with shorter survival. Having analyzed the four subsets involving ERS1/CYP19A1, it seems that Low-ERS1 is more decisive for survival than High-CYP19A1 gene expression, since the survival disadvantage is not found when high CYP19A1 gene expression is combined with high ERS1 expression, but the OS rate for Low-ERS1+Low-CYP19A1 expression points to the conclusion that it is the exact combination that results in the shorter OS. The difference in the pattern between expression of the CYP19A1 and presence of the corresponding protein (Table 5) leads us to conclude that something offsets an increase in OS in the category Low-ERS1+High-CYP19A1, and a decrease in High-ERS1/High-CYP19A1/High. This may be splicing, post translational modification or another as yet unidentified biological mechanism, though it could also be attributable to the relatively small sample size.

To obtain a comparable predictor of OS based on ERS2, the combination Low-ERS2+High-CYP19A1 needed to be set against the three other possible combinations (Table 5) grouped in a single set. The hazard ratio from a Cox regression for the patients with Low-ERS2+High-CYP19A1 expression versus the other three categories is 2.307, while the same test for Low-ERS1+High-CYP19A1 expression yielded a hazard ratio of 4.041, underlining the relative strength of ERS1 levels as a predictor. On the other hand, in the case of ERS2/Aromatase protein, the significant differences in survival were noteworthy, a pattern that was not seen with ERS1. As with the ERS1/CYP19A1 combinations, it may be concluded that Low-ERS2 is more important than High-CYP19A1 gene expression when considering the difference in survival between the four subsets. Further, the potential existence of some type of regulation must be considered due to variations in the rates for categories Low-ERS2+Low-CYP19A1, High-ERS2+Low-CYP19A1 and High-ERS2+High-CYP19A1 and the differ-
ences in behavior of ERS1 and ERS2 profiles when combined with expression or the product of the CYP19A1 gene.

In conclusion, ERS1, alone or in combination with ERS2 or CYP19A1, is the most determining prognostic factor within the analyzed 3 genes taking into account its deregulation in tumor tissues and relationship with survival, and that the hazard ratio when it is combined with other variables is higher than that for ERS2. The origin of the deregulation, which appears to be causing underexpression of ERS1 RNA has yet to be elucidated. The case of ERS2 is quite different, since the pattern of patient survival changes considerably when considering expression in non-tumor or tumor tissue. Again, we believe that there is some as yet unknown factor disturbing that process. Further research is required to identify these factors and the level at which they are acting.

Supporting Information

File S1 Detailed information about ERS1, ERS2 and CYP19A1 genes transcript length, associated protein length, probe exon-exon boundary, ampiclon amplification and protein functionality. Table S1a CYP19A1 gene transcripts and protein information, adapted from Life Technologies website, for Assay ID Hs00903411_m1. Table S1b CYP19A1 gene transcripts and protein information, adapted from ENSEMB, for Assay ID Hs00903411_m1. Table S2a ERS1 gene transcripts and protein information, adapted from Life Technologies website, for Assay ID Hs00174860_m1. Table S2b ERS1 gene transcripts and protein information, adapted from ENSEMB, for Assay ID Hs00174860_m1. Table S3a ERS2 gene transcripts and protein information, adapted from Life Technologies website, for Assay ID Hs00230957_m1. Table S3b ERS2 gene transcripts and protein information, adapted from ENSEMB, for Assay ID Hs00230957_m1.

Author Contributions

Conceived and designed the experiments: SC UA GLV. Performed the experiments: UA AB BC. Analyzed the data: UA AB BC SC GLV. Contributed reagents/materials/analysis tools: AM. Wrote the paper: UA AB BC SC GLV. Patient recruiting: SC EI NF IM ARL AM EC IU GLV. Patient medical record collection: SC EI NF IM ARL AM EC IU GLV. Contact with patients or relatives to fulfill patients' medical personal records: SC EI NF IM ARL AM EC IU GLV.

References

1. American Cancer Society (2014) Cancer Facts and Figures 2014. Atlanta: American Cancer Society.
2. Siegel R, Naishadham D, Jemal A (2012) Cancer statistics, 2012. CA Cancer J Clin 62: 10–29.
3. Chen GG, Zeng Q, Tse GM (2008) Estrogen and its receptors in cancer. Med Res Rev 28: 954–974.
4. Stabile LP, Siegfried JM (2004) Estrogen receptor pathways in lung cancer. Curr Oncol Rep 6: 259–267.
5. Taioli E, Wynder EL (1994) Re: Endocrine factors and adenocarcinoma of the lung in women. J Natl Cancer Inst 86: 869–870.
6. Hershberger PA, Vasquez AC, Kantelewicz B, Land S, Siegfried JM, et al. (2005) Regulation of endogenous gene expression in human non-small cell lung cancer cells by estrogen receptor ligands. Cancer Res 65: 1908–1965.
7. Foster PA (2008) Steroid metabolism in breast cancer. Minerva Endocrinol 33: 27–37.
8. Márquez-Garbán DC, Chen HW, Fishbein MC, Goodrick L, Pietras RJ (2007) Estrogen receptor signaling pathways in human non-small cell lung cancer. Steroids 72: 135–143.
9. Stabile LP, Davis AL, Gubash CT, Hopkins TM, Lakerich JD, et al. (2002) Human non-small cell lung tumors and cells derived from normal lung express both estrogen receptor alpha and beta and show biological responses to estrogen. Cancer Res 62: 2141–2150.
10. Pearce ST, Jordan VC (2004) The biological role of estrogen receptor alpha and beta in cancer. Crit Rev Oncol Hematol 50: 3–22.
11. Pietras RJ, Márquez DC, Chen HW, Tsai E, Weinberg O, et al. (2005) Estrogen and growth factor receptor interactions in human breast and non-small cell lung cancer cells. Steroids 70: 372–381.
12. Kawai H, Ishii A, Washiya K, Konno T, Kon H, et al. (2005) Combined overexpression of EGFR and estrogen receptor alpha correlates with a poor outcome in lung cancer. Anticancer Res 25: 4693–4698.
13. Yager JD, Davidson NE (2006) Estrogen carcinogenesis in breast cancer. N Engl J Med 354: 270–282.
14. Arai N, Ström A, Raifer JJ, Gustafsson JA (2000) Estrogen receptor beta mRNA in colon cancer cells: growth effects of estrogen and genistein. Biochem Biophys Res Commun 270: 425–431.
15. Campbell-Thompson M, Lynch IJ, Bharadwaj B (2001) Expression of estrogen receptor (ER) subtypes and ERbeta isoforms in colon cancer. Cancer Res 61: 632–640.
16. Zeng Q, Chen GG, Vlantis AC, van Hasel CA (2007) Oestradiol mediates the growth of human thyroid carcinoma cells via an oestrogen receptor ERK signalling cell. J Endocrinol 201: 195–203.
17. Márquez-Garbán DC, Chen HW, Fishbein MC, Goodrick L, Pietras RJ (2009) Targeting aromatase and estrogen signaling in human non-small cell lung cancer. Annu Rev Pharmacol Toxicol 49: 194–203.
18. Mah V, Schisson DB, Li A, Márquez DC, Wistuba II, et al. (2007) Aromatase expression predicts survival in women with early-stage non small cell lung cancer. Cancer Res 67: 10494–10499.
19. Rades D, Setter C, Dahl O, Schild SE, Noack F (2012) The prognostic impact of tumor cell expression of estrogen receptor-α, progesterone receptor, and androgen receptor in patients irradiated for non-small cell lung cancer. Cancer 118: 157–163.
20. Atmaca A, Al-Batran SE-W, Wirtz RM, Werner D, Zirlik S, et al. (2014) The validation of estrogen receptor 1 mRNA expression as a predictor of outcome in patients with metastatic non-small cell lung cancer. Int J Cancer 134: 2314–2320.
21. Brueckl WM, Al-Batran SE-W, Ficker JH, Claas S, Atmaca A, et al. (2013) Prognostic and predictive value of estrogen receptor 1 expression in completely resected non-small cell lung cancer. Int J Cancer 134: 1025–1031.
22. Mah V, Márquez D, Alavi M, Marsh EL, Zhang L, et al. (2013) Expression levels of estrogen receptor beta in conjunction with aromatase predict survival in non-small cell lung cancer. Lung Cancer 74: 318–325.
23. Fasco MJ, Herutte GJ, Spivack SD (2002) Gender-dependent expression of alpha and beta estrogen receptors in human non-tumor and tumor lung tissue. Mol Cell Endocrinol 198: 125–140.
24. Mollerup S, Jørgensen K, Berge G, Haugen A (2002) Expression of estrogen receptors alpha and beta in human lung tissue and cell lines. Lung Cancer 37: 133–150.
25. Taya T, Kagose N, Sugio K, Uramoto H, Hatano O, et al. (2009) Expression of aromatase CYP19 and its relationship with parameters in NSCLC. Front Biosci 14: 2283–2292.
26. Gomez-Fernandez C, Mejia A, Walker G, Nadjif M (2010) Immunohistochemical expression of estrogen receptor in adenocarcinomas of the lung: the antibody factor. Appl Immunohistochem Mol Morphol 18: 137–141.
27. Roso MG, Behrens C, Herynk MH, Liu S, Prudkin L, et al. (2009) Immunohistochemical expression of estrogen and progesterone receptors identifies a subset of NSCLCs and correlates with EGFR mutation. Clin Cancer Res 15: 5393–5396.
28. Miki Y, Abe K, Suzuki S, Suzuki T, Sasano H (2011) Suppression of estrogen actions in human lung cancer. Mol Cell Endocrinol 340: 168–174.
29. Olivero-Marston SE, Mechanic LE, Mollerup S, Bowman ED, Remaley AT, et al. (2010) Serum estrogen and tumor-positive estrogen-receptor-alpha are strong prognostic classifiers of non-small-cell lung cancer survival in both men and women. Carcinogenesis 31: 1778–1786.
30. Wu CT, Chang TL, Shih JY, Lee YC (2005) The significance of estrogen receptor beta in 301 surgically treated non-small cell lung cancers. J Thorac Cardiovasc Surg 130: 979–986.
31. Kawai H, Ishii A, Washiya K, Konno T, Kon H, et al. (2005) Estrogen receptor alpha and beta are prognostic factors in non-small cell lung cancer. Clin Cancer Res 11: 5084–5089.
32. Stabile LP, Dacic S, Land SR, Lenzner DE, Dhir R, et al. (2011) Combined analysis of estrogen receptor beta-1 and progesterone receptor expression identifies lung cancer patients with poor outcome. Clin Cancer Res 17: 154–161.
33. Skov BG, Fischer BM, Pappot H (2008) Oestrogen receptor beta over expression in males with non-small cell lung cancer is associated with better survival. Lung Cancer 59: 88–94.
34. Abe K, Miki Y, Otsu K, Mori M, Kakumima H, et al. (2010) Highly concordant coexpression of aromatase and estrogen receptor beta in non-small cell lung cancer. Hum Pathol 41: 190–198.
35. Verma MK, Miki Y, Abe K, Nagasaka S, Niikawa H, et al. (2012) Co-expression of estrogen receptor beta and aromatase in Japanese lung cancer patients: gender-dependent clinical outcome. Life Sci 91: 800–808.