Adults with Long-Duration Type 2 Diabetes Have Blunted Glycemic and β-Cell Function Improvements After Bariatric Surgery

Vishesh Khanna1,2§, Steven K. Malin3§, James Bena4, Beth Abood5, Claire E. Pothier5, Deepak L. Bhatt6, Steven Nissen7, Richard Watanabe8, Stacy A. Brethauer5,9, Philip R. Schauer5,9, John P. Kirwan9,10, and Sangeeta R. Kashyap1,9

Objective: This study investigated the effect of type 2 diabetes duration on glucose regulation 24 months post-bariatric surgery.

Methods: Twenty-seven adults with short- (<5 years) and long-duration (≥10 years) type 2 diabetes received a mixed-meal tolerance test at baseline and 24 months postsurgery. Body weight, insulin sensitivity, first- and second-phase meal-stimulated insulin secretion, disposition index (i.e., DI or pancreatic β-cell function), and incretin responses were examined.

Results: Adults with short-duration type 2 diabetes had better HbA1c, greater insulin secretory capacity, and greater DI compared with adults with long-duration type 2 diabetes, despite similar weight loss and incretin responses. Diabetes duration correlated with smaller improvements in HbA1c and DI but not weight loss.

Conclusions: Enhanced β-cell function characterizes the effect of bariatric surgery in adults with diabetes for <5 years, independent of weight loss or incretins. Additional therapy postsurgery may be required to improve glycemia for people with long-standing type 2 diabetes.

Obesity (2015) 23, 523–526. doi:10.1002/oby.21021

Introduction

Not all individuals with type 2 diabetes meet remission criteria following bariatric surgery (1) and diabetes duration has emerged as an important clinical factor in predicting disease resolution. In fact, recent work suggests that individuals with short- vs. long-duration diabetes improve glycemic control up to 3 months post-op through improvements in insulin sensitivity (2). However, differences in pre-existing HbA1c and adiposity between groups (2) limit our understanding of the interaction between diabetes duration per se and bariatric surgery. High fasting C-peptide levels presurgery have also been reported to predict diabetes remission 1–5 years postsurgery (3), and we recently demonstrated that bariatric surgery lowered blood glucose by predominantly augmenting pancreatic function via gastrointestinal hormone-related mechanisms (4,5). Given that individuals with long-duration diabetes typically exhibit severe β-cell dysfunction, we hypothesized that bariatric surgery would promote greater glycemic benefit 24 months postsurgery in individuals with short- vs. long-duration diabetes matched on glycemic control and BMI, and that this would relate to accentuated β-cell function.

Methods

This prospective study was performed as part of the STAMPEDE trial, of which the methods have been reported and approved by our Institutional Review Board (1). Metabolic studies on diabetes duration were performed before and 24 months following bariatric surgery [i.e., Roux-en-Y gastric bypass (RYGB) or sleeve gastrectomy (SG)]. Our sample consisted of 27 adults (Table 1) with short- [n = 14; <5 years; 2 years (2,3), 46% SG] and long-duration [n = 13; ≥10 years, 11 years (10,13) 53% SG] diabetes. Type 2 diabetes duration was identified using electronic medical records and confirmed by a health history questionnaire. Diabetes remission was defined as HbA1c < 6.5% and fasting glucose levels <126 mg/dl.

1 Department of Endocrinology, Diabetes, and Metabolism, Cleveland Clinic, Cleveland, Ohio, USA. Correspondence: Sangeeta R. Kashyap (kashyas@ccf.org) 2 Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, Ohio, USA 3 Department of Kinesiology, University of Virginia, Charlottesville, Virginia, USA 4 Department of Quantitative Health Sciences, Cleveland Clinic, Cleveland, Ohio, USA 5 Bariatric and Metabolic Institute, Cleveland Clinic, Cleveland, Ohio, USA 6 Heart and Vascular Institute, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts, USA 7 Heart and Vascular Institute, Cleveland Clinic, Cleveland, Ohio, USA 8 Metabolic Translational Research Center, Endocrine and Metabolism Institute, Cleveland Clinic, Cleveland, Ohio, USA 9 Department of Pathobiology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA.

Funding agencies: This research was supported by Ethicon endo-surgery EESIIS 19900 (PRS), American Diabetes Association clinical translational award 1–11–26 CT (SRK), NIH RO1-DK089547 (PRS, SRK, JPK), and National Institutes of Health National Center for Research Resources, 1UL1RR024989, Cleveland, OH.

Disclosure: The authors declared no conflict of interest.

Received: 5 September 2014; Accepted: 9 December 2014; Published online 3 February 2015. doi:10.1002/oby.21021
DiaRem scores were also calculated to characterize factors involved in diabetes remission (6). Subjects abstained from diabetes medication 24 h prior to testing. After an overnight fast, subjects were given a mixed meal tolerance test (MMTT: Boost; 350 kcal) and blood samples were obtained for HbA1c, glucose, insulin, and C-peptide at 0, 30, 60, 90, and 120 min of the MMTT to determine glycemic control, insulin sensitivity (IS) and \(\beta \)-cell function. GIP (gastric inhibitory polypeptide) and GLP-1 (glucagon-like polypeptide-1) were also measured at 0 and 60 min to determine incremental incretin responses. IS was estimated using the Matsuda Index (7) and insulin secretion rates (ISR) during the MMTT were calculated using C-peptide deconvolution techniques (4). Meal-stimulated insulin secretion (MSIS) was calculated as incremental area under the curve (iAUC) of C-peptide ISR divided by glucose during the first 30 and last 60 min of the MMTT (i.e., C-pep\(\text{pre}_{0-30} \)/Glu\(\text{pre}_{0-30} \) and C-pep\(\text{pre}_{60-120} \)/Glu\(\text{pre}_{60-120} \)). Pancreatic \(\beta \)-cell function was estimated using the disposition index (DI; MSIS \(\times \) IS). Plasma insulin was assayed by a radioimmunoassay (Linco Research), C-peptide by a chemiluminescence immunoassay (Linco Research), and total GIP and GLP-1 were measured using an ELISA (ALPCO Diagnostics). Data were analyzed using R (Vienna, Austria). Group differences were evaluated using Wilcoxon’s rank sum tests, while categorical baseline factors were tested with Fisher’s exact test.

Results

Before surgery, BMI, HbA1c, DiaRem, MSIS, and DI, as well as incretin levels, were comparable between patients with short- and long-duration diabetes (all \(P > 0.05 \), Table 1). Subjects with long-duration diabetes, compared to those with short-duration diabetes, had similar use of incretin mimetics (92.3 vs. 57.1%; \(P = 0.07 \)), metformin (92.9 vs. 100%; \(P = 0.99 \)), and insulin (53.8 vs. 28.5%; \(P = 0.25 \)). However, long-duration subjects with diabetes required more overall oral medications when compared to short-duration diabetes (Table 1), and this was specifically reflected by the difference in thiazolidinediones usage (100 vs. 50%; \(P = 0.006 \)). Lastly, patients with long-duration diabetes had lower fasting C-peptide levels (\(P = 0.003 \)) compared to short-duration subjects.

At 24 months postsurgery, improvements in BMI, insulin sensitivity, and incretin responses were similar between groups (all \(P > 0.05 \), Table 1). However, short-duration subjects had significantly better

Table 1: Comparison between short- and long-duration diabetes subjects at baseline and 24 months following bariatric surgery

	Short duration		Long duration		\(P \) value		
	\(n \) (M,F)	Pre	\(\Delta \)	Pre	\(\Delta \)	Pre vs. pre	\(\Delta \) vs. \(\Delta \)
BMI (kg/m\(^2\))	52.4 [44.7, 60.7]	50.4 [38.2, 55.5]	-2 [-10, -8]	52.0 [42.5, 59.1]	-2 [-10, 0]	0.24	-7
Weight (kg)	99.3 [93.8, 111.5]	99.3 [93.8, 111.5]	-2 [-10, -8]	105.8 [91.2, 112.5]	-2 [-10, 0]	0.002	0.69
HbA\(_{1c}\) (%)	9.3 [8.9, 10.5]	9.3 [8.9, 10.5]	-2 [-10, -8]	8.9 [8.6, 10.5]	-2 [-10, 0]	0.009	0.003
FPG (mg/dl)	204.5 [144, 238]	204.5 [144, 238]	-2 [-10, -8]	171 [112, 209]	-2 [-10, 0]	0.0006	0.03
FPCpep (ng/ml)	3.8 [2.4, 4.6]	3.8 [2.4, 4.6]	-2 [-10, -8]	1.4 [0.5, 2.6]	-2 [-10, 0]	0.0008	0.17
PI AUC\(_{0-30}\)	7.1 [4.3, 12.5]	7.1 [4.3, 12.5]	-2 [-10, -8]	6.5 [3.5, 8.2]	-2 [-10, 0]	0.0003	0.01
ISR/PG (iAUC\(_{0-30}\))	0.01 [0.02, 0.02]	0.01 [0.02, 0.02]	-2 [-10, -8]	0.01 [0.02, 0.02]	-2 [-10, 0]	0.0006	0.03
Insulin sensitivity	1.3 [1.1, 1.7]	1.3 [1.1, 1.7]	-2 [-10, -8]	3.9 [2.7, 6.2]	-2 [-10, 0]	0.0008	0.17
DI (first phase)	0.07 [-0.2, 0.2]	0.07 [-0.2, 0.2]	-2 [-10, -8]	0.2 [-0.4, 0.7]	-2 [-10, 0]	0.0006	0.01
DI (second phase)	0.1 [0.01, 0.3]	0.1 [0.01, 0.3]	-2 [-10, -8]	0.1 [-0.4, 0.6]	-2 [-10, 0]	0.0006	0.01
\(\Delta GIP (60 \text{ min}) \)	3.0 [2.5, 3.8]	3.0 [2.5, 3.8]	-2 [-10, -8]	1.9 [0.9, 3.1]	-2 [-10, 0]	0.0006	0.01
\(\Delta Fcpep (60 \text{ min}) \)	5.1 [1.8, 8.7]	5.1 [1.8, 8.7]	-2 [-10, -8]	3.7 [2.4, 9]	-2 [-10, 0]	0.0006	0.01
\(\Delta GIP (60 \text{ min}) \)	39.6 [24.3, 68.1]	39.6 [24.3, 68.1]	-2 [-10, -8]	43.3 [26.7, 54.4]	-2 [-10, 0]	0.0006	0.01

Data are reported as median [25%, 75%]. BMI = body mass index; DI = disposition index; FPG = fasting plasma glucose; FPI = fasting plasma insulin; FPCpep = fasting plasma C-peptide; GLP-1 = glucagon-like polypeptide-1; iAUC = incremental area under the curve; ISR = meal-stimulated insulin secretion rate (iAUC C-peptide divided by iAUC glucose); RYGB = Roux-sleeve gastrectomy; SG = sleeve gastrectomy. Bold type denotes statistical significance.

Spearman’s correlation was used to examine associations. Significance was accepted as \(P \leq 0.05 \).
HbA1c, higher second-phase MSIS, and greater first and second DI responses compared with long-duration subjects (all $P < 0.05$, Table 1 and Figure 1). In fact, 42.9% of short-duration diabetics were in remission compared to only 7.7% in the long-duration diabetes group. Moreover, short-duration diabetes subjects had lower total medication intake than subjects with long-duration diabetes (Table 1), which was primarily the result of decreased metformin use (21.4 vs. 84.6%, $P = 0.002$). Use of other medications was not statistically different at 24 months, including thiazolidinediones (0 vs. 7.7%, $P = 0.48$), incretin mimetics (21.4 vs. 23.1, $P = 0.99$), insulin use (0 vs. 23.1, $P = 0.09$) or secretagogues (0 vs. 23.1%, $P = 0.09$) in patients with short- vs. long-duration diabetes. Baseline diabetes duration correlated with smaller improvements in HbA1c ($r = 0.39$, $P < 0.04$) as well as first- ($r = -0.50$, $P = 0.002$) and second- ($r = -0.40$, $P = 0.03$) phase DI (Figure 2). Preoperative first-phase MSIS and DI were inversely linked to changes in first-phase MSIS and DI, respectively ($r = -0.79$, $P < 0.001$ and $r = -0.58$, $P = 0.002$). However, preoperative second-phase MSIS or DI were not statistically associated with changes in second-phase MSIS or DI ($r = -0.18$, $P = 0.37$ and $r = -0.30$, $P = 0.13$).

Discussion

Consistent with prior work following lifestyle intervention in hyperglycemic adults (8,9), our novel findings suggest that bariatric surgery promotes better glycemic control in individuals with short- vs. long-duration diabetes 2 years after bariatric surgery. Unlike prior short-term data following bariatric surgery (2), our data indicate that β-cell function, not insulin sensitivity, is the key determinant of postoperative glycemic control. There are several reasons for this apparent difference between studies. Weight loss has been directly linked to both improved insulin sensitivity and secretion through anti-inflammatory mediated mechanisms following bariatric surgery (10). However, both groups in the current study lost similar amounts of weight, suggesting that caloric restriction per se and/or inflammatory changes are unlikely to explain the 2 year differences in glycemic benefit between individuals with short- vs. long-duration diabetes (11). Moreover, the intravenous glucose tolerance test was previously used to determine insulin sensitivity and β-cell function independent of incretin effects (2). However, a strength of the current study is that using the MMTT increases the clinical application and physiologic insight of our findings. In this context, Dutia and colleagues recently observed that incretins are a major determinant of pancreatic function following bariatric surgery (5,12,13). In fact, GLP-1 is a leading candidate for not only increasing β-cell mass in rodents, but also augmenting β-cell function in humans following bariatric surgery (14,15). Despite significant parallel increases in meal-stimulated GLP-1 and GIP with enhanced DI at 24 months postsurgery in short-duration diabetes, adults with long-duration diabetes had similar rises in circulating incretins. Although blood incretins do not necessarily reflect GLP-1 or GIP

Figure 1 Effect of bariatric surgery on HbA1c and DI in subjects with short- vs. long-duration type 2 diabetes. Change in (A) HbA1c, (B) first-phase DI, and (C) second-phase DI from baseline to 24 months postsurgery. Compared with baseline, $^*P = 0.04$ and $^\wedge P = 0.01$. DI = disposition index (meal-stimulated insulin secretion rate [AUC C-peptide/AUC Glucose] multiplied by insulin sensitivity).

Figure 2 Correlations between diabetes duration and (A) first-phase DI, (B) second-phase DI, and (C) HbA1c. DI = disposition index (meal-stimulated insulin secretion rate [AUC C-peptide/AUC glucose] multiplied by insulin sensitivity). Δ reflects absolute difference between post–pre.
action and total circulating levels were determined, our data are in line with recent work by Jimenez and colleagues suggesting that subjects with long-duration diabetes are either less responsive to these endogenous incretins and/or due to a preoperative inability to secrete insulin (16). In either case, the blunted rise in insulin secretion in those with long-duration diabetes suggests that using gut-mediated treatments for pancreatic function remains a feasible approach for glycemic control. It is also worth noting that preoperative use of GLP-1 agonists may be effective at enhancing diabetes remission rates following gastric bypass (17). While there were no differences in baseline incretin mimetics in our study, suggesting that preoperative GLP-1 treatment was unlikely to have impacted glycemic responses in long-duration diabetes following our intervention, our study was not powered to test such a hypothesis. Further work is required pre- and postoperation to clarify the optimal therapy behind bariatric surgery-induced diabetes remission.

The progression from normal glucose tolerance to diabetes is characterized by reductions in β-cell mass that, in turn, lead to impaired β-cell function (18). The exact mechanism(s) for this exhausted β-cell mass is unclear, but glucotoxicity is known to promote apoptosis and cause proliferative defects in β-cells (19). As such, it is reasonable to expect that extended periods of time or ambient hyperglycemia, as reflected by the blunted reduction in HbA1c, induce β-cell apoptosis and dysfunction (19). While fasting C-peptides were lower in subjects with long-duration diabetes both before and after the intervention, baseline DI was similar between short- and long-duration subjects in our study, suggesting that the functionality of pre-existing β-cells may have impacted the responsiveness to bariatric surgery. Indeed, those individuals with lower preoperative MSIS or β-cell function were observed to have larger increases in insulin secretion following bariatric surgery, which is consistent with pancreatic responses to lifestyle modification in adults with prediabetes (20). Our findings do not exclude the benefit of enhanced insulin sensitivity, as individuals with short-duration diabetes had greater improvements, although not statistically (P = 0.17), than long-duration subjects. However, there was no relationship between insulin sensitivity and glycemic control. Whether “resting the β-cell” or accentuating pancreatic endocrine function improves glycemic control in long-duration subjects with lifestyle modification or pharmacology awaits further investigation. Therefore, our data call attention to inadequate β-cell function as a key factor characterizing the attenuated glycemic responses to bariatric surgery in people with long-duration diabetes.

Acknowledgments

We thank Sarah Neale from the Cleveland Clinic Preventive Research Lab for performing blood analysis, the nursing staff for technical assistance, and the dedicated research assistants and subjects for their effort. We also thank the Cleveland Clinic Coordinating Center for Clinical Research for providing the database and statistical analysis.

© 2015 The Obesity Society

References

1. Schauer PR, Bhatt DL, Kirwan JP, et al. Bariatric surgery versus intensive medical therapy for diabetes—3-year outcomes. N Engl J Med 2014;370:2002-2013.
2. Gavin TP, Ernst JM, Caudill SE, et al. Insulin sensitivity is related to glycemic control in type 2 diabetes and diabetes remission after Roux-en-Y gastric bypass. Surgery 2014;155:1036-1043.
3. Aarts EJ, Janssen J, Janssen IM, Berends FJ, Teeling D, de Boer H. Preoperative fasting plasma C-peptide level may help to predict diabetes outcome after gastric bypass surgery. Obes Surg 2013;23:867-873.
4. Kashyap SR, Bhatt DL, Wolski K, et al. Metabolic effects of bariatric surgery in patients with moderate obesity and type 2 diabetes: a randomized control trial comparing surgery with intensive medical treatment. Diabet Care 2013;36:2175-2182.
5. Malin SK, Samat A, Wolski K, et al. Improved acylated ghrelin suppression at 12 months in obese patients with type 2 diabetes: effects of bariatric surgery vs standard medical therapy. Int J Obes 2014;38:364-370.
6. Still CD, Wood GC, Benotti P, et al. Preoperative prediction of type 2 diabetes remission after Roux-en-Y gastric bypass surgery: A retrospective cohort study. Lancet Diabetes Endocrinol 2014;2:38-45.
7. Matsuda M, DeFronzo RA. Insulin sensitivity indices obtained from oral glucose tolerance testing: Comparison with the euglycemic insulin clamp. Diabetes Care 1999;22:1462-1470.
8. Solomon TP, Malin SK, Karstoft K, Haus JM, Kirwan JP. The influence of hyperglycemia on the therapeutic effect of exercise on glycemic control in patients with type 2 diabetes mellitus. JAMA Intern Med 2013;173:1834-1836.
9. Malin SK, Haus JM, Solomon TP, Blaszczak A, Kashyap SR, Kirwan JP. Insulin sensitivity and metabolic flexibility following exercise training among different obese insulin-resistant phenotypes. Am J Physiol Endocrinol Metab 2013;305:E1292-E1298.
10. Raghow R. Bariatric surgery-mediated weight loss and its metabolic consequences for type-2 diabetes. World J Diabetes 2013;4:47-50.
11. Jackness C, Karmally W, Febres G, et al. Very low-calorie diet mimics the early mobilization of pancreatic β-cells. Nat Rev Endocrinol 2013;9:615-623.
12. Lee YS, Jun HS. Anti-diabetic actions of glucagon-like peptide-1 on pancreatic beta-cells. Metabolism 2014;63:9-19.
13. Jimenez A, Mari A, Casamitjana R, Lacy A, Ferrannini E, Vidal J. GLP-1 and glucose tolerance after sleeve gastrectomy in morbidly obese subjects with type 2 diabetes. Diabetes 2014;63:3372-3377.
14. Wood GC, Gerhard GS, Benotti P, et al. Preoperative use of incretins is associated with increased diabetes remission after RYGB surgery among patients taking insulin: A retrospective cohort analysis. Ann Surg 2014;261:125-128.
15. Rahier J, Giquet Y, Goebbelns RM, Sempoux C, Henquin JC. Pancreatic β-cell mass in European subjects with type 2 diabetes. Diabetes 2008;57:1105-1112.
16. Lee YS, Jun HS. Anti-diabetic actions of glucagon-like peptide-1 on pancreatic beta-cells. Metabolism 2014;63:9-19.
17. Khanna et al.