Direct Fitting of Gaussian Mixture Models

Leonid Keselman, Martial Hebert

Robotics Institute
Carnegie Mellon University
May 29, 2019

https://github.com/leonidk/direct_gmm
Representations of 3D data

- Point Cloud
- Point Cloud + Normals
- Triangular Mesh

Methods:
- Nearest Neighbor Plane Fit
- Screened Poisson Surface Reconstruction
Gaussian Mixture Models for 3D Shapes

GMM fit to object surface

Benefits
• Closed-form expression
• Can represent contiguous surfaces
• Easy to build from noisy data
• Sparse
Gaussian Mixture Model (GMM)

\[p(x) = \sum_{n=1}^{K} \lambda_i \mathcal{N}(x; \mu_i, \Sigma_i) \]

\[\sum_i \lambda_i = 1 \]

\[\lambda_i \geq 0 \]

\[\Sigma_i \text{ is symmetric, positive-semidefinite} \]
Gaussian Mixtures as a shape representation

Efficient Representation

Mesh Registration

Frame Registration

B. Eckart, K. Kim, J. Kautz.
ECCV (2018)

W. Tabib, C. O’Meadhra, N. Michael
IEEE R-AL (2018)

B. Eckart, K. Kim, A. Troccoli, A. Kelly, J. Kautz.
CVPR (2016)

Figure 1. Processing PCD with a Hierarchy of Gaussian Mixtures: (a) Raw PCD from Stanford Bunny (35k vertices), (b) and (c) Two levels of detail extracted from the proposed model. Each color denotes the area of support of a single Gaussian and the ellipsoids indicate their one σ extent. Finer grained color patches therefore indicate higher statistical fidelity but larger model size, (d) a log-scale heat-map of a PDF from a high fidelity model, (e) stochastically re-sampled PCD from the model (5k points), (f) occupancy grid map also derived directly from the model.
Fitting a Gaussian Mixture Model

1. Obtain 3D Point Cloud
2. Select Initial Parameters
3. Iterate Expectation & Maximization
 i. E-Step: Each point gets a likelihood
 ii. M-Step: Each mixture gets parameters
The E-Step (Given GMM parameters)

\[\eta_{ij} = \frac{1}{C_j} \lambda_i \mathcal{N}(x_j; \mu_i, \Sigma_i) \]

Affiliation between point j & mixture i

\[C_j = \sum_k \lambda_k \mathcal{N}(x_j; \mu_k, \Sigma_k) \]

Normalization constant for point j
The M-Step (Given point-mixture weights)

\[LB = \sum_{j=1}^{M} \sum_{i=1}^{K} \eta_{ij} \log(\lambda_i \mathcal{N}(x_j; \mu_i, \Sigma_i)) \]

lower-bound loss

To get new parameters: takes derivatives, set equal to zero, and solve

\[\frac{\partial LB}{\partial \lambda_i} = 0 \quad \frac{\partial LB}{\partial \mu_i} = 0 \quad \frac{\partial LB}{\partial \Sigma_i} = 0 \]

\[\lambda_i = \frac{W_i}{M} \quad \mu_i = \frac{1}{W_i} \sum_j w_{ij} x_j \quad \Sigma_i = \frac{1}{W_i} \sum_j w_{ij} (x_j - \mu_i) (x_j - \mu_i)^T \]

\[w_{ij} = \eta_{ij} \quad W_i = \sum_j w_{ij} \]
Geometric Objects in a Probability Distribution

Known curve in a given 2D probability distribution
Geometric Objects in a Probability Distribution

\[\ell(\text{curve}) \approx \prod_{i=1}^{N} p(x_i) \]

Consider sampling \(N\) points from this curve.
Geometric Objects in a Probability Distribution

\[\ell \text{ (curve)} \equiv \left(\prod_{i=1}^{N} p(x_i) \right)^{\frac{1}{N}} \]

Take a geometric mean to account for sample number
Geometric Objects in a Probability Distribution

\[
\ell(\text{curve}) \approx \left(\prod_{i=1}^{N} p(x_i) \right)^{\frac{1}{N}}
\]

\[
\ell(\text{curve}) = \lim_{N \to \infty} \left(\prod_{i=1}^{N} p(x_i) \right)^{\frac{1}{N}}
\]

\[
= \lim_{N \to \infty} \exp \left(\log \left(\prod_{i=1}^{N} p(x_i) \right) \right)^{\frac{1}{N}}
\]

\[
= \lim_{N \to \infty} \exp \left(\frac{1}{N} \sum_{i=1}^{N} \log(p(x_i)) \right)
\]

The curve will be the value in the limit
Geometric Objects in a Probability Distribution

\[\ell(\text{curve}) \approx \left(\prod_{i=1}^{N} p(x_i) \right)^{\frac{1}{N}} \]

\[\ell(\text{curve}) = \lim_{N \to \infty} \left(\prod_{i=1}^{N} p(x_i) \right)^{\frac{1}{N}} \]

\[= \lim_{N \to \infty} \exp \left(\log \left(\prod_{i=1}^{N} p(x_i) \right) \frac{1}{N} \right) \]

\[= \lim_{N \to \infty} \exp \left(\frac{1}{N} \sum_{i=1}^{N} \log(p(x_i)) \right) = \exp \left(\int \log(p(x)) \, dx \right) \]
Geometric Objects in a Probability Distribution

\[L = \exp \left(\int \log(p(x)) \, dx \right) \]

1. If \(p(x) = 0 \) on curve, then \(L = 0 \)
2. Invariant to reparameterization
α_j Area of each triangle
μ_j Centroid of each triangle
A_j, B_j, C_j Triangle vertices
The E-Step (Given GMM parameters)

\[\eta_{ij} = \frac{1}{C_j} \lambda_i \mathcal{N}(x_j; \mu_i, \Sigma_i) \]

Affiliation between point j & mixture i

\[C_j = \sum_k \lambda_k \mathcal{N}(x_j; \mu_k, \Sigma_k) \]

Normalization constant for point j

\(\alpha_j \) Area of each triangle
\(\mu_j \) Centroid of each triangle
\(A_j, B_j, C_j \) Triangle vertices
The **New** E-Step (Given GMM parameters)

\[\eta_{ij} = \frac{1}{C_j} \lambda_i \alpha_j \mathcal{N}(\mu_j; \mu_i, \Sigma_i) \]

Taylor Approximation (2 terms)

Affiliation between object j & mixture i

\[C_j = \sum_k \lambda_k \alpha_k \mathcal{N}(\mu_j; \mu_k, \Sigma_k) \]

Normalization constant for object j

- \(\alpha_j \) Area of each triangle
- \(\mu_j \) Centroid of each triangle
- \(A_j, B_j, C_j \) Triangle vertices
The M-Step (Given point-mixture weights)

\[
\lambda_i = \frac{W_i}{M}
\]

\[
\mu_i = \frac{1}{W_i} \sum_j w_{ij} x_j
\]

\[
\Sigma_i = \frac{1}{W_i} \sum_j w_{ij} (x_j-\mu_i)(x_j-\mu_i)^T
\]

\[
w_{ij} = \eta_{ij}
\]

\[
W_i = \sum_j w_{ij}
\]
The New M-Step (Given point-mixture weights)

\[\lambda_i = \frac{W_i}{M} \]

\[\mu_i = \frac{1}{W_i} \sum_j w_{ij} x_j \]

\[\Sigma_i = \frac{1}{W_i} \sum_j w_{ij} [(x_j - \mu_i)(x_j - \mu_i)^T + \Sigma] \]

\[w_{ij} = \alpha_j \eta_{ij} \]

\[W_i = \sum_j w_{ij} \]

\[\Sigma_j = \frac{1}{12} (A_j A_j^T + B_j B_j^T + C_j C_j^T - 3 \mu_j \mu_j^T) \]

\(\alpha_j \) Area of each triangle

\(\mu_j \) Centroid of each triangle

\(A_j, B_j, C_j \) Triangle vertices
What is Σ_j?
E-Step Result

M-Step Result
Results

Did all that math actually help us fit better/faster GMMs?
Using different inputs

classic algorithm
• Vertices of the mesh
• Triangle centroids

our method
• Approximate (E only)
• Exact (E + M steps)

Evaluate across a wide range of mixtures (6 to 300)

Measure the likelihood of a high-density point cloud (higher is better)
Full E+M method works in all cases
Stable under even random initialization!
Applications

Are these models actually more useful?
Mesh Registration (P2D)

Method

1. Apply a random rotation + translation to the point cloud
2. Find transformation to maximize the likelihood of the points
 - Perform P2D with GMMs fit to
 i. mesh vertices
 ii. mesh triangles

Eckart, Kim, Kautz.
“HGMR: Hierarchical Gaussian Mixtures for Adaptive 3D Registration.”
ECCV (2018)
Mesh-based GMMs are more accurate
Across multiple models

Rotation Error (% of ICP)

Armadillo Bunny Dragon Happy Lucy

Translation Error (% of ICP)

Armadillo Bunny Dragon Happy Lucy

points mesh
Frame Registration (D2D)

Method

1. Use a sequence from an RGBD Sensor
 • 2,500 frame TUM sequence from a Microsoft Kinect

2. Pairwise registration between t & t-1 frames
 • Optimize the D2D L2 distance
 • Build GMMs using square pixels as the geometric object

W. Tabib, C. O’Meadhra, N. Michael.
“On-Manifold GMM Registration”
IEEE R-AL (2018)
Representing points using pixel squares
D2D Registration Results

Compared to standard GMM
• 2.4% improvement in RMSE
• 22% faster D2D convergence
Questions?

\[P = \exp \left(\int \log(p(x)) \, dx \right) \]
The End!
Extra Slides
How to fit a Gaussian Mixture Model?

1. Obtain any collection of objects
2. Perform Expectation + Maximization
 i. E-Step: Each point gets a likelihood
 ii. M-Step: Each mixture gets new parameters
Extension to arbitrary primitives

\[
\mu_i = \frac{1}{W_i} \sum_{p} w_{ip} \mu_p
\]

\[
\Sigma_i = \frac{1}{W_i} \sum_{p} w_{ip} \left[(\mu_p - \mu_i)(\mu_p - \mu_i)^T + \Sigma_p \right]
\]

Vasconcelos, Lippman. "Learning mixture hierarchies." Advances in Neural Information Processing Systems (1999)
Approximation

\[L \approx L_S = \prod_{j=1}^{M} \left(\sum_{i=1}^{K} \pi_i \mathcal{N}(\mu_j; \mu_i, \Sigma_i) \right) \]

area-weighted geometric mean using the primitive's centroids
Product Integral Formulation

- Product integrals provide a resampling-invariant loss function
- Given S samples, of M primitives, with N mixture components

$$
L = \prod_{j=1}^{M} \prod_{k=1}^{S} \sum_{i=1}^{K} \pi_i \mathcal{N}(x_{jk}; \mu_i, \Sigma_i)
$$

- This can be evaluated in the limit of samples (with a geometric mean)
\[Q(\theta) = \log \prod_{j=1}^{M} \sum_{i=1}^{N} p(x_j, z_i | \theta_i) \]

\[= \sum_{j=1}^{M} \log \sum_{i=1}^{N} p(x_j, z_i | \theta_i) \]

\[= \sum_{j=1}^{M} \log \sum_{i=1}^{N} \eta_{ij} \frac{p(x_j, z_i | \theta_i)}{\eta_{ij}} \]

\[= \sum_{j=1}^{M} \log \mathbb{E}_{x \mid x, \theta} \left[\frac{p(x_j, z_i | \theta_i)}{\eta_{ij}} \right] \]

\[\geq \sum_{j=1}^{M} \mathbb{E}_{z \mid x, \theta} \left[\log \frac{p(x_j, z_i | \theta_i)}{\eta_{ij}} \right] \]

\[\geq \sum_{j=1}^{M} \sum_{i=1}^{N} \eta_{ij} \log \frac{p(x_j, z_i | \theta_i)}{\eta_{ij}} \]

\[\geq \sum_{j=1}^{M} \sum_{i=1}^{N} \eta_{ij} \left(\log p(x_j | z_i, \theta_i) - \log \eta_{ij} \right) \]

\[= \sum_{j=1}^{M} \sum_{i=1}^{N} \eta_{ij} \left(\log p(x_j | z_i, \theta_i) - \log \eta_{ij} \right) \]

\[\theta \leftarrow \arg \max \sum_{j=1}^{M} \sum_{i=1}^{N} \eta_{ij} \log(\pi_i \mathcal{N}(x_{jk}; \mu_i, \Sigma_i)) \]
\[\phi_\Delta(h(x)) = ||T_u \times T_v|| \int_0^1 \int_0^{1-v} f(T(u,v)) \, du \, dv \]

\[= ||T_u \times T_v|| \int_0^1 \int_0^{1-v} \mathcal{N}(M; \mu, \Sigma)(1 - (T(u,v) - M)^T K_1 + (T(u,v) - M)^T K_2 (T(u,v) - M)) \, du \, dv \]

\[= ||T_u \times T_v|| \mathcal{N}(M; \mu, \Sigma) \left(\frac{1}{2} + \int_0^1 \int_0^{1-v} (- (T(u,v) - M)^T K_1 + (T(u,v) - M)^T K_2 (T(u,v) - M)) \, du \, dv \right) \]

\[= ||T_u \times T_v|| \mathcal{N}(M; \mu, \Sigma) \left(\frac{1}{2} - 0 + K_2 \int_0^1 \int_0^{1-v} (T(u,v) - M)^2 \, du \, dv \right) \]

\[= ||T_u \times T_v|| \mathcal{N}(M; \mu, \Sigma) \left(\frac{1}{2} - 0 + K_2 \int_0^1 \int_0^{1-v} (A + (B - A)u + (C - A)v - M)^2 \, du \, dv \right) \]

\[= ||T_u \times T_v|| \mathcal{N}(M; \mu, \Sigma) \left(\frac{1}{2} - 0 + \frac{K_2}{36} (A \circ (1 - (B + C)) + B \circ (1 - C) + C \circ C) \right) \]

\[\approx \frac{||T_u \times T_v||}{2} \mathcal{N}(M; \mu, \Sigma) \]
\[
\frac{\partial \text{LB}}{\partial \Sigma_i^{-1}} = \frac{1}{2} \sum_{j=1}^{M} \int_{\Delta_j} \left[\eta_{ij} \left(\Sigma_i - (x_j - \mu_i)(x_j - \mu_i)^T \right) \right] d\Delta_j
\]
\[
= \frac{1}{2} \sum_{j=1}^{M} \left(R_j \eta_{ij} \Sigma_i - \eta_{ij} \int_{\Delta_j} \left[(x_j - \mu_i)(x_j - \mu_i)^T \right] d\Delta_j \right)
\]
\[
= \frac{1}{2} \sum_{j=1}^{M} \left(R_j \eta_{ij} \Sigma_i - \eta_{ij} \frac{1}{12} \left((M_j - \mu_i)(M_j - \mu_i)^T + \frac{1}{12} \left(A_j A_j^T + B_j B_j^T + C_j C_j^T - 3M_j M_j^T \right) \right) \right)
\]
\[
\frac{\partial \text{LB}}{\partial \Sigma_i^{-1}} = \frac{1}{2} \sum_{j=1}^{M} \left(R_j \eta_{ij} \Sigma_i - \eta_{ij} R_j \left[(M_j - \mu_i)(M_j - \mu_i)^T + \frac{1}{12} \left(A_j A_j^T + B_j B_j^T + C_j C_j^T - 3M_j M_j^T \right) \right] \right)
\]

deq25

Setting this derivative to zero and solving gives us the following expression for the new covariance

\[
\Sigma_i = \sum_{j=1}^{M} \frac{\eta_{ij} R_j \left[(M_j - \mu_i)(M_j - \mu_i)^T + \frac{1}{12} \left(A_j A_j^T + B_j B_j^T + C_j C_j^T - 3M_j M_j^T \right) \right]}{\sum_{j=1}^{M} R_j \eta_{ij}}
\]
\[
= \sum_{j=1}^{M} \frac{\eta_{ij} R_j \left[(M_j - \mu_i)(M_j - \mu_i)^T \right]}{\sum_{j=1}^{M} R_j \eta_{ij}} + \frac{1}{12} \left(\frac{\eta_{ij} R_j \left(A_j A_j^T + B_j B_j^T + C_j C_j^T - 3M_j M_j^T \right)}{\sum_{j=1}^{M} R_j \eta_{ij}} \right)
\]
\[
= \sum_{j=1}^{M} \frac{\eta_{ij} R_j \left[(M_j - \mu_i)(M_j - \mu_i)^T \right]}{\sum_{j=1}^{M} R_j \eta_{ij}} + \frac{1}{12} \frac{\left((M_j - \mu_i)(M_j - \mu_i)^T \right)}{\text{cov}(M_j, \mu_i)} + \frac{1}{12} \frac{\left(A_j A_j^T + B_j B_j^T + C_j C_j^T - 3M_j M_j^T \right)}{\text{cov}(M_j, \mu_i)}
\]

deq27

44
For GMMs we will use the lower bound

\[L = \exp \left(\sum_{j=1}^{M} \int_{\Delta} \log \left(\sum_{i=1}^{K} \pi_i \mathcal{N}(x; \mu_i, \Sigma_i) \right) \, dx \right) \]

\[\log(L) = \sum_{j=1}^{M} \int_{\Delta} \log \left(\sum_{i=1}^{K} \pi_i \mathcal{N}(x; \mu_i, \Sigma_i) \right) \, dx \]

\[\geq \sum_{j=1}^{M} \sum_{i=1}^{K} \int_{\Delta} \log \left(\pi_i \mathcal{N}(x; \mu_i, \Sigma_i) \right) \, dx \]
P2D Registration Results

Model	Rotation Error	Translation Error		
	(% of ICP)	(% of ICP)		
	points	mesh	points	mesh
Armadillo	127	37	161	33
Bunny	50	28	41	17
Dragon	68	25	40	19
Happy	101	27	85	27
Lucy	95	23	122	35
Mesh Registration with P2D

Method

1. Apply a random rotation + translation to the point cloud

2. Point-to-Distribution (P2D) registration of point cloud to GMM
 - Perform tests with GMMs fit to
 i. mesh vertices
 ii. mesh triangles
 - Optimize the GMM likelihood with rigid body transformation (q & t)
 - BFGS Optimization using numerical gradients, starting from identity

Eckart, Kim, Kautz. “HGMR: Hierarchical Gaussian Mixtures for Adaptive 3D Registration.” ECCV (2018)
Acknowledgements

• Martial Hebert
• Robotics Institute
• Reviewers
• Funding?
Representing points using pixel squares