Subordination of functions in subclass of Bazilevič Functions $B_1(\alpha, \beta)$

Marjono
Faculty of Mathematics and Natural Sciences, University of Brawijaya, Malang, Jawa Timur 65145, Indonesia.
E-mail: marjono@ub.ac.id

Abstract. Let f be analytic in the unit disc $D = \{ z : |z| < 1 \}$ with $f(z) = z + \sum_{n=2}^{\infty} a_n z^n$, and for $\alpha \geq 0$ and $0 < \beta \leq 1$, let $B_1(\alpha, \beta)$, denote for the class of Bazilevič functions satisfying the expression $|\arg z^{1-\alpha} f'(z) f(z)^{1-\alpha}| < \frac{\beta \pi}{2}$. We give sharp estimates for various coefficient problems for functions in $B_1(\alpha, \beta)$, which unify and extend well-known results for starlike functions, strongly starlike functions and functions whose derivative has positive real part in domain D.

1. Definitions and Some Preliminaries
We will first recall the Bazilevič functions $B(\alpha)$ as follows [4].

Let S be the class of analytic and normalized univalent functions f defined in $z \in D = \{ z : |z| < 1 \}$ and given by the following

$$f(z) = z + \sum_{n=2}^{\infty} a_n z^n. \quad (1)$$

Then for $\alpha \geq 0$, $f \in B(\alpha) \subset S$ if, and only if, there exists a starlike function g in $z \in D$, such that

$$\text{Re} \frac{zf'(z)}{f(z)^{1-\alpha} g(z)^{\alpha}} > 0.$$

Taking $g(z) \equiv z$ gives the class $B_1(\alpha)$ of Bazilevič Functions with logarithmic growth. We note that $B_1(0)$ is the class of starlike functions S^*, and $B_1(1)$ the well-known class R of functions whose derivative has positive real part in D.

Thus $f \in B_1(\alpha)$, if and only if,

$$\text{Re} \frac{zf'(z)}{f(z)^{1-\alpha} z^{\alpha}} > 0.$$
We know that various best possible properties of these problems have been obtained for the class $B_1(\alpha)$. Amongst other results in this topic, fortunately, Singh [16], found sharp estimates for the moduli of the first four coefficients, and he also obtained the solution to the expression known as the Fekete-Szegö problem. The author of [22] has recently obtained sharp bounds for the second Hankel determinant, the initial coefficients of the function with the form $\log f(z)$, and also obtained the initial coefficients of the inverse function f^{-1}. Distortion theorems and some length-area results were also obtained in London, Singh, and Thomas [13, 19, 20].

For $0 < \beta \leq 1$, let $B_1(\alpha, \beta)$ be the set of functions f, given by (1) satisfying

$$\left| \arg \frac{zf'(z)}{f(z)^{1-\alpha}z^\alpha} \right| < \frac{\beta \pi}{2}. \quad (2)$$

Then $B_1(0, \beta)$ is the class of strongly starlike functions SS^* and $B_1(1, \beta)$ the class of functions such that $Re \ f'(z)$ lies in a sector, which are extensions of the classical sets of starlike functions S^* and R respectively.

It follows from (2) that we can write

$$z^{1-\alpha}f'(z) = f(z)^{1-\alpha}h(z)^\beta, \quad (3)$$

where $h \in P$, the class of function satisfying $Re \ h(z) > 0$ for $z \in D = \{z : |z| < 1\}$.

Let

$$h(z) = 1 + \sum_{n=1}^{\infty} c_n z^n.$$

We shall use the following results, see e.g. [1, 2, 6, 9]

Lemma 1

If $h \in P$ with coefficients c_n as above, then for some complex valued x with $|x| \leq 1$ and some complex valued ζ with $|\zeta| \leq 1$,

$$2c_2 = c_1^2 + x(4 - c_1^2),$$

$$4c_3 = c_1^3 + 2(4 - c_1^2)c_1x - c_1(4 - c_1^2)x^2 + 2(4 - c_1^2)(1 - |x|^2)\zeta.$$

Lemma 2

If $p \in P$, then

$$\left| p_2 - \frac{\mu}{2}p_1^2 \right| \leq \max\{2, 2|\mu - 1|\} = \begin{cases} 2, & 0 \leq \mu \leq 2, \\ 2|\mu - 1|, & \text{elsewhere}. \end{cases} \quad (4)$$

Lemma 3

Let $h \in P$ with coefficients c_n as above, then if $0 \leq \lambda \leq 1$ and $\lambda(2\lambda - 1) \leq \delta < \lambda$,

$$\frac{z}{h(z)} \leq \frac{z}{f(z)}.$$
\[|c_3 - 2\lambda c_1 c_2 + \delta c_1^3| \leq 2. \]

Lemma 4

Let \(h \in P \) with coefficients \(c_n \) as above, then,

\[|c_3 - c_1 c_2 + \frac{1}{2} c_1^3| \leq 2. \]

2. Initial Coefficients

We first extend the coefficient results of Singh [16] for the coefficients of \(B_1(\alpha) \), and the results of Brannan, Clunie, and Kirwan [3], Ali [1], Ali and Singh [2] and Krisna Adilia [10] for strongly starlike functions as follows:

Theorem 1 For \(f \in B_1(\alpha, \beta) \) and given by (1), then

\[
|a_2| \leq \frac{2\beta}{1+\alpha} \text{ for } \alpha \geq 0 \text{ and } 0 < \beta \leq 1, \\
|a_3| \leq \frac{2\beta}{2+\alpha} \text{ for } 0 \leq \alpha \leq 1 \text{ and } 0 < \beta \leq \frac{(1+\alpha)^2}{3+\alpha}, \\
\leq \frac{2(3+\alpha)\beta^2}{(1+\alpha)^2(2+\alpha)} \text{ for } 0 \leq \alpha \leq 1 \text{ and } \frac{(1+\alpha)^2}{3+\alpha} \leq \beta \leq 1, \\
\leq \frac{2\beta}{2+\alpha} \text{ for } \alpha \geq 1 \text{ and } 0 < \beta \leq 1, \\
|a_4| \leq \frac{2\beta}{3+\alpha} \text{ for } 0 \leq \alpha \leq 1 \text{ and } 0 < \beta \leq \sqrt{\frac{2 + 7\alpha + 9\alpha^2 + 5\alpha^3 + \alpha^4}{17 + 6\alpha + \alpha^2}} \\
\leq \frac{2\beta}{3+\alpha} - \frac{4\beta(2 + 5\alpha^3 + \alpha^4 - 17\beta^2 + \alpha(7 - 6\beta^2) - \alpha^2(-9 + \beta^2))}{3(1+\alpha)^3(2+\alpha)(3+\alpha)} \\
\text{ for } 0 \leq \alpha \leq 1 \text{ and } \sqrt{\frac{2 + 7\alpha + 9\alpha^2 + 5\alpha^3 + \alpha^4}{17 + 6\alpha + \alpha^2}} \leq \beta \leq 1, \\
\leq \frac{2\beta}{3+\alpha} \text{ for } \alpha \geq 1 \text{ and } 0 < \beta \leq 1.
\]

All inequalities are sharp.

Proof. Equating coefficients in (3) gives
\[(1 + \alpha)a_2 = \beta c_1,\]
\[(2 + \alpha)a_3 = \beta c_2 - \frac{\beta(1 + \alpha^2 - \alpha(-2 + \beta) - 3\beta)c_1^2}{2(1 + \alpha)^2},\]
\[(3 + \alpha)a_4 = \beta c_3 + \frac{\beta(-2 - \alpha^2 + \alpha(-3 + \beta) + 5\beta)c_1 c_2}{(1 + \alpha)(2 + \alpha)} + \frac{\beta(4 + 2\alpha^4 + \alpha^2(10 - 3\beta) - 15\beta + 17\beta^2 + \alpha^2(18 - 21\beta + \beta^2) + \alpha(14 - 33\beta + 6\beta^2))c_1^3}{6(1 + \alpha)^3(2 + \alpha)}.\] (4)

The first inequality in Theorem 1 follows at once since \(|c_1| \leq 2\).

For \(|a_3|\), we use Lemma 2. Write

\[|a_3| = \frac{\beta}{(2 + \alpha)} \left| c_2 - \frac{(1 + \alpha^2 - \alpha(-2 + \beta) - 3\beta)c_1^2}{2(1 + \alpha)^2} \right|.\]

Then in Lemma 2, let

\[\mu = \frac{(1 + \alpha^2 - \alpha(-2 + \beta) - 3\beta)}{2(1 + \alpha)^2},\]

so that \(0 \leq \mu \leq 2\) provided \(0 \leq \alpha \leq 1\) and \(0 < \beta \leq \frac{(1 + \alpha)^2}{(3 + \alpha)}\), and when \(\alpha \geq 1\) and \(0 < \beta \leq 1\).

Applying Lemma 2 now gives the inequalities for \(|a_3|\).

For the coefficient \(a_4\), we use Lemmas 2, 3, and 4.

From (4) we obtain

\[|a_4| = \frac{\beta}{3 + \alpha} \left| c_3 - \frac{2 + \alpha^2 - \alpha(-3 + \beta) - 5\beta}{(1 + \alpha)(2 + \alpha)} c_1 c_2 + \frac{4 + 2\alpha^4 + \alpha^3(10 - 3\beta) - 15\beta + 17\beta^2 + \alpha^2(18 - 21\beta + \beta^2) + \alpha(14 - 33\beta + 6\beta^2)}{6(1 + \alpha)^3(2 + \alpha)} c_1^3 \right|.\] (5)

We now can apply Lemma 3 with

\[\lambda = \frac{2 + \alpha^2 - \alpha(-3 + \beta) - 5\beta}{2(1 + \alpha)(2 + \alpha)},\]

and
\[
\delta = 4 + 2\alpha^4 + \alpha^3(10 - 3\beta) - 15\beta + 17\beta^2 + \alpha^2(18 - 21\beta^2 + \alpha(14 - 33\beta + 6\beta^2))
\]

so that the conditions \(0 \leq \lambda \leq 1\) and \(\lambda(2\lambda - 1) \leq \delta \leq \lambda\) are satisfied whenever \(0 \leq \alpha \leq 1\) and \(0 < \beta \leq \sqrt{\frac{2 + 7\alpha + 9\alpha^2 + 5\alpha^3 + \alpha^4}{17 + 6\alpha + \alpha^2}}\), and when \(\alpha \geq 1\) and \(0 < \beta \leq 1\).

By applying Lemma 3 gives the first and last inequalities for \(|a_4|\).

To prove the second inequality we will use Lemmas 2 and 4.

Write \(c_3 - 2\lambda c_1 c_2 + \delta c_1^2 = c_3 - c_1 c_2 + \frac{1}{2} c_1^3 + (1 - 2\delta)c_1\left(c_2 + \frac{c_1^2(-1 + 2\delta)}{2(1 - 2\lambda)}\right)\).

We now substitute for \(\lambda\) and \(\delta\), and add and subtract \(\frac{1}{2} c_1^2\) into the last expression to obtain the following

\[
(1 - 2\delta)c_1\left(c_2 + \frac{c_1^2(-1 + 2\delta)}{2(1 - 2\lambda)}\right) = \left(\frac{\beta(5 + \alpha)}{(1 + \alpha)(2 + \alpha)} c_1\right)
\]

\[
\left(c_2 - \frac{1}{2} c_1^2 - \frac{(2 + 5\alpha^3 + \alpha^4 - 17\beta^2 + \alpha(7 - 6\beta^2) - \alpha^2(-9 + \beta^2))}{6(1 + \alpha)^2(5 + \alpha)\beta} c_1^2\right)
\]

Next note that \(- \frac{2 + 5\alpha^3 + \alpha^4 - 17\beta^2 + \alpha(7 - 6\beta^2) - \alpha^2(-9 + \beta^2)}{6(1 + \alpha)^2(5 + \alpha)\beta} \geq 0\), when \(0 \leq \alpha \leq 1\) and \(\sqrt{\frac{2 + 7\alpha + 9\alpha^2 + 5\alpha^3 + \alpha^4}{17 + 6\alpha + \alpha^2}} < \beta \leq 1\). We now apply Lemma 2 to the last bracket in (7), noting that the resulting expression inside the last bracket increase for \(0 \leq |c_1| \leq 2\), so that the maximum value occurs when \(|c_1| = 2\). Thus applying Lemma 4 in (6), and noting that \(|c_1| \leq 2\), gives the bound for \(|a_4|\).

The inequality for \(|a_2|\) is sharp when \(c_1 = 2\). The first and third inequalities for \(|a_3|\) are sharp when \(c_1 = 0\) and \(c_2 = 2\), and the second inequality for \(|a_3|\) is sharp when \(c_1 = c_2 = 2\). For \(|a_4|\), the first and third inequalities are sharp when \(c_1 = c_2 = 0\) and \(c_3 = 2\) and the second inequality is sharp when \(c_1 = c_2 = c_3 = 2\).

The proof is complete.
3. Fekete-Szegő Theorems

We next establish sharp Fekete-Szegő results for $B_1(\alpha, \beta)$, which extend that given in [16].

Theorem 2

For $B_1(\alpha, \beta)$ and real ν,

$$|a_3 - \nu a_2^2| \leq \begin{cases} \frac{2\beta}{2 + \alpha} + \frac{2\beta^2(1 - \alpha - 2\nu)}{(1 + \alpha)^2} & \text{if } \nu \leq \frac{\beta(3 + \alpha) - (1 + \alpha)^2}{2\beta(2 + \alpha)}, \\ \frac{2\beta(2\beta(2 + \alpha) - (1 + \alpha)^2 - \beta(3 + \alpha))}{(1 + \alpha)^2(2 + \alpha)} & \text{if } \nu \leq \frac{\beta(3 + \alpha) + (1 + \alpha)^2}{2\beta(2 + \alpha)}. \end{cases}$$

Proof. We use Lemma 2. From (4)

$$|a_3 - \nu a_2^2| = \frac{\beta}{2 + \alpha} \left| c_2 - \frac{1 + \alpha^2 + \beta(-3 + 4\nu) + \alpha(2 + \beta(-1 + 2\nu))}{2(1 + \alpha)^2} c_1 \right|.$$

Write

$$c_2 - \frac{1 + \alpha^2 + \beta(-3 + 4\nu) + \alpha(2 + \beta(-1 + 2\nu))}{2(1 + \alpha)^2} c_1 = c_2 - \frac{1}{2} c_1^2 + \frac{\beta(3 + \alpha - 2\nu(2 + \alpha))}{2(1 + \alpha)^2} c_1.$$

Assume first that $3 + \alpha - 2\nu(2 + \alpha) \geq 0$, then using Lemma 2 with $\mu = 1$, we obtain

$$\left| c_2 - \frac{1 + \alpha^2 + \beta(-3 + 4\nu) + \alpha(2 + \beta(-1 + 2\nu))}{2(1 + \alpha)^2} c_1 \right| \leq 2 - \frac{1}{2} |c_1^2| + \frac{\beta(3 + \alpha - 2\nu(2 + \alpha))}{2(1 + \alpha)^2} |c_1|^2.$$

Simple calculus now shows that this expression has maximum $\frac{2\beta(3 + \alpha - 2\nu(2 + \alpha))}{(1 + \alpha)^2}$ at $|c_1| = 2$ for $\alpha \geq 0$ and $0 < \beta \leq 1$, provided $\nu \leq \frac{\beta(3 + \alpha) - (1 + \alpha)^2}{2\beta(\beta + \alpha)}$, and a maximum of 2 at $|c_1| = 0$ for $\alpha \geq 0$ and $0 < \beta \leq 1$, provided $\nu \geq \frac{\beta(3 + \alpha) - (1 + \alpha)^2}{2\beta(\beta + \alpha)}$.

We next assume that $3 + \alpha - 2\nu(2 + \alpha) \leq 0$ and again use Lemma 2 as follows.

First note that in Lemma 2, $\mu \leq 2$, if $\alpha \geq 0$ and $0 < \beta \leq 1$ provided $\nu \leq \frac{\beta(3 + \alpha) + (1 + \alpha)^2}{2\beta(2 + \alpha)}$, and that $\mu \geq 2$, if $\alpha \geq 0$ and $0 < \beta \leq 1$ provided $\nu \geq \frac{\beta(3 + \alpha) + (1 + \alpha)^2}{2\beta(2 + \alpha)}$.

6
Applying Lemma 2 and using simple calculus, establishes the remaining two inequalities, which completes the proof of Theorem 2. The proof is complete.

Theorem 3 For \(B_1(\alpha, \beta) \) and any complex number \(\nu \),

\[
|a_3 - \nu a_2^2| \leq \max \left\{ \frac{2\beta}{2 + \alpha}, \frac{2\beta^2|3 + \alpha - 2\nu(2 + \alpha)|}{(1 + \alpha)^2(2 + \alpha)} \right\}.
\]

Proof. A simple application of Lemma 2 gives the result. The proof is complete.

Remark 1

Obtaining the sharp upper bounds for \(|a_n| \) for all \(n \geq 5 \) for \(f \in B_1(\alpha, \beta) \) remains an open question, even in the case \(\beta = 1 \). It was shown in [17], Marjono [15] and Sa’adatul Fitri [18] that when \(\beta = 1 \), \(|a_n| \leq |B_n| \), for \(\alpha = \frac{1}{N} \), where \(N \geq 2 \) is a positive integer and where \(B_n \) is the general coefficient of the extreme function \(\phi \) for the class \(B_1(\alpha, 1) \) given by

\[
\phi(z) = (\alpha \int_0^z t^{\alpha-1} \frac{1 + t}{1 - t} dt)^{1/\alpha}.
\]

4. The Second Hankel Determinant

The \(q^{th} \) Hankel determinant of \(f \) is defined for \(q \geq 1 \) and \(n \geq 1 \) as follows, and has been extensively studied e.g. [8, 9, 15, 17].

\[
H_q(n) = \begin{vmatrix}
a_n & a_{n+1} & \cdots & a_{n+q+1} \\
a_{n+1} & \cdots & \vdots \\
\vdots \\
a_{n+q-1} & \cdots & a_{n+2q-2}
\end{vmatrix}.
\]

We prove the following, which extends the result in [22], noting that the result is valid for \(\alpha \geq 0 \).

Theorem 4 Let \(f \in B_1(\alpha, \beta) \), then

\[
H_2(2) = |a_2 a_4 - a_3^2| \leq \frac{4\beta^2}{(2 + \alpha)^2}.
\]

The inequality is sharp.

Proof. Using (4) and simplifying, we obtain
\[H_2(2) = |a_2a_4 - a_3^2| = \frac{\beta^2(4 + 6\alpha^3 + \alpha^4 - 13\beta^2 - \alpha^2(-13 + \beta^2) - 2\alpha(-6 + 5\beta^2))c^4}{12(1 + \alpha)^3(2 + \alpha)^2(3 + \alpha)} + \frac{(-1 + \beta)\beta^2c_1c_2}{(1 + \alpha)(2 + \alpha)^2(3 + \alpha)} - \frac{\beta^2c_1^2}{(2 + \alpha)^2} + \frac{\beta^2c_1c_3}{(1 + \alpha)(3 + \alpha)}. \]

We now use Lemma 1 to write \(c_2 \) and \(c_3 \) in terms of \(c_1 \), and, without loss in generality, take \(c_2 = c \), where \(c \in [0, 2] \). Also for simplicity, we write \(X = 4 - c^2 \) and \(Z = (1 - |x|^2)\zeta \), to obtain

\[H_2(2) = |\beta^2\Delta_1(\alpha, \beta)c^4| \leq \frac{\beta^3c_2X}{2(1 + \alpha)(2 + \alpha)^2(3 + \alpha)} + \frac{\beta^2|\Delta_1(\alpha, \beta)|c_2^2}{4(1 + \alpha)(3 + \alpha)} \leq \frac{\beta^3c_2X}{2(1 + \alpha)(3 + \alpha)}. \]

where \(\Delta_1(\alpha, \beta) := 4 + 6\alpha^3 + \alpha^4 - 13\beta^2 - \alpha^2(-13 + \beta^2) - 2\alpha(-6 + 5\beta^2) \).

We now use the triangle inequality to obtain

\[H_2(2) \leq \frac{\beta^2|\Delta_1(\alpha, \beta)|c_2^2}{4(1 + \alpha)(3 + \alpha)} + \frac{\beta^3c_2X}{2(1 + \alpha)(3 + \alpha)} + \frac{\beta^2|\Delta_1(\alpha, \beta)|c_3^2}{4(2 + \alpha)^2} + \frac{\beta^3cX(1 - |x|^2)}{2(1 + \alpha)(3 + \alpha)} := \phi(c, |x|). \]

Thus we need to maximise \(\phi(c, |x|) \) over the rectangle \(I = [0, 2] \times [0, 1] \).

First assume that there is a critical point at \((c_0, |x_0|)\) inside \(I \). Since each term of the derivative of \(\phi(c, |x|) \) with respect to \(|x| \) contains the expression \(4 - c^2 \), equating to zero gives a contradiction. Thus any maximum point must occur on the boundary of \(I \).

On \(c = 0 \),

\[\phi(0, |x|) = \frac{4\beta^2|\Delta_1(\alpha, \beta)|c_2^2}{(2 + \alpha)^2} \leq \frac{4\beta^2}{(2 + \alpha)^2}. \]

On \(c = 2 \),

\[\phi(2, |x|) = \frac{4\beta^2|\Delta_1(\alpha, \beta)|c_3^2}{3(1 + \alpha)^3(2 + \alpha)^2(3 + \alpha)} \leq \frac{4\beta^2}{(2 + \alpha)^2}. \]

On \(|x| = 0 \),

...
\[\phi(c, 0) = \frac{\beta^2 |\Delta_1(\alpha, \beta)|c^4}{12(1 + \alpha)^3(2 + \alpha)^2(3 + \alpha)} + \frac{\beta^2 cX}{2(1 + \alpha)(3 + \alpha)} \leq \frac{4\beta^2}{(2 + \alpha)^2} \]
onumber

on \([0, 2]\).

Finally when \(|x| = 1\),

\[\phi(c, 1) = \frac{\beta^2 |\Delta_1(\alpha, \beta)|c^4}{12(1 + \alpha)^3(2 + \alpha)^2(3 + \alpha)} + \frac{\beta^3 c^2 X}{2(1 + \alpha)(2 + \alpha)^2(3 + \alpha)} + \frac{\beta^2 c^2 X}{4(1 + \alpha)(3 + \alpha)} + \frac{\beta^2 X^2}{4(2 + \alpha)^2}. \]

This quadratic expression in \(c^2\) is minimum when \(c = 0\), with maximum values at positive and negative values on the \(c\) axis. Thus taking \(c = 2\) in the above it is easily seen once more that \(\phi(c, 1) \leq \frac{4\beta^2}{(2 + \alpha)^2}\) on \(0 \leq c \leq 2\).

We note finally that equality is attained when \(c_1 = c_3 = 0\) and \(c_2 = 2\).

The proof is complete.

Remark 2

We note that the case \(\alpha = 1\) corresponds to the class \(R\) of functions whose derivative has positive real part in a sector, and when \(\alpha = 0\) and \(\beta = 1\) to the starlike functions [7]. The case \(\alpha = 0\) and \(0 < \beta \leq 1\) corresponds to the strongly starlike functions [5].

We finally note that it is easily seen from (3) that when \(f \in B_1(\alpha, \beta)\) and \(0 < \beta < 1\), \(M(r, f)\) is bounded, which implies that \(n|a_n|\) is also bounded.

References

[1] Ali R M 2003 Coefficients of the Inverse of Strongly Starlike Functions *Bull. Malaysian Math. Sc. Soc.* 26 pp 63–71

[2] Ali R M and Singh V A 1996 On the fourth and fifth coefficients of strongly starlike functions *Results in Mathematics* 29 pp 197–202

[3] Brannan D A, Clunie J, and Kirwan W E 1970 Coefficient estimates for a class of starlike functions *Can. J. Math.* XXII no 3 pp 476–485

[4] Bazilevič I E 1955 On a case of integrability in quadratures of the Lowner-Kufarev equation *Mat. Sb.* 37 (79) pp 471–476 (Russian) MR 17 356

[5] Deekonda V K and Thoutreddy R 2014 An upper bound to the second Hankel determinant for a subclass of analytic functions *Bull. of the International Mathematical Virtual Institute* 4 pp 17–26

[6] Duren P L 1983 In *Univalent Functions* (Springer-Verlag) pp 114–115 Mat. Sb. 37 (79)(195) pp 471–476 (Russian) MR 17 356

[7] Girela D 2000 Logarithmic coefficients of univalent functions *Annals Acad. Sci. Fenn. Math. Sb* 25 (61) pp 337–350

[8] Hayman W K 1968 On the second Hankel determinant of mean univalent functions *Proc. Lond. Math. Soc.* 3 no 18 (1968) pp 77–94

[9] Janteng A, Halim S, and Darus M 2007 Hankel Determinants for Starlike and Convex Functions *Int. Journal. Math. Analysis* 1 no 13 pp 619–625

[10] Daniswara K A, Marjono, and Wibowo R B E 2020 The Fifth Coefficients of Strongly Convex Functions *Journal of Physics Conference Series* 1562:012006; DOI: 10.1088/1742-6596/1562/1/012006
[11] Libera R J and Zlotkiewicz E J 1983 Coefficient bounds for the inverse of a function with derivative in \(P \)
Proc. Amer. Math. Soc. 87 no 2 pp 251–257
[12] Libera R J and Zlotkiewicz E J 1984 Coefficient Bound for the Inverse of a Function with Derivative in \(P \)
Proc. Amer. Math. Soc. 92 no 1 pp 58–60
[13] London R R and Thomas D K 1988 On the Derivative of Bazilevič Functions Proc. Amer. Math. Soc. 104
no 1 pp 235–238
[14] Löwner C 1923 Untersuchungen über schlichte konforme Abbildungen des Einheitskreises J. Math. Ann 89
pp 103–121
[15] Marjono, Fitri S, and Daniswara K A 2020 The Higher Coefficients for Bazlevic Functions B1(\(\alpha \))
Australian Journal of Mathematical Analysis and Applications 17 2 pp 1–11
[16] Noonan J W and Thomas D K 1976 On the second Hankel determinant of areally, mean p-valent functions
Trans. Amer. Math. Soc. 223 (2) pp 337–346
[17] Pommerenke Ch 1967 On the Hankel determinants of univalent functions Mathematika (London) 16 no 13
pp 108–112
[18] Fitri S, Marjono, Thomas D K, and Wibowo R B E 2020 Coefficients inequalities for subclass of Bazilevic
Functions Demonstratio Mathematica 53 1 pp 27–37
[19] Singh R 1973 On Bazlevi ć Functions Proc. Amer. Math. Soc. 38 no 2 pp 261–271
[20] Thomas D K 1985 In On a Subclass of Bazilevič function Int. J. Math. & Math. Sci. 8 no 4 pp 779–783
[21] Thomas D K 1991 In New Trends in Geometric Function Theory and Applications (World Scientific) pp
146–158
[22] Thomas D K On the Coefficients of Bazlevič Functions with Logarithmic Growth Indian Journal of
Mathematics to appear
[23] Ye Z 2008 The logarithmic coefficients of close to convex functions Bull. Inst. Math., Acad. Sin. (N.S.) 3
no 23 pp 445–452