Thymosin beta 4 protects cardiomyocytes from oxidative stress by targeting anti-oxidative enzymes and anti-apoptotic genes

Sandeep Kumar, Emory University
C Wei, VA Medical Center
IK Kim, VA Medical Center
S Gupta, VA Medical Center

Journal Title: PLoS ONE
Volume: Volume 7, Number 8
Publisher: Public Library of Science | 2012-08-03, Pages e42586-e42586
Type of Work: Article
Publisher DOI: 10.1371/journal.pone.0042586
Permanent URL: https://pid.emory.edu/ark:/25593/vjpj7

Final published version: http://dx.doi.org/10.1371/journal.pone.0042586

Accessed February 8, 2021 12:36 AM EST
Thymosin Beta 4 Protects Cardiomyocytes from Oxidative Stress by Targeting Anti-Oxidative Enzymes and Anti-Apoptotic Genes

Chuanyu Wei, Sandeep Kumar, Il-Kwon Kim, Sudhiranjan Gupta

Division of Molecular Cardiology, Department of Medicine, College of Medicine, Texas A & M Health Science Center; Scott & White; Central Texas Veterans Health Care System, Temple, Texas, United States of America

Abstract

Background: Thymosin beta-4 (Tβ4) is a ubiquitous protein with many properties relating to cell proliferation and differentiation that promotes wound healing and modulates inflammatory mediators. The mechanism by which Tβ4 modulates cardiac protection under oxidative stress is not known. The purpose of this study is to dissect the cardioprotective mechanism of Tβ4 on H2O2 induced cardiac damage.

Methods: Rat neonatal cardiomyocytes with or without Tβ4 pretreatment were exposed to H2O2 and expression of antioxidant, apoptotic, and anti-inflammatory genes was evaluated by quantitative real-time PCR and western blotting. ROS levels were estimated by DCF-DA using fluorescent microscopy and fluorimetry. Selected antioxidant, anti-inflammatory and antiapoptotic genes were silenced by siRNA transfections in neonatal cardiomyocytes and effect of Tβ4 on H2O2-induced cardiac damage was evaluated.

Results: Pre-treatment of Tβ4 resulted in reduction of the intracellular ROS levels induced by H2O2 in cardiomyocytes. Tβ4 pretreatment also resulted in an increase in the expression of antiapoptotic proteins and reduction of Bax/Bcl2 ratio in the cardiomyocytes. Pretreatment with Tβ4 resulted in stimulating the expression of antioxidant enzymes copper/zinc SOD and catalase in cardiomyocytes at both transcription and translation levels. Tβ4 treatment resulted in the increased expression of anti-apoptotic and anti-inflammatory genes. Silencing of Cu/Zn SOD and catalase gene resulted in apoptotic cell death in the cardiomyocytes which was prevented by treatment with Tβ4.

Conclusion: This is the first report that demonstrates the effect of Tβ4 on cardiomyocytes and its capability to selectively upregulate anti-oxidative enzymes, anti-inflammatory genes, and antiapoptotic enzymes in the neonatal cardiomyocytes thus preventing cell death thereby protecting the myocardium. Tβ4 treatment resulted in decreased oxidative stress and inflammation in the myocardium under oxidative stress.

Introduction

Adverse cardiac remodeling is a detrimental process accountable for the development of various cardiac diseases including myocardial infarction, cardiac hypertrophy and heart failure. Although the mechanisms underlying the cardiac remodeling are multi-factorial, current evidences suggest that oxidative stress plays a critical role in the process. Oxidative stress is defined as an imbalance in antioxidant defense mechanism that elicits the production of reactive oxygen species (ROS) [1–4]. ROS are primarily characterized as oxygen based free chemical particles, if present in excess, causes contractile dysfunction and structural damage in the myocardium [5]. Therefore the balance between ROS production and removal of excess ROS are essential in maintaining the redox state and, homeostasis balance in the cell [6]. At the subcellular level, increased ROS levels can cause damage to nucleic acids and proteins leading to programmed cell death or apoptosis [7–9]. Thus, ROS mediated oxidative damage in cardiomyocytes is responsible for structural integrity of the myocardium.

It has been reported that increase in the levels of oxidative stress in the failing heart is primarily due to the functional uncoupling of the respiratory chain caused by inactivation of complex I in the mitochondria and considered to be a good source for ROS production [10,11]. Another source would consider is the impaired antioxidant capacity that include superoxide dismutase...
(SOD), glutathione peroxidase (GSH-Px), and catalase (CAT) and considered as such as the first line of cellular defense against oxidative injury [12]. Accumulating evidences indicate that cardiac overexpression of Mn-SOD or CAT protects the heart from ischemic insult or myocardial infarction [13,14].

Oxidative stress triggers pro-inflammatory signaling pathways that activate nuclear factor kappa B (NF-kB) and AP-1 transcription factors [15]. Previously, we and others have shown that NF-kB activation is associated with cardiac dysfunction, ventricular hypertrophy, and maladaptive cardiac growth [16–20]. The biochemical nexus between oxidative stress and inflammation represent an integral part in the pathophysiology of myocardial damage.

Thus, it is evident from our literature that oxidative damage remains a great challenge to promote significant myocardial damage and, numerous efforts have been made in the search of strategies to protect the heart against oxidative damage. In search of an ideal cardio-protective agent, Thymosin β4 (Tβ4) emerged as a powerful candidate.

Tβ4, a G-actin sequestering molecule is primarily implicated in reorganizing actin cytoskeleton that needed for cell mobility [21]. Moreover, Tβ4 is present in all cells and body fluids and, has diverse biological function that includes tissue development, repair and pathology [21,22]. Importantly, Tβ4 contributes a significant cardiac repair mechanism by activating integrin link kinase [23–25] and, has further shown to promote cardiac regeneration, epicardial cell migration and neovascularization [26,27]. Our previous study demonstrated that treatment of Tβ4 restored the adverse cardiac remodeling (due to ischemic insult) by reducing inflammation, fibrosis and, activating ILK, PINCH and α-Parvin [27]. In the case of oxidative stress, Tβ4 has been shown to protect the cells by enhancing antioxidant enzymes and reducing caspase 9 activation in human corneal epithelial cells [28–30]. Under this setting, we recently have shown in cardiac fibroblast that Tβ4 has the target for SOD and catalase and thereby protect the cell from oxidative stress [31]. But the exact mechanism by which Tβ4 functions in the myocardium under oxidative stress and its effects on the cardiac myocytes is largely unknown.

The present study elucidates the protective mechanism of Tβ4 under oxidative stress using rat neonatal cardiac myocytes. We hypothesize that Tβ4 protect myocytes under oxidative stress by modulating antioxidant enzymes, apoptotic genes and pro-inflammatory genes. As for the limitation of our study, we used neonatal cardiomyocytes to study the protective effect of Tβ4 under oxidative stress conditions that may not mimic the changes in clinical conditions, and thus results using cultured cardiomyocytes should be interpreted carefully. An advantage of neonatal cardiomyocytes is the easy procedure for their isolation in contrast to adult cardiomyocytes, which are very sensitive to the concentration of Ca2+ in the medium. Moreover, the phenotype of cultured neonatal cardiomyocytes is very stable and their contractile profile very closely mimicking the adult cardiomyocytes. Experiments in isolated neonatal cardiomyocytes have generally reproduced the results on adult cardiomyocytes with a wide variety of interventions exploring the cellular and molecular mechanisms in oxidative stress.

Materials and Methods

Reagents

3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT), hydrogen peroxide (H2O2) [Sigma], dimethyl sulfoxide (DMSO), dihydroethidium (DHE), dichlorofluorescein diacetate (DCF-DA), dianhydrofluorescein 2-diacetate (DAF-2DA), 3,3′-dihexyloxacarbocyanine iodide (DiOC6), and chloromethyl-X-rosmamine [MitoTracker red] were purchased from Molecular Probes, Invitrogen, USA. Antibodies for Mn-SOD, Cu/Zn-SOD, Catalase, GAPDH, Bax, Bcl2, caspase-3 were purchased from Cell Signaling Technologies, USA Santa Cruz Biotechnologies (USA), Immuno-Rockland (USA). Protease inhibitor cocktail tablets were purchased from Roche GmbH, Germany. Dulbecco’s Modified Eagle Medium (DMEM), non-essential amino acid cocktail, insulin, transferrin and selenium (ITS), and fetal Bovine Serum (FBS) were purchased from GIBCO, Invitrogen (USA). Thymosin β4 was supplied by RegeneRx Pharmaceutical.

Cell culture and treatment

Primary cultures of cardiac myocytes were prepared from ventricles of 1–3-day-old Wistar rats as described previously [32]. In brief, cardiomyocytes were plated at a field density of 2.5×10^5 cells per cm^2 on coverslips, 6-well plates, 60-mm culture dishes, or 100-mm dishes as required with DMEM containing 10% FBS and supplemented with insulin, transferrin and selenium and bromodeoxy-uridine. After 24 h, cells were serum deprived overnight before stimulation. A standardized dose of 100 μM H2O2 was used to induce oxidative stress in the in vitro system. To study the protective effects of Tβ4, cells were pretreated with Tβ4 2 hours prior to H2O2 challenge. The final concentration of Tβ4 used in this study was 1 μg/ml which was based on previous reports [28,32].

Detection of the cell viability

Cell viability of cardiac myocytes was measured quantitatively using MTT as described previously [31]. The absorbance was measured at 570 nm using a microplate reader (Molecular Devices, SpectraMax 250). The effect of Tβ4 was assessed on the H2O2 treated myocyte and the cytotoxicity curve was made and, expressed as percentage cell viability compared to control.

Measurement of intracellular ROS levels

For measuring the levels of intracellular ROS, cardiac myocytes after treatments were incubated with 50 μM 2′,7′-dichlorodihydrofluorescein diacetate (H2DCFH-DA, Molecular Probes, Eugene, OR) at 37°C in the dark for 30 min as described previously [31].

Confocal microscopy

For measuring the levels of intracellular ROS, cells were seeded on coverslips in 6-well plates and after treatments were incubated with 50 μM 2′,7′-dichlorodihydrofluorescein diacetate (H2DCFH-DA, Molecular Probes, Eugene, OR) at 37°C in the dark for 30 min as previously described [31]. Cells were then fixed and mounted on glass slides and observed under confocal laser scanning microscope (Fluoview FV1000) fitted with a 488 nm argon ion laser. Images were acquired using the F10-ASW 1.5 Fluoview software.

Western blot analysis

Cardiac myocytes were treated with or without Tβ4 for 2 h before stimulated with 100 μM of H2O2. The cell lysate preparation, western blot analysis and image quantification were performed as described previously [31].

RNA isolation and quantitative RT-PCR (q RT-PCR) analysis

Cardiomyocytes were treated with or without Tβ4 for 2 h followed by stimulation with H2O2 (100 μM) for up to 24 h. The
preparation of RNA, 1st strand cDNA synthesis and q RT-PCR was performed as described previously [31]. Analysis of relative gene expression was done by evaluating the real-time quantitative PCR data by \(2^{-\Delta\Delta CT}\) method as described previously by others [33,34]. GAPDH or 18S was used as housekeeping gene.

RNA interference and siRNA transfection

The gene silencing experiment using small interfering (si) RNA of Cu/Zn-SOD and Bcl2 was performed using predesigned double-stranded siRNA of the above from Sigma Life Science, Saint Louis MO, USA as described previously [31]. A scramble siRNA was used for negative control was also obtained from Sigma. In brief, cells were then transfected with 200 pmol of the siRNAs for Cu/Zn-SOD and Bcl2 or negative control siRNA using N-TERTM nanoparticle siRNA transfection system (Sigma) in accordance with the manufacturer’s protocol. After 24 h of transfection, cells were treated and harvested to determine the transfection efficiency and effect of T\(\beta\)4 treatment on H\(_2\)O\(_2\) treatment in the transfected cells.

TUNEL staining

Quantification of TUNEL staining was done to study the extent of apoptotic cell death on transfected fibroblasts by *in situ* cell death detection kit (Roche Applied Science, Indianapolis, IN) as described previously [31].

Statistical analysis

All experiments were performed at least three times for each determination. Data are expressed as means ± standard error (SE) and were analyzed using one-way analysis of variance and secondary analysis for significance with Tukey–Kramer post tests using Prism 5.0 GraphPad software (GraphPad, San Diego, CA, USA). A p value less than 0.05 was considered statistically significant.

Results

T\(\beta\)4 protects cardiomyocytes cells against H\(_2\)O\(_2\)-induced cell death

The viability of cardiomyocytes was determined by MTT assay. Cardiomyocytes were treated with increasing doses of H\(_2\)O\(_2\) and, cell viability was determined over a period of 24 hours. Our data showed that the 50% lethal dose (LD\(_{50}\)) of H\(_2\)O\(_2\) was between 150 and 250 \(\mu\)M (Figure 1A). Pretreatment with T\(\beta\)4 (1 \(\mu\)g/mL) prevented the myocyte cell death by 23.4% (p<0.05), compared to the H\(_2\)O\(_2\)-treated group indicating a protective role of T\(\beta\)4 in cardiomyocytes. The optimal sub-lethal concentration of H\(_2\)O\(_2\) was determined and 100 \(\mu\)M H\(_2\)O\(_2\) was used for the entire study.

T\(\beta\)4 protects cardiomyocytes in H\(_2\)O\(_2\)-induced oxidative stress

Intracellular ROS levels in myocytes for 12 and 24 h post-H\(_2\)O\(_2\) (100 \(\mu\)M) treatment were subsequently measured by fluorimetry and confocal microscopy analyses. There was an increase in ROS levels upon treatment with H\(_2\)O\(_2\) and, T\(\beta\)4 (1 \(\mu\)g/mL) treatment significantly reduced ROS accumulation. Representative confocal laser scanning microscopy images of cells stained with DCF-DA, DHE, DAF-2DA, and Mitotracker Red showing the effect of T\(\beta\)4 on generation of superoxide radicals and nitric oxide upon treatment with H\(_2\)O\(_2\) in cardiomyocytes. (A). Representative confocal laser scanning microscopy images of cells stained with DCF-DA showing the effect of T\(\beta\)4 on generation of ROS in cardiomyocytes treated with H\(_2\)O\(_2\) by fluorimetry. (B). Representative confocal laser scanning microscopy images of cells stained with DCF-DA showing the effect of T\(\beta\)4 on generation of superoxide radicals upon treatment with H\(_2\)O\(_2\) in cardiomyocytes. (C). Representative confocal laser scanning microscopy images of cells stained with DHE showing the effect of T\(\beta\)4 on generation of nitric oxide upon treatment with H\(_2\)O\(_2\) in cardiomyocytes. (D). Representative confocal laser scanning microscopy images of cells stained with DAF-2DA showing the effect of T\(\beta\)4 on generation of nitric oxide upon treatment with H\(_2\)O\(_2\) in cardiomyocytes. (E). Representative confocal laser scanning microscopy images of cells stained with Mitotracker Red showing the effect of T\(\beta\)4 on loss of mitochondrial membrane potential upon treatment with H\(_2\)O\(_2\) in cardiomyocytes.

doi:10.1371/journal.pone.0042586.g001

Figure 1. Effect of T\(\beta\)4 on cell viability in H\(_2\)O\(_2\)-treated cardiomyocytes. (A) The MTT assay was performed with increasing H\(_2\)O\(_2\) concentration (1 to 250 \(\mu\)M) in presence (dotted lines) and absence (solid lines) of T\(\beta\)4 (1 \(\mu\)g/mL). Data represent means ± SEM of 3 independent experiments. (B). Effect of T\(\beta\)4 on generation of ROS in cardiomyocytes treated with H\(_2\)O\(_2\) by fluorimetry. The graph represents the percentage of fluorescence positive cardiomyocytes upon staining with DCF-DA. Data represent the mean ± SE of at least three separate experiments. * means p<0.05 compared to the controls and # represents p<0.05 compared to the respective H\(_2\)O\(_2\) treated group (C) Representative confocal laser scanning microscopy images of cardiomyocytes stained with DCF-DA showing the effect of T\(\beta\)4 on intracellular ROS upon treatment with H\(_2\)O\(_2\). (D) Representative confocal laser scanning microscopy images of cells stained with DHE showing the effect of T\(\beta\)4 on generation of superoxide radicals upon treatment with H\(_2\)O\(_2\). (E) Representative confocal laser scanning microscopy images of cells stained with DAF-2DA showing the effect of T\(\beta\)4 on generation of nitric oxide upon treatment with H\(_2\)O\(_2\). (F) Representative confocal laser scanning microscopy images of cells stained with Mitotracker Red showing the effect of T\(\beta\)4 on loss of mitochondrial membrane potential upon treatment with H\(_2\)O\(_2\).
activity as indicated by increased fluorescence intensity of DCF-DA in the cardiomyocytes after H2O2 treatment (Figure 1B and 1C). The fluorescence intensity of DCF-DA (indicative of oxidative burst) increased by 2.8-fold at 12 h (p < 0.01) and 10.8-fold at 24 h (p < 0.001), respectively, in the H2O2-treated group, compared to the untreated cardiomyocytes. Pretreatment with Tβ4 resulted in a 5.3% decrease at 12 h (n.s.) and 54.5% decrease at 24 h (p < 0.01), respectively, compared to the H2O2-treated cells (Figure 1B and C) suggesting Tβ4 rescues cardiomyocytes from oxidative stress at later time-point. The quantifications of image intensities have been tabulated in Table 1.

Tβ4 reduces the formation of superoxide radicals and nitric oxide in H2O2-induced oxidative stress in cardiomyocytes

H2O2 treatment induces a cascade of biochemical reaction in the cell leading to generation and accumulation of a variety of free radicals in the cells. We estimated the levels of superoxide and nitric oxide by using confocal microscopy. Our data revealed that there was an increase in the fluorescence intensity of DHE and DAF-2DA in H2O2 treated cells, an indicator of O2− and NO radicals, compared to unstimulated cells (Figure 1D and 1E). This increase in the fluorescence intensity of DHE and DAF-2A was significantly prevented by Tβ4 pretreatment. The quantifications of image intensities have been tabulated in Table 1.

Tβ4 treatment protects mitochondrial membrane potential (ΔΨm) in oxide in H2O2-induced oxidative stress in cardiomyocytes

Oxidative stress is known to elicit depolarization of mitochondrial membrane potential. We evaluated the effect of Tβ4 on the mitochondrial membrane potential in H2O2 stimulated cardiomyocytes using MitoTracker Red by confocal microscopy. Our data revealed that there was loss of mitochondrial membrane potential as indicated by a decrease in the fluorescence intensity of MitoTracker Red H2O2 treated cell. Tβ4 treatment significantly restored the phenomenon (Figure 1F). The quantifications of image intensities have been tabulated in Table 1.

Tβ4 upregulates antioxidant genes in cardiac myocytes under oxidative stress

Since, oxidative stress alters the expression of antioxidant enzymes; we examined the mRNA expression of antioxidant genes, Mn-SOD, Cu/Zn-SOD and catalase in cardiomyocytes by q RT-PCR. In cardiomyocytes, the mRNA expression of Mn-SOD showed an initial increase and then a subsequent decline under H2O2 treatment. H2O2 treatment resulted in an increase in the Mn-SOD mRNA expression in 12 h by 1.8-fold and in 24 h by 1.7-fold, respectively (p < 0.05), compared to the untreated cells. Tβ4 treatment did not significantly change the expression of Mn-SOD. Tβ4 pretreatment resulted in 1.07-fold (p = n.s.) and 1.04-fold (p = n.s) decline in the mRNA expression of Mn-SOD at 12 h and 24 h, respectively, compared to H2O2-treated cells (Figure 2A). Neutal cardiomyocytes treated with H2O2 showed a decline in the mRNA expression of Cu/Zn-SOD by 1.85-fold at 12 h (p < 0.05) and 3.3-fold at 24 h (p < 0.05), respectively, compared to the control. Compared to the H2O2-treated cells, pretreatment with Tβ4 upregulated the mRNA expression of Cu/Zn-SOD showing a 1.5-fold (p < 0.001) and 2.9-fold (p < 0.001) increase at 12 h and 24 h, respectively, suggesting that Tβ4 treatment reverts the Cu/Zn-SOD to normal (Figure 2B). The expression of antioxidant catalase which is a primary scavenger of H2O2 was also evaluated. The expression of catalase showed 2.12-fold and 2.77-fold (p < 0.05) decline at 12 h and 24 h, respectively. Pretreatment with Tβ4 increased the mRNA expression of catalase by 1.4-fold (p < 0.05) and 4.1-fold (p < 0.05) at 12 h and 24 h, respectively, compared to H2O2-treated cells (Figure 2C) indicating that Tβ4 treatment prevented the depletion of antioxidant enzyme genes under oxidative stress (Figure 2C).

To evaluate the status of these antioxidant enzymes at protein levels, western blots were performed. Our data showed that the levels of Mn-SOD increased upon H2O2 challenge but did not change significantly upon treatment with Tβ4. The expression of Cu/Zn-SOD in H2O2-treated cells was reduced by 1.38-fold (p < 0.05) and 1.5-fold (p < 0.05) at 12 h and 24 h, respectively, compared to the untreated cells. The level of Cu/Zn-SOD was restored in Tβ4 treatment and showed a 2.0-fold (p < 0.05) and 2.2-fold (p < 0.05) increase at 12 h and 24 h, respectively, compared to H2O2-treated cells. Similar changes were noted in the expression of antioxidant catalase. Tβ4 treatment per se increased the expression of catalase in the control cells by 1.2-fold. There was 1.2-fold (p < 0.05) and 1.85-fold (p < 0.05) decrease in catalase treated with H2O2 at 12 h and 24 h, respectively, compared to the untreated cells. Pretreatment with Tβ4 resulted in an increase in the expression of catalase by 1.3-fold (p < 0.05), and 1.8-fold (p < 0.05) at 12 h and 24 h, respectively, compared to H2O2-treated cells. This indicates that Tβ4 preferentially upregulates the expression of Cu/Zn-SOD and catalase under oxidative stress (Figure 2D & E). The normalized quantification of Mn-SOD, Cu/Zn-SOD and catalase by western blotting is shown in the Figure 3E.

Tβ4 protects cardiomyocytes from oxidative stress by increasing anti-apoptotic gene and reducing pro-apoptotic genes

Since oxidative stress leads to apoptotic cell death in cardiomyocytes, we evaluated the expression of pro- and anti-apoptotic genes. We determine the gene expression of Caspase-3, Bax and Bcl-2 in H2O2 treated cells in the presence and absence of Tβ4. Under oxidative stress, there was a 6.6-fold (p < 0.05), and 7.2-fold (p < 0.05) increase in the mRNA expression of caspase3 in 12 h and 24 h, respectively compared to control. Tβ4 treatment resulted in 1.56-fold (p < 0.05) and 1.58-fold (p < 0.05) decrease in the mRNA expression of caspase3 at 12 h and 24 h treatment, respectively, compared to the H2O2-treated cardiomyocytes (Fig. 3A). Compared to the controls, H2O2 treatment resulted in an increase in the mRNA expression of Bax by 2.4-fold and 2.4-fold (p < 0.05) at 12 h and 24 h, respectively (Figure 3 B). Tβ4 treatment reduced the increased Bax expression by 1.13-fold (p = n.s) and 1.2-fold (p < 0.05) at 12 h and 24 h, respectively,
compared to the H2O2-treated cells. Oxidative stress reduced the levels of anti-apoptotic gene Bcl2. Compared to the untreated groups, the mRNA expression of Bcl2 decreased by 1.56-fold (p<0.05) and 1.47-fold (p<0.05) at 12 h and 24 h, respectively, upon treatment with H2O2 (Figure 3 C). The reduced mRNA expression of Bcl2 under oxidative stress was reversed by pretreatment with Tβ4 by 1.14-fold (p<0.05) and 1.2-fold (p<0.05) at 12 h and 24 h, respectively, compared with the H2O2-treated cells (Figure 3 C).

At the translational level, H2O2 treatment resulted in a 4.7-fold (p<0.05) and 6.6-fold (p<0.05) increase in the expression of caspase3 at 12 h and 24 h treatment, respectively compared to the control. Tβ4 pretreatment in the H2O2 stimulated cells resulted in 1.6-fold (p<0.05) and 1.7-fold (p<0.05) decrease in the caspase3 protein expression at 12 h and 24 h treatment, respectively, compared to the H2O2-treated cells. (Figure 3 D). The normalized quantification of caspase-3 by western blotting is shown in the Figure 3 E. The Bax/Bcl2 ratio was also evaluated at protein level in cardiomyocytes. Our data showed that the Bax/Bcl2 ratio increased to 2.3-fold (p<0.05) and 3.0-fold (p<0.05) at 12 h and 24 h, respectively, under H2O2 treatment compared to the controls (Figure 3 D). Tβ4 treatment significantly reduced the increase in Bax/Bcl2 ratio by 1.9-fold (p<0.05) and 2.32-fold (p<0.05) at 12 h and 24 h, respectively, compared to the H2O2-treated group (Figure 3 E).

Effect of Tβ4 treatment and analysis of NF-kB target genes by RT² PCR array
To gain further insight into NF-kB-target genes, we performed qRT-PCR array. The data showed alteration of NF-kB family genes in H2O2 treated cardiomyocytes, compared to unstimulated cells. Furthermore, Tβ4 treatment restored those altered genes significantly. The list of NF-kB genes are shown in Table S1. Our data showed that H2O2 treatment induced upregulation of several NF-kB target genes, importantly, the following: TNFα, Irak1, Stat1, Tgfb1, IkBα, IKKβ, Casp1, Rel, Egr1, NF-kB1, Tgfr2, Rela, Irf8, Ccl2, Fasl, Il1β, IL-6 and Fadd. A list of selected NF-kB family genes is provided in Table S2.
Validation of NF-kB target genes in cardiomyocytes

The expression of NF-kB target genes, FasL, TNFα, c-Fos, c-Jun and ICAM-1 were analyzed in H2O2 treated cardiomyocytes in the presence and absence of Tβ4. Our data showed that the expression of FasL, TNFα, c-Fos, c-Jun and ICAM-1 genes were increased by 1.45 ± 0.07, 1.81 ± 0.25, 1.14 ± 0.03, 1.42 ± 0.17 and 1.29 ± 0.12 fold (p < 0.05), respectively, in H2O2 treated cardiomyocytes compared to untreated cells. The Tβ4 treated showed significant restoration of the above genes by 1.22 ± 0.1, 1.46 ± 0.16, 1.05 ± 0.06, 1.18 ± 0.12 and 1.16 ± 0.11 fold (p < 0.05), compared H2O2 treated cardiomyocytes (Figure 4).

Tβ4 selectively upregulates Cu/Zn-SOD and Bcl2 genes in cardiac myocytes

We took knock-down approach to further validate the target molecule of Cu/Zn-SOD and Bcl2 by Tβ4. Both genes were knock-down in cardiomyocytes using their specific siRNAs and, were subsequently challenged with H2O2 in the presence and absence of Tβ4. The scramble siRNA were used as a control. Pretreatment with Tβ4 in scramble transfection enhanced the expression of Cu/Zn-SOD and Bcl2 under normal conditions (Fig. 5 A and 5 C). H2O2 treatment significantly downregulated the Cu/Zn-SOD and Bcl2 protein to 0.67 ± 0.01 and 0.45 ± 0.08 fold (p < 0.05), respectively, compared to control. Tβ4 pretreatment for 24 h partly restored the expression of both Cu/Zn-SOD
and Bcl2 to 0.84±0.03 and 0.74±0.01-fold (p<0.05), respectively, compared to H2O2 treated cells (Fig. 5 A and 5 C). Furthermore, the cardiomyocytes challenged with H2O2 in Bcl2 depletion showed further degradation of Bcl2 protein to 0.29±0.03-fold compared to H2O2 treated cells (p<0.05). Pretreatment partially recovered Bcl2 protein to 0.44±0.03-fold, compared to H2O2 treated cells. Likewise, the cardiomyocytes challenged with H2O2 in Cu/Zn-SOD depletion showed further degradation of Cu/Zn-SOD protein to 0.27±0.02-fold (p<0.05), compared to H2O2 treated cells. Pretreatment partially recovered Cu/Zn-SOD protein to 0.46±0.02-fold (p<0.05), compared to H2O2 treated cells. The quantification of western analysis was shown in Fig. 5 B and 5 D.

We then evaluated the expression of apoptotic marker gene, caspase-3 under the similar setting. The scramble transfection showed significant attenuation of caspase-3 gene expression in Tß4 treated cells compared to H2O2 treated cells. The expression of caspase-3 increased to 2.56±0.69-fold (p<0.05) in H2O2 treated cell which was reduced by 1.80±0.54-fold upon pretreatment with Tß4 (Fig. 5 E, left panel). Our data further showed that knocking down of both Cu/Zn-SOD and Bcl2 significantly enhance the caspase-3 gene expression even in unstimulated cell. The expression of caspase3 was increased with the knockdown of Bcl2 by 2.65±1.3-fold in unstimulated cells. H2O2 treatment resulted in 4.04±1.16-fold increase and Tß4 pretreatment showed 2.6±0.13-fold reduction of caspase3 expression in H2O2 treated cells (Fig. 5E, middle panel). The caspase3 gene expression was determined in Cu/Zn-SOD depleted cells. The expression of caspase3 was increased by 2.32±1.1 fold in unstimulated cells (Fig. 5E, right panel). The expression of caspase3 was further increased to 4.19±1.52 fold (p<0.05) with the knockdown of Cu/Zn-SOD gene by siRNA transfection. Tß4 pretreatment showed 2.3±0.70-fold (p<0.05) reduction of caspase3 expression in H2O2 treated cells (Fig. 5E, right panel).

The TUNEL assay, performed under similar experimental conditions, showed increase in the TUNEL-positive nuclei under H2O2 treatment and, si-RNA knockdown of Cu/Zn-SOD, and Bcl2 further increased the TUNEL-positive cells. Representative fluorescence microscopy images showing TUNEL-positive nuclei (FITC-positive) of H2O2 treated in presence and absence of Tß4 were shown in Figure 6 A and B. H2O2 treatment resulted in an increase of TUNEL-positive nuclei from 2.2±2.2% to 13.33±3.84% (p<0.05) in the scrambled si-RNA transfection. Both Bcl2 and Cu/Zn-SOD depleted cells challenge with H2O2 resulted further increase in the TUNEL-positive nuclei to 28.89±2.22% (p<0.05) and 22.22±2.622% (p<0.05), respectively (Figure 6 C).

Pretreatment with Tß4 in the H2O2 treated group resulted in a significant reduction in the TUNEL-positive nuclei to 4.4±2.2% (p<0.05) in scramble transfected cell, 13.32±3.04% (p<0.05) in si-RNA- Bcl2 and 11.11±2.22% (p<0.05) in si-RNA-Cu/Zn-SOD transfected cells, respectively (Figure 6 C). These results indicate that Tß4 selectively targets Bcl2 and Cu/Zn-SOD genes to provide cardiac protection under oxidative stress.

Discussion

The present study showed for the first time that Tß4 protects cardiomyocytes under oxidative stress by upregulating antioxidant enzymes and reducing pro-apoptotic and pro-inflammatory genes. H2O2 elicits marked increment in intracellular ROS that promotes degradation of antioxidant enzymes (Cu/Zn-SOD and catalase) and activates pro-apoptotic (Bax and caspase3) and pro-inflammatory genes in cardiomyocytes. Increased ROS further advocate detrimental changes in cardiomyocytes leading to the loss of mitochondrial membrane potential and, subsequently increases the Bax/Bcl2 ratio favoring apoptosis. Pretreatment with Tß4 showed significant attenuation of ROS activity and restoration of the above molecules and protecting cardiomyocytes from oxidative stress. Finally, we showed that knocking down of either Cu/Zn-SOD or Bcl2 in cardiomyocytes failed to protect the cells from oxidative stress in presence of Tß4.

The myocardium has a complex mechanism to maintain the oxygen supply demand in response to diverse physiological and pathological stresses and, control the contractile function. The major pathological manifestation of oxidative stress is the generation of ROS that damage the cellular activity and function. It has become more apparent that the effect of oxidative stress in cardiac cells predisposes the condition that lead to adverse cardiac remodeling including cell death, myocardial hypertrophy and contractile dysfunction [6,35,36]. Cardiomyocytes are the major “bulk” in the myocardium and primarily governs the contractile function. Any sort of stress will have a serious impact on cardiomyocytes and affect various signaling cascades that ultimately lead to dysfunction. In an attempt to protect these cells under oxidative stress, we tested the efficacy of Tß4 in cardiomyocytes which is currently undetermined. Our results indicate that cardiomyocytes pretreated for 2 h with Tß4 increases the cell viability under oxidative stress suggest that Tß4 contributes a crucial role in the cardio-protection under oxidative stress.

Oxidative stress and ROS have been implicated in triggering cell death. Following a one-, two- or three-electron reduction, O2 can generate successively O2− (superoxide radical), H2O2 or OH− (hydroxyl radical). ROS are able to oxidize biological macromolecules such as DNA, protein and lipids [37,38]. Superoxide dismutase (SOD) converts O2− into H2O2 and the latter can generate OH− in the presence of Fe2+ cations (Fenton reaction). It should be noted that nitric oxide (NO) can also be oxidized into reactive nitric oxide species, which may show behavior similar to that of ROS. In particular the combination of NO and O2− can yield a strong biological oxidant, peroxynitrite that is more detrimental to the cells [10,39]. In our study, we showed that treatment of Tß4 restored all H2O2 induced free radical generation in cardiomyocytes suggesting a protective role in this setting. One of the traditional hallmarks of ROS-initiated cell death is mitochondrial dysfunction and energy depletion [40,41]. Several mechanisms can impair energy production in cardiac mitochondria, including damage to the electron transport chain and phosphorylation apparatus, mtDNA injury, opening of...
the mitochondrial permeability transition pore (MPTP), the loss of the mitochondrial membrane potential ($\Delta \Psi_m$) and, the concomitant drop in ATP production [42,43]. Dysfunction of mitochondrial machinery in the heart releases apoptotic signaling molecules e.g. cytochrome c and may cause an irreversible injury to the mitochondria [44]. Our data showed significant decrease in $\Delta \Psi_m$ which was prevented by pretreatment with Tb4.

Tb4 is very effective in reducing intracellular ROS in H2O2-treated cardiomyocytes. Our study is the first to show that the attenuation of ROS is mediated by restoring Cu/Zn-SOD and catalase, the two important antioxidant enzymes. Another relevant antioxidant that loses function upon oxidation is Mn-SOD. Although, both Mn-SOD and Cu/Zn-SOD have been reported to play a crucial role in protecting the cardiac cells from oxidative damage by scavenging ROS [13,45] but, we found that Tb4 upregulated the expression levels of Cu/Zn-SOD in cardiomyocytes. Catalase, which was directly responsible for H2O2 clearance, was upregulated by Tb4 both at mRNA and protein level in the presence of H2O2 stimulus indicating that Tb4 preferentially targets catalase in the cardiomyocytes which enable effecting scavenging of the H2O2 from the system. Also it was worth notice that even though the protein and gene expression levels of both catalase and Cu/Zn-SOD were increased by Tb4, this peptide upregulated the gene encoding the former more efficiently in cardiomyocytes. Furthermore, oxidative stress promotes apoptotic cell death by lowering Bax/Bcl2 ratio. In our study, we showed that Tb4 reduced the intracellular ROS levels in cardiomyocytes and prevents cell death by restoring Bax/Bcl2 ratio and inhibiting the activation of caspase3. This observation supports our previous observation using cardiac fibroblast [31] but, contrast to the previous reported by Sosne G et al where they did not observe any change in Bax/Bcl2 expression [30]. We did not know the reason for this but, the use of different cell type may accountable for this altered phenomenon.

To confirm the target of Cu/Zn-SOD and Bcl2 by Tb4 in order to protect the cardiomyocytes from oxidative stress, we selectively knocked down these molecules and determined the efficacy of Tb4 under oxidative stress. We found that Tb4 prevented cell death by specifically targeting Cu/Zn-SOD and Bcl2 molecules in H2O2-treated cardiomyocytes. But, when these molecules were knocked down in the cell, Tb4 failed to protect the cells from apoptosis. These data led us to convey the message that Tb4 may provide

Figure 5. Effect of Tb4 treatment after knocking down of Cu/Zn-SOD and Bcl2 in presence and absence H2O2-induced oxidative stress in cardiomyocytes. (A) Neonatal cardiomyocytes were transfected with scramble and Bcl2 siRNA, (C) scrambled and Cu/Zn-SOD siRNA in the presence and absence of Tb4 under oxidative stress and Western blotting was performed using Bcl2 and Cu/Zn-SOD antibodies as probe. (B and D) Representative showing the quantification of panel A and C (E) Bar graph shows relative fold-change in the mRNA expression of caspase-3 in cardiomyocytes under similar experimental condition stated in A and B. Data represent the means ± SE of at least three separate experiments.

* denotes $p<0.05$ compared to controls while # denotes $p<0.05$ compared to the H2O2-treated group with Tb4 treated group.
doi:10.1371/journal.pone.0042586.g005
cardiac protection under oxidative stress by restoring Cu-Zn SOD and Bcl2 levels in the myocardium. Our study also indicates that Tb4 protects the cardiomyocytes from oxidative stress by attenuating pro-inflammatory genes regulated by NF-kB. It is evident that ROS activation often triggers NF-kB translocation and thereby promotes pro-inflammatory response [46,47] As mentioned previously, ROS are toxic in cells and damage the cellular integrity, it is therefore, critical to make a balance of ROS production in order to prevent further oxidative damage. In this setting, our study further indicates that Tb4 protects the cardiomyocytes from oxidative stress by attenuating the pro-inflammatory genes regulated by NF-kB. Taken together, our data validate and re-established a potential role Tb4 as an anti-inflammatory molecule which may provide a new therapeutic module for cardiac protections under oxidative stress. Future studies may aim to delineate the interaction or association between NF-kB and Tb4 in the context of NF-kB transcriptional regulatory circuit and anti-inflammatory properties in the cardiac cells.

In conclusion, we demonstrated that Tb4 protects the myocardium from oxidative stress by reducing ROS activity via re-establishing the antioxidant enzyme levels, Cu/Zn-SOD and catalase and, further attenuating Bax and caspase3 levels and restoring Bcl2 as well. Our results not only offered more mechanistic explanation about the protective mechanism of Tb4 but also supported the need to further investigate the use of this small molecule in protecting the myocardium against oxidative damage in variety of disease condition where ROS has been

Figure 6. Representative fluorescent microscopy images of TUNEL staining in rat neonatal cardiomyocytes. (A) Bright TUNEL-positive images from control, H2O2 treated and H2O2 treated but pretreated with Tb4 (upper panel). The lower panel showed the images of corresponding DAPI stained with α-actinin, a myocyte specific marker protein. (B) Representative fluorescent microscopy images showed the effect of Tb4 treatment in the presence and absence of H2O2-induced oxidative stress on cardiomyocytes transfected with si-RNA-Bcl2 and siRNA-Cu/Zn-SOD vs. scrambled siRNA, respectively. (C) Bar graph shows the percent TUNEL-positive nuclei under similar experimental condition. Data represent the means ± SE of at least three separate experiments. A total of 45 to 65 nuclei were counted for each observation. * denotes p<0.05 compared to controls while # denotes p<0.05 compared to the H2O2-treated group with Tb4 treated group. doi:10.1371/journal.pone.0042586.g006
implicated to play a damaging role like cardiac hypertrophy and heart failure.

Therapeutic implication

Our findings are relevant in the clinical settings as many studies have shown that depletion of anti-oxidants in the heart makes it more vulnerable to damage especially under ischemia and under high pro-oxidant condition. Although, we did not investigate adult rat cardiac myocytes, but, many studies have shown that primary cultured neonatal rat cardiac myocytes were useful models to investigate cardio-protective effects. Future studies are, therefore, warranted to examine the effect of Tβ4 under the similar setting. We believe that Tβ4 is a better therapeutic target as it has the ability to enhance the expression of the selected antioxidant and anti-inflammatory genes, thereby, alleviating the damage to the myocytes under oxidative stress. These possibilities regarding the mechanisms whereby Tβ4 modulates the above molecules need to be further tested experimentally in future studies.

References

1. Tsutsui H, Kinugawa S, Matsumoto S (2011) Oxidative stress and heart failure. Am J Physiol Heart Circ Physiol 301: H2161–2190.
2. Crawford DR, Davis KJ (1994) Adaptive response and oxidative stress. Environ Health Perspect 102 Suppl 10: 25–28.
3. Afanasev I (2011) ROS and RNS signaling in heart disorders: could antioxidant treatment be successful? Oxid Med Cell Longev 2011: 293769.
4. Pashkow FJ (2011) Oxidative Stress and Inflammation in Heart Disease: Do Anti-Oxidants Have a Role in Treatment and/or Prevention? Int J Immunol 2011: 514623.
5. Giordano F (2005) Oxygen, oxidative stress, hypoxia, and heart failure. J Clin Invest 115: 500–508.
6. Santos CX, Anilkumar N, Zhang M, Brewer AC, Shah AM (2011) Redox signaling in cardiac myocytes. Free Radic Biol Med 50: 777–793.
7. Poornima IG, Parikh P, Shannon RP (2006) Diabetic Cardiomyopathy: The Search for a Unifying Hypothesis. Circ Res 98: 596–605.
8. Sadoshima J (2006) Redox regulation of growth and death in cardiac myocytes. Antioxid Redox Signal 8: 1621–1624.
9. Ferrari R, Guardigli G, Mele D, Percoco GF, Ceconi C, et al. (2004) Oxidative electron transport complex I is a potential source of oxygen free radicals in the failing myocardium. Circ Res 83: 557–563.
10. Murphy MP (2009) How mitochondria produce reactive oxygen species. Biochem J 417: 1–13.
11. Dhall A, Singal PK (1994) Antioxidant changes in hypoxic/hyperpolarized and failing guinea pig hearts. Am J Physiol 266: H1289–1295.
12. Chen Z, Sia B, Ho YS, Vincent R, Chua CC, et al. (1998) Overexpression of MnSOD Protects Against Myocardial Ischemia/reperfusion Injury in Transgenic Mice. Journal of Molecular and Cellular Cardiology 30: 2281–2289.
13. Pendergas KD, Varghese ST, Maeland-Rafferty K, Brown ME, Taylor WR, et al. (2011) Temporal effects of catalase overexpression on healing after myocardial infarction. Circ Heart Fail 4: 98–106.
14. Bowie A, O’Neill LA (2000) Oxidative stress and nuclear factor-kappaB activation: a reassessment of the evidence in the light of recent discoveries. Biochem Pharmacol 59: 13–23.
15. Kumar S, Seog K, Chugunprat S, Kumar R, Baker KM, et al. (2011) Inhibition of nuclear factor kappaB represses cardiomyocyte injury by modulating the expression of extracellular matrix and adhesion molecules. Free Radic Biol Med 50: 206–212.
16. Gupta S, Young D, Maitra RK, Gupta A, Popovic ZB, et al. (2008) Prevention of cardiac hypertrophy and heart failure by silencing of NF-kappaB. J Mol Biol 375: 637–649.
17. Kratos P, Huth M, Hemmerlein L, Salimova E, Al Banhaabouch M, et al. (2010) Antioxidant amelioration of dilated cardiomyopathy caused by conditional deletion of NEMO/IKKgamma in cardiomyocytes. Circ Res 106: 133–144.
18. Hall G, Haslad JD, Rogers TB (2006) Regulating the regulator: NF-kappaB signaling in heart. Mol Cell Cardiol 41: 589–591.
19. Higuchi Y, Chan TO, Brown MA, Zhang J, DeGeorge BR, et al. (2006) Cardioprotection afforded by NF-kappaB ablation is associated with activation of Akt in mouse overexpressing TNF-z. American Journal of Physiology- Heart and Circulatory Physiology 290: H590–H599.
20. Crockett D, Turijn N, Allan C, Angel J (2010) Thymosin bet4- structure-function, and biological properties supporting current and future clinical applications. Annals of the New York Academy of Sciences 1194: 179–189.
21. Goldstein AL, Hammappel E, Kleinman HK (2005) Thymosin beta4: actin-sequestering protein moonlights to repair injured tissues. Trends in molecular medicine 11: 421–429.
22. Bock-Marquèt I, Saxena A, White MD, Dimiao JM, Srivastava D (2004) Thymosin beta4 activates integrin-linked kinase and promotes cardiac cell migration, survival and cardiac repair. Nature 432: 466–472.
23. Srivastava S, Srivastava D, Olson EN, DiMaio JM, Bock-Marquèt I (2010) Thymosin beta4 and cardiac repair. Ann N Y Acad Sci 1194: 87–96.
24. Dubé KN, Bollini S, Smart N, Riley PR (2012) Thymosin beta4 protein therapy for cardiac repair. Curr Pharm Des 18: 799–806.
25. Smart N, Risbey CA, Clark JE, Elder M, Miquel L, et al. (2010) Thymosin beta4 facilitates epicardial neovascularization of the injured adult heart. Annals of the New York Academy of Sciences 1194: 97–104.
26. Sopiko N, Qin Y, Finan A, Dadabhoy A, Chugunprat S, et al. (2011) Significance of Thymosin beta4 and Implications for Cardioprotection: The Importance of PINCH-I-1/ALK-alpha-Parvin (PIP) Complex in Human Dilated Cardiomyopathy. PLoS one 6: e20814.
27. Ho JH, Tseng KC, Ma WH, Chen KH, Lee OK, et al. (2000) Thymosin beta4 regulates anti-oxidative enzymes and protects human corona epithelial cells against oxidative damage. Br J Ophthalmol 92: 992–997.
28. Sonse G, Albertrui A-R, Hollis B, Siddiqui A, Ellenberg D, et al. (2006) Thymosin [beta]4 inhibits benzalkonium chloride-mediated apoptosis in corneal and conjunctival epithelial cells in vitro. Experimental Eye Research 83: 502–507.
29. Sonse G, Siddiqui A, Kiprakis-Wheatere M (2004) Thymosin-[beta]4 Inhibits Corneal Epithelial Cell Apoptosis after Ethanol Exposure In Vitro. Invest Ophthal Vis Sci 45: 1095–1100.
30. Kumar S, Gupta S (2011) Thymosin Beta 4 Prevents Oxidative Stress by Targeting Antioxidant and Anti-Apoptotic Genes in Cardiac Fibroblasts. PloS one 6: e26092.
31. Gupta S, Purcell NH, Lin A, Sen S (2002) Activation of nuclear factor-kB is necessary for myostatin-induced cardiac hypertrophy. The Journal of Cell Biology 159: 1019–1028.
32. Livak KJ, Schmittgen TD (2001) Analysis of Relative Gene Expression Data Using Real-Time Quantitative PCR and the 2(-Delta[Delta]CT) Method. Methods 25: 402–408.
33. Pfaff MW (2001) A new mathematical model for relative quantitation in real-time PCR. Nucleic Acids Research 29: e45.
34. Han H, Long H, Wang H, Wang J, Zhang Y, et al. (2004) Progressive apoptotic cell death triggered by transient oxidative insult in H9c2 rat ventricular cells: a novel pattern of apoptosis and the mechanisms. Am J Physiol Heart Circ Physiol 286: H2169–2182.
35. van Empel VP, Bertrand AT, Holstra L, Crijns HJ, Doevendans PA, et al. (2005) Temporal effects of catalase overexpression on healing after myocardial infarction. Circulation Research 96: 21–29.
36. Breen AP, Murphy JA (1995) Reactions of oxyl radicals with DNA. Free Radic Biol Med 18: 1033–1077.
37. Nelson M, Foxwell AR, Tyrer P, Dean RT (2007) Protein-bound 3,4-dihydroxy-phenylamine (DOPA), a redox-active product and protein oxidant, as a trigger for antioxidant defences. Int J Biochem Cell Biol 39: 879–889.
38. Murphy MP, Packer MA, Scarlett JL, White MD, Dimaio JM, Srivastava D (2004) Oxidative stress in heart failure. Cardiovasc Res 67: 21–29.
39. Breier AP, Murphy JA (1995) Reactions of oxyl radicals with DNA. Free Radic Biol Med 18: 1033–1077.
40. Nelson C, Foxwell AR, Tyer P, Dean RT (2007) Protein-bound 3,4-dihydroxy-phenylamine (DOPA), a redox-active product and protein oxidant, as a trigger for antioxidant defences. Int J Biochem Cell Biol 39: 879–889.
41. Murphy MP, Packer MA, Scarlett JL, White MD, Dimaio JM, Srivastava D (2004) Oxidative stress in heart failure: the role of mitochondria. Intern Med 40: 1177–1182.
42. Stanley WC, Hoppel CL (2000) Mitochondrial dysfunction in heart failure: potential for therapeutic interventions? Cardiovasc Res 45: 805–806.

Supporting Information

Table S1 NF-kB RTq PCR array Cells were treated with H2O2 in the presence and absence of Tβ4 and NF-kB RTq PPRG array was performed using a kit from SA Bioscience according to the manufacturer’s protocol. (DOCX)

Table S2 Selected NF-kB family genes. (DOCX)

Author Contributions

Conceived and designed the experiments: SG. Performed the experiments: CW SK IKK. Analyzed the data: SG CW SK IKK. Wrote the paper: SG.
43. Lesniewsky EJ, Moghaddas S, Tandler B, Kerner J, Hoppel CL (2001) Mitochondrial dysfunction in cardiac disease: ischemia-reperfusion, aging, and heart failure. J Mol Cell Cardiol 33: 1065–1089.
44. Baines CP, Kaiser RA, Purcell NH, Blair NS, Osinska H, et al. (2005) Loss of cyclophilin D reveals a critical role for mitochondrial permeability transition in cell death. Nature 434: 658–662.
45. Zhou SX, Zhou Y, Zhang YL, Lei J, Wang JF (2009) Antioxidant probucol attenuates myocardial oxidative stress and collagen expressions in post-myocardial infarction rats. J Cardiovasc Pharmacol 54: 154–162.
46. Morgan MJ, Lai ZG (2011) Crosstalk of reactive oxygen species and NF-kappaB signaling. Cell Res 21: 103–115.
47. Oliveira-Marques V, Marinho HS, Cynne I, Antunes F (2009) Role of hydrogen peroxide in NF-kappaB activation: from inducer to modulator. Antioxid Redox Signal 11: 2223–2243.