Spatial Distribution and Semiannual Variation of Cold-Dense Plasma Sheet

Shichen Bai1,2, Quanqi Shi1, Anmin Tian1, Motoharu Nowada1, Alexander W. Degeler1, Xu-Zhi Zhou3, Qiu-Gang Gong2, I. Jonathan Rae5, Suiyan Fu3, Hui Zhang4, Zuyin Pu3, and Andrew N. Fazakerly5

1Shandong Provincial Key Laboratory of Optical Astronomy and Solar-Terrestrial Environment, School of Space Science and Physics, Shandong University, Weihai, China, 2State Key Laboratory of Space Weather, National Space Science Center, Chinese Academy of Sciences, Beijing, China, 3School of Earth and Space Sciences, Peking University, Beijing, China, 4Physics Department and Geophysical Institute, University of Alaska Fairbanks, Fairbanks, AK, USA, 5Mullard Space Science Laboratory, Department of Space and Climate Physics, University College London, Dorking, UK

Abstract The cold-dense plasma sheet (CDPS) plays an important role in the entry process of the solar wind plasma into the magnetosphere. Investigating the seasonal variation of CDPS occurrences will help us better understand the long-term variation of plasma exchange between the solar wind and magnetosphere, but any seasonal variation of CDPS occurrences has not yet been reported in the literature. In this paper, we investigate the seasonal variation of the occurrence rate of CDPS using Geotail data from 1996 to 2015 and find a semiannual variation of the CDPS occurrences. Given the higher probability of solar wind entry under stronger northward interplanetary magnetic field (IMF) conditions, 20 years of IMF data (1996–2015) are used to investigate the seasonal variation of IMF B_z under northward IMF conditions. We find a semiannual variation of IMF B_z which is consistent with the Russell-McPherron (R-M) effect. We therefore suggest that the semiannual variation of CDPS may be related to the R-M effect.

1. Introduction

The formation of the cold-dense plasma sheet (CDPS) is considered a representative signature of solar wind entry under northward interplanetary magnetic field (IMF) conditions seen in the magnetosphere (e.g., Fujimoto et al., 1996; Stenuit et al., 2002; Terasawa et al., 1997; Wing & Newell, 2002). CDPS is generally characterized by high density ($n > 1 \text{ cm}^{-3}$) and low temperature ($T < 2 \text{ keV}$) with a low ion bulk flow speed ($|V_i| < 100 \text{ km/s}$) (e.g., Baumjohann et al., 1989; Fujimoto et al., 1996, 2002; Li et al., 2005; Wing, Johnson, & Fujimoto, 2006). Observations have shown that a cold-dense plasma sheet forms after a long duration of northward IMF (e.g., Terasawa et al., 1997; Wing et al., 2005). A cold and dense plasma sheet can also be considered as a precondition for the strong ring current that forms during geomagnetic storms (Thomsen et al., 2003; Lavraud, Thomsen, Borovsky, et al., 2006; Chen et al., 2007) and also affects magnetosphere-ionosphere coupling (e.g., Gkioulidou et al., 2009). The magnetospheric flank regions are believed to be the source region of the CDPS. Plasmas with low temperature and high density in the flank region are source components of CDPS, provided by the solar wind entry during the northward IMF period. Double-lobe reconnection (Crooker, 1992; Fuselier et al. 2002; Lavraud, Thomsen, Lefebvre, et al., 2006; Le et al., 1996; Li et al., 2008; Onsager et al., 2001; Sandholt et al., 1999; Song & Russell, 1992; Shi et al., 2009, 2013) could be an important mechanism to transport cold and dense plasma from solar wind to the magnetosphere. Lavraud et al. (2005) found evidence of double-lobe reconnection at high latitudes. Shi et al. (2013) found a new region of solar wind plasma entry into the magnetosphere, in the lobes tailward of the cusp, and lobe reconnection was suggested to be the most probable mechanism of the entry. Based on OpenGGCM MHD simulations, Li et al. (2005) simulated the process of cold-dense plasma sheet transport from the solar wind into the magnetosphere through double-lobe reconnection. The Kelvin-Helmholtz (K-H) instability in the magnetospheric flank regions is another mechanism for solar wind entry under northward IMF conditions (e.g., Fairfield et al., 2000; Fujimoto, Tonooka, & Mukai, 2003; Hasegawa et al., 2004, 2009; Miura, 1987). Other mechanisms such as impulsive penetration (e.g., Echim & Lemaire, 2002) and gradient drift (e.g., Olson & Pfitzer, 1985; Zhou et al., 2007) may also play a role in the plasma interchange between the solar wind and magnetosphere under northward IMF conditions.

Previous works mainly focus on the formation and transport mechanisms of CDPS (e.g., Fujimoto, Mukai, & Kokubun, 2002; Nishino et al., 2007a, 2007b, Nishino, Fujimoto, Ueno, et al., 2007, Nishino, Fujimoto, Ueno,
Since the CDPS particle source has been considered to be from the solar wind, the variation of solar wind conditions should control the variation of CDPS occurrence. The semiannual variation of geomagnetic activity has been reported for over a hundred years (Sabine, 1851). Several hypotheses were proposed to explain this variation, such as the axial hypothesis (Cortie, 1912; Svalgaard, 1977), the equinoctial hypothesis (Bartels, 1932; Cliver et al., 2002, 2000; McIntosh, 1959) and the Russell-McPherron (R-M) effect (Russell & McPherron, 1973). The axial hypothesis attributes the semiannual variation to the variation of the Earth's heliographic latitude. During March and September the heliographic latitude of Earth approaches the range of values where sunspots appear frequently and the average solar wind velocity is higher (Hundhausen et al., 1971). The equinoctial hypothesis considers the ϕ angle between the Earth-Sun line and the dipole axis of the Earth as the key parameter that affects the field configuration in the Chapman-Ferraro current plane (Crooker & Siscoe, 1986). This suppresses the transfer of energy and further influences the coupling efficiency between solar wind and magnetosphere. The R-M effect proposes that the θ angle is a key parameter, which is defined as the angle between Y axis in geocentric solar equatorial (GSE) coordinate and Z axis in geocentric solar magnetospheric (GSM) coordinates, when examining components of the IMF. According to the R-M effect, the instantaneous IMF-Z_{GSM} component increases in association with a decrease of the angle θ, whose range is smaller than 90°. The minimum of θ appears at spring and fall equinoxes. The maximum of angle θ is seen at summer and winter solstices, when the GSE B_z projection effect minimizes and the magnitude of GSM B_z reaches its maximum. Previous studies on R-M effect focused on understanding the role of R-M effect for southward IMF conditions (e.g., O'Brien & McPherron, 2002; Russell & McPherron, 1973; Siscoe & Crooker, 1996; Zhao & Zong, 2012) and for the dipole effect under various IMF orientations (Nowada et al., 2009; Russell, Wang, & Raeder, 2003), while no attempts have been made under northward IMF. However, several works have suggested the higher occurrence of solar wind entry with stronger northward IMF (Lavraud, Thomsen, Lefebvre, et al., 2006; Lin et al., 2014; Zhou et al., 2007). Therefore, in this paper, we investigate the seasonal variation of CDPS occurrences and the possible role that the R-M effect plays in the seasonal variation of northward IMF, and then build a possible link between the R-M effect and the CDPS occurrences.

2. Observations

2.1. Data Set

The CDPS events are identified by use of the magnetic field (MGF) experiment data (Kokubun et al., 1994) and the ion moment data in EA modes from the Low-Energy Particle (LEP) experiment with a covered energy range of 60 eV–40 keV (Mukai et al., 1994) and Comprehensive Plasma Instrumentation (CPI) onboard Geotail, with a covered energy range of 1.3 eV–48.2 keV (Frank et al., 1994) from 1996 to 2015. All the results are presented in GSM coordinates.

To investigate the seasonal variation of the northward IMF, IMF data with 1 h time resolution between 1996 and 2015 are used from the OMNI database. The OMNI 1 min resolution data are also used when we calculate the magnetopause location using the Shue et al. (1998) model.

2.2. Cold-Dense Plasma Sheet Observation

All our cases were found in the magnetosphere with the range of $X_{\text{GSM}} < -10 R_E$. To avoid the crossing events of the magnetosheath and low-latitude boundary layer, we only consider the plasma sheet (PS) and cold-dense plasma sheet (CDPS) events, whose radial distance is 3 R_E away from the magnetopause location. The magnetopause location is calculated by Shue et al. (1998) model.

The satellite’s traversal of the PS is defined by a sign change of the B_{GSM} component. The background flow velocity ($|V_b|$), in the 5 min interval around the time when the spacecraft crosses the center of plasma sheet, should be slower than 100 km/s to avoid the contamination of the magnetosheath. To avoid counting multiple times on the same plasma sheet caused by the flapping motion of magnetotail, and considering the timescale of PS and magnetotail flapping motions, multiple PS crossing points are counted as a single event, if the time interval between two crossings is shorter than 10 min (Sharma et al., 2008). The start time and end time...
of a single event are determined by the time of the first and last PS crossing points of the PS event. The CDPS events are defined as those PS events that have high ion densities \(N_{\text{ion}} > 1 \text{ cc}^{-1}\) and low ion temperatures \(T_{\text{ion}} < 2 \text{ keV}\) (Fujimoto et al., 1996, 2002), and these two criteria were used for both LEP and CPI data. The plasma parameters data are taken from the LEP instrument when the events are observed by both LEP and CPI. We have not examined the consistency of the two kinds of data. However, for the events that were observed by both instruments, the ion density is close to each other, and the temperature observed by CPI is higher than the LEP value.

Based on the criteria of the PS and CDPS crossings, we identified 636 CDPS events out of 3,770 plasma sheet crossing events. The occurrence rate of CDPS on the duskside is 15.29% and 18.20% on the dawnside, in which the occurrence rate is calculated only using the events on the corresponding side of magnetosphere. The locations of the PS (blue dots) and the CDPS crossing events (red dots), projected onto the GSM \(X-Y\) plane, are shown in Figure 1 (see Figure S1 in the supporting information for the detailed ion density and temperature of the PS and CDPS events, and the plasma Beta for PS events can be found in Figure S2).

Wing & Newell, (2002) showed the projected spatial distribution of ion density and temperature of the plasma sheet from observations in the ionosphere and found a clear dawn-dusk asymmetry in both ion density and ion temperature in the inner magnetosphere. We also investigate the spatial distribution of ion density and temperature based on in situ observations. The spatial distribution of ion number density and temperature of
PS events projected onto the GSM X-Y plane using average values in each $2R_E \times 2R_E$ bin are shown in Figures 1c and 1d, respectively. Figures 1e and 1f also show the spatial distribution of ion number density and ion temperature for PS events. Note that CDPS events are excluded from the PS events used to calculate the average values shown in Figures 1e and 1f. There is a clear dawn-dusk asymmetry of average ion density for PS events shown in Figure 1c; however, the difference in average ion temperature for

Figure 2. (a) The occurrence rate of CDPS in every month. (b) The number of CDPS events versus the duration of the northward IMF before the observation of CDPS events. (c) The occurrence rate of CDPS in every month that is calculated only using the events with the long period (more than 2 h) of northward IMF before CDPS observation. The CDPS/PS event number in every month is shown at the bottom of Figures 2a and 2c.
plasma sheet crossing events in both flanks is not significant, as seen in Figure 1d. The dawn-dusk asymmetry of ion density is not seen in Figure 1e, which indicates that this asymmetry is brought by the CDPS events. The spatial distribution of the ion temperature with or without CDPS is quite similar shown in Figures 1d and 1f, and there is no significant dawn-dusk asymmetry. The number of CDPS/PS events in every month is given in Figure 2a. To examine the seasonal variation of the CDPS occurrence rate, we divided the number of CDPS events in every month by counting the monthly total number of PS events. The result is given in Figure 2a with error bars. The error bar is calculated using the propagation of error analysis and shows below,

$$\Delta N_f = N_f \left(\frac{\sqrt{n}}{n} - \frac{\sqrt{N}}{N} \right) \quad (1)$$

where \(n \) is the number of CDPS events and \(N \) is the number of PS events in every month. It seems likely that the CDPS occurrence has a semiannual variation with peaks at March and September and valleys at January and July. Borovsky, Thomsen, and Elphic (1998) reported that it took ~4 h for the solar wind plasma to reach the nightside plasma sheet at geosynchronous orbit. Since the CDPS events we found are outside of geosynchronous orbit, here we investigate the solar wind conditions during a 4 h interval preceding the start of these events. We find that 87 CDPS events are excluded due to the lack of data in this 4 h interval, which leaves 549 events remaining. Figure 2b shows the distribution of the CDPS events as a function of the duration of northward IMF prior to the CDPS event start time. The IMF data are shifted to the CDPS position; the time shift is calculated by \(X/V_{sw} \), where \(X \) is the upstream distance of the spacecraft which monitored the IMF and \(V_{sw} \) is the measured solar wind speed. The duration in Figure 2b is the sum of the northward IMF periods of time during 4 h before CDPS events. More than 85% (469 out of 549) of the CDPS events experienced at least 2 h of northward IMF within the previous 4 h. This is consistent with previous observations (e.g., Terasawa et al., 1997; Wing et al., 2005). Using these 85% of the CDPS events with at least 2 h of northward IMF prior to the CDPS event and the PS events shown in Figure 2a, we recalculated the CDPS occurrence rate, as shown in Figure 2c. The tendency that CDPS occurrences increased during March and September/October and dropped during January and July remains clear. We also found that most of the CDPS events in our study are during quiet times (\(Kp < 3 \) and \(AE < 150 \) nT; see Figure S2); therefore, the semiannual variation of CDPS occurrence should not be related to solar wind entry under southward IMF conditions prior to the identified events.

2.3. Observation of the Northward IMF Variations

It is suggested that the formation of cold-dense plasma sheet requires a long duration of northward IMF (e.g., Terasawa et al., 1997; Wing et al., 2005). Here we use the OMNI 1 h resolution data from 1996 to 2015 to investigate the seasonal variation of the magnitude of the northward IMF (GSM \(B_z > 0 \)) conditions.

Figure 3 shows the seasonal (horizontal axis) and diurnal (vertical axis) variations of northward IMF data calculated on a grid of 24 \times 24 bins (with 1 h \times 15.25 days for a single bin) and smoothed by a 3 \times 3 average. We only use solar wind data during northward IMF periods to calculate the result shown in Figure 3. Figures 3a shows the color contour maps for the probabilities of IMF \(B_z \) component larger than 2 nT, and Figure 3b shows the average values of IMF \(B_z \). There are three main assumptions in the R-M effect: (i) the direction of IMF is always along the Parker spiral and its magnitude is constant; (ii) the possibility of meeting southward or northward IMF is equal; and (iii) the northward IMF has no effect on the geomagnetic activity. The R-M effect is put forward to explain the semiannual variation of geomagnetic activities after the solar wind entry under northward IMF, such as geomagnetic storms and substorms, but the increased magnitude of \(B_z \) caused by the projection of GSE \(B_z \) could also be expected under northward IMF. The first and second hypotheses are used in this paper. Figure 3c shows the semiannual and diurnal variations of the angle \(\phi \) under northward IMF conditions, which is the controlling parameter of the R-M effect. Figure 3d shows the semiannual and diurnal variations of the angle \(\phi \), which is considered as the key parameter of the equinoctial hypothesis. The peaks of the northward IMF probability are seen between 21:00 UT and 02:00 UT at spring equinox and around 10:00 UT at fall equinox. The valleys of the northward IMF probability existed at summer and winter solstices, but there is no clear peak or valley of IMF \(B_z \) at this time shown in Figures 3a and 3b. The correlation coefficients between Figures 3a and 3b and the two hypotheses shown in Figures 3c and 3d are given in Table 1. The correlation coefficients between the IMF \(B_z \) and the R-M effect are much higher than...
Figure 3. Seasonal and diurnal variations of northward IMF: (a) probability of IMF GSM $B_z > 2$ nT and (b) the mean value of IMF B_z. The theoretical calculation of Russell-McPherron effect and the equinoctial hypothesis: (c) seasonal and diurnal variations of θ angle between Z axis in GSM coordinate system and Y axis in GSE coordinate system, (d) seasonal and diurnal variations of ϕ angle between Earth-Sun line and the dipole axis of the Earth, and (e) the schematic diagram of θ angle for R-M effect and ϕ angle for equinoctical hypothesis.
In this paper, we have performed a statistical analysis of the occurrence of the CDPS and the magnitude of the northward IMF B_z. We find 636 CDPS events and 3,770 PS events, and the CDPS occurrence on the dawnside is slightly higher than that on the duskside, but the difference is not significant. Based on direct in situ observations, a clear dawn-dusk asymmetry of ion density within CDPS events is shown and this dawn-dusk asymmetry is not reflected in spatial distribution of ion temperatures. This indicates that the transport of CDPS events from the flanks to the central magnetotail is more efficient on the dawnside, which confirms previous works from indirect observations (e.g., Wing et al., 2005; Wing & Newell, 2002). Most of the CDPS events that we observed are during geomagnetic quiet times ($Kp < 3$, $AE < 150$ nT; see Figure S2) and experience a long duration of northward IMF prior to the event. The occurrence rate of CDPS shows a semiannual variation. This variation of CDPS occurrence is still clear using a subset of CDPS events with long intervals of northward IMF. Using the OMNI data set, we investigate the seasonal and diurnal variations of the magnitude of the IMF B_z under northward IMF conditions. The magnitude of IMF B_z peaks at spring and fall equinoxes and reaches the minimum at summer and winter solstices. The seasonal and diurnal variations of IMF B_z are more consistent with the R-M effect than the equinoctial hypothesis.

The equinoctial hypothesis could also affect the CDPS occurrence by affecting the threshold of shear flow velocity (Boller & Stolov, 1970) and lead to a semiannual variation of CDPS occurrences. If the equinoctial hypothesis is more important, the dawn-dusk asymmetry of CDPS occurrence could be expected due to the dawn-dusk asymmetry of K-H instability (e.g., Nykyri, 2013). However, the difference between the duskside and dawnside in our CDPS occurrence is not so significant. Therefore, we suggest that the R-M effect is a more probable hypothesis to explain the seasonal and diurnal northward IMF variations shown in Figure 3 than the equinoctial hypothesis. According to the diurnal variation of the IMF B_z shown in Figures 3a–3c, the period of high probability of the higher northward IMF should be larger in March and September, and therefore, it is likely that there will be long periods of northward IMF during the 2 months. Since the formation of CDPS is related to the long duration of periods of northward IMF and the increased positive B_z magnitude, we consider that the semiannual variation of CDPS occurrence is also related to R-M effect.

References

- [Bartels, J. (1932). Terrestrial-magnetic activity and its relations to solar phenomena. *Journal of Geophysical Research*, 37(1), 1–52.](https://doi.org/10.1029/TE037i001p0001)
- [Baumjohann, W., Paschmann, G., & Cattell, C. A. (1989). Average plasma properties in the central plasma sheet. *Journal of Geophysical Research*, 94(A6), 6597–6606.](https://doi.org/10.1029/JA094i006p06597)
- [Boller, B. R., & Stolov, H. L. (1970). Kelvin-Helmholtz instability and the semiannual variation of geomagnetic activity. *Journal of Geophysical Research*, 75(31), 6073–6084.](https://doi.org/10.1029/JA075i031p06073)

Table 1

Summary of Correlation Coefficients Between the Northward IMF B_z and Two Hypothesis

Correlation coefficient	Probability of IMF $B_z > 2$ nT	Mean value of IMF B_z (nT)
R-M effect	0.83	0.84
Equinoctial hypothesis	0.32	0.34

Acknowledgments

We acknowledge use of OMNI data obtained from OMNIWeb service at http://omniweb.gsfc.nasa.gov The Geotail/IGMF, Geotail/JLEP, and Geotail/CPI data were provided via www.darts.isas.jaxa.jp/stp/geotail/. This work was supported by the National Natural Science Foundation of China (grant 41574157, 41628402, and 41774153), the Shandong University (Weihai) Future Plan for Young Scholar (2017WHWLJH08), and the SNSB grant 77/14. A.N.F. is funded in part by STFC grant ST/N00722/1, and I.J.R. is funded in part by STFC grant ST/N00722/1 and NERC grants NE/L007495/1, NE/P017150/1, and NE/P017185/1.
Nishino, M. N., Fujiwara, T., Terasawa, T., Ueno, G., Maekawa, K., Mukai, T., & Saito, Y. (2007b). Temperature anisotropies of electrons and two-component protons in the dusk plasma sheet. Annales Geophysicae, 25(6), 1417–1432. https://doi.org/10.5194/angeo-25-1417-2007

Nishino, M. N., Fujiwara, T., Ueno, G., Maekawa, K., Mukai, T., & Saito, Y. (2007). Geotail observations of two-component protons in the midnight plasma sheet. Annales Geophysicae, 25(10), 2229–2245. https://doi.org/10.5194/angeo-25-2229-2007

Nishino, M. N., Fujiwara, T., Ueno, G., Mukai, T., & Saito, Y. (2007). Origin of temperature anisotropies in the cold plasma sheet: Geotail observations around the Kelvin-Helmholtz vortices. Annales Geophysicae, 25(9), 2069–2086. https://doi.org/10.5194/angeo-25-2069-2007

Nowada, M., Shue, J.-H., & Russell, C. T. (2009). Effects of dipole tilt angle on geomagnetic activity. Planetary and Space Science, 57, 1254–1259. https://doi.org/10.1016/j.pss.2009.04.007

Nykyri, K. (2013). Impact of MHD shock physics on magnetosheath asymmetry and Kelvin-Helmholtz instability. Journal of Geophysical Research: Space Physics, 118, S06E–S081. https://doi.org/10.1002/jgra.50499

O’Brien, T. P., & McPherron, R. L. (2002). Seasonal and diurnal variation of Dst dynamics. Journal of Geophysical Research, 107(A11), 1341. https://doi.org/10.1029/2002JA009435

Olson, W. P., & Pfitzer, K. A. (1985). Magnetospheric responses to the gradient drift entry of solar wind plasma. Journal of Geophysical Research, 90(A11), 10,823–10,833. https://doi.org/10.1029/JA090A11p10823

Onsager, T. G., Scudder, J. D., Lockwood, M., & Russell, C. T. (2001). Reconnection at the high-latitude magnetopause during northward interplanetary magnetic field conditions. Journal of Geophysical Research, 106(A11), 25,467–25,488. https://doi.org/10.1029/2000JA00444

Russell, C. T., & McPherron, R. L. (1973). Semiannual variation of geomagnetic activity. Journal of Geophysical Research, 78(1), 92–108. https://doi.org/10.1029/IA078i001p000922

Russell, C. T., Wang, Y. L., & Raeder, J. (2003). Possible dipole tilt dependence of dayside magnetopause reconnection. Geophysical Research Letters, 30(18), 1937. https://doi.org/10.1029/2003GL017725

Sabine, E. (1851). On periodical laws discoverable in the mean effects of the larger magnetic disturbances. Philosophical Transactions of the Royal Society of London, 141, 123–139. https://doi.org/10.1098/rspel.1856.0011

Sandholt, P. E., Farrugia, C. J., Cowley, S. W. H., Denig, W. F., Lester, M., Moen, J., & Lybekk, B. (1999). Capture of magnetosheath plasma by the magnetosphere during northward IMF. Journal of Geophysical Research Letters, 26(18), 2833–2836. https://doi.org/10.1029/99GL00600

Sharma, A. S., Nakamura, R., Runov, A., Grigorenko, E. E., Hasegawa, H., Hoshino, M., … Snekvik, K. (2008). Transient and localized processes in the magnetotail: A review. Annales Geophysicae, 26(4), 955–1006. https://doi.org/10.5194/angeo-26-955-2008

Shi, Q. Q., Zong, Q. G., Fu, S. Y., Dunlop, M. W., Pu, Z. Y., Xie, L., … Lucek, E. (2013). Solar wind entry into the high-latitude terrestrial magnetosphere during geomagnetically quiet times. Nature Communications, 4, 1466. https://doi.org/10.1038/Ncomms2476

Shi, Q. Q., Zong, Q. G., Zhang, H., Pu, Z. Y., Fu, S. Y., Xie, L., … Lucek, E. (2009). Cluster observations of the entry layer equatorward of the cusp under northward interplanetary magnetic field. Journal of Geophysical Research, 114, A12219. https://doi.org/10.1029/2009JA014475

Shue, J. H., Song, P., Russell, C. T., Steinberg, J. T., Chao, J. K., Zastenker, G., … Kawano, H. (1998). Magnetopause location under extreme solar wind conditions. Journal of Geophysical Research, 103(A8), 17,691–17,700. https://doi.org/10.1029/98JA01103

Siscoe, G., & Crooker, N. (1996). Diurnal oscillation of Dst: A manifestation of the Russell-McPherron effect. Journal of Geophysical Research, 101(A11), 24,985–24,989. https://doi.org/10.1029/96JA01875

Song, P., & Russell, C. T. (1992). Model of the formation of the low-latitude boundary layer for strongly northward interplanetary magnetic field. Journal of Geophysical Research, 97(A2), 1411. https://doi.org/10.1029/91JA02377

Stenius, H., Fujiwara, M., Fuselier, S. A., Sauvaud, J.-A., Wing, S., Fedorov, A., … Pedersen, A. (2002). Multi-spacecraft study ion dynamics of the dusk-flank magnetosphere under northward IMF: January 10–11, 1997. Journal of Geophysical Research 107(A10), 1333. https://doi.org/10.1029/2002JA0090246

Svalgaard, L. (1977). Geomagnetic activity: Dependence on solar wind parameters. In J. B. Zirker (Ed.), Coronal holes and high speed wind streams (pp. 371). Boulder, CO: Colorado Association University Press.

Terasawa, T., Fujiwara, M., Mukai, T., Shinohara, I., Saito, Y., Yamamoto, T., … Lepping, R. P. (1997). Solar wind control of density and temperature in the near-Earth plasma sheet: WIND/GEOTAIL collaboration. Geophysical Research Letters, 24(8), 935–938. https://doi.org/10.1029/96GL04018

Thomsen, M. F., Borovsky, J. E., Skoug, R. M., & Smith, C. W. (2003). Delivery of cold, dense plasma sheet material into the near-Earth region. Journal of Geophysical Research, 108(A11), 1151. https://doi.org/10.1029/2002JA009544

Wang, C.-P., Gkioulidou, M., Lyons, L. R., Xing, X., & Wolf, R. A. (2014). Interchange motion as a transport mechanism for formation of cold-dense plasma sheet. Journal of Geophysical Research: Space Physics, 119, 8318–8337. https://doi.org/10.1002/2014JA020251

Wing, S., Johnson, J. R., & Fujiwara, M. (2006). Timescale for the formation of the cold-dense plasma sheet: A case study. Geophysical Research Letters, 33, L23106. https://doi.org/10.1029/2006GL027710

Wing, S., Johnson, J. R., Newell, P. T., & Meng, C.-I. (2005). Dawn-dusk asymmetries, ion spectra, and sources in the northward interplanetary magnetic field plasma sheet. Journal of Geophysical Research, 110, A08205. https://doi.org/10.1029/2005JA011086

Wing, S., & Newell, P. T. (2002). 2D plasma sheet ion density and temperature profiles for northward and southward IMF. Geophysical Research Letters, 29(9), 1307. https://doi.org/10.1029/2001GL013950

Zhao, H., & Zong, Q. G. (2012). Seasonal and diurnal variation of geomagnetic activity: Russell-McPherron effect during different IMF polarity and/or extreme solar wind conditions. Journal of Geophysical Research, 117, A11222. https://doi.org/10.1029/2012JA018745

Zhou, X.-Z., Pu, Z. Y., Zong, Q.-G., & Xie, L. (2007). Energy filter effect for solar wind particle entry to the plasma sheet via flank regions during southward interplanetary magnetic field. Journal of Geophysical Research, 112, A06233. https://doi.org/10.1029/2006JA012180