Age Dependency of the Prognostic Impact of Tumor Genomics in Localized Resectable MYCN-Nonamplified Neuroblastomas. Report From the SIOPEN Biology Group on the LNESG Trials and a COG Validation Group

Inge M. Ambros, MD1; Gian-Paolo Tonini, PhD2; Ulrike Pötschger, MSc1; Nicole Gross, PhD3; Véronique Mosseri, MD4; Klaus Beiske, MD, PhD5; Ana P. Berbegall, PhD6,7; Jean Bénard, PhD8; Nick Bown, PhD9; Huib Caron, MD, PhD10; Valérie Combaret, PhD11; Jerome Couturier, MD12; Raffaella Defferrari, PhD13; Olivier Delattre, MD, PhD14; Marta Jeison, PhD15; Per Kogner, MD, PhD16; John Lunec, PhD17; Barbara Marques, MSc18; Tommy Martinsson, PhD19; Katia Mazzaocco, PhD20; Ana P. Berbegall, PhD6,7; Jean Bénard, PhD8; Nick Bown, PhD9; Huib Caron, MD, PhD10; Valérie Combaret, PhD11; Jerome Couturier, MD12; Raffaella Defferrari, PhD13; Olivier Delattre, MD, PhD14; Marta Jeison, PhD15; Per Kogner, MD, PhD16; John Lunec, PhD17; Barbara Marques, MSc18; Tommy Martinsson, PhD19; Katia Mazzaocco, PhD20; Alexander Valent, PhD8; Nadine Van Roy, PhD3; Eva Villamon, PhD6,7; Dasa Janousek, MSc1; Ingrid Pribill, PhD1; Evgenia Glogova, MSc1; Edward F. Attiyeh, MD22; Michael D. Hogarty, MD22; Tom F. Monclair, MD, PhD23; Keith Holmes, ChM, DCH24; Dominique Valteau-Couanet, MD, PhD25; Victoria Castel, MD, PhD26; Deborah A. Tweddle, MD, PhD27; Julie R. Park, MD28; Sue Cohn, MD29; Ruth Ladenstein, MD1,30; Maja Beck-Popovic, MD31; Bruno De Bernardi, MD32; Jean Michon, MD20; Andrew D. J. Pearson, MD33; and Peter F. Ambros, PhD1,30

abstract

PURPOSE For localized, resectable neuroblastoma without MYCN amplification, surgery only is recommended even if incomplete. However, it is not known whether the genomic background of these tumors may influence outcome.

PATIENTS AND METHODS Diagnostic samples were obtained from 317 tumors, International Neuroblastoma Staging System stages 1/2A/2B, from 3 cohorts: Localized Neuroblastoma European Study Group I/II and Children’s Oncology Group. Genomic data were analyzed using multi- and pangenomic techniques and fluorescence in-situ hybridization in 2 age groups (cutoff age, 18 months) and were quality controlled by the International Society of Pediatric Oncology European Neuroblastoma (SIOPEN) Biology Group.

RESULTS Patients with stage 1 tumors had an excellent outcome (5-year event-free survival [EFS] ± standard deviation [SD], 95% ± 2%; 5-year overall survival [OS], 99% ± 1%). In contrast, patients with stage 2 tumors had a reduced EFS in both age groups (5-year EFS ± SD, 84% ± 3% in patients < 18 months of age and 75% ± 7% in patients ≥ 18 months of age). However, OS was significantly decreased only in the latter group (5-year OS ± SD in patients < 18 months and ≥ 18 months, 96% ± 2% and 81% ± 7%, respectively; P = .001). In < 18 months, relapses occurred independent of segmental chromosome aberrations (SCAs); only 1p loss decreased EFS (5-year EFS ± SD in patients 1p loss and no 1p loss, 62% ± 13% and 87% ± 3%, respectively; P = .019) but not OS (5-year OS ± SD, 92% ± 8% and 97% ± 2%, respectively). In patients ≥ 18 months, only SCAs led to relapse and death, with 11q loss as the strongest marker (11q loss and no 11q loss: 5-year EFS ± SD, 48% ± 16% and 85% ± 7%, P = .033; 5-year OS ± SD, 46% ± 22% and 92% ± 6%, P = .038).

CONCLUSION Genomic aberrations of resectable non–MYCN-amplified stage 2 neuroblastomas have a distinct age-dependent prognostic impact. Chromosome 1p loss is a risk factor for relapse but not for diminished OS in patients < 18 months, SCAs (especially 11q loss) are risk factors for reduced EFS and OS in those > 18 months. In older patients with SCA, a randomized trial of postoperative chemotherapy compared with observation alone may be indicated.

J Clin Oncol 38:3685-3697. © 2020 by American Society of Clinical Oncology

INTRODUCTION Neuroblastoma, the commonest extracranial solid tumor in infancy and childhood, accounts for 8%-10% of pediatric neoplasms and is responsible for 10% of childhood cancer deaths. As a result of the broad and divergent clinical spectrum of these tumors, prognostic markers are used to stratify therapy, which ranges from a wait-and-see strategy,1-3 to surgery as the only treatment,4-6 to high-dose chemotherapy with hematopoietic stem cell rescue.7 Age at diagnosis and
CONTEXT

Key Objective
To determine whether detailed genomic information in localized, resectable, non-MYCN-amplified neuroblastoma, treated by surgery alone, provides a more precise therapeutic classification.

Knowledge Generated
Genomic analyses of localized, resectable neuroblastomas from two consecutive European studies and a North American cohort revealed a different prognostic impact of tumor genomics depending on patient age (< or ≥ 18 months). The presence of segmental chromosome aberrations, especially 11q loss, significantly reduced survival in patients ≥18 months of age with stage 2 neuroblastoma, but not in the cohort < 18 months.

Relevance
This study provides the rationale for more precise treatment decisions, by the inclusion of tumor genomic aberrations (segmental chromosome aberrations), for localized non–MYCN-amplified neuroblastoma than previously possible.

MYCN amplification (MNA) have both been related to the biologic tumor behavior. Eighteen months is the most effective age cutoff for risk-group stratification.5-10 MNA confers an inferior prognosis to all patients with neuroblastoma (except metastatic disease at age > 18 months treated with current high-dose chemotherapy), was the first genomic marker used for therapy stratification,11,12 and is used by cooperative groups for therapeutic decisions.13 MNA can be classified as homogeneous (homMNA) when the vast majority of tumor cells show > 4-fold increase in MYCN signals (related to a reference probe on 2q) and virtually no tumor cells without MYCN gain or amplification. In heterogeneous tumors, MNA and nonMNA tumor-cell clones are found side by side.14

In 20% to 30% of patients, the disease is localized and resectable.8,13 Whereas patients with International Neuroblastoma Staging System (INSS) stage 1 tumors without MNA (INSS stage 1 can be translated for most clinical purposes into International Neuroblastoma Risk Group [INRG] L1) have excellent relapse-free and overall survival (OS) rates,9,10 this is not the case for patients with INSS stage 2A/B tumors (because of the inclusion of INSS 3, INRG L2 cannot be considered equivalent to INSS 2) for whom significantly higher recurrence rates are reported.15,16 In localized disease, up to two-thirds of non-MNA neuroblastomas bear segmental chromosome aberrations (SCAs). The most commonly found SCAs affecting whole or part of chromosomal arms (ie, losses of or at chromosomal arms 1p/3p/4p/11q; gains of or at 1q/2p/17q) were designated typical SCAs (typSCAs) by the International Society of Paediatric Oncology, European Neuroblastoma (SIOPEN) Biology Group.17 A prognostic impact for these aberrations has been shown repeatedly.18-24 Chromosome 1p loss was the first reported recurrent SCA, especially in MNA high-stage neuroblastoma, but kept its prognostic power for non-MNA neuroblastomas.19,25,26 The most frequently detected aberration irrespective of MYCN status is unbalanced gain of 17q; however, its prognostic impact is still controversial.27,28 Chromosome 11q loss in non-MNA tumors19,29 and 1q gain are regarded prognostically significant.22 The INRG classification schema is based on 4 clinical and morphologic features and on the MYCN-, 11q- status and tumor cell ploidy.13 These genomic features and 1p information were used in the Children’s Oncology Group (COG) as stratifying elements.30 In the ongoing Low and Intermediate Neuroblastoma Trial (LINES; ClinicalTrials.gov identifier: NCT01728155) the SIOPEN group applies MYCN copy-number data and typSCA status, in addition to clinical parameters, to stratify therapy.

In the first European neuroblastoma treatment protocol, Localized Neuroblastoma European Study Group (LNESG) 1 (1995-1999), excision (irrespective of a tumor residue) was the only treatment of patients with INSS stage 2A/2B disease9,31 with non-MNA tumors. The main objective was to test whether surgery alone was an effective and safe treatment for this patient cohort9,31,32; secondary aims were evaluation of the prognostic impact of histopathology33 and tumor genomics. A successor study, LNESG2 (2005-2012), had the objective to increase knowledge of prognostic factors, improve event-free survival (EFS) and OS, establish a uniform treatment of patients with disease relapse, and implement image-defined risk factors in patients with stage 1 and 2 disease.31 Patient cohorts were both based on uniform criteria for clinical diagnosis and staging. Standardized guidelines for tumor splitting, workup, and genomic assessment were applied.34,35 The cohorts share central review and data validation by the SIOPEN Biology Group and the availability of genomic testing in addition to fluorescence in-situ hybridization data.

In this study, we present the genomic analyses of 71 LNESG1 and 175 LNESG2 tumors from consecutively registered trial patients, together with DNA of 71 tumors from localized, resectable, non-MNA neuroblastomas from the COG Neuroblastoma Committee nucleic acid repository.
selected according to inclusion and exclusion criteria similar to that used by the LNESG.

PATIENTS AND METHODS

Patients

Inclusion criteria for this study were as follows: surgery only (i.e., no chemotherapy at diagnosis and no homMNA) and, for statistical analyses, only patients with complete clinical follow-up data, complete and unambiguous genetic data and without heterogeneous MNA (hetMNA). Institutions recruited patients after approval of the trial by national regulatory authorities and ethical committees. Parents or guardians and patients provided written informed consent or assent, when applicable. Note that hereafter, the term MNA is used exclusively for homMNA. Three genetic subtypes for statistical analyses were defined as follows:

1. Numeric chromosome aberrations (NCAs) only
2. typSCA: losses of or at chromosomal arms 1p/3p/4p/11q; gains of or at 1q/2p/17q (tumors may show ≥1 typSCAs).
3. Atypical SCA (atypSCA), any other SCA except those defined as typSCA.

Schwann cell stroma-rich neuroblastomas, mostly found in patients ≥18 months of age are underrepresented because the non-neoplastic Schwann cells hamper acquisition of genetic data, especially where DNA averaging techniques were used (e.g., comparative genomic hybridization, single nucleotide polymorphism array). For 11 patients, no clinical data were available. Assays were

Parameter	LNESG1*	LNESG2*	COGc	Total				
No.	%	No.	%	No.	%	No.	%	
Reason for patient exclusion	123	192	91	406				
No Follow-up information	11	0	17	68				
Incomplete SCA dataa	51	0	17	68				
hetMNA	1	6	3	10				
No. of evaluable patients	71	100	175	100	71	100	317	100
Age at diagnosis, months								
< 18	58	82	130	74	40	56	228	72
≥ 18	13	18	45	26	31	44	89	28
Stage								
1	0	0	125	71	34	48	159	50
2	71	100	50	29	37	52	158	50
Stage (age at diagnosis)								
1 (< 18 months)	0	0	96	55	15	21	111	35
1 (≥ 18 months)	0	0	29	17	19	27	48	15
2 (< 18 months)	58	82	34	19	25	35	117	37
2 (≥ 18 months)	13	18	16	9	12	17	41	13
Median follow-up, months	81	35	74	57				
Genetic subtype								
NCA	43	61	105	60	51	72	199	63
typSCAa	25	35	64	37	17	24	106	33
atypSCA	3	4	6	3	3	4	12	4

Abbreviations: atypSCA, atypical segmental chromosome aberration for neuroblastoma; COG, Children’s Oncology Group; hetMNA, heterogeneous MYCN amplification; LNESG, Localized Neuroblastoma European Study Group; NCA, numeric chromosome aberration; SCA, segmental chromosome aberration; typSCA, typical segmental chromosome aberration.

*Median age at diagnosis of LNESG1 patients was 7 months (range, 7 days to 139 months).

bMedian age at diagnosis of LNESG2 patients was 11 months (range, 0-214 months).

Median age at diagnosis of COG patients was 13 months (range, 1 day to 75 months).

No MYCN amplification and no hetMNA, no typSCA, but not all chromosomal regions typically involved in segmental aberrations were analyzed.

Including 14 tumors with intratumor heterogeneity for typSCA detected by fluorescence in situ hybridization: 11 patients < 18 months old and 3 patients ≥18 months old.
FIG 1. Event-free survival (EFS), postrelapse survival, and overall survival (OS) data according to stage and age in (A) individual cohorts and (B) according to chemotherapy-related toxicity (after relapse, and one due to therapy refusal after a local relapse in a patient with Rubinstein-Taybi syndrome).

repeated in case of unclear results and/or in tumors with higher content of normal cells (eg Schwann cells).

Patients selected for this study from COG had surgery alone, like patients in the LNESG studies and were asymptomatic. They were enrolled in the P9641 trial.36 All the COG patients were enrolled in a biology study (P9047 before 2001; ANBL00B1 after 2001) to define risk class using clinical and molecular tumor features (ie, age, INSS stage, MYCN status, tumor ploidy and histopathology). The trials were approved by institutional ethics committees. For age and stage distributions, see Table 1.

Statistical Analyses

Survival curves were generated according to the Kaplan-Meier method and compared using the log-rank test, with \(P < .05 \) considered statistically significant. Data are reported with ± standard deviation (SD) values; when data for both age groups are reported together, the data for patients < 18 months of age are reported first.

Patients were dichotomized according to the age cutoff of 18 months at diagnosis. Survival time was calculated from the day of operation. EFS was defined as the time from diagnosis to first relapse (local or distant), progression, or death without recurrence. OS includes death from any cause. Postrelapse survival was calculated from the day of the first relapse. Patients who did not experience an event were censored at the time of last follow-up. EFS and OS probabilities were reported at 60 months with Greenwood probabilities were reported at 60 months with Greenwood

RESULTS

Relapse and Postrelapse Survival Rates

The 5-year EFS, OS, and postrelapse survival data according to INSS stages and age are shown in Figure 1 for all cohorts and according to individual cohorts.
Chromosome Aberration	Yes or No	No. of Patients	No. of Events	60-month EFS ± SD	P	No. of Patients	No. of Events	60-month EFS ± SD	P	No. of Patients	No. of Events	60-month EFS ± SD	P	No. of Patients	No. of Events	60-month EFS ± SD	P
1p	No	275	31	0.89 ± 0.02 .059	.069	138	9	0.93 ± 0.02 .939	.939	137	22	0.84 ± 0.03 .032	.039	103	13	0.87 ± 0.03 .019	.019
	Yes	36	8	0.77 ± 0.07 .770	.070	16	1	0.93 ± 0.06 .930	.930	13	7	0.65 ± 0.11 .650	.110	13	5	0.62 ± 0.13 .620	.130
1q	No	293	34	0.88 ± 0.02 .880	.880	146	10	0.93 ± 0.02 .539	.539	147	24	0.84 ± 0.03 .009	.009	112	16	0.85 ± 0.03 .187	.187
	Yes	10	3	0.70 ± 0.14 .700	.140	5	0	1.00 ± 0.00 .100	.100	5	3	0.40 ± 0.22 .400	.220	2	1	0.50 ± 0.35 .500	.350
2p	No	287	32	0.89 ± 0.02 .890	.020	146	10	0.93 ± 0.02 .405	.405	141	23	0.84 ± 0.03 .003	.003	108	15	0.86 ± 0.03 .060	.060
	Yes	15	5	0.65 ± 0.13 .650	.130	8	1	0.88 ± 0.12 .880	.120	7	4	0.43 ± 0.19 .430	.190	4	2	0.50 ± 0.25 .500	.250
3p	No	293	35	0.88 ± 0.02 .990	.990	144	9	0.93 ± 0.02 .539	.539	149	26	0.83 ± 0.03 .172	.172	113	17	0.85 ± 0.03 .418	.418
	Yes	11	2	0.81 ± 0.12 .810	.120	6	0	1.00 ± 0.00 .100	.100	5	2	0.60 ± 0.22 .600	.220	3	1	0.67 ± 0.27 .670	.270
4p	No	298	37	0.87 ± 0.02 .546	.546	146	9	0.93 ± 0.02 .188	.188	152	28	0.82 ± 0.03 NA	NA	114	18	0.84 ± 0.03 NA	NA
	Yes	5	1	0.80 ± 0.18 .800	.180	5	1	0.80 ± 0.18 .800	.180	5	1	0.80 ± 0.18 .800	.180	1	0	0.80 ± 0.18 .800	.180
11q	No	274	30	0.89 ± 0.02 .064	.064	139	8	0.94 ± 0.02 .213	.213	135	22	0.84 ± 0.03 .201	.201	107	17	0.84 ± 0.04 .255	.255
	Yes	31	7	0.76 ± 0.08 .760	.080	13	2	0.85 ± 0.10 .850	.100	18	5	0.71 ± 0.11 .710	.110	8	0	1.00 ± 0.00 .100	.100
17q	No	238	25	0.89 ± 0.02 .103	.103	119	6	0.95 ± 0.02 .236	.236	119	19	0.84 ± 0.03 .210	.210	96	15	0.84 ± 0.04 .965	.965
	Yes	72	13	0.83 ± 0.05 .830	.050	37	4	0.89 ± 0.05 .890	.050	35	9	0.76 ± 0.07 .760	.070	19	3	0.83 ± 0.09 .830	.090
Ploidy	Aneuploid	240	20	0.91 ± 0.02 .000	.000	117	5	0.95 ± 0.02 .008	.008	123	15	0.88 ± 0.03 .000	.000	100	14	0.86 ± 0.04 .221	.221
	Diploid	14	7	0.56 ± 0.13 .560	.130	3	1	0.67 ± 0.27 .670	.270	11	6	0.55 ± 0.15 .550	.150	2	1	0.50 ± 0.35 .500	.350
Genetic subtype	NCA	399	18	0.91 ± 0.02 .780	.020	97	5	0.94 ± 0.02 .619	.619	102	13	0.87 ± 0.03 .058	.058	85	13	0.84 ± 0.04 .834	.834
	aypSCA	12	2	0.81 ± 0.12 .810	.120	8	1	0.86 ± 0.13 .860	.130	4	1	0.75 ± 0.22 .750	.220	2	0	1.00 ± 0.00 .100	.100
	fypSCA	106	19	0.82 ± 0.04 .546	.046	54	4	0.92 ± 0.04 .546	.046	52	15	0.72 ± 0.06 .546	.060	30	5	0.83 ± 0.07 .546	.070

(continued on following page)
TABLE 2. Five-Year EFS and OS According to Individual typSCA, DNA Content, and Genetic Subgroup According to Tumor Stage (continued)

Chromosome Aberration	Yes or No	No. of Patients	No. of Events	60-month OS ± SD	P	No. of Patients	No. of Events	60-month OS ± SD	P	No. of Patients	No. of Events	60-month OS ± SD	P	No. of Patients	No. of Events	60-month OS ± SD	P
4p	No	298	10	0.96 ± 0.01	.714	146	1	0.99 ± 0.01	.861	152	9	0.93 ± 0.02	NA	114	4s	0.96 ± 0.02	NA
	Yes	5	0	1.00 ± 0.00	NA	5	0	1.00 ± 0.00	NA	NA	NA	NA	NA	NA	NA	NA	NA
11q	No	274	6	0.97 ± 0.01	.001	139	0	1.00 ± 0.00	.002	136	6	0.95 ± 0.02	.028	107	4s	0.96 ± 0.02	.597
	Yes	31	4	0.78 ± 0.11	.	13	1	0.92 ± 0.07	.	18	3	0.72 ± 0.14	.	8	0	1.00 ± 0.00	.
17q	No	238	5	0.97 ± 0.01	.045	119	0	1.00 ± 0.00	.083	119	5	0.95 ± 0.02	.112	96	3a	0.97 ± 0.02	.655
	Yes	72	5	0.90 ± 0.05	.	37	1	0.97 ± 0.03	.	35	4	0.85 ± 0.07	.	19	1	0.94 ± 0.05	.
Ploidy	Aneuploid	240	4	0.98 ± 0.01	.001	117	0	1.00 ± 0.00	.	123	4	0.96 ± 0.02	.017	100	3a	0.97 ± 0.02	.803
	Diploid	14	2	0.82 ± 0.12	.	3	0	1.00 ± 0.00	.	11	2	0.81 ± 0.12	.	2	0	1.00 ± 0.00	.
Genetic Subtype	NCA	199	3	0.98 ± 0.01	.041	97	0	1.00 ± 0.00	.395	102	3	0.97 ± 0.02	.044	85	3a	0.96 ± 0.02	.961
	atypSCA	12	1	0.89 ± 0.10	.	8	0	1.00 ± 0.00	.	4	1	0.75 ± 0.22	.	2	0	1.00 ± 0.00	.
	typSCA	106	7	0.91 ± 0.04	.	54	1	0.98 ± 0.02	.	52	6	0.86 ± 0.05	.	30	1	0.96 ± 0.04	.

Abbreviations: atypSCA, atypical segmental chromosome aberration; EFS, event-free survival; NA, not applicable; NCA, numeric chromosome aberration; OS, overall survival; SCA, segmental chromosome aberration; SD, standard deviation; typSCA, typical segmental chromosome aberration.

The deaths of 3 patients were not tumor related.
All cohorts. Patients with stage 1 disease at any age had a higher EFS compared with patients with stage 2 disease at any age. Those with stage 2 disease in the younger age group had an excellent OS comparable to that of patients with stage 1 disease. However, the postrelapse survival in the older age group of the former was significantly inferior (29% ± 17%) as compared with the younger age group (82% ± 9%). Moreover, the 3 deaths in the younger age group were not tumor-related (Fig 1).

Stage 1. The 5-year EFS was high and comparable between the two age groups (94% ± 2% and 91% ± 4% for patients < 18 months and ≥ 18 months, respectively). In the COG cohort, patients < 18 months had lower EFS (80% ± 10%), but this patient subgroup was small (n = 15 patients; Appendix Fig A1, online only).

Stage 2. In patients < 18 months, the 5-year EFS and OS were similar in the LNESG cohorts. In patients ≥ 18 months, however, EFS was worse compared with stage 1 in all cohorts. Postrelapse survival was worse only for LNESG1 and COG patients (0% and 33% ± 27%; Appendix Fig A1).

SCA Frequency in the Different Age and Stage Subgroups

typSCA frequency. In the whole cohort, 33% of patients had typSCA (Table 1), with the highest frequency of 53.7% (n = 22 of 41) found in patients ≥ 18 months with stage 2 disease. Only 25.6% of the younger patients with stage 2 disease showed this aberration. Eighteen (37.5%) of 48 patients ≥ 18 months with stage 1 disease and 36 (32.4%) of 111 patients < 18 months had typSCA (Table 2; and data not shown).

FIG 2. Event-free survival (EFS) and overall survival (OS) according to age, stage, and the genetic subtype numeric chromosome aberration (NCA), typical segmental chromosome aberration (typSCA), and the individual SCAs 1p loss and 11q loss. Patient numbers slightly differ from numbers given in the text because of lacking clinical data.
Chromosome 1p deletion was uniformly associated with relapse in both age groups. Non-MNA, nonhomogeneous relapsing tumors showed also 1p loss. For stage 2 cases, none of eight patients patients stage 1 cases, none of 10 patients.

Numeric chromosome aberrations (NCA) are compared with typical segmental chromosome aberrations (typSCAs). From the seven typSCAs, only the most frequently encountered and most significant typSCA are mentioned. Patient numbers are indicated in parentheses. EFS data are listed above OS data. For stage 1 cases, none of 10 patients < 18 months of age at diagnosis with 1p loss tumors and none of eight with 11q loss experienced disease relapse. In patients ≥ 18 months of age, there was one relapse among six tumors with 1p loss, and two relapses among four tumors with 11q loss occurred (one of the relapsing tumors showed also 1p loss). For stage 2 cases, none of eight patients < 18 months of age at diagnosis with 11q loss tumors experienced a relapse. Chromosome 1p deletion was uniformly associated with relapse in both age groups. Non-MNA, nonhomogeneous MYCN amplification.

Individual typSCA. A higher frequency of 11q aberrations was found in the older patient group in stage 2 tumors; this was not the case for 1p loss (Table 2).

atypSCA. A total of 12 tumors (any age, both stages) showed atypSCAs as sole aberrations. In an additional 41 tumors, atypSCA were present together with typSCA.

Ploidy and typSCA. All diploid tumors had SCAs, which occurred more frequently in the older group (19% vs 3% in patients < 18 months). Conversely, only < 10% of aneuploid tumors (n = 20 of 241) had SCAs (data not shown).

Relapse According to Age and Tumor Genomics

Alltogether, 39 disease relapses were recorded: 20 local relapses, four metastatic and local, and 15 metastatic.

Patients < 18 months. In both stages, 5-year EFS was similar in NCA tumors and in typSCA tumors but lower in stage 2 tumors (stage 1: 94% ± 3% and 94% ± 4%, respectively; stage 2: 84% ± 4% and 83% ± 7%, respectively; Fig 2). Of the 23 patients (both stages) whose disease relapsed, only one patient died of disease (Fig 1). This patient had a stage 2 tumor with various typical and atypical SCAs. Disease relapse occurred in 16 patients with tumors with NCA (n = 4 stage 1; n = 12 stage 2), but there were no deaths. Seven patients had tumors with hetMNA (n = 1 relapse, no deaths; data not shown).

Patients ≥ 18 months. In stage 1 disease, 5-year-EFS did not differ significantly in NCA tumors and in typSCA tumors (95% ± 4% and 89% ± 8%, respectively). In stage 2 disease, however, EFS differed significantly between NCA and typSCA tumors (100% and 58% ± 11%, respectively; P = .001; Figs 2 and 3; Table 2; Data Supplement). In NCA tumors, only one of the 41 tumors (both stages) relapsed (locally), in contrast to 12 of 40 typSCA tumors (both stages; two patients’ disease relapsed after 60 months, five patients with stage 2 tumors died of disease; Figs 2 and 3, Table 2). Three patients had hetMNA tumors (two patients with stage 2 tumors both had disease relapse and died of disease; data not shown).

Impact of Individual SCA Types and Tumor Cell Ploidy

Stage 1. None of the typSCAs were predictive of relapse and OS (one death in the 11q deletion group changes the P value), irrespective of age at diagnosis.

Stage 2. All typSCAs, except 3p, 4p, 11q, and 17q losses, were associated with decreased EFS, and all except 1p, 3p, and 17q associated with decreased OS (Table 2). No significant differences in relapse frequencies between the presence of 1 typSCA or > 1 typSCA were observed.

Patients < 18 months. Only 1p loss was associated with decreased 5-year EFS (62% ± 13% v 87% ± 3%; P = .019). Only 1 patient died of disease with a tumor bearing 1p loss and 1q, 2p, and 17q gains. Three patients with NCA
In a multivariate analysis of prognostic factors for EFS (ie, stage, study, age, and typSCA in different age groups), typSCA versus NCA in patients <18 months was the strongest prognostic indicator (HR, 12.97; P = .015), followed by stage 2 versus stage 1 (Table 3). Conversely, genomic aberrations had no power in patients <18 months (HR, 1.02; P = .968).

DISCUSSION
To scrutinize the prognostic impact of neuroblastomatypical genomic aberrations in non-MNA, localized, resectable neuroblastomas in patients <18 months and those ≥18 months of age, the SIOPEN Biology Group conducted genomic analyses of tumors from patients enrolled in LNESG1, LNESG2, and COG trials who were treated with surgery alone irrespective of a tumor residuum. Evaluation of the association of genomic features with stage, age, and outcome demonstrate an age-dependent impact of tumor genomics: in patients <18 months with stage 2 disease: (1) SCA and NCA tumors led to recurrences with similar frequencies; (2) 1p loss was the only typSCA associated with a higher relapse rate; and (3) patients with disease relapse could nearly always undergo a salvage treatment irrespective of the tumor genetics. In patients ≥18 months with stage 2 disease, tumors with typSCA were almost the only tumors that relapsed.

In this report, we show that NCA stage 2 tumors frequently relapse or progress in patients <18 months, but only rarely in older patients. This may reflect a high proliferative capacity of still immature NCA tumors in the younger age group and a markedly diminished potential for relapse and dissemination in tumors with this genomic profile and activated maturation processes in the older age group.37 Another striking observation was the different prognostic implications of typSCA in the different age groups: loss of 1p in patients <18 months was associated with a higher relapse rate but not with diminished OS. In patients ≥18 months with stage 2 disease, the presence of typSCA was associated with relapses in nearly 40% of patients and almost one-quarter died; patients with 11q loss did even worse.

Multivariate analysis supported these data demonstrating typSCA versus NCA in the ≥18-month age group as the strongest discriminating factor. However, there was no discriminating power of genomic aberrations, in the younger population. Stage, as expected, was the second strongest prognostic factor.

Table 3. Multivariate Analysis of Prognostic Factors for Event-Free Survival (n = 37 events among 305 patients with NCA or typSCA)

Parameter	Comparison	P	HR	Lower	Upper
Stage	Stage 2 v stage 1	.052	2.4	1.0	5.6
Study (P = .599)	COG v LNESG2	.833	1.11	0.44	2.80
	LNESG1 v LNESG2	.326	1.52	0.66	3.52

Interaction between genetic subtype and age, months

	< 18	≥ 18
typSCA* v NCA	.968	1.02
typSCA+ v NCA	.015	12.97

Abbreviations: COG, Children’s Oncology Group; HR, hazard ratio; LNESG, Localized Neuroblastoma European Study Group; NCA, numeric chromosome aberration; typSCA, typical segmental chromosome aberration.

*Thirteen patients with atypSCA were excluded because of the rarity of this genetic subtype.

Discussion

To scrutinize the prognostic impact of neuroblastoma-typical genomic aberrations in non-MNA, localized, resectable neuroblastomas in patients <18 months and those ≥18 months of age, the SIOPEN Biology Group conducted genomic analyses of tumors from patients enrolled in LNESG1, LNESG2, and COG trials who were treated with surgery alone irrespective of a tumor residuum.
tumors. Moreover, Pinto et al.40 identified a lower EFS in localized SCA tumors. In SCA marker studies, 11q deletion reached statistical significance in localized and stage 4S neuroblastomas, and some cooperative groups use 11q for stratification.20,29,30 Because the number of patients bearing tumors with 1q and 2p gain was small, we did not draw any conclusion on the prognostic impact of these markers.

Although slightly higher, the observed frequencies for typSCA were comparable with those in most previous reports.22,27,35,41 This may be explained by analysis of different tumor areas (according to the SIOPEN Biology guidelines).34,35 The higher incidence of typSCA in patients in the older age group with stage 2 disease could be partly due to the lack of SCA data in Schwann cell stroma-rich tumors. These tumors occur almost exclusively in the older age group. Shimada et al.42-44 were the first to consider the need for an age-dependent interpretation of histopathologic features. After demonstration of the nonneoplastic, reactive nature of the Schwann cell in neuroblastoma, the new model of maturation could explain this age dependency, because Schwann cell stroma development and gangliocytic differentiation take considerable time.37,45,46 Schwann cell stroma-rich tumors most likely represent “true” NCA tumors; however, the frequently high amount of normal Schwann cells hampers pangenomic analysis.37 Because of this, there were incomplete SCA data for 32 tumors in the older age group. However, none of these patients experienced disease relapse. In contrast, a higher frequency of SCA occurs with increasing age in Schwann cell stroma-poor tumors.39,47 With regard to tumor cell ploidy, the known association of diploidy with poorer outcome in neuroblastoma was also confirmed in this study for stage 2 tumors in patients ≥ 18 months of age.36

Postrelapse survival was comparatively poor in the older age group in the LNESG1 and COG cohorts. With the LNESG2 cohort, the respective patient subgroup contained too few patients to draw any definite conclusions. In addition, the LNESG2 trial used image-defined risk factors31 to assess operability as well as uniform guidelines for post-relapse treatment (ie high-risk protocol for disseminated relapses (M. Beck-Popovic, unpublished data).

The results of this study reconfirm the significant prognostic impact of age at diagnosis in patients with neuroblastoma,48,49 but challenge the view of age (< 18 months) as a simple surrogate marker for favorable genetics. The lack of prognostic significance for most typSCAs in patients < 18 months, except for 1p loss, was unexpected, as was the similar relapse frequency of NCA tumors in this age group. Other features may be of prognostic importance, including the delay of the developmental switch of neuroblast involution and the role of low- or high-affinity nerve growth factor (NGF) receptor expression together with limited NGF supply.50,53 Moreover, absence of TERT activation in most, if not all, favorable, low-stage neuroblastomas may trigger apoptosis and regression.5 Altogether, the age factor in neuroblastoma is still not understood and may be multifactorial. It would be interesting to determine whether genetic aberrations could precede metabolic tumor cell changes and if studying other factors in this cohort could further optimize predictions of which SCA-positive patients might experience recurrence (eg, LDH, TERT, and other telomere maintenance mechanisms).5,43,55

In this study, we identified genomic risk factors for relapse in patients with localized, resectable, non-MNA neuroblastomas, which are different for children < 18 months of age compared with those ≥ 18 months. Chromosome 1p loss in patients < 18 months can be regarded as a significant risk factor for relapse but not survival. However, although patients < 18 months with stage 2 disease could almost always receive salvage treatment after disease relapse, this was not the case for patients ≥ 18 months, for whom SCAs (especially 11q loss) was a risk factor for EFS and OS as well as diploidy.

For both age-dependent genomic subgroups, we recommend the prognostic impact in these subgroups be validated prospectively in large international trials. A risk classification then may be developed on the basis of genomic and clinical factors.

The decisions can range from careful observation when no other adverse markers are present to conventional chemotherapy or other treatment options in case of 11q-deleted tumors in the older patient group, for example. A trial comparing EFS and OS after a limited number of courses of postoperative chemotherapy versus close observation of older patients with SCA (11q loss) should be considered.

\textbf{AFFILIATIONS}

1Children’s Cancer Research Institute, St Anna Kinderkrebsforschung, Vienna, Austria
2Paediatric Research Institute, Fondazione Città della Speranza, Neuroblastoma Laboratory, Padua, Italy
3Pediatric Oncology Research, Department of Pediatrics, University Hospital, Lausanne, Switzerland
4Service de Biostatistiques, Institut Curie, Paris, France
5Department of Pathology, Oslo University Hospital Rikshospitalet, Oslo, Norway
6Department of Pathology, Medical School, University of Valencia–Fundación de Investigación del Hospital Clínico Universitario de Valencia, Valencia, Spain
7Centro de Investigación Biomédica en Red de Cáncer, Madrid, Spain
8Département de Biologie et de Pathologie Médicales, Service de Pathologie Moléculaire, Institut Gustave Roussy, Villejuif, France
9Northern Genetics Service, Newcastle upon Tyne, United Kingdom
10Department of Pediatric Oncology, Emma Children’s Hospital, Academic Medical Center, Amsterdam, the Netherlands
CORRESPONDING AUTHOR
Inge M. Ambros, MD, CCRI, Children’s Cancer Research Institute, St Anna Kinderkrebsforschung, Zimmermannplatz 10, 1090 Vienna, Austria; e-mail: inge.ambros@ccri.at.

EQUAL CONTRIBUTION
I.M.A. and P.F.A. contributed equally to this manuscript.

SUPPORT
Funded in part by Oesterreichische National Bank (Grant No. 134222), Wissenschaftsfonds FWF (Grant No. I 2799-B28), and Directorate-General V, European Commission (Grant No. SOC 98 201284 05F02), all to P.F.A.; and Instituto de Salud Carlos III (Grant No. PI17/01558) to R.N.

AUTHORS’ DISCLOSURES OF POTENTIAL CONFLICTS OF INTEREST AND DATA AVAILABILITY STATEMENT
Disclosures provided by the authors and data availability statement (if applicable) are available with this article at DOI https://doi.org/10.1200/JCO.18.02132.

AUTHOR CONTRIBUTIONS
Conception and design: Inge M. Ambros, Nicole Gross, Huib Caron, Tommy Martinsson, Gudrun Schleiermacher, Edward F. Attiyeh, Ruth Ladenstein, Jean Michon, Peter F. Ambros
Financial support: Inge M. Ambros, Nicole Gross, Deborah Tweddle, Peter F. Ambros
Provision of study material or patients: Inge M. Ambros, Gian-Paolo Tonini, Nicole Gross, Jean Bénard, Huib Caron, Valérie Combaret, Jerome Couturier, Olivier Delattre, Marta Jeison, Per Kogner, John Lune, Gudrun Schleiermacher, Alexander Valen, Nadine Van Roy, Eva Villamon, Michael D. Hogarty, Dominique Valteau-Couanet, Victoria Castel, Deborah A. Tweddle, Sue Cohn, Ruth Ladenstein, Maja Beck-Popovic, Jean Michon, Peter F. Ambros
Collection and assembly of data: Inge M. Ambros, Gian-Paolo Tonini, Nicole Gross, Klaus Beiske, Je Bénard, Nick Bown, Huib Caron, Valérie Combaret, Jerome Couturier, Raffaella Defferrari, Olivier Delattre, Marta Jeison, Per Kogner, John Lune, Barbara Marques, Tommy Martinsson, Katia Mazocco, Rosa Noguera, Gudrun Schleiermacher, Alexander Valen, Nadine Van Roy, Eva Villamon, Dasa Janousek, Ingrid Pribill, Edward F. Attiyeh, Tom F. Monclor, Dominique Valteau-Couanet, Victoria Castel, Deborah A. Tweddle, Julie R. Park, Sue Cohn, Ruth Ladenstein, Maja Beck-Popovic, Peter F. Ambros
Data analysis and interpretation: Inge M. Ambros, Nicole Gross, Ulrike Pötschger, Véronique Mosseri, Klaus Beiske, Ana P. Berbegall, Nick Bown, Jerome Couturier, Marta Jeison, Per Kogner, John Lune, Tommy Martinsson, Rosa Noguera, Gudrun Schleiermacher, Alexander Valen, Nadine Van Roy, Evgenia Glogova, Michael D. Hogarty, Keith Holmes, Victoria Castel, Deborah A. Tweddle, Julie R. Park, Sue Cohn, Ruth Ladenstein, Bruno De Bernardi, Andrew D.J. Pearson, Peter F. Ambros
Manuscript writing: All authors
Final approval of manuscript: All authors
Accountable for all aspects of the work: All authors

ACKNOWLEDGMENT
This paper is dedicated to the memory of Daniel Beck, MD, who was a cofounder of the LNESGI, a distinguished scientist, and a dear friend. We thank Marion Zavadi, MA, for critical reading of the manuscript. We thank the Children’s Cancer and Leukaemia Group (CCLG) Tissue Bank for access to DNA samples, and contributing CCLG Centers, including members of the ECMC Paediatric network. The CCLG Tissue Bank is funded by Cancer Research UK and CCLG.
4. Cheung N-KV, Kushner BH, LaQuaglia MP, et al: Survival from non-stage 4 neuroblastoma without cytotoxic therapy: An analysis of clinical and biological markers. Eur J Cancer 33:2117-2120, 1997
5. Ichara T, Hamazaki M, Tajiri T, et al: Successful treatment of infants with localized neuroblastoma based on their MYCN status. Int J Clin Oncol 18:389-395, 2013
6. Kushner BH, Cheung NK, LaQuaglia MP, et al: Survival from locally invasive or widespread neuroblastoma without cytotoxic therapy. J Clin Oncol 14:373-381, 1996
7. Ladenstein R, Pötschger U, Pearson ADJ, et al: Busulfan and melphalan versus carboplatin, etoposide, and melphalan as high-dose chemotherapy for high-risk neuroblastoma (HR-NBL1/SIOPEN): An international, randomised, multi-arm, open-label, phase 3 trial. Lancet Oncol 18:500-514, 2017
8. Monclair T, Brodeur GM, Ambros PF, et al: The International Neuroblastoma Risk Group (INRG) staging system: An INRG Task Force report. J Clin Oncol 27:298-303, 2009
9. De Bernardi B, Mosseri V, Rubie H, et al: Treatment of localised resectable neuroblastoma. Results of the LNESG1 study by the SIOPEN Europe Neuroblastoma Group. Br J Cancer 99:1027-1033, 2008
10. Haupt R, Garaventa A, Gambini C, et al: Improved survival of children with neuroblastoma between 1979 and 2005: A report of the Italian Neuroblastoma Registry. J Clin Oncol 28:2331-2338, 2010
11. Brodeur GM, Seeger RC, Schwab M, et al: Amplification of N-myc in untreated human neuroblastomas correlates with advanced disease stage. Science 224:1121-1124, 1984
12. Seeger RC, Brodeur GM, Sather H, et al: Association of multiple copies of the N-myc oncogene with rapid progression of neuroblastomas. N Engl J Med 313:1111-1116, 1985
13. Cohn SL, Pearson ADJ, London WB, et al: The International Neuroblastoma Risk Group (INRG) classification system: An INRG Task Force report. J Clin Oncol 27:289-297, 2009
14. Bogen D, Brunner C, Walder D, et al: The genetic tumor background is an important determinant for heterogeneous MYCN-amplified neuroblastoma. Int J Cancer 139:153-163, 2014
15. Garaventa A, Parodi S, De Bernardi B, et al: Outcome of children with neuroblastoma after progression or relapse. A retrospective study of the Italian neuroblastoma registry. Eur J Cancer 45:2835-2842, 2009
16. Perez CA, Matthay KK, Atkinson JB, et al: Biologic variables in the outcome of stages I and II neuroblastoma treated with surgery as primary therapy: A Children's Cancer Group study. J Clin Oncol 18:18-26, 2000
17. Schleiermacher G, Mosseri V, London WB, et al: Segmental chromosomal alterations have prognostic impact in neuroblastoma: A report from the INRG project. Br J Cancer 107:1418-1422, 2012
18. Marks JM, Weiss MJ, Guo C, et al: Loss of heterozygosity at 1p36 independently predicts for disease progression but did not decrease overall survival probability in neuroblastoma patients: A Children's Cancer Group study. J Clin Oncol 18:1888-1890, 2000
19. Attiyeh EF, Grünwald U, Okumura N, et al: Chromosome 1p and 11q deletions and outcome in neuroblastoma. N Engl J Med 349:989-996, 2003
20. Spitz R, Hero B, Simon T, et al: Loss in chromosome 11q identifies tumors with increased risk for metastatic relapses in localized and 4S neuroblastoma. Clin Cancer Res 12:3368-3373, 2006
21. Schleiermacher G, Michon J, Huon I, et al: Chromosomal CGH identifies patients with a higher risk of relapse in neuroblastoma without MYCN amplification. Br J Cancer 97:238-246, 2007
22. Janoueix-Lerosey I, Schleiermacher G, Michels E, et al: Overall genomic pattern is a predictor of outcome in neuroblastoma. J Clin Oncol 27:1026-1033, 2009
23. Plantaz D, Vandesompele J, Van Roy N, et al: Comparative genomic hybridization (CGH) analysis of stage 4 neuroblastoma reveals high frequency of 11q deletion in tumors lacking MYCN amplification. Int J Cancer 91:680-686, 2001
24. Mosse YP, Dishin S, Wasserman N, et al: Neuroblastomas have distinct genomic DNA profiles that predict clinical phenotype and regional gene expression. Genes Chromosom Cancer 46:936-949, 2007
25. Brodeur GM, Green AA, Hayes FA, et al: Cytogenetic features of human neuroblastomas and cell lines. Cancer Res 41:4678-4686, 1981
26. Ambros PF, Ambros IM, Strehl S, et al: Regression and progression in neuroblastoma. Do genes predict patient tumour behaviour? Eur J Cancer 31A:510-515, 1995
27. Bown N, Cotterill S, Lastowska M, et al: Gain of chromosome arm 17q and adverse outcome in patients with neuroblastoma. N Engl J Med 340:1954-1961, 1999
28. Bown N, Cotterill S, Lastowska M, et al: Gain of chromosome arm 17q and adverse outcome in patients with neuroblastoma. N Engl J Med 340:1954-1961, 1999
29. Juan Ribelles A, Barbera S, Yañez Y, et al: Clinical features of neuroblastoma with 11q deletion: An increase in relapse probabilities in localized and 4S neuroblastoma. Int J Cancer 107:1418-1422, 2002
30. Twist CJ, Naranjo A, Schmidt ML, et al: Deletion in tumors lacking MYCN amplification. Int J Cancer 46:936-949, 2007
31. Monclair T, Mosseri V, Cecchetto G, et al: Invasive neuroblastic tumours without MYCN amplification. Br J Cancer 97:238-246, 2007
32. Cecchetto G, Mosseri V, De Bernardi B, et al: Surgical risk factors in primary surgery for localized neuroblastoma: The LNESG1 study of the European International Society of Paediatric Oncology Neuroblastoma Group. Pediatr Blood Cancer 62:1536-1542, 2015
33. Navarro S, Amann G, Beiske K, et al: Prognostic value of International Neuroblastoma Pathology Classification in localized resectable peripheral neuroblastic tumors: A histopathologic study of localized neuroblastoma European Study Group 94.01 Trial and Protocol. J Clin Oncol 24:695-699, 2006
34. Ambros IM, Benard J, Boavida M, et al: Quality assessment of genetic markers used for therapy stratification. J Clin Oncol 21:2077-2084, 2003
35. Ambros PF, Ambros IM, Brodeur GM, et al: International consensus for neuroblastoma molecular diagnostics: Report from the International Neuroblastoma Risk Group (INRG) Biology Committee. Br J Cancer 100:1471-1482, 2009
36. Strother DR, London WB, Schmidt ML, et al: Outcome after surgery alone or with restricted use of chemotherapy for patients with low-risk neuroblastoma: Results of Children's Oncology Group study P9641. J Clin Oncol 30:1842-1848, 2012
37. Ambros IM, Zellner A, Roald B, et al: Role of ploidy, chromosome 1p, and Schwann cells in the maturation of neuroblastoma. N Engl J Med 334:1505-1511, 1996
38. Defferrari R, Mazocco K, Ambros IM, et al: Influence of segmental chromosome abnormalities on survival in children over the age of 12 months with unresectable localised peripheral neuroblastic tumours without MYCN amplification. Br J Cancer 112:290-295, 2015
39. Schleiermacher G, Michon J, Ribiero A, et al: Segmental chromosomal alterations lead to a higher risk of relapse in infants with MYCN-non-amplified localised unresectable/disseminated neuroblastoma (a SIOPEN collaborative study). Br J Cancer 105:1940-1948, 2011
40. Pinto N, Mayfield JR, Raca G, et al: Segmental chromosomal aberrations in localized neuroblastoma can be detected in formalin-fixed paraffin-embedded tissue samples and are associated with recurrence. Pediatr Blood Cancer 63:1019-1023, 2016
41. Simon T, Spitz R, Faldum A, et al: New definition of low-risk neuroblastoma using stage, age, and 1p and MYCN status. J Pediatr Hematol Oncol 26:791-796, 2004
42. Shimada H, Chatten J, Newton WA, Jr., et al: Histopathologic prognostic factors in neuroblastic tumors: Definition of subtypes of ganglioneuroblastoma and an age-linked classification of neuroblastomas. J Natl Cancer Inst 73:405-416, 1984
43. Shimada H, Ambros IM, Dehner LP, et al: Terminology and morphologic criteria of neuroblastic tumors: Recommendations by the International Neuroblastoma Pathology Committee. Cancer 86:349-363, 1999
44. Shimada H, Ambros IM, Dehner LP, et al: The International Neuroblastoma Pathology Classification (the Shimada system). Cancer 86:364-372, 1999
45. Ambros IM, Ambros PF: Schwann cells in neuroblastoma. Eur J Cancer 31A:429-434, 1995
46. Ambros IM, Attarbaschi A, Rumpler S, et al: Neuroblastoma cells provoke Schwann cell proliferation in vitro. Med Pediatr Oncol 36:163-168, 2001
47. Coco S, Theissen J, Scaruffi P, et al: Age-dependent accumulation of genomic aberrations and deregulation of cell cycle and telomerase genes in metastatic neuroblastoma. Int J Cancer 131:1591-1600, 2012
48. Gross RE, Farber S, Martin LW. Neuroblastoma sympatheticum; a study and report of 217 cases. Pediatrics 23:1179-1191, 1959
49. London WB, Castleberry RP, Matthay KK, et al: Evidence for an age cutoff greater than 365 days for neuroblastoma risk group stratification in the Children’s Oncology Group. J Clin Oncol 23:6459-6465, 2005
50. Rabizadeh S, Oh J, Zhong LT, et al: Induction of apoptosis by the low-affinity NGF receptor. Science 261:345-348, 1993
51. Kogner P, Barbany G, Dominici C, et al: Coexpression of messenger RNA for TRK protooncogene and low affinity nerve growth factor receptor in neuroblastoma with favorable prognosis. Cancer Res 53:2044-2050, 1993
52. Nakagawara A: Molecular basis of spontaneous regression of neuroblastoma: Role of neurotrophic signals and genetic abnormalities. Hum Cell 11:115-124, 1998
53. Hansford LM, Thomas WD, Keating JM, et al: Mechanisms of embryonal tumor initiation: Distinct roles for MycN expression and MYCN amplification. Proc Natl Acad Sci USA 101:12664-12669, 2004
54. Mars JM: Recent advances in neuroblastoma. N Engl J Med 362:2202-2211, 2010
55. Ackermann S, Cartolano M, Hero B, et al: A mechanistic classification of clinical phenotypes in neuroblastoma. Science 362:1165-1170, 2018
Age Dependency of the Prognostic Impact of Tumor Genomics in Localized Resectable MYCN-Nonamplified Neuroblastomas. Report From the SIOPEN Biology Group on the LNESG Trials and a COG Validation Group

The following represents disclosure information provided by authors of this manuscript. All relationships are considered compensated unless otherwise noted. Relationships are self-held unless noted. I = Immediate Family Member, Inst = My Institution. Relationships may not relate to the subject matter of this manuscript.

For more information about ASCO's conflict of interest policy, please refer to www.asco.org/wc or ascopubs.org/jco/authors/author-center.

Open Payments is a public database containing information reported by companies about payments made to US-licensed physicians (Open Payments).

Huib Caron
- **Employment:** Roche
- **Stock and Other Ownership Interests:** Roche
- **Travel, Accommodations, Expenses:** Roche

Per Kogner
- **Consulting or Advisory Role:** Fennec Pharmaceuticals

John Lunec
- **Patents, Royalties, Other Intellectual Property:** Astex Pharmaceuticals (Inst)
- **Travel, Accommodations, Expenses:** Astex Pharmaceuticals

Gudrun Schleiermacher
- **Honoraria:** Bristol Myers Squibb
- **Research Funding:** Bristol Myers Squibb (Inst), Pfizer (Inst), MSDavenir (Inst), Roche (Inst)
- **Travel, Accommodations, Expenses:** Roche

Edward F. Attiyeh
- **Employment:** Janssen Research & Development
- **Stock and Other Ownership Interests:** Johnson & Johnson

Dominique Valteau-Couanet
- **Consulting or Advisory Role:** EUSA Pharma (Inst)
- **Research Funding:** Orphelia (Inst)
- **Patents, Royalties, Other Intellectual Property:** Royalties from Apeiron to SIOPEN (Inst)
- **Travel, Accommodations, Expenses:** EUSA Pharma, Jazz Pharmaceuticals

Deborah A. Tweddle
- **Honoraria:** EUSA Pharma
- **Travel, Accommodations, Expenses:** EUSA Pharma

Sue Cohn
- **Stock and Other Ownership Interests:** United Therapeutics (I), United Therapeutics, Merck, Stryker (I), Stryker, Amgen (I), Pfizer (I), AbbVie, Amgen, Jazz Pharmaceuticals, Eli Lilly, Sanofi, Varox Imaging, Pfizer, Accelerated Medical Diagnostics, Anthem, Cardinal Health, Novo Nordisk, Regeneron, Zimmer BioMet
- **Research Funding:** United Therapeutics (Inst), Merck (Inst)
- **Open Payments Link:** https://openpaymentsdata.cms.gov/physician/46569/

Ruth Ladenstein
- **Honoraria:** Apeiron Biologics, Boehringer Ingelheim, EUSA Pharma
- **Consulting or Advisory Role:** Apeiron Biologics, Boehringer Ingelheim, EUSA Pharma (Inst)
- **Research Funding:** Apeiron Biologics (Inst), EUSA Pharma (Inst)
- **Patents, Royalties, Other Intellectual Property:** Apeiron Biologics (Inst), EUSA Pharma (Inst)
- **Expert Testimony:** Apeiron Biologics, EUSA Pharma
- **Travel, Accommodations, Expenses:** Apeiron Biologics, EUSA Pharma

Jean Michon
- **Travel, Accommodations, Expenses:** Bristol Myers Squibb, Roche

Andrew D. J. Pearson
- **Consulting or Advisory Role:** Eli Lilly, Takeda, Merck, Celgene
- **Travel, Accommodations, Expenses:** Eli Lilly, Takeda, Merck, Celgene

No other potential conflicts of interest were reported.
FIG A1. Event-free survival (EFS), postrelapse EFS, and overall survival (OS) according to age and stage in the single cohorts (A) LNESG1, (B) LNESG2, and (C) COG validation cohort. COG, Children’s Oncology Group; LNESG, Localized Neuroblastoma European Study Group.