Forecasting the production of Distillate Fuel Oil Refinery and Propane Blender net production by using Time Series Algorithms

Akshansh Mishra¹, Rakesh Morissetty², Rajat Sarawagi³

¹Department of Chemistry, Materials and Chemical Engineering “Giulio Natta”, Politecnico di Milano
²DevOps Consultant, AzaTec, Milan
³Software Engineer, Walmart Global Tech India

Abstract: Oil production forecasting is an important step in controlling the cost-effect and monitoring the functioning of petroleum reservoirs. As a result, oil production forecasting makes it easier for reservoir engineers to develop feasible projects, which helps to avoid risky investments and achieve long-term growth. As a result, reliable petroleum reservoir forecasting is critical for controlling and managing the effective cost of oil reservoirs. Oil production is influenced by reservoir qualities such as porosity, permeability, compressibility, fluid saturation, and other well operational parameters. Three time series algorithms i.e., Seasonal Naive method, Exponential Smoothening and ARIMA to forecast the Distillate Fuel Oil Refinery and Propane Blender net production for the next two years.

Keywords: Petroleum Products, Seasonal Naive, ARIMA, Exponential Smoothening, Forecasting

1. Introduction

Data acquired at distinct points in time is known as time series data. Cross-sectional data, on the other hand, looks at persons, companies, and other entities at a single point in time. There is the possibility of correlation between observations since data points in time series are collected at neighboring time periods. The statistical features of time series data frequently defy traditional statistical assumptions. As a result, interpreting time series data necessitates a distinct set of tools and methodologies known as time series analysis. A collection of quantities assembled over even time periods and ordered chronologically is known as time series data. The time series frequency refers to the frequency with which data is collected throughout time.

Stationarity is a crucial concept in time series analysis. A time series is said to be stationary if its behavior does not vary over time. This means that the values always tend to range around the same level and that their variability is stable across time. Stationary series are important in the study of time series because they have a rich theory and their behavior is well characterized. Although the majority of the time series we see are non-stationary, many of them are related to stationary time series in simple ways.

In time series analysis, it has long been customary to concentrate on only the initial two moments of the process rather than the actual observation distribution. If the process is normally distributed, the first two moments include all of the information, and most of the statistical theory of time series estimators is asymptotic and, more often than not, solely depends on the first two moments.
Sagheer et al. [1] proposed a deep learning methodology capable of overcoming the drawbacks of existing forecasting methods and delivering reliable forecasts. As an extension of the standard recurrent neural network, the proposed solution is a deep long-short term memory (DLSTM) architecture. In order to configure DLSTM's optimal architecture, a genetic algorithm is used. Two case studies from the petroleum industry domain were carried out for evaluation purposes, using production data from two real oilfields. The performance of the suggested strategy is compared to numerous common methodologies, either statistical or soft computing, in order to achieve a fair evaluation. The empirical results reveal that the proposed DLSTM model outperforms other common techniques using various measurement criteria.

Abdullahi et al. [2] used Structural Time Series Models (STSMs) to estimate the demand function for five major petroleum products consumed in Nigeria, namely gasoline, diesel, kerosene, fuel oil, liquefied petroleum gas (LPG), and aggregate, by accounting for structural changes in energy demand estimation. STSMs use a stochastic trend rather than a deterministic trend, which is more generic and hence more relevant for their research. The findings show that petroleum product demand in Nigeria is price and income inelastic, and that the underlying demand trends are generally stochastic. The elasticities of LPG are higher than those of kerosene, gasoline, diesel, and fuel oil, which are all petroleum products.

Kumar et al. [3] used three time series models to anticipate conventional energy consumption in India: the Grey-Markov model, the Grey-Model with rolling mechanism, and singular spectrum analysis (SSA). The Grey-Markov model was used to forecast crude-petroleum consumption, while the Grey-Model with rolling mechanism was used to anticipate coal, electricity (in utilities), and natural gas consumption. The models for each time series were chosen after a thorough examination of the structure of each time series. The following are the mean absolute percentage errors (MAPE) for two out of sample forecasts: 1.6 percent for crude-petroleum consumption, 3.5 percent for coal consumption, 3.4 percent for electricity consumption, and 3.4 percent for natural gas consumption.

Serletis et al. [4] used daily data from 3 December 1984 to 30 April 1993 to show the number of common stochastic trends in a system of three petroleum futures prices (crude oil, heating oil, and unleaded gasoline). The maximum likelihood approach of Johansen was used to estimate long-run relations in multivariate vector autoregressive models. The findings revealed that there was just one consistent trend.

Song et al. [5] introduced a neural network-based Long Short-Term Memory (LSTM) model to infer the production of fractured horizontal wells in a volcanic reservoir, which overcomes the constraints of previous methods and provides accurate predictions. The LSTM neural network allows for the capturing of dependencies in oil rate time sequence data as well as the incorporation of production limits. The Particle Swarm Optimization algorithm (PSO) is used to optimize the LSTM model's basic configuration. Two case studies using production dynamics from a synthetic model and from the Xinjiang oilfield in China are carried out for evaluation purposes. To ensure a fair assessment, the suggested approach's performance is compared to that of classic neural networks, time-series forecasting techniques, and traditional decline curves.

The demand for petroleum products in India was studied by Rao et al. [6]. To this end, econometric models based on time series data are created for individual items in order to
capture product-specific demand drivers. The non-homothetic translog functional form is used to generate the models. Ex post forecast accuracy is tested on the models after they have been validated against historical data. These models are used to anticipate demand for various petroleum products until the year 2010. Demand for motor gasoline, high-speed diesel oil, kerosene, liquefied petroleum gas, and aviation turbine fuel is expected to expand rapidly, according to predictions. Fuel oils, light diesel oil, naphtha, and lubricating oils, on the other hand, are predicted to grow at a slower pace.

Using a cointegration and error-correction modeling technique, Ghosh et al. [7] investigated the long-run equilibrium relationship between total petroleum product consumption and economic growth in India from 1970–1971 to 2001–2002. After logarithmic transformation, enhanced Dickey–Fuller tests demonstrate that both series are non-stationary and individually integrated of order one. According to the empirical findings, the series are cointegrated. It has been calculated the 'long-term demand elasticity for petroleum products.' Furthermore, a similar analysis of middle-distillate consumption and economic growth in India was conducted using annual data from 1974–1975 to 2001–2002, confirming the occurrence of cointegration. Actual statistics matched the in-sample forecasts nicely.

Chinn et al. [8] investigated the link between energy commodity spot and futures prices (crude oil, gasoline, heating oil markets and natural gas). They looked at whether futures prices are (1) impartial and/or (2) accurate predictors of spot prices in the future. They discovered that, with the exception of natural gas markets at the 3-month horizon, futures prices are unbiased predictors of future spot prices. Futures do not appear to be very good at forecasting future price changes in energy commodities, while they fare marginally better than time series models.

Illbeigi et al. [9] devised a method for quantitatively quantifying the devastation caused by natural catastrophes on petroleum infrastructures. To measure the recovery period after a disaster, a system-monitoring process using cumulative sum control charts combined with time-series study was performed on the historical performance records of the three key elements of the petroleum industry (i.e., crude oil production, petroleum material imports, and oil refining processes). The intelligence quotient of the petroleum process during the recovery period was estimated at the time. The introduction of well-defined measures and a systematic strategy to quantifying the detrimental impacts of natural disasters on petroleum facilities is the study's primary contribution to the existing body of knowledge.

Dan et al. [10] presented a particular backpropagation neural network (BPNN) with two strategies for forecasting petroleum production in Chinese oilfields: the optimal learning time count (OLTC) and the time-series prediction (TSP), as well as algorithm applicability. When several algorithms are used to solve real-world problems, the solution accuracies are often different, and when one algorithm is used to address real-world problems, the solution accuracies are often different. The total mean absolute relative residual for all samples, R(percent), is used to indicate the solution accuracy, and it is claimed that an algorithm is applicable if R(percent) ≤ 5, else it is inapplicable. The proposed approach has been validated using two case studies from China.

He et al. [11] looked into the fractal behavior of petroleum price in a number of different international systems. This research uses Rescaled Range analysis (R/S analysis) to analyze
the fractal aspects in the systems under study utilizing time series of Brent & WTI crude oil and Rotterdam & Singapore Leaded gasoline prices (daily spot).

2. Experimental Procedure

Large industries in the financial, technological, manufacturing, energy, and service sectors have successfully integrated Data Science into their operations, procedures, and work structures, resulting in substantial productivity and service potential. Whereas the oil and gas business should not be unfamiliar with this science, which assists decision-making processes by extracting large amounts of data, organizing it, and combining statistics, maths, and informatics. Because variations in petroleum and gas supply and demand are intimately linked to price changes, Data Science will be used to manage and mitigate the risks posed by processes and choices at every stage of the industry's value chain. Exploration, extraction, development, and production of oil and gas generate a large volume of data that is disorganized and inaccurate. As a result, data analysis formalizes the experiments in this field, increasing productivity options and fostering innovation.

Our main objective is to implement different types of models for time series context in petroleum engineering. We will work on the Refinery and blender net inputs and net production dataset. The dataset is available on the site https://www.eia.gov/totalenergy/data/monthly/

The output parameters are consisting of the obtained refinery products such as Distillate Fuel oil and Propane production. We have used three Time series models i.e., Seasonal Naive method, Exponential Smoothening and ARIMA to forecast the production for the next two years. The most basic technique of forecasting is to use the most current observation; this is known as a naive forecast, and it may be implemented in a named function. For many time series, including most stock price data, this is the best that can be done, and even if it isn't an excellent forecasting tool, it serves as a valuable benchmark for other forecasting methods.

A related idea for seasonal data is to use the equivalent season from the previous year's data. For example, if you wish to anticipate sales volume for next March, you can utilize the prior March's sales volume. This is done in the naive() method, which stands for seasonal naive.

To accurately estimate future time steps at each location, the Exponential Smoothing Forecast tool uses the Holt-Winters exponential smoothing method to breakdown the time series at each position of a space-time cube into seasonal and trend components. A map of the final anticipated time step, as well as informational messages and pop-up charts, are the main outputs. You can also make a new space-time cube with the existing cube's data and the projected values appended to it. You may also detect outliers in each time series to find locations and times that diverge considerably from the patterns and trends of the remainder of the time series.

Exponential smoothing is a time series forecasting method that is both old and well-studied. It works best when the time series values follow a slow trend and exhibit seasonal behavior, in which the values repeat a cyclical pattern over a set number of time steps.
Different types of exponential smoothing exist, but they all work by dividing the time series into multiple components. The values of each component are calculated by exponentially weighting the components from previous time steps, so that the significance of each time step diminishes exponentially as time progresses. Each component is defined in a recursive manner using a state-space model method, and each component is interdependent on the others. Maximum likelihood estimation is used to estimate all parameters.

The acronym ARIMA stands for AutoRegressive Integrated Moving Average. The delays of the differenced series are referred to as Auto Regressive (AR) terms, the lags of errors are referred to as Moving Average (MA) terms, and I is the number of differences needed to make the time series stationary. The ARIMA model is defined by three numbers: p, d, and q, and it is considered to be of order (p,d,q). The ordering of the AR, Difference, and MA parts are p, d, and q, respectively. Both AR and MA are strategies for finding stationary time series data. For better model fit, ARMA (and ARIMA) is a combination of these two approaches.

3. Results and Discussion

Figure 4.1-4.2 shows the time plot of the production of Distillate Fuel oil, Propane, Propylene in thousand barrels per day.

![Time Plot: Distillate Fuel Oil Refinery and Blender Net Production](image)

Figure 4.1: Distillate Fuel Oil Refinery and Blender net production
It is observed that there is a positive trend over the time as the there is increasing graph of the production. There may be some seasonal patterns as we have upper trend which can be found by further analysis. It is seen that data has a strong trend due to which we need to investigate further transformations.

In order to remove the trend from the data we have to take the first difference. So in order to analyse the first difference we will look into the change of the production of the output from month to month as shown in Figure 4.3-4.4.
Figure 4.3: Change in Distillate Fuel Oil Refinery and Blender net production

Figure 4.4: Change in Propane Refinery and Blender Net Production
It is observed that the time series trend appears to be stationary and further can be used to investigate seasonality indicated in the Figure 4.5-4.6.

Figure 4.5: Seasonality of the Distillate Fuel Oil Refinery and Blender net production

Figure 4.6: Propane Refinery and Blender Net Production
Figure 4.7-4.8 represents the sub series plot of the output production.

Figure 4.7: Subseries plot of Distillate Fuel Oil Refinery and Blender net production

Figure 4.8: Sub series plot of Propane Refinery and Blender Net Production
A method for determining seasonality in a time series is a seasonal subseries plot. This graph is only useful if the seasonality period is already known. In many circumstances, this will be obvious. Monthly data, for example, usually has a term of 12 months.

For the Distillate Fuel Oil Refinery and Blender net production, Seasonal Naïve Method gives the following output.

Forecast method: Seasonal naive method

Model Information:
Call: snaive(y = Dy)

Residual sd: 194.6538

Error measures:

ME	RMSE	MAE	MPE	MAPE	MASE	ACF1
Training set	1.075221	194.6538	142.8007	-26.14917	323.1422	1

Forecasts:

Apr 2022	100.635	-148.823868	350.09387	-280.87942	482.1494
May 2022	139.139	-110.319868	388.59787	-242.37542	520.6534
Jun 2022	208.094	-41.364868	457.55287	-173.42042	589.6084
Jul 2022	-100.223	-349.681868	149.23587	-481.73742	281.2914
Aug 2022	-102.935	-352.393868	146.52387	-484.44942	278.5794
Sep 2022	-200.342	-449.800868	49.11687	-581.85642	181.1724
Oct 2022	171.439	-78.019868	420.89787	-210.07542	552.9534
Nov 2022	232.328	-17.130868	481.78687	-149.18642	613.8424
Dec 2022	-32.038	-281.496868	217.42067	-413.55243	349.4764
Jan 2023	-278.097	-527.555868	-28.63813	-659.61142	103.4174
Feb 2023	-12.201	-261.659868	237.25787	-393.71542	369.3134
Mar 2023	348.099	98.640132	597.55787	-33.41542	729.6134
Apr 2023	100.635	-252.153114	453.42311	-438.90786	640.1779
May 2023	139.139	-213.649114	491.92711	-400.40386	678.6819
Jun 2023	208.094	-144.694114	560.88211	-331.44886	747.6389
Jul 2023	-100.223	-453.011114	252.56511	-639.76586	439.3199
Aug 2023	-102.935	-455.723114	249.85311	-642.47786	436.6079
Sep 2023	-200.342	-553.130114	152.44611	-739.88486	339.2009
Oct 2023	171.439	-181.349114	524.22711	-368.10386	710.9819
Nov 2023	232.328	-120.460114	585.11611	-307.21486	771.8709
Dec 2023	-32.038	-384.626114	320.75011	-571.58086	507.5049
Jan 2024	-278.097	-630.885114	74.69111	-817.63986	261.4459
Feb 2024	-12.201	-364.989114	340.58711	-551.74386	527.3419
Mar 2024	348.099	-4.689114	700.88711	-191.44386	887.6419
For Propane Refinery and Blender Net Production, Seasonal Naïve Method gives the following output.

Forecast method: Seasonal naive method

Model Information:
Call: snaive(y = DY)

Residual sd: 19.2917

Error measures:

	ME	RMSE	MAE	MPE	MAPE	MASE	ACF1
Train set	0.08687326	19.29169	15.36162	125.5544	434.5415	1 -0.2686112	

Forecasts:

Point	Forecast	Lo 80	Hi 80	Lo 95	Hi 95
Feb 2022	-40.022 -64.745299	-15.298701	-77.83022	-2.210978	
Mar 2022	51.635 26.911701	76.358299	13.823978	89.446022	
Apr 2022	9.358 -15.365299	34.081299	-28.453022	47.169022	
May 2022	20.965 -3.758299	45.688299	-16.846022	58.776022	
Jun 2022	0.402 -24.321299	25.125299	-37.409022	38.213022	
Jul 2022	-12.467 -37.190299	12.256299	-50.278022	25.344022	
Aug 2022	-0.871 -25.594299	23.852299	-38.682022	36.940022	
Sep 2022	-28.362 -53.085299	-3.638701	-66.173022	9.449022	
Oct 2022	16.749 -7.974299	41.472299	-21.062022	54.560022	
Nov 2022	10.751 -13.972299	35.474299	-27.060022	48.562022	
Dec 2022	7.217 -17.506299	31.940299	-30.594022	45.028022	
Jan 2023	-26.032 -50.755299	-1.308701	-63.843022	11.779022	
Feb 2023	-40.022 -74.986024	-5.057976	-93.494861	13.450861	
Mar 2023	51.635 16.070976	86.599024	-1.837861	105.107861	
Apr 2023	9.358 -25.606024	44.322024	-44.114861	62.830861	
May 2023	20.965 -13.999024	55.929024	-32.507861	74.437861	
Jun 2023	0.402 -34.562024	35.366024	-53.070861	53.874861	
Jul 2023	-12.467 -47.431024	22.497024	-65.939861	41.005861	
Aug 2023	-0.871 -35.835024	34.093024	-54.343861	52.601861	
Sep 2023	-28.362 -63.326024	6.602024	-81.834861	25.110861	
Oct 2023	16.749 -18.215024	51.713024	-36.723861	70.221861	
Nov 2023	10.751 -24.213024	45.715024	-42.721861	64.223861	
Dec 2023	7.217 -27.747024	42.181024	-46.255861	60.689861	
Jan 2024	-26.032 -60.996024	8.932024	-79.504861	27.440861	

> checkresiduals(fit)

Ljung-Box test

data: Residuals from Seasonal naive method

Q*	df	p-value
301.54	24	< 2.2e-16

Model df: 0. Total lags used: 24

Figure 4.9-4.10 shows the residuals of the Seasonal Naïve method which is used to determine how good is this model to fit the data.
Figure 4.9: Residuals obtained for Distillate Fuel Oil Refinery and Blender net production from Seasonal Naïve Method

Figure 4.10: Residuals obtained for Propane Refinery and Blender Net Production from Seasonal Naïve Method
It is observed from the residual plots that the data plot is totally random. It is also observed that the ACF curve is not ideal i.e., the pointed bars should be contained within the blue horizontal lines. So, it can be concluded that the Seasonal Naïve Method is not utilizing the data very well in this case.

For the Distillate Fuel Oil Refinery and Blender net production, Exponential Smoothening method gives the following output.

\[
\text{ETS}(A,N,A)
\]

\[
\text{Call:}
\]
\[
\text{ets}(y = y)
\]
\[
\text{Smoothing parameters:}
\]
\[
\text{alpha} = 0.5531
\]
\[
\text{gamma} = 0.1359
\]
\[
\text{Initial states:}
\]
\[
\text{l} = 2825.1055
\]
\[
\text{s} = 241.5861 145.0416 -11.3791 -21.2203 42.2302 31.0355
\]
\[
117.7028 -53.063 -176.6399 -134.9879 -122.0568 -58.2502
\]
\[
\text{sigma:} \quad 151.3852
\]
\[
\text{AIC} \quad \text{AICC} \quad \text{BIC}
\]
9720.921 9721.756 9786.648

Training set error measures:

\[
\text{ME} \quad \text{RMSE} \quad \text{MAE} \quad \text{MPE} \quad \text{MAPE} \quad \text{MASE} \quad \text{ACF1}
\]
Training set: 6.504412 149.5814 115.9926 0.0435691 3.366584 0.5862536 0.2006661

For the Propane Refinery and Blender Net Production, Exponential Smoothening method gives the following output.

\[
\text{ETS}(M,N,A)
\]

\[
\text{Call:}
\]
\[
\text{ets}(y = y)
\]
\[
\text{Smoothing parameters:}
\]
\[
\text{alpha} = 0.5305
\]
\[
\text{gamma} = 0.0791
\]
\[
\text{Initial states:}
\]
\[
\text{l} = 209.8139
\]
\[
\text{s} = 9.9605 5.1213 -2.5846 -2.2284 3.4083 -2.5394
\]
\[
-2.7794 0.5517 -5.0293 -5.1122 -0.9582 2.1898
\]
\[
\text{sigma:} \quad 0.0499
\]
\[
\text{AIC} \quad \text{AICC} \quad \text{BIC}
\]
6852.120 6852.958 6917.796

Training set error measures:

\[
\text{ME} \quad \text{RMSE} \quad \text{MAE} \quad \text{MPE} \quad \text{MAPE} \quad \text{MASE} \quad \text{ACF1}
\]
Training set: 0.2175984 13.61776 10.41289 -0.09310638 3.819287 0.58529 0.1218734

> \text{checkresiduals(fit_ets)}

Ljung-Box test

\[
data: \text{Residuals from ETS(M,N,A)}
\]
\[
Q^* = 61.301, \ df = 10, \ p\text{-value} = 2.054e-09
\]

Model df: 14. Total lags used: 24
Figure 4.11-4.12 shows the residuals plot obtained from the exponential smoothening method.

Figure 4.11: Residuals obtained for Distillate Fuel Oil Refinery and Blender net production from Exponential Smoothening Method

Figure 4.12: Residuals obtained for Propane Refinery and Blender net production from Exponential Smoothening Method
It is observed that residuals and ACF curve shows better performance in comparison to the Seasonal Naïve Method. But we need to find the better model for best forecasting in comparison to the Exponential Smoothening Method.

For the Distillate Fuel Oil Refinery and Blender net production, ARIMA method gives the following output.

```r
> print(summary(fit_arima))
Series: Y
ARIMA(0,1,2)(2,1,1)[12]

Coefficients:
                   ma1        ma2       sar1       sar2        sma1
            -0.2695  -0.2912  -0.0322  -0.1223  -0.8082
            0.0394   0.0393   0.0537   0.0531   0.0416
s.e.        0.0394   0.0393   0.0537   0.0531   0.0416

sigma^2 = 19560: log likelihood = -3681.24
AIC=7374.48   AICC=7374.62   BIC=7400.64

Training set error measures:
                    ME     RMSE      MAE      MPE     MAPE     MASE    ACF1
Training set 1.651861 137.7111 103.3132 -0.0254589 2.98456 0.5221691 0.0164173
```

For the Propane Refinery and Blender net production, ARIMA method gives the following output

```r
Series: Y
ARIMA(1,1,1)(0,1,1)[12]

Coefficients:
                     ar1       ma1       sma1
            0.4267  -0.8124  -0.8644
            0.0630   0.0407   0.0256
s.e.        0.0630   0.0407   0.0256

sigma^2 = 177.7: log likelihood = -2316.18
AIC=4640.36   AICC=4640.43   BIC=4657.79

Training set error measures:
                    ME     RMSE      MAE      MPE     MAPE     MASE    ACF1
Training set 0.3015996 13.14749 9.957508 0.06110245 3.645014 0.5596939 0.004296896
```

Figure 4.13-4.14 shows the residuals plot for the production output.
Figure 4.13: Residuals obtained for Distillate Fuel Oil Refinery and Blender net production from ARIMA Method

Figure 4.14: Residuals obtained for Propane Refinery and Blender net production from ARIMA Method

It is observed from the plots that the ARIMA model yields better performance in comparison to the other time series methods.
The next two year output for the Distillate Fuel Oil Refinery and Blender net production from ARIMA Method is shown below:

Forecast method: ARIMA(0,1,2)(2,1,1)[12]

Model Information:
Series: Y
ARIMA(0,1,2)(2,1,1)[12]

Coefficients:
\[
\begin{array}{cccccc}
ma1 & ma2 & sar1 & sar2 & sma1 \\
-0.2695 & -0.2912 & -0.0322 & -0.1223 & -0.8082 \\
s.e. & 0.0304 & 0.0393 & 0.0557 & 0.0531 & 0.0416 \\
\end{array}
\]

sigma^2 = 19580: log likelihood = -3681.24
AICc=7374.48 AICc=7374.62 BIC=7400.64

Error measures:

ME	RMSE	MAE	MPE	MAPE	MASE	ACF1
Training set 1.551661 137.7111 103.3132 -0.0254589 2.98456 0.5221691 0.0164173						

Forecasts:

Point	Forecast	Lo 80	Hi 80	Lo 95	Hi 95
Apr 2022	4976.552 4797.317 5155.786 4702.436 5250.667				
May 2022	5029.044 4807.078 5251.010 4689.576 5368.512				
Jun 2022	5177.893 4892.375 5363.411 4767.699 5488.086				
Jul 2022	5093.658 4845.327 5341.989 4713.869 5473.448				
Aug 2022	5083.358 4822.843 5343.872 4684.934 5481.781				
Sep 2022	4902.312 4630.158 5174.466 4486.088 5318.535				
Oct 2022	4847.792 4564.477 5131.107 4414.499 5281.085				
Nov 2022	5160.920 4868.867 5454.973 4711.205 5610.635				
Dec 2022	5234.971 4930.559 5539.384 4769.413 5700.530				
Jan 2023	4906.041 4591.610 5220.471 4425.161 5386.920				
Feb 2023	4719.335 4395.196 5043.474 4223.607 5215.063				
Mar 2023	4897.827 4564.262 5231.393 4387.683 5407.971				
Apr 2023	5005.792 4655.383 5356.202 4469.888 5541.697				
May 2023	5061.604 4697.307 5425.002 4504.460 5618.749				
Jun 2023	5109.336 4733.772 5484.900 4534.960 5683.712				
Jul 2023	5117.422 4730.919 5503.925 4525.317 5708.527				
Aug 2023	5114.284 4717.144 5511.424 4506.011 5721.657				
Sep 2023	4916.848 4509.348 5324.347 4293.631 5540.065				
Oct 2023	4813.233 4395.631 5230.836 4174.565 5451.901				
Nov 2023	5134.220 4706.754 5561.687 4480.467 5787.974				
Dec 2023	5222.343 4785.235 5659.451 4553.844 5890.842				
Jan 2024	4919.363 4472.822 5365.905 4236.437 5602.290				
Feb 2024	4643.435 4187.655 5099.214 3946.380 5340.490				
Mar 2024	4875.325 4410.490 5340.159 4164.422 5586.228				
The next two year output for the Propane Refinery and Blender net production from ARIMA Method is shown below:

Forecast method: ARIMA(1,1,1)(0,1,1)[12]

Model Information:
Series: Y
ARIMA(1,1,1)(0,1,1)[12]

Coefficients:
ar1	ma1	sma1
0.4267	-0.8124	-0.8644

s.e.: 0.0630 0.0407 0.0256

sigma^2 = 177.7; log likelihood = -2316.18

AIC=4640.36 **AICc=4640.43** **BIC=4657.79**

Error measures:

ME	RMSE	MAE	MPE	MAPE	MASE	ACF1	
Training set	0.3015996	13.14749	9.957508	0.06110245	3.645014	0.5596939	0.004296896

Forecasts:

Point Forecast	Lo 80	Hi 80	Lo 95	Hi 95	
Feb 2022	255.9013	238.8185	272.9841	229.7754	282.0272
Mar 2022	272.1825	252.1333	292.2317	241.5199	302.8451
Apr 2022	275.6401	254.1689	297.1113	242.8027	308.4775
May 2022	282.9986	260.5697	305.4276	248.6965	317.3008
Jun 2022	286.7466	263.5381	309.9570	251.2492	322.2439
Jul 2022	284.5264	260.6134	308.4394	247.9546	321.0982
Aug 2022	282.0218	257.4479	306.5956	244.4393	319.6042
Sep 2022	265.3662	240.1577	290.5745	226.8131	303.9192
Oct 2022	260.4440	234.6201	286.2678	220.9498	299.9381
Nov 2022	279.3665	252.9432	305.7898	238.9555	319.7774
Dec 2022	287.6508	260.6420	314.6596	246.3443	328.9573
Jan 2023	269.9361	242.3544	297.5178	227.7535	312.1186
Feb 2023	255.2349	226.5418	283.9279	211.3526	299.1171
Mar 2023	270.5984	241.0603	300.1365	225.4238	315.7730
Apr 2023	273.6643	243.3906	303.9381	227.3646	319.9641
May 2023	280.8557	249.8982	311.8133	233.5103	328.2012
Jun 2023	284.5323	252.9199	316.1447	236.1853	332.8793
Jul 2023	282.2817	250.0336	314.5299	232.9625	331.6010
Aug 2023	279.7641	246.8951	312.6332	229.4952	330.0330
Sep 2023	263.1030	229.6255	296.5805	211.9036	314.3024
Oct 2023	258.1784	224.1038	292.2530	206.0658	310.2910
Nov 2023	277.0999	242.4386	311.7612	224.0900	330.1098
Dec 2023	285.3838	250.1457	320.6219	231.4918	339.2758
Jan 2024	267.6689	231.8633	303.4745	212.9090	322.4289

Figure 4.15-4.16 shows the output predictions by ARIMA Method.
Figure 4.15: Distillate Fuel Oil Refinery and Blender net production prediction from ARIMA Method

Figure 4.16: Propane Refinery and Blender net production prediction from ARIMA Method
4. Conclusion

In the present study, we have used three time series algorithms for predicting the production of Distillate Fuel Oil Refinery and Blender net production prediction and also Propane Refinery and Blender net production prediction.

It is observed that the ARIMA algorithm outperforms other algorithms in terms of accuracy and performance. ARIMA, invented by Box and Jenkins, is the most extensively used and well-known technique for time series analysis. Future values are forecasted using an ARIMA model as a linear mixture of previous oil prices and associated errors. The AR (autoregressive) component is a linear combination of prior observations; the MA (moving average) component is a linear combination of lagged error terms; and the I (integrated) component substitutes differenced series for the original series.

References

1. Sagheer, A. and Kotb, M., 2019. Time series forecasting of petroleum production using deep LSTM recurrent networks. Neurocomputing, 323, pp.203-213.

2. Abdullahi, A.B., 2014. Modeling petroleum product demand in Nigeria using structural time series model (STSM) approach. International Journal of Energy Economics and Policy, 4(3), pp.427-441.

3. Kumar, U. and Jain, V.K., 2010. Time series models (Grey-Markov, Grey Model with rolling mechanism and singular spectrum analysis) to forecast energy consumption in India. Energy, 35(4), pp.1709-1716.

4. Serletis, A., 1994. A cointegration analysis of petroleum futures prices. Energy Economics, 16(2), pp.93-97.

5. Song, X., Liu, Y., Xue, L., Wang, J., Zhang, J., Wang, J., Jiang, L. and Cheng, Z., 2020. Time-series well performance prediction based on Long Short-Term Memory (LSTM) neural network model. Journal of Petroleum Science and Engineering, 186, p.106682.

6. Rao, R.D. and Parikh, J.K., 1996. Forecast and analysis of demand for petroleum products in India. Energy policy, 24(6), pp.583-592.

7. Ghosh, S., 2006. Future demand of petroleum products in India. Energy Policy, 34(15), pp.2032-2037.

8. Chinn, M.D., LeBlanc, M. and Coibion, O., 2005. The predictive content of energy futures: an update on petroleum, natural gas, heating oil and gasoline.

9. Ilbeigi, M. and Dilkina, B., 2018. Statistical approach to quantifying the destructive impact of natural disasters on petroleum infrastructures. Journal of Management in Engineering, 34(1), p.04017042.

10. Ba, D. and Shi, G.R., 2015. Forecasting petroleum production using the time-series prediction of artificial neural network. Advances in Petroleum Exploration and Development, 10(2), pp.1-6.
11. He, L.Y., Fan, Y. and Wei, Y.M., 2007. The empirical analysis for fractal features and long-run memory mechanism in petroleum pricing systems. International Journal of Global Energy Issues, 27(4), pp.492-502.