Microorganisms and clinical outcomes of early- and late-onset ventilator-associated pneumonia at Srinagarind Hospital, a tertiary center in Northeastern Thailand

Yuichi Tamura (✉ u1@ta-mu.net)
Kokusai Iryo Fukushi Daigaku

Hiraku Kumamaru
Tokyo Daigaku

Kohtaro Abe
Kyushu Daigaku

Toru Satoh
Kyorin Daigaku

Hiroaki Miyata
Keio Gijuku Daigaku

Aiko Ogawa
Okayama Iryou Center

Nobuhiro Tanabe
Chiba Daigaku

Masaru Hatano
Tokyo Daigaku

Atsushi Yao
Tokyo Daigaku

Ichizo Tsujino
Hokkaido Daigaku

Keiichi Fukuda
Keio Gijuku Daigaku

Hiroshi Kimura
Nihon Ika Daigaku

Masataka Kuwana
Nihon Ika Daigaku

Hiromi Matsubara
Okayama Iryou Center

Koichiro Tatsumi
Chiba Daigaku
Abstract

Background: Ventilator-associated pneumonia (VAP) is a common nosocomial infection in intensive care unit (ICU). Local microbiological surveillance of pathogens and resistance patterns for early-onset VAP (EOVAP) and late-onset VAP (LOVAP) will help to choose appropriate empiric antibiotics.

Objective: To compare the multi-drug resistant (MDR) pathogens, treatment outcomes, and factors associated with hospital mortality of VAP.

Method: A cross-sectional study between 1 January 2015 and 31 December 2017 at Srinagarind hospital, Khon Kaen University was conducted. The demographic data, causative pathogens, hospital length of stay (LOS), ICU LOS, mechanical ventilator (MV) days, and hospital mortality were retrospectively reviewed.

Results: One hundred and ninety patients were enrolled; 42 (22%) were EOVAP and 148 (78%) were LOVAP. *Acinetobacter baumannii* was the most common pathogen in both groups (50% EOVAP vs 52.7% LOVAP). MDR pathogens were sigicantly greater in LOVAP (81.8%) than EOVAP (61.9%) \((p = 0.007)\). The EOVAP had a significantly better ICU LOS (median 20.0 (11.0, 30.0) vs. 26.5 (17.0, 43.0) days), hospital LOS (median 26.5 (15.0, 44.0) vs. 35.5 (24.0, 56.0) days) shorter MV days (14.0 (10.0, 29.0) vs. 23.0 (14.0, 35.5) days) and lower hospital mortality (11.9% VS 27.7%) than LOVAP \((p < 0.05)\). The factor associated with hospital mortality was having simplified acute physiology score (SAP) \(\geq 40\) with an adjusted odds ratio (aOR) of 2.22 (95%CI, 1.08-4.54, \(p = 0.02\)).

Conclusion: LOVAP had significantly higher MDR pathogens, MV days, ICU LOS, hospital LOS and hospital mortality than EOVAP. A broad-spectrum antibiotic to cover MDR pathogens should be considered in LOVAP. The factor associated with hospital mortality of VAP was a SAPII score \(\geq 40\).

Background

Pneumonia is the most common hospital-acquired infection with a prevalence of approximately 22%[1, 2]. Ventilator-associated pneumonia (VAP) is pneumonia developing after 48-72 hours of endotracheal intubation[3-5]. VAP is the most common nosocomial infection, developed in about 5-40 % of mechanically ventilated patients[5-7]. Data from the International Nosocomial Infection Control Consortium (INICC) collected summary data from 50 countries including Southeast Asia during 2010-2015 indicated the VAP rate was 13.1 per 1000 mechanical ventilator-days in the medical and surgical intensive care unit (ICU)[8]. Similar results of Reechaipichitkul et al who determined that VAP rates in Srinagarind Hospital, Khon Kaen University, a tertiary-care hospital in northeastern Thailand were 13.6 and 12.6 per 1000 mechanical ventilator-days in 2008 and 2009. This study also demonstrated that more than half of the costs of nosocomial treatment in 2008 and 2009 were the costs for hospital acquired pneumonia (HAP) and VAP, 16.8 and 17.5 million Baht[9]. Melsen WG et al performed a meta-analysis and suggested that overall attributable mortality in mechanical ventilator patients from VAP was 13%[10].
VAP was categorized into early-onset VAP (EOVAP) and late-onset VAP (LOVAP) depending upon when it occurred on which days after hospitalization. The cutoff point of a range 4-7 days onset varied across the studies[11-16]. Recent guideline for HAP and VAP management from The Infectious Disease Society of America (IDSA)/American Thoracic Society(ATS) and the International ERS/ESICM/ESCMID/ALAT use the cutoff point of 5 days after hospitalization[2, 17, 18]. It is believed that in EOVAP, the causative pathogen was not drug-resistant bacteria such as *Streptococcus pneumoniae, Haemophilus influenzae*, antibiotic-sensitive enteric gram-negative bacilli or methicillin-sensitive *Staphylococcus aureus* (MSSA). There is a greater risk that the causative organisms in LOVAP are multidrug-resistant (MDR) such as *Acinetobacter baumannii, Pseudomonas aeruginosa*, methicillin-resistant *S. aureus* (MRSA), extended-spectrum beta-lactamase-producing bacteria (ESBL) and other gram-negative bacilli[5, 17, 19, 20]. The prevalence of MDR pathogens between EOVAP and LOVAP in several studies remained a controversy. Several studies demonstrated that EOVAP had a significantly lower prevalence of MDR pathogens[21-23]. Subsequent studies, however, did not show a significant difference in MDR pathogens between EOVAP and LOVAP groups[11, 12, 14, 24].

Therefore, the study was conducted and aimed to compare the pathogens, clinical characteristics, treatment outcomes between EOVAP and LOVAP groups, and factors associated with hospital mortality.

Methods

A cross-sectional study was conducted at Srinagarind Hospital, Faculty of Medicine, Khon Kaen University which is a 1466-bed tertiary care center in Northeast Thailand. The study was approved by the Human Research Ethics Committee, Khon Kaen University (approval number HE611281). All VAP patients recorded by the infectious control (IC) unit from January 1, 2015, to December 31, 2017, were enrolled.

Study subjects

VAP was diagnosed by the following criteria: 1) a pulmonary infection occurring 48 hours after mechanical ventilation 2) new pulmonary infiltration on chest radiograph 3) at least two of the three following characteristics: temperatures > 38.3 °C or < 36.5 °C, purulent tracheal secretions, and leukocytosis (white blood cell > 12,000 cells/mm³) or leukopenia (white blood cell < 4,000 cells/mm³) [4, 25]. The exclusion criteria were as following: 1) patients who had previous abnormal chest imaging including pulmonary edema, adult respiratory distress syndrome, pulmonary embolism, alveolar hemorrhage, pulmonary tuberculosis, and recent pneumonia 2) Immunocompromised patients who received any immunosuppressive agents, chemotherapy, or prednisolone equivalence ≥ 15 mg/day

Data collection

The medical records of demographic data, hospital department, laboratory results, chest radiological findings, microbiological profiles, tracheostomy tube placement, hospital length of stay (LOS), intensive care unit (ICU) LOS, mechanical ventilator (MV) days and hospital mortality were reviewed.
Definition and outcome

EOVAP defined as VAP developed before 5 calendar days of hospitalization while LOVAP was VAP occurred at least 5 calendar days of hospitalization. Multi-drug resistant (MDR) bacteria were defined as organisms that resisted at least 3 classes of antibiotics[26]. MDR pathogens included extended-spectrum beta-lactamase-producing (ESBL) bacteria, carbapenem-resistant enterobacteriaceae (CRE), MRSA, and other MDR bacteria that were reported from the microbiological laboratory. The causative organisms were defined as one or more of the following: 1) an isolated organism from hemoculture 2) an isolated organism from pleural effusion 3) an isolated numerous growth organism on a semiquantitative method or isolated organism on the quantitative method i.e. endotracheal aspirate > 10^5 colony-forming unit (CFU)/ml, bronchoalveolar lavage > 10^4CFU/ml or protected specimen brush $\geq 10^3$ CFU/ml. Hospital mortality was death occurring during the same admission of VAP diagnosis.

The primary outcome was to compare the MDR pathogen between EOVAP and LOVAP. The secondary outcome was to compare causative pathogens, hospital length of stay (LOS), ICU LOS, mechanical ventilator (MV) days, and hospital mortality between EOVAP and LOVAP. Factors associated with hospital mortality of VAP were identified.

Statistical analysis

The categorical data were shown as numbers and percentages. The normal distributed continuous data were presented as mean and standard deviation (SD) while the non-normal distributed data were presented as the median and interquartile range (IQR). A comparison of category data used the Chi-square test and Fisher’s exact test depending on data. The nonparametric data used the Mann-Whitney U test for comparison. The factors associated with hospital mortality in VAP subjects were evaluated by univariate logistic regression analysis. The stepwise backward multiple logistic regression analysis of factors with a p-value <0.2 on univariate analysis or factors with previous reports of clinical significance was performed. Crude odds ratio (cOR) and adjusted odds ratio (aOR) with their 95% confidence intervals (95% CI) were demonstrated. A p-value of less than 0.05 was considered statistically significant. The statistical analysis was performed by Stata version 10.1 (StataCorp, Texas, USA).

Results

Patients

During the study period, 190 patients were diagnosed as VAP. Forty-two patients were EOVAP and 148 patients were LOVAP. The mean (SD) age of these was 64.3 (16.2) years. Males were 127 (66.8%) and females were 63 (33.2%). One hundred and seven subjects were admitted to the Medicine Department (96 medical ICU and 11 general medicine ward). Eighty-three subjects were admitted to the Surgical Department (73 surgical ICU and 10 general surgery ward). One hundred and forty-eight patients had an underlying disease. The common underlying diseases were hypertension (41.6%), diabetes mellitus (27.4%), cardiovascular disease (26.8%). The mean (SD) of the simplified acute physiology score (SAP) II
score was 43.7 (13.3). Lobar pneumonia was the most common finding on chest radiography (75.8%). Pleural effusion developed in 28.4% of all subjects. The demographic data of EOVAP and LOVAP patients were shown in table 1. LOVAP patients had a higher mean age and more comorbidities than EOVAP patients while the chest radiographic findings were similar between groups.

Primary outcomes

The causative organisms were mostly gram-negative bacteria (97.4%) while gram-positive bacteria were isolated 2.6%; 4.8% of EOVAP and 2.0% of LOVAP. The most common pathogens were *Acinetobacter baumannii* (52.1%), *Klebsiella pneumoniae* (15.3%), *Stenotrophomonas maltophilia* (13.2%), *Pseudomonas aeruginosa* (8.9%). The MDR pathogens were identified 77.4%; 3.7% of ESBL producing organism, 5.3% of CRE, 1.6% of MRSA and 66.8% of other MDR gram-negative organisms. The overall MDR bacteria were found 61.9% in the EOVAP while in LOVAP was 81.8%. The LOVAP had significantly more MDR pathogens than EOVAP (*p* = 0.007). For MDR pathogens, the ESBL producing organisms were found in 2.4% of EOVAP and 4.1% of LOVAP. The CRE was found at 2.4% in EOVAP and 6.1% in LOVAP. The proper empiric antibiotics were used to treat 130 (68.4%) study subjects; 61.9% of EOVAP and 70.3% of LOVAP. The percentage of proper empiric treatment was similar between groups (*p* = 0.30). (Table 2)

Secondary outcome

The median (IQR) duration of MV was 22.0 (12.0, 34.0) days. The median duration of MV was significantly longer in LOVAP (23.0 (14.0, 35.5) VS 14.0 (10.0, 29.0); *p* = 0.03). The median (IQR) ICU LOS was 25.0 (15.0, 42.0) days. The median ICU LOS was significantly longer in LOVAP (26.5 (17.0, 43.0) VS 20.0 (11.0, 30.0); *p* = 0.02). The median hospital LOS was 34.0 (23.0, 53.0). The median hospital LOS was significant longer in LOVAP (35.5 (24.0, 56.0) VS 26.5 (15.0, 44.0); *p* = 0.01). Tracheostomy was performed in 30.5% (38.1% of EOVAP and 28.4% of LOVAP). (Table 3). The hospital mortality during the study period was 31.1%. The hospital mortality was 16.7% in EOVAP and 35.1% in LOVAP that was significantly greater than EOVAP (*p* = 0.02). (Table 3)

Factor associated hospital mortality

Univariate and multivariate analysis were performed to assess factors associated with hospital mortality. On univariate analysis, the patients who were of an age ≥ 60 years (cOR= 2.19; 95% CI 1.11-4.33; *p*=0.02), were admitted in the medical ICU (cOR = 2.28; 95% CI 1.20-4.29; *p*=0.01), had a SAPII score ≥ 40 ICU (cOR = 2.49; 95% CI 1.28-4.86; *p*=0.007), received improper empirical antibiotics (cOR = 2.27; 95% CI 1.10-4.68; *p*=0.02), or were late-onset VAP (cOR = 2.71; 95% CI 1.12-6.52; *p*=0.02) were statistically associated with hospital mortality of VAP patients. With stepwise backward multivariate analysis, having a SAPII score ≥ 40 was the only statistically significant factor associated with hospital mortality (aOR = 2.22; 95% CI 1.08-4.54; *p*=0.02). (Table 4)

Discussion
The study revealed that the most common pathogens were a gram-negative organisms. *A. baumannii, K. pneumoniae, P. aeruginosa* were common pathogens in both groups while *S. maltophilia* was increased in late-onset VAP. The pathogens from this study did not differ between EOVAP and LOVAP. The results of this study were similar to other tertiary centers in Thailand[27, 28]. Of these, *A. baumannii, K. pneumoniae, P. aeruginosa* were the common pathogens of VAP. These studies, however, did not address the causative organisms into early-onset VAP and late-onset VAP. Three studies from different tertiary-care centers of India had results similar to the present study[14, 15, 29]. *A. baumannii, K. pneumoniae* and *P. aeruginosa* were common pathogens in both EOVAP and LOVAP. The pathogens of EOVAP from this study differed from pathogens mentioned in the recent guideline[17]. The results supported that empiric treatments should be guided by a local distribution of pathogens that recognized and treatments are recommended by the Management of Adults with Hospital-acquired and Ventilator-associated Pneumonia in 2016 by IDSA/ATS guideline[2]. Papazian et al suggested that microbiological confirmation is strongly recommended when considering a diagnosis of VAP and pathogens may vary depending on many factors including the duration of MV, hospital LOS, ICU LOS, previous antibiotics exposure, the occurrence of epidemic phenomena in a given ICU and local distribution of organisms[5].

Gram-positive bacteria were identified in only 2.6% and most of them were MRSA. The prevalence of drug-resistance gram-positive bacteria in this study was markedly lower as compared to the study of the pathogens of VAP in Thailand by Chittawatanarat et al, Inchai et al and Werarak et al[27, 28, 30]. Reechaipichitkul et al conducted a study of the causative organisms of VAP in the same center during 2008-2009. The study indicated MRSA was responsible for 6-7% of the total causative organisms[9]. The majority of *S. aureus* colonization in the respiratory tract is in the nares and throat. Chlorhexidine is a topical antiseptic, which is most active against gram-positive bacteria[31]. Our center has applied selective oral decontamination (SOD) with chlorhexidine since 2011. This might have reduced the incidence of VAP due to MRSA.

The purpose of differentiation of VAP into EOVAP and LOVAP was to guide empiric antibiotic treatment to cover MDR bacteria. Inappropriate and delayed empirical therapy is associated with higher mortality in VAP patients[32-34]. The study found that LOVAP had a significantly higher proportion of MDR pathogens than EOVAP (p = 0.007). The results endorsed the Management of Adults with Hospital-acquired and Ventilator-associated Pneumonia in 2016 by IDSA/ATS suggested that VAP developed after 5 days of hospitalization had a greater risk of MDR pathogen presence than VAP developed earlier[2]. Therefore empiric broad-spectrum antibiotics against MDR pathogens were recommended for LOVAP.

Furthermore, this current study demonstrated that LOVAP had significantly longer MV days, ICU LOS, and hospital LOS than EOVAP. The hospital mortality was significantly greater in LOVAP (35.1% VS 16.7%, p = 0.02). These worse outcomes of LOVAP were also observed by Khan et al[24]. The implementation of VAP prevention might reduce the cost of hospitalization and unnecessary mortality, especially in LOVAP[35].
A meta-analysis from Melsen et al suggested that overall attributable mortality from VAP was 13% and the higher mortality were found in surgical patients, acute physiology and chronic health evaluation (APACHE) score of 20–29 and SAPS II score of 35–58 [10]. Bekaert et al revealed the SAPS II score of 28-40 was significantly greatest associated with ICU death per additional day since the onset VAP[36]. Similar to our study, on stepwise backward multivariate analysis, a SAPII score ≥ 40 was significantly associated with hospital mortality of VAP patients.

The strengths of this study were that the recorded data were complete because VAP was under regular surveillance of our institute by infection control ward nurses (ICWNs) and confirmed by the infection control unit.

This study had some limitations. First, the sample size is small, especially in EOVAP. This affected the statistical power. Second, this was a retrospective study, some data might be difficult to determine such as previous antibiotic exposure within 90 days, prior hospitalization preceding 90 days. These factors are associated with the infection of MDR pathogen[2, 37]. Third, the results of this study were unable to be applied to VAP in immunocompromised patients. Fourth, this study was from a single tertiary center, which had some limitations for considering empiric antibiotics treatment to general hospitals. Pathogens and resistance patterns could vary between hospitals, regions and countries[2]. The local pathogens and pattern resistance of each hospital were the crucial factors for the selection of empiric antibiotics.

Conclusion

In conclusion, LOVAP was significantly higher MDR pathogen, MV days, ICU LOS, hospital LOS and hospital mortality than EOVAP. A broad-spectrum antibiotic to cover MDR pathogens should be considered in LOVAP. The factor associated with hospital mortality of VAP was a SAPII score ≥ 40.

Declarations

Ethics approval and consent to participate

This study was approved by the Human Research Ethics Committee, Khon Kaen University (approval number HE611281). Because the study was descriptive without intervention, the need of consent from the participants had also been waived.

Consent for publication

According to no individual patient data is presented in our study, consent for publication is not applicable.

Availability of data and materials

The datasets used and/or analyzed in this study are available from the corresponding author on reasonable request.
Competing interests

All authors have no competing interests.

Funding

This research did not receive any funding sources.

Author's contributions

P.V., A.S., W.R. developed the study design, statistical analysis, interpretation of data, manuscript preparation, and critical revision of intellectual content. Wo.C., I.A. conducted interpretation of data and manuscript preparation. PR. conducted statistical analysis and interpretation of data. Wa. C. conducted interpretation of data. The remaining authors reviewed of manuscript. All authors read and approved the final manuscript.

Acknowledgements

The authors gratefully thank Professor James Arthur Will for editing the manuscript via the Faculty of Medicine Publication Clinic, Khon Kaen University, Thailand. This study was supported by the Faculty of Medicine, Khon Kaen University, Thailand.

Author details

1Department of Medicine, 2Division of Sleep Medicine, 3Division of Pulmonary and Critical Care Medicine, 4Infectious control unit, Srinagarind Hospital, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand

Abbreviations

VAP: ventilator-associated pneumonia; ICU: intensive care unit; EOVAP: early-onset ventilator-associated pneumonia; LOVAP: late-onset ventilator-associated pneumonia; LOS: length of stay; MV: mechanical ventilator; MDR: multi-drug resistant; SAP II score: simplified acute physiology II score; INICC: International Nosocomial Infection Control Consortium; IDSA: Infectious Disease Society of America; ATS: American Thoracic Society; ERS: European Respiratory Society; ESICM: European Society of Intensive Care Medicine; ESCMID: European Society of Clinical Microbiology and Infectious Diseases; ALAT: Latin American Thoracic Association; IC: infectious control; ICWNs: infection control ward nurses; SOD: selective oral decontamination; MSSA: methicillin-sensitive Staphylococcus aureus; MRSA: methicillin-resistant Staphylococcus aureus; ESBL: extended-spectrum beta-lactamase-producing; CRE: carbapenem-resistant enterobacteriaceae; CFU: colony forming unit; ml: millilitre; mg: milligram; SD: standard deviation; IQR: interquartile range; cOR: crude odds ratio; aOR: adjusted odds ratio; 95% CI: 95% confidence interval
References

1. Magill SS, Edwards JR, Bamberg W, Beldavs ZG, Dumyati G, Kainer MA, et al. Multistate point-prevalence survey of health care-associated infections. The New England journal of medicine. 2014;370(13):1198-208.

2. Kalil AC, Metersky ML, Klompas M, Muscedere J, Sweeney DA, Palmer LB, et al. Management of Adults With Hospital-acquired and Ventilator-associated Pneumonia: 2016 Clinical Practice Guidelines by the Infectious Diseases Society of America and the American Thoracic Society. Clinical infectious diseases: an official publication of the Infectious Diseases Society of America. 2016;63(5):e61-e111.

3. Tablan OC, Anderson LJ, Besser R, Bridges C, Hajjeh R. Guidelines for preventing health-care-associated pneumonia, 2003: recommendations of CDC and the Healthcare Infection Control Practices Advisory Committee. MMWR Recommendations and reports: Morbidity and mortality weekly report Recommendations and reports. 2004;53(Rr-3):1-36.

4. American Thoracic Society (ATS) and the Infectious Disease Society of American (IDSA). Guidelines for the management of adults with hospital-acquired, ventilator-associated, and healthcare-associated pneumonia. American journal of respiratory and critical care medicine. 2005;171(4):388-416.

5. Papazian L, Klompas M, Luyt CE. Ventilator-associated pneumonia in adults: a narrative review. Intensive care medicine. 2020;46(5):888-906.

6. Rello J, Ollendorf DA, Oster G, Vera-Llonch M, Bellm L, Redman R, et al. Epidemiology and outcomes of ventilator-associated pneumonia in a large US database. Chest. 2002;122(6):2115-21.

7. Hunter JD. Ventilator associated pneumonia. BMJ (Clinical research ed). 2012;344:e3325.

8. Rosenthal VD, Al-Abdely HM, El-Kholy AA, AlKhawaja SAA, Leblebicioglu H, Mehta Y, et al. International Nosocomial Infection Control Consortium report, data summary of 50 countries for 2010-2015: Device-associated module. American journal of infection control. 2016;44(12):1495-504.

9. Reechaipichitkul W, Phondongnak S, Bourpoern J, Chaimanee P. Causative agents and resistance among hospital-acquired and ventilator-associated pneumonia patients at Srinagarind Hospital, northeastern Thailand. The Southeast Asian journal of tropical medicine and public health. 2013;44(3):490-502.

10. Melsen WG, Rovers MM, Groenwold RH, Bergmans DC, Camus C, Bauer TT, et al. Attributable mortality of ventilator-associated pneumonia: a meta-analysis of individual patient data from randomised prevention studies. The Lancet Infectious diseases. 2013;13(8):665-71.

11. Restrepo MI, Peterson J, Fernandez JF, Qin Z, Fisher AC, Nicholson SC. Comparison of the bacterial etiology of early-onset and late-onset ventilator-associated pneumonia in subjects enrolled in 2 large clinical studies. Respiratory care. 2013;58(7):1220-5.
12. Giantsou E, Liratzopoulos N, Efraimidou E, Panopoulou M, Alepopoulou E, Kartali-Ktenidou S, et al. Both early-onset and late-onset ventilator-associated pneumonia are caused mainly by potentially multiresistant bacteria. Intensive care medicine. 2005;31(11):1488-94.

13. Hedrick TL, Smith RL, McElearney ST, Evans HL, Smith PW, Pruett TL, et al. Differences in early- and late-onset ventilator-associated pneumonia between surgical and trauma patients in a combined surgical or trauma intensive care unit. The Journal of trauma. 2008;64(3):714-20.

14. Jakribettu R, Boloor R, Suresh S. Comparison of microbiological profile of pathogens isolated from early-onset and late-onset ventilator-associated pneumonia in a tertiary care center. Tropical Journal of Medical Research. 2016;19(1):14-9.

15. Golia S, K TS, C LV. Microbial profile of early and late onset ventilator associated pneumonia in the intensive care unit of a tertiary care hospital in bangalore, India. Journal of clinical and diagnostic research : JCDR. 2013;7(11):2462-6.

16. Gastmeier P, Sohr D, Geffers C, Rüden H, Vonberg RP, Welte T. Early- and late-onset pneumonia: is this still a useful classification? Antimicrobial agents and chemotherapy. 2009;53(7):2714-8.

17. Torres A, Niederman MS, Chastre J, Ewig S, Fernandez-Vandellos P, Hanberger H, et al. Summary of the international clinical guidelines for the management of hospital-acquired and ventilator-acquired pneumonia. ERJ open research. 2018;4(2).

18. Torres A, Niederman MS, Chastre J, Ewig S, Fernandez-Vandellos P, Hanberger H, et al. International ERS/ESICM/ESCMID/ALAT guidelines for the management of hospital-acquired pneumonia and ventilator-associated pneumonia: Guidelines for the management of hospital-acquired pneumonia (HAP)/ventilator-associated pneumonia (VAP) of the European Respiratory Society (ERS), European Society of Intensive Care Medicine (ESICM), European Society of Clinical Microbiology and Infectious Diseases (ESCMID) and Asociacion Latinoamericana del Torax (ALAT). The European respiratory journal. 2017;50(3).

19. Kalanuria AA, Ziai W, Mirski M. Ventilator-associated pneumonia in the ICU. Critical care (London, England). 2014;18(2):208.

20. Park DR. The microbiology of ventilator-associated pneumonia. Respiratory care. 2005;50(6):742-63; discussion 63-5.

21. Kollef MH, Silver P, Murphy DM, Trovillion E. The effect of late-onset ventilator-associated pneumonia in determining patient mortality. Chest. 1995;108(6):1655-62.

22. Trouillet JL, Chastre J, Vuagnat A, Joly-Guillou ML, Combaux D, Dombret MC, et al. Ventilator-associated pneumonia caused by potentially drug-resistant bacteria. American journal of respiratory and critical care medicine. 1998;157(2):531-9.
23. Hosamirudsari Hadiseh, Forghani Sina, Samaneh A. Multi-drug resistant ventilator associated pneumonia: risk factors and outcomes. Canadian Journal of Infection Control. Spring 2018;33 (1):p20-4.

24. Khan R, Al-Dorzi HM, Tamim HM, Rishu AH, Balkhy H, El-Saed A, et al. The impact of onset time on the isolated pathogens and outcomes in ventilator associated pneumonia. Journal of infection and public health. 2016;9(2):161-71.

25. Torres A, el-Ebiary M, Padró L, Gonzalez J, de la Bellacasa JP, Ramirez J, et al. Validation of different techniques for the diagnosis of ventilator-associated pneumonia. Comparison with immediate postmortem pulmonary biopsy. American journal of respiratory and critical care medicine. 1994;149(2 Pt 1):324-31.

26. Magiorakos AP, Srinivasan A, Carey RB, Carmeli Y, Falagas ME, Giske CG, et al. Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: an international expert proposal for interim standard definitions for acquired resistance. Clinical microbiology and infection : the official publication of the European Society of Clinical Microbiology and Infectious Diseases. 2012;18(3):268-81.

27. Werarak P, Kiratisin P, Thamlikitkul V. Hospital-acquired pneumonia and ventilator-associated pneumonia in adults at Siriraj Hospital: etiology, clinical outcomes, and impact of antimicrobial resistance. Journal of the Medical Association of Thailand = Chotmaihet thangphaet. 2010;93 Suppl 1:S126-38.

28. Chittawatanarat K, Jaipakdee W, Chotirosniramit N, Chandacham K, Jirapongcharoenlap T. Microbiology, resistance patterns, and risk factors of mortality in ventilator-associated bacterial pneumonia in a Northern Thai tertiary-care university based general surgical intensive care unit. Infection and drug resistance. 2014;7:203-10.

29. Dey A, Bairy I. Incidence of multidrug-resistant organisms causing ventilator-associated pneumonia in a tertiary care hospital: a nine months' prospective study. Annals of thoracic medicine. 2007;2(2):52-7.

30. Inchai J, Pothirat C, Liwsrisakun C, Deesomchok A, Kositsakulchai W, Chalermpanchai N. Ventilator-Associated Pneumonia: Epidemiology and Prognostic Indicators of 30-Day Mortality. Japanese Journal of Infectious Diseases. 2015;68(3):181-6.

31. Koeman M, van der Ven AJ, Hak E, Joore HC, Kaasjager K, de Smet AG, et al. Oral decontamination with chlorhexidine reduces the incidence of ventilator-associated pneumonia. American journal of respiratory and critical care medicine. 2006;173(12):1348-55.

32. Luna CM, Vujacich P, Niederman MS, Vay C, Gherardi C, Matera J, et al. Impact of BAL data on the therapy and outcome of ventilator-associated pneumonia. Chest. 1997;111(3):676-85.

33. Kollef MH, Sherman G, Ward S, Fraser VJ. Inadequate antimicrobial treatment of infections: a risk factor for hospital mortality among critically ill patients. Chest. 1999;115(2):462-74.
34. Iregui M, Ward S, Sherman G, Fraser VJ, Kollef MH. Clinical importance of delays in the initiation of appropriate antibiotic treatment for ventilator-associated pneumonia. Chest. 2002;122(1):262-8.

35. Hellyer TP, Ewan V, Wilson P, Simpson AJ. The Intensive Care Society recommended bundle of interventions for the prevention of ventilator-associated pneumonia. Journal of the Intensive Care Society. 2016;17(3):238-43.

36. Bekaert M, Timsit JF, Vansteelandt S, Depuydt P, Vésin A, Garrouste-Orgeas M, et al. Attributable mortality of ventilator-associated pneumonia: a reappraisal using causal analysis. American journal of respiratory and critical care medicine. 2011;184(10):1133-9.

37. Aliberti S, Di Pasquale M, Zanaboni AM, Cosentini R, Brambilla AM, Seghezzi S, et al. Stratifying risk factors for multidrug-resistant pathogens in hospitalized patients coming from the community with pneumonia. Clinical infectious diseases : an official publication of the Infectious Diseases Society of America. 2012;54(4):470-8.

Tables

Table 1. Demographic data of early-onset VAP (n=42) and late-onset VAP (n=148)
Characteristics	Early-onset VAP	Late-onset VAP
	n (%)	n (%)
Mean age in years (SD)	58.5 (16.9)	65.9 (15.7)
Male	34 (81)	93 (62.8)
Ward		
Medical ICU	14 (33.3)	82 (55.4)
Surgical ICU	21 (50.0)	52 (35.1)
General medicine ward	3 (7.1)	8 (5.4)
General surgery ward	4 (9.5)	6 (4.1)
Underlying diseases		
Hypertension	17 (40.5)	62 (41.9)
Diabetes mellitus	10 (23.8)	42 (28.4)
Cardiovascular disease	11 (26.2)	40 (27.0)
Renal failure	4 (9.5)	37 (25.0)
Neurological disease	4 (9.5)	7 (4.1)
Dyslipidemia		
Lung disease	6 (14.3)	13 (8.8)
Gastrointestinal disease	2 (4.8)	11 (7.4)
Other	1 (2.4)	17 (11.5)
Hospitalized within 90 days	4 (9.5)	10 (6.8)
Antibiotic therapy in the prior month	22 (52.4)	101 (68.2)
Mean SAPII score (SD)	40.9 (14.1)	44.4 (12.9)
Chest radiographic finding		
Lobar pneumonia	34 (80.9)	111 (75.0)
Multilobar pneumonia	12 (28.6)	42 (28.4)
Pleural effusion		

SD=standard deviation; ICU=intensive care unit,
IQR=interquartile range

Table 2. Microorganisms identified in early-onset VAP (n=42) and e-onset VAP (n=148)
Microorganism	Early-onset VAP n (%)	Late-onset VAP n (%)	p-value
Gram-negative organism			
Acinetobacter baumannii	40 (95.2)	145	0.31
MDR Acinetobacter baumannii	21 (50.0)	(97.9)	0.76
Klebsiella pneumoniae	20 (47.6%)	78 (52.7)	0.84
MDR Klebsiella pneumoniae	8 (19.0)	73 (49.3)	0.44
ESBLs-Klebsiella pneumoniae	1 (2.4)	21 (14.2)	
CRE Klebsiella pneumoniae	1 (2.4)	14 (9.5)	0.07
Pseudomonas aeruginosa	1 (2.4)	2 (1.4)	
MDR Pseudomonas aeruginosa	2 (4.8)	23 (15.5)	
Stenotrophomonas maltophilia	1 (2.4)	2 (1.4)	
MDR Stenotrophomonas maltophilia	4 (1.7)	1 (2.4)	
Enterobacter spp.	2 (4.8)	7 (4.73)	0.24
MDR Enterobacter spp.	1 (2.4)	3 (2.0)	0.31
ESBLs-Enterobacter spp.	1 (2.4)	2 (1.4)	0.64
Other gram-negative organisms	26 (61.9)	1 (0.7)	0.007*
Gram-positive organism			
Staphylococcus aureus	121 (81.8)		
MRSA			
Other gram-positive organisms			
Multidrug-resistant pathogens**			

*p-value < 0.05

ESBLs = extended-spectrum beta-lactamase-producing bacteria, CRE = carbapenem-resistant enterobacteriaceae, MRSA = methicillin-resistant *Staphylococcus aureus*

** Multidrug-resistant pathogens included ESBLs, CRE, MRSA, and other MDR organisms
Table 3. Outcomes of treatment in early-onset VAP (n=42) and late-onset VAP (n=148)

Outcomes	Early-onset VAP	Late-onset VAP	p-value
Median duration mechanical ventilator (day, IQR)	14.0 (10.0, 23.0)	14.0 (10.0, 23.0)	0.03*
Median ICU length of stay (day, IQR)	20.0 (11.0, 26.5)	20.0 (11.0, 26.5)	0.02*
Median hospital length of stay (day, IQR)	26.5 (15.0, 35.5)	26.5 (15.0, 35.5)	0.22
Performed tracheostomy (n.%)	16.0 (38.1)	23.0 (38.1)	0.01*
Hospital mortality (n,%)	7.0 (16.7)	52.0 (35.1)	0.02*

*p-value<0.05

Table 4. Factors associated with hospital mortality in VAP patients.

Factors	Crude OR (95% CI)	Adjusted OR (95% CI)	p-value*
Age ≥60 years	2.19 (1.11-4.33)	-	0.02*
Having underlying diseases	4.33	-	0.99
Patient at medical ICU	0.99 (0.47-2.13)	-	0.01*
Having SAPII score ≥ 40	2.08 (1.08-4.54)	2.22 (1.08-4.54)	0.02*
Resistant gram-negative organisms	2.28 (1.20-4.29)	2.71 (1.12-6.57)	0.92
Receiving improper empiric antibiotics	2.49 (1.28-4.86)	-	0.02
Late-onset VAP	1.04 (0.51-2.13)	2.71 (1.12-6.57)	0.02

OR=odds ratio; *p-value for 95% CI of adjusted OR