Multiplex lateral flow immunochromatographic assay is an effective method to detect carbapenemases without risk of OXA-48-like cross reactivity

Hadas Kon1, Shirin Abramov1, Sammy Frenk1, David Schwartz1, Ohad Shalom2, Amos Adler2,3, Yehuda Carmeli1,3 and Jonathan Lellouche1,4*

Abstract
Background: It is essential to detect carriers of carbapenemase-producing Enterobacterales in order to implement infection control measures. The objectives of this study was to evaluate the NG-Test® CARBA 5 (CARBA 5) assay for detection of five carbapenemases and to assess the cross reactivity of other OXA-type carbapenemases with the OXA-48-like specific antibodies.

Methods: A total of 197 Enterobacterales isolates were tested. To evaluate the cross reactivity, 73 carbapenem-resistant A. baumannii, harboring OXA-type variants, were tested. Polymerase chain reaction (PCR) served as gold standard for carbapenemase identification.

Results: Excellent agreement was found between PCR and CARBA 5, for all but one isolate. The single false positive result (a blaSME positive S. marcescens isolate) was incorrectly positive for blaOXA-48 by CARBA 5. No cross reactivity was observed. The sensitivity and specificity were 100.0% and 98.0%, respectively.

Conclusions: The CARBA 5 assay is highly sensitive and specific and is recommended as a tool for the detection of the main carbapenemases of interest in clinical microbiology laboratories.

Keywords: NG-Test® CARBA 5 assay, Cross reactivity, Enterobacterales, Carbapenemase, OXA-48-like, Carbapenem resistant

Introduction
Enterobacterales are a common cause of both community-acquired and hospital-acquired infections [1, 2]. These bacteria can acquire genes encoding multiple antibiotic resistance mechanisms, including extended-spectrum β-lactamas (ESBLs), AmpCs, and carbapenemases [3]. The global rise of carbapenemase-producing Enterobacterales (CPE) presents an increasing threat to healthcare delivery and patient safety [4].

Rapid detection of patients colonized or infected by CPE is necessary in order to provide a fast and correct treatment protocol. The NG-Test® CARBA 5 (CARBA 5) is a lateral flow immunoassay for carbapenemase detection, approved by the U.S Food and Drug Administration as of October 2019. CARBA 5 enables the detection of the five most prevalent carbapenemase enzymes (KPC, OXA-48-like, VIM, IMP, and NDM) through the use of specific antibodies [5].
Materials and methods
Isolate selection
The isolates in our sample were selected in order to represent different years and hospitals from the collection of Enterobacteriales isolates that were sent to the National Institute for Antibiotic Resistance & Infection Control in the years 2001–2017. An initial screening for carbapenemase identification was performed using polymerase chain reaction (PCR). We used a multiplex assay to detect blaKPC, blaOXA-48-like, blaNDM, blaIMP, blaVIM, and blaIMI [16] and a simplex PCR to detect blaSME [17]. The PCR results served as the gold standard to which the CARBA-5 assay was compared. Carbapenemase activity was assessed using the qualitative colorimetric β CARBA test (Bio-Rad, Marnes-la-Coquette, France), which is based on the change of color of an undisclosed chromogenic substrate in the presence of carbapenem-hydrolysing enzymes. The β CARBA test was conducted according to the manufacturer’s instructions.

The sample consisted of 197 unrelated, non-duplicate isolates from various sources (sputum n = 51, blood n = 74, urine n = 48, rectal n = 20, other n = 4). There were 19 (19/197, 9.6%) carbapenem-susceptible Enterobacteriales isolates (CSE; meropenem MIC < 4 µg/ml) and 178 (178/197, 90.4%) carbapenem-resistant Enterobacteriales (CRE; meropenem MIC ≥ 8 µg/ml). Of the 178 CRE isolates, 151 were identified as CPE: 47 harbored blaKPC, 40 blaOXA-48-like, 25 blaNDM, 19 blaVIM, 3 blaIMP, 1 blaIMP, 1 blaSME and 15 isolates harbored two or three carbapenemases. The other 27 CRE isolates (11 K. pneumoniae, 7 E. coli, 4 Enterobacter spp., 1 K. oxytoca, 1 Proteus spp., 1 E. aerogenes and 2 Providencia spp.) had meropenem MIC values of ≥ 8 µg/ml but no carbapenemase activity and none of the carbapenemases genes screened for in this study. They were classified as non-carbapenemase-producing CRE (Non-CP CRE). Meropenem MIC determination was performed twice using broth microdilution (BMD), according to Clinical and Laboratory Standards Institute (CLSI) guideline [18], at meropenem concentrations ranging from 0.5 to 64 mg/L. In case of discrepancy between duplicates, a third test was conducted. Susceptibility was determined using CLSI clinical breakpoint [19].

All isolates were stored at −80 °C, sub-cultured aerobically at 35 ± 2 °C and transferred twice prior to testing.

OXA-48-like target cross reactivity evaluation
To evaluate the cross reactivity with the OXA-48-like target, we tested 73 carbapenem-resistant A. baumannii (CRAB) isolates (meropenem MIC ≥ 8 µg/ml), all of them Ambler class D β-lactamases producers. A. baumannii isolates were identified by Vitek MS (BioMérieux, Marcy-l’Étoile, France) and identification was confirmed by PCR detection of blaOXA-51-LIKE and blaGrb [20]. Isolates were tested by PCR for the blaOXA-23, blaOXA-25 and intrinsic blaOXA-51-LIKE genes, as described previously [21]. PCR products were sequenced and OXA-type variants were determined using DNAMAN® software version 7.0 (Lynnon Corporation, Pointe-Claire, Quebec) and the Basic Local Alignment Search Tool (BLAST, http://blast.ncbi.nlm.nih.gov). The CRAB isolates harbored blaOXA-23 (n = 6), blaOXA-65 (n = 6), blaOXA-66 (n = 11), blaOXA-69 (n = 2), blaOXA-70 (n = 4), blaOXA-71 (n = 11), blaOXA-248 (n = 8) and various OXA-type combinations (n = 25).

The CRAB isolates were stored at −80 °C, sub-cultured aerobically at 35 ± 2 °C and transferred twice prior to testing.

NG-Test CARBA 5 assay
The CARBA 5 assay (NG Biotech, Guipry, France) is based on the reaction of carbapenemases with labelled anti-carbapenemase monoclonal antibodies. The assay was performed using fresh colonies grown on CHROMagar™ mSuperCARBA™ (Hy Laboratories, Rehovot, Israel) or Mueller Hinton agar (Hy Laboratories), as recommended in the CARBA 5 instruction manual. One colony was suspending in five drops (150 µL) of extraction buffer. The bacterial suspension was homogenized by vortex and 100 µL was loaded into a nitrocellulose membrane. The suspension migrated through the membrane due to capillary force, and interacted with the corresponding anti-carbapenemase monoclonal antibodies immobilized on the membrane. Results were read by researchers blinded to the PCR results, to ensure unbiased interpretation, following 15 min of incubation time at room temperature. Results were considered positive if a red line appeared on the control region and on one or more of the test regions (KPC, OXA, VIM, IMP or NDM), indicating that the isolate carried one or more carbapenemases. Results were considered negative if a
Results

Confirmation of the initial screening for carbapenemase identification results was performed by PCR. Details of the *Enterobacterales* isolates are shown in Table 1. The β CARBA test confirmed the expression of carbapenemases for 148/151 CPE isolates; it did not detect carbapenemase activity in the three isolates harboring blaIMI, a gene for which some variants are not detectable by this test [23].

The CARBA 5 assay accurately detected carbapenemase production in all 147 CPE isolates expressing a carbapenemase that the assay is designed to detect (KPC, OXA-48-like, VIM, IMP, and NDM); including isolates that were double or triple carbapenemase producers. Although results were read after 15 min, as per the manufacturer’s instructions, in most cases a positive result was obtained after 3–6 min. No false negative (FN) results were observed.

The CARBA 5 assay accurately identified as non-carbapenemase producers all 19 CSE and all 27 non-CP CRE. Additionally, the three CPE isolates carrying *blaIMI* were identified as negative, as IMI is not targeted by CARBA 5. There was one discrepancy between PCR and CARBA 5 results: a *S. marcescens* isolate expressing a *blaSME* gene according to PCR and *blaOXA-48* according to CARBA 5. Genome sequencing confirmed the presence of *blaSME* and the absence of a *blaOXA-48* gene or one of its variants. We classified this error as a FP result. For this isolate, the red line on the CARBA 5 indicating a positive OXA-48 result, appeared only after 14 min and was faintly visible.

Initial *A. baumannii* isolates identification obtained by mass spectrometry was confirmed by OXA-51 and gyrB genes sequencing. Details of the 73 *A. baumannii* isolates harboring OXA-type variants are presented in Table 2. The isolates harbored one, two or three OXA-type variants simultaneously (OXA-23, -24/-40, -85, -66, -69, -70, -71, -82, -90, and -248). All 73 CRAB isolates harboring OXA-variants were correctly tested negative.

In our sample, CARBA 5 had 100.0% sensitivity (95% CI 97.4–100.0%) and 98.0% specificity (95% CI 89.5–99.6%).

Discussion

Identification of carbapenemase genes can be done either by molecular tests, which detect the presence of a resistant carbapenemase gene, or by phenotypic tests, which detect the in vitro activity of carbapenemase enzymes [24, 25]. Molecular techniques, such as PCR, have several advantages, including accurate results and high sensitivity. However, molecular techniques cannot detect new or mutated genes and the implementation of these techniques requires skilled technicians [26]. Phenotypic tests, which are based on hydrolysis of a carbapenem (most often imipenem and meropenem), detect direct or indirect degradation products. Phenotypic tests include the Carba NP test [27], the modified carbapenem inactivation method (mCIM), the EDTA-modified carbapenem inactivation method (eCIM) and the rapid carbapenem inactivation method (rCIM) [28, 29]. Although the Carba NP test is recommended by the CLSI [19], a significant drawback of this test is the long preparation time required. Commercial derivatives of the Carba NP test are available and have simpler protocols, such as the Blue-Carba test [30]. The mCIM attain a high sensitivity and specificity, but the long turnaround time required (18–24 h) is a major limitation. Both the hydrolysis-based assays and the mCIM have limited ability to determine the exact carbapenemase enzyme, which might have important epidemiological and clinical implications.

In this study, we evaluated the performance of the CARBA 5 assay, a lateral flow immunoassay which is a simple, rapid and low-cost tool for carbapenemase detection. We found excellent agreement between the carbapenemase genes detected by PCR and the results of CARBA 5, for all but one isolate. The single FP result, obtained on a *blaSME* positive *S. marcescens* isolate, was incorrectly positive for *blaOXA-48* by the CARBA 5 assay.
Organism tested	No. of isolates	KPC n (%)	NDM n (%)	OXA-48-like n (%)	VIM n (%)	IMP n (%)	IMI n (%)	SME n (%)	Combination (n, %)	Non-CP CRE CSE n (%)
K. pneumoniae	77 (39.1)	32 (68.1)	6 (24.0)	16 (40.0)	8 (42.1)				OXA-48-like + NDM (2, 13.3)	11 (40.7)
									KPC + VIM (1, 6.7)	
									VIM + NDM + OXA-48-like (1, 6.7)	
									KPC + NDM (7, 46.6)	7 (25.9)
									OXA-48-like + NDM (2, 13.3)	
									KPC + NDM (1, 6.7)	
									OXA-48-like + NDM (1, 6.7)	4 (14.9)
E. coli	52 (26.4)	5 (10.6)	7 (28.0)	21 (52.5)	2 (10.4)	1 (1000)			KPC + NDM (7, 46.6)	7 (25.9)
									KPC + NDM (1, 6.7)	
E. cloacae	13 (66)	2 (4.3)	3 (12.0)	6 (31.6)	1 (3.3)				OXA-48-like + NDM (1, 6.7)	4 (14.9)
Enterobacter spp.	10 (5.1)	1 (2.1)	1 (2.5)	1 (5.3)	2 (6.7)				KPC + NDM (1, 6.7)	
Citrobacter spp.	6 (3.1)	3 (6.4)	3 (12.0)						KPC + NDM (1, 6.7)	
K. oxytoca	6 (3.1)	1 (2.1)	2 (8.0)	1 (2.5)	1 (5.3)				KPC + NDM (1, 6.7)	1 (3.7)
Proteus spp.	4 (2.0)	2 (8.0)	1 (2.5)						KPC + NDM (1, 6.7)	1 (3.7)
E. aerogenes	1 (0.5)								KPC + NDM (1, 6.7)	1 (3.7)
Providencia spp.	3 (1.5)		1 (4.0)						KPC + NDM (1, 6.7)	2 (7.4)
S. marcescens	3 (1.5)	2 (4.3)						1 (1000)	KPC + NDM (1, 6.7)	
K. ozonaeae	1 (0.5)							1 (5.3)	KPC + NDM (1, 6.7)	
M. morganii	1 (0.5)							1 (4.0)	KPC + NDM (1, 6.7)	
R. planticola	1 (0.5)							1 (2.1)	KPC + NDM (1, 6.7)	
CSE	19 (9.6)								KPC + NDM (1, 6.7)	19 (100.0)

Total 197 (1000) 47 (23.9) 25 (12.7) 40 (20.3) 19 (9.6) 1 (0.5) 3 (1.5) 1 (0.5) 15 (7.6) 27 (13.8) 19 (9.6)

Non-CP CRE, non-carbapenemase-producing carbapenem-resistant Enterobacterales; CSE, carbapenem-susceptible Enterobacterales
Bioinformatic analysis does not shed light on the reason causing this error.

Previous studies evaluating the CARBA 5 assay found a sensitivity ranging from 88 to 100% and a specificity varying between 95 and 100% [7–15, 31]. Three of these studies demonstrated 100% agreement [7, 12, 15]. Five evaluations reported FN errors obtained by isolates harboring IMP, NDM, VIM or OXA-48 [8–11, 13, 31]; whereas FP errors were reported in only three studies, attained from isolates carrying VIM or OXA-48-like genes [8, 10, 14]. In contrast to these evaluations, our study did not result in any FN errors, and obtained a single FP error.

The advantages of the CARBA 5 assay are numerous. CARBA 5 requires minimal preparation time and results are obtained within 15 min. The assay can be easily implemented in clinical microbiology laboratories and does not require external equipment or maintenance expenses. CARBA 5 enables detection of strains which express two or three carbapenemases simultaneously in a single test assay. It should be noted that the CARBA 5 assay cannot detect the IMI gene, therefore E. cloacae isolates with reduced susceptibility to meropenem need to be tested by other methods.

An alternative lateral flow immunoassay, RESIST-4 O.K.N.V. (Coris BioConcept, Gembloux, Belgium), is available for the detection of up to four carbapenemases. Several studies evaluating this test reported a specificity of 100% and a sensitivity ranging between 84 and 100%. Most errors were caused by isolates harboring blaNDM (83–95% sensitivity for NDM) [11, 32–37], which may be due to subtypes of the target enzymes. The advantage of CARBA 5 is that it can detect an additional carbapenemase that RESIST-4 O.K.N.V. cannot: blaIMP.

Two prior studies evaluated the CARBA 5 for cross reactivity with the OXA-48-like target. Potron et al. evaluated cross reactivity on a small sample of 19 Acinetobacter spp., each harboring a single OXA-type variant (OXA-23, -24/-40, or -58) [9]. Boutal et al. tested cross reactivity using enterobacterial isolates that harbored OXA-1, -2, -9 or -10 [14]. Both of those studies, like our own, found no cross reactivity, demonstrating the low likelihood of an FP result generated by Acinetobacter in a heterogeneous culture.

Our study has some limitations. First, the Enterobacterales sample consisted of only one IMP positive strain; therefore, we cannot draw a clear conclusion for the CARBA 5 assay for the detection of IMP specifically. Second, the absence of carbapenemase activity for the non-CP CRE isolates was determined by PCR and the qualitative colorimetric β CARBA test; however, a definitive determination can only be complete by whole genome sequencing.

In conclusion, the CARBA 5 assay is highly sensitive and specific, rapid, and easy to implement in routine workflow. It is an accurate tool for the detection of the main carbapenemases of interest in clinical microbiology laboratories. This assay can serve as an alternative to PCR and is an effective tool for infection control and outbreak prevention.

Table 2 Details of A. baumannii isolates harboring OXA-type variants

OXA-23	OXA-65	OXA-66	OXA-69	OXA-70	OXA-71	OXA-248	Combinations	Total
6 (8.2)	6 (8.2)	11 (15.1)	2 (2.7)	4 (5.4)	11 (15.1)	8 (11.0)	OXA-23 + OXA-66 (8, 11.0)	73 (100.0)

Abbreviations
CARBA 5: NG-Test® CARBA 5; PCR: Polymerase chain reaction; ESBLs: Extended-spectrum β-lactamases; CPE: Carbapenemase-producing Enterobacteriales; CSE: Carbapenem-susceptible Enterobacteriales isolates; Non-CP CRE: Non-carbapenemase-producing CRE; CRE: Carbapenem-resistant Enterobacteriales; CRAB: Carbapenem-resistant A. baumannii; CI: Confidence intervals; FP: False positive; FN: False negative; MCIM: Modified carbapenem inactivation method; ECIM: EDTA-modified carbapenem inactivation method; RCM: Rapid carbapenem inactivation method; CLSI: Clinical and Laboratory Standards Institute.

Acknowledgements
The authors would like to acknowledge Dr. Elizabeth Temkin who provided critical review of the manuscript.

Authors’ contributions
Writing—original draft: HK; writing—review and editing: JL, OS, AA and YC; conceptualization: JL and YC; investigation: SA, OS; methodology: JL, DS and YC; formal analysis: HK; bioinformatics analysis: SF; supervision: JL; funding acquisition: YC. All authors have read and approved the final manuscript.

Funding
This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.
Availability of data and materials
Not applicable.

Declarations

Ethics approval and consent to participate
The study was performed as part of the routine work of the National Center for Antibiotic Resistance and Infection Control, Ministry of Health. No ethics approval or participant consent was required for this study using de-identified isolates. No human subjects were involved in this study.

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Author details
1 National Institute for Antibiotic Resistance and Infection Control, Ministry of Health, 6 Weissman St, 6423906 Tel-Aviv, Israel. 2 Clinical Microbiology Laboratory, Tel-Aviv Sourasky Medical Center, Tel-Aviv, Israel. 3 Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel. 4 The Miriam and Sheldon Adelson School of Medicine, Ariel University, Ariel, Israel.

Received: 28 December 2020 Accepted: 27 August 2021
Published online: 04 September 2021

References
1. Peleg AY, Hooper DC. Hospital-acquired infections due to gram-negative bacteria. N Engl J Med. 2010. https://doi.org/10.1056/NEJMra0904124.
2. Tang HJ, Hsieh CF, Chang PC, Chen JJ, Lin YH, Lai CC, et al. Clinical significance of community-and healthcare-acquired carbapenem-resistant Enterobacteriaceae isolates. PLoS ONE. 2016. https://doi.org/10.1371/journal.pone.0151897.
3. Codjoe FS, Donkor ES. Medical sciences review carbapenem resistance: a review. Med Sci. 2017. https://doi.org/10.3390/medsci6010001.
4. Logan LK, Weinstein RA. The epidemiology of carbapenem-resistant Enterobacteriaceae: the impact and evolution of a global menace. J Infect Dis. 2017. https://doi.org/10.1093/infdis/jiw282.
5. Tamma PD, Sinner PJ. Phenotypic detection of carbapenemase-producing organisms from clinical isolates. J Clin Microbiol. 2018. https://doi.org/10.1128/JCM.01440-18.
6. Wild D, Kodak E. The immunoassay handbook. Amsterdam: Elsevier; 2013.
7. Jenkins S, Ledeborber NA, Westblade LF, Burnham CA, et al. Evaluation of NG-Test CARBA S for rapid phenotypic detection and differentiation of five common carbapenemase families: results of a multicenter clinical evaluation. J Clin Microbiol. 2020. https://doi.org/10.1128/JCM.00344-20.
8. Hopkins KL, Meunier D, Naas T, Volland H, Woodford N. Evaluation of the NG-Test CARBA S multiplex immunochromatographic assay for the detection of KPC, OXA-48-like, NDM, VIM and IMP carbapenemases. J Antimicrob Chemother. 2018. https://doi.org/10.1093/jac/dkx342.
9. Potiron A, Fournier D, Emeraud C, Tripionney P, Pléïsia P, Naas T, et al. Evaluation of the immunochromatographic NG-test CARBA S for rapid identification of carbapenemase in nonfermenters. Antimicrob Agents Chemoth. 2019. https://doi.org/10.1128/AAC.00968-19.
10. Takissian J, Bonnin RA, Naas T, Dortet L. NG-test carba S for rapid detection of carbapenemase-producing Enterobacteriales from positive blood cultures. Antimicrob Agents Chemoth. 2019. https://doi.org/10.1128/AAC.01119-19.
11. Baeza LL, Pfenniggwert N, Greiss C, Gottig S, Saleh A, Stelzer T, et al. Comparison of five methods for detection of carbapenemases in Enterobacteriaceae with proposal of a new algorithm. Clin Microbiol Infect. 2019. https://doi.org/10.1016/j.cmi.2019.03.003.
12. Kieffer N, Porel L, Nordmann P. Rapid immunochromatography-based detection of carbapenemase producers. Infection. 2019. https://doi.org/10.1007/s15010-019-01326-1.
13. Davison BD. Comparison of the NG biotech NG-test CARBA S and CORIS biocconcept RESIST-4 O.K.N.V. immunochromatographic lateral flow assays for the detection of carbapenemase enzymes in Enterobacteriaceae. New Zealand Med Lab Sci. 2019. https://doi.org/10.3316/infmel/723617143163122.
14. Boutil H, Vogel A, Bernabei S, Devilliers K, Creton E, Cotellon G, et al. A multiplex lateral flow immunomass for the rapid identification of NDM-, KPC-, IMP- and VM-type and OXA-48-like carbapenemase-producing Enterobacteriaceae. J Antimicrob Chemother. 2018. https://doi.org/10.1093/jac/dky521.
15. Bodendeerfer E, Keller PM, Mancini S. Rapid identification of NDM-, KPC-, IMP-, VM- and OXA-48-like carbapenemase-producing Enterobacteriales from blood cultures by a multiplex lateral flow immunomass. J Antimicrob Chemother. 2019. https://doi.org/10.1093/jac/dkz056.
16. Porel L, Walsh TR, Cuvillier V, Nordmann P. Multiplex PCR for detection of acquired carbapenemase genes. Diagn Microbiol Infect Dis. 2011. https://doi.org/10.1016/j.diagmicrobio.2010.12.002.
17. Mlynarzik P, Roderova M, Kolar M. Primer evaluation for PCR and its application for detection of carbapenemases in Enterobacteriaceae. Jundishapur J Microbiol. 2016. https://doi.org/10.5812/jjm.29314.
18. CLSI. Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria That Grow Aerobically. 11th ed.
19. CLSI. Performance Standards for Antimicrobial Susceptibility Testing: 31st ed.
20. Teixeira AB, Barin J, Hermes DM, Barth AL, Martins AF. PCR Assay based on the gyrB gene for rapid identification of Acinetobacter baumannii-calcoaceticus complex at species level. J Clin Lab Anal. 2017. https://doi.org/10.1100/jclca.22046.
21. Hou C, Yang F. Drug-resistant gene of blaOXA-23, blaOXA-24, blaOXA-51 and blaOXA-58 in Acinetobacter baumannii. Int J Exp Med. 2015;8(8):13859–63.
22. Clausen PTLC, Aarestrup FM, Lund Ø. Rapid and precise alignment of raw reads against redundant databases with KMA. BMC Bioinformatics. 2018. https://doi.org/10.1186/s12859-018-2336-6.
23. BIO-RAD. β CARBA test: rapid detection of carbapenemase-producing Enterobacteriaceae strains. 2015. p. 1–6. http://www.bio-rad.com/webroot/webcd/CDC/en/68360_881159_EN.pdf. Accessed on 2015.
24. Földes A, Bila DA, Székely E. Phenotypic and molecular identification of carbapenemase-producing enterobacteriaceae- challenges in diagnosis and treatment. Rev Rom Med Lab. 2018. https://doi.org/10.2478/rfml-2018-0018.
25. Iloivea A, Doi Y. Carbapenem-resistant Enterobacteriaceae. Clin Lab Med. 2017. https://doi.org/10.1016/j.cll.2017.01.005.
26. Nordmann P, Gniadkowski M, Giske CG, Poirel L, Woodford N, Miriaou V, et al. Identification and screening of carbapenemase-producing Enterobacteriaceae. Clin Microbiol Infect. 2012. https://doi.org/10.1111/j.1469-0691.2012.03815.x.
27. Nordmann P, Poirei L, Dortet L. Rapid detection of carbapenemase-producing Enterobacteriaceae. Emerg Infect Dis. 2012. https://doi.org/10.3201/eid1809.120355.
28. Li J, Li C, Cai X, Shi J, Feng L, Tang K, et al. Performance of modified carbapenem inactivation method and inhibitor-based combined disk test in the detection and distinguishing of carbapenemase producing Enterobacteriaceae. Ann Transl Med. 2019. https://doi.org/10.21037/atm.2019.09.43.
29. Muntean MM, Muntean AA, Gauthier L, Creton E, Cotellon G, Popa MJ, et al. Evaluation of the rapid carbapenem inactivation method (RIM): a phenotypic screening test for carbapenemase-producing Enterobacteriaceae. J Antimicrob Chemother. 2018. https://doi.org/10.1093/jac/dks519.
30. Pires J, Novais A, Peixe L. Blue-Carba, an easy biochemical test for detection of diverse carbapenemase producers directly from bacterial cultures. J Clin Microbiol. 2013. https://doi.org/10.1128/JCM.01634-13.
31. Chan WW, Campbell L, Doyle D, Pitout JD. Rapid detection of Enterobacteriales that produce carbapenemases. Diagn Microbiol Infect Dis. 2020. https://doi.org/10.1016/j.diagmicrobio.2020.115120.
32. MacDonald JW, Chhabalai V. Evaluation of the RESIST-4 O.K.N.V immunochromatographic lateral flow assay for the rapid detection of OXA-48, KPC, NDM and VM carbapenemases from cultured isolates. Access Microbiol. 2019. https://doi.org/10.1009/acmi.0.00031.
33. Saleh A, Göttig S, Hamprecht AG. Multiplex immunochromatographic detection of OXA-48, KPC, and NDM carbapenemases: impact of inoculum, antibiotics, and agar. J Clin Microbiol. 2018. https://doi.org/10.1128/JCM.00050-18.

34. Kolenda C, Benoit R, Carricajo A, Bonnet R, Dauwalder O, Laurenta F. Evaluation of the new multiplex Immunochromatographic O.K.N.V. K-SeT assay for rapid detection of OXA-48-like, KPC, NDM, and VIM carbapenemases. J Clin Microbiol. 2018. https://doi.org/10.1128/JCM.01247-18.

35. Glupczynski Y, Jousset A, Evrard S, Bonnin RA, Huang TD, Dortet L, et al. Prospective evaluation of the OKN K-SeT assay, a new multiplex immunochromatographic test for the rapid detection of OXA-48-like, KPC and NDM carbapenemases. J Antimicrob Chemother. 2017. https://doi.org/10.1093/jac/dks089.

36. Greissl C, Saleh A, Hamprecht A. Rapid detection of OXA-48-like, KPC, NDM, and VIM carbapenemases in Enterobacterales by a new multiplex immunochromatographic test. Eur J Clin Microbiol Infect Dis. 2019. https://doi.org/10.1007/s10096-018-3432-2.

37. Wareham DW, Momin MHFA. Rapid detection of carbapenemases in Enterobacteriaceae: evaluation of the resist-3 O.K.N. (OXA-48, KPC, NDM) lateral flow multiplexed assay. J Clin Microbiol. 2017. https://doi.org/10.1128/JCM.02471-16.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.