Unsupervised Adaptation of SPLDA

Jesús Villalba

Communications Technology Group (GTC),
Aragon Institute for Engineering Research (I3A),
University of Zaragoza, Spain
villalba@unizar.es
June 19, 2013

1 Introduction

In this document we present a Variational Bayes solution to adapt a SPLDA [1] model to a new domain by using unlabelled data. We assume that we count with a labelled dataset (for example Switchboard) to initialise the model.

2 The Model

2.1 SPLDA

SPLDA is a linear generative model where an i-vector ϕ_j of speaker i can be written as:

$$\phi_j = \mu + Vy_i + \epsilon_j \quad (1)$$

where μ is a speaker independent mean, V is the eigen-voices matrix, y_i is the speaker factor vector, and ϵ is a channel offset.

We assume the following priors for y and ϵ:

$$y_i \sim N(y_i|0, I) \quad (2)$$

$$\epsilon_j \sim N(\epsilon_j|0, W^{-1}) \quad (3)$$

where N denotes a Gaussian distribution; W is the within class precision matrix.

Figure 1 shows the case where the development dataset is split into two parts: one part where the speaker labels are known (supervised) and another with unknown labels (unsupervised).

We introduce the variables involved:

- Let Φ_d be the i-vectors of the supervised dataset.
- Let Φ be the i-vectors of the unsupervised dataset.
- Let Φ_i be the i-vectors belonging to the speaker i.
- Let Y_d be the speaker identity variables of the supervised dataset.
- Let Y be the speaker identity variables of the unsupervised dataset.
- Let θ_d be the labelling of the supervised dataset. It partitions the N_d i-vectors into M_d speakers.
- Let θ be the labelling of the unsupervised dataset. It partitions the N i-vectors into M speakers.

θ_j is a latent variable comprising a 1-of-M binary vector with elements θ_{ji} with $i = 1, \ldots, M$. This
variable is equivalent to the cluster occupations of a GMM. The conditional distribution of \(\theta \) given the weights of the mixture is:

\[
P(\theta|\pi) = \prod_{j=1}^{N} \prod_{i=1}^{M} \pi_{\theta_{ji}}.
\] (4)

- Let \(\pi_{\theta} \) be the weights of the mixture. We choose a Dirichlet prior for the weights:

\[
P(\pi_{\theta}|\tau_0) = \text{Dir}(\pi_{\theta}|\tau_0) = C(\tau_0) \prod_{i=1}^{M} \pi_{\theta_{i}}^{\tau_0 - 1}
\] (5)

where by symmetry we have chosen the same parameter \(\tau_0 \) for each of the components, and \(C(\tau_0) \) is the normalisation constant for the Dirichlet distribution defined as

\[
C(\tau_0) = \frac{\Gamma(M\tau_0)}{\Gamma(\tau_0)^{M}}
\] (6)

and \(\Gamma \) is the Gamma function.

- Let \(d \) be the i-vector dimension.

- Let \(n_y \) be the speaker factor dimension.

- Let \(\mathcal{M} = (\mu, V, W) \) be the set of all the SPLDA parameters. In the most general case, we can assume that the parameters of the model are also hidden variables with prior and posterior distributions.

2.2 Sufficient Statistics

We define some statistics for speaker \(i \) in the unsupervised dataset:

\[
N_i = \sum_{j=1}^{N} \theta_{ji}
\] (7)

\[
F_i = \sum_{j=1}^{N} \theta_{ji} \phi_j
\] (8)

\[
S_i = \sum_{j=1}^{N} \theta_{ji} \phi_j^T \phi_j.
\] (9)
We define the centered statistics as

\[F_i = F_i - N_i \mu \] \hspace{1cm} (10)

\[S_i = \sum_{j=1}^N \theta_{ji} (\phi_j - \mu) (\phi_j - \mu)^T = S_i - \mu F_i^T - F_i \mu^T + N_i \mu \mu^T. \] \hspace{1cm} (11)

We define the global statistics

\[N = \sum_{i=1}^M N_i \] \hspace{1cm} (12)

\[F = \sum_{i=1}^M F_i \] \hspace{1cm} (13)

\[F = \sum_{i=1}^M F_i \] \hspace{1cm} (14)

\[S = \sum_{i=1}^M S_i \] \hspace{1cm} (15)

\[S = \sum_{i=1}^M S_i. \] \hspace{1cm} (16)

Equally, we can define statistics for the supervised dataset: \(N_d, F_d, S_d \), etc.

2.3 Data conditional likelihood

The likelihood of the data given the hidden variables for speaker \(i \) is

\[
\ln P(\Phi_i|y_i, \theta, \mu, V, W) = \sum_{j=1}^N \theta_{ji} \ln N(\phi_j|\mu + Vy_i, W^{-1})
\]

\[
= \frac{N_i}{2} \ln \frac{W}{2\pi} - \frac{1}{2} \sum_{j=1}^N \theta_{ji}(\phi_j - \mu - Vy_i)^T W (\phi_j - \mu - Vy_i)
\]

\[
= \frac{N_i}{2} \ln \frac{W}{2\pi} - \frac{1}{2} \text{tr} (WS_i) + y_i^T V^T WF_i - \frac{N}{2} y_i^T V^T W V y_i. \] \hspace{1cm} (18)

We can also write this likelihood as:

\[
\ln P(\Phi_i|y_i, \theta, \mu, V, W) = \frac{N_i}{2} \ln \frac{W}{2\pi} - \frac{1}{2} \text{tr} (WS_i) + y_i^T V^T WF_i - \frac{N}{2} y_i^T V^T W V y_i. \] \hspace{1cm} (19)

If we define:

\[
\tilde{y}_i = \begin{bmatrix} y_i \\ 1 \end{bmatrix}, \quad \tilde{V} = \begin{bmatrix} V & \mu \end{bmatrix}
\]

we can write it as

\[
\ln P(\Phi_i|y_i, \theta, \mu, V, W) = \sum_{j=1}^N \theta_{ji} \ln N(\phi_j|\tilde{\Phi}_i, W^{-1})
\]

\[
= \frac{N_i}{2} \ln \frac{W}{2\pi} - \frac{1}{2} \text{tr} (WS_i - 2F_i \mu^T + N_i \mu \mu^T)
\]

\[-2(F_i - N_i \mu) y_i^T V^T + N_i V y_i y_i^T V^T. \] \hspace{1cm} (21)

If we define:

\[
\tilde{y}_i = \begin{bmatrix} y_i \\ 1 \end{bmatrix}, \quad \tilde{V} = \begin{bmatrix} V & \mu \end{bmatrix}
\]

we can write it as

\[
\ln P(\Phi_i|y_i, \theta, \mu, V, W) = \sum_{j=1}^N \theta_{ji} \ln N(\phi_j|\tilde{\Phi}_i, W^{-1})
\]

\[
= \frac{N_i}{2} \ln \frac{W}{2\pi} - \frac{1}{2} \text{tr} (WS_i - 2F_i \mu^T + N_i \mu \mu^T)
\]

\[-2(F_i - N_i \mu) y_i^T V^T + N_i V y_i y_i^T V^T. \] \hspace{1cm} (24)
3 Variational Inference with Point Estimates of μ, V and W

As first approximation, we assume a simplified model where we take point estimates of the parameters μ, V and W. In this case, the graphical model simplifies to the one in Figure 2.

In this model, y_i, y_{di} and θ_{ij} are the only hidden variables. V, μ and W are hyperparameters that can be obtained by maximising the VB lower bound.

3.1 Variational Distributions

We write the joint distribution of the observed and latent factors:

$$P(\Phi, Y, Y_d, \theta, \pi) = P(\Phi | Y, \theta, \mu, V, W) P(Y) P(\theta | \pi) P(\pi | \tau_0).$$

Following, the conditioning on $(\theta_d, \tau_0, \mu, V, W)$ will be dropped for convenience.

Now, we consider the partition of the posterior:

$$P(Y, Y_d, \theta, \pi|\Phi, \Phi_d) \approx q(Y, Y_d, \theta) = q(Y, Y_d) q(\theta) q(\pi).$$

The optimum for $q^*(Y, Y_d)$:

$$\ln q^*(Y, Y_d) = E_{\Phi, \pi_d} [\ln P(\Phi, \Phi_d, Y, Y_d, \theta, \pi_d)] + \text{const}$$

$$= E_{\theta} [\ln P(\Phi | Y, \theta)] + \ln P(Y) + \ln P(\Phi_d | Y_d) + \ln P(Y_d) + \text{const}$$

$$= \sum_{i=1}^{M} y_i^T V^T W E [F_i] - \frac{1}{2} y_i^T \left(I + E[N_i] V^T W V \right) y_i$$

$$- \sum_{i=1}^{M_d} y_{di}^T V^T W E_{di} - \frac{1}{2} y_{di}^T \left(I + N_{di} V^T W V \right) y_{di} + \text{const}$$

Figure 2: BN for SPLDA with point estimates of the model parameters.
Therefore $q^* (Y, Y_d)$ is a product of Gaussian distributions.

$$q^* (Y, Y_d) = \prod_{i=1}^{M} N (y_i | \bar{y}_i, L_{y_i}^{-1}) \prod_{i=1}^{M} N (y_d_i | \bar{y}_{d_i}, L_{y_d_i}^{-1})$$ \hspace{1cm} (30)$$

$$L_{y_i} = I + E [N] V^T W V$$ \hspace{1cm} (31)$$

$$\bar{y}_i = L_{y_i}^{-1} V^T W E [F_i]$$ \hspace{1cm} (32)$$

$$E [N_i] = \sum_{j=1}^{N} E [\theta_{ji}]$$ \hspace{1cm} (33)$$

$$E [F_i] = \sum_{j=1}^{N} E [\theta_{ji}] (\phi_{j} - \mu)$$ \hspace{1cm} (34)$$

$$L_{y_d_i} = I + N_d_i V^T W V$$ \hspace{1cm} (35)$$

$$\bar{y}_{d_i} = L_{y_d_i}^{-1} V^T W F_{d_i}$$ \hspace{1cm} (36)$$

The optimum for $q^* (\theta)$:

$$\ln q^* (\theta) = E_Y Y_d, \pi_\theta \left[\ln P (\Phi, \Phi_d, Y, Y_d, \theta, \pi_\theta) \right]$$ \hspace{1cm} (37)$$

$$= E_Y \ln P (\Phi | Y, \theta) + E_{\pi_\theta} \ln P (\theta | \pi_\theta) + \text{const}$$ \hspace{1cm} (38)$$

$$= \sum_{j=1}^{N} \sum_{i=1}^{M} \theta_{ji} \left[\frac{1}{2} \ln \frac{W}{2\pi} - \frac{1}{2} E [(\phi_{j} - \mu - V y_i)^T W (\phi_{j} - \mu - V y_i)] + E [\ln \pi_\theta] \right] + \text{const}$$ \hspace{1cm} (39)$$

$$= \sum_{j=1}^{N} \sum_{i=1}^{M} \theta_{ji} \left[\frac{1}{2} \ln \frac{W}{2\pi} - \frac{1}{2} (\phi_{j} - \mu)^T W (\phi_{j} - \mu) + E [y_i]^T V^T W (\phi_{j} - \mu) \right.$$ \hspace{1cm} (40)$$

$$- \frac{1}{2} \text{tr} (V^T W V E [y_i, y_i^T]) + E [\ln \pi_\theta] \right] + \text{const}.$$

Taking exponentials in both sides:

$$q^* (\theta) = \prod_{j=1}^{N} \prod_{i=1}^{M} r_{ji}^{\theta_{ji}}$$ \hspace{1cm} (41)$$

where

$$r_{ji} = \frac{\theta_{ji}}{\sum_{j=1}^{N} \theta_{ji}}$$ \hspace{1cm} (42)$$

$$\ln \theta_{ji} = \frac{1}{2} \ln \frac{W}{2\pi} - \frac{1}{2} (\phi_{j} - \mu)^T W (\phi_{j} - \mu) + E [y_i]^T V^T W (\phi_{j} - \mu)$$ \hspace{1cm} (43)$$

$$- \frac{1}{2} \text{tr} (V^T W V E [y_i, y_i^T]) + E [\ln \pi_\theta]$$ \hspace{1cm} (44)$$

The optimum for $q^* (\pi_\theta)$:

$$\ln q^* (\pi_\theta) = E_Y Y_d, \theta \left[\ln P (\Phi, \Phi_d, Y, Y_d, \theta, \pi_\theta) \right]$$ \hspace{1cm} (45)$$

$$= E_{\theta} \ln P (\theta | \pi_\theta) + \ln P (\pi_\theta | \tau_0) + \text{const}$$ \hspace{1cm} (46)$$

$$= \sum_{j=1}^{N} \sum_{i=1}^{M} E [\theta_{ji}] \ln \pi_{\theta_i} + (\tau_0 - 1) \sum_{i=1}^{M} \ln \pi_{\theta_i} + \text{const}$$ \hspace{1cm} (47)$$

$$= \sum_{i=1}^{M} (E [N_i] + \tau_0 - 1) \ln \pi_{\theta_i}.$$ \hspace{1cm} (48)$$

Thus:

$$q^* (\pi_\theta) = \text{Dir}(\pi_\theta | \tau) = C(\tau) \prod_{i=1}^{M} \pi_{\theta_i}^{\tau - 1}$$ \hspace{1cm} (49)$$
\[\tau_i = \mathbb{E}[N_i] + \tau_0 \]
\[C(\tau) = \frac{\Gamma\left(\sum_{i=1}^{M} \tau_i\right)}{\Pi_{i=1}^{M} \Gamma(\tau_i)} \]

Finally, we evaluate the expectations:

\[\mathbb{E}[y_i] = \varphi_i \]
\[\mathbb{E}[y_i y_i^T] = \mathbf{L}^{-1} + \varphi_i \varphi_i^T \]
\[\mathbb{E}[\tilde{y}_i \tilde{y}_i^T] = \begin{bmatrix} \mathbb{E}[y_i y_i^T] & \mathbb{E}[y_i] \\ \mathbb{E}[y_i^T] & 1 \end{bmatrix} \]
\[\mathbb{E}[\theta_{ji}] = r_{ji} \]
\[\mathbb{E}[\pi_{\theta_i}] = \frac{\tau_i}{\sum_{i=1}^{M} \tau_i} \]
\[\mathbb{E}[\ln \pi_{\theta_i}] = \psi(\tau_i) - \psi\left(\sum_{i=1}^{M} \tau_i\right) \]

3.1.1 Distributions with deterministic annealing

If we use annealing, for a parameter \(\kappa \), we have

\[q^*(Y, Y_d) = \prod_{i=1}^{M} \mathcal{N}(y_i|\varphi_i, 1/\kappa \mathbf{L}_{\varphi_i}^{-1}) \prod_{i=1}^{M} \mathcal{N}(y_{d,i}|\varphi_{d,i}, 1/\kappa \mathbf{L}_{\varphi_{d,i}}^{-1}) \]

\[q^*(\theta) = \prod_{j=1}^{N} \prod_{i=1}^{M} \theta_{ji}^{r_{ji}} \]

where

\[r_{ji} = \frac{g_{ji}^{\theta}}{\sum_{i=1}^{M} \tau_i} \]
\[q^*(\pi_{\theta}) = \text{Dir}(\pi_{\theta}|\tau) = C(\tau) \prod_{i=1}^{M} \pi_{\theta_i}^{\tau_i-1} \]

where

\[\tau_i = \kappa(\mathbb{E}[N_i] + \tau_0 - 1) + 1 \]

3.2 Variational lower bound

The lower bound is given by:

\[\mathcal{L} = \mathbb{E}_{\Phi, \theta}[\ln P(\Phi, \theta)] + \mathbb{E}_Y[\ln P(Y)] + \mathbb{E}_{\theta, \pi_{\theta}}[\ln P(\theta|\pi_{\theta})] + \mathbb{E}_{\sigma_{\pi}}[\ln P(\pi_{\theta})] \]
\[+ \mathbb{E}_{Y_d}[\ln P(\Phi_d|Y_d)] + \mathbb{E}_{Y_d}[\ln P(Y_d)] \]
\[- \mathbb{E}_Y[\ln q(Y)] - \mathbb{E}_{\theta}[\ln q(\theta)] - \mathbb{E}_{\sigma_{\pi}}[\ln q(\pi_{\theta})] - \mathbb{E}_{Y_d}[\ln q(Y_d)] \]

The term \(\mathbb{E}_{\Phi, \theta}[\ln P(\Phi|Y, \theta)] \):

\[\mathbb{E}_{\Phi, \theta}[\ln P(\Phi|Y, \theta)] = \frac{\mathbb{E}[N]}{2} \ln \left| \frac{W}{2\pi} \right| \]
\[- \frac{1}{2} \text{tr} \left(W \left(E[S] - \sum_{i=1}^{M} E[F_i] E[y_i]^{T} \hat{V}^{T} + \hat{V} \sum_{i=1}^{M} E[N_i] E[y_i^{i}] \hat{V}^{T} \right) \right) \]
We define

\[C_{\bar{y}} = \sum_{i=1}^{M} E[F_i] E[\bar{y}_i]^T \]

(65)

\[R_{\bar{y}} = \sum_{i=1}^{M} E[N_i] E[\bar{y}_i \bar{y}_i^T] \]

(66)

Then

\[E_{Y,\theta}[\ln P(\Phi|Y, \theta)] = \frac{E[N]}{2} \ln \left| \frac{W}{2\pi} \right| - \frac{1}{2} \text{tr} \left(W \left(E[S] - 2C_{\bar{y}} \bar{V}^T + \bar{V} R_{\bar{y}} \bar{V}^T \right) \right). \]

(67)

The term \(E_{Y,d}[\ln P(\Phi_d|Y_d)] \):

\[E_{Y,d}[\ln P(\Phi_d|Y_d)] = \frac{N_d}{2} \ln \left| \frac{W}{2\pi} \right| - \frac{1}{2} \text{tr} \left(W \left(S_d - 2C_{\bar{y}_d} \bar{V}_d^T + \bar{V}_d R_{\bar{y}_d} \bar{V}_d^T \right) \right). \]

(68)

where

\[C_{\bar{y}_d} = \sum_{i=1}^{M_d} F_d E[\bar{y}_d_i]^T \]

(69)

\[R_{\bar{y}_d} = \sum_{i=1}^{M_d} N_d E[\bar{y}_d_i \bar{y}_d_i^T] \]

(70)

The term \(E_Y[\ln P(Y)] \):

\[E_Y[\ln P(Y)] = - \frac{Mn_y}{2} \ln(2\pi) - \frac{1}{2} \text{tr} (P_Y) \]

(71)

where

\[P = \sum_{i=1}^{M} E[y_i y_i^T] \]

(72)

The term \(E_{Y,d}[\ln P(Y_d)] \):

\[E_{Y,d}[\ln P(Y_d)] = - \frac{M_d n_d}{2} \ln(2\pi) - \frac{1}{2} \text{tr} (P_{Y,d}) \]

(73)

where

\[P_{Y,d} = \sum_{i=1}^{M_d} E[y_d_i y_d_i^T] \]

(74)

The term \(E_{\theta,\pi_o}[\ln P(\theta|\pi_o)] \):

\[E_{\theta,\pi_o}[\ln P(\theta|\pi_o)] = \sum_{j=1}^{N} \sum_{i=1}^{M} r_{ji} E[\ln \pi_o_i] \]

(75)

The term \(E_{\pi_o}[\ln P(\pi_o)] \):

\[E_{\pi_o}[\ln P(\pi_o)] = \ln C(\tau_0) + (\tau_0 - 1) \sum_{i=1}^{M} E[\ln \pi_o_i] \]

(76)

The term \(E_Y[\ln q(Y)] \):

\[E_Y[\ln q(Y)] = - \frac{Mn_y}{2} \ln(2\pi + 1) + \frac{1}{2} \sum_{i=1}^{M} E[\ln L_{y_i}] \]

(77)
The term $E_{Y_d} [\ln q (Y_d)]$:

$$E_{Y_d} [\ln q (Y_d)] = - \frac{M_d n_d}{2} \left(\ln(2\pi) + 1 \right) + \frac{1}{2} \sum_{i=1}^{M_d} \ln |L_{y_i}|$$

(78)

The term $E_\theta [\ln q (\theta)]$:

$$E_\theta [\ln q (\theta)] = \sum_{j=1}^N \sum_{i=1}^M r_{ji} \ln r_{ji}$$

(79)

The term $E_{\pi_\theta} [\ln q (\pi_\theta)]$:

$$E_{\pi_\theta} [\ln q (\pi_\theta)] = \ln C(\tau) + \sum_{i=1}^M (\tau_i - 1) E [\ln \pi_{\theta_i}]$$

(80)

3.3 Hyperparameter optimisation

We can obtain the hyperparameters (τ_0, μ, V, W) by maximising the lower bound. We control the weight of each of the databases on the estimation by introducing the parameter $\eta \leq 1$ into the lower bound expression:

$$\mathcal{L}(\mu, V, W, \tau_0) = E_{Y, \theta} [\ln P (\Phi | Y, \theta)] + E_{\pi_\theta} [\ln P (\pi_\theta)] + \eta E_{Y_d} [\ln P (\Phi_d | Y_d)] + \text{const}$$

(81)

We derive for \tilde{V}:

$$\frac{\partial \mathcal{L}}{\partial \tilde{V}} = C_{\tilde{\Psi}} + \eta C_{\tilde{\Psi}d} - \tilde{V} (R_{\tilde{\Psi}} + \eta R_{\tilde{\Psi}d}) = 0 \implies \tilde{V} = C_{\tilde{\Psi}} R_{\tilde{\Psi}}^{-1}$$

(82)

(83)

where

$$C_{\tilde{\Psi}} = C_{\Psi} + \eta C_{\Psi_d}$$

(84)

$$R_{\tilde{\Psi}} = R_{\Psi} + \eta R_{\Psi_d}$$

(85)

We derive for W:

$$\frac{\partial \mathcal{L}}{\partial W} = \frac{E [N] + \eta N_d}{2} \left(2 W^{-1} - \text{diag} (W^{-1}) \right) - \frac{1}{2} (K + K^T - \text{diag} (K))$$

(86)

where

$$K = E [S] + \eta S_d - 2 C_{\tilde{\Psi}} \tilde{V} + \tilde{V} R_{\tilde{\Psi}} \tilde{V}^T$$

(87)

Then

$$W^{-1} = \frac{1}{E [N] + \eta N_d} \frac{K + K^T}{2}$$

(88)

We derive for τ_0:

$$\frac{\partial \mathcal{L}}{\partial \tau_0} = M \left(\psi (M \tau_0) - \psi (\tau_0) \right) + \sum_{i=1}^M E [\ln \pi_{\theta_i}] = 0$$

(89)

We define $\tau_0 = \exp(\tilde{\tau}_0)$ and

$$f(\tau_0) = \psi (M \tau_0) - \psi (\tau_0) + g = 0$$

(90)

$$g = \frac{1}{M} \sum_{i=1}^M E [\ln \pi_{\theta_i}] = 0 .$$

(91)
We can solve for $\tilde{\tau}_0$ by Newton-Rhapson iterations:

$$\tilde{\tau}_{0\text{new}} = \tilde{\tau}_0 - \frac{f(\tilde{\tau}_0)}{f'(\tilde{\tau}_0)}$$

$$= \tilde{\tau}_0 - \frac{\psi(M\tilde{\tau}_0) - \psi(\tau_0) + g}{\tau_0 (\psi'(M\tilde{\tau}_0) - \psi'(\tau_0))}$$

(92)

Taking exponentials in both sides:

$$\tau_{0\text{new}} = \tau_0 \exp \left(- \frac{\psi(M\tilde{\tau}_0) - \psi(\tau_0) + g}{\tau_0 (\psi'(M\tilde{\tau}_0) - \psi'(\tau_0))} \right)$$

(93)

3.4 Minimum divergence

We assume a more general prior for the hidden variables:

$$P(y) = \mathcal{N}(y|\mu_y, \Lambda_y^{-1})$$

(95)

Then we maximise

$$\mathcal{L}(\mu_y, \Lambda_y) = \sum_{i=1}^{M} \mathbb{E}_Y \left[\ln \mathcal{N}(y|\mu_y, \Lambda_y^{-1}) \right] + \eta \sum_{i=1}^{M_d} \mathbb{E}_Y \left[\ln \mathcal{N}(y_d|\mu_y, \Lambda_y^{-1}) \right]$$

$$= \frac{M + \eta M_d}{2} \ln |\Lambda_y|$$

$$- \frac{1}{2} \text{tr} \left(\Lambda_y \left(\sum_{i=1}^{M} \mathbb{E} \left[(y_i - \mu_y)(y_i - \mu_y)^T \right] + \eta \sum_{i=1}^{M_d} \mathbb{E} \left[(y_{d_i} - \mu_y)(y_{d_i} - \mu_y)^T \right] \right) \right) + \text{const}$$

(96)

We derive for μ_y:

$$\frac{\partial \mathcal{L}(\mu_y, \Lambda_y)}{\partial \mu_y} = \frac{1}{2} \sum_{i=1}^{M} \Lambda_y \mathbb{E} [y_i - \mu_y] + \frac{\eta}{2} \sum_{i=1}^{M_d} \Lambda_y \mathbb{E} [y_{d_i} - \mu_y] = 0 \quad \implies \quad \mu_y = \frac{1}{M + \eta M_d} \left(\sum_{i=1}^{M} \mathbb{E} [y_i] + \eta \sum_{i=1}^{M_d} \mathbb{E} [y_{d_i}] \right)$$

(97)

(98)

We derive for Λ_y:

$$\frac{\partial \mathcal{L}(\mu_y, \Lambda_y)}{\partial \Lambda_y} = \frac{M + \eta M_d}{2} (2\Lambda_y^{-1} - \text{diag}(\Lambda_y^{-1})) - \frac{1}{2} (2S - \text{diag}(S)) = 0$$

(99)

(100)

where

$$S = \sum_{i=1}^{M} \mathbb{E} \left[(y_i - \mu_y)(y_i - \mu_y)^T \right] + \eta \sum_{i=1}^{M_d} \mathbb{E} \left[(y_{d_i} - \mu_y)(y_{d_i} - \mu_y)^T \right]$$

(101)

Then

$$\Sigma_y = \Lambda_y^{-1} = \frac{1}{M + \eta M_d} (P_y + \eta P_{y_d}) - \mu_y \mu_y^T$$

(102)

To obtain a standard prior for y we transform μ and V by using

$$\mu' = \mu + V \mu_y$$

$$V' = V (\Sigma_y^{-1}/2)^T$$

(103)

(104)
3.5 Determining the number of speakers

To determine the number of speakers we initialise the algorithm assuming that there is a large number of speakers and after some iterations we eliminate speakers based on heuristics:

- Each i-vector belongs only to one speaker.
- Each speaker has an integer number of i-vectors.
- If several i-vectors have similar $E[\theta]$ for several speakers we can merge the speakers.
- Compare the lower bound for different values of M to determine the best number of speakers.

3.6 Initialise the VB

- The values of μ, V and W can be initialised using the supervised dataset.
- $q(\pi_{\theta})$ can be initialised assuming that all the speakers have the same number of i-vectors.
- $q(\theta)$ can be initialised using AHC or some simple algorithm based on the pairwise scores computed evaluating the initial PLDA model. We should also initialise $q(\theta)$ with the oracle labels and check that the partition does not degrade itself as the algorithm iterates. This will provide an upper bound for the performance of the algorithm.
- Instead of initialising $q(\theta)$ we can initialise $q(Y)$ sampling random speakers from the standard distribution and afterwards, compute $q(\theta)$ given $q(Y)$.

3.7 Combining VB and sampling methods

I am interested in Dan’s idea of combining VB and sampling methods. Instead of computing the i-vector statistics as shown in Equations (33) and (34), we can draw samples $\hat{\theta}_{jk}$, $k = 1, \ldots, K$ from $q(\theta)$. Then, compute K i-vector statistics for speaker i as:

$$N_{ik} = \sum_{j=1}^{N} \hat{\theta}_{jki}$$

$$F_{ik} = \sum_{j=1}^{N} \hat{\theta}_{jki} \phi_j$$

(105)

Thus, the statistics are computed in a way that each i-vector only belongs to one speaker while in the standard VB formulation i-vectors are shared between several clusters. Then, we can follow several strategies:

- Select the sample k^* that maximises the lower bound.
- For sample k, obtain the accumulators needed to compute μ, V and W (R_{ϕ}, C_{ϕ}, etc), average the accumulators of all the samples and compute the model.
- For each sample k, compute a model and average the models. However, I think that averaging the accumulators is more correct.

The drawback of this method is that the computational cost grows linearly with K, and we may need a large K to make it work.

4 Variational inference with Gaussian-Gamma priors for V, Gaussian for μ and non-informative prior for W

4.1 Model priors

We chose the model priors based on the Bishop’s paper about VB PPCA [2]. We introduce a hierarchical prior $P(V|\alpha)$ over the matrix V governed by a n_y dimensional vector of hyperparameters where n_y is
the dimension of the factors. Each hyperparameter controls one of the columns of the matrix \(V\) through a conditional Gaussian distribution of the form:

\[
P(V|\alpha) = \prod_{q=1}^{n_y} \left(\frac{\alpha_q}{2\pi}\right)^{d/2} \exp\left(-\frac{1}{2} \alpha_q v_q^T v_q\right)
\]

(106)

where \(v_q\) are the columns of \(V\). Each \(\alpha_q\) controls the inverse variance of the corresponding \(v_q\). If a particular \(\alpha_q\) has a posterior distribution concentrated at large values, the corresponding \(v_q\) will tend to be small, and that direction of the latent space will be effectively ‘switched off’.

We define a prior for \(\alpha\):

\[
P(\alpha) = \prod_{q=1}^{n_y} \mathcal{G}(\alpha_q|a, b)
\]

(107)

where \(\mathcal{G}\) denotes the Gamma distribution. Bishop defines broad priors setting \(a = b = 10^{-3}\).

We place a Gaussian prior for the mean \(\mu\):

\[
P(\mu) = \mathcal{N}(\mu|\mu_0, \text{diag}(\beta)^{-1})
\]

(108)

We will consider the case where each dimension has different precision and the case with isotropic precision (\(\text{diag}(\beta) = \beta I\)).

Finally, we use a non-informative prior for \(W\) like in [3].

\[
P(W) = \lim_{k \to 0} W(WW_0/k, k)
\]

(109)

\[
= \alpha |W|^{-(d+1)/2}
\]

(110)

4.2 Variational distributions

We write the joint distribution of the observed and latent variables:

\[
P(\Phi, \Phi_d, \mathbf{y}, \mathbf{y}_d, \theta, \pi_\theta, \mu, \mathbf{V}, \mathbf{W}, \alpha|\theta_d, \tau_0, \mu_0, \beta, a, b) = P(\Phi|\mathbf{y}, \theta, \mu, \mathbf{V}, \mathbf{W}) P(\mathbf{Y}) P(\theta|\pi_\theta) P(\pi_\theta|\tau_0)
\]

\[
P(V|\alpha) P(\alpha|a, b) P(\mu|\mu_0, \beta) P(W)
\]

(111)

Following, the conditioning on \((\theta_d, \tau_0, \mu_0, \beta, a, b)\) will be dropped for convenience.

Now, we consider the partition of the posterior:

\[
P(\mathbf{y}, \mathbf{y}_d, \theta, \pi_\theta, \mu, \mathbf{V}, \mathbf{W}, \alpha|\Phi, \Phi_d) \approx q(\mathbf{y}, \mathbf{y}_d, \theta, \pi_\theta, \mu, \mathbf{V}, \mathbf{W}, \alpha)
\]

\[
= q(\mathbf{y}, \mathbf{y}_d) q(\theta) q(\pi_\theta) \prod_{r=1}^{d} q(v_r) q(W) q(\alpha)
\]

(112)

where \(v_r\) is a column vector containing the \(r\)th row of \(\mathbf{V}\). If \(W\) were a diagonal matrix the factorisation \(\prod_{r=1}^{d} q(v_r)\) is not necessary because it arises naturally when solving the posterior. However, for full covariance \(W\), the posterior of \(\text{vec}(\mathbf{V})\) is a Gaussian with a huge full covariance matrix. We force the factorisation to make the problem tractable.

The optimum for \(q^*(\mathbf{y}, \mathbf{y}_d)\):

\[
\ln q^*(\mathbf{y}, \mathbf{y}_d) = \mathbb{E}_{\theta, \pi_\theta, \mu, \mathbf{V}, \mathbf{W}, \alpha} [\ln P(\Phi, \Phi_d, \mathbf{y}, \mathbf{y}_d, \theta, \pi_\theta, \mu, \mathbf{V}, \mathbf{W}, \alpha)] + \text{const}
\]

(113)

\[
= \mathbb{E}_{\theta, \mu, \mathbf{V}, \mathbf{W}} [\ln P(\Phi|\mathbf{y}, \theta, \mu, \mathbf{V}, \mathbf{W})] + \ln P(\mathbf{Y})
\]

\[
+ \mathbb{E}_{\mu, \mathbf{V}, \mathbf{W}} [\ln P(\Phi_d|\mathbf{y}_d, \mu, \mathbf{V}, \mathbf{W})] + \ln P(\mathbf{Y}_d) + \text{const}
\]

(114)

\[
= \sum_{i=1}^{M} y_i^T \mathbb{E} [\nabla^T W (F_i - N_i, \mu)] - \frac{1}{2} y_i^T (\mathbf{I} + \mathbb{E} [N_i] \mathbb{E} [\nabla^T W W]) y_i
\]

\[
+ \sum_{i=1}^{M_d} y_{di}^T \mathbb{E} [\nabla^T W (F_{di} - N_{di}, \mu)] - \frac{1}{2} y_{di}^T (\mathbf{I} + \mathbb{E} [N_{di}] \mathbb{E} [\nabla^T W W]) y_{di} + \text{const}
\]

(115)
Therefore $q^* (Y, Y_d)$ is a product of Gaussian distributions.

\[
q^* (Y, Y_d) = \prod_{i=1}^{M} \mathcal{N}(y_i | \bar{y}_i, L_{y_i}^{-1}) \prod_{i=1}^{M_d} \mathcal{N}(y_d_i | \bar{y}_{d_i}, L_{y_{d_i}}^{-1})
\]

(116)

\[
L_{y_i} = I + E[N_i] E[V^TWV]
\]

(117)

\[
\bar{y}_i = L_{y_i}^{-1} \left(E[V]^T E[W] E[F_i] - E[N_i] E[V^T W \mu] \right)
\]

(118)

\[
E[N_i] = \sum_{j=1}^{N} E[\theta_{ji}]
\]

(119)

\[
E[F_i] = \sum_{j=1}^{N} E[\theta_{ji}] \phi_j
\]

(120)

\[
L_{y_{d_i}} = I + N_d_i E[V^TWV]
\]

(121)

\[
\bar{y}_{d_i} = L_{y_{d_i}}^{-1} \left(E[V]^T E[W] F_{d_i} - N_d_i E[V^T W \mu] \right)
\]

(122)

The optimum for $q^* (\theta)$:

\[
\ln q^* (\theta) = E_{Y, Y_d, \pi, \mu, V, W, \alpha} \left[\ln P (\Phi, \Phi_d, Y, Y_d, \theta, \pi_\theta, \mu, V, W, \alpha) \right] + \text{const}
\]

(123)

\[
= E_{Y, \mu, V, W} \left[\ln P (\Phi|Y, \theta, \mu, V, W) \right] + E_{\pi_\theta} \left[\ln P (\theta|\pi_\theta) \right] + \text{const}
\]

(124)

\[
= \sum_{j=1}^{N} \sum_{i=1}^{M} \theta_{ji} \left[\frac{1}{2} E[\ln |W|] - \frac{d}{2} \ln(2\pi) - \frac{1}{2} E \left((\phi_j - \bar{V}y_i)^T W (\phi_j - \bar{V}y_i) \right) + E[\ln \pi_\theta] \right] + \text{const}
\]

(125)

Taking exponentials in both sides:

\[
q^* (\theta) = \prod_{j=1}^{N} \prod_{i=1}^{M} r_{ji}^{\theta_{ji}}
\]

(126)

where

\[
r_{ji} = \frac{\theta_{ji}}{\sum_{i=1}^{M} \theta_{ji}}
\]

(127)

\[
\ln \theta_{ji} = \frac{1}{2} E[\ln |W|] - \frac{d}{2} \ln(2\pi) - \frac{1}{2} E \left((\phi_j - \bar{V}y_i)^T W (\phi_j - \bar{V}y_i) \right) + E[\ln \pi_\theta]
\]

(128)

The optimum for $q^* (\pi_\theta)$:

\[
q^* (\pi_\theta) = \text{Dir}(\pi_\theta | \tau) = C(\tau) \prod_{i=1}^{M} \pi_{\theta_i}^{\tau_i-1}
\]

(129)

where

\[
\tau_i = E[N_i] + \tau_0
\]

(130)

\[
C(\tau) = \frac{\Gamma \left(\sum_{i=1}^{M} \tau_i \right)}{\prod_{i=1}^{M} \Gamma (\tau_i)}
\]

(131)

To compute the optimum for $q^* (\bar{V}_i)$, we, again, introduce the parameter η to control the weight of
the supervised dataset.

\[
\ln q^* (\tilde{\mathbf{v}}_r') = E_{\mathbf{Y}, \mathbf{Y}_d, \theta, \pi_e, \mathbf{W}, \alpha, \tilde{\mathbf{v}}_{s, r}} [\ln P (\Phi, \Phi_d, \mathbf{Y}, \mathbf{Y}_d, \theta, \pi_e, \mu, \mathbf{V}, \mathbf{W}, \alpha)] + \text{const} \tag{132}
\]

\[
= E_{\mathbf{Y}, \theta, \mathbf{W}, \tilde{\mathbf{v}}_{s, r}} [\ln P (\Phi | \mathbf{Y}, \theta, \mu, \mathbf{V}, \mathbf{W})]
+ \eta E_{\mathbf{Y}_d, \mathbf{W}, \tilde{\mathbf{v}}_{s, r}} [\ln P (\Phi_d | \mathbf{Y}_d, \mu, \mathbf{V}, \mathbf{W})]
+ E_{\alpha, \tilde{\mathbf{v}}_{s, r}} [\ln P (\mathbf{V} | \alpha)] + E_{\alpha, \tilde{\mathbf{v}}_{s, r}} [\ln P (\mu)] + \text{const}
\tag{133}
\]

\[
= -\frac{1}{2} \text{tr} \left(-2\tilde{\mathbf{v}}'_r \mathbf{C}_r + \sum_{s \neq r} \overline{\mathbf{r}}_{rs} \left(\mathbf{C}_s - E [\tilde{\mathbf{v}}'_s]^T \mathbf{R}'_s \right) + \beta_r \bar{\mu}_0^T \right)
+ \tilde{\mathbf{v}}'_r \tilde{\mathbf{v}}'^T_r \left(\text{diag} (\overline{\alpha}_r) + \overline{\mathbf{r}}_{rs} \mathbf{R}'_s \right)
\tag{134}
\]

where \(\overline{\mathbf{r}}_{rs}\) is the element \(r, s\) of \(E [\mathbf{W}]\):

\[
\mathbf{C}_r = \sum_{i=1}^{M} E [\mathbf{F}_i] E [\tilde{\mathbf{y}}_i]^T
\tag{135}
\]

\[
\mathbf{R}_r = \sum_{i=1}^{M} E [\mathbf{N}_i] E [\tilde{\mathbf{y}}_i \tilde{\mathbf{y}}_i^T]
\tag{136}
\]

\[
\mathbf{C}_{\tilde{y}_d} = \sum_{i=1}^{M_d} \mathbf{F}_d, E [\tilde{\mathbf{y}}_d_i]^T
\tag{137}
\]

\[
\mathbf{R}_{\tilde{y}_d} = \sum_{i=1}^{M_d} \mathbf{N}_d, E [\tilde{\mathbf{y}}_d_i \tilde{\mathbf{y}}_d_i^T]
\tag{138}
\]

\[
\overline{\mathbf{r}}_{rs} = \frac{E [\alpha]}{\beta_r}, \quad \bar{\mu}_0 = \frac{0_{n_s \times 1}}{\mu_0_r}
\tag{141}
\]

and \(\mathbf{C}_r\) is the \(r^{th}\) row of \(\mathbf{C}_r\).

Then \(q^* (\tilde{\mathbf{v}}_r')\) is a Gaussian distribution:

\[
q^* (\tilde{\mathbf{v}}_r') = \mathcal{N} \left(\tilde{\mathbf{v}}'_r | \overline{\mathbf{v}}'_r, \mathbf{L}_{\tilde{\mathbf{v}}_r}^{-1} \right)
\tag{142}
\]

\[
\mathbf{v}'_r = \mathbf{L}_{\tilde{\mathbf{v}}_r} \left(\overline{\mathbf{r}}_{rs} \mathbf{C}_r^T + \sum_{s \neq r} \overline{\mathbf{r}}_{rs} \left(\mathbf{C}_s^T - \mathbf{R}_s \tilde{\mathbf{v}}'_{s, r} \right) + \beta_r \bar{\mu}_0 \right)
\tag{144}
\]

The optimum for \(q^* (\alpha)\):

\[
\ln q^* (\alpha) = E_{\mathbf{Y}, \mathbf{Y}_d, \theta, \pi_e, \mu, \mathbf{V}, \mathbf{W}} [\ln P (\Phi, \Phi_d, \mathbf{Y}, \mathbf{Y}_d, \theta, \pi_e, \mu, \mathbf{V}, \mathbf{W}, \alpha)] + \text{const}
\tag{145}
\]

\[
= E_{\tilde{\mathbf{v}}_r} [\ln P (\mathbf{V} | \alpha)] + \ln P (\alpha | a_\alpha, b_\alpha) + \text{const}
\tag{146}
\]

\[
= \sum_{q=1}^{n_s} \left(\frac{d}{2} + a_\alpha - 1 \right) \ln \alpha_q - \alpha_q \left(b_\alpha + \frac{1}{2} E [\tilde{\mathbf{v}}'_q v_q] \right) + \text{const}
\tag{147}
\]
Then \(q^* (\alpha) \) is a product of Gammas:

\[
q^* (\alpha) = \prod_{q=1}^{n_y} \mathcal{G} \left(\alpha_q | \alpha'_q, b'_\alpha_q \right) \tag{149}
\]

\[
a'_q = a_q + \frac{d}{2} \tag{150}
\]

\[
b'_\alpha = b_\alpha + \frac{1}{2} \mathbb{E} \left[v_q^T v_q \right] \tag{151}
\]

The optimum for \(q^* (W) \):

\[
\ln q^* (W) = \mathbb{E}_{Y, Y_d, \theta, \pi_\theta, \mu, V, W} \left[\ln P(\Phi, \Phi_d, Y, Y_d, \theta, \pi_\theta, \mu, V, W, \alpha) \right] + \text{const} \tag{152}
\]

\[
= \mathbb{E}_{Y, \theta, \mu, V} \left[\ln P(\Phi | Y, \theta, \mu, V, W) \right] + \eta \mathbb{E}_{Y_d, \mu, V} \left[\ln P(\Phi_d | Y_d, \mu, V, W) \right] + \ln P(W) + \text{const} \tag{153}
\]

\[
= \frac{N'}{2} \ln |W| - \frac{d + 1}{2} \ln |W| - \frac{1}{2} \text{tr} (WK) + \text{const} \tag{154}
\]

where

\[
N' = \mathbb{E}[N] + \eta N_d \tag{155}
\]

\[
K = \mathbb{E}[S] + \eta S_d - C^T \mathbb{E} \left[V V^T \right] - \mathbb{E} \left[V \right] C^T + \mathbb{E} \left[V R_s V^T \right] \tag{156}
\]

Then \(q^* (W) \) is Wishart distributed:

\[
q^* (W) = W \left(W | K^{-1}, N' \right) \quad \text{if } N' > d . \tag{157}
\]

Finally, we evaluate the expectations:

\[
\mathbb{E} [y_i] = \bar{y}_i \tag{158}
\]

\[
\mathbb{E} [y_i y_i^T] = L^{-1}_y + \bar{y} \bar{y}^T \tag{159}
\]

\[
\mathbb{E} [y_i y_i^T] = \begin{bmatrix} \mathbb{E} [y_i y_i^T] & \mathbb{E} [y_i] \\ \mathbb{E} [y_i] & 1 \end{bmatrix} \tag{160}
\]

\[
\mathbb{E} [\theta_{ji}] = r_{ji} \tag{161}
\]

\[
\mathbb{E} [\pi_{\theta}] = \frac{\tau_i}{\sum_{i=1}^{M} \tau_i} \tag{162}
\]

\[
\mathbb{E} [\ln \pi_{\theta}] = \psi (\tau_i) - \psi \left(\sum_{i=1}^{M} \tau_i \right) \tag{163}
\]

\[
\mathbb{E} [\alpha_q] = \frac{\alpha'_q}{b'_{\alpha_q}} \tag{164}
\]

\[
\bar{V} = \mathbb{E} \left[V \right] = \begin{bmatrix} \bar{v}_1^T \\ \bar{v}_2^T \\ \vdots \\ \bar{v}_d^T \end{bmatrix} \tag{165}
\]

\[
\bar{W} = \mathbb{E} [W] = N' \bar{K}^{-1} \tag{166}
\]
\[E \left[v_q^T v_q \right] = \sum_{r=1}^{d} E \left[v_{rq}^T v_{rq} \right] \]
\[= \sum_{r=1}^{d} \mathbf{L}_{rr}^{-1} + \mathbf{V}_{rq}^2 \]
(167)

\[E \left[\mathbf{V}^T \mathbf{V} \right] = E \left[\mathbf{V} \mathbf{W} \mathbf{V}^T \right] \]
\[= \sum_{r=1}^{d} \sum_{s=1}^{d} \mathbf{w}_{rs} E \left[v_r v_s^T \right] \]
\[= \sum_{r=1}^{d} \mathbf{w}_{rr} \mathbf{V}_{r} + \mathbf{V}^T \mathbf{W} \mathbf{V} \]
(169)

\[E \left[\mathbf{V}^T \mathbf{W} \right] = \sum_{r=1}^{d} \mathbf{w}_{rr} \mathbf{V}_{r} + \mathbf{V}^T \mathbf{W} \mathbf{V} \]
(170)

\[E \left[\mathbf{V}^T \mathbf{W} \mu \right] = \sum_{r=1}^{d} \mathbf{w}_{rr} \mathbf{V}_{r} + \mathbf{V}^T \mathbf{W} \mathbf{V} \]
(171)

\[E \left[\mathbf{V}^T \mathbf{W} \right] = \sum_{r=1}^{d} \mathbf{w}_{rr} \mathbf{V}_{r} + \mathbf{V}^T \mathbf{W} \mathbf{V} \]
(172)

\[E \left[\mathbf{V}^T \mathbf{W} \right] = \sum_{r=1}^{d} \mathbf{w}_{rr} \mathbf{V}_{r} + \mathbf{V}^T \mathbf{W} \mathbf{V} \]
(173)

\[E \left[(\phi_j - \mathbf{V} \tilde{y}_i)^T \mathbf{W} (\phi_j - \mathbf{V} \tilde{y}_i) \right] = \phi_j^T \mathbf{W} \phi_j - 2 \phi_j^T \mathbf{W} \mathbf{V} \tilde{y}_i + \text{tr} \left(E \left[\mathbf{V}^T \mathbf{W} \mathbf{V} \right] E \left[\tilde{y}_i \tilde{y}_i^T \right] \right) \]
\[E \left[\mathbf{V}^T \tilde{y}_i \tilde{y}_i^T \right] = \sum_{r=1}^{d} \sum_{s=1}^{d} \mathbf{R}_{rs} E \left[\mathbf{v}_r v_s^T \right] \]
\[= \mathbf{V}^T \mathbf{V} + \text{diag} (\rho) \]
(174)

\[\mathbf{V}_{r}^2 = \left[\begin{array}{c} \mathbf{V}_{r} \mathbf{V}_{r}^T \\ \mathbf{V}_{r} \mathbf{V}_{r}^T \\ \vdots \\ \mathbf{V}_{r} \mathbf{V}_{r}^T \end{array} \right] \]
\[= \mathbf{L}_{rr}^{-1} \]
(175)

\[\mathbf{V}_{r}^2 = \left[\begin{array}{c} \mathbf{V}_{r} \mathbf{V}_{r}^T \\ \mathbf{V}_{r} \mathbf{V}_{r}^T \\ \vdots \\ \mathbf{V}_{r} \mathbf{V}_{r}^T \end{array} \right] \]
\[= \mathbf{L}_{rr}^{-1} \]
(176)

where
\[\mathbf{V}_r = \left[\begin{array}{ccc} \mathbf{V}_{r}^2 & \mathbf{V}_{r}^T \mathbf{V}_{r} & \vdots \\ \mathbf{V}_{r}^T \mathbf{V}_{r} & \mathbf{V}_{r}^2 & \vdots \\ \vdots & \vdots & \ddots \end{array} \right] \]
\[= \mathbf{L}_{rr}^{-1} \mathbf{V}_{r} \]
(177)

\[\rho = \left[\begin{array}{c} \rho_1 \\ \rho_2 \\ \vdots \\ \rho_d \end{array} \right]^T \]
(178)

\[\rho_i = \sum_{r=1}^{n_y} \sum_{s=1}^{n_y} \left(\mathbf{R}_{rs} \circ \mathbf{L}_{r}^{-1} \right) \]
(179)

and \(\circ \) is the Hadamard product.

4.2.1 Distributions with deterministic annealing

If we use annealing, for a parameter \(\kappa \), we have
\[q^* (\mathbf{Y}, \mathbf{Y}_d) = \prod_{i=1}^{M} \mathcal{N} \left(\mathbf{y}_i | \mathbf{v}_i, 1/\kappa \mathbf{L}^{-1}_{\mathbf{y}_i} \right) \prod_{i=1}^{M} \mathcal{N} \left(\mathbf{y}_d, \mathbf{v}_d, 1/\kappa \mathbf{L}^{-1}_{\mathbf{y}_d} \right) \]
\[q^* (\theta) = \prod_{j=1}^{N} \prod_{i=1}^{M} \mathcal{N} \left(\mathbf{v}_i | \mathbf{v}_i, 1/\kappa \mathbf{L}^{-1}_{\mathbf{v}_i} \right) \]
\[q^* (\pi) = \text{Dir}(\pi | \tau) = C(\tau) \prod_{i=1}^{M} \pi_{\theta_i}^{-1} \]
(180)

\[q^* (\pi) = \text{Dir}(\pi | \tau) = C(\tau) \prod_{i=1}^{M} \pi_{\theta_i}^{-1} \]
(181)

\[q^* (\pi) = \text{Dir}(\pi | \tau) = C(\tau) \prod_{i=1}^{M} \pi_{\theta_i}^{-1} \]
(182)

\[q^* (\pi) = \text{Dir}(\pi | \tau) = C(\tau) \prod_{i=1}^{M} \pi_{\theta_i}^{-1} \]
(183)
where
\[\tau_i = \kappa(N_i + \tau_0 - 1) + 1 \quad (184) \]
\[q^*(\nu') = N(\nu', \nu, 1/\kappa \nu^{-1}) \quad (185) \]
\[q^*(W) = W[W|1/\kappa K^{-1}, \kappa(N' - d - 1) + d + 1] \quad \text{if } \kappa(N' - d - 1) + 1 > 0 \quad (186) \]
\[q^*(\alpha_0) = \prod_{q=1}^{n_u} \mathcal{G}(\alpha_0 | a'_0, b'_{\alpha_0}) \quad (187) \]
\[a'_0 = \kappa \left(a_0 + \frac{d}{2} - 1 \right) + 1 \quad (188) \]
\[b'_{\alpha_0} = \kappa \left(b_0 + \frac{1}{2} E[V_q^T V_q] \right) \quad (189) \]

4.3 Variational lower bound

The lower bound is given by:
\[\mathcal{L} = E_{Y, \theta, \mu, V, W} [\ln P(\Phi|Y, \theta, \mu, V, W)] + E_{Y} [\ln P(Y)] + E_{\theta, \pi_0} [\ln P(\theta|\pi_0)] + E_{\pi_0} [\ln P(\pi_0)] + E_{V, \alpha} [\ln P(V|\alpha)] + E_{\alpha} [\ln P(\alpha)] + E_{\mu} [\ln P(\mu)] + E_{W} [\ln P(W)] + \eta E_{Y_d, \mu, V, W} [\ln P(\Phi_d|Y_d, \mu, V, W)] + \eta E_{Y_d} [\ln P(Y_d)] - E_{\psi} [\ln q(\nu) - E_{\alpha} [\ln q(\alpha)] - E_{W} [\ln q(W)] - \eta E_{Y_d} [\ln q(Y_d)]. \quad (190) \]

The term \(E_{Y, \theta, \mu, V, W} [\ln P(\Phi|Y, \theta, \mu, V, W)] \):
\[E_{Y, \theta, \mu, V, W} [\ln P(\Phi|Y, \theta, \mu, V, W)] = \frac{E[N]}{2} E[\ln |W|] - \frac{E[N] d}{2} \ln(2\pi) \]
\[- \frac{1}{2} \text{tr} \left(W \left(E[S] - 2C_0 \bar{V}_0^T + E \left[\bar{V} R_{\bar{Y}_0} \bar{V}^T \right] \right) \right) \quad (191) \]
\[= \frac{E[N]}{2} \ln W - \frac{E[N] d}{2} \ln(2\pi) - \frac{1}{2} \text{tr} (W E[S]) \]
\[- \frac{1}{2} \text{tr} \left(-2 \bar{V}^T WC_0 \bar{Y}_0 + E \left[\bar{V}^T W\bar{V} \right] R_{\bar{Y}_0} \right) \quad (192) \]

where
\[\ln W = E[\ln |W|] \quad (193) \]
\[= \sum_{i=1}^{d} \psi \left(\frac{N' + 1 - i}{2} \right) + d \ln 2 + \ln |K^{-1}| \quad (194) \]
and \(\psi \) is the digamma function.

The term \(E_{Y_d, \theta, \mu, V, W} [\ln P(\Phi_d|Y_d, \mu, V, W)] \):
\[E_{Y_d, \theta, \mu, V, W} [\ln P(\Phi_d|Y_d, \theta, \mu, V, W)] = \frac{N_d}{2} E[\ln |W|] - \frac{N_d d}{2} \ln(2\pi) \]
\[- \frac{1}{2} \text{tr} \left(W \left(S_d - 2C_{\bar{Y}_d, 0} \bar{V}_d^T + E \left[\bar{V} R_{\bar{Y}_d} \bar{V}^T \right] \right) \right) \quad (195) \]
\[= \frac{N_d}{2} \ln W - \frac{N_d d}{2} \ln(2\pi) - \frac{1}{2} \text{tr} (WS_d) \]
\[- \frac{1}{2} \text{tr} \left(-2 \bar{V}_d^T WC_{\bar{Y}_d} \bar{Y}_d + E \left[\bar{V}_d^T W\bar{V}_d \right] R_{\bar{Y}_d} \right) \quad (196) \]
The term $E_{V, \alpha} [\ln P (V | \alpha)]$:

$$
E_{V, \alpha} [\ln P (V | \alpha)] = \frac{-n_y d}{2} \ln (2\pi) + \frac{d}{2} n_y \sum_{q=1}^{n_y} E [\ln \alpha_q] - \frac{1}{2} \sum_{q=1}^{n_y} E [\alpha_q] E [v_q^T v_q]
$$

(197)

where

$$
E [\ln \alpha_q] = \psi (a'_\alpha) - \ln b'_\alpha.
$$

(198)

The term $E_{\alpha} [\ln P (\alpha)]$:

$$
E_{\alpha} [\ln P (\alpha)] = n_y (a_\alpha \ln b_\alpha - \ln \Gamma (a_\alpha)) + (a_\alpha - 1) \sum_{q=1}^{n_y} E [\ln \alpha_q] - b_\alpha \sum_{q=1}^{n_y} E [\alpha_q]
$$

(199)

The term $E_{\mu} [\ln P (\mu)]$:

$$
E_{\mu} [\ln P (\mu)] = -\frac{d}{2} \ln (2\pi) + \frac{1}{2} \sum_{r=1}^{d} \ln \beta_r - \frac{1}{2} \sum_{r=1}^{d} \beta_r \left(\Sigma_{\mu_r} + E [\mu_r]^2 - 2\mu_0 E [\mu_r] + \mu_0^2 \right)
$$

(200)

The term $E_{W} [\ln P (W)]$:

$$
E_{W} [\ln P (W)] = -\frac{d+1}{2} \ln W
$$

(201)

The term $E_{\tilde{V}} \left[\ln q \left(\tilde{V} \right) \right]$:

$$
E_{\tilde{V}} \left[\ln q \left(\tilde{V} \right) \right] = -\frac{d(n_y + 1)}{2} \ln (2\pi + 1) + \frac{1}{2} \sum_{r=1}^{d} \ln |L_{\tilde{V}_r}|
$$

(202)

The term $E_{\alpha} [\ln q (\alpha)]$:

$$
E_{\alpha} [\ln q (\alpha)] = -\sum_{q=1}^{n_y} H [q (\alpha_q)]
$$

(203)

$$
= n_y ((a'_\alpha - 1) \psi (a'_\alpha) - a'_\alpha - \ln \Gamma (a'_\alpha)) + \sum_{q=1}^{n_y} \ln b'_\alpha
$$

(204)

The term $E_{W} [\ln q (W)]$:

$$
E_{W} [\ln q (W)] = -H [q (W)]
$$

(205)

$$
= \ln B (K^{-1}, N) + \frac{N - d - 1}{2} \ln W - \frac{Nd}{2}
$$

(206)

where

$$
B(A, N) = \frac{1}{2^{N_d/2} Z_{Nd}} |A|^{-N/2}
$$

(207)

$$
Z_{Nd} = \pi^{d(d-1)/4} \prod_{i=1}^{d} \Gamma ((N + 1 - i)/2)
$$

(208)

The expressions for the terms $E_{Y} [\ln P (Y)]$, $E_{Y|d} [\ln P (Y|d)]$, $E_{\theta, \pi} [\ln P (\theta | \pi_\theta)]$, $E_{\pi_\theta} [\ln P (\pi_\theta)]$, $E_{Y} [\ln q (Y)]$, $E_{Y|d} [\ln q (Y|d)]$, $E_{\theta} [\ln q (\theta)]$ and $E_{\pi_\theta} [\ln q (\pi_\theta)]$ are the same as the ones in Section 3.2.

17
4.4 Hyperparameter optimisation

We can set the Hyperparameters \((\tau_0, \mu_0, \beta, a, b)\) manually or estimate them from the development data maximising the lower bound.

\(\tau_0\) can be derived as shown in Section 3.3.

we derive for \(a\):

\[
\frac{\partial L}{\partial a} = n_y \left(\ln b_\alpha + \frac{1}{n_y} \sum_{q=1}^{n_y} \mathbb{E}[\ln \alpha_q] \right) = 0 \implies (209)
\]

\[
\psi(a) = \ln b_\alpha + \frac{1}{n_y} \sum_{q=1}^{n_y} \mathbb{E}[\ln \alpha_q] \tag{210}
\]

We derive for \(b\):

\[
\frac{\partial L}{\partial b_\alpha} = \frac{n_y a_\alpha}{b} - \sum_{q=1}^{n_y} \mathbb{E}[\alpha_q] = 0 \implies (211)
\]

\[
b_\alpha = \left(\frac{1}{n_y a_\alpha} \sum_{q=1}^{n_y} \mathbb{E}[\alpha_q] \right)^{-1} \tag{212}
\]

We solve these equations with the procedure described in [4]. We write

\[
\psi(a) = \ln b + c \tag{213}
\]

\[
b = \frac{a}{d} \tag{214}
\]

where

\[
c = \frac{1}{n_y} \sum_{q=1}^{n_y} \mathbb{E}[\ln \alpha_q] \tag{215}
\]

\[
d = \frac{1}{n_y} \sum_{q=1}^{n_y} \mathbb{E}[\alpha_q] \tag{216}
\]

Then

\[
f(a) = \psi(a) - \ln a + \ln d - c = 0 \tag{217}
\]

We can solve for \(a\) using Newton-Raphson iterations:

\[
a_{new} = a - \frac{f(a)}{f'(a)} \tag{218}
\]

\[
= a \left(1 - \frac{\psi'(a) - \ln a + \ln d - c}{a\psi''(a) - 1} \right) \tag{219}
\]

This algorithm does not assure that \(a\) remains positive. We can put a minimum value for \(a\). Alternatively we can solve the equation for \(\hat{a}\) such as \(a = c \exp(\hat{a})\).

\[
\hat{a}_{new} = \hat{a} - \frac{f(\hat{a})}{f'(\hat{a})} = \tag{220}
\]

\[
= \hat{a} - \frac{\psi(\hat{a}) - \ln a + \ln d - c}{\psi'(\hat{a})a - 1} \tag{221}
\]

Taking exponential in both sides:

\[
a_{new} = a \exp \left(-\frac{\psi(a) - \ln a + \ln d - c}{\psi'(a)a - 1} \right) \tag{222}
\]
We derive for μ_0:

$$\frac{\partial L}{\partial \mu_0} = 0 \implies \mu_0 = \mathbb{E}[\mu] \tag{223}$$

We derive for β:

$$\frac{\partial L}{\partial \beta} = 0 \implies \beta^{-1} = \Sigma_{\mu_r} + \mathbb{E}[\mu_r]^2 - 2\mu_0, \mathbb{E}[\mu_r] + \mu_0^2 \tag{225}$$

If we take an isotropic prior for μ:

$$\beta^{-1} = \frac{1}{d} \sum_{r=1}^{d} \Sigma_{\mu_r} + \mathbb{E}[\mu_r]^2 - 2\mu_0, \mathbb{E}[\mu_r] + \mu_0^2 \tag{226}$$

4.5 Some ideas

What we expect from this model is:

- We expect that taking into account the full posterior of the parameters of the SPLDA, we will obtain a better estimation of the labels and the number of speakers.
- The variances of V and W decrease as the number of speakers and segments, respectively, grow. Thus, we expect a larger improvement in cases where we have scarce adaptation data.
- We can analyse, how the labels affect the posteriors of the parameters. I have the intuition that if the labels are wrong the variance of V should be larger than if the labels are right.
- From $q(\alpha)$, we can infer the best value for n_y. If the $\mathbb{E}[\alpha_q]$ (prior precision of v_q) is large, v_q will tend to be small as can be seen in Equation (106).

References

[1] Jesús Villalba, “SPLDA,” Tech. Rep., University of Zaragoza, Zaragoza, July 2011.

[2] Christopher Bishop, “Variational principal components,” in Proceedings of the 9th International Conference on Artificial Neural Networks, ICANN 99, Edinburgh, Scotland, Sept. 1999, IET, vol. 1, pp. 509–514.

[3] Jesús Villalba, “Fully Bayesian Two-Covariance Model,” Tech. Rep., University of Zaragoza, Zaragoza, Spain, 2010.

[4] Matthew J. Beal, Variational algorithms for approximate Bayesian inference, Ph.D. thesis, University College London, 2003.