Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website.

Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.
Restriction factor screening identifies RABGAP1L-mediated disruption of endocytosis as a host antiviral defense

Highlights
- An siRNA screen identifies genes contributing to the antiviral action of interferon
- RABGAP1L potentiates the action of interferon against multiple RNA viruses
- The RABGAP1L proximal interactome reveals its association with endosomal proteins
- RABGAP1L disrupts endocytosis to limit cell entry of viruses using this pathway

Authors
Sonja Fernbach, Eva E. Spieler, Idoia Busnadiego, Umut Karakus, Anouk Lkharrazi, Silke Stertz, Benjamin G. Hale

Correspondence
hale.ben@virology.uzh.ch

In brief
Interferons inhibit viruses through the concerted action of many host restriction factors. Here, Fernbach et al. use siRNA screening to identify interferon-dependent host factors that limit early stages of the influenza A virus replication cycle, leading to the characterization of RABGAP1L-mediated disruption of endocytosis as a broadly acting host antiviral mechanism.

Fernbach et al., 2022, Cell Reports 38, 110549
March 22, 2022 © 2022 The Author(s).
https://doi.org/10.1016/j.celrep.2022.110549
Host interferons (IFNs) powerfully restrict viruses through the action of several hundred IFN-stimulated gene (ISG) products, many of which remain uncharacterized. Here, using RNAi screening, we identify several ISG restriction factors with previously undescribed contributions to IFN-mediated defense. Notably, RABGAP1L, a Tre2/Bub2/Cdc16 (TBC)-domain-containing protein involved in regulation of small membrane-bound GTPases, robustly potentiates IFN action against influenza A viruses (IAVs). Functional studies reveal that the catalytically active TBC domain of RABGAP1L promotes antiviral activity, and the RABGAP1L proximal interactome uncovered its association with proteins involved in endosomal sorting, maturation, and trafficking. In this regard, RABGAP1L overexpression is sufficient to disrupt endosomal function during IAV infection and restricts an early post-attachment, but pre-fusion, stage of IAV cell entry. Other RNA viruses that enter cells primarily via endocytosis are also impaired by RABGAP1L, while entry promiscuous SARS-CoV-2 is resistant. Our data highlight virus endocytosis as a key target for host defenses.
antivirally active ISG products such as CNP, TAP1, IDO1, and TRIM56 (Kane et al., 2016; Liu et al., 2012; Schoggins et al., 2014; Wilson et al., 2012). As an orthogonal approach, we undertook a targeted small interfering RNA (siRNA)-based depletion screen of 100 putative ISGs with the aim of identifying host restriction factors that may function efficiently only in the context of an IFN response. A prominent hit from our screen was RAB GTPase-activating protein 1-like (RABGAP1L), also known as TBC1D18, a member of the Tre2/Bub2/Cdc16 (TBC)-domain-containing protein family, which is involved in the regulation of small membrane-bound GTPases, so-called RAB proteins (Frasa et al., 2012). We found that overexpression of RABGAP1L potentiated the antiviral action of IFN against a panel of viruses, including IAV, and that its function required a catalytically active TBC domain. A validated proximity-labeling proteomic approach revealed the host interactome of RABGAP1L, identifying components of endosomal sorting, maturation, and trafficking pathways. Consistent with this, infection-stage mapping assays uncovered that RABGAP1L expression appears to disrupt endosomal function and limits IAV entry at or prior to virus-host membrane fusion. Thus, our work identifies and characterizes a host factor that can act to limit an early event of the virus infection process.

RESULTS

RNAi screening identifies putative ISGs that restrict early events in the IAV replication cycle

We established a customized siRNA library targeting a subset of human genes that have been described as ISGs in various studies but which mostly have yet to be implicated as antiviral against IAV. The library comprises a total of 403 siRNAs, with 4 siRNAs targeting each of the 100 putative ISGs selected, single validated siRNAs targeting the known anti-IAV ISGs MX1 and IFITM3 (positive controls), and a scrambled non-targeting (NT) siRNA (negative control) (Table S1). To identify putative ISG products with antiviral action against IAV, each siRNA from this library was transfected into a modified primary-like human lung fibroblast cell line, MRC-5-HA, for 30 h prior to stimulation of cells with 1,000 U/mL of IFNα2 for 16 h. Cells were then infected with WSN/33-Renilla IAV (Spierer et al., 2020) at an MOI of 5 PFU/cell, and Renilla luciferase activity was monitored in live cells over the course of 12 h as a surrogate measure for single-cycle viral replication (Figures 1A and 1B). Confirming the setup of our screening assay, in NT siRNA-transfected cells, IFNα2-treatment reduced WSN/33-Renilla IAV replication approximately 100-fold, while in MX1 and IFITM3 siRNA-transfected cells, the antiviral effects of IFNα2 were notably reduced (Figure 1C). We derived area under the curve (AUC) values of viral replication between 3 and 12 h post-infection following IFNα2 treatment and calculated Z scores for each target siRNA relative to multiple NT siRNA replicates that were included in the screen. From the 100 putative ISGs targeted in this primary screen, 22 met our stringent criteria for further consideration (at least 3 out of 4 independent siRNAs had a Z score ≥2) (Figures 1D; Table S1). By re-screening 20 putative ISGs in a second assay, we were able to confirm that 8 of them, in addition to MX1 and IFITM3, contributed to the antiviral action of IFNα2 against WSN/33-Renilla IAV (Figures 1D and 1E; Table S1). Interestingly, these included genes such as GBP5 and IFI44, which were independently validated by others as antiviral ISG products during the course of our study (Braun et al., 2019; Busse et al., 2020). These observations support the robustness of our screening efforts and provide confidence in our identification of several putative ISG products that contribute to the antiviral function of IFNα2 against early stages of the IAV replication cycle.

RABGAP1L expression restricts IAV

We focused follow-up studies on RABGAP1L, which ranked highest in our RNAi screens and which encodes RABGAP1L, a member of the TBC-domain-containing protein family that is involved in the regulation of small membrane-bound GTPases (Frasa et al., 2012). To further validate RABGAP1L as a factor restricting IAV, we transfected A549 cells with a panel of 5 different siRNAs targeting RABGAP1L and assessed the antiviral action of IFNα2 against WSN/33-Renilla IAV. None of the 5 RABGAP1L siRNAs impacted general cell viability (Figure 2A). However, 4 of the 5 RABGAP1L siRNAs led to a statistically significant reduction in the ability of IFNα2 to limit IAV replication, although none were as effective as an siRNA targeting the essential ISG transcription factor IRF3 (Figures 2B and 2C). In line with this, western-blot analysis revealed that RABGAP1L depletion does not limit general ISG induction by IFNα2 (as evidenced by IFNα2-induced MxA protein levels) (Figure 2D). Surprisingly, despite reports of RABGAP1L mRNA induction by IFNα and IFNγ in primary hepatocytes (He et al., 2010), we did not observe IFN-mediated induction of RABGAP1L in MRC5 or A549 cells, nor in a diverse panel of other human cells, either at the mRNA or protein levels (Figures S1A–S1D).

Of the multiple putative RABGAP1L isoforms annotated (NCBI: 9910), our western blot analysis identified four that matched to the predicted molecular masses of isoforms A, G, H, and I (Figures 2D and 2E). To validate the results of our siRNA experiments, we therefore took an orthogonal approach and generated A549 cells stably overexpressing each of these four isoforms individually to assess their impact on IFN-mediated antiviral activity. We confirmed similar expression of the RABGAP1L isoforms between the different cell lines by both western blot and immunofluorescence analyses (Figures 2F and 2G). In line with the siRNA data, overexpression of each RABGAP1L isoform slightly limited the replication of WSN/33-Renilla IAV, as well as wild-type WSN/33 IAV, in unstimulated cells, but strongly potentiated antiviral activity in IFNα2-stimulated cells (Figures 2H, S2A, and S2B). Notably, the shorter RABGAP1L isoforms, A and H, which lack C-terminal extensions, exhibited the strongest IFN-dependent antiviral effects. Consistent with our siRNA-based experiments, overexpression of the main RABGAP1L isoform A did not appear to influence the IFN signaling response or general ISG induction by IFNα2 (Figures S2C–S2E). Thus, independent siRNA and overexpression data indicate that RABGAP1L can restrict IAV. While RABGAP1L does not appear to be a universal ISG product, or to regulate general ISG expression, our results suggest that RABGAP1L functions in concert with IFN stimulation to limit IAV replication.
RABGAP1L overexpression restricts selected positive- and negative-sense RNA viruses

We used RABGAP1L isoform A (from now on simply referred to as RABGAP1L) as a basis for further work given that it exerted strong antiviral activity and appeared to be the dominantly expressed isoform in most cell types tested (Figure S1D). Stable RABGAP1L overexpression in A549 cells potentiated IFNα2-mediated restriction not only of WSN/33 IAV but also of Renilla luciferase reporter variants of human pandemic A/Netherlands/602/09 (pdmH1N1) IAV and the A/Vietnam/1203/04 (H5N1) IAV (Figure 3A). Notably, pdmH1N1 IAV replication was also strongly inhibited by RABGAP1L overexpression in the absence of IFNα2. To examine the antiviral potential of RABGAP1L against other viruses in different cell types, we also generated Huh-7, Calu-3, and Vero-CCL81 cells stably overexpressing RABGAP1L or GFP as a control. RABGAP1L overexpression led to a reduction in WSN/33-Renilla IAV replication in A549, Huh-7, Calu-3, and Vero-CCL81 cell lines (Figures 3A–3H). Furthermore, it was clear that both a Renilla-encoding human coronavirus (HCoV-229E-Renilla) and a GFP-encoding vesicular stomatitis virus (VSV-GFP) were also limited in their replication capacities in cells overexpressing RABGAP1L (Figures 3B and 3C). Notably, HCoV-229E-Renilla did not seem particularly sensitive to IFNα2 pre-treatment but was inhibited by RABGAP1L overexpression alone (Figure 3B). This contrasted with the effects of RABGAP1L on VSV-GFP replication, where overexpression of RABGAP1L alone had a small effect on virus replication but was strongly potentiated by IFNα2 (Figure 3C). Strikingly, we did not observe an inhibitory effect of RABGAP1L overexpression on replication of two GFP-encoding paramyxoviruses,
Figure 2. IFN-mediated restriction of IAV by RABGAP1L.

(A) A549 cells were transfected with the indicated siRNAs for 32 or 60 h prior to lysis and assessment of cell viability using CellTiter-Glo. An NT siRNA and an siRNA targeting IRF9 were used as negative controls. siRPS is an siRNA targeting the essential gene RPS27A and thus acted as a positive control for cell toxicity. Mean values from three biologically independent experiments are plotted, with error bars representing SDs. Individual data points are shown.

(B) NT or IFNα2 treatment caused a decrease in RLU over time.

(C) AUC analysis of the data from (A).

(D) Western blot analysis of RABGAP1L isoforms. The proteins were separated by size, with the positions of the bands indicated.

(E) Schematic representation of RABGAP1L isoforms and their lengths. The lengths are given in amino acids (aa).

(F) Immunofluorescence images showing expression of RABGAP1L. The images are labeled as EV, A, G, H, and I.

(G) Western blot analysis of RABGAP1L isoforms. The proteins were separated by size, with the positions of the bands indicated.

(H) Statistical analysis of the data from (F). Mean values from three biologically independent experiments are plotted, with error bars representing SDs. Individual data points are shown.

(legend continued on next page)

(A549 cells were transfected with the indicated siRNAs for 32 or 60 h prior to lysis and assessment of cell viability using CellTiter-Glo. An NT siRNA and an siRNA targeting IRF9 were used as negative controls. siRPS is an siRNA targeting the essential gene RPS27A and thus acted as a positive control for cell toxicity. Mean values from three biologically independent experiments are plotted, with error bars representing SDs. Individual data points are shown.)
Sendai virus (SeV-GFP) or Newcastle disease virus (NDV-GFP), in A549 cells (Figures 3D and 3E). Nor did we observe an inhibitory effect of RABGAP1L overexpression on replication of SARS-CoV-2 in either Calu-3 or Vero-CCL81 cells (Figures 3G and 3I). Together, these data show that RABGAP1L overexpression can restrict the replication of different RNA viruses beyond IAV. For most of the tested viruses, RABGAP1L-mediated restriction is potentiated by IFNα2, although RABGAP1L overexpression alone can limit the replication of some viruses, in some cell lines, in the absence of IFNα2 (e.g., pdmH1N1 IAV and HCoV-229E). However, some other RNA viruses, such as SARS-CoV-2 and the tested paramyxoviruses, appear to be resistant to the inhibitory effect of RABGAP1L.

The antiviral function of RABGAP1L relies on its catalytically active TBC domain and residues implicated in endosomal trafficking

RABGAP1L contains three described domains: an N-terminal phosphotyrosine-binding (PTB) domain, a kinesin-like domain, and a C-terminal TBC domain, which regulates small membrane-bound GTPases (Figure 4A). To explore the functionality of RABGAP1L, we generated a panel of C-terminal deletions in RABGAP1L and screened them for antiviral activity following production of stably expressing A549-based cell lines (Figures 4A and S3A). Western blot and immunofluorescence analyses revealed that all the truncation constructs exhibited similar intracellular localization patterns to full-length RABGAP1L, and all appeared to express homogeneously in cells, even if total protein abundance differed slightly between some constructs (Figures 4B, S3B, and S3C). Importantly, no apparent cell growth defect was detected in cells expressing RABGAP1L or its different truncated variants (Figure S3D). Compared with full-length RABGAP1L, we noted that deletion of only the TBC domain (ATBC) led to a clear reduction in the ability of RABGAP1L to restrict IAV replication following IFNα2 pre-treatment (Figures S3E and S3F). However, given the poor expression of this construct, we focused on a RABGAP1L mutant that appeared to be more stable (termed 421) and which lacked both the TBC domain and the region between the kinesin-like and the TBC domains. Compared with full-length RABGAP1L, the RABGAP1L-421 truncation mutant exhibited no antiviral activity against WSN/33 IAV replication following IFNα2 pre-treatment, underscoring the importance of these domains for RABGAP1L function (Figures 4C, S3E, and S3F).

To further dissect the contributions of the TBC domain to RABGAP1L function, we undertook a targeted mutagenesis approach. Most TBC domains of RABGAP proteins catalyze the GTP hydrolysis of RAB proteins by a dual-finger mechanism, relying on two catalytic arginine (R) and glutamine (Q) residues (Pan et al., 2006). A previous sequence alignment of TBC-domain catalytic regions located the dual-finger motif of RABGAP1L at positions R584 and Q621 (Frasa et al., 2012). As substitution of such residues for alanine (A) in other TBC-domain-containing proteins decrease catalytic efficiency by 100 to 1,000-fold (Pan et al., 2006), we generated RABGAP1L constructs with the R584A (Rmut), Q621A (Qmut), or double (ROmut) substitutions to assay whether they abrogated the antiviral activity of RABGAP1L (Figure 4D). In addition, we generated a RABGAP1L KK784EE (KKmut) double substitution construct that is reported to disrupt the interaction of RABGAP1L with Ankyrin B (AnkB) and thereby impact its endosomal trafficking (Qu et al., 2016) (Figure 4D). Following production of stably expressing A549-based cell lines, equal expression of each RABGAP1L construct was ensured by immunofluorescence and western blot analyses (Figures 4E and 4F). Notably, compared with wild type (WT), all the mutant RABGAP1L constructs exhibited reduced antiviral activity against IAV replication following IFNα2 pre-treatment, with both the Rmut and Qmut constructs being particularly ineffective (Figure 4G). Overall, these data reveal that the antiviral activity of RABGAP1L against IAV relies on its catalytically active TBC domain, as well as a likely dependence on endosomal trafficking.

Proximity-labeling-based proteomics identifies the RABGAP1L host interactome

To understand more about the function of RABGAP1L, we determined its human protein interactome in living cells using a previously developed proximity-labeling (PL) approach based on
Figure 3. RABGAP1L overexpression restricts selected positive- and negative-sense RNA viruses

(A) A549 cells stably expressing GFP or RABGAP1L (RG1L) were stimulated with IFNα2 (1,000 U/mL or mock) 16 h prior to infection with different Renilla luciferase-encoding IAVs: H1N1 (WSN/33, MOI 1 PFU/cell), pdmH1N1 (Neth/09, MOI 5 PFU/cell), or H5N1 (Viet/04, MOI 0.5 PFU/cell). EnduRen live-cell substrate was added p.i., and the luciferase activity was monitored every 2 h for a total of 11 h. The AUC was calculated from RLUs up to 11 h p.i.

(B) Huh-7 cells stably expressing GFP or RG1L were treated as described in (A) and infected with WSN/33-Renilla (MOI 1 PFU/cell) or HCoV-229E-Renilla (MOI 5 PFU/cell). EnduRen was supplemented, and the luciferase activity was measured every 2 h for a total of 11 h. The AUC was calculated from RLUs.

(C–E) A549 cells expressing EV or RG1L were stimulated with IFNα2 (10, 100 or 1,000 U/mL or mock) for 4 h prior to infection with VSV-GFP (MOI 1 PFU/cell) (C) or for 16 h prior to infection with SeV-GFP (MOI 1 PFU/cell) (D) and NDV-GFP (MOI 1 PFU/cell) (E). GFP intensity was measured every 2 h for up to 72 h. The AUC was calculated from total green integrated intensity.

(F and H) Calu-3 (F) or Vero-CCL81 (H) cells stably expressing GFP or RG1L were treated with IFNα2 (10, 100, or 1,000 U/mL or mock) for 16 h, followed by infection with WSN/33-Renilla (MOI 1 PFU/cell). EnduRen was added p.i., and the luciferase activity was monitored every 2 h for a total of 11 h. The AUC was calculated from RLUs.
TurboID (Borold et al., 2021; Cho et al., 2020). To this end, we generated TurboID-V5-tagged full-length RABGAP1L (T-V5-RG1L), as well as a TurboID-V5-tagged GFP-nuclear export sequence (NES; T-V5-GFP-NES) fusion construct to act as a negative control (Figure 5A). Following stable expression of each construct in A549 cells, we validated their levels and intracellular localization using western blot and immunofluorescence, confirming their similar and homogeneous expression (Figures 5B and 5C). In addition, we verified that the TurboID-V5-tagged RABGAP1L construct maintained its antiviral action against IAV in the presence of IFNα2 (Figure 5D). To determine RABGAP1L interaction partners in the presence and absence of IFNα2, (G and I) Calu-3 (G) or Vero-CCL81 (I) cells stably expressing GFP or RG1L were treated as described in (F) prior to infection with SARS-CoV-2 (MOI 0.1 PFU/cell). Supernatants were collected 24 h p.i., and viral titers were determined by plaque assay in Vero-E6 cells.

For (B), (E), and (F), representative data from three biologically independent experiments are shown. For (C) and (G), mean values from three biologically independent experiments are plotted, with error bars representing SDs. Individual data points are shown. Statistical significance was determined using one-way ANOVA following log transformation (*p < 0.05, **p < 0.002, ****p < 0.0001; ns, non-significant).
Figure 5. Proximity-labeling-based proteomics identifies the RABGAP1L host interactome

(A) Schematic representation of TurboID-V5-tagged (T-V5) GFP (negative control) carrying a nuclear-export sequence (NES) or T-V5-tagged RABGAP1L (T-V5-RG1L).

(B) Constructs described in (A) were stably expressed in A549 cells, and their expression was validated by immunofluorescence using an α-V5 (red) antibody. Nuclei were stained with DAPI (blue). Scale bar represents 25 μm.

(C) Western blot analysis of cells described in (B) compared with A549 cells stably expressing untagged GFP or RABGAP1L (RG1L). Proteins of interest were detected with the indicated antibodies.

(D) Cells described in (C) were stimulated with IFNα2 (1,000 U/mL or mock) 16 h prior to infection with WSN/33-Renilla (MOI 1 PFU/cell). The AUC was calculated from RLU values taken up to 11 h p.i. Mean values from three biologically independent experiments are plotted, with error bars representing SDs. Individual data points are shown.

(E) Workflow of the TurboID proximity-labeling approach. Cells described in (B) were treated with IFNα2 (1,000 U/mL or mock) for 16 h, followed by treatment with biotin (500 μM) for 15 min. Following streptavidin-based affinity purification, peptides were generated and subjected to mass-spectrometry analyses.

(F) Interactors specific to RABGAP1L (as compared to GFP-NES) identified using the protocol described in (E). Hits are listed with their gene names and sorted according to previously described functions. Most hits were identified in non-IFNα2-treated samples. Hits marked with an asterisk (*) were identified in the presence and absence of IFNα2, and hits marked in bold were only identified in IFNα2-treated samples.

(G) A549 cells stably expressing constructs introduced in (A) or T-V5-tagged RABGAP1L KKmut and RQmut were subjected to the proximity labeling approach outlined in (E). Following streptavidin-based affinity purification (samples termed “eluates”), total lysates and eluates were analyzed by western blot. Proteins were detected with the indicated antibodies.

Data obtained in (B), (C), and (G) are representative of three biologically independent experiments. For (D), statistical significance was determined using one-way ANOVA following log transformation (ns, non-significant).

See also Table S2 and Figure S4.
Figure 6. RABGAP1L expression impacts host endosomal function and IAV uptake

(A–C) A549 cells stably expressing RABGAP1L WT, the 421-truncation mutant, or EV were infected with WSN/33 (MOI 5 PFU/cell) for 1 h on ice. Three hours after incubation at 37°C, cells were fixed and stained with antibodies against RABGAP1L (red) and NP (green) (A). Nuclei were stained with DAPI (blue). Scale bar represents 25 μm.

(B and C) Green mean fluorescent intensities (MFIs) of nuclear NP signals were quantified from fluorescent-microscopy images from (A) using ImageJ software. Individual cells are represented by single dots (B). Mean values of data from three biologically independent experiments in (B), normalized to EV, are shown in (C).

(D) MDCK cells, expressing the constructs described in (A), were infected for 4 h at 37°C with WSN/33-pseudotyped β-lactamase-matrix protein (BlaM) fusion protein VLPs prior to quantification of entry-positive cells via flow cytometry. Data represent means, with error bars showing SDs, from three biologically independent experiments. Individual data points are shown.

(E) Experimental setup for immunofluorescence-based confocal microscopy to track early stages during IAV entry. Following infection with WSN/33 (MOI 25 PFU/cell or mock) for 1 h at 4°C, cells were fixed at the indicated timepoints.
T-V5-RG1L or T-V5-GFP-NES expressing A549 cells were stimulated with 1,000 U/mL IFN2α (or mock) for 16 h prior to addition of brefiparin for 15 min (Figure 5E). After cell lysis and streptavidin-based affinity purification, differentially biotinylated proteins were analyzed by mass spectrometry and identified by namedExpress. Across three independent biological replicates, 13 putative interaction partners specific to RabGAP1L were identified, many of which included proteins with reported activities in several aspects of endosomal and autophagosomal function (Figure 5F; Table S2). For example, the endosomal sorting complex required for transport II (ESCRT-II) subunit SNF8, also known as VPS22 or EAP30, is involved in endosomal sorting of ubiquitinated membrane proteins (Raiborg and Stenmark, 2009), while the zinc-finger protein ZFP91 is an important regulator of the non-canonical nuclear factor κB (NF-κB) pathway (Jin et al., 2010) and plays a role in autophagosomal maturation (Wang et al., 2021). In line with the RAB GTPase-activating function of RabGAP1L, it was noted that the single RAB GTPase protein Rab27B was identified as a putative interactor of RabGAP1L. Our data indicate that PL is a powerful method to identify RabGAP1L interactors and confirm that RabGAP1L likely functions in pathways associated with vesicle biology.

Antivirally active RabGAP1L engages with the VPS33A component of membrane tethering complexes

We focused our attention on the interaction of RabGAP1L with VPS33A, a component of two hexameric tethering complexes, the class C core vacuole/endosome tethering (CORVET) complex and the homotypic fusion and protein sorting (HOPS) complex (Balderhaar and Ungermann, 2013; Chou et al., 2016), which are key regulators of the mammalian endosomal machinery (van der Beek et al., 2019). CORVET is essential for the homotypic fusion of Rab5-positive early endosomes, whereas HOPS mediates heterotypic fusion events between Rab7-positive late endosomes or autophagosomes with lysosomes, a function shown to depend on the VPS33A core subunit (van der Beek et al., 2019; Wartosch et al., 2015). These complexes were of interest to us given the involvement of endosomal trafficking in the IAV entry process (Sempere Borau and Stertz, 2021). To validate the RabGAP1L/VPS33A interaction, we re-performed PL and affinity purification experiments and confirmed the specific proximal association of the two proteins by western blot (Figure 5G). Notably, this interaction appeared to be specific to a ~75 kDa form of VPS33A that may represent an unknown post-translationally modified form of the protein (Figure 5G). Furthermore, it was striking that this form of VPS33A was not biotinylated when the antivirally inactive RabGAP1L mutants (KKmut, impacting endosomal trafficking; RQmut, impacting TBC-domain function) were used (Figure 5G), indicating that the interaction is likely to be important for the antiviral function of RabGAP1L. However, while siRNAs targeting VPS33A led to a small increase in WSN/33-Renilla IAV replication in the presence of IFNα2, depletion of VPS33A alone was insufficient to counteract the IFN-dependent antiviral effect of RabGAP1L overexpression (Figures S4A and S4B). Similar results were noted in parallel assays with other identified endosomal RabGAP1L interactors, including Rab27B and SNF8 (Figures S4A and S4B). This may suggest that multiple factors redundantly support RabGAP1L function or that this particular assay setup is not sufficiently sensitive to uncover co-operation. Nevertheless, these data highlight a previously undescribed interaction between VPS33A and antivirally active RabGAP1L that might implicate changes to endosomal functions during RabGAP1L-mediated virus restriction.

RabGAP1L expression impacts host endosomal structure and IAV uptake

We note that IAV, VSV, and HCoV-229E (viruses restricted by RabGAP1L) primarily enter the tested cells by endocytosis (Kawase et al., 2009; Mercer et al., 2010), while SARS-CoV-2, SeV, and NDV (all resistant to the action of RabGAP1L) mainly enter the tested cells by fusion at the plasma membrane or, under some limited circumstances, in endosomes (Chang and Dutch, 2012; Koch et al., 2021). Given this, together with the proteomic indications that RabGAP1L appears to engage with the endosomal machinery, we further investigated the specific action of RabGAP1L at individual stages of the IAV replication cycle. First, we monitored the expression of nuclear viral nucleoprotein (NP) signal in an immunofluorescence-based assay 3 h post-infection of cells with IAV as a marker of early viral replication events. In A549 cells transduced with an empty vector, the nuclear NP signal was typically strong at this time point but was markedly reduced in infected cells that overexpressed full-length RabGAP1L (Figures 6A–6C). Notably, overexpression of the...
antivirally inactive RABGAP1L-421 truncation mutant did not appreciably affect the viral NP signal, which looked similar to that of empty-vector-transduced cells (Figures 6A–6C). Since the monitored NP signal could originate from both incoming and newly synthesized NPs, we next investigated the effects of RABGAP1L expression on viral polymerase activity using a standard IAV mini-replicon system. RABGAP1L overexpression, unlike the known IAV inhibitor murine Mx1, had no effect on IAV mini-replicon activity, indicating that the action of RABGAP1L on viral infection must precede viral gene transcription in the nucleus (Figures S5A and S5B). Indeed, overexpression of full-length RABGAP1L, but not the antivirally inactive RABGAP1L-421 truncation mutant, was able to inhibit a stage of viral infection preceding or including fusion of the viral membrane with cellular membranes, as assessed by a flow-cytometry-based virus-like particle (BlaM1-VLP) assay that measures infection immediately after fusion (Figure 6D) (Tscherne et al., 2010). However, using immunofluorescence-based confocal microscopy to track both IAV proteins and various markers of the endo-lysosomal pathway during virus entry (Figure 6E), we observed that IAV attachment to cells was not affected by RABGAP1L overexpression (Figures 6F and S6A), suggesting that RABGAP1L mediates its effects subsequent to viral uptake but at or before fusion. Furthermore, we noted that puncta positive for early endosome antigen 1 (EEA1; a specific marker for early endosomes) appeared to be less detectable and smaller in size during infection of cells expressing RABGAP1L, and the colocalization between EEA1 and IAV HA was generally reduced (Figures 6G, 6H, and S6A). The size of HA-positive puncta also appeared to be smaller in RABGAP1L-overexpressing cells. These effects were not generally observed in cells expressing the antivirally inactive RABGAP1L-421 truncation mutant (Figures 6I and S6B). Notably, western blot analysis revealed that overexpression of RABGAP1L did not impact total levels of EEA1 during IAV infection (Figure S6C), suggesting a restructuring of EEA1-positive puncta with full-length RABGAP1L rather than EEA1 degradation. Similar to the EEA1 staining, signal intensities for lysobisphosphatidic acid (LBPA; a marker of late endosomes and endo-lysosomes [Mercer and Helenius, 2009]) were harder to detect in RABGAP1L-overexpressing cells during IAV infection, suggesting a broad effect of RABGAP1L on endosomal function (Figure S7A). Indeed, this effect was less pronounced for lysosomal-associated membrane protein 1 (LAMP1; a marker of lysosomes and late endosomes) (Figure S7B), implying specificity to the intracellular vesicles impacted by RABGAP1L. However, not all endocytic cargoes appear to be affected by RABGAP1L overexpression, as we did not detect an impact of RABGAP1L on uptake of transferrin (Figures 6J and 6K). Altogether, these data suggest that RABGAP1L restricts IAV, and potentially other endocytic viruses, at an early stage of the viral replication cycle by disturbing an infection-specific endosomal function and limiting viral-fusion-mediated entry.

DISCUSSION

Herein, we performed an RNAi screen targeting 100 putative ISGs with previously undescribed contributions to IFN-mediated IAV restriction and identified eight human genes that limit early stages of the IAV replication cycle. Among these, we further characterized the RABGAP1L protein, finding that RABGAP1L overexpression strongly potentiates the antiviral action of IFN-α2 against IAV and can also inhibit viruses such as VSV and HCoV-229E. Notably, these viruses primarily enter cells via endocytosis, and indeed, RABGAP1L overexpression disrupted normal endosomal function during IAV entry, leading to the prevention of IAV particle fusion with cellular membranes. In particular, our immunofluorescence-based studies of IAV entry in RABGAP1L-overexpressing cells revealed smaller clusters of HA and reduced co-localization with early endosomes. Our proteomic analyses of RABGAP1L interactors provided a possible mechanistic basis for these observations and have contributed to our working hypothesis on the antiviral action of RABGAP1L (see Figure 7). In our currently favored model, the interaction of RABGAP1L with the core VPS33A component of the cellular CORVET and HOPS complexes leads to the increased fusion of early endosomes with lysosomes, potentially promoting the lysosomal degradation of incoming viral particles that are undergoing endocytosis. Support for our model, and the importance of the RABGAP1L:VPS33A interaction, comes from our observation that antivirally inactive mutants of RABGAP1L fail to interact with VPS33A. However, studies from others have shown that high levels of RABGAP1L induce the GTPase activity of RAB5A (and possibly RAB22A), a key protein localizing to early endosomes, and lead to loss of detectable EEA1 staining in immunofluorescence assays (Itoh et al., 2006), similar to our findings. Interestingly, recruitment of both AnkB and RABGAP1L promoted the dissociation of RAB22A from β1-integrin-containing endosomes, initiating their transition from RAB5-positive early endosomes to RAB5-negative recycling endosomes (Qu et al., 2016), and a mutant RABGAP1L lacking the AnkB-binding site failed to restrict IAV. Thus, it is possible that other non-degradative mechanisms to limit IAV entry can occur. Nevertheless, it is known that the VPS33A-containing HOPS complex mediates fusion events between late endosomes/autophagosomes and lysosomes (van der Beek et al., 2019; Wartosch et al., 2015). Furthermore, a recent study also observed co-localization between RABGAP1L and the known HOPS-binding protein Rab7 at the site of endo-lysosomes (Golden et al., 2021). Together with our work, these findings implicate RABGAP1L-mediated disruption of an endosomal function as a mechanism for restricting IAV entry. Strikingly, we found that SARS-CoV-2 and two paramyxoviruses appeared to be resistant to the inhibitory effects of overexpressed RABGAP1L. Given that these viruses enter cells primarily at the plasma membrane (Chang and Dutch, 2012; Koch et al., 2021), these observations lend weight to the idea that RABGAP1L targets viruses that exclusively use the endocytic route for entry. Furthermore, a non-viral endocytic cargo, transferrin, was not impacted by RABGAP1L overexpression, suggesting that the effect of RABGAP1L may actually be specific to certain endocytic entry routes triggered by infection.

Surprisingly, despite RABGAP1L being previously noted as an ISG in primary human hepatocytes (He et al., 2010) and therefore included in our putative ISG siRNA library, we were unable to confirm this observation in the range of transformed cell lines and primary cells used here. Nevertheless, an independent study
also identified \textit{RABGAP1L} as an ISG (albeit weakly induced) in primary human fibroblasts (Shaw et al., 2017), implying that, under certain circumstances or in certain cell types, its expression can be boosted by IFN and aid in virus-entry restriction. Nevertheless, it was clear from many of our experiments that the antiviral activity of (overexpressed) \textit{RABGAP1L} was higher in the presence of exogenously applied IFN. We thus hypothesize that \textit{RABGAP1L} might act in parallel to additional ISG products to limit endocytic virus entry, for example, the known inhibitors IFITM3 or NCOA7 (Brass et al., 2009; Doyle et al., 2018), and together, these factors slow endocytic virus entry. However, we cannot rule out the intriguing possibility that \textit{RABGAP1L} directly engages with some additional ISG products to support its proposed function in driving endo-lysosomal trafficking. In this regard, we note that RAB27B, which we identified as a putative \textit{RABGAP1L} interactor by PL, has also been described as an ISG product (Shaw et al., 2017). The deactivation and dissociation of RAB GTPases from bound vesicles induced by RABGAP proteins is a critical step during endosomal maturation and trafficking (Frasa et al., 2012). RAB27B has been proposed to control different steps of the exosome-secretion pathway (Ostrowski et al., 2010). Since exosomes are formed from late endosomes or multivesicular bodies (Hessvik and Llorente, 2018), deactivation of RAB27B by RABGAP1L might limit exosomal secretion and instead favor the fusion of virus-containing endocytic vesicles with lysosomes. Thus, in summary, it is striking that IFN appears to induce a number of proteins involved in either regulating endosomal function or inhibiting key virus-entry features, such as virus-host membrane fusion. This underscores that inhibiting virus entry is a critically important pillar of host response.
antiviral defenses. Furthermore, together with the recent identification of another TBC-domain-containing protein as an inhibitor of IAV replication (TBC1D5) (Martin-Sancho et al., 2021), our study supports an emerging picture that multiple RAB-specific GTPase-activating proteins potentiate the host IFN response by modulating different aspects of host vesicle biology.

Limitations of the study
While our siRNA screen uncovered eight human genes that inhibit the early stages of IAV replication in an IFN-dependent manner, the experimental approach used did result in some constraints. Firstly, the number of target genes that could be included in our siRNA library was limited, and target inclusion was not based on target expression in the cells used but rather on the selected functional bias. Secondly, the single-cycle IAV reporter system limits the identification of factors that impact infection at later stages of the virus replication cycle. Thirdly, our use of a WT human IAV strain does not take into account the likelihood that some IAVs may have evolved antagonistic functions to selected antiviral human genes, such that antiviral activity may be more apparent with specific IAV mutants or non-human strains. Lastly, our targeting of individual genes prevents the discovery of co-operation or redundancy between factors. There will be many more antiviral human genes identified and characterized with strategies that overcome these limitations.

STAR METHODS

Detailed methods are provided in the online version of this paper and include the following:

- **KEY RESOURCES TABLE**
- **RESOURCE AVAILABILITY**
 - Lead contact
 - Materials availability
 - Data and code availability
- **EXPERIMENTAL MODEL AND SUBJECT DETAILS**
 - Cells
 - Viruses
- **METHOD DETAILS**
 - Interferon treatments
 - Infection assays
 - Cell viability assays
 - Plasmid cloning and stable cell-lines
 - RNA interference
 - SDS-PAGE and western blotting
 - Immunofluorescence
 - Transferrin uptake assay
 - RT-qPCR analysis
 - Mini-replicon and mini-genome assay
 - Flow cytometry-based BlaM1-VLP assay
 - Proximity labeling
- **QUANTIFICATION AND STATISTICAL ANALYSIS**
 - MFI quantification using Imaris
 - Statistical analysis
STAR★METHODS

KEY RESOURCES TABLE

REAGENT or RESOURCE	SOURCE	IDENTIFIER
Antibodies		
Actin rabbit polyclonal	Sigma-Aldrich	Cat#A2103, RRID: AB_476694
β-actin mouse monoclonal (C4)	Santa Cruz	Cat#sc-47778, RRID: AB_2714189
RABGAP1L rabbit polyclonal	Proteintech	Cat#13894-1-AP, RRID: AB_10638308
MxA mouse monoclonal (ab143)	Jovan Pavlovic Steiner and Pavlovic, 2020	
STAT1 mouse monoclonal	Santa Cruz	Cat#sc-417, RRID: AB_675902
Phospho-STAT1 (Tyr701) (D4A7) rabbit monoclonal	Cell Signaling	Cat#7649, RRID: AB_10950970
IFI44 rabbit polyclonal	Atlas Antibodies	Cat#HPA043858, RRID: AB_2678702
FLAG M2 mouse monoclonal	Sigma-Aldrich	Cat#F1804, RRID: AB_262044
IAV-PB1 rabbit polyclonal	GeneTex	Cat#GTX125923, RRID: AB_2753122
IAV-PB2 rabbit	Domingues et al., 2015	N/A
IAV-PA rabbit polyclonal	GeneTex	Cat#GTX118991, RRID: AB_10619959
IAV-NP (HB-65) mouse monoclonal	ATCC	Cat#H16-L10-4R5, RRID: CVCL_4524
V5 mouse monoclonal	Bio-Rad	Cat#MCA1360, RRID: AB_322378
VPS33A rabbit polyclonal	Proteintech	Cat#16896-1-AP, RRID: AB_2214916
RAB27B rabbit polyclonal	Proteintech	Cat#13412-1-AP, RRID: AB_2176732
EAP30 (C-11) (SNF8) mouse monoclonal	Santa Cruz	Cat#sc-390747
A/WSN/33 HA1 rabbit polyclonal	Sino Biological	Cat#11692-T54
EEA1 mouse monoclonal	BD Bioscience	Cat#610457, RRID: AB_397830
EE1A rabbit polyclonal	Cell Signaling	Cat#2411, RRID: AB_2096814
LBPA mouse	Echelon	Cat#Z-PLBPA, RRID: AB_11129226
LAMP1 rabbit polyclonal	abcam	Cat#ab24170, RRID: AB_775978
Transferrin receptor mouse monoclonal	Thermo Fisher Scientific	Cat#13–6800, RRID: AB_2533029
IRDye 800CW goat anti-mouse IgG	Li-Cor	Cat#926–32210, RRID: AB_621842
IRDye 800CW goat anti-rabbit IgG	Li-Cor	Cat#926–32211, RRID: AB_621843
IRDye 680CW goat anti-mouse IgG	Li-Cor	Cat#926–68070, RRID: AB_10956588
IRDye 680CW goat anti-rabbit IgG	Li-Cor	Cat#926–68071, RRID: AB_10956166
Donkey anti-mouse IgG Alexa Fluor 488	Thermo Fisher Scientific	Cat#A-21202, RRID: AB_141607
Donkey anti-rabbit IgG Alexa Fluor 488	Thermo Fisher Scientific	Cat#A-21206, RRID: AB_2535792
Donkey anti-mouse IgG Alexa Fluor 555	Thermo Fisher Scientific	Cat#A-31570, RRID: AB_2536180
Donkey anti-rabbit IgG Alexa Fluor 555	Thermo Fisher Scientific	Cat#A32794, RRID: AB_2762834
Donkey anti-mouse IgG Alexa Fluor 647	Thermo Fisher Scientific	Cat#A32787, RRID: AB_2762830
Donkey anti-rabbit IgG Alexa Fluor 647	Thermo Fisher Scientific	Cat#A32795, RRID: AB_2762835
DAPI	Sigma-Aldrich	Cat#10236276001

Bacterial and virus strains

Strain	Source	RRID
A/WSN/33 (H1N1)	This study	N/A
A/WSN/33-Renilla (H1N1)	Spieler et al., 2020	N/A
A/Netherlands/602/09-Renilla (pdmH1N1)	Spieler et al., 2020	N/A
A/Vietnam/1203/04-Renilla (H5N1)	Spieler et al., 2020	N/A
HCoV-229E-Renilla	Volker Thiel	van den Worm et al., 2012
VSV-GFP	Adolfo Garcia-Sastre	N/A
SeV-GFP	Adolfo Garcia-Sastre	Sanchez-Aparicio et al., 2017

(Continued on next page)
REAGENT or RESOURCE	SOURCE	IDENTIFIER
NDV-GFP	Adolfo Garcia-Sastre	N/A
SARS-CoV-2/human/Switzerland/IMV5/2020	Busnadiego et al., 2020	N/A

Chemicals, peptides, and recombinant proteins

Reagent/Material	Source	Catalog Number
Recombinant Human IFN-alpha 2 Protein	Novusbio	Cat#NBP2-34971
Recombinant Human IFN Beta 1b	Pbl assay science	Cat#11420-1
Recombinant Human IFN-gamma Protein	Novusbio	Cat#NBP2-34992
Recombinant Human IL-29/IFN-lambda 1 Protein	Novusbio	Cat#NBP2-34996
Dimethyl sulfoxide (DMSO)	Sigma-Aldrich	Cat#D8418
Transferrin From Human Serum, Alexa Fluor™ 488 Conjugate	Thermo Fisher Scientific	Cat#T13342
Dynasore	Merck	Cat#D7693
Lipofectamine RNAiMAX	Invitrogen	Cat#13778150
OptiMEM	Life Technologies	Cat#31985062
FuGENE® HD transfection reagent	Promega	Cat#E2311
EnduRen™ Live Cell Substrate	Promega	Cat#E6482
TPCK-trypsin	Sigma-Aldrich	Cat#4370285
16% paraformaldehyde	Lucerna Chem	Cat#EMS15710
Triton X-100	Promega	Cat#H5142
ProLong Gold Antifade Mountant	Life Technologies	Cat#P36930
Airway Epithelial Cell Growth Medium	PromoCell	Cat#C-21260
Airway Epithelial Cell Growth Medium SupplementPack	PromoCell	Cat#C-39160
Y-27632 dihydrochloride	Selleck Chemicals	Cat#1254
FluoroBrite™ DMEM	Life Technologies	Cat#A1896701
Ammonium chloride	Sigma-Aldrich	Cat#254134
Saponin	Sigma-Aldrich	Cat#47036
Bovine serum albumin (BSA)	Sigma-Aldrich	Cat#A7906
DEAE-dextran hydrochloride	Sigma-Aldrich	Cat#D9885
CCF2-AM	Thermo Fisher Scientific	Cat#K1032
Biotin	Sigma-Aldrich	Cat#B4501-1G
cOmplete™, Mini Protease Inhibitor Cocktail	Roche	Cat#11836153001
PhosSTOP™	Roche	Cat#4906837001
Pierce™ Streptavidin Magnetic Beads	Thermo Fisher Scientific	Cat#88817
Tris hydrochloride (Tris-HCl)	Sigma-Aldrich	Cat#10812846001
Potassium chloride (KCl)	Sigma-Aldrich	Cat#60130
Sodium carbonate (Na2CO3)	Sigma-Aldrich	Cat#31432
Ammonium bicarbonate (NH4HCO3)	Sigma-Aldrich	Cat#A6141
Paraformaldehyde	Electron Microscopy Sciences	Cat#19208

Critical commercial assays

Assay	Source	Catalog Number
SuperScript III reverse transcriptase	Thermo Fisher Scientific	Cat#18080044
CellTiter-Glo Luminescent Cell Viability Assay	Promega	Cat#G7570
QuikChange II XL Site-Directed Mutagenesis Kit	Agilent Technologies	Cat#200522
In-Fusion HD Cloning Plus Kit	Takara	Cat#638910
RelaPrep™ RNA Miniprep Systems	Promega	Cat#Z6012

(Continued on next page)
Continued

REAGENT or RESOURCE	SOURCE	IDENTIFIER
Fast EvaGreen qPCR Master Mix Kit	Biotium	Cat#31003-1
Dual-Glo Luciferase Assay System	Promega	Cat#E2980
LIVE/DEAD™ Fixable Near-IR Dead Cell Stain Kit	Thermo Fisher Scientific	Cat#L10119

Deposited data

- Investigating the interactome of TurboID-tagged RABGAP1L in the presence or absence of IFNa2 by proximity labeling proteomics
 - ProteomeXchange
 - PXD029960

Experimental models: Cell lines

- Human: lung carcinoma cell line A549
 - ATCC
 - CCL-185
- Human: lung adenocarcinoma cell line Calu-3
 - ATCC
 - HTB-55
- Human: embryonic kidney cell line HEK293T
 - ATCC
 - CRL-11268
- Human: HeLa cells
 - ATCC
 - CCL-2
- Human: Huh-7 cells
 - Volker Thiel
 - van den Worm et al., 2012
- Human: U87-MG cells
 - ATCC
 - HTB-14
- MRC-5-hTert
 - Turkington et al., 2015
 - N/A
- Human primary bronchial epithelial cell (BEP) cultures from a 73-year-old female
 - PromoCell
 - Cat#C-12640
- *Canis familiaris*: Madin-Darby Canine Kidney cell line MDCK
 - ATCC
 - CCL-34
- *Cercopithecus aethiops*: Vero-CCL81 cells
 - ATCC
 - CCL-81
- *Cercopithecus aethiops*: Vero-E6 cells
 - ATCC
 - CRL-1586

Oligonucleotides

- Oligonucleotides (see Tables S1 and S3)
 - This study
 - N/A

Recombinant DNA

- pLVX-RABGAP1L-A-IRES-Puro
 - This study
 - N/A
- pLVX-RABGAP1L-G-IRES-Puro
 - This study
 - N/A
- pLVX-RABGAP1L-H-IRES-Puro
 - This study
 - N/A
- pLVX-RABGAP1L-I-IRES-Puro
 - This study
 - N/A
- p3xFLAG-RABGAP1L-A
 - This study
 - N/A
- p3xFLAG-RABGAP1L-421
 - This study
 - N/A
- p3xFLAG-mCherry
 - This study
 - N/A
- p3xFLAG-Mx1
 - This study
 - N/A
- pLVX-TurboID-V5-GFP-NES-IRES-Puro
 - Borold et al., 2021
 - N/A
- pLVX-TurboID-V5-RABGAP1L-A-IRES-Puro
 - This study
 - N/A
- pLVX-RABGAP1L-delTBC-IRES-Puro
 - This study
 - N/A
- pLVX-RABGAP1L-421-IRES-Puro
 - This study
 - N/A
- pLVX-RABGAP1L-340-IRES-Puro
 - This study
 - N/A
- pLVX-RABGAP1L-257-IRES-Puro
 - This study
 - N/A
- pLVX-RABGAP1L-R584A-IRES-Puro
 - This study
 - N/A
- pLVX-RABGAP1L-Q621A-IRES-Puro
 - This study
 - N/A
- pLVX-RABGAP1L-KK784EE-IRES-Puro
 - This study
 - N/A
- pCAGGS-WSN/33-PB1
 - Domingues et al., 2015
 - N/A
- pCAGGS-WSN/33-PB2
 - Domingues et al., 2015
 - N/A
- pCAGGS-WSN/33-PA
 - Domingues et al., 2015
 - N/A

(Continued on next page)
RESOURCE AVAILABILITY

Lead contact
Further information and requests for resources and reagents should be directed to the lead contact, Benjamin G. Hale (hale.ben@virology.uzh.ch).

Materials availability
All unique reagents generated in this study are available from the lead contact without restriction.

Data and code availability
Mass spectrometry data have been deposited to the ProteomeXchange Consortium via the PRIDE (Perez-Riverol et al., 2019) partner repository with the dataset identifier PXD029960. The data are publicly available as of the date of publication.

This paper does not report original code.

Any additional information required to reanalyze the data reported in this paper is available from the lead contact upon request.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Cells
A549, MDCK, Calu-3, 293T, HeLa, Huh-7, U87-MG, Vero-CCL81 and Vero-E6 cells were cultured at 37°C and 5% CO₂ in Dulbecco’s Modified Eagle’s Medium (DMEM, Life Technologies), supplemented with 10% (v/v) fetal calf serum (FCS), 100 units/mL of penicillin...
and 100 µg/mL of streptomycin (Life Technologies). Exceptionally, 20% (v/v) FCS was used for Calu-3 cells. MRC-5-hTert cells were cultured in Minimum Essential Medium Eagle (MEM, Sigma-Aldrich) supplemented with 10% (v/v) FCS, 100 units/mL of penicillin, 100 µg/mL of streptomycin, 2 mM L-Glutamine and 1% (v/v) Non-Essential Amino Acids (Life Technologies) (Turkington et al., 2015). MRC-5-hTert cells expressing the WSN/33 IAV HA protein were previously described (Spieler et al., 2020). Primary human BEpCs from a 73-year-old female donor were purchased from PromoCell, Germany (catalog no. C-12640). Cells were grown in airway epithelium basal growth medium (PromoCell, catalog no. C-21260) supplemented with an airway growth medium supplement pack (PromoCell, catalog no. C-39160) and 10 µM Y-27632 (Selleck Chemicals, USA). BEpCs were differentiated and validated as described (Busnadiego et al., 2020; Pohl et al., 2021).

Viruses

A/WSN/33 IAV was propagated and titrated in MDCK cells. Propagation and use of biologically-contained Renilla luciferase-encoding IAVs based on A/WSN/33 (WSN/33), A/Netherlands/602/09 (pdmH1N1) and A/Vietnam/1203/04 (H5N1) has been described previously (Spieler et al., 2020). HCoV-229E-Renilla was kindly provided by Volker Thiel, University of Bern, Switzerland (van den Worm et al., 2012). VSV-GFP, NDV-GFP and SeV-GFP were kind gifts from Adolfo García-Sastre, Icahn School of Medicine, New York, USA (Sanchez-Aparicio et al., 2017). Propagation and titration of SARS-CoV-2 has been previously described (Busnadiego et al., 2020; Pohl et al., 2021).

METHOD DETAILS

Interferon treatments

Recombinant IFNα2 (catalog no. NBP2-34971; Novusbio), IFNβ1b (catalog no. 11420-1, pbl assay science), IFN(IFNα (catalog no. NBP2-34992; Novusbio) and IFNβ1 (catalog no. NBP2-34966, Novusbio) were used at the indicated concentrations and were diluted in DMEM supplemented with 10% (v/v) FCS, 100 units/mL of penicillin and 100 µg/mL of streptomycin. For BEpCs, IFNs were added to the apical compartment in phosphate-buffered saline (PBS).

Infection assays

For infections with Renilla-encoding viruses, 1 × 10⁵ cells were seeded into 96-well plates and 32 h later stimulated (or mock) with IFNα2 at the indicated concentrations. 16 h later, viruses were diluted in PBSi (supplemented with 0.3% BSA, 100 units/mL of penicillin, 100 µg/mL of streptomycin, and 1 mM Ca²⁺/Mg²⁺) and cells were infected at the indicated multiplicity of infection (MOI) for 1 h at 37°C. After infection, cells were washed with PBS and then overlaid with post-infection (p.i.) DMEM (supplemented with 0.1% FBS, 100 units/mL penicillin, 100 µg/mL streptomycin, 0.3% BSA, and 20 mM HEPES) in the presence of 1 µg/mL TPCK-trypsin (Sigma-Aldrich) and 60 µM EnduRen™ Live Cell Substrate (Promega). Luminescence was measured at the indicated time points using the EnVision Multilabel Reader (Perkin Elmer). Area under the curve (AUC) values were determined from the obtained relative light units (RLUs) using GraphPad Prism software.

For infections with wild-type WSN/33 or SARS-CoV-2, 1.5 × 10⁵ cells/well were seeded in 12-well plates (or 1 × 10⁵ for 24-well plates) and stimulated with the indicated concentrations of IFNα2 for 16 h. Virus inoculum was prepared in PBSi and cells were infected at the indicated MOI. After 1 h incubation at 37°C, cells were washed with PBS and then overlaid with p.i. DMEM supplemented with 1 µg/mL TPCK-trypsin. Supernatant was collected at the indicated time points and stored at −80°C prior to titration by plaque assay on MDCK cells (for WSN/33) or Vero-E6 cells (for SARS-CoV-2) cells.

For VSV-GFP, NDV-GFP and SeV-GFP, 2 × 10⁴ cells/well were seeded into a 96-well plate one day prior to stimulation (or mock treatment) with IFNα2 at the indicated concentrations for 4 h or 16 h. Cells were washed with PBS and then incubated with virus at the indicated MOI diluted in Fluorobrite DMEM (Life Technologies) supplemented with 2% (v/v) FCS, 100 units/mL penicillin, 100 µg/mL streptomycin, and 2 mM L-glutamine. GFP expression was monitored for up to 72 h using IncuCyte ZOOM Live-Cell Imaging System (Sartorius). Total Green Integrated Intensity (Green Calibrated Unit × µm²/image) values were used to calculate the area under the curve (AUC).

Cell viability assays

Cell viability was measured at the indicated times after siRNA transfection using the CellTiter-Glo Luminescent Cell Viability Assay (Promega, #G7570) according to the manufacturer’s protocol.

Plasmid cloning and stable cell-lines

Codon-optimized RABGAP1L isoforms A (NM_014857), G (NM_001366446) and I (NM_001366448) were synthesized using GeneArt Gene Synthesis (Life Technologies) and cloned into pLVX-ires-Puro (Clontech) and p3xFLAG-CMV-7.1 (Sigma-Aldrich) plasmids using EcoRI and XbaI restriction sites. Isoform H (NM_001366447) was generated from p3xFLAG-RABGAP1L-A using In-Fusion cloning (Takara), following the manufacturer’s protocol. Truncated versions of RABGAP1L were generated by PCR, and point mutations were created using site-directed mutagenesis (QuikChange II XL; Agilent Technologies) with p3xFLAG-RABGAP1L-A as the starting template before sub-cloning into pLVX-IRES-Puro. pLVX-IRES-Puro based GFP or TurboID-V5 constructs were generated as described (Borold et al., 2021). Inserts for all constructs were confirmed by Sanger sequencing. All oligo sequences are listed.
in (Table S3). To generate cell-lines stably expressing the appropriate constructs, cells were transduced with lentiviral particles produced by co-transfecting 293T cells with the respective pLVX-IRES-Puro derived construct, pMD2.G and pCMVdR8.91 (Schmidt et al., 2019) in the presence of polybrene (8 μg/mL, Sigma-Aldrich). 48 h later, stably-transduced cells were selected for puromycin resistance (Thermo Fisher Scientific; 1 μg/mL for A549 and Calu-3, 2 μg/mL for MDCK, and 3 μg/mL for Vero-CCL81 cells).

RNA interference
Cells were reverse transcribed with siRNAs (final concentration: 30 nM) diluted in OptiMEM (Life Technologies) using Lipofectamine RNAiMAX (Life Technologies) according to the manufacturer’s protocol. 32 h post-transfection, cells were stimulated (or mock-treated) with 1000 U/mL IFNα2 for 16 h, prior to infection with IAV WSN/33-Renilla (MOI 1 or 5 PFU/cell). All siRNA sequences including additional screen information are listed in Table S1. The genes selected for targeting with the siRNA library were derived from previous datasets of putative ISGs identified in various cell-lines (He et al., 2010; Li et al., 2013; Menachery et al., 2014; Schoggin et al., 2011), and were cross-referenced with genome-wide screen meta-analyses to identify promising IAV restriction factors (Tripathi et al., 2015), prior to function-based cherry-picking that largely excluded well-characterized ISGs.

SDS-PAGE and western blotting
Cell samples were lysed in 2x urea disruption buffer (6 M urea, 2 M β-mercaptoethanol, and 4% SDS) and sonicated to shear nucleic acids. Following treatment at 95°C for 5 min, proteins were separated by SDS-polyacrylamide gel electrophoresis (SDS-PAGE) on NuPage 4–12% Bis-Tris gradient gels (Life Technologies), followed by transfer to nitrocellulose membranes (GE Healthcare Life Sciences). Proteins were detected by western blotting using the following primary antibodies: actin (rabbit, catalog no. A2103; Sigma-Aldrich), β-actin (mouse, catalog no. sc-47778; Santa Cruz), RABGAP1L (rabbit, catalog no. 13894-1-AP; proteintech), MxA (mouse ab143, kindly provided by Jovan Pavlovic, University of Zurich) (Steiner and Pavlovic, 2020), STAT1 (mouse, catalog no. sc-417; Santa Cruz), pSTAT1-Y701 (rabbit, catalog no. 7649S; Cell Signaling), IFI44 (rabbit, catalog no. HPA043858; Atlas Antibodies), FLAG M2 (mouse, catalog no. F1804; Sigma-Aldrich), PB1 (rabbit, catalog no. GTX125923; Genetex), PB2 (rabbit, inhouse), PA (rabbit, catalog no. GTX118991; Genetex), NP (mouse HB65, catalog no. H16-L10-4R5, ATCC), V5 (mouse, catalog no. MCA1360; Bio-Rad), VPS33A (rabbit, catalog no. 16896-1-AP, proteintech), RAB27B (rabbit, catalog no. 13412-1-AP, proteintech), SNF8 (mouse, catalog no. sc-390747; Santa Cruz), A/WSN/33 HA1 (rabbit, catalog no. 11692-T54; Sino Biological) and EEA1 (rabbit, catalog no. 2411, Cell Signaling). The following secondary antibodies were used: IRDye 800CW goat anti-mouse IgG (catalog no. 926–32210; Li-Cor), IRDye 800CW goat anti-rabbit IgG (catalog no. 926–32211; Li-Cor), IRDye 680CW goat anti-mouse IgG (catalog no. 926–68070; Li-Cor) and IRDye 680CW goat anti-rabbit IgG (catalog no. 926–68071; Li-Cor). A LI-COR Odyssey Fc scanner was used for detection.

Immunofluorescence
Approximately 7.5 × 10⁴ cells were seeded onto glass coverslips in a 24-well plate for 24 h. For uninfected cells, cells were fixed for 15 min with 3.5% paraformaldehyde (PFA) and permeabilized for 5 min using 0.5% Triton X-100 in PBS. After blocking with 2% FBS in PBS for 30 min, staining with primary and secondary antibodies (listed below) was performed in PBS with 2% FBS for 1 h each. For infection-based assays, WSN was diluted in PBSi to reach the indicated MOI. The cells were stored for 15 min on ice before they were washed once with PBS. The inoculum was added on ice for 1 h to synchronize the infection. The inoculum was removed and replaced by p.i. DMEM, and the cells were incubated for the indicated times at 37°C. Cells were then fixed for 15 min with 3.5% PFA and permeabilized for at least 1 h using confocal buffer (PBS supplemented with 50 mM ammonium chloride (catalog no. 254134; Sigma-Aldrich), 0.1% saponin (catalog no. 47036; Sigma-Aldrich) and 2% BSA (catalog no. A7906; Sigma-Aldrich)). Primary and secondary antibodies were diluted in confocal buffer and incubated with samples for at least 1 h before coverslips were mounted using ProLong Gold Antifade Mountant (catalog no. P36930; Thermo Fisher Scientific). Images were acquired on an SP5 or SP8 confocal microscope (Leica) or on a DMI8 LED fluorescent microscope (Leica). The following primary antibodies were used: RABGAP1L (rabbit, catalog no. 13894-1-AP, proteintech), NP (mouse HB65, catalog no. H16-L10-4R5, ATCC), V5 (mouse, catalog no. MCA1360; Bio-Rad), A/WSN/33 HA1 (rabbit, catalog no. 11692-T54; Sino Biological) and EEA1 (mouse, catalog no. 610457; BD Bioscience), LAMP1 (rabbit, catalog no. ab24170; abcam), and LBPA (mouse, catalog no. Z-PLBPA; Echelon). Secondary antibodies were: donkey anti-mouse IgG Alexa Fluor 488 (catalog no. A21202; Thermo Fisher Scientific), donkey anti-rabbit IgG Alexa Fluor 488 (catalog no. A21206; Thermo Fisher Scientific), donkey anti-mouse IgG Alexa Fluor 555 (catalog no. A51570; Thermo Fisher Scientific), donkey anti-rabbit IgG Alexa Fluor 555 (catalog no. A32794; Thermo Fisher Scientific), donkey anti-mouse IgG Alexa Fluor 647 (catalog no. A32787; Thermo Fisher Scientific), and donkey anti-rabbit IgA Alexa Fluor 647 (catalog no. A32795; Thermo Fisher Scientific). DAPI (catalog no. 10236276001, Sigma-Aldrich) was used to stain nuclei.

Transferrin uptake assay
Approximately 5 × 10⁴ cells were seeded onto glass coverslips in a 24-well plate for 24 h. Cells were washed once with PBS and pre-incubated with serum-free DMEM for 2 h. Dynasore (100 μM or DMSO) was added to the cells in serum-free DMEM for 1 h at 37°C. The cells were then incubated with 10 μg/mL of Alexa 488-conjugated transferrin (Thermo Fisher Scientific, catalog no. T13342) in serum-free medium and in the presence of Dynasore (or DMSO) for 1 h at 4°C. Cells were then shifted to 37°C for 10 min to allow uptake of transferrin, washed twice with PBS and fixed in 3.5% PFA. Cells were stained with a primary antibody for the transferrin receptor (Thermo Fisher Scientific, catalog no. ab143, kindly provided by Jovan Pavlovic, University of Zurich) (Steiner and Pavlovic, 2020), STAT1 (mouse, catalog no. sc-417; Sigma-Aldrich), pSTAT1-Y701 (rabbit, catalog no. 7649S; Cell Signaling), IFI44 (rabbit, catalog no. HPA043858; Atlas Antibodies), FLAG M2 (mouse, catalog no. F1804; Sigma-Aldrich), PB1 (rabbit, catalog no. GTX125923; Genetex), PB2 (rabbit, inhouse), PA (rabbit, catalog no. GTX118991; Genetex), NP (mouse HB65, catalog no. H16-L10-4R5, ATCC), V5 (mouse, catalog no. MCA1360; Bio-Rad), VPS33A (rabbit, catalog no. 16896-1-AP, proteintech), RAB27B (rabbit, catalog no. 13412-1-AP, proteintech), SNF8 (mouse, catalog no. sc-390747; Santa Cruz), A/WSN/33 HA1 (rabbit, catalog no. 11692-T54; Sino Biological) and EEA1 (rabbit, catalog no. 2411, Cell Signaling). The following secondary antibodies were used: IRDye 800CW goat anti-mouse IgG (catalog no. 926–32210; Li-Cor), IRDye 800CW goat anti-rabbit IgG (catalog no. 926–32211; Li-Cor), IRDye 680CW goat anti-mouse IgG (catalog no. 926–68070; Li-Cor) and IRDye 680CW goat anti-rabbit IgG (catalog no. 926–68071; Li-Cor). A LI-COR Odyssey Fc scanner was used for detection.
receptor (catalog no. 13–6800, Thermo Fisher Scientific) and DAPI (catalog no. 10236276001, Sigma-Aldrich), prior to secondary staining and imaging as detailed above.

RT-qPCR analysis

RNA extraction from cells was performed using the Reliaprep RNA cell kit (Promega) according to the manufacturer’s instructions. cDNA was synthesized from 1 μg of total RNA using Superscript III reverse transcriptase (ThermoFisher) and an Oligo(dT)15 primer (Promega). RT-qPCR was performed on a 7300 Real-Time PCR system (Applied Biosystems) using a Fast EvaGreen qPCR Master Mix Kit (Biotium). Primers used are listed in Table S3. The Delta-delta-cycle threshold (ΔΔCt) was determined relative to untreated control samples. Gene expression was normalized to GAPDH.

Mini-replicon and mini-genome assay

The mini-replicon assay was performed as previously described (Domingues et al., 2015). Briefly, 293T cells were co-transfected with expression plasmids (pCAGGS) encoding WSN PB1, PB2, PA and NP, a negative-sense RNA polymerase I (Pol-I) driven Firefly luciferase reporter construct (pPol-I-FFlux), a constitutively transcribed Renilla luciferase plasmid (pRL-SV40), and increasing concentrations of 3xFLAG-tagged plasmids expressing mCherry, mouse Mx1, RABGAP1L WT or the 421 mutant. 24 h post-transfection, cells were lysed and luciferase activity was measured using the Dual-Glo Luciferase Assay System (Promega). Firefly luciferase values were normalized to Renilla luciferase activity; all samples were normalized to a no PB2 control. For the mini-genome assay, 293T cells were transiently co-transfected with a negative-sense viral-like Firefly luciferase reporter construct (pPol-FF-luc-358), a constitutively transcribed Renilla luciferase plasmid (pRL-SV40) and increasing concentrations of 3xFLAG-tagged plasmids expressing mCherry, Mx1, RABGAP1L WT or the 421 mutant. Cells were infected with WSN/33 (MOI 0.01 PFU/cell or mock) for 24 h before cells were lysed and the luciferase activity was measured. Firefly luciferase values were normalized to Renilla luciferase activity; all samples were normalized to mock.

Flow cytometry-based BlaM1-VLP assay

Generation of VLPs expressing a BlaM1 fusion protein consisting of a β-lactamase (Bla) and the matrix protein (M1) from WSN have been described previously (Karakus et al., 2019; Tscherne et al., 2010). For infection, MDCK cells were washed with PBS followed by incubation with 200 μL of BlaM1 VLPs supplemented with 0.1 μg/mL DEAE-dextran hydrochloride and 2% FCS for 4 h at 37°C. Cells were collected by trypsinization and loaded with the fluorogenic β-lactamase substrate CCF2-AM (catalog no. K1032; Thermo Fisher Scientific). Sample analysis was performed on a FACSVerse System (BD); dead cells were excluded using the LIVE/DEAD™ Fixable Near-IR Dead Cell Stain Kit (catalog no. L10119; Thermo Fisher Scientific). Entry-positive cells were quantified by gating on events with cleaved CCF2-AM using FlowJo v.10 software.

Proximity labeling

2 × 10^6 A549 cells stably expressing the indicated TurboID-V5 constructs were seeded into 10cm-dishes. Cells were stimulated (or mock treated) with 1000 U/mL IFN-α2b for 16 h prior to addition of 500 μM biotin (Sigma-Aldrich) for 15 min at 37°C. Cells were then transferred to 4°C, washed five times with PBS, and lysed for 15 min in RIPA buffer supplemented with cOmplete Mini Protease Inhibitors (Roche) and PhosSTOP (Roche). Cells were sonicated to shear nucleic acids and lysates were cleared by centrifugation at 16,000 g for 15 min at 4°C. A fraction was taken and lysed in Laemmli buffer to represent total lysate. The remainder of the cleared sample was incubated with streptavidin-coated magnetic beads (Pierce Thermo Fisher) for 1 h at room temperature, or overnight at 4°C, on a rotator to allow binding of biotinylated proteins. Subsequently, samples were washed twice with RIPA buffer, once with 1 M KCl, once with 0.1 M Na2CO3, and once in freshly prepared 1 M urea in 10 mM Tris-HCl (pH 8.0). For western blot analysis, samples were washed two times in RIPA buffer and then eluted in Laemmli buffer. For proteomic analysis, samples were washed two times in freshly prepared 50 mM ammonium bicarbonate (NH4HCO3) and then eluted in the same buffer for liquid chromatography-mass spectrometry analysis performed by the Functional Genomics Center Zurich as previously described (Borold et al., 2021). The SaintExpress algorithm was used on the CRAPome website to analyze the MS data. The mass spectrometry proteomics data have been deposited to the ProteomeXchange Consortium via the PRIDE (Perez-Riverol et al., 2019) partner repository with the dataset identifier PXD029960.

QUANTIFICATION AND STATISTICAL ANALYSIS

Colocalization quantification using Imaris

Imaris software (version 9.7.2, Oxford Instruments) was used to quantify colocalizations between a viral marker (HA) and a component of the endosomal pathway (EEA1) from immunofluorescence images. The shortest distance to spots was utilized to define object-based colocalization between red spots (representing endo-lysosomal vesicles) and green spots (representing staining of viral proteins).
MFI quantification using ImageJ

For the indicated quantitative analyses, the mean fluorescence intensity (MFI) from immunofluorescence images was measured using ImageJ software (National Institutes of Health, Bethesda, USA).

Statistical analysis

Statistical analyses were performed using GraphPad Prism 9.1.2 (GraphPad Software, San Diego, California USA; https://www.graphpad.com/). Viral titer data and reporter assay data were log transformed and analyzed by unpaired one-way ANOVA for multiple comparisons. For quantifications of immunofluorescence signals, an unpaired nonparametric t test was used to compare different cell lines. For quantifications of colocalizations an unpaired nonparametric t test was used to compare two different cell lines and an ordinary two-way ANOVA was used to compare three different cell lines. Unpaired one-way ANOVA for multiple comparisons was used for analyzing normalized data. Specific statistical details of each experiment, and p values for significance, can be found in the appropriate figure legends.