Genome organization and evolution of a eukaryotic nicotinate co-inducible pathway

Eszter Bokor1,4, Michel Flipphi2,1,4, Sándor Kocsubé1, Judit Ámon1,
Csaba Vágvölgyi1, Claudio Scazzocchio3,4 and Zsuzsanna Hamari1

1Department of Microbiology, University of Szeged Faculty of Science and Informatics, Szeged, Hungary
2Institut de Génétique et Microbiologie, Université Paris-Sud, Orsay, France
3Department of Microbiology, Imperial College, London, UK
4Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette 91198, France

Received: 19 April 2021
Accepted: 31 August 2021

11 Genome organization and evolution of a eukaryotic nicotinate co-inducible pathway.

Electronic supplementary material is available online at https://doi.org/10.6084/m9.figshare.5619097.

Open Biol. 11: 210099. https://doi.org/10.1098/rsob.210099

1. Introduction

Nicotinic acid (niacin, vitamin B3), a precursor of NAD and NADP, can be used by some bacteria as the sole nitrogen and carbon source. The common first step in all investigated prokaryotes is the hydroxylation of nicotinic acid (NA) to 6-hydroxynicotinic acid (6-NA) (Brown & Haldenwang, 1960). The further fate of 6-NA is variable; in aerobic bacteria it is converted to 2,6-dihydroxynicotinic acid (2,6-NA) (Brown & Haldenwang, 1960) and anaerobically to 1,4,5,6-tetrahydro-6-oxonicotinic acid in Eubacteriumarkeri (formerly Clostridiumarkeri) (Nakamura et al., 2006). The detailed and variable further bacterial metabolic steps, whether aerobic or anaerobic, have been reviewed in (Brown & Haldenwang, 1960).

The ascomycete fungus Aspergillus nidulans can use NA as its sole nitrogen source. In common with bacteria, a molybdenum cofactor (MOCO)-containing flavoprotein catalyses the conversion of NA to 6-NA (purine hydroxylase II, previously called xanthine dehydrogenase II, HxS) [6–9]. The hxA gene is a parologue of hxA, encoding a canonical xanthine dehydrogenase (HxA, purine hydroxylase I [10,11]) the latter being co-regulated with most other genes of the purine utilization pathway ([12,13] and references therein). The substrate specificities of HxA and HxS have been studied in detail ([11] and references therein). In A. nidulans an NA-inducible co-regulated gene cluster is extant (hxn1/VI cluster, for cluster 1 in chromosome VI) comprising six genes of the purine utilization pathway ([12,13] and references therein). The common first step in all investigated prokaryotes is the hydroxylation of nicotinic acid (NA) to 6-hydroxynicotinic acid (6-NA) (Brown & Haldenwang, 1960). The further fate of 6-NA is variable; in aerobic bacteria it is converted to 2,6-dihydroxynicotinic acid (2,6-NA) (Brown & Haldenwang, 1960) and anaerobically to 1,4,5,6-tetrahydro-6-oxonicotinic acid in Eubacteriumarkeri (formerly Clostridiumarkeri) (Nakamura et al., 2006). The detailed and variable further bacterial metabolic steps, whether aerobic or anaerobic, have been reviewed in (Brown & Haldenwang, 1960).

The ascomycete fungus Aspergillus nidulans can use NA as its sole nitrogen source. In common with bacteria, a molybdenum cofactor (MOCO)-containing flavoprotein catalyses the conversion of NA to 6-NA (purine hydroxylase II, previously called xanthine dehydrogenase II, HxS) [6–9]. The hxA gene is a parologue of hxA, encoding a canonical xanthine dehydrogenase (HxA, purine hydroxylase I [10,11]) the latter being co-regulated with most other genes of the purine utilization pathway ([12,13] and references therein). The substrate specificities of HxA and HxS have been studied in detail ([11] and references therein). In A. nidulans an NA-inducible co-regulated gene cluster is extant (hxn1/VI cluster, for cluster 1 in chromosome VI) comprising six genes of the purine utilization pathway ([12,13] and references therein). The common first step in all investigated prokaryotes is the hydroxylation of nicotinic acid (NA) to 6-hydroxynicotinic acid (6-NA) (Brown & Haldenwang, 1960). The further fate of 6-NA is variable; in aerobic bacteria it is converted to 2,6-dihydroxynicotinic acid (2,6-NA) (Brown & Haldenwang, 1960) and anaerobically to 1,4,5,6-tetrahydro-6-oxonicotinic acid in Eubacteriumarkeri (formerly Clostridiumarkeri) (Nakamura et al., 2006). The detailed and variable further bacterial metabolic steps, whether aerobic or anaerobic, have been reviewed in (Brown & Haldenwang, 1960).

The ascomycete fungus Aspergillus nidulans can use NA as its sole nitrogen source. In common with bacteria, a molybdenum cofactor (MOCO)-containing flavoprotein catalyses the conversion of NA to 6-NA (purine hydroxylase II, previously called xanthine dehydrogenase II, HxS) [6–9]. The hxA gene is a parologue of hxA, encoding a canonical xanthine dehydrogenase (HxA, purine hydroxylase I [10,11]) the latter being co-regulated with most other genes of the purine utilization pathway ([12,13] and references therein). The substrate specificities of HxA and HxS have been studied in detail ([11] and references therein). In A. nidulans an NA-inducible co-regulated gene cluster is extant (hxn1/VI cluster, for cluster 1 in chromosome VI) comprising six genes of the purine utilization pathway ([12,13] and references therein). The common first step in all investigated prokaryotes is the hydroxylation of nicotinic acid (NA) to 6-hydroxynicotinic acid (6-NA) (Brown & Haldenwang, 1960). The further fate of 6-NA is variable; in aerobic bacteria it is converted to 2,6-dihydroxynicotinic acid (2,6-NA) (Brown & Haldenwang, 1960) and anaerobically to 1,4,5,6-tetrahydro-6-oxonicotinic acid in Eubacteriumarkeri (formerly Clostridiumarkeri) (Nakamura et al., 2006). The detailed and variable further bacterial metabolic steps, whether aerobic or anaerobic, have been reviewed in (Brown & Haldenwang, 1960).

The ascomycete fungus Aspergillus nidulans can use NA as its sole nitrogen source. In common with bacteria, a molybdenum cofactor (MOCO)-containing flavoprotein catalyses the conversion of NA to 6-NA (purine hydroxylase II, previously called xanthine dehydrogenase II, HxS) [6–9]. The hxA gene is a parologue of hxA, encoding a canonical xanthine dehydrogenase (HxA, purine hydroxylase I [10,11]) the latter being co-regulated with most other genes of the purine utilization pathway ([12,13] and references therein). The substrate specificities of HxA and HxS have been studied in detail ([11] and references therein). In A. nidulans an NA-inducible co-regulated gene cluster is extant (hxn1/VI cluster, for cluster 1 in chromosome VI) comprising six genes of the purine utilization pathway ([12,13] and references therein). The common first step in all investigated prokaryotes is the hydroxylation of nicotinic acid (NA) to 6-hydroxynicotinic acid (6-NA) (Brown & Haldenwang, 1960). The further fate of 6-NA is variable; in aerobic bacteria it is converted to 2,6-dihydroxynicotinic acid (2,6-NA) (Brown & Haldenwang, 1960) and anaerobically to 1,4,5,6-tetrahydro-6-oxonicotinic acid in Eubacteriumarkeri (formerly Clostridiumarkeri) (Nakamura et al., 2006). The detailed and variable further bacterial metabolic steps, whether aerobic or anaerobic, have been reviewed in (Brown & Haldenwang, 1960).
genes, namely hxnS, hxnR (encoding the pathway-specific transcription factor), hxnP and hxnZ (encoding transporters of the major facilitator superfamily, which could play a role in the uptake of NA and/or NA-derivatives), and hxnT (putative flavin oxidoreductase) and hxnY (α-ketoglutarate-dependent dioxygenase) both which may be involved in the further metabolism of 6-NA [11]. In the 1970s, NA non-user mutants were isolated and genetically characterized [6]. These map in hxnS and hxnR, but also in a second gene cluster in chromosome VI (see below).

The hxn1/VI genes are specifically induced by a metabolite of NA catabolism but also expressed during nitrogen starvation [11] (RNASeq data [14] available at FungiDB, https://fungidb.org/fungidb/app). Expression of the hxn genes requires both the pathway-specific Zn-finger factor HxnR and the wide-domain GATA transcription factor AreA [11]. The latter mediates de-repression of a wide range of genes in the absence of preferred nitrogen sources (such as ammonium, l-glutamate and l-glutamine) [15-17]. The hxnR gene is defined by loss-of-function mutations which are non-inducible for the six genes of the cluster (including hxnR itself) and by constitutive mutations where transcription of all hxn1/VI genes occurs in the absence of inducer compounds [11]. The physiological involvement of the hxn1/VI cluster in nicotinate metabolism is further shown by the phenotype of null mutations in the hxnR gene, which result in the inability to use nicotinate, and two of its downstream metabolic derivatives as nitrogen sources [11].

Herein we complete the description of the genomic organization of the nicotinate-inducible hxn genes by the identification of five additional HxnR-dependent genes in A. nidulans and we describe variations in the genomic organization of the 11 hxn genes throughout the Ascomycota phylum.

The evolution of gene clustering in primary metabolism has been a subject of discussion. Specifically, we do not know which are the factors that lead to clustering of previously unclustered genes, those involved in clustering maintenance and those eventually leading to declustering [18]. Rokas and co-workers [19,20] have proposed that clustering confers a specific advantage when, in a given metabolic pathway, one or more intermediates are toxic, as single gene loss, leading to accumulation of a toxic metabolism, will be minimized. Notably, at least one toxic intermediate, 2,5-DP has been identified in the nicotinate degradation pathway [11], a compound that also occurs in prokaryotic pathways [12]. Investigating the diverse organization and evolution of the nicotinate regulon may contribute to this debate.

2. Results and discussion

2.1. Three HxnR-dependent, co-inducible gene clusters are extant in Aspergillus nidulans

In order to search for additional genes involved in nicotinate metabolism, we investigated the cluster structure in available ascomycete genomes (see below for a thorough description). Strikingly, in Cyphellophora europaea (Pezizomycotina, Eurotiomycetes, Chaetothyriales), five additional genes (to be called hxnV, hxnW, hxnX, hxnM and hxnN; see below) are positioned between hxnP and hxnR orthologues, forming a single, 11-gene cluster that includes all orthologues of the A. nidulans hxnZ, hxnY, hxnP, hxnR, hxnT and hxnS genes [11] (figure 1, A. nidulans cluster 1/VI; table 1). In Aspergillus terreus (and several other Aspergillus species; see below) hxnV, hxnW and hxnX are directly adjacent to hxnS (figure 1). In A. nidulans a cluster including hxnX, hxnW and hxnV (cluster 2/VI for cluster 2 in chromosome VI) is separated approximately 40 kb from hxnZ (deduced from the re-assembled genomic sequences [21]) while hxnM and hxnN are adjacent to each other in chromosome I (cluster 3/1 for cluster 3 in chromosome I). While this article was being written, Martins et al. [22] suggested the clustered organization we described for A. terreus and A. nidulans and drew comparisons with a number of other species. However, these authors did not investigate the co-regulation by nicotinate or its metabolites of the putative new hxn genes.
gene name, annotation no.	corresponding cluster	cDNA accession number	name of identified domains \(^a\) (identification code, AA interval, e-value)	proposed enzyme class
HxnZ (AN11196) (533 AAs)	cluster 1/VI	MT707474 this work\(^b\)	MSF1 (PF01690.13, 89–513 AAs, 4.0 × 10\(^{-26}\)) transporter	
HxnY (AN11188) (349 AAs)	cluster 1/VI	MT707473 this work	Pcb\(^c\) (CDG491, 1–320 AAs, 3.85 × 10\(^{-17}\))/DIKX_N (PF H226, 7–131 AAs, 9.5 × 10\(^{-25}\))/2OG-Fe\(_{II}\)_Oxy (PF01371, 179–282 AAs, 5.8 × 10\(^{-22}\)) α-ketoglutarate-dependent dioxygenase	
HxnM (AN11189) (401 AAs)	cluster 1/VI	KX85439 this work\(^b\)	MSF1 (PF01690.13, 49–417 AAs, 3.2 × 10\(^{-15}\)) transporter	
HxnP (AN11197)	cluster 1/VI	MT707475 this work	two C2H2 zinc finger domains (PF00096, 8–32 AAs and 41–63 AAs, 0.029 and 0.7) fungal transcription factor [11]	
HxnR (AN9177) (388 AAs)	cluster 1/VI	MT707472 this work	OYE-like FNM (cd02933, 9–368 AAs, 0 × 10\(^{+00}\)); FadH (CDG1902, 6–387 AAs, 1.12 × 10\(^{-117}\)) did yellow enzyme	
HxnS (AN9178) (3396 AAs)	cluster 2/VI	KX85438 Amon et al. [11]	Fer2 (PF14111, 14–82 AAs, 1.5 × 10\(^{-06}\)) xanthine dehydrogenase-type nicotinate dehydrogenase (11) and refs therein	
HxnT (AN9161) (461 AAs)	cluster 2/VI	MN718567 this work	ihti (CDG0654, 17–414 AAs, 5.82 × 10\(^{-14}\)) FAD-dependent oxidoreductase	
HxnU (AN1172) (254 AAs)	cluster 2/VI	MN718568 this work	adh_short_C2 (PF13561, 11–251 AAs, 1.2 × 10\(^{-15}\)) alcohol dehydrogenase-like	
HxnV (AN1187) (620 AAs)	cluster 2/VI	MN718569 this work\(^b\)	PRK08294 (PRK08294, 7–620 AAs, 2.68 × 10\(^{-9}\)) phenyl 2-monooxygenase-like enzyme	
HxnN (AN10833) (543 AAs)	cluster 3/1	MN718565 this work	amidase (PF01425, 78–531 AAs, 8.5 × 10\(^{-106}\)) amidase	
HxnM (AN6518) (307 AAs)	cluster 3/0	MN718566 this work	C4_HPGdA_like (cd10938, 8–287 AAs, 1 × 10\(^{-153}\)) C–N bond cleaving hydrolase-like	

\(^a\) Description of the abbreviated names of protein domains: MSF1, major facilitator superfamily; Pcb\(^c\), isopenicillin N synthase and related dioxygenases; DIKX_N, non-haem dioxygenase in morphine synthesis N-terminal; 2OG-Fe\(_{II}\)_Oxy, 2OG-Fe(II) oxygenase superfamily; OYE-like FNM, did yellow enzyme (OYE)-like FMN-binding domain; FadH, 2,4-dienoyl-CoA reductase or related NADH-dependent reductase; Fer2 and Fer2\(_{2}\) (PF01799, 92–174 AAs, 3.8 × 10\(^{-29}\)) ferredoxin-dependent iron-sulfur (2Fe-2S) binding domain; CO\(_{deh-flav}_C\) (PF03450, 480–586 AAs, 1.5 × 10\(^{-6}\)) CO dehydrogenase flavoprotein C-terminal domain; ihti (CDG0654, 17–414 AAs, 5.82 × 10\(^{-14}\)); FAD-binding_3 (PF01494, 16–235 AAs, 1.0 × 10\(^{-30}\)) FAD-binding domain; adh_short_C2 (PF13561, 11–251 AAs, 1.2 × 10\(^{-15}\)) alcohol dehydrogenase-like domain; PRK08294 (PRK08294, 7–620 AAs, 2.68 × 10\(^{-9}\)) phenyl 2-monooxygenase-like enzyme domain; PHOX_C (cd02979, 485–616 AAs, 2.72 × 10\(^{-15}\))/Phe_hydrox_dim (PF07976, 404–574 AAs, 2.8 × 10\(^{-25}\)) phenol hydroxylase C-terminal dimerization domain; C4_HPGdA_like, catalytic domain of Helicobacter pylori peptidoglycan deacetylase (HpPGdA) (proposed as cyclic imidase) and similar proteins; CDA1 (COG0736, 43–145 AAs, 4.03 × 10\(^{-3}\)) CDA1 family.

\(^b\) DNA analysis revealed that automatic annotation was erroneous and the experimental determination of cDNA resulted in a corrected gene model.
The genomic organization of the hxn genes in *A. nidulans* chromosome VI confirms data obtained with a mutagenic screen, which yielded besides mutations in *hxnS* and *hxnR* [11] additional mutants unable to grow on either NA or 6-NA as sole nitrogen sources. A number of tightly linked mutations, of which only two (*hxn6* and *hxn7*) are presently available, mapped in chromosome VI at about ±10 cm from mutations in the *hxnS* and *hxnR* genes, which is consistent with the genomic organization described above (J. Kelly & C. Saczczochio 1984, personal communication).

We isolated from an *A. nidulans* genomic DNA library [23] a plasmid able to complement *hxn6* for growth on 6-NA as sole nitrogen source. The 8256 bp insert comprises *hxn6*, *hxnW*, *hxnX* and partial flanking sequences of the AN9159 and AN9162 loci. The *hxn6* mutation is a G1171A transition within the *hxnV* ORF (see below for correction of the *hxnV* gene model in electronic supplementary material, figure S1) resulting in W296STOP (amber). Southern blots showed *hxn7* to be a chromosomal aberration (possibly an insertion) interrupting the *hxnV* open reading frame (electronic supplementary material, figure S2). The *hxnX* gene (cluster 2/VI) is at 40,748 bps from *hxnZ* (based on genome sequence data [21], while *hxnN* and *hxnM* are adjacent to each other and transcribed from the same strand in chromosome I (cluster 3/I) (figure 1). We obtained cDNAs of all the genes in the three clusters and confirmed that, as gathered by manual inspection and comparative genomics, the database gene models (proposed by automated annotation) for *hxnP*, *hxnZ* and *hxnV* are erroneous (electronic supplementary material, figures S1, S3 and S4 for the correct gene models, table 1 for accession numbers). HxnX, HxnW, HxnV are oxidoreductases, while HxnM and HxnN are hydrolases. A summary of the predicted activities of all the encoded Hxn proteins is shown in table 1.

All the genes in clusters 2/VI and 3/I show an HxnR-dependent induction by 6-NA (figure 2a). In an *hxnR*′ strain, the genes show variable levels of constitutive expression (figure 2a), as shown before for cluster 1/VI [11]. The boundaries of the newly detected clusters are defined by the completely different pattern of expression of the flanking genes (loci AN9159 and AN9162 for cluster 2/VI, and loci AN6517 and AN10825 for cluster 3/I; figure 2b). As previously shown for the genes in cluster 1/VI, these five newly identified *hxn* genes are strongly ammonium repressible (figure 2a) and with one exception (*hxnN*, see below), strictly dependent on the AreA GATA factor, mediating nitrogen metabolite de-repression (figure 3). *xprD1* is usually considered to be the most extreme de-repressed allele of the *areA* regulatory gene [25], however, it did not behave as a de-repressed allele for the expression of any *hxn* gene but rather as a partial loss of function allele for *hxnS* and *hxnV* expression [11] while being variable in its effects on the genes in clusters 2/VI and 3/I (figure 3). Similar behaviour was reported for *uraA* (a urea transporter gene) expression [26], which strongly suggests that the phenotypes resulting from this specific mutation are promoter-dependent. The amidase-encoding *hxnN* gene shows a paradoxical pattern of expression. While it is clearly subject to repression by ammonium, it is drastically over-expressed in *areA600* background under neutral (non-induced, non-repressed conditions, see legend to figure 3), as well as under induced and nitrogen starvation conditions (figure 3). As *areA600* is a null mutation due to a chain termination mutation upstream of the DNA-binding domain [27], we must conclude that AreA acts on *hxnN* as a transcriptional repressor, in contrast to its activator function in almost all genes involved in nitrogen source utilization [15,28]. However, *hxnN* is sensitive to ammonium repression, an apparent paradox, which is most probably due to its dependence on HxnR (as seen in figure 2a), whose expression is drastically repressed by ammonium [11] (figures 2 and 3). The sensitivity of *hxnN* expression to liganded HxnR is supported by the strikingly higher expression levels seen for *hxnN* under induced conditions, and this in all three areA alleles tested. However, the expression of *hxnR* is undetectable or extremely weak (for example under nitrogen starvation conditions) in an *areA600* background, which may suggest that the high expression seen for *hxnN* under those latter conditions is not HxnR-dependent. In the absence of evidence for other transcription factors besides HxnR, the repressing effect of AreA seems to affect the basal transcription level of *hxnN* (see below). This contrasts with what was reported for the genes in cluster 1/VI [11]. Other instances of AreA acting as a repressor have been reported, notably *nadA* (encoding adenine deaminase, where induction by ammonium was seen [29]) and the arginine catabolic genes *agaA* (arginase) and *otaA* (ornithine transcarbamylase) [30,31]. We searched the genes in the three clusters for the consensus AreA 5′HGATAR DNA-binding sites [32] (figure 4). The *hxnV* gene upstream sequence does not feature canonical AreA sites; nevertheless, its expression is repressible by ammonium, probably due to indirect repression via repression of *hxnR* transcription. The *hxnR* upstream region shows both canonical AreA sites and one putative HxnR-binding site (see below). This is consistent with this gene being inducible, self-regulated and subject to nitrogen metabolite repression [11] (figure 2). The negative effect of AreA on *hxnN* expression may be due to the presence of a canonical GATA-binding motif (5′AGATAA on the non-coding strand at position-14 to -19), interfering with the start or progress of transcription. This is analogous to the situation observed for *nadA*, where there is a likely steric interference of the binding of AreA with that of the specific transcription factor UaY, the two sites being separated by 3 bp [29].

The binding sites of HxnR have not been experimentally determined, however, they could be predicted with reasonable probability [33]. Besides the consensus 5′HGATAR AreA-binding sites, figure 4 shows also the distribution of the putative canonical and non-canonical HxnR-binding sites (5′GCGGGG and 5′GNGGDC, respectively) in all 11 *hxn* genes as well as in the hxB gene (AN1637), encoding a MOCO sulphurylase [134] for review) necessary for the enzymatic activity of both HxA and HxN [35]. Putative canonical HxnR-binding sites are extant in the hxB promoter (figure 4). This gene is under the independent and additive control of UaY (the transcription factor regulating the purine utilization pathway) and HxnR [35].

2.2. Chromosome rearrangements led to separation of clusters 1/VI and 2/VI in *Aspergillus nidulans* and other *Aspergillus* species

The organization described above and in figure 1 for *A. terreus* (section *Terrei*) is most probably ancestral to *Aspergillus*, as it is seen in species belonging to diverging sections of this genus, namely in *Aspergillus carbonarius* (section *Nigri*) and in *Aspergillus unguis*, an early diverging species of section *Nidulantes*
This organization closely resembles the one seen in species of the basal section *Aspergillus* (*A. chevalieri, A. cristatus, A. glaucus* and *A. ruber*), where, however, the *hxnT* gene is absent (figure 5a). Within section *Nidulantes*, the first inversion on chromosome VI resulted in the separation of the clusters 1/VI and 2/VI, inverting the position and orientation of *hxnX, hxnW* and *hxnV* (in cluster 2/VI) in relation to *hxnS* (in cluster 1/VI) (figure 5a). This results in a gap of 41 992 bp between the two clusters in *Aspergillus mulundensis* (section *Nidulantes*, series Multicolores) [36]; figure 5a). A second inversion within section *Nidulantes* led to the configuration seen in *A. nidulans* and its closest sequenced relative *A. spinulosporus* (section *Nidulantes*, series *Nidulantes*) [36] leaving, respectively, gaps of 40 876 bp and 49 972 bp between *hxnZ* and *hxnX* (figure 5a).

Aspergillus sydowii and *Aspergillus versicolor* (section *Nidulantes*, series Versicolores) [36], also show separation of clusters 1/VI and 2/VI (electronic supplementary material, figure S5A), however, the relative gene orientation and phylogenetic position of these two species strongly suggest that their cluster organization arose from events independent to those described above for *A. nidulans* and *A. spinulosporus* (figure 5a). Two distinct independent chromosome inversions, like the one described above for *A. mulundensis* must have occurred within section *Nigri*, leading to the organization seen in *A. aculeatus* and the *A. niger* clade (electronic supplementary material, figure S5A); in *A. niger* and allied species, *hxnS* and *hxnX* are abutting neighbours; in *A. aculeatus* (also in section *Nigri*), where *hxnT* is absent there is an approximately 32 kb gap between these genes.

In two species (*Aspergillus steynii* and *Aspergillus westerdijkiae*) of two closely related series (ser. *Steyniorum* and ser. *Circumdati*, respectively), clusters 1 and 2 are separated without any relative change of gene orientation (electronic

Figure 2. HxnR-dependent co-induction by 6-NA and ammonium repression of genes in clusters 2/VI and 3/I. All genes in clusters 2/VI and 3/I (a) and the cognate cluster-flanking genes (b) were tested together with *hxnS* (in cluster VI/1), which was included as a positive control of expression. The relative mRNA levels were measured by RT-qPCR and data were processed according to the relative standard curve method [24] with the γ-actin transcript (*actA/AN6542*) as reference. Mycelia were grown on 10 mM acetamide as sole N-source for 8 h at 37°C. They were either kept on the same medium for a further 2 h (non-induced, NI) or induced with 1 mM 6-NA (as the sodium salt, I) or induced as above together with 5 mM of L-(+)-ammonium-tartrate (induced-repressed, IR), also for 2 h. Strains used were *hxnR*+ (FGSC A26), *hxnRΔ* (HZS.136) and *hxnRc7* (FGSC A872) (electronic supplementary material, table S1). Standard deviations of three independent experiments are shown. Primers are listed in electronic supplementary material, table S2.

Figure 2. HxnR-dependent co-induction by 6-NA and ammonium repression of genes in clusters 2/VI and 3/I. All genes in clusters 2/VI and 3/I (a) and the cognate cluster-flanking genes (b) were tested together with *hxnS* (in cluster VI/1), which was included as a positive control of expression. The relative mRNA levels were measured by RT-qPCR and data were processed according to the relative standard curve method [24] with the γ-actin transcript (*actA/AN6542*) as reference. Mycelia were grown on 10 mM acetamide as sole N-source for 8 h at 37°C. They were either kept on the same medium for a further 2 h (non-induced, NI) or induced with 1 mM 6-NA (as the sodium salt, I) or induced as above together with 5 mM of L-(+)-ammonium-tartrate (induced-repressed, IR), also for 2 h. Strains used were *hxnR*+ (FGSC A26), *hxnRΔ* (HZS.136) and *hxnRc7* (FGSC A872) (electronic supplementary material, table S1). Standard deviations of three independent experiments are shown. Primers are listed in electronic supplementary material, table S2.
Non-induced conditions (NI): Strains were grown on MM media with 5 mM L-(+) di-ammonium-tartrate as sole N-source for 8 h, then the mycelia were transferred generally de-repressed to MM with 10 mM nicotinic acid and 5 mM L-(+) di-ammonium-tartrate for further 2 h. Induced conditions (I): as above but transferred to 10 mM nicotinic acid as sole N-source.

Induced-repressed (IR) conditions: transferred to nitrogen source-free MM with 10 mM acetamide for further 2 h. N-starvation conditions (St): transferred to nitrogen source-free medium. RT-qPCR data were processed according to the standard curve method [24] with the \(\gamma \)-actin transcript (actA/AN6542) as reference. Standard deviations based on three biological replicates are shown. Primers are listed in electronic supplementary material, table S2.

Figure 3. The GATA factor AreA is essential for expression of all hxn genes with the exception of hxnN. Relative mRNA levels in strains of areA+ (FGSC A26), a generally de-repressed areA mutant (xprD1, HZS.216) and an areA-null mutant (areA600, CS3095) were determined (electronic supplementary material, table S1).

Non-induced conditions (NI): Strains were grown on MM media with 5 mM L-(+) di-ammonium-tartrate as sole N-source for 8 h, then the mycelia were transferred to MM with 10 mM acetamide for further 2 h. Induced conditions (I): as above but transferred to 10 mM nicotinic acid as sole N-source. Induced-repressed (IR) conditions: transferred to 10 mM nicotinic acid and 5 mM L-(+) di-ammonium-tartrate for further 2 h. N-starvation conditions (St): transferred to nitrogen source-free medium. RT-qPCR data were processed according to the standard curve method [24] with the \(\gamma \)-actin transcript (actA/AN6542) as reference. Standard deviations based on three biological replicates are shown. Primers are listed in electronic supplementary material, table S2.

In Monascus ruber (Eurotiomycetes, Eurotiales, Aspergilliaceae—same family as Aspergillus), where hxnS is not included in a 10-member gene cluster (see below), the two divergently transcribed couples are conserved (figure 5b). In Talaromyces sp. (Eurotiomycetes, Eurotiales, Trichocomaceae) the hxnM, hxnW, hxnV and hxnN genes are not arranged in divergent couples (electronic supplementary material, figure S5A). Electronic supplementary material, figure SSB shows a variety of cluster organizations in species of the Pezizomycotina and Saccharomycotina subphyla, with the hxnN and hxnM genes showing different patterns of integration within the hxn cluster, yet with a remarkable conservation of the hxnN–hxnV and hxnM–hxnW divergently transcribed couples in classes of Pezizomycotina subphyla (electronic supplementary material, figure SSB).

In the genome of C. europaea, besides the divergently transcribed couples mentioned above, two other couples are extant: hxnS–hxnT and hxnP–hxnY (figure 1). These couples are mostly conserved in the Pezizomycotina, irrespective of whether all 11 genes are included in a single cluster (electronic supplementary material, figure SSB). Noticeably, in A. nidulans, cluster 1/VI comprises hxnS–hxnT and hxnP–hxnY. In Hymenoscyphus repandus (Leotiomycetes, Helotiales), similarly to C. europaea, all 11 genes are included in a single mega-cluster, albeit in a different arrangement; nevertheless, two divergent couples are conserved (hxnS–hxnT and hxnM–hxnW) (figure 5b). A similar conservation of divergently transcribed genes is seen in other gene clusters, such as the DAL cluster of the Saccharomycetaceae, where the DAL4–DAL1 pair is conserved between Saccharomyces cerevisiae and Naumovia castellii in spite of two inversions affecting the budding yeast DAL cluster in chromosome IX [38], and in the biotin biosynthesis cluster of the Pezizomycotina (bioF-bioDA) [39]. The persistence of these divergently transcribed couples could be due to the fact that they share a bi-directional promoter, as established for GAL10 and

supplementary material, figure S5A). This could be formally described as an insertion, however, partial DNA identity and gene colinearity in the inter-cluster sequence rather suggest two successive inversions. In Aspergillus wentii (section Cremei) a rearrangement associated with the loss of hxnS separates from the original cluster, a sub-cluster including hxnZ, hxnY and a pseudogenized hxnP, while hxnV, hxnW and hxnX are still included in the main cluster together with the neighbouring hxnT and hxnR (electronic supplementary material, figure S5A).

2.3. In the Pezizomycotina, with the exception of Aspergillus, the hxnN and hxnM genes are included in the hxn cluster

The enzymes encoded in clusters 1/VI and 2/VI are all oxidoreductase enzymes, however, to release ammonium from NA-derived metabolites, hydrolytic enzymes are necessary [2]. Within the putative hxn clusters of many Pezizomycotina species, two genes encoding, respectively, a putative cyclic-imide hydrolase (hxnM EC 3.5.2.16, greater than 60% identity with AAY98498, the cyclic-imide hydrolase from Pseudomonas putida [37]) and a putative amidase (hxnN EC 3.5.1.4) are extant. The cognate genes of A. nidulans have been described above. In C. europaea, hxnN and hxnM lie in between hxnX and hxnV, and are separated by hxnW constituting two neighbouring, divergently transcribed gene couples, hxnV–hxnN and hxnW–hxnM within the cluster (figure 1). It should be stressed that these two divergently transcribed couples are conserved across different classes of the Pezizomycotina, but not in the genus Aspergillus, where, with the exception of section Flavi, hxnN and hxnM are separated from the main cluster (electronic supplementary material, figures S5A and SSB).
couples share bi-directional promoters. present in all HxnR-regulated genes, except of the hxB and HxA. UaY-binding sites on the AreA-binding sites (orange boxes) [32] and putative canonical 5'GNGG motif, putative non-canonical HxnR binding site (b) HGATAR motif, AreA binding site GHGGGG motif, putative canonical HxnR binding site GNGGDG motif, putative non-canonical HxnR binding site UaY binding motif

Figure 4. AreA and putative HxnR-binding sites are extant in the 11 genes of the hxn regulon. (a) Sequence logo of the DNA-binding motif of the HxnR transcription factor generated by the ‘DNA-binding site predictor for Cys2His2 Zinc Finger Proteins’ application (http://zf.princeton.edu/) [33]. (b) Distribution of 5'HGATAR AreA-binding sites (orange boxes) [32] and putative canonical 5'GHGGGG HxnR-binding sites (dark green lozenges) in hxn gene promoters and also in the promoter of the hxB gene. The latter encodes a trans-sulphurylase necessary for the activity of the MOCO cofactor in enzymes of the xanthine oxidoreductase group (including HxnS and HxA). UaY-binding sites on the hxB promoter are marked by blue coloured ovals [34]. Sequences conforming to the consensus 5'GHGGGG sequence are present in all HxnR-regulated genes, except hxnM. Nevertheless, figure 2 shows clearly that hxnM is under the control of HxnR. Thus, the physiological binding sites may have a more relaxed consensus sequence. We propose 5'GNGG motif as a non-canonical consensus binding site that can be found in hxnM as well as in other hxn promoters. Light green lozenges indicate the location of the more relaxed consensus 5'GNGG motif. Note that the hxnT/hxnS, hxnP/hxnT and hxnR/hxnW gene couples share bi-directional promoters.

GAL1 in S. cerevisiae ([40,41] and references therein) and for niaA–niaD in A. nidulans [42,43].

2.4. Evolution of the hxn gene cluster(s) in the Ascomycetes

Previous work has shown that HxnS is restricted to the Pezizomyctina [11]. It is therefore unlikely that other fungi could hydroxylate NA and thus use it as a nitrogen source. However, it is possible that an hxnS gene was incorporated into a pre-existent metabolic pathway, whether catabolic or detoxifying, whether or not organized as a cluster. We thus investigated the presence of putative hxn clustered genes throughout the fungal kingdom. No putative hxn clusters are present in any early divergent fungal lineages in the Basidiomycota or in the Taphrinomycotina, except that hxnT, hxnN and hxnM unlinked orthologues are present in the early diverging Taphrinomycotina, Saprolegnia ferox (for HxnT and HxnM phylogenies see electronic supplementary material, figures S7 and S9).

Clusters comprising hxn genes are present in several scattered species of Saccharomyctina (electronic supplementary material, figure S5B); however, not in the Saccharomyctinae and Debaryomyctinae families. All species of Lipomyces, an early divergent genus of the Saccharomyctina, include divergently transcribed hxnN and hxnM clustered genes (electronic supplementary material, figure S9). The genomes of fourteen scattered species of Saccharomyctina (electronic supplementary material, figure S5B) comprise clusters with the hxn gene complement, always including the transcription factor hxnR and never including hxnS, hxnZ and hxnW, even if the latter gene could be found unlinked to the cluster in an early divergent species (Trigonopsis variabilis). A phylogeny of hxnR is shown in electronic supplementary material, figure S6 and is consistent with a monophyletic origin of this gene in the Saccharomyctina and Pezizomyctina. It seems most unlikely that the clusters of the Saccharomyctina have a single origin. The Lipomyces hxnM–hxnN gene pair is found only in this genus where all other hxn genes are absent. Among other families, the occurrence of clusters with variable organizations does not follow any obvious evolutionary pattern. In the fourteen species of Saccharomyctina where we found an hxn cluster, the hxnT, hxnR and hxnV genes are monophyletic (electronic supplementary material,
Aspergillaceae

section Nidulantes set. Nidulantes (Aspergillus nidulans, A. spinosporus)
section Nidulantes set. Multicolorae (Aspergillus malandroensis)
section Niger (Aspergillus niger, A. brasilensis, A. anamori, A. flavus, A. tamari, A. tubingenensis)
section Terrei (Aspergillus terreus), section Niger (A. carbonarius), section Nidulantes (A. unguis)
section Aspergillus (Aspergillus chrooleucii, A. cristatus, A. glaucus, A. ruber)
section Flavi (Aspergillus flavius, A. oryzae, A. sojae, A. parasiticus)

Penicillium citrinum, P. nannii

(b)

Aspergillus nidulans, A. spinosporus
Aspergillus terreus, A. carbonarius
A. unguis
Talaromyces stipitatus
Talaromyces amstelodami
Monascus ruber
Byssolachium spectabile
Rasamsonia emersonii
Phaeomoniella chlamydospora
Cyphellophora europaea
Hymenoscyphus repandus

1: nfsA
2: pfdB pseudogene
3: putative phosphorylase protein coding gene

Figure 5. Genomic arrangement of the hxn gene clusters. (a) Selected species from Aspergillaceae including section Nidulantes, section Niger, section Terrei, section Aspergillus, section Flavi and Penicillium (b) selected species from other Eurotiomycetes compared with H. repandus (Leotiomycetes, Helotiales). Orthologues found in different species are indicated by arrows of the same colour as in figure 1. A single vertical line symbolizes physical separation of genes on different contigs.

figures S5–S8). Notwithstanding the above, the phylogeny of hxnM suggests several different origins of clustered hxnMs within the Saccharomycetales from an unclustered parologue, possibly acquired by HGT (see below, and electronic supplementary material, figure S9). One clustering event occurred in the Phaffiomycetaeae, possibly two in the Pichiaceae, while only one species of the CUG-Ala clade, Pachysolen tannophilus [44] includes an hxn clustor, with an hxnM gene. Among the Pichiaceae, in the genus Ogataea, the monophyletic origin of clustered and unclustered hxnM genes is supported by their intron–exon organization.

Several instances of gene loss, gene duplication and cluster reorganization have occurred in the Pezizomycotina. In some Aspergillus species, hxnT (encoding an FMN-dependent oxidoreductase) is missing from the cluster (electronic supplementary material, figure S5A) and indeed from the genome. In many taxa of Sordariomycetes duplication of hxnV and subsequent loss of the hxn cluster genes can be observed, leaving only an hxnV copy and hxnM (electronic supplementary material, figure S5B).

It is striking that in the Aspergillus section Flavi, in Talaromyces species and in most species of Penicillium the hxnS gene is absent and the organization of the whole cluster is completely identical in some species of Talaromyces, in most of Penicillia and in Aspergillus section Flavi (electronic supplementary material, figure S5A). This coincidence indicates possible HGTs between these taxa (see below, HGT between Talaromyces and Aspergillus section Flavi). As the transcription factor-encoding gene hxnR is conserved, the implication is that these organisms should be able to use 6-NA but not NA.

2.5. Insertion of additional genes within the hxn clusters

We define as ‘additional genes’ those that appear sporadically within the hxn clusters of some taxa. While we have not investigated the function(s) of these genes, none are extant in the three co-inducible hxn clusters of A. nidulans. The insertion of a gene encoding a nitro reductase (nfsA) originally horizontally transmitted from a cyanobacterium has been discussed previously [11]; the insertion occurred after the divergence of A. carbonarius from other members of section Niger [45] (figure 5g). The expression of nfsA from A. nidulans (AN8360) is not regulated by nicotinate or the transcription factor HxnR, strongly suggesting that the gene product is not necessary for nicotinate utilization as a nitrogen source [11].

In the hxn cluster of Aspergillus section Flavi, and in a number of Penicillium and Talaromyces species (electronic supplementary material, figures S5, S10 and S11), a gene of unknown function, to be called pfdA, for putative peroxisomal FMN-dependent dehydrogenase (see below) lies between hxnZ and hxnM. This is a parologue of pfdA, a gene universally present in the Pezizomycotina, which is never included in an hxn cluster. Since pfdB is not extant in A. nidulans, we can exclude that PfdB is necessary for NA utilization as
nitrogen source. The encoded Pfd proteins include PFO1070.18 (FMN-dependent dehydrogenase) and PFO0173.28 (cytochrome b5-like-binding domain) domains and have a canonical PTS1 (peroxisomal entry signal) [46]. The phylogeny of PfdA and PfdB clearly supports a scenario of gene duplication of pfdA in the ancestor of Penicillia with simultaneous or subsequent cluster integration (mean similarity between PfdA and PfdB parologue proteins is 65% compared with 88% of PfdA orthologues among themselves; electronic supplementary material, figure S11). PfdA has a second, distinct parologue, PfdC, too, which however lost the PTS1 signal in some cases and is only present in section Flavi, and in a number of Talaromyces and Penicillium species and in a few species of other clades (electronic supplementary material, figures S10 and S11). The occurrence of pfdC in taxa is consistent with the duplication of the pfdA ancestor in an early diverging species followed by several episodes of loss completely unrelated to the evolution of the hxn cluster.

In Penicillium pixzilli, P. citrinum and P. stecki, a gene encoding a protein of 467–469 residues, comprising a PFO0781.24, diacylglycerol kinase catalytic domain, (orthologues annotated as sphingoid long chain kinases) lies between the hxnZ and hxnM genes. This gene is duplication of a gene present elsewhere in these organisms and omnipresent in the Eurotiomycetes. In Talaromyces stipitatus a pfdB pseudogene is extant between hxnZ and hxnM, and additionally, an intronless gene encoding 751 residue-multidomain protein, comprising an N-terminal PFO104820.11 (phosphorylase superfamily N-terminal, most similar to nucleoside phosphorylases) and a C-terminal PFO5960.11 (bacterial protein of unknown function) domain is located between hxnN and hxnM, the nearest homologues of the inserted gene being present and unchanged in any hxn gene in Talaromyces verruculosus.

In Kregervanrija fluxuum (Saccharomycotina, Pichiaceae) a putative amidase gene is inserted in the cluster between hxnM and hxnT (electronic supplementary material, figure S5B). The encoded protein has only 35% identity with HxnN of A. nidaans, compared with the 51% identity shown by the genuine HxnN proteins of Lipomyces starkeyi, T. variabliis and S. complicata. Its nearest homologue is a putative amidase from Ogataea pamputy- morpha (56% identity). It is tempting to speculate that this amidase has been recruited to the cluster to carry out a similar catalytic function to that afforded by HxnN.

2.6. HGT events involving hxn genes

The organization of the hxn clusters, together with phylogenies of individual genes suggested several episodes of HGT involving individual genes, or in a specific case the whole cluster. These events are discussed below.

2.7. HGT of hxnS

In the genome of most Pezizomycotina, an hxnS gene, encoding the first enzyme of the nicotinate utilization pathway, is extant [11]. However, in most Penicillia and Talaromyces species the hxnS gene is absent. In some Talaromyces species where hxnS is extant and it is unclustered with other hxn genes, these hxnS genes are the closest orthologues of the hxnS of Monascus species, consistent with standard phylogeny [11] (electronic supplementary material, figure S12). A different situation occurs in some Penicillia, where hxnS occurs. The hxnS genes from three sister species of section Citrina, [47] (P. citrinum, *P. citrinum*).

Figure 6. Summary of proposed hxn HGT events between fungal taxa. F: Aspergillus section Flavi; U: Aspergillus section Usti; P: Penicillia; T: early diverging species of Talaromyces; 1: HGT of pfdB gene found between Penicillia and species of Talaromyces and between species of Talaromyces and Aspergillus section Flavi; 2: HGTs of hxnM gene from Xylonomycetes (Symbiotaphrina) to Dothideomycetes; from the common ancestor of Fusaria (Ascomycota, Sordariomycetes) to Basidiomycota (the common ancestor of the Peniellus stipticus and Mycena galopus belonging to Aparicomycetes) and from Penicillia (Ascomycota, Eurotiomycetes) to Aspergillus section Usti (Ascomycota, Eurotiomycetes) (see detailed phylogeny in electronic supplementary material, figure S9); 3: HGT of hxnS gene from Aspergillus section Usti to Penicillia section Citrina; red asterisk: transfer of the whole hxn cluster composed of nine hxn genes and including the pfdB gene from Penicillia to species of Talaromyces and from Talaromyces to Aspergillus section Flavi. Lines connecting taxon mark confirmed HGTs.

P. paxzilli and P. stecki were reacquired by HGT from either a Fusarium or a Colletotrichum species (Sordariomycetes [11]; figure 6; electronic supplementary material, figure S12).

2.8. Possible HGT and clustering events involving the hxnM gene

In all investigated dikarya, HxnM paralogues, presumably non-related to NA metabolism, are extant. Based on a comprehensive phylogeny of cluster-related and cluster-non-related HxnM and its paralogues (electronic supplementary material, figure S9) subjected to reconciliation with the species tree (using GeneRax), we confirmed HGTs among Ascomycota taxa and HGT from Ascomycota to the common ancestor of two species of Basidiomycota (summarized in figure 6 with details in the legend, and in electronic supplementary material, figure S9). Since these two Basidiomycota species (Peniellus stipiticos and Mycena galopus) have only a single, Ascomycota-derived (from common ancestor of Fusaria) hxnM gene, the Basidiomycota hxnM must necessarily have been lost from an ancestor of these two Basidiomycota species.

Electronic supplementary material, figure S9 is consistent with a vertical inheritance of hxnM homologues in the dikarya, excluding a recent HGT from bacteria. The phylogeny of
HxnM is compatible with an originally unclustered hxnM homologue being duplicated, one copy being recruited in an hxn cluster. Details are shown in electronic supplementary material, figure S9 and the cognate legend. While the clustered hxnM genes appear monophyletic, originating from the same clade of unclustered genes, clustering in the Pezizomycotina occurred independently from that within the Saccharomycotina, followed by several independent instances of separation of an hxnN–hxnM minicluster (such as detailed above for the Aspergillus) and presence of an hxnM unclustered homologue, as it occurred in the Leotiomycetes. The clade comprising the HxnM homologues of the Saccharomycotina seems monophyletic (electronic supplementary material, figure S9). However, it does not occur as expected as a sister clade of all the homologues of the Pezizomycotina, but within the different Pezizomycotina clades. The low aLRT value at the relevant node, however, neither supports nor excludes Saccharomyces acquiring an hxnM gene by HGT from Pezizomyces (electronic supplementary material, figure S9).

2.9. HGT events of whole hxn clusters

Reconciliation of the phylogeny of PfdBs extant in Eurotiomycetes with the species tree (by using GeneRax) confirmed that the pfdB of Talaromyces which was acquired by HGT from an ancestral species of Penicillia was further transferred from a Talaromyces by HGT (together with the whole hxn cluster) to an ancestor of Aspergillus section Flavi (figure 7). Since Penicillia and Aspergillus section Flavi share an identical cluster organization with some species of Talaromyces, the HGT events most probably involved two episodes of HGT of the whole hxn cluster (figure 6). This outlines a scenario by which, after the appearance of pfdB by a single gene duplication of pfdA in the ancestral species of Penicillia, pfdB subsequently integrated into the cluster in this genus. An HGT of the whole cluster to an early diverging species of Talaromyces would have occurred followed by a further HGT from Talaromyces to the ancestor of Aspergillus section Flavi. This scenario implies that the putative acceptor ancestor Aspergillus of section Flavi must have lost previously the cluster present in other Aspergillus species. This is strikingly confirmed by genomes of early diverging species of Talaromyces which have occurred followed by a further HGT from Talaromyces to the ancestor of Aspergillus section Flavi. This scenario implies that the putative acceptor ancestor Aspergillus of section Flavi must have lost previously the cluster present in other Aspergillus species. This is strikingly confirmed by genomes of early diverging species of section Flavi (A. leporis, A. alliaceus and A. bertholletius), which show both instances of hxn gene loss and presence of hxn pseudogenes (electronic supplementary material, figure S5A). The most extreme case being that of A. coremiiformis, where no hxn genes are present. In A. bertholletius a cluster of 7 hxn pseudogenes is extant, where the only intact gene is hxnT (electronic supplementary material, figure S5A), however this gene is not a fossil, but it derives from Talaromyces by HGT (electronic supplementary material, figure S7).
earliest diverged species of section Flavi is supposed to be A. avenaceus [48,49]. This is fully supported by the position of the cluster-independent pfdA and pfdC genes in the phylogenetic tree (electronic supplementary material, figure S10). The cluster of this species, which includes pfdB, is similar to that of other Flavi, except that hxnP is missing and neither of the two hxnM paralogues is included in the cluster.

The phylogenies of HxnR, HxnT and HxnM are consistent with the HGT scenario described above for pfdB, however reconciliation analysis restricted to phylogenies of the Eurotiales confirmed the proposed HGT event only for HxnR (figure 7). In spite of this apparent contradiction, the evidence strongly suggests the whole HG transfer of the cluster as detailed above (figure 7).

Disturbingly, in the hxnR, hxnV and hxnT phylogenies, A. avenaceus appears as out-species of the Talaromyces/Penicillium clade which transferred the cluster to other Flavi (figure 7; electronic supplementary material, figures S6–S8). There is obviously a complex series of HGTs which may be solved when more genomes of closely related species become available.

A number of Aspergillus species have undergone episodes of HGT, gene loss and even whole cluster duplication. These events are described in electronic supplementary material, figure S5.

2.10. Concluding remarks

Experimental work has shown that three gene clusters in A. nidulans constitute a nicotinate (actually a nicotinate derivative) inducible regulon, under the control of a specific Zn-finger transcription factor, HxnR. Deletion of HxnR has shown that expression of some or all of the genes in this regulon are necessary for NA, 6-NA and the putative intermediate 2,5-DP utilization as nitrogen sources [11]. Our previous results [11] show that at least the latter compound is toxic. This may be relevant when discussing the hypothesis that clustering is evolutionary favoured in pathways where such toxic intermediates are extant [20]. The specific metabolic function of each encoded protein will be reported separately, together with the identification of intermediate metabolites, including additional toxic ones. The hxn regulon is extant only in the Ascomycetes, the variable organization seen in different species includes instances of complete clustering of all 11 genes, which may suggest an evolutionary pressure towards the integration of the whole hxn gene complement. However, instances of declustering such as the separation of clusters 1/VI and 2/VI in Aspergillus section Nidulantes of Aspergillus occurred. Different cluster arrangements may have different adaptive values in organisms with different ecologies and physiologies. Rearrangements might be accounted for aleatory recombinational events with no obvious selective aftermath. The hxn cluster may alternatively or additionally be a hot spot of recombination. Several instances of HGT were detected (figure 6), most notably the origin of the cluster of Aspergillus section Flavi from Talaromyces/Penicillia. The events of HGT, together with the recruitment of genes after duplication, including hxnS and hxnM, and additional genes such as pfdB, underlie both the dynamic nature and the reticulate character of metabolic cluster evolution, thus providing a perhaps unique window on the evolutionary events underlying cluster organization plasticity.

3. Material and methods

3.1. Strains and growth conditions

The A. nidulans strains used in this work are listed in electronic supplementary material, table S1. Standard genetic markers are described in http://www.fgsc.net/Aspergillus/gene_list/. Minimal media (MM) contained glucose as the carbon source; the nitrogen source varied according to the experimental condition [11]. The media were supplemented according to the requirements of each auxotrophic strain (www.fgsc.net). Nitrogen sources, inducers and repressors were used at the following concentrations: 10 mM acetamide, 10 mM NA (1:100 dilution from 1 M NA dissolved in 1 M sodium hydroxide) and 5 mM L-(-)-di-ammonium-tartrate as sole N-sources; 1 mM 6-NA sodium salt as inducer and 5 mM L-(-)-di-ammonium-tartrate as repressor. Growth conditions are detailed in the figure legends of corresponding experiments.

3.2. RNA manipulation

Total RNA was isolated using a NucleoSpin RNA Plant Kit (Macherey-Nagel) and RNase-Free DNase (Qiagen) according to the manufacturer’s instructions. cDNA synthesis was carried out with a mixture of oligo-dT and random primers using a RevertAid First Strand cDNA Synthesis Kit (Fermentas). Quantitative RT-PCR (RT-qPCR) were carried out in a CFX96 Real Time PCR System (BioRad) with SYBR Green/Fluorescein qPCR Master Mix (Fermentas) reaction mixture (94°C 3 min followed by 40 cycles of 94°C 15 s and 60°C 1 min). Data processing was done by the standard curve method [24]. DNA sequencing was done by the Sanger sequencing service of LGC (http://www.lgcgroup.com). Primers used are listed in electronic supplementary material, table S2.

3.3. Data mining

The coding sequences of fungal hxn genes (ATG-STOP) were mined by TBLASTN screening of DNA databases at the NCBI servers, mainly the Whole Genome Shotgun contigs (WGS) database, using the available online tools [50]. For a few species (Neurospora crassa, Podospora anserina, Penicillium chrysogenum, Aspergillus oryzae, A. niger ATCC 1015, Leptosphaeria maculans and some Saccharomycotina), the sequence contigs of the published genome are located in the nr/nt database or the Refseq genome database. Additional Euroti-ales genomes (outside Aspergillicae) are publicly accessible at the website of the Centre for Structural and Functional Genomics (Concordia University Montreal, Canada; https://gb.fungalgenomics.ca/portal/). We also included some species from the 1000 Fungal Genomes project (http://1000.fungalgenomes.org) exclusively available at the Mycocosm database (Joint Genome Institute, US Department of Energy) (https://mycocosm.jgi.doe.gov/mycocosm/home). For the two classes of Pezizomycotina for which few genome sequences are public (Xylonomycetes, Pezizomycetes), we have obtained permission to use the hxn complement in the genome sequences of five species lodged at JGI in our current work: Symbiotaphrina kochii (project ID: 404190); Trinosporium guianense (project ID: 1040180); Gyronitra esculetana (project ID: 1051239); Plectania melastoma (project ID: 1040543); and Sarcoscypha coccinea (project ID: 1042915).
TBLASTN query sequences for the 11 hxn genes were the full-length proteins deduced from the cDNA sequences we experimentally determined for each of the *A. nidulans* hxn genes (see table 1 for GenBank Accession numbers). Where necessary, to confirm gene orthology among multiple homologous sequences, the TBLASTN hits and their surrounding sequences were further inspected for the conservation of occupied intron positions between species and for colinearity with other *hxn* genes in the sequence contig identified (gene clustering). We did not use the results of automated annotation (‘Models’ or ‘mRNA’ at nr/nt) nor did we use deduced protein databases for the eukaryotic (Hxn) proteins. We used a selection of auto-annotated proteins for the prokaryote HxnM outgroup extracted from the nr/nt database, using the *P. putida* cyclic-imide hydrolase (GenBank AAY98498 [37]) as the BLASTP query. We manually predicted the intron–exon structure of each (*hxn*) gene, guided by comparative genomics and after (in *silico*) intron removal deduced the encoded proteins subsequently used in phylogenetic analyses (see below). Alternative yeast nuclear codes were used where appropriate (*Pachyospora*: CUG = Ala, *Priconemus*: CUG = Ser). For some species in under-represented taxa, we could use the transcriptome shotgun assembly database to obtain intron-less sequences coding for full-length protein.

3.4. Construction of maximum-likelihood trees

Criteria for identification of orthologues/paralogues are detailed for each tree. Alignments were done with MAFFT G-INS-i unless otherwise indicated, with default parameters [51,52] (https://mafft.cbrc.jp/alignment/server/). Alignments were trimmed with BMGE with default parameters unless otherwise indicated (https://ngphylogeny.fr/workflows/wkmake/42f42d079b0a46e9, [53]). Maximum-likelihood trees were constructed with PhyML 3.0 using LG model with gamma rate heterogeneity. Automatic model selection was done by SMS (http://www.atgc-montpellier.fr/phyml [54,55]) and the best ML trees were drawn with FigTree v. 1.4.4. Values at nodes of all trees are aLRs (approximate-likelihood ratio test [56]). All trees are shown in a circular cartooned form. Trees are rooted in the specified out group. Reconciliation was done by GenoRex v. 1.2.3, a maximum-likelihood-based method [57] with default settings using the LG evolutionary model with gamma rate heterogeneity in 500 replicates. Only those transfers were considered, which were present in at least 70% of the replicates. Species tree for the reconciliation was drawn after [58,59].

Data accessibility

The datasets supporting this article are included in the paper and detailed in electronic supplementary material, tables. Sequences determined by us are available under GenBank accession nos. MT707473, MT707472, MN718567, MN718568, MN718569, MN718566, MN718565, KX585439, MT707474, MT707475. The data are provided in electronic supplementary material [60].

Authors’ contributions

Z.H. and C.S. conceived the project. E.B., Z.H. and J.A. contributed to various aspects of the wet laboratory work; Z.H. and C.S. wrote the manuscript. M.F. discovered the additional two clusters in *A. nidulans*, manually curated gene models of *hxnV*, *hxnP* and *hxnZ* orthologues and constructed the schemes of *hxn* clusters for hundreds of species. C.V. contributed to *in silico* promoter analysis. C.S. and S.K. did the phylogenetic analysis. All authors analysed the results and gave final approval for publication.

Competing interests

We have no competing interests.

Funding

Work was supported by the Hungarian National Research, Development and Innovation Office (grant no. NKFIH K16-119516) and by the Hungarian Government (grant no. GINOP-2.3.2-15-2016-00012).

Acknowledgements

JGI sequences used for the construction of the phylogenetic trees were from the US Department of Energy Joint Genome Institute (http://www.jgi.doe.gov/) in collaboration with the user community. We thank L. V. Grigoriev for permitting the use of genome sequences included in the 1000 Fungal Genomes project and we thank J. Spatafora, J. Magnuson and R. Gazis for allowing access to the genomes of some individual species prior to publication (project IDs: 404190, 1040180, 1051239, 1040543 and 1042915). We thank Prof. Joan M. Kelly for allowing us to cite her early genetics work. We thank LiiZslo G. Nagy for critical comments on the manuscript.

References

1. Behnman EJ, Stanier RY. 1957 The bacterial oxidation of nicotinic acid. *J. Biol. Chem.* 228, 923–945. (doi:10.1016/S0021-9258(18)70671-6)

2. Jimenez JJ, Canales A, Jimenez-Barbero J, Ginalski K, Rychlewski L, Garcia JL, Diaz E. 2008 Deciphering the genetic determinants for aerobic nicotinic acid degradation: the nic cluster from *Aspergillus nidulans*. *Mol. Genet. Genom.* 279, 229–239. (doi:10.1007/s00438-008-0148-1)

3. Ensign JC, Rittenberg SC. 1964 The pathway of utilization pathway of *P. putida*. *Proc. Natl Acad. Sci. USA* 51, 334. (doi:10.1073/pnas.51.2.334)

4. Ensign JC, Rittenberg SC. 1964 The pathway of *P. putida*. *Proc. Natl Acad. Sci. USA* 51, 334. (doi:10.1073/pnas.51.2.334)

5. Alhapel A, Darley DJ, Wagener N, Eckel E, Elnser N, Piekir AJ. 2006 Molecular and functional analysis of nicotinamide catabolism in *Eubacterium hartii*. *Proc. Natl Acad. Sci. USA* 103, 12 341–12 346. (doi:10.1073/pnas.0601635103)

6. Scazzocchio C. 1973 The genetic control of molybdoflavoproteins in *Aspergillus nidulans*. II. Use of NADH dehydrogenase activity associated with xanthine dehydrogenase to investigate substrate and product inductions. *Mol. Genet. Genom.* 125, 147–155. (doi:10.1007/BF00268868)

7. Lewis NJ, Hurt P, Sealy-Lewis HM, Scazzocchio C. 1978 The genetic control of the molybdoflavoproteins in *Aspergillus nidulans*. IV. A comparison between the molybdoflavoproteins from *A. nidulans* and *Aspergillus nidulans*. *Biochim. Biophys. Acta* 505, 355–359. (doi:10.1016/0005-2787(78)90057-7)

8. Mehra RK, Coughlan MP. 1984 Purification and properties of purine dehydrogenase II from *Aspergillus nidulans*. *Arch. Biochem. Biophys.* 229, 585–595. (doi:10.1016/0003-9861(84)90191-7)

9. Scaccizio C, Hall FB, Fuguelman AI. 1973 The genetic control of molybdoflavoprotein in *Aspergillus nidulans*: allopurinol-resistant mutants constitutive for xanthine dehydrogenase. *Biochim. Biophys. Acta* 36, 428–445. (doi:10.1016/0167-4889(73)90298-x)

10. Glavsky A, Scaccizio C. 1995 Cloning and molecular characterization of *hxn*, the gene coding for the xanthine dehydrogenase (purine dehydrogenase I) of *Aspergillus nidulans*. *J. Biol. Chem.* 270, 3534–3535. (doi:10.1074/jbc.270.8.3534)

11. Amon J, Fernandez-Martinez R, Bokor E, Cultrome A, Kelly JM, Filipphi M, Scaccizio C, Hamari Z. 2017 A eukaryotic nicotinate-inducible gene cluster: convergent evolution in fungi and bacteria. *Open Biol.* 7, 170019. (doi:10.1098/rsbl.2017.0099)

12. Scaccizio C, Darlington AJ. 1968 The induction and repression of the enzymes of purine breakdown in *Aspergillus nidulans*. *Biochim. Biophys. Acta* 166, 557–68. (doi:10.1016/0005-2787(68)90294-8)

13. Gouras C, Oestreicher N, Amillis S, Dallinas G, Scaccizio C. 2011 Completing the purine utilisation pathway of *Aspergillus nidulans*. *Fungal Genet. Biol.* 48, 840–848. (doi:10.1016/j.fgb.2011.03.004)

14. Sibthorp C, Wu H, Cowley G, Wong PW, Palaima P, Morozov IV, Weedall GD, Caddick MX. 2013 Transcriptome analysis of the filamentous fungus
24. Larionov A, Krause A, Miller W. 2005. A standard.
23. Osherov N, May G. 2000. Conidial germination in fungi. Front. Microbiol. 5, 656. (doi:10.3389/fmicb.2016.00656)
22. Caddick MX, Dobson C, Morozov IV, Jones MG. 2006. Gene regulation in Aspergillus: from genetics to genomics. Med. Mycol. 44, 513–516. (doi:10.1080/13693780608835781)
21. Wortman JR, 2009. The birth, evolution and death of metabolic gene clusters in fungi. Annu. Rev. Genet. 42, 159–183. (doi:10.1146/annurev-genet-120817-031237)
20. Rokas A, Wisecaver JH, Lind AL. 2018. The birth, evolution and death of metabolic gene clusters in fungi. Annu. Rev. Genet. 45, 321–350. (doi:10.1146/annurev-genet-010115-084025)
19. McGary KL, Slot JC, Rokas A. 2013. Physical linkage of metabolic genes in fungi is an adaptation against the accumulation of toxic intermediate compounds. Proc. Natl Acad. Sci. USA 110, 4181–4186. (doi:10.1073/pnas.1304461110)
18. Nutzmann HW, Scazzocchio C, Osbourn A. 2018. Aspergillus nidulans gene clusters in eukaryotes. Annu. Rev. Genet. 52, 159–183. (doi:10.1146/annurev-genet-120817-031237)
17. Tudzynski B. 2014. Nitrogen regulation of fungal secondary metabolism in fungi. Front. Microbiol. 5, 656. (doi:10.3389/fmicb.2016.00656)
16. Berger H, Pachinger I, Morozov I, Goller S, Narendja F, Caddick M, Strauss J. 2006. The GATA factor AreA regulates localization and in vivo binding site occupancy of the nitrate activator NirA. Mol. Microbiol. 59, 433–446. (doi:10.1111/j.1365-2958.2005.04957.x)
15. Scazzocchio C. 2000. The fungal GATA factors. Annu. Rev. Genet. 34, 279–301. (doi:10.1146/annurev-genet-101199-113645)
14. Sanctis IR, Laverde D, Sanchez JM, Caddick MX. 1996. Nitrogen metabolite signaling involves the C-terminus and the GATA domain of the transcription factor AREA and the 3’ untranslated region of its mRNA. EMBO J. 15, 2791–2801. (doi:10.1002/embo.1032791095)
13. Abreu C, Sanguinetti M, Amillis S, Ramon A. 2010. UreA, the major urea/H+ symporter in Aspergillus nidulans. Fungal Genet. Biol. 47, 1023–1033. (doi:10.1016/j.fgb.2010.07.004)
12. Platt A, Langdon T, Arnt Jr HH, Køk D, Tollervey D, Sanchez JM, Caddick MX. 1996. Nitrogen metabolite signaling involves the C-terminus and the GATA domain of the Aspergillus transcription factor AREA and the 3’ untranslated region of its mRNA. EMBO J. 15, 2791–2801. (doi:10.1002/embo.1032791095)
11. Perucchi S, Goffi C, Cattani L, Cattani M, Lepri S, Goffi C, Pellicciari M, Cattani M. 2018. NidA regulation of Aspergillus nidulans. Fungal Genet. Biol. 47, 1023–1033. (doi:10.1016/j.fgb.2010.07.004)
10. Goffi C, Cattani L, Cattani M, Lepri S, Goffi C, Pellicciari M, Cattani M. 2018. NidA regulation of Aspergillus nidulans. Fungal Genet. Biol. 47, 1023–1033. (doi:10.1016/j.fgb.2010.07.004)
9. Caddick MX, Dobson C, Morozov IV, Jones MG. 2006. Gene regulation in Aspergillus: from genetics to genomics. Med. Mycol. 44, 513–516. (doi:10.1080/13693780608835781)
8. Oesterleicher N, Ribaudo C, Scazzocchio C. 2008. The nidA gene of Aspergillus nidulans, encoding adenine deaminase, is subject to a unique regulatory pattern. Fungal Genet. Biol. 45, 760–775. (doi:10.1016/j.fgb.2007.06.015)
7. Dzikowska A, Kaczprzak M, Tomiecki R, Koper M, Scazzocchio C, Weglenski P. 2003. Specific induction and carbon/nitrogen repression of arginine catabolism gene of Aspergillus nidulans—functional in vivo analysis of the otuA promoter. Fungal Genet. Biol. 38, 175–186. (doi:10.1016/j.fgb.2004.05.011)
6. Maxois M, Caddick MX, Weglenski P, Scazzocchio C, Dzikowska A. 2012. The GATA factors AREA and AREE together with the co-repressor NIIMA, negatively regulate arginine catabolism in Aspergillus nidulans in response to nitrogen and carbon source. Fungal Genet. Biol. 49, 189–198. (doi:10.1016/j.fgb.2012.01.004)
5. Ravagnani A, Gorfliekel L, Langdon T, Dialinas G, Adjadi E, Demasi S, Gorton D, Arnt Jr HH, Scazzocchio C. 1999. Subtle hydrophobic interactions between the seventh residue of the zinc finger loop of the transcription factors AREA and AREE of Aspergillus nidulans. J. Mol. Biol. 289, 1657–1664. (doi:10.1016/S0022-2836(99)00027-6)
4. Laronov A, Krause A, Miller W. 2005. A standard curve based method for relative real time PCR data processing. BMC Bioinform. 6, 62. (doi:10.1186/1471-2105-6-62)
3. Platt A, Langdon T, Arnt Jr HH, Køk D, Tollervey D, Sanchez JM, Caddick MX. 1996. Nitrogen metabolite signalling involves the C-terminus and the GATA domain of the Aspergillus transcription factor AREA and the 3’ untranslated region of its mRNA. EMBO J. 15, 2791–2801. (doi:10.1002/embo.1032791095)
2. Abreu C, Sanguinetti M, Amillis S, Ramon A. 2010. UreA, the major urea/H+ symporter in Aspergillus nidulans. Fungal Genet. Biol. 47, 1023–1033. (doi:10.1016/j.fgb.2010.07.004)
1. Caddick MX, Langdon T, Martinez-Rossi NM, Bennett CF, Sibley S, Davies RW, Arnt Jr HH. 1990. The regulatory gene areA mediating nitrogen metabolite repression in Aspergillus nidulans. CBMB J. 9, 1355–1364. (doi:10.1002/j.1460-2075.1990.tb08250.x)
selection of phylogenetic informative regions from multiple sequence alignments. BMC Evol. Biol. 10, 210. (doi:10.1186/1471-2148-10-210)

54. Guindon S, Dufayard JF, Lefort V, Anisimova M, Hordijk W, Gascuel O. 2010 New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Syst. Biol. 59, 307–321. (doi:10.1093/sysbio/syq010)

55. Lefort V, Longueville JE, Gascuel O. 2017 SMS: smart model selection in PhyML. Mol. Biol. Evol. 34, 2422–2424. (doi:10.1093/molbev/msx149)

56. Anisimova M, Gascuel O. 2006 Approximate likelihood-ratio test for branches: a fast, accurate, and powerful alternative. Syst. Biol. 55, 539–552. (doi:10.1080/10635150600755453)

57. Morel B, Kozlov AM, Stamatakis A, Szollosi GJ. 2020 GeneRax: a tool for species-tree-aware maximum likelihood-based gene family tree inference under gene duplication, transfer, and loss. Mol. Biol. Evol. 37, 2763–2774. (doi:10.1093/molbev/msaa141)

58. Shen XX et al. 2020 Genome-scale phylogeny and contrasting modes of genome evolution in the fungal phylum Ascomycota. Sci. Adv. 6, eabd0079. (doi:10.1126/sciadv.abd0079)

59. Prasanna AN, Gerber D, Kijpomyongpan T, Aime MC, Doyle VP, Nagy LG. 2020 Model choice, missing data, and taxon sampling impact phylogenomic inference of deep Basidiomycota relationships. Syst. Biol. 69, 17–37. (doi:10.1093/sysbio/sy029)

60. Bokor E, Flippi M, Kocsübe S, Ámon J, Vágvölgyi C, Scacco C, Hamari Z. 2021 Genome organisation and evolution of a eukaryotic nicotinate co-inducible pathway. Figshare.