Ni2+-Dependent and PsaR-Mediated Regulation of the Virulence Genes \textit{pcpA}, \textit{psaBCA}, and \textit{prtA} in \textit{Streptococcus pneumoniae}

Irfan Manzoor1,2, Sulman Shafeeq3, Oscar P. Kuipers1*

1 Department of Molecular Genetics, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 7, 9747 AG, Groningen, The Netherlands, 2 Department of Bioinformatics and Biotechnology, Government College University, Faisalabad, Pakistan, 3 Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Nobels väg 16, 17177, Stockholm, Sweden

* o.p.kuipers@rug.nl

Abstract

Previous studies have shown that the transcriptional regulator PsaR regulates the expression of the PsaR regulon consisting of genes encoding choline binding protein (PcpA), the extracellular serine protease (PrtA), and the Mn2+-uptake system (PsaBCA), in the presence of manganese (Mn2+), zinc (Zn2+), and cobalt (Co2+). In this study, we explore the Ni2+-dependent regulation of the PsaR regulon. We have demonstrated by qRT-PCR analysis, metal accumulation assays, \(\beta\)-galactosidase assays, and electrophoretic mobility shift assays that an elevated concentration of Ni2+ leads to strong induction of the PsaR regulon. Our ICP-MS data show that the Ni2+-dependent expression of the PsaR regulon is directly linked to high, cell-associated concentration of Ni2+, which reduces the cell-associated concentration of Mn2+. In vitro studies with the purified PsaR protein showed that Ni2+ diminishes the Mn2+-dependent interaction of PsaR to the promoter regions of its target genes, confirming an opposite effect of Mn2+ and Ni2+ in the regulation of the PsaR regulon. Additionally, the Ni2+-dependent role of PsaR in the regulation of the PsaR regulon was studied by transcriptome analysis.

Introduction

\textit{Streptococcus pneumoniae}, an encapsulated bacterium is a common cause of otitis media, bacterial meningitis, bacteremia, and pneumonias, leading to millions of death every year, particularly in developing countries [1–3]. Although, \textit{S. pneumoniae} has an asymptomatic association within the human nasopharyngeal cavity [4], it has also the ability to spread to other sites in the human body to cause severe infections [5–7]. The survival of \textit{S. pneumoniae} in different niches inside the human body might depend on the availability of macro- and micro- nutrients on the respective infection sites. Metal ions are an integral part of nutrients, and play a vital role in the regulation of many cellular processes in \textit{S. pneumoniae} [8–10]. The deprivation or excess of metal ions may result in impaired growth of bacterial cells [11]. Therefore, proper regulation of metal homeostasis is important for the survival of \textit{S. pneumoniae}. For this

PLOS ONE | DOI:10.1371/journal.pone.0142839 November 12, 2015 1/1
purposes, *S. pneumoniae* possesses metal uptake and -efflux systems that are specific to different metal ions, including manganese (Mn$^{2+}$), zinc (Zn$^{2+}$), copper (Cu$^{2+}$), and iron (Fe$^{2+}$) [12–16]. These systems are tightly regulated by different transcriptional regulators in the presence of specific metal ions [9,10,16–18]. For example, the expression of the *adc* operon encoding Zn$^{2+}$ transporters is repressed by transcriptional regulator *AdcR* in the presence of Zn$^{2+}$ [10,19]. The *cop* operon, encoding proteins for Cu$^{2+}$ homeostasis is activated by transcriptional regulator *CopY* in the presence of Cu$^{2+}$ [16]. The expression of Mn$^{2+}$ uptake system *psaBCA* is regulated by transcriptional regulator *PsaR* and is dependent on the balance between Mn$^{2+}$, Zn$^{2+}$, and cobalt (Co$^{2+}$) [20,21].

The interference or competition of metal ions for metal-sensory proteins has been reported for many bacteria, including *S. pneumoniae* [9,16,21–25]. The interplay of metal ions on specific protein depends on the concentration of metal ions, the nature of the coordinating ligands [26–28], and the effect of the Irving-William stability series (where the order is Mn$^{2+} < $ Fe$^{2+} < $ Co$^{2+} < $ Ni$^{2+} < $ Cu$^{2+} > $ Zn$^{2+}$) on protein metal ion affinity [29]. In *S. pneumoniae*, the *CopY*-mediated expression of the Cu$^{2+}$-efflux system depends on the availability of Cu$^{2+}$ and Zn$^{2+}$, where the Cu$^{2+}$ induced expression of Cu$^{2+}$-efflux system is nullified by the addition of high Zn$^{2+}$ concentrations [16]. Similarly, the expression of the PsaR regulon (*pcpA, psaBCA*, and *prtA*) is repressed by Mn$^{2+}$ and derepressed by Zn$^{2+}$ [9]. In our previous study, we have demonstrated the opposite effect of Mn$^{2+}$ and Co$^{2+}$ in the regulation of the PsaR regulon [21]. Moreover, metal ions can also compete to bind with extracellular proteins, which ultimately results in the impaired homeostasis of other metal ions. In *S. pneumoniae*, Zn$^{2+}$ and Cd$^{2+}$ have been shown to cause intracellular Mn$^{2+}$ deficiency [30,31]. Several proteins with ligase activity have been reported to bind with nickel (Ni$^{2+}$) [32]. However, the role of Ni$^{2+}$ in pneumococcal metabolism and virulence has not been determined.

Here, we used qRT-PCR, β-galactosidase assays, EMSAs, and ICP-MS analyses to investigate the role of Ni$^{2+}$ in the regulation of the PsaR regulon in *S. pneumoniae* D39. Our results demonstrate that the expression of the PsaR regulon is highly derepressed in the presence of Ni$^{2+}$ and that a high concentration of Ni$^{2+}$ causes cell-associated Mn$^{2+}$ deficiency in *S. pneumoniae*. Furthermore, an opposite effect of Mn$^{2+}$ and Ni$^{2+}$ on the PsaR-mediated expression of the PsaR regulon is found.

Material and Methods

Bacterial strains, growth conditions and DNA manipulation

All the bacterial strains and plasmids used in this study are listed in Table 1. *S. pneumoniae* D39 was grown in 1% Chelex 100 resin (Bio-rad)-treated Chemically Defined Medium (CDMchelex). Salts of metal ions, *i.e.* MnSO$_4$ and NiSO$_4$ were added separately as specified in the Results section. *Escherichia coli* strain EC1000 was cultured at 37°C. The following concentrations of antibiotics were used in the media for the selection of strains where necessary: tetracycline: 2.5 μg ml$^{-1}$ for *S. pneumoniae*; chloramphenicol: 4 μg ml$^{-1}$ for *Lactococcus lactis*; and ampicillin; 100 μg ml$^{-1}$ for *E. coli*. Chromosomal DNA of *S. pneumoniae* D39 was used as a template for PCR amplification [33,34]. All bacterial strains used in this study were stored at -80°C in 10% (v/v) glycerol stock. Primers used in this study are based on the genome sequence of *S. pneumoniae* D39 and listed in Table 2.

β-galactosidase assays

The β-galactosidase assays were performed as described before [35] by using derivatives of *S. pneumoniae* D39 grown till mid-exponential phase of growth (OD$_{600}$ = 0.25) in triplicate in CDMchelex at 37°C supplemented with different metal ion concentrations (w/v) as mentioned...
in the Results section. Standard deviation was calculated from three independent replicates of each sample.

Quantitative real time (qRT)-PCR experiments

For qRT-PCR, S. pneumoniae D39 wild-type was grown in CDM with and without the addition of 0.3 mM Ni²⁺ and harvested at mid-exponential growth phase. RNA was isolated as described before [16]. Additionally, RNA was treated with DNase I (RNase-free) (Thermo Fisher Scientific, St. Leon-Rot, Germany) for 60 min at 37°C to remove any DNA contamination. qRT-PCR

Strain/plasmid	Description	Source	
S. pneumoniae	Serotype 2 strain, cps 2	Laboratory of P. Hermans	
D39	D39 ΔpsaR	[9]	
RW100	D39nisRK ΔbgaA::PpRTA-lacZ; ErmR	[9]	
RW109	D39nisRK ΔpsaR ΔbgaA::PpRTA-lacZ; ErmR	[9]	
IM402	D39 ΔbgaA::PpsaB-lacZ; TetR	[21]	
IM403	D39 ΔbgaA::PpcpA-lacZ; TetR	[21]	
IM451	RW100 ΔbgaA::PpsaB-lacZ; TetR	[21]	
IM452	RW100 ΔbgaA::PpcpA-lacZ; TetR	[21]	
E. coli	EC1000	KmR; MC1000 derivative carrying a single copy of the pWV1 repA gene in glgB	Laboratory collection
L. lactis	NZ9000	MG1363 ΔpepN::nisRK	[39]

Table 2. List of primers used in this study.

Name	Nucleotide Sequence (5′→3′)
prtA-F	GCAGCCTATGCCCTAATG
prtA-R	GTTTTAGTGCTTATACAGG
pcpA-F	CCAATCTAGCAGATCTCC
pcpA-R	GTAGGAATCGTGAATGG
psaB-F	CCTCAGTGCTCCTACAAAG
psaB-R	GGCAATTCGGTGTAAGG
psaC-F	CATTTCCTACAAAATGCTT
psaC-R	TCAGAGACAAATGGCCTC
psaA-F	CTCGTTCTTCTCTTTCTGG
psaA-R	CTAAAGTCCTACCAGGAA
gyrA-F	CGAGGCACGTATAGCAAGA
gyrA-R	GACCAAGGTTCCCGTTCAT

doi:10.1371/journal.pone.0142839.t002
was performed in triplicates as described before [16]. The transcription level of the target genes was normalized to *gyrA* transcription using the relative expression software tool [36].

Inductively coupled plasma-mass spectrometry (ICP-MS) analysis

To measure the intracellular concentrations of metal ions, *S. pneumoniae* D39 was grown till OD$_{600}$ = 0.2–0.25 in 20 ml CDMchelex supplemented with either 0.02 mM MnSO$_4$, 0.02 mM MnSO$_4$ + 0.1 mM NiSO$_4$, 0.02 mM MnSO$_4$ + 0.3 mM NiSO$_4$, or 0.02 mM MnSO$_4$ + 0.5 mM NiSO$_4$. Cell cultures were washed twice with CDMchelex medium and twice with overnight Chelex (Sigma) treated phosphate-buffered saline (PBS) with 1 mM nitrilotriacetic acid. The cell pellets were dried overnight in a Speedvac at room temperature and lysed in 2.5% nitric acid (Ultrapure, Sigma Aldrich) for 10 min at 95°C by vigorous vortexing. ICP-MS analysis on the lysed cell samples were performed as described before [31]. Amounts of metal ions are expressed in the Result section as μg g$^{-1}$ dry weight of cells.

DNA Microarray Analysis

To observe the impact of the *psaR* deletion on the transcriptome of *S. pneumoniae* in the presence of Ni$^{2+}$, *S. pneumoniae* D39 wild-type and its isogenic *psaR* mutant (RW100) [9] were grown in two biological replicates in CDMchelex with 0.3 mM of NiSO$_4$ (H$_2$O)$_6$. Cells were harvested at the mid-exponential growth phase. Further experiments were performed essentially as described before [37]. DNA microarray data were analyzed by using the *MicroPrep* software package as described before [38]. To identify differentially expressed genes a Bayesian p-value <0.001 and a fold-change cut-off of ≥ 2 were applied. The DNA microarray data have been deposited to Gene Expression Omnibus (GEO) with accession number GSE73818.

Purification of Strep-tagged PsaR and Electrophoretic mobility shift assays

The overexpression and purification of C-terminally Strep-tagged PsaR was achieved in *L. lactis* NZ9000 essentially as described before [9,39]. Electrophoretic mobility shift assays (EMASs) were performed essentially as described previously [10]. In short, PCR products of *PpcpA*, *PpsaB*, *PprtA*, and *PpadR* were labeled with $[^{33}P]$ ATP. EMASs were carried out in buffer containing 20 mM Tris-HCL (pH 8.0), 5mM MgCl$_2$, 8.7% (w/v) glycerol, 62.5 mM KCl, 25 μg/ml bovine serum albumin, 25 μg/ml poly (dI-dC), and 5000 cpm of $[^{33}P]$ ATP-labeled PCR product. Reactions were incubated at 30°C for 30 min before loading on gels. Gels were run in 1 M Tris-borate buffer (PH 8.3) at 95 V for 90 min.

Results

Ni$^{2+}$-dependent expression of the PsaR regulon in *S. pneumoniae*

In a previous study, we have shown that, like Zn$^{2+}$, Co$^{2+}$ also induces the expression of the PsaR regulon, while addition of Mn$^{2+}$ causes repression of the PsaR regulon [21]. The PsaR regulon comprises the *psa* operon (*psaBCA*), encoding Mn$^{2+}$-dependent ABC transporters, *pcpA*, encoding a choline binding protein and *prtA*, encoding a serine protease. In this study, we decided to explore the impact of Ni$^{2+}$ on the expression of the PsaR regulon. To investigate the impact of Ni$^{2+}$ on the expression of the PsaR regulon, cells were grown in CDM with either 0 or 0.3 mM Ni$^{2+}$, and qRT-PCR was performed. qRT-PCR data revealed that the expression of *pcpA*, *psaBCA*, and *prtA* was highly upregulated in the presence of 0.3 mM Ni$^{2+}$ compared to 0 mM Ni$^{2+}$ (Table 3), suggesting the putative role of Ni$^{2+}$ in the regulation of the PsaR regulon.
To further verify the role of Ni\(^{2+}\) in the regulation of the PsaR regulon in *S. pneumoniae*, the D39 wild-type strain containing either *PcpcA-lacZ*, *PpsaB-lacZ*, or *PprtA-lacZ* was grown in CDMchelex and CDMchelex-Mn\(^{2+}\) (CDMchelex without Mn\(^{2+}\)) with the addition of 0, 0.1, 0.3 or 0.5 mM Ni\(^{2+}\), and β-galactosidase assays were performed. Our β-galactosidase data (Miller Units) revealed that the expression of the *PcpcA-lacZ*, *PpsaB-lacZ*, and *PprtA-lacZ* increased significantly with increasing concentrations of Ni\(^{2+}\) in CDMchelex and CDMchelex-Mn\(^{2+}\) (Table 4). However, the expression of these transcriptional lacZ-fusions was much higher in CDMchelex-Mn\(^{2+}\) compared to CDMchelex due to the unavailability of Mn\(^{2+}\) in CDMchelex-Mn\(^{2+}\). This data indicates that the expression of *pcpA*, *psaBCA*, and *prtA* is regulated by Ni\(^{2+}\) and in agreement with our qRT-PCR analysis data mentioned above.

Psar mediates expression of the Psar regulon in the presence of Ni\(^{2+}\)

To check, whether the observed Ni\(^{2+}\)-dependent high expression of the Psar regulon is mediated by the Mn\(^{2+}\)/Zn\(^{2+}\)/Co\(^{2+}\)-responsive transcriptional regulator Psar, the *psar* mutant strain (RW100) containing *PcpcA-lacZ*, *PpsaB-lacZ*, and *PprtA-lacZ* were grown in

Table 3. The relative expression of *prtA*, *psaB*, *psaC*, *psaA*, and *pcpA* genes was normalized with the housekeeping gene *gyrA*. The log\(^2\) fold increase is relative to the expression in the D39 wild-type grown in CDMchelex with 0.3 mM Ni\(^{2+}\) to that with 0 mM Ni\(^{2+}\). Standard deviation of three independent replications is given in parentheses.

Gene tag	Function	Fold Ratio
spd_0558	Cell wall-associated serine protease PrtA	4.53 (1.22)
spd_1461	Manganese ABC transporter, ATP-binding protein, PsaB	2.83 (0.24)
spd_1462	Manganese ABC transporter, permease protein, PsaC	3.15 (0.30)
spd_1463	Manganese ABC transporter, ATP-binding protein, PsaA	5.88 (1.55)
spd_1965	Choline binding protein PcpA	10.53 (3.09)

*Gene numbers refer to D39 locus tags.
* D39 annotation/TIGR4 annotation. [34,62]

Table 4. β-galactosidase activity (miller units) of *PcpcA-lacZ*, *PpsaB-lacZ*, and *PprtA-lacZ* in *S. pneumoniae* D39 wild-type and *ΔpsaR* (RW100) grown in CDMchelex and CDMchelex-Mn\(^{2+}\) supplemented with various concentrations of Ni\(^{2+}\) (mM). Standard deviation of three independent replications is given in parentheses, whereas ND stands for not determined. Noteworthy, lacZ was fused to the 3’ end of prtA* on the native chromosomal location, using plasmid pOR113. This might explain the lower Miller Units of *PprtA* compared to *PcpcA* and *PpsaB*.

Medium	D39 (wt)	D39 ΔpsaR				
	PpcpA	PpsaB	PprtA*	PpcpA	PpsaB	PprtA*
CDMchelex						
Ni\(^{2+}\) [0.0]	29 (7)	68 (8)	0.57 (0.06)	1363 (35)	1290 (30)	2.1 (0.2)
Ni\(^{2+}\) [0.1]	48 (4)	118 (11)	0.92 (0.06)	1226 (42)	1230 (40)	2.1 (0.3)
Ni\(^{2+}\) [0.3]	73 (6)	218 (20)	1.38 (0.1)	1195 (52)	1220 (24)	2.2 (0.4)
Ni\(^{2+}\) [0.5]	101 (8)	419 (15)	1.57 (0.1)	1190 (23)	1202 (55)	2.0 (0.2)
CDMchelex-Mn\(^{2+}\)						
Ni\(^{2+}\) [0.0]	84 (10)	565 (40)	0.74 (0.2)	ND	ND	ND
Ni\(^{2+}\) [0.1]	160 (12)	628 (43)	1.24 (0.2)	ND	ND	ND
Ni\(^{2+}\) [0.3]	360 (36)	873 (50)	1.62 (0.1)	ND	ND	ND
Ni\(^{2+}\) [0.5]	571 (30)	1072 (102)	1.87 (0.1)	ND	ND	ND
CDMchelex with 0, 0.1, 0.3 or 0.5 mM Ni2+. The expression of \textit{PpcpA-lacZ}, \textit{PpsaB-lacZ}, and \textit{PprtA-lacZ} was highly derepressed in the \textit{psaR} mutant. We did not observe significant difference in the expression of \textit{PpcpA-lacZ}, \textit{PpsaB-lacZ}, and \textit{PprtA-lacZ} in the \textit{psaR} mutant strain at different concentrations of Ni2+ (Table 4), indicating that PsaR mediates the Ni2+-dependent expression of the PsaR regulon.

To analyze the impact of \textit{psaR} deletion on the global gene expression of \textit{S. pneumoniae} and find more targets of PsaR in the presence of Ni2+, transcriptome of \textit{psaR} mutant strain was compared with \textit{S. pneumoniae} D39 wild-type strain grown in CDMchelex with 0.3 mM Ni2+. The expression of \textit{psaR} was significantly downregulated, confirming the inactivation of \textit{psaR} in the \textit{psaR} deletion strain. The expression of \textit{pcpA}, \textit{psaBCA}, and \textit{prtA} was highly upregulated in the \textit{psaR} mutant (Table 5). This data further confirms our \textit{β}-galactosidase data mentioned above indicating Ni2+-dependent derepression of the PsaR regulon. We did not find any new target of Psar in the presence of Ni2+. Notably, an operon (\textit{spd_0616-spd_618}) encoding amino acid ABC transporter proteins was downregulated in our transcriptomic analysis, but in our \textit{β}-galactosidase assay we did not observe any activity of the respective promoter of this operon in the \textit{psaR} mutant (Data not shown here).

Table 5. Summary of transcriptome comparison of \textit{S. pneumoniae} D39 wild-type strain with Δ\textit{psaR} grown in CDM with 0.3 mM Ni2+.

Gene taga	Functionb	Ratioc	P-value
\textit{spd_0616}	Amino acid ABC transporter, ATP-binding protein	-4.40	1.32E-05
\textit{spd_0617}	Amino acid ABC transporter, permease protein	-5.99	7.46E-07
\textit{spd_0618}	Amino acid ABC transporter, permease protein	-6.19	4.27E-07
\textit{spd_0558}	Cell wall-associated serine protease PrtA	3.02	6.65E-05
\textit{spd_1461}	Manganese ABC transporter, ATP-binding protein	2.39	7.47E-05
\textit{spd_1462}	Manganese ABC transporter, permease protein, putative	2.52	1.46E-04
\textit{spd_1450}	Iron-dependent transcriptional regulator (PsaR)	-4.43	7.45E-07
\textit{spd_1632}	Hypothetical protein	-2.22	9.00E-04
\textit{spd_1965}	Choline binding protein PcpA	14.42	2.65E-09

aGene numbers refer to D39 locus tags.
bD39 annotation/TIGR4 annotation. [34,62]
cRatios >2.0 or <2.0 (Δ\textit{psaR} / wild-type).

Ni2+-Dependent Gene Expression of the PsaR Regulon in \textit{S. pneumoniae}.

Previous studies showed that the PsaR-mediated expression of the PsaR regulon depends on the balance between Mn2+, Co2+ and/or Zn2+ [9,21,31]. In this study, we observed that the expression of the PsaR regulon was highly derepressed in response to various Ni2+ concentrations. Therefore, we decided to explore the influence of Ni2+ and Mn2+ together on the expression of the PsaR regulon. The expression of \textit{PpcpA-lacZ}, \textit{PpsaB-lacZ}, and \textit{PprtA-lacZ} in \textit{S. pneumoniae} D39 wild-type was measured at different concentrations of Ni2+ and Mn2+ in CDMchelex and CDMchelex-Mn2+ (Table 6). \textit{β}-galactosidase data (Miller units) showed that high expression of \textit{PpcpA-lacZ}, \textit{PpsaB-lacZ}, and \textit{PprtA-lacZ} at 0.1 or 0.3 mM of Ni2+ was nullified by the addition of 0.02 or 0.05 mM Mn2+ (Table 6). However, Mn2+ repression was higher in CDMchelex compared to CDMchelex-Mn2+. This might be due to the fact that CDMchelex contains 5–7 μM of Mn2+ which is enough to cause the repression of the PsaR regulon [21]. These results suggest that the Mn2+-dependent repression of the PsaR regulon is derepressed by the addition of Ni2+.
Ni²⁺ counteracts the Mn²⁺-PsaR interaction with PcpA, PsaB, and PrtA

To find out whether the observed opposite effects of Ni²⁺ and Mn²⁺ on the expression of pcpA, psaBCA, and prtA are mediated by the direct DNA binding activity of the PsaR protein, the effects of these metal ions on the binding of PsaR-Strep tag to 33P-labeled promoters of pcpA, psaB, and prtA were studied in vitro. The promoter region of phtB was used as a negative control. Due to the metal-ion chelating ability of EDTA, we decided to exclude it from all buffers used to perform EMSAs. PsaR-Strep tag was not able to bind with the promoter regions of pcpA, psaB, and prtA without the addition of any metal ion (Fig 1A, 1B and 1C. Lane 2) which is in agreement with the previous study [9]. First of all, we checked the DNA binding activity of PsaR-Strep to the promoter regions of pcpA, psaB, and prtA with different concentrations of Mn²⁺. We observed that 0.05 and 0.1 mM Mn²⁺ were able to stimulate the binding of PsaR-Strep tag to the promoter region of pcpA. However, only 0.1 mM Mn²⁺ was able to stimulate the binding of PsaR-Strep to the promoter regions of psaB and prtA (Fig 1A, 1B and 1C. Lane 4). No binding of PsaR-Strep to the promoter regions of psaB, and prtA was observed at 0.05 mM Mn²⁺ (Fig 1A, 1B and 1C. Lane 3). Interestingly, no shift in the promoter regions of pcpA, psaB, and prtA was observed with 0.2 or 0.4 mM Ni²⁺ (Fig 1A, 1B and 1C. Lane 5 and 6), suggesting that Ni²⁺ does not stimulate the binding of PsaR with pcpA, psaB, and prtA promoters. Previously, it has been shown that Zn²⁺ binds to the PsaR in such a way which leads to the inactivation of Mn²⁺-PsaR interaction with the promoter regions of pcpA, psaB, and prtA [9]. We hypothesized that like Zn²⁺, Ni²⁺ also interferes in the Mn²⁺-dependent binding of PsaR-Strep to the promoter regions of pcpA, psaB, and prtA. Therefore, we decided to explore the influence of Ni²⁺ on the in vitro Mn²⁺-PsaR-Strep tag interaction. Interestingly, the binding of PsaR to all three promoters in the presence of Mn²⁺ was impaired with the addition of Ni²⁺ (Fig 1 Lanes 7–10). This data suggests that the Mn²⁺-PsaR interaction with pcpA, psaB, and

Medium	PpcpA	PpsaB	PprtA
CDMcchelex	29 (3)	72 (9)	0.50 (0.07)
Ni²⁺ [0.1]	32 (4)	99 (10)	0.91 (0.08)
Ni²⁺ [0.3]	66 (6)	200 (28)	1.20 (0.2)
Ni²⁺ [0.1] + Mn²⁺[0.02]	20 (5)	79 (7)	0.55 (0.05)
Ni²⁺ [0.3] + Mn²⁺[0.02]	36 (27)	142 (12)	0.69 (0.1)
Ni²⁺ [0.1] + Mn²⁺[0.05]	20 (5)	79 (7)	0.30 (0.05)
Ni²⁺ [0.3] + Mn²⁺[0.05]	36 (27)	142 (12)	0.35 (0.1)
CDMcchelex-Mn²⁺	90 (15)	550 (50)	0.70 (0.2)
Ni²⁺ [0.1]	180 (18)	640 (48)	1.10 (0.2)
Ni²⁺ [0.3]	390 (60)	890 (106)	1.40 (0.1)
Ni²⁺ [0.1] + Mn²⁺[0.02]	100 (10)	450 (70)	0.80 (0.05)
Ni²⁺ [0.3] + Mn²⁺[0.02]	280 (47)	565 (120)	0.90 (0.1)
Ni²⁺ [0.1] + Mn²⁺[0.05]	50 (10)	210 (70)	0.30 (0.05)
Ni²⁺ [0.3] + Mn²⁺[0.05]	120 (47)	335 (120)	0.60 (0.1)

Table 6. Expression level (in Miller units) of PpcpA-lacZ, PpsaB-lacZ, and PprtA-lacZ in D39 wild-type in CDMchelex and CDMchelex-Mn²⁺ supplemented with different concentrations of Ni²⁺ and Mn²⁺ (mM). Standard deviation of three independent replicates is indicated in bars.
Fig 1. *In vitro* interaction of PsaR-Strep tag with the promoter regions of *pcpA* (A), *psaB* (B), *prtA* (C), and *phtB* (D). PsaR-Strep was added at concentration of 30 nM as indicated above panel, while lane 1 is without added protein. Arrows indicate the position of shifted probe and asterisks indicate the position of free probe. Mn^{2+} was added with concentrations of 0.05 mM in lanes 3, 7, and 9, and 0.1 mM in lane 4, 8, and 10. Ni^{2+} was added with concentrations of 0.2 mM in lanes 5, 7, and 9, and 0.4 mM in lanes 6, 8, and 10.

doi:10.1371/journal.pone.0142839.g001
prtA promoters is competed away in the presence of Ni$^{2+}$, indicating a direct role of Ni$^{2+}$ in the regulation of the PsaR regulon through PsaR.

A high concentration of Ni$^{2+}$ in the medium leads to Mn$^{2+}$ deficiency in the cells

To determine the cell-associated concentrations of metal ions, we performed an ICP-MS analysis on the cells grown in CDMchelex either with 0 or 0.3 mM of Ni$^{2+}$. ICP-MS data revealed that the cells grown in the presence of 0.3 mM Ni$^{2+}$ accumulate 10-fold ($P < 0.01$, One way ANOVA) more Ni$^{2+}$ (Fig 2A) compared to cells grown in the absence of Ni$^{2+}$. No significant difference in the concentrations of other metal ions was observed in our ICP-MS analysis except for Mn$^{2+}$. The concentration of Mn$^{2+}$ was reduced by 1.5-fold ($P < 0.01$, One way ANOVA) in the presence of Ni$^{2+}$ (Fig 2A). This data indicates that high concentration of Ni$^{2+}$ leads to Mn$^{2+}$ deficiency in the cell. To study this in more details, we have checked the impact of various concentrations of Ni$^{2+}$ on the cell-associated Mn$^{2+}$. Cells were grown in CDMchelex with the addition of 0.02 mM Mn$^{2+}$, and 0, 0.1, 0.3 or 0.5 mM Ni$^{2+}$. As expected, addition of Ni$^{2+}$ in medium leads to an increased cell-associated Ni$^{2+}$ concentration. The cell-associated Ni$^{2+}$ concentration was increased by 2-fold ($P < 0.01$, One way ANOVA) at 0.1 mM Ni$^{2+}$, 13-fold at 0.3 mM Ni$^{2+}$, and 16-fold at 0.5 mM Ni$^{2+}$ when compared to 0 mM Ni$^{2+}$ (Fig 2B). ICP-MS analyses data further revealed that an increasing concentration of Ni$^{2+}$ leads to a decrease in the concentrations of Mn$^{2+}$. The cell-associated concentration of Mn$^{2+}$ was decreased by 1.25-fold ($P < 0.01$, One way ANOVA) at 0.1 mM Ni$^{2+}$, 3.52-fold ($P < 0.01$, One way ANOVA) at 0.3 mM Ni$^{2+}$, and 7.4-fold ($P < 0.01$, One way ANOVA) at 0.5 mM Ni$^{2+}$ (Fig 2B) when compared to the Mn$^{2+}$ concentration at 0 mM Ni$^{2+}$. Notably, the cell-associated concentration of other metal ions (Zn$^{2+}$, Fe$^{2+}$, and Co$^{2+}$) was not affected (Fig 2). This data demonstrate that Ni$^{2+}$ has ability to cause Mn$^{2+}$ starvation which ultimately leads to the high expression of the PsaR regulon in the presence of Ni$^{2+}$.

Discussion

Adherence to epithelial cells of human nasopharynx is the primary step of *S. pneumoniae* towards the pathogenesis [40]. The pneumococcal surface adhesion protein, PsaA and choline binding protein, PcpA are among those proteins that promote pneumococcal adherence in nasopharyngeal epithelial cells and colonization in mice [14,41,42]. Similarly, PrtA, a serine protease containing an LPXTG-anchor motif, is expressed on the surface of nearly all virulent pneumococcal strains and is required for full virulence in animal models [43,44]. The *pcpA*, *psaBCA*, and *prtA* genes comprise the PsaR regulon and their expression is regulated by transcriptional regulator PsaR [9]. The role of Mn$^{2+}$, Zn$^{2+}$, and Co$^{2+}$ in the regulation of *pcpA*, *psaBCA*, and *prtA* (PsaR regulon) has already been established [9,21,45]. In this study, we investigated the role of Ni$^{2+}$ on the expression of the PsaR regulon. The expression of the PsaR regulon was increased with the increasing concentrations of Ni$^{2+}$ and this increased expression of the PsaR regulon is directly linked with cell-associated Mn$^{2+}$ deficiency caused by a high concentration of Ni$^{2+}$. Moreover, Mn$^{2+}$ and Ni$^{2+}$ have opposite regulatory effects on the expression of the PsaR regulon in *S. pneumoniae*. Where, Mn$^{2+}$-binding represses the expression of the PsaR regulon, Ni$^{2+}$ derepresses the repression caused by Mn$^{2+}$.

Mn$^{2+}$ is an important transition metal ion that is a cofactor for many pneumococcal proteins which are involved in the colonization, virulence, and resistance to oxidative stress in *S. pneumoniae* [15]. Mn$^{2+}$ accumulation shows significant flexibility and cells can survive even at a 3% concentration of the normal accumulation level [45,46]. *S. pneumoniae* has a dedicated system for Mn$^{2+}$ transport (PsaBCA) that consists of two ABC transporters (PsaBC) and a cell
surface saline binding protein (PsaA) \([47-49]\). Previous studies have shown that PsaA is not only important for virulence \([14,41]\), but also has a direct role in the accumulation of cell
associated Mn²⁺ [48,49]. PsaA has the ability to bind Zn²⁺ and Mn²⁺ [46,48]. The binding affinity of PsaA to Zn²⁺ is much higher compared to that of Mn²⁺, and PsaA-Zn²⁺ interaction led to the ~40% decrease in cell associated Mn²⁺ accumulation [31,46]. Structural studies of PsaA have revealed that Cd²⁺ can also bind to PsaA and ultimately results in the reduction of cell-associated Mn²⁺ [30]. Recently, it was shown that PsaA can also bind to other d-block elements including Ni²⁺ [50]. This unique property of PsaA to bind with different metal ions makes its role very important in the life style of S. pneumoniae. In our ICP-MS analysis, we observed a cell-associated Mn²⁺ deficiency in the presence of relatively high concentrations of Ni²⁺. Therefore, based on our ICP-MS data, we can speculate that most likely Ni²⁺ interacts with PsaA, which leads to Mn²⁺ deficiency.

Biochemical studies of transcriptional regulator PsaR of S. pneumoniae showed that PsaR harbors two pairs of metal binding sites where Mn²⁺ or Zn²⁺ can bind [51]. Similarly, Mn²⁺-responsive regulators DtxR from Corynebacterium diphtheria and MntR from Bacillus subtilis, which are homologous of PsaR, also have two metal binding sites [52,53]. The binding of DtxR to the tox operon in C. diphtheria not only depends on the availability of Mn²⁺ but also on Co²⁺, Fe²⁺, and Ni²⁺ [54]. Similarly, The Mn²⁺-dependent DNA binding activity of MntR in B. subtilis is diminished in the presence of Ni²⁺, Zn²⁺, and Fe²⁺ [55–57]. The metal responsive transcriptional regulators, ScaR of Streptococcus gordonii and SloR of Streptococcus mutants also belongs to DtxR family, and are homologous to PsaR [58–60]. Interestingly, the PsaR binding site is similar to the operator sequences of ScaR and SloR [61]. This might suggest that PsaR uses a similar mechanism of metal ion competition for regulatory metal ion homeostasis as other member of DxtR family regulators adopt.

It has been previously demonstrated that PsaR represses the expression of the PsaR regulon in the presence of Mn²⁺ whereas Zn²⁺ and Co²⁺ relieved this repression [21,61]. Moreover, the in vitro studies of the interaction of PsaR to its target promoters showed that both Zn²⁺ and Co²⁺ could bind to PsaR in a different way [21]. When Zn²⁺ interacts with PsaR, it relieves the PsaR interaction with the promoter regions of the PsaR regulon, whereas Co²⁺, just like Mn²⁺, stimulates the interaction of PsaR with the promoter regions of the PsaR regulon [9,21]. Here, we demonstrated that Mn²⁺-PsaR interaction leads to the binding of PsaR to the promoter regions of pcpA, psaBCA, and prtA which is an agreement with previous studies [9]. However, the Mn²⁺-PsaR interaction with pcpA, psaB, and prtA promoters was alleviated by the addition of Ni²⁺ which suggests that the observed transcriptional response of the PsaR regulon is directly linked to the interaction of Ni²⁺ and Mn²⁺ on the PsaR-promoter interactions. In conclusion, we have shown that the interaction of PsaR to Ni²⁺ plays a similar role as Zn²⁺, to induce derepression by PsaR in competition with Mn²⁺.

Author Contributions

Conceived and designed the experiments: IM SS OPK. Performed the experiments: IM SS. Analyzed the data: IM SS. Contributed reagents/materials/analysis tools: IM SS OPK. Wrote the paper: IM SS OPK.

References

1. McGeer A, Low DE. Is resistance futile? Nat Med. 2003; 9: 390–392. doi: 10.1038/nm0403-390 PMID: 12669054

2. Saha SK, Naheed A, Arifeen S El, Islam M, Al-Emran H, Amin R, et al. Surveillance for invasive Streptococcus pneumoniae disease among hospitalized children in Bangladesh: antimicrobial susceptibility and serotype distribution. Clin Infect Dis Off Publ Infect Dis Soc Am. 2009; 48 Suppl 2: S75–81. doi: 10.1086/596544
3. Zaidi AKM, Thaver D, Ali SA, Khan TA. Pathogens associated with sepsis in newborns and young infants in developing countries. Pediatr Infect Dis J. 2009; 28: S10–18. doi: 10.1097/INF.0b013e3181958769 PMID: 19106757

4. Mitchell TJ. The pathogenesis of streptococcal infections: from tooth decay to meningitis. Nat Rev Microbiol. 2003; 1: 219–230. doi: 10.1038/nrmicro771 PMID: 15035026

5. Bogaert D, De Groot R, Hermans PWM. Streptococcus pneumoniae colonisation: the key to pneumococcal disease. Lancet Infect Dis. 2004; 4: 144–154. doi: 10.1016/S1473-3099(04)00938-7 PMID: 14998500

6. Lynch JP, Zhanel GG. Streptococcus pneumoniae: epidemiology, risk factors, and strategies for prevention. Semin Respir Crit Care Med. 2009; 30: 189–209. doi: 10.1055/s-0029-1202958 PMID: 19264191

7. Obaro S, Adegbola R. The pneumococcus: carriage, disease and conjugate vaccines. J Med Microbiol. 2002; 51: 98–104. PMID: 11863272

8. Gupta R, Shah P, Swiatlo E. Differential gene expression in Streptococcus pneumoniae in response to various iron sources. Microb Pathog. 2009; 47: 101–109. doi: 10.1016/j.micpath.2009.05.003 PMID: 19464356

9. Kloosterman TG, Witwicki RM, van der Kooi-Pol MM, Bijlsma JJE, Kuipers OP. Opposite effects of Mn2+ and Zn2+ on PsaR-mediated expression of the virulence genes pcpA, prtA, and psaBCA of Streptococcus pneumoniae. J Bacteriol. 2008; 190: 5382–5393. doi: 10.1128/JB.00307-08 PMID: 18515418

10. Shafeeq S, Kloosterman TG, Kuipers OP. Transcriptional response of Streptococcus pneumoniae to Zn2+ limitation and the repressor/activator function of AdcR. Met Integr Biometal Sci. 2011; 3: 609–618. doi: 10.1039/c1mb00030f

11. Wakeman CA, Skaar EP. Metalloregulation of Gram-positive pathogen physiology. Curr Opin Microbiol. 2012; 15: 169–174. doi: 10.1016/j.mib.2011.11.008 PMID: 22155062

12. Bayle L, Chimalapati S, Schoenh G, Brown J, Vernet T, Durmort C. Zinc uptake by Streptococcus pneumoniae. Mol Microbiol. 2011; 82: 904–916. doi: 10.1111/j.1365-2958.2011.07862.x PMID: 22023106

13. Jomaa M, Terry S, Hale C, Jones C, Dougan G, Brown J. Immunization with the iron uptake ABC transporter proteins PiaA and PiuA prevents respiratory infection with Streptococcus pneumoniae. Vaccine. 2006; 24: 5133–5139. doi: 10.1016/j.vaccine.2006.04.012 PMID: 16707196

14. Rajam G, Anderton JM, Carlone GM, Sampson JS, Ades EW. Pneumococcal surface adhesin A (PsaA): a review. Crit Rev Microbiol. 2008; 34: 163–173. doi: 10.1080/10408410802383610 PMID: 18819028

15. Rosch JW, Gao G, Ridout G, Wang Y-D, Tuomanen EJ. Role of the manganese efflux system mntE for signalling and pathogenesis in Streptococcus pneumoniae. Mol Microbiol. 2009; 72: 12–25. doi: 10.1111/j.1365-2958.2009.06638.x PMID: 19226324

16. Shafeeq S, Yesilkaya H, Kloosterman TG, Narayanag G, Wandel M, Andrew PW, et al. The cop operon is required for copper homeostasis and contributes to virulence in Streptococcus pneumoniae. Mol Microbiol. 2011; 81: 1255–1270. doi: 10.1111/j.1365-2958.2011.07758.x PMID: 21736642

17. Kloosterman TG, van der Kooi-Pol MM, Bijlsma JJE, Kuipers OP. The novel transcriptional regulator SczA mediates protection against Zn2+ stress by activation of the Zn2+-resistance gene czcD in Streptococcus pneumoniae. Mol Microbiol. 2007; 65: 1049–1063. doi: 10.1111/j.1365-2958.2007.05849.x PMID: 17640279

18. Uljiasz AT, Andes DR, Glasner JD, Weisblum B. Regulation of iron transport in Streptococcus pneumoniae by RltR, an orphan response regulator. J Bacteriol. 2004; 186: 8123–8136. doi: 10.1128/JB.186.23.8123–8136.2004 PMID: 15547286

19. Plumpetre CD, Hughes CE, Harvey RM, Eijkelkamp BA, McDevitt CA, Paton JC. Overlapping functionality of the Pht Proteins in Zinc Homeostasis of Streptococcus pneumoniae. Infect Immun. 2014; 82: 25. doi: 10.1128/JB.00307-08

20. Johnston JW, Briles DE, Myers LE, Hollingshead SK. Mn2+-dependent regulation of multiple genes in Streptococcus pneumoniae through PsaR and the resultant impact on virulence. Infect Immun. 2006; 74: 1171–1180. doi: 10.1128/IAI.74.2.1171–1180.2006 PMID: 16428766

21. Manzoor I, Shafeeq S, Kloosterman TG, Kuipers OP. Co2+-dependent gene expression in Streptococcus pneumoniae: Opposite effect of Mn2+ and Co2+ on the expression of the virulence genes psaBCA, pcpA and prtA. Microb Physiol Metab. 2015; 6: 748. doi: 10.3389/fmicb.2015.00748

22. Anjem A, Imlay JA. Mononuclear iron enzymes are primary targets of hydrogen peroxide stress. J Biol Chem. 2012; 287: 15544–15556. doi: 10.1074/jbc.M111.330365 PMID: 22411989

23. Anjem A, Varghese S, Imlay JA. Manganese import is a key element of the OxyR response to hydrogen peroxide in Escherichia coli. Mol Microbiol. 2009; 72: 844–858. doi: 10.1111/j.1365-2958.2009.06699.x PMID: 19400769
24. Harvie DR, Andreini C, Cavallaro G, Meng W, Connolly BA, Yoshida K, et al. Predicting metals sensed by ArsR-SmtB repressors: allosteric interference by a non-effector metal. Mol Microbiol. 2006; 59: 1341–1356. doi: 10.1111/j.1365-2958.2006.05029.x PMID: 16430705
25. Ong C-LY, Potter AJ, Trappetti C, Walker MJ, Jennings MP, Paton JC, et al. Interplay between manganese and iron in pneumococcal pathogenesis: role of the orphan response regulator RitR. Infect Immun. 2013; 81: 421–429. doi: 10.1128/IAI.00805-12 PMID: 23184523
26. Coufiago RM, McDevitt CA, Ween MP, Kobe B. Prokaryotic substrate-binding proteins as targets for antimicrobial therapies. Curr Drug Targets. 2012; 13: 1400–1410. PMID: 22664903
27. Ma Z, Jacobsen FE, Giedroc DP. Coordination chemistry of bacterial metal transport and sensing. Coord Chem Rev. 2009; 109: 464–4681. doi: 10.1016/j.ccr.2009.02.009
28. Waldron KJ, Rutherford JC, Ford D, Robinson NJ. Metalloproteins and metal sensing. Nature. 2009; 460: 823–830. doi: 10.1038/nature08300 PMID: 19675642
29. Irving H, Williams RJP. The stability of transition-metal complexes. J Chem Soc Resumed. 1953; 2397–2402.
30. Avery OT, MacLeod CM, McCarty M. Studies on the chemical nature of the substance inducing trans- formation of pneumococcal types. Induction of transformation by a desoxyribonucleic acid fraction isolated from Pneumococcus type III. 1944. Mol Med Camb Mass. 1995; 1: 344–365. PMID: 8521292
31. Jacobsen FE, Kazmierzak KM, Lisher JP, Winkler ME, Giedroc DP. Interplay between manganese and zinc homeostasis in the human pathogen Streptococcus pneumoniae. Met Integr Biometal Sci. 2011; 3: 38–41.
32. Sun X, Yu G, Xu Q, Li N, Xiao C, Yin X, et al. Putative cobalt- and nickel-binding proteins and motifs in Streptococcus pneumoniae. Met Integr Biometal Sci. 2013; 5: 928–935. doi: 10.1039/c3mb00126a
33. Avery OT, MacLeod CM, McCarty M. Studies on the chemical nature of the substance inducing trans- formation of pneumococcal types. Induction of transformation by a desoxyribonucleic acid fraction isolated from Pneumococcus type III. 1944. Mol Med Camb Mass. 1995; 1: 344–365. PMID: 8521292
34. Lanie JA, Ng W-L, Kazmierzak KM, Andrzejewski TM, Davidsen TM, Wayne KJ, et al. Genome sequence of Avery’s virulent serotype 2 strain D39 of Streptococcus pneumoniae and comparison with that of unencapsulated laboratory strain R6. J Bacteriol. 2007; 189: 38–51. doi: 10.1128/JB.01148-06 PMID: 17041037
35. Afzal M, Shafeeq S, Kuipers OP. LaCt is a Repressor of lacABCD and LacT is an Activator of lacTFEG, Constituting the lac Gene Cluster in Streptococcus pneumoniae. Appl Environ Microbiol. 2014; 80: 5349–5358. doi: 10.1128/AEM.01370-14 PMID: 24951784
36. Pfaffl MW. A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res. 2001; 29: e45. PMID: 11328886
37. Afzal M, Manzoor I, Kuipers OP. A Fast and Reliable Pipeline for Bacterial Transcriptome Analysis Case study: Serine-dependent Gene Regulation in Streptococcus pneumoniae. J Vis Exp. 2015; doi: 10.3791/52649 PMID: 25938895
38. Shafeeq S, Afzal M, Henriques-Normark B, Kuipers OP. Transcriptional profiling of UlaR-regulated genes in Streptococcus pneumoniae. Genomics Data. 2015; 4: 57–59. doi: 10.1016/j.gdata.2015.02.004 PMID: 26484177
39. Kuipers OP, de Ruiter PGG., Kleerebezem M, de Vos WM. Quorum sensing-controlled gene expres- sion in lactic acid bacteria. J Bacteriol. 1998; 170: 38–51. doi: 10.1128/JB.01148-06
40. Rosch JW, Mann B, Thornton J, Sublett J, Tuomanen E. Convergence of Regulatory Networks on the Pilus Locus of Streptococcus pneumoniae. Infect Immun. 2008; 76: 3187–3196. doi: 10.1128/IAI.00805-12 PMID: 23184523
41. Sánchez-Beato AR, López R, García JL. Molecular characterization of PcpA: a novel choline-binding protein of Streptococcus pneumoniae. FEMS Microbiol Lett. 1998; 164: 207–214. PMID: 9675966
42. Mirza S, Wilson L, Benjamin WH, J., Novak J, Barnes S, Hollingshead SK, et al. Serine protease PrtA from Streptococcus pneumoniae plays a role in the killing of S. pneumoniae by apolactoferrin. Infect Immun. 2011; 79: 2440–2450. doi: 10.1128/IAI.00489-10 PMID: 21422179
43. Bethe G, Nau R, Wellmer A, Hakenbeck R, Reinert RR, Heinz HP, et al. The cell wall-associated serine protease PrtA: a highly conserved virulence factor of Streptococcus pneumoniae. FEMS Microbiol Lett. 2001; 205: 99–104. PMID: 11728722
44. Eijkelkamp BA, Morey JR, Ween MP, Ong CY, McEwan AG, Paton JC, et al. Extracellular Zinc Compet- itively Inhibits Manganese Uptake and Compromises Oxidative Stress Management in Streptococcus pneumoniae. PLoS ONE. 2014; 9.
46. McDevitt CA, Ogunniyi AD, Valkov E, Lawrence MC, Kobe B, McEwan AG, et al. A Molecular Mechanism for Bacterial Susceptibility to Zinc. PLoS Pathog. 2011; 7: e1002357. doi: 10.1371/journal.ppat.1002357 PMID: 22072971

47. Dintilhac A, Alloing G, Granadel C, Claverys JP. Competence and virulence of Streptococcus pneumoniae: Adc and PsaA mutants exhibit a requirement for Zn and Mn resulting from inactivation of putative ABC metal permeases. Mol Microbiol. 1997; 25: 727–739. PMID: 9379902

48. Lawrence MC, Pilling PA, Epa VC, Berry AM, Ogunniyi AD, Paton JC. The crystal structure of pneumococcal surface antigen PsaA reveals a metal-binding site and a novel structure for a putative ABC-type binding protein. Struct Lond Engl 1993. 1998; 6: 1553–1561.

49. McAllister LJ, Tseng H-J, Ogunniyi AD, Jennings MP, McEwan AG, Paton JC. Molecular analysis of the psa permease complex of Streptococcus pneumoniae. Mol Microbiol. 2004; 53: 889–901. doi: 10.1111/j.1365-2958.2004.04164.x PMID: 15255900

50. Couñago RM, Ween MP, Begg SL, Bajaj M, Zuegg J, O’Mara ML, et al. Imperfect coordination chemistry facilitates metal ion release in the Psa permease. Nat Chem Biol. 2014; 10: 35–41. doi: 10.1038/nchembio.1382 PMID: 24212134

51. Lisher JP, Higgins KA, Maroney MJ, Giedroc DP. Physical Characterization of the Manganese-Sensing Pneumococcal Surface Antigen Repressor from Streptococcus pneumoniae. Biochemistry (Mosc). 2013; 52: 7689–7701. doi: 10.1021/bi401132w

52. D’Aquino JA, Tetenenbaum-Novatt J, White A, Berkovitch F, Ringe D. Mechanism of metal ion activation of the diphtheria toxin repressor DtxR. Proc Natl Acad Sci U S A. 2005; 102: 18408–18413. doi: 10.1073/pnas.0500908102 PMID: 16352732

53. Golynskiy MV, Gunderson WA, Hendrich MP, Cohen SM. Metal binding studies and EPR spectroscopy of the manganese transport regulator MntR. Biochemistry (Mosc). 2006; 45: 15359–15372. doi: 10.1021/bi0607406

54. Tao X, Murphy JR. Binding of the metalloregulatory protein DtxR to the diphtheria tox operator requires a divalent heavy metal ion and protects the palindromic sequence from DNase I digestion. J Biol Chem. 1992; 267: 21761–21764. PMID: 1400485

55. Que Q, Helmann JD. Manganese homeostasis in Bacillus subtilis is regulated by MntR, a bifunctional regulator related to the diphtheria toxin repressor family of proteins. Mol Microbiol. 2000; 35: 1454–1468. PMID: 10760146

56. Jakubovics NS, Smith AW, Jenkinson HF. Expression of the virulence-related Sca (Mn2+) permease in Streptococcus gordonii is regulated by a diphtheria toxin metallopressor-like protein ScaR. Mol Microbiol. 2000; 38: 140–153. PMID: 11029696

57. Kitten T, Munro CL, Michalek SM, Macrina FL. Genetic Characterization of a Streptococcus mutans LraI Family Operon and Role in Virulence. Infect Immun. 2000; 68: 4441–4451. doi: 10.1128/IAI.68.8.4441-4451.2000 PMID: 10899841

58. Oram DM, Avdalovic A, Holmes RK. Analysis of Genes That Encode DtxR-Like Transcriptional Regulators in Pathogenic and Saprophytic Corynebacterial Species. Infect Immun. 2004; 72: 1885–1895. doi: 10.1128/IAI.72.4.1885-1895.2004 PMID: 15039307

59. Kloosterman TG, Witwicki RM, van der Kooi-Pol MM, Bijlsma JJ, Kuipers OP. Opposite effects of Mn2+ and Zn2+ on PsAR-mediated expression of the virulence genes pcpA, prtA, and psaBCA of Streptococcus pneumoniae. J Bacteriol. 2006; 188: 5382–5393. doi: 10.1128/JB.00307-08 PMID: 18515418

60. Hoskins J, Alborn WE Jr, Arnold J, Biasczzak LC, Burgett S, DeHoff BS, et al. Genome of the bacterium Streptococcus pneumoniae strain R6. J Bacteriol. 2001; 183: 5709–5717. doi: 10.1128/JB.183.19.5709-5717.2001 PMID: 11544234