Rapidly Aggravated Dissecting Flap by Angiography during Percutaneous Stent Placement for Acute Isolated Superior Mesenteric Artery Dissection

Hye Jin Yang,1 Young Kwon Cho,1 Tae Jun Son,2 Yoon Young Jung,1 Seung A Choi,1 and Suk Hoon Lee1

Departments of 1Radiology and 2General Surgery, Eulji General Hospital, Eulji University, Seoul, Korea.

Received: April 8, 2010
Revised: May 19, 2010
Accepted: May 27, 2010
Corresponding author: Dr. Young Kwon Cho, Department of Radiology, Eulji Medical Center, Eulji University College of Medicine, 14 Hangeulbiseok-gil, Nowon-gu, Seoul 139-872, Korea. Tel: 82-2-2970-8290, Fax: 82-2-970-8346 E-mail: ykchoman@eulji.ac.kr

© Copyright: Yonsei University College of Medicine 2011
This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

Case Report

INTRODUCTION

Very few cases of acute mesenteric ischemia (AMI) caused by spontaneous dissection of the superior mesenteric artery (SMA) have been reported. There are several therapeutic options including conservative management, surgical repair, implantation, and more recently, endovascular treatment.

We report a very rare, contrast injection-induced, acute aggravation of a preexisting dissecting flap of a spontaneous SMA dissection during endovascular treatment.

CASE REPORT

A 43-year-old man with a previous history of hypertension complained of sudden severe epigastric pain that began 6 hours before admission and rapidly progressed to more severe diffuse abdominal pain. Physical examination was consistent with suspected surgical abdomen. The laboratory data showed no significant abnormalities. Abdominal computed tomography (CT) showed a focal dissecting flap in the proximal SMA (white arrow) with a severely narrowed true lumen (Fig. 1). The SMA angiogram showed a focal dissection flap 2 cm distally from the origin (arrow) with a combined dissecting aneurysm (arrowheads) (Fig. 2A). Immediately after contrast injection during SMA angiography, the dissecting flap propagated acutely and rapidly (arrows), and a large amount of thrombus migrated to the en-
tire distal trunk of the SMA, the iliocolic, and jejunal branches (arrowheads), leaving the SMA main trunk nearly oc-
cluded (Fig. 2B).

After cannulation of the SMA main trunk with a 2.4F microcatheter, a total of 500,000 I.U urokinase were continuously infused through angiographic catheter and microcatheter separately during 15 minutes, and aspiration embolectomy was performed with a 7F aspiration catheter. After removal of most of the thrombus within the SMA main trunk, a 7 mm ×6 cm self expandable stent (Protégé; Micro Therapeutics, ev3, Irvine, CA, USA) was deployed over the dissection flap at the proximal SMA (white arrows), while jejunal branches remained occluded due to distally migrated thrombus (white arrowheads) (Fig. 3A). Completion angiography showed a completely excluded dissecting flap in the proximal SMA and complete recanalization of the SMA and its branches (Fig. 3B). The patient experienced complete im-

Fig. 1. Abdominal CT shows a focal dissecting flap in the proximal SMA (white arrow) with severely narrowed true lumen. CT, computed tomography; SMA, superior mesenteric artery.

Fig. 2. (A) The first frame of the initial SMA angiography shows a focal dissecting flap 2 cm distally from the origin (arrow), aneurismal change of the proximal SMA (arrow heads), and narrowing of the distal trunk of the SMA. (B) The second frame of the same angiography shows sudden extension of the dissecting flap to the distal trunk of the SMA (arrows) and propagated intraluminal thrombus (arrowheads) immediately after simple passage of contrast material via a 6F guiding catheter. SMA, superior mesenteric artery.

Fig. 3. (A) Follow-up angiography after deployment of a 7 mm×6 cm self expandable stent shows a completely excluded dissection flap with recanalized SMA trunk (white arrows), but multiple jejunal branches are occluded due to distally migrated thrombus (white arrowheads). (B) Completion angiography shows complete recanalization and removal of intraluminal thrombus after additional pharmacomechanical thrombolysis. SMA, superior mesenteric artery.
Aggravated SMA Dissection Induced by Contrast Injection

Despite its growing popularity, there are several concerns about percutaneous stent placement for the treatment of SMA dissection; including vessel rupture, thrombotic stent occlusion, infection, stenosis of the native vessel around the stent, and lack of long-term follow-up data. However, endovascular therapy shows good results and it is an attractive option to address SMA dissection, as illustrated in this report as well as other series.11,12

There are a few reports on contrast passage-induced/aggravated dissection during angiography for stent placement.13-17 In our case, the dissecting flap could suddenly be aggravated and extended by simple contrast injection during angiography.

The possible cause was that the passage of high pressure and concentration contrast material through the severely narrowed true lumen damaged and ruptured the dissecting flaps, and that the false lumen thrombus propagated into the true lumen.

There was no possibility of deep engagement of the angiographic catheter tip into the false lumen, because we identified the catheter tip into the true lumen by test contrast injection before angiography. Furthermore, initial CT revealed that the false lumen on proximal SMA was occupied with intramural hematoma.

We can suspect that the highly risky underlying condition led to the unpredictable complications in our case, including the fast developing dissecting flap or visualized unstable flap during contrast injection; the unstable intraluminal thrombus around the dissection flap and severely narrowed true lumen around the dissection flap.

We can prevent this complication during angiography by using smaller volumes of contrast and by insertion of a safety guidewire into the true lumen before angiography.

In conclusion, an increasing number of studies suggest the efficacy and safety of percutaneous stent placement for the treatment of isolated SMA dissection. However, high-risk conditions for propagation of dissecting flap simply by contrast passage during initial angiography need to be taken into consideration.

REFERENCES

1. Heys SD, Britenden J, Crofts TJ. Acute mesenteric ischaemia: the continuing difficulty in early diagnosis. Postgrad Med J 1993;69: 48-51.
2. Lock G. Acute intestinal ischaemia. Best Pract Res Clin Gastroenterol 2001;15:83-98.
3. Stoney RJ, Cunningham CG. Acute mesenteric ischemia. Surgery 1993;114:489-90.
4. Barakate MS, Cappe I, Curtin A, Engel KD, Li-Kim-Moy J, Poon MS, et al. Management of acute superior mesenteric artery occlusion. ANZ J Surg 2002;72:25-9.
5. Yasuhara H, Shigematsu H, Muto T. Self-limited spontaneous dissection of the main trunk of the superior mesenteric artery. J Vasc Surg 1998;27:776-9.
6. Solis MM, Ranval TJ, McFarland DR, Eidt JF. Surgical treatment...
of superior mesenteric artery dissecting aneurysm and simultaneous celiac artery compression. Ann Vasc Surg 1993;7:457-62.
7. Iha K, Nakasone Y, Nakachi H, Horikawa Y, Gushiken M, Matsu- da H. Surgical treatment of spontaneous dissection of the superior mesenteric artery: a case report. Ann Thorac Cardiovasc Surg 2000;6:65-9.
8. Chou CK, Mak CW, Tseng WS, Chang JM. CT of small bowel ischemia. Abdom Imaging 2004;29:18-22.
9. Zangos S, Steenburg SD, Phillips KD, Kerl JM, Nguyen SA, Herzog C, et al. Acute abdomen: Added diagnostic value of coronal reformations with 64-slice multidetector row computed tomography. Acad Radiol 2007;14:19-27.
10. Leung DA, Schneider E, Kubik-Huch R, Marinecek B, Pfammatter T. Acute mesenteric ischemia caused by spontaneous isolated dissection of the superior mesenteric artery: treatment by percutaneous stent placement. Eur Radiol 2000;10:1916-9.
11. Wakabayashi H, Shiote T, Kurose M, Moritani H, Fujiki S, Morimoto N, et al. Emergent treatment of acute embolic superior mesenteric ischemia with combination of thrombolysis and angioplasty: report of two cases. Cardiovasc Intervent Radiol 2004;27:389-93.
12. Kim JH, Roh BS, Lee YH, Choi SS, So BJ. Isolated spontaneous dissection of the superior mesenteric artery: percutaneous stent placement in two patients. Korean J Radiol 2004;5:134-8.
13. Patel T, Kuladhipati I, Shah S. Successful percutaneous endovascular management of acute post-traumatic superior mesenteric artery dissection using a transradial approach. J Invasive Cardiol 2010;22:E61-4.
14. Demirpolat G, Oran I, Tamsel S, Parildar M, Memis A. Acute mesenteric ischemia: endovascular therapy. Abdom Imaging 2007;32:299-303.
15. Casella IB, Bosch MA, Sousa WO Jr. Isolated spontaneous dissection of the superior mesenteric artery treated by percutaneous stent placement: case report. J Vasc Surg 2008;47:197-200.
16. Gobble RM, Brill ER, Rockman CB, Hecht EM, Lamparello PJ, Jacobowitz GR, et al. Endovascular treatment of spontaneous dissections of the superior mesenteric artery. J Vasc Surg 2009;50:1326-32.
17. Acosta S, Sonesson B, Resch T. Endovascular therapeutic approaches for acute superior mesenteric artery occlusion. Cardiovasc Intervent Radiol 2009;32:896-905.