Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website.

Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.
The Complete Sequence (22 Kilobases) of Murine Coronavirus Gene 1
Encoding the Putative Proteases and RNA Polymerase

HAN-JUNG LEE,* CHIFN-KOU SHIEH,* AI FXANDER E. GORBAN' ENYA,§ FUGENE V. KOOKIN,§
NICOLA LA MONICA,* JEREMY TULER,* ANUSH BAGDZHADZHYAN,* AND MICHAEL M. C. LAI*"1

*Howard Hughes Medical Institute, Department of Microbiology, University of Southern California School of Medicine, Los Angeles, California 90033, tInstitute of Poliomyelitis and Viral Encephalitides, The USSR Academy of Medical Sciences, 142782 Moscow Region, USSR; and §Institute of Microbiology, The USSR Academy of Sciences, 117811 Moscow, USSR

Received September 4, 1990; accepted October 5, 1990

The 5'-most gene, gene 1, of the genome of murine coronavirus, mouse hepatitis virus (MHV), is presumed to encode the viral RNA-dependent RNA polymerase. We have determined the complete sequence of this gene of the JHM strain by cDNA cloning and sequencing. The total length of this gene is 21,798 nucleotides long, which includes two overlapping, large open reading frames. The first open reading frame, ORF 1a, is 4488 amino acids long. The second open reading frame, ORF 1b, overlaps ORF 1a for 75 nucleotides, and is 2731 amino acids long. The overlapping region may fold into a pseudoknot RNA structure, similar to the corresponding region of the RNA of avian coronavirus, infectious bronchitis virus (IBV). The in vitro transcription and translation studies of this region indicated that these two ORFs were most likely translated into one polyprotein by a ribosomal frameshifting mechanism. Thus, the predicted molecular weight of the gene 1 product is more than 800,000 Da. The sequence of ORF 1b is very similar to the corresponding ORF of IBV. In contrast, the ORF 1a of these two viruses differ in size and have a high degree of divergence. The amino acid sequence analysis suggested that ORF 1a contains several functional domains, including two hydrophobic, membrane-anchoring domains, and three cysteine-rich domains. It also contains a picornaviral 3C-like protease domain and two papain-like protease domains. The presence of these protease domains suggests that the polyprotein is most likely processed into multiple protein products. In contrast, the ORF 1b contains polymerase, helicase, and zinc-finger motifs. These sequence studies suggested that the MHV gene 1 product is involved in RNA synthesis, and that this product is processed autoproteolytically after translation. This study completes the sequence of the MHV genome, which is 31 kb long, and constitutes the largest viral RNA known.

INTRODUCTION

Mouse hepatitis virus (MHV), a murine coronavirus, contains a single-stranded, positive-sense RNA genome (Lai and Stohlman, 1978; Wego et al., 1978). The genomic organization is well understood (Spaan et al., 1988; Lai, 1990). It contains 8 genes, each of which is expressed from the 5'-end of a polyribosomal mRNA species. These mRNAs have a 3'-c-terminal, nested-set structure (Lai et al., 1981). Starting from the 5'-end of the genome, the genes are named 1, 2a, 2b, 3, and so on until gene 7 (Cavanagh et al., 1990). Genes 2b, 3, 6, and 7 encode the four known viral structural proteins, i.e., HE (hemagglutinin-esterase), S (spike), M (membrane), and N (nucleocapsid) proteins, respectively. The remaining genes presumably encode non-structural proteins, most of which are yet to be identified in the virus-infected cells. The nucleotide sequences of genes 2 to 7 have been determined for two strains, A59 and JHM, of MHV (Armstrong et al., 1983, 1984; Skinner et al., 1985; Skinner and Siddell, 1983.

Sequence data from this article have been deposited with the EMBL/GeneBank under Accession No. M55148.

1 To whom correspondence should be addressed.

Copyright © 1991 by Academic Press, Inc.
All rights of reproduction in any form reserved.
MHV-JHM genomic RNA (31,092 nts)

Gene A 5' (21,798 nts)

b

cDNA clones

FIG. 1. Molecular clones and restriction map of the gene 1 of the genomic RNA of MHV-JHM. (a) Schematic diagram of the MHV-JHM genome and restriction map of the cDNA clones. (b) The cDNA clones used for sequencing. Abbreviations: B, BamHI; E, EcoRI; H, HindIII; K, KpnI; N, NcoI; P, PstI. Lengths are expressed in kilobase pairs.

The properties of the RNA polymerase of coronavirus are of considerable interest since the coronavirus RNA synthesis utilizes an unusual mechanism of discontinuous transcription, probably involving a free leader RNA species (Lai, 1988). The understanding of the RNA polymerase should shed further light on the mechanism of RNA synthesis. To this end, we have obtained the complete sequence of gene 1 of the JHM strain of MHV. This gene is nearly 22,000 nucleotides long and contains two overlapping ORFs, similar to the corresponding IBV gene. Sequence analysis shows that the MHV gene may have undergone extensive divergence from the IBV gene, particularly at its 5'-half. Several functional domains were identified, which may be important for the processing and the enzymatic activities of its gene product.

MATERIALS AND METHODS

Virus and cells. The plaque-cloned JHM strain of MHV (Makino et al., 1984) was used throughout this study. The virus was propagated on DBT cells (Hirano et al., 1974) at m.o.i. of 1. Virus was harvested and purified from the medium, and viral RNA was prepared as previously described (Makino et al., 1984).

cDNA cloning. The cDNA clones encompassing...
gene 1 were obtained by using specific synthetic oligonucleotides as primers and purified virion genomic RNA as template. Initially, the sequences of these oligonucleotides were derived from RNA sequence analysis of the RNase T1-resistant oligonucleotides which had been mapped to either gene 1 or 2 (Shieh et al.,

Fig. 2. Hydropathy profiles of the predicted amino acid sequences of ORF 1a and ORF 1b. Values above the line are hydrophobic and values below the line are hydrophilic. The hydropathicity was calculated using a moving window of 40 amino acids, with a value plotted every 16 residues (Kyte and Doolittle, 1982).

Fig. 3. Diagram of the codon preference in the region between ORF 1a and ORF 1b. The codon usage patterns for the three reading frames of the predicted amino acid sequences at the junction between the ORF 1a and ORF 1b are shown. The two stop codons at 13600 (TAG) and 13679 (TAA) are marked. The codon usage table was generated for genes 3, 6, and 7, which encode the viral structural proteins, of MHV-JHM (Schmidt et al., 1987; Skinner and Siddell, 1983), and used for comparison with ORFs 1a and 1b. The parameters used are a window length of 25 and a maximum scale of 1.1 (Gusakov et al., 1984).
1987, 1989; Soo et al., 1987). cDNA synthesis was performed by the general method of Gubler and Hoffman (1983). The double stranded cDNA molecules were trimmed with T4 DNA polymerase and ligated to pTZ18U (United States Biochemical Corp.) either by blunt end ligation or EcoRI linker ligation. The recombinant plasmid pTZ(FrSh) was linearized with either HindIII (lanes 2, 5, and 8), generating a full-length transcript by T7 RNA polymerase, or with Dral (lanes 1, 4, and 7), generating a 0.5 kb RNA. Translation was performed in a rabbit reticulocyte lysate system using [35S]methionine. Translation products were analyzed directly (lanes 1–3) or after immunoprecipitation using the ORF 1α-specific antiserum (lanes 4–6) or rabbit preimmune serum (lanes 7–9). M indicates molecular weight markers in kilodaltons; lanes 3, 6, and 9, translation of pTZ(ORFaug).
nontional cDNA cloning to obtain overlapping cDNA clones.

DNA sequencing. Sequencing was performed as previously described (Shieh et al., 1987, 1989). Both chemical modification (Maxam and Gilbert, 1980) and dideoxynucleotide chain termination (Sanger et al., 1977) methods were used directly on plasmid DNA (Chen and Seeburg, 1985).

Construction of recombinant plasmids for the frameshifting analysis. Subcloning and mutagenesis of cDNA clone T-12 was accomplished using synthetic oligonucleotides and polymerase chain reaction (PCR). Briefly, oligomer #166 (5'-GATCGAATTCTTTACAT-GGTGAAGGGGTG-3'), which extends from nucleotide 13,147 to 13,167 of gene 1 and contains mismatches at both nucleotides 13,154 and 13,156, and oligomer #199 (5'-CATATGACACAGGATCCTTTATGCC-3'), which is complementary to nucleotides 13,529 to 13,553 and includes the BamHI site at nucleotide 13,537, were used for DNA amplification by PCR according to the standard procedures (Saiki et al., 1988). The resulting PCR DNA product encompasses sequences from nucleotide 13,147 to 13,537 with a specific mutation (T to A) at nucleotide 13,154 and another (T to G) at nucleotide 13,156, resulting in the introduction of an ATG codon. The DNA was then digested with

![Fig. 6. Dot matrix comparison of the predicted amino acid sequences of ORF 1a and ORF 1b of MHV-JHM and IBV. The profiles were generated by the compare/word option from the Genetics Computer Group program (Devereux et al., 1984) with a word-size of 2 and alphabet of 20 for ORF 1a (a) and 21 for ORF 1b (b).](image)

![Fig. 7. Comparison of the sequence and structure of the putative metal-binding domain of ORF 1b from MHV-JHM and IBV. (a) Alignment of amino acid sequences. The amino acid residues are numbered with respect to ORF 1b. Asterisks indicate the conserved Cys and His residues. Arrows show the putative cleavage sites for the 3C-like proteases. The open triangles indicate the residues putatively liganded with the metal ion in the case of IBV (Gorbalenya et al., 1989b). These amino acids are substituted in MHV, but neighboring residues preserve the metal-binding domain. (b) Predicted structure of the metal-binding domain of MHV-JHM ORF 1b. M, metal cation (Zn$^{2+}$). Only one of the several possible foldings of this domain is shown.](image)
FIG. 8. Alignment of the ORF la of MHV-JHM and IBV. The overall alignment was generated by combining segments aligned by programs OPTAL (Gorbalenya et al., 1989a) and MULTALIN (Corpet, 1988). It consists of four distinct pieces separated by regions that could not be aligned with certainty. For the latter regions, only the total numbers of amino acid residues are indicated. The amino acid numbers of the first and the last residues of each aligned segment are indicated in parentheses. Two dots, identical residues; single dots, similar residues. Conserved Cys residues are highlighted by boldface. Asterisks, putative catalytic residues of proteases; arrows, putative cleavage sites for BC-like proteases. Box, the putative cleavage site for 3CLpro in IBV substituted by a KR dipeptide in MHV-JHM. The IBV sequence was from Boursnell et al. (1987). MHVA: ORF la of MHV. IBVF1: ORF la of IBV.
EcoRI and BamHI and subcloned into pTZ18U, yielding pTZ(FSYg). The specific mutations were confirmed by DNA sequencing.

Plasmid pTZ(FSaUg) was digested with BamHI and HindIII (HindIII site in the polylinker of pTZ18U) and ligated to a 626-bp BamH-HindIII DNA fragment derived from the clone T-12. The resulting plasmid pTZ(FrSh) consists of the sequence from nucleotides 13,147 to 14,164 of gene 1.

Plasmid pTZ(ORFaUg) consists of the sequences from nucleotide 13,671 to 14,164 of gene 1. An ATG codon was introduced at nucleotide 13,678-13,680 by PCR-
mediated mutagenesis in a similar method as for pTZ(ORF). In vitro transcription and translation. Recombinant plasmids pTZ(ORF) and pTZ(Fr6H) were linearized by digestion with restriction enzymes HindIII or Dral and transcribed in vitro with T7 RNA polymerase as previously described (Soe et al., 1987). The resulting RNA was translated in the mRNA-dependent rabbit reticulocyte lysate (Promega Biotech) in the presence of [35S]methionine. Reactions were carried out in a final
volume of 25 μl under conditions recommended by the manufacturer. The translation products were immuno-
precipitated by the method of Shin and Morrison (1989) and analyzed by electrophoresis on 7.5 to 15% poly-
acrylamide gel.

**Computer analysis of nucleotide and amino acid se-
quenues.** Sequence data were analyzed on a VAX 1852 using the GCG sequence analysis software
package developed by Genetics Computer Group of University of Wisconsin. Detailed comparative analy-
yses of coronavirus protein sequences were done by programs MULTALIN (Corpet, 1988), OPTAL (Gorba-
lenya et al., 1989a), DOTHELIX (Leontovich et al., 1990), and SITE (Koonin et al., 1990). The programs
DOTHELIX and SITE are parts of the GENBEE program package for biopolymer sequence analysis.

RESULTS

Molecular cloning of the gene 1 of the genomic RNA of MHV-JHM. To clone the gene 1 region, which repre-
sents more than two thirds of the MHV genome, a syn-
thetic oligonucleotide (oligo 30; 5'-CTGAATFTGGGG-
GTTGGG-3') was initially used as a primer for cDNA
synthesis (Shieh et al., 1987). The sequence of this
oligonucleotide was based on the sequence analysis
of the RNase T1-resistant oligonucleotide No. 30,
which had previously been mapped to gene 2 (Makino
et al., 1984). The resulting cDNA clones contained in-
serts ranging from 0.5 to 3 kb in size. These cDNA
clones detected only the genomic RNA on Northern
blots of intracellular RNA from MHV-infected cells (data
not shown). Based on the nested-set structure of MHV
The designation of regions, for which specific functional predictions could be made, and of regions of similarity between the two viruses are shown in the figure. High similarity, statistical significance over 10 SD (standard deviation), when aligned by the program OPTAL (Gorbalenya et al., 1989b), moderate similarity, significance of 3 to 10 SD. The alignments in the regions, with predicted functions, were significant at the level of at least 5 SD. Regions of similarity between the two viruses are joined. Vertical arrows, putative cleavage sites for 3CLpro. Horizontal arrows, putative papain-like proteases (two copies in MHV-JHM, and one copy in IBV).

The hydropathy plot (Kyte and Doolittle, 1982) shows that ORF 1a has several long stretches of hydrophobic regions at the carboxy-terminal region, which indicate potential membrane-spanning domains (Fig. 2). ORF 1b, which overlaps ORF 1a for 75 nucleotides but is located at a different reading frame, is 2731 amino acids long with a predicted molecular weight of 308,483. The ORF 1b sequence is very similar to that of MHV-A59 in both nucleotide and predicted amino acid sequences (Bredenbeek et al., 1990). Only minor substitutions were noted between the two strains (data not shown). The ORF 1b starts with CUG instead of AUG. The first potential initiator codon AUG is located 399 nucleotides downstream of the first amino acid.

mRNAs (Lai et al., 1981), this result indicated that these cDNA clones represent part of gene 1. The 5'-ends of these DNAs were sequenced, and synthetic oligonucleotides complementary to these sequences were generated to prime further cDNA synthesis for walking toward the 5'-end of gene 1. In this way, overlapping DNA clones which encompass about 11 kb at the 3'-end of gene 1 were obtained (Fig. 1). cDNA clones representing the 5'-terminal 6.2 kb of gene 1 were derived as described (Shieh et al., 1987; Baker et al., 1989). The cDNA clones spanning the gap between the two cDNA groups were obtained by using specific primers representing both the sequences downstream and upstream of the gap as primers for first-strand and second-strand cDNA synthesis, respectively. The overlap of these cDNA clones was determined by Southern blotting and confirmed by DNA sequencing. The complete cloning of JHM gene 1 indicated that the size of gene 1 is approximately 22 kb in length (Fig. 1), longer than that of IBV (Boursnell et al., 1987), and agrees with the previous estimate for the gene 1 of the A59 strain of MHV (Pachuk et al., 1989).

Analysis of the nucleotide sequence and the predicted amino acid sequence. The complete MHV-JHM gene 1 sequence was obtained from the cDNA clones as indicated in Fig. 1. This sequence has been deposited with GenBank (Accession No. M55148), and will not be duplicated in this publication. The complete sequence of gene 1 contains 21,798 nucleotides preceding the UCUAUAC, which is the transcriptional initiation site for gene 2 (Shieh et al., 1989). Analysis of the sequence revealed two large, overlapping open reading frames (ORFs), ORF 1a and ORF 1b (Fig. 1a). ORF 1a is 4488 amino acids long and has a predicted molecular weight of 499,319, which includes the coding region for p28 protein at its N-terminus (Soe et al., 1987).

Fig. 9. A schematic presentation of the relationship between the ORF 1a of MHV-JHM and IDV. The two ORF 1a are shown to scale. The designation of regions, for which specific functional predictions could be made, and of regions of similarity between the two viruses are shown in the bottom of the figure. High similarity, statistical significance over 10 SD (standard deviation), when aligned by the program OPTAL (Gorbalenya et al., 1989b); moderate similarity, significance of 3 to 10 SD. The alignments in the regions, with predicted functions, were significant at the level of at least 5 SD. Regions of similarity between the two viruses are joined. Vertical arrows, putative cleavage sites for 3CLpro. Horizontal arrows, putative papain-like proteases (two copies in MHV-JHM, and one copy in IBV).

![Diagram with ORF 1a and ORF 1b]

Fig. 10. Alignment of the segments surrounding the putative catalytic His and Cys residues of the coronavirus 3C-like protease with the respective segments of other viral 3CLpro. The figure is an excerpt of the complete alignment generated by program OPTAL. The complete amino acid sequences of each viral 3CLpro are indicated, but only the sequences around the catalytic residues are shown. The numbers of amino acid residues to the known or postulated termini of the respective viral 3CLpro and between the aligned segments are indicated. For MHV 3CLpro, the postulated N-terminus is at amino acid residue 330U (Fig. 8 and Table 1). Residues identical or similar to those in the coronavirus sequences are highlighted by boldface. The arrow shows the Gly to Tyr substitution in the putative substrate-binding sites of the coronavirus proteases, Asterisks, (putative) catalytic residues. Abbreviations: PV1, poliovirus type 1; MV, mumps virus; HRV2, human rhinovirus type 2; EMCV, encephalomyocarditis virus; FMDV, foot-and-mouth disease virus type A10; HAV, hepatitis A virus; CPMV, cowpea mosaic virus; TBRV, tomato black ring virus; BWYV, beet western yellows virus; SBMV, southern bean mosaic virus; TEV, tobacco etch virus. For sources of the sequences, see Gorbalenya et al. (1989b), except BWYV (Veidt et al., 1988) and SBMV (Wu et al., 1987).
TABLE 1
SUMMARY OF THE PREDICTED CLEAVAGE SITES FOR THE 3C-LIKE PROTEASES IN CORONAVIRUS POLYPRTIEINS

aa sequence	Putative protein next to the C-terminus of the cleavage site	aa sequence		
IBV		**MHV**		
aa position	Size (# of aa)	aa position	Size (# of aa)	aa sequence
V I K F Q R V F K A 25A3 196	MP1	21A0 190	I I K K R A F A N	
V S R L Q S G F K K 2779 307	3CLpo	3350 303	T S F L Q S G I V K	
G V R L Q S S F V R 3086 283	MP2	3652 288	G V K L Q S K R T R	
I A T V Q A K L S D 3379 83	?	3941 89	V S Q I Q S R L T D	
S T V L Q S V T Q E 3462 322	?	4030 307	N T V L Q A L O S E	
N V V Q S K G N E 3784 114	GFL	4337 137	T V R L Q A C T A T	
K S S Y Q S V A G A 3928 931	POL	4474 918	G S Q F Q S K D T N	

Note: In the aa position columns, the amino acid positions of the respective Q residues are indicated. The arrows show the predicted cleavage sites. Abbreviations: MP1, MP2, putative membrane proteins flanking the 3CLpo at the N- and C-sides, respectively. POL: polymerase motif. HEL: helicase motif. GFL: growth factor-like domain. The data on IBV was obtained from Gorbalenya ef al. (1989b). The sequence analysis was performed using the computer program as described under Materials and Methods.

codon in ORF 1b. Nevertheless, the codon preference plot suggests that the 399 nucleotides upstream of the first AUG are most likely translated together with the downstream sequences using the same reading frame (Fig. 3). In light of the corresponding sequences of IBV and MHV-A59 (Boursnell et al., 1987; Bredenbeek et al., 1990), this result suggests that this region could be translated via a ribosomal frameshifting mechanism (Brierley et al., 1989).

Comparison of tertiary structure of RNA in the frameshift regions. It has been proposed that the nucleotide sequences in the overlapping regions between ORF 1a and ORF 1b in IBV and MHV-A59 RNAs are able to fold into a pseudoknot tertiary structure, which is essential for efficient frameshifting and, thus, expression of the downstream ORF 1b (Brierley et al., 1989; Bredenbeek et al., 1990). Comparison of the primary sequence revealed that the corresponding region of MHV-JHM contains a "slippery" sequence, UUUAAAC, similar to that of IBV (Fig. 4A). The possible folding of RNA in this region into a pseudoknot tertiary structure is similar among IBV, MHV-A59, and MHV-JHM (Fig. 4B). It is interesting to note that the nucleotides changes between MHV-JHM and IBV in either the stem or loop regions are compensated by mutations at the complementary positions (Fig. 4B). This suggests the significance of the putative tertiary structure in ribosomal frameshifting. Only two nucleotides differ between MHV-JHM and MHV-A59 in this region; they are located at the regions immediately upstream and downstream of the UUUAAAC sequence.

Ribosomal frameshifting in vitro. To confirm that the ORF 1a and 1b of MHV-JHM could be translated into one polypeptide by ribosomal frameshifting, we cloned the region spanning from nucleotide 13,147 to 14,164 of gene 1 into an expression vector under the control of the T7 promoter for in vitro translation studies. Because of the lack of a translational initiation codon, an ATG codon was introduced by PCR-mediated mutagenesis at nucleotide 13,154-13,156. If the translation of this transcript terminates at the UAA stop codon in ORF 1a, a 19-kDa protein will be produced. However, if the -1 translational frameshift occurs, a 37-kDa protein will be synthesized. As shown in Fig. 5, the in vitro translation of this RNA yielded both proteins (lane 2). The 37-kDa protein was heterogeneous; the smaller proteins may represent aberrant translational initiation or specific processing of the translation products. The addition of protease inhibitors in the rabbit reticulocyte lysates did not alter this translation pattern (data not shown). The antiserum prepared against the amino acid sequence just upstream of the frameshift (unpublished) precipitated both proteins (lane 5). Surprisingly, the major products precipitated by this anti-
serum migrated faster than the respective primary translation products, suggesting that protein processing had occurred. None of the proteins was immunoprecipitated by the preimmune serum. As controls, the transcripts containing either the 5'- or the 3'-halves

\[
\text{FIG. 11. Alignment of the putative coronavirus papain-like proteases. The numbers of the first and last residues of the aligned segments are indicated in parentheses. Both of the two papain-like proteases of MHV are shown. Residues conserved in all the three sequences (identical or similar) are highlighted by boldface. Asterisks, putative catalytic residues.}
\]

\[
\text{FIG. 12. Alignment of the segments around the putative catalytic residues of coronavirus papain-like proteases with the respective segments of papain-like proteases of cellular origin. The designations are as in Fig. 10. Abbreviations: MCP, mouse cysteine protease; catH, rat cathepsin H; DCP, Dicyostelium cysteine protease; catB, rat cathepsin B; catL, rat cathepsin L; CDP, chicken calpain-dependent protease. The sources of the sequences: Portnoy et al. (1986) (MCP, aeurain, actinin, papain, UvP, cat); Ujtor et al. (1988) (catL); Ohno et al. (1984) (CDP).}
\]

[pIΔ(ORF+/−)] of the ORF did not yield the 37-kD protein. As predicted, only the products of the 5'-half were precipitated by this antibody (Fig. 5B, lane 4). These results are in agreement with the results obtained with IBV (Brierty et al., 1987) and MHV-A59 (Bredenbeek et al., 1990).

Analysis of sequence homology among MHV-JHM, MHV-A59, and IBV. The comparison of nucleotide and predicted amino acid sequences between MHV-JHM and IBV revealed considerable similarity between the two. The dot matrix comparison of the amino acid sequences shows that ORF 1b is very similar between MHV and IBV (Fig. 6). Overall, there are 47.7% similarity at nucleotide level and 52.8% at amino acid level. Similar to the ORF 1b of IBV, the MHV ORF contains the polymerase and helicase motifs at the corresponding positions (Gorbalenya et al., 1989b) (data not shown). The putative zinc-binding domain is also largely conserved between the two viruses. On the other hand, two of the residues implicated in metal binding for IBV (Gorbalenya et al., 1989b) are replaced in MHV, suggesting that the specific structures of the putative "fingers" may differ (Fig. 7). The ORF 1b of MHV-JHM and MHV-A59 are also very similar (95.9% at nucleotide level, and 94.9% at amino acid level) (data not shown).
In contrast, the ORF 1a is more diverged (Fig. 8). The MHV ORF 1a is longer than the corresponding IBV ORF by 537 amino acids. The C-terminal half of the ORF 1a is relatively conserved between MHV-JHM and IBV, while the N-terminal half is very diverged (Fig. 8). The alignment of amino acids in ORF 1a of MHV-JHM and IBV showed that there are four possible stretches of moderate homology which are separated by highly diverged sequences (Fig. 8).

Analysis of the functional domains of ORF 1a. Although ORF 1a is highly diverged between MHV-JHM and IBV, common functional domains could be identified in this ORF of both viruses by detailed amino acid sequence analysis (see Materials and Methods) (Fig. 9). Two hydrophobic, potentially membrane-anchoring regions are present in the C-terminal half. There are three cysteine-rich domains, one of which contains a segment distantly resembling growth factors and their receptors (Gorbalenya et al., 1989b). In both coronaviruses, homologous domains of about 300 residues each have been identified to be related to the putative 3C-like proteases (3CLPr) of picorna-, comov-, nepov-, poty-, sobemov- and luteoviruses (Gorbalenya et al., 1989b). The sequences of the putative coronavirus 3C-like proteases possess certain unusual features distinct from that of other viral 3C-like proteases (Fig. 10, and see Discussion). The search for segments resembling the cleavage sites for the 3C-like proteases revealed six conserved putative target sites for the MHV and IBV 3C-like proteases (Table 1) (see Discussion). These potential cleavage sites are localized in the ORF 1b and the C-terminal half of the ORF 1a. Interestingly, the N-terminal one of these cleavage sites marks the N-end of the putative 3C-like protease itself. Finally, there is a region of moderate conservation between MHV and IBV, which contains short segments resembling those around the catalytic Cys and His residues of papain-like proteases (Fig. 11). This region is duplicated in the MHV genome, but not in IBV, at an upstream site in the ORF 1a. This upstream papain-like cysteine protease has been identified as the one responsible for the cleavage of p28 from the N-terminus of the gene 1 protein (Baker et al., 1989). A domain of considerable conservation between MHV and IBV (X domain in Fig. 9) has been found next to the putative coronavirus papain-like proteases. Interestingly, a homologous conservative domain also flanks the putative thiol proteases of alpha- and rubiviruses (A. E. Gorbalenya, unpublished observations).

DISCUSSION

The complete sequence of gene 1 of MHV presented in this paper shows that this gene is probably the largest known viral gene among RNA viruses. Evidence was presented suggesting that the two ORFs in this gene may be translated into a large polyprotein. This interpretation is consistent with the lack of the transcriptional initiation signal (UCUAAAC) in the entire gene 1 sequence except at the extreme 5'-end. Although the putative “slippery” sequence (UUUAAC) between the ORF 1a and 1b (Brierley et al., 1989) is similar to the transcriptional initiation signal, no major subgenomic mRNAs have been detected within this gene. Thus, this gene most likely encodes a single polyprotein of at least 800 kDa. The total size of the RNA genome of MHV is approximately 31 kb, which is considerably larger than any of the other known viral RNA. The evolution of the coronavirus RNA genome into such a large RNA may have reflected the unusual mechanism of coronavirus RNA synthesis. The complexity of the discontinuous mode of coronavirus RNA synthesis (Lai, 1988) suggests that the coronavirus RNA polymerase needs a variety of different enzymatic activities.

The amino acid sequence of gene 1 of MHV shows considerable similarity to that of IBV. The ORF 1b is particularly conserved. Its degree of conservation between MHV and IBV is higher than that for any of the other genes in the coronavirus genomes. The ORF 1b contains the polymerase, helicase, and metal-binding motifs (Gorbalenya et al., 1989b), suggesting that this region may be directly involved in RNA synthesis. These structural features are conserved between these viruses. The proposed pseudoknot structure which is important for the ribosomal frameshifting for cotranslation of ORF 1a and ORF 1b (Brierley et al., 1989) is also highly conserved. This fact has previously been recognized in the partial sequence of gene 1 of MHV-A59 (Bredenbeek et al., 1990). The sequence differences between MHV-A59 and MHV-JHM within this junction region are located at the nucleotides which do not affect the putative pseudoknot structure. In contrast, ORF 1a is much more diverged. It is nearly 2 kb longer than the ORF 1a of IBV, and contains several stretches of sequence which are not present in the IBV genome. These nonhomologous stretches of sequence are interspersed between the conserved regions. Furthermore, a papain-like protease domain, which is present once in the IBV genome, is duplicated in the 5'-half of the ORF 1a of MHV. The N-terminal sequence including p28, which is cleaved by the papain-like protease of MHV (Baker et al., 1989), is also highly diverged between MHV and IBV. Thus, it appears that the 5'-end of ORF 1a has undergone considerable sequence rearrangement and possibly recombination, while the remaining sequences in gene 1 are almost colinear between MHV and IBV.
In contrast to the ORF 1b which contains sequence motifs related to the synthesis of RNA, the ORF 1a contains several domains suggestive of other functions. First of all, there are two long stretches of hydrophobic domains, which are conserved between IBV and MHV. The presence of these domains suggests that the gene 1 products may be anchored to the membrane. This possibility is consistent with the finding that MHV RNA synthesis occurs on the membrane fractions in the infected cells (Brayton et al., 1982). Second, there are three cysteine-rich regions, which are also homologous between MHV and IBV. The function of the Cys-rich domains is still not clear. However, it has been noted with IBV that the C-terminal Cys-rich domain is related to that of the growth factors and their receptors (Gorbalenya et al., 1989b). Third, there is a 3C-like protease domain (3CLpro) in the 3'-half of ORF 1a, which is also conserved in IBV. The putative catalytic His and Cys residues previously predicted in IBV have also been observed in MHV (Fig. 10). However, the putative coronavirus protease remains unique in that they do not contain a conserved Asp(Glu) residue that could serve as the third catalytic residue as suggested for the other 3C-like proteases (Gorbalenya et al., 1989b). Furthermore, the unusual substitution of Tyr for Gly in the putative substrate-binding region, described previously in IBV, is also observed in the putative MHV 3CLpro (Fig. 10). The potential cleavage sites for this 3C-like protease have been identified to be mainly in ORF 1b and the C-terminus of ORF 1a (Gorbalenya et al., 1989b). These sites (QS) are either conserved or converted to QA in MHV (Table 1). The potential cleavage at Q/S and Q/A sites by picornavirus 3CLpro has been demonstrated previously (Parks and Palmenberg, 1987). Two QG dipeptides proposed to be cleaved in IBV were substituted in MHV by QC in a single case, and by KR dipeptide in another (Table 1). Substitution of a C (unlike several other residues) for G in a cleavage site for encephalomyocarditis virus protease did not abolish processing in an in vitro system (Parks et al., 1989). Dibasic dipeptides are cleaved in the polyproteins of flaviviruses (Strauss and Strauss, 1988). Thus, these postulated cleavage sites are potentially cleavable by MHV 3CLpro despite the divergence. These cleavages could separate different functional domains of the gene 1 polyprotein into distinct protein products. Whether these sites are indeed cleaved in MHV-infected cells remains to be studied. Fourthly, the N-terminal portion, which is the most diverged region, contains a papain-like protease domain as pointed out previously for IBV (Gorbalenya et al., 1989b). The papain protease domain is duplicated in the MHV ORF 1a (Fig. 11) and is homologous with the known proteases (Fig. 12). This protease is probably involved in the cleavage of the N-terminus of the gene 1 polyprotein (Raker et al., 1989), which has been demonstrated in MHV-infected cells (Denison and Perlman, 1987). Site-specific mutagenesis studies demonstrated that this protease has Cys and His at its active site (unpublished observation).

The possible presence of the protease domains suggests that the gene 1 polyprotein is processed into many proteins. It has been shown that there are at least five to six complementation groups involving MHV RNA synthesis, five of which have been mapped within gene 1 (Leibowitz et al., 1982; Baric et al., 1990). These proteins conceivably participate in various aspects of MHV RNA synthesis. None of the proteins have been detected so far.

ACKNOWLEDGMENTS

We thank Dr. Susan Baker for advice throughout the course of the study. We also thank Lisa Banner and Daphne Shimoda for editorial assistance. A.E.G. and E.V.K. are most grateful to Professor V. I. Agol for constant support, to Dr. L. I. Brodsky for supply of the GEN-BEE program package, and to Dr. F. Corpet for sending the program MULTALIN. This work was supported by Public Health Service Research Grants AI19244 and NS181146 from the National Institutes of Health. N.L.M. is a postdoctoral fellow of the National Multiple Sclerosis Society. M.M.C.L. is an investigator of Howard Hughes Medical Institute.

REFERENCES

ARMSTRONG, J., SMEEKENS, S., and ROTTERI, P. (1983). Sequence of the nucleocapsid protein from murine coronavirus MHV-A59. Nucleic Acids Res. 11, 883–891.

ARMSTRONG, J., NIEMANN, H., SMEEKENS, S., ROTTERI, P., and WARRI, G. (1984). Sequence and topology of a model intracellular membrane protein. J. Virol. 26, 751–752.

BAKER, S. C., LA MONICA, N., SHEH, C.-K., and LAI, M. M. C. (1990). Murine coronavirus gene 1 polyprotein contains an autoproteolytic activity. In “Pathogenesis and Molecular Biology of Coronaviruses” (D. Cavanagh, and T. D. K. Brown, Eds.), Plenum, New York (in press).

BAKER, S. C., SHEI, C.-K., SOE, L. H., CHANG, M.-F., VANNIER, D. M., and LAI, M. M. C. (1989). Identification of a domain required for autoproteolytic cleavage of murine coronavirus genes A polyprotein. J. Virol. 63, 3693–3699.

BARIC, R. S., FU, K., SCHAAD, M. C., and STOHLMAN, S. A. (1990). Establishing a genetic recombination map for murine coronavirus strain A59 complementation groups. Virology 177, 646–656.

BOURSNELL, M. E. G., BROWN, T. D. K., FOULDS, I. J., GREEN, P. F., TOMLEY, F. M., and BINKS, M. M. (1987). Completion of the sequence of the genome of the coronavirus avian infectious bronchitis virus. J. Gen. Virol. 68, 57–77.

BRAYTON, P. R., LAI, M. M. C., PATTON, C. D., and STOHLMAN, S. A. (1982). Characterization of two RNA polymerase activities induced by murine hepatitis virus. J. Virol. 42, 947–953.

BREIDENBECK, P. J., FACHUK, C. J., NOTEN, A. F. H., CHARITE, J., LUTYIES, W., WEISS, S. R., and SPAAN, W. J. M. (1990). The primary structure and expression of the second open reading frame of the polymerase gene of the coronavirus MHV-A59: a highly conserved poly-
merase is expressed by an efficient ribosomal frameshifting mechanism. *Nucleic Acids Res.*, 18, 1825–1832.

Brierley, I., Boursnell, M. E. G., Birns, M. M., Bilimoria, B., Blok, V. C., Brown, T. D. K., and Ingles, S. C. (1987). An efficient ribosomal frameshifting signal: Requirement for an RNA pseudoknot. *Cell* 57, 537–547.

Cavanagh, D., Brian, U. A., Enjuanes, L., Holmes, K. V., Lai, M. M. C., Laude, H., Siddell, S. G., Spaan, W., Taguchi, F., and Talbot, P. J. (1990). Recommendations of the coronavirus study group for the nomenclature of the structural proteins, mRNAs and genes of coronavirus. *Virology* 176, 306–307.

Chen, E. I., and Seeburg, P. H. (1988). Supercil sequencing: A fast and simple method for sequencing plasmid DNA. *DNA* 4, 165–170.

Corbet, F. (1988). Multiple sequence alignment with hierarchical clustering. *Nucleic Acids Res.* 16, 10,881–10,890.

Dagert, M., and Erlich, S. D. (1979). Prolonged incubation in calcium chloride improves the competence of *Escherichia coli* cells. *Gene* 6, 23–29.

Denison, M., and Perlman, S. (1987). Identification of putative polymerase gene product in cells infected with murine coronavirus A59. *Virology* 157, 565–568.

Devereux, J., Haebeli, P., and Smithies, O. (1984). A comprehensive set of sequence analysis programs for the VAX. *Nucleic Acids Res.* 12, 387–395.

Dupour, E., Obled, A., Valin, C., and Dechert, D. (1987). Purification and amino acid sequence of chicken liver cathepsin L. *Biochemistry* 26, 5689–5695.

Gorbalenya, A. E., Blinov, V. M., Donchenko, A. P., and Koonin, E. V. (1989a). An NTP-binding motif is the most conserved sequence in a highly diverged monophyletic group of proteins involved in positive strand RNA viral replication. *J. Mol. Biol.* 28, 256–258.

Gorbalenya, A. E., Koonin, E. V., Donchenko, A. P., and Blinov, V. M. (1988b). Coronavirus genome: Prediction of putative functional domains in the nonstructural polyprotein by comparative amino acid sequence analysis. *Nucleic Acids Res.* 17, 4847–4901.

Grishkov, M., Devereux, J., and Burgess, R. R. (1984). The codon preference plot: Graphical analysis of protein coding sequences and prediction of gene expression. *Nucleic Acids Res.* 12, 539–549.

Gubler, U., and Hoffman, B. J. (1983). A simple and very efficient method for generating cDNA libraries. *Gene* 26, 263–269.

Hirano, N., Fujimura, K., Hino, S., and Matsumoto, M. (1974). Replication and plaque formation of mouse hepatitis virus (MHV-2) in mouse cell line DBT culture. *Arch. Gesamt. Virolog.* 44, 298–302.

Keck, J. G., Stohlman, S. A., Soe, L. H., Makino, S., and Lai, M. M. C. (1987). Multiple recombination sites at the 5' end of murine coronavirus RNA. *Virology* 156, 301–341.

Koonin, E. V., Chumakov, K. M., and Gorbalenya, A. E. (1990). A method for localization of motifs in amino acid sequences. *Biopolym. Kletka*, in press.

Kyte, J., and Doolittle, R. F. (1982). A simple method for displaying the hydropathic character of a protein. *J. Mol. Biol.* 157, 105–132.

Lai, M. M. C. (1988). Replication of coronavirus RNA. In "RNA Genetices" (F. Noma, J. J. Holland, and P. Ahlquist, Eds.), Vol. I, pp. 115–136. CRC, Boca Ratun, FL.

Lai, M. M. C. (1990). Coronavirus: Organization, replication and expression of genome. *Annu. Rev. Microbiol.* 44, 303–333.

Lai, M. M. C., Brayton, P. R., Armen, R. C., Patton, C. D., Push, C., and Stohlman, S. A. (1981). Mouse hepatitis virus A59: Messenger RNA structure and genetic localization of the sequence divergence from the hepatotropic strain MHV 3. *J. Virol.* 39, 823–834.

Lai, M. M. C., and Stohlman, S. A. (1978). The RNA of mouse hepatitis virus. *J. Virol.* 20, 230–242.

Leibowitz, J. L., Devries, J. R., and Haspel, M. V. (1982). Genetic analysis of murine hepatitis virus strain JHM. *J. Virol.* 42, 1080–1087.

Leontovich, A. M., Brodsky, L. I., and Gorbalenya, A. E. (1990). A method for togervation of complete local similarity maps between two amino acid sequences. DOTHELIX program of the GENBEE package. *Biopolym. Kletka*, in press.

Lutty, W., Sturmian, L. S., Bredenbeek, P. J., Charite, J., Van der Zeist, B. A. M., Horznke, M. C., and Spaan, W. J. (1987). Primary structure of the glycoprotein E2 of coronavirus MHV-A59 and identification of the trypsin cleavage site. *Virology* 161, 478–487.

Lutty, W., Bredenbeek, P. J., Noten, A. F., Horznke, M. C., and Spaan, W. J. (1988). Sequence of mouse hepatitis virus A59 mRNA 2: Indications for RNA recombination between coronavirus and influenza C virus. *Virology* 166, 415–422.

Makino, S., Taguchi, F., Hirano, N., and Fujimura, K. (1984). Analysis of genomic and intracellular viral RNAs of small plaque mutants of mouse hepatitis virus, JHM strain. *Virology* 139, 138–151.

Maxam, A. M., and Gilbert, W. (1980). Sequencing end-labeled DNA with base-specific chemical cleavages. In "Methods in Enzymology" (L. Grossman and K. Moldave, Eds.), Vol. 65, pp. 599–660. Academic Press, San Diego, CA.

Ohno, S., Emori, Y., Imaichi, S., Kawasaki, H., Kizaragi, M., and Suzuki, K. (1984). Evolutionary origin of a calcium-dependent protease by fusion of genes for a thiol protease and a calcium-binding protein. *Nature (London)* 312, 566–570.

Portnoy, D. A., Erickson, A. H., Kochan, J., Ravetch, J. V., and Unkeless, J. C. (1986). Cloning and characterization of a mouse cytokine proteinase. *J. Biol. Chem.* 261, 14,697–14,703.

Pachuk, C. J., Bredenbeek, P. J., Zoltick, P. W., Spaan, W. J. M., and Webb, S. R. (1999). Molecular cloning of the gene encoding the putative polymerease of mouse hepatitis coronavirus strain A59. *Virology* 171, 141–148.

Parks, G. D., Baker, J. C., and Palmenberg, A. C. (1989). Proteolytic cleavage of encephalomyocarditis viral capsid region substrates by precursors to the 3C protease. *J. Virol.* 63, 1054–1058.

Parks, G. D., Baker, J. C., and Palmenberg, A. C. (1987). Site-specific mutations at a picornavirus VP3/VP1 cleavage site disrupt in vitro processing and assembly of capsid precursors. *J. Virol.* 61, 3680–3687.

Saki, R. K., Gelfand, D. H., Stoffel, S., Scharf, S. J., Hijichi, R., Horn, G. I., Mullis, K. B., and Erlich, H. A. (1988). Primer-directed enzymatic amplification of DNA with a thermostable DNA polymerase. *Science* 239, 487–491.

Sanger, F., Nicklen, S., and Coulson, A. R. (1977). DNA sequencing with chain-terminating inhibitors. *Proc. Natl. Acad. Sci. USA* 74, 5463–5467.

Schmidt, I., Skinner, M., and Siddell, S. (1987). Nucleotide sequence of the gene encoding the surface glycoprotein of coronavirus MHV-JHM. *J. Gen. Virol.* 68, 47–56.

Sheh, C.-K., Leff, H.-I., Yonkomori, K., i A Mona, N. Makino, S., and Lai, M. M. C. (1989). Identification of a new transcriptional initiation site and the corresponding functional gene 2b in the murine coronavirus RNA genome. *J. Virol.* 63, 3729–3736.

Sheh, C.-K., Soe, L. H., Makino, S., Chiang, M.-F., Stohlman, S. A., and Lai, M. M. C. (1987). The 5'-end sequence of the murine coronavirus genome: Implications for multiple fusion sites in leader-promoted transcription. *Virology* 56, 321–330.

Shin, S. U., and Morrison, S. L. (1989). Production and properties of chimeric antibody molecules. In "Methods in Enzymology" (J. J.
Langone, Ed.), Vol. 178, pp. 459–476. Academic Press, San
Diego, CA.

Skinner, M. A., Ebner, D., and Siddell, S. G. (1985). Coronavirus
MHV-JHM mRNA 5 has a sequence arrangement which poten-
tially allows translation of a second, downstream open reading
frame. J. Gen. Virol. 66, 581–592.

Skinner, M. A., and Siddell, S. G. (1983). Coronavirus JHM: Nucleo-
tide sequence of the mRNA that encodes nucleocapsid protein.
Nucleic Acids Res. 11, 5045–5054.

Skinner, M. A., and Siddell, S. G. (1985). Coding sequence of cor-
ronavirus MHV-JHM mRNA 4. J. Gen. Virol. 66, 593–595.

Soe, L. H., Shieh, C.-K., Baker, S. C., Chang, M.-F., and Lai, M. M. C.
(1987). Sequence and translation of the murine coronavirus 5'-end
genomic RNA reveals the N-terminal structure of the putative RNA
polymerase. J. Virol. 61, 3968–3976.

Spaan, W. M., Cavanagh, D., and Horzinek, M. C. (1988). Coronavi-
ruses: Structure and genome expression. J. Gen. Virol. 69, 2939–
2952.

Strauss, J. H., and Strauss, E. G. (1988). Replication of the RNAs of
alphaviruses and flaviviruses. In "RNA Genetics" (C. Domingo, J. J.
Holland, and P. Ahlquist, Eds.), Vol. I, pp. 71–90. CRC, Boca Ra-
ton, FL.

Veidt, I., Lot, H., Leiser, M., Scheidecker, D., Gürley, H., Richards,
K., and Jonard, J. (1988). Nucleotide sequence of beet western
yellow virus RNA. Nucleic Acids Res. 16, 9917–9932.

Weges, H., Muller, A., and ter Meulen, V. (1978). Genomic RNA of
the murine coronavirus JHM. J. Gen. Virol. 41, 717–727

Wu, S., Rinehart, C. A., and KAESBERG, P. (1987). Sequence and
organization of southern bean mosaic virus RNA. Virolgy 161,
73–90.