Review Article

Molecular mechanisms of Porphyromonas gingivalis-host cell interaction on periodontal diseases

Masaaki Nakayamaa,b,, Naoya Oharaa,b

a Department of Oral Microbiology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan
b The Advanced Research Center for Oral and Craniofacial Sciences, Dental School, Okayama University, Okayama 700-8558, Japan

Received 5 September 2016; received in revised form 3 February 2017; accepted 28 June 2017

Summary Porphyromonas gingivalis (P. gingivalis) is a major oral pathogen and associated with periodontal diseases including periodontitis and alveolar bone loss. In this review, we indicate that two virulence factors, which are hemoglobin receptor protein (HbR) and cysteine proteases “gingipains”, expressed by P. gingivalis have novel functions on the pathogenicity of P. gingivalis. P. gingivalis produces three types of gingipains and concomitantly several adhesin domains. Among the adhesin domains, hemoglobin receptor protein (HbR), also called HGP15, has the function of induction of interleukin-8 (IL-8) expression in human gingival epithelial cells, indicating the possibility that HbR is associated with P. gingivalis-induced periodontal inflammation. On bacteria-host cells contact, P. gingivalis induces cellular signaling alteration in host cells. Phosphatidylinositol 3-kinase (PI3K) and Akt are well known to play a pivotal role in various cellular physiological functions including cell survival and glucose metabolism in mammalian cells. Recently, we demonstrated that gingipains attenuate the activity of PI3K and Akt, which might have a causal influence on periodontal diseases by chronic infection to the host cells from the speculation of molecular analysis. In this review, we discuss new molecular and biological characterization of the virulence factors from P. gingivalis.

© 2017 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

The periodontal diseases are known as prevalent oral disease and indicated asymptomatic diseases that are characterized by chronic inflammation of periodontal tissues, including gingival inflammation and alveolar bone resorption, and eventually tooth loss is provoked. Moreover, the diseases have been associated with systemic diseases: for example, cardiovascular disease, vascular disease, aspiration pneumonia, and diabetes [1–4]. The risk factors of periodontal diseases have indicated oral flora, environmental factors (e.g. smoking, stress, and diet), and host factors (e.g. immune system and genetic factors) [2]. Among the oral bacteria, Porphyromonas gingivalis has a close relationship with periodontal diseases [5,6]. P. gingivalis is a Gram-negative anaerobic and asaccharolytic bacterium that relies on the degradation of proteins and the generation of amino acids and peptides for the metabolic energy on its growth. P. gingivalis produces several known virulence factors, i.e., Lipopolysaccharide (LPS), fimbriae, proteases, and outer membrane vesicles [7–10]. It seems that P. gingivalis utilizes these factors not only for nutrient uptake and growth but also for avoidance from the host defense and survival in the host. Thereby, the virulence factors might be critical for the success of chronic infection of P. gingivalis.

2. Virulence factors of P. gingivalis

2.1. Lipopolysaccharide

LPS is one of the major virulence factors from this pathogen and has an ability to cause inflammation in the periodontal tissues [11]. P. gingivalis LPS causes a highly innate immune response through host receptors, which is toll-like receptor-2 (TLR-2) and TLR-4 on the host cell surface, leading to secrete interleukin-1 (IL-1), IL-6, IL-8, and TNF-α in host cells [12–15].

2.2. Capsule

P. gingivalis is known to synthesize the capsule which has also shown to be one of a variety of virulence factors of this organism [16,17]. Some studies have reported that encapsulated strains of P. gingivalis have more virulent than its non-encapsulated strains [16,18]. The capsule is associated with P. gingivalis escape from and reduction of host immune defense, promotes its survival in host cells [19,20], and induces serotype dependent cytokines expression in host cells [21].

2.3. Fimbriae

Fimbriae are a pivotal factor to adhere to host cell surface, extracellular matrix proteins, and coaggregation of oral bacteria and to invade into host cells [22,23]. P. gingivalis has major and minor fimbriae on its cell surface, and both fimbriae seem to contribute to establish the persistent infection and the development of periodontitis with expression of various cytokines, including IL-1, IL-6, and TNF-α [7,24–26]. Therefore, fimbriae might have an influence on the progress of periodontal disease.

2.4. Gingipains

P. gingivalis produces three cysteine proteases known as gingipains: arginine-gingipain A and B (RgpA and RgpB), and lysine-gingipain (Kgp), which play an important role in processing/maturity of its own cell surface proteins [27–30]. Meanwhile, gingipains have a detrimental effect on some biological activities of the host, which are degradation of components of the cell-to-cell contacts and detachment of epithelial cells from connective tissues of gingiva [31–33]. Gingipains have an adverse effect on healthy tissues via degradation of many human proteins including complement system proteins, cytokines, integrins, and collagen [9,34–36]. Recent reports have indicated that gingipains act as effectors for host cells and alter cellular signal transduction and cell physiological function [10,37,38]. Hence, gingipains from P. gingivalis are one of the most prominent virulence factors on periodontal diseases.

2.5. Adhesin domains

P. gingivalis has adhesin domains including hemmaglutinin (HGP44) and hemoglobin receptor protein (HbR) encoded
by \textit{rgpA}, \textit{kgp}, and \textit{hagA}. Adhesin domains are formed by undergoing autocatalytic and intermolecular processing through the activity of gingipains, associate with gingipains as gingipains-adhesin complexes on bacterial cell surface and outer membrane vesicles [39]. Interestingly, although protease domains of RgpA and Kgp are divergent, their C-terminal adhesin domains containing HGP44 and HbR are very similar to each other (Fig. 1) [40–43]. HGP44 and HbR are also encoded by the hemagglutinin gene \textit{hagA} [42,44,45]. These adhesin domains are required for maturation of bacterial cell-surface proteins including gingipains and fimbrilin [28,46], hemagglutination and hemolysis of erythrocytes [42,45,47], and binding of hemoglobin for heme acquisition of \textit{P. gingivalis} [48,49], accordingly \textit{P. gingivalis} can easily colonize in the gingival crevice and invade to the periodontal tissue.

2.6. Outer membrane vesicles

\textit{P. gingivalis} produces outer membrane vesicles (OMVs) that mainly contain virulence factors such as LPS and gingipains which are associated with its pathogenicity [50,51]. OMVs are enriched in C-terminal domain proteins that are localized on the cell/vesicle surface through the type IX secretion system of \textit{P. gingivalis} [30,52–54]. OMVs mediate bacterial coaggregation, and promote biofilm formation. Moreover, OMVs contribute to host interaction and colonization of \textit{P. gingivalis} [8,51,55]. Thus, \textit{P. gingivalis} releases a large number of its virulence factors into periodontal tissues in the form of OMVs.

3. Interleukin-8 (IL-8) production induced by "Hemoglobin receptor (HbR)"

HbR binds hemoglobin and acts as hemophore to capture porphyrin and heme in need of iron for the growth of \textit{P. gingivalis}. Fujimura et al. have reported that HbR interacted with host cells, and altered cellular signal transduction, following by inhibition of osteoclast differentiation from bone marrow macrophages [56]. We found the new function of HbR to induce expression of IL-8 from host epithelial cells via activation of cellular signal transduction [57]. Fujita et al. indicated that HbR remarkably increased expression of IL-8 in a dose-dependent manner, and revealed the mechanism by which HbR-induced IL-8 from gingival epithelial cells were associated with activation of p38MAPK and Erk1/2 using siRNAs and inhibitors. The relationship of transcription factors were determined activation of ATF-2, CREB, and NF-kB p65 by immunofluorescence and nuclear-translocation assay. Besides, it is likely that p38MAPK activated CREB, and Erk1/2 activated ATF-2 and NF-kB p65 (Fig. 2). This is the
first study that adhesin domain has an ability to produce IL-8 from host cells. Interestingly, however, it has yet to be identified the receptor for HbR on epithelial cell membrane, which is significant for HbR to contact with host cells. Thus, HbR is considered as one of virulence factors of P. gingivalis, and there is potential involvement of HbR on etiology of periodontitis.

4. Effect of cysteine proteases “Gingipains” on PI3K/Akt signaling pathway

Gingipains have strong proteolytic activity, and facilitate growth and survival of the organism. However, they also serve as the virulence factor to damage the host cells and to establish long-term infection of P. gingivalis [28,58–61]. Here, we describe the possibility that gingipains have effects on host cell functions by disturbance of cellular signal transduction, which is phosphatidylinositol 3-kinase (PI3K)/Akt signaling pathway, on P. gingivalis infection. PI3K/Akt signaling pathway is one of the most important pathways for cell survival and growth, metabolism of glucose and protein synthesis in host cells [62–64]. There have been some reports between P. gingivalis and PI3K/Akt signaling pathway on bacteria-host cell crosstalk, indicating that P. gingivalis infection the activation of PI3K/Akt signaling pathway for host responses, such as expression of proteins, proinflammatory responses, and elimination of the organism [7,56,65]. However, we indicated the novel finding that gingipains attenuate the kinase activity of PI3K and Akt with their proteolytic activity independent of P. gingivalis invasion (Fig. 3) [10]. Using P. gingivalis wild-type strain and a gingipains-null mutant, PI3K and Akt were revealed the attenuation of these kinase activities by in vitro kinase assay and the decrease in the phosphorylation level of their down stream proteins/substrates such as GSK3, Bad, and mTOR. PDK1, which is upstream protein of Akt, was affected in the translocation to the plasma membrane by gingipains, and could not normally activate Akt and transmit the cascade of Akt signaling pathway. P. gingivalis can invade to host cells [66,67]. There is a possibility that this alteration of Akt signaling pathway is linked to the ability of P. gingivalis to invade to host cells. However, our results were not seemed to be independent of its invasion in gingival epithelial cells. Taken together, our studies showed novel molecular mechanisms by which gingipains affected PI3K/Akt signaling pathway and potentially disturbed cellular physiological functions regulated by PI3K and Akt, indicating that gingipains have a serious effect on the pathogenesis of periodontal diseases [33,59,68].

5. Perspective

Recent studies of HbR and gingipains have given new aspect as a virulence factor in pathogenicity of P. gingivalis. It is known that PI3K/Akt signaling pathway plays an important role in infectious diseases. Our study revealed that gingipains have the unique function as negative effector of this pathway, resulting in association with P. gingivalis-mediated destruction of periodontal tissues in periodontal diseases. Periodontal diseases are exhibited a typical symptom of inflammation in periodontal tissues. HbR is able to induce IL-8 production in gingival epithelial cells, indicating that HbR is involved in periodontitis as the virulence factor. Processing of RgpA, Kgp, and HagA by gingipains produces HbR, and three gingipain genes, which are rgpA, rgpB, and kgp, help the organism to accomplish long-term infection and colonization. Chronic infection leads the host to destroy the tissue, and develop periodontal diseases.
Conflict of interest

The authors have no conflict of interest related to this review.

Acknowledgment

This work was supported in part by Japan Society for the Promotion of Science KAKENHI Grant Numbers 22390342 and 26293401.

References

[1] Iacopino AM, Cutler CW. Pathophysiological relationships between periodontitis and systemic disease: recent concepts involving serum lipids. J Periodontol 2000;71:1375—84.

[2] Pihlstrom BL, Michalowicz BS, Johnson NW. Periodontal diseases. Lancet 2005;366:1809—20.

[3] Lalla E, Papapanou PN. Diabetes mellitus and periodontitis: a tale of two common interrelated diseases. Nat Rev Endocrinol 2011;7:738—48.

[4] Bansal M, Khatri M, Taneja V. Potential role of periodontal infection in respiratory diseases—a review. J Med Life 2013;6:244—8.

[5] Holt SC, Ebersole JL. Porphyromonas gingivalis, Treponema denticola, and Tannerella forsythia: the red complex, a prototype polybacterial pathogenic consortium in periodontitis. Periodontol 2000 2005;38:72—122.

[6] Mysak J, Podziemek S, Samorowska P, Lyuya-MY, Bartova J, Janatova T, et al. Porphyromonas gingivalis: major periodontopathic pathogen overview. J Immunol Res 2014;2014:476068.

[7] Hajishengallis G, Wang M, Liang S. Induction of distinct TLR2-mediated proinflammatory and proadhesive signaling pathways in response to Porphyromonas gingivalis fimbriae. J Immunol 2009;182:6690—6.

[8] Nakao R, Takashiba S, Kosono S, Yoshida M, Watanabe H, Ohnishi M, et al. Effect of Porphyromonas gingivalis outer membrane vesicles on gingipain-mediated detachment of cultured oral epithelial cells and immune responses. Microbes Infect 2014;16:6—16.

[9] Takii R, Kodawaki T, Baba A, Tsukuba T, Yamamoto K. A functional virulence complex composed of gingipains, adhesins, and lipopolysaccharide shows high affinity to host cells and matrix proteins and escapes recognition by host immune systems. Infect Immun 2005;73:883—93.

[10] Nakayama M, Inoue T, Naito M, Nakayama K, Ohara N. Attenuation of the phosphatidylinositol 3-kinase/Akt signaling pathway by Porphyromonas gingivalis gingipains RgpA, RgpB, and Kgp. J Biol Chem 2015;290:5190—202.

[11] Wang PL, Ohura K. Porphyromonas gingivalis lipopolysaccharide signaling in gingival fibroblasts-CD14 and Toll-like receptors. Crit Rev Oral Biol Med 2002;13:132—42.

[12] Bainbridge BW, Darveau RP. Porphyromonas gingivalis lipopolysaccharide: an unusual pattern recognition receptor ligand for the innate host defense system. Acta Odontol Scand 2001;59:131—8.

[13] Savitri IU, Oohara K, Fujita T, Kajiya M, Miyagawa T, Kitakata M, et al. Isogaladine maleate inhibits Porphyromonas gingivalis-mediated expression of toll-like receptor 2 and interleukin-8 in human gingival epithelial cells. J Periodontal Res 2015;50:486—93.

[14] Andrukhov O, Ertischweiger S, Moritz A, Bantleon HP, Rausch-Fan X. Different effects of P. gingivalis LPS and E. coli LPS on the expression of interleukin-6 in human gingival fibroblasts. Acta Odontol Scand 2014;72:337—45.

[15] Wang PL, Azuma Y, Shinohara M, Ohura K. Toll-like receptor 4-mediated signal pathway induced by Porphyromonas gingivalis lipopolysaccharide in human gingival fibroblasts. Biochem Biophys Res Commun 2000;273:1161—7.

[16] Heiders ME, Chen PB, Suido H, Reynolds HS, Zambon JJ, Shlossman M, et al. Heterogeneity of virulence among strains of Bacteroides gingivalis. J Periodontal Res 1989;24:192—8.

[17] Laine ML, Appelmelk BJ, van Winkelhoff AJ. Prevalence and distribution of six capsular serotypes of Porphyromonas gingivalis in periodontitis patients. J Dent Res 1997;76:1840—4.

[18] Irshad M, van der Reijden WA, Crielard W, Laine ML. In vitro invasion and survival of Porphyromonas gingivalis in gingival fibroblasts; role of the capsule. Arch Immunol Ther Exp (Warsz) 2012;60:469—76.

[19] Brunner J, Scheres N, El Idriessi NB, Deng GM, Laine ML, van Winkelhoff AJ, et al. The capsule of Porphyromonas gingivalis reduces the immune response of human gingival fibroblasts. BMC Microbiol 2010;10:5.

[20] Singh A, Wyatt T, Anaya-Bergman C, Aduse-Opoku J, Brunner J, Laine ML, et al. The capsule of Porphyromonas gingivalis leads to a reduction in the host inflammatory response, evasion of phagocytosis, and increase in virulence. Infect Immun 2011;79:4533—42.

[21] Vernal R, Leon R, Silva A, van Winkelhoff AJ, Garcia-Sanz JA, Sanz M. Differential cytokine expression by human dendritic cells in response to different Porphyromonas gingivalis capsular serotypes. J Clin Periodontol 2009;36:823—39.

[22] Umeda JE, Missalidis C, Longo PL, Anzai D, Wikstrom M, Mayer MP. Adhesion and invasion to epithelial cells by fimA genotypes of Porphyromonas gingivalis. Oral Microbiol Immunol 2006;21:415—59.

[23] Amano A. Disruption of epithelial barrier and impairment of cellular function by Porphyromonas gingivalis. Front Biosci 2007;12:3965—74.

[24] Aoki Y, Tabela K, Murakami Y, Yoshimura F, Yamazaki K. Analysis of immunostimulatory activity of Porphyromonas gingivalis fimbriae conferred by Toll-like receptor 2. Biochem Biophys Res Commun 2010;398:86—91.

[25] Eneresen M, Nakano K, Amano A. Porphyromonas gingivalis fimbriae. J Oral Microbiol 2013;9:51.

[26] Murakami Y, Kawata A, Ito S, Katayama Y, Fujisawa S. Radical-scavenging and anti-inflammatory activity of quercetin and related compounds and their combinations against RAW264.7 cells stimulated with Porphyromonas gingivalis fimbriae. Relationships between anti-inflammatory activity and quantum chemical parameters. In Vivo 2015;29:701—10.

[27] Kodawaki T, Nakayama K, Yoshimura F, Okamoto K, Abe N, Yamamoto K. Arg-gingipain acts as a major processing enzyme for various cell surface proteins in Porphyromonas gingivalis. J Biol Chem 1998;273:29072—6.

[28] Kodawaki T, Nakayama K, Okamoto K, Abe N, Baba A, Shi Y, et al. Porphyromonas gingivalis proteinases as virulence determinants in progression of periodontal diseases. J Biochem 2000;128:153—9.

[29] Sheets SM, Robles-Price AG, McKenzie RM, Casiano CA, Fletcher HM. Gingipain-dependent interactions with the host are important for survival of Porphyromonas gingivalis. Front Biosci 2008;13:3215—38.

[30] Naito M, Yabuki K, Narita Y, Shoji M, Naito M, Nakayama K. Identification of Porphyromonas gingivalis proteins secreted by the Por secretion system. FEBS Microbiol Lett 2013;338:68—76.

[31] Baba A, Abe N, Kodawaki T, Nakashii H, Ohishi M, Asao T, et al. Arg-gingipain is responsible for the degradation of cell adhesion molecules of human gingival fibroblasts and their death induced by Porphyromonas gingivalis. Biol Chem 2001;382:817—24.

[32] O’Brien-Simpson NM, Paolino RA, Hoffmann B, Slakeski N, Dasher SG, Reynolds EC. Role of RgpA, RgpB, and Kgp proteinases
in virulence of Porphyromonas gingivalis W50 in a murine lesion model. Infect Immun 2001;69:7527—34.

[33] Imamura T. The role of gingipains in the pathogenesis of periodontal disease. J Periodontol 2003;74:111—8.

[34] OB-S NM, Veith PD, Dashper SG, Reynolds EC. Porphyromonas gingivalis gingipains: the molecular teeth of a microbial vam- pire. Curr Protein Pept Sci 2003;4:409—26.

[35] Imamura T, Travis J, Potempa J. The bifascic virulence activities of gingipains: activation and inactivation of host proteins. Curr Protein Pept Sci 2003;4:443—50.

[36] Fitzpatrick RE, Wijeyewickrema LC, Pike RN. The gingipains: scissors and glue of the periodontal pathogen, Porphyromonas gingivalis. Future Microbiol 2009;4:471—87.

[37] Okahashi N, Inaba H, Nakagawa I, Yamamura T, Kuboniwa M, Nakayama K, et al. Porphyromonas gingivalis induces receptor activator of NF-kappaB ligand expression in osteoblasts through the activator protein 1 pathway. Infect Immun 2004;72:1706—14.

[38] Inaba H, Kuboniwa M, Sugita H, Lamont RJ, Amano A. Identification of signaling pathways mediating cell cycle arrest and apoptosis induced by Porphyromonas gingivalis in human trophoblasts. Infect Immun 2012;80:2847—57.

[39] Potempa J, Sroka A, Imamura T, Travis J. Gingipains, the major cysteine proteinases and virulence factors of Porphyromonas gingivalis: structure, function and assembly of multidomain protein complexes. Curr Protein Pept Sci 2003;4:397—407.

[40] Pavloff N, Potempa J, Pike RN, Prochazka V, Kiefer MC, Travis J, et al. Molecular cloning and structural characterization of the Arg-gingipain proteinase of Porphyromonas gingivalis. Biosynthesis as a proteinase-adhesive polyprotein. J Biol Chem 1995;270:1007—10.

[41] Pavloff N, Pemberton PA, Potempa J, Chen WC, Pike RN, Prochazka V, et al. Molecular cloning and characterization of Porphyromonas gingivalis lysine-specific gingipain. A new member of an emerging family of pathogenic bacterial cysteine proteinases. J Biol Chem 1997;272:1595—600.

[42] Sakai E, Naito M, Sato K, Hotokezaka H, Kadomatsu T, Kamaguchi A, et al. Construction of recombinant hemagglutinin derived from the gingipain-encoding gene of Porphyromonas gingivalis, identification of its target protein on erythrocytes, and inhibition of hemagglutination by an interdomain region peptide. J Bacteriol 2007;189:3977—86.

[43] Naito M, Sakai E, Shi Y, Ideguchi H, Shoji M, Ohara N, et al. Porphyromonas gingivalis-induced platelet aggregation in plasma depends on Hgp44 adsorption but not Rgp proteinase. Mol Microbiol 2006;59:152—67.

[44] Han N, Whitlock J, Progulske-Fox A. The hemagglutinin gene A (hagA) of Porphyromonas gingivalis 381 contains four large, contiguous, direct repeats. Infect Immun 1996;64:4000—7.

[45] Shi Y, Ratnayake DB, Okamoto K, Abe N, Yamamoto K, Nakayama K. Genetic analyses of proteolysis, hemoglobin binding, and hemagglutination of Porphyromonas gingivalis. Construction of mutants with a combination of rgpA, rgpB, kgp, and hagA. J Biol Chem 1999;274:17955—60.

[46] Chen T, Nakayama K, Belliveau L, Duncan MJ. Porphyromonas gingivalis gingipains and adhesion to epithelial cells. Infect Immun 2001;69:3048—56.

[47] Li N, Collyer CA. Gingipains from Porphyromonas gingivalis—complex domain structures confer diverse functions. Eur J Microbiol Immunol (Bp) 2011;1:41—58.

[48] Nakayama K, Ratnayake DB, Tsukuba T, Kadowaki T, Yamamoto K, Fujimura S. Haemoglobin receptor protein is intragenically encoded by the cysteine proteinase-encoding genes and the haemagglutinin-encoding gene of Porphyromonas gingivalis. Mol Microbiol 1998;27:51—61.

[49] Nihen NT, Huy NT, Naito M, Oida T, Uyen DT, Huang M, et al. Neutralization of toxic haem by Porphyromonas gingivalis haemoglobin receptor. J Biochem 2010;147:317—25.

[50] Zhou XY, Gao JL, Hunter N, Potempa J, Nguyen KA. Sequence-independent processing site of the C-terminal domain (CTD) influences maturation of the RgpB protease from Porphyromonas gingivalis. Mol Microbiol 2013;89:903—17.

[51] Veith PD, Chen YY, Gorasia DG, Chen D, Glew MD, O’Brien-Simpson NM, et al. Porphyromonas gingivalis outer membrane vesicles exclusively contain outer membrane and periplasmic proteins and carry a cargo enriched with virulence factors. J Proteome Res 2014;13:2420—32.

[52] Sjömi J, Sato K, Yukitake H, Kondo Y, Narita Y, Kadowaki T, et al. Por secretion system-dependent secretion and glycosylation of Porphyromonas gingivalis hemin-binding protein 35. PLoS One 2011;6:e21372.

[53] Nakayama K. Porphyromonas gingivalis and related bacteria: from colonial pigmentation to the type IX secretion system and gliding motility. J Periodontal Res 2015;50:1—8.

[54] Taguchi Y, Sato K, Yukitake H, Inoue T, Nakayama M, Naito M, et al. Involvement of an skp-like protein, PGN_0300, in the type IX secretion system of Porphyromonas gingivalis. Infect Immun 2015;84:230—40.

[55] Gui MJ, Dashper SG, Slakesi N, Chen YY, Reynolds EC. Spheres of influence: Porphyromonas gingivalis outer membrane vesi- cles. Mol Oral Microbiol 2016;31:365—78.

[56] Fujimura Y, Hotokezaka H, Ohara N, Naito M, Sakai E, Yoshimura M, et al. The hemoglobin receptor protein of Porphyromonas gingivalis inhibits receptor activator NF-kappaB ligand-induced osteoclastogenesis from bone marrow macrophages. Infect Immun 2006;74:2544—51.

[57] Fujita Y, Nakayama M, Naito M, Yamachika E, Inoue T, Nakayama K, et al. Hemoglobin receptor protein from Porphyromonas gingivalis induces interleukin-8 production in human gingival epithelial cells through stimulation of the mitogen-activated protein kinase and NF-kappaB signal transduction pathways. Infect Immun 2014;82:202—11.

[58] Yoneda M, Hiroufuji T, Anan H, Matsumoto A, Hamachi T, Nakayama K, et al. Mixed infection of Porphyromonas gingivalis and Bacteroides forsythus in a murine abscess model: involvement of gingipains in a synergistic effect. J Periodontal Res 2001;36:237—43.

[59] Pathirana RD, O’Brien-Simpson NM, Brammar GC, Slakesi N, Reynolds EC. Kgp and RgpB, but not RgpA, are important for Porphyromonas gingivalis virulence in the murine periodontitis model. Infect Immun 2007;75:1436—42.

[60] Madrigal AG, Barth K, Papadopoulos G, Genco CA. Pathogen- mediated proteolysis of the cell death regulator RIPK1 and the host defense modulator RIPK2 in human aortic endothelial cells. PLOS Pathog 2012;8:e1002723.

[61] Wilensky A, Polak D, Houri-Haddad Y, Shapira L. The role of RgpA in the pathogenicity of Porphyromonas gingivalis in the murine periodontitis model. J Clin Periodontal 2013;40:924—32.

[62] Fayard E, Tintignac LA, Baudry A, Hemmings BA. Protein kinase B/Akt at a glance. J Cell Sci 2005;118:5675—8.

[63] Manning BD, Cantley LC. AKT/PKB signaling: navigating down- stream. Cell 2007;129:1261—74.

[64] Schultze SM, Hemmings BA, Niessen M, Tschopp O, PI3K/AKT, MAPK and AMPK signalling: protein kinases in glucose homo- stasis. Expert Rev Mol Med 2012;14:e1.

[65] Park SY, Park da J, Kim YH, Kim Y, Choi YW, Lee SJ. Schisandra chinensis alpha-iso-cubebenol induces heme oxygenase-1 expression through PI3K/Akt and Nrf2 signaling and has anti-inflammatory activity in Porphyromonas gingivalis lipopolysaccharide-stimulated macrophages. Int Immunophar- macol 2011;11:1907—15.
[66] Saito A, Inagaki S, Ishihara K. Differential ability of periodontopathic bacteria to modulate invasion of human gingival epithelial cells by Porphyromonas gingivalis. Microb Pathog 2009;47:329–33.

[67] Inaba H, Sugita H, Kuboniwa M, Iwai S, Hamada M, Noda T, et al. Porphyromonas gingivalis promotes invasion of oral squamous cell carcinoma through induction of proMMP9 and its activation. Cell Microbiol 2014;16:131–45.

[68] Kadowaki T, Takii R, Yamatake K, Kawakubo T, Tsukuba T, Yamamoto K. A role for gingipains in cellular responses and bacterial survival in Porphyromonas gingivalis-infected cells. Front Biosci 2007;12:4800–9.