SHORT REPORT

Frizzled-4 C-terminus Distal to KTXXXW Motif is Essential for Normal Dishevelled Recruitment and Norrin-stimulated Activation of Lef/Tcf-dependent Transcriptional Activation

Alexander C. Bertalovitz*, Milly S. Pau*, Shujuan Gao†, Craig C. Malbon† and Hsien-yu Wang*

The carboxy (C)-termini of G protein coupled receptors (GPCR) dictate essential functions. The KTXXXW motif C-terminus of Frizzleds (FZD) has been implicated in recruitment of Dishevelled (DVL). Through study of FZD4 and its associated ligand Norrin, we report that a minimum of three residues distal to the KTXXXW motif in the C-terminal tail of Frizzled-4 are essential for DVL recruitment and robust Lef/Tcf-dependent transcriptional activation in response to Norrin.

Keywords: Frizzled; Frizzled-4; carboxy-terminus; helix VIII; Dishevelled; Norrin

Background

The carboxy-terminal tail (C-tail) of GPCRs plays an essential role in receptor function and biology [1]. Mediating interactions with chaperones and downstream signaling elements, the C-tail may play a role in cell surface expression and downstream signal transduction [2]. Agonists binding to GPCRs have been shown to induce changes in C-tail conformation necessary for activating heterotrimeric G protein [3]. Prolonged agonist stimulation catalyzes phosphorylation of the C-tail, promoting arrestin binding, desensitization, and ultimately GPCR internalization [1].

Short amphipathic membrane interacting helix VIII at the transmembrane domain 7 (TM7) proximal end of the C-tail of GPCRs has been shown to be critical for G protein coupling and receptor trafficking [4, 5]. Although not reported for FZD, a crystal structure exists for the smoothened receptor [6]. To facilitate efforts in crystallization portions of the C-tail of GPCRs are often times truncated [7, 8]. For smoothened receptor, the flexibility of long unstructured regions of the C-tail required truncation at Q555, removing 200+ residues of the C-tail. The helix VIII was found to extend two residues beyond the tryptophan corresponding to that of FZD KTXXXW domains. Studies utilizing peptides encoding the C-tail of FZD suggest alpha-helicity and some role of the region immediately distal to KTXXXW in facilitating a receptor interaction with the PDZ domain of DVLs [9, 10].

Reports from studies employing full-length FZDs are not uniform concerning the function of the KTXXXW motif. Perturbation of the KTXXXW motif appears to inhibit the ligand-independent colocalization of Xenopus FZD3 with DVL [11]. Drosophila FZD2 lacking the KTXXXW motif, in sharp contrast, exhibited robust activation of Wnt/Wingless-induced Lef/Tcf-dependent transcription [12]. Promiscuity of various Wnts for Frizzleds occurs [13]. These possible promiscuous interactions are compounded at super physiological stoichiometry of FZD expressed in various cell lines [14]. These are formidable stumbling blocks to fine structure-activity analyses of FZD. To obviate these issues and probe the C-tail of FZD we took advantage of the FZD4-Norrin specificity [15, 16]. We found that the three residues QKC distal to the highly conserved KTXXXW domain of the FZD4 are required for substantial DVL recruitment and Lef/Tcf-dependent transcriptional activation.

Materials and Methods

Construction of plasmids

The mouse FZD4 construct containing the V5 tag between F37 and G38 in a prk5 vector (Addgene, Cambridge, MA) was used to generate mutants employed in this study.
The QuikChange Site-Directed Mutagenesis Kit (Agilent, Santa Clara, CA) was employed with specific primers to mutate codons. To construct the mFZD3/C-tailmFZD3, mFZD4/C-tailmFZD4, and the mFZD1/C-tailmFZD1 chimeras in which the C-tail after the KTXXXW of mFZD4 was substituted with the corresponding region from mFZD1, mFZD4, or mFZD2, respectively, the overlap extension polymerase chase reaction (PCR) method was employed using the Phusion Hot Start II DNA polymerase (Thermo Scientific, Waltham, MA). The C-terminal green fluorescent protein (GFP)-tagged DVL2 construct was generated by inserting the human DVL2 gene into the pEGFPN vector (Clontech, Mountain View, CA). The constructs were verified by DNA sequencing.

Cell culture

Human embryonic kidney (HEK293) and HeLa cells (obtained from ATCC, Manassas, VA) were cultured in Dulbecco’s modified Eagle's medium (Cellgro, Manassas, VA) supplemented with fetal bovine serum (10%, Hyclone, South Logan, UT), penicillin (100 μg/ml) and streptomycin (100 μg/ml, Corning, Manassas, VA) in a humidified atmosphere with a 5% CO₂ level at 37°C.

Lef/Tcf-dependent transcriptional activation via luciferase reporter assays

HEK293 cells were cultured in gelatin-coated 96 well plates (Greiner Bio-One, Frickenhausen, Germany) and then transfected at ~75% confluence with Lipofectamine 2000. Briefly, the conditions were as follows: 10 ng of GFP-tagged DVL2, 10 ng of Frizzled and empty vector to 250 ng per quadrant. Approximately 40 h after the transfections HeLa cells were then fixed with 4% paraformaldehyde (Electron Microscopy Sciences, Hatfield, PA) at room temperature following the removal of the media. Fixed cells were then washed 3X with Hank’s Balanced Salt Solution (HBSS, Life Technologies, Carlsbad, CA). Following the third wash, the quadrants were incubated with two drops of Image iFX signal enhancer (Molecular Probes, Eugene, Oregon) and rocked for 30–60 min at room temperature. Cells were then washed with HBSS 3X prior to the addition of V5 antibody (Novex, Carlsbad, CA at 1:1000) diluted in 2% sterile filtered fraction V bovine serum albumin (BSA), (MP Biomedicals, Santa Ana, CA) containing HBSS solution overnight at 4°C. The following day the cells were washed 3X with HBSS and then incubated with Alexa Fluor 594 labeled secondary antibody (Molecular Probes, Eugene, Oregon) for 90 min at room temperature in the dark. Cells were washed again and maintained in HBSS at 4°C in the dark until Fluorescent and differential interference contrast (DIC) images were taken using a Fluoview FV1000 confocal laser scanning microscope (Olympus, Tokyo, Japan) with a 60X oil immersion objective lens.

Receptor surface expression measured by IFA

Immunofluorescence assay (IFA) transfections were performed similarly to those of the functional assays, with 2 ng of receptor DNA per well. 24 h after, HEK293 cells were plated on gelatin-coated black plate clear bottom 96 well assay plates (Corning Inc., Corning, NY) in at least duplicate and fixed with 4% paraformaldehyde. Cells were subsequently washed with HBSS then blocked with 2% BSA. The cells were incubated with V5 antibody (Novex, Carlsbad, CA) at a 1:500 dilution, then washed with HBSS and incubated thereafter with Alexa Fluor 594 anti-mouse antibody diluted 1:1500. Cells were washed with HBSS and a SpectraMax M5 multimode plate reader (Molecular Devices, Sunnyvale, CA) was used to determine fluorescence readings for each well. Bar graphs display the % WT surface expression for each condition with the error bars representing the S.E.M. To determine the % WT surface expression for each condition the mean RFU value from the wells transfected without Frizzled plasmid was first subtracted from the other values. The mean of the resulting WT surface expression values was set as 100% WT surface expression.

Data analysis

To test for statistical significance between data, unpaired t-tests or one-way analysis of variance (ANOVA) followed by the Dunnett’s post test were conducted as described in the figure legends. p values < 0.05 established statistical significance.

Results

We analyzed the effects that truncation and substitution of the mouse Frizzled-4 C-tail (Figure 1) have on the ability of Norrin to induce Lef/Tcf-dependent transcriptional activation.
transcriptional activation (Figure 2A). Mutant mFZD4 (1-503) truncates the C-tail immediately beyond T503. Truncation at this position (mFZD4(1-503)) nearly abolished the ability of Norrin to activate Lef/Tcf-dependent transcription (Figure 2A). Restoring the wild-type sequence of the C-tail beyond T503 to N513 (mFZD4(1-503)) gradually ameliorated the loss of the Lef/Tcf-dependent transcriptional activation in response to Norrin to that of the WT response. We gauged the expression of mFZD4 and the truncations using amount of the surface expression (Figure 2B). All of the FZD4 constructs were expressed. Truncating the FZD4 carboxy-terminus at W504 to S508 resulted in some loss of cell surface expression. Although a positive correlation was observed between C-tail length and surface expression, the loss in activation was far greater than the apparent loss of some surface expression, suggesting that the simple reduction in cell surface mFZD4 could not account for the more profound loss of its function.

We probed the possibility that the changes in downstream signaling of the truncated mFZD4 might be accessible at the level of DVL (Figure 2C). We interrogated the ability of the mFZD4 and its variants to stabilize DVL at the cell surface. To enable these studies we made use of GFP-tagged DVL2, which is often times the most abundant DVL [17]. The ability of Frizzleds to stabilize DVL at the cell surface is essential to beta-catenin-dependent activation of the downstream pathway leading to Lef/Tcf-dependent transcriptional activation [11, 18]. Stabilization by FZD can be readily detected by confocal imaging of non-permeabilized cells expressing GFP-tagged DVL2 and V5-tagged mFZD4 (Figure 2C). We were unable to detect significant DVL2 recruitment and stabilization by mFZD4 C-tail mutants mFZD4(1-503), mFZD4(1-504), and mFZD4/C-tailmFZD4, or mFZD4/C-tailmFZD4 constructs differ from the mFZD4 WT construct. In these chimera, the region of the C-tail distal to the KTXXXW domain of mFZD4 has been substituted by the corresponding region of mFZD4 (mFZD4 residues R626 to V642), mFZD3 (mFZD3 residues A508 to A666 of mFZD3) or mFZD7 (mFZD7 residues R556 to V572), respectively. Note that for simplicity the mFZD4/mFZD3 C-tail is not shown in its entirety.
Figure 2: The FZD$_4$ C-tail modulates surface expression and receptor-DVL interaction. (A) V5mFZD$_4$ variants were overexpressed in HEK293 cells with hLRP5 and M50 reporter plasmid, stimulated with Norrin and Lef/Tcf-dependent luciferase activity was assayed as described. (B) Cell surface receptor expression detected by IFA in HEK293 cells transfected with the V5mFZD$_4$ variant shown and hLRP5. Following fixation the non-permeabilized cells were incubated with V5 primary antibody followed by incubation with a compatible Alexafluor594 secondary antibody and subsequent fluorescence quantification on a multimode plate reader. Statistically significant differences compared to WT as determined by an ANOVA analysis followed by the Dunnett’s post hoc test is indicated with an asterisk (*). (C) Confocal images of non-permeabilized HeLa cells co-transfected with GFP-tagged DVL2 and V5mFZD$_4$ WT or truncation variants using a V5 primary antibody.

Despite reports that under specific conditions FZD$_3$ can mediate beta-catenin-dependent signaling [11, 19] FZD$_3$ and FZD$_6$ have been reported to induce the least amount of Lef/Tcf-dependent activation amongst the 10 Frizzleds following the addition of various Wnts [13, 20]. With 159 amino acids following the KTXXXW
with a sequence highly homologous to the KTXXXW motif of the Frizzleds [6]. This domain has a short helix VIII parallel to the membrane encompassing the lysine extending to two residues beyond the tryptophan of the motif. A circular dichroism spectroscopy analysis of a peptide consisting of the FZD C-terminal in conjunction with molecular modeling suggests a helix VIII extending six residues beyond the KTXXXW motif of FZD [10]. In a membrane-mimicking environment a FZD C-terminal peptide exhibited a helix encompassing the leucine of the KTXXXW motif to 9 residues after the tryptophan [21]. Interestingly, the tryptophan residue, corresponding to W504 of mFZD, was shown to interact with the artificial lipid bilayer suggesting it could mimic the role of a C-terminal palmityl group which has been demonstrated to stabilize the helix 8 of various GPCRs [22, 23]. The mFZD_KC506-507AA mutation in which the only cysteine in the C-terminal was substituted with alanine exhibited normal Norrin-induced Lef/Tcf-dependent transcription signifying the absence or lack of a role in Lef/Tcf-dependent transcription of a palmitoylation site in the C-tail of FZD.

Other results obtained using peptides that map to the C-termini of Frizzleds suggest some function extending five to nine residues following the KTXXXW motif of FZD and FZD. Productive interaction between the FZD, with the DEP and PDZ domains of DVL appear to be influenced by this region of FZD [9, 24]. The present study indicates functionality that extends beyond the KTXXXW motif by more than three residues. The QC residues were shown to ameliorate receptor trafficking and Lef/Tcf-dependent transcription as a series of receptor constructs were generated including more of these residues. Although, WT-like signal transduction and trafficking observed with mFZD (1-513) was not detected with mFZD (1-507) signifying residues distal to QC may also have a role in enabling the formation of a helical structure critical for the life-cycle of the receptor.

Shortening the C-tail beyond C507 severely impaired normal DVL recruitment (as observed by FZD-DVL colocalization) and the ability of Norrin to activate Lef/Tcf-dependent transcription. The intracellular loops (loops) of Frizzleds also interact with DVL [18, 24]. It is possible that the Frizzled C-tail provides additional but essential interactions with DVL required for the receptor to participate in normal DVL recruitment and stabilization.

Multiple Frizzleds have been shown to mediate Wnt-induced activation of Lef/Tcf-dependent transcription to differing extents [20]. FZD and FZD for example, appear to activate Lef/Tcf-dependent transcription less robustly than FZD or FZD [13, 25]. The C-tails of FZD and of FZD are considerably longer than those of other Frizzleds. Substituting the corresponding C-tail of FZD distal to the KTXXXW sequence with that from FZD, FZD, or FZD, did not impact the ability of these mutant versions of FZD to mediate Norrin-induced Lef/Tcf-dependent transcriptional activation. The FZD, FZD, and FZD C-tails may provide

Discussion

In this study we show the C-tail of FZD, beyond the KTXXXW domain, affects several aspects of Frizzled-4 signaling and biology. The crystal structure of the smoothered receptor displays the region of the C-tail...
a structural role like that of FZD4's own native C-tail, *i.e.*, any secondary structure distal to transmembrane domain 7, such as helix VIII of FZD4, may form in the corresponding region of these other Frizzleds. The reduced ability of specific receptors to activate Lef/Tcf-dependent transcription may be due to factors outside of the ability of the C-tail to interact with DVL such as the potential of the receptor to synergize with LRPS/6 following the binding of a WNT ligand or other differences resulting from variations in the core of the receptors.

In summary, three residues distal to the KTXXXW motif of FZD4 are essential to normal FZD4-DVL interactions that are required for Lef/Tcf-dependent transcriptional activation by Norrin. Alpha-helicity in this region of the Frizzleds seems obligate for efficient protein-protein interaction with DVL and other downstream signaling elements.

Conclusion

This study demonstrates that substantial function of the FZD4 C-terminal tail minimally requires the three residues distal to the conserved KTXXXW domain. These additional residues QKC participate in cell-surface expression of Frizzled-4 and for signal propagation via Frizzled-DVL interactions that enable Norrin-dependent activation of Lef/Tcf-dependent transcription.

Competing Interests

The authors declare that they have no competing interests.

Author's contributions

AB and MP collected the data. AB wrote the draft manuscript. AB and MP generated the figures. HYW, CCM, and SG assisted in guiding the studies through collaborative discussions and edited the draft manuscript, final manuscript, and figures. Each author read and approved the submitted manuscript.

Abbreviations

ANOVA: analysis of variance; BSA: bovine serum albumin; C-tail: carboxy-terminal tail; C-termini: carboxy-termini; DIC: differential interference contrast; DVL: Dishevelled; FZD: Frizzled; GFP: green fluorescent protein; HBSS: Hank's Balanced Salt Solution; HEK293: human embryonic kidney; IFA: immunofluorescence assay; iloops: intracellular loops; M50: Super8xTOPFlash; mFZD: mouse Frizzled; PCR: polymerase chase reaction; RFU: relative fluorescence units; RLU: relative light units; S.E.M.: standard error of the mean; WT: wild-type

Acknowledgements

This work was supported by USPHS Grant GM69375 from NIGMS (to HYW) and DK25410 from NIDDK (to CCM), National Institutes of Health; NYSYSTEM Grant NBG-141 from New York State, Institute of Health (to HYW). Alex Bertalovitz is a recipient of a Ruth L. Kirschstein National Research Service Award Institutional Postdoctoral Fellowship (T32) from the NIDDK, NIH.

References

1. Drake, MT, Shenoy, SK and Lefkowitz, RJ. Trafficking of G protein-coupled receptors. *Circ Res.* 2006; 99(6): 570–582. DOI: http://dx.doi.org/10.1161/01.RES.0000242563.47507.ce

2. Bockaert, J, Marin, P, Dumuis, A and Fagni, L. The ‘magic tail’ of G protein-coupled receptors: an anchorage for functional protein networks. *FEBS Lett.* 2003; 546(1): 65–72. Available at http://www.ncbi.nlm.nih.gov/pubmed/12829238. DOI: http://dx.doi.org/10.1016/S0014-5793(03)00453-8

3. Nie, J and Lewis, DL. The proximal and distal C-terminal tail domains of the CB1 cannabinoid receptor mediate G protein coupling. *Neuroscience.* 2001; 107(1): 161–167. Available at http://www.ncbi.nlm.nih.gov/pubmed/11744255. DOI: http://dx.doi.org/10.1016/S0306-4522(01)00335-9

4. Ahn, Ki, Nishiyama, A, Mierke, DF and Kendall, DA. Hydrophobic residues in helix 8 of cannabinoid receptor 1 are critical for structural and functional properties. *Biochemistry.* 2010; 49(3): 502–511. DOI: http://dx.doi.org/10.1021/bi901619r

5. Swift, S, Leger, AJ, Talavera, J, Zhang, L, Bohm, A, et al. Role of the PAR1 receptor 8th helix in signaling: the 7-8-1 receptor activation mechanism. *J Biol Chem.* 2006; 281(7): 4109–4116. DOI: http://dx.doi.org/10.1074/jbc.M509525200

6. Wang, C, Wu, H, Katritch, V, Han, GW, Huang, XP, et al. Structure of the human smooth muscle receptor bound to an antitumour agent. *Nature.* 2013; 497(7449): 338–343. DOI: http://dx.doi.org/10.1038/nature12167

7. Rasmussen, SG, Choi, HJ, Rosenbaum, DM, Kobilka, TS, Thian, FS, et al. Crystal structure of the human beta2 adrenergic G-protein-coupled receptor. *Nature.* 2007; 450(7168): 383–387. DOI: http://dx.doi.org/10.1038/nature06325

8. Murakami, M and Kouyama, T. Crystal structure of squid rhodopsin. *Nature.* 2008; 453(7193): 363–367. DOI: http://dx.doi.org/10.1038/nature06925

9. Punjhihwa, C, Ferreira, AM, Cassell, R, Rodrigues, P and Fujii, N. Sequence requirement and subtype specificity in the high-affinity interaction between human frizzled and dishevelled proteins. *Protein Sci.* 2009; 18(5): 994–1002. DOI: http://dx.doi.org/10.1002/pro.109

10. Lemma, V, D’Agostino, M, Caporaso, MG, Mallardo, M, Oliviero, G, et al. A disorder-to-order structural transition in the COOH-tail of Fzd5 determines misfolding of the L501fsX533-Fz4 mutant. *Sci Rep.* 2013; 3: 2659. DOI: http://dx.doi.org/10.1038/srep02659

11. Umbhauser, M, Djiane, A, Goisset, C, Penzo-Mendez, A, Riou, JF, et al. The C-terminal cytoplasmic Lys-thr-X-X-3Trp motif in frizzled receptors mediates Wnt/beta-catenin signalling. *EMBO J.* 2000; 19(18): 4944–4954. DOI: http://dx.doi.org/10.1093/emboj/19.18.4944

12. Schweizer, L and Varmus, H. Wnt/Wingless signaling through beta-catenin requires the function...
of both LRP/Arrow and frizzled classes of receptors. BMC Cell Biol. 2003; 4: 4. DOI: http://dx.doi.org/10.1186/1415-4157-4-4
13. Yu, H, Ye, X, Guo, N and Nathans, J. Frizzled 2 and frizzled 7 function redundantly in convergent extension and closure of the ventricular septum and palate: evidence for a network of interacting genes. Development. 2012; 139(23): 4383–4394. DOI: http://dx.doi.org/10.1242/dev.083352
14. Atwood, BK, Lopez, J, Wager-Miller, J, Mackie, K and Straiker, A. Expression of G protein-coupled receptors and related proteins in HEK293, AT20, BV2, and N18 cell lines as revealed by microarray analysis. BMC Genomics. 2011; 12: 14. DOI: http://dx.doi.org/10.1186/1471-2164-12-14
15. Xu, Q, Wang, YS, Daboub, A, Smallwood, PM, Williams, J, et al. Vascular development in the retina and inner ear: Control by Norrin and Frizzled-4, a high-affinity ligand-receptor pair. Cell. 2004; 116(6): 883–895. DOI: http://dx.doi.org/10.1016/S0092-8674(04)00216-8
16. Smallwood, PM, Williams, J, Xu, Q, Leahy, DJ and Nathans, J. Mutational analysis of Norrin-Frizzled4 recognition. Journal of Biological Chemistry. 2007; 282(6): 4057–4068. DOI: http://dx.doi.org/10.1074/jbc.M609618200
17. Lee, YN, Gao, Y and Wang, HY. Differential mediation of the Wnt canonical pathway by mammalian Dishevelled-1, -2, and -3. Cell Signal. 2008; 20(2): 443–452. DOI: http://dx.doi.org/10.1016/j.cellsig.2007.11.005
18. Cong, F, Schweizer, L and Varmus, H. Wnt signals across the plasma membrane to activate the beta-catenin pathway by forming oligomers containing its receptors, Frizzled and LRP. Development. 2004; 131(20): 5103–5115. DOI: http://dx.doi.org/10.1242/dev.01318
19. Lu, D, Zhao, Y, Tawatao, R, Cottam, HB, Sen, M, et al. Activation of the Wnt signaling pathway in chronic lymphocytic leukemia. Proc Natl Acad Sci U S A. 2004; 101(9): 3118–3123. DOI: http://dx.doi.org/10.1073/pnas.0308648100
20. Binnerts, ME, Kim, KA, Bright, JM, Patel, SM, Tran, K, et al. R-Spondin1 regulates Wnt signaling by inhibiting internalization of LRP6. Proc Natl Acad Sci U S A. 2007; 104(37): 14700–14705. DOI: http://dx.doi.org/10.1073/pnas.0702305104
21. Gayen, S, Li, Q, Kim, YM and Kang, C. Structure of the C-terminal region of the Frizzled receptor 1 in detergent micelles. Molecules. 2013; 18(7): 8579–8590. DOI: http://dx.doi.org/10.3390/ molecules18078579
22. Zezula, J and Freissmuth, M. The A(2A)-adenosine receptor: a GPCR with unique features? Br J Pharmacol. 2008; 153(Supp l 1): S184–190. DOI: http://dx.doi.org/10.1038/sj.bjp.0707674
23. Sensoy, O and Weinstein, H. A mechanistic role of Helix 8 in GPCRs: Computational modeling of the dopamine D2 receptor interaction with the GIPC1-PDZ domain. Biochim Biophys Acta. 2015; 1848(4): 976–983. DOI: http://dx.doi.org/10.1016/j.bbamem.2014.12.002
24. Tauriello, DV, Jordens, I, Kirchner, K, Sloatstra, JW, Kruitwagen, T, et al. Wnt/beta-catenin signaling requires interaction of the Dishevelled DEP domain and C terminus with a discontinuous motif in Frizzled. Proc Natl Acad Sci U S A. 2012; 109(14): E812–820. DOI: http://dx.doi.org/10.1073/pnas.1114802109
25. Kolben, T, Perobner, I, Fernsebner, K, Lechner, F, Geissler, C, et al. Dissecting the impact of Frizzled receptors in Wnt/beta-catenin signaling of human mesenchymal stem cells. Biol Chem. 2012; 393(12): 1433–1447. DOI: http://dx.doi.org/10.1515/hbz-2012-0186

How to cite this article: Bertalovitz, A C, Pau, M S, Gao, S, Malbon, C C and Wang, H-y 2016 Frizzled-4 C-terminus Distal to KTXXXW Motif is Essential for Normal Dishevelled Recruitment and Norrin-stimulated Activation of Lef/Tcf-dependent Transcriptional Activation. Journal of Molecular Signaling, 11: 1, pp.1–7, DOI: http://dx.doi.org/10.5334/jms.1750-2187-11-1

Submitted: 02 November 2015 Accepted: 20 January 2016 Published: 05 February 2016

Copyright: © 2016 The Author(s). This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International License (CC-BY 4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. See http://creativecommons.org/licenses/by/4.0/.

Journal of Molecular Signaling is a peer-reviewed open access journal published by Ubiquity Press.