Data Article

Aggregated and disaggregated data about default emission factors in emissions accounting methods from the waste sector

Amani Maalouf, Mutasem El-Fadel*

Department of Civil & Environmental Engineering, American University of Beirut, Lebanon

ARTICLE INFO

Article history:
Received 5 September 2018
Received in revised form
15 September 2018
Accepted 30 September 2018
Available online 4 October 2018

ABSTRACT

The dataset presented in this article is related to the research article entitled “Towards improving emissions accounting methods in waste management: A proposed framework” (Maalouf and El-Fadel, 2019) [1] that examines the variability in aggregated and disaggregated emissions from waste management when using commonly adopted international methods (the UN IPCC 2006 Guidelines, the US EPA WARM, the EU EpE protocols, the Canadian IWM, and the UK IWM-2). The dataset presents the aggregated and disaggregated emission factors (EFs) used in existing accounting methods to estimate emissions from the waste sector. The EFs were retrieved from accounting methods to clarify their contribution to variability in estimating emissions across methods. The data contains three parts: aggregated EFs per tonne of waste category for individual waste management processes; disaggregated EFs per management process for a tonne of waste type; and emission flow diagrams of waste management systems for tested methods.

© 2018 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

DOI of original article: https://doi.org/10.1016/j.jclepro.2018.09.014

* Corresponding author.
E-mail address: mfael@aub.edu.lb (M. El-Fadel).

https://doi.org/10.1016/j.dib.2018.09.094

2352-3409/© 2018 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
Value of the data

- The data consist of aggregated and disaggregated emission factors that are adopted in existing accounting methods to estimate emissions from the waste sector.
- A significant difference is evident in emission factors across tested methods.
- Data analysis accentuates the need for uniformity in emissions accounting methods and corresponding default parameters particularly emission factors.
- The data can guide the estimation process of emissions from the waste sector.
- The data can influence decision making when assessing emissions mitigation measures and reporting targets under the United Nations Framework Convention on Climate Change (UNFCCC) agreements or influence reduction targets using carbon credits to meet nationally determined contributions (NDCs) under the Paris Agreement.

1. Data

The data presented in this article provides details about emission factors (EFs) used in estimating emissions from the waste sector. The data clarifies the contribution to the variability in emissions when using commonly adopted international methods (the UN IPCC 2006 Guidelines [2], the US EPA WARM [3], the EU EpE protocols [4], the Canadian IWM [5], and the UK IWM-2 [6]. These methods were selected because they are publically accessible, widely reported in the literature, and adopted by cities or countries where they were originally developed [7–10]. The Intergovernmental Panel on Climate Change (IPCC) guidelines in particular were supposedly put forth to standardize between methods at a global scale. The data consist of disaggregated EFs expressed in metric tonnes of CO₂ equivalents (MTCO₂E) per characteristic unit and refer to EFs separated by waste category, gas, waste processes, and type of emissions (direct or

GHGs	Symbol	First assessment report (FAR)	Second assessment report (SAR)	Third assessment report (TAR)	Fourth assessment report (AR4)	Fifth assessment report (AR5)
Carbon dioxide	CO₂	1	1	1	1	1
Methane	CH₄	21	21	23	25	34
Nitrous oxide	N₂O	290	310	296	298	298

* Including climate-carbon feedbacks.
indirect). It also includes details on aggregated EFs (MTCO\textsubscript{2}E/tonne of waste), which are the combined outcome of indirect-upstream, direct-operational, and indirect-downstream emissions from treating one tonne of waste by individual waste management processes. Note that waste always refers to wet waste. Moreover, given that the 100-year global warming potential (GWP\textsubscript{100}) for greenhouse gases (GHGs) has evolved with time as outlined in (Table 1), the GWP\textsubscript{100} was adjusted in all methods to follow the IPCC, 1995 [11] reference definition. The latter was selected as a reference in all methods because most of them rely on the IPCC (1995) by default. Note that changing the GWP\textsubscript{100} affect emissions estimation. For instance, WARM uses IPCC, 2007 [12] resulting in 19% increase in GWP\textsubscript{100} of CH\textsubscript{4}, in comparison to IWM-2 that uses IPCC, 1995 [11].

Table 2
Emission factors related to waste collection.

Method	Type of EF	Values	Variability in EFs(%)d
IPCC-2006 a	Not considered	0.018	11–289
EpE	Aggregated	\(\text{EF}_{\text{fuel CO}_2} = 0.0026\)	
	Disaggregated	\(\text{EF}_{\text{fuel CO}_2} = 0.0026\)	
IWM	Aggregated	0.07	70–74
	Disaggregated	\(\text{EF}_{\text{fuel CO}_2} = 2.6 \times 10^{-3}\)	
		\(\text{EF}_{\text{fuel CH}_4} = 2.8 \times 10^{-6}\)	
		\(\text{EF}_{\text{fuel N}_2\text{O}} = 0.007\)	
IWM-2	Aggregated	0.021	14–233
	Disaggregated	\(\text{EF}_{\text{fuel CO}_2} = 0.003\)	
		\(\text{EF}_{\text{fuel CH}_4} = 7.7 \times 10^{-5}\)	
		\(\text{EF}_{\text{fuel N}_2\text{O}} = 2.2 \times 10^{-6}\)	
WARM	Aggregated	0.02	10–250
	Disaggregated	\(\text{EF}_{\text{fuel CO}_2} = 0.003\)	

a The IPCC does not account for emissions from collection of waste within the waste sector. Such emissions are embedded within the Transport sector under Energy.

b Aggregated Emission Factor (EF): (MTCO\textsubscript{2}E per tonne of waste category) (GWP\textsubscript{100}; IPCC [11]).

c Disaggregated \(\text{EF}_{\text{fuel g}}\) = Emission factor of gas \(g\) from fuel combustion (MTCO\textsubscript{2}E/Liters of fuel) with 6.2 L of fuel consumed/tonne of waste collected in the study area GWP\textsubscript{100}; IPCC [11].

d The absolute variability in EFs is calculated with respect to each method.

Table 3
Aggregated emission factors per tonne of waste category recycled (MTCO\textsubscript{2}E per tonne of waste category).

Waste Category	IWM	IWM-2	WARM	
Paper	0.83		–3.52	
Plastics	4.53	–1.20	–0.98	
Textiles	5.87	–2.37	–2.46	
Wood		–2.46	–2.46	
Glass	–0.92	–0.09	–0.28	
Metals	–1.99	–4.55	–3.97	

Table 4
Aggregated emission factors per tonne of waste category composted (MTCO\textsubscript{2}E per tonne of waste category).

Waste Category	IPCC-2006	EpE	IWM	IWM-2	WARM
Food	0.066	0.012	–0.184		–0.155
Garden		0.175b			
Other	0.177a				

a Considers total mass of municipal solid waste (MSW) treated.

b Considers CH\textsubscript{4} emissions from the Organic fraction of MSW and N\textsubscript{2}O emissions from MSW.
Tables 2–6 show the aggregated default EFs per tonne of waste category for individual waste management processes. A further illustration of the EFs (disaggregated and aggregated) adopted in each method is presented in Table SM1 (in the Supplementary Material). Flow diagrams of waste management systems with energy sources and resulting emissions for each method are displayed in Figs. 1–5.

2. Experimental design, materials, and methods

Data on EFs for various waste management processes was collected through secondary sources of accessible reports, literature, Guidelines, and models/software. The data was categorized into:
(1) Disaggregated EFs, which are by definition factors determined from a number of processes representing characteristics calculated per unit of activity; thus, they are expressed in MTCO$_2$E per characteristic unit (tonne of municipal solid waste treated; kW h of electricity; Liter of Diesel fuel) using a GWP$_{100}$, IPCC, 1995 [11]. EFs are fixed default values within every method except for the EpE method where the user can select EFs of recycling (adapted from USEPA/ICF, 2012 [3]) and landfilling (adapted from IPCC-2006 Guidelines [2]).

(2) Aggregated EFs is the combined outcome of disaggregated EFs expressed in MTCO$_2$E per tonne of waste category. Note that LFG (landfill gas collected) = 0.6; Electricity consumed = 32 kW h/tonne of waste composted, 70–80 kW h/tonne of waste incinerated, 68–50 kW h/tonne of waste anaerobically digested, and 8 kW h/tonne of waste landfilled; Fuel consumed = ~2 l/tonne of waste landfilled, ~3.28 l/tonne of waste composted, and 0.89 l/tonne of waste anaerobically digested.
Fig. 2. EpE protocol. *Note that EpE does not provide methodologies to estimate avoided emissions from recycling, energy recovery from anaerobic digestion, landfill, and incineration as well as direct emissions from waste degradation during landfilling.

Fig. 3. IWM. *During recycling IWM considers avoided emissions from plastics, glass, and metals **During incineration IWM only considers CO2 emissions from paper, glass, metals, plastics, food, and others. ***During landfilling IWM only considers CH4 emissions from paper, and food.
Fig. 4. IWM-2. *During incineration IWM-2 only considers CO₂ emissions from paper, glass, plastics, textiles, food, and others. **During landfilling IWM-2 only considers CH₄ emissions from paper, textiles, and organics.

Fig. 5. WARM. *During recycling WARM considers avoided emissions from paper, plastics, glass, carpet, dimensional lumber, and metals. **During incineration WARM only considers CO₂ emissions from paper, plastics, textiles, wood, food, and others. ***During landfilling WARM only considers CH₄ emissions from paper, food, wood, and others.
Acknowledgments

This study is supported through a joint funding from the Lebanese National Council for Scientific Research (LNCSR) and the American University of Beirut (AUB) – Lebanon. Special thanks are extended to Dar Al-Handasah (Shair & Partners) for its support to the graduate programs in Engineering at AUB.

Transparency document. Supporting information

Transparency data associated with this article can be found in the online version at https://doi.org/10.1016/j.dib.2018.09.094.

Appendix A. Supporting information

Supplementary data associated with this article can be found in the online version at https://doi.org/10.1016/j.dib.2018.09.094.

References

[1] A. Maalouf, M. El-Fadel, Towards improving emissions accounting methods in waste management: a proposed framework, J. Clean Prod. 206 (2019) 197–210. http://dx.doi.org/10.1016/j.jclepro.2018.09.014.

[2] IPCC, Guidelines for National Greenhouse Gas Inventories, in: H.S. Eggleston, L. Buendia, K. Miwa, T. Ngara, K. Tanabe (Eds.), National Greenhouse Gas Inventories Programme, IGES, Japan, 2006.

[3] EPA/ICF, Documentation for Greenhouse Gas Emission and Energy Factors Used in the Waste Reduction Model (WARM): background Chapters (WARM V. 12), U.S. Environmental Protection Agency Office of Resource Conservation and Recovery, Washington DC, 2012.

[4] EpE, Protocol for the quantification of GHG emissions from waste management activities, Cedex, Nanterre, 2013.

[5] EPIC and CSR (Environment and Plastics Industry Council and Corporations Supporting Recycling), Integrated waste management model for municipalities ON: Microsoft Excel Model, University of Waterloo, Waterloo. ⟨http://www.iwm-model.uwaterloo.ca/english.html⟩, 2004 (accessed 3 August 2014).

[6] F. McDougall, P. White, M. Franke, P. Hindle, Integrated Solid Waste Management: A Lifecycle Inventory, second ed., Oxford, 2001.

[7] E. Itoiz, C. Gasol, R. Farreney, J. Rieradevall, X. Gabarrell, CO2ZW: carbon footprint tool for municipal solid waste management for policy options in Europe, Inventory of Mediterranean countries, Energy Policy (2013) 623–632.

[8] E.C. Gentil, A. Damgaard, M. Haushild, G. Finnveden, O. Eriksson, S. Thorneloe, Models for waste life cycle assessment: review of technical assumptions, Waste Manag. (2010) 2636–2648.

[9] A.K. Mohareb, M.A. Warith, R. Diaz, Modelling greenhouse gas emissions for municipal solid waste management strategies in Ottawa, Ontario, Canada, Resour. Conserv. Recycl. (2008) 1241–1251.

[10] R. Diaz, M. Warith, Life-cycle assessment of municipal solid wastes: development of the WASTED model, Waste Manag, 26 (2006) 886–901.

[11] IPCC, B.B Global Warming Potential (GWP): in IPCC Second Assessment Report (SAR) - Climate Change 1995. ⟨http://www.ipcc.ch/ipccreports/sar/ WG1/ipcc_sar_wg1_full_report.pdf⟩ (accessed 2 January 2013), 1995.

[12] P. Forster, V. Ramaswamy, P. Artaxo, T. Berntsen, R. Betts, D.W. Fahey, J. Haywood, J. Lean, D.C. Lowe, G. Myhre, J. Nganga, R. Prinn, G. Raga, M. Schulz, R. Van Dorland, Changes in Atmospheric Constituents and in Radiative Forcing, Cambridge University Press, Cambridge, 2007 (IPCC Fourth Assessment Report WG 1) (Chapter 2).

[13] IPCC, Climate Change: The Intergovernmental Panel on Climate Change Scientific Assessment, Cambridge University Press, Cambridge and New York, 1990.

[14] IPCC, Climate Change 2001: The Scientific Basis. Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge and New York (2001) 2001.

[15] G. Myhre, D. Shindell, F.M. Bréon, W. Collins, J. Fuglestvedt, J. Huang, D. Koch, J.F. Lamarque, D. Lee, B. Mendoza, T. Nakajima, A. Robock, G. Stephens, T. Takemura, H. Zhang, Anthropogenic and Natural Radiative Forcing Anthropogenic and Natural Radiative Forcing, In: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, in: T.F. Stocker, D. Qin, G.K. Plattner, M. Tignor, S.K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex, P.M. Midgley (Eds.), Cambridge University Press, Cambridge, 2013.