Ортостатические изменения гемодинамики при повреждениях головного мозга

В. Н. Дороговцев, И. В. Молчанов, Д. С. Янкевич

Федеральный научно-клинический центр реаниматологии и реабилитологии,
Россия, 107031, г. Москва, ул. Петровка, д. 25, стр. 2

Orthostatic Hemodynamic Changes in Brain Damage

Viktor N. Dorogovtsev, Igor V. Molchanov, Dmitriy S. Yankevich

Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitiology,
25 Petrovka Str., Bldg. 2, 107031 Moscow, Russia

Резюме

Цель работы — изучение ортостатических изменений гемодинамики у пациентов с хроническими нарушениями сознания после критических повреждений головного мозга.

Материалы и методы. Обследовали 30 пациентов (10 женщин и 20 мужчин) с хроническими нарушениями сознания после тяжелых повреждений головного мозга в возрасте 45±7 лет, 10 из которых были в вегетативном состоянии (ВС) и 20 — с синдромом малого сознания (СМС). Основными причинами повреждений мозга были черепно-мозговая травма (53% пациентов) и нарушения мозгового кровообращения (НМК) (23,3%). Остальные пациенты были с постгипоксической энцефалопатией и после хирургического удаления опухолей головного мозга.

Пассивный ортостатический тест (ПОТ) 0°–60°–0° проводили с помощью стола вертикализатора с электрическим приводом (Vario Line). Гемодинамический мониторинг во время вертикализации состоял в неинвазивной регистрации артериального давления на плечевой артерии осциллометрическим способом, в регистрации показателей ударного объема (УО) и минутного объема кровообращения (МОК) методом импедансной кардиографии с помощью многофункционального монитора «Task Force Monitor 3010i» (CNSystem, Austria). Статистическую обработку данных проводили с помощью пакета статистических программ Statistica 10.

Результаты. Ортостатическую стабильность гемодинамики выявили у 26 из 30 пациентов с хроническими нарушениями сознания после критических повреждений головного мозга. Она проявлялась стабильными показателями систолического артериального давления (САД) в наклонном ортостатическом и горизонтальном положении (120,7±2,2 и 121,1±3,6 мм рт. ст. соответственно, р>0,05). У 3 пациентов наблюдали ортостатическую гипотензию и у одного — синдром постуральной тахикардии (СПОТ). Провели сравнительный анализ выявленных ортостатических изменений гемодинамики обследованных пациентов с литературными данными, описывающими ортостатические изменения гемодинамики с применением ПОТ, у пациентов с тяжелыми повреждениями головного мозга, обследованных до и после развития смерти мозга.

Заключение. Ортостатическая стабильность кровообращения может кратковременно поддерживаться у пациентов с последствиями критических диффузных повреждений головного мозга, сопровождающих хроническими нарушениями сознания. Критические повреждения головного мозга, приводящие к состоянию смерти мозга, сопровождаются значительным снижением всех гемодинамических показателей и выраженной ортостатической гипотензиеей с возвращением артериального давления к исходным значениям при возврате пациента в горизонтальное положение.

Ключевые слова: критические повреждения; головной мозг; системная гемодинамика; ортостатическая проба; спинальная регуляция кровообращения; ортостатическая гипотензия; смерть мозга

Summary

Aim: to study orthostatic hemodynamic changes in patients with chronic disorders of consciousness after critical brain damage.

Materials and methods. We studied 30 patients (10 women and 20 men) with chronic disorders of consciousness after severe brain damage aged 45±7 years, 10 of which were in the vegetative state (VS) and 20 had the minimally conscious state (MCS). The main causes of brain damage were traumatic brain injury (53% of...
Critical brain damage is characterized by widespread, multilevel disruptions of brain integrity. The main causes of such damage associated with high mortality are severe traumatic brain injury (TBI) [1], cerebrovascular accidents (CVA) [2], global brain ischemia of various etiologies [3], etc. Survival of patients with critical brain damage is possible only in intensive care units with high professional level of medical care. Maintaining the vital functions of patients with critical brain damage in these departments can last for weeks, months and even years. Such injuries are accompanied by chronic disorders of consciousness, such as coma, vegetative state, minimally conscious state [4] and brain death [5]. Our paper does not address the issues of prognosis and outcomes of these critical states. The main attention was focused on pathophysiological aspects of blood circulation in critical brain damage. The study of orthostatic hemodynamic changes in severe brain damage and brain death is particularly important and relevant. Theoretical importance of this research is in the fact that the proper regulation of orthostatic stability of circulation is extremely important for a person who spends about 16 hours a day in an upright position. Stability of blood circulation in an upright position is maintained by the sympathetic baroreflex [6], which through the caudal part of the brain stem promotes activation of the sympathetic nervous system [7], hypothalamo-pituitary and renin-angiotensin-aldosterone systems [8]. It is obvious that in critical brain damage, both cardiovascular regulation structures and their connections are involved into the pathological process, which results in impairment of the entire regulation system. The study
измерением R–R интервала, ударный объем (УО) из-кращений (ЧСС) определяли по ЭКГ перманентным циллометрического метода, частоту сердечных сокращений (САД, ДАД) с применением ос-брахиальное систолическое и диастолическое арте-риальное давление (САД, ДАД) с применением ос-брахиальное систолическое и диастолическое арте-риальное давление (САД, ДАД) с применением ос-брахиальное систолическое и диастолическое арте-нициальной кровяного давления. На момент исследования в вегетативном состоянии были 10 пациентов, остальные 20 пациен-там и методы

Материал и методы

Обследовали 30 пациентов (10 женщин и 20 мужчин) с хроническими нарушениями сознания после тяжелых повреждений головного мозга в воз-расте 45±7 лет. 53.3% пациентов были после тяжелых ЧМТ, 23.3% — после НМК, 10% — после глобальной ишемии головного мозга и остальные пациенты (13.4%) — после нейрохирургических вмешательств по поводу удаления больших опухолей головного мозга. На момент исследования в вегетативном состоянии были 10 пациентов, остальные 20 пациен-тов — с синдромом малого сознания. Среднее время, прошедшее от начала заболевания до начала иссле-дования, составило 124 дня.

Комплексный анализ показателей системной гемодинамики у всех испытуемых проводили с по-мощью многофункционального монитора Task Force Monitor с регистрацией следующих показателей: брахиальное систолическое и диастолическое арте-риальное давление (САД, ДАД) с применением ос-циллометрического метода, частоту сердечных сокращений (ЧСС) определяли по ЭКГ перманентным измерением R–R интервала, ударный объем (УО) из-
merily методом импедансной кардиографии с помошью компьютерной программы, в основе которой лежала формула Кубичека [11], рассчитывали минутный объем кровообращения (МОК) и общее периферическое сопротивление (ОПС). Пациента помещали на стол-вертикализатор, подключен к многофункциональному монитору. Протокол исследования включал регистрацию указанных показателей гемодинамики в течение 10 мин в каждом из последовательно сменяющих друг друга положений стола-вертикализатора: в исходном горизонтальном, в наклонном положении с подъемом головного конца вверх под углом 60°, в финальном горизонтальном положении. Для расчетов использовали усредненные показатели гемодинамики в каждом положении за последние 5 из 10 минут.

В процессе проведения пассивного ортостатического теста (ПОТ) у 4 пациентов из 30 развилась ортостатические нарушения кровообращения, требовавшие прекращения исследования. Наиболее опасным из таких нарушений является ортостатическая гипотензия, которая проявляется снижением САД на 20 и более мм рт. ст. и/или ДАД на 10 и более мм рт. ст. при ортостатическом наклоне по сравнению с горизонтальным положением [12]. Такое нарушение выявлено у 3 пациентов. У одного из них наблюдался синдром постуральной тахикардии, диагностика которого обычно включает ЧСС на 30 и более ударов в мин при ортостатическом наклоне по сравнению с горизонтальным положением [13]. Такие нарушения потребовали немедленного прекращения вертикализации пациентов, поэтому эти данные не вошли в статистическую обработку полученных результатов.

Статистическую обработку проводили с применением пакета статистических программ Statistica 10 после определения типа распределения данных. Статистически значимыми считали различия показателей гемодинамики в горизонтальных и наклонных положениях при р<0,05.

Результаты и обсуждение

Ортостатическую стабильность гемодинамики выявляли у 26 из 30 пациентов с хроническими нарушениями сознания после критических повреждений головного мозга.

Основные показатели системной гемодинамики пациентов представлены в таблице. У всех пациентов перевод стола-вертикализатора из наклонного положения в горизонтальное приводил к возврату показателей гемодинамики к таковым в исходном горизонтальном положении, поэтому эти данные представлены в таблице однократно.

Наиболее важными для диагностики ортостатических нарушений гемодинамики являются показатели САД, ДАД и ЧСС. В нашем исследовании ортостатические изменения САД и ДАД в наклонном положении по сравнению с горизонтальным были статистически недостоверными (по обоим параметрам р>0,05). Статистическая гипотеза, которая требует снижения САД на 20 и более мм рт. ст. и/или ДАД на 10 и более мм рт. ст. при ортостатическом наклоне по сравнению с горизонтальным положением, в нашем исследовании ортостатические нарушения гемодинамики включали изменения, которые обычно включают изменения ЧСС на 30 и более ударов в мин при ортостатическом наклоне по сравнению с горизонтальным положением. Такие нарушения наблюдалось у 3 пациентов. У одного из них было выявлено синдром постуральной тахикардии, который также требовал немедленного прекращения вертикализации пациентов, поэтому эти данные не вошли в статистическую обработку полученных результатов.

Статистическую обработку проводили с применением пакета статистических программ Statistica 10 после определения типа распределения данных. Статистически значимыми считали различия показателей гемодинамики в горизонтальных и наклонных положениях при р<0,05.

Results and Discussion

Orthostatic hemodynamic stability was revealed in 26 out of 30 patients with chronic disorders of consciousness after critical brain damage.

The main systemic hemodynamic parameters of patients are presented in the table. In all the patients the conversion of the tilt table from the inclined to the horizontal position resulted in the return of hemodynamic parameters to the baseline seen in horizontal position, so these data were presented in the table only once.

The most important indicators for the diagnosis of orthostatic hemodynamic disorders are SBP, DBP and HR. In our study, orthostatic changes of SBP and DBP in the tilt position compared to horizontal were statistically insignificant (for both parameters р>0.05). The orthostatic increase in the HR and CMO was significant (р<0.01).

Orthostatic circulatory disorders are most frequently observed in the acute phase of brain or spinal cord injuries. Orthostatic hypotension (OH) during verticalization is revealed in 75% of patients with spinal cord injury consequences and in 25% in the acute phase of traumatic brain injury [14]. In patients in the early neurorehabilitation after ischemic stroke, OH is identified in 30% of cases [15]. The specified information on orthostatic disorders in patients with brain damage was obtained in the acute phase of disease or in the early period of neurorehabilitation. As noted above, in this study the orthostatic hemodynamic stability was investigated in patients with chronic disorders of consciousness on average 4 months after the onset of the disease, after the acute phase. A special feature of these patients is that all of them, having suffered very severe brain damage, survived the acute phase of disease, when their mortality was particularly high, and survived the acute period, when pathological processes associated with increased intracranial pressure, dislocation and compression of brain structures, with infectious complications and multi-organ pathology were fully developed. Orthostatic stability revealed during the study in 87% of patients with chronic critical brain damage may be assumed to be an important survival factor in critical conditions. Also, despite the most severe diffuse multi-level (from cortex to stem) brain damage, both involving many structures of the vascular motor center and providing sympathetic baroreflex, orthostatic regulation of blood circulation in such a state usually allows maintaining circulation stability within a short exposure (10 min) to the orthostatic tilt. Previously, we have shown that in such patients there is a significant decrease in sensitivity of sympathetic baroreflex, which triggers...
Ортостатические изменения показателей системной гемодинамики (M±m) Orthostatic changes in system hemodynamics parameters (M±m)

Parameters	Values in different position	Position	P
	Horizon 1	Tilt up 60°	
SBP, mm Hg	120.7±2.2	121.1±3.6	>0.05
DBP, mm Hg	83.8±2.2	87.3±3.5	>0.05
HR, b/min	84.6±3.9	111.7±25.5	<0.01
SV, ml	53.8±44.3	50.2±3.1	<0.05
CO, l/min	4.5±0.4	5.5±0.3	<0.01
TPR, din•sec•cm⁻³	1747.1±150.6	1534.4±195.6	>0.05

Note. SBP — Systolic Blood Pressure; DBP — Diastolic Blood Pressure; HR — Heart Rate; SV — Stroke Volume; CO — Cardiac Output; TPR — Total Peripheral Resistance; horizon 1 — initial horizontal position; tilt up 60° — 60°orthostatic tilt.

Примечание. Parameters — параметры; Position — положение; SBP mm Hg — систолическое артериальное давление, мм рт. ст.; DBP mm Hg — диастолическое артериальное давление, мм рт. ст.; HR b/min — частота сердечных сокращений уд./мин; SV ml — ударный объем мл; CO l/min — минутный объем кровообращения л/мин; TPR din·sec·cm⁻³ — общее периферическое сопротивление (дин·сек·см⁻³); horizon 1 — исходное горизонтальное положение; tilt up 60° — ортостатический наклон на 60°.

стически значимым было ортостатическое увеличение ЧСС и МОК (p<0,01).

Наиболее часто ортостатические нарушения кровообращения отмечаются в остром периоде повреждений головного или спинного мозга. Ортостатическая гипотензия (ОГ) во время вертикализации выявляется у 75% пациентов с последствиями спинных травм и у 25% в остром периоде черепно-мозговых травм [14]. У пациентов в раннем периоде нейрореабилитации ишемического инсульта ОГ выявляется в 30% случаев [15]. Указанная информация об ортостатических нарушениях у пациентов с повреждениями головного мозга получена в остром периоде заболевания или в раннем периоде нейрореабилитации. Как было отмечено выше, в данном исследовании изучение ортостатической стабильности гемодинамики проводили у пациентов с хроническими нарушениями сознания в среднем через 4 месяца от начала заболевания, уже после острейшего периода. Особенность таких пациентов состоит в том, что все они, перенеся тяжелейшие повреждения головного мозга, выжили в остром периоде заболевания, когда их смертность особенно высока, выжили в остром периоде, когда в полной мере были развернуты патологические процессы, связанные с повышением внутричерепенного давления, дислокацией и компрессией структур мозга, с инфекционными осложнениями и с комплектом мультиорганной патологии. Можно предположить, что выявленная в ходе исследования у 87% пациентов с хроническими критическими повреждениями головного мозга ортостатическая стабильность является важным фактором выживания при критических состояниях. Другой вывод состоит в том, что несмотря на тяжеелейшие диффузные разноуровневые (от коры до ствола) повреждения головного мозга, как вовлекающие многие структуры сосудодвигательного центра, так и обеспечивающие симпатоадаптивные процессы, направленные на поддержание стабильности кровообращения в условиях ортостатии, редко вызывающих серьезные осложнения. Указанный вопрос требует дальнейшего изучения в ходе специализированного лечения и реабилитации.
тический барорефлекс, ортостатическая регуляция кровообращения в таком состоянии как правило позволяет поддерживать стабильность кровообращения в пределах короткой экспозиции (10 мин) ортостатического наклона. Ранее нами было показано, что у таких пациентов происходит значительное снижение чувствительности симпатического барорефлекса, запускающего адаптивные процессы, направленные на поддержание стабильности организма кровотока в головном мозге. В том же исследовании было выявлено значительное снижение активности автономной нервной системы [16].

Дальнейшее развитие заболевания у пациентов с хроническими нарушениями сознания в позистоматозном периоде критических повреждений головного мозга может развиваться по разным сценариям: 1) по наиболее благоприятному — восстановление сознания и перевод пациента на реабилитационное лечение, 2) летальный исход вследствие мультиорганных патологий, 3) высокий уровень реанимационной помощи может на некоторое время предотвратить летальный исход, в таких случаях возможно развитие смерти мозга (СМ).

На фоне быстрого развития трансплантологии проблема СМ актуальна как с правовой, так и научно-медицинской точек зрения. В наших исследованиях мы изучили ортостатические изменения гемодинамики и механизмы симпатического барорефлекса, играющего ключевую роль в развитии адаптивных процессов, и выявили выраженные нарушения, связанные с диффузными тяжелыми повреждениями головного мозга. Даже в таких условиях человеческий организм способен обеспечивать кратковременную ортостатическую стабильность кровообращения. Возник вопрос, что происходит с этими системами после СМ и насколько возможна ортостатическая регуляция в условиях спинальной регуляции, функционирующих нервных ганглиев и автоматизма сердечно-сосудистой системы?

Развитие состояния СМ связано с остановкой мозгового кровотока в бассейнах внутренних сонных и позвоночных артерий, глубоким некрозом головного мозга с установлением линии демаркации на уровне верхних шейных сегментов [17, 18]. В таких условиях жизненно важные функции могут поддерживаться от нескольких минут до нескольких дней благодаря искусственной вентиляции легких, поддержанию гемодинамики прессорными аминами и кортикостероидами, коррекцией водно-электролитных нарушений и т. д. Таким образом, появляется патофизиологическая клиническая модель для изучения кровообращения в условиях сознательной смерти и после биологической смерти мозга.

We have found only one study of orthostatic changes in blood circulation before and after brain death development, which we did 30 years ago at the Research Institute of Neurology of the USSR Academy of Medical Sciences [19]. At that time, we observed 2 patients in acute period of severe ischemic stroke before and after brain death who were investigated similarly to the patients involved in this study with hemodynamic monitoring using a similar protocol. A minor difference between the protocols was that the angle of tilt in patients with brain death was 50°, while in the present study it was 60°. Before brain death, hemodynamic parameters of both patients were similar to the ones of patients included in this study, except for moderate hypertension in one of them. The hemodynamic response to orthostatic tilt was also similar and did not indicate any orthostatic disorders. The upward tilt was characterized by relative stability of SBP and DBP and typical orthostatic hemodynamic changes similar to the data presented in Table 1, indicating satisfactory orthostatic hemodynamic stability during an acute phase of a massive ischemic stroke. After the brain death development in the initial (horizontal) position we observed a significant decrease in all systemic hemodynamic parameters: SBP was 70 mm Hg, DBP was 40 mm Hg, HR reached 69 bpm, CMO was 2.4 l/min, and TPR was 1665 din•sec•cm⁻⁵. The orthostatic test with a slope of 50° caused an even greater reduction in all hemodynamic parameters: SBP dropped by 28.6%, DBP — by 50%, SV — by 9%, CMO — by 17%, HR — by 4.3%, TPR — by 28.6% vs baseline, which indicated severe orthostatic hypotension. After returning to the horizontal position, within 15 minutes, all hemodynamic parameters returned to values close to baseline. Similar systemic hemodynamic changes were observed in the second patient.

The transition to the brain death was characterized by a significant decrease in BP and other systemic hemodynamic parameters, which suggested absence of a sympathetic baroreflex and the switching on of adaptive neurohumoral systems that provide stability of blood flow in the organs in changes of body position [20]. This is confirmed by the literature data showing that in patients with severe brain damage the sensitivity of sympathetic baroreflex decreases to 11.2±8.5 msec/mmHg, and after the brain death it decreases to 0. At the same time, there was a significant change in sympathetic system parameters [21, 22]. The literature data suggested that the physiological mechanisms of sympathetic baroreflex were «switched off» and the whole system of central regulation of blood circulation providing orthostatic hemodynamic stability was destroyed. These data explain the critical orthostatic disorders of the systemic circulation in brain death.
сохраненного только спинального уровня регуляции. Информация, представленная в литературе, касается вопросов диагностики СМ, состояния основных систем организма до и после развития СМ, поддержания жизненных процессов в этом состоянии.

Мы не обнаружили работ, связанных с изучением ортостатических изменений кровообращения до и после развития СМ, кроме одной, выполненной нами 30 лет назад в НИИ неврологии АМН СССР [19]. Тогда наблюдали 2 пациентов в остром периоде тяжелого ишемического инсульта до и после развития состояния СМ, которым проводили обследование, аналогичное примененному в настоящем исследовании с мониторингом гемодинамических показателей по сходному протоколу. Незначительное отличие протоколов состояло в том, что угол наклона у пациентов со СМ составлял 50°, а в настоящем исследовании — 60°. До развития СМ показатели кровообращения обоих пациентов были сходными с показателями гемодинамики пациентов, включенных в настоящее исследование, за исключением умеренной гипертензии у одного из них, реакция гемодинамики на ортостатический наклон также была сходной и не выявляла каких-либо ортостатических нарушений. Переход в наклонное положение головой вверх характеризовался относительной стабильностью САД и ДАД и типичными ортостатическими изменениями гемодинамики, сходными с данными, представленными в таблице, что свидетельствовало об удовлетворительной ортостатической стабильности гемодинамики в остром периоде обширного ишемического инсульта. После развития состояния СМ в исходном (горизонтальном) положении наблюдали значительное снижение всех показателей системной гемодинамики: САД = 70 мм рт. ст., ДАД = 40 мм рт. ст., ЧСС = 69 уд./мин., МОК = 2,4 л/мин., ОПС = 1665 дин·сек·см⁻⁵. Ортостатический тест с наклоном 50° вызвал еще большее снижение всех показателей системной гемодинамики: САД — на 28,6%, ДАД — на 50%, УО — на 9%, МОК — на 17%, ЧСС — на 4,3%, ОПС — на 28,6% от исходных значений, что свидетельствовало о развитии выраженной ортостатической гипотензии. После возврата в горизонтальное положение, в течение 15 мин., все гемодинамические показатели вернулись к значениям близким к исходным. Аналогичные изменения показателей системной гемодинамики отмечали и у второго пациента.

Литература
1. Stocchetti N., Carbonara M., Citerio G., Ercole A., Skrifvars M.B., Smielewski P., Zoerle T., Menon D.K. Severe traumatic brain injury: targeted management in the intensive care unit. Lancet Neurol. 2017; 16 (6): 452–464. DOI: 10.1016/S1474-4422 (17)30118-7

References
1. Stocchetti N., Carbonara M., Citerio G., Ercole A., Skrifvars M.B., Smielewski P., Zoerle T., Menon D.K. Severe traumatic brain injury: targeted management in the intensive care unit. Lancet Neurol. 2017; 16 (6): 452–464. DOI: 10.1016/S1474-4422 (17)30118-7

Заключение
Ортостатическая стабильность кровообращения может кратковременно поддерживаться у выживших после критических диффузных повреждений головного мозга пациентов с хроническими нарушениями сознания. Критические повреждения головного мозга, приводящие к состоянию смерти мозга, сопровождаются значительным снижением всех гемодинамических показателей и развитием выраженной ортостатической гипотензии. Эти данные объясняют критические ортостатические нарушения системного кровообращения в состоянии СМ.

Conclusion
Orthostatic stability of blood circulation can be maintained for a short time in patients with chronic disorders of consciousness who have survived critical diffuse brain damage. Critical brain damage leading to brain death associates with a significant reduction of all hemodynamic parameters and severe orthostatic hypotension with restoration of initial blood pressure values when the patient is returned to the horizontal position.
