Structural and magnetic properties of Pr$_{0.3}$Tb$_{0.7}$Fe$_{1.9-x}$Mn$_x$ Ribbons

Z Ren1, L Chen1, S Li1,3, H Liu2 and Z Lu2

1 School of Mathematics and Physics, North China Electric Power University, Baoding 071003, China
2 School of Material Science and Engineering, Hebei University of Technology, Tianjin 300130, China
E-mail: songtaoli2001@126.com

Abstract. The structural and magnetic properties of Pr$_{0.3}$Tb$_{0.7}$Fe$_{1.9-x}$Mn$_x$ ribbons have been investigated using X-ray diffraction, vibrating sample magnetometry and the standard strain gauge technique. According to the XRD spectra, all ribbons of Pr$_{0.3}$Tb$_{0.7}$Fe$_{1.9-x}$Mn$_x$ demonstrate a pure Laves phase, which benefits from the melt-spun technology. The Curie temperature of the Pr$_{0.3}$Tb$_{0.7}$Fe$_{1.9-x}$Mn$_x$ alloys decreases gradually from 366°C for $x=0.1$ to 328°C for $x=0.3$. Meanwhile, magnetostriction at room temperature demonstrates a maximum at $x=0.1$.

1. Introduction
Magneostostrictive materials have been the topic of much recent research for their potential applications on sensors and micro-drivers. According to the single-ion model [1], CeFe$_2$ and PrFe$_2$ compounds demonstrate greater magnetostriction than TbFe$_2$ and DyFe$_2$ at 0K; therefore, Ce-based and Pr-based RFe$_2$ (“R” refers to rare earth elements) compounds may have great potential as giant magnetostrictive materials. Moreover, the light rare earth elements Pr and Ce are much more cost effective than the heavy rare earth elements Tb and Dy. As a result, considerable studies have focused on Pr-based or Ce-based compounds [2-6]. However, the large radius of the Pr$^{3+}$ ion presents difficulties for the synthesis of PrFe$_2$ with a pure Laves phase at ambient pressure [7, 8]. Only a small portion of Pr content is possible in stable RFe$_2$ compounds. When Pr content exceeds 20-25%, a single Laves phase material cannot be obtained in (R,Pr)Fe$_2$ compounds. Recently, great effort has been exerted to enhance Pr content in (R,Pr)Fe$_2$ compounds [9]. For instance, researchers have used a melt-spinning technique, or introduced substitute/interstitial atoms such as B, Co, etc., into the (R,Pr)Fe$_2$ system [10-12].

In this paper, Mn atoms were introduced into (Tb,Pr)Fe$_2$ compounds to substitute for Fe, and melt-spun technology was applied in the synthesis of Pr$_{0.3}$Tb$_{0.7}$Fe$_{1.9-x}$Mn$_x$ ribbons to obtain potential magnetostrictive materials. The structural and magnetic properties of the obtained Pr$_{0.3}$Tb$_{0.7}$Fe$_{1.9-x}$Mn$_x$ ribbons were then investigated.

3 Address for correspondence: S Li, School of Mathematics and Physics, North China Electric Power University, Baoding 071003, China. E-mail: songtaoli2001@126.com.
2. Experimental procedure

The Pr$_{0.3}$Tb$_{0.7}$Fe$_{1.9}$Mnx (x=0.1, 0.2, 0.3) alloys were prepared by arc-melting constituent elements in a highly purified argon atmosphere using nonconsumable tungsten electrodes and a water-cooled copper bottom. The purities of rare earth elements are 99.9% and the metals of Fe and Mn have a purity of 99.99%. The alloy buttons were melted four times to ensure homogenization. Next, ingots of approximately 3 g were annealed at 850°C for 72 hours; ingots of approximately 5 g portions were conducted in an atmosphere of pure argon by ejection of the molten metal onto a rotating copper roll moving at a speed of 50 m/s, which was then cooled by water. Thus, ribbons of Pr$_{0.3}$Tb$_{0.7}$Fe$_{1.9}$Mnx were obtained, and the ribbons were then annealed in an argon atmosphere at 500°C for 30 minutes. Phase identification was conducted by X-ray powder diffraction methods (Philips X’Pert MPD). The magnetization at room temperature and the Curie temperature of annealed ribbons were determined by a vibrating sample magnetometer (Lake Shore 7407 model). The magnetostriction was measured at room temperature using a standard strain gauge in directions parallel (\(\lambda_{//} \)) and perpendicular (\(\lambda_{\perp} \)) to the magnetic field.

3. Results and discussion

The X-ray diffraction spectra for the annealed Pr$_{0.3}$Tb$_{0.7}$Fe$_{1.9}$Mnx alloys are shown in figure 1. All arc-melt alloys were composed of a matrix of cubic-structured RFe$_2$ compound, with a small amount of the R-rich phase and RFe$_3$ phase. In the formula of Pr$_{0.3}$Tb$_{0.7}$Fe$_{1.9}$Mnx, the rare earth rich stoichiometry was often chosen to offset the volatilization of rare earth metals in the melting process and to inhibit the formation of the RFe$_3$ phase. Generally, the Pr content in an (R,Pr)Fe$_2$ system cannot exceed 20-25% for rare earth materials, without the appearance of the second phases (R-rich phase and RFe$_3$ phase) [8]. In order to fabricate a single Laves phase with Pr content greater than 20%, we employed melt-spun technology and investigated the XRD spectra to confirm the Laves phase and the second phases.

![Figure 1. XRD patterns of homogenized Pr$_{0.3}$Tb$_{0.7}$Fe$_{1.9}$Mnx alloys at 850°C for 72 hours.](image1)

![Figure 2. XRD patterns of as-spun Pr$_{0.3}$Tb$_{0.7}$Fe$_{1.9}$Mnx alloys.](image2)

XRD patterns of Pr$_{0.3}$Tb$_{0.7}$Fe$_{1.9}$Mnx alloys homogenized at 850°C for 72 hours are shown in figure 1. The X-ray diffraction spectra for the Pr$_{0.3}$Tb$_{0.7}$Fe$_{1.9}$Mnx ribbons (as-spun and as-annealed) are shown in figures 2 and 3, respectively. In figure 1, the orientation index shows the presence of second phases in the alloys. The peaks of the R-rich phase and the RFe$_3$ phase are clear in the XRD spectra for the Pr$_{0.3}$Tb$_{0.7}$Fe$_{1.9}$Mnx alloys, which were annealed at 850°C for 72 hours. The high temperature and the long annealing time cannot eliminate the second phases in the Pr$_{0.3}$Tb$_{0.7}$Fe$_{1.9}$Mnx alloys. However, as shown in figure 2, which represents the as-spun Pr$_{0.3}$Tb$_{0.7}$Fe$_{1.9}$Mnx ribbons (which were not annealed), the peaks of the R-rich phase and RFe$_3$ phase disappear. All peaks in the diffraction patterns are indexed to the characteristics of the MgCu$_2$ crystal structure in figure 2. In figure 2, the
broad crystalline peak and the broad hump indicate that a mixture of ultra-fine grains and the amorphous phase exist in the \(\text{Pr}_{0.3}\text{ Tb}_{0.7}\text{Fe}_{1.9-x}\text{Mn}_x \) ribbons. In order to investigate the effect of the annealing process on the as-spun \(\text{Pr}_{0.3}\text{ Tb}_{0.7}\text{Fe}_{1.9-x}\text{Mn}_x \) ribbons, the ribbons were annealed at 500°C for 30 minutes. The XRD of the as-annealed \(\text{Pr}_{0.3}\text{ Tb}_{0.7}\text{Fe}_{1.9-x}\text{Mn}_x \) ribbons are shown in figure 3. Results indicate that all diffraction peaks become sharper in figure 3 than those in figure 2, indicating the formation of the Laves phase in the as-annealed \(\text{Pr}_{0.3}\text{ Tb}_{0.7}\text{Fe}_{1.9-x}\text{Mn}_x \) ribbons. Thus, the melt-spin technique is determined to be an effective method for the synthesis of Laves phase alloys with high Pr content.

![Figure 3. XRD patterns of as-annealed \(\text{Pr}_{0.3}\text{ Tb}_{0.7}\text{Fe}_{1.9-x}\text{Mn}_x \) \(\text{Pr}_{0.3}\text{ Tb}_{0.7}\text{Fe}_{1.9-x}\text{Mn}_x \) ribbons.](image)

![Figure 4. Magnetization of \(\text{Pr}_{0.3}\text{ Tb}_{0.7}\text{Fe}_{1.9-x}\text{Mn}_x \) \(\text{Pr}_{0.3}\text{ Tb}_{0.7}\text{Fe}_{1.9-x}\text{Mn}_x \) ribbons (annealed) at room temperature.](image)

The as-annealed \(\text{Pr}_{0.3}\text{ Tb}_{0.7}\text{Fe}_{1.9-x}\text{Mn}_x \) ribbons demonstrate a pure Laves phase. The magnetic properties of the as-annealed \(\text{Pr}_{0.3}\text{ Tb}_{0.7}\text{Fe}_{1.9-x}\text{Mn}_x \) ribbon powder were then investigated. The magnetization dependence on the external applied magnetic field is shown in figure 4. All samples are soft magnetic materials which easily reach saturation under the external applied magnetic field. The saturated magnetization and the remnant magnetization show a maximum at \(x=0.2 \), but the intrinsic coercivity decreases with increasing Mn content. Table 1 lists the values of the saturated magnetization \(M_s \), the remnant magnetization \(M_r \), the intrinsic coercivity \(H_{ci} \) and the Curie temperature for the \(\text{Pr}_{0.3}\text{ Tb}_{0.7}\text{Fe}_{1.9-x}\text{Mn}_x \) ribbons. As summarized in table 1, The Curie temperature of the as-annealed \(\text{Pr}_{0.3}\text{ Tb}_{0.7}\text{Fe}_{1.9-x}\text{Mn}_x \) ribbonpowder decreases from 366°C (\(x=0.1 \)) to 328°C (\(x=0.3 \)) as the Mn content increases. It is well-known that for R-T compounds (T representing a transition metal element), the Curie temperature is primarily determined by T-T exchange interaction. Thus, the decline of the Curie temperature may be due to the substitution of Mn for Fe in \(\text{Pr}_{0.3}\text{ Tb}_{0.7}\text{Fe}_{1.9-x}\text{Mn}_x \) ribbons, which disturbs the 3d-3d exchange interaction [13].

Table 1. Saturated magnetization \(M_s \), remnant magnetization \(M_r \), intrinsic coercivity \(H_{ci} \) and Curie temperature \(T_c \) for \(\text{Pr}_{0.3}\text{ Tb}_{0.7}\text{Fe}_{1.9-x}\text{Mn}_x \) ribbons (annealed).

x	\(M_s \) (Am\(^2\)/kg)	\(M_r \) (Am\(^2\)/kg)	\(H_{ci} \) (A/m)	\(T_c \) (°C)
0.1	26.099	17.219	5.363	366
0.2	30.553	18.141	4.664	357
0.3	27.316	15.658	4.458	328

The dependence of magnetostriction \(\Delta \lambda = \lambda_\parallel - \lambda_\perp \) on the external applied magnetic field is shown in figure 5. The as-annealed \(\text{Pr}_{0.3}\text{ Tb}_{0.7}\text{Fe}_{1.9-x}\text{Mn}_x \) ribbons were milled into powder and mixed with a phenol binder, with a weight ratio of powders to binder of 100:6. The composites were compacted at a pressure of 80MPa, and then solidified at room temperature in a free state. The magnetostriction of all samples was far from saturation at the external applied magnetic field of 11 kOe. With the Mn...
content increasing from 0.1 to 0.3, the magnetostriction at the largest magnetic field decrease from 400 ppm (x=0.1) to 300 ppm (x=0.3). This interesting magnetostrictive behavior may be ascribed to the complex coupling between R (a rare earth element) and Mn. Because the Mn-Mn interatomic spacing in the R-Fe-Mn alloy is just below the critical value d_c (0.266 nm), the itinerant 3d moment of the Mn atom becomes unstable [14]. Therefore, the substitution of Fe by Mn demonstrates a complex effect on the magnetostrictive behavior of Pr$_{0.3}$Tb$_{0.7}$Fe$_{1.9-x}$Mn$_x$ ribbons.

![Diagram](image.png)

Figure 5. Magnetostriction of Pr$_{0.3}$Tb$_{0.7}$Fe$_{1.9-x}$Mn$_x$ ribbons (annealed) at room temperature.

4. **Conclusions**

In this work, Pr$_{0.3}$Tb$_{0.7}$Fe$_{1.9-x}$Mn$_x$ ribbons with a Laves phase structure were fabricated. The melt-spin technique proved to be a good method for the synthesis of alloys with high Pr content in the Laves phase. The substitution of Mn for Fe has a major effect on the magnetic properties and magnetostriction of Pr$_{0.3}$Tb$_{0.7}$Fe$_{1.9-x}$Mn$_x$ ribbons. The saturated magnetization and the remnant magnetization demonstrate maximum values at $x=0.2$, but the intrinsic coercivity and Curie temperature decrease with increasing Mn content. The magnetostriction of Pr$_{0.3}$Tb$_{0.7}$Fe$_{1.9-x}$Mn$_x$ ribbons at a magnetic field of 11 kOe decrease with increasing Mn content, due to the complex coupling between R (rare earth elements) and Mn.

Acknowledgments

This work has been supported by the National Science Foundation of China (grant nos. 11004055 and 50901028), the Fundamental Research Funds for the Central Universities (grant nos. 12MS142, 13ZD23, 2014MS162 and 2014MS168), the Beijing-funded Joint Development Program of the Central Universities in Beijing and the Program for New Century Excellent Talents in University (grant no. NCET-12-0844).

References

[1] Clark A E 1980 *Ferromagnetic Materials* (Amsterdam: North Holland Publications) p 531
[2] Li Y, Tang C, Du J, Wu G, Zhan G, Yan W, Xu G and Yang Q 1998 Magnetostrictive and magnetic properties of the pseudobinary compounds Pr$_x$Tb$_{1-x}$Fe$_2$ and Pr$_{0.15}$Tb$_x$Dy$_{0.85-x}$Fe$_2$ *J. Appl. Phys.* **83** 7753-6
[3] Ma T, Yan M, Chen X, Jiang C and Xu H 2008 Structure and magnetic properties of magnetostrictive compounds Tb$_{0.3}$Dy$_{0.64}$(Fe$_{0.85}$Co$_{0.15}$)$_2$B$_6$ *J. Magn. Magn. Mater.* **320** 2368-72
[4] Liu H Y, Meng F B, Li S T, Li Y X, Chen J L and Wu G H 2004 Structure, magnetic properties and magnetostriction of Pr$_{0.15}$Tb$_{0.3}$Dy$_{0.2}$Fe$_{1.85}$Si$_6$ alloys *J. Physica B* **351** 102-5
[5] Tang C, Du J, Li Y, Wang F, Wu G and Zhan W 1998 Magnetostriction in (Ce$_x$Tb$_{1-x}$)$_0.5$Pr$_{0.5}$Fe$_2$ compounds *Appl. Phys. Lett.* **73** 692-4
[6] Zhang S, Zhang M, Qiao Y, Liu M, Wang H and Xu Y 2013 Magnetostriction, composition and microstructure of Tb0.29(Dy1–xPrx)0.71Fe1.97 alloys with heat treatment J. Rare Earth 31 577-81
[7] Zhao X, Li J, Liu S, Ji S and Jia K 1997 Magnetic properties and thermal stability of PrFe2 compound J. Alloys Comp. 258 39-41
[8] Lv X K, Liu W, Ren W J, Li B, Zhao X G, Li D and Zhang Z D 2008 Structure, magnetic properties and magnetostriction of laves compounds Nd1-xPrx(Fe0.35Co0.55B0.1)2 J. Magn. Magn. Mater. 320 2373-5
[9] Shi Y G, Tang S L, Huang Y J, Nie B, Qian B, Lv L Y and Du Y W 2007 Structure, thermal stability and magnetostrictive properties of PrFe2 alloys J. Alloys Comp. 443 11-4
[10] Liu J J, Xiong D K, Ren W J, Zhang Z D and Or S W 2007 High magnetostriction at low fields of epoxy/Tb1-xPrx(Fe0.4Co0.6)1.9 composites J. Alloys Comp. 427 271-4
[11] Ren W J, Zhang Z D, Zhao X G, Song X P, Liu W and Geng D Y 2004 Structure and magnetostriction of Tb1-xPrxFe1.93B0.15 alloys J. Magn. Magn. Mater. 269 281-5
[12] Liu H Y, Li Y X, Meng F B, Lu Z M, Xu X W, Zhang M and Qu J 2008 Structure and magnetostriction of melt-spun Pr0.7Tb0.3Fe2B alloys J. Alloys Comp. 469 310-3
[13] Guo Z J, Zhang Z D, Zhao X G, Jin X M and Geng D Y 2000 Effect of Mn substitution on structure, magnetic properties and magnetostriction of Sm0.9Pr0.1Fe2 J. Alloys Comp. 308 319-22
[14] Wu C H, Yang C P, Chuang Y C, Jin X M and Li J Y 1997 Structure and magnetostriction of R(Fe1.4,Mn)1.85 alloys (R=Dy0.6Tb0.4Pr0.1) J. Magn. Magn. Mater. 166 249-52