This supplemental material provides details of the illustrative network analysis of the STAMPEDE trial reported in the Results section of the main paper and a detailed presentation of the results of the simulation study. The supplemental material is divided into four sections: (1) details of the calculation of stage-specific treatment effects, including hazard ratios (HRs) and standard errors (SEs), relevant to the network analysis of the ADT+DOC versus ADT+ABI treatment comparison; (2) R code for implementing the network analysis in the `netmeta` package using the stage-specific HRs and SEs; (3) output from the network analysis which reproduces the results reported in the Results section of the main paper; and (4) detailed results of the simulation study.

1. Stage-specific treatment effects

The network analysis requires direct randomized treatment effects from the STAMPEDE trial. As we did not have access to individual patient data we used results reported in STAMPEDE publications, and reconstructed information required to undertake an illustrative analysis. As reported in the main paper the network analysis uses randomizations that were undertaken during two time stages: 2005–2011 and 2012–2013. There are three direct randomized treatment effects reported in STAMPEDE publications that are used to provide information needed in the network analysis. These may be expressed as the logHR and SE(logHR) as below. These values are equivalent to the HR and 95% confidence intervals reported in the Results section of the main paper.

- 2005–2013: ADT vs ADT+DOC, logHR = – 0.2485, SE(logHR) = 0.08749 (reference 7)
- 2012–2013: ADT vs ADT+ABI, logHR = – 0.4620, SE(logHR) = 0.09681 (reference 15)
- 2012–2013: ADT+DOC vs ADT+ABI, logHR = 0.1484, SE(logHR) = 0.1784 (reference 16)

In addition to the three direct randomized treatment effects reported in the publications, there is a fourth direct randomized treatment effect required that is not reported but may be reconstructed from published Kaplan-Meier curves. We used the `IPDfromKM` package in R to reconstruct individual patient data for the ADT arm from reference 15 and the ADT+DOC arm from reference 16, and used these to calculate a treatment effect for the ADT vs ADT+DOC comparison during 2012–2013.

- 2012–2013: ADT vs ADT+DOC, logHR = – 0.3287, SE(logHR) = 0.1676 (references 15, 16)

Finally, we used the two ADT vs ADT+DOC comparisons, from 2005–2013 and 2012–2013, to reconstruct the ADT vs ADT+DOC comparison for 2005–2011. This was achieved by considering the 2005–2013 estimate to be a weighted average of the 2005–2011 and 2012–2013 estimates, with inverse variance weights computed using the relevant standard errors.
2005–2011: ADT vs ADT+DOC, logHR = – 0.2184, SE(logHR) = 0.1026

The stage-specific treatment effects required for the network analysis of the ADT+DOC vs ADT+ABI comparison may then be summarized in the following table.

Stage	Time period	Comparison	logHR	SE(logHR)
1	2005–2011	ADT vs ADT+DOC	–0.21	0.1026
2	2012–2013	ADT vs ADT+DOC	–0.33	0.17
2	2012–2013	ADT vs ADT+ABI	–0.46	0.09681
2	2012–2013	ADT+DOC vs ADT+ABI	0.1484	0.1784

We acknowledge that these treatment effect computations introduce approximations into the illustrative analyses, and it is emphasized that these approximations would not be required with access to the individual patient data. A further approximation that must be acknowledged is that the 2012–2013 periods that we have referred to from references 15 and 16 are not identical time periods, which technically they should be. This approximation would again be circumvented with access to the individual patient data. Such approximations are unlikely to have a substantive impact on the main message of the illustrative analysis, namely, that the indirect information derived from inclusion of the non-concurrent control group during 2005–2011 is inconsistent with the direct randomized information used in the primary analysis of the ADT+DOC vs ADT+ABI comparison.

2. R code

Using the treatment comparisons in the table, the R package `netmeta` may be used to undertake the network analysis. The package and data are set up with the following code.

```r
library(netmeta)
TE <- c(-0.2184,-0.4620,0.1484,-0.3287)
seTE <- c(0.1026,0.09681,0.1784,0.1676)
treat1 <- c("ADT","ADT","ADT+DOC","ADT")
treat2 <- c("ADT+DOC","ADT+AAP","ADT+AAP","ADT+DOC")
studlab <-c("EPOCH 1","EPOCH 2","EPOCH 2","EPOCH 2")
stampede.3 <- data.frame(cbind(TE=TE, seTE=seTE, treat1, treat2, studlab))
```

The network analysis is undertaken with the following command.
net <- netmeta(as.numeric(TE), as.numeric(seTE), treat1, treat2, studlab, data=stampede.3, tol.multiarm=0.1)

The decomposition of information into the direct and indirect treatment comparisons is undertaken with the following command.

split <- netsplit(net)

The objects net and split then contain the results of the network analysis.

3. Results

Results of the analysis are as follows.

summary(net)

Number of studies: k = 2
Number of treatments: n = 3
Number of pairwise comparisons: m = 4
Number of designs: d = 2

Fixed effects model

Treatment estimate (sm = ''):

	ADT	ADT+AAP	ADT+DOC
ADT	.	-0.4278	-0.2689
ADT+AAP	0.4278	.	0.1580
ADT+DOC	0.2699	-0.1580	.

Lower 95%-confidence limit:

	ADT	ADT+AAP	ADT+DOC
ADT	.	-0.6155	-0.4414
ADT+AAP	0.2402	.	-0.0844
ADT+DOC	0.0984	-0.4003	.

Upper 95%-confidence limit:

	ADT	ADT+AAP	ADT+DOC
ADT	.	-0.2402	-0.0984
ADT+AAP	0.6155	.	0.4003
ADT+DOC	0.4414	0.0844	.
Random effects model

Treatment estimate (sm = ''):

	ADT	ADT+AAP	ADT+DOC
ADT	-0.3977	-0.2908	
ADT+AAP	0.3977	.	0.1068
ADT+DOC	0.2908	-0.1068	.

Lower 95%-confidence limit:

	ADT	ADT+AAP	ADT+DOC
ADT	.	-0.6597	-0.5149
ADT+AAP	0.1356	.	-0.2073
ADT+DOC	0.0668	-0.4209	.

Upper 95%-confidence limit:

	ADT	ADT+AAP	ADT+DOC
ADT	.	-0.1356	-0.0668
ADT+AAP	0.6597	.	0.4209
ADT+DOC	0.5149	0.2073	.

Quantifying heterogeneity / inconsistency:
tau^2 = 0.0095; tau = 0.0975; I^2 = 33%

Tests of heterogeneity (within designs) and inconsistency (between designs):

	Q	d.f.	p-value
Total	1.49	1	0.2219
Within designs	0.00	0	--
Between designs	0.32	1	0.5746

Decomposition of the results into indirect and direct components is as follows.

split

Separate indirect from direct evidence (SIDE) using back-calculation method

Fixed effects model:

comparison k	prop	nma	direct	indir.	Diff	z	p-value	
ADT:ADT+AAP	1	0.98	-0.4278	-0.4620	1.0951	-1.5571	0.0172	
Comparison	k	prop	nma	direct	indir	Diff	z	p-value
------------------	---	-----------	------	--------	-------	---------	-------	---------
ADT:ADT+AAP	1	0.95	-0.3977	-0.4620	0.7595	-1.2215	-2.04	0.0413
ADT:ADT+DOC	2	1.00	-0.2908	-0.2567
ADT+AAP:ADT+DOC	1	0.62	0.1068	-0.1484	0.5258	-0.6742	-2.04	0.0413

Legend:
- **comparison** - Treatment comparison
- **k** - Number of studies providing direct evidence
- **prop** - Direct evidence proportion
- **nma** - Estimated treatment effect in network meta-analysis
- **direct** - Estimated treatment effect derived from direct evidence
- **indir.** - Estimated treatment effect derived from indirect evidence
- **Diff** - Difference between direct and indirect treatment estimates
- **z** - z-value of test for disagreement (direct versus indirect)
- **p-value** - p-value of test for disagreement (direct versus indirect)

Treatment effect estimates plotted in the forest plot in Figure 5 of the main paper are highlighted in yellow above. The forest plot is produced with the following command.

```r
forest(split, fontsize=6, spacing=0.5, pooled="fixed",
      rightcols=c("effect", "ci", "w.fixed"),
      rightlabs=c("RR", "95% CI", "Weight"),
      leftlabs=c("Comparison", "Number of stages", "Direct evidence"),
      lab.NA = "",
      lab.NA.effect = "",
      lab.NA.weight = "--",
      show="all"
)
```

Note that this command produces treatment effects where values less than 1 favor ADT+DOC, whereas Figure 5 of the main paper uses the reverse scaling, with values greater than 1 favoring ADT+DOC.
4. Simulations

The assumptions for the simulation scenarios described in the main paper are presented in Table S1 below, based on the adaptive platform design depicted in Figure 1. For each scenario, 1000 simulations were performed for sample sizes of \(n = 100 \) and \(n = 200 \) per stage. The results of the simulations are presented in Tables S2 and S3 below, for each of the four different estimation methods.

Key observations from the simulation results are as follows:

- Under all scenarios, the network analysis is essentially equivalent to an adjusted relative risk regression analysis of the individual patient data.

- Under homogeneity, all methods are unbiased and the unadjusted approach is the most efficient. The adjusted/network approach may be more efficient than the stratified approach since it uses additional data (on non-concurrent controls).

- Under time trends, the unadjusted approach may exhibit substantial bias. The stratified and adjusted/network approaches remove this bias.

- Under differential time trends and inconsistency, for comparisons in which the RR changes over time, the stratified and adjusted/network approaches provide RR estimates that are an “average” across the range of true RRs. However, the unadjusted approach may yield estimates that are not even within the true RR range on average, demonstrating substantial bias (see, for example, the D vs control comparison for the differential scenario).

- Under differential time trends and inconsistency, for comparisons in which the RR does not change over time, it is possible for the adjusted/network approach to yield biased estimates, although not to the same extent as the unadjusted approach (see, for example, the D vs A comparison for the differential scenario). This demonstrates an advantage of the stratified approach that uses only direct randomized comparisons.

- A sample size of \(n = 200 \) per stage leads to substantive efficiency improvements compared to \(n = 100 \) but the bias is very similar for both sample sizes for all scenarios.
Table S1. Risk and relative risk (RR) assumptions for simulations of the 5-arm 4-stage adaptive platform study depicted in Figure 1 of the main paper, for the four simulation scenarios described in the main paper. A hyphen denotes that the treatment was not present in that stage. RR is relative to the control arm.

Scenario	Stage	Risk	RR	Risk	RR	Risk	RR	Risk	RR		
Homogeneity	1	0.5	1	0.25	0.5	–	–	–	–		
Homogeneity	2	0.5	1	0.25	0.5	0.5	1	0.5	1		
Homogeneity	3	0.5	1	0.25	0.5	–	–	0.5	1		
Homogeneity	4	0.5	1	0.25	0.5	–	–	–	–		
Time trend	1	0.5	1	0.25	0.5	–	–	–	–		
Time trend	2	0.4	1	0.2	0.5	0.4	1	0.4	1		
Time trend	3	0.3	1	0.15	0.5	–	–	0.3	1		
Time trend	4	0.2	1	0.1	0.5	–	–	–	–		
Differential	1	0.5	1	0.4	0.8	–	–	–	–		
Differential	2	0.4	1	0.3	0.75	0.4	1	0.4	1		
Differential	3	0.3	1	0.2	0.67	–	–	0.3	1		
Differential	4	0.2	1	0.1	0.5	–	–	–	–		
Inconsistency	1	0.5	1	0.25	0.5	–	–	–	–		
Inconsistency	2	0.5	1	0.25	0.5	0.5	1	0.5	1		
Inconsistency	3	0.5	1	0.25	0.5	–	–	0.5	1		
Inconsistency	4	0.5	1	0.25	0.5	–	–	–	–	0.25	0.5
Table S2. Results of 1000 simulations of the 5-arm 4-stage adaptive platform design depicted in Figure 1 of the main paper, with $n = 100$ per stage and true relative risks (RR) presented in Table S1 for the four simulation scenarios described in the main paper. Results of four analysis methods are presented: unadjusted refers to a crude ratio of event rates in the two arms; stratified refers to the RR estimate stratified by stage and restricted to direct randomized comparisons; adjusted refers to a relative risk regression of the individual patient data adjusting for stage, as described in the main paper; network refers to a network meta-analysis. For scenarios in which the RR changes over time for a particular comparison, the table presents the RR range in parentheses (on the log scale).

Comparison	Scenario	Unadjusted	Stratified	Adjusted	Network					
		log(RR)	Mean	SD	Mean	SD	Mean	SD		
A vs control	Homogeneity	-0.693	-0.693	0.052	-0.687	0.104	-0.698	0.105		
B vs control	Homogeneity	0	-0.001	0.113	-0.001	0.144	-0.005	0.132		
C vs control	Homogeneity	0	-0.001	0.087	-0.004	0.100	-0.005	0.097		
D vs control	Homogeneity	-0.693	-0.695	0.068	-0.697	0.147	-0.705	0.144		
B vs A	Homogeneity	0.693	0.700	0.276	0.695	0.213	0.693	0.152		
C vs A	Homogeneity	0.693	0.700	0.235	0.681	0.145	0.693	0.124		
D vs A	Homogeneity	0	0.006	0.157	-0.001	0.177	-0.007	0.162		
C vs B	Homogeneity	0	0.010	0.127	-0.003	0.145	0.000	0.134		
D vs B	Homogeneity	-0.693	-0.684	0.082	-0.700	0.187	-0.689	0.186		
D vs C	Homogeneity	-0.693	-0.689	0.073	-0.716	0.212	-0.700	0.159		
A vs control	Time trend	-0.693	-0.683	0.066	-0.677	0.128	-0.691	0.137		
B vs control	Time trend	0	0.129	0.159	-0.004	0.184	-0.010	0.165		
C vs control	Time trend	0	0.004	0.121	0.001	0.136	0.000	0.132		
D vs control	Time trend	-0.693	-1.022	0.074	-0.692	0.227	-0.703	0.218		
B vs A	Time trend	0.693	0.825	0.399	0.691	0.260	0.681	0.193		
C vs A	Time trend	0.693	0.700	0.306	0.685	0.191	0.691	0.160		
D vs A	Time trend	0	-0.327	0.160	0.004	0.264	-0.012	0.232		
C vs B	Time trend	0	-0.109	0.144	0.009	0.178	0.010	0.167		
D vs B	Time trend	-0.693	-1.135	0.076	-0.670	0.290	-0.703	0.227		
D vs C	Time trend	-0.693	-1.017	0.077	-0.706	0.290	-0.703	0.227		
A vs control	Differential	(-0.693, -0.223)	-0.336	0.078	-0.314	0.102	-0.325	0.105	-0.315	0.103
B vs control	Differential	0	0.138	0.161	-0.003	0.179	-0.012	0.160		
C vs control	Differential	0	0.011	0.119	0.007	0.137	0.006	0.129		
D vs control	Differential	(-0.693, -0.405)	-0.842	0.078	-0.492	0.208	-0.443	0.199	-0.447	0.197
B vs A	Differential	0.288	0.481	0.237	0.298	0.188	0.313	0.163		
C vs A	Differential	(0.288, 0.405)	0.355	0.186	0.344	0.156	0.331	0.140	0.320	0.139
D vs A	Differential	0	-0.499	0.110	0.006	0.236	-0.118	0.200		
C vs B	Differential	0	-0.111	0.142	0.011	0.176	0.018	0.165		
D vs B	Differential	-0.965	0.078	-0.341	0.241	-0.430	0.240			
D vs C	Differential	-0.405	-0.843	0.084	-0.414	0.262	-0.449	0.212		
A vs control	Inconsistency	-0.693	-0.689	0.052	-0.684	0.102	-0.692	0.103		
B vs control	Inconsistency	0	-0.004	0.112	-0.007	0.149	-0.030	0.131		
C vs control	Inconsistency	0	0.002	0.088	-0.002	0.101	-0.050	0.094		
D vs control	Inconsistency	(-0.693, 0)	-0.282	0.079	-0.225	0.112	-0.250	0.115	-0.202	0.114
B vs A	Inconsistency	0.693	0.693	0.278	0.691	0.21	0.661	0.155		
C vs A	Inconsistency	0.693	0.700	0.238	0.691	0.149	0.642	0.122		
D vs A	Inconsistency	(0.693)	0.415	0.192	0.425	0.146	0.442	0.134		
C vs B	Inconsistency	0	0.017	0.127	0.008	0.143	-0.020	0.133		
D vs B	Inconsistency	-0.267	0.107	-0.219	0.168	-0.165	0.169			
D vs C	Inconsistency	0	-0.279	0.087	0.004	0.148	-0.200	0.134		
Table S3. Results of 1000 simulations of the 5-arm 4-stage adaptive platform design depicted in Figure 1 of the main paper, with \(n = 200 \) per stage and true relative risks (RR) presented in Table S1 for the four simulation scenarios described in the main paper. Results of four analysis methods are presented: unadjusted refers to a crude ratio of event rates in the two arms; stratified refers to the RR estimate stratified by stage and restricted to direct randomized comparisons; adjusted refers to a relative risk regression of the individual patient data adjusting for stage, as described in the main paper; network refers to a network meta-analysis. For scenarios in which the RR changes over time for a particular comparison, the table presents the RR range in parentheses (on the log scale).

Comparison	Scenario	Unadjusted	Stratified	Adjusted	Network				
	log(RR)	Mean	SD	Mean	SD	Mean	SD		
A vs control	Homogeneity	-0.693	-0.694	0.035	-0.691	0.070	-0.697	0.071	
B vs control	Homogeneity	0	-0.002	0.080	-0.002	0.100	-0.004	0.090	
C vs control	Homogeneity	0	0.000	0.059	0.000	0.068	-0.001	0.065	
D vs control	Homogeneity	-0.693	-0.691	0.047	-0.691	0.098	-0.694	0.098	
B vs A	Homogeneity	0.693	0.697	0.201	0.694	0.149	0.692	0.107	
C vs A	Homogeneity	0.693	0.699	0.161	0.693	0.103	0.695	0.085	
D vs A	Homogeneity	0	0.007	0.108	0.006	0.128	0.002	0.112	
C vs B	Homogeneity	0	0.007	0.089	0.002	0.099	0.003	0.091	
D vs B	Homogeneity	-0.693	-0.684	0.057	-0.690	0.129	-0.685	0.129	
D vs C	Homogeneity	-0.693	-0.689	0.050	-0.693	0.142	-0.693	0.107	
A vs control	Time trend	-0.693	-0.695	0.045	-0.692	0.087	-0.699	0.088	
B vs control	Time trend	0	0.137	0.115	0.001	0.124	0.001	0.113	
C vs control	Time trend	0	0.003	0.085	0.001	0.094	0.001	0.092	
D vs control	Time trend	-0.693	-1.030	0.051	-0.693	0.160	-0.702	0.153	
B vs A	Time trend	0.693	0.838	0.274	0.705	0.168	0.700	0.128	
C vs A	Time trend	0.693	0.704	0.209	0.698	0.130	0.699	0.109	
D vs A	Time trend	0	-0.329	0.109	0.003	0.190	-0.004	0.161	
C vs B	Time trend	0	-0.126	0.098	-0.003	0.119	0.000	0.114	
D vs B	Time trend	-0.693	-1.158	0.052	-	-	-0.703	0.183	
D vs C	Time trend	-0.693	-1.029	0.052	-0.705	0.198	-0.703	0.158	
A vs control	Differential (-0.693, -0.223)	-0.335	-0.312	0.053	-0.312	0.071	-0.319	0.071	
B vs control	Differential 0	0.134	0.117	0.002	0.127	-0.010	0.117	-0.012	0.116
C vs control	Differential 0	0.006	0.083	0.005	0.094	0.003	0.089	0.002	0.089
D vs control	Differential (-0.693, -0.405)	-0.848	-0.503	0.054	-0.503	0.144	-0.446	0.139	
B vs A	Differential 0.288	0.472	0.283	0.178	0.283	0.143	0.309	0.121	
C vs A	Differential (0.288, 0.405)	0.344	0.331	0.128	0.331	0.107	0.322	0.095	
D vs A	Differential 0	-0.509	0.000	0.079	-0.002	0.165	-0.127	0.141	
C vs B	Differential 0	-0.120	0.004	0.100	0.004	0.123	0.013	0.116	
D vs B	Differential	-	-0.973	0.056	-	-	-0.437	0.170	
D vs C	Differential	-0.405	-0.849	0.058	-0.423	0.183	-0.449	0.149	
A vs control	Inconsistency	-0.693	-0.691	0.037	-0.688	0.072	-0.690	0.072	
B vs control	Inconsistency	0	0.001	0.081	0.000	0.102	-0.020	0.092	
C vs control	Inconsistency	0	0.001	0.062	-0.001	0.070	-0.049	0.066	
D vs control	Inconsistency (-0.693, 0)	-0.289	-0.234	0.055	-0.234	0.076	-0.260	0.080	
B vs A	Inconsistency 0.693	0.694	0.697	0.187	0.697	0.140	0.671	0.103	
C vs A	Inconsistency 0.693	0.695	0.694	0.160	0.694	0.100	0.641	0.082	
D vs A	Inconsistency (0.693)	0.405	0.413	0.132	0.413	0.102	0.430	0.093	
C vs B	Inconsistency 0	0.007	0.089	-0.002	0.102	-0.029	0.095		
D vs B	Inconsistency	-	-0.283	0.070	-	-	-0.240	0.114	
D vs C	Inconsistency	0	-0.287	0.062	-0.005	0.099	-0.211	0.094	