Regioselective Radical Reaction of Monometallofullerene $Y@C_{2v}(9)$-C_{82} With N-arylbenzamidine Mediated by Silver Carbonate

Jia Li¹, Pengyuan Yu², Peng Lai¹, Jiajun Zou¹, Zhe Liu¹, Xiuguang Yi¹, Wei Wang¹ and Changwang Pan¹,²*

¹ School of Chemistry and Chemical Engineering, Jinggangshan University, Ji’an, China, ² State Key Laboratory of Materials Processing and Die & Mold Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, China

A novel radical reaction of monometallofullerene $Y@C_{2v}(9)$-C_{82} with N-arylbezamidine (1) is successfully conducted through catalysis with silver carbonate. The high-performance liquid chromatographic and mass spectrum results demonstrate that the reaction is highly regioselective to afford only one monoadduct (2) with an imidazoline group added on C_{82} cage, and computations through density functional theory reveal the addition group is attached to a specific [5, 6]-bond (C20-C76) near the Y atom. Furthermore, the analysis of pyramidalization angle of the carbon atoms demonstrates the geometry of carbon cage is in favor of the regioselective formation of isomer ($20, 76$).

Keywords: metallofullerene, radical reaction, silver carbonate, functionalization, imidazoline

INTRODUCTION

Exohedral chemical functionalization of fullerenes has a great significance toward their potential applications in photovoltaic and biomedical fields. To date, a large number of reactions, including but not limited to Bingle–Hirsch reactions, Prato reactions, Diels–Alder reactions, and radical reactions, have been successfully performed to modulate their chemical and physical properties (Hirsch and Brettreich, 2005). Among them, of particular interest are the radical reactions of fullerenes mediated by transition-metal salts (Tzirakis and Orfanopoulos, 2013), and many catalysts, such as Mn(OAc)_3, $\text{Fe(ClO}_4)_3$ (Zhang et al., 2003; Wang et al., 2004; Li et al., 2010a,b, 2012; Liu et al., 2011), Pb(OAc)_4 (Chai and Lautens, 2009), Cu(OAc)_2 (Wang and Li, 2005), CoCl_2 (Lu S. et al., 2011), NiCl_2 (Constable et al., 2012), CuCl_2 (Yang et al., 2013; Sharma et al., 2018), and FeCl_3 (Hashiguchi et al., 2013, 2014), have been utilized to produce radicals of fullerenes to promote the radical reactions taking advantage of their excellent catalytic activities. Because of the high efficiency in constructing multiple new chemical bonds, thus leading to derivatives with various structures in one step, this class of reactions becomes more and more important in functionalization of fullerenes.

On the other hand, endohedral metal doping of the fullerene cages can generate a novel class of hybrid molecules named endohedral metallofullerenes (EMFs) (Lu et al., 2012; Popov et al., 2013; Yang et al., 2017; Bao et al., 2018). The interaction between the internal metallic unit and fullerene carbon cages renders the chemistry of EMFs more complicated but also intriguing compared to that of empty fullerenes (Lu X. et al., 2011; Maeda et al., 2016). As a result, the amount of metal-mediated reactions of EMFs lags far behind those of fullerenes and the regioselectivity is just satisfactory.
Li et al. Silver Carbonate-Mediated Reaction of Metallofullerene

FIGURE 1 | (A) Scheme of the reaction of Y@C_{2v}(9)-C₈₂ with 1 and (B) analytical HPLC profiles of the reaction mixture of Y@C_{2v}(9)-C₈₂ and 1 probed at different time. HPLC condition: Buckyprep column (Φ4.6 mm × 250 mm); 20 µL injection volume; 1.0 mL/min toluene flow; room temperature; 330 nm detecting wavelength.

In this work, we found that silver carbonate is an efficient catalyst to promote the reaction of Y@C_{2v}(9)-C₈₂ with N-arylbenzamidine. Remarkably, the reaction regioselectively affords only one derivative as revealed by high-performance liquid chromatography (HPLC) and mass spectrometry (MS), and the density functional theory calculations predict the addition is preferentially occurred on a specific [5, 6]-bond with large pyramidalization angle near the Y atom.

MATERIALS AND METHODS

The solvent toluene was freshly distilled with sodium prior to usage. The reagent Ag₂CO₃ was obtained commercially, and N-arylbenzamidine was synthesized according to a previous report, and the structure was determined through ¹H NMR (Supplementary Figure 5) (Koutentis and Mirallas, 2010). Y@C_{2v}(9)-C₈₂ was produced with arc-discharge method and isolated with HPLC. Analytical and preparative HPLC measurements were conducted on LC SPD-16 and LC 908 machines (Japan Analytical Industry Co., Ltd.), respectively. Matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) MS was measured on a MICROFLEX spectrometer (Bruker Daltonics Inc., Germany), using 1,1,4,4-tetraphenyl-1,3-butadiene as matrix in a positive ion linear mode.

Y@C_{2v}(9)-C₈₂ and all possible isomers formed by the addition of 1 on non-equivalent C-C bonds, were constructed and optimized at HF level of theory with 3-21G for C, H, and N atoms and LANL2DZ for Y. Among them, low-lying isomers were chosen out and reoptimized using B3LYP (Lee et al., 1988; Becke, 1993) functional with 6-31G(d) for non-metals and SDD for Y. All computations were performed with Gaussian 09 Program (Frisch et al., 2013), and numbering of carbons in C_{2v}(9)-C₈₂ cage was given in Supplementary Figure 1 according to CAGE code (Brinkmann et al., 2010).

RESULTS AND DISCUSSION

In a typical reaction, 5.0 mg (4.7 µmol) of Y@C_{2v}(9)-C₈₂ and 18.4 mg (20 eq) of N-arylbenzamidine (1) were dissolved in 25 mL of anhydrous toluene, and 13.0 mg (10 eq) of Ag₂CO₃ was added into the solution, and then the mixture was heated at reflux under argon (Figure 1A). The reaction process was monitored through analytical HPLC, and the profiles are shown in Figure 1B. At the beginning of the reaction, two peaks corresponding to the solvent and pristine metallofullerene were detected at 3.6 and 35.4 min, respectively. A new peak at 12.9 min increased along with the decreasing amount of metallofullerene, and the reaction was terminated because the

with the generation of two or more isomers. Typically, Gu et al. synthesize a series of water-soluble multiadducts of Tb@C₈₂ with Cu(MeCN)₄PF₆ as a catalyst in 2002 (Feng et al., 2002), and subsequently Dorn et al. utilized manganese(III) acetate to trigger the radical reaction of Sc₃N@C₈₀ and obtained two isomers methano monoadducts in 2007 (Feng et al., 2002; Shu et al., 2007). The rare reports about this kind of reactions can be understood by considering the direct reaction of EMFs with metallic salts such as CuCl₂, NiCl₂, and FeCl₃, which forms solid precipitate instead of target reactants (Stevenson et al., 2009, 2014; Stevenson and Rottinger, 2013; Wang et al., 2017), and thus it is still of high interest and challenge to seek for the catalyst with appropriate activity and the regioselectivity for the metal-mediated reactions of EMFs.
peak almost keeps constant after 12 h. The above HPLC results demonstrate that the reaction possesses moderate reactivity and high selectivity. Besides, some silver salts such as silver nitrate, silver acetate, and silver trifluoroacetate, were applied to replace the catalyst silver carbonate; however, the results monitored by HPLC show no product was detected, but decreasing amount of the pristine metallofullerene, which is probably because Y@C_{2v}(9)-C_{82} directly reacts and forms precipitates with these salts, impeding their mediated reaction between metallofullerene and 1.

The reaction mixture was then concentrated and subjected to further HPLC separations (Supplementary Figure 1), and 3.4 mg of pure compound 2 as black solids was obtained, and 2 mg of Y@C_{2v}(9)-C_{82} was recollected. A large portion (up to 95%) of consumed EMF was converted to 2, even much excess amounts of 1 were added, indicating the high regioselectivity of this catalytic reaction. The purified 2 is characterized through the MALDI-TOF MS, and the result shows only one peak at m/z 1267 was detected (Figure 2). It demonstrates that a group with 194 of molecular weight was added on the carbon cage, which is similar to the results of the reaction of C_{60} with 1 affording an imidazoline monoadduct (He et al., 2013). Consequently, it is speculated that 2 should be an imidazoline monoadduct too.

Based on the above experimental results and previous reports about metal-mediated fullerene reactions (He et al., 2013; Aghabali et al., 2016; Chao et al., 2016), a plausible reaction mechanism for this silver carbonate-catalyzed reaction
is proposed in Figure 3. At first, N-arylbenzimidamide 1 directly reacts with Ag$^+$, which generates 3, and then a radical species 4 is obtained through homolytic cleavage of the nitrogen silver bond. Second, the radical addition of Y@C$_{2v}$(9)-C$_{82}$ will produce intermediate fullerenyl radical 5, which may also be formed by the homolytic addition of 3 to metallofullerene, and then the intramolecular cyclization of 5 produces radical species 6. Finally, the intermediate 6 is oxidated by Ag$^+$ and loses the extra H$^+$, affording the imidazoline derivative 2.

Theoretical calculations were conducted to further determine the accurate structure and addition site of 2. There are in total 35 non-equivalent bonds in the cage when C$_{2v}$ symmetry was taken into consideration, and all the corresponding isomers of 2 named according to the addition bonds were optimized, and the relative energies are given in Supplementary Table 1. Three low-lying isomers were reoptimized using B3LYP functional with SDD basis for Y and 6-31G(d) for non-metal atoms; more accurate relative energies are obtained and given in Figure 4. The results show the energy of isomer (20, 76) is far lower than those of other isomers (63, 77) and (56, 41) with 5.9 and 7.6 kcal/mol, respectively, indicating the reaction should prefer to occur at the [5, 6]-bond near the internal metal atom. Besides relative energies, stability of isomer (20, 76) can also be disclosed by inspection on its spin density and singly occupied molecular orbital (SOMO), which show the spin density and SOMO of isomer (20, 76) are not concentrated on some specific carbons but evenly distributed over the whole cage (Supplementary Figure 3).

Furthermore, the kinetic stability of isomer (20, 76) can also be rationalized from the pyramidalization angles of carbon atoms on the C$_{2v}$(9)-C$_{82}$ cage, which are strongly dependent on the cage geometry. In general, the addition reactions of fullerenes preferentially occur at the carbon atoms with relative high spin population and/or large POAV [the p-orbital axis vector ($\theta_{\Delta \pi} - 90^\circ$)] values. The B3LYP predicated spin density of Y@C$_{2v}$(9)-C$_{82}$ and spin population condensed on each carbon atom are given in Supplementary Figure 4. The spin density distributed over the cage quite evenly and spin population of carbon atoms are also relatively small (ranges from -0.027 to 0.082), which is in agreement with the previous report (Bao et al., 2016). As a consequence, there are no carbon atoms of Y@C$_{2v}$(9)-C$_{82}$ possessing the distinct advantage of radical to regioselectively react with 1. In contrast, as can be seen in Figure 5, the carbon atoms located near the Y atom possess evidently higher POAV values than others. In fact, the carbon atom C76 has largest POAV value up to 11.6$^\circ$, and thus, C76 is certainly more reactive than other cage carbons to release its steric strain. After linking with C76, the adjacent carbon atom C20 has higher POAV value (9.7) than the other two adjacent carbon atoms C75 (5.3) and C77 (5.3), and thus, the addition group makes a second bond with C20 to form a [5, 6] monoadduct. Accordingly, the above results reveal the geometry of the carbon cage plays a role on the regioselective formation of the isomer (20, 76).
CONCLUSION

In summary, a novel derivative 2 of monometallofullerene was synthesized via a highly regioselective reaction of 1 catalyzed by silver carbonate. Studies of MS and theoretical calculations disclose that an imidazoline group is attached to [5, 6]-bond near the metal atom forming a monoaduct. Additionally, the analysis of POAV values on carbon cages demonstrates that the geometry of carbon cage is conductive to regioselectively afford the isomer (20, 76). We believe the successful functionalization of metallofullerene mediated by transition metal will broaden the approach to chemistry of EMFs, which may find applications in photovoltaic and biomedical fields.

DATA AVAILABILITY STATEMENT

All datasets generated for this study are included in the article/Supplementary Material.

REFERENCES

Aghabali, A., Jun, S., Omlstead, M. M., and Balch, A. L. (2016). Silver(I)-mediated modification, dimerization, and polymerization of an open-cage fullerene. J. Am. Chem. Soc. 138, 16459–16465. doi: 10.1021/jacs.6b10394

Bao, L., Pan, C., Salaña, Z., Uhlík, F., Akasaka, T., and Lu, Y. (2016). Isolation and crystallographic characterization of the labile isomer of Y@C82 cocystallized with Ni(OEP): unprecedented dimerization of pristine metallofullerenes. Angew. Chem. Int. Ed. 55, 9234–9238. doi: 10.1002/anie.201604121

Bao, L., Peng, P., and Lu, X. (2018). Bonding inside and outside fullerene cages. Acc. Chem. Res. 51, 810–815. doi: 10.1021/acs.accounts.8b00014

Becke, A. D. (1993). Density-functional thermochemistry. III. The role of exact exchange. J. Chem. Phys. 98, 5648–5652. doi: 10.1063/1.464913

Brinkmann, G., Delgado-Friedrichs, O., Liskern, S., Peeters, A., and Van Cleemput, N. (2010). CaGe: a virtual environment for studying some special classes of plane graphs: an update. Match Commun. Math. Comput. Chem. 63, 533–552. doi: 10.1007/s10985-009-9124-6

Chai, D. I., and Lautens, M. (2009). Tandem Pd-catalyzed double C–C bond coupling. J. Am. Chem. Soc. 131, 5562–5563. doi: 10.1021/ja9002578

Hashiguchi, M., Inada, H., and Matsuo, Y. (2013). Solution-phase synthesis of dumbbell-shaped C220 by FeCl3-mediated dimerization of C60. Carbon 61, 418–422. doi: 10.1016/j.carbon.2013.04.101

Hashiguchi, M., Ueno, T., and Matsuo, Y. (2014). FeCl3-mediated retro-reactions of fullerene derivatives to C60. Fullerenes Nanotubes Carbon Nanostruct. 22, 845–852. doi: 10.1080/1536383X.2012.742429

He, C.-L., Liu, R., Li, D.-D., Zhu, S.-E., and Wang, G.-W. (2013). Synthesis and functionalization of [60]Fullerene-fused imidazolines. Org. Lett. 15, 1532–1535. doi: 10.1021/o100319w

He, C.-L., Liu, R., Li, D.-D., Zhu, S.-E., and Wang, G.-W. (2013). Synthesis and functionalization of [60]Fullerene-fused imidazolines. Org. Lett. 15, 1532–1535. doi: 10.1021/o100319w

AUTHOR CONTRIBUTIONS

Experiments conceived and designed and the paper written by CP. Experiments and calculations performed by CP, JL, and PY. WW, XY, PL, JZ, and ZL analyzed the data. All authors contributed to the article and approved the submitted version.

FUNDING

This study was supported by National Nature Science Foundation of China NSFC (Nos. 21901090, 21802057, and 21965015) and Jiangxi Provincial Department of Education’s Item of Science and Technology (No. 180590).

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found online at: https://www.frontiersin.org/articles/10.3389/fchem.2020.593602/full#supplementary-material
Shu, C., Cai, T., Xu, L., Zuo, T., Reid, J., Harich, K., et al. (2007). Manganese(III)-catalyzed free radical reactions on trimetallic nitride endohedral metallofullerenes. *J. Am. Chem. Soc.* 129, 15710–15717. doi: 10.1021/ja0768439

Stevenson, S., Mackey, M. A., Pickens, J. E., Stuart, M. A., Confait, B. S., and Phillips, J. P. (2009). Selective complexation and reactivity of metallic nitride and oxometallic fullerences with Lewis acids and use as an effective purification method. *Inorg. Chem.* 48, 11685–11690. doi: 10.1021/ic9017147

Stevenson, S., and Rottinger, K. A. (2013). CuCl₂ for the isolation of a broad array of endohedral fullerences containing metallic, metallic carbide, metallic nitride, and metallic oxide clusters, and separation of their structural isomers. *Inorg. Chem.* 52, 9606–9612. doi: 10.1021/ic401347b

Stevenson, S., Rottinger, K. A., Fahim, M., Field, J. S., Martin, B. R., and Arvola, K. D. (2014). Tuning the selectivity of Gd₃N cluster endohedral metallofulleren reactions with Lewis acids. *Inorg. Chem.* 53, 12939–12946. doi: 10.1021/ic502024a

Tzirakis, M. D., and Orfanopoulos, M. (2013). Radical reactions of fullerences: from synthetic organic chemistry to materials science and biology. *Chem. Rev.* 113, 5262–5321. doi: 10.1021/cr300475r

Wang, G.-W., and Li, F.-B. (2005). Cu(II) acetate- and Mn(III) acetate-mediated radical reactions of [60]fullerene with ketonic compounds. *Org. Biomol. Chem.* 3, 794–797. doi: 10.1039/b416756b

Wang, G.-W., Zhang, T.-H., Cheng, X., and Wang, F. (2004). Selective addition to [60]fullerene of two different radicals generated from Mn(III)-based radical reaction. *Org. Biomol. Chem.* 2, 1160–1163. doi: 10.1039/b317084e

Wang, Z., Omachi, H., and Shinohara, H. (2017). Non-chromatographic purification of endohedral metallofullerenes. *Molecules* 22,718. doi: 10.3390/molecules22050718

Yang, H.-T., Liang, X.-C., Wang, Y.-H., Yang, Y., Sun, X.-Q., and Miao, C.-B. (2015). CuCl₂-Mediated reaction of [60]fullerene with amines in the presence or absence of dimethyl acetylenedicarboxylate: preparation of fulleropyrroline or aziridinofullerene derivatives. *J. Org. Chem.* 78, 11992–11998. doi: 10.1021/jo502043p

Yang, S., Wei, T., and Jin, F. (2017). When metal clusters meet carbon cages: endohedral clusterfullerences. *Chem. Soc. Rev.* 46, 5005–5058. doi: 10.1039/C6CS00498A

Zhang, T.-H., Lu, P., Wang, F., and Wang, G.-W. (2003). Reaction of [60]fullerene with free radicals generated from active methylene compounds by manganese(III) acetate dihydrate. *Org. Biomol. Chem.* 1, 4403–4407. doi: 10.1039/b309939e

Conflict of Interest: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Copyright © 2020 Li, Yu, Lai, Zou, Liu, Yi, Wang and Pan. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.