Detection of myocardial dysfunction using global longitudinal strain with speckle-tracking echocardiography in patients with vs without rheumatoid arthritis: a systematic review and meta-analysis

Vinay K. Thallapally1 · Raahat Bansal1 · Abhishek Thandra2 · Sonia Gupta1 · Sarah Aurit1 · Venkat S. Pajjuru2 · Dixitha Anugula2 · Aboeata Ahmed2 · Joseph Nahas3

Received: 7 March 2022 / Revised: 4 July 2022 / Accepted: 19 July 2022 / Published online: 20 August 2022
© Japanese Society of Echocardiography 2022

Abstract
Objectives Rheumatoid arthritis (RA) is a systemic autoimmune disorder primarily involving the peripheral joints. Systemic involvement can occur, including myocardial dysfunction. Speckle tracking echocardiography (STE) is a novel diagnostic study which is recently being used to detect subclinical cardiac dysfunction. Global longitudinal strain (GLS) by STE is more sensitive than standard echocardiographic parameters to detect occult cardiac dysfunction.

Methods A systematic search of PUBMED, EMBASE, Cochrane, and Google Scholar databases was performed to identify studies comparing the STE parameters between RA and non-RA patients.

Results Left ventricular (LV) GLS was significantly lower in patients with RA compared to non-RA patients with a standard mean difference (SMD) of −1.09 (−1.48−−0.70, P < 0.001). LV Global Circumferential Strain (GCS) was reported in five studies, and it was found to be lower in RA patients with an SMD of −1.25 (−2.59−−0.10; P < 0.0010). Meta regression analysis studies failed to show any significant impact of disease duration, activity, age, sex and BMI on LV GLS and RV GLS.

Conclusions RA patients have lower LV GLS and LV GCS compared to controls suggesting impaired myocardial dysfunction. Further studies need to be done to delineate the importance of lower GLS in asymptomatic rheumatoid patients to guide disease management and risk factor modification in this selected population.

Keywords Rheumatoid arthritis · Speckle tracking echocardiography · Global longitudinal strain · Subclinical cardiac dysfunction

Abbreviations
LVEF Left ventricular ejection fraction
STE Speckle tracking echocardiography
GLS Global longitudinal strain
GCS Global circumferential strain
SMD Standard mean difference

Introduction
Rheumatoid arthritis (RA) is a chronic systemic inflammatory autoimmune disease of unknown etiology that affects about 0.5–1% of the global adult population [1, 2]. Previously, there has been established evidence of accelerated atherosclerotic coronary artery disease associated with chronic inflammation and resultant significant cardiovascular morbidity in RA [3]. However, recently research focus has shifted towards exploring the proposed mechanism of inflammation leading to congestive heart failure (CHF) in the RA patient cohorts [4, 5]. The incidence of CHF in RA was estimated at 21–34% from the recent population-based cohort studies, and the disease activity in RA is strongly correlated with progression of CHF [6, 7]. Given the early onset and accelerated risk of cardiovascular events in RA, early detection of subclinical cardiovascular disease including CHF is important to improve the overall prognosis.
Speckle tracking echocardiography (STE) is a novel diagnostic tool that can provide insight into the functionality of individual myocardial fiber layers and can be clinically utilized to assess subclinical and overt myocardial dysfunction. Specifically, global longitudinal strain (GLS) by STE is more sensitive than left ventricular ejection fraction (LVEF) by conventional 2D echocardiogram to assess myocardial dysfunction [8]. Recent studies have supported the superior prognostic role of GLS for predicting major adverse cardiac events compared to LVEF [9–12]. Furthermore, a noninvasive imaging biomarker like GLS that assesses inflammatory myocardial dysfunction allows for personalized risk assessment in RA patients, helps maximize risk reduction strategies and will be an invaluable tool for research and clinical use. However, the role of GLS in identifying the early cardiovascular disease in RA patients is limited. Therefore, we performed a systematic review and meta-analysis of all published studies comparing myocardial function by GLS in RA versus non-RA patients.

Materials and methods

An application was initially submitted to Creighton University biomedical IRB and received an exempt status. This systematic review and meta-analysis were conducted in accordance with Cochrane collaboration guidelines and reported according to the Preferred Reporting Items for Systematic Review and Meta-Analysis Protocols (PRISMA) [13, 14].

A comprehensive search of major electronic databases including PubMed, EMBASE, Cochrane reviews, and Scopus was conducted from inception through September 2020, by two independent reviewers (VT and RB). The following keywords were used: “speckle tracking echocardiography”, “Rheumatoid arthritis”, “global longitudinal strain”, and “circumferential strain”. The search strategy was not limited by language and publication year. The reference lists of selected articles were manually reviewed. We did not attempt to contact the authors of the articles for retrieving additional information or clarifications. Inclusion criteria: (1) studies including two groups with and without RA and reported their data as mean with standard deviations. (2) Studies reported outcomes of left ventricular (LV) global longitudinal strain (GLS) and/or global circumferential strain (GCS), and/or right ventricular (RV) strain in both groups. (3) Patients with underlying ischemic heart disease and heart failure were excluded in the selected studies. Case reports, case series without a control group, reviews, and animal studies were excluded.

Data extraction

The data extraction was performed using a pre-specified data collection form. The collected data included baseline characteristics of the included studies and participants, sample sizes, and outcomes values. The primary outcome of interest was left ventricular global longitudinal strain, and the secondary outcomes were LV circumferential strain and right ventricular GLS.

Statistical analysis

For each study, all outcome data were abstracted as reported or figure-calculated means and standard deviations, which were utilized to conduct a random-effects meta-analysis. The standard deviations from both the RA and non-RA patient groups were pooled in order to calculate standardized mean differences (SMDs). We examined heterogeneity between studies with the I^2 statistic based on Cochran’s Q (0–100%). Heterogeneity was defined as low (25–50%), moderate (50–75%), or high (> 75%).

Regarding meta-regression, we evaluated heterogeneity across studies with a likelihood ratio test (LRT) for each outcome, which was estimated as the difference of -2 REML log-likelihoods generated from models with and without a random effect of study for each outcome. The resulting difference (LR) was assumed to follow a chi-square distribution with one degree of freedom. We added the study-specific factor of the mean duration of disease and DAS28 separately if there were at least three studies with available information. We examined age, BMI, gender, ESR, and CRP in a similar manner. For each predictor, we calculated the Pearson correlation coefficient and presented it as R^2 to examine the relationship with the predicted outcome. SAS v. 9.4 (SAS Institute, Inc, Cary, NC) and Stata 15.1 were used for all analyses; $P<0.05$ indicates statistical significance.

Results

Overall, a total of 13 studies with 1516 patients were included in the meta-analysis that met predefined inclusion and exclusion criteria (Fig. 1) [15–27]. The major characteristics of all the included studies and baseline characteristics are outlined in Tables 1 and 2. The mean age was 52.7 years and about 68% were females.

LV GLS and GCS

All the 13 studies reported data on LV GLS, and the pooled analysis showed LV GLS was significantly lower in patients
with RA compared to non-RA patients with a SMD of -1.09 (95% CI -1.48–-0.70, $P < 0.001$) with a high heterogeneity of $I^2 = 91.2\%$ (Fig. 2).

The LV GCS was reported in five studies, and it was found to be lower in RA patients with an SMD of -1.25 (95% CI -2.59–-0.10; $P < 0.001$; $I^2 = 96.7\%$) (Fig. 3).

Meta-regression model of the studies on LV GLS did not show any impact of disease duration (effect size change for every additional year of disease duration: 0.09, 95% CI -0.02–0.20, $P = 0.088$) or DAS28 (effect size change for every additional unit of DAS28: -0.14, 95% CI -0.80–0.51, $P = 0.623$) (Table 3). Disease duration and DAS28 explained

Flow chart showing identification and selection of studies included in the meta-analysis (according to PRISMA guidelines)

Fig. 1 Flow chart showing identification and selection of studies included in the meta-analysis (according to PRISMA guidelines)
Study	Type of study	Countries	Strain software	Comments
Ikonomidis et al., 2009	Retrospective observational study	Greece	Echopac, GE Medical systems, Horten, Norway	First study to report lower LV GLS and circumferential strain in RA patients
Ikonomidis et al., 2014	Double blinded randomized control trial	Greece	Echopac, GE Medical systems, Horten, Norway	Among RA patients treatment with IL-1 receptor antagonist improved LV GLS, especially among CAD patients
Fine et al., 2014	Retrospective observational study	The United States	Syngo Velocity Vector Imaging (VVI) software (version 3.5) (Siemens Medical Solutions, Malvern, Pennsylvania)	RA patients without cardiovascular disease had lower LV and RV GLS
Ayylidiz et al., 2015	Prospective observational study	Turkey	QLAB 6.0 (Philips Medical Systems, Bothell, Washington, USA)	RA patients treated with infliximab experienced a significant increase in GLS compared to the one treated with prednisolone
Magda et al., 2016	Retrospective observational study	Romania	Not reported	Appropriately treated RA patients had reduced RV GLS suggesting subclinical RV dysfunction
Midtbo et al., 2016	Retrospective observational study	Norway	EchoPAC BT12 software (GE Vingmed Ultrasound)	Active RA patients had lower LV GLS compared to RA patients in remission and control group
Mohammed et al., 2016	Retrospective observational study	Egypt	Xstrain 2D speckle-tracking technology software (Esaote Biomedica, Florence, Italy)	Asymptomatic RA patients had subclinical LV dysfunction with lower GLS
Hamdy et al., 2017	Retrospective observational study	Egypt	EchoPAC version 110.1.2	RA patient had lower LV GLS and the GLS has negative correlation with disease activity (DAS 28 score) and inflammatory markers
Cioffi et al., 2018	Prospective observational study	Italy	XStrain 2D speckle-tracking technology software (Esaote Biomedica)	In normotensive cohort, RA patients had lower GLS compared to controls. LV GLS is an independent predictor of all-cause and cardiovascular hospitalizations among normotensive RA patients
Gullo et al., 2018	Prospective observational study	Italy	EchoPAC, version 8.0.0	RA patients had lower GLS and GCS compared to healthy controls with negative correlation to disease activity (DAS 28 score)
28.9% and 3.6% of the total variability, respectively. Similarly, no effect was found for age, BMI, gender, diabetes, hypertension, ESR and CRP.

RV GLS

Four studies reported RV GLS and there was no statistical evidence of a difference between RA and non-RA patients with an SMD of -0.54 (95% CI -1.47–-0.39; $P = 0.254$); $I^2 = 94.0\%$ (Fig. 4).

There was no statistical evidence of a change in effect size upon examination of disease duration (effect size change for every additional year of disease duration: 0.89, 95% CI -2.09–3.87, $P = 0.164$), which explained 93.4% of the total variability (Table 4). There was no relationship between age, gender, diabetes, hypertension, and CRP to RVGLS.

Discussion

In our meta-analysis, we investigated the STE parameters including LV GLS, LV GCS, and RV GLS among patients with and without RA. The major findings were: (1) The RA patients had reduced LV GLS and RV GLS with negative correlation with RA disease activity (DAS28 and SDAI score).

RA patients had reduced LV GLS and RV GLS

RV GLS was significantly lower in RA patient’s vs controls. Multivariate regression analysis demonstrated significant correlations between subclinical LV dysfunction with disease duration and activity.

RV and LV GLS was significantly reduced in RA patient compared to healthy subjects.

RV GLS

Pathophysiology of LV dysfunction in RA

Various pathophysiological mechanisms have been studied for a better understanding of HF in patients with chronic inflammation. It is proposed that cardiac myocytes react to chronic inflammation by producing cytokines and cell adhesion molecules, which increases the recruitment of leukocytes within the cardiac cell and reduces the myocardial contractility [28]. In addition, according to Lim et al., chronic inflammation leads to microvascular and endothelial dysfunction which causes myocardial remodeling and fibrosis, leading to LV dysfunction [29]. Similar evidence was demonstrated using evaluation with cardiac magnetic resonance (CMR) which offers reliable information regarding myocardial inflammation and fibrosis. CMR findings on T2- weighted imaging and late gadolinium enhancement suggestive of inflammation and fibrosis, respectively, were significantly associated with higher NT-proBNP among RA patients. This suggests that alterations in myocardial structure precede clinical HF [30].

Table 1 (continued)

Study	Type of study	Countries	Strain software	Comments
Naseem et al., 2018	Prospective observational study	Egypt	Echo Pac, GE Vivid E9 echocardiography system version 113	RA patients had reduced LV GLS and RV GLS with negative correlation with RA disease activity (DAS28 and SDAI score). LV GLS significantly lower in RA patient’s vs controls. Multivariate regression analysis demonstrated significant correlations between subclinical LV dysfunction with disease duration and activity. RV and LV GLS was significantly reduced in RA patient compared to healthy subjects.
Hanvivadhanakul et al., 2019	Retrospective observational study	Thailand	QLAB11, Philips	LV GLS significantly lower in RA patient’s vs controls. Multivariate regression analysis demonstrated significant correlations between subclinical LV dysfunction with disease duration and activity.
Nikdoust et al., 2020	Retrospective observational study	Iran	Not reported	LV and RV GLS was significantly reduced in RA patient compared to healthy subjects.
RA rheumatoid arthritis; LV left ventricle; RV right ventricle; GLS global longitudinal strain; GCS global circumferential strain; CAD coronary artery disease				

RA rheumatoid arthritis, LV left ventricle, RV right ventricle, GLS global longitudinal strain, GCS global circumferential strain, CAD coronary artery disease
Table 2 Demographic and clinical data of subjects enrolled in included studies

Study	RA* patients (n)	Non-RA controls (n)	Age (years)	Females(n)	BMI (kg/m²)	Hypertension (%)	Smokers (%)	Hyperlipidemia (%)	Diabetes (%)
Ikonomidis et al	46	23	56	31	28.6	20	13	13	9
Fine et al	59	30	55.7	45	29.1	50	26	42	8
Ikonomidis et al	20	30	58	14	29.3	9	8	N/A	N/A
Ayyildiz et al	38	30	52.1	38	30.5	10	5	2	8
Magda et al	29	17	55.5	28	27	16	0	13	1
Midtbø et al	78	46	60.7	60	25.5	0	19	0	0
Mohamed	50	33	45.8	44	N/A	0	N/A	N/A	N/A
Hamdy et al	50	40	35.4	46	N/A	N/A	N/A	N/A	N/A
Cioffi et al	194	194	54	63	24.4	0	40	52	3
Gullo et al	41	58	46.5	32	25.15	0	0	0	0
Naseem et al	120	40	54.52	55	55.08	N/A	0	12	0
Hanvivadhanakul et al	60	60	50	55	22	N/A	3	17	0
Nikdoust et al	35	35	43.33	N/A	N/A	N/A	N/A	N/A	N/A

*RA Rheumatoid arthritis

Fig. 2 Left ventricular Global Longitudinal Strain in patients with Rheumatoid Arthritis (RA) and controls. X-axis = difference in LV GLS between both groups, bars = confidence interval of each study, diamonds = confidence interval of overall outcomes
Fig. 3 Left ventricular Global Circumferential Strain in patients with Rheumatoid Arthritis (RA) and controls. X-axis = difference in LV GCS between both groups, bars = confidence interval of each study, diamonds = confidence interval of overall outcomes.

Table 3 Meta-regression analysis—impact of various variables on change in effect size of left ventricular global longitudinal strain in rheumatoid arthritis.

Variable	Estimate (95% CI)	P	R²
Disease duration (per additional year)	0.09 (−0.02 to 0.20)	0.088	0.289
DAS28 (per 1 unit increase)	−0.14 (−0.80 to 0.51)	0.623	0.036
Age (per additional year)	0.03 (−0.05 to 0.10)	0.411	0.062
BMI (per 1 kg/m² increase)	−0.01 (−0.30 to 0.28)	0.932	0.001
Gender (per 1% increase)	−0.01 (−0.04 to 0.03)	0.791	0.007
ESR (per 1 unit increase)	−0.02 (−0.08 to 0.04)	0.393	0.124
CRP (per 1 unit increase)	0.01 (−0.07 to 0.08)	0.872	0.003
Hypertension (per 1% increase)	0.01 (−0.03 to 0.06)	0.566	0.038
Diabetes (per 1% increase)	0.01 (−0.19 to 0.20)	0.945	0.001

BMI body mass index, DAS disease activity score, ESR erythrocyte sedimentation rate, CRP C-reactive protein

Fig. 4 Right ventricular Global Longitudinal Strain in patients with Rheumatoid Arthritis (RA) and controls. X-axis = difference in RV GLS between both groups, bars = confidence interval of each study, diamonds = confidence interval of overall outcomes.
Speckle-tracking echocardiography

The LV myocardium has a spiral architecture with myocardial fibers in two orientations, longitudinal in the endocardial region and epicardial region, and circumferential in the mid-wall. This contributes to longitudinal, circumferential, and radial strain during LV contraction. In addition, the helical orientation of the myocardial fibers results in LV torsional strain from a twisting motion [31]. Assessment of LV function using ejection fraction (EF) alone has intrinsic limitations of inter and intraobserver variability [32]. Speckle-tracking is a sophisticated semi-automated method to evaluate the complicated myocardial mechanics and LV strain [33]. It addresses the limitations of EF and is currently considered the most accurate and sensitive parameter for the assessment of early left ventricular dysfunction. GLS was noted to be more reproducible and clinically useful compared to circumferential and radial strains [34, 35].

Significance of measuring strain using STE in RA

In 2009, Ikonomidis et al. first studied association of RA with reduced LV GLS in a small cohort of 46 patients and later several investigators reported similar results. The findings of our meta-analysis are consistent with prior reports. Recently, a large cohort study by Mantel et al. including about 12,943 newly diagnosed and 45 k established RA patients showed the increased risk of nonischemic cardiomyopathy in RA patients with Hazard’s ration of 2.06 (95% CI 1.37–3.20) and 1.71 (95% CI 1.57–1.87), respectively [36].

In our cohort, the prevalence of traditional risk factors for cardiovascular disease including hypertension (21.3%), diabetes (5.5%), obesity and cigarette smoking was low when compared to the population within this age group (In age group 40–59 yrs, prevalence of hypertension and diabetes was 33 and 10%, respectively). Even with this low burden of comorbidities, RA patients had lower LV GLS, suggesting this finding may be used as a better risk predictor for cardiovascular disease compared to the traditional risk factors [37, 38].

Naseem et al. in 2018 established that there is a positive correlation between disease activity (DAS28 score) and reduction in RV and LV GLS [25]. A significant improvement in GLS with better disease control while undergoing treatment with TNF and Interleukin inhibitors has also been shown [15–18, 39]. In contradiction, the meta-regression model of our analysis did not find any association between GLS and disease duration or activity or inflammatory markers. This can possibly be explained by the loss of individual patient characteristics in the pooled analysis.

Right ventricular GLS by STE is a better indicator of RV function when compared to conventional echocardiographic parameters like RV fractional area change (FAC) and tricuspid annular plane systolic excursion (TAPSE) [40, 41]. This can be used as a prognostic tool in assessing the mortality risk among patients with heart failure [42, 43]. However, the clinical relevance of detecting RV dysfunction in patients without any cardiovascular disease is not well established.

Clinical implications

This is a largest meta-analysis to date investigating the importance of speckle tracking echocardiography in RA patient cohort as compared with patients without RA. Given the significant cardiovascular disease burden in the RA patient cohort, utilizing the STE parameters will help facilitate clinicians for early patient recognition who are at risk for developing sub-clinical and clinical heart failure. Additionally, this could serve as a better prognostic determinant to identify the patients who will benefit from earlier therapeutic interventions to improve the overall clinical outcomes”.

Limitations

Potential limitations for our study include differences in inclusion and exclusion criteria of the studies included and the differences in the patient characteristics in terms of cardiovascular risk factors and comorbidities. Meta regression analysis done failed to reveal any correlation to age, sex, BMI and disease activity. This was surprising as we suspected patients with more severe RA, characterized by high disease activity or inflammatory markers would have worsened cardiac dysfunction in our pooled analysis. Loss
of individual patient characteristics in the pooled analysis might possibly be responsible for this.

There is significant heterogeneity documented among studies on LVGLS, LV GCS and RV GLS. Although GLS is more reproducible and reliable compared to other strain parameters, there is a concern for heterogeneity among comparison of data extracted by different echocardiography machines and different software used. We accounted for the heterogeneity among the studies using a random effects approach in the meta-analysis.

Future directions

Overall, there is an increased incidence of HF in RA patients, and with STE we can detect early cardiac dysfunction. Among patients undergoing anthracycline-based chemotherapy, LV surveillance using GLS had increased the use of cardioprotective therapy (beta-blocker or Angiotensin converting enzyme inhibitor/Angiotensin receptor blocker) thereby reducing the incidence of cardiac dysfunction [44]. While there is no supportive evidence of starting cardioprotective medications in RA patients with low GLS at this time, we believe there is a necessity for further research in this area.

Conclusion

STE can detect and measure subclinical myocardial dysfunction in rheumatoid arthritis patients facilitating better risk prediction for cardiovascular disease and personalized treatment in this high-risk group. Further studies are necessary to establish the role of early screening for myocardial dysfunction and starting cardioprotective therapy among this patient population.

Acknowledgements
None

Author contribution
All authors contributed to the study conception and design. Material preparation, data collection and analysis were performed by [RB] [SG] [VP] [DA] and [SA]. The first draft of the manuscript was written by [VKT] [AT] [AA] [JN] and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Funding
The authors declare that no funds, grants, or other support were received during the preparation of this manuscript.

Declarations

Ethical approval
This is a meta-analysis, and no ethical approval is required.

Conflict of interests
The authors have no relevant financial or non-financial interests to disclose.

References

1. Myasoedova E, Crowson CS, Kremers HM, Therneau TM, Gabriel SE. Is the incidence of rheumatoid arthritis rising?: results from olmsted county, minnesota, 1955–2007. Arthritis Rheum. 2010;62:1576–82.
2. Hunter TM, Boytsov NN, Zhang X, Schroeder K, Michaud K, Araujo AB. Prevalence of rheumatoid arthritis in the united states adult population in healthcare claims databases, 2004–2014. Rheumatol Int. 2017;37:1551–7.
3. Van Doornum S, McColl G, Wicks IP. Accelerated atherosclerosis: an extraarticular feature of rheumatoid arthritis? Arthritis Rheum. 2002;46:862–73.
4. Maradit-Kremers H, Crowson CS, Nicola PJ, Ballman KV, Roger VL, Jacobsen SJ, et al. Increased unrecognized coronary heart disease and sudden deaths in rheumatoid arthritis: a population-based cohort study. Arthritis Rheum. 2005;52:402–11.
5. Crowson CS, Nicola PJ, Kremers HM, O’Fallon WM, Therneau TM, Jacobsen SJ, et al. How much of the increased incidence of heart failure in rheumatoid arthritis is attributable to traditional cardiovascular risk factors and ischemic heart disease? Arthritis Rheum. 2005;52:3039–44.
6. Nicola PJ, Maradit-Kremers H, Roger VL, Jacobsen SJ, Crowson CS, Ballman KV, et al. The risk of congestive heart failure in rheumatoid arthritis: a population-based study over 46 years. Arthritis Rheum. 2005;52:412–20.
7. Solomon DH, Reed GW, Kremer JM, Curtis JR, Farkouh ME, Harrold LR, et al. Disease activity in rheumatoid arthritis and the risk of cardiovascular events. Arthritis Rheumatol. 2015;67:1449–55.
8. Imbalzano E, Zito C, Carej S, Oreo G, Mandrafino G, Cusmà-Piccione M, et al. Left ventricular function in hypertension: new insight by speckle tracking echocardiography. Echocardiography. 2011;28:649–57.
9. Freed BH, Daruswalla V, Cheng JY, Aguilar FG, Beussink L, Choi A, et al. Prognostic utility and clinical significance of cardiac mechanics in heart failure with preserved ejection fraction: importance of left atrial strain. Circ Cardiovasc Imaging. 2016;9:e003754.
10. Donal E, Lund LH, Oger E, Hage C, Persson H, Reynaud A, et al. New echocardiographic predictors of clinical outcome in patients presenting with heart failure and a preserved left ventricular ejection fraction: a subanalysis of the ka (karolinska) ren (rennes) study. Eur J Heart Fail. 2015;17:680–8.
11. Shah AM, Claggett B, Sweitzer NK, Shah SJ, Anand IS, Liu L, et al. Prognostic importance of impaired systolic function in heart failure with preserved ejection fraction and the impact of spironolactone. Circulation. 2015;132:402–14.
12. Park JJ, Park J, Park J, Cho G. Global longitudinal strain to predict mortality in patients with acute heart failure. J Am Coll Cardiol. 2018;71:1947–57.
13. Higgins JP, Altman DG, Gotzsche PC, Juni P, Moher D, Oxman AD, et al. The cochrane collaboration’s tool for assessing risk of bias in randomised trials. BMJ. 2011;343:d5928.
14. Shamseer L, Moher D, Clarke M, Gheri D, Liberati A, Petticrew M, et al. Preferred reporting items for systematic review and meta-analysis protocols (PRISMA-P) 2015: elaboration and explanation. BMJ. 2015. https://doi.org/10.1136/bmj.g7647.
15. Ikonomidis I, Tzortzis S, Lekakis J, Paraskevaidis I, Andreadou I, Nikolau M, et al. Lowering interleukin-1 activity with anakinra improves myocardial deformation in rheumatoid arthritis. Heart. 2009;95:1502–7.
16. Fine NM, Crowson CS, Lin G, Oh JK, Villarraga HR, Gabriel SE. Evaluation of myocardial function in patients with rheumatoid arthritis using strain imaging by speckle-tracking echocardiography. Ann Rheum Dis. 2014;73:1833–9.
