Binding in light nuclei: Statistical NN uncertainties vs Computational accuracy

R. Navarro Pérrez, A. Nogga, J. E. Amaro and E. Ruiz Arriola

1 Nuclear and Chemical Science Division, Lawrence Livermore National Laboratory Livermore, California 94551, USA
2 Forschungszentrum Jülich, Institut für Kernphysik (Theorie), Institute for Advanced Simulation, Jülich Center for Hadron Physics and JARA - High Performance Computing, D-52425 Jülich, Germany.
3 Departamento de Física Atómica, Molecular y Nuclear and Instituto Carlos I de Física Teórica y Computacional, Universidad de Granada E-18071 Granada, Spain
E-mail: navarroperez1@llnl.gov, a.nogga@fz-juelich.de, amaro@ugr.es, earriola@ugr.es

Abstract. We analyse the impact of the statistical uncertainties of the the nucleon-nucleon interaction, based on the Granada-2013 np-pp database, on the binding energies of the triton and the alpha particle using a bootstrap method, by solving the Faddeev equations for \(^3\)H and the Yakubovsky equations for \(^4\)He respectively. We check that in practice about 30 samples prove enough for a reliable error estimate. An extrapolation of the well fulfilled Tjon-line correlation predicts the experimental binding of the alpha particle within uncertainties.

Nuclear structure \textit{ab initio} calculations are notoriously difficult and computationally demanding and have thus so far been limited to light nuclei, although recently, these calculations have been extended to more complex systems [1, 2, 3]. Besides giving important input for applications such as astrophysically relevant nuclear reactions, these calculations are important tests of current nuclear interactions. To this aim, not only the result itself is important but also the uncertainty (see e.g. the special issue [4].) From a theoretical point of view and the inferred predictive power uncertainties can be grouped into three main categories

- The input information: the basic nucleon-nucleon (NN) interaction should describe a relevant piece of the NN scattering data and the simplest two-body bound state: the deuteron. We will call this the statistical uncertainty for reasons to be justified below.
- The solution method: the way the multinucleon problem is solved once the NN interaction is represented. This requires some sufficiently high precision which makes computations costly. We will call these the numerical uncertainty.
- The representation problem: the way the input NN data are represented theoretically. Normally potentials are used, but the form of the potential in the short range region, below \(2 - 3\) fm, is generally not universal, and they are often tailored to make the solution of the many body problem as simple as possible. We will call these the systematic uncertainty.

1 Presented by RNP at Workshop for young scientists with research interests focused on physics at FAIR 14-19 February 2016 Garmisch-Partenkirchen (Germany)
2 This includes in particular any theoretically based expansion of the interaction rooted or inspired by QCD such as chiral perturbation theory or large \(N_c\) expansions were some renormalization scheme dependence is unavoidable.

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

Published under licence by IOP Publishing Ltd
Figure 1. (Color online) Phaseshift statistical error bands (in degrees) for the δ-shell potential [5]. The error bands on the first two columns where obtained using a MonteCarlo family of δ-shell potentials where potential parameters are random numbers following the multivariate normal distribution determined by the original fit covariance matrix. The columns use a sample size of \(M = 10 \) (left column) and \(M = 25 \) (middle column). The right column is the error bar obtained from the Bootstrap to experimental data presented in [6] with \(M = 1000 \). All phase shifts are np unless otherwise indicated.

Assuming that these sources of error are independent of each other, we expect the total uncertainty to be given, as usual, by

\[
\Delta E^2 = \Delta E_{\text{stat}}^2 + \Delta E_{\text{num}}^2 + \Delta E_{\text{syst}}^2
\]

Clearly, the total error is dominated by the largest one. So, it makes sense either to reduce the largest source of uncertainty or to tune all uncertainties to a similar level. This sets the limit of predictive power in \textit{ab initio} calculations. While numerical accuracy has been a goal in itself in few-body calculations, the physical accuracy is given by all possibles sources of uncertainties.

In this talk, we discuss the relation between the statistical uncertainties stemming from the finite experimental accuracy of NN scattering data [7, 8, 9, 10] and the currently available numerical accuracy with which the few body problem can be solved. A pioneering work was carried out in [11] where the so-called statistical regularization was used to evaluate the impact of errors on the binding energies of the \(A = 3, 4 \) systems. The analysis was based on the Paris potential which has \(\chi^2/\text{d.o.f.} \sim 2 \).

The recent Granada-2013 3σ-self consistent database comprises 6713 np and pp scattering data below \(E_{\text{LAB}} = 350\text{MeV} \) and has a \(\chi^2/\text{d.o.f.} = 1.04 \) [12, 5]. The procedure to propagate
uncertainties is based in spirit on the bootstrap analysis proposed in [6] where the 6713 np and pp scattering data are randomized and multiple ($M = 1020$) χ²-fits yield a multivariate distribution of fitting parameters. This provides a sample enabling a random evaluation of any observable. We monitor the size M of the needed sample by looking for statistical stability of the output. The result for the errors in the corresponding phase shifts is compared in Fig. 1 for different Monte Carlo generated sample sizes following a gaussian multivariate distribution dictated by the parameter’s covariance matrix. As we see $M = 25$ already gives a result rather close to the full bootstrap method.

We have built a simple and smooth gaussian potential which can be used in most few- and many-body calculational schemes and which provides an acceptable χ^2/d.o.f. $= 1.06$ [13], so it can be considered to be statistically equivalent to the original delta-shells potential [8, 5].

As we will put forward here, and in agreement with previous findings using either the hyperspherical harmonics (HSH) method for $A = 3$ [14] and no-core full configuration shell model calculations [15], these estimates already suggests that the numerical accuracy is close to optimal given the statistical uncertainty. We will use here the Faddeev equations for the $A = 3$ case and the Yakubovsky equations for the $A = 4$ situation. As a first step we will consider only NN forces explicitly and leave out 3N and 4N forces for future developments. The multiple evaluations for the triton are shown in Fig. 2. As in [14] we bin the distribution according to the numerical accuracy, $\Delta E_t^{\text{num}} \sim 1\text{keV}$.

In a Monte Carlo approach many variations of the parameters produce irrelevant changes. A principal component analysis looks for eigenvalues and eigenvectors of the computed observable and provides valuable information on the most relevant changes of the input parameters but has seldomly been investigated in nuclear physics (see however Ref. [16] and references therein). In Fig. 3, we show the results of such an analysis applied to the coefficients of the gaussian potential of Ref. [8] implemented in a Monte Carlo fashion. We found that the number of principal components to obtain most of the uncertainty in E_t is around 10. This indicates that regarding ΔE_t^{stat} a fit to the NN scattering data base could be done with less parameters, if the fit were to be designed in terms of relevant parameters only.

The tiny error band suggests that the discrepancy between our number $E_t^{\text{th}} = -7.6669 \pm 0.0124\text{MeV}$ and the $E_t^{\text{exp}} = -8.4820 \pm 0.0001\text{MeV}$ has to be sought in missing three-nucleon forces (3NFs). It is well known that 3NFs give an important contribution to nuclear bindings [17, 18]. This raises the question of how much of this statistical uncertainty will be absorbed into variations in the parameters of the 3NFs. In order to implement some 3N information, we invoke the empirical linear correlation displayed by the Tjon line [17] 4.

In the Monte Carlo method, any choice of parameters p determines a value of the triton binding energy. Given the variations of the triton binding energy, we expect, when determining the α particle binding energy, a Tjon-like linear correlation of the form $E_\alpha(p) = aE_t(p) + b$. The values found are $a = 4.7(1)$ and $b = 11.4$. Thus we expect a Tjon-like correlation would give $\Delta E_\alpha^{\text{stat}} = 4.7(1) \times \Delta E_t^{\text{stat}} = 50(5)\text{keV}$ which is mainly determined by the channels involving relative s-waves. In Fig. 4, we show our results for the ^3H and ^4He binding energy. The yellow band shows the fit including the uncertainty. The error bars show the numerical uncertainty. Whereas the variation of the binding energies is rather large, the linear correlation indicates that most of this variation will be eventually absorbed into a properly adjusted 3NFs. We take the band width as an indication for the remaining error induced by the uncertainty of NN data. As one can see, the band width and the numerical errors are comparable. Therefore, we deduced

3 One of the advantages of the present method over the HSH expansion employed in [14] is that the determination of avoided crossings are difficult to identify rigorously; an effect which has to be assisted by visual inspection and, if mistaken, has a repulsive effect. This explains the longer tails of the triton binding energies distributions. We thank Eduardo Garrido for noting this.

4 See [19, 20] for a Similarity Renormalization Group analysis yielding the simple formula $E_\alpha = 4E_t - 3E_d$.

°
that this uncertainty is comparable to the statistical one. Strong efforts to increase the numerical accuracy are therefore not desired. For this analysis, we used a moderate sample of only $M=30$, the smallness of which is justified from the analysis of Fig. 2, as far as uncertainty estimates are concerned. In order to have a tighter predicted extrapolated band one would need to reduce the numerical error in E_t in harmony with the Tjon slope $\Delta E_\alpha^{num} \sim 4.7\Delta E_t^{num} \sim 5$keV. Further details will be presented in a forthcoming publication.
Figure 4. (Color online) Tjon type analysis of the \(^4\text{He}\) binding energy vs the \(^3\text{H}\) binding energy. We show the fit to the sample of \(N = 30\) Monte Carlo generated binding energies both in a small scale (left panel) and extrapolated in a larger scale (right panel) compared with the experimental point (blue dot). We take \(\Delta E_{\text{num}} = 1\ \text{keV}\) and \(\Delta E_{\alpha\text{num}} = 20\ \text{keV}\).

Acknowledgements
This work is supported by Spanish DGI with Feder funds (grant FIS2014-59386-P) and Junta de Andalucía (grant FQM225), the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract No. DE-AC52-07NA27344, the U.S. Department of Energy, Office of Science, Office of Nuclear Physics under Award No. DE-SC0008511 (NUCLEI SciDAC Collaboration). The numerical calculations have partly been performed on JUQUEEN, JUROPA and JURECA of the JSC, Jülich, Germany.

References
[1] Quaglioni S, Hupin G, Calci A, Navratil P and Roth R 2015 (Preprint 1509.09009)
[2] Meissner U G 2014 Nucl. Phys. News 24 11–15 (Preprint 1505.06997)
[3] Dytrych T, Maris P, Launey K D, Draayer J P, Vary J P, Langr D, Saule E, Caprio M A, Catalyurek U and Sosonkina M 2016 (Preprint 1602.02965)
[4] Ireland D and Nazarewicz W 2015 (Editors) Journal of Physics. G, Nuclear and Particle Physics 42
[5] Navarro Pérez R, Amaro J E and Ruiz Arriola E 2013 Phys. Rev. C88 064002
[6] Navarro Pérez R, Amaro J E and Ruiz Arriola E 2014 Phys. Lett. B738 155–159
[7] Navarro Pérez R, Amaro J E and Ruiz Arriola E 2012 (Preprint 1202.6624)
[8] Navarro Pérez R, Amaro J E and Ruiz Arriola E 2013 Phys. Lett. B724 138–143
[9] Navarro Pérez R, Amaro J E and Ruiz Arriola E 2012 PoS QNP2012 145
[10] Navarro Pérez R, Amaro J E and Ruiz Arriola E 2016 (Preprint 1601.08220)
[11] Adam R, Fiedeldey H, Sofianos S and Leeb H 1993 Nuclear Physics A 559 157–172
[12] Navarro Perez R, Amaro J and Ruiz Arriola E 2013 Granada Database http://www.ugr.es/~amaro/nndatabase/ accessed: 2016-04-04
[13] Navarro Pérez R, Amaro J E and Ruiz Arriola E 2014 Phys. Rev. C89 064006
[14] Navarro Pérez R, Garrido E, Amaro J E and Ruiz Arriola E 2014 Phys. Rev. C90 047001
[15] Navarro Pérez R, Amaro J E, Ruiz Arriola E, Maris P and Vary J P 2015 Phys. Rev. C92 064003
[16] Al-Sayed A 2014 Nucl. Phys. A933 154–164
[17] Hammer H W, Nogga A and Schwenk A 2013 Rev. Mod. Phys. 85 197
[18] Kalantar-Nayestanaki N, Epelbaum E, Messchendorp J G and Nogga A 2012 Rept. Prog. Phys. 75 016301
[19] Ruiz Arriola E, Szpigel S and Timoteo V S 2014 Few Body Syst. 55 971–975
[20] Ruiz Arriola E, Szpigel S and Timoteo V S 2016 (Preprint 1601.02360)