High-resolution food webs based on nitrogen isotopic composition of amino acids

Yoshito Chikaraishi¹, Shawn A. Steffan², Nanako O. Ogawa¹, Naoto F. Ishikawa¹, Yoko Sasaki¹, Masashi Tsuchiya¹ & Naohiko Ohkouchi¹

¹Japan Agency for Marine-Earth Science and Technology, 2-15 Natsushima-cho, Yokosuka 237-0061, Japan
²USDA-ARS Vegetable Crops Research Unit, 1630 Linden Dr., Department of Entomology, University of Wisconsin, Madison, WI 53706, USA

Keywords
Carnivores, compound-specific isotope analysis, ecosystem, herbivores, omnivores, predators, primary producers, trophic position.

Abstract
Food webs are known to have myriad trophic links between resource and consumer species. While herbivores have well-understood trophic tendencies, the difficulties associated with characterizing the trophic positions of higher-order consumers have remained a major problem in food web ecology. To better understand trophic linkages in food webs, analysis of the stable nitrogen isotopic composition of amino acids has been introduced as a potential means of providing accurate trophic position estimates. In the present study, we employ this method to estimate the trophic positions of 200 free-roaming organisms, representing 39 species in coastal marine (a stony shore) and 38 species in terrestrial (a fruit farm) environments. Based on the trophic positions from the isotopic composition of amino acids, we are able to resolve the trophic structure of these complex food webs. Our approach reveals a high degree of trophic omnivory (i.e., noninteger trophic positions) among carnivorous species such as marine fish and terrestrial hornets. This information not only clarifies the trophic tendencies of species within their respective communities, but also suggests that trophic omnivory may be common in these webs.

Introduction
Recent studies have emphasized the importance of functional diversity in the provision of ecosystem services (Duffy et al. 2007; Griffin et al. 2008). Assessing the trophic niche of a species, however, has remained difficult, partly because there is little consensus as to appropriate metrics (Chase and Leibold 2003), and partly because there are so few empirical approaches that permit accurate and precise measurements of the feeding histories of animals (Chikaraishi et al. 2011; Steffan et al. 2013). This is particularly true for omnivores and higher-order consumers, where such groups are often left as large, undivided units rather than parsed into smaller trophic subsets (e.g., Polis and Strong 1996; Sih et al. 1998).

Evidence for the importance of omnivory in food webs has long been reported (e.g., Darnell 1961; Polis 1991; Coll and Guershon 2002; Bruno and O’Connor 2005). Indeed, multichannel omnivory has been postulated as a dominant feature of carnivore communities (Polis 1991; Polis and Strong 1996), with much subsequent support of this pattern (Rosenheim 1998; Coll and Guershon 2002; Williams and Martinez 2004; Finke and Denno 2005). Recent work suggests that species feeding above the level of strict herbivory are often a “tangled web” of trophic omnivores (Thompson et al. 2007), feeding opportunistically yet often expressing distinct trophic tendencies (Minagawa and Wada 1984; Power et al. 1985; Vander Zanden and Rasmussen 2001; Post 2002; Williams and Martinez 2004). These tendencies often exhibit characteristic variability (Jaksić and Delibes 1987; Bearhop et al. 2004), and such variation represents the “trophic spectrum” of a species (Polis and Strong 1996). Understanding trophic spectra may be critical to assessing the
functional diversity of ecosystems, not only because the spectra provide information as to the variability, or range of trophic roles played by consumer species, but also because they indicate the central tendency of these species. Thus, measuring trophic spectra empirically should help tease apart the tangle of higher-order consumption by effectively characterizing the trophic niches of omnivores and carnivores.

Knowledge of the trophic position (TP) of organisms in food webs allows ecologists to track biomass flow, apportionment among trophic groups, and the trophic compositions of communities (e.g., Pimm 1991; Post 2002; Williams and Martinez 2004). Analysis of the stable nitrogen isotopic composition ($\delta^{15}N$) of amino acids represents a relatively new method that has been shown to provide accurate and precise estimates of the trophic position of organisms in aquatic and terrestrial systems (e.g., McClelland and Montoya 2002; McCarthy et al. 2007; Popp et al. 2007; Chikaraishi et al. 2009; Steffan et al. 2013). This approach is based on contrasting isotopic fractionation during metabolic processes between “trophic” and “source” amino acids (TrAAs and SrcAAs, respectively). For example, glutamic acid, a representative TrAA, shows significant ^{15}N-enrichment (8.0‰ on average) during the transfer of biomass from one trophic level to another because its metabolism starts with transamination/deamination, which always cleaves carbon–nitrogen bonds (Fig. 1). Conversely, phenylalanine, a representative SrcAA, shows little ^{15}N-enrichment (+0.4‰ on average) because its metabolism begins with the conversion of phenylalanine into tyrosine, which neither forms nor cleaves carbon–nitrogen bonds (Fig. 1). Thus, given the

![Figure 1](image1.png)

Figure 1. (A) Schematic illustration of the relationship between $\delta^{15}N$ values of amino acids (glutamic acid and phenylalanine) and trophic level in food webs (after Chikaraishi et al. 2007, 2009), and (B) initial steps of the dominant metabolism for glutamic acid and phenylalanine in animals.
minimal enrichment of SrcAAs with each trophic transfer, the isotopic composition of SrcAAs in consumers represents the weighted average of all the resource species at the base of the food web. As an organism feeds higher in its food web, the δ^{15}N value of TrAAs elevates predictably, while SrcAAs remains relatively static. A comparison of the isotopic composition between these two types of amino acids in any organism corresponds closely to the feeding position held by that organism within its food web (Steffan et al. 2013). In previous studies involving natural and laboratory-reared organisms, we established a general equation for the empirical measurement of an organism’s trophic position:

$$TP_{\text{Glu/Phe}} = \left[(\delta^{15}\text{N}_{\text{Glu}} - \delta^{15}\text{N}_{\text{Phe}} + \beta)/\text{TDF} \right] + 1 \quad (1)$$

where the β represents the isotopic difference between glutamic acid ($\delta^{15}\text{N}_{\text{Glu}}$) and phenylalanine ($\delta^{15}\text{N}_{\text{Phe}}$) in primary producers ($-3.4 \pm 0.9\%$ for aquatic cyanobacteria and algae, $+8.4 \pm 1.6\%$ for terrestrial C3 plants, $-0.4 \pm 1.7\%$ for terrestrial C4 plants), and the TDF represents trophic discrimination factor ($7.6 \pm 1.2\% = \Delta^{15}\text{N}_{\text{Glu}} - \Delta^{15}\text{N}_{\text{Phe}}$) at each shift of trophic level (Chikaraishi et al. 2010). Also, several previous studies used or suggested an alternative equation using a combination of all available isotopic composition (δ^{15}N) of TrAAs and SrcAAs:

$$TP_{\text{Tr/Sec}} = \left[(\delta^{15}\text{N}_{\text{Tr}} - \delta^{15}\text{N}_{\text{Sec}} + \beta_{\text{Tr/Sec}})/\text{TDF}_{\text{Tr/Sec}} \right] + 1 \quad (2)$$

where the $\beta_{\text{Tr/Sec}}$ represents the isotopic difference between the weighted mean isotopic composition of TrAAs ($\delta^{15}\text{N}_{\text{Tr}}$) and SrcAAs ($\delta^{15}\text{N}_{\text{Sec}}$) in primary producers, and the TDF$_{\text{Tr/Sec}}$ represents the TDF between TrAAs and SrcAAs (i.e., $= \Delta^{15}\text{N}_{\text{Tr}} - \Delta^{15}\text{N}_{\text{Sec}}$) (e.g., Sherwood et al. 2011; Décima et al. 2013; Vander Zanden et al. 2013).

Using this method, the TP value is calculated as a linear function of the difference in the δ^{15}N values of amino acids from the organism of interest (Chikaraishi et al. 2009; Steffan et al. 2013). As a result, the TP calculation accounts for the natural background variation in the nitrogen isotopic composition. In fact, previous studies reported that the standard deviation (1σ) of the accuracy of $TP_{\text{Glu/Phe}}$ value ($= \text{[actual TP]} - \left[TP_{\text{Glu/Phe}} \right]$) was only 0.12 unit among aquatic species and 0.17 unit among terrestrial organisms, while the variability in the isotopic composition at the base of the food webs ranging up to $\sim 15\%$ (Chikaraishi et al. 2009, 2011). The potential uncertainty in the $TP_{\text{Glu/Phe}}$ value calculated by taking into account the propagation of uncertainty on each factor in Eq. (1) is also only 0.23–0.24, 0.26–0.30, and 0.36–0.43 units for primary producers, primary consumers, and secondary consumers, respectively, in the terrestrial food web (Chikaraishi et al. 2011). This is a key advantage of this method and stands in contrast to traditional trophic position estimation techniques that rely on the nitrogen isotopic composition of bulk tissue samples (e.g., DeNiro and Epstein 1981; Minagawa and Wada 1984). The traditional bulk-analysis method is highly sensitive to background isotopic variation between the basal resources of a food web (e.g., Cabana and Rasmussen 1996; Vander Zanden et al. 1997; Vander Zanden and Rasmussen 1999; Post 2002). Another advantage of the amino acid approach is that it permits analyses of exceedingly small specimens (2 nmol for each amino acid, Chikaraishi et al. 2009), which allows researchers to assess the trophic functions of innumerable micro- and meso-fauna. Finally, the amino acid method is applicable to not only modern samples but also formalin-fixed and fossil (e.g., bone collagen) samples (Naito et al. 2010, 2013; Styring et al. 2010, 2012; Ogawa et al. 2013). Because of these advantages, the estimation of trophic position based on the isotopic composition of amino acids has been used with various organisms in recent ecological studies (e.g., McClelland et al. 2003; Hannides et al. 2009; Lorrain et al. 2009; Bloomfield et al. 2011; Dale et al. 2011; Sherwood et al. 2011; Maeda et al. 2012; Miller et al. 2012; Germain et al. 2013; Ruiz-Cooley et al. 2013; Vander Zanden et al. 2013). However, the validity of this estimate is dependent on the consistency of both β and TDF values. Recent studies reported potentially little or substantial variation in the β value for cyanobacteria and algae (McCarthy et al. 2013), seagrass (Vander Zanden et al. 2013), and terrestrial C3 plants (Steffan et al. 2013). It was confirmed that the TDF value does not scale among trophic levels 1–4 in multiple controlled-feeding experiments and for trophic levels 1–5 in a natural food chain using terrestrial arthropod species (Steffan et al. 2013); however, the universality of the TDF has been questioned for several species, including penguins (Lorrain et al. 2009), elasmobranchs (Dale et al. 2011), jumbo squids (Ruiz-Cooley et al. 2013), and harbor seals (Germain et al. 2013). In these species, small TDF values (3–5\%) were consistent with traditional biological observations such as stomach content analysis.

However, these biological observations did not involve empirical measurement of prey trophic position, and even if the prey trophic positions had been assayed, they would only have represented a snap-shot of the animal’s feeding history. Thus, without lifelong measurements of prey trophic position, there is little basis to assert that TFDs of free-roaming marine species may be significantly different
from the TDFs reported in controlled-feeding studies. Altogether, these results indicate that the β and TDF parameters are quite useful but would benefit from further refinement, particularly via controlled-feeding experiments involving various species, conditions, and positions within trophic hierarchies.

In the present study, we apply this method to investigations of selected flora and fauna in coastal marine (a stony shore) and terrestrial (a fruit farm) ecosystems in Japan. We aggregate data reported in previous studies (Chikaraishi et al. 2009, 2010, 2011) and report the TP_Glu/Phe values of a total of 200 samples represented by 100 samples from 39 species in the coastal and 100 samples from 38 species in the terrestrial food webs (Table 1). Based on the observed TP_Glu/Phe values, we illuminate elements of the food web structure in these ecosystems and further evaluate this new method of food web analysis.

Materials and Methods

All of the marine and terrestrial samples were collected in 2001–2013 from a stony shore and a farm in Yugawara (35°08’N, 139°07’E), Japan, respectively. The stony shoreline surveyed represented ~0.2 hectares and ranged in depth from 0 to 5 m, where brown and red macroalgae are dominant primary producers but seagrass is absent. The farm was also approximately 0.2 hectares with cultivation of fruits and vegetables, all of which were C3 plants. The farm was also approximately 0.2 hectares with culture dominant primary producers but seagrass is absent.

The nitrogen isotopic composition of amino acids was determined by gas chromatography/combustion/isotope ratio mass spectrometry (GC/C/IRMS) after HCl hydrolysis and N-pivaloyl/isopropyl (Pv/iPr) derivatization, according to the procedure in Chikaraishi et al. (2009) (which are described in greater detail at http://www.jams-tec.go.jp/biogeos/j/elhrp/biogeochem/download_e.html). In brief, samples were hydrolyzed using 12 Mol/L HCl at 110°C. The hydrolysate was washed with n-hexane/dichloromethane (3/2, v/v) to remove hydrophobic constituents. Then, derivatizations were performed sequentially with thionyl chloride/2-propanol (1/4) and pivaloyl chloride/dichloromethane (1/4). The Pv/iPr derivatives of amino acids were extracted with n-hexane/dichloromethane (3/2, v/v). The nitrogen isotopic composition of amino acids was determined by using a 6890N GC(Agilent Technologies, Palo Alto, CA) instrument coupled to a Deltaplus XP IRMS instrument via a GC/C/TC III interface (Thermo Fisher Scientific, Bremen, Germany). To assess the reproducibility of the isotope measurement and obtain the amino acid isotopic composition, reference mixtures of nine amino acids (alanine, glycine, leucine, norleucine, aspartic acid, methionine, glutamic acid, phenylalanine, and hydroxyproline) with known δ15N values (ranging from −25.9‰ to +45.6‰, Indiana University, SI science co.) were analyzed after every four to six sample runs, and three pulses of reference N2 gas were discharged into the IRMS instrument at the beginning and end of each chromatography run for both reference mixtures and samples. The isotopic composition of amino acids in samples was expressed relative to atmospheric nitrogen (AIR) on scales normalized to known δ15N values of the reference amino acids. The accuracy and precision for the reference mixtures were always 0.0‰ (mean of Δ) and 0.4–0.7‰ (mean of 1σ) for sample sizes of ≥1.0 nmol N, respectively.

The δ15N values were determined for the following 10 amino acids: alanine, glycine, valine, leucine, isoleucine, proline, serine, methionine, glutamic acid, and phenylalanine (Appendices A1 and A2). These amino acids were chosen because their peaks were always well separated with baseline resolution in the chromatogram (Chikaraishi et al. 2009). Also, it should be noted that glutamine was quantitatively converted to glutamic acid during acid hydrolysis; as a result, the ε-amino group of glutamine contributed to the δ15N value calculated for glutamic acid.

The TP_Glu/Phe value (and its potential uncertainty calculated by taking into account the propagation of uncertainty on each factor in the Eq. 1) was calculated from the observed δ15N values (as 1σ = 0.5‰) of glutamic acid and phenylalanine in the organisms of interest, using eq. (1) with the β value of −3.4 ± 0.9‰ for coastal marine and...
+8.4 ± 1.6‰ for terrestrial samples, and with the TDF value of 7.6 ± 1.2‰ for both ecosystems, according to Chikaraishi et al. (2009, 2010, 2011). The TP_Tr/Scr values were not calculated, because we did not measure the δ^{15}N values of lysine and tyrosine for all investigated samples and of serine for approximately a half of samples.
Results and Discussion

\(\delta^{13}C \) and \(\delta^{15}N \) values of bulk samples

Carbon and nitrogen isotopic compositions of bulk samples ranged from \(-17.7\%_o\) to \(-8.7\%_o\) and from \(+4.8\%_o\) to \(+14.2\%_o\), respectively, within the coastal marine system (Appendix A1). In the terrestrial system, respective carbon and nitrogen isotopic compositions ranged from \(-32.5\%_o\) to \(-21.8\%_o\) and from \(-2.8\%_o\) to \(+9.1\%_o\) (Appendix A2). These two ecosystems are readily distinguished in the \(\delta^{13}C \)-\(\delta^{15}N \) cross-plot of the organisms, mainly because of disparity in the \(\delta^{13}C \) value of the food web resource between coastal marine and terrestrial systems (Fig. 2).

In the present study, the nitrogen isotopic composition ranges from \(+4.8\%_o\) to \(+7.8\%_o\) for marine algae and from \(-2.8\%_o\) to \(+5.9\%_o\) for the terrestrial plants. This heterogeneity in the isotopic composition of basal resources, particularly in the terrestrial system, was relatively large up to 2.6 times as large as the discrimination factor (i.e., 3.4\%_o; Minagawa and Wada 1984), which is used to estimate the trophic position based on bulk isotopic composition.

Precision of TPGlu/Phe for multiple sample analysis

Based on the analysis of 5–15 individuals within a single stage for 11 representative species (i.e., eight coastal marine and three terrestrial organisms, Table 2), we first evaluated natural variation in the TPGlu/Phe value for the investigated organisms. As summarized in Table 2, the standard deviation for the comparison of the TPGlu/Phe values and an average of potential uncertainty in the TPGlu/Phe value calculated by taking into account the propagation of uncertainty on each factor in eq. (1) were always less than 0.13 and 0.46 for coastal marine and less than 0.11 and 0.24 for terrestrial organisms. These were almost identical to the precision levels previously reported for the TPGlu/Phe value (Chikaraishi et al. 2009, 2011). As shown in Fig. 3A, there was a quite small difference in the TPGlu/Phe value (1\(\sigma = 0.06 \)) for the comparison of the TPGlu/Phe values) among scale and muscle collected from cheek, back, abdomen, and tail within a single sample of the fish Apogon semilineatus, although the \(\delta^{15}N \) values of phenylalanine are different, ranging up to 2.4\%_o among body parts and 1.1\%_o between tissue types. A small difference (1\(\sigma = 0.13 \)) was also found between 17 individuals of the fish Girella punctata collected from this...
coastal area over a decade during 2001–2013, although its phenylalanine has a variation in the δ^{15}N value ranging up to 5.0‰ during this term (Fig. 3B).

Secondly, we evaluated the effect of metamorphosis on the TP$_{Glu/Phe}$ value from the egg to adult stages of terrestrial insect species. We investigated this because...
the feeding pattern and appearance of many holometabolous insects show a marked change during metamorphosis. As summarized in Table 3, the standard deviation (1σ) for the comparison of the TPGlu/Phe values was always less than 0.14 units for seven terrestrial insect species including herbivore (butterfly) and carnivores (paper wasps, ladybug, and hornet). Interestingly, a small change in the TPGlu/Phe value ($1\sigma = 0.11$) between different stages is commonly found even in the hornet *Vespa analis*, an opportunistic predator (they can feed on many insects; Takamizawa 2005). The constancy in the TPGlu/Phe value of this hornet was evident despite the fact that there were marked differences (between 3.6 and 7.4‰) in the $\delta^{15}N$ values of phenylalanine at different growth stages, which represent temporal changes in the diet of this hornet family (Fig. 3C). These results reveal how a consumer’s trophic position can remain unchanged during a given period of time, even though its food type and/or source has changed dramatically.

Mapping of food webs using trophic isoclines

Using equation (1), the $\delta^{15}N$ values for phenylalanine and glutamic acid can be plotted against each other, creating a line for each trophic position with slope of 1.0, and between-line interval of 7.6‰ (Fig. 4). All points within each line are the algebraic solutions for the parameter of

Sample	N	TPGlu/Phe	Egg	Larva	Chrysalis	Adult	Total	Average	1σ	$1\sigma^2$
Butterfly	Pieris rapae	0	4	0	2	6	2.09	0.14	0.24	
Paper wasp	Polistes japonicus	1	2	2	1	6	3.02	0.14	0.24	
Paper wasp	Polistes jokahamae	1	1	0	1	3	3.07	0.14	0.24	
Paper wasp	Polistes rothneyi	1	3	5	4	13	3.03	0.14	0.24	
Paper wasp	Parapolybia indica	0	3	4	2	9	2.97	0.11	0.24	
Ladybug	Harmonia axyridis	0	1	1	5	6	3.07	0.06	0.24	
Hornet	Vespa analis	1	3	2	1	7	3.05	0.11	0.29	

1Standard deviation (1σ) for the comparison of the TPGlu/Phe values from multiple samples.

2An average of potential uncertainly in TPGlu/Phe value calculated by taking into account the propagation of 1σ for $\delta^{15}N_{\text{Glu}}, \delta^{15}N_{\text{Phe}}, \beta$, and TDF in eq. (1).

Figure 4. Cross-plots for $\delta^{15}N$ values of glutamic acid and phenylalanine for (A) coastal marine and (B) terrestrial ecosystems. The potential propagation uncertainty is 0.15 for brown and red macroalgae, 0.19–0.22 for gastropod and echinoid, 0.25–0.29 for bivalve, crab, and hermit crab, 0.30–0.42 for fish, 0.43–0.53 for goby/sculpin, lobster, and octopus, 0.55–0.59 for moray, 0.30–0.36 for plant, 0.23–0.25 for caterpillar, aphid, butterfly, and bee, 0.23–0.24 for katydids, 0.23–0.26 for paper wasp, ant, ladybird beetle, and mantid, and 0.27–0.33 for hornet.
the isotopic composition of glutamic acid, while holding the trophic position constant and substituting into the equation a range of phenylalanine δ15N values. Each line therefore represents a trophic isocline (or a “tropholine”), and altogether, these lines demarcate the trophic levels of a food web in 2-dimensional phase space. In this space, the trophic position of organisms can be plotted according to their respective δ15N values of glutamic acid and phenylalanine. One of the advantages of this graphical presentation is that background heterogeneity in the isotopic composition is completely transparent (evident as the δ15N value of phenylalanine along the horizontal axis). Whatever the δ15N values of phenylalanine in an organism are, the δ15N value of glutamic acid will reflect its trophic position. When the TP_{Glu/Phe} values of organisms are arrayed across trophoclines in phase space, it becomes apparent how populations simultaneously vary in terms of trophic position and background δ15N values (e.g., Chikaraishi et al. 2009). For example, the isotopic composition of phenylalanine is highly variable in the coastal marine and terrestrial ecosystems (the δ15N values ranging from 3.5 to 8.7‰ and from 1.6 to 17.0‰, respectively). Despite this high level of background heterogeneity, all of the algal and higher plant samples have the TP_{Glu/Phe} values that were on or near the line of TP_{Glu/Phe} = 1 (Fig. 4), within the precision levels (e.g., 0.15 unit for aquatic algae and 0.30–0.36 unit for terrestrial plants, as potential uncertainty in the TP_{Glu/Phe} value) in coastal marine (χ² = 49.994, df = 11, P = 1.000) and terrestrial environments (χ² = 64.330, df = 14, P = 1.000). Furthermore, the species known to be herbivores, such as the gastropods, caterpillars, and bees, all were plotted on the TP_{Glu/Phe} = 2 line within the precision levels (e.g., 0.19–0.22 unit for aquatic and 0.23–0.25 unit for terrestrial organisms, as potential uncertainty in the TP_{Glu/Phe} value) in coastal marine (χ² = 70.314, df = 10, P = 1.000) and terrestrial environments (χ² = 54.757, df = 18, P = 1.000).

Importantly, the array of data points in this phase space could reveal linear food chains within the broader food web. Considering that the TDF value for phenylalanine is only 0.4 ± 0.5‰ (Chikaraishi et al. 2009), the δ15N values of phenylalanine in a consumer closely reflect those of all the resources (e.g., Chikaraishi et al. 2009). In other words, consumer and resource species arrayed in vertical columns within a narrow range of the δ15N values of phenylalanine could represent highly compartmentalized and linear food webs, whereas a species that registers a wide range of the δ15N value of phenylalanine could indicate a consumer that can exploit resources from multiple communities, ecosystems, or bioregions. Also, all consumer species falling within a range of δ15N values for phenylalanine may effectively “belong” to a single particular food web. In fact, in the present study, the δ15N values of phenylalanine of the algae in the coastal marine system ranged from 3.6 to 6.6‰, which corresponds very closely to the range found in coastal marine consumers (from 3.5 to 8.7‰) (Fig. 4). In the terrestrial system, the δ15N values of phenylalanine in plants ranged from 4.1 to 17.0‰, which was more variable but nevertheless corresponded closely to the range found in terrestrial consumers (1.6 to 14.9‰) (Fig. 4). These results suggest that the consumer species of each ecosystem had likely fed principally on the local resources and thus were derived from these particular food webs.

Most food chains start with primary producers (TP = 1) such as algae and plants, which are eaten by herbivores (strict plant-feeders: TP = 2) and omnivores (both plant- and animal-feeders: TP > 2). Herbivores and omnivores are eaten by carnivores (animal-feeders: TP > 3) and finally by tertiary predators (carnivores at the top of the food chain). Based on the observed TP_{Glu/Phe} values, we can effectively map subsets of the communities within coastal marine (Fig. 5A) and terrestrial ecosystems (Fig. 5B). Marine primary producers were represented by macroalgae with TP_{Glu/Phe} values ranging from 0.9 to 1.2. As expected, gastropods and echinoids registered as herbivores, given TP_{Glu/Phe} values of 1.7 to 2.0. Various crabs and bivalves (i.e., oysters) appear to be omnivores, as their TP_{Glu/Phe} values range from 2.2 to 2.6. On the other hand, fish and lobsters have a large variation in the TP_{Glu/Phe} values, ranging from 2.9 to 4.6, revealing a high degree of trophic omnivory within this group. The moray eel (Gymnothorax kidako) appears to be a top predator with a TP_{Glu/Phe} value of 4.6 in this environment.

In the farm ecosystem (Fig. 5B), higher plants had TP_{Glu/Phe} values ranging from 0.7 to 1.3. The data are consistent with the ecologically expected trophic positions for aphids (Aphidoidea sp., TP_{Glu/Phe} = 2.0), caterpillars (Pieris rapae, TP_{Glu/Phe} = 2.1), bees (e.g., Apis mellifera, TP_{Glu/Phe} = 2.1), butterflies (e.g., P. rapae, TP_{Glu/Phe} = 2.1), and herbivorous katydids (Holochlora japonica, TP_{Glu/Phe} = 2.1), all of which are known herbivores. Gampsocleis mikado, a katydid species known to be an omnivorous scavenger (e.g., ELena et al. 2010), registered a TP_{Glu/Phe} value of 2.6. Paper wasps (e.g., Polistes japonicus, TP_{Glu/Phe} = 3.0), ants (Formica japonica, TP_{Glu/Phe} = 3.0), ladybird beetles (e.g., Coccinella septempunctata, TP_{Glu/Phe} = 3.0), and mantids (Tenodera aridifolia, TP_{Glu/Phe} = 3.2) are secondary consumers with TP_{Glu/Phe} values ranging from 2.9 to 3.2. The TP_{Glu/Phe} values of hornets (e.g., V. analis and Vespa ducalis) ranged from 3.5 to 4.0.

Trophic omnivory among carnivorous species can be measured as the degree to which consumers’ trophic positions depart from an integer-based trophic position (i.e., trophic level 3.0, 4.0). For example, the mean
Figure 5. Illustration of food web structure in (A) the coastal marine and (B) terrestrial ecosystems. Mean trophic position and 1σ for the comparison of the observed TPGlu/Phe values in each species are shown in a parenthesis under each organism.
TPGlu/Phe value of carnivorous/omnivorous fish was 3.33 ± 0.47, which was significantly different from trophic level 3.0 (one-sample t-test: \(t = 5.59, df = 62, P < 0.001 \)) or 4.0 (\(t = -11.54, df = 62, P < 0.001 \)). The value of hornets was 3.64 ± 0.06, which was significantly different from either trophic level 3.0 (\(t = 11.45, df = 14, P < 0.001 \)) or 4.0 (\(t = -6.44, df = 14, P < 0.001 \)).

In the present study, the trophic position was calculated using eq. (1) with the \(\beta \) value of −3.4\% for coastal marine and +8.4\% for terrestrial samples and with the TDF value of 7.6\% for both ecosystems, according to Chikaraishi et al. (2010). On the other hand, recent studies also reported potential variation in the \(\beta \) and TDF values for several species, which may leads under- or over-estimation of the trophic position of organisms by up to 2.0 unit (e.g., Germain et al. 2013; Vander Zanden et al. 2013). However, it seems to be that the \(\beta \) and TDF values reported in Chikaraishi et al. (2010) are applicable in the studied food webs. In fact, the estimated TPGlu/Phe values of primary producers (i.e., macroalgae and plants) and herbivores (e.g., gastropods and caterpillars) were always close to 1.0 and 2.0, respectively, within the precision levels (Fig. 5). The TPGlu/Phe values of wasps (2.9–3.0) and a hornet \(V. \) ducalis (4.0) are particularly consistent with the biologically expected trophic positions that the wasps feed primarily on caterpillars found on plant leaves and this hornet feeds solely on wasps (e.g., Takamizawa 2005).

Implications

In the traditional approach to the trophic position estimation using bulk \(\delta^{15}N \) values of organisms, substantial background heterogeneity in the isotopic composition often causes significant uncertainty in the mapping of food web structure (e.g., Cabana and Rasmussen 1996; Vander Zanden et al. 1997; Post 2002). The present study demonstrates that \(\delta^{15}N \) analysis of individual amino acids can attend to background heterogeneity while simultaneously allowing precise estimation of the trophic positions of free-roaming organisms. As predicted by theory and early empirical work (Polis 1991; Polis and Strong 1996), the trophic structure evident in the marine and terrestrial systems we studied are indicative of multichannel omnivory: A number of the animal species registered noninteger trophic levels. Our data therefore represent evidence of the ubiquity of trophic omnivory in marine and terrestrial ecosystems. Plotting the trophic spectra of these species across trophoclines reveals the degree of omnivory (Fig. 5). Accommodating background heterogeneity and trophic position simultaneously will allow researchers to assess compartmentalization within a food web while also assessing the trophic niche breadth of populations and communities.

Dual isotope analysis using nitrogen (\(\delta^{15}N \)) and carbon (\(\delta^{13}C \)) in bulk samples has widely been used for the food web structure analysis in a number of previous studies (e.g., Cabana and Rasmussen 1996; Yoshii et al. 1999; Aita et al. 2011). In these studies, ideally, the \(\delta^{15}N \) values provide trophic position estimates of organisms because of the significant enrichment in \(^{15}N \) with each trophic level (by \(\sim 3\% \) at each level; DeNiro and Epstein 1981; Minagawa and Wada 1984), whereas the \(\delta^{13}C \) values directly provide diet resources of organisms because of relatively small enrichment along the trophic level (by \(\sim 1\% \) at each level; DeNiro and Epstein 1978). Although the carbon isotope analysis of amino acids is still under development (e.g., Corr et al. 2007; Smith et al. 2009; Dunn et al. 2011), little or no trophic enrichment in \(^{13}C \) was commonly found in the essential amino acids in controlling feeding experiments (e.g., Hare et al. 1991; O’Brien et al. 2002; Howland et al. 2003; McMahon et al. 2010). Moreover, the \(\delta^{13}C \) values in the essential AAs potentially provide taxonomic (e.g., among bacteria, fungi, macroalgae, seagrasses, and terrestrial plants; Larsen et al. 2009, 2013) and geographical discrimination among food sources (McMahon et al. 2012). Accordingly, it is expected that the combination of accurate trophic position estimates (using \(\delta^{15}N \) values of amino acids) with accurate food source estimates (using \(\delta^{13}C \) values of amino acids) will be potentially useful for better understanding the complex networks of multiple food chains.

Acknowledgments

We thank Mr. Mikiyo Chikaraishi (Yamani farm) for providing samples and Ms. Rutsu Hirono for drawing illustrations of organisms. This work was supported by Grant-in-Aid for Scientific Research of the JSPS (Y.C., N.O.O., M.T., and N.O.) and USDA-ARS appropriated funds to SAS (3655–21220–001–00D).

Conflict of Interest

None declared.

References

Aita, M. N., K. Tadokoro, N. O. Ogawa, F. Hyodo, R. Ishii, S. L. Smith, et al. 2011. Linear relationship between carbon and nitrogen isotope ratios along simple food chains in marine environments. J. Plankton Res. 33: 1629–1642.

Bearhop, S., C. E. Adams, S. Waldron, R. A. Fuller, and H. Macleod. 2004. Determining trophic niches width: a novel approach using stable isotope analysis. J. Anim. Ecol. 73:1007–1012.
Food Web View by 15N/14N of Amino Acids

Y. Chikaraishi et al.

Bloonfield, A. L., T. S. Elsdon, B. D. Walther, E. J. Gier, and B. M. Gilanders. 2011. Temperature and diet affect carbon and nitrogen isotope ratios of fish muscle; can amino acid nitrogen isotopes explain effects? J. Exp. Mar. Biol. Ecol. 399:48–59.

Bruno, J. F., and M. J. O’Connor. 2005. Cascading effects of predator diversity and omnivory in a marine food web. Ecol. Lett. 8:1048–1056.

Cabana, G., and J. B. Rasmussen. 1996. Comparison of aquatic food chains using nitrogen isotopes. Proc. Natl Acad. Sci. 93:10844–10847.

Chase, J. M., and M. A. Leibold. 2003. Ecological niches. Univ. of Chicago Press, Chicago, IL.

Chikaraishi, Y., N. O. Ogawa, H. Doi, and N. Ohkouchi. 2011. Further evaluation of the trophic level estimation based on nitrogen isotopic composition of amino acids. Pp. 37–51 in N. Ohkouchi, I. Tayasu, K. Koba, eds. Earth, life, and isotopes. Kyoto Univ. Press, Kyoto, Japan.

Chikaraishi, Y., N. O. Ogawa, Y. Kashiyama, Y. Takano, H. Suga, A. Tomitani, et al. 2009. Determination of aquatic food-web structure based on compound-specific nitrogen isotopic composition of amino acids. Limnol. Oceanogr. Methods 7:740–750.

Chikaraishi, Y., N. O. Ogawa, and N. Ohkouchi. 2010. Further evaluation of the trophic level estimation based on nitrogen isotopic composition of amino acids. Pp. 37–51 in N. Ohkouchi, I. Tayasu, K. Koba, eds. Earth, life, and isotopes. Kyoto Univ. Press, Kyoto, Japan.

Chikaraishi, Y., N. O. Ogawa, H. Doi, and N. Ohkouchi. 2011. 15N/14N ratios of amino acids as a tool for studying terrestrial food webs: a case study of terrestrial insects (bees, wasps, and hornets). Ecol. Res. 26:835–844.

Coll, M., and M. Guershon. 2002. Omnivory in terrestrial arthropods: mixing plant and prey diets. Annu. Rev. Entomol. 47:267–297.

Corr, L. T., R. Berstan, and R. P. Evershed. 2007. Development of N-acetyl methyl ester derivatives for the determination of δ^{13}C values of amino acids using gas chromatography-combustion-isotope ratio mass spectrometry. Anal. Chem. 79:9082–9090.

Dale, J. J., N. J. Wallsgrove, B. N. Popp, and K. N. Holland. 2011. Nursery habitat use and foraging ecology of the brown stingray Dasyatis lata determined from stomach contents, bulk and amino acid stable isotopes. Mar. Ecol. Prog. Ser. 433:221–236.

Darnell, R. M. 1961. Trophic spectrum of an estuarine community based on studies of Lake Pontchartrain, Louisiana. Ecology 42:553–568.

Décima, M., M. R. Landry, and B. N. Popp. 2013. Environmental perturbation effects on baseline δ^{15}N values and zooplankton trophic flexibility in the Southern California Current Ecosystem. Limnol. Oceanogr. 58:624–634.

DeNiro, M. J., and S. Epstein. 1978. Influence of diet on the distribution of carbon isotopes in animals. Geochimica et Cosmochimica Acta 42:495–506.

DeNiro, M. J., and S. Epstein. 1981. Influence of diet on the distribution of nitrogen isotopes in animals. Geochim. Cosmochim. Acta 45:341–351.

Duffy, J. E., B. J. Cardinales, K. E. France, P. B. McIntyre, and E. Thébault. 2007. The functional role of biodiversity in ecosystems: incorporating trophic complexity. Ecol. Lett. 10:522–538.

Dunn, P. J. H., N. V. Honch, and R. P. Evershed. 2011. Comparison of liquid chromatography–isotope ratio mass spectrometry (LC/IRMS) and gas chromatography–combustion–isotope ratio mass spectrometry (GC/IRMS) for the determination of collagen amino acid δ^{13}C values for palaeodietary and palaeoecological reconstruction. Rapid Commun. Mass Spectrom. 25:295–3011.

ELela, S. A., W. ElSayed, and K. Nakamura. 2010. Mandibular structure, gut contents analysis and feeding group of orthopteran species collected from different habitats of Satoyama area within Kanazawa City, Japan. J. Threat. Taxa 2:849–857.

Finke, D. L., and R. F. Denno. 2005. Predator diversity and the functioning of ecosystems: The role of intraguild predation in dampening trophic cascades. Ecol. Lett. 8:1299–1306.

Germain, L. R., P. L. Koch, J. Harvey, and M. D. McCarthy. 2013. Nitrogen isotope fractionation in amino acids from harbor seals: implications for compound-specific trophic position calculations. Mar. Ecol. Prog. Ser. 482:265–277.

Griffin, J. N., K. L. de la Haye, S. J. Hawkins, R. C. Thompson, and S. R. Jenkins. 2008. Predator diversity and ecosystem functioning: density modifies the effect of resource partitioning. Ecology 89:298–305.

Hannides, C. C. S., B. N. Popp, M. R. Landry, and B. S. Graham. 2009. Quantification of zooplankton trophic position in the North Pacific Subtropical Gytr using stable nitrogen isotopes. Limnol. Oceanogr. 54:50–61.

Hare, P. E., M. L. Fogel, T. W. Jr Stafford, A. D. Mitchell, and T. C. Hoering. 1991. The isotopic composition of carbon and nitrogen in individual amino acids isolated from modern and fossil proteins. J. Archaeol. Sci. 18:277–292.

Howland, M. R., L. T. Corr, S. M. M. Young, V. Jones, S. Jim, N. J. van der Merwe, et al. 2003. Expression of the dietary isotope signal in the compound-specific δ^{13}C values for pig bone lipids and amino acids. Int. J. Osteoarchaeol. 13:54–65.

Jaksić, F. M., and M. Delibes. 1987. A comparative analysis of food-niche relationships and trophic guild structure in two assemblages of vertebrate predators differing in species richness: causes, correlations, and consequences. Oecologia 71:461–472.

Larsen, T., D. L. Taylor, M. B. Leigh, and D. M. O’Brien. 2009. Stable isotope fingerprinting: a novel method for
identifying plant, fungal, or bacterial origins of amino acids. Ecology 90:3526–3535.

Larsen, T., M. Ventura, N. Andersen, D. M. O’Brien, U. Piatkowski, and M. D. McCarthy. 2013. Tracing carbon sources through aquatic and terrestrial food webs using amino acid stable isotope fingerprinting. PLoS ONE 8: e73441.

Lorrain, A., R. Graham, F. Ménard, B. N. Popp, S. Bouillon, P. van Breugel, et al. 2009. Nitrogen and carbon isotope values of individual amino acids: a tool to study foraging ecology of penguins in the Southern Ocean. Mar. Ecol. Prog. Ser. 391:293–306.

Maeda, T., E. Hirose, Y. Chikaraishi, M. Kawato, K. Takishita, T. Yoshida, et al. 2012. Algivore or phototroph? Plakobranchus ocellatus (Gastropoda) continuously acquires kleptoplasts and nutrition from multiple algal species in nature. PLoS ONE 7:e41024.

McCarthy, M. D., R. Benner, C. Lee, and M. L. Fogel. 2007. Amino acid nitrogen isotopic fractionation patterns as indicators of heterotrophy in plankton, particulate, and dissolved organic matter. Geochim. Cosmochim. Acta 71:4727–4744.

McCarthy, M. D., J. Lehman, and R. Kudela. 2013. Compound-specific amino acid δ15N patterns in marine algae: Tracer potential for cyanobacterial vs. eukaryotic organic nitrogen sources in the ocean. Geochim. Cosmochim. Acta 103:104–120.

McClelland, J. W., and J. P. Montoya. 2002. Trophic relationships and the nitrogen isotopic composition of amino acids in plankton. Ecology 83:2173–2180.

McClelland, J. W., C. M. Holl, and J. P. Montoya. 2003. Relating low δ15N values of zooplankton to N2-fixation in the tropical North Atlantic: insights provided by stable isotope ratios of amino acids. Deep-Sea Res. I 50:849–863.

McMahon, K. W., M. L. Fogel, T. S. Eisdon, and S. R. Thorrold. 2010. Carbon isotope fractionation of amino acids in fish muscle reflects biosynthesis and isotopic routing from dietary protein. J. Anim. Ecol. 79:1132–1141.

McMahon, K. W., M. L. Berumen, and S. R. Thorrold. 2012. Linking habitat mosaics and connectivity in a coral reef seascape. Proc. Natl Acad. Sci. 109:15372–15376.

Miller, M. J., Y. Chikaraishi, N. O. Ogawa, Y. Tamade, K. Tsukamoto, and N. Ohkouchi. 2012. A low trophic position of Japanese eel larvae indicates feeding on marine snow. Biol. Lett. 9:20120826.

Minagawa, M., and E. Wada. 1984. Stepwise enrichment of 15N along food chains: further evidences and the relation between δ15N and animal age. Geochim. Cosmochim. Acta 48:1135–1140.

Naito, Y. I., N. V. Honch, Y. Chikaraishi, N. Ohkouchi, and M. Yoneda. 2010. Quantitative evaluation of marine protein contribution in ancient diets based on nitrogen isotope ratios of individual amino acids in bone collagen: an investigation at the Kitakogane Jomon site. Am. J. Phys. Anthropol. 143:31–40.

Naito, Y. I., Y. Chikaraishi, N. Ohkouchi, and M. Yoneda. 2013. Evaluation of carnivory in inland Jomon hunter–gatherers based on nitrogen isotopic compositions of individual amino acids in bone collagen. J. Archaeol. Sci. 40:2913–2923.

O’Brien, D. M., M. L. Fogel, and C. L. Boggs. 2002. Renewable and nonrenewable resources: Amino acid turnover and allocation to reproduction in Lepidoptera. Proc. Natl Acad. Sci. 99:4413–4418.

Ogawa, N. O., Y. Chikaraishi, and N. Ohkouchi. 2013. Trophic position estimates of formalin-fixed samples with nitrogen isotopic compositions of amino acids: an application to gobiid fish (Isaza) in Lake Biwa, Japan. Ecol. Res. 28:697–702.

Pimm, S. L. 1991. The balance of nature?. Univ. of Chicago Press, Chicago, IL.

Polis, G. A. 1991. Complex trophic interactions in deserts: an empirical critique of food-web theory. Am. Nat. 138:123–155.

Polis, G. A., and D. R. Strong. 1996. Food web complexity and community dynamics. Am. Nat. 147:813–846.

Popp, B. N., B. S. Graham, R. J. Olson, C. C. S. Hannides, M. Lott, G. López-Ibarra, et al. 2007. Insight into the trophic ecology of yellowfin tuna, Thunnus albacares, from compound-specific nitrogen isotope analysis of proteinaceous amino acids. Pp. 173–190 in T. E. Dawson, R. T. W. Siegwolf eds. Stable isotopes as indicators of ecological change. Academic Press, San Diego, USA.

Post, D. M. 2002. Using stable isotopes to estimate trophic position: models, Methods, and assumptions. Ecology 83:703–718.

Power, M. E., W. J. Matthews, and A. J. Stewart. 1985. Grazing minnows, piscivorous bass and stream algae: dynamics of a strong interaction. Ecology 66:1448–1456.

Rosenheim, J. A. 1998. Higher-order predators and the regulation of insect herbivore populations. Annu. Rev. Entomol. 43:421–447.

Ruo-Cooley, R. I., L. T. Balance, and M. D. McCarthy. 2013. Range expansion of the jumbo squid in the NE Pacific: δ15N decrypts multiple origins, migration and habitat use. PLoS ONE 8:e59651.

Sherwood, O. A., M. F. Iehmann, C. J. Schuber, D. B. Scott, and M. D. McCarthy. 2013. Nutrient regime shift in the western North Atlantic indicated by compound-specific δ15N of deep-sea gorgonian corals. Proc. Natl Acad. Sci. 108:1011–1015.

Sih, A., G. Englund, and D. Wooster. 1998. Emergent impacts of multiple predators on prey. Trends Ecol. Evol. 13:350–355.

Smith, C. I., B. T. Fuller, K. Choy, and M. P. Richards. 2009. A three-phase liquid chromatographic method for δ13C analysis of amino acids from biological protein hydrolysates.
using liquid chromatography–isotope ratio mass spectrometry. Anal. Biochem. 390:165–172.
Steffan, S. A., Y. Chikaraishi, D. R. Horton, N. Ohkouchi, M. E. Singleton, E. Miliczky, et al. 2013. Trophic hierarchies illuminated via amino acid isotopic analysis. PLoS ONE 9: e76152.
Styring, A. K., J. C. Sealy, and R. P. Evershed. 2010. Resolving the bulk $\delta^{15}N$ values of ancient human and animal bone collagen via compound-specific nitrogen isotope analysis of constituent amino acids. Geochemica et Cosmochimica Acta 74:241–251.
Styring, A. K., A. Kuhl, T. D. J. Knowles, R. A. Fraser, A. Bogaard, and R. P. Evershed. 2012. Practical considerations in the determination of compound-specific amino acid $\delta^{15}N$ values in animal and plant tissues by gas chromatography-combustion-isotope ratio mass spectrometry, following derivatisation to their N-acetylisopropyl esters. Rapid Commun. Mass Spectrom. 26:2328–2334.
Takamizawa, K. 2005. The Japanese social wasps and bees. The Shinano Mainichi Shinbun, Nagano, Japan.
Thompson, R. M., M. Hemberg, B. M. Starzomski, and J. B. Shurin. 2007. Trophic levels and trophic tangles: the prevalence of omnivory in real food webs. Ecology 88:612–617.
Vander Zanden, M. J., and J. B. Rasmussen. 1999. Primary consumer $\Delta^{13}C$ and $\Delta^{15}N$ and the trophic position of aquatic consumers. Ecology 80:1395–1404.
Vander Zanden, M. J., and J. B. Rasmussen. 2001. Variation in $\delta^{15}N$ and $\delta^{13}C$ trophic fractionation: implications for aquatic food web studies. Limnol. Oceanogr. 46:2061–2066.
Vander Zanden, M. J., G. Cabana, and J. B. Rasmussen. 1997. Comparing trophic position of freshwater fish calculated using stable nitrogen isotope ratios ($\delta^{15}N$) and literature dietary data. Can. J. Fish. Aquat. Sci. 54:1142–1158.
Vander Zanden, H. B., K. E. Arthur, A. B. Bolten, B. N. Popp, C. J. Lagueux, E. Harrison, et al. 2013. Trophic ecology of a green turtle breeding population. Mar. Ecol. Prog. Ser. 476:237–249.
Williams, R. J., and N. D. Martinez. 2004. Trophic levels in complex food webs: theory and data. Am. Nat. 163: 458–468.
Yoshii, K., N. G. Melnik, O. A. Timoshkin, N. A. Bondarenko, P. N. Anoshko, T. Yoshida, et al. 1999. Stable isotope analyses of the pelagic food web in Lake Baikal. Limnol. Oceanogr. 44:502–511.
Appendix A1:
Nitrogen isotopic composition of amino acids in coastal marine organisms.

Sample	Tissue	Collection Date	δ^{15}N$_{Bulk}$	Bulk	Alanine	Glycine	Valine	Leucine	Isoleucine	Proline	Serine	Methionine	Glutamic acid	Phenylalanine	TP_{rum}	1^a	Source4
Macroalgae																	
	(Brown algae)																
Undaria pinnatifida (#1)	Whole	2001.2	-10.8	5.6	8.0	-0.7	6.8	5.1	5.7	5.4	-2.1	2.0	6.9	4.1	0.9	0.2	Ref 1
Undaria pinnatifida (#2)	Whole	2006.5	-13.8	5.6	7.7	3.2	8.3	8.1	7.2	6.7	-0.3	2.7	9.2	4.7	1.1	0.2	Ref 2
Sargassum filicinum (#1)	Whole	2001.2	-15.0	5.6	7.3	-1.5	8.4	2.8	5.8	7.2	-1.6	2.0	6.3	4.1	0.8	0.2	Ref 1
Sargassum filicinum (#2)	Whole	2006.4	-14.0	5.9	7.9	-0.8	9.3	4.6	7.2	9.0	1.6	2.5	8.2	4.4	1.0	0.2	Ref 1
Gastropod																	
Batillus cornutus (#1)	Muscle	2001.2	-16.4	7.8	16.6	4.8	15.1	12.7	14.3	14.1	7.0	3.1	16.4	5.0	2.0	0.2	Ref 1
Batillus cornutus (#2)	Shell	2001.2	n.d.	16.2	3.9	14.9	12.9	14.7	n.d.	7.7	n.d.	4.6	15.9	4.6	2.0	0.2	This study
Haliotis discus (#1)	Muscle	2001.2	-13.2	6.0	12.6	2.8	12.7	6.1	9.5	12.9	-0.6	1.9	13.2	4.3	1.7	0.2	Ref 1
Haliotis discus (#2)	Shell	2001.2	n.d.	12.7	2.6	12.4	5.5	9.3	12.7	0.1	n.d.	3.8	13.1	3.8	1.8	0.2	This study
Omphalius pfefferi (#1)	Muscle	2001.2	-14.4	7.4	15.1	3.6	11.4	8.9	9.0	11.7	2.4	2.5	14.7	4.4	1.9	0.2	Ref 1
Omphalius pfefferi (#2)	Shell	2001.2	n.d.	15.4	3.0	11.7	8.5	9.8	11.1	3.3	n.d.	4.0	15.0	4.0	2.0	0.2	This study
Appendix A1: Continued.

Sample	Tissue	Collection Date	α^{15}N	α^{13}C_{Bulk}	Bulk	Alanine	Glycine	Valine	Leucine	Isoleucine	Proline	Serine	Methionine	Glutamic acid	Pheynylalanine	TP_{Glu/Phe}	ι_{α}	Source
Omphalius pfeifferi (#3)	Muscle	2006.4	n.d.	n.d.	15.2	5.1	13.5	12.3	16.7	13.0	4.1	4.3	18.0	6.1	2.1	0.2	This study	
Omphalius pfeifferi (#4)	Muscle	2010.11	n.d.	n.d.	13.6	2.5	13.8	11.2	12.6	13.3	4.1	1.7	14.0	3.6	1.9	0.2	This study	
Omphalius pfeifferi (#5)	Muscle	2010.11	n.d.	n.d.	17.0	5.0	16.1	14.2	15.1	15.9	7.4	2.9	16.8	5.2	2.1	0.2	This study	
Echinoid																		
Anthocidaris crassispina	Shell	2010.11	n.d.	5.8	15.5	6.8	16.0	13.0	12.8	n.d.	5.5	16.2	5.2	2.0	0.2	This study		
Hemicentrotus pulcherimius	Shell	2010.11	n.d.	7.3	17.6	8.3	15.5	14.3	13.8	n.d.	n.d.	17.1	7.6	1.8	0.2	This study		
Bivalve																		
Crassostrea sp.	Muscle	2010.11	n.d.	8.3	18.4	10.1	21.2	16.7	18.3	17.4	11.4	n.d.	19.7	5.8	2.4	0.3	This study	
Crustacean																		
Pachygrapsus crassipes (#1)	Muscle	2001.2	−12.5	7.8	15.9	3.7	15.4	10.7	9.4	15.4	3.3	1.9	19.3	3.8	2.6	0.3	Ref 1	
Pachygrapsus crassipes (#2)	Muscle	2012.7	n.d.	n.d.	17.0	3.1	14.7	14.3	13.7	n.d.	n.d.	18.5	4.6	2.4	0.3	This study		
Pagurus lineolatus	Muscle	2012.7	n.d.	n.d.	16.0	3.2	13.2	13.0	10.5	n.d.	7.5	3.0	18.2	5.3	2.3	0.2	This study	
Panulirus japonicus (#1)	Sell	2011.1	−16.7	9.2	25.4	12.1	23.3	21.4	21.0	13.8	5.2	n.d.	29.1	3.9	3.9	0.5	This study	
Panulirus japonicus (#2)	Sell	2011.1	n.d.	n.d.	25.5	6.2	23.0	19.8	18.8	15.4	7.1	n.d.	30.9	6.0	3.8	0.5	This study	
Panulirus japonicus (#3)	Sell	2011.1	n.d.	n.d.	25.8	11.2	22.1	21.8	22.3	13.3	5.8	n.d.	29.9	5.8	3.7	0.4	This study	
Panulirus japonicus (#4)	Sell	2011.1	n.d.	n.d.	23.0	7.6	22.6	23.9	21.4	11.3	4.7	n.d.	31.0	5.1	4.0	0.5	This study	
Panulirus japonicus (#5)	Sell	2012.5	n.d.	n.d.	27.2	8.8	26.1	24.3	22.2	11.5	3.3	n.d.	30.6	5.2	3.9	0.5	This study	
Plagusia dentipes	Muscle	2001.2	−13.8	10.1	14.9	6.0	16.3	13.0	9.9	16.9	6.4	2.6	20.4	5.1	2.6	0.3	Ref 1	
Pteronplanis planisimus	Muscle	2001.2	−12.5	8.4	14.1	7.5	12.8	12.9	12.3	16.4	6.6	1.8	17.9	4.9	2.3	0.2	Ref 1	
Pugettia quadrigener	Muscle	2013.4	n.d.	n.d.	17.4	4.7	15.4	7.9	8.0	16.4	2.2	n.d.	21.0	5.1	2.6	0.3	This study	
Thalamita pelsarni Montgomery	Muscle	2013.4	n.d.	n.d.	16.4	2.1	13.3	11.3	13.9	13.8	0.7	n.d.	17.7	4.8	2.2	0.2	This study	
Sample	Tissue	Collection Date	δ^{13}C$_{\text{bulk}}$	Bulk	Alanine	Glycine	Valine	Leucine	Isoleucine	Proline	Serine	Methionine	Glutamic acid	Phenylalanine	TP$_{\text{d,um}}$	1d^2	Source a	
-----------------------------	-----------------	-----------------	-------------------------------	------	---------	---------	--------	---------	------------	---------	--------	------------	----------------	----------------	-----------------	------	-----------	
Acanthopagrus schlegeli	Scale	2007.5	–12.2	11.1	20.0	7.4	19.9	19.4	21.5	21.9	11.2	2.4	25.6	4.9	3.3	0.4	Ref 1	
Apogon semilineatus	Scale	2012.5	–12.7	11.9	25.5	7.5	22.6	23.6	21.7	21.2	n.d.	n.d.	26.4	3.8	3.5	0.4	This study	
Apogon semilineatus	Scale	2012.5	n.d.	n.d.	25.9	6.7	24.2	22.9	19.5	23.1	n.d.	n.d.	27.0	4.2	3.6	0.4	This study	
Apogon semilineatus	Scale	2012.5	n.d.	n.d.	27.2	8.8	25.5	24.2	23.2	22.5	n.d.	n.d.	27.4	4.2	3.6	0.4	This study	
Apogon semilineatus	Scale	2012.5	n.d.	n.d.	27.0	7.2	24.6	23.4	20.5	24.5	10.6	4.4	27.7	5.5	3.5	0.4	This study	
Apogon semilineatus	Scale	2012.5	n.d.	n.d.	26.4	6.9	26.2	23.4	23.5	22.5	n.d.	n.d.	28.4	6.4	3.5	0.4	This study	
Apogon semilineatus	Scale	2012.5	n.d.	n.d.	24.7	6.1	24.3	22.4	23.6	24.7	n.d.	n.d.	30.1	7.9	3.5	0.4	This study	
Apogon semilineatus	Muscle	2012.5	n.d.	n.d.	25.5	8.5	24.8	22.8	24.3	24.0	4.1	4.5	29.1	6.6	3.5	0.4	This study	
Apogon semilineatus	Muscle	2012.5	n.d.	n.d.	25.5	8.0	24.7	19.9	21.5	24.9	3.5	4.9	29.1	6.1	3.6	0.4	This study	
Apogon semilineatus	Muscle	2012.5	n.d.	n.d.	24.3	7.6	22.4	18.3	23.9	23.1	6.5	4.6	30.7	8.0	3.5	0.4	This study	
Canthigaster rivulata	Muscle	2012.11	–13.8	12.3	21.2	2.1	19.8	21.0	20.9	n.d.	n.d.	n.d.	25.5	6.1	3.1	0.4	This study	
Appendix A1: Continued.

Sample	Tissue	Collection Date	δ^{13}C_{Bulk}	Alanine	Glycine	Valine	Leucine	Isoleucine	Proline	Glutamic acid	Phenylalanine	TPGlu/Phe	Source
Ditrema temmincki temmincki	Scale	2012.11	-12.9	11.0	21.6	6.0	22.3	17.7	18.1	22.5	n.d.	n.d.	This study
Girella punctata (#1)	Scale	2001.2	n.d.	n.d.	19.3	6.5	22.4	16.4	19.7	19.3	n.d.	n.d.	This study
Girella punctata (#2)	Scale	2003.5	n.d.	n.d.	19.6	6.2	21.8	19.3	18.7	22.5	n.d.	n.d.	This study
Girella punctata (#3)	Scale	2004.5	n.d.	n.d.	19.4	6.3	22.4	16.5	20.0	23.2	n.d.	n.d.	This study
Girella punctata (#4)	Scale	2005.10	n.d.	n.d.	19.2	6.3	21.8	19.0	19.3	21.7	n.d.	n.d.	This study
Girella punctata (#5)	Scale	2007.5	-13.8	11.1	20.7	6.3	20.2	18.1	19.8	19.4	11.5	1.6	Ref 1
Girella punctata (#6)	Scale	2008.2	n.d.	n.d.	19.5	6.5	21.1	18.6	22.0	19.2	n.d.	n.d.	This study
Girella punctata (#7)	Scale	2010.9	-13.9	11.8	23.5	8.2	26.2	24.6	24.5	25.4	3.9	4.4	This study
Girella punctata (#8)	Scale	2011.11	-14.7	11.1	24.2	7.9	22.4	19.9	19.3	23.2	9.6	6.4	This study
Girella punctata (#9)	Scale	2012.1	n.d.	n.d.	20.2	7.0	21.0	19.7	18.6	18.5	n.d.	n.d.	This study
Girella punctata (#10)	Scale	2012.5	n.d.	n.d.	19.5	7.6	20.7	19.1	20.3	19.2	n.d.	n.d.	This study
Girella punctata (#11)	Scale	2012.7	n.d.	n.d.	17.9	10.5	20.0	19.3	n.d.	n.d.	24.7	6.8	This study
Girella punctata (#12)	Scale	2012.9	n.d.	n.d.	21.2	7.5	22.2	27.3	16.5	15.4	9.7	1.6	This study
Girella punctata (#13)	Scale	2012.11	n.d.	n.d.	20.0	9.6	18.7	15.5	12.1	18.4	n.d.	2.2	This study
Girella punctata (#14)	Scale	2012.12	n.d.	n.d.	20.4	8.7	17.0	16.9	19.8	20.0	n.d.	1.5	This study
Girella punctata (#15)	Scale	2013.2	n.d.	n.d.	16.6	4.9	19.2	18.9	20.0	n.d.	n.d.	n.d.	This study
Gymnothorax kidako (#1)	Muscle	2011.11	-14.2	13.9	36.2	10.3	34.1	27.1	31.3	31.5	5.8	2.6	This study
Gymnothorax kidako (#2)	Muscle	2012.2	-14.6	13.4	32.5	9.8	33.1	32.3	38.3	15.5	n.d.	4.1	This study
Appendix A1: Continued.

Sample	Tissue	Collection Date	δ^{13}C$_{bulk}$	Bulk	Alanine	Glycine	Valine	Leucine	Isoleucine	Proline	Serine	Methionine	Glutamic acid	Phenylalanine	TP_{Glu}	$1σ^3$	Source
Gymnothorax kidako	Muscle	2012.11	n.d.	28.5	7.6	28.2	25.4	37.3	29.1	n.d.	2.7	34.6	5.0	4.4	0.6	This study	
Goniistius zonatus	Scale	2012.11	−12.3	10.3	21.0	7.9	22.2	17.6	19.2	23.1	n.d.	5.4	26.2	6.1	3.2	0.4	This study
Halichoeres poecilopterus	Scale	2010.9	−11.6	12.3	21.4	11.0	20.6	20.0	11.6	25.6	n.d.	n.d.	27.0	5.3	3.4	0.4	This study
Gymnothorax kidako	Muscle	2012.11	n.d.	23.7	7.5	24.7	22.9	22.9	27.6	n.d.	5.5	28.3	7.2	3.3	0.4	This study	
Goniistius zonatus	Scale	2012.11	n.d.	23.7	9.5	24.5	22.6	18.0	25.7	n.d.	6.4	29.6	7.1	3.5	0.4	This study	
Latijanus stellatus	Scale	2012.11	−10.1	10.6	21.9	9.0	21.3	16.3	16.5	21.5	n.d.	4.7	25.2	6.0	3.1	0.4	This study
Microcanthus strigatus	Scale	2011.11	−13.4	12.0	20.6	7.0	22.9	22.2	22.0	20.8	11.8	4.6	24.1	5.3	3.0	0.3	This study
Microcanthus strigatus	Scale	2012.1	n.d.	22.4	7.2	22.9	24.0	21.1	22.7	n.d.	n.d.	22.8	5.8	2.8	0.3	This study	
Microcanthus strigatus	Scale	2012.7	n.d.	21.5	19.5	21.5	20.1	19.7	18.7	n.d.	3.9	22.4	5.0	2.8	0.3	This study	
Oplegnathus fasciatus	Scale	2012.8	−13.3	12.8	23.9	3.6	21.5	20.0	19.1	n.d.	8.9	3.3	25.1	3.9	3.3	0.4	This study
Oplegnathus fasciatus	Scale	2012.8	−13.6	12.6	27.0	9.6	23.6	25.2	22.3	n.d.	12.4	5.0	28.2	6.6	3.4	0.4	This study
Oplegnathus punctatus	Scale	2012.9	−11.8	11.1	18.6	6.3	18.0	13.6	14.1	12.7	10.6	3.3	24.1	4.0	3.2	0.4	This study
Parapristipoma trilineatum	Scale	2012.9	−12.8	12.4	21.7	8.1	20.0	16.8	12.7	14.4	10.5	3.2	22.3	4.5	2.9	0.3	This study
Parapristipoma trilineatum	Scale	2012.9	n.d.	22.1	8.3	17.5	15.7	12.0	11.6	11.5	4.8	23.1	5.7	2.8	0.3	This study	
Parapristipoma trilineatum	Scale	2012.9	n.d.	21.3	8.9	19.5	13.6	10.2	20.6	9.5	3.9	22.3	4.1	2.9	0.3	This study	
Parapristipoma trilineatum	Scale	2012.9	n.d.	22.4	8.9	20.6	16.4	19.5	18.7	12.8	4.2	23.4	5.8	2.9	0.3	This study	
Parapristipoma trilineatum	Scale	2012.9	n.d.	22.8	8.4	20.3	13.9	13.3	17.8	11.8	2.9	24.0	5.4	3.0	0.3	This study	
Pseudoblennius pernoides	Muscle	2011.12	−14.5	14.2	27.7	7.7	28.8	25.0	29.6	29.5	n.d.	5.6	30.2	6.9	3.6	0.4	This study
Appendix A1: Continued.

Sample	Collection Date	^{15}N¹	$^{13}C_{bas}$	Bulk	Alanine	Glycine	Valine	Leucine	Isoleucine	Proline	Serine	Methionine	Glutamic acid	Phenylalanine	T_{DUM}²	$1\sigma^3$	Source^a
Pseudolabrus siebold (1)	2011.11	-11.3	11.5	21.0	8.2	21.4	17.6	18.7	22.4	11.2	2.4	24.4	3.5	3.3	0.4	This study	
Pseudolabrus siebold (2)	2011.12	n.d.	n.d.	23.6	10.2	24.3	22.1	22.3	25.2	15.2	4.9	26.8	5.9	3.3	0.4	This study	
Pseudolabrus siebold (3)	2011.12	n.d.	n.d.	23.1	8.9	25.7	22.6	18.6	n.d.	n.d.	n.d.	25.8	5.3	3.2	0.4	This study	
Pseudolabrus siebold (4)	2011.12	n.d.	n.d.	24.2	8.7	26.3	24.0	21.9	23.8	n.d.	n.d.	25.8	4.9	3.3	0.4	This study	
Pseudolabrus siebold (5)	2013.2	n.d.	n.d.	24.7	7.9	24.7	25.7	21.3	n.d.	n.d.	n.d.	26.9	4.9	3.4	0.4	This study	
Pteragogus flagellifer	2011.12	-14.4	11.8	26.4	12.9	21.6	17.8	n.d.	24.5	n.d.	5.6	26.0	5.7	3.2	0.4	This study	
Sebastes inermis (1)	2012.5	-12.5	12.5	28.4	6.4	30.5	24.3	27.4	31.6	8.9	3.2	31.6	5.3	4.0	0.5	This study	
Sebastes inermis (2)	2013.2	n.d.	n.d.	23.2	3.0	25.8	19.3	23.6	30.2	2.8	n.d.	29.2	4.4	3.8	0.5	This study	
Sebastiscus marmoratus (1)	2012.1	-13.1	13.1	29.4	8.9	27.9	28.4	29.6	30.1	13.7	1.8	30.6	4.0	4.0	0.5	This study	
Sebastiscus marmoratus (2)	2012.1	-11.6	12.4	30.1	7.1	28.1	31.1	30.7	31.4	11.9	3.8	32.6	4.2	4.3	0.5	This study	
Sebastiscus marmoratus (3)	2012.1	n.d.	n.d.	31.7	7.8	28.0	32.6	26.9	30.0	13.5	4.9	32.1	5.8	4.0	0.5	This study	
Sebastiscus marmoratus (4)	2012.1	n.d.	n.d.	28.2	7.5	26.2	29.9	25.6	28.5	n.d.	n.d.	30.9	4.5	4.0	0.5	This study	
Sebastiscus marmoratus (5)	2013.2	n.d.	n.d.	28.1	7.8	29.3	22.7	24.9	n.d.	n.d.	n.d.	31.5	5.7	3.9	0.5	This study	

© 2014 The Authors. Ecology and Evolution published by John Wiley & Sons Ltd.
Sample	Collection Date	\(\delta^{15}\text{N} \)	Bulk	Alanine	Glycine	Valine	Leucine	Isoleucine	Proline	Serine	Methionine	Glutamic Acid	Phenylalanine	TP_{\text{Glu+Phe}}^2	1\(\sigma \)	Source^4
Takifugu nipphales	Muscle	2010.9	-15.8	12.9	24.9	11.5	26.0	21.9	n.d.	17.4	3.5	26.2	5.7	3.3	0.4	This study
Octopus vulgaris	Muscle	2013.1	n.d.	22.5	6.0	26.1	21.3	22.7	n.d.	1.0	n.d.	29.6	5.3	3.8	0.5	This study

n.d.: Not determined.

1The \(\delta^{15}\text{N} \) value was determined by single analysis for each sample.

2TP_{\text{Glu+Phe}} = (\delta^{15}\text{N}_{\text{Glu}} - \delta^{15}\text{N}_{\text{Phe}} - 3.4)/7.6 + 1.

3Propagation error on the TP_{\text{Glu+Phe}} value based on 1\(\sigma \) on the \(\delta^{15}\text{N} \) measurement of amino acids in this study and 1\(\sigma \) on the \(\beta \) and TDF values reported in Chikaraishi et al. 2010.

4Ref 1: Chikaraishi et al. (2009); Ref 2: Chikaraishi et al. (2010).
Appendix A2:
Nitrogen isotopic composition of amino acids in terrestrial organisms.

Sample	Stage	Tissue	Date	\(\delta^{15}N\)	Bulk	Alanine	Glycine	Valine	Leucine	Isoleucine	Proline	Serine	Methionine	Glutamic acid	Phenylalanine	TP\(_{ ext{Glum}}\)	1\(\sigma\)	Source
Higher plant																		
Brassica oleracea (1)	Leaf	2008.11	–32.5	4.7	0.2	–6.7	5.1	3.8	3.9	9.5	1.0	0.8	5.7	13.1	1.1	0.3	Ref 2	
Brassica oleracea (2)	Leaf	2011.11	n.d.	1.7	–7.0	3.7	0.7	3.4	4.6	–2.1	n.d.	2.6	9.8	12	1.2	0.3	Ref 2	
Brassica oleracea (3)	Leaf	2011.11	n.d.	4.3	–8.0	3.4	–1.2	–0.8	6.3	–5.5	n.d.	3.4	11.7	10	1.0	0.3	Ref 2	
Daucus carota	Leaf	2011.11	–30.6	5.9	8.3	–2.2	8.0	4.6	7.3	7.2	n.d.	8.2	15.7	1.1	0.3	Ref 3		
Castanea crenata (1)	Leaf	2011.11	–30.0	0.7	–2.1	–12.7	–0.3	0.5	1.6	4.6	–4.2	n.d.	1.5	10.1	1.0	0.3	Ref 2	
Castanea crenata (2)	Leaf	2010.11	–29.3	1.8	0.7	–9.8	0.2	–2.4	–0.7	6.2	n.d.	2.9	8.8	1.3	0.3	This study		
Castanea crenata (3)	Nut	2008.11	n.d.	n.d.	–14.8	n.d.	0.1	n.d.	2.9	–7.2	n.d.	0.8	8.3	1.1	0.3	Ref 2		
Citrus unshiu	Leaf	2011.11	–30.6	4.9	6.4	–6.8	4.7	3.1	3.0	8.9	–0.6	n.d.	2.8	12.4	0.8	0.3	Ref 3	
Cucurbita moschata	Leaf	2012.8	–28.3	4.3	3.9	–8.6	1.0	–0.6	0.1	1.0	–14.5	n.d.	2.1	10.1	1.1	0.3	This study	
Diospyros kaki	Leaf	2012.6	–29.3	2.8	–1.2	–4.4	–1.2	–2.2	0.0	0.0	–3.3	n.d.	1.0	8.8	1.1	0.3	This study	
Thunberg	Leaf	2012.6	–30.1	3.8	1.9	–2.9	2.9	2.1	1.2	2.9	–4.3	n.d.	3.2	11.6	1.0	0.3	This study	
Raphanus sativus	Leaf	2011.11	–29.8	4.0	–3.6	–8.4	–2.9	–3.8	–4.3	3.3	–4.9	n.d.	–2.6	5.9	1.0	0.3	Ref 3	
Solanum lycopersicum	Leaf	2011.11	–28.5	5.2	6.2	–3.6	2.0	2.9	1.3	8.6	–4.0	n.d.	2.0	10.3	1.0	0.3	Ref 3	
Solanum melongena	Leaf	2011.11	–27.7	5.6	5.6	–4.6	6.8	1.3	–0.2	15.1	5.1	n.d.	7.2	17.0	0.8	0.4	Ref 3	
Solanum tuberosum	Leaf	2011.11	–29.5	–2.8	–2.4	–12.1	–2.0	–5.7	–3.5	–2.0	n.d.	n.d.	–6.3	4.1	0.7	0.4	Ref 3	
Aphid																		
Aphidoidea sp.	Adult	Whole	2011.11	–21.8	2.2	5.5	2.9	7.1	3.6	5.1	10.4	1.2	n.d.	8.1	8.9	2.0	0.2	
Butterfly																		
Hestina assimilis	Adult	Whole	2011.8	n.d.	n.d.	3.9	3.9	13.6	12.6	15.7	17.0	3.1	2.1	10.5	11.7	2.0	0.2	
Papilio machaon (1)	Adult	Whole	2011.9	–27.3	2.8	9.1	2.4	11.8	3.6	9.5	14.7	7.5	1.7	11.0	12.5	1.9	0.3	
Papilio proteron	Adult	Leg	2012.9	–29.1	6.0	12.6	6.6	8.5	7.2	10.2	19.1	6.8	n.d.	13.6	14.7	2.0	0.2	
Pieris rapae (1)	Adult	Whole	2008.11	–29.6	1.9	6.6	–0.4	8.2	7.0	8.9	16.3	3.7	1.6	13.0	13.4	2.0	0.2	
Pieris rapae (2)	Adult	Whole	2008.11	–26.9	1.9	5.3	–2.7	7.4	6.5	8.5	14.3	2.3	1.0	14.6	13.6	2.2	0.2	
Pieris rapae (3)	Adult	Whole	2011.11	n.d.	n.d.	9.1	0.1	9.6	2.7	7.0	13.1	1.6	n.d.	10.6	9.5	2.2	0.2	
Sample	Stage	Tissue	Glutamic acid	Phenylalanine	Serine	Methionine	Alanine	Glycine	Valine	Leucine	Isoleucine	Proline	Source					
-----------------------	------------------	----------	---------------	---------------	--------	------------	---------	---------	--------	---------	------------	---------	--------					
Pieris rapae (#1)	Larva	Whole	8.3	5.4	4.6	11.8	1.5	5.4			2.2	0.7	Ref 3					
Pieris rapae (#2)	Adult	Whole	8.3	5.4	4.6	11.8	1.5	5.4			2.2	0.7	Ref 3					
Apis mellifera (#1)	Adult	Whole	2.4	4.8	2.3	2.9	0.2	1.1	0.2	0.2		0.2	Ref 3					
Bombus diversus (#1)	Adult	Whole	2.4	4.8	2.3	2.9	0.2	1.1	0.2	0.2		0.2	Ref 3					
Xylocopa appendiculata (#1)	Adult	Whole	2.4	4.8	2.3	2.9	0.2	1.1	0.2	0.2		0.2	Ref 3					
Xylocopa appendiculata (#2)	Adult	Whole	2.4	4.8	2.3	2.9	0.2	1.1	0.2	0.2		0.2	Ref 3					
Gampsocleis mikado	Adult	Leg	2.4	4.8	2.3	2.9	0.2	1.1	0.2	0.2		0.2	Ref 3					
Polistes japonicus jokahamae (#1)	Egg	Whole	2.4	4.8	2.3	2.9	0.2	1.1	0.2	0.2		0.2	Ref 3					
Polistes japonicus jokahamae (#2)	Egg	Whole	2.4	4.8	2.3	2.9	0.2	1.1	0.2	0.2		0.2	Ref 3					

© 2014 The Authors. *Ecology and Evolution* published by John Wiley & Sons Ltd.
Appendix A2: Continued.

Sample	Stage	Tissue	Date	\(\delta^{15}N\)	\(\delta^{13}C_{\text{bulk}}\)	Bulk	Alanine	Glycine	Valine	Leucine	Isoleucine	Proline	Serine	Methionine	Glutamic acid	Phenylalanine	TP_{\text{Glu/Phe}}	Source \(^4\)
Polistes jokahamae jokahamae (#2)	Larva	Whole	2012.7	–28.7	2.4	14.3	0.9	10.7	8.7	10.3	12.0	n.d.	n.d.	13.7	5.6	3.2	0.2	This study
Polistes jokahamae jokahamae (#3)	Adult	Whole	2012.7	–29.9	3.9	13.7	3.0	10.5	10.4	8.9	8.8	n.d.	n.d.	13.1	5.4	3.1	0.2	This study
Polistes mandarinus	Adult	Leg	2012.11	–23.7	5.5	7.6	8.0	9.8	8.8	18.9	16.1	7.3	n.d.	12.2	5.9	2.9	0.2	This study
Polistes rothneyi iwatai (#1)	Egg	Whole	2008.8	–26.1	7.2	9.0	5.1	16.2	10.6	13.5	18.2	10.1	n.d.	22.5	13.2	3.3	0.3	Ref 3
Polistes rothneyi iwatai (#2)	Larva	Whole	2008.8	–27.4	4.6	7.4	2.7	14.3	8.2	12.3	16.3	4.3	n.d.	20.7	13.7	3.0	0.2	Ref 3
Polistes rothneyi iwatai (#3)	Larva	Whole	2008.8	–27.2	5.5	8.0	0.9	16.0	9.8	13.6	17.9	1.2	n.d.	20.9	13.5	3.1	0.2	Ref 3
Polistes rothneyi iwatai (#4)	Larva	Whole	2008.8	–27.2	5.2	8.3	5.5	15.3	9.0	13.9	18.4	5.8	n.d.	19.8	13.5	2.9	0.2	Ref 3
Polistes rothneyi iwatai (#5)	Chrysalis	Whole	2008.8	–29.6	5.5	7.3	2.7	14.3	10.6	12.2	17.3	–0.3	n.d.	20.3	12.9	3.1	0.2	Ref 3
Polistes rothneyi iwatai (#6)	Chrysalis	Whole	2008.8	–28.6	5.5	6.0	3.3	15.1	10.0	14.2	18.1	0.8	n.d.	19.5	12.0	3.1	0.2	Ref 3
Polistes rothneyi iwatai (#7)	Chrysalis	Whole	2008.8	–29.8	5.4	8.6	3.2	14.0	10.9	13.7	18.4	3.8	n.d.	20.5	13.6	3.0	0.2	Ref 3
Polistes rothneyi iwatai (#8)	Chrysalis	Whole	2008.8	–28.1	4.9	9.5	8.5	15.9	12.0	15.3	16.5	1.6	n.d.	21.1	14.4	3.0	0.2	Ref 3
Polistes rothneyi iwatai (#9)	Chrysalis	Whole	2008.8	–28.4	4.9	7.8	6.4	15.6	8.4	13.8	18.2	4.7	n.d.	19.6	13.5	2.9	0.2	Ref 3
Polistes rothneyi iwatai (#10)	Chrysalis	Whole	2008.8	–28.2	4.9	6.4	10.0	16.7	12.5	15.6	16.7	0.5	n.d.	22.0	14.9	3.0	0.2	Ref 3
Polistes rothneyi iwatai (#11)	Newly-emerged	Whole	2008.8	–28.4	2.4	5.5	1.2	11.7	9.7	10.9	14.2	–0.6	n.d.	14.1	8.3	2.9	0.2	Ref 3
Polistes rothneyi iwatai (#12)	Adult	Whole	2008.8	–26.8	5.5	12.2	8.4	9.0	5.6	5.6	n.d.	3.0	5.7	11.3	6.2	2.8	0.2	Ref 3
Polistes rothneyi iwatai (#13)	Adult	Whole	2009.8	n.d.	n.d.	6.1	5.5	8.8	7.5	11.0	12.6	4.0	–1.8	14.3	6.1	3.2	0.2	Ref 3
Polistes rothneyi iwatai (#14)	Adult	Whole	2009.8	n.d.	n.d.	5.9	4.5	8.6	5.6	8.6	13.6	3.0	2.7	15.9	8.4	3.1	0.2	Ref 3
Parapolybia indica (#1)	Larva	Whole	2010.8	–27.7	3.5	6.5	4.9	9.5	6.6	8.2	15.9	3.5	n.d.	14.9	9.1	2.9	0.2	Ref 3
Parapolybia indica (#2)	Larva	Whole	2010.8	–28.5	2.5	7.6	7.5	11.6	3.5	6.3	15.7	2.8	n.d.	13.8	6.3	3.1	0.2	Ref 3
Sample	Stage	Tissue	Collection Date	δ^{13}C$_{\text{d,Bulk}}$	Bulk	Alanine	Glycine	Valine	Leucine	Isoleucine	Proline	Serine	Methionine	Glutamic acid	Phenylalanine	TP$_{\text{Glu,Ala}}$	$\text{I}^{\text{a,}}$	Source
-------------------	---------------------	---------	-----------------	-------------------------------	--------	---------	---------	--------	---------	------------	---------	-------	------------	----------------	----------------	-----------------	----------------	---------
Parapolybia indica	Larva (#3)	Whole	2010.8	−28.6	1.3	7.6	8.6	10.5	4.5	5.5	14.0	2.5	n.d.	12.0	5.1	3.0	0.2	Ref 3
Parapolybia indica	Chrysalis (#4)	Whole	2010.8	−28.4	3.7	8.0	8.4	11.1	6.0	9.6	16.2	2.6	n.d.	16.8	11.2	2.8	0.2	Ref 3
Parapolybia indica	Chrysalis (#5)	Whole	2010.8	−28.3	4.0	8.2	7.9	12.2	4.7	6.7	15.9	1.3	n.d.	12.7	4.8	3.1	0.2	Ref 3
Parapolybia indica	Chrysalis (#6)	Whole	2010.8	−27.6	3.3	7.6	5.8	11.4	5.9	7.2	13.9	3.4	n.d.	9.6	3.0	3.0	0.2	Ref 3
Parapolybia indica	Chrysalis (#7)	Whole	2010.8	−28.7	1.4	6.9	5.6	10.0	6.9	7.2	19.5	7.7	n.d.	10.0	4.4	2.8	0.2	Ref 3
Parapolybia indica	Newly-emerged (#8)	Whole	2010.8	−27.4	4.9	6.0	2.7	9.8	9.5	9.1	15.5	2.6	n.d.	14.9	8.2	3.0	0.2	Ref 3
Parapolybia indica	Adult (#9)	Whole	2010.8	−27.5	4.3	7.8	6.2	10.0	6.9	8.4	15.9	5.4	n.d.	15.6	8.8	3.0	0.2	Ref 3
Ant	Formica japonica	Adult	2010.8	n.d.	n.d.	12.7	11.0	18.8	8.3	11.0	12.4	n.d.	n.d.	12.2	5.4	3.0	0.2	This study
Ladybird beetle	Coccinella	Adult	2011.5	−27.6	9.1	8.0	5.9	7.5	5.8	8.1	16.8	3.3	0.2	10.1	3.5	3.0	0.2	This study
Ladybird beetle	septempunctata (#1)	Adult	2011.10	n.d.	n.d.	8.5	6.6	7.7	6.8	8.4	19.0	n.d.	n.d.	10.8	3.6	3.0	0.2	This study
Harmonia axyridis	Larva (#1)	Whole	2011.11	−26.5	6.4	10.8	8.4	9.4	4.9	9.1	18.7	3.7	n.d.	16.5	9.0	3.1	0.2	Ref 3
Harmonia axyridis	Chrysalis (#2)	Whole	2011.11	−29.0	4.7	10.2	7.9	10.1	5.0	7.8	15.0	3.7	n.d.	16.6	9.4	3.1	0.2	Ref 3
Harmonia axyridis	Adult (#3)	Whole	2011.11	−28.6	7.4	10.9	11.7	9.8	7.4	8.8	23.0	6.6	n.d.	14.2	6.9	3.1	0.2	Ref 3
Harmonia axyridis	Adult (#4)	Whole	2012.4	n.d.	n.d.	10.1	6.5	2.3	3.6	5.1	18.9	−9.1	n.d.	10.3	4.0	2.9	0.2	This study
Harmonia axyridis	Adult (#5)	Whole	2012.4	n.d.	n.d.	10.9	6.7	5.4	4.4	4.4	19.1	1.4	n.d.	10.6	3.1	3.1	0.2	This study
Harmonia axyridis	Adult (#6)	Whole	2012.4	n.d.	n.d.	7.7	5.3	3.9	4.3	6.2	5.9	−8.4	10.5	2.8	3.1	0.2	This study	
Harmonia axyridis	Adult (#6)	Whole	2012.4	n.d.	n.d.	13.0	10.2	4.2	−0.1	−0.9	19.1	n.d.	n.d.	11.9	4.2	3.1	0.2	This study
Illeis koebelei (#1)	Adult	Whole	2012.10	n.d.	n.d.	10.8	6.7	5.6	5.6	8.6	19.1	3.0	n.d.	12.7	5.5	3.1	0.2	This study

ª 2014 The Authors. Ecology and Evolution published by John Wiley & Sons Ltd.
Appendix A2: Continued.

Sample	Stage	Tissue	Date	Collection	δ^{13}C$_{bulk}$	Bulk	Alanine	Glycine	Valine	Leucine	Isoleucine	Proline	Serine	Methionine	Glutamic acid	Phenylalanine	$\Delta P_{gluta}^{\text{m}2}$	ϵ	Source
Illeis koebelei (#2)	Adult	Whole	2012.10	n.d.	n.d.	10.4	6.5	9.3	6.5	8.8	19.4	n.d.	n.d.	12.0	5.5	3.0	0.2	This study	
Illeis koebelei (#3)	Adult	Whole	2012.11	n.d.	n.d.	11.2	5.3	8.9	7.4	14.0	20.3	n.d.	n.d.	13.6	7.1	3.0	0.2	This study	
Illeis koebelei (#4)	Adult	Whole	2012.11	n.d.	n.d.	14.8	9.7	13.9	9.2	14.5	n.d.	6.7	1.5	17.0	8.5	3.2	0.3	This study	
Illeis koebelei (#5)	Adult	Whole	2012.11	n.d.	n.d.	12.6	6.0	12.2	6.3	10.4	n.d.	n.d.	n.d.	14.1	6.8	3.1	0.2	This study	
Menochilus sexmaculatus (#1)	Adult	Whole	2012.4	n.d.	n.d.	8.4	2.8	5.5	8.0	9.4	n.d.	n.d.	n.d.	8.8	1.6	3.1	0.2	This study	
Menochilus sexmaculatus (#2)	Adult	Whole	2012.4	n.d.	n.d.	10.3	6.3	10.3	11.4	10.3	n.d.	n.d.	n.d.	12.1	4.1	3.2	0.2	This study	
Menochilus sexmaculatus (#3)	Adult	Whole	2012.4	n.d.	n.d.	10.3	6.3	10.3	11.4	10.3	n.d.	n.d.	n.d.	12.1	4.1	3.2	0.2	This study	
Mantid	Adult	Whole	2012.9	n.d.	n.d.	9.5	7.0	11.0	8.9	11.0	20.7	n.d.	n.d.	14.4	5.9	3.2	0.3	This study	
Tenodera aridifolia	Adult	Whole	2012.10	n.d.	n.d.	9.5	7.0	11.0	8.9	11.0	20.7	n.d.	n.d.	14.4	5.9	3.2	0.3	This study	
Hornet	Adult	Whole	2012.11	n.d.	n.d.	9.5	7.0	11.0	8.9	11.0	20.7	n.d.	n.d.	14.4	5.9	3.2	0.3	This study	
Vespa analis fabriciusi (#1)	Adult	Whole	2012.4	n.d.	n.d.	10.3	6.3	10.3	11.4	10.3	n.d.	n.d.	n.d.	12.1	4.1	3.2	0.2	This study	
Vespa analis fabriciusi (#2)	Adult	Whole	2012.4	n.d.	n.d.	10.3	6.3	10.3	11.4	10.3	n.d.	n.d.	n.d.	12.1	4.1	3.2	0.2	This study	
Vespa analis fabriciusi (#3)	Adult	Whole	2012.4	n.d.	n.d.	10.3	6.3	10.3	11.4	10.3	n.d.	n.d.	n.d.	12.1	4.1	3.2	0.2	This study	
Vespa analis fabriciusi (#4)	Adult	Whole	2012.4	n.d.	n.d.	10.3	6.3	10.3	11.4	10.3	n.d.	n.d.	n.d.	12.1	4.1	3.2	0.2	This study	
Vespa analis fabriciusi (#5)	Adult	Whole	2012.4	n.d.	n.d.	10.3	6.3	10.3	11.4	10.3	n.d.	n.d.	n.d.	12.1	4.1	3.2	0.2	This study	
Vespa analis fabriciusi (#6)	Adult	Whole	2012.4	n.d.	n.d.	10.3	6.3	10.3	11.4	10.3	n.d.	n.d.	n.d.	12.1	4.1	3.2	0.2	This study	
Vespa analis fabriciusi (#7)	Adult	Whole	2012.4	n.d.	n.d.	10.3	6.3	10.3	11.4	10.3	n.d.	n.d.	n.d.	12.1	4.1	3.2	0.2	This study	
Vespa ducalis pulchra (#1)	Adult	Whole	2009.8	n.d.	n.d.	10.7	7.6	10.7	13.2	19.1	4.5	n.d.	n.d.	21.4	7.7	3.9	0.3	Ref 3	
Vespa ducalis pulchra (#2)	Adult	Whole	2009.8	n.d.	n.d.	10.7	7.6	10.7	13.2	19.1	4.5	n.d.	n.d.	21.4	7.7	3.9	0.3	Ref 3	
Vespa ducalis pulchra (#3)	Adult	Whole	2009.8	n.d.	n.d.	10.7	7.6	10.7	13.2	19.1	4.5	n.d.	n.d.	21.4	7.7	3.9	0.3	Ref 3	
Vespa mandarinia japonica (#1)	Adult	Whole	2010.10	n.d.	n.d.	10.7	7.6	10.7	13.2	19.1	4.5	n.d.	n.d.	21.4	7.7	3.9	0.3	Ref 3	
Vespa mandarinia japonica (#2)	Adult	Whole	2012.7	n.d.	n.d.	10.7	7.6	10.7	13.2	19.1	4.5	n.d.	n.d.	21.4	7.7	3.9	0.3	Ref 3	
Vespa mandarinia japonica (#3)	Adult	Whole	2012.7	n.d.	n.d.	10.7	7.6	10.7	13.2	19.1	4.5	n.d.	n.d.	21.4	7.7	3.9	0.3	Ref 3	
Appendix A2: Continued.

Sample	Stage	Tissue	Collection Date	δ^{15}N_{Bulk}	Alanine	Glycine	Valine	Leucine	Isoleucine	Proline	Serine	Methionine	Glutamic acid	$TP_{Glutamine}$²	σ^1	Source⁴	
Vespa similma	Adult	Whole	2009.8	–25.6	4.9	12.0	7.0	12.2	7.2	10.2	18.3	3.6	20.1	9.4	3.5	0.3	Ref 3
xanthoptera																	
Vespa flaviceps	Adult	Whole	2010.10	–24.6	5.6	12.3	5.6	16.6	7.2	10.0	n.d.	5.9	n.d.	20.0	9.7	3.5	Ref 3
levisii																	

n.d.: Not determined.

1The δ^{15}N value was determined by single analysis for each sample.

2$TP_{Glutamine} = (\delta^{15}$N_{Glut} – δ^{15}N_{Pro} + 8.4)/7.6 + 1

3Propagation error on the $TP_{Glutamine}$ value based on 1σ on the δ^{15}N measurement of amino acids in this study and 1σ on the β and TDF values reported in Chikaraishi et al. 2010.

4Ref 2: Chikaraishi et al. (2010); Ref 3: Chikaraishi et al. (2011).