Performance evaluation of half effect LiBr-H₂O vapour absorption systems using multi cascading of vapour compression cycles for low temperature applications

Radhey Shyam Mishra

Department of Mechanical, Production, Industrial and Automobiles Engineering, Delhi technological University, Delhi, India

Abstract

Most of the absorption cooling system use either LiBr-H₂O or NH₃-H₂O solutions. The LiBr-H₂O system can operate at a low generator temperature with better coefficient of performance than NH₃-H₂O system. However, COP of absorption system is relatively less as compared to the compression system. To improve its performances, several modifications have been made in the cycle. Therefore, this paper mainly deals with performance evaluations of half effect LiBr-H₂O vapour Absorption Systems using multi cascading of vapour compression cycles for low temperature applications (at -100°C) used for cryogenics applications and comparison at -50°C evaporator temperature in the low temperature circuit using HFO refrigerants in the intermediate temperature circuit and found that half effect LiBr-H₂O vapour Absorption Systems using multi cascading of vapour compression cycles for low temperature applications using HFC152a in intermediate temperature cycle and HFC-134a in LTC gives better thermodynamic performances than by using HFO refrigerants in intermediate temperature cycle & HFC-134a in low temperature cycle. The thermodynamic performances using HFO-1234ze in intermediate temperature cycle is better than using HFO-1234yf in intermediate temperature cycle.

Keywords: Multi-Cascade systems, Half effect LiBr-H₂O integrated absorption systems, HFO refrigerants

1. Introduction

Vapour absorption cooling systems are environmental, clean and economically driven refrigerating cycles. By consuming very small electric power, they can use waste heat or solar energy for cooling. The half effect absorption systems have the advantage of using low temperature heat energy for cooling. The first law & second law performances (i.e. coefficient performance (COP) and the exergetic efficiency) of the half effect absorption systems are found as 0.45 and 0.24, respectively. Arivazhagan R, et.al [1] computed component’s irreversibilities and also are found most of the exergy destruction occurred in the evaporator and in the absorbers and concluded that the half effect absorption systems is the best for cooling driven by low temperature heat energy and the performance of the evaporator and the absorbers is very important for the cycle. In recent years, the fourth generation Hydrofluoro-olefins (HFOs)-R1234yf and R1234ze are being considered as alternative to R134a. A number of studies have been carried out using HFO 1234yf and HFO 1234ze. Although, R134a is a wide spread used refrigerant due to its commercial availability, similar properties to R12, less ODP value, excellent thermal stability, non toxic and non-flammability etc has high GWP value is more than 1300.

The European Union (EU) regulation is phasing out the current generation HFCs like R134a due to its high GWP and environment consequences. The thermodynamic and environmental characteristics of refrigerants HFC 134a, HFO 1234yf & HFO 1234ze are shown in Table-1. The European Union (EU) regulation is phasing out the current generation HFCs like R134a due to its high GWP and environment consequences. A number of studies have been carried out using R1234yf and R1234ze [2]. In the notable studies [3-8], Yataganbaba et al. [3] performed exergy analysis on a two evaporator vapour compression refrigeration system using R1234yf, R1234ze and R134a as refrigerants. The two refrigerants R1234yf and R1234ze were good alternatives to R134a regarding their environment friendly properties. Sanchez et al. [8] compared five low GWP refrigerants R152a, R1234yf, R1234ze, R290 and R600a for the replacement of R134a using hermetic compressor in the experimental test rig and

Corresponding author: R.S. Mishra
Email Address: hod.mechnical.rsm@du.ac.in
http://doi.org/10.36037/IJREI.2019.3506
found that the R1234yf and R152a can be considered suitable drop-in alternative to R134a by considering the energy consumption and the cooling refrigerating capacity of facility. Arora and Kaushik [9-10] developed then energy and exergy analysis of single effect and series flow double effect water-lithium bromide absorption system and found that the irreversibility is highest in the absorber in both systems as compared to other systems. Gomri [11] carried out thermodynamic analysis of single effect & double effect absorption refrigeration systems and found the COP of double effect system is approximately twice the COP of single effect system. S.B. Riffat N. Shankland [12] studied different types of absorption systems integrated with vapour-compression systems. Kilic and Kaynakli [13] carried out thermodynamic analysis for finding the performance of a single stage water lithium bromide absorption refrigeration system by varying inputs parameters and found that the maximum energy loss occurs in generator of the system. Chinnappa et al. [14] proposed a compression-absorption cascaded refrigeration system which consist a conventional refrigerants with a solar operated, NH3-H2O, VARS for air conditioning application. The above investigators have not carried out the performance evaluation for low temperature applications in cryogenic applications and the effect of performance parameters using HFO-1234yf in intermediate temperature circuit and HFC/134a in low temperature circuit. Therefore, this paper mainly deals with performance evaluations at -100°C used for cryogenic applications and comparison at -50°C evaporator temperature in the low temperature circuit using HFO refrigerants in the intermediate temperature circuit.

2. Results and Discussion

Following systems were chosen for numerical computation of integrated half effect LiBr-H2O VARS multi cascaded VCRS for low temperature applications.

System-1

Half effect LiBr-H2O vapour absorption refrigeration system using cascaded HFC-152a in Intermediate/Medium temperature vapour compression cycle and HFC-134a in cascaded vapour compression low temperature cycle

System-2

Half effect LiBr-H2O vapour absorption refrigeration system using cascaded HFC-152a in Intermediate/Medium temperature vapour compression cycle and HFC-404a in cascaded vapour compression

System-3

Half effect LiBr-H2O vapour absorption refrigeration system using cascaded HFC-152a in Intermediate/Medium temperature vapour compression cycle and HC-290 in cascaded vapour compression low temperature cycle

System-4

Half effect LiBr-H2O vapour absorption refrigeration system using cascaded HFC-152a in Intermediate/Medium temperature vapour compression cycle and HC-600a in cascaded vapour compression low temperature cycle

System-5

Half effect LiBr-H2O vapour absorption refrigeration system using cascaded HFC-152a in Intermediate/Medium temperature vapour compression cycle and HC-600 in cascaded vapour compression low temperature cycle

System-6

Half effect LiBr-H2O vapour absorption refrigeration system using cascaded HFC-152a in Intermediate/Medium temperature vapour compression cycle and ethylene in cascaded vapour compression low temperature cycle

System-7

Half effect LiBr-H2O vapour absorption refrigeration system using cascaded HFO-1234ze in Intermediate/Medium temperature vapour compression cycle and HFC-134a in cascaded vapour compression low temperature cycle

Table 1. Thermodynamic and environmental characteristics of refrigerants HFC 134a, HFO 1234yf & HFO 1234ze

Refrigerant	HFC 134a	HFO 1234yf	HFO 1234ze
Chemical Name	1,1,1,2-Tetrafluoroethane	2,3,3,3-Tetrafluoro-propene	trans-1,3,3,3-Tetrafluoro-prop-1-ene
Molecular formula	CH3CF3 (CF3-CH2F)	C3H5F3 (CH3=CFCF3)	C4H9F4 (CF3CH=CHF)
Molecular mass (kg/kmol)	102.03	114.04	114.04
Boiling Point (°C) at 1 atm	-26.07	-29.45	-18.95
Freezing Point (°C) at 1 atm	-103.3	-150	-156
GWP Rating	143	4	<1
ODP Rating	0	0	0
Appearance	Colourless	Colourless	Colourless
Combustibility	No	Yes (Low)	No
Critical Temperature (°C)	101.06	94.69	109.37
Critical Pressure (MPa)	4.0593	3.3822	3.6836
Thermal stability	Excellent	Very good	Very good
Flammability	Non flammable	Mild flammable	Mild flammable
System-8

Half effect LiBr-H₂O vapour absorption refrigeration system using cascaded HFO-1234ze in Intermediate/Medium temperature vapour compression cycle and HFC-404a in cascaded vapour compression low temperature cycle.

System-9

Half effect LiBr-H₂O vapour absorption refrigeration system using cascaded HFO-1234ze in Intermediate/Medium temperature vapour compression cycle and HC-290 in cascaded vapour compression low temperature cycle.

System-10

Half effect LiBr-H₂O vapour absorption refrigeration system using cascaded HFO-1234ze in Intermediate/Medium temperature vapour compression cycle and HC-600a in cascaded vapour compression low temperature cycle.

System-11

Half effect LiBr-H₂O vapour absorption refrigeration system using cascaded HFO-1234ze in Intermediate/Medium temperature vapour compression cycle and ethylene in cascaded vapour compression low temperature cycle.

System-12

Half effect LiBr-H₂O vapour absorption refrigeration system using cascaded HFO-1234ze in Intermediate/Medium temperature vapour compression cycle and ethylene in cascaded vapour compression low temperature cycle.

System-13

Half effect LiBr-H₂O vapour absorption refrigeration system using cascaded HFO-1234yf in Intermediate/Medium temperature vapour compression cycle and HC-134a in cascaded vapour compression low temperature cycle.

System-14

Half effect LiBr-H₂O vapour absorption refrigeration system using cascaded HFO-1234yf in Intermediate/Medium temperature vapour compression cycle and HFC-134a in cascaded vapour compression low temperature cycle.

System-15

Half effect LiBr-H₂O vapour absorption refrigeration system using cascaded HFO-1234yf in Intermediate/Medium temperature vapour compression cycle and HC-290 in cascaded vapour compression low temperature cycle.

System-16

Half effect LiBr-H₂O vapour absorption refrigeration system using cascaded HFO-1234yf in Intermediate/Medium temperature vapour compression cycle and HC-600a in cascaded vapour compression low temperature cycle.

System-17

Half effect LiBr-H₂O vapour absorption refrigeration system using cascaded HFO-1234yf in Intermediate/Medium temperature vapour compression cycle and HC-600a in cascaded vapour compression low temperature cycle.

System-18

Half effect LiBr-H₂O vapour absorption refrigeration system using cascaded HFO-1234yf in Intermediate/Medium temperature vapour compression cycle and ethylene in cascaded vapour compression low temperature cycle.

The following numerical values have been used for numerical computations.

(i) Generator temperature is 80oC (although it varying from 60ºC to 90ºC).

(ii) Half effect vapour absorption refrigeration system evaporator temperature is 5ºC (although it varying from 1ºC to 10ºC).

(iii) Heat exchanger effectiveness is 0.5 (although it varying from 0.50 to 0.80).

(iv) Condenser temperature of half effect vapour absorption refrigeration system is 30ºC (although it varying from 30ºC to 40ºC).

(v) Temperature overlapping between HFO condenser and LiBr-H₂O evaporator is 10 oC (although it varying from 0ºC to 15ºC).

(vi) Temperature overlapping between HC/HFC condenser and HFC/HFO evaporator is 10 oC (although it varying from 0ºC to 15ºC).

Table-2 (a) shows the effect of LTC refrigerants on thermodynamic performance of cascaded integrated vapour compression half effect LiBr H₂O absorption systems for LTC evaporator temperature of -50ºC using HFC 152a and R134a in low temperature cycle (LTC) of -100ºC (system-1 to System-6) and found that HFO refrigerants of low GWP gives better thermodynamic performances than HFC refrigerants and also gives better improvement in the thermodynamic performances. The lowest thermodynamic performances were observed by using ethylene in the low temperature application as shown in table-2(b).

Table-3 (a) shows the effect of LTC refrigerants on performance of cascaded integrated vapour compression half effect LiBr H₂O absorption systems for ITC evaporator temperature of -50ºC using HFO1234ze and R134a in low temperature cycle (LTC) of -100ºC (system-7 to System-12) and found that HFO refrigerants of low GWP gives better thermodynamic performances than HFC refrigerants and also gives better improvement in the
thermodynamic performances. The lowest thermodynamic performances were observed by using ethylene in the low temperature application as shown in table-3(b).

Table-4 (a) shows the effect of LTC refrigerants on performance of cascaded integrated vapour compression half effect LiBr H₂O absorption systems for ITC evaporator temperature of -50°C using HFO1234yf and R134a in low temperature cycle (LTC) of -100°C (system-13 to System-18) and found that HFO refrigerants of low GWP gives better thermodynamic performances than HFC refrigerants and also gives better improvement in the thermodynamic performances. The lowest thermodynamic performances were observed by using ethylene in the low temperature application as shown in table-4(b).

Table-5 shows the comparison of thermodynamic performance of cascaded integrated vapour compression half effect LiBr H₂O absorption systems HFC-152a and HFO refrigerants in the intermediate temperature cycle for ITC evaporator temperature of -50°C and R134a in low temperature cycle (LTC) of -100°C (system-1, system-7 & System-13) and found that HFO refrigerants of low GWP gives lower thermodynamic performances than HFC-152a refrigerant and also gives better improvement in the thermodynamic performances.

Table-2(a): Performance Parameters of Integrated half effect LiBr-H₂O VARS multi cascaded VCRS using HFC-152a in Intermediate temperature circuit and following systems for low temperature applications

Parameters	System_1 LTC_R134a	System_2 LTC_R404a	System_3 LTC_R290	System_4 LTC_R600a	System_5 LTC_R600	System_6 LTC Ethylene
Cascade COP	0.7675	0.7606	0.7691	0.7693	0.7720	0.7443
Exergetic Efficiency Cascade	0.5063	0.4887	0.5016	0.5108	0.5178	0.4844

Table-2(b): % improvement in Performance Parameters of Integrated half effect LiBr-H₂O VARS multi cascaded VCRS using HFC-152a in Intermediate temperature circuit and following systems for low temperature applications

Performance Parameters	System_1 LTC_R134a	System_2 LTC_R404a	System_3 LTC_R290	System_4 LTC_R600a	System_5 LTC_R600	System_6 LTC Ethylene
% improvement in cascade COP	76.06	74.47	76.41	76.46	77.08	70.72
% decrease EDR Cascade	-77.46	-75.81	-77.81	-77.85	-78.47	-71.56
% improvement in Exergetic Efficiency Cascade	169.6	160.3	171.7	172.0	175.7	138.8

Table-3(a): Performance Parameters of Integrated half effect LiBr-H₂O VARS multi cascaded VCRS using HFO-1234ze in Intermediate temperature circuit and following systems for low temperature applications

Parameters	System_7 LTC_R134a	System_8 LTC_R404a	System_9 LTC_R290	System_10 LTC_R600a	System_11 LTC_R600	System_12 LTC Ethylene
Cascade COP	0.7637	0.7569	0.7652	0.7654	0.7681	0.7407
EDR Cascade	0.9379	1.065	0.9785	0.9764	0.9499	1.25
Exergetic Efficiency Cascade	0.5016	0.4842	0.5054	0.5060	0.5128	0.4444

Table-3(b): % improvement in Performance Parameters of Integrated half effect LiBr-H₂O VARS multi cascaded VCRS using HFO-1234ze in Intermediate temperature circuit and following systems for low temperature applications

Performance Parameters	System_7 LTC_R134a	System_8 LTC_R404a	System_9 LTC_R290	System_10 LTC_R600a	System_11 LTC_R600	System_12 LTC Ethylene
% improvement in cascade COP	75.18	73.61	75.53	75.57	76.19	69.9
% decrease EDR Cascade	-77.02	-75.37	-77.38	-77.42	-78.04	-71.09
% improvement in Exergetic Efficiency Cascade	167.10	157.8	169.2	169.4	173.1	136.6

Table-4(a): Performance Parameters of Integrated half effect LiBr-H₂O VARS multi cascaded VCRS using HFO-1234yf in Intermediate temperature circuit and following systems for low temperature applications

Parameters	System_13 LTC_R134a	System_14 LTC_R404a	System_15 LTC_R290	System_16 LTC_R600a	System_17 LTC_R600	System_18 LTC Ethylene
Cascade COP	0.7607	0.7539	0.7622	0.7624	0.7650	0.7378
EDR Cascade	1.009	1.061	0.9935	0.9915	0.9648	1.266
Exergetic Efficiency Cascade	0.4978	0.4806	0.5016	0.5021	0.5090	0.4412

Table-4(b): % improvement in Performance Parameters of Integrated half effect LiBr-H₂O VARS multi cascaded VCRS using HFO-1234yf in Intermediate temperature circuit and following systems for low temperature applications

Performance Parameters	System_13 LTC_R134a	System_14 LTC_R404a	System_15 LTC_R290	System_16 LTC_R600a	System_17 LTC_R600	System_18 LTC Ethylene
% improvement in cascade COP	74.48	72.92	74.83	74.87	75.48	69.25
% decrease EDR Cascade	-76.68	-75.02	-77.03	-77.08	-77.69	-70.72
% improvement in Exergetic Efficiency Cascade	165.1	155.9	167.1	167.4	171.0	135.0
Table-5: Comparison of Performance Parameters of three integrated half effect LiBr-H2O VARS multi cascaded VCRS in Intermediate temperature circuit and following systems for low temperature applications using HFC-134a in LTC

Parameters	System_1 MTC_R152a	% improvement	System_7 MTC_R1234ze	% improvement	System_13 MTC_R1234yf	% improvement
MTC_COP	0.7116	63.22	0.7077	62.34	0.7047	61.64
EDR_Cascade	1.337	69.08	1.373	-68.26	1.402	-67.60
Exergetic Efficiency_Cascade	0.4278	-127.8	167.1	124.4	0.4164	121.7

3. Conclusions

Following conclusions were drawn from present investigations.

(i) Thermodynamic performance of cascaded integrated vapour compression half effect LiBr H2O absorption systems HFC-152a and HFO refrigerants in the intermediate temperature cycle for ITC evaporator temperature of -50°C and R134a in low temperature cycle (LTC) of -100°C (system-1, system-7 & System-13) and found that HFO refrigerants of low GWP gives lower thermodynamic performances than HFC-152a refrigerant and also gives better improvement in the thermodynamic performances.

(ii) Half effect LiBr-H2O vapour Absorption Systems using multi cascading of vapour compression cycles for low temperature applications using HFC152a in intermediate temperature cycle and HFC-134a in LTC gives better thermodynamic performances than by using HFO refrigerants in intermediate temperature cycle & HFC-134a in low temperature cycle.

(iii) The thermodynamic performances using HFO-1234ze in intermediate temperature cycle is better than using HFO-1234yf in intermediate temperature cycle.

(iv) The first law efficiency (COP_Cascade) of multi-cascade system increases with an increase with increasing evaporator temperature of vapour absorption refrigeration cycle.

(v) The second law efficiency (exergetic efficiency) of multi-cascade system decreases with an increase with increasing generator temperature of vapour absorption refrigeration cycle.

(vi) The second law efficiency (exergetic efficiency) of multi-cascade system decreases with an increase with increasing evaporator temperature of vapour absorption refrigeration cycle.

References

[1] S. arirazhagan ,R Saravanan & S[2006] Rengarayan Experimental studies on HFC based two-stage half effect vapour absorption cooling system Applied Thermal Eng, Vol-26, Issue-14-15, Page 1455-1462.
[2] Yataganbaba, A., Kilincarslan, A., Kurtbas, I[2015]: Energy analysis of R1234yf and R1234ze as R134a replacements in two evaporator vapour compression refrigeration system, Int. J. Refrigeration, 60, page-26-37.
[3] Regulation (EU) No 517/2014 of the European Parliament and of the Council of Fluorinated Greenhouse Gases and Repealing Regulation (EC), No 842/2006 (2014)
[4] Mota-Babiloni, A., Navarro-Esbrí, J., Barragan-Cervera, A., Moles, F., Peris, B., Verdu, G.: Commercial refrigeration- An overview of current status, Int. J. Refrigeration, 57, 186-196 (2015)
[5] Mota-Babiloni, A., Navarro-Esbrí, J., Barragan, A., Moles, F., Peris, B.: Drop-in energy performance evaluation of R1234yf and R1234ze(E) in a vapor compression system as R134a replacements, Appl. Therm. Eng., 71, 259-265 (2014)
[6] Mota-Babiloni, A., Navarro-Esbrí, J., Barragan-Cervera, A., Moles, F., Peris, B.: Experimental study of an R1234ze(E)/R134a mixture (R450A) as R134a replacement, Int. J. Refrigeration, 51, 52-58 (2015)
[7] Mota-Babiloni, A., Navarro-Esbrí, J., Barragan-Cervera, A., Moles, F., Peris, B.:; Analysis based on EU Regulation No 517/2014 of new HFC/HFO mixtures as alternatives of high GWP refrigerants in refrigeration and HVAC systems, Int. J. Refrigeration, 52, 21-31(2015)
[8] Sanchez, D., Cabello, R., Llopis, R., Araguzo, I., Catalan-Gil, J., Torrella, E. [2017] Energy performance evaluation of R1234yf, R1234ze(E), R600a, R290 and R152a as low-GWP R134a alternatives, Int. J. Refrigeration, Vol-74, page-269-282.
[9] Arora, A., Dixit, M., Kaushik, S. C.:; Computation of optimum parameters of a half effect water-lithium bromide vapour absorption refrigeration system, J. Thermal Eng., 2(2), 683-692 (2016)
[10] Arora, A., Dixit, M., Kaushik, S. C.:;Energy and exergy analysis of a double effect parallel flow LiBr/H2O absorption refrigeration system, J. Thermal Eng., 2(2), 541-549 (2016)
[11] Gomri R. Second law comparison of single effect and double effect vapour absorption refrigeration systems, Energy Conversion and Management 2009; 50: 1279-1287.
[12] Riffat SB, Shankland N. Integration of absorption and vapour compression systems. Applied Energy 1993; 46 (4): 303-316
[13] Kilic M, Kaynakli O. Theoretical study on the effect of operating conditions on performance of absorption refrigeration system, Energy Conversion and Management 2007; 48: 599-607.
[14] Chinnapra J, Crees M, Myrth S, Srivinvasan K. Solar-assisted vapor compression/absorption cascaded air-conditioning systems. Solar Energy 1993; 50(5): 453-458.