Data Article

WET: Word embedding-topic distribution vectors for MOOC video lectures dataset

Zenun Kastrati, Arianit Kurti, Ali Shariq Imran

*Dept. of Computer Science and Media Technology, Linnaeus University, Vaxjo, Sweden
bDept. of Computer Science, Norwegian University of Science and Technology, Trondheim, Norway

ARTICLE INFO

Article history:
Received 21 September 2019
Received in revised form 6 December 2019
Accepted 28 December 2019
Available online 3 January 2020

Keywords:
Word embedding
Document topics
Video lecture transcript
MOOC
LDA
Word2Vec

ABSTRACT

In this article, we present a dataset containing word embeddings and document topic distribution vectors generated from MOOCs video lecture transcripts. Transcripts of 12,032 video lectures from 200 courses were collected from Coursera learning platform. This large corpus of transcripts was used as input to two well-known NLP techniques, namely Word2Vec and Latent Dirichlet Allocation (LDA) to generate word embeddings and topic vectors, respectively. We used Word2Vec and LDA implementation in the Gensim package in Python. The data presented in this article are related to the research article entitled “Integrating word embeddings and document topics with deep learning in a video classification framework” [1]. The dataset is hosted in the Mendeley Data repository [2].

© 2020 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

1. Data

The key summary statistics of the MOOC video lecture transcripts corpus used to generate word embeddings and topic representation vectors is presented in Table 1. The dataset contains 12,032 video lecture transcripts that are composed of over 878 thousand sentences and more than 79 million tokens. The vocabulary size is over 68 thousand unique words.

* Corresponding author.
E-mail address: zenun.kastrati@lnu.se (Z. Kastrati).

https://doi.org/10.1016/j.dib.2019.105090
2352-3409 © 2020 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
Video transcripts are of different length, from 228 to 32,767 tokens, with an average of 6622 tokens per video transcript. Video transcripts length variation illustrated in box plot and the distribution of tokens among the entire video transcripts corpus represented by a density function are shown in Fig. 1.

In Table 2, we show categories of the dataset including general-level and fine-grained along with the number of video lecture transcripts associated to each category.

A visual representation of word embeddings generated from the MOOC video lectures corpora using principal component analysis (PCA) projected in a geometric space is illustrated in Fig. 2. More specifically, Fig. 2 shows an example of mapping of word ‘studying’ and its neighbours e.g. academic, studies, institution, reading, etc., in three-dimensional space.

2. Experimental design, materials, and methods

A new real-world dataset from the education domain is presented in this article. The dataset contains word embeddings and document topic distribution vectors generated by a corpus of 12,032 video lecture transcripts. The steps involved in collecting and creating the WET dataset are illustrated in Fig. 3.

As a first step, we downloaded video lecture transcripts from Coursera learning platform and annotated them. For annotation, we used a two-level hierarchical organizational structure of Coursera
Table 2
Distribution of video transcripts among general-level and fine-grained categories.

General-level Categories	Fine-grained Categories	# of docs
Art and Humanities	History	310
	Music and Art	338
	Philosophy	267
Physical Sciences and Engineering	Electrical Engineering	516
	Mechanical Engineering	287
	Chemistry	411
	Environmental Science and Sustainability	340
	Physics and Astronomy	455
	Research Methods	199
Computer Science	Software Development	284
	Mobile and Web Development	390
	Algorithms	338
	Computer Security and Networks	351
	Design and Product	228
Data Science	Data Analysis	205
	Machine Learning	549
	Probability and Statistics	283
Business	Leadership and Management	281
	Finance	346
	Marketing	242
	Entrepreneurship	216
	Business Essentials	223
	Business Strategy	261
Information Technology	Cloud Computing	171
	Security	139
	Data Management	236
	Networking	153
	Support and Operations	349
Health	Animal Health	227
	Basic Science	480
	Health Informatics	209
	Healthcare Management	167
	Patient Care	325
	Public Health	210
	Research	274
	Psychology	299
Social Sciences	Economics	516
	Education	293
	Governance and Society	331
	Law	333

Fig. 1. Length of video transcripts and distribution of tokens among them.
where each downloaded video transcript is associated with one fine-grained category and one general-level category of the structure. 8 general-level and 40 fine-grained categories constitute the dataset and the distribution of lecture transcripts among these categories is given in Table 2.

Prior to creating corpus and dictionary for generating word embeddings and topic distribution vectors, video lecture transcripts have undergone some preprocessing tasks including converting text to lowercase, removing stop words, punctuations, and removing words that are not purely comprised of alphabetical characters and those that are only one character. In addition, WordNetLemmatizer is used to lemmatize all words in transcripts. An open source Python Library for symbolic and statistical natural language processing called Natural Language Toolkit (NLTK) is used for performing preprocessing tasks.

2.1. Word embeddings

To train and generate word embeddings, we used the Word2Vec [3] word embedding technique implemented in Python’s Gensim package [5]. Word2Vec is an unsupervised learning method in which word embeddings are learned using distribution of word co-occurrences within a local context, that is, a separate text window space scanned across the whole corpus. There are two model architecture of Word2Vec, namely the continuous bag-of-words (CBOW), and the skip-gram.

We set various parameters for Word2Vec as shown in Table 3. Word embeddings of different vector sizes including 50, 100, 200 and 300 dimensions, are generated.

Each of four csv files contains 68176 lines comprising of a unique word followed by either 50, 100, 200, or 300 real numbers that correspond to 50, 100, 200, 300 respective dimensions.

2.2. Topic distribution vectors

We conducted unsupervised topic modeling on the MOOC lecture transcript corpus. A latent Dirichlet allocation (LDA) [4] conventional topic modeling scheme implemented in the Python’s Gensim package is used for generating document topic distribution vectors. LDA is a generative statistical model in which each document of a corpus is represented by a finite mixture of topics/themes which, in turn, are represented by a group of words. The parameter settings given in Table 4 are used for LDA and we performed training for varying number of topics including 50, 100, 200, 300 document topics.
Fig. 3. Dataset collection and creation scheme.

Table 3	Parameters settings used for Word2Vec.
Parameter settings	
window size = 5	
min_count = 1	
alpha = auto	
workers = 4	

Table 4	Parameters settings used for LDA.
Parameter settings	
chunksize = 500	
iterations = 400	
passes = 20	
alpha = auto	
eta = auto	
Each csv file contains 12,032 lines comprising of a unique word followed by either 50, 100, 200, or 300 real numbers that correspond to 50, 100, 200, 300 respective number of topics. Concatenation of document topics obtained from LDA model with either general-level or fine-grained categories produces the final csv file as shown in Fig. 3.

Conflict of Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Appendix A. Supplementary data

Supplementary data to this article can be found online at https://doi.org/10.1016/j.dib.2019.105090.

References

[1] Z. Kastrati, A.S. Imran, A. Kurti, 2019. Integrating word embeddings and document topics with deep learning in a video classification framework, Pattern Recognit. Lett. 128C (2019) 85–92, https://doi.org/10.1016/j.patrec.2019.08.019.
[2] Z. Kastrati, A. Kurti, A.S. Imran, Embeddings and Topic Vectors for MOOC Lectures Dataset, Mendeley Data, v1, 2019, https://doi.org/10.17632/xknjp8pxbj.1.
[3] T. Mikolov, I. Sutskever, K. Chen, G. Corrado, J. Dean, Distributed representations of words and phrases and their compositionality, in: Proceedings of the 26th International Conference on Neural Information Processing Systems (NIPS’13), 2013, pp. 3111–3119.
[4] D.M. Blei, A.Y. Ng, M.I. Jordan, Latent dirichlet allocation, J. Mach. Learn. Res. 3 (4–5) (2003) 993–1022.
[5] R. Rehurek, P. Sojkai, Software framework for topic modelling with large corpora, in: Proceedings of the LREC 2010 Workshop on New Challenges for NLP Frameworks, 2010, pp. 45–50.