Continuum percolation on nonorientable surfaces: the problem of permeable disks on a Klein bottle

V D Borman, A M Grekhov, V N Tronin and I V Tronin

National Research Nuclear University MEPhI, Moscow, Russia

E-mail: IVTronin@mephi.ru

Received 11 June 2015, revised 26 August 2015
Accepted for publication 1 October 2015
Published 27 October 2015

Abstract

The percolation threshold and wrapping probability (R_∞) for the two-dimensional problem of continuum percolation on the surface of a Klein bottle have been calculated by the Monte Carlo method with the Newman–Ziff algorithm for completely permeable disks. It has been shown that the percolation threshold of disks on the Klein bottle coincides with the percolation threshold of disks on the surface of a torus, indicating that this threshold is topologically invariant. The scaling exponents determining corrections to the wrapping probability and critical concentration owing to the finite-size effects are also topologically invariant. At the same time, the quantities R_∞ are different for percolation on the torus and Klein bottle and are apparently determined by the topology of the surface. Furthermore, the difference between the R_∞ values for the torus and Klein bottle means that at least one of the percolation clusters is degenerate.

Keywords: percolation, continuum percolation, nonorientable surfaces

1. Introduction. Formulation of the problem

Problems of percolation theory are widely used both in fundamental physics [1–21] and in applications. The fundamental interest in percolation theory is associated with studies of conformal field theory, probability theory, statistical physics, and theory of random graphs [1, 2, 4, 7, 8, 10–13, 18–21]. In applied problems, models of percolation theory are used to describe granulated and composite materials [22–24], propagation of illnesses [25, 26], and reliability of networks [18, 19, 27, 28]. Models of percolation theory are the main models for the description of processes in structurally disordered porous media filled with liquids and gases [29–31]. The states and properties of such systems have been actively studied in recent years [32–48]. Phenomena beyond the traditional notions were detected for such systems. In

1751-8113/15/475002+12$33.00 © 2015 IOP Publishing Ltd Printed in the UK
particular, the disordered system of pores of a porous medium filled with a nonwetting liquid can undergo a dispersion transition, when the nonwetting liquid transits to an effectively ‘wetting’ state at the variation of the temperature and degree of filling of the porous medium \[45, 46\]. The state of such a system can be nonergodic with an anomalously slow relaxation of nonequilibrium states \[47, 48\].

A physical reason for the dispersion transition is the appearance of the collective ‘multiparticle’ interaction of liquid nanoclusters in neighboring pores with various sizes \[47, 48\] owing to the formation of the ground state in the form of the percolation cluster of liquid-filled pores inside the percolation cluster of empty pores of the porous medium. The relaxation of the system is a process of its successive transition through the local maxima of the energy of local configurations of clusters of empty and filled pores and depends on the degeneracy of the ground state (more than one different percolation clusters with the same percolation probability) \[47–51\], which is determined by the percolation cluster of filled pores. Anomalous slow, non-ergodic relaxation of the disordered media can be connected with the degeneracy of their ground state \[52–55\].

It is known that continuum percolation models \[29–31, 47, 48, 56\] are used to describe the behavior of a liquid under the confinement conditions in disordered porous media. For this reason, the problem of the universality and properties of the percolation cluster in the case of continuum percolation arises, including the problem of the degeneracy of the percolation cluster in this case. We note that similar problems of the universality of various characteristics in two-dimensional percolation theory were previously studied both analytically and numerically \[12–15\] for a sphere \[12\], a torus \[14\], a Möbius strip \[13\] and a Klein bottle \[55, 57\]. It is noteworthy that the dependence of the solution on the topology was studied within the analytical \[55\] and numerical simulations \[57\] of the two-dimensional ergodic Ising model. It was shown that the correlation functions are differ for the Möbius strip and Klein bottle, but the free energy (which is averaged by the all states of the system) is topologically independent.

In this work, the problem of the possible degeneracy of the percolation cluster in the case of continuum percolation is solved by the numerical Monte Carlo simulation. To this end, we calculate the wrapping probability \(R_{\infty}\) in the two-dimensional problem of percolation on a Klein bottle and compare with the results of the known calculation of percolation on the torus \[14\]. It is shown that the percolation thresholds and scaling exponents for the torus and Klein bottle coincide with each other, whereas the quantities \(R_{\infty}\) are significantly different. The last circumstance can be due to the degeneracy of the percolation cluster on one or both surfaces.

2. Method of the calculation

The Monte Carlo calculations were performed on square systems of various sizes with the Newman–Ziff algorithm \[58\]. The main idea of the algorithm is that objects are added to the system one-by-one; after that, the conditions of the overlapping of an added object with already existing objects are verified, objects are joined into clusters, and, finally, percolation conditions are verified. The linear dependence on the number of objects is reached owing to the use of the \textit{union find with path compression} algorithm \[59, 60\] for the joining of clusters.

In this work, completely permeable disks with the unit diameter \(d = 1\) are used as objects. According to the Newman–Ziff algorithm, the following actions are performed in each calculation iteration:

(i) The addition of a disk to the system.

\[\text{J. Phys. A: Math. Theor.} \text{ 48 (2015) 475002 V D Borman et al}\]
(i) The test of the conditions of overlapping of the added disk with the disks already existing in the system and joining of disks into clusters.

(ii) The test of the percolation conditions.

The addition of a disk to the system is reduced to the generation of two random numbers determining the position of its center. The random numbers were generated according to the Mersenne–Twister algorithm having a period of $2^{19937} - 1$.

The test of the conditions of overlapping of the added disk with the disks already existing in the system is complicated because the number of neighbors of the disk in the case of continuum percolation is unknown. In order to ensure the effective operation of the algorithm, we used an approach proposed in [14]; the essence of this approach is as follows. The calculation domain (a square with a certain size) is divided into squares with a side equal to the diameter of a disk, i.e., with a unit side. A disk located in a certain cell can overlap only with disks located in the same cell or in eight cells surrounding the given cell. Thus, the condition of overlapping is verified only for disks in the given cell and eight neighboring cells.

Disks are joined into clusters according to the Newman–Ziff algorithm [58]. For the subsequent test of the percolation conditions, the paths (over two directions—vertical and horizontal) from the given disk to the root disk of the cluster are calculated in the process of joining. These paths are formally a floating-point numbers, but it is easier to use the method proposed in [14] and to calculate the paths from the square cell containing the disk to the cell of the root disk, rather than the paths from the disk to the root of the cluster. This method allows using integers in the calculation of the paths and in the test of the percolation conditions.

Particular attention should be paid to the formulation of boundary conditions, because they determine the topology of the surface on which the calculation is performed. The standard periodic boundary conditions correspond to percolation on the torus: the points of the boundaries in the vertical and horizontal directions are identified as is shown in figure 1 on the left. This corresponds to the ‘gluing’ of a square sheet providing the torus. The gluing according to figure 1 on the right provides the Klein bottle. In terms of boundary conditions, this means that points on the upper and lower sides of the square are identified in the ‘mirror’ manner, which creates additional difficulties for the test of the percolation conditions.

In order to verify the percolation conditions in each of the directions, we used the method proposed in [61] adapted for continuum percolation [14]; the essence of this method is as follows. Each addition of a new disk to the system is accompanied by the procedure of joining of clusters. If the added disk (disk 1) overlaps with another disk (disk 2) and both disks belong to one cluster, there are two paths to their common root disk: through disk 1 and through disk 2. If the difference between these paths in each of the directions is no more than unity, percolation does not occur. If the difference of these paths in a certain direction is larger than or equal to the size of the system in this direction, the wrapping cluster in this direction is detected.

However, it is noteworthy that the described method can be used to verify the percolation conditions only in the case of periodic boundary conditions and percolation on the torus. This method is inapplicable to the Klein bottle because gluing in one of the directions is mirrored and the path to the root disk at the transition through the corresponding boundary can change by a value different from 0 and ±1. This difficulty is overcome as follows. Instead of the calculation in the square calculation domain with the size L, we performed the calculation in a rectangular calculation domain with a vertical size of 2L and a horizontal size of L, i.e., in a rectangle consisting of two squares in the vertical axis. When adding a new disk, two random
numbers x, y were generated in the interval $[0, L]$, the disk was added to the lower square of the calculation domain, clusters were joined, and percolation conditions were verified. After that, a ‘copy’ of this disk was added to the upper square with allowance for mirror reflection in the vertical axis, i.e., with the coordinates $L - x$ and $y + L$; then, clusters were joined, and the percolation conditions in the axes were verified. It is noteworthy that the same method can be used to simulate percolation on torus (for verification proposes). In this case no reflection is needed. Figure 2 exemplifies the used square calculation domain for the size $L = 4$. Digits and solid border disks in the lower square, whereas primed digits and dashed border indicate their reflections in the upper square. Left panel—reflections for Klein bottle with allowance for mirror reflection in the vertical axis, right panel—reflections for torus without mirror reflection.

The use of the rectangular calculation domain increases the calculation time with the algorithm as compared to the calculation in the square calculation domain, but eliminates the problem of verifying the percolation conditions, because the rectangular calculation domain has periodic boundary conditions in both axes and makes it possible to apply a method based on the summation of paths to the root disk.

Figure 1. Gluing of the boundaries providing the (left) torus and (right) Klein bottle.

Figure 2. Examples of the square calculation domain for $L = 4$. Digits and solid border disks in the lower square, whereas primed digits and dashed border indicate their reflections in the upper square. Left panel—reflections for Klein bottle with allowance for mirror reflection in the vertical axis, right panel—reflections for torus without mirror reflection.
If each calculation ends at the number of disks \(n \) that results in the first appearance of the wrapping cluster, the probability of the existence of the wrapping cluster in the canonical ensemble \(P_L(n) \) is equal to the fraction of the calculations ending at the number of disks no more than \(n \). The wrapping probability \(R_L \) in the grand canonical ensemble is a function of the dimensionless concentration (degree of filling) \(\eta = nS/L^2 \) (\(S \) is the area of one disk) and is obtained by the convolution of the probability \(P_L \) with the Poisson distribution with the mean value \(\lambda = \eta L^2/S \) [14]:

\[
R_L(\eta) = e^{-\lambda} \sum_{n=0}^{\infty} \frac{\lambda^n}{n!} P_L(n).
\]

(1)

At a fixed size of the system \(L \), each calculation was performed until percolation occurred in both axes and the number of disks resulting in the first appearance of the wrapping cluster in each of the axes was fixed. Using these data and relation (1), we calculated six different probabilities \(R_L \) of the appearance of the wrapping cluster:

(i) In any of the axes \(R_L^{e} \).

(ii) In both axes simultaneously \(R_L^{h} \).

(iii) In the horizontal axis \(R_L^{h} \) independently of the presence of a cluster in the vertical axis.

(iv) In the vertical axis \(R_L^{v} \) independently of the presence of a cluster in horizontal axis.

(v) In the vertical axis, but not in the horizontal axis \(R_L^{v1} \).

(vi) In the horizontal axis, but not in the vertical axis \(R_L^{h1} \).

It is worth noting that the vertical and horizontal axes are not equivalent in contrast to percolation on the torus. Consequently, in the general case, the probabilities are not equal to each other: \(R_L^{v} \neq R_L^{h} \) and \(R_L^{v1} \neq R_L^{h1} \). At the same time, only three of six probabilities are independent because of the obvious relations

\[
R_L^{e} = R_L^{h} + R_L^{v} - R_L^{h},
\]

(2)

\[
R_L^{v1} = R_L^{v} - R_L^{h},
\]

(3)

\[
R_L^{h1} = R_L^{h} - R_L^{h}.
\]

(4)

The main problem in the simulation of percolation processes is the calculation of the percolation threshold \(\eta_c \). The simulation of percolation on the Klein bottle is complicated because the asymptotic values of the probabilities \(R_L \) are unknown in contrast to percolation on the torus. As a result, the relation \(R_L(\eta) = R_\infty \) cannot be used to determine the dependence \(\eta_L(L) \), which approaches \(\eta_c \) in the limit \(L \to \infty \).

A method for the determination of the percolation threshold \(\eta_c \) based on a nonmonotonic behavior of the functions \(R_L^{v} \) and \(R_L^{h} \) was proposed in [58]. The positions of the maxima of the functions \(R_L^{v1} \) and \(R_L^{h1} \) should approach the percolation threshold \(\eta_c \) with an increase in the size of the system \(L \to \infty \). Some other authors [62, 63] use the expression often called ‘cell-to-cell’ renormalization point

\[
R_L(\eta_L) = R_L/2(\eta_L)
\]

(5)

to calculate the critical concentration at a given \(L \) value. The sequence of critical concentrations \(\eta_L \) thus obtained should converge to the percolation threshold in the limit \(L \to \infty \). In this work, we used both methods to estimate the critical concentration.

To test the proposed simulation method, we calculated continuum percolation on the torus with the use of the reflection of the disk placed in the lower square to the upper square. In this calculation, in order to obtain the torus after gluing, reflection in the vertical axis of the
The calculations were performed for 21 sizes of systems in the range from $L = 8$ to $L = 3072$. For each size, we performed N computer experiments: $N \geq 10^9$ for sizes $8 \leq L < 150$, $N \geq 10^8$ for sizes $150 \leq L < 600$, $N \geq 10^7$ for sizes $600 \leq L < 1200$, and $N \geq 10^6$ for sizes $L \leq 1200$. Wrapping probabilities $R_L(\eta)$ for some sizes from $L = 8$ to $L = 3072$ are plotted in figure 3. It is seen that $R_L^v \approx R_L^h$ (figures 3(a) and (b)) and $R_L^{v1} \approx R_L^{h1}$ (figures 3(e) and (f)) because of the aforementioned nonequivalence of the vertical and horizontal axes in the case of the Klein bottle.

Since the percolation threshold η_c for percolation on the Klein bottle is unknown, this threshold was calculated with the use of the dependences R_L. In order to determine η_c, we obtained the dependence of the critical concentration on the size of the system $\eta_c(L)$, which approaches the percolation threshold in the limit $L \to \infty$. The quantity $\eta_c(L)$ was determined by two methods: from the position of the maximum of R_L^{v1} and R_L^{h1} and from relation (5).

The rate of convergence η_c to the percolation threshold η_c is determined by two factors: the characteristic width of the percolation transition region and the rate of convergence of the transition probability R_L to its asymptotic value R_∞. The characteristic size of the transition region depends on the size of the system as $L^{-1/\nu}$, where $\nu = 4/3$ is the universal critical
exponent for two-dimensional percolation. Our calculations show that, in the case of percolation on the Klein bottle, the characteristic size of the percolation transition region, which is determined by the derivative $R_L^b (\eta_L)$, indeed decreases with an increase in L as $L^{-0.34}$. This is seen in figure 4, where $R_L^b (\eta_L)$ is plotted together with the straight line $0.361 L^{0.34}$. Three other derivatives $R_L^e (\eta_L), R_L^h (\eta_L)$, and $R_L^v (\eta_L)$ have the same dependence.

The rate of convergence of the probability of the percolation transition R_L to R_∞ is determined by the boundary conditions [58] and for percolation on the torus depends on L as L^{-2}. It will be shown below that the dependence L^{-2} [14] is also valid for percolation on the Klein bottle. Thus, the rate of convergence of the critical concentration η_L to the percolation
The semi-log plots of the critical concentrations $\eta_L(L)$ derived from the maxima of R_L^{h1} (open diamonds), R_L^e (closed diamonds) and from (5) for four probabilities: R_L^b (upward pointing triangles), R_L^c (circles), R_L^v (squares), and R_L^b (downward pointing triangles) are shown in figure 5. It is seen that all dependences with an increase in the size approach the same value. The percolation threshold obtained in this work is $\eta_c = 1.128\,087\,14(4)$, which almost coincides with the percolation threshold in the case of continuum percolation of permeable disks on the torus $\eta_c^\text{torus} = 1.128\,087\,37(6)$ [14]. This indicates that the percolation threshold η_c is independent of the topology of the surface and is a topological invariant.

The situation with the asymptotic probabilities of the percolation transition R_∞ is different. These probabilities for percolation on the torus were calculated in [64] from conformal field theory and were confirmed in the numerical calculations [14, 58] for continuum and lattice percolation:

$$R_\infty^b = R_\infty^c = 0.521\,058\,289\ldots,$$

$$R_\infty^e = 0.690\,473\,724\ldots,$$

$$R_\infty^b = 0.351\,642\,853\ldots,$$

$$R_\infty^{h1} = R_\infty^v = 0.169\,415\,435\ldots.$$

These relations are invalid for percolation on the Klein bottle. To calculate the R_∞ values, we used the following procedure. Taking into account the known percolation threshold η_C, we calculated the values $R_L(\eta_C)$ and estimated the asymptotic value R_∞ from this dependence by the least squares method with the function $\frac{a}{L^c} + R_\infty$ with the unknown parameters a, c, and R_∞. Among these parameters, the scaling coefficient c presenting the rate of convergence is of interest in addition to R_∞. It is noteworthy that the functions R_L in the case of percolation on the torus satisfy a power law with an exponent of -2; i.e., $c = 2$. The results of the calculations are summarized in the table 1.

It is seen that the exponents c for all types of the probabilities are close to 2. This means that the scaling dependence of the probabilities R_L is independent of the topology, which confirms the above conclusion that the critical concentration η_L tends to the percolation threshold η_c according to the law $L^{-1/4}$. This law is independent of the topology of the surface. The rate of convergence of the dependences R_L, which is determined by the coefficient c, is illustrated in figure 6, which shows the dependences of the absolute value of the

Type	R_∞	c	R_∞^torus
R_∞^b	0.480 647(7)	1.90(19)	
R_∞^c	0.519 350(9)	1.97(12)	0.521 058...
R_∞^e	0.688 138(9)	1.81(16)	0.690 473...
R_∞^b	0.311 858(7)	1.93(13)	0.351 642...
R_∞^{h1}	0.168 789(6)	1.73(18)	
R_∞^{v1}	0.207 491(8)	1.94(10)	0.169 415...
difference \(R_L - R_\infty \) on the size of the system. The errors on the plots were calculated from the relation [14]

\[
\sigma_{R_L} = \frac{R_L(\eta)(1 - R_L(\eta))}{N}.
\]

It is worth noting that the asymptotic values of the probabilities for percolation on the Klein bottle are smaller than those for percolation on the torus (see table 1). Moreover, the probabilities \(R^v_\infty \) and \(R^{v1}_\infty \) do not coincide with the probabilities \(R^h_\infty \) and \(R^{h1}_\infty \) because the vertical and horizontal axes are not equivalent in the case of the Klein bottle. We also note that the wrapping probability for the vertical axis on the Klein bottle \(R^v_\infty \) is closer to the wrapping probability on the torus than the wrapping probability for the horizontal axis \(R^h_\infty \). It should be reminded that the standard ‘gluing’ without reflection corresponding to periodic boundary conditions is used for the horizontal axis, whereas ‘gluing’ with reflection is applied for the vertical axis. At the same time, the probability \(R^{h1}_\infty \) is closer to the value on the torus than the probability \(R^v_\infty \).

4. Conclusions

The percolation threshold \(\eta_L \) and asymptotic values of the wrapping probabilities \(R_\infty \) for the continuum percolation of permeable disks on the Klein bottle, as well as scaling exponents determining the contribution of finite-size effects to the critical concentration \(\eta_L \) and wrapping
probabilities R_L, have been obtained. It has been shown that the percolation threshold η_c and scaling exponents are independent of the topology of the surface and coincide with the respective values obtained for continuum percolation on the torus. At the same time, the wrapping probabilities differ from the respective values on the torus. In addition, since the vertical and horizontal axes are not equivalent in the case of percolation on the Klein bottle, $R_{ch}^h = R_{ch}^v$ and $R_{chv}^h \neq R_{chv}^v$. In this case, the probability R_{ch}^c is closer to the value on the torus than the probability R_{ch}^h, whereas the probability R_{chv}^c is farther from the probability on the torus than the probability R_{chv}^h. The difference between the probabilities R_{ch} for the torus and Klein bottle means that the percolation cluster on one of these surfaces (or on both surfaces) is degenerate.

Acknowledgments

This work was supported by the state targets higher education institutions in 2015 and the planning period of 2016 in terms of R&D [project code: 3.720.2014/K] and by the Russian Foundation for Basic Research (project nos. 14-08-00895a and 14-08-00805a). The calculations were partially performed at the ‘Basov’ Computer Cluster, National Research Nuclear University MEPhI. The reported study was performed within the framework of the Center “Physics of nonequilibrium atomic systems and composites” supported by MEPhI Academic Excellence Project (contract No. 02.a03.21.0005, 27.08.2013).

References

[1] Kesten H 1982 Percolation Theory for Mathematicians, Progress in Probability and Statistics vol 2 (Boston: Birkhauser)
[2] Percolation G G 1999 Grundlehren der Mathematischen Wissenschaften (Fundamental Principles of Mathematical Sciences vol 321) 2nd edn (Berlin: Springer)
[3] Langlands R, Pouliot P and Saint-Aubin Y 1994 Conformal invariance in two-dimensional percolation Bull. Am. Math. Soc. 30 1–61
[4] Cardy J L 2001 Conformal invariance and percolation arXiv:math-ph/0103018v2
[5] Cardy J L 1992 Critical percolation in finite geometries J. Phys. A: Math. Gen. 25 L201
[6] Di Francesco P, Mathieu P and Senechal D 1997 Conformal Field Theory (New York: Springer)
[7] Delfino G, Viti J and Cardy J 2010 Universal amplitude ratios of two-dimensional percolation from field theory J. Phys. A: Math. Theor. 43 152001
[8] Delfino G and Viti J 2011 Crossing probability and number of crossing clusters in off-critical percolation J. Phys. A: Math. Theor. 45 032005
[9] Smirnov S 2001 Critical percolation in the plane: conformal invariance, Cardy’s formula, scaling limits C. R. Acad. Sci., Paris I 333 239–44
[10] Lebrecht W, Valdes J F, Vogel E A O E, Nieto F, Alivisatos A and Ramirez-Pastor J 2013 Percolation of dimers on square lattices Physica A 392 149–56
[11] Delfino G and Viti J 2010 Universal properties of ising clusters and droplets near criticality Nucl. Phys. B 840 513–33
[12] Lorenz C D and Ziff R M 2001 Excess number of percolation clusters on the surface of a sphere Physica A 296 1–8
[13] Pruessner G and Moloney N R 2004 Winding clusters in percolation on the torus and the möbius strip J. Stat. Phys. 115 839–53
[14] Mertens S and Moore C 2012 Continuum percolation thresholds in two dimensions Phys. Rev. E 86 061109
[15] Pruessner G and Moloney N R 2003 Numerical results for crossing, spanning and wrapping in two-dimensional percolation J. Phys. A: Math. Gen. 36 11213
[16] Ziff R M 2010 Scaling behavior of explosive percolation on the square lattice Phys. Rev. E 82 051105
J. Phys. A: Math. Theor. 48 (2015) 475002

[17] Wang J, Zhou Z, Zhang W and Deng T M 2013 Bond and site percolation in three dimensions Phys. Rev. E 87 052107

[18] Reuven Cohen R, Erez K, ben Avraham D and Havlin S 2000 Resilience of the internet to random breakdowns Phys. Rev. Lett. 85 4626–8

[19] Callaway D S, Newman M E J, Strogatz S H and Watts D J 2000 Network robustness and fragility: percolation on random graphs Phys. Rev. Lett. 85 5468–71

[20] Goltsev A V, Dorogovtsev S N and Mendes J F F 2008 Percolation on correlated networks Phys. Rev. E 78 051105

[21] Janson S 2009 On percolation in random graphs with given vertex degrees Electron. J. Probab. 14 86–118

[22] Odagaki T and Toyofuku S 1998 Properties of percolation clusters in a model granular system in two dimensions J. Phys.: Condens. Matter 10 6447

[23] Tobochnik J 1999 Granular collapse as a percolation transition Phys. Rev. E 60 7137–42

[24] De Bondt S, Froyen L and Deruyttere A 1992 Electrical conductivity of composites: a percolation approach J. Mater. Sci. 27 1983–8

[25] Grassberger P 1983 On the critical behavior of the general epidemic process and dynamical percolation Math. Biosci. 63 157–72

[26] Newman M E J 2002 Spread of epidemic disease on networks Phys. Rev. E 66 016128

[27] Holme P, Kim B J, Yoon C N and Han S K 2002 Attack vulnerability of complex networks Phys. Rev. E 65 056109

[28] Vakhshouri K, Kozub D R, Wang C, Salleo A and Gomez E D 2012 Effect of miscibility and percolation on electron transport in amorphous poly(3-hexylthiophene)/phenyl-c61:butyric acid methyl ester blends Phys. Rev. Lett. 108 026601

[29] Machta J 1991 Phase transitions in fractal porous media Phys. Rev. Lett. 66 169–72

[30] Moon K and Girvin S M 1995 Critical behavior of superfluid 4he in aerogel Phys. Rev. Lett. 75 1328–31

[31] Sahimi M 1993 Flow phenomena in rocks: from continuum models to fractals, percolation, cellular automata, and simulated annealing Rev. Mod. Phys. 65 1393

[32] Ahmad S, Puri S and Das S K 2014 Phase separation of fluids in porous media: a molecular dynamics study Phys. Rev. E 90 040302

[33] Chevalier T and Talon L 2015 Generalization of darcy’s law for bingham fluids in porous media: from flow-field statistics to the flow-rate regimes Phys. Rev. E 91 023011

[34] Schnyder S K, Spanner M, Höffing F, Franosch T and Horbach J 2015 Rounding of the localization transition in model porous media Soft Matter 11 701–11

[35] Woo H-J and Monson P A 2003 Phase behavior and dynamics of fluids in mesoporous glasses Phys. Rev. E 67 041207

[36] Kierlik E, Monson P A, Rosinberg M L, Sarkisov L and Tarjus G 2001 Capillary condensation in disordered porous materials: hysteresis versus equilibrium behavior Phys. Rev. Lett. 87 055701

[37] Lefèvre B, Saugey A, Barrat J L, Charlaix E, Gobin P F and Vigier G 2004 Intrusion and extrusion of water in hydrophobic mesopores J. Chem. Phys. 120 4927–38

[38] Porcheron F, Thommes M, Ahmad R and Monson P A 2007 Mercury porosimetry in mesoporous glasses: a comparison of experiments with results from a molecular model Langmuir 23 3572–80

[39] Rigby S P and Edler K J 2002 The influence of mercury contact angle, surface tension, and retraction mechanism on the interpretation of mercury porosimetry data J. Colloid Interface Sci. 250 175–30

[40] Xu B, Qiao Y, Zhou Q and Chen X 2011 An electroactuation system based on nanofluids Appl. Phys. Lett. 98 221909

[41] Han A, Lu W, Punyamurtula V K, Kim T and Qiao Y 2009 Temperature variation in liquid infiltration and defiltration in a mcm41 J. Appl. Phys. 105 024309

[42] Eroshenko V, Regis R-C, Soulard M and Patarin C R. Phys. 3 111–9

[43] Grekhov A M, Eremin Yu S, Dibrov G A and Volkov V V 2013 Percolation of composite poly(vinyltrimethylsilane) membranes with carbon nanotubes Pet. Chem. 53 549–53

[44] Grekhov A M and Eremin Yu S 2015 On the threshold concentration of sticks providing formation of a percolating cluster in mixed matrix membranes J. Membr. Sci. 485 42 – 47

[45] Borman V D, Belogorlov A A, Byrkin V A, Tronin V N and Troyan V I 2012 Observation of a dispersion transition and the stability of a liquid in a nanoporous medium JETP Lett. 95 511–4
Borman V D, Belogorlov A A, Byrkin V A, Tronin V N and Troyan V I 2013 Dispersion transition and the nonergodicity of the disordered nanoporous medium-nonwetting liquid system. J. Exp. Theor. Phys. 117 1139–63

Borman V D, Belogorlov A A, Grekhov A M and Tronin V N 2014 Fluctuations of the number of neighboring pores and appearance of multiple nonergodic states of a nonwetting liquid confined in a disordered nanoporous medium. Phys. Lett. A 378 2888–93

Borman V D, Belogorlov A A, Byrkin V A and Tronin V N 2013 Kinetics of the dispersion transition and nonergodicity of a system consisting of a disordered porous medium and a nonwetting liquid. Phys. Rev. E 88 052116

Stepanov A K 1989 A similarity theorem and its applications to percolation of random fields on the plane: I. Scaling of percolation. Theory Probab. Appl. 33 36–49

Beffara V and Duminil-Copin H 2012 The self-dual point of the two-dimensional random-cluster model is critical for q ≥ 1. Probab. Theory Relat. Fields. 153 511–42

Russo L 1979 The infinite cluster method in the two-dimensional Ising model. Commun. Math. Phys. 67 251–66

Dotsenko V S 1993 Physics of the spin-glass state. Phys.-Usp. 36 455

Parisi G and Zamponi F 2010 Mean-field theory of hard sphere glasses and jamming. Rev. Mod. Phys. 82 789–845

Borman V D, Belogorlov A A and Tronin V 2015 Observation of the anomalously slow (power-law) relaxation of the system of interacting liquid nanoclusters in the disordered confinement of a random porous medium. Phys. Procedia 72 4–9

Lu W T and Wu F Y 2001 Ising model on nonorientable surfaces: exact solution for the Möbius strip and the Klein bottle. Phys. Rev. E 63 026107

Kheifets I I and Neimark A V 1982 Multiphase Processes in Porous Media (Moscow: Khimija) (in Russian)

Kaneda K and Okabe Y 2001 Finite-size scaling for the Ising model on the Möbius strip and the Klein bottle. Phys. Rev. Lett. 86 2134–7

Newman M E J and Ziff R M 2001 Fast monte carlo algorithm for site or bond percolation. Phys. Rev. E 64 016706

Sedgewick R 1988 Algorithms (Reading, MA: Addison-Wesley)

Knuth D E 1997 The Art of Computer Programming (Reading, MA: Addison-Wesley)

Machta J, Choi Y S, Lucke A, Schweizer T and Chayes L M 1996 Invaded cluster algorithm for potts models. Phys. Rev. E 54 1332–45

Reynolds P, Stanley H and Klein W 1978 Percolation by position-space renormalisation group with large cells. J. Phys. A: Math. Gen. 11 L199

Reynolds P J, Stanley H E and Klein W 1980 Large-cell monte carlo renormalization group for percolation. Phys. Rev. B 21 1223–45

Pinson H T 1994 Critical percolation on the torus. J. Stat. Phys. 75 1167–77