Heavy-Ion and Fixed-Target Physics at LHCb

Krista Smith,
for the LHCb Collaboration

58th Rencontres de Moriond
April 6, 2024
Brief Introduction
LHCb Experiment Overview

- LHCb is a general purpose experiment covering the forward region at the LHC
- Physics program incorporates pp, pA, and AA collisions, ultra-peripheral interactions, and a unique fixed target program
- 8 working groups, including Ions and Fixed Target (IFT)
- 699 physics papers published
- Top 4 most cited papers with 5,567 citations

Inspire HEP citation list (as of March 21, 2024)
LHCb Run 3 Detector Upgrade

LHCb Run 3 Detector Upgrade

Runs 1 & 2

- Designed for searches of new physics in beauty and charm hadron decays
 - Measures particles from $p_T > 0$ at forward pseudorapidity $2 < \eta < 5$

Runs 3–4

- LHCb tracking fully upgraded for Run 3 (2022–2026) *

* See SMOG2 talk (QM2023)
LHCb Results Overview

Five recent LHCb analyses focus on the following collision systems and present the following measurements:

- **pp** collisions at $\sqrt{s} = 7, 13$ TeV
- **pPb** collisions at $\sqrt{s_{NN}} = 8.16$ TeV
- **PbPb** collisions at $\sqrt{s_{NN}} = 5$ TeV

1. $\psi(2S)$ to J/ψ ratio versus multiplicity in **pp** collisions
2. Λ^0_b baryons in **pp** collisions
3. Prompt and nonprompt $\psi(2S)$ double ratio in **pPb** collisions
4. χ_c to J/ψ ratio in **pPb** collisions
5. First v_2 and v_3 measurements in **PbPb** collisions
Ions and Fixed-Target Results
$\psi(2S)$ to J/ψ Ratio
vs Multiplicity in pp Collisions

- Normalised prompt and nonprompt $\psi(2S)$ to J/ψ ratio vs multiplicity for different p_T
 - Suppression observed with increasing multiplicity at low p_T for prompt production only
 - Consistent with final state effects, as initial state effects expected to largely cancel

Variable	mean value
$N_{\text{tracks}}^{\text{PV}}$	25.88
$N_{\text{fwd}}^{\text{PV}}$	16.14
$N_{\text{bwd}}^{\text{PV}}$	9.74

Prompt \sim Primary production
Nonprompt \sim Secondary production

ArXiv: 2312.15201
Submitted 23 Dec 2023
Λ^0_b Baryons in High-Multiplicity pp Collisions

- $\sigma_{\Lambda^0_b}$ to σ_{B^0} ratio in pp collisions converges at low multiplicity with e^+e^- results from LEP.
- Enhancement at low p_T inconsistent with PYTHIA, well described by EPOS4HQ+coalescence.
 - $q\bar{q}$ pairs close in phase space can form mesonic or baryonic states, $\langle N^{\text{VELO}}_{\text{tracks}} \rangle_{\text{NB}} = 37.7$.

![Graph showing $\sigma_{\Lambda^0_b}/\sigma_{B^0}$ ratio versus $N^{\text{VELO}}_{\text{tracks}}/\langle N^{\text{VELO}}_{\text{tracks}} \rangle_{\text{NB}}$.](image1)

![Graph showing $\sigma_{\Lambda^0_b}/\sigma_{B^0}$ ratio versus p_T.](image2)
Prompt & Nonprompt $\psi(2S)$ Production in pPb Collisions

- Double ratio of prompt $\psi(2S)$ to J/ψ cross section shows suppression (global errors cancel)
- Nonprompt double ratio in pPb collisions with larger uncertainty, but consistent with unity
 - Suggests denser nuclear medium created in 8 TeV pPb collisions vs 7 TeV pp collisions
Fraction of χ_c to Prompt J/ψ in pPb Collisions

- Increasing ratio towards lower p_T interpreted as suppression of the $\psi(2S)$
 → fewer $\psi(2S)$ available to decay to J/ψ

- Ratio of χ_c to J/ψ versus p_T in pPb collisions similar to 7 TeV pp collisions for $p_T > 3$ GeV/c
 - No additional nuclear effects seen for more loosely bound χ_c state with respect to J/ψ
Ratio of χ_c to J/ψ versus p_T in pPb collisions similar to 7 TeV pp collisions for $p_T > 3$ GeV/c
- No additional nuclear effects seen for more loosely bound χ_c state with respect to J/ψ
- Consistent with picture of co-moving nuclear medium as opposed to quark-gluon plasma
Charged Hadron Flow in PbPb Collisions

- First LHC measurements of flow harmonic coefficients v_2 and v_3 at forward rapidity in PbPb collisions

- Results compared with ALICE and ATLAS, show similar trends
 - All show rising v_2 and v_3 for $p_T < 2.5$ GeV/c that fall approaching higher p_T
 - Possible nonflow effects in v_2 peripheral events

- Stronger flow observed for ALICE and ATLAS at mid-rapidity
Fixed Target Mode (SMOG2)

- SMOG: System for Measuring Overlap with Gas
- Run3 initial data for $D^0 \rightarrow K^- \pi^+$
- Run3 initial data for $J/\psi \rightarrow \mu^- \mu^+$
 - Only 18 minutes of p+Ar collisions data taking
- Future gas targets include: 4He, 20Ne, 40Ar, 84Kr, 132Xe, H$_2$, N$_2$, O$_2$
Summary
Conclusion

Heavy-Ion Physics

- New evidence for coalescence with Λ_b^0 to B^0 enhancement in high multiplicity pp collisions (Phys. Rev. Lett. Featured in Physics)
- First-ever flow measurements in PbPb collisions from LHC at forward rapidity
- Many new results in pPb collisions at $\sqrt{s_{NN}} = 8.16$ TeV
 - Including prompt and nonprompt $\psi(2S)$ double ratios, χ_c production
- $\psi(2S)/J/\psi$ ratio shows suppression with increasing multiplicity in 13 TeV pp collisions, consistent with final state effects

Fixed Target Physics

- SMOG2 results coming soon in pAr collisions at $\sqrt{s_{NN}} = 113$ GeV
- Plans to run future fixed target mode with Nitrogen, Oxygen, Xenon and more
Back-Up
Call For Paper: [Symmetry] Special Issue - Recent Advances in High-Energy Physics: QCD from Heavy-Ion to Electron-Ion Colliders

- **Website:** https://www.mdpi.com/journal/symmetry/special_issues/1OB695571H
- **Guest Editor:** Dr. Krista Lizbeth Smith
- **Deadline for manuscript submissions:** 31 July 2024

In this Special Issue, original research articles and reviews are welcome. Research areas may include (but are not limited to) the following:

- Heavy-ion collisions;
- Electron-ion collisions;
- Quark-gluon plasma;
- Quantum chromodynamics
Measured η to π^0 cross-section ratios in the backward (left) and forward regions

PYTHIA8 generally describes the data well, while EPOS4 generally overestimates the ratio, especially at high p_T
$\psi(2S)$ to J/ψ Ratio vs pp Collision Energy
J/ψ to D^0 Ratio in PbNe Collisions at LHC

- Data recorded in fixed-target mode at $\sqrt{s_{NN}} = 68.5$ GeV (regeneration effects minimal)
- J/ψ to D^0 ratio shows strong dependence on p_T
- $J/\psi(D^0)$ cross section assumed to scale as $\langle N_{coll} \rangle^\alpha$ ($\langle N_{coll} \rangle$)
- Linear falling trend from pNe to central PbNe indicates J/ψ suppression inconsistent with QGP effects
Conclusions

- Heavy-ion physics in Run 3-4: QGP studies accessible in LHCb with increasing centrality reach.
 - Expecting great performances in pPb and in fixed-target.
 - PbPb physics accessible up to 30% centrality in Run 3 and 20-10% in Run 4.
- In Run 5 expected full centrality coverage:
 - MIGHTY tracker solves occupancy problem.
 - UT upgrade would solve upstream occupancy, ghost rate in Long Tracks and cope with the data rate (40 pp collisions per bunch crossing).
 - Studies still ongoing.
- The future of heavy-ion in LHCb is promising!

Thank you for your attention!
B baryon enhancement

- Increases by a factor of ~2 and plateaus for collisions with >2x average multiplicity
- Baryon/meson ratio shows significant multiplicity dependence
- Expected in scenario where b quarks coalesce with light quarks to form baryons

![Graph showing the dependence of $\sigma_{\Lambda_b}/\sigma_{B^0}$ on $p_T > 0$ in LHCb collisions at $\sqrt{s} = 13$ TeV.](image)

- $pp \rightarrow b\bar{b} + X$, global uncertainty: $^{+19%}_{-16%}$
- $e^+e^- \rightarrow Z^0 \rightarrow b\bar{b}$
Quarkonium Level Scheme

- $c\bar{c}$ states approximately non-relativistic and can be shown in spectroscopic notation J^{PC}, where $\bar{J} = \bar{L} + \bar{S}$
- Inclusive J/ψ contributions
 - $\sim 60\%$ direct production
 - $\sim 30\%$ χ_c states
 - $\sim 10\%$ decays from $\psi(2S)$
- Vector mesons J/ψ and $\psi(2S)$ can decay directly to dileptons via virtual photons

Phys. Letters B561 (2003), 61-72. Image Credit M. Teklishyn
Prog.Part.Nucl.Phys.61:455-511,2008
Cold Nuclear Matter Effects

1. **Gluon Shadowing/Anti-Shadowing:**
 Modification (suppression/enhancement) of heavy quark cross section due to modifications of the gluon nuclear parton distribution functions (nPDFs) in the target.

2. **Nuclear Absorption:**
 The break up of the bound J/ψ (or precursor state) in collisions with other target nucleons passing through J/ψ production point.

3. **Cronin Effect:**
 Modification of $J/\psi p_T$ distribution due to multiple elastic scattering off partons.

4. **Parton Energy Loss:**
 The projectile gluon experiences multiple scattering passing through the target prior to J/ψ production.

5. **Comovers:**
 Final state break-up of the J/ψ via interactions with produced partons.
Publications of the Ions and Fixed Target Working Group

TITLE	DOCUMENT NUMBER	JOURNAL	SUBMITTED ON
Modification of $p_T(3872)$ and $\psi(2S)$ production in $p\bar{p}$ collisions at $\sqrt{s_{NN}} = 8.16$ TeV	PAPER-2023-026 arXiv:2402.14975 [PDF]	JHEP	22 Feb 2024
Prompt and nonprompt $\psi(2S)$ production in $p\bar{p}$ collisions at $\sqrt{s_{NN}} = 8.16$ TeV	PAPER-2023-024 arXiv:2401.11342 [PDF]	JHEP	20 Jan 2024
Multiplicity dependence of $\sigma_{p\bar{p}ll}/\sigma_{NN}$ in pp collisions at $\sqrt{s} = 13$ TeV	PAPER-2023-035 arXiv:2312.15201 [PDF]	JHEP	23 Dec 2023
Measurement of forward charged hadron flow harmonics in peripheral $PbPb$ collisions at $\sqrt{s_{NN}} = 5.02$ TeV with the LHCb detector	PAPER-2023-031 arXiv:2311.09985 [PDF]	Phys. Rev. C	16 Nov 2023
Observation of strangeness enhancement with charmed mesons in high-multiplicity $p\bar{p}$ collisions at $\sqrt{s_{NN}} = 8.16$ TeV	PAPER-2023-021 arXiv:2311.08490 [PDF]	PRL	14 Nov 2023
Fraction of J/ψ decays in prompt J/ψ production measured in $p\bar{p}$ collisions at $\sqrt{s_{NN}} = 8.16$ TeV	PAPER-2023-028 arXiv:2311.01562 [PDF]	Phys. Rev. Lett. 132 (2024) 102302	02 Nov 2023
Production of η and η' mesons in pp and $p\bar{p}$ collisions	PAPER-2023-030 arXiv:2310.17326 [PDF]	Phys. Rev. C 109 (2024) 024907	26 Oct 2023
Enhanced Production of $ab0$ Baryons in High-Multiplicity pp Collisions at $s=13$ TeV	PAPER-2023-027 arXiv:2310.12278 [PDF]	Phys. Rev. Lett. 132 (2024) 081901	18 Oct 2023
Measurement of prompt D^+ and D_s^+ production in $p\bar{p}$ collisions at $\sqrt{s_{NN}} = 5.02$ TeV	PAPER-2023-006 arXiv:2309.14206 [PDF]	JHEP 01 (2024) 070	25 Sep 2023
Study of the Bose-Einstein correlations of same-sign pions in proton-lead collisions	PAPER-2023-002 arXiv:2306.09755 [PDF]	JHEP 09 (2023) 172	16 Jun 2023
Measurement of Ξ^+ production in $p\bar{p}$ collisions at $\sqrt{s_{NN}} = 8.16$ TeV at LHCb	PAPER-2022-041 arXiv:2305.06711 [PDF]	PRL	11 May 2023

New LHCb heavy-ion and fixed target (IFT) results since Moriond 2023 (web link)
Quarkonia binding energies listed according to *J. Phys. G* 32 (2006) R25

- Note the binding energy of $\chi_{c1,2} >$ binding energy of $\psi(2S)$
Heavy Flavor: Charm & Bottom Quarks

state	η_c	J/ψ	χ_{c0}	χ_{c1}	χ_{c2}	ψ'
mass [GeV]	2.98	3.10	3.42	3.51	3.56	3.69
ΔE [GeV]	0.75	0.64	0.32	0.22	0.18	0.05

Table 1: Charmonium states and binding energies

state	Υ	χ_{b0}	χ_{b1}	χ_{b2}	Υ'	χ'_{b0}	χ'_{b1}	χ'_{b2}	Υ''
mass [GeV]	9.46	9.86	9.89	9.91	10.02	10.23	10.26	10.27	10.36
ΔE [GeV]	1.10	0.70	0.67	0.64	0.53	0.34	0.30	0.29	0.20

Table 2: Bottomonium states and binding energies

- Hadrons carrying single charm or bottom quarks, i.e. open heavy flavor
- Heavy quarkonia, bound states of charm or bottom quarks and their antiquarks, i.e. hidden charm or beauty
the amplitude are interpolated in mass between the fitted points. The resulting Argand diagram, shown in Fig. 9(a), is consistent with a rapid counter-clockwise change of the $P_c(4450)^+$ phase when its magnitude reaches the maximum, a behavior characteristic of a resonance. A similar study for the wider state is shown in Fig. 9(b); although the fit