Complexity of Atoms, Combinatorially

Szabolcs Iván

University of Szeged, Hungary

Abstract

Atoms of a (regular) language L were introduced by Brzozowski and Tamm in 2011 as intersections of complemented and uncomplemented quotients of L. They derived tight upper bounds on the complexity of atoms in 2013. In 2014, Brzozowski and Davies characterized the regular languages meeting these bounds. To achieve these results, they used the so-called “atomaton” of a language, introduced by Brzozowski and Tamm in 2011.

In this note we give an alternative proof of their characterization, via a purely combinatorial approach.

1. Introduction

The state complexity of a regular language L is the number of states of its minimal automaton. An atom of a language is a non-empty intersection of its quotients, some of which may be complemented. Brzozowski and Tamm introduced atoms in [4] and found tight upper bounds for their state complexity in [5], carefully analyzing a particular nondeterministic finite automaton, the so-called “atomaton” of a regular language also introduced in [4].

A language is defined to be maximally atomic in [3] if it has the maximal number of atoms possible and each of the individual atoms has the maximal possible state complexity. In [2], Brzozowski and Davies showed that maximal syntactic complexity implies maximal atomicity and in [3] they gave necessary and sufficient conditions for a language to be maximally atomic.

In this paper we introduce another tool which we call the “disjoint power set automaton” of a regular language, and give a self-contained, purely combinatorial and automata-theoretic proof of their characterization.

2. Notation

A semigroup (S, \cdot) is a set S equipped with a binary associative operation \cdot. We usually omit the sign \cdot and write st for $s \cdot t$. A monoid is a semigroup (S, \cdot) having a neutral element 1 satisfying $s1 = 1s = s$ for each $s \in S$. Given a finite nonempty set Q, two particular semigroups are T_Q consisting of all the transformations of Q (i.e. functions $Q \to Q$ with function composition as product) and its subsemigroup P_Q consisting of the permutations of Q. In order to ease notation in the automata theoretic part, we write function application in diagrammatic order, i.e. if $p \in Q$ and $f \in T_Q$, then pf stands for the value to which f maps p, and for

✩This research was supported by the European Union and the State of Hungary, co-financed by the European Social Fund in the framework of TÁMOP 4.2.4.A/2-11-1-2012-0001 National Excellence Program and by the OTKA grant no. 108448.

Preprint submitted to Elsevier

June 3, 2015
Similarly, \(\delta \) where \(\delta \) is the language recognized by \(M \) is the cardinality of its image \(Qf \); transformations of rank \(n \) are called \textit{permutations}, while all other transformations are called \textit{singular} transformations. When \(n \geq 0 \) is an integer, then \(\mathcal{T}_n \) stands for the transformation semigroup \(\mathcal{T}_{\{1, \ldots, n\}} \).

An \textit{alphabet} is a finite nonempty set \(\Sigma \) of symbols. A \(\Sigma \)-\textit{word} is a finite sequence \(w = a_1a_2 \ldots a_n \) with each \(a_i \) being in \(\Sigma \). For \(n = 0 \) we get the \textit{empty word}, denoted \(\varepsilon \). The set \(\Sigma^* \) of all words forms a monoid with the operation being (con)catenation, or simply product of words given by \(a_1 \ldots a_n \cdot b_1 \ldots b_k = a_1 \ldots a_n b_1 \ldots b_k \).

In this monoid, \(\varepsilon \) is the neutral element. The semigroup \(\Sigma^+ = \Sigma^* - \{\varepsilon\} \) is the semigroup of nonempty words.

A \textit{language} (over \(\Sigma \)) is an arbitrary subset of \(\Sigma^* \). A \textit{finite automaton} is a system \(M = (Q, \Sigma, \delta, q_0, F) \) with \(Q \) being the finite nonempty set of states, \(\Sigma \) being the input alphabet, \(\delta : Q \times \Sigma \to Q \) is the transition function, \(q_0 \in Q \) is the start state and \(F \subseteq Q \) is the set of final states. Given \(M \), the monoid \(\Sigma^* \) acts on \(Q \) from the right as \(q \cdot M \varepsilon = q \) and \(q \cdot M ua = \delta(q, u, a) \) for each \(q \in Q \), \(u \in \Sigma^* \) and \(a \in \Sigma \). When \(M \) is clear from the context, we omit the subscript and, in most cases, also the period and write only \(qw \) for \(q \cdot M w \). Then, each word \(w \) induces a function \(Q \to Q \), denoted by \(w_M \), defined as \(q \mapsto qw \). The \textit{transformation semigroup} of \(M \) is \(\mathcal{T}(M) = \{w_M : w \in \Sigma^*\} \) — it is clear that \(u_M v_M = (uv)_M \) so \(\mathcal{T}(M) \) is indeed a semigroup. Most of the time, when \(M \) is clear, we omit the subscript also here and identify \(w \) with \(w_M \). Another semigroup associated to \(M \) is that of its permutation group \(\mathcal{P}(M) = \{w_M : w \in \Sigma^*, Qw = Q\} \). The language recognized by \(M \) is the language \(L(M) = \{w : q_0w \in F\} \). A language is called \textit{regular} if it can be recognized by a finite automaton. It is well-known that for each regular language there exists a \textit{minimal} automaton, unique up to isomorphism having the least number of states among all the automata recognizing \(L \).

A state \(q \) of an automaton is \textit{reachable} from a state \(p \) if \(pw = q \) for some word \(w \). States that are reachable from \(q_0 \) are simply called \textit{reachable} states. A \textit{sink} is a non-final state \(p \notin F \) such that \(pa = p \) for each \(a \in \Sigma \) (thus, \(pw = p \) for each word \(w \) as well). Two states \(p, q \) are called \textit{distinguishable} if there exists a word \(w \) such that exactly one of the states \(pw \) and \(qw \) belongs to \(F \). It is known that \(M \) is minimal iff each pair \(p \neq q \) of its states is distinguishable and all its states are reachable. When \(M = (Q, \Sigma, \delta, q_0, F) \) is an automaton and \(q \in Q \), then \(M_q \) stands for the automaton \((Q, \Sigma, \delta, q, F) \) and \(L_q \) for the language recognized by \(M_q \). A state \(q \) is \textit{empty} if so is \(L_q \). In a minimal automaton, there is at most one empty state which is then a sink. For a subset \(S \subseteq Q \) of states, let \(L_S \) stand for \(\cup_{q \in S} L_q \).

Given a (regular) language \(L \subseteq \Sigma^* \), a well-known associated congruence on words is its \textit{syntactic right congruence} \(\sim_L \) defined as

\[
x \sim_L y \iff (\forall z : zz \in L \Leftrightarrow yz \in L).
\]

It is known that the minimal automaton of a regular language \(L \) is isomorphic to \((\Sigma^*/\sim_L, \Sigma, \delta_L, \varepsilon/\sim_L, L/\sim_L) \) where \(\delta_L(x/\sim_L, a) = xa/\sim_L \).

Similarly,\(^3\) one can define the \textit{syntactic left congruence} \(L \sim \) of a language defined dually as

\[
x_L \sim y \iff (\forall z : zx \in L \Leftrightarrow zy \in L).
\]

The \textit{reversal} of a word \(w = a_1 \ldots a_n \) is the word \(w^R = a_n \ldots a_1 \), and the reversal of the language \(L \) is \(L^R = \{w^R : w \in L\} \). Then obviously, \(x \sim_L y \) if and only if \(x^R \sim_L y^R \), since \(zx \in L \) holds iff \(x^Rz^R \in L^R \). Hence, classes of the syntactic left congruence are precisely the reversals of the classes of the syntactic right congruence classes of \(L^R \).

\(^3\)Though the notion of syntactic left congruence seems to be natural, we have not found any of its appearance in the literature in this form. However, as it turns out, atoms are precisely the classes of this equivalence relation.
3. Atoms of a regular language

Let \(L \subseteq \Sigma^* \) be a regular language and \(M = (Q, \Sigma, \delta, q_0, F) \) be its minimal automaton. Let \(n \) stand for \(|Q|\), the state complexity of \(L \). An atom of \(L \), as defined in [3], is a nonempty language of the form

\[
A_S = \bigcap_{q \in S} L_q \cap \bigcap_{q \notin S} \overline{L_q},
\]

for some \(S \subseteq Q \). Here \(\overline{X} \) stands for complementation with respect to \(\Sigma^* \), i.e. \(\Sigma^* - X \). It is clear that \(L \) has at most \(2^n \) atoms.

That is, a word \(w \) is in \(A_S \) if \(qw \in F \) iff \(q \in S \), or equivalently, if \(Sw \subseteq F \) and \(\overline{Sw} \subseteq \overline{F} \). (For \(X \subseteq Q \), \(\overline{X} \) denotes \(Q - X \).) An immediate consequence of this characterization is that the atoms of a language are precisely the classes of its syntactic left congruence. Indeed, first observe that each word \(u \) belongs to precisely one atom \(A_S \) – to which \(S = \{ q : qu \in F \} = \{ q_0w : wu \in L \} \). Hence, \(u \) and \(v \) belong to the same atom \(A_S \) iff \(S = \{ q_0w : wu \in L \} = \{ q_0w : vw \in L \} \) iff \(u, L \sim v \). Thus, atoms are in a one-to-one correspondence with the states of the minimal automaton of \(L^R \), in particular the number of atoms of \(L \) coincides with the state complexity of \(L^R \).

In [3, 5], the authors achieved results on properties of atoms such as the number and state complexity of individual atoms, via studying the “atomaton” of \(L \), which is a nondeterministic automaton, actually being isomorphic to the reversal of the determinized reversal of \(M \). In this paper we suggest another way to study atoms and reprove the characterization of the so-called maximally atomic languages.

To achieve this, we define a modified power set automaton, the \textit{disjoint power square (DPS) automaton} \(\text{DPS}(M) = (Q', \Sigma, \Delta, p, F') \) of \(M \) as follows:

- \(Q' \subseteq \{ P(Q) \times P(Q) \} \cup \{ \bot \} \) consists of the state pairs \((S, T) \) for \(S, T \subseteq Q \) with \(S \cap T = \emptyset \), and a sink state \(\bot \).
- \(\Delta(\bot, a) = \bot \) and
 \[
 \Delta((S, T), a) = \begin{cases} (Sa, Ta) & \text{if } Sa \cap Ta = \emptyset \\ \bot & \text{otherwise} \end{cases}.
 \]
- \(p \) is an arbitrary state.
- \(F' = P(F) \times P(\overline{F}) \), that is, \(\{ (S, T) : S \subseteq F, T \subseteq \overline{F} \} \).

It is clear that for any \(S, T \subseteq Q, S \cap T = \emptyset \) and \(w \in \Sigma^* \) we have

\[
(S, T)w = \begin{cases} (Sw, Tw) & \text{if } Sw \cap Tw = \emptyset \\ \bot & \text{otherwise} \end{cases}.
\]

Also, since a transformation cannot increase the size of its domain, and the domain of a transformation is empty iff its range is empty, we get that \((S', T') = (S, T)w \) for some \((S, T) \) and \(w \) only if \(|S'| \leq |S|, |T'| \leq |T| \) with \(S' \) (\(T' \), resp.) being empty iff so is \(S \) (\(T \), resp.)

Employing the notion from [3], we introduce to each \(0 \leq k \leq n \) the set of \((n, k)\)-type states as follows:

- \((n, n)\)-type states are those of the form \((S, \emptyset)\) with \(\emptyset \neq S \subseteq Q \);
- \((n, 0)\)-type states are those of the form \((\emptyset, S)\) with \(\emptyset \neq S \subseteq Q \);
• \((n,k)\)-type states for \(1 \leq k < n\) are those of the form \((S,T)\) with \(1 \leq |S| \leq k\) and \(1 \leq |T| \leq n-k\), \(S \cap T = \emptyset\) as well as \(\bot\).

Let \(L_{S,T}\) stand for the language accepted by \((Q',\Sigma,\Delta,(S,T),F')\). Then, \(w \in L_{S,T}\) iff \(Sw \subseteq F\) and \(Tw \subseteq T\). In particular, nonempty languages of the form \(L_{S,T}\) are precisely the (nonempty) atoms \(A_S\) of \(L\) and thus every atom of \(L\) is recognizable in \(\text{DPS}(M)\).

Given \(S \subseteq Q\), let us call the automaton \(M_S = (Q_S,\Sigma,\Delta|_{Q_S},(S,\emptyset),F' \cap Q_S)\) the support automaton for \(S\), where \(Q_S\) consists of the \((n,|S|)\)-type states of \(\text{DPS}(M)\). Observe that \(M_S\) is well-defined since for any \((n,k)\)-type state \(p\) and letter \(a \in \Sigma\), \(\Delta(p,a)\) is also an \((n,k)\)-type state. (Note that in particular \(\bot\) is never reachable from any state of the form \((S,\emptyset)\) or \((\emptyset,S)\) since that would imply \(Sw \cap \emptyset w \neq \emptyset\) for some \(w\) which is nonsense since \(\emptyset w = \emptyset\). Hence \(\bot\) is not an \((n,n)\) nor an \((n,0)\)-type state.)

Hence, \(M_S\) is a subautomaton of \(\text{DPS}(M)\) recognizing \(A_S\), thus the number of \((n,|S|)\)-type states provides an upper bound for the state complexity of \(A_S\).

Following \[\text{[2]}\] we define the function \(\Psi(n,s)\) as

\[
\Psi(n,s) = \begin{cases}
2^n - 1 & \text{if } n = s \text{ or } s = 0; \\
1 + \sum_{k=1}^{s} \sum_{\ell=1}^{n-s} \binom{n-s}{k} \binom{n-k}{\ell} & \text{otherwise.}
\end{cases}
\]

This function provides such an upper bound:

Proposition 1. The maximal number of reachable states from \((S,\emptyset)\) in \(\text{DPS}(M)\), or equivalently, the number of states in \(M_S\) is \(\Psi(n,|S|)\).

Hence, \(\Psi(n,|S|)\) is an upper bound for the state complexity of \(A_S\).

PROOF. As we already argued, from \((S,\emptyset)\) only \((n,|S|)\)-type states are reachable.

When \(S \in \{Q,\emptyset\}\), there are \(2^n - 1\) states that are of \((n,|S|)\)-type, handling the cases \(n = s\) and \(s = 0\).

For \(\emptyset \neq S \subseteq Q\), the set of \((n,|S|)\)-type states consist of the state \(\bot\) (that’s where the 1+ part comes from) and of state pairs \((S',T')\) with \(1 \leq |S'| \leq |S|\) and \(1 \leq |T'| \leq n - |S|\), with \(S'\) and \(T'\) being disjoint. We can enumerate the number of those pairs by first choosing the size \(1 \leq k \leq |S|\) of \(S'\), then the size \(1 \leq \ell \leq n - |S|\) of \(T'\), then \(k\) elements out of the \(n\) states for \(S'\), and another \(\ell\) elements out of the remaining \(n-k\) elements (in order to ensure disjointness) for \(T'\). Summing up we get the formula given in \(\Psi(n,|S|)\) as an upper bound.

In \[\text{[2]}\], an atom \(A_S\) is said to have *maximal complexity*, or is simply called maximal, if its state complexity is \(\Psi(n,|S|)\). That is, if every \((n,|S|)\)-state is indeed reachable from \((S,\emptyset)\) and are pairwise distinguishable. A language (of state complexity at least 2) is called *maximally atomic* if it has \(2^n\) atoms, each being maximal.

We note that if the syntactic semigroup of \(L\) contains every transformation \(f : Q \to Q\), then \(L\) is maximally atomic. Indeed, let \(M = (Q,\Sigma,\delta,q_0,F)\) be an automaton recognizing some language \(L\) with \(\emptyset \neq F \subseteq Q\) (thus \(|Q| > 1\)) and \(\mathcal{T}(M) = \mathcal{T}_Q\). Then for any subset \(S\) of \(Q\) there is a transformation \(f_S\) induced by some word \(w_S\) mapping members of \(S\) inside \(F\) and members of \(\overline{S}\) inside \(\overline{F}\), hence \(w_S\) is in \(A_S\), thus \(L\) has all the possible atoms. Moreover, whenever \((S,\overline{S})\) is a state of \(\text{DPS}(M)\) and \((S',T')\) is an \((n,|S|)\)-type state, then there is a mapping \(f\) mapping \(S\) surjectively onto \(S'\) and \(\overline{S}\) onto \(T'\), thus all the \((n,|S|)\)-type states are reachable from each \((S,\overline{S})\) (observe that any constant mapping puts any \((S,T)\) with nonempty \(S\) and \(T\) to \(\bot\), so \(\bot\) is also reachable from \((S,\overline{S})\) when \(0 < |S| < n\)).

We still have to check that whenever \((S,T)\) and \((S',T')\) are different states of \(\text{DPS}(M)\), then they are distinguishable: indeed, if \(S \subseteq S'\), then \(f_{S'}\) brings \((S',T')\) to a final state and \((S,T)\) to a non-final state,
analogously if $S' \not\subseteq S$, then f_S distinguishes the two states. Finally, if $S = S'$, then either f_T or f_T makes the distinction. Also, \bot is the only empty state, being distinguishable from any (S,T).

Hence we have shown the following result:

Proposition 2. Let L be a regular language with $M = (Q, \Sigma, \delta, q_0, F)$ being its minimal automaton, $n = |Q| > 1$. Then if A_S is nonempty, its state complexity is upperbounded by $\Psi(n,|S|)$.

Moreover, this bound is tight: if $T(M) = T_Q$, then L has the maximal possible 2^n atoms, with A_S having state complexity $\Psi(n,|S|)$ for each $S \subseteq Q$.

Let $T \subseteq P_Q$ be a semigroup of permutations of Q. Such a semigroup is called k-set-transitive for an integer $k \leq |Q|$ if for any two sets $S, T \subseteq Q$ with $|S| = |T| = k$ there exists some $f \in T$ with $f(S) = T$ and is set-transitive if it is k-set-transitive for each $1 \leq k \leq |Q|$.

Proposition 3. Suppose L is a regular language with minimal automaton $M = (Q, \Sigma, \delta, q_0, F)$, $|Q| \geq 3$. Then for any atom A_S of L, if A_S is maximal, then $P(M)$ is $|S|$-set-transitive, $T(M)$ contains a transformation of rank $n - 1$ and each A_X with $|X| = |S|$ is an atom.

Proof. Suppose A_S is maximal. Then, each (X, \overline{X}) with $|X| = |S|$ is an $(n,|S|)$-state, thus has to be nonempty and reachable from (S, \overline{S}). Hence A_X is an atom as well.

Moreover, in that case $(X, \overline{X}) = (S, \overline{S})w_X$ for some w_X, and thus w_X induces a permutation with $Sw_X = X$. This implies $Xw_\Lambda^{-1} = S$ and hence, $Xw_\Lambda^{-1}w = Y = Y$ for any X,Y with $|X| = |Y|$ and $P(M)$ is indeed $|S|$-set-transitive.

Also, if $(S, \overline{S})w = (X_1, X_2)$, then $|X_1| + |X_2|$ is the rank of w. If $|S| > 1$ and $s \in S$, then $(S - \{s\}, \overline{S})$ is an $(n,|S|)$-type state, thus it’s reachable from (S, \overline{S}) by some word w, hence w induces a transformation of rank $n - 1$. If $|S| \leq 1$, then by $n \geq 3$, $|S| > 1$ and $(S, \overline{S} - \{s\})$ is reachable from (S, \overline{S}) by w, again implying that the rank of w is $n - 1$.

Before proceeding, we recall the following theorem:

Theorem 1 ([1], Thm. 3.2). If S is a subsemigroup of T_n such that S contains a transformation of rank $n - 1$ and the subgroup of permutations of S is 2-set transitive, then S contains all the singular transformations in T_n.

(Note: the theorem in this form is a rather specialized variant, applied to near permutation semigroups of the form $S = \langle G, \{u\} \rangle$. However, having only one transformation of rank $n - 1$ suits our needs in this paper.)

We are ready to show the following result regarding atoms having maximal state complexity:

Proposition 4. Suppose L is a regular language with minimal automaton $M = (Q, A, \delta, q_0, F)$, $|Q| \geq 3$ and that whenever A_S is an atom of L then A_S has maximal (i.e. $\Psi(|Q|,|S|)$) state complexity. Then:

- $P(M)$ is set-transitive,
- $T(M)$ contains at least one transformation of rank $|Q| - 1$ and
- every A_T is an atom (thus L is maximally atomic).

Proof. For better readability, we break the proof into several smaller claims. Let n stand for $|Q|$.
1. By Proposition 3 if A_X is an atom for some $X \subseteq Q$ (being maximal by the assumption), $\mathcal{P}(M)$ is $|X|$-set-transitive and $\mathcal{T}(M)$ contains at least one transformation of rank $n - 1$. Thus it suffices to show that A_T is nonempty for each $T \subseteq Q$ (since then k-set-transitivity is implied for each k).

2. Also, since A_X is an atom (maximal by assumption), then by Proposition 3 each A_Y with $|Y| = |X|$ is also an atom. Hence it suffices to show that for each $0 \leq k \leq n$ there is an atom A_X with $|X| = k$.

3. A_F is an atom for any automaton, since $e \in A_F$. Hence there is a word w inducing a transformation of rank $n - 1$, say $pw = qw = r$ and $Qw = Q - \{s\}$. Note that $1 \leq |F| < n$.

4. Suppose A_X is an atom with $1 \leq |X| < n - 1$. Let $Y \subseteq Q$ be a set with $|Y| = |X|$, $r \in Y$ and $s \notin Y$ (such Y exists by the cardinality constraint). Then, $(Y, Y - \{s\})$ is an $(n, |X|)$-type state, thus it is in particular nonempty by maximality of A_X (since in M_X, the only empty state is \bot). Hence, for $Z = \{p' : p'w \in Y\}$ we have $|Z| = |X| + 1$ (by $pw = qw = r \in Y$, $s \notin Y$ and w having rank $n - 1$). By $(Z, Z)w = (Y, Y - \{s\})$, the latter being a nonempty state, (Z, Z) is nonempty as well, and A_Z is an atom of L.

Thus if A_X is an atom with $1 \leq |X| < n - 1$, then so is some A_Z having size $|Z| = |X| + 1$. This in turn implies A_Y being an atom for each Y with $|F| \leq |Y| \leq n - 1$.

5. Suppose A_X is an atom with $1 < |X| < n$. Let $Y \subseteq Q$ be a set with $|Y| = |X|$, $s \in Y$, $r \notin Y$ (such Y exists). Then $(Y - \{s\}, \overline{Y})$ is an $(n, |X|)$-type state. Hence for $Z = \{p' : p'w \in Y\}$ we have $|Z| = |X| - 1$ and again, by $(Z, Z)w = (Y - \{s\}, \overline{Y})$ we get that (Z, Z) is nonempty, thus A_Z is also an atom.

Hence A_Y is an atom for each Y with $1 \leq |Y| \leq |F|$.

6. Hence, every A_X with $X \notin \{\emptyset, Q\}$ is an atom, thus by Proposition 3 $\mathcal{P}(M)$ is k-set-transitive for each $1 \leq k < n$. Since n-transitivity is vacuously satisfied, $\mathcal{P}(M)$ is set-transitive then.

7. It remains to show that A_\emptyset and A_Q are atoms as well. Applying Theorem 1 we get that $\mathcal{T}(M)$ contains all the transformations having rank less than n. Thus in particular, $Qu = F$ and $Qv = \overline{F}$ for some u and v, hence (Q, \emptyset) and (\emptyset, Q) are nonempty, thus A_Q and A_\emptyset are also atoms.

We can also show the converse direction:

Proposition 5. Suppose $M = (Q, \Sigma, \delta, q_0, F)$ is the minimal automaton of L with $n = |Q| > 2$ such that $\mathcal{P}(M)$ is set-transitive and $\mathcal{T}(M)$ contains at least one transformation of rank $n - 1$.

Then L is maximally atomic.

Proof. If $\mathcal{P}(M)$ is set-transitive, then it is also 2-set-transitive. Since by assumption $\mathcal{T}(M)$ contains a transformation of rank $n - 1$, we get by Theorem 1 that $\mathcal{T}(M)$ contains all the singular transformations. Hence for any set $S \subseteq Q$ we get that from (S, \overline{S})

- each state (X, \overline{X}) with $|S| = |X|$ is reachable by $|S|$-set transitivity;
- each $(n, |S|)$-type state (S', T') with $|S'| + |T'| < n$ is reachable since in that case there exists a singular transformation f mapping S onto S' and \overline{S} onto T';
- if $1 \leq |S| < n$, then also \bot is reachable by any constant (thus singular) transformation.

Hence every $(n, |S|)$-type state is reachable from (S, \overline{S}) for each S. We only have to show that each (S, T) is nonempty and distinguishable from any other (S', T'). Indeed, by $n > 2$ we have $1 \leq |F| < n$, thus there exist states $p \in F$, $q \notin F$. Hence the function induced by some word u_S which maps each $s \in S$ to p and each $s \notin S$ to q, maps (S, T) to the final state $\{(p), (q)\}$. Also, let $(S', T') \neq (S, T)$. If $S \neq S'$, then either u_S (if $S' \notin S$) or $u_{S'}$ (if $S \notin S'$) distinguishes the two states, while if $T \neq T'$, then either u_T or $u_{T'}$ does. (The argument works if any of the sets S, T, S' and T' is empty as well).
As a corollary we proved the following characterization of maximally atomic regular languages:

Theorem 2. Suppose L is a regular language with minimal automaton $M = (Q, \Sigma, \delta, q_0, F)$, $|Q| \geq 3$. Then the following are equivalent:

1. L is maximally atomic;
2. every atom of L has maximal complexity;
3. $T(M)$ contains a transformation of rank $|Q| - 1$, and $P(M)$ is set-transitive.

4. Conclusions

We introduced a particular automaton, the so-called “disjoint power set automaton” of a regular language and using this notion we gave a combinatorial proof of the characterization of maximally atomic languages, originally showed in [3]. It is an interesting question whether the DPS automaton of a language can have other uses as well.

References

[1] Jorge M. Andrés. Semigroups that contain all singular transformations. *Semigroup Forum, 68*(2):304–307, 2004. ISSN 0037-1912. URL http://dx.doi.org/10.1007/s00233-003-0006-z.

[2] Janusz A. Brzozowski and Gareth Davies. Maximal syntactic complexity of regular languages implies maximal quotient complexities of atoms. *CoRR, abs/1302.3906*, 2013. URL http://arxiv.org/abs/1302.3906.

[3] Janusz A. Brzozowski and Gareth Davies. Maximally atomic languages. In Zoltán Ésik and Zoltán Fülöp, editors, *Proceedings 14th International Conference on Automata and Formal Languages, AFL 2014, Szeged, Hungary, May 27-29, 2014.*, volume 151 of *EPTCS*, pages 151–161, 2014. doi: 10.4204/EPTCS.151.10. URL http://dx.doi.org/10.4204/EPTCS.151.10.

[4] Janusz A. Brzozowski and Hellis Tamm. Theory of θ-automata. In Giancarlo Mauri and Alberto Leporati, editors, *Developments in Language Theory, volume 6795 of Lecture Notes in Computer Science*, pages 105–116. Springer Berlin Heidelberg, 2011. ISBN 978-3-642-22320-4. URL http://dx.doi.org/10.1007/978-3-642-22321-1_10.

[5] Janusz A. Brzozowski and Hellis Tamm. Complexity of atoms of regular languages. *Int. J. Found. Comput. Sci., 24*(7):1009–1028, 2013. URL http://dx.doi.org/10.1142/S0129054113400285.