Predictability of Lyapunov subexponential instability

Pierre Nazé1 and Roberto Venegeroles2 \footnote{Electronic address: pierre.naze@ufabc.edu.br} \footnote{Electronic address: roberto.venegeroles@ufabc.edu.br}

1Centro de Ciências Naturais e Humanas, UFABC, 09210-170, Santo André, SP, Brazil
2Centro de Matemática, Computação e Cognição, UFABC, 09210-170, Santo André, SP, Brazil

(Dated: April 1, 2014)

We consider a general class of maps of the interval having Lyapunov subexponential instability $|\delta x_t| \sim |\delta x_0| \exp[\Lambda t(x_0)\zeta(t)]$, where $\zeta(t)/t \to 0$ as $t \to \infty$. We outline here a scheme whereby the choice of a characteristic function automatically defines the map equation and corresponding growth rate $\zeta(t)$. This matching approach is based on the infinite measure property of such systems. We show that the average information that is necessary to record without ambiguity a trajectory of the system tends to $\Lambda \zeta(t)$, leading to straightforwardly generalizations for the Kolmogorov-Sinai entropy and Pesin’s identity. Moreover, information behaves like a random variable for random initial conditions, its statistics obeying a universal Mittag-Leffler law. We also show that, for individual trajectories, information can be accurately inferred by the number of first-passage times through a given turbulent phase space cell. Lastly, we show that the usual renewal description of jumps to the turbulent cell, usually employed in the literature, does not provide the real number of entrances there. Our results are confirmed by exhaustive numerical simulations.

PACS numbers: 05.45.Ac, 89.70.Cf, 05.40.Fb

\section{I. INTRODUCTION}

After the pioneering work of Gaspard and Wang \cite{gaspard1998}, we have witnessed in recent years a growing interest in the study and characterization of dynamical systems dynamical systems whose separation of initially nearby trajectories is weaker than exponential. More specifically, such separation grows as \cite{gaspard1998,hoepffner2010}

\begin{equation}
|\delta x_t| \sim |\delta x_0| \exp[\Lambda t(x_0)\zeta(t)], \quad t \to \infty,
\end{equation}

with sublinear growth rate given by

\begin{equation}
\zeta(t) \sim l(t) t^\alpha, \quad 0 \leq \alpha \leq 1,
\end{equation}

being $l(t)$ a slowly varying function at infinity such that $l(t \to \infty) = \infty$ for $\alpha = 0$ and $l(t \to \infty) = 0$ for $\alpha = 1$ \cite{hoepffner2010}. The coefficient $\Lambda t(x_0)$ stands for the largest finite-time Lyapunov exponent at x_0 for usual chaotic systems, i.e., systems for which $\zeta(t) \sim t$. Here it is the corresponding generalization for weakly chaotic systems that evolve according to Eq. (2).

The unpredictable nature of deterministic systems has its origin in the sensitivity to initial conditions. In this context, the degree of randomness of a system is usually characterized by the Kolmogorov-Sinai (KS) entropy. This quantity can be understood as an average measure of information that is necessary to describe a step of the evolution of a dynamical system. More precisely, the KS entropy is the intrinsic rate at which information is produced by the dynamical system and gives the number of bits which is necessary and sufficient to record without ambiguity a trajectory of the system during a unit time interval \cite{bowen1972}. For usual chaotic systems, the information $C_t(x)$ contained in t steps of a single trajectory of a point x with respect to a partition of the phase space is asymptotically related to the KS entropy μ as $C_t(x) \sim \mu t$ almost everywhere.

\section{II. PRELIMINARIES AND MAIN RESULTS}

Here we propose a general class of maps of the interval, weakly chaotic in the sense of Eq. (2), for which

\begin{equation}
E[C_t(x)] \to \langle \Lambda \zeta(t) \rangle, \quad t \to \infty,
\end{equation}

where $E[\ldots]$ denotes the expected value over initial condition ensemble and $\langle \Lambda \zeta \rangle$ is a theoretical value to be established later on. The main difference between chaotic and weakly chaotic systems like (2) lies in the strength of their invariant measures. Subexponential instability (2) is an infinite measure property \cite{hoepffner2010}, as opposed to the usual chaotic systems, whose invariant measure is finite. This relationship is quantitatively outlined here, enabling the calculation of $\zeta(t)$ and thus the estimation of average information \cite{hoepffner2010} directly from the map equations itself. Moreover, such systems compel universal Mittag-Leffler statistics of observables \cite{hoepffner2010}, then our knowledge of randomness is not restricted to the first moment \cite{hoepffner2010}.

The mechanism for generating subexponential instability (2) relies on the existence of two phases of motion: a laminar region where the invariant measure is infinite and, therefore, the motion is very slow, and a complementary turbulent region of short time bursts. By considering the number N_t of first-passage times from laminar to turbulent region during t iterations of the map, we shall see that

\begin{equation}
C_t(x) \to \gamma N_t(x), \quad t \to \infty
\end{equation}
almost everywhere, where $\gamma = \gamma(x_*, \alpha)$ and x_* defines a two-phase space partition. We will provide here a general formula for the prefactor γ and also show that the standard partition maximizes N_t. Interestingly, we shall see that N_t is not the number of renewals occurring at time t as usually considered in the literature.

For finite measure chaotic systems, more specifically closed Anosov, the KS entropy is known to be given by the sum of positive Lyapunov exponents, the well-known Pesin identity \[\frac{d}{dt}\int_{\mathcal{M}} \rho d\mu = \sum_{i=1}^n \lambda_i(T), \] where $\lambda_i(T)$ are the Lyapunov exponents and μ is the invariant measure. Pesin’s relation, extending the α-expansibility. Then we propose a generalization for these quantities and, accordingly, also for Pesin’s relation, extending earlier investigations done in \[\cite{7}. \]

III. LONG-TERM CORRELATIONS: POSSIBLE APPLICATIONS

Despite not yet widely explored in other fields, sublinear behavior of the type \[\sum_{k=0}^{n-1} \log\left(\frac{1}{n}\right) \] is not restricted to infinite measure maps \[\cite{1, 7, 8}, \] but has also been observed in other systems such as anomalous diffusion by Lévy flights \[\cite{9}, \] Feigenbaum’s attractor at the threshold of chaos in the period doubling scenario \[\cite{10}, \] weather systems \[\cite{11, 12}, \] sporadic behavior of language texts \[\cite{13, 14}, \] complexity of classical integer factorization algorithms used to break RSA cryptosystems \[\cite{15}, \] as well as of some noncoding DNA sequences \[\cite{16, 17}. \]

The algorithmic complexity and the Kolmogorov-Sinai entropy measure the degree of unpredictability (or irregularity) of a system but not necessarily the difficulty of modelling it from experimental data \[\cite{18}. \] This means, of course, that more complex systems may be modeled by means of simpler ones, helping to establish a understanding of their fundamental issues. Weakly chaotic maps to be considered here have quite a few very interesting features. In particular, by considering the symbolic dynamics approach, laminar phases of dynamics correspond to repetitions of the same symbol for quite a long time, which are interrupted by successive turbulent outbursts. Thus, symbol repetitions generate long-term correlations that can not be replicated by means of usual chaotic systems. Recently, a weakly chaotic map has been employed to model the dynamics of DNA strands with long-range features, such as the genome of higher eucaryotes \[\cite{19}. \] A similar model with external noise has also been used for modeling the time distance between consecutive neuron firings in the study of neural avalanches in the brain of mammals \[\cite{20}. \] Recent results also suggest that subexponential instability might be observed in some stroboscopic maps related to the FitzHugh-Nagumo model for a single externally excited neuron \[\cite{21}. \]

IV. INFINITE MEASURE FRAMEWORK

Let us now introduce the general class of piecewise C^2 expanding maps $x_{t+1} = T(x_t)$, from $[0, 1]$ to itself, such that $T : (0, c) \rightarrow (0, 1)$ and $T : (c, 1) \rightarrow (0, 1)$. On the interval $(0, c)$ the map T is given by

\[T(x) = x + f(x), \]

with a single marginal fixed point at $x = 0$, i.e.

\[f(x) \rightarrow 0 = f'(x \rightarrow 0) = 0. \]

Since these conditions are met, the overall shape of T far from the marginal fixed point is of secondary importance (a sketch of T will be shown later in Sec. VII). The best known models that meet these criteria are the Pomeau-Manneville (PM) type maps

\[T(x) \sim x + ax^{1+1/\alpha}, \quad x \rightarrow 0, \]

where a and α are positive parameters. From the physical point of view, the original $\alpha = 1$ PM map is paradigmatic since it corresponds to certain Poincaré sections related to the Lorenz attractor \[\cite{22}. \]

The key ingredient for the weakly chaotic behavior \[\cite{2}, \] is how invariant density of T behaves near the marginal fixed point. The invariant measure μ of a map T is such that $\mu(T^{-1}(A)) = \mu(A)$ for any measurable subset A of the phase space. In particular, physical measures are absolutely continuous with respect to the Lebesgue measure, i.e. $d\mu(x) = \rho(x) dx$, being $\rho(x)$ the invariant density satisfying the Perron-Frobenius operator \[\cite{2}. \]

Weakly chaotic behavior \[\cite{2}, \] stems from the divergence of invariant measure near the marginal fixed point. For example, for the case of PM map \[\cite{7} \] one has \[\cite{23} \]

\[\rho(x) \sim bx^{-1/\alpha}, \quad x \rightarrow 0, \]

and thus weak chaos for $0 < \alpha \leq 1$. It is important to emphasize that, for infinite measure systems, $\rho(x)$ is defined up to a positive multiplicative constant since there is no possible normalization. In other words, μ is not a probability measure for such systems. Therefore, the value of b in Eq. \[\cite{3} \] is unreachable for $0 < \alpha \leq 1 \cite{7, 24}. \]

A major advantage in dealing with systems like \[\cite{4, 10} \] is that spatio and temporal properties are determined by the simple choice of a characteristic function $\phi(x)$ satisfying \[\cite{2} \]

\[\int \phi(x) dx \rightarrow -\infty, \quad x \rightarrow 0. \]

The invariant density $\rho(x)$ gives the measure of concentration trajectories on phase space, whereas the residence times in the laminar region are ruled by the waiting-time density function $\psi(t)$. According to recent results \[\cite{2} \]

\[f'(x) \sim \frac{1}{\rho(x)} \sim -\frac{1}{x\phi'(x)}, \quad x \rightarrow 0, \]
up to positive multiplicative constants, and
\[\psi(t) \sim -[\phi^{-1}(t)]^\prime, \quad t \to \infty, \]
(11)

\(\phi^{-1} \) denoting the inverse of \(\phi \). Moreover, the Laplace transform \(\zeta(s) \) of growth rate is [2]
\[\zeta(s) \sim \frac{1}{s[1 - \psi(s)]}, \quad s \to 0. \]
(12)

Lastly, statistics of time-averaged observables are such that
\[E \left[\frac{1}{\kappa \zeta(t)} \sum_{k=0}^{t-1} \vartheta(T^k(x)) \right] \to \int \vartheta d\mu, \]
(13)
as \(t \to \infty \), being \(\kappa \) given by [2]
\[\kappa = - \lim_{x \to 0} \frac{x \phi/(x)}{\rho(x)}. \]
(14)

V. SUBLINEAR GROWTH RATE

The growth rate \(\zeta(t) \) plays an essential role in the
of complexity measurement of weakly chaotic dynamical
systems. Its quantitative connection with the infinite
variant measure was recently shown in [2], namely, the
vergence of mean waiting time \(\int_{0}^{t} \psi(t)dt \) implies infinite
variant measure near the marginal fixed point. By consider-
the general form of cumulative distribution function
associated to \(\psi(t) \), i.e. \(\int_{0}^{t} \psi(u)du \sim 1 - 1/q(t)^{\alpha} \), \(q(t) \)
being a slowly varying function at infinity and \(0 \leq \alpha \leq 1 \),
one has
\[\tilde{\psi}(s) \sim \left\{ \begin{array}{ll} 1 - \Gamma(1 - \alpha)s^\alpha/|q(1/s)|, & 0 \leq \alpha < 1, \\ 1 - s|\ln s/|q(1/s)|, & \alpha = 1, \end{array} \right. \]
(15)
as \(s \to 0 \). Now, noting also that \(\int_{0}^{t} \psi(u)du \sim 1 - \phi^{-1}(t) \)
from Eq. (11), the growth rate formula (12) can be solved
by using Karamata’s Abelian and Tauberian theorems for
the Laplace-Stieltjes transform [25], resulting
\[\zeta(t) \sim \frac{1}{\phi(t)} \times \left\{ \begin{array}{ll} \sin(\pi \alpha)/\pi \alpha, & 0 \leq \alpha < 1, \\ 1/\ln t, & \alpha = 1, \end{array} \right. \]
(16)
Thus, a simple choice of a particular \(\phi(x) \) near the
marginal fixed point survives to construct an infinity of
ergodic equivalent maps according to the precepts of Sec. IV.

Let us now consider PM type of maps near \(x = 0 \) in
the weakly chaotic regime \(0 < \alpha \leq 1 \). Such maps are
given by the choice
\[\phi(x) \approx \frac{\alpha}{a} x^{-1/\alpha}, \quad x \to 0, \]
(17)
for which \(f(x) \sim -1/\phi'(x) \). The corresponding invariant
density evaluated by Eq. (10) results on Eq. (8). For
\(0 < \alpha < 1 \) we have from Eq. (10)
\[\zeta(t) \sim \left(\frac{\alpha}{a} \right)^\alpha \sin(\pi \alpha)/\pi \alpha, \]
(18)
whereas for \(\alpha = 1 \)
\[\zeta(t) \sim \frac{t}{\ln t}. \]
(19)
For both cases one has
\[\kappa = \frac{1}{ab}. \]
(20)
Note that \(\kappa \zeta(t) \) given by Eqs. (18), (12), and (20) are identical
to the so-called \textit{return sequence} for PM maps
according to the infinite ergodic theory [26].

VI. DISTRIBUTIONAL CONVERGENCE AND
PESIN-TYPE RELATION

For a one-dimensional chaotic map \(T \) with finite invariant
measure \(\mu \), Pesin’s relation implies that \(A_t(x) \to h_\mu \)
as \(t \to \infty \), and thus leading to
\[C_t(x) \to \sum_{k=0}^{t-1} \ln |T^k(T^k(x))|, \quad t \to \infty \]
(21)
almost everywhere. Furthermore, according to the well-
known Birkhoff theorem, ergodicity implies \(t^{-1}C_t(x) \to h_\mu = \int \ln |T'| d\mu \).

For infinite measure systems Eq. (21) still holds [27, 28],
but within a completely different scenario: despite
the pointwise convergence, different initial conditions
lead to different values of \(C_t(x) \) and \(A_t(x) \) no matter
how long it was the iteration time. In other words,
even taking into account a suitable time-average of an
observable, it does not converge to a constant value,
actually behaving like a random variable for random initial
conditions. To be more specific, for a positive integrable
function \(\vartheta \) and a random variable \(x \) with an absolutely
continuous measure with respect to the Lebesgue
measure, the Aaronson-Darling-Kac convergence in distribution
takes place [3]:
\[\frac{1}{a_t} \sum_{k=0}^{t-1} \vartheta(T^k(x)) \to \xi_\alpha, \quad t \to \infty, \]
(22)
where \(a_t \) is the return sequence and \(\xi_\alpha \) is a non-negative
Mittag-Leffler random variable with index \(\alpha \in [0, 1) \)
and unit expected value. The corresponding Mittag-Leffler
probability density function is
\[p_\alpha(\xi) = \frac{\Gamma(1/\alpha)(1+\alpha)}{\alpha \xi^{1+1/\alpha}} g_\alpha \left[\frac{\Gamma(1/\alpha)(1+\alpha)}{\xi^{1/\alpha}} \right], \]
(23)
being \(g_\alpha(u) \) the one-sided Lévy density function, i.e.
\(\tilde{g}_\alpha(s) = \exp(-s^\alpha) \) [29]. As \(\alpha \to 1 \), the width of Mittag-
Leffler density tends to zero, resembling an approxima-
tion of \(\delta(\xi - 1) \) [29], as is typical of finite measure ergodic
systems. As \(\alpha \to 0 \), Eq. (23) reads the exponential density
\(p_0(\xi) = e^{-\xi} \) [29].
From Eq. (1), the finite-time (generalized) Lyapunov exponent of map T is

$$
\Lambda_t(x) = \frac{1}{\zeta(t)} \sum_{k=0}^{t-1} \ln |T'[T^k(x)]|,
$$

and the choice $\vartheta = \ln |T'|$ gives us (see also 30)

$$
\frac{\Lambda_t(x)}{\langle \Lambda \rangle} \to \xi_{\alpha}, \quad t \to \infty,
$$

with

$$
\langle \Lambda \rangle = \kappa \int \ln |T'|d\mu.
$$

It is important to emphasize here that the unreachable constant prefactor of invariant density cancels itself out in Eq. (26). Moreover, $\ln |T'| \sim f = O(1/\rho)$ near $x = 0$, and thus $\langle \Lambda \rangle$ is always a well defined quantity. Lastly, a comparison between Eqs. (22) and (13) show us unequivocally that

$$
a_t = \kappa \zeta(t).
$$

So, we also provide here a direct way to obtain return sequences for such systems.

Based on Eq. (21), the natural generalization of Pesin identity is as follows

$$
\frac{C_t(x)}{\zeta(t)} = h_t(x) \to \Lambda_t(x), \quad t \to \infty,
$$

being $h_t(x)$ the (generalized) finite-time KS entropy. Then it is easy to see that

$$
\frac{h_t(x)}{\langle h \rangle} \to \xi_{\alpha}, \quad t \to \infty,
$$

with $\langle h \rangle = \langle \Lambda \rangle$. Thus, we have not only the average information previously introduced in Eq. (3), which enables us to record the behaviour of trajectories, but also its statistical law.

VII. FIRST-PASSAGE TIMES THROUGH THE TURBULENT PHASE SPACE CELL

Let us now consider the usual partition of the interval $[0, 1]$ into two cells, $A_0 = [0, x_*)$ and $A_1 = (x_*, 1]$. According to the symbolic dynamics approach, a given trajectory $\{x_t\}$ generated by T can be represented by a sequence of integer symbols $\{s_t\}$ such that s_t corresponds to the cell where x_t belongs, for example, $s_t = k$ for $x_t \in A_k$. Then we eliminate the redundancies that may appear in $\{s_t\}$ by performing a compression of information. This is accomplished by considering the algorithmic information C_t, which is defined as the length of the shortest possible program able to reconstruct the sequence $\{s_t\}$ on a universal machine [1].

For the case of PM type of maps, $C_t(x)$ has been considered as proportional to the number of first-passage times $N_t(x)$ through the cell A_1 up to time t [1]. Recent numerical analysis have shown that the proportionality coefficient depends on x_* and α once it has fixed further map parameters [2]. In order to understand precisely how these quantities are related, let us introduce the following observable

$$
\chi(x) = \sigma[T(x)] - \sigma(x)\sigma[T(x)]
$$

where the indicator function $\sigma(x)$ is defined as

$$
\sigma(x) = \begin{cases} 1, & x \in A_1, \\ 0, & x \in A_0. \end{cases}
$$

Filter (30) returns 1 whenever a transition from A_0 to A_1 arises, and 0 otherwise. By Stepanov-Hopf ratio ergodic theorem [31]

$$
\sum_{k=0}^{t-1} \vartheta[T^k(x)] \to \int \vartheta d\mu
$$

holds almost everywhere as $t \to \infty$ for nonnegative observables (since it integrable over μ). Then we can choose $\vartheta = \ln |T'|$ and $\varphi = \chi$, resulting $N_t(x) = \sum_{k=0}^{t-1} \chi[T^k(x)]$ and relationship (2), being γ given by

$$
\gamma = \frac{\langle \Lambda \rangle}{\kappa \int \chi d\mu}.
$$

Calculation of $\int \chi d\mu$ follows from Fig. 1 resulting

$$
\int \chi d\mu = \begin{cases} \mu[T_1^{-1}(x_*), c], & x_* \leq c, \\ \mu[T_1^{-1}(x_*), c], & x_* > c. \end{cases}
$$

Quantity (34) has a unique global maximum at $x_* = c$ (standard partition). To prove this it suffices to consider the variation $x_* \to x_* + \delta x_*$ and the Perron-Frobenius formula [2] to get

$$
\delta \int \chi d\mu = (-1)^k \rho[T_1^{-1}(x_*)] T'[T_k^{-1}(x_*)] \delta x_*,
$$

where $k = 1$ for $x_* > c$ and $k = 2$ for $x_* \leq c$ denote the two expanding branches of T. Therefore, the slope γ has a unique global minimum at $x_* = c$, thereby maximizing the number of entrances N_t.

Lastly, distributional formula (22) applied to χ yields

$$
N_t(x) \to \xi_{\alpha}, \quad \langle N_t \rangle = \kappa \zeta(t) \int \chi d\mu.
$$

VIII. FAILURE OF RENEWAL DESCRIPTION

In many studies on the (infinite) ergodic properties of PM maps, the number of first-passage times N_t has been usually considered to be the number of renewals in
Under these assumptions, the statistics of the number of turbulent state time in the laminar state τ. A function q < α. Therefore, for 0 < α ≤ 1, one has infinite mean waiting time in the laminar state to stress that, in the renewal approach, the number of entrances does not depend on the partition of phase space, whereas (Λ)/γ becomes increasingly smaller as it moves away from standard partition.

IX. NUMERICAL SIMULATIONS

In order to check and illustrate our main results, we perform an exhaustive numerical analysis by considering the Thaler map $T : [0, 1] \rightarrow [0, 1]$ defined by

$$T(x) = x \left[1 + \left(\frac{x}{1 + x} \right)^{1 - \alpha} - x^{1 - \alpha} \right]^{1 \over \alpha} \mod 1. \tag{44}$$

This map is very useful for our purposes because its invariant density is explicitly known throughout the interval, namely

$$\rho(x) = b[x^{-\alpha} + (1 + x)^{-\alpha}], \tag{45}$$

where b is the undefined constant for $0 < \alpha \leq 1$. Moreover, its behavior near $x = 0$ is the same of PM map for $\alpha = 1$, thus we can also use directly the auxiliary results of Sec. V.

Firstly, Fig. 1 depicts relationship (41). As one can see, both quantities are indeed proportional, irrespective of the partition employed. The choice of partition determines the slope of straight lines, which are in full agreement with Eqs. (33) and (34). The standard partition $x_\ast = c$ leads to a global minimal slope, also in full agreement with our predictions in Sec. VII. Fig. 4 depicts the dependence of slope γ with the partition of phase space, explicitly highlighting the global minimum at $x_\ast = c$. Note that small values of α require larger...
FIG. 2: (Color online) Graphics of the algorithm complexity C_t, calculated by Eq. (21), as a function of N_t, the number of entrances of a given trajectory into the cell $A_t = (x, 1]$ during $t = 10^6$ iterations of the Thaler map with $\alpha = 1/2$. The slopes γ for each solid line are calculated according to Eqs. (33) and (34) for the Thaler map. Each solid line is matched by 4×10^3 numerical points obtained from initial conditions uniformly distributed on the interval $[0, 1]$. Red (blue) lines represent partitions with $x_0 < c$ ($x_0 > c$). x_0, increasing in the counterclockwise (clockwise) direction. In all cases, the error in γ is less than 2% of the corresponding theoretical value.

FIG. 3: (Color online) The solid lines represent the semi-log plot of prefactor γ according to Eqs. (33) and (34) for the Thaler map. Each numerical point was obtained from the iteration of Thaler map and by least squares fitting of $C_t \rightarrow \gamma N_t$ over 10^3 initial conditions uniformly distributed on the interval $[0, 1]$.

FIG. 4: (Color online) Distribution of the random variable $\xi_\alpha = N_t/(N_t)$ for the Thaler map with $\alpha = 2/3$, $t = 10^6$, and standard partition of phase space. Both histograms were built from the same 2.5×10^5 initial conditions uniformly distributed on the interval $[0, 1]$. The background and the inset plots correspond, respectively, to rates ξ_α, whereby (N_t) was employed according to Eqs. (36) and (43). For both cases, solid line is the Mittag-Leffler probability density with $\alpha = 2/3$ and unit expected value. As one can see, the background distribution behaves according to our prediction in Sec. VII contrary to the renewal approach provides (inset).

X. CONCLUDING REMARKS

Characterization of complexity and information is an important issue for a deep understanding of dynamical systems. We have shown that sublinear growth rate $\zeta(t)$ plays a direct role in the predictability of subexponential instability systems. First we outline recent results relating $\zeta(t)$ with map equations of dynamics [2], and then we provide a complete description of universal statistical law of algorithmic complexity for such systems. We also demonstrate the linear relation between algorithmic complexity and the number of first-passage times through a given turbulent phase space cell, originally proposed in [1]. In particular, we provide a general formula for the ratio between these two quantities, enabling the computation of algorithmic complexity and (generalised) Lyapunov exponents not only accurately, but also in a much more efficient manner. Last but not least, we also show that the usual renewal description of jumps to a turbulent cell does not provide the real number of entrances there. A correct formulation for the problem was also...
Despite the main features of infinite measure maps being ruled by the local singular behavior of invariant measure, certain nonlocal aspects of information demand a more general knowledge of the measurement. A full characterization of the measure is central in ergodic theory because it is the invariant measure that characterizes the occupation probabilities over phase space. Methods that enable complete determination of invariant densities are therefore in demand [34].

Much of what has been discussed here is not restricted to infinite measure maps. For example, our results are, in essence, also valid for PM type of systems with $\alpha > 1$, when the invariant measure is a probability measure, growth rates are linear over time, and Mittag-Leffler density becomes a Dirac delta function, which is typical of finite measure ergodic systems. Thus, we believe that the idea of being able to estimate information by observing the dynamics in key regions of phase space is still an open field for investigations even for other types of dynamical systems [35]. We hope that the present study also brings further perspectives on the subject matter.

Acknowledgments

The authors gratefully acknowledge the helpful discussions with Alberto Saa and Carlos J.A. Pires. This work was supported by the Brazilian agencies CNPq and FAPESP.

[1] P. Gaspard, X.-J. Wang, Proc. Natl. Acad. Sci. USA 85, 4591 (1988).
[2] R. Venegeroles, J. Stat. Phys. 154, 988 (2014).
[3] It is noteworthy here that slowly varying functions in Eq. 2 are not restricted to powers of logarithms as in the similar expression originally conjectured in [1], see Ref. 2 for more details.
[4] P. Gaspard and X.-J. Wang, Phys. Rep. 235, 291 (1993).
[5] J. Aaronson, An Introduction to Infinite Ergodic Theory (American Mathematical Society, Providence, 1997).
[6] Ya. B. Pesin, Russ. Math. Surveys 32, 55 (1977).
[7] A. Saa and R. Venegeroles, J. Stat. Mech.: Theory Exp. (2012) P03010.
[8] C. Bonanno and S. Galatolo, Chaos 14, 756 (2004).
[9] X.-J. Wang, Phys. Rev. A 45, 8407 (1992).
[10] P. Grassberger, J. Theor. Phys. 25, 907 (1986).
[11] C. Nicolis, W. Ebeling, and C. Baraldi, Tellus, Ser. A 49, 108 (1997).
[12] J.R. Rigby and A. Porporato, Adv. Water Resour. 33, 923 (2010).
[13] W. Ebeling and G. Nicolis, Europhys. Lett. 14, 191 (1991).
[14] P. Grassberger, IEEE Trans. Inf. Theory 35, 669 (1989).
[15] C. Pomeance, The Notices of the Amer. Math. Soc. 43, 1473 (1996).
[16] W. Ebeling, R. Feistel, and H. Herzel, Physica Scripta 35, 761 (1987).
[17] W. Li and K. Kaneko, Europhys. Lett. 17, 655 (1992); Nature (London) 360, 635 (1992).
[18] R.V. Mendes, Chaos 21, 037115 (2011).
[19] A. Provata and C. Beck, Phys. Rev. E 86, 046101 (2012).
[20] M. Zare and P. Grigolini, Chaos, Solitons Fractals 55, 80 (2013).
[21] P.T.C. Barbosa and A. Saa, Chaos, Solitons Fractals 59, 28 (2014).
[22] Y. Pomeau and P. Manneville, Commun. Math. Phys. 74, 189 (1980).
[23] M. Thaler, Studia Math. 143, 103 (2001).
[24] A. Saa and R. Venegeroles, "Pesin's Relation for Weakly Chaotic One-Dimensional Systems" in Proceedings of the European Conference on Complex Systems 2012, edited by T. Gilbert, M. Kirkilionis, and G. Nicolis, p. 949-953, Springer Proceedings in Complexity, New York (2013).
[25] W. Feller, An Introduction to Probability Theory and its Applications (Wiley, New York, 1971), Vol. II.
[26] M. Thaler and R. Zweimüller, Probab. Theory Relat. Fields 135, 15 (2006).
[27] R. Zweimüller, Discrete Contin. Dyn. Syst. 15, 353 (2006).
[28] R. Venegeroles, Phys. Rev. E 86, 021114 (2012).
[29] A. Saa and R. Venegeroles, Phys. Rev. E 84, 026702 (2011).
[30] C.J.A. Pires, A. Saa, and R. Venegeroles, Phys. Rev. E 84, 026702 (2011).
[31] R. Zweimüller, Colloq. Math. 101, 289 (2004).
[32] For references on the subject one may refer several cited in 2, 3, among others.
[33] J. Galambos and E. Seneta, Proc. Am. Math. Soc. 41, 110 (1973).
[34] In preparation.
[35] R. Venegeroles, Phys. Rev. Lett. 101, 054102 (2008); Phys. Rev. Lett. 102, 064101 (2009).