Transcriptional adaptation in Caenorhabditis elegans

Vahan Serobyan1*, Zacharias Kontarakis1†, Mohamed A El-Brolosy1, Jordan M Welker1, Oleg Tolstenkov2,3‡, Amr M Saadeldein1, Nicholas Retzer1, Alexander Gottschalk2,3,4, Ann M Wehman5, Didier YR Stainier1*

1Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany; 2Institute for Biophysical Chemistry, Goethe University, Frankfurt Am Main, Germany; 3Cluster of Excellence Frankfurt - Macromolecular Complexes (CEF-MC), Goethe University, Frankfurt Am Main, Germany; 4Buchmann Institute for Molecular Life Sciences (BMLS), Goethe University, Frankfurt Am Main, Germany; 5Rudolf Virchow Center, University of Würzburg, Würzburg, Germany

Abstract Transcriptional adaptation is a recently described phenomenon by which a mutation in one gene leads to the transcriptional modulation of related genes, termed adapting genes. At the molecular level, it has been proposed that the mutant mRNA, rather than the loss of protein function, activates this response. While several examples of transcriptional adaptation have been reported in zebrafish embryos and in mouse cell lines, it is not known whether this phenomenon is observed across metazoans. Here we report transcriptional adaptation in C. elegans, and find that this process requires factors involved in mutant mRNA decay, as in zebrafish and mouse. We further uncover a requirement for Argonaute proteins and Dicer, factors involved in small RNA maturation and transport into the nucleus. Altogether, these results provide evidence for transcriptional adaptation in C. elegans, a powerful model to further investigate underlying molecular mechanisms.

Introduction Transcriptional adaptation is the ability of certain mutations in a gene to modulate the expression of related genes, referred to as adapting genes (El-Brolosy and Stainier, 2017; El-Brolosy et al., 2019; Ma et al., 2019). At the molecular level, the mutant mRNA, rather than the loss of protein function, is responsible for this transcriptional modulation (Rossi et al., 2015; El-Brolosy and Stainier, 2017; Sztal et al., 2018; El-Brolosy et al., 2019; Ma et al., 2019). According to one model (El-Brolosy et al., 2019), the mutant mRNA, via its degradation products, modulates the expression of adapting genes via transcriptional regulators including antisense RNAs and histone modifiers. According to another model (Ma et al., 2019), the premature termination codon (PTC) containing mutant mRNA interacts with a histone modifier complex leading to transcriptional upregulation of the adapting gene(s). Sequence similarity with the mutant mRNA determines which genes get upregulated during transcriptional adaptation (El-Brolosy et al., 2019). In some cases, the upregulated genes share functionality with the mutated gene leading to functional compensation. However, while transcriptional adaptation is often discussed in the context of genetic robustness (Rossi et al., 2015; El-Brolosy et al., 2019; Ma et al., 2019), it does not always lead to functional compensation (Rossi et al., 2015). In addition, transcriptome analyses suggest that even genes with limited sequence similarity with the mutant mRNA can be upregulated during transcriptional adaptation (El-Brolosy et al., 2019), although clearly more work is required to determine whether the upregulation of these genes is a direct or indirect effect of transcriptional adaptation.
Understanding the mechanisms of transcriptional adaptation will help us better comprehend why for a given gene some mutations cause disease while others do not (Castel et al., 2018). However, despite the importance and growing interest in many aspects of genetic compensation, transcriptional adaptation has currently only been investigated in vertebrates. Thus, it remains unclear whether this phenomenon is observed across metazoans. The evolutionary importance of related genes that have compensatory effects has also been discussed in non-vertebrate eukaryotes (Conant and Wagner, 2004; Plata and Vitkup, 2014). However, it is not known whether these examples of compensation are due to protein feedback loops or transcriptional adaptation.

Only a few factors are known to be involved in the transcriptional adaptation response thus far, and others, including some involved in RNA processing and transport, are likely required. In addition, it is not clear whether the mechanisms of transcriptional adaptation are common or whether each particular case occurs in a different manner, especially at the step leading to transcriptional modulation. Also, as different paralogs or related genes are expressed in distinct tissues and/or at different times (Laisney et al., 2010; Kryuchkova-Mostacci and Robinson-Rechavi, 2015; Radomska et al., 2016; Pasquier et al., 2017; Jojic et al., 2018), it is currently unclear whether the expression of adapting genes can appear in tissues where, and/or at times when, they are not normally expressed.

In this study, we provide examples of transcriptional adaptation in Caenorhabditis elegans and show the ectopic expression of an extrachromosomal reporter in a tissue where it is not normally expressed. In addition, we analyze these transcriptional adaptation models after RNAi-mediated knockdown of different genes involved in RNA metabolism and find that the upregulation of the adapting genes requires factors involved in the maturation and transport into the nucleus of small RNAs (sRNAs).

Results

Examples of transcriptional adaptation in C. elegans

Actins are essential structural components of eukaryotic cells as they mediate a wide range of cellular processes (Pollard and Cooper, 1986). Actin genes are often present in multiple copies in higher eukaryotic genomes and hints of transcriptional adaptation modulating their expression have been reported. For example, mouse embryonic fibroblasts (MEFs) mutant for β-Actin (Actb) display increased expression of other Actins including α- and γ-Actin (ACTA and ACTG1/2) as measured by Western blots (Tondelie et al., 2012). Similarly, Actg1 knockout, but not knockdown, in MEFs leads to an increase in Acta mRNA levels (Patrinostro et al., 2017), and zebrafish actc1b mutants exhibit mild muscle defects because of the transcriptional upregulation of actc1a (Sztal et al., 2018). Furthermore, Actg1 mutant MEFs and Actb mutant mouse embryonic stem cells (mESCs) display increased mRNA levels of Actg2 and Actg1, respectively, and this upregulation is triggered not by the loss of protein function but by mutant mRNA decay (El-Brolosy et al., 2019). Thus, we decided to investigate actin genes in C. elegans to test for transcriptional adaptation. The C. elegans genome contains five actin genes which display high similarity in their DNA and protein sequences (MacQueen et al., 2005). We started by analyzing several mutant alleles for act-1, act-2, act-3 and act-5, and determined mutant transcript levels. We found significantly reduced act-5 mRNA levels in act-5(dt2019) mutants compared to wild type (Figure 1A), likely caused by nonsense-mediated decay (NMD) due to a premature termination codon (ptc) in the first exon (Figure 1A, Figure 1—figure supplement 1). Most mutant alleles of act-5 cause severe phenotypes including lethality (Estes et al., 2011; MacQueen et al., 2005), sterility (Cui et al., 2004), and paralysis (Etheridge et al., 2015). However, the act-5(dt2019) allele, hereafter referred to as act-5(ptc), does not exhibit any obvious phenotype (MacQueen et al., 2005), an observation we confirmed. We analyzed the mRNA levels of all actin genes in act-5(ptc) mutants (Figure 1A, Figure 1—figure supplement 2), and observed the upregulation of act-3 mRNA and pre-mRNA (Figure 1B, Figure 1—figure supplement 3), consistent with a transcriptional adaptation response.

We also examined the act-5(dt2017) partial deletion allele, hereafter referred to as act-5(Δ1), (Figure 1—figure supplement 1) and found no significant change in act-5 mRNA levels in homozygous mutants compared to wild type (Figure 1A). Notably, act-3 mRNA levels in act-5(Δ1) mutants were not changed compared to wild type (Figure 1B). To further test whether act-3 upregulation in act-5
mutants represents a model of transcriptional adaptation, we analyzed another act-5 deletion allele (ok1397) (Estes et al., 2011), hereafter referred to as act-5(D2). The ok1397 deletion removes part of the promoter region and the first two exons (Figure 1—figure supplement 1). We examined this allele for the presence of any transcripts and identified a new isoform which is present in mutants but not in wild type (see Materials and methods) and consists of only 3' sequence (Figure 1—figure supplement 1). As with the act-5(D1) deletion allele, we found no changes in act-5 or act-3 mRNA levels in act-5(D2) mutants compared to wild type (Figure 1B).

In multicellular organisms, paralogous genes are often expressed in distinct spatiotemporal patterns, an indication of subfunctionalization (Guschanski et al., 2017). For example, in C. elegans, act-3 is expressed in the pharynx (Hunt-Newbury et al., 2007) while act-5 is expressed in intestinal cells (MacQueen et al., 2005). The models of transcriptional adaptation suggest a cell-autonomous mechanism, that is the mutant mRNA can cell-autonomously trigger transcriptional adaptation. In order to test this hypothesis, we generated transcriptional reporter constructs with the act-3 or act-5 promoter region driving the expression of a red florescent protein gene (Merzlyak et al., 2007). As expected, we observed expression of the extrachromosomal act-3p::rfp transgene in the intestine in wild-type animals (Figure 2A) as well as in act-5(ptc) mutants (Figure 2—figure supplement 1). Likewise, expression of the extrachromosomal act-3p::rfp transgene was only observed in the pharynx in wild-type animals (Figure 2B), consistent with previous studies (Hunt-Newbury et al., 2007). However, extrachromosomal act-3p::rfp expression was also observed in the intestine in act-5(ptc) mutants (Figure 2C), consistent with transcriptional adaptation. In summary, we saw upregulation of expression from a synthetic and extrachromosomal act-3 promoter in tissues where act-5 is expressed, supporting the model that the mutant mRNA cell-autonomously triggers transcriptional adaptation.

To identify an additional example of transcriptional adaptation in C. elegans, we turned to the titin gene family (Figure 3—source data 1). Due to their size, titin genes are frequent targets of random mutagenesis, and several PTC alleles have been identified (Jorgensen and Mango, 2002; Lipinski et al., 2011). We focused on unc-89 which has many nonsense alleles that do not exhibit an obvious phenotype, potentially indicating functional compensation. We identified three different

The online version of this article includes the following source data and figure supplement(s) for figure 1:

Source data 1. Average dCt values from qPCR analysis of act-5 and act-3 mRNA levels in WT and act-5 mutants.

Source data 2. Average dCt values from qPCR analysis of act-1, act-2 and act-4 mRNA levels in WT and act-5(ptc) mutants.

Figure supplement 1. Organization of act-5 locus.

Figure supplement 2. mRNA levels of act-1 (A), act-2 (B) and act-4 (C) in WT and act-5(ptc) mutants.

Figure supplement 3. Pre-mRNA levels of act-3 in WT and act-5(ptc) mutants.

Serobyan et al. eLife 2020;9:e50014. DOI: https://doi.org/10.7554/eLife.50014
Figure 2. Extrachromosomal reporter expression in WT and mutant alleles. (A) act-5p::rfp extrachromosomal reporter expression was observed in the intestine in 153 of 300 WT animals. (B) act-3p::rfp extrachromosomal reporter expression was observed in the pharynx in 182 of 400 WT animals. (C) act-3p::rfp extrachromosomal reporter expression was observed in the pharynx and intestine in 138 of 320 act-5(ptc) mutants.

The online version of this article includes the following figure supplement(s) for figure 2:

Figure supplement 1. act-5p::rfp extrachromosomal reporter expression.
unc-89 alleles (gk469156, gk509355, gk506355) which exhibit lower levels of mutant mRNA compared to wild type (Figure 3A) and lack an obvious phenotype. Analyzing the mRNA levels of 10 titin related genes (him-4, ttn-1, ketn-1, sax-3, unc-22, unc-52, sax-7, rig-6, unc-40, and unc-73), we found that sax-3 was upregulated in all three unc-89(ptc) alleles (Figure 3—figure supplement 1), both at the mRNA (Figure 3B) and pre-mRNA (Figure 3—figure supplement 2) levels. To test whether this upregulation of sax-3 was due to transcriptional adaptation and not to the loss of UNC-89 function, we generated a 16 kb deletion (bns7000) in unc-89, hereafter referred to as unc-89(Δ), using CRISPR/Cas9 genome editing. This deletion removes part of the promoter region and the first several exons (Figure 3—figure supplement 1). Hence, most unc-89 isoforms are not observed in unc-89(Δ) mutants (Figure 3A). Homozygous unc-89(Δ) worms are maternal-effect sterile and exhibit growth defects, phenotypes not observed in the unc-89(ptc) alleles. In the RNA-less unc-89(Δ) allele, sax-3 was not upregulated (Figure 3B), indicating that sax-3 upregulation is not due to the loss of UNC-89 function and that the mutant mRNA needs to be present for the transcriptional adaptation response. Thus, sax-3 upregulation in the unc-89(ptc) alleles is a second example of transcriptional adaptation in C. elegans.

To test whether the observed changes in gene expression in act-5(ptc) and unc-89(ptc) mutants were specific, we measured unc-89 and sax-3 expression in act-5(ptc) mutants as well as act-5 and act-3 expression in unc-89(ptc) mutants. We observed no significant differences (Figure 3—figure supplement 3), suggesting that there is specificity to the gene expression changes.

Identifying additional regulators of transcriptional adaptation

The mutant mRNA has been reported to activate transcriptional adaptation in zebrafish embryos and mouse cell lines (El-Brolosy et al., 2019; Ma et al., 2019). In order to identify additional factors involved in transcriptional adaptation, we performed a candidate RNA interference (RNAi) screen,

Figure 3. mRNA levels of unc-89 and sax-3 in WT and mutant alleles. qPCR analysis of unc-89 (C) and sax-3 (D) mRNA levels in WT and unc-89(ptc1), unc-89(ptc2), unc-89(ptc3), and unc-89(Δ) mutants. sax-3 mRNA levels in unc-89 alleles are upregulated when unc-89 mutant mRNA levels are reduced, except in the deletion allele. WT expression levels are set at 1. Data are mean ± S.E.M.; average dCt values are shown in Figure 3—source data 2. Two-tailed Student’s t-test was used to calculate P values.

The online version of this article includes the following source data and figure supplement(s) for figure 3:

Source data 1. List of ttn-1 paralogous genes based on WormBase release WS266.
Source data 2. Average dCt values from qPCR analysis of unc-89 and sax-3 mRNA levels in WT and unc-89 mutants.
Source data 3. Distance, in nucleotides, from each PTC to the next exon-intron junction and to the stop codon in each unc-89 isoform in the unc-89(ptc1), unc-89(ptc2), and unc-89(ptc3) alleles.
Figure supplement 1. Organization of unc-89 locus.
Figure supplement 2. Pre-mRNA levels of sax-3 in WT and unc-89(ptc1), unc-89(ptc2), unc-89(ptc3) mutants.
Figure supplement 3. mRNA levels in WT and mutant alleles.
focusing on genes involved in RNA metabolism (Figure 4—source data 1). We knocked down genes involved in mRNA processing including splicing and nonsense-mediated decay, as well as other genes involved in small RNA synthesis and maturation. We measured the mRNA levels of the mutant and adapting genes in order to position RNAi candidates upstream or downstream of mRNA decay. If the gene targeted by RNAi is required for mutant mRNA decay, we expect to see the mRNA levels of the mutant and adapting genes to be similar to wild-type levels. If the gene targeted by RNAi is involved in transcriptional adaptation downstream of mutant mRNA decay, we expect to see the levels of mutant mRNA remaining lower than in wild type, but the levels of the adapting gene’s mRNA to be similar to wild-type levels. Finally, if the gene targeted by RNAi is not involved in transcriptional adaptation, we expect to see the levels of mutant mRNA remain lower than in wild type and the expression levels of the adapting gene to remain higher than in wild type. For example, when we knocked down dsh-1, a gene involved in miRNA biogenesis (Denli et al., 2004), we saw no significant changes in the mRNA levels of the mutant or adapting genes compared to control (Figure 4—figure supplement 1A,B,C,D), suggesting that dsh-1 is not involved in regulating transcriptional adaptation.

Transcriptional adaptation requires the activity of decay factors (El-Brolosy et al., 2019; Ma et al., 2019), and UPF1, SMG6, and XRN1 were reported to be differentially required in various zebrafish embryo and mouse cell line models of transcriptional adaptation (El-Brolosy et al., 2019). In order to test whether NMD factors are involved in regulating transcriptional adaptation in C. elegans, we knocked down several NMD genes including smg-2 (the C. elegans orthologue of Upf1), smg-4 (Upf3) and smg-6 (Smg6). Knockdown of smg-2 and smg-4 blocked the transcriptional adaptation response in all three unc-89(ptc) alleles but not in the act-5(ptc) allele (Figure 4). Conversely, knockdown of smg-6 blocked the transcriptional adaptation response in the act-5(ptc) allele but not in the three unc-89(ptc) alleles (Figure 4). A differential requirement for Upf1 and Smg6 between gene models was also observed in mouse cells (El-Brolosy et al., 2019).

As RNAi efficiency can vary in different tissues (Ratliff et al., 2006; Zhuang and Hunter, 2011), we generated double mutant strains with smg-2, smg-4, or smg-6 mutant alleles and the act-5(ptc) and unc-89(ptc) alleles to exclude the possibility of tissue-specific knockdown. Analysis of the double mutant strains confirmed the observations made in the RNAi experiments (Figure 5). For example, we found that the levels of act-5 mRNA were lower in smg-2; act-5(ptc) and smg-4; act-5(ptc) double mutants than in smg-2 and smg-4 single mutants, and that the levels of the adapting gene’s mRNA were higher (Figure 5—source data 1), further indicating that smg-2 and smg-4 are not required for transcriptional adaptation in the act-5 model. However, in smg-4; unc-89(ptc) animals, the mRNA levels of the mutant (unc-89) and adapting (sax-3) genes were similar to those in smg-4 single mutants. Furthermore, these animals exhibited a mild uncoordinated phenotype and grew slowly, suggesting a lack of functional compensation. These data further indicate that smg-4 is required for transcriptional adaptation in the unc-89 model. We could not obtain smg-6; act-5(ptc) viable mutants due to severe larval lethality, possibly as a consequence of blocking the transcriptional adaptation response, that is act-3 upregulation. smg-6; unc-89(ptc) mutants exhibited lower levels of unc-89 mRNA and higher levels of adapting gene mRNA in comparison to single smg-6 mutants (Figure 5—source data 1) similar to the observations in the RNAi experiments. Thus, there are differential requirements for decay factors in different models of transcriptional adaptation.

Previous data indicate that the exonuclease Xrn1 is involved in regulating the transcriptional adaptation response in mouse cells (El-Brolosy et al., 2019). Therefore, we tested the role of exonucleases in transcriptional adaptation in C. elegans, specifically the exonuclease gene xrn-1 (Jones et al., 2012) and the XRN-2 partner gene paxt-1 (Miki et al., 2014) (Figure 4). We found that knocking down xrn-1 or paxt-1 led to mutant (act-5 and unc-89) mRNA levels similar to wild-type levels. Furthermore, the transcriptional adaptation response was blocked, suggesting that the degradation and processing of mutant transcripts is important to trigger transcriptional adaptation.

We next looked for additional factors required for transcriptional adaptation. Pre-mRNA splicing and NMD are closely related processes via the positioning and use of the exon junction complex (EJC) (Lejeune and Maquat, 2005; Kashima et al., 2010; Fukumura et al., 2016). SR-protein kinases (SRPK) and their substrates, serine/arginine-rich (SR) splicing factors, are key components of the splicing machinery and are well conserved across phyla (Kuroyanagi et al., 2000; Black, 2003; Galvin et al., 2011). Multiple SR proteins are components of the EJC (Singh et al., 2012), consistent with a previously suggested role of SR proteins in mRNA surveillance (Zhang and Krainer, 2004).
Process

gene	act-5/act-3	unc-89/sax-3		
control	Yes	Yes	Yes	Yes

mRNA Splicing

gene	act-5/act-3	unc-89/sax-3		
spk-1	No	No	No	No
rsp-6	No	No	Yes	Yes

mRNA Decay and Processing

gene	act-5/act-3	unc-89/sax-3		
smg-2	Yes	No	No	No
smg-4	Yes	Yes	No	No
smg-6	No	No	Yes	Yes
xrn-1	No	No	No	No
paxt-1	No	No	No	No

Small RNA Biogenesis

gene	act-5/act-3	unc-89/sax-3		
ergo-1	Yes	No	Yes	No
nrde-3	Yes	No	Yes	No
rrf-3	Yes	No	Yes	No
dcr-1	Yes	No	Yes	No

Figure 4. Factors regulating transcriptional adaptation identified in RNAi-mediated knockdown screen. The online version of this article includes the following source data and figure supplement(s) for figure 4:

Source data 1. List of genes and RNAi clones tested in the screen; average dCt values of qPCR analyses of act-5 and act-3 mRNA levels in WT and act-5 mutants as well as of unc-89 and sax-3 mRNA levels in WT and unc-89 mutants.

Figure supplement 1. qPCR analysis of act-5 (A) and act-3 (B) mRNA levels in WT and act-5(pltc) mutants as well as of unc-89 (C) and sax-3 (D) mRNA levels in WT and unc-89(pltc) mutants upon drsh-1 RNAi-mediated knockdown by two independent clones.

Figure supplement 2. qPCR analysis of act-5 (A) and act-3 (B) mRNA levels in WT and act-5(pltc) mutants as well as of unc-89 (C) and sax-3 (D) mRNA levels in WT and unc-89(pltc) mutants upon spk-1 RNAi-mediated knockdown by two independent clones.

Figure 4 continued on next page
Knocking down the SRPK gene spk-1 resulted in mutant mRNA levels similar to wild-type levels, and blocked transcriptional adaptation in all act-5 and unc-89 ptc alleles (Figure 4—figure supplement 2A,B,C,D). We also identified the SR family gene rsp-6 as a regulator of transcriptional adaptation in the act-5 model, but were unable to identify a single SR protein whose knockdown influenced the transcriptional adaptation response in the unc-89 model (Figure 4—source data 1), possibly due in part to the complexity of the unc-89 gene structure including the large number of isoforms (Tourasse et al., 2017).

The next group of genes we targeted encode factors involved in small RNA (sRNA) biogenesis, maturation and transport into the nucleus. We tested several pathways (Figure 4—source data 1) and observed that the argonaute proteins ERGO-1 and NRDE-3, the RNA-dependent RNA polymerase RRF-3, as well as the ribonuclease DCR-1 regulate the transcriptional adaptation response downstream of mRNA decay (i.e., the mutant mRNA was still degraded but the adapting gene was not upregulated) (Figure 4, Figure 4—figure supplement 3A,B,C,D, Figure 4—source data 1). These RNAi data were confirmed by analyzing double mutants of the act-5(ptc) or unc-89(ptc) alleles with ergo-1, nrde-3, and rrf-3 (Figure 5), and all these animals exhibited phenotypes comparable to the

process	gene (allele)	act-5/act-3	unc-89/sax-3		
mRNA decay	smg-2(e2008)	Yes	Yes	not tested	not tested
	smg-4(ma116)	Yes	Yes	No	No
	smg-6(r896)	not tested	not tested	Yes	Yes
small RNA biogenesis	ergo-1(gg100)	Yes	No	Yes	No
	nrde-3(gg66)	Yes	Yes	Yes	No
	rrf-3(mgm373)	Yes	No	Yes	No

Figure 5. Factors regulating transcriptional adaptation analyzed in double mutants.

The online version of this article includes the following source data and figure supplement(s) for figure 5:

Source data 1. List of genes and alleles for each gene tested in the double mutant analysis; average dCt values from qPCR analyses of act-5 and act-3 mRNA levels in WT and act-5 mutants as well as of unc-89 and sax-3 mRNA levels in WT and unc-89 mutants.

Figure supplement 1. Partial data from double mutant analysis.
act-5 or unc-89 deletion alleles analyzed in this study including larval lethality, slow growth and uncoordinated movements, indicating lack of functional compensation. Notably, ERGO-1, NRDE-3, RRF-3, and DCR-1 are involved in 26G RNA biogenesis (Pavelec et al., 2009; Vasale et al., 2010; Fischer, 2010; Grishok, 2013; Yvert, 2014), suggesting that 26G RNAs could play a role in transcriptional adaptation.

Together, these results indicate that mRNA decay as well as small RNA biogenesis and transport are critical in triggering transcriptional adaptation.

Discussion
Recent advances in reverse genetic tools have significantly expanded our ability to generate genetic modifications in a wide range of organisms (Housden et al., 2017). However, some engineered mutants exhibit no apparent phenotype, renewing interest in the concept of genetic robustness. Genetic compensation, and in particular transcriptional adaptation, have been proposed as a means to achieve genetic robustness upstream of protein feedback loops. Despite the potential importance of transcriptional adaptation, its underlying molecular mechanisms remain relatively unexplored. Here, we report two cases of transcriptional adaptation in C. elegans. By carrying out a small RNAi screen and a follow up analysis using double mutants, we identified several new factors that regulate transcriptional adaptation and further validated previously identified ones.

In the C. elegans act-5 model, the mutant gene and related adapting gene (act-5 and act-3, respectively) are primarily expressed in distinct tissues. However, using an extrachromosomal transcriptional reporter, we observed that in act-5(ptc) mutants, the act-3 promoter adapts to drive transcription in the primary site of act-5 expression, the intestine. As act-5(ptc) mutants do not exhibit any obvious phenotype when the transcriptional adaptation response is intact, we predict that ACT-3 and/or other proteins are able to compensate for the loss of ACT-5. Indeed, when we disrupted transcriptional adaptation, act-5(ptc) mutants did not survive. Thus, transcriptional adaptation can in some cases entail the change in the pattern of expression of related gene(s) and suppress phenotypes that would alter the animal’s fitness.

Based on the factors identified in this study, we hypothesize that the transcriptional adaptation response consists of at least three critical processes: mutant mRNA decay, sRNA maturation and sRNA transport. In terms of mutant mRNA decay, we found that the machinery can be gene-specific. In our experiments, SMG-6 is involved in act-5(ptc) mRNA decay, while SMG-2 (UPF1) and SMG-4 (UPF3) impact unc-89(ptc) mRNA decay. Similar observations were made in mouse Actb and Rela mutant cells in which siRNA-mediated knock down of SMG6 blocked the transcriptional adaptation response in Actb mutant mESCs but had little influence on Rela mutant MEFs. Conversely, siRNA-mediated knockdown of UPF1 blocked the transcriptional adaptation response in Rela mutant MEFs but not in Actb mutant mESCs (El-Brolosy et al., 2019). Consistently, mutant mRNA decay can involve different factors in the same organism (Nickless et al., 2017), possibly due to differential expression of the decay factors. However, we cannot exclude the possibility that SMG6 could function as a decay factor independent of NMD, especially since it has been reported to have NMD-independent cleavage activity (Gehring et al., 2005; Glavan et al., 2006; Huntzinger et al., 2008; Chakrabarti et al., 2014).

Transcriptional adaptation can be triggered by the degradation products of the mutant mRNA (El-Brolosy et al., 2019), which could seed the generation of sRNAs (Mattick and Makunin, 2005; Boivin et al., 2018). We found that factors involved in sRNA maturation and transport, including RRF-3, DCR-1, ERGO-1 and NRDE-3, also regulate transcriptional adaptation. Transcriptional modulation of genes by sRNAs of approximately 20–30 nucleotides in length is a widespread and diverse feature of prokaryotes (Melamed et al., 2019) and eukaryotes (Ambros et al., 2003; Yigit et al., 2006; Hutvagner and Simard, 2008; Portnoy et al., 2011; Castel and Martienssen, 2013; Rechavi and Lev, 2017; Billmyre et al., 2019). Notably, the factors we identified are known to be involved in somatic gene regulation by sRNAs, described as the RRF-3 pathway (Gent et al., 2010). RRF-3 is an RNA-dependent RNA polymerase involved along with the DICER complex in the biogenesis of 26-nucleotide RNAs with 5’ bias for guanosine monophosphate (26G-RNAs) (Han et al., 2009; Gent et al., 2010; Vasale et al., 2010). 26G sRNAs associate with the Argonaute protein ERGO-1, which is involved in the further maturation of sRNAs and is required to separate the sRNA duplex (Han et al., 2009; Gent et al., 2010; Fischer et al., 2011). Mature sRNAs interacting with
Argonaute proteins can direct post-transcriptional gene silencing (Vasale et al., 2010; Phillips et al., 2012), or be transported into the nucleus (Guang et al., 2008; Buckley et al., 2012; Shirayama et al., 2012). NRDE-3 is another Argonaute protein involved in transporting sRNAs into the nucleus (Guang et al., 2008), and we found that knocking it down, and knocking it out, blocked transcriptional adaptation while not affecting mutant mRNA levels. While sRNAs are best known as repressors of gene expression, they can also function as activators (Li et al., 2006; Janowski et al., 2006; Turunen et al., 2009; Portnoy et al., 2011; Wedeles et al., 2013; Li, 2017), although the underlying mechanisms remain poorly understood (Portnoy et al., 2011). Some of these activating sRNAs interact with Argonaute proteins (Seth et al., 2013), and they can target gene regulatory sequences including promoters. Whether they can also interfere with antisense RNAs, which usually function to repress gene expression (Faghihi and Wahlestedt, 2009; Modarresi et al., 2012; Wedeles et al., 2013; Li, 2017), is a hypothesis worth testing given our observations in zebrafish embryos and mouse cell lines (El-Brolosy et al., 2019) as well as the previously suggested role of Argonaute proteins in such a process (Ghanbarian et al., 2017).

The transcriptional adaptation factors identified here came from a candidate screen where we specifically targeted pathways involved in RNA metabolism. With this study, we have established C. elegans as a genetic model system to perform unbiased screens to help reveal further mechanisms of transcriptional adaptation, a newly uncovered phenomenon contributing to genetic robustness.

Materials and methods

Key resources table

Reagent type (species) or resource	Designation	Source or reference	Identifiers	Additional information
Gene (Caenorhabditis elegans)	act-1	CELE_T04C12.6	WBGene00000063	
Gene (Caenorhabditis elegans)	act-2	CELE_T04C12.5	WBGene00000064	
Gene (Caenorhabditis elegans)	act-3	CELE_T04C12.4	WBGene00000065	
Gene (Caenorhabditis elegans)	act-4	CELE_M03F4.2	WBGene00000066	
Gene (Caenorhabditis elegans)	act-5	CELE_T25C8.2	WBGene00000067	
Gene (Caenorhabditis elegans)	unc-89	CELE_C09D1.1	WBGene000006820	
Gene (Caenorhabditis elegans)	sax-3	CELE_ZK377.2	WBGene000004729	
Strain, strain background (C. elegans)	N2	CGC, Bristol strain	wild type	
Strain, strain background (C. elegans)	IN2049	MacQueen et al., 2005	act-5(ptc); dtis 419[act-5+ rol-6(d)]	
Strain, strain background (C. elegans)	IN2051	MacQueen et al., 2005	act-5(Δ1); dtis 419[act-5+ rol-6(d)]	
Strain, strain background (C. elegans)	VC971	CGC, Estes et al., 2011	+/mT1; act-5(Δ2); mT1 [dpy-10(e128)];	
Strain, strain background (C. elegans)	CB4043	CGC, Hodgkin et al., 1989	smg-2(e2008); him-5(e1490)	
Strain, strain background (C. elegans)	CB4355	CGC, Pulak and Anderson, 1993	smg-4(ma116); him-8(e1490)	
Strain, strain background (C. elegans)	TR1396	CGC, Pulak and Anderson, 1993	smg-6(e896)	
Strain, strain background (C. elegans)	YY168	CGC, Pavelec et al., 2009	ergo-1(gg100)	

Continued on next page
Reagent type (species) or resource	Designation	Source or reference	Identifiers	Additional information
Strain, strain background (C. elegans)	YY158	CGC, Guang et al., 2008	nrde-3(gg66)	
Strain, strain background (C. elegans)	YY13	CGC, Pavelec et al., 2009	rrf-3(mg373)	
Strain, strain background (C. elegans)	DYS0005	This study, crossed IN2049 to N2	act-5(ptc)	
Strain, strain background (C. elegans)	DYS0004	This study, crossed IN2049 to N2	+/act-5(A1)	
Strain, strain background (C. elegans)	DYS0012	This study, injected in N2	Ex[act-5p::RFP]	
Strain, strain background (C. elegans)	DYS0014	This study, injected in N2	Ex[act-3p::RFP]	
Strain, strain background (C. elegans)	DYS0015	This study, crossed DYS0014 to DYS0004	act-5(ptc); Ex[act-3p::RFP]	
Strain, strain background (C. elegans)	DYS0042	This study, crossed DYS0012 to DYS0005	act-5(ptc); Ex[act-5p::RFP]	
Strain, strain background (C. elegans)	VC40114	CGC, Million Mutation Project	unc-89(ptc1)	
Strain, strain background (C. elegans)	VC40193	CGC, Million Mutation Project	unc-89(ptc2)	
Strain, strain background (C. elegans)	VC40199	CGC, Million Mutation Project	unc-89(ptc3)	
Strain, strain background (C. elegans)	DYS0028	This study, crossed VC40114 to N2	unc-89(ptc1)	
Strain, strain background (C. elegans)	DYS0030	This study, crossed VC40193 to N2	unc-89(ptc2)	
Strain, strain background (C. elegans)	DYS0031	This study, crossed VC40199 to N2	unc-89(ptc3)	
Strain, strain background (C. elegans)	DYS0037	This study, induced by CRISPR/Cas9	unc-89(A)	
Strain, strain background (C. elegans)	DYS0008	This study, crossed DYS0005 to CB4043	smg-2(e2008); act-5(ptc)	
Strain, strain background (C. elegans)	DYS0057	This study, crossed DYS0005 to CB4355	act-5(ptc); smg-4(ma116)	
Strain, strain background (C. elegans)	DYS0047	This study, crossed DYS0028 to CB4355	unc-89(ptc1); smg-4(ma116)	
Strain, strain background (C. elegans)	DYS0048	This study, crossed DYS0030 to CB4355	unc-89(ptc2); smg-4(ma116)	
Strain, strain background (C. elegans)	DYS0050	This study, crossed DYS0031 to CB4355	unc-89(ptc3); smg-4(ma116)	
Strain, strain background (C. elegans)	DYS0053	This study, crossed DYS0028 to TR1396	unc-89(ptc1); smg-6(r896)	
Strain, strain background (C. elegans)	DYS0055	This study, crossed DYS0030 to TR1396	unc-89(ptc2); smg-6(r896)	
Strain, strain background (C. elegans)	DYS0056	This study, crossed DYS0031 to TR1396	unc-89(ptc3); smg-6(r896)	
Strain, strain background (C. elegans)	DYS0010	This study, crossed DYS0005 to YY168	act-5(ptc); ergo-1(gg100)	
Strain, strain background (C. elegans)	DYS0054	This study, crossed DYS0028 to YY168	unc-89(ptc1); ergo-1(gg100)	
Strain, strain background (C. elegans)	DYS0051	This study, crossed DYS0030 to YY168	unc-89(ptc2); ergo-1(gg100)	
Reagent type (species) or resource

Strain, strain background (C. elegans)	Designation	Source or reference	Identifiers	Additional information
DYS0052 This study, crossed DYS0031 to YY168	unc-89(ptc3); ergo-1(gg100)			
DYS0005 This study, crossed DYS0005 to YY158	unc-89(ptc1); nrde-3(gg66)			
DYS0065 This study, crossed DYS0028 to YY158	unc-89(ptc2); nrde-3(gg66)			
DYS0072 This study, crossed DYS0030 to YY158	unc-89(ptc3); nrde-3(gg66)			

Commercial assay or kit

Commercial assay or kit	In-Fusion HD Cloning	Clontech	Clontech:639647
Commercial assay or kit	Superscript III reverse transcriptase	Takara	Cat. No: 18080-044
Commercial assay or kit	SMARTer RACE cDNA Amplification Kit	Takara	Cat. N. 634860
Commercial assay or kit	Advantage 2 PCR kit	Takara	Cat. N. 639207

RNAi constructs

RNAi construct	mv_C18D11.4	BioScience	rsp-8
RNAi construct	sjj2_C18D11.4	BioScience	rsp-8
RNAi constructs	mv_C33H5.12	BioScience	rps-6
RNAi constructs	sjj2_C33H5.12	BioScience	rps-6
RNAi constructs	mv_W02B12.3	BioScience	rps-1
RNAi constructs	sjj2_W02B12.3	BioScience	rps-1
RNAi constructs	mv_D2089.1	BioScience	rps-7
RNAi constructs	sjj2_D2089.1	BioScience	rps-7
RNAi constructs	mv_B0464.5	BioScience	spk-1
RNAi constructs	sjj2_B0464.5	BioScience	spk-1
RNAi constructs	mv_R05D11.6	BioScience	paxt-1
RNAi constructs	sjj2_R05D11.6	BioScience	paxt-1
RNAi constructs	mv_F43E2.8	BioScience	hsp-4
RNAi constructs	sjj2_F43E2.8	BioScience	hsp-4
RNAi constructs	sjj2_Y39G8C.1	BioScience	xrn-1
RNAi constructs	mv_Y48G8AL.6	BioScience	smg-2
RNAi constructs	sjj2_Y48G8AL.6	BioScience	smg-2
RNAi constructs	sjj2_F46B6.3	BioScience	smg-4
RNAi constructs	mv_Y54F10AL.2	BioScience	smg-6
RNAi constructs	sjj2_Y54F10AL.2	BioScience	smg-6
RNAi constructs	mv_F26B1.2	BioScience	hrpk-1
RNAi constructs	sjj2_F26B1.2	BioScience	hrpk-1

Continued on next page
Continued

Reagent type (species) or resource	Designation	Source or reference	Identifiers	Additional information
RNAi constructs	mv_F26E4.10	BioScience		
RNAi constructs	sjj2_F26E4.10	BioScience		drsh-1
RNAi constructs	mv_T22A3.5	BioScience		pash-1
RNAi constructs	sjj2_T22A3.5	BioScience		pash-1
RNAi constructs	sjj2_F26A3.8	BioScience		rrf-1
RNAi constructs	mv__R06C7.1	BioScience		wago-1
RNAi constructs	sjj2__R06C7.1	BioScience		wago-1
RNAi constructs	mv_F58G1.1	BioScience		wago-4
RNAi constructs	sjj2_F58G1.1	BioScience		wago-4
RNAi constructs	sjj2_F10B5.7	BioScience		rrf-3
RNAi constructs	mv_M88.5	BioScience		zbp-1
RNAi constructs	sjj2_M88.5	BioScience		zbp-1
RNAi constructs	sjj2_K12H4.8	BioScience		dcr-1
RNAi constructs	mv_T20G5.11	BioScience		rde-4
RNAi constructs	sjj2_T20G5.11	BioScience		rde-4
RNAi constructs	mv_F36H1.2	BioScience		kdn-1
RNAi constructs	mv_K12B6.1	BioScience		sago-1
RNAi constructs	sjj2_K12B6.1	BioScience		sago-1
RNAi constructs	mv_K08H10.7	BioScience		rde-1
RNAi constructs	sjj2_K08H10.7	BioScience		rde-1
RNAi constructs	sjj2_R09A1.1	BioScience		ergo-1
RNAi constructs	mv_R04A9.2	BioScience		nrde-3
RNAi constructs	sjj2_R04A9.2	BioScience		nrde-3

Culture conditions and strains

All wild-type worms were the N2 reference strain. All *C. elegans* strains were kept on 6 cm plates with nematode growth medium agar and fed with a lawn of *E. coli* OP50 grown in 500 µl Luria broth, except for the RNAi mediated knockdown experiments where the worms were fed with *E. coli* expressing the respective double-stranded RNA. Cultures were maintained at 20°C. Also, to minimize the potential for laboratory evolution of the trait, a new culture of the strains was revived annually from frozen stocks. All plates with fungal or bacterial contamination were excluded from the experiments.

Synchronization of cultures for RNA isolation

Worms from healthy cultures were washed off of plates using M9 buffer and passed through a 41 µm filter (Millipore Cat. No SCNY00040) with vacuum; antibiotics (Ampicillin, Chloramphenicol) were added (50 µg/ml final concentration) to eliminate remaining food bacteria, and the worms were then incubated on a shaker at room temperature for 15 min. Worms were centrifuged at 3000 rpm for 5 min to pellet early larval stage animals. The buffer was aspirated and 1 ml of fresh buffer was added to resuspend the pellet. Samples were confirmed to be primarily L1 and L2 stage larvae by observing two 5 µl samples on a 6 cm nematode growth medium plate. Starving cultures or cultures that had more than one male were excluded from the experiments.

qPCR analysis

Total RNA from synchronized cultures or manually picked young adults was isolated using TRIzol (ambion by Takara). For reverse transcription (RT), Superscript III reverse transcriptase (Invitrogen, Cat. No: 18080–044) was used following manufacturer’s instructions. We used 1–2 µg total RNA for
each RT reaction. The qPCR experiments were performed on a CFX Connect Real-Time System (Bio-
rad-Roche Diagnostics) as described previously (El-Brolosy et al., 2019). cdc-42 and Y45F10D.4
(iscu-1) were used as reference genes as described previously (Hoogewijs et al., 2008), and the Ct
values ranged from 12.3 to 28.4 for cdc-42 and 11.8 to 26 for Y45F10D.4. The Ct values for all other
genes were aimed to be below 30.

The following primers were used to amplify the cDNA of target genes: Y45F10D.4 (forward 5’-
CGAGAACCCGCAAATGTCGGA-3’ and reverse 5’- CGGTTGCCAGGGAAGATGAGGC-3’), cdc-42
(forward 5’- AGCCATTCTGGCCGCTCTCG-3’ and reverse 5’- GCAACCCTTCTGTGTGTCG-3’), act-
1 (forward 5’- AGCAGGATGCGGCCCATTCC-3’ and reverse 5’- GAAAGCTGTTGTTGACGATGTGTT-
3’), act-2 (forward 5’- GGGCAAGTACTCCGCTCGATCGT-3’ and reverse 5’- GGGTGTGAAATTCCG
TAAGGCAGA-3’), act-3 (forward 5’- AAGCTTCTGCCCTACCATTTC-3’ and reverse 5’- ACA-
GAGCAAAAATTGAGGGGCTTC-3’), act-4 (forward 5’- AGGCTCTCTTCCAGCCATCCTGG-3’ and reverse 5’-
TGATCTTTGATCTTCGATGATG-3’), act-5 (forward 5’- AACACCGGAATTCTTGGACGAGGAG-3’ and reverse 5’-
TTTGGATTGCTTTGGAGG-3’), sax-3 (forward 5’-TGCTTCTGGTCCGGTAACAACTATG-3’ and reverse 5’- ATC
TTCTGAAGCTGGGAGAAC-3’), act-3 pre-mRNA (forward 5’- TTTTTCAGAACCATGAAGATCA-3’ and reverse 5’-
GAAAATGGTAAGGCGAAGAGC-3’), sax-3 pre-mRNA (forward 5’- TTCTGAACTGGACAAATCTTGCTTTTC-3’ and reverse 5’-
TCCACCAAGAGCCTGAAAAC-3’). PCR efficiency was
determined using external standards on plasmid mini-preparation of cloned PCR products. Expres-
sion levels were analyzed by basic relative quantification. qPCR data are based on three biological
replicates and three technical replicates for each biological replicate.

Rapid amplification of cDNA ends (RACE)
Total RNA from manually picked young wild-type and act-5(D2) mutant adults was isolated using TRI-
zol (ambion by Takara). 5’ and 3’ RACE ready cDNA was synthesized by reverse transcription PCR
using a SMARTer RACE cDNA Amplification Kit following manufacturer’s protocol (Cat. N. 634860,
Takara). PCRs were performed using an Advantage 2 PCR kit (Cat. N. 639207, Takara). The following
gene-specific primers and nested gene-specific primers were used to amplify 3’ and 5’ cDNA ends:
act5GSP2 (5’- ACCACCGGAATCCTTGGACGAGGAG-3’), act5NGSP2 (5’- GAAGGATATGCCC TTCCACATCACC-3’), act5GSP1 (5’- AAAAAATACGCTAGAAGCACTTCCGTTG-3’), act5NGSP1
(5’- TCGATGGGCCGGACTCGTCGTACTCCTG-3’), unc89GSP2 (5’- TTTGAGGAGGAGGAGGAG-3’), unc89NGSP2 (5’-
TTCTGAACTGGACAAATCTTGCTTTTC-3’), unc89N1GSP2 (5’- ACTTTCCAGTATCTCCTGGGAGAAC-3’), and unc89N2GSP2 (5’-
TTGTTCTGGAAGAGGAGGAGGAG-3’). RACE experiment revealed an isoform with an alternative start which is pres-
et only in act-5(D2) mutants (Figure 1—figure supplement 1A). This new isoform is not affected by
the large deletion, and thus the corresponding mRNA is not degraded (Figure 1A).

Plasmid construction and genetic transformation
To study the expression of act-5, we generated a reporter construct with an act-5 promoter region
(2.5 kb from III:13606066 to 13608569) fused to turboRFP in a pUC19 vector. Similarly, a pUC19 vec-
tor containing turboRFP was fused with an act-3 promoter region (4.5 kb from V:11073234 to
11077791). The germ line of wild-type animals was injected with the generated plasmids (10 ng
ul-1). The transgenic lines were subsequently crossed with act-5(ptc) mutants to transfer the extra-
chromosomal array to the mutant background.

Confocal microscopy
A Zeiss LSM 700 confocal microscope was used to image adult worms.

RNA interference mediated knockdown
RNAi was performed by feeding double-stranded RNA-expressing bacteria at 25°C from the early
larval stage through adulthood (60–75 hr) as previously described (Fraser et al., 2000). For the
genes whose knockdown from an early larval stage caused lethality or sterility, we started the RNAi
treatment at later stages (L4, adult). Also, for some clones (mv_R05D11.6, sjj2_R05D11.6,
sji2_Y39G8C.1), we diluted the double-stranded RNA-expressing bacteria with empty vector (L4440)-containing bacteria, in order to obtain milder effects. RNAi constructs were obtained from available libraries (Source BioScience) and verified by sequencing. RNAi clones used in this study are listed in the key resources table.

CRISPR/Cas9 induced mutations

To generate the CRISPR/Cas9-induced unc-89 deletion allele (bns7000), two sgRNAs (final concentration 4 uM each) were injected with Cas9 protein (0.35 ug/ul), and a dpy-10 sgRNA (2.5 uM) was used as a co-injection marker along with a repair oligo (PSdpy-10-PS; 0.73 uM) (Dickinson and Goldstein, 2016).

sgRNA1: 5'-GGTAGTTAGCGACCCCATGAGGG-3'.
sgRNA2: 5'-ACAGACTGTTAAACACAGGG-3'.

The following primers were used for genotyping: dunc-89–1 forward (5'-ATACCACCACATGTC TCTTC-3'), dunc-89–2 forward (5'GCTAAAGTCAGAGTTCCAC-3'), dunc-89–3 reverse (5'G GA TGGGTTCACATAAAAT-3'), dunc-89–4 reverse (5'TGAAAAAGAACACAAAA-3'), dunc-89–5 forward (5'TAACCAGCTCAAAATG-3'), dunc-89–6 reverse (5'GGATAGATTTCGTTGGAGA-3'). The external primers flank a 19612 bp region in wild types and amplify a 3601 bp fragment in bns7000 mutants. The internal primers with different combinations amplify 500-2600 bp products in wild types.

Double mutant analysis

All the double mutants exhibited gene expression levels as in the RNAi treated animals with one exception. act-5(ptc); nrde-3 double mutants exhibited act-5 mRNA levels as in the RNAi experiments but also some upregulation of the adapting gene, unlike what was observed in the RNAi experiments (Figures 4 and 5, Figure 5—figure supplement 1A and B). One possible explanation is related to an alternative start site of nrde-3 (Tourasse et al., 2017) which might be used only in some tissues and thus could lead to some protein function in the allele used in our study.

Statistical evaluation

To calculate the significance of the differences for the expression data, we performed two-tailed Student's t-test. Mean ± SEM is indicated in graphs. All statistical analyses were implemented in the program Statistica v. 9. Graphs were generated in Prism5.

Gene structure visualization

The act-5 and unc-89 loci were visualized using the GSDS gene structure visualization tool (Guo et al., 2007).

Acknowledgements

We thank Z Jiang and A Rossi for discussion and comments on the project; G Jakutis, A Rossi, T Sztal, and W Stainier for comments on the manuscript; A McQueen and A Artyukin for some of the act-5 mutant strains; P Goumenaki and B Grohmann for experimental assistance. Some strains were provided by the CGC, which is funded by the NIH Office of Research Infrastructure Programs (P40 OD010440). The unc-89(bns7000) deletion allele was generated in the genome engineering facility, Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany. Research in the Stainier laboratory is supported in part by the Max Planck Society and the European Research Council, ERC AdG 694455-ZMOD.

Additional information

Competing interests

Didier YR Stainier: Senior editor, eLife. The other authors declare that no competing interests exist.
Funding

Funder	Grant reference number	Author
Max-Planck-Gesellschaft		Didier YR Stainier
H2020 European Research Council	694455	Didier YR Stainier

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Author contributions

Vahan Serobyan, Conceptualization, Data curation, Formal analysis, Validation, Visualization, Methodology, Writing - original draft, Writing - review and editing; Zacharias Kontarakis, Conceptualization, Data curation, Formal analysis, Validation, Visualization, Methodology, Writing - review and editing; Mohamed A El-Brolosy, Data curation, Formal analysis, Methodology, Writing - review and editing; Jordan M Welker, Ann M Wehman, Validation, Writing - review and editing; Oleg Tolstenkov, Data curation, Methodology; Amr M Saadeldein, Data curation; Nicholas Retzer, Data curation, Validation; Alexander Gottschalk, Supervision; Didier YR Stainier, Conceptualization, Resources, Supervision, Funding acquisition, Investigation, Writing - original draft, Project administration, Writing - review and editing

Author ORCIDs

Vahan Serobyan [https://orcid.org/0000-0001-5055-8422]
Oleg Tolstenkov [https://orcid.org/0000-0002-6484-9965]
Amr M Saadeldein [https://orcid.org/0000-0002-5971-2083]
Alexander Gottschalk [http://orcid.org/0000-0002-1197-6119]
Ann M Wehman [http://orcid.org/0000-0001-9826-4132]
Didier YR Stainier [https://orcid.org/0000-0002-0382-0026]

Decision letter and Author response

Decision letter [https://doi.org/10.7554/eLife.50014.sa1]
Author response [https://doi.org/10.7554/eLife.50014.sa2]

Additional files

Data availability

All data generated or analyzed during this study are included in the manuscript and supporting files.

References

Ambros V, Lee RC, Lavanway A, Williams PT, Jewell D. 2003. MicroRNAs and other tiny endogenous RNAs in C. elegans. Current Biology 13:807–818. DOI: https://doi.org/10.1016/S0960-9822(03)00287-2, PMID: 12747828

Billmyre KK, Doebley AL, Spichal M, Heestand B, Belicard T, Sato-Carlton A, Flibotte S, Simon M, Gnazzo M, Skop A, Moerman D, Carlton PM, Sarkies P, Ahmed S. 2019. The meiotic phosphatase GSP-2/PP1 promotes germline immortality and small RNA-mediated genome silencing. PLOS Genetics 15:e1008004. DOI: https://doi.org/10.1371/journal.pgen.1008004, PMID: 30921322

Black DL. 2003. Mechanisms of alternative pre-messenger RNA splicing. Annual Review of Biochemistry 72:291–336. DOI: https://doi.org/10.1146/annurev.biochem.72.121801.161720, PMID: 12626338

Boivin V, Deschamps-Francoeur G, Scott MS. 2018. Protein coding genes as hosts for noncoding RNA expression. Seminars in Cell & Developmental Biology 75:3–12. DOI: https://doi.org/10.1016/j.semcdb.2017.08.016, PMID: 28811264

Buckley BA, Burkhart KB, Gu SG, Spracklin G, Kershner A, Fritz H, Kimble J, Fire A, Kennedy S. 2012. A nuclear Argonaute promotes multigenerational epigenetic inheritance and germline immortality. Nature 489:447–451. DOI: https://doi.org/10.1038/nature11352

Castel SE, Cervera A, Mohammadi P, Aguet F, Reverter F, Wolman A, Guigo R, llossifov I, Vasileva A, Lappalainen T. 2018. Modified penetrance of coding variants by cis-regulatory variation contributes to disease risk. Nature Genetics 50:1327–1334. DOI: https://doi.org/10.1038/s41588-018-0192-y
Castel SE, Martienssen RA. 2013. RNA interference in the nucleus: roles for small RNAs in transcription, epigenetics and beyond. Nature Reviews Genetics 14:100–112. DOI: https://doi.org/10.1038/nrg3355, PMID: 23529111

Chakrabarti S, Bonneau F, Schüssler S, Eppinger E, Conti E. 2014. Phospho-dependent and phospho-independent interactions of the helicase UPF1 with the NMD factors SMG5-SMG7 and SMG6. Nucleic Acids Research 42:9447–9460. DOI: https://doi.org/10.1093/nar/gku578, PMID: 25013712

Consort GC, Wagner A. 2004. Duplicate genes and robustness to transient gene knock-downs in Caenorhabditis elegans. Proceedings of the Royal Society of London. Series B: Biological Sciences 271:89–96. DOI: https://doi.org/10.1098/rspb.2003.2560

Cui M, Fay DS, Man M. 2004. lin-35/Rb cooperates with the SWI/SNF complex to control Caenorhabditis elegans larval development. Genetics 167:1177–1185. DOI: https://doi.org/10.1534/genetics.103.024554, PMID: 15280233

Denli AM, Tops BB, Plasterk RH, Ketting RF, Hannon GJ. 2004. Processing of primary microRNAs by the microprocessor complex. Nature 432:231–235. DOI: https://doi.org/10.1038/nature03049, PMID: 15531879

Dickinson DJ, Goldstein B. 2016. CRISPR-Based methods for Caenorhabditis elegans Genome Engineering. Genetics 202:885–901. DOI: https://doi.org/10.1534/genetics.115.182162, PMID: 26953268

El-Brolosy MA, Kontarakis Z, Rossi A, Kuenne C, Günther S, Fukuda N, Kikhi K, Boezio GLM, Takacs CM, Lai S-L, Fukuda R, Gerni C, Giraldez AJ, Stainier DYR. 2019. Genetic compensation triggered by mutant mRNA degradation. Nature 568:193–197. DOI: https://doi.org/10.1038/s41586-019-1064-z

El-Brolosy MA, Stainier DYR. 2017. Genetic compensation: A phenomenon in search of mechanisms. PLOS Genetics 13:e1006780. DOI: https://doi.org/10.1371/journal.pgen.1006780

Estes KA, Szymowski SC, Troemel ER. 2011. Non-Lytic, Actin-Based Exit of Intracellular Parasites from C. elegans Intestinal Cells. PLOS Pathogens 7:e1002227. DOI: https://doi.org/10.1371/journal.ppat.1002227

Etheridge T, Rahman M, Gaffney CJ, Shaw D, Shephard F, Magudia J, Solomon DE, Milne T, Blawdziewicz J, Constantin-Teodosiu D, Greenhoff PL, Vanapalli SA, Szewczyk NJ. 2015. The integrin-adhesome is required to maintain muscle structure, mitochondrial ATP production, and movement forces in Caenorhabditis elegans. The FASEB Journal 29:1235–1246. DOI: https://doi.org/10.1096/fj.15-259119, PMID: 25491313

Faghihi MA, Wahlestedt C. 2009. Regulatory roles of natural antisense transcripts. Nature Reviews Molecular Cell Biology 10:637–643. DOI: https://doi.org/10.1038/nm2738, PMID: 19638999

Fischer SE. 2010. Small RNA-mediated gene silencing pathways in C. elegans. The International Journal of Biochemistry & Cell Biology 42:1306–1315. DOI: https://doi.org/10.1016/j.biocel.2010.03.006, PMID: 20227516

Fischer S, Benz J, Späth J, Jellen-Ritter A, Heyer R, Dörr M, Maier LK, Menzel-Hobeck C, Lehr M, Jantzer K, Babski J, Soppa J, Marchfelder A. 2015. Regulatory RNAs in Haloferax volcanii. Biochemical Society Transactions 39:159–162. DOI: https://doi.org/10.1042/bst0390159, PMID: 21265765

Fraser AG, Kamath RS, Zipperlen P, Martinez-Campos M, Sohrmann M, Ahringer J. 2000. Functional genomic analysis of C. elegans chromosome I by systematic mRNA interference. Nature 408:325–330. DOI: https://doi.org/10.1038/35042517, PMID: 11099033

Fukumura K, Wakabayashi S, Kataoka N, Sakamoto H, Suzuki Y, Nakai K, Mayeda A, Inoue K. 2016. The exon junction complex controls the efficient and faithful splicing of a subset of transcripts involved in mitotic Cell-Cycle progression. International Journal of Molecular Sciences 17:1153. DOI: https://doi.org/10.3390/ijms17081153

Galvin BD, Denning DP, Horvitz HR. 2011. SPK-1, an SR protein kinase, inhibits programmed cell death in Caenorhabditis elegans. PNAS 108:1998–2003. DOI: https://doi.org/10.1073/pnas.1018805108

Gehring NH, Kunz JB, Neuyifik G, Breit S, Viegas MH, Hentze MW, Kulozik AE. 2005. Exon-junction complex components specify distinct routes of nonsense-mediated mRNA decay with differential cofactor requirements. Molecular Cell 20:65–75. DOI: https://doi.org/10.1016/j.molcel.2005.08.012, PMID: 16209946

Gent Ji, Lammt AT, Pavelec DM, Maniar JM, Parameswaran P, Tao L, Kennedy S, Fire AZ. 2010. Distinct phases of siRNA synthesis in an endogenous RNAi pathway in C. elegans soma. Molecular Cell 37:679–689. DOI: https://doi.org/10.1016/j.molcel.2010.01.012, PMID: 20116306

Ghanbarian H, Wagner N, Michels JF, Cuzin F, Wagner KD, Rassoulzadegan M. 2017. Small RNA-directed epigenetic programming of embryonic stem cell cardiac differentiation. Scientific Reports 7:41799. DOI: https://doi.org/10.1038/srep41799, PMID: 28165496

Glavan F, Behm-Ansment I, Lizardalde E, Conti E. 2006. Structures of the PIN domains of SMG6 and SMGS reveal a nuclelease within the mRNA surveillance complex. The EMBO Journal 25:5117–5125. DOI: https://doi.org/10.1038/sj.emboj.7601377, PMID: 17053788

Grishok A. 2013. Biology and mechanisms of short RNAs in Caenorhabditis elegans. Advances in Genetics 83:1–67. DOI: https://doi.org/10.1016/S0065-2660(13)00011-8, PMID: 23890211

Guang S, Bocheiner AF, Pavelec DM, Burkhart KB, Harding S, Lachowiec J, Kennedy S. 2008. An argonaut transports siRNAs from the cytoplasm to the nucleus. Science 321:537–541. DOI: https://doi.org/10.1126/science.1157647, PMID: 18653868

Guo AY, Zhu QH, Chen X, Luo JC. 2007. [GSDS: a gene structure display server]. Hereditas 29:1023–1026. DOI: https://doi.org/10.1360/yjyc-007-1023, PMID: 17681935

Guschanski K, Warnefors M, Kaesmann H. 2017. The evolution of duplicate gene expression in mammalian organs. Genome Research 27:1461–1474. DOI: https://doi.org/10.1101/gr.155666.116, PMID: 28743766

Han T, Manoharan AP, Harkins TT, Bouffard P, Fitzpatrick C, Chu DS, Thierry-Mieg D, Thierry-Mieg J, Kim JK. 2009. 26g endo-siRNAs regulate spermatogenic and zygotic gene expression in Caenorhabditis elegans. PNAS 106:18674–18679. DOI: https://doi.org/10.1073/pnas.0906378106, PMID: 19846761
Hodgkin J, Papp A, Pulak R, Ambros V, Anderson P. 1989. A new kind of informational suppression in the nematode Caenorhabditis elegans. Trends in Genetics 12:301.

Hoogewijs D, Houthoofd K, Matthijssens F, Vandesompele J, Vanfleteren JR. 2008. Selection and validation of a set of reliable reference genes for quantitative sod gene expression analysis in C. elegans. BMC Molecular Biology 9:9. DOI: https://doi.org/10.1186/1471-2199-9-9, PMID: 18211699

Housden BE, Muhr M, Gemberling M, Gersbach CA, Stainier DY, Seydoux G, Mohr SE, Zuber J, Perrimon N. 2017. Loss-of-function genetic tools for animal models: cross-species and cross-platform differences. Nature Reviews Genetics 18:24–40. DOI: https://doi.org/10.1038/nr.2016.18, PMID: 27795562

Hunt-Newbury R, Viveiros R, Johnsen R, Mah A, Anastas D, Fang L, Halfnife E, Lee D, Lin J, Lorch A, McKay S, Okada HM, Pan J, Schulz AK, Tu D, Wong K, Zhao Z, Alexeyenko A, Burglin T, Sonnhammer E, et al. 2007. High-throughput in vivo analysis of gene expression in Caenorhabditis elegans. PLOS Biology 5:e237. DOI: https://doi.org/10.1371/journal.pbio.0050237, PMID: 17850180

Huntzinger E, Kashima I, Fauser M, Saulière J, Izaarulde E. 2008. SMG6 is the catalytic endonuclease that cleaves mRNAs containing nonsense codons in metazoan. RNA 14:2609–2617. DOI: https://doi.org/10.1021/ rna.1386208, PMID: 18974281

Hutvagner G, Simard MJ. 2008. Argonaute proteins: key players in RNA silencing. Nature Reviews Molecular Cell Biology 9:22–32. DOI: https://doi.org/10.1038/nrm2321, PMID: 18073770

Janowski BA, Huffman KE, Schwartz JC, Ram R, Nordsell R, Shames DS, Minna JD, Corey DR. 2006. Involvement of AGO1 and AGO2 in mammalian transcriptional silencing. Nature Structural & Molecular Biology 13:787–792. DOI: https://doi.org/10.1038/nsmb1140, PMID: 16936728

Jovic B, Amodeo S, Bregy I, Ochsenreiter T. 2018. Distinct 3' UTRs regulate the life-cycle-specific expression of two TCP1 paralogs in Trypanosoma brucei. Journal of Cell Science 131:jcs206417. DOI: https://doi.org/10.1242/jcs.206417, PMID: 29661850

Jones CI, Zabolotskaya MV, Newbury SF. 2012. The 5' → 3' exoribonuclease XRN1/Pacman and its functions in cellular processes and development. Wiley Interdisciplinary Reviews: RNA 3:455–468. DOI: https://doi.org/10.1002/wrna.1109, PMID: 22383165

Jorgensen EM, Mango SE. 2002. The art and design of genetic screens: Caenorhabditis elegans. Nature Reviews Genetics 3:356–369. DOI: https://doi.org/10.1038/nrg794, PMID: 11988761

Kashima I, Jonas S, Jayachandran U, Buchwald G, Conti E, Lupas AN, Izaarulde E. 2010. SMG6 interacts with the exon junction complex via two conserved EJC-binding motifs (EBMs) required for nonsense-mediated mRNA decay. Genes & Development 24:2440–2450. DOI: https://doi.org/10.1101/gad.604610, PMID: 20930030

Kryuchkova-Mostacci N, Robinson-Rechavi M. 2015. Tissue-Specific evolution of protein coding genes in human and mouse. PLOS ONE 10:e0131673. DOI: https://doi.org/10.1371/journal.pone.0131673, PMID: 26121354

Kuroyanagi H, Kryuchkova-Mostacci N, Kashima I, Robinson-Rechavi M. 2019. Analysis of paralogs in Caenorhabditis elegans. Methods of Cell Biology 1242:jcs.206417. DOI: https://doi.org/10.1038/s41586-019-1057-y, PMID: 31761494

Kuroyanagi H, Okino ST, Zhao H, Pookot D, Place RF, Urakami S, Enokida H, Dahiya R. 2006. Small dsRNAs induce transcriptional activation in human cells. PNAS 103:17337–17342. DOI: https://doi.org/10.1073/pnas.0607015103, PMID: 17085992

Li LC. 2017. Small RNA-guided transcriptional gene activation (RNAa) in mammalian cells. In: RNA Activation. Singapore: Springer. p. 1–20.

Lindeboom RG, Supek F, Lehner B. 2016. The rules and impact of nonsense-mediated mRNA decay in human cancers. Nature Genetics 48:1112–1118. DOI: https://doi.org/10.1038/ng.3664, PMID: 27618451

Lipinski KJ, Farslow JC, Fitzpatrick KA, Lynch M, Katju V, Bergthorsson U. 2011. High spontaneous rate of gene duplication in C. elegans. PLOS Biology 9:3247–3259. DOI: https://doi.org/10.1073/pnas.1002/wrna.1109, PMID: 22383165

Ma Z, Zhu P, Shi H, Guo L, Zhang Q, Chen Y, Chen S, Zhang Z, Peng J, Chen J. 2019. PTC-bearing mRNA elicits a genetic compensation response via Upf3a and COMPASS components. Nature 568:259–263. DOI: https://doi.org/10.1038/s41586-019-1057-y, PMID: 30944473

MacQueen AJ, Baggett JJ, Perumov N, Bauer RA, Januszewski T, Schriefer L, Waddle JA. 2005. ACT-5 is an essential Caenorhabditis elegans actin required for intestinal microvilli formation. Molecular Biology of the Cell 16:3247–3259. DOI: https://doi.org/10.1091/mbc.e04-12-1061, PMID: 15872090

Mattick JS, Makunin IV. 2005. Small regulatory RNAs in mammals. Human Molecular Genetics 14:R121-R132. DOI: https://doi.org/10.1093/hmg/ddi101, PMID: 15809264

Melamed S, Adams PP, Zhang A, Zhang H, Storz G. 2019. RNA-RNA interactomes of ProQ and hfq reveal overlapping and competing roles. Molecular Cell. DOI: https://doi.org/10.1016/j.molcel.2019.10.022, PMID: 31761494

Merzlyak EM, Goehrart J, Scherbo D, Bulina ME, Shchegov AS, Fradkov AF, Gaintzeva A, Lukyanov KA, Lukyanov S, Gadella TW, Chudakov DM. 2007. Bright monomeric red fluorescent protein with an extended fluorescence lifetime. Nature Methods 4:555–557. DOI: https://doi.org/10.1038/nmeth1062, PMID: 17572680
Chromosomes and Gene Expression | Genetics and Genomics

Miki TS, Richter H, Rüegger S, Großhans H. 2014. PAXT-1 promotes XRN2 activity by stabilizing it through a conserved domain. Molecular Cell 53:351–360. DOI: https://doi.org/10.1016/j.molcel.2014.01.001, PMID: 24462208

Modarresi F, Faghihi MA, Lopez-Toledano MA, Fatemi RP, Magistri M, Brothers SP, van der Brug MP, Wahlestedt C. 2012. Inhibition of natural antisense transcripts in vivo results in gene-specific transcriptional upregulation. Nature Biotechnology 30:453–459. DOI: https://doi.org/10.1038/nbt.2158, PMID: 22446693

Nicholl AM, Balis JM, You Z. 2017. Control of gene expression through the nonsense-mediated RNA decay pathway. Cell & Bioscience 7:26. DOI: https://doi.org/10.1186/s13578-017-0153-7, PMID: 28533900

Pasquier J, Braasch I, Batzel P, Cabau C, Montfort J, Nguyen T, Jouanno E, Berthelot C, Klopp C, Journot L, Postlethwait JH, Guigny Y, Bobe J. 2017. Evolution of gene expression after whole-genome duplication: new insights from the spotted gar genome. Journal of Experimental Zoology Part B: Molecular and Developmental Evolution 328:709–721. DOI: https://doi.org/10.1002/jez.b.22770

Patrinostro X, O’Rourke AR, Chamberlain CM, Moriarity BS, Perrin BJ, Ervasti JM. 2017. Relative importance of β actin and γ actin in primary mouse embryonic fibroblasts. Molecular Biology of the Cell 28:771–782. DOI: https://doi.org/10.1091/mbc.e16-07-0503, PMID: 28077619

Pavelec DM, Lachowiec J, Duchaine TF, Smith HE, Kennedy S. 2009. Requirement for the ERI/DICER complex in endogenous RNA interference and sperm development in Caenorhabditis elegans. Genetics 183:1283–1295. DOI: https://doi.org/10.1534/genetics.108.108134, PMID: 19797044

Phillips CM, Montgomery TA, Breen PC, Ruvkun G. 2012. MUT-16 promotes formation of perinuclear mutator foci required for RNA silencing in the C. elegans germline. Genes & Development 26:1433–1444. DOI: https://doi.org/10.1101/gad.193904.112, PMID: 22713602

Plata G, Vittkup D. 2014. Genetic robustness and functional evolution of gene duplicates. Nucleic Acids Research 42:2405–2414. DOI: https://doi.org/10.1093/nar/gkt1200, PMID: 24288370

Pollard TD, Cooper JA. 1986. Actin and actin-binding proteins A critical evaluation of mechanisms and functions. Annual Review of Biochemistry 55:987–1035. DOI: https://doi.org/10.1146/annurev.bi.55.070186.005011, PMID: 3527055

Portnoy V, Huang V, Place RF, Li LC. 2011. Small RNA and transcriptional upregulation. Wiley Interdisciplinary Reviews: RNA 2:748–760. DOI: https://doi.org/10.1002/wrna.90, PMID: 21823233

Pulak R, Anderson P. 1993. mRNA surveillance by the Caenorhabditis elegans smg genes. Genes & Development 7:1885–1897. DOI: https://doi.org/10.1101/gad.7.10.1885, PMID: 8104846

Radomska KJ, Sager J, Farnsworth B, Tellgren-Roth A, Tuveri G, Peuckert C, Kettunen P, Jazin E, Emilsson LS. 2016. Characterization and expression of the zebrafish cki paralogs. PLOS ONE 11:e0146155. DOI: https://doi.org/10.1371/journal.pone.0146155, PMID: 26272370

Ratliff EP, Gutierrez A, Davis RA. 2006. Transgenic expression of CYP7A1 in LDL receptor-deficient mice blocks diet-induced hypercholesterolemia. Journal of Lipid Research 47:1513–1520. DOI: https://doi.org/10.1194/jlr.M1100070350, PMID: 16609145

Rechavi O, Lev I. 2017. Principles of transgenerational small RNA inheritance in Caenorhabditis elegans. Current Biology 27:R720–R730. DOI: https://doi.org/10.1016/j.cub.2017.05.043, PMID: 28743023

Rossi A, Kontarakis Z, Gerri C, Nolte H, Höpler S, Krüger M, Stainier DY. 2015. Genetic compensation induced by deleterious mutations but not gene knockdowns. Nature 524:230–233. DOI: https://doi.org/10.1038/nature14580, PMID: 26168398

Seth M, Shirayama M, Gu W, Ishidate T, Conte D, Mello CC. 2013. The C. elegans CSR-1 argonaute pathway counteracts epigenetic silencing to promote germline gene expression. Developmental Cell 27:656–663. DOI: https://doi.org/10.1016/j.devcel.2013.11.014, PMID: 24360782

Shirayama M, Seth M, Lee HC, Gu W, Ishidate T, Conte D, Mello CC. 2012. piRNAs initiate an epigenetic memory of nonself RNA in the C. elegans germline. Cell 150:65–77. DOI: https://doi.org/10.1016/j.cell.2012.06.015, PMID: 22738726

Singh G, Kucukural A, Cenik C, Leszyk JD, Shaffer SA, Weng Z, Moore MJ. 2012. The cellular EJC interactome reveals higher-order mRNP structure and an EJC-SR protein nexus. Cell 151:750–764. DOI: https://doi.org/10.1016/j.cell.2012.10.007, PMID: 23084401

Szal TE, McKaige EA, Williams C, Ruparelia AA, Bryson-Richardson RJ. 2018. Genetic compensation triggered by actin mutation prevents the muscle damage caused by loss of actin protein. PLOS Genetics 14:e1007212. DOI: https://doi.org/10.1371/journal.pgen.1007212, PMID: 29420541

Tondleir D, Lambrecht A, Müller J, Jonckheere V, Doll T, Vandoorne D, Bakkali K, Waterschoot D, Lemaistre T, Huang H, Ruparelia AA, McKaige EA, Williams C, Ruparelia AA. 2019. Control of gene expression through the nonsense-mediated RNA decay pathway. Cell & Bioscience 105:604–609. DOI: https://doi.org/10.1016/j.cell.2019.08.011, PMID: 29376070

Vasale JJ, Gu W, Thivierge C, Batista PJ, Claycomb JM, Youngman EM, Duchaine TF, Mello CC, Conte D. 2010. Sequential rounds of RNA-dependent RNA transcription drive endogenous small-RNA biogenesis in the ERGO-1/Argonaute pathway. PNAS 107:3582–3587. DOI: https://doi.org/10.1073/pnas.0911908107, PMID: 20133583
Wedeles CJ, Wu MZ, Claycomb JM. 2013. Protection of germline gene expression by the C. elegans argonaute CSR-1. Developmental Cell 27:664–671. DOI: https://doi.org/10.1016/j.devcel.2013.11.016, PMID: 24360783

Yigit E, Batista PJ, Bei Y, Pang KM, Chen CC, Tolia NH, Joshua-Tor L, Mitani S, Simard MJ, Mello CC. 2006. Analysis of the C. elegans argonaute family reveals that distinct argonautes act sequentially during RNAi. Cell 127:747–757. DOI: https://doi.org/10.1016/j.cell.2006.09.033, PMID: 17110334

Yvert G. 2014. ‘Particle genetics’: treating every cell as unique. Trends in Genetics 30:49–56. DOI: https://doi.org/10.1016/j.tig.2013.11.002, PMID: 24315431

Zhang Z, Krainer AR. 2004. Involvement of SR proteins in mRNA surveillance. Molecular Cell 16:597–607. DOI: https://doi.org/10.1016/j.molcel.2004.10.031, PMID: 15546619

Zhuang JJ, Hunter CP. 2011. Tissue specificity of Caenorhabditis elegans enhanced RNA interference mutants. Genetics 188:235–237. DOI: https://doi.org/10.1534/genetics.111.127209, PMID: 21385728