Evolution of superconductivity in LaO$_{1-x}$F$_x$BiS$_2$ prepared by high-pressure technique

K. Deguchi$^{1,2(a)}$, Y. Mizuguchi1,3, S. Demura1,2, H. Harai1,2, T. Watanabe1,2, S. J. Denholme1, M. Fujioka1, H. Okazaki1, T. Ozaki1, H. Takeya1, T. Yamaguchi1, O. Miura3 and Y. Takano1,2

1 National Institute for Materials Science - 1-1, Sengen, Tsukuba, 305-0047, Ibaraki, Japan
2 University of Tsukuba - 1-1-1, Tennodai, Tsukuba, 305-8577, Ibaraki, Japan
3 Tokyo Metropolitan University - 1-1, Minami-osawa, Hachioji, 192-0397, Tokyo, Japan

received 1 October 2012; accepted in final form 19 December 2012
published online 17 January 2013

PACS 74.70.Dd – Ternary, quaternary, and multinary compounds (including Chevrel phases, borocarbides, etc.)
PACS 74.62.Bf – Effects of material synthesis, crystal structure, and chemical composition
PACS 74.25.Dw – Superconductivity phase diagrams

Abstract – Novel BiS$_2$-based superconductors LaO$_{1-x}$F$_x$BiS$_2$ prepared by a high-pressure synthesis technique were systematically studied. It was found that the high-pressure annealing strongly shrunk the lattice as compared to the LaO$_{1-x}$F$_x$BiS$_2$ samples prepared by conventional solid-state reaction at ambient pressure. Bulk superconductivity was observed within a wide F concentration range of $x = 0.2$–0.7. On the basis of those results, we have established a phase diagram of LaO$_{1-x}$F$_x$BiS$_2$.

Copyright © EPLA, 2013

Introduction. – Recently, several BiS$_2$-based superconductors, commonly having the Bi-S square lattice planes, have been discovered [1–15]. Due to the layered crystal structure and some exotic physical properties similar to cuprate [16–19] and Fe-based superconductors [20–31], the BiS$_2$-based compounds are expected to provide us with the next stage to explore new superconductors and discuss the exotic superconductivity mechanisms. The Bi$_4$O$_4$S$_3$ superconductor exhibits metallic transport behavior and show a zero-resistivity state below 4.5 K [1]. The crystal structure is composed of a stacking of the Bi$_4$O$_4$(SO$_4$)$_2$ blocking layers and the Bi$_2$S$_4$ superconducting layers (two BiS$_2$ layers). Thus, the parent phase is Bi$_6$O$_6$S$_6$ and it is expected to be insulator on the basis of the band calculations. The Bi$_4$O$_4$S$_3$ phase has partial defects at the SO$_4$ site, which provide electron carriers into the BiS$_2$ superconducting layers. Another BiS$_2$-based system is ReO$_{1-x}$F$_x$BiS$_2$ (Re = rare earth). So far, LaO$_{1-x}$F$_x$BiS$_2$, CeO$_{1-x}$F$_x$BiS$_2$, PrO$_{1-x}$F$_x$BiS$_2$ and NdO$_{1-x}$F$_x$BiS$_2$ were found to be superconducting with transition temperatures (T_c) of 10.6 [2], 3.0 [14], 5.5 [15], 5.6 K [11], respectively. In both systems, optimal superconducting properties are obtained near the boundary between insulating and superconducting states. In fact, the electronic-specific-heat coefficient of the Bi$_4$O$_4$S$_3$ superconducting sample was found to be very small [32]. This property resembles the layered nitride family [33,34]. By theoretical studies, possible paring mechanisms relating to the charge-density-wave instability and nature of strong coupling were predicted [9]. Although the superconductivity mechanisms of the BiS$_2$-based family are unclear, we can expect a higher T_c in this system, because of some exotic physical and structural properties. In fact, an enhancement of T_c under high pressure was observed in the LaO$_{1-x}$F$_x$BiS$_2$ system [35]. Therefore, systematic studies of both structural and superconducting properties are important. In this article we report systematic studies on LaO$_{1-x}$F$_x$BiS$_2$ superconductors prepared using a high-pressure synthesis technique.

Experimental methods. – The polycrystalline samples of LaO$_{1-x}$F$_x$BiS$_2$ were prepared by the two-step process of the solid-state reaction and high-pressure annealing using a Cubic-Anvil-type high-pressure synthesis machine with a 180 ton press. The starting materials Bi$_2$O$_3$ (98% powder), BiF$_3$ (99.9% powder), La$_2$S$_3$ (99.9% powder), Bi (99.9% grains) were used in this study. The Bi$_2$S$_3$ powder was prepared using Bi grains and S (99.999%) grains. The starting powders with a nominal ratio of LaO$_{1-x}$F$_x$BiS$_2$ with $0 \leq x \leq 0.7$ were...
well mixed and pressed into pellets. The pellets were sealed into an evacuated quartz tube and heated at 700°C for 10h. The obtained pellets were ground and annealed at 600°C for 1h under a hydrostatic pressure of 2GPa. The obtained samples were characterized by X-ray diffraction with Cu-Kα radiation using the 2θ-θ method. Lattice parameters were calculated using the least-square calculations. The electrical resistivity was measured using the four-terminal method from 300 to 2K. The magnetic-susceptibility measurements were performed using a superconducting quantum interference device SQUID magnetometer from 12K to 2K. The magnetic-susceptibility measurements were performed after both zero-field-cooling (ZFC) and field-cooling (FC) with an applied field of 10Oe. In this article, we classify synthesis methods “HP” and “AP”, which stand for high-pressure–annealed and ambient-pressure–annealed samples, respectively.

Results and discussion. –

Crystal structure. – Figure 1 shows the powder X-ray diffraction patterns for $x = 0$–0.7 (HP). Almost all of the peaks are indexed using the space group of $P4/nmm$. For lower x, the pattern and peak sharpness seem to be relevant to those of AP samples. With increasing x, however, the peaks become broader. To compare the peak shifts, we plotted the enlarged patterns near the (102) and (004) peaks for $x = 0$ (HP), 0.2 (HP) and 0.5 (HP) with those for $x = 0$ (AP), 0.2 (AP) and 0.5 (AP) in fig. 2. For both the AP and HP samples, clear peak shifts corresponding to lattice shrinkage with increasing F concentration. Interestingly, we note an obvious deference in between the powder patterns for $x = 0$ (AP) and 0 (HP). The (102) peak position of $x = 0$ (HP) is clearly higher than that of $x = 0.5$ (AP), while the (004) peak position seems to show a slight shift. These facts indicate that the high-pressure annealing can shrink the ab plane as compared to the AP synthesis. The calculated lattice constants a, c and volume (V) are plotted as a function of x in figs. 3(a), (b) and (c), respectively. In fig. 3(a), it is found that the a parameters of HP samples are smaller than those of AP samples. The x dependence of a parameter exhibits a dome-shaped dependence for the HP
Evolution of superconductivity in LaO$_{1-x}$F$_x$BiS$_2$ etc.

Fig. 4: (Colour on-line) (a) Temperature dependence of the resistivity from 300 to 2 K for LaO$_{1-x}$F$_x$BiS$_2$ with $x = 0–0.7$. (b) Blow-up of (a) at low temperatures near the superconducting transition.

In contrast, the c-axis and lattice volume shows a continuous decrease with increasing x.

Superconducting properties. Figure 4(a) shows the temperature dependence of resistivity from 300 down to 2 K for LaO$_{1-x}$F$_x$BiS$_2$ with $x = 0–0.7$. For $x = 0$, a semiconducting-like behavior is observed and superconducting transition is not detected above 2 K. An enlargement of low temperatures below 15 K is shown in fig. 4(b). With F doping, the semiconducting-like behavior is slightly suppressed and superconductivity appears in $x = 0.2$. With further F doping, the semiconducting-like behavior is enhanced again. However, the T_c is enhanced and exceeds 10 K (onset) at $x = 0.5$. Then, superconductivity is gradually suppressed for $x > 0.5$ and disappears at $x = 0.7$. Correspondingly to the resistivity measurements, the evolution of bulk superconductivity is also confirmed by magnetic-susceptibility measurements. Figure 5(a) shows the temperature dependence of magnetic susceptibility below 12 K for LaO$_{1-x}$F$_x$BiS$_2$ with $x = 0–0.7$. With increasing x, the T_c and the diamagnetic signals are strongly enhanced, and the optimal superconducting properties are obtained at $x = 0.5$. With further F doping, bulk superconductivity is suppressed.

Figure 5(b) displays an enlargement of fig. 5(a) near the superconducting transition. We defined T_{mag}^c as an onset temperature and T_{irr}^c as the starting temperature of bifurcation between χ_{ZFC} and χ_{FC}. The T_{irr}^c almost corresponds to the zero-resistivity temperature (T_{zero}^c) where the superconducting current appears. Both T_{mag}^c and T_{irr}^c are highest at $x = 0.5$, which is consistent with the resistivity measurements.

On the basis of the obtained results, we established a phase diagram of LaO$_{1-x}$F$_x$BiS$_2$ prepared using high-pressure annealing at 600 °C under 2 GPa. Figure 6 shows the established phase diagram with the determined T_{onset}^c, T_{zero}^c, T_{mag}^c and T_{irr}^c. The optimal superconducting properties are obtained at the summit of the dome. The dome structure resembles the curvature of the a lattice constant as shown in fig. 3(a). This fact implies that the T_c of LaO$_{1-x}$F$_x$BiS$_2$ correlates with the a-axis. In fact, the maximum T_c observed in several BiS$_2$-based superconductors depends on blocking layer structure. When we focus only bulk BiS$_2$-based superconductors, namely Bi$_4$O$_{11}$S$_3$, NdB$_{1-x}$F$_x$BiS$_2$, PrO$_{1-x}$F$_x$BiS$_2$ and LaO$_{1-x}$F$_x$BiS$_2$, we note the tendency of higher T_c to appear with larger a-axis [1,2,11,15]. Furthermore, Xing et al. indicated that the BiS$_2$-based superconductivity is realized near the
vicinity of insulating phase [14]. A larger a value may enhance the insulating nature and simultaneously realize higher-T_c superconductivity in this family. In this respect, exploration for new BiS$_2$-based superconductors with larger blocking layers will be important. To achieve that, the high-pressure technique will be a great challenge.

Conclusion.— We have synthesized novel BiS$_2$-based superconductors LaO$_{1-x}$F$_x$BiS$_2$ with $x=0-0.7$ using solid-state reaction and high-pressure post annealing. As compared to the LaO$_{1-x}$F$_x$BiS$_2$ samples prepared using only the solid-state reaction, the lattice constants of the high-pressure samples were smaller. Superconducting transition was observed for $x=0.2-0.7$, and the optimal superconducting properties were obtained for $x=0.5$ with the T_c^{onset} exceeding 10 K. The phase diagram showed an x-dependent superconducting dome. The evolution of dome-shaped dependence resembled the x dependence of the a-axis. This may indicate that the correlation between the T_c and the a-axis is essential for BiS$_2$-based superconductivity.

This work was partly supported by a Grant-in-Aid for Scientific Research (KAKENHI). This research was partly supported by Strategic International Collaborative Research Program (SICORP-EU-Japan) and Advanced Low Carbon Technology Research and Development Program (JST-ALCA), Japan Science and Technology Agency.

REFERENCES

[1] Mizuguchi Y., Fujihisa H., Gotoh Y., Suzuki K., Usui H., Kuroki K., Demura S., Takano Y., Izawa H. and Miura O., Phys. Rev. B, 86 (2012) 220510(R).

[2] Mizuguchi Y., Demura S., Deguchi K., Takano Y., Fujihisa H., Gotoh Y., Izawa H. and Miura O., J. Phys. Soc. Jpn., 81 (2012) 114725.

[3] Li S., Yang H., Tao J., Ding X. and Wen H., arXiv:1207.0455.

[4] Tan S. G., Li L. J., Liu Y., Tong P., Zhao B. C., Lu W. J. and Sun Y. P., Physica C, 483 (2012) 94.

[5] Singh S. K., Kumar A., Gahtori B., Kirtan S., Sharma G., Patnaik S. and Awana V. P. S., J. Am. Chem. Soc., 134 (2012) 16504.

[6] Sathish C. I. and Yamaura K., arXiv:1208.2818.

[7] Tan S. G., Tong P., Liu Y., Lu W. J., Li L. J., Zhao B. C. and Sun Y. P., Eur. Phys. J. B, 85 (2012) 414.

[8] Usui H., Suzuki K. and Kuroki K., Phys. Rev. B, 86 (2012) 220501(R).

[9] Wan X., Ding H., Savrasov S. Y. and Duan C., arXiv:1208.1807.

[10] Zhou T. and Wang D., to be published in J. Supercond. Nov. Magn., doi:10.1007/s10948-012-2073-4.

[11] Demura S., Mizuguchi Y., Deguchi K., Okazaki H., Hara H., Watanabe T., Denholme S. J., Fujikoa M., Ozaki T., Fujihisa H., Gotoh Y., Miura O., Yamaguchi T., Takeya H. and Takano Y., arXiv:1207.5248.

[12] Awana V. P. S., Kumar A., Jha R., Kumar S., Kumar J., Pal A., Shruni Saha J. and Patnaik S., to be published in Solid State Commun., doi:10.1016/j.ssc.2012.11.021.

[13] Jha R., Kumar A., Singh S. K. and Awana V. P. S., arXiv:1208.3077.

[14] Xing J., Li S., Ding X., Yang H. and Wen H., Phys. Rev. B, 86 (2012) 214518.

[15] Jha R., Singh S. K. and Awana V. P. S., arXiv:1208.5873.

[16] Bednorz J. G. and Müller K., Z. Phys. B: Condens. Matter, 64 (1986) 189.

[17] Wu M. K., Ashburn J. R., Torng C. J., Hor P. H., Meng R. L., Gao L., Huang Z. J., Wang Y. Q. and Chu C. W., Phys. Rev. Lett., 58 (1987) 908.

[18] Maeda H., Tanaka Y. and Asano T., Jpn. J. Appl. Phys., 27 (1988) L209.

[19] Schilling A., Cantoni M., Guo J. D. and Ott H. R., Nature, 363 (1993) 56.

[20] Kamihara Y., Watanabe T., Hirano M. and Hosono H., J. Am. Chem. Soc., 130 (2008) 3296.

[21] Chen H., Wu T., Wu G., Liu R. H., Chen H. and Fang D. F., Nature, 453 (2008) 761.

[22] Ren Z. A., Lu W., Yang J., Yi W., Shen X. L., Zheng C., Che G. C., Dong X. L., Sun L. L., Zhou F. and Zhao Z. X., Chin. Phys. Lett., 25 (2008) 2215.

[23] Rotton M., Tegel M. and Johrendt D., Phys. Rev. Lett., 101 (2008) 107006.

[24] Wang X. C., Liu Q. Q., Lv Y. X., Gao W. B., Yang L. X., Yu R. C., Li F. Y. and Jin C. Q., Solid State Commun., 148 (2008) 538.

[25] Hsu F. C., Luo J. Y., The K. W., Chen T. K., Huang T. W., Wu P. M., Lee Y. C., Huang Y. L., Chu Y. Y., Yan D. C. and Wu M. K., Proc. Natl. Acad. Sci. U.S.A., 105 (2008) 14262.

[26] Yeh K. W., Huang T. W., Huang Y. L., Chen T. K., Hsu F. C., Wu P. M., Lee Y. C., Chu Y. Y., Chen C. L., Luo J. Y., Yan D. C. and Wu M. K., EPL, 84 (2008) 37002.
Evolution of superconductivity in LaO$_{1-x}$F$_x$BiS$_2$ etc.

[27] Mizuguchi Y., Tomioka F., Yamaguchi T. and Takano Y., Appl. Phys. Lett., 94 (2009) 012503.

[28] Ogino H., Matsumura Y., Katsura Y., Ushiyama K., Horii S., Kishio K. and Shimoyama J., Supercond. Sci. Technol., 22 (2009) 075008.

[29] Guo J., Jin S., Wang G., Zhu K., Zhou T., He M. and Chen X., Phys. Rev. B, 82 (2010) 180520.

[30] Ying T. P., Chen X. L., Wang G., Jin S. F., Zhou T. T., Lai X. F., Zhang H. and Wang W. Y., Sci. Rep., 2 (2012) 426.

[31] He S., He J., Zhang W., Zhao L., Liu D., Liu X., Mou D., Ou Y., Wang Q., Li Z., Wang L., Peng Y., Liu Y., Chen C., Yu L., Liu G., Dong X., Zhang J., Chen C., Xu Z., Chen X., Ma X., Xue Q. and Zhou X. J., arXiv:1207.6823.

[32] Takatsu H., Mizuguchi Y., Izawa H., Miura O. and Kadowaki H., J. Phys. Soc. Jpn., 81 (2012) 125002.

[33] Yamanaka S., Hotehama K. and Kawaji H., Nature, 392 (1998) 580.

[34] Taguchi Y., Hsakabe M. and Iwasa Y., Phys. Rev. Lett., 94 (2005) 217002.

[35] Kotegawa H., Tomita Y., Tou H., Izawa H., Mizuguchi Y., Miura O., Demura S., Deguchi K. and Takano Y., J. Phys. Soc. Jpn., 81 (2012) 103702.