Excitonic nature of dispersion of two-dimensional transition metal dichalcogenides and effect of annealing on excitons

G. A. Ermolaev¹,², D. A. Komissar¹, G. M. Krivova¹, D. E. Tatarkin¹, K. V. Voronin¹, D. I. Yakubovsky³, Y. V. Stebunov¹,³, A. V. Arsenin¹,³, S. M. Novikov¹ and V. S. Volkov¹,²,⁴

¹Moscow Institute of Physics and Technology, Institutskiy 9, 141700, Dolgoprudnyi, Russia ²Skolkovo Institute of Science and Technology, Bolshoy Boulevard 30, bld. 1, 121205, Moscow, Russia ³GrapheneTek, 7 Nobel Street, Skolkovo Innovation Center, 143026, Moscow, Russia ⁴SDU Nano Optics, Mads Clausen Institute, University of Southern Denmark, Campusvej 55, DK-5230, Odense, Denmark

goergiy.ermolaev@phystech.edu; ermolaev-georgy@yandex.ru

Abstract. In present study, we develop an effective and universal technique for retrieving dispersion of bulk and monolayer TMDs from spectroscopic ellipsometry measurements. The basis of the method is excitonic nature of the dispersion. In addition, we demonstrate beneficial influence of annealing on optical properties of MoS₂.

1. Introduction

Two-dimensional (2D) transition metal dichalcogenides (TMDs) have recently become the focus of many research works due to their outstanding electrical and optical properties [1-2], which make them suitable for a variety of different applications [3]. These materials have been already successfully used as a building block for solar cells [3], transistors [4], sensors [5], light emitters [6], transparent and conductive electrodes [7] and lasers [8], demonstrating the performance even higher than devices based on graphene [9]. With such a broad optoelectronic applications, it is vitally important to precisely know optical constants (ε₁ and ε₂) of TMDs.

To date, there are about 30 published works, dedicated to optical properties of TMDs. They have been characterized using a variety of optical techniques such as photoluminescence (PL) [10], absorbance [11], optical contrast reflectivity [12]. Among them the most sensitive and precise [13] for thin films is spectroscopic ellipsometry [14-16]. Although obtained results show similar behavior for dielectric function, the absolute values of ε₁ and ε₂ differs a lot (within 50 %). This occurs because of sensitivity of physical properties of TMDs to surrounding [17], defects [18] and synthesis method [19]. As a result, it is not clear which data should be used for calculation of theoretical performance of the devices based on TMDs.

To solve this problem we propose a universal algorithm for optical constants determination of 2D TMDs using spectroscopic ellipsometry (SE) and demonstrate it on the example of Chemical Vapor Deposition (CVD)-grown MoS₂, MoSe₂, WS₂, and WSe₂, as the most commonly used among others [1].

Analysis were carried out taking into account dominated contribution of excitons into dielectric function [2, 14] which has not been done before [14-16]. Therefore it could be potentially applied to the others TMDs because of similarity of physical properties [2]. Furthermore, for the first time we determine optical constants of 2D TMDs in near and medium infrared region (IR) and show that for these wavelengths ε₂ = 0 (no absorption) for all TMDs and is higher than 12 for monolayer MoS₂.

Therefore we propose an algorithm for retrieving of optical constants of these materials.

2. Experimental section

SE measurements were performed on a variable-angle spectroscopic ellipsometer (VASE, J. A. Woollam Co.) in a broad wavelength range 300 – 3300 nm. Analysis were carried out taking into account excitonic nature of dispersion. In considering wavelength interval excitons originates from different interband transition. Therefore, they can be described by using Tauc-Lorentz oscillators [18], one for each exciton. For imaginary part of dielectric function for Tauc-Lorentz oscillator reads:

ε₂ = \(\begin{cases} \frac{A E_0 (E - E_g)^2}{(E^2 - E_1^2)^2 + C^2 E^2} & \text{for } E > E_g \\ \frac{1}{E^2 - E_1^2} & \text{for } E \leq E_g \end{cases} \)
, where A - oscillator strength, C - broadening of the peak, E - photon energy, E_g - optical band gap, E_c - peak central energy. The real part of the dielectric function is derived from the expression of imaginary part via Kramers-Kronig integration.

3. Results and discussion

Figure 1 shows obtained dielectric function for MoS$_2$ (6 Tauc-Lorentz oscillators) and WS$_2$ (5 Tauc-Lorentz oscillators). The advantage of such approach is each oscillator corresponds to one exciton and, as a result, its parameters reflect physical properties of excitons. For instance, critical points are equal to the positions of the maxima. For MoS$_2$ they were found to be at 1.83, 1.97 and 2.85 eV for A, B and C-excitons respectively, that is in a good agreement with the previously published work (1.88, 2.02 and 2.86 eV) [14]. In addition, suggested algorithm could be applied without changing to any TMDs with the excitonic nature of dispersion (ex. PtS$_2$, PtS$_2$ and PdS$_2$). It is worth mention that in IR region MoS$_2$ does not have any absorption, while its real part is quite high ($\varepsilon_1 > 12$).

In order to improve optical properties of MoS$_2$ we annealed samples at 300 °C during 1 hour. The absorption of samples for A- and B-excitons increased after annealing as can be seen in Figure 2.

![Figure 1. Dielectric function of monolayer MoS$_2$ (solid green line) and WS$_2$ (dotted blue line), obtained by fitting excitonic peaks using Tauc-Lorentz oscillators.](image1)

![Figure 2. Absorption coefficient of MoS$_2$ for A- and B-excitons before (solid line) and after annealing (dashed line).](image2)
4. Conclusions

We developed an algorithm for finding dispersion of transition metal dichalcogenides. This technique is based on excitonic nature of dispersion and allows easily retrieving physical properties of excitons, for example, critical points. Furthermore, we demonstrated the influence of annealing on the optical properties of MoS$_2$, namely, an increase in the absorption of A- and B-excitons which is critical for applications.

Acknowledgments

This research was funded by Russian Science Foundation, grant number 18-79-10208. We thank the Shared Facilities Center of the Moscow Institute of Physics and Technology (grant no. RFMEFI59417X0014) for the use of their equipment.

References

[1] Mueller T and Malic E 2018 Exciton physics and device application of two-dimensional transition metal dichalcogenide semiconductors npj 2D Materials and Applications 2
[2] Wang G, Chernikov A, Glazov M M, Heinz T F, Marie X, Amand T and Urbansek B 2018 Colloquium : Excitons in atomically thin transition metal dichalcogenides Reviews of Modern Physics 90
[3] Furchi M M, Höller F, Dobusch L, Polyushkin D K, Schuler S and Mueller T 2018 Device physics of van der Waals heterojunction solar cells npj 2D Materials and Applications 2
[4] Radisavljevic B, Radenovic A, Brivio J, Giacometti V and Kis A 2011 Single-layer MoS$_2$, nanosheets and nanobelts: a review Nano Letters 11 3061–7
[5] Li W, Birdwell A G, Amati M, Burke R A, Ling X, Lee Y-H, Liang X, Peng L, Richter C A, Kong J, Gundlach D J and Nguyen N V 2014 Broadband optical properties of large-area monolayer MoS$_2$ Physical Review B 90
[6] Diware M S, Park K, Mun J, Park H G, Chegal W, Cho Y J, Cho H M, Park J, Kim H, Kang S-W and Kim Y D 2017 Characterization of wafer-scale MoS$_2$ and WSe$_2$ 2D films by spectroscopic ellipsometry Current Applied Physics 17 1329–34
[7] Kylänpää I and Komma H-F 2017 Binding energies of exciton complexes in transition metal dichalcogenide monolayers and effect of dielectric environment Physical Review B 95
[8] Lee Y, Park S, Kim H, Han G H, Lee Y H and Kim J 2015 Characterization of the structural defects in CVD-grown monolayered MoS$_2$, using near-field photoluminescence imaging Nanoscale 7 11909–14
[9] Cai Z, Liu B, Zou X and Cheng H-M 2018 Chemical Vapor Deposition Growth and Applications of Two-Dimensional Materials and Their Heterostructures Chemical Reviews 118 6991–133
[10] Okamoto K 2006 Fundamentals of optical waveguides (Amsterdam ; Boston: Elsevier)