Risk measures and progressive enlargement of filtration: a BSDE approach

Alessandro Calvia

LUISS University

9th International Colloquium on BSDEs and Mean Field Systems
Annecy, 27 June 2022

Joint work with Emanuela Rosazza Gianin
Question:

How can we make a risk measure react to shocks in financial markets?
Question:
How can we make a risk measure react to shocks in financial markets?

Example:
Reference risk measure \rightarrow Default event \rightarrow Updated risk measure.
Question:
How can we make a risk measure react to shocks in financial markets?

Example:
Reference risk measure \rightarrow Default event \rightarrow Updated risk measure.

Solution:
Progressive enlargement of filtration and BSDEs with jumps (BSDEJ).
Why BSDEs and progressive enlargement of filtrations?

BSDEs

- BSDEs allow to induce and/or represent dynamic risk measures specifying:
 1. A filtered probability space (i.e., a *probabilistic model*).
 2. A measurable map g, called *driver*.
 - Properties of the driver \leftrightarrow properties of the risk measure.
 - The driver can be determined based on investor’s preferences, regulatory requirements, etc...
- BSDEs flow property \Rightarrow *time-consistency* (i.e., evaluation of risk is recursive).
- Numerical simulation of BSDEs.

Progressive enlargement of filtration

- *Reference* filtration \mathbb{F}: information available prior to a shock (e.g., default).
- *Progressively enlarged* filtration \mathbb{G}: information updated after shock (can be generalized to multiple events).
Why BSDEs? Comparison with literature

Nonlinear expectations and \(g \)-expectations:

- S. Peng. Backward SDE and related \(g \)-expectation. In Backward stochastic differential equations (Paris, 1995–1996), volume 364 of Pitman Res. Notes Math. Ser., pages 141–159. Longman, Harlow, 1997.

- F. Coquet, Y. Hu, J. Mémin, and S. Peng. Filtration-consistent nonlinear expectations and related \(g \)-expectations. Probab. Theory Related Fields, 123(1):1–27, 2002.

Representation of risk measures via BSDEs driven by a Wiener process:

- E. Rosazza Gianin. Risk measures via \(g \)-expectations. Insurance Math. Econom., 39 (1):19–34, 2006.

- P. Barrieu and N. El Karoui. Pricing, hedging, and designing derivatives with risk measures. In Carmona, R. (ed.) Indifference pricing: theory and applications, pages 77–144. Princeton University Press, Princeton, 2009.

Representation of risk measures via BSDEs driven by a Wiener process and a Poisson random measure:

- M. C. Quenez and A. Sulem. BSDEs with jumps, optimization and applications to dynamic risk measures. Stochastic Process. Appl., 123(8):3328–3357, 2013.
1. Mathematical setting
2. BSDEs with Jumps and dynamic risk measures
3. Dynamic risk measure induced by the BSDEJ
4. Properties of the induced risk measure
5. An example
6. Some result on the dual representation
Outline

1. Mathematical setting

2. BSDEs with Jumps and dynamic risk measures

3. Dynamic risk measure induced by the BSDEJ

4. Properties of the induced risk measure

5. An example

6. Some result on the dual representation
Probabilistic setting

We are given the following objects:

- Finite time horizon $T > 0$.
- A complete probability space $(\Omega, \mathcal{A}, \mathbb{P})$.
- A Borel-measurable set $E \subset \mathbb{R}^m$.
- A Wiener process $W = (W_t)_{t \in [0,T]}$.
- A pair of random variables $(\tau, \zeta) \in \mathbb{R}^+ \times E$. Can be generalized to multiple jumps.
- A random counting measure $\mu(dt \, de) := \delta_{(\tau,\zeta)}(dt \, de)$.

Information flow:

Reference filtration $F = (F_t)_{t \in [0,T]}$: completed natural filtration generated by W.

Progressively enlarged filtration $G = (G_t)_{t \in [0,T]}$: completed natural filtration generated by W and μ.

Initially enlarged filtration $H = (H_t)_{t \in [0,T]}$: completed natural filtration generated by W and (τ, ζ). Notice that $F \subset G \subset H$.

A. Calvia (LUISS University)
Probabilistic setting

We are given the following objects:

- Finite time horizon $T > 0$.
- A complete probability space $(\Omega, \mathcal{A}, \mathbb{P})$.
- A Borel-measurable set $E \subset \mathbb{R}^m$.
- A Wiener process $W = (W_t)_{t \in [0,T]}$.
- A pair of random variables $(\tau, \zeta) \in \mathbb{R}^+ \times E$. Can be generalized to multiple jumps.
- A random counting measure $\mu(dt \, de) := \delta_{(\tau,\zeta)}(dt \, de)$.

Information flow:

- Reference filtration $\mathbb{F} = (\mathcal{F}_t)_{t \in [0,T]}$: completed natural filtration generated by W.
- Progressively enlarged filtration $\mathbb{G} = (\mathcal{G}_t)_{t \in [0,T]}$: completed natural filtration generated by W and μ.
- Initially enlarged filtration $\mathbb{H} = (\mathcal{H}_t)_{t \in [0,T]}$: completed natural filtration generated by W and (τ, ζ).

Notice that: $\mathbb{F} \subset \mathbb{G} \subset \mathbb{H}$.
The fundamental assumption

The following assumption is essential for most of the following results.

Assumption (Density hypothesis\(^1\))

For any \(t \geq 0\), the conditional distribution of the pair \((\tau, \zeta)\) given \(\mathcal{F}_t\) is absolutely continuous with respect to the Lebesgue measure on \(\mathbb{R}^+ \times E\). In particular, there exists a strictly positive \((\mathbb{R}^+ \times E)\)-indexed \(\mathbb{F}\)-predictable random field \(\gamma\) such that

\[
P((\tau, \zeta) \in C \mid \mathcal{F}_t) = \int_C \gamma_t(\vartheta, e) \, d\vartheta \, de, \quad C \in \mathcal{B}(\mathbb{R}^+) \otimes \mathcal{B}(E), \ t \geq 0.
\]

\(^1\)It is related to Condition (A’) in: J. Jacod. Grossissement initial, hypothèse (H’) et théorème de Girsanov. In Lect. Notes. Math., volume 1118, pages 15–35. Springer-Verlag, 1985.
The fundamental decompositions

Lemma (Callegaro et al., 2013, ESAIM PS; Pham, 2010, SPA)

1. For any \(t \geq 0 \), a random variable \(\xi \) is \(\mathcal{G}_t \)-measurable if and only if it is of the form

\[
\xi(\omega) = \xi^0(\omega) \mathbb{1}_{t < \tau(\omega)} + \xi^1(\omega, \tau(\omega), \zeta(\omega)) \mathbb{1}_{t \geq \tau(\omega)},
\]

for some \(\mathcal{F}_t \)-measurable random variable \(\xi^0 \) and a \(\mathcal{F}_t \otimes \mathcal{B}(\mathbb{R}^+) \otimes \mathcal{B}(E) \)-measurable function \(\xi^1 \).

2. A process \(Y = (Y_t)_{t \geq 0} \) is \(\mathcal{G} \)-predictable if and only if it is of the form

\[
Y_t = Y^0_t \mathbb{1}_{t \leq \tau} + Y^1_t(\tau, \zeta) \mathbb{1}_{t > \tau}, \quad t \geq 0,
\]

where \(Y^0 \) is an \(\mathcal{F} \)-predictable process and \(Y^1 \) is a \((\mathbb{R}^+ \times E) \)-indexed \(\mathcal{F} \)-predictable random field.

Lemma (Pham, 2010, SPA; Song, 2014, ESAIM PS)

Under the Density hypothesis, any \(\mathcal{G} \)-optional process \(Y = (Y_t)_{t \geq 0} \) can be decomposed as

\[
Y_t = Y^0_t \mathbb{1}_{t < \tau} + Y^1_t(\tau, \zeta) \mathbb{1}_{t \geq \tau}, \quad t \geq 0,
\]

where \(Y^0 \) is an \(\mathcal{F} \)-optional process and \(Y^1 \) is a \((\mathbb{R}^+ \times E) \)-indexed \(\mathcal{F} \)-optional random field.
Outline

1. Mathematical setting
2. BSDEs with Jumps and dynamic risk measures
3. Dynamic risk measure induced by the BSDEJ
4. Properties of the induced risk measure
5. An example
6. Some result on the dual representation
Let us define the following sets:

- \(S_\infty^G[a, b] \), real-valued \(G \)-progressive processes \(Y \) such that:
 \[
 \|Y\|_{S_\infty^G[a, b]} := \text{ess sup}_{t \in [a, b]} |Y_t| < \infty.
 \]

- \(L^2_G[a, b] \), \(\mathbb{R}^d \)-valued \(G \)-predictable processes \(Z \) such that:
 \[
 \|Z\|_{L^2_G[a, b]} := \left(\mathbb{E} \left[\int_a^b |Z_t|^2 \, dt \right] \right)^{\frac{1}{2}} < \infty.
 \]

- \(L^2(\mu) \), real-valued \(E \)-indexed \(G \)-predictable processes \(U \) such that:
 \[
 \|U\|_{L^2(\mu)} := \left(\mathbb{E} \left[\int_0^T \int_E |U_s(e)|^2 \mu(ds \, de) \right] \right)^{\frac{1}{2}} < \infty.
 \]

A triple \((Y, Z, U) \in S_\infty^G[0, T] \times L^2_G[0, T] \times L^2(\mu) \) is a solution to the BSDEJ if it satisfies:

\[
Y_t = \xi + \int_t^T g(s, Y_s, Z_s, U_s(\cdot)) \, ds - \int_t^T Z_s \, dW_s - \int_t^T \int_E U_s(e) \mu(ds \, de), \quad t \in [0, T],
\]

where:

- \(\xi \) is a \(G_T \)-measurable r.v., the terminal condition.
- \(g : \Omega \times [0, T] \times \mathbb{R} \times \mathbb{R}^d \times B(E) \to \mathbb{R} \) is a measurable map, the driver.
The decomposition of the BSDEJ

We assume that for any \((y, z, u) \in \mathbb{R} \times \mathbb{R}^d \times B(E)^2\) the map \((\omega, t) \mapsto g(\omega, t, y, z, u)\) is \(\mathcal{G}\)-predictable. Hence the driver can be written (fundamental decomposition):

\[
g(t, y, z, u) = g^0(t, y, z, u)1_{t \leq \tau} + g^1(t, y, z, u, \tau, \zeta)1_{t > \tau}.
\]

The terminal condition can be always decomposed as:

\[
\xi = \xi^01_{T < \tau} + \xi^1(\tau, \zeta)1_{T \geq \tau}.
\]

Idea: solve the BSDEJ through a system of indexed Brownian BSDEs before and after the jump time \(\tau\).

We define \(B(E) := \{f : E \to \mathbb{R}, \text{ Borel-measurable}\}\) equipped with the pointwise convergence topology.
Existence and uniqueness

Immersion hypothesis: Any \mathbb{F}-martingale remains a \mathbb{G}-martingale.

Theorem (Kharroubi, Lim, 2014, J. Theoret. Prob.)

Under the Density hypothesis and the immersion hypothesis (plus other technical hypotheses), the BSDEJ admits a unique solution (Y, Z, U) on $[0, T]$, where

\[
\begin{aligned}
Y_t &= Y_t^0 \mathbb{1}_{t<\tau} + Y_t^1(\tau, \zeta) \mathbb{1}_{t\geq\tau}, \\
Z_t &= Z_t^0 \mathbb{1}_{t\leq\tau} + Z_t^1(\tau, \zeta) \mathbb{1}_{t>\tau}, \\
U_t(\cdot) &= U_t^0(\cdot) \mathbb{1}_{t\leq\tau} = [Y_t^1(t, \cdot) - Y_t^0] \mathbb{1}_{t\leq\tau}.
\end{aligned}
\]

and $(Y^0, Z^0), (Y^1, Z^1)$ are the unique solutions to the BSDEs

\[
Y_t^1(\vartheta, e) = \xi^1(\vartheta, e) + \int_t^T g^1(s, Y_s^1(\vartheta, e), Z_s^1(\vartheta, e), 0, \vartheta, e) \, ds
- \int_t^T Z_s^1(\vartheta, e) \, dW_s, \quad \vartheta \wedge T \leq t \leq T, \quad (\vartheta, e) \in \mathbb{R}^+ \times E,
\]

\[
Y_t^0 = \xi^0 + \int_t^T g^0(s, Y_s^0, Z_s^0, Y_s^1(s, \cdot) - Y_s^0) \, ds - \int_t^T Z_s^0 \, dW_s, \quad 0 \leq t \leq T.
\]
Outline

1. Mathematical setting
2. BSDEs with Jumps and dynamic risk measures
3. Dynamic risk measure induced by the BSDEJ
4. Properties of the induced risk measure
5. An example
6. Some result on the dual representation
Dynamic risk measures

Let $\mathcal{D} \in \{F, G, H\}$.

Definition (Dynamic risk measure)

A \mathcal{D}-dynamic risk measure is a family $\rho := (\rho_t)_{t \in [0, T]}$ of \mathcal{D}-conditional risk measures ρ_t.

Definition (Conditional risk measure)

A \mathcal{D}-conditional risk measure is a map ρ_t such that:

1. $\rho_t : L^\infty(\mathcal{D}_T) \to L^\infty(\mathcal{D}_t)$, for all $t \in [0, T]$;
2. ρ_0 is a static risk measure, i.e., a functional $\rho_0 : L^\infty(\mathcal{D}_T) \to \mathbb{R}$;
3. $\rho_T(\xi) = -\xi$, for all $\xi \in L^\infty(\mathcal{D}_T)$.
Dynamic risk measures

Let $\mathbb{D} \in \{\mathcal{F}, \mathcal{G}, \mathcal{H}\}$.

Definition (Dynamic risk measure)

A \mathbb{D}-dynamic risk measure is a family $\rho := (\rho_t)_{t \in [0,T]}$ of \mathbb{D}-conditional risk measures ρ_t.

Definition (Conditional risk measure)

A \mathbb{D}-conditional risk measure is a map ρ_t such that:

1. $\rho_t : L^\infty(\mathcal{D}_T) \to L^\infty(\mathcal{D}_t)$, for all $t \in [0,T]$;
2. ρ_0 is a static risk measure, i.e., a functional $\rho_0 : L^\infty(\mathcal{D}_T) \to \mathbb{R}$;
3. $\rho_T(\xi) = -\xi$, for all $\xi \in L^\infty(\mathcal{D}_T)$.

Example

$\rho_t := \mathbb{E}[-\xi | \mathcal{F}_t]$, $\xi \in L^\infty(\mathcal{F}_T)$, $t \in [0,T]$, is a \mathcal{F}-conditional risk measure.
The induced dynamic risk measure

$L^\infty(G_T) \ni \xi \leadsto (Y^\xi, Z^\xi, U^\xi)$, unique solution of the BSDEJ. Define

$$\rho_t(\xi) := Y_t^{-\xi}, \quad t \in [0, T].$$

It is easy to show that $\rho = (\rho_t)_{t \in [0, T]}$ is a \mathbb{G}-dynamic risk measure.

A note

If $g(t, y, 0, 0) = 0$ for any $t \in [0, T]$ and any $y \in \mathbb{R}$, then

$$\rho_t(\xi) = \mathcal{E}_g(-\xi \mid G_t), \quad t \in [0, T],$$

where $\mathcal{E}_g(\cdot)$ denotes the \mathbb{G}-conditional g-expectation associated to the BSDEJ.
The \(\mathcal{G} \)-dynamic risk measure induced by the BSDEJ can be decomposed as follows.

Proposition (C., Rosazza Gianin, 2020)

Under the assumptions of the existence and uniqueness theorem, there exist a \(\mathcal{F} \)-dynamic risk measure \(\rho^0 := (\rho_t^0)_{t \in [0,T]} \) and a \(\mathcal{H} \)-dynamic risk measure \(\rho^1 := (\rho_t^1)_{t \in [0,T]} \) such that:

\[
\rho_t(\xi) = \rho^0_t(\xi^0) \mathbb{1}_{t < \tau} + \rho^1_t(\xi^0(\tau, \zeta)) \mathbb{1}_{t \geq \tau}, \quad t \in [0, T], \xi \in L^\infty(\mathcal{G}_T).
\]
Outline

1. Mathematical setting
2. BSDEs with Jumps and dynamic risk measures
3. Dynamic risk measure induced by the BSDEJ
4. Properties of the induced risk measure
5. An example
6. Some result on the dual representation
Dynamic risk measures, as previously defined, may not be sufficient to assess riskiness of financial positions in a meaningful way.

We can impose on dynamic risk measures some mathematical requirement to reflect financial motivations.
Properties of dynamic risk measures

1. **Zero-one law:** For all \(t \in [0, T] \) and all \(A \in \mathcal{G}_t \):

 \[
 \rho_t(\xi 1_A) = 1_A \rho_t(\xi), \quad \xi \in L^\infty(\mathcal{G}_T).
 \]

2. **Translation invariance:** For all \(t \in [0, T] \) and all \(\eta \in L^\infty(\mathcal{G}_t) \):

 \[
 \rho_t(\xi + \eta) = \rho_t(\xi) - \eta, \quad \xi \in L^\infty(\mathcal{G}_T).
 \]

3. **Positive homogeneity:** For all \(t \in [0, T] \) and all \(\eta \in L^\infty(\mathcal{G}_t), \eta \geq 0 \):

 \[
 \rho_t(\xi \eta) = \eta \rho_t(\xi), \quad \xi \in L^\infty(\mathcal{G}_T).
 \]

4. **Monotonicity:** For all \(\xi, \eta \in L^\infty(\mathcal{G}_T) \), with \(\xi \leq \eta \):

 \[
 \rho_t(\xi) \geq \rho_t(\eta), \quad t \in [0, T].
 \]

5. **Convexity:** For all \(\xi, \eta \in L^\infty(\mathcal{G}_T) \) and all \(\alpha \in [0, 1] \):

 \[
 \rho_t(\alpha \xi + (1 - \alpha)\eta) \leq \alpha \rho_t(\xi) + (1 - \alpha)\rho_t(\eta), \quad t \in [0, T].
 \]

6. **Fatou property:** For any sequence \((\xi_n)_{n \in \mathbb{N}} \subset L^\infty(\mathcal{G}_T) \) and \(\xi \in L^\infty(\mathcal{G}_T) \) such that \(\xi_n \to \xi \):

 \[
 \rho_t(\xi) \leq \liminf_{n \to \infty} \rho_t(\xi_n), \quad t \in [0, T].
 \]

7. **Time-consistency:** For any \(\mathcal{G}_t \)-stopping time \(\sigma \leq T \), and \(\xi \in L^\infty(\mathcal{G}_T) \):

 \[
 \rho_t(\xi) = \rho_t(-\rho_{\sigma}(\xi)), \quad t \leq \sigma.
 \]
Proposition (C., Rosazza Gianin, 2020)

Under the assumptions of the existence and uniqueness theorem, the dynamic risk measure ρ satisfies the following properties:

1. **Zero-one law** if either $g(t, 0, 0, 0) = 0$, \mathbb{P}-a.s., for all $t \in [0, T]$, or both ρ^0 and ρ^1 satisfy this property.

2. **Translation invariance** if either g does not depend on y or both ρ^0 and ρ^1 satisfy this property.

3. **Positive homogeneity** if either g is positively homogeneous with respect to (y, z, u), \mathbb{P}-a.s., for all $t \in [0, T]$, or both ρ^0 and ρ^1 satisfy this property.

4. **Monotonicity**.

5. **Convexity** if either g is convex with respect to (y, z, u), \mathbb{P}-a.s., for all $t \in [0, T]$, or both ρ^0 and ρ^1 satisfy this property.

6. **Strong time-consistency**.
Proposition (C., Rosazza Gianin, 2020)

Let the assumptions of the existence and uniqueness theorem hold. Let \(\bar{\xi}, \hat{\xi} \in L^\infty(\mathcal{G}_T) \) and denote by \((\bar{Y}, \bar{Z}, \bar{U})\) (resp. \((\hat{Y}, \hat{Z}, \hat{U})\)) the solution to the BSDEJ with driver \(g \) and terminal condition \(\bar{\xi} \) (resp. \(\hat{\xi} \)).

Suppose, moreover, that for each \((\vartheta, e) \in \mathbb{R}^+ \times E:\)
\[
\|\bar{Y}^0 - \hat{Y}^0\|_{S\infty[0,T]} \leq K^0 \|\bar{\xi}^0 - \hat{\xi}^0\|_{L^\infty},
\]
\[
\|\bar{Y}^1(\vartheta, e) - \hat{Y}^1(\vartheta, e)\|_{S\infty[\vartheta,T]} \leq K^1(\vartheta, e) \|\bar{\xi}^1(\vartheta, e) - \hat{\xi}^1(\vartheta, e)\|_{L^\infty},
\]

for some finite constants \(K^0, K^1(\vartheta, e) > 0 \), and that
\[
\sup_{(\vartheta, e) \in \mathbb{R}^+ \times E} K^1(\vartheta, e) \|\bar{\xi}^1(\vartheta, e) - \hat{\xi}^1(\vartheta, e)\|_{L^\infty} < +\infty.
\]

Then there exists a finite constant \(M > 0 \) such that
\[
\|\bar{Y} - \hat{Y}\|_{S\infty[0,T]} \leq 2M.
\]

Proposition (C., Rosazza Gianin, 2020)

Under the assumptions of the existence and uniqueness theorem and the above Proposition, the dynamic risk measure \(\rho \) satisfies the Fatou property.
Outline

1. Mathematical setting
2. BSDEs with Jumps and dynamic risk measures
3. Dynamic risk measure induced by the BSDEJ
4. Properties of the induced risk measure
5. An example
6. Some result on the dual representation
Example: dynamic entropic risk measure

Suppose that an agent wants to assess the riskiness of a financial position ξ (that we assume bounded) and that she/he evaluates her/his preferences based on the utility function $u(x) := -\gamma e^{-\frac{x}{\gamma}}$, where $\gamma > 0$ is the risk tolerance parameter.

$$\Downarrow$$

Dynamic entropic risk measure:

$$\rho_t(\xi) := \gamma \log \left(\mathbb{E}_t \left[e^{-\frac{\xi}{\gamma}} \mid \mathcal{G}_t \right] \right), \quad t \in [0, T].$$

How can we make this risk measure react to shocks in the financial market? Is the agent allowed to change her/his preferences based on this event? Can we make γ depend on it in a time-consistent way?
Example: dynamic entropic risk measure

We use the parameter γ to introduce a dependence of the risk aversion of the agent (the inverse of γ) on the possible default times and values.

After default the agent becomes more risk averse.
Example: dynamic entropic risk measure

We use the parameter γ to introduce a dependence of the risk aversion of the agent (the inverse of γ) on the possible default times and values.

After default the agent becomes more risk averse.

Suppose that the driver g of the BSDEJ is $g(\omega, t, z) := \frac{1}{2}\|z\|^2 f(t, \tau(\omega), \zeta(\omega))$, where

$$f(t, \vartheta, e) = \begin{cases} 1, & \text{if } t \leq \vartheta, \\ \frac{1}{\gamma(\vartheta, e)}, & \text{if } t > \vartheta, \end{cases}$$

and $\gamma: \mathbb{R}^+ \times E \to (0, 1)$ is a measurable function. The driver can be decomposed as

$$g(t, z) = g^0(z) 1_{t \leq \tau} + g^1(z, \tau, \zeta) 1_{t > \tau},$$

$$g^0(z) = \frac{1}{2}\|z\|^2, \quad g^1(z, \vartheta, e) = \frac{1}{2\gamma(\vartheta, e)}\|z\|^2.$$
Example: dynamic entropic risk measure

Define the \mathbb{G}-dynamic risk measure $\rho_t(\xi) := Y_t^{-\xi}$, $t \in [0, T]$, $\xi \in L^\infty(\mathbb{G}_T)$. Then

$$\rho_t(\xi) = \rho^0_t(\xi^0) \mathbb{1}_{t<\tau} + \rho^1_t(\xi^1(\tau, \zeta)) \mathbb{1}_{t\geq\tau},$$

where $\rho^0_t(\xi^0) = Y^0$, with

$$Y^0_t = -\xi^0 + \int_t^T g^0(Z^0_s) \, ds - \int_t^T Z^0_s \, dW_s, \quad 0 \leq t \leq T$$

and, on the event $\{t \geq \tau\}$, $\rho^1_t(\xi^1(\tau, \zeta)) = Y^1(\tau, \zeta)$, with

$$Y^1_t(\vartheta, e) = -\xi^1(\vartheta, e) + \int_t^T g^1(Z^1_s(\vartheta, e), \vartheta, e) \, ds - \int_t^T Z^1_s(\vartheta, e) \, dW_s, \quad \vartheta \wedge T \leq t \leq T.$$

More explicitly

$$\rho^0_t(\xi^0) = \log \mathbb{E}[e^{-\xi^0} \ | \ F_t], \quad t \in [0, T], \quad \text{Reference risk measure},$$

$$\rho^1_t(\xi^1(\tau, \zeta)) = \gamma(\tau, \zeta) \log \mathbb{E}[e^{-\frac{\xi^1(\tau, \zeta)}{\gamma(\tau, \zeta)}} \ | \ \mathcal{H}_t], \quad \text{on} \ \{t \geq \tau\}, \quad \text{Updated risk measure}.$$
Outline

1. Mathematical setting
2. BSDEs with Jumps and dynamic risk measures
3. Dynamic risk measure induced by the BSDEJ
4. Properties of the induced risk measure
5. An example
6. Some result on the dual representation
The dual representation

Suppose that the \mathcal{G}-dynamic risk measure ρ induced by the BSDEJ satisfies the zero-one law, translation invariance, convexity and Fatou properties (monotonicity is granted by the comparison theorem).

Under these assumptions, ρ admits the dual (or robust) representation

$$\rho_t(\xi) = \text{ess sup}_{Q \in \mathcal{Q}} \{ E_Q[-\xi | G_t] - \alpha_t(Q) \}, \quad \xi \in L^\infty(\mathcal{G}_T), \ t \in [0, T],$$

where $\mathcal{Q} := \{ Q, \text{ probability measures on } (\Omega, \mathcal{G}_T), \text{ such that } Q \sim P|_{\mathcal{G}_T} \}$. The map α_t is the \mathcal{G}-penalty term:

$$\alpha_t(Q) = \text{ess sup}_{\xi \in L^\infty(\mathcal{G}_T)} \{ E_Q[-\xi | G_t] - \rho_t(\xi) \} = \text{ess sup}_{\xi \in L^\infty(\mathcal{G}_T), \rho_t(\xi) \leq 0} \{ E_Q[-\xi | G_t] \}, \quad Q \in \mathcal{Q}.$$
The dual representation

Suppose that the \(G \)-dynamic risk measure \(\rho \) induced by the BSDEJ satisfies the zero-one law, translation invariance, convexity and Fatou properties (monotonicity is granted by the comparison theorem).

Under these assumptions, \(\rho \) admits the dual (or robust) representation

\[
\rho_t(\xi) = \text{ess sup}_{Q \in \mathcal{Q}} \{ \mathbb{E}_Q[-\xi | G_t] - \alpha_t(Q) \}, \quad \xi \in L^\infty(G_T), \ t \in [0, T],
\]

where \(\mathcal{Q} := \{ \mathbb{Q}, \text{probability measures on } (\Omega, G_T), \text{ such that } \mathbb{Q} \sim \mathbb{P}|_{G_T} \} \). The map \(\alpha_t \) is the \(G \)-penalty term:

\[
\alpha_t(Q) = \text{ess sup}_{\xi \in L^\infty(G_T)} \{ \mathbb{E}_Q[-\xi | G_t] - \rho_t(\xi) \} = \text{ess sup}_{\xi \in L^\infty(G_T), \rho_t(\xi) \leq 0} \{ \mathbb{E}_Q[-\xi | G_t] \}, \quad Q \in \mathcal{Q}.
\]

Question

Can we decompose the penalty term as we did with the dynamic risk measure \(\rho \)?
Decomposition of the penalty term

The candidate penalty terms to provide a decomposition of the \mathbb{G}-penalty α are those associated to the \mathbb{F}-risk measure ρ^0 and the \mathbb{H}-risk measure ρ^1, i.e.:

$$
\alpha^0_t(Q^0) = \text{ess sup}_{\xi^0 \in L^\infty(\mathcal{F}_T)} \left\{ \mathbb{E}_{Q^0} [-\xi^0 | \mathcal{F}_t] - \rho^0_t(\xi^0) \right\}, \quad Q^0 \in Q^0,
$$

$$
\alpha^1_t(Q^1) = \text{ess sup}_{\xi^1 \in L^\infty(\mathcal{H}_T)} \left\{ \mathbb{E}_{Q^1} [-\xi^1 | \mathcal{H}_t] - \rho^1_t(\xi^1) \right\}, \quad Q^1 \in Q^1,
$$

where

$$Q^0 := \{Q^0, \text{ probability measures on } (\Omega, \mathcal{F}_T), \text{ such that } Q^0 \sim \mathbb{P}_{|\mathcal{F}_T} \},$$

$$Q^1 := \{Q^1, \text{ probability measures on } (\Omega, \mathcal{H}_T), \text{ such that } Q^1 \sim \mathbb{P}_{|\mathcal{H}_T} \}.$$
Decomposition of the penalty term

Recall that $\mathcal{Q} := \{\mathcal{Q}, \text{ probability measures on } (\Omega, \mathcal{G}_T), \text{ such that } \mathcal{Q} \sim \mathbb{P}|_{\mathcal{G}_T} \}$. Define:

$$\mathcal{Q}^{\rightarrow} := \{\mathcal{Q} \in \mathcal{Q}: \text{ any } \mathcal{F}-\text{martingale is a } \mathcal{G}-\text{martingale under } \mathcal{Q} \}.$$

Proposition (C., Rosazza Gianin, 2020)

For any $t \in [0, T]$ and any $\mathcal{Q} \in \mathcal{Q}^{\rightarrow}$ the following holds for the \mathcal{G}-penalty α

$$\alpha_t(\mathcal{Q}) \geq k_t(\mathcal{Q})\alpha_t^0(\mathcal{Q}^0), \quad \text{on } \{t < \tau\}, \quad \alpha_t(\mathcal{Q}) = \alpha_t^1(\mathcal{Q}^1), \quad \text{on } \{t \geq \tau\},$$

where \mathcal{Q}^0 and \mathcal{Q}^1 are probability measures on (Ω, \mathcal{F}_T) and (Ω, \mathcal{H}_T), respectively, such that

$$d\mathcal{Q}^0 = \mathbb{E}[L | \mathcal{F}_T] d\mathbb{P}|_{\mathcal{F}_T}, \quad d\mathcal{Q}^1 = L d\mathbb{P}|_{\mathcal{H}_T}, \quad L := \frac{d\mathcal{Q}}{d\mathbb{P}|_{\mathcal{G}_T}},$$

and $k_t(\mathcal{Q})$ is a \mathcal{F}_t-measurable random variable satisfying $k_t(\mathcal{Q}) \geq 1 \mathbb{P}$-a.s.
Decomposition of the penalty term

Recall that $Q := \{Q, \text{ probability measures on } (\Omega, \mathcal{G}_T), \text{ such that } Q \sim \mathbb{P}|_{\mathcal{G}_T}\}$. Define:

$$Q^\rightarrow := \{Q \in Q : \text{ any } \mathcal{F}\text{-martingale is a } \mathcal{G}\text{-martingale under } Q\}.$$

Proposition (C., Rosazza Gianin, 2020)

For any $t \in [0, T]$ and any $Q \in Q^\rightarrow$ the following holds for the \mathcal{G}-penalty α

$$\alpha_t(Q) \geq k_t(Q)\alpha_t^0(Q^0), \quad \text{on } \{t < \tau\}, \quad \alpha_t(Q) = \alpha_t^1(Q^1), \quad \text{on } \{t \geq \tau\},$$

where Q^0 and Q^1 are probability measures on (Ω, \mathcal{F}_T) and (Ω, \mathcal{H}_T), respectively, such that

$$dQ^0 = \mathbb{E}[L | \mathcal{F}_T] d\mathbb{P}|_{\mathcal{F}_T}, \quad dQ^1 = L d\mathbb{P}|_{\mathcal{H}_T}, \quad L := \frac{dQ}{d\mathbb{P}|_{\mathcal{G}_T}},$$

and $k_t(Q)$ is a \mathcal{F}_t-measurable random variable satisfying $k_t(Q) \geq 1$ \mathbb{P}-a.s.

The stochastic factor $k_t(Q)$ is linked to the ratio $\frac{Q(\tau > t | \mathcal{F}_t)}{\mathbb{P}(\tau > t | \mathcal{F}_t)}$, $t \in [0, T]$. Financially, it represents an added penalization due to lack of information prior to the default event.
Conclusion and future developments

Summary:

- Definition of dynamic risk measure induced by a BSDEJ in a progressive enlargement of filtration setting.
- Link between properties of the dynamic risk measure and properties of the driver and/or the decomposed dynamic risk measures.
- Partial results for the decomposition of the penalty term appearing in the dual representation of the dynamic risk measure.
- Updating preferences or risk-aversion feature.

To do:

- Find a BSDEJ representation for a given dynamic risk measure (more generally, for a non-linear expectation) in a progressive enlargement of filtration setting.
- Unspecified (possibly infinite) number of jumps.
Thank you for your attention!

Talk based on: A. Calvia, E. Rosazza Gianin, *Risk measures and progressive enlargement of filtration: a BSDE approach*, SIAM J. Financial Math., 11 (2020), pp. 815-848.