Violet bioluminescent *Polycirrus* sp. (Annelida: Terebelliformia) discovered in the shallow coastal waters of the Noto Peninsula in Japan

Shusei Kanie¹, Daisuke Miura², Naoto Jimi³,⁸, Taro Hayashi⁴, Koji Nakamura⁵, Masahiko Sakata⁵, Katsunori Ogo⁴,⁹, Yoshihiro Ohmiya⁶,⁷ & Yasuo Mitani¹

Terebellidae worms have large numbers of tentacles responsible for various biological functions. Some Terebellidae worms whose tentacles emit light are found around the world, including exceptional violet-light-emitting *Polycirrus* spp. found in Europe and North America. However, there is no video-recorded observation of the luminous behavior of such unique species in nature, and the genetic information related to their ecology are lacking. Here, for the first time, we video-recorded the violet-light-emitting behavior of an undescribed Japanese worm in its natural habitat. The worm was designated as *Polycirrus* sp. ISK based on morphological observations, and the luminescence spectrum showed a peak at 444 nm, which is an exceptionally short wavelength for bioluminescence in a shallow coastal water environment. An analysis of differentially expressing genes based on separate RNA-Seq analysis for the tentacles and the rest of body revealed the specific expression of genes that are probably involved in innate immunity in the tentacles exposed to predators. We also found a *Renilla* luciferase homologous gene, but coelenterazine was not detected in the worm extract by analyses using a liquid chromatography and a recombinant *Renilla* luciferase. These results will promote an understanding of the ecology and luminescence mechanisms of luminous *Polycirrus* spp.

Luminous animals are diverse, and more than 700 genera have been found to contain light-emitting species¹,². The color of the emitted light depends on the species, and its biological meaning has been discussed from various aspects, such as habitat or luminous behavior³–⁵. One of the notable observations is the relationship between habitat depth and color of bioluminescence in the ocean⁶. In marine luminous animals, the majority of deep-sea species emit blue light with wavelengths around 475 nm, and green light with wavelengths around 500 nm is the most common color in shallow-water species⁷–⁹. Exceptionally few species produce violet light having wavelengths shorter than 450 nm⁹. Light absorption and scattering by seawater would explain the biological significance of blue and green bioluminescence depending on habitat depth⁶, whereas the function of violet bioluminescence is still obscure due to the small number of reports of violet-light-emitting species.

Polychaetes, which are mostly marine species, include eight families of luminous species: Acrocirridae, Chaeotopteridae, Cirratulidae, Flabelligeridae, Polynoidae, Syllidae, Tomopteridae, and Terebellidae⁵. The family Terebellidae includes unique species that emit violet light. Terebellidae species exhibit a characteristic morphological feature of conspicuous tentacles with important biological functions, including food acquisition, swimming ability, and a defense against predators⁹–¹⁵. Despite these observations for the tentacle’s function related to the ecology, few molecular-level studies of the related families have been performed¹⁶–¹⁷. Among Terebellidae, luminous species are found in two genera: *Thelepus* and *Polycirrus*. The previous chemical study on metabolites from

¹Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Sapporo 062-8517, Japan. ²Biomedical Research Institute, AIST, Tsukuba 305-8566, Japan. ³National Institute of Polar Research, Tachikawa, Tokyo 190-8518, Japan. ⁴Olympus Corporation, Hachioji, Tokyo 192-8512, Japan. ⁵Japan Underwater Films Co., Ltd., 2-11-15, Nakaochiai, Shinjyuku, Tokyo 161-0032, Japan. ⁶Biomedical Research Institute, AIST, Ikeda 563-8577, Japan. ⁷Osaka Institute of Technology (OIT), Osaka 535-8585, Japan. ⁸Present address: Sugashima Marine Biological Laboratory, Graduate School of Science, Nagoya University, Toba, Mie 517-0004, Japan. ⁹HATENOURUMA, Hachioji, Tokyo 192-0023, Japan. ¹⁰email: mitani-y@aist.go.jp
Thelepus spp. revealed an antimicrobial compound localized in their tentacles. Recently, the Japanese *Thelepus japonicas*, which emits light at λ_{max} 508 nm, was studied with a focus on the molecular mechanism underlying light emission, while the molecular bases of luminous Polycirrus spp. remain to be clarified.

Luminous *Polycirrus* spp. have long been known in various places around the world, including *Polycirrus auranticus* from the coast of England and *Polycirrus preplexus* from California. The former species is reported to show a rather weak violet–blue light flashing out at the tips of tentacles when the worm is disturbed. The latter is reported to be a nonsecretion flash-type light emission, and an analysis using a charge-coupled device (CCD) spectrophotometer revealed that the emitting light had a 445 nm emission peak. However, almost all descriptions of luminous *Polycirrus* spp. in the literature are more than 30 years old and lack clear photographs or videos that would suggest these species’ ecological behaviors.

In this study, for the first time, we video-recorded the violet-light-emitting behavior of an undescribed worm in the shallow coastal waters of the Noto Peninsula, Ishikawa, Japan. The worm was morphologically identified and named *Polycirrus* sp. ISK. In addition, we successfully collected the light-emission spectrum with a peak at 444 nm, which was very similar to that of *P. preplexus* found in California. Our RNA-Seq analysis showed that the existence of a gene coding for fucolectin, which is a fucose-binding lectin related to an innate immunity response, was significantly enriched in the tentacles. The RNA-Seq data included a homologous gene of *Renilla* luciferase, which is the enzyme responsible for coelenterazine-dependent bioluminescence, but coelenterazine was not detected in the worm extract by analyses using ultra performance liquid chromatography (UPLC) and a recombinant *Renilla* luciferase.

Results and discussion

Morphology and light-emitting behavior of the undescribed Japanese Terebellidae worm. In 2016, some of the present authors were exploring shallow coastal waters (depth less than 1 m) to observe the ecological behaviors of marine animals in the Noto Peninsula, Ishikawa, Japan. The worms were morphologically identified and named *Polycirrus* sp. ISK. In addition, we successfully collected the light-emission spectrum with a peak at 444 nm, which was very similar to that of *P. preplexus* found in California. Our RNA-Seq analysis showed that the existence of a gene coding for fucolectin, which is a fucose-binding lectin related to an innate immunity response, was significantly enriched in the tentacles. The RNA-Seq data included a homologous gene of *Renilla* luciferase, which is the enzyme responsible for coelenterazine-dependent bioluminescence, but coelenterazine was not detected in the worm extract by analyses using ultra performance liquid chromatography (UPLC) and a recombinant *Renilla* luciferase.
as a member of *Polycirrus* on the basis of the following characteristics\(^{18}\): (1) a sheetlike prostomium covering the upper lip; (2) avicular uncini on some neuropodia; (3) no branchiae. The specimens also have the following characteristics: (1) neurochaetae beginning on last notochaetigerous segment, chaetiger 14; (2) uncini with a long neck and concave base; (3) notopodial pre- and post-chaetal lobes both similar shape. These characters are also found in *Polycirrus disjunctus* Hutchings and Glasby\(^{18}\); however some of the characters in parapodial lobes and chaetae have differentiation. Thus, we concluded that this species should be treated as an undescribed species. Further comparative observation is needed to describe the species. At this time we treated the *Polycirrus* species observed in this study as *Polycirrus* sp. ISK. Application of an electric pulse also caused clear light emission from the tentacles of the living worm (Fig. 1D; Supplementary Video S3), and the luminescence spectrum showed that its \(\lambda_{\text{max}}\) was 444 nm or slightly longer, depending on the individual (Fig. 2A). We also found that light emission was efficiently induced by the addition of KCl solution and observed the time course of light emission with rapid fluctuations with variable duration in the order of milliseconds for up to 30 s (Fig. 2B). The flash pattern was similar to that observed in a study of *P. perplexus*\(^{17}\). In the genus *Polycirrus*, *P. medius* and *P. nervosus* in Japan have been described\(^{18}\). However, the morphological features of the species in the present study differed from these species on the basis of our observations described above.

Japanese *Polycirrus* spp. have not been described as luminous worms according to our review of the literature and web pages. In addition, the number of reports for new *Polycirrus* spp. from all over the world has been increasing, but a limited number of species are known to emit light\(^{13,17,18}\). Our finding of KCl-induced light emission from *Polycirrus* sp. ISK suggested that we can easily test the light-emitting ability of *Polycirrus* spp. by luminescence measurement just after adding KCl solution. A spectrum pattern has been reported for only one species, *P. perplexus* collected in California\(^{17}\), and it would be necessary for further understanding of these species to examine the light-emitting abilities and to compare light-emitting behaviors and spectrum patterns. The color of bioluminescence is often related to habitat, and light in the blue range is typical for pelagic species\(^{20}\). Thus, one of the points to be focused on is the ecological function of the violet-light emission of this worm inhabiting in a shallow coastal water environment. In *P. perplexus*, deterring predation is a possible function of luminescence based on that species’ habitat and its violet-light emission\(^{17,21}\). As shown in Supplementary Videos S1, S2, which are the first video records of in situ light emission of a *Polycirrus* species, the air bubble-stimulated luminescence of *Polycirrus* sp. ISK in its natural habitat also seemed to deter predation, but this explanation is still speculative.

Differentially expressing genes between the tentacles and the rest of the body. A few years after discovering this worm, we found it difficult to collect enough of them to conduct common biochemical and chemical analyses because we did not find a place densely inhabited by hundreds of the worms whose wet weight was a few tens of milligrams (e.g. 16.5, 29.8, or 31.8 mg). Next, we conducted RNA-Seq analysis. In luminous animals with strong light emission, such as firefly or syllid polychaetes (Syllidae), luciferase expression is high, especially at the luminous organ or in the whole body\(^{22,23}\). On the other hand, the light emission of *Polycirrus* sp. ISK was not so strong compared to that of fireflies, and the light-emitting area was limited to the tentacles. In addition, the genetic information related to the tentacles responsible for various ecological functions is still limited. Thus, in the present study we decided to purify RNA from the tentacles and the rest of body separately (Fig. 1C) and performed RNA-Seq analysis followed by a computational analysis using the MASER pipeline\(^{24}\). By de novo assembly, 110,775 contigs were predicted; 26.1% of them showed more than twice the expression level in the tentacles than in the rest of body, whereas 20.8% showed more than twice the expression in the rest of body than in the tentacles. When we performed a blastX search to the NCBI nr database for the contigs longer than 300 bp, 35.6% showed significant homology with registered genes with e-values of less than 1e\(^{-18}\). The average length for these contigs was 1384 bp, and half of them were in the range of 463–1863 bp (Supplementary Fig. S2). In the assembled sequence, we found the cytochrome oxidase subunit I (COI) gene and tried to construct a phy-
logenetic tree. However, the obtained phylogenetic tree was unreliable due to the low bootstrap values as shown in Supplementary Fig. S3.

To focus on the tissue-specific genes, we first picked up genes with high expression levels based on high fpkm values (over 1000) and then ranked these genes based on the tissue-specificity judged by the comparison of fpkm values in tentacles and the rest of body. Each gene is colored as in (A). (C) WEGO analysis of top 100 genes highly expressing in the tentacle (orange bar) and the rest of the body (blue bar). (D) P-values from Chi-square tests obtained by WEGO analysis. CC cellular component, MF molecular function, BP biological process.

Figure 3. WEGO analysis of highly expressing genes in the tentacle and the rest of body. (A) Box plot graph for the distribution of TPM value for top 100 genes highly expressing in the tentacle. Corresponding genes in each part are colored in the same gradation color according to the TPM value (red to blue form higher to lower value). (B) Box plot graph for the distribution of TPM value for top 100 genes highly expressing in the rest of body. Each gene is colored as in (A). (C) WEGO analysis of top 100 genes highly expressing in the tentacle (orange bar) and the rest of the body (blue bar). (D) P-values from Chi-square tests obtained by WEGO analysis. CC cellular component, MF molecular function, BP biological process.
body, GO terms including hydrodase activity, catalytic activity, localization, and establishment of localization were significantly higher. In the top 100 genes highly expressing in the tentacle, we found 21 genes annotated as a gene coding for fucolectin by blast search (Supplementary Table S4). Fucolectin is a fucose-binding lectin involved in the innate immunity of diverse invertebrate species. However, its function in invertebrates remains unclear, and no information is available for Terebellidae, including sequence information. Fucolectin was first identified in eel with mRNA distribution mainly in liver and gill. In sea cucumber, expression of the fucolectin gene is confirmed in respiratory trees, muscle, and tentacle. We were not able to see whether this gene was expressed in the respiratory organ of Polycirrus sp. ISK because a characteristic of the genus Polycirrus is the absence of branchiae. Nonetheless, the tentacle-specific expression of fucolectin was consistent with the observation in sea cucumber, and the high expression of such proteins involved in innate immunity seemed reasonable because tentacles stretching out of their bodies can be damaged by attack of predators and thus are threatened by infectious bacteria and other pathogens, as is the respiratory organ. In addition, localization of antimicrobial compounds in Terebellidae worms is suggested to be of antiseptic importance in damage by predation. This study would provide indispensable information about the ecological meaning of Polycirrus sp. ISK’s life in future genetic studies.

Transcripts coding for luciferase-like genes in the worm. To find genes similar to the known luciferase, which is an enzyme oxidizing a specific compound called luciferin to emit light, from related species in polychaetes, we performed a blastX analysis against the Odontosyllum luciferase sequence using our RNA-Seq data. We found a gene coding for a protein that exhibited similarity to Odontosyllum luciferase, but the e-value was more than 1e-10 (Supplementary Fig. S4). In addition, the top hit for this gene analyzed by blastX was annotated to code an uncharacterized protein of Saccoglossus kowalevskii (Hemichordata), and its specific function was not predicted. Other hits were for genes from Chordata, Mollusca, and other phyla but there was no hit from Annelida. This result would suggest that the light-emission system of Polycirrus sp. ISK differs from that of the genus Odontosyllum, although further experiments using high purity Odontosyllum luciferase and the substrate will be necessary to confirm this. In further blastX analyses of representative luciferase gene sequences, we found two putative luciferase [luciferases from the ostracod Cypridina noctiluca (Accession number: BAD08210.1), the copepod Gaussea princeps (AAG54095.1), the deep-sea shrimp Ophlophorus gracilisrostris (BAB13775.1 and BAB13776.1), the firefly Photinus pyralis (AA29795.1), the sea pansy Renilla reniformis (AAA29804.1); photoproteins from the hydrozoan jellyfish Aequorea victoria (AA27720.1), the hydroid Clytia gregaria (CAA49754.1), the hydroid Obelia geniculata (AAL86372.1); a putative luciferase from the tunicate Pyrosoma atlanticum (sequences using our RNA-Seq data), we found some tissue-nonspecific genes whose sequences exhibited similarity to firefly luciferase (Fluc) or Renilla luciferase-like protein (RLuc-like) sequences and with e-values of less than 1e-10 and percent identity of more than 50%. Fluc is a member of the acyl adenylate-forming superfamily of enzymes responsible for firefly luciferin-dependent bioluminescence, which is found in terrestrial luminescent beetles emitting light ranging from green to red. Previously, a putative acyl-CoA synthetase protein was found in the luminous organ of firefly squid emitting blue light, but there is no clear biochemical evidence that such protein is responsible for firefly squid’s bioluminescence. On the other hand, RLuc is responsible for coelenterazine-dependent bioluminescence, which is found in marine luminescent organisms belonging to various taxa. An RLuc-like protein is found to be localized in luminous organs of the brittle star Amphiprura filiformis, as revealed by taking advantage of the cross reactivity of anti-RLuc antibody to A. filiformis RLuc-like protein. A recent study reported that recombinant RLuc-like protein found in P. atlanticum exhibited luciferase activity to coelenterazine. However, an RLuc-like protein from sea urchin Strongylocentrotus purpuratus is confirmed to exhibit dehalogenase activity to various substrates but no luciferase activity to coelenterazine. Therefore, it is suspected that Polycirrus sp. ISK possesses a luminescence system using an RLuc-like enzyme.

Coelenterazine content in the worm. To investigate whether Polycirrus sp. ISK possesses not only a Renilla luciferase homologous gene but also coelenterazine, we analyzed an ethanolic extract of Polycirrus sp. ISK by UPLC with a UV-visible detector (Fig. 4). The obtained UPLC chromatogram did not show a peak corresponding to that of authentic coelenterazine. When further checking the chromatogram, we found the peak at a retention time similar to those of authentic coelenteramide and coelenteramine, which can be formed from coelenterazine. However, the absorption spectrum obtained by UPLC analysis and the mass spectrum obtained by MS/MS analysis were not identical to those of authentic coelenteramide or coelenteramine (Fig. 4 and Supplementary Figs. S5 and S6). In addition, when the worm extract was mixed with a recombinant RLuc, we did not detect luminescence using a luminometer. These results suggested that the luminescence system in the worm was independent of coelenterazine, although a RLuc homologous gene was found. Similarly, the presence of an RLuc homologous gene was reported in P. atlanticum, which has been suggested to use a coelenterazine-independent luminescence system relying on bacterial bioluminescent symbionts. We also mixed the worm extract with a recombinant cypridinid luciferase, but we did not detect luminescence using a luminometer. This result was consistent with Harvey’s observation for P. caliendrum. To examine whether the luminescence system is based on luciferin–luciferase reaction, which is found in various luminous animals including some sydil Odontosyllum spp., we prepared two different extracts of the worm using 100 mM HEPES–NaOH buffer (pH 7.4) and methanol, and subsequently subjected a mixture of the two to luminescence measurement. As a result, no light emission was detected from the mixture of the buffer and methanolic extracts of the worm. This result was also consistent with Harvey’s observation for P. caliendrum. However, there is still a possibility that the light emission is based on luciferin–luciferase reaction, because luciferin–luciferase reaction found in fireflies or luminescent mushrooms requires a cofactor such as ATP or NADPH, and we did not test all possible conditions due to the limitation of the number of collected specimens. In addition, extraction of luciferin and luciferase in the active
form is sometimes difficult, as shown in previous studies. Further studies using hundreds or more of the specimens must be performed to elucidate the mechanism underlying the violet-light emission.

Methods

Animal collection. The worms were collected in Ishikawa prefecture on Oct. 6–8, 2018 and on Oct. 13, 2019 and sorted under a microscope (SZ61; Olympus, Tokyo, Japan). For RNA extraction or UPLC analysis, a collected worm was put in a 1.5 mL tube with a sufficient amount of RNAlater (Thermo Fisher Scientific, Waltham, MA, USA) or approximately 500 μL of ethanol and stored with dry ice or at −80 °C until use. Some of the fresh worms were put in a plastic tube with sea water and subjected to an electric stimulation of light emission.

Materials. The commercially available materials used in this study were obtained from the following commercial suppliers. Coelenterazine was from FUJIFILM Wako Pure Chemical Corporation (Osaka, Japan). Coelenteramide and coelenteramine were from NanoLight Technologies, a division of Prolume Ltd. (Pinetop, AZ, USA). All materials were used without further purification. A recombinant Renilla luciferase was prepared using COSI cells and the pGL4.75 vector from Promega (Madison, WI, USA) according to the manufacturer’s protocol. A recombinant cypridinid luciferase from Cypridina noctiluca was prepared according to a method reported previously.

Figure 4. Comparison of the ethanolic extract of Polycirrus sp. ISK with CTZ, CTMD, and CTM. (A) UPLC analysis of (a) the extract, (b) authentic CTZ, (c) authentic CTMD, and (d) authentic CTM using a multiwavelength detector. The black solid line indicates detection at 333 nm, and the blue solid line indicates detection at 435 nm. The compound between the red vertical dashed lines was collected for MS/MS analysis. (B) Absorption spectra of the compound from the extract, CTZ, CTMD, and CTM obtained at retention times of (a) 9.65, (b) 10.89, (c) 9.47, and (d) 9.27 shown in (A). CTZ coelenterazine, CTMD coelenteramide, CTM coelenteramine. These chemical structures are shown in Supplementary Fig. S5.
Equipment for photography and video recording. Photographs and videos were taken by a mirrorless camera (α7S; Sony, Tokyo, Japan) with a SEL24F18Z lens (Sony) and an underwater camera housing (Nauticam NA A7; Nauticam, Hong Kong, China).

Measurement of luminescence emission spectrum. The luminescence emission spectrum of the worm Polyedra sp. ISK stimulated by an electric shock was measured using a high-sensitivity charge-coupled device (CCD) spectrophotometer, LumiFlSpectroscaptor (AB-1850; ATTO, Tokyo, Japan) with the following settings: measurement mode, single; measurement time, 1 min; slit width, 0.25 mm; camera gain, high; diffraction grating, 150 lines/mm; and shutter for measurement, automatic. An anode and a cathode were put into the tube, and an electric pulse was generated using a 9 V battery.

Luminescence monitoring of the worm stimulated by an aqueous solution of KCl. To a single specimen of the worm with 100 μL of natural sea water in a white 96-well plate (Nunc 96-Well polypropylene storage microplate; Thermo Fisher Scientific) was added 20 μL of a 4 M aqueous solution of KCl, followed by immediate measurement of luminescence intensity using a luminometer (Phelios AB-2350; ATTO) recorded in relative light units (RLU) in 0.02 s intervals over 30 s at room temperature.

RNA-Seq and statistical analysis of differentially expressing genes. Using the RNaseq Plus Universal Mini Kit (Qiagen, Hilden, Germany), total RNA was extracted from the tentacles and the rest of body separated from a single specimen with dissecting instruments. cDNA libraries (100 bp pair-end) were prepared using the TrueSeq standard mRNA sample prep kit (Illumina, San Diego, CA, USA) and sequenced by HiSeq 2500 (Illumina); 44.4 and 43.9 M reads yielded 4.49 and 4.43 Gbp for the tentacle and the rest of body samples, respectively. The raw reads were subjected to de novo assembly by using Trinity implemented in the MASER pipeline (National Institute of Genetics, NIG) available at http://cell-innovation.nig.ac.jp/maser/. After the assembly, sequence read mapping was performed using BWA-mem software implemented in the MASER pipeline (NIG), whereby the transcript expression levels were estimated to calculate the fragments per kilobase of exons per million (fpkm) values. Protein similarity was calculated using the blastP or blastX program (NCBI). A gene expression comparison between the tentacle and the rest of body was performed based on the ratio of TPM value and the subsequent WEGO analysis. The DDBJ accession numbers for the RNA-Seq raw data and COI are DRR315406 and LC601006, respectively.

Analysis of the worm extract using UPLC and mass spectrometry. The whole body of a single specimen stored in approximately 500 μL of ethanol at − 80 °C was homogenized in the storage ethanol on ice with a plastic pestle and centrifuged at 15,000 x g for 5 min at 4 °C, after which 2 μL of the supernatant was subjected to luminescence analysis. A portion of the rest supernatant was five times diluted with 10% (v/v) acetonitrile in water and filtered through a centrifugal filter Ultrafree-MC (0.22 μm; Millipore, Billerica, MA, USA). Then, 10 μL of the filtrate was subjected to UPLC analysis and separation. UPLC analysis and separation were performed on a Waters ACQUITY UPLC H-Class system (Waters, Milford, MA, USA) equipped with an ACQUITY UPLC C18 column (ϕ2.1 × 100 mm, 1.7 μm; Waters) and an ACQUITY UPLC PDA λ detector (Waters). The UPLC conditions were as follows: mobile phase, a linear gradient of acetonitrile in water from 10 to 100% for 20 min; flow rate, 0.3 mL/min; UV detection, 333 nm or 435 nm. The fraction eluted at a retention time of 9.5–10.0 min (panel a in Fig. 4A) was 20 times diluted with 1% formic acid and subjected to MS/MS analysis using an LCMS-9030 quadrupole time-of-flight mass spectrometer (Shimadzu, Kyoto, Japan). The parameters for MS/MS analysis were as follows: interface temperature, 300 °C; desolvation temperature, 250 °C; interface voltage, 4.5 kV; polarity, positive; collision energy, 30 V. Under the present UPLC condition, the detection limits were as follows: 15 pmol for coelenterazine, 0.1 pmol for coelenteramide, and 5 pmol for coelenteramine.

Luminescence analysis of the worm extract. To 2 μL of the ethanolic extract of the worm in a white 96-well plate (Eppendorf microplate 96/F-PP; Eppendorf, Hamburg, Germany) was added 100 μL of a solution of a recombinant Renilla luciferase or cypridinid luciferase in 200 mM Tris–HCl (pH 7.5) containing 100 mM NaCl using the auto injector in the Phelios luminometer (ATTO), followed by the immediate measurement of luminescence intensity at room temperature. The concentrations of Renilla luciferase and cypridinid luciferase were sufficient to detect 100 fmol of coelenterazine and 100 amol of cypridinid luciferin, respectively.

Received: 27 April 2021; Accepted: 3 September 2021
Published online: 27 September 2021

References
1. Herrig, P. J. Systematic distribution of bioluminescence in living organisms. J. Biolumin. Chemilumin. 1, 147–163 (1987).
2. Haddock, S. H. D., Moline, M. A. & Case, J. F. Bioluminescence in the sea. Annu. Rev. Mar. Sci. 2, 443–493 (2010).
3. Oba, Y. & Schultz, D. T. Eco-evo bioluminescence on land and in the sea. In Bioluminescence: Fundamentals and Applications in Biotechnology Vol. 1 (eds Thouand, G. & Marks, R.) 3–36 (Springer, 2014).
4. Widder, E. A. & Falls, B. Review of bioluminescence for engineers and scientists in biophotonics. IEE J. Sel. Top. Quant. Electron. 20, 232–241 (2014).
5. Verde, A. & Gruber, D. F. Glowing worms: Biological, chemical, and functional diversity of bioluminescent annelids. *Integr. Comp. Biol.* 57, 18–32 (2017).
6. Haddock, S. H. D. & Case, J. F. Bioluminescence spectra of shallow and deep-sea gelatinous zooplankton: Ctenophores, medusae and siphonophores. *Mar. Biol.* 133, 571–582 (1999).
7. Hastings, J. W. Chemistrys and colors of bioluminescent reactions: A review. *Gen. 173*, 5–11 (1996).
8. Widdler, E. A. Bioluminescence in the ocean: Origins of biological, chemical, and ecological diversity. *Science 328*, 704–708 (2010).
9. Dahlgren, U. The production of light by animals. *J. Franklin Inst.* 181, 659–696 (1916).
10. Faulkald, K. & Jumars, P. A. The diet of worms: A study of polychaete feeding guilds. *Oceanogr. Mar. Biol. Annu. Rev.* 17, 193–284 (1979).
11. Coutinho, M. C. L., Teixeira, V. L. & Santos, C. S. G. A review of “Polychaeta” chemicals and their possible ecological role. *J. Chem. Ecol.* 44, 72–94 (2018).
12. Mehr, S. et al. Transcriptome sequencing and annotation of the polychaete Hermodice carunculata (Annelida, Amphipholidae). *BMC Genom.* 16, 445. https://doi.org/10.1186/s12864-015-3665-6 (2015).
13. Stiller, J., Tlicic, E., Rousset, V., Pfejel, F. & Rouse, G. W. Spaghetti to a tree: A robust phylogeny for Terebelliformia (Annelida) based on transcriptomes, molecular and morphological data. *Biology 9*, 73. https://doi.org/10.3390/biology9040703 (2020).
14. Goerke, H., Emrich, R., Weber, K. & Duchene, J. C. Concentrations and localization of brominated metabolites in the genus *Thelepus* (Polychaeta: Terebellidae). *Comp. Biochem. Physiol. B 99*, 203–206 (1991).
15. Kin, I., Jimi, N. & Oba, Y. Bioluminescence properties of *Thelepus japonicus* (Annelida: Terebelliformia). *Luminescence 34*, 602–606 (2019).
16. Harvey, E. N. *Bioluminescence* (Academic Press, 1952).
17. Huber, M. E., Arneson, C. A. & Widder, E. A. Extremely blue bioluminescence in the Polychaete *Polycirrus Perplexus* (Terebellidae). *Bull. Mar. Sci.* 44, 1236–1239 (1989).
18. Glasby, C. J. & Hutchings, P. Revision of the taxonomy of *Polycirrus Grube*, 1850 (Annelida: Polycirridae). *Zootaxa 3877*, 1–117 (2014).
19. Inajima, M. & Hartman, O. The Polychaetous Annelids of Japan, Part II (University of Southern California Press, 1964).
20. Herring, P. J. The spectral characteristics of luminous marine organisms. *Proc. R. Soc. Lond. B, 220*, 183–217 (1983).
21. Morin, J. G. Coastal bioluminescence—Patterns and functions. *Bull. Mar. Sci.* 33, 787–817 (1983).
22. Mitani, Y., Futahashi, R., Liu, Z., Liang, X. & Ohmiya, Y. Tibetan firefly luciferase with low temperature adaptation. *Photochem. Photobiol. 93*, 466–472 (2017).
23. Mitani, Y. et al. Novel gene encoding a unique luciferase from the fireworm *Odontosyllis undecimdonta*. *Sci. Rep.* 8, 12789. https://doi.org/10.1038/s41598-018-31086-1 (2018).
24. Kinjo, S. et al. Maser: One stop platform for NGS big data from analysis to visualization. *Database 2018*, bay027. https://doi.org/10.1093/database/bay027 (2018).
25. Simakov, O. et al. Insights into bilaterian evolution from three spiralian genomes. *Nature 493*, 526–531 (2013).
26. Wagner, G. P., Kin, K. & Lynch, V. J. Measurement of mRNA abundance using RNA-seq data: RPKM measure is inconsistent among samples. *Theory Biosci.* 131, 281–285 (2012).
27. Ye, J. et al. WEGO 2.0: A web tool for analyzing and plotting GO annotations. *Nucleic Acids Res.* 46, W71–W75 (2018).
28. Honda, S., Kashiwagi, M., Miyamoto, K., Taker, Y. & Hirose, S. Multiplicity, structures, and endocrine and exocrine natures of eel fucose-binding lectins. *J. Biol. Chem.* 275, 33151–33157 (2000).
29. Shao, Y. N. et al. Divergent immune roles of two fucolectin isoforms in *Apostichopus japonicus*. *Dev. Comp. Immunol.* 89, 1–6 (2018).
30. Tessler, M. et al. A putative chordate luciferase from a cosmopolitan tunicate indicates convergent bioluminescence evolution across phyla. *Sci. Rep.* 10, 17724. https://doi.org/10.1038/s41598-020-73446-w (2020).
31. Inouye, S. Firefly luciferase: An adenylate-forming enzyme for multicatalytic functions. *Cell. Mol. Life Sci.* 67, 387–404 (2010).
32. Gimenez, G., Metcalf, P., Paterson, N. G. & Sharpe, M. L. Mass spectrometry analysis and transcriptome sequencing reveal glowing squid crystal proteins are in the same superfamily as firefly luciferase. *Sci. Rep.* 6, 27638. https://doi.org/10.1038/srep27638 (2016).
33. Delrosse, I. et al. A puzzling homology: A brittle star using a putative cnidarian-type luciferase for bioluminescence. *Open Biol.* 7, 160300. https://doi.org/10.1099/ob.0.000370 (2017).
34. Fortova, A. et al. DspA from *Strongylocentrotus purpuratus*: The first biochemically characterized halolokaine dehalogenase of non-microbial origin. *Biochemie 95*, 2091–2096 (2013).
35. Berger, A. et al. Microsporidian and genetic characterization of bacterial symbionts with bioluminescent potential in *Pyrosoma atlanticum*. *Front. Mar. Sci.* 8, 606818. https://doi.org/10.3389/fmars.2021.606818 (2021).
36. Schultz, D. T. et al. Luciferase of the Japanese syllid polychaete *Odontosyllis undecimdonta*. *Biochem. Biophys. Res. Commun.* 502, 318–323 (2018).
37. Shimomura, O. & Yampolsky, I. *Bioluminescence: Chemical Principles and Methods* 3rd edn. (World Scientific, 2019).
38. Mitani, Y., Yasuno, R., Futahashi, R., Oakley, T. H. & Ohmiya, Y. Luciferase gene of a Caribbean fireworm (*Syllidae*) from Puerto Rico. *Sci. Rep.* 9, 13015. https://doi.org/10.1038/s41598-019-49538-7 (2019).
39. Rashid, A. A. et al. Bioluminescence chemistry of fireworm *Odontosyllis*. *Proc. Natl. Acad. Sci. USA* 116, 18911–18916 (2019).
40. Mitani, Y. et al. Efficient production of glycosylated *Cypridina* luciferase using plant cells. *Proteins: Exp. Purif.* 133, 102–109 (2017).
41. Li, H. & Durbin, R. Fast and accurate short read alignment with Burrows-Wheeler transform. *Bioinformatics* 25, 1754–1760 (2009).

Acknowledgements

We are grateful to Mr. Shinichiro Ikeguchi (Joetsu Aquarium Umigatari, Japan) for kindly providing us with the opportunity for this study. We thank Mr. Hissanori Kohatsu (Misaki Marine Biological Station, the University of Tokyo, Japan) for assistance in the field work, and Ms. Mami Komatsu (AIST, Japan) for assistance in data analysis and figure illustration. This work was partially supported by JSPS KAKENHI Grant number JP18KK0199 (to Y.M.). The authors would like to thank KN International, Inc. (https://www.kninter.co.jp) for the English language review.

Author contributions

S.K., T.H., K.O., Y.O. and Y.M. collected animals and performed preliminary assays of luminescence reactions using various chemicals. S.K. performed UPLC and luminescence analyses of the worm extract. D.M. performed MS/MS analysis of the compound obtained by UPLC separation of the worm extract. T.H. and K.O. performed spectrum analysis of living animals. K.N. and M.S. originally discovered and observed the worm, and took photographs and movies. N.I. identified the worm on the basis of morphology. S.K. and Y.M. prepared tables and figures. S.K. and Y.M. wrote the manuscript and Y.O. edited it. All authors reviewed the manuscript.
Competing interests
T.H. and K.O. are employees of Olympus Corporation. K.N. and M.S. are employees of Japan Underwater Films Co., Ltd. All others authors declare no competing interests.

Additional information
Supplementary Information The online version contains supplementary material available at https://doi.org/10.1038/s41598-021-98105-6.

Correspondence and requests for materials should be addressed to Y.M.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher's note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

© The Author(s) 2021