A Robinson characterization of finite $P\sigma T$-groups

Alexander N. Skiba

Department of Mathematics and Technologies of Programming, Francisk Skorina Gomel State University, Gomel 246019, Belarus
E-mail: alexander.skiba49@gmail.com

Abstract

Let $\sigma = \{\sigma_i | i \in I\}$ be some partition of the set of all primes \mathbb{P} and let G be a finite group. Then G is said to be σ-full if G has a Hall σ_i-subgroup for all i. A subgroup A of G is said to be σ-permutable in G provided G is σ-full and A permutes with all Hall σ_i-subgroups H of G (that is, $AH = HA$) for all i.

We obtain a characterization of finite groups G in which σ-permutability is a transitive relation in G, that is, if K is a σ-permutable subgroup of H and H is a σ-permutable subgroup of G, then K is a σ-permutable subgroup of G.

1 Introduction

Throughout this paper, all groups are finite and G always denotes a finite group. Moreover, \mathbb{P} is the set of all primes, $\pi = \{p_1, p_2, \ldots\} \subseteq \mathbb{P}$ and $\pi' = \mathbb{P} \setminus \pi$. If n is an integer, the symbol $\pi(n)$ denotes the set of all primes dividing n; as usual, $\pi(G) = \pi(|G|)$, the set of all primes dividing the order of G.

If $1 \in \mathfrak{F}$ is a class of groups, then $G^\mathfrak{F}$ denotes the \mathfrak{F}-residual of G, that is, intersection of all normal subgroups N of G with $G/N \in \mathfrak{F}$; $G_\mathfrak{F}$ denotes the \mathfrak{F}-radical of G, that is, the product of all normal subgroups N of G with $N \in \mathfrak{F}$.

In what follows, σ is some partition of \mathbb{P}, that is, $\sigma = \{\sigma_i | i \in I\}$, where $\mathbb{P} = \bigcup_{i \in I} \sigma_i$ and $\sigma_i \cap \sigma_j = \emptyset$ for all $i \neq j$; G is said to be σ-full [1, 2] if G has a Hall σ_i-subgroup for all i.

Definition 1.1. We say that a subgroup A of G is σ-permutable in G [3] provided G is σ-full and H permutes with all Hall σ_i-subgroups H of G (that is, $AH = HA$) for all i.

Remark 1.2. A set \mathcal{H} of subgroups of G is a complete Hall σ-set of G [1, 2] if every member $\neq 1$ of \mathcal{H} is a Hall σ_i-subgroup of G for some $\sigma_i \in \sigma$ and \mathcal{H} contains exactly one Hall σ_i-subgroup of G for every i. By Proposition 3.1 in [1], a subgroup A of G is σ-permutable in G if and only if G possesses at least one complete Hall σ-set \mathcal{H} such that $AL^x = L^xA$ for all $L \in \mathcal{H}$ and all $x \in G$.

Keywords: finite group, a Robinson σ-complex of a group, σ-permutable subgroup, σ-soluble group, σ-supersoluble group, a σ-SC-group.

Mathematics Subject Classification (2010): 20D10, 20D15, 20D30
Recall that G is said to be: σ-primary \([3]\) if G is a σ_i-group for some i, σ-decomposable (Shemetkov [5]) or σ-nilpotent (Guo and Skiba [6]) if $G = G_1 \times \cdots \times G_n$ for some σ-primary groups G_1, \ldots, G_n.

The usefulness of σ-permutable subgroups is connected mostly with the following their property.

Theorem A. (See Theorem B in [3]). If A is a σ-permutable subgroup of G, then A^G/A_G is σ-nilpotent.

Example 1.3. (i) In the classical case, when $\sigma = \sigma^0 = \{\{2\}, \{3\}, \ldots\}$, the subgroup A of G is σ^0-permutable in G if and only if A permutes with all Sylow subgroups of G. Note that a σ^0-permutable subgroup is also called S-permutable \([7]\). Note also that for every S-permutable subgroup A of G the quotient A^G/A_G is nilpotent (Kegel, Deskins) by Theorem A.

(ii) In the other classical case, when $\sigma = \sigma^\pi = \{\pi, \pi'\}$, a subgroup A of G is σ^π-permutable in G if and only if G has a Hall π-subgroup and a Hall π'-subgroup and A permutes with all Hall π-subgroups and with all Hall π'-subgroups of G. For every σ^π-permutable subgroup A of G the quotient A^G/A_G is π-decomposable, that is, $A^G/A_G = O_\pi(A^G/A_G) \times O_{\pi'}(A^G/A_G)$ by Theorem A.

(iii) In fact, in the theory of π-soluble groups ($\pi = \{p_1, \ldots, p_n\}$) we deal with the partition $\sigma = \sigma^{0\pi} = \{\{p_1\}, \ldots, \{p_n\}, \pi'\}$ of \mathbb{P}. The subgroup A of G is $\sigma^{0\pi}$-permutable in G if and only if G has a Hall π'-subgroup and A permutes with all Hall π'-subgroups and with all Sylow p-subgroups of G for all $p \in \pi$. For every $\sigma^{0\pi}$-permutable subgroup A of G the quotient A^G/A_G is π-nilpotent, that is, $A^G/A_G = O_\pi(F(A^G/A_G)) \times O_{\pi'}(A^G/A_G)$ by Theorem A.

We say, following [3], that G is a $P\sigma T$-group if σ-permutability is a transitive relation in G, that is, if K is a σ-permutable subgroup of H and H is a σ-permutable subgroup of G, then K is a σ-permutable subgroup of G. In the case when $\sigma = \sigma^0$, a $P\sigma T$-group is also called a PST-group \([7]\).

Note that if $G = (Q_8 \times C_3) \wr (C_7 \times C_3)$ (see [8] p. 50), where $Q_8 \times C_3 = SL(2, 3)$ and $C_7 \times C_3$ is a non-abelian group of order 21, then G is not a PST-group but G is a $P\sigma T$-group, where $\sigma = \{\{2, 3\}, \{2, 3\}'\}$

The description of PST-groups was first obtained by Agrawal [9], for the soluble case, and by Robinson in [10], for the general case. In the further publications, authors (see, for example, the recent papers [11]–[21] and Chapter 2 in [7]) have found out and described many other interesting characterizations of PST-groups.

In the case when G is σ-soluble (that is, every chief factor of G is σ-primary) the description of $P\sigma T$-groups was obtained in the paper [22] on the base of the results and methods in [3] [23] [24] [25].

Theorem B (See Theorem A in [22]). If G is a σ-soluble $P\sigma T$-group and $D = G^{3\sigma}$ is the σ-nilpotent residual of G, then the following conditions hold:

(i) $G = D \rtimes M$, where D is an abelian Hall subgroup of G of odd order, M is σ-nilpotent and every element of G induces a power automorphism in D;

(ii) $O_{\sigma_i}(D)$ has a normal complement in a Hall σ_i-subgroup of G for all i.

Conversely, if Conditions (i) and (ii) hold for some subgroups D and M of G, then G is a $P\sigma T$-group.

Before continuing, we give some further definitions.

Definition 1.4. We say that G is:

(i) σ-supersoluble if every chief factor of G below G^{σ_0} is cyclic;

(ii) a σ-SC-group if every chief factor of G below G^{σ_0} is simple.

Example 1.5. (i) G is supersoluble if and only if G is σ-supersoluble where $\sigma = \sigma_0$ (see Example 1.3(i)).

(ii) The group G is called an SC-group (Robinson [10]) or a c-supersoluble group (Vedernikov [26]) if every chief factor of G is a simple group. Note that G is an SC-group if and only if G is σ-SC-group where $\sigma = \sigma_0$.

(iii) Let $G = A_5 \times B$, where A_5 is the alternating group of degree 5 and $B = C_{29} \rtimes C_7$ is a non-abelian group of order 203, and let $\sigma = \{\{7\}, \{29\}, \{2, 3, 5\}, \{2, 3, 5, 7, 29\}\}$. Then $G^{\sigma_0} = C_{29}$, so G is a σ-supersoluble group but it is neither soluble nor σ-nilpotent.

(iv) Let $G = SL(2, 7) \times A_7 \times A_5 \times B$, where $B = C_{43} \rtimes C_7$ is a non-abelian group of order 301, and let $\sigma = \{\{2, 3, 5\}, \{7, 43\}, \{2, 3, 5, 7, 43\}\}$. Then $G^{\sigma_0} = SL(2, 7) \times A_7$, so G is a σ-SC-group but it is not a σ-supersoluble group.

In what follows, \mathfrak{U}_0 is the class of all σ-supersoluble groups; \mathfrak{U}_σ is the class of all σ-SC-groups.

We say that G is σ-perfect if $G^{\sigma_0} = G$, that is, $O^\sigma_\sigma(G) = G$ for all i.

From Theorem B it follows that every σ-soluble $P\sigma T$-group is σ-supersoluble. Our first observation shows that in general case every $P\sigma T$-group is a σ-SC-group.

Proposition A. Let G be a $P\sigma T$-group and let $D = G^{\sigma_0}$ be the σ-soluble residual of G. Suppose that G possesses a complete Hall σ-set \mathfrak{H} whose members are PST-groups. Then the following conditions hold:

(i) G is a σ-SC-group.

(ii) $D = G^{\sigma_0}$ is σ-perfect and G/D is a σ-soluble $P\sigma T$-group.

(iii) G satisfies N_{σ_i} for all i.

In this proposition we say that G satisfies N_{σ_i} if whenever N is a σ-soluble normal subgroup of G, σ_i-elements of G induce power automorphisms in $O_{\sigma_i}(G/N)$. We say also, following [7, 2.1.18], that G satisfies N_p if whenever N is a soluble normal subgroup of G, p'-elements of G induce power automorphisms in $O_p(G/N)$.

Corollary 1.6 (See Proposition 2.1.1 in [7]). Let G be a PST-group. Then:

(i) G is an SC-group, and

(ii) G of satisfies N_p for every prime p.

3
Definition 1.7. We say that \((D, Z(D); U_1, \ldots, U_k)\) is a Robinson \(\sigma\)-complex (a Robinson complex in the case \(\sigma = \sigma^0\)) of \(G\) if the following fold:

(i) \(D\) is a \(\sigma\)-perfect normal subgroup of \(G\),

(ii) \(D/Z(D) = U_1/Z(D) \times \cdots \times U_k/Z(D)\), where \(U_i/Z(D)\) is a non-abelian simple chief factor of \(G\) for all \(i\),

(iii) every chief factor of \(G\) below \(Z(D)\) is cyclic, and

(iv) \(D^0 \leq D\) for every normal subgroup \(D^0\) of \(G\) satisfying Conditions (i), (ii) and (iii).

Example 1.8. Let \(G = SL(2, 7) \times A_7 \times A_5 \times B\) be the group in Example 1.5(iv) and \(\sigma = \{\{2,3,5\}, \{7,43\}, \{2,3,5,7,43\}\}\). Then

\[
(SL(2, 7) \times A_7, Z(SL(2, 7)); SL(2, 7), A_7 Z(SL(2, 7)))
\]

is a Robinson \(\sigma\)-complex of \(G\) and

\[
(SL(2, 7) \times A_7 \times A_5, Z(SL(2, 7)); SL(2, 7), A_7 Z(SL(2, 7)), A_5 Z(SL(2, 7))))
\]

is a Robinson complex of \(G\).

Being based on Theorems A and B and using some ideas in [10, 23, 24, 25], in the given paper we prove the following

Theorem C. Suppose that \(G\) possesses a complete Hall \(\sigma\)-set \(\mathcal{H}\) whose members are PST-groups. Then \(G\) is a \(P\sigma T\)-group if and only if \(G\) has a \(\sigma\)-perfect normal subgroup \(D\) such that:

(i) \(G/D\) is a \(\sigma\)-soluble \(P\sigma T\)-group.

(ii) If \(D \neq 1\), then \(G\) has a Robinson \(\sigma\)-complex of the form \((D, Z(D); U_1, \ldots, U_k)\), and

(iii) If \(\{i_1, \ldots, i_r\} \subseteq \{1, \ldots, k\}\), where \(1 \leq r < k\), then \(G\) and \(G/U_{i_1} \cdots U_{i_r}\) satisfy \(N_{\sigma_i}\) for all \(i\) such that \(\sigma_i \cap \pi(Z(D)) \neq \emptyset\).

Corollary 1.9 (Robinson [10]). A group \(G\) is a PST-group if and only if \(G\) has a perfect normal subgroup \(D\) such that:

(i) \(G/D\) is a soluble PST-group.

(ii) If \(D \neq 1\), then \(G\) has a Robinson complex of the form \((D, Z(D); U_1, \ldots, U_k)\), and

(iii) If \(\{i_1, \ldots, i_r\} \subseteq \{1, \ldots, k\}\), where \(1 \leq r < k\), then \(G\) and \(G/U_{i_1} \cdots U_{i_r}\) satisfy \(N_p\) for all \(p \in \pi(Z(D))\).

The class \(1 \in \mathcal{F}\) is said to be a formation if every homomorphic image of \(G/G\mathcal{F}\) belongs to \(\mathcal{F}\) for every group \(G\), that is, if \(G \in \mathcal{F}\), then also every homomorphic image of \(G\) belongs to \(\mathcal{F}\) and \(G/N \cap R \in \mathcal{F}\) whenever \(G/N \in \mathcal{F}\) and \(G/R \in \mathcal{F}\). The formation \(\mathcal{F}\) is said to (normally) hereditary if \(H \in \mathcal{F}\) whenever \(G \in \mathcal{F}\) and \(H\) is a (normal) subgroup of \(G\).

We prove Proposition A and Theorem C in Section 3. But before, in Section 2, we study properties of \(\sigma\)-supersoluble groups and \(\sigma\)-SC-groups. In particular, we prove the following two results.
Proposition B. For any partition σ of \mathbb{P} the following hold:

(i) The class $\mathcal{U}_{c\sigma}$ is a normally hereditary formation.
(ii) The class \mathcal{U}_{σ} is a hereditary formation.

Theorem D Let $N = G^{\sigma G}$ and let $D = N^G$ be the soluble residual of N. Then G is a σ-SC-group if and only if the following hold:

(i) $D = G^{\sigma G}$, and
(ii) if $D \neq 1$, then G has a Robinson complex of the form $(D, Z(D); U_1, \ldots, U_k)$, where $Z(D) = D_0$ is the soluble radical of D.

Corollary 1.10 (Robinson [10]). A group G is an SC-group if and only if G satisfies:

(i) G/G^G is supersoluble.
(ii) If $D = G^G \neq 1$, then G has a Robinson complex of the form $(D, Z(D); U_1, \ldots, U_k)$.

2 Proofs of Proposition B and Theorem B

The following lemma collects the properties of σ-nilpotent groups which we use in our proofs.

Lemma 2.1 (See Corollary 2.4 and Lemma 2.5 in [3]). The class of all σ-nilpotent groups \mathfrak{N}_σ is closed under taking products of normal subgroups, homomorphic images and subgroups.

Lemma 2.2 (See [27, 2.2.8]). If \mathfrak{F} is a formation and N, R are subgroups of G, where N is normal in G, then

(i) $(G/N)^\mathfrak{F} = G^\mathfrak{F}N/N$, and
(ii) $G^\mathfrak{F}N = R^\mathfrak{F}N$ provided $G = RN$.

Proof of Proposition B. (i) Let $D = G^{\sigma G}$. First note that if R is a normal subgroup of G, then $(G/R)^{\mathfrak{N}_\sigma} = DR/R$ by Lemmas 2.1 and 2.2 and so from the G-isomorphism $DR/R \simeq D/(D \cap R)$ we get that every chief factor of G/R below $(G/R)^{\mathfrak{N}_\sigma}$ is simple if and only if every chief factor of G between D and $D \cap R$ is simple. Therefore if $G \in \mathcal{U}_{c\sigma}$, then $G/R \in \mathcal{U}_{c\sigma}$. Hence the class $\mathcal{U}_{c\sigma}$ is closed under taking homomorphic images.

Now we show that if $G/R, G/N \in \mathcal{U}_{c\sigma}$, then $G/(R \cap N) \in \mathcal{U}_{c\sigma}$. We can assume without loss of generality that $R \cap N = 1$. Since $G/R \in \mathcal{U}_{c\sigma}$, hence every chief factor of G between D and $D \cap R$ is simple. Also, every chief factor of G between D and $D \cap N$ is simple. Now let H/K be any chief factor of G below $D \cap R$. Then $H \cap D \cap N = 1$ and hence from the G-isomorphism

$$H(D \cap N)/K(D \cap N) \simeq H/(H \cap K(D \cap N)) = H/K(H \cap D \cap N) = H/K$$

we get that H/K is simple since $D \cap N \leq K(D \cap N) \leq D$. On the other hand, every chief factor of G between D and $D \cap R$ is also simple. Therefore the Jordan-Hölder theorem for groups with
operators [28, A, 3.2] implies that every chief factor of \(G \) below \(D \) is simple. Hence \(G \in \mathcal{U}_{\sigma} \), so the class \(\mathcal{U}_{\sigma} \) is closed under taking subdirect products.

Finally, if \(H \leq G \in \mathcal{U}_{\sigma} \), then from Lemmas 2.1 and 2.2 and the isomorphism

\[
H/(H \cap D) \simeq HD/D \in \mathcal{U}_{\sigma}
\]

we get that \(H^{\mathfrak{m}_{\sigma}} \leq H \cap D \) and so every chief factor of \(H \) below \(H^{\mathfrak{m}_{\sigma}} \) is simple since every chief factor of \(G \) below \(D \) is simple. Hence \(H \in \mathcal{U}_{\sigma} \), so the class \(\mathcal{U}_{\sigma} \) is closed under taking normal subgroups.

(ii) See the proof of (i).

The proposition is proved.

Lemma 2.3. Let \(H/K \) be a non-abelian chief factor of \(G \). If \(H/K \) is simple, then \(G/H^\sigma G(H/K) \) is soluble.

Proof. Since \(C_G(H/K)/K = C_{G/K}(H/K) \), we can assume without loss of generality that \(K = 1 \). Then

\[
G/C_G(H) \simeq V \leq \text{Aut}(H)
\]

and

\[
H/(H \cap C_G(H)) \simeq H^\sigma G(H)/C_G(H) \simeq \text{Inn}(H)
\]

since \(C_G(H) \cap H = 1 \). Hence

\[
G/H^\sigma G(H) \simeq (G/C_G(H))/(H^\sigma G(H)/C_G(H)) \simeq W \leq \text{Aut}(H)/\text{Inn}(H).
\]

From the validity of the Schreier conjecture, it follows that \(G/H^\sigma G(H/K) \) is soluble. The lemma is proved.

Proof of Theorem D. First note that \(D \) is characteristic in \(N \) and \(R = D_\mathfrak{S} \) is a characteristic subgroup of \(D \), so both these subgroups are normal in \(G \).

Necessity. In view of Proposition B(ii), \(G/G^{\mathfrak{m}_{\sigma}} \) is \(\sigma \)-supersoluble and \(G^{\mathfrak{m}_{\sigma}} \) is contained in every normal subgroup \(E \) of \(G \) with \(\sigma \)-supersoluble quotient \(G/E \). By Lemmas 2.1 and 2.2, \(N/D = (G/N)^{\mathfrak{m}_{\sigma}} \). On the other hand, every chief factor of \(G \) between \(N \) and \(D \) is abelian and so cyclic and hence \(G/D \) is \(\sigma \)-supersoluble. Therefore \(G^{\mathfrak{m}_{\sigma}} \leq D \). Moreover, from Lemma 2.2 and Proposition B(ii) we also get that

\[
N/G^{\mathfrak{m}_{\sigma}} = (G/G^{\mathfrak{m}_{\sigma}})^{\mathfrak{m}_{\sigma}},
\]

so every chief factor of \(G \) between \(N \) and \(G^{\mathfrak{m}_{\sigma}} \) is cyclic and hence \(D \leq G^{\mathfrak{m}_{\sigma}} \). Thus \(D = G^{\mathfrak{m}_{\sigma}} \), so if \(D = 1 \), then \(G \) is \(\sigma \)-supersoluble.

Now suppose that \(D \neq 1 \). We show that in this case \(G \) has a Robinson complex of the form \((D, Z(D); U_1, \ldots, U_k)\), where \(Z(D) = R \). It is clear that every chief factor of \(G \) below \(R \) is cyclic, so \(G/C_G(R) \) is supersoluble by [28, IV, 6.10]. Hence \(D = G^{\mathfrak{m}_{\sigma}} \leq C_G(R) \), so \(R \leq Z(D) \leq D_\mathfrak{S} = R \) and therefore we have \(Z(D) = R \).
Now let H/K be any chief factor of G below D. Then $H \leq N$ and so in the case when H/K is abelian, this factor is cyclic, which implies that $D = G_{\text{ab}} \leq C_G(H/K)$. On the other hand, if H/K is a non-abelian simple group, then Lemma 2.3 implies that $G/H C_G(H/K)$ is soluble. Then

$$D H C_G(H/K)/H C_G(H/K) \simeq D/(D \cap H C_G(H/K)) = D/H C_D(H/K)$$

is soluble, so $D = H C_D(H/K)$ since D is evidently perfect. Therefore, in both cases, every element of D induces an inner automorphism on H/K. Therefore every element of D induces an inner automorphism on H/K. Therefore D is quasinilpotent. Hence in view of [29, X, 13.6], G has a Robinson complex of the form $(D, Z(D), U_1, \ldots, U_k)$.

Sufficiency. From Conditions (i), (ii) and (iii), it follows that all factors below N of any chief series of G passing through N are simple. Therefore the Jordan-Hölder theorem for groups with operators [28, A, 3.2] implies that every chief factor of G below N is simple. Therefore G is a σ-SC-group.

The theorem is proved.

3 Proofs of Proposition A and Theorem A

Recall that a subgroup A of G is called σ-subnormal in G [3] if there is a subgroup chain

$$A = A_0 \leq A_1 \leq \cdots \leq A_n = G$$

such that either $A_{i-1} \trianglelefteq A_i$ or $A_i/(A_{i-1})_{A_i}$ is σ-primary for all $i = 1, \ldots, n$.

Lemma 3.1 (See Remark 1.1 and [Proposition 2.6]arivII). G is σ-nilpotent if and only if every subgroup of G σ-subnormal in G.

Lemma 3.2. Let A, K and N be subgroups of G. Suppose that A is σ-subnormal in G and N is normal in G.

1. $A \cap K$ is σ-subnormal in K.
2. AN/N is σ-subnormal in G/N.
3. If $N \leq K$ and K/N is σ-subnormal in G/N, then K is σ-subnormal in G.
4. If $H \neq 1$ is a Hall σ_i-subgroup of G and A is not a σ'_i-group, then $A \cap H \neq 1$ is a Hall σ_i-subgroup of A.
5. If A is a σ_i-group, then $A \leq O_{\sigma_i}(G)$.
6. If A is a Hall σ_i-subgroup of G, then A is normal in G.
7. If $|G : A|$ is a σ_i-number, then $O^{\sigma_i}(A) = O^{\sigma_i}(G)$.
8. If G is σ-perfect, then A is subnormal in G.
9. A^{σ_i} is subnormal in G.

Proof. Assume that this lemma is false and let G be a counterexample of minimal order. By hypothesis, there is a subgroup chain $A = A_0 \leq A_1 \leq \cdots \leq A_r = G$ such that either $A_{i-1} \leq A_i$
or \(A_i/(A_{i-1})A_i \) is \(\sigma \)-primary for all \(i = 1, \ldots, r \). Let \(M = A_{r-1} \). We can assume without loss of generality that \(M \neq G \).

1–7) See Lemma 2.6 in [3].

8) \(A \) is subnormal in \(M \) by the choice of \(G \). On the other hand, since \(G \) is \(\sigma \)-perfect, \(G/M_G \) is not \(\sigma \)-primary. Hence \(M \) is normal in \(G \) and so \(A \) is subnormal in \(G \).

9) \(A \) is \(\sigma \)-subnormal in \(AM_G \) by Part (1), so the choice of \(G \) implies that \(A^{\sigma_i} \) is subnormal in \(AM_G \). Hence \(G/M_G \) is a \(\sigma_i \)-group for some \(i \), so \(M_G A/M_G \simeq A/A \cap M_G \) is a \(\sigma_i \)-group. Hence \(A^{\sigma_i} \leq M_G \), so \(A^{\sigma_i} \) is subnormal in \(M_G \) and hence \(A^{\sigma_i} \) is subnormal in \(G \).

Lemma is proved.

The following lemma, in fact, is a corollary of Theorem A and Lemmas 3.1 and 3.2(3).

Lemma 3.3. The following statements hold:

(i) \(G \) is a \(P \sigma T \)-group if and only if every \(\sigma \)-subnormal subgroup of \(G \) is \(\sigma \)-permutable in \(G \).

(ii) If \(G \) is a \(P \sigma T \)-group, then every quotient \(G/N \) of \(G \) is also a \(P \sigma T \)-group.

Lemma 3.4. Let \(A \) and \(B \) be subgroups of \(G \), where \(A \) is \(\sigma \)-permutable in \(G \).

1) If \(A \leq B \) and \(B \) is \(\sigma \)-subnormal in \(G \), then \(A \) is \(\sigma \)-permutable in \(B \).

2) Suppose that \(B \) is a \(\sigma_i \)-group. Then \(B \) is \(\sigma \)-permutable in \(G \) if and only if \(O^{\sigma_i}(G) \leq N_G(B) \).

Proof. (1) By hypothesis, \(G \) possesses a complete Hall \(\sigma \)-set \(\mathcal{H} = \{H_1, \ldots, H_t\} \). Then \(\mathcal{H}_0 = \{H_1 \cap B, \ldots, H_t \cap B\} \) is a complete Hall \(\sigma \)-set of \(B \) by Lemma 3.2(4). Moreover, for every \(x \in B \) and \(H \in \mathcal{H} \) we have \(AH^x = H^xA \), so

\[
AH^x \cap B = A(H^x \cap B) = A(H \cap B)^x = (H \cap B)^x A.
\]

Hence \(A \) is \(\sigma \)-permutable in \(B \) by Remark 1.2.

(2) See Lemma 3.1 in [3].

The lemma is proved.

Proof of Proposition A. Let \(\mathcal{H} = \{H_1, \ldots, H_t\} \) and \(N = G^{\sigma_i} \) be the \(\sigma \)-nilpotent residual of \(G \). Then \(D \leq N \).

1) Statement (i) holds for \(G \).

Suppose that this is false and let \(G \) be a counterexample of minimal order. If \(D = 1 \), then \(G \) is \(\sigma \)-soluble and so \(G \) is a \(\sigma \)-SC-group by Theorem B. Therefore \(D \neq 1 \). Let \(R \) be a minimal normal subgroup of \(G \) contained in \(D \). Then \(G/R \) is a \(P \sigma T \)-group by Lemma 3.3(ii). Therefore the choice of \(G \) implies that \(G/R \) is a \(\sigma \)-SC-group. Since \((G/R)^{\sigma_i} = N/R \) by Lemmas 2.1 and 2.2, every chief factor of \(G/R \) below \(N/R \) is simple. Hence every chief factor of \(G \) between \(G^{\sigma_i} \) and \(R \) is simple. Hence every chief factor of \(G \) between \(G^{\sigma_i} \) and \(R \) is simple. Therefore, in view of the Jordan-Hölder theorem for groups with operators [28, A, 3.2], it is enough to show that \(R \) is simple. Suppose that this is false. Let \(L \) be a minimal normal subgroup of \(R \).
Then $1 < L < R$ and L is σ-permutable in G by Lemma 3.3(i) since G is a $P\sigma T$-group. Moreover, $L_G = 1$ and so L is σ-nilpotent by Theorem A. Therefore R is a σ_i-group for some i, so for some k we have $R \leq H_k$. Now let V be a maximal subgroup of R. Then V is σ-subnormal in G, so V is σ-permutable in G and hence

$$R \leq D \leq O^{\sigma_i}(G) \leq N_G(V)$$

by Lemma 3.4(2). Thus R is nilpotent, so R is a p-group for some $p \in \sigma_i$. Now let V be a maximal subgroup of R such that V is normal in a Sylow p-subgroup of P of H_k. By hypothesis, H_k is a PST-group and so V is S-permutable in H_k since it is subnormal in H_k. Then, by Lemma 3.4(2) (taking in the case $\sigma = \{2\}, \{3\}, \ldots$), we have $H_k = PO^p(H_k) \leq N_G(V)$. Therefore, in view of Lemma 3.4(2), we have

$$G = H_kO^{\sigma_i}(G) \leq N_G(V).$$

Hence $V = 1$ and so $|R| = p$, a contradiction. Thus we have (1).

(2) Statement (ii) holds for G.

It is clear that D is σ-perfect and G/D is σ-soluble. In view of Lemma 3.3(ii), G/D is a $P\sigma T$-group. It is also clear that $D \leq G^{\Delta p}$. On the other hand, G/D is σ-supersoluble by Theorem B. Therefore $G^{\Delta p} \leq D$ and so we have $D = G^{\Delta p}$. Hence we have (2).

(3) Statement (iii) holds for G.

Let L be a σ-soluble normal subgroup of G and let x be a σ_i-element of G. Let $V/L \leq O_{\sigma_i}(G/L)$. Then V/L is σ-subnormal in G/L, so V/L is σ-permutable in G/L by Lemma 3.3(i) since G/L is a $P\sigma T$-group by Lemma 3.3(ii). Therefore

$$xL \in O^{\sigma_i}(G/L) \leq N_{G/L}(V/L)$$

by Lemma 3.4(2). Hence Statement (iii) holds for G.

The proposition is proved.

Lemma 3.5. Let G be a non-σ-supersoluble σ-full σ-SC-group and let $(D, Z(D); U_1, \ldots, U_k)$ be a Robinson complex G, where $D = G^{\Delta p}$. Let U be a non-σ-permutable σ-subnormal subgroup of G of minimal order. Suppose that $S/Z(S)$ is σ-perfect. Then:

(i) If U^{1_i}/U_i' is σ-permutable in G/U_i' for all i, then U is σ-supersoluble.

(ii) If U is σ-supersoluble and UL/L is σ-permutable in G/L for all non-trivial nilpotent normal subgroups L of G, then U is a cyclic p-group for some prime p.

Proof. Suppose that this lemma is false and let G be a counterexample of minimal order. By hypothesis, for some i and for some Hall σ_i-subgroup H of G we have $UH \neq HU$.

(i) Assume that this is false. Then $U \cap D \neq 1$ since $UD/D \simeq U/(U \cap D)$ is σ-supersoluble by Proposition B(ii). Moreover, Lemma 3.2(1)(2), implies that $(U \cap D)Z(D)/Z(D)$ is σ-subnormal in $D/Z(D)$ and so $(U \cap D)Z(D)/Z(D)$ is a non-trivial subnormal subgroup of $D/Z(D)$ by Lemma
3.2(8) since $D/Z(D)$ is σ-perfect by hypothesis. Hence for some i we have

$$U_i/Z(D) \leq (U \cap D)Z(D)/Z(D),$$

so $U_i \leq (U \cap D)Z(D)$. But then

$$U'_i \leq ((U \cap D)Z(D))' \leq U \cap D.$$

By hypothesis, $UU'_i/U'_i = U/U'_i$ is σ-permutable in G/U'_i and so

$$U'U_i = (U/U'_i)(HU'_i/U'_i) = (HU'_i/U'_i)(U/U'_i) = HU/U'_i.$$

Hence $U'H = HU$, a contradiction. Therefore Statement (i) holds.

(ii) Let $N = U^{\sigma_i}$. Then D is subnormal in G by Lemma 3.2(9). Since U is σ-supersoluble by hypothesis, $N < U$. By Lemmas 2.1, 2.2 and 3.2(3), every proper subgroup V of U with $N \leq V$ is σ-subnormal in G, so the minimality of U implies that $VH = HV$. Therefore, if U/V has at least two distinct maximal subgroups V and W such that $N \leq V \cap W$, then $U = \langle V, W \rangle$ is permutes with H by [28, A, 1.6], contrary to our assumption on U and H. Hence U/N is a cyclic p-group for some prime p.

First assume that $p \in \sigma_i$. Lemma 3.2(4) implies that $H \cap U$ is a Hall σ_i-subgroup of U, so $U = N(H \cap U) = (H \cap U)N$. Hence

$$UH = (H \cap U)NH = H(H \cap U)N = HU,$$

a contradiction. Thus $p \in \sigma_j$ for some $j \neq i$.

Now we show that U is a $P\sigma T$-group. Let V be a proper σ-subnormal subgroup of U. Then V is σ-subnormal in G since U is σ-subnormal in G. The minimality of U implies that V is σ-permutable in G, so V is σ-permutable in U by Lemma 3.4(1). Hence U is a σ-soluble $P\sigma T$-group by Lemma 3.3(i), so N is abelian by Theorem B.

Therefore N is a σ'_j-group, so $N \leq O = O_{\sigma'_j}(F(G))$ by Lemma 3.2(5) (taking in the case $\sigma = \{2\}$, \{3\}, . . .). By hypothesis, OU/O permutes with OH/O. By Lemma 3.2(1)(2), OU/O is σ-subnormal in

$$(OU/O)(OH/O) = (OH/O)(OU/O) = OHU/O,$$

where $OU/O \simeq U/U \cap O$ is a σ_j-group and $OH/O \simeq H/H \cap O$ is a σ_i-group. Hence UO/O is normal in OHU/O by Lemma 3.2(6). Hence $H \leq N_G(U)$

$$H \leq N_G(O_{\sigma'_j}(OU)) = N_G(O_{\sigma'_j}(U))$$

by Lemma 3.2(7) since $p \in \sigma_j$ implies that $O_{\sigma'_j}(U) = U$. But then $HU = UH$, a contradiction. Therefore Statement (ii) holds.

The lemma is proved.
Lemma 3.6. Suppose that G has a Robinson σ-complex $(D, Z(D); U_1, \ldots, U_k)$, and let N be a normal subgroup of G.

(i) If $N = U'_i$, then

$$(D/N, Z(D/N) = U_i/N; U_1 N/N, \ldots, U_{i-1} N/N, U_{i+1} N/N, \ldots U_k N/N, U_i/N)$$

is a Robinson σ-complex of G/N, where $U_i/U'_i \simeq Z(D)/(Z(D) \cap U'_i)$.

(ii) If N is nilpotent, then

$$(DN/N, Z(DN/N) = Z(D)N/N; U_1 N/N, \ldots, U_k N/N)$$

is a Robinson σ-complex of G/N.

Proof. See Remark 1.6.8 in [7].

Lemma 3.7 (See Knyagina and Monakhov [31]). Let H, K and N be pairwise permutable subgroups of G and H is a Hall subgroup of G. Then

$$N \cap HK = (N \cap H)(N \cap K).$$

Lemma 3.8. If G satisfies N_{σ_i}, then G/R satisfies N_{σ_i} for every normal σ-soluble subgroup R of G.

Proof. Let N/R be a normal σ-soluble subgroup of G/R and let

$$(V/R)/(N/R) \leq O_{\sigma_i}((G/R)/(N/R)).$$

Then N is a normal σ-soluble subgroup of G and $V/N \leq O_{\sigma_i}(G/N)$. Moreover, for every σ'_i-element $xR \in G/R$ there is a σ'_i-element $y \in G$ such that $xR = yR$ and so $yN \leq N_{G/N}(V/N)$, which implies that

$$xR(N/R) \in N_{(G/R)/(N/R)}((V/R)/(N/R)).$$

Hence G/R satisfies N_{σ_i}, as required.

By the analogy with the notation $\pi(n)$, we will write $\sigma(n)$ to denote the set $\{\sigma_i | \sigma_i \cap \pi(n) \neq \emptyset\}$; $\sigma(G) = \sigma(|G|)$.

Proof of Theorem C. First assume that G is a $P\sigma T$-group and let $D = G^{G_{\sigma}}$ be the σ-soluble residual of G. Then D is clearly σ-perfect and, by Proposition A, G is a σ-SC-group and Statements (i) and (iii) hold for G. Moreover, Theorem B implies that D coincides with the σ-supersoluble residual $G^{G_{\sigma}}$ of G and if $D \neq 1$, then G possesses a Robinson σ-complex of the form $(D, Z(D); U_1, \ldots, U_k)$. Therefore the necessity of the condition of the theorem holds for G.

Now assume that G has a normal σ-perfect subgroup D and D satisfies Conditions (i), (ii) and (iii). We show that G is a $P\sigma T$-group. Suppose that this is false and let G be a counterexample of
minimal order. Then $D \neq 1$ and G has a σ-subnormal subgroup U such that $UH \neq HU$ for some i and some Hall σ_i-subgroup H of G and also every σ-subnormal subgroup U_0 of G with $U_0 < U$ is σ-permutable in G. Finally, note that $D = G^{d_U}$ by Condition (i) and Theorem B.

(1) U is σ-supersoluble.

In view of Lemma 3.5(i), it is enough to show that the hypothesis holds on G/U'_i for all $i = 1, \ldots, k$. Let $N = U'_i$. We can assume without loss of generality that $i = 1$. Then

$$(D/N)^{\sigma_i} = D^{\sigma_i} N/N = D/N$$

by Lemmas 2.1 and 2.2, so D/N is a normal σ-perfect subgroup of G/N. Moreover, $(G/N)/(D/N) \simeq D/D$ is a σ-soluble $P\sigma T$-group. Now assume that $D/N \neq 1$. Then, by Lemma 3.6(i),

$$(D/N, Z(D/N); U_2 N/N, \ldots, U_k N/N)$$

is a Robinson σ-complex of G/N, where $Z(D/N) = U_1/N$. Moreover, if $\{i_1, \ldots, i_r\} \subseteq \{2, \ldots, k\}$, where $2 \leq r < k$, then the quotients $G/N = G/U'_i$ and

$$(G/N)/(U_{i_1} N/N') \cdots (U_{i_r} N/N') = (G/N)/(U'_{i_1} \cdots U'_{i_r} U'_1/N) \simeq G/U'_{i_1} \cdots U'_{i_r} U'_1$$

satisfy N_{σ_i} for all

$$\sigma_i \in \sigma(U_1/N) = \sigma(Z(D/N)) \subseteq \sigma(Z(D)/(Z(D) \cap U'_1)).$$

Therefore the hypothesis holds for G/R, so we have (1).

(2) U is a cyclic p-group for some prime $p \in \sigma_j$, where $j \neq i$.

First we show that U is a cyclic p-group for some prime. In view of Claim (1) and Lemma 3.5(ii), it is enough to show that the hypothesis holds on G/N for every normal nilpotent subgroup N of G. First note that

$$(D/N)^{\sigma_i} = D^{\sigma_i} N/N = D/N$$

by Lemma 2.2(ii), so D/N is a normal σ-perfect subgroup of G/N. Moreover,

$$(D/N, Z(D/N); U_2 N/N, \ldots, U_k N/N)$$

is a Robinson σ-complex of G/N by Lemma 3.6(ii). Finally, if V/N is a normal σ-soluble subgroup of G/N, then V is a normal σ-soluble subgroup of G and so for $\{i_1, \ldots, i_r\} \subseteq \{1, \ldots, t\}$, where $1 \leq r < k$, the quotient G/N and, by Lemma 3.8, the quotient

$$(G/N)/(U_{i_1} N/N') \cdots (U_{i_r} N/N') = (G/N)/(U'_{i_1} \cdots U'_{i_r} N/N)$$

$$(G/N)/(U_{i_1} N/N') \cdots (U_{i_r} N/N') \simeq G/U'_{i_1} \cdots U'_{i_r} N \simeq (G/U'_{i_1} \cdots U'_{i_r})/(U'_{i_1} \cdots U'_{i_r} N/U'_{i_1} \cdots U'_{i_r})$$

satisfy N_{σ_i} for all

$$\sigma_i \in \sigma(Z(D/N)) = \sigma(Z(D)N/N) \subseteq \sigma(Z(D)).$$
since $U'_i \cdots U'_{i_r} N/U'_1 \cdots U'_{i_r} \simeq N/(N \cap U'_i \cdots U'_{i_r})$ is σ-soluble.

Therefore the hypothesis holds on G/N, so U is a cyclic p-group for some prime $p \in \sigma_j$. Finally, Lemma 3.2(4) implies that in the case $i = j$ we have $U \leq H$, so $UH = H = HU$. Therefore $j \neq i$. Finally, again by Lemma 3.2(4), $U \leq O_{\sigma_j}(G)$.

(3) $O_{\sigma_j}(G) \cap D = 1$.

Suppose that $L = O_{\sigma_j}(G) \cap D \neq 1$. Then, since $D/Z(D)$ is σ-perfect, $L \leq Z(D)$ and so G satisfies N_{σ_j} by Condition (iii). Therefore $H \leq N_G(U)$ since $i \neq j$, $U \leq O_{\sigma_j}(G)$ and H is a σ_i-group. But then $HU = UH$, a contradiction. Hence we have (3).

Final contradiction for the sufficiency. By Lemma 3.2(2), UD/D is σ-subnormal in G/D. On the other hand, HD/D is a Hall σ_i-subgroup of G/D. Hence

$$(UD/D)(HD/D) = (HD/D)(UD/D) = HUD/D$$

by Condition (i) and Lemma 3.3(i), so HU is a subgroup of G. Therefore, by Claims (2), (3) and Lemma 3.7,

$$UHD \cap HO_{\sigma_j}(G) = UH(D \cap HO_{\sigma_j}(G)) = UH(D \cap H)(D \cap O_{\sigma_j}(G))$$

$$= UH(D \cap H) = UH$$

is a subgroup of G and so $HU = UH$, a contradiction.

The theorem is proved.

References

[1] A. N. Skiba, A generalization of a Hall theorem, J. Algebra and its Application, 15(4) (2015), 21–36.

[2] A.N. Skiba, On some results in the theory of finite partially soluble groups, Commun. Math. Stat., 4(3) (2016), 281–309.

[3] A.N. Skiba, On σ-subnormal and σ-permutable subgroups of finite groups, J. Algebra, 436 (2015), 1–16.

[4] Alexander N. Skiba, On the lattice of the σ-permutable subgroups of a finite group, arXiv:1703.01773 [math.GR].

[5] L.A. Shemetkov, Formations of finite groups, Nauka, Main Editorial Board for Physical and Mathematical Literature, Moscow, 1978.

[6] W. Guo, A.N. Skiba, Finite groups with permutable complete Wielandt sets of subgroups, J. Group Theory, 18 (2015), 191–200.
[7] A. Ballester-Bolinches, R. Esteban-Romero, M. Asaad, *Products of Finite Groups*, Walter de Gruyter, Berlin-New York, 2010.

[8] B. Huppert, *Endliche Gruppen I*, Springer-Verlag, Berlin-Heidelberg-New York, 1967.

[9] R.K. Agrawal, Finite groups whose subnormal subgroups permute with all Sylow subgroups, *Proc. Amer. Math. Soc.*, **47** (1975), 77–83.

[10] D.J.S. Robinson, The structure of finite groups in which permutability is a transitive relation, *J. Austral. Math. Soc.*, **70** (2001), 143–159.

[11] R.A. Brice, J. Cossey, The Wielandt subgroup of a finite soluble groups, *J. London Math. Soc.*, **40** (1989), 244–256.

[12] J.C. Beidleman, B. Brewster, D.J.S. Robinson, Criteria for permutability to be transitive in finite groups, *J. Algebra*, **222** (1999), 400–412.

[13] M.J. Alejandre, A. Ballester-Bolinches, M.C. Pedraza-Aguilera, Finite soluble group with permutable subnormal subgroups, *J. Algebra*, **240** (2001), 705–722.

[14] A. Ballester-Bolinches, R. Esteban-Romero, Sylow permutable subnormal subgroups, *J. Algebra*, **251** (2002), 727–738.

[15] A. Ballester-Bolinches, J.C. Beidleman, H. Heineken, Groups in which Sylow subgroups and subnormal subgroups permute, *Illinois J. Math.*, **47** (2003), 63–69.

[16] A. Ballester-Bolinches, J.C. Beidleman, H. Heineken, A local approach to certain classes of finite groups, *Comm. Algebra*, **31** (2003), 5931–5942.

[17] M. Asaad, Finite groups in which normality or quasinormality is transitive, *Arch. Math.*, **83** (4) (2004), 289–296.

[18] A. Ballester-Bolinches, J. Cossey, Totally permutable products of finite groups satisfying SC or PST, *Monatsh. Math.*, **145** (2005), 89–93.

[19] K. Al-Sharo, J.C. Beidleman, H. Heineken, et al. Some characterizations of finite groups in which semipermutability is a transitive relation, *Forum Math.*, **22** (2010), 855–862.

[20] J.C. Beidleman, M.F. Ragland, Subnormal, permutable, and embedded subgroups in finite groups, *Central Eur. J. Math.*, **9**(4) (2011), 915–921.

[21] X. Yi, A.N. Skiba, Some new characterizations of PST-groups, *J. Algebra*, **399** (2014), 39–54.

[22] Alexander N. Skiba, Characterizations of some classes of finite σ-soluble $P\sigma T$-groups, arXiv:1704.02509 [math.GR].
[23] A.N. Skiba, On finite groups for which the lattice of S-permutable subgroups is distributive, *Arch. Math.*, **109** (2017), 9-17.

[24] J. C. Beidleman, A. N. Skiba, On τ-σ-quasinormal subgroups of finite groups, J. Group Theory, DOI 10.1515/jgth-2017-0016.

[25] W. Guo, A. N. Skiba, On II-quasinormal subgroups of finite groups, Monatsh. Math., DOI 10.1007/s00605-016-1007-9.

[26] V.A. Vedernikov, On some classes of finite groups, *Dokl. Akad. Nauk Belarusi*, **32**(10) (1988), 872–875.

[27] A. Ballester-Bolinches, L.M. Ezquerro, *Classes of Finite groups*, Springer, Dordrecht, 2006.

[28] K. Doerk, T. Hawkes, *Finite Soluble Groups*. Walter de Gruyter, Berlin-New York, 1992.

[29] B. Huppert, N. Blackburn, *Finite Groups III*, Springer-Verlag, Berlin, New-York, 1982.

[30] Wenbin Guo, Alexander N. Skiba, Finite groups whose n-maximal subgroups are σ-subnormal, arXiv:1608.03353 [math.GR].

[31] B.N. Knyagina, V.S. Monakhov, On π'-properties of finite groups having a Hall π-subgroup, *Siberian Math. J.*, **522** (2011), 398–309.