Tropical pyomyositis (TP) is a life-threatening bacterial infection of the skeletal muscle that occurs particularly among children, young adults and those with immunocompromised conditions. The appropriate diagnosis and treatment are often delayed due to its non-specific signs, leading to fatal consequences. *Staphylococcus aureus*, especially methicillin-susceptible *S. aureus*, is responsible for most TP cases. However, other bacteria (i.e. streptococci, *Pseudomonas aeruginosa*, *Escherichia coli*, *Klebsiella* spp., *Candida* spp., *Mycobacterium* spp.) have been reported. This narrative review provides an update on the epidemiology and clinical course of TP. A special focus is laid on the role of toxins (i.e. Panton-Valentine Leucocidin and α-toxin) in the pathogenesis of TP and their implication for the clinical management of infection.

keywords tropical pyomyositis, *Staphylococcus aureus*, epidemiology, clinical course, pathogenesis, review

Sustainable Development Goals (SDGs): SDG 3 (good health and well-being), SDG 17 (partnerships for the goals)
major bacterial toxins, which can have a direct impact on the management of infection. The aim of this narrative review is to provide a concise update on the clinical and microbiological aspects of this (not fully recognised as such) ‘neglected tropical disease’ [17].

After the initial literature search (term: ‘pyomyositis’), we were unable to identify controlled trials for instance on the treatment or diagnostics of TP. Due to the lack of a critical mass of high-quality studies, a narrative review was deemed more appropriate for our aim than a systematic review.

Epidemiology

The disease can occur in all age groups but is more common in children (2–5 years) and young adults (20–45 years), with a male-to-female ratio of 1.5:1 [2,18]. It is increasingly recognised among patients with immunocompromised conditions (e.g. HIV infection, malnutrition, diabetes mellitus, malignancy, rheumatologic conditions, intravenous drug abuse) [2,19-21]. Some case reports point to an increased risk in patients receiving monoclonal antibodies such as certolizumab [22], tocilizumab [23] and infliximab [24,25]. Although the incidence of TP is still unclear in the tropics, it is an important cause of morbidity [26,27], including longer hospital stays (>10 days) [13,20]. The disease represents approximately 1% of all hospital admissions in the Amazonian region of Brazil or Peru [7,14]. Furthermore, it accounted for 4% (Gabon) to 27% (Benin) of *S. aureus* infections in Africa [28,29]. Very few prospective monocentre studies with only limited case numbers that systematically assessed the clinical course and outcome of TP are available [12,16], and to the best of our knowledge, no prospective multicentre studies have been carried out, or are currently ongoing. However, limited data on mortality [7,8] suggest that it ranges between 0 (14-day mortality, sub-Saharan Africa [30]), 2.4% (in-hospital mortality, Brazil [7]) and 10% (in-hospital mortality, Northern India [8]). A meta-analysis revealed a clear association of the *S. aureus* Pan-Valentine leucocidin (PVL) with severe SSTI (e.g. pyomyositis) [31]. While PVL is rare in *S. aureus* from colonisation and infection in Europe (3%), high rates are reported from Africa (45%–74%) [30,32].

Molecular pathogenic mechanisms

S. aureus secretes more than 40 known exotoxins which can be classified into three groups: superantigens,
cystotoxic enzymes and cytotoxins [33]. The lytic function of cytotoxins is receptor-mediated. Although numerous cytotoxins are involved in the pathogenesis of SSTI, the molecular action of α-toxin (Hla) and PVL in disease are best elucidated. Hla is a cytolytic heptameric β-barrel pore-forming toxin that targets membranes of erythrocytes, leucocytes, endothelial and epithelial cells through the binding to ADAM10 (a disintegrin metalloproteinase domain-containing protein 10) [34,35]. PLEKHA7 (pleckstrin homology domain-containing family A member 7) and other functional proteins are involved in ADAM10 clustering and promote cell death by the formation of stable pores [36]. This leads to intracellular ion dysregulation and finally to cell death. Sublytic concentrations of Hla cause an inflammatory response of the cells [33]. In addition, Hla activates ADAM10 to degrade E-cadherin (epithelial-cadherin), which in turn leads to the loss of epithelial barrier function [37,38]. The disruption of these barriers is an important step for tissue invasion of S. aureus, which is not only associated with SSTI.

PVL is a pore-forming protein toxin consisting of the lukF-PV and lukS-PV subunits. The binding of these subunits to their cellular targets (lukF-PV → CD45 and lukS-PV → C5a receptor) is required to lyse the host cells (i.e. granulocytes, monocytes, macrophages) or to activate the inflamasome [39-41]. In S. aureus-infected tissues, recruited granulocytes are rapidly killed by secreted PVL. The release of neutrophil proteases most likely culminates in severe tissue damage [42]. Although the role of PVL in S. aureus disease was controversial in the past, there is now strong molecular and epidemiological evidence on the critical role of PVL in (tropical) SSTI, in particular pyositis [31]. A recent genome-wide association study on S. aureus from Cambodia using isolates from pyositis and asymptomatic nasal colonisation revealed that only the presence of PVL (and no other S. aureus toxin) was strongly associated with disease (OR> 55). This observation indicates that pyositis is ‘critically dependent’ on PVL, an observation similar to other toxin-related diseases (e.g. tetanus, diphtheria) [43]. The factors that favour the high prevalence of PVL-positive isolates in the tropics are currently unclear. Potential explanations are the environment (e.g. warm/humid climate, high concentration of PVL-carrying phages in surface waters), the pathogen (acquisition of mobile genetic elements that facilitate the spread, similar to sasX) or the human host. Indeed, one missense mutation of the human C5a receptor I (N279K of the third extracellular domain), the target of the lukS-PV component, was associated with the nasopharyngeal colonisation of PVL-positive S. aureus in a remote African Pygmy population [44] and might explain why PVL-positive S. aureus are widespread among Africans compared to Caucasians.

Diagnosis

A high degree of clinical suspicion, especially in high-risk patients or those with previous (blunt) trauma, is necessary to detect cases especially in the early stages of the disease. In settings with limited resources, the diagnosis of TP is based on clinical presentation and ultrasound [45]. Although MRI is the imaging gold standard, ultrasound demonstrating muscle enlargement, changes in echogenicity due to inflammation and abscess formation are increasingly recognised as appropriate imaging tools [7,46]. There are no specific laboratory tests, but C-reactive protein, leucocyte counts and erythrocyte sedimentation rates (which can also be performed in resource-poor settings) can be helpful [12]. It is recommended that blood culture (aerobic and anaerobic) and pus from intra-muscular abscesses are taken for microbiological analysis, including species identification and antimicrobial susceptibility testing [47].

Clinical management

TP evolves in three stages: the invasive, supplicative and late stage [2,18]. The invasive stage (phlegmonous inflammation, no pus) is managed solely with antibiotics. In addition, incision and drainage are key in the management of supplicative and late-stage pyomyositis (i.e. drainage of purulent material). In the late stage with the potential for bacterial dissemination, supportive, even intensive care management may be needed to prevent death [48]. Although S. aureus is the major pathogen in TP, timely empirical therapy should cover Enterobacterales and non-fermenters particularly in patients with immunocompromising conditions or open trauma [47,48]. Thus, broad-spectrum antibiotics are the drugs of primary choice with subsequent review based on species identification and antimicrobial susceptibility testing [48]. For empirical therapy, ampicillin/sulbactam, or carbapenems appear to be appropriate [48]. Targeted therapies should include penicillin and clindamycin for β-haemolytic Streptococcus spp., anti-staphylococcal penicillins (e.g. nafcillin, oxacillin) or ceftazolin for methicillin-susceptible S. aureus, and glycopeptides or linezolid for methicillin-resistant S. aureus [47,48]. The optimal duration of the definitive antimicrobial therapy is not clear but should be several weeks (2–9 weeks) [12,47,49].

However, this treatment scheme is dependent on availability. Since TP is a clearly toxin-dependent entity,
adjunctive protein synthesis inhibitors (PSI) might be beneficial to inhibit bacterial toxin production. Macrolides, lincosamides, rifampicin or oxazolidinone can reduce the production of both PVL and Hla in vivo [50]. There is no good clinical evidence that favours any PSI; However, clindamycin appears to be the most promising to be tested in future clinical studies (e.g. CASSETTE trial) [51]. Intravenous immunoglobulins (IVIG) could be beneficial to neutralise bacterial toxins in severe infection. IVIG have been applied to patients with pyomyositis and toxic shock syndrome (TSS) as underlying condition [11], but the additional value is controversial. For other toxin-mediated SSTI, the adjunctive use of IVIG was associated with reduced organ failure and mortality [18]. However, there is no clear evidence on the beneficial use of IVIG in TP.

Knowledge gaps and outlook

Epidemiology

TP is not recognised as a stand-alone entity of global concern, and our knowledge of the incidence, risk factors and the spectrum of causative agents in different settings (epidemiologic understanding is based on case reports and small case series) remains poor. However, health and demographic surveillance systems (HDSSs) are in place in many African countries (e.g. Mozambique, Mali, Ethiopia, Kenya, Sierra Leone and South Africa) [52]. This infrastructure might be used to integrate ancillary cohort studies to address knowledge gaps of TP (incidence, risk factors, bacterial spectrum, antimicrobial susceptibility).

Molecular pathogenesis

There is now good evidence that PVL is the relevant toxin for TP. However, the factors responsible for the high prevalence of PVL-positive S. aureus across sub-Saharan Africa, but low prevalence in temperate regions are still unclear. Future studies should therefore address potential factors for the dissemination of PVL-positive S. aureus. They include adaptive and clonal characteristics of the bacterium (e.g. frequent uptake of PVL-carrying phages from the environment, factors that facilitate the spread of certain clones) and the host (e.g. humoral and cellular immune response to PVL, polymorphisms of the cellular targets in African vs. Caucasians).

Future clinical studies

Most of our knowledge about TP is based on individual case reports and very few, mostly retrospective and monocentre case series. There is a need for prospective, multicentre studies to address two main points: validate current diagnostic strategies in centres which are fully equipped both with respect to imaging and bacteriological diagnostic tools, and to determine treatment strategies to safeguard appropriate regional empirical treatment regimen tailored to the needs of resource-limited settings.

Microbiological laboratories and reference centres

With bacteriological identification and characterisation being key to diagnose and treat TP successfully, it is evident that access to appropriate bacteriological facilities is essential. However, this remains challenging in many resource-poor settings to date. Nevertheless, the need to develop human competencies and laboratory capacity has been catalysed with strategies to tackle antimicrobial resistance (AMR) with a ‘One-Health’ approach in Africa, mainly through the activities of the African Centres for Disease Control (African CDC, http://www.africacdc.org), the African Society for Laboratory Medicine (ASLM, https://aslm.org), and laboratory support initiatives by WHO (https://www.who.int/antimicrobial-resistance/en/) and the Fleming Fund (https://www.flemingfund.org/) in low- and middle-income countries.

Networks and training

As with any other condition which is in principle treatable if recognised early, awareness is key. To this end, opportunities to create awareness amongst healthcare providers for this potentially lethal condition should be used wherever possible. The African Sepsis Alliance (https://www.africansepsisalliance.org), for example, or regional scientific networks such as the ‘West African Network for Antimalarial Drugs’ (http://www.waneacam.org/) in West and the ‘Central African Clinical Research network’ (http://www.cantam.org/) should be mobilised to raise awareness as well as funding mechanisms should be exploited to finance studies aimed at optimising TP management.

Conclusion

TP is known for its challenging and non-specific clinical presentation among patients in tropical and temperate regions. There is strong evidence that PVL is the key toxin in TP. The additional value of a toxin-directed therapy (e.g. protein synthesis inhibitors, intravenous immunoglobulins) has to be tested in future clinical trials.
Acknowledgement

We are grateful for the support from the Deutsche Forschungsgemeinschaft (SCHA 1994/5-1, granted to AS and FS) and the Alexander von Humboldt Foundation (‘Georg Forster-Forschungsstipendium’ granted to AS).

References

1. Comegna L, Guidone PI, Prezioso G et al. Pyomyositis is not only a tropical pathology: a case series. J Med Case Reports 2016: 10: 372.
2. Chauhan S, Jain S, Varma S et al. Tropical pyomyositis (myositis tropicans): current perspective. Postgrad Med J 2004: 80: 267–270.
3. Grose C. Pyomyositis and bacterial myositis. In: Feigin RC, Demmler GJ, Kaplan SL (eds). Textbook of Pediatric Infectious Diseases (5th edn). Philadelphia: Saunders, 2005.
4. International Statistical Classification of Diseases and Related Health Problems 10th Revision: World Health Organization; 2019. (Available from: https://icd.who.int/browse10/2019/en.)
5. Falagas ME, Rafaïlidis PI, Kapaskelis A et al. Pyomyositis associated with hematological malignancy: case report and review of the literature. Int J Infect Dis 2008: 12: 120–125.
6. Mehmood M, Bradford AD, Khasawneh FA. Leg pain following Staphylococcus aureus bacteraemia. BMJ Case Rep 2014: 2014: bcr2014204603.
7. Borges AH, Faragher B, Laloo DG. Pyomyositis in the upper Negro river basin, Brazilian Amazonia. Trans R Soc Trop Med Hyg 2012: 106: 532–537.
8. Sharma A, Kumar S, Wanchu A et al. Clinical characteristics and predictors of mortality in 67 patients with primary pyomyositis: a study from North India. Clin Rheumatol 2010: 29: 45–51.
9. Siddalingana GT, Hande HM, Stanley W et al. Tropical pyomyositis presenting as sepsis with acute respiratory distress syndrome. Asian Pacific J Trop Med 2011: 4: 325–357.
10. Toner E, Khaleel A, Nokhuda Y et al. The limping child, a rare differential: pyomyositis of the iliacus muscle - a case report. J Orthopaed Case Reports 2019: 9: 21–25.
11. Feigenberg T, Sela HY, Applbaum YH et al. Puerperal widespread pyomyositis after group A streptococcal toxic shock syndrome. IMAJ 2008: 10: 483–484.
12. Angelis S, Trellopoulos A, Kondylis AK et al. Multifocal osteomyelitis localization after pyomyositis in children: importance of timely response. Cureus 2019: 11: e4463.
13. Verma S, Singh SC, Marwaha RK et al. Tropical pyomyositis in children: 10 years experience of a tertiary care hospital in northern India. J Trop Pediatr 2013: 59: 243–245.
14. Garcia C, Hallin M, Deplano A et al. Staphylococcus aureus causing tropical pyomyositis, Amazon Basin, Peru. Emerg Infect Dis 2013: 19: 123–125.
15. Bennett JE, Dolin R, Blaser MJ. Mandell, Douglas, and Bennett’s Principles and Practice of Infectious Diseases (8th edn). Philadelphia, PA: Elsevier, 2015.
16. Chattopadhyay B, Mukhopadhyay M, Chatterjee A et al. Tropical pyomyositis. North Am J Med Sci 2013: 5: 600–603.
17. Herrmann M, Abdullah S, Alabi A et al. Staphylococcal disease in Africa: another neglected 'tropical' disease. Future Microbiol 2013: 8: 17–26.
18. Saeed K, Esposito S, Gould I et al. Hot topics in necrotising skin and soft tissue infections. Int J Antimicrob Agents 2018: 52: 1–10.
19. Crum NF. Bacterial pyomyositis in the United States. Am J Med 2004: 117: 420–428.
20. Kitara DL, Wangamoi PO, Wabinga H et al. High Prevalence of Malnutrition among the Above Thirteen with Primary Pyomyositis in Northern Uganda. Br J Medic Med Res. 2015: 6: 814–822.
21. Popescu GA. Immuno compromised host (especially HIV-positive) the target of pyomyositis in temperate regions. South Med J 2008: 101: 235.
22. Wig S, McCabe PS, Swamy S et al. Pyomyositis: an unusual cause of hip pain in a patient on corticosteroids and leflunomide. Rheumatology (Oxford, England). 2018: 57: 1685–1686.
23. Raine C, Hamdulay SS, Khanna M et al. An unusual complication of tocolizumab therapy: MRI appearances of thenar eminence pyomyositis. Joint Bone Spine 2013: 80: 222.
24. Khosa P, Arooa N, Jain S. Tubercular pyomyositis in a case of rheumatoid arthritis being treated with infliximab. Int J Rheumat Dis 2010: 13: 82–85.
25. Kane D, Balint PV, Wood F et al. Early diagnosis of pyomyositis using clinical-based ultrasonography in a patient receiving infliximab therapy for Behcet’s disease. Rheumatology (Oxford, England). 2003: 42: 1564–1565.
26. Chiu NC, Hsieh MC, Chi H et al. Clinical characteristics of pyomyositis in children: 20-year experience in a medical center in Taiwan. J Microb Immunol Infect 2009: 42: 494–499.
27. Jacobsen KH, Fleming LC, Ribeiro PS. Pyomyositis in Amazonian Ecuador. Trans R Soc Trop Med Hyg 2010: 104: 438–439.
28. Sina H, Ahooy TA, Moussauoi W et al. Variability of antibiotic susceptibility and toxin production of Staphylococcus aureus strains isolated from skin, soft tissue, and bone related infections. BMC Microbiol 2013: 13: 188.
29. Schaumburg F, Ngoa UA, Kösters K et al. Virulence factors and genotypes of Staphylococcus aureus from infection and carriage in Gabon. Clin Microbiol Infect 2011: 17: 1507–1513.
30. Ruffing U, Alabi A, Kazimoto T et al. Community-associated Staphylococcus aureus from Sub-Saharan Africa and Germany: a cross-sectional geographic correlation study. Sci Rep. 2017: 7: 154.
31. Shalcross LJ, Fragaszy E, Johnson AM et al. The role of the Panton-Valentine leucocidin toxin in staphylococcal disease: a systematic review and meta-analysis. Lancet Infect Dis 2013: 13: 43–54.
32. Breurec S, Fall C, Pouillot R et al. Epidemiology of methicillin-susceptible Staphylococcus aureus lineages in...
five major African towns: high prevalence of Panton-Valentine leukocidin genes. Clin Microbiol Infect 2011: 17: 633–639.

33. Tam K, Torres VJ. Staphylococcus aureus Secreted Toxins and Extracellular Enzymes. Microbiol Spect 2019: 7: 2.

34. Wilke GA, Bubeck Wardenburg J. Role of a disintegrin and metalloprotease 10 in Staphylococcus aureus alpha-hemolysin-mediated cellular injury. Proc Natl Acad Sci USA 2010: 107: 13473–13478.

35. Popov LM, Marceau CD, Starkl PM et al. The adherens junctions control susceptibility to Staphylococcus aureus α-toxin. PNAS 2015: 112: 14337–14342.

36. Shah J, Rouaud F, Guerrera D et al. A Dock-and-Lock Mechanism Clusters ADAM10 at Cell-Cell Junctions to Promote α-Toxin Cytotoxicity. Cell Rep 2018: 25: 2132–2147.

37. Oliveira D, Borges A, Simoes M. Staphylococcus aureus Toxins and Their Molecular Activity in Infectious Diseases. Toxins 2018: 10: 252.

38. Powers ME, Kim HK, Wang Y et al. ADAM10 mediates vascular injury induced by Staphylococcus aureus α-hemolysin. J Infect Dis 2012: 206: 352–356.

39. Tromp AT, van Gent M, Abrial P et al. Human CD45 is an F-component-specific receptor for the staphylococcal toxin Panton-Valentine leukocidin. Nat Microbiol 2018: 3: 6.

40. Spaan AN, Henry T, van Rooijen WJ et al. The staphylo-coccal toxin Panton-Valentine Leukocidin targets human C5a receptors. Cell Host Microbe 2013: 13: 584–594.

41. Holzinger D, Gieldon L, Mysore V et al. Staphylococcus aureus Panton-Valentine leukocidin induces an inflammatory response in human phagocytes via the NLRP3 inflamma-some. J Leukoc Biol 2012: 92: 1069–1081.

42. Niemann S, Ehrhardt C, Medina E et al. Combined action of influenza virus and Staphylococcus aureus Panton-Valentine leukocidin provokes severe lung epithelium damage. J Infect Dis 2012: 206: 1138–1148.

43. Young BC, Earle SG, Soeng S et al. Panton-Valentine leukocidin is the key determinant of Staphylococcus aureus pyomyositis in a bacterial GWAS. eLife 2019: 8: 1–15.

44. Schaumburg F, Witten A, Flamen A et al. Complement 5a receptor polymorphisms are associated with panton-valentine leukocidin-positive Staphylococcus aureus Colonization in African Pygmies. Clin Infect Dis 2019: 68: 854–856.

45. Nelson M, Reens D, Cohen A. Pyomyositis diagnosed by point-of-care ultrasound in the emergency department. J Emerg Med 2018: 55: 817–820.

46. Farrell G, Berona K, Kang T. Point-of-care ultrasound in pyomyositis: A case series. Am J Emerg Med. 2018: 36: 881–884.

47. Stevens DL, Bisno AL, Chambers HF et al. Practice guidelines for the diagnosis and management of skin and soft tissue infections: 2014 update by the Infectious Diseases Society of America. Clin Infect Dis 2014: 59: e10–52.

48. Kwak YG, Choi SH, Kim T et al. Clinical guidelines for the antibiotic treatment for community-acquired skin and soft tissue infection. Infect Chemother 2017: 49: 301–325.

49. Yang HW, Wu Ul, Hsieh JH et al. How long should we treat Candida albicans pyomyositis? Insight from a cured case. J Microbiol Immunol Infect 2020. https://doi.org/10.1016/j.jmii.2020.02.004. [Epub ahead of print].

50. Hodille E, Rose W, Diep BA et al. The role of antibiotics in modulating virulence in Staphylococcus aureus. Clin Microbiol Rev 2017: 30: 887–917.

51. Dotel R, Tong SYC, Bowen A et al. CASSETTE-clindamycin adjunctive therapy for severe Staphylococcus aureus treatment evaluation: study protocol for a randomised controlled trial. Trials 2019: 20: 353.

52. Cunningham SA, Shaikh NJ, Nhacolo A et al. Health and demographic surveillance systems within the child health and mortality prevention surveillance network. Clin Infect Dis 2019: 69(Supplement_4): S274–S279.