Analytical Strategies for the Detection and Quantification of Nano-formulated Antibiotics: Updates and Perspectives

Haragouri Mishra a, Amulyaratna Behera a*, Sidhartha Sankar Kar b, Gurudutta Pattnaik a, Satish Kanhar a and Swagatika Dash c

a School of Pharmacy and Life Sciences, Centurion University of Technology and Management, Odisha, India.

b Department of Pharmaceutical Chemistry, Institute of Pharmacy & Technology, Salipur, Cuttack, Odisha, India.

c Department of Pharmaceutical Chemistry, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka-576104, India.

Authors’ contributions
This work was carried out in collaboration among all authors. All authors read and approved the final manuscript.

Article Information
DOI: 10.9734/JPRI/2021/v33i59A34282

Open Peer Review History:
This journal follows the Advanced Open Peer Review policy. Identity of the Reviewers, Editor(s) and additional Reviewers, peer review comments, different versions of the manuscript, comments of the editors, etc are available here: https://www.sdiarticle5.com/review-history/78652

Review Article

ABSTRACT

The rapid development of drug resistant micro-organisms is a challenge to the mankind. Nano formulated compounds have proved to be effective strategy to combat bacterial drug resistance. Currently nanoparticulate systems such as nanoantibiotics are getting major attention due to their low inherent toxicity, biodegradability, bioincompatibility and tuneable mechanical characteristics. Nano formulated antibiotics are generally obtained by emulsification and gelification techniques. The effective uses of polymers in encapsulation of antibiotics show enhancement of the efficacy of antibiotics. Combined with techniques like diffraction laser spectroscopy (DLS), electron microscopy (EM) and atomic force microscopy (AFM), morphological research of nanoformulated antibiotics are conducted. The detailed study of the polymers used in the preparation of antibiotics nanoparticles as well as their impact on interactions is done by bio-analytical techniques. Antibiotics attached to nanoparticles can avoid the action of enzymes produced by drug resistant
bacteria. Nano antibiotics show higher efficacy and bioavailability so a lot of new formulations using nano methods can be developed with the help of bioanalytical techniques. The development as well as the estimation of antibiotics prepared as nano-formulations as per the recent advanced techniques is illustrated in this review.

Keywords: Nano-antibiotics; surface properties; efficacy; resistance; bio-analytical techniques.

1. INTRODUCTION

Increased use of several antibiotics has boosted the level of danger to public health. Despite conventional antibiotics have yet to be seen to be effective, it has been generally assumed that most widely used antibiotics have lost their efficacy[1]. Specialized therapies for these infectious diseases are completely necessary, particularly in view of the increasingly evolving technologies for producing them [2-4].

Results of many nanotechnology studies have highlighted the strategic applications of living systems. The development of medicinal products is possible by streamlined nanometric technology, which offers molecular features and therapeutic effects. Researchers have recently discovered a way of growing the therapeutically effective biomolecular carriers known as nanotechnology, which are widely associated with antiviral, antifungal, anticancer, and antibiotic molecules [5-8].

The chemical compounds used to cure disease, which are known as antibiotics, are administered to inhibit the growth of unhealthy bacteria or to kill pathogens [9-10]. Antibiotics form a subgroup of endogenous anti-infective agents derived from bacteria or moulds poisonous to other bacteria. The word antibiotic, however, is often used broadly to describe anti-infectious substances derived from synthetic and semisynthetic compounds [11]. Efficacy of antibiotics can be assessed on several factors, such as administration route, site of infection, presence of intervention agents, drug concentration in the bloodstream, and pathogen presence [12]. Antibiotics being solid, shows precise calculation of the intensity is critical in pharmacology in order to optimize the effectiveness of these drugs [13].

Many methods of manufacturing nanostructures used for prescription drugs, which involve different forms of interactions among the antibiotic molecules and polymers are depicted in Table 1.

The provided study has its emphasis on antibiotic growth and development. For the most part, recent work has concentrated on developing the antibiotics. The purpose of the current review is to present recent developments in antibiotic nano formulations.

2. ADVANCED METHODS FOR DEVELOPMENT OF NANOFORMULATED ANTIBIOTIC

2.1 Study of Morphemes and Encapsulation

In the beginning, to learn about the relationship between encapsulated drugs and nanostructures was the first step in designing nanostructured antibiotics. Next, further investigation is performed on nanostructures, mainly on what their functionalities are, as well as the modes of action, the pharmacodynamic and pharmacokinetic properties. Morphological analysis is performed using DLS, EM, AFM, or a combination of these approaches.

They are designed to gather information about their different traits, such as size and shape, as well as processing with nanostructures on the exterior. The studies in this article are intended to monitor the functions of nanoparticles with the use of the physical and chemical properties of nanostructures [14-16].

Additionally, antimicrobial peptides reflect structural forms of nanocarrier growth; dendritic polymers, solid-core nanoparticles, liposomes, or carbon nanotubes are all common types of nanoformulating agents, used in a number of ways, which is that there are different ways of nanofabrication [17].

This method, together with scanning electron microscopy and scanning transmission electron microscopy, provides vital knowledge on the modes of action of nanoparticles, including that of nanoparticle-membrane interactions. Another advantage of DLS, also known as Systemic Synergistic Research, is that it allows accurate measurements of nanostructures and
Table 1. The antimicrobial behavior, immune response activation and toxic effects of nanostructured drugs

Chemical class	Drug	Polymer	Method/structure	Results	Reference
Fluoroquinolone antibiotic	Levofloxacin	PLGA (Poly lactic-coglycolic acid)	Standard methods/Single emulsification and Solvent-evaporation (ESE) / Double-emulsification solvent-evaporation (DESE)	MIC = 2μg.ml⁻¹ Dose used in study: 7±0.3μg.ml⁻¹ killing 99.9% of *P. aeruginosa*	[35]
β -lactam antibiotic	Amoxicillin	PECA (Poly ethyl cyanoacrylate)	Emulsion polymerization of ethylcyanoacrylate	MIC did not show but Eradicated *Helicobacter pylori*	[41]
β -lactam antibiotic	Penicillin	Polycrylate	Free radical emulsion polymerization in water	MIC = 16 μg.ml⁻¹ against methicillin-resistant *Staphylococcus aureus*	[33]
Fluoroquinolone antibiotic	Levofloxacin	PCL (Poly caprolactone)	Emulsification/solvent evaporation	MIC of nanoparticles against *E. coli* biofilm cells at 0.15 μg.ml⁻¹. 99.9% effective against *E. coli*	[32]
Aminoglycoside antibiotics	Gentamicin	PLGA	Water-oil-water / solvent evaporation	Prolonged the in vivo activity of gentamicin at MIC 1.5 mg.kg⁻¹	[40]
Immunomodulatory peptide	P10 peptide	PLGA	Water-oil-water / solvent evaporation	Killed *Paracoccidioides brasiliensis*	[29]
Fig. 1. Chemical structures of gentamicin (I), amoxicillin (II), ampicillin (III), penicillin G (IV), nalidixic acid V(a), Fluoroquinolone V(b), sulfadiazine VIa, sulfamethoxazole (VIb) and tetracycline (VII)

Nanocomposites with respect to polydispersity, the consequences of drug-polymer interactions, and drug-controlled release.[18-19] Other important characteristics to remember when using DLS include the Zeta potential. Electrophoresis is the tool used to perform this form of research [20].

Many different experiments have employed these techniques to assess nanostructure stability. Zeta potential must be -70 mV to +70 mV. Structure voltage reaches + 70 mV and structures are more robust because they have a higher frequency of operation. However, nanostructures designed for medicinal use are unlikely to be as durable as they are when being published. Accordingly, researchers proposed that nanostructures should have -30 mV to + 30 mV values [21-22].

Other essential facts of the production of nanoparticles include control release and toxicity reduction. The peptide-polymer polymer-drug link helps in better regulation of drug release, as a result resulting in a lower amount of host system absorption [23].

The main criteria is to analyze the clinical value and bio-security of the nano-structural drug delivery system. Nanostructured drugs as illustrated in the Fig. 1 are tested for their antimicrobial, immune system activation, and toxic effects.

3. NANOPARTICLES COMPRISING ANTIBIOTIC COMPLEXES

Preformed polymers or monomers are used in the production of drug carriers in order to meet nanometric structures. The importance of the polymer-biomolecule relationship in bio nanotechnology cannot be overstated [23]. To quote one more example, Pinto Reis and coworkers update the requirement for polymer structure pharmacokinetic characteristics and is attentive to the methodology used. It has been proposed that characteristics such as the correct technique and safer nanoparticle-drug relations could add nanostructures with less toxicity and improved encapsulation effectiveness as soon as they emerge. Shemetov and colleagues debated the association among nanoparticles, peptides, and proteins in this context. Although nanoparticle properties including charge energy, morphology, and polarity are taken into account, the authors note that the biochemical and biological effects of nanoparticle-biomolecule interactions should be dependent on nanoparticle properties such as charge energy, morphology, and polarity [23].
Nanoparticles may adhere to the host systems when the outer surface can come into contact with the environment [23]. As well, both of the polymeric and peptide-constructed structures could decide nanoparticle physicochemical characteristics. Since the last interconnected nanostructures will show diverse properties of isolated polymers, this instance can contain them [24].

The idea is also interesting for drug carriers which plan to build a polymer-based drug delivery system that violates the hosts' immune system. The combined effects of cautious polymer-environment connections and improved target specificity could further boost the goal specificity and mitigate damage [24]. As can be seen in the illustration above, different materials can have various functional characteristics (e.g., structural stability, biodegradability, rate of release, morphology, etc.).

Other than charges and chemical structures, electrical charges and the composition of molecules can also have an effect on the way the tissues are categorised. Solubility is additionally helpful when encapsulated medications are given, since this improves the potency of the pharmacokinetics, resulting in a simple improvement in the pharmacokinetics [24].

Another category of polymers used for creating nano-antibiotics are polysaccharides, vinyl polymers, poly (amino acids), poly (ethylene glycol) and proteins. There are various block structures used in a radical polymerization; they are all based on the incorporation of free radicals. Nanostructures may have different types of structures that differ in their ability to activate the immune system, release molecules, improve solubility, stability, and biological activity. In the other hand, if it is not, natural polymers, such as chitosan, agarose, alginate, and chitin derivative, will also be worthwhile candidates for advancing nanodevices. Complex polymers' inherent chemical assemblies can give a superior combination of favourable characteristics and stability in a simple lined chain, so long as the polymers' distinctive biodegradability and biocompatibility when used as a drug carrier are maintained [25].

To generate nano antibiotics, three methods are used: interfacial polycondensation, interfacial polymerization, and emulsion polymerization [25]. Various methodologies, such as emulsification/evaporation of solvents, displacement of solvents, and interfacial deposition, emulsification/diffusion of solvents, in addition, salting can be used to manufacture nanoparticles from polymers that have been pre-designed. Nanoparticles, such as chitosan, agarose, and alginate, may be produced by thermal, gelification, or chemical treatment methods for the manufacturing of natural supermolecules, such as chitosan, agarose, and alginate [26].

Among several methods of encapsulation, the effective implementation of PLGA nanoparticles for azithromycin and rifampin encapsulation has been obtained with respect to increased internal build up and intracellular battle, this encapsulation process significantly increased the efficacy of antibiotics (which ranged from 5 ng/ml for rifampin to 40 ng/ml for azithromycin) [25]. The combination of 22% rifamp and 25% azithromycin in PLGA nanostructures developed a release of 12% in 3 days with a width of ~260 nm. In this formulation, equal parts of antibiotics and polymer is used [25]. Due to the biocompatibility and biodegradability, the use of PLGA has a range of distinct benefits relative to other non-degradable polymers as soon as degradation materials can be immediately ingested by the body [27]. There is so much chance of manipulate the rate of deprivation of nanoparticle PLGA within the body, from days to months by merging its components [28]. In addition, to maximise the immunogenicity of the delivery molecules, PLGA nanoparticles is used that communicates an advantageous validity to immunogenic distribution molecules that function as a minor immunological retort through triggering protection cells [29-30].

Bacteria bound with antibiotics could be taken straight to cells, enhancing subsequent treatment and preventing the-lactamase resistance against methicillin-resistant Staphylococcus aureus (MRSA). Covalent connection among amoxicillin and polyacrylate was developed with the intention of discovering something new. The architecture of nanoparticles maintains the activity of a drug on the host system while preventing lactamase activity, which occurs in hydrophobic nanoparticle structures consisting of PLGA chains [31].

The nanoparticle’s synthesis used an emulsifying process and was then performed when a water-soluble radical initiator is added. Turos et al., 2007 noted that the M.I.C. (Minimum Inhibitory Concentration) of conjugated penicillin was 16
μg.ml\(^{-1}\). The average free penicillin is 260 μg per ml in Aureus. This number, in contrast to the figure for free penicillin in Aureus [31]. A supplementary paper appeared in the same year, suggesting a successful improvement in antimicrobial activity attributable to the nanoparticle preparation and control methods [32]. The preparation of the penicillin-containing polycrlylate nanoparticles for use in detecting MRSA beta-lactama se involved preparation the nanoparticles using free radical emulsion polymerization in water [33].

A biodegradable polymer with direct antimicrobial action has the possibility of being used in the production of modern pharmaceuticals. Polycarbonate nanoparticles with antimicrobial activity were described in this review [31-33]. An attractive selectivity was developed for the microbial membrane, and anionic microbial nanoparticles were formulated with functional cyclic carbonate and the organocatalytic ring-opening polymerization of cyclic carbonate that is free of metal precursors. Gram-positive bacteria membranes have the unusual property of producing amphiphilic and cationic nanoparticles [34]. Biocompatibility, biodegradability, low inherent toxicity, and tunable mechanical properties make polycarbonate nanoparticles ideal for medical use. Because of these features, microbial and human cells can be handled differently; decreasing the toxicity of mammalian cells. There is also a toxicity problem in mammalian cells that needs to be studied. Toxicity and minimum inhibitory concentration measurements of cells are completely important for all samples examined by all these authors [35].

4. ANTIBIOTICS AND ANALYTICAL METHODOLOGIES

Antibiotics are the chemotherapeutic substances derived from microorganisms and play critical roles in management of various bacterial diseases. The emergence of resistant strains of bacteria has substantially declined the benefits of these antibiotics still the discovery of several natural and semisynthetic antibiotics has successfully controlled so many infectious diseases in the recent past. Henceforth, the authors have analyzed the antimicrobial properties, therapeutic utility, and analyte recognition methods used in antimicrobial classes under the specifications accepted in the following subsections. The most essential methodologies for each antibiotic class are stressed since the purification and extraction steps are critical for the effectiveness of these treatments.

4.1 Aminoglycosides (AG)

AGs are a potent class of bactericidal antibiotics which are active against all aerobic, gram-negative bacteria and gram-positive microorganisms. The most widely used aminoglycoside is gentamicin (Fig. 1). Based on MRLs of aminoglycosides, it can not be used as a growth promoter in food [36].

4.1.1 Extraction and clean-up procedures

Aminoglycosides are hydrophilic in nature and solid phase extraction (SPE) technique is adopted for maximum extraction of AG followed by purification with HPLC. Amongst other processes, trichloroacetic acid extraction was utilised to ensure complete extraction of the analytes from the matrix [37-38]. An anion exchanger is used to neutralise the acid in the matrix and a cation exchanger is coupled with SPE cartridge for complete elution of AG [39].

4.1.2 Methodologies for determination

AG may be quantified by using spectrophotometric, liquid chromatography, immunochemical, or microbiological techniques [40]. AGs are derivatized for fluorescence detection. Mass spectrometry is used for specific and unambiguous identification and validation of AGs [41]. Another approach is using hydrophilic contact chromatography (HILIC). However, it involves solid ionic buffer solutions and highly advanced chromatography columns. But derivatization of AG's with phenyl isocyanate produced derivatives can be separated using a typical reversed-phase column that eliminates the use of HILIC liquid chromatography or ion-pair reagents.

4.2 β-lactam Antibiotics

β-lactam antibiotics possess four membered cyclic amines. The major class of drugs such as penicillins, cephalosporins, monobactams, carbapenems, and β-lactamase inhibitors are included in this section (Fig. 1). Commonly, these
antibiotics are used in both human and animal bacterial infections [42].

4.2.1 Extraction and clean-up procedures

This class of drugs are highly unstable and thermolabile. Also, it get degraded on exposure to heat, alcohol and lose its therapeutic activity on alteration in pH [43].

4.2.2 Methods for determination

A thorough study on penicillin residue analysis on animal feed has been done. More people are opting to use LC to recognize and measure these drugs. LC/LC-MS/MS development method may be implemented in the identification, validation, and preparation of food items for penicillin residue analysis. The E.U. imposes higher limits on drug residues in edible animal tissue, and controlled medications (i.e., drugs given a specific limit for residues in edible animal tissue) include amoxicillin, ampicillin, cloxacillin, dicloxacillin, oxacillin, and benzyl-penicillin.

Laboratory experiments indicate that amoxicillin degradation occurs in muscles and solutions at varying temperatures and pH levels. The ability to identify degradation products down to trace levels through LC-MS/MS has allowed the detection of amoxicillin. The experimental results of LC-MS/MS studies are more precise and accurate as well as this technique is robust than other analytical methods. Hence, LC-MS/MS analytical technique is widely adopted for method development and validation of antibiotics. Therapeutics in nanoformulations that slow the spread of viruses or reduce their infectivity are critical in treating viral infections [44].

4.3 Quinolones

Quinolones are a synthetic group of antibiotics used in both human and veterinary applications. Fluorinated quinolones have been applied to the medicinal arsenal to help treat septicaemia [45-46].

4.3.1 Extraction and clean-up procedures

In general, the quinolone antibiotics are extracted by solvent extraction processes. Also, some special extraction techniques such as QuEChERS extraction, solid phase exxtraction, dispersive solid phase extraction (DSPE) are used to optimise the extraction process for better resoultion of detection [47].

4.3.2 Methods for determination

Amikacin is a vital member; its determination has therapeutic importance due to its matchless potency against gram –ve pathogens. Quinolone compounds are usually studied using HPLC with U.V., as well as fluorescence detection[48]. The widely-accepted procedure for distinguishing these 8 antibiotics (oxolinic acid, flumequine, piromidic acid, enrofloxacin, ciprofloxacin, danofloxacin, sparflloxacin, and orbifloxacin) involves the use of L.C. and M.S. for identification. Ciprofloxacin's quantification limit was 5μgkg-1 (10 μg kg-1). The original experiment involved preparing a 0.1 M NaOH sample by NaOH extraction and purification before LC-MS/MS with tandem mass spectrometry analysis was performed. The tissue quinolone L.O.Q. Ranged between 6 and 8 μgkg-1. For the seven antibiotics, the concentration of 10 μgkg-1 was measured. Besides that, currently LC-MS/MS analysis method is used for routine quality control of quinolones [49].

4.4 Sulphonamides

Sulphonamides are p-aminobenzene sulphonamide derivate classs of drugs used in animals and humans. It includes sulphadiazine, sulphamethizole, sulphamethoxazole, sulphasalazine, and sulphisoxazole class of drugs (Fig. 1) [50].

4.4.1 Extraction and clean-up procedures

Solid-phase dispersion and liquid-phase extraction methods are used for sulphonamide extraction. Sample size reduction method is followed to minimize matrix interferences, reduce solvent consumption and avoid SPE catridges [51].

4.4.2 Methods for determination

The conventional approach of determining sulphonamide by use of GC-MS method is found to be inappropiate. So, an advanced method of matrix solid-phase dispersion technique with hot water extraction followed by LC-MS is adopted for it. Also, HPLC-PDA method is used for analysis but false positive errors may arise due to matrix interferences. So, this problem can be overcomed by use of UHPLC-MS/MS technique [52].

4.5 Tetracyclines

Tetracycline antibiotics (TC) are used widely in the agriculture industry to help with growth in
animals, and in human medicine to treat and avoid bacterial infections. TC resistance among bacterial species has become widespread as a result of wide use [53].

4.5.1 Extraction and clean-up procedures

TCs are soluble in polar-organic solvents, bases, and acids. So, it is difficult to these compounds from tissues. Aqueous-based extraction by using EDTA treated C18 SPE cartridge is accepted for extraction of TCs [54].

4.5.2 Methods for determination

TCs are identified by using multiple techniques such as immunoassays, capillary electrophoresis, liquid chromatography. However, LC-MS/MS method is widely accepted method for its improved sensitivity and accuracy in determination of TC as compared to UV and fluorescence methods [55].

5. CONCLUSION

In the past, antibiotics were intended to modify the particular biochemical pathways of the target species, but the application of trace amounts into the environment is now correlated with a possibility of accidentally altering other, distinct and unknown biochemical pathways also in nontarget organisms, and a possible encouragement of other, distinct and unknown results at even lower concentrations. In order to control the impact on antibiotic residue in the food chain, new environmental matrices are still required.

DISCLAIMER

The products used for this research are commonly and predominantly use products in our area of research and country. There is absolutely no conflict of interest between the authors and producers of the products because we do not intend to use these products as an avenue for any litigation but for the advancement of knowledge. Also, the research was not funded by the producing company rather it was funded by personal efforts of the authors.

CONSENT

It is not applicable.

ETHICAL APPROVAL

It is not applicable.

COMPETING INTERESTS

Authors have declared that no competing interests exist.

REFERENCES

1. Zanetti-Ramos BG, Creczynski-Pasa TB. O desenvolvimento da nanotecnologia: cenário mundial e nacional de investimentos. Revista Brasileira de Ciências Farmacêuticas 2008, 89(2):95-101.
2. Kurek A, Grudniak AM, Kraczkiewicz-Dowjat A, Wolska KI. New antibacterial therapeutics and strategies. Polish Journal of Microbiology. 2011;60:3-12. DOI:https://doi.org/10.33073/pjm-2011-001
3. Wright DM, Saracevic ZS, Kyle NH, Motskin M, Skepper JN. The mesoporosity of microparticles spray dried from trehalose and nanoparticle hydroxyapatite depends on the ratio of nanoparticles to sugar and nanoparticle surface charge. Journal of Materials Science: Materials in Medicine. 2010;21(1):189-206. DOI:https://doi.org/10.1007/s10856-009-3858-2
4. Khan S, Mukherjee A, Chandrasekaran N. Silver nanoparticles tolerant bacteria from sewage environment. Journal of Environmental Sciences. 2011;23(2):346-352. DOI:https://doi.org/10.1016/S1001-0742(10)60412-3
5. Pinto Reis C, Neufeld RJ, Ribeiro AJ, Veiga F. Nanoencapsulation I. Methods for preparation of drug-loaded polymeric nanoparticles. Nanomedicine. 2006;2(1):8-21. DOI:https://doi.org/10.1016/S1001-0742(10)60412-3
6. Feng QL, Wu J, Chen GQ, Cui FZ, Kim TN, Kim JO. A mechanistic study of the antibacterial effect of silver ions on Escherichia coli and Staphylococcus aureus. Journal of Biomedical Materials Research. 2000;52(4):662-668. DOI:https://doi.org/10.1002/1097-4636(20001215)52:4<662::AID-JBM10>3.0.CO;2-3
7. Chicea D. Nanoparticles and nanoparticle aggregates sizing by DLS and AFM. Journal of Optoelectronics and Advanced Materials. 2010;4 (9):1310 - 1315.

8. Nidhin M, Indumathy R, Sreeram KJ, Unai N. Synthesis of iron oxide nanoparticles of narrow size distribution on polysaccharide templates. Bulletin of Material Science. 2008;31(1):93-96. DOI:https://doi.org/10.1007/s12034-008-0016-2

9. Dafale NA, Semwal UP, Agarwal PK, et al. Quantification of ceftriaxone sodium in pharmaceutical preparations by new validated microbiological bioassay. Anal. Methods. 2012;4: 2490 – 2498. DOI:https://doi.org/10.1039/C2AY25145K

10. Denyer SP. Hodges NA, Gorman SP. Hugo & Russell's Pharmaceutical Microbiology, Seventh ed., Blackwell Publishing Company, UK; 2004.

11. Liu YQ, Zhang YZ, Gao PJ. Novel concentration-killing curve method for estimation of bactericidal potency of antibiotics in an in vitro dynamic model. Antimicrob. Agents Chemother. 2004;48:3884–3891. DOI:https://doi.org/10.1128/AAC.48.10.388-3891.2004

12. Prescott LM, Harley JP, Klein DA. Microbiology, Seventh ed., Mcgraw-Hill, New York. 2008; 835–858.

13. Branson E. Clinical relevance of minimum inhibitory concentration. Aquaculture. 2001;11:289–296. DOI:https://doi.org/10.1016/S0044-8486(01)00541-5

14. Farboud ES, Nasrollahi SA, Tabbakhiz K. Novel formulation and evaluation of a Q10-loaded solid lipid nanoparticle cream: in vitro and in vivo studies. International Journal of Nanomedicine. 2011;6:611-617. DOI:https://doi.org/10.2147/IJN.S16815

15. Nederberg F, Zhang Y, Tan JP, Xu K, Wang H, Yang C, Gao S, Guo XD, Fukushima K, Li L, Hedrick JL, Yang YY. Biodegradable nanostructures with selective lysis of microbial membranes. Nature Chemistry. 2011;3 (5):409-414. DOI:https://doi.org/10.1038/nchem.1012

16. Brannon -Peppas L. Recent advances on the use of biodegradable microparticles and nanoparticles in controlled drug-delivery. International Journal of Pharmaceutics. 1995;116(1):1-9.

17. Úrban P, Valle-Delgado JJ, Moles E, Marques J, Diez C, Fernández-Busquets X. Nanotools for delivery of antimicrobial peptides. Current Drug Targets. 2012;13(9):1158-1172. DOI:https://doi.org/10.2174/138945012802002302

18. Xie J, Lee S, Chen X. Nanoparticle-based theranostic agents. Advanced drug delivery reviews 2010;62 (11):1064-1079. DOI:https://doi.org/10.1016/j.addr.2010.07.009

19. Malvern, Dynamic Light Scattering: an introduction in 30 minutes. In DLS technical note, Technical note (MRK656-01) ed, Malvern, Ed.; 2010.

20. Schaffazick SR, Gutierrez SS. Caracterização e estabilidade de fórmulas de nanopartículas para administração de fármacos. Química Nova. 2003; 26 (5):726-737. DOI:https://doi.org/10.1590/S0100-40422003005000017.

21. Meideiro KA. Desenvolvimento e testes in vitro de nanopartículas de quitosana para liberação controlada de peptídeos antitumorais. Master thesis, University of Brasilia; 2011. Available:https://repositorio.unb.br/handle/10482/8492

22. Leiviskä, T, Rämö J. Investigation of multimodal zeta potential and size distribution in chemical pulp process water. Water Science Technology. 2007;56(11):123-129. DOI:https://doi.org/10.2166/wst.2007.770

23. Shemetov AA, Nabiev I, Sukhanova A. Molecular interaction of proteins and peptides with nanoparticles. ACS Nano. 2012;6 (6):4585-4602. DOI: 10.1021/nn300415x

24. Qiu LY, Bae YH. Polymer architecture and drug delivery. Pharmaceutical Research. 2006;23(1):1-30. DOI:https://doi.org/10.1007/s11095-005-9046-2

25. Toti US, Guru BR, Hali M, McPharlin CM. Targeted delivery of antibiotics to intracellular clamydial infections using PLGA nanoparticles. Biomaterials. 2011;1-9. DOI:https://doi.org/10.1016/j.biomaterials.2011.05.038
26. Muthu MS. Nanoparticles based on PLGA and its co-polymer: An overview. Asian Journal of Pharmaceutical Science. 2009;3(4):266-273.

27. Amaral AC, Bocca AL, Ribeiro AM, Nunes J, Peixoto DL, Simioni AR, Primo FL, Lacava ZG, Bentes R, Titze-de-Almeida R, Tedesco AC, Morais PC, Felipe MS. Amphotericin B in poly(lactic-co-glycolic acid) (PLGA) and dimercaptosuccinic acid (DMSA) nanoparticles against paracoccidioidomycosis. Journal of Antimicrobial Chemotherapy. 2009;63(3):526-533. DOI:https://doi.org/10.1093/jac/dkn539

28. Dhiman N, Dutta M, Khuller GK. Poly (DL-lactide-co-glycolide) based delivery systems for vaccines and drugs. Indian Journal of Experimental Biology. 2000;38(8):746-752.

29. Amaral AC, Marques AF, Munoz JE, Bocca AL, Simioni AR, Tedesco AC, Morais PC, Travassos LR, Taborda CP, Felipe MS. Poly(lactic acid-glycolic acid) nanoparticles markedly improve immunological protection provided by peptide P10 against murine paracoccidioidomycosis. British Journal of Pharmacology. 2010;159(5):1126-1132. DOI:https://doi.org/10.1111/j.1476-5381.2009.00617.x. Epub 2010 Feb 5

30. Ham AS, Cost MR, Sassi AB, Dezzutti CS, Rohan LC. Targeted delivery of PSC-RANTES for HIV-1 prevention using biodegradable nanoparticles. Pharmaceutical Research. 2009;26(3):502-511. DOI:https://doi.org/10.1007/s11095-008-9765-2

31. Turos E, Shim JY, Wang Y, Greenhalgh K, Reddy GS, Dickey S, Lim DV. Antibiotic-conjugated polyacrylate nanoparticles: new opportunities for development of anti-MRSA agents. Bioorganic & Medicinal Chemistry Letters. 2007;17(1):53-56. DOI:https://doi.org/10.1016/j.bmcl.2006.09.098

32. Kho K, Cheow WS, Lie RH, Hadinoto K. Aqueous redispersibility of spray-dried antibiotic-loaded polycaprolactone nanoparticle aggregates for inhaled antibiofilm therapy. Powder Technology. 2010;203:432-439.

33. Turos E, Reddy GS, Greenhalgh K, Ramaraju P, Abeylath SC, Jang S, Dickey S, Lim DV. Penicillin-bound polyacrylate nanoparticles: restoring the activity of beta-lactam antibiotics against MRSA. Bioorganic & Medicinal Chemistry Letters. 2007;17(12):3468-3472. DOI:https://doi.org/10.1016/j.bmcl.2007.03.077

34. Bender EA, Adorne MD, Colome LM, Abdalla DS, Gutierrez SS, Pohlmann AR. Hemocompatibility of poly(varepsilon-caprolactone) lipid-core nanocapsules stabilized with polysorbate 80-lecithin and uncoated or coated with chitosan. International Journal of Pharmaceutics. 2012;426(1-2):271-279. DOI:https://doi.org/10.1016/j.ijpharm.2012.01.051

35. Cheow WS, Chang MW, Hadinoto K. Antibacterial efficacy of inhalable levofloxacin-loaded polymeric nanoparticles against E. coli biofilm cells: the effect of antibiotic release profile. Pharmaceutical Research. 2010;27(8):1597-1609. DOI:https://doi.org/10.1007/s11095-010-0142-6

36. Samanidou VF, Evaggelopoulou EN. Analytical strategies to determine antibiotic residues in fish. Journal of Separation Science. 2007;30(16):2549-2569. DOI:https://doi.org/10.1002/jssc.200700252

37. Zhou LJ, Ying G, Liu S, Zhao JL, Chen F, Zhang RQ, Peng FQ, Zhang QQ. Simultaneous determination of human and veterinary antibiotics in various environmental matrices by rapid resolution liquid chromatography–electrospray ionization tandem mass spectrometry. J. Chromatogr. A. 2012;123;123-138. DOI:https://doi.org/10.1016/j.chroma.2012.04.076

38. Farouk F, Azzazy HME, Niessen WMA. Challenges in the determination of aminoglycoside antibiotics, a review. Anal. Chim. Acta. 2015;81;21-43. DOI:https://doi.org/10.1016/j.chroma.2015.06.038

39. Stead DA. Current methodologies for the analysis of aminoglycosides. J.
40. Kaufmann A, Butcher P. Quantitative liquid chromatography/tandem mass spectrometry determination of chloramphenicol residues in food using sub-2 microm particulate high-performance liquid chromatography columns for sensitivity and speed. Rapid Commun. Mass Spectrom. 2005;19:3694-37.
DOI:https://doi.org/10.1016/j.rcm.2005.03.025

42. McGlinchey TA, Rafter PA, Regan F, McMahon GP. A review of analytical methods for the determination of aminoglycoside and macrolide residues in food matrices. Anal. Chim. Acta. 2008;624:1-15. DOI:10.1016/j.aca.2008.05.054.

43. Turnipseed SB, Clark SB, Karbiwnyk CM, Andersen WC, Miller KE, Madson MR. Analysis of aminoglycoside residues in bovine milk by liquid chromatography electrospray ion trap mass spectrometry after derivatization with phenyl isocyanate. J. Chromatogr. B: Anal. Technol. Biomed. Life Sci. 2009;877:1487-1493. DOI:https://doi.org/10.1016/j.jchromb.2009.03.025

44. Freitas A, Barbosa J, Ramos F. Determination of amoxicillin stability in chicken meat by liquid chromatography–tandem mass spectrometry. Food Analytical Methods. 2012;5:471-479. DOI: 10.1007/s12161-011-9267-4

45. Cañada-Cañada, F, Muñoz de la Peña, A, Espinosa-Mansilla, A. Analysis of antibiotics in fish samples. Anal. Bioanal. Chem. 2009;395:987-1008. DOI:https://doi.org/10.1007/s00216-009-2872-z

46. Johnston L, Mackay L, Croft M. Determination of quinolones and fluoroquinolones in fish tissue and seafood by high-performance liquid chromatography with electrospray ionization tandem mass spectrometry detection. J. Chromatogr. A. 2002;982:97-109. DOI:https://doi.org/10.1016/s0021-9673(02)01407-3

47. Li H, Yin J, Liu, Y, Shang J. Effect of protein on the detection of fluoroquinolone residues in fish meat. J. Agric. Food Chem. 2012;60(7):1722-1727. DOI:https://doi.org/10.1021/jf2034658

48. Van Hoof N, De Wasch K, Okerman L, Reybroeck W, Poelman S, Noppe H, De Brabander H. Validation of a liquid chromatography–tandem mass spectrometric method for the quantification of eight quinolones in bovine muscle, milk and aquacultured products. Anal. Chim. Acta. 2005;529:265-272. DOI:https://doi.org/10.1016/j.aca.2004.07.055

49. Samanidou V, Evaggelopoulou E, Trötzmüller M, Guob X, Lankmayrb E. Multi-residue determination of seven quinolones antibiotics in gilthead seabream using liquid chromatography–tandem mass spectrometry. J. Chromatogr. A. 2008;1203:115-123. DOI:https://doi.org/10.1016/j.chroma.2008.07.003

50. Wang S, Zhang HY, Wang L, Duan ZJ, Kennedy I. Analysis of sulphonamide residues in edible animal products: a review. Food Addit. Contam. 2006;23:4:362-384. DOI:https://doi.org/10.1080/02652030500499359

51. Nebot C, Regal P, Martinez B, Miranda J, Cepeda A, Fente C. Confirmatory Method for Nine Sulfonamides in Miniature Bovine Muscle Samples Using HPLC/MS/MS without Using SPE. J. Food Drug Anal. 2010;18:3:191-201. DOI:http://dx.doi.org/10.38212/2224-6614.2264

52. Won SY, Lee CH, Chang HS, Kim SO, Lee SH, Kim DS. Monitoring of 14 sulfonamide antibiotic residues in marine products using HPLC-PDA and LC-MS/MS. Food Control. 2011;22:1101-1107. DOI:https://doi.org/10.1016/j.foodcont.2011.01.005

53. EC. Commission Regulation (EU) 37/2010, of 22 December 2009. Official Journal of the European Union. 2009c; L15:1-72.

54. Oka H, Ito Y, Matsumoto H. Chromatographic analysis of tetracycline.
antibiotics in foods. J. Chromatogr. A. 55. EC. European Commission Decision 2002/657/EC, of 12 August 2002. Official Journal of the European Communities. 2002:L221, 8-36.

DOI:https://doi.org/10.1016/s0021-9673(99)01316-3