LETTER • OPEN ACCESS

Co-benefits of global, domestic, and sectoral greenhouse gas mitigation for US air quality and human health in 2050

To cite this article: Yuqiang Zhang et al 2017 Environ. Res. Lett. 12 114033

View the article online for updates and enhancements.

Related content
- Ancillary health effects of climate mitigation scenarios as drivers of policy uptake: a review of air quality, transportation and diet co-benefits modeling studies
 Kelly M Chang, Jeremy J Hess, John M Balbus et al.
- Climate change, air pollution and human health in Sydney, Australia: A review of the literature
 Annika Dean and Donna Green
- Climate and health implications of future aerosol emission scenarios
 Antti-ilari Partanen, Jean-Sebastien Landry and H Damon Matthews

Recent citations
- Comprehensively assessing the drivers of future air quality in California
 Shupeng Zhu et al
- Effect of Health-related Uncertainty and Natural Variability on Health Impacts and Co-Benefits of Climate Policy
 Rebecca Karina Saari et al
- Sensitivity of projected PM2.5- and O3-related health impacts to model inputs: A case study in mainland China
 Min Zhong et al
Co-benefits of global, domestic, and sectoral greenhouse gas mitigation for US air quality and human health in 2050

Yuqiang Zhang1,2, Steven J Smith3, Jared H Bowden4,5, Zachariah Adelman1,4 and J Jason West1,4,6

1 Environmental Sciences and Engineering Department, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States of America
2 Environmental Protection Agency, Research Triangle Park, NC 27709, United States of America
3 Joint Global Change Research Institute, Pacific Northwest National Laboratory, College Park, MD 20740, United States of America
4 Institute for the Environment, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States of America
5 Department of Applied Ecology, North Carolina State University, Raleigh, NC 27607, United States of America
6 Author to whom any correspondence should be addressed.

E-mail: jjwest@email.unc.edu

Keywords: climate change, air quality, premature mortality, particulate matter, ozone, greenhouse gas, co-benefits

Abstract

Reductions in greenhouse gas (GHG) emissions can bring ancillary benefits of improved air quality and reduced premature mortality, in addition to slowing climate change. Here we study the co-benefits of global and domestic GHG mitigation on US air quality and human health in 2050 at fine resolution using dynamical downscaling of meteorology and air quality from global simulations to the continental US, and quantify for the first time the co-benefits from foreign GHG mitigation. Relative to the reference scenario from which Representative Concentration Pathway 4.5 (RCP4.5) was created, global GHG reductions in RCP4.5 avoid 16 000 PM$_{2.5}$-related all-cause deaths yr$^{-1}$ (90% confidence interval, 11 700–20 300), and 8000 (3600–12 400) O$_3$-related respiratory deaths yr$^{-1}$ in the US in 2050. Foreign GHG mitigation avoids 15% and 62% of PM$_{2.5}$- and O$_3$-related total avoided deaths, highlighting the importance of foreign mitigation for US health. GHG mitigation in the US residential sector brings the largest co-benefits for PM$_{2.5}$-related deaths (21% of total domestic co-benefits), and industry for O$_3$ (17%). Monetized benefits for avoided deaths from ozone and PM$_{2.5}$ are $137 (87–187) per ton CO$_2$ at high valuation and $45 (29–62) at low valuation, of which 31% are from foreign GHG reductions. These benefits likely exceed the marginal cost of GHG reductions in 2050. The US gains significantly greater air quality and health co-benefits when its GHG emission reductions are concurrent with reductions in other nations. Similarly, previous studies estimating co-benefits locally or regionally may greatly underestimate the full co-benefits of coordinated global actions.

1. Introduction

Exposure to fine particulate matter (PM$_{2.5}$) and ozone (O$_3$) is associated with both morbidity (e.g. hospitalizations, emergency department visits, school absences, and asthma-related health effects) and premature human mortality (e.g. deaths from cardiovascular and respiratory disease and lung cancer), as revealed in epidemiological studies (US EPA 2009, 2013). Several cohort studies have shown evidence for chronic effects of PM$_{2.5}$ on mortality (Laden et al 2006, Krewski et al 2009, Lepeule et al 2012), whereas fewer have demonstrated the chronic effects of O$_3$ on mortality (Jerrett et al 2009).

Previous research has quantified future air quality changes and their effects on human health under projected emission scenarios, at both the global (West et al 2007, Selin et al 2009, Silva et al 2016a) and regional scales (Fann et al 2013, Kim et al 2015, Jhang et al 2015, Sun et al 2015). Climate change can also affect air...
quality through several mechanisms, including photochemical reactions, natural emissions, deposition rates, and air stagnation events (Weaver et al. 2009, Jacob and Winner 2009, Fiore et al. 2012, 2015). Related studies have quantified the effect of global and regional climate change on air quality and human health (Bell et al. 2007, Tagaris et al. 2009, Post et al. 2012, Fang et al. 2013, Fann et al. 2015). Post et al. (2012) used an ensemble of atmospheric models to study the effect of climate change in 2050 on air quality and human health in the US, and found significant variability when using different models.

Many studies have also investigated the co-benefits of greenhouse gas (GHG) mitigation for air quality and avoided premature mortality, as actions to reduce GHG emissions also tend to reduce co-emitted air pollutants (Bell et al. 2008, Cifuentes et al. 2001, Nemet et al. 2010). When monetized, the health co-benefits of GHG mitigation were found to range across the literature from $2–$196/tCO₂ (Nemet et al. 2010), comparable to the costs of GHG reductions. Other recent studies have also analyzed the effects of GHG mitigation on future air quality and human health co-benefits in the US (Driscoll et al. 2015, Markandya et al. 2009, Thompson et al. 2014, Trail et al. 2015, Plachinski et al. 2014). Thompson et al. (2014) studied the co-benefits of different climate policies in the US on domestic air quality in 2030, finding that human health benefits due to improved air quality can offset 26%–1050% of the cost of carbon policies. Other studies also investigate the co-benefits of climate policy on food security, energy savings, and other health co-benefits of active transportation (walking, biking) and changes in diet (Capps et al. 2016, Chuwah et al. 2015, Friel et al. 2009, Jakob 2006, McCollum et al. 2013, Wilkinson et al. 2009, Woodcock et al. 2009), but they are not the focus of our study.

Previous co-benefits studies have been limited by only considering the co-benefits of regional or local climate policies on regional air quality and human health, neglecting (i) the co-benefits of those actions for other nations or regions, and (ii) the co-benefits gained domestically from global actions where one country’s actions are coordinated with reductions internationally. Both PM_{2.5} and O₃ have long enough lifetimes in the atmosphere to transport intercontinentally, suggesting that emissions from one source region can affect air quality and human health on multiple receptor regions (Annenberg et al. 2009, 2014, Liu et al. 2009). For O₃, the health benefits of O₃ precursor reductions may even be greater outside of the source region than within due to the greater population over several receptor regions (Duncan et al. 2008, Annenberg et al. 2009, West et al. 2009). PM_{2.5} has a much shorter lifetime than O₃, but the mortality impacts of intercontinental transport of PM_{2.5} are comparable to that of ozone due to the stronger effects of PM_{2.5} on mortality (Anenberg et al. 2014). To address these limitations, West et al. (2013), (referred to as WEST2013 hereafter) were the first to use a global chemical transport model (CTM) to address the co-benefits of global GHG mitigation on air quality and human health. WEST2013 were also the first to estimate co-benefits via two mechanisms: reduced co-emitted air pollutants, and slowing climate change and its effects on air quality. They found that global GHG mitigation could avoid 2.2 ± 0.8 million premature deaths in 2100 due to the improved air quality, accounting for both PM_{2.5} and O₃ mortality. The co-benefits from the first mechanism of reduced co-emitted air pollutants are much greater than those from the second mechanism of slowing climate change and its effect on air quality. The monetized co-benefits for health were estimated at $50–$380/tCO₂, globally averaged, higher than previous estimates (Nemet et al. 2010).

WEST2013 applied a global CTM (horizontally 2° × 2.5°) to study the co-benefits. We increased the horizontal resolution using a limited area model framework to further investigate the co-benefits for US air quality in 2050 at much finer resolution (Zhang et al. 2016). Here we use the simulations performed by Zhang et al. (2016) and focus on quantifying the co-benefits of global GHG reductions for avoided air pollution-related mortality in the continental US in 2050. We study the total co-benefits through the two mechanisms, following WEST2013 and Zhang et al. (2016), and separate the co-benefits of GHG mitigation in the US versus the contributions from foreign countries. By embedding this study within the previous global study of WEST2013, we are the first to investigate the co-benefits of foreign GHG mitigation for US air quality and human health. Previous studies have also investigated the effects of air pollution from specific emission sectors on premature mortality, both globally (Lelieveld et al. 2015, Morita et al. 2014, Yim et al. 2015, Silva et al. 2016b) and regionally (Caiazzo et al. 2013, Fann et al. 2012, 2013). Here we conduct three new sensitivity simulations to quantify the air quality and health co-benefits of GHG reductions in three US emission sectors: industry, residential and energy.

2. Methods

2.1. Air quality changes in the US in 2050 at fine scale

Air quality changes in the US under different GHG scenarios centered on 2050 were downscaled from WEST2013 by Zhang et al. (2016). Meteorological fields from the NOAA Geophysical Fluid Dynamics Laboratory (GFDL) atmospheric model AM3 (Donner et al. 2011, Naik et al. 2013), used by WEST2013, was first downscaled to the regional scale over the continental US domain to a 36 km horizontal resolution using the Weather Research Forecast model (WRF, v3.4.1, Skamarock and Klemp 2008). The WRF configuration applies spectral nudging to maintain the large-scale atmospheric circulation resolved by global model (Otto et al. 2012, Bowden et al. 2012, 2013). Further
Table 1. Simulations used for health impact assessment in this study, conducted by Zhang et al. (2016), and the three additional sector simulations for this study. Boundary conditions are from the MOZART-4 (MZ4) simulations of WEST2013. Global methane (CH₄) background concentrations are fixed in CMAQ, consistent with the RCPs and WEST2013. All the simulations are run for three consecutive years, with four months spin-up.

Years	Scenario	Emissions	Meteorology	BCs	CH₄
2000	S₀2000	2000	2000	MZ4 2000	1766 ppbv
	S_REF	REF	RCP8.5	MZ4 REF	2267 ppbv
	S_RCP45	RCP4.5	RCP4.5	MZ4 RCP4.5	1833 ppbv
	S_Emis	RCP4.5	RCP8.5	MZ4 e45m85	1833 ppbv
	S_Dom	aRCP4.5 for US	RCP8.5	MZ4 REF	2267 ppbv
2050	S_indUS	bRCP4.5 for US industry	RCP8.5	MZ4 REF	2267 ppbv
	S_resUS	bRCP4.5 for US residential	RCP8.5	MZ4 REF	2267 ppbv
	S_eneUS	bRCP4.5 for US energy	RCP8.5	MZ4 REF	2267 ppbv
	S_RCP45	RCP4.5	RCP8.5	MZ4 REF	2267 ppbv
	S_Emis	RCP4.5	RCP8.5	MZ4 REF	2267 ppbv
	S_Dom	S_RCP45 for US	RCP8.5	MZ4 REF	2267 ppbv
	S_Emis	RCP4.5	RCP8.5	MZ4 REF	2267 ppbv
	S_Dom	S_RCP45 for US	RCP8.5	MZ4 REF	2267 ppbv

- a Apply emissions from RCP4.5 in US and from REF in the parts of Canada and Mexico within the domain.
- b Only one sector of emissions from RCP4.5 (e.g. industry, residential and energy) are used, and emissions in other sectors over the US are from REF, as are emissions over Canada and Mexico in the domain.

information on the WRF configuration can be found in Zhang et al. (2016). GFDL-AM3 was downscaled using WRF for two periods, a historical period (2000–2003; here considered 2000), and a future period (2049–2052; here considered 2050) for the Representative Concentration Pathway 4.5 (RCP4.5) and RCP8.5 scenarios with one year of spin-up. Global anthropogenic emissions from RCP4.5 and its reference scenario (REF) were directly processed to the regional scale using the Sparse Matrix Operator Kernel Emissions (SMOKE, v3.5, Houyoux et al. 2006) program. Dynamical chemical boundary conditions were acquired from the global CTM outputs of WEST2013. The Community Multiscale Air Quality model (CMAQ, v5.0.1, Byun and Schere 2006), with the CB05 chemical mechanism with updated toluene reactions and the latest aerosol module (AE6), was used to simulate air pollutant concentrations (i.e. PM₂.₅ and O₃) in 2000 and 2050. Most of the CMAQ simulations used in this study (table 1) were completed by Zhang et al. (2016), but three new sensitivity simulations are performed here to quantify the co-benefits of GHG mitigation from domestic emission sectors in the US. The CMAQ simulations from Zhang et al. (2016) and the three additional sensitivity simulations are run for 40 consecutive months, with the first four months as spin-up, and the results are presented as three-year averages.

The total co-benefits from global GHG mitigation are obtained by comparing scenarios S_RCP45 and S_REF (table 1). As discussed by WEST2013 and Zhang et al. (2016), RCP4.5 was developed based upon REF, which is a self-consistent representation of future energy and land use development, with regionally specific air pollutants emissions, developed consistently with the assumed future development to 2100 but without considering climate policy (Smith et al. 2011). Relative to REF, RCP4.5 is created by applying a global carbon policy spanning all world regions and emission sectors (Thomson et al. 2011); the only difference between these two scenarios is therefore the carbon policy. These self-consistent scenarios therefore uniquely isolate the effects of GHG mitigation (RCP8.5 is used as a proxy for REF meteorology, since no climate model simulated REF). The total co-benefits from global GHG mitigation are obtained by comparing scenarios S_RCP45 and S_REF (table 1). As discussed by Zhang et al. (2016), the sensitivity run S_Emis applies emissions from RCP4.5 and meteorology from RCP8.5. To separate the total co-benefits from the two mechanisms, we use S_Emis minus S_REF to give the co-benefits from co-emitted air pollutant reductions, and S_RCP45 minus S_Emis for the co-benefits from slowing climate change. The sensitivity simulation S_Dom applies GHG mitigation from the RCP4.5 scenario in the US only, so the co-benefits of domestic GHG mitigation are estimated as S_Dom minus S_REF, and foreign co-benefits as S_RCP45 minus S_Dom.

In addition, we simulate three more scenarios to identify the co-benefits from actions to reduce GHG emissions in individual sectors domestically. We choose to simulate reductions in the industry (S_indUS, manufacturing industries), industrial process emissions other than solvents, construction, mining, and agricultural machinery), residential and commercial buildings (S_resUS, primarily from cooking, heating and hot water), and energy sectors (S_eneUS, from electric power generation and energy extraction and transformation), because air pollutant emission reductions in RCP4.5 in 2050 are greatest from these sectors in the US. Although ground transportation is the largest contributor for most air pollutants in the US in 2000 and 2050, we did not select transportation as little air pollutants reductions are seen from this sector in 2050. The air pollutant emission reductions from the three sectors selected here account for more than 98% of the total SO₂ and NOₓ reductions in RCP4.5 relative to REF in the US in 2050, 80% of the CO reductions, and more than 50% of the EC and OC reductions. However, these three sectors only account for 11% of the total non-methane volatile organic compound (NMVOC) decreases (supplementary table S1 available at stacks.iop.org/ERL/12/114033/mmedia).

2.2. Human health analysis

We use the environmental Benefits Mapping and Analysis Program–Community Edition (BenMAP-CE, v1.08) (US EPA 2014) to calculate the avoided human mortality associated with future surface air quality
changes for both PM$_{2.5}$ and O$_3$. BenMAP-CE calculates the relationship between air pollution and certain health effects, using a health impact function (HIF) from epidemiological studies. The HIFs for PM$_{2.5}$ and O$_3$ used in this study are based on a log-linear relationship between relative risk (RR) and air pollutant concentrations derived by epidemiology studies (Jerrett et al 2009, Krewski et al 2009), which are also used by WEST2013. RR is used to calculate attributable fraction (AF), the fraction of the disease burden attributable to the risk factor, which is defined as:

$AF = \frac{RR - 1}{RR} = 1 - \exp^{-\beta \Delta x}$

(1)

where β is the concentration–response factor (CRF; i.e. the estimated slope of the log-linear relation between concentration and mortality) and Δx is the change in air pollutant concentration between two scenarios. AF is multiplied by the baseline mortality rate (y_0), and the exposed population (Pop) to yield an estimate of excess deaths attributable to changes in air pollution (ΔMort):

ΔMort = $y_0 \times (1 - \exp^{-\beta \Delta x}) \times$ Pop.

(2)

We present results for all-cause mortality from the PM$_{2.5}$ changes, rather than cardiopulmonary disease (CPD) and lung cancer (LC), as all-cause mortality is the most comprehensive estimate of PM-related mortality appropriate for the US. However, we also estimate the PM-related mortality from CPD and LC to compare with the results of WEST2013. We also quantify the premature mortality from respiratory disease (RESP) associated with O$_3$ changes. The 90% confidence intervals (CI) presented in this study are calculated using a full Monte Carlo analysis inside BenMAP-CE considering only uncertainty in the HIF.

BenMAP-CE uses county-level baseline mortality rates for the present day and projected to 2050 at five-year intervals, including RESP for O$_3$, and all-cause, CPD, and LC for PM$_{2.5}$ (RTI International 2015). Overall, the projected baseline mortality rates within BenMAP-CE decrease from 2005–2050.

However, the baseline mortality rates used by WEST2013 are projected to increase in 2050 in the US, derived from the International Futures (IFs, version 6.54, Hughes et al 2011) under the UNEPGEO Base Case scenario. For population, BenMAP-CE includes the future population projection at county level in the US until 2040 only (totalling 403 million, Woods and Poole 2012), but our study is focused on 2050 (the RCP4.5 projected total population is 384 million in 2050, Clarke et al 2007). To be consistent with WEST2013, we run BenMAP-CE with baseline mortality rates in 2005 and the population projection in 2040 (aged 30 and above), and then post-process the BenMAP-CE outputs by multiplying adjustment ratios to match the US population and US average baseline rates of WEST2013 (supplementary table S2). By doing so, we assume that future baseline mortality rates increase at a uniform national ratio in each county without age, gender or ethnic variations, and that the spatial distribution of population in 2050 of RCP4.5 is the same as that in 2040 projected by Woods and Poole (2012).

3. Results

The total US PM$_{2.5}$ concentration co-benefits in 2050 from global GHG mitigation (-0.47 gm$^{-3}$ for three-year US annual average) are greatest in the East and California (CA), and less in the West (figure 1(a)). For O$_3$, we calculate the three-year average of the 6 month ozone-season average of 1 hr daily maximum O$_3$, to be consistent with Jerrett et al (2009), and the total US O$_3$ co-benefits in 2050 from global GHG mitigation (-2.96 ppbv for three-year US ozone-season average) are fairly uniform over the US domain (figure 1(b)), slightly higher over the Western US than the East. The population-weighted average (for the 2050 exposed population age 30 and older) for the PM$_{2.5}$ co-benefit (-0.84 gm$^{-3}$ for US average) is almost twice the simple average (table 2), as PM$_{2.5}$ has a short lifetime and is therefore distributed locally to regionally (Punger and West 2013). Population

Figure 1. Total air quality co-benefits (S$_{RCP45-S_{REF}}$) in 2050 for (a) annual average PM$_{2.5}$, and (b) 6 month ozone-season average of 1 hr daily maximum of O$_3$. Results are presented as three-year averages. Negative values (blue) indicate air quality improvements.
weighting has less of an impact on the O\textsubscript{3} estimates as the longer lifetime of O\textsubscript{3} produces a more uniform spatial distribution.

For the human health benefits from the global GHG mitigation, our results show that 16 000 (90% CI: 11 700–20 300) premature deaths will be avoided annually in the US in 2050 due to PM\textsubscript{2.5} decreases (table 3). The states with the most avoided deaths are CA (2500 deaths, CI: 1800–3200), New York (NY, 1300 deaths, CI: 1000–1700) and Texas (TX, 1200 deaths, CI: 800–1500) (supplementary figure S1 and table S4), with each state having large population and large PM\textsubscript{2.5} decreases (figure 1, supplementary table S4). For O\textsubscript{3}, the total avoided deaths in the US are 8000 (CI: 3600–12 400), 50% fewer than PM\textsubscript{2.5}, and also highest in CA (1400, CI: 600–2200), NY (500, CI: 200–800) and TX (500, CI: 200–700). The spatial patterns of both PM\textsubscript{2.5} and O\textsubscript{3} related avoided premature mortality are shown in figure 2. We further quantify the human health co-benefits from global GHG mitigation by calculating the avoided mortality per capita (MPC, the avoided deaths per million people age 30 and older) in 2050, for both PM\textsubscript{2.5} and O\textsubscript{3} (supplementary figure S2, table S4). The MPC for PM\textsubscript{2.5} is much higher in the East than in the West (except for CA), with much greater variation than for O\textsubscript{3}, consistent with the finding that the total concentration co-benefits vary locally to regionally for PM\textsubscript{2.5}, and are more spatially uniform for O\textsubscript{3} (figure 1). Relative to the present, air quality improves and premature mortality decreases in the future under REF, due to the large projected emission reductions of conventional air pollutants (Silva et al 2016a, Smith et al 2011, West et al 2013, Zhang et al 2016).

Table 2. Co-benefits for air quality changes in the continental US in 2050 from global, domestic and sectoral GHG mitigation. For PM\textsubscript{2.5} (μg m-3) we use the three-year average, and for O\textsubscript{3} (ppbv), we calculate the 6 month ozone season of 1 hr daily maximum, and then average over three years. Co-benefits are estimated using RCP4.5 minus REF. Negative values indicate air quality improvements.

	PM\textsubscript{2.5}	O\textsubscript{3}		
	Simple average	Pop-weighted average	Simple average	Pop-weighted average
Emission	–0.45	–0.82	–2.75	–2.89
Climate	–0.02	–0.02	–0.21	–0.13
Total	–0.47	–0.84	–2.96	–3.02
Domestic	–0.35	–0.71	–0.80	–1.07
Foreign	–0.12	–0.13	–2.16	–1.95
Industry	–0.057	–0.11	–0.22	–0.20
Domestic	–0.058	–0.15	–0.11	–0.058
Energy	–0.046	–0.089	–0.13	–0.14

Table 3. Estimated total co-benefits for avoided premature mortality in 2050 from PM\textsubscript{2.5}-related all-cause mortality and O\textsubscript{3}-related respiratory mortality (deaths yr-1). The values in parenthesis are 90% confidence intervals (CI). Co-benefits are estimated using RCP4.5 minus REF. Positive values indicate fewer deaths.

	PM\textsubscript{2.5}	O\textsubscript{3}		
	Emission	Climate	Emission	Climate
Total	16 000 (11 700–20 300)	7600 (3400–11 700)	500 (200–700)	
Domestic	13 600 (9900–17 300)	5000 (2200–7800)	3000 (1300–4700)	
Foreign	2100 (1500–2700)	500 (200–800)		
Industry	2400 (1800–3100)	500 (200–800)		
Domestic	2800 (2000–3600)	200 (100–300)		
Energy	1700 (1200–2200)	300 (100–500)		

Figure 2. Total co-benefits (S\textsubscript{RCP4.5-REF}) for avoided premature mortality (deaths yr-1) in the US in 2050, for (a) PM\textsubscript{2.5} (all-cause mortality), and (b) O\textsubscript{3} (respiratory mortality). Total avoided deaths and 90% confidence intervals are shown at the top of each panel. Positive values indicate fewer deaths.
We then compare the health results in this study with WEST2013 for the avoided deaths from 2000 to 2050 under the REF (S\textsubscript{REF}-S\textsubscript{2000}) and RCP4.5 (S\textsubscript{RCP45-S\textsubscript{2000}}) scenarios, and the total co-benefits in 2050 (S\textsubscript{RCP45-S\textsubscript{REF}}). Zhang et al (2016) concluded that future PM\textsubscript{2.5} changes are greater using the regional CMAQ model simulations than those in WEST2013 for both REF (S\textsubscript{REF}-S\textsubscript{2000}) and RCP4.5 (S\textsubscript{RCP45-S\textsubscript{2000}}) scenarios, while the future O\textsubscript{3} changes in 2050 were comparable between CMAQ and WEST2013. When quantifying human health impacts, figure 3 shows that the avoided premature mortality for PM\textsubscript{2.5} for both REF and RCP4.5 relative to S\textsubscript{2000} are higher in this study than WEST2013, especially for CPD, which is consistent with the greater reductions in PM\textsubscript{2.5} predicted here. The avoided premature mortality for O\textsubscript{3} for both REF and RCP4.5 relative to S\textsubscript{2000} are comparable between this study and WEST2013. The total co-benefits for the population-weighted air quality changes are higher for WEST2013 (4.56 ppbv for O\textsubscript{3} and 1.30 μg m-3 for PM\textsubscript{2.5}, figure S26 and S29 in WEST2013) than our estimations using the regional model (3.02 ppbv for O\textsubscript{3} and 0.84 μg m-3 for PM\textsubscript{2.5}, table 3), but the estimated total co-benefits for avoided mortality are similar (figure 3 in this paper). The fact that the total co-benefits for avoided deaths are comparable between this study and WEST2013, even though air quality changes are different, may be in part due to the use of county-level baseline mortality rates here vs the national average of WEST2013. Note that the total avoided deaths from the sum of CPD (24,300 deaths yr-1) and LC (3200 deaths yr-1) is larger than the co-benefits calculated for all-cause mortality, as the RRs for CPD (1.13, 95%CI:1.1–1.16) and LC (1.14, 95%CI:1.06–1.23) are greater than that for all-cause mortality (1.06, 95%CI:1.04–1.08) (Krewski et al 2009).

We then separate the total co-benefits into the two mechanisms. The co-benefit of reductions in co-emitted air pollutants (the ‘emission co-benefit’) accounts for 98% of the total co-benefits (three-year population-weighted average of −0.84 μg m-3, table 2) for PM\textsubscript{2.5}, and 96% of the total (three-year population-weighted average of −3.02 ppbv) for O\textsubscript{3}, consistent with WEST2013 and Zhang et al (2016). When calculating the co-benefits for human health, the emission co-benefit also dominates the total co-benefits, with 15,800 (CI: 11,500–20,000) avoided deaths for PM\textsubscript{2.5} (98% of the total), and 7600 (CI: 3400–11,700) for O\textsubscript{3} (94% of the total) (table 3, figure 4). The difference between the total co-benefit and the emission co-benefit is accounted for by the effect of slowing climate change and its effects on air quality (the ‘climate co-benefit’). Notice that the climate co-benefit is negative in some locations, e.g. the Northern states for PM\textsubscript{2.5}, and Southeast for O\textsubscript{3}, where slowing climate change can cause concentrations and air pollution-related deaths to decrease as a result of more precipitation and lower temperature (see figure 1 in Zhang et al 2016). For the climate co-benefits, we only simulate three years, which may reflect climate variability in addition to climate change (Deser et al 2012). However, since we estimate that the emission co-benefits are much greater than the climate co-benefits, we conclude that more years of simulations would not affect this conclusion.

![Figure 3. Comparisons between this study (red) and WEST2013 (blue) of the avoided human mortality in the US (1000 deaths yr-1) from air quality changes in 2050 compared with 2000, for (a) REF scenario, (b) RCP4.5 scenario, and (c) the total co-benefits in 2050. The red lines represent the 90% confidence intervals (CI) for this study, and blue lines are 95% CI for WEST2013. RESP indicates mortality from O\textsubscript{3}-related respiratory deaths, CPD for PM\textsubscript{2.5}-related cardiopulmonary deaths, and LC for PM\textsubscript{2.5}-related lung cancer.](image-url)
GHG reductions from foreign countries account for 2400 avoided deaths (CI: 1800–3100) for PM$_{2.5}$-related all-cause mortality, and 5000 (CI: 2200–7800) deaths for O$_3$-related RESP, which are 15% and 62% of the total deaths for PM$_{2.5}$ and O$_3$ (table 3). Foreign GHG mitigation likewise contributes 15% (−0.13 μg m$^{-3}$ for the three-year US population-weighted average) of the total air quality co-benefits for PM$_{2.5}$, and 65% (−1.95 ppbv) of the total co-benefits for O$_3$, emphasizing that PM$_{2.5}$ is more influenced by emission reductions in US, while O$_3$ is more influenced by the global methane reductions and intercontinental air pollutant transport (Zhang et al 2016). Foreign co-benefits for both PM$_{2.5}$- and O$_3$-related mortality are centred in urban areas (figure 5), where population density is high, even though foreign GHG mitigation reduces surface O$_3$ pretty uniformly in the US (see supplementary figure S3). The contributions from domestic GHG mitigation on population-weighted average PM$_{2.5}$ (85% of the total) and O$_3$ (35%) are higher than those for the simple average (74% for PM$_{2.5}$ and 27% for O$_3$ in table 2), as air quality improvements from domestic GHG mitigation occur in densely-populated areas. CA has the largest human health benefits from foreign GHG mitigation, with 400 deaths (CI: 300–500) avoided from PM$_{2.5}$-related all-cause mortality, and 800 deaths (CI: 400–1300) avoided from O$_3$. We have calculated total, domestic, and foreign mortality co-benefits for each state (see supplementary tables S4–S6). In quantifying the domestic co-benefits, we neglect the effect of US GHG mitigation on global climate change, and assume that global and regional climate will be controlled by foreign GHG emissions, which introduces a small error into our results. We also attribute the global methane concentration change to the effect of foreign GHG reductions, as US emissions are relatively small (6%–10% of global emissions).

Among emission sectors, the residential sector has the largest co-benefits for PM$_{2.5}$-related human health, avoiding 2800 deaths (CI: 2000–3600), accounting for 21% of the total domestic co-benefits for PM$_{2.5}$, followed by industry (2100, CI: 1500–2700) and energy (1700, CI: 1300–2200). Residential also has the largest change in the population-weighted annual average PM$_{2.5}$ (−0.15 μg m$^{-3}$), even though its simple annual average change is comparable to that from the industry sector, demonstrating that residential emissions have a greater influence near where people live. GHG mitigation from industry has the largest effect on O$_3$-related human health, avoiding 500 deaths (200–800) or 17% of the total domestic co-benefits for O$_3$, followed by energy (300, CI:100–500), and residential (200, CI:100–300). The total air quality co-benefits for O$_3$ are also highest in industry (population-weighted average of −0.20 ppb and simple average of −0.22 ppbv). These three sectors together account for 50% of the total avoided PM$_{2.5}$-related deaths from domestic GHG reductions and 33% of the total avoided O$_3$-related deaths, even though the

Figure 4. The emission co-benefits (a), (b) and climate co-benefits (c), (d) for avoided human mortality in 2050 (deaths yr$^{-1}$) from PM$_{2.5}$ (a), (c) and O$_3$ (b), (d). White in panels (c) and (d) indicates increased mortality attributed to slowing climate change, from increases in air pollutant concentrations. Total avoided deaths and 90% confidence intervals are shown at the top of each panel. Positive values indicate fewer deaths.
sectors account for a larger fraction of emissions of most pollutants, possibly reflecting the smaller NMVOC emissions decreases from these sectors in RCP4.5. These findings of greater avoided deaths for residential GHG reductions suggest that residential sources might be targeted in policy efforts. Future research should attempt to evaluate air quality and health co-benefits for more specific GHG mitigation measures, including for other sources such as transportation, so that these co-benefits can be evaluated alongside the cost of GHG mitigation.

The total co-benefits of avoided premature mortality are monetized using high ($9.81 million) and low ($3.25 million) values of a statistical life (VSLs) for the US in 2050, as estimated by WEST2013 (in 2005 US$) based on projected income growth. Adding avoided mortality from O$_3$ and PM$_{2.5}$, and dividing monetized benefits by US CO$_2$ reductions in 2050, we estimate monetized co-benefits in 2050 of $137 (87–187) per ton CO$_2$ reduced at a high VSL, and $45 (29–62) per ton CO$_2$ reduced at a low VSL, very similar to the 2050 estimates of WEST2013 for the US. As for WEST2013, these monetized estimates do not account for avoided deaths outside of the US. These benefits at high VSL exceed the full range of GHG marginal abatement cost estimates from 13 energy-economic models (West et al 2013), and at low VSL are greater than the median cost. Of these total co-benefits, foreign GHG reductions are responsible for monetized benefits of $42 ($23–$62) per ton CO$_2$ at high VSL, and $14 ($8–$21) at low VSL, which is 31% of the total monetized benefits.

4. Conclusions

We quantify the co-benefits of global GHG mitigation under the RCP4.5 scenario on US air quality and human health in 2050 using dynamical downscaling. We find that 16 000 (11 700–20 300) deaths yr$^{-1}$ will be avoided for PM$_{2.5}$-related all-cause mortality, and 8000 (3600–12 400) deaths yr$^{-1}$ will be avoided for O$_3$-related respiratory mortality. When separating the total co-benefits into two mechanisms, the emission co-benefits have a larger impact than the climate co-benefits for both PM$_{2.5}$ and O$_3$, accounting for 98% and 94% of the total avoided deaths. Foreign GHG mitigation contributes 15% of the total PM$_{2.5}$-related and 62% of the total O$_3$-related deaths. Among the three domestic emission sectors with the greatest reductions in air pollutants under RCP4.5, residential has the highest co-benefits for PM$_{2.5}$-related mortality, leading to a reduction of 2800 deaths, and industry has the highest co-benefits for O$_3$, avoiding 500 deaths in the US. Monetized co-benefits of the GHG mitigation, accounting for avoided deaths from reductions in both PM$_{2.5}$ and O$_3$, are $137 ($87–$187) per ton CO$_2$ at a high VSL and $45 ($29–$62) at a low VSL. Of these co-benefits, 31% come from the influence of foreign GHG reductions. These benefits likely exceed the marginal costs of GHG reductions in 2050.
Significant uncertainties exist in our results. For PM$_{2.5}$, we compare the uncertainty for the future concentration change under RCP4.5 of $-2.92\% \pm 2.3\% \mu g m^{-3}$ ($-2.79\% \pm 22.0\% \mu g m^{-3}$ for the PM$_{2.5}$ estimated as a sum of species) based on the spread of ACCMIP models (Silva et al 2013, Zhang et al 2016), and the uncertainty for the CRF is $0.0058\% \pm 32.8\%$. For O$_3$, the uncertainty for the future concentration change under RCP4.5 is $-5.87\% \pm 48.8\%$ ppbv, and the uncertainty for the CRF is $0.0039\% \pm 69.2\%$. Therefore, the uncertainty in the CRF likely contributes more to the overall uncertainty than the uncertainty in modeled concentration changes, although, for ozone, concentration uncertainty is of similar magnitude to the CRF uncertainty. When quantifying the avoided deaths from improved air quality, we only account for adults above 30. Additional uncertainty arises from downscaling from the global to the regional scale chemistry model, including the conversion of chemical mechanisms in the models, particularly from the addition of new inorganic species for primary PM$_{2.5}$ (Zhang et al 2016). Different components of PM$_{2.5}$ may have different effects on human health, like black carbon particles (Li et al 2016, Zanobetti and Schwartz 2009). However, we consider all of the components of PM$_{2.5}$ to have equal toxicity. Only a single modelling system (AM3-WRF-SMOKE-CMAQ) is used in this study, and as pointed out previously (Post et al 2012, Silva et al 2013), results may differ among different models and ensembles of models can better characterize the range of results. Similarly, increasing the number of years simulated by the models used here can reduce uncertainty related to inter-annual variability (Deser et al 2012). Our conclusions are specific to the REF and GHG mitigation (RCP4.5) scenarios we choose, including their simulation of future emission pathways, which depend on economic drivers and air pollution control policies, and would differ for other scenarios. For example, the new shared socio-economic pathways 4 (SSP4) have different climate policy assumptions considering economic, institutional and technological limitations (Rao et al 2017), and different emission reductions for co-emitted air pollutants in 2050 (supplementary table S3). We only account for the co-benefits from air quality changes due to the GHG mitigation, neglecting other impacts of climate change on health, like heat-waves, elevated temperatures, and infectious disease (Smith et al 2014). Despite these uncertainties, both those quantified and unquantified, our major conclusion that global GHG mitigation can have significant co-benefits for air quality and avoided mortality in the US is unlikely to be altered.

Future studies should estimate co-benefits at both the global and regional scales with finer-resolution air quality model simulations. Uncertainties could be reduced by improving emission estimates for multiple species, the chemical and aerosol mechanisms (CB05 and AE6), and using multi-year simulations and ensemble model experiments (Rao et al 2016). Future air pollutant reference-case emission trajectories are also uncertain (e.g. Rao et al 2017), and use of multiple future scenarios would also be valuable. Future studies should also evaluate benefits beyond health, such as for agriculture and energy. Previous studies have shown that using coarse resolution models tends to underestimate mortality near urban areas for PM$_{2.5}$ (Punger and West 2013, Li et al 2015). Improving horizontal resolution in future studies can produce more robust estimates of health benefits, and may cause estimates to increase.

Previous studies have estimated co-benefits of GHG mitigation mainly on local, national, or continental scales (Bell et al 2008, Cifuentes et al 2001, Nemet et al 2010). These studies have presumed that most co-benefits are realized on those scales, and that the contributions of foreign GHG mitigation to total co-benefits would be small. Here we show that the US can gain significantly greater co-benefits for air quality and human health, especially for ozone, when coordinating its GHG emission reductions with concurrent reductions in other nations to combat global climate change. Similar results would also be expected for foreign countries, which will likely also benefit from GHG mitigation in other countries. Previous studies, which only estimate co-benefits from regional or local GHG mitigation may significantly underestimate the full co-benefits of coordinated global actions to mitigate climate.

Acknowledgments

This work was funded by the US Environmental Protection Agency STAR grant #834285, National Institute of Environmental Health Sciences grant #1 R21 ES022600-01, and NASA Health Air Quality Applied Sciences Team #NNX16AQ80G. The contents are solely the responsibility of the grantee and do not necessarily represent the official views of the US EPA or other funding sources. We also thank the three anonymous reviewers for their thoughtful comments and suggestions which make the paper more complete.

ORCID iDs

Yuqiang Zhang @ https://orcid.org/0000-0002-9161-7086
J Jason West @ https://orcid.org/0000-0001-5652-4987

References

Anenberg S C, West J J, Fiore A M, Jaffe D A, Prather M, Bergmann D, Cavelier K and Dentener F J 2009 Intercontinental impacts of ozone pollution on human mortality Environ. Sci. Technol. 43 6482–7
Anenberg S C et al 2014 Impacts of intercontinental transport of anthropogenic fine particulate matter on human mortality Air Qual. Atmos. Health 7 369–79
Bell M L, Goldberg R, Hogrefe C, Kinney P L, Knowlton K, Lynn B, Rosenthal J, Rosenzweig C and Patz J A 2007 Climate change, ambient ozone, and health in 50 US cities Clim. Change 82 61–76
Bell M L, Davis D L, Cifuentes L A, Krupnick A J, Morgenstern R D and Thurston G D 2008 Ancillary human health benefits of improved air quality resulting from climate change mitigation Environ. Health 7 41
Bowden J L, Otte T L, Nolte C G and Otte M J 2012 Examining interior grid nudging techniques using two-way nesting in the WRF model for regional climate modeling. J. Clim. 25 2805–23
Bowden J L, Nolte C G and Otte T L 2013 Simulating the impact of the large-scale circulation on the 2 m temperature and precipitation climatology Clim. Dyn. 40 1903–20
Byun I M and Ebrahimi L 2006 Review of the governing equations, computational algorithms, and other components of the Models-3 Community Multiscale Air Quality (CMAQ) modeling system Appl. Mech. Rev. 59 51
Caiazza F, Ashok A, Waitz I A, Yim S H L and Barrett S R H 2013 Air pollution and early deaths in the United States. Part I: quantifying the impact of major sectors in 2005 Atmos. Environ. 79 195–208
Capp S L, Driscoll C T, Fahlhaei H, Templner P H, Craig K J, Milford J B and Lambert K F 2016 Estimating potential productivity cobenefits for crops and trees from reduced ozone with US coal power plant carbon standards J. Geophys. Res. 121 16 679–90
Clarke I E, Edmonds J A, Jacoby H D, Pitcher H M, Reilly J M and Richels R G 2007 Scenarios of greenhouse gas emissions and atmospheric concentrations Program 2011 164
Cifuentes L, Borja-Aburto V H, Gouveia N, Thurston G and Davis D L 2001 Hidden health benefits of greenhouse gas mitigation Science 293 1257–9
Chuah C, Noije T V, Vuuren D P V, Stieb F and Hazleger W 2015 Global impacts of surface ozone changes on crop yields and land use Atmos. Environ. 106 11–23
Deser C, Knutti R, Solomon S and Phillips A S 2012 Communication of the role of natural variability in future North American climate Nat. Clim. Change 2 775–9
Donner L J et al 2011 The dynamical core, physical parameterizations, and basic simulation characteristics of the atmospheric component AM3 of the GFSL global coupled model CM3 J. Clim. 24 3484–519
Driscoll C T, Buonocore J J, Levy J J, Lambert K F, Burtraw D, Reid S B, Fahlhaei H and Schwartz J 2015 US power plant carbon standards and clean air and health co-benefits Nat. Clim. Change 5 335–40
Duncan B N, West J J, Yoshida Y, Fiore A M and Ziemke J R 2008 The influence of European pollution on ozone in the near East and Northern Africa Atmos. Chem. Phys. 8 2267–83
Fang Y, Mauzerall D L, Liu J, Fiore A M and Horowitz L W 2013 Impacts of 21st century climate change on global air pollution-related premature mortality Clim. Change 121 239–53
Fann N, Baker K R and Fulcher C M. 2012 Characterizing the PM2.5-related health benefits of emission reductions for 17 industrial, area and mobile emission sectors across the US Environ. Int. 49 141–51
Fann N, Fulcher C M and Baker K R 2013 The recent and future health burden of air pollution apportioned across US sectors Environ. Sci. Technol. 47 3580–9
Fann N, Nolte C G, Dolwick P, Spero T L, Brown A C, Phillips S and Arensberg S 2015 The geographic distribution and economic value of climate change-related ozone health impacts in the United States in 2030 J. Air Waste Manage. Assoc. 65 570–80
Fiore A M et al 2012 Global air quality and climate Chem. Soc. Rev. 41 6663–83
Fiore A M, Naik V and Leibensperger E M 2015 Air quality and climate connections J. Air Waste Manage. Assoc. 65 645–85
Friel S et al 2009 Public health benefits of strategies to reduce greenhouse-gas emissions: food and agriculture The Lancet 374 2016–25
Hooryous M, R, Yakovitch J, M, Coats C J, Wheeler N J M and Kasibhatla P S 2000 Emission inventory development and processing for the Seasonal Model for Regional Air Quality (SMARQ) project J. Geophys. Res. 105 9079
Hughes B B, Kuhn R, Peterson C M, Rothman D S, Solórzano J R, Mathers C D and Dickson J R 2011 Projections of global health outcomes from 2005 to 2060 using the International Futures integrated forecasting model Bull. World Health Organ. 89 478–86
Jacob D J and Winner D A 2009 Effect of climate change on air quality Atmos. Environ. 43 51–63
Jakob M 2006 Marginal costs and co-benefits of energy efficiency investments Energy Policy 34 172–87
Jerrett M, Burnett R T, Pope C A, Ito K, Thurston G, Krewski D, Shi Y, Calle E and Thun M 2009 Long-term ozone exposure and mortality: a Nordic Epidemiological Study Environ. Health Perspect. 117 293–51
Jiang X, Hong C, Zheng Y, Zheng B, Guan D, Gouldson A, Zhang Q and He K 2015 To what extent can China’s near-term air pollution control policy protect air quality and human health? A case study of the Pearl River Delta region Environ. Res. Lett. 10 104006
Kreisvich D et al 2009 Extended follow-up and spatial analysis of the American Cancer Society study linking particulate air pollution and mortality Res. Rep. Heal. Eff. Inst. 140 5–36
PMDI 19627030
Kim Y-M, Zhou Y, Gao Y, Fu I S, Johnson B A, Huang C and Liu Y 2015 Spatially resolved estimation of ozone-related mortality in the United States under two Representative Concentration Pathways (RCPs) and their uncertainty Clim. Change 128 71–84
Laden F, Schwartz J, Speizer F E and Dockery D W 2006 Reduction in fine particulate air pollution and mortality: extended follow-up of the Harvard Six Cities Study Am. J. Respir. Crit. Care Med. 173 667–72
Lepeule J, Laden F, Dockery D and Schwartz J 2012 Chronic exposure to fine particles and mortality: an extended follow-up of the Harvard Six Cities Study from 1974–2009 Environ. Health Perspect. 120 963–70
Lehdeveld J, Evans J S, Frans M, Giannadaki D and Pozzer A 2015 The contribution of outdoor air pollution sources to premature mortality on a global scale Nature 525 367–71
Li Y, Henze D K, Jack D and Kinney P L 2015 The influence of air quality model resolution on health impact assessment for fine particulate matter and its components Air Qual. Atmos. Health 9 51–68
Li Y, Henze D K, Jack D, Henderson B H and Kinney P L 2016 Assessing public health burden associated with exposure to ambient black carbon in the United States Sci. Total Environ. 539 515–23
Liu J, Mauzerall D L and Horowitz L W 2009 Evaluating inter-continental transport of fine aerosols: (2) global health impact Atmos. Environ. 43 4339–47
Markandya A, Armstrong B G, Hales S, Chiabai A, Criqui P, Mima S, Tonne C and Wilkinson P 2009 Public health benefits of strategies to reduce greenhouse-gas emissions: low-carbon electricity generation The Lancet 374 2006–15
McCulloch D L, Krey Y, Riahi K, Kolp P, Grubler A, Makowski M and Nakicenovic N 2013 Climate policies can help resolve energy security and air pollution challenges Clim. Change 119 479–94
Morita H, Yang S, Unger N and Kinney P L 2014 Global health impacts of future aviation emissions under alternative control scenarios Environ. Sci. Technol. 48 14659–67
Naik V, Horowitz L W, Fiore A M, Ginoux P, Mao J, Aghedo A M and Levy H 2013 Impact of preindustrial to present-day changes in short-lived pollutant emissions on atmospheric composition and climate forcing J. Geophys. Res. Atmos. 118 8086–110
Nemet G F, Holloway T and Meier P 2010 Implications of incorporating air-quality co-benefits into climate change policymaking Environ. Res. Lett. 5 014007
Otte T L, Nolte C G, Otte M J and Bowden J H 2012 Does nudging squeak the extremes in regional climate modeling? J. Clim. 25 7046–6
Thompson T M, Rausch S, Saari R K and Selin N E 2014 A systems approach to evaluating the air quality co-benefits of US carbon policies Nat. Clim. Change \textbf{4} 917–23

Thomson A M et al 2011 RCP4.5: a pathway for stabilization of radiative forcing by 2100 Clam. Change \textbf{109} 77–94

Traill M A, Tsimpidi A P, Liu P, Tsigridou K, Hu Y, Rudokas J R, Miller P J, Nenes A and Russell A G 2015 Impacts of potential CO\textsubscript{2} reduction policies on air quality in the United States Environ. Sci. Technol. \textbf{49} 5133–41

US Environmental Protection Agency 2009 \textit{Final Report: Integrated Science Assessment for Particulate Matter} (Washington, DC: US Environmental Protection Agency) EPA/600/R-08/139F

US Environmental Protection Agency 2013 \textit{Final Report: Integrated Science Assessment of Ozone and Related Photochemical Oxidants} (Washington, DC: US Environmental Protection Agency) EPA/600/R-10/076F

US Environmental Protection Agency 2014 \textit{Environmental Benefits Mapping and Analysis Program—Community Edition} (BenMAP-CE) (www2.epa.gov/benmap/manual-and-appendices-benmap-ce) (Accessed: 1 December 2015)

Webster M D 2009 Global health and economic impacts of past climate change Environ. Res. Lett. \textbf{11} s12013

Rao S et al 2017 Future air pollution in the shared socio-economic pathways Glob. Environ. Change \textbf{42} 346–58

RTI International 2015 \textit{BenMAP-CE: Environmental Benefits Mapping and Analysis Program—Community Edition, User's Manual Appendices} (www2.epa.gov/benmap/manual-and-appendices-benmap-ce) (Accessed: 1 December 2015)

Selin N E, Wu S, Nam K M, Reilly J M, Paltsev S, Prinn R G and Webster M D 2009 Global health and economic impacts of future ozone pollution Environ. Res. Lett. \textbf{4} 044014

Smith K R, Woodward A, Campbell-Lendrum D, Chadee D D, Honda Y, Liu Q, Olwoch J M, Revich B and Sauerborn R 2014 Human health: impacts, adaptation, and co-benefits Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part A: Global and Sectoral Aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (Cambridge: Cambridge University Press) pp 709–754

Smith J R, West J J and Kyle P 2011 Economically consistent long-term scenarios for air pollutant and greenhouse gas emissions Clim. Change \textbf{108} 619–27

Skamarock W C and Klemp J B 2008 A time-split nonhydrostatic atmospheric model for weather research and forecasting applications J. Comput. Phys. \textbf{227} 3465–85

Silva R A et al 2013 Global premature mortality due to anthropogenic outdoor air pollution and the contribution of past climate change Environ. Res. Lett. \textbf{8} 34005

Silva R A et al 2016a The effect of future ambient air pollution on human premature mortality to 2100 using output from the ACCMIP model ensemble Atmos. Chem. Phys. \textbf{16} 9847–62

Silva R A, Adelman Z, Fry M M and West J J 2016b The impact of individual anthropogenic emissions sectors on the global burden of human mortality due to ambient air pollution Environ. Health Perspect. \textbf{1776} 1776–84

Sun J, Fu J S, Huang K and Gao Y 2015 Estimation of future PM\textsubscript{2.5} and ozone-related mortality over the continental United States in a changing climate: an application of high-resolution dynamical downsampling technique J. Air Waste Manage. Assoc. \textbf{65} 611–23

Tagarits F, Liao K-J, DeLucia A J, Deck L, Amar P and Russell A G 2009 Potential impact of climate change on air pollution-related human health effects Environ. Sci. Technol. \textbf{43} 4979–88

Zhang Y, Bowden J H, Adelman Z, Naik V, Horowitz L W, Smith S J and West J J 2016 Co-benefits of global and regional greenhouse gas mitigation on US air quality in 2050 Atmos. Chem. Phys. \textbf{16} 9533–48