DEVELOPING A RELATIVELY VALIDATED AND REPRODUCIBLE FOOD FREQUENCY QUESTIONNAIRE IN BAGHDAD, IRAQ

Mohammed Tareq Mutar 1*, Mustafa Majid1, Mazin Judy Ibrahim2, Ali Saad 1, Mohammed Saleh 1, Ali Abdulkobias 1, Maryam Akram1, Mohammed Asaad Al-ani 1

1 Medical student, College of Medicine, University of Baghdad, Iraq
2 Assistant professor, Internal Medicine and Oncology, College of Medicine, University of Baghdad, Iraq

*Corresponding author: mohammed.tareq1600c@comedi.uobaghdad.edu.iq

ABSTRACT

Nutritional assessment is essential in the evaluation of individuals’ health status. This study seeks to develop and validate a food frequency questionnaire (FFQ) that can be used as a nutritional assessment tool in epidemiological studies. A stratified random sampling enrolled sixty-five participants from Baghdad University College of Medicine. Participants were asked to fill a four days food upon which the questionnaire was developed. The participants were asked to fill the questionnaire based on their food intake in the last year. The data was entered using a food application, and the data source for the food nutritional values was obtained from different food composition tables. The serving size was assessed based on the Canadian nutritional society guidelines. The validation and reliability of the questionnaire were evaluated by comparing food intake of the records and the questionnaires using paired mean difference and Pearson correlation coefficient. The energy was adjusted using the nutrient density method. The mean difference between the records and questionnaire was 151.3 kcal, 7.61, 10.45, 10.24 gram for energy, fat, carbohydrate, and protein, respectively. The correlation coefficient between the record and the questionnaire was 0.829, 0.583, 0.323, and 0.547 for energy, fat, carbohydrate, and protein, respectively. In conclusion, this is the first valid food frequency questionnaire that was shown to be valid and reliable in providing a nutritional assessment of dietary intake in Iraq. It requires more efforts to be considered as a national tool for dietary assessment.

Keywords: Food frequency questionnaire, Dietary records, Nutrition, assessment, Iraq
Introduction

The nutritional care process is a method that are used by dieticians to critically think and make decision regarding nutritional problem and provide safe and effective quality care (Barasi, 2013), nutritional assessment represents an important step in the nutritional care (Ferrie S, 2020).

Various methods can be used for the nutritional assessment: 24-hour dietary record, multiple-day food record, weighed diet record, diet history, and Food frequency questionnaire FFQ (Barasi, 2013). Using FFQ over the other dietary methods provides some advantages as they are relatively simple in construction and easy to be filled by the subject with less required time and resources (Serban CL et al., 2021). Food frequency questionnaires are a helpful method in nutritional assessment, getting information about deficiencies or excess of nutrients because they are relatively easy and more economical to administer (Pierce et al., 2007), and may capture foods that only be eaten seasonally (Rayman TK et al., 2014). One limitation of FFQ is that it does not measure absolute food intake; instead, it is a tool for assessing relative intake (Dehghan et al., 2013). An achieved benefit of FFQ was done by Hu, et al, who identified two major dietary patterns using factor analysis of 131 items FFQ, which then was used for assessing the relative risk of coronary heart disease in relation to diets. (Hu et al., 2000).

Multiple-day food records (like four days records) have the advantage of not being dependent on memory since food is being recorded after the meal immediately and can provide detailed intake data. Considering that multiple day records are more representative (McLean RM, 2018), in this study, four days records were taken. However, time, cost, participants’ motivation, and their ability to understand and follow the instruction (literacy) among them limit their usage (Dehghan et al., 2013).

There is no single gold method for developing FFQ or assessing its validity; however, Comparing food frequency questionnaire nutrients value to the records of the same cases is observed in multiple studies (Rezazadeh A, 2020) which is an appropriate method to establish a validated questionnaire. Malnutrition is a problem in Iraq especially in area with high level of violence (Serdan, 2009), (Acharya et al., 2020), about 19% of Iraqi children are underweight (Ghazi et al, 2013). Since there is no available food frequency questionnaires in Iraq and studies rely on non-validated questionnaire for assessments (Alabbody, 2018), it seems necessary to develop and validate one to be used in Iraqi studies.

This study seeks to develop and validate a food frequency questionnaire that should be used to assess nutritional health and malnutrition in Iraq that will help in the early detection of malnourishment in desired populations.
Methods

This study represents a validation study focusing on content, construct, and criterion validities using a cross sectional design. It was held in 2018 from February till May. Sixty-five participants were enrolled in the study (the sample size was chosen according to the number of students in the college grade where the study was held and according to the randomization methods). Those participants were selected randomly from the college of medicine university of Baghdad using stratified sampling. Those participants were young and free from chronic illness, and none of them were pregnant or lactating. Informed consent was taken from the participants, and their identity was kept secret. Participants were asked to fill a four days dietary record and a food frequency questionnaire. A programmer developed a food app, and the source of data in the study was food composition tables of the United States (US department of agriculture, 2019), Bahrain (Musaiger, 2011) and some other researches are done in the region (Bawadi et al., 2009).

Four Days Food Record

All participants were asked to fill a food record in a written or electronic form for four days, three of which included workdays, the other one is a holiday day. These forms are composed of tables, and participants were asked to fill those tables during their day at each meal they consumed. Those meals were classified into breakfast, lunch, dinner, and snacks to assess the main meals and the snacks between and after the main meals. Those participants were asked to weigh their food if possible, and if they couldn’t, they were provided with a guide to assess the serving size. Food record was taken during February prior to the development of the food frequency questionnaire and the food commonly consumed provided some assistance in the development of the FFQ. The participants completed the four days record within one month.

Food Frequency Questionnaire (FFQ)

The questionnaire is self-structured (105)-itemed, semi-quantitative paper form which was given to the participants and it was self-administrable. The questionnaires were collected after 2-4 weeks of administrations. The questionnaire was designed after reviewing the literature and food records collected previously from the participants. The questionnaire was designed to find the consumption of food during the last year. Participants were asked to mention, on average, the frequency of consumption and the portion size of each food item they consumed during the previous year.
The frequency of consumption in the questionnaire was a range consisting of 6 items (once a year, once a month, 1-2 times per week, 3-4 times per week, daily or never). A serving size guide was administered with the questionnaires to help in estimating portion size in each meal. This guide was constructed based on portion size estimated by dietitians of Canada society (dietitians of Canada, 2018).

The mean intake of each item per day during last year was calculated using frequency portion size and number of portions: \(\frac{\text{frequency} \times \text{number of portions} \times \text{portion size}}{365} \). For example, a person eats meat once daily for the previous year and of one portion size (365 days a year is the frequency, once a day is the number of portions (1), and one portion size (1)), that is, \(\frac{365 \times 1 \times 1}{365} \) and equal a mean of 1 gram.

Validity and Reliability

Validity was obtained by comparing the nutrients intake estimated by the FFQ with that of 4 days weighted record as the 4-day record represents a better, more reliable method of dietary assessment. Reliability was assessed by comparing the results of two FFQ collected one week apart. It was tested for 20 participants by distributing the questionnaire for the second time after one week of the first-time nutrients, and the correlation data will be shown in the results section.

Statistical analysis

The data was analyzed using SPSS v.24 (IBM corp. 2016) the macronutrients and food groups were shown to follow normal distribution using shapiro wilk, kolmogorov simonov, and histogram. Descriptive statistics in term of mean, median, and interquartile range was used while the Pearson correlation coefficient, mean difference, percentage difference was used to establish relative validity and reproducibility of the questionnaire. Cronbach alpha was also used to establish reliability which had a value of 0.699251.

The mean percentage was calculated as the mean of all individual differences between the FFQ and 4-days records \(\left(\frac{\text{mean} (\text{FFQ} - \text{4-days records})}{\text{mean} (\text{4-days records})} \right) \).

Implausible energy intake was checked to avoid the bias from wrongly reported intake in the FFQ, the total energy intake distribution was studied. A cut-off value was determined as the 75th percentile plus 1.5 the interquartile range and the 25th percentile minus 1.5 the interquartile range. This caused the exclusion of three food frequency questionnaire which reported energy intake (8563, 6327, and 5837). (steinemann et al., 2017).

The nutrients were energy-adjusted with nutrients density method to account for measurements error since is preferable to physical activity and body weight as indicated by some studies (rhee et al., 2014), (hu et al., 2000). For visualization, bland–altman diagrams were drawn for energy, fats, carbohydrates, and proteins. All statistical analysis was two-sided with a confidence level 95%.
Ethical approval

The study was done with ethical considerations and approval had been taken from college of medicine university of Baghdad.

Results

The mean age of the participants was 21.6 years, with a standard deviation of 8.7. 57% of them were female. The participants' mean weight was 74 Kilograms with a standard deviation of 18.2 and their mean height was 166 centimetres with standard deviation of 15.2. 93% of participants were students. Table one and table two represent statistical numbers (Means, Medians, Mean differences, Pearson correlation coefficients with and without energy adjustment and quartiles details) that were used in the validation and in the reliability of the questionnaire. Table three shows the percentage of each macronutrient and energy from each food group.

Table 1: Energy and macronutrient validation and reliability statistics values between the questionnaire and the 4 days record.

Item	4 days record Mean	FFQ mean	Mea n difference of FFQ and 4DRs (%)	Pearson Correlation of 4DRs and FFQ	Energy Adjusted Mean difference of FFQ1 & FFQ2	Pearson Correlation FFQ1 & FFQ2	Energy adjusted Item in the same or adjacent quartile between FFQ & 4DRs (out of 65)						
Energy	219 2.28	224 6.2 5	857.732	2343 .598	228 6	77 8.7 5	151.310 (0.06 9)	0.829 23	Not appropriate	23.3 8294	0.834 472	Not appropriate	61
Fat	73.1 911 6	69	34.8 1	80.8 0462	76	35	7.61 3460 (0.10 41)	0.583 170	0.73 4944	- 11.9 339	0.997 734	0.9541 0	59
Carbs	298.779 5	284	105.437 5	309.2298	304 98	10.4 5032 (0.03 49)	0.323 360	0.70 6583	10.2 4174	0.770 808	0908 238	61	
Protein	84.6 123 5	85	38.7 5	94.8 5937	94	29	10.2 4702	0.547 95	0715 974	3.87 8959	0.869 007	0.90 139	60
Table 2: Validation and reliability statistics of the food groups in the food frequency questionnaire and the 4-day record.

	Meat	Dairy	Vegetable(s)	Starch	Drinks	Fruits	Soup	Sweets
Mean difference	1.4514	-0.893865	-1.3125	0.2162	2.5389	0.2522	0.3655	
	86	05	23	28	04	97		
Standard deviation	2.8295	12.35759	1.8244	4.6548	4.1311	1.1591	1.0187	
	88	37	42	89	61	54	63	
Food groups within the same or adjacent Quartile between FFQ and 4 days record	59	61	58	53	55	50	57	60
Inappropriate Quartile	5	3	6	11	9	14	7	4
Items correlation of FFQ and (4 day record)	0.6110	0.746677	0.7420	0.4501	0.8097	0.1202	0.4566	
	58	88	3	6	81	54		
Energy adjusted (4 day record)	0.5558	0.7173	0.715528	0.3951	0.5763	0.4803	-0.1968	
	32	47	59	5	5	7	49	
Items correlation between (FFQ1) and (FFQ2)	0.7632	0.9335	0.934399	0.4329	0.7441	0.4547	0.7297	
	04	29	24	94	46	09	64	
Energy adjusted Items correlation between (FFQ1) and (FFQ2)	0.7247	0.6775	0.810419	0.4642	0.7218	0.6213	0.9333	
	52	36	85	33	41	75	57	

FFQ: food frequency questionnaire.

*Energy unit is calorie (Kcal), while other macronutrients were calculated in grams.
Table 3: The percentages of energy and macronutrients in each food group included in the questionnaire

	Meat percentage	Dairy percentage	Vegetables percentage	Starch percentage	Drinks percentage	Fruits percentage	Soup percentage	Sweets percentage
Protein	0.29657	0.13151	0.14119	0.26473	0.02214	0.09950	0.01123	0.03310
Fats	0.00780	0.04509	0.16307	0.33147	0.02880	0.29985	0.01581	0.10786
Carbs	0.26721	0.14175	0.10914	0.25627	0.03108	0.05318	0.02228	0.11834
Energy	0.04555	0.09542	0.16353	0.29382	0.05056	0.22716	0.01887	0.10470

*Energy unit is calorie (Kcal), while other macronutrients were calculated in grams

Figure one to figure four represent the dot charts which show the distribution of mean protein, carbohydrate, fats and energy intake of the questionnaires with the mean difference between records and the questionnaire.

*Proteindiff: Protein difference between records and questionnaires.
*Black line represents the mean of the difference between the records and the questionnaire.
*Red lines represent standard deviations from the mean difference.
Fig 2: The distribution of mean carbohydrate intake of the questionnaires with the mean difference between records and the questionnaire.

*Carbdiff: carbohydrate difference between records and questionnaires.
*Black line represents the mean of the difference between the records and the questionnaire.
*Red lines represent standard deviations from the mean difference.

Fig 3: The distribution of mean fat intake of the questionnaires with the mean difference between records and the questionnaire.

*fatdiff: fat difference between records and questionnaires.
*Black line represents the mean of the difference between the records and the questionnaire.
*Red lines represent standard deviations from the mean difference.
Fig 4: The distribution of energy intake of the questionnaires with the mean difference between records and the questionnaire.

*energydiff: energy difference between records and questionnaires.
*Black line represents the mean of the difference between the records and the questionnaire.
*Red lines represent standard deviations from the mean difference.

The energy, carbohydrate and protein showed statistically insignificant difference between the questionnaires and records. Meanwhile, fat intake showed significant difference between the two parts.

Discussion

This is the first trial to develop a food frequency questionnaire (FFQ) in Iraq. The Eastern Mediterranean region, including Iraq, suffers many nutritional problems like obesity and malnutrition (Nasreddine et al., 2018), and this issue requires detection and monitoring. FFQ is one of the best methods for that.

FFQ is often used in epidemiological studies for long-term evaluation of food consumption in adults, children, and adolescents (Lovell et al., 2017). These tools are highly beneficial because they may be a self-administered format. They represent dietary intake over long periods of time. They can be used for many participants, and they can compare nutritional intake among different populations. In this study, FFQ is developed and tested for relative validity and reproducibility with 4-days dietary records, a quantitative questionnaire was used to evaluate food consumption (Saravia et al., 2018). One of the most frequent limitations of the questionnaire is its length (Kolodziejczyk et al., 2012), as lengthy questionnaire might have an effect on the number of participants, and this is thought to be the cause of small sample size for this study which was 65 participants.
Compared with the energy and nutrients intake estimated by the 4-days dietary records, the questionnaire overestimated them, and this finding was also described by Steinemann et al and Dehghan et al (Steinemann et al., 2017) (Dehghan et al., 2013).

In this study, the highest mean difference percentage was 12.11% which suggests a good agreement is achieved for most items (Kowalkowska et al, 2013). The correlation coefficient was also used to assess the validity and agreement between methods as suggested by studies that a good correlation is considered if the correlation coefficient is more than 0.5, fair if they are between 0.39 and 0.49, and poor if they are less than 0.30 and in this study, most of the coefficients were more than 0.5 (Mukaka, 2012) (Fatihah et al., 2015).

The correlation coefficient in this study showed variation when compared among food groups between 4-days dietary record and questionnaire, this may be attributed to differences in the food items, and the portion sizes estimation errors, and between-person variances in consumption. (Goode JP et al., 2021)

Nutritional assessment in this study involved only macronutrients; since micronutrients nutritional researches have measurements error and inter- and intra-individual variability (Webster-Gandy et al., 2020), there are many methods for estimating micronutrients, but not one of them is ideal.(Øverby et al., 2009).

Limitations

The length of questionnaire and difficulty with remembering frequencies were the main causes for such sample size, this limitation should be addressed and evaluated in the future to evaluate the generalizability of the questionnaire among general population. Most of the sample in this study were young in their 20s which may reflect nutritional intake among young Iraqis.

Conclusions

This self-administered FFQ showed validity for protein, calories, fats and carbohydrate intake. More effort is required to establish more powerful validity for this questionnaire to be used in nutritional assessment.

Conflicts of Interest

The author declares no conflicts of interest.
References

- Acharya Y, Luke N, Naz S, Sharma D. (2020) Exposure to conflict-related violence and nutritional status of children in Iraq. SSM Popul Health. Apr 13;11:100585. doi: 10.1016/j.ssmph.2020.100585. available from: https://www.sciencedirect.com/science/article/pii/S2352827319303659.
- Alabbody H, Al-Nasiry B, Kadhim K. (2018) Applying food frequency questionnaire to evaluate the dietary pattern and life style on women with breast cancer. JFacMedBaghdad [Internet];60(2):119-25. Doi: https://doi.org/10.32007/jfacmedbagdad60219. Available from: https://jgmc.ubbaghad.edu.iq/index.php/19JFacMedBaghdad36/article/view/19
- Barasi, M. (2015). Nutrition at a Glance. 2nd edition. Wiley-Blackwell.
- Bawadi HA, Al-Shwaibat NM, Tayyem RF, Mekary R, Tuuri G. (2009). Developing a food exchange list for Middle. Eastern appetizers and desserts commonly consumed in Jordan. Nutrition & Dietetics: the Journal of the Dietitians Association of Australia. 6(1):20-26. DOI: 10.1111/j.1747-0080.2008.01313.x. available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3155260/.
- Campbell NRC. (2018). TRUE Consortium (in Ternational Consortium for Quality Research on Dietary Sodium/Salt). Twenty-Four-Hour Diet recall and Diet records compared with 24-hour urinary excretion to predict an individual's sodium consumption: A Systematic Review. J Clin Hypertens (Greenwich). 20(10):1360-1376. doi: 10.1111/jch.13391.
- Dehghan, M., Martinez, S., Zhang, X., Seron, P., Lanas, F., Islam, S., & Merchant, A. T. (2013). Relative validity of an FFQ to estimate daily food and nutrient intakes for Chilean adults. Public Health Nutrition, 16(10), 1782-1788. available from: https://www.cambridge.org/core/journals/public-health-nutrition/article/relative-validity-of-an-ffq-to-estimate-daily-food-and-nutrient-intakes-for-chilean-adults/828891134D199288FDC480D82C92B86C.
- Dietitians of Canada. Handy Guide to Serving Sizes. Available from: https://www.unlockfood.ca/EatRightOntario/media/PDFs-new-website/Portions%20Toolkit/Handy-Servings-Guide-EN-v04-July-2018.pdf
- Fathiha, F., Ng, B. K., Hazwanie, H., Norimah, A. K., Shanita, S. N., Ruzita, A. T., & Poh, B. K. (2015). Development and validation of a food frequency questionnaire for dietary intake assessment among multi-ethnic primary school-aged children. Singapore Medical Journal, 56(12), 687. doi: 10.11622/smmedj.2015190. available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4678409/
- Ferrie S. (2020). What is nutritional assessment? A quick guide for critical care clinicians. Aust Crit Care. 33(3):285-299. doi: 10.1016/j.auccc.2020.02.005. Epub 2020 Apr 14.
- Ghazi HF, Mustafa J, Aljunid S, Isa Z, Abdalqader MA. (2013) Malnutrition among 3 to 5 years old children in Baghdad city, Iraq: a cross-sectional study. J Health Popul Nutr. 31(3):350-5. doi: 10.3329/jhp.v31i3.16827. available from: https://pubmed.ncbi.nlm.nih.gov/24288949/
- Goode JP, Smith KJ, Kilpatrick M, et al. (2021). Retrospectively Estimating Energy Intake and Misreporting From a Qualitative Food Frequency Questionnaire: An Example Using Australian Cohort and National Survey Data. Front Nutr. 8:624305. doi:10.3389/fnut.2021.624305.
- Hotelt M, Zoghi, E, Rady E, Shankiti I, Al Jawaldeh A. (2021). Fatty Acids Quality in Middle Eastern Traditional Dishes, Arabic Sweets and Market Foods Frequently Consumed in Lebanon. Nutrients. 13(7) 2462. 10.390/nu13072462. Available from: https://www.researchgate.net/publication/353362907_Fatty_Acids_Quality_in_Middle_Eastern_Traditional_Dishes_Arabic_Sweets_and_Market_Foods_Frequently_Consumed_in_Lebanon
- IBM SPSS Statistics for Windows, version 24 (IBM Corp., Armonk, N.Y., USA)
- Kolodziejczyk, J. K., Merchant, G., & Norman, G. J. (2012). Reliability and validity of child/adolescent food frequency questionnaires that assess foods and/or food groups. Journal of Pediatric Gastroenterology and Nutrition, 55(1), 4–13. doi: 10.1097/MPG.0b013e318251550e. available from: https://journals.lww.com/jpgn/FullText/2012/07000/Reliability_and_Validity_of_Child_Adolescent_Food.4.aspx.
Kowalkowska J, Slowinska MA, Slowinski D, Dlugosz A, Niedzwiedzka E, Wadolowska L. (2013) Comparison of a full food-frequency questionnaire with the three-day unweighted food records in young Polish adult women: implications for dietary assessment. Nutrients.5(7):2747-2776. doi:10.3390/nu5072747

Lovell, A., Bulloch, R., Wall, C. R., & Grant, C. C. (2017). Quality of food-frequency questionnaire validation studies in the dietary assessment of children aged 12 to 36 months: a systematic literature review. Journal of Nutritional Science, 6. available from: https://www.cambridge.org/core/journals/journal-of-nutritional-science/article/quality-of-food-frequency-questionnaire-validation-studies-in-the-dietary-assessment-of-children-aged-12-to-36-months-a-systematic-literature-review/91FD917373EF94E80965357C19639DB

McLean, R. M., Farmer, V. L., Nettleton, A., Cameron, C. M., Cook, N. R., Woodward, M., Campbell, N., & TRUE Consortium (in Ternational Consortium for Quality Research on Dietary Sodium/Salt) (2018). Twenty-Four-Hour Diet recall and Diet records compared with 24-hour urinary excretion to predict an individual's sodium consumption: A Systematic Review. Journal of clinical hypertension (Greenwich, Conn.), 20(10), 1360–1376. https://doi.org/10.1111/jch.13391

Mukaka MM. Statistics corner: A guide to appropriate use of correlation coefficient in medical research. Malawi Med J. 2012;24(3):69-71.

Musaiger, A. (2011) Food composition tables for kingdom of Bahrain. InINFOODS Regional Database Center, 1st ed.; Arab Center forNutrition: Manama, Bahrain. Available from: https://www.researchgate.net/publication/353362907_Fatty_Acids_Quality_in_Middle_Eastern_Dishes_Arabic_Sweets_and_Market_Foods_Frequently_Consumed_in_Lebanon.

Nasreddine, L., Ayoub, J. J., & Al Jawaldeh, A. (2018). Review of the nutrition situation in the Eastern Mediterranean Region. Eastern Mediterranean Health Journal, 24(1), 77–91. available from: https://apps.who.int/iris/bitstream/handle/10665/326785/EMHJ_24_01_2018.pdf

Øverby NC, Serra-Majem L and Andersen LF. (2009) Dietary assessment methods on n-3 fatty acid intake: a systematic review. British Journal of Nutrition 102: S56–S63

Pierce, B. L., Austin, M. A., Crane, P. K., Retzlaff, B. M., Fish, B., Hutter, C. M., Leonetti, D. L., & Fujimoto, W. Y. (2007). Measuring dietary acculturation in Japanese Americans with the use of confirmatory factor analysis of food-frequency data. The American Journal of Clinical Nutrition. 86(2), 496–503. available at: https://academic.oup.com/ajcn/article/86/2/496/4632966?login=true

Rezazadeh A, Omidvar N, Tucker KL. (2020) Food frequency questionnaires developed and validated in Iran: a systematic review. Epidemiol Health. 42:e2020015. doi:10.4178/epih.e2020015.

Rhee, J. J., Cho, E., & Willett, W. C. (2014). Energy adjustment of nutrient intakes is preferable to adjustment using body weight and physical activity in epidemiological analyses. Public Health Nutrition, 17(5), 1054–1060. available at: https://www.cambridge.org/core/journals/public-health-nutrition/article/energy-adjustment-of-nutrient-intakes-is-preferable-to-adjustment-using-body-weight-and-physical-activity-in-epidemiological-analyses/293E7D0D7134BD9AF6AA66DC8E3D6D05

Ryman TK, Austin MA, Hopkins S, Philip J ,O'Brien D. Thummel K, and Boyer B. (2014) Using exploratory factor analysis of food frequency questionnaires to identify dietary patterns among Yup'ik People. Public Health Nutr; 17(3): 510–511. doi: 10.1017/S1368980012005411. available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3972766/

Saravia, L., González-Zapata, L. I., Rendo-Urteaga, T., Ramos, J., Colleeze, T. S., Bove, I., Delgado, C., Tello, F., Iglesia, I., & Goncalves Sousa, E. D. (2018). Development of a food frequency questionnaire for assessing dietary intake in children and adolescents in South America. Obesity. 26, S31–S40. available at: https://onlinelibrary.wiley.com/doi/full/10.1002/oby.22114

Serban CL, Banu AM, Putnoky S, Butica SI, Niculescu MD, Putnoky S. (2021) Relative Validation of a Four Weeks Retrospective Food Frequency Questionnaire versus 7-Day Paper-Based Food Records in Estimating the Intake of Energy and Nutrients in Adults. Nutrition and Dietary Supplements.13:113-125

Serdan G., Gabriela. (2009)The Effects of the War in Iraq on Nutrition and Health: An Analysis Using Anthropometric Outcomes of Children. SSRN. Available at SSRN: https://ssrn.com/abstract=1359161

Steinemann, N., Grize, L., Ziesemer, K., Kauf, P., Probst-Hensch, N., & Brombach, C. (2017).
Relative validation of a food frequency questionnaire to estimate food intake in an adult population. *Food & Nutrition Research.* available at: https://www.tandfonline.com/doi/abs/10.1080/16546628.2017.1305193

- U.S. Department of Agriculture, Agricultural Research Service. FoodData Central, 2019. Available at: fdc.nal.usda.gov.
- Webster-Gandy, J., Madden, A., & Holdsworth, M. (2020). Oxford Handbook of Nutrition and Dietetics. 3rd edition. Oxford University Press.