Targeting TGF-β signal transduction for fibrosis and cancer therapy

Dandan Peng, Minyang Fu, Manni Wang, Yuquan Wei and Xiawei Wei*

Abstract
Transforming growth factor β (TGF-β) has long been identified with its intensive involvement in early embryonic development and organogenesis, immune supervision, tissue repair, and adult homeostasis. The role of TGF-β in fibrosis and cancer is complex and sometimes even contradictory, exhibiting either inhibitory or promoting effects depending on the stage of the disease. Under pathological conditions, overexpressed TGF-β causes epithelial-mesenchymal transition (EMT), extracellular matrix (ECM) deposition, cancer-associated fibroblast (CAF) formation, which leads to fibrotic disease, and cancer. Given the critical role of TGF-β and its downstream molecules in the progression of fibrosis and cancers, therapeutics targeting TGF-β signaling appears to be a promising strategy. However, due to potential systemic cytotoxicity, the development of TGF-β therapeutics has lagged. In this review, we summarized the biological process of TGF-β, with its dual role in fibrosis and tumorigenesis, and the clinical application of TGF-β-targeting therapies.

Keywords: TGF-β, TGF-β signaling pathways, Targeted therapies

Background
Transforming growth factor β (TGF-β) is a prototype of the TGF-β family, which is composed of TGF-β, Activin, Nodal, bone morphogenetic proteins (BMPs), growth and differentiation factors (GDFs), and other factors [1, 2]. As a multifunctional polypeptide cytokine, TGF-β plays a critical role in early embryonic development and adult homeostasis [3]. Three subtypes of TGF-β (TGF-βI-III) are only expressed in mammals with unique multifunctional growth factors. In the following paragraphs, TGF-β refers to TGF-βI if not otherwise specified. TGF-β is mainly secreted and stored in the extracellular matrix (ECM) as a latent complex [4], while only activated TGF-β binds to the TGF-β receptor (TβR) complex to lead to its biological functions. Therefore, TGF-β activation is critical for its operation.

In recent years, scientists found that overexpressed TGF-β causes a plethora of metabolic disorders and dysfunction, and promotes epithelial-mesenchymal transition (EMT) and excessive deposition of ECM [5, 6], which causes immune dysfunction, fibrosis, and cancers [7]. Because of the vital function of TGF-β in human fibrosis and cancers, anti-TGF-β approaches have been introduced to treat these diseases [8]. In recent years, many clinical trials have verified the therapeutic effect of TGF-β-targeted drugs on a variety of tumor and fibrotic diseases. By combining TGF-β-targeting drugs (anti-TGF-β antibody, TβR inhibitor, and recombinant proteins) with other antigens (programmed cell death one ligand 1 (PD-L1), M7824, SHR-1701, JS201, TST005, and COX-2 (STP705)) is the most popular treatment strategy currently. This review focuses on the biological process of TGF-β, its dual role in fibrosis and tumorigenesis, and the clinical application of TGF-β-targeting therapeutics.

The procession of TGF-β
Pro-TGF-β is synthesized as a latent complex in the ECM and is associated with a signal peptide in the large...
N-terminal portion called the latency-associated peptide (LAP) and a mature cytokine in the C-terminal fragment [9–11]. The large latent complex (LLC) comprises LAP, TGF-β, latent TGF-β binding proteins (LTBP) 1/3, and LTBP4. Latent TGF-β is activated by proteins and enzymes (thrombospondin 1 (TSP-1), glycoprotein A repetitions predominant protein (GARP), integrins, and other TGF-β-binding proteins) and transformed into disulfide-linked dimers and homodimeric ligands. The activated TGF-β interacts with the TβR complex or other cytokines to regulate biological responses through drosophila mothers against decapentaplegic (SMAD) and/or non-SMAD pathways [12].

TGF-β secretion

LAP binds to LTBP covalently via two disulfide bonds with two cysteine residues [10]. LTBP are the promoter of the folding of TGF-β precursor protein. In addition, LTBP are crucial to latent TGF-β location and activation [13, 14]. LAP, in turn, is cleaved by furin (an indispensable proprotein convertase) from the mature TGF-β precursor in the trans-Golgi network (Fig. 1) [12], in which LTBP are considered as the primary activator [13]. Although LAP is cleaved from the C-terminal portion, it remains associated with the mature cytokine TGF-β noncovalently [2].

Location and activation of TGF-β

In general, LLC is secreted to the ECM and is located there via the unique biological properties of LTBP which interacts with extracellular matrix fibers to keep TGF-β in an inactive form (Fig. 1) [13, 15]. A recent study showed that the crystals of pro-TGF-βI are a ring-shaped complex. When LAP-surrounded TGF-β monomers are freed under cytoskeletal force, the active cytokine interacts with TβR to regulate cellular responses (Fig. 1). This force-dependent activation requires the unfastening of a pro-domain named the ‘straitjacket’ element [16].

Enzymatic activation

In addition to the nonproteolytic mechanism for the activation of latent TGF-β, proteases are also involved in TGF-β activation. In addition, these proteases are divided into containing glycosidases (N-glycanase and
Regulation by fibrillin
LTBPs are structurally related to and physically bound to another family of proteins called fibrillins. Fibrillin 1 can function as an inhibitor of TGF-β signaling, but whether it works more directly in controlling the fibrillin-LTBp interaction or stability suppress latent LLC proteolytic activation still needs to be explored [21, 22]. As integral components of microfibrils, fibrillins play different roles in microfibril biology [23]. The microfibrils cover the elastin core of elastin-containing fibers and promote the temporal and spatial regulation of TGF-β activation [24]. Scientists previously suggested that fibrillin-1 can be presented to the surface-exposed loop when binding to the arginine-glycine-aspartic acid (RGD) integrin-binding motif [25–27]. While the remaining fibrillins showed little inhibitory effect on TGF-β activation. A number of studies indicated that fibrillin 2 expression is mainly restricted to developing fetal tissues, while fibrillin-1 expression endures throughout adult life [28]. Moreover, fibrillin-1, together with associated molecules, masks fibrillin-2 epitopes to block its bioactivity. Therefore, fibrillin 1 shows stronger anti-TGF-β activity. Notably, a recent study showed that when local fibrillin-1 was downregulated, fibrillin 2 molecules were exposed in the tumor endothelium with a lower capacity to block TGF-β [29]. Moreover, Heena Kumra et al. suggested that fibrillin-4 might regulate LTBp-4 matrix assembly to impact TGF-β signaling [30].

Regulation of TGF-β activation by GARP
Recent evidence demonstrated that regulatory T cells (Tregs) could promote latent TGF-β presented by GARP to integrin αVβ8 integrin (Fig. 1) [31]. Unlike LTBPs are abundantly presented in the ECM, GARP is retained only on the surface of Foxp3-expressing Tregs [32]. It is generally accepted that αVβ8 integrin is involved in GARP/TGF-β complex activation, but the exact mechanism is controversial. Some scientists indicated that cytoskeletal force was unnecessary for αVβ8-mediated TGF-β activation. Others believed that the regulation of TGF-β activation by GARP required the release and diffusion of mature TGF-β [33]. In addition, they discovered that mature TGF-β signals were involved in latent TGF-β, which indicated that αVβ8-mediated TGF-β activation may form a large multi-component cell–cell protein complex to induce the SMAD-dependent pathway [34, 35].

Activation of TGF-β by integrins
Integrin family members are implicated in the recognition and activation of TGF-β [37–44]. In addition, integrin-mediated TGF-β activation is essential in the immune system (integrins αvβ6 and αvβ8), tumorigenesis, and fibroblasts. Both Integrins αvβ6 and αvβ8 regulate TGF-β signaling by binding to a linear tripeptide RGD depending on actin cytoskeleton-generated tensile force [45]. In addition to integrins αvβ6 and αvβ8, integrins αβ3, αβ1, and αIIβ3 can also recognize the RGD site in the LAP region of TGF-β. This RGD recognition mechanism regulates the growth and differentiation factors of the TGF-β family to maintain morphogenesis and homeostasis [46].

However, the presence of integrin alone is insufficient for TGF-β activation. Considerable studies have suggested that actin-myosin contraction and mechanical deformation are of great importance for TGF-β activation. In addition, scientists widely believed that the contraction of the actin cytoskeleton previously generated integrin-mediated TGF-β activation by physical force. Furthermore, a study by Melody G. Campbell recently indicated that integrin αvβ6, along with its entire ectodomain, activates GARP to locate latent TGF-β without the release and diffusion of mature TGF-β [47]. In general, identifying a complete regulatory pathway would facilitate the development of more effective therapeutic strategies.

TGF-β signaling pathways
The low-affinity heteromeric receptor complex (TβR I with TβR II) conducted by activated TGF-β stimulates different downstream signaling pathways (SMAD pathways and no-SMAD pathways) to regulate context-dependent transcription (Fig. 2). Under different physiological and pathological conditions, different kinases or signaling pathways adjust the SMAD pathway to regulate protein expression [48].
The canonical pathway—SMAD pathway
SMAD is a canonical pathway in which TGF-β is identified by TβR II equipped with an intracellular kinase domain, which recruits and phosphorylates TβR I with a conserved Gly/Ser-rich “GS sequence” from serine/threonine kinases. TβR II and TβR I then become a heteromeric complex [49]. Activated TβR I phosphorylates receptor-SMAD (R-SMAD) protein and promotes R-SMAD complex binding to Co-SMAD/SMAD4, forming a trimeric complex. The trimeric complex is then translated into and aggregates in the nucleus as a transcription factor to regulate target gene expression from embryonic development to adult organisms [48, 50].

In addition to being regulated by other signaling pathways or cytokines, TGF-β signaling is also automated. Downstream factors of SMAD signaling, especially Smad2/Smad3, are considered crucial mediators of TGF-β signaling in tissue fibrosis and tumorigenesis. At the same time, Smad6 and Smad7 are regarded as negative regulators to improve TGF-β-mediated fibrosis and tumorigenesis. For example, SMAD3-induced the upregulation of TSP-4, which stimulates tumor growth by mediating TGF-β-induced angiogenesis [51].

Noncanonical pathway—non-SMAD pathway
All the pathways and downstream cascades activated by TGF-β through phosphorylation, acetylation, sumoylation, ubiquitination, and protein–protein interactions are collectively referred to as non-SMAD signaling pathways [53, 54]. These interactions mediate the intracellular responses of TGF-β and/or its related factors are collectively referred as non-SMAD signaling pathways [52, 53]. Mature TGF-β activates the mitogen-activated protein kinase (MAPK) pathway [54], extracellular signal-regulated kinases 1/2 (Erk1/2) pathways, Rho-like signaling pathways, phosphatidylinositol-3-kinase (PI3K)/AKT pathways, c-Jun amino-terminal kinase (JNK), and p38 mitogen-activated protein kinase (p38/MAPK) signaling pathways [55]. The Erk signaling pathway (Fig. 3) is essential for embryonic development in
adult organisms. For instance, it affects the development of embryos, especially nerves, and EMT to promote fibrosis and cancer metastasis in geriatric diseases [56–59]. Accumulating evidence has shown that diverse TGF-β signaling responses are related to the combinatorial usage of core pathway components, including ligands, receptors, SMADs, and transcription factors by cross interacting with other pathways to regulate target gene transcription [52].

TGF-β in fibrosis

Fibrosis is a pathological process in which organ parenchyma cell necrosis and ECM deposit excessively, causing connective tissue hyperplasia, fibrosis, or even significantly producing organ sclerosis. In addition, fibrosis is usually accompanied by the transformation of fibroblasts into myofibroblasts, even CAFs. Normal fibroblasts are components of the paraneoplastic stroma, which are critical in supporting the homeostasis of tissue-resident cells and define the architecture of organs. Several cytokines and chemokines (miR-214 [60], IL-1 [61], α-SMA, integrin β-1), and signaling pathways (EGFR, Wnt/β-catenin, Hippo, TGF-β, and JAK/STAT cascades) reprogram normal fibroblasts into CAFs [62, 63]. However, the mechanisms underlying the transformation of CAFs are rarely known.

TGF-β I-III all have fibrogenic effects and share 70–82% homology at the amino acid level [64]. TGF-β I is considered as the primary factor in liver, kidney, and lung fibrosis through canonical and noncanonical signaling pathways. Usually, the cytokine TGF-β is up-regulated in tissue injury, inflammation, and wound healing [65]. The longer-term contractile state of the wound helps accelerate the expression of ECM proteins. Dysregulated TGF-β signaling promotes pathological fibrosis and tumorigenesis by excessive ECM deposition (Fig. 4). The abnormal accumulation of ECM triggers the process of fibrosis and immunosuppression by linking SMAD4, BRAF, and TP53 mutations and MYC amplification [6] and contributes to the cancer-associated fibroblast (CAF) phenotype. Scientists found that inhibiting TGF-β signaling and its downstream
signaling pathways could significantly reduce fibrosis [66–68].

TGF-β in hepatic fibrosis

Acute and chronic liver injuries promote excessive expression of TGF-β from various cell types and activation of TGF-β in the ECM. Then, activated TGF-β promotes collagenase deposition and EMT to induce fibroblast mesenchymal transformation and the activation of HSCs. In addition, increased TGF-β can be directly generated in liver injury [69]. Hepatic stellate cells (HSCs) are turned into hepatocellular carcinoma (HCC) cells [70, 71]. The activated HSCs express α-SMA but do not have lipid droplets. In addition, they give rise to myofibroblasts (MFBs), which represent the primary producer of collagen and other ECM proteins [71, 72].

The composition of the hepatic ECM changes during liver fibrosis and interacts with factors in TGF-β signaling to regulate hepatocellular fibrosis. For instance, the disruption of SMAD2 and the composition of SMAD3 promote the transcription of type II collagen toward type I and III collagen [72–74]. Meanwhile, the phosphorylation of Smad2/3 also encourages the acceleration of MMP1, α-SMA, and collagen type I, which results in the overexpression of lysyl oxidase-like 1 (LOXL1) to promote liver fibrosis [75]. Despite SMAD pathways, TGF-β also promotes HSC activation through non-SMAD pathways (MAPK, ERK, p38, and JNK pathways). For instance, activated TGF-β increases the expression of kindlin-2 via p38 and MAPK signaling, and overexpressed kindlin-2 positively feedbacks the TGF-β pathway by up-regulating Smad2 and Smad3 phosphorylation [76, 77].

Given the vital role of TGF-β in liver fibrosis, baseline TGF-β is always regarded as a biomarker of prognostic indicators. Nevertheless, clinical trials targeting TGF-β for HCC have been rare in recent years. It may be because dysregulated TGF-β cascades are not the dominate factors for HCC occurrence [78]. Galunisertib, a small-molecule selective inhibitor of TβR I, has been shown to prolong overall survival when administered with sorafenib [79]. However, it is worth noting that not all combination drug therapies help to improve HCC (NCT00557856).

TGF-β in kidney fibrosis

Robust evidence suggests that TGF-β is a well-established central mediator of renal fibrosis. TGF-β can promote the accumulation of ECM proteins in progressive chronic kidney disease (CKD) [8, 80]. Similar to hepatic fibrosis, the development of renal fibrosis is also completed with phenotypic plasticity processes and migration, as well as invasion of epithelial cells [81], in which TGF-β has a central role. TGF-β causes progressive forms of human kidney disease by regulating apoptosis,
activating ECM synthesis, and inhibiting ECM degradation through metalloproteinase inhibition [80]. TGF-β can also activate fibroblasts and translate other cell types into fibroblast-type cells directly or indirectly by SMAD or non-SMAD pathways [82, 83]. In addition, TGF-β can directly act on mesangial cells and fibroblasts to regulate cell proliferation, migration, and activation. TGF-β also mediates the accumulation of profibrotic molecules in ECM. Profibrotic molecules contain collagens, fibronectin, and plasminogen activator inhibitor-1 (PAI-1) [40, 84]. In contrast, overexpressed TGF-β indirectly prevents fibrosis. A recent study by Su J showed that TGF-β-stimulated human tubular epithelial cells and fibrotic kidneys express TGF-β/Smad3-interacting long noncoding RNA (Inc-TSI) to antagonize renal fibrosis [5]. Multiple drugs, including monoclonal antibodies (FG-3019, FG-4019), siRNAs (RXI-109, OLX-101, OLX-201), peptides (BLR-100/BLR-200), and antisense oligonucleotides, are under clinical trials, and other preclinical studies are trying to investigate more effective targets and therapies [85–87]. Furthermore, hepatocyte growth factor (HGF), BMP-7, SMAD7, and Inc-TSI can also be treated as antifibrotic targets. To date, scientists have identified multiple therapeutic targets for TGF-β-induced renal fibrosis, including microRNAs, proteins, genes, and transcription factors. For example, disrupting the combination signal binding protein-Jκ (RBP-Jκ) could block Notch signaling, which regulates bone marrow-derived macrophages (BMDMs) to attenuate TGF-β-induced renal fibrosis [88]. MicroRNAs (miRNAs) containing 21–24 nucleotides (miR-34a, miR-30c, miR21, miR29, miR-101a, miR-34a, etc.) have been proved to play essential roles in the regulation of renal fibrosis through TGF-β signaling [89, 90]. Zhao et al. found that miR-30c inhibited the Snail 1-TGF-β axis in tubular epithelial cells to attenuate EMT, which was similar to paricalcitol [89].

TGF-β in lung fibrosis

Idiopathic pulmonary fibrosis (IPF) is a chronic and fibrotic lung disease with a periphery to center progression, characteristic imaging, irreversible structural alterations, and tissue stiffening [91]. The observation that alveolar epithelial cells (AECs) and fibroblasts in IPF produce aberrant ECM is implicated in the TGF-β signaling pathway [92]. TGF-β is mainly derived from alveolar macrophages and metaplastic type II AECs and driven by sustained elevated mechanical tension in IPF [93]. Scientists identified the up-regulated mature TGF-β and SMAD3, SMAD4, CTGF, together with the deregulated SMAD7 in IPF [92]. Through a study of fibrotic development and glutamate metabolism, scientists found that the connection between epigenetic and transcriptional processes was almost in a TGF-β-dependent manner [94]. Despite α-SMA, TGF-β-induced integrins, MMPs, protease inhibitors, tumor necrosis factor-α (TNF-α), and regulators of small GTPases are also participated in cell-ECM interactions [95, 96]. Meanwhile, TGF-β cannot inhibit the production of antifibrotic molecules [97] but also induce serum KL6/mucin 1 (MUC1) activation [98]. TGF-β is a key profibrotic factor in IPF, but inhibiting TGF-β causes multiple side effects due to its pleiotropic effects. Though not reported in clinical trials, some TβRI kinase inhibitors showed cardiac toxicity and skin toxicity when administrated at high dose [99]. Thus, searching downstream effectors of TGF-β signaling appears to be a new research direction. Long noncoding RNAs such as RNA H19X, dynamin three opposite strand (DNM3OS), and miRNAs including 199a-5p, miR-199-3p, and miR-214-3p are all crucial to TGF-β-mediated lung fibrosis [100–103]. DNM3OS is a fibroblast-specific critical downstream effector of TGF-β-induced lung fibrosis, and interfering with it may present new effective therapeutic targets [101]. In addition, TGF-β interacts with peroxin to promote lung fibrosis through the αVβ3/β5-Smad3 pathway, which can be attenuated by the integrin low-molecular-weight inhibitor CP4715 [104].

TGF-β in cancer

TGF-β has been shown to play a crucial role in developing cancer by TGF-β pathway knockout in mice. Several experiments have demonstrated that TGF-β plays a dual role (a tumor suppressor in premalignant cells and a tumor promoter in carcinoma cells) in the process of cancer by modulating the cellular context and other effects of the cytokine [2]. TGF-β acts as a tumor suppressor by inhibiting proliferation and inducing apoptosis during the early stages of tumorigenesis [105]. Generally, TGF-β inhibits proliferation and promotes apoptosis through overexpressed cyclin-dependent kinase (CDK) inhibitors [106] and downregulated MYC expression [107]. Under this condition, premalignant cells become disseminated cancer cells, can self-impose a slow-cycling state to remain latent for extended periods [108]. The specific mechanism of how TGF-β promotes the immune escape of carcinoma cells will be described below.

Tumor cells escape antitumor surveillance of TGF-β by accumulating mutations in the TGF-β signaling cascades [109]. Examples of such escape include the mutation of SMAD4 in pancreatic ductal adenocarcinoma (PDAC) and gastric cancer (GC) [110, 111], the TβR I mutation in colon cancer [112], and even mutations in genes that encode TGF-β ligands (BMP5), receptors (TβR II, AVCR2A, BMPR2), and SMADs (SMAD2 and SMAD4) [113, 114]. Mutations in the TGF-β pathway in the head and neck, bladder, and endometrial adenocarcinomas
TGF-β in melanoma

Melanoma is the most aggressive type of skin cancer, accounting for 7% of all diagnosed cancers in men and 4% in women, with approximately 7,230 fatalities in 2019 [123]. Like other cancers, as a tumor suppressor, TGF-β exerts an anti-proliferative powerful impact in normal melanocytes. As a tumor promoter, TGF-β promotes EMT, proliferation, metastasis, and innate tolerance [124, 125]. The opposite effects of TGF-β in melanoma is associated with the deregulation of cytokines (TNF-α, VEPH1, SMAD4, INF-γ, SKI) and signaling pathways (Notch1, IL-6, and Erk/MAPK pathway), which in return regulate TGF-β signaling [121, 126–133].

Adipocyte-created IL-6 and TNF-amiR-211 promote the miR-211-repressed translation of TβR I mRNA to enhance the cellular responsiveness and metastasis of melanoma [129]. The poorly expressed ventricular zone expressed PH domain-containing 1 (VEPH1) and up-regulated upstream transcription factor 1 (USF1) in melanoma tissues promoted EMT [127, 130]. TGF-β-induced transcription sustains actomyosin force is independent of EMT [134]. TGF-β-associated VEPH1 induces proliferation, migration, and invasion of conditioned medium (CM) cells by up-regulating the expression of E-cadherin and down-regulating the expression of N-cadherin, Vimentin, and SMAD4 [130, 135]. Notably, SMAD4 suppresses tumor metastasis and promotes antitumor immunity through up-regulated IFN-γ and granzyme B (GZMB) by non-SMAD in NK cells at early stages [119, 121]. Immune cells, such as TGF-β-sustained effector T cells, secrete CD73 to facilitate tumor resistance of anti-CD137 therapy [136]. In BRAF (V600E)-mutant melanoma, the sex-determining region Y-box 10 (SOX10) is suppressed, and BRAF signaling-activated TFEB S142 phosphorylation is promoted. Both of them help increase melanoma metastatic potential and drug resistance [137, 138].

Therapies targeting these deregulated cytokines and signaling pathways combined with radiation, chemotherapy, and other targeted therapies become revolutionary therapeutic strategies. In addition to MECOM and BMP5 in BRAF-mutated melanoma, GNAQ or CNA11 mutations in uveal melanoma are also associated with TGF-β signaling [139]. Furthermore, GNAQ or CNA11 mutations demonstrate low sensitivity or resistance to specific treatments [140, 141]. They indicate a suite of rationally designed clinical trials and potentially clinical targets. Scientists indicated that hydrophobic TGF-β inhibitor (SB-505124) and an adenoviral vector expressing IL-12 increase animal survival [142]. PD-1/PD-L1 antigen-specific checkpoints block siRNA entry into antigen-presenting cells. In addition, PD-1/PD-L1 antigen-specific checkpoints are associated with lipid-coated calcium phosphate (LCP) mRNA vaccine, which indicates a more robust immune response to melanoma growth and metastasis [143]. Overall, the rational development of multiple anticancer therapies, such as the combination of TGF-β inhibitors with checkpoint inhibitors and/or other biological treatments, holds excellent prospects.

TGF-β in pancreatic ductal adenocarcinoma

Pancreatic ductal adenocarcinoma (PDAC) is the most aggressive type of gastrointestinal tumor due to its rapid progression and resistance to traditional chemoradiotherapy [144]. Studies have shown that whether TGF-β acts as a tumor suppressor or a tumor promoter depends on the tumor microenvironment [145]. In the early stage of pancreatic cancer, TGF-β promotes apoptosis via ID1 [146], regulates cell cycle progression through G1 arrest [147], and inhibits the growth of epithelial cells. In addition, a decrease in VEGF and an increase in TSP-1 caused by TGF-β help inhibit pancreatic cancer [148]. However, during the advanced stage of PDAC, genetically inactivated TGF-β signaling has a potent growth promoter effect [149, 150]. Of note, TGF-β does not only promote evasion and metastasis in all advanced pancreatic
cancer. Overexpressed TGF-β drives tumor suppression in SMAD4-positive PDA cells by repressing KLF5 [151].

More evidence is emerging that at least one mutation in the TGF-β signaling genes (TGFβRI, TGFβRII, Smad2, and Smad4 genes) occurs in all PDAC [152, 153]. SMAD mutation occurs in 60% of pancreatic cancer patients. An increased KRAS mutation and SMAD mutation in PDAC patients drive early tumorigenesis and metastasis. [154–156]. The mutated TGF-β signaling pathway has a much stronger ability to inhibit proliferation, promote angiogenesis and immune escape than simply shutting down the TGF-β signaling pathways [157, 158]. SMAD4 deletion leads to up-regulation of the oncogene (PGK1) [159] and down-regulation of the anticancer gene (SMAD4/DPC4). Such regulation promotes cell metastasis [148]. Meanwhile, deregulated TGF-β signaling leads to ECM deposition and immunosuppressive cell infiltration [160–162]. This kind of deposition and infiltration accelerates the metastasis of pancreatic cancer cells and rationalizes early PDAC dissemination [163, 164].

TGF-β plays a crucial role in the process and metastasis of PDAC, and therapies targeting TGF-β signaling hold great promise. Several strategies relevant to TGF-β signaling have been investigated in preclinical and clinical researches and have shown efficacy partially [165–167]. Therapeutic approaches are always associated with three levels of ligand, ligand-receptor binding, and intracellular transduction to disrupt TGF-β signaling. These approaches contain TβR II antagonists, sequence-targeted antifibrosis nanoparticles, anti-TGF-β recombinant protein, and DC vaccines [168–170]. Lipoxin A4 (LXA4), a metabolite derived from arachidonic acid, could significantly inhibit TGF-β signaling in PDAC [171]. Strategies targeting ligand-receptor binding levels, such as TGF-β inhibitors and monoclonal blocking antibodies, also show robust performance against PDAC [172]. TGF-β inhibitors are primarily TβR-targeted and SMADs-associated kinases at signal cell level. The most effective treatment is the combination of TGF-β inhibitors with chemotherapy and other biological agents. For example, vactosertib (activin receptor-like kinase 5 inhibitor) [173] in combination with nal-IRI plus 5-Fluorouracil/Leucovorin improved overall survival rates compared with vactosertib alone [174, 175]. Nanotargeted relaxin, an endogenous hormone, has also been shown to enhance the efficacy of gemcitabine in vivo [176]. Furthermore, the selection of correct dosage form and the establishment of a demonstration drug delivery system are critical for the treatment of desmoplastic tumors. Compared with traditional Chinese medicine dosage forms (decoction and powder), the targeted administration of nanopreparations (α-mangosteen and triptolide) can overcome the permeation obstacles in PDAC and improve therapeutic effects. [176].

TGF-β in colorectal cancer

Colorectal cancer (CRC) is the leading cause of death among cancers of the digestive system (101,420 estimated new cases and 51,020 estimated deaths in 2019) [123], the poor prognosis of which is mainly associated with colorectal cancer metastasis and immune evasion. Many studies have indicated that malignant CRC is characterized by high stromal infiltration with innate immune cells, fibroblasts, and TGF-β activation [177]. TGF-β is involved in regulating CRC metastasis, tumor stroma, microenvironment, and immune system resistance.

Colorectal cancer is driven by the accumulation of mutations in APC, KRAS, TβR II, Trp53 [178–182], carcinoembryonic antigen-associated cell adhesion molecules (CEACAM) [183] and R-spondins (RSPOs) [184]. The four primary [185]mutations in intestinal tumors promote CRC metastasis, indicating a negative prognostic effect for recurrence of CRC [186–188] and regulating the tumor microenvironment [112, 189]. Despite these mutations demonstrate worse clinical outcomes, they also predict neoantigen-specific immunotherapeutic anti-TGF-β strategies [187].

It has been confirmed that inhibiting TGF-β signaling pathways in the preclinical and clinical treatment of CRC are effective [190]. However, anti-TGF-β therapy alone is insufficient to mediate antitumor immunity in CRC. In contrast, the combination of other biological agents or irradiated tumor vaccine with anti-TGF-β treatment can reduce CRC metastasis. Chemotherapies ginsenoside Rb2 [191] and tanshinone II A [192] showed therapeutic effects on CRC by inhibiting TGF-β-induced EMT and angiogenesis, respectively [193]. Nevertheless, the effect was mild. Monotherapy with galunisertib (LY2157299), an oral small-molecule inhibitor of the TβR I kinase, was also not significant [194]. Coadministration of TGF-β blocking agents and anti-PD-L1 antibodies indicated a dramatic response by promoting CD8+ T cells penetration into the tumor [189].

TGF-β in breast cancer

Along with lung and colon cancer, breast cancer is one of the most common cancers worldwide and is more malignant in females than in males. Although the mortality rates of breast cancer are decreasing in some developed countries, there are approximately 500,000 deaths because of breast cancer every year [195, 196]. Further understanding of the development, progression, and treatment of breast cancer is emergency.
The TGF-β signaling pathway is well known to play a vital role in cancer regulation, and breast cancer is no exception [115, 157]. TGF-β regulates the survival of cancer cells to influence breast cancer progression. On the one hand, TGF-β can induce the anti-apoptotic effects of mouse mammary carcinoma cells through up-regulated chondrocytes 1. Chondrocytes 1 is a basic helix-loop-helix (bHLH) transcription factor, which is tightly related to breast carcinomas [197]. On the other hand, the TGF-β signaling pathway can also disturb the immune system to induce immune evasion. In breast cancer, the lack of TβR III and its shed extracellular domain (sTβR III) will enhance TGF-β signaling within DCs. It finally results in Tregs infiltration and immune suppression [198]. In addition, TGF-β can also transactivate EGFR through the Smad3 and ERK/Sp1 signaling pathways to promote the migration and proliferation of breast cancer cells [199].

Moreover, we should highlight the contribution of TGF-β to breast cancer metastasis because breast cancer can quickly metastasize to the lung, brain, bone, and liver, which is lethal [200]. In addition to breast cancer, TGF-β is also critical in the metastasis of other cancers including bone, and gastric cancer [201–203]. TGF-β participates in breast cancer metastasis by up-regulating CXCR4 in monocytes. These attracted and differentiated tumor-associated macrophages (TAMs) assist tumor cell extravasation [204]. Additionally, miR-190 and OTU domain-containing protein 1 are two inhibitors of TGF-β signaling that target SMAD2 and SMAD7, respectively. The expression of SMAD2 and SMAD7 is associated with outcomes in breast cancer patients, for downregulated SMAD2 and SMAD7 promote breast cancer metastasis [205, 206]. Thus, the mechanism of TGF-β promoting breast cancer may be manifold. Therefore, targeting TGF-β signaling is probably an effective way to treat breast cancer. Artemisinin derivatives, like artesunate (ARS) and dihydroartemisinin (DHA), are effective in suppressing TGF-β signaling and CAF activation. Breast cancer will be in remission because of the reduced interaction between the tumor and tumor microenvironment [207]. In addition, a bispecific receptor decoy containing TGF-β neutralizing the TβR II extracellular domain was designed. This decoy and ibalizumab were intended recently to inhibit TGF-β signaling in TH cells and decrease tumor burden in a breast cancer mouse model [208]. Due to the deficiency of SIRT7 in breast cancer metastasis mice, TGF-β signaling is activated to promote metastasis. It is already clear that resveratrol can activate SIRT7, regulate SMAD4 deacetylation, and most importantly inhibit metastasis [209].

TGF-β in glioma cancer
Glioma is a malignant primary brain tumor divided into four categories, including circumscribed gliomas (WHO grade I) and diffusely infiltrating gliomas (WHO grade II-IV). Diffusely infiltrating gliomas are more malignant than circumscribed gliomas, in which glioblastoma is the most lethal glioma, with a median overall survival of 14–17 months [210, 211].

Among the numerous signaling pathways that play a role in glioma, TGF-β signaling is being noted. The related mechanism and therapeutic strategies have been gradually clarified. It has already been found that the high proliferation and invasion of gliomas and the poor prognosis in glioma patients are usually accompanied by SMAD signaling in early studies, and Sox9 becomes an important regulatory target when TGF-β works in glioma progression [212, 213]. TGF-β plays an essential role in glioma progression by inducing the proliferation, invasion, EMT, and migration of glioma cells and depressing immune effector cells [214–216]. Furthermore, three kinds of TGF-β are all related to glioma. In a study of the relationship between TAMs and the progression of tumors, Z. Liu et al. found M2 phenotype TAMs to promote the stemness and migration of gliomas by secreting TGF-β [217]. In addition, TGF-βII affects autophagy, a vital process connected with tumor growth, promoting glioma cells’ invasion through the SMAD and non-SMAD pathways [218, 219]. Among those three isoforms, the expression of TGF-βIII was lower than that of the other two isoforms. However, it has an essential effect on SMAD phosphorylation and tumor invasiveness [220].

Previous studies have shown that overexpressed TGF-β in the glioma is involved in angiogenesis, tissue invasion, and cancer progression. Therapies targeting TGF-β are divided into three levels: TGF-β mRNA translation inhibitors, TGF-β neutralizing antibodies and receptor inhibitors, and regulators of TGF-β signaling pathway downstream factors. In a phase II clinical study (NCT00431561), intratumorally administered AP12009 alone exhibits one-third of the efficacy population [221]. AP12009 is a phosphorothioate antisense oligodeoxyribonucleotide specific for the mRNA of human TGF-βII [221]. RGFP966, along with an HDAC3 inhibitor, regulated SMAD7 acetylation rather than ubiquitination to promote gastric stump carcinoma (GSC) differentiation [222]. There appeared to be no difference in efficacy between monotherapy of TGF-β antibodies (GC1008, NCT01472731) or small-molecule TβR I inhibitors (LY2157299, NCT01220271), and their combination with chemotherapy (Table 1) [223]. The exploration of appropriate combination therapy is still the mainstream direction.
Drug	Mechanism	Indication	Development stage	ClinicalTrials.gov identifier
SAR439459	Pan-TGFβ neutralizing antibody	Advanced Malignant Solid Neoplasm/Metastatic Malignant Solid Neoplasm/Unresectable Malignant Solid Neoplasm	Phase 1	NCT04729725
		Plasma Cell Myeloma Refractory	Phase 1/Phase 2	NCT04643002
		Advanced Liver Cancers	Phase 1/Phase 2	NCT04524871
NIS793	Fully human anti-TGF-β IgG2 monoclonal antibody	Metastatic Pancreatic Ductal Adenocarcinoma	Phase2/Phase 3	NCT04390763/NCT04935359
		Myelofibrosis	Phase1/Phase 2	NCT04097821
		Myelodysplastic Syndromes	Phase 1	NCT04810611
ABBV151	Humanized monoclonal antibody inhibitor of GARP-TGF-β1	Advanced Solid Tumors Cancer	Phase 1	NCT03821935
AVID200	Engineered TGF-β ligand trap	Malignant Solid Tumor	Phase 1	NCT03834662
		Primary Myelofibrosis/Post-essential Thrombocythemia	Phase 1	NCT03895112
		Myelofibrosis/Post-polycythemia/Thrombocythemia		
		Vera Myelofibrosis		
		Scleroderma, Diffuse	Phase 1	NCT03831438
M7824 (bintrafusp alfa)	Bifunctional anti-PD-L1/TGF-βRII Trap fusion protein	Thymic Epithelial Tumor/Recurrent Thymoma/Thymic Cancer	Phase 2	NCT04417660
		Metastatic Colorectal Cancer/Advanced Solid Tumors With Microsatellite Instability	Phase1/Phase 2	NCT03436563
		HPV Positive Cancer	Phase 1/Phase 2	NCT04432597
		Urothelial Cancer	Phase 2	NCT04501094
		Kaposis Sarcoma	Phase1/Phase 2	NCT04033117
		Urothelial Cancer/Bladder Cancer/Genitourinary/Cancer/Genital Neoplasms/Genital Cancer	Phase 1	NCT04235777
		Advanced Pancreas Cancer	Phase 1/Phase 2	NCT04327986
		Mesothelioma, Lung	Phase 2	NCT05005429
		Stage II-III HER2 Positive Breast Cancer	Phase 1	NCT03620201
		Relapsed Small Cell Lung Cancers	Phase 1/Phase 2	NCT03554473
		Unresectable Stage III Non-Small-Cell Lung Cancer	Phase 2	NCT03840902
		Advanced Stage Breast Cancer	Phase 1	NCT04296942
		Prostate Neoplasms	Phase 1/Phase 2	NCT04633252
		Metastatic Triple-Negative Breast Cancer	Phase 1	NCT03579472
		Advanced Solid Tumors	Phase 1/Phase 2	NCT04574583
		Metastatic Prostate Cancer/Advanced Solid Tumors	Phase1/Phase 2	NCT03493945
		Advanced HPV Associated Malignancies	Phase1/Phase 2	NCT04287868
		Metastatic Checkpoint Refractory HPV Associated Malignancies/Microsatellite Stable Colon Cancer (MSS)	Phase 1/Phase 2	NCT04708470
Drug	Mechanism	Indication	Development stage	ClinicalTrials.gov identifier
----------------------	---	---	------------------	-------------------------------------
Triple-Negative Breast Neoplasms Phase 2	NCT04489940	Small Bowel Cancers/Colorectal Cancers Phase 2	NCT04491955	
Esophageal Squamous Cell Carcinoma Phase 2	NCT04595149	Untreated Resectable Non-Small-Cell Lung Cancer Phase 2	NCT04560686	
Cancers With Brain Metastases Phase 1/Phase 2	NCT04789668	Recurrent Head and Neck Squamous Cell Carcinoma/Secondary Primary Squamous Cell Carcinoma of the Head and Neck Phase 1/Phase 2	NCT04220775	
Metastatic or Locally Advanced Urothelial Cancer Phase 1	NCT04349280	Squamous Cell Carcinoma of Head and Neck Phase 2	NCT04428047	
Biliary Tract Cancer/Cholangiocarcinoma Phase 2	NCT04727541	Advanced Non-squamous-Cell Lung Cancer Phase 2	NCT04396535	
Locally Advanced or Metastatic Tyrosine Kinase Inhibitor-Resistant EGFR-Mutant Non-small-Cell Lung Cancer Phase 1	NCT04971187	Metastatic or Locally Advanced Solid Tumors Phase 1/Phase 2	NCT04914286	
SHR-1701	Bifunctional anti-PD-L1/TGF-βRII agent	Advanced Solid Tumor Phase 1/Phase 2	NCT04624217	
Advanced Solid Tumor Phase 1	NCT03710265/NCT03774979	Metastatic or Locally Advanced Solid Tumors Phase 1	NCT03774979	
Advanced Solid Tumors Phase 1	NCT04856774	Nasopharyngeal Carcinoma Phase 1	NCT04282070	
Advanced Solid Tumors Phase 1	NCT04324814	Advanced Non-squamous-Cell Lung Cancer Phase 1	NCT04324814	
Metastatic Colorectal Cancer Phase 2/Phase 3	NCT04856787	Advanced Solid Tumors and B-cell Lymphomas Phase 1/Phase 2	NCT04407741	
LS201	Recombinant PD-1 monoclonal antibody/TGF-βRII bifunctional fusion protein	Advanced Malignant Tumors Phase 1	NCT04956926	
Small-cell Lung Cancer Phase 2	NCT04951947	Locally Advanced or Metastatic Cancers/Metastatic Human Papillomavirus-Related Malignant Neoplasm Phase 1	NCT04958434	
TST005	Bispecific antibody consisting of a PD-L1 monoclonal antibody (mAb) and a TGF-β trap	Advanced or Metastatic Solid Tumor Phase 1	NCT04862767	
Advanced or Metastatic Solid Tumor Phase 1	NCT03666832	Metastatic Pancreatic Cancer Phase 1/Phase 2	NCT02160106	
TGF-β receptor ALK4/ALK5 inhibitor	NCT02160106	Advanced Stage Solid Tumors Phase 1	NCT04103645	
LY2157299 (galunisertib) Small molecule antagonist of the tyrosine kinase TGFBR1 Phase 2	NCT046505562	Nasopharyngeal Carcinoma Phase 2	NCT046505562	
LY3200882	Inhibitor of TGFβRI	Solid Tumor Phase 1	NCT02937272	
TRK250	siRNA-based oligonucleotide selectively suppressing TGFβ I	Idiopathic Pulmonary Fibrosis Phase 1	NCT03727802	
Clinical applications of TGF-β-targeting therapies

Extensive evidence suggests that targeting TGF-β cascades has the potential to treat patients with fibrosis and cancers. Numerous anti-cancer and anti-fibrosis pharmacological interventions targeting TGF-β have undergone pre-clinical and clinical stages. TGF-β-targeted drugs are mainly divided into neutralizing antibodies, small-molecule TGF-β inhibitors, ligand traps, antisense oligonucleotides, and vaccines (Table 1) [224]. Among all the TGF-β targeting drugs, Fresolimumab (GC1008), Galunisertib (LY2157299), Trabedersen (AP12009), and Vactosertib are the most striking drugs [224–226]. Moreover, Trabedersen, a TGF-βII specific phosphonothioate antisense oligodeoxynucleotide, also demonstrated a therapeutic effect on COVID-19 (NCT04801017).

Despite the encouraging potential displayed by TGF-β-targeted drugs in a part of pre-clinical animal studies, the results from subsequent clinical trials of those drugs seem to be disappointing. The application of TGF-β inhibition strategies in patients with fibrosis is challenging due to the systemic effects of TGF-β and the complexity of cancer and fibrosis formation [227]. Firstly, although TGF-β cascades are commonly activated to contribute to pathological processes, the physiological function of TGF-β cannot be ignored. Therefore, the wide deflection of TGF-β may lead to the disturbance of normal physiological processes, which should be treated with caution [228]. Secondly, TGF-β modulates a wide range of signaling cascades to promote fibrosis and cancers, which increases the difficulty and complexity of the treatment. Exploring precise downstream TGF-β-activated factors for each disease is necessary. Thirdly, despite the key role of TGF-β in fibrosis and tumorigenesis, the onset and development of the disease is multifactorial. The combinational therapeutic strategies of TGF-β-targeted therapy with other traditional ones should be studied to achieve an ideal effect.
Conclusion

TGF-β plays a vital role from early embryonic development to adult homeostasis. However, dysregulation of TGF-β signaling is significantly associated with tumorigenesis and fibrosis. The exact mechanism is complex and mainly involves TGF-β as a tumor suppressor in premalignant cells and a tumor promoter in carcinoma cells by regulating EMT, ECM accumulation, immune invasion, and CAFs activation. TGF-β overexpression under pathological conditions directly promotes tissue lesions. In addition, TGF-β signaling cascade group mutation accumulation is also closely related to fibrosis and tumorigenesis.

The twenty-first century has witnessed a significant upgrade of precision medicine, among all, targeted therapy as the most promising one. Lots of preclinical researches have demonstrated the efficacy of TGF-β related pharmacological agents. In recent years, there have been various clinical experiments evaluating TGF-β-targeted antibody, small molecular receptor inhibitors, ligand traps, antisense oligonucleotides, and vaccines. Unfortunately, anti-TGF-β approaches achieved subtle efficacy due to the systemic biological effects of TGF-β and the complexity of fibrosis and tumorigenesis. It is known that most cancer patients die of metastasis after chemotherapy or radiotherapy, where the immunosuppressive TGF-β in the TME might be one of the factors. Therefore, the combination therapy of chemotherapy/radiotherapy/targeted therapy with TGF-β-targeted therapies might be developed to achieve an enhanced antitumor efficacy by regulating tumor microenvironment. In addition, in future researches, researchers should further focus on the optimization of dosing and drug delivery systems in TGF-β-related therapies. Above all, the exploration of comprehensive mechanisms of TGF-β in diseases and the development of TGF-β-based combination therapies might be very crucial for combating fibrosis and cancer in future.

Abbreviations
TGF-β: Transforming growth factor β; BMPs: Bone morphogenetic proteins; GDFs: Growth and differentiation factors; ECM: Extracellular matrix; TβR: TGF-β receptor; EMT: Epithelial mesenchymal transition; PD-L1: Programmed cell death 1 ligand 1; LAP: Latency associated peptide; LLC: Large latent complex; MFBs: Myofibroblasts; CTGF: Connective tissue growth factor; MUC1: Mucin 1; DNMSOS: Dynamin 3 opposite strand; PDAC: Pancreatic ductal adenocarcinoma; GC: Gastric cancer; DCs: Dendritic cells; VEGF: Vascular endothelial growth factor; α-SMA: α-Smooth muscle actin; LOXL1: Lysyl oxidase-terminal kinase; CAFs: Cancer-associated fibroblasts; TIMP: Tissue inhibitor of metalloproteinases; α-SM: α-Smooth muscle actin; LOMO7: Loxys oxidase-like 1; HSCs: Hepatic stellate cells; MFBs: Myofibroblasts; HCC: Hepatocellular carcinoma; MFBs: Myofibroblasts; CTGF: Connective tissue growth factor; KCs: Kuffer cells; CKD: Chronic kidney disease; PAI-1: Plasminogen activator inhibitor-1; UUO: Unilateral ureteral obstruction; HGF: Hepatocyte growth factor; RBP-Jκ: Recombination signal binding protein-Jκ; miRNAs: MicroRNAs; PTHrP: Parathyroid hormone-related protein; EGFR: Epidermal growth factor; VEGF: Vascular endothelial growth factor; IFP: Idiopathic pulmonary fibrosis; AECs: Alveolar epithelial cells; TNF-α: Tumor necrosis factor-α; ERK: Extracellular signal-regulated kinase; TIMP: Tissue inhibitor of metalloproteinases; a-SMA: α-Smooth muscle actin; LOMO7: Loxys oxidase-like 1; HSCs: Hepatic stellate cells; MFBs: Myofibroblasts; HCC: Hepatocellular carcinoma; MFBs: Myofibroblasts; CTGF: Connective tissue growth factor

References
1. Saito A, Horie M, Nagase T: TGF-beta Signaling in Lung Health and Disease. Int J Mol Sci 2018, 19.
2. David CJ, Massague J: Contextual determinants of TGF-beta action in development, immunity and cancer. Nat Rev Mol Cell Biol. 2018;19:419–35.
3. Xu X, Zheng L, Yuan Q, Zhen G, Crane JL, Zhou X, Cao X: Transforming growth factor-beta in stem cells and tissue homeostasis. Bone Res. 2018;6:2.
4. Minton K: Extracellular matrix: Preconditioning the ECM for fibrosis. Nat Rev Mol Cell Biol. 2014;15:766–7.
5. Su J, Morgani SM, David CJ, Wang Q, Er EE, Huang YH, Basnet H, Zou Y, Shu W, Soni RK, et al: TGF-beta orchestrates fibrogenic and developmental EMTs via the RAS effector RREB1. Nature. 2020;577:566–71.
6. Chakravartly A, Khan L, Bensler NP, Bose P, De Carvalho DD: TGF-β-associated extracellular matrix genes link cancer-associated fibroblasts to immune evasion and immunotherapy failure. Nature Communications. 2018, 9.
7. Liu S, Ren J, Ten Dijke P: Targeting TGFbeta signal transduction for cancer therapy. Signal Transduct Target Ther. 2021;6:8.
8. Meng XM, Nikolic-Paterson DJ, Lan HY. TGF-beta: the master regulator of fibrosis. Nat Rev Nephrol. 2016;12:325–38.
9. Gleizes PE, Munger JS, Nunes I, Harpel JG, Mazzieri R, Nogueira I, Rifkin DB. TGF-beta latency: biological significance and mechanisms of activation. Stem Cells. 1997;15:193–7.
10. Travis MA, Sheppard D. TGF-beta activation and function in immunity. Annu Rev Immunol. 2014;32:51–82.
11. Munger JS, Harpel JG, Gleizes P-E, Mazzieri R, Nunes I, Rifkin DB. Latent transforming growth factor-beta. Structural features and mechanisms of activation. Kidney Int. 1997;51:1376–82.
12. Chieffetz S, Weatherbee JA, Tsang ML, Anderson JK, Mole JE, Lucas R, Massagué J. The transforming growth factor-beta system, a complex pattern of cross-reactive ligands and receptors. Cell. 1987;48:409–15.
13. Robertson IB, Horiguchi M, Zilberberg L, Dabovich B, Hadjilouka K, Rifkin DB. Latent TGF-beta-binding proteins. Matrix Biol. 2015;47:44–53.
14. Rifkin D, Sachan N, Singh K, Sauber E, Tellides G, Ramirez F. The role of LTBP in TGF beta signaling. Dev Dyn. 2021.
15. Zigrino P, Sengle G. Fibrillin microfibrils and proteases, key integrators of fibrillar pathways. Adv Drug Deliv Rev. 2019;146:1–16.
16. Shi M, Zhu J, Wang R, Chen X, Mi L, Walz T, Springer TA. Latent TGF-beta activation and structure. Nature. 2011;474:343–8.
17. Farhat YM, Al-Maliki AA, Easa A, O'Keefe RJ, Schwarz EM, Awad HA. TGF-beta Suppresses Plasmin and MMP Activity in Flexor Tendon Cells via PAI-1. Implications for Scarless Flexor Tendon Repair. J Cell Physiol. 2015;230:318–26.
18. Miyazono K, Heldin CH. Role for carbohydrate structures in TGF-beta1 activation. Kidney Int. 1997;51:1376–82.
19. Cuende J, Liénart S, Dedobbeleer O, van der Woning B, De Boeck G, Stockis J, Huygenks C, Colau D, Somja J, Delvenne P, et al. Monoclonal antibodies against GARP/TGF-β1 complexes inhibit the immunosuppressive activity of human regulatory T cells in vivo. Sci Transl Med. 2015;7:284ra256.
20. Del Cid JS, Reed Ni, Molnar K, Liu S, Dang B, Jensen SA, DeGrado W, Handford PA, Sheppard D, Sundaram AB. A disease-associated mutation in fibrillin-1 differentially regulates integrin-mediated cell adhesion. J Biol Chem. 2019;294:18232–43.
21. Nieblerer M, Reunig U, Reichart F, Notni J, Wester HJ, Schweiger M, Weinmüller M, Räder A, Steiger K, Kessler H. Exploring the Role of RGD-Recognizing Integrins in Cancer. Cancers (Basel). 2017, 9.
22. Rapisarda V, Borghesan M, Miguëla V, Encheva V, Snijders AP, Lujambio A, Olofsson P. Integrin α3β1 Regulates Cellular Senescence by Activating the TGF-β Pathway. Cell Rep. 2017;18:2480–93.
23. Olof Olsson P, Gustafsson R, Salnikov AV, Gothe M, Zeller KS, Friman T, Bärdorp B, Koopman LA, Weinreb PH, Violette SM, et al. Inhibition of integrin α(v)β(6) changes fibril thickness of stromal collagen in experimental carcinomas. Cell Commun Signal. 2018;16:36.
24. Hirotas C, Clements TP, Tang UK, Morales JE, Lee HS, Oh SP, Rivera GM, Wagner DS, McCarty JH. Neurontin 1 balances β3 integrin-activated TGFβ signaling to control sprouting angiogenesis in the brain. Development. 2015;142:4363–73.
25. Franco-Barraca J, Francescione R, Luong T, Shah N, Madhri R, Cukerman G, Dulaemi E, Devarajaj K, Egleston BL, Nicolas E, et al. Matrix-regulated integrin α(i)β(3) maintains α(5)β(1)-dependent desmoplastic traits prognostic of neoplastic recurrence. Elife 2017, 6.
26. Reinhardt DP. Fibulin-4 exerts a dual role in LTBP-4L-mediated matrix interactions in health and disease. Biochem Soc Trans. 2008;36:257–62.
27. Kriz M, Dallon A, Stock J, Huijbers EJM, Al-Naimy G, Stock J. Monoclonal antibodies against GARP/TGF-β1 complexes inhibit the immunosuppressive activity of human regulatory T cells in vivo. Sci Transl Med. 2015;7:284ra256.
28. Fan W, Liu T, Chen W, Hammad S, Longenich T, Haussler F, Liu Y, He Y, Liu C, et al. ECM1 Prevents Activation of Transforming Growth Factor beta, Hepatocyte Stellate Cells, and Fibrogenesis in Mice. Gastroenterology 2019;157:1352–1367.e1313.
29. Campbell MG, Cormier A, Ito S, Seed RI, Bondesson AJ, Lou J, Marks JD, Baron JL, Cheng Y, Nishimura SL. Cryo-EM Reveals Integrin-Mediated TGF-β Activation without Release from Latent TGF-β Cell. 2020;180:490-501.e416.
30. Derynck R, Zhang Y. Smad-dependent and Smad-independent pathways in TGF-β receptor-familig signalling. Nature. 2003;425:577–84.
31. Xu P, Liu J, Derynck R. Post-translational regulation of TGF-β receptor and Smad signaling. FEBS Lett. 2012;586:1871–84.
32. Massague J. Latent TGF-beta activation in context. Nat Rev Mol Cell Biol. 2012;13:616–30.
33. Muppala S, Xiao R, Krukovets O, Verbovetsky D, Yendamuri R, Habib N, Raman R, Plow E, Stenina-Adognravi O. Thrombospondin-1 mediates TGF-beta-induced angiogenesis. Oncogene. 2017;36:1899–98.
55. Zhang YE. Non-Smad pathways in TGF-beta signaling. Cell Res. 2009;19:128–39.
56. Galvão F Jr, Grokoski KC, da Silva BB, Lamers ML, Siqueira IR. The amyloid precursor protein (APP) processing as a biological link between Alzheimer's disease and cancer. Ageing Res Rev. 2019;49:83–91.
57. Meliois N, Feldman DA, Sheridan SD, Ip JPK, Kwok S, Amoah SK, Lennion R, Koike K, Zucman-Rossi J, Finn RS. Hepatocellular carcinoma: An updated review. Nat Rev Dis Primers. 2021;7:6.
58. Muthusamy BP, Budi EH, Katsuno Y, Lee MK, Smith SM, Mirza AM, Akhrut RJ, Derynick R. Shc Progression against Epithelial-Mesenchymal Transition through Compartmentalized Inhibition of TGF-beta-Induced Smad Activity. PLoS Biol. 2015;13:e1002325.
59. Johnson HE, Toechter J. Signaling Dynamics Control Cell Fate in the Early Drosophila Embryo. Dev Cell. 2019;48:361–370 e363.
60. Mitra AK, Zillhardt M, Hua Y, Tiwari P, Murmann AE, Peter ME, Lengyel P, van der Heide LP. Transforming growth factor beta (TGFbeta) induces CAF Heterogeneity in Pancreatic Ductal Adenocarcinoma. Cancer Discov. 2020;39:112.
61. Buechler MB, Pradhan RN, Krishnamurty AT, Cox C, Calviello AK, Wang TS, Huber H, Schaffler A, Aslanidis C, Scholmerich J, Buechler C. Lipid accumulation impairs adiponectin-mediated induction of activin A by hepatic stellate cells. Hepatic Stellate Cell Activation and Liver Fibrogenesis-Updated 2019. Int J Mol Sci 2018;9:2009;10:309–26.
62. Cano A, Pérez-Moreno MA, Rodríguez J, Locascio A, Blanco M, del Barrio MG, Portillo F, Nieto MA. The transcription factor snail controls epithelial-mesenchymal transitions by repressing E-cadherin expression. Nat Cell Biol. 2001;2:76–83.
63. Yangagita M. Inhibitors/antagonists of TGF-beta system in kidney fibrosis. Nephrol Dial Transplant. 2012;27:3686–89.
64. Isaka Y. Targeting TGF-beta Signaling in Kidney Fibrosis. Int J Mol Sci 2018, 19.
65. Border WA, Okuda S, Languino LR, Rusoilli E. Transforming growth factor-beta/fibrosis regulates production of proteoglycans by mesangial cells. Kidney Int. 1990;37:689–95.
66. Declives AE, Sharma K. Novel targets of antiangiogenic and anti-inflammatory treatment in CKD. Nat Rev Nephrol. 2014;10:257–67.
67. Kölling M, Kaucar T, Schuarter C, Hübner A, Dettling A, Park JK, Busch M, Wulff X, Meier M, Scherf K, et al. Therapeutic mri-2 Silencing Ameliorates Diabetic Kidney Disease in Mice. Mol Ther. 2017;25:165–80.
68. Lee SY, Kim SI, Choi ME. Therapeutic targets for treating fibrotic kidney diseases. Transl Res. 2015;165:512–30.
69. Jiandong, Wang Y, Ma P, An D, Zhao J, Liang S, Ye Y, Li Y, Zhang P, Liu X, et al. Myeloid-specific targeting of Notch ameliorates murine renal fibrosis via reduced infiltration and activation of bone marrow-derived macrophage. Protein Cell. 2019;10:196–210.
70. Zhao Y, Yin L, Li H, Fan J, Yang S, Chen C, Wang DW. MiR-30c protects diabetic nephropathy by suppressing epithelial-to-mesenchymal transition in db/db mice. Aging Cell. 2017;16:387–400.
71. Sun SF, Tang PMK, Feng M, Xiao J, Huang XR, Li P, Ma RCW, Lan HY. Novel IncRNA ErbB4-IR Promotes Diabetic Kidney Injury in db/db Mice by Targeting miR-29b. Diabetes. 2018;67:731–44.
72. Lederer DJ, Longo DL, Martinez FJ. Idiopathic Pulmonary Fibrosis. N Engl J Med. 2018;378:1811–23.
73. Ren Y, Jia C, Zhang Z, Ning Q, Kan B, Kong L. Effects of tacrolimus on the TGF-β1/SMAD signaling pathway in paraquat-exposed rat alveolar type II epithelial cells. MOLECULAR MEDICINE REPORTS 2019.
74. Richeldi L, Collard HR, Jones MG. Idiopathic pulmonary fibrosis. Lancet. 2017;389:1941–52.
75. Choudhury M, Yin X, Schaeftbauer KJ, Kang JH, Roy B, Kottom TJ, Limper AH, Leof EB. SIRT7-mediated modulation of glutaminase 1 regulates TGF-β-induced pulmonary fibrosis. Faseb J. 2020;34:8920–40.
76. Kimura M, Hashimoto N, Kusunose M, Aoyama D, Sakamoto K, Miyazaki S, Ando A, Omete N, Imaizumi K, Kawabe T, Hasegawa Y. Exogenous induction of unphosphorylated PTEN reduces TGF beta-induced extracellular matrix expressions in lung fibroblasts. Wound Repair Regen. 2017;25:86–97.
77. Saito A, Suzuki H, Ohshima M, Morishita Y, Akibyo Y, Nagase T. TGF-β1/SMAD signaling in the injured liver. Z Gastroenterol. 2006;44:57–66.
78. Saito A, Suzuki HI, Horie M, Kusunose M, Aoyama D, Sakamoto K, Miyazaki S, Ando A, Omete N, Imaizumi K, Kawabe T, Hasegawa Y. Exogenous induction of unphosphorylated PTEN reduces TGF-beta-induced extracellular matrix expressions in lung fibroblasts. Wound Repair Regen. 2017;25:86–97.
79. Saito A, Suzuki H, Ohshima M, Morishita M, Akibyo Y, Nagase T. An integrated expression profiling reveals target genes of TGF-β and Tnf-α possibly mediated by microRNAs in lung cancer cells. PLoS One. 2013;8:e56587.
80. Wettlaufer SH, Scott JP, McEachin RC, Peters-Golden M, Huang SK. Reversal of the Transcriptome by Prostaglandin E2 during Myofibroblast Defdifferentiation. Am J Respir Cell Mol Biol. 2016;54:114–27.
81. Milara J, Ballester B, Montero P, Escriva J, Artigues E, Alós M, Pastor-Clerigues A, Morcillo E, Cortijo J. MUC1 intracellular bioactivation mediates lung fibrosis. Thorax. 2020;75:132–42.
82. Colak S, Ten Dyke P. Targeting TGF-beta Signaling in Cancer. Trends Cancer. 2017;3:56–71.
100. Coker RK, Laurent GJ, Jeffery PK, du Bois RM, Black CM, McNulty RJ. Localisation of transforming growth factor beta1 and beta3 mRNAs in normal and fibrotic human lung. Thorax. 2001;56:549–56.

101. Savary G, Dewaele E, Dazzi S, Buscot M, Nottet N, Fassy J, Courcot E, Henauvi IS, Lemaire J, Martin N, et al. The Long Noncoding RNA DMI3OS is a Reservoir of Fibroblasts with Major Functions in Lung Fibroblast Response to TGF-β and Pulmonary Fibrosis. Am J Respir Crit Care Med. 2019;200:184–98.

102. Pacher E, Assassi S, Salazar GA, Stellaio M, Renoux F, Wunderlin A, Blyszczuk P, Lafayet R, Kurreeman F, de Vries-Bouwstra J, et al. Long noncoding RNA H19 is a key mediator of TGF-β-driven fibrosis. J Clin Invest. 2020;130:888–905.

103. Jiang D, Liang J. A Long Noncoding RNA links TGF-β Signaling in Lung Fibrosis. Am J Respir Crit Care Med. 2019;200:123–5.

104. Zhang C, Hao Y, Wang Y, Xu J, Teng Y, Yang X. TGF-beta/SMAD4-Regulated Long Noncoding RNA H19 is a key mediator of TGF-β-driven fibrosis. J Clin Invest. 2020;130:888–905.

105. Moon H, Han KH, Ro SW. Pro-tumorigenic roles of TGF-β signaling during the early stages of liver tumorigenesis through upregulation of Snail. BMJ Rep. 2017;50:599–600.

106. Polyak K, Lee MH, Erdjument-Bromage H, Koff A, Roberts JM, Tempst P, et al. The Long Noncoding RNA H19 is a key mediator of TGF-β-driven fibrosis. J Clin Invest. 2020;130:888–905.

107. Chen CR, Kang Y, Siegel PM, Massagué J. E2F4/5 and p107 as Smad cofactors linking the TGFbeta receptor to c-myc repression. Cell. 2002;110:19–32.

108. Malladi S, Macalinao DG, Jin X, He L, Basnet H, Zou Y, de Stanchina E, et al. Korkut A, Zaidi S, Kanchi RS, Rao S, Gough NR, Schultz A, Li X, Lorenzi S, et al. Shi Y, Hata A, Lo RS, Massagué J, Pavletich NP. A structural basis for c-Src-mediated TGF-beta signaling. Science. 2019;365:442–7.

109. Dupont S, Zacchigna L, Cordenonsi M, Soligo S, Adorno M, Rugge M, et al. Zhang Q, Xiao M, Gu S, Xu Y, Liu T, Li H, Yu Y, Qin L, Zhu Y, Chen F, et al. Seoane J, Gomis RR. TGF-beta Family Signaling in Tumor Suppression and Homeostasis. Annu Rev Immunol. 2017;35:825–65.

110. Cortez VS, Ulland TK, Cervantes-Barragan L, Bando JK, Robinette ML, Wang Y, Whitfield J, Gillfors S, Cellà M, Colonna M. SMAD4 impedes the conversion of NK cells into ILC1-like cells by curtailing non-canonical TGF-beta signaling. Nat Immunol. 2017;18:995–1003.

111. Sanjab E, Oh SA, Li MO. Regulation of the Immune Response by TGF-β: From Conception to Autoimmunity and Infection. Cold Spring Harb Perspect Biol. 2017;9.

112. Wang Y, Li Y, PNP Dong W, Saultz J, Wang Y, Wang H, Scoville S, Zhang J, Wu LC, et al. SMAD4 promotes TGF-beta-independent NK cell homeostasis and maturation and antitumor immunity. J Clin Invest. 2018;128:5123–36.

113. Frey B, Rücket M, Deloch L, Rühle PF, Derer A, Fietkau R, Gaipil US. Immunomodulation by ionizing radiation-impact for design of radio-immunotherapies and for treatment of inflammatory diseases. Immunod Rev. 2017;280:231–48.

114. Siegel RL, Miller KD, Jemal A. Cancer statistics. CA Cancer J Clin. 2019;69:7–34.

115. Javelaud D, Alexaki VI, Mauriel A. Transforming growth factor-beta in cutaneous melanoma. Pigment Cell Melanoma Res. 2008;21:123–32.

116. Liu EM, Martinez-Fudischely A, Diaz BJ, Aronson B, Cuykendall T, Mackay M, Dhringa P, Wong EWP, Chi P, Apostolou E, et al. Identification of Cancer Drivers at CTCF Insulators in 1,962 Whole Genomes. Cell Syst. 2019;8:446–458.e448.

117. Lauden I, Siewiera J, Boukouaci W, Ramgolam K, Mourab S, Lebbe C, Chardon D, Aoudjit F, Jabrane-Ferrat N, Al-Daccak R. TGF-beta-induced (TGFβI) protein in melanoma: a signature of high metastatic potential. J Invest Dermatol. 2014;134:1675–85.

118. Ren YQ, Li QH, Liu LB. USP12 promotes melanoma through upregulating TGF-β signaling pathway. Eur Rev Med Pharmacol Sci. 2016;20:3592–8.

119. Javelaud D, van Kempen L, Alexaki VI, Le Scolan E, Luo K, Mauriel A. Efficient TGF-beta/SMAD signaling in human melanoma cells associated with high c-SKI/SnoN expression. Mol Cancer. 2011;10:2.

120. Golan T, Panik H, Jacob E, Vaknine H, Zemser-Vernier V, Herzkovitz D, Malcov H, Leibou S, Reichman H, Sheinboim D, et al. Adipocytes suppress melanoma cells to environmental TGF-β cues by repressing the expression of miR-211. Sci Signal. 2019, 12.

121. Feng H, Xia XM, Huang W, Ning N. Overexpressed VEPH1 inhibits epithelial-mesenchymal transition, invasion, and migration of human cutaneous melanoma cells through inactivating the TGF-β signaling pathway. Cell Cycle. 2019;18:2860–75.

122. Yang Z, Q Y, Lai N, Zhang J, Chen Z, Liu M, Zhang W, Luo R, Kang S. Notch1 signaling in melanoma cells promotes tumor-induced immunosuppression via upregulation of TGF-β1. J Exp Clin Cancer Res. 2018;37:1.

123. Eriksson E, Milenova I, Wenthe J, Moreno R, Alamyren R, Loskog A. IL-6 Signaling Blockade during CD40-Mediated Immune Activation Favors Antitumor Factors by Reducing TGF-β, Collagen Type I, and PD-L1/PD-1. J Immunol. 2019;202:768–79.

124. Jenkins MH, Croteau W, Mullins DW, Brinckerhoff CE. The BRAF(V600E) inhibitor, PLX4032, increases type I collagen synthesis in melanoma cells. Matrix Biol. 2015;48:66–77.

125. Cantelli G, Orgaz JL, Rodriguez-Hernandez I, Karagiannis P, Marques Q, Matias-Guiu X, Nestle FO, Marti RM, Karagiannis SN, Sanz- Moreno V. TGF-β-Induced Transcription Sustains Amoeboid Melanoma Migration and Dissemination. Cell Biol. 2015;125:2899–914.

126. Shathasivam P, Kollara A, Ringuette MJ, Virtanen C, Wrana JL, Brown TJ. Human ortholog of Drosophila Melted impedes SMAD2 release from TGF-beta receptor I to inhibit TGF-beta signaling. Proc Natl Acad Sci U S A. 2015;112:E3000-3009.

127. Chen S, Fan J, Zhang M, Qin L, Dominguez D, Long A, Wang G, Ma R, Li H, Zhang Y, et al. CD73 expression on effector T cells sustained by TGF-β facilitates tumor resistance to anti-4-1BB/CD137 therapy. Nat Commun. 2019;10:150.

128. Sun C, Wang L, Huang S, Heynen JG, Prahallad A, Robert B, Haenen J, Blank C, W Jesseling J, Willems SM, et al. Reversible and adaptive resistance to BRAF(V600E) inhibition in melanoma. Nature. 2014;508:118–22.

129. Li S, Song Y, Quach C, Guo H, Jiang G8, Mazzi H, Zhao S, Sands NA, Liu Q, In G, et al. Transcriptional regulation of autophagy-lysosomal function in BRAF-driven melanoma progression and chemoresistance. Nat Commun. 2019;10:1693.

130. Conway JR, Dietlein F, Taylor-Weiner A, AlDubayyan S, Vokes N, Keenan T, Reardon B, et al. In-depth genomic data analyses revealed complex genetic signatures underlying resistance to BRAF(V600E) inhibition. Cell Syst. 2019, 8:446–455.e448.

131. Guo X, Xu Y, Zhao Z. In-depth genomic data analyses revealed complex transcriptional and epigenetic dysregulations of BRAF(V600E) in melanoma. Mol Cancer. 2015;14:66–77.
expressing interleukin-12 potentiates cancer immunotherapy. Acta Biomater. 2017;61:114–23.

143. Wang Y, Zhang L, Xu Z, Mao L, Huang L. mRNA Vaccine with Antigen-Specific Checkpoint Blockade Induces an Enhanced Immune Response against Established Melanoma. Mol Ther. 2018;26:420–34.

144. Parkh PY, Lillemoe KD. Surgical management of pancreatic cancer—dis- tal pancreatectomy. Semin Oncol. 2015;42:110–22.

145. Melzer C, Hass R, von der Ohe J, Lehnnert H, Ungeforo H. The role of TGF-β and its crosstalk with RAC1/RAC1b signaling in breast and pancreas cancer. Cell Commun Signal. 2017;15:19.

146. Huang YH, Huang J, Chen M, Su J, Zou Y, Bardeesy N, Basnet H, David CJ, Winkin MD, Allen PJ, Leach SD, Hollmann TJ, et al. ID1 Mediates Escape from TGFβ Tumor Suppression in Pancreatic Cancer. Cancer Discov. 2020;10:142–7.

147. Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation.

148. David CJ, Huang YH, Chen M, Su J, Zou Y, Bardeesy N, Iacobuzio-Dona- tal, Zhang Q, Xiao M, Gu S, Xu Y, Liu T, Li H, Yu Y, Qin L, Zhu Y, Chen F, et al. Riggins GJ, Kinzler KW, Vogelstein B, Thiagalingam S. Frequency of Smad gene mutations in human cancers. Cancer Res. 1997;57:2578–80.

149. Hahn SA, Hoque AT, Moskaluk CA, da Costa LT, Schutte M, Rozenblum E, Seymour AB, Weinstein CL, Yeo CJ, Hruban RH, Kern SE: Homozygous deletion map at 18q21.1 in pancreatic cancer. Cancer Res 1996, 56:490–494.

150. Bardeesy N, Aguirre AJ, Chu GC, Cheng KH, Lopez LV, Hezel AF, Feng B, Mueller S, Engleitner T, Maresch R, Zukowska M, Lange S, Kaltenbacher M, Ikushima H, Miyazono K. TGFbeta signalling: a complex web in cancer evolution. Toward precision medicine. Semin Cancer Biol. 2017;44:3–9.

151. Porta CAM, Zapperi S. Complexity in cancer stem cells and tumor evolution: Toward precision medicine. Semin Cancer Biol. 2017;44:3–9.

152. Tortado de Mendoza T, Mose ES, Botta GP, Braun GB, Kotanenjy VR, French RP, Suzuki K, Miyamura N, Teseulls T, Rusolaiti E, et al. Tumor penetrating therapy for β3 integrin-rich pancreas cancer. Nat Commun 2021, 12:15141.

153. Han H, Hou Y, Chen X, Zhang P, Kang M, Jin Q, Ji J, Gao M. Metformin-Induced Stomal Depletion to Enhance the Penetration of Gemcitabine-Loaded Magnetic Nanoparticles for Pancreatic Cancer Targeted Therapy. J Am Chem Soc. 2020;142:4944–54.

154. Peng J, Xu M, Wang J, Zhou S, Liu Y, Liu S, Huang Y, Chen Y, Chen L, Song Q, et al. Sequential delivery of nanoformulated α-mangostin and triptolide overcomes permutation obstacles and improves therapeutic effects in pancreatic cancer. Biomaterials. 2020;241:119907.

155. Strauss J, Heery CR, Schlom J, Madan RA, Cao L, Kang Z, Lamp- ing E, Marté JL, Donahue PN, Grenga L, et al. Phase I Trial of M7824 (MSB001135NC), a Bifunctional Fusion Protein Targeting PD-L1 and TGFβ, in Advanced Solid Tumors. Clin Cancer Res. 2018;24:1287–95.

156. Pei Y, Chen L, Huang J, Wang J, Feng J, Xu M, Chen Y, Song Q, Jiang G, Gu X, et al. Sequential Targeting TGF-β Signaling and KRAS Mutation Increases Therapeutic Efficacy in Pancreatic Cancer. Small.

157. Ito Z, Kan S, Bto T, Horuchi S, Akasu T, Yoshida S, Kajihara M, Hakan A, Saruta M, Yoshida N, et al. Predicted Markers of Overall Survival in Pancreatic Cancer Patients Receiving Dendritic Cell Vaccinations Targeting WT1. Oncology. 2019;97:135–48.

158. Song KM, Chung DY, Choi MJ, Ghatak K, Minh NN, Limanjaya A, Kwon MH, Ock J, Yin GN, Kim DK, et al. Vactusertib, a Novel, Orally Bioavailable Activin Receptor-Like Kinase 5 Inhibitor, Promotes Regression of Fictitious Plaques in a Rat Model of Peyronie’s Disease. World J Mens Health. 2020;38:552–63.

159. Bartsch T, Rosen B, Dades K, Kaufmann D, Riersack H, Lehnhert H, Giese- ler F, Ungeforo H. Dasatinib blocks transcriptional and promigratory responses to transforming growth factor-beta in pancreatic adenocarcinoma cells through inhibition of autocrine TGF-β1 signaling in pancreatic cancer. J Exp Clin Cancer Res. 2017;36:181.

160. Hong E, Park S, Oshima K, Hong CP, Park J, Heo JS, Lee S, An H, Kang JM, Park SH, et al. Inhibition of TGF-β signalling Increases Therapeutic Efficacy in Pancreatic Cancer. Small.

161. Ruland J. Colon Cancer: Epithelial Notch Signaling Recruits Neutrophils to the E wijver LC, van der Zee J, et al. Localisation of PGK1 determines metabolic phenotype to balance metastasis and proliferation in patients with SMAD4-negative pancreatic cancer. Gut. 2020;69:888–900.

162. Marino S, Voooijs M, van Der Gulden H, Jonkers J, Berns A. Induction of medulloblastomas in p53-null mutant mice by somatic inactivation of Rb in the external granular layer cells of the cerebellum. Genes Dev. 2000;14:994–1004.

163. Leveen F, Larsson J, Ehinger M, Cillo CM, Sundler M, Sjstrand LJ, Holmahl R, Karlsson S. Induced disruption of the transforming growth factor beta type II receptor gene in mice causes a lethal inflammatory disorder that is transplantable. Blood. 2002;100:560–8.

164. Jackson EL, Willis N, Mercer K, Bronson RT, Crowley D, Montoya R, Jacks T, Tuveson DA. Analysis of lung tumor initiation and progression using conditional expression of oncogenic K-ras. Genes Dev. 2001;15:3243–5.

165. Colos T, Descaves T, Nawa-Kawakita M, Godard C, Hamard G, Kahn A, Giovannini M, Peret C. Liver-targeted disruption of Apc in mice activates beta-catenin signaling and leads to hepatocellular carcinomas. Proc Natl Acad Sci U S A. 2004;101:17216–21.
182. Shen X, Hu X, Mao J, Wu Y, Li H, Shen J, Yu J, Chen W. The long noncoding RNA TUG1 is required for TGF-β1/PI3K/AKT/EMT-mediated metastasis in colorectal cancer cells. Cell Death Dis. 2020;11:65.

183. Gu S, Zaidi S, Hassan M, Mohammad T, Malta TM, Nourmehr H, Nguyen B, Cran dall KA, Srivastav J, Oblas V, et al. Mutated CEACAMs Disrupt Transforming Growth Factor Beta Signaling and Alter the Intestinal Microbiome to Promote Colorectal Carcinogenesis. Gastroenterology. 2020;158:238–52.

184. Lähde M, Heino S, Högtjorn S, Kajaalainen S, Anisimov A, Flanagan D, Kalio P, Leppanen MV, Ristimäki A, Ritoso O, et al. Expression of R-Spondin 1 in APc(Min/+);Mice Suppresses Growth of Intestinal Adenomas by Altering Wnt and Transforming Growth Factor Beta Signaling. Gastroenterology. 2021;160:245–59.

185. Saki E, Nakayama M, Oshima H, Koyama Y, Niida A, Fuji S, Ochiai A, Nakayama KI, Mimori K, Suzuki Y, et al. Combined Mutation of ApC, Kras, and Tgfbr2 Effectively Drives Metastasis of Intestinal Cancer. Cancer Res. 2018;78:1334–46.

186. Nakayama M, Oshima M. Mutant p53 in colon cancer. J Mol Cell Biol. 2019;11:267–76.

187. van den Bulk J, Verdegaal EM, Ruan D, Jsselsteijn ME, Visser M, van der Breggen R, Duhem T, van der Ploeg M, de Vries NL, Oosting J, et al. Neoantigen-specific immunity in low mutation burden colorectal cancers of the consensus molecular subtype 4. Genome Med. 2019;11:87.

188. Boutin AT, Liao W, Wang M, Huang S, Karpenovs T, Cheung HS, Chu GC, Jiang S, Hu J, Chang K, et al. Oncogenic Kras drives invasion and maintains metastases in colorectal cancer. Genes Dev. 2017;31:370–82.

189. Manathasan S, Turley SJ, Nickles D, Castiglione A, Yuen K, Wang Y, Kadel EE III, Koeppe H, Astanta JA, Cubras R, et al. TGFbeta attenuates tumour response to PD-L1 blockade by contributing to exclusion of T cells. Nature. 2018;554:544–8.

190. Villalba M, Evans SR, Vidal-Vanaclocha F, Calvo A. Role of TGF-β in metastatic colon cancer: it is finally time for targeted therapy. Cell Tissue Res. 2018;373:29–39.

191. Dai G, Sun B, Gong T, Pan Z, Meng Q, Ju W. Ginsenoside Rb2 inhibits epithelial-mesenchymal transition of colorectal cancer cells by suppressing TGF-β1/Smad signaling. Phytomedicine. 2019;56:126–35.

192. Sui H, Zhao J, Zhou L, Wen H, Ding W, Li C, Ji Q, Liu X, Feng Y, Chai N, Herbertz S, Sawyer JS, Stauber AJ, Gueorguieva I, Driscoll KE, Estrem ST, et al. TGFβ2-Targeting RNA Therapeutic: A Post-Hoc Analysis with Long-Term Follow-Up. Cancers (Basel). 2019;11.

193. Zhao Y, Ma J, Fan Y, Wang Z, Tian R, JW, Zhang F, Niu R. TGF-β2 transactivates EGFR and facilitates breast cancer migration and invasion through canonical Smad3 and ERK5 signaling pathways. Mol Oncol. 2018;12:305–21.

194. Medeiros B, Allan AL. Cellular Mechanisms of Breast Cancer Metastasis to the Lung: Clinical and Experimental Perspectives. Int J Mol Sci. 2019;20.

195. Xia Y, Zhang Z, Zhu C, Ni B, Wang S, Yang S, Sun Y, Fu F, Zhao E, Li Q, Zhao G. Neutrophil extracellular traps promote metastasis in gastric cancer patients with postoperative abdominal infectious complications. Nat Commun. 2021;13:1017.

196. Xi X, Hu Z, Wu Q, Hu K, Cao Z, Zhou J, Liao J, Zhang Z, Hu Y, Zhong X, Bao Y. High expression of small nuclear RNA host gene 3 predicts poor prognosis and promotes bone metastasis in prostate cancer by activating transforming growth factor-beta signaling. Bioengineering. 2021;13:1895–907.

197. Li Q, Chen JX, Wu Y, Lv LL, Ying HF, Zhu WH, Xu JY, Ruan M, Guo Y, Zhu WR, Zheng L. The mechanism of FZXJJZ decoction suppresses colorectal liver metastasis via the VDR/TGF-β/Smad1 signaling pathways based on network pharmacology-TGCA data-transcriptomics analysis. J Ethnopharmacol. 2022;287:114904.

198. Arwert EN, Harney AS, Entenberg D, Wang Y, Sahai E, Pollard JW, Coneelj JS. A Unidirectional Transition from Migratory to Pervascular Macrophage Is Required for Tumor Cell Intravasation. Cell Rep. 2018;23:1239–48.

199. Yu Y, Luo W, Yang ZJ, Chi JR, Li YR, Ding Y, Ge J, Wang X, Cao XC. miR-190 suppresses breast cancer metastasis by regulation of TGF-β1-induced epithelial-mesenchymal transition. Mol Cancer. 2018;17:70.

200. Zhang Z, Fan Y, Xie F, Zhou H, Jin K, Shao L, Shi W, Fang Y, Yang B, van Dam H, et al. Breast cancer metastasis suppressor OTUD1 debiquitinates Smad7. Nat Commun. 2017;8:2116.

201. Yao Y, Guo Q, Cao Y, Qiu Y, Tan R, Yu Z, Zhou Y, Lu N. Antitumor inhibition of TGF-β signal pathway. J Exp Clin Cancer Res. 2018;37:282.

202. Li S, Liu M, DM, Chou C, Statamides EG, Nixon BG, Shi W, Zhang X, Li P, Gao S, et al. Cancer immunotherapy via targeted TGF-beta signaling blockade in TH cells. Nature. 2020;587:121–5.

203. Tang X, Shi L, Xie N, Liu Z, Qian M, Meng F, Xu Q, Zhou M, Cao X, Zhu WG, Liu B. SIRT7 antagonizes TGF-beta signaling and inhibits breast cancer metastasis. Nat Commun. 2017;8:318.

204. Lapointe S, Perry A, Butowski NA. Primary brain tumours in adults. The Lancet. 2018;392:432–46.

205. Milanovaro AM, Taylor JW, Wiernek MR. Genetic and molecular epidemiology of adult diffuse glioma: Nat Rev Neurol. 2019;15:505–17.

206. Bruna A, Darken RS, Rojo F, Ocaña A, Peñuela S, Arias A, Paris R, Tortosa A, Mora J, Baselga J, Seoane J. High TGFβ-Smad activity confers poor prognosis in glioma patients and promotes cell proliferation depending on the methylation of the PDGF-B gene. Cancer Cell. 2007;11:147–60.

207. Chao M, Liu N, Sun Z, Jiang Y, Jiang T, Xv M, J, Lu T, Yu Y. Wang L. TGF-beta Signaling Promotes Glioma Progression Through Stabilizing Sox9. Front Immunol. 2020;11:592890.

208. Crane CA, Han SJ, Barry JJ, Ahn BJ, Lanier LL, Parsa AT. TGF-beta down regulates the activating receptor NKKG2D on NK cells and CD8+ T cells in glioma patients. Neuro Oncol. 2010;12:7–13.

209. Luo D, Xu X, Li J, Chen C, Chen W, Fang W, Xie Y, Li F. The PDK1/C-Jun pathway activated by TGF-β induces EMT and promotes proliferation and invasion in human glioblastoma. Int J Cancer. 2018;143:2067–80.

210. Wei L, Shao N, Peng Y, Zhou P. Inhibition of Cathespin S Restores TGF-β-induced Epithelial-to-mesenchymal Transition and T cell Junction Turnover in Glioblastoma Cells. J Cancer. 2021;12:1592–603.

211. Liu Z, Kuang W, Zhou Z, Yang T. TGF-β1 secreted by macrophages enhances the stemness and migration of glioma cells via the SMAD2/3 signaling pathway. Int J Mol Med. 2018;42:3395–403.

212. Katheder NS, Khezri R, O’Farrell F, Schultz SW, Jain A, Rahman MM, Shinoh KO, Theodossiou TA, Johansen T, Juhasz G, et al. Microenvironmental autophagy promotes tumour growth. Nature. 2017;541:417–20.

213. Zhang C, Zhang X, Xu R, Huang B, Chen AJ, Li C, Wang J, Lg X. TGF-β2 initiates autophagy via Smad and non-Smad pathway to promote glioma cells’ invasion. J Exp Clin Cancer Res. 2017;36:162.

214. Seystahl K, Papachristoudou A, Burghardt I, Schneider H, Hasenbach K, Janicot M, Roth P, Weiller M. Biological Role and Therapeutic Targeting of TGF-beta3 in Glioblastoma. Mol Cancer Ther. 2017;16:1177–86.

215. Uckun FM, Qin S, Hwang I, Trieu VN. Recurrent or Refractory High-Grade Gliomas Treated by Convection-Enhanced Delivery of a TGF-β2-Targeting RNA Therapeutic: A Post-Hoc Analysis with Long-Term Follow-Up. Cancers (Basel). 2019;11.

216. Liang H, Wang Q, Wang D, Zheng H, Kalvakaladou LV, Hu L, Wen N, Chen X, Xu L, Ren J, et al. RGF596, a histone deacetylase 3 inhibitor,
promotes glioma stem cell differentiation by blocking TGF-β signaling via SMAD7. Biochem Pharmacol. 2020;180:114118.

223. Wick A, Desjardins A, Suarez C, Forsyth P, Gueorguieva I, Burkholder T, Cleverly AL, Estrem ST, Wang S, Lahn MM, et al. Phase 1b/2a study of galunisertib, a small molecule inhibitor of transforming growth factor-beta receptor I, in combination with standard temozolomide-based radiochemotherapy in patients with newly diagnosed malignant glioma. Invest New Drugs. 2020;38:1570–9.

224. Kim BG, Malek E, Choi SH, Ignatzz-Hooover JJ, Driscoll JJ. Novel therapies emerging in oncology to target the TGF-beta pathway. J Hematol Oncol. 2021;14:55.

225. Morris JC, Tan AR, Olencki TE, Shapiro GJ, Dezube BJ, Reiss M, Hsu FJ, Berzofsky JA, Lawrence DP. Phase I study of GC1008 (fresolimumab): a human anti-transforming growth factor-beta (TGFbeta) monoclonal antibody in patients with advanced malignant melanoma or renal cell carcinoma. PloS One. 2014;9:e90353.

226. Zhao X, Kwan JYY, Yip K, Liu PP, Liu FF. Targeting metabolic dysregulation for fibrosis therapy. Nat Rev Drug Discov. 2020;19:57–75.

227. Zhang M, Zhang YY, Chen Y, Wang J, Wang Q, Lu H. TGF-β Signaling and Resistance to Cancer Therapy. Front Cell Dev Biol. 2021;9:786728.

228. Kong P, Shinde AV, Su Y, Russo I, Chen B, Saxena A, Conway SJ, Graff JM, Frangogiannis NG. Opposing Actions of Fibroblast and Cardiomyocyte Smad3 Signaling in the Infarcted Myocardium. Circulation. 2018;137:707–24.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.