Progressive troglomorphism of ambulatory and sensory appendages in three Mexican cave decapods

LUIS M. MEJÍA-ORTÍZ¹, RICHARD G. HARTNOLL² & MARILÚ LÓPEZ-MEJÍA¹

¹Lab. de Bioespeleología y Carcinología, Dpto. Ciencias y Humanidades, Universidad de Quintana Roo Unidad Cozumel, Cozumel, Quintana Roo, Mexico, and ²Port Erin Marine Laboratory, University of Liverpool, Port Erin, Isle of Man, British Isles

(Accepted 6 February 2006)

Abstract
Sensory and ambulatory appendages were compared between epigeal and cave species of prawn and crayfish from Mexico. The cave prawn Macrobrachium villalobosi was compared with the epigeal M. totonacum. The cave crayfish Procambarus cavernicola and P. oaxacae reddelli were compared with the epigeal P. olmecorum. In both Macrobrachium and Procambarus the antennules and antennae of the cave species were longer in proportion to carapace length than in epigeal species. In the crayfish the cave species had a longer and narrower first pereiopod, and also showed a greater development of setation on the antennules, antennae, and carapace. These are all considered examples of progressive troglomorphism. They will improve non-visual sensory capability in the aphotic and resource-poor cave environment.

Keywords: Caves, decapods, morphological adaptations, progressive troglomorphism

Introduction
Animals inhabiting caves have developed a variety of adaptations, or troglomorphisms, to better survive in this extreme environment. Some are regarded as progressive or constructive adaptations, such as enlargement of ambulatory, gnathal, and sensory appendages (Cooper 1969; Jones et al. 1992; Turk et al. 1996); increased setation to improve chemical receptor capacity (Allegrucci et al. 1992; Jones et al. 1992; Turk et al. 1996); development of specialized structures for lipid storage in the hepatopancreas (Vogt and Štrus 1992, 1999); increase of yolk in eggs to extend incubation time and decrease the larvae stages (Poulson and White 1969; Ueno 1987; Wilkens 1988, 1992; Culver et al.
1995; Gillieson 1996); improved spatial orientation (Kellie et al. 2000; Li and Cooper 2001, 2002); and maximal feeding efficiency (Abele and Felgenhauer 1985).

Other adaptations involve the reduction or loss of structures, termed regressive evolution, regressive adaptation, or structural reduction (Lincoln et al. 1982; Banister 1984; Culver 1985; Kane and Richardson 1985). Examples include reduction or lack of pigmentation, reduction and loss of visual function, reduction of metabolic activity, and loss of the internal clock mechanism (Culver 1982; Hüppop 1985; Lamprecht and Weber 1985; Sket 1985; Camacho et al. 1992; Wilkens 1992).

This study presents an analysis of aspects of the morphology of three Mexican cave decapods from two families (Cambaridae and Palaemonidae) in comparison with epigeal congeners from the same areas. The two cave crayfish, Procambarus cavernicola Mejía-Ortíz et al., 2003 and P. oaxacae reddelli Hobbs, 1973a, are compared with the epigeal P. olmecorum Hobbs, 1987. The cavernicolous prawn Macrobrachium villalobosi Hobbs, 1973b is compared with the epigeal M. totonacum Mejia et al., 2003. The structures examined are those suspected as showing progressive trogloblomorphism, and possible causal factors are discussed. An earlier paper (Mejía-Ortíz and Hartnoll 2005) examined visual structures and pigmentation in the same crayfish species as examples of regressive troglomorphism.

Study area

The study area lies within the geological province of Cinturón Mexicano de Pliegues y Fallas, in the karst area of Sistema de la Sierra Madre del Sur, 18°15’–18°30’N, 96°30’–96°45’W (Figure 1). The following sites were sampled:

1. The Gabriel Cave in the Mojarra Hills, 18°27’25”N, 96°40’34”W, altitude 110 m. This is the habitat of Procambarus cavernicola and Macrobrachium villalobosi (Mejía-Ortíz et al. 2003).

2. The Mojarra Hill Stream, rising at 311 m, 18°25’6”N, 96°39’2”W. After flowing for approximately 500 m the waters vanish from the surface. The stream has a maximum width of 3 m, and several pools less than 1.5 m deep. During the dry season the stream disappears. This is the habitat of Procambarus olmecorum.

3. The San Antonio River Cave, entrance at 90 m, 18°28’8”N, 96°38’6”W. This cave is the habitat of Procambarus oaxacae reddelli and M. villalobosi.

4. The San Antonio River, emerging from the entrance to the San Antonio River Cave. The river forms a pool approximately 10 m wide at its origin (Mejía et al. 2003). This is the location of Macrobrachium totonacum.

Material and methods

The following material was collected at the above sites: Procambarus oaxacae reddelli, 29♀, 30♂; P. cavernicola, 68♀, 32♂; P. olmecorum, 64♀, 41♂; Macrobrachium villalobosi, 4♀, 2♂; and M. totonacum, 24♀, 8♂.

Specimens were sexed, and measured for total body length (TL), carapace length (CL), and length of antennules and antennae (right external branch). The first (crayfish) or second (prawns) pereiopods were measured for length and width of palm (PL and PW), length of merus (M), carpus (C), propodus (P), and dactyl (D). All of the above were made with callipers to a precision of ±0.01 mm.
The above measurements were used to calculate a series of ratios: (1) total length/carapace length; (2) antennule length/carapace length; (3) antennal length/carapace length; (4) propodus length/carapace length; (5) palm length/palm width; (6) propodus length/dactyl length; (7) merus length/carpus length. These ratios were compared between sexes and species by t-test or ANOVA as appropriate.

The type and density of setae were examined on the antennules and antennae (*Macrobrachium* and *Procambarus*), and the carapace and dactyl of the third maxilliped (*Procambarus* only). An electron microscope was used for this (Hitachi Scan Electron 2460).

Results

Sexual dimorphism

In the three crayfish species there were no significant differences between sexes in any of the ratios. In *Macrobrachium totonacum* significant differences between sexes were found only for the ratios antennule/carapace length, antennae/carapace length and dactyl/palm length (Table I). Due to the small sample size for *M. villalobosi* it was not possible to examine sexual dimorphism.
Comparison between species of Procambarus

Since the preceding analysis showed no significant differences between sexes, data from both sexes were combined for inter-specific comparison. For each ratio the mean values and results of the ANOVA are given in Table II. All were significantly different, except the ratio of total length/carapace length.

The ANOVA results were further examined by LSD tests. These showed that all three species differed significantly in the ratio of antennae/carapace length. However, in the other six ratios, P. olmecorum differed significantly from both P. cavernicola and P. oaxacae reddelli, but there were no significant differences between the latter two species.

Weight/length relationships were also compared. The regressions of wet weight on total length were as follows:

- **P. olmecorum** \(\log_{10} WW = -3.962 + 2.58 \log_{10} TL \)
- **P. oaxacae redelli** \(\log_{10} WW = -5.132 + 3.28 \log_{10} TL \)
- **P. cavernicola** \(\log_{10} WW = -3.416 + 2.24 \log_{10} TL \)

These regressions were used to calculate the weights for specimens of each species with a total length of 40 mm (a median value for the size ranges studied): the values were 1.49, 1.32, and 1.46 g, respectively.

Table I. *Macrobrachium totonacum*—comparison of proportions between females and males (mean values for the ratios are given for each sex, and the results of comparison by \(t \)-test).

Ratio	Females	Males	\(P \) value
Total length/carapace length	2.34 ± 0.369	2.35 ± 0.405	0.8213
Antennule/carapace length	1.10 ± 0.091	1.50 ± 0.118	0.0025\(^a\)
Antenna/carapace length	2.20 ± 0.363	3.0 ± 0.441	0.0025\(^a\)
Propodus/carapace length	0.43 ± 0.121	0.41 ± 0.155	0.068
Propodus/dactyl length	2.34 ± 0.247	2.16 ± 0.190	0.2747
Palm length/palm width	3.43 ± 0.372	3.41 ± 0.382	0.9094
Dactyl/palm length	0.72 ± 0.081	0.88 ± 0.106	0.0204\(^a\)
Merus/carpus length	0.88 ± 0.349	0.81 ± 0.304	0.1325

\(^a\)Significantly different.

Table II. Comparison of proportions between Procambarus olmecorum, P. cavernicola, and P. oaxacae reddelli (mean values are given for the ratios, and results of comparison by ANOVA).

Ratio	P. olmecorum	P. cavernicola	P. oaxacae reddelli	\(P \) value
Total length/carapace length	2.23 ± 0.369	2.19 ± 0.345	2.14 ± 0.113	0.251
Antennule/carapace length	0.37 ± 0.091	0.50 ± 0.118	0.50 ± 0.098	<0.0001\(^a\)
Antenna/carapace length	1.27 ± 0.363	1.66 ± 0.441	1.85 ± 0.354	<0.0001\(^a\)
Propodus/carapace length	0.48 ± 0.121	0.68 ± 0.155	0.69 ± 0.161	<0.0001\(^a\)
Propodus/dactyl length	1.82 ± 0.247	1.92 ± 0.190	1.88 ± 0.165	0.0052\(^a\)
Palm length/palm width	1.56 ± 0.372	2.29 ± 0.382	2.43 ± 0.398	<0.0001\(^a\)
Dactyl/palm length	1.07 ± 0.207	1.00 ± 0.247	0.99 ± 0.106	0.027\(^a\)
Merus/carpus length	1.83 ± 0.349	2.20 ± 0.436	2.10 ± 0.304	<0.0001\(^a\)

\(^a\)Significantly different.
Comparison between species of *Macrobrachium*

Although there were some differences between sexes in *M. totonacum* (Table I), the small samples of *M. villalobosi* necessitated combination of data from both sexes for comparison between the two species (Table III). There were no statistical differences in the ratios of total length/carapace length, antennule length/carapace length, or palm length/palm width. *Macrobrachium totonacum* was significantly higher for the ratios propodus/dactyl length, and propodus/carapace length. *Macrobrachium villalobosi* was significantly higher for the ratios merus/carpus length, antennae/carapace length, and dactyl/palm length.

Studies of setation

Setation on the carapace and the dactyl of the third maxilliped are shown in Figure 2 for the three species of *Procambarus*. On the carapace there are numerous pinnate setae in all species (Figure 2A, B, D, E, G, H), but they are denser in the two stygobite species. The mean densities were four setae per mm for the epigeal *P. olmecorum*, compared with six setae per mm2 for *P. oaxacae reddelli* and eight setae per mm2 for *P. cavernicola*. The dactyl of the third maxilliped in *P. cavernicola* was longer and with abundant setation (Figure 2I), but in *P. oaxacae reddelli* (Figure 2F) and *P. olmecorum* (Figure 2C) it was shorter and with fewer setae.

On both the antennules and antennae the epigeal *P. olmecorum* (Figure 3A, B) had notably fewer setae than the stygobite species *P. cavernicola* (Figure 3C, D) and *P. oaxacae reddelli* (Figure 3E, F). Setae are particularly abundant on the antennae of *P. oaxacae reddelli*. However, differences were less apparent in the *Macrobrachium* species. The antennae were very similar in setation in the two species (Figure 3G, I). At the tip of the antennule *M. villalobosi* has more setae along the shaft (Figure 3J), whilst on *M. totonacum* they are concentrated on the apex (Figure 3H).

Discussion

Sexual dimorphism has been widely documented for epigeal crayfish and prawns (Weagle and Ozburn 1970; Lobao et al. 1986; Valenti et al. 1987, 1994; Hernández-Guzmán et al. 1999), notably in the proportions of the chelae. In the epigeal environment the main selective force that induces sexual differentiation in chelae is reproductive behaviour, since in general males show aggressive and dominant behaviour to conspecifics (Bovbjerg 1970;

Ratio	*M. totonacum*	*M. villalobosi*	*P* value
Total length/carapace length	2.34 ± 0.097	2.28 ± 0.109	0.1677
Antennule/carapace length	2.12 ± 0.456	2.55 ± 0.243	0.0527
Antenna/carapace length	2.40 ± 0.684	3.79 ± 0.218	<0.0001*
Propodus/carapace length	0.41 ± 0.065	0.33 ± 0.032	0.0090*
Propodus/dactyl length	2.21 ± 0.269	1.81 ± 0.253	0.0455*
Palm length/palm width	3.42 ± 0.308	3.62 ± 0.226	0.1963
Dactyl/palm length	0.79 ± 0.140	1.05 ± 0.086	0.00380*
Merus/carpus length	0.85 ± 0.095	0.75 ± 0.038	0.0411*

*Significantly different.
Rabeni 1985; Söderbäck 1991). However, our results show no sexual differentiation for cave crayfish in the shape and size of chela (data were inadequate to test for sexual differences in the cave prawn studied). This is because the elongation of the chelae, that characterizes cave crayfish (Hobbs et al. 1977; Cooper and Cooper 1997), occurs similarly in both sexes. In the cave environment the main selective force driving the elongation of the ambulatory and sensory appendages is the limited availability of food, which is characteristic from these environments (Barr 1967; Poulson and White 1969; Sbordoni 1980; Culver 1982), a situation with equal influence on both females and males.

Hobbs et al. (1977) considered that cave crustaceans showed a more delicate construction than their epigean relatives, because the cave species show ambulatory and sensorial appendages more slender than epigean crustaceans. However, this study indicated that the cave species showed a similar construction of the body in comparison with their epigean congener, at least in terms of the total length/carapace length ratio. Nor did the weight/length relationships for the Procambarus species show consistently lower values for the cave species, though P. oaxacae reddelli is slightly lighter.

The main morphological differences observed between epigean and cave species involved length of antennules and antennae, and length and proportions of the first (crayfish) or second (prawns) pereiopods, structures of sensory importance in the cave environment. In

Figure 2. Electron micrographs of carapace surface, magnification of surface, and dactyl of third maxilliped, respectively, of Procambarus ohmecorum (A–C), P. oaxacae reddelli (D–F), and P. cavernicola (G–I).
Figure 3. (A–F) Electron micrographs of segments from antennae (left column) and antennules external branch (right column), respectively, of *Procambarus olmecorum* (A, B), *P. cavernicola* (C, D), and *P. oaxacae reddelli* (E, F); (G–J) electron micrographs of segments of antennae (left column) and tip of antennules (right column), respectively, of *M. totonacum* (G, H) and *M. villalobosi* (I, J).
both *Macrobrachium* and *Procambarus* the antennules and antennae of the cave species studied here are longer in proportion to carapace width than in the epigean species. In the *Macrobrachium* spp. there are differences in the proportions of the second pereiopod, but the pattern is not clear. However, in *Procambarus* the cave species have a longer and narrower first pereiopod. In *Procambarus* the cave species also show a greater development of setation on the antennules, antennae, and carapace.

Such modifications, which will improve sensory capability, have been considered as progressive troglomorphism (Cooper 1969; Jones et al. 1992; Turk et al. 1996). Culver (1987) stated that the more highly cave adapted species should have relatively longer antennae, as seen here. In a comparison of cave and surface-dwelling species of the crayfish *Orconectes*, Ziemba et al. (2003) found longer antennules in the cave species. Possibly *P. oaxacae reddelli* shows a more progressive troglomorphism than *P. cavernicola*: their sensory setae are more abundant, the ratio between antennal length and carapace length is greater, and the chelae are narrower (though the last two differences were not found significant).

There are clear examples of progressive troglomorphism in the cave crayfish studied, complementing the regressive troglomorphism earlier described in the same species (Mejia-Ortiz and Hartnoll 2005).

Acknowledgements

This work is part of the Ph.D. dissertation of L.M.M.O at the University of Liverpool and Universidad Autónoma Metropolitana-Xochimilco. We wish to thank the Guzmán family of Buenos Aires, Oaxaca for their hospitality. Thanks are given to A. Heredia, L. Mejia, I. Diaz, R. Garcia, M. Bautista, and J. Cruz-Hernández for their help in the field-work. L.M.M.O. thanks the people and staff from Universidad Autónoma Metropolitana-Xochimilco and the University of Liverpool for supporting his postgraduate studies. This collaboration was also supported by PROMEP-SEP to Formación y Fortalecimiento del Cuerpo Académico de Turismo (CAT-UQROO-Cozumel), and is a research paper of the Biospeleology and Carcinology Lab (UQROO-Cozumel).

References

Abele LG, Felgenhauer BE. 1985. Observations on the ecology and feeding behaviour of the anchialine shrimp *Procaris ascensionis*. Journal of Crustacean Biology 5:15–24.

Allegrucci G, Baldari F, Cesaroni D, Thorpe RS, Sbordoni V. 1992. Morphometric analysis of interspecific and microgeographic variation of crayfish from Mexican cave. Biological Journal of the Linnean Society 47:455–468.

Banister KE. 1984. A subterranean population of *Garra barreimiae* (Teleostei: Cyprinidae) from Oman, with comments on the concept of regressive evolution. Journal of Natural History 18:927–938.

Barr TC. 1967. Observations on the ecology of caves. The American Naturalist 101:475–492.

Bovbjerg RV. 1970. Ecological isolation and competitive exclusion in two crayfish (*Orconectes virilis* and *Orconectes immunis*). Ecology 51:225–236.

Camacho AI, Bello E, Becerra JM, Vatican I. 1992. A natural history of the subterranean environment and its associated fauna. In: Camacho AI, editor. The natural history of biospeleology. Madrid: Museo Nacional de Ciencias Naturales/Consejo Superior de Investigaciones Científicas. p 171–198.

Cooper MR. 1969. Sensory specialization and allometric growth in cavernicolous crayfishes. Proceedings of the Fourth International Congress of Speleology, Ljubljana, Yugoslavia 4/5:203–208.

Cooper JE, Cooper MR. 1997. New troglobitic crayfish of the genus *Orconectes*, subgenus *Orconectes* (Decapoda: Cambaridae), endemic to Shelta Cave, Huntsville, Alabama. Journal of Cave and Karst Studies 59:119–127.

Culver DC. 1982. Cave life: evolution and ecology. Cambridge (MA): Harvard University Press. 189 p.

Culver DC, editor. 1985. Regressive evolution. The National Speleological Society Bulletin. Journal of Caves and Karts Studies 47:70–162.
Culver DC. 1987. The role of gradualism and punctuation in cave adaptation. International Journal of Speleology 16:17–31.

Culver DC, Kane TC, Fong W. 1995. Adaptation and natural selection in caves. Cambridge (MA): Harvard University Press. 223 p.

Gillieson D. 1996. Caves: process, development and management. Oxford: Blackwell Publishers. 324 p.

Hernández-Guzmán MA, Cruz-Hernández J, Mejía-Ortiz LM, Ortega P, Viccon-Pale JA. 1999. Relative abundance and relative growth of the population of prawns Macrobrachium heterochirus (Weigmann, 1836) between 1983–84 and 1996–97 in the Huitzilapan river basin, Veracruz, Mexico. In: Vaupel Klein JC, Schram FR, editors. Crustacean issues 12: the biodiversity crisis and Crustacea no. 2. Rotterdam: A. A. Balkema. p 739–749.

Hobbs HH Jr. 1973a. Three new troglobitic decapod crustaceans from Oaxaca, Mexico. Association for Mexican Cave Studies Bulletin 5:25–38.

Hobbs HH Jr. 1973b. Two new troglobitic shrimps (Decapoda: Alpheidae and Palaemonidae) from Oaxaca, Mexico. Association for Mexican Cave Studies Bulletin 5:73–80.

Hobbs HH Jr. 1987. On the identity of Astacus (Cambarus) mexicanus Erichson (1846) and Cambarus aztecus Saussure (1857) (Decapoda: Cambaridae) with the description of Procambarus olmecorum, new species, from Veracruz, Mexico. Proceedings of the Biological Society of Washington 100:198–215.

Hobbs HH Jr, Hobbs HH III, Daniel MA. 1977. A review of the troglobitic decapod crustaceans of the Americas. Smithsonian Contributions to Zoology 244:1–154.

Hüppop K. 1985. The role of metabolism in the evolution of cave animals. The National Speleological Society Bulletin. Journal of Caves and Karst Studies 47:136–146.

Jones R, Culver DC, Kane TC. 1992. Are parallel morphologies of cave organisms the result of similar selection pressures? Evolution 46:353–365.

Kane TC, Richardson RC. 1985. Regressive evolution: an historical perspective. The National Speleological Society Bulletin. Journal of Caves and Karst Studies 47:71–77.

Kellie S, Greer J, Cooper RL. 2000. Alterations in habituation of the tail flip response in epigean and troglobitic crayfish. Journal of Experimental Zoology 290:163–176.

Lamprecht G, Weber F. 1985. Time-keeping mechanism and their ecological significance in cavernicolous animals. The National Speleological Society Bulletin. Journal of Caves and Karst Studies 47:147–162.

Li H, Cooper RL. 2001. Spatial familiarity in the blind cave crayfish, Orconectes australis packardi. Crustaceana 74:417–423.

Li H, Cooper RL. 2002. The effect of ambient light on blind cave crayfish: social interactions. Journal of the Crustacean Biology 22:449–458.

Lincoln RJ, Boxshall GA, Clark PF. 1982. A dictionary of ecology, evolution and systematics. London: Cambridge University Press. 298 p.

Lobao VL, Valenti WC, De Mello JTC. 1986. Crescimento relativo de Macrobrachium carcinus (L.) (Decapoda, Palaemonidae). Bolletim do Instituto de Pesca Sao Paulo 13:105–109.

Mejía LM, Alvarez F, Hartnoll RG. 2003. A new species of freshwater prawn Macrobrachium totonacum (Decapoda: Palaemonidae) with abbreviated development from Mexico. Crustaceana 76:77–86.

Mejía-Ortiz LM, Hartnoll RG. 2005. Modifications of eye structure and integumental pigment in two cave crayfish. Journal of Crustacean Biology 25:480–487.

Mejía-Ortiz LM, Hartnoll RG, Viccon-Pale JA. 2003. A new stygobitic crayfish from Mexico, Procambarus cavernicola (Decapoda: Cambaridae), with a review of cave dwelling crayfishes in Mexico. Journal of Crustacean Biology 23:391–401.

Poulson TL, White WB. 1969. The cave environment. Science 165:971–981.

Rabeni CF. 1985. Resource partitioning by stream-dwelling crayfish: the influence of body size. American Midland Naturalist 113:20–29.

Sbordoni V. 1980. Strategie adattative begli animali cavernicoli: uno studio di genetica ed ecologia di popolazione. Accademia Nazionale dei Lincei, Contributi del Centro Linceo Interdisciplinare, Scienze Matematiche e Iori Applicazioni 51:61–100.

Smet B. 1985. Why all cave animals do not look alike—a discussion on adaptive value of reduction processes. The National Speleological Society Bulletin. Journal of Caves and Karst Studies 47:78–85.

Söderbäck B. 1991. Interspecific dominance relationship and aggressive interactions in the freshwater crayfishes Astacus astacus (L.) and Pacifastacus leniusculus (Dana). Canadian Journal of Zoology 69:1321–1325.

Turk S, Smet B, Sarbu S. 1996. Comparison between some epigean and hypogean populations of Asellus aquaticus (Crustacea: Isopoda: Asellidae). Hydrobiologia 337:161–170.

Ueno S. 1987. The derivation of terrestrial cave animals. Zoological Science 4:593–606.
Valenti WC, De Mello JTC, Lobao VL. 1987. Crescimento de *Macrobrachium acanthurus* (Wiegmann, 1836) do rio Ribeira de Iguape (Crustacea, Decapoda, Palaemonidae). Revista Brasileira de Biologia 47:349–355.

Valenti WC, De Mello JTC, Lobao VL. 1994. Maturation and growth curves of *Macrobrachium carcinus* (Linnaeus) (Crustacea, Decapoda, Palaemonidae) from Ribeira de Iguape River Southern Brazil. Revista Brasileira de Zoologia 11:649–658.

Vogt G, Štrus J. 1992. Oleospheres of the cave-dwelling shrimp *Troglocaris shmidtii*: a unique mode of extracellular lipid storage. Journal of Morphology 211:31–39.

Vogt G, Štrus J. 1999. Hypogean life-style fuelled by oil. Naturwissenschaften 86:43–45.

Weagle KV, Ozburn GW. 1970. Sexual dimorphism in the chela of *Orconectes virilis* (Hagen). Canadian Journal of Zoology 48:1041–1042.

Wilkens H. 1988. Evolution and genetics of epigean and cave *Astyanax fasciatus* (Characidae, Pisces): support for the Neutral Mutation Theory. Evolutionary Biology 24:271–367.

Wilkens H. 1992. Neutral mutations and evolutionary progress. In: Camacho AI, editor. The natural history of biospeleology. Madrid: Museo Nacional de Ciencias Naturales/Consejo Superior de Investigaciones Científicas. p 402–422.

Ziembas RE, Simpson A, Hopper R, Cooper RL. 2003. A comparison of antennule structure in a surface- and a cave-dwelling crayfish, genus *Orconectes* (Decapoda, Astacidae). Crustaceana 76:859–869.