A Set Based Newton Method for the Averaged Hausdorff Distance for Multi-Objective Reference Set Problems

Lourdes Uribe 1,* , Johan M Bogoya 2, Andrés Vargas 2, Adriana Lara 1, Günter Rudolph 3 and Oliver Schütze 4

1 Instituto Politécnico Nacional, Mexico City 07738, Mexico; yadriana@esfm.ipn.mx
2 Departamento de Matemáticas, Pontificia Universidad Javeriana, Cra. 7 N. 40-62, Bogotá D.C. 111321, Colombia; j bogoya@javeriana.edu.co (J.M.B.); a.vargasd@javeriana.edu.co (A.V.)
3 Department of Computer Science, TU Dortmund University, 44227 Dortmund, Germany; Guenter.Rudolph@tu-dortmund.de
4 Department of Computer Science, Cinvestav-IPN, Mexico City 07360, Mexico; schuetze@cs.cinvestav.mx
* Correspondence: lourdesur@esfm.ipn.mx

Received: 4 September 2020; Accepted: 11 October 2020; Published: 17 October 2020

Abstract: Multi-objective optimization problems (MOPs) naturally arise in many applications. Since for such problems one can expect an entire set of optimal solutions, a common task in set based multi-objective optimization is to compute N solutions along the Pareto set/front of a given MOP. In this work, we propose and discuss the set based Newton methods for the performance indicators Generational Distance (GD), Inverted Generational Distance (IGD), and the averaged Hausdorff distance Δ_p for reference set problems for unconstrained MOPs. The methods hence directly utilize the set based scalarization problems that are induced by these indicators and manipulate all N candidate solutions in each iteration. We demonstrate the applicability of the methods on several benchmark problems, and also show how the reference set approach can be used in a bootstrap manner to compute Pareto front approximations in certain cases.

Keywords: multi-objective optimization; Newton method; performance indicator Δ_p; generational distance; inverted generational distance; set based optimization

1. Introduction

Multi-objective optimization problems (MOPs), i.e., problems where multiple incommensurable and conflicting objectives have to be optimized concurrently, arise in many fields such as engineering and finance (e.g., [1–5]). One important characteristic is that there is typically not one single solution to be expected for such problems (as it is the case for “classical” scalar optimization problems (SOPs)), but rather an entire set of solutions. More precisely, if the MOP contains k conflicting objectives, one can expect the solution set (the Pareto set respectively its image, the Pareto front) to form at least locally a manifold of dimension $k - 1$ [6]. Many numerical methods take this fact into account and generate an entire (finite) set of candidate solutions so that the decision maker (DM) obtains an overview of the possible realizations of his/her project. For such set based multi-objective optimization algorithms a natural question that arises is the goodness of the obtained solution set \hat{A} (i.e., the relation of \hat{A} to the Pareto set/front of the underlying MOP). For this, several performance indicators have been proposed over the last decades such as the Hypervolume indicator (HV, [7]), the Generational Distance (GD, [8]), the Inverted Generational Distance (IGD, [9]), R2 [10], DOA [11], and the averaged Hausdorff distance Δ_p [12,13]. Each such indicator assigns to a given set of candidate solutions an indicator value.
according to the given MOP. Hence, if the MOP and the size of the candidate solution set are fixed, the detection of the “best” candidate solution can be expressed by the problem

\[
\min_{A \subset Q \mid |A|=N} I(A),
\]

where \(I \) denotes the chosen performance indicator (to be minimized), \(Q \subset \mathbb{R}^n \) the domain of the objective functions, and \(N \) the size of the candidate solution set. Since \(A \subset \mathbb{R}^n \) contains \(N \) elements, it is also a vector in \(\mathbb{R}^{N \cdot n} \). Problem (1) can hence be regarded as a SOP with \(N \cdot n \) decision variables.

A popular and actively researched class of set based multi-objective algorithms is given by specialized evolutionary algorithms, called multi-objective evolutionary algorithms (MOEAs, e.g., [14–17]). MOEAs evolve entire sets of candidate solutions (called populations or archives) and are hence capable of computing finite size approximations of the entire Pareto set/front in one single run of the algorithm. Further, they are of global nature, very robust, and require only minimal assumptions on the model (e.g., no differentiability on the objective or constraint functions). MOEAs have caught the interest of many researchers and practitioners during the last decades, and have been applied to solve many real-world problems coming from science and engineering. It is also known, however, that none of the existing MOEAs converges in the mathematical sense which indicates that they are not yet tapping their full potential. In [18], it has been shown that for any strategy where \(\lambda < \mu \) children are chosen from \(\mu \) parents, there is no guarantee for convergence w.r.t. the HV indicator. Studies coming from mathematical programming (MP) indicate similar results for any performance indicator (e.g., [19,20]) since \(\lambda < \mu \) strategies in evolutionary algorithms are equivalent to what is called cyclic search in MP.

In this work, we propose the set based Newton method for Problem (1), where we will address the averaged Hausdorff distance \(\Delta_p \) as indicator. Since \(\Delta_p \) is defined via \(GD \) and \(IGD \), we will also consider the respective set based \(GD \) and \(IGD \) Newton methods. To this end, we will first derive the (set based) gradients and Hessians for all indicators, and based on this define and discuss the resulting set based Newton methods for unconstrained MOPs. Numerical results on some benchmark test problems indicate that the method indeed yields local quadratic convergence on the entire set of candidate solutions in certain cases. The Newton methods are tested on aspiration set problems (i.e., the problem to minimize the distance of a set of solutions toward a given utopian reference set \(Z \) and the given unconstrained MOP). Further, we will show how the \(\Delta_p \) Newton method can be used in a bootstrap manner to compute finite size approximations of the entire Pareto front of a given problem in certain cases. The method can hence in principle be used as standalone algorithm for the treatment of unconstrained MOPs. On the other hand, the results also show that the Newton methods—as all Newton variants—are of local nature and require good initial solutions. In order to obtain a fast and reliable solver a hybridization with a global strategy—e.g., with MOEAs since the proposed Newton methods can be viewed as particular “\(\lambda = \mu \)” strategies—seems to be most promising which is, however, beyond the scope of this work.

The remainder of this work is organized as follows: In Section 2, we will briefly present the required background needed for the understanding of this work. In Sections 3–5, we will present and discuss the set based \(GD \), \(IGD \) and \(\Delta_p \) Newton methods, respectively. Finally, we will draw our conclusions and will give possible paths for future work in Section 6.

2. Background and Related Work

Continuous unconstrained multi-objective optimization problems are expressed as

\[
\min_{x} F(x),
\]

where \(F : \mathbb{R}^n \to \mathbb{R}^k, F(x) = (f_1(x), \ldots, f_k(x))^T \) denotes the map that is composed of the individual objectives \(f_i : \mathbb{R}^n \to \mathbb{R}, i = 1, \ldots, k \), which are to be minimized simultaneously.
If \(k = 2 \) objectives are considered, the resulting problem is termed a bi-objective optimization problem (BOP).

For the definition of optimality in multi-objective optimization, the notion of dominance is widely used: for two vectors \(a, b \in \mathbb{R}^k \) we say that \(a \) is less than \(b \) (in short: \(a <_p b \)), if \(a_i < b_i \) for all \(i \in \{1, \ldots, k\} \). The definition of \(\leq_p \) is analog. Let \(x, y \in \mathbb{R}^n \), then we say that \(x \) dominates \(y \) (\(x < y \)) w.r.t (2) if \(F(x) \leq_p F(y) \) and \(F(x) \not= F(y) \). Else, we say that \(y \) is non-dominated by \(x \).

Now we are in the position to define optimality of a MOP. A point \(x^* \in \mathbb{R}^n \) is called Pareto optimal (or simply optimal) w.r.t. (2) if there exists no \(y \in \mathbb{R}^n \) that dominates \(x^* \). We denote by \(P \) the set of all optimal solutions, also called Pareto set. Its image \(F(P) \) is called the Pareto front. Under mild conditions on the MOP one can expect that both sets form at least locally objects of dimension \(k - 1 \) [6].

The averaged Hausdorff distance \(\Delta_p \) for discrete or discretized sets is defined as follows: let \(A = \{a_1, \ldots, a_N\} \) and \(B = \{b_1, \ldots, b_M\} \), where \(A, B \subset \mathbb{R}^n \), be finite sets. The values \(GD_p(A, B) \) and \(IGD_p(A, B) \) are defined as

\[
GD_p(A, B) := \left(\frac{1}{N} \sum_{i=1}^{N} \text{dist}(a_i, B)^p \right)^{1/p},
\]

\[
IGD_p(A, B) := \left(\frac{1}{M} \sum_{i=1}^{M} \text{dist}(b_i, A)^p \right)^{1/p},
\]

where \(p \) is an integer and where the distance of a point \(a_i \) to a set \(B \) is defined by \(\text{dist}(a_i, B) := \min_{b \in B} ||a_i - b||_2 \). The averaged Hausdorff distance \(\Delta_p \) is simply the maximum of these two values,

\[
\Delta_p := \max\{GD_p(A, B), IGD_p(A, B)\}.
\]

We refer to [21] for an extension of the indicators to continuous sets. We stress that all of these three indicators are entirely distance based and are in particularly not Pareto compliant. A variant of IGD that is weakly Pareto compliant is the indicator DOA. Here, we are particularly interested in multi-objective reference set problems. That is, given a finite reference set \(Z \subset \mathbb{R}^k \), we are interested in solving the problem

\[
\min_{A:\mathcal{Q} \subseteq A \subseteq \mathcal{Z}, |A| = N} I(F(A), Z),
\]

where \(I \) is one of the indicators \(GD_p, IGD_p, \) or \(\Delta_p \), and \(N \) is the size of the approximation.

Probably the most important reference set in our context is the Pareto front itself. For this case, \(\Delta_p \) prefers, roughly speaking, evenly spread solutions along the Pareto front and is hence e.g., in accord with the terms spread and convergence as used in the evolutionary multi-objective optimization (EMO) community for a “suitable” performance indicator. As an example, Figure 1 shows some “best approximations” in the \(\Delta_2 \) sense (i.e., when using \(p = 2 \)) for MOPs with different shapes of the Pareto front. More precisely, each subfigure shows a fine grain \((M = 200) \) approximation of the Pareto front of the underlying problem (using dots), as well as the best approximations in the \(\Delta_2 \) sense (using diamonds). The latter are (numerical) solutions of (5) for \(N = 20 \), and where \(Z \) has been chosen as the Pareto front approximation.
Figure 1. Pareto fronts with different shapes together with their best approximations in the sense of (5) for \(p = 2 \) and \(N = 20 \), and where \(Z \) is an approximation of the Pareto front.

If \(A = \{a_1, \ldots, a_N\} \) is a subset of the \(\mathbb{R}^n \) it means that each of its element \(a_i \) is an element of the \(\mathbb{R}^n \). Hence, the set \(A = \{a_1, \ldots, a_N\} \subset \mathbb{R}^n \) can in a natural way also be identified as a point or vector in the higher dimensional space \(\mathbb{R}^{N \cdot n} \), i.e., \(A \in \mathbb{R}^{N \cdot n} \). That is, the optimization problem (5) can be identified as a “classical” scalar optimization problem that is defined in \(N \cdot n \)-dimensional search space. A necessary condition for optimality is hence given by the Karush–Kuhn–Tucker conditions, e.g., for unconstrained problems we are seeking for sets \(A \) for those the (set based) gradient vanishes. In order to solve this root finding problem, one can e.g., utilize the Newton method. If we are given a performance indicator \(I \) together with the derivatives \(\nabla I(A) \) and \(\nabla^2 I(A) \) on a set \(A \), the Newton function is hence given by

\[
N(A) := A - \nabla^2 I(A)^{-1} \nabla I(A).
\]

There exist many methods for the computation of Pareto optimal solutions. For example, there are mathematical programming (MP) techniques such as scalarization methods that transform the MOP into a sequence of scalar optimization problems (SOPs) [22–26]. These methods are very efficient in finding a single solution or even a finite size discretization of the solution set. Another sub-class of the MP techniques is given by continuation-like methods that take advantage of the fact that the Pareto set forms—at least locally—a manifold. Methods of this kind start from a given initial solution and perform a search along the solution manifold [6,27–33].
Next there exist also set oriented methods that are capable of obtaining the entire solution set in a
global manner. Examples for the latter are subdivision \[34–36\] and cell mapping techniques \[37–39\].
Another class of set based methods is given by multi-objective evolutionary algorithms (MOEAs) that
have proven to be very effective for the treatment of MOPs \[14,16,40–43\]. Some reasons for this include
that are very robust, do not require hard assumptions on the model, and allow to compute a reasonable
finite size representation of the solution set already in a single run.

Methods that deal with single reference points for multi-objective problems can be
found in \[26,44,45\]. The first work that deals with a set based approach using a problem similar
to the one in (5) can be found in \[46\], where the authors apply the steepest descent method on the
Hypervolume indicator \[47\]. In \[48\], the Newton method is defined where as well the Hypervolume
indicator has been used. In \[49\], a multi-objective Newton method is proposed that detects single
Pareto optimal solutions for a given MOP. In \[50\], a set based Newton method is proposed for general
root finding problems and for convex sets.

3. GD\textsubscript{p} Newton Method

In the following sections we will investigate the set based Newton methods for GD\textsubscript{p}, IGD\textsubscript{p},
and \(\Delta\textsubscript{p}\). More precisely, we will consider the \(p\)-th powers, \(p > 1\), of these indicators as this does not
change the optimal solutions. In all cases, we will first derive the (set based) derivatives, and then
investigate the resulting Newton method. For the derivatives, we will focus on \(p = 2\) which is related
to the Euclidean norm, and which hence represents the most important performance indicator of the
indicator families. However, we will also state the derivatives for general integers \(p\).

Let \(A = \{a_1, \ldots, a_N\} \subset \mathbb{R}^n\) be a candidate set for (2), and \(Z = \{z_1, \ldots, z_M\} \subset \mathbb{R}^k\) be a given
reference set. The indicator \(GD\textsubscript{p}\) measures the averaged distance of the image of \(A\) and \(Z\):

\[
GD\textsubscript{p}(A) := \left(\frac{1}{N} \sum_{i=1}^{N} d(F(a_i), Z)^p \right)^{\frac{1}{p}}.
\]

Hereby, we have used the notation

\[
d(F(a_i), Z) := \min_{j=1,...,M} \|F(a_i) - z_j\|, \text{ for } i = 1, \ldots, N,
\]

and assume \(Z\) to be fixed for the given problem (and hence, it does not appear as input argument).

3.1. Derivatives of GD\textsubscript{2}

3.1.1. Gradient of GD\textsubscript{2}

In the following, we have to assume that for every point \(F(a_i)\) there exists exactly one closest
element in \(Z\). That is, \(\forall \; i = 1, \ldots, N\) there exists an index \(j_i \in \{1, \ldots, M\}\) such that:

\[
d(F(a_i), Z) = \|F(a_i) - z_{j_i}\| < \|F(a_i) - z_q\| \; \forall q \in \{1, \ldots, M\} \setminus \{j_i\}.
\]

Otherwise, the gradient of \(GD\textsubscript{p}\) is not defined at \(A\). If condition (9) is satisfied, then (7) can be
written as follows:

\[
GD\textsubscript{p}(A) := \left(\frac{1}{N} \sum_{i=1}^{N} \|F(a_i) - z_{j_i}\|^p \right)^{\frac{1}{p}},
\]

and for the special case \(p = 2\) we obtain

\[
GD\textsubscript{2}(A) := \frac{1}{N} \sum_{i=1}^{N} \|F(a_i) - z_{j_i}\|_2^2 \in \mathbb{R}^{nN}.
\]
The gradient of GD_2^2 at A is hence given by

$$
\nabla GD_2^2(A) := \frac{2}{N} \begin{pmatrix}
J(a_1)^T (F(a_1) - z_{j_1}) \\
J(a_2)^T (F(a_2) - z_{j_2}) \\
\vdots \\
J(a_N)^T (F(a_N) - z_{j_N})
\end{pmatrix} \in \mathbb{R}^{n \times N},
$$

(12)

where $J(a_i)$ denotes the Jacobian matrix of F at a_i for $i = 1, \ldots, N$. We call the vector

$$
J(a_i)^T (F(a_i) - z_{j_i}), \quad i \in \{1, \ldots, N\},
$$

(13)

the i-th sub-gradient (The sub-gradient is defined here as part of the gradient that is associated to an element a of A, and is not equal to the notion of the sub-gradient known in non-smooth optimization.) of GD_2^2 with respect to $a_i \in A$. Note that the sub-gradients are completely independent of the location of the other archive elements $a_j \in A$.

If the given MOP is unconstrained, then the first order necessary condition for optimality is that the gradient of GD_2^2 vanishes. This is the case for a set A if all sub-gradients vanish

$$
\nabla GD_2^2(A) = 0 \iff J(a_i)^T (F(a_i) - z_{j_i}) = 0 \quad \forall \ i = 1, \ldots, N.
$$

(14)

This happens if for each a_i either

(i) $F(a_i) = z_{j_i}$, that is, if the image of a_i is equal to one of the elements of the reference set. This is for instance never the case if Z is chosen utopian.

(ii) If $F(a_i) \neq z_{j_i}$, we have

$$
J(a_i)^T (F(a_i) - z_{j_i}) = \sum_{l=1}^{k} \nabla f_l(a_i) (f_l(a_i) - (z_{j_i})) = \sum_{l=1}^{k} a_{i}^{(l)} \nabla f_l(a_i) = 0
$$

(15)

for a vector $a_{i}^{(l)} \in \mathbb{R}^k \setminus \{0\}$. The point a_i is hence a critical point since $\text{rank}(J(a_i)) < k$. Furthermore, if $F(a_i) - z_{j_i} \geq 0$ (e.g., if Z is again utopian) then a_i is even a Karush–Kuhn–Tucker point. See Figure 2 for a geometrical interpretation of this scenario.

![Figure 2](image-url)

Figure 2. Geometrical interpretation of the optimality condition (ii) for GD_2^2. Note that α is orthogonal to the linearized Pareto front. (a) shows this behavior on a concave Pareto front, (b) on a convex Pareto front, and (c) on a concave/convex Pareto front.
3.1.2. Hessian of GD^2_2

We first define the map $g : \mathbb{R}^n \to \mathbb{R}^n$ as
\[
g(a_i) := \sum_{l=1}^{k} \alpha_l^i \nabla f_l(a_i),
\]
where α_l^i is as in (15). In order to find an expression of the Hessian matrix, we now derive Equation (16) as follows:
\[
\mathbf{D}g(a_i) = \sum_{l=1}^{k} \left(\nabla f_l(a_i) \nabla f_l(a_i)^T + \alpha_l^i \nabla^2 f_l(a_i) \right) = J(a_i)^T J(a_i) + W_\alpha(a_i) \in \mathbb{R}^{n \times n},
\]
where
\[
W_\alpha(a_i) = \sum_{l=1}^{k} \alpha_l^i \nabla^2 f_l(a_i).
\]
Thus, the Hessian matrix of GD^2_2 is
\[
\nabla^2 GD^2_2(A) = \frac{2}{N} \text{diag}(Dg(a_1), \ldots, Dg(a_N)) \in \mathbb{R}^{N \times n \times N},
\]
which is a block diagonal matrix.

3.2. Gradient and Hessian for General $p > 1$

As mentioned above, we focus here on the special case $p = 2$. The above derivatives, however, can be generalized for $p > 1$ as follows (assuming that Z is an utopian finite set to avoid problems when $p < 4$): the gradient is given by
\[
\nabla GD^p_2(A) := \frac{p}{N} \begin{pmatrix}
\|F(a_1) - z_{j_1}\|^{p-2} J(a_1)^T (F(a_1) - z_{j_1}) \\
\|F(a_2) - z_{j_2}\|^{p-2} J(a_2)^T (F(a_2) - z_{j_2}) \\
\vdots \\
\|F(a_N) - z_{j_N}\|^{p-2} J(a_N)^T (F(a_N) - z_{j_N})
\end{pmatrix} \in \mathbb{R}^{n \times N},
\]
and the Hessian by
\[
\nabla^2 GD^p_2(A) = \text{diag}(\mathcal{H}_1, \ldots, \mathcal{H}_N) \in \mathbb{R}^{n \times n \times N},
\]
where
\[
\mathcal{H}_i = \frac{p(p-2)}{N} \|F(a_i) - z_{j_i}\|^{p-4} \left[J(a_i)^T (F(a_i) - z_{j_i}) (F(a_i) - z_{j_i})^T J(a_i)^T \right]
+ \frac{p}{N} \left[J(a_i)^T J(a_i) + W_\alpha(a_i) \right],
\]
for $i = 1, 2, \ldots, N$.

3.3. GD^2_2-Newton Method

After having derived the gradient and the Hessian we are now in the position to state the set based Newton method for the GD^2_2 indicator:
The Newton iteration can in practice be stopped at a set A^f if
\[\|\nabla GD_2^2(A^f)\| \leq tol, \]
for a given tolerance $tol > 0$. In order to speed up the computations one may proceed due to the structure of the (sub-)gradient as follows: for each element a_i of a current archive A with
\[\|J(a_i)^T(F(a_i) - z_{j_i})\| \leq \frac{tol}{\sqrt{N}} \]
on one can continue the Newton iteration with the smaller set $\bar{A} = A \setminus \{a_i\}$ (and later insert a_i into the final archive).

We are particularly interested in the regularity of $\nabla^2 GD_2^2$ at the optimal set, i.e., at a set A^* that solves problem (5) for $I = GD_2^2$. This is the case since if the Hessian is regular at A^*—and if the objective function is sufficiently smooth—we can expect the Newton method to converge locally quadratically [51].

Since the Hessian is a block diagonal matrix it is regular if all of its blocks
\[J(a_i)^T J(a_i) + W_{a(i)}(a_i), \quad i = 1, \ldots, N, \]
are regular. From this we see already that if Z is not utopian, we cannot expect quadratic convergence: assume that one point $z \in Z$ is feasible, i.e., that there exists one $x \in Q$ such that $F(x) = z$. We can assume that x is also a member of the optimal set A^*, say $a_i = x$. Then, we have that the weight vector $a^{(i)}$ is zero, and hence that $W_{a(i)} = \sum_{j=1}^{k} a_j^{(i)} \nabla^2 f_j(a_i) = 0$. Thus, the block matrix reduces to $J(a_i)^T J(a_i)$ those rank is at most k. The block matrix is hence singular, and so is the Hessian of GD_2^2 at A^*.

In the case all individual objectives are strictly convex, the GD_2^2 Hessian is positive definite (and hence regular) at every feasible set A, and we can hence expect local quadratic convergence.

Proposition 1. Let a MOP of the form (2) be given whose individual objectives are strictly convex, and let Z be a discrete utopian set. Then, the matrix $\nabla^2 GD_2^2(A)$ is positive definite for all feasible sets A.

Proof. Since $\nabla^2 GD_2^2(A)$ is block diagonal, it is sufficient to consider the block matrices $J(a_i)^T J(a_i) + W_{a(i)}(a_i), \quad i = 1, \ldots, N$. Since Z is utopian, it is $a^{(i)} \neq 0$, and all of its elements are non-negative. Further, since all individual objectives f_i are strictly convex, the matrices $\nabla^2 f_i(a_i)$ are positive definite, and hence also the matrix $W_{a(i)}$. Since $J^T(a_i) J(a_i)$ is positive semi-definite, we have for all $x \in \mathbb{R}^n \setminus \{0\}$
\[
x^T \left(J(a_i)^T J(a_i) + W_{a(i)} \right) x = x^T J(a_i)^T J(a_i) x + x^T W_{a(i)} x > 0,
\]
since $x^T J(a_i)^T J(a_i) x \geq 0$ and $x^T W_{a(i)} x > 0$. Therefore, each $D_g(a_i), i = 1, \ldots, N$, is positive definite and hence also the matrix $\nabla^2 GD_2^2(A)$. \(\square\)
3.4. Example

We consider the following convex bi-objective problem

\[f_1, f_2 : \mathbb{R}^2 \rightarrow \mathbb{R} \]
\[f_1(x) = x_1^2 + (x_2 + 3)^2 \]
\[f_2(x) = (x_1 + 3)^2 + x_2^2. \]

(27)

Figure 3 shows the Pareto front of this problem together with the reference set \(Z \) that contains 30 elements (black dots). The set \(Z \) is a discretization of the convex hull of individual minima (CHIM, [23]) of the problem that has been shifted left down. Further, it shows the images of the Newton steps of an initial set \(A_0 \) that contains 21 elements. As it can be seen, all images converge toward three solutions that are placed in the middle of the Pareto front (which is owed to the fact that \(Z \) is discrete. If \(Z \) would be continuous, all images would converge toward one solution). This example already shows that the \(GD^2 \) Newton method is of restricted interest as standalone algorithm. The method will, however, become important as part of the \(\Delta p - \)Newton method as it will become apparent later on. Table 1 shows the respective \(GD^2 \) values plus the norms of the gradients which indicate quadratic convergence. The second column indicates that the images of the archives converge toward the Pareto front as anticipated.

Figure 3. (Left) application of the \(GD^2 \) Newton method on bi-objective oriented problem (BOP) (27). (Right) only the final archive is shown.

Table 1. Numerical results of the \(GD^2 \)-Newton method for BOP (27).

Iter.	\(\| \nabla GD^2(A^i) \| \)	\(GD^2(F(A^i), F(P_Q)) \)	\(GD^2(F(A^i), Z) \)
0	-	12.000000000000000	2.1025407758237
1	24.575789798441914	2.443855313744088	1.36416007053236
2	10.174108923911083	0.155893831541973	1.099322040049995
3	5.003263195893473	0.002209872937986	1.014751905633911
4	3.169714351377499	0.00001524816873	0.97632999745630
5	1.94760261777173	0.00000002134344	0.95786567382514
6	1.75837520691766	0.0000000202566	0.94579014541235
7	1.433193382521511	0.0000000001313	0.939274242767051
8	1.012249366175551	0.0000000000000	0.93649035893491
9	0.006408088020990	0.0000000000000	0.93649035893491
10	0.00000182419413	0.0000000000000	0.93649035893491
11	0.00000000000002	0.0000000000000	0.93649035893491
4. IGD_p Newton Method

The indicator IGD_p computes how far, on average, the discrete reference set Z is from a given archive A, and is defined as

$$IGD_p(A) := \left(\frac{1}{M} \sum_{i=1}^{M} d(z_i, F(A))^p \right)^{\frac{1}{p}},$$

where $d(z_i, F(A))$ is given by

$$d(z_i, F(A)) := \min_{j=1, \ldots, N} \| z_i - F(a_j) \|,$$ for $i = 1, \ldots, M.$ \hspace{1cm} (29)

4.1. Gradient of IGD_p

Similar to GD, we will also have to assume that for all $i = 1, \ldots, M$ there exists an index $j_i \in \{1, \ldots, N\}$ such that:

$$d(z_i, F(A)) = \| z_i - F(a_{j_i}) \| < \| z_i - F(a_q) \| \quad \forall q \in \{1, \ldots, N\} \setminus \{j_i\},$$ \hspace{1cm} (30)

since otherwise the gradient of IGD_p is not defined. Then, using Equation (30), Equation (28) can be written as follows:

$$IGD_p(A) := \left(\frac{1}{M} \sum_{i=1}^{M} \| z_i - F(a_{j_i}) \|^p \right)^{\frac{1}{p}}.$$ \hspace{1cm} (31)

From now on we will consider IGD_2^2 which is given by

$$IGD_2^2(A) := \frac{1}{M} \sum_{i=1}^{M} \| z_i - F(a_{j_i}) \|^2.$$ \hspace{1cm} (32)

In order to derive the gradient of IGD_2^2, let $I_l := \{i : j_i = l\}, l \in \{1, \ldots, N\}$, be the set formed by the indexes $i \in \{1, 2, \ldots, M\}$ that are related to j_i. In other words, this set gives us the relation of the elements of Z related to each image $F(a_l)$ (an example of this relation can be found in Figure 4). Then, the sub-gradient of IGD_2^2 at point a_l is given by

$$\frac{\partial IGD_2^2}{\partial a_l}(A) = \frac{2}{M} \sum_{i \in I_l} (a_l)^T (F(a_l) - z_i) = \frac{2}{M} (a_l)^T (m_l F(a_l) - \sum_{i \in I_l} z_i),$$ \hspace{1cm} (33)

where $m_l = |I_l|$. Finally, the gradient of IGD_2^2 can be expressed as

$$\nabla IGD_2^2(A) := \left(\frac{\partial IGD_2^2}{\partial a_1}(A) \left| \frac{\partial IGD_2^2}{\partial a_2}(A) \right| \ldots \right) \in \mathbb{R}^{n \times N}.$$ \hspace{1cm} (34)

It is worth to notice that the sub-gradients depend on the location of the other archive elements which implies a “group motion” (which is in contrast to the gradient of GD_2^2).
We next consider under which conditions the gradient of IGD_2^2 vanishes. If $\nabla \text{IGD}_2^2(A) = 0$, then for all $l = 1, \ldots, N$ we have that

$$f(a_l)^T (m_l F(a_l) - \sum_{i \in I_l} z_i) = 0 \quad \text{(35)}$$

$$\iff f(a_l)^T F(a_l) = \left(\frac{\sum_{i \in I_l} z_i}{m_l} \right). \quad \text{(36)}$$

where C is the centroid of z_i’s. Then, note that if:

1. $\text{rank}(f(a_l)) = k$, then $F(a_l) = \frac{\sum_{i \in I_l} z_i}{m_l} = C_l$.
2. $\text{rank}(f(a_l)) = k - 1$, then $F(a_l) - C_l$ is orthogonal to the linearized image of F at $F(a_l)$, and orthogonal to the linearized Pareto front at $F(a_l)$ in case $F(a_l) - C_l \geq 0$ and $F(a_l) - C_l \neq 0$ (see Figure 5 for such a scenario).

![Figure 4. Example of a relation between the reference set Z and the approximation set $F(A)$.](image)

![Figure 5. Geometric interpretation when $F(a_l) - C$ is orthogonal to the linearized Pareto front.](image)
4.2. Hessian Matrix of IGD$_p$

Analog to the derivation of GD$_p$—Hessian, we first define the map $g : \mathbb{R}^n \rightarrow \mathbb{R}^n$ as

$$g(a_1) := (a_1)^T (m_1 F(a_1) - \sum_{i \in I_p} z_i).$$

(37)

Now, let $\sum_{i \in I_l} z_i = y = (y_1, \ldots, y_k)^T$. Then

$$g(a_1) = (a_1)^T (m_1 F(a_1) - y) = m_1 \sum_{i=1}^k f_i(x) \nabla f_i(x) - \sum_{i=1}^k y_i \nabla f_i(x).$$

(38)

Then, we derive Equation (38) as follows:

$$Dg(a_1) = m_1 \sum_{i=1}^k f_i(a_1) \nabla^2 f_i(a_1) + m_1 (a_1)^T \nabla f_i(a_1) - \sum_{i=1}^k y_i \nabla^2 f_i(a_1)$$

$$= \sum_{i=1}^k (m_1 f_i(a_1) - y_i) \nabla^2 f_i(a_1) + m_1 (a_1)^T \nabla f_i(a_1)$$

$$= m_1 (a_1)^T \nabla f_i(a_1) + W_n(a_1) \in \mathbb{R}^{n \times n},$$

where

$$W_n(a_1) = \sum_{i=1}^k (m_1 f_i(a_1) - y_i) \nabla^2 f_i(a_1) = \sum_{i=1}^k (a_1^{(l)}) \nabla^2 f_i(a_1).$$

(40)

Thus, the Hessian matrix of IGD$_p^2$ is given by

$$\nabla^2 IGD_p^2(A) = \frac{2}{M} \text{diag} (Dg(a_1), \ldots, Dg(a_N)) \in \mathbb{R}^{n \times n \times n},$$

(41)

which is a block diagonal matrix.

4.3. Gradient and Hessian for General $p > 1$

The above derivatives can be generalized for $p > 1$ as follows: the gradient is given by

$$\nabla IGD_p^p(A) := \frac{p}{M} \begin{pmatrix}
 (a_1)^T \sum_{i \in I_p} \|F(a_1) - z_i\|^{p-2} (F(a_1) - z_i) \\
 (a_2)^T \sum_{i \in I_p} \|F(a_2) - z_i\|^{p-2} (F(a_2) - z_i) \\
 \vdots \\
 (a_N)^T \sum_{i \in I_p} \|F(a_N) - z_i\|^{p-2} (F(a_N) - z_i)
\end{pmatrix} \in \mathbb{R}^{n \times N},$$

(42)

and the Hessian by

$$\nabla^2 IGD_p^p(A) = \text{diag} (H_1, \ldots, H_N) \in \mathbb{R}^{n \times n \times n},$$

(43)

where

$$H_l = \frac{p(p-2)}{N} \sum_{i \in I_l} \|F(a_1) - z_i\|^{p-4} \left[(a_1)^T (F(a_1) - z_i) (F(a_1) - z_i)^T J(a_1)
ight]$$

$$+ \frac{p}{M} \left[(a_1)^T J(a_1) + W_n(a_1) \right].$$

(44)
4.4. IGD2 Newton Method

After having derived the gradient and the Hessian of \(IGD_2^2 \) we are now in the position to state the respective set based Newton method.

\[
IGD_2^2 \text{ Newton method} \\
A^0 \subset \mathbb{R}^n \\
A^{t+1} := A^t - \text{diag}(Dg(a_1), \ldots, Dg(a_N))^{-1} \begin{bmatrix}
J(a_1)^T(m_1 F(a_1) - \sum_{i \in I_1} z_i) \\
\vdots \\
J(a_N)^T(m_N F(a_N) - \sum_{i \in I_N} z_i)
\end{bmatrix}, \quad t = 0, 1, \ldots (45)
\]

Similarly to the GD Newton method, the iteration can be stopped at a set \(A_f \) if

\[
\| \nabla IGD_2^2(A_f) \| \leq \text{tol} (46)
\]

for a given tolerance \(\text{tol} > 0 \), and the iteration for an element \(a_l \) can be stopped when

\[
\frac{2}{M} J(a_l)^T(m_l F(a_l) - \sum_{i \in I_l} z_i) \leq \frac{\text{tol}}{\sqrt{N}}. (47)
\]

One important special case is when the image \(F(a_l) \) of a point \(a_l \) of a set \(A \) is not the nearest point of any element of \(Z \), i.e., if \(m_l = 0 \) (see Figure 6). In that case, the \(l \)-th sub-gradient vanishes,

\[
m_l = 0 \Rightarrow \frac{\partial IGD_2^2}{\partial a_l}(A) = 0, (48)
\]

which means that the point \(a_l \) will remain fixed under further iterations of the IGD Newton method. One possibility is hence to neglect such points in subsequent iterations, and to continue with the reduced set. Note also that dominance and distance are two different concepts. That is, if all points of a set \(A \) are mutually non-dominated, this does give an implication on \(m_l \), see Figure 7 for two examples.

![Figure 6](image_url)

Figure 6. Potential problem of the Inverted Generational Distance (IGD) Newton method: if \(m_l = 0 \) (here it is \(m_2 = 0 \)) then the \(l \)-th sub-gradient is equal to zero, and \(a_l \) will stay fixed under the Newton iteration.
Figure 7. Dominance and distance are different concepts. (Left) an example where \(a_1\) and \(a_2\) are mutually non-dominated, but where \(|I_2| = 0\). (Right) an example where \(a_1 < a_2\), but \(|I_1| \neq 0\) for \(l \in \{1, 2\}\).

Similar to GD, we are interested in the regularity of \(\nabla^2 \text{IGD}_Z^2\) at the optimal set since we can in that case expect local quadratic convergence. By the structure of the Hessian we have singularity in the following cases:

1. if \(m_l = 0\) for a \(l \in \{1, \ldots, N\}\) (since then \(Dg(a_l) = 0\)) (see also the discussion above), and
2. if one element \(z_i\) of \(Z\) is feasible (since then \(Dg(a_l) = J(a_l)^T f(a_l)\) which has a rank \(\leq k\), and under the assumption that \(k < n\)).

Similar as for GD, the IGD-Hessian is positive definite for strictly convex problems and utopian reference sets if in addition \(m_l \geq 1\) for all \(l \in \{1, \ldots, N\}\).

Proposition 2. Let a MOP of the form (2) be given whose individual objectives are strictly convex, and let \(Z\) be a discrete utopian set. Further, let \(m_l \geq 1\) for all \(l \in \{1, \ldots, N\}\), and \(A\) be feasible. Then, the matrix \(\nabla^2 \text{IGD}_Z^2(A)\) is positive definite.

Proof. Let \(l \in \{1, \ldots, N\}\), and for ease of notation \(\bigcup_{i \in I_l} z_i = \{Z^1, \ldots, Z^{m_l}\}\). Since all \(Z^i\)’s are utopian we have
\[
\alpha^{(l)} = m_l F(a_l) - \sum_{i \in I_l} z_i = F(a_l) - Z^1 + \ldots + F(a_l) - Z^{m_l} \geq_p 0, \tag{49}
\]
as well as \(m_l F(a_l) \neq \sum_{i \in I_l} z_i\) (and hence \(\alpha^{(l)} \neq 0\)). The rest is analog to the proof of Proposition 1. \(\square\)

4.5. Examples

We first consider again the convex BOP (27) as for the previous example (see Figure 8), but now using the IGD-Newton method. Already after one iteration step for 8 out of the 21 elements it is \(m_l = 0\) (denoted by red dots), and we continue the Newton method with the resulting 13-element subset. For this, we obtain quadratic convergence toward the ideal set (for \(N = 13\)) as it can be observed from Table 2.
Figure 8. (Left) application of the \(IGD_2 \)-Newton method on BOP (27). (Right) image of the final archive (green) together with the images for those \(m_j = 0 \) (red).

Table 2. Numerical results of \(IGD_2 \)-Newton method for BOP (27), see Figure 8.

Iter.	\(\| \nabla IGD_2(A^i) \| \)	\(GD_2(F(A^i), F(P_Q)) \)	\(IGD_2(F(A^i), Z) \)
0	0.000000000000000	0.280604068205798	0.000000000000000
1	18.378420484981000	2.06669895378755	0.000000000000000
2	5.432039146770605	0.043471951768718	0.000000000000000
3	0.817043487084936	0.000003701993633	0.000000000000000
4	0.706420510642436	0.000000000000000	0.000000000000000
5	0.006184251273371	0.000000000000000	0.000000000000000
6	0.000000481423311	0.000000000000000	0.000000000000000
7	0.000000000000007	0.000000000000000	0.000000000000000

We next consider the following BOP [52]

\[
\begin{align*}
 f_1, f_2 : [-4, 4]^2 \subset \mathbb{R}^2 & \rightarrow \mathbb{R} \\
 f_1(x) &= 1 - \exp \left[- \left(x_1 - \frac{1}{\sqrt{2}} \right)^2 - \left(x_2 - \frac{1}{\sqrt{2}} \right)^2 \right] \\
 f_2(x) &= 1 - \exp \left[- \left(x_1 + \frac{1}{\sqrt{2}} \right)^2 - \left(x_2 + \frac{1}{\sqrt{2}} \right)^2 \right]
\end{align*}
\]

(50)

those Pareto front is concave. We apply the IGD-Newton method on the sets \(A^0 \) with \(|A^0| = 21 \) and \(Z \) with \(|Z| = 30 \) as shown in Figure 9. For this example, only six elements of \(A^0 \) are closest to one element of \(Z \). Table 3 shows that the convergence is much slower than for the previous example.

Finally, we consider the BOP [53]

\[
\begin{align*}
 f_1(x, y) &= \frac{1}{2} \left(\sqrt{1 + (x + y)^2 + \sqrt{1 + (x - y)^2}} + x - y \right) + \lambda \cdot e^{-(x-y)^2} \\
 f_2(x, y) &= \frac{1}{2} \left(\sqrt{1 + (x + y)^2 + \sqrt{1 + (x - y)^2}} - x + y \right) + \lambda \cdot e^{-(x-y)^2}
\end{align*}
\]

(51)
For $\lambda = 0.85$ and $Q = [-1.5, 1.5]^2$ the Pareto front contains a “dent” and is hence convex-concave. Figure 10 shows the setting and Table 4 the respective convergence behavior. Again, we “lose” elements from A^0 since for them there are no elements of Z that are closest to them.

![Figure 9](image-url)
Figure 9. *(Left) application of the IGD^2_{λ}-Newton method on BOP (50). *(Right) the image of the final archive (green) together with the images for which $m_l = 0$.*

Table 3. Numerical results of IGD^2_{λ}-Newton method for BOP (50), see Figure 9.

Iter.	$\|\nabla IGD^2_{\lambda}(A^i)\|$	$IGD^2_{\lambda}(F(A^i), F(P_Q))$	$IGD^2_{\lambda}(F(A^i), Z)$
0	-	0.278373584606464	0.023220380628487
1	0.336586538953659	0.20102790101253	0.00847986218366
2	0.037922704195443	0.208694136517504	0.00845378289010
3	0.020266018162657	0.205037496184976	0.00817268653462
4	0.0049472650503093	0.197436504168332	0.008331864711939
5	0.012675954901115	0.196899482529974	0.008335126593931
6	0.011342458560546	0.195934897889421	0.008256278024484
7	0.00164442866133	0.194957155951972	0.008252791569886
8	0.0013554275474221	0.194529344670225	0.008248151529685
9	0.000531420734366	0.194275287179155	0.00824749315202
10	0.000462304446354	0.194197084382389	0.00824451879282
11	0.000160142304221	0.194173320804311	0.00824322467470
12	0.00008397735436	0.1941755397215	0.00824322467470
13	0.00007989306735	0.1941718496160	0.00824326284945
14	0.0000315203013	0.1941718485903	0.0082432620421944
15	0.00000000446450	0.1941718485903	0.0082432620388981
16	0.00000000077470	0.1941718485903	0.0082432620388530
17	0.00000000010284	0.1941718485903	0.0082432620388522
18	0.00000000001988	0.1941718485903	0.0082432620388521
19	0.00000000000385	0.1941718485903	0.0082432620388522
20	0.00000000000075	0.1941718485903	0.0082432620388521

Table 4. Numerical results of IGD^2_{λ}-Newton method for BOP (51), see Figure 10.

Iter.	$\|\nabla IGD^2_{\lambda}(A^i)\|$	$IGD^2_{\lambda}(F(A^i), F(P_Q))$	$IGD^2_{\lambda}(F(A^i), Z)$
0	-	0.743479949576417	0.089706026039899
1	1.74223579435239	0.59842377888877	0.06979721774048
2	1.0597072891813	0.580388865733755	0.065730197299576
3	0.436102708727237	0.57560652586331	0.065186338106827
4	0.044524401746943	0.575571396044490	0.065172539475108
5	0.00365856791948	0.575571392056566	0.065172518358461
6	0.0000000021675999	0.575571392056566	0.065172518358461
7	0.000000000000001	0.575571392056566	0.065172518358461
5. ∆₂-Newton Method

Based on the results of the previous two sections we are now in the position to state the set based Newton method for the ∆₂ indicator.

5.1. ∆₂-Newton Method

Since ∆₂(A', Z) is defined by the maximum of GD₂(A', Z) and IGD₂(A', Z) we simply check in each iteration which of the latter two values is larger, and apply either the GD or the IGD-Newton step accordingly.

\[
\begin{align*}
A^0 &\subset \mathbb{R}^n \\
\text{for } i &= 0, 1, \ldots \\
\text{if } &GD_2(A', Z) > IGD_2(A', Z) \quad \text{(use GD}_2\text{-Newton step)} \\
A^{i+1} &= A^i - \text{diag}(Dg(a_1), \ldots, Dg(a_N))^{-1} \begin{pmatrix}
J(a_1)^T(F(a_1) - z_i) \\
\vdots \\
J(a_N)^T(F(a_N) - z_i)
\end{pmatrix} \\
\text{else} \quad &\text{(use IGD}_2\text{-Newton step)} \\
A^{i+1} &= A^i - \text{diag}(Dg(a_1), \ldots, Dg(a_N))^{-1} \begin{pmatrix}
J(a_1)^T(m_1F(a_1) - \sum_{i \in I_1} z_i) \\
\vdots \\
J(a_N)^T(m_NF(a_N) - \sum_{i \in I_N} z_i)
\end{pmatrix}
\end{align*}
\] (52)

The properties and the realization of the method are in principle as for the GD and the IGD-Newton method. The only difference, at least theoretically, is a possible loss of smoothness since ∆₂ is defined by the maximum of two functions. Such issues, at least for convergence, however, are only to be expected in case GD(A*, Z) is equal to IGD(A*, Z) for a reference set Z and the respective optimal archive A*. The cost for the realization one Newton step for each of the three indicators is O(Nn²) in storage when taking into account the block structure of the Hessians since N matrices of dimension n x n have to be stored, and O(Nn³) in terms of flops since N linear equation systems of dimension n have to be solved.
5.2. Examples

We will in the following demonstrate the applicability of the Δ^2_2-Newton method on several methods. For this, we first consider the same three examples and settings as for the IGD2_2-Newton method presented above. Figures 11–13 show some numerical results of the Δ_2-Newton method using the same initial archives A^0 and reference sets Z as in the previous section. As it can be seen, in all cases the method achieved much better approximations as for the sole usage of the IGD-Newton method (as well as the GD-Newton method). The convergence behaviors can be seen in Tables 5–7. In all cases, the GD value is the greater one in the initial steps of the method. After some iterations (and switches from GD to IGD and vice versa), however, the IGD value becomes eventually the largest one so that the Δ_p-Newton method eventually coincides with the IGD-Newton method. In comparison to the results of the IGD-Newton method, however, it becomes apparent that the GD-Newton steps are in fact important to obtain better overall approximations.

Table 5. Numerical results of the Δ^2_2-Newton method on BOP (27), see Figure 11.

Iter.	$\| \nabla \Delta_2^2(A^i) \|$	$\Delta_2^2(F(A^i), F(P_Q))$	$\Delta_2^2(F(A^i), Z)$	Indicator
0	0	2.000000000000000	2.102524077758237	GD
1	24.57578979841914	0.410124138028425	1.364160070353236	GD
2	10.174108923911083	0.026608923543674	1.099322040004995	IGD
3	3.542645526228592	0.0000015520657566	1.104000035194028	GD
4	5.213752747004612	0.000000441436988	1.020226507943846	IGD
5	9.260923965020773	0.000000016030350	1.036249331407054	IGD
6	2.625118989394418	0.00000384599061	1.047878336296791	IGD
7	0.042216669617238	0.00000384618980	1.04768945935868	IGD
8	0.000101909557366	0.00000384618980	1.04778991593878	IGD
9	0.0000000000000756	0.00000384618980	1.0478991593878	IGD
10	0.0000000000000006	0.00000384618980	1.0478991593878	IGD

Figure 11. (Left) application of the Δ_2-Newton method on BOP (27). (Right) the final archive.
Table 6. Numerical results of the Δ^2-Newton method on BOP (50), see Figure 12.

Iter.	$\|\nabla \Delta f(A')\|$	$\Delta^2 f(A', F(P_0))$	$\Delta^2 f(A', Z)$	Indicator
0	0.278375584606464	0.19992582443242	0.00081222533911	GD
1	0.056371237267200	0.056618294837097	0.0007074593871984	GD
2	0.057459387198184	0.008936916169912	0.0004133057966044	GD
3	0.057444576252202	0.001409033934752	0.0003717733703097	KD
4	0.05811222533911	0.022551343743654	0.001039692266642	KD
5	0.051160539906444	0.001439503458174	0.0023421095970292	KD
6	0.057264116051686	0.001644622791045	0.002589621277710	KD
7	0.081844934519792	0.002470349252840	0.002996847813941	KD
8	0.019468795195843	0.0028619439695855	0.0030787919663651	KD
9	0.035410330655855	0.017309625336888	0.003853297293327	KD
10	0.043091325647137	0.021752471483838	0.004214205299142	KD
11	0.008311561314162	0.007118271463333	0.002649032973333	GD
12	0.029261324613098	0.010113521887052	0.0017647857545199	KD
13	0.040938561287024	0.013547068941743	0.0021426580957166	KD
14	0.014525769791849	0.0204367274589896	0.003414722995781	KD
15	0.030582462613590	0.012840666370491	0.0021750946045761	KD
16	0.003419387654149	0.006090064700256	0.000254458138508	KD
17	0.012758335366778	0.000003594174296	0.002513178920814	KD
18	0.096573742808631	0.001454430574110	0.002581397950265	KD
19	0.005296333332650	0.001374138660307	0.0026375698193994	KD
20	0.005525180840690	0.002112400544545	0.002572107209836	KD
21	0.005856819912136	0.002820481137552	0.002996850902616	KD
22	0.012710260410104	0.001922803399600	0.003032357463557	KD
23	0.003183819547848	0.005149273260663	0.003456308027207	KD
24	0.002528600331803	0.002240659587601	0.003131078807687	KD
25	0.003580104809061	0.001602870721889	0.003146582664542	KD
26	0.002074689422294	0.001367127797587	0.003180580404383	KD
27	0.001414415003872	0.000126099902661	0.003176910897775	KD
28	0.001111606812819	0.001668266265578	0.003142469307930	KD
29	0.000901680741441	0.000367294425943	0.003186931421120	KD
30	0.000257772611116	0.005797901156449	0.003672123000034	KD
31	0.0000101230966412	0.000991409932376	0.003663374641811	KD
32	0.0000007716198343	0.0004088504531546	0.003662638381853	KD
33	0.000000036443308	0.0004088564325951	0.003662593054177	KD
34	0.000000001518566	0.0004088564388153	0.00366259179428	KD
35	0.000000000641414	0.0004088564388154	0.003662591654925	KD
36	0.000000000027461	0.0004088564388154	0.00366259162589	KD
37	0.0000000000001322	0.0004088564388154	0.003662591625867	KD
38	0.0000000000000033	0.0004088564388154	0.003662591625869	KD

Figure 12. (Left) application of the Δ^2-Newton method on BOP (50). (Right) the final archive.
We next consider an example where we use the unconstrained three-objective problem that is defined by the following map

\[F : \mathbb{R}^3 \rightarrow \mathbb{R}^3 \]

\[F(x) = \left(\frac{(x_1 + 1)^2 + (x_2 + 1)^2 + (x_3 + 1)^2}{(x_1 - 1)^2 + (x_2 - 1)^2 + (x_3 - 1)^2}, \frac{(x_1 + 1)^2 + (x_2 - 1)^2 + (x_3 + 1)^2}{(x_1 - 1)^2 + (x_2 - 1)^2 + (x_3 - 1)^2} \right). \]

(53)

For this problem, we consider the following scenario: assume there are two decision makers which each have their own preference vector (denote here by \(z_1 = (6.08, -2.08, 2.72)^T \) and \(z_2 = (0.32, 3.68, -3.04)^T \)). As compromise it could be interesting to consider the line segment that connects \(z_1 \) and \(z_2 \) (denote by \(Z \)) and to compute a set of solutions along the Pareto front that is near (in the Hausdorff sense) to this aspiration set. Figure 14 and Table 8 show the numerical result of the Newton method for an initial set consisting of 7 elements. As anticipated, the final set resembles a curve along the Pareto front with minimal distance to \(Z \), and may be used for the decision making process.
This concept can of course be extended to general sets. For instance, one can choose the triangle Z that is defined by the three vertices $z_1 = (6.08, -2.08, 2.72)^T$, $z_2 = (-2.56, 6.56, -0.16)^T$ and $z_3 = (0.20, 3.79, -2.92)^T$ (e.g., if a third decision maker is involved). Figure 15 and Table 9 show such a numerical result. For sake of better visualization, we only show the edges Z instead of the complete triangle. As it can be seen, the obtained solutions resemble to a certain extent a bended triangle along the Pareto front. From Table 9 it follows that for the final iteration the value $\|\nabla A^6(A^6)\|$ is already very close to zero which indicates that a local solution has been computed. The solution, however, does not seem to be perfectly shaped which is due to the fact that the problem to locate solutions along the Pareto front with respect to the given reference set is highly multi-modal (the “perfect” shape is associated to the global solution of Problem (5)). In order to obtain better results it is hence imperative to hybridize the set based Newton methods with global multi-objective solvers (as e.g., multi-objective evolutionary algorithms) which is beyond the scope of this work.
Table 8. Numerical results of Δ_2^2-Newton method for MOP (53), see Figure 14.

Iter.	$\|\nabla \Delta_2^2(A^i)\|$	$\Delta_2^2(F(A^i), F(P_Q))$	$\Delta_2^2(F(A^i), Z)$
0	-	1.378676581248260	5.918796450955248
1	7.515915778732357	1.24485866891063	5.82175966611490
2	1.85655193889793	1.249239765031169	5.81343998211261
3	0.145669456936361	1.249239765031169	5.811343998211261
4	0.000671971342724	1.250139614137738	5.810971792142520
5	0.000000033865300	1.250139614289546	5.810971792043552
6	0.000000000000003	1.250139614289546	5.810971792043552

Table 9. Numerical results of Δ_2^2-Newton method for MOP (53) when Z is a triangle, see Figure 15.

Iter.	$\|\nabla \Delta_2^2(A^i)\|$	$\Delta_2^2(F(A^i), F(P_Q))$	$\Delta_2^2(F(A^i), Z)$
0	1.000000000000000	1.378676581248260	5.136345894189382
1	9.078968824204878	1.190673858342912	5.014877171961635
2	12.361924917381627	1.250986213036476	3.359444827553141
3	4.188649668005252	1.076592897207513	3.232994469439562
4	0.664877643630374	1.053683832191072	3.217085086974496
5	0.686656379329441	1.036451498535567	3.213854172896627
6	0.005761784413677	1.036607563930994	3.213850773658971
7	0.000001010224622	1.036607573211355	3.213850772877354
8	0.0000000000000157	1.036607573211355	3.213850772877354
9	0.00000000000000002	1.036607573211355	3.213850772877354

5.3. A Bootstrap Method for the Computation of the Pareto Front

It is known that the proper choice of reference points/sets is a non-trivial task for the use of performance indicators in general when targeting at the entire solution set (e.g., [54–56]). In the following we show some numerical results of a bootstrap method that allows to a certain extent to compute approximations of the entire Pareto fronts of a given MOP without prior knowledge of this set. For this, we adapt the idea proposed in [57] to the context of the set based Newton method: given a performance indicator and a set based SOP of the form (5), one can iteratively approximate the Pareto front of a given problem using the Newton method via the following steps:

1. Compute the minima x_i^* of the individual objectives f_i, $i = 1, \ldots, k$. Let $y_i^* = F(x_i^*)$, and let \tilde{Z}_0 be the convex hull of the y_i^*’s (also called convex hull of individual minima (CHIM) [23]). Let $\delta_0 > 0$ and set

$$Z_0 = \tilde{Z}_0 - \delta_0,$$

where δ_0 is ideally large enough so that Z_0 is utopian. Compute a Newton step using Z_0 leading to the set of candidate solutions $A(0)$.

2. In step l of the iteration, use the set $A(l-1)$ computed in the previous iteration to compute a set \tilde{Z}_l. This can be done via interpolation of the elements of $A(l-1)$ so that \tilde{Z}_l only contains mutually non-dominated elements. As new reference set use

$$Z_l = \tilde{Z}_l - \delta_l,$$

where $\delta_l < \delta_{l-1}$. Compute a Newton step using Z_l leading to $A(l)$.

For $k = 2$ objectives, the CHIM is simply the line segment that connects y_1^* and y_2^*. Figures 16–18 and Tables 10–12 show the results of this bootstrapping method on the MOPs (27), (50), and (51), respectively. Table 13 shows the number of function, Jacobian, and Hessian calls that have been spent for each problem. In our computations, we have chosen δ_0 sufficiently large, and $\delta_l = \frac{1}{2} \delta_{l-1}$ for the shift parameter. The results show that the entire Pareto fronts can for these examples be approximated via using the Newton method together with the bootstrapping method. While the final approximations can considered to be “good” for the
problems with the convex and convex/concave Pareto fronts, the final solution for MOP (50) that contains a concave Pareto front is not yet satisfying. Table 11 indicates that the solutions do not even converge toward a local solution (even if more iteration steps are performed). We conjecture that the problem results from the multi-modality of the test function which encourages us further to hybridize the set based Newton method with a global strategy in the future.

![Figure 16.](image-url)

Figure 16. Different iterations of the Δ^2_2-Newton method to obtain the Pareto front of MOP (27) via the bootstrapping method.

Iter.	$\|\nabla \Delta^2_2(A^i)\|$	$\Delta^2_2(F(A^i),F(P_Q))$	$\Delta^2_2(F(A^i), Z)$	Indicator
0	-	2.565838356405802	5.4548528603888515	GD
1	14.958401000284267	1.230817708101819	1.024752009175881	IGD
2	6.55391835159349	0.754749784421640	0.553746859239295	IGD
3	1.930428803838138	0.613768117290251	0.490929089238838	IGD
4	0.937132679630156	0.537139549603782	0.481517242208329	IGD
5	0.54200357139832	0.476989307368074	0.471988242018486	IGD
6	0.394304493892539	0.438480476464882	0.46754682767516	IGD
7	0.153675036875927	0.419941366901776	0.468192970378975	IGD
8	0.059462740708777	0.413040100805383	0.468716613758660	IGD
9	0.039636672484473	0.412237873646849	0.468845067605893	IGD
10	0.016104664984103	0.412336536272929	0.468844846612736	IGD
11	0.001970967225026	0.412348016205662	0.46884500375375	IGD
12	0.000105409259996	0.412348100926345	0.46884505883349	IGD
13	0.000000000000000	0.412348100981951	0.46884505884675	IGD
14	0.000000000000000	0.412348100981951	0.46884505884675	IGD
Figure 17. Different iterations of the Δ_{2}^2-Newton method to obtain the Pareto front of MOP (50) via the bootstrapping method.

Table 11. Numerical results of the Δ_{2}^2-Newton method to obtain the Pareto front of MOP (50) via the bootstrapping method.

Iter.	$\|\nabla \Delta_{2}^2(A^i)\|$	$\Delta_{2}^2(F(A^i), F(P_Q))$	$\Delta_{2}^2(F(A^i), Z)$	Indicator
0	-	0.455981539616886	0.695079920183452	GD
1	0.335395116261223	0.073901038363798	0.755243658407092	GD
2	0.091052248527535	0.037763808963224	0.074896169623522	IGD
3	0.014233219389476	0.037763808963224	0.037618719614753	IGD
4	0.012918924846453	0.037763808963224	0.037607435705178	IGD
5	0.012918504651879	0.037763808963224	0.037607435705178	IGD
Figure 18. Different iterations of the Δ_2^2-Newton method to obtain the Pareto front of MOP (51) via the bootstrapping method.

We finally consider a BOP with higher dimensional decision variable space: the bi-objective problem minus DTLZ2 [58] is defined as

$$\begin{align*}
 f_1(x) &= -(1 + g(x)) \cos \left(\frac{\pi}{2} x_1 \right) \\
 f_2(x) &= -(1 + g(x)) \sin \left(\frac{\pi}{2} x_1 \right) \\
 g(x) &= \sum_{i=1}^{n} (x_i - 0.5)^2,
\end{align*}$$

(56)

where we have chosen $n = 20$. Figure 19 shows an initial candidate set as well as the final result of the Newton method together with the bootstrapping. In order to obtain the final result, 8 iteration steps were needed using 1415 function, 700 Jacobian, and 350 Hessian calls. Note that the initial set contains some dominated solutions that do not have an influence on the IGD_2 value. Hence, also in this case the use of GD_2 helped to push these solutions toward the Pareto front.
Table 12. Numerical results of the Δ_2^2-Newton method to obtain the Pareto front of MOP (51) via the bootstrapping method.

Iter.	$\|\nabla \Delta_2^2(A^i)\|$	$\Delta_2^2(F(A^i), F(P_Q))$	$\Delta_2^2(F(A^i), Z)$	Indicator
0	-	0.702540625580303	2.21443387698687	GD
1	1.437150990002929	0.389087697290865	0.477018278137838	IGD
2	0.581565628190262	0.342604825373936	0.357844471083072	IGD
3	0.461927350893728	0.164460636656196	0.182910255512032	IGD
4	0.08245998873464	0.138481979725082	0.175440371075156	IGD
5	0.07446465826176	0.19154386471772	0.208964468823487	IGD
6	0.13139886002112	0.153900963788386	0.171965063484733	IGD
7	0.040291187202238	0.152033891842905	0.166135305826676	IGD
8	0.005689443259245	0.152033891842905	0.165264799265542	IGD
9	0.002103237914802	0.152033891842905	0.165264799265542	IGD
10	0.0046641874904	0.152033891842905	0.165264799265542	IGD
11	0.0001365572453	0.152033891842905	0.165264799265542	IGD
12	0.00000209461574	0.152033891842905	0.165264799265542	IGD
13	0.00000050653504	0.152033891842905	0.165264799265542	IGD
14	0.00000012209033	0.152033891842905	0.165264799265542	IGD
15	0.00000002942920	0.152033891842905	0.165264799265542	IGD
16	0.00000000709377	0.152033891842905	0.165264799265542	IGD
17	0.000000000167849	0.152033891842905	0.165264799265542	IGD

Table 13. Number of function (#F), Jacobian (#J), and Hessian (#H) calls used by the Δ_2^2-Newton method using bootstrapping for the three test problems.

MOP (27)	MOP (50)	MOP (51)	
#F	532	225	698
#J	532	210	680
#H	513	189	660

Figure 19. Initial candidate set (left) and numerical result of the Δ_2-Newton method on minus DTLZ2 (right).

6. Conclusions and Future Work

In this work, we have considered a set based Newton Method for the Δ_p indicator for unconstrained multi-objective optimization problems. Since Δ_p is constructed by GD_p and IGD_p, we have also considered the set based Newton method for these two indicators. To this end, we have first derived the set based gradients and Hessians, and have based on this formulated and analyzed...
the Newton methods. Numerical results on selected test problems have revealed the strengths and weaknesses of the resulting methods. For this, we have mainly considered aspiration set problems (i.e., the problem to minimize the indicator distance of a set to a given utopian reference set) but also shown a bootstrapping method that allows to a certain extend to compute finite size approximation of the entire Pareto front without prior knowledge of this set. The results have shown that the method may indeed converge quadratically to the desired set, however, also—and as anticipated—that the Newton method is only applicable locally. It is hence imperative to hybridize the method with a global search strategy such as an evolutionary multi-objective optimization algorithm in order to obtain a fast and reliable algorithm for the treatment of such problems. The latter, however, is beyond the scope of this work and left for future investigations. Another interesting path for future research would be to extend the proposed Newton methods to constrained multi-objective optimization problems.

Author Contributions: Conceptualization and methodology, O.S. and A.L.; formal analysis, J.M.B., A.V., G.R.; validation, L.U. All authors have read and agreed to the published version of the manuscript.

Funding: A.L. acknowledges support from project SIP20201381. O.S. acknowledges support from Conacyt Basic Science project no. 285599 and SEP-Cinvestav project no. 231.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Stewart, T.; Bandte, O.; Braun, H.; Chakraborti, N.; Ehrigott, M.; Gobel, M.; Jin, Y.; Nakayama, H. Real-World Applications of Multiobjective Optimization. In Multiobjective Optimization; Slowinski, R., Ed.; Lecture Notes in Computer Science; Springer: Berlin/Heidelberg, Germany, 2008; Volume 5252, pp. 285–327.
2. Cui, Y.; Geng, Z.; Zhu, Q.; Han, Y. Review: Multi-objective optimization methods and application in energy saving. Energy 2017, 125, 681–704. [CrossRef]
3. Peitz, S.; Dellnitz, M. A Survey of Recent Trends in Multiobjective Optimal Control—Surrogate Models, Feedback Control and Objective Reduction. Math. Comput. Appl. 2018, 23, 30. [CrossRef]
4. Moghadam, M.E.; Falaghi, H.; Farhadi, M. A Novel Method of Optimal Capacitor Placement in the Presence of Harmonics for Power Distribution Network Using NSGA-II Multi-Objective Genetic Optimization Algorithm. Math. Comput. Appl. 2020, 25, 17.
5. Deb, K. Evolutionary multi-objective optimization: Past, present and future. In Proceedings of the 2020 Genetic and Evolutionary Computation Conference Companion, Cancún, Mexico, 8–12 July 2020; pp. 343–372.
6. Hillermeier, C. Nonlinear Multiobjective Optimization: A Generalized Homotopy Approach; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2001; Volume 135.
7. Zitzler, E.; Thiele, L. Multiobjective evolutionary algorithms: A comparative case study and the strength Pareto approach. IEEE Trans. Evol. Comput. 1999, 3, 257–271. [CrossRef]
8. Van Veldhuizen, D.A. Multiobjective Evolutionary Algorithms: Classifications, Analyses, and New Innovations; Technical Report; Air Force Institute of Technology: Kaduna, Nigeria, 1999.
9. Coello, C.A.C.; Cortés, N.C. Solving Multiobjective Optimization Problems Using an Artificial Immune System. Genet. Program. Evolvable Mach. 2005, 6, 163–190. [CrossRef]
10. Hansen, M.P.; Jaszkiewicz, A. Evaluating the Quality of Approximations of the Non-Dominated Set; IMM Technical Report IMM-REP-1998-7; Institute of Mathematical Modeling, Technical University of Denmark: Kongens Lyngby, Denmark, 1998.
11. Dilettoso, E.; Rizzo, S.A.; Salerno, N. A Weakly Pareto Compliant Quality Indicator. Math. Comput. Appl. 2017, 22, 25. [CrossRef]
12. Schütze, O.; Esquivel, X.; Lara, A.; Coello, C.A.C. Using the averaged Hausdorff distance as a performance measure in evolutionary multi-objective optimization. IEEE Trans. Evol. Comput. 2012, 16, 504–522. [CrossRef]
13. Bogoya, J.M.; Vargas, A.; Schütze, O. The Averaged Hausdorff Distances in Multi-Objective Optimization: A Review. Mathematics 2019, 7, 894. [CrossRef]
14. Deb, K. Multi-Objective Optimization Using Evolutionary Algorithms; John Wiley & Sons: Chichester, UK, 2001; ISBN 0-471-87339-X.
15. Deb, K.; Pratap, A.; Agarwal, S.; Meyarivan, T. A fast and elitist multiobjective genetic algorithm: NSGA-II. *IEEE Trans. Evol. Comput.* **2002**, *6*, 182–197. [CrossRef]

16. Coello, C.A.C.; Lamont, G.B.; Van Veldhuizen, D.A. *Evolutionary Algorithms for Solving Multi-Objective Problems*; Springer: Berlin/Heidelberg, Germany, 2007; Volume 5.

17. Beume, N.; Naujoks, B.; Emmerich, M. SMS-EMOA: Multiobjective selection based on dominated hypervolume. *Eur. J. Oper. Res.* **2007**, *181*, 1653–1669. [CrossRef]

18. Bringmann, K.; Friedrich, T. Convergence of Hypervolume-Based Archiving Algorithms. *IEEE Trans. Evol. Comput.* **2014**, *18*, 643–657. [CrossRef]

19. Powell, M.J.D. On Search Directions for Minimization Algorithms. *Math. Program.* **1973**, *4*, 193–201. [CrossRef]

20. Nocedal, J.; Wright, S. *Numerical Optimization*; Springer Science & Business Media: New York, NY, USA, 2006.

21. Bogoya, J.M.; Vargas, A.; Cuate, O.; Schütze, O. A (p, q)-averaged Hausdorff distance for arbitrary measurable sets. *Math. Comput. Appl.* **2018**, *23*, 51. [CrossRef]

22. Pascoletti, A.; Serafini, P. Scalarizing vector optimization problems. *J. Optim. Theory Appl.* **1984**, *42*, 499–524. [CrossRef]

23. Das, I.; Dennis, J.E. Normal-boundary intersection: A new method for generating the Pareto surface in nonlinear multicriteria optimization problems. *SIAM J. Optim.* **1998**, *8*, 631–657. [CrossRef]

24. Ehrgott, M. *Multicriteria Optimization*; Springer: Berlin/Heidelberg, Germany, 2005.

25. Eichfelder, G. *Adaptive Scalarization Methods in Multiobjective Optimization*; Springer: Berlin/Heidelberg, Germany, 2008.

26. Miettinen, K. *Nonlinear Multi-Objective Optimization*; Springer: Berlin/Heidelberg, Germany, 1999; Volume 12.

27. Recchioni, M.C. A path following method for box-constrained multiobjective optimization with applications to goal programming problems. *Math. Methods Oper. Res.* **2003**, *58*, 69–85. [CrossRef]

28. Schütze, O.; Dell’Aere, A.; Dellnitz, M. On Continuation Methods for the Numerical Treatment of Multi-Objective Optimization Problems. In *Practical Approaches to Multi-Objective Optimization*; Branke, J., Deb, K., Miettinen, K., Steuer, R.E., Eds.; Number 04461 in Dagstuhl Seminar Proceedings; Internationales Begegnungs- und Forschungszentrum (IBFI): Schloss Dagstuhl, Germany, 2005. Available online: http://drops.dagstuhl.de/opus/volltexte/2005/349 (accessed on 16 October 2020).

29. Pereyra, V.; Saunders, M.; Castillo, J. Equispaced Pareto front construction for constrained bi-objective optimization. *Math. Comput. Model.* **2013**, *57*, 2122–2131. [CrossRef]

30. Martin, B.; Goldsztejn, A.; Granvilliers, L.; Jermann, C. Certified Parallelotope Continuation for One-Manifolds. *SIAM J. Numer. Anal.* **2013**, *51*, 3373–3401. [CrossRef]

31. Martin, B.; Goldsztejn, A.; Granvilliers, L.; Jermann, C. On continuation methods for non-linear bi-objective optimization: Towards a certified interval-based approach. *J. Glob. Optim.* **2016**, *64*, 3–16. [CrossRef]

32. Martín, A.; Schütze, O. Pareto Tracer: A predictor-corrector method for multi-objective optimization problems. *Eng. Optim.* **2018**, *50*, 516–536. [CrossRef]

33. Schütze, O.; Cuate, O.; Martin, A.; Peitz, S.; Dellnitz, M. Pareto Explorer: A global/local exploration tool for many-objective optimization problems. *Eng. Optim.* **2020**, *52*, 832–855. [CrossRef]

34. Dellnitz, M.; Schütze, O.; Hestermeyer, T. Covering Pareto Sets by Multilevel Subdivision Techniques. *J. Optim. Theory Appl.* **2005**, *124*, 113–155. [CrossRef]

35. Jahn, J. Multiobjective search algorithm with subdivision technique. *Comput. Optim. Appl.* **2006**, *35*, 161–175. [CrossRef]

36. Schütze, O.; Vasile, M.; Junge, O.; Dellnitz, M.; Izzo, D. Designing optimal low thrust gravity assist trajectories using space pruning and a multi-objective approach. *Eng. Optim.* **2009**, *41*, 155–181. [CrossRef]

37. Hsu, C.S. *Cell-to-Cell Mapping: A Method of Global Analysis for Nonlinear Systems*; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2013; Volume 64.

38. Hernández, C.; Naranjani, Y.; Sardahi, Y.; Liang, W.; Schütze, O.; Sun, J.Q. Simple Cell Mapping Method for Multi-objective Optimal Feedback Control Design. *Int. J. Dyn. Control.* **2013**, *1*, 231–238. [CrossRef]

39. Sun, J.Q.; Xiong, F.R.; Schütze, O.; Hernández, C. *Cell Mapping Methods—Algorithmic Approaches and Applications*; Springer: Berlin/Heidelberg, Germany, 2019.

40. Juárez-Smith, P.; Trujillo, L.; García-Valdez, M.; Fernández de Vega, F.; Chávez, F. Pool-Based Genetic Programming Using Evospace, Local Search and Bloat Control. *Math. Comput. Appl.* **2019**, *24*, 78. [CrossRef]
41. Sriboonchandr, P.; Kriengkorakot, N.; Kriengkorakot, P. Improved Differential Evolution Algorithm for Flexible Job Shop Scheduling Problems. *Math. Comput. Appl.* **2019**, *24*, 80. [CrossRef]

42. Ketsripongsa, U.; Pitakaso, R.; Sethanan, K.; Srivarapongse, T.A. Improved Differential Evolution Algorithm for Crop Planning in the Northeastern Region of Thailand. *Math. Comput. Appl.* **2018**, *23*, 40. [CrossRef]

43. Cuate, O.; Schütze, O. Variation Rate to Maintain Diversity in Decision Space within Multi-Objective Evolutionary Algorithms. *Math. Comput. Appl.* **2019**, *24*, 3

44. Mohammadi, A.; Omidvar, M.N.; Li, X. Reference point based multi-objective optimization through decomposition. In Proceedings of the 2012 IEEE Congress on Evolutionary Computation, Brisbane, QLD, Australia, 10–15 June 2012; pp. 1–8.

45. Hernandez Mejia, J.A.; Schütze, O.; Cuate, O.; Lara, A.; Deb, K. RDS-NSGA-II: A Memetic Algorithm for Reference Point Based Multi-objective Optimization. *Eng. Optim.* **2017**, *49*, 828–845. [CrossRef]

46. Emmerich, M.; Deutz, A. Time complexity and zeros of the hypervolume indicator gradient field. In *EVOLVE-A Bridge between Probability, Set Oriented Numerics, and Evolutionary Computation III*; Springer: Berlin/Heidelberg, Germany, 2014; pp. 169–193.

47. Zitzler, E.; Thiele, L. Multiobjective optimization using evolutionary algorithms—A comparative case study. In Proceedings of the International Conference on Parallel Problem Solving from Nature, Amsterdam, The Netherlands, 27–30 September 1998; Springer: Berlin/Heidelberg, Germany, 1998; pp. 292–301.

48. Hernández, V.A.S.; Schütze, O.; Wang, H.; Deutz, A.; Emmerich, M. The Set-Based Hypervolume Newton Method for Bi-Objective Optimization. *IEEE Trans. Cybern.* **2018**, *50*, 2186–2196. [CrossRef]

49. Fliege, J.; Drummond, L.G.; Svaiter, B.F. Newton’s method for multiobjective optimization. *SIAM J. Optim.* **2009**, *20*, 602–626. [CrossRef]

50. Baier, R.; Dellnitz, M.; von Molo, M.H.; Sertl, S.; Kevrekidis, I.G. The computation of convex invariant sets via Newton’s method. *J. Comput. Dyn.* **2014**, *1*, 39–69. [CrossRef]

51. Chong, E.K.; Zak, S.H. *An Introduction to Optimization*; John Wiley & Sons: Hoboken, NJ, USA, 2004.

52. Fonseca, C.M.; Fleming, P.J. An overview of evolutionary algorithms in multiobjective optimization. *Evol. Comput.* **1995**, *3*, 1–16. [CrossRef]

53. Witting, K. Numerical Algorithms for the Treatment of Parametric Multiobjective Optimization Problems and Applications. Ph.D. Thesis, Department of Mathematics, University of Paderborn, Paderborn, Germany, 2012.

54. Ishibuchi, H.; Imada, R.; Setoguchi, Y.; Nojima, Y. Reference point specification in inverted generational distance for triangular linear Pareto front. *IEEE Trans. Evol. Comput.* **2018**, *22*, 961–975. [CrossRef]

55. Ishibuchi, H.; Imada, R.; Setoguchi, Y.; Nojima, Y. How to specify a reference point in hypervolume calculation for fair performance comparison. *Evol. Comput.* **2018**, *26*, 411–440. [CrossRef]

56. Li, M.; Yao, X. Quality evaluation of solution sets in multiobjective optimisation: A survey. *ACM Comput. Surv.* **2019**, *52*, 1–38. [CrossRef]

57. Schütze, O.; Domínguez-Medina, C.; Cruz-Cortés, N.; de la Fraga, L.G.; Sun, J.Q.; Toscano, G.; Landa, R. A scalar optimization approach for averaged Hausdorff approximations of the Pareto front. *Eng. Optim.* **2016**, *48*, 1593–1617. [CrossRef]

58. Ishibuchi, H.; Setoguchi, Y.; Masuda, H.; Nojima, Y. Performance of decomposition-based many-objective algorithms strongly depends on Pareto front shapes. *IEEE Trans. Evol. Comput.* **2016**, *21*, 169–190. [CrossRef]

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).