The impact of CYP2D6-predicted phenotype on tamoxifen treatment outcome in patients with metastatic breast cancer

INTRODUCTION

Breast cancer is the most common type of cancer among women worldwide with nearly 1.2 million new diagnoses each year (Kamangar et al, 2006). Tumour expression of the oestrogen receptor (ER) and/or progesterone receptor (PR) has an important role in the choice for systemic treatment. In ER-positive and/or PR-positive breast cancer, anti-oestrogenic therapy has proven to be the most potent metabolite in tamoxifen therapy (Wu et al, 2009). Cytochrome P450 2D6 has a crucial role in the metabolic conversion of tamoxifen into the active metabolite endoxifen. In this cohort study, the effect of CYP2D6-predicted phenotype, defined as the combined effect of CYP2D6 genetic variation and concomitant use of CYP2D6-inhibiting medication, on time to breast cancer progression (TTP) and overall survival (OS) in women who use tamoxifen for metastatic breast cancer (MBC) was examined.

BACKGROUND: Cytochrome P450 2D6 (CYP2D6) has a crucial role in the metabolic conversion of tamoxifen into the active metabolite endoxifen. In this cohort study, the effect of CYP2D6-predicted phenotype, defined as the combined effect of CYP2D6 genetic variation and concomitant use of CYP2D6-inhibiting medication, on time to breast cancer progression (TTP) and overall survival (OS) in women who use tamoxifen for metastatic breast cancer (MBC) was examined.

METHODS: We selected patients treated with tamoxifen (40 mg per day) for hormone receptor-positive MBC from whom a blood sample for pharmacogenetic analysis (CYP2D6*3, *4, *5, *6, *10 and *41) was available. Patient charts (n = 102) were reviewed to assess TTP and OS, and to determine whether CYP2D6 inhibitors were prescribed during tamoxifen treatment.

RESULTS: OS was significantly shorter in patients with a poor CYP2D6 metaboliser phenotype, compared with extensive metabolisers (HR = 2.09; P = 0.034; 95% CI: 1.06–4.12). Co-administration of CYP2D6 inhibitors alone was also associated with a worse OS (HR = 3.55; P = 0.002; 95% CI: 1.59–7.96) and TTP (HR = 2.97; P = 0.008; 95% CI: 1.33–6.67) compared with patients without CYP2D6 inhibitors.

CONCLUSION: CYP2D6 phenotype is an important predictor of treatment outcome in women who are receiving tamoxifen for MBC. Co-administration of CYP2D6 inhibitors worsens treatment outcome of tamoxifen and should therefore be handled with care.

Keywords: tamoxifen; CYP2D6; pharmacogenetics; metastatic breast cancer; phenotype
CYP2D6 genotyping

All patients were genotyped for the CYP2D6*3, *4, *5 and *6 polymorphisms, which will detect over 95% of CYP2D6 PMs and also for the CYP2D6 polymorphisms *10 and *41 that are associated with reduced enzyme activity. The source of genomic DNA was EDTA blood and the genotyping was done using Taqman allelic discrimination assays on the ABI Prism 7000 (Applied Biosystems, Nieuwkerk aan den IJssel, the Netherlands) Sequence detection system. Primers and probes were designed by Applied Biosystems using their Assay-by-Design service. Polymerase chain reactions (PCR) were carried out in a reaction volume of 10.0 μl, containing assay-specific primers, allele-specific Taqman MGB probes (Applied Biosystems), Abgene Absolute QPCR Rox Mix (Applied Biosystems) and genomic DNA (1 ng).

The thermal profile consisted of an initial denaturation step at 95°C for 15 min, followed by 40 cycles of denaturation at 92°C for 15 s and annealing and extension at 60°C for 1 min. The *5 was determined using long range PCR on 20 ng genomic DNA using primers 5'-CACACCGGCGCCGCTTGACCTCCA-3' and 5'-CAGGCCGTAGCTAAGGCCCCAGACG-3'. The PCR product was analysed on an EtBr gel. Presence of a CYP2D6 gene deletion (5') can be observed by the presence of a 3.5 kb fragment. A 5.1 kb fragment will always be amplified, and serves as an internal

MATERIALS AND METHODS

Patients and study design

A consecutive series of patients treated with tamoxifen for breast cancer at the Daniel den Hoed cancer centre of the Erasmus MC University hospital, were sampled for pharmacogenetic analysis between 2000 and 2008. From that dataset we selected all patients with MBC, having a positive hormone receptor status (ER and/or PR), and receiving a tamoxifen dose of 40 mg per day. In The Netherlands, 40 mg per day is the standard tamoxifen dose for MBC patients compared with 20 mg per day in the adjuvant setting. As the terminal elimination half-life of tamoxifen for a single dose is 5–7 days, and the time to reach steady state plasma concentrations is 3–4 weeks, an observational period of 1 month may be necessary before the effect of hormonal therapy can be seen (Morello et al., 2003). Therefore, participants using tamoxifen for <30 days were also excluded. Patients started with tamoxifen between 1986 and 2008. This study was approved by the local medical ethics board (study numbers AZR00/168A and MEC02/1002), and all patients gave written informed consent. Patient charts were reviewed to record the following data: age at start of tamoxifen therapy for metastatic disease, race, ER and PR status, treatments before tamoxifen therapy, number and location of metastatic sites, CYP2D6-inhibiting co-medication, TTP and OS.

Participants were monitored from the start of first tamoxifen prescription for MBC until death, or until the end of the study period (July 2009), whichever came first. Time to progression was defined as the time from first tamoxifen prescription for MBC to the documentation of progression, which was assessed by standard RECIST criteria (Hayward et al., 1977). Overall survival was defined as the time from first tamoxifen prescription for MBC to death due to any cause.

Patient charts were also reviewed to determine whether the following known CYP2D6 inhibitors were co-administered during the time that tamoxifen was used for metastatic disease: fluoxetine, paroxetine and bupropion (all strong inhibitors), duloxetine and terbinafine (moderate inhibitors), amiodarone, cimetidine, citalopram and sertraline (all weak inhibitors) (Flockhart, 2007).
control. Genotypes were scored through measuring allele-specific fluorescence using the SDS 2.2.2 software for allelic discrimination (Applied Biosystems).

CYP2D6 phenotyping

On the basis of CYP2D6 genotype in combination with concomitant use of CYP2D6-inhibiting medication, patients were classified into three phenotype groups (see Table 2). As an observational period of 3 or even 6 months may be necessary before the effect of hormonal therapy could be seen, concomitant CYP2D6 inhibitor use was defined as a minimum of 6 months overlap between tamoxifen and the CYP2D6 inhibitor (Muss et al, 1994). Women without a dysfunctional (CYP2D6*3, *4, *5 or *6) allele and who were not using a CYP2D6 inhibitor for at least 6 months (or until tamoxifen was stopped) were defined as EMs. Intermediate metabolisers (i) carry CYP2D6*10 or *41 alleles either homozygous or in combination with a dysfunctional allele or (ii) were heterozygous for the CYP2D6*3, *4, *5 or *6 allele (*3/wt, *4/wt, *5/wt or *6/wt) and did not use a CYP2D6 inhibitor or (iii) had no dysfunctional alleles but were using a weak or moderate CYP2D6 inhibitor. Women classified as PMs had (i) two dysfunctional alleles (for example, CYP2D6*3/*3, *3/*4 or *4/*4), or (ii) one dysfunctional allele (CYP2D6*3/wt, *4/wt, *5/wt or *6/wt) with concurrent use of a moderate CYP2D6 inhibitor or (iii) a functional genotype (wt/wt) with co-administration of a strong CYP2D6 inhibitor (Goetz et al, 2007).

Statistical analysis

Deviations from Hardy–Weinberg equilibrium and differences in allele frequencies of the CYP2D6*3, *4, *5, *6 and *41 alleles were analysed using £2-tests. The effect of CYP2D6 genotype, CYP2D6-inhibiting co-medication and CYP2D6 phenotype (EM, IM, PM) on TTP and OS was assessed using Cox proportional hazards models. Analyses were adjusted for age. Confounders were adjusted for in the analysis if they caused a change in the point estimate of more than 10 percent. Kaplan–Meier estimates and log-rank test were used in univariate analysis of TTP and OS. The 5% cut-off level was chosen as significance level. All analyses were carried out using SPSS software (version 15.0, Chicago, IL, USA).

RESULTS

Of the 116 patients treated with tamoxifen for MBC enrolled, 104 patients had a positive hormone receptor status. Two patients discontinued tamoxifen treatment within 30 days and were excluded from the analysis. The characteristics of the 102 patients treated with tamoxifen for MBC that met the inclusion criteria are described in Table 1. Patients started with tamoxifen for metastatic disease between 1986 and 2008. CYP2D6 genotype was determined in 99 of these patients. In our population, the allele frequencies of CYP2D6 alleles were 3.5, 21.7, 1.5, 1.0, 1.5 and 6.6%, respectively, which is in line with earlier published data (Bradford, 2002). Genotype distributions were in Hardy–Weinberg Equilibrium (CYP2D6*3, *4, *5, *6, *10 and *41: £2 = 0.46; $ = 0.25). Co-administration of CYP2D6 inhibitors (paroxetine, fluoxetine, sertraline and citalopram) occurred in 6.9% of patients (N = 7, mean duration of co-administration: 11.5 months; range: 6 months to 1.6 years).

On the basis of CYP2D6-predicted phenotype definition, 48.5% of the patients were classified as EMs, 38.4% as IMs and 13.1% as PMs (Table 2). Patients used tamoxifen for a mean period of time of 2.8 years (range: 1.6 months to 17 years); being the longest (3.0 years) in the EMs and the shortest (1.7 years) in the PMs. All patients stopped tamoxifen because of the disease progression.

Table 1 Baseline Characteristics

Variable	Number of patients (%)
Age first tamoxifen use for metastatic breast cancer, average (s.d.)	51.8 (9.1) years
Race	
Caucasian	97 (95.1)
Asian	4 (3.9)
African	1 (1.0)
Previous treatments	
Operative procedure	
Mastectomy	41 (40.2)
Lumpectomy	53 (52.0)
None	8 (7.8)
Previous adjuvant therapy	
Radiotherapy	33 (32.3)
Chemotherapy	22 (21.6)
Both chemotherapy and radiotherapy	21 (20.6)
None	26 (25.5)
No. of metastatic sites	
1	69 (67.6)
2	27 (26.5)
3	6 (5.9)
Metastatic site	
Lymph	27 (19.1)
Bone	62 (44.0)
Lung	30 (21.3)
Liver	13 (9.2)
Skin	8 (5.7)
Other	1 (0.7)
CYP2D6 genotypes	
wt/wt	45 (44.1)
wt/*3	2 (2.0)
*3/*3	0 (0.0)
*3/*4	4 (3.9)
*3/*41	1 (1.0)
wt/*4	25 (24.5)
*4/*4	4 (3.9)
*4/*6	1 (1.0)
*4/*10	1 (1.0)
*4/*41	4 (3.9)
wt/*5	3 (2.9)
*5/*5	0 (0.0)
wt/*6	1 (1.0)
*6/*6	0 (0.0)
wt/*10	2 (2.0)
wt/*41	6 (5.9)
Unknown	3 (2.9)

Abbreviations: CYP2D6 = cytochrome P450 2D6; wt = wild type. *Paroxetine (n = 4), fluoxetine (n = 1). *Citalopram (n = 1), sertraline (n = 1).

In Table 3, the associations between the predicted phenotypes and TTP and OS, respectively, are shown. The OS in EMs and IMs was not significantly different (HR = 0.87; $ = 0.62; 95% CI: 0.50–1.50). However, OS was significantly shorter for the PMs compared with EMs (HR = 2.09; $ = 0.034; 95% CI: 1.06–4.12).
Impact of CYP2D6 on phenotype on tamoxifen treatment in MBC

Although not significantly different, PMs tended to have a worse TTP (HR = 1.69; 95% CI: 0.90–3.19) compared with EMs.

As intermediate and EMs have comparable TTP and OS, both were taken together in the Kaplan–Meier estimates. The median OS-time period for PMs was 5.0 years (95% CI: 4.1–5.9) compared with 7.9 years (95% CI: 6.2–9.5) for the other predicted phenotype groups, which is statistically significantly different (P = 0.0122) (Figure 1). For PMs, the Kaplan–Meier estimate shows a non-significantly shorter median TTP compared with the combined group of other predicted phenotypes (IMs + EMs), being 1.4 years (95% CI: 0.7–2.2) vs 1.8 years (95% CI: 1.4–2.3), respectively, (P = 0.0892), as shown in Figure 1.

Although there was no significant association between CYP2D6 genotype and TTP or OS (HR = 1.29; P = 0.49; 95% CI: 0.63–2.66 and HR = 1.38; P = 0.42; 95% CI: 0.63–2.99, respectively), the seven patients using tamoxifen together with a CYP2D6 inhibitor had a significantly worse TTP (HR = 2.97; P = 0.0088; 95% CI: 1.33–6.67) and OS (HR = 3.55; P = 0.0002; 95% CI: 1.59–7.96) compared with tamoxifen users without co-administration of CYP2D6 inhibitors (Table 4).

Previous treatment, race and number of metastatic sites, as mentioned in Table 1, did not influence our model as a confounder or effect modifier.

DISCUSSION

In this study, we showed that MBC patients with a positive hormone receptor status treated with tamoxifen and having a CYP2D6 ‘PM-predicted phenotype’ have a statistically significant shorter OS than patients with an intermediate or extensive phenotype. In addition, we showed that patients using tamoxifen together with CYP2D6 inhibitors have a significantly shorter progression-free and worse OS compared with tamoxifen users not concomitantly using CYP2D6 inhibitors.

To our knowledge, this is the first time that the combined effect (predicted phenotype) of genotype and/or co-medication on tamoxifen treatment outcome has been investigated in the specific group of hormone-sensitive MBC patients. Besides this, the FDA approved fixed dose of tamoxifen used (40 mg per day) contributed to a homogeneous selection of patients in this study.

Most studies published focused at a tamoxifen dose of 20 mg per day. In our study, EM and IM are not significantly different in terms of OS or TTP, although differences between these groups have been found in other studies when the tamoxifen dose is 20 mg per day (Goetz et al, 2005; Schroth et al, 2009). It is possible that 40 mg per day allows the IM patients to have a steady state concentration similar to EM or at least high enough to benefit from the treatment.

Previous studies have shown that adjuvant tamoxifen users with a PM status (only based on CYP2D6 genotype) have an increased risk of breast cancer recurrence and mortality (Goetz et al, 2005; Lim et al, 2007; Schroth et al, 2007; Bijl et al, 2009). In our study, no association was found between solely CYP2D6 genotype and TTP or OS in MBC patients. This may be explained by the relatively small group of CYP2D6 PMs in our set of patients. An alternative explanation can be that the effect of genotype observed in the adjuvant setting is less pronounced in MBC. On the other hand, with respect to the adjuvant setting, several other studies also did not show an association between CYP2D6 genotype and
tamoxifen efficacy. In two studies on adjuvant tamoxifen treatment, no differences were found in survival rates between PMs and other metabolising groups (Nowell et al, 2005; Wegman et al, 2007). In another study, Wegman et al (2005) even showed a better recurrence-free survival in PMs. The conflicting results may partly be explained by differences or heterogeneity in study populations and in view of our data also by lack of information about concomitant use of CYP2D6 inhibitors and hormone receptor status. Differences in dysfunctional alleles that have been studied also make it difficult to compare the results and can cause misinterpretation (Dezentje et al, 2009). The gene encoding for CYP2D6 is highly polymorphic, with CYP2D6*4 being the most common dysfunctional variant allele in Caucasians [5]. In our study, besides CYP2D6 *4, also the CYP2D6 dysfunctional alleles CYP2D6*3, *5, *6, *10 and *41 having a low allele frequency, have been included in the analysis (Bradford, 2002).

Retrospective analyses clearly have shortcomings (that is, incomplete information on breast cancer stage, tumour size or nodal stage, or treatment given after progression on tamoxifen), but for this study there is no reason to assume that these variables differ significantly between the three phenotype groups nor have influenced outcome (Schroth et al, 2007). In addition, information about compliance may not have been complete as this was gathered retrospectively from patient charts. In a study by Rae et al (2009), an association between CYP2D6 genotype and compliance to tamoxifen therapy was shown, as PMs were more likely to continue tamoxifen therapy compared with intermediate or EMs. The results suggest that EMs are more likely to both obtain benefit from tamoxifen therapy and discontinue the drug because of side effects (Rae et al, 2009). This implies that the observed effects of tamoxifen in our study may even be underestimated by decreased adherence or persistence to therapy. Regarding the inclusion criteria there may have been selection bias, as not all patients may have been included. In that case we would expect to now have fewer PMs in the analysis compared with IMs or EMs, as they have a shorter OS and may have died before inclusion took place. This would also mean that our data may underestimate the effect described.

Our results are in line with the findings by Kelly et al (2010), who also found that tamoxifen may be less effective in patients treated with tamoxifen while taking CYP2D6 inhibitors, although the number of patients using this co-medication was relatively small in our study group. Nevertheless, it is striking to notice that relatively large differences in therapeutic outcome were found. For treatment of hot flushes as a side effect of tamoxifen therapy SSRIs are often prescribed (Goetz and Loprinzi, 2003). Clearly the potential negative effect of such SSRIs on the efficacy of the anti-cancer effect of tamoxifen is a matter of great concern. We could not ascertain the indication for anti-depressant treatment to rule out that the underlying disorder is responsible for the effect seen. But as the findings by Kelly et al (2010) show an increased mortality risk only with potent and not with weak or moderate inhibitors of CYP2D6 showing a strong biological plausibility, selection bias is not readily suggested. However, this will have to be confirmed in prospective studies.

Although further research is needed, this may imply that CYP2D6 EMs can preferentially be treated with tamoxifen instead of aromatase inhibitors. On the other hand, CYP2D6 PMs and patients who cannot avoid using CYP2D6-inhibiting medication might benefit more from aromatase inhibitors over tamoxifen, as these compounds have another metabolic route. Another option might be to give an escalated tamoxifen dose to increase plasma endoxifen concentrations. Tamoxifen doses higher than 40 mg daily may theoretically be necessary to achieve adequate plasma concentrations.

Table 4 Association between CYP2D6-inhibiting co-medication, time to progression and overall survival

CYP2D6-inhibiting Co-medication	Time to progression	Overall survival				
	Cases (n = 102)	HR (95% CI)	P-value	Cases (n = 70)	HR (95% CI)	P-value
No	95	1.00 (ref)	0.008	63	1.00 (ref)	0.002
Yes	7	2.97 (1.33–6.67)	0.008	7	3.55 (1.59–7.96)	0.002

Abbreviations: CI = confidence interval; CYP2D6 = cytochrome P450 2D6; HR = hazards ratio; ref = reference. *Co-medication: paroxetine (n = 4), fluoxetine (n = 1), sertraline (n = 1) and citalopram (n = 1). **HRs were calculated using Cox-proportional hazards models and were adjusted for genotype (PM, IM and EM based on CYP2D6*3, *4, *5, *6, *10 and *41) and age at the index date.
concentrations of active tamoxifen metabolites in patients with a PM phenotype.

The basis of our study and the current literature, we would favour to study not only CYP2D6 genotype but to focus more on CYP2D6 phenotype, thereby taking co-medication into account. One way to do this is by giving the patient a CYP2D6 activity probe drug that mimics the metabolism of tamoxifen (Mathijssen and van Schaik, 2006). Currently, such a phenotyping study is ongoing at our clinic (see http://www.trialregister.nl: NTR number 1751).

In addition, it would be of interest to further explore the role of plasma concentrations of tamoxifen metabolites (that is, endoxifen) as predictors of therapeutic outcome (Kiyotani et al., 2010). Therapeutic drug monitoring should therefore be included in prospective studies that evaluate the impact of CYP2D6 phenotype on tamoxifen treatment outcome.

In summary, we showed that CYP2D6-predicted phenotype, described as the combined effect of CYP2D6 genotype and co-prescribed CYP2D6-inhibiting medication, is a predictor of outcome in women using tamoxifen (40 mg per day) for the treatment of hormone receptor-positive MBC. As co-administration of CYP2D6-inhibiting medication seems to diminish the treatment effect of tamoxifen, this combination of drugs should be handled with care.

ACKNOWLEDGEMENTS

We thank Dr M Bontenbal, Dr S Sleijfer and Prof Dr J Foekens for their specific and invaluable contributions to this study.

Conflict of interest

The authors declared no conflict of interest.

REFERENCES

Aubert RE, Stanek EJ, Yao J, Teagarden JR, Subar M, Epstein RS, Skaar TC, Desta Z, Flockhart DA (2009) Risk of breast cancer recurrence in women initiating tamoxifen with CYP2D6 inhibitors. J Clin Oncol 27: 18s, CRA508

Bijl MJ, van Schaik RH, Lammers LA, Hofman A, Vulto AG, van Gelder T, Stricker BH, Visser LE (2009) The CYP2D6*4 polymorphism affects breast cancer survival in tamoxifen users. Breast Cancer Res Treat 118: 125–130

Borges S, Desta Z, Li L, Skaar TC, Ward BA, Nguyen A, Jin Y, Sorniolo AM, Nikoloff DM, Wu L, Hillman G, Hayes DF, Stearns V, Flockhart DA (2006) Quantitative effect of CYP2D6 genotype and inhibitors on tamoxifen metabolism: implication for optimization of breast cancer treatment. Clin Pharmacol Ther 80: 61–74

Bradford LD (2002) CYP2D6 allele frequency in European Caucasians, Asians, Africans and their descendants. Pharmacogenomics 3: 229–243

Dezenjto VO, Guchelaar HJ, Cortier JW, van de Velde CJ, Gelderblom H (2009) Clinical implications of CYP2D6 genotyping in tamoxifen treatment for breast cancer. Clin Cancer Res 15: 15–21

Dezenjto VO, van Blijderven NJ, Gelderblom H, Putter H, van Herk-Sukel MP, Casparie MK, Egberts AC, Cortier JW, Guchelaar HJ (2010) Effect of concomitant CYP2D6 inhibitor use and tamoxifen adherence on breast cancer recurrence in early-stage breast cancer. J Clin Oncol 28: 2423–2429

Fishher B, Costantino JP, Wickerham DL, Caspersen CJ, Cronin WM, Robidoux A, Bevers TR, Kavanah MT, Atkin JN, Margolese RG, Runowicz CD, James JM, Ford LG, Wolmark N (2005) Tamoxifen for the prevention of breast cancer: current status of the National Surgical Adjuvant Breast and Bowel Project P-1 study. J Natl Cancer Inst 97: 1652–1662

Flockhart DA (2007) Cytochrome P450 drug interaction table, Vol 2009

Goetz MP, Kamal A, Ames MM (2008) Tamoxifen pharmacogenomics: the role of CYP2D6 as a predictor of drug response. Clin Pharmacol Ther 83: 160–166

Goetz MP, Knox SK, Suman VJ, Rae JM, Søgård SL, Ames MM, Visscher DW, Reynolds C, Couch FJ, Lingle WL, Weinstihloum RM, Fritcher EG, Nihbe AM, Desta Z, Nguyen A, Flockhart DA, Perez EA, Ingle JN (2007) The impact of cytochrome P450 2D6 metabolism in women receiving adjuvant tamoxifen. Breast Cancer Res Treat 101: 113–121

Goetz MP, Loprinzi CL (2003) A hot flash on tamoxifen metabolism. J Natl Cancer Inst 95: 1734–1735

Goetz MP, Rae JM, Søgård SL, Ames MM, Visscher DW, Reynolds C, Couch FJ, Lingle WL, Flockhart DA, Desta Z, Perez EA, Ingle JN (2005) Pharmacogenetics of tamoxifen biotransformation is associated with clinical outcomes of efficacy and hot flashes. J Clin Oncol 23: 9312–9318

Hayward JL, Carbone PP, Heuson JC, Kumaoka S, Segaloff A, Rubens RD (1977) Assessment of response to therapy in advanced breast cancer: a project of the Programme on Clinical Oncology of the International Union Against Cancer, Geneva, Switzerland. Cancer 39: 1289–1294

Hoskins JM, Carey LA, McLeod HL (2009) CYP2D6 and tamoxifen: DNA matters in breast cancer. Nat Rev Cancer 9: 576–586

Kamangar F, Dores GM, Anderson WF (2006) Patterns of cancer incidence, mortality, and prevalence across five continents: defining priorities to reduce cancer disparities in different geographic regions of the world. J Clin Oncol 24: 2137–2150

Kelly CM, Juurlink DN, Gomes T, Duong-Hua M, Pritchard KI, Austin PC, Paszat LF (2010) Selective serotonin reuptake inhibitors and breast cancer mortality in women receiving tamoxifen: a population based cohort study. BMJ 340: c693

Kiyotani K, Mushiroda T, Imamura CK, Hosono N, Tsunoda T, Kuba M, Tanigawa Y, Flockhart DA, Desta Z, Skaar TC, Aki F, Hirata K, Takatsuka Y, Okazaki M, Oshumi S, Yamakawa T, Sasa M, Nakamura Y, Zembutsu H (2010) Significant effect of polymorphisms in CYP2D6 and ABC2 on clinical outcomes of adjuvant tamoxifen therapy for breast cancer patients. J Clin Oncol 28: 1287–1293

Lim HS, Ju Lee H, Seok Lee K, Sook Lee E, Jang HJ, Ro J (2007) Clinical implications of CYP2D6 genotypes predictive of tamoxifen pharmacokinetics in metastatic breast cancer. J Clin Breast Cancer 25: 3837–3845

Loprinzi CL, Kugler JW, Sloan JA, Mailliard JA, LaVasseur BI, Barton DL, Novotny PJ, Dakhil SR, Rodger K, Rummons TA, Christensen BJ (2000) Venlafaxine in management of hot flashes in survivors of breast cancer: a randomised controlled trial. Lancet 356: 2059–2063

Mathijssen RH, van Schaik RH (2006) Genotyping and phenotyping cytochrome P450: perspectives for cancer treatment. Eur J Cancer 42: 141–148

Morello KC, Wurz GT, DeGregorio MW (2003) Pharmacokinetics of selective estrogen receptor modulators. Clin Pharmacokinet 42: 361–372

Mortimer JE, Flatt SW, Parker BA, Gold EB, Wasserman L, Natarajan L, Pierce JP (2007) Tamoxifen, hot flashes and recurrence in breast cancer. Breast Cancer Res Treat 108: 421–426

Muss HB, Case LD, Atkins JN, Bearden JD, Cooper MR, Cruz JM, Jackson DV, O'Rourke MA, Pavy MD, Powell BL (1994) Tamoxifen vs high-dose oral medroxyprogesterone acetate as initial endocrine therapy for patients with metastatic breast cancer: a Piedmont Oncology Association study. J Clin Oncol 12: 1630–1638

Newman WG, Hadfield KD, Latif A, Roberts SA, Shenton A, McGhaye C, Laloo F, Howell S, Evans DG (2008) Impaired tamoxifen metabolism reduces survival in familial breast cancer patients. Clin Cancer Res 14: 5913–5918

Nowell SA, Ahn J, Rae JM, Scheys JO, Trovato A, Sweeney C, MacLeod SL, Kadhulbar FF, Ambrose EB (2003) Association of genetic variation in tamoxifen-metabolizing enzymes with overall survival and recurrence of disease in breast cancer patients. Breast Cancer Res Treat 91: 249–258

Rae JM, Sikora MJ, Henry NL, Li K, Sim S, Oesterreich S, Skaar TC, Nguyen AT, Desta Z, Sorniolo AM, Flockhart DA, Hayes DF, Stearns V (2009) Cytochrome P450 2D6 activity predicts discontinuation of tamoxifen therapy in breast cancer patients. Pharmacogenomics J 9: 258–264
Riggs BL, Hartmann LC (2003) Selective estrogen-receptor modulators—
 mechanisms of action and application to clinical practice. N Engl J Med
 348: 618–629
Schroth W, Antoniadou L, Fritz P, Schwab M, Muerdter T, Zanger UM, Simon W, Eichelbaum M, Brauch H (2007) Breast cancer
treatment outcome with adjuvant tamoxifen relative to patient CYP2D6 and CYP2C19 genotypes. J Clin Oncol 25:
 5187–5193
Schroth W, Goetz MP, Hamann U, Fasching PA, Schmidt M, Winter S, Fritz P, Simon W, Suman VJ, Ames MM, Saafren SL, Kuffel MJ, Ulmer HU, Bolander J, Strick R, Beckmann MW, Koelbl H, Weinshilboum RM, Ingle JN, Eichelbaum M, Schwab M, Brauch H (2009) Association between CYP2D6 polymorphisms and outcomes among women with early stage breast cancer treated with tamoxifen. Jama 302: 1429–1436
Wegman P, Elingarami S, Carstensen J, Stal O, Nordenskjold B, Wingren S (2007) Genetic variants of CYP3A5, CYP2D6, SULT1A1, UGT2B15 and tamoxifen response in postmenopausal patients with breast cancer. Breast Cancer Res 9: R7
Wegman P, Vainikka L, Stal O, Nordenskjold B, Skoog L, Rutqvist LE, Wingren S (2005) Genotype of metabolic enzymes and the benefit of tamoxifen in postmenopausal breast cancer patients. Breast Cancer Res 7: R284 – R290
Wu X, Hawse JR, Subramaniam M, Goetz MP, Ingle JN, Spelsberg TC (2009) The tamoxifen metabolite, endoxifen, is a potent antiestrogen that targets estrogen receptor alpha for degradation in breast cancer cells. Cancer Res 69: 1722 – 1727