578. Infections in Patients Treated with Chimeric Antigen Receptor T-cells (CAR-T) therapy
Nikki Tran, PharmD2; Gregory Eschauzier, PharmD2, BCPS (AQ-ID)2; Gianni Scappaticci, PharmD2; David Frame, PharmD2; Marisa H. Miceli, MD, FIDSA1; Twisha S. Patel, PharmD2, BCPS, BCIDP2; University of Michigan, Madison Heights, Michigan; Ann Arbor, MI
Session: P-22. Care Strategies for Transplant Patients
Background: Although chimeric antigen receptor T cells (CAR-T) therapy is a promising novel therapy for the treatment of relapsed or refractory (R/R) B-cell malignancies, data on infectious complications associated with this therapy are limited. Therefore, further assessment of infections following CAR-T therapy is warranted.
Methods: We retrospectively reviewed and analyzed infectious complications within 6 months following CAR-T therapy infusion (CTI) in 39 adult and pediatric patients with R/R acute lymphoblastic leukemia (ALL) and Non-Hodgkin Lymphoma (NHL) at Michigan Medicine.
Results: Overall, 20 infections were identified in 16 of 39 patients (41%) following CTI (Table 1). The majority of infections were caused by various bacteria or respiratory viruses in a cohort of patients with lymphoma as the most common underlying malignancy.
Conclusion: Infections complications are common following CAR-T therapy. We found the majority of infections to be caused by various bacteria or respiratory viruses in a cohort of patients with lymphoma as the most common underlying malignancy.

579. Prophylactic Antibiotics Did Not Decrease Recurrent Cholangitis in Patients with Biliary Atresia After Kasai Portenterostomy
Thomas M. Tarro, MD1; Laurie Song, MD1; Beth A. Carter, MD2; Meiyu Yeh, MS2; Pa S. Pannaraj, MD, MPH2; Sindhu Mohandas, MD1; Children's Hospital Los Angeles, Los Angeles, CA; Children's Hospital Los Angeles, Los Angeles, CA
Session: P-22. Care Strategies for Transplant Patients
Background: Biliary atresia (BA) is a rare, progressive, idiopathic, fibro-obliterative disease of the extrahepatic biliary tree seen in children. The current standard treatment is surgical management with Kasai portenterostomy (KP). Bacterial cholangitis is a frequent complication following KP and an important determinant of long-term prognosis. Use of prophylactic antibiotics is common but not universal and efficacy is controversial.
Methods: A retrospective study was performed that included all patients with BA who underwent KP from November 2002 to July 2019. Chart review was conducted to collect demographic information and evaluate the use of antibiotic prophylaxis, number of cholangitis episodes, time to liver transplantation (LTV), and survival.
Results: Ninety-one patients with BA underwent KP during the study period. Seventy-two (79%) received prophylactic antibiotics, and 19 (21%) did not. The median duration of prophylactic antibiotics was 7 months (interquartile range [IQR] 8.5). Patients in the no-prophylaxis group had significantly fewer cholangitis episodes (median 0, IQR 1) than in the antibiotic prophylaxis group (median 1, IQR 2); p = 0.02. The median time to LTV was 8 months (IQR 8.5) in the antibiotic prophylaxis group, compared to 7 months (IQR 6) in the no-prophylaxis group, p = 0.88. Of the patients who were on antibiotic prophylaxis, 57 (79.2%) received trimethoprim-sulfamethoxazole (TMP-SMX) alone and 15 (20.8%) received multiple/other antibiotics. Seventy patients (7.7%) had culture-positive cholangitis. Six of 7 received prophylaxis with TMP-SMX and 5 of 7 grew bacteria that were resistant to TMP-SMX. No deaths occurred between the postoperative KP period to the time of LTV in both groups.
Conclusion: Prophylactic antibiotics did not decrease recurrent cholangitis in patients with BA after Kasai portenterostomy. Further assessment of infections after CAR-T therapy is warranted.

Table 1. Comparison of early vs late infection after CAR-T Infusion

Characteristic	All Infections (%)	Early (0-30 Days) (%)	Late (31-180 Days) (%)	P-value
Any infection	20 (41)	6 (20)	14 (47)	0.018
Bacterial infection	8 (40)	6 (20)	2 (12)	0.020
Bacteremia	4 (20)	2 (10)	2 (10)	
SSI1	1 (5)	1 (5)	0 (0)	
UTI2	2 (10)	2 (10)	0 (0)	
CDI	1 (5)	1 (5)	0 (0)	
Fungal infection	2 (10)	0 (0)	2 (10)	0.495
FUNG1	1 (5)	1 (5)	0 (0)	
SSI (Aspergilus and Rhizopus)	1 (5)	1 (5)	0 (0)	
Viral infection	10 (50)	2 (10)	8 (40)	0.062
CMV	2 (10)	1 (5)	1 (5)	
HSV	2 (10)	2 (10)	0 (0)	
Rhinovirus Enterovirus	2 (10)	2 (10)	0 (0)	
Parainfluenza	2 (10)	1 (5)	1 (5)	
Metapneumovirus	1 (5)	1 (5)	0 (0)	

Overall, 20 infections were identified in 16 patients (41%). SSI, skin and soft tissue infection; UTI, urinary tract infection; CDI, Clostridium difficile infection; CMV, cytomegalovirus; RSV, respiratory syncytial virus.

Table 2. Demographic, Laboratory, and Clinical Characteristics

Characteristic	All Patients (n=91)	Infected Patients (n=20)	Uninfected Patients (n=71)	P-value
Demographics	52.4 ± 21.8 years	50.6 ± 13.4 years	53.0 ± 23.6 years	0.087
Baseline malignancy, n (%)	30 (20)	10 (50)	20 (29)	0.034
Non-Hodgkin Lymphoma (NHL)	30 (20)	10 (50)	20 (29)	0.034
Acute lymphoblastic leukemia (ALL)	7 (4)	2 (10)	5 (7)	0.025
Hematologic parameters prior to CTI				
ANC median (Q1-Q3)	0 (0-0.9)	0.8 (0-2.5)	0.6 (0-1.2)	0.925
Erythrocytes median (Q1-Q3)	4.1 (3.6-4.6)	4.2 (3.8-4.7)	4.1 (3.6-4.6)	0.830
Antimicrobial prophylaxis prior to CTI, n (%)	31 (34)	12 (60)	19 (27)	0.004
Antibacterial prophylaxis	31 (34)	12 (60)	19 (27)	0.004
Antifungal prophylaxis	29 (32)	11 (55)	18 (25)	0.060
Antimicrobial prophylaxis	31 (34)	12 (60)	19 (27)	0.004
Anti-Pneumocystis prophylaxis	6 (7)	3 (15)	3 (4)	0.347
Total length of stay, median (Q1-Q3)	21 (20-22)	24 (22-26)	20 (22)	0.238
Length of stay from CTI, median (Q1-Q3)	16 (15-16)	16 (15-16)	16 (15-16)	0.316
ICU admission, n (%)	32 (35)	13 (65)	19 (27)	0.003
Length of ICU stay, median (Q1-Q3)	4 (4-8)	5 (4-8)	4 (4-8)	0.410
Cytokine release syndrome (CRS), n (%)	13 (15)	5 (25)	8 (11)	0.231
Grade 1-2	16 (18)	7 (35)	9 (13)	0.010
Grade 3-5	7 (8)	4 (20)	3 (4)	0.015
Toxicity of administration due to CTI, n (%)	16 (18)	6 (30)	10 (14)	0.050
Toxicity of dose administration, median (Q1-Q3)	0 (0-2)	2 (1-4)	0 (0-2)	0.001
Steroids administration due to CRS, n (%)	13 (15)	5 (25)	8 (11)	0.273
Duration of care, median (Q1-Q3)	10 (8-15)	10 (8-15)	10 (8-15)	0.625

Table 3. Patients with Culture-positive Cholangitis after Kasai Portenterostomy (n=7).

Case No.	Antibiotic Prophylaxis	Time After Kasai (months)	Blood Culture	Resistance	Living or Decrease
1	TMP-SMX	4	H. influenzae (non-Hib, no Beta-lactamase)	N/A	Living
2	TMP-SMX	1.5	E. coli	TMP-SMX	Living
3	TMP-SMX	6	K. pneumoniae	TMP-SMX	Living
4	TMP-SMX	2	E. coli	None	Living
5	TMP-SMX	2.5	E. coli	TMP-SMX	Ciprofloxacin
6	TMP-SMX	3.5	E. coli	TMP-SMX	Ciprofloxacin
7	TMP-SMX	7	E. coli	TMP-SMX	Ciprofloxacin
Conclusion: Antibiotic prophylaxis was frequently used after KP with TMP-SMX being the most common antibiotic used. Patients in the no-prophylaxis group had significantly lower Clostridioides difficile infections compared to those receiving antibiotic prophylaxis. Prophylactic antibiotics did not have an impact on time to recovery. Our findings suggest that prophylaxis is not helpful in decreasing the frequency of Clostridioides infections after KP and may increase the risk for infections with resistant bacteria. Larger prospective randomized control studies are recommended.

Disclosures: Pia S. Pannaraj, MD, MPh, Astrazeneca (Grant/Research Support) Pfizer (Grant/Research Support) Sanofi Pasteur (Grant/Research Support) Novartis (Advisor or Review Panel member)

580. Refractory and Resistant CMV Infections in Hematopoietic Cell Transplant Recipients in the Letermovir Primary Prophylaxis Era

Joseph Sassine, MD; Fared Khabwa, MBBS; Victoria Handy, PharmD; Terri Lynn Shigle, PharmD; Farnaz Foolad, PharmD; Samuel L. Atikcn, PharmD, MPH, BCIDP; Samuel L. Atikcn, PharmD, MPH, BCIDP; Elia Ariza Heredia, MD, MPH; Roy F. Chemaly, MD, MPH, FACP, FIDSA, Chimerix (Consultant, Research Grant or Support) Clinigen (Consultant, Research Grant or Support) Novartis (Grant or Support) Oxford Immunotec (Consultant, Research Grant or Support)

There was a trend towards lower all-cause mortality at day 100 in the letermovir group there was no resistant CMV and no CMV-related mortality in the letermovir group. This study aims at exploring the effect of letermovir primary prophylaxis on the occurrence of refractory or resistant CMV infections.

Methods: This is a single-center, retrospective cohort study of 537 consecutive allo-HCT CMV-seropositive recipients cared for between March 2016 and December 2018. Baseline demographics, transplant characteristics, CMV infections, treatment and mortality data were collected from the electronic medical record (Table 1). CMV outcomes were defined according to the standardized definitions for clinical trials. The primary emphasis was on outcomes defined according to the standardized definitions for clinical trials. Analysis, primary prophylaxis with letermovir was associated with a reduction in refractory or resistant CMV infection (OR 0.11, 95% CI 0.02–0.49) (Table 2). Notably, there was no resistant CMV and no CMV-related mortality in the letermovir group.

Results: Out of 537 patients identified, 123 received letermovir for primary prophylaxis during the first 100 days post-HCT and 414 did not. In a multivariate analysis, primary prophylaxis with letermovir was associated with a reduction in refractory or resistant CMV infections with resistant bacteria. Larger prospective randomized control studies are recommended.

Conclusion: Our study showed a strong association between primary prophylaxis with letermovir and reduction in refractory or resistant CMV infections and CMV disease in allo-HCT recipients.

Disclosures: Elia Ariza Heredia, MD, Merck Sharp & Dohme (Grant/Research Support) Oxford Immunotec (Grant/Research Support) Roy F. Chemaly, MD, MPH, FACP, FIDSA, Chimerix (Consultant, Research Grant or Support) Clinigen (Consultant, Research Grant or Support) Novartis (Grant or Support) Oxford Immunotec (Consultant, Research Grant or Support) Shire/Takeda (Research Grant or Support) Virocar (Research Grant or Support)

Table 2 - Multivariate Analysis of Clinical Outcomes.

Table 2 - Multivariate Analysis of Clinical Outcomes.

Results: One hundred six patients met the inclusion criteria. The majority of patients received metronidazole (88 vs. 18). Less patients in the metronidazole arm developed aGVHD (51.1% vs 61.1%, p=0.44). In the subcategories of liver, skin, and gastrointestinal aGVHD, patients who received metronidazole developed less gastrointestinal aGVHD (26.1% vs 50.0%, p=0.045). Gastrointestinal ADEs were the most common metronidazole-related ADEs (19.3%, Table 1). There were no significant differences in the incidence of C. difficile infection, mortality, and overall survival between the two arms (Table 2).

Table 2. Additional Secondary Outcomes

Table 2. Additional Secondary Outcomes

Table 2. Additional Secondary Outcomes

Conclusion: Despite a reduction in gastrointestinal aGVHD in the metronidazole arm, approximately one in four patients experienced an ADE to the medication, likely due to the prolonged use of the medication (33 days). The utilization of post-transplant cyclophosphamide for GVHD prophylaxis likely eliminates the need for metronidazole; however our findings suggest a benefit in preventing gastrointestinal aGVHD with metronidazole; albeit, caution is warranted given the high incidence of ADE associated with prolonged use.

Disclosures: All Authors: No reported disclosures

Table 2. Additional Secondary Outcomes

Table 2. Additional Secondary Outcomes

Table 2. Additional Secondary Outcomes

Poster Abstracts • OFID 2020:7 (Suppl 1) • S353

Poster 400. Risks versus Benefits of Metronidazole Use for the Prevention of Acute Gvhd in Allogeneic Stem Cell Transplant Recipients

Mary T. Young, PharmD2, Marguerite Monogue, PharmD1, Hetalkumar Patel, PharmD1, University of Texas Southwestern Medical Center, Houston, Texas

Session: P-22. Care Strategies for Transplant Patients

Background: Currently, acute graft versus host disease (aGVHD) prophylaxis in hematopoietic stem cell transplants (HSCT) varies amongst different institutions. There is a lack of data supporting the use of metronidazole for aGVHD prophylaxis in HSCT. To further investigate if metronidazole has an effect on aGVHD, allogeneic HSCT recipients will be examined to determine if metronidazole post-transplantation decreases the incidence of aGVHD and the risks of adverse drug events (ADE) associated with this practice.

Methods: This retrospective study included 120 adult patients who received an allogeneic HSCT between January 1, 2010 to December 31, 2013. The primary endpoint is the incidence of aGVHD, defined as within 100 days post-transplant. Secondary endpoints include the rate of metronidazole discontinuation due to intolerance, frequency of metronidazole-related adverse effects, incidence of Clostridioides difficile infection, mortality, and overall survival.

Results: One hundred six patients met the inclusion criteria. The majority of patients received metronidazole (88 vs. 18). Less patients in the metronidazole arm developed aGVHD (51.1% vs 61.1%, p=0.44). In the subcategories of liver, skin, and gastrointestinal aGVHD, patients who received metronidazole developed less gastrointestinal aGVHD (26.1% vs 50.0%, p=0.045). Gastrointestinal ADEs were the most common metronidazole-related ADEs (19.3%, Table 1). There were no significant

Table 2. Additional Secondary Outcomes

Table 2. Additional Secondary Outcomes

Table 2. Additional Secondary Outcomes

Conclusion: Despite a reduction in gastrointestinal aGVHD in the metronidazole arm, approximately one in four patients experienced an ADE to the medication, likely due to the prolonged use of the medication (33 days). The utilization of post-transplant cyclophosphamide for GVHD prophylaxis likely eliminates the need for metronidazole; however our findings suggest a benefit in preventing gastrointestinal aGVHD with metronidazole; albeit, caution is warranted given the high incidence of ADE associated with prolonged use.

Disclosures: All Authors: No reported disclosures

Table 2. Additional Secondary Outcomes

Table 2. Additional Secondary Outcomes

Table 2. Additional Secondary Outcomes

Poster Abstracts • OFID 2020:7 (Suppl 1) • S353