On Fixed Points in the Setting of C^*-Algebra-Valued Controlled F_ε-Metric Type Spaces

G. Kalpana1,* and Z. Sumaiya Tasneem1

1Department of Mathematics, SSN College of Engineering, Kalavakkam, Chennai-603 110, India.
*Correspondence: kalpanag@ssn.edu.in
sumaiyatasneemz@ssn.edu.in

Abstract

In the present article, we first examine the conception of C^*-algebra-valued controlled F_ε-metric type spaces as a generalization of F-cone metric spaces over Banach algebra. Further, we prove some fixed point theorem with different contractive conditions in the framework of C^*-algebra-valued controlled F_ε-metric type spaces. Secondly, we furnish an example by means of the acquired result.

2010 AMS Classification: 47H10, 54H25.

Keywords and Phrases: C^*-algebra; C^*-algebra-valued controlled F_ε-metric type spaces; Contractive mapping; Fixed point theorem.

Article Type: Research Article.

1 Introduction

The conception of b-metric space was initiated by Bakhtin [10] as a generalization of metric spaces. In 1994, Matthews [12] proposed the concept of partial metric spaces where the self-distance of any point need not be zero. Tayyab Kamran et al. [11] introduced a new type of metric spaces, namely extended b-metric spaces by replacing the constant s by a function $\theta(x,y)$ depending on the parameters of the left-hand side of the triangle inequality. Nabil Mlaiki et al. [23] proved Banach contraction principle in the setting of controlled metric type spaces which is a generalization of extended b-metric space. For more engrossing results in extended b-metric spaces, the reader may refer to [3–9]. In [2], Aiman Mukheimer have recently examined the hypothesis of extended partial S_b-metric spaces.

On the other hand, Fernandez et al. [1] established the notion of F-cone metric space over Banach algebra and investigated the existence and uniqueness of the fixed point under the same metric. In [24], Ma initiated the concept of C^*-algebra-valued metric spaces where the set of real numbers is replaced by the set of all positive elements of a unital C^*-algebra. For further probes on C^*-algebra, we refer to [13–22].

As noted above, a vigorous research on fixed point results in C^*-algebra-valued metric spaces, extended b-metric spaces and controlled metric type spaces has been developed in the
past few years, we focus our study on the concept of C^*-algebra-valued controlled F_c-metric type spaces in the present paper and prove fixed point theorem with disparate contractive condition.

2 Preliminaries

To start with, we recollect some necessary definitions which will be utilized in the main theorem.

Throughout this paper, \mathbb{A} denotes an unital C^*-algebra. Set $\mathbb{A}_h = \{z \in \mathbb{A} : z = z^*\}$. We call an element $z \in \mathbb{A}$ a positive element, denote it by $\theta_{\mathbb{A}} \leq z$, if $z \in \mathbb{A}_h$ and $\sigma(z) \subseteq [0, \infty)$, where $\theta_{\mathbb{A}}$ is a zero element in \mathbb{A} and $\sigma(z)$ is the spectrum of z. There is a natural partial ordering on \mathbb{A}_h given by $z \leq w$ if and only if $\theta_{\mathbb{A}} \leq w - z$. We denote \mathbb{A}_+ and \mathbb{A}_h' as $\{z \in \mathbb{A} : \theta_{\mathbb{A}} \leq z\}$ and the set $\{z \in \mathbb{A} : zw = wz, \forall w \in \mathbb{A}\}$ and $|z| = (z^*z)^{\frac{1}{2}}$ respectively.

Definition 2.1. [1] Let X be a nonempty set. A function $F : X^3 \to A$ is called F-cone metric on X if for any $\alpha, \beta, \gamma, \delta \in X$, the following conditions hold:
1. $\alpha = \beta = \gamma$ if and only if $F(\alpha, \alpha, \alpha) = F(\beta, \beta, \beta) = F(\gamma, \gamma, \gamma) = F(\alpha, \beta, \gamma)$;
2. $\theta \leq F(\alpha, \alpha, \alpha) \leq F(\alpha, \alpha, \beta) \leq F(\alpha, \beta, \gamma)$ for all $\alpha, \beta, \gamma \in X$ with $\alpha \neq \beta \neq \gamma$;
3. $F(\alpha, \beta, \gamma) \leq s[F(\alpha, \alpha, \beta) + F(\beta, \beta, \delta) + F(\gamma, \gamma, \delta)] - F(\delta, \delta, \delta)$.

Then the pair (X, F) is called an F-cone metric space over Banach Algebra \mathbb{A}. The number $s \geq 1$ is called the coefficient of (X, F).

Definition 2.2. [16] Let X be a nonempty set and $A \in \mathbb{A}'$ such that $A \geq I_{\mathbb{A}}$. Suppose the mapping $S_b : X \times X \times X \to \mathbb{A}$ satisfies:
1. $\theta_{\mathbb{A}} \leq S_b(\alpha, \beta, \gamma)$ for all $\alpha, \beta, \gamma \in X$ with $\alpha \neq \beta \neq \gamma \neq \alpha$;
2. $S_b(\alpha, \beta, \gamma) = \theta_{\mathbb{A}}$ if and only if $\alpha = \beta = \gamma$;
3. $S_b(\alpha, \beta, \gamma) \leq A[S_b(\alpha, \alpha, \beta) + S_b(\beta, \beta, \delta) + S_b(\gamma, \gamma, \delta)]$ for all $\alpha, \beta, \gamma, \delta \in X$.

Then S_b is said to be C^*-algebra-valued S_b-metric on X and (X, \mathbb{A}, S_b) is said to be a C^*-algebra-valued S_b-metric space.

Definition 2.3. [23] Given a non-empty set X and $\delta : X \times X \to [1, \infty)$. A function $d : X \times X \to [0, \infty)$ is called a controlled metric type if:
1. $d(\alpha, \beta) = 0$ if and only if $\alpha = \beta$;
2. $d(\alpha, \beta) = d(\beta, \alpha)$;
3. $d(\alpha, \beta) \leq \delta(\alpha, \gamma)d(\alpha, \gamma) + \delta(\gamma, \beta)d(\gamma, \beta)$, for all $\alpha, \beta, \gamma \in X$.

The pair (X, d) is called a controlled metric type space.

3 Main Results

In this main segment, as a generalization of F-cone metric space over Banach algebra, we introduce the notion of C^*-algebra valued controlled F_c-metric type spaces and furnish an example of the underlying spaces.

Hereinafter, \mathbb{A}_I' will denote the set $\{z \in \mathbb{A} : zw = wz, \forall w \in \mathbb{A}$ and $z \geq I_{\mathbb{A}}\}$ respectively.
Definition 3.1. Let X be a nonempty set and $C : X \times X \times X \to \mathbb{A}_l$. Suppose the mapping $F_c : X \times X \times X \to \mathbb{A}$ satisfies:
1. $\varpi = \bar{\nu} = \bar{\zeta}$ if and only if $F_c(\varpi, \varpi, \varpi) = F_c(\bar{\nu}, \bar{\nu}, \bar{\nu}) = F_c(\bar{\zeta}, \bar{\zeta}, \bar{\zeta}) = F_c(\varpi, \bar{\nu}, \bar{\zeta})$;
2. $\theta_{\mathbb{A}} \leq F_c(\varpi, \varpi, \varpi) \leq F_c(\varpi, \bar{\nu}, \bar{\nu}) \leq F_c(\varpi, \bar{\zeta}, \bar{\zeta})$;
3. $F_c(\varpi, \bar{\nu}, \bar{\zeta}) \leq C(\varpi, \varpi, \alpha)F_c(\varpi, \varpi, \alpha) + C(\bar{\nu}, \bar{\nu}, \alpha)F_c(\bar{\nu}, \bar{\nu}, \alpha) + C(\bar{\zeta}, \bar{\zeta}, \alpha)F_c(\bar{\zeta}, \bar{\zeta}, \alpha) - F_c(\bar{\alpha}, \bar{\alpha}, \bar{\alpha})$ for all $\varpi, \bar{\nu}, \bar{\zeta}, \bar{\alpha} \in X$.

Then F_c is called a C^*-algebra-valued controlled F_c-metric type on X and (X, \mathbb{A}, F_c) is a C^*-algebra-valued controlled F_c-metric type spaces.

Remark 3.2. If $C(\varpi, \varpi, \alpha) = C(\bar{\nu}, \bar{\nu}, \alpha) = C(\bar{\zeta}, \bar{\zeta}, \alpha) = C(\varpi, \bar{\nu}, \bar{\zeta})$ for all $\varpi, \bar{\nu}, \bar{\zeta}, \bar{\alpha} \in X$, then we get

$$F_c(\varpi, \bar{\nu}, \bar{\zeta}) \leq C(\varpi, \bar{\nu}, \bar{\zeta})[F_c(\varpi, \varpi, \varpi) + F_c(\bar{\nu}, \bar{\nu}, \bar{\nu}) + F_c(\bar{\zeta}, \bar{\zeta}, \bar{\zeta}) - F_c(\bar{\alpha}, \bar{\alpha}, \bar{\alpha})].$$

In this case, F_c is called a C^*-algebra-valued extended F_c-metric on X and (X, \mathbb{A}, c) is called a C^*-algebra-valued extended F_c-metric space.

Remark 3.3. In a C^*-algebra-valued controlled F_c-metric type space (X, \mathbb{A}, F_c), if $\varpi, \bar{\nu}, \bar{\zeta} \in X$ and $F_c(\varpi, \bar{\nu}, \bar{\zeta}) = 0$, then $\varpi = \bar{\nu} = \bar{\zeta}$, but the converse need not be true.

Definition 3.4. A C^*-algebra-valued controlled F_c-metric type space (X, \mathbb{A}, F_c) is said to be symmetric if it satisfies,

$$F_c(\varpi, \varpi, \bar{\nu}) = F_c(\varpi, \bar{\nu}, \varpi), \text{ for all } \varpi, \bar{\nu} \in X.$$

Example 3.5. Let $X = \{0, 1, 2, \ldots\}$ and $\mathbb{A} = \mathbb{R}^2$. If $\alpha, \beta \in \mathbb{A}$ with $\varpi = (\varpi_1, \varpi_2), \bar{\nu} = (\nu_1, \nu_2), k \varpi = (k \varpi_1, k \varpi_2), k \nu \bar{\nu} = (k \nu_1, \nu_2 \nu_2)$

Now define the metric $F_c : X \times X \times X \to \mathbb{A}$ and the control function $C : X \times X \times X \to \mathbb{A}_l$ as:

$$F_c(\varpi, \bar{\nu}, \bar{\zeta}) = \left(\frac{1}{2}(|\varpi + \bar{\zeta}|^2 + |\bar{\nu} + \bar{\zeta}|^2), \frac{1}{2}(|\varpi + \bar{\zeta}|^2 + |\bar{\nu} + \bar{\zeta}|^2) \right)$$

and

$$C(\varpi, \bar{\nu}, \bar{\zeta}) = \left(|\varpi + \bar{\nu} - \bar{\zeta} + 1|, |\varpi + \bar{\nu} - \bar{\zeta} + 1| \right).$$

It is easy to verify that F_c is a C^*-algebra-valued controlled F_c-metric type space. Indeed for $\varpi = 1, \bar{\nu} = 2, \bar{\zeta} = 3$ and $\bar{\alpha} = 0$, we have

$$F_c(1, 2, 3) = (20.5, 20.5) \geq (1, 1)(1, 1) + (4, 4) + (9, 9) - (0, 0) = (14, 14) = C(1, 2, 3)[F_c(1, 1, 0) + F_c(2, 2, 0) + F_c(3, 3, 0)] - F_c(0, 0, 0).$$

Hence F_c is not a C^*-algebra-valued extended F_c-metric space.
Definition 3.6. A sequence \(\{\varpi_n\} \) in a \(C^* \)-algebra-valued controlled \(F_c \)-metric type space is said to be:

(i) convergent sequence \(\iff \exists \varpi \in X \) such that \(F_c(\varpi_n, \varpi, \varpi) \to \theta_A \) as \(n \to \infty \) and we denote it by \(\lim_{n \to \infty} \varpi_n = \varpi \);

(ii) Cauchy sequence \(\iff F_c(\varpi_n, \varpi, \varpi_m) \to \theta_A \) as \(n, m \to \infty \).

Definition 3.7. A \(C^* \)-algebra-valued controlled \(F_c \)-metric type space \((X, A, F_c) \) is said to be complete if every Cauchy sequence is convergent in \(X \) with respect to \(A \).

Theorem 3.8. Let \((X, A, F_c) \) be a complete symmetric \(C^* \)-algebra-valued controlled \(F_c \)-metric type space and suppose \(T : X \to X \) is a mapping satisfying the following condition:

\[
F_c(T\varpi, T\varpi, T\varpi) \leq P^* F_c(\varpi, \varpi, \varpi) + Q^* F_c(\varpi, \varpi, T\varpi) + R^* F_c(\varpi, \varpi, T\varpi) R, \forall \varpi \in X, \tag{1}
\]

where \(P, Q, R \in A \) with \(\|P\|, \|Q\|, \|R\| \geq 0 \) satisfying \(\|P\|^2 + \|Q\|^2 + \|R\|^2 < 1 \) and for \(\varpi_0 \in X \), choose \(\varpi_n = T^n \varpi_0 \) assume that

\[
\sup_{m \geq 1} \lim_{n \to \infty} \|C(\varpi_{i+1}, \varpi_{i+1}, \varpi_{i+2})C(\varpi_{i+1}, \varpi_{i+1}, \varpi_m)\| < \frac{1 - \|R\|^2}{\|P\|^2 + \|Q\|^2}. \tag{2}
\]

In addition, for each \(\varpi \in X \), suppose that

\[
\lim_{n \to \infty} \|C(\varpi, \varpi, \varpi_n)\| \text{ and } \lim_{n \to \infty} \|C(\varpi_n, \varpi_n, \varpi)\| \tag{3}
\]

exist and are finite. Then \(T \) has a unique fixed point in \(X \).

Proof. Let \(\varpi_0 \in X \) be arbitrary and define the iterative sequence \(\{\varpi_n\} \) by:

\[
\varpi_{n+1} = T\varpi_n = \ldots = T^{n+1}\varpi_0, \quad n = 1, 2, \ldots. \tag{4}
\]

If follows from (1) and (4) that

\[
F_c(\varpi_n, \varpi_n, \varpi_{n+1}) = F_c(T\varpi_{n-1}, T\varpi_{n-1}, T\varpi_n) \\
\leq P^* F_c(\varpi_{n-1}, \varpi_{n-1}, \varpi_n) P + Q^* F_c(\varpi_{n-1}, \varpi_{n-1}, T\varpi_{n-1}) Q + \\
R^* F_c(\varpi_n, \varpi_n, T\varpi_n) R \\
\iff \|F_c(\varpi_n, \varpi_n, \varpi_{n+1})\| \leq \|P^* F_c(\varpi_{n-1}, \varpi_{n-1}, \varpi_n) P + Q^* F_c(\varpi_{n-1}, \varpi_{n-1}, T\varpi_{n-1}) Q + \\
R^* F_c(\varpi_n, \varpi_n, T\varpi_n) R\| \\
\leq \|P^* F_c(\varpi_{n-1}, \varpi_{n-1}, \varpi_n) P\| + \|Q^* F_c(\varpi_{n-1}, \varpi_{n-1}, T\varpi_{n-1}) Q\| + \\
\|R^* F_c(\varpi_n, \varpi_n, T\varpi_n) R\| \\
= (\|P\|^2 + \|Q\|^2) \|F_c(\varpi_{n-1}, \varpi_{n-1}, \varpi_n)\| + \|R\|^2 \|F_c(\varpi_n, \varpi_n, \varpi_{n+1})\| \\
\therefore \|F_c(\varpi_n, \varpi_n, \varpi_{n+1})\| \leq \frac{\|P\|^2 + \|Q\|^2}{1 - \|R\|^2} \|F_c(\varpi_{n-1}, \varpi_{n-1}, \varpi_n)\| \tag{5}
\]
Accordingly we get

\[||F_c(\omega_n, \omega_n, \omega_{n+1})|| \leq ||S||^2||F_c(\omega_{n-1}, \omega_{n-1}, \omega_n)|| \]
\[= ||S^*S|| ||F_c(\omega_{n-1}, \omega_{n-1}, \omega_n)|| \]
\[\leq ||S^*|| ||F_c(\omega_{n-1}, \omega_{n-1}, \omega_n)|| ||S|| \]

(6)

\[\iff F_c(\omega_n, \omega_n, \omega_{n+1}) \leq S^* F_c(\omega_{n-1}, \omega_{n-1}, \omega_n) S, \]

where \(||S||^2 = \frac{||P||^2+||Q||^2}{1-||R||^2} < 1 \). Recursively, we find that

\[F_c(\omega_n, \omega_n, \omega_{n+1}) \leq (S^*)^n F_c(\omega_{n-1}, \omega_{n-1}, \omega_n) S^n \]

(7)

For any \(n \geq 1 \) and \(q \geq 1 \), we have

\[F_c(\omega_n, \omega_n, \omega_{n+q}) \leq C(\omega_n, \omega_n, \omega_{n+1}) F_c(\omega_n, \omega_n, \omega_{n+1}) + C(\omega_n, \omega_n, \omega_{n+1}) F_c(\omega_n, \omega_n, \omega_{n+1}) + \]
\[C(\omega_n, \omega_n, \omega_{n+1}) F_c(\omega_n, \omega_n, \omega_{n+1}) - F_c(\omega_{n+1}, \omega_{n+1}, \omega_{n+1}) \]
\[\leq 2C(\omega_n, \omega_n, \omega_{n+1}) F_c(\omega_n, \omega_n, \omega_{n+1}) + C(\omega_{n+q}, \omega_{n+q}, \omega_{n+1}) \]
\[F_c(\omega_{n+1}, \omega_{n+1}, \omega_{n+q}) \]
\[\leq 2C(\omega_n, \omega_n, \omega_{n+1}) F_c(\omega_n, \omega_n, \omega_{n+1}) + C(\omega_{n+q}, \omega_{n+q}, \omega_{n+1}) \]
\[2C(\omega_{n+1}, \omega_{n+1}, \omega_{n+2}) F_c(\omega_{n+1}, \omega_{n+1}, \omega_{n+2}) + C(\omega_{n+q}, \omega_{n+q}, \omega_{n+2}) F_c(\omega_{n+2}, \omega_{n+2}, \omega_{n+q}) - F_c(\omega_{n+2}, \omega_{n+2}, \omega_{n+2}) \]
\[\vdots \]
\[= 2C(\omega_n, \omega_n, \omega_{n+1}) F_c(\omega_n, \omega_n, \omega_{n+1}) + \]
\[2 \sum_{i=n+1}^{n+q-2} C(\omega_i, \omega_i, \omega_{i+1}) F_c(\omega_i, \omega_i, \omega_{i+1}) \prod_{j=n+1}^{i} C(\omega_{n+q}, \omega_{n+q}, \omega_j) + \]
\[\prod_{i=n+1}^{n+q-1} C(\omega_{n+q}, \omega_{n+q}, \omega_i) F_c(\omega_{n+q-1}, \omega_{n+q-1}, \omega_{n+q}) \]
\[\leq 2C(\omega_n, \omega_n, \omega_{n+1}) F_c(\omega_n, \omega_n, \omega_{n+1}) + \]
\[2 \sum_{i=n+1}^{n+q-1} C(\omega_i, \omega_i, \omega_{i+1}) F_c(\omega_i, \omega_i, \omega_{i+1}) \prod_{j=n+1}^{i} C(\omega_{n+q}, \omega_{n+q}, \omega_j) \]
\[\leq 2C(\omega_n, \omega_n, \omega_{n+1})(S^*)^n S_0 S^n + \]
\[2 \sum_{i=n+1}^{n+q-1} C(\omega_i, \omega_i, \omega_{i+1})(S^*)^i S_0 S^i \prod_{j=1}^{i} C(\omega_{n+q}, \omega_{n+q}, \omega_j) \]
\[2 \left(S_0^2 C_0 \right) \left(S_0^2 C_0 \right)^\ast \left(S_0^2 C_0 \right)^\ast + \]
\[
2 \sum_{i=n+1}^{n+q-1} \left(S_0^2 \left(C, w_{i, w_{i+1}}, w_{i+1} \right) \prod_{j=1}^{i} C(w_{n+q, w_{n+q}, w_{j+1}}) \right)^\frac{1}{2} \leq \]
\[
2 \left| S_0^2 C(w_{n, w_{n+1}}) \right|^2 + \]
\[
2 \sum_{i=n+1}^{n+q-1} \left| S_0^2 \left(C, w_{i, w_{i+1}}, w_{i+1} \right) \prod_{j=1}^{i} C(w_{n+q, w_{n+q}, w_{j+1}}) \right|^\frac{1}{2} \]
\[
\leq 2 \left\| S_0 \right\| \left\| \left(C, w_{n, w_{n+1}} \right) \prod_{j=1}^{n+q} C(w_{n+q, w_{n+q}, w_{j+1}}) \right\| \left\| S \right\| ^\frac{1}{2} I_a + \]
\[
\left\| C(w_{i, w_{i+1}}) \prod_{j=1}^{n+q} C(w_{n+q, w_{n+q}, w_{j+1}}) \right\| \left\| S \right\| ^\frac{1}{2} I_a \]
\]

where \(I_a \) is the unit element in \(A \) and \(C(w_{i, w_{i+1}}, w_{0}) = S_0 \) for some \(S_0 \in A \). Let \(Y_m = \sum_{i=1}^{m} \left\| S \right\|^2 \left\| C(w_{i, w_{i+1}}, w_{i+1}) \right\| \prod_{j=1}^{i} C(w_{n+q, w_{n+q}, w_{j+1}}) \right\|. \) Consequently the above inequality implies,
\[
F_c(w_{n, w_{n+1}, w_{n+1}}) \leq 2 \left\| S_0 \right\| \left\| \left(C, w_{n, w_{n+1}} \right) \prod_{j=1}^{n+q} C(w_{n+q, w_{n+q}, w_{j+1}}) \right\| \left\| S \right\| ^\frac{1}{2} + \left(Y_{n+q-1} - Y_n \right) \right) I_a \]
\[
\text{(8)} \]
\]

The ratio test jointly with (2) implies that the limit of the sequence \(\{ Y_n \} \) exists and so \(\{ Y_n \} \) is Cauhy. Letting \(n \to \infty \) in the inequality above, we get
\[
\lim_{n \to \infty} F_c(w_{n, w_{n+1}, w_{n+1}}) = \theta_a. \]
\[
\text{(9)} \]
\]

Wherefore the sequence \(\{ w_n \} \) is Cauchy with respect to \(A \). Since \((X, A, F_c) \) is a complete \(C^\ast \)-algebra-valued controlled \(F_c \)-metric type space, there exists a point \(w \in X \) such that
\[
\lim_{n \to \infty} F_c(w_{n, w_{n+1}, w_{n+1}}) = \theta_a. \]
\[
\text{(10)} \]
\]

Consider,
\[
F_c(w, w, w_{n+1}) \leq 2C(w, w, w_{n+1}) F_c(w, w, w_{n+1}) + C(w_{n+1}, w_{n+1}, w_{n+1}) F_c(w_{n+1}, w_{n+1}, w_{n+1}) \]
\[
\left. - F_c(w_{n+1}, w_{n+1}, w_{n+1}) \right) \]
\[
\iff \left\| F_c(w, w, w_{n+1}) \right\| \leq 2 \left\| C(w, w, w_{n+1}) \right\| \left\| F_c(w, w, w_{n+1}) \right\| + \left\| C(w_{n+1}, w_{n+1}, w_{n+1}) \right\| \left\| F_c(w_{n+1}, w_{n+1}, w_{n+1}) \right\| \]
\[
\left\| F_c(w_{n+1}, w_{n+1}, w_{n+1}) \right\| \]
\]
\]

It yields from (14) and (10) that
\[
\lim_{n \to \infty} \left\| F_c(w, w, w_{n+1}) \right\| = 0. \]
\[
\text{(11)} \]
Hence
\[\|F_c(\varpi, \varpi, T\varpi)\| \leq 2\|C(\varpi, \varpi, \varpi_{n+1})\|\|F_c(\varpi, \varpi, \varpi_{n+1})\| + \|C(T\varpi, T\varpi, \varpi_{n+1})\| \]
\[\|F_c(\varpi_{n+1}, \varpi_{n+1}, T\varpi)\| \]
\[= 2\|C(\varpi, \varpi_{n+1})\|\|F_c(\varpi, \varpi, \varpi_{n+1})\| + \|C(T\varpi, T\varpi, \varpi_{n+1})\| \]
\[\|F_c(T^{n+1}\varpi, T^{n+1}\varpi, T\varpi)\| \]

Regarding (11), we get \(\|F_c(\varpi, \varpi, \varpi_{n+1})\| \to 0 \) as \(n \to \infty \). Since \(T^n \to x \) and from continuity of \(T \), we acquire \(T^{n+1} \to Tx \) i.e., \(\|F_c(T^{n+1}\varpi, T^{n+1}\varpi, T\varpi)\| \to 0 \), as \(n \to \infty \). Thus
\[\lim_{n \to \infty} \|F_c(\varpi, \varpi, T\varpi)\| = 0 \]
\[\iff \lim_{n \to \infty} F_c(\varpi, \varpi, T\varpi) = \theta_k. \]

Hence \(T\varpi = \varpi \) i.e., \(\varpi \) is a fixed point of \(T \). Now to prove uniqueness, let \(\tilde{\nu} \neq \varpi \) be another fixed point of \(T \). Taking the expression (1) into account, we have
\[F_c(\varpi, \varpi, \tilde{\nu}) = F_c(T\varpi, T\varpi, T\tilde{\nu}) \]
\[\leq P^* F_c(\varpi, \varpi, \tilde{\nu}) P + Q^* F_c(\varpi, \varpi, T\varpi) Q + R^* F_c(\tilde{\nu}, \varpi, T\tilde{\nu}) R \]
\[= P^* F_c(\varpi, \varpi, \tilde{\nu}) P + Q^* F_c(\varpi, \varpi, \varpi) Q + R^* F_c(\tilde{\nu}, \varpi, \varpi) R \]
\[\|F_c(\varpi, \varpi, \tilde{\nu})\| \leq (\|P\|^2 + \|Q\|^2)F_c(\varpi, \varpi, \varpi) + \|R\|^2 \|F_c(\tilde{\nu}, \varpi, \varpi)\| \]
\[\|F_c(\varpi, \varpi, \tilde{\nu})\| \leq \frac{\|R\|^2}{(1 - \|P\|^2 - \|Q\|^2)} \|F_c(\tilde{\nu}, \varpi, \varpi)\| \]
\[< \|F_c(\tilde{\nu}, \varpi, \varpi)\| = \|F_c(\varpi, \varpi, \tilde{\nu})\| \]
which is a contradiction. Hence the fixed point is unique. \(\Box \)

In Theorem (3.8), if we take \(Q = R = \theta \), then the above theorem reduces to a Banach contraction principle, which can be stated as follows:

Corollary 3.9. Let \((X, A, F_c) \) be a complete \(C^* \)-algebra-valued controlled \(F_c \)-metric type space and suppose \(T : X \to X \) is a mapping satisfying the following condition:
\[F_c(T\varpi, T\varpi, T\tilde{\nu}) \leq P^* F_c(\varpi, \varpi, \tilde{\nu}) P, \ \forall \varpi, \tilde{\nu}, \in X, \] (12)
where \(P \in A \) with \(0 \leq \|P\| < 1 \) and for \(\varpi_0 \in X \), choose \(\varpi_n = T^n\varpi_0 \) assume that
\[\sup_{m \geq 1} \lim_{n \to \infty} \|C(\varpi_{i+1}, \varpi_{i+1}, \varpi_{i+2})C(\varpi_{i+1}, \varpi_{i+1}, \varpi_{m})\| < \frac{1}{\|P\|^2}. \] (13)

In addition, for each \(\varpi \in X \), suppose that
\[\lim_{n \to \infty} \|C(\varpi, \varpi, \varpi_n)\| \text{ and } \lim_{n \to \infty} \|C(\varpi_n, \varpi_n, \varpi_n)\| \] (14)
either exist and are finite. Then \(T \) has a unique fixed point in \(X \).
Example 3.10. Let $X = [0, 4]$ and $\mathbb{A} = M_2(\mathbb{R})$ be the set of all 2×2 matrices under usual addition, multiplication and scalar multiplication. Define $F_c : X \times X \times X \to \mathbb{A}$ as follows:

$$F_c(\omega, \nu, \varsigma) = \begin{pmatrix} \max\{\omega, \varsigma\} + \max\{\nu, \varsigma\} & 0 \\ 0 & \max\{\omega, \varsigma\} + \max\{\nu, \varsigma\} \end{pmatrix}$$

Hence (X, \mathbb{A}, F_c) is a C^*-algebra-valued controlled F_c-metric type space with $C(\omega, \nu, \varsigma) = 2 + \max\{\omega, \nu, \varsigma\}$. Now for any $A \in \mathbb{A}$, we define its norm as $\|A\| = \max\{\{a_i\}_1\leq 4\}$. Let $T : X \to X$ be defined as $T\omega = \frac{\omega}{8}$. Then

$$F_c(T\omega, T\omega, T\nu) = F_c\left(\frac{\omega}{8}, \frac{\omega}{8}, \frac{\nu}{8}\right) = \begin{pmatrix} 2\max\{\frac{\omega}{8}, \frac{\nu}{8}\} & 0 \\ 0 & 2\max\{\frac{\omega}{8}, \frac{\nu}{8}\} \end{pmatrix} = P^* F_c(\omega, \omega, \nu) P$$

where $P = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{pmatrix}$ with $\|P\| = \frac{1}{2\sqrt{2}} < 1$. Now consider

$$C(\omega_{i+1}, \omega_{i+1}, \omega_{i+2}) = C(T^{i+1}\omega, T^{i+1}\omega, T^{i+2}\omega) = C\left(\frac{\omega}{8^{i+1}}, \frac{\omega}{8^{i+1}}, \frac{\omega}{8^{i+2}}\right) = \begin{pmatrix} 2 + \max\{\frac{\omega}{8^{i+1}}, \frac{\omega}{8^{i+1}}, \frac{\omega}{8^{i+2}}\} & 0 \\ 0 & 2 + \max\{\frac{\omega}{8^{i+1}}, \frac{\omega}{8^{i+1}}, \frac{\omega}{8^{i+2}}\} \end{pmatrix}$$

Similarly,

$$C(\omega_{i+1}, \omega_{i+1}, \omega_m) = \begin{pmatrix} 2 + \max\{\frac{\omega}{8^{i+1}}, \frac{\omega}{8^{i+1}}, \frac{\omega}{8^m}\} & 0 \\ 0 & 2 + \max\{\frac{\omega}{8^{i+1}}, \frac{\omega}{8^{i+1}}, \frac{\omega}{8^m}\} \end{pmatrix}$$

Thus

$$\lim_{i \to \infty} \|C(\omega_{i+1}, \omega_{i+1}, \omega_{i+2}) C(\omega_{i+1}, \omega_{i+1}, \omega_m)\| = \lim_{i \to \infty} \left\| \begin{pmatrix} (2 + \frac{\omega}{8^{i+1}})(2 + \max\{\frac{\omega}{8^{i+1}}, \frac{\omega}{8^m}\}) & 0 \\ 0 & (2 + \frac{\omega}{8^{i+1}})(2 + \max\{\frac{\omega}{8^{i+1}}, \frac{\omega}{8^m}\}) \end{pmatrix} \right\| = \lim_{i \to \infty} (2 + \frac{\omega}{8^{i+1}})(2 + \max\{\frac{\omega}{8^{i+1}}, \frac{\omega}{8^m}\}) = 4 + \frac{2\omega}{8^m}$$

and

$$\sup_{m \geq 1} \lim_{i \to \infty} \|C(\omega_{i+1}, \omega_{i+1}, \omega_{i+2}) C(\omega_{i+1}, \omega_{i+1}, \omega_m)\| = 4 + \frac{2\omega}{8} < 8 = \frac{1}{\|P\|^2}.$$
4 Conclusion

In this manuscript, we have analyzed the structure of C^*-algebra-valued controlled F_c-metric type spaces and acquired some fixed point theorem under different contractive conditions of the underlying spaces. Further, an example is conferred to show the effectiveness of the established result.

References

[1] Fernandez, J., Malviya, N., Radenović, S., Saxena, K.: F-cone metric spaces over banach algebra: Fixed Point Theory Appl. 2017, 7 (2017).
[2] Mukheimer, A.: Extended partial S_b-metric spaces, Axioms 2018, 7, 87.
[3] Karapinar, E., Sumati Kumari, P., Lateef, D.: A New Approach to the Solution of the Fredholm Integral Equation via a Fixed Point on Extended b-Metric Spaces. Symmetry 2018, 10, 512.
[4] Panda, S.K, Tassaddiq, A., Agarwal, R.P.: A New Approach to the Solution of the Non-Linear Integral Equations via Various F_{B_c}-Contractions. Symmetry 2019, 11, 206.
[5] Alqahtani, B., Fulga, A., Karapinar, E.: Common fixed point results on extended b-metric space: J. Inequal. Appl. 2018, 2018, 158.
[6] Alqahtani, B., Karapinar, E., Ozturk, A.: On $(\alpha, \psi) - K$-contractions in the extended b-metric space: Filomat 2018, 32, 15.
[7] Alqahtani, B., Fulga, A., Karapinar, E.: Non-Unique Fixed Point Results in Extended b-Metric Space. Mathematics 2018, 6, 68.
[8] Samreen, M., Kamran, T., Postolache, M.: Extended b-metric space, extended b-comparison function and nonlinear contractions. U. P. B. Sci. Bull., Series A, 80(4), (2018), 21-28.
[9] Shatanawi, W., Abodayeh, K., Mukheimer, A.: Some fixed point theorems in extended b-metric spaces. U. P. B. Sci. Bull., Series A, 80(4), 71-78 (2018).
[10] Bakhtin, A.: The contraction mapping principle in almost metric spaces. Funct. Anal. 30, (1989), 26-37.
[11] Kamran, T., Samreen, M., UL Ain, Q.: A generalization of b-metric space and some fixed point theorems. Mathematics 2017, 5, 19.
[12] Matthews, SG.: Partial metric topology: Ann. N.Y. Acad. Sci., 728(1), (1994), 183-197.
[13] Bai, C.: Coupled fixed point theorems in C^*-algebra-valued b-metric spaces with application: Fixed Point Theory Appl. 2016, 2016:70.
[14] Batul, S., Kamran, T.: C^*-valued contractive type mappings: Fixed Point Theory Appl. 2015, 2015:142.

[15] Erden, M., Alaca, C.: C^*-algebra-valued S-metric spaces: Communications Series A1, 67(2), (2018), 165-177.

[16] Kalaivani, C., Kalpana, G: Fixed point theorems in C^*-algebra-valued S-metric spaces with some applications: U.P.B. Sci. Bull., Series A, 80(3), 2018.

[17] Kalpana, G., Sumaiya Tasneem, Z.: C^*-algebra-valued rectangular b-metric spaces and some fixed point theorems: Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. 68(2), (2019), 2198-2208.

[18] Kalpana, G., Sumaiya Tasneem, Z.: Common Fixed Point Theorems in C^*-algebra-valued Hexagonal b-Metric spaces: AIP Conf. Proc. 2095, 030012-1–030012-5, https://doi.org/10.1063/1.5097523.

[19] Murphy, G. J.: C^*-Algebras and Operator Theory: Academic Press, London 1990.

[20] Xin, QL., Jiang, LN., Ma, ZH.: Common fixed point theorems in C^*-algebra-valued metric spaces: J. Nonlinear Sci. Appl. 9, (2016), 4617-4627.

[21] Shehwar, D., Batul, S., Kamran, T., Ghiura, A.: Caristis fixed point theorem on C^*-algebra valued metric spaces: J. Nonlinear Sci. Appl., 9, (2016), 584-588.

[22] Ma, ZH., Jiang, LN.: C^*-algebra-valued b-metric spaces and related fixed point theorems: Fixed Point Theory Appl. 2015, 2015:222.

[23] Mlaiki, N., Aydi H., Souayah, N., Abdeljawad: T. Controlled metric type spaces and the related contraction principle: Mathematics 2018, 6, 194.

[24] Ma, ZH., Jiang, LN., Sun, H.: C^*-algebra-valued metric spaces and related fixed point theorems: Fixed Point Theory Appl. 2014, 2014:206.