Comparative and functional genomics of legionella identified eukaryotic like proteins as key players in host-pathogen interactions.
Laura Gomez-Valero, Christophe Rusniok, Christel Cazalet, Carmen Buchrieser

To cite this version:
Laura Gomez-Valero, Christophe Rusniok, Christel Cazalet, Carmen Buchrieser. Comparative and functional genomics of legionella identified eukaryotic like proteins as key players in host-pathogen interactions.. Frontiers in Microbiology, Frontiers Media, 2011, 2, pp.208. 10.3389/fmicb.2011.00208 . pasteur-01422820

HAL Id: pasteur-01422820
https://hal-pasteur.archives-ouvertes.fr/pasteur-01422820
Submitted on 27 Dec 2016

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License
Comparative and functional genomics of *Legionella* identified eukaryotic like proteins as key players in host–pathogen interactions

Laura Gomez-Valero\(^1,2\), Christophe Rusniok\(^1,2\), Christel Cazalet\(^1,2\) and Carmen Buchrieser\(^1,2\) *

1 Institut Pasteur, Unité de Biologie des Bactéries Intracellulaires, Paris, France
2 CNRS URA 2171, 28, Rue du Dr Roux, 75724, Paris, France

*Correspondence: Carmen Buchrieser, Unité de Biologie des Bactéries Intracellulaires, CNRS URA 2171, Institut Pasteur, 28, rue du Docteur Roux, 75724 Paris Cedex 15, France.

Although best known for its ability to cause severe pneumonia in people whose immune defenses are weakened, *Legionella pneumophila* and *Legionella longbeachae* are two species of a large genus of bacteria that are ubiquitous in nature, where they parasitize protozoa. Adaptation to the host environment and exploitation of host cell functions are critical for the success of these intracellular pathogens. The establishment and publication of the complete genome sequences of *L. pneumophila* and *L. longbeachae* isolates paved the way for major breakthroughs in understanding the biology of these organisms. In this review we present the knowledge gained from the analyses and comparison of the complete genome sequences of different *L. pneumophila* and *L. longbeachae* strains. Emphasis is given on putative virulence and *Legionella* life cycle related functions, such as the identification of an extended array of eukaryotic like proteins, many of which have been shown to modulate host cell functions to the pathogen's advantage. Surprisingly, many of the eukaryotic domain proteins identified in *L. pneumophila* as well as many substrates of the Dot/Icm type IV secretion system essential for intracellular replication are different between these two species, although they cause the same disease. Finally, evolutionary aspects regarding the eukaryotic like proteins in *Legionella* are discussed.

Keywords: *Legionella pneumophila, Legionella longbeachae,* evolution, comparative genomics, eukaryotic like proteins, virulence

INTRODUCTION

Genomics has the potential to provide an in depth understanding of the genetics, biochemistry, physiology, and pathogenesis of a microorganism. Furthermore comparative genomics, functional genomics, and related technologies, are helping to unravel the molecular basis of the pathogenesis, evolution, and phenotypic differences among different species, strains, or clones and to uncover potential virulence genes. Knowledge of the genomes provides the basis for the application of new powerful approaches for the understanding of the biology of the organisms studied.

Although *Legionella* are mainly environmental bacteria, several species are pathogenic to humans, in particular *Legionella pneumophila* (Fraser et al., 1997; Mcdade et al., 1977) and *Legionella longbeachae* (Mckinney et al., 1981). Legionnaires’ disease has emerged in the second half of the twentieth century partly due to human alterations of the environment. The development of artificial water systems in the last decades like air conditioning systems, cooling towers, showers, and other aerosolizing devices has allowed *Legionella* to gain access to the human respiratory system. When inhaled in contaminated aerosols, pathogenic *Legionella* can reach the alveoli of the lung where they are subsequently engulfed by macrophages. In contrast to most bacteria, which are destroyed, some *Legionella* species can multiply within the phagosome and eventually kill the macrophage, resulting in a severe, often fatal pneumonia called legionellosis or Legionnaires’ disease (mortality rate of 5–20%; up to 50% in nosocomial infections; Steiner et al., 2002; Marrie, 2008; Whiley and Bentham, 2011). To replicate intracellularly *L. pneumophila* manipulates host cellular processes using bacterial proteins that are delivered into the cytosolic compartment of the host cell by a specialized type IV secretion system called Dot/Icm. The proteins delivered by the Dot/Icm system target host factors implicated in controlling membrane transport in eukaryotic cells, which enables *L. pneumophila* to create an endoplasmic reticulum-like vacuole that supports intracellular replication in both protozoan and mammalian host cells (for a review see Hubber and Roy, 2010).

An interesting epidemiological observation is, that among the over 50 *Legionella* species described today, strains belonging to the species *L. pneumophila* are responsible for over 90% of the legionellosis cases worldwide and strains belonging to the species *L. longbeachae* are responsible for about 5% of human legionellosis cases worldwide (Yu et al., 2002). Surprisingly, this distribution is very different in Australia and New Zealand where *L. pneumophila* accounts for “only” 45.7% of the cases but *L. longbeachae* is implicated in 30.4% of the human cases. Furthermore, among the strains causing Legionnaires’ disease, *L. pneumophila* serogroup 1 (Sg1) alone is responsible for over 85% of cases (Yu et al., 2002; Doleans et al., 2004) despite the description of 15 different Sg within this species. In addition, the characterization of over 400
different *L. pneumophila* Sg1 strains has shown that only a minority among these is responsible for causing most of the human disease (Edelstein and Metlay, 2009). Some of these clones are distributed worldwide like *L. pneumophila* strain Paris (Cazalet et al., 2008) others have a more restricted geographical distribution, like the recently described endemic clone, prevalent in Ontario, Canada (Tijet et al., 2010). For the species *L. longbeachae* two serogroups are described to date (Bibb et al., 1981; Mckinney et al., 1981). *L. longbeachae* Sg1 is predominant in human disease as it causes up to 95% of the cases of legionellosis worldwide and most outbreaks and sporadic cases in Australia (Anonymous, 1997; Montanaro-Punzengruber et al., 1999). The two main human pathogenic *Legionella* species, *L. pneumophila* and *L. longbeachae* cause the same disease and symptoms in humans (Amodeo et al., 2009), however, there exist major differences between both species in niche adaptation and host susceptibility.

(i) They are found in different environmental niches, as *L. pneumophila* is mainly found in natural and artificial water circuits and *L. longbeachae* is principally found in soil and therefore associated with gardening and use of potting compost (O’Connor et al., 2007). However, although less common, the isolation of *L. pneumophila* from potting soil in Europe has also been reported (Casati et al., 2009; Velonakis et al., 2009). Human infection due to *L. longbeachae* is particularly common in Australia but cases have been documented also in other countries like the USA, Japan, Spain, England, or Germany (MMWR, 2000; Garcia et al., 2004; Kubota et al., 2007; Kumperis et al., 2008; Pravinkumar et al., 2010).

(ii) As described for other *Legionella* species, person to person transmission of *L. longbeachae* has not been documented, however, the primary transmission mode seems to be inhalation of dust from contaminated compost or soil that contains the organism (Steele et al., 1990; MMWR, 2000; O’Connor et al., 2007).

(iii) Furthermore, for *L. pneumophila* a biphasic life cycle was observed in vitro and in vivo as exponential phase bacteria do not express virulence factors and are unable to replicate intracellularly. The ability of *L. pneumophila* to replicate intracellularly is triggered at the post-exponential phase by a complex regulatory cascade (Molofsky and Swanson, 2004; Asare and Abu Kwaik, 2007). In contrast, less is known on the *L. longbeachae* intracellular life cycle and its virulence factors. It was recently shown that unlike *L. pneumophila* the ability of *L. longbeachae* to replicate intracellularly is independent of the bacterial growth phase (Asare and Abu Kwaik, 2007) and that phagosome biogenesis is different. Like *L. pneumophila*, the *L. longbeachae* phagosome is surrounded by endoplasmic reticulum and does not mature to a phagolysosome; however it acquires early and late endosomal markers (Asare and Abu Kwaik, 2007).

(iv) Another interesting difference between these two species is their ability to colonize the lungs of mice. While only A/J mice are permissive for replication of *L. pneumophila*, A/J, C57BL/6, and BALB/c mice are all permissive for replication of *L. longbeachae* (Asare et al., 2007; Gobin et al., 2009). Resistance of C57BL/6 and BALB/c mice to *L. pneumophila* has been attributed to polymorphisms in Nod-like receptor apoptosis inhibitory protein 5 (*naip5*) allele that recognizes the C-terminus of flagellin (Wright et al., 2003; Molofsky et al., 2006; Ren et al., 2006; Lightfield et al., 2008). The current model is that *L. pneumophila* replication is restricted due to flagellin dependent caspase-1 activation through Naip5-IpaF and early macrophage cell death by pyroptosis. However, although depletion or inhibition of caspase-1 activity leads to decreased targeting of bacteria to lysosomes, the mechanism of caspase-1-dependent restriction of *L. pneumophila* replication in macrophages and in vivo is not fully understood (Schuelin et al., 2011).

In the last years, six genomes of different *L. pneumophila* strains (Paris, Lens, Philadelphia, Corby, Alcoy, and 130b (Cazalet et al., 2004; Chien et al., 2004; Steinert et al., 2007; D’Auria et al., 2010; Schroeder et al., 2010) have been published. The genome sequences of all but strain 130b were completely finished. Furthermore, the sequencing and analysis of four genomes of *L. longbeachae* have been carried out recently (Cazalet et al., 2010). *L. longbeachae* strain NSW150 of Sg1 isolated in Australia from a patient was sequenced completely, and for the remaining three strains (ATCC33462, Sg1 isolated from a human lung, C-4E7 and 98072, both of Sg2 isolated from patients) a draft genome sequence was reported. A fifth *L. longbeachae* strain (D-4968 of Sg1, isolated in the US from a patient) was recently sequenced and the analysis of the genome sequences assembled into 89 contigs was reported (Kozak et al., 2010).

Here we will describe what we learned from the analysis and comparison of the sequenced *Legionella* strains. We will discuss their general characteristics and then highlight the specific features or common traits with respect to the different ecological niches and the differences in host susceptibility of these two *Legionella* species. Emphasis will be put on putative virulence and *Legionella* life cycle related functions. In the last part we will analyze and discuss the possible evolution of the identified virulence factors. Finally, future perspectives in *Legionella* genomics are presented.

GENERAL FEATURES OF THE L. PNEUMOPHILA AND L. LONGBEACHAE GENOMES

Legionella pneumophila and *L. longbeachae* each have a single, circular chromosome with a size of 3.3–3.5 Mega bases (Mb) for *L. pneumophila* and 3.9–4.1 Mb for *L. longbeachae*. For both the average G + C content is 38% (Tables 1A,B). The *L. pneumophila* strains Paris and Lens each contain different plasmids, 131.9 kb and 59.8 kb in size, respectively. In strain Philadelphia-1, 130b, Alcoy, and Corby no plasmid was identified. The *L. longbeachae* strains NSW10 and D-4986 carry highly similar plasmids of about 70 kb and DNA identity of 99%, strains C-4E7 and 98072 also contain each a highly similar plasmid of 133.8 kb in size. Thus similar plasmids circulate among *L. longbeachae* strains, but they seem to be different from those found in *L. pneumophila*.

A total of ~3000 and 3500 protein-encoding genes are predicted in the *L. pneumophila* and *L. longbeachae* genomes, respectively. No function could be predicted for about 40% of these genes and about 20% are unique to the genus *Legionella*. Comparative analysis of the genome structure of the *L. pneumophila* genomes showed
Table 1 | General features of the sequenced Legionella genomes.

A. Complete and draft genomes of L. pneumophila obtained by classical or new generation sequencing

L. pneumophila	Paris	Lens	Philadelphia	Corby	Alcoy	130b
Chromosome size (kb)	3504 (131.9)	3345 (69.8)	3397	3576	3516	3490
G+C content (%)	38.3 (37.4)	38.4 (38)	38.3	38	38.4	38.2
No. of genes	3123	2980	3031	3237	3197	3288
No. of protein coding genes	3078 (140)	2921 (60)	2999	3193	3097	3141
Percentage of CDS (%)	87.9	88.0	90.2	86.8	86.0	87.9
No. of specific genes	225	181	213	144	182	386
No. of 16S/23S/5S	03/03/03	03/03/03	03/03/03	03/03/03	ND	
No. of contigs > 0.5–300kb	Complete	13	64	65	63	
N50 contig size*	Complete	–	138 kb	129 kb	134 kb	
Percentage of coverage**	100	96.3	96.3	93.4	93.1	
Number of SNP with NSW150	0	1900	1611	16 853	16 820	
Plasmids	1	1	0	1	1	

*Updated annotation; CDS, coding sequence; †data from plasmids in parenthesis; ‡The 130b sequence is not a manually corrected and finished assembly, thus the high number of specific genes might be due to not corrected sequencing errors; ND, not determined. *N50 contig size, calculated by ordering all contig sizes and adding the lengths (starting from the longest contig) until the summed length exceeds 50% of the total length of all contigs (half of all bases reside in a contiguous sequence of the given size or more); SNP, single nucleotide polymorphism; **for SNP detection; – not determined.

B. Complete and draft genomes of L. longbeachae obtained by classical or new generation sequencing

L. longbeachae	NSW 150	D-4968	ATCC33462	98072	C-4E7
Chromosome size (kb)	4077 (71)	4016 (70)	4096	4018 (133.8)	3979 (133.8)
G+C content (%)	37.1 (38.2)	37.0	37.0	37.0 (37.8)	37 (37.8)
No. of genes	3680 (75)	3557 (61)	–	–	–
No. of 16S/23S/5S	04/04/04	04/04/04	04/04/04	04/04/4	04/04/4
No. of contigs > 0.5–300kb	Complete	13	64	65	63
N50 contig size*	Complete	–	138 kb	129 kb	134 kb
Percentage of coverage**	100	96.3	96.3	93.4	93.1
Number of SNP with NSW150	0	1900	1611	16 853	16 820
Plasmids	1	1	0	1	1

To investigate the phylogenetic relationship among the L. pneumophila and L. longbeachae strains we here used the nucleotide sequence of recN (recombination and repair protein-encoding gene) aligned based on the protein alignment. Based on an analysis of 32 protein-encoding genes widely distributed among bacterial genomes, RecN was described as the gene with the greatest potential for predicting genome relatedness at the genus or subgenus level (Zeigler, 2003). As depicted in Figure 2, the phylogenetic relationship among the four L. pneumophila strains is very high, and L. longbeachae is clearly more distant.
DIVERSITY IN SECRETION SYSTEMS AND THEIR SUBSTRATES MAY CONTRIBUTE TO DIFFERENCES IN INTRACELLULAR TRAFFICKING AND NICHE ADAPTATION

The capacity of pathogens like Legionella to infect eukaryotic cells is intimately linked to the ability to manipulate host cell functions to establish an intracellular niche for their replication. Essential for the ability of Legionella to subvert host functions are its different secretion systems. The two major ones, known to be involved in virulence of L. pneumophila are the Dot/Icm type IV secretion system (T4BSS) and the Lsp type II secretion system (T2SS; Marra et al., 1992; Berger and Isberg, 1993; Rossier and Cianciotto, 2001).

For L. pneumophila type II protein secretion is critical for infection of amebae, macrophages and mice. Analyses of the L. longbeachae genome sequences showed, that it contains all genes to encode a functional Lsp type II secretion machinery (Cazalet et al., 2010; Kozak et al., 2010). Several studies, including the analysis of the L. pneumophila type II secretome indicated that L. pneumophila encodes at least 25 type II secreted substrates (Debroy et al., 2006; Cianciotto, 2009). Although this experimentally defined repertoire of type II secretion-dependent proteins is the largest known in bacteria, it may contain even more than 60 proteins as 35 additional proteins with a signal sequence were identified by in silico analyses (Cianciotto, 2009). A search for homologs of these substrates in the L. longbeachae genome sequences revealed that 9 (36%) of the 25 type II secretion system substrates described for L. pneumophila are absent from L. longbeachae (Table 2). For example the phospholipase C encoded by plcA and the chiA-encoded chitinase, which was shown to promote L. pneumophila persistence in the lungs of A/J mice are not present in L. longbeachae (Debroy et al., 2006). Thus over a third of the T2SS substrates seem to differ between L. pneumophila and L. longbeachae, a feature probably related to the different ecological niches occupied, but also to different virulence properties in the hosts.

Indispensable for replication of L. pneumophila in the eukaryotic host cells is the Dot/Icm T4SS (Nagai and Kubori, 2011), which translocate a large repertoire of bacterial effectors into the host cell. These effectors modulate multiple host cell processes and in particular, redirect trafficking of the L. pneumophila phagosome and mediate its conversion into an ER-derived organelle competent for...
intracellular bacterial replication (Shin and Roy, 2008; Cianciotto, 2009). The Dot/Icm system is conserved in *L. longbeachae* with a similar gene organization and protein identities of 47–92% with respect to *L. pneumophila* (Figure 3). This is similar to what has been reported previously for other *Legionella* species (Morozova et al., 2004). The only major differences identified are in *L. longbeachae* the icmR gene is replaced by the lgbB gene, however, the encoded proteins have been shown to perform similar functions (Feldman and Segal, 2004; Feldman et al., 2005) and that the Dot/Gcme protein of *L. longbeachae* (1525 aa) is 477 amino acids larger than that of *L. pneumophila* (1048 aa; Cazalet et al., 2010). DotG of *L. pneumophila* is part of the core transmembrane complex of the secretion system and is composed of three domains: a transmembrane N-terminal domain, a central region composed of 42 repeats of 10 amino acid and a C-terminal region homologous to VirB10. In contrast, the central region of *L. longbeachae* DotG is composed of approximately 90 repeats. Among the many VirB10 homologs present in bacteria, the *Coxiella* DotG and the *Helicobacter pylori* Cag7 are the only ones, which also have multiple repeats of 10 aa (Segal et al., 2005). It will be challenging to understand the impact of this modification on the function of the type IV secretion system. A *L. longbeachae* T4SS mutant obtained by deleting the dotA gene is strongly attenuated for intracellular growth in *Acanthamoeba castellanii* and human macrophages (Cazalet et al., 2010, and unpublished data), is outcompeted by the wild type strain 24 and 72 h after infection of lungs of A/J mice and is also dramatically attenuated for replication in lungs of A/J mice upon single infections (Cazalet et al., 2010). Thus, similar to what is seen for *L. pneumophila*, the Dot/Icm T4SS of *L. longbeachae* is also central for its pathogenesis and the capacity to replicate in eukaryotic host cells.

This T4SS is crucial for intracellular replication for *Legionella* as it secretes an exceptionally large number of proteins into the host cell. Using different methods, 275 substrates have been shown to be translocated in the host cell in a Dot/Icm T4SS dependent manner (Campodonico et al., 2005; De Felice et al., 2005, 2008; Shohdy et al., 2005; Burstein et al., 2009; Heidtman et al., 2009; Zhu et al., 2011). Table 3 shows the distribution of the 275 Dot/Icm substrates identified in *L. pneumophila* strain Philadelphia and their distribution in the six *L. pneumophila* and five *L. longbeachae* genomes sequenced. Their conservation among different *L. pneumophila* strains is very high, as over 80% of the substrates are present in all *L. pneumophila* strains analyzed here. In contrast, the search for homologs of these *L. pneumophila* Dot/Icm

Table 2 | Distribution of type II secretion-dependent proteins of *L. pneumophila* in *L. longbeachae.*

L. pneumophila	L. longbeachae	Name	Product						
Phila	Paris	Lens	Corby	Alcoy	130b*	NSW	D-4968		
lpg0467	lpp0532	lpl0508	lpc2877	lpa00713	lpw06741	llo2721	llb2607 proA	Zinc metalloprotease, promotes amebal infection	
lpg1119	lpp1120	lpl1124	lpc0677	lpa07142	llo1016	llb0700	map	Tartrate-sensitive acid phosphatase	
lpg2343	lpp2291	lpl2264	lpc1811	lpa03353	lpw25361	llo2819	llb2504 plA	Lysoosphopolipase A	
lpg2837	lpp2894	lpl2749	lpc3121	lpa04118	lpw30971	llo0210	llb1681 plA	Glycerolphospholipid:cholesterol transferase	
lpg0502	lpp0565	lpl0541	lpc2843	lpa0759	lpw08821	–	–	pltA	Phospholipase C
lpg0745	lpp0810	lpl0781	lpc2548	lpa01148	lpw08251	llo2076	llb3335 lipA	Mono- and triacylglycerol lipase	
lpg1157	lpp1159	lpl1164	lpc0620	lpa01801	lpw12111	llo2433	llb2928 lipB	Triacylglycerol lipase	
lpg2848	lpp2906	lpl2760	lpc3133	lpa04114	lpw31111	llo0201	llb1671 smA	Type 2 ribonuclease, promotes amebal infection	
lpg1116	lpp1117	lpl1121	lpc0574	lpa01738	lpw11641	–	–	chiA	Chitinase, promotes lung infection
lpg2814	lpp2866	lpl2729	lpc3100	lpa04088	lpw30701	llo0255	llb1611 lapA	Leucine, phenylalanine, and tyrosine aminopeptidase	
lpg0032	lpp0031	lpl0032	lpc0032	lpa01041	lpw07321	llo3103	llb2271	Lysine and arginine aminopeptidase	
lpg0264	lpp0335	lpl0316	lpc0340	lpa00461	lpw03521	–	–	lapB	Lysine and arginine aminopeptidase
lpg2622	lpp2675	lpl2547	lpc0519	lpa03401	lpw06241	–	–	lapA	Lysine and arginine aminopeptidase
lpg1918	lpp1932	lpl1882	lpc1372	lpa02774	lpw12461	llo3308	llb2023 celA	Endogulcanase	
lpg2999	lpp3071	lpl2927	lpc3315	lpa04395	lpw32851	–	–	ceA	Predicted astacin-like zink endopeptidase
lpg2644	lpp2687	lpl2569	lpc0645	lpa01795	lpw08751	–	–	ceA	Predicted astacin-like zink endopeptidase
lpg1809	lpp1772	lpl1773	lpc1253	lpa02614	lpw18401	llo1104	llb0603	Unknown	
lpg1365	lpp1340	lpl1336	lpc0801	lpa02037	lpw13961	llo1474	llb0177	Unknown	
lpg0873	lpp0906	lpl0906	lpc2419	lpa01320	lpw09571	llo2475	llb2883	Unknown	
lpg0189	lpp0230	lpl0249	lpc0269	lpa00360	lpw02811	–	–	Unknown	
lpg0956	lpp0958	lpl0958	lpc2331	lpa01443	lpw10421	llo1935	llb3498	Unknown	
lpg2689	lpp2743	lpl2616	lpc0447	lpa03925	lpw29431	llo3061	llb1497 icmX	Linked to Dot/Icm type IV secretion genes	
lpg1244	lpp0181	lpl0163	–	–	lpa01541	–	–	lvrE	Linked to Lvh type IV secretion genes
lpg1832	lpp1795	lpl1796	lpc1276	lpa02647	lpw18641	llo1152	llb0546	Weakly similar to VirK	
lpg1962	lpp1946	lpl1946	lpc1440	lpa02647	lpw20131	–	–	lapB	Triacylglycerol lipase
lpg0422	lpp0489	lpl0465	lpc2921	lpa0657	lpw05041	llo2801	llb2523 gamA	Glucoamylase	

Substrates in this list are according to Cianciotto (2009); *strain 130b is not a finished sequence and not manually curated. Thus absence of a substrate can also be due to gaps in the sequence; – means not present; NSW means L. longbeachae NSW150.
substrates in L. longbeachae showed that even more pronounced differences are present than in the repertoire of type II secreted substrates. Only 98 of these 275 L. pneumophila Dot/Icm substrates have homologs in the L. longbeachae genomes (Table 3). However, the repertoire of L. longbeachae substrates seems also to be quite large, as a search for proteins that encode eukaryotic like domains and contain the secretion signal described by Nagai et al. (2005) and the additional criteria defined by Kubori et al. (2008) predicted 51 putative Dot/Icm substrates specific for L. longbeachae NSW150 (Cazalet et al., 2010) indicating that at least over 140 proteins might be secreted by the Dot/Icm T4SS of L. longbeachae. A similar number of L. longbeachae specific putative eukaryotic like proteins and effectors was predicted for strain D-4968 (Kozak et al., 2010). Examples of effector proteins conserved between the two species are RalF, VipA, VipF, SidC, SidE, SidJ, YlaLepA, and LepB, which contribute to trafficking or recruitment and retention of vesicles to L. pneumophila (Nagai et al., 2002; Chen et al., 2004; Luo and Isberg, 2004; Campodonico et al., 2005; Shoody et al., 2005; Liu and Luo, 2007). It is interesting to note that homologs of SidM/DrrA and SidD are absent from L. longbeachae but a homolog of LepB is present. For L. pneumophila it was shown that SidM/DrrA, SidD, and LepB act in cooperation to manipulate Rab1 activity in the host cell. DrrA/SidM possesses three domains, an N-terminal AMP- transfer domain (AT), a nucleotide exchange factor (GEF) domain in the central part and a phosphatidylinositol-4-Phosphate binding domain (P4M) in its C-terminal part. After association of DrrA/SidM with the membrane of the Legionella-containing vacuole (LCV) via P4M (Brombacher et al., 2009), it recruits Rab1 via the GEF domain and catalyzes the GDP–GTP exchange (Ingmundson et al., 2007; Machner and Isberg, 2007). Rab1 is then adenylated by the AT domain leading to inhibition of GAP-catalyzed Rab1-deactivation (Müller et al., 2010). LepB cannot bind AMPylated Rab1 (Ingmundson et al., 2007). Recently it was shown that SidD deAMPylates Rab1 and enables LepB to bind Rab1 to promote its GTP–GDP exchange (Neunuebel et al., 2011; Tan and Luo, 2011). One might assume that other proteins of L. longbeachae not yet identified may perform the functions of DrrA/SidM and SidD. Another interesting observation is, that all except four of the effector proteins of L. pneumophila that are conserved in L. longbeachae are also conserved in all sequenced L. pneumophila genomes (Table 3).

Taken together the T2SS Lsp and the T4SS Dot/Icm are highly conserved between L. pneumophila and L. longbeachae. However, more than a third of the known L. pneumophila type II- and over 70% of type IV-dependent substrates differ between both species. These species specific, secreted effectors might be implicated in the different niche adaptations and host susceptibilities. Most interestingly, of the 98 L. pneumophila substrates conserved in L. longbeachae 87 are also present in all L. pneumophila strains sequenced to date. Thus, these 87 Dot/Icm substrates might be essential for intracellular replication of Legionella and represent a minimal toolkit for intracellular replication that has been acquired before the divergence of the two species.

MOLECULAR MIMICRY IS A MAJOR VIRULENCE STRATEGY OF L. PNEUMOPHILA AND L. LONGBEACHAE

The L. pneumophila genome sequence analysis has revealed that many of the predicted or experimentally verified Dot/Icm secreted substrates are proteins similar to eukaryotic proteins or contain motifs mainly or only found in eukaryotic proteins (Cazalet et al., 2004; De Felice et al., 2005). Thus comparative genomics suggested that L. pneumophila encodes specific virulence factors that have evolved during its evolution with eukaryotic host cells such as fresh-water ameba (Cazalet et al., 2004). The protein-motifs predominantly found in eukaryotes, which were identified in the L. pneumophila genomes are ankyrin repeats, SEL1 (TPR), Set domain, Sec7, serine threonine kinase domains (STPK), U-box, and F-box motifs. Examples for eukaryotic like proteins of L. pneumophila are two secreted apyrases, a
Table 3 | Distribution of 275 Dot/Icm substrates identified in strain *L. pneumophilia* Philadelphia in the 5 sequenced *L. pneumophilia* and 5 sequenced *L. longbeachae* strains.

L. pneumophilia	L. longbeachae	Name	Product									
Phila												
lpg0008	lpp0008	lpi0008	lpc0009	lpa0011	lpw00071	–	–	–	–	ravA	Unknown	
lpg0012	lpp0012	lpi0012	lpc0013	lpa0016	lpw00111	–	–	–	–	cegC1	Ankyrin	
lpg0021	lpp0021	lpi0022	lpc0030	lpw000221	llo0047	lbb1841	+	+	–	Unknown		
lpg0030	lpp0030	lpi0031	lpc0031	lpa0040	lpw00311	–	–	–	–	ravB	Unknown	
lpg0038	lpp0037	lpi0038	lpc0039	lpa0049	lpw00381	–	–	–	–	ankQ/legA10	Ankyrin repeat	
lpg0041	–	–	lpc0042	lpa0056	–	–	–	–	–	Putative metalloprotease		
lpg0045	lpp0046	lpi0044	lpc0047	lpa0060	lpw00441	–	–	–	–	–	Unknown	
lpg0046	lpp0047	lpi0045	lpc0048	lpa0062	lpw00451	–	–	–	–	–	Unknown	
lpg0059	lpp0062	lpi0061	lpc0068	lpa0085	lpw00621	–	–	–	–	ceg2	Unknown	
lpg0060	lpp0094	–	–	lpa03018	lpw00761	–	–	–	–	ceg3	Unknown	
lpg0081	lpp0095	–	–	lpa00791	–	–	–	–	–	Unknown		
lpg0090	lpp0014	lpi0089	lpc0013	lpa00881	–	–	–	–	–	Unknown		
lpg0096	lpp0010	lpi0096	lpc0115	lpa0145	lpw00961	lli01322	lbb0347	+	+	+	ceg4	Unknown
lpg0103	lpp0017	lpi0103	lpc0122	lpa0152	lpw01031	lli03112	lbb0208	+	+	+	vifF	N-terminal acetyltransferase, GNAT
lpg0124	lpp0043	lpi0146	lpc0146	lpa0185	lpw01261	–	–	–	–	–	Unknown	
lpg0130	lpp0045	lpi0130	lpc0151	lpa0194	lpw01311	lli03270	lbb1973	+	+	–	Unknown	
lpg0135	lpp0050	lpi0135	lpc0156	lpa0204	lpw01361	lli02439	lbb2921	+	+	+	sdbB	Unknown
lpg0160	lpp0224	lpi0224	lpc0224	lpa0224	lpw02541	–	–	–	–	–	ravD	Unknown
lpg0170	lpp0232	lpi0233	lpc0251	lpa0335	lpw02641	lli01378	lbb0280	+	+	+	rvpC	Unknown
lpg0171	lpp0233	lpi0234	–	–	lpw02651	–	–	–	–	–	legU1	Fbox motif
lpg0172	lpp0234	lpi0253	lpc0339	lpa02661	–	–	–	–	–	Unknown		
lpg0181	lpp0245	lpi0244	lpc0265	lpa0388	lpw02761	lli02453	lbb2907	+	+	+	–	Unknown
lpg0191	lpp0251	–	–	–	lpw02821	–	–	–	–	–	ceg5	Unknown
lpg0195	lpp0253	lpi0251	lpc0272	lpa0339	lpw02851	–	–	–	–	–	ravE	Unknown
lpg0196	lpp0254	lpi0252	–	–	lpw02861	lli02549	lbb1978	+	+	+	ravF	Unknown
lpg0210	lpp0269	lpi0264	lpc0285	lpa0388	lpw02981	–	–	–	–	–	ravG	Unknown
lpg0227	lpp0286	lpi0303	lpc0412	lpa03151	lpw03411	lli02491	lbb1974	+	+	+	ceg7	Unknown
lpg0234	lpp0304	lpi0309	lpc0419	lpa03221	lpw03421	lli0425	lbb1431	+	+	+	side/laiD	Unknown
lpg0240	lpp0310	lpi0316	lpc0428	lpa03291	lpw03451	lli01601	lbb0040	+	+	+	ceg8	Unknown
lpg0246	lpp0316	lpi0300	lpc0323	lpa0346	lpw03661	–	–	–	–	–	ceg9	Unknown
lpg0257	lpp0327	lpi0310	lpc0334	lpa0450	lpw03461	lli02362	lbb3009	+	+	+	sdeA	Multidrug resistance protein
lpg0260	lpp0332	lpi0313	lpc0337	lpa0456	lpw03491	–	–	–	–	–	Unknown	
lpg0275	lpp0349	lpi0327	lpc0351/3529	lpa0477	lpw03641	–	–	–	–	–	sdbA	Unknown
lpg0276	lpp0350	lpi0328	lpc0353	lpa0479	lpw03651	lli0327	lbb1533	+	+	+	legG2	Ras guanine nucleotide exchange factor
lpg0284	lpp0360	lpi0336	lpc0361	lpa0490	lpw03741	–	–	–	–	–	ceg10	Unknown
lpg0285	lpp0361	lpi0337	lpc0362	lpa0492	lpw03751	–	–	–	–	–	lem2	Unknown
lpg0294	lpp0372	lpi0347	lpc0373	lpa0508	lpw03861	lli00464	lbb1386	+	+	+	–	Unknown
lpg0364	lpp0429	lpi0405	lpc0280	lpa0578	lpw04431	–	–	–	–	–	Unknown	
lpg0365	lpp0430	lpi0406	lpc0297	lpa0580	lpw04441	lli00625	lbb1324	+	+	+	–	Unknown
lpg0375	lpp0442	lpi0418	lpc0298	lpa0596	–	–	–	–	–	–	Unknown	
lpg0376	lpp0443	lpi0419	lpc0296	lpa0597	lpw04591	lli00548	lbb1307	+	+	+	sdhA	GRIP coiled-coil
lpg0390	lpp0457	lpi0433	lpc0295	lpa0613	lpw04721	–	–	–	–	–	vifA	Unknown
lpg0401	lpp0468	lpi0444	lpc0294	lpa0629	lpw04831	lli02882	lbb2763	+	+	+	legA7/ceg	Unknown

(Continued)
L. pneumophila	Name	Product
lpg0402	ankY/legA9	Ankyrin, STPK
lpg0403	ankG/ankZ/legA7	Ankyrin
lpg0405	legY	Spectrin domain
lpg0422	Putative Glucan 1,4-alpha-glucosidase	
lpg0436	ankJ/legA11	Ankyrin
lpg0437	ceg14	Unknown
lpg0439	ceg15	Unknown
lpg0453	ankC/legA12	Ankyrin
lpg0515	legD2	Phytanoyl-CoA dioxygenase domain
lpg0518	wipB	Unknown
lpg0519	ankN/ankX/legA8	Unknown
lpg0621	lem3	Unknown
lpg0634	legL1	LLR
lpg0642	lmr3	Unknown
lpg0695	legA9	Unknown
lpg0696	sidK	Unknown
lpg0715	LLR	Unknown
lpg0733	wipB	Unknown
lpg0796	ralB	Unknown
lpg0828	acetyltransferase domain	
lpg0888	legA7	Unknown
lpg0926	legA9	Ankyrin, STPK
lpg0940	lem4	Unknown
lpg0944	legA8	Unknown
lpg0945	legA7	Ankyrin
lpg0963	legA9	Unknown
lpg0967	legA11	Ankyrin
lpg0968	legA9	Unknown
lpg0969	legA9	Unknown
lpg1028	legA9	Unknown
lpg1083	legA9	Unknown
lpg1109	legA9	Unknown
lpg1110	legA9	Unknown
lpg1120	legA9	Unknown
lpg1121	legA9	Unknown
lpg1124	legA9	Unknown
lpg1129	legA9	Unknown
lpg1137	legA9	Unknown
lpg1144	legA9	Unknown
lpg1145	legA9	Unknown
lpg1147	legA9	Unknown
lpg1148	legA9	Unknown
lpg1152	legA9	Unknown

(Continued)
Table 3 | Continued

L. pneumophila	L. longbeachteae	Name	Product									
Phila	**Paris**	**Lens**	**Corby**	**Alcoy**	**130b**	**NSW 150**	**D-4968**	**AT**	**98072**	**C-4E7**		
lpg1154	lpp1156	lpl1161	lpc0617	lpa1797	lpw12081	llo2487	ltb2868	+	+	+	ravQ	Unknown
lpg1158	lpp1160	lpl1165*	lpc0621	lpa1802	lpw12121	–	–	–	–	–	Unknown	
lpg1166	lpp1168	lpl1174	lpc0631	lpa1819	lpw12211	llo1034	ltb0680	+	+	+	ravR	Unknown
lpg1171	lpp1173	lpl1179	lpc0637	lpa1826	–	–	–	–	–	–	Spectrin domain	
lpg1183	lpp1186	lpl1192	lpc0650	lpa1839	lpw12401	llo2390	ltb2978	+	+	+	ravS	Unknown
lpg1227	lpp1235	lpl1235	lpc0696	lpa1899	lpw12861	–	–	–	–	–	vpdB	Unknown
lpg1273	lpp1236	lpl1236	lpc0698	lpa1901	lpw12871	–	–	–	–	–	Unknown	
lpg1290	lpp1253	–	–	–	–	–	–	–	–	–	fem8	Unknown
lpg1312	–	–	–	–	lpw13261	–	–	–	–	–	lggC1	Unknown
lpg1316	–	–	–	–	–	llo1389	ltb0269	+	+	+	ravT	Unknown
lpg1317	–	–	–	–	–	–	–	–	–	–	ravV	Unknown
lpg1328	lpp1283	lpl1282	lpc0743	lpa1958	–	–	–	–	–	–	legT Hopmatin domain	
lpg1355	lpp1309	–	–	–	–	–	–	–	–	–	sidG	Coiled-coil
lpg1426	lpp1381	lpl1377	lpc0842	lpa2090	lpw14431	llo1791	ltb3606	+	+	+	vpdC	Patatin domain
lpg1439	lpp1404	–	–	–	–	lpg14671	–	–	–	–	–	Unknown
lpg1453	lpp1409	lpl1591	lpc0868	lpa2119	lpw14711	–	–	–	–	–	Unknown	
lpg1483	lpp1439	lpl1545	lpc0898	lpa2161	lpw15031	llo1682	ltb3727	+	+	+	legK1	STPK
lpg1494	lpp1440	lpl1544	lpc0899	lpa2162	lpw15041	–	–	–	–	–	Unknown	
lpg1498	lpp1444	lpl1540	lpc0903*	lpa2168	lpw15081	–	–	–	–	–	fgt3/egc5	Coiled-coil
lpg1499	lpp1445	lpl1539	lpc0905	lpa2169	lpw15091	–	–	–	–	–	ravX	Unknown
lpg1491	lpp1447	–	–	–	–	–	–	–	–	–	fem9	Unknown
lpg1496	lpp1453	lpl1530	lpc0915	lpa2185	lpw15181	–	–	–	–	–	fem10	Unknown
lpg1551	lpp1508	lpl1475	lpc0972	lpa2253	–	–	–	–	–	–	ravY	Unknown
lpg1578	lpp1478	lpl1443	lpc1002	lpa2292	lpw16011	llo1503	ltb0148	+	+	+	–	Unknown
lpg1588	lpp1546	lpl1437	lpc1013	lpa2305	lpw16131	–	–	–	–	–	legC6	Coiled-coil
lpg1598	lpp1556	lpl1427	lpc1025	lpa2317	lpw16231	–	–	–	–	–	fem11	Unknown
lpg1602	lpp1567	lpl1423/26*	lpc1028	lpa2318	lpw16241	–	–	–	–	–	legL2	LRR
lpg1621	lpp1591	lpl1402	lpc1048	lpa2346	lpw16461	llo1014	ltb0702	+	+	+	ceg23	Unknown
lpg1625	lpp1595	lpl1398	lpc1052	lpa2350	lpw16511	llo0719	ltb1016	+	+	+	fem23	Unknown
lpg1639	lpp1609	lpl1387	lpc1068	lpa2367	lpw16651	–	–	–	–	–	Unknown	
lpg1642	lpp1612a/b	lpl1384	lpc1071	lpa2371	lpw16681	–	–	–	–	–	sidB	Putative hydrolase
lpg1654	lpp1625	–	lpc1084	lpa2390	llo0791	ltb0935	+	+	+	–	Unknown	
lpg1660	lpp1631	lpl1625	lpc1090	lpa2398	lpw16861	–	–	–	–	–	legL3	LRR
lpg1661	lpp1632	lpl1626	lpc1091	lpa2399	lpw16871	llo1691	ltb3715	+	+	+	–	Putative N-acetyl transferase
lpg1666	lpp1637	lpl1631	lpc1096	lpa2408	lpw16921	–	–	–	–	–	Unknown	
lpg1667	lpp1638	lpl1632	lpc1097	lpa2409	lpw16931	–	–	–	–	–	Unknown	
lpg1670	lpp1642	lpl1635	lpc1101	lpa2413	lpw16971	–	–	–	–	–	Unknown	
lpg1683	–	–	lpc1114	lpa2431	llo2508	ltb2843	+	+	+	ravZ	Unknown	
lpg1684	–	–	lpc1115	lpa2432	llo2267	ltb3113	+	+	+	Unknown		
lpg1685	–	–	lpc1116	lpa2433	llo3208	ltb2147	+	+	+	Unknown		
lpg1687	lpp1656	lpl1650	lpc1118	lpa2437	lpw17121	–	–	–	–	–	ravA	Unknown
lpg1689	lpp1658	lpl1652	lpc1120	lpa2439	lpw17141	llo1697	ltb3708	+	+	+	Unknown	
lpg1692	–	–	lpc1123	lpa2442	–	–	–	–	–	–	Unknown	
lpg1701	lpp1666	lpl1660	lpc1130	lpa2455	lpw17231	–	–	–	–	–	ppeA/legC3	Coiled-coil
lpg1702	lpp1667	lpl1661	lpc1131	lpa2456	lpw17241	–	–	–	–	–	ppeB	Unknown
lpg1716	lpp1681	lpl1675	lpc1146	lpa2474	lpw17391	–	–	–	–	–	Unknown	
lpg1717	lpp1682	–	–	–	lpw17401	–	–	–	–	–	Unknown	

(Continued)
Table 3 | Continued

Name Product	L. pneumophila	L. longbeachae	Product									
	Phila	Paris	Lens	Corby	Alcoy	130b	NSW 150	D-4968	AT	98072	C-4E7	
ankyr/legAS4	lpg1718	lpl1683	lpl1682	lpc1152	lpa2484	lpv17411	–	–	–	–	–	
–	lpg1751	lpl1715	lpl1715	lpc1191	lpa2538	lpv17761	llo2314	lib3061	+	+	+	–
–	lpg1752	lpl1716	lpl1716	lpc1192	lpa2539	lpv17771	llo2315	lib3060	+	+	+	–
–	lpg1776	lpl1740	lpl1740	lpc1217	lpa2570	lpv18031	llo1437	lib0214*	+	+	+	–
–	lpg1797	–	–	lpc1239	lpa2599	lpv32931	–	–	–	–	–	–
–	lpg1798	lpl1761	lpl1761	lpc1241	lpa2600	lpv18281	llo0991	lib0731	+	+	+	marB
–	lpg1803	lpl1766	lpl1766	lpc1246	lpa2606	lpv18331	llo2611	lib2729	+	+	+	–
–	lpg1836	lpl1799	lpl1800	lpc1280	lpa2652	lpv18691	–	–	–	–	–	ceg25
–	lpg1851	lpl1818	lpl1817	lpc1296	lpa2675	lpv18871	llo1047	lib0666	+	+	+	lem14
–	lpg1884	lpl1848	lpl1845	lpc1331	lpa2714	lpv19161	–	–	–	–	–	yflB/legC2
–	lpg1888	lpl1855	lpl1850	lpc1336	lpa2723	lpv19211	–	–	–	–	–	–
–	lpg1890	–	–	lpc1338	lpa2726	lpv19231	–	–	–	–	–	legLC8
–	lpg1907	lpl1882	lpl1871	lpc1361	lpa2762	lpv19461	llo1240	lib0452	+	+	+	–
–	lpg1924	lpl1899	lpl1888	lpc1378	lpa2783	lpv19631	–	–	–	–	–	LRR, coiled-coil
–	lpg1933	lpl1914	lpl1903	lpc1406	lpa2811	lpv19721	–	–	–	–	–	LRR, coiled-coil
–	lpg1947	lpl1930	lpl1917*	–	lpa2835	lpv19951	–	–	–	–	–	–
–	lpg1948	–	–	–	–	–	–	–	–	–	–	–
–	lpg1949	lpl1931	lpl1918	lpc1422	lpa2837	lpv19961	–	–	–	–	–	–
–	lpg1950	lpl1932	lpl1919	lpc1423	lpa2838	lpv19971	llo1397	lib0259	+	+	+	lemF
–	lpg1953	lpl1935	lpl1922	lpc1426	lpa2842	lpv20041	–	–	–	–	–	LemG
–	lpg1958	lpl1940	–	–	–	–	–	–	–	–	–	–
–	lpg1959	lpl1941	–	–	lpa2857	lpv20101	–	–	–	–	–	–
–	lpg1960	lpl1942	lpl1934*	lpc1437	lpa2859	lpv20111	llo0565	lib1268	+	+	+	lemA
–	lpg1962	lpl1946	lpl1936	lpc1440	lpa2881	lpv20131	–	–	–	–	–	LirB
–	lpg1963	–	–	lpc1441/42pa2883	–	–	–	–	–	–	–	–
–	lpg1964	–	–	lpa2982	lpc1441	lpv20141	–	–	–	–	–	legA6
–	lpg1965	–	–	lpc1433/5pa2865	lpa2867	lpv20151	–	–	–	–	–	rfrA
–	lpg1966	lpl1947	–	lpc1446	lpa2867	lpv20151	–	–	–	–	–	rfrB
–	lpg1969	lpl1952	lpl1941	lpc1452	lpa2874	lpv20201	llo3131	lib2239	+	+	+	lemE
–	lpg1972	lpl1955	lpl1950	lpc1459	lpa2884	lpv20291	–	–	–	–	–	–
–	lpg1975	lpl1959	lpl1953	lpc1462	lpa2889(1)	lpv20351	–	–	–	–	–	–
–	lpg1976	lpl1959	lpl1953	lpc1462	lpa2889(2)	lpv20351	–	–	–	–	–	–
–	lpg1978	lpl1961	lpl1955	lpc1464	lpa2892	lpv20371	–	–	–	–	–	–
–	lpg1986	lpl1967	lpl1961	lpc1469	lpa2898	lpv20431	–	–	–	–	–	–
–	lpg2050	lpl2033	lpl2028	lpc1536	lpa2992	lpv21141	–	–	–	–	–	–
–	lpg2131	–	–	–	–	–	–	–	–	–	–	–
–	lpg2137	lpl2076	lpl2066	lpc1586	lpa3060	lpv23101	–	–	–	–	–	–
–	lpg2144	lpl2082	lpl2072	lpc1593	lpa3071	lpv23181	–	–	–	–	–	–
–	lpg2147	lpl2086	lpl2075	lpc1596	lpa3076	lpv23211	–	–	–	–	–	–
–	lpg2148	lpl2087	lpl2076	lpc1597	lpa3077	lpv23221	–	–	–	–	–	–
–	lpg2149	lpl2088	lpl2077	lpc1598	lpa3078	lpv23231	–	–	–	–	–	–
–	lpg2153	lpl2092	lpl2081	lpc1602	lpa3083	lpv23271	–	–	–	–	–	sdeC
–	lpg2154	lpl2093	lpl2082	lpc1603	lpa3086	lpv23281	llo3097	lib2278	+	+	+	sdeC
–	lpg2155	lpl2094	lpl2083	lpc1604	lpa3087	lpv23291	llo3096	lib2279	+	+	+	sdeC
–	lpg2156	lpl2095	lpl2084	lpc1605	lpa3088	lpv23301	llo3095	lib2280	+	+	+	sidJ
–	lpg2157	lpl2096	lpl2085	lpc1607	lpa3089	lpv23321	–	–	–	–	–	–
–	lpg2166	lpl2104	lpl2093	lpc1626	lpa3107	lpv23451	llo2398	lib2969	+	+	+	lem19

(Continued)
L. pneumophila	L. longbeachae	Name	Product										
Phila	*Paris*	*Lens*	*Corby*	*Alcoy*	*130b*	*NSW 150*	*D-4968*	*AT 98072*	*C-4E7*				
lpg2160	lpp2099	lpl2088	lpc1621	lpa3100	lpw2361	llo2645	lbb2690	+	+	+	–	**legS2**	
lpg2176	lpp2128	lpl2102	lpc1635	lpa3118	lpw2361	–	–	–	–	–	–	**Sphingosine-1-phosphate lyase**	
lpg2199	lpp2149	lpl2123	lpc1663	lpa3157	lpw2381	–	–	–	–	–	–	**cegC4**	
lpg2200	lpp2150	lpl2124	lpc1664	lpa3158	lpw2382	–	–	–	–	–	–	**cegC4**	
lpg2215	lpp2166	lpl2140	lpc1668	lpa3179	lpw2401	–	–	–	–	–	–	**legA2**	
lpg2216	lpp2167	lpl2141	lpc1681	lpa3180	lpw2402	–	–	–	–	–	–	**lem20**	
lpg2222	lpp2174	lpl2147	lpc1689	lpa3191	lpw24081	llo2443	lbb0208	+	+	+	–	**lpnE**	
lpg2223	lpp2175	lpl2149	lpc1691	lpa3196	lpw24091	–	–	–	–	–	–	Unknown	
lpg2224	–	–	–	–	–	–	–	–	–	–	–	**ppgA**	
lpg2239	lpp2192	–	–	–	–	lpp24261	–	–	–	–	–	–	Unknown
lpg2248	lpp2202	lpl2174	lpc1717	lpa3237	lpw24371	–	–	–	–	–	–	**lem21**	
lpg2271	lpp2225	lpl2197	lpc1740	lpa3268	lpw24611	llo2530	lbb2821	+	+	+	–	**yfA/CegC7**	
lpg2298	lpp2246	lpl2217	lpc1763	lpa3296	lpw24841	llo1707	lbb3696	+	+	+	+	**ankH/legA3, ankK/legA5**	
lpg2300	lpp2248	lpl2219	lpc1765	lpa3298	lpw24871	llo0584	lbb1266	+	+	+	+	**ankK/legA5**	
lpg2311	lpp2259	lpl2230	lpc1776	lpa3312	lpw24981	–	–	–	–	–	–	**ceg28**	
lpg2322	lpp2270	lpl2242	lpc1789	lpa3328	lpw25121	llo0570	lbb1282	+	+	+	–	**ankK/legA5**	
lpg2327	lpp2275	lpl2247	lpc1794	lpa3335	lpw25181	–	–	–	–	–	–	Unknown	
lpg2328	lpp2276	lpl2248	lpc1795	lpa3336	lpw25191	–	–	–	–	–	–	Unknown	
lpg2344	lpp2292	lpl2265	lpc1812	lpa3355	lpw25371	–	–	–	–	–	–	**mavE**	
lpg2351	lpp2300	lpl2273	lpc1820	lpa3367	lpw25461	llo2850	lbb2466	+	+	+	+	**mavF**	
lpg2359	lpp2308	lpl2281	lpc1828	lpa3376	lpw25561	llo2856	lbb2469	+	+	+	+	Unknown	
lpg2370	–	–	–	–	–	–	–	–	–	–	–	Unknown	
lpg2372	lpp3009	–	lpc3248	lpa4300	–	–	–	–	–	–	–	Unknown	
lpg2382	lpp2444	lpl2300	lpc2108	lpa3446	lpw25841	llo1576	lbb0071	+	+	+	–	Unknown	
lpg2386	lpp2447	lpl2315	lpc2288	lpa3448	lpw26021	llo0570	lbb1282	+	+	+	–	Unknown	
lpg2400	lpp2491	lpl2334	lpc2086	lpa3513	lpw26261	–	–	–	–	–	–	**vpdA**	
lpg2403	lpp2497	lpl2335	lpc2085	lpa3513	lpw26261	–	–	–	–	–	–	Unknown	
lpg2411	lpp2480	lpl2335	lpc2084	lpa3515	lpw26281	llo2227	lbb3158	+	+	+	+	**lem24**	
lpg2412	lpp2486	lpl2333	lpc2066	lpa3518	lpw26351	–	–	–	–	–	–	**legA1**	
lpg2416	lpp2487	lpl2343	lpc2066	lpa3529	lpw26391	–	–	–	–	–	–	Unknown	
lpg2420	lpp2488	lpl2345	lpc2056	lpa3533	lpw26401	llo1650	lbb3763	–	+	+	+	**legA1**	
lpg2423	lpp2489	lpl2347	lpc2056	lpa3534	lpw26421	–	–	–	–	–	–	Unknown	
lpg2424	lpp2491	lpl2348	lpc2056	lpa3534	lpw26431	–	–	–	–	–	–	Unknown	
lpg2433	lpp2500	lpl2353	lpc2043	lpa3548	lpw26521	–	–	–	–	–	–	**ceg30**	
lpg2434	lpp2501	lpl2355	lpc2042	lpa3550	lpw26531	–	–	–	–	–	–	Unknown	
lpg2443	lpp2510	lpl2363	lpc2033	lpa3562	lpw26641	–	–	–	–	–	–	Unknown	
lpg2444	lpp2511	lpl2364	lpc2032	lpa3563	lpw26641	–	–	–	–	–	–	**mavl**	

(Continued)
Table 3	Continued											
Phila	**Paris**	**Lens**	**Corby**	**Alcoy**	**130b**	**NSW 150**	**D-4968**	**AT**	**98072**	**C-4E7**	**Name**	**Product**
lpg2452	lpp2517	ip2370	ipc2026	ipa3574	ipw26701	–	–	–	–	–	ankF/legA14	ceg31
lpg2456	lpp2522	ip2375	ipc2020	ipa3583	ipw2675i	llo0365	lib1493	+	+	+	ankD/legA15	Ankryn
lpg2461	lpp2527	ip2380	ipc2015	ipa3589	ipw26801	llo1991	lib3433	+	+	+	Unknown	
lpg2464	–	ip2384	–	–	ipw26851	–	–	–	–	–	sidM/drrA	Unknown
lpg2465	–	ip2385	–	–	ipw26861	–	–	–	–	–	sidD	Unknown
lpg2490	lpp2555	ip2411	ipc1987	ipa3628	ipw27131	–	–	–	–	–	lepB	Coiled-coil, Rab1 GAP
lpg2482	lpp2546	ip2402	ipc1996	ipa3615	ipw27041	–	–	–	–	–	sidB	Unknown
lpg2498	lpp2566	ip2420	ipc1975	ipa3646	ipw27241	–	–	–	–	–	mavJ	Unknown
lpg2504	lpp2572	ip2426	ipc1967	ipa3685	ipw27301	llo2525	lib2826	+	+	+	sidI/ceg32	Unknown
lpg2505	lpp2573	ip2427	ipc1966	ipa3699	ipw27311	llo2526	lib2825	+	+	+	Unknown	
lpg2508	lpp2576	ip2430	ipc1962	ipa3666	ipw27341	–	–	–	–	–	sidJ	Unknown
lpg2509	lpp2577	ip2431	ipc1961	ipa3667	ipw27351	llo3097	lib2278	+	+	+	sdeD	Unknown
lpg2510	lpp2578	ip2432	ipc1960	ipa3668	–	llo3098	lib2278	+	+	+	sdcA	Unknown
lpg2511	lpp2579	ip2433	ipc1959	ipa3669	ipw27371	–	–	–	–	–	sidC	PI(4)P binding domain
lpg2523	–	–	–	–	ipw27501	–	–	–	–	–	lem26	Unknown
lpg2525	–	–	–	–	–	–	–	–	–	–	mavK	Unknown
lpg2526	lpp2591	ip2446	ipc1946	ipa3687	ipw27521	–	–	–	–	–	mavL	Unknown
lpg2527	lpp2592	ip2447	ipc1944	ipa3688	ipw27531	llo3335	lib2002	+	+	+	–	Unknown
lpg2529	lpp2594	ip2449	ipc1942	ipa3692	ipw27551	llo2238	lib3146	+	+	+	–	Unknown
lpg2556	lpp2604	ip2459	ipc1930	ipa3706	ipw27671	–	–	–	–	–	legK3	STPK
lpg2539	lpp2605	ip2460	ipc1929	ipa3707	ipw27681	llo1348	lib0317	+	+	+	–	Unknown
lpg2541	lpp2607	ip2462	ipc1927	ipa3710	ipw27701	–	–	–	–	–	Unknown	
lpg2546	lpp2615	–	ipc1919	ipa3727	ipw27791	–	–	–	–	–	Unknown	
lpg2552	lpp2622	ip2473	ipc1911	ipa3738	ipw27871	llo1062	lib0648	+	+	+	–	Unknown
lpg2555	lpp2625	ip2480	ipc1908	ipa3743	ipw27901	llo2220	lib3170	+	+	+	–	Unknown
lpg2556	lpp2626	ip2481	ipc1906	ipa3745	ipw27911	llo2218	lib3172	+	+	+	legK3	STPK
lpg2577	lpp2629	ipc0570	ipa3768	ipw28241	–	–	–	–	–	mavM	Unknown	
lpg2584	lpp2637	ipc0571	ipa3779	ipw28321	–	–	–	–	–	sidF	Unknown	
lpg2588	lpp2641	ipc0557	ipa3784	ipw28361	llo2622	lib2718	+	+	+	legS1	Unknown	
lpg2591	lpp2644	ipc0551	ipa3790	ipw2839	llo0626	lib1219	+	+	+	ceg33	Unknown	
lpg2603	lpp2656	ipc0539	ipa3807	ipw28521	–	–	–	–	–	lem28	Unknown	
lpg2628	lpp2681	ipc0513	ipa3846	ipw28781	–	–	–	–	–	unknown		
lpg2637	lpp2690	ipc0503	ipa3859	ipw28871	–	–	–	–	–	unknown		
lpg2638	lpp2691	ipc0502	ipa3861	ipw2889	llo2645	lib2690	+	+	+	mavV	Unknown	
lpg2692	lpp2746	ipc0444	ipa3929	ipw29461	–	–	–	–	–	unknown		
lpg2694	lpp2748	ipc0442	ipa3931	ipw29481	–	–	–	–	–	legD1	Phyd1 protein	
lpg2718	lpp2775	ipc0415	ipa3966	ipw29771	–	–	–	–	–	wipA	Unknown	
lpg2720	lpp2777	ipc0413	ipa3968	ipw29791	–	–	–	–	–	legN	cAMP-binding protein	
lpg2744	lpp2800	ipc0386	ipa4004	ipw3001	–	–	–	–	–	unknown		
lpg2745	lpp2801	ipc0385	ipa4005	ipw3004	llo0308	lib1653	+	+	+	–	Unknown	
lpg2793	lpp2839	ipc0378	ipa4063	ipw30471	–	–	–	–	–	lepA	Effector protein A	
lpg2804	lpp2850	ipc0390	ipa4076	ipw30591	llo0267	lib1598	+	+	+	lem29	Unknown	
lpg2815	lpp2867	ipc0310	ipa4089	ipw3071	llo0254	lib1612	+	+	+	mavM	Unknown	
lpg2826	–	ipc3113	ipa404	ipw30831	–	–	–	–	–	ceg34	Unknown	
lpg2828	lpp2882	ipc3115	ipa109	ipw3085	llo0783	lib0944	+	+	+	–	Unknown	
lpg2829	lpp2883	–	–	–	ipw30961	–	–	–	–	–	sidH	Unknown
lpg2830	lpp2887	–	–	–	ipw30881	–	–	–	–	–	lubX/VegU2	U-box motif
lpg2831	lpp2888	–	–	–	ipw30991	–	–	–	–	–	VipD	Patatin-like phospholipase

(Continued)
Table 3 | Continued

L. pneumophila	L. longbeachae	Name	Product
lpg2832 lpp2889 lpl2794 lpc3116 lpa4110 lpw30921	llo0214 llb1656 + + + –	Putative hydrolase	
lpg2844 lpp2903 lpl2796 lpc3128 lpa4133 –	– – – – –	Unknown	
lpg2862 – – – – –	– – – – –	Lgt2/legC8	Coiled-coil
lpg2874 lpl2793 lpg2787 llb1766 lpa4178 lpw31471	– – – – – –	Unknown	
lpg2879 lpp2938 lpl2792 lpc3165 lpa4186 lpw31471	llo0192 llb1681 + + +	Unknown	
lpg2884 lpp2943 lpg2797 lpc3170 lpa4193 lpw31531	llo0197 llb1676 + + +	Unknown	
lpg2885 lpg2944 lpg2798 lpw3154	llo2000 llb1672 + + +	Unknown	
lpg2886 lpp2947 lpg2801 lpc3171 lpa4199 lpw31571	llb1804 + + +	rRNA small subunit	
lpg2912 lpg2980 lpg2830 lpa4255 lpw31931	llb1804 + + +	methyltransferase E	
lpg2936 lpg3004 lpl2865 lpc3243 lpa4293 lpw32251	llo081 llb1887 + + +	Astacin protease	
lpg2977 lpg3047 lpg2904 lpg3290 lpa4358 –	llo3405 llb1930 + + +	Unknown	
lpg2999 lpg3071 lpg2927 lpa4315 lpa4395 lpw32851	– – – – –	legP	
lpg3000 lpg3072 lpg2928 lpg3186 lpa4397 lpw32861	llo3444 llb1887 + + +	Unknown	

List of substrates is based on Isberg et al. (2009), De Felipe et al. (2008), Ninio et al. (2009), Zhu et al. (2011); AT = ATCC33462; *pseudogene, + or – or ? strains 130b, C-4E7 and 98072 are not a finished sequence and not manually curated. Thus absence of a substrate can also be due to gaps in the sequence; shaded in gray, substrates conserved in all L. pneumophila and L. longbeachae genomes.

sphingosine-1-phosphate lyase and sphingosine kinase, eukaryotic like glycoamylose, cytokinin oxidase, zinc metalloprotease, or an RNA binding precursor (Cazalet et al., 2004; De Felipe et al., 2005; Bruggemann et al., 2006). Function prediction based on similarity searches suggested that many of these proteins are implicated in modulating host cell functions to the pathogens advantage (Cazalet et al., 2004). Recent functional studies confirm these predictions.

As a first example, it was shown that L. pneumophila is able to interfere with the host ubiquitination pathway. The L. pneumophila U-box containing protein LubX was shown to be a secreted effector of the Dot/Icm secretion system that mediates polyubiquitination of a host kinase Clk1 (Kubori et al., 2008). Recently, LubX was described as the first example of an effector protein, which targets and regulates another effector within host cells, as it functions as an E3 ubiquitin ligase that hijacks the host proteasome to specifically target the bacterial effector protein SidH for degradation. Delayed delivery of LubX to the host cytoplasm leads to the shutdown of SidH within the host cells at later stages of infection. This demonstrates a sophisticated level of co-evolution between eukaryotic cells and L. pneumophila involving an effector that functions as a key regulator to temporally coordinate the function of a cognate effector protein (Kubori et al., 2010; Luo, 2011). Furthermore, AnkB/Lpp2028, one of the three F-box proteins of L. pneumophila, was shown to be a T4SS effector that is implicated in virulence of L. pneumophila and in recruiting ubiquitinated proteins to the LCV (Al-Khodor et al., 2008; Price et al., 2009; Habyarimana et al., 2010; Lomma et al., 2010).

A second example are the apyrases (Lpg1905 and Lpg0971) encoded in the L. pneumophila genomes. Indeed, both are secreted enzymes important for intracellular replication of L. pneumophila. Lpg1905 is a novel prokaryotic ecto-NTPDase, similar to CD39/NTPDase1, which is characterized by the presence of five apyrase-conserved regions and enhances the replication of L. pneumophila in eukaryotic cells (Sansom et al., 2007). Apart from ATP and ADP, Lpg1905 also cleaves GTP and GDP with similar efficiency to ATP and ADP, respectively (Sansom et al., 2008). A third example is a L. pneumophila homolog of the highly conserved eukaryotic enzyme sphingosine-1-phosphate lyase (Spl). In eukaryotes, SPL is an enzyme that catalyzes the irreversible cleavage of sphingosine-1-phosphate (SIP). SIP is implicated in various physiological processes like cell survival, apoptosis, proliferation, migration, differentiation, platelet aggregation, angiogenesis, lymphocyte trafficking and development. Despite the fact that the function of the L. pneumophila Spl remains actually unknown, the hypothesis is that it plays a role in autophagy and/or apoptosis (Cazalet et al., 2004; Bruggemann et al., 2006). Recently it has been shown that the L. pneumophila Spl is a secreted effector of the Dot/Icm T4SS, that it is able to complement the sphingosine-sensitive phenotype of Saccharomyces cerevisiae. Moreover, L. pneumophila Spl co-localizes to the host cell mitochondria (Degtyar et al., 2009).

Taken together, the many different functional studies undertaken based on the results of the genome sequence analyses deciphering the roles of the eukaryotic like proteins have clearly established that they are secreted virulence factors that are involved in host cell adhesion, formation of the LCV, modulation of host cell functions, induction of apoptosis and egress of Legionella (Nora et al., 2009; Hubber and Roy, 2010). Most of these effector proteins are expressed at different stages of the intracellular life cycle of L. pneumophila (Bruggemann et al., 2006) and are delivered to the host cell by the Dot/Icm T4SS. Thus molecular mimicry of eukaryotic proteins is a major virulence strategy of L. pneumophila.

As expected, eukaryotic like proteins and proteins encoding domains primarily found in eukaryotic proteins are also present in the L. longbeachae genomes. However, between the two species a
considerable diversity in the repertoire of these proteins exists. For example Spl, LubX, the three L. pneumophila F-box proteins, and the homolog of one (Lpg1905) of the two apyrases are missing in all sequenced L. longbeachae genomes. In contrast a glycoamy-
lace (Herrmann et al., 2011) and an uridine kinase homolog are present also in L. longbeachae (Cazalet et al., 2010; Kozak et al., 2010; Table 3). However, other proteins encoded by the L. long-
beachae genome contain U-box and F-box domains and might therefore fulfill similar functions. Thus, although the specific pro-
teins may not be conserved, the eukaryotic like protein–protein
interaction domains found in L. pneumophila are also present in L. longbeachae.

The differences in trafficking between L. longbeachae and L. pneumophila mentioned above might be related to specific effec-
tors encoded by L. longbeachae. A search for such specific putative
effectors of L. longbeachae identified several proteins that might
counter to these differences like a family of Ras-related small
GTPases (Cazalet et al., 2010; Kozak et al., 2010). These proteins may be involved in vesicular trafficking and thus may account at
least partly for the specificities of the L. longbeachae life cycle. L. pneumophila is also known to exploit monophosphorylated
host phosphoinositides (PI) to anchor the effector proteins SidC, SidM/DrrA, LpnE, and LidA to the membrane of the replication
vacuole (Machner and Isberg, 2006; Murata et al., 2006; Weber et
al., 2006, 2009; Newton et al., 2007; Brombacher et al., 2009). L. longbeachae may employ an additional strategy to interfere with
the host PI as a homolog of the mammalian PI metabolizing
enzyme phosphatidylinositol-4-phosphate 5-kinase was identified
in the host PI as a homolog of the mammalian PI metabolizing
enzyme phosphatidylinositol-4-phosphate 5-kinase was identified
in L. longbeachae.

Interestingly, although 23 of the 29 ankyrin proteins identi-
fied in the L. pneumophila strains are absent from the L. long-
beachae genome, L. longbeachae encodes a total of 23 specific
ankyrin repeat proteins (Table 3). For example, L. pneumophila
AnkX/AnkN that was shown to interfere with microtubule-
dependent vesicular transport is missing in L. longbeachae (Pan
et al., 2008). However, L. longbeachae encodes a putative tubulin–
tyrosine ligase (TTL). TTL catalyzes the ATP-dependent post-
translational addition of a tyrosine to the carboxy terminal end
d of detyrosinated alpha-tubulin. Although the exact physiological
function of alpha-tubulin has so far not been established, it has
been linked to altered microtubule structure and function (Eis-
erich et al., 1999). Thus this protein might take over this function
in L. longbeachae.

Legionella longbeachae is the first bacterial genome encoding
a protein containing an Srh Homology 2 (SH2) domain. SH2
domains, in eukaryotes, have regulatory functions in various intra-
cellular signaling cascades. Furthermore, L. longbeachae encodes
two proteins with pentatricopeptide repeat (PPR) domains. This
family seems to be greatly expanded in plants, where they appear
to play essential roles in organellar RNA metabolism (Lurin et
al., 2004; Nakamura et al., 2004; Schmitz-Linneweber and Small,
2008). Only 12 bacterial PPR domain proteins have been iden-
tified to date, all encoded by two species, the plant pathogens
Ralstonia solanacearum and the facultative photosynthetic bac-
terium Rhodobacter sphaeroides. Thus, genome analysis revealed
a particular feature of the Legionella genomes, the presence of
many eukaryotic like proteins and protein domains, some of which
are common to the two Legionella species, others which are spe-
cific and may thus account for the species specific features in
intracellular trafficking and niche adaptation in the environment.

SURFACE STRUCTURES – A CLUE TO MOUSE
SUCEPTIBILITY TO INFECTION WITH LEGIONELLA

Despite the presence of many different species of Legionella
in aquatic reservoirs, the vast majority of human disease is caused
by a single serogroup (Sg) of a single species, namely L. pneu-
phila Sg1, which is responsible for about 84% of all cases
worldwide (Yu et al., 2002). Similar results are obtained for L. long-
beachae. Two serogroups are described, but L. longbeachae Sg1 is
predominant in human disease. Lipopolysaccharide (LPS) is the
basis for the classification of serogroups but it is also a major
immunodominant antigen of L. pneumophila and L. longbeachae.
Interestingly, it has also been shown that membrane vesicles shed
by virulent L. pneumophila containing LPS are sufficient to inhibit
phagosome–lysosome fusion (Fernandez-Moreira et al., 2006).
Results obtained from large-scale genome comparisons of L. pneu-
phila suggested that LPS of Sg1 itself might be implicated in the
predominance of Sg1 strains in human disease compared to other
serogroups of L. pneumophila and other Legionella species (Caza-
let et al., 2008). A comparative search for LPS coding regions in
the genome of L. longbeachae NSW 150 identified two gene clus-
ters encoding proteins that could be involved in production of
lipopolysaccharide (LPS) and/or capsule. Neither shared homol-
ogy with the L. pneumophila LPS biosynthesis gene cluster sug-
gest considerable differences in this major immunodominant
antigen between the two Legionella species. However, homologs of
L. pneumophila lipidA biosynthesis genes (LpxA, LpxB, LpxD, and
WaaM) are present. Electron microscopy also demonstrated that,
in contrast to L. pneumophila, L. longbeachae produces a capsule-
like structure, suggesting that one of the aforementioned gene
cluster encodes LPS and the other the capsule (Cazalet et al., 2010).

As mentioned in the introduction, only A/J mice are permissive
for replication of L. pneumophila, in contrast A/J, C57BL/6, and
BALB/c mice are all permissive for replication of L. longbeachae.
In C57BL/6 mice cytosolic flagellin of L. pneumophila triggers Naip5-
dependent caspase-1 activation and subsequent proinflammat-
ary cell death by pyroptosis rendering them resistant to infection
(Diez et al., 2003; Wright et al., 2003; Molofsky et al., 2006; Ren et al.,
2006; Zamboni et al., 2006; Lamkanfi et al., 2007; Lightfield et al.,
2008). Genome analysis shed light on the reasons for these dif-
fences. L. longbeachae does not carry any flagellar biosynthesis
genes except the sigma factor FliA, the regulator FlcN, the two-
component system FleR/FleS and the flagellar basal body rod
modification protein FlgD (Cazalet et al., 2010; Kozak et al., 2010).
Analysis of the genome sequences of strains L. longbeachae D-4968,
ATCC33642, 98072, and C-4E7 as well as a PCR-based screening of
50 L. longbeachae isolates belonging to both serogroups by Kozak
et al. (2010) and of 15 additional isolates by Cazalet et al. (2010)
did not detect flagellar genes in any isolate confirming that L. long-
beachae, in contrast to L. pneumophila does not synthesize fla-
gella. Interestingly, all genes bordering flagellar gene clusters are
conserved between L. longbeachae and L. pneumophila, suggesting
deletion of these regions from the L. longbeachae genome. This
result suggests, that \textit{L. longbeachae} fails to activate caspase-1 due to the lack of flagellin, which may also partly explain the differences in mouse susceptibility to \textit{L. pneumophila} and \textit{L. longbeachae} infection. The putative \textit{L. longbeachae} capsule may also contribute to this difference.

Quite interestingly, although \textit{L. longbeachae} does not encode flagella, it encodes a putative chemotaxis system. Chemotaxis enables bacteria to find favorable conditions by migrating toward higher concentrations of attractants. In many bacteria, the chemotactic response is mediated by a two-component signal transduction pathway, comprising a histidine kinase CheA and a response regulator CheY. Homologs of this regulatory system are present in the \textit{L. longbeachae} genomes sequenced (Cazalet et al., 2010; Kozak et al., 2010). Furthermore, two homologs of the “adaptor” protein CheW that associate with CheA or cytoplasmic chemosensory receptors are present. Ligand-binding to receptors regulates the autophosphorylation activity of CheA in these complexes. The CheA phosphoryl group is subsequently transferred to CheY, which then diffuses away to the flagellum where it modulates motor rotation. Adaptation to continuous stimulation is mediated by a methyltransferase CheR. Together, these proteins represent an evolutionarily conserved core of the chemotaxis pathway, common to many bacteria and archaea (Kentner and Sourjik, 2006; Hazelbauer et al., 2008). Homologs of all these proteins are present in the \textit{L. longbeachae} genomes (Cazalet et al., 2010; Kozak et al., 2010) and a similar chemotaxis system is present in \textit{Legionella drancourtii} LLAP12 (La Scola et al., 2004) but it is absent from \textit{L. pneumophila}. The flanking genomic regions are highly conserved among \textit{L. longbeachae} and all \textit{L. pneumophila} strains sequenced, suggesting that \textit{L. pneumophila}, although it encodes flagella has lost the chemotaxis system encoding genes by deletion events.

Thus these two species differ markedly in their surface structures. \textit{L. longbeachae} encodes a capsule-like structure, synthesizes a very different LPS, does not synthesize flagella but encodes a chemotaxis system. These differences in surface structures seem to be due to deletion events leading to the loss of flagella in \textit{L. longbeachae} and the loss of chemotaxis in \textit{L. pneumophila} leading in part to the adaptation to their different main niches, soil, and water.

EVOLUTION OF EUKARYOTIC EFFECTORS – ACQUISITION BY HORIZONTAL GENE TRANSFER FROM EUKARYOTES?

Human to human transmission of \textit{Legionella} has never been reported. Thus humans have been inconsequential in the evolution of these bacteria. However, \textit{Legionella} have co-evolved with freshwater protozoa allowing the adaptation to eukaryotic cells. The idea that protozoa are training grounds for intracellular pathogens was born with the finding by Rowbotham (1980) that \textit{Legionella} has the ability to multiply intracellularly. This lead to a new percept in microbiology: bacteria parasitize protozoa and can utilize the same process to infect humans. Indeed, the long co-evolution of \textit{Legionella} with protozoa is reflected in its genome by the presence of eukaryotic like genes, many of which are clearly virulence factors used by \textit{L. pneumophila} to subvert host functions. These genes may have been acquired either through horizontal gene transfer (HGT) from the host cells (e.g., aquatic protozoa) or from bacteria or may have evolved by convergent evolution. Recently it has...
been reported that L. drancourtii a relative of L. pneumophila has acquired a sterol reductase gene from the Acanthamoeba polyphaga Mimivirus genome, a virus that grows in ameba (Moliner et al., 2009). Thus, the acquisition of some of the eukaryotic like genes of L. pneumophila by HGT from protozoa is plausible. ralF was the first gene suggested to have been acquired by L. pneumophila from eukaryotes by HGT, as RalF carries a eukaryotic Sec 7 domain (Nagai et al., 2002). In order to study the evolutionary origin of eukaryotic L. pneumophila genes, we have undertaken a phylogenetic analysis of the eukaryote-like sphingosine-1-phosphate lyase of L. pneumophila that is encoded by lpp2128 described earlier. The phylogenetic analyses shown in Figure 4 revealed that it was most likely acquired from a eukaryotic organism early during Legionella evolution (Degtyar et al., 2009; Nora et al., 2009) as the Lpp2128 protein sequence of L. pneumophila clearly falls into the eukaryotic clade of SPL sequences.

We then tested the hypothesis that L. longbeachae might have acquired genes also from plants, which is conceivable as it is found in soil. We thus undertook here a phylogenetic analysis similar to that described above for the L. longbeachae protein Llo2643 that contains PPR repeats, a protein family typically present in plants. A Blast search in the database revealed that homologs of Llo2643 are only found in eukaryotes, in particular in plants and algae. The only prokaryotes encoding this protein are the cyanobacteria Microcoleus vaginatus and Cylindrospermopsis raciborskii. This rare presence in bacteria is suggestive of a horizontal transfer event from eukaryotes to these bacteria. Figure 5 shows the phylogenetic tree we obtained. The fact that the bacterial proteins group together may also be due to a phenomenon of long branch attraction. Thus, the Llo2643 protein of L. longbeachae appears closer to plant proteins than prokaryotic ones. Once more plant proteins, perhaps from algae, will be in the database, it might become possible to evaluate whether L. longbeachae indeed acquired genes from plants.

Legionella is not the only prokaryote whose genome shows an enrichment of proteins with eukaryotic domains. Another example is the genome of “Ca. Amoebophilus asiaticus” a Gram-negative, obligate intracellular ameba symbiont belonging to the Bacteroidetes, which has been discovered within an ameba isolated from lake sediment (Schmitz-Esser et al., 2008) has been reported (Schmitz-Esser et al., 2010). In a recent report Schmitz-Esser et al. (2010) show that the genome of this organism also encodes an arsenal of proteins with eukaryotic domains. To further investigate the distribution of these protein domains in other bacteria the authors have undertaken an enrichment analysis comparing the fraction of all functional protein domains among 514 bacterial proteomes (Schmitz-Esser et al., 2010). This showed that the genomes of bacteria for which the replication in ameba has been demonstrated were enriched in protein domains that are predominantly found in eukaryotic proteins. Interestingly, the domains potentially involved in host cell interaction described above, such as ANK repeats, LRR, SEL1 repeats, and F- and U-box domains, are among the most highly enriched domains in proteomes of ameba-associated bacteria. Bacteria that can exploit amebae as hosts thus share a set of eukaryotic domains important for host cell interaction despite their different lifestyles and their large phylogenetic diversity. This suggests that bacteria thriving within ameba use similar mechanisms for host cell interaction to facilitate survival in the host cell. Due to the phylogenetic diversity of these bacteria, it is most likely that these traits were acquired independently during evolutionary early interaction with ancient protozoa.

CONCLUSION

Legionella pneumophila and Legionella longbeachae are two human pathogens that are able to modulate, manipulate, and subvert many eukaryotic host cell functions to their advantage, in order to enter, replicate, and evade protozoa or human alveolar macrophages during disease. In the last years genome analyses, as well as comparative and functional genomics have demonstrated that genome plasticity plays a major role in differences in host cell exploitation and niche adaptation of Legionella. The genomes of these environmental pathogens are shaped by HGT between...
eukaryotes and prokaryotes, allowing them to mimic host cell functions and to exploit host cell pathways. Genome plasticity and HGT lead in each strain and species to a different repertoire of secreted effectors that may allow subtle adaptations to, e.g., different protozoan hosts. Plasmids can be exchanged among strains and phages and deletions of surface structures like flagella or chemotaxis systems has taken place. Thus genome plasticity is major mechanism by which Legiona may adapt to different niches and hosts.

Access to genomic data has revealed many potential virulence factors of *L. pneumophila* and *L. longbeachae* as well as metabolic capacities of these bacteria. The increasing information in the genomic database will allow a better identification of the origin and similarity of eukaryotic like proteins or eukaryotic protein domains and other virulence factors. New eukaryotic genomes like that of the natural host of *Legionella*, *A. castellanii* are in progress. These additional data will allow studying possible transfer events of genes from the eukaryotic host to *Legionella* more in depth. Taken together, the progressive increase of information on *Legionella* as well as on protozoa will allow more complete comparative and phylogenetic studies to shed light on the evolution of virulence in *Legionella*. However, much work remains to be done to translate the basic findings from genomics research into improved understanding of the biology of this organism. As data are accumulating, new fields of investigation will emerge. Without doubt the investigation and characterization of regulatory ncRNAs will be one such field. Manipulation of host-epigenetic information and investigating host susceptibility to disease will be another. In particular development of high throughput techniques for comparative and functional genomics as well as more and more powerful imaging techniques will accelerate the pace of knowledge acquisition.

ACKNOWLEDGMENTS

We would like to thank many of our colleagues who have contributed in different ways to this research. This work received financial support from the Institut Pasteur, the Centre National de la Recherche (CNRS) and the Institut Carnot. Laura Gomez-Valero is holder of a FRM (Fondation pour la Recherche Médicale) postdoctoral research fellowship.

REFERENCES

Al-Khodor, S., Price, C. T., Habyrimana, F., Kalia, A., and Abu Kwaik, Y. (2008). A Dot/Icm-translocated ankryin protein of *Legionella pneumophila* is required for intracellular proliferation within human macrophages and protozoa. *Mol. Microbiol.* 70, 908–923.

Amodeo, M. R., Murdoch, D. R., and Pithie, A. D. (2009). Legionnaires’ disease caused by *Legionella longbeachae* and *Legionella pneumophila*: comparison of clinical features, host-related risk factors, and outcomes. *Clin. Microbiol. Infect.* 16, 1405–1417.

Anonymous. (1997). Legionellosis. *Commun. Dis. Intell.* 21, 137.

Asare, R., and Abu Kwaik, Y. (2007). Early trafficking and intracellular replication of *Legionella longbeachae* within an ER-derived late endosome-like phagosome. *Cell. Microbiol.* 9, 1571–1587.

Asare, R., Santic, M., Gobin, I., Doric, M., Sutles, I., Graham, J. E., Price, C. D., and Abu Kwaik, Y. (2007). Genetic susceptibility and caspase activation in mouse and human macrophages are distinct for *Legionella longbeachae* and *L. pneumophila*. *Infect. Immun.* 75, 1933–1945.

Bergey, K. H., and Isberg, R. R. (1993). Two distinct defects in intracellular growth complemented by a single genetic locus in *Legionella pneumophila*. *Mol. Microbiol.* 7, 7–19.

Bibb, W. F., Sorg, R. J., Thomason, B. M., Hicklin, M. D., Steigerwalt, A. G., Brenner, D. J., and Wulf, M. R. (1981). Recognition of a second serogroup of *Legionella longbeachae*. *J. Clin. Microbiol.* 14, 674–677.

Brombacher, F., Urruty, S., Ragaz, C., Weber, S. S., Kani, K., Overduin, M., and Hilb, H. (2009). Ral1 guanine nucleotide exchange factor SidM is a major phosphatidyli- nositol 4-phosphate-binding effector protein of *Legionella pneumophila*. *J. Biol. Chem.* 284, 4846–4856.

Brugmann, H., Cazalet, C., and Buchrieser, C. (2006). Adaptation of *Legionella pneumophila* to the host environment: role of protein secretion, effectors and eukaryotic-like proteins. *Curr. Opin. Microbiol.* 9, 86–94.

Burstein, D., Zussman, T., Degtary, E., Viner, R., Segal, G., and Pupko, T. (2009). Genome-scale identification of *Legionella pneumophila* effectors using a machine learning approach. *PLoS Pathog.* 5, e1000508. doi:10.1371/journal.ppat.1000508

Capomondico, E. M., Chesnel, L., and Roy, C. R. (2005). A yeast genetic system for the identification and characterization of substrate proteins transferred into host cells by the *Legionella pneumophila* Dot/Icm system. *Mol. Microbiol.* 56, 918–933.

Cassat, S., Gioria-Martinoni, A., and Gaia, V. (2009). Commercial potting soils as an alternative infection source of *Legionella pneumophila* and other Legionella species in Switzerland. *Clin. Microbiol. Infect.* 15, 571–575.

Cazalet, C., Gomez-Valero, L., Rusniok, C., Lomma, M., Dervins-Ravault, D., Newton, H. J., Sansom, F. M., Jarraud, S., Zidané, N., Ma, L., Bouchier, C., Etienne, J., Hartland, E. L., and Buchrieser, C. (2010). Analysis of the *Legionella longbeachae* genome and transcriptome uncovers unique strategies to cause Legionnaires’ disease. *PLoS Genet.* 6, e1000851. doi:10.1371/journal.pgen.1000851

Cazalet, C., Jarraud, S., Ghavi-Helm, Y., Kunst, F., Glaser, P., Etienne, J., and Buchrieser, C. (2008). Multigenome analysis identifies a worldwide distributed epidemic *Legionella pneumophila* clone that emerged within a highly diverse species. *Genome Res.* 18, 431–441.

Cazalet, C., Rusniok, C., Bruggemann, H., Zidané, N., Magnier, A., Ma, L., Tichit, M., Jarraud, S., Bouchier, C., Vandenbossche, F., Kunst, F., Etienne, J., Glaser, P., and Buchrieser, C. (2004). Evidence in the *Legionella pneumophila* genome for exploitation of host cell functions and high genome plasticity. *Nat. Genet.* 36, 1165–1173.

Chen, J., De Felipe, K. S., Clarke, M., Lu, H., Anderson, O. R., Segal, G., and Shuman, H. A. (2004). *Legionella* effectors that promote nodytic release from protozoa. *Science* 303, 1358–1361.

Chien, M., Morozova, I., Shi, S., Sheng, H., Chen, J., Gomez, S. M., Asamani, G., Hill, K., Nuara, J., Feder, M., Rineer, J., Greenberg, J. I., Steshenko, V., Park, S. H., Zhao, B., Teplitzkaya, E., Edwards, J. R., Pampou, S., Georgiouli, A., Chou, I. C., Iannucilli, W., Ulz, M. E., Kim, D. H., Geringer-Sameth, A., Goldsberry, C., Morozov, P., Fischer, S. G., Segal, G., Xu, Q., Rizhetsky, A., Zhang, P., Cayasim, E., De Jong, P. J., Ju, J., Kalachikov, S., Shuman, H. A., and Russo, J. I. (2004). The genomic sequence of the accidental pathogen *Legionella pneumophila*. *Science* 305, 1966–1968.

Ciancianti, N. P. (2009). Many substrates and functions of type II secretion: lessons learned from *Legionella pneumophila*. *Future Microbiol.* 4, 797–805.

D’Auria, G., Jimenez-Hernandez, N., Peris-Bondia, F., Moya, A., and Latorre, A. (2010). *Legionella pneumophila* pangenome reveals strain-specific virulence factors. *BMC Genomics* 11, 181. doi:10.1186/1471-2164-11-181

De Felipe, K. S., Glover, R. T., Charpenter, X., Anderson, O. R., Reyes, M., Pericione, C. D., and Shuman, H. A. (2008). *Legionella* eukaryotic-like type IV substrates interfere with organelle trafficking. *PLoS Pathog.* 4, e1000117. doi:10.1371/journal.ppat.1000117

De Felipe, K. S., Pampou, S., Iovanovic, O. S., Pericione, C. D., Ye, S. F., Kalachikov, S., and Shuman, H. A. (2005). Evidence for acquisition of *Legionella* type IV secretion substrates via interdomain horizontal gene transfer. *J. Bacteriol.* 187, 7716–7726.
Debroy, S., Dao, J., Soderberg, M., Rossier, O., and Cianciotto, N. P. (2006). Legionella pneumophila type II secretion system reveals unique exo-proteins and a chitinase that promotes bacterial persistence in the lung. Proc. Natl. Acad. Sci. U.S.A. 103, 19146–19151.

Degoer, E., Zusman, T., Ehrlich, M., and Segal, G. (2009). A Legionella effector acquired from protozoa is involved in sphingolipids metabolism and is targeted to the host cell mitochondria. Cell. Microbiol. 11, 1219–1235.

Diez, E., Lee, S. H., Gauthier, S., Yaraghi, C. C., and Brachman, P. S. (1977). Legionnaires' disease: description of an epidemic of pneumonia. N. Engl. J. Med. 297, 1189–1197.

Garcia, C., Ugáde, E., Campo, A. R., Minombres, E., and Kovacs, N. (2004). Fatal case of community-acquired pneumonia caused by Legionella longbeachae in a patient with systemic lupus erythematosus. Eur. J. Clin. Microbiol. Infect. Dis. 23, 116–118.

Gobin, I., Susa, M., Becq, G., Hartland, E. L., and Doric, M. (2009). Experimental Legionella longbeachae infection in intratracheally inoculated mice. J. Med. Microbiol. 58, 723–730.

Habayaramina, F., Price, C. T., Santic, M., Al-Khodor, S., and Kwaik, Y. A. (2010). Molecular characterization of the Dot/Icm-translocated AnkH and AnkM eukaryotic-like effectors of Legionella pneumophila. Infect. Immun. 78, 1123–1134.

Hazelbauer, G. L., Falke, J. L., and Parkinson, J. S. (2008). Bacterial chormeceptors: high-performance signaling in networked arrays. Trends Biochem. Sci. 33, 9–19.

Heidemann, M., Chen, E. J., Moy, M. Y., and Isberg, R. R. (2009). Large-scale identification of Legionella pneumophila Dot/Icm substrates that modulate host cell vesicle trafficking pathways. Cell. Microbiol. 11, 230–248.

Herrmann, V., Eidner, A., Rydzewski, K., Blädel, I., Jüresch, M., Buchrieser, C., Eisenreich, W., and Heuner, K. (2011). Gama is a eukaryotic-like glycoamylase responsible for glyco-gen and starch-degrading activity of Legionella pneumophila. Int. J. Med. Microbiol. 301, 133–139.

Hubber, A., and Roy, C. R. (2010). Modulation of host cell function by Legionella pneumophila type IV effectors: AmrC and AmrD. Annu. Rev. Cell Dev. Biol. 26, 261–283.

Ingmundson, A., Delprato, A., Lambright, D. G., and Roy, C. R. (2007). Legionella pneumophila proteins that regulate Rab1 membrane cycling. Nature 430, 365–369.

Isberg, R. R., O’Connor, T. J., and Heilmann, M. (2009). The Legionella pneumophila replication vacuole: making a cosset inside host cells. Nat. Rev. Microbiol. 7, 13–24.

Kentner, D., and Sourjik, V. (2006). Spatial organization of the bacterial chemotaxis system. Curr. Opin. Microbiol. 9, 619–624.

Kozak, N. A., Buss, M., Lucas, C. E., Frae, M., Govi, D., Travis, T., Olsen-Rasmussen, M., Benson, R. E., and Fields, B. S. (2010). Virulence factors encoded by Legionella longbeachae identified on the basis of the genome sequence analysis of clinical isolate D-4968. J. Bacteriol. 192, 1030–1044.

Kubota, W., Fitipalduz, A., and Nagai, H. (2008). Legionella translocates an E3 ubiquitin ligase that has multiple U-boxes with distinct functions. Mol. Microbiol. 67, 1307–1319.

Kubori, T., Shinzawa, N., Kanuka, H., and Nagai, H. (2010). Legionella metaeffectors exploit host proteasome to temporally regulate cognate effector. PLoS Pathog. 6, e1001216. doi:10.1371/journal.ppat.1001216

Kubota, M., Tomii, K., Tachikawa, R., Harada, Y., Seo, R., Kaji, R., Takeshima, Y., Hayashi, M., Nishimura, T., and Ishihara, K. (2007). Legionella longbeachae pneumonia infection from home garden: Nihon Kohyuu Gakkai Zasshi 45, 698–703.

Kumpers, P., Tiede, A., Kirschner, P., Girke, J., Ganser, A., and Peest, D. (2008). Legionnaires’ disease in immunocompromised patients: a case report of Legionella longbeachae pneumonia and review of the literature. J. Med. Microbiol. 57, 384–387.

La Scola, B., Birles, R. L., Greub, G., Harrison, T. J., Ratcliff, R. M., and Raout, D. (2004). Legionella drancourtii sp. nov., a strictly intracellular amoebal pathogen. Int. J. Syst. Evol. Microbiol. 54, 699–703.

Lamkanfi, M., Amer, A., Kamengarti, T. D., Munoz-Planillo, R., Chen, G., Vandenabeele, P., Fortier, A., Gros, P., and Nunez, G. (2007). The Nod-like receptor family member Naip5/Birc5 is required for Legionella pneumophila growth independently of caspase-1 activation. J. Immunol. 178, 8022–8027.

Lightfield, K. L., Persson, J., Brubaker, S. W., Vlahovic, C. E., Von Moltke, I., Dunipace, E. A., Henry, T., Sun, Y. H., Cado, D., Dietrich, W. F., Monack, D. M., Tsoilis, R. M., and Vance, R. E. (2008). Critical function for Naip5 in inflammasome activation by a conserved carboxy-terminal domain of flagellin. Nat. Immunol. 9, 1171–1178.

Liu, S., Li, O., and Luo, Z. Q. (2007). The Legionella pneumophila effector SidJ is required for efficient recruitment of endoplasmic reticulum proteins to the bacterial phagosome. Infect. Immun. 75, 592–603.

Lomma, M., Dervins-Ravault, D., Rolando, M., Nora, T., Newton, H. J., Sanson, F. M., Sah, T., Gomez-Valero, L., Jules, M., Hartland, E. L., and Buchrieser, C. (2010). The Legionella pneumophila F-box protein Lpp2082 (AnkB) modulates ubiquitination of the host protein parvin B and promotes intracellular replication. Cell. Microbiol. 12, 1272–1291.

Luo, Z. Q. (2011). Targeting one of its own: expanding roles of substrates of the Legionella pneumophila Dot/Icm type IV secretion system. Front. Microbiol. 2:31. doi:10.3389/fmicb.2011.00031

Luo, Z. Q., and Isberg, R. R. (2004). Multiple substrates of the Legionella pneumophila Dot/Icm system identified by intercellular protein transfer. Proc. Natl. Acad. Sci. U.S.A. 101, 841–846.

Lurin, C., André, C., Aubourg, S., Belliaou, M., Biton, F., Bruyère, C., Caboche, M., Debast, C., Gualberto, J., Hoffmann, B., Lechany, A., Lecuir, E., Maquelin, M. L., Mireau, H., Peeters, N., Renou, J. P., Szurek, B., Tacconat, L., and Small, I. (2004). Genome-wide analysis of Arabidop sis pentatricopeptide repeat proteins reveals their essential role in organelle biogenesis. Plant Cell 16, 2089–2103.

Machner, M. P., and Isberg, R. R. (2006). Targeting of host Rab GTPase function by the intravacuolar pathogen Legionella pneumophila. Dev. Cell 11, 47–56.

Machner, M. P., and Isberg, R. R. (2007). A bifunctional bacterial protein links GDI displacement to Rab1 activation. Science 318, 974–977.

Marr, A., Blander, S. J., Horwitz, M. A., and Shuman, H. A. (1992). Identification of a Legionella pneumophila locus required for intracellular multiplication in human macrophages. Proc. Natl. Acad. Sci. U.S.A. 89, 9607–9611.

Marnie, T. J. (2008). ‘Legionnaires’ disease – clinical picture’, in Legionella pneumophila: Pathogenesis and Immunity, eds P. Hoffmann, H. Friedman and M. Bendini (New York: Springer), 133–150.

Mcdade, J. E., Shepard, C. C., Fraser, D. W., Tsai, T. R., Redus, M. A., and Dowdle, W. R. (1977). Legionnaires’ disease: isolation of a bacterium and demonstration of its role in other respiratory disease. N. Engl. J. Med. 297, 1197–1203.

Mckinney, R. M., Porschern, R. K., Edelstein, P. H., Bissett, M. L., Harris, P. B., Bondell, S. P., Steigerwald, A. G., Weaver, R. E., Ein, M. E., Lindquist, D. S., Kops, R. S., and Brenner, D. J. (1981). Legionella longbeachae species nova, another etiologic agent of human pneumonia. Ann. Intern. Med. 94, 739–743.

Legionella pneumophila and Legionella longbeachae genomics
Weber, S. S., Ragaz, C., and Hilbi, H. (2009). The inositol polyphosphate 5-phosphatase OCRL1 restricts intracellular growth of Legionella, localizes to the replicative vacuole and binds to the bacterial effector LpnE. *Cell. Microbiol.* 11, 442–460.

Weber, S. S., Ragaz, C., Reus, K., Nyfeler, Y., and Hilbi, H. (2006). *Legionella pneumophila* exploits PI(4)P to anchor secreted effector proteins to the replicative vacuole. *PLoS Pathog.* 2, e46. doi:10.1371/journal.ppat.0020046

Whiley, H., and Bentham, R. (2011). *Legionella longbeachae* and legionellosis. *Emerging Infect. Dis.* 17, 579–583.

Wright, E. K., Goodart, S. A., Growney, J. D., Hadinoto, V., Endrizzi, M. G., Long, E. M., Sadigh, K., Abney, A. L., Bernstein-Hanley, L., and Dietrich, W. F. (2003). Naip5 affects host susceptibility to the intracellular pathogen *Legionella pneumophila*. *Curr. Biol.* 13, 27–36.

Yu, V. L., Plouffe, J. F., Pastoris, M. C., Stout, J. E., Schousboe, M., Widmer, A., Summersgill, J., File, T., Heath, C. M., Paterson, D. L., and Chershak, A. (2002). Distribution of *Legionella* species and serogroups isolated by culture in patients with sporadic community-acquired legionellosis: an international collaborative survey. *J. Infect. Dis.* 186, 127–128.

Zamboni, D. S., Kobayashi, K. S., Kohlsdorf, T., Ogura, Y., Long, E. M., Vance, R. E., Kuida, K., Mariathasan, S., Dixit, V. M., Flavell, R. A., Dietrich, W. E., and Roy, C. R. (2006). The Bir1e cytosolic pattern-recognition receptor contributes to the detection and control of *Legionella pneumophila* infection. *Nat. Immunol.* 7, 318–325.

Ziegler, D. R. (2003). Gene sequences useful for predicting relatedness of whole genomes in bacteria. *Int. J. Syst. Evol. Microbiol.* 53, 1893–1900.

Zhu, W., Banga, S., Tan, Y., Zheng, C., Stephenson, R., Gately, J., and Luo, Z. Q. (2011). Comprehensive identification of protein substrates of the Dot/Icm type IV transporter of *Legionella pneumophila*. *PLoS ONE* 6, e17638. doi:10.1371/journal.pone.0017638

Conflict of Interest Statement: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.