Supplementary Material for:
Learning Object Depth from Camera Motion and Video Object Segmentation

Brent A. Griffin and Jason J. Corso
University of Michigan
{griffb,jjcorso}@umich.edu

Supplementary Material

Least-squares Solution for Object Depth

In previous work [1], we propose a least-squares object depth solution (VOS-DE) that uses more than two observations to add robustness for camera position and segmentation errors. We include this solution here for reference. The VOS-DE formulation derives an alternative form of (7) from our current paper as
\[
\hat{z}_{\text{object}} \sqrt{a_i} + c = z_i \sqrt{a_i},
\]
which over \(n \) observations in \(Ax = b \) form yields
\[
\begin{bmatrix}
\sqrt{a_1} & 1 \\
\sqrt{a_2} & 1 \\
\vdots & \vdots \\
\sqrt{a_n} & 1
\end{bmatrix}
\begin{bmatrix}
\hat{z}_{\text{object}} \\
\hat{c}
\end{bmatrix} =
\begin{bmatrix}
z_1 \sqrt{a_1} \\
z_2 \sqrt{a_2} \\
\vdots \\
z_n \sqrt{a_n}
\end{bmatrix}.
\]
Solving (2) for \(\hat{z}_{\text{object}} \) does provide a more robust depth estimate than the two-observation solution (8) in our current paper. However, our learning-based approach from Section 4 outperforms both analytic solutions in experiments.
ODMS Random Object Mask Examples

We provide a few random object mask examples using ODMS’s data-generation framework from Section 5.1 of the paper. These synthetic object examples are shown in Fig. 1 and demonstrate the Bézier curve behaviors associated with changing parameters r_B and ρ_B.

Fig. 1. ODMS Random Object Mask Examples. All examples use $s_p = 400$, $n_p = 5$, and $\ell = \ell_{\text{min}} = 1$. r_B values are 0.01, 0.05, 0.2, and 0.5 (from left to right) and ρ_B values are 0.01, 0.05, and 0.2 (from top to bottom). Each generated object is unique.
ODMS Validation Results

As mentioned in Section 6 of the paper, the number of network training iterations is determined by the best validation performance, which we check at every ten training iterations. In Table 1, we provide the ODMS validation results and corresponding number of training iterations for all configurations from the paper. In general, the relative performance of each configuration is consistent between the ODMS validation and test sets.

Config. ID	Mean Percent Error (Validation/Test)	Training Iterations						
	Robot	Driving	Normal	Perturb	Robot	Driving	Normal	Perturb
Standard Configuration								
ODNℓ	21.6/19.3	29.4/30.1	8.2/8.3	18.4/18.2	2390	1920	3370	4870
ODNd	19.6/18.5	32.0/30.9	7.9/8.2	18.4/18.5	4140	2990	3690	3530
ODNp	19.9/18.1	48.1/47.5	4.9/5.1	11.5/11.2	2380	1650	4740	4430
VOS-DE	27.4/32.6	35.9/36.0	7.9/7.9	34.1/33.6	N/A	N/A	N/A	N/A
n = 5 Observations								
ODNℓ	23.4/20.5	31.5/30.5	8.4/8.6	20.2/20.4	4100	1850	4870	4520
ODNd	22.8/19.5	34.2/31.1	8.4/8.4	20.5/20.6	1510	3450	3770	4330
ODNp	21.0/19.4	44.6/44.2	5.4/5.5	13.4/12.9	4690	4260	4980	4970
VOS-DE	29.5/35.1	34.8/34.6	7.8/7.9	32.8/32.6	N/A	N/A	N/A	N/A
n = 3 Observations								
ODNℓ	20.3/18.6	31.8/31.1	8.4/8.4	21.9/21.6	1820	2750	4890	4380
ODNd	19.9/20.6	34.7/33.1	8.4/8.4	21.6/21.5	4130	4320	4620	4250
ODNp	24.0/21.8	45.1/44.5	5.4/5.6	13.8/12.9	4800	3040	4990	4680
VOS-DE	29.5/41.2	45.2/44.0	8.0/8.1	37.0/35.7	N/A	N/A	N/A	N/A
n = 2 Observations								
ODNℓ	21.3/19.2	30.4/31.4	8.7/8.9	22.0/22.0	1140	1010	3910	4300
ODNd	29.1/24.2	39.6/35.9	8.6/8.9	21.8/21.8	3410	4570	3370	4620
ODNp	23.3/21.1	45.3/44.8	5.8/6.0	14.9/14.4	2850	4120	4610	4970
VOS-DE	95.8/65.5	55.0/41.1	8.2/8.3	90.6/86.2	N/A	N/A	N/A	N/A
Perturb Training Data								
ODNℓ	21.4/22.2	28.6/29.0	10.7/11.1	12.8/13.9	160	140	5000	5000
ODNd	25.6/25.8	31.4/31.4	11.0/11.1	13.1/13.2	420	2760	2730	4270
ODNp	20.5/20.1	59.4/69.9	7.0/7.3	8.1/8.2	50	330	4860	4780
Radial Input Image								
ODNℓ	13.8/13.1	31.6/31.7	8.4/8.6	18.2/17.9	1710	870	4940	3940
ODNd	16.6/15.2	30.7/30.9	8.3/8.4	18.6/18.5	2010	4200	4990	4440
ODNp	14.1/13.4	49.0/48.6	5.5/5.6	11.7/11.2	2210	400	4870	4710
ODMS Absolute Error Results

In Table 2, we provide ODMS test results for the mean absolute error, which is calculated for each example as

$$\text{Absolute Error} = |d_1 - \hat{d}_1|,$$ \hspace{1em} (3)

where d_1 and \hat{d}_1 are ground truth and predicted object depth at final pose z_1. Notably, our motivation to use percent error (21) in the paper is to provide a consistent comparison across domains with markedly different object depth distances. For example, the 6 cm absolute error from Fig. 7 of the paper is much better for the driving domain than it would be for robot grasping.

Table 2. Complete ODMS Validation and Test Set Results (Absolute Error)

Config. ID	Mean Absolute Error (Validation/Test)	Training Iterations						
	Robot (cm)	Driving (m)	Normal (cm)	Perturb (cm)	Robot	Driving	Normal	Perturb
Standard Configuration								
ODN	7.2/6.6	3.8/4.3	3.4/4.4	7.3/7.2	2390	1920	3370	4870
ODN	6.4/6.0	4.1/4.4	3.1/3.1	7.4/7.3	4140	2990	3690	3530
ODN	6.8/6.3	7.1/7.8	**1.8/1.8**	3.9/3.7	2380	1650	4740	4430
VOS-DE	8.8/10.0	5.0/5.4	2.8/2.8	15.3/14.9	N/A	N/A	N/A	N/A

$n = 5$ Observations

Config. ID	Mean Absolute Error (Validation/Test)	Training Iterations						
ODN	7.8/7.0	3.9/4.3	3.4/4.5	8.2/8.3	1000	1850	4870	4520
ODN	7.0/6.1	4.4/4.6	3.3/3.3	8.1/8.0	1510	3450	3770	4330
ODN	7.3/6.8	6.5/7.2	1.9/2.0	4.9/4.7	4690	4260	4980	4970
VOS-DE	9.6/10.8	5.0/5.2	2.9/2.9	14.3/14.2	N/A	N/A	N/A	N/A

$n = 3$ Observations

Config. ID	Mean Absolute Error (Validation/Test)	Training Iterations						
ODN	6.8/6.3	4.1/4.5	3.4/4.4	8.8/8.6	1820	2750	4890	4380
ODN	6.8/7.0	4.4/4.7	3.3/3.3	8.6/8.4	4130	4320	4620	4250
ODN	7.9/7.3	6.6/7.3	1.9/1.9	4.8/4.4	4800	3040	4990	4680
VOS-DE	11.2/12.6	6.3/5.9	2.9/2.9	14.7/14.2	N/A	N/A	N/A	N/A

$n = 2$ Observations

Config. ID	Mean Absolute Error (Validation/Test)	Training Iterations						
ODN	7.0/6.4	3.7/4.3	3.5/3.6	8.5/8.4	1140	1010	3910	4300
ODN	9.2/7.8	4.8/5.0	3.5/3.5	8.6/8.4	3410	4570	3370	4620
ODN	8.0/7.2	6.8/7.5	2.0/2.1	5.4/5.1	2850	4120	4610	4970
VOS-DE	36.2/21.9	8.5/6.7	3.0/3.0	41.1/49.7	N/A	N/A	N/A	N/A

Perturb Training Data

Config. ID	Mean Absolute Error (Validation/Test)	Training Iterations						
ODN	7.0/6.9	3.5/4.1	4.3/4.5	5.2/5.2	100	140	5000	5000
ODN	8.4/8.5	4.0/4.4	4.4/4.4	5.2/5.1	420	2760	2730	4270
ODN	6.7/5.8	8.9/9.9	2.4/2.5	**2.8/2.8**	50	330	4860	4780

Radial Input Image

Config. ID	Mean Absolute Error (Validation/Test)	Training Iterations						
ODN	**4.4/4.3**	4.0/4.5	3.5/3.5	7.4/7.2	1710	870	4940	3940
ODN	5.6/5.0	3.8/4.3	3.3/3.4	7.5/7.4	2010	4200	4980	4440
ODN	4.4/4.4	7.2/8.0	1.9/1.9	4.3/4.0	2210	460	4870	4710
ODMS Robot Test Set Segmentation Examples

For the ODMS Robot test set, we intentionally choose challenging objects, spanning from a single die to the 470 mm long pan. Not surprising, segmenting diverse objects presents varied challenges. To illustrate this point, in Fig. 2 we show the closest and farthest Robot test set segmentations for the die and pan.

Fig. 2. ODMS Robot Test Set Segmentation Examples. The small die segmentation (top) has fragments of other objects in the closest view (left) and completely misses the die in the farthest view (right). On the other hand, the larger pan segmentation (bottom) misses parts of the handle that are out of the image in the closest view (left) but is fairly accurate in the farthest view (right)

References

1. Griffin, B., Florence, V., Corso, J.J.: Video object segmentation-based visual servo control and object depth estimation on a mobile robot. In: IEEE Winter Conference on Applications of Computer Vision (WACV) (2020)