Title
Novel pathogenic VPS13A gene mutations in Japanese patients with chorea-acanthocytosis

Author(s)
Nishida, Yoshiaki / Nakamura, Masayuki / Urata, Yuka / Kasamo, Kei / Hiwatashi, Hanae / Yokoyama, Izumi / Mizobuchi, Masahiro / Sakurai, Kotaro / Osaki, Yasushi / Morita, Yukari / Watanabe, Masako / Yoshida, Kenji / Yamane, Kiyomi / Miyakoshi, Natsuki / Okiyama, Ryouichi / Ueda, Takehiro / Wakasugi, Noritaka / Saitoh, Yuji / Sakamoto, Takashi / Takahashi, Yuji / Shibano, Ken / Tokuoka, Hideki / Hara, Atsushi / Monma, Kazunari / Ogata, Katsuhisa / Kakuda, Keita / Mochizuki, Hideki / Arai, Takeo / Araki, Manabu / Fujii, Takeshi / Tsukita, Kazuto / Sakamaki-Tsukita, Haruhi / Sano, Akira

Citation
Neurology Genetics, 5(3): e332

Issue date
2019-06

Resource Type
Journal Article / 学術雑誌論文

Version
Publisher

Rights
© 2019 The Author(s). Published by Wolters Kluwer Health, Inc. on behalf of the American Academy of Neurology. This is an open-access article distributed under the terms of the Creative Commons Attribution-Non Commercial-No Derivatives License 4.0 (CCBY-NC-ND), where it is permissible to download and share the work provided it is properly cited. The work cannot be changed in any way or used commercially without permission from the journal.

DOI
10.1212/NXG.0000000000000332

URL
http://www.lib.kobe-u.ac.jp/handle_kernel/90006874

PDF issue: 2020-05-06
Novel pathogenic VPS13A gene mutations in Japanese patients with chorea-acanthocytosis

Yoshiaki Nishida, MD, Masayuki Nakamura, MD, PhD, Yuka Urata, MD, Kei Kasamo, MD, Hanae Hiwatashi, MS, Izumi Yokoyama, BS, Masahiro Mizobuchi, MD, PhD, Kotoro Sakurai, MD, PhD, Yasushi Osaki, MD, Yukari Morita, MD, Masako Watanabe, MD, PhD, Kenji Yoshida, MD, Kiyomi Yamane, MD, PhD, Natsuki Miyakoshi, MD, Ryouchi Okyama, MD, Takehiro Ueda, MD, PhD, Noritaka Wakisugi, MD, Yui Saitoh, MD, PhD, Takashi Sakamoto, MD, PhD, Yuji Takahashi, MD, PhD, Ken Shibano, MD, PhD, Hideki Tokuoka, MD, Atsushi Hara, MD, Kazunari Monma, MD, PhD, Katsuhisa Ogata, MD, PhD, Keita Kakuda, MD, Hideki Mochizuki, MD, PhD, Takeo Arai, MD, PhD, Manabu Araki, MD, PhD, Takeshi Fujii, MD, PhD, Kazuto Tsukita, MD, Haruhi Sakamaki-Tsukita, MD, and Akira Sano, MD, PhD

Neurol Genet 2019;5:e332. doi:10.1212/NXG.0000000000000332

Abstract

Objective
To identify mutations in vacuolar protein sorting 13A (VPS13A) for Japanese patients with suspected chorea-acanthocytosis (ChAc).

Methods
We performed a comprehensive mutation screen, including sequencing and copy number variation (CNV) analysis of the VPS13A gene, and chorein Western blotting of erythrocyte ghosts. As the results of the analysis, 17 patients were molecularly diagnosed with ChAc. In addition, we investigated the distribution of VPS13A gene mutations and clinical symptoms in a total of 39 molecularly diagnosed Japanese patients with ChAc, including 22 previously reported cases.

Results
We identified 11 novel pathogenic mutations, including 1 novel CNV. Excluding 5 patients with the unknown symptoms, 97.1% of patients displayed various neuropsychiatric symptoms or forms of cognitive dysfunction during the course of disease. The patients carrying the 2 major mutations representing over half of the mutations, exon 60–61 deletion and exon 37 c.4411C>T (R1471X), were localized in western Japan.

Conclusions
We identified 13 different mutations in VPS13A, including 11 novel mutations, and verified the clinical manifestations in 39 Japanese patients with ChAc.
Glossary

cDNA = complementary DNA; ChAc = chorea-acanthocytosis; CNV = copy number variation; gDNA = genomic DNA; qPCR = quantitative PCR; VPS13A = vacuolar protein sorting 13A.

Chorea-acanthocytosis (ChAc) is a rare, autosomal recessive neurodegenerative disease characterized by adult-onset chorea, involuntary orofacial movement, peripheral acanthocytes, and various neuropsychiatric symptoms with loss-of-function mutations in *vacuolar protein sorting 13A* (VPS13A), which consists of 73 exons spanning approximately 250 kb of chromosome 9q21. VPS13A encodes a protein with a molecular weight of approximately 360 kDa, named chorein. It is estimated that there are likely around 1000 ChAc cases in the world. Although more than 100 patients with ChAc have so far been reported in Japan, the distribution of VPS13A mutations in Japan has not been conclusively determined. In this study, we report novel mutations in Japanese patients with ChAc. In addition, we investigate their clinical symptoms.

Methods

Mutation analysis

Coding and flanking regions of VPS13A (NC_000009.11) were analyzed by Sanger sequencing on an ABI PRISM 3130 Avant Genetic Analyzer (Thermo Fisher Scientific, Waltham, MA). For patients 16 and 17, we performed copy number variation (CNV) analysis that has been previously described in detail.

Chorein analysis

We performed chorein Western blotting analysis that has been previously described in detail with minor modifications. We used polyvinylidene difluoride membranes from GE Healthcare (Little Chalfont, United Kingdom) or Merck Millipore.

Table 1 Profiles of the patients with ChAc in this study

Pt no.	AO (y)	S	C	Ac	Ch	O	Ep	NPS	FS	CK	AS	Res or Ori
1	35	M	ND	?	?	+	-	DI, Pica	?	+	+	Kochi
2	26	F	-	+	?	?	+	OCS, AOP, CDc	Sei	+	+	Tokyo
3	25	F	-	+	+	+	-	Ins	IMTL	+	-	Fukushima
4	18	F	-	+	+	+	+	Del, OCS, DI, CDc	Sei	+	+	Hokkaido
5	18	F	-	+	+	+	+	El, Hal, FLD, CDc	Sei	+	+	Hokkaido
6	35	M	-	+	+	+	-	DI, EFD	Cho	+	+	Tokyo
7	34	M	-	+	+	+	-	?	GD	+	+	Hyogo
8	39	M	-	+	+	+	-	CDc	OIM	+	+	Nagano
9	33	F	-	+	?	+	+	LOM, Vio, CDc	Sei	-	+	Nagano
10	42	F	-	+	?	-	+	Dem	Sei	+	+	Akita
11	36	F	+	?	+	-	-	OCS, CDc	Sei	-	+	Saitama
12	25	F	-	+	+	+	-	Cop	OIM	+	+	Kagawa
13	25	F	-	+	+	+	-	Mon, CDc	Sei	+	+	Ibaraki
14	20s	F	-	+	+	+	-	CDc	Cho	+	+	Shizuoka
15	37	M	-	+	+	?	Mon	OIM	+	+	Tokyo	
16	23	M	-	+	+	+	-	Irr, CDc	OIM	+	+	Nara
17	26	F	-	+	+	+	-	CDc	Sei	+	+	Nara

Abbreviations: ? = unknown; Ac = acanthocyte; AO = age at onset of first signs or symptoms (y); S = sex; AOP = alteration of personality; AS = atrophy of the corpus striatum on MRI or CT; C = chorein; CDc = cognitive decline; Ch = chorea; CK = elevated creatine kinase; Cop = coprolalia; Del = delusion; Dem = dementia; DI = disinhibition; EFD = executive function disorder; EI = emotional instability; Ep = epileptic episode; F = female; FLD = frontal lobe dysfunction; FS = first signs or symptoms; GD = gait disturbance; Hal = hallucination; IMTL = involuntary movement of the tongue and limbs; Ins = insomnia; Irr = irritability; LOM = lack of motivation; M = male; Mon = monologue; ND = not determined; NPS = neuropsychiatric symptom; OCS = obsessive-compulsive syndrome; OIM = oro-facial involuntary movement; Pt = patient; Res or Ori = place of residence or origin (Japanese prefecture); Sei = seizure; Vio = violence.
We used 2 primary antibodies, a commercially available rabbit polyclonal antibody against chorein (NBP1-85641; Novus Biologicals, Littleton, CO) and a generated rabbit polyclonal antibody against a synthetic oligopeptide antigen corresponding to amino acid residues 1816–1830 (ESDPEEENYKVPEYK) encoded by exon 43 of the VPS13A gene (Asahi Techno Glass, Chiba, Japan). Images were recorded by digital analyzers (Fuji fi lm LAS-1000; Fuji fi lm, Tokyo, Japan, or Fusion-Solo.7S; Vilber Lourmat, Collégien, France).

Patients

As the results of mutation analysis and chorein analysis, 17 Japanese patients were molecularly diagnosed with ChAc (table 1). We extracted the patient’s symptoms based on the clinical records.

Standard protocol approvals, registrations, and patient consents

Total DNA, RNA, and erythrocyte membrane protein from peripheral blood samples were taken from participants who had given written informed consent. Total DNA and RNA from postmortem brains were collected after written informed consent was obtained from a family member. The research protocol and consent form were approved by the Institutional Review Board of Kagoshima University.

Data availability statement

The data sets pertaining to the current study are available from the corresponding author upon reasonable request.

Results

Mutations identified by Sanger sequencing analysis

Using Sanger sequencing, we identified 10 novel mutations and 2 previously reported mutations in 15 patients (table 2). These comprised homozygous or compound heterozygous mutations. Five novel nonsense mutations (799C>T, 2532dupT, 2593C>T, 3562C>T, and 5881C>T) were found in 6 patients. In addition, 4 splice site mutations were found among 4 patients. These splice site mutations (145-2A>T, 2824+1 G>T, 8325G>A, and 8667+3A>T) were predicted to lead to exon skipping because of the loss of a functional splice acceptor or donor site. Exon skipping events in exons 3, 26, and 60 caused by 145-2A>T, 2824+1 G>T, and 8325G>A, respectively, were predicted to cause a frameshift resulting in a premature stop codon. On the other hand, exon 63 skipping caused by 8667+3A>T does not result in a frameshift because exon 63 consists of 114 bp multiples of codon length. Nonsense mutation of 4411C>T in exon 37 and gross deletion of exons 60–61, which have been previously reported, were found in 6 and 5 patients, respectively. A single nucleotide insertion mutation, which would cause a frameshift and premature stop codon, was found in patient 12.

Mutations identified by CNV analysis

CNV analysis was performed in samples from patients 16 and 17, for whom only a single heterozygous mutation was found by Sanger sequencing analysis. Quantitative PCR (qPCR)
and long-range PCR suggested a single gross duplication of exons 36–45 because the relative quantification values for these exons were approximately 1.5 fold (figure, A). Consequently, we performed individually designed PCR assays for both patients to enable sequencing of the duplication breakpoints. Sanger sequencing analysis, in which the PCR template included the junction of the duplication, revealed an abnormal sequence connecting exons 45 and 36 (figure, B).

Long-range PCR of gDNA covering the junction between exons 45 and 36 in both patients revealed bands corresponding to approximately 7,300 bp (figure, C). Exons 36–45 were tandemly duplicated, according to cDNA sequencing. The cDNA length of the duplication was 3754 bp, which would cause a frameshift and premature stop codon.

Chorein analysis
We performed chorein Western blotting of erythrocyte membranes of 16 patients. Western blotting revealed the complete absence of chorein in 15 patients. However, in patient 11, chorein immunoreactivity was markedly reduced, although the chorein band remained faintly present (figure, D).

Summary of 39 patients with ChAc
A summary of the distribution of VPS13A gene mutations and clinical symptoms in a total of 39 Japanese patients with ChAc, including 22 previously reported cases,4 can be given as follows: (1) average onset age was 29.9 ± 7.0 years; (2) the main symptoms at onset were involuntary movements,
epilepsy, neuropsychiatric symptoms, and/or cognitive dysfunction; (3) excluding 4 patients with the unknown data, all patients showed peripheral acanthocytosis; (4) excluding 2 patients with the unknown imaging results, 97.3% of patients showed atrophy of bilateral caudate heads in brain MRI or CT; (5) excluding 5 patients with the unknown symptoms, 97.1% of patients showed various psychiatric symptoms or forms of cognitive dysfunction; (6) excluding 5 patients with the unknown symptoms, 94.3% of patients showed involuntary orofacial movement; (7) excluding 2 patients with the unknown data, 91.9% of patients showed elevated creatine kinase; (8) excluding 6 patients with the unknown symptoms, 90.9% of patients showed chorea affecting all 4 limbs and trunk; (9) 55.1% of the mutations in Japanese patients with ChAc carried the 2 major mutations, exon 37 4411C>T (R1471X) and deletion of exons 60–61; and (10) there were individually different mutations in the remaining 44.9% of Japanese patients with ChAc.

Discussion

In the present study, we identified 11 novel pathogenic mutations and 2 previously reported mutations in 17 patients with ChAc and verified the clinical manifestations in 39 Japanese patients with ChAc. These mutations were distributed throughout the VPS13A gene, as were those in previous reports. Although we could not identify genotype-phenotype correlations, over a half of the Japanese patients with ChAc carried exon 37 4411C>T (R1471X) or deletion of exons 60–61. The patients carrying these mutations were mainly localized in Tokyo and western Japan, suggesting partial founder effects (figure, E).

In the CNV analysis, we found c.4115-459_5991+6444dup. At the break point junction, a repeated AAAA sequence, which was common between the 5’ end of intron 35 and the 3’ end of intron 45, was observed. This is presumed to be a microhomology-mediated break-induced replication.

Patient 11 carried an exon-intron junction mutation resulting in the removal of exon 63 during splicing. Although exon 63 consists of 114 bp with multiple codon lengths, chorein Western blotting revealed a considerable reduction of chorein in patient 11 (figure, D). Because the region of chorein corresponding to exon 63 contains a tetratricopeptide repeat motif, which has been reported to be involved in protein-protein interaction domains, we suggest that exon 63 is essential in the critically important protein interaction function of chorein.

In addition to the motor symptoms, patients with ChAc displayed high frequency of psychiatric symptoms, which may explain the previous report that VPS13A mutations predispose individuals to psychiatric disorders.

In the present study, we summarized the distribution of VPS13A mutations and manifestations in Japanese patients with molecularly diagnosed ChAc. To understand the natural disease history and for accurate prediction of ChAc prognosis, much longer monitoring periods of the disease course are required.

Acknowledgment

The authors thank all patients and their families for their participation. They also thank Ms. Meguro, Ms. Nishimura, and Ms. Shimomura for their technical assistance.

Study funding

This study was funded by Grants-in Aid from the Research Committee of CNS Degenerative Diseases, Research on Policy Planning and Evaluation for Rare and Intractable Diseases, Health, Labour and Welfare Sciences Research Grants, the Ministry of Health, Labour and Welfare, Japan, and in part by the Ministry of Education, Culture, Sports, Science and Technology KAKENHI (Grant No. 17H04250 to A.S. and No. 18K07606 to M.N.).

Disclosure

Disclosures available: Neurology.org/NG.

Publication history

Received by Neurology: Genetics December 19, 2018. Accepted in final form March 25, 2019.

Appendix Authors

Name	Location	Role	Contribution
Yoshiaki Nishida, MD	Kagoshima University	Author	Performed laboratory work and data analysis and prepared the manuscript
Masayuki Nakamura, MD, PhD	Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima	Corresponding author	Supervised the project, advised on laboratory work and data analysis, and prepared the manuscript
Yuka Urata, MD	Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima	Author	Advised on laboratory work
Kei Kasamo, MD	Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima	Author	Advised on data analysis
Hanae Hiwatashi, MS	Kagoshima University Graduate School of Medical and	Author	Performed laboratory work
Appendix (continued)

Author	Institution	Role
Izumi Yokoyama, BS	Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima	Author, Performed laboratory work
Masahiro Mizobuchi, MD, PhD	Nakamura Memorial Hospital, Hokkaido	Author, Collected clinical data and blood samples of study patients
Kotaro Sakurai, MD, PhD	Hokkaido University Graduate School of Medicine, Hokkaido	Author, Collected clinical data and blood samples of study patients
Yasushi Osaki, MD	Kochi Medical School, Kochi	Author, Collected clinical data and blood samples of study patients
Yukari Morita, MD	Kochi Medical School, Kochi	Author, Collected clinical data and blood samples of study patients
Masako Watanabe, MD, PhD	Shinjuku Neuro Clinic, Tokyo	Author, Collected clinical data and blood samples of study patients
Kenji Yoshida, MD	Ohta-Atami Hospital, Fukushima	Author, Collected clinical data and blood samples of study patients
Kiyomi Yamane, MD, PhD	Ohta-Atami Hospital, Fukushima	Author, Collected clinical data and blood samples of study patients
Natsuki Miyakoshi, MD	Tokyo Metropolitan Neurological Hospital, Tokyo	Author, Collected clinical data and blood samples of study patients
Ryouichi Okiyama, MD	Tokyo Metropolitan Neurological Hospital, Tokyo	Author, Collected clinical data and blood samples of study patients
Takehiro Ueda, MD, PhD	Kobe University Graduate School of Medicine, Hyogo	Author, Collected clinical data and blood samples of study patients
Noritaka Wakasugi, MD	National Center of Neurology and Psychiatry Hospital, Tokyo	Author, Collected clinical data and blood samples of study patients
Yuji Saitoh, MD, PhD	National Center of Neurology and Psychiatry Hospital, Tokyo	Author, Collected clinical data and blood samples of study patients
Takashi Sakamoto, MD, PhD	National Center of Neurology and Psychiatry Hospital, Tokyo	Author, Collected clinical data and blood samples of study patients
Yuji Takahashi, MD, PhD	National Center of Neurology and Psychiatry Hospital, Tokyo	Author, Collected clinical data and blood samples of study patients
Ken Shibano, MD, PhD	Akita Red Cross Hospital, Akita	Author, Collected clinical data and blood samples of study patients
Hideki Tokuoka, MD	Kobe University Graduate School of Medicine, Hyogo	Author, Collected clinical data and blood samples of study patients
Atsushi Hara, MD	Amagasaki General Medical Center, Hyogo	Author, Collected clinical data and blood samples of study patients
Kazunari Monma, MD, PhD	National Hospital Organization Higashisaitama National Hospital, Saitama	Author, Collected clinical data and blood samples of study patients
Katsuhisa Ogata, MD, PhD	National Hospital Organization Higashisaitama National Hospital, Saitama	Author, Collected clinical data and blood samples of study patients
Keita Kakuda, MD	Osaka University, Osaka	Author, Collected clinical data and blood samples of study patients
Hideki Mochizuki, MD, PhD	Osaka University, Osaka	Author, Collected clinical data and blood samples of study patients
Takeo Ari, MD, PhD	Ikebe Clinic, Shizuoka	Author, Collected clinical data and blood samples of study patients
Manabu Araki, MD, PhD	National Center of Neurology and Psychiatry Hospital, Tokyo	Author, Collected clinical data and blood samples of study patients
Takeshi Fujii, MD, PhD	National Center of Neurology and Psychiatry, Tokyo	Author, Collected clinical data and blood samples of study patients
Kazuto Tsukita, MD	Kyoto University, Kyoto	Author, Collected clinical data and blood samples of study patients
Haruhi Sakamaki-Tsukita, MD	Kyoto University, Kyoto	Author, Collected clinical data and blood samples of study patients
Akira Sano, MD, PhD	Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima	Author, Advised on data analysis, prepared the manuscript, and served as a scientific advisor

Note: The above table lists authors and their contributions, including institutions and roles they played in the study. Each author is connected to a specific institution, which may include universities, hospitals, or other healthcare facilities. The roles mentioned include authorship, performance of laboratory work, collection of clinical data and blood samples, and contributions in other areas such as analysis. The table is structured to provide a clear and organized overview of the contributions made by each author.
References

1. Ueno S, Maruki Y, Nakamura M, et al. The gene encoding a newly discovered protein, chorein, is mutated in chorea-acanthocytosis. Nat Genet 2001;28:121–122.
2. Rampoldi L, Dobson-Stone C, Rubio JP, et al. A conserved sorting-associated protein is mutant in chorea-acanthocytosis. Nat Genet 2001;28:119–120.
3. Jung HH, Danek A, Walker RH. Neuroacanthocytosis syndromes. Orphanet J Rare Dis 2011;6:68.
4. Tomiyasu A, Nakamura M, Ichiba M, et al. Novel pathogenic mutations and copy number variations in the VPS13A Gene in patients with chorea-acanthocytosis. Am J Med Genet B 2011;156:620–631.
5. Ichiba M, Nakamura M, Kasumoto A, et al. Clinical and molecular genetic assessment of a chorea-acanthocytosis pedigree. J Neurol Sci 2007;263:124–132.
6. Shimo H, Nakamura M, Tomiyasu A, Ichiba M, Ueno S, Sano A. Comprehensive analysis of the genes responsible for neuroacanthocytosis in mood disorder and schizophrenia. Neurosci Res 2011;69:196–202.
7. Dobson-Stone C, Velayos-Baeza A, Filippone LA, et al. Chorein detection for the diagnosis of Chorea-acanthocytosis. Ann Neurol 2004;56:299–302.
8. Dobson-Stone C, Danek A, Rampoldi L, et al. Mutational spectrum of the CHAC gene in patients with chorea-acanthocytosis. Eur J Hum Genet 2002;10:773–781.
9. Ottaviani D, LeCain M, Sheer D. The role of microhomology in genomic structural variation. Trends Genet 2014;30:85–94.
Novel pathogenic VPS13A gene mutations in Japanese patients with chorea-acanthocytosis
Yoshiaki Nishida, Masayuki Nakamura, Yuka Urata, et al.
Neurol Genet 2019;5;
DOI 10.1212/NXG.00000000000000332

This information is current as of May 1, 2019
Updated Information & Services	including high resolution figures, can be found at: http://ng.neurology.org/content/5/3/e332.full.html
References	This article cites 9 articles, 0 of which you can access for free at: http://ng.neurology.org/content/5/3/e332.full.html##ref-list-1
Subspecialty Collections	This article, along with others on similar topics, appears in the following collection(s):
All Clinical Neurology http://ng.neurology.org/cgi/collection/all_clinical_neurology	
All Cognitive Disorders/Dementia http://ng.neurology.org/cgi/collection/all_cognitive_disorders_dementia	
All Epilepsy/Seizures http://ng.neurology.org/cgi/collection/all_epilepsy_seizures	
Chorea http://ng.neurology.org/cgi/collection/chorea	
Permissions & Licensing	Information about reproducing this article in parts (figures,tables) or in its entirety can be found online at: http://ng.neurology.org/misc/about.xhtml#permissions
Reprints	Information about ordering reprints can be found online: http://ng.neurology.org/misc/addir.xhtml#reprintsus