THE USE OF FLOW MICROFLUORIMETRY
IN THE ANALYSIS OF THE PHENOTYPE EXPRESSION
OF MOUSE HISTOCOMPATIBILITY ANTIGENS

GRAHAM L. CAMPBELL, LESTER T. GOLDSTEIN, and BARBARA B. KNOWLES. From The
Wistar Institute of Anatomy and Biology, Philadelphia, Pennsylvania 19104

Quantitation of the expression of cell surface antigens has hitherto been limited to analysis by either cytotoxicity tests or radioimmune assays (5, 15). We report here the use of a new methodology
to analyze and quantitate the expression of mouse histocompatibility antigens (H-2 locus) in hybrid clones and parental cell types.

The binding of fluorescein-tagged antibody is measured on a cell-to-cell basis in large viable cell populations using flow microfluorimetric techniques. These techniques have been used to measure hapten and immunoglobulin binding to lymphocyte populations (8, 9, 14). However, this is the first report in which these techniques have been used to examine the expression of the H-2 locus.

The advantage of this approach is twofold: first, a large and statistically significant sample population may be analyzed one cell at a time, thus revealing the fine detail of heterogeneity in the expression of cell surface markers within a population. Second, as has been demonstrated for analysis of specific components of the immune system, this method does permit fluorescence-activated sorting of cell types according to their different surface populations (8, 9, 14).

MATERIALS AND METHODS

Intraspecific somatic cell hybrids were produced by Sendai virus-mediated fusion of clone-I-D cells (4) originally derived from C3H mice (H-2k) with peripheral white blood cells derived from Balb/c (H-2a) mice (10). Clone-I-D cells are resistant to 30 μg/ml BrdU and do not survive in HAT medium. The peripheral leukocytes do not attach to the glass or survive for long periods in vitro. Thus, only the hybrid cells survive and grow. Colonies were transferred to T-75 Falcon flasks and allowed to grow until they reached a confluent monolayer. Approximately 6 mo elapsed between the time of fusion and these analyses. Two colonies (364-2 col 2 and 364-4 col 1) were used in these investigations.

Cell Lines

For control purposes two Balb/c-derived cell lines were used. One was a suspension cell from a mouse plasmacytoma and the other a glass-attached cell line derived from a Balb/c embryo at 20 days of gestation.

Balb/c Anti-C3H Serum

C3H spleen cells were injected six to eight times intraperitoneally at biweekly intervals (10^8 cells per Balb/c mouse per injection). Mice were bled by cardiac puncture 10 days after the last challenge and sera pooled. Antiserum was absorbed with 10^8 plasmacytoma cells of Balb/c origin. Specificity of absorbed serum was confirmed by indirect immunofluorescence assay, using cell lines and fresh spleen cells of C3H and Balb/c origin.

C3H Anti-Balb/c Serum

The procedure described above was used except that Balb/c spleen cells were injected into C3H/HeJ mice and the resultant pooled serum was absorbed with clone-I-D cells.

NIH Typing Sera

The following antisera were obtained from the National Institutes of Health: AS-382 detecting private specificity 31 of the H-2α locus (K-region specificity), C-1 detecting specificity 1 of the H-2k locus (D-region specificity), and C-3b detecting public specificity 3 expressed on both H-2α and H-2k cells (D-region specificity).

Rabbit Immunoglobulin G (IgG) Anti-Mouse IgG Fluorescein Isothiocyanate (FITC) Conjugate

This product was purchased from Cappell Laboratories, Downingtown, Pa. and used at a 1:10 dilution in Dulbecco’s phosphate-buffered saline (PBS) for fluorescence labeling of cells after pretreatment with different murine sera.

Iodination of Antisera (Antiglobulin)

Rabbit IgG anti-mouse IgG FITC conjugates were iodinated using a modification of the chloramine-T method (7).

Measurement of Bound Antibody by Indirect Labeling Assays

IMMUNOFLUORESCENCE: Single cell suspensions were used for these assays (12). 2-5 × 10^8 cells were incubated with antisera 1:10 dilution for 1 h at 37°C. Cells were washed three times in minimal essential medium (MEM) containing 5% fetal calf serum. They were resuspended and incubated with FITC-tagged rabbit IgG anti-mouse IgG (Cappell Laboratories) 1:10 dilution for 1 h at 37°C, then washed, and resuspended in MEM for analysis in the flow microfluorimeter (FMF). Smaller cell numbers (5 × 10^5–5 × 10^6) were used for UV microscopy; they were finally resuspended in PBS and glycerol (1:1).

RADIOIMMUNE ASSAY: Serum binding was measured on single cell suspensions as in Goldstein et al. (5).

DNA Determination

Cell suspensions were stained with 0.2% acriflavine using a modification of the technique described by Kraemer et al. (12) and analyzed in the FMF.

Flow Microfluorimetry (FMF)

The machine used in these experiments is one currently in use at the Biomedical Division, Lawrence Livermore Laboratories, Livermore, Calif. The basic design and description have been detailed elsewhere (6, 17, 18).

The data are displayed as a frequency distribution; the
The abscissa (channel number) indicates the amount of fluorescence detected and the ordinate indicates the relative number of cells having that amount of fluorescence. The frequency distribution thus reflects the amount of fluorescence detected on each cell in the population. Data are expressed either as a frequency distribution or, for comparative purposes, as the channel number in which the modal number of fluorescent cells lies. Implicit in this analysis is the direct relationship between the amount of fluorescence detected and either the DNA content or the amount of fluorescent antibody bound.

In each experiment, calibration of the system was effected by measuring scattered light from 2.02-μm spheres using a Neutral Density Filter, OD = 1.0. The system was recalibrated before each experiment and after every tenth sample within an experiment.

Fluorescence Microscopy

All observations were made with a Leitz Ortholux microscope utilizing a HBO 200-W mercury bulb as the fluorescent light source. The filters used were 2 mm OGI + 2 mm BG 12 for excitation and K530 for suppression. Cells were scored by two observers immediately and again after refrigeration overnight (I, 11).

Volume Determinations

Cell volume was determined using Coulter Counter model ZBI (Coulter Electronics, Inc., Fine Particle Group, Hialeah, Fla.) interfaced with a 400-channel analyzer.

RESULTS AND DISCUSSION

We have demonstrated the hybrid nature of clones 364-2 col 2 and 364-4 col 1 by their growth in selective medium, by karyotype analysis, and by examining their reactivity with NIH H-2 typing sera directed towards specificities of the parental cells.

Chromosome counts reveal a mean number of 57 (range 54–59) chromosomes in clone-1-D parental cell line, including 11 biarmed chromosomes, one of which is a dicentric. These biarmed chromosomes are on the whole maintained in the two hybrid clones. Each clone contains a mean of 82 (range 72–98) chromosomes, and they appear to be derived by fusion of one clone-1-D cell and one normal mouse white blood cell (2n = 40). There has been a loss of approximately 15 telocentric chromosomes between time of fusion and chromosomal analysis.

Fig. 1 shows results of staining these different cell lines with acriflavine to determine their DNA content. Using the modal frequency of the DNA content for G1 cells, it is evident that both hybrid clones have more DNA than the clone-1-D parental cells, thus corroborating the difference in the chromosome counts. Coulter Counter determinations indicate that both hybrid clone populations have a larger volume, approximately twice that of the parental cell type clone-1-D (see Fig. 1 and Table I). However, there is no meaningful difference in volume between the cell populations of the different hybrid clones.

FMF analyses of the binding of the different antisera and fluoresceinated rabbit IgG anti-mouse IgG on clone-1-D, 364-2 col 2, and 364-4 col 1 cells are shown in Fig. 1. These frequency distributions appear to be Gaussian with a right-handed skew and are very similar in this respect to the volume spectra derived from the Coulter Counter. This correlation strongly suggests that for these cell lines the amount of antibody bound is proportional either to volume or some parameter related to volume such as surface area.

Comparison of the frequency distributions in Fig. 1 indicates differential binding for each staining reaction among all three cell lines investigated. In Table I, we have combined the results of several experiments; in addition, we have subtracted the modal frequency obtained when the cell populations are reacted with FITC-tagged rabbit IgG anti-murine IgG alone. When this is done, the differential binding of both anti-Balb/c and anti-C3H sera to the different cell lines is greatly minimized.

To confirm these results, radioimmune assays using the same antiglobulin tagged with 125I were carried out. Saturating conditions were used to maximize the binding capacity of the different reagents. Results are in Table II; they confirm the

Antisera	Volume
Anti-Balb/c	Ant-C3H
Clone-1-D (3)	15 [13–17]
364-2 col 2 (3)	30 [29–33]
364-4 col 1 (9)	29 [27–32]

Measurements are expressed according to the modal channel number. For the fluorescent antibody-staining reaction, the modal channel number for rabbit anti-mouse IgG has been subtracted. The numbers in parentheses represent the number of experiments, in brackets the range of values.
TABLE II
Indirect Labeling of Cell Surfaces with 125I-Tagged Antiglobulin after Reaction with Murine Sera

Murine sera	Balb/c anti-C3H	C3H anti-Balb/c	Cell line serum	Normal serum	Balb/c anti-C3H	C3H anti-Balb/c
				1:10		1:10
Balb/c fetal cell	306	221	769	119		
Clone-1-D	180	222	270	1,222		
364-2 col 2	564	335	1,385	1,703		
364-4 col 1	381	262	1,098	1,452		

Data presented as average counts per minute per 10^8 cells from triplicate samples. The coefficient of variation for the triplicate samples is less than 10%. The counts derived from nonspecific binding with no serum have been subtracted from the other three groups.

Antiglobulin: Rabbit IgG anti-mouse IgG FITC-tagged and 125I tagged. Input counts: 20,761.

We have analyzed the expression of histocompatibility antigens of intraspecific mouse somatic cell hybrid clones and parental cells. FMF has been used to measure the binding of fluorescein-labeled antibody to the different cell types. Correlation of volume determinations and antibody binding indicate that there are differences in the density of antigen expression between the parental cell line and the hybrid clones.

We thank Drs. M. Mendelsohn, B. H. Mayall, M. A. Van Dilla, and J. Gray from the Biomedical Division, Lawrence Livermore Laboratories, University of California, Livermore, Calif. for their aid and assistance in performing the flow microfluorimetric studies. The excellent technical assistance of Kathy Swift and Stuart Surrey is gratefully acknowledged. We also thank Dr. D. Aden for his suggestions in discussion.

These studies were supported in part by a grant from the National Foundation-March of Dimes (B. B. Knowles), U. S. Public Health Service research grant CA 10815 from the National Cancer Institute, RR 05540 from the Division of Research Resources and Training Grant GM 00142 from the National Institute of General Medical Sciences.

Received for publication 18 July 1974, and in revised form 10 December 1974.

REFERENCES

1. Cerottini, J. C., and K. T. Brunner. 1967. Localization of mouse isoantigens on the cell surface as revealed by immunofluorescence. *Immunology*. 13:395–403.

2. Crum, L. S., and A. Brunsting. 1973. Fluorescence and light scattering measurements on hog cholera-infected PK-15 cells. *Exp. Cell Res.* 78:209–213.

3. Crissman, H. A., and J. A. Steinkamp. 1973.

FIGURE 1 Frequency distributions of antibody binding, DNA content, and volume of two hybrid clones and one parental cell type. (a) Rabbit IgG anti-mouse IgG FITC conjugated. (b) Balb/c anti-C3H + rabbit IgG anti-mouse IgG FITC conjugated. (c) C3H anti-Balb/c + rabbit IgG anti-mouse IgG FITC conjugated. (d) DNA content - acriflavin stain. (e) Volume.
Rapid, simultaneous measurement of DNA, protein, and cell volume in single cells from large mammalian cell populations. *J. Cell Biol.* 59:766–771.

4. Dubes, D. R., and S. K. 1964. Effect of halogenated pyrimidines and thymidine on growth of L cells and a subline lacking thymidine kinase. *Exp. Cell Res.* 33:19–28.

5. Goldstein, L. T., N. R. Klinman, and L. A. Manson. 1973. A microtest radioimmune assay for noncytotoxic tumor-specific antibody to cell surface antigens. *J. Natl. Cancer Inst.* 15:1713–1715.

6. Holm, D. M., and L. S. Cram. 1973. An improved flow microfluorometer for rapid measurement of cell fluorescence. *Exp. Cell Res.* 80:105–110.

7. Hunter, W. M. 1967. Preparation of radiodinated proteins of high activity, their reaction with antibody in vitro: the radioimmune assay. In Handbook of Experimental Immunology. D. M. Weir, editor. The Alden Press Ltd., Oxford. 608–654.

8. Jones, P. P., J. J. Cebr, and L. A. Herzog. 1973. Immunoglobulin (IgG) allotype markers on rabbit lymphocytes: separation of cells bearing different allotypes and demonstration of the binding of IgG to lymphoid cell membranes. *J. Immunol.* 111:1334–1348.

9. Julius, M. H., T. Masuda, and L. A. Herzog. 1972. Demonstration that antigen binding cells are precursors of antibody-producing cells after purification with a fluorescence activated cell sorter. *Proc. Natl. Acad. Sci. U. S. A.* 69:1934–1938.

10. Kano, K., B. B. Knowles, H. Koprowski, and F. Milgrom. 1972. HLA antigens on man-mouse hybrid cells. *Eur. J. Immunol.* 2:198–202.

11. Knowles, B. B., and K. Swift. 1975. Cell mediated immunoselection against cell surface antigens of somatic cell hybrids. Somatic Cell Genetics. 1. In press.

12. Kraemer, P. M., L. L. Deaven, H. A. Crissman, and M. A. Van Dilla. 1972. DNA constancy despite variability in chromosome number. *Adv. Cell Mol. Biol.* 2:47–108.

13. Kraemer, P. M., R. A. Tobey, and M. A. Van Dilla. 1973. Flow microfluorimetric studies of lectin binding to mammalian cells. I. General features. *J. Cell. Physiol.* 81:305–314.

14. Kreth, H. W., and L. A. Herzog. 1974. Fluorescence-activated cell sorting of human T and B lymphocytes. I. Direct evidence that lymphocytes with a high density of membrane-bound immunoglobulin are precursors of plasmacytes. *Cell. Immunol.* 12:396–406.

15. Rubio, N. 1974. Surface H-2 antigen concentration requirement of somatic hybrid cells for Ig-M mediated cytotoxicity. *Nature (Lond.)* 249:461–463.

16. Steinkamp, J. A., and P. M. Kraemer. 1974. Flow microfluorimetric studies of lectin binding to mammalian cells. II. Estimation of surface density of receptor sites by multiparameter analysis. *J. Cell. Physiol.* 84:197–204.

17. Van Dilla, M. A., L. L. Steinmetz, D. T. Davis, R. N. Calvert, and J. W. Gray. 1974. High speed analysis and sorting with flow systems: biological applications and new approaches. *IEEE (Inst. Electr. Electron. Eng.) Trans. Nucl. Sci.* NF-21: 714–720.

18. Van Dilla, M. A., T. T. Trujillo, P. F. Mullany, and J. R. Coulter. 1969. Cell microfluorometry: a method for rapid fluorescence measurement. *Science (Wash. D. C.)* 163:1213–1214.