Variations on a theme by Skyrme

P. Klüpfel, P.-G. Reinhard, T. J. Bürvenich, and J. A. Maruhn

Institut für Theoretische Physik II, Universität Erlangen-Nürnberg, Staudtstrasse 7, D-91058 Erlangen, Germany
Frankfurt Institute for Advanced Studies, Tuth-Moufang-Str. 1, 60438 Frankfurt am Main, Germany
Institut für Theoretische Physik, Universität Frankfurt, Max-von-Laue-Str. 1, 60438 Frankfurt am Main, Germany

(Dated: draft, 11. January 2007)

We present a survey of the phenomenological adjustment of the parameters of the Skyrme-Hartree-Fock (SHF) model for a self-consistent description of nuclear structure and low-energy excitations. A large sample of reliable input data from nuclear bulk properties (energy, radii, surface thickness) is selected guided by the criterion that ground-state correlations should remain small. Least-squares fitting techniques are used to determine the SHF parameters which accommodate best the given input data. The question of the predictive value of the adjustment is scrutinized by performing systematic variations with respect to chosen nuclear matter properties (incompressibility, effective mass, symmetry energy, and sum-rule enhancement factor). We find that the ground-state data, although representing a large sample, leave a broad range of choices, i.e. a broad range of nuclear matter properties. Information from giant resonances is added to pin down more precisely the open features. We then apply the set of newly adjusted parameterizations to several more detailed observables such as neutron skin, isotope shifts, and super-heavy elements. The techniques of least-squares fitting provide safe estimates for the uncertainties of such extrapolations. The systematic variation of forces allows to disentangle the various influences on a given observable and to estimate the predictive value of the SHF model. The results depend very much on the observable under consideration.

PACS numbers: 21.10.Dr, 21.10.Ft, 21.10.Gv, 24.30.Cz

I. INTRODUCTION

The production of exotic nuclei far off the valley of stability is making steady progress at various laboratories around the world and is providing an increasing amount of new experimental data on basic nuclear properties, see, e.g., [1, 2]. This is a great challenge for nuclear structure theory at all levels of refinement, from the more phenomenological microscopic-macroscopic methods (see, e.g., [3]) through self-consistent mean-field (SCMF) methods (see, e.g., [4]) or large shell-model calculations (see, e.g., [5]) up to several ab initio techniques employing a given nucleon-nucleon interaction (see, e.g., [6, 7, 8]). Further development of all these methods is a highly topical task for which a large network of activities has been launched recently [9]. The present paper aims to contribute to the development of SCMF.

There are several approaches to SCMF from which the most widely used are the Skyrme-Hartree-Fock (SHF) model [4], the Gogny force [10], and the relativistic mean-field model (RMF) [11, 12]. The genuine nucleon-nucleon interaction does not allow an immediate mean-field treatment. Thus all SCMF models employ effective interactions which are arranged to provide reliable nuclear structure properties and low-energy excitations at the level of a mean-field description. That approach has much in common with the density functional theory widely used in the physics of electronic systems [13]. The difference is, however, that electronic correlations are well under control and that reliable electronic energy-density functionals can be derived from well controlled ab initio calculations. The nuclear case is much more involved because the nucleon as such is a composite particle and a nucleon-nucleon interaction is already an approximate concept. Thus, nuclear many-body theories have not yet reached sufficient descriptive power to serve as direct input for deducing effective energy-density functionals for SCMF. Although there are promising attempts for an ab initio derivation [14], the general strategy for constructing energy functionals for high-quality calculations is to deduce the formal structure from principle considerations [15] and to rely on a phenomenological adjustment of the model parameters. The present paper aims at a critical and thorough survey of the SHF model and the phenomenological adjustment of its parameters. There is a long history of SHF development and optimization (for recent reviews see [4, 16]) and still need for further intense consideration, as can be seen from the lively discussion in the literature, recent re-fitting attempts [17, 18], and the huge combined effort in [9]. This study will point to several incompatibilities with the present SHF ansatz when trying to cover more than just the basic ground-state properties. We are thus not yet at the stage to advertise one preferred parameterization. The strategy is rather to supply a toolbox of forces produced under systematically varying conditions.

After a brief review of the basic SHF functional and the strategy of least-squares fitting, our considerations start with an inspection of the input data for the adjustment of the model parameters. The idea is to select those ground-state observables (energies, radii, surface thicknesses) which are expected to be well described by a pure mean-field model. The limits to a mean-field description are set by the ground-state correlations (GSC) stemming.
from low-lying collective quadrupole modes, for recent surveys see [19, 20, 21]. Taking the general trends of GSC as worked out in [21], we determine a set of observables which have only small correlation effects and which we use as basis for the fits of mean-field models. We then will investigate in detail how predictive such fits can be. To that end we consider series of fits with additional features added as constraint. These features are quantified in terms of well known nuclear matter properties (NMP) like incompressibility K, effective mass m^*/m, symmetry energy a_{sym}, and sum-rule enhancement factor κ [3]. We study systematic variations of these NMP. Further information from giant resonances (GR) is invoked to define the optimal values for the NMP more precisely. Finally, we apply the set of SHF parameterizations thus obtained to a study of the predictive value for more detailed properties like, e.g., neutron skin, isotope shifts of charge radii, and super-heavy elements.

II. THE SKYRME ENERGY FUNCTIONAL

The goal of a nuclear mean-field theory is to describe the many-body system exclusively in terms of a set of single-particle wavefunctions together with the BCS occupation amplitudes $\{\hat{\varphi}_{\alpha}, v_{\alpha}, \alpha = 1, \ldots, \Omega\}$. Thus the typical mean-field state is a BCS state

$$|\Phi\rangle = \prod_{\alpha > 0} (u_{\alpha} + v_{\alpha} \hat{a}_{\alpha}^{+} \hat{a}_{\alpha}^{+})|0\rangle$$

where $|0\rangle$ is the vacuum state and $u_{\alpha} = \sqrt{1 - v_{\alpha}^{2}}$. The product runs over all pairs of time-reversed partners $(\alpha, \bar{\alpha})$ indicated by $\alpha > 0$. The mean field equations are obtained by variation of the total energy with respect to single-particle wave functions and pairing amplitudes. The expression for the total energy is the key ingredient in the modeling. We will here employ the Skyrme energy-density functional together with a pairing functional. Both functionals are expressed in terms of a few local densities and currents: local density ρ, kinetic-energy density τ, spin-orbit density J, current j, spin density σ, kinetic spin density τ, and pair current ξ. All appear twice, for protons and for neutrons, e.g., ρ_p and ρ_n. In detail they read

$$\rho_q (r) = \sum_{\alpha \in q} v_{\alpha}^2 |\hat{\varphi}_{\alpha} (r)|^2 \quad q \in \{p, n\},$$

$$\tau_q (r) = \sum_{\alpha \in q} v_{\alpha}^2 \nabla \varphi_{\alpha} (r) |^2 ,$$

$$J_q (r) = -i \sum_{\alpha \in q} v_{\alpha}^2 \varphi_{\alpha}^{\dagger} (r) \nabla \times \varphi_{\alpha} (r),$$

$$j_q (r) = -i \sum_{\alpha \in q} v_{\alpha}^2 (\varphi_{\alpha}^{\dagger} (r) \nabla \varphi_{\alpha} (r) - \text{c.c.}) ,$$

$$\sigma (r) = \sum_{\alpha \in q} v_{\alpha}^2 \varphi_{\alpha}^{\dagger} (r) \sigma \varphi_{\alpha} (r) ,$$

$$\tau (r) = \sum_{\alpha \in q} v_{\alpha}^2 \sum_{i \in \{p, n\}} \nabla_i \varphi_{\alpha}^{\dagger} (r) \sigma \nabla_i \varphi_{\alpha} (r) ,$$

$$\xi_q (r) = \sum_{\alpha \in q} u_{\alpha} v_{\alpha} |\varphi_{\alpha} (r)|^2 .$$

It is often useful to recouple to sum and difference, e.g.,

$$\rho = \rho_p + \rho_n \quad ; \quad \tilde{\rho} = \rho_p - \rho_n \quad ,$$

and similarly for all other densities and currents. The sum plays a role in the isoscalar terms of the energy functional and we will call it the isoscalar density ρ. In a similar manner, the difference plays the role of an isovector density $\tilde{\rho}$.

Our starting point is then the most general Skyrme energy functional

$$E = \int d^3 r \left\{ \mathcal{E}_{\text{kin}} + \mathcal{E}_{\text{Skyrme}} \right\}$$

$$\mathcal{E}_{\text{kin}} = \frac{\hbar^2}{2m_p} \tau_p + \frac{\hbar^2}{2m_n} \tau_n \quad ,$$

$$\mathcal{E}_{\text{Skyrme}} = \frac{B_0 + B_3 \rho^3}{2} \rho^2 - \frac{B_1}{2} \rho \Delta \rho - \frac{B_2}{2} \rho\Delta\rho + \frac{B_3}{2} \rho \rho \Delta \rho$$

$$+ B_4 (\rho \nabla \cdot \textbf{J} + \sigma \cdot (\nabla \times \textbf{j}))$$

$$- \frac{C_1}{2} (\textbf{J}^2 - \sigma \cdot \textbf{r}) + \frac{C_1}{2} (\textbf{J}^2 - \sigma \cdot \tilde{\textbf{r}})$$

$$E_{\text{Coulomb}} = e^2 \int d^3 r d^3 r' \frac{\rho_p (r) \rho_p (r')}{|r - r'|}$$

$$- \frac{3}{4} e^2 \frac{3}{\pi} \frac{1}{\rho_p} \int d^3 r \rho_p^{1/3} \rho_p^{1/3} \quad ,$$

$$E_{\text{pair}} = \frac{1}{4} \sum_{q} v_{0, q} \int d^3 r \varepsilon_{q}^{2} \left[1 - \frac{\rho}{\rho_{\text{pair}}} \right] \quad ,$$

$$E_{\text{em}} = -\frac{1}{2mA} \langle (\hat{\rho}_{\text{em}})^2 \rangle \quad , \quad \hat{\rho}_{\text{em}} = \sum_{i} \hat{\rho}_i \quad .$$
Accounting for the slight difference between the proton and the neutron mass ($h^2/2m_p = 20.749821, h^2/2m_n = 20.721260$) becomes important for exotic and heavy nuclei. The B (B') parameters determine the strength of the isoscalar (isovector) forces. The principle Skyrme functional E_{skyrme} contains just the minimum of time-odd current densities which is required for Galilean invariance [22], namely the combinations $\rho\tau - j^2$ and $\rho \nabla J + \varphi (\nabla \chi)$. Further conceivable time-odd couplings play a role only for odd nuclei and magnetic (unnatural parity) modes [23]. These additional time-odd terms are often derived starting with a density-dependent zero-range force. We take here the point of view of density-functional theory and start from an energy functional, choosing the minimalistic approach in the time odd channel. That modeling is similar to the strategy which is also pursued in the relativistic mean-field model [11, 12, 21]. The parameters B_i, B'_i are more convenient for the functional form (3). They are uniquely related to the widely used standard Skyrme parameters t_i, x_i through

$$
B_0 = \frac{3}{4} t_{10},
$$
$$
B'_0 = \frac{1}{4} t_{10} \left(\frac{t}{2} + x_0 \right),
$$
$$
B_1 = \frac{3}{16} t_1 + \frac{5}{16} t_2 + \frac{1}{4} t_2 x_2,
$$
$$
B'_1 = \frac{1}{8} \left(t_1 (\frac{1}{2} + x_1) - t_2 \left(\frac{1}{2} + x_2 \right) \right),
$$
$$
B_2 = \frac{1}{16} \left(t_1 - \frac{3}{4} t_2 - \frac{1}{2} t_2 x_2 \right),
$$
$$
B'_2 = \frac{1}{16} \left(3 t_1 (\frac{1}{2} + x_1) + t_2 (\frac{1}{2} + x_2) \right),
$$
$$
B_3 = \frac{1}{8} t_3,
$$
$$
B'_3 = \frac{1}{12} t_3 (\frac{1}{2} + x_3),
$$
$$
B_4 = \frac{1}{2} t_4 - \frac{1}{2} b'_4,
$$
$$
C_1 = \eta_{\text{hfs}} \left[t_1 (\frac{1}{2} - x_1) - t_2 \left(\frac{1}{2} + x_2 \right) \right],
$$
$$
C'_1 = -\eta_{\text{hfs}} \left(t_1 - t_2 \right). \tag{3g}
$$

Note the two non-standard entries. There is an extra parameter b'_4 for tuning the isovector dependency of the spin-orbit interaction. A zero-range two-body spin-orbit interaction leads to the fixed relation $b'_4 = t_4/2$ while a spin-orbit structure as suggested by the RMF is associated with $b'_4 = 0$ [23]. We use it here as a free parameter. The tensor spin-orbit term associated with the terms $\propto C_1, C'_1$ is omitted in many parameterizations. Here we introduce a new parameter η_{hfs} as a switch factor where $\eta_{\text{hfs}} = 1$ includes the full tensor spin-orbit and $\eta_{\text{hfs}} = 0$ selects the widely used option to ignore the tensor spin-orbit term. The Coulomb functional [31] depends only on the charge density and stays outside this distinction. Its second term approximates exchange in the Slater approximation [26]. Note that we use the proton density in place of the charge density. This is a widely used, more or less standard, approximation. The center-of-mass correction [27] is an approximation to the full c.m. projection [27]. It is applied a posteriori and its contribution to the mean-field equations is neglected. There are other recipes for the c.m. correction not considered here, see [4, 10]. The pairing functional [35] involves the pair current and can be derived from a density-dependent zero-range force. The parameter ρ_{pair} determines the weight of density dependence. The limit $\rho_{\text{pair}} \to \infty$ recovers the pure δ interaction (DI) which is also called volume pairing. The general case is the density-dependent δ interaction (DDD). A typical value near matter equilibrium density $\rho_{\text{pair}} = 0.16$ fm$^{-3}$ concentrates pairing to the surface. Thus it is often denoted as surface pairing. We will consider ρ_{pair} as a free parameter and it will lead to an intermediate stage between volume and surface pairing.

The results of the BCS calculations depend on the space of single-nucleon states taken into account, called here pairing phase space. In fact, the cut-off is part of the pairing description. It is provided by the phase-space weights w_n in the above pairing functionals. We use here a soft cutoff profile such as,

$$
w_n = \left[1 + \exp \left((\epsilon_n - (\epsilon_F + \epsilon_{\text{cut}}))/\Delta \epsilon \right) \right]^{-1}\tag{3f}
$$

where typically $\epsilon_{\text{cut}} = 5$ MeV and $\Delta \epsilon = \epsilon_{\text{cut}}/10$ [28, 29]. This works very well for all stable and moderately exotic nuclei. For better extrapolation ability away from the valley of stability, the fixed margin ϵ_{cut} may be modified to use a band of fixed particle number $n N^{2/3}$ instead of a fixed energy band [30].

When checking the performance of the fits for various observables (see section III D), we encounter also deformed configurations. These are computed with a code allowing for axially symmetric and reflection asymmetric configurations. The reflection asymmetry becomes important for fission barriers in actinides. For well deformed nuclei, the dominant part of the correlation energy comes from angular-momentum projection. We have accounted for that at the level of the Gaussian-overlap approximation (GOA) in a form which provides correctly a smooth transition to spherical shapes where the correction vanishes [31, 32, 33, 34]. This amounts to subtract $E_{\text{ZPE, rot}} = g((j^2)/4)/(\langle j^2 \rangle/\langle 2 \theta_{\text{rot}} \rangle)$, where the interpolating function is $g(x) = x x_c \log \left(\int_0^1 da \exp (x (a^2 - 1)) \right)$. That correction is included in all following results dealing with deformed configurations.

III. FITTING STRATEGY

A. Global quality measure χ^2 and minimization

The free parameters of the SHF ansatz are going to be determined by a least squares fit. To that end, we build a global quality measure by summing the squared deviations from the data as

$$\chi^2 = \sum_{\text{nuc}} \chi_{\text{nuc}}^2 \cdot \chi_{\text{nuc}} = \frac{\mathcal{O}_{\text{nuc}}^{(\text{th})} - \mathcal{O}_{\text{nuc}}^{(\text{exp})}}{\Delta \mathcal{O}_{\text{nuc}}} \tag{4}$$
where O stands for one of the selected observables, “nucl” for a nucleus, the upper index “th” for a calculated value, and “exp” for the experimental date. The denominator ΔO stands for the adopted error of that observable. It renders each contribution dimensionless and regulates the relative weights of the various terms. The experimental uncertainty is of little help here because the experimental precision of these basic bulk observables is much better than what we can expect from the mean-field description, particularly for the binding energy. The limiting factor comes from theoretical uncertainties, i.e., the quality we can expect from a mean-field description. We will briefly describe the observables in section \[III.B\] and the selection of nuclei together with the adopted errors in section \[III.C\].

The total quality measure is a function of all model parameters, i.e. $\chi^2 = \chi^2(p_1, ..., p_N)$. We search for those parameters which minimize χ^2. As standard technique we employ the χ^2 minimization technique from Bevington [35, 36], complemented occasionally by Monte-Carlo sampling to enhance the chances for ending up in the global minimum.

The aim of this publication is to explore systematically the various influences from key features as, e.g., incompressibility or symmetry energy. We thus add constraints on such key features. That is done most simply by adding the wanted features as additional observables with very small adopted errors ΔO to the χ^2.

The rules of χ^2 fitting also provide information to estimate the statistical errors for extrapolations to other observables. Let us consider some observable A. Its expectation value is a function of the model parameters, i.e. $A = A(p_1, ..., p_N)$. The extrapolation error then becomes

$$\Delta A = \sqrt{\sum_{i,j} \frac{\partial A}{\partial p_i} (C^{-1})_{ij} \frac{\partial A}{\partial p_j} }, \; C_{kl} = \frac{\partial^2 \chi}{\partial p_k \partial p_l} . \quad (5)$$

That is the allowed variation of the observable A within the ellipsoid of $\chi^2 - \chi^2_{\text{min}} \leq 1$, i.e. for all χ^2 which stay at most one unit above the minimum. We will exploit that feature to compute extrapolation errors for all observables not included in the fit data.

B. Selection of fit observables

The total binding energy E_B of a nucleus is the most immediate observable in self-consistent mean-field models. It is naturally provided by the numerical solution of the mean-field equations. The next important observables are related to the spatial extension of the nucleus. It can be accessed experimentally through elastic electron scattering which yields the nuclear charge form factor $F_{\text{ch}}(q)$ and by Fourier transformation the nuclear charge density $\rho_{\text{ch}}(r)$ [37]. SHF calculations yield first the proton and neutron densities which need to be folded with the intrinsic electro-magnetic structure of the nucleus to obtain the charge density and charge form factor [38]. Mean-field models provide reliable information about the form factor at low momentum q [39, 40]. This region of the form factor at low momentum can be described by three parameters [37], the r.m.s. radius

$$r_{\text{rms}}^2 = -\frac{3}{4} \frac{d^2}{dq^2} F_{\text{ch}}(q) \bigg|_{q=0} , \quad (6)$$

the (first) diffraction radius

$$R = \frac{4.493}{q_0^{(1)}}, \quad (7)$$

which is determined from the first zero of the form factor $F_{\text{ch}}(q_0^{(1)}) = 0$, and the surface thickness

$$\sigma^2 = \frac{2}{q_m} \log \left(\frac{F_{\text{box}}(q_m)}{F_{\text{ch}}(q_m)} \right), \; q_m = 5.6/R. \quad (8)$$

Therein $F_{\text{box}}(q)$ corresponds to the form factor of a homogeneous box of radius R, i.e. $F_{\text{box}}(q) = 3j_1(qR)/(qR)$. The diffraction radius parameterizes the overall diffraction pattern which resembles that of a box of radius R. It is the box-equivalent radius. For more details find a recent summary in [4].

The most prominent observable for $T = 1$ pairing correlations on the mean-field level is the odd-even staggering of nuclear masses from which an approximation to the pairing gap can be extracted, e.g., using a five-point formula yields for the neutron gap

$$\Delta_n^{(5)} = -\frac{1}{8} E(Z, N + 2) + \frac{1}{2} E(Z, N + 1) - \frac{3}{4} E(Z, N)$$

$$+ E(Z, N - 1) - \frac{1}{8} E(Z, N - 2) \quad (9a)$$

and similarly for the proton gap $\Delta_p^{(5)}$. The computation of odd nuclei using mean-field models, however, is very involved. It requires deformation and a long search for the optimum blocked configuration which increases numerical expense by two orders of magnitude. Thus it is not well suited for systematic surveys. One can compute an average pairing gap from the state-dependent gap Δ_α using a weight which is sensitive to the region about the Fermi surface [30, 41, 42]

$$\bar{\Delta}_q = \frac{\sum_{\alpha \in \varepsilon} u_\alpha v_\alpha \Delta_\alpha}{\sum_{\alpha \in \varepsilon} u_\alpha v_\alpha} \quad (\alpha > 0) \quad (9b)$$

These spectral gaps $\bar{\Delta}_q$ are found to be fairly well related to the five-point gaps $\Delta_\alpha^{(5)}$ in mid-shell regions [31, 42]. For magic nuclei and next to them, these two quantities develop very differently [34]. There remains some influence from nuclear shape fluctuations on $\Delta_\alpha^{(5)}$ which gives an uncertainty of about 10–20% for the comparison of the two different definitions [33] for a gap.

We also need some information which is specific to the spin-orbit terms in SHF. The obvious quantity for the purpose are the l's splittings of single-particle energies.
Experimental information on single-particle energies of even-even nuclei is drawn from the single-nucleon removal energies or from the low-lying excited states of the adjacent odd-A nuclei. That identification requires that the polarization effects induced by the extra nucleon (or hole) are small. The magnitude of these effects have been investigated for doubly-magic nuclei by \cite{12,46} within the RMF and \cite{46} with SHF using the linear response theory. It is found that energy differences amongst particle states and hole states separately are robust. Thus spin-orbit splittings are a robust signal as long as they do not cross the shell gap. Furthermore, the involved single-particle energies should not be too far away from the Fermi energy to keep perturbation from higher configurations (additional $1ph$ couplings) low. Another limitation has to be considered for states in the particle spectrum because the state should stay safely off the particle continuum. Thus we decide to include only spin-orbit splittings of hole states close to the Fermi energy in doubly-magic nuclei. The chosen data are listed in tables III and IV.

C. Correlation effects and adopted errors

The goal is to adjust an effective nuclear energy-density functional. The observables and nuclei included in the adjustment should be well adapted for a pure mean-field description. Thus we have to scrutinize the most dominant effects going beyond mean field. As pointed out in the introduction, the strong short-range correlations as well as correlations from resonances and high modes follow a trend smooth in nucleon numbers Z and N and can be assumed to be effectively incorporated into the energy-density functional \cite{40}. We have to care, however, about correlation effects which vary strongly within the chart of isotopes. These stem predominantly from the low-lying quadrupole excitations, associated with large amplitude collective motion like soft vibrations and rotations, for extensive recent analysis see \cite{19,20,21}. We are concerned here with the influence of correlations on bulk observables, the change in energy $\delta E_{\text{corr}} = E_{\text{corr}} - E_{\text{mf}}$ (where E_{corr} is the energy from the correlated calculation and E_{mf} the mean field result), and similarly the changes $\delta \sigma$ in charge r.m.s. radii, δR in diffraction radii, and $\delta \sigma$ in surface thickness.

A good chance for small correlation effects exists for semi-magic nuclei where either the proton or the neutron number corresponds to a shell closure. These nuclei are generally spherical. Figure 1 summarizes the correlation effects on binding energies (lower panels) and radii as well as surface thicknesses (upper panels). The results were obtained with the parameterization SkI3 \cite{25}. Other parameterizations yield very similar results \cite{21} such that figure 1 is a typical result for the error distribution for any reasonable Skyrme force. The correlation effects generally shrink with increasing system size, which is expected because low-lying excitation energies generally decrease. It is a bit surprising, however, that the correlation energies in isotopic chains can grow so large in the mid-shell region. The hitherto often underestimated isotonic chains are visibly less perturbed. Light nuclei generally show larger fluctuations, sometimes even acquiring unphysically positive correlation energies. The small positive values about 0.2–0.5 MeV are still within the precision of our method and imply practically negligible correlation energies. The only exception is ^{40}Ca at $(Z=\,N=20)$. The unreasonably large value is due to the fact that the 2^+ mode is not really collective in that nucleus \cite{21}, but that we compute correlations using the GOA which is not necessarily valid for non-collective modes. This unphysical case, however, is anyway excluded from the fit data set due to the Wigner effect (for $N = Z$) \cite{17}.

The faint horizontal lines in figure 1 indicate the error bands associated with the adopted errors, 1 MeV for E_B, 0.04 fm for R_{diff} and σ, and 0.02 fm for r_{rms}. Observables which stay below these limits are included in the fit data. Points which are outside the desired error bands, but not too far away, are included with degraded error weight which is done by multiplying the general adopted error ΔO for that nucleus with a certain factor depending on how large the expected correlation could be. Moreover, all nuclei with $N=Z$ are excluded already because they carry a correlation contribution from the Wigner energy \cite{17} and we do not yet have reliable means to compute that correction. The choice of fit data thus deduced is listed in tables III and IV. One finds therein also the values for pairing gaps and spin-orbit splittings. We do not have any reliable estimate for the errors in these observables. The pairing gap is deduced from the five-point difference of binding energies \cite{30}. The pairing gaps for nuclei whose energy has degraded error weight are modified by the same degradation factor for reasons of consistency. The overall error is tuned such that the r.m.s. average χ from all pairing gaps is of the same order as for the other observables. A similar strategy taking over weight factors from binding energies is applied for the spin-orbit splittings. Altogether this amounts to an adopted error of 0.12 MeV for the gaps and 10% for the spin-orbit splittings, for details see again tables III and IV.

Correlation energies are always negative (the few exceptions at low A are defects) and r.m.s. radii always grow, but the fits produce an average with deviations lying on both sides. One would very much like to leave a margin for correlations. A safe construction would require a deeper knowledge of the systematics of correlation effects and development of simple estimates of them. At the present stage, we to fit to straightforward mean-field results and refrain from adding empirical corrections.

D. More detailed observables

There are many more nuclear properties which are interesting to look at but which are not yet suited for in-
conclusion in a systematic fit, because the relation to experimental data is somewhat uncertain (neutron radii, giant resonance frequencies, fission barriers) or too cumbersome to compute (low lying collective states). We will look at several such observables a posteriori: the neutron skin in 208Pb, the isotope shift of charge radii between 214Pb and 208Pb, the neutron level sequence near the Fermi surface in 132Sn, extrapolation to super-heavy elements (SHE), and giant resonances (GR). Some of these observables, namely the GR resonance peak frequencies, are even used as additional selection criteria. We will now explain their computation, while the other observables are introduced in later sections.

The dominant excitation modes of the nucleus are the giant resonances (GR). Their average peak position can be related to basic features. Heavy nuclei show least spectral fragmentation and are best suited for evaluating these averages. We will consider GR in 208Pb, in particular the isoscalar giant monopole resonance (GMR), the isovector giant dipole resonance (GDR), and the isoscalar giant quadrupole resonance (GQR). The spectral strength distribution is computed by the Random-Phase-Approximation (RPA) done self-consistently with the same Skyrme interaction as was used for the ground state, for technical details see [39, 48]. We use a large phase space on a large spherical grid of 30 fm radius to achieve a sufficiently fine discretization of the continuum [49] for subsequent folding with a Lorentzian of frequency dependent width $\Gamma = \max((\hbar \omega - 8 \text{ MeV})/3.5 \text{ MeV}, 0.1 \text{ MeV})$. The linear ω dependence starts at neutron emission threshold with an empirically adjusted slope. It simulates the escape width and to some extent the collisional width. The strengths in 208Pb all have one unique peak in the GR region frequency that can easily be read off. Comparison with the experimental data will be done with respect to that GR peak frequency. The experimental values are $\hbar \omega_{\mathrm{GMR}} = 13.7 \text{ MeV}$, $\hbar \omega_{\mathrm{GDR}} = 13.6 \text{ MeV}$, and $\hbar \omega_{\mathrm{GQR}} = 10.9 \text{ MeV}$ [50, 51, 52].

E. Nuclear matter properties (NMP)

Homogeneous nuclear matter describes the leading contributions (volume terms) to nuclear properties. They are considered as useful pseudo-observables characterizing the bulk properties of effective interactions. There exist close relations between such bulk properties and certain combinations of Skyrme parameters, but it is often more instructive to discuss a parameterization in terms of these nuclear matter properties (NMP). When performing systematic variations of forces, we will consider a scan of dedicated values for selected NMP rather than simple Skyrme parameters.

The leading quantity is the energy per particle $E/A(\rho)$, often called equation of state. Its minimum $(E/A)_{\text{eq}}$ at saturation density ρ_{eq} defines the volume energy, related to the equilibrium state of nuclear matter. Energy and density in finite nuclei are modified by surface and shell effects but always stay close to these guiding values. Furthermore, we discuss NMP related to excitations (zero sound). The incompressibility at the saturation point is
given by
\[K_\infty = 9 \rho^2 \frac{d^2 E}{d\rho^2} \bigg|_{\rho=\rho_p} \left. A \right|_{\text{eq}} , \] (10)
where \(\rho = \rho_n + \rho_p \) is the total density. It corresponds to the curvature at the minimum, and is related to breathing modes like the giant monopole resonance \[53\]. The symmetry energy coefficient is related to the isovector curvature at the saturation point
\[a_{\text{sym}} = \frac{1}{2} \frac{d^2}{d(\rho_n - \rho_p)^2} \left. \frac{E}{A} \right|_{\text{eq}} . \] (11)

Finite nuclei are also sensitive to smaller densities whose symmetry energy is characterized additionally by the slope
\[a'_{\text{sym}} = \frac{1}{2} \frac{d}{d(\rho_n + \rho_p)} \frac{d^2}{d(\rho_n - \rho_p)^2} \left. \frac{E}{A} \right|_{\text{eq}} . \] (12)

The isoscalar effective mass \(m^* \) is calculated as
\[\frac{\hbar^2}{2m^*} = \frac{\hbar^2}{2m} + \frac{\partial}{\partial \tau} \frac{E}{A} \bigg|_{\text{eq}} . \] (13)

The isovector effective mass is usually expressed as the enhancement factor of the Thomas-Reiche-Kuhn sum rule \[54\], which reads
\[\kappa_{\text{TRK}} = \frac{2m}{\hbar^2} \frac{\partial}{\partial(\tau_n - \tau_p)} \left. \frac{E}{A} \right|_{\text{eq}} . \] (14)

Note the subtle difference between total derivatives in eqs. [10] and partial derivatives in eqs. [13]. The latter take \(E \) as written in the Skyrme functional \[8\] considering all densities and currents (\(\rho, \tau, ... \)) as independent variables while the total derivative first expresses all quantities in terms of the actual Fermi momentum \(k_F = k_F(\rho) \), and thus the density, before performing the derivative, e.g., considering \(\tau \rightarrow \tau(\rho) \).

IV. RESULTS AND DISCUSSION

In this section, we will present the parameterizations obtained by adjustment to the above selected set of data, optionally with an additional constraining condition. The aim of the survey is to explore the influence of varying conditions in a systematic manner. We thus name the forces with the header “SV” and add different three digits qualifiers to indicate the constraint for which a force was adjusted. As outlined in section [IV], the Skyrme energy functional leaves some options to choose. The practical consequences thereof will be discussed in section [IV.D]. As a result, we will employ the following standard choices: The tensor spin-orbit is omitted, i.e. \(\eta_{ts} = 0 \), while isovector spin-orbit coupling \(b'_4 \) and the cutoff density in the DDDI recipe \(\rho_{\text{pair}} \) are allowed as free parameters in the fits.

Furthermore, we will often compare with a few typical parameterizations from the existing literature: SkM* as a widely used, meanwhile somewhat obsolete, old standard \[55\]. It belongs to the second generation of Skyrme forces which for the first time delivered a high-precision description of nuclear ground states (as compared to the first generation forces). It was developed with an explicit study of surface energy and fission barriers in semiclassical approximation. The set SLy6 and its cousins have been developed with a bias to neutron rich nuclei and neutron matter aiming at astrophysical applications \[56\]. SkI3 (and SkI4) exploit the freedom of an isovector spin-orbit force to obtain an improved description of isotopic shifts of r.m.s. radii in neutron rich Pb isotopes which posed a severe problem to all conventional Skyrme forces \[25\]. Finally, we consider one representative of the series of forces started in \[17\]. These forces are fitted predominantly to binding energies, but employ an huge pool of nuclei including odd and deformed ones. For deformed nuclei a simple correction for the angular momentum projection was added, and an ad-hoc correction for the Wigner energy in \(N=Z \) nuclei \[17\] was applied. All these forces are of comparable quality with respect to the reproduction of the binding energies of finite nuclei. They differ in details of treatment or boundary conditions. We choose here the force BSk4 from \[57\] because it has an effective mass of \(m^*/m = 0.92 \) which comes close to the typical values of our fits.

A. Unconstraint fits

1. The fit to standard data: SV-min

In a first round, we follow the most straightforward strategy and adjust the model parameters to the data as selected in the previous section and detailed in tables III and IV without any additional constraint. The result is called the parameterization “SV-min”, for its detailed model parameters see table [V]. Figure 2 shows the deviation from the given data for each observable and nucleus. All results stay fairly well within the chosen error bands. That holds even for the points fitted with lower weight (open circles). In fact, the error bands are not fully exhausted and the r.m.s. errors stay safely below the adopted errors. The bands are generally filled on both sides of the zero line which means that the fit averages nicely through the deviations. An exception is here the diffraction radius (second panels from below) where the deviation is always positive which indicates that this observable is not easy to adjust within the given model. The theoretical results are (within the allowed errors) systematically larger than the experimental data. Only few points exist for the spin-orbit splitting (uppermost panel) and these do not fit as nicely as the other observables even with a low demand such as a 20% r.m.s. error. This indicates that single particle structure is a very demanding observable. We will see that again for
FIG. 2: Deviation from experimental data for the nuclei and observables in the fit sample as listed in tables III and IV. The results are drawn versus N for the isotopic chains (left) and versus Z for the isotonic chains (middle). The values 0 (perfect matching) and the adopted error bands are indicated by dotted horizontal lines. Filled circles indicate data points fitted with full weight while open circles stand for data points with reduced weight (weight factor > 1 in tables III and IV). Results are shown for the parameterization SV-min resulting from a straightforward, unconstrained fit to the data.
other level sequences later on.

The global quality measures for the fit SV-min are shown in Table I. The r.m.s. errors (last column) show again what we have seen in figure 2, namely that energies and form parameters (radii, surface thickness) perform very well, better than the adopted errors as estimated from expected correlation effects. It seems that a part of the correlations can be accounted for by the model parameters. Pairing gaps are just at the wanted limits and the l-s splittings are somewhat at the edge. The good overall performance yields a very low total χ^2 as can be seen from the very small χ^2 per data point of about 1/4. Typical fits aim at a value of one. The strict rules of χ^2-fitting would allow to reduce the adopted errors until a χ^2 per data point of one is reached. We are not pursuing that strategy here because our adopted errors are determined by the expected reliability of mean field models from estimating correlation effects. The fact that χ^2 per data point comes out much lower than one indicates the enormous versatility of the Skyrme energy functional to describe global ground-state properties.

In order to check the interpolation and extrapolation properties, we show in figure 3 the errors in binding energies and r.m.s. radii throughout all known nuclei including deformation. The energies are displayed in two ways. The lowest panel shows the energies as they result straightforwardly from the mean-field calculations (including c.m. correction). The fit nuclei (filled squares) perform very well while large deviations can develop for other nuclei. Note that the majority of deviations is positive which indicates that additional binding through correlation energies would correct in the desired direction. For well-deformed nuclei, the dominant part of the correlation energy comes from angular-momentum projection. We have accounted for that at the level of the Gaussian-overlap approximation (GOA) \[21,31,32\]. The results with angular-momentum projection are shown in the middle panel of figure 3. The deformed nuclei up to Pb now perform very well. The remaining discrepancies

Observed	χ^2	χ^2/point	r.m.s. error
Binding energy E_B	12.07	0.17	0.62 MeV (1.0)
Diffraction radius R	11.18	0.40	0.029 fm (0.04)
Surface thickness σ	4.22	0.26	0.022 fm (0.04)
R.m.s. radius r	15.86	0.32	0.014 fm (0.02)
Pairing gap Δ_p	4.27	0.25	0.11 MeV (0.12)
Pairing gap Δ_n	2.43	0.15	0.14 MeV (0.12)
L-s splitting	3.18	0.45	0.25 % (20)
Total	53.22	0.26	

TABLE I: Global quality measures for various classes of observables as achieved with the parameterization SV-min. The second column shows the contribution from an observable to χ^2 while the third column expresses this as χ^2 per data point. The last column produces the r.m.s. errors as such and the numbers in brackets indicate the adopted error taken as weights for the fit, see eq. (4).
in the region $A < 210$ are very likely missing correlations. This means that the fit interpolates nicely for all these nuclei provided soft nuclei are computed with quadrupole ground-state correlations. However, for actinides and super-heavy elements (SHE), the trend of the deviations is too strong to be cured by remaining vibrational correlations. The extrapolation to deformed super-heavy elements is plagued by a growing trend to underbinding. We will take up that question later on. The results for the r.m.s. radii look agreeable. The larger deviations for some soft nuclei may still be cured by correlations. There are not yet enough data to read off a trend for super-heavy elements. The uppermost panel shows the difference between theoretical and experimental proton deformations as derived from the B(E2) values. They are given as dimensionless quadrupole moments associated with the operator $\beta \equiv 20\sqrt{2} / (\sqrt{5}Ar^2)$ where r is the r.m.s. radius and $Q_{20} = r^2Y_{20}$ the spherical quadrupole operator. The theoretical values include the quadrupole variance, i.e. $\beta^{\text{B(E2)}}_{\text{theo}} = \sqrt{\langle \beta^2 \rangle} = \sqrt{\langle \beta^2 \rangle + \langle \Delta^2 \beta \rangle}$. It is to be remarked that this variance from the mean-field ground state underestimates the true variance for soft vibrators and transitional nuclei. This lets us expect huge deviations for the majority of nuclei and this is indeed seen in the results. However, the picture looks better for rather rigid spherical nuclei with small correlations (our fit nuclei) and well deformed nuclei. It is a surprisingly nice agreement in view of the fact that sizeable contributions to the variance from the true collective ground state are still missing.

Further properties of SV-min will discussed later in connection and comparison with other parameterizations.

2. A fit including a super-heavy nucleus

We have seen above that the fitted force performs agreeably for interpolations, but not so well for extrapolations. This suggests to extend the range of interpolation by adding super-heavy nuclei to the pool of data. Thus we have performed a fit where the binding energy of 264Hs was added with high weight to the standard set of data. That nucleus is well deformed. The angular-momentum projected energy has been taken as reference value for the fit. The results for the performance on energies are shown in figure 4. The error for 264Hs has successfully been cumbed down to almost zero. But that is achieved at the price of lowering all energies for medium-heavy and heavy nuclei. The performance for the fit nuclei is visibly degraded and other nuclei are turned to overbinding leaving no space for possible correlation energies. We obviously encounter a deep-rooted problem with the given Skyrme energy functional when considering the overall binding energy of SHE. The discussion of SHE will be continued in sections IV E 6 and IV E 7.

B. Fits with constraints on NMP

1. Variation of NMP

The uppermost entry of table 11 shows the NMP and the final χ^2 for SV-min together together with its extrapolation uncertainties computed according to eq. 11. The χ^2 is very small in view of about 200 given data points. The NMP are more or less in commonly accepted ranges as used, e.g., in the liquid-drop model 50. The “ground-state” properties, equilibrium density ρ_{eq} and binding energy E/A, are well fixed while all the other NMP related to excitations show sizeable uncertainties. The fit leaves some freedom in these respects. Moreover, we will see that the most prevailing nuclear excitations, the giant resonances (GR), are not all so well tuned in SV-min. This suggests to exploit the freedom left by the χ^2 fits for a fine tuning of GR. Moreover, it is interesting as such to explore the large space of still allowed variations.

To that end, we perform fits to the given set of data where additionally four NMP are kept fixed: incompressibility K, effective mass m^*/m, symmetry energy a_{sym}, and sum rule enhancement factor κ (see section III E for its definition). The first two are isoscalar properties and the last two isovector. One may wonder why the slope of the symmetry energy, a'_{sym}, is not included in the variation. The reason is that a'_{sym} is tied up very closely to a_{sym} by the fits such that only one of both shows that freedom of choice.

A four-dimensional landscape of variations of NMP is too bulky to handle. We prefer to define one “base point” about which we perform variation of one NMP at a time thus dealing with four sets of variations. For the choice of the base point, we exploit the full space of variations in the four NMP and use the freedom to accommodate the GR properties as well as possible (see section IV C). After a longer search in that four-dimensional landscape,
TABLE II: NMP as defined in section IIIIB for the for the various SHF parameterizations used in this paper (\(K\) in MeV, \(a_{\text{sym}}\) in MeV, \(E/A\) in MeV, \(\rho_{\text{eq}}\) in fm\(^{-3}\), \(a'_{\text{sym}}\) in MeV fm\(^{-3}\), \(m'/m\) dimensionless, and \(\kappa\) dimensionless). The rightmost column lists the global quality measure \(\chi^2\). The parameterization SV-min results from an unconstrained minimization of the total quality measure \(\chi^2\) according to eq. (3). With the data and adopted errors from tables III and IV. The other parameterizations were obtained by a fit constrained on four NMP. SV-bas is the base point of the systematic variation with the constraints: \(K = 234\) MeV, \(m'/m = 0.9\), \(a_{\text{sym}} = 30\) MeV, and \(\kappa = 0.4\). From that point, one property is varied, the incompressibility \(K\) (via power of density dependence \(\alpha\)) in SV-K, the effective mass in SV-mas, the symmetry energy in SV-sym, and the sum rule enhancement in SV-kap. Finally, SV-tls is constrained like SV-bas but employs the full tensor spin-orbit terms. Moreover, we append to the list the NMP for the four conventional Skyrme forces used in several comparisons.

The overall quality measure \(\chi^2\) is shown in the rightmost column of table III. The constraints, of course, degrade the quality by a bit. But we see that the variations yield \(\chi^2\) which stay within an acceptable range of about 10\% increase in \(\chi^2\). As we will see in section IV C SV-bas performs much better than SV-min for GR in \(^{208}\)Pb. That counterweights the small losses on the side of ground-state properties.

The NMP as given in table III characterize ground states and excitation properties for modes with natural parity. As typical representatives for excitations with unnatural parity, we have also checked spin modes in nuclear matter. These can be characterized by the Landau parameters \(g_0\) for pure spin excitations and \(g_0'\) for a spin-isospin mode \(\eta\). Taking up the formula as given in \([23]\), we have computed these Landau parameters for the energy functional \(\chi\). The only contribution comes from the tensor spin-orbit term. Thus we have \(g_0 = 0 = g_0'\) for all forces with \(\eta_{\text{tls}} = 0\). Only SV-tls has a non-vanishing tensor spin-orbit term. For that force we find \(g_0 = -0.73\) and \(g_0' = 0.191\). These numbers stay safely above the critical value for spin-(isospin) instability. Thus all forces introduced here are stable in the spin channels. Note that we are here using the energy functional with minimal time-odd terms, namely just those which are required to achieve Galilean invariance. That leaves the effective interaction in all channels much more robust. Thus one should not be puzzled by the rather large negative values for the spin-exchange parameters \(x_1\) and \(x_2\) in table IV. These come from expressing the functional in terms of the conventional Skyrme parameters, mediated through eq. (6). Spin stability is guaranteed in connection with the functional \(\chi\). A different picture would evolve when taking the Skyrme force literally as a zero-range force. This yields additional terms in the spin channel which can easily render a parameterization unstable in the spin channel. However, from an energy-density functional viewpoint, we see no compelling reason to include those terms.

2. Trends of the errors

The quality measure \(\chi^2\) is composed of different observables whose relative weight is determined by the given adopted errors. It is known from earlier studies that the choice of observables has an influence on extrapolated NMP (see, e.g., \([36]\)). The sets with systematically varied NMP now allow to visualize these trends. Figure V shows the r.m.s. averaged \(\chi_{\text{obs}}\) per data point for each observable separately. The figure has four panels to show the trends with respect to the four NMP variations considered: incompressibility \(K\), effective mass \(m'/m\), symmetry energy \(a_{\text{sym}}\), and sum rule enhancement \(\kappa\). Variation of sum rule enhancement \(\kappa\) changes very little in all observables. That feature is only loosely determined by the data set, as already seen in table III from
the rather large uncertainty for SV-min. We will need further conditions to make a more definite choice. The other three features lead all to sizeable trends, but often lead in different directions. For example, the lower right panel shows that the r.m.s. radii would prefer low values of m^*/m while the energy prefers $m^*/m \approx 0.9$, other observables to even higher m^*/m. The final “optimum” for m^*/m depends very much on the choice of the relative weight of the different observables. Even within the energy as observable, we could revert the trend when giving light nuclei more weight by using relative errors [36] rather than absolute errors as done here. Significantly different trends are seen also for variation of a_{sym} and K. It is thus obvious that the relative weights in the composition of the χ^2 determine the final extrapolated NMP. Note that the actual changes in the contributions to χ^2 are small such that the total χ^2 varies only very little when scrolling through the different NMP. There is a broad choice of well performing parameterizations. This explains why there are so many different SHF parameterizations around which all provide a good description of nuclear ground-state properties but vary in several of the key features. In other words, the strategy of χ^2 fitting leaves several vaguely determined aspects. One needs to include further observables which are more specific to the open features.

C. Information from giant resonances

1. GR in 208Pb and its relation to NMP

Figure 6 collects results for the peak frequencies of the GR in 208Pb and of the GDR in 16O. We concentrate first on discussing the GR in 208Pb. The results for the straightforward fit SV-min are mixed. The GQR fits nicely, the GMR lies slightly to low, and the GDR is far off the goal. The uncertainties (see error bars for SV-min) are sufficiently large such that a good reproduction of GR in 208Pb seems within the reach of allowed variations.

The relation between NMP and GR properties becomes apparent from the various chains of the systematically varied forces. The situation is particularly simple for the isoscalar excitations. There is a unique relation between an isoscalar GR and isoscalar NMP: the GMR is sensitive exclusively to K and the GQR to m^*/m. Both these GR show a clean excitation spectrum
FIG. 6: Mean resonance frequencies for giant resonances in ^{208}Pb (from left to right: GMR, GDR, and GQR) and for the GDR in ^{16}O computed with the various forces encompassing systematic variation of NMP properties incompressibility K, effective mass m^*/m, symmetry energy a_{sym}, and sum rule enhancement κ as indicated at the right side of the panels. Additionally, results from SV-min, SV-tls and traditional Skyrme forces, as indicated, comprise the lower entries. Extrapolation errors for the three observables are shown as error bars for SV-bas and SV-min. Those for SV-bas apply to all forces fitted with constrained NMP. The experimental values are given in the uppermost entry and drawn through as faint vertical lines.

with one peak. Thus we use these two data points to fix the otherwise weakly determined isoscalar NMP choosing $m^*/m = 0.9$ to meet the GQR and $K = 234 \text{ MeV}$ to tune the GMR. The case is much more involved for the isovector GDR which reacts to two isovector NMP, to a_{sym} and to κ. Moreover, the spectral distribution (not shown here) tends to be strongly fragmented, particularly for high m^*/m and high κ. Lower m^*/m are excluded because we want to maintain the good adjustment of the GQR. Thus we stay with a compromise for the GDR, choosing $\kappa = 0.4$ and $a_{\text{sym}} = 30 \text{ MeV}$. This obviously does not perfectly meet the experimental peak position for the GDR. But the example of the GDR in ^{16}O discussed later on demonstrates that the description of GDR by SHF is anyway not yet well under control. The compromise here is to be understood as a preliminary setting, open for the necessary further studies on the GDR. Fixing these four settings in the fit yields the force SV-bas as introduced in the previous section. It serves as base point for further variations of NMP. The extrapolation uncertainties for SV-bas are, of course, much smaller than those for SV-min because the uncertainty in NMP has been fixed by choice. The strong reduction of the uncertainties confirms once more the close relation between GR and NMP.

The force SV-tls is fitted as SV-bas, but with the tensor spin-orbit term switched on. There are only small changes as compared to SV-bas. These subtle shell effects seem to have an only secondary influence on GR.

The four lowest entries of figure 6 shows results from a few conventionally used Skyrme forces. The variation of the predictions is large confirming once more that GR are only loosely determined by ground-state fits and that explicit adjustment is needed for satisfying performance.

Again, the GDR is not well described by any one of the four traditional forces. That does also hold for the force SGII which was developed originally for GR [61], and for which we obtain the GDR peak at 12.6 MeV, well within the results from other forces.

2. GDR in the light nucleus ^{16}O

The rightmost column in figure 6 collects results for
the peak position of the GDR in 16O. Three of the four NMP show strong effects (κ, m^*/m, and a_{sym}). The isovector chains along a_{sym} and κ show the same trends which are at first glance natural in that the $E_{\text{GDR}}(^{16}$O) peak moves up with increasing $E_{\text{GDR}}(^{208}$Pb). The sensitivity to variation of m^*/m which is not present in 208Pb shows that the GDR in 16O is more sensitive to shell effects than in 208Pb. But these are all comparatively moderate effects. The comparison with the average experimental peak reveals a disaster. All results stay far below the goal. We have checked all conceivable variations within the energy-density functional (3), in earlier investigations [62] and in the course of the present survey, and did not find any way to come approximately close to the experimental $E_{\text{GDR}}(^{16}$O) without dramatic sacrifices on the quality of the ground-state description. Note that also none of the conventional Skyrme forces is able to reach approximately the wanted peak frequency. We conclude that there is no way to achieve a satisfying description of the GDR throughout all nuclei with the functional [4]. There is an urgent need for a thorough investigation of that case.

D. Fixing open options of the model

The SHF functional [3] leaves a few options open concerning the spin-orbit model and the pairing functional. It is worth to check whether the χ^2 measure can help deciding about preferred choices. To that end, we start from SV-bas and vary each one of these options separately. That variation proceeds similar to the variation of NMP. We fix the selected parameter at a wanted value and refit the other force parameters again by minimization of χ^2 with additionally constraining the NMP to the values as used in SV-bas. We so to say produce variants of SV-bas with one more parameter (either ρ_{pair} or $\eta_{\text{tensor-}ls}$ or b_4') fixed.

1. Pairing model: DI versus DDDI

Figure 7 shows the χ^2 for variation of the cutoff density ρ_{pair}^{-1} in the DDDI functional [3]. The results are drawn versus ρ_{pair}^{-1} because that provides a better scale. The limits are: $\rho_{\text{pair}}^{-1} \rightarrow 0$ leads back to DI while $\rho_{\text{pair}}^{-1} = 0.16^{-1}\text{fm}^3 = 6.25\text{fm}^3$ is the typical DDDI value. The minimum χ^2 obviously lies between these two limits and the gain is considerable. We thus decide to use ρ_{pair} as a free parameter of the pairing model.

2. The tensor spin-orbit term

The spin-orbit model leaves the option to include the tensor term $\propto \vec{J}^2$ stemming from the kinetic interaction. Many parameterizations ignore that term. A recent compilation explored the impact of tensor spin-orbit with flexible weight [62] without finding clear signatures for optimum values. We have introduced a continuous switch factor η_{tls} to allow inclusion as tunable parameter. Figure 8 shows the result of a variation of η_{tls}. There is a steep increase in χ^2 from $\eta_{\text{tls}} = 0$ to $\eta_{\text{tls}} = 1$ and an almost flat landscape extending towards moderately negative values of η_{tls}. The extremely shallow χ^2 landscape will make fits extremely cumbersome because there is no drive to a clear minimum and negative values for the tensor switch factor seem a bit unorthodox. We thus decide to freeze the option $\eta_{\text{tls}} = 0$, i.e. omitting tensor spin-orbit, and to consider $\eta_{\text{tls}} = 1$ (= full tensor spin-orbit) occasionally as a separate option.
3. Isovector spin-orbit term

The other open point concerns isovector spin-orbit coupling. That is described by the parameter b'_4 in the Skyrme functional [3]. A fixed isovector fraction with $b'_4 = t_4/2$ is the standard spin-orbit model in conventional SHF functionals. A non-relativistic limit from the RMF suggests $b'_4 \approx 0$ as the appropriate choice [22, 61]. Figure 9 shows the χ^2 as function of the ratio $2b'_4/t_4$. A value of zero corresponds to the RMF preference and one to the standard spin-orbit model of SHF. There is a considerable sensitivity. The minimum comes close to the RMF situation for the present test cases. However, the optimal b'_4/b_4 depends somewhat on the NMP constraints (e.g., effective mass, sum rule enhancement), as seen in table V. We thus decide to consider b'_4 as a freely fitted parameter of the model.

E. Performance for other observables

In the following, we will explore the effect of variation of NMP on various detailed observables. It often happens that only one NMP shows significant effects on a given observable. In such a case, we will show only the one most relevant variation.

1. Neutron skin in 208Pb

A conceptually simple observable is the neutron radius. It complements the radius information gained from the charge form factor. Unfortunately, its experimental determination is model dependent because the strong interaction is involved [62]. With that precaution, we consider the neutron radius in 208Pb from [63]. We express it as neutron skin, i.e., as difference between neutron and proton radius, and take as experimental reference value $r_n - r_p = 0.15$ fm. The neutron skin turns out to depend exclusively on the symmetry energy a_{sym} while all other NMP have no effect at all. The trend is shown in figure 10. One may even add a result from any other force into that plot and all would line up nicely on the given slope [16, 62]. The minimal fit SV-min agrees with the data within the extrapolation error. On the other hand, one has to take into account that the experimental neutron radius is extracted employing model analysis of data [65]. Some uncertainty is associated with that result. We have adopted an experimental uncertainty of 0.05 fm, which still leaves a huge degree of freedom for a_{sym}. Only the conventional RMF parameterizations with their rather large $a_{sym} > 34$ MeV can safely be excluded [16]. It is highly desirable to have more reliable data for the neutron skin in heavy, neutron-rich, nuclei. That would provide direct access to the symmetry energy.

2. The isotope shift from 208Pb to 214Pb

Another observable related to nuclear shape is provided by the isotope shifts of charge radii. These are well accessible by optical methods [67] and differencies of radii put weight on aspects complementing information from radii as such. Particularly interesting here is the shift $\gamma^2(214\text{Pb}) - \gamma^2(208\text{Pb})$ which is usually not well described in SHF with the traditional form for the spin-orbit term but very well in RMF [23, 68]. We will look at that observable with respect to the experimental result $\gamma^2(214\text{Pb}) - \gamma^2(208\text{Pb}) = 0.6085 \text{fm}^2$ [61]. Figure 11 collects results for that isotope shift. From the four NMP, m^*/m shows the strongest effect, although the other NMP are not totally ignorable, the forces with
varying K yield a variation of 0.02 fm2, ω_{sym} spans 0.05 fm2, and κ 0.03 fm2. All these variations stay a factor of two below the strongest one for m^*/m. The non-negligible extrapolation error of SV-bas indicates that there are also other ingredients of the force which influence the isotopic shift. The isovector spin-orbit force does so by construction and the density-dependence of the pairing force is supposed to also have some effect. The difference between SV-tls and SV-bas indicates the large impact of tensor spin-orbit. The present study using systematic variation of NMP, however, reveals that the effective mass still has the leading influence. It was the low m^*/m of the older generation of forces which enhanced the impact of the isovector spin-orbit term with b'_4 such that it lead to the success of SkI3 and SkI4 in adjusting the isotopic shift. The present preference of high effective masses leaves little chance to come so close to the data as can be seen from the error bars on SV-min. This calls for new investigations on that subject.

3. Neutron level sequence in 132Sn

The single-particle energies are a subtle observable in connection with mean-field models. Density functional theory does not give a guarantee that they are correctly described and indeed they are hampered by the self-interaction error. That error, however, leaves the energy differences untouched and it is anyway less dramatic in nuclei. The robustness of single-particle energy differences has also been confirmed in the nuclear context.

FIG. 11: The isotopic shift, $r^2(214\text{Pb}) - r^2(208\text{Pb})$, of charge radii as computed by the parameterizations with varied effective mass m^*/m (full squares). The experimental value is drawn as faint horizontal line. Results from some standard parameterizations are drawn as open squares and labeled with their names in the literature. The parameterization SV-tls is a new fit with constraints as SV-bas, but using the full tensor spin-orbit, $\eta_{\text{tls}} = 1$, see the SHF functional. Extrapolation errors are indicated by arrows for SV-bas and SV-min.

FIG. 12: The energy difference between two occupied neutron levels near the Fermi surface in 132Sn, $\varepsilon_{n,1h11/2} - \varepsilon_{n,2d3/2}$, for the chain of varying effective mass and some other Skyrme parameterizations as indicated. The experimental value is indicated by a faint horizontal line. Extrapolation errors are indicated by arrows for SV-bas and SV-min.

Moreover, the detailed level structure plays a crucial role for the properties of SHE. It is thus important to investigate the performance of mean-field models in that respect. Simple test cases can only be doubly magic nuclei to avoid perturbations from pairing and polarization effects. The levels are usually described fairly well in ^{208}Pb to the extent that at least the level ordering is usually correctly reproduced and often also the detailed energy differences. However, a particularly obnoxious case is the sequence of occupied neutron levels in 132Sn. The experimental ground state of 131Sn has a spin $3/2^+$ while all mean field models predict $11/2^-$ spin. We take the energy difference between these two states, $\varepsilon_{11/2^+} - \varepsilon_{23/2^-}$, as one number characterizing the sequence. Figure 12 shows the results for the channel with varied m^*/m. It is not surprising that this variation has most effect because m^*/m is closely related to shell structure. The next sensitive NMP is κ (not shown here) which is related to the isovector effective mass. The other parameterizations in the figure gather between 1–2 MeV and all theoretical results (including those from the RMF) are far off the experimental value.

The origin of this discrepancy is not clear. It may be related to a peculiarity of the high angular momentum state involved in that difference, either that its spin-orbit splitting is underestimated or that the mean position of high spatial angular momenta is too high. It would require extensions of the SHF functional to cure one of these two features. But it could also be a problem with the interpretation of the excitation spectrum in ^{131}Sn as neutron levels in ^{132}Sn. What has not yet been checked so far is the influence of particle-core coupling in ^{132}Sn. The problem of the level sequence calls for further thorough investigations.
A similar discrepancy is seen for the energy difference between the proton \(1h11/2\) and \(2g7/2\) levels in Sn isotopes \[73\] where all mean field models yet fail to reproduce the isotopic trend of the splitting. Two states with high angular momentum are involved. This suggests that an insufficient description of spin-orbit splitting is the more likely source of trouble. But again, this has yet to be investigated in more detail.

4. Extrapolations to neutron-rich Sn Isotopes

Astrophysical applications for \(r\)-process nuclei involve extrapolations deep into the regime of neutron-rich isotopes. Figure 13 shows the extrapolation errors as estimated from the least-squares techniques for binding energies and two-neutron separation energies along the chain of exotic Sn isotopes. The lower panel for binding energies shows a systematic growth of the uncertainty when moving away from the valley of stability. Note that the freezing of crucial NMP by tuning of giant resonances in SV-bas reduces the uncertainty by a factor of two. The upper panel for two-neutron separation energies basically behaves similarly, but the errors are much smaller than for the energies as such. Differences of energies probe the response properties and these are obviously a bit more robust. Note also the peak at neutron number \(N = 92\).

There is a small sub-shell closure which is particularly sensitive to shell structure. The increase of uncertainty here indicates that an aspect of shell structure comes into play which is not so well determined as the general trends.

5. Fission barriers in \(^{236}U\)

Fission of actinides is a crucial nuclear process. It is usually characterized in terms of fission barriers. We deduce the barriers from quadrupole-constrained SHF calculations considering axially symmetric shapes and allowing for reflection asymmetry. A series of constrained calculations for a broad range of deformations spans the
fission path and the associated deformation energy surface. All states along the path are well deformed. We thus compute the energy with the correction from angular momentum projection in GOA, as explained in section II. That energy curve for actinides displays the typical double-humped barrier [74] with one isomeric minimum. From that we read off two barrier heights and the isomeric energy. It is to be noted that the first barrier tends to go through triaxial shapes, not accounted for here. A further lowering by 0.5–2 MeV can be expected from triaxiality [76, 77].

Figure 14 shows results for fission isomer and fission barrier for 236U as a typical example for an actinide. The values fit generally well to the experimental data, particularly when considering some triaxial lowering for the first barrier. The strongest influence from NMP on the first barrier comes from the symmetry energy \(a_{\text{sym}} \), some effect is added from \(m^*/m \), and \(K \) as well as \(\kappa \) remain basically inert. The order is reversed for the second barrier where \(m^*/m \) has largest impact and \(a_{\text{sym}} \) is secondary. These two NMP are the crucial handles on fission properties including the isomer. This reflects that fission emerges from a subtle interplay of bulk properties (here \(a_{\text{sym}} \)) and shell effects (here \(m^*/m \)). The impact of shell effects through the spin-orbit force is seen also in the step from SV-bas to SV-tls which yields a small, but non-negligible, lowering of the barriers.

It is interesting to note that the variation of results for the conventional forces is larger than the variation within all SV forces. That indicates a large sensitivity of fission properties to fitting strategies.

6. A known SHE: 264Hs

Some SHE have already been produced such that data are available for probing the predictive power directly. We consider here 264Hs as sample. The nucleus has a well deformed ground state. In fact, it belongs to an island of deformed shell closures [76, 80]. We discussed it, amongst others, already in connection with figures 9 and 11. Here, we continue with more detailed variations. Figure 15 shows the binding energy of 264Hs for all forces in our sample. The test case embraces extrapolation to SHE together with deformation effects. It is thus very sensitive and we find that all NMP have some influence, the strongest coming from \(m^*/m \). But none of the allowed variations of NMP brings the result in any way close to the experimental value. The same holds true for the conventional Skyrme forces. That feature was already observed in [78] and it was also found that relativistic mean field models behave quite differently. Thus we have added a few results from relativistic models, NL-Z [81], NL3 [82], and PC-F1 [79]. These tend to overbinding where SHF generally yields underbinding. The result indicates a deep rooted structural difference between these two classes of models, and possibly missing terms in both.

Reactions in the landscape of SHE are not so much determined by binding energies as such. Differences of binding energies are more crucial, particularly the \(Q_\alpha \) value which characterizes \(\alpha \)-decay. Figure 16 shows \(Q_\alpha \) for 264Hs in comparison to the experimental value. All forces provide rather nice agreement with the experimental value. There is general trend to about 0.2 MeV underestimation. This may be due to the fact that the daughter nucleus \(Z = 106 \) is softer than the parent \(Z = 108 \) such that some additional correlation effect may come into play. Nevertheless, the agreement is much better than what one could have expected from the variations in the binding energies (see figure 15). That indicates that energy differences can be predicted more safely.
Further up, there are very interesting, yet unmeasured, SHE. In that regime, we consider as test case element \(Z, N = (120, 182) \), at the upper edge of experimental feasibility in the regime of the spherical valley of stability. It resides on an upward extension of an \(\alpha \)-decay chain recently detected \([83, 84, 85]\). This is a spherical nucleus due to the proton shell closure at \(Z = 120 \) and a low level density for the neutrons at their Fermi energy \([86, 87, 88]\). We consider for that element the binding energy \(E_B \) as such, the \(Q_\alpha \) value

\[
Q_\alpha(Z, N) = E_B(Z-2, N-2) + E_B(2, 2) - E_B(Z, N) \quad (15)
\]

which characterizes \(\alpha \)-decay, and the fission barrier \(B_{\text{fs}} \). The latter quantity is deduced from computing the potential-energy surface along the axially symmetric quadrupole deformation path, for details see \([84]\), including again the correction from angular momentum projection. Most SHE have only a single fission barrier.

Figure 17 shows the results for the hypothetical nucleus \((Z/N)=(120/182)\). We concentrate first on the binding energy (left column). The span of predictions from conventional parameterizations is huge. The force SkM\(^*\) is far off all other results which could be explained by two reasons: First, it is the oldest force in the sample and it was adjusted on a smaller data base available at that time \([55]\). Second, and probably more important, SkM\(^*\) is the only force in the sample which uses a different recipe for the c.m. correction, namely to take only the diagonal elements of the \(P_{\text{cm}} \) in eq. \([83]\) which has dramatic consequences for the extrapolation to SHE \([90]\).

The more recent forces are grouped somewhat better together, and the whole set of SV forces shows comparatively little variation. The extrapolation error of SV-min is still smaller than the difference to conventional forces and SV-bas comes down to an uncertainty of \(\pm 0.8 \) MeV. The difference in the extrapolation errors between SV-min and SV-bas shows the influence of the loosely fixed NMP. A better determination of NMP through GR does also improve the predictive value in the regime of exotic nuclei.

The right column of figure 17 shows the fission barriers for the SHE 120/182. These are sensitive to all details of a parameterization due to the subtle interplay of bulk properties (surface tension, Coulomb pressure) and shell effects. All NMP yield 1–2 MeV variation of the result. The sizeable extrapolation errors of about 0.8 MeV for SV-bas show that there are other effects also at work. The fission barrier is determined by bulk properties (i.e. NMP) as well as shell effects \([89]\). The latter can be seen, e.g., by the large effect of the tensor spin-orbit force, see the difference between SV-bas and SV-tls. In spite of all these sensitivities, the more conservative extrapolation error of SV-min indicates that the predictions can be taken within about 1.2 MeV reliability. It is comforting to see that most of the conventional parameterizations stay also within these bounds. Thus we see that SHE notoriously predicts the fission barrier for 120/182 around 6 MeV with angular momentum correction and 7–8 MeV without. That remains in great contrast to the RMF where all predictions came out much lower \([89]\).

There is a competition between \(\alpha \)-decay and fission in the decay channels of SHE. The middle column of figure 17 shows the \(Q_\alpha \) value for the SHE 120/182. This quantity is directly deduced from a difference of binding energies. One would expect similar trends as for the binding energies (left column), but differences can suppress one trend and amplify another. That is what happens for the \(Q_\alpha \). The trend with \(m^*/m \) loses importance and the incompressibility \(K \) acquires more weight, but the variations are generally much smaller than for the fission barriers. Except for SkM\(^*\), all forces agree within \(\pm 0.4 \) MeV. The fact that the extrapolation error for SV-bas is much smaller than for SV-min indicates that NMP are the leading determinators, in contrast to fission barriers.
where shell effects have much larger influence.

V. CONCLUSION

In this paper, we have performed a survey of the phenomenological adjustment of the free parameters of the Skyrme-Hartree-Fock (SHF) energy functional. The input data for the fits are taken from basic nuclear ground-state properties: energies, charge radii, surface thickness, selected odd-even staggering of energies, and some spin-orbit splittings. These data and appropriate nuclei are selected carefully such that they have small correlation effects. Thereby we consider only the strongly fluctuating correlations from low-lying collective quadrupole states. The smoothly varying correlations from higher excitations (two-body collisions and resonances) are supposed to be incorporated effectively in the SHF functional. The investigation of correlation effects led to a selection of semi-magic fit nuclei with large extension along isotonic chains but surprisingly short isotopic chains. All selected nuclei are spherical to avoid ambiguities from the handling of deformed minima (angular momentum projection). A quality measure χ^2 is built from summing the squared deviations from the data with appropriate adopted error weights. The parameters of the SHF functional are optimized by least-squares fits with respect to the selected sample of data. The emerging r.m.s. errors in the fit observables stay well (by a factor two) below the adopted input errors from correlation effects which shows that the SHF model has some flexibility to incorporate part of correlations from the low-lying excitations.

It is found that the χ^2 minimization leaves some freedom in nuclear bulk properties. In order to explore the space of well-fitted forces thus becoming available, we have performed a systematic variation of bulk proper-
ties, characterized in terms of nuclear matter properties (NMP). This is achieved by adding to the selected ground-state data constraints on four NMP: incompressibility K, effective mass m^*/m, symmetry energy a_{sym}, and sum rule enhancement factor κ. These NMP are varied systematically to produce a set of forces with different properties, all having about the same high quality concerning the nuclear ground-state properties in the fit data. The set of parameterizations thus obtained was used for a thorough investigation of the predictive power of the SHF model by looking at the results for several detailed observables in stable and super-heavy nuclei.

We have used the quality measure χ^2 to check some open options of the present ansatz for the SHF functional. There used to be the decision between volume pairing which corresponds to a simple zero-range pairing force and surface pairing which augments that with a density dependence such that pairing is basically switched off for densities near bulk equilibrium. We have allowed a flexible switching with a density parameter between bulk equilibrium (surface pairing) and infinity (volume pairing). It turns out that the optimum choice is just between these extremes. The SHF functional allows a free choice for the isovector spin-orbit force. A free variation is found to be advantageous as compared to the standard choice which is linked to the isoscalar value or to the choice of zero isovector term deduced from the RMF. There is, furthermore, the choice to include the tensor spin-orbit term which is related to the kinetic zero-range two-body interaction. The quality measure prefers a model without tensor spin-orbit. All three decisions, however, are related to changes in the total χ^2 by about 5%.

We have looked at the separate contributions of an observable (e.g., energy) to the total χ^2. The trends of these contributions with systematically varied NMP pull often in different directions. This means that the choice of relative weights of one observable with respect to another decides on the final result. The trends are weak and thus small changes in weight can cause large drifts in final NMP of a least-squares minimum. This is a quite undesirable element of arbitrariness in the adjustment procedure. On the other hand, the weakness of the trends means that there are several features not so sharply determined from ground-state fits. We exploit the freedom to additionally adjust the peak positions of three decisive giant resonances in 208Pb: the isoscalar giant monopole resonance (GMR), the isoscalar giant quadrupole resonance (GQR), and the isovector giant dipole resonance (GDR). The GMR fixes the incompressibility and the GQR the effective mass. Both resonances can be well described by the model. The GDR is less conclusive in two respects. First, it is sensitive to two NMP, the symmetry energy and the sum rule enhancement factor. And second, it does not yet allow fully satisfying tuning due to the strong fragmentation pattern. Moreover, we find that the GDR in 16O is far off the experimental peak position for all reasonable SHF parameterizations. The present forms of the SHF functional do not yet allow a proper description of the GDR throughout all nuclei. This case of the GDR still requires further investigation.

In summary, we have built one force SV–min with minimal χ^2 from an unrestricted fit, another force SV-bas from NMP constrained fits with GR fine-tuning, a series of forces with systematically varied NMP, and finally a variant of SV-bas with tensor spin-orbit term. Using this set of trial forces, we have investigated the performance for other nuclei and the predictions for a variety of more detailed observables. The interpolation to nuclei within the fitted mass range, i.e. $A < 220$, perform fairly well when including angular momentum projection. The remaining underbinding of 1–2 MeV for soft nuclei is resolved by vibrational correlations. The extrapolation to heavier, deformed nuclei, however, develops large under-binding up to 4 MeV. The attempt to cure that by including super-heavy elements in the fit did not work out well. It sacrifices too much of the quality reached for stable nuclei. We encounter here most probably a problem with an insufficient form of the present energy functional. The binding energy of spherical super-heavy nuclei is a rather robust quantity depending mainly on the effective mass and other features influencing shell structure. Deformed super-heavy nuclei are more sensitive because of the deformation energy. The fission barriers in super-heavy elements is more sensitive depending on almost any feature of the force, all NMP and more detailed entries as, e.g., the tensor spin-orbit term. Nonetheless, all predictions lie within a band of ± 1.2 MeV out of about 10 MeV which is a very comforting result for such a subtle observable. Even more robust are the Q_α energies determining the rate of α decay, which are most strongly influenced by the incompressibility. This shows that differences of energies can behave differently from the energies as such (where the effective mass was most influential). The neutron skin in 208Pb depends exclusively on the symmetry energy. It would be the ideal means to determine this crucial isovector property, but the measurement needs to be reliable and precise. An uncertainty of 0.02 fm in the neutron radius translates to an uncertainty of 1 MeV in the symmetry energy. Practically all existing SHF parameterizations comply with the presently available data within their large uncertainties. The isotope shift of charge radii between 214Pb and 208Pb depends sensitively on the effective mass and other features influencing the shell structure. The recent fits all tend to rather large effective mass which, in turn, raises problems with accommodating that isotopic shift, even when allowing full freedom in the isovector spin-orbit term. The case, which seemed to be solved for previous parameterizations with low effective mass, is open again and requires further investigations.

Altogether, we find that the SHF model provides an excellent description of nuclear bulk properties. Ground-state properties alone, however, leave several features weakly determined. Additional information from excitation or more detailed ground-state observables is required to fix all aspects of the SHF model. At the same time,
the added observables reveal some insufficiencies of the model which call for further investigations. Most urgent seems to be an extension of the spin-orbit model and a better description of dipole giant resonances.

Acknowledgement

This work was supported by BMBF under contracts no. 06 FY 159D and 06 ER 142D. We gratefully ac-

APPENDIX A: DETAILS ON DATA AND PARAMETERS

[1] W. Nazarewicz, J. Dobaczewski, N. Michel, M. Ploszajczak, M. Stoitsov, and J. Terasaki, Nucl. Instr. Meth. 204, 1 (2003).
[2] W. Mittig, P. Roussel-Chomaz, and A. C. C. Villari, Eur. Phys. News 35, No. 4 (2004).
[3] P. Müller, J. Nix, W. Myers, and W. Swiatecki, At. Data Nucl. Data Tab. 59, 185 (1995).
[4] M. Bender, P.-H. Heenen, and P.-G. Reinhard, Rev. Mod. Phys. 75, 121 (2003).
[5] S. E. Koonin, D. J. Dean, and K. Langanke, Phys. Rep. 278, 1 (1997).
[6] M. Wloch, D. Dean, J. Gour, M. Hjorth-Jensen, K. Kowalski, T. Papenbrok, and P. Piecuch, Phys. Rev. Lett. 94, 212501 (2005).
[7] R. Roth, H. Hergert, P. Papakonstantinou, T. Neff, and H. Feldmeier, PRC 72, 034002 (2005).
[8] C. Forseen, P. Navratiil, W. E. Ormand, and E. Caurier, Phys. Rev. C71, 044312 (2005).
[9] G. F. B. (coordinator), Unedef: Universal nuclear energy density functional, http://unedef.org.
[10] J. Dechargé and D. Gogny, Phys. Rev. C21, 1568 (1980).
[11] P.-G. Reinhard, Rep. Prog. Phys. 52, 439 (1989).
[12] F. Ring, Prog. Part. Nucl. Phys. 37, 193 (1996).
[13] R. M. Dreizler and E. K. U. Gross, Density Functional Theory (Springer, Berlin, Heidelberg, New York, 1990).
[14] L. G. Cao, U. Lombardo, C. W. Shen, and N. V. Giai, Phys. Rev. C 73, 044312 (2006).
[15] J. W. Negele and D. Vautherin, Phys. Rev. C5, 1472 (1972).
[16] J. Stone and P.-G. Reinhard, Prog. Part. Nucl. Phys. 58, 587 (2007).
[17] M. Samyn, S. Goriely, P.-H. Heenen, J. M. Pearson, and P. Tondeur, Nucl. Phys. A700, 142 (2002).
[18] G. Bertsch, B. Sabbey, and M. Usnacki, Phys. Rev. C 71, 054311 (2005).
[19] M. Bender, G. F. Bertsch, and P.-H. Heenen, Phys. Rev. Lett. 94, 102505 (2005), gCM-GOA for GSC.
[20] M. Bender, G. F. Bertsch, and P.-H. Heenen, Phys. Rev. C 73, 034322 (2006), on GSC.
[21] P. Klüpfel, P.-G. Reinhard, and J. Maruhn, Eur. Phys. J. A 37, 343-355 (2008).
[22] Y. M. Engel, D. M. Brink, K. Goeke, S. J. Krieger, and D. Vautherin, Nucl. Phys. A249, 215 (1975).
[23] M. Bender, J. Dobaczewski, J. Engel, and W. Nazarewicz, Phys. Rev. C 65, 054322 (2002).
[24] B. D. Serot and J. D. Walecka, Adv. Nucl. Phys. 16, 1 (1986).
[25] P.-G. Reinhard and H. Flocard, Nucl. Phys. A584, 467 (1995).
[26] J. C. Slater, Phys. Rev. 81, 385 (1951).
[27] K. W. Schmid and P.-G. Reinhard, Nucl. Phys. A530, 283 (1991).
[28] P. Bonche, H. Flocard, P.-H. Heenen, S. J. Krieger, and M. S. Weiss, Nucl. Phys. A443, 39 (1985).
[29] S. J. Krieger, P. Bonche, H. Flocard, P. Quentin, and M. S. Weiss, Nucl. Phys. A517, 275 (1990).
[30] M. Bender, K. Rutz, P.-G. Reinhard, and J. A. Maruhn, Eur. Phys. J. A8, 59 (2000).
[31] P.-G. Reinhard, Z. Phys. A285, 93 (1978).
[32] P.-G. Reinhard and K. Goeke, Rep. Prog. Phys. 50, 1 (1987).
[33] P.-G. Reinhard, D. J. Dean, W. Nazarewicz, J. Dobaczewski, J. A. Maruhn, and M. R. Strayer, Phys. Rev. C 60, 014316 (1999).
[34] K. Hagino, P.-G. Reinhard, and G. Bertsch, Phys. Rev. C 65, 064320 (2002).
[35] P. R. Bevington, Data reduction and error analysis for the physical sciences (McGraw-Hill, New York, 1969).
[36] J. Friedrich and P.-G. Reinhard, Phys. Rev. C 33, 335 (1986).
[37] J. Friedrich and N. Vogler, Nucl. Phys. A373, 192 (1982).
[38] J. L. Friar and J. W. Vogler, Adv. Nucl. Phys. 8, 219 (1982).
[39] P.-G. Reinhard, Ann. Phys. (Leipzig) 1, 632 (1992).
[40] P.-G. Reinhard and C. Toepffer, Int. J. Mod. Phys. E3, 435 (1994).
[41] J. Sauvage-Letessier, P. Quentin, and H. Flocard, Nucl. Phys. A370, 231 (1981).
[42] T. Duguet, P. Bonche, P.-H. Heenen, and J. Meyer, Phys. Rev. C 65, 014311 (2002).
[43] M. Bender, T. Cornelius, G. Lalazissis, J. A. Maruhn, W. Nazarewicz, and P.-G. Reinhard, Eur. Phys. J. A 14, 23 (2002).
[44] J. Dobaczewski, P. Magierski, W. Nazarewicz, W. Satula, and Z. Szymanski, Phys. Rev. C 63, 024308 (2001).
[45] K. Rutz, M. Bender, P.-G. Reinhard, J. A. Maruhn, and W. Greiner, Nucl. Phys. A634, 67 (1998).
[46] V. Bernard and Nguyen Van Giai, Nucl. Phys. A348, 75 (1980).
[47] W. Satula, D. J. Dean, J. Gary, S. Mizutori, and W. Nazarewicz, Phys. Lett. B407, 103 (1997).
[48] P.-G. Reinhard and Y. K. Gambhir, Ann. Phys. (Leipzig) 1, 598 (1992).
[49] P.-G. Reinhard, P. D. Stevenson, D. Almeheld, J. A. Maruhn, and M. R. Strayer, Phys. Rev. E 73, 036709
A	Z	E_{R}	R_{diff}	σ	r_{rms}	$\varepsilon_{ls,p}$	$\varepsilon_{ls,n}$	Δ_p	Δ_n
		±1 MeV	±0.04 fm	±0.04 fm	±0.02 fm	±0.02 fm	±0.02 fm	±0.12 MeV	±0.12 MeV
16	8	-127.620	2.777 2	0.839 2	2.701 2	6.30 3	6.10 3		
36	20	-281.360	1						
38	20	-313.122	1						
40	20	-342.051	3	0.978 1	3.478 1	1.68 4			
42	20	-361.895	2	0.999 1	3.513 2	1.70 2			
44	20	-380.960	2	0.975 1	3.523 2	1.49 4			
46	20	-398.769	2						
48	20	-415.990	1	0.881 1	3.479 2	1.70 2			
50	20	-427.491	1						
52	20	-436.571	1						
56	28	-483.990	5						
58	28	-506.500	5	4.364 1	3.776 5	1.26 9			
60	28	-526.842	5	4.396 1	3.818 5	1.21 9			
62	28	-545.258	5	4.438 1	3.848 5	1.34 9			
64	28	-561.755	5	4.486 1	3.868 5	1.39 9			
68	28	-590.430	1						
100	50	-825.800	2						
108	50		4.563 2						
112	50		5.477 3	0.963 9	4.596 9	1.41 9			
114	50		5.509 3	0.948 9	4.610 9	1.26 9			
116	50		5.541 3	0.945 9	4.626 9	1.21 9			
118	50		5.571 2	0.931 2	4.640 1	1.34 9			
120	50		5.591 1	1	4.652 1	1.39 9			
122	50		5.628 1	0.895 1	4.663 1	1.37 3			
124	50		5.640 1	0.908 1	4.674 1	1.31 3			
126	50		1.26 2						
128	50		1.22 2						
130	50		1.17 3						
132	50		1.35 1	1.65 1					
134	50		1.19 1						
198	82	-1560.920	9		5.450 2	1.77 2			
200	82	-1576.370	9		5.459 1	0.77 2			
202	82	-1592.203	9		5.474 1	0.59 3			
204	82	-1607.521	9	0.918 1	5.483 1	0.59 3			
206	82	-1622.340	1	0.921 1	5.494 1	0.90 1			
208	82	-1636.446	1	0.913 1	5.504 1	1.42 1			
210	82	-1645.567	1		5.523 1	1.77 2			
212	82	-1654.525	1		5.542 1	0.66 3			
214	82	-1663.299	1		5.559 1	1.35 1			

TABLE III: Experimental data for the fits, part I: along isotopic chains. Each column stands for an observable as indicated. The second line shows the globally adopted error for each observable. That error is multiplied for each observable by a further integer weight factor which is given in the column next to the data value.
Z	E_Z	E_B	E_diff	E_rms	E_\sigma	E_{ls,p}	E_{ls,n}	E_\Delta_p	E_\Delta_n	
±1 MeV	±0.04 fm	±0.04 fm	±0.02 fm	±20%	±20%	±0.12 MeV	±0.12 MeV			
34 14	-283.429	2	3.577	4	0.994	4	3.299	1	2.22	8
36 16	-308.714	2	4.051	1	0.947	2	3.570	1	1.52	8
38 18	-327.343	2	4.173	1	0.924	4	3.642	2	1.44	8
42 22	-346.904	*	4.258	1	0.900	4	3.693	2	1.33	9
50 22	-437.780	2	4.184	1	0.923	1	4.220	1	1.30	2
52 24	-456.345	*	4.994	1	0.957	1	4.269	1	1.40	2
54 26	-471.758	*	4.960	1	0.950	1	4.315	1	1.33	2
84 34	-727.341	*	4.791	1	0.989	2	4.915	1	1.49	2
86 36	-749.235	2	5.046	2	1.416	2	5.076	2	1.30	2
88 38	-768.467	1	5.104	1	1.210	2	5.162	2	1.25	2
90 40	-783.893	1	5.146	1	1.254	2	5.222	2	1.25	2
92 42	-796.508	1	5.186	1	1.295	2	5.282	2	1.25	2
94 44	-806.849	2	5.226	1	1.336	2	5.342	2	1.25	2
96 46	-815.034	2	5.266	1	1.378	2	5.402	2	1.25	2
98 48	-821.064	2	5.306	1	1.420	2	5.462	2	1.25	2
134 52	-1123.270	1	4.791	1	0.989	2	4.915	1	1.49	2
136 54	-1141.880	1	4.791	1	0.989	2	4.915	1	1.49	2
138 56	-1158.300	1	5.868	2	0.900	2	4.834	1	1.12	2
140 58	-1172.700	1	4.877	1	1.210	2	5.076	2	1.30	2
142 60	-1185.150	2	5.876	3	0.989	3	4.915	1	1.23	2
144 62	-1195.740	2	4.960	1	1.254	2	5.162	2	1.25	2
146 64	-1204.440	2	4.984	1	1.295	2	5.222	2	1.25	2
148 66	-1210.750	2	5.046	2	1.336	2	5.342	2	1.25	2
150 68	-1215.330	2	5.076	2	1.378	2	5.402	2	1.25	2
152 70	-1218.390	2	5.104	1	1.420	2	5.462	2	1.25	2
206 80	-1621.060	1	5.485	1	0.81	4				
210 84	-1645.230	1	5.534	1	0.81	4				
212 86	-1652.510	1	5.555	1	0.88	1				
214 88	-1658.330	1	5.571	1	0.96	1				
216 90	-1662.700	1	5.611	1	1.03	2				
218 92	-1665.650	1	5.641	1	1.10	2				

TABLE IV: Experimental data for the fits, part II: along isotonic chains. Doubly magic nuclei which would fit both sequences are not repeated here. For further explanations see table III.
force t_0 t_1 t_2 t_3 t_4 V_{pair}^n V_{pair}^n ρ_{pair}

SV-min -2112.248 295.781 142.268 13988.567 111.291 601.160 567.191 0.21159
 0.243886 -1.434926 -2.625899 0.258070 45.93615 0.255368 0
SV-bas -1879.639 313.749 116.677 12527.376 124.634 674.618 606.902 0.20113
 0.258546 -0.381689 -2.823638 0.123229 34.11167 0.30 0
SV-K241 -1745.184 310.497 5.705 11975.552 123.469 675.378 610.425 0.20108
 0.291787 -0.106990 -31.904438 0.157335 34.61687 0.34 0
SV-K226 -2055.773 317.043 247.652 13344.392 126.375 619.478 561.830 0.21416
 0.217498 -0.717223 -1.975946 0.081932 33.12488 0.26 0
SV-K218 -2295.822 320.278 330.798 14557.194 130.033 567.192 517.838 0.23131
 0.191803 -0.925134 -1.808014 0.068066 29.57382 0.22 0
SV-mas10 -1813.907 270.452 57.215 12965.454 127.649 665.102 588.101 0.19774
 0.232898 0.127181 -4.795203 0.062346 27.13922 0.33 0
SV-mas08 -1982.650 368.228 274.611 12141.094 119.794 678.404 621.138 0.20781
 0.285633 -1.037408 -1.780825 0.339364 44.33569 0.26 0
SV-mas07 -2203.658 438.349 566.845 12222.736 115.522 752.655 688.246 0.20122
 0.354369 -1.782940 -1.436932 0.632534 57.76849 0.20 0
SV-sym34 -1887.367 323.804 351.782 12597.277 139.310 673.808 603.478 0.20008
 -0.230110 -0.959586 -1.775475 -0.721854 20.28327 0.30 0
SV-sym32 -1883.278 319.184 197.329 12559.469 132.745 676.730 607.540 0.19995
 0.076888 -0.594307 -2.169215 -0.309537 26.67638 0.30 0
SV-sym28 -1877.431 307.255 140.868 12511.940 115.556 590.035 539.892 0.22395
 0.517821 -0.431291 -2.474137 0.568794 42.14865 0.30 0
SV-kap06 -1880.594 314.373 194.940 12537.049 138.722 655.117 575.327 0.20717
 0.183805 0.082542 -2.161972 -0.146674 20.34984 0.30 0
SV-kap02 -1878.883 313.245 44.042 12519.929 110.511 664.612 616.996 0.20136
 0.331398 -0.879672 -5.267351 0.390236 48.25944 0.30 0
SV-kap00 -1877.891 312.600 7.104 12509.993 95.297 683.599 648.780 0.19611
 0.393931 -1.454820 -26.089659 0.640506 63.35492 0.30 0
SV-tls -1879.892 317.952 30.265 12531.858 184.991 645.618 577.394 0.20723
 0.246413 -0.197627 -7.212765 0.103793 0.00010 0.30 1

TABLE V: The parameters of the energy-density functional $\tilde{\Omega}$ for the various SHF parameterizations used in this paper. All parameterizations use a proton mass of $\bar{m}_p = 20.749821$ and a neutron mass of $\bar{m}_n = 20.721260$. For an explanation of the labels see table IV.
[86] M. Bender, K. Rutz, P.-G. Reinhard, J. A. Maruhn, and W. Greiner, Phys. Rev. C 60, 034304 (1999).
[87] A. T. Kruppa, M. Bender, W. Nazarewicz, P.-G. Reinhard, T. Vertse, and S. ´Cwiok, Phys. Rev. C 61, 034313 (2000).
[88] J.-F. Berger, L. Bitaud, J. Decharge, M. Girod, and K. Dietrich, Nucl. Phys. A685, 1c (2001).
[89] T. Bürvenich, M. Bender, J. Maruhn, and P.-G. Reinhard, Phys. Rev. C 69, 014307 (2004).
[90] M. Bender, K. Rutz, P.-G. Reinhard, and J. A. Maruhn, Eur. Phys. J. A7, 467 (2000).