Železničné výhybky a križovatky sú neoddeliteľnými prvkami železničnej infraštruktúry na zabezpečenie plynulej vlakovej cesty, ktoré bývajú sprevádzané zloženou a veľmi zložitou infraštruktúrou. Informácie o ich umiestnení v kolajisku je potrebné registrovať. V našom prípade poukážame na vytvorenie informačného systému, ktorý by slúžil na vykonávanie stavebných prác pri údrzbe uvedených konštrukcií v prevádzkovom stave. Informačný systém je vytvorený pre nezávislú železničnú spoločnosť, ktorá vlastní kolajisko vo svojom obvode.

1. Úvod

Plynulosť a bezpečnosť železničnej dopravy je úzko spätá s pevne zabudovanými stavebnými prvkami v kolajisku. Ich počiatocný návrh má za úlohu riešiť projektová dokumentácia. Poznáme rôzne typy častí kolajiska, ktoré si vyžadujú špecifické prístupy pri budovaní ich infraštruktúry. Napríklad môže ísť o kolajové zhlavie v železničných staniciach a podnikoch, zriaďovacích staniciach, rozpuštajúcich zhavie a pod., kde sa nachádza množstvo železničných výhybiek, križovatek, oblúkov a iných objektov. Ďalším faktorom je prejazdová rýchlosť v danej konštrukcii. Čím je rýchlosť prejazdu cez výhybky a križovatky vyššia, tým je požadovaná vyššia kvalita zabudovaných objektov, ktorú zabezpečíme aj jeho projektovým návrhom a následnou cyklickou údržbou.

Prejazdom vlakových súprav dochádza k deformáciám týchto uvedených objektov (rozjazd, brzdenie, bočné rázy, vodorovné a zvislé pôsobiace sily, zaťaženie trate a ďalšie faktory). Objekty sa dostávajú do nového aktuálneho stavu, ktorý môže neraz ohrozíť bezpečnosť prejazdu vlakových súprav. Základnou úlohou je uvedenie polohy a výšky výhybiek, križovatek a kolají do projektového stavu, objekty sa mali splniť parametro určené pri ich výrobe. V niektorých prípadoch môže ísť o rekonštrukciu celeho kolajiska, časti kolajiska alebo o optimalizovaný stav za účelom minimalizácie posunov a závitov pri cyklickej údržbe objektov.

Na tento účel bol navrhnutý informačný systém, ktorý je vypracovaný na stavebné účely a v ktorom sú uložené pôvodné informácie o výhybkach a križovatkách. Základné informácie sú

railroad turnouts and crossings are inseparable elements of railway infrastructure for providing the fluent train traffic which are as a rule, joined into certain trackage groups. The information registration of their position in the railway lay-out is necessary. In our case we will point out the design of the information system which could be employed in the railway engineering works during the maintenance of the above mentioned objects in operation. This information system was created for the independent railway society which owns the railway yard in its railway system.

1. Introduction

Continuity and safety of the railway transport is closely connected with the fixed built-in construction components of the rail road trackage. The project documentation is to solve their initial design. Various types of the railway yard parts are known requiring specific access during their infrastructure construction. For example, they can be presented by the gridiron at railway stations and companies, the shunting yards, the marshalling yards, etc. where a large number railroad turnouts, crossings, curves, etc are located. The next determinant is train speed along these objects. The higher the speed along turnouts and crossings is, the higher quality of built-in objects is required. This can be ensured by the design and the post cyclic maintenance.

The movement of train carriages causes spatial deformations of these objects (acceleration, braking, lateral strokes, influence of horizontal and vertical forces, density of traffic and other facilities). The objects are changed to a new state which can menace the safety of the running train carriages. The main task is the position and elevation corrections of turnouts, crossings and tracks to the design state. The object should have parameters which are directly determined by their manufacture. In some cases we can speak about the maintenance of the whole railway yard, the parts of the railway yard or the optimisation state for the purpose of the position and elevation minimisation during the cyclic object maintenance.

For this purpose the information system was designed which was finished for construction purposes and in which the original information of the railroad turnouts and crossings is registered.
prevzaté z projektovej dokumentácie alebo optimalizovaného stavu z merania priamo v koľajisku, alebo údaje z rekonštrukcie daného úseku.

Hlavným prvkom daného systému bude zaregistrovanie informácií infraštruktúry výhybiek a križovatiek, oblúkov a priamych úsekov. Informačný systém ZH-CAD/IS je vytvorený na báze AUTOCADu pre ucelené evidenčné jednotky, napríklad staničný obvod, samostatné koľajiska v rôznych podnikoch. Výhodou spoľočnosti, ktorá vlastní koľajisko priamo vo svojom obvode je, že bude mať potrebné informácie o svojom koľajisku (vrátane výhybiek a križovatiek). Na základe uvedených informácií môže byť koľajisko udržiavané v projektovanom stave.

2. Geodetické práce v koľajisku

Prvoradou úlohou je získanie potrebných informácií o jednotlivých objektoch koľajového zhlavia. Počiatočné dopĺňanie databázy sa uskutočňuje na základe projektovej dokumentácie alebo geodetického merania. Zaregistrované informácie by mali reprezentovať trvalý stav, ktorý by bol záväzný pre následné cyklické úpravy objektov v koľajisku.

Geodetické merania sú vykonávane za účelom získania informácií pre následnú optimalizáciu koľají a naplnenie informačného systému údajmi, ak nie je k dispozícii dokumentácia objektov. V počiatočnej fázy je vhodné spojiť obidva tieto účely. Merané body sú hlavné body železničných objektov ako sú začiatky, stredy, konce výhybiek, križovatiek a pod.

Presnosť meračských prác ovplyvníme výberom vhodného prístrojového vybavenia, metodou merania a počtom opakovania v skupinách merania. Vzhľadom na skutočnosť, že ide o meranie posunov rádovo v „mm“, je potrebné vybrať zodpovedajúce vybavenie. Na základe získaných skúseností, môžeme odporúčať elektronické univerzálne meracie stanice so strednou chybovou merania úhlov 0,15^{mm}, dĺžok 1 až 2 mm a pre meranie výšok 0,7 mm/km. Vlastnemu podrobnému meraniu musí predchádzať vybudovanie kvalitnej meračskej siete, aby nedošlo k vnašaniu chýb zo siete do merania hlavných bodov objektov.

The basic information is assumed from the design documentation or the optimisation state of the direct measurement in the railway yard or date of the reconstructed railway division.

The main element of this system will be the infrastructure information registration of the turnouts and crossings, curves and direct tracks. The information system ZH-CAD/IS was created on the base of the AUTOCAD product for the particular registered unit, for example the station track yard, the separate railway network of the miscellaneous companies. The advantage of this railway company which owns the railway system in its area, is the estate of the necessary information of their railway network (including turnouts and crossings). On the base of this information the track-age can be maintained according to the design state.

2. Geodetic survey in the railway yard

The first step is to acquire necessary information about particular objects of the railway gridiron. The initial updating of the database is performed on the basis of the design documentation or geodetic surveying. The required information should be represented by a fixed state which would be obligatory for the consecutive cyclic maintenance of the railway yard.

Geodetic measurements are executed for the purpose of acquiring information for the consecutive track optimisation and updating of the information system by data, if there is no object documentation at our disposal. The observed points are the main points of the railway objects as beginnings, midpoints, ends of turnouts, crossings and alike.

We can influence the measurement precision by the choice of the suitable surveying instruments, surveying methods and number of repetitions in the surveying rounds. With regard to the reality of the position measuring of “mm” it is necessary to choose proper equipment. Owing to the acquired experience, we can recommend the electronic universal surveying instruments with the mean error of angles of 0.15^{mm}, distances of 1 to 2 mm and elevations of 0.7 mm/km.

The building of a high-quality surveying network has to precede the proper detailed measurement to prevent the infliltra-
Výsledkom meračských prác je spracovaný výkres aktuálnej situácie, ktorý je prepracovaný do optimalizovaného stavu osí kolají (obr. 1). Uvedený druh výkresu v našom prípade slúži ako základný podklad pre informačný systém kolajového zhlavia.

3. Spracovanie údajov

Informačný systém je vypracovaný ako nadstavba ZH-CAD/IS v grafickom prostredí AUTOCAD [1], ktorý dokáže priradiť informácie k vykresleným objektom umiestneným v celkovej situácii (obr. 1) vo výkrese v tvare *.DWG. Prvým krokom pri príprave technológie bolo vytvorenie *.SLD snímok pre jednotlivé skupiny objektov (typy výhybek, križovatiek, múrov a ďalších objektov), ktoré sa zobrazujú spolu s údajmi objektov.

Dalším krokom pri tvorbe uvedeného informačného systému je vypracovanie prázdných *.DCL knižníčiek s jednotlivými políčkami na ich vyplnenie. Tabuľky DCL knižníčiek sú vytvorené pomocou VisualLISP-u v AUTOCAD-e (obr. 2). Základným podkladom tohto informačného systému je vypracovaný DWG výkres, ktorý vzniká na základe projektovej dokumentácie alebo z merania v kolajisku. Po výbere danej konštrukcie z výkresu sa vyhľadajú informácie o chybe, ktorú je možné identifikovať zmeraním cez objekt. Informácie sa pridajú na základe výkresu v programnej sústave ZH-CAD/IS. Zelená skúsenosť je prezentovaná v kontexte aktuálneho stavu osí kolají (obr. 1), čo je základný podklad pre informačný systém kolajového zhlavia.

3. Data processing

Information system is elaborated as the ZH-CAD/IS application of the AUTOCAD environment [1] which knows how to assign the information to the drawn objects by the positioning in the total layout (fig. 1) of the *.DWG drawing. The first step during the technology preparation was to create the *.SLD slides of the individual object groups (types of railroad turnouts and crossings, walls and other objects) which are displayed together with the object data.

The next step during the information system creation is to elaborate the empty *.DCL libraries including the gaps for their filling. The DCL panels of the libraries are created by VisualLISP of the AUTOCAD (fig. 2). The main base of this information system is the elaborated DWG layout which originated from the base of the design documentation or surveying in the trackage.
mácie o objekte, napríklad síradnice a výšky hlavných bodov konštrukcie, ktoré porovnáme s hodnotami získanými geodetickými meraniami. Pri zjednodušenej kontrole objektov v kolajisku môžeme používať vzťahy od zaistovacích značiek kolají (ZZK) za účelom správneho vyšmerovania osi kolají a osí pred objektom (prechádzajúca výhybka alebo križovatka).

4. Využitie v praxi
Praktické využitie vidíme vo využívaní uvedeného informačného systému pre vybratú železničnú spoločnosť alebo podnik, ktorý vlastní kolajisko na zabezpečenie svojich dopravných výkonov.

Ako príklad uvádzame úpravu objektu v kolajisku zhavia do projektovanej polohy (obr. 3), ktorý znázorňuje priečne a pozdĺžne

TRACK NO 1
DISTANCES (m)
16.616 16.616 16.616 16.616 12.304 16.616 16.616
TRACK NO 2
LATERAL SWAY
1.2 1.0
1.0
16.616 16.616 16.616 16.616
16.616 16.616 16.616 16.616
1.168 16.364 7.579
18A1 18A1
18A1 18A1

Obr. 3. Úprava výhybek do projektovaneho stavu – priečne a pozdĺžne vyrovnanie
Fig. 3. The modification of turnouts to the designed state – lateral and longitudinal adjustment
posuny hlavných bodov vybiekovej časti zhlaví pri vyrovnaní vybiek do základného tvaru a rešpektovaniu osových vzdelialosti kolají (celková situácia je na obr. 1). Dôvodom deformačných zmien boli opakované podbújanie práce a prejazd vlakových súprav, v uvedenom prípade ide o podrážnané územie a deformačné zmeny sú do 150 mm. Nesmieme zabúdať na okolité pridružené objekty, ktoré sú začlenené v kolajisku, pričom konštrukcie vybiek a križovatek môžu byť ovplyvnené aj deformačnou obrúbenou oblasťou pred a za objektom. Obnovovať je potrebné celú skupinu objektov naraz.

Vyrovnanie deformačí kolají je potrebné vykonáť nielen smerovo a výškovo, ale aj doplnením alebo skrátením dĺžok uvedených úsekov pred a za objektmi. Výšková úprava je spracovaná v samostatnom výkrese.

Kolajové zhlavie bolo vyrovnané ako celok, pričom sa na rozhraníju zhlaví postavilo priečne posuňovanie kolají. Pozdĺžne posuny v smere osi majú vplyv na dodržanie stredových uhlov jednotlivých vybiek.

Uvedieme si niektoré dôvody, pre ktoré je potrebná obnova polohy a výšky a ich úprava geometrických parametrov:

- nežiadaci prejazd súprav cez objekt, opotrebovanie časti konštrukcií,
- vzdelialosti osi kolají od pôvodných prekážok (stožiare, mosty, oporné a zárubné múry a pod.),
- úprava parametrov konštrukcií do pôvodného stavu (projektovaný stav, výrobne parametre, uhol odbočenia, dĺžky a pod.).

Geodet vykona merania skutočnej polohy hlavných bodov objektov (vybiek, križovatek, obrúbenou oblasťou a pod.). Ak je potrebné odstrániť vodorovné a zvislé deformácie, tak je nutné s projektantom navrhnuť opravu polohy a výšky objektu. Pri meraní doporučujeme vytvoriť zaistenie polohy a výšky hlavných bodov na zaistovacie koliky alebo značky kolají (obr. 2).

Literatúra – References

[1] AutoCAD, VisualLISP, Software, Autodesk, Inc., 1999.
[2] HODAS, S.: ZH-CAD - design, reconstruction of track head, University of Žilina, Faculty of Civil Engineering, Department of Geodetic Survey, In.: Fifth international conference COMPRAIL '96 in railways, Berlin, Germany, Organised by Wessex Institute of Technology, Southampton, UK, 1996, Vol. 5, pp. 43-50.
[3] BITTERER, L., HODAS, S: Geodetic surveying of railway objects, University of Žilina, Faculty of Civil Engineering, Department of Geodetic Survey, In.: Sixth international conference COMPRAIL '98 in railways, Lisbon, Portugal, Organised by Wessex Institute of Technology, Southampton, UK, 1998, Vol.6, pp. 3-12.
[4] HODAS, S.: Geodetic measuring of railway objects in practice, In.: 2nd scientific conference on Effective transport, the way to the European Union, Transport construction and infrastructure, University of Pardubice, J. Perner Faculty of Transport, 16. – 17. 9. 1999, Pardubice, CZ, 1999, pp. 215-220.
[5] HODAS, S.: Reliability verification of realisation of the railway engineering works by geodetic methods in practice, In.: Conference on Reliability and diagnostic in transport ’99, University of Pardubice, J. Perner Faculty of Transport, 14. 12. 1999, Pardubice, CZ, 1999, pp. 100-105.
[6] HODAS, S.: Geodetic survey, design and reconstruction of the track gridiron in the railway engineering using global position system (GPS) supported by ZH-CAD software, In.: Research 008/304/2000, Faculty of Civil Engineering, University of Žilina, Žilina, SK, 2000.