Effects of variations in the addition of SiC\textsubscript{p} filler to corrosion rate of metal matrix composites (MMCs) Al-Cu-Mg/SiC\textsubscript{p}

A B Susila*, E Handoko and R Fahdiran
Department of Physics, State University of Jakarta, Jalan Rawamangun Muka, Jakarta Timur, 13220, Indonesia

*anggarabs@unj.ac.id

Abstract. We study of effects Al-Cu-Mg/SiC\textsubscript{p} Metal Matrix Composites (MMCs) with a matrix composition of 4.4 wt\% Cu, 1.8 wt\% Mg with SiC\textsubscript{p} fillers were varied (3.4; 3.7 and 4.0) wt\% and the remaining Al. SiC\textsubscript{p} is mixed into Al-Cu-Mg heated at 900\degree C, then stir casting is carried out at 250 rpm for 10 minutes. Then cooling is carried out to room temperature. After cold, heat treatment is given and continued testing. The SEM-EDX and XRD test results showed that the increasing SiC\textsubscript{p} content, the tendency for SiC\textsubscript{p} and Mg bonds to form the Mg\textsubscript{2}Si phase increased, making the sample items enlarge and appear coarser. While the corrosion rate test of increasing SiC\textsubscript{p} in the Al-Cu-Mg matrix makes Al-Cu-Mg/ SiC\textsubscript{p} samples tend to be more corrosion resistant. The event of declining corrosive properties is due to SiC\textsubscript{p} particles occupying grain boundary areas replacing O\textsubscript{2} (which provides corrosive properties) that are trapped in the sample during the cooling process.

1. Introduction

Research on Metal Matrix Composites (MMC) made from aluminum alloy for the aviation industry has been widely developed. The study used a varied matrix process and composition, aimed at looking at the physical and mechanical properties of the material and the results gave very good results [1–4]. The development of aluminum-based material composites was also carried out to obtain a more optimal performance by using matrix mixed methods with Silicon Carbide ceramic powder material (SiC\textsubscript{p}) and heat treatment [5–9]. However, SiC\textsubscript{p} has a small density compared to the matrix material in liquid conditioning, which is relatively difficult to mix. Then with the help of stircasting SiC\textsubscript{p} will be able to mix [10,11].

The variation of mixing Silicon Carbide into the aluminum matrix is possible to function as a filler that functions as a boundary filler between grains, thus expanding the touch surface between grains which makes the bond between the grains stronger [12–15]. The aluminum matrix coating method with SiC\textsubscript{p} with laser powder deposition has also been developed [16].

In this study Metal Matrix Composite (MMC) was made with Al-Cu-Mg material with Reinforce Silicon Carbide (SiC\textsubscript{p}) using the Stir Casting method, by making SiC\textsubscript{p} variations in the matrix and their impact on the corrosion rate.
2. Method
Preparation of Al-Cu-Mg / SiCp Metal Matrix Composites (MMCs) with a matrix composition of 4.4 wt% Cu, 1.8 wt% Mg with SiC fillers varied (3.4; 3.7 and 4.0) wt% and the rest Al. Before Al-Cu-Mg was mixed into SiCp, SiCp fillers were preheated at a temperature of 900°C, the purpose of which was to provide a wetting effect to dissolve easily into the Al-Cu-Mg matrix. Then mixing the Al-Cu-Mg matrix with SiCp filler at 900°C with stirring at a speed of 250 rpm for 10 minutes. After casting, cooling is continued. then annealing process was carried out at a temperature of 450°C for 2 hours and continued aging at a temperature of 160°C for 16 hours. The microstructure and commodity observations formed were carried out by SEM-EDX testing, and testing of corrosive properties to see the corrosion rate of the sample.

3. Result and Discussion
3.1. Microstructures
Microstructure testing using SEM-EDX Jeol jsm 6510LA machine. with a magnification of 2000 times. From the SEM observations, the surface of the Al-Cu-Mg / SiCp 3.4 wt% surface appears smoother when compared with the Al-Cu-Mg / SiCp 3.7 wt% sample and the Al-Cu-Mg / SiCp 4.0 wt% sample. From the EDX results it was found that the SiCp 3.4 wt% SiCp phase composition was detected, but in the sample with SiCp 3.7 wt% and 4.0 wt% the SiCp phase was not detected. It can be seen from the XRD test that the SiCp content increases, there is a tendency to increase SiCp and Mg bonds to form the Mg2Si phase, making the sample grains bigger and appear coarser. In addition, the EDX results also indicate the presence of oxygen (O2) in each sample, it is possible for the oxygen element to enter the sample during the printing and cooling process. The detection of oxygen allows the bond between aluminum and oxygen to form an Al2O3 layer which is a thin layer of aluminum protector. Apart from oxygen, there is also a percentage of carbon (C) in EDX observation. Carbon elements can be caused by SiCp which reacts with molten aluminum at high temperatures so that the Al4C3 phase is formed [1].

3.2. Corrosion Rate
Corrosion rate measurement of Al-Cu-Mg / SiCp samples with SiCp variation (3.4 wt%, 3.7 wt% and 4.0 wt%) using polarization corrosion method with Potensiostat Gamry Reference 600 using NaCl media. The results are shown in the following table.

Sample	SiCp 3.4 wt%	SiCp 3.7 wt%	SiCp 4.0 wt%
Surface Area (cm²)	0.692	0.523	0.537
Electrolyte Solution	NaCl 3.5% (b/v)	NaCl 3.5% (b/v)	NaCl 3.5% (b/v)
Temperature	26.6	27.1	26.3
Icorr (mA)	1.104x10⁻³	1.456x10⁻³	0.727x10⁻³
Ecorr (mV)	-971.4	-872.8	-735.2
Density (g/cm³)	1.49	1.64	1.69
Corrosion Rate (mmpy)	1.2828x10⁻³	1.1217x10⁻³	1.0272x10⁻³
EW	9.32	9.32	9.32

Figure 2 shows a graph of the potential V function of current I for sample (a) Al-Cu-Mg / SiCp (3.4 wt%) (b) Al-Cu-Mg / SiCp (3.7 wt%), (c) Al-Cu-Mg / SiCp (4.0 wt%). Corrosion test results as shown in table 1. Corrosion rates will be proportional to the corrosion current density (Icorr) and influenced by the surface area of the sample. Different sample sizes make the sample surface area vary. Based on these data the lowest corrosion rate is found in the Al-Cu-Mg sample with SiCp 4 wt%, which is equal to 1.0272 x 10⁻³ mmpy. There is a tendency, that the increasing of SiCp filler composition in the Al-Cu-Mg matrix causes a decrease in the corrosion rate [1,14,17].
When looking at phase data on XRD testing with increasing SiC, the larger SiC and Mg bonds form Mg$_2$Si. The Si element is easier to bind Mg than Oxygen (O$_2$) to form SiO$_2$. As is well known, that oxide will make the material easily corrosion. On the other hand, with increasing SiC in the sample Al-Cu-Mg matrix makes the material harder and stronger. So, it can be concluded that the increase in SiC filler into the Al-Cu-Mg matrix, will make the uncut hard and strong and more resistant to corrosive.

Figure 1. Microstructural SEM-EDX samples of Al-Cu-Mg / SiC$_p$: (a) SiC$_p$ 3.4 wt%, (b) SiC$_p$ 3.7 wt%, (c) SiC$_p$ 4.0 wt%.
4. Conclusion

Based on the results of testing the greater percent weight of SiC_p into the Al-Cu-Mg matrix, the corrosion rate decreases, meaning that increasing SiC_p in the Al-Cu-Mg matrix makes the Al-Cu-Mg / SiC samples tend to be more corrosive resistant. This decrease in corrosive properties is caused by SiC particles occupying the grain boundary area replacing O₂ which is trapped in the sample during the cooling process. As it is known that O₂ in this sample makes the sample corrosive.

Acknowledgement

We acknowledged financial support from Hibah Penelitian BLU Universitas Negeri Jakarta.

References

[1] Susila A B and Soegijono B 2016 Mechanical Properties of Metal Al/SiC and AlCu/SiC Metal Matrix Composites (MMCs) KnE Engineering vol 2016 pp 1–5
[2] Mizuuchi K, Inoue K, Agari Y, Nagaoka T, Sugioka M, Tanaka M, Takeuchi T, Tani J I, Kawahara M, Makino Y and Ito M 2012 Processing of Al/SiC composites in continuous solid-liquid co-existent state by SPS and their thermal properties Compos. Part B Eng. 43 2012–9
[3] Fujda M, Ko R M Č, Aková L R U S Ň and Sojko M 2007 Effect of Solution Annealing Temperature on Structure and Mechanical Properties of EN AW 2024 Aluminium Alloy J. Met. Mater. Miner. 17 35–40
[4] Chawla N, Williams J J and Saha R 2002 Mechanical behavior and microstructure characterization of sinter-forged SiC particle reinforced aluminum matrix composites J. Light Met. 2 215–27
[5] Benedictus R, Keidel C J, Heinz A L and Haszler A J P 2009 Balanced Al-Cu-Mg-Si Alloy Product
[6] Mahmood Ghauri K, Ali L, Ahmad A, Ahmad R, Meraj Din K, Ahmad Chaudhary I and Abdul Karim R 2013 Synthesis and Characterization of Al/SiC Composite Made by Stir Casting Method Pakistan J. Engineering Appl. Sci. 12 102–10
[7] Gür C H and Yildiz I 2008 Utilization of non-destructive methods for determining the effect of
age-hardening on impact toughness of 2024 Al-Cu-Mg alloy. J. Nondestruc. Eval. 27: 99–104

[8] Reddappa H N, Suresh K R, Niranjan H B and Satyanarayana K G 2011 Effect of Cold Quenching on Wear Rate of Al6061- Beryl Composites Int. J. Eng. Sci. Technol. 3: 7309–15

[9] Warner T, Lassince P and Lequeu P 2004 Aircraft Structure element Made of an Al-Cu-Mg Alloy

[10] Prabu S B, Karunamoorthy L, Kathiresan S and Mohan B 2006 Influence of stirring speed and stirring time on distribution of particles in cast metal matrix composite J. Mater. Process. Technol. 171: 268–73

[11] May A, Belouchrani M A, Taharbourch T and Boudras A 2010 Influence of heat treatment on the fatigue behaviour of two aluminium alloys 2024 and 2024 plated Procedia Eng. 2: 1795–804

[12] Singla M, Dwivedi D D, Singh L and Chawla V 2015 Development of Aluminium Based Silicon Carbide Particulate Metal Matrix Composite J. Miner. Mater. Charact. Eng. 08: 455–67

[13] Starink M J, Gao N, Davin L, Yan J and Cerezo A 2005 Room-temperature precipitation in quenched Al-Cu-Mg alloys: A model for the reaction kinetics and yield-strength development" Philos. Mag. Lett. 85: 1395–417

[14] Hassan S B and Aigbodion V S 2007 Experimental correlation between varying silicon carbide and hardness values in heat-treated Al-Si-Fe/SiC particulate composites Mater. Sci. Eng. A 454–455: 342–8

[15] Kawahara A, Niikura A and Doko T 2003 Development of aluminum alloy fin stock for heat exchangers using twin-roll continuous casting method Furukawa Rev. 24: 81–7

[16] Xu X Y, Han J M, Li W J, Liu Y F and Liu L M 2006 SiC particulate reinforced aluminum matrix composite coatings prepared by laser powder deposition J. Ceram. Process. Res. 7: 167–71

[17] Zahra A M, Zahra C Y and Verlinden B 2006 Room-temperature precipitation in quenched Al-Cu-Mg alloys: A model for the reaction kinetics and yield-strength development" Philos. Mag. Lett. 86: 235–42