The action of aripiprazole and brexpiprazole at the receptor level in *singultus*

Eman Alefishat\(^1\).Lujain Aloum\(^1\),Ovidiu C Baltatu\(^1\),Georg A Petroianu\(^1\),\(^*\)

\(^1\)Department of Pharmacology, College of Medicine and Health Science, Khalifa University of Science and Technology, 127788 Abu Dhabi, United Arab Emirates

\(^2\)Center for Biotechnology, Khalifa University of Science and Technology, 127788 Abu Dhabi, United Arab Emirates

\(^3\)Department of Biopharmaceutics and Clinical Pharmacy, Faculty of Pharmacy, The University of Jordan, 11941 Amman, Jordan

\(*\)Correspondence: Georg.petroianu@ku.ac.ae (Georg A Petroianu)

DOI: 10.31083/j.jin.2021.01.273

This is an open access article under the CC BY 4.0 license (https://creativecommons.org/licenses/by/4.0/).

Submitted: 10 September 2020 Revised: 06 December 2020 Accepted: 14 December 2020 Published: 30 March 2021

The hiccup (Latin *singultus*) is an involuntary periodic contraction of the diaphragm followed by glottic closure, which can be a rare side effect of aripiprazole. In contrast to the structurally closely related aripiprazole, brexpiprazole was not associated with this particular adverse drug reaction. Having two very similar drugs that differ in their ability to induce hiccups represents a unique opportunity to gain insight into the receptors involved in the pathophysiology of the symptom and differences in clinical effects between aripiprazole and brexpiprazole. The overlap between maneuvers used to terminate paroxysmal supraventricular tachycardia and those employed to terminate bouts of hiccups suggests that activation of efferent vagal fibers can be therapeutic in both instances. Recent work seems to support a pivotal role for serotonin receptors in such vagal activation. It is unlikely that a unique receptor-drug interaction could explain the different effects of the examined drugs on hiccup. The different effect is most likely the consequence of several smaller effects at more than one receptor. Brexpiprazole is a highly affine (potent) \(\alpha_2C\) antagonist and, therefore, also an indirect \(5-HT_1A\) agonist. In contrast, aripiprazole is a partial \(5-HT_1A\) agonist (weak antagonist) and an \(HT_3\) antagonist. Activation of \(5-HT_1A\) receptors enhances vagal activity while \(HT_3\) blockade reduces it. Vagal nerve activation is therapeutic for hiccups. A definitive answer continues to be elusive.

Keywords

Neuropharmacology; Hiccup; Serotonin; Aripiprazole; Brexpiprazole; Affinity constant

1. Introduction

Hiccup (Latin, *singultus*) is caused by an involuntary periodic contraction of the diaphragm followed by the glottis’s closure. The inspired air meeting a closed glottis causes the familiar hiccup sound. Hiccupping lasting longer than four weeks is considered chronic. Treatment resistance (obstinate hiccup) is defined as a lack of response to many (mostly three) successive pharmacological treatments attempt. Generally, the longer the hiccupping duration, the less amenable it will be to interventions [1].

Singultus is not a disease but a symptom. The most commonly encountered hiccup is that of idiopathic origin. While many drugs have been tried off-label in hiccup therapy, chlorpromazine is the only FDA approved drug for this purpose. In contrast, only a few drugs (benzodiazepines, barbiturates, alcohol, and steroids) and the phenyl-piperazine atypical antipsychotic aripiprazole are well-established hiccup inducers [1].

Since the initial observation made by Behere [2] that aripiprazole can induce hiccups (in his case, associated with hypotension), an abundance of reports on hiccups associated with aripiprazole treatment emerged [3–11], and on persistent hiccups associated with switching antipsychotic treatment to aripiprazole [12–15].

More recently, brexpiprazole was introduced into clinical practice [16]. In contrast to the structurally closely related aripiprazole, brexpiprazole was not associated with this particular adverse drug reaction. Having two very similar drugs that differ in their ability to induce hiccup represents a unique opportunity to gain insight into the receptors involved in the symptom’s pathophysiology.

To identify the critical difference responsible for the discrepancy, we performed a literature search (PubMed and public domain sources) and retrieved and compared the PK/PD data and properties of the two piperazine antipsychotics at serotoninergic, \(alpha_2\)-adrenergic and dopaminergic receptors.

While aware of the limitations of comparing receptor affinities/intrinsic activity values—even more so when obtained from different sources using different methodologies (as they have considerable confidence intervals) and inferring biological effects based on such data, it is currently the only practical available option for our analysis [17, 18].

2. Methods

To identify the critical difference responsible for the discrepancy, a literature search (PubMed and public domain sources) was performed, and pharmacokinetics and pharmacodynamic (PK/PD) data/properties of the two piper-
azin antipsychotics at serotoninergic alpha2–adrenergic and dopaminergic receptors retrieved and compared. Due to the limited number of publications containing pharmacokinetic and or pharmacodynamic details on aripiprazole and brexpiprazole, no filters were applied.

As a matter of terminology -as used by us-when comparing Ki values of the two drugs, very (strong) high affinity implies subnanomolar Ki values, high-affinity Ki between 1 and 10 nM, moderate Ki between 10 and 50 nM, low affinity is Ki between 50 and 100 nM and very (weak) low affinity for Ki higher than 150 nM. For Ki values above 90% of the therapeutic plasma range (700 nM for aripiprazole and 300 nM for brexpiprazole), no effect via the respective receptor is assumed. The inhibition constant (Ki) is calculated based on the following: Ki = IC50 for noncompetitive inhibition, Ki = IC50/2 for competitive inhibition, and Ki values range from IC50 to IC50/2 for mixed inhibition, according to the equation [19]: Ki = IC50/(1 + ([L]/Kd)) where [L] is the concentration of ligand (nM), and Kd is the affinity constant (nM).

For comparison purposes Ki ratios are given as Ki aripiprazole/Ki brexpiprazole, i.e., [Ki(ARi/BREX)]; a value > 1 indicates lower affinity of aripiprazole for the respective receptor while a value < 1 indicates higher affinity of aripiprazole for the respective receptor. Divergent or significantly different effects are assumed when the ratio is either > 10² or < then 10⁻². The same applies when only one of the drugs has a Ki within the therapeutic range [22]. Ki is used to describing the binding affinity that a molecule has for an enzyme or receptor. The half-maximal inhibitor concentration IC50 is more reflective of the inhibitor’s functional strength, but both factors in the drug’s concentration inhibit the activity. Efficacy is the relationship between receptor occupancy and the ability to initiate a response. As a matter of terminology -as used by us-when comparing Ki, (binding affinity constant) values of the two drugs, very (strong) high affinity implies subnanomolar Ki values, high-affinity Ki between 1 and 10 nM, moderate Ki between 10 and 50 nM. Low affinity is Ki between 50 and 100 nM and very (weak) low affinity for Ki higher than 150 nM. For Ki values above 90% of the therapeutic plasma range (700 nM for aripiprazole and 300 nM for brexpiprazole), no effect via the respective receptor is assumed.

The brain aripiprazole concentration is approximately 0.6-0.9 of the respective plasma concentrations [21], while brexpiprazole is 0.2-0.41. These ratios are difficult to interpret, as they do not compare Cmax plasma with Cmax brain.

The abstracts of the 60 documents (search 2 and 4) were evaluated by two of the authors (GAP & EA) for the likelihood the paper containing relevant pharmacokinetic and pharmacodynamics (pK/pD) data (affinity, IC50, EC50, receptor occupancy). The consensus papers were mined for the targeted data. To complement the information thus obtained, a series of databases and other public domain publications (European Medicines Agency (EMA), 2018; Drugs FDA; Lundbeck; American Psychiatric Association; PubChem Database) were also consulted. Sources are cited wherever they are used.

3. Results
3.1 Serotonin (5-HT) receptors
5-HT1A (Ki, 5-HT ≈ 2): Brexpiprazole, despite an affinity one order of magnitude higher ([Ki(ARi/BREX)] ≈ 1.7/0.12 ≈ 14) than aripiprazole, displayed comparable receptor occupancy and an only slightly lower efficacy [Emax expressed as a percentage of the effect of serotonin = 0.6BREX vs. 0.7ARi] [23]. Both drugs are less efficacious than the endogenous neurotransmitter serotonin [Emax ≈ 1], thus acting as partial agonists. The two drugs have very similar effects via this receptor, even though some argue that brexpiprazole is a full 5-HT1A receptor agonist [24, 25] (Table 1).

5-HT1B (Ki, 5-HT ≈ 4): While aripiprazole is unlikely to significantly affect this receptor (Ki, outside of the therapeutic range, brexpiprazole will act as an antagonist. One can speculate that brexpiprazole as an antagonist will have some vasodilating effect (Table 1).

5-HT2A (Ki, 5-HT ≈ 12): The effects of brexpiprazole and aripiprazole at 5-HT2A are measured via studying DOI-(2,5-dimethoxy-4-iodoamphetamine)-induced head trashs (mediated via 5-HT2A); brexpiprazole and aripiprazole inhibited DOI-induced head trashs; maximum responses (Mean ± S.E.M.) for brexpiprazole and aripiprazole were; 99 ± 0.9, and 91 ± 3.6, respectively. Brexpiprazole, despite an affinity about one order of magnitude higher ([Ki(ARi/BREX)] ≈ 3.4/0.47 ≈ 7) than aripiprazole, displayed comparable 2A receptor occupancy [23]. As with all atypical antipsychotics, both drugs act at this receptor as antagonists. The two drugs have similar effects via this receptor [26]. Thus, it is unlikely that interaction with this receptor might explain the different ADR profile of the two drugs (Table 1).

5-HT2B (Ki, 5-HT ≈ 9): Brexpiprazole, despite a lower 2B affinity than aripiprazole ([Ki(ARi/BREX)] ≈ 0.36/1.9 ≈ 0.2) displayed comparable IC50 = 10-15 nM [16, 23, 27].

1 ABILIFY® A. Bristol-Myers Squibb Company. U.S. Food and Drug Administration website Available at: https://www.accessdata.fda.gov/drugsatfda_docs/label/2005/021713s004,021436s007lbl.pdf (Accessed: 07 May 2020)
While K_i is used to describing the binding affinity that a molecule has for an enzyme or receptor.

The half-maximal inhibitory concentration IC_{50} is more reflective of the inhibitor’s functional strength, but both factors in the drug’s concentration inhibit the activity. The drugs act at this receptor as antagonists/inverse agonists and have similar effects via this receptor. Thus, it is unlikely that interaction with this receptor might explain the different ADR profile of the two drugs (Table 1).

5-HT$_{2C}$ (K_i 5-HT ≈ 5): Binding affinity of brexpiprazole at the 2C receptor was lower than that of aripiprazole: $[K_i^{(ARI/BREX)}] \approx 15/34 \approx 0.4$. Despite that, the two drugs showed similarly low efficacies ($E_{max} \approx 10\%$) compared with serotonin. Both drugs act as weak partial agonists, de facto antagonists [26, 27] (Table 1).

5-HT$_{3}$ (K_i 5-HT ≈ 200): K_i of aripiprazole at this receptor is $K_i 630 \pm 110$ nM [27]. In comparison the endogenous antagonist 5-HT has a $K_i 200$ nM [28]. No data for brexpiprazole could be found, nor indication that the drug would interact with this receptor. Only aripiprazole likely has a week effect mediated via this receptor (Table 1).

5-HT$_{4}$ (K_i 5-HT ≈ 120): There is no available data suggesting any effect of the two drugs via this receptor.

5-HT$_{5}$ (K_i 5-HT ≈ 200): Binding affinity of aripiprazole at this receptor is negligible with a $K_i 1.240 \pm 280$ nM, above the upper limit of the therapeutically relevant plasma range [27]. Brexpiprazole $K_i 140$ nM2. The only brexpiprazole likely has an effect mediated by this receptor (Table 1).

5-HT$_{6}$ (K_i 5-HT ≈ 65): K_i of aripiprazole 214 (reported range from 161 ± 17 [29] to 570 ± 95 nM [27, 29] and 780 [30]). The affinity of the weak antagonist brexpiprazole is similar to that of serotonin (58 nM), but the receptor occupancy is low at 20-40%. $K_i^{(ARI/BREX)} \approx 3.5$. Both drugs act as weak antagonists (Table 1).

5-HT$_{7}$ (K_i 5-HT $\approx 2-8$): The affinity of the endogenous agonist serotonin for the 5-HT$_7$ receptor is (strong) high

Table 1. The affinity ratio between Aripiprazole and Brexpiprazole $K_i^{(ARI/BREX)}$ and effect at different serotonin receptors and transporter.

$5-HT_{i}$	ARI K_i nM	BREX K_i nM	$K_i^{(ARI/BREX)}$	Effect
5-HT$_{1A}$	1.3 [23]	0.12 [23]	14	partial agonism
5-HT$_{1B}$	830 [27]	32 [23]	26	antagonism
5-HT$_{1D}$	68 [27]	Not available		
5-HT$_{1E}$	8000 [27]	Not available		
5-HT$_{2A}$	4.7 [23]	0.47 [23]	10	antagonism
5-HT$_{2B}$	0.36 [58]	1.9 [23]	0.2	antagonism/inverse agonism
5-HT$_{2C}$	15 [27]	34 [27]	0.4	antagonism
5-HT$_{3}$	630 [27]	Not available	Possibly divergent; only ARI	
5-HT$_{5}$	1240 [27]	1401 [27]	8.9	possibly divergent; only BREX
5-HT$_{6}$	570 [27]	60 [23]	3.6-9.5	weak antagonism
5-HT$_{7}$	219 [59]	3.7 [23]	10	weak partial agonism
SERTa	95 (IC$_{50}$)	29 (IC$_{50}$)	3.3 (IC$_{50}^{(ARI/BREX)}$)	inhibition

a: serotonin transporter

1: Committee for Medicinal Products for Human Use. Rexulti (Brexpiprazole) Assessment report. 2018. Available at: https://www.ema.europa.eu/en/documents/assessment-report/rexulti-epar-public-assessment-report_en.pdf.

2: BREXULTI® B. Otsuka and Lundbeck. U.S. Food and Drug Administration website. https://www.accessdata.fda.gov/drugsatfda_docs/nda/2015/205422Orig1Orig2s000PharmR.pdf (Accessed: 13 May 2020)
Aripiprazole, a very weak partial agonist with an $E_{\text{max}} < 10\%$ (of 5-HT effect), has a $K_i \approx 39$ nM and a receptor occupancy in the 15-30% range [27, 31, 32]. Brexpiprazole, a weak partial agonist, has a K_i of 3.7 nM and a receptor occupancy in the 10-56% range [34]. $K_i(\text{ARI}/\text{BREX}) \approx 10$ (Table 1).

At the 5-HT$_7$ receptor, while aripiprazole has a (weaker) lower affinity than brexpiprazole, both drugs have similar effects (weak partial agonist, de facto antagonist) [26] (Table 1).

SERT (K_i, 5-HT ≈ 500) [35]: Aripiprazole has an IC$_{50}$ for the serotonin transporter ≈ 95 nM. Brexpiprazole is a SERT inhibitor with an IC$_{50}$ of 29 nM but a low ligand displacement ability (65% at 10 μM) [3] (Table 1).

3.2 Alpha$_2$ (α_2) adrenergic receptors

Brexpiprazole is a highly affine α_2 adrenergic receptor antagonist [α_2A K_i 15 nM; α_2B K_i 17 nM; α_2C K_i 0.59 nM] comparable to mirtazapine (α_2A K_i 20 nM; α_2B K_i 88 nM; α_2C K_i 18 nM) [23, 30]. Aripiprazole has a slightly lower affinity for α_2 adrenergic receptors (α_2A K_i 74 nM; α_2B K_i 100 nM; α_2C 37 nM) [30]. $K_i(\text{ARI}/\text{BREX})$ for the α_2-adrenergic receptors is $\alpha_2A \approx 5$; for $\alpha_2B \approx 6$ while for $\alpha_2C \approx 63$. Brexpiprazole has an IC$_{50}$ of 63 nM at α_2C receptors [23] (Table 2).

3.3 Dopamine (DA) receptors

D$_1$ (K_i, DA $\approx 2-8$): Aripiprazole has a $K_i \approx 265$ nM (reported range 200-2500 nM) [19, 27, 29]; brexpiprazole has a $K_i \approx 150^\circ$. $K_i(\text{ARI}/\text{BREX}) \approx 265/160 \approx 1.7$. Both drugs have similar agonist effects [36, 37] (Table 3).

D$_5$ (K_i, DA < 2): Aripiprazole has a $K_i \approx 2590 \pm 1350$ nM, well above the upper limit of the therapeutic plasma range [27]. Similar values ($K_i \approx 1.670$ nM) have been reported by [38]. For brexpiprazole receptor, occupancy is $\approx 66\%$ at 1 nM (Table 3).

D$_2$ (K_i, DA $\approx 12 \pm 4$) [39]: Aripiprazole, a partial agonist with an Emax $\approx 60\%$ (of D effect), has a $K_i \approx 0.32$ nM. Brexpiprazole, also a partial agonist, has a K_i 0.3 nM and an Emax $\approx 43\%$. $K_i(\text{ARI}/\text{BREX}) \approx 1$. At the D$_2$ receptor, both drugs have similar effects (partial agonist) (Table 3).

D_3 (K_i, DA $\approx 3 \pm 1$) [39]: Aripiprazole, a partial agonist with an Emax $\approx 30\%$ (of DA effect), has a $K_i \approx 0.8$ nM. Brexpiprazole, a weak partial agonist, has a comparable affinity ($K_i \approx 1.1$) but a lower intrinsic activity Emax $\approx 15\%$. $K_i(\text{ARI}/\text{BREX}) \approx 0.8$. At the D$_3$ receptor, while both drugs have qualitatively similar effects (partial agonist), aripiprazole has a somewhat higher intrinsic activity [26] (Table 2).

D_4 (K_i, DA $\approx 6 \pm 2$) [39]: Aripiprazole has a $K_i \approx 44$ nM and an Emax of 20-30% [40]. Brexpiprazole has a higher affinity $K_i \approx 6$ nM. $K_i(\text{ARI}/\text{BREX}) \approx 7$. Both drugs have a partial agonist effect at this receptor (Table 3).

DAT (K_i, DA $\approx 29 \pm 4$) [41]: Brexpiprazole is a negligible inhibitor of the dopamine transporter with a reported IC$_{50}$ ≈ 950 nM, well above the upper limit of the therapeutic plasma range; the same applies for aripiprazole ($K_i \approx 3220 \pm 660$) [27] (Table 3).

4. Discussion

To identify differences that might explain the differential effect of the two drugs on hiccup, the affinities of aripiprazole and brexpiprazole for the various serotoninergic, alpha$_2$-adrenergic and dopaminergic receptors, as well as the respective transporters, were compared. The drugs are very similar in their pharmacodynamics at most receptors. They are generally considered partial agonists at 5-HT$_{1A}$ and D$_2$ receptors and antagonists at the 5-HT$_{2A}$ receptors; brexpiprazole has a somewhat lower intrinsic activity at the D$_2$ receptor and acts as a more potent 5-HT$_{1A}$ agonist and as a stronger 5-HT$_{2A}$ antagonist [17]. Furthermore, both drugs appear to have additional characteristics beyond partial agonist at D$_2$ receptors, including biased agonism [42, 43]. The term biased agonism (functional selectivity), initially introduced in [44], describes the phenomenon that a ligand preferentially activates one of several signaling pathways. In contrast, another agonist in the same system and acting on the same receptor preferentially activates another pathway.

Both are dopamine system stabilizers, i.e., to have either an agonist or antagonist effect depending on the levels of exogenous dopamine (agonist at high dopamine concentration vs. agonist at low dopamine concentration [42, 43]). Aripiprazole and brexpiprazole function as both a presynaptic D$_2$ agonist and postsynaptic D$_2$ antagonist; furthermore, their partial agonistic activity 5-HT$_{1A}$ receptor plays a role in modulating among other dopamine releases reviewed by [42]. Effects mediated via the major psychosis relevant receptors (5-HT$_{1A}$, 5-HT$_2$ and D$_2$) are similar and do not provide in our view the explanation for the appearance of a hiccup with aripiprazole treatment.

Different effects appear possible at the 5-HT$_3$ receptor where aripiprazole has a K_i within the therapeutic plasma concentration and the 5-HT$_1B$- and 5-HT$_5$ receptor where brexpiprazole has a K_i within the therapeutic plasma concentration.
Table 3. The affinity ratio between Aripiprazole and Brexpiprazole and effect at different dopamine receptors and transporter.

Receptor	Aripiprazole (ARI) nM	Brexpiprazole (BREX) nM	Affinity Ratio	Effect
D1	1960 [27]	160[^1]	265/160 ≈ 1.7	agonism
D3	2590 [27]		2590/111†	no effect
D2	0.32 [60]	0.3	0.34/0.3 ≈ 1	partial agonism
D3	0.8-1.6 [23, 39]	1.1	0.8/1.1 ≈ 0.8	partial agonism
D4	44		44/6 ≈ 7	partial agonism
DAT[^2]	3220	950	3.220/950 ≈ 3.4	no effect

[^1]: dopamine transporter

[^2]: Committee for Medicinal Products for Human Use. Rxulti (Brexpiprazole) Assessment report. 2018. Available at: https://www.ema.europa.eu/en/documents/assessment-report/rxulti-epar-public-assessment-report_en.pdf.

5-HT₃ receptors are the only ionotropic serotonin receptors. 5-HT₁ receptors are located (mainly) on sensory vagal nerve endings and play a vital role for vagal afferent input originating from organs cranial to the Cannon-Böhm point (the gastrointestinal tract fewer parts of the colon and rectum, lungs and heart). The central terminals of vagal afferents exhibit 5-HT₃ receptors that increase glutamatergic synaptic transmission to second-order neurons of the nucleus tractus solitarius [46]. Experimental compounds with 5-HT₃ blocking properties increase the heart rate by decreasing vagal afferent input and efferent output; this is compatible with data showing that 5-HT₃ receptors excite vagal afferent neurons by a glutamate-dependent mechanism [47, 48]. Blockade of these receptors by 5-HT₃ antagonists (setrons) is used clinically for control of emesis.

A single anecdotal mentioning of the negative impact of setrons on a patient with chronic hiccup was published by one of the authors (GAP) [49]. Some anecdotal reports claim that setrons cause hiccups[^15], but overall, the evidence is relatively sparse. The possibility of aripiprazole affecting this receptor (while the same does not apply to brexpiprazole) is nevertheless intriguing as-if confirmed experimentally it might explain their differential effect on hiccup. Mechanistically an inhibition of this receptor would be expected to lower vagal afferent output, which is believed to favor hiccup. 5-HT₁ receptors (Gi protein-coupled) are the traditional target of the triptan class of drugs. Triptans act as agonists at 5-HT₁D receptors at blood vessels and nerve endings in the brain and induce vasoconstriction. The only brexpiprazole has a Kᵢ within the therapeutic range (agonist; vasodilation). The significance or lack thereof is difficult to interpret.

Overall, we failed to identify the one receptor that might explain the different effect of the examined drugs on hiccup; it appears likely that the different effect is the consequence of synergism of several smaller effects at more than one receptor. The most consequential concerning neurotransmitter release is the central alpha₂ adrenergic receptor.

Brexpiprazole, similar to mirtazapine, is a highly affine α2 antagonist [α₂A Ki 15 nM; α₂B Ki 17 nM; α₂C 0.59 nM] [17]. Antagonism of the α₂ receptors, which function mainly as inhibitory autoreceptors and heteroreceptors, enhances transmitter release and favors neurotransmission, notably central 5-HT₁A receptor-mediated. Mirtazapine has been said to be a functional "indirect agonist" of the 5-HT₁A receptor [53]. Mirtazapine’s Kᵢ for α₂-adenrenergic receptors is ≈ 20 nM, while aripiprazole’s Kᵢ for α₂ receptors [α₂A Ki 74 nM; α₂B Ki 100 nM; α₂C 37 nM] [30].

Kᵢ([ARI]/[BREX]) for the α₂-adrenergic receptors is, therefore, α₂A ≈ 5; for α₂B ≈ 6 while for α₂C ≈ 63. While we postulated divergent or significantly different effects when the ratio is either > 10² or < 10⁻² a Kᵢ([ARI]/[BREX]) ≈ 63 at α₂C indicates possibly higher efficacy for brexpiprazole. Oosterhof et al., 2014, 2015 argue that brexpiprazole is a full 5-HT₁A receptor agonist, possibly due to a combined α₂C antagonist-5-HT₁A agonist effect [24, 25]. Such an effect combination would be quite similar to that seen with the azapirone derivative tandospirone, where tandospirone is an HT₁A partial agonist while its primary metabolite (1-
Fig. 1. A schematic illustration showing receptor–drug interaction. 1A. Blue Neuron: α_{2C} adrenergic heteroreceptors control neurotransmitter release (i.e., 5-HT). Once released, 5-HT docks at postsynaptic receptors such as 5-HT$_{1A}$ on the yellow neuron. Activation of presynaptic α_{2C} by the neurotransmitter reduces further release while SERT removes 5-HT from the synaptic cleft. 1B. Activation of presynaptic α_{2C} by the neurotransmitter or drug with agonist effect (green triangle) reduces further release (red arrow). In contrast, the drug with antagonist effect (red triangle) increases neurotransmitter release (green arrow). 1C. The primary metabolite of tandospirone (1-PP) is a highly affine α_{2C} adrenergic antagonist, increasing serotonin release and augmenting postsynaptic effects. Tandospirone is a 5-HT$_{1A}$ partial agonist; the combined effect of drug and metabolite is direct and indirect agonism at 5-HT$_{1A}$ (mirtazapine-like effect). 1D. Brexpiprazole is a highly affine α_{2C} adrenergic antagonist, thus increasing serotonin release and augmenting postsynaptic effects. At the same time, brexpiprazole is also a 5-HT$_{1A}$ partial agonist; the combined effect at the two receptors is direct and indirect agonism at 5-HT$_{1A}$ (mirtazapine-like effect).

pyrimidinyl-piperazine; 1-PP) is a centrally acting, the high-affinity α_{2}-adrenergic antagonist ($K_i \approx 10-40$ nM) [54, [55. Interestingly, tandospirone was successfully used to treat hiccup [56] (See also Fig. 1).

For an overview of α_{2C} receptors, see the recent review from Brian Harvey’s group [57].

Activation of 5-HT$_{1A}$ receptors enhances vagal activity; therefore, 5-HT$_{1A}$ agonists (brexpiprazole) would be unlikely to favor hiccup development. In contrast, 5-HT$_{1A}$ partial agonists (week antagonists) such as aripiprazole might not offer the same benefit [50].

5. Conclusions

It is unlikely that a unique receptor–drug interaction could explain the different effects of the examined drugs on hiccup. The different effect is most likely the consequence of several smaller effects at more than one receptor. Brexpiprazole is a highly affine (potent) α_{2C} antagonist and, therefore, also an indirect 5-HT$_{1A}$ agonist. In contrast, aripiprazole is a partial 5-HT$_{1A}$ agonist (weak antagonist) and an HT$_{3}$ antagonist. Activation of 5-HT$_{1A}$ receptors enhances vagal activity while HT$_{3}$ blockade reduces it. Vagus nerve activation is therapeutic for hiccup. A definitive answer continues to be elusive.

Abbreviations

5-HT, 5-hydroxytryptamine, serotonin; CNS, Central nervous system; DA, Dopamine; DAT, Dopamine transporter; EC$_{50}$, concentration of a drug that gives a half-maximal response (nM); E$_{\text{max}}$, concentration of a drug that gives a maximal response (nM); IC$_{50}$, half maximal inhibitory concentration (nM); K_i, Inhibitor constant (nM); SERT, Serotonin transporter.

Author contributions

Georg Petroianu: planning and conducting the review, literature search, interpreting the literature, and drafting the manuscript; Eman Alefishat: planning and conducting the review, literature search, interpreting the literature, and drafting the manuscript; Lujain Aloum: literature search, interpreting the literature, and drafting the manuscript; Ovidiu Baltatu: literature search, interpreting the literature, and drafting the manuscript.

Ethics approval and consent to participate

Not applicable.
References

[1] Petroianu G. Hiccups in: Conn’s current therapy (pp. 27-29). Philadelphia, PA: Elsevier Saunders. 2019.

[2] Behera RV, Venkatasubramanian G, Narveen MN, Gangadharn BN. Aripiprazole-induced hyponatremia. The Journal of Clinical Psychiatry. 2007; 68: 640-641.

[3] Ginsberg D. Aripiprazole-induced hyponatremia. Primary Psychiatry 2007; 14: 19-20.

[4] Ray P, Zia Ul Haq M, Nizamie SH. Aripiprazole-induced hiccups: a case report. General Hospital Psychiatry. 2009; 31: 382-384.

[5] Kattura S, Shet P. Aripiprazole induced hiccups. Mental Health Clinician. 2013; 3: 119-121.

[6] Kutuk MO, Tufan AE, Guler G, Yildirim V, Toros F. Persistent hiccups due to aripiprazole in an adolescent with obsessive compulsive disorder responding to dose reduction and rechallenge. Oxford Medical Case Reports. 2016; 2016: 66-67.

[7] Caloro M, Pucci D, Calabro G, de Pisa E, Mancinelli I, Rosini E, et al. Development of hiccups in male patients hospitalized in a psychiatric ward. Clinical Neuropsychopharmacology. 2016; 39: 67-72.

[8] Sakalli Kani A, Özek T, Aksoy-Poyraz C, Turan S, Duran A. Aripiprazole-induced acute hiccups: a case report. The Journal of Neuropsychiatry and Clinical Neurosciences. 2015; 27: e60.

[9] De Filippis S, Ranieri V, Cuomo I, Zingaretti P, Kotelidis GD, Telesforo CL, et al. Hiccup with aripiprazole plus benzodiazepines resolving with pregabalin and/or benzodiazepine switch/discontinuation. Journal of Clinical Psychopharmacology. 2015; 35: 195-197.

[10] Mathews M, Mathews N, Menon N, Ahmad R, Papa-Molter A. Hiccups with dose titration of aripiprazole. The Primary Care Companion for CNS Disorders. 2019; 20.

[11] Serafini G, Piccinini G, Visimberga S, Cervetti A, Belvederi Murri M, Monacelli F, et al. Aripiprazole-induced persistent hiccups: a case report and review of the literature. Psychiatry Danubina. 2019; 31: 19-26.

[12] Yeh Y. Persistent hiccups associated with switching from risperidone to aripiprazole in a schizophrenic patient with cerebral palsy. Clinical Neuropsychopharmacology. 2011; 34: 135-136.

[13] Duvarci I, Yılmaz M. Persistent hiccups after switching from zuclopenthixol to aripiprazole. Klinik Psikofarmakoloji Bulletin. Clinical Psychopharmacology. 2013; 23: 89-90.

[14] Hori H, Nakamura J. Hiccups associated with switching from olanzapine to aripiprazole in a patient with paranoid schizophrenia. Clinical Neuropsychopharmacology. 2014; 37: 88-89.

[15] Silverman MA, Leung JG, Schak KM. Aripiprazole-associated hiccups. Journal of Pharmacy Practice. 2014; 27: 587-590.

[16] Das S, Barnwal P, Winston A B, Mondal S, Saha I. Brexpiprazole: so far so good. Therapeutic Advances in Psychopharmacology. 2016; 6: 39-54.

[17] de Bartolomeis A, Tomasetti C, Iasevoli F. Update on the mechanism of action of aripiprazole: translational insights into antipsychotic strategies beyond dopamine receptor antagonism. CNS Drugs. 2015; 29: 773-799.

[18] Stahl SM. Mechanism of action of brexpiprazole: comparison with aripiprazole. CNS Spectrums. 2016; 21: 1-6.

[19] Lawler CP, Prioleau C, Lewis MM, Mak C, Jiang D, Schetz JA, et al. Interactions of the novel antipsychotic aripiprazole (OPC-14597) with dopamine and serotonin receptor subtypes. Neuropsychoopharmacology. 1999; 20: 612-627.

[20] Mauri MC, Paletta S, Di Pace C, Reggiori A, Cingiorgio G, Vally I, et al. Clinical pharmacokinetics of atypical antipsychotics: an update. Clinical Pharmacokinetics. 2018; 57: 1493-1528.

[21] Wang J, Zhu H, Donovan J L, Yuan H, Markowitz JS, Geesey ME, et al. Aripiprazole brain concentration is altered in P-glycoprotein deficient mice. Schizophrenia Research. 2009; 110: 90-94.

[22] Huang S, Temple R, Throckmorton DC, Lesko LJ. Drug interaction studies: study design, data analysis, and implications for dosing and labeling. Clinical Pharmacology and Therapeutics. 2007; 81: 298-304.

[23] Maeda K, Sugino H, Akazawa H, Amada N, Shimada J, Futamura T, et al. Brexpiprazole I: in vitro and in vivo characterization of a novel serotonin-dopamine activity modulator. The Journal of Pharmacology and Experimental Therapeutics. 2014; 350: 589-604.

[24] Oosterhof CA, El Mansari M, Blier P. Acute effects of brexpiprazole on serotonin, dopamine, and noradrenaline systems: an in vivo electrophysiologic characterization. Journal of Pharmacology and Experimental Therapeutics. 2014; 351: 585-595.

[25] Oosterhof CA, Mansari ME, Bundgaard C, Blier P. Brexpiprazole alters monoaminergic systems following repeated administration: an in vivo electrophysiological study. International Journal of Neuropsychopharmacology. 2016; 19: pyw111.

[26] Franklin JS, Schwartz TL. Brexpiprazole and cariprazine: distinguishing two new atypical antipsychotics from the original dopamine stabilizer aripiprazole. Therapeutic Advances in Psychopharmacology. 2017; 7: 29-41.

[27] Shapiro DA, Renock S, Arrington E, Chioido LA, Liu L, Sibley DR, et al. Aripiprazole, a novel atypical antipsychotic drug with a unique and robust pharmacology. Neuropsychopharmacology. 2003; 28: 1400-1411.

[28] Glennon RA. Serotonin receptors and site-selective agents. Journal of Physiology and Pharmacology. 1991; 42: 49-60.

[29] Kusumi I, Boku S, Takahashi Y. Psychopharmacology of atypical antipsychotic drugs: from the receptor binding profile to neuroprotection and neurogenesis. Psychiatry and Clinical Neurosciences. 2015; 69: 243-258.

[30] Kroeze WK, Hufseisen SJ, Popadak BA, Renock SM, Steinberg S, Ernsberger P, et al. H1-histamine receptor affinity predicts short-term weight gain for typical and atypical antipsychotic drugs. Neuropsychopharmacology. 2003; 28: 519-526.

[31] Glennon RA, Dukat M. Serotonin receptors and drugs affecting serotonin neurotransmission (Chapter 14). 5-HT6 receptors and agents. In: Foye’s Principles of Medicinal Chemistry. Sixth edition. Philadelphia, Pennsylvania: Lippincott Williams & Wilkins. 2008.

[32] Abbas AI, Hedlund PB, Huang X, Tran TB, Meltzer HY, Roth BL. Amisulpride is a potent 5-HT7 antagonist: relevance for antidepressant actions in vivo. Psychopharmacology. 2009; 205: 119-128.

[33] Roth BL, Craigio SC, Choudhary MS, Uluer A, Monsma FJ, Shen Y, et al. Binding of typical and atypical antipsychotic agents to 5-hydroxytryptamine-6 and 5-hydroxytryptamine-7 receptors. The Journal of Pharmacology and Experimental Therapeutics. 1994; 268: 1403-1410.

[34] Di Giovanni G, Svob Strac D, Sole M, Unzeta M, Tipton KF, Mück-Séler D, et al. Monoaminergic and histaminergic strategies and treatments in brain diseases. Frontiers in Neuroscience. 2019; 10: 541.

[35] Zhou M, Engel K, Wang J. Evidence for significant contribution of a newly identified monoamine transporter (PMAT) to serotonin uptake in the human brain. Biochemical Pharmacology. 2007; 73: 147-154.
Björkholm C, Marcus MM, Konradsson-Geuken A, Jardemark K, Svensson TH. The novel antipsychotic drug brexpiprazole, alone and in combination with escitalopram, facilitates prefrontal glutamatergic transmission via a dopamine D1 receptor-dependent mechanism. European Neuropsychopharmacology. 2017; 27: 411-417.

Boyd KN, Mailam RB. Dopamine receptor signaling and current and future antipsychotic drugs. Current Antipsychotics. 2012; 53-86.

Ginovart N, Kapur S. Dopamine receptors and the treatment of schizophrenia. The Dopamine Receptors. 2010; 2: 451-477.

Sánchez-Soto M, Bonifazzi A, Cai NS, Ellenberger MP, Newman AH, Ferré S, et al. Evidence for noncanonical neurotransmitter activation: norepinephrine as a dopamine D2-like receptor agonist. Molecular Pharmacology. 2016; 89: 457-466.

Newman-Tancredi A, Assié M, Leduc N, Ormierre A, Danty N, Cosi C. Novel antipsychotics activate recombinant human and native rat serotonin 5-HT1A receptors: affinity, efficacy and potential implications for treatment of schizophrenia. the International Journal of Neuropsychopharmacology. 2005; 8: 341-356.

Castro-Hernández J, Atonso-Oramas D, Cruz-Muros I, Salas-Hernández J, Barroso-Chinea P, Morallarta R, et al. Prolonged treatment with pramipexole promotes physical interaction of striatal dopamine D3 autoreceptors with dopamine transporters to reduce dopamine uptake. Neurobiology of Disease. 2015; 74: 325-335.

Tuplin EW, Holahan MR. Aripiprazole, a drug that displays partial agonism and functional selectivity. Current Neuropharmacology. 2017; 15: 1192-1207.

Berg KA, Clarke WP. Making sense of pharmacology: inverse agonism and functional selectivity. International Journal of Neuropsychopharmacology. 2018; 21: 962-977.

Jarpe MB, Knall C, Mitchell FM, Buhl AM, Duzic E, Johnson GL. [D-Arg1,D-Phe5,D-Trp7,9,Leu11] Substance P acts as a biased agonist toward neuropeptide and chemokine receptors. The Journal of Biological Chemistry. 1998; 273: 3097-3104.

Stahl SM. Dopamine system stabilizers, aripiprazole, and in combination with escitalopram, facilitates prefrontal glutamatergic transmission in vivo. Journal of Neurology. 2005; 251: 486-487.

Takahashi T, Murata T, Omori M, Tagaya M, Wada Y. Successful treatment of intractable hiccupps with serotonin (5-HT)1A receptor agonist. Journal of Neurology. 2005: 251: 486-487.

Uys MM, Shahid M, Harvey BH. Therapeutic potential of selectively targeting the alpha2C-adrenoceptor in cognition, depression, and schizophrenia—new developments and future perspective. Frontiers in Psychiatry. 2017; 8: 144.

Schotte A, Janssen PF, Gommeren W, Luyten WH, Van Gompel P, Lesage AS, et al. Risperidone compared with new and reference antipsychotic drugs: in vitro and in vivo receptor binding. Psychopharmacology. 1997; 124: 57-73.

Stark AD, Jordan S, Allers KA, Bertekap RL, Chen R, Mistry Kannan T, et al. Interaction of the novel antipsychotic aripiprazole with 5-HT1A and 5-HT2a receptors: functional receptor-binding and in vivo electrophysiological studies. Psychopharmacology. 2007; 190: 373-382.

Inoue A, Miki S, Seto M, Kikuchi T, Morita S, Ueda H, et al. Aripiprazole, a novel antipsychotic drug, inhibits quinpirole-evoked GTPase activity but does not up-regulate dopamine D2 receptor following repeated treatment in the rat striatum. European Journal of Pharmacology. 1997; 321: 105-111.

Citrome L, McEvoy JP, Todtenkopf MS, McDonnell D, Weiden PJ. A commentary on the efficacy of olanzapine for the treatment of schizophrenia: the past, present, and future. Neuropsychiatric Disease and Treatment. 2019; 15: 2559-2569.