Coherent 455 nm beam production in a cesium vapor

J.T. Schultz1,*, S. Abend1,3, D. Döring1, J.E. Debs1, P.A. Altin1, J.D. White2, N.P. Robins1, and J.D. Close1

1ARC Centre of Excellence for Quantum-Atom Optics, Department of Quantum Science, Australian National University, Canberra, ACT 0200, Australia.
2Department of Physics, Juniata College, Huntingdon, PA 16652, USA.
3Leibniz Universität Hannover, Welfengarten 1, 30167 Hannover, Germany.
*Corresponding author: justin.t.schultz@gmail.com

OCIS codes: 270.1670, 190.7220, 020.1670, 020.4180

We observe coherent, continuous wave, 455 nm blue beam production via frequency up-conversion in cesium vapor. Two infrared lasers induce strong double-excitation in a heated cesium vapor cell, allowing the atoms to undergo a double cascade and produce a coherent, collimated, blue beam co-propagating with the two infrared pump lasers. © 2009 Optical Society of America

Effects of atomic coherence and interference have become useful and important tools in optical physics, particularly for the enhancement of nonlinear interactions between atoms and light [1]. Utilization of these effects has led to the recent experimental realizations of quantum interference effects such as lasing without inversion (LWI) [2], four-wave mixing (FWM) [3, 4], electromagnetically induced transparency (EIT) [5], both fast and slow light propagation [6], and high-harmonic generation [7]. Examples of EIT, FWM, and LWI have been observed in rubidium [8–10] and in cesium [11–13]. There have been extensive studies of the transitions in rubidium and cesium [14, 15] that appear suitable for frequency up-conversion, and specifically the generation of short-wavelength laser beams.

In this Letter, we demonstrate that efficient frequency up-conversion can be achieved in resonant atomic media with low power, continuous wave lasers via techniques of interference and atomic coherence [16]; more specifically, we demonstrate the first realization of continuous blue beam production in cesium vapor. This work is similar to frequency up-conversion experiments in rubidium that also utilize a resonant cascade system. Zibrov et al. [16] and Meijer et al. [17] have observed and studied coherent blue beam production in rubidium vapor; they have described this process as being a result of resonant wave-mixing and lasing without inversion, respectively.

Frequency up-conversion in a multiple-wave mixing process arises from a third order optical nonlinearity, $\chi^{(3)}$ in a medium and is strongly dependent on phase matching between the optical waves involved. That is, the phase mismatch $\delta k = \sum_i k_i - \sum_j k_j$ must be zero [4]. Here, k_i are the wave vectors of the incident waves and k_j are the wave vectors of the produced waves modified by the index of refraction of the nonlinear medium at the corresponding wavelength. Phase matching can easily be achieved when the input waves have approximately the same frequency, but for incident waves of different frequencies, phase matching can only be achieved by separating the beams by an appropriate angle.

Lasing without inversion is a process in which the quantum mechanical probability amplitudes of two (or more) pathways from the ground state to an excited state interfere destructively and suppress absorption of resonant light. However, if an atom is in the excited state, the probability amplitudes of the two (or more) pathways from the excited state to the ground state interfere constructively, allowing for gain on that transition without a large excited state population [2].

The present demonstration uses a double cascade in cesium which can be seen in Figure 1. Two pump laser beams create a strong coherence [18] on the dipole-forbidden $6S_{1/2} \rightarrow 6D_{5/2}$ transition. A small number of atoms decay via the $7P_{3/2}$ state and emit a beam of 455 nm radiation. Through spontaneous emission, only 0.4% of the atoms undergo this final cascade through the $7P_{3/2}$ state. The steady-state solution to a four-level Optical Bloch Equation (OBE) model shows that there is no population inversion on the $7P_{3/2} \rightarrow 6S_{1/2}$ transition.

Figure 2 shows a schematic of the experimental setup. Two pump laser beams of relatively low power (30 mW)
co-propagate through a heated cesium vapor cell (80 – 110 °C, length 7 cm). The data in this paper was collected when the pump beams are focused through the vapor cell to a waist of 0.3 mm with a = 1 m lens (corresponding to an intensity of 85 W/cm²); however, the focusing lens is not essential for this process. The beams are generated with external-cavity diode lasers (ECDLs) and are resonant with the 6S1/2 → 6P3/2 (852 nm) and 6P3/2 → 6D5/2 (917 nm) transitions. The detuning for the 852 nm pump beam is determined via saturated absorption in a separate vapor cell (not shown), relative to the 6S1/2(F = 4) → 6P3/2(F' = 5) resonance. For instances where the 917 nm pump beam is scanned, the frequency of the 917 nm pump beam is monitored via a Mach-Zehnder interferometer with a path length difference of ΔL = 1.17 m. The path length difference is calibrated through the cesium saturated absorption spectrum with the 852 nm pump beam.

The atoms undergo a double cascade, presumably creating a beam on the 6D3/2 → 7P3/2 (15 μm) transition which is thought to be amplified via population inversion on that transition. A blue (455 nm) beam is created on the final 7P3/2 → 6S1/2 transition. The output is filtered to eliminate the infrared light from the pump beams and then measured with a photomultiplier tube. Simultaneously, the blue fluorescence of the cell is measured.

When using a vapor cell, a change in the temperature of the cell corresponds to a change in the vapor pressure and therefore, a change in the optical depth (OD) of the medium. The cell temperature and OD at 852 nm are related via:

\[OD = N \sigma_r l = \frac{p(T)\sigma_r l}{kT}, \]

where N is the atomic density calculated from the ideal gas law, \(\sigma_r \) the resonant cross section for circularly polarized 852 nm light calculated from [10] and \(l = 7 \text{ cm} \) the length of the cell. The pressure \(p(T) \) can be calculated using the results of Taylor and Langmuir [19]. The beam is observed to have the greatest power at temperatures when the majority of the 852 nm pump beam is absorbed in the cell. As shown in Figure 2, we do not observe a blue beam for an OD below 0.3. The greatest power can be achieved near an OD of 0.5, which corresponds to a temperature of around 369 K in our case. For higher temperatures the blue output decreases until the atomic medium is too optically dense for the blue beam to transmit. As the temperature of the cell increases above the peak temperature of 369 K, the peak blue output occurs when the 852 nm pump beam is red-detuned from resonance. This behavior describes the observed asymmetry in Figure 2.

Just as Zibrov et al. [16], we note that a blue output power of \(P_{455} \approx 4 \mu \text{W} \) corresponds to a conversion efficiency which exceeds that of typical nonlinear crystals by many orders of magnitude for the continuous wave, low power regime, and the power output could potentially be increased with the use of a build-up cavity [20].

The 455 nm beam is found to be collimated with a divergence less than 0.1 mrad. An interference pattern from a Mach-Zehnder interferometer (Figure 3 inset) with unequal path lengths (ΔL = 25 cm) confirms that the beam has substantial spatial and temporal coherence with a fringe visibility of 93%. The greatest efficiency is obtained when both pump beams are circularly polarized. Kargapoltsev et al. [15] have suggested that input beams of the same circular polarization would be the most efficient method for making a laser on the 455 nm transition. Due to cycling transitions at each of the two excitation stages, combined with large relative transition strengths, the atoms involved in the blue beam production will predominately undergo the...
Fig. 4. (a) Blue beam output as the frequency of the 917 nm beam is scanned. The spacing between the peaks is 203 MHz and 252 MHz, which is the spacing of the hyperfine levels of the 6P3/2 state (F’ = 3 → F’ = 4 and F’ = 4 → F’ = 5, respectively). (b) Blue beam output for different detunings of the 852 nm pump beam as the frequency of the 917 nm beam is scanned. The blue output was seen for a total detuning range of about 750 MHz for the 917 nm pump beam, provided the 852 nm beam was tuned to match the two-photon resonance condition. The solid line shows the peak blue output and dotted lines represent output profiles for different 852 nm pump detunings. The frequency axis is calibrated by sending a portion of the 917 nm beam through an interferometer with a path length difference ΔL = 1.17 m, giving a fringe separation of ≈ 256 MHz.

6S1/2(F = 4) → 6P3/2(F′ = 5) → 6D5/2(F′′ = 6) → 7P3/2(F′′′ = 5) → 6S1/2(F = 4) transition, which eliminates optical pumping to the F = 3 ground state. The F = 3 state can still be repopulated through atom-atom collisions and collisions with the walls of the vapor cell. For linearly polarized pump beams (or pump beams with opposite circular polarization) which couple the F = 4 hyperfine ground state, the atoms can be excited to many different magnetic substates, and a larger number can emit to the dark F = 3 hyperfine ground state.

The blue beam production was only observed when the 852 nm pump beam coupled the F = 4 hyperfine ground state, but was seen for a wide range (≈ 750 MHz) of detunings for both input beams. Figure 4 shows the range of blue output observed at fixed frequencies of the 852 nm pump beam while scanning the frequency of the 917 nm beam. When the 852 nm laser coupled the F = 3 ground state, intense fluorescence was produced, but no beam was observed. For both circularly and linearly polarized light which couples the F = 3 ground state, a portion of the 6S1/2(F = 3) population is transferred to the dark 6S1/2(F = 4) state. Because of a relatively high transition probability to the F = 4 state, the beam resulting from emission into the F = 3 state would be relatively weak and presumably more easily absorbed in the vapor cell.

In conclusion, we have demonstrated frequency up-conversion in cesium on the 7P3/2 → 6S1/2 transition when the two pump lasers are tuned near the 6S1/2(F = 4) → 6P3/2 → 6D5/2 transition. The beam production is most efficient when the infrared pump beams are circularly polarized, thereby utilizing cycling transitions at each excitation stage. Unlike a similar system in rubidium, no blue beam production is observed for large detunings of the pump beams. The addition of another laser to pump atoms from the F = 3 hyperfine ground state and a build up cavity may help increase 455 nm beam production regardless of the polarization of the pump beams. Although work has been done to model these systems with the Optical Bloch Equations [17], further work needs to be done to distinguish the true nature of the process responsible for the beam production, especially since the OBE model makes no predictions about the directionality of the blue radiation. It is possible that this method for frequency up-conversion can be extended to other elements such as sodium and lithium in order to produce a coherent beam of ultraviolet radiation (330 nm and 323 nm, respectively). The creation of the 455 nm beam could be a promising way to study the hyperfine structure of the 7P3/2 manifold of cesium if the frequency of the beam were modulated with an acousto-optic modulator.

This work has been supported by the Australian Research Council and National Science Foundation (award No. PHY-0653518). JTS is thankful for a Fulbright Postgraduate Fellowship. SA thanks the Studienstiftung des Deutschen Volkes for his scholarship.

References
1. M. Fleischhauer, A. Imamoglu, and J. P. Marangos, "Electromagnetically induced transparency: Optics in coherent media," Rev. Mod. Phys 77 633-673 (2005).
2. J. Mompart and R. Corbalán, "Lasing without inversion," J. Opt. B: Quantum Semiclass. Opt. 2, R7 (2000).
3. U. Hinze, B. N. Chichkov, E. Tiemann, and B. Wellegehausen, "Resonant continuous four-wave mixing and parametric amplification," J. Opt. Soc. Am. B 17, 2001-2010 (2000).
4. M.A. Moore, W.R. Garrett, and M.G. Payne, "Generation of axially phase-matched parametric four-wave and six-wave mixing in pure sodium vapor," Phys. Rev. A 39(7), 3692, (1989).
5. K.J. Boller, A. Imamoglu, and S.E. Harris, "Observation of electromagnetically induced transparency," Phys. Rev. Lett. 66(20), 2593 (1991).
6. L.V. Hau, S.E. Harris, Z. Dutton, and C.H. Behroozi, "Light speed reduction to 17 metres per second in an ultracold atomic gas," Nature 397, 594 (1999).
7. J.L. Krause, K.J Schafer, and K.C. Kulander, "High-order harmonic generation from atoms and ions in the high intensity regime," Phys. Rev. Lett. 68(24), 3535 (1992).
8. D.J. Fulton, S. Shepherd, R.R. Moseley, B.D. Sinclair, and M.H. Dunn, "Continuous-wave electromagnetically induced transparency: A comparison of V, ?, and cascade systems" Phys. Rev. A 52, 2302-2311 (1995).
9. Y. Li and M. Xiao, "Enhancement of nondegenerate four-wave mixing based on electromagnetically induced transparency in rubidium atoms," Opt. Lett. 21, 1064-1066 (1996).
10. Haibin Wu, Min Xiao, and J. Gea-Banacloche, "Evidence of lasing without inversion in a hot rubidium vapor under electromagnetically-induced transparency conditions," Phys. Rev. A 78 041802R (2008).
11. D. Höckel, M. Scholz, and O. Benson, "A robust phase-locked diode laser system for EIT experiments in cesium," Appl. Phys. B, 94, 429-435 (2009).
12. S.M. Hamadani, J.A.D. Stockdale, R.N. Compton, and M.S. Pindzola, "Two-photon resonant four-wave mixing and multiphoton ionization of cesium in a heat-pipe oven," Phys. Rev. A 35, 1938 (1986).
13. P.S. Bhatia, R. Welch, M.O. Scully, "Laser amplification without population inversion on the D 1 line of the Cs atom with semiconductor diode lasers," J. Opt. Soc. Am. B, 18 1587-1596 (2001).
14. L. Xiao, T. Huang, L. Wang, J. Zhao, and S. Jia, "Laser offset-frequency locking against energy pooling fluorescence in thermal caesium vapour," Meas. Sci. Technol. 17 L5-L8 (2006).
15. S.V. Kargapol'tsev, V.L. Velichansky, A.V. Yarovitsky, A.V. Taiuchenachev, and V.I. Yudin, "Optical cascade pumping of the 7P_3/2 level in cesium atoms," Quantum Electronics 35(7) 591 (2005).
16. A.S. Zibrov, M.D. Lukin, L. Hollberg, and M.O. Scully, "Efficient frequency up-conversion in resonant coherent media," Phys. Rev A. 65, 051801R (2002).
17. T. Meijer, J.D. White, B. Smeets, M. Jeppesen and R.E. Scholten, "Blue five-level frequency-upconversion system in rubidium," Opt. Lett. 31, 1002 (2006).
18. The steady-state solution to a four-level OBE model shows that the coherence between the 6S_{1/2} and 6D_{5/2} states is nonzero. The off-diagonal density matrix element \rho_{13} is proportional to the coherence and does not decay to zero in the steady state.
19. J.B. Taylor and I. Langmuir, "Vapor Pressure of Cesium by the Positive Ion Method," Phys. Rev. 51, 753 (1937).
20. G.J. Dixon, C.E. Tanner, and C.E. Wieman, "432-nm source based on efficient second-harmonic generation of GaAlAs diode-laser radiation in a self-locking external resonant cavity," Opt. Lett. 14, 731 (1989).