A genetic toolkit for tagging intronic MiMIC containing genes

Sonal Nagarkar-Jaiswal1†, Steven Z DeLuca2†, Pei-Tseng Lee3, Wen-Wen Lin3, Hongling Pan1, Zhongyuan Zuo3, Jiangxing Lv3, Allan C Spradling2, Hugo J Bellen1,3,4,5,6*

1Howard Hughes Medical Institute, Baylor College of Medicine, Houston, United States; 2Department of Embryology, Howard Hughes Medical Institute, Carnegie Institution for Science, Baltimore, United States; 3Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, United States; 4Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, United States; 5Department of Neuroscience, Baylor College of Medicine, Houston, United States; 6Program in Developmental Biology, Baylor College of Medicine, Houston, United States

Abstract

Previously, we described a large collection of Minos-Mediated Integration Cassettes (MiMICS) that contain two phiC31 recombinase target sites and allow the generation of a new exon that encodes a protein tag when the MiMIC is inserted in a codon intron (Nagarkar-Jaiswal et al., 2015). These modified genes permit numerous applications including assessment of protein expression pattern, identification of protein interaction partners by immunoprecipitation followed by mass spec, and reversible removal of the tagged protein in any tissue. At present, these conversions remain time and labor-intensive as they require embryos to be injected with plasmid DNA containing the exon tag. In this study, we describe a simple and reliable genetic strategy to tag genes/proteins that contain MiMIC insertions using an integrated exon encoding GFP flanked by FRT sequences. We document the efficiency and tag 60 mostly uncharacterized genes.

DOI: 10.7554/eLife.08469.001

Introduction

One of the most powerful techniques for characterizing gene function is to generate transgenic animals in which an epitope tag such as GFP has been fused to the gene at its normal genomic location (Ross-Macdonald et al., 1999; Morin et al., 2001; Skarnes et al., 2004). These tagged proteins are extremely useful as they permit determination of protein localization in vivo as well as conditional, tissue specific, temporal and reversible removal of the tagged proteins (Nagarkar-Jaiswal et al., 2015). However, previous methods for generating protein trap alleles in Drosophila have allowed only about 800 genes to be successfully tagged (Kelso et al., 2004; Buszczak et al., 2007; Quinones-Coello et al., 2007; Alekseev et al., 2009; Lowe et al., 2014).

We previously developed a flexible system for engineering the Drosophila genome using the Minos-Mediated Integration Cassette (MiMIC) transposable element. We generated 15,660 strains with a single MiMIC inserted at random within the fly genome and mapped their insertion site (Bellen et al., 2011; Venken et al., 2011; Nagarkar-Jaiswal et al., 2015). MiMIC carries sequences that function as a gene and protein trap when inserted in the proper orientation in a coding intron. Moreover, its content can be replaced by Recombination-Mediated Cassette Exchange (RMCE) leading to the introduction of any desired DNA, such as an artificial exon that encodes a protein tag. This approach can potentially be used to tag thousands of genes. Currently, 2854 existing insertions
are located within the coding introns of 1862 distinct genes (Nagarkar-Jaiswal et al., 2015), and MiMIC-like elements can now be placed in any gene of interest by CRISPR (Zhang et al., 2014). Unfortunately, the RMCE method needed to convert these insertions into functional protein traps requires embryonic injections of an appropriate donor DNA and screening of many offspring to identify the desired events, a labor and cost-intensive procedure that does not scale easily. We therefore developed a more efficient and economical in vivo genetic tagging methodology that can in principle be used to generate protein trap alleles of all Drosophila genes.

Results and discussion

We developed a genetic strategy that allows the desired RMCE event to take place efficiently without the need for microinjection. The method uses FLP recombinase to release a genomically integrated DNA flanked by FRT sites into the nucleoplasm where it can efficiently undergo phiC31 integrase-mediated cassette exchange, as shown by Goh et al. (2011). As shown in Figure 1A, we engineered three donor cassettes, one for each reading frame. The core, which contains a splice acceptor (SA) followed by a (GGS)₄ flexible linker, multiple tags (EGFP-FIAsH-StrepII-TEVcs-3xFlag (GFSTF)), another (GGS)₄ flexible linker, and a splice donor (SD), is flanked by two inverted attB sites in phiC31-mediated RMCE (Venken et al., 2011). We then cloned this cassette core between tandem FRT sites in a P-element transformation vector (Gong and Golic, 2003). FLP-mediated recombination between the tandem FRT sites excises a circular donor DNA molecule from its initial genetic locus, promoting its efficient recombination with a distal target site (Golic et al., 1997). A mini-white eye color marker gene between our donor cassette and one of the FRT sites allows us to monitor the presence or absence of the donor cassette in FLP recombinase-containing stocks.

We created 6 stocks (Figure 1—source data 2), each harboring one of the three donor transgenes located on the second or third chromosome, and a heat shock-inducible FLP recombinase and a germ line-expressed phiC31 integrase on the X-chromosome. Because the heat shock-inducible FLP recombinase is somewhat leaky at 18°C, the donor transgene is lost from these stocks at a low frequency, resulting in rare white-eyed flies, which we periodically discard.

To initiate RMCE, we crossed the appropriate donor flies to MiMIC-containing flies and heat shocked the resulting embryos and larvae (Figure 2). Within the primordial germ cells of some of the embryos and larvae, phiC31 integrase catalyzed recombination between attB sites in the donor and attP sites in the MiMIC transposon. The positive RMCE events were selected based on the loss of the y+ marker present in the original MiMIC (Figure 2). We confirmed the integration and orientation of the donor cassette by PCR as described in Venken et al. (2011). Typically, 50% of the integration events are in the proper orientation.

We observed one to ten RMCE events in 93 out of 113 attempts in our initial trial when we set up 3–7 crosses (Cross 2 in Figure 2). After PCR screening, 60/93 of the tested MiMICs allowed integration of at least one donor in the proper orientation to tag the endogenous gene (Supplementary file 1). In summary, we set up 3–7 vials for each starting cross and obtained 60/113 tagged genes. Since the efficiency of RMCE and the ease of detecting yellow progeny vary between different starting sites, we propose to set up 10–20 vials and to score more progeny to improve the success rate. The method has been found to work for a wide variety of genes including a gene located in a telomeric region (lethal giant larvae (l(2)gl)), suggesting that there may be few limitations in its applicability.

To ensure that the expression pattern and protein distribution correspond to the endogenous protein, we costained two tagged lines with GFP for which specific monoclonal antibodies are available: Eyes shut (Eys) (mAb 21A6), and Delta (Dl) (mAb C594.9B) (Figure 3A). In both cases, the protein recognized by the mAb colocalizes with the GFP and match the described expression patterns (Das et al., 2013; Haltom et al., 2014). Note, however, that the GFP tagged Eys protein is present in the cytoplasm of the photoreceptors and the inter-rhabdomere spaces (IRS) of the photoreceptors, whereas the mAb against Eys mostly localizes to the IRS (Figure 3A). These data are in agreement with what we previously observed for numerous tagged proteins (Venken et al., 2011; Nagarkar-Jaiswal et al., 2015).

We stained third instar larval brains and discs for the 60 tagged gene/proteins. The examples, shown in Figure 3B, include lethal (2) giant larvae (l(2)gl) (a), Delta (Dl) (b), and twins (tw) (c) whose expression patterns are consistent with published data (Koo et al., 1993; Albertson and Doe, 2003; Chabu and Doe, 2009). Similarly, kayak fos (Kay) is expressed in wing disc nuclei (d) as described earlier (Zeitlinger and Bohmann, 1999). The expression pattern of the remaining genes has not been previously described (Figure 3B): Saposin-related (Sap-r) is expressed in a subset of cells in larval...
brain (e), Rad, Gem/Kir family member 3 (Rgk3) is enriched in mushroom body in L3 larval brain (f), Heterogeneous nuclear ribonucleoprotein at 98DE (Hrb98DE) is expressed in L3 larval brain (g), CG10086 is expressed in hindgut (h), and CG5656 is expressed in the cells of the cuticle (i).
The expression patterns of all these genes as well as all the genes listed in Supplementary file 1 are documented in the MiMIC RMCE database at http://flypush.imgen.bcm.tmc.edu/pscreen/rmce/.

In summary, we developed a genetic tagging strategy that will greatly facilitate the EGFP tagging of nearly 2000 genes that already carry MiMIC insertions (Nagarkar-Jaiswal et al., 2015). The same strategies can also be used for tagging genes with other protein tags. In addition, a similar strategy based on lox sites instead of FRT cassettes has recently been developed to integrate an artificial exon carrying the GAL4 gene in MiMICs inserted in coding introns (Diao et al., 2015). These insertions are mutagenic but permit the expression of the endogenous wild-type and mutant cDNAs of Drosophila as well as other species under the control of UAS. Moreover, these tagging methods can now be combined with CRISPR directed integration of attP carrying cassettes similar to MiMIC in coding introns to tag almost every gene in Drosophila (Zhang et al., 2014).

Material and methods

Cloning

The core cassettes (attB-SA- phase 0/1/2-[GGG]4-EGFP-FIAsh-StrepII-TEVs-3xFlag-[GGG]4-SD-attB) for Phase 0, 1, or 2 were excised from pBS-KS-attB1-2-PT-SA-SD-0-EGFP-FIAsh-StrepII-TEVs-3xFlag, pBS-KS-attB1-2-PT-SA-SD-1-EGFP-FIAsh-StrepII-TEVs-3xFlag, or pBS-KS-attB1-2-PT-SA-SD-2-EGFP-FIAsh-StrepII-TEVs-3xFlag as NheI/NsiI fragments and subcloned into P-element vector pW35 (DGRC) between PstI/AvrII to create final donor vectors pW35-FRT-attB-SA-phase 0-[GGG]4-EGFP-FIAsh-StrepII-TEVs-3xFlag-[GGG]4-SD-attB-white+[FRT], pW35-FRT-attB-SA-phase 1-[GGG]4-EGFP-FIAsh-StrepII-TEVs-3xFlag-[GGG]4-SD-attB-white+[FRT], pW35-FRT-attB-SA-phase 2-[GGG]4-EGFP-FIAsh-StrepII-TEVs-3xFlag-[GGG]4-SD-attB-white+[FRT] and pW35-FRT-attB-SA-phase 2-[GGG]4-EGFP-FIAsh-StrepII-TEVs-3xFlag-[GGG]4-SD-attB-white+[FRT].
Figure 3 Expression of EGFP tagged protein in various tissues. (A) Colocalization of GFP tagged proteins with gene specific antibodies: anti-GFP signals (green) show colocalization with anti-Eys (red) in inter-rhabdomere space in adult eye (top panel) and anti-Delta (blue) in L3 eye imaginal disc in bottom panel. Scale bars, 2 μm and 5 μm. (B) Examples of EGFP expression pattern in different tissues from third instar larvae: brain; l(2)gl (A), DI (B), twins (tws) (C), Sap-r (E), Rgk3 (F), and Hrb98DE (G), wing imaginal disc: kay (D), hindgut: CG10086 (H), and cells of the cuticle: CG5656 (I). Scale bars 100 μm. (A-I, except G), 25 μm (G). Eys, eyes shut. DOI: 10.7554/eLife.08469.006
In vivo tagging

Around 15–20 phase-specific homozygous donor females (P{ry^{17.2} = hsFLP}12, y¹ w M{(vas-int.B)ZH-2A}; P(FRT-attB-(GFSTF)-attB(w¹)-FRT), Pri¹/TM6B, Tb¹ or P{ry^{17.2} = hsFLP}12, y¹ w M{(vas-int.B)ZH-2A}; S¹/CyO, P(FRT-attB-(GFSTF)-attB (w¹)-FRT)) were crossed with 5–10 males carrying MiMIC insertion in coding intron (y¹ w¹; M{MIC y¹ geneM/MIC y¹ geneM or balancer). Crosses were transferred to new vials every third day and constantly kept at 18°C. Vials with progeny embryos and larvae were heat shocked on day 3, 4, and 5 for 20 minutes at 37°C in a water bath and raised at 25°C. About 5–7 vials with a pool of 5 F1 males with mosaic red eyes and yellow body were crossed with 10–15 virgins of y¹ w²; In(2LR)Gla, wg¹⁰⁸¹/SM6a or y¹ w¹; D/TM6b, Hu, Tb. Transgenic F2 progeny were screened for loss of yellow⁺ (yellow-phenotype) and subsequently crossed to virgins of y¹ w²; In(2LR)Gla, wg¹⁰⁸¹/SM6a or y¹ w¹; D/TM3, Sb, Tb to establish stocks. Correct RMCE events were confirmed by PCR assay as described in Nagarkar-Jaiswal et al., 2015.

Immunostaining

Briefly, third instar larvae were dissected for larval brains, imaginal discs, and gut in 1xPBS and fixed in 3.7% formaldehyde for 30 min at room temperature and washed in 0.2% Triton X-100 (Nagarkar-Jaiswal et al., 2015). They were then incubated for 1 hr at RT in 10% NGS-PBS-0.2% Triton X-100 and stained with primary antibodies diluted in 10% NGS-PBS-0.2% Triton X-100 overnight at 4°C. The samples were washed and incubated with secondary antibodies for 2 hr at RT. The samples were then washed and mounted in Vectashield (Vector Labs, Burlingame, CA) and imaged with a Zeiss LSM710 confocal microscope and processed using Adobe Photoshop (Adobe Systems Inc., San Jose, CA, USA).

Antibodies used

Primary antibodies used: rabbit anti-GFP 1:1000 (Life Technologies, A11122), mouse anti-Delta 1:1000 (C594.9B, DSHB [Qi et al., 1999]), and mouse anti-Eys 1:250 (21A6, DSHB [Fujita et al., 1982]). Secondary antibodies used: Alexa 488 (Invitrogen, Life Technologies, Grand Island, NY), Cy5 and Cy3 conjugated antibodies (Jackson ImmunoResearch, West Grove, PA) were used at 1:500.

Acknowledgements

We thank Qiaohong Gao, Zhihua Wang, and Paolo Mangahas for technical help. We thank Karen L Schulze and Megan E Campbell for comments on the manuscript. This research was supported by NIGMS RO1GM067858. Confocal microscopy was supported by NICHD 1U54HD083092 to the Baylor College of Medicine Intellectual and Developmental Disabilities Research Center. We thank the Bloomington Drosophila Stock Center (BDSC) for numerous stocks. HJB and AS are Investigators of the Howard Hughes Medical Institute. SZD is supported by a Helen Hay Whitney Foundation postdoctoral fellowship.

Additional information

Funding

Funder	Grant reference	Author
National Institute of General Medical Sciences (NIGMS)	RO1GM067858	Pei-Tseng Lee, Wen-Wen Lin, Zhongyuan Zuo, Jiangxing Lv
Howard Hughes Medical Institute (HHMI)	HHMI	Sonal Nagarkar-Jaiswal, Hongling Pan, Allan C Spradling, Hugo J Bellen
Helen Hay Whitney Foundation	Postdoctoral fellowship	Steven Z DeLuca

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.
Author contributions
SN-J, Conception and design, Acquisition of data, Analysis and interpretation of data, Drafting or revising the article; SZDL, ACS, HJB, Conception and design, Drafting or revising the article; P-TL, W-WL, HP, ZZ, JL, Acquisition of data, Drafting or revising the article

Additional files

Supplementary file 1. Total EGFP tagged genes created: MI: MiMIC insertion, GT: Gene Trap, PT: Protein Trap, Y/N: Yes/No, and L/V: Lethal/Viable

DOI: 10.7554/eLife.08469.007

References

Albertson R, Doe CQ. 2003. Dlg, Scrib and Lgl regulate neuroblast cell size and mitotic spindle asymmetry. *Nature Cell Biology* 5:166–170. doi: 10.1038.ncb922.

Aleksic J, Lazić R, Muller I, Russell SR, Adryan B. 2009. Biases in *Drosophila melanogaster* protein trap screens. *BMC Genomics* 10:249. doi: 10.1186/1471-2164-10-249.

Bellen HJ, Lewis RW, He Y, Carlson JW, Evans-Holm M, Bae E, Kim J, Metaxakis A, Savakis C, Schulze KL, Hoskins RA, Spradling AC. 2011. The *Drosophila* gene disruption project: progress using transposons with distinctive site specificities. *Genetics* 188:731–743. doi: 10.1534/genetics.111.126995.

Buszczak M, Paterno S, Lighthouse D, Bachman J, Planck J, Owen S, Skora AD, Nystul TG, Ohlstein B, Allen A, Wilhelm JE, Murphy TD, Levis RW, Matunis E, Srivali N, Hoskins RA, Spradling AC. 2007. The Carnegie protein trap library: a versatile tool for *Drosophila* developmental studies. *Genetics* 175:1505–1531. doi: 10.1534/genetics.106.065961.

Chabu C, Doe CQ. 2009. Twins/PP2A regulates aPKC to control neuroblast cell polarity and self-renewal. *Developmental Biology* 330:399–405. doi: 10.1016/j.ydbio.2009.04.014.

Das S, Chen QB, Saucier JD, Drescher B, Zong Y, Morgan S, Forstall J, Meriwether A, Toranzo R, Leal SM. 2013. The *Drosophila* T-box transcription factor midline functions within the Notch-Delta signaling pathway to specify sensory organ precursor cell fates and regulates cell survival within the eye imaginal disc. *Mechanisms of Development* 130:577–601. doi: 10.1016/j.mod.2013.08.001.

Diao F, Ironfield H, Luan H, Diao F, Shropshire WC, Ewer J, Marr E, Potter CJ, Landgraf M, White BH. 2015. Plug-and-play genetic access to *Drosophila* cell types using exchangeable exon cassettes. *Cell Reports* 10:1410–1421. doi: 10.1016/j.celrep.2015.01.059.

Fujita SC, Zipursky SL, Benzer S, Ferrus A, Shotwell SL. 1982. Monoclonal antibodies against the *Drosophila* nervous system. *Proceedings of the National Academy of Sciences of USA* 79:7929–7933. doi: 10.1073/pnas.79.24.7929.

Gohl DM, Silies MA, Gao XJ, Blaloraos S, Luongo FJ, Lin CC, Potter CJ, Clandinin TR. 2011. A versatile in vivo system for directed dissection of gene expression patterns. *Nature Methods* 8:231–237. doi: 10.1038/nmeth.1561.

Golic MM, Rong YS, Petersen RB, Lindquist SL, Golic KG. 1997. FLP-mediated DNA mobilization to specific target sites in *Drosophila* chromosomes. *Nucleic Acids Research* 25:3665–3671. doi: 10.1093/nar/25.18.3665.

Gong WJ, Golic KG. 2003. Ends-out, or replacement, gene targeting in *Drosophila*. *Proceedings of the National Academy of Sciences of USA* 100:2556–2561. doi: 10.1073/pnas.0535280100.

Haltom AR, Lee TV, Harvey BM, Leonardi J, Chen YJ, Hong Y, Haltiwanger RS, Jafar-Nejad H. 2014. The protein O-glucosyltransferase Rumi modifies eyes shut to promote rhabdomere separation in *Drosophila*. *PLoS Genetics* 10:e1004795. doi: 10.1371/journal.pgen.1004795.

Kelsey RJ, Buszczak M, Quinones AT, Castiblanco C, Mazzalupo S, Cooley L. 2004. Flytrap, a database documenting a GFP protein-trap insertion screen in *Drosophila melanogaster*. *Nucleic Acids Research* 32:D418–D420. doi: 10.1093/nar/gkh014.

Koo HJ, Fehon RG, Muskhatchva MA. 1993. Implications of dynamic patterns of Delta and Notch expression for cellular interactions during *Drosophila* development. *Development* 117:493–507.

Lowe N, Rees JS, Roote J, Ryder E, Armean IM, Johnson G, Drummond E, Spriggs H, Drummond J, Magbanua JP, Naylor H, Sanson B, Bastock R, Huelsmann S, Trovisco V, Landgraf M, Knowles-Barley S, Armstrong JD, Magbanua JP, Chabu C, Chen QB, Saucier JD, Drescher B, Zong Y, Morgan S, Forstall J, Meriwether A, Toranzo R, Leal SM. 2013. The Carnegie protein trap library: a versatile tool for *Drosophila* developmental studies. *Development* 141:3994–4005. doi: 10.1242/dev.111054.

Morin X, Daneman R, Zavortink M, Chia W. 2001. A protein trap strategy to detect GFP-tagged proteins expressed from their endogenous loci in *Drosophila*. *Proceedings of the National Academy of Sciences of USA* 98:15050–15055. doi: 10.1073/pnas.25048198.

Nagarkar-Jaiswal S, Lee PT, Campbell ME, Chen K, Anguiano-Zarate S, Gutierrez MC, Busby T, Lin WW, He Y, Schulze KL, Booth BW, Evans-Holm M, Venken KJ, Levis RW, Spradling AC, Hoskins RA, Bellen HJ. 2015. A library of MiMICs allows tagging of genes and reversible, spatial and temporal knockdown of proteins in *Drosophila*. *eLife* 4:e05338. doi: 10.7554/eLife.05338.
Qi H, Rand MD, Wu X, Sestan N, Wang W, Rakic P, Xu T, Artavanis-Tsakonas S. 1999. Processing of the notch ligand delta by the metalloprotease Kuzbanian. Science 283:91–94. doi: 10.1126/science.283.5398.91.
Quinones-Coello AT, Petrella LN, Ayers K, Melillo A, Mazzalupo S, Hudson AM, Wang S, Castiblanco C, Buszczak M, Hoskins RA, Cooley L. 2007. Exploring strategies for protein trapping in Drosophila. Genetics 175:1089–1104. doi: 10.1534/genetics.106.065995.
Ross-Macdonald P, Coelho PS, Roemer T, Agarwal S, Kumar A, Jansen R, Cheung KH, Sheehan A, Symoniatis D, Umansky L, Heidtman M, Nelson PK, Iwasaki H, Gerstein M, Miller P, Roeder GS, Snyder M. 1999. Large-scale analysis of the yeast genome by transposon tagging and gene disruption. Nature 402:413–418. doi: 10.1038/46558.
Skarnes WC, von Melchner H, Wurst W, Hicks G, Nord AS, Cox T, Young SG, Ruiz P, Soriano P, Tessier-Lavigne M, Conklin BR, Stanford WL, Rossant J, International Gene Trap Consortium. 2004. A public gene trap resource for mouse functional genomics. Nature Genetics 36:543–544. doi: 10.1038/ng0604-543.
Venken KJ, Schulze KL, Haelterman NA, Pan H, He Y, Levis RW, Spradling AC, Hoskins RA, Bellen HJ. 2011. MiMIC: a highly versatile transposon insertion resource for engineering Drosophila melanogaster genes. Nature Methods 8:737–743. doi: 10.1038/nmeth.1662.
Zeitlinger J, Bohmann D. 1999. Thorax closure in Drosophila: involvement of Fos and the JNK pathway. Development 126:3947–3956.
Zhang X, Koolhaas WH, Schnorrer F. 2014. A versatile two-step CRISPR- and RMCE-based strategy for efficient genome engineering in Drosophila. G3 4:2409–2418. doi: 10.1534/g3.114.013979.