Low–Mach–number turbulence in interstellar gas revealed by radio polarization gradients

B. M. Gaensler1, M. Haverkorn2,3,4, B.Burkhart5, K. J. Newton–McGee1,6, R. D. Ekers6, A. Lazarian5, N. M. McClure–Griffiths6, T. Robishaw1, J. M. Dickey7 & A. J. Green1

The interstellar medium of the Milky Way is multiphase1, magnetized2 and turbulent3. Turbulence in the interstellar medium produces a global cascade of random gas motions, spanning scales ranging from 100 parsecs to 1,000 kilometres (ref. 4). Fundamental parameters of interstellar turbulence such as the sonic Mach number (the speed of sound) have been difficult to determine, because observations have lacked the sensitivity and resolution to image the small-scale structure associated with turbulent motion5–7. Observations of linear polarization and Faraday rotation in radio emission from the Milky Way have identified unusual polarized structures that often have no counterparts in the total radiation intensity or at other wavelengths8–12, and whose physical significance has been unclear13–15. Here we report that the gradient of the Stokes vector (Q, U), where Q and U are parameters describing the polarization state of radiation, provides an image of magnetized turbulence in diffuse, ionized gas, manifested as a complex filamentary web of discontinuities in gas density and magnetic field. Through comparison with simulations, we demonstrate that turbulence in the warm, ionized medium has a relatively low sonic Mach number, $M_s \lesssim 2$. The development of statistical tools for the analysis of polarization gradients will allow accurate determinations of the Mach number, Reynolds number and magnetic field strength in interstellar turbulence over a wide range of conditions.

We consider radio-continuum images of an 18-deg2 patch11,16 of the Galactic plane, observed with the Australia Telescope Compact Array (ATCA) at a frequency of 1.4 GHz. Data were simultaneously recorded in total intensity (Stokes parameter I) and in linear polarization (Stokes parameters Q and U). The Stokes I image (Fig. 1) shows a typical distribution of radio emission, consisting of supernova-remnant shells, ionized regions around massive stars (H II regions) and unresolved distant radio sources. However, the corresponding images of Q, U and the linearly polarized intensity $P = (Q^2 + U^2)^{1/2}$ in Fig. 1 are filled with complex structure that bears little resemblance to the Stokes I image, as has also been seen in many other polarimetric observations at radio frequencies9,10,12. The intensity variations seen in Q, U and P are the result of small-scale angular structure in the Faraday rotation induced by ionized gas4, and are thus an indirect representation of

Figure 1 | Total intensity (I) and linearly polarized intensity (Q, U, P) for an 18-deg2 region of the Southern Galactic Plane Survey11. All four images were generated11 from a set of observations9 taken at the ATCA over the period 1997 April to 1998 April using a 96-MHz bandwidth centred on an observing frequency of 1,384 MHz. The field is a mosaic of 190 pointings each with a total integration time of 20 min, resulting in an approximately uniform sensitivity, over most of the field, of 0.8 mJy per beam (Stokes I) or 0.55 mJy per beam (Stokes Q and U) at an angular resolution of 75 arcsec (1 Jy = 10$^{-26}$ W m$^{-2}$ Hz$^{-1}$). The scale for each image is shown on the right of each panel. The Stokes I image is displayed over a range of −40 to +150 mJy per beam (each interval corresponds to 10 mJy per beam). Because the ATCA is an interferometer, it is not sensitive to structure on angular scales larger than 35 arcmin. Faint wisps can be seen, corresponding to the sharp edges of large-scale structures. However, the bulk of the smooth radio emission from Galactic cosmic rays is not detected. Imaging artefacts in the form of grating rings and radial streaks can be seen around a few very bright sources, but these regions were not used in our statistical analysis. The Stokes Q and U images are displayed over a range of −15 to +15 mJy per beam (interval, 2 mJy per beam), and the P image covers a range of 0 to 15 mJy per beam (interval, 1 mJy per beam). Almost none of the structure seen in Q, U and P has any correspondence with any emission seen in Stokes I; the mottled structure results from spatial fluctuations in Faraday rotation in the ISM.
turbulent fluctuations in the free-electron density and magnetic field throughout the interstellar medium (ISM).

A limitation of previous studies is that they usually interpreted the data in terms of the amplitude, \(P \), and/or the angle, \(\theta \equiv (1/2)\tan^{-1}(U/Q) \), of the complex Stokes vector \(\mathbf{P} = (Q, U) \). However, neither polarization amplitude nor polarization angle is preserved under arbitrary translations and rotations in the \(Q-U \) plane. These can result from one or more of a smooth distribution of intervening polarized emission, a uniform screen of foreground Faraday rotation, and the effects of missing large-scale structure in an interferometric data set. In the most general case, we are thus forced to conclude that the observed values of \(P \) and \(\theta \) do not have any physical significance, and that only measurements of quantities that are both translationally and rotationally invariant in the \(Q-U \) plane can provide insight into the physical conditions that produce the observed polarization distribution.

The simplest such quantity is the spatial gradient of \(P \), that is, the rate at which the polarization vector traces out a trajectory in the \(Q-U \) plane as a function of position on the sky. The magnitude of the gradient is unaffected by rotation and translation, and so has the potential to reveal properties of the polarization distribution that might otherwise be hidden by excess foreground emission or Faraday rotation, or in data sets from which large-scale structure is missing (as is the case for the data shown in Fig. 1). The magnitude of the polarization gradient is

\[
|\mathbf{V}_P| = \sqrt{\left(\frac{\partial Q}{\partial x}\right)^2 + \left(\frac{\partial U}{\partial x}\right)^2 + \left(\frac{\partial Q}{\partial y}\right)^2 + \left(\frac{\partial U}{\partial y}\right)^2} \tag{1}
\]

The expression in equation (1) can be calculated simply, and the corresponding image of \(|\mathbf{V}_P| \) (Fig. 2) reveals a complex network of tangled filaments. In particular, all regions in which \(|\mathbf{V}_P| \) is greater than 5 mJy per (beam)\(^{1.5}\) are a generic component of diffuse, ionized gas in this direction in the sky. To test this hypothesis, we performed a series of three-dimensional isothermal simulations of magnetohydrodynamic turbulence in the ISM, each with different parameters for the sonic Mach number, defined as

\[
M_s \equiv \left(\frac{|\mathbf{v}|}{c_s}\right),
\]

where \(v \) is the local velocity, \(c_s \) is the sound speed and the averaging (indicated by angle brackets) is done over the whole simulation. For each simulation, we propagated a uniform source of polarized emission through the distribution of turbulent, magnetized gas. The resultant Faraday rotation produces a complicated distribution on the sky of Stokes \(Q \) and \(U \), from which we generated a map of the polarization gradient using equation (1). Images of \(|\mathbf{V}_P| \) for representative simulations of the subsonic, transonic and supersonic regimes are shown in Fig. 3. Narrow, elongated filaments of high polarization gradient are apparent in each simulation in Fig. 3, although they differ in their morphology and degree of organization. In particular, the supersonic case (Fig. 3c) shows localized groupings of very high-gradient filaments, corresponding to ensembles of intersecting shocks\(^{5,21,22}\). By contrast, the subsonic (Fig. 3a) and transonic (Fig. 3b) cases show more-diffuse networks of filaments, representing the cusps and discontinuities characteristic of any turbulent velocity field\(^{21,23}\).

Visual comparison of the simulated distributions of \(|\mathbf{V}_P| \) with real data (Fig. 2) suggests that the subsonic and transonic cases shown in Fig. 3a, b more closely resemble the observations than does the supersonic case. We can quantify this statement by calculating the third-order moment (skew, \(\gamma \)) and the fourth-order moment (kurtosis, \(\beta \)) of the probability distribution function of \(|\mathbf{V}_P| \) for both observations and simulations: these quantities parameterize the degree of Gaussian asymmetry in the probability distribution function, and hence provide information on the amount of compression due to shocks in the data\(^{6,24}\).

Figure 2 |\mathbf{V}_P| for an 18-deg\(^2\) region of the Southern Galactic Plane Survey. |\mathbf{V}_P| has been derived by applying equation (1) to the \(Q \) and \(U \) images from Fig. 1; note that \(|\mathbf{V}_P| \) cannot be constructed from the scalar quantity

\[
P \equiv (Q^2 + U^2)^{1/2},
\]

but is derived from the vector field \(\mathbf{P} = (Q, U) \). |\mathbf{V}_P| is a gradient in one dimension, for which the appropriate units are (beam)\(^{-1}\). Because \(P \) measures linearly polarized intensity in units of millijanskys per beam, \(|\mathbf{V}_P| \) has units of millijanskys per beam (beam)\(^{-1}\). The scale showing \(|\mathbf{V}_P| \) is shown on the right of the image, and ranges from 0 to 15 mJy per beam (beam)\(^{-1}\). The inset shows an expanded version of the structure with highest \(|\mathbf{V}_P| \), covering a box of 0.9 deg centred on Galactic longitude 329.8 deg and Galactic latitude +1.0 deg. Plotted in the inset is the direction of \(\mathbf{V}_P \) at each position, defined as

\[
\text{arg}(\mathbf{V}_P) = \tan^{-1} \left[\frac{\frac{\partial Q}{\partial x} + \frac{\partial U}{\partial x} \frac{\partial Q}{\partial y} + \frac{\partial U}{\partial y} \frac{\partial Q}{\partial y}}{\sqrt{\left(\frac{\partial Q}{\partial x}\right)^2 + \left(\frac{\partial Q}{\partial y}\right)^2 + \left(\frac{\partial U}{\partial x}\right)^2 + \left(\frac{\partial U}{\partial y}\right)^2}} \right]
\]

For clarity, vectors are shown only at points where the amplitude of the gradient is greater than 5 mJy per beam (beam)\(^{1.5}\).
In the simulations, we found that both the skew and the kurtosis of |VP| increased monotonically with sonic Mach number. We used a genetic algorithm\(^{25}\) to determine that the threshold for strongly supersonic turbulence was \(\gamma > 1.1\) and \(\beta > 1.5\). We then computed the third- and fourth-order moments for the observed distribution of |VP| shown in Fig. 2, and found that \(\gamma = 0.3\) and \(\beta = 0.9\).

This analysis of the moments of the polarization gradient therefore confirms quantitatively what we concluded above from visual inspection: the turbulent, ionized ISM in this direction in the sky is subsonic or transonic. The findings we obtained by imaging the polarization gradients produced by interstellar turbulence are supported by recent statistical studies of \(H\)\(_{\alpha}\) emission measures and of 21-cm \(H\)\(_{\alpha}\) column densities over large volumes, which have similarly found that \(M_s \lesssim 2\) for warm gas throughout the ISM\(^{26,27}\).

In the simulations shown in Fig. 3, the sharp gradients in |Q| and |U| occur as a result of localized high values of the gas density and magnetic field, resulting from vorticity or shock compression. However, the filamentary features seen in |VP| may not be easily observable in other types of data: for example, if we adopt typical parameters for warm, ionized gas\(^{18,19}\) of \(n_e = 0.3\) cm\(^{-3}\) and \(B_0 = 2\) \(\mu G\), even the compression associated with a strong adiabatic shock produces across-filament changes in emission measure and Faraday rotation measure of only \(\sim 0.5\) pc m\(^{-6}\) and \(\lesssim 5\) rad m\(^{-2}\), respectively, assuming a spatial scale\(^{14}\) for these structures of \(\sim 0.5\) pc. This is below observable levels in \(H\)\(_{\alpha}\) and other tracers of emission measure. The rotation measurement gradient\(^{14}\) across these interfaces is potentially observable in spectropolarimetric radio data, but the addition of single-dish observations is required to recover the total power of the polarized signal. By contrast, even a small gradient in rotation measurement can produce an arbitrarily large value of |VP| (irrespective of whether single-dish measurements are present in the data), provided that there is a strong source of background polarized emission through which the discontinuities in Faraday rotation are viewed. Further investigation of the polarization gradient and its statistical properties will provide robust estimates of poorly constrained parameters of turbulent flows such as the sonic and Alfvénic Mach numbers, the characteristic magnetic field strength, the Reynolds number and the physical scale of energy injection.

Received 3 March; accepted 11 August 2011.

Published online 5 October 2011.

1. Ferrière, K. M. The interstellar environment of our galaxy. Rev. Mod. Phys. 73, 1031–1066 (2001).
2. de Avillez, M. A. & Breitschwerdt, D. Global dynamical evolution of the ISM in star forming galaxies. I. High resolution 3D simulations: effect of the magnetic field. Astron. Astrophys. 436, 585–600 (2005).
3. Chertkov, A. & Lazarian, A. Stabilizing the big power law in the sky with turbulence spectra from Wisconsin H\(_{\alpha}\) Mapper data. Astrophys. J. 710, 853–884 (2010).
4. Armstrong, J. W., Rickett, B. J. & Spangler, S. R. Electron density power spectrum in the local interstellar medium. Astrophys. J. 443, 209–221 (1995).
5. Arzoumanian, Z., Manchester, R. N., Harvey-Smith, D. A. & Kaspi, V. M. The dynamics and magnetic fields of young pulsars. Mon. Not. R. Astron. Soc. 324, 500–527 (2001).
6. Armstrong, J. W., Rickett, B. J. & Spangler, S. R. Electron density power spectrum in the local interstellar medium. Astrophys. J. 443, 209–221 (1995).
7. Kissmann, R., Kleimann, J., Fichtner, H. & Grauer, R. Local turbulence simulations of the mouse: subsonic, transonic and supersonic. Mon. Not. R. Astron. Soc. 363, 1399–1413 (2005).
8. Wieringa, M. H., de Bruyn, A. G., Jansen, D., Brouw, W. N. & Katgert, P. Small scale polarization structure in the diffuse galactic emission at 325 MHz. Astron. Astrophys. 288, 215–227 (1995).
9. Fletcher, A. & Shukurov, A. A. The Faraday rotation angle of order \(800\) rad m\(^{-2}\) is required to recover the total power of the polarized signal. By contrast, even a small gradient in rotation measurement can produce an arbitrarily large value of |VP| (irrespective of whether single-dish measurements are present in the data), provided that there is a strong source of background polarized emission through which the discontinuities in Faraday rotation are viewed. Further investigation of the polarization gradient and its statistical properties will provide robust estimates of poorly constrained parameters of turbulent flows such as the sonic and Alfvénic Mach numbers, the characteristic magnetic field strength, the Reynolds number and the physical scale of energy injection.

Acknowledgements We thank S. Brown, A. Hill, R. Kissmann, A. MacFadyen, M.-M. Mac Low, E. Petroff, P. Slane and X. Sun for discussions. The Australia Telescope Compact Array is funded by the Commonwealth of Australia for operation as a National Facility managed by CSIRO. B.M.G. and T.R. acknowledge the support of the Australian Research Council through grants FT0561298, FL1100100114 and FT100100033. B.B. acknowledges support from the National Science Foundation Graduate Research Fellowship and the NASA Wisconsin Space Grant Institution. A.L. acknowledges the support of the National Science Foundation through grant AST0808118 and of the...
Center for Magnetic Self-Organization in Astrophysical and Laboratory Plasmas. We thank the staff of the Australia Telescope National Facility, especially M. Calabretta, R. Haynes, D. McConnell, J. Reynolds, R. Sault, R. Wark and M. Wieringa, for their support of the Southern Galactic Plane Survey.

Author Contributions J.M.D., N.M.Mc.–G., B.M.G. and A.J.G. carried out the original observations. B.M.G., N.M.Mc.–G. and T.R. produced the polarization images from the raw data. B.M.G., M.H., K.J.N.–Mc., R.D.E and N.M.Mc.–G. worked together to develop the gradient technique, and B.M.G. then applied the gradient technique to the images. B.B. and A.L. performed the simulations and the statistical analysis. B.M.G. led the writing of the paper and the interpretation of results. All authors discussed the results and commented on the manuscript.

Author Information Reprints and permissions information is available at www.nature.com/reprints. The authors declare no competing financial interests. Readers are welcome to comment on the online version of this article at www.nature.com/nature. Correspondence and requests for materials should be addressed to B.M.G. (bryan.gaensler@sydney.edu.au).