A bounded integer model for rating and composite scale data

2018-05-31

Gustaf Wellhagen, Maria Kjellsson and Mats Karlsson
Department of Pharmaceutical Biosciences
Upplasa University, Sweden
Aim

To develop a new method to handle rating and composite scale data in a parsimonious way, while respecting the nature of the data.
Rating and composite scales

• Good for assessing disease severity and therapeutic efficacy
• Rating scale: one question/item
 – Focus on scales with >10 categories
• Composite scale: several questions/items
• Commonly used in e.g. CNS disorders and autoimmune diseases
Rating scales
Likert rating scale: neuropathic pain
Likert rating scale: neuropathic pain

Score distribution

231 patients, 97 obs/patient

a. Ordered categorical (OC) model (Schindler & Karlsson AAPS J 2017)
Likert rating scale: neuropathic pain

Score distribution

Score time-course

231 patients, 97 obs/patient

a. Ordered categorical (OC) model (Schindler & Karlsson AAPS J 2017)
b. Continuous variable (CV) model (Plan et al. Clin Pharmacol Ther 2012)
Traditional approaches in NLME

• Ordered categorical (OC)
 – $n-1$ parameters to capture the baseline
 – Requires many observations
 – Cannot predict unobserved categories
• Continuous variable (CV)
 – Violates the categorical nature of the data
 – Problematic at the extremes of the scale
The bounded integer (BI) model
The bounded integer (BI) model

• Define two functions: \(f() \) and \(g() \):
 – Consist of fixed and random effects, time and covariates:
 • \(f(\theta, \eta, t, X) \) and \(g(\sigma, \eta, t, X) \)
 – Defines a distribution: \(N(f(), g()) \)
The bounded integer (BI) model

• Define two functions: \(f() \) and \(g() \):
 – Consist of fixed and random effects, time and covariates:
 • \(f(\theta, \eta, t, X) \) and \(g(\sigma, \eta, t, X) \)
 – Defines a distribution: \(N(f(), g()) \)
• Define n-1 cut-off values through the probit function:
 – \(Z_{1/n} \) to \(Z_{(n-1)/n} \)
 – Divides a standard normal curve into n equally sized areas
A scale with 5 categories

Given a standard normal distribution $N(0, 1)$:
- The probit is the quantile function
- $\Phi(x)$ is the cumulative distribution function
Given a standard normal distribution $N(0, 1)$:

- The probit is the quantile function
- $\Phi(x)$ is the cumulative distribution function

probit(1/5)

Z-score	Percentile
-0.84	20%
-0.25	40%
0.25	60%
0.84	80%

A scale with 5 categories
A scale with 5 categories

Given a standard normal distribution $N(0, 1)$:

- The probit is the quantile function
- $\Phi(x)$ is the cumulative distribution function

$\text{probit}(1/5)$

$\Phi(\text{probit}(1/5))$

Z-score: -0.84 (20%), -0.25 (40%), 0.25 (60%), 0.84 (80%)
A scale with 5 categories

probit(1/5)

Z-score

-0.84 -0.25 0.25 0.84

0 1 2 3 4

20% 20% 20% 20% 20%
A scale with 5 categories

$probit(1/5)$

Z-score \rightarrow -0.84 \rightarrow -0.25 \rightarrow 0.25 \rightarrow 0.84
The probability P of each score is defined as:

$$P(0) = \Phi\left(\frac{\text{probit}(1/n) - f()}{g()}\right)$$

$$P(1) = \Phi\left(\frac{\text{probit}(2/n) - f()}{g()}
ight) - \Phi\left(\frac{\text{probit}(1/n) - f()}{g()}\right)$$

...

$$P(n-1) = \Phi\left(\frac{\text{probit}(n-1/n) - f()}{g()}
ight) - \Phi\left(\frac{\text{probit}(n-2/n) - f()}{g()}\right)$$

$$P(n) = 1 - \Phi\left(\frac{\text{probit}(n-1/n) - f()}{g()}\right)$$
• The probability P of each score is defined as:

\[
P(0) = \Phi(-0.84-f())/g())
\]

\[
P(1) = \Phi(-0.25-f())/g()) - \Phi(-0.84-f())/g())
\]

\[
P(2) = \Phi(0.25-f())/g()) - \Phi(-0.25-f())/g())
\]

\[
P(3) = \Phi(0.84-f())/g()) - \Phi(0.25-f())/g())
\]

\[
P(4) = 1 - \Phi(0.84-f())/g())
\]
An illustrating example

\(g() = 0.7 \)

\(f() = -0.545 \)
\[P(0) = \Phi((-0.84 - 0.545)/0.7) = 0.34 \]
\[P(I) = \Phi((-0.25 - 0.545)/0.7) - \Phi((-0.84 - 0.545)/0.7) = 0.33 \]
\[P(2) = \Phi\left(\frac{0.25 - 0.545}{0.7}\right) - \Phi\left(\frac{-0.25 - 0.545}{0.7}\right) = 0.21 \]
\[P(3) = \Phi((0.84 - 0.545)/0.7) - \Phi((0.25 - 0.545)/0.7) = 0.10 \]
\[P(4) = 1 - \Phi \left(\frac{(0.84 - 0.545)}{0.7} \right) = 0.02 \]
Comparison BI vs. OC – Likert example

Model description	ΔParameters OC-BI	ΔOFV OC-BI
Base model	8	-372
With random effects	7	796
With random effects and Markov components	4	1365

OC model (Schindler & Karlsson AAPS J 2017)
Remarks on BI vs. OC models

- **BI advantages:**
 - Described the data better (OFV)
 - Needed fewer parameters
 - Runtimes were shorter
 - Allows interpolation and extrapolation
Composite scales
Alzheimer’s Disease Assessment Scale - Cognition (ADAS-Cog)

Tasks

Word-based

Rater assessed

Sum

Parkinson’s Disease

Movement Disorder Society - Unified Parkinson’s disease rating scale (MDS-UPDRS)

Non-motor experiences

Motor experiences

Motor examinations

Complications

Sum
Approaches for total score data from composite scales

• Ordered categorical (OC) model not used
• Commonly analysed as a continuous variable (CV):
 – Score_{obs,i,j} = Score_{predicted,i,j} + \varepsilon_{ij}
Comparison BI vs. CV examples

Disease	Scale	Categories	#Parameters CV = BI	ΔOFV CV-BI	ΔXV OFV CV-BI
Parkinson’s disease	UPDRS motor¹	109	16	113	138

Data from: ¹Troconiz et al. CPT 1998
Comparison BI vs. CV examples

Disease	Scale	Categories	#Parameters CV = BI	ΔOFV CV-BI	ΔXV OFV CV-BI
Parkinson's disease	UPDRS motor1	109	16	113	138
Parkinson's disease	MDS-UPDRS motor2	133	14	73	82
Alzheimer's disease	ADAS-Cog3	71	11	730	793
Schizophrenia	PANSS4	181	17	145	131
Schizophrenia	PANSS5	181	15	126	170

Data from: 1Troconiz et al. CPT 1998; 2Buatois et al. Pharm Res 2017; 3Ito et al. Alzheimers Dement 2011; 4Friberg et al. CPT 2009; 5Krekels et al. CPT PSP 2017
Comparison BI vs. CV examples

Disease	Scale	Categories	#Parameters CV = BI	ΔOFV CV-BI	ΔXV OFV CV-BI
Parkinson's disease	UPDRS motor\(^1\)	109	16	113	138
Parkinson's disease	MDS-UPDRS motor\(^2\)	133	14	73	82
Alzheimer's disease	ADAS-Cog\(^3\)	71	11	730	793
Schizophrenia	PANSS\(^4\)	181	17	145	131
Schizophrenia	PANSS\(^5\)	181	15	126	170

Data from: \(^1\) Troconiz et al. CPT 1998; \(^2\) Buatois et al. Pharm Res 2017; \(^3\) Ito et al. Alzheimers Dement 2011; \(^4\) Friberg et al. CPT 2009; \(^5\) Krekels et al. CPT PSP 2017
Remarks on BI vs. CV

- **BI advantages:**
 - Described the data better (OFV and XV OFV)
 - Respects the scale boundaries
 - Allows simulation of real life-like data

- **BI disadvantages:**
 - Runtimes were longer
 - E.g. Troconiz data set average: 80 vs. 50 min
Model assumptions

Continuous: Linear

Continuous: Logit

Ordered categorical

Bounded integer
The bounded integer model:
 - Provides a good description of rating and composite scale data
 - Is parsimonious compared to ordered categorical models
 - Can interpolate and extrapolate well
 - Respects the integer nature of the data
 - Respects scale boundaries
 - Is a promising method to make use of total score data
Thank you for listening

• Thanks to colleagues in the Pharmacometrics Research Group at Uppsala University
Comparison BI vs. CV examples

Disease	Scale	#Patients	#Obs	Scale range	Observed range	#Parameters CV = BI	∆OFV CV-BI	∆XV OFV CV-BI
Parkinson’s disease	UPDRS motor¹	19	946	0-108	16-80	16	113	138
Parkinson’s disease	MDS-UPDRS motor²	428	2720	0-132	1-77	14	73	82
Alzheimer’s disease	ADAS-Cog³	817	3594	0-70	0-70	11	730	793
Schizophrenia	PANSS⁴	1323	7728	30-210	30-176	17	145	131
Schizophrenia	PANSS⁵	1292	8520	30-210	30-167	15	126	170

Data from: ¹Troconiz et al. CPT 1998; ²Buatois et al. Pharm Res 2017; ³Ito et al. Alzheimers Dement 2011; ⁴Friberg et al. CPT 2009; ⁵Krekels et al. CPT PSP 2017
Disease	Scale	#Patients	#Obs	Full range	Observed range	ΔOFV Obs-Full
Parkinson's disease	UPDRS motor	19	946	0-108	16-80	16
Parkinson's disease	MDS-UPDRS motor	428	2720	1-132	1-77	31
Alzheimer’s disease	ADAS-Cog	817	3594	0-70	0-70	0
Schizophrenia	PANSS	1323	7728	30-210	30-176	-58
Schizophrenia	PANSS	1292	8520	30-210	30-167	2
• Scaling of Z-scores
• Larger variability at high absolute Z-score
• Translation between scales
• Markov elements
• T-distributed variability
• Residuals of rating/composite scales