Implementation of a New Compact Inverter Structure Controlled by Numeric Sinusoidal Pulse Width Modulation for Photovoltaic Applications

Abounada A, Brahmi A, Chbirik G* and Ramzi M

Electrical Engineering Department, Faculty of Sciences and Technology, University of Soultan Moulay Silman, Laboratory of Automatic, Energy Conversion and Microelectronic, P.B: 523 Mghila, Beni Mellal 2300, Morocco

Abstract

In order to cover energy requirement, the photovoltaic is one of the proposed solutions. However, according to the aim of its utilization, the direct current output voltage of photovoltaic source should be adjusted. The boost inverter is a recent power processing stage that can increase, filter and alternate direct current input voltage. So as to control it, there are various modulation types. Among them, the sinusoidal pulse width modulation is presented in a new digital form. The operating principle of the aforementioned inverter and command have been analyzed and verified by simulation and realization. Furthermore, frequency analysis of output voltage signal proves efficient results.

Keywords: Renewable energy; Boost; Inverter; SPWM; Control; Microcontroller

Introduction

Energy crises and environmental pollution caused by consumption of traditional energy sources lead scientists to think about renewable energies to satisfy the world needs of electricity [1]. So, nowadays renewable energies are the most important subjects that researches and studies discuss [2]. Among these energy types, the solar is predicted to cover the maximum need of energy in the future [3]. Thus, a lot of articles present different photovoltaic systems structures [2,4,5], which are based on many power processing stages. This paper will focus on the inverter stage and its command. The structure presented here is very recent and understudied; it allows a conversion in a single stage to cover the maximum need of energy in the future [3]. Thus, a lot of studies discuss [2]. Among these energy types, the solar is predicted to cover the maximum need of energy in the future [3].

In order to explain the functioning of this inverter, we will consider one converter as shown in Figure 2 [9,10]:

The functioning of the converter is divided into two parts:

$[0, d*T_c]:$ The switch M_i is closed while M_j is open, I_{L_3} increases linearly, D_5 is reverse polarized, C_3 provides the load with energy, which decreases V_{o1}.

$[d*T_c, T_c]:$ The switch M_j is closed while M_i is open, C_i is charging by I_{L_3}. So, the voltage V_{o1} increases [9,10].

System Description

The boost inverter discussed here allows producing a filtered and amplified alternative voltage. It contains two bidirectional boost converters connected deferentially to a load [6,7]. Controlled by sinusoidal pulse width modulation SPWM command, each converter produces a DC voltage and an alternative component. The alternative components are sinusoidal signals and in phase opposition, whereas the DC components have the same value. This structure is shown by Figure 1 [8].

The output voltages V_{o1} and V_{o2} for both converters are presented by Eq. (1) and Eq. (2) [9,10].

\[V_{o1}(t) = V_{dc} + V_{max} \sin(\omega t) \]
\[V_{o2}(t) = V_{dc} - V_{max} \sin(\omega t) \]

The output voltage of the inverter is in "Eq. (3)"

\[V_{02(t)} = V_{o1}(t) - V_{o2}(t) = 2V_{max} \sin(\omega t) \]
It applies the same concept which is logic comparison of a sinusoidal wave to another triangular. So as to command the interrupters, we
make use of the intersections of these signals [11-13].

As Figure 3 presents, the triangular signal is produced by a binary counter. It counts till a maximum value, stored in a register, then
counts down until a minimal value. The sinusoidal one is represented
by a table of values obtained by sampling a sinusoidal signal; this
table is stored in a memory. The period of sampling is the same as
commutation period of the inverter, which is equal to the period of the
triangular signal elaborated by the counter.

In each period of sinusoidal signal, a software comparison between
these two signals is done so as to produce an impulsion in higher or
lower state.

The sinusoidal signal period gives suit of periodic impulsions
modeled in width according to a sinusoidal law.

The numeric command SPWM is implemented in the
microcontroller 16 F876 (20 MHz). The resulted SPWM signal should
command MOSFET transistors. Since the intensity and the amplitude
of this signal are unable to commutate the MOSFET, we added a driver
between the microcontroller and the transistors. It is IR2111 circuit.

We can also produce the timing sequence by Excel software or
Matlab and store it on the chip. This will allow us to optimize the chip
performance.

Finally, in order to protect the microcontroller we added an
optocoupler before the driver.

The circuit which produces the SPWM signals is presented in Figure 4.

Simulation

This part present a simulation of the inverter structure and its
command discussed in the beginning under a power of 300 W. The
inverter characteristics simulated are: Inductor: 0.23 µH, The capacitor:
260 µF, MOSFET: W45NM50 (Table 1).

The following Figures 5-10 show the realized inverter circuit in
Orcade software and its simulation results:

According to the simulation results, the output voltage waveforms
are sinusoidal; they have a frequency of 50 Hz and amplitude of 110 V.

Realization

After verification and validation by simulation, now we present
a practical implementation of the realized inverter structure and its
command.

The Digital Sinusoidal Pulse Width Modulation

To produce a sinusoidal voltage using this inverter, we command
it with a digital modulation SPWM inspired from the analogical one.

Where \(d \) is the duty cycle, \(T_c \) is the switching period

When one converter is in boost operating the other should be in
buck operating. The average voltage’s expression for the first converter
[11] is in Eq. (4) while that of the second is corresponding to Eq. (5):

\[
V_{01} = \frac{V_i}{1-d} \tag{4}
\]

\[
V_{02} = \frac{V_i}{d} \tag{5}
\]

Then the transfer function can be concluded in Eq. (6):

\[
\frac{V}{V_i} = \frac{2d-1}{d(1-d)} \tag{6}
\]

(6) For \(d_i=0.5, V_i=0 \), then if we vary \(d \) near to \(d_i \) we will have an
AC output voltage. Via the transfer function we can conclude that the
duty cycle is “Eq. (7)”

\[
d = 0.5 - \sqrt{\frac{4 + \left(\frac{V_o}{V_i}\right)^2}{2}} \tag{7}
\]

A linearization of this equation around \(d_i \) gives “Eq. (8)”:

\[
d = \frac{V_o}{2} \frac{8}{V_i} \tag{8}
\]

If we consider that \(V_o \) is sinusoidal we will have “Eq. (9)”

\[
d = \frac{1}{2} + \frac{V_{\text{max}}}{8V_i} \sin \left(\frac{2\pi f t}{V_i} \right) \tag{9}
\]

Where \(f \) is the frequency.

This equation presents the duty cycle’s variation near to \(d_i \). To
elaborate the command SPWM, in order to have a sinusoidal \(V_o \), we
will use the aforementioned “Eq. (9)”.

Figure 2: Equivalent circuit of the boost inverter.

Figure 3: Method of SPWM signal generation.

Table 1: Inverter characteristics.
In Figure 11 below shows the fabricated inverter.

The command card: The control card is built with the microcontroller PIC16F876 and three circuits. They are used for isolation, adaptation and interfacing with the microcomputer. This card has two inputs and five outputs, four of them are used to command the switches of the inverter.

In Figure 12 below shows the realized command card.

The microcontroller chosen to implement the SPWM technique has two PWM outputs and a memory. The outputs generate the SPWM signal whereas the memory accommodates the program. The maximum clock frequency that the microcontroller can accept is 20 MHz. The implementation of the mechanism SPWM in the microcontroller goes through three steps: Firstly, a configuration in pulse with modulation mode of two outputs "CCP1" and "CCP2" should be done.

Secondly, the period T_{c3} of PWM signals is defined according to "Eq. (10)"

$$T_{c3} = (PR_2 + 1) \times T_{osc} \times T_p$$

Where the period of the oscillator is T_{osc}, the predivisor of timer 2 is T_p and PR_2 is a register.

![Figure 4: SPWM electronics/circuit](image-url)
In order to fix the T_{C3} value to a required one, we should load the register $PR2$ by a decimal value from "0" to "255".

Thirdly, the values K_i which give the duty cycles D_i of number n, will be stored in a table and then loaded periodically according to a repetitive process. The loading procedure will be done by a timekeeper; it can belong to one of registers $CCPR1L$ or $CCPR2L$ according to "Eq. (11)" or "Eq. (12)"

\[(CCPR1L) \times T_{OSC} \times T_p \quad (11)\]

\[(CCPR2L) \times T_{OSC} \times T_p \quad (12)\]

Depending on "Eq. (13)", the generation of table’s values K_i can be done by using a software tool. Which help to obtain the duty cycle D_i depending on "Eq. (14)"

\[K_i = B + A \times \sin\left(\frac{2 \times \pi \times i}{n}\right) \quad (13)\]

The value of i goes from 1 until n

\[D_i = \frac{k_i}{PR} \quad (14)\]

The constants B, A and n will be determined as described subsequently.

The number n presents the number of duty cycles. It’s given by the report T_{c3}/T_i.

Figure 5: Boost inverter.

Figure 6: Output voltages of each converter.

Figure 7: The inverter output voltage for a resistive load.

Figure 8: Boost inverter output current for a resistive load.

Figure 9: Boost inverter output current and voltage for a RL load.
To choose A and B, on the one hand, we should consider the size of both registers CCPR1L and CCPR2L of 8 bits, thus these constants are positive and decimal. On the other hand, they will be chosen in order to have the duty cycle value equal to 50% for t=0, equal to 95% for t=T_c/4 and equal to 5% for t=3 T_c/4.

The maximum duty cycle value 95% is obtained by "Eq. (15)":

$$\sin \left(\frac{2 \times \pi \times i}{n} \right) = 1$$ \hspace{1cm} (15)

That will help to conclude the value of B+A

As the duty cycle value 50% is obtained depending on "Eq. (16)":

$$\sin \left(\frac{2 \times \pi \times i}{n} \right) = 0$$ \hspace{1cm} (16)

The value of B and then that of A will be easily deduced.

The implanted SPWM program undergoes from an interruption. This made the two values Ki and 255-Ki read and loaded simultaneously in both registers CCPR1L and CCPR2L. Then during every period T_c, two complementary motives SPWM are produced. This is caused by the over follow of timer 2. So we obtain the two desired signals SPWM during the period T_c.

The value of B and then that of A will be easily deduced.

The implanted SPWM program undergoes from an interruption. This made the two values Ki and 255-Ki read and loaded simultaneously in both registers CCPR1L and CCPR2L. Then during every period T_c, two complementary motives SPWM are produced. This is caused by the over follow of timer 2. So we obtain the two desired signals SPWM during the period T_c.

Experimental results

The output differential voltage of the realized boost inverter, applied on a resistive load, a capacitive load and inductive load, is presented in Figures 13-15.

These results show an output voltage highly near to be sinusoidal. It has a frequency of 59.94, a RMS voltage of 110.

Frequency analysis

Applying Fast Fourier Transform FFT on the inverter output voltage of every loads type offer various characteristics which are illustrated in Figure 16.

The fundamental has amplitude of 110 V; the 3rd harmonics remains the most dominant with low amplitude of 3.32 V. This value can be negligible compared to the amplitude of the fundamental.
Practical results obtained show a favorable functioning of this inverter; its yield can be improved by an optimal choice of the interrupters used to establish it.

Conclusion

In this paper we have established and evaluated a new inverter structure which allows boosting, undulating and filtering a DC voltage in a single stage.

The modulation is implemented in a digital form using a microcontroller which guarantees a good functioning. And the realization done supports and shows the optimal functioning of the inverter with different linear and non-linear loads.

References

1. Lahouar FE, Slama JBH, Hamouda M, Mustapha FB (2014) Comparative study between two and three-level topologies of grid connected photovoltaic converters. 5th International Renewable Energy Congress (IREC): 1-6.
2. Bounaaraa H, Talha A, Bouhail O (2015) A three-phase NPC grid-connected inverter for photovoltaic applications using neural network MPPT. Renewable and Sustainable Energy Reviews 49: 1171-1179.
3. Islam M, Mekhilef S, Hasan M (2015) Single phase transformer less inverter topologies for grid-tied photovoltaic system: A review. Renewable and Sustainable Energy Reviews 45: 69-86.
4. Islam M, Hasan M, Akter P, Rahman M (2014) A new transformerless inverter for grid connected photovoltaic system with low leakage current. International Conference on Electrical Information and Communication Technology (EIICT), Khulna: 1-6.
5. Islam M, Mekhilef S (2014) An improved transformer less grid connected photovoltaic inverter with reduced leakage current. Energy Conversion and Management 85: 854-862.

6. Sanchis AU, GUBIA E, Marroyo L (2005) Boost DC–AC Inverter: A New Control Strategy. IEE Transaction of Power Electronics 20: 343-353.

7. Albea C, Gordillo F, De Wit CC (2008) Adaptive Control of the Boost Inverter with Load RL, 17th IFAC World Congress, Seoul: 3316-3321.

8. Mostafa SMG (2012) Designing a Boost Inverter to Interface between Photovoltaic System and Power Utilities. IOSR Journal of Electrical and Electronics Engineering 3: 01-06.

9. Albea C, Gordillo F, Aracil J (2006) Control of the Boost DC-AC Converter by Energy Shaping. The 32nd Annual Conference of IEEE Industrial Electronics society, Paris: 754-759.

10. Akhter R (2007) A new technique of PWM boost inverter for solar home application. BRAC University Journal 4: 39-45.

11. Meddah M, Bouchetata NB (2011) Summary static DC/AC for photovoltaic systems. Renewable Energy Reviews ICESD’11 Adrar: 101-112.

12. Tehrani KA (2010) Design, Synthesis and Application of a New Robust Control by PID for The Fractional Multilevel Inverters, Theses.

13. Berrezzek F (2006) Etude des Différentes Techniques de Commande des Onduleurs à MLI Associées à une Machine Asynchrone.