Research Article

Feng Han, Wengui Xu*

Correlation between MTHFR 677C > T polymorphism and response of pemetrexed-based chemotherapy in advanced NSCLC: A meta-analysis

https://doi.org/10.1515/pteridines-2020-0026
received March 6, 2021; accepted April 26, 2021

Abstract

Objective – The aim of this study was to investigate the correlation between MTHFR 677C > T polymorphism and response of pemetrexed-based chemotherapy in advanced non-small-cell lung cancer (NSCLC) by pooling the open published relevant studies.

Methods – Clinical studies associated with MTHFR 677C > T polymorphism and response of pemetrexed-based chemotherapy in advanced NSCLC were systematically searched in databases of Pubmed, Embase, Cochrance Library, China national knowledge infrastructure (CNKI) and Wanfang. The correlation was expressed by odds ratio (OR) and corresponding 95% confidence interval (95% CI). The publication bias of the included studies was evaluated through Begg’s funnel plot and Egger’s line regression test.

Results – Ten prospective clinical studies relevant to MTHFR 677C > T polymorphism and response of pemetrexed-based chemotherapy in NSCLC were included in the present meta-analysis. The pooled results indicated that the partial response in NSCLC patients with TT or CT genotype was inferior to CC genotype in a dominant gene model (TT + CT vs CC) (OR = 0.16, 95% CI: 0.06–0.41, P = 0.001). NSCLC cases with T genotype were inferior to C genotype in the objective response rate treated with pemetrexed-based chemotherapy for dominant (OR = 0.28, 95% CI: 0.18–0.45, P = 0.001), recessive (OR = 0.43, 95% CI: 0.19–0.94, P = 0.03) and homozygous models (OR = 0.30, 95% CI: 0.13–0.67, P = 0.003). However, there was no statistical difference in disease control rate, progressive disease between different genotypes of different gene models (P_all > 0.05).

Conclusion – The pemetrexed-based chemotherapy response was decreased in NSCLC cases with T genotype, which can be applied as a potential pemetrexed-based chemotherapy response marker.

Keywords: MTHFR, polymorphism, chemotherapy response, pemetrexed, NSCLC, meta-analysis

1 Introduction

Lung cancer, especially NSCLC, is known as the leading cause of tumor-associated mortality globally. It was estimated that 131,880 new lung cancer cases will be diagnosed in the year 2021, which accounts for almost one-quarter of all cancers diagnosed in the same year [1]. About 75–80% of NSCLC cases were at advanced stages and lost the opportunity of operation when was first diagnosed. Most of the patients who receive tumor resection also need adjuvant chemotherapy after operation except for stage Ia NSCLC cases. Therefore, chemotherapy is one of the major treatment methods for NSCLC. Pemetrexed-based chemotherapy is extensively applied clinically in NSCLC especially for lung adenocarcinoma [2–4]. Pemetrexed is a multitarget folate antagonist, which has been proved to be effective in the first-line treatment, second-line treatment and maintenance treatment of advanced NSCLC [5]. It plays an antitumor role by inhibiting the activities of several key enzymes in the folate metabolism pathway. MTHFR is a key enzyme in folate metabolism, which had been reported to be associated with the response of pemetrexed-based chemotherapy for NSCLC [6]. 677C > T polymorphism of MTHFR gene is a main single-nucleotide polymorphism, which is considered to be correlated with the pemetrexed-based chemotherapy response [7]. However, the correlation between MTHFR677C > T polymorphism and pemetrexed-based chemotherapy response is not conclusive. Therefore, we performed this meta-analysis by pooling the relevant open published studies to further investigate the correlation.
2 Methods

2.1 Search of relevant studies in the electronic databases

Prospective clinical studies relevant to the correlation between MTHFR 677C > T polymorphism and response of pemetrexed-based chemotherapy in advanced NSCLC were systematically searched in the electronic databases of Pubmed, Embase, Cochrance Library, CNKI and Wanfang. The prospective clinical studies on MTHFR 677C > T polymorphism and response of pemetrexed-based chemotherapy in advanced NSCLC published in English or Chinese were electronically searched through the following text words: pemetrexed, pemetrexed disodium, disodium, alimta, MTHFR, methylenetetrahydrofolate reductase, methylene-tetrahydrofolate reductase (NADPH), methylene-THF reductase (NADPH), 5,10-methylene tetrahydrofolate reductase (NADPH), methylene tetrahydrofolate reductase, tetrahydrofolate reductase and methylene. The references of the included studies were also further screened to identify the potentially suitable publications, which were not identified in the electronic databases.

2.2 Inclusion and exclusion criteria

The inclusion criteria of the studies were as follows: (1) clinical studies relevant to MTHFR 677C > T polymorphism and response of pemetrexed-based chemotherapy; (2) the patients included in the original publication should be diagnosed with NSCLC; (3) genotype of CC, CT, and TT frequency of the included cases can be extracted or calculated from the original study; (4) the genotyping methods were PCR or Taqman; (5) studies were published in English or Chinese; (6) the treatment response of pemetrexed-based chemotherapy in NSCLC of CC, CT and TT genotypes can be extracted or calculated from the original study. The exclusion criteria of the studies were as follows: (1) case report or literature review studies; (2) studies on animals; (3) studies published in other languages not in English or Chinese; (4) studies...
about small cell lung cancer; (5) genotype and/or treatment response cannot be extracted or calculated from the original study.

2.3 Data extraction from the original study

The studies were first screened by two reviewers (HF and XWG) independently. The publications were included according to the inclusion and exclusion criteria. When there was a controversy for inclusion or exclusion criteria of a certain study, the discussion was first adapted and then a third reviewer was consulted. The main characteristics of the included studies such as the author name, year of publication, region, genotyping methods and outcomes were extracted and shown in a summary table. The data of TT, CT and CC genotype frequency, treatment response such as complete response, partial response, objective response rate, disease control rate and progressive disease were extracted or calculated from each original included study and cross-checked by two reviewers.

2.4 Studies quality evaluation

The general quality of the 10 included studies was evaluated by Newcastle-Ottawa Scale (NOS). The highest score of NOS is 9 points. The high, moderate, and low quality of the original studies were considered as score ≥6 points, 3–5 points and <3 points [8].

2.5 Publication bias evaluation

Begg’s funnel plot and Egger’s line regression test were applied for publication bias evaluation for the correlation between \(\text{MTHFR} \, 677C \, > \, T \) polymorphism and response of pemetrexed-based chemotherapy in advanced NSCLC.

2.6 Statistical analysis

Stata/SE 11.0 (StataCorp LP, http://www.stata.com) statistical software was used for the data analysis. The correlation between \(\text{MTHFR} \, 677C \, > \, T \) polymorphism and
response of pemetrexed-based chemotherapy in advanced NSCLC was demonstrated by the odds ratio (OR) and its 95% CI. The statistical heterogeneity across the 10 included publications was evaluated by I^2 text. Two-tailed $P < 0.05$ was considered as statistically significant.

Ethical approval: The conducted research is not related to either human or animal use.

3 Results

3.1 Main characteristics of the included original studies

Ten prospective studies [6,7,9–16] relevant to MTHFR 677C > T polymorphism and response of pemetrexed-based

Study	Region	Sample size	CC	CT	TT			
Tiseo et al. 2012	Italy	208	95	92	21			
ORR			28	7	0			
PFS			3.4	2.7–4.1	5.4	3.6–7.2	NA	
OS			8.5	6.8–10.2	16.4	7.7–25.0	NA	
Jung et al. 2013	South Korea	90	24	47	19			
ORR			5	9	0			
DCR			17	28	11			
Li et al. 2013	China	45	17	21	7			
PFS			5.6	3.7–7.5	3.8	1.6–6.0	5.8	0.0–12.5
OS			10.3	7.6–132.0	10.6	4.6–16.6	8.1	4.5–11.7
Krawczyk et al. 2014	Poland	115	53	49	13			
PD			9	1	10			
SD/PR			44	48	3			
PFS			6	7.5	7			
OS			25	13	12			
Kucharczyk et al. 2016	Poland	72	32	29	11			
PD			10	12	2			
SD/PR			22	17	9			
PFS			5.5	4	5			
OS			11	13.5	17.5			
Lan et al. 2017	China	51	21	20	10			
ORR			6	4				
DCR			15	20				
Dong et al. 2015	China	92	56	23	13			
PR			20	0	2			
SD			19	13	7			
PD			17	10	4			
ORR			20	0	2			
DCR			39	13	9			
Zhao et al. 2017	China	88	54	22	12			
PR			18	0	2			
SD			19	13	6			
PD			17	9	4			
ORR			18	0	2			
DCR			37	13	8			
Bai et al. 2019	China	25	10	15				
CR			0	0				
PR			1	2				
SD			6	9				
PD			3	4				
DCR			7	11				
ORR			1	2				
Li et al. 2012	China	37	15	16	6			
ORR			4	5	3			
PFS			4.7	6.9				
chemotherapy in advanced NSCLC were included in the present meta-analysis (Figure 1). Of the 10 included studies, six were from China, two were from Poland, one was from South Korea and one was from Italy. The sample size ranges from 25 to 208. The general quality of the included studies was relatively high. The NOS score ranges from 5 to 7 with the median NOS score of 6.0. The main characteristics including the study region, age of the subject, the sample size, chemotherapy regimen, the outcome and others were presented in Table 1. The number of responses in each of the included studies is presented in Table 2.

3.2 Correlation between \(MTHFR 677C > T \) polymorphism and partial response

The statistical heterogeneity was not significant in dominant, recessive and homozygous models \((P_{all} > 0.05) \). Therefore, the data were pooled in a fixed effect model. The pooled results indicated that the partial response in NSCLC patients with TT or CT genotype was inferior to the CC genotype in a dominant gene model \((TT + CT \text{ vs } CC; \text{OR} = 0.16, 95\% \text{ CI: 0.06–0.41, } P = 0.001)\). However, the difference was not statistically different in recessive \((TT \text{ vs CT + CC; OR} = 0.59, 95\% \text{ CI: 0.19–1.81, } P = 0.351)\) and homozygous gene models \((TT \text{ vs CC; OR} = 0.36, 95\% \text{ CI: 0.12–0.52, } P = 0.08)\), Figure 2.

3.3 Correlation between \(MTHFR 677C > T \) polymorphism and objective response rate

Statistical heterogeneity was found in a dominant gene model \((P = 0.038)\), but not in recessive and homozygous gene models \((P > 0.05)\). The data were pooled by random- and fixed-effect models in dominant and recessive models and homozygous gene model, respectively. The combined results showed that NSCLC cases with T genotype were inferior to C genotype in the objective response rate when treated with pemetrexed-based chemotherapy for dominant \((\text{OR} = 0.28, 95\% \text{ CI: 0.18–0.45, } P = 0.001)\), recessive \((\text{OR} = 0.43, 95\% \text{ CI: 0.19–0.94, } P = 0.03)\) and homozygous gene models \((\text{OR} = 0.30, 95\% \text{ CI: 0.13–0.67, } P = 0.003)\), Figure 3.

![Figure 2: The funnel plot of the correlation between \(MTHFR 677C > T \) polymorphism and pemetrexed-based chemotherapy partial response in different gene models.](image-url)
3.4 Correlation between \textit{MTHFR} 677C $>$ T polymorphism and disease control rate

The data were pooled in the fixed-effect model in the disease control rate due to nonsignificant statistical heterogeneity ($P > 0.05$). The pooled results indicated that the disease control rates were not statistically different in different genotypes in dominant, recessive and homozygous gene models ($P_{all} > 0.05$), Figure 4.

3.5 Correlation between \textit{MTHFR} 677C $>$ T polymorphism and progressive disease

The data were pooled by the fixed-effect model for the dominant gene model and the random-effect model for recessive and homozygous gene models. The combined results showed that progressive disease was not statistically different in different genotypes (CC, CT or TT) in dominant, recessive and homozygous gene models ($P_{all} > 0.05$). However, NSCLC cases with T genotype had a trend of an increased risk for disease progression, Figure 5.

3.6 Progression-free survival and overall survival analysis

The progression-free survival and overall survival time for CC, CT and TT allele were presented in Table 3. There was no statistical difference in progression-free survival and overall survival time for NSCLC patients with CC, CT or TT alleles treated with pemetrexed-based chemotherapy ($P_{all} > 0.05$), Figure 6.
3.7 Publication bias evaluation

Begg’s funnel plots of objective response rate and disease control rate were in general left and right symmetrical, which indicated no obviously publications bias (Figure 7). Egger’s line regression test also showed that the publication bias was not significant ($P > 0.05$).

4 Discussion

Ten prospective clinical studies relevant to MTHFR 677C > T polymorphism and response of pemetrexed-based chemotherapy in advanced NSCLC were included in the present meta-analysis. The general quality of the 10 publications was relatively high with the median NOS score of 6.0. The original data of the ten included studies were pooled and indicated that the partial response in NSCLC patients with T genotype was inferior to C genotype in the dominant gene model (TT + CT vs CC; OR = 0.16, 95% CI: 0.06–0.41, $P = 0.001$). The objective response rate in cases with T genotype was inferior to C genotype in dominant (OR = 0.28, 95% CI: 0.18–0.45, $P = 0.001$), recessive (OR = 0.43, 95% CI: 0.19–0.94, $P = 0.03$) and homozygous models (OR = 0.30, 95% CI: 0.13–0.67, $P = 0.003$). However, the progression-free survival and overall survival were not statistically different in NSCLC patients with CC, CT or TT alleles treated with pemetrexed-based chemotherapy. The results indicated that NSCLC with T allele only had 0.16 odds of partial response in pemetrexed-based chemotherapy response compared to C allele in the dominant gene model. For the objective response rate, the chemotherapy odds ranges from 0.28 to 0.43 for T allele compared with C allele in NSCLC treated with pemetrexed-based chemotherapy. Therefore, NSCLC cases with T genotype of MTHFR gene may have decreased response when treated with pemetrexed-based chemotherapy, which indicated that T allele of MTHFR 677 SNP was a contraindication for pemetrexed-based chemotherapy regimen in NSCLC.
Pemetrexed is a multitarget folate antagonist. Its main anticancer mechanism is inhibiting cell proliferation by destroying the key folate-dependent metabolic process of cell replication [17–19]. MTHFR is a key enzyme in folate metabolism, which can irreversibly catalyze the reduction of 5,10-methylenetetrahydrofolate to 5-methyltetrahydrofolate, which is the main form of folate in plasma [20,21]. Therefore, the activity of MTHFR can affect the metabolism of folic acid and further affect the response of pemetrexed-based chemotherapy. Currently, the study on MTHFR activity mainly focuses on its SNP, and C677T is the most-studied SNP site. However, the relationship between MTHFR677C > T polymorphism and the response of pemetrexed-based chemotherapy in patients with advanced NSCLC is not consistent according to the previous publications [6,7]. Zhao et al. [10] found that patients with CC allele of MTHFR gene had better chemotherapy response and longer progression-free survival than patients with CT + TT genotype. However, Tiseo et al. [6] found that patients with TT genotype of MTHFR gene had longer progression-free survival and overall survival time compared to CC genotype. Therefore, whether MTHFR 677C > T polymorphism is correlated with the response of pemetrexed-based chemotherapy in advanced NSCLC is not conclusive. Our meta-analysis results showed pemetrexed-based chemotherapy response was decreased in NSCLC cases with T genotype. The reason of the inferior pemetrexed-based chemotherapy response in NSCLC cases with T genotype may be due to the decreased MTHFR activity and folic acid metabolism of the T genotypes. In addition, it has also been

Study ID	OR (95% CI)	% Weight
Dominant		
Krawczyk P 2014	1.05 (0.40,2.78)	12.54
Kucharczyk T 2016	1.18 (0.44,3.19)	11.34
Dong 2015	1.46 (0.61,3.52)	12.77
Zhao 2017	1.35 (0.55,3.31)	12.74
Bai 2019	0.85 (0.14,4.99)	4.15
Subtotal (I-squared = 0.0%, p = 0.978)	1.23 (0.79,1.93)	53.53
Recessive		
Krawczyk P 2014	0.39 (0.08,1.99)	8.64
Kucharczyk T 2016	0.86 (0.24,3.04)	8.30
Dong 2015	0.96 (0.26,3.98)	7.42
Zhao 2017	1.70 (0.95,3.05)	25.17
Subtotal (I-squared = 85.3%, p = 0.000)	30.67 (7.22,130.20)	10.82
Homozygous		
Krawczyk P 2014	16.30 (3.72,71.31)	1.28
Kucharczyk T 2016	0.49 (0.09,2.69)	8.65
Dong 2015	1.02 (0.32,3.77)	7.66
Zhao 2017	1.09 (0.29,4.12)	6.47
Subtotal (I-squared = 75.2%, p = 0.007)	1.80 (0.96,3.38)	21.29
Overall (I-squared = 64.7%, p = 0.001)	1.47 (1.08,2.01)	100.00

Table 3: The PFS and OS between MTHFR 677C > T polymorphism and Pemetrexed-based chemotherapy progressive disease
pointed out that the increase of folic acid in the serum of NSCLC cases can increase the pemetrexed chemotherapy response, which validates the aforementioned point of view [22].

Our results showed that pemetrexed-based chemotherapy response was decreased in NSCLC cases with T genotype, which can be applied as a potential pemetrexed-based chemotherapy response marker. However, the meta-analysis also had its own limitations: First, only 10 studies were included in the meta-analysis with a small sample size. Therefore, the statistical power is limited. Second, the studies screened and included in the meta-analysis were limited to English or Chinese publications. Third, the long-term survival such as overall survival and progression-free survival were not pooled due to inadequate data. Fourth, clinical heterogeneity such as mutations in EGFR or the presence of the ROS1 or EML4-ALK fusion oncogenes might affect the treatment response and outcome.

However, the information relevant to the aforementioned molecular characteristics was not mentioned in the original study. Therefore, how much the molecular characteristics affects the results of the meta-analysis was not clear.

5 Conclusion

The pemetrexed-based chemotherapy response was decreased in NSCLC cases with T genotype, which can be applied as a potential pemetrexed-based chemotherapy response marker. However, due to the aforementioned limitations, large-scale well-designed prospective clinical trials relevant to this topic are still necessary to further investigate the correlation between MTHFR 677C > T polymorphism and response of pemetrexed-based chemotherapy in advanced NSCLC to provide more reliable evidence.
Funding information: The authors state that no funding was involved.

Conflict of interest: The authors state that there was no conflict of interest.

Data availability statement: The datasets analyzed during the current study are available in the PubMed repository, https://pubmed.ncbi.nlm.nih.gov; Embase repository, https://www.embase.com; Cochrane Library repository, https://www.cochranelibrary.com; CNKI repository, https://oversea.cnki.net/index/ and Wanfang repository, http://www.wanfangdata.com/

References

[1] Siegel RL, Miller KD, Fuchs HE, Jemal A. Cancer statistics, 2021. CA Cancer J Clin. 2021 Jan;71(1):7–33. (Erratum in:CA Cancer J Clin. 2021). doi: 10.3322/caac.21669.

[2] Shinoda M, Shinkai M, Hara Y, Tomaru K, Manabe S, Murakami S, et al. Efficacy and safety of carboplatin and pemetrexed followed by maintenance with pemetrexed for elderly patients with advanced non-squamous non-small cell lung cancer: a single-arm, open-label, multicenter, phase II study. Asia Pac J Clin Oncol. 2021;1:9. doi: 10.1111/ajco.13488.

[3] Vora PA, Patel R, Dharamsi A. Pemetrexed—first-line therapy for non-squamous non-small cell lung cancer: a review of patent literature. Recent Pat Anticancer Drug Discov. 2021 Jan;16:1. doi: 10.2174/1574892821666201210113256.

[4] Nelli F, Fabbri MA, Moscetti L, Sperduti I, Gamucci T, Mansueto G, et al. Long-term outcome of pemetrexed maintenance for advanced nonsquamous non-small-cell lung cancer: a real-world observational cohort study. Recentli Prog Med. 2020 Dec;111(12):761–8.

[5] Tachihara M, Dokuni R, Okuno K, Tokunaga S, Nakata K, Katsurada N, et al. Phase II study of adjuvant chemotherapy with pemetrexed and cisplatin with a short hydration method for completely resected nonsquamous non-small cell lung cancer. Thorac Cancer. 2020 Sep;11(9):2536–41.

[6] Tiseo M, Giovannetti E, Tibaldi C, Camerini A, Di Costanzo F, Barbieri F, et al. Pharmacogenetic study of patients with advanced non-small cell lung cancer (NSCLC) treated with second-line pemetrexed or pemetrexed-carboplatin. Lung Cancer. 2012 Oct;78(1):92–9.

[7] Li WJ, Jiang H, Fang XJ, Ye HL, Liu MH, Liu YW, et al. Polymorphisms in thymidylate synthase and reduced folate carrier (SLC19A1) genes predict survival outcome in advanced non-small cell lung cancer patients treated with pemetrexed-based chemotherapy. Oncol Lett. 2013 Apr;5(4):1165–70.

[8] Stang A. Critical evaluation of the Newcastle-Ottawa scale for the assessment of the quality of nonrandomized studies in meta-analyses. Eur J Epidemiol. 2010 Sep;25(9):603–5.

[9] Bai YL, Han J, Wang DM, Qi YJ. Association of genetic polymorphisms of thymidylate synthase and methylene tetrahydrofolate reductase with therapeutic effect of pemetrexed for treating advanced lung adenocarcinoma patients. J Practical Med. 2019;35:520–4.

[10] Zhao YW, Zou XT, Zhang ZY, Li S, Zheng LX, Qi XF. The relationship between the polymorphism of methylenetetrahydrofolate reductase gene and the efficacy of pemetrexed + cisplatin in the treatment of non-small cell lung cancer. Stud Trace Elements Health. 2017;34:32–3.

[11] Lan G, Lin L, Chen X, Chen L, Chen X. Correlation between methylenetetrahydrofolate reductase (MTHFR) C677T polymorphisms and pemetrexed chemotherapy efficacy/toxicity in non-squamous non-small cell lung cancer. Med Sci Monit. 2017 Nov;23:5683–9.

[12] Kucharczyk T, Krawczyk P, Powrózek T, Kowalski DM, Ramlau R, Kalinka-Warzocha E, et al. The effectiveness of pemetrexed monotherapy depending on polymorphisms in TS and MTHFR genes as well as clinical factors in advanced NSCLC patients. Pathol Oncol Res. 2016 Jan;22(1):49–56.

[13] Dong CM, Kang MF, Zhao YY, Lin J, Tal LY. The relationship between polymorphisms genes C677T and A1298C of methylene-tetrahydrofolate reductase and the chemotherapy efficacy of pemetrexed combined with carboplatin in lung adenocarcinoma patients. J N Sichuan Med Col. 2015;30:618–21.

[14] Krawczyk P, Kucharczyk T, Kowalski DM, Powrózek T, Ramlau R, Kalinka-Warzocha E, et al. Polymorphisms in TS, MTHFR and ERCC1 genes as predictive markers in first-line platinum and pemetrexed therapy in NSCLC patients. J Cancer Res Clin Oncol. 2014 Dec;140(12):2047–57.

[15] Jung M, Lee CH, Park HS, Lee JH, Kang YA, Kim SK, et al. Pharmacogenomic assessment of outcomes of pemetrexed-treated patients with adenocarcinoma of the lung. Yonsei Med J. 2013 Jul;54(4):854–64.

[16] Li WJ, Jiang H, Zhang L, Ye HL, Fang JX, Liu YW, et al. Association of MTHFR 677C/T gene polymorphism with therapeutic effect of pemetrexed in advanced lung adenocarcinoma. Shinong Zhongliu Zazhi. 2012;27:579–82.

[17] Shih JY, Inoue A, Cheng R, Varea R, Kim SW. Does pemetrexed work in targetable, nonsquamous non-small-cell lung cancer? a narrative review. Cancers (Basel). 2020 Sep;12(9):12.

[18] Liang J, Lu T, Chen Z, Zhan C, Wang Q, Mechanisms of resistance to pemetrexed in non-small cell lung cancer. Transl Lung Cancer Res. 2019 Dec;8(6):1107–18.

[19] Minami S, Kijima T. Pemetrexed in maintenance treatment of advanced nonsquamous non-small-cell lung cancer. Lung Cancer (Auckl). 2015 Jan;6:13–25.

[20] Zhang Q, Bai B, Liu X, Miao C, Li H. Association of folate metabolism genes MTHFR and MTRR with multiple complex congenital malformation risk in Chinese population of Shanxi. Transl Pediatr. 2014 Jul;3(3):259–67.

[21] Spellacy CJ, Northrup H, Fletcher JM, Cirino PT, Dennis M, Morrison AC, et al. Folate metabolism gene 5,10-methylenetetrahydrofolate reductase (MTHFR) is associated with ADHD in myelomeningocele patients. PLoS One. 2012;7(12):e51330.

[22] Yang TY, Chang GC, Hsu SL, Huang YR, Chiu LY, Sheu GT. Effect of folic acid and vitamin B12 on pemetrexed antifolate chemotherapy in nutrient lung cancer cells. BioMed Res Int. 2013;2013:389046.