Two-band second moment model and an interatomic potential for caesium

Graeme J. Ackland and Stewart K. Reed

School of Physics,
The University of Edinburgh,
James Clerk Maxwell Building, The King’s Buildings,
Mayfield Road, Edinburgh EH9 3JZ, UK
(Dated: March 22, 2022)

PACS numbers: 34.20.Cf , 61.72.-y, 64.60.-i

I. INTRODUCTION

Semiempirical models for metallic binding have had a long and successful history in computer modelling. The most significant development came in the mid eighties with the implementation of ‘embedded atom’ potentials [1] based loosely on density functional theory [2] and ‘N-body’ potentials [3] based on the tight binding second moment approximation [4].

Although the rationale for these potentials suggests applicability to free-electron and transition metal systems respectively, the implied functional form is similar in each case. A large number of successful parameterisations of the functional forms suggested by these methods have been used, and they have established themselves as the standard method for modelling metallic systems.

In the second moment approximation to tight binding, the cohesive energy is proportional to the square root of the bandwidth, which can be approximated as a sum of pairwise potentials representing squared hopping integrals. Assuming atomic charge neutrality, this argument can be extended to all band occupancies and shapes [5].

For simplicity, consider a rectangular d-band of full width W centred on the atomic energy level \( E_0 \). The energy for this band relative to the free atom (the bond energy) is given by:

\[
U_{\text{bond}} = \int_{-W/2}^{W} E N W dE = \frac{W}{2N} n(n - N) \tag{1}
\]

where \( n \) is the occupation of the band and \( N \) the capacity (for d-bands \( N=10 \), for s-bands \( N=2 \)). The band width is defined as the square root of the second moment of the density of states. If we project the density of states onto each atom, and assume that each atom is charge neutral then the energy becomes:

\[
U_{\text{bond}} = \sum_i \int_{-W_i/2}^{E_i=(\frac{N}{d}-\frac{1}{2})W_i} E N W_i dE = -\sum_i \frac{W_i}{2N} n(N-n) \tag{2}
\]

and the second moment of the density of states can be calculated as the sum of the squares of the hopping integrals to nearest neighbours. This latter operation can be written as a sum of pair potentials,

\[
W_i = \sqrt{\sum_j \phi(r_{ij})} \tag{3}
\]

The enormous success of Finnis-Sinclair (and embedded atom-type) potentials arises from their extreme computational efficiency: essentially they are no more computationally expensive than a conventional pair potential. This allows them to be applied to extremely large scale simulations, addressing complex geometries and phenomena which are intractability with more accurate quantum mechanical models.

The computational simplicity follows from the formal division of the energy into a sum of energies per atom, which can in turn be evaluated locally. Here we follow a similar philosophy, seeking to incorporate as much of the relevant physics as possible, without increasing computational cost.

The alkali and alkaline earth metals appear at first glance to be close packed metals, forming fcc, hcp or bcc structures at ambient pressures. However, compared with transition metals they are easily compressible, and at high pressures adopt more complex “open” structures (with smaller interatomic distances). The simple picture of the physics here is of a transfer of electrons from an s to a d band [1] [3] [8], the d-band being more compact but higher in energy. Hence, at the price of increasing their energy, \( U \), atoms can reduce their volume, \( V \), and since the stable structure at 0K is determined by minimum enthalpy, \( H=U+PV \) at high pressure this transfer becomes energetically favourable. The net result is a metal-metal phase transformation characterised by a large reduction in volume (and often also in conductivity), the crystal structure itself is not the primary order parameter, and in some cases the transition may even be isostructural.

The mechanism of the phase transition is unknown. Although it is obvious that an isostructural phase tran-
sition is accompanied by an instability of the bulk modulus, the onset of this instability may occur after that in the shear modulus. Thus the mechanism may involve shearing rather than isostructural collapse, particularly if a continuous interface between the two phases exists, as in a shockwave.

II. THE TWO BAND MODEL

A. Energies

The Finnis Sinclair formalism has been successfully used to study a large variety of systems. However, we are interested in systems in which electrons change from one type of orbit to another and in particular, from an s-type orbital to a d-type orbital as the sample is pressurised.

Consider therefore two rectangular bands of widths $W_1$ and $W_2$ as shown in figure with widths evaluated using

![Diagram of DOS in rectangular two band model](image)

FIG. 1: Schematic picture of DOS in rectangular two band model. Shaded region shows those energy states actually occupied.

The bond energy of an atom may be written as the sum of the bond energies of the two bands on that atom as in equation, and a third term giving the energy of promotion from band 1 to band 2 (see equation):

$$U_{\text{bond}} = \sum_i \frac{n_i}{2N_1} (W_{i1} - W_{i2}) - \frac{T}{4} (W_{i1} + W_{i2}) + \frac{n_i^2 + T^2}{8} \left( \frac{W_{i1}}{N_1} + \frac{W_{i2}}{N_2} \right) + \frac{\eta_i T}{4} \left( \frac{W_{i1}}{N_1} - \frac{W_{i2}}{N_2} \right) + \frac{T - \eta_i}{2} E_0 ,$$

Although this expression looks unwieldy, it is in fact computationally efficient, requiring for its evaluation only two sums of pair potentials for $W$ (see equation) and a minimisation at each site independently with respect to $\eta_i$. Since they are local variables, it is possible to write closed form expressions for $\eta_i$ which minimise the total energy (see equation). In addition to the bonding term, the Finnis-Sinclair form includes a pairwise repulsion between the ions, which is due primarily to the screened ionic charge and orthogonalisation of the valence electrons. In the present case, this pair potential should be a function of $\eta_i$. In keeping with maintaining locality of the energy we write the pairwise contribution to the energy in the intuitive form, as the sum of two terms, one from each “band”, proportional to the number of electrons in that band

$$V(r_{ij}) = (n_{i1} + n_{j1}) V_1(r_{ij}) + (n_{i2} + n_{j2}) V_2(r_{ij})$$

We rearrange this to give the energy as a sum over atoms
\[ U_{\text{pair}} = \sum_i \left[ n_{i1} \sum_{j \neq i} V_1(r_{ij}) + n_{i2} \sum_{j \neq i} V_2(r_{ij}) \right] \] (10)

The total energy is now simply

\[ U_{\text{tot}} = U_{\text{pair}} + U_{\text{band}} \] (11)

\[ \eta_{\text{o}} = \frac{N_1 N_2}{W_{i1} N_2 + W_{i2} N_1} \left[ W_{i1} - W_{i2} - T \left( \frac{W_{i1}}{N_1} - \frac{W_{i2}}{N_2} \right) + 2E_0 - 2U_{i1,\text{pair}} + 2U_{i2,\text{pair}} \right] . \] (13)

This depends on \( \eta_i \), but as described above the \( \eta_i \) take the values which minimise the energy and one can solve:

\[ \frac{\partial U_{\text{tot}}}{\partial \eta_i} = 0 \] (12)

explicitly for \( \eta_{\text{o}} \) independently at each atom, whence

\[ \eta_{\text{o}} = \begin{cases} \min(T, 2N_1 - T), & \text{if } \eta_{\text{o}} > \min(T, 2N_1 - T) \\ \max(-T, T - 2N_2), & \text{if } \eta_{\text{o}} < \max(-T, T - 2N_2) \\ \eta_{\text{o}}, & \text{otherwise} \end{cases} \] (14)

where \( \eta_{\text{o}} \) is given by equation [13]. The expressions for \( \eta_i \) involves only constants and sums of pair potentials, and can be evaluated independently at each atom at a similar computational cost to a standard many-body type potential.

\section*{B. Forces}

Since the energy is variational in \( \eta_i \) within this model, we have

\[ \frac{\partial U_{\text{tot}}}{\partial \eta_i} = 0 \] (15)

and the force on the \( i^{\text{th}} \) atom is

\[ f_i = \frac{dU_{\text{tot}}}{dr_i} = -\frac{\partial U_{\text{tot}}}{\partial r_i} \bigg|_{\eta} \frac{\partial \eta}{\partial r_i} = -\frac{\partial U_{\text{tot}}}{\partial r_i} \bigg|_{\eta} \frac{\partial \eta}{\partial r_i} \] (16)

Hence the force is simply the derivative of the energy at fixed \( \eta \). Basically, this is the Hellmann-Feynman theorem [11] which arises here because \( \eta \) is essentially a single parameter representation of the electronic structure.

This result means that, like the energy, the force can be evaluated by summing pairwise potentials. Hence the model is well suited for large scale molecular dynamics.

The force derivation is somewhat tedious (see appendix B), the result being:

\[ f_i = \sum_j \left[ (\tilde{W}_{i1} + \tilde{W}_{i2}) \delta'_1(r_{ij}) + (\tilde{W}_{i2} + \tilde{W}_{j2}) \delta'_2(r_{ij}) \right] \}

\[ - (n_{i1} + n_{j1}) V'_1(r_{ij}) - (n_{i2} + n_{j2}) V'_2(r_{ij}) \}

\[ \hat{r}_{ij} \] (17)

with

\[ \tilde{W}_{ib} = \frac{n_{ib}(N - n_{ib})}{4N_b W_{ib}} \]

and where the numbers of electrons in each band, \( n_{ib} \), have been calculated analytically using equations [3, 14] and [5]. The contribution to the force from each neighbour acts along the direction of the vector between the atoms.

\section*{III. A MODEL POTENTIAL FOR CAESIUM}

One application of the model is to simulate the pressure-induced isostructural phase transition in materials such as caesium. Here the transformation arises from electronic transition from the s to the d-band. Caesium adopts the bcc structure (Cs I) at ambient pressure, transforming under slight additional pressure to fcc (Cs II) and under further increase transforming isostructurally to fcc (Cs III) [12, 28]. Here we seek to represent the volume collapse Cs II \( \rightarrow \) Cs III transition.

\subsection*{A. Parametrisation}

To make a usable potential, the functional forms of \( \phi \) and \( V \) must be chosen. Although this is somewhat arbitrary, the physical picture of hopping integral and
screened ion-ion potential suggests that both should be short ranged, continuous and reasonably smooth.

In the present case, we are interested in the gross features of the model, so we adopt simple forms fitted to the cohesive energies and volume of the high and low pressure polytypes of caesium. For more complex applications, it may be necessary to fit other properties.

Following Finnis and Sinclair, we choose for the hopping integral

\[ \phi_b(r_{ij}) = \begin{cases} \frac{C_b(d_b - r_{ij})^3}{r_{ij}}, & \text{if } r_{ij} \leq d_b \\ 0, & \text{if } r_{ij} > d_b \end{cases} \]  

and for the pairwise part, following Lennard-Jones

\[ V_b(r_{ij}) = \sum_j \frac{A_b}{r_{ij}^{12}} \]  

where \( b \) labels the band.

We select the promotion energy \( E_0 \) to be that required to promote an electron from the 6s level into the 5d level of an isolated atom \([14, 15] \). The band capacities are \( N_s = 2, N_d = 10 \) and the total number of electrons per atom is \( T = 1 \). The cutoff radii \( d_s \) and \( d_d \) are chosen to be between the second and third nearest neighbours and between the first and second nearest neighbours respectively. The remaining four parameters (\( A_s, A_d, C_s, C_d \)) are available for fitting.

\textit{Ab initio} calculations using pseudopotentials, plane waves and the generalized gradient approximation \([16, 17] \) show that the energy-volume relations for bcc and fcc caesium are almost degenerate, so we have fitted the remaining parameters to the atomic volumes of Cs I (115.9 Å\(^3\)/atom), Cs II (67.5 Å\(^3\)/atom) and Cs III (48.7 Å\(^3\)/atom) \([18] \) as well as the transition pressure between phases II and III (4.3 GPa) \([14] \) and the cohesive energy of phase I (-0.704 eV). The cohesive energy is the sum of the heat of formation and the heat of vaporisation \([14] \).

Initial estimates for the parameters were determined using a symbolic mathematics package. The final parameters were arrived at by an iterative process: Least squares, conjugate gradients and \textit{ab oculo} minimisation techniques were used to determine the best parameters for particular cutoff radii. The cutoff radii were then adjusted by hand to improve the fit. This process was repeated until the optimum fit was achieved. The final parameters are given in table I.

![Image](image.png)

**FIG. 2:** Top: Variation of \( \eta \) with compression, showing \( s \rightarrow d \) transfer in model caesium \((T = 1) \). Bottom: An energy-volume curve for the two band potential. The minimum lies at -1.3163 eV and 115.2 Å\(^3\)/atom. The gradient of the straight dash-dotted line is the experimental fcc-fcc transition pressure. In reality caesium also has a bcc-fcc phase transition at 2.3 GPa, however first principles calculations show that these two structures are almost degenerate in energy at 0K. The isostructural transition, which involves electron localisation and hence is not properly reproduced by standard electronic structure calculation, occurs at 4.3 GPa.

**B. Elasticity**

The elastic moduli are not fitted explicitly, so their behaviour represents a sensitive test of the model. Application of the pressure generalisation of the Born stability criteria is rather confused in the present literature \([18, 19, 20] \) so we lay this out in appendix A.

Since caesium exhibits an isostructural phase transition the bulk modulus must formally become negative at

**TABLE I: Parameters for the two band model, obtained by fitting to phases II and III of caesium.**

| Parameter | Value |
|-----------|-------|
| \( s \) band | | d band |
| \( C_s \) | 0.05617 eV Å\(^3\) | \( C_d \) | 0.1681 eV Å\(^3\) |
| \( d_s \) | 9.5097 Å | \( d_d \) | 6.9189 Å |
| \( A_s \) | 2.4017 × 10\(^7\) eV Å\(^{12}\) | \( A_d \) | 3.7668 × 10\(^7\) eV Å\(^{12}\) |
| \( E_0 \) | 1.19 eV |

**FIG. 2:** Top: Variation of \( \eta \) with compression, showing \( s \rightarrow d \) transfer in model caesium \((T = 1) \). Bottom: An energy-volume curve for the two band potential. The minimum lies at -1.3163 eV and 115.2 Å\(^3\)/atom. The gradient of the straight dash-dotted line is the experimental fcc-fcc transition pressure. In reality caesium also has a bcc-fcc phase transition at 2.3 GPa, however first principles calculations show that these two structures are almost degenerate in energy at 0K. The isostructural transition, which involves electron localisation and hence is not properly reproduced by standard electronic structure calculation, occurs at 4.3 GPa.
some volume (where the structure is unstable). It is less clear whether the other Born stability criteria will be violated: \textit{ab initio} density functional perturbation theory calculations \cite{14} find an instability in the long range acoustic phonons: at zero pressure this is equivalent to an instability in $C' = (C_{11} - C_{12})/2$.

With the present potential the analytic expressions for the elastic constants are complicated: there is no simplification akin to equation \ref{14} for the second derivatives. Consequently, we evaluate the elastic constants numerically from finite strain calculations, see figure \ref{3}. We find that the volume collapse is announced by a slight softening of the bulk modulus which then goes negative in the unstable region. Although the shear and tetragonal shear decrease in the unstable region, neither actually goes negative.

\begin{figure}[h]
\centering
\includegraphics[width=\columnwidth]{elasticconstants.png}
\caption{Graph of elastic stiffness constants against volume. Mechanical instabilities occur for negative values of $B_{44}$, $(B_{11} - B_{12})/2$ and $(B_{11} + 2B_{12})/3$. Total energy is shown on the same figure but with respect to the right hand axis. The right most vertical line indicates the volume at ambient pressure. The other two vertical lines delineate the volumes in which the structure is unstable with respect to decomposition into coexisting phases whilst the straight dash-dotted line is the transition pressure from phase II to phase III.}
\end{figure}

C. Defects

One of the major features of many-body and embedded atom type potentials is their ability to describe defects such as surfaces, vacancies and interstitials without the constraints of pair potentials, for which the undercoordination defect energy is simply the sum of broken bond energies, less a small amount from relaxation of atomic positions. Thus the vacancy formation energy is typically the same as the cohesive energy, whereas in real materials it is typically less than half. The present potential is not fitted to any defect configuration, so it is of interest to see what it predicts - moreover the variety of environments associated with defects provides a good check against pathologies.

\begin{table}[h]
\centering
\begin{tabular}{|c|c|c|}
\hline
configuration & energy meV/Å² & relaxation 1Å & relaxation 2Å \\
\hline
111 & 5.938 & -0.042 & 0.000 \\
001 & 6.54 & -0.046 & -0.007 \\
011 & 7.195 & 0.024 & -0.015 \\
211 & 6.952 & -0.122 & -0.045 \\
\hline
\end{tabular}
\caption{Surface energies, and atomic relaxations of the top two layers in angstroms}
\end{table}

\begin{table}[h]
\centering
\begin{tabular}{|c|c|}
\hline
configuration & energy eV \\
\hline
111 dumbbell & 2.178 \\
001 dumbbell & 1.776 \\
011 dumbbell & 1.975 \\
011 crowdion & 1.975 \\
vacancy & 0.545 \\
\hline
\end{tabular}
\caption{Interstitial and vacancy formation energies. The vacancy formation volume is 0.846$V_0$.}
\end{table}

The relaxed surface energies for four low-energy surfaces are given in table \ref{1}. As is usual with many-body potentials the energy is much lower than would be expected from simple bond counting. For the (111) surface the energy for each atom in the plane is increased by about 1/9 of its cohesive energy, while each atom has 1/4 of its bonds broken. There is also transfer of all electrons from $d$-like to $s$-like states at the free surface. This also leads to an unusual outwards relaxation of the surface atoms.

Likewise the vacancy formation energy and volume (table \ref{1}) are rather typical of many-body potential results.

The interstitial formation energy is especially low (table \ref{1}), around 1.8 eV depending on the orientation and the amount of relaxation allowed locally, meaning that thermal interstitial formation is possible. This low value is due to the transfer of electrons from $s$- to $d$-band on the interstitial atom or dumbbell, similar to the high pressure behaviour. Consistent with recent \textit{ab initio} calculations in various elements \cite{21, 22, 23}, the calculated interatomic spacing of the dumbbell atoms is much smaller than in the bulk, (around 15%) and much smaller than is typical of standard EAM-type potentials. As a consequence of this, the associated strain fields are considerably smaller.

For a detailed study of point defects in caesium, it would be appropriate to reparametrise the potential with point defects included in the fitting, but the good results obtained here without such fitting suggest that the present model contains the right physics.
IV. EXTRAPOLATION TO TRANSITION METALS

In principle, the current formalism should be applicable to \( d \)-band metals. We do not intend to refit the potentials here, but by applying the parameters fitted for caesium with appropriate scaling for ionic charge, and simply varying the total number of electrons we recover the parabolic behaviour of the cohesive energy and bulk modulus which characterises the transition metal series. Considering that there are no fitting parameters, the agreement with experimental results is extraordinarily good. Moreover, the volume collapse phase transition exists only for \( N=1 \) and \( N=2 \) (consistent with experiment). However, since no information about band shape is included, the sequence of crystal structures cannot be reproduced, so we consider here only the fcc structures, calculating their “experimental” values from the experimental density.

While the extrapolated potentials do not represent the optimal parametrisation for specific transition metals, the recovery of the trends across the group lends weight to the idea that the two-band model correctly reproduces the physics of this series.

![Graph](image)

**FIG. 4:** Extrapolation of model to various \( 6s5d \)-band materials. The parameters \( E_0, A_s, A_d, C_s, C_d, d_s \) and \( d_d \) are taken from the fit to caesium, with the lengths being scaled according to the Fermi vector \((Z^{-1/3})\) and the energies by \((Z^{1/2})\). The lattice parameters are shown by the solid line (calculated) and circles (experiment) and the cohesive energies by dashed line (calculated) and squares (experiment). Calculations are actually done at integer values of \( T \) and lines join these points.

V. CONCLUSIONS

We have presented a model to describe \( s \rightarrow d \) transfer within the framework of the empirical second-moment tight binding model. With a very simple parametrisation, our model describes the isostructural phase transition and associated \( s \rightarrow d \) transfer in Cs and allows study of the elastic instabilities which occur under pressure and uniaxial stress. Throughout, our formalism is guided by the principle of retaining as much electronic detail as possible within the constraint of the computational complexity of short-ranged pair potentials.

Our potential form involves evaluation of sums of pair potentials, and minimisation of the energy with respect to band occupation. In the approximation of local density of states evaluated at each atom, it becomes possible to formally write the energy of each atom in terms of the local band occupation, a single parameter \( \eta \). This variational parameter can be explicitly eliminated from the energy and force expressions, meaning that energies and forces can be evaluated by summing pair potentials.

To our knowledge, the present potential represents the most sophisticated energy function which has first derivatives which are analytic pair potentials, and the first exploitation of the Hellman-Feynman theorem in empirical potentials to achieve this. It is thus uniquely well suited for exploitation in standard molecular dynamics codes.

Extension of the formalism to transition metals is straightforward, and the caesium parametrisation gives a surprisingly good description across the group. While providing impressive proof of concept, this may not be of enormous practical use, however, since once there is a significant partial occupation of the \( d \)-band under all conditions the model is similar to the standard many-body potentials which are known to do a good job in describing transition metals.

The precise stable crystal symmetry depends on the shape of the band structure, and is not therefore correctly described in this rectangular band model. Many-body potentials never contain the correct physics to describe phase transitions, except in the martensitic case of freezing in soft phonons \([24,25]\). However, the crystal structure which has the lowest energy can be determined by judicious choice of functions \( V \) and \( \phi \). Here the simple use of power law repulsion and cubic attraction leads to close packed structures.

The two-band formalism can be easily combined with alternate parameterisations to get effective band shapes, and could be applied to ferromagnetic systems where the two bands represent separate spins, and the atomic \( E_0 \) term is replaced by a term which favours maximum spin.
APPENDIX A: ELASTIC INSTABILITIES UNDER PRESSURE - ENERGY DEFINITION

There is a degree of confusion in the literature regarding the definition of elastic constants under pressure. To some extent this arises because of various definitions of strain (Lagrangian, Eulerian, volume conserving). Here we lay out the definitions in terms of energy. One important point to note is that under pressure the moduli which correspond to long wavelength phonons are volume conserving, while those corresponding to crystal stability are not. At finite pressure, this means they are different.

At pressure, the important quantity for stability in energetic terms is the Gibbs free energy $G$.

$$ G = U - TS + PV $$

where $P$ is an externally applied hydrostatic pressure. $U - TS$ is the Helmholtz free energy $F$. The change in the Gibbs energy due to a distortion of the crystal is

$$ \Delta G = \Delta F + \Delta PV + P\Delta V. $$

If the hydrostatic pressure is applied by an external mechanism then $\Delta P$ is zero. Therefore

$$ \Delta G = \Delta F + P\Delta V. $$

Any arbitrary change in the unit cell can be expressed in terms of the strain tensor $\varepsilon$. Using Voigt notation, the matrix representation of the strain tensor is written as

$$ \varepsilon = \begin{pmatrix} e_1 & e_6/2 & e_5/2 \\ e_6/2 & e_2 & e_4/2 \\ e_5/2 & e_4/2 & e_3 \end{pmatrix}. $$

If we write the equilibrium cell as a matrix comprising the three lattice vectors $V_0 = (r_1 \ r_2 \ r_3)$, then any arbitrary strain give a new unit cell:

$$ V = V_0 \ (1 + \varepsilon). $$
If the volume of the original cell is \( V_0 = \left| \mathbf{V} \right| \), then the volume of the new cell is

\[
\frac{V}{V_0} = \left| \frac{\mathbf{V}}{\mathbf{V}_0} \right| = 1 + e_1 + e_2 + e_3 + e_1 e_2 + e_2 e_3 + e_3 e_1 \\
- e_1^2 / 4 - e_2^2 / 4 - e_3^2 / 4 + e_1 e_2 e_3 - e_1 e_4^2 / 4 - e_2 e_5^2 / 4 - e_3 e_6^2 / 4 + e_4 e_5 e_6 / 4 .
\]

(A6)

Which can be expressed concisely in standard strain notation \( (i, j, k, l) \) representing cartesian directions as:

\[
\frac{\Delta V}{V} = e_{ii} + \frac{1}{4} \left( 2 \delta_{ij} \delta_{kl} - \delta_{ik} \delta_{jl} - \delta_{il} \delta_{jk} \right) e_{ij} e_{kl} + O(\varepsilon^3)
\]

(A7)

where \( \delta_{ij} \) is the Kroneker delta and the usual implicit sum convention for tensors applies. The change in the Gibbs free energy may then be written

\[
\Delta G = \Delta F + P e_{ii} + \frac{PV}{4} \left( 2 \delta_{ij} \delta_{kl} - \delta_{ik} \delta_{jl} - \delta_{il} \delta_{jk} \right) e_{ij} e_{kl} .
\]

(A8)

We define \( C_{ij} \) as the second order derivatives of the Helmholtz free energy with respect to the Voigt strains and \( B_{ij} \) as the second order derivatives of the Gibbs free energy with respect to the Voigt strains. The limiting case of long wavelength phonons is related to \( C_{ij} \) which can be calculated from the dynamical matrix [26], the crystal stability criteria are related to the \( B_{ij} \) [19]. In the standard notation:

\[
B_{ijkl} = C_{ijkl} + P \left( 2 \delta_{ij} \delta_{kl} - \delta_{ik} \delta_{jl} - \delta_{il} \delta_{jk} \right) .
\]

(A9)

In Voigt notation:

\[
B_{ij} = \begin{cases} 
C_{ii} - P/2 & \text{if } i = j \text{ and } i > 3 \\
C_{ij} + P & \text{if } i \neq j \text{ and } i, j < 4 \\
C_{ij} & \text{otherwise}
\end{cases}
\]

(A10)

The Born elastic stability criteria restrict what values various moduli may have if the crystal is to be stable [27]. In the case of external pressure the relevant free energy is \( G \) and the relevant moduli are \( B_{ij} \). Due to the Voigt symmetry, the elastic constant tensor has in general, only 21 independent components. In cubic crystals however this number is further reduced by symmetry to 3, namely \( B_{11}, B_{12} \) and \( B_{44} \). Consequently, there are three common stability criteria which impose lower bounds on the bulk, shear and tetragonal shear moduli of cubic crystals. These may be written in Voigt notation:

\[
\frac{1}{3} (B_{11} + 2B_{12}) > 0, \quad B_{44} > 0 \quad \text{and} \quad \frac{1}{2} (B_{11} - B_{12}) > 0 .
\]

(A11)

Whence the generalised Born stability criteria for the elastic constants of cubic crystals at pressure become:

\[
\frac{1}{3} (C_{11} + 2C_{12} + 2P) > 0 ,
\]

\[
C_{44} - \frac{P}{2} > 0 ,
\]

\[
\frac{1}{2} (C_{11} - C_{12} - P) > 0 ,
\]

(A12)

where

\[
B_{11} = C_{11} , \quad B_{12} = C_{12} + P \quad \text{and} \quad B_{44} = C_{44} - \frac{P}{2} .
\]

(A13)

**Calculation of bulk, shear and tetragonal shear moduli from energies**

In this paper we evaluate the elastic moduli by applying finite strain and measuring the change in total energy \( U_{tot} \). The finite strain method has the advantage over analytic differentiation of automatically compensating for
non-isotropic movement of the atoms. At zero temperature $U_{tot}$ is the same as the classical Helmholtz free energy $F$. At finite pressure, however, the system is not at a minimum of $U_{tot}$ with respect to strain.

When applying strain to a system under pressure, the first order term in the Gibbs free energy vanishes:

$$\Delta G = \epsilon_{ij} \frac{\partial G}{\partial e_{ij}} + \frac{1}{2} \epsilon_{ijkl} \frac{\partial^2 G}{\partial e_{ij} \partial e_{kl}} = \frac{1}{2} \epsilon_{ijkl} \frac{\partial^2 G}{\partial e_{ij} \partial e_{kl}}$$ (A14)

But the first order term for Helmholtz does not. For a cubic crystal, one can find $(C_{11} + 2C_{12})/3$, $(C_{11} - C_{12})/2$ and $C_{44}$ directly at any volume by simple distortions and measurement of $F$.

For bulk modulus we apply a pair of Voigt strains, with $e_1 = e_2 = e_3 = e$, the other elements being zero. Assuming we make a pair of small distortions about a volume $V$, the difference

$$G(e) + G(-e) - 2G(0) = V\left(\frac{B_{11} + 2B_{12}}{3}9e^2 + O(e^3)\right).$$ (A15)

equivalently, using the Helmholtz free energy

$$\frac{C_{11} + 2C_{12}}{3} = \frac{(F(e) + F(-e) - 2F(0))}{9Ve^2} + O(e^3).$$ (A16)

For $(C_{11} - C_{12})/2$, the relevant distortion, volume conserving to first order, is $e = e_1 = -e_2$ and

$$\frac{(C_{11} - C_{12})}{2} = \frac{(F(e) + F(-e) - 2F(0))}{4Ve^2} + O(e^3).$$ (A17)

For $C_{44}$, the relevant distortion is $e = e_6$ and

$$C_{44} = \frac{(F(e) + F(-e) - 2F(0))}{Ve^2} + O(e^3).$$ (A18)

**APPENDIX B: DERIVATION OF THE FORCE ON AN ATOM**

Since the cohesive energy is variational with respect to the electron distribution $\eta$, the derivative of the energy with respect to the electron distribution is zero and so the force may be written as a partial derivative akin to the Hellmann-Feynman theorem \[1\]. From equation 4, 6 and 8, the cohesive energy of the atom in terms of the number of electrons in each band $(n_{j1}$ and $n_{j2})$ is

$$U_j = \left[\frac{n_{j1}}{2}\left(\frac{n_{j1}}{N_1} - 1\right)W_{j1} + \frac{n_{j2}}{2}\left(\frac{n_{j2}}{N_2} - 1\right)W_{j2} + n_{j1}\sum_{k \neq j}V_1(r_{jk}) + n_{j2}\sum_{k \neq j}V_2(r_{jk}) + n_{j2}E_0\right],$$ (B2)

and the force on atom $i$ is thus

$$f_i = -\sum_j \left[\frac{n_{j1}}{2}\left(\frac{n_{j1}}{N_1} - 1\right)\frac{\partial W_{j1}}{\partial r_i} + \frac{n_{j2}}{2}\left(\frac{n_{j2}}{N_2} - 1\right)\frac{\partial W_{j2}}{\partial r_i} + \left(n_{j1} + n_{j2}\frac{\partial}{\partial r_i}V_1(r_{ij})\right) + \left(n_{j2} + n_{j2}\frac{\partial}{\partial r_i}V_2(r_{ij})\right)\right].$$ (B3)

The width of band $b$ on atom $i$ is $W_{jb} = \sqrt{\sum_{k \neq j} \phi_b(r_{jk})}$ and its derivative is

$$\frac{\partial W_{jb}}{\partial r_i} = \frac{1}{2W_{jb}}\sum_{k \neq j} \frac{\partial}{\partial r_i} \phi_b(r_{jk}) = \begin{cases} 1 & \text{if } j = i \\ \frac{1}{2W_{jb}}\sum_{k \neq j} \frac{\partial}{\partial r_i} \phi_b(r_{jk}), & \text{if } j \neq i \end{cases}.$$ (B4)

The pairwise terms are given in Eq. 4, the derivatives are straightforward, noting that an atom does not interact with itself so $V(r_{ii}) = 0$. 

On combining the above equations, the force may then be written:

\[ f_i = -\sum_{j \neq i} \left[ \frac{n_{j1}}{4W_{ji}} \left( \frac{n_{j1}}{N_1} - 1 \right) \frac{\partial \phi_1(r_{ji})}{\partial r_{ij}} + \frac{n_{j2}}{4W_{ji}} \left( \frac{n_{j2}}{N_2} - 1 \right) \frac{\partial \phi_2(r_{ji})}{\partial r_{ij}} \right] \]

\[ + n_{j1} \frac{\partial V_1(r_{ji})}{\partial r_{ij}} + n_{j2} \frac{\partial V_2(r_{ji})}{\partial r_{ij}} \]

\[ - \left[ \frac{n_{i1}}{4W_{i1}} \left( \frac{n_{i1}}{N_1} - 1 \right) \sum_{k \neq i} \frac{\partial \phi_1(r_{ik})}{\partial r_{ij}} + \frac{n_{i2}}{4W_{i1}} \left( \frac{n_{i2}}{N_2} - 1 \right) \sum_{k \neq i} \frac{\partial \phi_2(r_{ik})}{\partial r_{ij}} \right] \]

\[ + n_{i1} \sum_{k \neq i} \frac{\partial V_1(r_{ik})}{\partial r_{ij}} + n_{i2} \sum_{k \neq i} \frac{\partial V_2(r_{ik})}{\partial r_{ij}} \]  \hspace{1cm} (B5)

To simplify the appearance of this equation we define

\[ \widetilde{W}_{ib} = \frac{n_{ib}(N_b - n_{ib})}{4N_b W_{ib}} \]  \hspace{1cm} (B6)

and the force becomes

\[ f_i = \sum_{j \neq i} \left[ \widetilde{W}_{ji} \frac{\partial \phi_1(r_{ji})}{\partial r_{ij}} + \widetilde{W}_{j2} \frac{\partial \phi_2(r_{ji})}{\partial r_{ij}} - n_{j1} \frac{\partial V_1(r_{ji})}{\partial r_{ij}} - n_{j2} \frac{\partial V_2(r_{ji})}{\partial r_{ij}} \right] \]

\[ + \sum_{k \neq i} \left[ \widetilde{W}_{ki} \frac{\partial \phi_1(r_{ik})}{\partial r_{ij}} + \widetilde{W}_{k2} \frac{\partial \phi_2(r_{ik})}{\partial r_{ij}} - n_{j1} \frac{\partial V_1(r_{ik})}{\partial r_{ij}} - n_{j2} \frac{\partial V_2(r_{ik})}{\partial r_{ij}} \right] \]  \hspace{1cm} (B7)

The summations in the second set of square brackets may be reindexed in terms of j’s and included in the first set of square brackets to give

\[ f_i = \sum_{j \neq i} \left[ \widetilde{W}_{ji} \frac{\partial \phi_1(r_{ji})}{\partial r_{ij}} + \widetilde{W}_{j2} \frac{\partial \phi_2(r_{ji})}{\partial r_{ij}} - n_{j1} \frac{\partial V_1(r_{ji})}{\partial r_{ij}} - n_{j2} \frac{\partial V_2(r_{ji})}{\partial r_{ij}} \right] \]

\[ + \widetilde{W}_{i1} \frac{\partial \phi_1(r_{ij})}{\partial r_{ij}} + \widetilde{W}_{i2} \frac{\partial \phi_2(r_{ij})}{\partial r_{ij}} - n_{j1} \frac{\partial V_1(r_{ij})}{\partial r_{ij}} - n_{j2} \frac{\partial V_2(r_{ij})}{\partial r_{ij}} \]  \hspace{1cm} (B8)

Since both \( \phi \) and \( V \) are pair potentials \( \phi_b(r_{ij}) = \phi_b(r_{ji}) \) and \( V_b(r_{ij}) = V_b(r_{ji}) \). The derivatives of \( \phi \) are

\[ \frac{\partial \phi_b(r_{ij})}{\partial r_{ij}} = \frac{\partial}{\partial r_{ij}} \phi_b(r_{ij}) \hat{r}_{ij} = \phi'_b(r_{ij}) \hat{r}_{ij} \]

where the \( \phi'_b \) are scalar quantities and \( \phi'_b(r_{ij}) = \phi'_b(r_{ji}) \). Similarly, the derivatives of \( V \) are

\[ \frac{\partial V_b(r_{ij})}{\partial r_{ij}} = \frac{\partial}{\partial r_{ij}} V_b(r_{ij}) \hat{r}_{ij} = V'_b(r_{ij}) \hat{r}_{ij} \]

where again the \( V'_b \) are scalar quantities.

Finally, the force on atom i is then

\[ f_i = \sum_{j \neq i} \left[ (\widetilde{W}_{i1} + \widetilde{W}_{j1}) \phi'_1(r_{ij}) + (\widetilde{W}_{i2} + \widetilde{W}_{j2}) \phi'_2(r_{ij}) \right] \]

\[ - (n_{i1} + n_{j1}) V'_1(r_{ij}) - (n_{i2} + n_{j2}) V'_2(r_{ij}) \hat{r}_{ij} \]  \hspace{1cm} (B9)