Selection of commercial protective cultures to be added in Sardinian fermented sausage to control *Listeria monocytogenes*

Giuliana Siddi, Francesca Piras, Vincenzo Spanu, Maria Pina Meloni, Rita Sanna, Nadia Carta, Marco Errico, Mario Cuccu, Enrico Pietro Luigi De Santis, Christian Searano

Department of Veterinary Medicine, University of Sassari, Italy

Abstract

Sardinian fermented sausage “Salsiccia Sarda” is a Mediterranean-style, semi-dry, fermented, RTE product, representing the main pork meat product in Sardinia (Italy). The high variability that characterizes the technological processes applied in different production plants results in sausages with different chemico-physical features sometimes permissive for the growth of *Listeria monocytogenes*. In order to guarantee the hygienic-sanitary quality of the final product and to innovate the manufacturing process, the main objective of this study was to evaluate the use of different commercial protective cultures to control *L. monocytogenes* growth in the Sardinian fermented sausage. In the first step, *in vitro* tests were carried out to evaluate the effectiveness of five freeze-dried bioprotective cultures available on the market in limiting the growth of *L. monocytogenes*. The two protective cultures that showed the best *in vitro* results were selected for a challenge test on artificially contaminated Sardinian fermented sausages. Moreover, the protective culture that showed the best results in inhibiting the growth of *L. monocytogenes* according to *in vitro* and challenge test experiments, was included into real production settings and validated in three producing plants. As a result, it was observed that protective cultures represent an important technological innovation for the Sardinian fermented sausage processing plants as they allow to control *L. monocytogenes* growth without altering the composition, the microflora and the chemical-physical characteristics of the product, thus ensuring safety and quality. Protective cultures also showed to reduce *Enterobacteriaceae* mean levels at the end of ripening and not to affect the natural concentration of lactic acid bacteria and coagulase-negative staphylococci.

Introduction

Listeriosis caused by *Listeria monocytogenes* (*L. monocytogenes*) is one of the most severe food-borne diseases under EU surveillance. According to the report published in 2021 by the European Food Safety Authority and the European Center for Disease Prevention and Control, referring to 2020 data, *L. monocytogenes* was ranked the fifth most commonly reported zoonosis agent, with 1,876 confirmed invasive human cases of listeriosis and 16 outbreaks. A decrease in cases and outbreaks was observed (2,621 confirmed cases and 21 outbreaks in 2019), but the overall growing trend for listeriosis in 2016–2020 did not show any statistically significant modification (EFSA & ECDC, 2021). The fatality rate of *L. monocytogenes* infections in the EU was 13.0% in 2020, showing the highest number of fatal cases among foodborne infections. The pathogen is therefore a significant burden for public health, causing hospitalization, high morbidity and mortality, notably among the elderly (EFSA & ECDC, 2021).

The most significant infection source of *L. monocytogenes* for humans is represented by foods, especially ready-to-eat (RTE) that can be contaminated during or after processing and do not undergo any treatment that ensures their safety before consumption (Neri et al., 2019). In the EU during 2020, *L. monocytogenes* was detected in 3.0% of RTE pig meat products, with a 0.9% increase respect to 2019 (EFSA & ECDC, 2021). *L. monocytogenes* has been identified at every point of the pig-meat supply chain (Kanuganti et al., 2002; Théveneot et al., 2006; Meloni et al., 2013).

Contamination is often due to the presence of *L. monocytogenes* in raw materials (Théveneot et al., 2006): pigs can be carriers of *L. monocytogenes* in their intestines most often as asymptomatic shedders (Esteban et al., 2009, Boscher et al., 2012) and not being identified neither in the farm nor in the slaughterhouse during ante and post mortem inspections, can potentially contaminate the carcasses (Kanuganti et al., 2002; Fosse et al., 2009). The incidence of the microorganism increases when going further in the pork processing industry from the slaughterhouse to the following steps (e.g. cutting, mincing), also due to cross-contamination which occurs by the environment and equipment of the processing plants, in consideration of *L. monocytogenes* capability of contaminating surfaces with bacterial attachment and biofilm formation (Autio et al., 2000; Peccio et al., 2003).

Salsiccia Sarda or Sardinian fermented sausage (SFS) is the main pork meat product in Sardinia (Italy): it is a Mediterranean-style, semi-dry, fermented, RTE product included in the National List of traditional food products (Twentieth revision of the list of traditional agri-food products, Italian Republic, 2020). The SFS production sector includes small businesses, with distinctly artisanal productions, and larger plants with standardized industrial processing. For this reason, the manufacturing process is characterized by a great variability, most of all in artisanal plants that are strongly influenced by customs and family recipes (Meloni, 2015). Fermented sausages are usually made using lactic acid bacteria (LAB) and nitrate-reducing coagulase-negative staphylococci (CNS), which are often naturally present in the meat or added by inoculation of starter cultures during the mixing step (Greco et al., 2005). The safety of the SFS depends on the application of...
several sequential “hurdles” at different stages of the fermentation and ripening process (Mangia et al., 2007; Meloni, 2015; Piras et al., 2019). Safety of the final product is therefore ensured by the presence of multiple factors and specific physico-chemical conditions, such as pH, water activity (aₜ), sodium chloride, nitrates and nitrites, which interact in limiting microbial growth (Piras et al., 2019). In SFSs, pH values comprised between 5.3-5.5 and aₜ values ≤ 0.920 indicate correct acidification drying processes (Greco et al., 2005): products reporting these values at the end of ripening can be included in the category of RTE products unable to support the growth of *L. monocytogenes* (Regulation EC No. 2073/2005). However, the aforementioned high variability that characterizes the technological processes, especially in small artisanal production plants, results in products having different chemical and physical features, which can sometimes be permissive for *L. monocytogenes* growth. In fact, either strongly contaminated raw materials or inadequately applied production process steps (e.g., insufficient fermentation or inappropriate dry-curing) can determine a deficiency in the development of the hurdles and the creation of favorable conditions for *L. monocytogenes* growth (Mureddu et al., 2014).

Therefore, it is necessary to implement technological innovations into the SFS production process in order to guarantee the hygienic-sanitary quality of the final product and to ensure that the level of contamination by *L. monocytogenes* does not exceed 100 CFU/g up to the end of the shelf life as established by the EU legislation (Regulation EC No. 2073/2005) for the whole commercial life.

The use of bioprotective cultures has been gaining interest recently, especially in the dairy and meat industries, because they are safe for consumption and naturally dominate the microbiota of many foods. Protective cultures consist of bacteria that are specifically selected for their ability to inhibit the growth of pathogens or microbiological spoilage agents (Young and O’Sullivan, 2011). Protective cultures can exert a bioprotective or inhibitory effect against other microorganisms, due to their competition for nutrients and the production of bacteriocins and other antagonistic compounds such as organic acids, hydrogen peroxide and enzymes (Davidson et al., 2015). Furthermore, protective cultures can delay the development of spoilage microorganisms, extending the shelf-life. The faster metabolism of protective cultures outcompetes pathogens for the available nutrients and thus offers protection against *L. monocytogenes*, as a further barrier in the hurdles technique of protection (Young and O’Sullivan, 2011). To the best of our knowledge, no available studies investigated the use of bioprotective cultures against *L. monocytogenes* in SFS. In this framework, the main objective of this study was to evaluate the effectiveness of different commercial protective cultures in inhibiting the development and the growth of *L. monocytogenes* in the SFS.

Materials and methods

Study set-up

The project was divided into different steps: 1) in the first phase, the *in vitro* efficacy of 5 freeze-dried protective cultures against *L. monocytogenes* was assessed; 2) in the second phase, the protective cultures that showed the best *in vitro* results against the pathogen were used during a challenge test for the production of the SFS; 3) in the third step, the protective culture that showed the best results during the challenge test was used during the manufacturing process of three SFS processing plants in Sardinia, representative of the entire regional sector.

Bioprotective cultures

Five lyophilized bioprotective cultures (A, B, C, D, E) available on the market, consisting of a mix of lactic acid bacteria (LAB) and micrococci, were selected. The selection criteria were represented by their proven activity against *L. monocytogenes* and their adaptability to both meat substrate and temperatures typically used in the production process of SFS. In particular, the species included in the composition of bioprotective culture A were *Lactobacillus sakei*, *Pediococcus acidilactici*, *Staphylococcus carnosus* and *Staphylococcus carnosus* subsp. *utilis*. Bioprotective culture B consisted of a mixture of *Pediococcus acidilactici*. The composition of bioprotective culture C included *Lactobacillus plantarum*. Bioprotective culture D included bacteriocin-producing strains of *Carnobacterium* spp. Species included in bioprotective culture E were a mixture of different *Carnobacterium* spp. strains. According to the manufacturer’s instruction, the cultures were individually rehydrated by dilution in 0.85% sterile NaCl solution immediately before their use.

Samples

SFSs were manufactured according to the technological process applied by producing plants representative of the sector. Briefly, the production process involved selection, chopping and mincing of pork meat and fat, followed by mixing with curing ingredients, spices and authorized additives, including nitrates and nitrites at maximum concentrations of 150 mg/kg each (Reg. EC 1333/2008). Starter cultures consisting of lactic acid bacteria (LAB) and nitrate-reducing coagulase-negative staphylococci (CNS) were added during the mixing step. After overnight refrigerated storage, the mixture was stuffed in natural bowel (mutton or beef). The fermentation stage continued during the next steps of initial dipping (20-22°C for 24h, 70-80% humidity) and drying (2-3 days with progressive decrease of temperature and humidity). Ripening was carried out for about 20 days in storerooms at 15°C and 70-75% humidity. The production process is summarized in Figure 1. The finished products were cylindrical in shape, with a length of 40-45 cm and a diameter of 3-4 cm, folded with the characteristic horseshoe shape; the weight was between 300 and 600 grams. Each SFS was regarded as a sample.

Step one: in vitro assessment

Two *L. monocytogenes* reference strains (American Type Culture Collection, ATCC 19111 and National Collection of Type Cultures, NCTC 10887) and three *L. monocytogenes* wild type strains, were used for the challenge tests. *L. monocytogenes* wild type strains were isolated from naturally contaminated SFSs samples and producing plants environment from previous investigations and identified by PCR according to the protocol by Lyu et al. (2013). The wild-type strains were selected in order to evaluate the effectiveness of the bioprotective cultures on isolates that were already adapted to plants’ environments. *L. monocytogenes* strains were stored at -80°C and revitalized after incubation at 37°C for 18-24 h.

The well diffusion assay method was used according to the protocol defined by Cosentino et al. (2012), with modifications. In a first phase the selected protective cultures was tested as it is in order to test its anti-*Listeria* activity. Afterwards the selected protective cultures was tested as a “cell free” supernatant. The antimicrobial activity was expressed as the diameter of the inhibition zones around the wells. The bioprotective cultures were considered effective against *L. monocytogenes* if an inhibition zone greater than 15 mm was measured (Maragkoudakis et al., 2009).

Step two: challenge test

The definition of the protocol for the challenge test was conducted according to the “EURL Lm Technical guidance document on challenge tests and durability studies for assessing shelf-life of ready-to-eat foods related to *L. monocytogenes*” (version...
4 July 2021). An experimental inoculum was set up consisting of a mixture of n. 5 strains of *L. monocytogenes* (n. 2 reference strains + n. 3 wild type strains) to challenge SFSs. The experimental inoculum was added in the mixing machine, together with the other ingredients. In order to account for natural contamination levels and, at the same time, to obtain a level of inactivation of *L. monocytogenes* estimated around 1-2 log at the end of the ripening, the inoculum level was set between 10 and 100 CFU/gr.

The bioprotective cultures that had showed the best *in vitro* results were selected for the challenge test of SFSs. According to the manufacturer’s instruction, the freeze-dried cultures were resuspended in sterile 0.85% NaCl to obtain a final concentration of ca. 10⁷ CFU/mL.

In a pilot producing plant located at the Department of Veterinary Medicine of Sassari University, n. 3 batches of SFSs were made with ingredients obtained by 3 representative production plans were prepared (total of 9 batches). Four types of samples for each batch were produced: 1) negative control samples (C, n. 36 samples), 2) positive control samples added with *L. monocytogenes* broth culture (CL, n. 36 samples), 3) samples added with protective culture A and *L. monocytogenes* (CLA, n. 36 samples) and 4) samples added with protective culture B and *L. monocytogenes* (CLB, n.36 samples). All the samples were produced according to the process shown in figure n. 1. *L. monocytogenes* broth cultures and protective culture were added during the mixing step. Triplicate samples of each of the nine batches of SFS were analyzed at four analysis times: after stuffing (T0), 24h after stuffing (T1), 6 days after stuffing (end of drying phase, T6) and 20 days after stuffing (end of ripening, T20). A summary of the experimental design with the test units, sampling point and analysis conducted during the challenge study is reported in Table 1.

Microbiological profile

At each time-point, *L. monocytogenes* quantitative and qualitative detection (UNI EN ISO 11290-1/2:2017) was carried out according to UNI EN ISO 11290-1/2:2017. Moreover, from an initial suspension and decimal dilution, mesophilic lactic acid bacteria (LAB), micrococci, Coagulase-Positive Staphylococci (CPS), Coagulase-Negative Staphylococci (CNS) and *Enterobacteriaceae* enumeration was conducted as described before. *Salmonella spp.* presence was determined according to ISO 6579-1:2020.

Physico-chemical and composition analysis

On each sample, pH and aₙ were determined using pH meter GLP 22 (Crison Instruments SA, Barcelona, Spain) and Aqualab CX3 (Decagon, Pullman, Washington, USA). Moisture, fat and protein (expressed as %) were determined by the FoodScanLab (FOSS, Analytic, Hillerød, Denmark) using the Near-Infrared Transmittance (NIT) technology and a previously set calibration curve. Analyses were performed in triplicate on a homogenized sample representative of the product.

Step three: application of the protective culture during the manufacturing processes of three SFS producing plants

In the third step, the protective culture that showed the best results in inhibiting the growth of *L. monocytogenes* according to *in vitro* and challenge test experiments, was included into the normal production process of three SFS producing plants (P1, P2, P3). The aim of this experimental application was to identify any changes in physico-chemical and composition characteristics, as well as microbiological profile, of the SFSs added with the protective culture.

Three batches of SFSs were produced at each plant. Two types of samples were manufactured: 1) negative control samples without protective culture (n. 27 samples) and 2) samples inoculated with protective culture during the mixing step of the production process (n. 27 samples). Triplicate samples of each batch of SFS were analyzed at the end of ripening for a total of n. 54 samples.

Figure 1. Process flow diagram of SFS.
Statistical analysis
Differences among average microbiological group counts (log_{10} CFU/g) and pH, over time (T0, T1, T6 and T20) and among treatments were compared using Fisher’s least significant difference test. Statistical analyses were performed with Statgraphics Centurion XIX software (Stat Point Technologies, Warrenton, VA, USA).

Results

In vitro assessment
The results showed that the protective cultures with the most efficient anti-Listeria effect were cultures A and B. Both cultures showed a clear inhibition zone around the well greater than 15 mm on all tested Listeria strains. On the other hand, bioprotective cultures C, D and E showed an inhibition zone less clear and smaller than 15 mm. Based on in vitro tests results the cultures A and B were used for the challenge test.

Challenge test
Both protective cultures A and B, selected during the in vitro test, showed in vivo efficacy against L. monocytogenes. However, protective culture A showed the strongest anti-Listeria effect: in samples added with protective culture A (CLA samples), a reduction in the number of L. monocytogenes was detected in the product starting from T1 analysis time, with a significant decrease (P<0.01) between T0 and T1 when a reduction > 1 log was observed. Afterwards, mean L. monocytogenes levels remained stable until T20, without significant differences. The anti-Listeria activity was detected, it was lower in all batches representative of the three producing plants compared to that observed in CLA samples (<1 log if compared to the experimental inoculation). In these types of samples, the pathogen was also detected at T20 with the qualitative method.

In positive control samples (CL samples) L. monocytogenes was detected using both the quantitative method (T0, T1 and T6 analysis times) and the qualitative method (T0, T1, T6 and T20 analysis time).

As expected, LAB mean levels were significantly higher (P<0.01) in samples added with the protective cultures A and B respect to control samples at T0, T1 and T6, but comparable at T20. Also micrococci and CNS showed higher mean levels in samples added with the protective culture at T0 and T1, while at the following analysis time, the trend was more irregular. These differences in LAB, micrococci and CNS levels are probably due to the use of the protective cultures that, as said, consisted of microorganisms belonging to the genera Lactobacillus and Staphylococcus. Enterobacteriaceae mean counts in control samples were consistent, with values between 3 and 4 log_{10} CFU/g in all analysis times; on the other hand, counts were lower in samples added with the protective culture A respect to control samples with significant differences (P<0.05) starting from T1.

Table 1. Type of analysis, testing time and relative minimum number of test units performed per batch during the challenge test.

Analysis	Samples	Analysis time	T0	T1	T6	T20	Total
Detection and enumeration of L. monocytogenes							
Intrinsic properties: pH and aW; composition (%): moisture; fat; protein	C	9	9	9	9		36
CL	9	9	9			36	
CLA	9	9			9		36
CLB	9	9		9			36
Total			144				

C: negative control samples; CL: positive control samples; CLA: samples added with protective culture A and L. monocytogenes broth culture; CLB: samples added with protective culture B and L. monocytogenes broth culture; T0: after stuffing; T1: 24h after stuffing; T6: 6 days after stuffing; T20: 20 days after stuffing (end of ripening).

Table 2. L. monocytogenes, LAB, micrococci, Coagulase Negative Staphylococci and Enterobacteriaceae mean values (log_{10} CFU/g; x ± S.D.) in SFS samples during the challenge test.

Parameters	Samples	Analysis time	T0	T1	T6	T20	
Listeria monocytogenes	C	0.3	0	4			3
CL	1.04 ± 0.62	1.81 ± 0.78	1.50 ± 0.92	1.01 ± 1.22			
CLA	1.36 ± 0.48	0.33 ± 0.78	0.34 ± 0.70	0.16 ± 0.43			
CLB	1.13 ± 0.64	1.31 ± 0.63	0.75 ± 0.74	0.46 ± 0.63			
LAB	C	3.80 ± 1.14	7.17 ± 0.59	7.83 ± 0.42	7.75 ± 0.46		
CL	4.48 ± 0.93	7.23 ± 0.47	7.84 ± 0.50	7.78 ± 0.36			
CLA	6.56 ± 0.36	8.16 ± 1.88	8.24 ± 0.26	7.70 ± 0.57			
CLB	6.17 ± 0.47	8.21 ± 0.34	8.46 ± 0.34	7.83 ± 0.32			
Micrococci and CNS	C	3.04 ± 0.74	5.53 ± 0.50	5.99 ± 0.65	6.03 ± 0.73		
CL	3.22 ± 0.70	5.06 ± 1.30	5.69 ± 0.46	5.37 ± 0.83			
CLA	4.75 ± 0.77	5.72 ± 1.30	5.84 ± 0.66	5.86 ± 0.64			
CLB	4.07 ± 0.65	5.49 ± 0.52	5.73 ± 0.85	5.80 ± 0.73			
Enterobacteriaceae	C	2.44 ± 0.83	3.55 ± 0.50	2.96 ± 1.50	3.79 ± 1.80		
CL	2.58 ± 0.96	3.47 ± 2.12	4.15 ± 0.46	2.99 ± 1.94			
CLA	2.78 ± 1.02	3.01 ± 1.31	2.78 ± 1.69	1.87 ± 1.93			
CLB	2.83 ± 0.57	3.81 ± 0.75	2.21 ± 1.77	2.56 ± 1.70			

C: negative control samples; CL: positive control samples; CLA: samples added with protective culture A and L. monocytogenes broth culture; CLB: samples added with protective culture B and L. monocytogenes broth culture; T0: after stuffing; T1: 24h after stuffing; T6: 6 days after stuffing; T20: 20 days after stuffing (end of ripening). Means in the same row with different superscript letter were significantly different (P<0.05); means in the same column among biopreservative treatments with different superscript number were significantly different (P<0.05).
Use of protective culture into the production process

L. monocytogenes was never detected neither in samples with the addition of protective culture A nor in control samples analyzed at the end of ripening (qualitative and quantitative method). Analyses showed the presence of *Listeria spp.* (qualitative method) in control samples of n. 2 producing plants, in all production batches; however, in samples added with the protective culture A, *Listeria spp.* was never detected. *Enterobacteriaceae* mean levels were 2.31±1.64 log_{10} CFU/g in control samples and 2.14±1.62 in samples added with the protective culture. LAB, micrococci and CNS, showed higher mean levels in samples added with the protective culture, with values between 7.8-8 log_{10} CFU/g for LAB and 4-5 log_{10} CFU/g for micrococci and staphylococci. However, no significant differences (*P*>0.05) for LAB, micrococci and CNS mean levels were found between control samples and samples added with protective cultures. Results regarding *L. monocytogenes*, LAB, micrococci, CNS and *Enterobacteriaceae* counts in challenge test are reported in Table 2.

pH values (± SD) were 5.48±0.09 for the final products without protective culture (C and CL) and 5.30 ± 0.01 for those added with the culture (CLA and CLB). The a_{w} (± SD) was 0.83±0.01 for C and CL samples and 0.84±0.01 for CLA and CLB samples. The composition analysis of control samples (C and CL) showed, in the final products, average percentage (%) values of 33.06±2.25 for fat, 23.53±1.16 for protein, 38.51±4.24 for moisture. Samples added with protective cultures had mean percentage values (% ± SD) of 31.03±0.65 for fat, 37.74±1.05 for protein and 27.10±1.65 for moisture. pH, a_{w} and composition results (± SD) in SFS samples during the challenge test are reported in Table 3.

Table 3. pH, a_{w} and physico-chemical mean values (± S.D.) in SFS samples during the challenge test.

Parameters	Samples	T0	T1	Analysis time	T6	T20
pH	C	5.72±0.15	5.63±0.15	5.41±0.35	5.54±0.30	
	CL	5.70±0.14	5.62±0.13	5.30±0.32	5.43±0.34	
	CLA	5.69±0.13	5.41±0.23	5.19±0.31	5.31±0.27	
	CLB	5.69±0.14	5.41±0.12	5.19±0.27	5.31±0.27	
a_{w}	C	0.975±0.005	0.977±0.004	0.946±0.012	0.830±0.040	
	CL	0.979±0.006	0.979±0.004	0.948±0.010	0.846±0.047	
	CLA	0.979±0.003	0.979±0.005	0.945±0.009	0.846±0.047	
	CLB	0.978±0.004	0.980±0.004	0.945±0.009	0.838±0.047	
Fats (%)	C	13.95±2.21	14.22±2.78	20.87±2.59	34.65±3.35	
	CL	14.42±2.65	13.94±2.27	20.85±1.30	31.47±1.95	
	CLA	14.49±2.60	13.58±1.76	20.66±1.20	30.58±1.42	
	CLB	14.07±2.06	13.31±1.94	20.68±1.81	31.49±1.14	
Moisture (%)	C	65.30±1.62	64.76±2.21	46.10±0.82	20.53±1.00	
	CL	65.00±1.84	65.05±1.89	46.52±0.15	25.84±4.91	
	CLA	65.01±1.80	65.60±1.57	46.71±0.88	28.27±4.63	
	CLB	65.35±55	65.70±1.69	46.45±0.11	25.93±5.23	
Proteins (%)	C	19.44±2.74	17.93±1.40	27.30±1.69	39.34±6.48	
	CL	18.17±1.08	17.91±1.14	26.82±2.38	37.69±7.10	
	CLA	18.11±1.08	18.15±1.01	27.49±1.62	37.00±6.70	
	CLB	18.22±1.08	18.15±1.01	27.46±2.01	38.49±7.89	

C: negative control samples; CL: positive control samples; CLA samples added with protective culture A and *L. monocytogenes* broth culture of; CLB: samples added with protective culture B and *L. monocytogenes* broth culture; T0: after slicing; T1: 24h after slicing; T6: 4 days after slicing; T20: 20 days after slicing (end of ripening).

Table 4. *L. monocytogenes*, LAB, micrococci, Coagulase Negative Staphylococci and *Enterobacteriaceae* mean values log_{10} CFU/g ± S.D. (positive samples/total) in SFS samples produced without and with the addition of protective culture A.

Producing plants	Samples	Listeria monocytogenes	LAB	Parameters	Micrococci and CNS	Enterobacteriaceae
P1	C	7.69±0.17 (9/9)	5.39±0.37 (9/9) 2	2.58±1.14 (7/8) 1		
A	7.53±0.24 (9/9) 1	5.90±0.41 (9/9) 1	2.35±1.37 (7/8) 1			
P2	C	7.89±0.09 (9/9) 2	5.22±0.28 (9/9) 2	2.91±0.43 (9/9) 1		
A	8.29±0.29 (9/9) 1	5.55±0.17 (9/9) 1	3.06±0.25 (9/9) 1			
P3	C	7.89±0.21 (9/9) 1	5.77±0.53 (9/9) 1	0.67±1.3 (3/9) 1		
A	7.72±0.42 (9/9) 1	5.56±0.35 (9/9) 1	0.23±0.67 (1/9) 1			

C: control samples; A: samples added with protective culture A. Means in the same column among biopreservative treatments with different superscript number were significantly different (*P*<0.05).
genes shown to be able of inhibiting These microorganisms have previously using the qualitative method. The anti-
tici Staphylococcus carnosus
24 h after production. At the end of ripen-
samples: reduction of 1 log approximately in the first
the use of protective culture A allowed to
stronger anti-
tective cultures and identify the ones with a
multiplication.
In our study, the in vitro analysis
multiplication.

Table 5. pH, aw and physico-chemical mean values (± S.D.) in SFS samples produced without and with the addition of protective
culture A.

Producing plants	Samples	pH ± SD	aw ± SD	Ashes (%)	Parameters Fats (%)	Proteins (%)	NaCl (%)	Moisture (%)
P1	C	5.76 ± 0.20	0.867 ± 0.03	4.74 ± 0.62	20.50 ± 4.60	39.43 ± 5.62	5.26 ± 0.38	34.63 ± 6.01
	A	5.67 ± 0.22	0.877 ± 0.03	4.63 ± 0.51	18.40 ± 1.64	38.69 ± 4.48	5.06 ± 0.36	37.70 ± 3.45
P2	C	5.70 ± 0.18	0.921 ± 0.006	5.30 ± 0.31	25.09 ± 0.91	26.85 ± 0.84	4.05 ± 0.10	40.53 ± 1.57
	A	5.43 ± 0.15	0.826 ± 0.004	5.28 ± 0.29	26.08 ± 0.87	26.92 ± 0.65	4.04 ± 0.10	40.67 ± 1.45
P3	C	5.32 ± 0.08	0.885 ± 0.032	4.27 ± 0.70	34.31 ± 6.34	29.38 ± 1.33	4.57 ± 0.48	31.69 ± 6.72
	A	5.30 ± 0.07	0.889 ± 0.040	4.30 ± 0.85	32.56 ± 6.18	30.44 ± 2.53	4.50 ± 0.42	33.08 ± 7.42

C: control samples; A: samples added with protective culture A

consistent with what was found by other
Authors and typical of the product (Meloni et al., 2013; Piras et al., 2019). Significant
differences were found in samples added
with the protective cultures compared to
control samples (negative control) starting
from T1 (P<0.01), at T6 (P<0.05) and also
at T20 (P<0.05). Moreover, in samples
added with protective cultures A and B, a
slight decrease of pH mean values was
observed at analysis times T6 and T20,
which is compatible with an increase in lactic
acid production by the cultures’ microor-
ganisms (LAB and Coagulase Negative
Staphylococci). This decrease was statisti-
cally significant (P<0.01) in CLA samples
between T0 and T1, and in CLB samples
between T0 and T1 and T6 (P<0.01). In
this regard, Leroy and De Vuyst (2005)
indicated that L. sakei had a higher produc-
tion rate of lactic acid, compared with other
LABs with a bioprotection potential, such as
L. curvatus and L. amylovorus. At the end of ripening time (T20) a slight increase
in pH mean values, was detected in all kind
of samples, and was significant in CLB
samples (P<0.01). Such increase is most
likely due to the proteolytic effect of yeasts
and molds, which play an important role in
proteolysis and lipolysis to develop aroma
during the manufacturing process and use
lactic acid as substrate at the end of the dry-
ing step (Thévenot et al., 2005). However,
the composition analyses have shown that
the use of protective cultures in the produc-
tion process of SFS does not affect the typ-
cical composition characteristics of the prod-
uct.

Following the results obtained in the
challenge test, the protective culture identi-
fied as the most effective against the growth
and persistence of L. monocytogenes was
supplied to three producing plants in order to
include the selected culture into their
standard production process and evaluate its
effect on the chemical, physical and micro-
biological characteristics of the SFS at the
end of ripening. The use of protective cul-
tures has proved to be easy and quick.
The use of protective cultures within the standard production process of the SFS represents a significant technological innovation for the producing plants that allows controlling, for the whole commercial life, the possible growth of *L. monocytogenes* without altering the typical composition, microflora and physico-chemical characteristics of the SFS. Finally, this technological innovation is simply and ready to use, it is not expensive for the Food Business Operators and does not require modification and/or implementation of the production process, since protective cultures can be directly added during the normal mixing step of fat, meat, spices and other ingredients.

Conclusions

The effect of protective cultures added into the mixture before the stuffing phase. The economic commitment for the producing plants is therefore limited and adequate to what is required by the Food Sector Operators. The microbiological analyses at the end of ripening (ca. 20 days) showed that, in the samples added with the protective culture A, neither *L. monocytogenes* nor *Listeria spp.* were detected (quantitative and qualitative method). This data confirms the results obtained by the challenge test, demonstrating that the use of protective cultures represents a technological innovation capable of eliminating *L. monocytogenes* or reducing its levels within the limits set by European Regulations (Reg. CE n.2073/2005) in meat products. Microbiological analyses aimed at determining the prevalence of non-pathogenic microorganisms showed that the addition of the protective culture A in the production process of the three processing plants, influenced *Enterobacteriaceae* counts levels that were always lower in samples added with the protective cultures, although this difference was never significant. Moreover, *Enterobacteriaceae* levels were reduced during ripening until non-detectable levels in some samples at the end of processing after the addition of the protective culture. These results are consistent with those reported by Martín et al. (2021), who demonstrated the decrease in *Enterobacteriaceae* counts until non-detectable levels at the end of ripening in a dry-cured fermented sausage inoculated with *L. sakei*.

As regard physicochemical-parameters evaluated after application in the production process, it was shown that while the presence of the protective culture does not affect final aw values, it does influence, although not significantly (*P*>0.05), the final pH values with an acidifying effect, compatible with an increase in the production of lactic acid by the protective cultures’ microorganisms. The technological innovation has therefore allowed stronger acidification of the product, which represents a further obstacle for the growth of pathogens, improving the product from a safety point of view. The composition analysis, carried out using NIT technology, showed similar values in samples with and without protective culture, highlighting how the inclusion of this technological innovation in the SFS production process does not affect the typical composition characteristics of the finished product.

The results of this project validated the efficacy, both *in vitro* and in the product, of some protective cultures to reduce or inhibit the growth of *L. monocytogenes*. Furthermore, the data obtained will allow SFS producing plants to define, with scientific evidence, the healthiness and hygiene of the product added with specific protective cultures.

References

ANSES, 2021. EURL Lm Technical guidance document on challenge tests and durability studies for assessing shelf-life of ready-to-eat foods related to *L. monocytogenes*, version 4 of 1 July 2021.

Autio T, Sateri T, Fredriksson-Ahoma M, Rahkio M, Lunden J, Korkeala H, 2000. *Listeria monocytogenes* contamination pattern in pig slaughterhouses. *J Food Prot* 63:1438-42.

Blanco-Lizarazo CM, Sotelo-Diaz I, Llorente-Bosquoyes A, 2016. In vitro modelling of simultaneous interactions of *Listeria monocytogenes*, *Lactobacillus sakei*, and *Staphylococcus carnosus*. *Food Sci Biotechnol* 25:341-8.

Boscher E, Houard E, Denis M, 2012. Prevalence and Distribution of *Listeria monocytogenes* Serotypes and Pulsotypes in Sows and Fattening Pigs in Farrow-To-Finish Farms. *J Food Prot* 75:889-95.

Chasseigneaux E, Gerault P, Toquin M, Salvat G, Colin P, Ermel G, 2002. Ecology of *Listeria monocytogenes* in the environment of raw poultry meat and raw pork meat processing plants. *FEMS Microbiol Lett* 210:271-5.

Cosentino S, Fadda ME, Deplano M, Melis R, Pomata R, Pisano MB, 2012. Antilisterial activity of nisin-like bacteriocin-producing *Lactococcus lactis* subsp. lactis isolated from fermented Sardinian dairy products. *J Biomed Biotechnol* 2012, ID 376428 doi:10.1155/2012/376428.

Davidson PM, Techathuvanan C, 2015. The use of natural antimicrobials in food, chapter in: Taylor TM, Handbook of natural antimicrobials for food safety and quality, Woodhead Publishing, 2015.

European Food Safety Authority and European Centre for Disease Prevention and Control, 2021. The European Union One Health 2020 Zoonoses Report. EFS A J 19:6971.

European Food Safety Authority, 2018. *Listeria monocytogenes* contamination of ready-to-eat foods and the risk for human health in the EU. EFSA J 16:5134.

Esteban JL, Oporto B, Aduriz G, Juste RA, Hurtado A, 2009. Fecal shedding and strain diversity of *Listeria monocytogenes* in healthy ruminants and swine in northern Spain. *BMC Vet Res* 2009;5:2.

European Commission (EC). Commission regulation (EC) no 2073/2005 of 15 November 2005 on microbiological criteria for foodstuffs. In: Off. J. Eur. Union 2005, L 338/1, 22/12/2005.

European Commission, 2008. Regulation (EC) no 1333/2008 of the European Parliament and of the council of 16 December 2008 on food additives. In: Official Journal, L 354/16, 31/12/2008.

Fosse J, Seegers H, Magras C, 2009. Prevalence and Risk Factors for Bacterial Food-Borne Zoonotic Hazards in Slaughter Pigs: A Review. *Zoon Publ Health* 56:429–54.

Greco M, Mazzette R, De Santis EPL, Corona A, Cosseddu AM, 2005. Evolution and identification of lactic acid bacteria isolated during the ripening of Sardinian sausages. *Meat Sci* 69:733–9.

Hugas M, Garriga M, Aymerich MT, Monfort JM, 1995, Inibition of *Listeria* in dry fermented sausages by the bacteriocinogen *Lactobacillus sakei* CTC494. *J Appl Microbiol* 75:322-30.

ISO, 1992. Microbiology of food and animal feeding stuffs — Horizontal method for the enumeration of mesophilic lactic acid bacteria — Colony-count technique at 30 degrees C. *ISO Norm 15214:1998*. European Union 2005, L 338/1, 22/12/2005.

Monfort JM, 1995, Inibition of *Listeria* in dry fermented sausages by the bacteriocinogen *Lactobacillus sakei* CTC494. *J Appl Microbiol* 75:322-30.

One Health 2020 Zoonoses Report. EFS A J 19:6971.

Prevalence and Risk Factors for Bacterial Food-Borne Zoonotic Hazards in Slaughter Pigs: A Review. *Zoon Publ Health* 56:429–54.

Prevalence and Distribution of *Listeria monocytogenes* Serotypes and Pulsotypes in Sows and Fattening Pigs in Farrow-To-Finish Farms. *J Food Prot* 75:889-95.

Promoted by: PagePress Publishing

Access Open
ISO, 2017. Microbiology of the food chain - Horizontal method for the detection and enumeration of Listeria monocytogenes and of Listeria spp. - Part 1: Detection method. ISO Norm 11290-1:2017. International Standardization Organization ed., Geneva, Switzerland.

ISO, 2017. Microbiology of the food chain - Horizontal method for the detection and enumeration of Listeria monocytogenes and of Listeria spp. - Enumeration method. ISO Norm 11290-2:2017. International Standardization Organization ed., Geneva, Switzerland.

ISO, 2017. Microbiology of the food chain - Preparation of test samples, initial suspension and decimal dilutions for microbiological examination - Part 1: General rules for the preparation of the initial suspension and decimal dilutions. ISO Norm 6887:2017. International Standardization Organization ed., Geneva, Switzerland.

ISO, 2020. Microbiology of the food chain - Horizontal method for the detection, enumeration and serotyping of Salmonella - Part 1: Detection of Salmonella spp. ISO Norm 6579-1:2020. International Standardization Organization ed., Geneva, Switzerland.

Italian Republic, 2020. Aggiornamento di cui all'articolo 8, comma 1, del decreto legislativo 30 aprile 1998, n. 173. Prot. Uscita N.0001375 del 10/02/2020

Janssens M, Myter N, De Vuyst L, Leroy F, 2013. Community dynamics of coagulase-negative staphylococci during spontaneous artisan-type meat fermentations differ between smoking and moulding treatments. Int J Food Microbiol 166:168-75.

Karanganti SR, Wesley IV, Reddy PG, McKean J, Hurd HS, 2002. Detection of Listeria monocytogenes in pigs and pork. J Food Prot 65:1470-4.

Leroy F, De Vuyst L, 2005. Simulation of the effect of sausage ingredients and technology on the functionality of the bacteriocin-producing Lactobacillus sakei CTC 494 strain. Int J Food Microbiol 100:141-52.

Ryu J, Park SH, Yeom YS, Shrivastav A, Lee SH, Kim YR, Kim HY, 2013. Simultaneous detection of Listeria species isolates from meat processed foods using multiplex PCR. Food Control 32:659-64.

Mangia NP, Murgia MA, Garau G, Deiana P, 2007. Microbiologia e valutazione igienico-sanitaria della salsiccia sarda. Ind Aliment Italy 46:533-6.

Maragkoudakis PA, Mountzouris KC, Pyrras D, Cremonese S, Fischer J, Cantor MD, Tsakalidou E, 2009. Functional properties of novel protective lactic acid bacteria and application in raw chicken meat against Listeria monocytogenes and Salmonella enteritidis. Int J Food Microbiol 130:219-26.

Martin I, Rodriguez A, Sanchez-Montero L, Padilla P, Cordan JA, 2021. Effect of the Dry-Cured Fermented Sausage “Salchichón” Processing with a Selected Lactobacillus sakei in Listeria monocytogenes and Microbial Population. Foods 10:856.

Mataragas M, Rantsioua K, Alessandria V, Martìn I, Rodriguez A, Sanchez-Montero L, Cantin I, Rodrìgez A, Sanchez-Montero L, 2014. Presence and molecular characterization of the major serovars of Salmonella spp. in five Sardinian fermented sausage processing plants. Meat Sci 100:141-52.

Meloni D, 2015. Presence of Listeria monocytogenes in Mediterranean-Style Dry Fermented Sausages. Foods 4:34-50.

Meloni D, Consolati SG, Mazzar R, Mureddu A, Fois F, Piras F, Mazzette R, 2014. Presence and molecular characterization of the major serovars of Listeria monocytogenes in five Sardinian fermented sausage processing plants. Meat Sci 97:443-50.

Meloni D, Piras F, Mureddu A, Fois F, Consolati SG, Lamon S, Mazzette R, 2013. Listeria monocytogenes in five Sardinian swine slaughterhouses: Prevalence, Serotype and Genotype Characterization. J Food Prot 76:1863–7.

Mureddu A, Mazzar R, Fois F, Meloni D, Bacciu R, Piras F, Mazzette R, 2014. Listeria monocytogenes persistence in ready-to-eat sausages and in processing plants. Ital J Food Saf 3:12–5.

Neri D, Antoci S, Iannetti L, Ciorba AB, D’Aurelio R, Del Mattio I, Di Leonardo M, Giovannini A, Principe VA, Pompilio F, Santarella GA, Miglioratia G, 2019. EU and US control measures on Listeria monocytogenes and Salmonella spp. in certain ready-to-eat meat products: An equivalence study. Food Control 96:98-103.

Nielsen JW, Dickson JS, Crouse JD, 1990. Use of a bacteriocin produced by Pediococcus acidilactici to inhibit Listeria monocytogenes associated with fresh meat. Appl Environ Microbiol 56:2142-5.

Nieto-Lozano JC, Reguera J, Pelaez-Martinez MC, Hardisson de la Torre A, 2006. Effect of a bacteriocin produced by Pediococcus acidilactici against Listeria monocytogenes and Clostridium perfringens on Spanish raw meat. Meat Sci 72:57-61.

Peccio A, Auto T, Korkeala R, Rosmini R, Trevisani M, 2003. Listeria monocytogenes occurrence and characterization in meat-producing plants. Lett Appl Microbiol 37:234-8.

Pedonese F, Torraca B, Mancini S, Pisano S, Turchi B, Cerri D, Nuvolonni R, 2020. Effect of a Lactobacillus sakei and Staphylococcus xylosus protective culture on Listeria monocytogenes growth and quality traits of Italian fresh sausage (salsiccia) stored at abusive temperature. Ital J Anim Sci 19:1363–74.

Piras F, Spanu C, Mocci AM, Demontis M, De Santis EPL, Scaranio C, 2019. Occurrence and traceability of Salmonella spp. in five Sardinian fermented sausage facilities. Ital J Food Saf 8:8011.

Thévenot D, Delignette-Muller ML, Christeians S, Vernoyo-Rozand, 2005. Fate of Listeria monocytogenes in experimentally contaminated French sausages. Int J Food Microbiol 101:189–200.

Thévenot D, Dernburg A, Vernoyo-Rozand C, 2006. An updated review of Listeria monocytogenes in the pork meat industry and its products. J Appl Microbiol 101:7-17.

Tjener K, Stahnke LH, Andersen L, Martinsen J, 2004. The pH-unrelated influence of salt, temperature and manganes on aroma formation by Staphylococcus xylosus and Staphylococcus carnosus in a fermented meat model system. Int J Food Microbiol 97:31-42.

Young NWG, O’Sullivan GR, 2011. The influence of ingredients on products stability and shelf life. In: Kilcast D, Subramaniam P, Food and Beverage Stability and Shelf Life, Woodhead Publishing, 2011.

Zagorec M, Champonier-Vergès MC, 2017. Lactobacillus sakei: A starter for sausage fermentation, a protective culture for meat products. Microorganisms 5:56.