研究成績の概要（和文）：鼻腔に局在集積させた核種の付与エネルギーを評価するために、尿素内線量評価モンテカルロシミュレーションのためのデジタルファントム上で、局所鼻腔の定義付けおよび局所左右嗅球の分割を行った。腫瘍組織に局在集積したアルファ核種標識薬剤の付与エネルギーを評価するために、アクチニウム系列核種である232Th及び227Ra、ネプチニウム系列核種である225Acを中心に標識化合物の合成、動物実験による局在分布の様子について、ウラン系列、トリウム系列の同位体のそれぞれと比較検討した。

研究分野：化学

キーワード：高LET核種 壊変系列 アルファ核種 内部被ばく線量 エネルギー付与 鼻腔 腫瘍
１．研究開始当初の背景
（1）放射性核種利用による疼痛緩和は、主に
32P、131I、89Sr、90Y などのベータ線放射核種
を用い、放射性が発生の高い腫瘍に適用され、
治療というより疼痛緩和化が限定される
（2）本研究対象の環境変異アルファ線は、ベータ
線に比べてエネルギーが平均 10 倍以上高く、
かつ高い LET（線エネルギー付与）と高い
RBE（生物学的効果比）を持つため、治療利
用への道を開く可能性がある。元々「核医学
内用放射療法にアルファ線放射核種は使え
ない」という古い考え方ではなく、国内外で
有望アルファ核種の探索が進められている。
（3）我々は、放射線線放出核種の人
体利用が推進されるためには、ウラン、トリ
ウム、アクチニウム、ネプトニウムの 4 優劣
系列核種（222Rn のアルファ変異する同
位体群）についての両面の研究に、即ち、
核種及びその薬剤の生体内挙動（局所の細胞
レベル、組織レベルに注目した）の研究。及
び変異核の反応波動、系へのエネルギー付与、
核種イメージングの放射化学研究。の両面
が重要であると考えた。4 優劣変異系列核種
の系統的な研究が必要である。
（4）アルファ線の次に高 LET 放射線である
内部転換電子・オージェ電子線を多く放出す
電子捕獲変異 (EC) の核種についても検討
を加える必要があった。
（5）202Ti の覚醒操作装置の基礎研究では、医療
用 202TlCl を使用し検査実施により次の事
を明らかにした。鼻腔投与した 202Ti は覚醒
一次中枢である脳内喫吸に取り込まれること
と、喫吸経路による喫吸への 202Ti 移行
が阻止されること、喫吸再現の再生に伴い、
202Ti の移行が改善し、喫吸機能をも相関を持
つこと、また、ヒトボランティアで 202Ti 経
鼻投与と SPECT-MRI 融合法による喫吸経
描画、等を明らかにしてきた。
（6）アルファ線放出 222Th の T1/2=18.72d
による癌治療及び疼痛緩和についての基礎研
究において、我々は、核種性薬剤の 222Th
標識 EDTMP を合成しマウス体内での迅速な
骨集積とこの系列の核種の急性骨
内保持という優れた薬剤動態を示した。さら
に転移モデルラットを用いた抗腫瘍効果
および疼痛緩和効果の検証を行い、アルフ
ァ線放出核種の治療効果は放射線放出核
種の 100〜107 以上大きい。アルファ線放出核種は
kBq オーダーで十分治療できる可能性があ
ることを示した。これまでのこの様々な検討
を通じて、より強い移動の状態での治療が
可能となり、さらには転動リスクが高
い癌での予防投与が可能となると想定でき
る。そのための基礎データが必要となってい
る。

２．研究の目的
アルファ線放出核種や内部転換電子・オージェ電子を多く放出する核種が、生体内を局在
移行するとき、その経路や集積部位で高エネルギー付与が起こる。ここでは脳血流閲
門を介する神経系に移行する 202Tl、骨癌治療
療と疼痛緩和作用の 222Th、223Ra 及び変異系
列核種のブローパー開発を「標識薬剤、局所分
布、イメージング、生物トレーサとしての利
用」と「エネルギー付与、変態生成核の作用」
の両面で捉え、喫吸神経と骨腫瘍の組織レベル
の知見を生物無機および放射化学的に展
開する。

３．研究方法
（1）4 異常系列の 222Rn の種々の核
種からブローパー選択した。4 優劣系列よ
り異常な変異（アルファ変異、ベータ変異）
の同位体を見、変異の違いによる影響につ
いての知見を得る。特に、器官を知覚する 131I
について検討する。131I については医療で
用いられている 131I という点で系列
核種と異なる点も、本研究遂行のブローパーに
加える。我々のこれまでの研究結果「転移性
骨腫瘍及び神経系への局在移行」を踏まえ、
正常及び転移性骨腫瘍モデルと喫吸変異
モデル動物を対象に、前述 6 元素の核種につ
いて局在移行と集積性を検討する。
（2）4 優劣系列からの核種の選択とその追
跡（放射化学的展開）：ウラン系列 238U

234Th → 234Pa → 234U → 234Th → 222Ra → 222Rn

218Po → 218Po → 218Po → 218Bi

231Th → 227Ac → 227Th → 227Ra → 219Rn

215Po → 215Po → 215Bi → 215Bi → 215Bi → 215Po

237Np → 233Pa → 233U → 229Th

225Ra → 225Ac → 225Fr → 225At → 225Bi → 215Po

209Po → 209Bi → トリウム系列 209Th → 228Ra

228Ac → 228Th → 228Ra → 228Rn → 216Po → 216Po

221Bi → 212Po → 208Po と逆変異する 4 系列
より、変異様式が異なる Th, Ac, Ra, Bi, Pb,
TI の数個核種を対象に、放射化学を展開する。
覚醒、Th, Ac, Ra, Bi, Pb, Ti の単離・精
製、標識キレートの調製、変異変異の間半
減期の観察、Ra 212Rn と PB 212Bi の Rn 半減期
が及ぼす核種(Pb,Bi,VI) の骨滞留性への寄与、
227Th および核種 223Ra さらにその一次変
異利用の可能性、親核が生体内局在した後、
変異に伴う核種の動態変化(ホットアトム) より
について検討した。
（3）オートラジオグラフィーと組織化学知
見の融合（組織化学的アプローチ）と、局在
性を追跡：マクロ及びミクロオートラジオ
グラフィを融合し、局在する位置を確認する。
さらに組織染色等の組織化学の手法を導入
し、局所における組織変化を捉える。脳及び
骨組織の切片、マクロオートラジオグラフ
の定量化、ミクロオートラジオグラフィ
による 1 線飛跡の検出、その定量化、等の検討。
アルファカメラの性能を上げ分布図を得る
努力をする。
4. 研究成果
(1) \(^{223}\text{Ra}\) 経鼻投与と嗅神経への輸送中のエネルギー付与の評価には、MIRD法による鼻腔と嗅球の内部被ばく線量評価が必須である。そのため、使用する既出のマウスモデルファントム、Digimouse、に未収録の左鼻腔及び左右嗅球の定義付けと分割を行った。多数のマウス頭部凍結切片を Digimouse のポケセルサイズと同様な 100 μm 厚にスライスして作成し鼻腔（右図）及び嗅球の抽出を左右について行った。

本成果によりモンテカルロシミュレーションによる、鼻腔や嗅球の内部吸収線量の評価が可能となった。

(2) 4 群類のなかで、\(^{223}\text{Ra}\) とその子孫核種の存在が観察された理由の観点から視野に属する骨核に及ぼす影響を把握する。Ra 同位体のなかのアクチニウム系の \(^{223}\text{Ra}\) とトリウム系の \(^{224}\text{Ra}\) を比較し、\(^{223}\text{Ra}\) と \(^{224}\text{Ra}\) のそれぞれの子孫核種の大腿骨、頭骨骨、肝臓、腎臓、脾臓、大腸、小腸、血液における分布の結果から、\(^{223}\text{Ra}\) の衰減挙動は半減期が 4 秒と極めて短く、Rn（ガス）になっても骨から逃げない。その後 \(^{219}\text{Pb}\) と \(^{211}\text{Bi}\) と \(^{207}\text{TI}\) の \(^{207}\text{Pb}\) の変化にも骨から骨を示した。\(^{223}\text{Ra}\) の治療用核種としての有効性を示すと同時に副作用を懸念され、腎臓、脾臓への \(^{211}\text{Pb}\) および \(^{211}\text{Bi}\) の集積率について議論した。

(3) 副作用除去のための \(^{223}\text{Ra}\) 投与法として、Pb イオンに角形成しやすい市販薬 Ca-DTPA（超ウラン元素体内除去剤）と \(^{223}\text{Ra}\) を混合投与する方法を提案した。投与初期での \(^{223}\text{Ra}\) と \(^{211}\text{Pb}\) の体内動態の特徴を利用して胃外組織からの \(^{211}\text{Pb}\) のクリアランスを速める。即ち、Ra/Ca-DTPA 比に留意して、Ra および Pb 骨への集積が緩らぎ、生体内で PbDTPA 錯化を優先的に有効に作成し、\(^{211}\text{Pb}\) および \(^{211}\text{Bi}\) および \(^{207}\text{TI}\) の尿への排泄を速めた。

(4) ネペツニウム系の \(^{222}\text{Ac}\) 線放出核種である \(^{222}\text{Ac}\) を使用し、腫瘍に陽極集積する標識ペプチド DOTATRA (Arg11)CMSP に関する検討も進展した。pH、拝瀦時間、拝瀦温度の最適条件が求められた。

5. 主な発表論文等
(研究代表者、研究分担者及び連携研究者には下線)

[雑誌論文] （計 5 件）

【査読有】

1. 手持ち初回単回投与法の作成について
2. 線放出核種のを持続出を考慮した二段階的投与法について
3. 線放出核種の持続出を考慮した二段階的投与法について

【査読有】

4. 味覚内的 \(^{222}\text{Ac}\) 線放出核種の \(^{222}\text{Ac}\) 体内動態について
5. 味覚内的 \(^{222}\text{Ac}\) 線放出核種の \(^{222}\text{Ac}\) 体内動態について

【査読有】

6. 味覚内の \(^{222}\text{Ac}\) 線放出核種の \(^{222}\text{Ac}\) 体内動態について
7. 味覚内的 \(^{222}\text{Ac}\) 線放出核種の \(^{222}\text{Ac}\) 体内動態について

8. 味覚内的 \(^{222}\text{Ac}\) 線放出核種の \(^{222}\text{Ac}\) 体内動態について

9. 味覚内の \(^{222}\text{Ac}\) 線放出核種の \(^{222}\text{Ac}\) 体内動態について

10. 味覚内の \(^{222}\text{Ac}\) 線放出核種の \(^{222}\text{Ac}\) 体内動態について
