Open versus arthroscopic ankle arthrodesis: A systemic review and meta-analysis

CURRENT STATUS: UNDER REVIEW

Journal of Orthopaedic Surgery and Research ■ BMC

Tsz Ngai Mok
Jinan University

Qiyu He
Jinan University

SOUNDARYA PANNEERSELVAM
Jinan University

Huajun Wang
Jinan University First Affiliated Hospital

Huige Hou
Jinan University First Affiliated Hospital

Xiaofei Zheng
Jinan University First Affiliated Hospital

Jinghua Pan
Jinan University First Affiliated Hospital

Jieruo Li
First Affiliated Hospital of Jinan University

Corresponding Author
ilorugaie1@163.com
ORCiD: https://orcid.org/0000-0001-7025-2332

DOI: 10.21203/rs.3.rs-17549/v1

SUBJECT AREAS
Orthopedics Orthopedic Surgery

KEYWORDS
Arthrodesis, Ankle Joint, Arthroscopy, Open Surgery
Abstract
Background: Osteoarthritis (OA) is a growing health concern that affects approximately 27 million people in the USA and is associated with a $185 billion annual cost burden. Choosing between open surgery and arthroscopic arthrodesis for ankle arthritis is still controversial. This study compared arthroscopic arthrodesis and open surgery by performing a systematic review and meta-analysis.

Methods: For the systematic review, a literature search was conducted in four English databases (PubMed, Embase, Medline and the Cochrane Library) from inception to February 2020. Two prospective cohort studies and 8 retrospective cohort studies, enrolling a total of 548 patients with ankle arthritis, were included.

Result: For fusion rate, the pooled data showed a significantly higher rate of fusion during arthroscopic arthrodesis compared with open surgery (odds ratio 0.25, 95% CI 0.11 to 0.57, p = 0.0010). Regarding estimated blood loss, the pooled data showed significantly less blood loss during arthroscopic arthrodesis compared with open surgery (WMD 52.04, 95% CI 14.14 to 89.94, p = 0.007). For tourniquet time, the pooled data showed a shorter tourniquet time during arthroscopic arthrodesis compared with open surgery (WMD 22.68, 95% CI 1.92 to 43.43, p = 0.03). For length of hospital stay, the pooled data showed less hospitalisation time for patients undergoing arthroscopic arthrodesis compared with open surgery (WMD 1.62, 95% CI 0.97 to 2.26, p < 0.00001). The pooled data showed better recovery for the patients who underwent arthroscopic arthrodesis compared with open surgery at 1 year (WMD 14.73, 95% CI 6.66 to 22.80, p = 0.0003).

Conclusion: In conclusion, arthroscopic arthrodesis was associated with a higher fusion rate, smaller estimated blood loss, shorter tourniquet time, shorter length of hospitalisation and better functional improvement at 1 year than open surgery.

Background
Osteoarthritis (OA) is a growing health concern that affects approximately 27 million people in the USA and is associated with a $185 billion annual cost burden [1]. Disabling or even substantial functional impairment are the main symptoms of end-stage ankle arthritis.[2] It can drastically alter the quality of life of a patient. Arthrodesis is one of the last options for patients when conservative
treatment fails.[2-4]

Arthrodesis, via open surgery, is the traditional option for treating ankle arthritis, chronic instability, and degenerative deformity. [5] Pain relief and functional improvement of a foot with ankle degeneration are reasons why ankle arthrodesis might be highly recommended as a treatment option. However, arthrodesis alters biochemical performance and may cause foot pain, joint arthritis, and bone fracture.[6, 7] In the last decade, arthroscopic arthrodesis, which is an advanced technique for treating ankle problems, has been used. It has been an available option since 1983. [8] It has been reported that arthroscopic arthrodesis is less invasive, and patients suffer less pain after surgery. However, it is time-consuming and has a controversial ankle fusion rate.[9] Moreover, a contraindication for arthroscopic arthrodesis is severe deformity. [10]

Choosing between open surgery and arthroscopic arthrodesis for ankle arthritis is still controversial. [11] However, to our knowledge, only one systematic review and meta-analysis comparing the outcomes of open and arthroscopic methods of ankle fusion is available in the literature, but it did not contain data on postoperative improvement. [10] This study evaluated the fusion rate, effectiveness, complications, and operative improvements by performing a systemic and meta-analysis that focused on all studies that met our criteria: studies comparing arthroscopic arthrodesis and open surgery for patients with ankle arthritis.

Methods
Search Strategy
For the systemic review, a literature search was conducted using four English databases (PubMed, Embase, Medline and the Cochrane Library) from inception to August 2019. To maintain a high sensitivity in our research, we decided to include relevant medical subject heading (MeSH) terms, common keywords, and a comprehensive combination. No language restriction and no filters were set for the strategy. All the relevant published article bibliographies were reviewed. A total of 143 references were removed due to duplication, and 187 references were imported for an initial screening of titles and abstracts. (Fig. 1)

Inclusion and Exclusion Criteria
Two examiners screened all the references, including the titles and abstracts, separately so that the
eligibility criteria could be achieved. Irrelevant articles and non-full-text references were excluded.

The inclusion criteria were as follows: (1) patients with arthritis, including post-traumatic arthritis, osteoarthritis, and end-stage arthritis, or patients with ankle instability; (2) comparative studies of open arthrodesis surgery and arthroscopic arthrodesis; and (3) one or more outcomes of interest shown in the studies. The excluded studies were (1) not original articles or (2) preclinical studies.

Data Extraction and Quality Assessment
The following variables were extracted and double-checked by the reviewers independently, and a quality assessment was performed. The Newcastle-Ottawa Scale (NOS) was used to assess the risk of bias of the observational studies. There are a maximum of nine stars in 3 domains (8 items): the selection of the study groups, the compatibility of the groups, and the ascertainment of the outcome of interest. According to the scale, there are only low risk and high risk. Low risk was rated as one star, and high risk was rated as no star. Nine stars in a study indicated a low risk of bias, seven to eight stars in a review indicated a moderate risk of bias, and six or fewer stars in a study indicated a high risk of bias. Furthermore, a methodological index for non-randomized studies (MINORS) was also used for the assessment. Twelve items were included in the checklist: clearly stated aim, inclusion of consecutive patients, prospective data collection, endpoints appropriate to study aim, follow-up period appropriate to study aim, less than 5% lost to follow-up, prospective calculation of study size, an adequate control group, contemporaneous groups, baseline equivalence of the groups and adequate statistical analyses. A score of 0-2 is given for each item. The first 8 items are for those without a control group, and the maximum score is 16. The last 4 items and the previous items are for those with a control group, and the maximum score is 24. Zero indicated no record; 1 indicated an unclear recording; and 2 indicated that the outcome was fully reported in the article. Two reviewers discussed whether there was any disagreement that needed to be resolved. A third author was consulted when no agreement could be achieved. The baseline demographic and clinical characteristics of the study participants, including age, sex ratio, body mass index (BMI), sample size and lesion types, were recorded. At least 16 surgeons from different institutes participated in both the arthroscopic and open surgeries. The minimum duration of data collection was three years, and
Peterson et al. reported a maximum duration of 11 years. (Table 1) Regarding the information about the interventions, the information collected about open and arthroscopic arthrodesis were included in the ratio in each study. Adverse events and postoperative complications, the overall complication rate and the infection rates were recorded. Operation time, estimated blood loss, length of stay, and Ankle Osteoarthritis Scale (AOS) score 12 and 24 months after surgery were extracted[14] to compare the effectiveness of open arthrodesis and arthroscopic arthrodesis. These were the only available assessments of functional improvement that could be pooled from the studies.
Table 1
Characteristics of the included studies

Author	Year	Country	Journal	Lesion Type	Procedure	Follow up	Sample size	Arthroscopic	Open	Age	Male	BMI
Meng⁹⁰	2013	China	Chinese journal of reparative and reconstructive surgery	Ankle arthritis	Ankle fusion	12 months	30	14	16	Not available	Not available	Not available
O'Brien TS¹⁹	1999	USA	Foot and Ankle International	Post traumatic arthritis	Ankle fusion	NP	36	19	17	47.3 vs 44.6	9/19 vs 7/17	Not available
Nielsen KK²³	2008	Denmark	Foot and Ankle Surgery	Post traumatic arthritis	Ankle fusion	12 months	107	58	49	Not available	Not available	Not available
Townsh ed D⁴	2013	Canada	Journal of Bone and Joint Surgery Am	Post traumatic arthritis	Ankle fusion	24 months	60	30	30	59.4 vs 54.7	11/30 vs 20/30	27.4 vs 29.6
Myerson 24	1990	USA	Clinical Orthopedics and Related Research	Post traumatic arthritis	Ankle fusion	23 months	33	17	16	Not available	7/17 vs 7/16	Not available
Peterson 2₅	2010	USA	Journal of foot and Ankle Surgery	Ankle arthritis	Ankle fusion	6 months	10	10	10	56.2 vs 54.8	5/10 vs 6/10	37.36 vs 32.11
Panikkar 2₈	2003	UK	Foot and Ankle Surgery	Osteoarthritis/Rheumatoid arthritis/Post traumatic	Ankle fusion	96 months	41	21	22	65 vs 68	17/3 vs 12/9	
DeVries 2₆	2019	USA	Journal of Foot and Ankle Surgery	Ankle instability	Ankle fusion	24.2 months	55	43	12	44.7 vs 39.5	16/43 vs 6/12	34.2 vs 33.1
Quayle ²²	2016	UK	Foot and Ankle Surgery	Post traumatic arthritis	Ankle fusion	48 months	79	50	29	57 vs 61.9	37/50 vs 19/29	28.9 vs 28.0
Schmid 2¹¹	2017	Canada	Foot and Ankle International	End-stage ankle arthritis	Ankle fusion	54 months	97	62	35	57.4 vs 57.11	39/62 vs 26/35	28.2 vs 28.8

³Arthroscopic arthrodesis
⁴Open Surgery

Statistical Analysis
For dichotomous variables (i.e., fusion rate, infection rate, and overall complication rate), the odds ratios (ORs) and weighted mean differences (WMDs) were calculated and reported with 95% confidence intervals (CIs). [15, 16] The algorithms proposed by Hozo et al[2] were used when only the median, standard error, or range were reported in the studies.

To assess statistical heterogeneity, a chi-square test with significance set at p < 0.10 was used, including in the meta-analysis, and I^2 statistics quantified heterogeneity. A fixed-effect model was applied for all variables with I^2 < 50%. This means that there was no significant heterogeneity among the studies. All meta-analyses were directed by Review Manager Version 5.3 (RevMan, Copenhagen: The Nordic Cochrane Center, The Cochrane Collaboration, 2014). A two-tailed test of significance (p < 0.05) was used.[17]

The publication bias was assessed by the Stat (version 11) with the funnel plot and the egger test. In order to check the stability of pooled outcomes, a sensitivity analysis was conducted. Both Begg’s test and Egger’s test were used for assessing publication bias. The statistical significance within all comparisons was mathematically signified as P < 0.05.

Results
Study Characteristics
Table 1 shows the characteristics of the 10 studies and their patients. Four of the 10 studies were conducted in the US, 1 in Canada, 1 in China, 1 in Denmark and 2 in the UK. All the studies were published during the last 20 years, i.e., from 1990 to 2019. The studies included two prospective cohort studies and eight retrospective cohort studies and enrolled a total of 548 patients with ankle arthritis. No randomised controlled trial was included. A total of 324 patients underwent arthroscopic arthrodesis, and 244 patients underwent open arthrodesis.

Using the Newcastle-Ottawa scale, 2 analyses had a moderate risk of bias for study participation. One analysis had a high risk of bias. The graph in Fig. 2 demonstrates the summary and results of the methodological quality assessment. Regarding the MINORS, one article had 24 score and three articles had a score of 22. Five analyses had scores between 18 and 20. One article had a score of 16. Supplemental Table 1 contains a summary of the results.

Primary outcome
Fusion Rate

Seven studies reported the fusion rate, and the pooled data showed a significantly higher rate of fusion during arthroscopic arthrodesis compared with open surgery (odds ratio 0.31, 95% CI 0.14 to 0.69, \(p = 0.004 \)) in 128 of 167 patients. In addition, there was no significant heterogeneity between these two groups. (Fig. 3a)

Days to Union

Three studies assessed the days to union, and there was no difference between arthroscopic and open surgery (WMD 1.62, 95% CI -5.97 to 59.08, \(p = 0.11 \)). There was no significant heterogeneity among these three studies. (Fig. 3b)

Surgical Outcomes

Operation Time

Four studies reported the operation time. The level of heterogeneity was low (chi-square = 4.65, df = 3, \(I^2 = 35\% \), \(p = 0.20 \)), and the pooled data from the four studies did not show a notable difference between arthroscopic arthrodesis and open surgery (WMD 3.72, 95% CI -5.31, 12.76, \(p = 0.42 \)). (Fig. 4a)

Estimated Blood Loss

Two studies assessed the estimated blood loss during surgery, and the pooled data showed significantly less blood loss during arthroscopic arthrodesis compared with open surgery (WMD 52.04, 95% CI 14.14 to 89.94, \(p = 0.007 \)). In addition, there was no significant heterogeneity between the two groups. (Fig. 4b)

Tourniquet Time

Four studies reported the tourniquet time, and the pooled data showed remarkably smaller tourniquet times during arthroscopic arthrodesis compared with open surgery (WMD 22.68, 95% CI 1.92 to 43.43, \(p = 0.03 \)). There was significant heterogeneity among these four studies. (Fig. 4c)

Length of Hospital Stay

Six studies reported the length of stay in the hospital, and the pooled data showed markedly less hospitalisation time for patients undergoing arthroscopic arthrodesis compared with open surgery (WMD 1.87, 95% CI 1.06 to 2.67, \(p < 0.00001 \)), with a low level of heterogeneity (chi-square = 28.52, df = 5, \(I^2 = 82\% \)). (Fig. 4d)
Complications
Overall Complication Rate
Eight studies assessed the overall complication rate, and there was no difference between
arthroscopic arthrodesis and open surgery (WMD 1.60, 95% CI 0.88 to 2.90, p = 0.12). There was no
obvious heterogeneity among these eight studies. (Fig. 5a)

Rate of infection
Seven studies, including 365 patients, reported the rate of infection, and the pooled data showed no
significant difference between patients who underwent arthroscopic arthrodesis and those who
underwent open surgery (odds ratio 1.58, 95% CI 0.60 to 4.16, p = 0.36). There was no significant
heterogeneity among these seven studies. (Fig. 5b)

Functional Improvement
One Year Post-Surgery
Two studies reported the 1-year postoperative recovery with the AOS score. The pooled data showed
markedly better recovery for the patients who underwent arthroscopic arthrodesis compared with
those who underwent open surgery (WMD 14.73, 95% CI 6.66 to 22.80, p = 0.0003) with a low
heterogeneity (chi-square 0.49, df = 1, p = 0.48, I² = 0%). (Fig. 6a)

Two Years Post-Surgery
Two studies assessed the 2-year postoperative recovery using the AOS scale and reported that
patients who underwent arthroscopic arthrodesis had no notably greater recovery than those who
underwent open surgery (WMD 8.13, 95% CI -3.40 to 19.99, P = 0.48). In addition, there was no
significant heterogeneity between these two groups (I² = 40%, P = 0.20). (Fig. 6b)

Publication Bias
Visual inspection of the Begg funnel plots for the fusion rate, overall complication and infection rate
revealed symmetry (Fig. 7). To ensure that there was not publication bias, Egger’s test was also
conducted (Supplemental Table 2). There was not statistically significant publication bias for any of
the three results (95% CI -4.67 – -2.26, p = 0.119; 95% CI -1.40 – -0.98, p = 0. 82; 95% CI -2.34 –
-0.51, p = 0.3, respectively).

Discussion
This study conducted a systematic review and meta-analysis of comparative studies published since
1990 to compare the fusion rate, operative effectiveness, safety and postoperative outcomes of arthroscopic arthrodesis and open surgery for ankle arthritis. Although there are similar studies comparing ankle arthrodesis and open surgery, this study included the most publications, reflects the latest surgical results, and focuses on the results of arthroscopic arthrodesis and open surgery for ankle arthritis. Considering limitations of a learning curve and insufficient evaluation, the study results might be meaningful. This study evaluated the two procedures using 4 items: days to union, estimated blood loss, and AOS score at 12 and 24 months, unlike the previous study. These items formed a complete evaluation, from primary outcome to postoperative recovery. First, it was noted that there was no significant difference in days to union, which is contrary to previous studies.[3] Patients who underwent arthroscopic arthrodesis did not have a shorter time to union than those who experienced open surgery.

Regarding the rate of fusion, the meta-analysis showed that there was a remarkable difference between arthroscopic arthrodesis and open surgery, and the data support the most recent meta-analysis by Honnenahalli et al.[3] Patients who underwent arthroscopic arthrodesis had a higher fusion rate than those who underwent open surgery. In arthroscopic arthrodesis, the soft tissue envelope is disrupted to a minimum degree, which enables the major functions of soft tissues close to the surgical site. The bone healing cascade is activated rapidly, so the bone heals rapidly and function improves in the early stage due to the minimum degree of soft-tissue envelope disruption [4, 18]. These theories may elucidate the high fusion rate for arthroscopic arthrodesis.

Additionally, this study is the first to assess the estimated blood loss, and the pooled data significantly favoured arthroscopic arthrodesis compared with open surgery. The data were pooled by O’Brien et al.[19] and Townshed et al. [4] Moreover, the tourniquet time during the operation was considerably shorter with arthroscopic arthrodesis than with open surgery. Although Meng et al.[20] mentioned a longer operation time for arthroscopic arthrodesis, this study showed no significant differences in the operating time for the two procedures. There is only one relevant study mentioned in Meng et al.[20], but their pooled data was extracted from a larger sample size from different countries. Therefore, the risk of bias is minimised in the results. As a result, arthroscopic arthrodesis
does not take longer to complete than open surgery.

Regarding complications, patients who undergo arthroscopic arthrodesis may require removal of a screw for prominence, superficial infections, deep vein thromboses/pulmonary emboli, fixation revision, stress fracture or deep infections after surgery.[9] However, the study shows no significant difference between these two surgical procedures. It has been reported that patients require reoperation for similar complications in the two groups. This explains why there was no remarkable difference in either group given the similar postoperative radiological alignment.[21]

Moreover, postoperative improvements were studied via the AOS score. The arthroscopic arthrodesis group showed significantly better scores at one year compared with the open surgery groups.[22] However, no significant difference between the groups at 2 years was noted. Since less area was damaged during arthroscopic arthrodesis than during open surgery, the tissues and functions recovered rapidly and in earlier stages, as per Townshend et al. [4] Further study is needed to improve understanding of the clinical picture of the finding, especially with regards to education for patients choosing the best time to undergo reconstruction for their ankle arthritis.[21, 23, 24] This is a new finding compared with the previous study. Thus, patients who underwent arthroscopic arthrodesis recovered in a shorter time but showed similar bone reconstruction in the long term compared with those who underwent open surgery.

There are several limitations despite these findings. First, no randomised controlled trial (RCT) was reported. There is a higher risk of selection and reporting bias in an observational study compared with an RCT study. Second, a larger sample size is needed for some of the results, such as blood loss and functional improvement, which are drawn from few data points because they were not investigated in all the studies that were available for review. Four out of 9 reviews were from the US. This increases the risk of bias towards a specific area. Third, longer follow-up times are needed. A 24-month follow-up cannot show the long-term effects or complications of the procedures.[24–28]

Conclusion

In this study, arthroscopic arthrodesis was associated with a higher fusion rate, shorter tourniquet time and shorter length of hospitalisation than open surgery. Nevertheless, we need to interpret the
results with caution, pool RCT studies with larger sample sizes and perform comparative studies to evaluate the efficiency of arthroscopic arthrodesis.

Declarations

Acknowledgements

Not applicable.

Authors’ contributions

MTN and HQ designed the study and wrote the manuscript. PS and HH reviewed the risk of bias of the studies and the manuscript. WH and ZX extracted the data from the studies. PJ interpreted the results. LJ supervised the entire study. All authors read and approved the final manuscript.

Funding

No specific funding was provided for the study.

Ethics approval and consent to participate

Not applicable.

Competing interests

The authors declare no competing interests.

References

1. Ewalefo, S.O., et al., Management of Posttraumatic Ankle Arthritis: Literature Review. Current reviews in musculoskeletal medicine, 2018. 11(4): p. 546-557.

2. Hozo, S.P., B. Djulbegovic, and I. Hozo, Estimating the mean and variance from the median, range, and the size of a sample. BMC Med Res Methodol, 2005. 5: p. 13.

3. Honnenahalli Chandrappa, M., S. Hajibandeh, and S. Hajibandeh, Ankle arthrodesis- Open versus arthroscopic: A systematic review and meta-analysis. Journal of clinical orthopaedics and trauma, 2017. 8(Suppl 2): p. S71-S77.

4. Townshend, D., et al., Arthroscopic versus open ankle arthrodesis: a multicenter comparative case series. J Bone Joint Surg Am, 2013. 95(2): p. 98-102.

5. Rzesacz, E.H. and F. Gosse, [Management of posttraumatic osteoarthritis of the upper ankle joint by implantation of the S.T.A.R. ankle prosthesis]. Oper Orthop
6. Wang, Y., et al., *Effects of Ankle Arthrodesis on Biomechanical Performance of the Entire Foot*. PloS one, 2015. **10**(7): p. e0134340-e0134340.

7. Kim, H.J., et al., *Total ankle arthroplasty versus ankle arthrodesis for the treatment of end-stage ankle arthritis: a meta-analysis of comparative studies*. Int Orthop, 2017. **41**(1): p. 101-109.

8. Piraino, J.A. and M.S. Lee, *Arthroscopic Ankle Arthrodesis: An Update*. Clin Podiatr Med Surg, 2017. **34**(4): p. 503-514.

9. Winson, I.G., D.E. Robinson, and P.E. Allen, *Arthroscopic ankle arthrodesis*. J Bone Joint Surg Br, 2005. **87**(3): p. 343-7.

10. Elmlund, A.O. and I.G. Winson, *Arthroscopic ankle arthrodesis*. Foot Ankle Clin, 2015. **20**(1): p. 71-80.

11. Gharehdaghi, M., H. Rahimi, and A. Mousavian, *Anterior ankle arthrodesis with molded plate: technique and outcomes*. Arch Bone Jt Surg, 2014. **2**(3): p. 203-9.

12. Lo, C.K.-L., D. Mertz, and M. Loeb, *Newcastle-Ottawa Scale: comparing reviewers' to authors' assessments*. BMC medical research methodology, 2014. **14**: p. 45-45.

13. Stang, A., *Critical evaluation of the Newcastle-Ottawa scale for the assessment of the quality of nonrandomized studies in meta-analyses*. Eur J Epidemiol, 2010. **25**(9): p. 603-5.

14. Croft, S., et al., *Association of Ankle Arthritis Score With Need for Revision Surgery*. Foot Ankle Int, 2017. **38**(9): p. 939-943.

15. Nuzzo, R.L., *Making Continuous Measurements into Dichotomous Variables*. Pm r, 2019. **11**(10): p. 1132-1134.

16. Bishara, A.J. and J.B. Hittner, *Confidence intervals for correlations when data are not normal*. Behav Res Methods, 2017. **49**(1): p. 294-309.
17. Balasubramaniam, M. and J.S. Fischgrund, *Two-tailed Fisher's exact test (Cochran-Mantel-Haenzel)*. Spine J, 2002. 2(2): p. 158-9.

18. Ogilvie-Harris, D.J., I. Lieberman, and D. Fitsialos, *Arthroscopically assisted arthrodesis for osteoarthrotic ankles*. J Bone Joint Surg Am, 1993. 75(8): p. 1167-74.

19. O'Brien, T.S., et al., *Open versus arthroscopic ankle arthrodesis: a comparative study*. Foot Ankle Int, 1999. 20(6): p. 368-74.

20. Meng, Q., et al., *[Effectiveness comparison between arthroscopic and open ankle arthrodeses]*. Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi, 2013. 27(3): p. 288-91.

21. Schmid, T., et al., *Effect of Preoperative Deformity on Arthroscopic and Open Ankle Fusion Outcomes*. Foot Ankle Int, 2017. 38(12): p. 1301-1310.

22. Zvijac, J.E., et al., *Analysis of arthroscopically assisted ankle arthrodesis*. Arthroscopy, 2002. 18(1): p. 70-5.

23. Nielsen, K.K., F. Linde, and N.C. Jensen, *The outcome of arthroscopic and open surgery ankle arthrodesis: a comparative retrospective study on 107 patients*. Foot and ankle surgery : official journal of the European Society of Foot and Ankle Surgeons, 2008. 14(3): p. 153-157.

24. Myerson, M.S. and G. Quill, *Ankle arthrodesis. A comparison of an arthroscopic and an open method of treatment*. Clinical orthopaedics and related research, 1991(268): p. 84-95.

25. Peterson, K.S., M.S. Lee, and D.E. Buddecke, *Arthroscopic versus open ankle arthrodesis: a retrospective cost analysis*. The Journal of foot and ankle surgery : official publication of the American College of Foot and Ankle Surgeons, 2010. 49(3): p. 242-247.

26. DeVries, J.G., B.M. Scharer, and T.A. Romdenne, *Ankle Stabilization With Arthroscopic Versus Open With Suture Tape Augmentation Techniques*. The Journal of foot and
ankle surgery: official publication of the American College of Foot and Ankle Surgeons, 2019. 58(1): p. 57-61.

27. Quayle, J., et al., *Arthroscopic versus open ankle arthrodesis*. Foot and ankle surgery: official journal of the European Society of Foot and Ankle Surgeons, 2018. 24(2): p. 137-142.

28. Panikkar, K.V., *A comparison of open and arthroscopic ankle fusion*. Foot and Ankle Surgery, 2003.

Figures
Figure 1

PRISMA Flow Diagram

From: Moher D, Liberati A, Tetzlaff J, Altman DG. The PRISMA Group (2009). Preferred Reporting Items for Systematic Reviews and Meta-Analyses: The PRISMA Statement. PLoS Med 6(7): e1000097. doi:10.1371/journal.pmed.1000097

For more information, visit www.prisma-statement.org.
Figure 2

Summary and results of the methodological quality assessment.

Study or Subgroup	Open Events	Endoscopic Events	Weight	M-H Random 95% CI	Odds Ratio
Meng 2013	19	16	1.55	0.35 (0.13, 0.96)	0.33 (0.11, 0.99)
Morice 1999	19	16	1.55	0.35 (0.13, 0.96)	0.33 (0.11, 0.99)
Nield et al. 2008	19	16	1.55	0.35 (0.13, 0.96)	0.33 (0.11, 0.99)
Offit & Teizer 2006	19	16	1.55	0.35 (0.13, 0.96)	0.33 (0.11, 0.99)
Patrakka 2013	19	16	1.55	0.35 (0.13, 0.96)	0.33 (0.11, 0.99)
Pelikan 2016	19	16	1.55	0.35 (0.13, 0.96)	0.33 (0.11, 0.99)
Quaate 2016	19	16	1.55	0.35 (0.13, 0.96)	0.33 (0.11, 0.99)
Townshend 2013	19	16	1.55	0.35 (0.13, 0.96)	0.33 (0.11, 0.99)
Total (95% CI)	187	219	100.0%	6.31 (0.14, 0.09)	6.31 (0.14, 0.09)

Figure 3

Primary Outcome.
Figure 4

Operation Time.

Study or Subgroup	Open	Arthroscopic	Mean Difference	Mean Difference	Mean Difference				
	Mean	SD	Total	Mean	SD	Total	Weight	IV Random, 95% CI	IV Random, 95% CI
Valenzuela 2003	116	28.75	48	124	40.3	58	28.5%	0.30 [-1 0.91]	
O’Brien TS 1999	194	72.5	17	166	28.75	19	5.6%	0.00 [0.99, 0.34]	
Peterson 2010	115.6	20.12	14	105.7	12.89	10	24.5%	6.90 [3.71, 17.07]	
Townsend D 2013	107	19.5	38	99	18.4	30	41.4%	8.01 [1.12, 17.12]	
	117	100%	3.72 [5.33, 12.76]		0.42				
				0.01					

Heterogeneity: Tau² = 20.65, Chi² = 46.5, df = 3, P = 0.20; P = 36%

Test for overall effect: Z = 0.61 (P = 0.02)

b

Study or Subgroup	Open	Arthroscopic	Mean Difference	Mean Difference	Mean Difference				
	Mean	SD	Total	Mean	SD	Total	Weight	IV Random, 95% CI	IV Random, 95% CI
Townsend D 2013	95.1	5.2	30	50.4	4.7	30	87.4%	44.70 [42.19, 47.21]	
	100%	20.04 [14.14, 26.94]		0.07					

Heterogeneity: Tau² = 42.0, Chi² = 1.32, df = 1 (P = 0.25); P = 35%

Test for overall effect: Z = 2.66 (P = 0.047)

c

Study or Subgroup	Open	Arthroscopic	Mean Difference	Mean Difference	Mean Difference				
	Mean	SD	Total	Mean	SD	Total	Weight	IV Random, 95% CI	IV Random, 95% CI
O’Brien TS 1999	121	151.11	17	101	14	19	12.0%	103.00 [64.12, 201.88]	
Peterson 2010	116.6	20.12	10	109.7	12.89	10	24.5%	6.90 [2.71, 21.71]	
Quayle 2010	145	35.17	29	124	35.17	50	24.2%	22.09 [18.88, 35.09]	
Townsend D 2013	107	19.5	30	99	16.4	30	26.6%	0.00 [1 12.17]	
	109	100%	22.68 [15.92, 43.43]		0.03				

Heterogeneity: Tau² = 39.15, Chi² = 27.45, df = 3 (P = 0.0002); P = 89%

Test for overall effect: Z = 2.14 (P = 0.03)

d

Study or Subgroup	Open	Arthroscopic	Mean Difference	Mean Difference	Mean Difference				
	Mean	SD	Total	Mean	SD	Total	Weight	IV Random, 95% CI	IV Random, 95% CI
Wang 2013	3.3	1.3	16	5.1	1.9	51	10.3%	2.27 [0.38, 4.16]	
O’Brien TS 1999	3.4	1.25	17	1.6	0.75	15	20.0%	1.60 [0.32, 3.87]	
Farnell 2010	5.2	0.75	20	2.5	0.75	20	22.1%	3.00 [0.61, 5.61]	
Peterson 2010	3.4	2.13	20	2.6	0.75	15	22.1%	3.00 [0.61, 5.61]	
Quayle 2016	1.93	4.67	29	5.2	4.72	51	8.0%	2.50 [0.92, 4.23]	
Townsend D 2013	3.7	1.8	30	2.5	1.3	31	19.0%	1.20 [0.51, 1.89]	
	151	100%	1.87 [1.06, 2.67]		0.03				

Heterogeneity: Tau² = 0.72, Chi² = 24.52, df = 5 (P = 0.0001); P = 82%

Test for overall effect: Z = 4.54 (P = 0.0001)
Figure 5
Complications.

Figure 6
One Year Post-Surgery.
Figure 7

Two Years Post-Surgery.

Supplementary Files

This is a list of supplementary files associated with this preprint. Click to download.

Supplemental TABLE 1 .docx
PRISMA 2009 checklist.doc
Supplemental Table 2 Published_bias.docx