Protura (Arthropoda: Hexapoda) in Slovenian caves

Loris Galli, Franc Janžekovič, Peter Kozel, Tone Novak

INTRODUCTION

Protura is a small, poorly known Class of Hexapoda. In particular, knowledge of their geographical distribution is strongly biased, partly due to the “proturologists” distribution effect (Galli & Rellini, 2020). This means that the observed distribution of proturans largely reflects the presence of specialists in different geographical areas, rather than a real biogeographical pattern. The same bias has been observed in other soil- and cave-dwelling organisms, such as palipigrades (Mammola et al., in press) and diplurans (Sendra et al., 2020). Previously, only nine species of Protura had been identified from a few localities in Slovenia (Nosek, 1973; Szeptycki, 2007; Galli et al., 2016). However, this does not mean that Protura are introduced into caves.
living in different environments and climates, and after long times of separate evolution (Nosek, 1975; Tuxen, 1978). Further, none of the papers published to date has dealt specifically with Protura in caves. In general, due to difficulties in exploring and studying subterranean environments, knowledge about the subterranean fauna is largely incomplete (Mammola, 2018). A significant proportion of subterranean species are still undescribed (the Linnean shortfall), and the distribution of already described species (the Wallacean shortfall), their abundances and population dynamics (the Prestonian shortfall) are mostly unknown (Cardoso et al., 2011; Culver et al., 2012; Ficetola et al., 2018). However, the subterranean fauna in Slovenian caves is relatively well known and has been recognized globally as unique and a biodiversity hotspot for richness in troglobiont species along the “mid-latitude biodiversity ridge in terrestrial cave fauna” (Bole et al., 1993; Culver et al., 2006; Culver & Pipan, 2019). Yet, some taxa remain significantly understudied, and some other taxa, such as Protura, have never been studied in association with cave ecosystems.

In the present paper we provide the first comprehensive faunistic and ecological data on Protura in caves. We give a general overview of proturan distribution in intensively explored caves in Slovenia, and, for some caves, provide a more in-depth taxonomic analysis. Furthermore, we compare the environmental conditions in caves with and without proturans, and investigate the influence of the main cover types and the slope azimuth where the caves are located on the occurrence of Protura in caves. In addition, we present data on ecological conditions in cave sections where Protura have been found, and a general pattern of their spatial distribution in caves.

METHODS

Field methods

Since 1977, 64 cavities (caves and artificial tunnels) in northern and central Slovenia have been the object of ecological studies in January, April, July, and October, following a standardized sampling scheme (Novak, 2005). Most of these caves are figured in Novak (2005), two further in Novak et al. (2004b) and Kozel et al. (2019). General data on caves were obtained from the Cave Cadastre (Slovenian Speleological Society), while for short caves not registered in the Cadastre, and for artificial cavities, our own data were provided. For simplicity, both caves and artificial cavities will be referred to as caves in the following text. Caves were divided into 785 sampling sections in total, with an average length of ~4 m each, i.e. an average of 12 sampling sections each. The distances from the entrance (polygonal distance) and from the surface (vertical distance) to the center of the sampling sections were calculated from the cave ground plan and the terrain profile above the cave, rounded up to 1 m accuracy each. Once per season, we took records of air temperature and relative air humidity in every sampling section using a psychrometer (initially an August psychrometer, later a handheld aspiration psychrometer Ahorn FN A846, Germany). A mercury thermometer, and a probe thermometer (Checktemp 1, Hanna, Germany), were used to measure the ground temperature at a depth of 2 cm. The substrate moisture content was determined after drying ~100 g samples at 105°C until reaching the stable weight (Sheppard & Addison, 2008). Environmental factors that change only negligibly over the year in caves were measured only once (Kozel et al., 2019). Among these, the pH of the ground substrate was measured with a pH meter (91-02 Orion, USA Orion Ionomiser 407 A; Hanna Instruments HI1221 Calibration Check, Microprocessor pH Meter), and the carbonate content in the substrate by means of Scheibler’s calcimetry. Organic material content was calculated after the ignition of dry substrate samples (at 650°C) (Halikia et al., 2001) in a muffle furnace. Airflow was measured with a hand-held anemometer (Munro IM159) or – with all values lower than 0.3 ms⁻¹ not measurable with the anemometer – derived from the velocity of fog or smoke of a burned match or magnesium belt (Novak et al., 2004a). The main cover type (pine, deciduous, mixed wood, scrubland, meadow, bare rock) in the landscape around the cave was determined on the first visit. The slope azimuth in front the cave was determined on 1:25.000 maps.

Protura sampling, preparation and identification

A two-day exposure to baited pitfall traps (decomposing beef and apple juice, with a lacing of cherry and maraschino essence, and a few drops of detergent to reduce the surface tension), and Berlese-Tülgren funnel extraction of ~100 g samples from a ~0.25 m² area around the pitfall traps were applied in the study. In total, 3140 trap samples and 3092 Berlese-Tülgren samples were collected. For details see Novak (2005) and Kozel et al. (2019). Some other collecting methods, such as large Berlese-Tülgren funnel extraction, were only qualitatively analyzed as they were unsuitable for quantitative analysis. However, proturans extracted by means of such methods were studied and analyzed taxonomically (e.g., those from caves IDs 3 and 28). Voucher specimens of Protura were deposited in the zoological collection of DISTAV - University of Genova (Protura series: 479, 481-487, 724-731, 773-776). Protura collected in 15 of the caves listed in Table 1 (IDs: 3, 28, 31, 32, 35, 36, 37, 38, 40, 42, 45, 48, 49, 52, and 59) were prepared for species identification. For this purpose, they were incubated at 40-50°C for 24 hours in lactic acid to make them clear, then mounted on slides in Marc André II medium. Specimens were observed and identified to species and life-stage levels with the aid of an interference contrast microscope (Leica DM LB2), a Leica DFC 295 camera, and Leica Application Suite Vers. 3.8.

Statistical analyses

To compare environmental conditions between caves with and without proturans, 60 caves were evaluated, consisting of subequal numbers of both cave groups; 31 with and 29 without proturans (Table 1, Fig. 1) regardless of their natural (n = 56) or artificial origin
Table 1. Cavities included in the analysis of the ecospace properties with Protura; 31 caves with and 29 caves without Protura. Cad. Nr, Cadastre number of the cavity; Presence (1) absence (0) of Protura; N, E, coordinates; Elev., elevation of the (main) entrance [m]; Length res., length of the studied part of the cave [m]; Slope dir., direction of the slope on which the cave opens; n.r. not yet registered; * artificial cavity.

ID	Cavity	Protura	Cad. Nr.	N	E	Elev.	Length res.	Slope dir.
1	Jama pri taboru	0	367	46.28	14.24	463	42	100
2	Bahja luknja	0	35	46.13	14.39	330	85	50
3	Jama 2 na Jurcetovih Percah	0	2327	46.10	14.42	408	42	140
4	Zijalka nasproti Ribče peči	0	4605	46.42	14.62	820	50	30
5	Korančevka	0	2503	46.48	14.78	1010	54	250
6	Lovrišnikova jama	0	758	46.15	14.80	480	12	190
7	Jama pri Votli peči pri Ravnah	0	3263	46.55	14.97	388	22	0
8	Skobirjeva votlica	0	3956	46.47	14.98	940	25	80
9	Mesarska lopa	0	563	46.38	14.90	1279	40	180
10	Brdajsava jama	0	3497	46.12	14.90	651	28	120
11	Lokviška jama	0	3959	46.37	15.02	360	45	300
12	Jama v Burgi	0	1091	46.08	15.02	600	15	150
13	Zapečke peči	0	3208	46.55	15.22	610	20	180
14	Kapelarjevo brezno	0	4706	46.11	15.21	440	25	130
15	Fantovska luknja 2	0	3967	46.22	15.31	420	56	0
16	Umetni rov nad Šturmovo grabo*	0	U3	46.60	15.46	624	58	100
17	Jama v kamnolomu pri Suhem	0	4632	46.14	15.39	500	25	200
18	Glija jama	0	84	46.11	15.44	515	68	0
19	Jama 2 v Repoluskovih pečinah	0	4371	46.68	15.62	492	20	200
20	Gruska jama	0	1374	46.09	15.57	310	22	200
21	Jama pod južnim vrhom Tisanika	0	521	46.41	15.17	728	25	80
22	Železna jama	0	2678	46.14	14.64	344	86	200
23	Jernejeva jama	0	929	45.72	14.16	610	63	60
24	Mala jama v Kostanješki jami	0	518	45.84	15.43	170	70	150
25	Jama Kreščak	0	5849	45.85	15.64	298	170	250
26	Karbelova jama	0	10411	46.63	15.01	660	96	80
27	Krivčeva jama	0	9238	46.24	15.76	540	73	160
28	Knapovca	0	n.r.	46.63	15.55	380	23	70
29	Spodnja Stopenca	0	469	45.97	15.51	279	55	270
30	Štrneta jama	1	240	46.19	14.30	395	52	0
31	Godova jama	1	3462	46.08	14.25	528	25	220
32	Lisičja luknja	1	401	46.14	14.51	535	20	180
33	Rački pekel	1	465	46.39	14.72	590	38	200
34	Zijalka v Dovji Griči	1	376	46.30	14.67	1526	26	130
35	Boštonova jama	1	357	46.14	14.68	325	30	270
36	Ihanšica	1	46	46.12	14.65	416	56	200
37	Zamernikova jama	1	B2	46.40	14.78	857	8	180
38	Podkrajnikova zijalka	1	2697	46.27	14.78	820	28	280
39	Kraljletova jama	1	484	46.28	14.96	854	65	40
40	Jama v Lipovci	1	1182	46.16	14.89	510	58	220
41	Umetni rov v Dravogradu*	1	U1	46.58	15.02	349	25	90
42	Objet pri Žnodru	1	B1	46.51	15.05	511	7	350
43	Rdeča jama	1	3488	46.45	15.01	858	67	10
44	Tajnšekova jama 2	1	2535	46.31	15.08	325	15	0
45	Umetni rov v Bistiškem grabnu*	1	U2	46.64	15.13	437	15	210
46	Jama Školjka	1	3311	46.41	15.17	552	44	100
47	Zgornja Steska jama	1	169	46.31	15.16	374	102	180
48	Špegličeva jama	1	3512	46.30	15.19	400	46	50
The dimensionality due to seven ecological variables (Table 2) was reduced using Principal Component Analysis (PCA); all variables were transformed by z-standardization before incorporation. Using the ordination method, the multidimensionality of the ecological variables was presented in a two-dimensional ecospace, defined by the first and second ecological principal components (EPC1 and EPC2). Differences in the ecospace between sampling sections, with Protura and without Protura, were checked by subjecting EPC1 and EPC2 to a t-test. Ecospaces for the sampling sections, with and without Protura, were graphically presented with a biplot on EPC1 and EPC2 and polygons of the ecospaces were presented using the Convex Hull method. The PCA was conducted in R environment in package *factoextra* (Kassambara & Mundt, 2020). The graphic projection of ecospaces on the first two ECPSs and the application of Convex Hulls were performed using software PAST version 4.02 (Hammer et al., 2001).

In order to investigate the general pattern of spatial distribution of Protura, the influence of the distance from the entrance, and of the distance from the surface on their abundance was examined using a GLM. Abundance was modeled using a negative binomial distribution family, the distribution-type recommended for overdispersed count data (Zuur et al., 2009), using MASS package (Ripley et al., 2020). In the models, only caves with Protura were included by pooling the data for each sampling section up to the deepest part of the caves (i.e., ~24 m from the entrance and 20 m from the surface), where Protura none of the factors had a statistically significant effect on their presence. Therefore, we checked whether the presence of Protura in the caves coincided with the main cover types in the landscape surrounding the cave. For this purpose, differences between the frequencies of habitat types with respect to the presence/absence of Protura were tested using the Chi square test. In addition, the Watson-Williams test for equal means and the Mardia-Watson-Wheeler test for equal distributions were used to check whether the presence of Protura in the cavities could be explained by orientation of the slopes on which the caves open. All three tests were performed in PAST version 4.02 (Hammer et al., 2001).

Preliminarily, we tested the presence-absence of Protura with respect to the environmental factors using Binomial Generalized Linear Model (GLM);
were recorded. Regression analyses were conducted in R environment (R CoreTeam, 2020) following the general protocol by Zuur & Ieno (2016).

Proturans were putatively not attracted by the baits in pitfall traps, and displaced for short distances (speculatively ~ 0.5 m only – see also Balkenhol, 1996) during trapping in the caves. Consequently, the trapping results refer to ~ 1 m², and densities per m² were estimated using the following calculation:

\[\text{Density} = \frac{N_{\text{trap}} + 4 N_{\text{funnel}}}{m^2} \]

where \(N_{\text{trap}} \) and \(N_{\text{funnel}} \) are the number of individuals in a trap and Berlese-Tullgren sample, respectively.

The age-ratios (juveniles/adults) of identified species in different seasons were compared applying the Chi-square test to the numbers of juveniles (from larva I to pre-imago instar) and adults recorded each season. The statistical significance of the differences from the expected value (1) of the species sex ratio (males/females) was determined using the Chi-square test. Software PAST version 4.02 (Hammer et al., 2001) was used in both cases.

Table 2. Factor loadings from the first two ecological principal components (EPC), and eigenvalues and percentage of explained variation. Loadings > 0.60 are in bold. The acronyms of ecological variables are explained in Table 3.

Ecological variables	EPC1	EPC2
Tair	0.69	0.66
Tgr	0.63	0.65
RH	-0.53	-0.25
MC	-0.63	0.45
pHgr	0.40	-0.43
CC	0.42	-0.61
OM	-0.63	0.45
Eigenvalue	2.30	1.90
Variance %	32.90	27.10

RESULTS

Proturans were collected in 31 cavities and records of 135 individuals were eligible for statistical analyses in relation with environmental data. The descriptive statistics of the environmental conditions in sampling sections with Protura is presented in Table 3. The Mantel test revealed no spatial autocorrelation among sections with and without Protura (\(r = -0.001, p = 0.397 \)). Most of the seven ecological variables were correlated with each other. To avoid redundancy, these variables were reduced using PCA. The factor loadings and the amount of the explained variance for the first two ecological principal components (EPCs) are shown in Table 2. Increasing EPC1 is associated with an increase in air temperature and ground substrate temperature (\(r > 0.5 \)), and with a decrease in air humidity, substrate moisture content, and organic material content (\(r < -0.5 \)) (Table 2). Increasing EPC2 is well associated with an increase in the air temperature and ground substrate temperature (\(r > 0.5 \)), and with the decrease in carbonate content (\(r < -0.5 \)) (Table 2, Fig. 2).

The polygons of the ecospaces based on samples with and without Protura largely overlapped, with the centroids of both groups close to each other (Fig. 2). Protura occupied most of the ecospace of the entrance areas of the 60 caves under study. They were absent only in very dry/wet sections, and very cold sections with substrates very poor or rich in organic matter. The t-test between EPCs, with and without Protura, returned a non-significant difference between the ecospaces (EPC1: \(t = 0.07, df = 106, p = 0.946 \); EPC2: \(t = 0.83, df = 106, p = 0.407 \)).

A Chi-square test showed no significant relation between the frequencies of Protura presence or absence and the main cover type in the landscape with the caves (\(\chi^2 = 3.80, df = 5, p = 0.578 \)). Most caves with Protura were on the southern slopes (circular mean = 186.3°; 95% confidence 96.3°–276.3°). No significant differences were found when examining the variability in slope azimuths between the caves with and without Protura (Watson-Williams equal means U test = 1.16, \(df = 57, p = 0.286 \); a Mardia-Watson-Wheeler W test = 4.30, \(df = 56, p = 0.117 \)).

Abundance of Protura decreased significantly with increasing distance from the entrance (\(\text{Estimated} \ beta \pm \text{SE}: -0.1151 \pm 0.0345, p = 0.001 \)) and from the soil surface (\(\text{Estimated} \ beta \pm \text{SE}: -0.0855 \pm 0.0286, p = 0.003 \)). The effect of both variables on the abundance of Protura is illustrated in Figure 3.

Estimated densities of Protura were very low in all the caves under study, with maximum values of 68 and 32 specimens/m² at the entrance of Ovčje peklo and Ihanšica, respectively.

Protura from 15 caves, totally 286 individuals, were examined in more detail. Identified Protura

Table 3. Descriptive statistics of the sampling sections with Protura. N, number of sampling sections; Mean, arithmetic mean; StD, standard deviation; min, minimum; max, maximum. For description of variables, see the first paragraph in the Field methods.

Variables	Acronyms	N; Mean ± StD (min–max)
Number of Protura specimens	Abundance	48; 2.5 ± 0.4 (1–17)
Distance from the entrance	DistE [m]	48; 5.4 ± 7.4 (0–24)
Distance from the surface	DistS [m]	48; 6.4 ± 4.8 (0–20)
Air temperature	Tair [°C]	43; 8.8 ± 5.1 (1.0–22.0)
Ground temperature	Tgr [°C]	48; 7.5 ± 3.7 (0.6–16.5)
Relative air humidity	RH [%]	43; 89.3 ± 11.8 (64–100)
Substrate moisture content	MC [%]	45; 21.2 ± 14.7 (0–53)
Airflow	Airflow [log cm·s⁻¹]	48; 1.5 ± 0.7 (0–3)
Organic material content	OM [%]	34; 14.3 ± 17.9 (1.5–85.9)
pH of the ground substrate	pHgr [pH-unit]	34; 8.0 ± 0.7 (4.4–8.7)
Carbonate content	CC [%]	34; 24.9 ± 24.5 (0.0–87.0)
belonged to five genera and ten species (Table 4). Seven of them were new to Slovenia: Acerentulus rafalskii Szeptycki, 1979, Acerentomon affine Bagnall, 1912, A. balcanicum Ionesco, 1933, A. maius Berlese, 1908, Acerella muscorum (Ionesco, 1930), Eosentomon armatum Stach, 1926 and E. transitorium Berlese, 1908. Further, an unidentified species of the genus Ionescuellum Tuxen, 1960 is also new to Slovenia. Among the identified Protura, 260 belong to the order Acerentomata, two belong to the family Hesperentomidae, genus Ionescuellum, and the others belong to the family Acerentomidae, genera Acerentulus, Acerentomon and Acerella. The remaining 26 specimens belong to the order Eosentomata, genus Eosentomon. These proturans did not show any obvious morphological differences from those of the same species collected elsewhere in Europe outside the caves. The age ratios of juveniles to adults in spring and summer (the seasons accounting for the large majority of identified specimens), were 0.55 and 0.31 respectively, and differing at a significant level ($\chi^2 = 3.9454$, df = 1, p < 0.05). The sex ratio of the five dominant species is shown in Table 5. For three of the species (A confinis, A. maius, and A. meridionale) the populations contained a greater number of females at a statistically significant level.

DISCUSSION

In this study, no differences were found in terms of the ecological characteristics between caves with and without Protura. The environmental analyses showed that Protura were mainly found close to the entrance of the cave. However, a small number of individuals were recorded deeper inside, probably having fallen or washed into the cave from surface soils through vertical fissures in the bedrock. The role
Table 4. Protura identified in 15 Slovenian caves. For cave ID, see Table 1. The following abbreviations were adopted: LI = Larva I, LII = Larva II, MJ = Maturus Junior, PI = Pre-Imago, F = Female, M = Male, Un = Unidentified, Aut = Autumn, Spr = Spring, Sum = Summer.

ID-Cave	3	28	31	32	35	36	38	40	42	45	48	49	52	59		
Season	Spr	Spr	Spr	Spr	Sum	Spr	Spr	Spr	Sum	Spr	Spr	Sum	Spr	Aut		
Ionesc numel sp.																
Acerentulus sp.						1F										
Acerentulus confinis	1F	1M	2F				4F	9F	7PI	11MJ						
Acerentulus rafalskii																
Acerentomon sp.	1LI	2Un	1LI	1Un			1MJ	1Un	2LII							
Acerentomon doderoi group																
Acerentomon microrhinus group																
Acerentomon affine																
Acerentomon balcanicum	1M	2F					18M	19F	2PI	7MJ	9LII	7LI	4Un			
Acerentomon italicum																
Acerentomon maius	15F	3MJ	1LII					1M								
Acerentomon meridionale																
Acerella muscorum																
Eosentomon sp.																
Eosentomon delicatum group	2M	5F														
Eosentomon transitorium group																
Eosentomon armatum	2M	1F	1MJ													
Eosentomon transitorium																
Total	22	1	5	7	85	3	69	46	5	7	10	2	11	2	6	5

of the cave-entrance habitat, as an ecotone environment, has been discussed since the first empirical studies on cave biodiversity (e.g., Peck, 1976; Prous et al., 2004, 2015; White, 2012). In some cases, this ecotone habitat is also characterized by high endemism (e.g., Yao et al., 2016), but it was not the case with Protura in our study; specimens in the caves belonged to the same species elsewhere inhabiting soils of epigean habitats. This result supports the previously available published data on Protura collected in caves (Vandel, 1964; Neuherz, 1974, 1975; Nosek, 1975; Novak, 2005; Szeptycki, 2007; Galli et al., 2019b; Shrubovych & Georgiev, 2020).

Density estimates recorded in the caves under study were lower than those of some hundreds/thousands individuals/m² previously known from literature for surface soil samples (Galli et al., 2019a). This is probably due to both a low amount of soil, and a limited volume of the substrate per unit area in such habitats.

The analyzed samples were too small to examine thoroughly the life cycles of single species. The overall
Table 5. Sex ratio calculated for five dominant species of Protura in Slovenian caves. M = number of males, F = number of females, sex ratio M/F, χ^2 and relative p-values for the sex ratio.

Specie	M	F	Sex ratio	χ^2 (df = 1)	p
Acerentomon confinis	5	18	0.28	7.35	<0.01
Acerentomon affine	19	21	0.90	0.63	0.823
Acerentomon balcanicum	17	27	0.63	1.15	0.283
Acerentomon maurus	1	15	0.07	12.25	<0.01
Acerentomon meridionale	4	12	0.33	4.00	<0.05

analysis of the developmental instars of specimens evidenced the presence of juveniles in three seasons (spring, summer and autumn), indicating that in Slovenia Protura reproduce almost throughout the warm part of the year with a peak during spring. This result confirms the already investigated phenologies of some species (Galli et al., 2019a). For five dominant species it was possible to analyze the sex ratio. The results are similar to those obtained for the same species in Italy (Galli et al., 2019b): A. confinis, A. maurus, and A. meridionale populations showed a bias towards females, while in A. affine and A. balcanicum populations showed a balanced sex ratio (for further information see also Galli et al., 2019b).

This research has increased the checklist of Protura species in Slovenia through the addition of Acerentulus rafalskii, previously known only from Poland (Szeptycki, 2007); Acerentomon affine, widespread in Western Europe (Szeptycki, 2007); A. balcanicum in Southeast Europe and Ukraine (Szeptycki, 2007); A. maurus in Central Europe and Italy (Szeptycki, 2007); Acerella muscorum, distributed in West and Central Europe and the Near East, and already recorded from all the countries surrounding Slovenia (Austria, Hungary, Italy, and Bosnia and Herzegovina) (Szeptycki, 2007); Eosentomon armatum and E. transitorium, both with a wide European distribution (Shrubovych & Bernard, 2018). However, Szeptycki (2007) considered the bibliographic record of Acerella tjarnea doubtful. The new record of A. muscorum mentioned above probably confirms the misidentification. Therefore, the current number of Protura species in Slovenia is 15.

Our research, the first one specifically concerning Protura in caves, confirms the absence of any morphological adaptations to such an environment in this taxon (Pass & Szucsich, 2011). Furthermore, in the collection of one of the authors (LG), some specimens of Acerentomon doderoi, A. gallicum Ionesco, 1933 and A. maurus come from two caves in Liguria (NW-Italy), and three females of Berberentulus travassosi (Silvestri, 1938) come from a Minas-Gerais (Brazil) cave. Morphologically, all of them correspond to the species description based on specimens collected from surface soils (LG, unpublished data).

All the evidence shown above supports the hypothesis that Protura have entered caves passively within debris/litter by accident, mostly close to the entrance. In terms of speleobiological, ecological classification, they must be ranked among “accidentals” (sensu Barr, 1967). Eventually, in some other regions, Protura might migrate from soils or mesovoid shallow substratum (MSS) (Mammola et al., 2016) into adjacent cave portions and vice versa over the year, but this does not seem to happen in Central Europe.

CONCLUSION

Protura is probably the least known group of hexapods, with scattered and fragmentary literature records from caves. This is the first contribution dealing exclusively with this topic, which despite the small number of specimens found provides important knowledge on proturans in caves because the research is based on over 6000 samples taken from caves in Slovenia.

Our research confirms previous observations that proturans occupy cave ecosystems through passive colonization after their accidental introduction from the surface soil of habitats near the entrance to, and above, caves. None of the identified species displayed morphological adaptations specific to a cave environment. And although the density of proturans was lower than that found in surface soils elsewhere, their presence recorded mainly near cave entrances was related with the ‘fallen-in’ organic matter onto these sites.

ACKNOWLEDGEMENTS

The authors are indebted to friends and colleagues, especially Valika Kuštor, Ignac Sivec, Mojmir Štangelj, and Ljuba Slana Novak, and some students, for the help in field investigations. This study received funding support from Javna agencija za raziskovalno dejavnost Republike Slovenije (Slovenian Research Agency) through research core funding no. P1-0403 and J1-2457 (FJ), Karst Research programme (P6-0119; PK) and Project “Development of research infrastructure for the international competitiveness of the Slovenian RRI space – Rli-SI-LifeWatch” (the operation is co-financed by the Ministry of Education, Science and Sport, Republic of Slovenia, and the European Union from the European Regional Development Fund; FJ and PK). We are indebted to Stefano Mammola and to an anonymous referee for their insightful comments and valuable suggestions that helped greatly improving the manuscript. Last, but not least, many thanks also to Tony Molyneux who carefully checked the English of our manuscript.

Authorship statement: LG prepared and identified Protura slides, performed some analyses and wrote the paper with the input from the other authors. TN designed the field research, collected the bulk of the material examined and contributed to the field
REFERENCES

Balkenhol, B., 1996. Activity range and dispersal of the Protura *Acerentomon nemorale* (Arthropoda: Insecta). Pedobiologia, 40, 212–216.

Barr, T.C.Jr., 1967. Observations on the ecology of caves. The American Naturalist, 101, 475–491.

Bole, J., Drövnik, B., Mršić, N., Sket, B., 1993. Endemic animals in hypogean habitats in Slovenia. Naše jame, 35, 43–55.

Cardoso, P., Erwin, T.L., Borges, P.A.V., New, T.R., 2011. The seven impediments in invertebrate conservation and how to overcome them. Biological Conservation, 144(11), 2647–2655. https://doi.org/10.1016/j.biocon.2011.07.024

Culver, D.C., Trontelj, P., Zagmajster, M., Pipan, T., 2012. Paving the way for standardized and comparable subterranean biodiversity studies. Subterranean Biology, 10, 43–50. https://doi.org/10.3807/subtbiol.10.4759

Culver, D.C., Deharveng, L., Bedos, A., Lewis, J.J., Maddon, M., Reddel, J.L., Sket, B., Trontelj, P., White, D., 2006. The mid-latitude biodiversity ridge in terrestrial cave fauna. Ecography, 29, 120–128. https://www.jstor.org/stable/3683502

Culver, D.C., Pipan, T., 2019. The biology of caves and other subterranean habitats (2nd Ed.). Oxford University Press, Oxford, 301 p.

Dray, S., Dufour, A.-B., Thioulouse, J., 2020. Analysis of ecological data: Exploratory and euclidean methods in environmental sciences. R package Version 1.7-16. https://CRAN.R-project.org/package=ade4

Ficetola, G.M., Canedoli, G., Stoch F., 2018. The Racovitza impediment and the hidden biodiversity of unexplored environments. Conservation Biology, 33, 214–216. https://doi.org/10.1111/cobi.13179

Galli, L., Bartel, D., Capurro, M., Pass, G., Sarà, A., Shrubovych, J., Szucsich, N., 2016. Redescription and review of the most abundant conehead in Italy: *Acerentomon italicum* Nosek, 1969 (Protura: Acerentomidae). Italian Journal of Zoology, 83(1), 43–58. https://doi.org/10.1080/11255003.2015.1114686

Galli, L., Capurro, M., Colasanto, E., Molyneux, T., Murray, A., Torti, C., Zinni, M., 2019a. A synopsis of the ecology of Protura (Arthropoda: Hexapoda). Revue suisse de Zoologie, 126(2), 155–164. https://doi.org/10.5281/zenodo.3463443

Galli, L., Capurro, M., Molyneux, T., Torti, C., Zinni, M., 2019b. Ecology of Italian Protura. Pedobiologia, 73, 20–28. https://doi.org/10.1016/j.pedobi.2019.01.004

Galli, L., Rellini, I., 2020. The geographic distribution of Protura (Arthropoda: Hexapoda): a review. Biogeographia – The Journal of Integrative Biogeography, 35, 51–69. https://doi.org/10.21426/B63504859

Halikia, I., Zoumpoulakis, L., Christodoulou, E., Prattis, D., 2001. Kinetic study of the thermal decomposition of calcium carbonate by isothermal methods of analysis. The European Journal of Mineral Processing and Environmental Protection 1(2), 89–102. https://doi.org/10.21426/B63504859

Hammer, Ø., Harper, D.A.T., Ryan, P.D., 2001. PAST: Paleontological statistics software package for education and data analysis. Palaeoecologia Electronica, 4, 1–9. http://folk.uio.no/ohammer/past

Kassambara, A., Mundt, F., 2020. factoextra: Extract and visualize the results of multivariate data analyses. R package version 1.0.7. https://CRAN.R-project.org/package=factoextra

Kozel, P., Pipan, T., Mammola, S., Culver, D.C., Novak, T., 2019. Distributional dynamics of a specialized subterranean community oppose the classical understanding of the preferred subterranean habitats. Invertebrate Biology, 138, e12254. https://doi.org/10.1111/ivb.12254

Mammola, S., 2018. Finding answers in the dark: caves as models in ecology fifty years after Poulson and White. Ecography, 41, 1–21. https://doi.org/10.1111/ecog.03905

Mammola, S., Giacchino, P.M., Piano, E., Jones, A., Barberis, M., Badino, G., Isaia, M., 2016. Ecology and sampling techniques of an understudied subterranean habitat: the Milieu Souterrain Supericiel (MSS). Science Nature, 103, 88. https://doi.org/10.1007/s00114-016-1413-9

Mammola, S., Souza, M.F.V.R., Isaia, M., Lopes Ferreira, R., in press. Global distribution of microwhip scorpions (Arachnida: Palpigradi). Journal of Biogeography.

Neuherz, H.V., 1974. Der erste Höhlenfund einer Protura (Acerentoma, Apipygida, Österreich. Die Höhle, 25, 25–30.

Neuherz, H.V., 1975. Die Landfauna der Lurgrotte (Teil I). Sitzungsberichte der österreichischen Akademie der Wissenschaften (Mathem.-naturw. Kl.). 183, 159–285.

Nosek, J., 1973. European Protura. Genève, Musée d’Histoire Naturelle, Geneva, 345 p.

Nosek, J., 1975. Niches of Protura in biogeocenooses. Pedobiologia, 15, 290–298.

Nosek, J., 1977a. Adaptations in Protura. Revue d’Ecologie et de Biologie du Sol, 14(1), 217–224.

Nosek, J., 1977b. Proturan synusies and niche separation in the soil. Ecological Bulletins, 25, 138–142.

Novak, T., 2005. Terrestrial fauna from cavities in northern and central Slovenia, and a review of systematically ecologically investigated cavities. Acta Carsologica, 34(1), 169–210. https://doi.org/10.3986/ac.341.285

Novak, T., Lipovšek Delakorda, S., Senčič, L., Pabst, M.A., Janžekovič, F., 2004a. Adaptations in halophid kestwesmen *Cyga nasculatus* and *G. titanus* to their preferred water current adjacent habitats. Acta Oecologica, 26, 45–53. https://doi.org/10.1016/j.actao.2004.03.004

Novak, T., Sambol, J., Janžekovič, F., 2004b. Faunal dynamics in the Železna jama cave. Acta Carsologica, 33, 249–267. https://carsologica.zrc-sazu.si/downloads/332/novak.pdf

Pass, G., Szucsich, N., 2011. 100 years of research on the Protura: many secrets still retained. Soil Organisms, 83(3), 309–334.

Peck, S.B., 1976. The effect of cave entrances on the distribution of cave inhabiting terrestrial arthropods. International Journal of Speleology, 8, 309–321.

Pretner, E., 1979. Podzemeljska koleopterološka fauna umetnih votlin. [Die unterirdische Koleopterologie der künstlichen Hohlräumen.] Acta Entomologica Jugoslavica, 15(1–2), 89–102.

Prous, X., Lopes Ferreira, R., Jacob, C.M., 2015. The entrance as a complex ecotone in a Neotropical cave. International Journal of Speleology, 44(2), 177–189. https://doi.org/10.5038/1827-806X.44.2.7

Prous, X., Lopes Ferreira, R., Parentoni Martins, R., 2004. Ecotone delimitation: epigean-hypogean transition in cave ecosystems. Austral Ecology, 29, 374–382. https://doi.org/10.1111/j.1442-9993.2004.01373.x
Qiao, H., Peterson, A.T., Ji, L., Hu, J., 2017. Using data from related species to overcome spatial sampling bias and associated limitations in ecological niche modeling. Methods in Ecology and Evolution, 8(12), 1804–1812. https://doi.org/10.1111/2041-210X.12832

R Core Team, 2020. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/

Ripley, B., Venables, B., Bates, D. M., Hornik, K., Gebhardt, A., Firth, D., 2020. Support functions and datasets for Venables and Ripley’s MASS. R package Version 7.3-53. https://cran.r-project.org/package

Sendra, A., Palero, F., Jiménez-Valverde, A., Reboleira, A.S.P.S., 2020. Diplura in caves: diversity, ecology, evolution and biogeography. Zoological Journal of the Linnean Society, 20, 1–15. https://doi.org/10.1093/zoolinnean/zlaa116

Sheppard, S.C., Addison, J.A., 2008. Soil Sample Handling and Storage. In: Carter, M.R., Gregorich, E.G. (Eds.), Soil sampling and methods of analysis (2nd Ed.), Canadian Society of Soil Science, Taylor & Francis, Boca Raton, p. 39–49.

Shrubovych, J., Bernard, E., 2018. A key for the determination of European species of *Eosentomon* Berlese, 1909 (*Protura*, *Eosentomata*, *Eosentomidae*). ZooKeys, 742, 1–12. https://doi.org/10.3897/zookeys.742.22664

Shrubovych, J., Georgiev, D., 2020. Protura records in Sarnena Goura Mountains. In Georgiev, D., Bechev, D., Yancheva, V. (Eds.), Fauna of Sarnena Sredna Gora Mts, Part 1. Zoonotes, Suppl. 9, 43–46.

Smith, A.B., Godsoe, W., Rodriguez-Sanchez, F., Wang, H.H., Warren, D., 2019. Niche estimation above and below the species level. Trends in Ecology & Evolution, 34(3), 260–273. https://doi.org/10.1016/j.tree.2018.10.012

Szeptycki, A., 2007. Catalogue of the world Protura. Acta Zoologica Cracoviensis, 50B(1), 1–210.

Tuxen, S.L., 1978. Protura (*Insecta*) and Brazil during 400 million years of continental drift. Studies on Neotropical Fauna and Environment, 13(1), 23–50.

Vandel, A., 1964. Biopséologie. La biologie des animaux cavernicoles. Guthier-Villars, Paris, 619 p.

Yao, Z., Dong, T., Zheng, G., Fu, J., Li, S., 2016. High endemism at cave entrances: a case study of spiders of the genus *Uthina*. Scientific Reports, 6, 35757. https://doi.org/10.1038/srep35757

White, W.B., 2012. Entrances. In: White, W.B., Culver, D.C. (Eds.), Encyclopedia of caves (2nd Ed.). Elsevier, Amsterdam, p. 280–284.

Zuur, A.F., Ieno, E.N., Walkerm, N.J., Savaliev, A.A., Smith, G.M., 2009. Mixed effect models and extensions in ecology with R. Springer, New York, 574 p.

Zuur, A.F., Ieno, E.N., 2016. A protocol for conducting and presenting results of regression-type analyses. Methods in Ecology and Evolution, 7(6), 636–645. https://doi.org/10.1111/2041-210X.12577