Supplementary Material

Construction of Global Acyl Lipid Metabolic Map by Comparative Genomics and Subcellular Localization Analysis in the Red Alga Cyanidioschyzon merolae

Natsumi Mori, Takashi Moriyama, Masakazu Toyoshima, Naoki Sato*

*Correspondence: Naoki Sato: naokisat@bio.c.u-tokyo.ac.jp

1 Supplementary Data

1.1 Supplementary Data 1. Results of Subcellular Localization Analysis of Other Enzymes Related to Acyl Lipid Metabolism in C. merolae

1.1.1 Lipase

By comparative genomic analysis, 20 enzymes involved in lipid degradation were detected in the genomic data of C. merolae (Supplementary Table 3). Eight enzymes were putative triacylglycerol lipases (TAGL). Six enzymes were also found as hydrolases that might act as lipases. Most of putative TAGLs and hydrolases were targeted to the cytosol or ER, but two TAGLs (CMP157C and CMR088C) and a hydrolase (CMT308C) were localized in the plastid (Supplementary Figure 5A), suggesting that these enzymes might be involved in the degradation of plastid membrane lipids. Additionally, C. merolae has three phospholipases A1 (PLA1; CMP267C, CMH204C and CMQ413C) and two phospholipases A2 (PLA2; CMR500C and CMT312C). In PLA1, CMP267C and CMH204C were targeted to the cytosol, whereas the fluorescence of GFP-fused CMQ413C was observed in both the cytoplasmic membrane and vesicle (Supplementary Figure 5A). C. merolae PLA1s are similar to the putative PA-preferring PLA1 in A. thaliana (Kato et al., 2002). In PLA2, CMR500C showed dual localization to the plastid and the nucleus, whereas CMT312C was localized in both the plastid and the ER (Supplementary Figure 5A). It seems that these enzymes are components of the acyl editing cycle (Lager et al., 2013; Pan et al., 2015) with lysophospholipid acyltransferase (LPLAT) encoded by CMI139C and CMR130C (Supplementary Figure 3). The existence of acyl editing cycle in C. merolae is supported by the finding that radioactive carbons were quickly incorporated into PC (Sato and Moriyama, 2007).

1.1.2 Lipid Trafficking

It is thought that TGD1-3 complex and TGD4 function as lipid transporters in the plastid envelopes (Hurlock et al., 2014). C. merolae has putative TGD1 and TGD2 homologs encoded in the plastid genome, and four putative TGD3 homologs (CMR180C, CMH235C, CMJ039C, and CMR388C), whereas no TGD4 homologs were detected (Supplementary Table 3). By subcellular localization analysis, CMR180C, CMJ039C and CMH235C were targeted to the ER, but CMR388C was
localized in the plastid (Supplementary Figure 5B). It is likely that CMR388C is the TGD3 ortholog in *C. merolae*.

Acyl-CoA binding proteins (ACBP) are thought to transfer fatty acids from the plastid to the ER in plants (Xiao and Chye, 2011). In *A. thaliana*, six isoforms, ACBP1-6, have been identified. *C. merolae* has a gene encoding ACBP6 ortholog (CMP278C, Supplementary Table 3). *A. thaliana* ACBP6 is a cytosolic, smallest ACBP (Xiao and Chye, 2011). *C. merolae* ACBP was also localized in the cytosol (Supplementary Figure 5B).

Flippase catalyzes the movement of polar lipids between the two membrane leaflets that does not happen spontaneously, which finally results in asymmetric distribution of lipids between the two leaflets of a membrane. In *A. thaliana*, the P4 subfamily of ATPases, ALA1-12, are believed to act as flippases (Gomès et al., 2000). Among them, ALA1-3 already have been characterized (López-Marqués et al., 2010, 2012; Poulsen et al., 2008). Additionally, ALA-interacting subunit (ALIS) proteins are involved in the determination of subcellular localization of ALA enzymes (López-Marqués et al., 2010, 2012; Poulsen et al., 2008). In *C. merolae*, two flippases (ALA1; CMR306C and ALA2; CMS375C) and an ALIS protein (CMT246C) were detected by the Gelust analysis (Supplementary Table 3). Both ALA1 and ALIS proteins were dually localized to the ER and cytoplasmic membrane (Figure 1D and Supplementary Figure 5B). ALA2 was targeted to the nucleus and cytosol (Supplementary Figure 5B).

1.1.3 Fatty Acid Activation, PI Signaling and Biotin-Dependent Carboxylation

Two genes encoding acyl-CoA thioesterases (ACT; CMJ263C and CMR113C) and five genes encoding long-chain acyl-CoA synthetases (LACS; CME186C, CMG147C, CMO037C, CML197C and CMT459C) were found in the genomic data of *C. merolae* (Supplementary Table 3). Both ACT enzymes were targeted to the mitochondrion (Supplementary Figure 6A). In LACSs, CME186C, CMG147C, CMO037C were localized in the cytosol, but CML197C showed dual localization to the cytosol and plastid (Supplementary Figure 6A). GFP-fused CMT459C was localized in the plastid (Supplementary Figure 6B).

C. merolae has two each genes encoding phosphatidylinositol-4-kinases (PI4K; CM1125C and CMS267C) and phosphatidylinositol-4-phosphate 5-kinases (PIP5K; CMN333C and CME153C), which are involved in the PI signaling (Supplementary Table 3). CM1125C and CMN333C were localized in the ER, whereas CMS267C and CME157C were targeted to both cytosol and cytoplasmic membrane (Supplementary Figure 6B).

Biotin is attached to biotin-dependent enzymes, such as carboxylases or decarboxylases, by posttranslational modification catalyzed by holocarboxylase synthetase (HCS). In *C. merolae*, HCS (CMC080C) was dually localized in the plastid and cytosol, as in plants (Supplementary Figure 6C). Additionally, we analyzed subcellular localization of typical biotin-dependent enzymes, namely methylcrotonyl-CoA carboxylase (MCC), propionyl-CoA carboxylase (PCC) and carbamoylphosphate synthase (CAR). Individual subunits of MCC (MCCA; CMT073C and MCCB; CMT071C) and PCC (PCCA; CMN243C and PCCB; CMM132C) were localized in the mitochondrion (Supplementary Figure 6C). *C. merolae* has two types of CARs involved in pyrimidine synthesis and arginine synthesis. They are multifunctional type and multisubunit type, respectively. Subcellular localization of a multifunctional type CAR (CAR1; CMQ255C) was not examined yet. In multisubunit type CAR, the small subunit (CarA) is encoded in the plastid genome,
and was not analyzed. A product of nuclear CarB gene (CML055C) encoding the large subunit of CAR was targeted in the plastid as expected (Supplementary Figure 6C).

1.1.4 References

Gomès, E., Jakobsen, M. K., Axelsen, K. B., Geisler, M., and Palmgren, M. G. (2000). Chilling tolerance in Arabidopsis involves ALA1, a member of a new family of putative aminophospholipid translocases. *Plant Cell* 12, 2441–2454. doi:10.1105/tpc.12.12.2441.

Hurlock, A. K., Roston, R. L., Wang, K., and Benning, C. (2014). Lipid trafficking in plant cells. *Traffic* 15, 915–932. doi:10.1111/tra.12187.

Kato, T., Morita, M. T., Fukaki, H., Yamauchi, Y., Uehara, M., Niihama, M., et al. (2002). SGR2, a phospholipase-like protein, and ZIG/SGR4, a SNARE, are involved in the shoot gravitropism of Arabidopsis. *Plant Cell* 14, 33–46. doi:10.1105/tpc.010215.

Lager, I., Yilmaz, J. L., Zhou, X. R., Jasieniecka, K., Kazachkov, M., Wang, P., et al. (2013). Plant acyl-CoA:lysophosphatidylcholine acyltransferases (LPCATs) have different specificities in their forward and reverse reactions. *J. Biol. Chem.* 288, 36902–36914. doi:10.1074/jbc.M113.521815.

López-Marqués, R. L., Poulsen, L. R., Hanisch, S., Meffert, K., Buch-Pedersen, M. J., Jakobsen, M. K., et al. (2010). Intracellular targeting signals and lipid specificity determinants of the ALA/ALIS P4-ATPase complex reside in the catalytic ALA α-subunit. *Mol. Biol. Cell* 21, 791–801. doi:10.1091/mbc.E09-08-0656.

López-Marqués, R. L., Poulsen, L. R., and Palmgren, M. G. (2012). A putative plant aminophospholipid flippase, the arabidopsis P4 ATPase ALA1, localizes to the plasma membrane following association with a β-subunit. *PLoS One* 7, e33042. doi:10.1371/journal.pone.0033042.

Pan, X., Chen, G., Kazachkov, M., Greer, M. S., Caldo, K. M. P., Zou, J., et al. (2015). *In vivo and In vitro* Evidence for biochemical coupling of reactions catalyzed by lysophosphatidylcholine acyltransferase and diacylglycerol acyltransferase. *J. Biol. Chem.* 290, jbc.M115.654798. doi:10.1074/jbc.M115.654798.

Poulsen, L. R., López-Marqués, R. L., McDowell, S. C., Okkeri, J., Licht, D., Schulz, A., et al. (2008). The *Arabidopsis* P4-ATPase ALA3 localizes to the golgi and requires a β-subunit to function in lipid translocation and secretory vesicle formation. *Plant Cell* 20, 658–676. doi:10.1105/tpc.107.054767.

Sato, N., and Moriyama, T. (2007). Genomic and biochemical analysis of lipid biosynthesis in the unicellular rhodophyte *Cyanidioschyzon merolae*: Lack of a plastidic desaturation pathway results in the coupled pathway of galactolipid synthesis. *Eukaryot. Cell* 6, 1006–1017. doi:10.1128/EC.00393-06.

Xiao, S., and Chye, M. L. (2011). New roles for acyl-CoA-binding proteins (ACBPs) in plant development, stress responses and lipid metabolism. *Prog. Lipid Res.* 50, 141–151. doi:10.1016/j.plipres.2010.11.002.
1.2 Supplementary Data 2. List of References Cited in Supplementary Table 2.
Arent S, Christensen CE, Pye VE, Nørgaard A, Henriksen A (2010) The multifunctional protein in peroxisomal β-oxidation: Structure and substrate specificity of the *Arabidopsis thaliana* protein MFP2. J Biol Chem 285: 24066–24077

Awai K, Kakimoto T, Awai C (2006) Comparative genomic analysis revealed a gene for monoglugosyl-diacylglycerol synthase, an enzyme for photosynthetic membrane lipid synthesis in cyanobacteria. Plant Physiol 141: 1120–1127

Awai K, Maréchal E, Block MA, Brun D, Masuda T, Shimada H, Takamiya K, Ohta H, Joyard J (2001) Two types of MGDG synthase genes, found widely in both 16:3 and 18:3 plants, differentially mediate galactolipid syntheses in photosynthetic and nonphotosynthetic tissues in *Arabidopsis thaliana*. Proc Natl Acad Sci U S A 98: 10960–10965

Awai K, Ohta H, Sato N (2014) Oxygenic photosynthesis without galactolipids. Proc Natl Acad Sci U S A 111: 13571–13575

Awai K, Xu C (2006) A phosphatidic acid-binding protein of the chloroplast inner envelope membrane involved in lipid trafficking. Proc Natl Acad Sci U S A 2: 1–6

Aymé L, Baud S, Dubreucq B, Joffre F, Chardot T (2014) Function and localization of the *Arabidopsis thaliana* diacylglycerol acyltransferase DGAT2 expressed in yeast. PLoS One 9: e92237

Babiychuk E, Müller F, Eubel H, Braun H-P, Frentzen M, Kushnir S (2003) *Arabidopsis* phosphatidyglycerophosphate synthase 1 is essential for chloroplast differentiation, but is dispensable for mitochondrial function. Plant J 33: 899–909

Bach L, Michaelson L (2008) The very-long-chain hydroxy fatty acyl-CoA dehydratase PASTICCINO2 is essential and limiting for plant development. Proc Natl Acad Sci U S A 105: 14727–14731

Beisson F, Li Y, Bonaventure G, Pollard M, Ohlrogge JB (2007) The Acyltransferase GPAT5 Is Required for the Synthesis of Suberin in Seed Coat and Root of *Arabidopsis*. Plant Cell 19: 351–368

Bolognese C, McGraw P (2000) The Isolation and Characterization in Yeast of a Gene for Arabidopsis S-Adenosylmethionine: Phospho-Ethanolamine N-Methyltransferase. Plant Physiol 124: 1800–1813

Bouvier-Navé P, Benveniste P, Oelkers P, Sturley SL, Schaller H (2000) Expression in yeast and tobacco of plant cDNAs encoding acyl CoA:diacylglycerol acyltransferase. Eur J Biochem 267: 85–96
Camacho L, Smertenko AP, Perez-Gomez J, Hussey PJ, Moore I (2009) *Arabidopsis* Rab-E GTPases exhibit a novel interaction with a plasma-membrane phosphatidylinositol-4-phosphate 5-kinase. J Cell Sci 122: 4383–4392

La Camera S, Geoffroy P, Samaha H, Ndiaye A, Rahim G, Legrand M, Heitz T (2005) A pathogen-inducible patatin-like lipid acyl hydrolase facilitates fungal and bacterial host colonization in *Arabidopsis*. Plant J 44: 810–825

Cao Z, Zhang J, Li Y, Xu X, Liu G, Bhattacharrya MK, Yang H, Ren D (2007) Preparation of polyclonal antibody specific for AtPLC4, an *Arabidopsis* phosphatidylinositol-specific phospholipase C in rabbits. Protein Expr Purif 52: 306–312

Carrie C, Murcha MW, Millar a H, Smith SM, Whelan J (2007) Nine 3-ketoacyl-CoA thiolases (KATs) and acetoacetyl-CoA thiolases (ACATs) encoded by five genes in *Arabidopsis thaliana* are targeted either to peroxisomes or cytosol but not to mitochondria. Plant Mol Biol 63: 97–108

Cases S, Smith SJ, Zheng YW, Myers HM, Lear SR, Sande E, Novak S, Collins C, Welch CB, Lusis AJ, Erickson SK, Farese RV Jr. (1998) Identification of a gene encoding an acyl CoA:diacylglycerol acyltransferase, a key enzyme in triacylglycerol synthesis. Proc Natl Acad Sci U S A 95: 13018–13023

Chen HH, Wickrema A, Jaworski JG (1988) Acyl-acyl-carrier protein: lysomonogalactosyl diacylglycerol acyltransferase from the cyanobacterium *Anabaena variabilis*. Biochim Biophys Acta 963: 493–500

Chen M, Thelen JJ (2013) ACYL-LIPID DESATURASE2 is required for chilling and freezing tolerance in *Arabidopsis*. Plant Cell 25: 1430–1444

Choi YH, Lee JK, Lee CH, Cho SH (2000) cDNA cloning and expression of an aminoalcoholphosphotransferase isoform in Chinese cabbage. Plant Cell Physiol 41: 1080–1084

Chrost B, Kolukisaoglu U, Schulz B, Krupinska K (2007) An alpha-galactosidase with an essential function during leaf development. Planta 225: 311–320

Clough RC, Matthis AL, Barnum SR, Jaworski JG (1992) Purification and characterization of 3-ketoacyl-acyl carrier protein synthase III from spinach. A condensing enzyme utilizing acetyl-coenzyme A to initiate fatty acid synthesis. J Biol Chem 267: 20992–20998

Collin S, Justin AM, Cantrel C, Arondel V, Kader JC (1999) Identification of AtPIS, a phosphatidylinositol synthase from *Arabidopsis*. Eur J Biochem 262: 652–658

Costa M Da, Bach L, Landrieu I (2006) *Arabidopsis* PASTICCINO2 is an antiphosphatase involved in regulation of cyclin-dependent kinase A. Plant Cell 18: 1426–1437

Dahlqvist A, Stahl U, Lenman M, Banas A, Lee M, Sandager L, Ronne H, Stymne S (2000) Phospholipid:diacylglycerol acyltransferase: an enzyme that catalyzes the acyl-CoA-independent formation of triacylglycerol in yeast and plants. Proc Natl Acad Sci U S A 97: 6487–6492
Däschner K, Couée I, Binder S (2001) The Mitochondrial Isovaleryl-Coenzyme A Dehydrogenase of Arabidopsis Oxidizes Intermediates of Leucine and Valine Catabolism. Plant Physiol 126: 601–612

Dewey RE, Wilson RF, Novitzky WP, Goode JH (1994) The AAPT1 gene of soybean complements a cholinephosphotransferase-deficient mutant of yeast. Plant Cell 6: 1495–1507

Dörmann P, Balbo I, Benning C (1999) Arabidopsis galactolipid biosynthesis and lipid trafficking mediated by DGD1. Science 284: 2181–2184

Eastmond PJ (2006) SUGAR-DEPENDENT1 Encodes a Patatin Domain Triacylglycerol Lipase That Initiates Storage Oil Breakdown in Germinating Arabidopsis Seeds. Plant Cell 18: 665–675

Eastmond PJ, Hooks MA, Williams D, Lange P, Bechtold N, Sarrobert C, Nussaume L, Graham IA (2000) Promoter trapping of a novel medium-chain acyl-CoA oxidase, which is induced transcriptionally during Arabidopsis seed germination. J Biol Chem 275: 34375–34381

Eastmond PJ, Quettier A-L, Kroon JTM, Craddock C, Adams N, Slabas AR (2010) Phosphatidic acid phosphohydrolase 1 and 2 regulate phospholipid synthesis at the endoplasmic reticulum in Arabidopsis. Plant Cell 22: 2796–2811

Essigmann B, Güler S, Narang RA, Linke D, Benning C (1998) Phosphate availability affects the thylakoid lipid composition and the expression of SQD1, a gene required for sulfolipid biosynthesis in Arabidopsis thaliana. Proc Natl Acad Sci U S A 95: 1950–1955

Eubel H, Meyer EH, Taylor NL, Bussell JD, O’Toole N, Heazlewood JL, Castleden I, Small ID, Smith SM, Millar AH (2008) Novel proteins, putative membrane transporters, and an integrated metabolic network are revealed by quantitative proteomic analysis of Arabidopsis cell culture peroxisomes. Plant Physiol 148: 1809–1829

Falcone DL, Gibson S, Lemieux B, Somerville C (1994) Identification of a gene that complements an Arabidopsis mutant deficient in chloroplast omega 6 desaturase activity. Plant Physiol 106: 1453–1459

Froman BE, Edwards PC, Bursch AG, Dehesh K (2000) ACX3, a novel medium-chain acyl-coenzyme A oxidase from Arabidopsis. Plant Physiol 123: 733–742

Fulda M, Shockey J, Werber M (2002) Two long-chain acyl-CoA synthetases from Arabidopsis thaliana involved in peroxisomal fatty acid β-oxidation. Plant J 93–103

Gao J, Ajjawi I, Manoli A, Sawin A, Xu C, Froehlich JE, Last RL, Benning C (2009) FATTY ACID DESATURASE4 of Arabidopsis encodes a protein distinct from characterized fatty acid desaturases. Plant J 60: 832–839

Germain V, Rylott EL, Larson TR, Sherson SM, Bechtold N, Carde JP, Bryce JH, Graham IA, Smith SM (2001) Requirement for 3-ketoacyl-CoA thiolase-2 in peroxisome development, fatty acid
beta-oxidation and breakdown of triacylglycerol in lipid bodies of *Arabidopsis* seedlings. Plant J 28: 1–12

Ghosh AK, Chauhan N, Rajakumari S, Daum G, Rajasekharan R (2009) At4g24160, a soluble acyl-coenzyme A-dependent lysophosphatidic acid acyltransferase. Plant Physiol 151: 869–881

Gidda SK, Shockey JM, Rothstein SJ, Dyer JM, Mullen RT (2009) *Arabidopsis thaliana* GPAT8 and GPAT9 are localized to the ER and possess distinct ER retrieval signals: functional divergence of the dilyssine ER retrieval motif in plant cells. Plant Physiol Biochem 47: 867–879

Goepfert S (2005) Molecular Identification and Characterization of the *Arabidopsis* 3,5, 2,4-Dienoyl-Coenzyme A Isomerase, a Peroxisomal Enzyme Participating in the β-Oxidation Cycle of Unsaturated Fatty Acids. Plant Physiol 138: 1947–1956

Goepfert S, Hiltunen JK, Poirier Y (2006) Identification and Functional Characterization of a Monofunctional Peroxisomal Enoyl-CoA Hydratase 2 That Participates in theDegradation of Even cis- Unsaturated Fatty Acids in *Arabidopsis thaliana*. J Biol Chem 281: 35894–35903

Goepfert S, Vidoudez C, Tellgren-Roth C, Delessert S, Hiltunen JK, Poirier Y (2008) Peroxisomal Delta(3),Delta(2)-enoyl CoA isomerases and evolution of cytosolic paralogues in embryophytes. Plant J 56: 728–742

Gomès E, Jakobsen M (2000) Chilling tolerance in *Arabidopsis* involves ALA1, a member of a new family of putative aminophospholipid translocases. Plant Cell 12: 2441–2453

Hagio M, Gombos Z, Várkonyi Z, Masamoto K, Sato N, Tsuzuki M, Wada H (2000) Direct evidence for requirement of phosphatidylglycerol in photosystem II of photosynthesis. Plant Physiol 124: 795–804

Haselier A, Akbari H, Weth A, Baumgartner W, Frentzen M (2010) Two closely related genes of *Arabidopsis* encode plastidial cytidinediphosphate diacglycerol synthases essential for photoautotrophic growth. Plant Physiol 153: 1372–1384

Haslam TM, Haslam R, Thoraval D, Pascal S, Delude C, Domergue F, Fernández AM, Beaudoin F, Napier JA, Kunst L, Joubés J (2015) ECERIFERUM2-LIKE Proteins Have Unique Biochemical and Physiological Functions in Very-Long-Chain Fatty Acid Elongation. Plant Physiol 167: 682–692

Haslam TM, Kunst L (2013) Extending the story of very-long-chain fatty acid elongation. Plant Sci 210: 93–107

Haslam TM, Mañas-Fernández A, Zhao L, Kunst L (2012) *Arabidopsis* ECERIFERUM2 is a component of the fatty acid elongation machinery required for fatty acid extension to exceptional lengths. Plant Physiol 160: 1164–1174

Hayashi H, De Bellis L, Ciurli A, Kondo M, Hayashi M, Nishimura M (1999) A novel acyl-CoA oxidase that can oxidize short-chain acyl-CoA in plant peroxisomes. J Biol Chem 274: 12715–12721
Heemskerk JW, Bögemann G, Scheijen MA, Wintermans JF (1986) Separation of chloroplast polar lipids and measurement of galactolipid metabolism by high-performance liquid chromatography. Anal Biochem 154: 85–91

Hernández ML, Whitehead L, He Z, Gazda V, Gilday A, Kozhevnikova E, Vaistij FE, Larson TR, Graham IA (2012) A cytosolic acyltransferase contributes to triacylglycerol synthesis in sucrose-rescued Arabidopsis seed oil catabolism mutants. Plant Physiol 160: 215–225

Hirano T, Sato MH (2011) Arabidopsis FAB1A/B is possibly involved in the recycling of auxin transporters. Plant Signal Behav 6: 583–585

Hobbs DH, Lu C, Hills MJ (1999) Cloning of a cDNA encoding diacylglycerol acyltransferase from Arabidopsis thaliana and its functional expression. FEBS Lett 452: 145–149

Hong Y, Devaiah SP, Bahn SC, Thamasandra BN, Li M, Welti R, Wang X (2009) Phospholipase D epsilon and phosphatidic acid enhance Arabidopsis nitrogen signaling and growth. Plant J 58: 376–387

Hooks MA, Kellas F, Graham IA (1999) Long-chain acyl-CoA oxidases of Arabidopsis. Plant J 20: 1–13

Hung CH, Kobayashi K, Wada H, Nakamura Y (2015) Isolation and characterization of a phosphatidylglycerophosphate phosphatase1, PGPP1, in Chlamydomonas reinhardtii. Plant Physiol Biochem 92: 56–61

Inatsugi R, Nakamura M, Nishida I (2002) Phosphatidylcholine biosynthesis at low temperature: differential expression of CTP:phosphorylcholine cytidylyltransferase isogenes in Arabidopsis thaliana. Plant Cell Physiol 43: 1342–1350

Ischebeck T, Stenzel I, Heilmann I (2008) Type B phosphatidylinositol-4-phosphate 5-kinases mediate Arabidopsis and Nicotiana tabacum pollen tube growth by regulating apical pectin secretion. Plant Cell 20: 3312–3330

Itoh R, Toda K, Takahashi H, Takano H, Kuroiwa T (1998) Delta-9 fatty acid desaturase gene containing a carboxyl-terminal cytochrome b5 domain from the red alga Cyanidioschyzon merolae. Curr Genet 33: 165–170

Jakab G, Manrique A, Zimmerli L, Métraux J-P, Mauch-Mani B (2003) Molecular characterization of a novel lipase-like pathogen-inducible gene family of Arabidopsis. Plant Physiol 132: 2230–2239

Joubès J, Raffaele S, Bourdenx B, Garcia C, Laroche-Trainèau J, Moreau P, Domergue F, Lessire R (2008) The VLCFA elongase gene family in Arabidopsis thaliana: phylogenetic analysis, 3D modelling and expression profiling. Plant Mol Biol 67: 547–566
Joyard J, Ferro M, Masselon C, Seigneurin-Berny D, Salvi D, Garin J, Rolland N (2010) Chloroplast proteomics highlights the subcellular compartmentation of lipid metabolism. Prog Lipid Res 49: 128–158

Jung J, Kumar K, Lee HY, Park Y-I, Cho H-T, Ryu SB (2012) Translocation of phospholipase A2α to apoplasts is modulated by developmental stages and bacterial infection in Arabidopsis. Front Plant Sci 3: 126

Kachroo A, Shanklin J, Whittle L, Lapchyk L, Hildebrand D, Kachroo P (2007) The Arabidopsis stearoyl-acyl carrier protein-desaturase family and the contribution of leaf isoforms to oleic acid synthesis. Plant Mol Biol 63: 257–271

Katagiri T, Ishiyama K, Kato T, Tabata S, Kobayashi M, Shinozaki K (2005) An important role of phosphatidic acid in ABA signaling during germination in Arabidopsis thaliana. Plant J 43: 107–117

Katayama K, Sakurai I, Wada H (2004) Identification of an Arabidopsis thaliana gene for cardiolipin synthase located in mitochondria. FEBS Lett 577: 193–198

Kato T, Morita MT, Fukaki H, Yamauchi Y, Uehara M, Niihama M, Tasaka M (2002) SGR2, a phospholipase-like protein, and ZIG/SGR4, a SNARE, are involved in the shoot gravitropism of Arabidopsis. Plant Cell 14: 33–46

Kelly AA, Dörmann P (2002) DGD2, an arabidopsis gene encoding a UDP-galactose-dependent digalactosyldiacylglycerol synthase is expressed during growth under phosphate-limiting conditions. J Biol Chem 277: 1166–1173

Keogh MR, Courtney PD, Kinney AJ, Dewey RE (2009) Functional characterization of phospholipid N-methyltransferases from Arabidopsis and soybean. J Biol Chem 284: 15439–15447

Kim EY, Seo YS, Kim WT (2011a) AtDSEL, an Arabidopsis cytosolic DAD1-like acylhydrolase, is involved in negative regulation of storage oil mobilization during seedling establishment. J Plant Physiol 168: 1705–1709

Kim H, Li Y, Huang A (2005) Ubiquitous and endoplasmic reticulum–located lysophosphatidyl acyltransferase, LPAT2, is essential for female but not male gametophyte development in Arabidopsis. Plant Cell 17: 1073–1089

Kim HJ, Ok SH, Bahn SC, Jang J, Oh SA, Park SK, Twell D, Ryu SB, Shin JS (2011b) Endoplasmic Reticulum- and Golgi-Localized Phospholipase A2 Plays Critical Roles in Arabidopsis Pollen Development and Germination. Plant Cell 23: 94–110

Kim J, Jung JH, Lee SB, Go YS, Kim HJ, Cahoon R, Markham JE, Cahoon EB, Suh MC (2013) Arabidopsis 3-ketoacyl-coenzyme a synthase9 is involved in the synthesis of tetracosanoic acids as precursors of cuticular waxes, suberins, sphingolipids, and phospholipids. Plant Physiol 162: 567–580
Kobayashi K (2004) Arabidopsis Type B Monogalactosyldiacylglycerol Synthase Genes Are Expressed during Pollen Tube Growth and Induced by Phosphate Starvation. Plant Physiol 134: 640–648

Konishi T, Shinohara K, Yamada K, Sasaki Y (1996) Acetyl-CoA carboxylase in higher plants: most plants other than gramineae have both the prokaryotic and the eukaryotic forms of this enzyme. Plant Cell Physiol 37: 117–122

Kopka J, Ludewig M, Müller-Röber B (1997) Complementary DNAs encoding eukaryotic-type cytidine-5’-diphosphate-diacylglycerol synthases of two plant species. Plant Physiol 113: 997–1002

Lee Y, Kim Y-W, Jeon BW, Park K-Y, Suh SJ, Seo J, Kwak JM, Martinoia E, Hwang I, Lee Y (2007) Phosphatidylinositol 4,5-bisphosphate is important for stomatal opening. Plant J 52: 803–816

Li-Beisson Y, Beisson F, Riekhof W (2015) Metabolism of acyl-lipids in Chlamydomonas reinhardtii. Plant J 82: 504-522

Li M, Bahn SC, Guo L, Musgrave W, Berg H, Welti R, Wang X (2011) Patatin-related phospholipase pPLAIIIβ-induced changes in lipid metabolism alter cellulose content and cell elongation in Arabidopsis. Plant Cell 23: 1107–1123

Li X, Benning C, Kuo M-H (2012a) Rapid Triacylglycerol Turnover in Chlamydomonas reinhardtii Requires a Lipase with Broad Substrate Specificity. Eukaryot Cell 11: 1451–1462

Li X, Moellering ER, Liu B, Johnny C, Fedewe M, Sears BB, Kuo M-H, Benning C (2012b) A Galactoglycerolipid Lipase Is Required for Triacylglycerol Accumulation and Survival Following Nitrogen Deprivation in Chlamydomonas reinhardtii. Plant Cell 24: 4670–4686

Li Y, Beisson F, Koo AJK, Molina I, Pollard M, Ohlrogge J (2007) Identification of acyltransferases required for cutin biosynthesis and production of cutin with suberin-like monomers. Proc Natl Acad Sci U S A 104: 18339–18344

Lo M, Taylor C, Wang L, Nowack L (2004) Characterization of an ultraviolet B-induced lipase in Arabidopsis. Plant Physiol 135: 947–958

Löfke C, Ischebeck T, König S, Freitag S, Heilmann I (2008) Alternative metabolic fates of phosphatidylinositol produced by phosphatidylinositol synthase isoforms in Arabidopsis thaliana. Biochem J 413: 115–124

López-Marqués R, Poulsen LR, Hanisch S, Meffert K, Buch-Pedersen MJ, Jakobsen MK, Pomorski TG, Palmgren MG (2010) Intracellular targeting signals and lipid specificity determinants of the ALA/ALIS P4-ATPase complex reside in the catalytic ALA α-subunit. Mol Biol Cell 21: 791–801
López-Marqués RL, Poulsen LR, Palmgren MG (2012) A putative plant aminophospholipid flippase, the Arabidopsis P4 ATPase ALA1, localizes to the plasma membrane following association with a β-subunit. PLoS One 7: e33042

Lu B, Xu C, Awai K, Jones AD, Benning C (2007) A small ATPase protein of Arabidopsis, TGD3, involved in chloroplast lipid import. J Biol Chem 282: 35945–35953

Lu C, Xin Z, Ren Z, Miquel M (2009) An enzyme regulating triacylglycerol composition is encoded by the ROD1 gene of Arabidopsis. Proc. Natl. Acad. Sci. U. S. A. 106: 18837–18842

McCartney A, Dyer J, Dhanoa P (2004) Membrane-bound fatty acid desaturases are inserted cotranslationally into the ER and contain different ER retrieval motifs at their carboxy termini. Plant J 37: 156–173

Mikami K, Saavedra L, Hiwatashi Y, Uji T, Hasebe M, Sommarin M (2010) A dibasic amino acid pair conserved in the activation loop directs plasma membrane localization and is necessary for activity of plant type I/II phosphatidylinositol phosphate kinase. Plant Physiol 153: 1004–1015

Mizoi J, Nakamura M, Nishida I (2006) Defects in CTP:PHOSPHORYLETHANOLAMINE CYTIDYLYLTRANSFERASE affect embryonic and postembryonic development in Arabidopsis. Plant Cell 18: 3370–3385

Moellering ER, Muthan B, Benning C (2010) Freezing tolerance in plants requires lipid remodeling at the outer chloroplast membrane. Science 330: 226–228

Morita MT, Kato T, Nagafusa K, Saito C, Ueda T, Nakano A, Tasaka M (2002) Involvement of the vacuoles of the endodermis in the early process of shoot gravitropism in Arabidopsis. Plant Cell 14: 47–56

Müller F, Frentzen M (2001) Phosphatidylglycerophosphate synthases from Arabidopsis thaliana. FEBS Lett 509: 298–302

Nakamura Y, Awai K, Masuda T, Yoshioka Y, Takamiya K, Ohta H (2005) A novel phosphatidylcholine-hydrolyzing phospholipase C induced by phosphate starvation in Arabidopsis. J Biol Chem 280: 7469–7476

Nakamura Y, Koizumi R, Shui G, Shimojima M, Wenk MR, Ito T, Ohta H (2009) Arabidopsis lipins mediate eukaryotic pathway of lipid metabolism and cope critically with phosphate starvation. Proc Natl Acad Sci U S A 106: 20978–20983

Nakamura Y, Tsuchiya M, Ohta H (2007) Plastidic phosphatidic acid phosphatases identified in a distinct subfamily of lipid phosphate phosphatases with prokaryotic origin. J Biol Chem 282: 29013–29021

Naoki S, Norio M (1982) Lipid biosynthesis in the blue-green alga, Anabaena variabilis. Biochim Biophys Acta - Lipids Lipid Metab 710: 271–278
Nerlich A, von Orlow M, Rontein D, Hanson AD, Dörmann P (2007) Deficiency in phosphatidylserine decarboxylase activity in the psd1 psd2 psd3 triple mutant of Arabidopsis affects phosphatidylethanolamine accumulation in mitochondria. Plant Physiol 144: 904–914

Nishida I, Murata N (1996) CHILLING SENSITIVITY IN PLANTS AND CYANOBACTERIA: The Crucial Contribution of Membrane Lipids. Annu Rev Plant Physiol Plant Mol Biol 47: 541–568

Nishida I, Tasaka Y, Shiraishi H, Murata N (1993) The gene and the RNA for the precursor to the plastid-located glycerol-3-phosphate acyltransferase of Arabidopsis thaliana. Plant Mol Biol 21: 267–277

Nowicki M, Müller F, Frentzen M (2005) Cardiolipin synthase of Arabidopsis thaliana. FEBS Lett 579: 2161–2165

Nuccio ML, Ziemak MJ, Henry SA, Weretilnyk EA, Hanson AD (2000) cDNA cloning of phosphoethanolamine N-methyltransferase from spinach by complementation in Schizosaccharomyces pombe and characterization of the recombinant enzyme. J Biol Chem 275: 14095–14101

Okazaki K, Sato N, Tsuji N, Tsuzuki M, Nishida I (2006) The significance of C16 fatty acids in the sn-2 positions of glycerolipids in the photosynthetic growth of Synechocystis sp. PCC6803. Plant Physiol 141: 546–556

Okuley J (1994) Arabidopsis FAD2 Gene Encodes the Enzyme That Is Essential for Polyunsaturated Lipid Synthesis. Plant Cell 6: 147–158

Pascal S, Bernard A, Sorel M, Pervent M, Vile D, Haslam RP, Napier JA, Lessire R, Domergue F, Joubès J (2013) The Arabidopsis cer26 mutant, like the cer2 mutant, is specifically affected in the very long chain fatty acid elongation process. Plant J 73: 733–746

Pidkowich MS, Nguyen HT, Heilmann I, Ischebeck T, Shanklin J (2007) Modulating seed beta-ketoacyl-acyl carrier protein synthase II level converts the composition of a temperate seed oil to that of a palm-like tropical oil. Proc Natl Acad Sci U S A 104: 4742–4747

Pierrugues O, Brutesco C, Oshiro J, Gouy M, Deveaux Y, Carman GM, Thuriaux P, Kazmaier M (2001) Lipid phosphate phosphatases in Arabidopsis. Regulation of the AtLPP1 gene in response to stress. J Biol Chem 276: 20300–20308

Pokotylo I, Pejchar P, Potocký M, Kocourková D, Krčková Z, Ruelland E, Kravets V, Martinec J (2013) The plant non-specific phospholipase C gene family. Novel competitors in lipid signalling. Prog Lipid Res 52: 62–79

Poulsen LR, Lopez-Marques RL, McDowell SC, Okkeri J, Licht D, Schulz A, Pomorski T, Harper JF, Palmgren MG (2008) The Arabidopsis P4-ATPase ALA3 Localizes to the Golgi and Requires a β-Subunit to Function in Lipid Translocation and Secretory Vesicle Formation. Plant Cell 20: 658–676
Pulsifer IP, Lowe C, Narayanan SA, Busuttil AS, Vishwanath SJ, Domergue F, Rowland O (2014) Acyl-lipid thioesterase1-4 from Arabidopsis thaliana form a novel family of fatty acyl-acyl carrier protein thioesterases with divergent expression patterns and substrate specificities. Plant Mol Biol 84: 549–563

Puyaubert J, Denis L, Alban C (2008) Dual targeting of Arabidopsis holocarboxylase synthetase1: a small upstream open reading frame regulates translation initiation and protein targeting. Plant Physiol 146: 478–491

Quist TM, Sokolchik I, Shi H, Joly RJ, Bressan RA, Maggio A, Narsimhan M, Li X (2009) HOS3, an ELO-like gene, inhibits effects of ABA and implicates a S-1-P/ceramide control system for abiotic stress responses in Arabidopsis thaliana. Mol Plant 2: 138–151

Richmond TA, Bleecker AB (1999) A defect in beta-oxidation causes abnormal inflorescence development in Arabidopsis. Plant Cell 11: 1911–1924

Riekhof WR, Andre C, Benning C (2005) Two enzymes, BtaA and BtaB, are sufficient for betaine lipid biosynthesis in bacteria. Arch Biochem Biophys 441: 96–105

Rylott EL, Eastmond PJ, Gilday AD, Slocombe SP, Larson TR, Baker A, Graham IA (2006) The Arabidopsis thaliana multifunctional protein gene (MFP2) of peroxisomal beta-oxidation is essential for seedling establishment. Plant J 45: 930–941

Rylott EL, Rogers CA, Gilday AD, Edgell T, Larson TR, Graham IA (2003) Arabidopsis mutants in short- and medium-chain acyl-CoA oxidase activities accumulate acyl-CoAs and reveal that fatty acid beta-oxidation is essential for embryo development. J Biol Chem 278: 21370–21377

Sakurai I, Mizusawa N, Wada H, Sato N (2007) Digalactosyldiacylglycerol is required for stabilization of the oxygen-evolving complex in photosystem II. Plant Physiol 145: 1361–1370

Salas JJ, Ohlrogge JB (2002) Characterization of substrate specificity of plant FatA and FatB acyl-ACP thioesterases. Arch Biochem Biophys 403: 25–34

Sasaki Y, Nagano Y (2004) Plant acetyl-CoA carboxylase: structure, biosynthesis, regulation, and gene manipulation for plant breeding. Biosci Biotechnol Biochem 68: 1175–1184

Sato N (2009) Gclust: trans-kingdom classification of proteins using automatic individual threshold setting. Bioinformatics 25: 599–605

Sato N, Moriyama T (2007) Genomic and biochemical analysis of lipid biosynthesis in the unicellular rhodophyte Cyanidioschyzon merolae: lack of a plastidic desaturation pathway results in the coupled pathway of galactolipid synthesis. Eukaryot Cell 6: 1006–1017

Seo J, Lee HY, Choi H, Choi Y, Lee Y, Kim Y-W, Ryu SB, Lee Y (2008) Phospholipase A2β mediates light-induced stomatal opening in Arabidopsis. J Exp Bot 59: 3587–3594

Seo YS, Kim EY, Kim JH, Kim WT (2009) Enzymatic characterization of class I DAD1-like acylhydrolase members targeted to chloroplast in Arabidopsis. FEBS Lett 583: 2301–2307
Seo YS, Kim EY, Kim WT (2011) The Arabidopsis sn-1-specific mitochondrial acylhydrolase AtDLAH is positively correlated with seed viability. J Exp Bot 62: 5683–5698

Shimada H (2004) ARC3, a Chloroplast Division Factor, is a Chimera of Prokaryotic FtsZ and Part of Eukaryotic Phosphatidylinositol-4-phosphate 5-kinase. Plant Cell Physiol 45: 960–967

Shimakata T, Stumpf PK (1982) Isolation and function of spinach leaf beta-ketoacyl-[acyl-carrier-protein] synthases. Proc Natl Acad Sci U S A 79: 5808–5812

Shintani DK, Ohlrogge JB (1994) The characterization of a mitochondrial acyl carrier protein isofrom isolated from Arabidopsis thaliana. Plant Physiol 104: 1221–1229

Smith MA, Dauk M, Ramadan H, Yang H, Seamons LE, Haslam RP, Beaudoin F, Ramirez-Erosa I, Forseille L (2013) Involvement of Arabidopsis ACYL-COENZYME A DESATURASE-LIKE2 (At2g31360) in the biosynthesis of the very-long-chain monounsaturated fatty acid components of membrane lipids. Plant Physiol 161: 81–96

Ståhl U, Carlsson AS, Lenman M, Dahlqvist A, Huang B, Banas W, Banas A, Stymne S (2004) Cloning and functional characterization of a phospholipid:diacylglycerol acyltransferase from Arabidopsis. Plant Physiol 135: 1324–1335

Ståhl U, Stålberg K, Stymne S, Ronne H (2008) A family of eukaryotic lysophospholipid acyltransferases with broad specificity. FEBS Lett 582: 305–309

Stålberg K, Ståhl U, Stymne S, Ohlrogge J (2009) Characterization of two Arabidopsis thaliana acyltransferases with preference for lysophosphatidylethanolamine. BMC Plant Biol 9: 60

Stevenson-Paulik J, Love J, Boss WF (2003) Differential regulation of two Arabidopsis type III phosphatidylinositol 4-kinase isoforms. A regulatory role for the pleckstrin homology domain. Plant Physiol 132: 1053–1064

Tanoue R, Kobayashi M, Katayama K, Nagata N, Wada H (2014) Phosphatidylglycerol biosynthesis is required for the development of embryos and normal membrane structures of chloroplasts and mitochondria in Arabidopsis. FEBS Lett 588: 1680–1685

Tasseva G, Richard L, Zachowski A (2004) Regulation of phosphatidylcholine biosynthesis under salt stress involves choline kinases in Arabidopsis thaliana. FEBS Lett 566: 115–120

Van Besouw A, Winternans JF (1978) Galactolipid formation in chloroplast envelopes. I. Evidence for two mechanisms in galactosylation. Biochim Biophys Acta 529: 44–53

Wang Z, Anderson NS, Benning C (2013) The phosphatidic acid binding site of the Arabidopsis trigalactosyldiacylglycerol 4 (TGD4) protein required for lipid import into chloroplasts. J Biol Chem 288: 4763–4771

Wang Z, Xu C, Benning C (2012) TGD4 involved in endoplasmic reticulum-to-chloroplast lipid trafficking is a phosphatidic acid binding protein. Plant J 70: 614–623
Weier D, Müller C, Gaspers C, Frentzen M (2005) Characterisation of acyltransferases from *Synechocystis* sp. PCC6803. Biochem Biophys Res Commun 334: 1127–1134

Weng H, Molina I, Shockey J, Browse J (2010) Organ fusion and defective cuticle function in a *lacs1 lacs2* double mutant of Arabidopsis. Planta 231: 1089–1100

Willige B, Ghosh S, Nill C (2007) The DELLA domain of GA INSENSITIVE mediates the interaction with the GA INSENSITIVE DWARF1A gibberellin receptor of *Arabidopsis*. Plant Cell 19: 1209–1220

Xiao S, Chye M-L (2011) New roles for acyl-CoA-binding proteins (ACBPs) in plant development, stress responses and lipid metabolism. Prog Lipid Res 50: 141–151

Xu C, Fan J, Froehlich JE, Awai K, Benning C (2005) Mutation of the TGD1 chloroplast envelope protein affects phosphatidate metabolism in *Arabidopsis*. Plant Cell 17: 3094–3110

Xu C, Härtel H, Wada H, Hagio M, Yu B, Eakin C, Benning C (2002) The *pgp1* mutant locus of *Arabidopsis* encodes a phosphatidylglycerolphosphate synthase with impaired activity. Plant Physiol 129: 594–604

Xu C, Yu B, Cornish AJ, Froehlich JE, Benning C (2006) Phosphatidylglycerol biosynthesis in chloroplasts of *Arabidopsis* mutants deficient in acyl-ACP glycerol-3-phosphate acyltransferase. Plant J 47: 296–309

Xue HW, Hosaka K, Plesch G, Mueller-Roeber B (2000) Cloning of *Arabidopsis thaliana* phosphatidylinositol synthase and functional expression in the yeast *pis* mutant. Plant Mol Biol 42: 757–764

Yamaoka Y, Yu Y, Mizoi J, Fujiki Y, Saito K, Nishijima M, Lee Y, Nishida I (2011) PHOSPHATIDYLSERINE SYNTHASE1 is required for microspore development in *Arabidopsis thaliana*. Plant J 67: 648–661

Yamaryo Y, Dubots E, Albrieux C, Baldan B, Block MA (2008) Phosphate availability affects the tonoplast localization of PLDζ2, an *Arabidopsis thaliana* phospholipase D. FEBS Lett 582: 685–690

Yang W, Pollard M, Li-Beisson Y, Beisson F, Feig M, Ohlrogge J (2010) A distinct type of glycerol-3-phosphate acyltransferase with sn-2 preference and phosphatase activity producing 2-monoacylglycerol. Proc Natl Acad Sci U S A 107: 12040–12045

Yang W, Simpson JP, Li-Beisson Y, Beisson F, Pollard M, Ohlrogge JB (2012) A land-plant-specific glycerol-3-phosphate acyltransferase family in *Arabidopsis*: substrate specificity, sn-2 preference, and evolution. Plant Physiol 160: 638–652

Yasuno R, von Wettstein-Knowles P, Wada H (2004) Identification and molecular characterization of the beta-ketoacyl-[acyl carrier protein] synthase component of the *Arabidopsis* mitochondrial fatty acid synthase. J Biol Chem 279: 8242–8251
Yu B, Wakao S, Fan J, Benning C (2004) Loss of plastidic lysophosphatidic acid acyltransferase causes embryo-lethality in *Arabidopsis*. Plant Cell Physiol 45: 503–510

Yu B, Xu C, Benning C (2002) *Arabidopsis* disrupted in SOD2 encoding sulfolipid synthase is impaired in phosphate-limited growth. Proc Natl Acad Sci U S A 99: 5732–5737

Zhang M, Fan J, Taylor DC, Ohlrogge JB (2009) DGAT1 and PDAT1 acyltransferases have overlapping functions in *Arabidopsis* triacylglycerol biosynthesis and are essential for normal pollen and seed development. Plant Cell 21: 3885–3901

Zhao L, Katavic V, Li F, Haughn GW, Kunst L (2010a) Insertional mutant analysis reveals that long-chain acyl-CoA synthetase 1 (LACS1), but not LACS8, functionally overlaps with LACS9 in *Arabidopsis* seed oil biosynthesis. Plant J 64: 1048–1058

Zhao Y, Yan A, Feijo JA, Furutani M, Takenawa T, Hwang I, Fu Y, Yang Z (2010b) Phosphoinositides Regulate Clathrin-Dependent Endocytosis at the Tip of Pollen Tubes in *Arabidopsis* and Tobacco. Plant Cell 22: 4031–4044

Zheng H, Rowland O, Kunst L (2005) Disruptions of the *Arabidopsis* Enoyl-CoA reductase gene reveal an essential role for very-long-chain fatty acid synthesis in cell expansion during plant morphogenesis. Plant Cell 17: 1467–1481

Zheng S-Z, Liu Y-L, Li B, Shang Z, Zhou R-G, Sun D-Y (2012) Phosphoinositide-specific phospholipase C9 is involved in the thermostolerance of *Arabidopsis*. Plant J 69: 689–700

Zheng Z, Xia Q, Dauk M, Shen W (2003) *Arabidopsis AtGPAT1*, a member of the membrane-bound glycerol-3-phosphate acyltransferase gene family, is essential for tapetum differentiation and male fertility. Plant Cell 15: 1872–1887

Zhou Y, Peisker H, Weth A, Baumgartner W, Dörmann P, Frentzen M (2013) Extraplastidial cytidinediphosphate diacylglycerol synthase activity is required for vegetative development in *Arabidopsis thaliana*. Plant J 75: 867–879

Zolman BK, Nyberg M, Bartel B (2007) IBR3, a novel peroxisomal acyl-CoA dehydrogenase-like protein required for indole-3-butyric acid response. Plant Mol Biol 64: 59–72

Zou J, Wei Y, Jako C, Kumar A, Selvaraj G, Taylor DC (1999) The *Arabidopsis thaliana TAG1* mutant has a mutation in a diacylglycerol acyltransferase gene. Plant J 19: 645–653
2 Supplementary Figures and Tables

2.1 Supplementary Figures

Supplementary Figure 1. A schematic diagram of lipid metabolism in plants (Li-Beisson et al., 2013).
Supplementary Figure 2. Subcellular localization of enzymes related to fatty acid synthesis, fatty acid elongation, desaturation and plastidic lipid synthesis in *C. merolae*. These fluorescence micrographs show *C. merolae* cells transiently expressing GFP- or HA-fused protein related to fatty
acid synthesis (A), desaturation (B), fatty acid elongation (C), and synthesis of glycolipids and PG (D). Abbreviation of enzyme names is indicated to Table 1. Subcellular localization of CMM311C was not analyzed, because amino acid sequence of this protein is identical to CMS056C. GPAT (CMJ027C) and mtKAS (CML329C) were examined subcellular localization using HA-tag construct. Asterisked enzymes of subcellular localization were detected by immunostained with anti-GFP antibody. DIC; Nomarski differential interference contrast, Chlorophyll; phycobilin and chlorophyll autofluorescences, GFP; GFP fluorescence or immunofluorescence using anti-GFP or anti-HA tag antibody, Merge; merged images of phycobilin and chlorophyll autofluorescences as well as green fluorescence. Bar = 2 µm.
Supplementary Figure 3. Subcellular localization of enzymes related to synthesis of phospholipids and TAG in *C. merolae*. These fluorescence micrographs show *C. merolae* cells transiently expressing GFP-fused protein related to synthesis of phospholipids and TAG. Abbreviation of enzyme names is indicated to Table 1. Asterisked enzymes of subcellular localization were detected by immunostained with anti-GFP antibody. DIC; Nomarski differential interference contrast, Chlorophyll; phycobilin and chlorophyll autofluorescences, GFP; GFP fluorescence or immunofluorescence using anti-GFP antibody, Merge; merged images of phycobilin and chlorophyll autofluorescences as well as green fluorescence. Bar = 2 µm.
Supplementary Figure 4. Subcellular localization of enzymes related to β-oxidation.

Fluorescence micrographs show *C. merolae* cells transiently expressing GFP-fused protein related to β-oxidation (A). Three β-oxidation enzymes were examined subcellular localization using constructs of GFP-fused C-terminal peptide (B). Abbreviation of enzyme names is indicated to Table 1. DIC; Nomarski differential interference contrast, Chlorophyll; phycobilin and chlorophyll autofluorescences, GFP; GFP fluorescence, Merge; merged images of phycobilin and chlorophyll autofluorescences as well as green fluorescence. Bar = 2 µm.
Supplementary Figure 5. Subcellular localization of enzymes related to lipid degradation, lipid trafficking in *C. merolae*. Fluorescence micrographs show *C. merolae* cells transiently expressing GFP-fused protein related to lipid degradation (A) and lipid trafficking (B). Abbreviation of enzyme names is indicated to Supplementary Table 3. Asterisked enzymes of subcellular localization were detected by immunostained with anti-GFP antibody. DIC; Nomarski differential interference contrast, Chlorophyll; phycobilin and chlorophyll autofluorescences, GFP; GFP fluorescence or immunofluorescence using anti-GFP antibody, Merge; merged images of phycobilin and chlorophyll autofluorescences as well as green fluorescence. Bar = 2 µm.

Enzyme Name	DIC	Chlorophyll	GFP	Merge
TAGL* (CMT151C)	![Image]	![Image]	![Image]	![Image]
TAGL (CMP157C)	![Image]	![Image]	![Image]	![Image]
TAGL* (CMS254C)	![Image]	![Image]	![Image]	![Image]
TAGL (CMH156C)	![Image]	![Image]	![Image]	![Image]
TAGL* (CMA056C)	![Image]	![Image]	![Image]	![Image]
TAGL (CMR088C)	![Image]	![Image]	![Image]	![Image]
TAGL (CMJ049C)	![Image]	![Image]	![Image]	![Image]
TAGL (CMF053C)	![Image]	![Image]	![Image]	![Image]
PLA1* (CMP267C)	![Image]	![Image]	![Image]	![Image]
PLA1* (CMH204C)	![Image]	![Image]	![Image]	![Image]
PLA1 (CMQ413C)	![Image]	![Image]	![Image]	![Image]
PLA2* (CMR500C)	![Image]	![Image]	![Image]	![Image]
PLA2 (CMT312C)	![Image]	![Image]	![Image]	![Image]
PLAP (CMC146C)	![Image]	![Image]	![Image]	![Image]
Hydrolase* (CMT274C)	![Image]	![Image]	![Image]	![Image]
Hydrolase (CMP032C)	![Image]	![Image]	![Image]	![Image]
Hydrolase (CMT308C)	![Image]	![Image]	![Image]	![Image]
Hydrolase* (CML191C)	![Image]	![Image]	![Image]	![Image]
Hydrolase* (CML191C)	![Image]	![Image]	![Image]	![Image]
Hydrolase* (CMS228C)	![Image]	![Image]	![Image]	![Image]
TGD3 (CMR180C)	![Image]	![Image]	![Image]	![Image]
TGD3 (CMH235C)	![Image]	![Image]	![Image]	![Image]
TGD3* (CMJ039C)	![Image]	![Image]	![Image]	![Image]
TGD3 (CMR388C)	![Image]	![Image]	![Image]	![Image]
ACBP (CMP278C)	![Image]	![Image]	![Image]	![Image]
ALA2 (CMS375C)	![Image]	![Image]	![Image]	![Image]
ALIS (CMT248C)	![Image]	![Image]	![Image]	![Image]
Supplementary Figure 6. Subcellular localization of enzymes related to fatty acid activation, PI signaling and biotin-dependent carboxylation in C. merolae. These fluorescence micrographs show C. merolae cells transiently expressing GFP-fused protein related to fatty acid activation (A), PI signaling (B) and biotin-dependent carboxylation (C). Abbreviation of enzyme names is indicated to Supplementary Table 3. Asterisked enzymes of subcellular localization were detected by immunostained with anti-GFP antibody. DIC; Nomarski differential interference contrast, Chlorophyll; phycobilin and chlorophyll autofluorescences, GFP; GFP fluorescence or immunofluorescence using anti-GFP antibody, Merge; merged images of phycobilin and chlorophyll autofluorescences as well as green fluorescence. Bar = 2 µm.
2.2 Supplementary Tables

Supplementary Table 1. List of primers used for making of EGFP or HA tag constructs.

A part of uppercase letters of sequence of primers indicates common sequences of pCEG1 or pBSHA-β′ vector required for the cloning using the In-Fusion Cloning Kit (Clontech laboratories, Mountain View, CA, USA). Because a peptide sequence of CMS056C and CMM311C is identical, the same primer is used for subcellular localization analysis of these proteins.

Locus tag	Sequence of forward primer (5’ to 3’)	Sequence of reverse primer (5’ to 3’)	Cloned length (aa)	Full length of enzyme (aa)
CMK217C	TTCGTTGACCTCTAGAatgctttttgtaecaaectg	CCATGGATCCTCTAGAgtgcaegcecgagagacttc	103	673
CMA017C	TTCGTTGACCTCTAGAatggcgagcaacaacgecaaa	CCATGGATCCTCTAGAegtagataaactctggtggtca	110	556
CMJ021C	TTCGTTGACCTCTTAGAattgatctggatcatacagcg	CCATGGATCCTCTAGAagcagctgatgaataccag	32	202
CMF185C	TTCGTTGACCTCTTAGAattgacagtcatgctggggtc	CCATGGATCCTCTAGAegcgagtctgagcctgca	91	373
CMS008C	TTCGTTGACCTCTAGAatgaaacagcacctctact	CCATGGATCCTCTAGAaaacgggttccgaccagtt	103	430
CMR054C	TTCGTTGACCTCTAGAatggcagcgaccaccgccaa	CCATGGATCCTCTAGAacgggttccgagcactcnggat	69	294
CMR488C	TTCGTTGACCTCTAGAatggcagcgaccaccgccaa	CCATGGATCCTCTAGAacgggttccgagcactcnggat	60	302
CMT106C	TTCGTTGACCTCTAGAattgatctggatcatacagcg	CCATGGATCCTCTAGAagcagctgatgaataccag	74	363
CMT239C	TTCGTTGACCTCTAGAattgatctggatcatacagcg	CCATGGATCCTCTAGAagcagctgatgaataccag	142	532
CMN061C	TTCGTTGACCTCTAGAattgatctggatcatacagcg	CCATGGATCCTCTAGAagcagctgatgaataccag	75	944
CMT267C	TTCGTTGACCTCTAGAattgatctggatcatacagcg	CCATGGATCCTCTAGAagcagctgatgaataccag	73	450
CMI271C	TTCGTTGACCTCTAGAatgatctggatcatacagcg	CCATGGATCCTCTAGAagcagctgatgaataccag	66	683
CMR012C	TTCGTTGACCTCTAGAatgatctggatcatacagcg	CCATGGATCCTCTAGAagcagctgatgaataccag	80	511
CMR015C	TTCGTTGACCTCTAGAatgatctggatcatacagcg	CCATGGATCCTCTAGAagcagctgatgaataccag	100	517
CMN215C	TTCGTTGACCTCTAGAatgatctggatcatacagcg	CCATGGATCCTCTAGAagcagctgatgaataccag	90	542
CMS056C, CMM311C	TTCGTTGACCTCTAGAatgatctggatcatacagcg	CCATGGATCCTCTAGAagcagctgatgaataccag	133	439
CMJ134C	TTCGTTGACCTCTAGAatgatctggatcatacagcg	CCATGGATCCTCTAGAagcagctgatgaataccag	248	429
CMN196C	TTCGTTGACCTCTAGAatgatctggatcatacagcg	CCATGGATCCTCTAGAagcagctgatgaataccag	33	208
CMM125C	TTCGTTGACCTCTAGAatgatctggatcatacagcg	CCATGGATCCTCTAGAagcagctgatgaataccag	33	237
CMR011C	TTCGTTGACCTCTAGAatgatctggatcatacagcg	CCATGGATCCTCTAGAagcagctgatgaataccag	84	385
CMS052C	TTCGTTGACCTCTAGAatgatctggatcatacagcg	CCATGGATCCTCTAGAagcagctgatgaataccag	92	442
CMF133C TTCGTTGACCTCTAGAatgtcactctggtgttaa CCATGGATCCTCTAGAaagctcttcagttgacaaat 78 554				
CMF090C TTCGTTGACCTCTAGAatggagttaccgacggttcggaaat CCATGGATCCTCTAGAaagctcttcagttgacaaat 102 749				
CMI139C TTCGTTGACCTCTAGAatgatacgttaggagctcg CCATGGATCCTCTAGAaagctcttcagttgacaaat 66 264				
CMA134C TTCGTTGACCTCTAGAatgttggcacttgatcgctg CCATGGATCCTCTAGAagctcttcagttgacaaat 99 311				
CMQ199C TTCGTTGACCTCTAGAatgcgtgcttgtgtgcgctg CCATGGATCCTCTAGAagctcttcagttgacaaat 130 572				
CMJ039C TTCGTTGACCTCTAGAatgggactggtctcttttcg CCATGGATCCTCTAGAagctcttcagttgacaaat 67 1055				
CMJ162C TTCGTTGACCTCTAGAatgcctctacggacctacat CCATGGATCCTCTAGAagctcttcagttgacaaat 88 310				
CMM188C TTCGTTGACCTCTAGAatgggggatttgggtgaaca CCATGGATCCTCTAGAagctcttcagttgacaaat 38 1316				
CMS299C TTCGTTGACCTCTAGAatgcggcctttcggttccgc CCATGGATCCTCTAGAagctcttcagttgacaaat 33 590				
CMS375C TTCGTTGACCTCTAGAatggacccacagcgacgtac CCATGGATCCTCTAGAagctcttcagttgacaaat 168 1157				
CML055C TTCGTTGACCTCTAGAatgcaaacgatcaactgcag CCATGGATCCTCTAGAagctcttcagttgacaaat 146 1316				
CMJ039C TTCGTTGACCTCTAGAatgggactggtctcttttcg CCATGGATCCTCTAGAagctcttcagttgacaaat 88 506				
CMJ162C TTCGTTGACCTCTAGAatgcctctacggacctacat CCATGGATCCTCTAGAagctcttcagttgacaaat 88 310				
Name	Sequence 1	Sequence 2	Sequence 3	Sequence 4
---------	------------	------------	------------	------------
CMM286C	TTCGTTGACCTCTAGAatggtt cacactgt	CCATGGATCCTCTAGAatggtt cacactgt	80	490
CMD118C	TTCGTTGACCTCTAGAatggtt cacactgt	CCATGGATCCTCTAGAatggtt cacactgt	138	549
CMT420C	TTCGTTGACCTCTAGAatggtt cacactgt	CCATGGATCCTCTAGAatggtt cacactgt	81	398
CMK172C	TTCGTTGACCTCTAGAatggtt cacactgt	CCATGGATCCTCTAGAatggtt cacactgt	69	327
CMS393C	TTCGTTGACCTCTAGAatggtt cacactgt	CCATGGATCCTCTAGAatggtt cacactgt	88	321
CMR006C	TTCGTTGACCTCTAGAatggtt cacactgt	CCATGGATCCTCTAGAatggtt cacactgt	65	303
CMT381C	TTCGTTGACCTCTAGAatggtt cacactgt	CCATGGATCCTCTAGAatggtt cacactgt	84	332
CMD146C	TTCGTTGACCTCTAGAatggtt cacactgt	CCATGGATCCTCTAGAatggtt cacactgt	97	311
CMH111C	TTCGTTGACCTCTAGAatggtt cacactgt	CCATGGATCCTCTAGAatggtt cacactgt	100	240
CMI240C	TTCGTTGACCTCTAGAatggtt cacactgt	CCATGGATCCTCTAGAatggtt cacactgt	59	656
CMG147C	TTCGTTGACCTCTAGAatggtt cacactgt	CCATGGATCCTCTAGAatggtt cacactgt	95	230
CMD146C	TTCGTTGACCTCTAGAatggtt cacactgt	CCATGGATCCTCTAGAatggtt cacactgt	103	499
CMK291C	TTCGTTGACCTCTAGAatggtt cacactgt	CCATGGATCCTCTAGAatggtt cacactgt	72	499
CMK115C	TTCGTTGACCTCTAGAatggtt cacactgt	CCATGGATCCTCTAGAatggtt cacactgt	87	773
CML080C	TTCGTTGACCTCTAGAatggtt cacactgt	CCATGGATCCTCTAGAatggtt cacactgt	58	450
CMT072C	TTCGTTGACCTCTAGAatggtt cacactgt	CCATGGATCCTCTAGAatggtt cacactgt	151	632
CMK139C	TTCGTTGACCTCTAGAatggtt cacactgt	CCATGGATCCTCTAGAatggtt cacactgt	68	300
Code	Sequence 1	Sequence 2	Length 1	Length 2
--------	------------	------------	----------	----------
CMT074C	TTCGTTGACCTCTAGAatgtcagagctgtcattctg	CCATGGATCCTCTAGAAtgctcgttccggccggttca	98	347
CMC137C	TTCGTTGACCTCTAGAatgcaggttcctaggattgt	CCATGGATCCTCTAGAatgcaggttcctaggattgt	52	256
CMR380C	TTCGTTGACCTCTAGAatgtcagagctgtcattctg	CCATGGATCCTCTAGAAtgctcgttccggccggttca	115	1145
CMA042C	TTCGTTGACCTCTAGAatgacgggagagagtgtgag	CCATGGATCCTCTAGAatgcaggttcctaggattgt	46	438
CME087C	TTCGTTGACCTCTAGAatgctgtgttctcgtggcac	CCATGGATCCTCTAGAatgacgggagagagtgtgag	96	584
CMS254C	TTCGTTGACCTCTAGAatggtggcggtaggcaagtt	CCATGGATCCTCTAGAatgctgtgttctcgtggcac	144	778
CMJ049C	TTCGTTGACCTCTAGAatgtccacaaaacgtgcagg	CCATGGATCCTCTAGAatggtggcggtaggcaagtt	150	1117
CML191C	TTCGTTGACCTCTAGAatggaagatatgggaagttt	CCATGGATCCTCTAGAatggtggcggtaggcaagtt	150	780
CMP032C	TTCGTTGACCTCTAGAatgcaggttcctaggattgt	CCATGGATCCTCTAGAatggtggcggtaggcaagtt	150	547
CMT312C	TTCGTTGACCTCTAGAatgttcgtgcagagaacgtt	CCATGGATCCTCTAGAatggtggcggtaggcaagtt	150	1035
CMR500C	TTCGTTGACCTCTAGAatggtggcggtaggcaagtt	CCATGGATCCTCTAGAatggtggcggtaggcaagtt	150	1284
CMP278C	TTCGTTGACCTCTAGAatggtggcggtaggcaagtt	CCATGGATCCTCTAGAatggtggcggtaggcaagtt	150	1284
CMS372C	TTCGTTGACCTCTAGAatgacgctcgttacagtagc	CCATGGATCCTCTAGAatggtggcggtaggcaagtt	150	292
CMT151C	TTCGTTGACCTCTAGAatgcaggttcctaggattgt	CCATGGATCCTCTAGAatggtggcggtaggcaagtt	150	1035
CMC146C	TTCGTTGACCTCTAGAatgcaggttcctaggattgt	CCATGGATCCTCTAGAatggtggcggtaggcaagtt	150	1284
CMS228C	TTCGTTGACCTCTAGAatggtggcggtaggcaagtt	CCATGGATCCTCTAGAatggtggcggtaggcaagtt	150	1284
CMO177C	TTCGTTGACCTCTAGAatggtggcggtaggcaagtt	CCATGGATCCTCTAGAatggtggcggtaggcaagtt	150	292
CMR088C	TTCGTTGACCTCTAGAatgcaggttcctaggattgt	CCATGGATCCTCTAGAatggtggcggtaggcaagtt	150	1035
CMF053C	TTCGTTGACCTCTAGAatgcaggttcctaggattgt	CCATGGATCCTCTAGAatggtggcggtaggcaagtt	150	1284

27
Construct	Sequence 1	Sequence 2	Length 1	Length 2
CMB069C	TTCGTTGACCTCTAGAatggctttttgtgattttag	CATGGATCCCTCTAGAgtctgtgtaatgcatactca	188	1040
CMP267C	TCGTTGACCTCTAGAatgctttttgcgatttgaga	CATGGATCCCTCTAGAaecgtctacggacaa	180	944
CMH204C	TCGTTGACCTCTAGAatggcgcgcttttttgacca	CATGGATCCCTCTAGAaeseaaacacacaatctct	192	889
CMQ413C	TCGTTGACCTCTAGAatgggttgtacttgcgggga	CATGGATCCCTCTAGAataacacgcatgggagca	112	388

HA tag construct

Construct	Sequence 1	Sequence 2	Length 1	Length 2
CMJ027C	CTGCAGTTAATTAATAgatgtgggtgttcctttttt	TGGGTAATTAATTAAtttgcgcgcttcgtaaccca	452	452
CML329C	CTGCAGTTAATTAATAgatgctgacgaacttgtcca	TGGGTAATTAATTAAGttgatagcgctcct	477	477

EGFP-C-terminal peptide construct

Construct	Sequence 1	Sequence 2	Length 1	Length 2
CMK115C	GACGAGCTGTACAGAGcgcacatttccaaataa	CGGCGCGCGCGCTTTAaagataegctcgctcgccgaa	67	773
CMR380C	GACGAGCTGTACAAGatgtgcccgcagcttgcgaa	CGGCGCGCGCGCTTTAaagataegctcgctcgccgaa	67	1145
CMA042C	GACGAGCTGTACAGAGggtggtcctcggggtcct	CGGCGCGCGCGCTTTAaagataegctcgctcgccgaa	67	438
Supplementary Table 3. A summary of other enzymes related to acyl lipid metabolism in C. merolae. This table is a list of acyl lipid metabolic enzymes in *C. merolae*. Column 4 indicates the results of subcellular localization analysis in this study. Column 5 is a summary of the results of prediction of subcellular localization using three different programs. TargetP and the PredAlgo can predict plastidic, mitochondrial and secretory pathway proteins. Proteins predicted as targeted to other subcellular compartments were indicated “Other”. WoLF PSORT can predict various subcellular localizations of proteins. Results of prediction using the WoLF PSORT indicated subcellular localization(s) having the highest score. Abbreviations: CM; cytoplasmic membrane, Cyt; cytosol, ER; endoplasmic reticulum, Ext; extracellular, Mt; mitochondrion, Nuc; nucleus, Per; peroxisome, PM; Plasma membrane, Pt; plastid, Pt-genome; genes encoded in the plastid genome, SP; secretary pathway, Ves; vesicle.

1. Enzyme name	2. Abbreviation of enzyme name and/or gene name	3. Locus tag	4. Subcellular localization	5. Result of prediction of subcellular localization		
Lipase				TargetP	WoLF PSORT	PredAlgo
Triacylglycerol lipase	TAGL	CMT151C	ER	Pt	Nuc, PM	Pt
Triacylglycerol lipase		CMP157C	Pt	Mt	Pt	Pt
Triacylglycerol lipase		CMS254C	ER	SP	PM	Pt
Triacylglycerol lipase		CMH156C	Cyt	Other	Cyt	Other
Triacylglycerol lipase		CMA056C	ER	Mt	Pt	SP
Triacylglycerol lipase		CMR088C	Pt	Mt	Mt	Pt
Triacylglycerol lipase		CMJ049C	ER	Mt	ER	Other
Triacylglycerol lipase		CMF053C	ER, CM	Mt	Nuc	Pt
Phospholipase A1 (PA-prefering phospholipase A1?)	PLA1		Cyt	Other	Nuc	Other
Phospholipase A1 (PA-prefering phospholipase A1?)		CMH204C	Cyt	Other	PM	Other
Phospholipase A1 (PA-prefering phospholipase A1?)		CMQ413C	Ves, CM	Other	Nuc	Pt
Phospholipase A2	PLA2		Nuc, Pt	Pt	Nuc	Pt
Phospholipase A2		CMR500C	Nuc	Pt	Nuc	Pt
Phospholipase A2 activating protein	PLAP		ER, Pt	Other	Pt	Other
Phospholipase C	PLC		Not detected	Other	Pt	Other
Phospholipase D	PLD		Not detected	Other	Pt	Other
Hydrolase (Lipase?)	-		Cyt	Other	Cyt	Other
Lipid trafficking			Cyt	Other	Ext	Other
Phosphatidic acid transporter (TGD1-3 complex)	TGD1	CMV212C	Pt-genome			
Phosphatidic acid transporter (TGD1-3 complex)	TGD2	CMV057C	Pt-genome			
Phosphatidic acid transporter (TGD1-3 complex)	TGD3	CMR180C	ER	Mt	Pt	Mt
Phosphatidic acid transporter (TGD1-3 complex)	TGD3	CMH235C	ER	Other	PM	Other
Phosphatidic acid transporter (TGD1-3 complex)	TGD3	CMJ039C	ER	Mt	PM	SP
Phosphatidic acid transporter (TGD1-3 complex)	TGD3	CMR388C	Pt	Pt	Pt	Pt
Phosphatidic acid transporter (TGD4)	TGD4	Not detected				
Acyl-CoA binding protein	ACBP		Cyt	Other	Pt	Other
Flippase (P4 type-ATPase)	ALA1	CMR306C	ER, CM	Other	PM	Other
Category	Protein	Location	Function			
----------------------------------	---------	----------	----------			
ALA-interacting subunit	ALA2	Cyt, Nuc	Mt, Cyt			
ALIS	CMS375C	ER, CM	Other, Nuc	Other		
Fatty acid activation	ACT	Mt	Mt, Pt			
Acyl-CoA thioesterase	CMJ263C	Mt	Mt, Pt			
CMR113C	Mt	Pt	Pt			
Long-chain acyl-CoA synthetase	LACS	Cyt, Pt	Cyt, Other	Other		
CME186C	Cyt	Other	Pt			
CMG147C	Cyt	Other	Cyt			
CML197C	Cyt, Pt	Other	Cyt, Other	Other		
CMO037C	Cyt	Other	Pt			
CMT459C	Pt	Pt	Pt			
PI signaling	PI4K	ER	Other, Pt			
Phosphatidylinositol-4-kinase	CM1125C	Cyt, CM	Other, Nuc	Other		
CMS267C	Cyt	Other	Nuc, Other			
Biotin-dependent carboxylase	HCS	Pt, Cyt	Mt			
Holocarboxylase synthetase	CMC080C	Mt	Mt			
MCC (MCCA) (MCCB)	CMT073C	Pt	Pt			
MCC (MCCA) (MCCB)	CMT071C	Mt	Cyt			
Methylcrotonyl-CoA carboxylase	CMN243C	Mt	Mt			
Propionyl-CoA carboxylase	CMM132C	Mt	Pt, Nuc, Pt			
Carboxylase synthase (Multifunctional type)	CAR (CAR1)	CMQ255C	Not analyzed			
Carboxylase synthase (Multisubunit type)	CAR (CarA)	CMV036C	Pt-genome			
Carbamoylphosphate synthase (Multifunctional type)	(CarB)	CML055C	Pt			
Biotin carboxyl carrier protein	BCCP	Pt	Cyt, Pt			
CMO037C	Pt	Mt	Pt			
CMC015C	Pt	Pt	Pt			
CME153C	Cyt, CM	Mt	Pt			
CMM132C	Mt	Mt	Pt			
CML055C	Pt	Pt	Pt			
CMC015C	Pt	Mt	Pt			