Clinical Management Guideline

Optimizing respiratory care in coronavirus disease-2019: A comprehensive, protocolized, evidence-based, algorithmic approach

Sagar Sinha, Indrani Sardesai¹, Sagar C. Galwankar², P.W.B. Nanayakkara³, Dindigal Ramakrishnan Narasimhan, Joydeep Grover⁴, Harry L. Anderson III⁵, Lorenzo Paladino⁶, David F. Gaieski⁷, Salvatore Di Somma⁸, Stanislaw P. Stawicki⁹

Department of Critical Care and Emergency Medicine, MGM Medical College and Hospital, Navi Mumbai, Maharashtra, India, ¹Department of Accident and Emergency Medicine, Queen Elizabeth Hospital, Gateshead, ²Department of Emergency Medicine, Southmead Hospital, Bristol, England, United Kingdom, ³Department of Emergency Medicine, Sarasota Memorial Hospital, Florida State University, Sarasota, Florida, ⁴Department of Surgery, St. Joseph Mercy Ann Arbor, Ann Arbor, Michigan, ⁵Department of Emergency Medicine, SUNY Downstate and Kings County Hospital Medical Center, New York, ⁶Department of Emergency Medicine, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, ⁷Department of Research and Innovation, St. Luke’s University Health Network, Bethlehem, Pennsylvania, USA, ⁸Section General and Acute Internal Medicine, Amsterdam UMC, Location VU University Medical Center, Amsterdam, the Netherlands, ⁹Department of Medical-Surgical Sciences and Translational Medicine, University of Rome “Sapienza,” Rome, Italy

Address for correspondence:
Dr. Indrani Sardesai, C/O Accident and Emergency Medicine Office, Queen Elizabeth Hospital, Queen Elizabeth Avenue, Gateshead, Tyne and Wear NE96SX, United Kingdom.
E-mail: isardesai@gmail.com

Key Words: Coronavirus disease 2019, respiratory care optimization, clinical algorithm, SARS-CoV-2, evidence-based guideline, resource-sparing strategies

INTRODUCTION

Respiratory management of patients with coronavirus disease 2019 (COVID-19) is both complex and highly nuanced.[1] Although most patients with COVID-19 develop mild or no symptoms, a smaller proportion (up to 15%) experience progressive hypoxic respiratory failure requiring escalating levels of oxygen support.[2] Significant accumulated experience in caring for patients with SARS-CoV-2 pulmonary illness resulted in the recognition of major respiratory failure patterns, the benefits of early proning, and the importance of a step-wise escalation in levels of invasiveness across the entire spectrum from nasal cannula to extracorporeal support.[3‑4] Given substantial heterogeneity among various algorithmic approaches to oxygen therapy and the need for both standardization and optimization of clinical management methodologies, the Joint ACAIM-WACEM COVID-19 Clinical Management Taskforce (CCMT) set out to establish and publish a unified approach to the patient who presents with SARS-CoV-2 lower respiratory tract infection (LRTI). In addition, the CCMT hopes that a protocol-driven strategy will lead to conservation of precious healthcare resources, such as intensive care beds and ventilators, by eliminating unnecessary interventions and various other process inefficiencies.

Clinical rationale

The Joint ACAIM-WACEM CCMT is a multidisciplinary group with participants from multiple countries and significant collective expertise in clinical management of COVID-19. Based on our shared experiences, we set

This is an open access journal, and articles are distributed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 License, which allows others to remix, tweak, and build upon the work non-commercially, as long as appropriate credit is given and the new creations are licensed under the identical terms.

For reprints contact: reprints@medknow.com

Cite this article as: Sinha S, Sardesai I, Galwankar SC, Nanayakkara PW, Narasimhan DR, Grover J, et al. Optimizing respiratory care in coronavirus disease-2019: A comprehensive, protocolized, evidence-based, algorithmic approach. Int J Crit Illn Inj Sci 2020;10:XX-XX.

Received: 12.05.2020; Revision: 17.05.2020; Accepted: 21.05.2020; Published: ***.
out to design and optimize a uniform approach toward patients suffering from SARS-CoV-2 LRTI. The primary goal of the CCMT was to ensure broad applicability of the resultant treatment algorithms across diverse clinical settings, regardless of resource availability [Table 1]. The secondary goal was to produce a comprehensive, evidence-based resource that will provide clinicians with an easy-to-use and powerful set of tools to manage COVID-19 patients with LRTI and respiratory failure. Multiple sources were utilized when compiling this collection of algorithms and tables.[2,5,20]

The working hypothesis adopted by the CCMT is that in COVID-19, the disease caused by SARS-CoV-2 manifests primarily as an oxygen diffusion problem rather than as alterations involving ventilation-perfusion (V/Q) mismatch, low fraction of inspired oxygen (FiO2), or hyperventilation.[11,3,4,11] Consequently, we advocate that initial attempts to address the oxygenation-related impairment should include low-flow nasal cannula (LFNC) and reservoir masks, with progressive escalation to high-flow nasal cannula (HFNC) before implementing awake proning or non-invasive positive pressure ventilation (NIPPV).[11,14,15,21,22] If these maneuvers and strategies are ineffective, we advocate that a prompt transition is made toward invasive mechanical ventilatory support.[14,22,23] Cumulatively, the above approach serves to optimize and standardize the overall management of COVID-19 patients with LRTI. The rationale for applying different oxygen therapies to different primary pathophysiologic respiratory problems is presented in Table 2.

Patient history and clinical assessment

Infection with COVID-19 should be suspected in patients presenting with “typical” signs and symptoms including fever, cough, and various degrees of hypoxia,[24] although clinical manifestations can take a number of other forms, particularly in the elderly population.[2] Patients with elevated risk of severe disease are older, immunocompromised, morbidly obese, male, or have two or more chronic comorbid conditions.[2,24-26] Additional clinical signs and symptoms associated with severe illness include tachycardia, hyperthermia (≥39°C), encephalopathy, and hemodynamic instability.[2,27] While a “typical” COVID-19 presentation is seen in the vast majority of cases,[2] additional specific “red flags” such as the presence of “silent hypoxia” must be kept in mind.[27-30] Reliable oxygen saturation measurement (SpO2) is the cornerstone of initial risk stratification and disease severity assessment. Patients with normal (or “baseline,” if preexisting pulmonary disease exists) SpO2 are stratified as “low risk,” whereas patients with an initial SpO2 < 93% (or similar decline below “baseline” levels) require immediate supplemental oxygen therapy.

In addition to a comprehensive COVID-19 laboratory workup,[2,31] specific factors associated with severe respiratory disease have been identified, including the presence of myalgias, elevated hemoglobin levels, and elevated alanine aminotransferase.[2] Specific risk assessment tools may be considered including the MuLBSTA[32] and BCRSS scores.[2,33] Moreover, laboratory findings of a neutrophil-to-lymphocyte ratio of >3.3,

Table 1: Comparison between resource-abundant and resource-limited health-care settings

Setting/environment/safety	Resource abundant + patient centered	Resource limited + HCP centered
Phase of pandemic	1, 2	3, 4
Infrastructure	Adequate	Average
Hospital occupancy	Low	High
Surge ICU beds	No	Yes
Regular health-care providers	Yes	No
Dedicated CCM services	Yes	No

The joint ACAIM-WACEM COVID-19 Clinical management Taskforce recognizes that there exist significant regional variations in terms of health-care resources, including considerations related to infrastructure, capacity, clinical skillset, equipment, access/availability, and other resources essential for patient care. ICU: Intensive care unit, HCP: Health-care provider, CCM: Critical care medicine, COVID-19: Coronavirus disease 2019

Table 2: Oxygen therapies and respiratory pathophysiology, including evidence-based support

Oxygenation	Ventilation	WOB	Solves diffusion	Solves V/Q mismatch	Solves recruitment
LFNC	+	-	-	+	-
Reservoir mask	+ +	-	+/-	+	-
HFNC	+ +	+/+	+/+	+/+	-
Awake proning	+	+	+/+	+	-
HFNC + awake proning	+ + +	+	+	+/(H)	+/(H)
CPAP (no O₂)	-	+/+	+/+	-	+
CPAP (with O₂)	+	+/+	+/+	+	+
NIPPV (no O₂)	-	+	+	+/-	+
NIPPV (with O₂)	+	+	+	+	+
IMV	+	+	+	+	+
IMV + proning	+ +	+	+	+	+
ECLS	+ +	+	+	+	+

H: Based on past evidence, but largely hypothetical in the context of COVID-19 lower respiratory disease. WOB: Work of breathing. LFNC: Low-flow nasal cannula, HFNC: High-flow nasal cannula, V/Q mismatch: Ventilation-perfusion mismatch, CPAP: Continuous positive airway pressure, NIPPV: Noninvasive positive pressure ventilation, IMV: Invasive mechanical ventilation, ECLS: Extracorporeal life support, COVID-19: Coronavirus disease 2019, + / +/+ / +++ Denotes the level of available evidence, with * +/+ and *- denoting insufficient or lack of supporting evidence, respectively
thrombocytopenia, markedly elevated D-dimer, and early elevations in highly sensitive troponin, are all linked to severe disease and poorer prognosis.\cite{2,34-37} Severe COVID-19 may also be associated with elevated risk of thromboembolic events.\cite{38}

Pertinent diagnostic and clinical monitoring criteria

Radiographic workup is an important part of the overall COVID-19 patient assessment. The initial chest radiograph shows “typical” diagnostic changes in >67% of patients, and this may increase to >95% in cases of severe disease.\cite{39} Noncontrast computed tomography (NCCT) of the chest may correlate with both the diagnosis and severity of COVID 19, and has a reported sensitivity of >90% at 2–5 days post-onset of symptoms and 97% sensitivity thereafter.\cite{2,39,40} If the NCCT findings are suspicious for COVID-19,\cite{41} low-molecular-weight heparin administration and hospital admission should be considered. If the NCCT is not suggestive of COVID-19, then contrast-enhanced
Finally, important considerations and Resource abundant
Resource limited

On arrival

Indicated.

Necessitating tube thoracostomy placement when patients on prolonged positive pressure ventilation, the risk of pneumothorax may be elevated in

Specific clinical monitoring criteria, as directly relevant to the current manuscript, can be stratified according to patient/assessment location as well as the overall resource availability [Table 3]. Within this larger paradigm, several assessment tools need to be introduced, including the SCRUB-60 tool [Table 4][43-45] and the SBC tool [Table 5][46-48].

Finally, the risk of pneumothorax may be elevated in patients on prolonged positive pressure ventilation, necessitating tube thoracostomy placement when indicated.[49]

CT of the chest or V/Q scanning may be considered to rule out other causes of hypoxia.

Specific note

A full discussion regarding the complex issue of monitoring and maintaining adequate oxygenation in the outpatient/home setting is beyond the scope of this
IBW Formula[3]
Male: 50 kg + 2.3 kg per inch over 5 feet
Female: 46 kg + 2.3 kg per inch over 5 feet

Critical Care Consult.
Management of secretions.
Targets:
$\text{pO}_2 \geq 80$ | $\text{pCO}_2 \leq 45$ | $\text{pH} \geq 7.3$

Initial Ventilator Settings
$\text{FiO}_2 \geq 60\%$ | $\text{PEEP} \geq 5$ | $\text{P/F} < 200$
$\text{RR} = 20$ | $\text{I:E} = 1.2$
$\text{Vt} = 7 \text{ml/kg IBW}$

Conservative fluid strategy
Liberal use of NMB
Target $\text{SpO}_2 \geq 92$
Attach closed suction

Optimize pharmacotherapy
Organ injury assessment
Cardiovascular assessment
Chest imaging

Determine Pplat by inspiratory hold for 0.5 – 2 sec

Treatment Escalation Plan
Early determination and standardized documentation of ceiling of care, with review by experienced clinician

Figure 2: Management algorithm for coronavirus disease 2019 patients with respiratory failure requiring mechanical ventilation. IBW: Ideal body weight, FiO_2: Fraction of inspired oxygen, PEEP: Positive end expiratory pressure, P/F: $\text{PaO}_2/\text{FaO}_2$, RR: Respiratory rate, Vt: Tidal volume, SpO_2: Peripheral capillary oxygen saturation, DP: Driving pressure, Cstat: Static compliance, iNO: inhaled nitrous oxide, Pplat: Plateau pressure, ABG: Arterial blood gas, See references[56,57] for ARDSnet original sources.

Table 6: Summary of key correlates with patient response to specific levels of oxygenation strategy/support
Modality
Response to oxygen
Probable primary pathophysiology
Caveats
Patient tolerability

NIPPV: Noninvasive positive pressure ventilation, HFNC: High-flow nasal cannula, PEEP: Positive end expiratory pressure, WOB: Work of breathing.

document; however, a dedicated Joint ACAIM-WACEM COVID-19 Clinical Management Taskforce guideline is forthcoming with recommendations specific to the implementation of home-based oxygenation strategy in patients with isolated hypoxia and clinically mild disease.
Figure 3: Management algorithm for patients with severe coronavirus disease 2019 respiratory failure. NMBA: Neuromuscular blocking agents, ECLS: Extracorporeal life support, CCM: Critical care medicine, FiO2: Fraction of inspired oxygen, PEEP: Positive end expiratory pressure, Vt: Tidal volume, DP: Driving pressure, Cstat: Static compliance, HCP: Health-care provider, PPE: Personal protective equipment, P/F: PaO2/FiO2, SAPS-II: Simplified Acute Physiology score-II, APACHE-II: Acute Physiology and Chronic Health Evaluation

Table 7: Summary of important escalation points that will provide a clinically applicable framework for objective therapeutic approach transitions

Modality	Ceiling of therapy	ROX at (Hs) SpO2/FiO2/RR	Failure	Success
HFNC[19,20,48,49]	ROX index < 3.85	2	< 2.85	> 4.88
		6	< 3.47	> 4.88
		12	< 3.85	> 4.88
LFNC	S/F ratio			
NIPPV	P/F ratio			
Prone	SCRB-60			
	SBC			

ROX index: Ratio of pulse oximetry/fraction of inspired oxygen to respiratory rate.[20] HFNC: High-flow nasal cannula, LFNC: Low-flow nasal cannula, NIPPV: Noninvasive positive pressure ventilation, S/F ratio: SpO2/FiO2, P/F ratio: PaO2/FiO2, SBC: Single breath count
Table 8: Summary of mechanical ventilation and proning strategies utilized in coronavirus disease-19

Ventilator strategy^{1,2,16,20,22,34}	Proning strategy^{10,21,30}
Measure driving pressure	Indications
Driving pressure	P/F < 50
<15 cmH₂O	Driving pressure > 15 cmH₂O
>15 cmH₂O	Compliance < 40 ml/cmH₂O
Tidal volume	Limited resources (PPE)
8 ml/kg	Proning expertise not available
	Avoid if
If inadequate response, consider rescue measures: NMBa, diuretic, FiO₂ ≥ 80%	
Compliance	Escalate PEEP
>40 ml/cmH₂O	Optimize NMBa
<40 ml/cmH₂O	Settings
Actions	
Continue same ventilatory strategy.	Tidal volume 6 ml/kg
Low tidal volume	FiO₂ ≥ 60%, PEEP ≥ 5
High PEEP	Within 6 h for patients with good prognosis
Prone positioning	Within 24 h for patients with poor prognosis
Phenotype	Type L
	Type H

PPE: Personal protective equipment, NMBa: Neuromuscular blocking agents, PEEP: Positive end expiratory pressure, P/F: PaO₂/FiO₂ ratio

Table 9: Important considerations and limitations related to proning therapy

Condition	Ceiling of therapy for (awake) prone positioning (repeated assessments every 30 min-2 h)
Absolute	Relative
Unstable spine	Unstable spine
Raised ICP	Unstable spine
Thoracic or abdominal injuries	Unstable spine
Morbid obesity	Morbid obesity
Pregnancy	Morbid obesity
Inability to tolerate procedure	Inability to tolerate procedure
Increased work of breathing	Increased work of breathing
Tachypnea	Tachypnea
Hemodynamic instability	Hemodynamic instability
Deterioration in SCRB-60 or SBC	Deterioration in SCRB-60 or SBC

SBC: Single breath count [Table 5], SCRB-60: Clinical risk stratification score [Table 4]

Figure 4: Treatment escalation plan checklist. ED: Emergency department, HDU: High-dependency unit, CCM: Critical care medicine, IMV: Invasive mechanical ventilation, ECLS: Extracorporeal life support, LFNC: High-flow nasal cannula, HFNC: High-flow nasal cannula, NIPPV: Noninvasive positive pressure ventilation

Financial support and sponsorship
Nil.

Conflicts of interest
There are no conflicts of interest.

REFERENCES

1. Dondorp AM, Hayat M, Aryal D, Beane A, Schultz MJ. Respiratory support in novel coronavirus disease (COVID-19) patients, with a focus on resource-limited settings. Am J Trop Med Hyg 2020;103(4):10283.
2. Stawicki SP, Jeamromod R, Miller AC, Paladino L, Gaieski DF, Yaffe A, et al. The 2019–2020 Novel Coronavirus (Severe Acute Respiratory Syndrome Coronavirus 2) Pandemic: A Joint American College of Academic International Medicine-World Academic Council of Emergency Medicine Multidisciplinary COVID-19 Working Group Consensus Paper. J Glob Infect Dis 2020;2(2):47-93.
3. Gattinoni L, Coppola S, Cressoni M, Rossi S, Chiumello D, et al. Covid-19 does not lead to a “typical” acute respiratory distress syndrome. Am J Respir Crit Care Med 2020;202:1299-300. PMC7233352.
4. Sun Q, Qiu H, Huang M, Yang Y. Lower mortality of COVID-19 by early recognition and intervention: Experience from Jiangsu Province. Ann Intensive Care 2020;10:33.
5. Brower RG, Lanken PN, MacIntyre N, Matthay MA, Morris A, Ancukiewicz M, et al., National Heart, Lung, and Blood Institute ARDS Clinical Trials Network. Higher versus lower positive end-expiratory pressures in patients with the acute respiratory distress syndrome. New England J Med 2004;351:327-36.
6. Chorin E, Padegimas A, Havakuk O, Birati EY, Shacham Y, Milman A, et al. Assessment of Respiratory Distress by the Roth Score. Clin Cardiol 2016;39:636-9.
7. Devabhaktuni S, Armahizer MJ, Dasta JF, Kane-Gill SL. Analgesedation: A paradigm shift in intensive care unit sedation practice. Ann Pharmacother 2012;46:530-40.
8. Dwyer R, Hedlund J, Henriques-Normark B, Kalin M. Improvement of CRB-65 as a prognostic tool in adult patients with community-acquired pneumonia. BMJ Open Respir Res 2014;1:e000038.
9. Firstenberg MS. Extracorporeal Membrane Oxygenation: Advances in Therapy. London, England: IntechOpen; 2016.
10. Festic E, Bansal V, Kor DJ, Gajic O, US Critical Illness and Injury Trials Group: Lung Injury Prevention Study Investigators (USCIITG-LIPS). SpO2/FiO2 ratio on hospital admission is an indicator of early acute respiratory distress syndrome development among patients at risk. J Intensive Care Med 2015;30:209-16.
11. Gattinoni L, Chiumello D, Cairoli P, Busana M, Romitti F, Brazi L, et al. COVID-19 pneumonia: Different respiratory treatments for different phenotypes? Intensive Care Med 2020;111517.
12. Kądziółka I, Swistek R, Borowska K, Tyszcecki P, Serednicki W. Validation of APACHE II and SAPS II scales at the intensive care unit along with assessment of SOFA scale at the admission as an isolated risk of death predictor. Anaesthesiol Intensive Ther 2019;51:107-11.
13. Kolditz M, Ewig S, Schütte H, Suttrop N, Welte T, Rohde G, et al. Assessment of oxygenation and comorbidities improves outcome prediction in patients with community-acquired pneumonia with a low CRB-65 score. J Int Med 2015;278:193-202.
14. Kourouas V, Papanathanos G, Papanastassiou N, Nakos G. Efficacy of prone position in acute respiratory distress syndrome patients: A pathophysiology-based review. World J Crit Care Med 2016;5:121-36.
15. Marin M, Gattinoni L. Management of COVID-19 respiratory distress. JAMA 2020. Available from: https://www.ncbi.nlm.nih.gov/pubmed/32329799. [Last accessed on 2020 May 24].
16. Marin M, Hotchkiss JR, Broccard A. Bench-to-bedside review: Microvascular and airspace linkage in ventilator-induced lung injury. Critical Care 2003;7:435.
17. Messerele E, Peine P, Wittkopp S, Marin M, Albert RK. The pragmatics
of prone positioning. Am J Respir Crit Care Med 2002;165:1359‑63.

18. Peterson CM, Thomas DM, Blackburn GL, Heymsfield SB. Universal equation for estimating ideal body weight and body weight at any BMI. Am J Clin Nutr 2016;103:1197‑203.

19. Roca O, Caralt B, Messika J, Sampier M, Sztrым B, Hernández G, et al. An index combining respiratory rate and oxygenation to predict outcome of non-intubated high-flow therapy. Am J Respir Crit Care Med 2009;189:1368‑76.

20. Roca O, Messika J, Caralt B, García‑de‑Acuña M, Sztrым B, Ricard JD, et al. Predicting success of high‑flow nasal cannula in pneumonia patients with hypoxemic respiratory failure: The utility of the ROX index. J Crit Care 2016;33:200‑5.

21. Aoyama H, Yamada Y, Fan E. The future of driving pressure: a primary goal for mechanical ventilation? J Intensive Care 2018;6:64.

22. Mauri T, Spinelli E, Scotti E, Colussi G, Basile MC, Crotti S, et al. Potential for lung recruitment and ventilation‑perfusion mismatch in patients with the acute respiratory distress syndrome from coronavirus disease 2019. Crit Care Med 2020. Available from: https://pubmed.ncbi.nlm.nih.gov/32317951/. [Last accessed on 2020 May 24].

23. Oliveira VM, Weschenfelder ME, Dopoulos G, Cosseda R, Loss SH, Bairros PM, et al. Good practices for prone positioning at the bedside: Construction of a care protocol. Rev Assoc Med Bras (1992) 2016;62:287‑93.

24. Verity R, Okell LC, Dorigatti I, Winskill P, Whittaker C, Imai N, et al. Estimates of the severity of coronavirus disease 2019: A model‑based analysis. Lancet Infect Dis 2020. Available from: https://www.ncbi.nlm.nih.gov/pubmed/32240634. [Last accessed on 2020 May 24].

25. Tolentino JC, Stoltzfus JC, Harris R, Foltz D, Deringer P, Sakran JV, et al. Comorbidity‑polypharmacy score predicts readmissions and in‑hospital mortality: A six‑hospital health network experience. J Basic Clin Pharmacy 2017;8:98‑103.

26. Stawicki SP, Kalra S, Jones C, Justinianno CF, Papadimos TJ, Galwankar SC, et al. Comorbidity polypharmacy score and its clinical utility: A pragmatic practitioner's perspective. J Emerg Trauma Shock 2015;8:224.

27. Galwankar SC, Paladino L, Gaieski DF, Nanayakkara KDPWB, Di Somma S, Grover J, et al. Management algorithm for subclinical hypoxemia in COVID‑19 patients: Intercepting the ‘silent killer’. J Emerg Trauma Shock 2020;13:8‑11.

28. Uyeki TM, Bundesmann M, Alhazzani W. Clinical management of critically ill adults with coronavirus disease 2019 (COVID‑19). 2020. Available from: https://pubmed.ncbi.nlm.nih.gov/32150360/. PMID: 32150360. [Last accessed on 2020 May 21].

29. Levitan R. The Infection that's Silently Killing Coronavirus Patients; A retrospective cohort study. Lancet 2020;395:1054‑62.

30. Peterson CM, Thomas DM, Blackburn GL, Heymsfield SB. Universal equation for estimating ideal body weight and body weight at any BMI. Am J Clin Nutr 2016;103:1197‑203.

31. Marini JJ, Hotchkiss JR, Broccard AF. Bench‑to‑bedside review: The respiratory distress syndrome. Rationale, indications, and limits. Am J Respir Crit Care Med 2004;169:1354‑64.

32. Tang N, Bai H, Chen X, Gong J, Li D, Sun Z. Anticoagulant treatment is associated with decreased mortality in severe coronavirus disease 2019 patients with coagulopathy. J Thromb Haemostasis 2020;18:1094‑9.

33. Duca A, Piva S, Foca E, Latronico N, Rizzi M. Brescia‑COVID Respiratory Severity Scale (BCRSS)/Algorithm; 8 April, 2020. Available from: https://www.mdcalc.com/brescia‑covid‑respiratory‑severity‑scale‑bcrss‑algorithm. [Last accessed on 2020 May 21].

34. Rodrigues JCL, Hare SS, Edey A, Devaraj A, Jacob J, Johnston J, et al. An update on COVID‑19 for the radiologist‑A British Society of Thoracic Imaging Statement. Clin Radiol 2020;75:323‑5.

35. Wong HYF, Lam HYS, Fong AH, Leung ST, Chin TW, Lo CSY, et al. Frequency and Distribution of Chest Radiographic Findings in COVID‑19 Positive Patients. Radiology 2019;201160.

36. Zhou F, Yu T, Du R, Fan G, Liu Y, Liu Z, et al. Clinical course and risk factors for mortality of adult inpatients with COVID‑19 in Wuhan, China: A retrospective cohort study. Lancet 2020;395:1054‑62.

37. Giannis D, Ziogas IA, Gianni P. Coagulation disorders in coronavirus infected patients: COVID‑19, SARS‑CoV‑1, MERS‑CoV and lessons from the past. J Clin Virol 2020;127:104362.

38. Biddeli B, Madhavan MV, Jimenez D, Chuch T, Dreyfus I, Driggan E, et al. COVID‑19 and Thrombotic or Thromboembolic Disease: Implications for Prevention, Antithrombotic Therapy, and Follow-up. J Am Coll Cardiol 2020. Available from: https://pubmed.ncbi.nlm.nih.gov/32311448/. [Last accessed on 2020 May 21].

39. Zhou F, Yu T, Du R, Fan G, Liu Y, Liu Z, et al. Clinical course and risk factors for mortality of adult inpatients with COVID‑19 in Wuhan, China: A retrospective cohort study. Lancet 2020;395:1054‑62.