Oral administration of geranylgeranylacetone plus local somatothermal stimulation: A simple, effective, safe and operable preconditioning combination for conferring tolerance against ischemia-reperfusion injury in rat livers

Ning Fan, Guang-Shun Yang, Jun-Hua Lu, Ning Yang, Hai-Bin Zhang

Abstract

AIM: To explore a simple, effective, safe and operable pretreatment for conferring tolerance against ischemia-reperfusion (I-R) injury in rat livers.

METHODS: Forty-five rats were divided into five groups (each group n = 9). Group C: control group; group G: geranylgeranylacetone (GGA) was administered without heat stress; group S: local heat stress alone; group WG: GGA plus whole-body heat stress; group SG: GGA administration plus local heat stress. After completion of the I-R procedure, the ischemic-reperfused liver lobes in five groups were resected and tested for heat shock protein (HSP70) by RT-PCR, Western blotting analysis and immunohistochemical staining. The blood samples were collected for ALT and AST measurement at the end of occlusion of blood supply, 30 min after reperfusion, 24, 48, 72 h after surgery from the inferior vena cava. Survival was monitored for 1 wk.

RESULTS: The production of HSP70 after I-R injury increased, the liver enzyme levels after reperfusion decreased rapidly, and the survival rates increased in groups C-SG.

CONCLUSION: The combination of GGA plus local somatothermal stimulation is a simple, effective, safe and operable pretreatment to induce HSP70 in patients with liver tumor and cirrhosis before hepatectomy and in donors before harvesting graft for liver transplantation.

Key words: Ischemia-reperfusion injury; Heat shock protein; Geranylgeranylacetone; Local somatothermal stimulation

INTRODUCTION

Ischemia-reperfusion (I-R) injury is the main cause of hepatic damage induced by temporary clamping of the hepatoduodenal ligament during liver resection (Pringle maneuver), and severe complications of liver transplantation such as primary graft nonfunction or malfunction are also the consequence of reperfusion injury[1,2]. Furthermore, even moderate reperfusion damage that does not severely affect the graft can impair long-term hepatic recovery and enhances the patient’s susceptibility to infections and multiple organ failure[3]. Though improvements in liver preservation and surgical techniques have been achieved, hepatic ischemia/reperfusion remains an important clinical problem. Furthermore, because of the shortage of organs for transplantation, the use of steatotic livers, which have a lower tolerance to hypoxia and are more susceptible to reoxygenation damage, greatly increase the risks related to reperfusion injury[3,4]. Therefore, it is clinically significant to find a simple, effective, safe and operable preconditioning combination before liver surgery to protect liver against I-R injury.

Hepatic preconditioning can be induced by transient I-R[5-9], short-term hyperthermia[10,11], oxidative stress[12], or ANP infusion[13,14]. All these stimuli improve postischemic sinusoidal perfusion, leukocyte infiltration, bile production, and aminotransferase release 48 h after their application to liver. Among these stimuli, hyperthermic preconditioning has been proved to be a potential clinical application measurement. After heat shock preconditioning, organs may produce endogenous cytoprotective substances which can ameliorate I-R injury in subsequent hepatectomy or liver transplantation.

The cytoprotective action of heat shock preconditioning is closely related to the endogenous cytoprotective protein, heat shock protein (HSP), which has been proved to play an important role in protection against I-R injury[15,17]. In
the HSP family, inducible form of HSP70 is the main cytoprotective protein. Research on how to apply the cytoprotective action of HSP70 during liver surgery by certain heat shock preconditioning form is scarce. Therefore, how to find out a clinically feasible heat shock stress form remains to be elucidated.

Generally, heat shock stress includes two types: whole-body heat and local heat. By heating the whole body in warm water or on electronic pad, body temperature must be above 41 °C-the critical temperature to activate heat shock stress of viscera where the inducible form of HSP70 is induced to play the cytoprotective action. Local somatothermal stimulation (LSTS), a kind of local heat stress on designated skin area, is speculated to be the consequence of a somatovisceral reflex through a heat-sensitive neural release of NO. It is well known that NO is a strong inducer of gene expression in gastric mucosal cells in response to ethanol stress or water-immersion stress. In addition, the gene expression in gastric mucosal cells in response to GAA-GT-3', and rat-

Materials and Methods

Animals

Male Sprague-Dawley rats weighing 250-300 g were obtained from Animal Center of the Fudan University, Shanghai, China. They were housed in chip-bedded cages at room temperature (24 ± 1 °C) in a 12-h light/dark cycle. Rats were permitted free access to water and standard rat chow. The study was approved by the Committee on Experimental Animals of Second Military Medical University.

Grouping

Forty-five rats were divided into five groups (each group n = 9). Group C: experiment for I-R injury (as a control); group G: GGA was administered 2 h before experiments for I-R injury (administering GGA without heat stress); group S: LSTS was performed 12 h before experiment for I-R injury (local heat stress alone); group WG: GGA was administrated 2 h before whole-body heat shock exposure, and experiment for I-R injury was performed 48 h after whole-body heat shock exposure (GGA plus whole-body heat stress); group SG: GGA was administered 2 h before LSTS, and experiment for I-R injury was performed 12 h after LSTS (GGA administration plus local heat stress).

Reverse transcription (RT) was performed using a reverse transcription kit. One microgram of rat tissue RNA was used as a template and RT-generated cDNA encoding Hsp70 and β-microglobulin (β-MG internal control) were amplified using PCR. The primers used in this study were Hsp70 (354 bp), sense: 5'-AAC-GTG-CTG-CGG-ATC-ATC-AA-3', anti-sense: 5'-GCT-CAG-CAT-CAG-ATA-GTA-AGT-3', and Hsp70 (100 bp), sense: 5'-AAC-GTG-CTG-CGG-ATC-ATC-AA-3', and Hsp70 (100 bp), sense: 5'-AAT-CTG-ATG-ATG-ATC-GAG-ATG-TCA-CTG-TG-3', anti-sense: 5'-GCT-TCA-ATG-GTT-TTG-ATC-AG-3'. The possible contamination of any PCR component was excluded by performing a PCR with these components in the absence of RT products in each set of experiments (negative control). Twenty microliters of RT-PCR products was used in combination with heat shock stress.

Antibody and Western blot analysis for hsp70 expression

Mouse monoclonal antibody against inducible HSP70 was purchased commercially (HSP 70 K-20: sc-1006, Santa Cruz Biotechnology, Inc.). Liver tissue was snap-frozen in situ using stainless steel tongs precooled in liquid nitrogen. Tissue homogenates from rat liver were obtained in the presence of protease inhibitors on ice, and the homogenate protein was assayed by the Bradford method. After protein concentrations were measured, samples were applied to a 10% polyacrylamide gel with 0.1% sodium dodecylsulfate.
The gel-resolved proteins were transferred to polyvinylidene difluoride membranes (Marsh Biomedical Products Inc, Rochester, NY, USA). The blots were incubated with primary antibody (monoclonal K-20: sc-1060) and anti-mouse immunoglobulin horseradish peroxidase-linked secondary antibody (NA 931; Amersham International, Buckinghamshire, UK). They then reacted with enhanced chemiluminescence detection reagent (Amersham). The bands were recorded on X-ray film (Hyper film ECL, Amersham). Intensity of the blots was then measured densitometrically using a GS-700 imaging densitometer. To standardize the blotting as well as the visualization of each gel as an external standard. Anti-β-actin (monoclonal: clone AC-74, Sigma Inc.) was used as an internal control.

Immunohistochemical staining

Tissue samples fixed overnight in Bouin’s solution were immersed first in 50% ethanol for 24 h and then in 70% ethanol for 24 h for their dehydration and the removal of picric acid. Specimens were then embedded in paraffin and cut into 3.5-µm-thick sections. The slightly modified avidin-biotin complex method was used for immunohistochemical staining with a monoclonal antibody (1.0 µg/mL) against the inducible form of HSP70 (monoclonal K-20: sc-1 060,12) normal rabbit serum (diluted to 1:75) as an inhibitor of nonspecific binding of the secondary antibody. Biotin-labeled rabbit anti-mouse IgG serum (diluted to 1:300) as a secondary antibody and avidin-biotin-alkaline phosphatase complex (diluted to 1:100) were purchased from Dako (Kyoto, Japan). The substrate for alkaline phosphatase (black) was obtained from Vector Laboratories (Burlingame, CA, USA).

Administration of GGA

After overnight fasting, each rat in groups G, WG and SG was given 8 mL/kg of an emulsion composed of 200 mg/kg GGA in a 5% gum arabic solution (vehicle). The dose was administered intragastrically through a metal tube. In the groups not receiving GGA (groups C and S), only the vehicle was administered in a similar fashion. GGA used in this study was a generous gift from Eisai Co., Ltd (Tokyo, Japan). We chose a dose of 200 mg/kg, in which abundant HSP70 was produced with whole-body heat shock stress at 41-42 °C [23].

Whole-body heat shock exposure

Rats were anesthetized with intramuscular injections of atropine sulfate (0.05 mg/kg) and ketamine (50 mg/kg) 2 h after the GGA administration. They were then immersed in a warm water bath to elevate their rectal temperature to 41-42 °C for 15 min. Rectal temperature was measured by a digital thermometer. The timing of 2 h between GGA administration and heat shock treatment was decided according to the reports of *in vivo* metabolism of GGA in rats by Nishizawa et al. [40,41]. They showed that tissue level of GGA in the liver reaches plateau 2 h after oral administration in rats. Subsequent experiments for I-R injury were performed 48 h after whole-body heat shock exposure [19].

Local heat stress by local somatothermal stimulation

Local heat stress was confined to LSTS on a designated skin area but no direct contact with the skin surface. LSTS could induce relaxation of the sphincter of Oddi in cats and rabbits and as well as internal sphincter in rabbits [42,43]. In brief, LSTS was achieved by application of a heat generator 0.5 cm on and above the right seventh intercostal nerve territory, just at the junction of right midlateral line and the seventh intercostal space (Figure 1, under light anesthesia with atropine sulfate, 0.05 mg/kg and ketamine 50 mg/kg, im). The skin temperature at the heating point fluctuating above and below the critical point 41 °C was obtained by intermittently turning the switch of the heat generator on and off, namely 4 min on and 5 min off for three courses. Usually, it took 27 min to compete one dose of LSTS. Subsequent experiment for I-R injury of the liver was performed 12 h after the preconditioned LSTS [20].

Figure 1 The heating site of LSTS.

Animal model and parameters for liver ischemia-reperfusion injury

The I-R injury rat model was established as described previously [44,45]. In brief, male Sprague-Dawley rats were anesthetized with diethyl ether (1.25 g/kg, ip), and the trachea was cannulated for artificial respiration with a ventilator. The liver was exposed through an upper midline incision, and one clamp for dog’s ear was used to clamp the left branches of hepatic hilum and to allow occlusion of the blood supply to either the median or the left lobes (left branch). For I-R injury study, ischemia of the median lobes was maintained for 60 min, followed by reperfusion of the left/median lobes with occlusion of the right branches of hepatic hilum for another 30 min. After completion of the reperfusion procedure, the initial ischemia-reperfused left lobes were resected and tested for HSP70 by PT-PCR, Western blotting analysis and immunohistochemical staining. All rats were given 10 mL/kg of 5% glucose solution subcutaneously immediately after completion of the surgery, and all rats were allowed free access to 10% glucose solution after they recovered from the anesthesia. The blood samples were collected for ALT and AST measurement at 60 min after occlusion of the blood supply to the left branch; 30 min after reperfusion to the left branch: 24, 48, and 72 h after surgery from the vena caudalis. Signs of distress and survival were monitored for 1 wk.
Statistical analysis
The data were expressed as mean±SD. SPSS for Windows, version 11.0, was used with t-test, LSD, and Wilcoxon. P<0.05 was considered statistically significant.

RESULTS
Figure 2 shows the expression of HSP70 mRNA detected by RT-PCR and production of protein HSP70 detected by Western blotting in the five groups after I-R injury. Liver tissues in groups C and G exhibited the most pallid bands of HSP70 compared to that in the other three groups (P<0.05). Liver tissue in groups S and WG showed comparative bands of HSP 70 (P>0.05), while liver tissue in group SG showed the higher bands compared to that in groups C, G, and S (P<0.05). Generally, the production of HSP70 after I-R injury increased in groups C-SG.

Figure 3 shows immunohistochemical staining of HSP70 in liver tissue from groups C to SG. The accumulation of HSP70 in groups C, G, and S was significantly less than C N. group name. The mean difference is significant compared with group G and C at the 0.05 level. The mean difference is significant compared with group S at the 0.05 level.

Figure 3 Immunohistochemical staining of HSP70 in liver tissue in group C,G, S,WG and SG HSP70-positive cells in group S were located in the hepatic sinusoid (→) and periportal areas (←).

![Figure 2](image-url)

![Figure 3](image-url)
that in groups WG and SG, whereas a great deal of parenchymal hepatocytes contained HSP70 preferentially in their nuclei and cytoplasm (Figure 3, WG and SG). These results were consistent with those of Western blot and RT-PCR analysis. HSP70-positive cells in group S were located in the hepatic sinusoid and periportal areas (Figure 3, WG and SG). These parenchymal hepatocytes contained HSP70 preferentially in their nuclei and cytoplasm (Figure 3, WG and SG). These results were consistent with those of Western blot and RT-PCR analysis. HSP70-positive cells in group S were located in the hepatic sinusoid and periportal areas (Figure 3, WG and SG).

Table 1 ALT values at different time points in all groups (mean±SD)

Group	60 min after clamping (n=9)	30 min after reperfusion (n=9)	24 h after surgery	48 h after surgery	72 h after surgery
C	365.67±13.34	2 601.00±99.21	3 512.75±110.20	3 895.00±24.04	–
G	364.22±8.11	2 527.44±74.97	3 521.33±59.53	3 820.50±72.64	–
S	369.00±12.69	2 174.56±83.99	3 227.50±104.94	3 589.20±72.64	3 193.50±101.12
WG	363.44±9.07	1 977.33±61.07	2 584.63±194.11	3 040.83±154.93	2 793.50±122.15
SG	359.11±10.87	1 723.56±94.33	2 013.78±198.22	2 496.13±139.96	1 987.25±95.44

\(^*P<0.05\) vs group S, WG, SG; \(^{\dagger}P<0.05\) vs group WG and SG LSD.

Table 2 AST values at different time points in all groups (mean±SD)

Group	60 min after clamping (n=9)	30 min after reperfusion (n=9)	24 h after surgery	48 h after surgery	72 h after surgery
C	365.00±13.73	2 501.89±77.22	3 509.00±125.68	3 895.00±24.04	–
G	363.56±12.86	2 525.67±66.83	3 521.33±59.53	3 820.50±72.64	–
S	369.00±12.69	2 174.56±83.99	3 227.50±104.94	3 589.20±72.64	3 193.50±101.12
WG	363.44±9.07	1 729.67±194.11	2 584.63±194.11	3 040.83±154.93	2 793.50±122.15
SG	359.11±10.87	1 723.56±94.33	2 013.78±198.22	2 496.13±139.96	1 987.25±95.44

\(^*P<0.05\) vs group S, WG, SG; \(^{\dagger}P<0.05\) vs group WG and SG LSD.

Table 3 Survived rats in all groups

Group (n=9)	1 d after surgery	2 d after surgery	3 d after surgery	7 d after surgery
C	4	2	0	0
G	3	2	0	0
S	6	5	2	2
WG	8	6	4	4*
SG	9	8	7	7*

\(^*P<0.05\) vs group S Wilcoxon.

DISCUSSION

It is still controversial whether certain stress is necessary to the induction of HSP70 after GGA administration, which is related to the application of GGA in clinic to ameliorate I-R injury. Yamagami et al.\[21\], reported that GGA itself does not directly induce HSP70, but it markedly augments the heat shock response in rat liver, leading to the suppression of I-R injury, suggesting that GGA has only a supplementary action in helping other stressors, such as heat stress, ethanol, or water-immersion stress, to activate the cascade of stress response. Oda et al.\[46\], also agree with this. On the other hand, Fudaba et al.\[47\],\[48\], reported that HSP70 could be detected in liver before I-R, and much more after I-R, after administration of high dose of GGA (400 mg/kg per d, for 3 wk) without any form of stress. It was recently reported that administration of a high dose of GGA (200 mg/kg per day for 4 wk) enhances HSP70 induction in transplanted livers and prevented warm ischemic injury and primary graft nonfunction in recipient rats\[49\]. Our viewpoint is that may be high dose is effective, but it is not applicable because of the long administration schedule before liver transplantation or hepatectomy. But GGA is slowly absorbed from the gastric mucosa, and the uptake by the rat liver is only 5% of that by the gastric mucosa\[40\], indicating that administration of normal dose GGA without any stimuli cannot enhance HSP70 induction in rat liver and protect liver against I-R injury, which has been proved by our result in group G (200 mg/kg, once a day before surgery). Therefore, it is necessary to find an operable form of stress for clinical application of GGA. Our results showed that GGA plus whole-body heat (group WG) or LSTS (group SG) could significantly enhance HSP70 induction.

As mentioned above, the whole body must be heated in warm water or on electronic pad above 41°C for a certain period of time, which makes this stress form cumbersome and impractical in some circumstances as in the case of...
conscious animals or patients.

Compared to whole-body hyperthermia, LSTS has the following three merits. (1) LSTS has a simple and operable manipulation protocol (see Materials and methods) which can be accepted by patients and performed correctly by doctors or nurses before liver surgery. (2) LSTS is performed intermittently to keep the temperature above and below the critical point 41 °C, so that the heat-sensitive neural transmission would not cause tolerance and patients would feel better. (3) LSTS is a specific stimulation site and can improve the expression of Hsp70 in designed visceral organs. For example, LSTS on left median nerve skin improves the expression of Hsp70 in designed visceral transmission would not cause tolerance and patients would feel better that HSP70 plays an important role lasting for up to 2-4 d (Tables 1 and 2), which is coincident with the conclusion of recovery 24-72 h after surgery than those in groups G and S (Table 3). These facts demonstrate that the critical point 41 °C, LSTS needs certain stimulation intensity which is the main difference from whole-body hyperthermia. These merits make LSTS be a potential stress form which can be used in clinic.

However, in order to heat the designated skin area above 41 °C, LSTS needs certain stimulation intensity which is likely to make patients feel a bit of discomfort. This can be relieved by two methods: lowering the stimulating temperature and reducing the time or intensity of stimulation. The latter method is more likely to limit critical temperature. Yamagami et al., reported that GGA can achieve a reduction in the duration of whole-body heat shock exposure, which makes us think about what could happen if GGA is administered before LSTS and whether GGA plus LSTS has an additive effect on the induction of HSP70. This hypothesis has been proved in this study by the facts that group SG exhibited a significant higher production of HSP70 than groups G and S (Figures 2 and 3). Liver-related enzymes in group SG presented better liver function recovery 24-72 h after surgery than those in groups G and S (Tables 1 and 2), which is coincident with the conclusion that HSP70 plays an important role lasting for up to 2-4 d in tolerance to reperfusion injury. Survival rates 7 d after surgery in group SG was better than that in groups G and S (Table 3). These facts demonstrate that the combination of GGA plus LSTS pretreatment (group SG) has an additive effect on the induction of HSP70 and the recovery of liver function compared to GGA (group G) or LSTS (group S) alone. Furthermore, GGA plus LSTS (group SG) is comparable to GGA plus whole-body hyperthermia (group WG), but is more simple, safe and operable as a pretreatment to induce HSP70.

In conclusion, the combination of GGA plus LSTS can be used in patients with liver tumor and cirrhosis before hepatectomy and in donor before harvesting graft for liver transplantation.

REFERENCES

1 Serracino-Inglott F, Habib NA, Mathie RT. Hepatic ischemia-reperfusion injury. Am J Surg 2003; 181: 160–166
2 Jaeschke H. Preservation injury: mechanisms, prevention and consequences. J Hepatol 1996; 25: 774–780
3 Selzner M, Clavien PA. Fatty liver in liver transplantation and surgery. Semin Liver Dis 2001; 21: 105–113
4 Koneru B, Dikdan G. Hepatic steatosis and liver transplantation current clinical and experimental perspectives. Transplantation 2002; 73: 325–330
5 Schauer RJ, Gerbes AL, Vonier D, Opden Winkel M, Fraunberger P, Blizer M. Induction of cellular resistance against Kupffer cell-derived oxidant stress: a novel concept of hepatoprotection by ischemic preconditioning. Hepatology 2003; 37: 286–295
6 Cutrin JC, Perrelli MG, Cavalieri B, Peralta C, Rosell-Catafau J, Poli G. Microvascular dysfunction induced by reperfusion injury and protective effect of ischemic preconditioning. Free Radic Biol Med 2002; 33: 1200–1208
7 Peralta C, Fernandez L, Prats N, Sanz M, Pique JM, Gelpi E, Rosello-Catafau J. Preconditioning protects against systemic disorders associated with hepatic ischemia-reperfusion through blockade of tumor necrosis factor-induced P-selectin up-regulation in the rat. Hepatology 2001; 33: 100–113
8 Teoh N, Leclercq I, Dela Pena A, Farrell G. Low-dose TNF-protects against hepatic ischemia-reperfusion injury in mice: implications for preconditioning. Hepatology 2003; 37: 118–128
9 Funaki H, Shimizu K, Harada S, Tsuyama H, Fushida S, Tani T, Miwa K. Essential role for nuclear factor kappab in ischemic preconditioning for ischemia-reperfusion injury of the mouse liver. Transplantation 2002; 74: 551–556
10 Yamagami K, Yamamoto Y, Kume M, Kimoto S, Yamamoto H, Ozaki M, Yamamoto M. Heat shock preconditioning ameliorates liver injury following normothermic ischemia-reperfusion in steatotic rat livers. J Surg Res 1998; 79: 47–53
11 Terajima H, Enders G, Thiaener A, Hammer C, Kondo T, Thiery J, Yamamoto Y, Yamaoka Y, Messmer K. Impact of hyperthermic preconditioning on postischemic hepatic microcirculatory disturbances in an isolated perfusion model of the rat liver. Hepatology 2000; 31: 407–415
12 Ito K, Ozasa H, Sanada K, Horkiaw S. Doxorubicin preconditioning: a protection against rat hepatic ischemia-reperfusion injury. Hepatology 2000; 31: 416–419
13 Kiemer AK, Vollmar AM, Blizer M, Gervwing T, Gerbes AL. Atrial natriuretic peptide reduces expression of TNF-alpha mRNA during reperfusion of the rat liver upon decreased activation of NF-kappaB and AP-1. J Hepatol 2000; 33: 236–246
14 Yamagami K, Yamamoto Y, Toyokuni S, Hata K, Yamaoka Y. Heat shock preconditioning reduces the formation of 8-hydroxy-2-deoxyguanosine and 4-hydroxy-2-nonalen modified proteins in ischemia-reperfusion liver of rats. Free Radic Res 2002; 36: 169–176
15 Cvoror A, Matic G. Hyperthermic stress stimulates the association of both constitutive and inducible isoforms of 70 kDa heat shock protein with rat liver glucocorticoid receptor. Int J Biochem Cell Biol 2002; 34: 279–285
16 Beckmann RP, Mizzen LA, Welch WJ. Interaction of Hsp 70 with newly synthesized proteins: implications for protein folding and assembly. Science 1990; 248: 850–854
17 Gething MJ, Sanbrook J. Protein folding in the cell. Nature 1992; 355: 33–45
18 King YT, Lin CS, Lin JH, Lee WC. Whole-body hyperthermia-induced tolerotolerance is associated with the induction of heat shock protein 70 in mice. J Exp Biol 2002; 205(Pt 2): 273–278
19 Terajima H, Enders G, Thiener A, Hammer C, Kondo T, Thiery J, Yamamoto Y, Yamaoka Y, Messmer K. Impact of hyperthermic preconditioning on postischemic hepatic microcirculatory disturbances in an isolated perfusion model of the rat liver. Hepatology 2000; 31: 407–415
20 Lin MT. Heatstroke-induced cerebral ischemia and neuronal damage. Involvement of cytokines and monoamines. Ann N Y Acad Sci 1997; 813: 572–580
21 Yamagami K, Yamamoto Y, Ishikawa Y, Yonezawa K, Toyokuni S, Yamaoka Y. Effects of geranyl-geranyl-acetone administration before heat shock preconditioning for conferring tolerance against ischemia reperfusion injury in rat livers. J Lab Clin Med 2000; 135: 465–475
22 Fiorucci S, Santucci L, Antonelli E, Distrutti A, Del Sero G, Morelli O, Romanis L, Federici B, Del Soldato P, Morelli A. NO-aspirin protects from T cell-mediated liver injury by inhibiting caspase-dependent processing of Tllike cytokines. Gastroenterology 2000; 118: 404–412
23 Fiorucci S, Mencarelli A, Palazzetti B, Del Soldato P, Morelli A, Ignarri LI. An NO derivative of ursodeoxycholic acid pro-
effects against Fas-mediated liver injury by inhibiting caspase activity. Proc Natl Acad Sci USA 2001; 98: 2652–2657
24 Leesar MA, Stoddard MF, Dawn B, Jasti VG, Masden R, Bolli R. Delayed preconditioning-mimetic action of nitroglycerin in patients undergoing coronary angioplasty. Circulation 2001; 103: 2935–2941
25 Lin YH, Chiu JH, Tung HH, Tsou MT, Lui WY, Wu CW. Preconditioned somatothermal stimulation on right 7th intercostal nerve territory increases hepatic heat shock protein 70 and protects the liver from ischemia-reperfusion injury in rats. J Surg Res 2001; 99: 328-334
26 Chiu JH, Tsou MT, Tung HH, Tai CH, Tsai SK, Chih CL, Lin JG, Wu CW. Preconditioned somatothermal stimulation on median nerve territory increases myocardial heat shock protein 70 and protects rat hearts against ischemia-reperfusion injury. J Thorac Cardiovasc Surg 2003; 125: 678-685
27 Tsou MT, Ho JY, Lin CH, Chiu JH. Proteomic analysis finds different myocardial protective mechanisms for median nerve stimulation by electracupuncture and by local somatothermal stimulation. Int J Mol Med 2004; 14: 553-563
28 Wiegant FA, Spieker N, Van Wijk R. Stressor-specific enhancement of hsp induction by low doses of stressors in conditions of self- and cross-sensitization. Toxicology 1998; 127: 107–119
29 Ribeiro SP, Villar J, Downey GP, Edelson JD, Slutsky AS. Sodium arsenite induces heat shock protein-72 kilodalton expression in the lungs and protects rat against sepsis. Crit Care Med 1994; 22: 922–929
30 Mirkes PE, Doggett B, Cornel L. Induction of a heat shock response (HSP 72) in rat embryos exposed to selected chemical teratogens. Teratology 1994; 49: 135-142
31 Hirakawa T, Rokutan K, Nikawa T, Kishi K. Geranylgeranylanacetone induces heat shock proteins in cultured guinea pig gastric mucosal cells and rat gastric mucosa. Gastroenterology 1996; 111: 345-357
32 Kurihara T, Akimoto M, Kurokawa K, Ishiguro H, Niimi A, Maeda A, Shigemoto M, Yamashita K, Yokoyama I. Effects of a gastric mucosal protecting agent in rats with liver cirrhosis. J Gastroenterol Hepatol 1992; 7: 405–410
33 Kurihara T, Kitamura Y, Adachi Y, Obuchi M, Abe K, Akimoto M, Hashimoto H, Ishiguro H, Niimi A, Maeda A, Shigemoto M, Yamashita K, Yokoyama I. Increase in hepatic tissue blood flow by teprenone. J Gastroenterol Hepatol 1996; 11: 978–984
34 Tsuruma T, Yagihash A, Koide S, Araya J, Tarumi K, Watanabe N, Hirata K. Geranylgeranylanacetone induces heat shock protein-73 in rat small intestine. Transplant Proc 1999; 31: 572–573
35 Mizushima T, Tsutsumi S, Rokutan K, Tsuchiya T. Suppression of ethanol-induced apoptotic DNA fragmentation by geranylgeranylanacetone in cultured guinea pig gastric mucosal cells. Dig Dis Sci 1999; 44: 510-514
36 Vigh L, Literáti PN, Horváth I, Török Z, Balogh G, Glatz A, Kovacs E, Boros I, Ferdinandy P, Farkas B, Jaszlits L, Jednakovits A, Koranyi L, Maresca B. Biocomlomol: a nontoxic, hydroxylamine derivative withtress protein-inducing activity and cytoprotective effects. Nat Med 1997; 3: 1150–1154
37 Chomczynski P, Sacchi N. Single-step method of RNA isolation by acid guanidinium thiocyanate–phenol–chloroform extraction. Anal Biochem 1987; 162: 156–159
38 Bradford MM. A rapid and sensitive method for quantitation of microgram quantities of protein utilizing the principle of protein–dye binding. Anal Biochem 1976; 72: 248-254
39 Luna LG. Manual of histological staining methods of the Armed Forces Institute of Pathology. New York: McGraw–Hill 1968: 5
40 Nishizawa Y, Yamada K, Yamato C, Fujita T. Metabolic fate of geranylgeranylanacetone. Xenobiot Metab Dispos 1986; 1: 71–77
41 Nishizawa Y, Tanaka H, Kinoshita K. Absorption, distribution, metabolism, and secretion of tetraprenylacetone in rats and guinea pigs. Prog Med 1983; 3: 1029–1035
42 Chiu JH, Lui WY, Chen YL, Hong CY. Local somatothermal stimulation inhibits sphincter of Oddi motility in cats, rabbits, and humans through the neural release of nitric oxide. Life Sci 1998; 63: 413–428
43 Jiang JK, Chiu JH, Lin JK. Local thermal stimulation inhibits the motility of internal anal sphincter through nitricergic neural release of nitric oxide. Dis Colon Rectum 2000; 43: 381-388
44 Chiu JH, Ho CT, Wei YH, Lui WY, Hong CY. In vitro and in vivo protective effect of honokiol on rat liver from peroxidative injury. Life Sci 1997; 61: 1961–1971
45 Canada AT, Stein K, Martel D, Watkins WD. Biochemical appraisal of models for hepatic ischemia–reperfusion injury. Circ Shock 1992; 36: 163-168
46 Oda H, Miyake H, Iwata T, Kusumoto K, Rokutan K, Tashiro S. Geranylgeranylanacetone suppresses inflammatory responses and improves survival after massive hepatectomy in rats. J Gastrointest Surg 2002; 6: 464-473
47 Fudaba Y, Tashiro H, Ohdan H, Miyata Y, Shibata S, Shintaku S, Nishihara M, Asahara T, Ito H, Fukuda Y, Doi K. Prevention of warm ischemic injury in rat liver transplantation by geranylgeranylanacetone. Transplant Proc 2000; 32: 1615–1616
48 Fudaba Y, Ohdan H, Tashiro H, Mizunuma K, Ito H, Fukuda Y, Doi K, Asahara T. High dose of geranylgeranylanacetone accumulate HSP72 mRNA in rat liver. Transplant Proc 2001; 33: 978
49 Fudaba Y, Ohdan H, Tadhiro H, Hirotaka T, Yasuhiro F, Ito H, Fukuda Y, Doi K, Asahara T. Geranylgeranylanacetone, a heat shock protein inducer, prevents primary graft nonfunction in rat liver transplantation. Transplantation 2001; 72: 184–189
50 Carini R, Albano E. Recent Insights on the Mechanisms of Liver Preconditioning. Gastroenterology 2003; 125: 1480-1491