Predicting laser-induced cavitation near a solid substrate

Fabian Denner1,*, Fabien Evrard1, Fabian Reuter2, Silvestre Roberto Gonzalez-Avila3, Berend van Wachem4, and Claus-Dieter Ohl2

1 Chair of Mechanical Process Engineering, Institute of Process Engineering, Otto-von-Guericke-Universität Magdeburg, Universitätstrasse 2, 39106 Magdeburg, Germany
2 Department Soft Matter, Institute of Physics, Otto-von-Guericke-Universität Magdeburg, Universitätstrasse 2, 39106 Magdeburg, Germany
3 University of Poitiers – École Nationale Supérieure de Mécanique et d’Aérotechnique (ENSMA) Téléport 2, 1 Avenue Clément Ader, 86360 Chasseneuil-du-Poitou, France.

The asymmetric collapse of cavitation bubbles near a solid substrate generates large wall shear stresses, the precise magnitude of which is still not known with certainty. By comparing numerical simulations and experiments of a laser-induced cavitation bubble near a solid substrate, we demonstrate that an accurate measurement of the pressure pulse emitted during bubble inception and of the maximum bubble radius allow a unique initialisation of the simulation. This allows an accurate reproduction of the asymmetric collapse, with reliable predictions of the shear stress and pressure generated at the substrate.

© 2021 The Authors Proceedings in Applied Mathematics & Mechanics published by Wiley-VCH GmbH

1 Introduction

A cavitation bubble near a solid substrate collapses asymmetrically and produces a fast liquid jet, which in turn generates large shear stresses on the substrate that can exceed 100 kPa [1]. Such jetting cavitation bubbles may cause detrimental material erosion but are also utilised successfully, for instance, in laser ablation technologies and in ultrasonic cleaning. Laser-induced cavitation offers a reproducible and controllable means of generating such cavitation bubbles individually in predefined locations, through optical breakdown of the liquid and the subsequent formation of a gas cavity. While experiments and Rayleigh-Plesset models have provided a very good understanding of the related bubble dynamics, especially the shear stresses generated on the substrate and nearby objects are still not known in detail. To this end, accurate numerical simulations can provide valuable insight, however, previous experiments [2] and numerical simulations [1] produced contradictory results. Typically, the maximum radius of the cavitation bubble is the only reference value used in simulations when reproducing a given experiment [1, 3]. In this article, we show that a measurement of the pressure pulse emitted during bubble inception together with the maximum bubble radius provide a unique set of reference values to guide the selection of the initial conditions for accurate and reliable simulations of the asymmetric collapse of laser-induced cavitation bubbles.

2 Methods

In the experiments, the cavitation bubble is created inside the test section at a distance \(h_0 \) above the substrate by a focused laser beam using a Q-switched Nd:YAG laser (New Wave Research, wavelength 532 nm, pulse duration 6 ns, laser beam diameter 2.75 mm), as described in more detail in [4]. Fig. 1a shows high-speed images of the considered bubble, with maximum radius \(R_{\text{max}} = 638 \, \mu m \) and stand-off distance \(\gamma = h_0/R_{\text{max}} = 0.4 \). The generated pressure is recorded by a fiber optic probe hydrophone (690 ONDA, 150 MHz bandwidth) positioned off-centre at a distance of \(d_i = 950 \, \mu m \) to the bubble inception site, \(\approx 80 \, \mu m \) above the substrate, to avoid damage to the hydrophone and distortion of the hydrophone signal.

The simulations are conducted using a fully-coupled pressure-based algorithm for interfacial flows [5], which is based on a second-order finite-volume discretisation [6]. The bubble is initialised with radius \(R_0 \) and gas pressure \(p_0 \) at distance \(h_0 \) above the substrate, as illustrated in Fig. 1b. The ambient pressure is \(p_{\infty} = 10^5 \, \text{Pa} \). Air is assumed to be an ideal gas with polytropic exponent \(\kappa = 1.4 \), density \(\rho_{\text{air},0} = 1.2 \, \text{kg m}^{-3} \) at \(p_{\infty} \), and viscosity \(\mu_{\text{air}} = 1.82 \times 10^{-5} \, \text{Pa s} \). Water is modelled by the Noble-Abel-stiffened-gas model with the properties proposed by Le Métyer and Saurel [7] and a viscosity of \(\mu_{\text{water}} = 10^{-5} \, \text{Pa s} \). Surface tension and gravity are neglected. Following previous work [1], the computational domain is resolved with a rectilinear mesh with mesh spacing \(\Delta x = 2 \, \mu m \) and a gradual mesh refinement near the wall, with a minimum mesh spacing of \(\Delta x_{\text{min}} = 50 \, \mu m \). The time-step is adaptively chosen to satisfy a Courant number of \(C_0 = \Delta t |u|/\Delta x < 0.7 \).

3 Results

Considering simulations of a bubble initially located \(h_0 = 255 \, \mu m \) above the substrate, the amplitude of the pressure pulse emitted at bubble inception, \(p_{\text{i,1}} \), and the maximum bubble radius, \(R_{\text{max}} \), both increase for larger initial gas pressures \(p_0 \) and
Section 11: Interfacial flows

Fig. 1: (a) High-speed images of the experiment of a laser-induced cavitation bubble with \(R_{\text{max}} = 638 \, \mu\text{m} \) and \(\gamma = 0.4 \). (b) Schematic of the simulation setup with the bubble near the substrate. (c) Instantaneous bubble shape and contours of the velocity perpendicular to the substrate obtained from the simulation of a bubble with \(R_{\text{max}} = 638 \, \mu\text{m} \) and \(\gamma = 0.4 \), initialised with \(R_0 = 80 \, \mu\text{m} \) and \(p_0 = 43 \, \text{MPa} \).

Fig. 2: (a-b) Maximum radius \(R_{\text{max}} \) and first pressure peak \(p_{1,1} \) for bubbles with different initial gas pressures \(p_0 \) and bubble radii \(R_0 \in \{50, 80\} \, \mu\text{m} \), initially located \(h_0 = 255 \, \mu\text{m} \) above the substrate. (c) Evolution of the pressure signal \(p_i \), the wall shear stress \(\tau_w \), and the wall pressure \(p_w \) for the bubble with \(R_{\text{max}} = 638 \, \mu\text{m} \) and \(\gamma = 0.4 \), initialised with \(R_0 = 80 \, \mu\text{m} \) and \(p_0 = 43 \, \text{MPa} \). The pressure signal \(p_i \) measured in the experiment of the bubble with \(R_{\text{max}} = 638 \, \mu\text{m} \) and \(\gamma = 0.4 \), shown in Fig. 1a, is given as a reference.

4 Conclusions

Conducting a direct comparison of experimental measurements and numerical simulations, we introduced a unique combination of reference values \((p_{1,1}, R_{\text{max}}) \) to select the initial conditions \((p_0, R_0) \) of the simulations. Selecting the initial conditions \((p_0, R_0) \) to match both reference values \((p_{1,1}, R_{\text{max}}) \) measured in the experiment reproduces the dynamic behaviour of the collapsing bubble accurately and provides reliable predictions of the shear stress and pressure generated at the substrate, which we find to be in line with previous numerical studies [1, 3] for the considered representative bubble.

Acknowledgements This research was funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation), grant numbers 420239128 and 428644013.

Open access funding enabled and organized by Projekt DEAL.

References

[1] Q. Zeng, S. R. Gonzalez-Avila, R. Dijkstra, P. Koukouvini, M. Gavaisses, and C.-D. Ohl, J. Fluid Mech. 846, 341-355 (2018).
[2] R. Dijkstra and C.-D. Ohl, Appl. Phys. Lett. 93, 254107 (2008).
[3] C. Lechner, M. Koch, W. Lauterborn, and R. Mettin. J. Acoust. Soc. Am. 142, 3649 (2017).
[4] S. R. Gonzalez-Avila and C.-D. Ohl, J. Fluid Mech. 805, 551-576 (2016).
[5] F. Denner, C.-N. Xiao, B. van Wachem, J. Comput. Phys. 367, 192-234 (2018).
[6] F. Denner, F. Evrard, B. van Wachem, J. Comput. Phys. 409, 109348 (2020).
[7] O. Le Métayer and R. Saurel, Phys. Fluids 28, 046102 (2016).