Helical tomotherapy for single and multiple liver tumours

Tsair-Fwu Lee*†1,2, Pei-Ju Chao†1,2, Fu-Min Fang2, Te-Jen Su1, Stephen W Leung3 and Hsuan-Chih Hsu*2

Abstract

Purpose: Dosimetric evaluations of single and multiple liver tumours performed using intensity-modulated helical tomotherapy (HT) were quantitatively investigated. Step-and-shoot intensity-modulated radiotherapy (SaS-IMRT) was used as a benchmark.

Methods: Sixteen patients separated into two groups with primary hepatocellular carcinomas or metastatic liver tumours previously treated using SaS-IMRT were examined and re-planned by HT. The dosimetric indices used included the conformity index (CI) and homogeneity index (HI) for the planned target volume (PTV), max/mean dose, quality index (QI), normal tissue complication probability (NTCP), $V_{30\text{ Gy}}$, and $V_{50\%}$ for the specified organs at risk (OARs). The monitor units per fraction (MU/fr) and delivery time were also analysed.

Results: For the single tumour group, both planning systems satisfied the required PTV prescription, but no statistical significance was shown by the indexes checking. A shorter delivery time and lower MU/fr value were achieved by the SaS-IMRT. For the group of multiple tumours, the average improvement in CI and HI was 14% and 4% for HT versus SaS-IMRT, respectively. Lower $V_{30\text{ Gy}}$, $V_{50\%}$, and QI values were found, indicating a significant dosimetric gain in HT. The NTCP value of the normal liver was $20.27 \pm 13.29\%$ for SaS-IMRT and $2.38 \pm 2.25\%$ for HT, indicating fewer tissue complications following HT. The latter also required a shorter delivery time.

Conclusions: Our study suggests dosimetric benefits of HT over SaS-IMRT plans in the case of multiple liver tumours, especially with regards sparing of OARs. No significant dosimetric difference was revealed in the case of single liver tumour, but SaS-IMRT showed better efficiency in terms of MU/fr and delivery time.

Background

During the past 20 years, primary liver cancer has ranked the fifth most common malignancy worldwide, the third leading cause of death from malignant neoplasm in Japan in men and the fifth in women [1,2], and the second leading cause of cancer death in Taiwan with a mortality of more than 7,000 cases each year [3]. Several modalities have been used for the treatment of hepatocellular carcinomas (HCC) and metastatic liver tumours [4-10] including surgery, transcatheter arterial chemoembolization (TACE), percutaneous ethanol injection therapy, microwave coagulation therapy, radiotherapy and liver transplantation. The role of radiotherapy has been limited because of the poor tolerance of the whole liver to radiation [11,12]. With advances in intensity-modulated radiation therapy (IMRT), several reports have indicated increased safety and more promising results in patients with unresectable intrahepatic malignancies treated with radiotherapy to a portion of the liver [6,13-18]. IMRT constitutes an advanced form of the conformal technique and uses inverse planning algorithms and iterative computer-driven optimization to generate treatment fields with varying beam intensity. It has the ability to produce custom-tailored conformal dose distributions around the tumour, although most studies have examined large tumours [19]. IMRT can also be delivered using linac or Hi-Art Helical Tomotherapy (HT) (TomoTherapy, Madison, WI, USA), which creates a more uniform target dose and improves critical organ sparing [16,20-23] with a greater number of degrees of freedom.
Compared with conventional and other IMRT techniques, HT can potentially produce superior dose distributions (i.e., more uniform dose to the target and lower doses to normal tissues) and is thus being reconsidered for promotion [21,22,24]. In this study, we investigated the potential improvement of HT over step-and-shoot (SaS)-IMRT for the treatment of single or multiple liver tumours. HT plans were compared with IMRT plans for sixteen patients previously treated using SaS-IMRT delivery. The HT plans were designed to emulate as closely as possible the goals and constraints used for SaS-IMRT plans. Dose distributions in the planned target volume (PTV) and organs at risk (OARs) were compared according to the isodose distribution and dose-volume histogram (DVH)-based method using several dosimetric parameters including the conformity index (CI) and homogeneity index (HI) for the PTV, max/mean dose, quality index (QI) for the organs at risk (OARs) [25-29], $V_{30\text{ Gy}}$, $V_{50\%}$, EUD (equivalent uniform dose), and NTCP (normal tissue complication probabilities) for the normal and whole liver. The delivery time and monitor units per fraction (MU/fr) of the two techniques were also compared. SaS-IMRT was used as a benchmark.

Methods

Study population
Sixteen consecutive patients (six females, ten males) with primary hepatocellular carcinomas (HCC) or metastatic liver tumours previously treated using SaS-IMRT between March 2006 and March 2008 were examined. The patient characteristics and tumour descriptions are presented in Table 1. The median age was 68 years (range 50-85). Patients were retrospectively grouped to evaluate the influence of the treatment plans. Two groups were formed according to whether they had single (group 1) or multiple (group 2) tumour sites, and interestingly, there were eight in each group. The distributions of clinical stages according to the American Joint Committee on Cancer (AJCC 6th edition) staging system was as follows; I: 1 (6.25%), II: 3 (18.75%), III: 5 (31.25%) and metastasis liver tumour: 7 (43.75%). Six (37.5%) were treated with a combination of chemotherapy.

All patients were immobilized using a tailor-made vacuum lock in the supine position with their arms placed on their forehead. The patients were scanned using a CT (Siemens Biograph LSO PET/CT, PA, USA) with a 3-mm slice thickness, containing 512 × 512 pixels in each slice. The field of view had a mean dimension of 48 cm.

Treatment plans were originally calculated with the ADAC Pinnacle3, version 7.4 (ADAC Inc, CA, USA) treatment-planning system (TPS) on a dose grid of $0.4 \times 0.4 \times 0.3$ cm3 without DMPO (direct machine parameter optimization). The 5-field and range 4 × 6 SaS-IMRT technique was used with the dose goal for PTV coverage; initial gantry angles of 20°, 310°, 270°, 220° and 180° were set. The plan was delivered on an Elekta Precise™ Linac equipped with an 80-leaf 1-cm MLC in SaS-IMRT mode. Basically, the IMRT planning system tried to achieve the dose goal target coverage while keeping within the dose constraints of OARs by sequential iteration.

PTV and normal organ contouring
The planned target volume (PTV) structures were created from the gross tumour volume (GTV) structures. Respiratory motion is the main determinant of PTV expansion. PTVs were based on a 5 mm radial expansion and a 10 mm craniocaudal expansion. Because respiratory motion has been shown to be greater in the craniocaudal dimension than in the anteroposterior and mediolateral dimensions, an asymmetric expansion was used for the PTV [30-33]. The PTV ranged from 57.75 to 726.32 cc (222.77 ± 170.35). For dosimetric analysis, the normal liver volume did not include the PTV. The OARs used in this study were as follows: 1) spinal cord-maximum dose ≤ 45 Gy; 2) kidneys (L & R)-mean dose to bilateral kidneys must be < 16 Gy. If only one kidney is present, not more than 15% of the volume of that kidney can receive ≥ 18 Gy and no more than 30% can receive ≥ 14 Gy; 3) liver-mean liver dose must be ≤ 25 Gy; 4) gas-

Table 1: Patient characteristics (n = 16)

Characteristics	No. of patients
Age, median years (range)	68 (50-85)
Gender	
Male	10 (62.5%)
Female	6 (37.5%)
Primary HCC (AJCC, 6th edition)	
I	1 (6.25%)
II	3 (18.75%)
III	5 (31.25%)
Metastasis liver tumour	
Structures (cm3) Mean ± SD (range)	
PTV	222.77 ± 170.35 (57.75-726.32)
Normal liver	1299.88 ± 279.03 (751.03-1776.16)
Rt kidney	132.7 ± 50.19 (35.39-238.91)
Lt kidney	147.62 ± 42.82 (78.54-233.17)
Spinal cord	14.10 ± 5.52 (4.93-26.44)
Patient’s tumour number	
Single (group 1)	8 (50%)
Multiple (group 2)	8 (50%)

Abbreviation: HCC: Hepatocellular Carcinoma; AJCC = American Joint Committee on Cancer; PTV: Planned target volume; Rt: Right side; Lt: Left side;
trointestinal system (GIS) (including stomach and small bowels)-maximum dose ≤ 54 Gy; < 10% of each organ volume can receive between 50 and 53.99 Gy, < 15% of the volume of each organ can receive between 45 and 49.99 Gy.

Treatment plans
In the re-planned HT, three main parameters were selected: the field width (1, 2.5 or 5 cm), pitch (range 0.01-20), and modulation factor (range 1-10). A 2.5-cm field width, a pitch of 0.287 (0.86/3) and a modulation factor of 2 were used in all of the HT plans in this study [34,35]. The software version used for this re-planning study was Hi-Art TomoPlan 2.1 (Tomotherapy Inc., Wisconsin, USA). The selection of these three parameter values was based on preliminary planning exercises that showed them to provide a good balance between ability at dose sculpting and treatment efficiency, in terms of treatment duration and feasibility for routine use. In general, small field dimensions, small pitch and large modulation factors mean longer irradiation times and a better ability for the delivery system to sculpt complex dose distributions with steeper dose gradients [16,21,23,24,36]. For all patients, dose calculation was done on the fine grid, which has a resolution of 1.875×1.875 mm2 by the slice thickness of 3 mm for the dose calculation window of 48 \times 48 cm2 (256 \times 256 pixels). Both planning systems perform iterations during the optimization process. The 0.1 Gy dose bin-size of the dose-volume histograms (DVHs) used in both systems was the same for the subsequent computation of various indices. Plans were run with the goal of delivering the prescribed doses of 60 Gy/30 fractions while meeting the normal tissue constraints for conventional treatment. The PTV doses were prescribed to cover over 95% of the PTV with no greater than a 107% maximum point dose. Having achieved these objectives, the dose plans were made by the same physicist and approved by the same oncologist, who was specialized in liver tumours. The monitor units per fraction (MU/fr), segments and delivery time taken by the two plans were compared. The patient set-up time was not included.

Plan evaluation
The HT plans were compared with the SaS-IMRT plans using the following dosimetric parameters:

1. CI: a ratio used to evaluate the goodness of fit of the PTV to the prescription isodose volume in the treatment plans: $CI = V_{PTV} \times \frac{V_{TV}}{V_{PV}^2}$ where V_{TV} is the treatment volume of the prescribed isodose lines; V_{PTV} is the volume of the PTV; and V_{PV} is the volume of V_{PTV} within the V_{TV}. The smaller and closer the value of CI is to 1, the better the dose conformity [26,37].

2. HI: a ratio used to evaluate the homogeneity of the PTV. $HI = \frac{D_{5\%}}{D_{95\%}}$ where $D_{5\%}$ and $D_{95\%}$ are the minimum doses delivered to 5% and 95% of the PTV. A larger HI indicates poorer homogeneity [38,39].

3. QI: an index used to evaluate the difference in the maximum or mean absorbed dose at serial or parallel OARs, respectively, between HT and SaS-IMRT plans [22,40].

$$QI_{\text{Serial}} = \frac{D_{\text{max}}^{\text{HT}}}{D_{\text{max}}^{\text{SaS}}}, \quad QI_{\text{Parallel}} = \frac{D_{\text{mean}}^{\text{HT}}}{D_{\text{mean}}^{\text{SaS}}}.$$

4. $V_{50\%}$: the percentage volume receiving a dose greater than or equal to 50% of the prescribed dose for a normal liver.

5. $V_{50\%}$: the percentage volume receiving a dose greater than or equal to 30 Gy for the whole liver.

6. EUD: equivalent uniform dose, the original definition of the EUD was derived on the basis of a mechanistic formulation using a linear-quadratic cell survival model [41]. Subsequently, Niemierko and Emami suggested a phenomenological model of the form [42]:

$$EUD = \left(\sum_{i=1}^{n} v_i D_i^a \right) \%$$

where a is a unitless model parameter that is specific to the normal structure or tumour of interest, and v_i is unitless and represents the ith partial volume receiving dose D_i in Gy. Since the relative volume of the whole structure of interest corresponds to 1, the sum of all partial volumes v_i will equal 1. For normal tissues, the EUD represents the uniform dose that leads to the same probability of injury as the examined inhomogeneous dose distribution.

7. NTCP: an EUD-based normal tissue complication probability (NTCP) was used. Niemierko proposed parameterization of the dose-response characteristics using the logistic function [42,43]:

$$NTCP = \frac{1}{1 + \left(\frac{TD_{50}}{EUD} \right)^{4\gamma_{50}}}$$

where TD_{50} is the tolerance dose for a 50% complication rate at a specific time interval (e.g., 5 years in the Emami et al. normal tissue tolerance data [44]) when the whole organ of interest is homogeneously irradiated, and γ_{50} is a unitless model parameter that is specific to the normal
structure and describes the slope of the dose-response curve. Niemierko and Emami suggested that the parameters of α and γ_{50} should be used in the EUD-based NTCP model. The values of α, γ_{50}, and TD_{50} used in this study were 3, 3, and 40 Gy respectively, and were based on the Emami data, calculating the BED as 2 Gy/fraction with an α/β ratio of 2 \cite{42,44}. The Matlab-2009a software (MathWorks, Inc., Natick, Massachusetts) was used for EUD-based NTCP and CERR (computational environment for radiotherapy research) calculations \cite{45}.

Statistical analyses

The mean values (standard deviation) of the dosimetric data for the sixteen patients were analysed using the paired Wilcoxon signed-rank test to compare the difference between HT and SaS-IMRT. A two-tailed value of $p < 0.05$ was deemed to indicate statistical significance. The SPSS-15.0 software was used for data processing (SPSS, Inc., Chicago, IL).

Results

PTV analysis

The isodose distributions in the axial plane and the DVHs of the PTV and OARs for one typical case in each group plan using both systems are shown in Figs. 1 and 2.

Table 2 gives the dose statistics for the PTV for each group with HT and SaS-IMRT.

For group 1, the mean $V_{95\%}$ and $V_{100\%}$ for the desired PTV coverage was 99.44 ± 0.72 and 97.26 ± 1.13 in the HT plans, and 99.63 ± 0.51 and 97.84 ± 0.99 in the SaS-IMRT plans, respectively, with no significant differences between plans. For the hot spot checking, the mean $V_{107\%}$ for the desired PTV was 0.00 ± 0.00 with HT and 8.75 ± 4.94 with SaS-IMRT respectively, indicating significantly better homogeneity of the PTV with HT ($p < 0.05$). ($V_{x\%}$: volume receiving $\geq x\%$ of the prescribed dose).

The mean CI for group 1 was 1.21 ± 0.07 with HT and 1.30 ± 0.05 with SaS-IMRT, indicating a significantly better conformity of the PTV with HT ($p < 0.05$) The average improvement in CI was 7% for HT. The mean HI was 1.04 ± 0.01 for HT and 1.06 ± 0.01 for SaS-IMRT; this difference was statistically significant ($p < 0.05$) with a 2% improvement in HT.

For group 2, the mean $V_{95\%}$ and $V_{100\%}$ for the desired PTV coverage was 99.09 ± 0.45 and 96.20 ± 0.70 in the HT plans, and 98.47 ± 0.69 and 96.13 ± 1.10 in the SaS-IMRT plans, respectively, with no significant difference between plans. For the hot spot checking, the mean $V_{107\%}$ for the desired PTV was 0.30 ± 0.58 with HT and 16.62 ± 2.38 with SaS-IMRT respectively, indicating significantly better homogeneity of the PTV with HT ($p < 0.05$).

The mean CI was 1.25 ± 0.11 with HT and 1.43 ± 0.07 with SaS-IMRT, indicating significantly better conformity of the PTV with HT ($p < 0.05$). The average improvement in CI was 14% for HT versus SaS-IMRT. The mean HI for group 2 was 1.06 ± 0.01 for HT and 1.10 ± 0.02 for SaS-IMRT; this difference was statistically significant ($p < 0.05$) with a 4% improvement in HT.

Dosimetry of OARs

The dose statistics of the specified OARs are summarized in Table 3. For group 1, the mean dose, $V_{50\%}$ and NTCP value of the normal liver did not differ significantly between the HT and SaS-IMRT plans ($p > 0.05$). Similarly there was no significant difference between plans in the $V_{30\, Gy}$ value of the whole liver ($p > 0.05$) or the max/mean dose of the other four OARs (R/Lt kidneys, GIS, and spinal cord) ($p > 0.05$).

For group 2, the mean dose, $V_{50\%}$ and NTCP value of the normal liver were significantly lower in the HT plans versus the SaS-IMRT plans ($p < 0.05$). The $V_{50\%}$ value of the normal liver was 36.46 ± 4.92% for HT and 51.74 ± 11.46% for SaS-IMRT, indicating an approximate reduction of 15% in HT. With regards tissue complications the NTCP value of the normal liver was 2.38 ± 2.25% for HT and 20.27 ± 13.29% for SaS-IMRT, indicating an approximate reduction of 8% in HT (NTCP for liver failure). The $V_{30\, Gy}$ value of the whole liver differed significantly between plans ($p < 0.05$). The mean value of $V_{30\, Gy}$ for the whole liver was 43.91 ± 10.43% for HT and 55.00 ± 14.28% for SaS-IMRT, indicating an approximate 11% reduction in HT. The max/mean dose of the following three OARs (R/Lt kidneys and GIS) did not differ significantly. The maximum dose of the spinal cord was 18.08 ± 5.38 for HT and 23.55 ± 8.65 Gy for SaS-IMRT. These results indicate a significant dosimetric gain in HT and a reduced dose to sensitive structures.

QI analysis for the OARs

The QI values of the OARs for group 1 and group 2 are listed in Table 4; the kidneys were excluded in the QI calculation as the test results did not differ significantly.

For group 1, of the two serial OARs, the spinal cord showed the most notable improvement [QI = 0.86 ± 0.47] followed by GIS [QI = 0.91 ± 0.23], indicating an approximate 14% reduction in maximal dose in the spinal cord and a 9% reduction in the GIS in the HT versus SaS-IMRT plans, respectively ($p > 0.05$). Of the only parallel organ (normal liver) calculated, the $QI_{Parallel}$ was 0.95 ± 0.20, indicating an approximate mean dose reduction of 5% in the normal liver in the HT versus SaS-IMRT plans.

For group 2, of the two serial OARs, the spinal cord showed the most notable improvement [QI = 0.83 ± 0.30] followed by the GIS [QI = 0.95 ± 0.12], indicating an approximate 17% reduction in maximal dose in the spinal cord and a 5% reduction in the GIS in the HT versus SaS-
IMRT plans, respectively. Of the only parallel organ (normal liver) calculated, the QI_{Parallel} was 0.93 ± 0.17, indicating an approximate mean dose reduction of 7% in the normal liver by HT.

For the whole study cohort, of the two serial OARs, the spinal cord showed the most notable improvement [$QI = 0.85 \pm 0.38$] followed by the GIS [$QI = 0.93 \pm 0.18$], indicating an approximate 15% reduction in maximal dose in the spinal cord and a 7% reduction in the GIS by HT. Of the only parallel (normal liver) organ calculated, the QI was 0.93 ± 0.17, indicating an approximate mean dose reduction of 7% in the normal liver by HT.

MU/fr and delivery time

The MU/fr and delivery time of the sixteen patients with HT versus SaS-IMRT are compared in Table 5. For group 1, the mean delivery time was 4.4 ± 1.4 min (range 2.9-6.3) for HT and 3.3 ± 1.4 min (range 1.9-5.2) for SaS-IMRT, with a significant difference between these values ($p = 0.00$). The mean MU/fr used was 5135 ± 1678 for HT, which was significantly higher than the mean MU/fr of 343 ± 120 in SaS-IMRT ($p < 0.05$).

For group 2, the mean delivery time was 4.7 ± 0.8 min (range 3.3-5.7) for HT and 6.2 ± 1.4 min (range 4.8-8.8) for SaS-IMRT. A significant difference was observed between these values ($p < 0.05$). The mean MU/fr used was 5529 ± 960 for HT, which was significantly higher than the mean MUs of 461 ± 242 in SaS-IMRT ($p < 0.05$).

Discussion

The benefits of improved dose homogeneity and better sparing of critical organs in HT compared with conventional linac-based IMRT have been reported in prostate...
cancer [46], intracranial tumours [24], nasopharyngeal carcinoma [22] and other head and neck cancers [47,48], and breast cancer [13]. However, these benefits of IMRT and HT are generally achieved at the cost of a greater volume of normal tissue in the irradiated volume receiving a low dose [29,49]. In addition, radiotherapy for liver tumours is largely limited by the dose to the surrounding normal tissues, primarily the residual normal liver tissue.

One of the major objectives of this study was to determine the achievable gain of HT in single and multiple liver tumour irradiations against a well-investigated and routinely-used clinical technique, SaS IMRT, delivered in a conventional way with SaS-IMRT planning and an Elekta Precise delivery system. Sixteen cases in two groups were investigated in this study. The HT plans had a slightly significantly better conformity and homogeneity to the PTV than SaS-IMRT plans in the whole cohort. However, the dosimetric advantages of the two plans were inconsistent for individual OARs and other indices.

We demonstrated that HT plans significantly improved the conformity index (improvement ratio: 7 and 14%) and homogeneity index (improvement ratio: 2 and 4%) of the PTV compared with SaS-IMRT plans in group 1 and 2, respectively.

However, the difference between the mean/maximal doses of OARs was not statistically significant in group 1, indicating no difference in OARs sparing. Sparing was found in the normal liver with mean values of \(QI-1 = 0.95 \pm 0.20 \) and \(QI-2 = 0.90 \pm 0.14 \), and in the spinal cord with

![Figure 2](image_url) The comparison of isodose distributions of planned target volume (PTV) and organs at risk (OARs) in an axial plane for one patient in group 2 using the helical tomotherapy (HT) planning system versus step-and-shoot intensity-modulated radiotherapy (SaS-IMRT). Dose volume histograms; PTV = Planning target volume; OAR = Organ at risk.
mean values of $QI-1 = 0.86 ± 0.47$ and $QI-2 = 0.83 ± 0.30$
in group 2, indicating a dosimetric gain in the HT plans.

In $V_{30\text{ Gy}}$ and $V_{50\%}$ analysis, HT showed a significant
dosimetric gain in group 2. The results showed that a bet-
ter (lower) dose was received in HT than that in group 1;
for group 2, the mean value of $V_{50\%}$ of the whole liver was
36.46 ± 4.92 for HT and 51.74 ± 11.46 for SaS-IMRT,
indicating an approximate reduction of 15.3% in HT. The
mean value of $V_{30\text{ Gy}}$ of the normal liver was 43.91 ± 10.43
for HT and 55.00 ± 14.28 for SaS-IMRT, indicating an
approximate reduction of 11.1% in HT. These results
showed a significant dosimetric gain in HT and a reduced
mean liver dose.

In clinical practice, the $V_{50\%}$ (fraction of normal liver
treated to at least 50% of the isocentre dose) and the $V_{30\text{ Gy}}$
(the percentage volume receiving a dose greater than or
equal to 30 Gy for the whole liver) are the most com-
monly used indicators for the dose given. According to
the Yonsei University guidelines [50], if the percentage of
normal liver volume receiving 50% of the isocentre dose
was less than 25%, the total dose was increased to 59.4
Gy; if the percentage was 25% to 49%, the dose was 45 to
54 Gy; if the percentage was 50% to 75%, the dose was
30.6 to 45 Gy, and if the dose was more than 75%, no
treatment was administered. They showed that the
parameter $V_{50\%}$ can be divided into four categories and
used to predict acceptable liver toxicity. In group 2, the
$V_{50\%}$ value of normal liver was 36.46 ± 4.92% for HT and
51.74 ± 11.46% for SaS-IMRT, indicating an opportunity
for dose escalation by HT versus SaS-IMRT plans. The
NTCP value of the normal liver was 2.38 ± 2.25% for HT
and 20.27 ± 13.29% for SaS-IMRT, indicating that a
reduction in tissue complications may be achieved by HT
versus SaS-IMRT plans.

Kim et al. demonstrated that the $V_{30\text{ Gy}}$ appears to be a
useful dose-volumetric parameter for predicting the risk
of radiation-induced hepatic toxicity (RIHT). In their
report, grade 2 or worse RIHT was observed in only 2 out
of 85 patients (2.4%) with a whole liver volume receiving
30 Gy ($V_{30\text{ Gy}}$, whole liver) of ≤60%, and in 11 out of 20
patients (55.0%) with greater than 60% ($p < 0.001$) [12].
When a lower value of $V_{50\%}$ and/or $V_{30\text{ Gy}}$ was accom-
lished, a higher PTV dose could be given. As a result, a
lower $V_{50\%}$ and/or $V_{30\text{ Gy}}$ can be achieved with HT
for the treatment of multiple liver tumours than with SaS-IMRT.
Consequently, a higher dose can be given and a higher
response can be achieved when HT is selected.

The overall delivery time and average MU/fr used in
the HT plans were significantly higher than for SaS-
IMRT plans, which are consistent with the results of sev-
eral studies [13,22,24,47-49]. The delivery time depended
on the limitations of gantry rotation and dose prescrip-
tion in the HT system, while a speed limitation on gantry
rotation exists in the HT system. An interesting result
occurred in this study in that a contrary result was found
in group 2 due to the geometry of the multiple site distri-
bution. The mean delivery time in group 2 was 4.7 ± 0.8
min (range 3.3-5.7) for HT and 6.2 ± 1.4 min (range 4.8-
8.8) for SaS-IMRT. This difference was significant ($p = 0.01$).

We also found that both planning systems satisfied the
required PTV prescription, but that better dose confor-
mity and homogeneity were achieved with the HT com-

Table 2: The dosimetric results of PTV between HT and SaS-IMRT plans for two groups

Parameter	objective	HT	SaS-IMRT	p
$V_{95\%}$	100	99.44 ± 0.72(97.97-100.00)	99.63 ± 0.51(98.78-100.00)	n/a
$V_{100\%}$	95	97.26 ± 1.13(95.87-98.79)	97.84 ± 0.99(96.50-99.07)	n/a
$V_{107\%}$	0	0.00 ± 0.00	8.75 ± 4.94(2.30-15.14)	< 0.05
CI	1	1.21 ± 0.07(1.15-1.37)	1.30 ± 0.05(1.23-1.40)	< 0.05
HI	1	1.04 ± 0.01(1.02-1.05)	1.06 ± 0.01(1.02-1.07)	< 0.05
$V_{95\%}$	100	99.09 ± 0.45(98.43-99.95)	98.47 ± 0.69(97.35-99.25)	n/a
$V_{100\%}$	95	96.20 ± 0.70(95.60-97.86)	96.13 ± 1.10(94.80-97.77)	n/a
$V_{107\%}$	0	0.30 ± 0.58(0.00-1.60)	16.62 ± 2.38(13.70-20.53)	< 0.05
CI	1	1.25 ± 0.11(1.15-1.47)	1.43 ± 0.07(1.37-1.57)	< 0.05
HI	1	1.06 ± 0.01(1.02-1.07)	1.10 ± 0.02(1.08-1.12)	< 0.05

Abbreviation: SaS-IMRT: Step-and-shoot intensity-modulated radiotherapy; HT: Helical tomotherapy; $V_x\%$: volume receiving $≥x\%$ of the
prescribed dose; CI: Conformity index; HI: Homogeneity index; n/a: not statistical significance; statistical significance ($p < 0.05$) is reported
between couples from the paired Wilcoxon signed-rank test analysis.
pared to SaS-IMRT plans in the two groups. No significant was shown for OARs sparing in group 1, especially if the tumour is leaning against the body surface. As the result, general SaS-IMRT can meet the prescription requirements like the HT did, but shown more efficiency in MU/fr used and delivery time saved than HT in group 1.

We did not aim to perform a strict comparison of the two systems, but to retrospectively evaluate the dosimetric difference for the 16 patients that had been successfully treated with step-and-shoot IMRT and re-planned in a routinely-used helical tomotherapy based upon the same planning CT scan; the dose plans were made by the same physicist and approved by the same oncologist who was specialized in liver tumours. We paid careful attention to reducing biases in this study. However, there are some limitations with regard to our results, and although we used the same resolution, voxel size, and binning of

Table 3: Dosimetric statistics for the specified OARs

Structure	Parameter	HT	SaS-IMRT	p
Group 1 - single tumour group				
Normal liver	Mean (Gy)	18.24 ± 6.73(10.84-31.09)	20.01 ± 7.86(8.37-31.20)	n/a
	V50%	19.17 ± 5.62(10.83-22.50)	22.19 ± 7.13(14.17-31.25)	n/a
	EUD	23.68 ± 5.14(16.60-33.97)	29.11 ± 5.46(21.52-37.14)	< 0.05
	NTCP	1.69 ± 4.30(0.003-12.33)	6.80 ± 9.86(0.06-29.07)	0.051
Whole liver	V30 Gy (%)	36.41 ± 14.88(16.45-62.00)	39.44 ± 16.57(16.94-62.06)	n/a
Lt kidney	Mean (Gy)	2.48 ± 2.43 (0.30-6.44)	2.83 ± 3.61(0.17-9.00)	n/a
Rt kidney	Mean (Gy)	4.13 ± 3.09 (0.42-8.03)	5.55 ± 4.55(0.15-10.57)	n/a
GIS	Max (Gy)	30.18 ± 18.17(8.65-52.56)	32.67 ± 17.27(11.77-53.45)	n/a
Spinal cord	Max (Gy)	15.30 ± 9.14(5.12-34.28)	22.05 ± 11.10(4.58-34.78)	n/a

Group 2 - multiple tumours group				
Normal liver	Mean (Gy)	25.89 ± 4.33(18.89-28.45)	29.73 ± 6.71(15.54-36.96)	< 0.05
	V50%	36.46 ± 4.92(29.17-41.67)	51.74 ± 11.46(37.5-69.17)	< 0.05
	EUD	28.09 ± 3.23(21.95-31.87)	34.68 ± 3.80(27.77-38.43)	< 0.05
	NTCP	2.38 ± 2.25(0.07-6.15)	20.27 ± 13.29(1.23-38.33)	< 0.05
Whole liver	V30 Gy (%)	43.91 ± 10.43(23.12-53.42)	55.00 ± 14.28(27.11-74.97)	< 0.05
Lt kidney	Mean (Gy)	4.18 ± 2.94(0.66-9.21)	2.60 ± 2.03(0.37-6.97)	n/a
Rt kidney	Mean (Gy)	6.11 ± 4.16(0.99-12.38)	6.45 ± 4.76(0.93-14.58)	n/a
GIS	Max (Gy)	39.59 ± 12.42(21.42-53.20)	42.05 ± 12.36(19.67-52.78)	n/a
Spinal cord	Max (Gy)	18.08 ± 5.38(10.58-28.19)	23.66 ± 8.65(5.96-32.20)	< 0.05

Abbreviation: SaS-IMRT: Step-and-shoot intensity-modulated radiotherapy; HT: helical tomotherapy; EUD: Equivalent uniform dose; NTCP: Normal tissue complication probability; GIS: Gastrointestinal system (including stomach and small bowels); Lt: left side; Rt: right side; n/a: not statistical significance; statistical significance (p < 0.05) is reported between couples from the paired Wilcoxon signed-rank test analysis.

Table 4: The dosimetric comparisons of QI between HT and SaS-IMRT plans

Variables of OARs	Qi-1	Qi-2	Qi-whole cohort
QI of parallel organ			
Normal Liver	0.95 ± 0.20 (0.61-1.30)	0.90 ± 0.14 (0.76-1.21)	0.93 ± 0.17 (0.61-1.30)
QI of serial organ			
SC	0.86 ± 0.47 (0.16-1.45)	0.83 ± 0.30 (0.56-1.52)	0.85 ± 0.38 (0.16-1.52)
GIS	0.91 ± 0.23 (0.64-1.36)	0.95 ± 0.12 (0.75-1.11)	0.93 ± 0.18 (0.64-1.36)

Abbreviation: HT: Helical tomotherapy; SaS-IMRT: Step-and-shoot intensity-modulated radiotherapy; Qi: Quality index; QI-1: Qi-single tumour group; QI-2: Qi-multiple tumours group; SC: Spinal cord; GIS: Gastrointestinal system (including stomach and small bowels);
the DVHs in both systems, and the same software (CERR), an intrinsic difference in the calculation algorithms or TPS optimization modules (such as DMPO) might produce different results.

Conclusions
Our study suggests the dosimetric benefits of HT over SaS-IMRT plans in the group with multiple liver tumours, especially with regards sparing of OARs, as it significantly reduced the $V_{50\%}$ and $V_{30\;Gy}$ to the normal liver and whole liver respectively. In addition a reduction in the NTCP value indicates that fewer tissue complications may arise in HT plans. Although there was no significant difference in the group with single liver tumour, IMRT showed better efficiency in terms of the MU/fr and delivery time used.

Competing interests
The authors declare that they have no competing interests.

Authors' contributions
TFL and PJC: idea and concept. FWF, TJS and SWL: design and development of study. PJC and HCH: statistical analysis. TFL: writing of manuscript and study concept. FMF; TJS and SWL: design and development of technical support and data collection. This study was supported financially, in the original manuscript and Dr. YJ Huang, Ms. HM Ting and Mr. MH Liu for their

Acknowledgements
The authors thank the anonymous reviewers for their helpful comments on the original manuscript and Dr. YJ Huang, Ms. HM Ting and Mr. MH Liu for their technical support and data collection. This study was supported financially, in part, by grants from the CGMH (CMRPG890061) and NSC (98-2221-E-151-038).

Author Details
1Medicall Physics and Informatics Lab (EE), National Kaohsiung University of Applied Sciences, Kaohsiung, Taiwan. 2Chang Gung Memorial Hospital-Kaohsiung Medical Centre, Chang Gung University College of Medicine, Kaohsiung, Taiwan and 3Yuan's General Hospital, Kaohsiung, Taiwan

Received: 26 April 2010 Accepted: 24 June 2010 Published: 24 June 2010

References
1. Kiyosawa K, Umemura T, Ichijo T, Matsumoto A, Yoshizawa K, Gad A, Tanaka E: Hepatocellular carcinoma: Recent trends in Japan. Gastroenterology 2004, 127:517-526.
2. Thomas MB, Abbruzzese JL: Opportunities for targeted therapies in hepatocellular carcinoma. Journal of Clinical Oncology 2005, 23:8093.
3. Kao Y-H, Chen C-N, Chiang J-K, Chen S-S, Huang W-W: Predicting Factors in the Last Week of Survival in Elderly Patients with Terminal Cancer: A Prospective Study in Southern Taiwan. Journal of the Formosan Medical Association 2009, 108:231-239.
4. Cha CH, Ruó L, Fong Y, Jarmagin WR, Shia J, Blumgart LH, DelMatteo RP: Resection of hepatocellular carcinoma in patients otherwise eligible for transplantation. Ann Surg 2003, 238:315.
5. Dae Yong K, Won P, Do Hoon L, Joon Hyoek L, Byung Chul Y, Seung Woon P, Kwang Cheol K, Tae Hyun K, Yong Chan A, Seung Jae H: Three-dimensional conformal radiotherapy for portal vein thrombosis of hepatocellular carcinoma. Cancer 2005, 103:2419-2426.
6. Fuss M, Saltier BJ, Herman TS, Thomas JCR: External beam radiation therapy for hepatocellular carcinoma: Potential of intensity-modulated and image-guided radiation therapy. Gastroenterology 2004, 127:5206-5217.
7. Tse RV, Guha C, Dawson LA: Conformal radiotherapy for hepatocellular carcinoma. Crit Rev Oncol Hematol 2008, 67:113-123.
8. Wang X, Krishnan S, Zhang X, Dong L, Briere T, Crane CH, Martel M, Gillin M, Mohan R, Beddar S: Proton radiotherapy for liver tumors: dosimetric advantages over photon plans. Med Dosim 2008, 33:259-267.
9. Ohto M, Yoshikawa M, Saisho H, Ebana M, Sugiuira N: Nonsurgical treatment of hepatocellular carcinoma in cirrhotic patients. World J Surg 1995, 19:42-46.
10. Tsurutzki T, Sugiko S, Ueda M, Iida S, Kanai T, Yoshi H, Nakayasu K: Hepatic resection for hepatocellular carcinoma. Surgery 1990, 107:511.
11. Cha CH, Sarf MW, Yamane BH, Webber SM: Hepatocellular carcinoma: current management. Curr Probl Surg 2005, 42:1-67.
12. Kim TH, Kim DY, Park J-W, Kim SH, Choi J, Kim HB, Lee WJ, Park SJ, Hong EK, Kim C-M: Dose-volumetric parameters predicting radiation-induced hepatic toxicity in unresectable hepatocellular carcinoma patients treated with three-dimensional conformal radiotherapy. Int J Radiat Oncol Biol Phys 2007, 67:225-231.
13. Caudrelier JM, Morgan SC, Montgomery L, Lacelle M, Nyiri B, MacPherson M: Helical tomotherapy for locoregional irradiation including the internal mammary chain in left-sided breast cancer: Dosimetric evaluation. Radiother Oncol 2009, 99:99-105.
14. Cheng JC-H, Wu J-K, Huang C-M, Liu H-S, Huang DY, Tsai SY, Cheng SH, Jian JI-M, Huang AT: Dosimetric analysis and comparison of three-dimensional conformal radiotherapy and intensity-modulated radiation therapy for patients with hepatocellular carcinoma and radiation-induced liver disease. Int J Radiat Oncol Biol Phys 2003, 56:229-234.
15. Esatvihl N, Koshly M, Landry J: Intensity-modulated radiation therapy. Curr Probl Cancer 2004, 28:47-84.
16. Maurioudis P, Ferreisa BC, Shi C, Lind BK, Papanikolaou N: Treatment plan comparison between helical tomotherapy and MLC-based IMRT using radiobiological measures. Phys Med Biol 2007, 52:3817-3836.
17. Dawson LA, Normolle D, Baltar JM, McGinn CJ, Lawrence TS, Ten Hakken RK: Analysis of radiation induced liver disease using the Lyman NTCP model*. Int J Radiat Oncol Biol Phys 2002, 53:810-821.
18. Dawson LA, Ten Hakken RK, Lawrence TS: Partial irradiation of the liver. Elsevier 2001:240-246.
19. Kang M, Kim M, Kim S, Choi J. High dose radiotherapy for massive hepatocellular carcinoma (HCC) with intensity-modulated radiation therapy (IMRT). Int J Radiat Oncol Biol Phys 2009, 75:2821-2828.

20. Jang JW, Kay CS, Bae SH, Choi JY, Jung HJ, You CR, Kim CW, Cho SH, Yoon SK, Han JY et al. 378 Simultaneous multileaf target irradiation using helical tomotherapy for advanced hepatocellular carcinoma with multiple extrahaematogenous metastases. Journal of Hepatology 2008, 48:5174-5177.

21. Lawrence JA, Forrest LJ. Intensity-modulated radiotherapy and helical tomotherapy: its origin benefits, and potential applications in veterinary medicine. Vet Clin Small Anim 2007, 37:1151-1165.

22. Lee TF, Fang FM, Chao PJ, Su TJ, Wang LK, Leung WK. Leung LHT, Kan MWK, Cheng ACK, Wong WKH, Yau CC. 27. Paddick I. 30. Wagman R, Yorke E, Ford E, Giraud P, Mageras G, Minsky B, Rosenzweig K. 29. Yang R, Xu S, Jiang W, Xie C, Wang J. 28. Riet Av, Mak ACA, Moerland MA, Elders LH, van der Zee W. 26. Leung LHT, Kan MWK, Cheng ACK, Wong WKH, Yau CC: A new dose-volume-based plan quality index for IMRT plan comparison. Radiother Oncol 2007, 85:607-617.

23. Mackie TR. History of tomotherapy. Phys Med Biol 2006, 51:R247-R453.

24. Han C, Liu A, Schultheiss TE, Peen RD, Chen YI, Wong JYC. Dosimetric comparisons of helical tomotherapy treatment plans and step-and-shoot intensity-modulated radiotherapy in nasopharyngeal carcinoma. Radiol Oncol 2008, 42:89-96.

25. Bala1 T, Ghorbani 2, Daneshmand 3, Gharib 3, Zhang P, LoSasso T, Tang G. 38. Ling C, Archambault Y, Bocanek J, Zhang P, LoSasso T, Tang G. Scylla and charybdis: longer beam-on time or lesser conformality—the dilemma of assurance. Phys Med Biol 2004, 49:731-736.

26. Leung LHT, Kan MWK, Cheng ACK, Wong WKH, Yau CC. A new dose-volume-based plan quality index for IMRT plan comparison. Radiat Oncol 2007, 85:607-617.

27. Bala1 T, Ghorbani 2, Daneshmand 3, Gharib 3, Zhang P, LoSasso T, Tang G. 38. Ling C, Archambault Y, Bocanek J, Zhang P, LoSasso T, Tang G. Scylla and charybdis: longer beam-on time or lesser conformality—the dilemma of assurance. Phys Med Biol 2004, 49:731-736.

28. Riet Av, Mak ACA, Moerland MA, Elders LH, van der Zee W. 26. Leung LHT, Kan MWK, Cheng ACK, Wong WKH, Yau CC: A new dose-volume-based plan quality index for IMRT plan comparison. Radiother Oncol 2007, 85:607-617.

29. Yang R, Xu S, Jiang W, Xie C, Wang J. 28. Riet Av, Mak ACA, Moerland MA, Elders LH, van der Zee W. 26. Leung LHT, Kan MWK, Cheng ACK, Wong WKH, Yau CC: A new dose-volume-based plan quality index for IMRT plan comparison. Radiat Oncol 2007, 85:607-617.

30. Wagman R, Yorke E, Ford E, Giraud P, Mageras G, Minsky B, Rosenzweig K: Respiratory gating for liver tumors: use in dose escalation. Int J Radiat Oncol Biol Phys 2003, 55:659-668.

31. Baisden JM, Reish AG, Sheng K, Lamer JM, Kavanagh BD, Read PW. Dose as a function of liver volume and planning target volume in helical tomotherapy, intensity-modulated radiation therapy-based stereotactic body radiation therapy for hepatic metastasis. Int J Radiat Oncol Biol Phys 2006, 66:620-625.

32. Clifford M, Banovac F, Levy E, Cleary K. Assessment of hepatic motion secondary to respiration for computer assisted interventions. Comput Aided Surg 2002, 7:291-299.

33. Nakashige A, Horiuchi J, Tamura A, Asahara T, Shimamoto F, Ito K. Quantitative measurement of hepatic portal perfusion by multidetector row CT with compensation for respiratory misregistration. Br J Radiol 2004, 77:728.

34. Starzing F, Sroka-Perez G, Schubert K, Munter MW, Thieke C, Huber P, Debus JG, Herfarth HH. Evaluating target coverage and normal tissue sparing in the adjuvant radiotherapy of malignant pleural mesothelioma: Helical tomotherapy compared with step-and-shoot IMRT. Radiotherapy and Oncology 2008, 86:251-257.

35. Kissick MW, Fenwick J, James JA, Jeraj R, Kapatoes JM, Keller H, Mackie TR, Olivera G, Soisson ET: Longer beam-on time or lesser conformality—the dilemma of assurance. Phys Med Biol 2004, 49:731-736.

36. Leung LHT, Kan MWK, Cheng ACK, Wong WKH, Yau CC: A new dose-volume-based plan quality index for IMRT plan comparison. Radiat Oncol 2007, 85:607-617.

37. Penagaricano J, Yan Y, Shi C, Linkskey M, Ratanatharathorn V. Dosimetric comparison of helical tomotherapy and gamma knife stereotactic radiosurgery for single brain metastasis. Radiat Oncol 2006, 1:26.

38. Ling C, Archambault Y, Bocanek J, Zhang P, LoSasso T, Tang G. Scylla and charybdis: longer beam-on time or lesser conformality—the dilemma of assurance. Int J Radiat Oncol Biol Phys 2009, 75:8-9.

39. Rahimian J, Chen J, Rao A, Girvigian M, Miller M, Geathhouse H: Geometrical accuracy of the Novalis stereotactic radiosurgery system for trigeminal neuralgia. J Neurosurg 2004, 101:351-355.

40. Lee TF, Chao PJ, Wang CY, Lan JH, Huang YJ, Hsu HC, Sung CC, Su TJ, Lian SL, Fang PW. Dosimetric comparison of helical tomotherapy and dynamic conformal arc therapy in stereotactic radiosurgery for vestibular schwannomas. Med Dosimetry. doi: 10.1016/j.meddos.2009.11.005.

41. Wu Q, Mohan R, Niemierko A, Schmidt-Ullrich R: Optimization of intensity-modulated radiotherapy plans based on the equivalent uniform dose*. Int J Radiat Oncol Biol Phys 2002, 52:224-235.

42. Gay HA, Niemierko A: A free program for calculating EUD-based NTCP and TCP in external beam radiotherapy. Physica Medica 2007, 23:115-125.

43. Niemierko A: A generalized concept of equivalent uniform dose (EUD). Med Phys 1999, 26:1100.

44. Emami B, Lyman J, Brown A, Coia L, Goitein M, Munzenrider JE, Shank B, Solin LJ, Wessman M. Tolerance of normal tissue to therapeutic irradiation. International Journal of Radiation Oncology Biology Physics 1991, 21:109.

45. Deasy J, Blanco A, Clark V: CERR: a computational environment for radiotherapy research. Med Phys 2003, 30:979.

46. Aoyama H, Westerly DC, Mackie TR, Olivera GH, Bentzen SM, Patel RR, Jaradat H, Tome WA, Ritter MA, Mehta MF. Integral radiation dose to normal structures with conformal external beam radiation. Int J Radiat Oncol Biol Phys 2006, 64:962-967.

47. Sheng K, Molloj MJ, Read PW: Intensity-modulated radiation therapy (IMRT) dosimetry of the head and neck: A comparison of treatment plans using linear accelerator-based IMRT and helical tomotherapy. Int J Radiat Oncol Biol Phys 2006, 65:917-923.

48. van Vulpen M, Field C, Raaijmakers CPJ, Parliament MB, Terhaard CHJ, Mackenzie MA, Scrimger R, Lagendijk JW, Fallone BG. Comparing step-and-shoot IMRT with dynamic helical tomotherapy IMRT plans for head-and-neck cancer. Int J Radiat Oncol Biol Phys 2005, 62:1535-1539.

49. Purdy JA. Dose to normal tissues outside the radiation therapy patient’s treated volume: A review of different radiation therapy techniques. Health Physics 2008, 95:666.

50. Lee U, Seong J, Shim SJ, Hae KH: Radiotherapeutic parameters predictive of liver complications induced by liver tumor radiotherapy. Int J Radiat Oncol Biol Phys 2009, 73:154-158.

Cite this article as: Lee et al., Helical tomotherapy for single and multiple liver tumours Radiation Oncology 2010, 5:58

doi: 10.1186/1748-717X-5-58

Submit your next manuscript to BioMed Central and take full advantage of:

• Convenient online submission
• Thorough peer review
• No space constraints or color figure charges
• Immediate publication on acceptance
• Inclusion in PubMed, CAS, Scopus and Google Scholar
• Research which is freely available for redistribution

Submit your manuscript at www.biomedcentral.com/submit