ORIGINAL ARTICLE

Morphology and morphogenesis of a new oxytrichid ciliate, *Notohymena limus* n. sp. (Ciliophora, Oxytrichidae) from Delhi, India

Ilams Naqvi a, Renu Gupta b,*, Seema Makhiha c, Ravi Toteja c, Jeeva S. Abraham c, S. Sripoornac, Hamed A. El-Serehy d, Fahad A. Al-Misned d

a Zoology Department, Zakir Husain Delhi College, University of Delhi, Delhi, India
b Zoology Department, Maitreyi College, University of Delhi, Delhi, India
c Ciliate Biology Laboratory, Department of Zoology, Acharya Narendra Dev College, University of Delhi, Delhi, India
d Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia

Received 24 February 2016; revised 4 August 2016; accepted 10 October 2016
Available online 14 October 2016

KEYWORDS
Morphology; Morphogenesis; *Notohymena*; Oxytrichidae

Abstract The morphology and morphogenesis of a new oxytrichid ciliate, *Notohymena limus* n. sp. were studied *in vivo* and after protargol impregnation. The new ciliate was isolated from the sewage sludge at Delhi Jal Board Sewage Treatment Plant located at Rithala, Delhi, India, using the non-flooded Petri dish method. *N. limus* n. sp. is characterized as follows: flexible dorsoventrally flattened ellipsoidal body; *Notohymena*-pattern undulating membranes; adoral zone of membranelles (AZM) occupied about 39% of the body length, and consists of around 26 membranelles; large and deep buccal cavity; colorless subpellicular granules present in groups and arranged around the bases of dorsal bristles; 4 macronuclear nodules; 2 micronuclei; 18 fronto-ventral-transverse (FVT) cirri in typical *Oxytricha*-pattern; 6 dorsal rows of bristles; 3 caudal cirri; about 16 right and 15 left marginal cirri; *N. limus* n. sp. is a new species on the basis of the combination of morphological, morphometric and morphogenetic characteristic features.

© 2016 The Authors. Production and hosting by Elsevier B.V. on behalf of King Saud University. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

The genus *Notohymena* was erected by Blatterer and Foissner (1988). The cells have a strong resemblance to genus *Oxytricha*, the two being almost indistinguishable *in vivo*. Members of this genus are characterized by their highly flexible body, 18 or less fronto-ventral-transverse (FVT) cirri, question mark (?) shaped adoral zone of membranelles (AZM), presence of caudal cirri, undulating membranes in *Notohymena* pattern and one right and one left marginal row of cirri (Berger, 1999; Berger and Foissner, 1997; Blatterer and Foissner, 1988).
Various species assigned to the genus – *Notohymena rubescens*, Blatterer and Foissner, 1988; *Notohymena australis* (Foissner and O'Donoghue, 1999), Berger, 1999; Voss, 2008; *Notohymena antarctica*, Foissner, 1996; *Notohymena pampasica*, Küppers et al., 2007; *Notohymena saprai*, Kamra and Kumar, 2010; *Notohymena apoaustralis*, Lv et al., 2013; *Notohymena selvatica* (Hemberger, 1985), Blatterer and Foissner, 1988, have overlapping species-level characters with respect to their live morphology, infraciliature, morphometry and habitat. The present study provides detailed morphology and morphogenesis of a new isolate of genus *Notohymena* isolated from a sewage sludge sample to ascertain its taxonomic position.

2. Material and methods

2.1. Sample site and sampling

The Delhi Jal Board distributes potable/usable water after collecting and treating raw water from various sources like River Yamuna, Bhakhra Storage, Ganga Canal and Groundwater. Sewage water from various sources is also collected for treatment and disposal by the Delhi Jal Board Sewage Treatment Plants located in various areas within Delhi. The sewage sludge containing debris, fine sand and litter arises after filtration during the sewage water recycling process which later on dries naturally. This dried sludge sample was collected from Delhi Jal Board Sewage Treatment Plant located at Rithala, Delhi (28°43′32″N, 77°6′18″E). Ciliates were obtained using the non-flooded petridish method (Foissner, 1992, 1987).

2.2. Morphology and morphogenesis

Infraciliature of *Notohymena limus* n. sp. was studied using Protargol impregnation (Kamra and Sapra, 1990; Wilbert, 1975). Counts and measurements of the 20 impregnated specimens were performed at magnification of 1000×. Terminology used is mainly according to Berger (2008, 1999), Foissner and Stoeck (2011) and Küppers et al. (2011). Cirri Numbering system established by Borror (1972), Hemberger (1985), Martin (1982) and Wallengren (1900) is followed.

2.3. pH of the sample

Dried sludge sample was mixed with distilled water in a ratio of 1:2.5 and shaken for at least half an hour. The pH of the supernatant was determined using glass electrode pH meter (Decibel db-1003).

2.4. Percentage of organic matter of sample

The organic matter content of the dried sludge sample was estimated by modified Walkley–Black method (Walkley and Black, 1934).

3. Results

3.1. Occurrence

Ciliate *N. limus* n. sp. was isolated from the dried sludge sample at Delhi Jal Board Sewage Treatment Plant located at Rithala, Delhi. The organic matter content of this sample accounted for 0.32% and the pH was 7.9.

3.2. Characteristic features

Size of protargol impregnated cell about 62 × 22 μm; shape ellipsoidal with anterior rounded and posterior lanceolate end; buccal cavity large and deep; undulating membranes in typical *Notohymena*-pattern; colorless sub-pellicular granules; 4 macronuclear nodules; 2 micronuclei; 18 Frontal-Ventral-Transverse (F1–8, V1–5, T1–5) cirri; on an average 26 adoral membranelles; 16 right and 15 left marginal cirri; 6 dorsal rows of bristles (Dorsal Kineties-DK1–4 and Dorso-Marginals-DM1–2); 3 caudal cirri (Fig. 1).

3.3. Etymology

The species has been named *limus*, Latin noun for sludge referring to the habitat from where the species was discovered.

3.4. Description of the species

The average size of Protargol impregnated non-dividing cell is 62 × 22 μm. The shape of the cell is ellipsoidal with anterior rounded and posterior lanceolate end. The body is flexible, dorsoventrally flattened with length to width ratio of 2.9:1. The cells exhibited frequent encystment and excystment. Cysts have a smooth surface and measuring about 27.8 μm in diameter in protargol stained preparations.

There are four macronuclear nodules, each measuring about 8 × 7 μm. Two small spherical and compact micronuclei with a diameter about 2.66 μm each are present on variable
positions. Colorless subpellicular granules are present in groups and are arranged around the bases of dorsal bristles. The buccal cavity is large and deep and undulating membranes are in typical Notohymena pattern. Adoral zone of membranelles (AZM) is well developed and consists of about 26 membranelles occupying 39% of the body length. The frontal-ventral-transverse (FVT) ciliature consists of 18 FVT cirri. The three post oral ventral cirri appear near the cytosome, with V1 and V2 placed as a pair while V3 is away from them. The two pretransverse ventral cirri are near the transverse cirri. T1-4 are arranged in an oblique linear row adjoined by T5 forming a tick mark pattern. The row of right marginal cirri (RMC) starts at the level of F7 and ends at the level of the fifth transverse cirrus. The row of left marginal cirri (LMC) curves into ‘J’ shape towards the mid line of the cell. The dorsal ciliature consists of 6 dorsal rows of bristles. The dorsal kineties, DK1-4 are curved and extend along the entire body length. DK1-3 are convex in the posterior half of the cell but DK4 is concave at about the mid body region. The two dorso-marginal (DM) rows are short rows. DM2 is very short consisting of only one or two bristles. There are three caudal cirri (CC) one each at the ends of DK1, 2 & 4.

All morphometric features are shown in Table 1, while a comparison between the morphometric data of the new species N. limus n. sp. and N. saprai (Kamra and Kumar, 2010) is shown in Table 2.

3.5. Developmental morphogenesis

Stomatogenesis begins with de-novo appearance of kinetosomes in the region between V3 and LMC and above the transverse cirri. Further proliferation leads to the formation of an anarchic field of oral primordium (OP) which in later stages grows in both directions (anteriorly toward the adoral zone and posteriorly toward the transverse cirri). Before elongating anteriorly, it reaches close to the transverse cirri. Two sets of six FVT ciliary streaks develop in the manner as described for sub-family Oxytrichinae (Berger and Foissner, 1997; Berger, 1999; Shao et al., 2015).

In the proter, parental undulating membranes (UMs) function as streak I, while the streak II originates from the disaggregating F1 and a few anteriorly moved kinetosomes from OP. Streaks III and IV originate from disaggregating F8 and F7 respectively. Streak V originates from the anterior movement and splitting of streak V of opisthe. Streak VI originates de-novo.

In the opisthe, streak I, II and III originate from the OP. Subsequently, streaks IV, V and VI originate from disaggregating V1, V2 and V3. Kinetosomes from OP and streak V move anteriorly to contribute to the streaks for proter.

Differentiation of the 18 FVT cirri follows the usual Oxytrichinae pattern 1,3,3,3,4,4 for both the daughter cells.

Table 1 Morphometric characterization of Notohymena limus n. sp.

Character	Mean	Min	Max	SD	CV	N
Body, length	61.50	54.90	74.50	6.27	10.20	20.00
Body, width	21.90	16.90	27.10	2.89	13.22	20.00
Body length/body width	2.90	2.40	3.60	0.36	12.63	20.00
Ma, No.	4.00	4.00	4.00	0.00	0.00	20.00
Ma, length	7.70	5.90	9.40	0.91	11.79	20.00
Ma, width	6.50	6.10	7.70	0.48	7.35	20.00
Mi, No.	2.00	2.00	2.00	0.00	0.00	20.00
Mi, diameter	2.70	2.60	2.80	0.10	3.76	20.00
AM, No.	25.80	22.00	28.00	1.46	5.74	20.00
AZM, length	23.60	19.60	27.80	2.31	9.80	20.00
AZM length/body length	0.40	0.30	0.40	0.03	7.69	20.00
FC, No.	8.00	8.00	8.00	0.00	0.00	20.00
VC, No.	5.00	5.00	5.00	0.00	0.00	20.00
TC, No.	5.00	5.00	5.00	0.00	0.00	20.00
LMC, No.	14.50	13.00	16.00	0.84	5.81	20.00
RMC, No.	15.60	14.00	17.00	1.07	6.87	20.00
DK, No.	4.00	4.00	4.00	0.00	0.00	20.00
DM, No.	2.00	2.00	2.00	0.00	0.00	20.00
DB, No. in	15.90	14.00	17.00	1.22	7.70	10.00
DK1	15.10	14.00	17.00	1.22	8.06	10.00
DK2	13.50	12.00	16.00	1.51	10.36	10.00
DK3	14.60	13.00	16.00	1.51	10.36	10.00
DK4	4.00	3.00	5.00	0.63	15.75	10.00
DM1	1.50	1.00	2.00	0.55	36.67	10.00
DM2	64.30	50.00	69.00	3.50	5.44	10.00
CC, No.	3.00	3.00	3.00	0.00	0.00	10.00

a All data are based on Protargol impregnated specimens. Measurements are in µm. Ma, macronuclear nodules; Mi, micronucleus; AM, adoral membranelles; AZM, adoral zone of membranelles; FC, frontal cirri; VC, ventral cirri; TC, transverse cirri; LMC, left marginal cirri; RMC, right marginal cirri; DK, dorsal kineties; DM, dorsomarginal; DB, dorsal bristles; CC, caudal cirri. Mean, arithmetic mean; Min, minimum; Max, maximum; CV, coefficient of variation in %; SD, standard deviation; N, no of cells.
Development of the marginal cirri is by within the row primordia formation, a process similar to that described for the family Oxytrichidae (Berger, 1999; Arora et al., 1999; Gupta et al., 2001, 2003, 2002, 2006; Naqvi et al., 2006).

On the dorsal surface, two sets of three dorsal primordia form by within the row primordia formation one each for each daughter cell. The third dorsal primordium, DP3 splits and forms new DK3 and DK4. Two more primordia appear near the RMC row on the ventral surface giving rise to two dorsomarginal rows, which later shift to the dorsal surface (Fig. 2).

Comparison of morphogenetic characterization of the closely related species *Notohymena limus* n. sp. and *N. saprai* (Kamra and Kumar, 2010) is shown in Table 3.

Table 2

A comparison between the morphometric features of the new ciliate species *Notohymena limus* n. sp. and *N. saprai* (Kamra and Kumar, 2010).

Character	*N. limus* n. sp. (present study)	*N. saprai* (Kamra and Kumar, 2010)
Cortical granules	Colorless	Dark green
Body, length	61.50	149.20
Body, width	21.90	48.80
AM, No.	25.80	52.70
AZM, length	23.60	–
AZM/body length	40.00	38.50
Ma, No.	4.00	4.00
Ma, length	7.70	13.80
Ma, width	6.50	9.10
Mi, No.	2.00	3.70
Mi, diameter	2.70	2.00
FC, No.	8.00	8.00
VC, No.	5.00	5.00
TC, No.	5.00	5.00
RMC, row	1.00	1.00
RMC, No.	15.60	43.10
LMC, row	1.00	1.00
LMC, No.	14.50	43.90
Dorsal rows, No.	6.00	6.00
DK1	15.90	30.90
DK2	15.10	31.10
DK3	13.50	21.00
DK4	14.60	12.70
DM1	4.00	23.10
DM2	1–2	11.50
CC, No.	3.00	3.00

All data are based on Protargol-impregnated specimens. Measurements in μm. AM, adoral membranelles; AZM, adoral zone of membranelles; Mi, micronuclei; FC, frontal cirri; VC, ventral cirri; TC, transverse cirri; RMC, right marginal cirri; LMC, left marginal cirri; DK, dorsal kineties; DM, dorsomarginals; CC, caudal cirri.

Figure 2

Line diagrams of Protargol impregnated cells of *N. limus* n.sp. showing divisional morphogenesis on the ventral surface (A, B) and dorsal surface (C, D). (A) De-novo origin of OP (arrow). (B) Anterior movement of streak V of opisthe (arrow), reorganizing UM (double arrow), streak II formed from F1 and kinetosomes of OP (arrow head), streak III from F8 (double arrow head), streak IV from F7 (triple arrow head). (C) Within row proliferation of two sets of three dorsal primordia and thickening of posterior ends to form caudal cirri (arrows). (D) Formation of new DK4 after splitting of third dorsal primordia (arrows). Bar represents 20 μm.

4. Discussion

4.1. Occurrence

Notohymena limus n.sp. was isolated from the sewage sludge sample at Delhi Jal Board Sewage Treatment Plant, Rithala. The sewage sludge sample was slightly alkaline with high organic carbon content.

4.2. Comparison of *Notohymena limus* n. sp. with other related species

4.2.1. Morphology and morphometry

Notohymena limus n.sp. is distinct from other reported species of the genus that have been described thus far in having a new combination of characters. Though it is similar to *N. saprai* in few characters as both have 4 macronuclei, 3 caudal cirri, 18 FVT cirri and the presence of cortical granules it is distinct...
in other morphometric characters such as: colorless granules, size, AZM number, AZM/body length (BL), macronuclei length and width, number of micronuclei and number of cilia in dorsal rows (Tables 1 and 2).

4.2.2. Morphogenesis

The reorganization of the undulating membranes corresponds to that in *N. australis*, *N. rubescens* and other members of the family. The genus specific hook at the anterior end of the paro-

The detailed morphogenesis of *N. limus* n. sp. described in the present investigation shows that its process of stomatogen-

5. Conclusion

The ciliate *N. limus* n. sp. isolated from the sewage sludge sample at the Delhi Jal Board Sewage Treatment Plant, Rithala, is a distinctly new species on the basis of its morphological, mor-

Acknowledgements

The support extended by the Principal, Zakir Husain Delhi College and the Principal, Maitreyi College, University of Delhi is thankfully acknowledged. We are grateful to the Principal, Acharya Narendra Dev College, University of Delhi for providing the necessary facilities and infrastructure for the research. The continuous help, support and guidance provided by Professor G.R. Sapra is highly acknowledged. We thank-

References

Arora, S., Gupta, R., Kamra, K., Sapra, G.R., 1999. Characterization of *Paraarrestyla coronata* sp. n. including a comparative account of other members of the genus. Acta Protozool. 38, 133–144.

Berger, H., 1999. Monograph of Oxytrichidae (Ciliophora, Hypo-

Arch. Protistenkd. 148, 125–155.

Springer, Netherlands, pp. 1–84.

Springer, Netherlands, pp. 1–1080.

Springer, Nether-

trichia). In: Monographiae Biologicae, vol. 78. Springer, Nether-

Stapfia 17, 1–84.

Proceedings of the 7th IUPAC Conference on Natural Products. In: Lee, J.J., Soldo, A. (Eds.), Protocols in Protozoology. Allen Press, Lawrence, Kansas, pp. B-10.1–10.2.

Proceedings of the 6th IUPAC Conference on Natural Products. In: Lee, J.J., Soldo, A. (Eds.), Protocols in Protozoology. Allen Press, Lawrence, Kansas, pp. B-10.1–10.2.

Proceedings of the 5th IUPAC Conference on Natural Products. In: Lee, J.J., Soldo, A. (Eds.), Protocols in Protozoology. Allen Press, Lawrence, Kansas, pp. B-10.1–10.2.

Proceedings of the 4th IUPAC Conference on Natural Products. In: Lee, J.J., Soldo, A. (Eds.), Protocols in Protozoology. Allen Press, Lawrence, Kansas, pp. B-10.1–10.2.

Proceedings of the 3rd IUPAC Conference on Natural Products. In: Lee, J.J., Soldo, A. (Eds.), Protocols in Protozoology. Allen Press, Lawrence, Kansas, pp. B-10.1–10.2.

Proceedings of the 2nd IUPAC Conference on Natural Products. In: Lee, J.J., Soldo, A. (Eds.), Protocols in Protozoology. Allen Press, Lawrence, Kansas, pp. B-10.1–10.2.

Proceedings of the 1st IUPAC Conference on Natural Products. In: Lee, J.J., Soldo, A. (Eds.), Protocols in Protozoology. Allen Press, Lawrence, Kansas, pp. B-10.1–10.2.

Proceedings of the 7th IUPAC Conference on Natural Products. In: Lee, J.J., Soldo, A. (Eds.), Protocols in Protozoology. Allen Press, Lawrence, Kansas, pp. B-10.1–10.2.

Proceedings of the 6th IUPAC Conference on Natural Products. In: Lee, J.J., Soldo, A. (Eds.), Protocols in Protozoology. Allen Press, Lawrence, Kansas, pp. B-10.1–10.2.

Proceedings of the 5th IUPAC Conference on Natural Products. In: Lee, J.J., Soldo, A. (Eds.), Protocols in Protozoology. Allen Press, Lawrence, Kansas, pp. B-10.1–10.2.

Proceedings of the 4th IUPAC Conference on Natural Products. In: Lee, J.J., Soldo, A. (Eds.), Protocols in Protozoology. Allen Press, Lawrence, Kansas, pp. B-10.1–10.2.

Proceedings of the 3rd IUPAC Conference on Natural Products. In: Lee, J.J., Soldo, A. (Eds.), Protocols in Protozoology. Allen Press, Lawrence, Kansas, pp. B-10.1–10.2.

Proceedings of the 2nd IUPAC Conference on Natural Products. In: Lee, J.J., Soldo, A. (Eds.), Protocols in Protozoology. Allen Press, Lawrence, Kansas, pp. B-10.1–10.2.

Proceedings of the 1st IUPAC Conference on Natural Products. In: Lee, J.J., Soldo, A. (Eds.), Protocols in Protozoology. Allen Press, Lawrence, Kansas, pp. B-10.1–10.2.
Foissner, W., O'Donoghue, P.J., 1990. Morphology and infraciliature of some freshwater ciliates (Protozoa: Ciliophora) from Western and South Australia. Invertebr. Taxon. 3, 661–696.

Foissner, W., Stoeck, T., 2011. Cotterillia bromelicola nov. gen., nov. spec., a gonostomatid ciliate (Ciliophora, Hypotricha) from tank bromeliads (Bromeliaceae) with de-novo originating dorsal kineties. Eur. J. Protistol. 47, 29–50.

Gupta, R., Kamra, K., Arora, S., Sapra, G.R., 2001. Stylonychia ammermanni sp. n. a new oxytrichid (Ciliophora, Hypotrichida) ciliate from the river Yamuna, Delhi, India. Acta Protozool. 40, 75–82.

Gupta, R., Arora, S., Kamra, K., Sapra, G.R., 2002. Biodiversity of genus Oxytricha in Delhi region of the Indian Subcontinent. Jpn. J. Protozool. 35 (suppl.), 30.

Gupta, R., Kamra, K., Arora, S., Sapra, G.R., 2003. Pleurotricha cardsi (Shi, Warren and Song 2002) nov. comb. (Ciliophora: Hypotrichida): morphology and ontogenesis of an Indian population; redefinition of the genus. Eur. J. Protistol. 39, 275–285.

Gupta, R., Kamra, K., Sapra, G.R., 2006. Morphology and Cell division of the oxytrichids Architricha indica nov. gen., nov. sp., and Histriculus histrio (Muller 1773), Corliss, 1960 (Ciliophora, Hypotrichida). Eur. J. Protistol. 42, 29–48.

Hemmerber, H., 1985. Neue Gattungen und Arten hypotricher Ciliaten. Arch. Protistenkd. 130, 397–417.

Kamra, K., Sapra, G.R., 1990. Partial retention of parental ciliature during morphogenesis of the ciliate Coniculostomum monilata (Dragesco and Njine 1971) Njine 1978 (Oxytrichidae, Hypotrichida). Eur. J. Protistol. 25, 264–278.

Kamra, K., Kumar, S., 2010. Notohymena saprai sp. nov, a new oxytrichid ciliate (Protozoa, Ciliophora) from the valley of flowers, a Himalayan bioreserve region; description and morphogenesis of the new species. Indian J. Microbiol. 50, 33–45.

Küppers, G.C., Claps, M.C., Lopretto, E.C., 2007. Description of Notohymena pampicensis n. sp. (Ciliophora, Stichotrichia). Acta Protozool. 46, 221–227.

Küppers, G.C., Paiva, T., da, S., Borges, B., do, N., Harada, M.L., Garraza, G.G., Mataloni, G., 2011. An Antarctic hypotrichous ciliate, Parasterkiella thompsoni (Foissner) nov. gen., nov. comb., recorded in Argentinean peat–bogs: morphology, morphogenesis and molecular phylogeny. Eur. J. Protistol. 47, 103–123.

Lv, Z., Chen, L., Chen, L., Shao, C., Miao, M., Warren, A., 2013. Morphogenesis and molecular phylogeny of a new freshwater ciliate, Notohymena apoaustralis n. sp. (Ciliophora: Oxytrichidae). J. Eukaryot. Microbiol. 60, 455–466.

Martin, J., 1982. Évolution des patrons morphogénétiques et phylogénèse dans le sous–ordre des Sporadotrichina (Ciliophora, Hypotrichida). Protistologica 18, 431–447.

Naqvi, I., Gupta, R., Borgohain, P., Sapra, G.R., 2006. Morphology and morphogenesis of Rubrioxytricha indica n. sp. (Ciliophora, Hypotrichida). Acta Protozool. 45, 53–64.

Shao, C., Lu, X., Ma, H., 2015. A general overview of the typical 18 frontal-ventral-transverse cirri oxytrichidae s.l. genera (Ciliophora, Hypotrichida). J. Ocean Univ. China 14 (3), 522–532.

Voss, H.J., 1991a. Die Morphogenese von Cyrtohymena muscorum (Kahl, 1932) Foissner, 1989 (Ciliophora, Oxytrichidae). Arch. Protistenkd. 140, 67–81.

Voss, H.J., 1991b. Die Morphogenese von Notohymena rubescens Blatterer and Foissner, 1988 (Ciliophora, Oxytrichidae). Arch. Protistenkd. 140, 219–236.

Voss, H.J., Foissner, W., 1996. Divisional morphogenesis in Steinia sphagnicola (Ciliophora, Hypotrichida): a comparative light and scanning electron microscopic study. Eur. J. Protistol. 32, 31–46.

Voss, H.J., 2008. Divisional morphogenesis of Notohymena australis (Foissner and O’Donoghue, 1990) Berger, 1999 (Ciliophora, Hypotrichida, Oxytrichidae). Denisia 23, 289–295.

Walkley, A., Black, I.A., 1934. An examination of the Degtjareff method for determining soil organic matter and a proposed modification of the chromic acid titration method. Soil Sci. 37, 29–38.

Wallengren, H., 1900. Zur Kenntnis der vergleichenden Morphologie der hypotrichen Infusorien. Bih. K. Svensk Vetensk Akad. Handl. 26, 1–31.

Wilbert, N., 1975. Eine verbesserte Technik der Protagolimpregnation für Ciliaten. Mikrokosmos 64, 171–179.