Electrophoretic profiles of lipopolysaccharides from Rhizobium strains nodulating Pisum sativum do not reflect phylogenetic relationships between these strains

Jolanta Kutkowska1 · Monika Marek-Kozaczuk1 · Jerzy Wielbo1 · Marek Wójcik1 · Teresa Urbanik-Sypniewska1

Received: 2 June 2016 / Revised: 24 March 2017 / Accepted: 30 March 2017 / Published online: 6 April 2017
© The Author(s) 2017. This article is an open access publication

Abstract Rhizobia that nodulate peas comprise a heterogeneous group of bacteria. The aim of this study was to investigate the relationship between phylogeny and electrophoretic and hydroxy fatty acid lipopolysaccharide (LPS) profiles of pea microsymbionts. Based on amplified fragment length polymorphism (AFLP) fingerprinting data, the pea microsymbionts were grouped into two clusters distinguished at 58% similarity level. Based on the concatenated 16S rRNA, recA, and atpD housekeeping gene data, the microsymbionts appeared to be most closely related to Rhizobium leguminosarum biovars viciae and trifolii. Applying cluster analysis to their LPS electrophoretic profiles, the strains were assigned to two major groups with different banding patterns. All hydroxy fatty acids common to R. leguminosarum and R. etli were detected in each examined strain. Differences in the proportions of 3- to ω-1 hydroxy fatty acids allowed us to distinguish two groups of strains. This classification did not overlap with one based on LPS electrophoretic profiles. No clear correlation was apparent between the genetic traits and LPS profiles of the pea nodule isolates.

Keywords Rhizobium leguminosarum · Pisum sativum · AFLP fingerprinting · 16S rRNA · Lipopolysaccharides · Fatty acids

Introduction

Biological nitrogen fixation is one of the most important processes whereby reduced nitrogen compounds are introduced into the biosphere. Bacteria from the order Rhizobiales, both free-living and those forming a symbiotic relationship with legume plants, are capable of fixing atmospheric nitrogen (Zahran 1999). One of the striking features of symbiosis is the relatively high specificity of the interaction between the microsymbiont and the host plant. Most rhizobia have a narrow host range and form nodules on well-defined plant species, e.g., Rhizobium leguminosarum bv. viciae is a symbiont of the legumes of the tribe Vicieae, which includes the genera Vicia, Pisum, Lathyrus, and Lens, while the symbiosis of Rhizobium bv. trifolii is confined to Trifolium plants (Tian et al. 2010; Kumar et al. 2015).

Nodule development requires the exchange of molecular signals between the two partners, flavonoids (produced by plants) and Nod factors (produced by bacteria) that are recognized by plant receptors. This leads to the expression of plant genes, cell de-differentiation, organogenesis, and infection of root nodules (Skorupska et al. 2006; Zgadzaj et al. 2015).

In addition, partner recognition and effective symbiosis require an appropriate structure of surface polysaccharides, such as lipopolysaccharides (LPS), exopolysaccharides (EPS), external capsular polysaccharides (CPS or K-antigen polysaccharides, KPS), as well as periplasmic cyclic β-glucans, high molecular weight neutral polysaccharide (glucomannan), and gel-forming polysaccharide (GPS) (Laus et al. 2006; Janczarek 2011; Kawaharada et al. 2015).

The importance of the different types of polysaccharides in the nodulation process varies depending on the type of
nODULES (determinate or indeterminate). For instance, acidic EPS secreted into the extracellular environment is especially significant in the establishment of effective symbiosis with host plants that form indeterminate nodules (Hotter and Scott 1991). On the other hand, the presence of the O-chain portion of LPS is required for effective symbiosis in both determinate and indeterminate (Diefenbach 1989) nodule-forming hosts (Noel et al. 1986).

Metabolism-related traits and physiological characteristics are quite often used to study the diversity of rhizobia (Dresler-Nurmi et al. 2009). Native rhizobial populations are diverse and contain strains differing in their physiological features, genomic structure, and the efficiency of nitrogen fixation (Wielbo et al. 2010, 2011; Kumar et al. 2015). Accordingly, some LPS traits, such as their electrophoretic profile and fatty acid composition, may be used for taxonomic classification (Santamaria et al. 1997). The composition of both total cellular fatty acids and LPS fatty acids has been used for bacterial identification and taxonomy (Yokota and Sakane 1991; Dresler-Nurmi et al. 2009; Choma and Komaniecka 2011).

Recent studies have revealed particularly high diversity in the genome organization and metabolic versatility of R. leguminosarum (Kumar et al. 2015) demonstrated that the diversity of R. leguminosarum within a local population of nodules was 10 times higher than that found in Ensifer medicae.

The molecular methods used for the classification of bacterial species include 16S rRNA gene sequencing and phylogenetic analysis of housekeeping genes (Ramirez-Bahena et al. 2008). Amplified fragment length polymorphism (AFLP) analysis has also been used to evaluate the genomic diversity of nodule bacteria (WoldeMeskel et al. 2004; Wdowiak-Wróbel and Malek 2005). Briefly, genomic DNA was digested with PstI and ligated to adaptors Pst_AR (5′-TGTACCGAGTCTACG-3′) and Pst_AF (5′-CTCGTAGACTGCGTGATCGA-3′) for 4 h at 37 °C. Next, it was subjected to a selective PCR using a PstI-PCR primer containing additional GCG nucleotides at the 3′-terminus (5′-GACTGCGTGATCGAAGGC-3′). The amplified products were separated by electrophoresis in 2% (w/v) agarose gel in Tris–borate-EDTA (TBE) buffer. AFLP profiles were used for the construction of a dendrogram, employing the unweighted pair-group method with arithmetic mean (UPGMA) clustering method in STATISTICA v. 10 for Windows (StatSoft Inc., Tulsa, OK).

PCR amplification and gene sequencing

Genomic DNA was extracted and purified as described previously (Marek-Kozaczuk et al. 2013). The 16S rRNA was amplified using 16S63f (5′-CAGGCTTACACATGGCAAGTC-3′) and 16S1387r (5′-GGCCGCGWGTGTACAAGGC-3′) primers (Marchesi et al. 1998). The primers and protocols used for the amplification and sequencing of chromosomal housekeeping genes atpD, encoding the beta subunit of ATP-synthase (Bailly et al. 2007), and recA, encoding a DNA recombinase (Gaunt et al. 2001), were described earlier (Marek-Kozaczuk et al. 2013).

Sequencing was performed using the BigDye® Terminator Cycle Sequencing Kit (Applied Biosystems, Carlsbad, CA, USA) and an ABI Prism 3730 XL Genetic Analyzer (Applied Biosystems). The sequences were aligned with those deposited in the GenBank using the MEGA5.0 software package (Tamura et al. 2011). Distances were calculated according to Kimura’s two-parameter model of substitutions (Kimura 1980). Phylogenetic trees were constructed using the neighbor-joining (NJ) method. Bootstrap analysis was based on 1000 replications (Felsenstein 1985).

Materials and methods

Bacterial strains and growth conditions

All strains used in this study (15 strains) were obtained from surface-sterilized nodules of pea (P. sativum) grown in arable soil in the region of Lublin, Poland, as described earlier (Wielbo et al. 2010, 2011). The isolated strains were reinoculated onto P. sativum cv. Ramrod to confirm their nodulation ability in sterile conditions. For further studies, the bacteria were grown either on yeast mannitol agar (79CA) plates (Vincent 1970) or in liquid 79CA medium, with 1% glycerol as a carbon source, at 28 °C with shaking (160 rpm).

AFLP analyses

The genome diversity of rhizobial strains was studied using a modified AFLP method, as described by Wdowiak-Wróbel and Malek (2005). Genomic DNA was digested with PstI and ligated to adaptors Pst_AR (5′-TGTACCGAGTCTACG-3′) and Pst_AF (5′-CTCGTAGACTGCGTGATCGA-3′) for 4 h at 37 °C. Next, it was subjected to a selective PCR using a PstI-PCR primer containing additional GCG nucleotides at the 3′-terminus (5′-GACTGCGTGATCGAAGGC-3′). The amplified products were separated by electrophoresis in 2% (w/v) agarose gel in Tris–borate-EDTA (TBE) buffer. AFLP profiles were used for the construction of a dendrogram, employing the unweighted pair-group method with arithmetic mean (UPGMA) clustering method in STATISTICA v. 10 for Windows (StatSoft Inc., Tulsa, OK).

Nucleotide sequence accession numbers

The sequences have been submitted to the GenBank database under accession numbers KJ528929–KJ528943 for 16S rRNA genes; KJ528903–KJ528911,
Sodium dodecyl sulfate (SDS)-tricine-polyacrylamide gel electrophoresis (PAGE)

LPS was prepared by whole-cell microextraction using protease K digestion. Bacterial cells were washed three times with 0.5 M NaCl, and wet cell mass samples (50 mg) were solubilized in 200 μL of lysing buffer according to Apicella (2008). Samples (5 μL) were loaded onto 12.5% SDS-PAGE gel. Electrophoresis was carried out using a tricine buffer system. LPS profiles were visualized as described by Tsai and Frasch (1982). The UPGMA method was used to construct a dendrogram of LPS profiles. The presence of a band was scored as 1 and its absence as 0. Bands with the same mobility, regardless of their intensity, were considered to be identical.

Analysis of LPS-derived fatty acids

Fatty acids were released (4 M HCl, 100 °C, 4.5 h) from LPS samples obtained from whole cell lysates. Free fatty acids were esterified by methanolation (1 M methanolic HCl, 80 °C, 1.5 h). The samples were trimethylsilylated (TMS) with a Sylon HTP kit (Supelco, Bellefonte, PA, USA) for 30 min at room temperature. Methyl esters of nonpolar fatty acids and TMS ethers of hydroxy fatty acids were identified by gas chromatography–mass spectrometry (GC–MS) on an Agilent gas chromatograph (7890A, Santa Clara, CA, USA) equipped with a capillary column (HP-5MS, 30 m × 0.25 mm, Supelco, Bellefonte, PA, USA) connected to a mass selective detector (MSD5975, Agilent Technologies, Santa Clara, CA, USA).

Fatty acid weight percentage of total methyl esters was analyzed with the UPGMA method using unweighted pair-group average Euclidean distances, in the STATISTICA package.

Quantitation of EPS production

Three-day 79CA medium cultures of rhizobia were centrifuged at 14,000×g for 30 min, and EPS was precipitated from supernatants with three volumes of cold ethanol. The quantification of total carbohydrates, expressed as glucose equivalents, was performed by the anthrone method (Yasar 2005). The EPS yield was expressed as mg of EPS produced per mg of bacterial protein. Total protein was determined by the Lowry method after overnight solubilization of bacteria in 0.1 M NaOH and 5.0% SDS at room temperature.

Sensitivity to salt, detergents, pH, and elevated temperature

The ability of strains to grow in the presence of saline was determined in liquid 79CA medium supplemented with 0.01, 0.1, 1.0, and 3.0% (w/v) of NaCl. The bacterial growth was measured as optical density at 550 nm (OD550). The growth of each strain was tested at pH 4.5, 5, 7.2, 7.5, and 8.0, in liquid 79CA medium. Temperature ranges and growth optima of the isolates were determined by incubating the inoculated 79CA liquid medium cultures at 20, 28, 37, and 42 °C. Cell viability was tested by spreading 100 μL of undiluted cultures on 79CA agar plates.

Sensitivity to SDS and sodium deoxycholate (DOC) was determined using a dilution method in 96-well microtiter plates with serially diluted detergents at concentrations from 0.001 to 0.25% (w/v) in 79CA medium. The minimum inhibitory concentration (MIC) was defined as the lowest concentration of the detergents at which no bacterial growth was visible.

All samples were incubated for 3 days. The experiments were performed in triplicate.

Phenotypic data (sensitivity to salt, SDS, DOC, and pH) were analyzed by the UPGMA method using weighted pair-group average Euclidean distances.

Results

Analysis of the genetic diversity of pea nodule isolates

Based on cluster analysis of AFLP fingerprints with the unweighted pair-group method, all strains were grouped into two clusters at 58% similarity level (Fig. 1). Only two strains, GC 5.8 and GC 7.4, had identical DNA fingerprints. Strains GC 1.3 and GD 4 shared the highest similarity with the reference strain R. leguminosarum bv. viciae 3841 with 70 and 61% similarity, respectively. Strain GD 4 was most distant from all isolates. At the cut off value of 85%, the strains could be subdivided into three subgroups: group I—strains GB 42, GC 5.8, GC 7.4, P 1.37, and P 1.42, displaying 92% similarity; group II—strains GB 53, GD 31, GD 29, and P 2.24; and group III—formed by strains GC 5.5 and P 1.47, with 88% similarity.

The 16S rRNA gene-based phylogenetic tree was less informative and showed that the analyzed 15 pea microsymbionts clustered in a well-resolved branch with R. leguminosarum bv. viciae strains USDA 237 and 3841, and R. leguminosarum bv. trifolii ATCC 14480 with bootstrap support of 98% (Supplemental Fig. 1).

To further classify the isolates, the recA and atpD core genes were sequenced. The similarity values for the recA and atpD genes were high and ranged from 95.1 to 100%.
The phylogenetic tree constructed on the basis of the concatenated genes 16S rRNA, recA, and atpD showed that all strains except GD 4 formed a cluster with the reference strains *R. leguminosarum* bv. *trifolii* ATCC 14480 and *R. leguminosarum* bv. *viciae* USDA 237 (Fig. 2) and confirmed that the *P. sativum* isolates were phylogenetically related to the biovars *viciae* and *trifolii* of *R. leguminosarum*. Isolate GD 4 showed the highest similarity, i.e., 98% sequence identity of combined gene sequences to *R. leguminosarum* bv. *viciae* 3841. A distinct branch at 99.5–99.6% sequence identity of the concatenated genes was formed by the three microsymbionts GD31, P1.42, and P2.24.

Electrophoretic analysis of LPS

Based on LPS electrophoretic profiles, the strains isolated from pea nodules were grouped into two major clusters at a similarity level of 58%, as determined by the UPGMA method (Fig. 3a, b). The largest cluster (cluster A) contained 10 isolates, including the reference strain 3841 (Table 1), with the LPS profile consisting of two major bands representing high molecular weight LPS I, i.e., LPS containing the O-polysaccharide, and LPS II, a low molecular weight LPS that contains lipid A and a core oligosaccharide (D’Heaze et al. 2007) (Fig. 3a). Four isolates, P1.37, P1.42, P1.47, and GC7.4 had the same LPS profile as strain 3841. Strains GB 42 and GC 1.3 formed a sub-cluster with 90% similarity, characterized by a less prominent LPS I region.

In the other cluster (cluster B), LPS of strains GC 5.5, GC 5.8, and GD 31 (Table 1) was characterized by a much higher heterogeneity of slow- and fast-migrating bands, whereas the LPS of strain P 1.12 migrated as two major bands. The LPS of strain P 2.24 had a distinct pattern and was categorized as type C (Table 1).

Four isolates (P1.37, P1.42, P1.47, and GC7.4) with LPS patterns similar to that of 3841 (Fig. 3) were more closely related to strains *R. leguminosarum* bv. *viciae* USDA 2370 and *R. leguminosarum* bv. *trifolii* ATCC 14480 than to strain 3841, while isolate GD 4, with the highest similarity to strain 3841, had a different LPS profile.

Fatty acid analysis

Strong acidic hydrolysis of LPS preparations was used to release both ester- and amide-bound fatty acids. The analysis revealed the presence of the following hydroxy fatty acids in all strains isolated from pea nodules and *R. leguminosarum* bv. *viciae* 3841: 3-hydroxymyristic (C14:0 3-OH), 3-hydroxypentadecanoic (C15:0 3-OH) 3-hydroxypalmitic (C16:0 3-OH), 3-hydroxystearic (C18:0 3-OH), and (ω-1) very long chain 27-hydroxyoctacosanoic (C28:0 27-OH) acids, which are specific to *R. leguminosarum* (Vedam et al. 2003; Brown et al. 2011) and *R. etli* lipid A (Que et al. 2000) (Table 2). In addition, 29-hydroxytriacontanoic acid (C30:0 29-OH) was detected. The presence of this fatty acid in lipid A of strain 3841 was also reported by Vedam et al. (2003). The fatty acid ratio varied among the strains; different ratios of primary acyl chains (ester- and amide-linked to the lipid A backbone) and secondary fatty acids (substituting hydroxyl groups of the primary acyl chains) were found. Based on fatty acid composition, two discrete profile groups could be distinguished (Table 2).
Fig. 2 Neighbor-joining phylogenetic tree based on combined partial 16S rRNA, recA, and atpD sequences of strains from pea nodules and of closely related *Rhizobium* species. Bootstrap analysis was based on 1000 resamplings. Bar, number of nucleotide substitution per site.

Fig. 3
(a) Tricine SDS-PAGE profiles of LPS of strains isolated from pea plant nodules and the reference strain *R. leguminosarum* bv. *viciae* 3841.
(b) Dendrogram constructed using data from a
A dendrogram based on the mean fatty acid content (% of total fatty acids) confirmed the grouping of fatty acid profiles into two major clusters (Fig. 4; Table 2). In the first cluster, designated as 1 and comprising strains P 1.47, GC 5.8, GD 4, and GC 1.3, the ratio of fatty acids was similar to that of *R. leguminosarum* 3841; in cluster 2, comprised by the remaining 11 strains, the content of C15:0 3-OH and C16:0 3-OH and ω-1 fatty acids was variable (Supplemental Fig. 4).

Table 1 NaCl and pH tolerance, sensitivity to detergents, electrophoretic LPS pattern, and EPS production of *Pisum sativum* isolates compared with reference strain 3841

LPS pattern	Strain	Range of NaCl (%)	pH	MIC % (w/v) DOC	SDS	EPS (µg mg⁻¹ protein)
A	P 1.37	0.01–0.1	4.5–7.5	0.12 ± 0.015	0.06 ± 0.005	287.5 ± 20.4
	P 1.42	0.01–1.0	4.5–7.5	0.12 ± 0.002	0.015 ± 0.002	453 ± 40.2
	P 1.47	0.01–1.0	4.5–7.5	0.06 ± 0.002	0.12 ± 0.03	330.4 ± 25.1
	GC 7.4	0.01–1.0	4.5–8.0	0.12 ± 0.015	0.06 ± 0.006	240.5 ± 26.4
	3841	0.01–1.0	4.5–7.5	0.06 ± 0.005	0.06 ± 0.005	136.4 ± 18
	GD 4	0.01–1.0	4.5–8.0	0.12 ± 0.02	0.03 ± 0.002	270 ± 21
	GD 29	0.01–3.0	4.5–8.0	0.12 ± 0.025	0.015 ± 0.002	311.3 ± 16.3
	GB 53	0.01–3.0	4.5–8.0	0.12 ± 0.035	0.015 ± 0.003	235.6 ± 21.3
	GC 1.6	0.01–3.0	4.5–7.5	0.12 ± 0.03	0.12 ± 0.02	216.7 ± 15.1
	GB 42	0.01–1.0	4.5–7.5	0.12 ± 0.03	0.03 ± 0.003	347.4 ± 45
	GC 1.3	0.01–3.0	4.5–8.0	0.06 ± 0.004	0.015 ± 0.002	298.6 ± 33.1
	GD 31	0.01–1.0	4.5–8.0	0.25 ± 0.025	0.06 ± 0.005	401.7 ± 15.16
	GD 5.5	0.01–1.0	7.2–8.0	0.015 ± 0.002	0.03 ± 0.004	113.7 ± 16.3
	GD 5.8	0.01–1.0	4.5–8.0	0.25 ± 0.03	0.06 ± 0.004	300.6 ± 22
	P 1.12	0.1–1.0	4.5–7.5	0.06 ± 0.006	0.06 ± 0.005	332.7 ± 18.2
	P 1.12	0.01–1.0	4.5–7.0	0.06 ± 0.005	0.06 ± 0.004	260 ± 26.4

NaCl concentrations and pH range of culture medium for which bacterial growth was detected; MIC, minimum inhibitory concentration; DOC, sodium deoxycholate; SDS, sodium dodecyl sulfate. Exopolysaccharide (EPS) production is expressed as µg of glucose (Glc) equivalents mg⁻¹ protein. The data presented are averages (± standard deviation) of three independent measurements.

Table 2 Composition of LPS-derived fatty acid from pea nodule isolates and strain 3841

Strain	% Fatty acids					
	C14:0 3-OH	C15:0 3-OH	C16:0 3-OH	C18:0 3-OH	C28:0 27-OH	C30:0 29-OH
P 1.47*	20	4.8	13.2	20.5	36	5.5
GD 4*	33	6	8	29	22	2
GC 1.3*	25.2	5.3	9	32.1	26.3	1.8
GC 5.8*	15.5	5	4	28	35	2.5
3841*	35	5	9	19	30	2
P 1.12	37	3	30.4	23.6	5	1
P 1.37	32.7	5.2	22.7	35.3	3.1	1
P 1.42	38.8	4	30	22.2	4.5	0.5
P 2.24	30	3.7	30.5	32	3	0.8
GD 29	32.7	4.5	34.5	24.3	3.5	0.5
GD 31	36	3.5	38.1	18.4	3	1
GB 42	28	8.5	24.5	32	5.5	1.5
GB 53	30.4	3.6	24	36	5	1
GC 1.6	29	8	23	30	8	2
GC 5.5	22	6	40	27	4.5	0.5
GC 7.4	30	3.2	23	39	4	0.8

The amounts of fatty acids are given as relative percentages of the total peak area.

* Cluster 1, fatty acid profile characterized by a similar ratio of C14:0 3-OH and C28:0 27-OH as in the LPS of strain 3841; no label, cluster 2.
In addition, variable amounts of nonhydroxy fatty acids, such as hexadecanoic (C_{16:0}), octadecanoic (C_{18:0}), and octadecenoic (C_{18:1}) fatty acids, were detected in all strains. Low levels of palmitic and stearic acids have been also found in lipid A preparations of R. leguminosarum and R. etli (Muszyński et al. 2011).

EPS production

All isolates except strain GC 5.5 produced large amounts of EPS, ranging from 216.7 ± 15.1 µg Glc mg\(^{-1}\) protein (isolate GC 1.6) to 453 ± 40.2 µg Glc mg\(^{-1}\) protein (isolate P 1.42), with an average of 280 µg Glc mg\(^{-1}\) protein. Isolate GC 5.5, which exhibited a moderately mucoid colony morphology, produced 2.5 times less EPS (113.7 ± 16.3 µg Glc mg\(^{-1}\) protein) than average (Table 1).

Sensitivity to salt, detergents, pH, and elevated temperature

Features such as sensitivity to NaCl and detergents are usually analyzed to determine whether some environmental conditions might impact the natural selection of strains nodulating legume plants (Zahran 1999; Bolanos et al. 2003).

The analysis of NaCl tolerance revealed moderate resistance to salinity (0.01–1.0% NaCl) of most strains. Four strains, GD 29, GB 53, GC 1.3, and GC 1.6, with group A LPS pattern, were more tolerant and grew at 3.0% NaCl (Table 1).

Half of the evaluated pea microsymbionts, including strain 3841, grew over a relatively wide range of pH values (pH 4.5–7.5), with an optimum at pH 7.2. The remaining isolates grew well at higher pH values, i.e., pH 4.5–8.0 (Table 1). Strain 5.5 that produced the lowest amount of EPS grew at a narrow pH range, pH 7.2–8.0.

All the isolates grew at temperatures from 20 to 28 °C, with an optimum at 28 °C. Although all strains survived at 37 and 42 °C, no strain grew at these two temperatures (data not shown).

Most strains isolated from pea nodules were more sensitive to SDS than to DOC. The concentration of SDS that inhibited the growth of the isolates varied from 0.015 to 0.12% (w/v), whereas the inhibitory concentrations of DOC were two times higher, i.e., 0.015–0.25% (Table 1). Strains P 2.24, P 1.12, and 3841 were able to grow only at the lowest tested concentration of SDS and DOC (0.06%).

A correlation between the ability to grow in the presence of higher salt concentrations and the LPS type was apparent in strains with type A LPS. Strains with type A LPS could all grow at similar concentrations of DOC and SDS; detergent sensitivity of strains with type B LPS was more variable. On the other hand, high sensitivity to detergents observed for strains 3841, P 2.24, and GC 5.5 (which all produce lower amounts of EPS) was in accordance with earlier data that indicated that EPS biosynthesis influences strain sensitivity to surface-active detergents (Janczarek et al. 2010). Similarly, according to Vanderlinde et al. (2010), the differences in strain sensitivity to anionic detergents can be linked to the composition of fatty acyl chains in LPS.

A dendrogram showing phenetic relationships between the studied strains, based on their sensitivity to salt, SDS, DOC, and pH, is presented in Fig. 5. At least three main strain groups can be distinguished. Group a includes seven isolates, and groups b and c comprise five and three
strains, respectively (Fig. 5). Isolate GC 5.5 was unrelated to other strains, probably because of weak pH tolerance. Interestingly, five out of seven strains from phenetic group a also belonged to AFLP I clade, whereas the isolates from groups b and c were dispersed between AFLP groups II and III or remained ungrouped after AFLP profiling (Figs. 1, 5).

Discussion

A previous investigation of a local population of pea microsymbionts based on PCR–RFLP analysis of 16–23S rRNA ITS and nodA–F regions, plasmid patterns, and metabolic capabilities showed that individual plants were infected by numerous and diverse strains (Wielbo et al. 2011). The isolates from pea nodules were most closely related to *R. leguminosarum* bv. *viciae* 3841 and *Rhizobium fabae* CCBAU33202 (Wielbo et al. 2011), whereas *P. sativum* isolate GB 30 was most closely related to *R. leguminosarum* bv. *trifolii* WSM1689 (Mazur et al. 2015). In this paper, the strains nodulating *P. sativum* showed greatest similarity to *R. leguminosarum* biovars *viciae* and *trifolii*. Genotypic characteristics of the strains were compared with their electrophoretic and fatty acid LPS profiles. The effect of environmental stress conditions, such as salt, detergents, pH, and elevated temperature, on strain growth was quantitatively analyzed and compared with strain classifications based on the genetic and LPS profiles.

The diversity of LPS is generally associated with the variation in the O-antigen gene cluster. It has been well documented that horizontally acquired genes play a key role in defining LPS structure (Lerouge and Vanderleyden 2001; Muszyński et al. 2011). The differences in the electroforetic patterns of LPS from strains analyzed herein indicated that the strains occupying the nodules of the pea cultivar significantly differ from one another. No similarity was observed between the dendrogram constructed based on the LPS electroforetic pattern and the phylogenetic tree based on AFLP analysis. This finding is in agreement with the study of Santamaria et al. (1997, 1998), who demonstrated that LPS profiling ensures good discrimination of strains with a ladder-like pattern of LPS, e.g., *Bradyrhizobium* strains, but it is less useful for *Rhizobium* species since their LPS migrates as less distinctive bands.

The profiles of LPS-derived hydroxy fatty acids were reported to be a valuable chemotaxonomic marker for the systematics of the family *Rhizobiaceae* and distinguishing the genus (Yokota and Sakane 1991; Jarvis et al. 1996; Tighe et al. 2000; Zahran et al. 2003; Vanderlinde et al. 2010). The results of the current analysis of LPS-derived fatty acids suggested that the isolates are highly similar to *R. leguminosarum* and *R. etli*. The cladogram constructed based on the weight percentage of total fatty acids (UPGMA) of the isolates did not reflect the similarities between their LPS electroforetic profiles.

It was reported that the differences in LPS fatty acid composition between the biovars *viciae*, *phaseoli*, and *trifolii* of *R. leguminosarum* were small (Jarvis et al. 1996; Dunfield et al. 1999). Although the variation in fatty acid profiles within a particular biovar of *R. leguminosarum* is not pronounced, it might nonetheless be used to establish the identity of pea nodule occupants (Dunfield et al. 1999). Our results revealed an agreement between fatty acid composition and phylogenetic classification at the genus level. A previous polyphasic taxonomic study of rhizobia from

![Fig. 5](image-url)
Fig. 5 Euclidean distance-based dendrogram presenting phenetic relationships (Table 1) between pea nodule isolates.
wild legumes (20 strains) demonstrated both an agreement and lack thereof between data clustered based on phenotypic analysis and total cellular fatty acid profiles (Zahran et al. 2003).

Despite close genetic similarity of strains, their LPS and fatty acid profiles are different. Strain classification based on these differences does not correlate with the genetic relationship, although it allows discrimination between the strains. The results are in agreement with the study of Dunfield et al. (1999). Our observation that there were differences in the proportion of 3-hydroxy to \(\omega-1 \) hydroxy fatty acids suggests that additional studies are required to determine whether this ratio is dependent on the intrinsic heterogeneity of lipid A, is influenced by external conditions, or a combination of the two possibilities.

Based on a previous study (Wielbo et al. 2011), we can assume that strains producing higher amounts of EPS (GB 42, GD 31, and P 1.42) are also more efficient symbionts. The differences in LPS and fatty acid pattern and EPS production among pea isolates could be reflected in their sensitivity to environmental factors, e.g., salinity, pH range, or temperature. Besides these compounds, the tolerance of strains to environmental conditions, e.g., to acidic pH, is regulated by the adaptive response (Graham et al. 1994). The physiological properties of the strains were slightly discriminative (salt tolerance and growth pH range) or not discriminative (temperature growth range) in diversification of the studied isolates.

The relationship between phenotypic and genetic correlations in symbiotic bacteria is not entirely clear. For example, no apparent relationship between the genotypic and phenotypic diversity of rhizobial strains was noted by Xavier et al. (1998). Similar results were reported by Elboutahiri et al. (2010) for Sinorhizobium strains nodulating Medicago sativa. In contrast, a correlation between the phenotypic and genotypic characteristics of rhizobial strains isolated in situ from Accacia senegal nodules was found (Fall et al. 2008; Bakhoum et al. 2014).

Together with the results of our earlier study revealing a large diversity of pea microsymbionts (Wielbo et al. 2010), the current analysis suggests that the genome-level relationship between rhizobial strains in a localized area does not reflect their metabolic profiles but also their surface characteristics. We propose that the correlation seen between the largest AFLP group I and the physiological properties of ca. 30% of strains could be associated with isolate adaptation to the local soil conditions. Genomic relationships are indispensable for microsymbiont classification in light of high heterogeneity of surface compounds, LPS and EPS, observed in rhizobia infecting the same host plant. The LPS and fatty acid patterns, although not directly related to the genetic relationship, can nonetheless be used for strain differentiation.

Conclusion

The aim of this work was to evaluate whether LPS profiles and LPS-derived fatty acid patterns of rhizobia nodulating *P. sativum* are related to strain phylogeny. The phylogenetic tree constructed on the basis of the concatenated genes—16S rRNA, *recA*, and *atpD*—revealed that all strains belong to *R. leguminosarum* biovars *viciae* and *trifolii*. The pea isolates were divided into two major groups by AFLP; however, no evident correlation with LPS profiles and LPS-derived fatty acid composition was found. A relationship between LPS profiling and phenotypic characteristics, including sensitivity to anionic detergents and salinity, was not apparent.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

References

Apicella MA (2008) Isolation and characterization of lipopolysaccharides. Methods Mol Biol 431:3–13

Bailly X, Olivier I, Brunel B, Clevey-Mare JC, Bena G (2007) Horizontal gene transfer and homologous recombination drive the evolution of the nitrogen-fixing symbionts of *Medicago* species. J Bacteriol 189:5223–5236

Bakhoum N, Le Roux C, Dior D, Kane A, Ndoye F, Fall D, Duponnois R, Noba K, Sylla SN, Galiana A (2014) Distribution and diversity of rhizobial populations associated with *Acacia senegal* (L.) Willd. provenances in senegalese arid and semi-arid regions. Open J For 4:136–143

Bolanos L, El-Hamdaoui A, Bonilla L (2003) Recovery of development and functionality of nodules and plant growth in salt-stressed *Pisum sativum*-*Rhizobium leguminosarum* symbiosis by boron and calcium. J Plant Physiol 160:1493–1497

Brown DB, Huang YC, Kanneberg EL, Sherrir DJ, Carlson RW (2011) An acpXL mutant of *Rhizobium leguminosarum* bv. *phaseoli* lacks 27-hydroxyoctacosanoic acid in its lipid A and is developmentally delayed during symbiotic infection of the determine nodulating host plant *Phaseolus vulgaris*. J Bacteriol 193:4766–4778

Choma A, Komaniecka I (2011) Straight and branched (\(\omega-1 \))-hydroxylated very long chain fatty acids are components of *Bradyrhizobium* lipid A. Acta Biochim Pol 58:51–57

D’Heaze W, Leoff C, Freshour G, Noel KD, Carlson RW (2007) *Rhizobium etl* CE3 bacteroid lipopolysaccharides are structurally similar but not identical to those produced by cultured CE3 bacteria. J Biol Chem 282:17101–17113

Dresler-Nurni A, Fewer DP, Räisänen LA, Lindström K (2009) The diversity and evolution of Rhizobia. Microbiol Monogr 8:3–41

Dunfield KE, Xavier LJC, Germida JJ (1999) Identification of *Rhizobium leguminosarum* and *Rhizobium sp.* (*Cicer*) strains using a custom fatty acid methyl ester (FAME) profile library. J Appl Microbiol 86:78–86
Elboutahiri N, Thami-Allami I, Udupa SM (2010) Phenotypic and genetic diversity in Sinorhizobium melliloti and S. medicae from drought and salt affected regions of Morocco. BMC Microbiol 10:15. doi: 10.1186/1471-2180-10-15

Fall D, Diouf D, Ourarhi M, Faye A, Abdelmoumen H, Neyra M, Sylla SN, Missbah El Idrissi M (2008) Phenotypic and genotypic characteristics of Acacia senegal (L.) Wild. root-nodulating bacteria isolated from soils in the dryland part of Senegal. Lett Appl Microbiol 47:85–97

Felsenstein J (1985) Phylogenies and the comparative method. Am Arch Microbiol (2017) 199:1011–1021

Marek-Kozaczuk M, Leszcz A, Wielbo J, Wdowiak-Wróbel S, Lerouge I, Vanderleyden J (2001) O-antigen structural variation: specific PCR primers that amplify genes coding for bacterial 16S rRNA. Appl Environ Microbiol 67:1901–207

Hotter GS, Scott B (1991) Exopolysaccharide mutants of Rhizobium loti are fully effective on a determinate nodulating host but are ineffective on an indeterminate nodulating host. J Bacteriol 173:851–859

Janczarek M (2011) Environmental signals and regulatory pathways that influence exopolysaccharide production in rhizobia. Int J Mol Sci 12:7989–7993

Janczarek M, Kutkowska J, Pierasiak T, Skorupska A (2010) Rhizobium leguminosarum bv. trifoli osr is required for interaction with clover, biofilm formation and adaptation to the environment. BMC Microbiol 10:1–23

Jarvis BDW, Sivakumaran S, Tighe SW, Gillis M (1996) Identification of Agrobacterium and Rhizobium species based on cellular fatty acid composition. Plant Soil 184:143–158

Kawaharada Y, Kelly S, Wibroe Nielsen M, Hjuler CT, Gysel K, Skorupska A, Janczarek M, Marczak M, Mazur A, Król J (2006) High-quality permanent draft genome sequence of Rhizobium leguminosarum bv. vicieae strain GB30; an effective microsymbiont of Pismum sativum growing in Poland. Stand Genomic Sci 10:36

Muzyski A, Laus MC, Kijne JW, Carlson RW (2011) Structures of the lipopolysaccharides from Rhizobium leguminosarum RBL5523 and its UDP-glucose dehydrogenase mutant (exo5). Glycobiology 21:55–68

Noel KD, Vandenbosch KA, Kulpaca B (1986) Mutations in Rhizobium phaseoli that lead to arrested development of infection threads. J Bacteriol 168:1392–1401

Priefer UB (1989) Genes involved in lipopolysaccharide production and symbiosis are clustered on the chromosome of Rhizobium leguminosarum biovar vicieae VF39. J Bacteriol 171:6161–6168

Que NLS, Lin S, Cotter RJ, Raetz CRH (2000) Purification and mass spectrometry of six lipid A species from the bacterial endosymbiont Rhizobium etli. Demonstration of a conserved distal unit and a variable proximal portion. J Biol Chem 275:28006–28016

Ramírez-Bahena MH, García-Fraile P, Peix A, Valverde A, Rivas R, Igual JM, Mateos PF, Martínez-Molina E, Velázquez E (2008) Revision of the taxonomic status of the species Rhizobium leguminosarum (Frank 1879) Frank 1889AL, Rhizobium phaseoli Dangeard 1926AL and Rhizobium trifolii Dangeard 1926AL. R. trifolii is a later synonym of R. leguminosarum. Reclassification of the strain R. leguminosarum DSM 30132 (SNCIMB 11478) as Rhizobium pisi sp. nov. Int J Syst Evol Microbiol 58:2484–2490

Sanantamaria M, Corzo J, León-Barrios M, Gutierrez-Navarro AM (1997) Characterization and differentiation of indigenous rhizobia isolated from Canarian shrub legumes of agricultural and ecological interest. Plant Soil 190:143–152

Sanantamaria M, Gutierrez-Navarro AM, Corzo J (1998) Lipopolysaccharide profiles from nodules as markers of Bradyrhizobium strains nodulating wild legumes. Appl Environ Microbiol 64:902–906

Skorupska A, Janczarek M, Marczak M, Mazarz A, Król J (2006) Rhizobial exopolysaccharides: genetic control and symbiotic functions. Microb Cell Fact 5:7

Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28:2731–2739

Tian CF, Young JP, Wang ET, Tamimi SM, Chen WX (2010) Population mixing of Rhizobium leguminosarum bv. vicieae nodulating Vicia faba: the role of recombination and lateral gene transfer. FEMS Microbiol Ecol 73:563–576

Tighe SW, de Lajudie P, Dipietro K, Lindstrom K, Nick G, Jarvis BDW (2000) Analysis of cellular fatty acids and phenotypic relationship of Agrobacterium, Bradyrhizobium, Mesorhizobium, Rhizobium and Sinorhizobium species using the Sherlock Microbial Identification System. Int J Syst Evol Microbiol 50:787–801

Tsai CM, Frasch CE (1982) A sensitive silver stain for detecting lipopolysaccharides in polyacrylamide gels. Anal Biochem 125:125–131

Vanderlinde EM, Harrison JJ, Muszynski A, Carlson RW, Turner RJ, Yostet CK (2010) Identification of a novel ABC transporter involved in Bradyrhizobium, Rhizobium phaseoli, Mesorhizobium, Rhizobium and Sinorhizobium species using the Sherlock Microbial Identification System. Int J Syst Evol Microbiol 50:787–801

Vanderlinde EM, Harrison JJ, Muszynski A, Carlson RW, Turner RJ, Yostet CK (2010) Identification of a novel ABC transporter required for desiccation tolerance, and biofilm formation in Rhizobium leguminosarum bv. vicieae 3841. FEMS Microbiol Ecol 71:327–340

Vedam V, Kannenberg EL, Haynes JG, Sherrier DJ, Data A, Carlson RW (2003) A Rhizobium leguminosarum AcpXAL mutant produces lipopolysaccharide lacking 27-hydroxyoctacosanoic acid. J Bacteriol 185:1841–1850

Vincent JM (1970) A manual for the practical study of root-nodule bacteria. Blackwell Scientific Publications Ltd, Oxford

Wdowiak-Wróbel S, Malek W (2005) Genomic diversity of A. cicer microsymbionts revealed by AFLP fingerprinting. J Gen Appl Microbiol 51:369–378

© Springer
Wielbo J, Kuske J, Marek-Kozaczuk M, Skorupska A (2010) The competition between *Rhizobium leguminosarum* bv. *viciae* strains progresses until late stages of symbiosis. Plant Soil 337:125–135

Wielbo J, Marek-Kozaczuk M, Mazur A, Kubik-Komar A, Skorupska A (2011) The structure and metabolic diversity of population of pea microsymbionts isolated from root nodules. *BMRJ* 1:55–69

Wolde-Meskel E, Terefework Z, Lindström K, Frostegard A (2004) Metabolic and genomic diversity of Rhizobia isolated from field standing native and exotic woody legumes in Southern Ethiopia. *Syst Appl Microbiol* 27:603–611

Xavier GR, Martins LMV, Neves MCP, Rumjanek NG (1998) Edaphic factors as determinants for the distribution of intrinsic antibiotic resistance in a cowpea rhizobial population. *Biol Fertil Soils* 27:386–392

Yasar S (2005) Spectrophotometric determination of hexose and pentose amounts by artificial neural network calibration and its using in wood analysis. *Acta Chim Slov* 52:435–439

Yokota A, Sakane T (1991) Taxonomic significance of fatty acid compositions in whole cells and lipopolysaccharides in *Rhizobiaceae*. *IFO Res Commun* 15:57–75

Zahran HH (1999) Rhizobium–legume symbiosis and nitrogen fixation under severe conditions and in arid climate. *Microbiol Mol Biol Rev* 63:968–989

Zahran HH, Abdel-Fattah M, Ahmad MS, Zaky AY (2003) Polyphasic taxonomy of symbiotic rhizobia from wild leguminous plants growing in Egypt. *Folia Microbiol (Praha)* 48:510–520

Zgadzaj R, James EK, Kelly S, Kawaharada Y, de Jonge N, Jensen DB, Madsen LH, Radutoiu S (2015) A legume genetic framework controls infection of nodules by symbiotic and endophytic bacteria. *PLoS Genet* 11(6):e1005280. doi:10.1371/journal.pgen.1005280