Clinical trials frequently include multiple end points that mature at different times. The initial report, typically based on the primary end point, may be published when key planned co-primary or secondary analyses are not yet available. Clinical Trial Updates provide an opportunity to disseminate additional results from studies, published in JCO or elsewhere, for which the primary end point has already been reported.

In primary analysis, enzalutamide plus androgen deprivation therapy (ADT) improved radiographic progression-free survival (rPFS) in patients with metastatic hormone-sensitive prostate cancer (mHSPC); however, overall survival data were immature. In the phase III, double-blind, global ARCHES trial (ClinicalTrials.gov identifier: NCT02677896), 1,150 patients with mHSPC were randomly assigned 1:1 to enzalutamide (160 mg once daily) plus ADT or placebo plus ADT, stratified by disease volume and prior docetaxel use. Here, we report the final prespecified analysis of overall survival (key secondary end point) and an update on rPFS, other secondary end points, and safety. After unblinding, 180 (31.3%) progression-free patients randomly assigned to placebo plus ADT crossed over to open-label enzalutamide plus ADT. As of May 28, 2021 (median follow-up, 44.6 months), 154 of 574 patients randomly assigned to enzalutamide plus ADT and 202 of 576 patients randomly assigned to placebo plus ADT had died. Enzalutamide plus ADT reduced risk of death by 34% versus placebo plus ADT (median not reached in either group; hazard ratio, 0.66; 95% CI, 0.53 to 0.81; \(P < .001 \)). Enzalutamide plus ADT continued to improve rPFS and other secondary end points. Adverse events were generally consistent with previous reports of long-term enzalutamide use. In conclusion, enzalutamide plus ADT significantly prolongs survival versus placebo plus ADT in patients with mHSPC.
TABLE 1. Patient Demographics and Disease Characteristics (intent-to-treat population)

Characteristic	ENZA + ADT (n = 574)	PBO + ADT (n = 576)	PBO Crossover (n = 184)
Median age, years (range)	70.0 (46-92)	70.0 (42-92)	69.0 (51-89)
Age, years, No. (%)			
< 65	148 (25.8)	152 (26.4)	39 (21.2)
65-74	256 (44.6)	255 (44.3)	96 (52.2)
≥ 75	170 (29.6)	169 (29.3)	49 (26.6)
Race, No. (%)			
White	466 (81.2)	460 (79.9)	140 (76.1)
Asian	75 (13.1)	80 (13.9)	38 (20.7)
Black or African American	8 (1.4)	8 (1.4)	4 (2.2)
Other	2 (0.3)	3 (0.5)	1 (0.5)
Missing	23 (4.0)	25 (4.3)	1 (0.5)
Geographic region, No. (%)			
Europe	341 (59.4)	344 (59.7)	102 (55.4)
Asia-Pacific	104 (18.1)	113 (19.6)	49 (26.6)
North America	86 (15.0)	77 (13.4)	18 (9.8)
South America	32 (5.6)	30 (5.2)	11 (6.0)
Other	11 (1.9)	12 (2.1)	4 (2.2)
ECOG status, No. (%)			
0	448 (78.0)	443 (76.9)	155 (84.2)
1	125 (21.8)	133 (23.1)	29 (15.8)
Disease volume, No. (%)			
High	354 (61.7)	373 (64.8)	92 (50.0)
Low	220 (38.3)	203 (35.2)	92 (50.0)
Total Gleason score at initial diagnosis, No. (%)			
< 8	171 (29.8)	187 (32.5)	70 (38.0)
≥ 8	386 (67.2)	373 (64.8)	108 (58.7)
Confirmed metastases at screening, No. (%)			
Yes	536 (93.4)	531 (92.2)	157 (85.3)
No	34 (5.9)	45 (7.8)	27 (14.7)
Unknown	4 (0.7)	0	0
Localization of confirmed metastases at screening, No. (%)			
Lymph node only	74 (12.9)	80 (13.9)	41 (22.8)
Bone disease, with or without lymph node	432 (75.3)	432 (75.0)	122 (67.8)

(continued in next column)

TABLE 1. Patient Demographics and Disease Characteristics (intent-to-treat population) (continued)

Characteristic	ENZA + ADT (n = 574)	PBO + ADT (n = 576)	PBO Crossover (n = 184)
Visceral disease, with or without bone or lymph node			
M1	402 (70.0)	365 (63.4)	107 (58.2)
M0	83 (14.5)	86 (14.9)	32 (17.4)
MX/unknown	88 (15.3)	125 (21.7)	45 (24.5)
Prior local therapy, No. (%)			
Radical prostatectomy	72 (12.5)	89 (15.5)	32 (17.4)
Radiation therapy	73 (12.7)	72 (12.5)	36 (19.6)
No. of cycles of prior docetaxel chemotherapy, No. (%)			
0	471 (82.1)	474 (82.3)	155 (84.2)
1-5	14 (2.4)	11 (1.9)	6 (3.3)
6	89 (15.5)	91 (15.8)	23 (12.5)
Previous use of ADT, No. (%)			
None	39 (6.8)	61 (10.6)	21 (11.4)
≤ 3 months	414 (72.1)	394 (68.4)	125 (67.9)
> 3 months	121 (21.1)	120 (20.8)	37 (20.1)
Unknown*	0	1 (0.2)	1 (0.5)
Median PSA, ng/mL (range)	5.4 (0-4,823.5)	5.1 (0-19,000.0)	4.05 (0-3,192.0)

Abbreviations: ADT, androgen deprivation therapy; ECOG, Eastern Cooperative Oncology Group; ENZA, enzalutamide; M0, no distant metastasis; M1, distant metastasis; MX, distant metastasis cannot be assessed (not evaluated by any modality); PBO, placebo; PSA, prostate-specific antigen.

*By country regulations, race is not collected in France.

Defined by CHAARTED criteria as the presence of metastases involving the viscera or, in the absence of visceral lesions, four or more bone lesions, one or more of which must be in a bony structure beyond the vertebral column and pelvic bone; some study sites incorrectly reported disease volume information for some patients at the time of random assignment, which was corrected during medical review on study entry, resulting in a difference of approximately 20 patients with either high or low disease volume between the treatment arms.

Assessed by independent central review after investigator assessment at study entry.

Lymph node metastases or unconfirmed metastatic disease.

The patient had prior ADT; however, the duration of ADT use was unknown.

Safety analysis set patients (ENZA plus ADT, n = 572; PBO plus ADT, n = 574; PBO plus ADT crossover, n = 180).
key secondary end points. The data cutoff for this report was May 28, 2021.

Statistical analysis methodology is reported in the Data Supplement (online only).

RESULTS
Baseline Demographics and Patient History
From March 21, 2016, to January 12, 2018, 1,150 patients were randomly assigned. Baseline demographics are presented in Table 1. Patient disposition is summarized in the Data Supplement.

After study unblinding, 184 patients (31.9%) randomly assigned to placebo plus ADT remained progression-free and consented to cross over, 180 (31.3%) of whom received treatment with enzalutamide plus ADT (median time to crossover, 21.5 months). After a total of 356 deaths (enzalutamide plus ADT, n = 154; placebo plus ADT, n = 202), the data cutoff for the final OS analysis was May 28, 2021; the median follow-up time was 44.6 months.
After treatment discontinuation, 131 patients (23%) randomly assigned to enzalutamide plus ADT and 221 patients (38%) randomly assigned to placebo plus ADT received subsequent life-prolonging therapy; an additional 15 patients (8%) in the crossover group received subsequent life-prolonging therapy after discontinuing enzalutamide plus ADT (Data Supplement). Inclusive of crossover, 401 patients (70%) randomly assigned to placebo plus ADT received subsequent life-prolonging therapy, with 241 (42%) receiving enzalutamide as the first subsequent life-prolonging therapy.

OS

Patients randomly assigned to enzalutamide plus ADT had a 34% reduction in the risk of death versus placebo plus ADT (hazard ratio [HR], 0.66; 95% CI, 0.53 to 0.81; \(P < .001 \); Fig 1A); the median OS was not reached in either group. At 24, 36, and 48 months, 86%, 78%, and 71% of patients randomly assigned to enzalutamide plus ADT were estimated to be alive, respectively, compared with 82%, 69%, and 57% of patients randomly assigned to placebo plus ADT. A prespecified rank-preserving structural failure time sensitivity analysis to adjust for a possible crossover effect demonstrated a 43% reduction in risk of death with enzalutamide plus ADT versus placebo plus ADT (HR, 0.57; 95% CI, 0.45 to 0.70; \(P < .001 \); Data Supplement). Median OS was not reached for enzalutamide plus ADT, but was 47.7 months (95% CI, 43.3 to not evaluable) for placebo plus ADT.

The clinical benefit of enzalutamide plus ADT was generally consistent across prespecified subgroups, except in patients with only soft tissue disease at baseline (n = 96; Fig 1B). Further exploratory post hoc subgroup analyses confirmed a survival benefit after enzalutamide plus ADT in all subgroups except for patients with lymph node metastases only and visceral metastases, most likely because of small patient numbers (Data Supplement).

rPFS and Secondary Efficacy End Points

Enzalutamide plus ADT delayed time to first subsequent antineoplastic therapy; median was not reached for enzalutamide plus ADT versus 40.5 months for placebo plus ADT.
Compared with placebo plus ADT, enzalutamide plus ADT reduced the risk of radiographic progression or death by 37%, extending the median rPFS by approximately 11 months (Data Supplement; Fig 1D). A total of 117 patients (20%) randomly assigned to enzalutamide plus ADT had prostate-specific antigen (PSA) progression compared with 259 (45%) randomly assigned to placebo plus ADT, equating to a risk reduction of 72% (Data Supplement). After median time to crossover (21.5 months) was reached, the rate of radiographic and PSA progression slowed over time with placebo plus ADT (Fig 1D; Data Supplement). The reduced risk of radiographic progression or death and PSA progression observed with enzalutamide plus ADT, as compared with placebo plus ADT, was sustained after adjustment for crossover (Data Supplement). Enzalutamide plus ADT also delayed time to...

TABLE 2. Summary of TEAEs and Exposure-Adjusted TEAEs of Special Interest (safety analysis set)

TEAEs	ENZA + ADT (n = 572)	PBO + ADT* (n = 574)	
	Median treatment duration, months (range)	40.2 (0.2-58.1)	13.8 (0.2-27.6)
	Total exposure, PY	1,521.5	733.2
	Any TEAE, No. (%)	520 (90.9)	504 (87.8)
	Any grade 3-4 TEAE, No. (%)	224 (39.2)	160 (27.9)
	Any TEAE leading to death, No. (%)	30 (5.2)	12 (2.1)
	Any study drug-related TEAE, No. (%)	339 (59.3)	273 (47.6)
	Any study drug-related TEAE leading to death, No. (%)	0	1 (0.2)
	Any TEAE of special interest, No. (%)	416 (72.7)	327 (57.0)

TEAEs of Special Interest by Group Term

TEAE of Special Interest by Group Term	All Grades	Grade 3-4	All Grades	Grade 3-4				
	No. (%)	Events (rate)	No. (%)	Events (rate)	No. (%)	Events (rate)	No. (%)	Events (rate)
Convulsions	3 (0.5)	3 (0.2)	3 (0.5)	3 (0.2)	3 (0.5)	3 (0.4)	2 (0.3)	2 (0.3)
Hypertension	82 (14.3)	88 (5.8)	29 (5.1)	30 (2.0)	39 (6.8)	40 (5.5)	13 (2.3)	13 (1.8)
Decreased neutrophil count	8 (1.4)	10 (0.7)	4 (0.7)	5 (0.3)	4 (0.7)	6 (0.8)	2 (0.3)	4 (0.5)
Cognitive/memory impairment	38 (6.6)	46 (3.0)	4 (0.7)	5 (0.3)	15 (2.6)	15 (2.0)	0	0
Ischemic heart disease	26 (4.5)	31 (2.0)	7 (1.2)	8 (0.5)	11 (1.9)	14 (1.9)	8 (1.4)	9 (1.2)
Other selected cardiovascular events	25 (4.4)	33 (2.2)	10 (1.7)	11 (0.7)	10 (1.7)	11 (1.5)	4 (0.7)	5 (0.7)
Prior reversible encephalopathy syndrome	0	0	0	0	0	0	0	0
Fatigue	184 (32.2)	216 (14.2)	16 (2.8)	26 (1.7)	118 (20.6)	126 (17.2)	11 (1.9)	12 (1.6)
Renal disorders	11 (1.9)	13 (0.9)	2 (0.3)	2 (0.1)	4 (0.7)	5 (0.7)	0	0
Second primary malignancies	22 (3.8)	23 (1.5)	15 (2.6)	16 (1.1)	11 (1.9)	14 (1.9)	7 (1.2)	7 (1.0)
Falls	58 (10.1)	86 (5.7)	7 (1.2)	10 (0.7)	19 (3.3)	20 (2.7)	3 (0.5)	4 (0.5)
Fractures	77 (13.5)	106 (7.0)	20 (3.5)	23 (1.5)	31 (5.4)	36 (4.9)	9 (1.6)	12 (1.6)
Loss of consciousness	15 (2.6)	16 (1.1)	9 (1.6)	10 (0.7)	2 (0.3)	2 (0.3)	1 (0.2)	1 (0.1)
Thyrocotyphobia	3 (0.5)	7 (0.5)	0	16 (1.1)	3 (0.5)	3 (0.4)	0	0
Musculoskeletal events	223 (39.0)	395 (26.0)	14 (2.4)	1 (0.1)	170 (29.6)	257 (35.1)	17 (3.0)	20 (2.7)
Severe cutaneous adverse reactions	1 (0.2)	1 (0.1)	0	0	1 (0.2)	1 (0.1)	0	0
Angioedema	10 (1.7)	11 (0.7)	1 (0.2)	1 (0.1)	1 (0.2)	1 (0.1)	0	0
Rash	22 (3.8)	26 (1.7)	0	0	10 (1.7)	12 (1.6)	0	0
Hepatic disorder	34 (5.9)	43 (2.8)	8 (1.4)	11 (0.7)	34 (5.9)	55 (7.5)	4 (0.7)	9 (1.2)

Abbreviations: ADT, androgen deprivation therapy; ENZA, enzalutamide; PBO, placebo; PY, patient-year; TEAE, treatment-emergent adverse event.

*TEAEs were reported for events that occurred during the period that patients were treated with placebo plus ADT and up to 30 days after the last dose or up to the day before the start of open-label enzalutamide plus ADT, whichever was sooner.

*TEAEs of special interest were based on prespecified combinations of preferred terms (Medical Dictionary for Regulatory Activities v23.0) and were graded on the basis of the National Cancer Institute Common Terminology Criteria for Adverse Events v4.03 by the investigator.

*Per 100 PYs of exposure.
first symptomatic skeletal event (Data Supplement) and castration resistance (Data Supplement). Results of other secondary end point analyses are reported in the Data Supplement.

Safety

The median treatment duration was 40.2, 13.8, and 23.9 months in the enzalutamide plus ADT, placebo plus ADT, and crossover groups, respectively. Incidence of treatment-emergent adverse events was consistent with the primary analysis (Table 2; Data Supplement), and no new safety signals were identified.

DISCUSSION

In ARCHES, enzalutamide plus ADT significantly reduced the risk of death in patients with mHSPC by 34% versus placebo plus ADT. The survival benefit of enzalutamide plus ADT became more apparent with additional follow-up. Enzalutamide plus ADT also delayed time to initiation of the first subsequent antineoplastic therapy. In total, 70% of patients who initially received placebo plus ADT went on to receive a life-prolonging treatment and, inclusive of those who crossed over, 42% went on to treatment with enzalutamide. Despite this, a statistically significant survival benefit was observed with enzalutamide plus ADT, highlighting the importance of early enzalutamide use in patients with mHSPC, rather than delaying initiation until the development of castration resistance. Importantly, improvement in OS with enzalutamide is unlikely to be the result of patients in the placebo plus ADT group receiving inadequate postprotocol therapy.

The survival benefit with early use of enzalutamide plus ADT was generally consistent across subgroups, with the exception of patients with lymph node metastases only and visceral metastases; however, both subgroups had relatively low patient numbers and statistical analyses were underpowered, as also reported in other large trials of mHSPC. Nevertheless, clinicians assessing and prescribing therapy for patients with mHSPC should feel reassured regarding survival benefit with enzalutamide for the majority of patients.

The superiority of enzalutamide plus ADT over placebo plus ADT for other efficacy end points was previously reported and maintained with additional follow-up. No new safety signals emerged. Taken together, these data indicate that longer-term use of enzalutamide was well tolerated and not associated with any new toxicity concerns, a key consideration for clinicians when choosing a systemic treatment for patients with advanced prostate cancer.

In conclusion, enzalutamide plus ADT significantly prolongs survival versus placebo plus ADT in patients with mHSPC, including across clinically important subgroups, and thus represents an effective and well-tolerated therapeutic option for patients with mHSPC.

AFFILIATIONS

1. Duke Cancer Institute Center for Prostate & Urologic Cancers, Duke University, Durham, NC
2. Peter MacCallum Cancer Center, Melbourne, Victoria, Australia
3. Monash Health, Melbourne, Victoria, Australia
4. Kanazawa Medical University, Ishikawa, Japan
5. The University of Chicago, Chicago, IL
6. Yale Cancer Center, New Haven, CT
7. The University of Kansas Medical Center, Kansas City, KS
8. University Hospital Centre, Lille University, Lille, France
9. Hospital Clinic de Barcelona, Barcelona, Spain
10. Hertzen Moscow Cancer Research Institute, Moscow, Russia
11. Carolina Urologic Research Center, Myrtle Beach, SC
12. Hospital Universitario de Salamanca, GITU-IBSAL, Salamanca, Spain
13. Complexo Hospitalario Universitario de A Coruña, Coruña, Spain
14. Pfizer Inc, New York, NY
15. Astellas Pharma Inc, Northbrook, IL
16. University Hospital, Eberhard Karls University of Tübingen, Tübingen, Germany

SUPPORT

Supported by Astellas Pharma Inc and Pfizer Inc, the codevelopers of enzalutamide.

CLINICAL TRIAL INFORMATION

NCT02677896 (ARCHES)

AUTHORS’ DISCLOSURES OF POTENTIAL CONFLICTS OF INTEREST

Disclosures provided by the authors are available with this article at DOI https://doi.org/10.1200/JCO.22.00193.

DATA SHARING STATEMENT

Researchers may request access to anonymized participant-level data, trial-level data, and protocols from Astellas-sponsored clinical trials at www.clinicalstudydatarequest.com. For the Astellas criteria on data sharing, see https://clinicalstudydatarequest.com/Study-Sponsors/Study-Sponsors-Astellas.aspx.

CORRESPONDING AUTHOR

Andrew J. Armstrong, MD, ScM, Duke University, Duke Box 103861, Durham, NC 27710; e-mail: andrew.armstrong@duke.edu.

PRIOR PRESENTATION

Presented in part at the European Society for Medical Oncology Virtual Congress, September 16-20, 2021.
AUTHOR CONTRIBUTIONS
Conception and design: Andrew J. Armstrong, Arun A. Azad, Taro Iguchi, Francisco Gomez-Veiga, Shunsuke Yamada, Gabriel P. Haas
Administrative support: Arnauld Villers, Neal D. Shore
Provision of study materials or patients: Taro Iguchi, Russell Z. Szmulewitz, Arnulf Stenzl
Collection and assembly of data: Andrew J. Armstrong, Taro Iguchi, Russell Z. Szmulewitz, Jeffrey Holzbeierlein, Arnauld Villers, Antonio Alcaraz, Boris Alekseev, Fabian Zohren, Arnulf Stenzl
Data analysis and interpretation: Andrew J. Armstrong, Arun A. Azad, Taro Iguchi, Russell Z. Szmulewitz, Daniel P. Petrylak, Jeffrey Holzbeierlein, Arnauld Villers, Neal D. Shore, Francisco Gomez-Veiga, Brad Rosbrook, Fabian Zohren, Shunsuke Yamada, Gabriel P. Haas
Manuscript writing: All authors
Final approval of manuscript: All authors
Accountable for all aspects of the work: All authors

ACKNOWLEDGMENT
We thank the patients who volunteered to participate in this trial and the investigators and trial staff who cared for them. Medical writing and editorial assistance were provided by Jake Stoddart, MRes, and Jane Beck, MA (Hons), from Complete HealthVizion, funded by the study sponsors.

REFERENCES
1. US Food and Drug Administration: XTANDI Highlights of Prescribing Information. 2019. https://www.accessdata.fda.gov/drugsatfda_docs/label/2019/203415s015lbl.pdf
2. European Medicines Agency: Xtandi Summary of Product Characteristics. 2020. https://www.ema.europa.eu/en/documents/product-information/xtandi-epar-product-information_en.pdf
3. Armstrong AJ, Szmulewitz RZ, Petrylak DP, et al: ARCHES: A randomized, phase III study of androgen deprivation therapy with enzalutamide or placebo in men with metastatic hormone-sensitive prostate cancer. J Clin Oncol 37:2974-2986, 2019
4. Kyriakopoulus CE, Chen YH, Carducci MA, et al: Chemohormonal therapy in metastatic hormone-sensitive prostate cancer: Long-term survival analysis of the randomized phase III E3805 CHAARTED trial. J Clin Oncol 36:1080-1087, 2018
5. Fizazi K, Tran N, Fein L, et al: Abiraterone acetate plus prednisone in patients with newly diagnosed high-risk metastatic castration-sensitive prostate cancer (LATITUDE): Final overall survival analysis of a randomised, double-blind, phase 3 trial. Lancet Oncol 20:686-700, 2019
6. Chi KN, Chowdhury S, Bjartell A, et al: Apalutamide in patients with metastatic castration-sensitive prostate cancer: Final survival analysis of the randomized, double-blind, phase III TITAN study. J Clin Oncol 39:2294-2303, 2021

© 2022 by American Society of Clinical Oncology Volume 40, Issue 15
AUTHORS’ DISCLOSURES OF POTENTIAL CONFLICTS OF INTEREST

Improved Survival With Enzalutamide in Patients With Metastatic Hormone-Sensitive Prostate Cancer

The following represents disclosure information provided by authors of this manuscript. All relationships are considered compensated unless otherwise noted. Relationships are held only if noted. I = Immediate Family Member, Inst = My Institution. Relationships may not relate to the subject matter of this manuscript. For more information about ASCO's conflict of interest policy, please refer to www.asco.org/wc or ascopubs.org/co/authors/author-center.

Open Payments is a public database containing information reported by companies about payments made to US-licensed physicians (Open Payments).

Andrew J. Armstrong
Consulting or Advisory Role: Bayer, Dendreon, Pfizer, Astellas Scientific and Medical Affairs Inc, AstraZeneca, Merck, Bristol Myers Squibb, Janssen, FORMA Therapeutics, Novartis, Exelixis, Myovant Sciences, GoodRx
Research Funding: Dendreon (Inst), Bayer (Inst), Pfizer (Inst), Novartis (Inst), Janssen Oncology (Inst), Astellas Pharma (Inst), Gilead Sciences (Inst), Roche/Genentech (Inst), Bristol Myers Squibb (Inst), Constellation Pharmaceuticals (Inst), Merck (Inst), AstraZeneca (Inst), Beigene (Inst), Bristol Myers Squibb (Inst), Amgen (Inst), FORMA Therapeutics (Inst)
Patents, Royalties, Other Intellectual Property: Circulating tumor cell novel capture technology (Inst)
Travel, Accommodations, Expenses: Astellas Scientific and Medical Affairs Inc

Arun A. Azad
Honoraria: Janssen, Astellas Pharma, Novartis, Tolmar, Amgen, Pfizer, Bayer, Telix Pharmaceuticals, Bristol Myers Squibb, Merck Serono, AstraZeneca, Sanofi, Ipsen, Merck Sharp & Dohme, Noxopharm, Acelus Therapeutics
Consulting or Advisory Role: Astellas Pharma, Novartis, Janssen, Sanofi, AstraZeneca, Pfizer, Bristol Myers Squibb, Tolmar, Telix Pharmaceuticals, Merck Sharp & Dohme, Bayer, Ipsen, Merck Serono, Amgen, Noxopharm, Acelus Therapeutics
Speakers’ Bureau: Astellas Pharma, Novartis, Amgen, Bayer, Janssen, Ipsen, Bristol Myers Squibb, Merck Serono
Research Funding: Astellas Pharma, AstraZeneca, Merck Serono, AstraZeneca, Novars (Inst), Pfizer (Inst), Bristol Myers Squibb (Inst), Sanofi (Inst), AstraZeneca (Inst), GlaxoSmithKline (Inst), Aptevo Therapeutics (Inst), Medimmune (Inst), Bioinformatics (Inst), Synthox (Inst), Astellas Pharma (Inst), Ipsen (Inst), Lily (Inst), Gikad Sciences (Inst), Janssen (Inst), Exelixis (Inst), MSD (Inst)
Travel, Accommodations, Expenses: Astellas Pharma, Sanofi, Merck Serono, Amgen, Janssen, Tolmar, Pfizer

Taro Iguchi
Consulting or Advisory Role: Astellas Pharma, Bayer
Speakers’ Bureau: Astellas Pharma, Bayer Yakuhin, Janssen, Sanofi, AstraZeneca, Takeda
Research Funding: Astellas Pharma, Bayer Yakuhin

Russell Z. Szumlewitz
Honoraria: Astellas Pharma
Consulting or Advisory Role: AstraZeneca, AbbVie, Exelixis, Merck, Amgen, Janssen Oncology, Sanofi, Astellas Pharma, Pfizer
Research Funding: AbbVie (Inst), Astellas Pharma (Inst), MacroGenics (Inst), Janssen Oncology (Inst), Plexxikon (Inst), Harpoon Therapeutics (Inst), Merck (Inst), Novartis (Inst)
Patents, Royalties, Other Intellectual Property: Patent licensed by The University of Chicago, of which I am a co-inventor to Concept Therapeutics for combination AR/GR inhibition in prostate cancer
Travel, Accommodations, Expenses: Concept Therapeutics

Daniel P. Petrylak
Stock and Other Ownership Interests: Bellicum Pharmaceuticals, TYME
Consulting or Advisory Role: Bayer, Exelixis, Pfizer, Roche, Astellas Pharma, AstraZeneca, Lilly, Amgen, Boehringer Ingelheim, Bristol Myers Squibb, Clovis Oncology, Incyte, Janssen, Pharmacyclics, Seattle Genetics, UroGen Pharma, Advanced Accelerator Applications, Ipsen, Bicycle Therapeutics, Mirati Therapeutics, Monosphere Therapeutics, Regeneron, Gilead Sciences
Research Funding: Progenics (Inst), Sanofi (Inst), Endocyte (Inst), Genentech (Inst), Merck (Inst), Astellas Medivation (Inst), Novartis (Inst), AstraZeneca (Inst), Bayer (Inst), Lilly (Inst), Innocrin Pharma (Inst), Medimmune (Inst), Pfizer (Inst), Roche (Inst), Seattle Genetics (Inst), Clovis Oncology (Inst), Bristol Myers Squibb (Inst), Advanced Accelerator Applications (Inst), Agenus (Inst), BioXcel Therapeutics (Inst), Eisai (Inst), Mirati Therapeutics (Inst), Replimmune (Inst), Medivation (Inst), Gilead Sciences (Inst)
Expert Testimony: Celgene, Sanofi

Jeffrey Holzbeierlein
Consulting or Advisory Role: Basilea, KDX Diagnostics
Research Funding: MdxHealth (Inst)

Uncompensated Relationships: Astellas Medivation

Arnauld Villers
Research Funding: Astellas Pharma (Inst), Janssen Oncology (Inst), Ipsen (Inst)

Antonio Alcaraz
Consulting or Advisory Role: Astellas
Travel, Accommodations, Expenses: Olympus, Ipsen, Janssen, Bayer

Boris Alexeev
Honoraria: AstraZeneca, Astellas Pharma, Ferring, Eisai, Janssen, Bayer, MSD, Merck, Pfizer, Roche, Sanofi, Bristol Myers Squibb
Consulting or Advisory Role: AstraZeneca, Astellas Pharma, Bayer, Bristol Myers Squibb, Ferring, Janssen, Merck, Sanofi, Pfizer, MSD, Roche
Speakers’ Bureau: Janssen, Sanofi, Ferring, Astellas Pharma, Pfizer, AstraZeneca, Bayer, Merck, Bristol Myers Squibb, Bavarian Nordic, Pfizer, ICON Clinical Research, Eisai, MSD, Roche
Travel, Accommodations, Expenses: AstraZeneca, Astellas Pharma, Bayer, Bristol Myers Squibb, Janssen, MSD, Pfizer, Sanofi

Neal D. Shore
Consulting or Advisory Role: Bayer, Janssen Scientific Affairs, Dendreon, Tolmar, Ferring, Medivation,Astellas, Amgen, Pfizer, AstraZeneca, Myovant Sciences, Astellas Pharma, AbbVie, Merck, Bristol Myers Squibb/Sanofi, Boston Scientific, Clovis Oncology, Exact Imaging, FerGene, Foundation Medicine, CG Oncology, Invitae, MDxHealth, Myriad Genetics, Nymox, Propella Therapeutics, Genzyme, Sanofi, Sesen Bio, CG Oncology, Exact Sciences, Genesis Cancer Care, Pacific Edge Biotechnology, Phosphorus, Urogen Pharma, Specialty Networks, PrevView
Speakers’ Bureau: Janssen, Bayer, Dendreon, Astellas Pharma, AstraZeneca, Clovis Oncology, Pfizer, Guardant Health, Merck, Foundation Medicine
Research Funding: AbbVie, Amgen, Astellas Pharma, AstraZeneca, Bayer, Bristol Myers Squibb/Pfizer, Boston Scientific, Clovis Oncology, Dendreon, Exact Imaging, Ferring, Foundation Medicine, Invitae, Janssen, MDxHealth, Merck, Myovant Sciences, Myriad Genetics, Nymox, Pfizer, Sanofi, Sesen Bio, Tolmar

Francisco Gomez- Veiga
Honoraria: AbbVie, Astellas, AstraZeneca, Bayer, Ferring, GE, GlaxoSmithKline, Ipsen, Janssen, Sanofi
Consulting or Advisory Role: AbbVie, Astellas, AstraZeneca, Bayer, Ferring, GE, GlaxoSmithKline, Ipsen, Janssen, Sanofi
Speakers’ Bureau: AbbVie, Astellas, AstraZeneca, Bayer, GE, Janssen, Orion
Research Funding: AbbVie, Astellas, AstraZeneca, Ipsen, Janssen
Travel, Accommodations, Expenses: AbbVie, Astellas, Bayer, Janssen, Orion

Brad Rosbrook
Employment: Pfizer
Stock and Other Ownership Interests: Pfizer

Fabian Zohren
Employment: Pfizer
Stock and Other Ownership Interests: Pfizer, AlloVir Inc (I)

Shunsuke Yamada
Employment: Astellas Pharma
Stock and Other Ownership Interests: Astellas Pharma

Gabriel P. Haas
Employment: Astellas Pharma

Anwul Stenzl
Consulting or Advisory Role: Ipsen, Roche, Janssen, Aere, Bristol Myers Squibb, Steba Biotech, Synergy, Ferring, Bayer, Astellas Pharma
Research Funding: Karl Storz (Inst), Astellas Pharma, AstraZeneca, Medivation, Janssen, Johnson & Johnson (Inst), Roche (Inst), Cepheid (Inst), Immatics (Inst), Bayer (Inst), Novartis (Inst), Amgen (Inst), GenomeDx (Inst)
Patents, Royalties, Other Intellectual Property: Patent A290/99 Implantable incontinence device, AT00/0001:C-Trap, implantable device to treat urinary incontinence, 2018/6579 Gene expression signature for subtype and prognostic prediction of renal cell carcinoma
Expert Testimony: GSA Pharma
Travel, Accommodations, Expenses: Ipsen, Sanofi/Aventis, CureVac, Ferring, Astellas Pharma, Amgen, AstraZeneca

No other potential conflicts of interest were reported.