INTRODUCTION

Strongyloides stercoralis is one of the most common human gastrointestinal parasites in the world. The Okinawa Prefecture of Japan is located in a subtropical region, which is endemic for *S. stercoralis*. With humid and warm soil, subtropical regions provide the preferred external environment for *S. stercoralis*. The filariform larvae, which inhabit the soil, usually infect humans via skin penetration. After infection, the larvae travel to the duodenum to become adult females. Rhabditiform larvae, hatched from eggs produced by the females, are excreted from the human host. However, some larvae reinfect the host through the intestinal mucosa or perianal skin, using a process called autoinfection, which is unique to *S. stercoralis* and HTLV-1 in the Okinawan population has been steadily decreasing over the past 24 years.

The diagnosis of cancer was based on histology, cytology, and radiological findings. Patients diagnosed with metastatic cancer were excluded because the source of primary cancer could not be determined within reasonable time constraints.

Statistical analyses. The χ^2 test was used to compare the prevalence of *S. stercoralis* or HTLV-1 infection between
sexes. The \(\chi^2 \) test was also used to compare the prevalence of each cancer in a crude analysis with a history of \textit{S. stercoralis} or HTLV-1 infection. Logistic regression analyses adjusted for age and sex were used to examine the odds of developing each cancer considering the incidence of \textit{S. stercoralis} or HTLV-1 infection. All statistical analyses and graphical representations were performed using SPSS (version 21.0; IBM Corp., Armonk, NY) software packages. The \(P \) values reported here are two sided.

RESULTS

Prevalence of \textit{S. stercoralis} and HTLV-1 infection. The study population was composed of 3,154 men and 2,055 women, with a mean age of 56.4 ± 17.9 (standard deviation [SD]) years (range: 11–101 years). The total prevalence of \textit{S. stercoralis} infection in our study population was 5.2\% (Table 2, Figure 1A). The prevalence of \textit{S. stercoralis} in the male population (6.3\%) was significantly higher than that in the female population (3.6\%, \(P < 0.001 \)). There were no patients with a \textit{S. stercoralis} infection that were born after 1960. The total prevalence of HTLV-1 infection was 13.6\% (Table 2, Figure 1B). The prevalence of HTLV-1 infection in men and women was 12.3\% and 15.5\%, respectively. HTLV-1 infection was significantly more prevalent in women than in men (\(P < 0.001 \)). The number of \textit{S. stercoralis} and HTLV-1 infections steadily decreased for both sexes in each successive generation.

To evaluate the relationship between \textit{S. stercoralis} infection and HTLV-1 infection, we compared only patients born before 1960. The total number of patients born before 1960 was 4,056 (2,459 men and 1,597 women). Within this population, the prevalence of \textit{S. stercoralis} infection was significantly higher in patients with HTLV-1 infection compared with that in patients without HTLV-1 infection (Tables 3 and 4). The

Table 1

Birth year	Number of \textit{S. stercoralis}-positive patients/number of tested patients (%)	Number of HTLV-1-positive patients/number of tested patients (%)
\(\leq 1919 \)	24/168 (14.8)	31/168 (18.5)
1920–1929	25/168 (14.8)	33/168 (18.5)
1930–1939	36/168 (21.4)	49/168 (29.2)
1940–1949	45/168 (26.8)	56/168 (33.6)
1950–1959	54/168 (32.2)	64/168 (38.2)
1960–1969	63/168 (37.1)	73/168 (43.5)
1970–1979	72/168 (43.1)	82/168 (49.2)
1980–1989	81/168 (48.4)	91/168 (54.1)
\(\geq 1990 \)	90/168 (53.6)	100/168 (60.0)
Total	398/168 (23.5)	499/168 (29.8)

FIGURE 1. The study included 5,209 patients who were admitted to the First Department of Internal Medicine for Infectious, Respiratory, and Digestive Medicine at the University of Ryukyus Hospital in Okinawa, Japan, between 1991 and 2014. \((A) \) The prevalence of \textit{Strongyloides stercoralis} infection in men (circles) and women (squares) by age. \((B) \) The prevalence of human \textit{T}-cell lymphotropic virus type 1 infection in the men (circles) and women (squares) by age.
for each cancer. Although our data suggest that S. stercoralis mean age of 61.8 ± 12.9 (SD) years.

With a mean age of 67.0 ± 10.2 (SD) years. The cancer-free identified 1,352 patients with diagnostically confirmed cancer. Patients are more likely to develop cancer (P < 0.001), respectively. Using a logistic regression model adjusted for age and sex, we calculated the OR stratified for each cancer. Although some publications report younger patients with S. stercoralis infection who have never traveled outside of Japan,15,16 the overall prevalence of S. stercoralis infection has markedly decreased since 1960. This change is most attributed to improvements in public health and sanitation. After World War II, intestinal parasitic infections were common in Okinawa because of poverty, poor sanitation, the use of human waste as fertilizer, and the common practice of barefoot agricultural work.15 At that time, public health centers also lacked the ability to detect, treat, or provide prevention for parasites.17 At that time, public health centers also lacked the ability to detect, treat, or provide prevention for parasites.17 After implementation of the “Zero Parasite Campaign” from 1965 to 1969, the infection rate of parasites was drastically reduced and soil sanitation was improved. Our study also shows that the prevalence of HTLV-1 infection is decreasing steadily, which supports existing literature from Japan and Okinawa.18,19 Satake and others suggested this reduction might be called the “birth cohort effect” whereby the high-prevalence cohort (those born 1930–1960) ages while younger cohorts (those born after 1960) have lower prevalence rates.20 These findings may be the result of increased knowledge regarding HTLV-1 and its transmission routes.18 In Japan, the transmission of virus via transfusion has been eliminated since the implementation of HTLV-1 screening of donated blood in 1986. Japanese mothers have increased the number of bottle-fed babies,21 thereby decreasing the vertical infection of HTLV-1. In 2011, the Japanese Ministry of Health, Labour and Welfare initiated a nationwide program to prevent mother-to-child infection by screening all pregnant women for HTLV-1 infection and recommending bottle feeding for women with positive results.24

The data suggest a strong correlation between S. stercoralis and HTLV-1 infections. The prevalence of S. stercoralis infection was significantly higher (P < 0.001) in patients with HTLV-1 infection compared with that in patients without HTLV-1 infection. Patients infected with HTLV-1 developed S. stercoralis infection 2.4 times more often than noninfected patients. Multiple studies in Okinawa have showed an increased risk for S. stercoralis infection when the host is immuno-compromised,19,25,26 and similar findings were reported in studies conducted in other regions, such as South America.27–30 Furthermore, when the data were stratified for sex, we also found that females were more likely to have concurrent infections of S. stercoralis and HTLV-1. This altered susceptibility is most likely due to the difference in effectiveness of HTLV-1 transmission. It has been documented that

Table 3

	HTLV-1		
	Positive	Negative	Total
Strongyloides stercoralis	82 (2.0%)	190 (4.7%)	272
	575 (14.2%)	3,209 (79.1%)	3,784
Total	657	3,399	4,056

HTLV-1 = human T-cell lymphotropic virus type 1.

Odds ratio = 2.41 (95% confidence interval = 1.83, 3.17; P < 0.001) by χ² analysis.

Using a logistic regression model adjust for age and sex, we calculated the OR stratified for each cancer. HTLV-1 infection was not shown to significantly increase the odds of developing most types of cancer, except for liver cancer and lymphomas other than ATLL. Patients with an HTLV-1 infection in our cohort were approximately twice as likely to develop liver cancer (OR: 1.91, 95% confidence interval [CI]: 1.24, 2.95) and approximately three times more likely to develop lymphoma other than ATLL (OR: 2.76, 95% CI: 1.36, 5.62) compared with patients without HTLV-1.

DISCUSSION

Our results show that there were no patients born after 1960 with S. stercoralis infection in our cohort. Although some publications report younger patients with S. stercoralis infection who have never traveled outside of Japan,15,16 the overall prevalence of S. stercoralis infection has markedly decreased since 1960. This change is most attributed to improvements in public health and sanitation. After World War II, intestinal parasitic infections were common in Okinawa because of poverty, poor sanitation, the use of human waste as fertilizer, and the common practice of barefoot agricultural work.15 At that time, public health centers also lacked the ability to detect, treat, or provide prevention for parasites.17 At that time, public health centers also lacked the ability to detect, treat, or provide prevention for parasites.17 After implementation of the “Zero Parasite Campaign” from 1965 to 1969, the infection rate of parasites was drastically reduced and soil sanitation was improved. Our study also shows that the prevalence of HTLV-1 infection is decreasing steadily, which supports existing literature from Japan and Okinawa.18,19 Satake and others suggested this reduction might be called the “birth cohort effect” whereby the high-prevalence cohort (those born 1930–1960) ages while younger cohorts (those born after 1960) have lower prevalence rates.20 These findings may be the result of increased knowledge regarding HTLV-1 and its transmission routes.18 In Japan, the transmission of virus via transfusion has been eliminated since the implementation of HTLV-1 screening of donated blood in 1986. Japanese mothers have increased the number of bottle-fed babies,21 thereby decreasing the vertical infection of HTLV-1. In 2011, the Japanese Ministry of Health, Labour and Welfare initiated a nationwide program to prevent mother-to-child infection by screening all pregnant women for HTLV-1 infection and recommending bottle feeding for women with positive results.24

The data suggest a strong correlation between S. stercoralis and HTLV-1 infections. The prevalence of S. stercoralis infection was significantly higher (P < 0.001) in patients with HTLV-1 infection compared with that in patients without HTLV-1 infection. Patients infected with HTLV-1 developed S. stercoralis infection 2.4 times more often than noninfected patients. Multiple studies in Okinawa have showed an increased risk for S. stercoralis infection when the host is immuno-compromised,19,25,26 and similar findings were reported in studies conducted in other regions, such as South America.27–30 Furthermore, when the data were stratified for sex, we also found that females were more likely to have concurrent infections of S. stercoralis and HTLV-1. This altered susceptibility is most likely due to the difference in effectiveness of HTLV-1 transmission. It has been documented that

Table 4

Gender-stratified analyses	HTLV-1			
	Positive	Negative	Total	
Men*				
Strongyloides stercoralis	Positive	48 (2.0%)	151 (6.1%)	199
	Negative	311 (12.6%)	1,949 (79.3%)	2,260
	Total	359	2,100	2,459
Women†				
S. stercoralis	Positive	34 (2.1%)	39 (2.4%)	73
	Negative	264 (16.5%)	1,260 (78.9%)	1,524
	Total	298	1,299	1,597

HTLV-1 = human T-cell lymphotropic virus type 1.

*Odds ratio (OR) = 1.99 (95% confidence interval [CI] = 1.41, 2.82; P < 0.001) by χ² analysis.

†OR = 4.16 (95% CI = 2.58, 6.72; P < 0.001) by χ² analysis.
male-to-female sexual transmission is more efficient than female-to-male sexual transmission.29,30 Sexual transmission requires intimate and prolonged contact between partners.31 Several studies have also suggested a correlation between older age and risk of infection, particularly for women, whose increased susceptibility may be due to the thinning of vaginal epithelia tissue after menopause.30,32,33 However, some studies have shown that there are no correlations between the prevalence of \textit{S. stercoralis} and HTLV-1 infections.27,34 Carvalho and others suggested that the controversial results were due to the type of technique used to determine \textit{S. stercoralis} infection: stool examination or serological test.27 In our study, results show a strong correlation between \textit{S. stercoralis} and HTLV-1 infections because only stool examinations were used for determining \textit{S. stercoralis} infection.

No statistically significant associations between \textit{S. stercoralis} infection and the development of any specific types of cancer were found in our data. One study from Okinawa shows a significantly high prevalence of \textit{S. stercoralis} infection in patients with biliary tract cancer.35 Adult \textit{S. stercoralis} persist in human duodenum and upper jejunum, and the nematodes often migrate via the biliary tract. The resulting damage could cause cholangitis or pancreatitis or it could initiate and promote carcinogenesis.36–39 Although our study shows that patients with biliary tract cancer may be almost twice as likely to have evidence of \textit{S. stercoralis} infection as control patients (OR: 1.90, 95% CI: 0.93, 3.87), the evidence for this association is not statistically significant ($P = 0.08$). This result may be due to low statistical power, as only 69 cases of biliary tract cancers were included in our cohort.

Some studies suggest that HTLV-1 infection is associated with many types of cancer, mainly liver and other blood cancers.12,40–42 Other reports showed that HTLV-1 infection may have a protective effect against gastric cancers.10,11,43

Our data show that HTLV-1 infection is not associated with cancer development apart from liver cancer and lymphomas other than ATLL. In addition, although our study found that patients with gastric cancer might be less likely to have evidence of HTLV-1 infection than patients with other types of cancer (OR: 0.75, 95% CI: 0.50, 1.12), the data are not statistically significant ($P = 0.16$). Similarly, we saw a trend that patients with esophageal cancer might be less likely to have evidence of HTLV-1 infection than patients with other types of cancer (OR: 0.56, 95% CI: 0.29, 1.11), but this difference also failed to reach statistical significance ($P = 0.10$). A report from Iran also described a trend toward an association of HTLV-1 infection and esophageal squamous cell carcinoma, but their data similarly failed to reach statistical significance.44

This study found that HTLV-1 infection is associated with the development of liver cancer (OR: 1.91, 95% CI: 1.24, 2.95, $P = 0.003$). Similarly, a previous report showed a high association of HTLV-1 infection with the incidence of liver

Table 5

Cancer Type	S. stercoralis infection rate	P value	OR	95% CI	P value
Control	5.7% (147/2,596)				
Total cancer	8.7% (117/1,352)	$<0.001^*$	1.28	0.98–1.66	0.06§
Esophagus	6.4% (71/1,091)	0.48†	0.65	0.29–1.45	0.29§
Stomach	9.9% (24/242)	0.45†	1.22	0.76–1.97	0.42§
Biliary tract	14.5% (10/69)	0.05†	1.90	0.93–3.87	0.08§
Liver	6.4% (9/140)	0.43†	0.72	0.35–1.47	0.37§
Colon and rectum	7.7% (15/194)	0.68†	0.94	0.53–1.66	0.82§
Lung	9.6% (40/418)	0.46†	1.09	0.73–1.64	0.68§
Pancreas	5.4% (2/37)	0.77†	0.83	0.19–3.55	0.80§
Lymphoma without ATLL	2.7% (1/37)	0.37†	0.28	0.28–2.08	0.21§

Table 6

Cancer Type	HTLV-1 infection rate	P value	OR	95% CI	P value
Control	12.9% (467/3,612)				
Total cancer	15.2% (219/1,437)	0.03*	0.90	0.75–1.09	0.28§
Esophagus	8.8% (10/114)	0.06†	0.56	0.29–1.11	0.10§
Stomach	12.2% (32/262)	0.15†	0.75	0.50–1.12	0.16§
Biliary tract	16.9% (12/71)	0.73†	0.96	0.53–1.84	0.90§
Liver	22.3% (32/143)	0.01†	1.91	1.24–2.95	0.003§
Colon and rectum	15.0% (30/200)	1.00†	0.91	0.60–1.40	0.68§
Lung	13.5% (60/444)	0.23†	0.81	0.58–1.12	0.19§
Pancreas	7.8% (7/338)	0.26†	0.45	0.14–1.49	0.19§
Lymphoma without ATLL	28.5% (12/42)	0.03†	2.76	1.36–5.62	0.005§

ATLL = adult T-cell leukemia/lymphoma; CI = confidence interval; OR = odds ratio.

\textsuperscript{A χ2 analysis was used to compare \textit{S. stercoralis} infection between patients with cancer (total cancer) and control patients (control).}

\textsuperscript{A logistic regression analysis, adjusted for age and sex, was used to compare \textit{S. stercoralis} infection between patients with each type of cancer and patients with other types of cancer.}
cancer. Here, we also showed that HTLV-1 infection in patients with non-ATLL lymphoma was significantly higher than that in patients with other types of cancer (OR: 2.76, 95% CI: 1.36, 5.62, P = 0.005). Although HTLV-1 has not been previously associated with the occurrence of lymphoma other than ATLL, some reports have suggested that HTLV-1 carriers with B-cell lymphoma tend to have worse prognosis or that the frequency of primary malignant neoplasms in HTLV-1 carriers is higher than that in seronegative cases. Another report also suggested that the interaction between Epstein–Barr virus and HTLV-1 could promote T- and B-cell dysfunctions and cell proliferation and inhibit apoptosis, favoring lymphomagenesis.

Some limitations exist in this study. First, only the patients that were admitted to the Department of Infectious, Respiratory, and Digestive Medicine University of the Ryukus Hospital and tested for HTLV-1 or S. stercoralis were included. The use of this population may introduce a selection bias in our results. Second, we did not examine the effect of confounding variables in our logistic regression, including other known carcinogens, such as smoking, drinking, parasitic infections other than S. stercoralis, and viral infections other than HTLV-1 (hepatitis B/C virus, Epstein–Barr virus, etc.). All patients with HTLV-1 carrier status were included in this study regardless of age. The number of young patients that were included in the HTLV-1-associated cancer development sub-analysis may have skewed the results in the opposite direction. To help normalize the results, age and sex were included in the logistic regression model to eliminate those biases.

CONCLUSIONS

Our study indicates that the prevalence of S. stercoralis and HTLV-1 infections have been decreasing in recent years. Strongyloides stercoralis infection was 2.4 times more likely in patients with HTLV-1 infection than in patients without it. Diligence toward the prevention of these diseases through decreased poverty and increased sanitation has proven effective. Continued improvements in education, testing, and treatment could easily eliminate S. stercoralis infections and drastically reduce the prevalence of HTLV-1 infections. In addition, HTLV-1 infection in patients with hepatic cancer or lymphomas other than ATLL appears to be significantly higher than that in patients with other types of cancer. Further investigation regarding the possible mechanisms behind these associations is needed.

Received July 31, 2015. Accepted for publication October 19, 2015.

Published online November 30, 2015.

Authors’ addresses: Teruhisa Tanaka, Tetsuo Hirata, Gretchen Parrott, Miwa Higashiarakawa, Takeshi Kinjo, Tetsu Kinjo, and Jiro Fujita, Department of Infectious, Respiratory, and Digestive Medicine, Faculty of Medicine, University of the Ryukus, Okinawa, Japan. E-mails: teruhisa.t@gmail.com, b000314@med.u-ryukyu.ac.jp, groscope1@gmail.com, higashiarakawa@mail.goo.ne.jp, kumanomishit@yahoo.co.jp, tetsu19761976@yahoo.co.jp, and fujita@med.u-ryukyu.ac.jp. Akira Hokama, Department of Endoscopy, University of Ryukus Hospital, Okinawa, Japan. E-mail: hokama-ai@med.u-ryukyu.ac.jp.

This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

REFERENCES

1. Asato R, Nakasone T, Yoshida C, Arakakai T, Ikeshiro T, Murakami H. 1992. Current status of Strongyloides infection in Okinawa, Japan. Jpn J Trop Med Hyg 20: 169–173.
2. Toma H, Shimabukuro I, Kobayashi J, Tasaki T, Takara M, Sato Y. 2000. Community control studies on Strongyloides infection in a model island of Okinawa, Japan. Southeast Asian J Trop Med Public Health 31: 383–387.
3. Zaha O, Hirata T, Kinjo F, Saito A, 2000. Strongyloidiastis–progress in diagnosis and treatment. Intern Med 39: 695–700.
4. Poiesz BJ, Ruscetti FW, Gazdar AF, Bunn PA, Minna JD, Gallo RC. 1980. Detection and isolation of type C retrovirus particles from fresh and cultured lymphocytes of a patient with cutaneous T-cell lymphoma. Proc Natl Acad Sci USA 77: 7415–7419.
5. Yoshida M, Miyoshi I, Hinuma Y. 1982. Isolation and characterization of retrovirus from cell lines of human T-cell leukemia and its implication in the disease. Proc Natl Acad Sci USA 79: 2031–2035.
6. Proietti FA, Carneiro-Proietti AB, Catalan-Saorees BC, Murphy EL. 2005. Global epidemiology of HTLV-1 infection and associated diseases. Oncogene 24: 6058–6068.
7. Tajima K. 1988. The third nation-wide study on adult T-cell leukemia/lymphoma (ATL) in Japan: characteristic patterns of HLA antigen and HTLV-1 infection in ATL patients and their relatives. Int J Cancer 41: 505–512.
8. Wilks R, Hanchard B, Morgan O, Williams E, Cranston B, Smith ML, Rodgers-Johnson P, Manns A, 1996. Patterns of HTLV-1 infection among family members of patients with adult T-cell leukemia/lymphoma and HTLV-1 associated myelopathy/tropical spastic paraparesis. Int J Cancer 65: 272–273.
9. Khurana S, Dubey ML, WALL N. 2005. Association of parasitic infections and cancers. Indian J Med Microbiol 23, 74–79.
10. Arisawa K, Sobue T, Yoshihi I, Soda M, Shirahama S, Doi H, Katamine S, Saito H, Urata M. 2003. Human T-lymphotropic virus type-1 infection, survival and cancer risk in southwestern Japan: a prospective cohort study. Cancer Causes Control 14: 889–896.
11. Hirata T, Nakamoto M, Nakamura M, Kinjo N, Hokama A, Kinjo F, Fujita J. 2007. Low prevalence of human T cell lymphotropic virus type 1 infection in patients with gastric cancer. J Gastroenterol Hepatol 22: 2238–2241.
12. Arisawa K, Suda M, Akahoshi M, Fujiwara S, Uemura H, Hiyoshi M, Takeda H, Kashino W, Suyama A. 2006. Human T-cell lymphotropic virus type-1 infection and risk of cancer: 15.4 year longitudinal study among atomic bomb survivors in Nagasaki, Japan. Cancer Sci 97: 535–539.
13. Arakaki T, Iwanaga M, Kinjo F, Saito A, Asato R, Ikeshiro T. 1990. Efficacy of agar-plate culture in detection of Strongyloides stercoralis infection. J Parasitol 76: 425–428.
14. Fujino R, Kawata T, Msuda M, Matsumoto H, Mizukoshi M, Imai J. 1991. Improvement of gelatin particle agglutination test for detection of anti-HTLV-1 antibody. Jpn J Cancer Res 82: 367–370.
15. Aoyama H, Hirata T, Sakugawa H, Watanabe T, Miyagi S, Maeshiro T, Chinen T, Kawane M, Zaha O, Nakayoshi T, Kinjo F, Fujita J. 2007. An inverse relationship between autoimmune liver diseases and Strongyloides stercoralis infection. Am J Trop Med Hyg 76: 972–976.
16. Yoshikawa M, Ouji Y, Nakamura-Uchiyama F, Nawa Y. 2014. Analysis of strongyloidiasis cases reported in Japan in the recent period, 2000–2013 [in Japanese]. Clin Parasitol 25: 20–26.
17. Ogawa S, Boostrom E. 2009. Okinawa’s Post-War Health Recovery and Development: Relevance for International Health. Kanagawa, Japan: Seizansha.
18. Sataka M, Yamaguchi K, Tadokoro K. 2012. Current prevalence of HTLV-1 in Japan as determined by screening of blood donors. J Med Virol 84: 327–335.
19. Hirata T, Uchima N, Kishimoto K, Zaha O, Kinjo N, Hokama A, Sakugawa H, Kinjo F, Fujita J. 2006. Improvement of host immune response against Strongyloides stercoralis by human T cell lymphotropic virus type 1 infection. Am J Trop Med Hyg 74: 246–249.
20. Inaba S, Sato H, Okochi K, Fukuda K, Takakura F, Tokunaga K. 1989. Prevention of transmission of human T-lymphotropic
20. Ando Y, Saito K, Nakano S, Kamimoto K, Furuki K, Tanigawa T, Hashimoto H, Moriyama I, Ichijo M, Toyama T, 1989. Bottle-feeding can prevent transmission of HTLV-1 from mothers to their babies. *J Infect* 19: 25–29.

21. Kinosita K, Hino S, Amagasaki T, Ikeda S, Yamada Y, Suzuyama J, Momita S, Toriya K, Kamihira S, Ichimaru M, 1984. Demonstration of adult T-cell leukemia virus antigen in milk from three sero-positive mothers. *Gan* 75: 103–105.

22. Nakano S, Ando Y, Ichijo M, Moriyama I, Saito S, Sugamura K, Hinuma Y, 1984. Search for possible routes of vertical and horizontal transmission of adult T-cell leukemia virus. *Gan* 75: 1044–1045.

23. The Japanese Ministry of Health, Labour and Welfare study group, 2011. HTLV-1 Carrier, Guide of the Instruction. Japan. [In Japanese].

24. Nakada K, Kohakura M, Komoda H, Hinuma K, 1984. High incidence of HTLV antibody in carriers of *Strongyloides stercoralis*. *Lancet* 1: 633.

25. Hayashi J, Kishihara Y, Furusyo N, Yamaji K, Kawakami K, Murakami H, Kashiwagi S, 1997. Correlation between human T cell lymphotropic virus type-1 and *Strongyloides stercoralis* infections and serum immunoglobulin E responses in residents of Okinawa, Japan. *Am J Trop Med Hyg* 56: 71–75.

26. Catralho EM, Da Fronseca Porto A, 2004. Epidemiological and clinical interaction between HTLV-1 and *Strongyloides stercoralis*. *Parasite Immunol* 26: 487–497.

27. Gotuzzo E, Terashima A, Alvarez H, Tello R, Infante R, Watts DM, Freedman DO, 1999. *Strongyloides stercoralis* hyper-infection associated with human T cell lymphotropic virus type-1 infection in Peru. *Am J Trop Med Hyg* 60: 146–149.

28. Montes M, Sanchez C, Verdonck C, Lake JE, Gonzalez E, Lopez G, Terashima A, Nolan T, Lewis DE, Gotuzzo E, White AC Jr, 2009. Regulatory T cell expansion in HTLV-1 and strongyloidiasis co-infection is associated with reduced IL-5 responses to *Strongyloides stercoralis* antigen. *PLoS Negl Trop Dis* 3: e456.

29. Stuver SO, Tachibana N, Okayama A, Shoiri S, Tsunetoshi Y, Tsuda K, Mueller NE, 1993. Heterosexual transmission of human T cell leukemia/lymphoma virus type I among married couples in southwest Japan: an initial report from the Miyazaki Cohort Study. *J Infect Dis* 167: 57–65.

30. Moriuchi H, Masuzaki H, Doi H, Katamine S, 2013. Mother-to-child transmission of human T-cell lymphotropic virus type 1. *Pediatr Infect Dis J* 32: 175–177.

31. Roucoux DF, Wang B, Smith D, Nass CC, Smith J, Hutching ST, Newman B, Lee TH, Chafets DM, Murphy EL, HTLV Outcomes Study Investigators, 2005. A prospective study of sexual transmission of human T lymphotropic virus (HTLV)-I and HTLV-II. *J Infect Dis* 191: 1490–1497.

32. Melbye M, Poulsen AG, Gallo D, Pedersen JB, Biggar RJ, Larsen O, Dias F, Aaby P, 1998. HTLV-1 infection in a population-based cohort of older persons in Guinea-Bissau, West Africa: risk factors and impact on survival. *Int J Cancer* 76: 293–298.

33. Buonfrate D, Formenti F, Perandini F, Bisoffi Z, 2015. Novel approaches to the diagnosis of *Strongyloides stercoralis* infection. *Clin Microbiol Infect* 21: 543–552.

34. Hirata T, Kishimoto K, Kinjo N, Hokama A, Kinjo F, Fujita J, 2007. Association between *Strongyloides stercoralis* infection and biliary tract cancer. *Parasitol Res* 101: 1345–1348.

35. Jones N, Cocchiarella A, Faris K, Heard SO, 2010. Pancreatitis associated with *Strongyloides stercoralis* infection in a patient chronically treated with corticosteroids. *J Intensive Care Med* 25: 172–174.

36. Suefuji H, Ohshima K, Hayabuchi N, Nakamura K, Kikuchi M, 2003. HTLV-1 carriers with B-cell lymphoma of localized stage head and neck: prognosis, clinical and immunophathological features. *Br J Haematol* 123: 705–706.

37. Delaroque AE, Hadengue A, Degott C, Vilgrain V, Erlinger S, Benhamou JP, 1994. Biliary obstruction resulting from *Strongyloides stercoralis* infection. Report of a case. *Gut* 35: 705–706.

38. Kozuru M, Uike N, Mutia K, Goto T, Suehiro Y, Nagano M, 1996. High occurrence of primary malignant neoplasms in patients with adult T-cell leukemia/lymphoma, their siblings, and their mothers. *Cancer* 78: 1119–1124.

39. Beltran BE, Quijones P, Morales D, Revilla JC, Alva JC, Castillo JJ, 2012. Diffuse large B-cell lymphoma in human T-lymphotropic virus type 1 carriers. *Leukemia Res Treat* 2012: 262363.

40. Tahaei SM, Mohebbi SR, Fatemi SR, Mohammadi P, Malek FN, Azimzadeh P, Almasi S, Mirsattari D, Zali MR, 2011. Low frequency of human T-cell lymphotropic virus 1 antibodies in Iranian gastric cancer patients in comparison to controls. *Asian Pac J Cancer Prev* 12: 2447–2450.

41. Mirsadraee M, Kalantari MR, Saffari A, Mahmoudi M, 2007. Association of HTLV-1 infection and esophageal squamous cell carcinoma. *J Gastrointest Cancer* 38: 15–18.