Research Article
A Network Pharmacology Approach to Investigate the Mechanism of Erjing Prescription in Type 2 Diabetes

Jiexin Wang,1 Haiqing Chu,1 Hangying Li,1,2 Wenqian Yang,1 Yu Zhao,1 Tong Shen,1 John Cary,3 and Liming Zhang1,2,4

1College of Pharmacy, Ningxia Medical University, Yinchuan 750004, China
2Ningxia Engineering and Technology Research Center for Modernization of Chinese Medicine, Yinchuan 750004, China
3Ningxia Medical University, Yinchuan 750004, China
4Key Laboratory of Ningxia Ethnomedicine Modernization, Ministry of Education, Ningxia Medical University, Yinchuan 750004, China

Correspondence should be addressed to Liming Zhang; nyzlm@163.com

Received 4 March 2021; Revised 11 July 2021; Accepted 17 July 2021; Published 26 July 2021

Copyright © 2021 Jiexin Wang et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Erjing prescription (EJP) was an ancient formula that was recorded in the General Medical Collection of Royal Benevolence of the Song Dynasty. It has been frequently used to treat type 2 diabetes mellitus (T2DM) in the long history of China. The formula consists of *Lycium barbarum* L. and *Polygonatum sibiricum* F. Delaroche with a ratio of 1:1. This study aimed to identify the potential effects and mechanisms of EJP treatment T2DM. The target proteins and possible pathways of EJP in T2DM treatment were investigated by the approach of network pharmacology and real-time PCR (RT-PCR). 99 diabetes-related proteins were regulated by 56 bioactive constituents in EJP in 26 signal pathways by Cytoscape determination. According to GO analysis, 606 genes entries have been enriched. The PPI network suggested that AKT1, EGF, EGFR, MAPK1, and GSK3β proteins were core genes. Among the 26 signal pathways, the PI3K-AKT signal pathway was tested by the RT-PCR. The expression level of PI3K p85, AKT1, GSK3β, and Myc mRNA of this pathway was regulated by EJP. The study based on network pharmacology and RT-PCR analysis revealed that the blood sugar level was regulated by EJP via regulating the PI3K-AKT signal pathway. Plenty of new treatment methods for T2DM using EJP were provided by network pharmacology analysis.

1. Introduction

Type 2 diabetes (T2DM, Chinese name: Xiaoke) is a common chronic metabolic disease with a high prevalence. In 2019, over 463 million people suffered from diabetes. It is estimated that there will be 578 and 700 million diabetic patients in 2030 and 2045, respectively [1, 2], which would bring up a huge economic burden on society. In general, many cases may be undiagnosed in a long predetection period [3]. A lot of complications, such as heart failure, cardiovascular complications, and diabetic nephropathy, are always accompanied with the occurrence of diabetes [4–7]. Low immunity is a common feature for almost all forms of diabetes [8]. Therefore, the researcher devotes to exploring effective drugs to prevent and treat T2DM. Nowadays, traditional Chinese medicine (TCM) has been increasingly popular for the T2DM treatment [9]. For example, Liuwei Dihuang pills and Huanglian decoction have been widely researched for treating T2DM [10–12]. Alizarin, isolated from TCM (*Rubia cordifolia*), reduced blood sugar levels and alleviated insulin resistance through the PI3K/AKT pathway [13].

EJP (also known as Erjingwan) is a formula consisting of *Lycium barbarum* L. and *Polygonatum sibiricum* F. Delaroche, which is recorded in General Medical Collection of Royal Benevolence, early traced back to the Song Dynasty. Erjingwan, a classic formula of nourishing, showed antiaging effects in the skin through activation of Nrf2 and inhibition of NF-κB [14]. These two medicines possessed a certain hypoglycemic effect and mainly contained...
2.2. Ingredients Database Construction. All potential compounds of EJP were obtained from the Traditional Chinese Medicine Systems Pharmacology (TCMSP) database analysis platform database (http://lsp.nwu.edu.cn/tcmsp.php) [23]. In the TCMSP database, 500 Chinese herbal medicines and 30,069 constituents were registered from the Chinese Pharmacopoeia (2010 edition). A total of 56 compounds were gained from EJP, including 45 in L. barbarum and 12 in P. sibiricum. The details of each class of compounds are summarized in Table 1.

First, effective constituents that contributed to its efficacy were selected by absorption, distribution, metabolism, and excretion parameters (ADME), meanwhile those are ineffective or even toxic were removed [24]. Second, higher oral absorption, bioavailability, and biological properties were essential for candidate constituents. Therefore, these compounds needed to satisfy the 30% in oral bioavailability (OB) and 0.18 in drug-likeness (DL).

The related proteins of active components in EJP were acquired from TCMSP databases. Genes related to proteins were retrieved from the UniProt Knowledgebase (UniProtKB) (http://www.uniprot.org), which was a protein database containing 54,247,468 sequence entries [25].

2.3. Predicting Targets of T2DM. The target proteins of T2DM were obtained from four sources: (1) 15,500 gene entries were included in OMIM database (http://www.omim.org/), which was focused on illustrating gene and genetic disorders [26]. (2) GeneCards (https://www.genecards.org/) is a comprehensive database that provides human genes of annotation and prediction. It could effectively establish the linkages of gene disease [27]. (3) DisGeNET (http://www.disgenet.org/) database, the current release contains more than 24,000 diseases and traits, 17,000 genes, and 117,000 genomic variants [28]. (4) Therapeutic target database (TTD) contained information from three aspects: (i) the microRNAs and transcription factors of target regulation, (ii) the proteins of target interaction, and (iii) targeting agents and targets, which can be easily retrieved and further enriched by the mechanisms of regulation or biochemical classes [29]. All targets linked to T2DM were only limited to Homo sapiens. The 1,260 genes totally were gained. The 99 same target proteins of compound and disease were selected as the main target of EJP in the treatment of T2DM (Table 2).

2.4. Network Construction

2.4.1. Compound-Target Network. The pharmacological mechanisms of actions were explored by the compound-target network, which was founded for the 57 compounds and relevant protein targets in T2DM utilizing Cytoscape 3.7.2. [30].

2.4.2. GO and KEGG Analyses. Gene ontology (GO) is to annotate genes and their expression products. It is mainly divided into 3 parts: cell component (CC), biological process (BP), and molecular function (MF) [31]. Kyoto Encyclopedia of Genes and Genomes (KEGG) can analyze the signal pathways of drug targets in order to search the disease signal pathways that have maximum correlation, which is significant for discovering the possible mechanism of EJP in the treatment of T2DM [32]. In this study, the enrichment analysis of GO and KEGG were performed through DAVID bioinformatics resources (https://david.ncifcrf.gov) [33] in order to explore the related CC, BP, MF, and pathways. It illustrated the connection of genes and target proteins in diabetes.
MOL ID	Molecule	MW	OB (%)	DL	Medicine
MOL001323	Sitosterol α1	426.8	43.28	0.78	L. barbarum
MOL003578	Cycloartenol	426.8	38.69	0.78	L. barbarum
MOL001494	Mandenol	308.56	42	0.19	L. barbarum
MOL001495	Ethyl linolenate	306.54	46.1	0.2	L. barbarum
MOL001979	LAN	426.8	42.12	0.75	L. barbarum
MOL000449	Stigmasterol	412.77	43.83	0.76	L. barbarum
MOL005406	Atropine	289.41	45.97	0.19	L. barbarum
MOL005438	Campesterol	400.76	37.58	0.71	L. barbarum
MOL006209	Cyanin	411.66	47.42	0.76	L. barbarum
MOL007449	24-Methylidenelophenol	426.8	44.19	0.75	L. barbarum
MOL008173	Daucosterol_qt	414.79	38.87	0.72	L. barbarum
MOL008400	Glycitein	284.28	50.48	0.24	L. barbarum
MOL010234	δ-Carotene	536.96	31.8	0.55	L. barbarum
MOL000953	CLR	386.73	37.87	0.68	L. barbarum
MOL009604	14b-Pregnane	288.57	34.78	0.34	L. barbarum
MOL009612	(24R)-4α-Methyl-24-ethylcholesta-7, 25-dien-3β-yl acetate	482.87	46.36	0.84	L. barbarum
MOL009615	24-Methyleneoctoarctan-3β, 21-diol	456.83	37.32	0.7	L. barbarum
MOL009617	24-Ethylecholesta-22-enol	414.79	37.09	0.75	L. barbarum
MOL009618	24-Ethylecholesta-5, 22-dienol	412.77	43.83	0.76	L. barbarum
MOL009620	24-Methyl-31-norlanost-9 (11)-enol	428.82	38	0.75	L. barbarum
MOL009621	24-Methylenelanost-8-enol	440.83	42.37	0.77	L. barbarum
MOL009622	Fucosterol	412.77	43.78	0.76	L. barbarum
MOL009631	31-Norlanostadienol	440.83	38.68	0.81	L. barbarum
MOL009633	31-Norlanostadienol-9 (11)-enol	414.79	38.35	0.72	L. barbarum
MOL009634	31-Norlanosteriolicheca-8-enol	412.77	42.2	0.73	L. barbarum
MOL009635	4, 24-Methyllophenol	414.79	37.83	0.75	L. barbarum
MOL009639	Lophenol	400.76	38.13	0.71	L. barbarum
MOL009640	4α, 14α, 24-Trihydroxymethylcholesta-8, 24-dienol	426.8	38.91	0.76	L. barbarum
MOL009641	4α, 24-Dimethylcholesta-7, 24-dienol	412.77	42.65	0.75	L. barbarum
MOL009642	4α-Methyl-24-ethylcholesta-7, 24-dienol	426.8	42.3	0.78	L. barbarum
MOL009644	6-Fluoroindole-7-dehydrocholesterol	402.7	43.73	0.72	L. barbarum
MOL009646	7-O-Methylbutenol-6-C-β-glucoside	318.3	40.77	0.3	L. barbarum
MOL009650	Atropine	289.41	42.16	0.19	L. barbarum
MOL009651	Cryptoxanthin monoepoxide	568.96	46.95	0.56	L. barbarum
MOL009653	Cycloeucalenol	426.8	39.73	0.79	L. barbarum
MOL009656	(E, E)-1-Ethyl octadeca-3, 13-dienoate	308.56	42	0.19	L. barbarum
MOL009660	Methyl (1R, 4αS, 7R, 7aS)-4α, 7-dihydroxy-7-methyl-1-[2S, 3R, 4S, 5S, 6R]-3, 4, 5-trihydroxy-6-(hydroxymethyl) oxan-2-yl] oxy-1, 5, 6, 7a-tetrahydrocyclopentanpyran-4-carboxylate	406.43	39.43	0.47	L. barbarum
MOL009662	Lantadene A	552.87	38.68	0.57	L. barbarum
MOL009664	Physalin A	526.58	91.71	0.27	L. barbarum
MOL009665	Physcion-8-O-β-D-gentiobioside	608.6	43.9	0.62	L. barbarum
MOL009677	Lanost-8-en-3β-ol	428.82	34.23	0.74	L. barbarum
MOL009678	Lanost-8-enol	428.82	34.23	0.74	L. barbarum
MOL009681	Obtusifoliol	426.8	42.55	0.76	L. barbarum
MOL000998	Quercetin	302.25	46.43	0.28	L. barbarum
MOL001792	DFV	256.27	32.76	0.18	L. barbarum
MOL002714	Baicalein	270.25	33.52	0.21	L. barbarum
MOL002959	3′-Methoxydaidzein	284.28	48.57	0.24	L. barbarum
MOL000358	β-Sitosterol	414.79	36.91	0.75	L. barbarum/P. sibiricum
MOL000359	Sitosterol	414.79	36.91	0.75	P. sibiricum
MOL003889	Methylprotopodioscin_gt	446.74	35.12	0.86	P. sibiricum
MOL004941	(2R)-7-Hydroxy-2-(4 hydroxyphenyl) chroman-4-one	256.27	71.12	0.18	P. sibiricum
MOL008054	Diosgenin	414.69	80.88	0.81	P. sibiricum
MOL006331	4′, 5-Dihydroxylavone	254.25	48.55	0.19	P. sibiricum
MOL009760	Sibiricoside A	432.71	35.26	0.86	P. sibiricum
MOL009763	(+)-Syringaresinol-O-β-D-glucoside	580.64	43.35	0.77	P. sibiricum
MOL009766	Zhonghualiasone 1	458.75	34.72	0.78	P. sibiricum
Symbol name	Gene name	Symbol name	Gene name	Symbol name	Gene name
---	-----------	---	-----------	---	-----------
Prostaglandin G/H synthase 2	PTGS2	Acetylcholinesterase	ACHE	Mitogen-activated protein kinase 14	MAPK1
Prostaglandin G/H synthase 1	PTGS1	Epidermal growth factor receptor	EGFR	Interstitial collagen	MMP1
Mineralocorticoid receptor	NR3C2	RAC-α serine/threonine-protein kinase	AKT1	Hypoxia-inducible factor 1-α	HIF1A
β-2 Adrenergic receptor	ADRB2	Vascular endothelial growth factor A	VEGFA	Signal transducer and activator of transcription 1-α/β	STAT1
Urokinase-type plasminogen activator	PLAU	Apoptosis regulator Bcl-2	BCL2	Receptor tyrosine-protein kinase erb-B2	ERBB2
Sodium channel protein type 5 subunit α	SCN5A	Bcl-2-like protein 1	BCL2L1	Peroxisome proliferator-activated receptor gamma	PPARG
5-Hydroxytryptamine 2A receptor	HTR2A	Proto-oncogene c-Fos	FOS	Heme oxygenase 1	HMOX1
Sodium-dependent serotonin transporter	SLC6A4	Cyclin-dependent kinase inhibitor 1	CDKN1A	Cytochrome P450 3A	CYP3A4
D (2) dopamine receptor	DRD2	Apoptosis regulator BAX	BAX	Cytochrome P450 1A	CYP1A2
Estrogen receptor	ESR1	72 kDa type IV collagenase	MMP2	Caveolin-1	CAV1
Androgen receptor	AR	Interleukin-10	IL10	Muc proto-oncogene protein	MYC
Peroxisome proliferator-activated receptor-γ	KCNH2	Proepidermal growth factor	EGF	Tissue factor	F3
Estrogen receptor β	ESR2	Retinoblastoma-associated protein	RB1	Gap junction α-1 protein	GJA1
Mitogen-activated protein kinase 14	MAPK14	Tumor necrosis factor	TNF	Intercellular adhesion molecule 1	ICAM1
Glycogen synthase kinase-3 α	GSK3β	Transcription factor AP-1	JUN	C-C motif chemokine 2	CCL2
Cell division protein kinase 2	CDK2	Caspase-3	CASP3	E-selectin	SELE
Nitric oxide synthase, inducible	NOS2	Cellular tumor antigen p53	TP53	Vascular cell adhesion protein 1	VCAM1
Collagenase 3	MMP13	Ornithine decarboxylase	ODC1	Interleukin-8	CXCL8
Phosphatidylinositol-4, 5-bisphosphate 3-kinase catalytic subunit, γ isoform	PIK3CG	Xanthine dehydrogenase/oxidase	XDH	Protein kinase C β type	PRKCB
Dipeptidyl peptidase IV	DPP4	Caspase-8	CASP8	Heat shock protein β-1	HSPB1
Stromelysin-1	MMP3	RAF proto-oncogene serine/threonine-protein kinase	RAF1	Transforming growth factor β-1	TGFBI
Coagulation factor VII	F7	Superoxide dismutase (Cu-Zn)	SOD1	Malate-glucoamylase, intestinal	MGAM
Nitric oxide synthase, endothelial	NOS3	Protein kinase C alpha type	PRKCA	Interleukin-2	IL2
Tissue-type plasminogen activator	PLAT	Interferon gamma	IFNG	Poly (ADP-ribose) polymerase 1	PARP1
Thrombomodulin	THBD	Interleukin-1α	IL1A	Solute carrier family 2, facilitated glucose	SLC2A4
Plasminogen activator inhibitor 1	SERPINE1	Myeloperoxidase	MPO	transporter member 4	COL3A1
Collagen α-1 (I) chain	COL1A1	Nuclear factor erythroid 2-related factor 2	NFE2L2	Serine/threonine-protein kinase Chk2	CHEK2
C-reactive protein	CRP	C-X-C motif chemokine 10	CXCL10	Osteopontin	SPP1
Runt-related transcription factor 2	RUNX2	Cathepsin D	CTSD	Insulin-like growth factor-binding protein 3	IGFBP3
Insulin-like growth factor II	IGF2	Serum paraoxonase/arylesterase 1	PON1	Cytosolic phospholipase A2	PLA2G4A
CD40 ligand	CD40LG	Type 1 idiothyronine deiodinase	DIO1	Canalicular multispecific organic anion transporter 1	ABCC2
Receptor tyrosine-protein kinase erbB-3	ERBB3	Catalase	CAT	Serine/threonine-protein kinase mTOR	MTOR
Insulin receptor	INSR	Peroxisome proliferator-activated receptor-α	PPARA	Peroxisome proliferator-activated receptor δ	PPARD
2.4.3. PPI Network. The effective components of drugs affected on the human body not only by directly acting on one target but also by indirectly acting on other targets. The prevention and control disease was regulated by multi-farious intricate signal pathways, which are interactions and transductions between upstream and downstream targets. The complex relationship between targets and proteins can be clearly displayed by constructing PPI. Target proteins related to diabetes were analyzed by online STRING 11.0 (https://string-db.org/cgi/input?sessionId=biiGmvCwYzjy&input_page_show_search=on) to construct the PPI network [34, 35].

2.4.4. Component-Target-Pathway Network. The relationships of component, target, and pathway were clarified utilizing Cytoscape 3.7.2.

2.5. Cell Culture. HepG2 cells were grown in Dulbecco's modified eagle's medium (DMEM) supplemented with 10% fetal bovine serum, 100 IU/mL penicillin, and 100 µg/mL streptomycin at 37°C, 5% CO₂ having 95% relative humidity atmosphere. The cells were seeded at a density of 1.0 × 10⁴ cells/well in a 96-well plate for 24 h, and then, the cells were treated with high concentrations of insulin (1 × 10⁻⁵) for 48 h. After the period, the cells were divided into four groups (control, model, DMBG, and HG group). The control and group were treated DMEM and DMBG, and the HG group was treated metformin (100 µg/mL) and EJP (100 µg/mL). After 24 h, the glucose content was measured using a spectrophotometric microtiter plate reader at 520 nm, and IR-HepG2 cells were prepared.

2.6. RT-PCR Analysis. The IR-HepG2 cells were extracted for RT-PCR analysis. First, the total RNA of IR-HepG2 was extracted with RNA rapid extraction solution, after treated as extracts of concentrations ranging from 100 to 500 ng/L. Second, the RNA was reverse-transcribed through a PCR instrument. Third, RT-PCR was performed using the PCR amplification instrument. The primer sequences were as follows: H-ACTIN-S: CCACCCAGCAATGAGATCAAGAT; H-ACTIN-A: CCAAGTCTTTAACCTGAGTCAAGC; H-PK3r1-S: GGAAGCAGAACCAGAAACAA; H-PK3r1-A: TCAGGCTCCACCTACAGA; H-AKT (1)-S: GCTCAAGCCAACCTTCAAG; H-AKT (1)-A: GTGTCACATTTGGTCAAGTGTT; H-GSK3β-S: GTTAGCAGAGACAGGACGGCA; H-GSK3β-A: GCATCTTTCTTGAGCCGA; H-MYC-S: CTGAGTACGACTCGGTGCA; H-MYC-A: CGGGTCGCAAGATGAAA; H-EF1-S: CCAGTTTTTAATTCCATCAG; H-EF1-A: GCTGTCATCTTGGTCAGGTGGT; H-GSK3β-S: GCTGTCATCTTGGTCAGGTGGT; H-GSK3β-A: GCATCTTTCTTGAGCCGA; H-MYC-S: CTGAGTACGACTCGGTGCA; H-MYC-A: CGGGTCGCAAGATGAAA CTCT.

3. Results

3.1. Compound-Target Network. Ninety-nine (99) kinds of candidate genes relevant to diabetes were excavated from OMIM, GeneCards, Dis-GeNET, and TTD databases. As shown in Figure 1, 130 nodes (56 compound nodes and 99 target nodes) and 288 edges were seen in the compound-target network. The yellow and blue nodes represented the compounds and targets, respectively. Furthermore, each edge represented the correlation of compound and target. In the network, larger degree represents a stronger interaction. Furthermore, the larger degree nodes may represent the key compound or target in the network. Quercetin, β-sitosterol, diosgenin, baicalein, and 3′-methoxydaidzein were found as the potential composition of treating diabetes in EJP. Quercetin was connected to 85 proteins, β-sitosterol was associated with 15 proteins, diosgenin was related to 12 proteins, baicalein was relevant in 16 proteins, and 3′-methoxydaidzein was connected to 10 proteins.

3.2. GO and KEGG Analyses. The DAVID 6.8 database (https://david.ncifcrf.gov) was utilized to elucidate the CC, BP, and MF annotations of the selected 99 proteins. There were 606 genes entries (FDR, Figure 2 shows the top 8 according to FDR <0.05), out of which 46 genes entries were relevant to CC including the extracellular region, plasma membrane, and cytosol. 477 items were related to BP, including the hypoxia and drug response, positive regulation of gene expression and transcription, DNA-templated, angiogenesis, inflammatory response, and positive regulation of cell proliferation. 83 items were related to MF, including protein binding, identical protein binding, and the homodimerization activity of protein. Therefore, the positive regulation of transcription with RNA polymerase II promoter, DNA-templated, and responision of hypoxia about the action of EJP were regulated through the binding of protein, identical protein, and enzyme, as well as plasma membrane, cytosol, and the homodimerization activity of protein. A target-pathway network was constructed from the data screened of DAVID for determining the relationship between T2DM proteins and related pathways. Furthermore, the key signal pathways (HIF-1, PI3K-AKT, and MAPK) were based on the KEGG analysis (FDR <0.05) and literature analysis (Figures 3 and 4).

3.3. PPI Network Analysis. The network of protein and protein was constructed for exploring the interaction of 99 antidiabetic protein. As shown in Figure 5, AKT1, EGF, EGFR, MAPK1, and GSK3β proteins were located at the core position. These five proteins mainly involved PI3K/AKT, MAPK, and VEGF signaling pathways. AKT1 regulated many processes including metabolism, proliferation, cell survival, growth, and angiogenesis. AKT1 was indirectly activated by insulin and other growth factors [36]. Inhibition of EGFR or HB-EGF intercepted the proliferative response to HB-EGF and glucose in rat islets [37]. MiR-133 may be an effective target for the treatment of diabetic nephropathy via the MAPK/ERK pathway [38]. The antidiabetic effect of SJE might be dependent on the AMPK pathway, which was indicated through the inhibition of gene expression in INS1 and GSK3β, and upregulating the hepatic phosphorylation of AMPKα in liver of mice [39].

3.4. Component-Target Pathway Network. To further clarify the mechanism of action of EJP in the treatment of T2DM, the component-target-pathway network was established. As
shown in Figure 6, the network was composed of chemical components, protein targets, and pathways, including 156 nodes and 643 edges. 56 components interacted with 99 target proteins and were associated with 26 pathways. Only 66 proteins were related to 26 pathways, so these 66 proteins were potential key proteins of EJP for T2DM. This prediction provided a scientific evidence for further research into the mechanism of EJP in the T2DM treatment.

3.5. RT-PCR Analysis. Based on the prediction of network pharmacology, PI3K p85, AKT1, GSK3β, and Myc proteins in the PI3K-AKT signal pathway were selected and used to verify the mechanism of action of EJP in treating T2DM at the mRNA level by RT-PCR. As shown in Figure 7, compared to the control group, the expression level of the model group of PI3K p85 and AKT1 mRNA reduced while GSK3β and Myc mRNA increased. The expression level of DMBG and HG groups of PI3K p85 and AKT1 mRNA increased while GSK3β and Myc mRNA reduced compared with the model group. Thus, EJP controlled the blood glucose levels of T2DM mice via upregulating mRNA of PI3K p85 and AKT1 and downregulating mRNA of GSK3β and Myc in PI3K-AKT signal pathways.

4. Discussion

The prevalence rate of T2DM is gradually increasing due to the aging of the population and changes in lifestyle [40]. Long-term medication is inevitable for the treatment of such chronic metabolic disease. Due to TCM featured multitarget, multicomponent, and low toxicity became more and more popular in the treatment of diabetes. So, it is vital to elucidate the pharmacological mechanism of TCM formula. The
active ingredient and targets of TCM could be preferentially predicted by network pharmacology [41]. In this study, the bioactive component and the action mechanism of EJP for diabetes treatment was predicted via the network pharmacology method, and some proteins were verified through RT-PCR monitoring.

The compound-target network clarified that the treatment efficacy of EJP against T2DM was exactly related 56 compounds. Quercetin, β-sitosterol, diosgenin, baicalein, and 3′-methoxydaidzein were found as the potential composition of treating diabetes in EJP. The hyperglycemia was modulated through regulating the enzymes activities as for metabolism in glucose and improving the antioxidant status of pancreatic in rats of T2DM model from the results of Oyedemi’ studies [42]. Quercetin can be used for the treatment of T2DM by lowering the pancreatic iron deposition and PBC ferroptosis [43]. β-Sitosterol attenuates insulin resistance and high fat diet-induced detrimental changes via mediating IRS-1/AKT signaling for the management of T2DM. Diosgenin ameliorates cognitive deficits in T2DM, owing to its amelioration of astrogliosis, inflammation, and oxidative stress [45]. Baicalein (10^{-6} and 10^{-5} mol/L) regulated glucose uptake, glycolysis, and gluconeogenesis of hepatocytes to treat T2DM [46]. 3′-Methoxydaidzein has not been reported about the antidiabetic effect and may be as a potential T2DM drug. Therefore, T2DM treated by EJP was closely related to key target compound including quercetin, β-sitosterol, diosgenin, baicalein, and 3′-methoxydaidzein. The network pharmacology prediction of EJP for the T2DM treatment has been proved to be appropriate, and the screening of new compounds for the T2DM treatment provides ideas for the development of new drugs.

The component-target-pathway network depicted that the therapeutic effect of EJP on T2DM directly interacted with 99 genes. The results of KEGG pathway enrichment analysis of 66 proteins indicated that 26 pathways were exactly connected to the occurrence and progression of T2DM, suggesting that these pathways might be the molecular mechanism of EJP against T2DM. The relationships of some pathways with T2DM were succinctly discussed as follows. Hepatitis B: A study showed hepatitis B virus (HBV) coinfection was significantly related to blood glucose levels. The participants of 28% with HBV coinfection developed T2DM. It was an increasing evidence that infection of HBV is strongly associated with the development of T2DM [47]. Bladder and prostate cancer pathway: T2DM are becoming increasingly prevalent worldwide and is associated with the increased incidence of bladder cancer [48]. However, a personal history of T2DM is connected with a lower incidence of prostate cancer [49]. Apoptosis pathway: apoptosis plays important roles in the pathophysiology of T2DM. The prevention and revert of β-cell apoptosis by regulating the balance of Bcl family, and apoptotic genes against apoptosis might be a new path for prevention and therapeutic application on T2DM [50]. FoxO signaling pathway: forkhead
Figure 3: Target-pathway network constructed based on KEGG analysis from the DAVID database. Blue represents 26 pathways and green represents 66 protein targets.

Figure 4: KEGG enrichment analysis of predicted pathways.
box protein O1 (FOXO1) played important roles in β-cell growth and function. FOXO1 mRNA levels were increased in the islets of patients with T2DM [51]. TNF signaling pathway: there was a growing evidence that tumor necrosis factor-α (TNF-α) involved in insulin resistance, and it is associated with the development of T2DM [52]. Glioma pathway: it was inverse relations between diabetes and glioma risk [53]. Thyroid hormone signaling pathway: the downregulation of FT3 was significantly related to the prevalence of DR in T2DM with normal thyroid function [54, 55]. Neurotrophin signaling pathway: the changes in the serum neurotrophic factor levels were associated with metabolic syndrome components in T2DM [56, 57]. T cell signaling pathway: in a study, it showed that the presence of senescent T cells exerted a detrimental influence on immune function during T2DM [58]. VEGF signaling pathway: the redox environment influences vascular endothelial growth factor (VEGF) production in response to proinflammatory

Figure 5: The network of protein-protein interaction.
stimuli in T2DM [59]. Toll-like receptor signaling pathway: toll-like receptor, the central of innate immunity, was significantly involved in progression of T2DM [60]. MAPK and PI3K-AKT signaling pathways: MAPK and PI3K-AKT are essential for glucose homeostasis. The PI3K-AKT signaling pathway is the major effector of metabolic insulin action.

Figure 6: Component-target-pathway network was structured. From left to right, the components of EJP, target, pathways, and component represent the green, red, and blue, severally. The edges show the relationship of the component-target-pathway.

Figure 7: The RT-PCR analysis of the PI3K-AKT signal pathway. The expression level of PI3K p85, AKT1, GSK3β, and Myc mRNA. *P < 0.05, **P < 0.01.
5. Conclusion

99 targets and 58 signal pathways were screened via network pharmacology. Only 66 targets and 26 pathways were directly related to diabetes with literature analysis. In the compound-target network, quercetin, β-sitosterol, diosgenin, baicalein, and 3′-methoxydaidzein were core compounds. Furthermore, PI3K-AKT, MAPK, and VEGF signaling pathways might be significant. It implied that the hyperglycemia of T2DM model rats were alleviated via the PI3K-AKT pathway. In conclusion, EJP was proved to treat T2DM. It is helpful for researchers to further design pharmacodynamics experiments on these components in the next protocol. Meanwhile, it provided a reference to study the effective constituents of EJP and mechanism of treating T2DM. These specific targets were also worth researching deeply in future.

Abbreviations

EJP: Erjing prescription
T2DM: Type 2 diabetes mellitus
RT-PCR: Real-time PCR
CC: Cell component
BP: Biological process
MF: Molecular function
PPI: Protein-protein interactions
TCM: Traditional Chinese medicine
TCMSP: Traditional Chinese medicine systems pharmacology
OB: Oral bioavailability
DL: Drug-likeness
GO: Gene Ontology
TTD: Therapeutic target database
KEGG: Kyoto Encyclopedia of Genes and Genomes.

Data Availability

The data used to support the findings of this study are included within the article.

Conflicts of Interest

The authors declare that they have no conflicts of interest.

Authors’ Contributions

All authors participated in this study. Liming Zhang designed this manuscript. Jiexin Wang and Haiqing Chu conducted the experiments, the literature survey, and drafted the manuscript. Hangying Li revised the manuscript. Wenqian Yang, Yu Zhao, and Tong Shen processed the data and checked the manuscript. John Cary checked the grammar of the manuscript and revised it. Jieixin Wang and Haiqing Chu contributed equally.

Acknowledgments

This work was supported by the National Natural Science Foundation of China (81760839).

Supplementary Materials

The graphical abstract is the overall flowchart of this study and may be found online in the supporting materials section at the end of the article. (Supplementary Materials)

References

[1] N. G. Forouhi and N. J. Wareham, "Epidemiology of diabetes," Medicine, vol. 42, no. 12, pp. 698–702, 2014.
[2] P. Saeedi, I. Petersohn, P. Salpea et al., "Global and regional diabetes prevalence estimates for 2019 and projections for 2030 and 2045: results from the international diabetes federation diabetes atlas, 9th edition," Diabetes Research and Clinical Practice, vol. 157, Article ID 107843, 2019.
[3] G. M. Bantie, A. A. Wondaye, E. B. Arike et al., "Prevalence of undiagnosed diabetes mellitus and associated factors among adult residents of Bahir Dar city, northwest Ethiopia: a community-based cross-sectional study," BMJ Open, vol. 9, no. 10, Article ID e030158, 2019.
[4] E. Dal Canto, A. Ceriello, L. Rydén et al., "Diabetes as a cardiovascular risk factor: an overview of global trends of macro and micro vascular complications," European Journal of Preventive Cardiology, vol. 26, no. 2, pp. 25–32, 2019.
[5] M. Ferrini, I. Johansson, and V. Aboyans, "Heart failure and its complications in patients with diabetes: mounting evidence for a growing burden," European Journal of Preventive Cardiology, vol. 26, no. 2, pp. 106–113, 2019.
[6] Q. Gan, J. Wang, J. Hu et al., "The role of diosgenin in diabetes and diabetic complications," The Journal of Steroid Biochemistry and Molecular Biology, vol. 198, Article ID 105575, 2020.
[7] A. B. Jebur, F. M. El-Demerdash, and W. Kang, "Bromelain from ananas comosus stem attenuates oxidative toxicity and testicular dysfunction caused by aluminum in rats," Journal of Trace Elements in Medicine and Biology: Organ of the Society for Minerals and Trace Elements (GMS), vol. 62, Article ID 126631, 2020.
[8] S. Moffa, T. Mezza, C. Cefalo et al., "The interplay between immune system and microbiota in diabetes," Mediators of Inflammation, vol. 2019, Article ID 9367404, 10 pages, 2019.
[9] F. S. A. Saadeldeen, Y. Niu, H. Wang et al., "Natural products: regulating glucose metabolism and improving insulin resistance," Food Science and Human Wellness, vol. 9, no. 3, pp. 214–228, 2020.
[10] L. Pan, Z. Li, Y. Wang, B. Zhang, G. Liu, and J. Liu, "Network pharmacology and metabolomics study on the intervention of traditional Chinese medicine Huanglian decoction in rats with type 2 diabetes mellitus," Journal of Ethnopharmacology, vol. 258, Article ID 112842, 2020.
[11] Z. Qiu, J. Dong, C. Xue et al., "Liweidihuang pills alleviate the polycystic ovary syndrome with improved insulin...
sensitivity through P13K/Akt signaling pathway,” *Journal of Ethnopharmacology*, vol. 250, Article ID 111965, 2020.

[12] W. Zheng, G. Wang, Z. Zhang, Z. Wang, and K. Ma, “Research progress on classical traditional Chinese medicine formula Liuwei Dihuang pills in the treatment of type 2 diabetes,” *Biomedicine &Pharmacotherapy*, vol. 121, Article ID 109564, 2020.

[13] L. Xu, M. Xing, X. Xu et al., “Alizarin increase glucose uptake through P13K/Akt signaling and improve alloxan-induced diabetic mice,” *Future Medicinal Chemistry*, vol. 11, no. 5, pp. 395–406, 2019.

[14] H. Zhong, C. Hong, Z. Han et al., “Erjingwan extracts exert antiaging effects of skin through activating Nrf2 and inhibiting NF-xB,” *Evidence-Based Complementary and Alternative Medicine*, vol. 2019, Article ID 5976749, 15 pages, 2019.

[15] S. Liu, M. Yang, Y. Li et al., “Variance analysis on polysaccharide, total flavonoids and total phenols of *Lycium bar- barum* leaves from different production areas,” *Zhongguo Zhong Yao Za Zhi*, vol. 44, no. 9, pp. 1774–1780, 2019.

[16] Y. Wang, E. Guan, and L. Zhang, “Effects of erjingfang polysaccharide extracts on blood glucose and lipids in mice with 2 diabetes,” *Chinese Journal of Hospital Pharmacy*, vol. 35, no. 5, pp. 405–409, 2015.

[17] R. Zhao, X. Gao, T. Zhang, and X. Li, “Effects of *Lycium barbarum* polysaccharide on type 2 diabetes mellitus rats by regulating biological rhythms,” *Iranian Journal of Basic Medical Sciences*, vol. 19, no. 9, pp. 1024–1030, 2016.

[18] R. Zhao, Q. Li, and B. Xiao, “Effect of *Lycium barbarum* polysaccharide on the improvement of insulin resistance in NIDDM rats,” *Yukagaku Zasshi*, vol. 125, no. 12, pp. 981–988, 2005.

[19] A. J. M. Al-Fartosy, “Protective effect of galactomannan extracted from Iraqi *Lycium barbarum* L. fruits against alloxan-induced diabetes in rats,” *American Journal of Biochemistry and Biotechnology*, vol. 11, no. 2, pp. 73–83, 2015.

[20] P.-F. Zhu, Y.-L. Zhao, Z. Dai et al., “Phenolic amides with immunomodulatory activity from the nonpolysaccharide fraction of *Lycium barbarum* fruits,” *Journal of Agricultural and Food Chemistry*, vol. 68, no. 10, pp. 3079–3087, 2020.

[21] P. Zhao, C. Zhao, X. Li et al., “The genus polygonatum: a review of ethnopharmacology, phytochemistry and pharmacology,” *Journal of Ethnopharmacology*, vol. 214, pp. 274–291, 2018.

[22] J. Cai, Y. Zhu, Y. Zuo et al., “*Polygonatum sibiricum* polysaccharide alleviates inflammatory cytokines and promotes glucose uptake in high-glucose-and high-insulin-induced 3T3-L1 adipocytes by promoting Nrf2 expression,” *Molecular Medicine Reports*, vol. 20, no. 4, pp. 3951–3958, 2019.

[23] J. Ru, P. Li, J. Wang et al., “A database of systems pharmacology for drug discovery from herbal medicines,” *Journal of Cheminformatics*, vol. 6, 2014.

[24] X.-Q. Shi, S.-J. Yue, Y.-P. Tang et al., “A network pharmacology approach to investigate the blood enriching mechanism of Danggui Buxue decoction,” *Journal of Ethnopharmacology*, vol. 235, pp. 227–242, 2019.

[25] L. Breuza, S. Poux, A. Estreicher et al., “The UniProtKB guide to the human proteome,” *Database (Oxford)*, vol. 2016, 2016.

[26] A. Hamosh, A. Scott, J. Amberger, C. Bocchini, and V. McKusick, “Online mendelian inheritance in man (OMIM), a knowledgebase of human genes and genetic disorders,” *Nucleic Acids Research*, vol. 33, pp. D514–D517, 2005.

[27] G. Stelzer, N. Rosen, I. Plaschkes et al., “The genecards suite: from gene data mining to disease genome sequence analyses,” *Current Protocols in Bioinformatics*, vol. 54, pp. 1–33, 2016.

[28] J. Piñero, J. M. Ramírez-Anguita, J. Satch-Pitarach et al., “The DisGeNET knowledge platform for disease genomics: 2019 update,” *Nucleic Acids Research*, vol. 48, no. D1, pp. D845, 2020.

[29] Y. Wang, S. Zhang, F. Li et al., “Therapeutic target database 2020: enriched resource for facilitating research and early development of targeted therapeutics,” *Nucleic Acids Research*, vol. 48, no. D1, pp. D1031, 2020.

[30] B. F. Xu, R. Liu, C. X. Huang et al., “Identification of key genes in ruptured atherosclerotic plaques by weighted gene correlation network analysis,” *Scientific Reports*, vol. 10, no. 1, pp. 10847, 2020.

[31] L. Ren, X. Zheng, J. Liu et al., “Network pharmacology study of traditional Chinese medicines for stroke treatment and effective constituents screening,” *Journal of Ethnopharmacology*, vol. 242, Article ID 112044, 2019.

[32] Q. Pan, R. Zhou, M. Su, and R. Li, “The effects of plumbagin on pancreatic cancer: a mechanistic network pharmacology approach,” *Medical Science Monitor: International Medical Journal of Experimental and Clinical Research*, vol. 25, pp. 4648–4654, 2019.

[33] D. W. Huang, B. T. Sherman, Q. Tan et al., “DAVID bioinformatics resources: expanded annotation database and novel algorithms to better extract biology from large gene lists,” *Nucleic Acids Research*, vol. 35, pp. W169–W175, 2007.

[34] D. Szklarczyk, A. L. Gable, D. Lyon et al., “STRING v11: protein–protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets,” *Nucleic Acids Research*, vol. 47, no. D1, pp. D607, 2019.

[35] D. Vella, S. Marini, F. Vitali et al., “PPI network analysis via topological and functional module identification,” *Scientific Reports*, vol. 8, no. 1, 2018.

[36] Y. Cheng, X. Zhang, F. Ma et al., “The role of Akt2 in the protective effect of fenofibrate against diabetic nephropathy,” *International Journal of Biological Sciences*, vol. 16, no. 4, pp. 553–567, 2020.

[37] H. Maachi, G. Fergusson, M. Ether et al., “HB-EGF signaling is required for glucose-induced pancreatic β-cell proliferation in rats,” *Diabetes*, vol. 69, no. 3, pp. 369–380, 2020.

[38] X. Shao, W. X. Kong, and Y. T. Li, “MIR-133 inhibits kidney injury in rats with diabetic nephropathy via MAPK/ERK pathway,” *European Review for Medical and Pharmacological Sciences*, vol. 23, no. 24, pp. 10957–10963, 2019.

[39] Y. Liu, X. Zhang, L. Zhan et al., “LC-Q-TOF-MS characterization of polyphenols from white bayberry fruit and its antidiabetic effect in KK-ay mice,” *ACS Omega*, vol. 5, no. 28, pp. 17839–17849, 2020.

[40] N. Sattar, A. Rawshani, S. Fransen et al., “Age at diagnosis of type 2 diabetes mellitus and associations with cardiovascular and mortality risks,” *Circulation*, vol. 139, no. 19, pp. 2228–2237, 2019.

[41] K. X. Wang, Y. Gao, C. Lu et al., “Uncovering the complexity mechanism of different formulas treatment for rheumatoid arthritis based on a novel network pharmacology model,” *Frontiers in Pharmacology*, vol. 11, p. 1035, 2020.

[42] S. O. Oyedemi, G. Nwaogu, C. I. Chukwuma et al., “Quercetin modulates hyperglycemia by improving the pancreatic anti-oxidant status and enzymes activities linked with glucose metabolism in type 2 diabetes model of rats: in silico studies of molecular interaction of quercetin with hexokinase and
[51] X. Li, T. Wan, and Y. Li, “The role of FOXO1 in beta-cell failure and type 2 diabetes mellitus,” Nature Reviews Endocrinology, vol. 9, no. 10, pp. 615–623, 2013.

[52] C. Liu, X. Feng, Q. Li, Y. Wang, Q. Li, and M. Hua, “Adiponectin, TNF-α and inflammatory cytokines and risk of type 2 diabetes: a systematic review and meta-analysis,” Cytokine, vol. 86, pp. 100–109, 2016.

[53] C. Seliger, C. Ricci, C. R. Meier et al., “Diabetes, use of antidiabetic drugs, and the risk of glioma,” Neuro-Oncology, vol. 18, no. 3, pp. 340–349, 2016.

[54] F. Bril, S. Kadiyala, P. Portillo Sanchez et al., “Plasma thyroid hormone concentration is associated with hepatic triglyceride content in patients with type 2 diabetes,” Journal of Investigative Medicine, vol. 64, no. 1, pp. 63–68, 2016.

[55] J. Zou, Z. Li, F. Tian et al., “Association between normal thyroid hormones and diabetic retinopathy in patients with type 2 diabetes,” Biomed Research International, vol. 2020, Article ID 8161797, 7 pages, 2020.

[56] A. Fujinami, K. Ohta, H. Obayashi et al., “Serum brain-derived neurotrophic factor in patients with type 2 diabetes mellitus: relationship to glucose metabolism and biomarkers of insulin resistance,” Clinical Biochemistry, vol. 41, no. 10-11, pp. 812–817, 2008.

[57] S. Civelek, D. Konukoglu, F. Erdennen, and H. Uzun, “Serum neurotrophic factor levels in patients with type 2 diabetes mellitus: relationship to metabolic syndrome components,” Clinical Laboratory, vol. 59, no. 3-4, pp. 369–374, 2013.

[58] E. Y. M. Lau, E. C. Carroll, L. A. Callender et al., “Type 2 diabetes is associated with the accumulation of senescent T cells,” Clinical & Experimental Immunology, vol. 197, no. 2, pp. 205–213, 2019.