Identification of COUP-TFII Orphan Nuclear Receptor as a Retinoic Acid–Activated Receptor

Schoen W. Kruse1*, Kelly Suino-Powell1, X. Edward Zhou1, Jennifer E. Kretschman1, Ross Reynolds2, Clemens Vonrhein3, Yong Xu1, Liliang Wang4, Sophia Y. Tsai4, Ming-Jer Tsai4, H. Eric Xu1*

1 Laboratory of Structural Sciences, Van Andel Research Institute, Grand Rapids, Michigan, United States of America, 2 Department of Physics, Grand Valley State University, Allendale, Michigan, United States of America, 3 Global Phasing Ltd., Sheraton House, Castle Park, Cambridge, United Kingdom, 4 Department of Molecular and Cellular Biology and Program in Developmental Biology, Baylor College of Medicine, Houston, Texas, United States of America

The chicken ovalbumin upstream promoter-transcription factors (COUP-TFI and II) make up the most conserved subfamily of nuclear receptors that play key roles in angiogenesis, neuronal development, organogenesis, cell fate determination, and metabolic homeostasis. Although the biological functions of COUP-TFs have been studied extensively, little is known of their structural features or aspects of ligand regulation. Here we report the ligand-free 1.48 Å crystal structure of the human COUP-TFII ligand-binding domain. The structure reveals an auto-repressed conformation of the receptor, where helix x10 is bent into the ligand-binding pocket and the activation function-2 helix is folded into the cofactor binding site, thus preventing the recruitment of coactivators. In contrast, in multiple cell lines, COUP-TFII exhibits constitutive transcriptional activity, which can be further potentiated by nuclear receptor coactivators. Mutations designed to disrupt cofactor binding, dimerization, and ligand binding, substantially reduce the COUP-TFII transcriptional activity. Importantly, retinoid acids are able to promote COUP-TFII to recruit coactivators and activate a COUP-TF reporter construct. Although the concentration needed is higher than the physiological levels of retinoic acids, these findings demonstrate that COUP-TFII is a ligand-regulated nuclear receptor, in which ligands activate the receptor by releasing it from the auto-repressed conformation.

Introduction

Nuclear receptors (NRs) are ligand-inducible transcription factors that transmit physiological signals of a wide variety of ligands, such as classical steroid hormones, retinoic acid, thyroid hormone, and vitamin D [1,2]. The NR family also includes a large number of orphan receptors for which specific ligands have yet to be identified [3]. Among the most extensively studied orphan receptors are the chicken ovalbumin upstream promoter-transcription factors (COUP-TFs), which belong to the NR2F subfamily. This family includes three human members—COUP-TFI (EAR3), COUP-TFII (ARP-1), and the more distant EAR2—as well as the Drosophila melanogaster protein Seven-up (Svp), xCOUP-TFIII from Xenopus laevis, and the zebrasfish homolog SVP46 [4,5]. COUP-TFs are the most evolutionarily conserved NRs among all species, and within the NR2F subfamily, the homology in both the DNA-binding domain (DBD) and ligand-binding domain (LBD) is extremely high. For example, the LBDs of COUP-TFI or II are essentially identical in different species (99.6% among vertebrates and >90% with the D. melanogaster protein Svp), suggesting that these domains are critical for the biological function of COUP-TFs even though a ligand has yet to be identified [4].

In mammals, the COUP-TF orphan NRs regulate many key biological processes, including angiogenesis, neuronal development, organogenesis, cell fate determination, metabolic homeostasis, and circadian rhythm [6–12]. COUP-TFII–null mutants exhibit defects in angiogenesis and heart development and die before embryonic day 10.5 [7]. COUP-TFII also regulates vein identity by repressing Notch signaling [13]. In addition, COUP-TFII heterozygous females show significantly reduced fertility, irregular estrus cycles, delayed puberty, and retarded postnatal growth [14]. Conditional deletion of COUP-TFII in the uterus results in decidualization and embryo attachment defects, leading to infertility [15], whereas partial ablation of COUP-TFII causes severely impaired placental formation and contributes to miscarriage [16]. Tissue-specific knockouts of COUP-TFII in the mesenchyme cause an alteration in the anterior-posterior and radial patterning of the stomach and causes Bochdalek-type congenital diaphragmatic hernia [17,18]. Altogether, the role of COUP-TFII during angiogenesis and heart development, female reproduction, and mesenchymal-epithelial signaling has been well established, even though it is unclear whether COUP-TFII is regulated by ligands.

The LBD of NRs plays a crucial role in their functions, including ligand recognition, receptor dimerization or oligomerization, and ligand-dependent activation. Crystallo-
Unlike other classes of receptors, nuclear receptors can bind directly to DNA and act as transcription factors, playing key roles in embryonic development and cellular metabolism. Most nuclear receptors are activated by signal-triggering molecules (ligands) and can regulate their activity by recruiting coactivator proteins. However, the ligands are unknown for a subset of “orphan” nuclear receptors, including the chicken ovalbumin promoter-transcription factors (COUP-TF1 and 2, and EAR2). COUP-TFs are the most conserved nuclear receptors, with roles in angiogenesis, neuronal development, organogenesis, and metabolic homeostasis. Here we demonstrate that COUP-TFII is a ligand-regulated nuclear receptor that can be activated by unphysiological micromolar concentrations of retinoic acids. We determined the structure of the ligand-free ligand-binding domain of the human COUP-TFII, revealing the autoinhibited conformation of the receptor, where helix z10 is bent into the ligand-binding pocket and the activation function-2 helix is folded into the coactivator binding site, thus preventing the recruitment of coactivators. These results suggest a mechanism where ligands activate COUP-TFII by releasing the receptor from the autoinhibited conformation. The identification of COUP-TFII as a low-affinity retinoic acid receptor suggests ways of searching for the endogenous ligands that may ultimately link retinoic acid and COUP-TF signaling pathways.
The sequence a follows binding pocket of COUP-TFII allows the AF2 helix, which for any ligand to bind in this conformation. In fact, when the bulky size of these aromatic side chains and the dense pack of the binding pocket in COUP-TFII, there is no room for any ligand to bind in this conformation. In fact, when calculating available cavity size in this structure, two small groups from residues M399 and L400 (AF2) (Figure 1G). In this orientation of the AF2 helix, neither coactivators nor corepressors are able to bind to COUP-TFII, and therefore this structure represents an autorepressed form of this orphan NR.

COP-TFII Acts as a Transcriptional Activator in Multiple Cell Lines

COUP-TFII can serve as an transcriptional activator of the NGFI-A promoter in HeLa and rat urogenital mesenchymal cells [32] and enhance hepatocyte nuclear factor 4 (HNF4)-induced cholesterol 7a-hydroxylase expression via a direct repeat one site [33]. To correlate the observed structure with COUP-TFII function, we established a cell-based assay using a full-length COUP-TFII expression construct and a luciferase reporter driven by the NGFI-A promoter in COS-7, HEK-293T, and CHO-K1 cells. Results showed a dose-dependent increase in gene expression in all three different cell types (Figure 2A), demonstrating the ability of COUP-TFII to activate the NGFI-A promoter in multiple cell lines.

The full-length COUP-TFII sequence consists of 414 amino acids and can be subdivided based on primary structure into the AF1 domain, the DBD, and the LBD (Figure 2B). To determine the specific contribution of each domain in COUP-TFII activation, we tested the transcriptional activity of a series of deletion mutants in cell-based assays. Removal of the AF1 domain (residues 1–73) resulted in a decrease of COUP-TFII activation, while cotransfection with the DBD and the LBD resulted in a further decrease of activity of approximately 50% compared to wild-type levels, although the presence of the DBD and LBD alone are enough to activate gene expression by 25-fold over empty vector control.

Table 1. Data Collection and Refinement Statistics

Parameter	Subparameter	\(\lambda^{1-4}\)	\(\lambda^{2}\)	\(\lambda^{3}\)	\(\lambda^{4}\)	
Resolution (Å)		50.0–1.48 (1.53–1.48)	50.0–1.65 (1.71–1.65)	50.0–1.70 (1.76–1.70)	50.0–1.84 (1.91–1.84)	
Wavelength		0.7	1.0	1.4	1.8	
Completeness (%)		98.8 (91.7)	99.4 (94.8)	96.4 (74.2)	95.0 (64.5)	
\(R_{merge}\) (%)		4.7 (73.6)	5.0 (69.5)	4.7 (62.2)	4.7 (40.4)	
s(I) (%)		35.3 (2.1)	41.8 (2.1)	46.9 (1.9)	53.3 (3.1)	
Redundancy		7.3 (5.8)	7.4 (6.2)	7.1 (5.6)	7.0 (5.4)	
Total reflections		238,208	173,003	149,326	114,096	
Unique reflections		32,366	23,523	21,076	16,384	
Space group		C2	C2	C2	C2	
Cell dimensions		a (Å)	97.85	97.90	97.97	97.99
		b (Å)	47.76	47.78	47.81	47.83
		c (Å)	43.13	43.16	43.20	43.21
		\(\beta\) (%)	100.87	100.87	100.88	100.88
\(R_{merge}\) (%)	a	16.8 (18.0)	16.8 (18.0)	16.8 (18.0)	16.8 (18.0)	
\(R_{merge}\) (%)	b	23.8 (30.2)	23.8 (30.2)	23.8 (30.2)	23.8 (30.2)	

Values in parenthesis are for highest resolution shells.

a \(R_{merge} = \Sigma |F_P - F_{calc}| / \Sigma |F_P|\), where |F_P| is the intensity of a given reflection.

b \(R_{merge} = \Sigma |F_P - F_{calc}| / \Sigma |F_P|\), where |F_P| and |F_{calc}| are observed and calculated structure factors. \(R_{merge}\) was calculated from a randomly chosen 7.7% of reflections excluded from refinement and \(R_{merge}\) was calculated for the remaining 92.3% of reflections.

c Data were collected from one iodine derivative crystal of COUP-TFII.

d Dataset used for refinement. Resolution used for refinement was 6.0–1.48 Å (1.52–1.48 Å highest resolution shell).

doi:10.1371/journal.pbio.0060227.t001

PloS Biology | www.plosbiology.org

2004

September 2008 | Volume 6 | Issue 9 | e227

ligands and possibly contributing to the stability of the ligand-free state of the protein (Figure 1A). In contrast to the structure of RXRα bound to 9-cis retinoic acid (9cRA), where the binding pocket is occupied by the ligand and helix a10 is fully extended [27], the structure of COUP-TFII shows that the ligand binding site is occupied by hydrophobic and aromatic residues from a3 (I212, A216, L220), a5 (W249, F253, A257), the loop following a5 (M262), a7 (F295), a10 (I378, F382, F383), and from the AF2 helix (I392) (Figure 1C). Due to the bulky size of these aromatic side chains and the dense pack of the binding pocket in COUP-TFII, there is no room for any ligand to bind in this conformation. In fact, when calculating available cavity size in this structure, two small cavities were identified with volumes of 18 Å³ and 12 Å³ in size (magenta and white, respectively, Figure 1D) [31]. In comparison, the volume of a single methyl group is approximately 25 Å³, and based on this structure, the cavities in COUP-TFII would be too small to accommodate a ligand of this size.

The kink in helix a10 and the subsequent collapse of the binding pocket of COUP-TFII allows the AF2 helix, which follows a10, to bind in the cofactor binding site of the LBD. The sequence IETLIRDML from COUP-TFII AF2 helix (residues 392–400, where underlined residues are identical or similar to leucine or isoleucine) is highly related to the LXXLL coactivator motif or the LXXXXXL corepressor motif, and its binding mode resembles that of the coactivator SRC-1 peptide motif bound to RXRα from the RXRα/PPARγ heterodimer [29] or the corepressor silencing mediator of retinoid and thyroid receptor (SMRT) peptide from the PPARα-GV6471 structure [23] (Figure 1E and 1F). The AF2 helix is stabilized in the cofactor binding site by both hydrogen bonding and hydrophobic interactions. The N-terminal end of AF2 is stabilized by a hydrogen bond between Q393 (AF2) and R246 (a4), and the C-terminal end of the AF2 is stabilized by hydrogen bonding between the conserved charge clamp residue R228 (a3) and two backbone carbonyl groups from residues M399 and L400 (AF2) (Figure 1G). These hydrogen bond lock the AF2 in place at the ends of the helix, while hydrophobic interactions help stabilize AF2 in the cofactor binding groove. I392, I396, M399, and L400 extend directly into the core of COUP-TFII and make Van der Waals contacts with residues from a3, a4, a5, and a10 (Figure 1G). In this orientation of the AF2 helix, neither coactivators nor corepressors are able to bind to COUP-TFII, and therefore this structure represents an autorepressed form of this orphan NR.
COUP-TFII as a Low-Affinity Retinoic Acid Receptor

Figure 1. Crystal Structure of the Ligand-Free COUP-TFII LBD

(A) Front and side views of the COUP-TFII LBD monomer with its AF2 helix colored in red.
(B) Organization of the COUP-TFII LBD dimer, showing that its dimer interface is formed predominantly by helix α10 (cyan).
(C) The packing of the ligand-binding pocket within the bottom half of the COUP-TFII LBD.
(D) Space-filling diagram shows two small cavities in COUP-TFII colored with magenta (18 Å³) and white (12 Å³).
(E and F) Overlay of the COUP-TFII LBD structure with the SRC-1 LXXLL motif (green in E) from the RXR structure or with the SMRT corepressor motif (magenta in F) from the antagonist bound PPARα structure.
(G) Hydrogen bonds (yellow dashed lines) and hydrophobic interactions of the COUP-TFII AF2 helix (green) within the cofactor binding site.
doi:10.1371/journal.pbio.0060227.g001

(Figure 2C). Removal of the LBD, however, reduced more than 90% activity of COUP-TFII in our cell-based assay system and implies that the LBD is required to bind to ligands or coactivator proteins, or both, to activate transcription (Figure 2C). To test the activity of the LBD only, the COUP-TFII LBD (residues 144–414) was fused to the GAL4 DNA binding domain and cotransfected with a GAL4 reporter vector in COS-7 cells. The GAL4-COUP-TFII chimera construct activated luciferase transcription greater than 3.5-fold over GAL4 DBD alone (Figure 2D), indicating that the COUP-TFII LBD alone is adequate to activate gene transcription.

COUP-TFII Activation Requires the Formation of a Functional Dimer and the AF2 Helix

The COUP-TFII LBD forms a symmetric dimer along helix α10 of each monomer. To determine the functional role of the COUP-TFII dimer, we mutated two leucines (L364 and L365) from the N-terminal portions of helix α10 to alanines. These two leucines are key interface residues that form critical hydrophobic interactions with I318, G361, L364, L365, and L367 of the opposite monomer (Figure 3A and Table 2). The L364A/L365A double mutant showed only 20% activity in comparison to wild-type COUP-TFII, indicating that an intact dimer interface is required for COUP-TFII to function properly (Figure 3B). These data support the initial studies of COUP-TF that showed the functional DNA-binding form of COUP-TF is a dimer [34,35].

To test the role of the AF2 helix in COUP-TFII activity, we made two truncation mutants at the C terminus. Truncation at position S405, which removes the C-terminal nine residues but keeps the AF2 helix intact, has little effect on the COUP-TFII transcriptional activity. In contrast, truncation at position S395 decreases the COUP-TFII activity by 20–30% (Figure 3C), consistent with the idea that the AF2 helix is required for COUP-TFII activity.
E393, which removes the entire AF2 helix and all residues thereafter, causes a dramatic and significant loss of function of the receptor (Figure 3B), indicating that an intact AF2 helix is required for the COUP-TFII transcriptional function.

Coactivators Bind to COUP-TFII via a Charge Clamp and Enhance Activation

Coactivator recruitment for transcriptional activation by NRs is mediated through a conserved charge clamp pocket, in part formed by a positively charged residue from the end of helix α3 and a negatively charged residue from the center of AF2 helix [19]. The charge clamp residues in COUP-TFII are R228 from helix α3 and D398 from the AF2 helix; both point away from the protein molecule (Figure 4A). To test the significance of the charge clamp in COUP-TFII activation, we mutated these two residues and tested them in cell-based activation assays. While single mutations of D398R and R228E have weak effects on COUP-TFII activation, complete removal of the charge clamp by the combined mutation reduces activation to 40% in comparison to the wild-type receptor (Figure 4B). These data show that an intact charge clamp is required to interact with endogenous coactivators for enhancing gene expression at wild-type levels.

Having shown a wild-type charge clamp capable of interacting with coactivators is important in COUP-TFII activity, we attempted to identify cofactor proteins that may enhance this activation. Previous studies have shown that the coactivators SRC-1 and GRIP1/SRC-2 can potentiate the activity of COUP-TFI both in vivo and upstream of the NGFI-A promoter in HeLa cells, and that PGC-1α and COUP-TFI interact with each other on the phosphoenolpyruvate carboxykinase (PEPCK) gene promoter [32,36,37]. Transfection of the coactivators SRC-1, SRC-2, SRC-3, and PGC-1α alone into COS-7 cells does not cause expression of luciferase downstream of the NGFI-A promoter (Figure 4C). However, when full-length COUP-TFII was cotransfected with these coactivators, almost all coactivators caused a

Nonpolar Interactions	Polar Interactions
A B	A B
(a8) L378	(a7) E297
(a9) C343	(a7) Q298
(a10) F360	(a7) K301
(a10) F360	(a7) K301
(a10) L364	(loop a8-a9) D324
(a10) L364	(loop a8-a9) D324
(a10) L364	(9) E335

Residues involved in dimerization are listed along with the secondary structures. The intermolecular interactions are grouped into polar (3.8 Å cutoff) and nonpolar (4.2 Å cutoff) interactions.

doi:10.1371/journal.pbio.0060227.t002

Figure 2. COUP-TFII Acts as an Activator of Transcription in Multiple Cell Lines

(A) Activation of the NGFI-A promoter reporter construct with increasing concentrations of COUP-TFII (0 ng, 50 ng, 100 ng, 150 ng, and 200 ng of the expression vector, respectively, for each cell line).

(B) Domain structure of COUP-TFII.

(C) Effects of the COUP-TFII deletion mutants on activation of the NGFI-A promoter-driven reporter. The AF1-DBD construct activates ~2-fold above empty vector control.

(D) Activation by the GAL4-DBD-COUP-TFII-LBD. The fold activation is the relative fly luciferase activity of the NGFI-A promoter induced by COUP-TFII versus the control vector without COUP-TFII. All data are normalized to the activity of Renilla luciferase that was used as transfection control. For statistical analysis, the fold induction was compared with full-length COUP-TFII or GAL4-DBD in (C) and (D), respectively.

doi:10.1371/journal.pbio.0060227.g002
significant increase in the relative induction of genes compared with COUP-TFII transactivation alone (Figure 4C). Specifically, both SRC3 and PGC-1α caused the most significant increase in the induction of luciferase (greater than 2-fold), suggesting that these coactivators play a role in COUP-TFII–mediated gene transcription, as they are found to be co-expressed with COUP-TFII in multiple tissues [15,38].

The coactivator SRC-3 (also called AIB1, ACTR, RAC-3, and TRAM-1) contains three highly conserved NR box LXXLL motifs (M1–M3) to mediate ligand-dependent interactions with NRs [39–42]. After identifying that SRC-3 enhances COUP-TFII-mediated transcription by more than 2-fold, we made a series of mutations at the conserved LXXLL motifs to LXXAA to disrupt this interaction and tested these mutations in cell-based assays. Mutations at each of the three motifs individually or as a combined M1–M3 mutation reduced COUP-TFII induction below that of wild-type, full-length receptor alone (Figure 4D). These data reveal that COUP-TFII can interact with each of the LXXLL motifs of SRC-3 and that disruption of any one of these motifs significantly reduces the SRC-3–mediated COUP-TFII transcription.

An Intact Pocket Is Important for COUP-TFII Activation

The ligand-binding pocket of the apo-COUP-TFII structure is packed tightly with hydrophobic residues that leave little space for the binding of small molecules due to the kink of helix α10 (Figure 1). However, a sizeable cavity (~600–700 Å³) for ligand binding was created when we built an active model of the COUP-TFII where helix α10 is straightened (Figure 5A). A straight helix α10 has been observed for all agonist-bound NR LBD structures, including the active structure of RXRα, where 9-cis-retinoid acid straightens helix α10 from its kink conformation in the apo-structure [27,29]. In addition, analysis of the existing crystal structures of several NR/ligand complexes and structural based sequence alignment reveals that ligand-contacting residues in NR LBDs are highly conserved in their relative positions within the primary sequence (boxed residues Figure 6).

Inspection of the ligand-binding pocket of the active COUP-TFII model reveals that the residues at the above conserved positions indeed surround the COUP-TFII ligand-binding pocket with most of their side chains pointing toward the interior of the pocket (Figure 5B). Based on this information, we made a series of mutations in several residues that line the binding pocket in the active model of the COUP-TFII LBD, and we tested these mutations in cell-based assays.

Six sets of mutations were made to affect COUP-TFII ligand binding. Four sets of mutations were designed to increase the size of the ligand-binding pocket by mutating the corresponding residues to alanine (the double mutants I212A/C213A, W249A/S250A, F253A/V254A, and L269A/L270A), whereas two mutations were designed to reduce the size of the ligand-binding pocket with mutations to tryptophan residues (A216W and S250W). All mutations showed a significant decrease in activity in comparison to the wild-type receptor (Figure 5C). Two mutants showed a 30% decrease in activity (I212A/C213A and A216W), and four mutants reduced activity of COUP-TFII by 50% (W249A/S250A, S250W, F253A/V254A, and L269A/L270A). The degree of reduction in these mutants is comparable to the mutations in the ligand-binding pocket of SF-1, which was found to bind to phospholipids [30,43]. These results thus suggest that COUP-TFII may also be a ligand regulated receptor, which requires its intact binding pocket for the optimal receptor activity.

Activation of COUP-TFII by Retinoid Acids

The transcriptional activity of COUP-TFII in multiple cell lines versus the autorepressed conformation observed in the apo-COUP-TFII structure suggests a putative ligand either

Figure 3. COUP-TFII Activation Is Dependent on the Formation of a Functional Dimer and the Presence of AF2
(A) Top view of the COUP-TFII dimer showing the close packing of L364 (gray) and L365 (green) from helices α10 (cyan) in the dimer interface.
(B) Effects of the L364A/L365A double mutant and the AF2 deletion mutant on COUP-TFII activation of the NGFI-A promoter. For easy comparison, the relative fold of activation by the wild-type receptor is set to 1. The statistical analysis for the fold induction of the mutants was compared with wild type COUP-TFII.
doi:10.1371/journal.pbio.0060227.g003
present in the serum or produced in cell lines used. To test whether there is a COUP-TFII ligand in the serum, we repeated the activation experiment with dextran-charcoal–treated serum in the hope that such treatment would strip any hydrophobic ligands including steroids and retinoids, thus reducing COUP-TFII activation. Indeed, using charcoal-treated serum greatly reduced COUP-TFII activation potential by 60%–70% regardless the presence of the SRC-3 coactivator (Figure 7A), suggesting the presence of a hydrophobic ligand(s) in the serum, which is required for COUP-TFII activation.

The modeled active COUP-TFII conformation displays a ligand-binding cavity with a size of 600–700 Å³, which can easily adopt a steroid or retinoid ligand (Figure 5A). To determine the identity of possible COUP-TFII ligands, we screened a panel of steroids and retinoids for their ability to promote COUP-TFII activation. Indeed, using charcoal-treated serum greatly reduced COUP-TFII activation potential by 60%–70% regardless the presence of the SRC-3 coactivator (Figure 7A), suggesting the presence of a hydrophobic ligand(s) in the serum, which is required for COUP-TFII activation.

Full dose curves reveal the potency (EC50) of retinoid acids around 10–30 µM (Figure 7C). In parallel, both 9cRA and ATRA activate COUP-TFII on the luciferase reporter driven by the NGFI-A promoter with a similar potency of 20 µM (Figure 7D). Although the concentrations of RAs required for activation of COUP-TFII are 10–100 times higher than the physiological levels, these results nevertheless establish COUP-TFII is a ligand-activated receptor and demonstrate that both 9cRA and ATRA can serve as low-affinity ligands of COUP-TFII.

Discussion

We have solved the structure of the COUP-TFII LBD, which reveals a novel autorepressed conformation of NRs crystallized in the absence of ligands. In contrast, cell-based assays indicate that COUP-TFII has a “constitutive” activity on the NGFI-A promoter, which can be further potentiated by recruiting coactivators like SRC-3 that require the LXXLL motifs. These results demonstrate that COUP-TFII is a ligand-activated receptor and can serve as a low-affinity ligand for COUP-TFII.
two seemingly contrasting observations are reconciled by the fact that the active COUP-TFII model contains a ligand-binding pocket of 600–700 Å³, which can easily adopt a steroid or retinoid ligand. In addition, both 9cRA and ATRA bind and promote COUP-TFII activation. These results demonstrate that COUP-TFII is a ligand-regulated NR, whose full activity requires the intact structure of the COUP-TFII coactivator binding site, AF2 helix, dimer interface, and the residues that make up the COUP-TFII ligand-binding pocket. Moreover, the ability of 9cRA and ATRA to activate COUP-TFII in high concentrations indicates that RAs are unlikely to be the physiological ligands. Identification of the true endogenous ligands will require further research, which could help to reveal the ligand-dependent signaling pathways of the COUP-TFII subfamily of orphan NRs.

Structural Basis for the COUP-TFII Autorepressed Conformation

The classic mechanism for activation of NRs includes that the binding of ligands to the receptor induces the C-terminal AF2 helix to position in the active conformation [19]. The AF2 helix can then form a charge clamp pocket, completed by helices α3, α3’, α4, and α5, which allows the receptor to interact efficiently with coactivator proteins [19,44–46]. In the ligand-free crystal structure of the COUP-TFII LBD, the AF2 helix does not form the charge clamp pocket but instead adopts an inactive conformation by occupying the coactivator binding site, thereby preventing the binding of coactivator proteins. This inactive conformation of COUP-TFII is facilitated by the kink of helix α10, which induces the last two turns of the C-terminal region of helix α10 to fit tightly into the ligand binding pocket. The collapse of helix α10 into the ligand binding pocket has also been observed in the inactive conformation of several other NRs. The CAR antagonist androstanol induces a similar kink of helix α10 from its straight agonist-bound conformation [47,48]. The apo-RXR structure also has its C-terminal portion helix α10 bent into the RXR ligand binding pocket [26,27]. It is interesting to note that the C-terminal portion helix α10 has been proposed as part of allosteric networks that transmit ligand binding.
COUP-TFII as a Low-Affinity Retinoic Acid Receptor
signal across the dimer interface of NR [49,50]. Thus structural changes of the C-terminal part of helix a10 may represent a more general phenomenon involved in switching/modulating the activation function of NRs.

The autorepressed conformation of COUP-TFII AF2 helix has also been observed in two previous crystal structures of NR LBDs. The structure of the ligand-free tetramer of RXRa shows an autorepressed orientation where the AF2 helix protrudes away from the core domain and spans into the coactivator binding site in the adjacent monomer of the symmetric dimer [27]. Although this interaction is between two monomers, the RXRa AF2 helix physically excludes coactivator binding in a manner similar to that found in the structure of autorepressed COUP-TFII. The overall route mean square deviation (RMSD) for the 116 Cα atoms that align between the core of the LBD structures (a3, a4, a5, a7, a8, a9, and a10 to the Val373 kink, including loops) is 1.436 Å, which indicates a high degree of similarity between the autorepressed structures of COUP-TFII and RXRa and perhaps a conservation of transcriptional repression based on their structures. The main difference between the two structures, aside from the relative positioning of the AF2 helix, is the size of the ligand-binding pocket. As mentioned earlier, the COUP-TFII binding pocket in its ligand-free

Figure 6. Conserved Positions of the Ligand Pocket Residues in NRs
Structure-based sequence alignment of various NR LBDs shows that ligand pocket residues (boxed by black squares) are conserved in their relative positions within the context of their secondary structural elements (labeled underneath) of NRs. All sequences are from human proteins except Seven-up, a COUP-TF-like orphan receptor from D. melanogaster. The Protein Databank (PDB; http://www.rcsb.org/pdb/home/home.do) codes for the ligand/receptor complexes is: 1fmr for 9cRA-bound RXRa [28], 1lv4 for HNF4α [61], 2bdi for RARγ [62], 1uhl for LXRα [63], 1pld for LXRβ [64], 1ot7 for FXR [65], 1i2i for ERα [21], 1qjm for ERβ [66], 2h79a for TRα [67], and 1q4x for TRβ [68,69].

doi:10.1371/journal.pbio.0060227.g006

Figure 7. COUP-TFII Is Activated by Retinoid Acids
(A) Effects of charcoal-treated FBS on COUP-TFII activation in the presence or absence of SRC-3 coactivator. The basal activity of the NGFI-A reporter construct in the presence of FBS and absence of COUP-TFII and SRC-3 is set as 1.
(B) Addition of 50 μM of 9cRA or ATRA to promote COUP-TFII binding to SRC-3–1 coactivator motif where the addition of steroids (50 μM) has little effect.
(C) Concentration-response curves of 9cRA and ATRA, which show the binding affinity (EC50) of 9cRA and ATRA is 17 μM and 26 μM, respectively.
(D) Effects of ATRA and 9cRA on COUP-TFII activation of the NGFI-A promoter in COS-7 cells.

doi:10.1371/journal.pbio.0060227.g007
structure is virtually nonexistent and filled with two turns of the C-terminal half of α10 as well as hydrophobic and aromatic side chains. In contrast, the ligand-binding pocket of the RXRα tetramer is I-shaped and can crystallize with an alternative trans-isomer of retinoic acid [27]. Helix α3 of COUP-TFII is shorter than that of RXRα and folds closer to the center of the ligand-binding pocket, which creates a smaller pocket in COUP-TFII. In addition, the kink in COUP-TFII α10 occurs more N-terminally than does the separation of α10 and α11 in RXRα (V373 versus H435, respectively), which allows the C-terminal half of α10 to occupy deeper into the ligand-binding pocket of COUP-TFII than RXRα.

The antagonist-bound ERα structures also share similarity to the structure of COUP-TFII with the relative positioning of the AF2 helix [21,24]. The binding of OHT to ERα promotes a conformation of the AF2 helix that inhibits the binding of coactivators or corepressors. The ERα AF2 helix mimics the hydrophobic interactions of the coactivator peptide with a stretch of residues that resembles a coactivator peptide (LLEML instead of LXXLL, where the underlined residues are identical or similar to leucine (Figure 6). Identical to the structure of COUP-TFII, the N-terminal residue of the NR charge-clamp in ERα (K362) interacts with the C-terminal turn of the AF2 helix, making hydrogen bonds to the carbonyls of M343 and L544. This interaction between AF2 and the body of the NR LBD suggests that there may be conservation of interactions required to block the binding of either apo-NRs or antagonist-bound NRs with coactivators or corepressors.

The Role of Dimerization in COUP-TFII Function

The COUP-TFII crystal structure is a dimer in which two monomers interact along the same interface, previously identified as important in homo- and heterodimerization of other NRs [24,26–28,46,51]. The majority of intermolecular interactions are mediated by residues from the N-terminal halves of helix α10, with two leucine residues forming the hydrophobic core of the interface. The L364A/L365A double mutant created to disrupt the dimer interface caused an 80% reduction in COUP-TFII function (Figure 3B) and reinforces the notion that COUP-TFs function as homodimers [34,35]. The dimeric structure and cell-based activation assays presented here thus provide additional insight into the roles of dimerization in COUP-TFII-mediated transcription activation. Interestingly, the residues involved in COUP-TFII dimerization are highly homologous to those found in the RXR dimer interface (Figure 6). It is possible that these residues are crucial in mediating COUP-TF heterodimer interactions with other NRs in addition to its homodimer.

COUP-TF has also been shown to serve as a repressor of transcription by directly binding to the LBD of NRs, a process termed transrepression [6,52,53]. This model of transrepression by COUP-TF involves the DNA-independent heterodimerization of COUP-TF LBDs with other receptors, such as TR, RAR, or RXR, and thus preventing these receptors from activating transcription. Although the specific details of this mechanism are unknown, one hypothesis is that once COUP-TF heterodimerizes with other LBD, they can either suppress the activation functions of these receptors or diminish their ligand-binding abilities by locking them in an inactive conformation [53]. The dimer structure of COUP-TFII solved in a ligand-free conformation fits this model of trans-repression (Figure 1). In the absence of ligands, COUP-TFII is able to homodimerize along α27, α29, the N-terminal portion of helix α10, and the loop between α28 and α29 with its dimer interface resembling RXR homodimers and heterodimer interface [26,27]. Conceivably, COUP-TFII would be able to heterodimerize with the unliganded forms of NRs, such as RXRα, through this same dimer interface and act as a transrepressor of RXRα function by blocking the ability of these receptors to interact with ligands and/or cofactors and subsequently inhibiting transcription. Thus the interaction between ligand-free, autorepressed conformation of COUP-TFII and other members of the NR2 subfamily may be a plausible explanation of how COUP-TFII can act as a repressor of transcription via the above model of trans-repression.

COUP-TFII as a Possible Retinoid Acid–Activated Receptor

Since COUP-TFII was first cloned nearly two decades ago, it has been puzzling whether the COUP-TF orphan NRs are ligand-regulated [54]. Despite the absence of a known ligand for COUP-TF, biological roles of this subfamily of NRs have been extensively studied. The structural and biochemical works presented in this paper have established that COUP-TFII is a ligand-regulated receptor, whose function can be activated by micromole concentrations of retinoic acids. This conclusion is supported by the following evidence. The first and the most important observation is the contrast between the autorepressed conformation in the apo-COUP-TFII structure and the ability of retinoic acids to promote COUP-TFII to interact with coactivators. The AF2 helix in the apo-structure of COUP-TFII occupies the coactivator binding site, thus physically blocking the receptor’s ability to interact with coactivators. This is consistent with our AlphaScreen results (Figure 7B), which show that COUP-TFII is not able to interact with coactivator LXXLL motifs in the absence of ligand. In contrast, both 9cRA and ATRA are able to promote COUP-TFII to interact with the SRC-3 LXXLL motifs, suggesting that these ligands are able to reshape the AF2 conformation to accommodate the binding of coactivators. The second evidence is the ability of COUP-TFII to activate the NGFI-A reporter in multiple cell lines, which can be further potentiated by exogenous coactivators that require intact LXXLL coactivator motifs. The full activity of COUP-TFII is dependent on the intact structure of the COUP-TFII dimer, the charge clamp pocket for coactivator binding, and the residues that line the COUP-TFII ligand binding pocket (Figures 2–6). These data suggest that the mode of COUP-TFII activation is similar to the general model of NR activation, in which ligand binding induces the AF2 helix to form a charge clamp pocket to interact with LXXLL motifs of coactivators. The final evidence is that the “constitutive” activity of COUP-TFII in multiple cell lines is dependent on serum used in the assays. Charcoal-treated serum, which removes hydrophobic ligands such as steroids or retinoids in the serum, severely reduces COUP-TFII activation levels (Figure 7A). In contrast, the addition of retinoid acids elevates COUP-TFII activation (Figure 7D). Together, these data provide coherent evidences that support the conclusion that COUP-TFII is a ligand-regulated NR, where retinoid acids could serve as low-affinity ligands. Although retinoid acids may not be the physiologically relevant ligands for COUP-TF, because the concentrations of retinoic acids required for COUP-TFII activation
is significantly higher than the endogenous levels of retinoic acids, our results nevertheless establish that the COUP-TF orphan receptors are ligand-regulated. Interestingly, COUP-TFII activates the NGFI-A reporter above the no-receptor control even with charcoal-stripped serum or in the absence of exogenous ligands (Figure 7A and 7D), indicating there are likely to be endogenous ligands produced in cultured cells. Identification of the endogenous ligands will be crucial for understanding the ligand-dependent pathways of COUP-TF.

In addition, our data also provide a structural model of COUP-TFII activation, in which ligand activation is mediated in part by releasing the receptor from its auto-repressed conformation. Given that both vitamin A and the COUP-TF orphan receptors share many similar and important roles in development, the identification of COUP-TFII as a low-affinity retinoic acid receptor presented here provides a new window to look into the physiological relationship between these two previously unconnected pathways.

Materials and Methods

Protein preparation. The human COUP-TFII LBD (residues 173–414 with C174A mutation located in the loop prior to helix 21 in the LBD) was expressed as a 6x Histidine fusion protein in the E. coli expression vector pET24a (Novagen). BL21 (DE3) cells were grown at 20°C (Table 1). The cleaved COUP-TFII protein was loaded onto a pre-equilibrated 10 ml Ni2+–NTA resin (Qiagen) and eluted at an OD600 of approximately 1.0 and induced with 50 μM of isopropyl-beta-D-thiogalactopyranoside (IPTG) at 16 °C. Six liters of cells were harvested and resuspended in 200-ml extract buffer (10 mM Tris pH 7.5, 290 mM NaCl, and 10% glycerol) and approximately 50 μg lysozyme, 0.1% triton X-100, 1 mM dithiothreitol (DTT), and 100 mM PMSF were added. Cells were passed through a French Press with the pressure set at 1,000 Pa, and lysate was centrifuged at 20,000 rpm for 30 min. The supernatant was added over a pre-equilibrated 40 ml glutathione–sepharose 4 fast flow column (Amersham Biosciences). The column was washed with 200 ml of wash buffer (10 mM Tris pH 8.0, 1 M NaCl, 10% glycerol), and 0.1% triton X-100) followed by buffer A (300 ml of 10 mM Tris pH 8.0, 100 mM NaCl, and 10% glycerol). The protein was eluted using buffer A supplemented with 4 mM reduced glutathione. The 6x Histidine-GST-COUP-TFII fusion protein was cleaved overnight with thrombin (0.5 NIH units/mg protein) at 4 °C. The cleaved COUP-TFII protein was loaded onto a pre-equilibrated 10 ml Ni2+–NTA resin (Amersham Biosciences) and eluted at ~8% buffer B (500 mM imidazole in 10 mM Tris pH 8.0, 1 M NaCl, 10% glycerol). Ethylenediamine tetraacetic acid (EDTA) and DTT were added to 1 mM and protein was concentrated for crystallization. A typical yield of the purified COUP-TFII LBD was about 2 mg/l of cells.

Crystallization and data collection. Crystals of the COUP-TFII-LBD were grown using hanging drop containing 3.0 μl of protein solution and 1 μl of well buffer containing 1.3 M or 1.5 M imidazole pH 5.6 and 1% Phuronic F68 detergent (Hampton). Small crystals (50 μm) appeared within 1 wk and grew to approximately 100–300 μm in size over the course of 3 wk. COUP-TFII crystals were crossedlinked using glutaraldehyde and soaked in increasing concentrations of glycerol in the above well buffer. Iodide derivatives were soaked in the mother liquor solution supplemented with 250 mM NH4I, 25 mM Tris, and 35% glycerol. All crystals were flash frozen in liquid nitrogen before data collection.

The COUP-TFII crystals formed in the C2 space group with a = 97.85 Å, b = 47.76 Å, c = 43.15 Å, α = γ = 90°, and β = 100.87° (Table 1). The iodine datasets were collected with a MAR225 CCD detector at the at the 1D line of sector-5 at the Advanced Photon Source at Argonne National Laboratory (Argonne, Illinois, United States). The observed reflections were reduced, merged, and scaled with DENZO and SCALEPACK in the HKL2000 package [55].

Structure determination and refinement. SHARP [56] was used to calculate initial phase information, and autoBUSTER [57] was used to auto-build an initial model of the COUP-TFII LBD. Quanta (Accelrys) was used as a post-refinement tool followed by iterative refinement cycles with CNS [58] and REFMAC [58]. REFMAC was used for final refinement of the COUP-TFII structure, which include all residues except for 13 residues between 21 and 23, 17 residues between 23 and 26, and the C-terminal seven residues. The pocket volumes were calculated with the program voxeloo using program default parameters and a probe with a radius of 1.2 Å [59] and surface areas were calculated with areamol from the CCP4 suite of programs [59]. All figures were prepared using PyMOL [60].

Transient transfection assays. The expression plasmids of the mouse COUP-TFII, PGC1-α and SRC1–3, and the NGFIA (–168/+33) promoter luciferase reporter on pXP2 were previously described [51]. All transient COUP-TFII reporter plasmids were transfected using the QuickChange Kit (Stratagene). For the GAL4-COUP-TFII chimera experiments, the COUP-TFII LBD construct (144–414) was cloned into the pBind vector and cotransfected with the pG5-Luc reporter (Promega). COS-7 and HEK-295T cells were maintained in DMEM containing 10% fetal bovine serum (FBS) and CHO-K1 cells were maintained in α-MEM containing 10% FBS. Cells were transiently transfected in DMEM or α-MEM supplemented with 5% FBS and 1 mM nonessential amino acids by using Lipofectamine 2000 (Invitrogen) according to the manufacturer’s protocol. 24-well plates were seeded with 75,000 cells 24 h prior to transfection. All cells were transfected in Opti-MEM with 200 ng of reporter plasmid and 5 ng of Renilla luciferase expression plasmid phRL-CMV (Promega) in all experiments. COS-7 cells were used for all experiments except in Figure 2A. For coactivator experiments, cells were transfected with 100 ng COUP-TFII expression vector and 200 ng of either wild-type or mutant coactivators. For wild-type and mutant COUP-TFII transfactions, 200 ng of DNA was used in each experiment, 24–30 h after transfection, cells were harvested and firefly and Renilla luciferase activities were measured.

Ligand binding assays. Ligand binding to COUP-TFII was determined by the ability of the ligands to promote COUP-TFII to recruit coactivator peptides, which was measured by an AlphaScreen kit (Perkin Elmer) as described for other NRs [50]. COUP-TFII LBD protein was purified as a 6X His-GST fusion protein for the assays. The experiments were conducted with approximately 0.4 μM receptor LBD and 0.1 μM of biotinylated SREC3–1 peptide (AENQRGG-PLESKGHKLLQQLTSS) in the presence of 20 μg/ml donor and acceptor beads in a buffer containing 50 mM MOPS, 50 mM CHAPS, and 0.1 mg/ml bovine serum albumin, all adjusted to a pH of 7.4. To screen for a potential ligand, 9-cis-retinoic acid (Sigma Aldrich), all-trans-retinoic acid (BioMol), dexamethasone (Sigma Aldrich), cortisol (Sigma Aldrich), and progesterone (Sigma Aldrich) were added to a concentration of 50 μM. EC50 values for 9cRA and ATRA were determined from a nonlinear least-square fit of the data based on an average of three repeated experiments, with standard errors typically less than 10% of the measurements.

Acknowledgments

We thank J. S. Brunzelle, Zhongmin Jin, Z. Wawrzak, and W. D. Yewdall for assistance in data collection at the Advance Photon Source (APS).

Author contributions. MJT and HEX conceived and designed the experiments, SWK, KSP, NEZ, JER, RR, CV, YX, LW, and HEX performed the experiments. SWK, KSP, NEZ, JER, RR, CV, YX, SYT, MJT, and HEX analyzed the data. SWK, KSW, LW, SYT, and MJT contributed reagents/materials/analysis tools. SWK, SYT, MJT, and HEX wrote the paper.

Funding. This work was supported in part by the Jay and Betty Van Andel Foundation (HEX), National Institutes of Health Grants DK71602, DK66202, and HL08301 to HEX, DK54506 and HD17379 to MJT, and HL076448 and PO1-DK59820 (project 1) to SYT. Use of the LS-CAT at APS was supported by the Office of Science of the U.S. Department of Energy and the Michigan Economic Development Corporation and the Michigan Technology Tri-Corridor (Grant 085P1000817).

Competing interests. The authors have declared that no competing interests exist.
55. Otwinowski Z, Minor W (1997) Processing of x-ray diffraction data collected in oscillation mode. Methods Enzymol 276: 307–326.
56. Bricogne G, Vonrhein C, Flensburg C, Schiltz M, Paciorek W (2003) Generation, representation and flow of phase information in structure determination: recent developments in and around SHARP 2.0. Acta Crystallogr D Biol Crystallogr 59: 2023–2030.
57. Roversi P, Blanc E, Vonrhein C, Evans G, Bricogne G (2000) Modelling prior distributions of atoms for macromolecular refinement and completion. Acta Crystallogr D Biol Crystallogr 56: 1316–1323.
58. Brunger AT, Adams PD, Clore GM, DeLano WL, Gros P, et al. (1998) Crystallography & NMR system: A new software suite for macromolecular structure determination. Acta Crystallogr D Biol Crystallogr 54: 905–921.
59. Collaborative Computational Project N (1994) The CCP4 suite: programs for protein crystallography. Acta Crystallogr D Biol Crystallogr 50: 760–763.
60. DeLano WL (2002) The PyMOL Molecular Graphics System. Palo Alto, CA, USA: DeLano Scientific.
61. Wisely GB, Miller AB, Davis RG, Thornquest AD Jr., Johnson R, et al. (2002) Hepatocyte nuclear factor 4 is a transcription factor that constitutively binds fatty acids. Structure 10: 1225–1234.
62. Renaud JP, Rochel N, Ruff M, Vivat V, Chambon P, et al. (1995) Crystal structure of the RAR-gamma ligand-binding domain bound to all-trans retinoic acid. Nature 378: 681–689.
63. Svensson S, Ovstberg T, Jacobsson M, Norstrom C, Stefansson K, et al. (2003) Crystal structure of the heterodimeric complex of LXRalpha and RXRbeta ligand-binding domains in a fully agonistic conformation. Embo J 22: 4625–4633.
64. Williams S, Bledsoe RK, Collins JL, Boggs S, Lambert MH, et al. (2003) X-ray crystal structure of the liver X receptor beta ligand binding domain: regulation by a histidine-tryptophan switch. J Biol Chem 278: 27138–27143.
65. Mi LZ, Devarakonda S, Harp JM, Han Q, Pellicciani R, et al. (2003) Structural basis for bile acid binding and activation of the nuclear receptor FXR. Mol Cell 11: 1093–1100.
66. Pike AC, Brzozowski AM, Hubbard RE, Bonn T, Thorsell AG, et al. (1999) Structure of the ligand-binding domain of oestrogen receptor beta in the presence of a partial agonist and a full antagonist. Embo J 18: 4608–4618.
67. Nascimento AS, Dias SM, Nunes FM, Aparicio R, Ambrosio AL, et al. (2006) Structural rearrangements in the thyroid hormone receptor hinge domain and their putative role in the receptor function. J Mol Biol 360: 586–598.
68. Borngraeber S, Budny MJ, Chiellini G, Cunha-Lima ST, Togashi M, et al. (2003) Ligand selectivity by seeking hydrophobicity in thyroid hormone receptor. Proc Natl Acad Sci U S A 100: 15558–15563.
69. Wagner RL, Apriletti JW, McGrath ME, West BL, Baxter JD, et al. (1995) A structural role for hormone in the thyroid hormone receptor. Nature 378: 690–697.