Supplementary Material:

Bioactivity in Rhododendron: A systemic analysis of antimicrobial and cytotoxic activities and their phylogenetic and phytochemical origins

Anne Grimbs 1, Abhinandan Shrestha 1, Ahmed Sayed Deyab Rezk 1, Sergio Grimbs 1, Inamullah Hakeem Said 1, Hartwig Schepker 2, Marc-Thorsten Hütt 1, Dirk Carl Albach 3,

Klaudia Brix 1, Nikolai Kuhnert 1 and Matthias S. Ullrich 1,*

1Department for Life Sciences & Chemistry, Jacobs University Bremen, Bremen, Germany
2Stiftung Bremer Rhododendronpark, Bremen, Germany
3Institute for Biology and Environmental Sciences, Carl von Ossietzky University Oldenburg, Oldenburg, Germany

List of Figures

S1 PCA scores plots colored with respect to cytotoxicity classifications 2
S2 PCA loadings plot .. 2
S3 Chemical diversity across the subgenera of Rhododendron .. 3
S4 Box plots of 282 identified polyphenolics by antimicrobial activity classification 12
S5 Box plots of all 292 identified polyphenolics by cytotoxicity classification towards HaCaT cells .. 22
S6 Box plots of all 292 identified polyphenolics by cytotoxicity classification towards IEC-6 cells .. 31
S7 Distribution of the detected LC-MS peaks regarding m/z ratios and retention times 32
S8 The 25 most- and least-predictive LC-MS peaks regarding Cohen’s κ for cytotoxicity towards IEC-6 cells.. 33
S9 The 25 most- and least-predictive LC-MS peaks regarding Cohen’s κ for cytotoxicity towards HaCaT cells .. 34
S10 The 27 most-predictive LC-MS peaks regarding Cohen’s κ for antimicrobial activity and non-cytotoxicity towards both cell lines .. 36
S11 The 50 most-predictive LC-MS peak combinations with additive effects regarding Cohen’s κ for antimicrobial activity ... 38
S12 The 50 most-predictive LC-MS peak combinations with alternative effects regarding Cohen’s κ for antimicrobial activity .. 39
S13 Heatmap of the most-predictive LC-MS peak combinations with alternative effects regarding Cohen’s κ for antimicrobial activity .. 40
S14 The 50 most-predictive LC-MS peak combinations with additive effects regarding Cohen’s κ for cytotoxicity towards IEC-6 cells .. 41
S15 The 50 most-predictive LC-MS peak combinations with alternative effects regarding Cohen’s κ for cytotoxicity towards IEC-6 cells .. 42
S16 Heatmap of the most-predictive LC-MS peak combinations with additive and alternative effects, respectively, regarding Cohen’s κ for cytotoxicity towards IEC-6 cells .. 43

List of Tables

S1 Average and standard deviation of m/z ratios and retention times for most-predictive LC-MS peaks .. 32
S2 The 23 most-predictive LC-MS peaks regarding Cohen’s κ for antimicrobial activity 35
S3 The 27 most-predictive LC-MS peaks regarding Cohen’s κ for antimicrobial activity and non-cytotoxicity .. 37
S4 The 12 out of 23 most-predictive individual LC-MS peaks involved in the most-predictive additive peak combinations regarding antimicrobial activity .. 44
S5 The 23 most-predictive individual LC-MS peaks involved in the most-predictive alternative peak combinations regarding antimicrobial activity .. 45
S6 The 6 identified caffeoylquinic acids acting additive in LC-MS peak combinations .. 45
S7 The 15 identified regioisomeric chlorogenic acids acting as functional alternative structures in LC-MS peak combinations .. 46
S8 Quercetin and the 16 identified quercetin-O-glycosides acting as functional alternative structures in LC-MS peak combinations .. 46
S9 Sequence generation for phylogenetic analysis including DNA regions, primer sequences, and respective PCR protocols .. 47
Figure S1 | Principal component analysis (using Pareto scaling) of the phytochemical data for all 87 *Rhododendron* species. The scores of the principal components corresponding to the species are colored with respect to the cytotoxicity towards HaCaT cells (**A**) and IEC-6 cells (**B**), respectively. The item shape highlights the subgenus of each species (△:*Azaleastrum*, □:*Hymenanthes*, ○:*Pentanthera*, ◄:*Rhododendron*, ▽:*Tsutsusi*). The item size as well illustrates the cytotoxicity classification, toxic – large and turquoise, safe – small and gray.

Figure S2 | Loadings of the principal component analysis of the phytochemical data of all 87 *Rhododendron* species. Labeled are the 12 peaks (defined by mass-to-charge ratio and retention time) which are most related to the antimicrobial active *Rhododendron* samples based on the underlying separation.
Figure S3 | Chemical diversity with respect to the subgenus classification of the 87 *Rhododendron* species in terms of total number of identified polyphenolics (A) and of detected LC-MS peaks (B).
Intensity (m/z 345.08, rt 9.2 min)
Methyl gallate-O-hexoside, 9.2

Intensity (m/z 581.12, rt 43.7 min)
Myricetin-O-dipentoside (same side)

p-hydroxyphenethyl alcohol-1-O-
Myricetin-O-galloyl-rhamnoside, 39.9
Myricetin-7-O-galloyl-3-O-hexoside
p-Coumaric acid-O-hexoside, 27.3
p-Coumaric acid-O-hexoside, 24.9

Intensity (m/z 463.09, rt 34.1 min)
Myricetin-O-rhamnoside

Intensity (m/z 493.06, rt 37.8 min)
Myricetin-O-glucuronide

Intensity (m/z 615.10, rt 39.9 min)
Myricetin-O-galloyl-rhamnoside, 39.9
Methyl gallate-O-hexoside, 9.2
Methyl gallate-O-hexoside, 12.3
Myricetin-O-galloyl-hexoside
Myricetin-O-pentoside, 33.5
Myricetin-O-pentoside, 38.9
Procyanidin tetramer, 31.4
(Procyanidin Trimer C, 19.8
Procyanidin Trimer C, 16.9
Procyanidin Trimer C, 24.4
Procyanidin Trimer C, 5.9
(Procyanidin Trimer C, 631.10, rt 31.2 min)
487.15, rt 14.7 min)
615.10, rt 39.9 min)
457.14, rt 19.4 min)
345.08, rt 7.9 min)
479.08, rt 31.5 min)
449.07, rt 33.5 min)
576.13, rt 22.7 min)
576.13, rt 31.4 min)
493.06, rt 37.8 min)
449.07, rt 38.9 min)
576.13, rt 27.1 min)
345.08, rt 9.2 min)
865.19, rt 24.4 min)
865.20, rt 16.9 min)
317.03, rt 40.3 min)
865.20, rt 19.8 min)
(Procyanidin Trimer C, 345.08, rt 12.3 min)
(Myricetin-D-(6"-O-galloyl)-hexoside
p-Coumaric acid-O-hexoside, 24.9
p-Coumaric acid-O-hexoside-O-pentoside , 19.4
p-Coumaric acid-O-dihexoside, 21.3
p-Coumaric acid-O-dihexoside, 14.7
Procyanidin Trimer C, 24.4
Procyanidin tetramer, 31.4
Procyanidin tetramer, 22.7

9
Figure S4 | Box plots of the 282 identified polyphenolics with no significant difference in LC-MS intensity with respect to antimicrobial activity classification of all 87 *Rhododendron* species. Those 10 compounds showing significant differences are given in Fig 4. 17 of the 87 *Rhododendron* species are denoted as antimicrobial active (orange), i.e., the radius of the agar diffusion assay is \(\geq 0.6 \) cm, and, thus, 70 species are characterized as antimicrobial inactive (violet).
m/z	rt (min)	Peak Intensity
593.13	14.8	(Epi)gallocatechin-(epi)catechin
593.13	13.3	(Epi)gallocatechin-(epi)catechin
895.17	16.9	(Epi)gallocatechin-(4,8'/2,7')-(epi)gallocatechin-(4',8")-(epi)catechin
745.14	21.3	(Epi)gallocatechin-(4,8')-3'-O-galloyl-(epi)catechin
761.13	26.5	(Epi)gallocatechin-(epi)gallocatechin, 26.5
609.13	7.0	(Epi)gallocatechin-(epi)gallocatechin, 7.0
593.13	17.7	(Epi)gallocatechin-(epi)catechin, 17.7
609.13	7.0	(Epi)gallocatechin-(epi)gallocatechin, 7.0
593.13	10.3	(Epi)gallocatechin-(epi)catechin, 10.3
593.13	11.2	(Epi)gallocatechin-(epi)catechin, 11.2
593.13	12.5	(Epi)gallocatechin-(epi)catechin, 12.5
593.13	13.5	(Epi)gallocatechin-(epi)catechin, 13.5
593.13	14.8	(Epi)gallocatechin-(epi)catechin, 14.8
593.13	16.6	(Epi)gallocatechin-(epi)catechin, 16.6

- **(Epi)gallocatechin-(epi)catechin**
- **(Epi)gallocatechin-(epi)gallocatechin**
- **(Epi)gallocatechin-(epi)gallocatechin, 26.5**
- **(Epi)gallocatechin-(epi)catechin, 7.0**
- **(Epi)gallocatechin-(epi)catechin, 17.7**
- **(Epi)gallocatechin-(epi)catechin, 10.3**
- **(Epi)gallocatechin-(epi)catechin, 11.2**
- **(Epi)gallocatechin-(epi)catechin, 12.5**
- **(Epi)gallocatechin-(epi)catechin, 13.5**
- **(Epi)gallocatechin-(epi)catechin, 14.8**
- **(Epi)gallocatechin-(epi)catechin, 16.6**

Intensities:
- Safe
- Toxic
Intensity

(m/z 625.14, rt 36.4 min)
- Myricetin-3-O-hexoside-7-O-rhamnoside

(m/z 345.08, rt 7.9 min)
- Methyl gallate-O-hexoside, 7.9

(m/z 507.14, rt 8.6 min)
- Methyl gallate-O-dihexoside (diff. sides)

(m/z 491.12, rt 43.2 min)
- Methyl gallate-O-coumaroyl-hexoside

(m/z 449.07, rt 38.9 min)
- Myricetin-O-pentoside, 38.9

(m/z 615.10, rt 39.9 min)
- Myricetin-O-galloyl-rhamnoside, 39.9

(m/z 581.12, rt 43.7 min)
- Myricetin-O-dipentoside (same side)

(m/z 565.16, rt 38.9 min)
- Methyl gallate-O-hexoside, 9.2

(m/z 433.11, rt 39.9 min)
- Methyl gallate-O-hexoside, 12.3

(m/z 507.14, rt 8.6 min)
- Myricetin-O-pentoside, 40.5

(m/z 449.07, rt 40.5 min)
- Myricetin-O-pentoside, 40.5

(m/z 493.06, rt 37.8 min)
- Procyanidin tetramer, 31.4

(m/z 487.15, rt 21.3 min)
- Myricetin-O-hexoside, 31.5

(m/z 467.12, rt 23.0 min)
- Myricetin-O-hexoside, 36.3

(m/z 583.11, rt 47.5 min)
- Procyanidin tetramer, 31.4

(m/z 631.09, rt 33.6 min)
- Myricetin-O-hexoside, 31.5

(m/z 625.14, rt 36.4 min)
- Myricetin-O-hexoside, 36.3

(m/z 581.12, rt 43.7 min)
- Myricetin-O-dipentoside (same side)

(m/z 449.07, rt 40.5 min)
- Myricetin-O-pentoside, 40.5

(m/z 576.13, rt 31.4 min)
- Procyanidin tetramer, 31.4

(m/z 463.09, rt 34.1 min)
- p-hydroxyphenethyl alcohol-1-O-β-D-(6”-O-galloyl)-hexoside

(m/z 487.15, rt 21.3 min)
- p-Coumaric acid-O-dihexoside, 21.3

(m/z 463.09, rt 34.1 min)
- Naringenin-O-hexoside-O-pentoside

(m/z 449.07, rt 38.9 min)
- Naringenin-O-hexoside, 39.9

(m/z 317.03, rt 40.3 min)
- Naringenin-O-hexoside, 36.3

(m/z 479.08, rt 36.3 min)
- Procyanidin tetramer, 31.4

(m/z 463.09, rt 34.1 min)
- Myricetin-O-rhamnoside

(m/z 433.11, rt 39.9 min)
- Myricetin-O-rhamnoside

(m/z 487.15, rt 21.3 min)
- p-Coumaric acid-O-dihexoside, 21.3

(m/z 576.13, rt 31.4 min)
- Procyanidin tetramer, 31.4

(m/z 463.09, rt 34.1 min)
- Naringenin-O-hexoside-O-pentoside

(m/z 449.07, rt 40.5 min)
- Naringenin-O-hexoside, 39.9

(m/z 576.13, rt 31.4 min)
- Procyanidin tetramer, 31.4

(m/z 463.09, rt 34.1 min)
- Naringenin-O-hexoside-O-pentoside
Figure S5 | Box plots of all 292 identified polyphenolics showing no significant difference in LC-MS intensity with respect to cytotoxicity classification towards HaCaT cells of all 87 *Rhododendron* species divided in cytotoxic (1 species) and non-cytotoxic (86 species, gray).
Figure S6 | Box plots of all 292 identified polyphenolics showing no significant difference in LC-MS intensity with respect to cytotoxicity classification towards IEC-6 cells of all 87 *Rhododendron* species divided in cytotoxic (22 species, green) and non-cytotoxic (65 species, gray).
Table S1 | Average and standard deviation of mass-to-charge (m/z) ratios and retention times (rt) for most-predictive LC-MS peaks regarding antimicrobial activity as well as cytotoxicity towards HaCaT and IEC-6 cells.

	# peaks	m/z ratio	rt [min]
Antimicrobial activity	23	399.69 ± 98.97	63.0 ± 6.7
Cytotoxicity towards HaCaT cells	26	719.60 ± 202.91	45.5 ± 15.2
Cytotoxicity towards IEC-6 cells	13	557.92 ± 237.94	34.9 ± 14.9

Figure S7 | Distribution of the detected LC-MS peaks (grey) regarding m/z ratios (left) and retention times (right). In addition, the m/z ratio and retention time of the 23 most-predictive peaks as well as top 1%, 2% and 5% peaks (dark orange to bright orange) with respect to Cohen’s κ correlation to antimicrobial activity across all 87 *Rhododendron* species are shown. The arrows denote the average m/z ratio and retention time, respectively.
Figure S8 | The 25 most- and least-predictive LC-MS peaks with respect to Cohen’s κ correlation for cytotoxicity towards IEC-6 cells across all 87 *Rhododendron* species. A sample is denoted as cytotoxic towards IEC-6 cells (green) if the MTT assay is significantly dropped. A compound, defined by an m/z ratio and retention time tuple, is denoted as present in a sample (gray) if its intensity is ≥ 10000. The * represents the significance of the p-values according to multiple testing correction by Benjamini-Hochberg (0.05).
Figure S9 | The 25 most- and least-predictive LC-MS peaks with respect to Cohen’s κ correlation for cytotoxicity towards HaCaT cells across all 87 Rhododendron species. A sample is denoted as cytotoxic towards HaCaT cells (green) if the MTT assay is significantly dropped. A compound, defined by an m/z ratio and retention time tuple, is denoted as present in a sample (gray) if its intensity is \geq 10000. The * represents the significance of the p-values according to multiple testing correction by Benjamini-Hochberg (0.05).
Table S2 | The 23 most-predictive LC-MS peaks with respect to Cohen’s κ correlation for antimicrobial activity across all 87 *Rhododendron* species. The peaks are uniquely determined by m/z ratio and retention time (rt) and have attributed the rank and correlation coefficient, κ, for antimicrobial activity, cytotoxicity towards HaCaT and IEC-6 cells. The highlighted rows depict the seven most-predictive peaks for antimicrobial active but non-cytotoxic compounds.

Peak	Antimicrobial activity	Cytotoxicity HaCaT	Cytotoxicity IEC-6				
m/z ratio	rt [min]	rank	κ	rank	κ	rank	κ
333.19	64.8	1	0.7704	31117	−0.0220	7956	0.0821
455.20	66.0	1	0.7704	31117	−0.0220	7956	0.0821
523.19	67.7	3	0.7601	34746	−0.0223	25643	−0.0036
333.22	67.3	4	0.7592	29299	−0.0218	3987	0.1205
257.16	66.5	5	0.7468	27352	−0.0215	1812	0.1617
257.20	66.5	5	0.7468	27352	−0.0215	1812	0.1617
387.22	56.8	7	0.7383	31907	−0.0221	3205	0.1307
334.17	68.3	8	0.7258	30246	−0.0219	5717	0.1010
304.16	67.3	9	0.7200	34075	−0.0223	21733	0.0124
375.22	59.5	10	0.7121	28363	−0.0217	9472	0.0691
387.16	57.0	11	0.7076	32668	−0.0222	4652	0.1119
499.17	68.4	11	0.7076	32668	−0.0222	42896	−0.0854
285.09	50.5	13	0.6969	26230	−0.0213	4851	0.1092
333.16	66.4	13	0.6969	26230	−0.0213	1103	0.1834
333.20	66.2	13	0.6969	26230	−0.0213	1103	0.1834
384.95	56.9	13	0.6969	26230	−0.0213	4851	0.1092
384.99	68.3	13	0.6969	26230	−0.0213	4851	0.1092
559.15	65.0	13	0.6969	26230	−0.0213	1103	0.1834
607.16	66.2	13	0.6969	26230	−0.0213	4851	0.1092
387.23	55.5	21	0.6939	31117	−0.0220	2267	0.1501
563.17	41.9	21	0.6939	31117	−0.0220	21419	0.0141
523.21	68.3	23	0.6916	1777	0.0750	46192	−0.1291
Figure S10 | The 27 most-predictive LC-MS peaks with a strong combined relation signal (≥ 0.68) for antimicrobial activity and non-cytotoxicity towards both cell lines across all 87 Rhododendron species (see Material and Methods). A sample is denoted as antimicrobial active (orange, left lane) if the radius of the agar diffusion assay is ≥ 0.6 cm and as cytotoxic towards HaCaT or IEC-6 cells (green, right lane) if the MTT assay is significantly dropped. A compound, defined by an m/z ratio and retention time tuple, is denoted as present in a sample (gray) if its intensity is ≥ 10,000. The seven most-predictive peaks regarding antimicrobial activity and non-cytotoxicity at once are highlighted in bright orange.
Table S3 | 27 most-predictive LC-MS peaks with respect to the combined relation signal for antimicrobial activity and non-cytotoxicity towards both cell lines across all 87 Rhododendron species. The peaks are uniquely determined by m/z ratio and retention time (rt) and have attributed the combined correlation coefficient, κ, and the individual ranks for antimicrobial activity and the cytotoxicity towards HaCaT and IEC-6 cells. The highlighted rows depict the seven most-predictive peaks for antimicrobial active but non-cytotoxic compounds.

Peak m/z ratio	Combined κ	Individual ranks	AM	HaCaT	IEC-6
499.17	0.8152	11	32668	42896	
523.19	0.7861	3	34746	25643	
417.17	0.7556	33	31907	40552	
523.21	0.7457	23	1777	46192	
365.19	0.7362	27	33392	33332	
523.19	0.7362	27	33392	33332	
304.16	0.7299	9	34075	21733	
359.16	0.7210	24	29299	28761	
404.22	0.7210	24	29299	28761	
433.22	0.7111	560	34075	47583	
333.19	0.7104	1	31117	7956	
455.20	0.7104	1	31117	7956	
358.21	0.7067	46	30246	33644	
563.17	0.7019	21	31117	21419	
451.17	0.7006	185	35392	42037	
517.11	0.6949	64	36005	33108	
384.25	0.6949	42	39555	28111	
357.22	0.6934	104	31117	37580	
373.20	0.6934	104	31117	37580	
829.40	0.6934	104	31117	37580	
427.23	0.6900	265	36005	43695	
359.22	0.6893	429	22316	46572	
375.16	0.6887	33	31907	25424	
503.10	0.6882	204	23675	41567	
242.95	0.6808	192	31907	40552	
242.99	0.6808	192	31907	40552	
433.22	0.6808	192	31907	40552	
Figure S11 | The 50 most-predictive peak combinations with additive effects with respect to Cohen’s κ correlation for antimicrobial activity across all 87 Rhododendron species. A sample is denoted as antimicrobial active (orange) if the radius of the agar diffusion assay is ≥ 0.6 cm. A compound, defined by an m/z ratio and retention time tuple, is denoted as present in a sample (gray) if its intensity is ≥ 10000. The * represents the significance of the p-values according to multiple testing correction by Benjamini-Hochberg (0.05). The combinations comprising one of the seven most-predictive peaks regarding antimicrobial activity and non-cytotoxicity at once are highlighted in bright orange.
Figure S12 | The 50 most-predictive peak combinations with alternative effects with respect to Cohen’s κ correlation for antimicrobial activity across all 87 *Rhododendron* species.

A sample is denoted as antimicrobial active (orange) if the radius of the agar diffusion assay is ≥ 0.6 cm. A compound, defined by an m/z ratio and retention time tuple, is denoted as present in a sample (gray) if its intensity is ≥ 10000. The * represents the significance of the p-values according to multiple testing correction by Benjamini-Hochberg (0.05). The combinations comprising one of the seven most-predictive peaks regarding antimicrobial activity and non-cytotoxicity at once are highlighted in bright orange.
Figure S13 | Heatmap of the top 250 LC-MS peaks involved in the most-predictive alternative peak combinations regarding Cohen’s κ correlation for antimicrobial activity across all 87 Rhododendron species (main panel). The upper right panel provides the overview of all 5,414 peaks included in the outperforming alternative peak combinations, namely $\kappa \geq 0.77$. The combinations highlighted in red involve at least one of the 23 most-predictive peaks regarding the individual peak analysis, $\kappa \geq 0.68$. The corresponding individual peak correlation coefficients are depicted in the thinner horizontal and vertical panels. Orange labels emphasize the two out of seven most-predictive peaks regarding antimicrobial activity and non-cytotoxicity.
Figure S14 | The 50 most-predictive LC-MS peak combinations with additive effects with respect to Cohen’s κ correlation for cytotoxicity towards IEC-6 cells across all 87 *Rhododendron* species. A sample is denoted as cytotoxic towards IEC-6 cells (green) if the MTT assay is significantly dropped. A compound, defined by an m/z ratio and retention time tuple, is denoted as present in a sample (gray) if its intensity is ≥ 10000. The * represents the significance of the p-values according to multiple correction by Benjamini-Hochberg (0.05).
Figure S15 | The 50 most-predictive LC-MS peak combinations with alternative effects with respect to Cohen’s κ correlation for cytotoxicity towards IEC-6 cells across all 87 Rhododendron species. A sample is denoted as cytotoxic towards IEC-6 cells (green) if the MTT assay is significantly dropped. A compound, defined by an m/z ratio and retention time tuple, is denoted as present in a sample (gray) if its intensity is ≥ 10000. The * represents the significance of the p-values according to multiple testing correction by Benjamini-Hochberg (0.05).
Figure S16 | Heatmap of the top 250 LC-MS peaks involved in the most-predictive (A) additive and (B) alternative peak combinations regarding Cohen’s κ correlation for cytotoxicity towards IEC-6 cells across all 87 Rhododendron species (main panel). The respective upper right panel provides the overview of all 7,763 and 8,665 peaks included in the outperforming additive and alternative peak combinations, namely $\kappa \geq 0.38$. The combinations highlighted in green involve at least one of the 13 most-predictive peaks regarding the individual peak analysis, $\kappa \geq 0.35$. The corresponding individual peak correlation coefficients are depicted in the thinner horizontal and vertical panels.
Table S4 | The 12 out of 23 most-predictive individual LC-MS peaks involved in the most-predictive additive peak combinations regarding antimicrobial activity across all 87 *Rhododendron* species. The peaks are uniquely determined by m/z ratio and retention time (rt) and have attributed the respective maximum Cohen’s κ correlation coefficient with respect to ‘AND’ operation, κ, and the (minimum) ranks for antimicrobial activity of ‘AND’ combination and individual (single) occurrence. The highlighted rows depict the seven most-predictive peaks for antimicrobial active but non-cytotoxic compounds.

m/z ratio	rt [min]	κ	min rk_{AND}	rk_{single}
523.19	67.7	0.8538	9	3
304.16	67.3	0.8470	16	9
523.21	68.3	0.8470	16	23
333.19	64.8	0.8395	32	1
455.20	66.0	0.8395	32	1
387.16	57.0	0.8395	32	11
387.22	56.8	0.8395	32	7
499.17	68.4	0.8041	159	11
333.22	67.3	0.7943	317	4
334.17	68.3	0.7943	317	8
563.17	41.9	0.7943	317	21
387.23	55.5	0.7943	317	21
Table S5 | The 23 most-predictive individual LC-MS peaks involved in the most-predictive alternative peak combinations regarding antimicrobial activity across all 87 Rhododendron species. The peaks are uniquely determined by m/z ratio and retention time (rt) and have attributed the respective maximum Cohen’s κ correlation coefficient with respect to ‘OR’ operation, κ, and the (minimum) ranks for antimicrobial activity of ‘OR’ combination and individual (single) occurrence. The highlighted rows depict the seven most-predictive peaks for antimicrobial active but non-cytotoxic compounds.

m/z ratio	rt [min]	κ	min rk('OR')	rk('single')
257.16	66.5	0.9626	1	5
257.20	66.5	0.9626	1	5
285.09	50.5	0.9300	3	13
333.22	67.3	0.9300	3	4
384.95	56.9	0.9300	3	13
384.99	66.6	0.9300	3	13
384.99	68.2	0.9300	3	13
455.20	66.0	0.9300	3	1
607.16	66.2	0.9235	64	13
559.15	65.0	0.9235	64	13
333.16	66.4	0.9235	64	13
333.20	66.2	0.9235	64	13
333.19	64.8	0.8972	160	1
334.17	68.3	0.8972	160	8
387.22	56.8	0.8972	160	7
375.22	59.5	0.8927	224	10
499.17	68.4	0.8657	4025	11
387.16	57.0	0.8657	4025	11
387.23	55.5	0.8657	4025	21
563.17	41.9	0.8657	4025	21
523.19	67.7	0.8355	15781	3
523.21	58.3	0.8065	32005	23
304.16	67.3	0.8065	32005	9

Table S6 | The 6 identified caffeoylquinic acids (CQA) acting additive in LC-MS peak combinations (AND).

CQA m/z ratio	Peak in combination m/z ratio	Cohen’s κ
m/z ratio	rt [min]	
353.08	24.6	-0.0640
353.09	13.9	0.0175
353.09	15.4	0.0106
353.09	19.0	-0.0497
353.09	21.6	-0.0086
353.09	24.2	0.0235
Table S7 | The 15 identified regioisomeric chlorogenic acids (CGA) acting as functional alternative structures in LC-MS peak combinations (OR).

CGA m/z ratio rt [min]	CGA in combination m/z ratio rt [min]	Cohen’s κ	κ'CGA'	κ'CGA	κ'OR'
337.09 19.0	367.10 28.7	−0.0200	0.0433	0.0386	
337.09 20.3	353.09 13.9	−0.0783	0.0175	0.0110	
337.09 21.9	367.10 32.7	0.0372	−0.1932	−0.0760	
337.09 25.7	353.09 21.6	−0.0086	−0.0086	0.0173	
337.09 27.6	353.09 13.9	−0.0792	0.0175	0.0112	
337.09 29.6	353.09 24.2	−0.1233	0.0235	0.0052	
353.08 24.6	337.09 25.7	−0.0640	−0.0086	−0.0007	
353.09 13.9	337.09 19.0	−0.0175	0.0200	0.0374	
353.09 15.4	337.09 25.7	0.0106	−0.0086	0.0052	
353.09 19.0	337.09 25.7	−0.0497	−0.0086	−0.0007	
353.09 21.6	337.09 25.7	−0.0086	−0.0086	0.0173	
353.09 24.2	367.10 22.5	0.0235	−0.0097	0.0173	
367.10 22.5	337.09 19.0	0.0177	−0.0097	−0.0200	
367.10 28.7	337.09 19.0	0.0386	0.0433	−0.0200	
367.10 32.7	353.09 24.2	0.0052	−0.1932	0.0235	

Table S8 | Quercetin (Q) and the 16 identified quercetin-O-glycosides (QG) acting as functional alternative structures in LC-MS peak combinations (OR).

Q(G) m/z ratio rt [min]	QG in combination m/z ratio rt [min]	κ’Q(G)	κ’CG	κ’OR
301.05 45.5	433.08 42.5	−0.1105	0.0056	0.0056
433.08 35.1	433.08 42.5	−0.0249	0.0056	0.0056
433.08 38.3	433.08 42.5	−0.0177	0.0056	0.0056
433.08 40.8	609.15 31.7	−0.0121	0.0089	0.0114
433.08 42.5	301.05 45.5	0.0056	−0.1105	0.0056
447.10 40.0	433.08 42.5	−0.0903	0.0056	0.0056
463.09 35.5	433.08 42.5	−0.0903	0.0056	0.0056
463.09 36.4	433.08 42.5	−0.0903	0.0056	0.0056
463.09 41.9	433.08 42.5	−0.1154	0.0056	0.0
609.12 47.5	433.08 42.5	−0.0601	0.0056	0.0056
609.13 48.8	609.15 36.0	0.0261	−0.1333	−0.1008
609.13 50.6	433.08 42.5	−0.1266	0.0056	0.0056
609.15 26.5	433.08 42.5	−0.3533	0.0056	0.0056
609.15 30.1	433.08 40.8	0.0110	−0.0121	0.0056
609.15 31.4	609.15 36.0	0.0235	−0.1333	0.0172
609.15 31.7	433.08 40.8	0.0089	−0.0121	0.0114
609.15 36.0	609.15 31.4	−0.1333	0.0235	0.0172
Table S9 | Sequence generation for phylogenetic analysis including DNA regions, primer sequences, and respective PCR protocols.

Region	Primer sequence (starting from 5' end)	Initialization	Amplification cycles	Final elongation
matK				
trnK707F	ACT GTA TCG CAC TAT GTA TCA	Milne et al. (2010)	94°C, 2min	94°C, 30s; 61.5°C, 1min; 72°C, 1min
trnK2R	AAT TAG TCG GAT GGA GGA G	Johnson and Soltis (1995)	30×	72°C, 7min
MK1447F	GCC TCA ATA TCT TCT GAA ACC TT	Milne et al. (2010)	94°C, 2min	94°C, 30s; 61.5°C, 1min; 72°C, 1min
MK1645R	AGC CAA AAT GGC TTT TCC TT	Milne et al. (2010)	94°C, 2min	94°C, 30s; 61.5°C, 1min; 72°C, 1min
MK1538F	TAT GGG TGT TTA AAG AGC	Milne et al. (2010)	94°C, 2min	94°C, 30s; 61.5°C, 1min; 72°C, 1min
MK1785R	TCT ATC ATT TGA CTC GGT ACC A	Milne et al. (2010)	94°C, 2min	94°C, 30s; 61.5°C, 1min; 72°C, 1min
trnL-F				
trnL-5(UAA)F	CGA AAT CGG TAG ACG CTA CG	Taberlet et al. (1991)	94°C, 1min	94°C, 30s; 54°C, 30s; 72°C, 1min
trnF(GAA)	ATT TGA ACT GGT GAC ACG AG	Taberlet et al. (1991)	94°C, 1min	94°C, 30s; 54°C, 30s; 72°C, 1min
ITS				
ITS-4	TCC TCC GCT TAT TGA TAT GC	White et al. (1990)	94°C, 1min	94°C, 18s; 54°C, 30s; 72°C, 1min
ITS-A	GGA AGG AGA AGT GGT AAC AAG G	Blattner (1999)	94°C, 1min	94°C, 18s; 54°C, 30s; 72°C, 1min

a – Internal sequencing primer,
b – modified internal sequencing primer
References

Blattner, F. R. (1999). Direct amplification of the entire ITS region from poorly preserved plant material using recombinant PCR. *BioTechniques* 27, 1180–1186

Johnson, L. A. and Soltis, D. E. (1995). Phylogenetic Inference in *Saxifragaceae Sensu Stricto* and *Gilia (Polemoniaceae)* Using *matK* Sequences. *Ann. Mo. Bot. Gard.* 82, 149–175. doi:10.2307/2399875

Milne, R. I., Davies, C., Prickett, R., Inns, L. H., and Chamberlain, D. F. (2010). Phylogeny of *Rhododendron* subgenus *Hymenanthes* based on chloroplast DNA markers: between-lineage hybridisation during adaptive radiation? *Plant. Syst. Evol.* 285, 233–244. doi:10.1007/s00606-010-0269-2

Taberlet, P., Gielly, L., Pautou, G., and Bouvet, J. (1991). Universal primers for amplification of three non-coding regions of chloroplast DNA. *Plant Mol. Biol.* 17, 1105–1109. doi:10.1007/bf00037152

White, T., Bruns, T., Lee, S., and Taylor, J. (1990). Amplification and Direct Sequencing of Fungal Ribosomal RNA Genes for Phylogenetics. In *PCR protocols: A Guide to Methods and Applications*, eds. M. A. Innis, D. H. Gelfand, J. J. Sninsky, and T. J. White (Academic Press). 315–322. doi:10.1016/b978-0-12-372180-8.50042-1