Determination of the Utilization and Effort Level of Mackerel Scad (*Decapterus* spp) in the Bitung Waters North Sulawesi

John Socrates Kekenusa¹, *, Sendy Beatrix Rondonuwu², Marline Sofiana Paendong¹

1Department of Mathematics, Sam Ratulangi University, Manado, Indonesia
2Department of Biology, Sam Ratulangi University, Manado, Indonesia

Email address: johnskekenusa@unsrat.ac.id (J. S. Kekenusa)
*Corresponding author

To cite this article:
John Socrates Kekenusa, Sendy Beatrix Rondonuwu, Marline Sofiana Paendong. Determination of the Utilization and Effort Level of Mackerel Scad (*Decapterus* spp) in the Bitung Waters North Sulawesi. *Science Journal of Applied Mathematics and Statistics.* Vol. 7, No. 6, 2019, pp. 103-111. doi: 10.11648/j.sjams.20190706.12

Received: September 19, 2019; Accepted: October 16, 2019; Published: October 28, 2019

Abstract: Determination of utilization level and effort level of scad mackerel (*Decapterus* spp) are very important to know the status of fisheries management. This fish needs to be managed well because even as a renewable natural resources, but can undergo depletion or extinction. One of the approach in the management of fish resources is by mathematics modeling. In this research using Surplus Production Model (SPM) with 5 estimator methods, that are: Schaefer, Fox, Schnute, Walter-Hilborn, and Clarke Yoshimoto Pooley. The analysis was performed aiming to get the best estimate for the surplus production model to determine the maximum sustainable yields (MSY), utilization level, and effort level of scad mackerel. The criteria of the best model (estimator) are: sign suitability of regression equation, value of coefficient determination, validation values (residual), and significance of regression coefficients. From the best model by using the formula can be determined the maximum sustainable yields (MSY) of catching, utilization level, and effort level. The data of catch and fishing effort of scad mackerel collected from the Marine and Fisheries the Bitung City and North Sulawesi Province from 1998 - 2016. The best SPM, which is used to assess the potential of scad mackerel is Schaefer Model. Optimal effort (EMSY) of 4,449 trips per year, with catch of optimal CMSY19,793.601 tons per year. The effort level for 2014 is 86.58%, which shows the quite efficient effort, the utilization level of 73.10% showing the production still can be increased.

Keywords: Scad Mackerel, Surplus Production Model, Maximum Sustainable Yield, Bitung

1. Introduction

Mackerel scad (*Decapterus* spp) classified as important pelagic fisheries resources and one of the non-oil export commodity in North Sulawesi. Mackerel scad production in North Sulawesi (including Bitung waters) in 2016 reach 50,000 tons per year, with a value of about 100 billion rupiahs [1]. Research on mackerel scad generally discusses the exploitation to increase production, not much research on the status of utilization (including aspects of sustainability and efficiency) resources.

Catching mackerel scad in Bitung waters has lasted long enough, with high intensity. Data on the level of utilization of the fish resources are very important, as it will determine whether the resource use is less than optimal, optimal, or excessive. Excessive utilization of fish resources would threaten its sustainability. By knowing the level of resource utilization on the mackerel scad, is expected to be done in a planned and sustainable management.

The simplest model of the dynamics of fish populations is Simple Production Model (SPM), by treating the fish as a single biomass that can not be divided, which is subject to the rules of simple increases and decreases in biomass. This model, commonly used in the assessment of fish stocks using only the data of catch and fishing effort generally available.

This study aims to get the best SPM, as well as knowing how much the result of maximum sustainable yields (MSY),
utilization level, and the level of effort of mackerel scad in the Bitung waters.

2. Surplus Production Model

The simplest model of the dynamics of fish populations is surplus production model that treats the fish population as a single biomass that cannot be divided, which is subject to the simple rules of the rise and decline. The production model is dependent on the amount of four kinds, namely: biomass population at a given time \(t \) (\(B_t \)), catches for acertain time \(t \) (\(C_t \)), fishing effort at a certain time \(t \) (\(E_t \)), and the natural growth rate constant (\(r \)) (Boer dan Aziz, 1995) [2].

This model was first developed by Schaefer, who was initially the same as the form of logistic model. According to Coppola and Pascoe [3], equation surplus consists of several constants that are affected by natural growth, the ability of fishing gear, and carrying capacity. Constants allegedly using models of biological parameter estimators of surplus production equation, namely the model: Equilibrium Schaefer, Schaefer Disequilibrium, Schnute, and Walter-Hilborn. Based on four models were selected the most appropriate or best fit of the estimation of others.

According to Sparre and Venema [4], formulas surplus production model (SPM) is valid only if the slope parameter (\(b \)) is negative, which means the addition of fishing effort will lead to a decrease in the catch per fishing effort. If the parameter \(b \) positive value, then it can not be done estimating production model (SPM) is valid only if the slope parameter \(a \) positive value, which means the addition of fishing effort is still possible to increase the catch.

Prediction of optimum fishing effort \((E_{opt}) \) and the maximum sustainable catch \((C_{MSY}) \) approached the SPM. Between the catch per unit of effort \((CPUE) \) ang fishing effort can be either linear or exponential relationship [5]. SPM consists of two models, namely basic model of Schaefer (linear relationship) and the Gompertz model developed by Fox with forms exponential relationship [5].

2.1. Schaefer Model

SPM first developed by Schaefer, who was initially the same as the form of logistic growth model. The model is as follows:

\[
\frac{dC_t}{dt} = q B_t = CPUE
\]

From the differential equation (2), the optimum catchment can be calculated at the time \(\frac{dC_t}{dt} = 0 \), also called settlement at the point of balance (equilibrium), in the form of:

\[
r B_t (1 - \frac{B_t}{K}) - C_t = 0, \text{ or}
\]

\[
C_t = r B_t (1 - \frac{B_t}{K}) = qE_t B_t
\]

From equation (3) and (5), find value of \(B_t \) obtained as follow:

\[
B_t = K (1 - \frac{q E_t}{r})
\]

So that equation (5) becomes:

\[
C_t = q K E_t (1 - \frac{q K}{r}) = q K E_t \frac{q^2 K}{r} E_t^2
\]

Equation (7) is simplified further by Schaefer becomes:

\[
\frac{C_t}{E_t} = a - b E_t, \text{ or}
\]

\[
C_t = a E_t - b E_t^2
\]

while \(a = q K \) and \(b = \frac{q^2 K}{r} \)

This linear relationship is used widely for calculating \(C_{MSY} \) through the determination of the first derivative of \(C_t \) with \(E_t \) to find optimal solutions, both to catch and fishing effort. The first derivative of \(C_t \) to \(E_t \) is:

\[
\frac{dC_t}{dE_t} = a - 2b E_t
\]

in order to obtain the alleged \(E_{opt} \) (optimum fishing effort) and \(C_{MSY} \) (maximum sustainable yields of catch), respectively:

\[
E_{Opt} = \frac{a}{2b} = \frac{r}{2q}
\]

By entering the value of \(E_{opt} \) in equation (8), will be obtained as follow:

\[
C_{MSY} = a E_t - b E_t^2 = a (\frac{a}{2b}) - b (\frac{a}{2b})^2 = \frac{a^2}{4b}
\]

by substituting \(a = q K \) and \(b = \frac{q^2 K}{r} \), will be obtained,

\[
C_{MSY} = \frac{a^2}{4b} = \frac{q^2 K^2}{4q^2 K/r} = \frac{rK}{4}
\]

The value of \(a \) and \(b \) are estimated by the least squares method approach that is commonly used to estimate the
The value of parameter \(q \), \(K \), and \(r \) can be calculated using the Fox algorithm, as referenced in Sularso [5], as follows:

\[
q_t = \ln \left(\left(1 + \frac{1}{\ln a} \right) \right)
\]

where \(z = -\frac{(a/b)/E^*}{E^*} \), \(E^* = (E_t + E_{t+1})/2 \), and the value of \(q \) is the geometric mean of \(q_t \). From the values of \(a \), \(b \), and \(q \), can be calculated values of \(K \) and \(r \).

\section{2.2. Fox Model}

Model of Fox has several characteristics that are different from the model Schaefer, that it biomass growth following the Gompertz growth model [6]. The relation of CPUE with efforts \(E \) follows a negative exponential pattern:

\[
C_t = E_t \exp(a - b E_t)
\]

Efforts optimum is obtained by equating the first derivative of \(C_t \) to \(E_t \) equal to zero and find:

\[
E_{opt} = \frac{1}{b}
\]

The maximum sustainable yield of catch \(C_{MSY} \) is obtained by inserting the value of the maximum effort into equation (13), and obtained:

\[
C_{MSY} = \frac{1}{b} e^{a-1}
\]

\section{2.3. Schnute Model}

Schnute, suggest another version of the SPM is dynamic and deterministic [7]. Schnute method is considered as a modification of the model in the form of discrete Schaefer (Roff, 1983, referred by Tunugki) [8].

\[
\ln \left(\frac{U_{t+1}}{U_t} \right) = -\frac{r}{qK} \ln \left(\frac{U_{t+1} + U_{t+1}^2}{2} \right) - \frac{q}{2} \ln \left(\frac{E_t + E_{t+1}}{2} \right)
\]

where \(a = r, b = \frac{r}{qK} \), and \(c = q \) is the regression coefficient estimators.

\section{2.4. Walter – Hilborn Model}

Walter and Hilborn (1976) referred by Tunugki [8], to develop other types of SPM, known as the regression model. Walter-Hilborn model, using a simple differential equation, by the following equation:

\[
\frac{dU}{dt} = \left(\frac{E_t + E_{t+1}}{2} \right) - \left(\frac{U_t + U_{t+1}}{2} \right)
\]

\section{3. Research Methods}

\subsection{3.1. Source of Data}

The primary and secondary data of mackerel scad catching is collected from the Bitung waters. Production and fishing effort data collected from the Marine and Fisheries Service of Bitung City and North Sulawesi Province during 1998-2016.

Data (variables) used for the analysis of the SPM is the data of catch \(C_t \) per year and fishing effort \(E_t \) per year, and CPUE (Catch Per Unit of Effort). The data (variables) used for the analysis of the SPM is a follows:

1. The catch \(C_t \): weight of fish landed (tons) in year \(t \)
2. The effort of catching \(E_t \): the number of fishing boat landing (trips) in year \(t \)
3. \(\frac{ct}{E_t} \): catch per unit of efforts

\subsection{3.2. Methods of Data Analysis}

The models estimator who analyzed and evaluated are Schaefer, Fox, Schnute, Walter-Hilborn, and Clarke-Yoshimoto-Pooley (CYP). Based on results of statistical evaluation (mark of conformity, the value of \(R^2 \), the validation (residual) value, and significance of the regression coefficient of the model), we get the “best” as estimator. From the best of model can be calculated \(C_{MSY} \) value, optimum fishing effort \(E_{MSY} \), utilization: n level, and the level of effort of mackerel scad.

\section{4. Result and Discussion}

Catch of mackerel scad fisheries in the Bitung waters fluctuate from year to year. Data catching in 1998-2016, are presented in Table 1.
The results of the regression analysis for the SPM is presented in Appendix 1, which is described as follows:

4.1. Schaefer Model

From the analysis of regression equation \(\frac{C_t}{E_t} = 8.898 - 0.001E_t \) with a coefficient of determination \(R^2 = 0.639 \) and a significance level of \(p < 0.01 \). Thus, a production model estimator catches Schaefer model according to equation (8) is: \(C_t = 8.898E_t - 0.001E_t^2 \).

4.2. Fox Model

From the results of the regression analysis for Fox model is: \(\ln C_t = 2.397 - 0.000243E_t \), with \(R^2 = 0.577 \) (\(p < 0.01 \)). Estimates of catches corresponding to the model Fox equation (13):

\[
C_t = E_t e^{(2.397-0.000243 E_t)}
\]

4.3. Schnute Model

Schunet method according to equation (16), obtained regression equation:

\[
\ln \left(\frac{U_{t+1}}{U_t}\right) = 0.647 - 0.059\left(\frac{U_t + U_{t+1}}{2}\right) - 0.000105\left(\frac{E_t + E_{t+1}}{2}\right)
\]

with \(R^2 = 0.043 \), and all the regression coefficient were not significant \((p > 0.05) \).

4.4. Walter - Hilborn Model

In Walter-Hilborn method using equation (17) derived regression equation:

\[
\frac{U_{t+1}}{U_t} = 1.386 - 0.169U_t - 0.000156E_t
\]

with \(R^2 = 0.282 \), and all the regression coefficient were not significant \((p > 0.05) \).

4.5. Clarke Yoshimoto Pooley (CYP) Model

The regression equation CYP method, according to equation (19):

\[
\ln \left(\frac{U_{t+1}}{U_t}\right) = 1.838 + 0.272\ln(U_t) - 0.000102(E_t + E_{t+1})
\]

with \(R^2 = 0.634 \), not all the regression coefficient were significant.

5. Discussion

The results of calculation for validation (residual) SPM of 5 models is presented in Appendix 2, which is summarized in Table 2.

From the results of the calculation in Table 2, it appears that the most appropriate is Schaefer model with the largest \(R^2 = 0.639 \) and validation (residual value) is relatively small. Schaefer model obtained value of \(a = 8.898 \) and \(b = 0.001 \), with equation (9) and (10) can be calculated optimum value of effort \((E_{opt}) \) and the maximum sustainable catch \((C_{MSY}) \) as follows:

\[
E_{opt} = \frac{a}{2b} = \frac{8.898}{2(0.001)} = 4,449
\]

trips per year

\[
C_{MSY} = \frac{a^2}{4b} = \frac{8.898^2}{4(0.001)} = 19,793.601
\]

This mean that in order to preserve the mackerel scad fisheries resources technically and biologically, in a year the number of units should not exceed 4,449 trips. To preserve the mackerel scad resources in Bitung waters, the maximum of fish that can be caught at 19,793.601 tons per year. Furthermore, from the value of \(E_{opt} \) and \(C_{MSY} \) can be calculated fishing effort level and utilization level of mackerel scad for a particular year for example in 2014, as follows:

The level of effort in 2014 \(\frac{E_{2014}}{E_{opt}} \times 100\% = \frac{3.852}{4.449} = 86.58\% \)

The utilization level in 2014 \(\frac{C_{2014}}{C_{MSY}} \times 100\% = \frac{14,469.7}{19,793.601} = 73.10\% \)
From the calculation, it turns out mackerel scad fishing effort at the Bitung waters in 2014 (86.58%), lower than the optimum effort so that still can be increased. The utilization level for the year 2014 (73.10%), is lower than the optimum level, its mean the catching can be increased.

The research to know utilization level and effort level for pelagic fish, especially to little tuna in North Sulawesi waters by Kekenusa et al in Talaul and Bitung waters showing that the overfishing of production and inefficient of effort [10], [11].

The distribution of scad mackerel (Decapterus spp) in almost of regiãos in Indonesia, especially in Java Waters, South of Makasar, until North Sulawesi Waters [12]. As a comparison to scad mackerel in other waters in Indonesia, the catches of optimal (C_{MSY}) of scad mackerel in East of South East Sulawesi waters is 5,747.61 tons per year [13]. Scad mackerel in South East Sulawesi waters showing the intensive production [14]. In South Sulawesi at Flores Sea Waters, C_{MSY} of scad mackerel is 10,456 tons per year, with the effort level 83.15% and the utilization level 76.60%, showing the intensive exploitation [15]. From these data, for scad mackerel in East Indonesia Waters (include in Bitung), generally the production still can be increased.

This research describes the use of some statistical criteria in selecting the best surplus production model. By applying some statistical criteria in selecting a surplus production model, will obtain better results. Researchers in the field of fisheries get guidelines for setting selection criteria for surplus production models, as well as avoiding the direct application of one model in analyzing the surplus production model in a waters.

6. Conclusions and Recommendation

6.1. Conclusion

1. The surplus production model that can be used to examine the catch of mackerel scad in the Bitung waters is Schaefer model, by the equation: \(C_t = 8.898 E_t - 0.001 E_t^2 \).
2. The maximum sustainable yield of mackerel scad C_{MSY} is 19,793.601 tons per year, obtained at the level of fishing effort \(E_{opt} \) 4,449 trips. According to data at year 2014, for next years the catch and effort still can be increased.

6.2. Suggestion

1. In applying surplus production model in a waters location, not only directly using one particular model, but should use some of the models are chosen based on statistical criteria. The criteria involve, among others: suitability sign of the coefficient of models, coefficient of determination (R^2), the value of validation (residual), and the significance of the regression coefficients.
2. The catches and efforts for mackerel scad in Bitung waters are lower than the optimum, so that still can be increased.

Appendix

Appendix 1. Regression Analysis of Surplus Production Model of Mackerel scad Data in Bitung Waters

Model Schaefer

Model	R	R square	Adjusted R square	Std Error The Estimate
1	.800	.639	.618	.7900942

a. Predictors: (Constant), E_t

Model	Unstandardized Coefficient	Standardized coefficient			
	B	Std. Error	Beta	t	Sig.
(Constant)	8.898	.778		11.438	.000
1					
E_t	- .001	.000	- .800	-5.489	.000

a. Dependent Variabel U_t

Model	Sum of Squares	Df	Mean Squares	F	Sig.
Regression	18.807	1	18.807	30.127	0.000b
1	Residual	10.612	17	.624	
Total	29.419	18			

a. Dependent Variabel: U_t,
b. Predictor: (Constant), E_t
Model Fox

Table 6. Model Summary.

Model	R	R square	Adjusted R square	Std Error the Estimate
1	.760	.577	.552	.1900054

a. Predictors: (Constant), E,

Table 7. Coefficients Regression.

Model	Unstandardized Coefficient	Standardized coefficient			
	B	Std. Error	Beta	t	Sig.
(Constant)	2.397	.187	12.815	.000	
E	.000243	.000	-.760	-4.818	.000

a. Dependent Variabel Ln U,

Table 8. Anova.

Model	Sum of Squares	Df	Mean Squares	F	Sig.
Regression	.838	1	.838	23.215	.000b
Residual	.614	17	.036		
Total	1.452	18			

a. Dependent Variabel: Ln U,
b. Predictor: (Constant), E,

Model Schmute

Table 9. Model Summary.

Model	R	R square	Adjusted R square	Std Error the Estimate
1	.208	.043	-.084	.24796212

a. Predictors: (Constant), E,

Table 10. Coefficients Regression.

Model	Unstandardized Coefficient	Standardized Coefficient			
	B	Std. Error	Beta	t	Sig.
(Constant)	.846	.846	.765	.456	
(Ut+1+Ut)/2	-.059	-.089	-.297	-.663	.518
(Et+1+Et)/2	-.000105	.000	-.369	-.824	.423

a. Dependent Variabel: Ln (Ut+1/Ut)

Table 11. Anova.

Model	Sum of Squares	Df	Mean Squares	F	Sig.
Regression	.042	2	.021	.340	.717b
Residual	.922	15	.061		
Total	.964	17			

a. Dependent Variabel: Ln (Ut+1/Ut)
b. Predictor: (Constant), (Et+1+Et)/2, (Ut+1+Ut)/2

Model Walter-Hilborn

Table 12. Model Summary.

Model	R	R square	Adjusted R square	Std Error the Estimate
1	.531a	.186	.2277233	.24796212

a. Predictors: (Constant), Ut, (trip), C, per E,

Table 13. Coefficient Regression.

Model	Unstandardized Coefficient	Standardized Coefficient			
	B	Std. Error	Beta	t	Sig.
(Constant)	1.386	.687	2.019	.062	
Ct per Et	-.169	.072	-.873	-.2336	.034
Et, (trip)	-.0000156	.000	-.564	-1.508	.152

a. Dependent Variable: (Ut+1/Ut - 1)
Table 14. Anova.

Model	Sum of Squares	Df	Mean Squares	F	Sig.
Regression	.306	2	.153	2.947	.083
Residual	.778	15	.052		
Total	1.083	17			

a. Dependent Variable: (Ut+1/Ut - 1)
b. Predictors: (Constant), E_t (trip), Ct per Et

Model CYP

Table 15. Model Summary.

Model	R	R square	Adjusted R square	Std Error the Estimate
1	796*	.634	.585	.1872859

a. Predictors: (Constant), Et + Et+1, Ln CPUE

Table 16. Coefficients Regression.

Model	Unstandardized Coefficient	Std. Error	Beta	t	Sig.
(Constant)	1.838	.535			
Ln CPUE	.272	.210	.272	1.297	.214
Et + Et+1	-.000102	.000	-.588	-2.803	013

a. Dependent Variable: Ln (Ut+1)

Table 17. Anova.

Model	Sum of Squares	Df	Mean Squares	F	Sig.
Regression	.911	2	.455	12.985	.001
Residual	.526	15	.035		
Total	1.083	17			

a. Dependent Variable: Ln (Ut+1)
b. Predictors: (Constant), Et + Et+1, Ln CPUE

Appendix 2. Validation (Residual) of Surplus Production Model of Mackerel Scad Data

Table 18. Validation (residual) of model.

Years	C_t (tons)	E_t (trips)	Validation: Abs(C_t-\hat{C}_t)/C_t				
			Schaefer	Fox	Schnute	Walter-Hilborn	CYP
1998	16,424.9	3,189	.4235	.2165	.1404	.3138	1.4881
1999	16,226.6	2,449	.2022	.1744	.2933	.0955	.7749
2000	14,818.4	2,681	.1248	.0365	.1109	.0375	.7984
2001	13,645.9	2,681	.235	.2165	.1404	.3138	1.4881
2002	20,147.2	4,216	.2022	.1744	.2933	.0955	.7749
2003	15,356.5	3,360	.2117	.0628	.0761	.1180	1.0337
2004	13,772.1	2,114	.0143	.0093	.0992	.0397	.6085
2005	13,357.0	2,014	.0380	.0158	.1069	.0428	.5943
2006	19,236.7	2,986	.0823	.1743	.1321	.1534	.4980
2007	19,485.0	3,184	.0665	.1716	.1446	.1386	.5462
2008	21,347.3	4,526	.0731	.2242	.4023	.1441	.7358
2009	21,817.5	4,814	.0989	.2472	.4923	.1677	.7461
2010	20,332.7	4,765	.0314	.1909	.4401	.1054	.8655
2011	14,394.1	4,164	.3695	.1558	.0040	.2642	1.4679
2012	14,535.8	4,494	.3616	.1401	.1106	.2572	1.5406
2013	10,966.2	4,684	.7999	.5040	.0827	.6623	2.4329
2014	14,469.7	3,852	.3433	.1474	.0735	.2398	1.3500
2015	14,421.6	3,761	.3397	.1492	.0943	.2364	1.3247
2016	14,234.0	3,452	.3208	.1520	.1525	.2187	1.2330
Mean	16,262.60	3,607.74	.2043	.1513	.1569	.1768	1.0215

1. Schaefer Model:

\[\hat{C}_t = 8.898 E_t - 0.001 E_t^2 \]

2. Fox Model:

\[\hat{C}_t = E_t e^{(2.397-0.000243E_t)} \]

3. Schnute Model:
\[\dot{Y} = a - bX_1 - cX_2 = 0.647 - 0.059X_1 - 0.000105X_2 \]

\[r = a = 0.647 \quad q = c = 0.000105 \quad b = \frac{r}{Kq} = 0.059 \]

\[K = \frac{r}{bq} = \frac{0.647}{(0.059)(0.000105)} = 104,439.064 \]

\[\dot{C}_t = KqE_t - \frac{Kq^2}{r}E_t^2 = 10.966E_t - 0.0018E_t^2 \]

4. Walter – Hilborn Model:

\[\dot{Y} = a - bX_1 - cX_2 = 1.386 - 0.169X_1 - 0.000156X_2 \]

\[r = a = 1.386 \quad q = c = 0.000156 \quad b = \frac{r}{Kq} = 0.169 \]

\[K = \frac{r}{bq} = \frac{1.386}{(0.169)(0.000156)} = 52,571.69 \]

\[\dot{C}_t = KqE_t - \frac{Kq^2}{r}E_t^2 = 8.2012E_t - 0.000923E_t^2 \]

5. CYP Model:

\[\dot{Y} = a + bX_1 - cX_2 = 1.838 - 0.272X_1 - 0.000102X_2 \]

\[r = \frac{2(1 - b)}{1 + b} = \frac{2(1 - 0.272)}{1 + 0.272} = 1.1447 \]

\[q = -c(2 - r) = 0.000102(2 - 1.1447) = 0.000087 \]

\[Q = \frac{a(2 + r)}{2r} = \frac{1.838(2 + 1.1447)}{2(1.1447)} = 2.5247 \]

\[K = \frac{e^Q}{q} = \frac{e^{2.5247}}{0.000087} = 143,530.443 \]

\[\dot{C}_t = KqE_t - \frac{Kq^2}{r}E_t^2 = 12.487E_t - 0.00095E_t^2 \]

References

[1] [DKP] Dinas Kelautan dan Perikanan Provinsi Sulawesi Utara. 2016. Statistik Perikanan Tangkap Provinsi Sulawesi Utara Tahun 2015.

[2] Boer, M., and K. A. Azis. 1995. Prinsip-prinsip Dasar Pengelolaan Sumberdaya Perikanan Melalui Pendekatan Bio-Ekonomi. Jurnal Ilmu-ilmu Perairan dan Perikanan III (2): 109-119.

[3] Coppola G., and S. Pascoe. 1996. A Surplus Production Model with a non-linear Catch-Effort Relationship. (Research Paper 105) Center for the Economics and Management of Aquatic Resources University of Portsmouth.

[4] Sparre, P. and S. C. Venema. 1999. Introduksi Pengkajian Stok Ikan Tropis. Buku 1 Manual. (Terjemahan J. Widodo. I. G. S. Merta, S. Nurhakim, dan M. Badrudin). Pusat Penelitian dan Pengembangan Perikanan, Badan Penelitian dan Pengembangan Pertanian (Kerjasama dengan Organisasi Pangan dan Pertanian Perserikatan Bangsa-bangsa). Jakarta. 438 hal.

[5] Gulland, J. A. 1983. Fishing and Stock of Fish at Iceland. Mui. `Agric. Fish Food, Invest. (Ser.2) 23 (4): 52 – 70.

[6] Sularso, A. 2005. Alternatif Pengelolaan Perikanan Udang di Laut Arafura. Disertasi (Tidak Dipublikasikan). Sekolah Pascasarjana Institut Pertanian Bogor. Bogor. 130 hal.

[7] Fox, W. W. 1970. An Exponential Surplus Yield Model for Optimizing Exploited Fish Population. Trans. Am. Fish Soc. 99 (1): 80-88.

[8] Tinungki, G. M. 2005. Evaluasi Model Produksi Surplus dalam Menduga Hasil Tangkapan Maksimum Lestari untuk Menujung Pengelolaan Perikanan Lemuru Di Selat Bali. Disertasi (Tidak Dipublikasikan). Sekolah Pascasarjana Institut Pertanian Bogor. 207 hal.

[9] Fauzi, A., dan S. Anna. 2005. Pemodelan Sumberdaya Perikanan dan Kelautan untuk Analisis Kebijakan. PT. Gramedia Pustaka Utama, Jakarta.

[10] Kekenusa, J. S, Marline S. Paendong, Winsy Ch. D. Weku, and Sendy B. Rondonuwu. 2015. Determination of the Status of Utilization and Management Scenarios Bonito (Auxis rochei) Caught in the Talaud Waters North Sulawesi. Sci J. of Applied Mathematics and Statistics 2015: 3 (2): 39-46.
[11] Kekenusa, J. S, Sendy B. Rondonuwu, and Marline S. Paendong. 2018. Determination of the Status of Utilization and Effort of Bonito (Auxis rochei) Caught in the Bitung Waters North Sulawesi. International Journal of ChemTech Research 2018, 11 (2): 340-354.

[12] Sumarsono, A. Zamroni. 2013. Sebaran Unit Stok Ikan Layang (Decapterus spp) dan Risiko PengelolaanIkan Pelagis Kecil di Laut Jawa. Jurnal Kebijakan perikanan Indonesia. Vol 5 No.1 Mei 2013: 17-24.

[13] Safrudin. 2013. Distribusi Ikan Layang (Decapterus spp) Hubungannya dengan Kondisi Oseanografi di Perairan Kabupaten Pangkep Sulawesi Selatan. Torani (Jurnal Ilmu Kelautan dan Perikanan). Vol 23 (3) Des 2013: 150-156.

[14] Mahmud, A., R. L. Bubun. 2015. Potensi Lestari Ikan Layang (Decapterus spp) Berdasarkan Hasil Tangkapan Pukat Cin cin di Perairan Timur Sulawesi Tenggara. Jurnal Teknologi Perikanan dan Kelautan Vol 6 No 2 2015: 159-168. E-journal http://dx.doi.org/10.24319/jtpk.6 10 Agustus 2018.

[15] Latukonsina, H. 2010. Pendugaan Potensi dan Tingkat Pemanfaatan Ikan Layang (Decapterus spp) di Perairan Laut Flores Sulawesi Selatan. Jurnal Ilmiah Agribisnis dan Perikanan. Vol 3 Ed 2 Okt 2010. Http://ejournal.stipwunaraha.ac.id 09 Agustus 2018.