ON NEARLY RADIAL PRODUCT FUNCTIONS

MICHAEL CHRIST

Abstract. If \(\|f\|_{L^2(\mathbb{R}^d)} = 1 \) and if the function \(f(x)f(y) \) is close in \(L^2 \) norm to a radially symmetric function of \((x, y) \) then \(f \) is close in \(L^2 \) norm to a centered Gaussian function. A quantitative form of this assertion is established.

1. Statement of principal result

It is well known that if \(f : \mathbb{R}^d \rightarrow \mathbb{C} \) then the function \((f \otimes f)(x, y) = f(x)f(y) \) with domain \(\mathbb{R}^d \times \mathbb{R}^d \) is radially symmetric if and only if \(f \) is a radial complex Gaussian function, by which mean a function \(G : \mathbb{R}^d \rightarrow \mathbb{C} \) of the form

\[
G(x) = ce^{-\gamma |x|^2}
\]

where \(c, \gamma \in \mathbb{C} \).

In this note we establish a quantitative version of this uniqueness statement.

Denote by \(G \subset L^2(\mathbb{R}^d) \) the set of all square integrable complex radial Gaussian functions. By a radially symmetric function Lebesgue measurable function we mean one of the form \(f(x) = h(|x|) \) almost everywhere. Denote by \(\mathcal{P} : L^2(\mathbb{R}^d \times \mathbb{R}^d) \rightarrow L^2(\mathbb{R}^d \times \mathbb{R}^d) \) the orthogonal projection onto the subspace of all radially symmetric \(L^2 \) functions. For \(f, g \in L^2(\mathbb{R}^d) \), denote by \(f \otimes g \in L^2(\mathbb{R}^d \times \mathbb{R}^d) \) the function

\[
(f \otimes g)(x, y) = f(x)g(y).
\]

Then for nonzero functions \(f, g \), \(\|\mathcal{P}(f \otimes g)\|_2 \leq \|f\|_2\|g\|_2 \) for all \(f, g \in L^2(\mathbb{R}^d) \), with equality if and only if \(f \) is a complex radial Gaussian and \(g \) is a scalar multiple of \(f \), up to redefinition on sets of Lebesgue measure zero.

\(L^2 \times L^2 \) denotes the Hilbert space of all ordered pairs of functions \((f, g) \) with both \(f, g \in L^2(\mathbb{R}^d) \), with norm squared

\[
\|(f, g)\|_2^2 = \|f\|_2^2 + \|g\|_2^2.
\]

Define \(\mathcal{G}^\times \subset \mathcal{G} \times \mathcal{G} \subset L^2(\mathbb{R}^d) \times L^2(\mathbb{R}^d) \) to be

\[
\mathcal{G}^\times = \{(F, cF) : F \in \mathcal{G} \text{ and } 0 \neq c \in \mathbb{C}\}.
\]

We regard \(L^2 \times L^2 \) as a Hilbert space with norm defined by \(\|(f, g)\|_2^2 = \|f\|_2^2 + \|g\|_2^2 \), of which \(\mathcal{G}^\times \) is a closed subspace. The distance squared in \(L^2(\mathbb{R}^d) \times L^2(\mathbb{R}^d) \) from \((f, g) \) to \(\mathcal{G}^\times \) is defined by

\[
\text{dist} ((f, g), \mathcal{G}^\times)^2 = \inf_{(F, cF) \in \mathcal{G}^\times} (\|f - F\|_2^2 + \|g - cF\|_2^2).
\]

Date: April 19, 2015.

Research supported by NSF grant DMS-1363324.
Theorem 1.1. For each $d \geq 1$ there exists $c_d > 0$ such that for all $(f, g) \in L^2(\mathbb{R}^d) \times L^2(\mathbb{R}^d)$ satisfying $\|f\|_2 = \|g\|_2 = 1$,

$$\|\mathbb{P}(f \otimes g)\|_2 \leq 1 - c_d \text{dist}((f, g), \mathcal{G}^\times)^2.$$

There exists $C_d < \infty$ such that whenever $0 \neq (f, g) \in L^2(\mathbb{R}^d) \times L^2(\mathbb{R}^d)$ satisfy $\|f\|_2 = \|g\|_2 = 1$,

$$\|\mathbb{P}(f \otimes g)\|_2 \leq 1 - \frac{d}{2(d+1)} \text{dist}((f, g), \mathcal{G}^\times)^2 + C_d \text{dist}((f, g), \mathcal{G}^\times)^3.$$

Other recent papers in which quantitative stability theorems in this spirit are proved, for other inequalities, include [1], [2], [3], [4], [5].

The author is indebted to Jonathan Bennett for posing the question, and for valuable conversations and correspondence.

2. Some notation

The notation $\|f\|$ with no subscript indicates the L^2 norm, over either \mathbb{R}^d or $\mathbb{R}^d \times \mathbb{R}^d$, and for functions taking values either in \mathbb{C} or in $\mathbb{C} \times \mathbb{C}$, with respect to Lebesgue measure.

For $r \in \mathbb{R}^+$, denote by σ_r the unique probability measure on $S_r = \{z \in \mathbb{R}^d \times \mathbb{R}^d : |z| = r\}$ that is invariant under rotations of $\mathbb{R}^{2d} = \mathbb{R}^d \times \mathbb{R}^d$. For $0 \neq z \in \mathbb{R}^d \times \mathbb{R}^d$,

$$\mathbb{P}(f \otimes g)(z) = \iint f(x)g(y) \, d\sigma_{|z|}(x, y).$$

Let $\omega_d \in \mathbb{R}^+$ denote the measure of the unit sphere in \mathbb{R}^{2d}. For each dimension $d \geq 1$, for any Lebesgue measurable subsets $A, B \subset \mathbb{R}^d$ with finite measures,

$$|A| \cdot |B| = |A \times B| = \omega_d \int_0^\infty \sigma_r(A \times B) \, r^{2d-1} \, dr$$

and

$$\mathbb{P}(1_A \otimes 1_B) = \omega_d \int_0^\infty \sigma_r(A \times B) \, r^{2d-1} \, dr.$$

For any $E \subset \mathbb{R}^+$, let $A_E = \{z \in \mathbb{R}^d : |z| \in E\}$. Then

$$\langle \mathbb{P}(1_A \otimes 1_B), 1_{A_E} \rangle = \omega_d \int_E \sigma_r(A \times B) \, r^{2d-1} \, dr.$$

For $E \subset \mathbb{R}^+$ define

$$\mu(E) = |A_E| = \omega_d \int_E r^{2d-1} \, dr.$$

3. Preliminary lemmas

The orthogonal projection \mathbb{P} is a bounded linear operator, indeed a contraction, from $L^2(\mathbb{R}^d) \times L^2(\mathbb{R}^d)$ to $L^2(\mathbb{R}^d \times \mathbb{R}^d)$. A stronger form of boundedness will be proved in this section. For $a = (a_1, a_2, a_3) \in (0, \infty)^3$ define

$$\Lambda(a_1, a_2, a_3) = \min_{i \neq j} \frac{a_i}{a_j}.$$
Lemma 3.1. There exists an exponent \(\gamma \in \mathbb{R}^+ \) with the following property. Let \(d \geq 1 \). There exists \(C < \infty \) such that for any Lebesgue measurable sets \(A, B \subset \mathbb{R}^d \) and \(A \subset \mathbb{R}^d \times \mathbb{R}^d \) with positive, finite measures, if \(A \) is radially symmetric then

\[
\mathbb{P}(1_A \otimes 1_B), 1_A) \leq C\Lambda(|A|, |B|, |A|^{1/2}) \gamma \cdot |A|^{1/2}|B|^{1/2}|A|^{1/2}.
\]

This will be a consequence of the next three lemmas. Since \((f, g) \mapsto f \otimes g \) is an isometry from \(L^2 \times L^2 \) into \(L^2 \), and \(\mathbb{P} \) is a contraction on \(L^2 \), one has \(\mathbb{P}(1_A \otimes 1_B), 1_A) \leq |A|^{1/2}|B|^{1/2}|A|^{1/2} \) for all Lebesgue measurable sets \(A, B \subset \mathbb{R}^d \) and \(A \subset \mathbb{R}^{d+2} \). Lemma 3.1 improves on this trivial bound, unless \(|A|, |B| \) are comparable and \(|A| \) is comparable to \(|A| \cdot |B| \).

Lemma 3.2. \(\sigma_r(A \times B) \leq C \min(1, r^{-d}|A|, r^{-d}|B|)^{1/2} \).

Proof. \(\sigma_r(A \times B) = \sigma(r^{-1}A \times r^{-1}B) \) where \(tE = \{ tx : x \in E \} \). Since \(|r^{-1}E| = r^{-d}|E| \) for \(E \subset \mathbb{R}^d \), it suffices to treat the case \(r = 1 \). It also suffices to treat the case in which \(|A| \leq |B| \). Thus it suffices to show that \(\sigma(A \times \mathbb{R}^d) \leq C|A|^{1/2} \) for any Lebesgue measurable set \(A \subset \mathbb{R}^d \) satisfying \(|A| \leq 1 \).

One has

\[
\sigma(A \times \mathbb{R}^d) = c_d \int_A (1 - |x|^2)^{(d-2)/2} dx.
\]

This gives \(\sigma(A \times \mathbb{R}^d) \leq c|A|^{1/2} \) for \(d = 1 \), and \(\leq C_d|A|^{1} \) for \(d \geq 2 \). \(\square \)

Lemma 3.3. Let \(d \geq 1 \). There exists \(C_d < \infty \) such that for any Lebesgue measurable sets \(A, B \subset \mathbb{R}^d \) with positive, finite measures,

\[
\int_0^\infty \sigma_r(A \times B)^2 r^{2d-1} dr \leq C_d \min(|A|/|B|, |B|/|A|)^{1/5} \cdot |A| \cdot |B|.
\]

Proof. Assume without loss of generality that \(|A| \leq |B| \). Define \(\rho \) by

\[
\rho^d = |A|^{3/5}|B|^{2/5}.
\]

Then

\[
\int_0^\infty \sigma_r(A \times B)^2 r^{2d-1} dr \leq \int_0^{\rho} r^{2d-1} dr + \int_{\rho}^\infty (r^{-d}|A|)^{1/2} \sigma_r(A \times B) r^{2d-1} dr
\]

\[
\leq \rho^{2d} + \rho^{-d/2} |A|^{1/2} \int_0^\infty \sigma_r(A \times B) r^{2d-1} dr
\]

\[
\leq \rho^{2d} + \rho^{-d/2} |A|^{1/2} \cdot |A| \cdot |B|
\]

\[
= 2|A|^{6/5}|B|^{4/5}.
\]

\(\square \)

Lemma 3.4. For any dimension \(d \geq 1 \) there exists \(C_d < \infty \) such that for any Lebesgue measurable sets \(A, B \subset \mathbb{R}^d \) and any radially symmetric Lebesgue measurable set \(A \subset \mathbb{R}^{d+2} \),

\[
\mathbb{P}(1_A \otimes 1_B), 1_A) \leq C_d \min \left(\frac{|A| \cdot |B|}{|A|}, \frac{|A|}{|A| \cdot |B|} \right)^{1/6} |A|^{1/2}|B|^{1/2}|A|^{1/2}.
\]
Corollary 3.5. Let \(A = A_E \) where \(E \subset \mathbb{R}^+ \). Then \(|A| = \mu(E) \) where the measure \(\mu \) is as defined in (2.6). We already know that

\[
\int_E \sigma_r(A \times B) r^{2d-1} dr \leq \int_{\mathbb{R}^d} \sigma_r(A \times B) r^{2d-1} dr = \omega_d^{-1} |A| \cdot |B| \\
\leq C(\mu(E))^{-1/2} \cdot |A|^{1/2} |B|^{1/2} \mu(E)^{1/2}.
\]

This provides a stronger upper bound than stated when \(\mu(E) \geq |A| \cdot |B| \).

Assume without loss of generality that \(|A| \leq |B| \). Set \(E^- = \{ r \in E : r \leq |A|^{1/d} \} \) and \(E^+ = E \setminus E^- \).

\[
\int_E \sigma_r(A \times B) r^{2d-1} dr \leq C \int_E \min(1, r^{-d/2} |A|^{1/2}) r^{2d-1} dr \\
\leq C |A|^{1/2} \int_{E^+} r^{-d/2} r^{2d-1} dr + C \int_{E^-} r^{2d-1} dr \\
= C |A|^{1/2} \int_{|A|^{1/d}} \infty 1_E(r) r^{-d/2} r^{2d-1} dr + C' \mu(E^-)
\]

Apply Hölder’s inequality with exponents \(3 \) and \(\frac{3}{2} \) to obtain

\[
\int_{|A|^{1/d}} \infty 1_E(r) r^{-d/2} r^{2d-1} dr \leq \left(\int_{|A|^{1/d}} \infty r^{-3d/2} r^{2d-1} dr \right)^{1/3} \left(\int_E r^{2d-1} dr \right)^{2/3} \\
= C |A|^{1/6} \mu(E)^{2/3}
\]

where \(C < \infty \) depends only on the dimension \(d \). If \(\mu(E) \leq |A| \cdot |B| \) we have shown that

\[
(3.5) \quad \int_E \sigma_r(A \times B) r^{2d-1} dr \leq C |A|^{2/3} \mu(E)^{2/3} + C \mu(E) \\
\leq C |A|^{1/3} |B|^{1/3} \mu(E)^{2/3} = (\mu(E) / |A| \cdot |B|)^{1/6} \cdot |A|^{1/2} |B|^{1/2} \mu(E)^{1/2}.
\]

Lemma 3.3 is a straightforward combination of Lemmas 3.3 and 3.4.

Denote by \(L^{p,q} \) the Lorentz spaces, as defined in [7]. The next result is a simple consequence of Lemma 3.4.

Corollary 3.5. For any dimension \(d \geq 1 \) there exists a constant \(C < \infty \) such that for all \(f, g \in L^2(\mathbb{R}^d) \),

\[
(3.6) \quad \| P(f \otimes g) \| \leq C \| f \|_{L^{2,4}} \| g \|_{L^{2,4}}.
\]

The space \(L^{2,4} \) is strictly larger than \(L^2 \), so this strengthens the \(L^2 \otimes L^2 \to L^2 \) boundedness of \(P \).

4. Compactness

In this section we establish a preliminary, nonquantitative formulation of Theorem 1.1. Although this formulation is entirely superseded by the final result, its proof is an essential part of the reasoning.

Proposition 4.1. Let \(d \geq 1 \). For every \(\varepsilon > 0 \) there exists \(\delta > 0 \) such that for any \(0 \neq f, g \in L^2(\mathbb{R}^d) \),

\[
(4.1) \quad \| P(f \otimes g) \| \geq (1 - \delta) \| f \| \| g \| \quad \implies \quad \text{dist} (f, \mathcal{G}) \leq \varepsilon \| f \|.
\]
The proof involves a compactness argument and consequently yields no control over the
dependence of \(\delta \) on \(\varepsilon \).

The hypotheses are unchanged under interchange of \(f \) with \(g \), so likewise dist \((g, \mathcal{G})\) \(\leq \varepsilon ||g|| \). A stronger conclusion holds, and will be proved below: There exist a common element \(G \in \mathcal{G} \) and scalars \(a, b \in \mathbb{C} \) such that both \(||f - aG|| < \varepsilon ||f|| \) and \(||g - bG|| < \varepsilon ||g|| \).

Proposition \([1.1]\) together with the second conclusion of Theorem \([1.1]\) implies the first conclusion \([1.5]\); the second conclusion \([1.6]\) will be proved in \([6]\) and \([6]\).

An important property of the inequality \(||P(f \otimes g)|| \leq ||f||||g|| \) is its dilation-invariance. Thus if \(\rho \in \mathbb{R}^+ \) and \(f, g \in L^2(\mathbb{R}^d) \) then the dilated functions \(\tilde{f}(x) = f(\rho x) \) and \(\tilde{g}(x) = g(\rho x) \) satisfy

\[
(4.2) \quad \frac{||P(f \otimes g)||}{||f||||g||} = \frac{||P(\tilde{f} \otimes \tilde{g})||}{||\tilde{f}||||\tilde{g}||}.
\]

Lemma 4.2. Let \(d \geq 1 \). There exists a continuous function \(\Theta : \mathbb{R}^+ \to \mathbb{R}^+ \) satisfying

\[
\lim_{t \to 0} \Theta(t) = 0
\]

with the following property. For any \(\delta > 0 \), \(t \in (0, 1] \), and any \(f, g \in L^2(\mathbb{R}^d) \) that satisfy \(||P(f \otimes g)|| \geq (1 - \delta)||f||||g|| \), there exists \(\rho \in \mathbb{R}^+ \) such that the modified function \(f^*(x) = \rho^{d/2} f(\rho x) \) satisfies

\[
(4.3) \quad \int_{|f^*(x)| \geq t^{-1} ||f||} |f^*(x)|^2 \, dx \leq \Theta(t + \delta) ||f^*||^2
\]

\[
(4.4) \quad \int_{|f^*(x)| \leq t ||f||} |f^*(x)|^2 \, dx \leq \Theta(t + \delta) ||f^*||^2
\]

\[
(4.5) \quad \int_{|x| \geq t^{-1}} |f^*(x)|^2 \, dx \leq \Theta(t + \delta) ||f^*||^2
\]

\[
(4.6) \quad \int_{|x| \leq t} |f^*(x)|^2 \, dx \leq \Theta(t + \delta) ||f^*||^2.
\]

Moreover, the same conclusions hold with \(f, f^* \) replaced by \(g, g^* \) respectively, where \(g^*(x) = \rho^{d/2} g(\rho x) \) with the same value of \(\rho \) as for \(f \).

Proof. We may assume throughout that \(\delta \leq \delta_0(d) \) where \(\delta_0(d) \) is positive but may be chosen as small as desired. By multiplying \(f, g \) independently by positive constants we may assume without loss of generality that \(||f|| = ||g|| = 1 \). The existence of \(\rho \) for which the first two conclusions hold simultaneously for \(f \) and for \(g \), follows from Lemma \([3.1]\) via the reasoning in \([3]\).

By dilation invariance of the inequality, we may replace \(f \) by \(f^*(x) = \rho^{d/2} f(\rho x) \) and \(g \) by \(g^*(x) = \rho^{d/2} g(\rho x) \) without affecting the hypotheses. Therefore \(\rho \) may be taken to equal \(1 \) henceforth. The fourth conclusion for \(f \) is now a simple consequence of the first.

To obtain the third conclusion for \(f \) let \(\lambda < \infty \) be a parameter to be chosen below and let

\[
A = \{ x : \lambda^{-1} \leq |f(x)| \leq \lambda \} \quad \text{and} \quad A_t = \{ x \in A : |x| \geq t^{-1} \}.
\]

Decompose \(f = f_0 + f_1 \) where \(f_1(x) = f(x) 1_{\mathbb{R}^d \setminus A} \). Then \(|f| \leq \lambda 1_A + |f_1| \). Further decompose \(f_0 = f_{00} + f_01 \) where \(f_{01} = f_0 1_{A_t} \).

Likewise define

\[
B = \{ x : \lambda^{-1} \leq |g(x)| \leq \lambda \} \quad \text{and} \quad B_t = \{ x \in B : |x| \geq t^{-1} \},
\]

and decompose \(g = g_0 + g_1 \) where \(g_1(x) = g(x) 1_{\mathbb{R}^d \setminus B} \). Then \(|g| \leq \lambda 1_B + |g_1| \). Likewise decompose \(g_0 = g_{00} + g_{01} \) where \(g_{01} = g_0 1_{B_t} \).
The first two conclusions together imply that \(\|f_1\| + \|g_1\| = o_{\delta+\lambda^{-1}}(1) \). Therefore \(\|\mathbb{P}(f_0 \otimes g_0)\| \geq (1 - \delta - o_{\delta+\lambda^{-1}}(1))\|f_0\|\|g_0\| \).
Moreover
\[
\|\mathbb{P}(f_0 \otimes g_0)\|^2 \leq \|\mathbb{P}(\lambda 1_{A_t} \otimes \lambda 1_B)\|^2 = \lambda^2 \omega_d \int_{0}^{\infty} \sigma_r(A_t \times B)^2 r^{2d-1} \, dr
\]

with the last line holding because \((x, y) \in A_t \times B \Rightarrow |x| \geq t^{-1} \Rightarrow |(x, y)| \geq t^{-1} \). Therefore
\[
\|\mathbb{P}(f_0 \otimes g_0)\|^2 \leq \lambda^2 \omega_d (t^d |A_t|)^{1/2} \int_{0}^{\infty} \sigma_r(A_t \times B)^2 r^{2d-1} \, dr
\]
\[
\leq \lambda^2 (t^d |A|)^{1/2} |A| \cdot |B|.
\]

By Chebyshev’s inequality, \(|A| \leq \lambda^2 \|f\|^2 = \lambda^2 \) and likewise \(|B| \leq \lambda^2 \). Therefore
\[
\|\mathbb{P}(f_0 \otimes g_0)\|^2 \leq C \lambda^7 t^{d/2}.
\]

Choose \(\lambda = t^{-d/28} \) to obtain \(\|\mathbb{P}(f_0 \otimes g_0)\| \leq C t^{d/8} \). Likewise \(\|\mathbb{P}(f_00 \otimes 00)\| \leq C t^{d/8} \).

Therefore
\[
\|\mathbb{P}(f \otimes g)\| \leq \|\mathbb{P}(f_00 \otimes 00)\| + o_{t+\delta}(1).
\]

The right-hand side in this last inequality is \(\leq \|f_00\|\|000\| + o_{t+\delta}(1) \). By hypothesis, the left-hand side is \(\geq 1 - \delta \). Therefore
\[
\|f_00\|\|000\| \geq 1 - o_{t+\delta}(1).
\]

From this together with the identity \(1 = \|f\|^2 = \|f_00\|^2 + \|f_01\|^2 + \|f_1\|^2 \) and the inequality \(\|g_00\| \leq \|g\| = 1 \), it follows that \(\|f_01\| = o_{t+\delta}(1) \). Since \(f_00 \) is supported where \(|x| \leq t^{-1} \) and \(\|f_1\| = o_{t+\delta}(1) \), the third conclusion follows for \(f \). The same reasoning applies to \(g \).

Define the Fourier transform by
\[
(4.7) \quad \hat{f}(\xi) = \int_{\mathbb{R}^d} e^{-2\pi ix \cdot \xi} f(x) \, dx.
\]

This is a bijective isometry on \(L^2(\mathbb{R}^d) \).

Lemma 4.3. For any \(f, g \in L^2(\mathbb{R}^d) \),
\[
(4.8) \quad \left(\mathbb{P}(f \otimes g) \right)^\wedge = \mathbb{P}(\hat{f} \otimes \hat{g}) \]
where the left-hand side is the \(\mathbb{R}^{d+d} \) Fourier transform of \(\mathbb{P}(f \otimes g) \). Consequently
\[
(4.9) \quad \|\mathbb{P}(\hat{f} \otimes \hat{g})\| = \|\mathbb{P}(f \otimes g)\|.
\]

Proof. \(\mathbb{P}(f \otimes g) \) is the unique function \(h \in L^2(\mathbb{R}^{d+d}) \) of norm 1 that maximizes \(\text{Re}(\langle f \otimes g, h \rangle) \).
This quantity is equal by Plancherel’s theorem to
\[
\text{Re}(\langle \hat{f} \otimes \hat{g}, \hat{h} \rangle) = \text{Re}(\langle \hat{f} \otimes \hat{g}, \hat{h} \rangle).
\]

Since \(\hat{h} \) is also radial and has norm 1,
\[
\text{Re}(\langle \hat{f} \otimes \hat{g}, \hat{h} \rangle) = \text{Re}(\langle \mathbb{P}(\hat{f} \otimes \hat{g}), \hat{h} \rangle) \leq \|\hat{f}\| \cdot \|\hat{g}\|
\]
Thus we have shown that $\|P(f \otimes g)\| \leq \|P(\hat{f} \otimes \hat{g})\|$. The same reasoning gives the converse inequality, so
\[
\|P(f \otimes g)\| = \|P(\hat{f} \otimes \hat{g})\|
\]
and h is the closest radial function of norm 1 to $f \otimes g$ if and only if \hat{h} is the closest radial function of norm 1 to $\hat{f} \otimes \hat{g}$. Thus $(P(f \otimes g))^\wedge = P(\hat{f} \otimes \hat{g})$.

Corollary 4.4. Let $d \geq 1$. There exists a continuous function $\Theta : \mathbb{R}^+ \to \mathbb{R}^+$ satisfying $\lim_{t \to 0} \Theta(t) = 0$ with the following property. For any $\delta > 0$ and any nonzero functions $f, g \in L^2(\mathbb{R}^d)$ that satisfy $\|P(f \otimes g)\| \geq (1 - \delta)\|f\|\|g\|$, there exists $\rho \in \mathbb{R}^+$ such that if $f^*(x) = \rho^{d/2} f(\rho x)$ and $g^*(x) = \rho^{d/2} g(\rho x)$ then f^* and g^* satisfy the conclusions of Lemma 4.2.

If $\|P(f \otimes g)\| \geq (1 - \delta)\|f\|\|g\|$ then f, g satisfy the conclusions of Lemma 4.2 for some $\rho > 0$, while \hat{f}, \hat{g} also satisfy these conclusions, with respect to some other $\rho' \in \mathbb{R}^+$. It is clear from the uncertainty principle, broadly construed, that the product $\rho \rho'$ is bounded below by a constant that depends only on d and on the auxiliary function Θ. The next step is to show that this product is necessarily bounded above. The following lemma will be used for this purpose.

Lemma 4.5. For any $d \geq 1$ and any continuous function $\Theta : \mathbb{R}^+ \to \mathbb{R}^+$ satisfying $\lim_{t \to 0^+} \Theta(t) = 0$ there exist $\delta_0 > 0$ and $C \in [1, \infty)$ with the following property. Let $f \in L^2(\mathbb{R}^d)$ be a nonnegative function with positive norm which satisfies the conclusions of Lemma 4.2 with $\rho = 1$, with $\delta = \delta_0$, and with this auxiliary function Θ. Then
\[
\int_{|\xi| \leq C} |\hat{f}(\xi)|^2 d\xi \geq C^{-1} \|f\|^2 \tag{4.10}
\]
\[
\int_{|\xi| \leq C^{-1}} |\hat{f}(\xi)|^2 d\xi \leq \frac{1}{2} \|f\|^2. \tag{4.11}
\]

To clarify the statement: The conclusions of Lemma 4.2 are stated in terms of $f^*(x) = \rho^{d/2} f(\rho x)$. The hypothesis of Lemma 4.5 is that if ρ is taken to equal 1 then f^* satisfies the four inequalities stated as conclusions of that lemma.

The first conclusion (4.10) implies that the dilated function $\xi \mapsto s^{d/2} \hat{f}(s \xi)$ cannot satisfy the conclusions of Lemma 4.2 with parameter s very large. The second conclusion (4.11) implies that s cannot be very small. Thus if ρ, ρ' are as discussed above and if we dilate so that $\rho = 1$, then ρ' is bounded both above and below by finite positive constants which depend only on the dimension d and on a choice of an auxiliary function Θ satisfying the conclusions of Lemma 4.2.

Proof of Lemma 4.5. To prove (4.10) consider the auxiliary function $G(x) = e^{-\pi|x|^2}$. Assume without loss of generality that $\|f\| = 1$. Provided that δ is sufficiently small, the nonnegativity of f, the lower bound $\|f\| \geq 1$, and the upper bounds provided by the conclusions of Lemma 4.2 together provide a lower bound for $\int f G$. But since $G = \hat{G}$, $\int f G = \int f \hat{G} = \int \hat{f} G$. Therefore $\int e^{-\pi|\xi|^2} \hat{f}(\xi) d\xi \geq \eta$ for some positive constant η which depends only on the dimension d. This easily implies (4.10) since $\|\hat{f}\| \leq 1$.

To prove (4.11) let $\lambda \in \mathbb{R}^+$ be large and consider
\[
\int |\hat{f}(\xi)|^2 e^{-\lambda \pi|\xi|^2} d\xi = \lambda^{-d/2} \int \int f(x) f(y) e^{-\pi|x-y|^2/\lambda} dx dy. \tag{4.12}
\]
The right-hand side is majorized by a constant, uniformly for all functions that satisfy \(\|f\| \leq 1 \). If \(f \) is supported in any fixed bounded region then the right-hand side is \(O(\lambda^{-d/2}\|f\|_2^2) \) as \(\lambda \to \infty \). It follows readily that if \(f \) satisfies the conclusions of Lemma 4.2 with \(\rho = 1 \), and if \(\|f\| \leq 1 \), then the right-hand side of (4.12) is majorized by a function of \(\lambda \) that tends to zero as \(\lambda \to \infty \). Therefore the same goes for the left-hand side. Now

\[
\int |\hat{f}(\xi)|^2 e^{-\lambda|\xi|^2} \, d\xi \geq c \int_{|\xi| \geq \lambda^{-1/2}} |\hat{f}(\xi)|^2 \, d\xi
\]

with \(c > 0 \) independent of \(\lambda \), establishing (4.11). \(\square \).

This type of argument, exploiting nonnegativity, is made in greater detail in [6].

Let \(d \geq 1 \) and let \(\delta > 0 \). Let \(\Theta : \mathbb{R}^+ \to \mathbb{R}^+ \) be a continuous function satisfying \(\lim_{t \to 0} \Theta(t) = 0 \). We say that a function \(f \), localized at a (second) common scale. Therefore once

Let \(\delta \). Call Corollary 4.7.

\[f, g \]

because Lemma 4.2 says that \(f^*(x) = \rho^{d/2} f(\rho x) \) and \(g^*(x) = \rho^{d/2} g(\rho x) \), and the Fourier transforms of \(f^*, g^* \), are \((\delta, \Theta) \)–normalized.

Proposition 4.6. For each \(d \geq 1 \) there exist \(\delta_0 > 0 \) and a continuous function \(\Theta : \mathbb{R}^+ \to \mathbb{R}^+ \) satisfying \(\lim_{t \to 0} \Theta(t) = 0 \) with the following property. Let \(\delta \in (0, \delta_0) \). Let \(f, g \in L^2(\mathbb{R}^d) \) have positive norms, and assume that \(f \) is nonnegative. Suppose that \(\|\mathbb{P}(f \otimes g)\| \geq (1 - \delta)\|f\|\|g\| \). Then there exists \(\rho \in \mathbb{R}^+ \) such that the functions \(f^*(x) = \rho^{d/2} f(\rho x) \) and \(g^*(x) = \rho^{d/2} g(\rho x) \), and the Fourier transforms of \(f^*, g^* \), are \((\delta, \Theta) \)–normalized.

Proof. Lemma 4.5 forces the parameter \(\rho \) in Corollary 4.4 to be comparable to 1 if \(f \) is \(\delta \)–normalized for sufficiently small \(\delta \). \(\square \)

The reasoning did not require an assumption that both functions \(f, g \) were nonnegative, because Lemma 4.2 says that \(f, g \) are localized at a common scale, and likewise \(\hat{f}, \hat{g} \) are localized at a (second) common scale. Therefore once \(f, \hat{f} \) are shown to be localized at a pair of scales \(\rho, \rho' \) satisfying \(\rho \rho' \asymp 1 \), the same follows for \(g \).

Corollary 4.7. Let \(d \geq 1 \). For every \(\varepsilon > 0 \) there exists \(\delta > 0 \) with the following property. If \(0 \neq f \in L^2(\mathbb{R}^d) \) is nonnegative, if \(0 \neq g \in L^2(\mathbb{R}^d) \), and if \(\|\mathbb{P}(f \otimes g)\| \geq (1 - \delta)\|f\|\|g\| \) then

\[
(4.13) \quad \text{dist}((f, g), \mathfrak{S}^x) < \varepsilon \|(f, g)\|.
\]

Proof. Suppose the contrary. Then there exists a sequence of pairs \((f_n, g_n) \) of functions in \(L^2(\mathbb{R}^d) \) satisfying \(\|f_n\| \equiv \|g_n\| \equiv 1 \), \(\|\mathbb{P}(f_n \otimes g_n)\| \to 1 \), \(f_n \) is nonnegative, and the distance \(\text{dist}((f_n, g_n), \mathfrak{S}^x) \) from \((f_n, g_n) \) to the set \(\mathfrak{S}^x \) of all \((F, cF) \) with \(F \in \mathfrak{S} \) and \(0 \neq c \in \mathbb{C} \) is bounded below by a positive quantity independent of \(n \).

By Proposition 4.6 there exist sequences of numbers \(\rho_n, \delta_n \in \mathbb{R}^+ \) and an auxiliary function \(\Theta \) satisfying \(\lim_{t \to 0} \Theta(t) = 0 \) such that \(\lim_{n \to \infty} \delta_n = 0 \) and the sequences of functions \(f_n^*(x) = \rho_n^{d/2} f_n(\rho_n x) \) and \(g_n^*(x) = \rho_n^{d/2} g_n(\rho_n x) \) are \((\delta_n, \Theta) \)–normalized. Moreover, the Fourier transforms \(\hat{f}_n, \hat{g}_n \) are also \((\delta_n, \Theta) \)–normalized. By Rellich’s Lemma, the sequences \((f_n^* : n \in \mathbb{N}) \) and \((g_n^* : n \in \mathbb{N}) \) are each precompact in \(L^2(\mathbb{R}^d) \). Therefore there exists an increasing sequence of natural numbers \(n_k \) such that the subsequences \(f_{n_k}^*, g_{n_k}^* \) converge in \(L^2 \) norm to limits \(f_\infty, g_\infty \in L^2(\mathbb{R}^d) \), respectively.

By Proposition 4.6 there exist sequences of numbers \(\rho_n, \delta_n \in \mathbb{R}^+ \) and an auxiliary function \(\Theta \) satisfying \(\lim_{t \to 0} \Theta(t) = 0 \) such that \(\lim_{n \to \infty} \delta_n = 0 \) and the sequences of functions \(f_n^*(x) = \rho_n^{d/2} f_n(\rho_n x) \) and \(g_n^*(x) = \rho_n^{d/2} g_n(\rho_n x) \) are \((\delta_n, \Theta) \)–normalized. Moreover, the Fourier transforms \(\hat{f}_n, \hat{g}_n \) are also \((\delta_n, \Theta) \)–normalized. By Rellich’s Lemma, the sequences \((f_n^* : n \in \mathbb{N}) \) and \((g_n^* : n \in \mathbb{N}) \) are each precompact in \(L^2(\mathbb{R}^d) \). Therefore there exists an increasing sequence of natural numbers \(n_k \) such that the subsequences \(f_{n_k}^*, g_{n_k}^* \) converge in \(L^2 \) norm to limits \(f_\infty, g_\infty \in L^2(\mathbb{R}^d) \), respectively.

Now \(\|f_\infty\| = \lim_{n \to \infty} \|f_n^*\| = \lim_{n \to \infty} \|f_n\| = 1 \). Moreover, since \(\mathbb{P} : L^2(\mathbb{R}^d) \to L^2(\mathbb{R}^d) \) is a bounded linear operator,

\[
\|\mathbb{P}(f_\infty \otimes g_\infty)\| = \lim_{n \to \infty} \|\mathbb{P}(f_n^* \otimes g_n^*)\| = \lim_{n \to \infty} \|\mathbb{P}(f_n \otimes g_n)\| = 1.
\]

Therefore \((f_\infty, g_\infty) \in \mathfrak{S}^x \). In particular, \(f_\infty, g_\infty \) are radial complex Gaussians. This contradicts the assumption that the distance from \(f_n \) to \(\mathfrak{S} \) does not tend to zero. \(\square \)
Since the functions f_n are nonnegative, f_∞ is necessarily close in norm to a positive Gaussian function in this argument. Therefore the conclusion can be refined: There exists a positive Gaussian F such that $\|f - F\| \leq \varepsilon \|f\|$. □

Lemma 4.8. For any functions $f, g \in L^2(\mathbb{R}^d)$,

\[(4.14)\quad \|P(|f| \otimes |g|)\| \geq \|P(f \otimes g)\|.

Proof. If $h \in L^2(\mathbb{R}^d \times \mathbb{R}^d)$ is radial then so is $|h|$. \[
\|f \otimes g - |h|\| = \|f \otimes g - |h|\| \leq \|f \otimes g - h\|.
\]

The next result is identical to Corollary 4.7, except that the restriction to nonnegative functions is removed.

Corollary 4.9. Let $d \geq 1$. For every $\varepsilon > 0$ there exists $\delta > 0$ with the following property. If $0 \neq f, g \in L^2(\mathbb{R}^d)$ satisfy $\|P(f \otimes g)\| \geq (1 - \delta)\|f\|||g||$ then there exists a radial complex Gaussian G such that $\|\text{d} - G\| \leq \varepsilon \|f\|$ and $\|\text{d} - cG\| \leq \varepsilon \|g\|$, where $c = \|g\|/\|f\|$.

Proof. Let the pair (f, g) satisfy the hypotheses for some small $\delta > 0$, and assume without loss of generality that $\|f\| = \|g\| = 1$. By Lemma 4.8, the pair $(|f|, |g|)$ satisfies the hypotheses, with the same parameter δ. Corollary 4.7 guarantees that there exists a positive Gaussian function F such that $\|(|f|, |g|) - (F, F)\|$ is small. By exploiting dilations we may reduce to the case in which $F(x) = e^{-\pi|x|^2/2}$.

Express $f = e^{i\varphi}|f|$ and $g = e^{i\psi}|g|$ where φ, ψ are Lebesgue measurable real-valued functions. Set $\tilde{f} = e^{i\varphi}F$ and $\tilde{g} = e^{i\psi}F$. Then $\|(|f|, |g|) - (\tilde{f}, \tilde{g})\|$ is small, so $\|P(\tilde{f} \otimes \tilde{g})\|$ is nearly equal to $\|f\|||g||$ and hence nearly equal to $\|f\|||\tilde{g}||$.

Let $\varepsilon > 0, \delta > 0$. Choose $R \geq 1$ sufficiently large that \[\int_{|x_1| > R/2} e^{-\pi(|x|^2 + |y|^2)^2} dx \, dy < \varepsilon.\] Suppose that $\|P(f \otimes g)\| \geq (1 - \delta)\|f\|||g||$ and $\|(|f|, |g|) - (F, F)\| < \delta$. If δ is sufficiently small then there exists a function h such that

\[
\int_{|x_1| \leq 2R} \left| e^{i[\varphi(x) + \psi(y)]} e^{-\pi(|x|^2 + |y|^2)^2/2} - h(|(x, y)|) \right|^2 dx \, dy < e^{-2\pi R^2 - R^2 \varepsilon}.
\]

The same holds with any R–dependent constant factor; this factor is chosen for the sake of convenience below. The same bound follows with $h(t) = e^{i\xi(t)}|h(t)|$ replaced by $e^{i\xi(t)}e^{-\pi t^2/2}$, with ε replaced by 2ε, for some real-valued measurable function ξ.

By Chebyshev’s inequality,

\[(4.15)\quad \{|z = (x, y) : |z| \leq 2R \text{ and } |e^{i[\varphi(x) + \psi(y)]} - e^{i[\varphi(x) + \psi(y) - \xi(|x|)]}| \geq \varepsilon^{1/4}\} \leq e^{-R \varepsilon^{1/2}},\]

where $|\cdot|$ denotes Lebesgue measure. By choosing a typical value of y one concludes that there exists a real-valued measurable function $\hat{\varphi}$ defined on \mathbb{R}^+ such that

\[(4.16)\quad \{|x \in \mathbb{R}^d : |x| \leq R \text{ and } |e^{i\varphi(x)} - e^{i\hat{\varphi}(|x|^2)}| \geq \varepsilon^{1/4}\} \leq C e^{-R \varepsilon^{1/2}}.\]

Indeed, this holds with $\hat{\varphi}(|x|^2) = \xi(|x|^2 + |y|^2)^{1/2} - \psi(y)$ for any typical value of y since $|e^{i\varphi(x)} - e^{i\xi(|x|^2 + |y|^2)\psi(y)}|$ is small for nearly all x for typical y. By the same reasoning, $e^{i\hat{\psi}(y)}$ is nearly equal in the same sense to $e^{i\hat{\psi}(|y|^2)}$ for some real-valued measurable function $\hat{\psi}$.

Thus for any $\eta > 0$,

$$
\left| \{(s, t) \in \mathbb{R}^+ \times \mathbb{R}^+ : |(s, t)| \leq R^2 \text{ and } |e^{i[\tilde{\varphi}(s) + \tilde{\psi}(t) - \xi(\sqrt{s + t})]} - 1| \geq 2\varepsilon^{1/4} \right|
\leq C\eta^{2d} + C\eta^{-(2d-1)}e^{-R\varepsilon^{1/2}}.
$$

Here $|\cdot|$ denotes Lebesgue measure on $\mathbb{R} \times \mathbb{R}$, restricted to the quadrant $\mathbb{R}^+ \times \mathbb{R}^+$. Choosing η to be an appropriate power of $e^{-R\varepsilon}$ yields an upper bound $Ce^{-\varepsilon^R\varepsilon^c}$ for some $c, C \in \mathbb{R}^+$.

Proposition 8.2 of [3] is concerned with ordered triples of functions $(\tilde{\varphi}, \tilde{\psi}, \tilde{\xi})$ for which $\tilde{\varphi}(s) + \tilde{\psi}(t) - \tilde{\xi}(s + t)$ is nearly zero for nearly all ordered pairs (s, t) in an interval. By applying this proposition with $\tilde{\xi}(t) = \xi(t^{1/2})$ we conclude that there exists an affine function L such that

$$
\left| \{(s, t) \in [0, R^2/4] : |e^{i\tilde{\varphi}(s)} - e^{iL(s)}| \geq C\varepsilon^{1/4} \right|
\leq Ce^{-cR\varepsilon^c}.
$$

Replacing L by its real part does not worsen the approximation since $\tilde{\varphi}$ is real-valued and hence $e^{i\tilde{\varphi}}$ is unimodular, so we may assume that L is real-valued. The favorable factor $e^{-cR\varepsilon^c}$ on the right-hand side makes it possible to overcome the power r^{d-1} that appears in the polar coordinate expression for Lebesgue measure in \mathbb{R}^d to conclude that

$$
\left| \{x \in \mathbb{R}^d : |x| \leq \frac{1}{2}R \text{ and } |e^{i\varphi(x)} - e^{iL(|x|^2)}| \geq C\varepsilon^{1/4} \right|
\leq C\varepsilon^c.
$$

Thus f is nearly equal to the Gaussian function $G(x) = e^{-\pi|x|^2/2}e^{iL(|x|^2)}$. The same reasoning applies to g, which is consequently nearly equal to a Gaussian function $\tilde{G}(x) = e^{-\pi|x|^2/2}e^{i\tilde{L}(|x|^2)}$, where \tilde{L} is another real-valued affine function.

Now $\|\mathbb{P}(G \otimes \tilde{G})\|_2$ is nearly equal to $\|G\|\|	ilde{G}\|$ since (G, \tilde{G}) is nearly equal to (f, g). Thus

$$
e^{i[L(|x|^2) + \tilde{L}(|y|^2)]} \approx e^{i\xi(|x|^2 + |y|^2)},
$$

where \approx denotes approximate equality in weighted L^2 norm with weight $e^{-\pi(|x|^2 + |y|^2)}$. Express $L(|x|^2) = \alpha'|x|^2 + \beta'$, $\tilde{L}(|y|^2) = \alpha''|y|^2 + \beta''$, and $\xi(|z|^2) = \alpha|z|^2 + \beta$. By choosing a typical value of y and regarding both sides as functions of x we conclude that α' is approximately equal to α. Reversing the roles of the variables proves that α'' is also approximately equal to α, whence α', α'' are approximately equal. \qed

This completes the proof of Proposition 4.1.

Remark 4.1. Young’s convolution inequality and the Hausdorff-Young inequality are strongly bound up with additive structure, and the analyses of near extremizers of each of these inequalities [3, 5] relied on information from additive combinatorics. Additive structure apparently plays a less central role in the present work, but is the basis for the proof of Corollary 4.9.

5. Spectral analysis

Define

$$F(x) = e^{-\pi|x|^2/2}
$$

for $x \in \mathbb{R}^d$. This function satisfies $\|F\| = 1$.

Define a bounded linear operator $T : L^2(\mathbb{R}^d) \to L^2(\mathbb{R}^d)$ by

$$
Tf(x) = \int_{\mathbb{R}^d} F(y) \mathbb{P}(f \otimes F)(x, y) dy.
$$

This operator is related to the projection \mathbb{P} by the identity

$$
\langle \mathbb{P}(f \otimes F), \mathbb{P}(g \otimes F) \rangle = \langle Tf, g \rangle.
$$
Indeed,

\[(\mathbb{P}(f \otimes F), \mathbb{P}(g \otimes F)) = (\mathbb{P}(f \otimes F), g \otimes F) = \iint \mathbb{P}(f \otimes F)(x,y)\overline{\varphi}(x)F(y) \, dx \, dy = \int Tf(x)\overline{\varphi}(x) \, dx = \langle Tf, g \rangle. \]

For any \(f, g \in L^2(\mathbb{R}^d) \), \(\mathbb{P}(f \otimes g) \equiv \mathbb{P}(g \otimes f) \). Since \((\mathbb{P}(f \otimes F), \mathbb{P}(g \otimes F)) \) is the complex conjugate of \((\mathbb{P}(g \otimes F), \mathbb{P}(f \otimes F)) \), it follows from (5.2) that \(T \) is self-adjoint.

Define \(\mathcal{R} \subset L^2(\mathbb{R}^d) \) to be the subspace consisting of all radial functions, which is the closure of the span of all functions \(|x|^{2m}e^{-\pi|x|^2/2} \), where \(m \in \{0,1,2,\ldots\} \). The range of \(T \) is contained in \(\mathcal{R} \). Indeed, if \(g \in L^2(\mathbb{R}^d) \) is orthogonal to all radial functions then \(g \otimes F \) is orthogonal to all radial functions in \(L^2(\mathbb{R}^{d+2}) \), so

\[\langle Tf, g \rangle = (\mathbb{P}(f \otimes F), \mathbb{P}(g \otimes F)) = (\mathbb{P}(f \otimes F), 0) = 0 \]

for all \(f \in L^2(\mathbb{R}^d) \). Since \(T \) is self-adjoint, \(T \) vanishes identically on \(\mathcal{R} \), as well.

We require an understanding of the eigenvalues and eigenvectors of \(T \). The relevant information is contained in the next result, together with the fact that \(T \equiv 0 \) on \(\mathcal{R} \).

Proposition 5.1. There exists an orthonormal basis for \(\mathcal{R} \) consisting of eigenfunctions of \(T \) of the form

\[\psi_m(x) = q_m(|x|^2)e^{-\pi|x|^2/2} : m = 0,1,2,\ldots \]

where \(q_m \) is a polynomial of degree exactly \(m \). The corresponding eigenvalues are

\[\lambda_{d,m} = \frac{\Gamma(m + \frac{d}{2})}{\Gamma(m + d)} \cdot \frac{\Gamma(d)}{\Gamma(\frac{d}{2})} \quad \text{for} \quad m = 0,1,2,\ldots. \]

Throughout the analysis we represent elements of \(\mathbb{R}^d \times \mathbb{R}^d \) as \(z = (x,y) \) where \(x,y \in \mathbb{R}^d \). Let \(G(z) = e^{-\pi|z|^2/2} \), so that \(G = F \otimes F = \mathbb{P}(F \otimes F) \). Denote elements \(\alpha \in \{0,1,2,\ldots\}^d \) by \(\alpha = (\alpha_1, \ldots, \alpha_d) \) and write \(|\alpha| = \sum_{j=1}^d \alpha_j \). \(x^\alpha = \prod_{j=1}^d x_j^{\alpha_j} \), and \(x^\alpha F \) indicates the function \(x \mapsto x^\alpha F(x) \).

Lemma 5.2. \(T(x^\alpha F) = 0 \) for any \(\alpha \in \{0,1,2,\ldots\}^d \setminus \{0,2,4,\ldots\}^d \). For any \(\alpha \in \{0,2,4,\ldots\}^d \), there exists a polynomial \(Q : \mathbb{R}^d \to \mathbb{C} \) of degree exactly \(|\alpha|/2 \) such that

\[T(x^\alpha F) = Q(|x|^2)F(x). \]

Proof. \(\mathbb{P}(x^\alpha F \otimes F) \) is the projection onto the radial subspace of \(x^\alpha F(x)F(y) = x^\alpha G(z) \). Clearly \(\mathbb{P}(x^\alpha G(x,y)) \) is a scalar multiple of \(|z|^{\alpha}G(z) \). Moreover, \(\mathbb{P}(x^\alpha F \otimes F) = 0 \) if at least one component \(\alpha_j \) is odd, because the integral over \(S^{2d-1} \) of any function that is odd with respect to one or more coordinate variables must vanish.

If \(\alpha \in \{0,2,4,\ldots\}^d \) then \(x^\alpha \) is a nonnegative function which does not vanish identically, so for any \(r \in \mathbb{R}^+ \), \(\int x^\alpha G(x,y) \, d\sigma_r(x,y) = G(x,y) \int x^\alpha \, d\sigma_r(x,y) \) is strictly positive. Therefore \(\mathbb{P}(x^\alpha G) = c_{d,\alpha}|z|^{\alpha}G(z) \).
Continuing to assume that \(\alpha \in \{0, 2, 4, \ldots \}^d \), set \(m = \frac{1}{2}\alpha \). Then
\[
\int_{\mathbb{R}^d} |z|^{\alpha} G(z) F(y) \, dy = \int_{\mathbb{R}^d} F(y) (x, y)^{2m} G(x, y) \, dy \\
= \int_{\mathbb{R}^d} e^{-\pi|y|^2/2}(x, y)^2 e^{-\pi|y|^2/2} \, dy \\
= q_m(|x|^2) e^{-\pi|x|^2/2} \\
= q_m(|x|^2) F(x)
\]
where \(q_m : \mathbb{R} \to \mathbb{R} \) is a polynomial of degree exactly \(m \).

Proof of Proposition 5.1. We have shown that
\[
e^{-\pi|x|^2/2} = \lambda_{d,m} |x|^{2m} + \text{a polynomial in } |x|^2 \text{ of lower degree},
\]
where \(\lambda_{d,m} \neq 0 \) for each nonnegative integer \(m \). The Gram-Schmidt procedure therefore constructs an orthonormal basis for \(\mathcal{R} \) consisting of eigenfunctions of \(T \) of the indicated form.

The corresponding eigenvalue \(\lambda_{d,m} \) equals the coefficient of the highest power of \(|x|^{2m} \) in the polynomial \(e^{-\pi|x|^2/2} T(|x|^{2m} e^{-\pi|x|^2/2}) \). To compute this coefficient write
\[
\mathbb{P}(|x|^{2m} F) (z) = \gamma_{m,d} |x|^{2m} e^{-\pi|x|^2/2}
\]
where
\[
\gamma_{m,d} = \int_{S^{2d-1}} |x|^{2m} \, d\sigma(x, y)
\]
where \(S^{2d-1} \subset \mathbb{R}^{d+1} \) is the unit sphere and \(\sigma \) is surface measure on \(S^{2d-1} \), normalized so that \(\sigma(S^{2d-1}) = 1 \). Consequently
\[
T(|x|^{2m} F) = \int_{\mathbb{R}^d} e^{-\pi|y|^2/2} \mathbb{P}(|x|^{2m} F)(x, y) \, dy \\
= \int_{\mathbb{R}^d} e^{-\pi|y|^2/2} \gamma_{m,d} (|x|^2 + |y|^2)^m e^{-\pi(x|^2+|y|^2)/2} \, dy \\
= (\gamma_{m,d} \int_{\mathbb{R}^d} e^{-\pi|y|^2/2} \, dy |x|^{2m} + O(|x|^{2m-2})) e^{-\pi|x|^2/2} \\
= (\gamma_{m,d} |x|^{2m} + O(|x|^{2m-2})) e^{-\pi|x|^2/2}
\]
where \(O(|x|^{2m-2}) \) denotes a polynomial in \(|x|^2 \) of degree at most \(2m - 2 \) as a polynomial in \(x \). Thus \(\lambda_{m,d} = \gamma_{m,d} \).

Define \(\omega_n \) by the relation \(\int_{\mathbb{R}^n} g(|z|) \, dz = \omega_n \int_0^\infty g(r) r^{n-1} \, dr \). One can compute \(\gamma_{m,d} \) by writing
\[
\int_{\mathbb{R}^{d+1}} e^{-\pi(|x|^2+|y|^2)/2} |x|^{2m} \, dx \, dy = \omega_{2d} \int_0^\infty r^{2d+2m} e^{-\pi r^2/2} r^{-1} \, dr \\
= \frac{1}{2} \omega_{2d} \gamma_{m,d} (\pi/2)^{-d-m} \int_0^\infty s^{d+m} e^{-s} s^{-1} \, ds \\
= \frac{1}{2} \omega_{2d} \gamma_{m,d} (\pi/2)^{-d-m} \Gamma(m + d).
\]
The left-hand side can be alternatively be evaluated as
\[
\int_{\mathbb{R}^{d+1}} e^{-\pi(|x|^2 + |y|^2)/2} |x|^{2m} \, dx \, dy = \int_{\mathbb{R}^d} e^{-\pi|x|^2/2} |x|^{2m} \, dx \times \int_{\mathbb{R}^d} e^{-\pi|y|^2/2} \, dy
\]
\[
= \frac{1}{2} \omega_d (\pi/2)^{-m - \frac{d}{2}} \Gamma(m + \frac{d}{2}) \cdot \frac{1}{2} \omega_d (\pi/2)^{-d/2} \Gamma(\frac{1}{2}d).
\]

Since \(\gamma_{0,d} = 1\), the same calculation with \(m = 0\) gives \(1 = \frac{1}{2} \omega_d (\pi/2)^{-d/2} \Gamma(d/2)\). Therefore
\[
\gamma_{m,d} = \frac{2^{-2} \omega_d^2 \Gamma(m + \frac{1}{2}d) \Gamma(\frac{1}{2}d)}{2^{-1} \omega_d \Gamma(m + d)} = \frac{\Gamma(m + \frac{1}{2}d) \Gamma(\frac{1}{2}d)}{\Gamma(m + d)} \cdot \Gamma(d) = \frac{\Gamma(m + \frac{1}{2}d)}{\Gamma(m + d)} \cdot \Gamma(d).
\]

\[\square\]

Lemma 5.3. If \(f, g \in L^2(\mathbb{R}^d)\) satisfy \(\langle f, \psi_0 \rangle = \langle g, \psi_0 \rangle = 0\) and \(\langle f + g, \psi_1 \rangle = 0\) then
\[
\|Tf\|^2 + 2 \text{Re} \langle Tf, g \rangle + \|Tg\|^2 \leq \frac{d + 2}{2(d + 1)} \|(f, g)\|^2.
\]

Proof. For \(m \in \{0, 1, 2, \ldots\}\) let \(\psi_m\) be \(L^2\)-normalized eigenfunctions of \(T\) with corresponding eigenvalues \(\lambda_{m,d}\) discussed above, and \(\psi_0 = F\).

For fixed dimension \(d\), the eigenvalue \(\gamma_{m,d}\) is a decreasing function of \(m\). Indeed,
\[
\frac{\gamma_{m+1,d}}{\gamma_{m,d}} = \frac{m + \frac{1}{2}d}{m + d}
\]
according to (5.4) and the functional equation of the Gamma function. The leading eigenvalues are
\[
\lambda_{0,d} = 1, \quad \lambda_{1,d} = \frac{d/2}{d} \lambda_{0,d} = \frac{1}{2}, \quad \lambda_{2,d} = \frac{1 + \frac{1}{2}d}{1 + d} \lambda_{1,d} = \frac{d + 2}{4(d + 1)}.
\]

Decompose
\[
f = \sum_{m=0}^{\infty} \hat{f}(m) \psi_m + \hat{f} \quad \text{and} \quad g = \sum_{m=0}^{\infty} \hat{g}(m) \psi_m + \hat{g}
\]
where \(\hat{f}, \hat{g} \perp \mathcal{R}\). It is given that \(\hat{f}(0) = \hat{g}(0) = 0\) and that \(\hat{g}(1) = -\hat{f}(1)\). Then
\[
\langle Tg, f \rangle = \langle T(g - \hat{g}), (f - \hat{f}) \rangle = \sum_{m=0}^{\infty} \lambda_{m,d} \hat{g}(m) \hat{f}(m)
\]
and
\[
\|f\|^2 = \|\hat{f}\|^2 + \sum_m |\hat{f}(m)|^2 \quad \text{and} \quad \|g\|^2 = \|\hat{g}\|^2 + \sum_m |\hat{g}(m)|^2.
\]
Since \(\hat{f}(1) = \hat{g}(1) = 0 \) and \(\hat{f}(1) + \hat{g}(1) = 0 \),

\[
\| Tf \|^2 + 2 \Re \langle Tf, g \rangle + \| Tg \|^2 = \sum_{m=0}^{\infty} \left(\lambda_{m,d}(|\hat{f}(m)|^2 + |\hat{g}(m)|^2 + 2 \Re (\hat{f}(m)\overline{\hat{g}(m)}) \right)
\]

\[
= \frac{1}{2}|\hat{f}(1) + \hat{g}(1)|^2 + \sum_{m=2}^{\infty} \lambda_{m,d}|\hat{f}(m) + \hat{g}(m)|^2
\]

\[
\leq \frac{d+2}{4(d+1)} \sum_{m=2}^{\infty} |\hat{f}(m) + \hat{g}(m)|^2
\]

\[
\leq \frac{d+2}{2(d+1)} \sum_{m=2}^{\infty} (|\hat{f}(m)|^2 + |\hat{g}(m)|^2)
\]

\[
\leq \frac{d+2}{2(d+1)} \|(f, g)\|^2.
\]

\[\square\]

6. Perturbation Analysis

For nonzero \(f, g \in L^2(\mathbb{R}^d) \) define

\[
(6.1) \quad \Phi(f, g) = \frac{\|P(f \otimes g)\|^2}{\|f\|^2\|g\|^2}.
\]

Continue to let \(F(x) = e^{-|x|^2/2} \).

Suppose that the ratio of the distance of \((u, v)\) to \(\mathcal{G}^\times \) to the norm of \((u, v)\) is small, and that the closest element of \(\mathcal{G}^\times \) to \((u, v)\) is \((F, F)\). Then the first variation at \((r, s, t) = 0\) of \(\|u - e^{r|x|^2+s}F\|^2 + \|v - e^{t} F\|^2 \) with respect to \((r, s, t)\) must vanish. Therefore \((u, v)\) can be expressed in the form \((u, v) = (F + f, F + g)\) where \((f, g)\) is unique and satisfies

\[
\langle f, F \rangle = \langle g, F \rangle = \langle f + g, |x|^2 F \rangle = 0.
\]

Equivalently,

\[
(6.2) \quad \langle f, \psi_0 \rangle = \langle g, \psi_0 \rangle = \langle f + g, \psi_1 \rangle = 0.
\]

One has

\[
\|P(u \otimes v)\|^2 = \|F\|^4 + 2 \Re \langle P(f \otimes F), F \otimes F \rangle + 2 \Re \langle P(F \otimes g), F \otimes F \rangle + 2 \Re \langle P(f \otimes g), F \otimes F \rangle + 2 \Re \langle P(f \otimes F), F \otimes g \rangle + \langle P(f \otimes F), P(f \otimes F) \rangle + \langle P(F \otimes g), P(F \otimes g) \rangle + O(||(f, g)||^3)
\]

as \(||(f, g)|| \to 0 \). Observe that

\[
\langle P(f \otimes F), F \otimes F \rangle = \langle f \otimes F, P(F \otimes F) \rangle = \langle f \otimes F, F \otimes F \rangle = \langle f, F \rangle \cdot \langle F, F \rangle = 0
\]

and likewise \(\langle P(g \otimes F), F \otimes F \rangle = 0 \). Invoking the identity \(\langle P(f \otimes F), F \otimes g \rangle = \langle Tf, f \rangle \) and using the relations \(\langle f, F \rangle = \langle g, F \rangle = 0 \) we obtain

\[
\|P(u \otimes v)\|^2 = 1 + 2 \Re \langle Tf, g \rangle + \langle Tf, f \rangle + \langle Tg, f \rangle + \langle T(t), g \rangle + O(||(f, g)||^3).
\]

On the other hand,

\[
\|u\|^2\|v\|^2 = 1 + \|f\|^2 + \|g\|^2 + O(||(f, g)||^4)
\]
since \(f, g \perp F \). Therefore

\[
\frac{\| \mathbb{P}(u \otimes v) \|}{\| u \| \| v \|} = 1 + 2 \Re \langle T f, g \rangle + \langle T f, f \rangle + \langle T(g), g \rangle - \| (f, g) \|^2 + O(\| (f, g) \|^3).
\]

The inequality under investigation here has a useful group of symmetries. If \(\delta_r(f)(x) = f(rx) \), then \(\mathbb{P}(\delta_r(f) \otimes \delta_r(g)) = \delta_r(\mathbb{P}(f \otimes g)) \) where \(\delta_r \) acts on functions with domain \(\mathbb{R}^d \) on the left-hand side of the equation, and on functions with domain \(\mathbb{R}^d \times \mathbb{R}^d \) on the right. Likewise if \(e_t(f)(x) = e^{it|x|^2} f(x) \) for \(t \in \mathbb{R} \) then \(\mathbb{P}(e_t(f) \otimes e_t(g)) = e_t(\mathbb{P}(f \otimes g)) \). Of course \(\mathbb{P}(c' f \otimes c'' g) = c' c'' (\mathbb{P}(f \otimes g)) \) for scalars \(c', c'' \in \mathbb{C} \).

Proof of Theorem 6.1. Let \((u, v) \in L^2(\mathbb{R}^d) \times L^2(\mathbb{R}^d) \). Suppose that the closest element of the closed subspace \(\mathfrak{G}^\times \) of \(L^2 \times L^2 \) to \((u, v) \) is \((F, F) \), and that the distance from \((u, v) \) to \((F, F) \) is much less than \(\| (u, v) \| \). The orthogonality relations \((6.2) \) are consequently satisfied by \((f, g) = (u - F, v - F) \). Therefore

\[
\frac{\| \mathbb{P}(u \otimes v) \|}{\| u \| \| v \|} = 1 + 2 \Re \langle T f, g \rangle + \langle T f, f \rangle + \langle T(g), g \rangle - \| (f, g) \|^2 + O(\| (f, g) \|^3)
\]

\[
\leq 1 + \frac{d + 2}{2(d + 1)} \| (f, g) \|^2 - \| (f, g) \|^2 + O(\| (f, g) \|^3)
\]

\[
\leq 1 - \frac{d}{2(d + 1)} \| (f, g) \|^2 + O(\| (f, g) \|^3)
\]

\[
= 1 - \frac{d}{2(d + 1)} \text{dist} ((u, v), \mathfrak{G}^\times)^2 + O(\text{dist} ((u, v), \mathfrak{G}^\times)^3).
\]

Consider next a general ordered pair \((u, v) \in L^2(\mathbb{R}^d) \times L^2(\mathbb{R}^d) \) satisfying \(\| u \| = \| v \| = 1 \), with the distance from \((u, v) \) to \(\mathfrak{G}^\times \) sufficiently small. The closest point in \(\mathfrak{G}^\times \) to \((u, v) \) may be expressed as \((aT(F), bT(F)) \) where \(T \) is a norm-preserving element of the group of transformations of \(L^2(\mathbb{R}^d) \) generated by the \(c_t \) and \(r^{d/2} \delta_r \), and \(a, b \in \mathbb{C} \). Therefore the closest element of \(\mathfrak{G}^\times \) to \((\tilde{u}, \tilde{v}) = (a^{-1}T^{-1}(u), b^{-1}T^{-1}(v)) \) is \((F, F) \). We have shown that

\[
\frac{\| \mathbb{P}(u \otimes v) \|}{\| u \| \| v \|} = \frac{\| \mathbb{P}(\tilde{u} \otimes \tilde{v}) \|}{\| \tilde{u} \| \| \tilde{v} \|} \leq 1 - \frac{d}{2(d + 1)} \text{dist} ((\tilde{u}, \tilde{v}), \mathfrak{G}^\times)^2 + O(\text{dist} ((\tilde{u}, \tilde{v}), \mathfrak{G}^\times)^3)
\]

\[
= 1 - \frac{d}{2(d + 1)} \text{dist} ((a^{-1}u, b^{-1}v), \mathfrak{G}^\times)^2 + O(\text{dist} ((a^{-1}u, b^{-1}v), \mathfrak{G}^\times)^3).
\]

Now

\[
1 = \| u \|^2 = |a|^2 \| F \|^2 + \| u - aT(F) \|^2 = |a|^2 + \| u - aT(F) \|^2,
\]

so \(|a|^2 = 1 - \| u - aT(F) \|^2 \) and consequently \(|a^{-1}| = 1 + O(\text{dist} (u, v), \mathfrak{G}^\times)^2 \). Likewise \(|b^{-1}| = 1 + O(\text{dist} (u, v), \mathfrak{G}^\times)^2 \). Therefore

\[
\text{dist} ((a^{-1}u, b^{-1}v), \mathfrak{G}^\times) = \text{dist} ((u, v), \mathfrak{G}^\times) + O(\text{dist} ((u, v), \mathfrak{G}^\times)^2).
\]

Inserting these estimates into the above result gives

\[
(6.3) \quad \frac{\| \mathbb{P}(u \otimes v) \|}{\| u \| \| v \|} = 1 - \frac{d}{2(d + 1)} \text{dist} ((u, v), \mathfrak{G}^\times)^2 + O(\text{dist} (u, v), \mathfrak{G}^\times)^3)
\]

as was to be shown. \(\square \)
REFERENCES

[1] G. Bianchi and H. Egnell, *A note on the Sobolev inequality*, J. Funct. Anal. 100 (1991), no. 1, 1824.
[2] S. Chen, R. L. Frank, and T. Werth, *Remainder terms in the fractional Sobolev inequality*, Indiana Univ. Math. J. 62 (2013), no. 4, 1381-1397
[3] M. Christ, *Near extremizers of Young’s inequality for \mathbb{R}^d*, preprint, math.CA arXiv:1112.4875
[4] ______, *Near equality in the Riesz-Sobolev inequality*, arXiv:1309.5856 math.CA, submitted
[5] ______, *A sharpened Hausdorff-Young inequality*, preprint, math.CA arXiv:1406.1210
[6] M. Christ and S. Shao, *Existence of extremals for a Fourier restriction inequality*, Anal. PDE 5 (2012), no. 2, 261–312.
[7] E. M. Stein and G. Weiss, *Introduction to Fourier analysis on Euclidean spaces*, Princeton Mathematical Series, No. 32. Princeton University Press, Princeton, N.J., 1971

MICHAEL CHRIST, DEPARTMENT OF MATHEMATICS, UNIVERSITY OF CALIFORNIA, BERKELEY, CA 94720-3840, USA

E-mail address: mchrist@berkeley.edu