INTRODUCTION

Listeria (L.) monocytogenes is an opportunistic bacterial pathogen, which is well adapted to both extracellular dwelling in outdoor and food factory environments (Carpentier & Cerf, 2011; Vivant, Garmyn, & Piveteau, 2013) and intracellular survival when ingested by a host (Vazquez-Boland et al., 2001). In the host, L. monocytogenes may pass the intestinal tract without causing disease or may cause self-limiting gastroenteritis (Gahan & Hill, 2014). However, when host barriers are crossed by invasion of cells, L. monocytogenes causes listeriosis, a potentially life-threatening infection associated with septicemia, abortions, and neurological disease (Disson & Lecuit, 2012; Oevermann, Zurbriggen, & Vandevelde, 2010; Siegman-Igra et al., 2002). Despite its low incidence rate, listeriosis is considered...
as a major public health threat due to the high fatality rate (Maertens de Noordhout et al., 2014; Swaminathan & Gerner-Smidt, 2007).

Its remarkable niche adaptability is due to the large set of genes that allows L. monocytogenes to resist stressful environmental conditions and to invade and survive within phagocytic and non-phagocytic host cells (Chaturongakul, Raengpradub, Wiedmann, & Boor, 2008; Kazmierczak, Mithoe, Boor, & Wiedmann, 2003). Many essential genes for intracellular survival of L. monocytogenes have been identified in strain EGD-e, a widely used reference strain of the species, belonging to lineage II (Chakraborty, Hain, & Domann, 2000; Portnoy, Chakraborty, Goebel, & Cossart, 1992; Schnupf & Portnoy, 2007; Vazquez-Boland et al., 2001). Six of them are located on the Listeria pathogenicity island number 1 (LIPI-1), one of which is the transcriptional activator prfA (Scortti, Monzo, Lacharme-Lora, Lewis, & Vazquez-Boland, 2007; Vazquez-Boland et al., 2001). PrfA regulates the transcription of the other 5 essential virulence genes on LIPI-1 including hly, plcA, plcB, mpl (vacuolar escape), and actA (invasion, intracellular movement, intercellular spread, and avoidance of autophagy)

and additionally other important genes outside of LIPI-1 including inIA and inIB (Alvarez & Agaisse, 2016; Kanki, Naruse, & Kawatsu, 2018; Kocks et al., 1992; Phelps et al., 2018; Suarez, Gonzalez-Zorn, Vega, Chico-Calero, & Vazquez-Boland, 2001). The proteins encoded by the latter two genes initialize bacterial internalization into non-phagocytic cells by interacting with the two host membrane proteins E-cadherin and c-Met, respectively (Bierne & Cossart, 2007).

Studies indicate that strain diversity in L. monocytogenes is relevant in the context of infection and environmental survival. Recent epidemiological studies have shown that the relative prevalence of L. monocytogenes strains differs between clinical infection and environment (Dreyer et al., 2016; Maury et al., 2016; Orsi, Bakker, & Wiedmann, 2011). Of the four phylogenetical lineages known, lineage I strains are significantly more prevalent in clinical infection of both humans and ruminants than in the environment. This is particularly true for strains from specific sequence types (ST, as determined by multilocus sequence typing (MLST)), namely ST1 and 4. These two ST additionally behave hypervirulent and hyperinvasive
in experimental in vivo and in vitro infections (Dreyer et al., 2016; Guldimann et al., 2015; Maury et al., 2016).

Previous studies from our group have shown that a ST1 strain from lineage I isolated from bovine rhombencephalitis (JF5203) behaves hyperinvasive compared to lineage II strains including EGD-e (Dreyer et al., 2016; Rupp, Bartschi, Frey, & Oevermann, 2017) suggesting that, besides the well-known virulence genes, yet uncharacterized virulence genes may contribute to cellular invasion and virulence of certain strains. Therefore, the aim of this study was to assess the impact of lineage I-specific virulence candidate genes on the cellular infection process. Emphasis was put on four genes of lineage I that encode surface proteins with internalin-like structure. To investigate their effect on cellular infection, CNS-derived cell lines (fetal bovine brain cells, human microglia cells) and non-CNS-derived cell lines (bovine macrophage cells, human adenocarcinoma cells) that represent the various target cells of *L. monocytogenes* were infected with a ST1 parental strain and deletion mutants derived thereof.

METHODS

2.1 Selection of candidate genes

For the identification of genes specific to lineage I, comparative whole genome analysis of 121 lineage I and 104 lineage II genomes was performed (Aguilar-Bultet et al., 2018). One hundred and sixty-seven genes were found to be present in lineage I genomes but absent from lineage II genomes (Aguilar-Bultet et al., 2018). Four genes (LMJF5203_00388, LMJF5203_01291, LMJF5203_02767 and LMJF5203_02537) of 167 genes were chosen for analysis based on their internalin-like protein structure (Appendix 1). All candidate genes specify for potential proteins with a leucine-rich repeat (LRR) binding motif involved in host receptor recognition and interaction, which is found in internalin proteins (Bierne & Cossart, 2007). Furthermore, LMJF5203_00388, LMJF5203_01291, LMJF5203_02767 possess a LPXTG sortase recognition motif. Additionally, LMJF5203_00388 and LMJF5203_02537 are found in most strains of clonal complexes (CCs) belonging to lineage I and III, whereas LMJF5203_02767 and LMJF5203_01291 are present in most lineage I CCs but not in lineage III. None of the four genes was found in lineage II strains.

2.2 Expression of *Listeria monocytogenes* candidate genes by reverse-transcription PCR

Virulence gene mRNA expression was assessed in stationary phase bacteria, which were used for the gentamicin protection assay. Liquid broth cultures were grown overnight, and bacteria were collected by centrifugation at 3,220 g for 5 min. Total RNA was extracted using RiboPure™ Bacteria kit (Ambion, Life technologies). Reverse transcription was performed using GoScript Reverse-Transcription System (Promega) based on manufacturer’s instruction. sigB and gyrA were used as control genes for RNA expression. DNA contamination was excluded by PCR using RNA that was not reverse-transcribed. mRNA expression was assessed using following primers d0388_inside_fw, d0388_inside_rv, d1291_inside_fw, d1291_inside_rv, d2537_inside_fw, d2537_inside_rv, d2767_inside_fw, d2767_inside_rv, sigB_fw, sigB_rv, gyrA_fw, and gyrA_rv (Table 1), with amplification parameters as follows: initial denaturation at 95°C for 2 min, followed by 30 cycles of denaturation at 95°C for 2 min, annealing at 55°C for 30 s, and elongation at 72°C for 30 s, with a final extension at 72°C for 5 min.

2.3 Bacterial strains

Listeria monocytogenes strain JF5203 (NCBI Reference Sequence: NZ_LT985474.1; https://www.ncbi.nlm.nih.gov/nuccore/NZ_LT985474.1)
belonging to phylogenetic lineage I, clonal complex 1, sequence type 1, isolated from a rhombencephalitis case in cattle was used as parental strain for cell invasion experiments and generation of the deletion mutants. Listeria monocytogenes strain EGD-e, belonging to lineage II, clonal complex 9, sequence type 35 was used as a reference strain in order to confirm hyperinvasiveness of our parental strain. The deletion mutants LMJF5203_Δ00388 and LMJF5203_Δ02767 were generated using the pHoss1 plasmid, and LMJF5203_Δ01291 and LMJF5203_Δ02537 using the pMAD plasmid as previously described (Abdelhamed, Lawrence, & Karsi, 2015; Arnaud, Chastanet, & Debarbouille, 2004; Rupp et al., 2017). The upstream and downstream flanking regions of the genes of interest were amplified with the Expand High Fidelity Plus PCR system (Roche Diagnostics, Rotkreuz, Switzerland) using the amplification primer pairs d00388_1_fw_SalI/d00388_2_rv; d00388_3_fw/d00388_4_rv_XmaI; d01291_1_fw_SalI/d01291_2_rv; d01291_3/fw/d01291_4_rv_XmaI; d2416_1-fw_SalI/d02537_2_rv; d2416_3-fw/d02537_4_rv_XmaI; d02767_1_fw_SalI/d02767_2_rv; and d02767_3-fw/d02767_4_rv_XmaI (Table 1). Subsequently, amplicons of the flanking regions were joined via overlap extension PCR with the primer pairs d00388_1 fw_SalI/d00388_4_rv_XmaI; d01291_1_fw_SalI/d01291_4_rv_XmaI; d02537_1 fw_SalI/d02537_4_rv_XmaI; and d02767_1 fw_SalI/d02767_4_rv_XmaI. The fused DNA fragments were inserted into the SalI- and XmaI-digested pMAD and pHoss1 plasmids, respectively, by ligation with T4 ligase to create pMad_Δ01291, pMad_Δ02537, pHOSS_Δ00388, and pHOSS_Δ02767. The parental strain JF5203 was transformed with these deletion plasmids as described (Abdelhamed et al., 2015; Arnaud et al., 2004). Deletion of the genes of interest was confirmed by colony PCR using the flanking region primer pairs as described above and additional primers binding to the ORF regions of the deleted genes (Table 1).

2.4 | Whole genome sequencing of deletion mutants

Listeria monocytogenes mutants were grown overnight at 37°C in Bacto Brain Heart Infusion (BHI, Chemie Brunschwig, 237500), and genomic DNA was extracted using the DNA extraction kit (Invitrogen, PureLink™ Microbiome, DNA purification Kit, A29789). The whole genomes of the mutant strains were sequenced in GATC Biotech on an Illumina® HiSeq 4000 (150 bp paired-end reads) platform according to the manufacturer’s protocols. Genome coverage was between 200x and 300x. The Illumina reads of the different mutants were mapped to the whole genome of the parental strain in the Geneious software (Geneious 8.1.9, Biomatters Limited) to check the targeted deletion and to exclude spontaneous off-target mutations (NCBI Access number: PRJNAS04399; https://www.ncbi.nlm.nih.gov/bioproject/PRJNAS04399).

2.5 | Mammalian cell lines

The bovine macrophage cell line (BoMac), the human microglia cell line (HMC-3), and the human epithelial colorectal adenocarcinoma cell line (Caco-2) were grown in Dulbecco’s modified Eagle’s medium (DMEM) with Glutamax (Life Technologies, Zug, Switzerland) supplemented with 10% fetal calf serum (FCS) (Bioswisstec, Schaffhausen, Switzerland), 100U/ml penicillin and 10 µg/ml streptomycin (Life Technologies). Fetal bovine brain cells (FBBC-1) were grown in a DMEM/F12 mix (1:1, Life Technologies) supplemented with 10% FCS, 50 ng/ml epithelial growth factor, 50 ng/ml recombinant human basic fibroblast growth factor (bFGF) (Sigma-Aldrich, Buchs, Switzerland), 100 U/ml penicillin, 10 µg/ml streptomycin, and 1x N2 supplement (Life Technologies).

2.6 | Axenic growth in broth

Single colonies of mutant strains and the parental strain were inoculated into BHI-broth and grown overnight. The following day, fresh broth was inoculated with overnight culture at an OD600 of 0.05, and the OD600 was measured every 30 min for 7 hr. Bacterial growth was quantified in three independent experiments. Growth curves were fitted using a logarithmic scale in base 10, and generation time was calculated.

2.7 | Gentamicin protection assay

Cells were grown to confluency in 24-well plates with DMEM medium supplemented with 10% FCS and without penicillin/streptomycin. FBBC-1 cells were differentiated by incubation with 100 µM forskolin (Merck-Millipore, Schaffhausen, Switzerland) during 18 hr prior to infection (Takenouchi, Iwamaru, Sato, Yokoyama, & Kitani, 2009). Cells were starved in DMEM medium without FCS during 1 hr before inoculation. Overnight cultures of bacteria were added...
at 10^6 CFUs per well corresponding to a multiplicity of infection (m.o.i) of 5:1. One hour following inoculation, cells were washed twice with phosphate-buffered saline (PBS) and DMEM medium supplemented with 10% FCS and 50 µg/ml gentamicin (Sigma-Aldrich) was added. FBBC-1 cells were further supplemented with 100 µM forskolin. At different time points (2, 4, 8, and 24 hr p.i.), cells were washed twice with PBS and then lysed with 0.5% ice-cold Triton-X100 (Sigma-Aldrich) and finally plated on BHI-plates in several dilutions (1:1, 1:10, 1:100, 1:1,000, 1:10,000) for CFU quantification. Resulting CFU numbers were normalized to the inoculum. At least three independent experiments using triplicates were performed. The 2-hr time point was used as an indicator for cellular invasion (Gaillard, Berche, Moulier, Richard, & Sansonetti, 1987; Sabet, Lecuit, Cabanes, Cossart, & Bierne, 2005). To estimate the intracellular fitness of strains, the number of intracellular duplications and duplication time between time intervals was calculated according to $d = t/3.3 \log (n_2/n_1)$, with $d =$ duplication time, $t =$ time interval, $n_1 =$ intracellular cfu number at the beginning of the time interval, and $n_2 =$ intracellular cfu number at the end of the time interval.

2.8 | Immunofluorescence

For microscopical assessment of the gentamicin protection assay, cells were grown on glass coverslips, which were coated with poly-D-lysine hydrobromide for Caco-2 cells. Coverslips were removed from the 24-wells plates at the time points indicated above and fixed in 4% paraformaldehyde (PFA Sigma-Aldrich) for 30 min at room temperature (RT). The coverslips were then washed three times in PBS supplemented with 0.5% Tween (PBS-T), and cells were permeabilized with 0.5% Triton X-100 for 30 min at RT. In order to block nonspecific labeling, cells were incubated with PBS-T containing 10% normal goat serum (Dako, Baar, Switzerland) for 30 min and then incubated with rabbit Listeria O antiserum (BD, Allschwil, Switzerland, 1:200) in PBS-T with 10% of goat serum for 1 hr at RT. Coverslips were then washed three times in PBS-T and then incubated with Alexa Fluor 488- conjugated goat anti-rabbit IgG secondary antibody (Life technologies, 1:500) and with DAPI (Invitrogen, Carlsbad, CA, USA, T3604, 1:10,000) for one hour in the dark. Coverslips were washed three times with PBS-T, rinsed with distilled water, dried and mounted on Superfrost Plus glass.
slides (Menzel-Gläser) with Glycergel Mounting Medium (Dako, Glostrup, Denmark). Cell cultures were imaged using an Olympus Fluoview FV1000 confocal microscope (Olympus, Tokyo, Japan), equipped with 405-nm and 488-nm laser channels. The number of infection foci as a measure of invasion was quantified at 24 hr p.i. Additionally, size of 5 foci per strain was measured as an indicator of spread in the BoMac cell line. Three independent experiments were performed.

2.9 Statistical analyses

For comparison of intracellular CFU dynamics and axenic growth between deletion mutants and JF5203, nonparametric Kruskal-Wallis analyses followed by Dunn’s multiple comparison and nonparametric Mann-Whitney tests were performed for each time point using GraphPad Prism (GraphPad Software, La Jolla California USA, www.graphpad.com).

3 RESULTS

This study aimed to investigate the putative involvement of lineage I-specific genes encoding for internalin-like proteins in the hyperinvasive behavior of lineage I strains. To this end, whole genome analysis of 121 lineage I and 104 lineage II genomes was realized and among 167 genes that were associated with lineage I, 4 internalin-like genes were identified. A clinical ST1 (CC1, lineage I) strain, which is hyperinvasive compared to EGD-e from CC9, lineage II (Appendices 2 and 3 and Rupp et al., 2017) expressed all four internalin-like genes in vitro (Figure 1)
and therefore was used to generate the respective deletion mutants (LMJF5203_Δ00388, LMJF5203_Δ01291, LMJF5203_Δ02537, and LMJF5203_Δ02767). Whole genome sequencing of the four deletion mutants and comparison to the parental strain confirmed the deletion and excluded the presence of spontaneous genomic off-target mutations (results not shown). Reverse-transcription PCR confirmed absence of expression in the deletion mutants (Figure 1). Mutants were tested for axenic growth in broth and in different cell lines representing different targets of *L. monocytogenes* (FBBC-1 and HMC-3 as model for CNS infection, BoMac and Caco-2 as model for non-CNS target cells).

3.1 | Deletions do not affect fitness of *L. monocytogenes* mutants

When grown in BHI medium, the four deletion mutants generated (LMJF5203_Δ00388, LMJF5203_Δ01291, LMJF5203_Δ02537, and LMJF5203_Δ02767) showed growth curves similar to the parental strain JF5203 indicating that the deletions did not exhibit any defect in extracellular growth and fitness (Figure 2).

3.2 | Hyperinvasive behavior of ST1 is independent of LMJF5203_Δ00388, LMJF5203_Δ01291, LMJF5203_Δ02537, and LMJF5203_Δ02767

Confirming previous studies, the parental strain JF5203 (ST1, CC1) was hyperinvasive compared to EGD-e (CC9) as indicated by higher CFU counts from 2 hr p.i. on and by the higher number of infection foci in the analyzed cover slips (Appendices 2 and 3). The intercellular spread was similar between EGD-e and JF5203 (Appendix 3). Deletion of LMJF5203_00388, LMJF5203_02537, and LMJF5203_01291 in the hyperinvasive strain JF5203 did not result in any significant reduction of invasion of various CNS and non-CNS cell lines (Figures 3–6) as indicated by similar CFU numbers at 2 hr p.i. Supporting these results, the number of infection foci as determined by immunofluorescence at 24 hr p.i. was similar between deletion mutants and parental strain (Figure 7a–e). Also, kinetics of intracellular duplication were similar to the parental strain as indicated by similar increase in CFU numbers at later timepoints (4, 8, and 24 hr, Appendix 4). None of the four deletions had an effect on the size and shape of infection foci in the BoMac cell line indicating that the genes are not involved in intercellular spread (Figure 7a–d,f).

![Figure 5](image_url)
Listeria monocytogenes has a clonal population structure that is organized in four phylogenetic lineages with lineages I and II being the major lineages (Maury et al., 2016; Nightingale, Windham, & Wiedmann, 2005). Within these two lineages, hyper- and hypovirulent clones have been identified (Orsi et al., 2011). Hypovirulent clones of *L. monocytogenes* generally belong to lineage II (Jacquet et al., 2004; Maury et al., 2016; McLauchlin, 1990; Orsi et al., 2011), while hypervirulent clones have been predominantly found in lineage I, which is also the most prevalent lineage in animal and human infection (Chenal-Francisque et al., 2011; Jacquet et al., 2004; Kim et al., 2018; Maury et al., 2016; Orsi et al., 2011). Of those, strains belonging to sequence type (ST) 1 are particularly prevalent in CNS infection of ruminants and humans (Dreyer et al., 2016; Maury et al., 2016) and behave hyperinvasive in vitro compared to the reference strain EGD-e and other strains from lineage II (Dreyer et al., 2016; Guldimann et al., 2015; Rupp et al., 2017). Differences in genomic gene content suggest that lineage I strains harbor specific genes that may confer hyperinvasion and hypervirulence resulting in the higher prevalence of these strains in clinical infection (Dreyer et al., 2016; Maury et al., 2016). Therefore, we investigated the impact of four genes encoding for surface proteins with internalin-like structure (LMJF5203Δ00388, LMJF5203Δ02767, LMJF5203Δ02537, and LMJF5203Δ01291) on cellular invasion, intracellular survival, and intercellular spread.

In this study, we confirmed that compared to strain EGD-e our ST1 strain JF5203 is hyperinvasive in the different cell systems studied (Rupp et al., 2017) and that invasion is dependent on the infected cell line suggesting cell type-specific interactions between *L. monocytogenes* and the host cell. Our results show that
despite their association with lineage I, none of the four investigated genes is involved in the hyperinvasiveness of the ST1 strain, independently of the type and host origin of cell line infected (macrophages, microglia, fetal brain cells, colon adenocarcinoma epithelium). Additionally, these genes do not contribute to the intracellular survival and intercellular spread of *L. monocytogenes* ST1. Our results show that despite the LRR binding and LPXTG sortase recognition motifs, LMJF5203_00388, LMJF5203_02537, LMJF5203_02767, and LMJF5203_01291 do not act as invasins and may have other functions, either during the infection process or outside the host. Similar has been shown for the internalins InlC, InlH, and InlJ (Bierne & Cossart, 2007). Hence, other factors likely contribute to the hyperinvasiveness of ST1/CC1 and its high prevalence in clinical infections. Alternatively, the function of the investigated genes may be redundant with other genes of *L. monocytogenes* and therefore the phenotype not be picked up in our systems. Certainly, in vitro infection assays are limited tools for the study of virulence factors as they do not reflect all aspects of the infectious process in vivo. Indeed, other virulence factors (*llsB*, *inlJ*) were shown to be involved in in vivo infection, while no particular phenotype could be attributed to these virulence factors in in vitro infections of cell lines (Quereda, Andersson, Cossart, Johansson, & Pizarro-Cerda, 2018; Quereda et al., 2017; Rupp et al., 2017; Sabet et al., 2008). Therefore, we cannot fully rule out an impact of these four genes on the infectious process either in other cell types, which were not represented in our study, or in more complex physiological systems including the immune system and host barriers where such membrane proteins may exhibit moonlighting functions on the bacterial cell surface (Copley, 2012). The cause for the association of these four internalin-like genes with lineage I remains to be determined.

ACKNOWLEDGEMENT
This work received financial support from the Swiss National Foundation (CRSII3_147692). Anna Oevermann’s professorship for comparative neuropathology is funded by the Ernst-Frauchiger Foundation.

CONFLICT OF INTEREST
The authors declare no conflict of interest.

AUTHORS CONTRIBUTION
AO designed the study. BG, SR, and AO conceived and designed the experiments. LAB performed the whole genome comparisons. BG, SR, and CM performed the bacterial cloning and infection experiments. BG and AO wrote the manuscript. CM, SR, LAB, and JF critically revised the manuscript.
Copley, S. D. (2012). Moonlighting is mainstream: Paradigm adjust
Disson, O., & Lecuit, M. (2012). Targeting of the central nervous system
Gahan, C. G., & Hill, C. (2014).

REFERENCES
Abdelhamed, H., Lawrence, M. L., & Karsi, A. (2015). A novel suicide plasmid for efficient gene mutation in Listeria monocytogenes. Plasmid, 81, 1–8. https://doi.org/10.1016/j.plasmid.2015.05.003
Aguilar-Bultet, L., Nicholson, P., Rychener, L., Dreyer, M., Gozel, B., Origgi, F. C., ... Falquet, L. (2018). Genetic separation of Listeria monocytogenes causing central nervous system infections in animals. Frontiers in Cellular and Infection Microbiology, 8, 20. https://doi.org/10.3389/fcimb.2018.00020
Alvarez, D. E., & Agaisse, H. (2016). The metalloprotease Mpl supports Listeria monocytogenes dissemination through resolution of membrane protrusions into vacuoles. Infection and Immunity, 84, 1806–1814. https://doi.org/10.1128/IAI.00130-16
Arnaud, M., Chastanet, A., & Debarbouille, M. (2004). New vector for efficient allelic replacement in naturally nontransformable, low-GC-content, gram-positive bacteria. Applied and Environmental Microbiology, 70, 6887–6891. https://doi.org/10.1128/AEM.70.11.6887–6891.2004
Bierne, H., & Cossart, P. (2007). Listeria monocytogenes surface proteins: From genome predictions to function. Microbiology and Molecular Biology Reviews, 71, 377–397.
Carpentier, B., & Cerf, O. (2011). Review-persistence of Listeria monocytogenes in food industry equipment and premises. International Journal of Food Microbiology, 145, 1–8. https://doi.org/10.1016/j.ijfoodmicro.2011.01.005
Chakraborty, T., Hain, T., & Domann, E. (2000). Genome organization and the evolution of the virulence gene locus in Listeria species. International Journal of Medical Microbiology, 290, 167–174. https://doi.org/10.1016/S1438-4221(00)00086-7
Chaturongakul, S., Raengpradub, S., Wiedmann, M., & Boor, K. J. (2008). Modulation of stress and virulence in Listeria monocytogenes. Trends in Microbiology, 16, 388–396. https://doi.org/10.1016/j.tim.2008.05.006
Chenal-Francisque, V., Lopez, J., Cantinelli, T., Caro, V., Tran, C., Leclercq, A., ... Brisse, S. (2011). Worldwide distribution of major clones of Listeria monocytogenes. Emerging Infectious Diseases, 17, 1110–1112.
Copley, S. D. (2012). Moonlighting is mainstream: Paradigm adjustment required. BioEssays, 34, 578–588. https://doi.org/10.1002/bies.201100191
Disson, O., & Lecuit, M. (2012). Targeting of the central nervous system by Listeria monocytogenes. Virulence, 3, 213–221.
Dreyer, M., Aguilar-Bultet, L., Rupp, S., Guldmann, C., Stephan, R., Schock, A., ... Oevermann, A. (2016). Listeria monocytogenes sequence type 1 is predominant in ruminant rhombencephalitis. Scientific Reports, 6, 36419. https://doi.org/10.1038/srep36419
Gahan, C. G., & Hill, C. (2014). Listeria monocytogenes: Survival and adaptation in the gastrointestinal tract. Frontiers in Cellular and Infection Microbiology, 4, 9. https://doi.org/10.3389/fcimb.2014.00009
Gaillard, J. L., Berche, P., Moulin, J., Richard, S., & Sansonetti, P. (1987). In vitro model of penetration and intracellular growth of Listeria monocytogenes in the human enterocyte-like cell line Caco-2. Infection and Immunity, 55, 2822–2829.
Guldmann, C., Bartschi, M., Frey, J., Zurbriggen, A., Seuberlich, T., & Oevermann, A. (2015). Increased spread and replication efficiency of Listeria monocytogenes in organotypic brain slices is related to multilocus variable number of tandem repeat analysis (MLVA) complex. BMC Microbiology, 15, 134. https://doi.org/10.1186/s12866-015-0454-0
Jacquet, C., Doumith, M., Gordon, J. I., Martin, P. M., Cossart, P., & Lecuit, M. (2004). A molecular marker for evaluating the pathogenic potential of foodborne Listeria monocytogenes. The Journal of Infectious Diseases, 189, 2094–2100.
Kanki, M., Naruse, H., & Kawatsus, K. (2018). Comparison of listeriolysin O and phospholipases PlcA and PlcB activities, and initial intracellular growth capability among food and clinical strains of Listeria monocytogenes. Journal of Applied Microbiology, 124, 899–909.
Kazmierczak, M. J., Mitthoe, S. C., Boor, K. J., & Wiedmann, M. (2003). Listeria monocytogenes sigma B regulates stress response and virulence functions. Journal of Bacteriology, 185, 5722–5734.
Kim, S. W., Haendiges, J., Keller, E. N., Myers, R., Kim, A., Lombard, J. E., ... Haley, B. J. (2018). Genetic diversity and virulence profiles of Listeria monocytogenes recovered from bulk tank milk, milk filters, and milking equipment from dairies in the United States (2002 to 2014). PLoS ONE, 13, e0197053. https://doi.org/10.1371/journal.pone.0197053
Kocks, C., Gouin, E., Tabouret, M., Berche, P., Ohayon, H., & Cossart, P. (1992). L monocytogenes-induced actin assembly requires the actA gene product, a surface protein. Cell, 68, 521–531. https://doi.org/10.1016/0092-8674(92)90188-I
Maertens de Noordhout, C., Devleesschauwer, B., Angulo, F. J., Veberke, G., Haagsma, J., Kirk, M., ... Speybroek, E. (2014). The global burden of listeriosis: A systematic review and meta-analysis. The Lancet Infectious Diseases, 14, 1073–1082. https://doi.org/10.1016/S1473-3099(14)70870-9
Maury, M. M., Tsai, Y. H., Charlier, C., Touchon, M., Chenal-Francisque, V., Leclercq, A., ... Lecuit, M. (2016). Uncovering Listeria monocytogenes hypervirulence by harnessing its biodiversity. Nature Genetics, 48, 308–313. https://doi.org/10.1038/ng.3501
McLauchlin, J. (1990). Distribution of serovars of Listeria monocytogenes isolated from different categories of patients with listeriosis. European Journal of Clinical Microbiology and Infectious Diseases, 9, 210–213.
Nightingale, K. K., Windham, K., & Wiedmann, M. (2005). Evolution and molecular phylogeny of Listeria monocytogenes isolated from human and animal listeriosis cases and foods. Journal of Bacteriology, 187, 5537–5551. https://doi.org/10.1128/JB.187.16.5537–5551.2005
Oevermann, A., Zurbriggen, A., & Vandeveld, M. (2010). Rhombencephalitis caused by Listeria monocytogenes in humans and ruminants: A Zoonosis on the rise? Interdisciplinary Perspectives on Infectious Diseases, 2010, 632513.
Orsi, R. H., den Bakker, H. C., & Wiedmann, M. (2011). Listeria monocytogenes lineages: Genomics, evolution, ecology, and phenotypic characteristics. International Journal of Medical Microbiology, 301, 79–96. https://doi.org/10.1016/j.ijmm.2010.05.002
Phelps, C. C., Vadia, S., Arnett, E., Tan, Y., Zhang, X., Pathak-Sharma, S., ... Seveau, S. (2018). Relative roles of Listeriolysin O, InlA, and InlB in Listeria monocytogenes uptake by host cells. Infection and Immunity, 86, e00555–18.
Portnoy, D. A., Chakraborty, T., Goebel, W., & Cossart, P. (1992). Molecular determinants of Listeria monocytogenes pathogenesis. Infection and Immunity, 60, 1263–1267.
Quereda, J. J., Andersson, C., Cossart, P., Johansson, J., & Pizarro-Cerdá, J. (2018). Role in virulence of phospholipases, listeriolysin O and listeriolysin S from epidemic Listeria monocytogenes using the chicken

DATA ACCESSIBILITY
All data are included in the main manuscript. Raw data are available on request.

ETHICS STATEMENT
None required.

ORCID
Anna Oevermann
https://orcid.org/0000-0002-3569-8547
embryo infection model. Veterinary Research, 49, 13. https://doi.org/10.1186/s13567-017-0496-4

Quereda, J. J., Nahori, M. A., Meza-Torres, J., Sachse, M., Titos-Jimenez, P., Gomez-Laguna, J., ... Pizarro-Cerda, J. (2017). Listeriolysin S is a Streptolysin S-like virulence factor that targets exclusively prokaryotic cells in vivo. mBio, 8, e00259-17.

Rupp, S., Bartschi, M., Frey, J., & Oevermann, A. (2017). Hyperinvasiveness and increased intercellular spread of Listeria monocytogenes sequence type 1 are independent of listeriolysin S, internalin F and internalin J1. Journal of Medical Microbiology, 66, 1053-1062. https://doi.org/10.1099/jmm.0.000529

Sabet, C., Toledo-Aranza, A., Personnic, N., Lecuit, M., Dubrac, S., Poupel, O., ... Bierne, H. (2008). The Listeria monocytogenes virulence factor InlJ is specifically expressed in vivo and behaves as an adhesin. Infection and Immunity, 76, 1368-1378.

Schnupf, P., & Portnoy, D. A. (2007). Listeriolysin O: A phagosome-specific lysin. Microbes and Infection, 9, 1176-1187.

Scortti, M., Monzo, H. J., Lacharme-Lora, L., Lewis, D. A., & Vazquez-Boland, J. A. (2007). The PrfA virulence regulon. Microbes and Infection, 9, 1196-1207.

Siegmund-Igra, Y., Levin, R., Weinberger, M., Golan, Y., Schwartz, D., Samra, Z., ... Shohat, T. (2002). Listeria monocytogenes infection in Israel and review of cases worldwide. Emerging Infectious Diseases, 8, 305-310.

Suarez, M., Gonzalez-Zorn, B., Vega, Y., Chico-Calero, I., & Vazquez-Boland, J. A. (2001). A role for ActA in epithelial cell invasion by Listeria monocytogenes. Cellular Microbiology, 3, 853-864. https://doi.org/10.1046/j.1462-5822.2001.00160.x

Swaminathan, B., & Gerner-Smidt, P. (2007). The epidemiology of human listeriosis. Microbes and Infection, 9, 1236-1243.

Takenouchi, T., Iwamaru, Y., Sato, M., Yokoyama, T., & Kitani, H. (2009). Establishment of an SV40 large T antigen-immortalized bovine brain cell line and its neuronal differentiation by dibutyryl-cyclic AMP. Cell Biology International, 33, 187-191. https://doi.org/10.1016/j.cellbi.2008.11.001

Vazquez-Boland, J. A., Kuhn, M., Berche, P., Chakraborty, T., Dominguez-Bernal, G., Goebel, W., ... Krefl, J. (2001). Listeria pathogenesis and molecular virulence determinants. Clinical Microbiology Reviews, 14, 584-640.

Vivant, A. L., Garmyn, D., & Piveteau, P. (2013). Listeria monocytogenes, a down-to-earth pathogen. Frontiers in Cellular and Infection Microbiology, 3, 87. https://doi.org/10.3389/fcimb.2013.00087

How to cite this article: Gözel B, Monney C, Aguilar-Bultet L, Rupp S, Frey J, Oevermann A. Hyperinvasiveness of Listeria monocytogenes sequence type 1 is independent of lineage I-specific genes encoding internalin-like proteins. MicrobiologyOpen. 2019;8:e790. https://doi.org/10.1002/mbo3.790

APPENDIX 1

Amino acid sequences of LMJF5203_00388 (a), LMJF5203_01291 (b), LMJF5203_02537 (c), and LMJF5203_2767 (d). Domains are annotated in different colors (LPXTG Motif Signal peptide LRR (leucine rich repeat)). Signal peptide and LPXTG were determined using https://www.expasy.org, LRR motifs using https://www.expasy.org for LMJF5203_00388 and LMJF5203_01291 and www.lrrfinder.com for LMJF5203_02537 and LMJF5203_2767.
(a) MKSKGLFLYVVLALSIVIGTNVFIKIDAAAAAAPPAISQIFPDDALATEIQTLGKSTAEVTQTDLDTINS5LTTSKGIS
SLEGMTNLTGLTLGTLTNQVDSPKLGLTNMLQLQSGNPSIDSLALSINLKLQLADLINDAQVTDPISGLTNKLGLGL
YNQNLQNSGNYSLQHRSLVSNKLTLNDEQALSNSLVSALNENQNNINLGLSINLNLFLDLDSANQIVDTTPLAGL
TKVQTLYVSNQQISDVTVGLSSINLWLIDISQKNISINRPPLNTKLTIIQMTNLVNEPISFESTVTPNILKNIAEQITIDDP
SISDNGVYANEAVTWNLPYTPKSYTFIERTDIGNATGNGSGTVEQPLVQYFKATFNIDGQETTENVETGTLLEQPPTTPV
KEGYTFNGWYDAETGKTWKDYTADTMPANDITLYAQFSINSYTAIFDVGDIVSTQAVEYQLLLEPPAPTDGDYTEFKG
WYDAKTGGTWDFTNNQMMPANDITLYAQFSKDASSGGDGGGTDEGGGNSENSTEGAPNTSIDTINTHIVLPATCD
HVLPIFFIGTFLSALTLLRKK

(b) MKRKISIIVVGMFFQSLTTPFITEAKEENKEEINPKSKITKGLTNSLYKTKLITGETDYGDSVFPSALAKVAAKATGS
ENTQQLVTQADLLNKISLNGYNKGISVTGDLLNNVTSISLNNQQVTIDPSIDQLPNLVSLSVKNNQISSSLILNAQNQLPK
LTDDDIENNDLDNTIDQDPQLVDVKTSGYTLKRLKKTVIAKKNPEVLNLQGYTIRNVYFQSVASTLKVSLNPVRK
NLRENSINELKVTLDAIEDPLGENELTDTVDFNQLNPLNLKTLDSKQNEEVLVDKTDVENSENLQLQLNLKLQLSIDQJPL
VQDQPQLVDVKTSDYKELSALTTVIAKNKPEVLNLGYPQIMQNYFQSVASTLKVSLNPVRKVLNLRENSINELVTDL
AIEDPLGENELTDVDNQLNPLNLKTLDSKQNEEVLVDKTDKENLQLMTLNNQNNLAQINLQVDQPQLVDVKS
DYKELSALTTVIAKKNPEVLNLGYPQIMQNYFQSVASTLKVSLNPVRKVLNLRENSINELVTDL
AIEDPLGENELTDVDNQLNPLNLKTLDSKQNEEVLVDKTDKENLQLMTLNNQNNLAQINLQVDQPQ

(c) MKNLFRLFLVSIVIIGVVSFKAADANETDVPYPLPARIIDVPFDENLAEDMIVENFGKDKVDTVQIQQDQAVDSATLGLGY
FTNYLTDLDQLMGLNAYFTVNNNIMYQTPTQMTFTGFPLDLPKLDDLDRAEGNLSELPENITVPDYQNYPLELYLSDL
NRIVGGLPNFNSIPKLETLMMSGLSASEVPDFNKLNNKQNFTQNFRETMDTFHLDLVSMDLSYNYLNLVPPT
IVDKVILGQJGTLPDQNVVFEDTNLTPYVTQLDDGLRISGFEQEVWIRDNESNEIYNAKVDYDEVTKIQIIPNLDK
GEYTIDFNGIEPYIEEGEVMMYSVKITIN

(d) MLQRREWGFICAFIFLFLFPITGSAETSDYETINGNEATITDYGQSTDITPTTLGNENYTVTAINGNAFSGKRTLNTVT
IPNTVITIGDAFTINSLEQVLPSNVQTIGRNSFSNVKNLEKITYSTALKNPIQALANLKTTPATVESIDAFENNFI
TNITIQPNPLQMAYQAFAATQLSTLIVPNSHLPNQDFQDASAHLLDTNFDLTLANGITYNQAELNFSAEPLST
FSLSFTGHNRSYDISEYGPSCSKPFYFYKTKVPLYSKDAKSNLNLSTRLDSGIGENYTTPKIDGYTLEKTPGNAQTQ
FSETLQNVITIEYKATAVQNNTGTVYDESGKLKTDVLTGEVNVTYQTSHKDIAYKJLQKVEGNESGFTSPATVTYI
YEKIANSDNNTNEMTDNSTTLSTNDTENSEATKTVKLNTSNILPTTGDSDKDALFGLSSTLLTSTSFFFFKRS
APPENDIX 2
Infection of BoMac (a), Caco-2 (b), FBBC-1 (c) and HMC-3 (d) with LMJF5203 (red) and EGD-e (blue) in the gentamicin exclusion assay. At the indicated time points, cells were lysed for CFU counting. Three independent experiments were performed in triplicates. Single CFU data are presented as dots, bars indicate the mean, and error bars indicate the standard error of the mean (SEM). Statistical analysis (nonparametric Mann–Whitney test) did reveal significant difference between EGD-e and LMJF5203.
APPENDIX 3
Immunofluorescence of BoMac after 24 hr of infection with (a) LMJF5203 and (b) EGD-e. *Listeria monocytogenes* are shown in green and nuclei in blue. EGD-e shows decreased foci numbers compared to the parental strain LMJF5203 (c) but similar foci size (d).

APPENDIX 4
Fold change, number of duplications and duplication time of *Listeria monocytogenes* JF5203 and isogenic deletion mutants in BoMac, HMC-3, FBBC-1, and CaCo-2.

Time interval	2–4 hr	4–8 hr	8–24 hr	2–24 hr	
BoMac					
Fold change					
LMJF5203	4,583582522	15,5596285	22,50513127	1605,039885	
LMJF5203_Δ00388	2,651962832	16,66801311	24,31400553	1074,750801	
LMJF5203_Δ02767	2,463174925	29,05865569	19,31753369	1382,682455	
Number of duplications					
LMJF5203	2,196475648	3,95973571	4,492182075	10,64839343	
LMJF5203_Δ00388	1,407060556	4,059010234	4,60371568	10,06978647	
LMJF5203_Δ02767	1,300519086	4,860896057	4,271839009	10,43325415	
Duplication time in minutes					
LMJF5203	54,63297538	60,61010571	213,7046059	123,9623619	
LMJF5203_Δ00388	85,28417593	59,12771492	208,527213	131,08493026	
LMJF5203_Δ02767	92,27084884	49,37361284	224,72757	126,5185321	
Strain	2–4 hr	4–8 hr	8–24 hr	2–24 hr	
------------------	--------	--------	---------	---------	
BoMac					
Fold change					
LMJ5203	1,767764298	38,05098039	20,02135293	1346,739601	
LMJ5203_Δ01291	5,585830102	5,842304537	32,27726472	1053,340148	
LMJ5203_Δ02537	2,860383944	9,45748831	59,48329712	1608,678883	
Number of duplications					
LMJ5203	0,821925928	5,24986172	4,323467562	10,39525521	
LMJ5203_Δ01291	2,481771693	2,54637562	5,01246462	10,04075568	
LMJ5203_Δ02537	1,51620881	3,241039133	5,89442712	10,65166066	
Duplication time in minutes					
LMJ5203	145,9985576	45,71548981	222,0439928	126,9810094	
LMJ5203_Δ01291	48,35255407	94,24561552	191,5234424	131,4642087	
LMJ5203_Δ02537	79,1447716	74,05032465	162,8660983	123,9243384	
HMC-3					
Fold change					
LMJ5203	6,435560863	6,813925927	208,8039615	9156,352501	
LMJ5203_Δ00388	8,348928598	6,519884194	141,51048	7702,988202	
LMJ5203_Δ02767	6,58260637	7,44976417	183,3785193	8992,674766	
Number of duplications					
LMJ5203	2,686065886	2,76846131	7,706005273	13,16055279	
LMJ5203_Δ00388	3,061591071	2,70484634	7,1476509	12,9112025	
LMJ5203_Δ02767	2,718658929	2,897194804	7,518680844	13,13453458	
Duplication time in minutes					
LMJ5203	44,6750244	86,68997736	124,5781655	100,299704	
LMJ5203_Δ00388	39,19530637	88,72962448	134,361097	102,2367978	
LMJ5203_Δ02767	44,13940958	82,83875136	127,6819724	100,4984221	
HMC-3					
Fold change					
LMJ5203	1,514319923	1,943310072	67,11636437	197,5095779	
LMJ5203_Δ01291	0,97695924	5,25072548	51,50628647	245,4750107	
LMJ5203_Δ02537	0,883355971	5,881794187	57,42170845	298,3470049	
Number of duplications					
LMJ5203	0,598670028	0,958516114	6,068592663	7,625778806	
LMJ5203_Δ01291	0,139719016	2,39247475	5,686676222	7,939432356	
LMJ5203_Δ02537	0,17893169	2,556256303	5,84352435	8,220847484	
Duplication time in minutes					
LMJ5203	200,443088	250,3870269	158,1915369	173,0970742	
LMJ5203_Δ01291	858,8662255	100,3145383	168,8156482	166,2587375	
LMJ5203_Δ02537	670,6414487	93,88729907	164,2844185	160,5673871	
Time interval	Strain	2–4 hr	4–8 hr	8–24 hr	2–24 hr
---------------	--------	--------	--------	---------	---------
FBBC-1					
Fold change					
LMJF5203	4.39689568	5.320430045	95.81982574	2241.5492	
LMJF5203_Δ00388	6.053174311	4.884853081	66.02136972	1952.177112	
LMJF5203_Δ02767	5.006113685	4.730859638	89.36151736	2116.36858	
Number of duplications					
LMJF5203	2.136485304	2.411542862	6.582252285	11.13028045	
LMJF5203_Δ00388	2.597691896	2.288315172	6.044681165	10.9306823	
LMJF5203_Δ02767	2.323691054	2.242102357	6.481581778	11.0473519	
Duplication time in minutes					
LMJF5203	56.16701402				
LMJF5203_Δ00388					
LMJF5203_Δ02767					
CaCo-2					
Fold change					
LMJF5203	3.631826228	4.19075885	44.22098102	673.0829592	
LMJF5203_Δ01291	4.627432239	4.470073756	33.17831577	686.2922478	
LMJF5203_Δ02537	6.431270966	4.573448713	29.32636263	862.5788256	
Number of duplications					
LMJF5203	1.860695175	2.06728622	5.46659126	9.39460521	
LMJF5203_Δ01291	2.210211864	2.160298636	5.052168748	9.422679248	
LMJF5203_Δ02537	2.685103875	2.193282473	4.874126239	9.75212587	
Duplication time in minutes					
LMJF5203	64.49202512	116.0942291	175.6099983	140.5056422	
LMJF5203_Δ01291	54.29343763	111.0957513	190.017406	140.0875447	
LMJF5203_Δ02537	44.69100846	109.4250298	196.9583784	135.3497356	
Time interval					
Strain					
2–4 hr					
4–8 hr					
8–24 hr					
2–24 hr					
Strain	2–4 hr	4–8 hr	8–24 hr	2–24 hr	
----------------	--------	---------	---------	---------	
CaCo-2					
Fold change					
LMJF5203	5,738236211	13,60616922	19,96733907	1558,958242	
LMJF5203_Δ01291	7,261276156	13,73673343	32,34485431	3226,27679	
LMJF5203_Δ02537	7,228074597	9,665179038	42,3800878	2960,699849	
Number of duplications					
LMJF5203	2,520607357	3,766189032	4,319570181	10,6063657	
LMJF5203_Δ01291	2,860223122	3,77996707	5,015464309	11,6556545	
LMJF5203_Δ02537	2,853611395	3,272796457	5,405314672	11,53172252	
Duplication time in minutes					
LMJF5203	47,6075735	63,72489484	222,243345	124,4535526	
LMJF5203_Δ01291	41,95476888	63,49261662	191,4080015	113,2497536	
LMJF5203_Δ02537	42,05197673	73,33178312	177,6029812	114,4668541	