Huntington’s disease mouse models: unraveling the pathology caused by CAG repeat expansion

Julia Kaye 1 Terry Reisine 2 Steve Finkbeiner 1,3,4*

1 Center for Systems and Therapeutics, Gladstone Institutes, San Francisco, CA, USA
2 Independent Scientific Consultant, Santa Cruz, CA, USA
3 Taube/Koret Center for Neurodegenerative Disease Research, Gladstone Institutes, San Francisco, CA, USA
4 Department of Neurology and Physiology, University of California, San Francisco, CA, USA

Abstract

Huntington’s disease (HD) is a neurodegenerative disease that results in motor and cognitive dysfunction, leading to early death. HD is caused by an expansion of CAG repeats in the huntingtin gene (HTT). Here, we review the mouse models of HD. They have been used extensively to better understand the molecular and cellular basis of disease pathogenesis as well as to provide non-human subjects to test the efficacy of potential therapeutics. The first and best-studied in vivo rodent model of HD is the R6/2 mouse, in which a transgene containing the promoter and exon 1 fragment of human HTT with 150 CAG repeats was inserted into the mouse genome. R6/2 mice express rapid, robust behavioral pathologies and display a number of degenerative abnormalities in neuronal populations most vulnerable in HD. The first conditional full-length mutant huntingtin (mHTT) mouse model of HD was the bacterial artificial chromosome (BAC) transgenic mouse model of HD (BACHD), which expresses human full-length mHTT with a mixture of 97 CAG-CAA repeats under the control of endogenous HTT regulatory machinery. It has been useful in identifying the role of mHTT in specific neuronal populations in degenerative processes. In the knock-in (KI) model of HD, the expanded human CAG repeats and human exon 1 are inserted into the mouse Htt locus, so a chimera of the full-length mouse protein with the N-terminal human portion is expressed. Many of aspects of the pathology and behavioral deficits in the KI model better mimic disease characteristics found in HD patients than other models. Accordingly, some have proposed that these mice may be preferable models of the disease over others. Indeed, as our understanding of HD advances, so will the design of animal models to test and develop HD therapies.

Keywords

R6/2 mouse model, BACHD, Huntington’s disease, mouse models, neurodegeneration, neurodegenerative disease

Peer Review

The peer reviewers who approve this article are:

1. Scott Zeitlin, Department of Neuroscience, University of Virginia School of Medicine, Charlottesville, VA, USA
 Competing interests: No competing interests were disclosed.

2. Irina Dudanova, Molecular Neurodegeneration Group, Max Planck Institute of Neurobiology, Martinsried, Germany
 Competing interests: No competing interests were disclosed.
Corresponding author: Steve Finkbeiner (sfinkbeiner@gladstone.ucsf.edu)

Competing interests: The authors declare that they have no competing interests.

Grant information: The funding that supported this work was from National Institutes of Health grant 1 R01 NS101996-01.

The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Copyright: © 2021 Finkbeiner S et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

How to cite this article: Kaye J, Reisine T and Finkbeiner S. Huntington’s disease mouse models: unraveling the pathology caused by CAG repeat expansion. Faculty Reviews 2021 10(77) https://doi.org/10.12703/r/10-77

Published: 21 Oct 2021, Faculty Reviews 10(77) https://doi.org/10.12703/r/10-77
Introduction

Huntington’s disease (HD) is caused by an expansion of CAG repeats in the huntingtin gene (HTT), which leads to neurological deficits, including motor impairment and cognitive decline. Normal HTT alleles contain fewer than 35 CAG repeats, whereas tracts of 36 to 39 CAGs impart an increased risk of developing the disease. There is a well-established correlation between the number of CAG repeats and age of onset. With extreme CAG expansion, symptoms develop in childhood, pathology is extensive, and life is short. However, CAG repeat length does not fully explain the severity of HD: 30% to 50% of the variation in age of onset is not related to CAG repeat length. Polymorphisms in genes other than HTT contribute to age of onset in HD. For example, polymorphisms in the FANC1-associated nuclease 1 (FAN1) gene, which encodes a DNA repair enzyme, affect age of onset of HD.

In addition to motor and cognitive decline, neuropsychiatric symptoms, including depression and anxiety, are present in patients with HD and are thought to typically predate the onset of motor symptoms. Other common systemic features of HD include weight loss due to changes in metabolism and sleep and circadian rhythm disturbances. Symptoms usually begin in midlife, and death follows within 10 to 20 years.

A prominent neuropathological feature of HD is neurodegeneration, including neuronal death in the striatum, which is a major relay center of cortical signaling through the basal ganglia and is critically involved in regulating motor function and cognition. As a consequence, impaired striatal physiology, including changes at glutamatergic, dopaminergic (DA), and cholinergic synapses, may be evident during the pre-symptomatic phase of HD.

Within the striatum, the most prominent neuropathology in HD is the loss of medium spiny-like neurons (MSNs), also known as spiny projection neurons (SPNs), and their cortical pyramidal neuronal innervation. MSNs are the earliest affected neuronal population in HD and undergo significant loss of dendritic structure and spines with disease progression in humans and animal models. The cortico-striatal neurons are also affected in HD and impact cognitive decline. The polyglutamine stretch in mutant huntingtin (mHTT) causes hyperactivity of glutamatergic cortico-striatal neurons and enhanced striatal glutamatergic transmission, which begins during the asymptomatic phase of HD and contributes to synaptic changes observed in later stages. Dysregulated glutamate release at cortico-striatal synapses results in aberrant calcium signaling leading to excitotoxicity and is believed to be one of the causes of MSN vulnerability in HD. Genetically reducing mHTT expression selectively in cortico-striatal neurons rescues electrophysiological alterations in striatal MSNs and reduces motor disabilities in mice. Thus, early in the disease, a hyperactivity of glutamatergic cortico-striatal neurons driven by mHTT expression causes MSN dysfunction, which may influence the gradual death of striatal neurons over time. Brain imaging studies in pre-symptomatic HD carriers have shown that cortical atrophy occurs early, develops progressively, and correlates with the expression and severity of cognitive and motor symptoms. The loss of cortico-striatal neurons leads to hypoglutamatergic input to the striatum at later stages of the disease. This suggests that the circuitry within the cortico-striatal glutamate neurons and MSNs plays a critical role in striatal dysfunction, MSN death, and HD pathogenesis.

MSNs give rise to two distinct pathways that project to either the substantia nigra pars reticulata (SNr) and internal segment of the globus pallidus (Gpi) (the direct pathway) or the external segment of the globus pallidus (GPe), which in turn projects to the subthalamic nucleus (STN) (the indirect pathway). MSNs projecting to the GPe appear to be affected earlier in HD than the other projection pathway and this has been proposed to cause an imbalance in the two pathways and the emergence of involuntary movements and chorea. Whereas MSNs are vulnerable in HD, other striatal neuronal types such as GABA interneurons, including those expressing somatostatin and calretinin, are preserved in the disease. It has been suggested that MSN degeneration may be linked to a loss of neurotrophic support and altered glutamate released from cortico-striatal neurons.

In addition to glutamatergic control, the different MSN projecting neurons are regulated by DA nigrostriatal neurons via activation of either D1 DA receptors or D2 DA receptors. The different populations of striatal MSNs differentially express the receptors; MSNs projecting to the SNr express D1 DA receptors, while MSNs projecting to the GPe primarily express D2 DA receptors. Dopamine released from nigrostriatal neurons diminishes cortico-striatal glutamatergic excitation of the D2-expressing MSN striatopallidal neurons and may be neuroprotective. In contrast, striatal stimulation of D1 DA receptors in MSNs appears to enhance glutamatergic transmission and may contribute to neurodegeneration and neuronal loss in the striatum and MSN-SNr projecting neurons.

Whereas these studies suggest opposing roles of D1 and D2 DA receptors with regard to glutamate toxicity in the striatum, other work has shown that antagonism of both receptors reduces neuronal loss in the striatum and that blocking D2 receptor stimulation significantly reverses DA potentiation of mHTT-induced MSN cell death. Consistent with the loss of MSNs in HD, both D1 and D2 DA receptor densities in the striatum are decreased in HD, even in asymptomatic patients, indicating that DA signaling is disrupted in the disease. Striatal D1 and D2 DA receptor densities are also reduced in different animal models of HD. Loss of DA receptors in patients with early-stage HD has been correlated with early cognitive decline.

Genetic models have been developed to study both the molecular and cellular basis of HD and to provide systems to identify novel therapeutics, including small-molecule drugs.
Figure 1. Alterations in Neuronal Circuitry in the Basal Ganglia in HD. A) Normal basal ganglia: The direct pathway consists of striatal medium spiny-like neurons (MSNs) expressing D1 dopamine receptors (D1-MSN) that project GABA/substance P (SP) neurons to the internal capsule of the internal globus pallidus (GPi) and the substantia nigra reticulata (SNr). The indirect pathway consists of MSNs expressing D2 dopamine receptors (D2-MSN) that project GABA/Enkephalin (Enk) neurons to the external capsule of the external globus pallidus (GPe) which then projects GABA neurons to the subthalamic nucleus (STN). The STN projects glutamate neurons to the GPi and SNr. The MSNs are innervated by dopamine neurons from the substantia nigra compacta (SNc) and by glutamate neurons from the cortex. The GPe projects inhibitory GABA neurons to the thalamus, and the thalamus projects excitatory glutamate neurons to the cortex. The motor cortex also projects glutamate neurons to the spinal cord to control movement. B) Basal ganglia at early stages of Huntington’s disease (HD): Cortical glutamate neuronal input to the striatum is hyperactive at early stages of HD, based on animal model work (R6/2 mice). This causes excitotoxicity. D2-MSNs are believed to be more sensitive to the glutamate hyperactivity and begin to degenerate first. The diminished GABA/Enk input to the GPe can produce an imbalance in the basal ganglia function and increase activity in the GPe which subsequently alters activity in the STN. C) Basal ganglia at later stages of HD: Both the cortex and striatum show degeneration in later stages of HD. The lost cortical glutamate neurons result in hypoactivity in the striatum. Both the D1-MSNs and the D2-MSNs degenerate.
In vivo R6/2 mouse model of Huntington’s disease

The first in vivo rodent model of HD to be developed was the R6 line, including the R6/1 and R6/2 models. (See Table 1 for summary of results of mouse models.) The R6/2 mouse model, which is the most widely studied, has a transgene containing the promoter and exon 1 fragment of human HTT with 150 CAG repeats inserted into the mouse genome. The R6/2 model robustly demonstrates the pathological hallmarks of HD, such as motor dysfunction and inclusion body formation and premature death. The mice survive for about 15 weeks, and mHTT aggregates and inclusions form before the emergence of behavioral phenotypes, which include irregular gait, clumping, weight loss, increased grooming, and cognitive deficits by 5 weeks of age. As the mice age, they develop seizures. Because of the rapid progression of disease phenotypes, the R6/2 mice have been proposed as a model of juvenile HD.

R6/2 mice display a number of degenerative abnormalities in electrophysiological properties of MSNs and cortico-striatal neurons that may contribute to the rapid appearance and progression of motor and cognitive deficits. The MSNs of symptomatic R6/2 mice have reduced membrane capacitance and increased input resistance, caused by reduced K⁺ channel expression. Spontaneous GABA currents and inhibitory post-synaptic currents are increased in R6/2 MSNs, whereas excitatory post-synaptic currents (EPSCs) are decreased, which together result in a decrease in burst firing in the striatum.

The electrophysiological properties of the two populations of striatal MSNs—those innervating the SNr and those innervating GPe—are differentially affected in R6/2 mice, resulting in an imbalance in striatal output that may contribute to motor dysfunction. GABAergic MSNs that innervate the SNr have reduced activity in R6/2 mice, resulting in reduced GABA receptor-mediated responses in the SNr and hyperactivity of DA neurons. This hyperactivity may contribute to HD progression. In contrast to the MSNs projecting to the SNr, GABAergic MSNs projecting to the GPe showed increased responses in the GPe. In addition, early on, the cortical pyramidal glutamatergic neurons that project to MSNs become hyperexcitable in R6/2 mice and this enhanced activity precedes behavioral symptoms. This was shown in a study by Burgold et al. (2019) who used chronic in vivo two-photon calcium imaging to study neurons in the motor cortex of behaving R6/2 mice. The R6/2 mice showed hyperactivity of the cortical neurons prior to the appearance of motor deficits. Furthermore, Fernández-García et al. (2020) used optogenetic techniques to show that stimulation of degenerating secondary motor cortex neurons of R6/1 mice that project to the dorsolateral striatum reversed motor deficits and changes in long-term depression and normalized spine density within the striatum. The cortical neurons in the R6/2 mice exhibit decreased synchrony, and synchrony between the cortex, striatum, and STN is disrupted. In addition, glutamate uptake may be impaired. Lack of uptake can lead to an overabundance of synaptic glutamate, which in turn can initiate an excitotoxic neuronal death cascade.

R6/2 mice also exhibit altered functional neuronal connectivity, as assessed by functional magnetic resonance imaging (fMRI). Bilateral connectivity between the motor cortices and somatosensory cortices is reduced in these mice, as is intrastriatal connectivity. The weak intrastriatal connectivity is positively correlated with striatal atrophy and reduced motor function.
Table 1. Biology of transgenic mice models of Huntington’s disease.

Model	Genetic change	Behavioral phenotype	Pathology	Electrophysiology
R6/2	Human exon 1 150 CAG repeats	Cognitive and motor deficits, irregular gait, clasping, weight loss	IB appear in neurons but death not clearly seen	Cortico-striatal hyperactivity leads to cortical neurodegeneration
		Unique = seizures, early death (15 weeks)		↑ striatal D1R medium spiny-like neuron (MSN) activity, ↓ striatal D2R MSN activity, ↑ dopaminergic neuroactivity
N171-82Q	cDNA encoding N-terminal human huntingtin (HTT) – 82 CAG repeats	Tremors, hypokinesia, lack of coordination, no weight gain, no seizures	Striatal atrophy	Altered cortical and striatal connectivity seen with functional magnetic resonance imaging
YAC	Full-length human HTT 72/128 CAG repeats	Symptoms develop at 2–3 months: motor/cognitive deficits, hyperactivity, followed by difficulty in walking, followed by hypoactivity	Striatal and cortical atrophy, selective loss of MSNs	Similar to R6/2
BACHD	Conditional full-length 97 CAG/CAA repeats	Progressive motor deficits start at 2–3 months, hyperactivity in open field, psychiatric symptoms, anxiety in light–dark box, depression–forced swimming	Striatal/cortical atrophy at 12 months, ↓ glutamate uptake and astrocyte phenotype, cortical degeneration	Synaptic pathology at 3 months, cortical interneuronal and parvalbumin neuronal activity, results in ↑ cortico-striatal activity onto striatal MSNs related to reduced motor function
		Unique: weight gain		Reduced mHTT in cortical neurons or MSNs improves synaptic dysfunction and motor function
				Reduced mHTT in astrocytes improves behavior
KI	Human mutation in mouse gene CAG 140/175	Motor abnormalities, hyperactivity, repetitive movements at 1 month, followed by decreased activity, gait abnormalities subthalamic nucleus (STN) deficits occur prior to striatal dysfunction	Loss of neurons by 2 years, also tyrosine hydroxylase (TH) loss, ↓ thalamic-striatal neurons, olfactory system dysfunction ↓ Spine density of MSNs	↑ GABA current in MSNs, ↓ excitatory post-synaptic currents in MSNs, loss of excitatory input to MSNs, autonomous, STN activity impaired

BACHD, bacterial artificial chromosome (BAC) transgenic mouse model of Huntington’s disease; KI, knock-in mouse model with 140 or 175 CAG repeats; N171-82Q, N-terminal fragment of human mutant huntingtin (mHTT) of 171 amino acids and 82 CAG repeats; YAC, yeast artificial chromosome model with 72 or 128 CAG repeats.
function. In these respects, the mice mirror patients with HD, as fMRI also shows altered functional connectivity of cortical and thalamic regions associated with impaired motor function in patients with HD11-13. Reduced intrinsic functional connectivity is present even in premanifest HD gene carriers and to a much larger extent in patients with manifest HD14-16. These studies suggest that mHTT causes disruption of normal neuronal and functional linkage of brain regions involved in motor control and cognition.

YAC72 and YAC128 mouse models of Huntington’s disease

The first full-length human mHTT transgenic animal models harbored HTT with either 72 or 128 CAG repeats in a yeast artificial chromosome (YAC) that includes all of the human regulatory elements, such as the introns, integrated into the mouse17,18. These models displayed a less severe phenotype than the R6/2 mice and express mHTT at levels similar to endogenous HTT18. At about 2 or 3 months of age, the mice develop symptoms, including motor and cognitive deficits that correlate with the appearance of mHTT aggregates and striatal and cortical atrophy19-21. The progression of symptoms begins with hyperactivity, followed by difficulty in walking along a rotating rod, and then hypokinesia. Deficits in rotarod performance correlate with loss of striatal neurons17,18. Many of the electrophysiological abnormalities of the MSNs and cortico-striatal neurons observed in R6/2 mice are similarly found in the YAC128 mice22,23. There is also reduced synchrony between the cortex, striatum, and STN in the YAC128 mouse24,25. This is consistent with findings in HD brain showing a progressive disconnect between the cortex and striatum with progression of striatal degeneration26-28.

In 2015, Pancani et al. reported that a muscarinic M4 receptor drug reduced the excessive cortical glutamatergic transmission in cortico-striatal slices of YAC128 mice29. The normalization of glutamate transmission occurred via M4 receptors localized pre-synaptically to the cortical neuronal input. The drug also reduced motor deficits in the mice, suggesting that therapeutics designed to normalize the cortical striatal imbalance might be therapeutically useful.

Furthermore, Al-Gharaibeh et al. used the YAC128 model to demonstrate that induced pluripotent stem cell (iPSC)-derived NSCs have the potential as a treatment of HD30. Mouse iPSC-NSCs bilaterally implanted into the striatum of YAC128 mice differentiated into MSNs and reduced motor deficits. The protective effect of the cells was suggested to be related to their ability to increase levels of brain-derived neurotrophic factor, which supports the survival of remaining neurons in the striatum31-33.

BACHD mouse model of Huntington’s disease

The first conditional full-length mHTT mouse model of HD was the bacterial artificial chromosome (BAC) transgenic mouse model of HD (BACHD), which expresses human full-length mHTT with a mixture of 97 CAG and CAA repeats under the control of endogenous HTT regulatory machinery34. In terms of phenotype, the BACHD model is similar to the YAC128 HD mouse in many ways; progressive motor deficits are apparent as early as 2 months of age, and striatal and cortical atrophy occur at 12 months35. BACHD mice display hypoactivity in the open-field test24 as well as changes in affective behavioral phenotypes such as increased anxiety and depressive behavior at 6 months36.

Many of these phenotypes parallel the development of electrophysiological deficits in cortical pyramidal neurons, cortical interneurons, and striatal MSNs. This progressive synaptic pathology occurs around 3 months of age, when the motor deficits are still mild37. Electrophysiological analysis of MSNs of 6-month-old BACHD mice demonstrated selective reduction of large-amplitude EPSCs in striatal neurons38. These changes are paralleled by decreased cortical parvalbumin (PV) interneuron excitation and decreased pyramidal cell inhibition, resulting in increased cortico-striatal excitability onto striatal MSNs and a decline in motor function39.

Because synaptic dysfunction in cortico-striatal neurons and striatal MSNs is a critical neurodegenerative process in HD, researchers have used the BACHD mouse to study the effect of mHTT deletion in cortical pyramidal neurons, striatal MSNs, or both40. BACHD mice show significant reductions in N-methyl-d-aspartate (NMDA)-evoked synaptic responses in striatal MSNs in slices, and genetically reducing mHTT levels in either cortical pyramidal neurons or MSNs partially reversed this deficit. Furthermore, the MSNs of BACHD mice show reduced activity, indicated by reduced spontaneous EPSCs and increased spontaneous inhibitory post-synaptic currents (IPSCs), and these deficits are ameliorated by reducing mHTT levels in cortical pyramidal neurons. The synaptic deficits were more effectively improved when mHTT was removed from both MSNs and cortical pyramidal neurons. In addition, reducing mHTT levels in cortical neurons also improved neuronal activity in cortical neurons41. These findings suggest that mHTT in both cortico-striatal pyramidal neurons and MSNs contributes to synaptic deficits in striatal MSNs.

Removal of mHTT from cortical pyramidal neurons or MSNs partially reversed motor behaviors measured in the rotarod and locomotion tests, but removal of mHTT from both neuronal populations was required to restore these motor behaviors to wild-type control levels42. BACHD mice also exhibit anxiety-like behaviors as measured by light–dark box exploration and depression-like behavior in a forced swimming test. Reducing mHTT in cortico-striatal pyramidal neurons or both cortico-striatal pyramidal neurons and MSNs significantly improved these psychiatric behavioral deficits, whereas mHTT reduction in MSNs alone did not.

These studies suggest that mHTT in striatal MSNs contributes to some aspects of striatal pathogenesis, but the pathogenesis of many behavioral and neurodegenerative phenotypes likely requires mHTT expression in other populations. In particular, dysfunction of cortical pyramidal neurons due to expression of mHTT contributes to synaptic deficits in MSNs and motor and psychiatric behavioral deficits. These findings...
indicate distinct but interacting roles of cortical and striatal mHTT in HD pathogenesis and support a role for non-cell-autonomous mHTT toxicity in striatal pathogenesis.

There is also significant evidence that non-neuronal populations contribute to HD. The BACHD model was recently used to investigate the role of mHTT in astrocytes on disease phenotypes. That study showed that selective reduction of mHTT in astrocytes in the cortex and striatum improved striatal MSN synaptic responses and behavioral phenotypes. mHTT in astrocytes may contribute to neuronal dysfunction by altering the regulation of extracellular glutamate and other key aspects of synaptic transmission. Altered glutamate release in HD models has been described both in vitro and in vivo, and impaired glutamate signaling might further occur in HD as a consequence of decreased glutamate uptake. Studies of HD postmortem brain and HD transgenic models have consistently shown decreased GLT-1, which is responsible for the bulk of glutamate uptake in astrocytes. These findings support the role of astrocytes in mHTT-induced HD pathophysiology.

BACHD mice have also been used to study the role of post-translational modifications of mHTT, in particular protein phosphorylation, in disease pathogenesis. Three potential phosphorylation sites—serines 13 and 16 in the N-terminal region and serine 421 in the Akt consensus sequence—were studied. Biochemical studies have shown that phosphorylation at serines 13 and 16 significantly alters the structure of mHTT, and phosphorylation at serine 421 alters the transport of mHTT, suggesting that post-translational modifications at these sites may affect function of this protein. For the studies in BACHD mice, mHTT constructs were generated in which the serines were converted to aspartates to mimic phosphorylation or to alanine to prevent phosphorylation. The phosphomimetic substituions were protective and rescued locomotor deficits and anxiety-like behaviors and reduced striatal neuronal loss, whereas the alanine mutations did not hinder the pathogenic actions of mHTT. In the case of the serine 421 site, the phosphomimetic substitution reduced steady-state levels of pathogenic soluble mHTT and increased turnover to improve clearance of mHTT. These studies thus identified specific structural changes in mHTT that may be responsible for pathophysiology in HD.

Knock-in Huntington’s disease mouse models

Knock-in (KI) mouse models of HD consist of the human HD mutation inserted into the mouse HTT gene locus. Because the mutation is expressed in its appropriate genomic and protein context, these models are believed to more accurately represent the genetic basis of HD and have been used extensively to investigate the pathophysiology of HD and potential treatments. The three KI models that have been studied the most are the Q140, Hdh(CAG)150, and Q175 mice, although other models with varying CAG expansions, including those with 50, 92, and 111 CAG repeats, have also been developed and studied. In the Q140 mice, mouse exon 1 of HTT is replaced by a mutated version of human exon 1. Robust behavioral deficits as well as motor abnormalities have been detected in homozygous CAG140 mice. The neuropathology consists of mHTT nuclear staining and aggregates in the striatum and cortex, which become intense and widespread at only 4 months of age. The early pathology corresponds to brain regions that receive DA inputs, supporting the relationship between dopamine and HD pathology. mHTT aggregates are also first seen in the striosomes, consistent with the early vulnerability of this region in humans. These mice also show early loss of thalamic-striatal neuronal input to MSNs, which may contribute to striatal dysfunction manifest as diminished excitatory drive in the striatum. In old age (1–2 years), CAG140 mice show late striatal neuronal loss and atrophy. Surviving neurons express loss of spines and reduced dendritic complexity. The olfactory system displays early and marked aggregate accumulation, which may be relevant to the early deficit in odor discrimination observed in patients with HD.

In the Hdh(CAG)150 model, 150 CAG repeats were inserted into the mouse HTT but no human sequences are included. This model shows a delayed onset of symptoms compared with CAG140 mice but exhibit motor defects, such as balance and gait abnormalities, as well as clasping and weight loss, by 40 weeks of age. Cognitive deficits occur at around 24 weeks of age. By 22 months, they show widespread mHTT aggregation throughout the brain and transcriptional dysregulation.

Interestingly, a study by Arnoux et al. (2018) using in vivo two-photon Ca²⁺ imaging in premanifest Hdh(CAG)150 KI mice showed increased neuronal activity in the visual cortex. This finding is consistent with early signs of hyperactivity in cortical networks found in other HD models and the finding that early in HD the visual cortex is one of the first brain regions to show dysfunction.

Side-by-side comparison of CAG140 and Hdh(CAG)150 mice by Franich et al. (2019) showed that CAG140 mice exhibit earlier onset of behavioral deficits and formation of nuclear inclusions. The authors proposed that these differences may be due to an incompletely spliced HTT exon 1 transcript in the CAG140 mouse, which encodes the highly pathogenic exon 1 mHTT protein which leads to early aggregation. The very early phenotypic deficits in the Q140 mice have made them an ideal model for testing novel therapeutic interventions.

The Q175 KI mouse is a spontaneous extension of the Q140 KI. The Q175 KI mouse shows behavioral changes, including motor, cognitive, and circadian deficits. These mice exhibit gait abnormalities at 4 weeks of age, hypoactivity as measured in the open-field test by 4 months, rotarod and climbing abnormalities at 30 weeks of age, and cognitive deficits at 12 months. mHTT aggregates are widely distributed throughout the brain, and the number of neurons containing nuclear inclusions increases with age in both the striatum and cortex. Morphological alterations include decreased numbers of MSNs and striatal volume loss.
Both CAG140 and Q175 mice have been used to study synaptic changes caused by mHTT. Within the striatum, there is a decrease in burst firing in CAG140 KI mice, consistent with decreases in EPSCs and increases in IPSCs, much like those found in R6/2 mice. The cortex of CAG140 mice shows increased EPSC frequency and decreased synchrony. Donzis et al. (2020) used two-photon laser-scanning microscopy on symptomatic Q175 mice to study network circuitry in the motor cortical neurons and found that calcium transients had reduced amplitude, suggesting decreased bursting activity. In contrast, in pre-symptomatic Q175 mice, neuronal activity was increased, consistent with a switch in activity of these neurons over time.

Electrophysiological studies have shown that spontaneous GABAergic currents in striatal MSNs are increased in symptomatic Q175 mice because of alterations in glutamatergic inputs from the cortex and thalamus. Significant decreases in spine density of MSNs were found in Q175 mice. The increase in frequency of IPSCs combined with the decrease in frequency of EPSCs generate an imbalance in the ratio of inhibition to excitation, which is relevant for understanding phenotype progression.

This notion is supported by evidence that shows a decline in the glutamate-to-GABA ratio measured by high-performance liquid chromatography in 6-month-old Q175 mice. Striatal interneurons—both persistent, low threshold-spiking somatostatin-expressing interneurons and fast-firing PV-expressing interneurons—are principal sources of the rise in inhibition seen in MSNs in the R6/2 and BACHD models. Loss of excitatory inputs to MSNs, which seem to be associated with loss of dendritic spines and increased inhibitory inputs to MSNs, is exhibited by the Q175 mice.

Studies in R6/2 mice showed that in addition to an alteration of striatal MSN properties, there were changes in output regions of MSNs that may contribute to the pathophysiology of HD. Similarly, Atherton et al. showed that in Q175 mice, STN neurons have altered synaptic properties indicative of dysfunction and degeneration. The STN is a critical component of the direct and indirect MSNs output pathways and is critical for constraining cortico-striatal activity underlying action selection. In Q175 mice, autonomous STN activity is impaired because of activation of KATP channels. STN neurons exhibit prolonged NMDA receptor–mediated synaptic currents due to deficient glutamate uptake, which can be rescued by NMDA receptor antagonism. At 12 months of age, about 30% of STN neurons are lost in these mice. The STN dysfunction and neuronal loss precede striatal cell death and corticostriatal abnormalities and occur prior to the onset of major behavioral symptoms. Thus, dysfunction and degeneration of cortical and striatal neurons occur in concert with profound changes in other elements of the basal ganglia. Dysfunction within the STN is an early HD feature that may contribute to its expression and course.

Interestingly, the availability of KI mouse models with a large range of CAG repeats (50, 92, 111, 140, 150, and 175 CAG repeats) has facilitated studies to establish the relationship between CAG repeat length and the changes in behavior and brain transcription that are linked to the progression of pathogenesis. Similarly, Ament et al. (2017) used KI mice with different CAG repeats to begin to understand the molecular basis of CAG repeat instability in the striatum linked to neurodegeneration. Others have also used the KI mice to investigate the role of epigenetic changes that contribute to chromatin remodeling and DNA repair alterations in HD.

Conclusions
The development of in vivo animal models of HD has greatly added to our understanding of the biology of HD and the molecular and cellular pathways that drive pathogenesis. One issue to consider in the different mouse models is the different forms of mHTT expressed in each. Those with fragments, such as the R6/2 mouse, may produce exaggerated phenotypes and, because the expressed protein lacks downstream regulatory sites, may lack the full range of mutant HTT gene and protein–protein interactions. Although the BACHD model has provided important information on structural aspects of the mHTT protein that impact disease behaviors such as locomotion and anxiety, this model is unusual in that the mice gain excessive weight whereas most patients with HD generally have greatly reduced weight. Similarly, the YAC128 mice which express full-length human mHTT also exhibit weight gain. This anomaly may be unrelated to CAG repeat length and has been proposed to be due to the impact of HTT on the expression of IgF-1. In the KI model, the expanded human CAG repeats and human exon 1 are inserted into the mouse Htt locus, so a chimera of the full-length mouse protein with the N-terminal human portion is expressed. Many aspects of the pathology and behavioral deficits in the Q140 KI mouse and the spontaneously expanded Q175 KI mouse mimic disease characteristics found in patients with HD, and importantly those phenotypes are robust. Accordingly, some have proposed that these mice may be preferable models of the disease.

The best model is the one that is the most predictive of human disease. Unfortunately, animal models for most human neurodegenerative diseases have historically been poor at predicting which therapeutics are most likely to work in humans. However, as our understanding of the disease mechanisms of HD advances, so will the design of animal models to discover and test innovative therapeutics that may be translated into treatment to slow the onset and progression of HD.

Acknowledgments
We would like to thank Dr. Katy Claiborn (Gladstone Institute, CA), Giovanni Maki (Gladstone Institute, CA), and Dr. Marie-Francoise Chesselet (Emeritus Professor at UCLA, CA) and all members of the Finkbeiner lab.
References

1. MacDonald ME, Amyrose CM, Duyao MP, et al.: A novel gene containing a trinucleotide repeat that is expanded and unstable on Huntington's disease chromosomes. Cell. 1993;72(6):971–83. PubMed Abstract | Publisher Full Text
2. Vonsattel JP, DiFiglia M: Huntington disease. J Neuropathol Exp Neurol. 1998;57(9):369–84. PubMed Abstract | Publisher Full Text
3. DiFiglia M, Sapp E, Chase K, et al.: Huntington is a cytoplasmic protein associated with vesicles in human and rat brain neurons. Neuro. 1995;14(5):1075–81. PubMed Abstract | Publisher Full Text
4. Bean L, Baynak-Toydemir P: American College of Medical Genetics and Genomics Standards and Guidelines for Clinical Genetics Laboratories, 2014 edition: Technical standards and guidelines for Huntington disease. Genet Med. 2014;16(13):e2. PubMed Abstract | Publisher Full Text
5. Brookebank D, Gayen J, Andrews JM, et al.: Repeat instability in the 27-39 CAG range of the HD allele in the Venezuelan Huntington's disease mutation. Hum Mol Genet. 1997;6(5):775–8. PubMed Abstract | Publisher Full Text
6. Snell RG, MacMillan JC, Cheadle JP, et al.: Relationship between trinucleotide repeat expansion and phenotypic variation in Huntington's disease. Nat Genet. 1993;4(4):393–7. PubMed Abstract | Publisher Full Text
7. Andrew SE, Goldberg YP, Kremer B, et al.: The relationship between trinucleotide (CAG) repeat length and clinical features of Huntington's disease. Nat Genet. 1993;4(4):398–403. PubMed Abstract | Publisher Full Text
8. Wesler NS, Lorimer J, Porter J, et al.: Venezuelan kindreds reveal that genetic and environmental factors modulate Huntington's disease's age of onset. Proc Natl Acad Sci U S A. 2004;101(10):3498–503. PubMed Abstract | Publisher Full Text | Free Full Text
9. Gayen J, Brookebank D, Andrews JM, et al.: Genomewide linkage scan reveals novel loci modifying age of onset of Huntington's disease in the Venezuelan HD kindreds. Genet Epidemiol. 2008;32(5):445–53. PubMed Abstract | Publisher Full Text
10. Moss DH, Parikh AS, Langbehn D, et al.: Identification of genetic variants associated with Huntington's disease progression: A genome-wide association study. Lancet Neurol. 2017;16(8):701–11. PubMed Abstract | Publisher Full Text
11. Genetic Modifiers of Huntington's Disease (Gm-HD) Consortium: Identification of Genetic Factors that Modulate Clinical Onset of Huntington's Disease. Cell. 2015;162(3):516–26. PubMed Abstract | Publisher Full Text | Free Full Text | Faculty Opinions Recommendation
12. Gozal R, Flower M, Moss DH, et al.: FAN1 modifies Huntington's disease progression by stabilizing the expanded HTT CAG repeat. Hum Mol Genet. 2019;28(4):650–61. PubMed Abstract | Publisher Full Text | Free Full Text | Faculty Opinions Recommendation
13. Anderson KE, Marder KS: An overview of psychotic symptoms in Huntington's disease. Curr Psychiatry Rep. 2001;3(5):379–88. PubMed Abstract | Publisher Full Text
14. Pavli RA, Bottiri A, Girommeda A, et al.: Neurosurgical Burden in Huntington's Disease. Neurosurg Focus. 2011;30(1):E5. PubMed Abstract | Publisher Full Text | Free Full Text
15. Garber RG, Fishberg RC, Mark RJ: Body weights: Counseling implications. Am J Med Genet B Neuropsychiatr Genet. 2009;150B(3):425–9. PubMed Abstract | Publisher Full Text | Free Full Text
16. McNeil SM, Noveletto A, Srinidi J, et al.: Reduced penetrance of the Huntington's disease mutation. Hum Mol Genet. 1997;6(5):775–8. PubMed Abstract | Publisher Full Text
17. Greenberg, J: Huntington's disease: From molecular pathology to clinical treatment. Lancet. 2011;378(9786):83–89. PubMed Abstract | Publisher Full Text
18. Morton AJ, Wood NI, Hastings MH, et al.: Disintegration of the sleep-wake cycle and circadian timing in Huntington's disease. J Neuropathol Exp Neurol. 2005;64(5):157–63. PubMed Abstract | Publisher Full Text | Free Full Text
19. Myers RH: Huntington's disease genetics. NeuroRX. 2004;1(2):255–62. PubMed Abstract | Publisher Full Text | Free Full Text
20. Ross RA: Huntington's disease: A clinical review, Orphanet J Rare Dis. 2010;5:40. PubMed Abstract | Publisher Full Text | Free Full Text
21. Grossman AR: Functional anatomy of movement disorders. J Neurol. 2000;196(4):519–25. PubMed Abstract | Publisher Full Text | Free Full Text
22. Graybiel AM, Ascaso T, Fahnerty AW, et al.: The basal ganglia and adaptive motor control. Science. 1994;265(5180):1826–31. PubMed Abstract | Publisher Full Text
23. Walker FO: Huntington's Disease. Semin Neurol. 2007;27(2):143–50. PubMed Abstract | Publisher Full Text
24. Cepeda C, Hurst RB, Calvert CR, et al.: Transient and Progressive Electrophysiological Alterations in the Corticostriatal Pathway in a Mouse Model of Huntington's Disease. J Neurosci. 2003;23(9):961–9. PubMed Abstract | Publisher Full Text | Free Full Text
25. DiSoprosa NA, Chen EY, Charles V, et al.: Early changes in Huntington's disease patient brains involve alterations in cytoskeletal and synaptic elements. J Neurocytol. 2004;33(5):517–33. PubMed Abstract | Publisher Full Text | Free Full Text
26. Andre VM, Cepeda C, Venegas A, et al.: Altered cortical glutamate receptor function in the R6/2 model of Huntington's disease. J Neuropsychol. 2006;95(4):2128–19. PubMed Abstract | Publisher Full Text
27. Graham RK, Pouladi MA, Joshi P, et al.: Differential susceptibility to excitoxict stress in YAC128 mouse models of Huntington disease between initiation and progression of disease. J Neurosci. 2009;29(7):2193–204. PubMed Abstract | Publisher Full Text | Free Full Text
28. Joshi PR, Wu NP, Andre VM, et al.: Age-dependent alterations of corticostriatal activity in the YAC128 mouse model of Huntington disease. J Neurosci. 2009;29(8):2414–27. PubMed Abstract | Publisher Full Text | Free Full Text
29. Minnerwood AJ, Giadding CM, Pouladi MA, et al.: Early increase in extrasynaptic NMDA receptor signaling and expression contributes to phenotype onset in Huntington's disease mice. Neuro. 2010;82(5):178–90. PubMed Abstract | Publisher Full Text | Faculty Opinions Recommendation
30. Kipps CM, Duggins AJ, Mahant N, et al.: Progression of structural neuropathology in preclinical Huntington's disease: A tensor based morphometry study. J Neurol Neurosurg Psychiatry. 2005;76(3):650–5. PubMed Abstract | Publisher Full Text | Free Full Text
31. Starling AJ, Andre VM, Cepeda C, et al.: Alterations in N-methyl-D-aspartate receptor sensitivity and magnesium blockade occur early in development in the R6/2 mouse model of Huntington disease. J Neurosci Res. 2009;87(3):377–88. PubMed Abstract | Publisher Full Text | Free Full Text
32. de La Monte SM, Vonsattel JP, Richardson EP Jr: Morphometric demonstration of atrophic changes in the cerebral cortex, white matter, and neostriatum in Huntington's disease. J Neuropathol Exp Neurol. 1988;47(5):516–25. PubMed Abstract | Publisher Full Text
33. Ferrante RJ, Kowal NW, Richardson EP Jr: Proliferative and degenerative changes in striatal spiny neurons in Huntington's disease: A combined study using the section-Golgi method and calbindin D28k immunocytochemistry. J Neurol Neurosurg Psychiatry. 1991;51(12):367–77. PubMed Abstract | Publisher Full Text | Free Full Text
34. Klapstein GJ, Fisher RB, Zanhan J, et al.: Electrophysiological and morphological changes in striatal spiny neurons in R6/2 Huntington's disease transgenic mice. J Neurosci. 2001;21(6):25–37. PubMed Abstract | Publisher Full Text
35. Latoret GA, Sapp E, Chase K, et al.: Changes in Cortical and Striatal Neurons Predict Behavioral and Electrophysiological Abnormalities in a Transgenic Murine Model of Huntington's Disease. J Neurosci. 2001;21(23):9112–23. PubMed Abstract | Publisher Full Text | Free Full Text
36. Marco S, Giralt A, Petrovic MM, et al.: Suppressing aberrant GluNA expression rescues synaptic and behavioral impairments in Huntington's disease models. Nat Med. 2013;19(8):1030–8. PubMed Abstract | Publisher Full Text | Free Full Text
37. Spires TL, Groze HE, Gerry S, et al.: Dendritic spine pathology and deficits in experience-dependent dendritic plasticity in R6/1 Huntington's disease transgenic mice. J Neurosci. 2001;21(6):2577–77. PubMed Abstract | Publisher Full Text
38. Wu J, Rykamp DA, Lian X, et al.: Enhanced Store-Operated Calcium Entry Leads to Striatal Synaptic Loss in a Huntington's Disease Mouse Model. J Neurosci. 2016;36(1):125–31. PubMed Abstract | Publisher Full Text | Free Full Text
39. Cepeda C, Wu N, Andre VM, et al.: The corticostriatal pathway in Huntington's disease. Prog Neurobiol. 2007;81(5–6):253–71. PubMed Abstract | Publisher Full Text | Free Full Text
40. Tan B, Shishgaf R, Poudel GR, et al.: Cortical morphometry and neural dysfunction in Huntington's disease: A review. Eur J Neurosci. 2021;28(4):1406–19. PubMed Abstract | Publisher Full Text | Faculty Opinions Recommendation
41. Langley C, Gregory S, Osborne-Crowley K, et al.: Fronto-striatal circuits for cognitive flexibility in far from onset Huntington's disease: Evidence from the Young Adult Study. J Neurol Neurosurg Psychiatry. 2001;70(2):143–9. PubMed Abstract | Publisher Full Text | Free Full Text | Faculty Opinions Recommendation
42. André VM, Cepeda C, Fisher YE, et al.: Differential electrophysiological changes in striatal output neurons in Huntington’s disease. J Neurosci. 2011; 31(4): 1170–82.

43. Wong N, Gray M, Lu KH, et al.: Neuronal targets for reducing mutant huntingtin expression to ameliorate disease in a mouse model of Huntington’s disease. Nat Med. 2014; 20(5): 536–41.

44. Rosas HD, Koroshetz WJ, Chen YI, et al.: Evidence for more widespread cerebral pathology in early HD: An MRI-based morphometric analysis. Neurology. 2000; 60(10): 1615–20.

45. Cepeda C, Hevelone ND, Zelata AK, et al.: Regional cortical thinning in preclinical Huntington disease and its relationship to cognition. Neurology. 2000; 65(5): 745–7.

46. Rosas HD, Tuch DS, Hevelone ND, et al.: Diffusion tensor imaging in presymptomatic and early Huntington’s disease: Selective white matter pathology and its relationship to motor measures. Ann Neurol. 2006; 21(9): 1317–25.

47. Estrada-Sánchez AM, Rebec GV: Role of cerebral cortex in the neuropathology of Huntington’s disease. Front Neural Circuits. 2013; 7: 19.

48. Reiner A, Albin RL, Anderson KD, et al.: Differential loss of striatal projection neurons in Huntington disease. Proc Natl Acad Sci U S A. 1998; 85(15): 5733–7.

49. Reiner A, Albin RL, Anderson KD, et al.: Preferential loss of striato-external pallidal projection neurons in presymptomatic Huntington’s disease. Ann Neurol. 1992; 31(4): 425–30.

50. Gerfen CR: Striatal axons project to the ventral pallidum. Science. 1996; 270(5268): 1429–32.

51. Kravitz AV, Freeze BS, Parker PRL, et al.: Regulation of parkinsonian motor behaviours by dopaminergic control of basal ganglia circuitry. Nature. 2010; 466(7306): 622–4.

52. Cepeda C, Murphy KPS, Parent M, et al.: The role of dopamine in Huntington’s disease. Prog Brain Res. 2014; 211: 235–54.

53. Bozzi Y, Bories C: Dopamine in neurotoxicity and neuroprotection: What do D2 receptors have to do with it? Trends Neurosci. 2000; 23(4): 167–74.

54. Cepeda C, Calvert CR, et al.: Dopaminergic modulation of NMDA-induced whole cell currents in neostriatal neurons in slices: Contribution of calcium conductances. J Neurophysiol. 1998; 79(1): 82–94.

55. Wang N, Chen Q, Wang X, et al.: Dysregulation of mitochondrial calcium signaling and superoxide flashes cause mitochondrial genomic DNA damage in Huntington disease. J Biol Chem. 2013; 288(5): 3070–84.

56. Tang YL, Chen X, Liu J, et al.: Dopaminergic signaling and striatal neurodegeneration in Huntington’s disease. J Neurosci. 2007; 27(30): 7899–910.

57. Pizzi P, Vila I, Réi M, et al.: Dopaminergic and glutamatergic signalling crosstalk in Huntington’s disease neurodegeneration: The role of the p53/cyclin-dependent kinase 5. J Neurosci. 2008; 28(40): 10090–101.

58. Barri J, Akopian G, Cepeda C, et al.: Striatal Direct and Indirect Pathway dysfunction induced by mutated huntingtin in vivo. Neurobiol Dis. 2008; 29(1): 22–9.
123. Spannepanto J, Gu X, Yang XW, et al.: Progressive synaptic pathology of motor cortical neurons in a BAC transgenic mouse model of Huntington's disease. Neuroscience. 2008; 157(3): 606–20.

124. Estrada-Sánchez AM, Burroughs CL, Cavaliere S, et al.: Cortical efferents lacking mutant huntingtin improve striatal neuronal activity and behavior in a conditional mouse model of Huntington's disease. J Neurosci. 2015; 35(10): 4440–51.

125. Wood TE, Barry J, Yang Z, et al.: Mutant huntingtin reduction in astrocytes slows disease progression in the BACHD conditional Huntington's disease mouse model. Hum Mol Genet. 2019; 28(3): 487–500.

126. Menalled LB: Knock-in mouse models of Huntington's disease. NeuroRx. 2005; 2(3): 465–70.

127. Hickey MA, Chesselet MF: Apoptosis in Huntington's disease. Prog Neuro-psychopharmacol Biol Psychiatry. 2003; 27(2): 255–65.

128. Menalled LB, Sison JD, Dragatiss I, et al.: Time course of early motor and neuropathological anomalies in a knock-in mouse model of Huntington's disease with 140 CAG repeats. J Comp Neurol. 2003; 461(1): 11–26.

129. Lin CH, Tallaksen-Greene S, Chien WM, et al.: Neurological abnormalities in a knock-in mouse model of Huntington's disease. Hum Mol Genet. 2001; 10(2): 137–44.

130. Menalled LB, Kudwa AE, Miller S, et al.: Comprehensive behavioral and molecular characterization of a new knock-in mouse model of Huntington's disease. PLoS One. 2012; 7(12): e49388.

131. Heng MY, Tallaksen-Greene SJ, Detofio PJ, et al.: Longitudinal evaluation of the Hdh(CAG)150 knock-in murine model of Huntington's disease. J Neurosci. 2007; 27(34): 8989–98.

132. Brooks SP, Betteridge H, Trueman RC, et al.: Selective extra-dimensional set shifting deficit in a knock-in mouse model of Huntington's disease. Brain Res Bull. 2006; 69(4): 452–7.

133. Franch NR, Hickey MA, Zhu C, et al.: Phenotype onset in Huntington's disease knock-in mice is correlated with the incomplete splicing of the mutant huntingtin gene. J Neurosci Res. 2019; 97(12): 1590–600.

134. Peng Q, Wu B, Jiang M, et al.: Characterization of Behavioral, Neuropathological, Brain Metabolic and Key Molecular Changes in zQ175 Knock-In Mouse Model of Huntington's Disease. PLoS One. 2016; 11(2): e0148839.

135. Dorné JL, Miller BR, Barton SJ, et al.: Sex differences in behavior and striatal ascorbate release in the 140 CAG knock-in mouse model of Huntington's disease. Behav Brain Res. 2007; 178(1): 90–7.

136. Rising AC, Xu J, Carlson A, et al.: Longitudinal behavioral, cross-sectional transcriptional and histopathological characterization of a knock-in mouse model of Huntington’s disease with 140 CAG repeats. Exp Neurol. 2011; 228(2): 173–82.

137. Lerner RP, Trejo Martinez LC, DCG, Zhu C, et al.: Striatal atrophy and dendritic alterations in a knock-in mouse model of Huntington's disease. Brain Res Bull. 2012; 87(6): 571–8.

138. Deng WP, Yong T, Bricker-Anderson C, et al.: Loss of corticostral and thalamostriatal synaptic terminals precedes striatal projection neuron pathology in heterozygous Q140 Huntington's disease mice. Neurobiol Dis. 2013; 60: 89–107.

139. Lazard SE, Goodman AOQ, Grote HE, et al.: Olfactory abnormalities in Huntington's disease: Decreased plasticity in the primary olfactory cortex of R6/1 transgenic mice and reduced olfactory discrimination in patients. Brain Res. 2007; 1151: 219–26.

140. Dykema PW, Moberg PJ, Doty RL, et al.: Odor identification in Huntington's disease patients and asymptomatic gene carriers. J Neuropsychiatry Clin Neurosci. 1997; 9(4): 598–600.

141. Smith GA, Rocha EM, McLean JR, et al.: Progressive axonal transport and synaptic protein changes correlate with behavioral and neuropathological abnormalities in the heterozygous Q175 KI mouse model of Huntington's disease. Hum Mol Genet. 2014; 23(17): 4510–27.

142. Miller BR, Walker AG, Shah AS, et al.: Dysregulated information processing by medium spiny neurons in striatum of freely behaving mouse models of Huntington's disease. J Neurophysiol. 2008; 100(4): 2205–16.

143. Miller J, Arrastae M, Brooks E, et al.: Identifying polyglutamine protein species in situ that best predict neurodegeneration. Nat Chem Biol. 2011; 7(15): 925–34.

144. Kolodziejczyk JK, Raymond LA: Differential changes in thalamic and cortical excitatory synapses onto striatal spiny projection neurons in a Huntington disease mouse model. Neurobiol Dis. 2016; 86: 62–74.

145. Atherton JF, McLver EL, Muller MF, et al.: Early dysfunction and progressive degeneration of the subthalamic nucleus in mouse models of Huntington's disease. eLife. 2016; 5: e21616.

146. Miller BR, Rezposyanov I: Corticostriatal circuit dysfunction in Huntington's disease: Interaction of glutamate, dopamine and calcium. Future Neurosci. 2010; 5(5): 735–56.

147. Pancani T, Foster DJ, Moehle MS, et al.: Allosteric activation of M4 muscarinic receptors improve behavioral and physiological alterations in early symptomatic YAC128 mice. Proc Natl Acad Sci U S A. 2015; 112(45): 14078–83.

148. Al-Gharaiba A, Culver R, Stewart AN, et al.: Induced Pluripotent Stem Cell-Derived Neural Stem Cell Transplantations Reduced Behavioral Deficits and Ameliorated Neuropathological Changes in YAC128 Mouse Model of Huntington's Disease. Front Neurosci. 2011; 5: 62–8.

149. Dey ND, Bombard MC, Roland BP, et al.: Genetically engineered mesencephal stem cells reduce behavioral deficits in the YAC 128 mouse model of Huntington's disease. Behav Brain Res. 2010; 214(2): 193–200.

150. Serrano-Sanchez JA, Lera-Navarro A, Dorado-Garcia C, et al.: Contribution of individual and environmental factors to physical activity level among Spanish adults. PLoS One. 2012; 7(6): e36963.

151. Pollock K, Dahlenburg H, Nelson H, et al.: Human Mesencephal Stem Cells Genetically Engineered to Overexpress Brain-derived Neurotrophic Factor Improve Outcomes in Huntington's Disease Mouse Models. Mol Ther. 2016; 24(5): 965–77.

152. Gray M: Astrocytes in Huntington's Disease. Adv Exp Med Biol. 2019; 1175: 365–81.

153. Nicnioicail B, Hanaidsson B, Hansson O, et al.: Altered striatal amino acid neurotransmitter release monitored using microdialysis in R6/1 Huntington transgenic mice. Eur J Neurosci. 2001; 13(1): 206–10.

154. Katter IH, Zahed H, Lau A, et al.: Serine 421 regulates mutant huntingtin toxicity and clearance in mouse models. J Clin Invest. 2016; 126(5): 3685–97.

155. Zala D, Colin E, Rangone H, et al.: Phosphorylation of mutant huntingtin at S421 restores anterograde and retrograde transport in neurons. Hum Mol Genet. 2008; 17(24): 3837–46.

156. Wheeler VC, Auerbach W, White JK, et al.: Length-dependent gametic CAG repeat instability in the Huntington's disease knock-in mouse. Hum Mol Genet. 1999; 8(1): 115–22.

157. Wheeler VC, White JK, Gutkunst CA, et al.: Long glutamine tracts cause nuclear localization of medium spiny striatal neurons in HdhQ65 and HdhQ111 knock-in mice. Hum Mol Genet. 2000; 9(4): 503–13.

158. Menalled LB, Sison JD, Wu Y, et al.: Early Motor Dysfunction and Striosomal Distribution of Huntington Microaggregates in Huntington's Disease Knock-In Mice. J Neurosci. 2002; 22(18): 8206–76.

159. Kuhn A, Goldstein DR, Hodges A, et al.: Huntington's disease's effects on striatal gene expression in mice recapitulate changes observed in human Huntington's disease brain and do not differ with mutant huntingtin length or wild-type huntingtin dosage. Hum Mol Genet. 2007; 16(15): 1845–61.

160. Arnoux I, Willam M, Griesche N, et al.: Metformin reverses early cortical network dysfunction and behavior changes in Huntington's disease. eLife. 2018; 7: e38744.

Faculty Opinions Recommendation
162. Labuschagne I, Cassidy AM, Soahl RI, et al.: Visuospatial Processing Deficits Linked to Posterior Brain Regions in Premanifest and Early Stage Huntington’s Disease. J Int Neuropsychol Soc. 2016; 22(6): 595–608. PubMed Abstract | Publisher Full Text

163. Neudear A, Landles C, Ghosh R, et al.: The pathogenic exon 1 HTT protein is produced by incomplete splicing in Huntington’s disease patients. Sci Rep. 2017; 7(1): 1307. PubMed Abstract | Publisher Full Text | Free Full Text

164. Sathasivam K, Neudear A, Gipson TA, et al.: Aberrant splicing of HTT generates the pathogenic exon 1 protein in Huntington disease. Proc Natl Acad Sci U S A. 2013; 110(6): 2366–70. PubMed Abstract | Publisher Full Text | Free Full Text

165. Donzis EJ, Estrada-Sánchez AM, Indersmitten T, et al.: Cortical Network Dynamics Is Altered in Mouse Models of Huntington’s Disease. Cereb Cortex. 2020; 30(4): 2372–88. PubMed Abstract | Publisher Full Text | Free Full Text | Faculty Opinions Recommendation

166. Cepeda C, Galvañ L, Holley SM, et al.: Multiple sources of striatal inhibition are differentially affected in Huntington’s disease mouse models. J Neurosci. 2013; 33(17): 7385–406. PubMed Abstract | Publisher Full Text | Free Full Text | Faculty Opinions Recommendation

167. Oldenburg IA, Sabatini BL: Antagonistic but Not Symmetric Regulation of Primary Motor Cortex by Basal Ganglia Direct and Indirect Pathways. Neuron. 2015; 86(5): 1174–81. PubMed Abstract | Publisher Full Text | Free Full Text

168. Langfelder P, Cante JP, Chatzopoulou D, et al.: Integrated genomics and proteomics define huntingtin CAG length-dependent networks in mice. Nat Neurosci. 2016; 19(4): 623–33. PubMed Abstract | Publisher Full Text | Free Full Text

169. Alexandrov V, Brunner D, Menalled LB, et al.: Large-scale phenome analysis defines a behavioral signature for Huntington’s disease genotype in mice. Nat Biotechnol. 2016; 34(6): 838–44. PubMed Abstract | Publisher Full Text

170. Ament SA, Pearl JR, Grindeland A, et al.: High resolution time-course mapping of early transcriptomic, molecular and cellular phenotypes in Huntington’s disease CAG knock-in mice across multiple genetic backgrounds. Hum Mol Genet. 2017; 26(5): 913–22. PubMed Abstract | Publisher Full Text | Free Full Text

171. Alcalá-Vida R, Seguin J, Lotz C, et al.: Age-related and disease locus-specific mechanisms contribute to early remodelling of chromatin structure in Huntington’s disease mice. Nat Commun. 2021; 12(1): 364. PubMed Abstract | Publisher Full Text | Free Full Text | Faculty Opinions Recommendation

172. Morozko EL, Smith-Geater C, Monteys AM, et al.: PIAS1 modulates striatal transcription, DNA damage repair, and SUMOylation with relevance to Huntington’s disease. Proc Natl Acad Sci U S A. 2021; 118(4): e2021836118. PubMed Abstract | Publisher Full Text | Free Full Text | Faculty Opinions Recommendation

173. Masiuri T, Hung CLK, Suart C, et al.: DNA Repair in Huntington’s Disease and Spino cerebellar Ataxias: Somatic Instability and Alternative Hypotheses. J Huntington Dis. 2021; 10(1): 165–73. PubMed Abstract | Publisher Full Text | Free Full Text | Faculty Opinions Recommendation

174. Poullad MA, Xie Y, Skotte NH, et al.: Full-length huntingtin levels modulate body weight by influencing insulin-like growth factor 1 expression. Hum Mol Genet. 2010; 19(9): 1528–38. PubMed Abstract | Publisher Full Text | Free Full Text