Proton decay and light sterile neutrinos

Juan C. Helo,†‡ Martin Hirsch,†§ and Toshihiko Ota¶

†Departamento de Física, Facultad de Ciencias, Universidad de La Serena, Avenida Cisternas 1200, La Serena, Chile
‡Centro-Científico-Technológico de Valparaíso, Casilla 110-V, Valparaíso, Chile
§AHEP Group, Instituto de Física Corpuscular - CSIC/Universitat de València
Edificio de Institutos de Paterna, Apartado 22085, E46071 València, Spain
¶Department of Physics, Yachay Tech, Hacienda San José s/n y Proyecto Yachay, 100115 San Miguel de Urcuquí, Ecuador

Within the standard model, non-renormalizable operators at dimension six \((d = 6)\) violate baryon and lepton number by one unit and thus lead to proton decay. Here, we point out that the proton decay mode with a charged pion and missing energy can be a characteristic signature of \(d = 6\) operators containing a light sterile neutrino, if it is not accompanied by the standard \(\pi^0 e^+\) final state. We discuss this effect first at the level of effective operators and then provide a concrete model with new physics at the TeV scale, in which the lightness of the active neutrinos and the stability of the proton are related.

PACS numbers: 12.60.-i, 13.30.-a, 14.60.Pq, 14.60.St
Keywords: Proton decay, Light sterile neutrino, Dirac mass for neutrinos, LHC

I. INTRODUCTION

The observed baryon asymmetry of the universe (BAU) requires that baryon number is violated at high energy scales. In the standard model (SM), \(B + L\) is violated by non-perturbative effects, such as instantons \([1, 2]\) or the sphaleron \([3]\). However, as is well-known, the SM cannot explain the observed value of the BAU \([4]\). Beyond these non-perturbative effects, one can also write down \(B + L\) violating operators at the non-renormalizable level, as has been discussed already nearly 40 years ago \([5, 6]\). Consequently, many ultra-violet completions of the SM contain \(B + L\) violating interactions also at the renormalizable level, the prime example being Grand Unified Theories (GUTs). In particular, \(d = 6\) operators lead to proton decay, but searches for proton decay so far have yielded only lower bounds, in the range of \(10^{32} - 10^{34}\) yrs, depending on the final state \([7, 8]\). Usually these negative results are interpreted as a lower limit on the energy scale of some GUT.

Neutrino masses are much smaller than all other fermion masses. It is often argued that this smallness could be understood if neutrinos are Majorana particles; for a recent review on theoretical aspects of neutrino masses, see e.g., Ref. \([9]\). However, we have not observed any lepton number violating (LNV) process so far and limits on neutrinoless double beta decay \((0\nu\beta\beta)\) for example have reached now \(10^{26}\) yrs \([10, 11]\). Thus neutrinos could still be Dirac particles. Although much less known than the Majorana case, the study of small Dirac neutrino masses has actually quite a long history \([12, 20]\). Interest in Dirac neutrino masses has been renewed recently \([21, 34]\), in particular its possible connection with (cold) dark matter.

In this paper, we ask the question: Could the smallness of the neutrino mass and the longevity of the proton be related? In other words, can the mechanism that suppresses proton decay operators also suppress neutrino masses? First, we study this question at the level of effective operators. We point out that the decay mode \(p \rightarrow \pi^+ + missing\ energy\ \(\pi^0 e^+\) is a characteristic signature of effective \(d = 6\) operators with a light SM singlet fermion, aka "sterile" neutrino. This singlet fermion could be the Dirac partner of the ordinary neutrinos. Next, we discuss this in a simple model in which both neutrino masses and proton decay share a common origin. In the model, \(B - L\) is conserved, thus neutrinos are Dirac particles. Their masses arise at the 1-loop level and, as in the model of Ref. \([22]\), the particles generating the loop are candidates for the dark matter. Proton decay arises also at the 1-loop level and shares interactions and particles with the loop diagram for neutrino masses, therefore the smallness of neutrino mass is directly related to the longevity of the proton. We also consider different experimental constraints on the model parameters from neutrino masses, proton decay and searches for lepton flavour violation, and briefly discuss possible LHC signals of the model.

Before closing this section, we mention that a similar idea, relating neutrinos and proton decay, has been discussed with a particular model recently in Ref. \([35]\). However, differing from our setup, in Ref. \([35]\) neutrinos are Majorana particles, thus \(0\nu\beta\beta\) decay should exist in their case. We also refer to Ref. \([36]\), where possible relations between neutrino mass and proton decay are discussed at the level of higher dimensional effective operators in the context of GUTs, leading to Majorana neutrinos.

The rest of this paper is organized as follows. In the next section we discuss \(d = 6\) operators and proton decay modes with a light sterile neutrino. In section \([31]\) we present a concrete model, which generates \(d = 6\) proton decay with \(\pi^0 + E\) and (Dirac) neutrino masses at 1-loop.
and discuss its phenomenology. We then close the paper with a short summary.

II. EFFECTIVE OPERATORS AND PROTON DECAY MODES

At $d = 6$, the baryon-number-violating operators which are invariant under the SM gauge symmetries can be written as:

$$\mathcal{O}_1 = [\bar{d}R^c u_R][\sigma^\mu N^L],$$
$$\mathcal{O}_2 = [\bar{Q}^c Q][u_R^c e_R],$$
$$\mathcal{O}_3 = [\bar{Q}^c Q][u_R^c e_L],$$
$$\mathcal{O}_4 = [\bar{Q}^c Q][\bar{Q}^c L],$$
$$\mathcal{O}_5 = [d_R^c u_R][\bar{Q}^c L].$$

where for simplicity we have suppressed all flavour and colour indices. The subscripts 1 and 3 at the brackets represent the singlet and the triplet combinations of $SU(2)_L$. Operators with the same fields but Lorentz structures different from $\mathcal{O}_{1,5}$ can be rewritten as combinations of these basis operators via Fierz transformations. For example,

$$[\bar{Q}^c(\sigma^\mu)u_R][d_R^c(\sigma^\mu)L] = 2\mathcal{O}_1.$$

All effective operators listed above respect $B - L$, but have $\Delta(B + L) = 2$.

Extending the particle content of the SM by singlet fermion fields N with one unit of lepton number, one can write down the following two additional operators, which are both invariant under SM gauge transformations and $B - L$, see e.g., Refs. 48 49:

$$\mathcal{O}_{N1} = [\bar{Q}^c Q][d_R^c N],$$
$$\mathcal{O}_{N2} = [\bar{Q}^c Q][u_R^c N].$$

Proton decay final states differ depending on the operator under consideration. Operators and the corresponding decay modes are summarized in Tab. II together with the current bounds and future sensitivities 8 10 48 49.

The final state with a charged pion and missing energy can be generated by $\mathcal{O}_{1,3}$ and $\mathcal{O}_{N1,N2}$. For the case of $\mathcal{O}_{1,3}$ the final state $\pi^+ + E$ is caused by the emission of a left-handed neutrino. Isospin symmetry then tells us that $\mathcal{O}_{1,3}$ also generate the process with the corresponding left-handed charged lepton, which is

$$p \rightarrow \pi^0 \ell^+.\text{ The decay rates of the two } SU(2)_L\text{-related processes are expected to fulfill the following ratio (cf. e.g., Refs. 50 51):}$$

$$\Gamma(p \xrightarrow{\mathcal{O}_{1,3}} \pi^+ \bar{\nu}_e) = 2\Gamma(p \xrightarrow{\mathcal{O}_{1,3}} \pi^0 e^+).$$

Conversely, the operators $\mathcal{O}_{N1,N2}$ do not have a charged lepton counter part and thus cannot generate the decay mode with a neutral pion and a charged lepton. It seems natural then to suppose that the discovery of proton decay with final state $p \rightarrow \pi^+ + E$ with simultaneous absence of the $\pi^0\ell^+$ mode suggests that the process is caused by an operator containing a SM singlet fermion N. Since the decay mode $p \rightarrow \pi^0 e^+$ is more strongly constrained than $p \rightarrow \pi^+ + E$, a discovery of the $\pi^+ + E$-missing mode in the next round of proton decay searches would therefore hint at the existence of a light sterile neutrino with mass below $m_\nu - m_\pi$.

The effective operators $\mathcal{O}_{N1,N2}$ with a sterile neutrino also generate neutron decay process with $\pi^0 + E$. One expects them to follow a particular ratio:

$$\Gamma(p \xrightarrow{\mathcal{O}_{N1,N2}} \pi^+ \bar{\nu}_e) = 2\Gamma(n \xrightarrow{\mathcal{O}_{N1,N2}} \pi^0 \bar{\nu}_e).$$

The operators and the corresponding neutron decay modes are listed in Tab. III and the current bounds and the future sensitivities are found in Refs. 8 10 43. Again, for $\mathcal{O}_{N1,N2}$ there are no decays to charged leptons, $\pi^- e^+$, thus the same logic holds also for neutron decays and observation of $\pi^0 + E$ can be interpreted as a hint for a light sterile state.

At this point, we have to add a word of caution to the above discussion. The simple arguments presented are based on $SU(2)_L$ invariance, used in the construction of all non-renormalizable operators. While certainly $SU(2)_L$ is restored at high energies, and thus, all ultraviolet completions of the SM should respect it, this by

Modes ($\pi^+ + E$)	$\pi^0 e^+$	$K^+ + E$	
Current [yrs]	3.9 · 10^{32}	1.6 · 10^{33}	5.9 · 10^{25}
Future [yrs]	1.2 · 10^{35}	> 3 · 10^{34}	
\mathcal{O}_1	✓	✓	✓
\mathcal{O}_2	✓	✓	—
\mathcal{O}_3	✓	✓	✓
\mathcal{O}_4	—	—	✓
\mathcal{O}_5	—	✓	—
\mathcal{O}_{N1}	✓	—	✓
\mathcal{O}_{N2}	✓	✓	—

TABLE I: Operators and proton decay modes. The numbers in the “Current” and the “Future” rows are the current bounds and the future sensitivities at 90 % C.L. Only the operators \mathcal{O}_{N1} and \mathcal{O}_{N2} generate $\pi^+ + E$ (missing energy), without producing the decay $\pi^0 e^+$.
no means implies that $SU(2)_L$ breaking effects are guaranteed to be negligible. We will discuss briefly two particular examples for setups with possibly sizable $SU(2)_L$ violating effects.

The study of proton decay in supersymmetric (SUSY) GUTs has a long history, see e.g., Refs. \[52–61\]. In SUSY-GUT frameworks, the leading contributions to proton decay come usually from one-loop diagrams which contain B and L violating dimension-five operators with two sfermions and the so called “dressing” of the operators with a gaugino or a higgsino, which converts the sfermions to the corresponding fermions. The flavour structure of the Yukawa interactions entering in this “dressing” diagram can lead to a large difference between the rate of the decay $p \rightarrow \pi^+ \bar{\nu}$ and that of $p \rightarrow \pi^0 \ell^+$. In fact, the $\pi^+ \bar{\nu}$ decay can become more important than the $\pi^0 \ell^+$ mode in a large class of the SUSY-GUT models, see for example Ref. \[53\]. However, the dominant proton decay mode in SUSY-GUTs is in general $p \rightarrow K^+ \bar{\nu}$. Therefore, the discovery of the $p \rightarrow \pi^+ + \mathcal{E}$ final state with absence of the $\pi^0 \ell^+$ and $K^+ + \mathcal{E}$ final states, could still be interpreted as a hint for a light sterile state even in supersymmetric frameworks. A notable exception from this argument is, however, the SUSY $SO(10)$ model discussed in Ref. \[52\]. Here, the $p \rightarrow \pi^+ \bar{\nu}$ may become the dominant mode in part of the parameter space, in which the decay $p \rightarrow K^+ \bar{\nu}$ is minimized in order to obey the experimental bounds.

As the second example for the $SU(2)_L$ violation effect, we mention the model of Ref. \[52\]. Here, proton decay is generated by a $d = 7$ operator $(u_X d_X)_{LR}(H^0 \bar{\nu} - H^{-} l^+)$, where $X = L$ or $X = R$ and H stands for the SM Higgs field.\(^3\) The vacuum expectation value of the Higgs field picks out the neutrino term exclusively from the effective operator. The $\pi^0 \ell^+$ mode can also be generated from the $d = 7$ operator, but it is suppressed relative to the $\pi^+ + \mathcal{E}$ mode, because it requires an extra W insertion. Thus, with $d = 7$ operators (and correspondingly higher dimensional ones) involving Higgs fields, $SU(2)_L$ violation occurs naturally, restricting our argument to $d = 6$ operators.

In short, we have pointed out that (in the absence of any experimental indication for TeV-scale supersymmetry) the combination of different proton decay final states can provide hints for (or against) the existence of light sterile neutrino states. This argument is based on the assumption of (at least approximate) $SU(2)_L$ invariance. We note that all $d = 6$ operators conserve $B - L$, thus these sterile states could be the Dirac partners of the ordinary neutrinos. In the next section, we will discuss the relation between the stability of proton and the lightness of the neutrino in a concrete model with TeV-scale new physics (NP).

III. Longevity of Proton and Lightness of Neutrino

Here we discuss how a possible relation between the smallness of neutrino masses and the stability of the proton can arise in a concrete model. The particle content of this model is given in Tab. \[III\]. The model is described by the following Lagrangian:\(^4\)

$$\mathcal{L} = \mathcal{L}_1 + \mathcal{L}_2$$ \hspace{1cm} (10)

\(^3\) This $d = 7$ operator violates $B - L$ as is demonstrated in Ref. \[52\].

\(^4\) For a complex scalar S', one can write also the terms $(Y'_{\nu} \psi_L (Q_{\alpha} S'))(Q_{\alpha} S')$ and $(Y'_{\nu} (Q_{\alpha} S')(N_{\alpha}) S')$. Since these do not lead to any new phenomenology we have suppressed them for brevity.
masses, while our variant induces also proton decay and in fact, relates the rates of the two processes as follows. In our model the charge assignments of one of the Z_2 symmetries are modified to allow the proton decay operator. More concretely, the $Z_2(A)$ symmetry is broken with the mass term of the new fermion field ψ' in our choice, instead of the trilinear scalar coupling μ. With this assignment, both the Dirac neutrino mass and the proton decay can occur only via a $Z_2(A)$ symmetry breaking mass term $M_\psi(\psi'_L)(\psi'_R)$.

Let us give a rough estimate for the resulting proton lifetime and Dirac neutrino mass. The Yukawa interactions given in Eq. (11) mediate the effective operator O_{N_1}, and the coefficient can be evaluated as

$$L_{\text{eff}} = (Y_1)\beta(Y_2)\beta(Y_3)\beta(Y_4)\gamma M_\psi M_\psi I_4 O_{N_1},$$

where I_4 is the loop integral function defined as

$$I_4 = \int \frac{d^4k}{(2\pi)^4} \frac{1}{k^2-M_S^2|M_S^2-M_S'^2|} \frac{1}{M_\psi M_\psi I_4^2}.$$

The mean lifetime τ can then be estimated with the coefficient of the effective operator, which gives:

$$\tau \simeq \frac{1}{m_\pi 3 \tau 4 \left(1 - \frac{m_\pi^2}{m_\tau^2}\right) \left|W_0(Y_1)c(Y_2)\beta(Y_3)\beta(Y_4)\gamma M_\psi M_\psi I_4^2\right|^2 \left(\frac{1}{M_\psi M_\psi I_4^2}\right)^2}$$

$$\simeq 5 \cdot 10^{31} \text{[yrs]}.$$

where we used the form factor W_0 given in Ref. [14]. It turns out that the Yukawa couplings $Y_{1,2,3,4}$ should be of the order $O(10^{-5})$ to yield a proton decay signal detectable in the next generation experiments, in case the new physics scale Λ_{NP} is of the order of say a few TeV. Note that the experimental bound is currently $\tau > 3.9 \cdot 10^{32}$ yrs.

The coupling Y_3 is shared with the one-loop diagram of the Dirac mass term for neutrinos, see Fig. 1. The neutrino mass from this type of diagram has been calculated many times in the literature. It can be written as:

$$\langle m_\nu \rangle = \frac{\langle Y_3 \rangle_{\alpha}Y_3\beta M_\psi}{16\pi^2\sqrt{2}} \left[M_{\alpha}^2 \ln \frac{M_{\alpha}^2}{M_{\psi}^2} - M_{\alpha}^2 \ln \frac{M_{\alpha}^2}{M_{\psi}^2} \right]$$

$$+ \left[M_{\alpha}^2 - M_{\psi}^2 \right] \left[M_{\alpha}^2 - M_{\psi}^2 \right] - M_{\alpha}^2 - M_{\psi}^2.$$

We set the new physics scale Λ_{NP} to be the TeV scale to make our model testable at the LHC. However larger values of Λ_{NP} are allowed, which in turn implies larger values of the Yukawa couplings.
where s and c are sine and cosine of the mixing angle between the neutral components of the scalar mediators η and S' and their mass eigenstates $\zeta_{1,2}$. Assuming the magnitude of coupling μ is set to be Λ_{NP}, the same as all other mass parameters, the size of the resulting Dirac neutrino mass is estimated as

$$m_{\nu} \sim \frac{\langle H^0 \rangle}{16\pi^2} Y_{Y_3} = O(0.1) \left[\frac{Y_{Y_3}^+}{10^{-5}} \right] \left[\frac{Y_3}{10^{-5}} \right] [\text{eV}].$$ \tag{18}$$

A more detailed fit to neutrino data could easily be done \cite{65}. Interestingly, to have the correct size of neutrino masses and a detectable rate for proton decay, keeping $\Lambda_{NP} \sim \text{TeV}$, the coupling Y_ν should also be roughly of order $Y_\nu \sim O(10^{-5})$. Note that the connection between the proton decay rate and the neutrino masses is not a one-to-one correspondence. This is because their diagrams only share the Yukawa coupling Y_ν. The Yukawa coupling Y_ν also mediates charged lepton flavour violating (cLFV) processes, such as $\ell_\alpha \rightarrow \ell_\beta + \gamma$ at the one-loop level. We estimate the decay rate with the general formulas given in Ref. \cite{68} as

$$\Gamma(\ell_\beta \rightarrow \ell_\alpha \gamma) \simeq \frac{e^2 m_\nu^2}{16\pi} \left| Y_{Y_\nu} \right|^2 \left(\frac{-\bar{c} + \frac{3}{2} \bar{d}}{2} \right)^2,$$ \tag{19}$$

where the loop integral $-\bar{c} + \frac{3}{2} \bar{d}/2$ is given as a function of $t \equiv M_{\psi'}^2/M_{\eta^+}^2$:

$$-\bar{c} + \frac{3}{2} \bar{d} = \int \frac{i}{16\pi^2} \frac{1}{M_{\eta^+}^2} \left[\frac{2t^2 + 5t - 1}{12(t - 1)^3} - \frac{t^2 \ln t}{2(t - 1)^4} \right].$$

Using Yukawa couplings Y_ν of order $O(10^{-5})$, as suggested by neutrino masses (cf. Eq. \cite{68}), and assuming the masses of the mediators are all at the TeV scale, we find that the branching ratio for $\mu \rightarrow e\gamma$ is roughly

$$\text{Br}(\mu \rightarrow e\gamma) = 7 \times 10^{-31} \left| \frac{Y_{Y_3}^+}{10^{-5}} \right|^2 \left[\frac{3 \text{ TeV}}{\Lambda_{NP}} \right]^4.$$ \tag{21}$$

This is far below current and future sensitivities \cite{69}. In short, the correct order of neutrino masses can be reproduced, and simultaneously the size of the signature mode $p \rightarrow \pi^+ + \text{missing}$ of the light sterile neutrino can be kept at a detectable size, while satisfying constraints from the cLFV and keeping the NP scale stays at TeV.

Finally, let us briefly mention dark matter and LHC phenomenology. As Tab. \[11\] shows, the model has two neutral particles, one fermion and one scalar. Both could be the dark matter (DM) depending on which is the lightest state. However, since both of our Z_2’s are broken softly, one would need to introduce another symmetry, to stabilize the DM candidate. The simplest possibility is another Z_2, under which all beyond SM particles except N are odd. This symmetry also eliminates the terms in Eq. \[12\]. Dark matter phenomenology for these candidates has already been discussed in Ref. \cite{22}. Here we only note that our preferred candidate would be the neutral scalar, since the fermionic candidate requires that Y_3 is much larger than 10^{-5} in order to reproduce the correct relic density \cite{22} and such large value of Y_3 would in turn require quite a large hierarchy among the Yukawa couplings.

At the LHC, the new coloured particles in our model can be pair produced through gluon-gluon fusion. Typical cross sections for the scalars can be found in Ref. \cite{68}. Cross sections for the coloured fermions should be around a factor of two larger than those for scalars (for the same mass). The typical signature of the coloured particles are jet(s) with missing energy. The coloured scalar S decays into a jet (d_R) with missing energy ψ' through the Yukawa interaction Y_4. The decay rate is roughly

$$\Gamma(S \rightarrow \psi' \nu + d_R) \simeq \frac{3 \left| Y_4 \right|^2 M_S}{16\pi} \left[1 - \frac{M_{\psi'}^2}{M_S^2} \right]^2.$$ \tag{22}$$

With $M_S = 3$ TeV and $Y_4 = 10^{-5}$, the decay rate is estimated to be 2×10^{-8} GeV (if $M_S \gg M_{\psi'}$), implying the decay is prompt. ψ'_{L} will decay further, if it is not the lightest neutral particle. However, ψ'_{L} decays invisibly, thus there is no change in the LHC signature. Leptoquark searches with the jet+$\bar{\nu}$ mode at ATLAS \cite{69} and CMS \cite{70} provide currently lower limits on such coloured states, which are roughly of the order of 1 TeV. However, all these searches are still based on only moderate luminosity samples and significant improvements in these searches in the high luminosity run of the LHC can be
expected. As an aside we note that if \(Y_1 \) is assumed to be much smaller, say as small as \(\mathcal{O}(10^{-9}) \), the lifetime of \(S \) becomes order of a nanosecond. The \(S \) would then hadronize before decaying, leaving an ionizing track in the detector, see for example the recent paper [7] for a discussion of experimental status.

IV. CONCLUSIONS

In this paper we have discussed a simple model that relates the longevity of the proton with the smallness of the neutrino mass. In this model, neutrinos are Dirac particles and proton decay is dominated by the final state \(\pi^+ + \bar{E} \). Although this is only an example model, we discussed at the level of effective \(d = 6 \) operators, that in general the observation of proton decay with the final state \(\pi^+ + \bar{E} \), together with the non-observation of the well-known \(\pi^0 e^+ \) final state, could be interpreted in favour of the existence of a light sterile neutrino.

We plan to study the details of the phenomenology of the model given in this letter and exhaustively explore the relation between the proton decay mode \(p \rightarrow \pi^+ \text{missing} \) and Dirac neutrino mass models with the full decomposition of the proton decay operators \(\mathcal{O}_{N_1N_2} \).

Finally, we would like to mention that the discussion based on the effective operators, which is given in section [11] is valid also if the light sterile neutrino is not the Dirac partner of the ordinary neutrino. Such a sterile neutrino could be an additional Majorana neutrino, if \(B - L \) is violated, or come with its own Dirac partner otherwise. Therefore, a positive result of sterile neutrino searches in short baseline oscillation experiments [72, 73] would be interesting, since it opens up the possibility for \(d = 6 \) proton decay operators to exist that exclusively produce the \(\pi^+ + \bar{E} \) mode.

Acknowledgments

We thank Renato Fonseca for discussions on symmetries. We thank Prof. Rabindra Mohapatra for useful discussions on proton decay processes in GUT models. This work was supported by the Spanish MICINN grants PPA2017-85216-P, SEV-2014-0398 and PROMETEOII/2014/084 (Generalitat Valenciana). J.C.H. is supported by Chile grants Fondecyt No. 1161463, Conicyt PIA/ACT 1406 and Basal FB0821.

[1] G. ’t Hooft, Phys. Rev. Lett. 37, 8 (1976).
[2] G. ’t Hooft, Phys. Rev. D14, 3432 (1976), [Erratum: Phys. Rev. D18, 2199 (1978)].
[3] F. R. Klinkhamer and N. S. Manton, Phys. Rev. D30, 2212 (1984).
[4] A. Riotto and M. Trodden, Ann. Rev. Nucl. Part. Sci. 49, 35 (1999), hep-ph/9901362.
[5] S. Weinberg, Phys. Rev. Lett. 43, 1566 (1979).
[6] F. Wilczek and A. Zee, Phys. Rev. Lett. 43, 1571 (1979).
[7] L. F. Abbott and M. B. Wise, Phys. Rev. D22, 2208 (1980).
[8] K. Abe et al. (Super-Kamiokande), Phys. Rev. Lett. 113(12), 121802 (2014), 1305.4391.
[9] K. Abe et al. (Super-Kamiokande), Phys. Rev. D96(1), 012003 (2017), 1705.07221.
[10] K. Abe et al. (Super-Kamiokande), Phys. Rev. D90(7), 072005 (2014), 1408.1195.
[11] Y. Cai, J. Herrero-Garca, M. A. Schmidt, A. Vicente, and R. R. Volkas, Front. in Phys. 5, 63 (2017), 1706.05524.
[12] A. Gando et al. (KamLAND-Zen), Phys. Rev. Lett. 117(11), 082503 (2016), [Addendum: Phys. Rev. Lett. 117, no.10, 109003 (2016), 1605.02889.]
[13] M. Agostini et al., Nature 544, 47 (2017), 1703.00570.
[14] P. Roy and O. U. Shanker, Phys. Rev. Lett. 52, 713 (1984), [Erratum: Phys. Rev. Lett. 52, 2190 (1984)].
[15] D. Chang and R. N. Mohapatra, Phys. Rev. Lett. 58, 1600 (1987).
[16] R. N. Mohapatra, Phys. Lett. B198, 69 (1987).
[17] R. N. Mohapatra, Phys. Lett. B201, 517 (1988).
[18] B. S. Balakrishna and R. N. Mohapatra, Phys. Lett. B216, 340 (1989).
[19] K. S. Babu and X. G. He, Mod. Phys. Lett. A4, 61 (1989).
[20] S. Rajpoot, Phys. Rev. D44, 225 (1991).
[21] S. Kanemura, T. Nakamura, and H. Sugiyama, Phys. Lett. B703, 66 (2011), 1106.2480.
[22] Y. Farzan and E. Ma, Phys. Rev. D86, 033007 (2012), 1204.4890.
[23] A. Pilaftsis, Mod. Phys. Lett. A28, 1350083 (2013), 1207.0544.
[24] S. Kanemura, K. Sakurai, and H. Sugiyama, Phys. Lett. B578, 465 (2016), 1603.08679.
[25] C. Bonilla, E. Ma, E. Peinado, and J. W. F. Valle, Phys. Lett. B762, 214 (2016), 1607.03931.
[26] D. Borah and A. Dasgupta, JCAP 1612(12), 034 (2016), 1608.03872.
[27] D. Borah and A. Dasgupta, JHEP 01, 072 (2017), 1609.04236.
[28] W. Wang and Z.-L. Han, JHEP 04, 166 (2017), 1611.03240.
[29] E. Ma and O. Popov, Phys. Lett. B764, 142 (2017), 1609.02538.
[30] W. Wang, R. Wang, Z.-L. Han, and J.-Z. Han, Eur. Phys. J. C77(12), 889 (2017), 1705.00414.
[31] S. Kanemura, K. Sakurai, and H. Sugiyama, Phys. Rev. D96(9), 095024 (2017), 1705.07040.
[32] E. Ma and U. Sarkar, Phys. Lett. B776, 54 (2018), 1707.07698.
[33] C.-Y. Yao and G.-J. Ding, Phys. Rev. D96(9), 095004 (2017), 1707.09786.
[34] S. Centelles Chuli, R. Srivastava, and J. W. F. Valle (2018), 1802.05722.
[35] P.-H. Gu, E. Ma, and U. Sarkar, Phys. Rev. D94(11), 111701 (2016), 1608.02118.
[36] A. de Gouvea, J. Herrero-Garcia, and A. Kobach, Phys. Rev. D90(1), 016011 (2014), 1404.4057.
[37] P. J. O’Donnell and U. Sarlar, Phys. Lett. B316, 121 (1993), hep-ph/9307254.
[38] T. Hambye and J. Heeck (2017), 1712.04871.
[39] K. S. Babu and R. N. Mohapatra, Phys. Rev. Lett. 109, 091803 (2012), 1207.5771.
[40] L. Lehman, Phys. Rev. D90(12), 125023 (2014), 1410.4193.
[41] S. Bhattacharya and J. Wudka, Phys. Rev. D94(5), 055022 (2016), [Erratum: Phys. Rev. D95, no.3, 039904 (2017)], 1612.04832.
[42] R. M. Fonseca, M. Hirsch, and R. Srivastava (2018), 1802.04814.
[43] F. del Aguila, S. Bar-Shalom, A. Soni, and J. Wudka, Phys. Lett. B670, 399 (2009), 0806.0876.
[44] R. Alonso, H.-M. Chang, E. E. Jenkins, A. V. Manohar, and B. Shotwell, Phys. Lett. B758, 455 (2016), 1604.05726.
[45] Y. Aoki, E. Shintani, and A. Soni, Phys. Rev. D89(1), 014505 (2014), 1304.7424.
[46] J. R. Ellis, D. V. Nanopoulos, and S. Rudaz, Nucl. Phys. B202, 43 (1982).
[47] P. Nath, A. H. Chamseddine, and R. L. Arnowitt, Phys. Rev. D32, 2348 (1985).
[48] J. Hisano, H. Murayama, and T. Yanagida, Nucl. Phys. B402, 46 (1993), hep-ph/9207297.
[49] V. Lucas and S. Raby, Phys. Rev. D55, 6896 (1997), hep-ph/9610293.
[50] T. Goto and T. Nihei, Phys. Rev. D59, 115009 (1999), hep-ph/9808255.
[51] H. Murayama and A. Pierce, Phys. Rev. D65, 055009 (2002), hep-ph/0108104.
[52] J. Hisano, D. Kobayashi, T. Kuwahara, and N. Nagata, JHEP 07, 038 (2013), 1304.3651.
[53] H. S. Goh, R. N. Mohapatra, S. Nasri, and S.-P. Ng, Phys. Lett. B587, 105 (2004), hep-ph/0311330.
[54] A. Kobach, Phys. Lett. B758, 455 (2016), 1604.05726.
[55] J. C. Helo, M. Hirsch, and T. Ota, Work in progress (2018).
[56] L. Lavoura, Eur. Phys. J. C29, 191 (2003), hep-ph/0302221.
[57] N. Atanov et al. (2018), 1801.10002.
[58] I. Dorner and A. Greljo (2018), 1801.07641.