ABSTRACT: Municipal Waste Incineration (MWI) is regulated through the European Union Directive on Industrial Emissions (IED), but there is ongoing public concern regarding potential hazards to health. Using dispersion modeling, we estimated spatial variability in PM$_{10}$ concentrations arising from MWIs at postcodes (average 12 households) within 10 km of MWIs in Great Britain (GB) in 2003–2010. We also investigated change points in PM$_{10}$ emissions in relation to introduction of EU Waste Incineration Directive (EU-WID) (subsequently transposed into IED) and correlations of PM$_{10}$ with SO$_2$, NO$_x$, heavy metals, polychlorinated dibenzo-p-dioxins/furans (PCDD/F), polycyclic aromatic hydrocarbon (PAH) and polychlorinated biphenyl (PCB) emissions. Yearly average modeled PM$_{10}$ concentrations were 1.00×10^{-3} to 5.53×10^{-2} µg m$^{-3}$, a small contribution to ambient background levels which were typically $6.59 - 2.68 \times 10^{-1}$ µg m$^{-3}$, 3–5 orders of magnitude higher. While low, concentration surfaces are likely to represent a spatial proxy of other relevant pollutants. There were statistically significant correlations between PM$_{10}$ and heavy metal compounds (other heavy metals ($r = 0.43, p = <0.001$)), PAHs ($r = 0.20, p = 0.050$), and PCBs ($r = 0.19, p = 0.022$). No clear change points were detected following EU-WID implementation, possibly as incinerators were operating to EU-WID standards before the implementation date. Results will be used in an epidemiological analysis examining potential associations between MWIs and health outcomes.
and found a higher risk of miscarriage and preterm delivery with increasing PM10 exposure (but no associations with sex ratio, multiple births, or frequency of small for gestational age), where estimated PM10 levels from incinerators were consistent with those estimated near two British inciners. Particulate matter/total dust emissions are monitored continuously and reported as daily means as part of the EU-WID regulations, so that dispersion of these emissions can be modeled in areas near incinerators on a daily basis (whereas heavy metals, PCDD/Fs, PAHs, and PCBs are measured periodically to check compliance). We previously reported methods for dispersion modeling around two MWIs. In the present study, our main aim was to model the spatial distribution of PM10 concentrations within 10 km of GB MWIs in operation 2003–2010 for the resident population. We were also able to look at whether there were the following: 1. Emissions above the EU-WID daily average particulate (total dust) limit value of 10 mg m\(^{-3}\) per flue.
2. Correlations and associations between PM10 emissions and within-flue emission measurements of heavy metals, PCDD/Fs, PAHs, and PCBs (to provide information about the chemical composition of PM10 being emitted from flues).
3. Changes in levels of PM10 emissions after the implementation of the EU-WID, which reduced daily average emission limit values from 30 mg m\(^{-3}\) to 10 mg m\(^{-3}\) for particulate matter/total dust. We refer to PM10 rather than total suspended particulates (total dust) throughout as size fraction studies have found all particulate incinerator emissions are <10 \(\mu\)m diameter.

MATERIALS AND METHODS

Study Area. We included all 22 MWIs in Great Britain (Figure 1) in operation between 2003 and 2010, comprising 14 existing MWIs and 8 new MWIs opening after 2003. We excluded one MWI in the Isle of Man (Richmond Hill) for which we did not have health or emissions data and three other incinerators open during this time as they were not solely MWIs (Fawley, Hampshire; Ellesmere Port, Cheshire; Peak Load Boiler, Shetland). The location of MWIs varied as to the geographical characteristics of their location and topography. A 10 km radius around each MWI was chosen as the study area as per Ashworth et al.

Incinerator Data. Information on the emissions, total annual licensed throughput, the number of flues, and whether an MWI opened to or adopted EU-WID specifications were provided by the Environment Agency (EA), Natural Resources Wales (NRW), and the Scottish Environment Protection Agency (SEPA) (Table 1). Information on characteristics used in dispersion modeling including height and diameter of the MWI stack (m), exit temperature (\(^\circ\)C), and exit velocity (m s\(^{-1}\)) per MWI per flue are reported in Supporting Information (SI) A, Table S1. Daily measured PM10 emissions per MWI, per flue, and per year (some originally in paper format, which were digitized and quality checked by a third party) were provided by the EA and SEPA. Non-numeric and negative values were recoded according to an algorithm agreed with the EA and SEPA (SI B, Table S2).

MWIs varied in size (Table 1, SI A) and location (Figure 1). The licensed throughput varied from 3,500 (Porthmellon) to 750,000 (Edmonton) tonnes per annum (Table 1). Populations living within 10 km of each MWI varied from 2,203 (Porthmellon) to 7,276,145 (SELCHP) (information from census 2011 data). The majority of MWIs had multiple flues (15 MWIs; 12 with two flues, three with three flues). The number of nonoperational and missing days varied from MWI to MWI and from year to year and occurred sporadically for a few days or for longer periods (e.g., several months; Table 1 and SI C Table S3).

The availability of heavy metals, PCDD/Fs, PAHs, and PCB measurements varied. MWIs are required to complete at least two measurements per annum. Typically in-flue measurements of 6–8 heavy metals and 3–4 PCDD/F, PAH, and PCBs are completed per year, per MWI, and per flue, but repeated measurements are taken if higher than limit values. Heavy metals, PCDD/Fs, PAHs, and PCBs were monitored in-flue, usually at the same time as each other over an 8 h period, using European committee standards (CEN).

Dispersion Modeling To Estimate Spatial Distribution of PM10 Concentrations within 10 km of GB MWIs. The Atmospheric Dispersion Modeling System Urban (ADMS-Urban) (version 2.3), utilized in previous studies characterizing emissions from MWIs, was used to model ground-level PM10 concentrations for postcode (average 12 household per postcode) area centroids within a 10 km radius of the MWIs. ADMS-Urban is a Gaussian based dispersion model that has been widely used and extensively validated. The model characterizes the atmospheric boundary layer using the Monin-Obukhov length and boundary layer depth. It is capable of simulating the effects of plume rise and the effects of buildings and complex topography on dispersion.

![Figure 1. Location of all MWIs operating in England, Wales, and Scotland between 2003 and 2010. Base map: population density in 2001. SELCHP is an abbreviation for South East London Combined Heat and Power.](image-url)
The parametrization of the dispersion model is described in Ashworth et al.19 In brief, all MWIs were modeled as point sources. Locations were verified using site addresses, grid references, and aerial photography. The EU-WID requires that average emission values are reported after subtraction of a fixed amount (taken as 30\%) to account for measurement instrument uncertainty.4 The EU-WID also allows up to ten measured daily average values to be discarded per year if there has been measurement instrument calibration or maintenance. For the purposes of the dispersion modeling, the emissions data were therefore increased by 30\% from the reported values provided (except for Isle of Wight MWI, which did not subtract 30\% to account for measurement instrument uncertainty). For the purposes of assessing emissions above the EU-WID daily average, emission values with 30\% subtracted were used, as this is how compliance is assessed against the EU-WID limits. Missing emissions data were imputed using the median PM\textsubscript{10} value of the operational days for each year and each MWI (for justification of this approach see SI D; for counts of days with missing data per flue/year/MWI see SI C).

The characteristics of the 22 MWIs are listed in Table 1.

Table 1. Characteristics of the 22 MWIs

MWI	licensed throughput (t year\(^{-1}\))	years of data available	population within 10 km\(^{a}\)	no. of operational days	no. of days of missing data	no. of nonoperational days	no. of days of emissions above the EU-WID limit\(^{b}\)	concentration of highest PM\textsubscript{10} emission above EU-WID limit (mg m\(^{-3}\))
Opened to EU-WID Specifications								
Allington	5000000	2006–2010	311,067	1	768	0	1058	14
				2	740	0	1086	35
				3	766	0	1060	57
Chineham	900000	2003–2010	153,411	1	1830	861	228	0
Crymlyn Burrows	166000	2003–2010	266,736	1	1308	63	1551	0
Grundon (Lakeside)	400000	2010	676,430	1	311	0	54	0
				2	307	0	58	0
Isle of Wight	380000	2009–2010	60,915	1	186	0	544	0
Marchwood	165000	2004–2010	389,970	1	1950	0	607	0
Newlinces (Grimsby)	560000	2004–2010	143,525	1	2127	169	261	1
Portsmouth	165000	2005–2010	444,963	1	959	0	308	0
				2	1357	0	307	0
Adopted EU-WID Specifications								
Bolton	128000	2003–2010	609,405	1	2362	159	6	401
Coventry	315000	2003–2010	399,016	1	1859	853	210	2
				2	1837	853	232	5
				3	1858	911	153	12
Dudley	105000	2003–2010	860,444	1	1555	1280	87	7
				2	1549	1306	67	8
Dundee	175200	2005–2010	172,002	1	1481	8	702	32
Eastcroft	160000	2003–2010	565,241	1	2136	129	657	0
Edmondton	750000	2003–2010	1,780,440	1	2799	92	31	2
				2	2863	14	45	0
Kirklees	150000	2003–2010	410,698	1	1473	1261	188	4
Porthmellon	35000	2003–2010	2,203	1	3809	671	1365	70
SELCHP	420000	2003–2010	2,726,145	1	2611	31	280	2
Sheffield	225000	2003–2010	653,522	1	2512	1	409	2
				2	900	0	2022	0
Stockton-on-Tees	263000	2003–2010	388,739	1	2339	141	442	72
				2	2448	122	352	35
				3	473	10	2438	0
Stoke-on-Trent	210000	2003–2010	362,462	1	2143	455	324	14
				2	2143	455	324	13
Tyseley	400000	2003–2010	1,121,165	1	2412	125	385	0
				2	2392	122	408	0
Wolverhampton	110000	2003–2010	611,053	1	2405	397	120	6
				2	2257	546	119	3

\(^{a}\)Taken from census 2011 data. \(^{b}\)Daily average particulate limit value of up to 10 mg m\(^{-3}\) per flue. \(^{c}\)South East London Combined Heat and Power.
Table 2. Annual Mean Modeled PM$_{10}$ Concentrations (μg m$^{-3}$) by MWIa

MWI	2003	2004	2005	2006	2007	2008	2009	2010
Allington	N	N	N	1.50×10^{-3}	2.05×10^{-3}	2.50×10^{-4}	4.20×10^{-4}	2.54×10^{-3}
Bolton	7.20×10^{-4}	7.00×10^{-4}	1.16×10^{-3}	1.34×10^{-3}	8.10×10^{-4}	4.40×10^{-4}	3.70×10^{-4}	6.60×10^{-4}
Chineham	M	M	7.20×10^{-4}	5.50×10^{-4}	3.10×10^{-4}	9.00×10^{-5}	1.10×10^{-4}	3.20×10^{-4}
Coventry	M	5.04×10^{-3}	5.53×10^{-3}	2.30×10^{-3}	1.64×10^{-3}	4.73×10^{-3}	2.03×10^{-3}	6.14×10^{-3}
Crumlin Burrows	6.00×10^{-5}	N	1.00×10^{-3}	1.10×10^{-3}	2.60×10^{-4}	2.00×10^{-4}	9.00×10^{-5}	5.00×10^{-5}
Dudley	M	M	M	1.42×10^{-3}	4.60×10^{-4}	1.18×10^{-3}	1.23×10^{-3}	6.30×10^{-4}
Dundee	N	N	3.00×10^{-3}	6.30×10^{-4}	1.03×10^{-3}	1.35×10^{-3}	1.08×10^{-3}	4.10×10^{-4}
Eastcroft	2.50×10^{-4}	1.30×10^{-4}	1.30×10^{-4}	1.40×10^{-4}	1.70×10^{-4}	2.30×10^{-4}	2.30×10^{-4}	5.00×10^{-5}
Edmonton	5.95×10^{-5}	5.47×10^{-3}	3.32×10^{-3}	3.01×10^{-3}	5.10×10^{-3}	5.59×10^{-3}	5.67×10^{-3}	5.10×10^{-3}
Grunon (Lakeside)	N	N	N	N	N	N	N	N
Isle of Wight	N	N	N	N	N	N	N	N
Kirklees	M	M	M	3.00×10^{-4}	1.83×10^{-3}	2.80×10^{-4}	5.30×10^{-5}	4.50×10^{-4}
Marchwood	N	5.30×10^{-3}	6.40×10^{-3}	1.27×10^{-3}	2.15×10^{-3}	2.44×10^{-3}	6.10×10^{-4}	5.40×10^{-5}
Newlin (Grimsby)	N	4.80×10^{-3}	4.80×10^{-3}	3.20×10^{-4}	2.00×10^{-4}	2.30×10^{-4}	1.90×10^{-4}	2.70×10^{-4}
Porthmellon	5.10×10^{-3}	2.37×10^{-3}	2.85×10^{-3}	1.50×10^{-3}	3.28×10^{-3}	4.72×10^{-3}	7.72×10^{-3}	7.43×10^{-3}
Portsmouth	N	N	3.60×10^{-3}	4.90×10^{-3}	7.60×10^{-3}	5.70×10^{-3}	8.40×10^{-3}	7.30×10^{-3}
SELCHPa	8.40×10^{-4}	1.78×10^{-3}	1.49×10^{-3}	1.20×10^{-3}	1.35×10^{-3}	1.32×10^{-3}	1.75×10^{-3}	3.73×10^{-3}
Sheffield	1.10×10^{-3}	1.00×10^{-3}	3.40×10^{-3}	6.00×10^{-3}	2.50×10^{-3}	1.40×10^{-3}	1.90×10^{-4}	1.40×10^{-4}
Stockton-on-Tees	2.08×10^{-3}	1.54×10^{-3}	1.47×10^{-3}	3.40×10^{-4}	4.40×10^{-4}	7.40×10^{-4}	5.90×10^{-4}	9.20×10^{-4}
Stoke-on-Trent	1.44×10^{-3}	1.22×10^{-3}	2.00×10^{-3}	6.00×10^{-3}	4.60×10^{-3}	4.80×10^{-3}	6.00×10^{-3}	4.30×10^{-3}
Tyseley	1.89×10^{-3}	1.04×10^{-3}	1.24×10^{-3}	1.29×10^{-3}	2.21×10^{-3}	1.26×10^{-3}	1.49×10^{-3}	1.58×10^{-3}
Wolverhampton	2.55×10^{-3}	2.05×10^{-3}	3.60×10^{-3}	1.13×10^{-3}	8.00×10^{-4}	1.62×10^{-3}	1.86×10^{-3}	6.90×10^{-4}

aN denotes that the MWI was not in operation that year, and M denotes that there were missing data for the entire year and therefore it was not possible to model PM$_{10}$ dispersion for these years. bNote that over-two-thirds of the year had missing data of (see SI C). cSouth East London Combined Heat and Power.

Correlations and Associations between PM$_{10}$ Emissions and Other Flu Emissions. Pairwise correlation was used to evaluate correlations of heavy metal compounds, PCDD/Fs, PAHs, and PCBs and daily averages of SO$_2$, NOx, and PM$_{10}$ measured during the same time period. Measurements of heavy metals for most incinerators were reported as Cd and Ti and their compounds (CdTi), Hg and its compounds (HgComp), and grouped other heavy metals (OHMs) comprising Sb, As, Cr, Pb, Co, Cu, Mn, Ni, and V (see SI G, Table S6). As the data were not normally distributed, a nonparametric Spearman’s rank correlation was used. This produces a coefficient, r, which ranges from -1 to 1. Values of -1 and 1 represent perfect negative or positive correlation, respectively, whereas a value of 0 represents no correlation. A Spearman correlation p-value <0.05 was considered statistically significant. As a Spearman’s rank correlation will not account for differences in MWI operations, flu, and years of data, a linear multiple regression model was used to adjust for these factors; we considered one pollutant at a time and used PM$_{10}$ year, flu, and MWI as predictors. Data were checked for normality (from Q-Q plots) and log transformed if necessary. We report the estimated coefficients with p-values, and the partial R^2 - which is the variance associated with an effect divided by that variance plus the error variance, to describe the proportion of variance accounted for by the variable.

Detecting Changes in Levels of PM$_{10}$ Emissions after the Implementation of the EU-WID. Data from MWI installations operating prior to the EU-WID were investigated to determine if emissions changed before or after the implementation date and when any change took place, as timings could be used to inform epidemiological analyses investigating changes in health outcomes rates before/after EU-WID implementation. First, we conducted a descriptive analysis...
of the daily average modeled concentrations (Table 2, SI H, Figure S3) over time. Second, as MWIs had implemented technical changes at unspecified time points leading up to the EU-WID implementation date of 28 December 2005, we carried out a retrospective change point identification analysis using a Batch Change Detection (BCD) approach, which attempts to identify periods when there are changes in the time series distribution. We were unable to use time trend analysis due to gaps in the data from nonoperational days and missing data. For the BCD analysis we used monitored in-flue 2003–

2010 PM10 emissions data for 11 of the 14 existing MWIs in operation when the EU-WID was adopted (Table 1). Dudley MWI was excluded as data were only available from 2005, Dudley MWI and Kirklees MWI were excluded as data were missing for 2003–2005, and the third flue for Stockton-on-Tees was excluded as it was only operational in 2009 and 2010 (see SI C, Table S3). Coventry MWI could only be considered from 2004 onward as data for 2003 were missing (see SI C, Table S3). Daily in-flue PM10 emissions data were treated as independent observations. Only days when the incinerator was classed as operational and reported daily PM10 in-flue concentrations were included. The date of the change point \(\tau \) was estimated by a nonparametric Cramér-von Mises test (details in SI I, Equation S1). This test was chosen as it suits non-Gaussian distributed data, characterized by zero inflation and by extreme values. It tests for shifts in scale (variability measures, e.g., variance) or location (e.g., mean, median). We computed a test value for each observation and defined the change point as the maximum test value. The statistical analyses were conducted in R using the cpm package.

RESULTS

Dispersion Modeling To Predict Spatial Distribution of PM10 Concentrations within 10 km of GB MWIs. Annual mean average modeled PM10 concentrations (based on daily average modeled PM10 concentrations) per MWI and per year ranged from \(1.00 \times 10^{-3} \) to \(5.53 \times 10^{-2} \) \(\mu g \) m\(^{-3} \) (Table 2). Complex overlapping dispersion patterns were shown for those areas with overlapping fields from multiple MWIs (Figure 2): surfaces (a) SELCHP and Edmonton and (b) Dudley, Tyseley, and Wolverhampton. In some instances (429 days total, 0–83 days per incinerator), a modeled output value was not calculated (across all postcodes) by ADMS-Urban even though the MWI was classified as being operational (“on” or “missing”). This may occur for a number of reasons but is commonly due to data processing error (e.g., when wind speed values are very low (<0.75 m s\(^{-1}\) when measured at 10 m above ground level) or due to missing meteorological data.

Emissions above the EU-WID Daily Average Particulate Limit Value. There were a small number of days with emissions above the EU-WID daily average particulate limit value in 14 of the 22 MWIs, the majority of which were <20 mg m\(^{-3} \) (Table 1; SI J Table S7). There was no distinct pattern that might indicate that there were fewer emissions above the EU-WID daily average particulate limit value after the implementation of the EU-WID or more instances of emissions >10 mg m\(^{-3} \) before it.

Correlations and Associations between PM10 Emissions and Other Flue Emissions. Statistically significant correlations were observed between PM10 and OHMs \((r = 0.43, \ p < 0.001)\), PAHs \((r = 0.20, \ p = 0.050)\), and PCBs \((r = 0.19, \ p = 0.022)\), with borderline statistically significant correlations between PM10 and CdTl \((r = 0.14, \ p = 0.065)\) and PCDD/Fs.

Figure 2. Exposure surfaces of the overlapping MWIs (a) SELCHP and Edmonton and (b) Dudley, Tyseley, and Wolverhampton comparing annual mean modeled PM10 (\(\mu g/\text{m}^3 \)) at each postcode centroid within 10 km of each MWI in 2003 or 2006 and 2010. Note that there were no overlapping areas for (b) until 2006 as this is when Dudley MWI started operating (Table 1). SELCHP is an abbreviation for South East London Combined Heat and Power.

Table 3. Pairwise Spearman’s Rank Correlation Coefficients and p-Values Comparing Monitored Pollutants

Pollutant	Correlation (r)	p-value	No. of Observations
CdTl	0.14	0.065	164
HGComp	0.11	0.181	161
OHMs	0.43	<0.001	187
PCDD/F	0.15	0.052	172
PAH	0.20	0.050	100
PCB	0.19	0.022	147
NOx	-0.04	0.591	197
SO2	0.08	0.288	192

Results with p-value < 0.05 are in bold.

(\(r = 0.15, \ p = 0.052 \)) (Table 3). Statistically significant estimated coefficients from the multiple linear regression were observed between PM10 and CdTl \((\beta = 0.264, \ p = <0.001)\), OHMs \((\beta = 0.305, \ p = <0.001)\), PCDD/Fs \((\beta = 0.120, \ p = 0.008)\), and PCBs \((\beta = 0.084, \ p = 0.045)\) (Table 4). The partial \(\eta^2 \) are reported as percentages, and these showed modest overall explanatory power of the model variance after adjusting for MWI, flue, and year for CdTl \((\eta^2 = 4.99)\), NOx \((\eta^2 = 5.46)\), and OHMs \((\eta^2 = 14.25)\).

Detecting Changes in Levels of PM10 Emissions Following the EU-WID. The descriptive analysis of the average modeled concentrations showed no clear pattern of a reduction in PM10 concentrations after the implementation of the EU-WID in MWIs adopting EU-WID specifications (Table 2, SI H, Figure S3), possibly as incinerators were already complying with EU-WID standards by the implementation date.
which required them to fit bag filters. These descriptive findings were supported by findings in the Batch Change Detection statistical analyses (Table 5). In six of the 11 MWIs investigated, the change point occurred within a year prior or posterior to the EU-WID implementation in at least one flue (Coventry, Edmonton, Sheffield, Stockton-on-tees, Stoke-on-Trent, and Tyseley), and a higher median PM$_{10}$ emissions were detected after the change point in five of these (in seven out of 11 flues). However, in the remaining five MWIs the change point date was detected more than one year prior or posterior to the EU-WID implementation date (Bolton, Eastcroft, Porthmellon, SELCHP, and Wolverhampton), and a higher median PM$_{10}$ emissions were detected after the change point in three of these MWIs (Eastcroft, Porthmellon, SELCHP), although still within EU-WID limits (Table 5). Figures showing monitored PM$_{10}$ data, with the change points for each MWI included in the analysis, are presented in the Supporting Information SI K (Figure S4).

DISCUSSION

Our study of all 22 British MWIs in operation 2003–2010 indicates very low concentrations of incinerator-related PM$_{10}$ within 10 km of the MWIs at postcode level (annual mean concentrations ranging from 1.00 × 10$^{-5}$ to 5.53 × 10$^{-5}$ μg m$^{-3}$). There were statistically significant correlations of PM$_{10}$ emissions of heavy metals, PAHs, and PCBs ($r = 0.19–0.43$). A change point was detected in six of 11 MWIs adopting EU-WID specifications within a year prior or posterior to EU-WID implementation, but statistical analyses did not provide clear evidence of major changes in incinerator-related PM$_{10}$ concentrations after implementation.

Dispersion Modeling To Estimate Concentrations of PM$_{10}$ within 10 km of MWIs. The annual mean modeled PM$_{10}$ concentrations from GB MWIs ranged from 1.00 × 10$^{-5}$ to 5.53 × 10$^{-5}$ μg m$^{-3}$ within a 10 km radius of the MWI. These contribute a small proportion of UK PM$_{10}$ background levels, which range between 6.59 and 2.68 × 10$^{-3}$ μg m$^{-3}$ (annual UK means per postcode in 2010, based on modeled data).28 As all European incinerators operate to the EU WID, this suggests that MWIs also make a small contribution to European background concentrations within 10 km of incinerators across Europe (measured ambient mean concentrations, typically in the range 2.00 × 10$^{-1}$–5.00 × 10$^{-3}$ μg m$^{-3}$).29 It is recognized that dispersion modeling is a simplification of reality. ADMS-Urban is a well validated, widely used dispersion model, and model errors were reduced as much as possible by using the most complete data available and by completing a series of sensitivity analyses to ensure that model inputs best represented actual conditions (see SI D, E, and F). Missing data were imputed using median values for the particular year, informed by results from a sensitivity analysis (SI D). For three incinerators in 2005, over two-thirds of the data were missing (Coventry, Stoke-on-Trent, Wolverhampton

Table 4. Estimated Coefficients and p-Values from the Multiple Linear Regression Model, Where PM$_{10}$ Is the Independent Variable

Independent Variable	PM$_{10}$ coefficient (β)	p-value	partial η^2 (%)	no. of observations
CdTl	0.264	<0.001	4.99	360
HgComp	0.051	0.218	0.63	374
OHMs	0.305	<0.001	14.25	424
PCDD/F	0.120	0.008	0.17	430
PAH	0.014	0.585	0.74	272
PCB	0.084	0.045	0.03	357
NOx	−0.096	0.619	5.46	437
SO$_2$	0.078	0.254	0.47	405

Results with p-value < 0.05 are in bold.

Table 5. Dates When Changes in Emissions Were Detected in the Change Point Analysis Test Using the Cramér-Von Mises Test

MWI	flue	change point date (CPD)	no. of observations (before/after CPD)	median MWI in-flue PM$_{10}$ measurements (mg m$^{-3}$) (interquartile range) (before/after CPD)
Bolton	1	17-10-2007	1751/1171	1.84 (2.00)/1.02 (1.83)
Coventry	1	24-05-2008	1606/951	2.00 (3.00)/1.00 (0.00)
Eastcroft	1	31-08-2008	1705/852	3.00 (4.00)/1.00 (0.00)
Porthmellon	3	21-05-2006	872/1685	4.00 (4.00)/2.00 (2.00)
SELCHP	1	31-08-2009	2435/487	0.00 (0.50)/1.00 (0.00)
Stockton-on-Tees	2	08-07-2009	2381/541	0.00 (0.40)/1.00 (0.00)
Stockton-on-Trent	2	22-11-2006	1422/1500	3.20 (2.20)/1.12 (1.00)
Porthmellon	1	02-11-2009	1422/1500	1.80 (1.40)/2.78 (1.63)
Porthmellon	1	09-11-2007	1774/1148	2.00 (1.00)/5.00 (4.00)
Stockton-on-Tees	2	06-08-2009	2410/512	2.00 (1.00)/4.00 (3.00)
Stockton-on-Trent	2	18-11-2004	688/2234	0.10 (0.30)/0.20 (0.20)
Stoke-on-Trent	2	29-09-2005	1003/1919	2.63 (3.84)/0.20 (1.00)
Stoke-on-Trent	2	29-09-2005	1003/1919	4.35 (2.41)/1.70 (1.50)
Stoke-on-Trent	2	21-01-2006	1117/1805	3.00 (2.00)/1.00 (0.00)
Stoke-on-Trent	2	03-01-2006	1408/1514	1.10 (0.20)/1.80 (1.20)
Stoke-on-Trent	2	19-03-2008	1905/1017	2.50 (1.60)/1.50 (0.90)
Wolverhampton	1	30-04-2010	2312/246	4.00 (3.00)/1.00 (0.00)
Wolverhampton	2	04-06-2004	156/2402	6.00 (2.00)/2.00 (3.00)

"South East London Combined Heat and Power."
(SI C)), although annual mean modeled concentrations were still within similar ranges compared to other MWIs (Table 2). We do not know the reasons for missing data, but this may represent maintenance periods in 2005 to ensure the MWI complied with the WID implemented at the end of that year.

All MWIs used moving grate technologies except for Allington, Dundee and Newlincs (Allington and Dundee used fluidized bed technology and Newlincs used rotary kiln technology).33,34 Nixon et al.35 found that plants using fluidized bed and rotary kiln technologies had higher emissions of HCl and CO. We found no differences in PM$_{10}$ emissions from Allington and Dundee (mean (standard deviation (SD)) 2.30 (3.05), median 1.02) and Newlincs (mean (SD) 2.44 (1.27), median 2.30) compared with the remaining 19 MWIs (mean (SD) 2.10 (2.13), median 1.50).

Results for GB incinerators are consistent with two studies conducted in Italy (also operating to the EU-WID) by Candela et al.13,14 and the previous study conducted in GB by Ashworth et al.19 Concentration estimates were larger in Font et al. (3.00 × 10^{-2} to 1.20 × 10^{-1} μg m^{-3});34 however, they did not measure PM$_{10}$ directly but used tracers of heavy metals to estimate maximum ambient PM$_{10}$ from two MWIs. The Font et al.31 study used Cd measured during plume grounding as a quantitative tracer for PM$_{10}$ by multiplying measured ground-level Cd concentrations by representative in-flue PM$_{10}$ to Cd emission ratios. This approach set out to find a maximum value by assuming that all Cd was from the MWI.31 Our findings for PM$_{10}$ are in agreement with studies on ultrafine particles involving measurements within MWI plumes and ambient air, showing that incinerators do not have significant impacts on ultrafine particles in localities near MWIs.32

Additional work was undertaken to confirm the plausibility of the very low modeled PM$_{10}$ concentrations. MWI emissions were fingerprinted using daily in-flue PM$_{10}$ to NOx concentrations, and ratios were compared to data from 15 ambient monitoring sites within 10 km of four MWIs (Edmonton, SELCHP, Tyseley, and Wolverhampton) (SI L, Table S10). Results showed that while there was some evidence of NOx and PM$_{10}$ emissions from MWIs being detected at ground level, these were few and often could not be distinguished from other sources such as traffic (SI L, Figure S5). This supports the very low contributions of MWI PM$_{10}$ to background concentrations in areas near MWIs in the present study.

Exposure surfaces for selected MWIs in Figure 2 that have been previously presented19 show that incinerator-related PM$_{10}$ concentrations were not merely a function of distance from incinerator but showed complex spatial patterns including differences between years, largely relating to differences in emission rates (including off days) and meteorology.

Consideration of Other Pollutants Emitted from MWIs. While ambient PM$_{10}$ has been associated with adverse birth outcomes,33 levels are much higher than those arising from MWIs emissions. Despite this, some recent epidemiological studies relating to MWIs operating to the EU-WID have found associations with adverse birth outcomes.14,15 If these are causal associations, it is likely to be due to agents other than PM$_{10}$ that are also emitted from incinerators such as PCDD/Fs, PAHs, and heavy metals. We were unable to model spatial distribution of these other agents directly due to sparse emissions data. Other potential incinerator emissions including polychlorinated or mixed polychlorinated/polychlorinated dibenzo-p-dioxins/furans (PBDD/Fs and PXDD/Fs) were not measured. However, it is a reasonable assumption that modeled spatial distribution of PM$_{10}$ reflects exposure patterns of other MWI emissions. This assumption has been used in previous dispersion modeling studies, which found that heavy metals14 had a similar deposition distribution to PM$_{10}$. Ranzi et al.34 measured various pollutants including sulfur oxides, nitrogen dioxide, and heavy metals in Italy at maximum and minimum fallout points estimated by dispersion models and considered heavy metals as the tracer pollutant from MWIs. We found some support for this as we detected significant correlations for in-flue measurements between PM$_{10}$ and heavy metals, PAHs, and PCBs, which provides some support for using PM$_{10}$ as a tracer. While statistically significant, the amount of variance accounted for (partial r^2) was modest, which is likely due to variability in incinerator feedstock, especially differing amounts of electrical equipment. Information on feedstock mix is not recorded by MWIs.

The level of population exposure to metals and other agents from MWIs is likely to be small. Font et al.31 compared heavy metal emission ratios with those measured at nearby ambient metal monitoring sites around six MWIs in England and found limited evidence that emissions from MWIs reached ground level.

Emissions above the EU-WID Daily Average Particulate Limit Value. Although emissions greater than the EU-WID limit of 10 mg m$^{-3}$ were found in 14 of the 22 MWIs, these were usually <20 mg m$^{-3}$ (SI Table S7). These may not all represent exceedances under the EU-WID as in the event of temporary abatement failure MWIs are allowed to operate for up to 4 h at a time (maximum 60 h per flue per year) at an elevated half-hourly particulate limit value of 150 mg m$^{-3}$ (normally 30 mg m$^{-3}$). If there are less than 43 half-hourly monitoring results available in a day, the daily average can be disregarded. Daily average emissions >20 mg m$^{-3}$ were infrequent, and there were only rare occurrences >30 mg m$^{-3}$, which may have occurred due to “one off” changes in feedstock or failure of abatement systems. We were not provided with information on reasons for emissions greater than the EU-WID limit. However, given that mean PM$_{10}$ concentrations estimated by the dispersion model were small (1.00 × 10^{-5} to 5.53 × 10^{-2} μg m^{-3}), a small contribution to ambient background levels which were typically 6.59 to 2.68 × 10^{1} μg m^{-3}), these infrequent emissions above EU-WID limits would still be expected to result in very low population exposures.

Detecting Changes in Emissions Following the EU-WID. We conducted the change point analysis for existing incinerators using the Cramér-von Mises method to account for the ordered data structure. A simpler test (e.g., a two sample t test to compare PM$_{10}$ emissions before and after the EU-WID implementation) may have introduced bias due to the number of nonoperational, missing days and non-Gaussian distributed data. We assumed that a fall in emissions would be detected in existing incinerators within one year (prior or posterior) of the EU-WID implementation date, but this was only seen for five of 11 incinerators in the change point analysis. A possible explanation is that many existing MWIs may have already met (or been modified to meet) the EU-WID requirements. However, information as to whether and when each MWI adopted a new abatement system was not available. In three of the six MWIs where a change point was detected within a year prior or posterior to the EU-WID implementation date (28 December 2005), a higher mean level of PM$_{10}$ was detected.
after the change point date in at least one flue (Edmonton, Sheffield, and Tyseley), though the increases after the change point date were small, and remained below EU-WID limits. This could be related to a number of factors including differences in the feedstock or changes in the amount of waste processed over time. Since we could not identify a clear date after which emissions fell in relation to the EU-WID in pre-existing MWIs, we conclude it is not possible to conduct before/after epidemiological studies examining the impact of the EU-WID on rates of adverse health outcomes in pre-existing MWIs. However, in MWIs opening after 28 December 2002 (n = 8 in 2003–2010) that have always operated to the EU-WID standards, it is possible to use the opening date of the incinerator as the before/after change point date.

Overall this study suggests that PM$_{10}$ exposures related to MWI emissions in Great Britain are extremely low (annual means ranging from 1.00 × 10$^{-5}$ to 5.53 × 10$^{-2}$ μg m$^{-3}$) especially when compared to annual mean background concentrations (typically ranging between 2.00 × 10$^{-3}$ and 5.00 × 10$^{-1}$ μg m$^{-3}$ in Europe). The results of the modeling will be used in an epidemiological analysis examining associations between MWIs and potential reproductive and other health effects.

ASSOCIATED CONTENT

Supporting Information
The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acs.est.6b06478.

(A) Municipal Waste Incinerator (MWI) characteristics, (B) non-numeric and negative PM10 emissions value coding, (C) Operational, non-operational, and missing days, (D) Sensitivity analysis: missing data imputation methods, (E) Meteorological data selection, (F) Monin-Obukhov and Surface Roughness length input values, (G) Non-continuous measurements, (H) Mean modeled PM10 concentrations (μg m$^{-3}$) per MWI that adopted EU-WID specifications, (I) Change point analysis equation, (J) Emissions above the EU-WID daily average particulate limit value, (K) Change point analysis results, (L) Fingerprinting NOx to PM$_{10}$ ratios from MWI in-flue concentrations (PDF)

AUTHOR INFORMATION

Corresponding Author*
*Phone: +44 (0)20 7594 3344. E-mail: a.hansell@imperial.ac.uk. Corresponding author address: UK Small Area Health Statistics Unit (SAHSU), Department of Epidemiology and Biostatistics School of Public Health, Imperial College London, St. Mary’s Campus, Norfolk Place, London W2 1PG, U.K.

ORCID

John Gulliver: 0000-0003-3423-2013
Anna L. Hansell: 0000-0001-9904-7447

Notes

The views expressed are those of the author(s) and not necessarily those of the NIHR, the Department of Health, or Public Health England.

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

The study is funded by a grant from Public Health England (PHE), by a grant from the Scottish government, funding from the MRC-PHE Centre for Environment and Health, and funding from the National Institute for Health Research Health Protection Research Unit (NIHR HPRU) in Health Impact of Environmental Hazards at King’s College London and Imperial College London in partnership with Public Health England (PHE). The work of the UK Small Area Health Statistics Unit is funded by Public Health England as part of the MRC-PHE Centre for Environment and Health, funded also by the UK Medical Research Council (MR/L01341X/1). D.C.A. was funded by a MRC Ph.D. studentship. P.E. is Director of the MRC-PHE Centre for Environment and Health and acknowledges support from the NIHR Biomedical Research Centre at Imperial College Healthcare NHS Trust and Imperial College London. This work used the computing resources of the UK MEDIcal BIinformatics partnership - aggregation, integration, visualisation, and analysis of large, complex data (UK MED-BIO) which is supported by the Medical Research Council (MR/L01632X/1). We thank the Environment Agency (EA), Scottish Environment Protection Agency (SEPA), and Natural Resources Wales (NRW) for the incinerator emissions data and for their technical input. We would also like to thank the study scientific advisory committee for their valuable comments.

REFERENCES

(1) EMEP/EEA. EMEP/EEA air pollutant emission inventory guidebook 2013: Technical guidance to prepare national emission inventories - 2013. http://www.eea.europa.eu/publications/emep-eea-guidebook-2013 (accessed Sep 09, 2016).

(2) The Royal Commission on Environmental Pollution. Incineration of Waste. http://webarchive.nationalarchives.gov.uk/20110322143804/http://www.rccep.org.uk/reports/index.htm (accessed Aug 8, 2015).

(3) Environmental permitting guidance: waste incineration - GOV.UK. https://www.gov.uk/government/uploads/system/uploads/attachment_data/file/211852/pb13897-ep-core-guidance-130220.pdf (accessed Jan 29, 2016).

(4) The European Parliament and the Council of the European Union. 2010/75/EU http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2010:334:0017:0019:en:PDF (accessed May 25, 2016).

(5) Ashworth, D. C.; Elliott, P.; Toledano, M. B. Waste incineration and adverse birth and neonatal outcomes: a systematic review. Environ. Int. 2014, 69, 120–132.

(6) Elliott, P.; Shaddick, G.; Kleinschmidt, I.; Jolley, D.; Walls, P.; Beresford, J.; Grundy, C. Cancer incidence near municipal solid waste incinerators in Great Britain. Br. J. Cancer 1996, 73 (5), 702–710.

(7) Elliott, P.; Eaton, N.; Shaddick, G.; Carter, R. Cancer incidence near municipal solid waste incinerators in Great Britain. Part 2: histopathological and case-note review of primary liver cancer cases. Br. J. Cancer 2000, 82 (5), 1103–1106.

(8) Porta, D. Systematic review of epidemiological studies on health effects associated with management of solid waste. Environ. Health 2009, 8 (1), 60.

(9) Reeve, N. F.; Fanshall, T. R.; Keegan, T. J.; Stewart, A. G.; Diggle, P. J. Spatial analysis of health effects of large industrial incinerators in England, 1998–2008: a study using matched case–control areas. BMJ. Open 2013, 3 (1), e001847.

(10) Vinceti, M.; Malagoli, C.; Teggi, S.; Fabbi, S.; Goldoni, C.; De Girolamo, G.; Ferrari, P.; Astolfi, G.; Rivieri, F.; Bergomi, M. Adverse pregnancy outcomes in a population exposed to the emissions of a municipal waste incinerator. Sci. Total Environ. 2008, 407 (1), 116–121.

(11) Vinceti, M.; Malagoli, C.; Fabbi, S.; Teggi, S.; Rodolfi, R.; Garavelli, L.; Astolfi, G.; Rivieri, F. Risk of congenital anomalies around a municipal solid waste incinerator: a GIS-based case-control study. Int. J. Health Geogr. 2009, 8 (1), 8.
(12) Cordier, S.; Chevrier, C.; Robert-Gnansia, E.; Lorente, C.; Brula, P.; Hours, M. Risk of congenital anomalies in the vicinity of municipal solid waste incinerators. Occup. Environ. Med. 2004, 61 (1), 8–15.
(13) Candela, S.; Bonvincini, L.; Ranzi, A.; Baldacchini, F.; Broccoli, S.; Cordioli, M.; Carretta, E.; Luberto, F.; Angelini, P.; Evangelista, A.; et al. Exposure to emissions from municipal solid waste incinerators and miscarriages: A multisite study of the MONITER Project. Environ. Int. 2015, 78, 51–60.
(14) Candela, S.; Ranzi, A.; Bonvincini, L.; Baldacchini, F.; Marzaroli, P.; Evangelista, A.; Luberto, F.; Carretta, E.; Angelini, P.; Sterrantino, A. F.; et al. Air pollution from incinerators and reproductive outcomes: a multisite study. Epidemiology 2013, 24 (6), 863–870.
(15) Cordioli, M.; Ranzi, A.; De Leo, G. A.; Lauriola, P. A Review of Exposure Assessment Methods in Epidemiological Studies on Incinerators. J. Environ. Public Health 2013, 2013, 129470.
(16) Tango, T.; Fujita, T.; Tanihata, T.; Minowa, M.; Doi, Y.; Kato, N.; Kunikane, S.; Uchiyama, I.; Tanaka, M.; Uehata, T. Risk of Adverse Reproductive Outcomes Associated with Proximity to Municipal Solid Waste Incinerators with High Dioxin Emission Levels in Japan. J. Epidemiol. 2004, 14 (3), 83–93.
(17) ten Tusscher, G. W.; Stam, G. A.; KOPPE, J. G. Open chemical combustions resulting in a local increased incidence of oro-facial clefts. Chemosphere 2000, 40 (9–11), 1263–1270.
(18) Obi-Osius, N.; Misselwitz, B.; Karmaus, W.; Witten, J. Twin Frequency and Industrial Pollution in Different Regions of Hesse, Germany. Occup. Environ. Med. 2004, 61 (6), 482–487.
(19) Ashworth, D. C.; Fuller, G. W.; Toledano, M. B.; Font, A.; Elliott, P.; Hansell, A. L.; de Hoogh, K. Comparative assessment of particulate air pollution exposure from municipal solid waste incinerator emissions. J. Environ. Public Health 2013, 2013, 560342.
(20) Scungio, M.; Buonanno, G.; Stabile, L.; Ficco, G. Lung cancer risk assessment at receptor site of a waste-to-energy plant. Waste Manage. 2016, 56, 207–215.
(21) The European Parliament and the Council of the European Union. 2000/76/EC. http://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32000L0076&from=EN (accessed May 25, 2016).
(22) Buonanno, G.; Ficco, G.; Stabile, L. Size distribution and number concentration of particles at the stack of a municipal waste incinerator. Waste Manage. 2009, 29 (2), 749–755.
(23) Lin, C. M.; Li, C. Y.; Mao, I. F. Birth outcomes of infants born in areas with elevated ambient exposure to incinerator generated PCDD/Fs. Environ. Int. 2006, 32 (5), 624–629.
(24) Ranzi, A.; Fano, V.; Ersamer, L.; Lauriola, P.; Perucci, C.; Forastiere, F. Mortality and morbidity among people living close to incinerators: a cohort study based on dispersion modeling for exposure assessment. Environ. Health 2011, 10 (1), 22.
(25) CERC. ADMS-Urban model. http://www.cerc.co.uk/environmental-software/ADMS-Urban-model.html (accessed Jan 29, 2016).
(26) Ross, G. Parametric and nonparametric sequential change detection in R. The cpm package. J. Stat. Softw. 2015, 66 (3), 1–20.
(27) CERC. ADMS-Urban User guide. http://www.cerc.co.uk/environmental-software/assets/data/doc_userguides/CERC_ADMS-Urban4.0_User_Guide.pdf (accessed Jun 1, 2016).
(28) Department for Environment, Food & Rural Affairs (Defra) Modelled background pollution data — Defra UK. https://uk-air.defra.gov.uk/data/pcm-data (accessed Aug 8, 2016).
(29) European Environment Agency. Particulate Matter (PM10): annual mean concentrations in Europe — European Environment Agency. http://www.eea.europa.eu/themes/air/interactive/pm10#tab-based-on-data (accessed Feb 5, 2016).
(30) Nixon, J. D.; Wright, D. G.; Dey, P. K.; Ghosh, S. K.; Davies, P. A. A comparative assessment of waste incinerators in the UK. Waste Manage. 2013, 33, 2234–2244.
(31) Font, A.; de Hoogh, K.; Leal-Sanchez, M.; Ashworth, D. C.; Brown, R. J. C.; Hansell, A. L.; Fuller, G. W. Using metal ratios to detect emissions from municipal waste incinerators in ambient air pollution data. Atmos. Environ. 2015, 113, 177–186.
(32) Jones, A. M.; Harrison, R. M. Emissions of ultrafine particles from the incineration of municipal solid waste: A review. Atmos. Environ. 2016, 140, 519–528.
(33) Parker, J. D.; Rich, D. Q.; Glinianaia, S. V.; Leem, J. H.; Wartenberg, D.; Bell, M. L.; Bonzini, M.; Brauer, M.; Darrow, L.; Gehring, U.; et al. The international collaboration on air pollution and pregnancy outcomes: Initial results. Environ. Health Perspect. 2011, 119 (7), 1023–1028.