Supplemental Figure S1. Western blot analysis to detect CPA3 protein from canine MCT and human MC lysate (HMCL). Canine muscle tissue was used as a negative control tissue. The tissues were homogenized and probed with the rabbit anti-human CPA3 antibody. The antibody was able to recognize a band of approximately 75 kDa in size from both canine and human MC lysates while no bands were detected in muscle tissue.
Supplemental Figures S2-S6. CPA3 immunoreactivity in selected canine round cell tumors, skin, dog. No CPA3 positive neoplastic cells were observed in cutaneous lymphoma (S2), histiocytoma (S3) or plasmacytoma (S4). Furthermore, no immunoreactivity was detected in oral plasma cell tumor (S5) or in the splenic follicular lymphoma (S6). Few cells outside the tumor mass stain positive in the splenic sample (S6, arrows), but similar cells were positive also with the c-kit antibody and the negative rabbit IgG polyclonal isotype control stain.
Supplemental Figure S7. The unspecific binding of the primary antibody was evaluated using rabbit IgG, polyclonal isotype control, skin, dog. The micrographs show representative positive (a) and negative (b) staining of a high-grade MCT from a female flat-coated retriever. MCs (arrows) in the MCT were stained positively with the rabbit anti-human CPA3 antibody (a), while no MCs were stained using the rabbit IgG, polyclonal isotype control (b). Unspecific intraluminal and intimal staining was observed in the blood vessels (arrowheads) using both the CPA3 antibody and the rabbit IgG, polyclonal isotype control.
Supplemental Table S1. Non-neoplastic tissues for CPA analysis.

Breed	Age (years)	Sex	Weight (kg)	Tissues analyzed
Dog 1 Rottweiler	6	M	41	Skin
Dog 2 Smooth fox terrier	4	F	7.3	Skin
Dog 3* American Cocker Spaniel	8	F	9.5	Skin
Dog 4 Finnish Lapphund	7	F,N	15	Skin
Dog 5 Spanish Water Dog	8	M,N	29	Skin
Dog 6 Labrador retreiver	1	F	17	Sp, Li, SI
Dog 7 French water dog	7	F	17	Sp, Li, SI
Dog 8 Miniature Schnauzer	0.2	F	3.8	Sp, Li, SI
Dog 9 Greyhound	2	F	26	Sp, Li, SI
Dog 10 Bordercollie	1	M	21	Sp, Li
Dog 11 Boxer	1	F	23	SI

Non-neoplastic canine MCs were evaluated for their CPA tissue expression by immunohistochemistry from cutaneous, hepatic, splenic and small intestinal tissues. Sample marked with an asterix denotes for a biopsy sample, other samples were obtained from autopsies. F, female; Li, Liver; M, male; N, neutered; SI, small intestine; Sp, Spleen.
Supplemental Table S2. Patient data of dogs with cutaneous low grade or high grade MCTs

	Low grade (n=53)	High grade (n=10)
	Gender (n=51)	Location (n=53)
Age	7.8 y (3 m – 13 y)	10.9 y (6 – 13.1 y)
Weight	27.8 kg (6.6–51.1 kg)	19.4 kg (8.3–37.6 kg)
Sex Male		
	16 (31)	1 (10)
	6 (12)	4 (40)
	12 (24)	3 (30)
	17 (33)	2 (20)
Total*	51 (100)	10 (100)
Location		
Limb	14 (29)	4 (40)
Flank	10 (20)	1 (10)
Head/neck	11 (22)	3 (30)
Abdominal skin	7 (14)	1 (10)
Tail/perineal skin	7 (14)	1 (10)
Total†	49 (100)	10 (100)

*Gender was not recorded for 2 and †location for 4 low grade MCTs.
Supplemental Table S3. Breeds of the sample population.

Breed	n	%
Golden Retriever	6	10.9
Boxer	5	9.1
Labrador Retriever	5	9.1
Boston Terrier	3	5.5
Dogo Argentino	3	5.5
Mixed breed	3	5.5
Australian Terrier	2	3.6
Irish Terrier	2	3.6
Fox Terrier	2	3.6
Nova Scotia Duck Tolling Retriever	2	3.6
French Bulldog	2	3.6
German Shepherd	2	3.6
Flat-coated Retriever	2	3.6
Staffordshire Bullterrier	2	3.6
American Cocker Spaniel	1	1.8
Bernese Mountain Dog	1	1.8
Brasilian Terrier	1	1.8
Doberman	1	1.8
Spanish Water Dog	1	1.8
Jack Russell Terrier	1	1.8
Miniature Pinscher	1	1.8
Pug	1	1.8
Parson Russell Terrier	1	1.8
Petit Brabancon	1	1.8
Rhodesian Ridgeback	1	1.8
Shetland Sheepdog	1	1.8
Finnish Lapphund	1	1.8
Whippet	1	1.8
Total	55	100

63 MCT samples from 56 dogs were included in this study. The breed of one of the dogs was unknown.
Supplemental Data 1. Nucleotide alignment of human and canine CPA3 sequences generated with the BLAST tool.

Query: Homo sapiens carboxypeptidase A3 (CPA3), mRNA
Query ID: NM_001870.4 Length: 1762

Sbjct: Canis lupus familiaris carboxypeptidase A3 (CPA3), mRNA
Sequence ID: XM_038571158.1 Length: 1693
Range 1: 64 to 679

Score: 1903 bits (1030), Expect: 0.0
Identities: 1442/1639 (88%), Gaps: 36/1639 (2%), Strand: Plus/Plus

Query 1 CAAAGAAGAACCATGAGGCTCATCCTGCCTGTGGGTTTGATTGCTACCACTCTTGCAATT 60
Sbjct 64 CAAAGAAGAACCATGTTGGTTCATCCTGCCTGTGGGTCTGATCGCTACCACCGGCAATT 123

Query 61 GCTCCTGTCGCCCTTGAAGGAGGAGAAGGTATTCCGCGTGAAGCCCCAGGATGAAAAACAA 120
Sbjct 124 GCTCCTGTCGCCCTTGAAGGAGGAGAAGGTATTCCGCGTGAAGCCCCAGGATGAAAAACAA 183

Query 181 ACCCACCACGTTAGCTGCTATATGAGTGGTGGATTTCCGAGTTAGTGAAAAGGAATCCCAG 180
Sbjct 244 ACCCACCACGTTAGCTGCTATATGAGTGGTGGATTTCCGAGTTAGTGAAAAGGAATCCCAG 243

Query 241 GCCATCCAGTCTGCCTTGGATCAAAATAAAATGCACTATGAAATCTTGATTCATGATCTA 240
Sbjct 304 GCCATCCAGTCTGCCTTGGATCAAAATAAAATGCACTATGAAATCTTGATTCATGATCTA 303

Query 301 CAAGAAGAAGATTGAGAAACAGTTTGATGTTAAAGAAGATATCCCAGGCAGGCACAGCTAC 360
Sbjct 364 CAAGAAGAAGATTGAGAAACAGTTTGATGTTAAAGAAGATATCCCAGGCAGGCACAGCTAC 363

Query 361 GCACGAGAATGGGTCTCCCCAGCATCTGCCAGTGGTTTGTCTATCGCACTGACCTCAACAGGAATTTTAATGCT 360
Sbjct 424 GCACGAGAATGGGTCTCCCCAGCATCTGCCAGTGGTTTGTCTATCGCACTGACCTCAACAGGAATTTTAATGCT 423

Query 421 CGTTCCAAGAACCAAAACTCCAAATGCATTGGCACTGACCTCAACAGGAACTTTAATGCT 480
Sbjct 484 CGTTCCAAGAACCAAAACTCCAAATGCATTGGCACTGACCTCAACAGGAACTTTAATGCT 483

Query 481 CGTTCCAAGAACCAAAACTCCAAATGCATTGGCACTGACCTCAACAGGAACTTTAATGCT 543
Sbjct 544 CGTTCCAAGAACCAAAACTCCAAATGCATTGGCACTGACCTCAACAGGAACTTTAATGCT 546

Query 541 GCACGAGAATGGGTCTCCCCAGCATCTGCCAGTGGTTTGTCTATCGCACTGACCTCAACAGGAATTTTAATGCT 540
Sbjct 604 GCACGAGAATGGGTCTCCCCAGCATCTGCCAGTGGTTTGTCTATCGCACTGACCTCAACAGGAATTTTAATGCT 603

Query 601 TGTTGAGAAGAAAAATAGTTAGCAAAACTCTTGGACCGAATGAGATTATTATTATACCTTCTCC 600
Sbjct 664 TGTTGAGAAGAAAAATAGTTAGCAAAACTCTTGGACCGAATGAGATTATTATTATACCTTCTCC 663

Query 661 GTGTTCACCTGTGTGATGATATTTTGTGTCTATCGCACTGACCTCAACAGGAATTTTAATGCT 659
Sbjct 724 GTATTCACAATGTGTGATGATATTTTGTGTCTATCGCACTGACCTCAACAGGAATTTTAATGCT 723

Query 721 CGTTCCAAGAACCAAAACTCCAAATGCATTGGCACTGACCTCAACAGGAACTTTAATGCT 780
Sbjct 784 CGTTCCAAGAACCAAAACTCCAAATGCATTGGCACTGACCTCAACAGGAACTTTAATGCT 783

Query 781 TCATGGAATCTCATCCTAAACCAATGACCCATACTGCGAGAATAACTATCGGGCCTCTGCA 840
Supplemental Data 2. Amino acid alignment of human and canine CPA3 sequences generated with the BLAST tool\(^1\). CPA3 antibody target epitope is denoted with red.

Query: mast cell carboxypeptidase A preproprotein [Homo sapiens] Query ID: NP_001861.2 Length: 417

Sbjct: mast cell carboxypeptidase A [Canis lupus familiaris] Sequence ID: XP_038427086.1 Length: 417 Range: 1 to 417

Score:782 bits(2019), Expect:0.0, Method:Compositional matrix adjust., Identities:366/417(88%), Positives:392/417(94%), Gaps:0/417(0%)

Query 1

```
MRLILPVGLIATLAIAPVRDFREKVFRKVQDEKQADIIKDLAKTNELDFWYPGATHHV  60
```

Sbjct 1

```
MWFILPVGLIATLAIAPVRDFREKVFRKVQDEKQANIIKDLAKTNQLDFWYPDATHHV  60
```

Query 61

```
AANMMDVFRSVRSQAIQALDQNNMHEILILHQEIKEQFDVKEDIPGRHGYAKYN  120
```

Sbjct 61

```
TANMTDQVSREKESSIQALDQNNMHEILILHQEIKEQFDVKEDIPGRHGYAKYN  120
```

Query 121

```
NWEKIVAWTEKMMDKYPEMVSRIKIGSTVEDNFLYVKIFKEKnERRRHAIFDCGIHAREW  180
```

Sbjct 121

```
NWDKIVAWTEKMMDKYPEMVSRIKIGSTVEDNFLYVKIFKEKnERRRHAIFDCGIHAREW  180
```

Query 181

```
QNSKCIGTDLNRNFNASWNS+PCA+YRGPKPESEKETKVATFIRSLNKIY  300
```

Sbjct 181

```
QNSKCIGTDLNRNFNASWNS+PCA+YRGPKPESEKETKVATFIRSLNKIY  300
```

Query 301

```
ITFHSYQMLLFPPYGYTSKLPNHEDLAIVKAVIGTDVLS4TRYETRYIYGPESIYIPISG  360
```

Sbjct 301

```
ITFHSYQMLLFPPYGYTSKLPNHEDLAIVKAVIGTDVLS4TRYETRYIYGPESIYIPISG  360
```

Query 361

```
SSLDAYDLGKHTFAPFAELRDKGFGFLPESKRIKPTCREMTLMAVKFIAYIKHTK  417
```

Sbjct 361

```
SSLDAYDLGKHTFAPFAELRDKGFGFLPESKRIKPTCREMTLMAVKFIAYIKHTK  417
```

Reference:

1. Madden T. The BLAST Sequence Analysis Tool. 2003 Aug 13