Research paper

Shorter androgen receptor polyQ alleles protect against life-threatening COVID-19 disease in European males

Margherita Baldassarri a,b,1, Nicola Picchiotti c,d,1, Francesca Fava a,b,e, Chiara Fallerini a,b, Elisa Benetti b, Sergio Daga a,b, Floriana Valentino a,b, Gabriella Doddato a,b, Simone Furini b, Annarita Gliberti a,b, Rossella Tita e, Sara Amitrano e, Mirella Bruttini a,b,e, Susanna Croci a,b, Ilaria Meloni a,b, Anna Maria Pinto e, Nicola Iuso b, Chiara Gabbi a, Francesca Sciarr a, Mary Anna Venneri a, Marco Gori c,h, Maurizio Sanarico i, Francis P. Crawley j, Uberto Pagotto k, Flaminia Fanelli k, Marco Mezzullo k, Elena Dominguez-Garrido l, Laura Planas-Serrano m,n,o, Agatha Schlüter m,n,o, Roger Colobran p, Pere Soler-Palacín q, Pablo Lapunzina n,r, Jair Tenorio n,r, Aurora Pujo m,n,s, Maria Grazia Castagna a, Marco Marcelli a, Andrea M. Isidori p, Alessandra Renieri a,b,e,*, Elisa Frullanti a,b,2, Francesca Mari a,b,e,2, Spanish Covid HGE, GEN-COVID Multicenter Study

1 Medical Genetics, University of Siena, Italy
2 Med Biotech Hub and Competence Center, Department of Medical Biotechnologies, University of Siena, Italy
3 University of Siena, DEIS-MAVLAB, Siena, Italy
4 Department of Mathematics, University of Pavia, Pavia, Italy
5 Genetics Medica, Azienda Ospedaliero-University Senese, Italy
6 Independent Medical Scientist, Milan, Italy
7 Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
8 Università Côte d’Azur, Inria, CNRS, I3S, Maasai
9 Good Clinical Practice Alliance-Europe (GCPCA) and Strategic Initiative for Developing Capacity in Ethical Review-Europe (SIDCER), Leuven, Belgium
10 Unit of Endocrinology and Prevention and Care of Diabetes, Center for Applied, Biomedical Research, Department of Medical and Surgical Sciences, University of Bologna, S. Orsola-Malpighi Hospital, Bologna, Italy
11 Molecular Diagnostic Unit, Fundación Rioja Salud, Logroño, La Rioja, Spain
12 Immunology Division, Genetics Department, Hospital Universitari Vall d’Hebron, Vall d’Hebron Research Institute, Vall d’Hebron Barcelona Hospital Campus, Universitat Autònoma de Barcelona (UAB), Barcelona, Catalonia, Spain, EU
13 Institute of Medical and Molecular Genetics (INGEMM)-IdiPAZ, Hospital Universitario La Paz-UAM Paseo de La Castellana, 261, 28046 Madrid, Spain
14 Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, Spain
15 Department of Medical, Surgical and Neurological Sciences, University of Siena, Italy
16 Department of Medicine, Baylor College of Medicine, Houston TX, USA

ARTICLE INFO

Article History:
Received 1 December 2020
Revised 24 January 2021
Accepted 2 February 2021
Available online 26 February 2021

Keywords:
Androgen receptor gene

ABSTRACT

Background: While SARS-CoV-2 similarly infects men and women, COVID-19 outcome is less favorable in men. Variability in COVID-19 severity may be explained by differences in the host genome.

Methods: We compared poly-amino acids variability from WES data in severely affected COVID-19 patients versus SARS-CoV-2 PCR-positive oligo-asymptomatic subjects.

Findings: Shorter polyQ alleles (≤22) in the androgen receptor (AR) conferred protection against severe outcome in COVID-19 in the first tested cohort (both males and females) of 638 Italian subjects. The association between long polyQ alleles (≥23) and severe clinical outcome (p = 0.024) was also validated in an independent cohort of Spanish men <60 years of age (p = 0.014). Testosterone was higher in subjects with AR long-
polyQ, possibly indicating receptor resistance ($p = 0.042$ Mann-Whitney U test). Inappropriately low serum testosterone level among carriers of the long-polyQ alleles ($p = 0.0004$ Mann-Whitney U test) predicted the need for intensive care in COVID-19 infected men. In agreement with the known anti-inflamatory action of testosterone, patients with long-polyQ and age \geq60 years had increased levels of CRP ($p = 0.018$, not accounting for multiple testing).

Interpretation: We identify the first genetic polymorphism that appears to predispose some men to develop more severe disease. Failure of the endocrine feedback to overcome AR signaling defects by increasing testosterone levels during the infection leads to the polyQ tract becoming dominant to serum testosterone levels for the clinical outcome. These results may contribute to designing reliable clinical and public health measures and provide a rationale to test testosterone as adjuvant therapy in men with COVID-19 expressing long AR polyQ repeats.

Funding: MIUR project “Dipartimenti di Eccellenza 2018-2020” to Department of Medical Biotechnologies University of Siena, Italy [Italian D.L. n.18 March 17, 2020] and “Bando Ricerca COVID-19 Toscana” project to Azienda Ospedaliero-Universitaria Senese. Private donors for COVID-19 research and charity funds from Intesa San Paolol.

© 2021 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)

Research in context

Evidence before this study

We searched on Medline, EMBASE, and Pubmed for articles published from January 2020 to August 2020 using various combinations of the search terms “sex-difference,” “gender” AND SARS-CoV-2, or COVID. Epidemiological studies indicate that men and women are similarly infected by COVID-19, but the outcome is less favorable in men, independently of age. Several studies also showed that patients with hypogonadism tend to be more severely affected. A prompt intervention directed toward the most fragile subjects with SARS-CoV-2 infection is currently the only strategy to reduce mortality. Glucocorticoid treatment is a cost-effective measure to improve the outcome of severe cases. Clinical algorithms have been proposed, but little is known on the ability of genetic profiling to predict outcome and disclose novel therapeutic strategies.

Added-value of this study

In a cohort of 1178 men and women with COVID-19, we used a supervised Machine Learning approach on a synthetic representation of genetic variability due to poly-amino acid repeats. Comparing the genotype of patients with extreme manifestations (severe vs. asymptomatic), we found an association between the poly-glutamine repeat number of the androgen receptor (AR) gene, serum testosterone concentrations, and COVID-19 outcome in male patients. Failure of the endocrine feedback to overcome AR signaling defects by increasing testosterone levels during the infection leads to the fact that polyQ ≥ 23 becomes dominant to testosterone levels for the clinical outcome.

Implications of all the available evidence

We identify the first genetic polymorphism predisposing some men to develop a more severe disease irrespectively of age. Based on this, we suggest that sizing the AR poly-glutamine repeat has important implications in the diagnostic pipeline of patients affected by life-threatening COVID-19 infection. Most importantly, our studies open to the potential of using testosterone as adjuvant therapy for patients with severe COVID-19 having defective androgen signaling, defined by this study as ≥ 23 PolyQ repeats, and inappropriately low levels of circulating androgens.

1. Introduction

Alongside the mode of transmission, viral load, comorbidities, and demographic factors (such as age and sex), the host genetic background appears to play an important role in COVID-19 severity and progression [1–8]. We hypothesized that common polymorphisms may contribute to COVID-19 severity, including poly-amino acids repeat polymorphisms, such as the polyQ tract of the Androgen Receptor (AR). AR contains in its N-terminus domain a polymorphic polyQ tract, ranging between 9 and 36 repeated CAG units in the normal population [9]. In vitro and in vivo studies have demonstrated that the transactivation potential of AR is inversely correlated to repeat length, and Q-tract size can significantly influence androgen-dependent physiological functions [9–12].

Several lines of evidence lead to the concept that androgens are relevant to both SARS-CoV-2 infection and COVID-19 disease presentation; however, they seem to have a Janus bifacial way of action [13,14]. On one side, androgens promote the transcription of the TMPRSS2 gene that encodes a serine protease known to prime the spike (S) protein of coronaviruses, facilitating viral entry into the cells [15]. On the other hand, hypogonadism is known to correlate with severe COVID-19 [16] and other chronic conditions, partly due to the loss of attenuation of the inflammatory immune response exerted by testosterone (T) [17–19].

2. Methods

2.1. Patients

We performed a nested case-control study (NCC). Cases and controls were drawn from the Italian GEN-COVID cohort of 1178 subjects infected with SARS-CoV-2 diagnosed by RT-PCR on nasopharyngeal swab [2]. Demographic characteristics of patients enrolled in the cohort are summarized in Table 1 according to their clinical status. In the current NCC study, cases were selected according to the following inclusion criteria: i. CPAP/biPAP ventilation (230 subjects); ii. endotracheal intubation (108 subjects). As controls, 300 subjects were selected using the sole criterion of not requiring hospitalization. Exclusion criteria for both cases and controls were i. SARS-CoV-2 infection not confirmed by PCR; ii. non-caucasian ethnicity. Demographic characteristics of the subjects in the NCC study are summarized in Table 1. A similar Spanish cohort, composed of male COVID-19 patients (117 cases and 41 controls) was used to validate the results in another representative European population highly impacted by COVID-19. All subjects were white European. The Spanish Covid HGE cohort is under IRB approval PR127/20 from Bellvitge University Hospital, Barcelona, Spain.
The work was financially supported by MIUR project “Dipartimenti di Eccellenza 2018–2020” to Department of Medical Biotechnologies University of Siena, Italy (Italian D.L. n.18 March 17, 2020) and by “Bando Ricerca COVID-19 Toscana” project to Azienda Ospedaliero-Universitaria Senese. It was also funded by private donors for COVID-19 research and charity funds from Intesa San Paolo “Fondo di Beneficenza n. b/2020/0119”.

The sponsors of the study had no role in study design, data collection, data analysis, data interpretation, or decision to publish.

2.2. Ethics

The GEN-COVID study was approved by the University Hospital of Siena Ethics Review Board (Protocol n. 16917, dated March 16, 2020). This observational study has been inserted in www.clinicaltrial.org (NCT04549831). The Spanish Covid HGE cohort is under IRB approval PR127/20 from Bellvitge University Hospital, Barcelona Spain. Written informed consent was obtained from all individuals who contributed samples and data.

2.3. Analysis of triplets size in the AR locus

To establish allele sizes of the polymorphic triplet in the AR locus, we used the HUMARA assay with minor modifications [20]. Specifically, we performed a fluorescent PCR followed by capillary electrophoresis on an ABI3130 sequencer. Allele size was established using the Genescan Analysis software.

2.4. Binary representation of WES data

Variants calling was performed according to the GATK4 best practice guidelines, using BWA for mapping, and ANNOVAR for annotating. WES data were represented in a binary mode on a gene-by-gene basis. Poly-amino acids triplet repeats were represented in a binary mode: long and short repeats in respect to the reference sequence on the genome. A total of 40 genes with 43 triplet repeat regions were taken from UniProtKB (Supplementary Table S1). In the boolean representation of poly-amino acids triplet repeats, for each of these 40 genes two features were defined, Dij and lij, with Dij being equal to 1 if gene i in sample j has a repeated region shorter than the reference, 0 otherwise, and lij being equal to 1 if gene i in sample j has a repeated region longer than the reference, 0 otherwise.

2.5. LASSO logistic regression

We adopted the LASSO logistic regression that provides a feature selection method within the classification tasks able to enforce both the sparsity and the interpretability of the results. The weights of the logistic regression algorithm can be interpreted as the importance of the subset of the most relevant features for the task [21].

The input features of the LASSO logistic regression are the poly-amino acids triplet repeats as well as gender, comorbidity (1 if there is at least one comorbidity) and age, the latter as a continuous variable normalized between 0 and 1. Comorbidities were defined as the presence of one or more clinical conditions (i.e. cardiac, endocrine, neurological, neoplastic diseases) at the time of infection. During the fitting procedure, the class slight unbalancing is tackled by penalizing the misclassification of the minority class with a multiplicative factor inversely proportional to the class frequencies. The data pre-processing was coded in Python, whereas for the logistic regression model we used the scikit-learn module with the liblinear coordinate descent optimization algorithm.

2.6. Total T measurement

Blood samples were collected after an overnight fast, immediately centrifuged at 4 °C and stored at -20 °C until assayed. Serum and plasma total T (TT), SHBG levels in plasma and serum LH were measured following standard procedures.

Serum TT was measured using the Access testosterone assay (Beckman Coulter Inc., Fullerton, CA, USA) with a minimum detection limit of 0.35 nmol/L. Reference range for this assay was 6.07–27.1 nmol/L and liquid chromatography - tandem mass spectrometry (LC-MS/MS) according to a previously validated method provided with reference values between 9.8–28.4 nmol/L [22]. Thawed plasma underwent 15 min incubation at 56 °C for virus inactivation, and TT measured in 100 µL of plasma, with sensitivity limit being 0.270 nmol/L, imprecision ranging 9.8 to 0.7% and accuracy 90.6 to 101.5% at concentration levels between 1.12 and 39.2 nmol/L. A stability test under viral inactivation conditions was performed in 6 samples, revealing a T mean (min-max) % loss of 9.7% (4.6–16.7%).

SHBG levels were measured in plasma samples using Quantikine ELISA Kit (DHSB G0B, R&D Systems, Minneapolis, MN, USA) according to the manufacturers’ instructions. Serum LH was measured using “Access LH assay” a chemiluminescent, two-step enzyme immunoassay (Beckman Coulter Inc., Fullerton, CA, USA). Sensitivity for the LH determination is 0.2 mIU/mL. Reference range in adult males for this assay is 1.2–8.6 mIU/mL.

2.7. Statistical analysis

Since serum and plasma T values were not normally distributed, the statistical analyses were performed using non-parametric tests. When appropriate, transformation was used for skewed data in regression models. We used the Mann-Whitney U test to compare T levels in males with AR long-polyQ (≥23) versus males with short-polyQ repeat (<22). Logistic regression analysis was performed to test the contribution of age, T, and the number of polyglutamine repetitions on COVID-19 outcome. The only prespecified interaction tested was the T by polyQ (categorical). Box-Tidwell procedure was used to assess linearity and the Hosmer and Lemeshow to assess goodness of fit test. Multicollinearity was assessed by variance inflation factor, and dealt with by dropping the offending variables from the analysis on the basis of clinical grounds.

2.8. Role of funders

Table 1: Demographics characteristics of the Italian GEN-COVID Cohort and NCC study.

	Intubation	CPAP/BiPAP Ventilation	Oxygen Therapy	Hospitalized w/o respiratory support	Oligo/asymptomatic w/o hospitalization
GEN-COVID					
Number of Subjects	108	230	352	188	300
Male/Female	80/28	157/73	208/144	104/84	116/184
Age males (years)	61.52±11.43	62.75±13.48	63.41±14.53	55.99±15.44	47.40±13.23
Age females (years)	63.71±13.96	66.23±15.25	68.40±14.74	52.88±16.39	48.61±11.06
NCC study					
Number of Subjects	338				
Male/Female	237/101				
Age males (years)	62.34±12.84				
Age females (years)	65.53±14.94				

*Oligosymptomatic: individuals with minor symptoms of COVID-19 (mild fever, cough, sore throat, etc.)
writing of the manuscript. The authors collected the data, and had full access to all of the data in the study. They also had the final decision and responsibility to submit the study results for publication.

3. Results

3.1. Testing the role of common poly-amino acid repeat polymorphisms in COVID-19 outcome

In order to test the role of common poly-amino acid repeat polymorphisms in determining COVID-19 clinical severity, we performed a NCC, selecting the extreme phenotypic ends of our entire GEN-COVID cohort (Table 1 and Fig. 1). Among 18,439 annotated genes, we selected those with amino acid repeats, namely 40 genes, and represented them as a boolean variable. Logistic regression with LASSO regularization analysis identified AR as the only protective gene (Fig. 1, panel a). The 10-fold cross-validation provides good performances in terms of accuracy (77%), precision (81%), sensitivity (77%), specificity (78%) and Area Under the Curve (AUC) score (86%) (Fig. 1, panel b). The performances of the logistic regression without LASSO regularization for the selected set of features (age, gender, comorbidity and AR gene) are 79% accuracy, 81% precision, 81% sensitivity, 78% specificity, 88% roc-auc. The model shows a slight decrease of almost all the performance measures when the AR gene is removed from the set (accuracy -1.2%, precision -1.3%, sensitivity -1.4%, specificity -1.2%, roc-auc +0.3%). Finally, the logistic regression

Fig. 1. LASSO logistic regression. The bar of the LASSO logistic regression beta coefficients represents the importance of each feature for the classification task (Fig. 1) (Panel a). The positive beta coefficients of the LASSO (upward bars) reflect a susceptible behaviour of the features to the target COVID-19 disease, whereas the negative coefficients (downward bars) a protective action. The calculated odd ratio of AR short repeats (≤22) is 0.79 i.e. protective. Therefore, the odd ratio of long repeats (≥23) is 1/0.79 = 1.27 i.e. severity. Panel b: Table reporting the averages and the standard deviations of accuracy, precision, sensitivity, specificity, and ROC-AUC scores for the 10-folds of the cross-validation.
on the male cohort with the AR gene alone provides results quite higher than the random guess (accuracy 58%, precision 71%, sensitivity 64%, specificity 55%, roc-auc 55%).

3.2. Validation of polyQ polymorphism by sizing the PolyQ repeat of the AR gene

In order to validate the results on AR obtained by LASSO logistic regression, we sized the number of triplets in the male subset (351 subjects) using the gold standard technique that uses a fluorescent PCR reaction followed by the use of GeneScan Analysis software® (Applied Biosystems) [20]. We identified a 98% concordance between the results of the two techniques in measuring the polyQ repeats. Based on the AR polyQ length, male patients were subdivided into two categories, those having a number of PolyQ repeats less than or equal to 22 repeats, and those having a number of PolyQ repeats greater than or equal to 23 repeats, being 23 repeats the reference sequence on genome browsers and the reported cut-off value [23-24]. We found that PolyQ repeats below 22 are enriched in the asymptomatic cohort of males. The difference was statistically significant in the group of males younger than 60 years of age in which genetic factors are expected to have a major impact (p-value 0.024 by χ² test) (Table 2; Supplementary Table S2).

3.3. Validation of polyQ polymorphism in the Spanish cohort

We then sized the polyQ repeat in an independent cohort consisting of 158 <60 years old Spanish males without known comorbidities (117 cases and 41 controls). The association with shorter repeats (<22) and protection was confirmed (p-value 0.014 by χ² test) (Table 3).

3.4. Males with longer polyQ have receptor resistance

To functionally link the length of the PolyQ repeats to AR functionality, we measured TT in 183 men using LCMS/MS (Supplementary Table S2). TT was higher in patients carrying ≥23 vs <22 glutamines (13.45 vs 11.23 nmol/L, p-value 0.042), reflecting reduced negative feedback from the less active receptors present in patients carrying a PolyQ repeat of ≥23. This difference was evident also comparing the TT value and polyQ repeats in the case and the control group (Fig. 2).

3.5. Unbalanced T-AR axis in males with longer polyQ repeats

The hormonal status of the entire male cohort revealed lower TT and calculated free T levels and higher SHBG levels with increasing age (Supplementary Table S3). To evaluate whether the AR receptor reduced activity resulted in a worse clinical outcome, we measured TT in 183 men using LCMS/MS (Supplementary Table S2). TT was higher in patients carrying ≥23 vs <22 glutamines (13.45 vs 11.23 nmol/L, p-value 0.042), reflecting reduced negative feedback from the less active receptors present in patients carrying a PolyQ repeat of ≥23. This difference was evident also comparing the TT value and polyQ repeats in the case and the control group (Fig. 2).

3.6. Inflammatory phenotype in males with longer polyQ repeats

Finally, we tested the relationship between the AR polyQ repeat size and 5 laboratory markers of immunity/inflammation, including CRP, Fibrinogen, IL6, CD4 and NK count. We found that older (≥60) males with AR polyQ tract ≥23 have a higher (55.92 versus 48.21 mg/dl) mean value of CRP (p-value 0.018, not accounting for multiple testing) and lower mean value of Fibrinogen and a trend of higher IL6 (Table 4).

4. Discussion

We employed machine learning methodologies to identify a set of genes involved in the severity of COVID-19. In the presence of very high dimensionality, as for instance in a WES study, it is crucial to select the most predictive genes representing patterns of variation (mutations or variants) in subjects with different classes of response (i.e., disease state: from asymptomatic to severe cases). This problem is even more complex in diseases where multiple genes are involved in determining the severity and clinical variability of the pathology. Here, we wanted to represent poly-amino acids repeat

Table 3

Validation in Spanish cohort	<22	≥23	Marginal Row Totals
Cases	51 (43.6%)	66 (56.4%)	117 (74.1%)
Controls	27 (65.9%)	14 (34.1%)	41 (25.9%)
Marginal Column Totals	78 (49.4%)	80 (50.6%)	158 (Grand Total)

*p-value (cases vs controls)=0.014 (Significant at p<0.05)
polymorphisms that are typically missed in classical GWAS analysis, which concentrates on bi-allelic polymorphisms.

We used a machine learning approach and logistic regression with a LASSO regularization to test if using such a simplified representation could lead to a reliable prediction of extreme clinical outcomes (asymptomatic versus severely affected). This approach enabled us to predict such clinical outcomes with 77% sensitivity.

\(AR \) contains a highly variable polyglutamine repeat (poly-Q) located in the N-terminal domain of the protein, spanning from 9 to 36 glutamine residues in the normal population [5]. \(AR \) polyQ length correlates with receptor functionality, with shorter polymorphic glutamine repeats typically associated with higher and longer PolyQ tracts with lower receptor activity [5]. \(AR \) is expressed in both males and females, but the bioavailability of its ligands T and dihydroT (DHT) differs significantly, being much higher in males. As previous studies linked male hypogonadism to a poorer outcome in COVID-19 patients we decided to focus on male patients and demonstrated that shorter polymorphic glutamine repeats (≤22) confer protection against life-threatening COVID-19 in a subpopulation of individuals with age <60 years.

We also confirmed the association between polyQ size and receptor activity. Specifically, we showed that longer polyQ size (≥23) is associated with higher serum T levels, suggestive of impaired negative feedback (p=0.004 at Mann-Whitney U test) at the level of the hypothalamus and pituitary gland. While this is compensated in healthy subjects [26], during non-gonadal illnesses (NGI) such as COVID-19, some patients are unable to compensate for the reduced AR activity with higher T levels [27]. The result is a status of reduced androgenicity even in the presence of apparently normal T values [27].

As T is known to have an immunomodulatory activity attenuating inflammatory immune responses [26–32], we hypothesized that a long PolyQ repeat would lead to a pro-inflammatory status heralded by increased proinflammatory markers [19,33] by conferring decreased AR transcriptional activity. Conversely, men with a more active receptor (short PolyQ tract) would be protected because they can tame the inflammatory response and increase survival regardless of serum T levels. We found that -CRP-, one of the main inflammatory markers, was higher in subjects with a long AR PolyQ tract. This observation not only is in line with the known anti-inflammatory function of T, but also reinforces the functional importance of the AR PolyQ tract and its association with COVID-19 clinical outcome. Furthermore, this observation suggests that CRP is hierarchically more relevant than serum T level, which can be inappropriately normal and mask a status of low androgenicity in men with a long PolyQ repeat.

The allele distribution of the PolyQ repeat length varies among different populations, with the shortest in Africans, medium in Caucasians, and longest in Asians [34]. Interestingly, WHO data on mortality rates during the first pandemic wave indicated a higher fatality rate in China and Italy (https://covid19.who.int/) [35] with respect to African. Hence, \(AR \) polyQ length variability could represent an
studies failed to link polyQ with mortality, in healthy subjects [26] or cohort - when compared to other cancers. Interestingly, previous cancer patients -who tend to have smaller polyQ repeats, as in our including the early reports of a slightly better outcome in prostate serum T levels. This concept helps to solve some inconsistencies, sate for the reduced AR transcriptional activity, leading to the conclu-
tion. We present a method that can predict if subjects organized a clinical trial where patients selected based on their serum T concentration and polyQ repeat size are randomized to receive T vs. placebo. Such study could introduce the concept that a simple genetic test measuring the AR polyQ repeat can be used in male patients to screen for those who are more likely to benefit from T therapy.

Variants of another X-linked gene, TLR7, have been associated with severe COVID-19 outcomes in young men [6]. In the 2 reported families, the rare TLR7 mutations segregated as a highly penetrant monogenic X-linked recessive trait. While variants in TLR7 gene are expected to account for a small number of severely affected cases, our findings involve a much larger number of subjects, as long polyQ alleles are relatively common [40]. Overall, X-linked genetic variants keep coming up as important for defining severe COVID-19 cases in males.

In conclusion, we present a method that can predict if subjects infected by SARS-CoV-2 are at risk for life-threatening complications. This approach has 77% accuracy, 81% precision, 77% sensitivity, and 78% specificity. Furthermore, we present evidence suggesting that a more active AR has the potential to confer protection against COVID-19 severity. If confirmed, these observations should be followed by properly conducted clinical trials exploring if T replacement may decrease morbidity and mortality in patients affected by the most severe forms of the disease. Finally, as shown by regression analysis, ORs ranges between 1.26 and 1.45, therefore the risk of carrying a longer AR is much smaller than other already known strong predictors such as age and sex, but still is highly significant, relatively common, and among the very few known genetic predictors of COVID-19 outcome.

| Table 4 | Correlation between polyQ repeats in AR gene and laboratory values |
CRP M≥60y cases	CRP M<60y cases				
Triplets	Mean	Count	Triplets	Mean	Count
≥22	48.21	78	≥22	54.5	43
≥23	55.92	38	≥23	26.41	29
p-value = 0.018 (Significant at p<0.05)	p-value = 0.2				

Fibrinogen M≥60y cases	Fibrinogen M<60y cases				
Triplets	Mean	Count	Triplets	Mean	Count
≥22	401.33	57	≥22	316.93	22
≥23	320.34	27	≥23	356.91	19
p-value = 0.093	p-value = 0.53				

IL6 times the upper limit of normal M≥60y cases	IL6 times the upper limit of normal M<60y cases				
Triplets	Mean	Count	Triplets	Mean	Count
≥22	54.56	40	≥22	40.43	17
≥23	75.78	16	≥23	31.8	14
p-value = 0.249	p-value = 0.81				

CD4 Lymphocytes M≥60y cases	CD4 Lymphocytes M<60y cases				
Triplets	Mean	Count	Triplets	Mean	Count
≥22	264.06	32	≥22	503.68	16
≥23	357.52	21	≥23	396.13	15
p-value = 0.22	p-value = 0.45				

NK Cells M≥60y cases	NK Cells M<60y cases				
Triplets	Mean	Count	Triplets	Mean	Count
≥22	70.71	28	≥22	147.3	13
≥23	102.25	16	≥23	107.14	14
p-value = 0.179	p-value = 0.098				
Declaration of Competing Interest

The authors declare no competing interests.

Additional information

GEN-COVID Multicenter Study (https://sites.google.com/dbm.unii.it/gen-covid)

Francesca Montagnani6,22, Laura Di Sarno6,23, Andrea Tommasi4,5,e, Maria Palmieri4,5, Massimiliano Fabbiani4,5, Barbara Rossetti22, Gia- como Zanelli6,25, Fausta Sestini22, Laura Bergantini23, Miriana D’Alessandro23, Paolo Cameli23, David Bennett23, Federico Annedda24, Simona Marcantonio24, Sabino Scolletta24, Federico Franchi24, Maria Antonietta Mazzeli25, Susanna Guerrini25, Edoardo Conticini25, Luca Cantarini25, Bruno Frediani25, Danilo Taconii26, Chiara Spertilli27, Marco Feri28, Alice Donati28, Raffaele Scala28, Luca Guidelli29, Genni Spargi30, Marta Corradi30, Cesira Nencioni31, Leonardo Croci31, Gian Piero Caldarelli32, Maurizio Spagnesi32, Paolo Piacentini33, Maria Ban- mici67, Elisabetta Menatti68, Tullio Trotta69, Ferdinando Giannatta- nanda, University of Siena, Policlinico Le Scotte, Italy
34Rheumatology Unit, Department of Medicine, Surgery and Neu- ral Sciences, University of Siena Hospital, Siena, Italy
35Unit of Infectious Diseases, ASST FBF-Sacco, Milan, Italy
36Department of Medical, Surgical and Neuro Sciences and Radio- 1c Sciences, Unit of Intensive Care Medicine, Siena University Hospital, Italy
37Infectious Diseases Unit, Azienda Ospedaliera Universitaria Senese, Siena, Italy
38Division of Infectious Diseases and Immunology, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
39Department of Anesthesia and Intensive Care, University of Modena and Reggio Emilia, Modena, Italy
40Department of Medical and Surgical Sciences for Children and Adults, University of Modena and Reggio Emilia, Modena, Italy
41Department of Laboratory Sciences and Infectious Diseases, FON- TOSA Sud Est, Italy
42Department of Preventive Medicine, Azienda USL Toscana Sud Est, Italy
43Territorial Scientific Technician Department, Azienda USL Toscana Sud Est, Italy
44Clinical Chemical Analysis Laboratory, San Donato Hospital, Are-zzo, Italy
45Chirurgia Vascolare, Ospedale Maggiore di Crema, Italy
46Department of Health Sciences, Clinic of Infectious Diseases, ASST Santi Paolo e Carlo, University of Milan, Italy
47Division of Infectious Diseases and Immunology, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
48Clinical and Translational Medicine, University of Brescia, Italy
49Department of Infectious and Tropical Diseases, University of Perugia, Perugia, Italy
50Department of Infectious Diseases Clinic, "Santa Maria" Hospital, University of Perugia, Perugia, Italy
51Department of Infectious Diseases, Treviso Hospital, Local Health Unit 2 Marca Trevigiana, Treviso, Italy
52Department of Infectious Diseases, Mestre Hospital, Venezia, Italy
53Infectious Diseases Clinic, ULSS1, Belluno, Italy
54Department of Molecular Medicine, University of Padova, Italy
55Department of Infectious and Tropical Diseases, ASST Brescia and ASST Spedali Civili Hospital, Brescia, Italy
56Department of Molecular and Translational Medicine, University of Brescia, Italy; Clinical Chemistry Laboratory, Cytogenetics and Molecular Genetics Section, Diagnostic Department, ASST Spedali Civili di Brescia, Italy
57Unit of Respiratory Diseases and Lung Transplantation, Department of Internal and Specialized Medicine, University of Siena, Italy
58Division of Medical Genetics, Fondazione IRCCS Casa Sollievo della Sofferenza Hospital, San Giovanni Rotondo, Italy
59Department of Medical Sciences, Fondazione IRCCS Casa Sollievo della Sofferenza Hospital, San Giovanni Rotondo, Italy
60Clinical Trial Office, Fondazione IRCCS Casa Sollievo della Sofferenza Hospital, San Giovanni Rotondo, Italy
61Department of Health Sciences, University of Genova, Genova, Italy
62Infectious Diseases Clinic, Policlinico San Martino Hospital, IRCCS for Cancer Research Genova, Italy
63Microbiology, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Catholic University of Medicine, Rome, Italy
64Department of Laboratory Sciences and Infectious Diseases, Fon- dazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
65Department of Cardiovascular Diseases, University of Siena, Siena, Italy
66Otolaryngology Unit, University of Siena, Italy
67Department of Internal Medicine, ASST Valtellina e Alto Lario, Sondrio, Italy
Study Coordinator: Oncologia Medica e Ufficio Flussi Sondrio, Italy.
First Department: Luigi Curto Hospital, Polla, Salerno, Italy.
Local Health Unit: Pharmaceutical Department of Grosseto, Toscana Sud Est Local Health Unit, Grosseto, Italy.
U.O.C. Laboratorio di Genetica Umana, IRCCS Istituto G. Gaslini, Genova, Italy.
Infectious Diseases Clinics, University of Modena and Reggio Emilia, Modena, Italy.
Department of Respiratory Diseases, Azienda Ospedaliera di Cremona, Cremona, Italy.
U.O.C. Medicina, ASST Nord Milano, Ospedale Bassini, Cinisello Balsamo (MI), Italy.
Istituto Auxologico Italiano, IRCCS, Department of Cardiovascular, Neural and Metabolic Sciences, San Luca Hospital, Milan, Italy.
Department of Medicine and Surgery, University of Milano-Bicocca, Milan, Italy.
Istituto Auxologico Italiano, IRCCS, Center for Cardiac Arrhythmias of Genetic Origin, Milan, Italy.
Istituto Auxologico Italiano, IRCCS, Laboratory of Cardiovascular Genetics, Milan, Italy.
Member of the European Reference Network for Rare, Low Prevalence and Complex Diseases of the Heart-ERN GUARD-Heart.

Spanish COVID HGE
Sergio Aguilera-Albesa, Sergiu Albu, Carlos Casanovas, Valentina Vélez-Santamaría, Juan Pablo Horcajada, Judit Vil-lar, Agustí Rodríguez-Palmero, Montserrat Ruiz, Luis M. Seijo, Jesús Troya, Juan Valencia-Ramos, Marta Gür.
Navarra Health Service Hospital, Pamplona, Spain.
Institut Guttmann Foundation, Badalona, Barcelona, Spain.
Bellvitge University Hospital, L’Hospiatet de Llobregat, Barcelona, Spain.
Hospital del Mar, Parc de Salut Mar, Barcelona, Spain.
University Hospital Germans Trias i Pujol, Badalona, Barcelona, Spain.
Clinica Universitaria de Navarra, Madrid, Spain.
Infanta Leonor University Hospital, Madrid, Spain.
University Hospital of Burgos, Burgos, Spain.
CNAG-CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Carrer Baldari i Reixac 4, 08028, Barcelona, Spain.

Contributors
EF, FM, AR designed the study. CF and IM, were in charge of biological samples’ collection and biobanking. MB, FF were in charge of clinical data collection. MB, FF, AR, and FM performed analysis/interpretation of clinical data. UP, FF and MM performed T measurement by LC-MS/MS. EDG, AS, AP and LPS performed the validation of association between shorter repeats and protection in a Spanish cohort. MM and AI critically reviewed the manuscript and interpreted clinical data/androgen physiology/pathological processes. SA and MB were in charge of DNA isolations and the Network for Italian Genomes (NIG), http://www.nig.cineca.it, for its support. We thank private donors for the support provided to A. R. (Department of Medical Biotechnologies, University of Siena) for the COVID-19 host genetics research project (D.L.n.18 of March 17, 2020). We also thank the COVID-19 Host Genetics Initiative (https://www.cov id19hg.org/), MIUR project “Dipartimenti di Eccellenza 2018-2020” to the Department of Medical Biotechnologies University of Siena, Italy and “Bando Ricerca COVID-19 Toscana” project to Azienda Ospedaliero-Universitaria Senese. We also thank Intesa San Paolo for the 2020 charity fund dedicated to the project N. B/2020/0119 “Identificazione delle basi genetiche determinanti la variabilita clinica della risposta a COVID-19 nella popolazione italiana”.

Data availability and data sharing statement
The samples referenced here are housed in the GEN-COVID Patient Registry and the GEN-COVID Biobank and are available for sharing. The sequencing data are deposited in http://www.nig.cineca.it, specifically, http://nigdb.cineca.it and available for consultation. For further information, you may contact the corresponding author, Prof. Alessandra Renieri (e-mail: alessandra.renieri@unisi.it).

Supplementary materials
Supplementary material associated with this article can be found, in the online version, at doi:10.1016/j.ebiom.2021.103246.

References
[1] Benetti E, Giliberti A, Emilozzi A, et al. Clinical and molecular characterization of COVID-19 hospitalized patients. PLoS One 2020;15(11):e0242534 Published 2020 Nov 18. doi:10.1371/journal.pone.0242534.
[2] Daga S, Fallarini C, Baldassarri M, et al. Employing a systematic approach to biobanking and analyzing clinical and genetic data for advancing COVID-19 research [published online ahead of print, 2021 Jan 17]. Eur J Hum Genet. 2021;1-15. doi:10.1038/s41431-020-00793-7.
[3] Zhang X, Tan Y, Ling Y, et al. Viral and host factors related to the clinical outcome of COVID-19. Nature 2020;583(7816):347-40. doi:10.1038/s41586-020-2355-0.
[4] Ellinghaus D, Degenhardt F, Bujanda L, et al. Genomewide association study of severe Covid-19 with respiratory failure [published online ahead of print, 2020 Jun 29]. N Engl J Med. 2020 NEJMoa2020283. doi:10.1056/NEJMoa2020283.
[5] Zhang Q, Bastard P, Liu Z, et al. Inborn errors of type I IFN immunity in patients with life-threatening COVID-19. Science 2020;369:4557. Epub ahead of print. PMID:32972995. doi:10.1126/science.abb4570.
[6] van der Made CL, Simons A, Schuurs-Hoeijmakers J, et al. Presence of genetic variants among young men with severe COVID-19. JAMA 2020;324(7):1-11 Epub ahead of print. PMID:32706371; PMCID: PMC7382021. doi:10.1001/ jama.2020.13719.
[7] Bastard P, Rosen LB, Zhang Q, et al. Autoantibodies against type I IFNs in patients with life-threatening COVID-19. Science 2020;370(6515):eabd4585. Epub 2020 Sep 24. PMID:32972996. doi:10.1126/science.abb4585.
[8] Pivonello R, Aurienma RS, Pivonello C, et al. Sex disparities in COVID-19 severity and outcome: are men weaker or women stronger? [published online ahead of print, 2020 Nov 26]. Neuroendocrinology 2021;101(5). doi:10.1159/000513346.
[9] Callaert W, Christiaens V, Haelens A, Verrijdt G, Verhoeven G, Claessens F. Implications of a polyglutamine tract in the function of the human androgen receptor. Biochem Biophys Res Commun 2003;306(1):46–52. doi:10.1016/S0006-291X(03)00902-1.
[10] Simanainen U, Broglely M, Gao YR, et al. Length of the human androgen receptor glutamine tract determines androgen sensitivity in vivo. Mol Cell Endocrinol 2011;324:81–6. doi:10.1016/j.mce.2011.05.011.
[11] Tirabassi G, Cignarelli A, Perrini S, et al. Influence of CAG repeat polymorphism on the targets of testosterone action. Int J Endocrinol 2015;2015:298107. doi:10.1155/2015/298107.
[12] Lindström S, Ma J, Alshuler D, et al. A large study of androgen receptor germline variants and their relation to sex hormone levels and prostate cancer risk. Results from the national cancer institute breast and prostate cancer cohort consortium. J Clin Endocrinol Metab 2010;95(9):E1211–7. doi:10.1210/jc.2009-1911.
[13] Wambier CG, Goren A. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection is likely to be androgen mediated. J Am Acad Dermatol 2020;83(3):308-9. doi:10.1016/j.jaad.2020.04.032.
[14] Pozzilli P, Lenzi A. Commentary: testosterone, a key hormone in the context of COVID-19 pandemic. Metabolism 2020;108:154252. doi:10.1016/j.metabol.2020.154252.
[15] Hoffmann M, Kleine-Weber H, Schroeder S, et al. SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. Cell 2020;181(2):271–80.e8. doi: 10.1016/j.cell.2020.02.052.

[16] Rastrelli G, Di Stasi V, Inglesi F, et al. Low testosterone levels predict clinical adverse outcomes in SARS-CoV-2 pneumonia patients [published online ahead of print, 2020 May 20]. Andrology 2020 10.1111/and.12821. doi: 10.1111/and.12821.

[17] Van Vliet M, Spruit MA, Verleden G, et al. Hypogonadism, quadriceps weakness, and exercise intolerance in chronic obstructive pulmonary disease. Am J Respir Crit Care Med 2005;172(9):1105–11. doi: 10.1164/rccm.200501-1140OC.

[18] Mohan SS, Knuiman MW, Divitini ML, et al. Higher serum testosterone and dihydrotestosterone, but not oestradiol, are independently associated with favourable indices of lung function in community-dwelling men. Clin Endocrinol (Oxf) 2015;83(2):268–76. doi: 10.1111/cen.12738.

[19] Mohamad NV, Wong SK, Wan Hasan WN, et al. The relationship between circulating testosterone and inflammatory cytokines in men. Aging Male 2019;22(2):129–40. doi: 10.1177/136855381876487V.

[20] Allen RC, Zoghbi HY, Moseley AB, et al. Methylation of HpaII and HhaI sites near androgen modulation of pro-inflammatory and anti-inflammatory cytokines during preadipocyte differentiation. Horm Mol Biol Clin Investig 2010;4(1):483–8. doi: 10.1515/HMBCI.2010.059.

[21] Ackerman CM, Lowe LF, Lee H, et al. Ethnic variation in allele distribution of the androgen receptor (AR) CAG repeat length polymorphism in men. Mol Immunol 2012;50(12):216–21. doi: 10.1016/j.molimm.2011.09.013.

[22] Mengual L, Oriola J, Ascaso C, Ballesta E, Robles E, Gálvez A. Androgen receptor gene CAG repeat length polymorphism within the androgen receptor gene correlates with susceptibility to COVID-19/SARS-COV-2 in Italy and China. J Infect Dev Ctries 2020;14(5):1503–8. doi: 10.3855/jidc.12600.

[23] de Lusignan S, Dorward J, Correa A, et al. Risk factors for SARS-CoV-2 among patients in the oxford royal college of general practitioners research and surveillance centre primary care network: a cross-sectional study. Lancet Infect Dis 2020;20(9):1034–42. doi: 10.1016/S1473-3099(20)30371-6.

[24] McCoy J, Wambier CG, Herrera S, et al. Androgen receptor genetic variant predicts COVID-19 disease severity: a prospective longitudinal study of hospitalized COVID-19 male patients [published online ahead of print, 2020 Sep 25]. J Eur Acad Dermatol Venereol 2020;10.1111/jdv.16956. doi: 10.1111/jdv.16956.

[25] Wong PW, Lee HM, Lau ESH, et al. Interactive effects of testosterone and the androgen receptor CAG repeat length polymorphism on cardiovascular-renal events and mortality in men with diabetes. Diabetes Metab Res Rev 2019;35(1):e3081. doi: 10.1002/dmrr.3081.

[26] Canale D, Caglieresi C, Moschini C, et al. Androgen receptor polymorphism (CAG repeats) and androgenicity [published correction appears in Clin Endocrinol (Oxf)]. 2005 Oct; 63(4):482. Clin Endocrinol (Oxf) 2005;63(3):356–61. doi: 10.1111/j.1365-2265.2005.02154.x.