Enhancement strict avalanche criterion value in robust S-boxes construction using selected irreducible polynomial and affine matrixes

Alamsyah¹,² *, A Bejo¹ and T B Adji¹

¹ Department of Electrical Engineering and Information Technology, Universitas Gadjah Mada, Indonesia
² Department of Computer Science, Universitas Negeri Semarang, Indonesia

*Corresponding author: alamsyah.16@mail.ugm.ac.id; alamsyah@mail.unnes.ac.id

Abstract. One indicator that a robust S-box is an ideal strict avalanche criterion value of 0.5. One method for applying the ideal strict avalanche criterion value is the selection of the precise irreducible polynomial and affine matrix. In this paper, we will discuss the robust S-boxes construction with the selected irreducible polynomial \(r(x) = x^8 + x^5 + x^3 + x^2 + 1 \) combined with the three selected affine matrixes i.e. \(t_1 \), \(t_2 \), and \(t_3 \). Hence, the combination of selected irreducible polynomial and affine matrixes results in S-box1, S-box2, and S-box3. The test of strict avalanche criterion shows that S-box2 and S-box3 produce the same value of 0.49951. Nonlinearity and bit independence criterion tests are also conducted to complete the S-box testing. This result shows S-box2 and S-box3 are the best S-boxes compared to S-box1 and S-boxes from previous studies.

1. Introduction

S-box has an important role in the process of data encryption and decryption. The robust of the S-box generated greatly determines the robust of the block cipher algorithm [1] such as data encryption standard (DES) or advanced encryption standard (AES). The main reason for the collapse of the DES algorithm is that the resulting S-box is not strong against linear attack [2,3].

Studies of various types of attacks on block cipher algorithms have been widely presented by previous researchers. The existence of a new variant in a linear attack called affine linear cryptanalysis has been described [4]. An integral attack with a new concept called a new statistical integral distinction can reduce data complexity compared to the previous methods [5]. Research on robust an S-box construction to anticipate linear attacks using the revised genetic algorithm method has been presented [6]. A new concept to calculate the value of a non-linearity of an S-box have been presented [7]. At present, AES S-box is still considered strong against linear, differential, integral and other attacks. However, it is necessary to develop S-box construction that is stronger than the AES S-box to anticipate future attacks.

Strict avalanche criterion (SAC) is a method for measuring the robust of an S-box. The SAC concept was first introduced [8]. SAC is used to observe changes that occur in input bits and output bits. If there is a change in 1-bit input, then ideally there is half of the output bit changed. This means that the ideal SAC value is 0.5 [8]. In addition to SAC, methods for measuring the robust of S-box are nonlinearity [9] and bit independence criterion (BIC) [8].

S-box construction has been carried out by previous researchers with various methods. The double random phase encoding (DRPE) method [10], the iterative map method [11], a random number generating (RNG) method [12], the quantum magnets and Lorenz chaotic system method, Chaotic-
based systems [14-19], and Other methods in building S-boxes [20-26]. Unfortunately, from previous studies [10-26] the optimal value was only obtained in nonlinearity and BIC testing. The SAC value still needs to be improved to produce a strong S-box.

In this paper, we will present S-box construction using selected irreducible polynomial and affine matrixes. This method starts by determining the selected irreducible polynomial that meets in GF(2^8), builds multiplicative inverse, applies affine mapping with selected affine matrixes, and finally constructs an S-box. All S-boxes produced will be tested using SAC, nonlinearity, and BIC. The best S-boxes are the S-boxes that have the best SAC, nonlinearity and BIC values among the proposed S-boxes. The results of SAC, nonlinearity, and BIC from the best S-boxes will be compared with previous studies.

2. Method

2.1. Irreducible polynomial

In this section, we will discuss the irreducible polynomial. An irreducible polynomial is a polynomial that has two multiplication factors, i.e., itself and 1 [27]. To get the irreducible polynomial, the following steps are taken.

Step 1. List all polynomials that meet the following conditions
 1.a. starting from polynomial \(x^8\),
 1.b. finishing until polynomial \(x^8 + x^7 + x^6 + x^5 + x^4 + x^3 + x^2 + 1\)

Step 2. Perform division operations with the following conditions
 2.a. starting from polynomial 1
 2.b. finishing until polynomial is running at that time

Step 3. The setting value of the variable \(P = 0\)
Step 4. Each division result in step 2 is equal to 1, adding value 1 to variable \(P\)
Step 5. Calculate the value of the \(P\) variable for each polynomial that meets in step 1
Step 6. If \(P <> 2\), then the polynomial in step 1 is called a reducible polynomial
Step 7. If \(P = 2\), then the polynomial in step 1 is called a irreducible polynomial
Step 8. Show all irreducible polynomials

After Step 1 until Step 8 is run, there are 30 irreducible polynomials that have been classified according to listed in [28], [29], and [30]. Based on 30 irreducible polynomials, the selected irreducible polynomial is \(r(x) = x^8 + x^6 + x^4 + x^2 + 1\). The choice of the irreducible polynomial is based on the computational speed in forming the irreducible polynomial. In accordance with the selected irreducible polynomial, a multiplicative inverse table is constructed as listed in Table 1.

Table 1. The proposed multiplicative inverse

0	1	150	228	75	92	114	197	179	67	46	253
207	247	183	50	23	233	232	20	138	38	30	218
241	73	237	107	205	186	25	139	157	254	226	249
69	225	19	182	15	245	109	161	61	12	88	133
238	143	178	9	224	48	163	243	240	33	93	4
216	201	127	95	113	137	234	125	58	132	192	102
180	202	230	220	159	194	91	193	145	121	236	35
136	84	6	196	44	172	212	128	144	105	28	177
119	213	209	223	89	59	146	214	112	85	24	39
120	104	134	215	184	167	2	229	77	155	76	153
108	55	242	70	169	175	185	149	174	164	210	79
29	123	66	8	96	203	51	18	148	166	37	204
90	103	101	158	115	7	110	140	217	81	97	181
222	130	170	78	118	129	135	147	80	200	27	31
68	49	42	248	3	151	98	221	22	21	86	124
72	32	162	71	14	53	206	17	227	43	189	62

2
2.2. Affine mapping

In this section, we will introduce affine mapping. The affine mapping consists of an affine matrix and the addition of a constant 8-bit vector \([31] [32]\) as shown in Eq. (1).

\[
\begin{bmatrix}
 b_0 \\
 b_1 \\
 b_2 \\
 b_3 \\
 b_4 \\
 b_5 \\
 b_6 \\
 b_7
\end{bmatrix}
+ \begin{bmatrix}
 1 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 1 \\
 0
\end{bmatrix} \mod 2
\]

(1)

In this paper, we will examine the use of affine matrices based on previous research listed in \([30]\), \([33]\), and \([34]\). The affine matrices are contained as follows:

\[t_1 = \begin{bmatrix}
 11000001 \\
 11100000 \\
 01110000 \\
 00011100 \\
 00001111 \\
 00000000 \\
 10000000 \\
 11010001
\end{bmatrix}, \quad t_2 = \begin{bmatrix}
 11101001 \\
 11110100 \\
 01111010 \\
 00111101 \\
 10011110 \\
 10111110 \\
 01001111 \\
 11010011
\end{bmatrix}, \quad \text{and} \quad t_3 = \begin{bmatrix}
 01110101 \\
 00111101 \\
 00011110 \\
 10011101 \\
 10100111 \\
 11101001 \\
 11110100 \\
 11110100
\end{bmatrix}.\]

2.3. S-box construction

In this section, we will introduce S-box construction based on selected irreducible polynomial \(r(x) = x^8 + x^5 + x^3 + x^2 + 1\) combined with the three selected affine matrixes i.e. \(t_1\), \(t_2\), and \(t_3\). The S-box construction proposed in detail can be seen in the schematic in Fig. 1. Based on Fig. 1. S-box construction is generated from multiplicative inverse applied to affine mapping transformation. Affine mapping consists of an affine matrix and the addition of a constant 8-bit vector as shown in Eq. (1).

![Affine mapping diagram](image)

Figure 1. The construction scheme for the proposed S-box1, S-box2, and S-box3.
Table 2, Table 3, and Table 4 show the results of S-boxes construction based on Fig.1,i.e. S-box1, S-box2, and S-box3, respectively.

Table 2. The proposed S-box1

99	224	147	60	27	169	204	207	110	7	6	155	180	57	4	37
212	128	96	44	209	173	46	85	185	26	78	97	208	234	64	226
137	28	163	107	211	241	196	58	31	11	53	149	197	67	120	24
14	177	223	227	245	135	98	81	186	113	167	47	242	55	146	248
39	52	237	252	50	43	86	142	10	144	42	109	129	134	254	74
102	221	93	45	72	61	41	90	48	172	66	250	238	152	222	63
228	89	59	104	12	69	35	193	25	84	32	151	210	34	75	51
190	181	106	76	1	192	116	162	154	108	73	105	170	49	174	188
65	247	249	236	36	179	157	115	203	54	71	153	200	101	164	0
215	239	171	240	246	88	100	191	18	2	145	5	156	15	198	253
225	161	13	138	77	68	117	23	199	220	125	21	70	130	206	95
202	83	132	127	243	218	175	92	148	219	158	80	189	17	124	255
160	121	126	143	79	233	230	176	229	56	112	103	114	29	3	91
111	165	201	150	194	33	40	30	187	94	195	205	119	184	122	38
141	168	8	22	231	16	244	235	82	214	178	217	232	20	131	183
159	19	213	9	118	166	87	216	182	139	123	62	133	251	140	136

Table 3. The proposed S-box2

99	176	95	75	125	123	119	226	185	227	111	59	105	245	118	107
219	2	246	131	101	73	154	17	179	241	40	122	233	205	103	169
234	218	6	7	124	244	19	96	181	79	163	116	159	242	90	232
11	215	42	37	198	165	239	35	38	178	52	22	97	186	211	28
114	47	106	46	4	36	132	77	57	202	168	44	142	41	55	26
221	51	117	15	3	199	61	210	29	197	126	5	255	174	166	222
130	71	236	146	18	217	64	173	100	157	213	109	240	204	150	136
20	229	139	49	200	33	12	138	183	160	143	30	238	145	220	13
235	223	144	230	231	206	16	171	208	54	192	34	69	72	161	68
78	115	98	120	83	203	196	152	149	93	70	250	156	135	10	162
60	31	158	127	189	85	128	43	134	191	228	50	76	27	110	108
92	58	48	253	237	148	80	249	248	24	133	175	129	0	104	187
147	214	113	193	164	88	155	91	14	121	62	81	39	86	209	94
53	45	201	225	56	89	177	195	170	224	180	251	153	63	67	254
216	247	32	167	23	140	74	65	182	194	66	1	212	190	151	252
9	25	87	172	21	184	8	141	112	243	207	82	188	137	84	102
The proposed S-box
\begin{equation}
S(x) = \left(\frac{1}{2^n} \sum_{i=1}^{n} f(x) \oplus f(x \oplus c_i^n)\right)
\end{equation}

Where n are the number of variables, and i is the number 1 in the ith position. Tables 5, 6 and 7 are the results of SAC matrix testing for S-box1, S-box2, and S-box3 respectively.

Table 4. The proposed S-box1
99
77
1
121
39
204
27
190
65
40
180
172
95
246
141
249

Each S-box produced will be tested using SAC, nonlinearity, and BIC. SAC is defined in Eq. (2) [8] below:

Table 5. The SAC matrix of the proposed S-box1

| 0.5156 | 0.4688 | 0.4844 | 0.5469 | 0.5 | 0.5156 | 0.5156 | 0.5156 |
|-----------------------------|
| 0.5156 | 0.5156 | 0.5 | 0.5469 | 0.5469 | 0.5 | 0.5156 | 0.5156 |
| 0.5156 | 0.5156 | 0.5625 | 0.5156 | 0.5469 | 0.5469 | 0.5 | 0.5469 |
| 0.5469 | 0.5156 | 0.5313 | 0.5 | 0.5156 | 0.5469 | 0.5469 | 0.5313 |
| 0.5313 | 0.5469 | 0.5313 | 0.5469 | 0.5 | 0.5156 | 0.5469 | 0.5 |
| 0.5 | 0.5313 | 0.5156 | 0.5 | 0.5469 | 0.5 | 0.5156 | 0.4531 |
| 0.4531 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5469 | 0.5 | 0.4531 |
| 0.4531 | 0.4531 | 0.5156 | 0.4375 | 0.5 | 0.5 | 0.5469 | 0.5156 |

Table 6. The SAC matrix of the proposed S-box2

| 0.5 | 0.5313 | 0.5156 | 0.5 | 0.5313 | 0.4688 | 0.4688 | 0.5313 |
|-----------------------------|
| 0.5 | 0.4531 | 0.5313 | 0.5625 | 0.5 | 0.5156 | 0.4688 | 0.4844 |
| 0.4531 | 0.5156 | 0.4531 | 0.5156 | 0.5625 | 0.5313 | 0.5156 | 0.4688 |
| 0.5156 | 0.4688 | 0.5156 | 0.4531 | 0.5156 | 0.5156 | 0.5313 | 0.4844 |
| 0.5625 | 0.4375 | 0.4688 | 0.4688 | 0.4531 | 0.4375 | 0.5156 | 0.4844 |
| 0.4844 | 0.5156 | 0.4375 | 0.5313 | 0.4688 | 0.5 | 0.4375 | 0.5 |
| 0.4531 | 0.5 | 0.5156 | 0.5313 | 0.5313 | 0.4688 | 0.5 | 0.5625 |
| 0.5313 | 0.4844 | 0.5 | 0.5313 | 0.5313 | 0.5469 | 0.4688 | 0.5313 |
The results of SAC testing for each proposed S-box are presented in detail in Table 8.

Table 8. The SAC values of the proposed S-box\(_1\), S-box\(_2\), and S-box\(_3\)

S-boxes	Min	Mean	Max
Proposed S-box\(_1\)	0.438	0.51343	0.563
Proposed S-box\(_2\)	0.438	0.49951	0.563
Proposed S-box\(_3\)	0.438	0.49951	0.563

Nonlinearity is defined in Eq. (3) [9] below:

\[
NL (f(x)) = \min d(f(x), g(x)) = \min wt (f(x) \oplus g(x))
\]

(3)

\(d(f(x), g(x))\) is the Hamming distance to the set of all \(n\)-variable affine functions and \(wt (f(x) \oplus g(x))\) is the number of minterms of \(f(x) \oplus g(x)\). BIC is defined two output bits \(f_i \oplus f_j\) should be highly nonlinear. The results of nonlinearity and BIC testing for each proposed S-box are presented in detail in Table 9.

Table 9. The nonlinearity and BIC values of the proposed S-box\(_1\), S-box\(_2\), and S-box\(_3\)

S-boxes	Nonlinearity	BIC				
	Min	Mean	Max	Min	Mean	Max
Proposed S-box\(_1\)	112	112	112	112	112	112
Proposed S-box\(_2\)	112	112	112	112	112	112
Proposed S-box\(_3\)	112	112	112	112	112	112

The next section will discuss the performance analysis of each S-box generated in previous studies that will be compared with the best S-box from the results of this research.

3. Results and Discussions

Based on Tables 8 and 9, S-box\(_1\), S-box\(_2\), and S-box\(_3\) have SAC values 0.51343, 0.49951, and 0.49951 respectively. The S-boxes have the same nonlinearity and BIC values of 112. Thus, S-box\(_2\) and S-box\(_3\) are selected as proposed S-boxes because the S-boxes have better SAC values. Hence, the proposed S-box\(_2\) and S-box\(_3\) are produced from irreducible polynomial \(r(x) = x^8 + x^4 + x^3 + x^2 + 1\), affine matrix \(t_1\), and affine matrix \(t_2\).

Tables 10 presents the SAC, nonlinearity, and BIC values of the S-boxes that have been presented in previous studies. The SAC, nonlinearity, and BIC values generated from previous studies are varied. But none of the SAC values from previous studies that better than the SAC value 0.49951. Hence, it can be concluded that the proposed S-box\(_2\) and S-box\(_3\) are the best proposed S-boxes because they have SAC value of 0.49951 compared to the SAC value of the S-box resulting from previous studies.
4. Conclusion
In this paper, S-box construction is generated using selected irreducible polynomial $r(x) = x^8 + x^5 + x^3 + 1$ combined with the three selected affine matrices t_1, t_2, and t_3. From the irreducible polynomial, the multiplicative inverse matrix is produced. Furthermore, using affine mapping, S-box1, S-box2, and S-box3 are built. Proposed S-box2 and S-box3 are the best S-boxes in this paper with SAC value of 0.49951. The SAC value of proposed S-boxes is compared to the SAC value of the S-boxes resulting from previous studies. The result are that the proposed S-box2 and S-box3 are the best compared to the available previous S-boxes.

References
[1] Wu C K and Feng D 2016 Boolean Functions and Their Applications in Cryptography (Berlin: Springer) 2016
[2] Biham E and Shamir A 1991 J. Cryptol. 4 3
[3] Paar C and Pelzl J 2010 Understanding Cryptography (Berlin: Springer-Verlag)
[4] Nyberg K 2019 Cryptogr. Commun. 11 367
[5] Cui W, Chen W, Mesnager S, Sun L and Wang M 2018 Cryptogr. Commun. 10 755
[6] Ivanov G, Nikolov N and Nikova S 2016 Cryptogr. Commun. 8 247
[7] Liu J, Mesnager S and Chen L 2017 Cryptogr. Commun. 9 345
[8] A. F. Webster and S. E. Tavares 1986 Lecture Notes in Computer Science 218 523
[9] Hussain I and Shah T 2013 Nonlinear Dyn. 74 869
[10] Girija R and Singh H 2018 3D Res. 9 15
[11] Farwa S, Muhammad N, Shah T, Ahmad S 2017 3D Res. 8 26
[12] Çavuşoğlu U, Kaçar S, Pehlivan I and Zengin A 2017 Chaos, Solitons & Fractals 95 92
[13] Hussain I, Anees A, Al Khalidi A, Algharni A and Aslam M 2018 Chinese J. Phys. 56 1609
[14] Özkaynak F, Çelik V and Özer A B Signal, Image Video Process. 11 659
[15] Özkaynak F and Yavuz S 2013 Nonlinear Dyn. 74 551

Table 10. Performance comparison

S-boxes	SAC	Nonlinearity	BIC
AES	0.5048	112	112
In [10]	0.5107	103	103
In [11]	0.5066	104	103
In [12]	0.5064	106	104
In [13]	-	-	-
In [14]	0.4956	105	103
In [15]	0.5036	104	103
In [16]	0.4983	105	104
In [17]	0.4976	106	105
In [18]	0.4930	105	98
In [19]	0.4978	105	104
In [20]	0.503	107	104
In [21]	0.503	112	112
In [22]	0.504	106	103
In [23]	0.502	106	103
In [24]	0.498	108	-
In [25]	0.5002	106	104
In [26]	0.5017	104	103
Proposed S-box2	0.49951	112	112
Proposed S-box3	0.49951	112	112
[16] Belazi A, Khan M, El-Latif A A A and Belghith M 2016 Nonlinear Dyn. 87 337
[17] Liu G, Yang W, Liu W Dai Y 2015 Nonlinear Dyn. 82 1867
[18] Khan M, Shah T, Mahmood H, Asif M and Iqtadar G 2012 Nonlinear Dyn. 70 2303
[19] Khan M and Shah T 2015 Signal, Image Video Process. 9 1335
[20] Lambic D 2017 Nonlinear Dyn. 87 2407
[21] Khan and Azam N A 2015 3D Res. 6 1
[22] Çavusoglu U, Zengin A, Pehlivan I and Kaçar S 2016 Nonlinear Dyn. 87 1081
[23] Ullah A, Shaukat S, Tariq J 2017 Nonlinear Dyn. 88 2757
[24] Isa H, Jamil N and Aba M R Z 2016 New Gener. Comput. 7 221
[25] Islam F and Liu G 2017 3D Res. 8 1
[26] Hussain I, Gondal M A and Hussain A 2015 3D Res. 6 1
[27] Stallings 2017 Cryptography and Network Security 7th ed (London: Pearson Publishing)
[28] Gangadaril B R and Ahamed S R 2015 Proc. Eighth Int. Conf. on Contemporary Computing (IC3) (Noida) (New Jersey: IEEE)
[29] Wang D and Sun S L 2008 Proc. Int. Conf. on Computer Science and Software Engineering (Hubei) (New Jersey: IEEE) p 782
[30] Alamsyah, Bejo A and Adj T B 2018 Nonlinear Dyn. 93 2105
[31] Daemen J and Rijmen V 2002 The Design of Rijndael (New York: Springer-Verlag)
[32] Alamsyah, Bejo A and Adj T B 2017 Proc. Int. IEEE Conf. on Dependable and Secure Computing (Taipei) (New Jersey: IEEE)
[33] Sahoo O B, Kole D K and Rahaman H 2012 Proc. 2012 Int. Conf. Adv. Comput. Commun. ICACC (Cochin) (New Jersey: IEEE)
[34] Waqas U, Afzal S, Mir M A and Yousaf M 2015 Proc. - 12th Int. Conf. Front. Inf. Technol. FIT 2014 (Islamabad) (New Jersey: IEEE)