ROLE OF AMP KINASE AND PPARδ IN THE REGULATION OF LIPID AND GLUCOSE METABOLISM IN HUMAN SKELETAL MUSCLE*

David Kitz Krämer1, Lubna Al-Khalili1, Bruno Guigas2, Ying Leng1, Pablo M Garcia-Roves1 and Anna Krook3

From the 1Department of Molecular Medicine and Surgery, and 3Department of Physiology and Pharmacology, Karolinska Institutet S-171 77 Stockholm, 2Hormone and Metabolic Research Unit, School of Medicine, Université Catholique de Louvain and Institute of Cellular Pathology, Brussels, Belgium. #Current address Shanghai Institute of Materia Medica, Shanghai Institute for Biological Sciences, Chinese Academy of Sciences, Shanghai, China

Running title: Metabolic regulation by AMPK and PPARδ

Address correspondence to: Anna Krook, Integrative Physiology, Department of Physiology and Pharmacology, Karolinska Institutet, 171 77 Stockholm, Sweden Tel +46 8 524 8 7824, Fax +46 8 33 54 36, E-Mail: Anna.Krook@ki.se

The peroxisome proliferator activated receptor (PPAR) δ has been implicated in the regulation of lipid metabolism in skeletal muscle. Furthermore, activation of PPARδ has been proposed to improve insulin sensitivity and reduce glucose levels in animal models of type 2 diabetes. We recently demonstrated that the PPARδ agonist GW501516 activates AMP-activated protein kinase (AMPK) and stimulates glucose uptake in skeletal muscle. However, the underlying mechanism remains to be clearly identified. In this study, we first confirmed that incubation of primary cultured human muscle cells with GW501516 induced AMPK phosphorylation and increased fatty acid transport and oxidation and glucose uptake. Using siRNA, we demonstrate PPARδ expression is required for the effect of GW501516 on intracellular accumulation of fatty acids. Furthermore, we show that the subsequent increase in fatty acid oxidation induced by GW501516 is dependent on both PPARδ and AMPK. Concomitant with these metabolic changes, we provide evidence that GW501516 increases the expression of key genes involved in lipid metabolism (FABP3, CPT1 and PDK4) by a PPARδ-dependent mechanism. Finally, we also demonstrated that the GW501516-mediated increase in glucose uptake requires AMPK, but not of PPARδ. In conclusion, the PPARδ agonist GW501516 promotes changes in lipid/glucose metabolism and gene expression in human skeletal muscle cells by PPARδ and AMPK-dependent and - independent mechanisms.

The peroxisome proliferator activated receptors, PPARs, have been the focus of attention within the field of metabolic research due to their lipid-sensor properties and functional role in transcriptional regulation. PPARs regulate lipid utilization and storage, and influence metabolic substrate utilization in relation to energy supply during fasting (1) or energy demand during physical exercise (2). PPAR isoforms display tissue specific expression and gene regulatory profiles. PPARγ is a key regulator of adipose development and adipose insulin sensitivity (3), while PPARα regulates genes involved in hepatic lipid oxidation (4). PPARδ is the predominant isoform in skeletal muscle and studies in transgenic mice show targeted expression of activated PPARδ increases the predominance of oxidative type 1 muscle fibers, enhances whole body insulin sensitivity and increases exercise endurance capacity (5). Since pharmacological activation of PPARδ with the specific agonist GW501516 improves insulin sensitivity in aged rhesus monkeys (6) and rodents (7,8), PPARδ agonism may offer an efficacious strategy for the management of metabolic disorders.

The PPARδ-mediated enhancement in whole body insulin sensitivity primarily reflects improvements in the lipid profile. PPARδ activation can improve glucose homeostasis by increasing lipid oxidation to lower plasma free fatty acid levels, which thereby relieves negative feedback on the canonical insulin signaling cascade to enhanced glucose uptake and reduce plasma glucose levels (9). Skeletal muscle is a key target tissue in orchestrating this scenario, since it is a key organ for lipid oxidation and glucose uptake. Indeed improvements in skeletal

Copyright 2007 by The American Society for Biochemistry and Molecular Biology, Inc.
muscle insulin sensitivity are beneficial to control glucose homeostasis (10).

Genetic data in humans provides evidence for a role of PPARδ in the regulation of skeletal muscle glucose metabolism. Single nucleotide polymorphisms (SNPs) of the human PPARD gene are associated with enhanced whole-body insulin sensitivity. The use of positron emission tomography to determine tissue specific glucose disposal rates in vivo identifies SNPs in the PPARD gene mainly affect glucose uptake in skeletal muscle, but not adipose tissue (11). Furthermore, SNPs in the PPARD gene modify the conversion from impaired glucose tolerance to type 2 diabetes, particularly in combination with SNPs identified in PPAR gamma coactivator (PGC)-1α and PPARγ2 (12). Interestingly, improvements in insulin sensitivity are correlated with increased PPARδ expression in type 2 diabetic patients performing moderate walking exercise (13). In addition, PPARδ expression is associated with an increased proportion of insulin sensitive oxidative skeletal muscle fiber types in human (14) and rodents (5) skeletal muscle.

The effects of PPARs on metabolic responses may involve the AMP-activated protein kinase (AMPK). Indirect evidence to support this hypothesis arises from the observation that the metabolic profile achieved in response to AMPK activation overlaps with the metabolic phenotype observed with PPARδ activation. AMPK is a heterotrimeric protein kinase which participates in cellular energy homeostasis (15). Once activated under conditions of low energy status, AMPK enhances cellular nutrient uptake, activates ATP-producing catabolic pathways and down-regulates energy consuming processes (15). AMPK-mediated effects on lipid and glucose metabolism partly involve activation of PPARs through diverse signaling pathways (16,17) and/or direct phosphorylation (18). The PPARδ agonist GW51516 increases basal and insulin-stimulated glucose uptake in cultured primary human myotubes, C2C12 cells and 3T3-L1 adipocytes, with effects correlated with AMPK phosphorylation in human skeletal myotubes (19). The contribution of AMPK to the described effects of PPAR agonists on the regulation of lipid and glucose metabolism is unknown.

The aim of this study was to determine whether PPARδ has a direct role in the regulation of glucose and lipid metabolism in skeletal muscle. In addition, we determined whether AMPK contributes to the enhanced metabolic phenotype observed in skeletal muscle conferred by PPARδ agonists.

Experimental procedures

Materials - Dulbecco's minimum essential medium (DMEM), Ham's F-10 medium, fetal bovine serum (FBS), penicillin, streptomycin, and fungizone were obtained from GibcoBRL (Life-Technologies, Stockholm, Sweden). Radiochemical, 2-[G-3H] deoxy-D-glucose (6.0 Ci/mmol/l), D-[U-14C]glucose (310 mCi/mmol/l), were from Amersham (Life Science, Sweden). All other chemicals were analytical grade and from Sigma (St Louis, MO).

Human primary skeletal muscle cell culture - Skeletal muscle biopsies were obtained from healthy individuals who underwent general surgery. None of the subjects had known metabolic disease. Satellite cells were isolated and primary muscle cultures were established (20). The ethical committee at Karolinska Institutet approved protocols. Cells were grown in DMEM (1000 mg/L glucose) with 10% FBS and 1% Penicillin/Streptomycin (PeSt) in non-coated dishes. In order to differentiate human myoblasts into myotubes, dishes with a cell density of 80-90% were grown in DMEM with 4% FBS for 2 days to induce myotube formation, then grown in DMEM with 2% FBS for 2 days. Before utilization, the cells were controlled optically for formation of elongated myotubes and serum-starved overnight.

Metabolic analysis - Glucose uptake and glucose incorporation into glycogen in primary human muscle cells was determined as previously described (21). Determination of free fatty-acid uptake and oxidation were performed as described (22).

RNA purification and quantitative Reverse Transcription-coupled real-time-PCR - Myoblasts were cultured in 100 mm dishes and the differentiation was initiated at >90% confluence. Five days after differentiation, myotubes were FBS-starved for 24 h (except in the FBS withdrawal experiment, where FBS starvation times were 0 h, 8, 16 h and 24 h) and then incubated with 100 nM GW501516 for 60 min, or FBS-starved for 24 h with 100 nM GW501516 in the medium for the last 18 h of the starvation period. Control cells were treated with the vehicle (DMSO) in an identical manner. At the end of the incubation, cells were washed 3
times with RNase free PBS and then harvested directly for RNA extraction (RNAeasy mini kit, Qiagen, Crawley, UK). All RNA was DNase-treated before reverse transcription (RQ1 RNase-free DNase, Promega, Southampton, UK). Total RNA concentration was measured and cDNA was prepared using the TaqMan reverse transcription reagent. Real-time PCR (ABI-PRISMA 7000 Sequence Detector, Perkin-Elmer Applied Biosystems, Foster City, CA) was performed for quantification of specific mRNA content and data were collected and analyzed by ABI Prism 7000 SDS Software version 1.1.
mRNA content was normalized for β-actin mRNA (unchanged expression after GW501516 treatment) and expressed relative to that in control cells treated with vehicle. Oligonucleotide primers (sequences available upon request) and TaqMan probes were purchased from Applied Biosystems.

Western blot analysis - Expression of AMPK, Acetyl CoA Carboxylase (ACC), PPARγ Coactivator (PGC) 1, respiratory-chain complex I (NADH-ubiquinol oxidoreductase (CI)) and complex IV (cytochrome C oxidase (COX) I) were assessed by immunoblot analysis using AMPK pan α-subunit (Cell Signaling), ACC (Upstate), PGC1 (Chemicon), CI (Invitrogen) and COX I (Invitrogen) antibodies, respectively. PPARδ antibody was from Santa Cruz (Santa Cruz Biotechnology, Inc). The phosphorylation state of AMPK and ACC was measured with anti-phospho-Thr172 (Cell Signaling) and anti-phospho-Ser79 (Upstate) specific antibodies, respectively. Briefly, cell lysates were rotated for 60 min at 4°C in homogenization buffer (50 mM Hepes pH 7.6, 150 mM NaCl, 1% Triton-X-100, 1 mM, Na3VO4, 10 mM NaF, 30 mM Na4P2O7, 10% (v/v) glycerol, 1 mM benzamidine, 1 mM DTT, 10 μg/mL 1 leupeptin, 200 mM PMSF and 1 μM microcystin) and then subjected to centrifugation (20 000 x g for 10 min at 4°C). Samples of cell lysate supernatant were resuspended in Laemmli buffer and proteins were separated by SDS-PAGE, transferred to PVDF membranes (Millipore, Massachusetts), blocked with 7.5% non-fat milk, washed with TBST (10 mM Tris HCl, 100 mM NaCl, 0.02% Tween 20), and finally incubated with appropriate primary antibodies overnight at 4°C. Membranes were washed with TBST and incubated with an appropriate secondary antibody (Horseradish peroxidase-conjugated goat anti-rabbit and anti-mouse immunoglobulin G, from Bio-Rad Laboratories (Richmond, CA)).

Western blots were visualized by chemiluminescence (ECL, Amersham, Arlington Heights, IL) and quantified by densitometry.

Nuclear extraction

Myotubes were grown in 10 cm petri dishes, stimulated as described above and then washed immediately with ice-cold PBS. The nuclear extraction procedure was essentially as previously described (23).

siRNA transfection in myotubes - Myotubes were transfected using Lipofectamine 2000 (Invitrogen, Sweden). Differentiation media was changed to antibiotic-free growth media on day 2 of myotube differentiation. On day 3, individual siRNAs (1 μg/ml) were transfected using lipofectamine in serum-free DMEM (incubating time >16 h). Myotubes were washed with PBS and 2 ml of DMEM containing 2% of FBS was added to each well. On day 5, cells were used for experiments. The siRNA reagents for the control and various PPAR isoforms (details of sequences available upon request) were from Dharmacon (Perbio Science Belgium). The siRNA reagents for AMPK α1 and α2 were from Ambion (Austin, Tx) and were designed as previously described (24).

HPLC measurement of ATP, ADP and AMP - Adenine nucleotides were separated by high-performance liquid chromatography using a Spherisorb column 5 μm ODS (0.46 cm x 18 cm). Elution was done with 25 mM sodium pyrophosphate/pyrophosphoric acid, pH 5.75, with a flow rate of 1 ml min⁻¹. Absorbance was measured at 254 nm (25).

Statistics - Groups were compared using ANOVA and differences were identified with Fischer’s post hoc analysis. Statistical significance was accepted when p<0.05.

RESULTS

GW501516-induced stimulation of fatty acid uptake in primary cultured human myotubes requires PPARδ - Previous results obtained with animal models indicated that activation of PPARδ leads to increased lipid metabolism in skeletal muscle. To determine the effects of PPARδ activation in human muscle, differentiated primary myotubes were exposed to 100 nM GW501516 for 1 or 18 h. Palmitate uptake, as assessed by intracellular accumulation of [¹⁴C]-labeled palmitate, was significantly increased 37% in response to long-term GW501516 treatment (Fig 1A). Conversely, GW501516 did not increase palmitate uptake.
after the short-term 60 min exposure, suggesting that transcriptional effects are required to mediate metabolic responses.

To assess the requirement for PPARδ for the GW501516 effect on fatty acid uptake, the expression of either PPARα or PPARδ was specifically reduced using siRNA technology. Efficiency and specificity of the siRNA transfection on the expression of the targeted gene was determined using quantitative real-time PCR. mRNA expression was reduced 71% for PPARα (p<0.001) and 78% (p<0.001) for PPARδ, as compared to random siRNA control constructs (Fig 2A). Protein expression of PPARδ was determined in nuclear extracts, and confirmed siRNA mediated reductions by 65% (figure 2B). The siRNA-mediated reduction in PPARδ expression, abolished the stimulation of palmitate uptake induced by GW501516, whereas the reduction in PPARα expression was without effect. Furthermore, the siRNA-mediated reduction of AMPK (65%, p<0.01; Fig 2) was without effect on GW501516-mediated palmitate uptake (Fig 1B).

GW501516-induced increase in palmitate oxidation requires both PPARδ and AMPK - In accordance with results obtained for palmitate uptake, incubation of differentiated human myotubes for 18 h with GW501516 resulted in a 50% increase in palmitate oxidation, while no effect was observed after the shorter 1 h exposure to the agonist (Fig 1C). The siRNA-mediated inhibition of either PPARδ or AMPKα1/α2 totally prevented the GW501516-induced stimulation of palmitate oxidation, although the siRNA-mediated reduction of PPARδ did not blunt this effect (Fig 1D).

GW501516 increases mRNA expression of candidate genes involved in lipid metabolism by a PPARδ-dependent mechanism - Incubation of differentiated human myotubes for 18 h with GW501516 resulted in a significant increase in CPT1 (5.5-fold), PDK4 (4-fold) and FABP3 (1.7-fold) expression compared to vehicle treated cells (Fig 3A). In contrast, expression of other genes, including DGKδ, GAPDH, NRF1 and Cytochrome C were unaltered by GW501516 treatment (Data not shown). The GW501516-mediated transcriptional effect on CPT1, PDK4, and FABP3 was abolished when PPARδ expression was reduced using siRNA. The siRNA mediated reduction in PPARα or AMPKα1/α2 did not alter the GW501516-mediated induction of these genes. Taken together, our results indicate that activation of PPARδ in cultured primary human skeletal muscle increases lipid metabolism concomitant with an increase in mRNA content of key regulators of the fatty acid transport (FABP3) and oxidation (CPT1 and PDK4).

GW501516 does not alter protein expression of mitochondrial markers - Expression of activated PPARδ in mouse skeletal muscle increases the expression of several mitochondrial markers and induces a transformation in skeletal muscle fiber type to an oxidative type I phenotype (5). Protein expression of PGC-1, a target which is involved in mitochondrial biogenesis (26) and formation of slow-twitch muscle fibers (27), was unaffected by GW501516 regardless of the condition studied (Fig. 3B). There was a non-significant trend for reduced protein expression of PGC-1 in myotubes siRNA mediated reduction of AMPK (Fig 3B). Furthermore, protein expression of CI and COX I, two subunits of the main mitochondrial respiratory-chain complexes, were also unaltered by exposure to the PPARδ agonist for either 1 or 18 h.

AMPK phosphorylation is increased after GW501516 treatment by a PPARδ-independent mechanism and involves changes in the cellular energy status - As previously reported (19), AMPK phosphorylation was increased by the specific PPARδ agonist GW501516 in primary cultured human skeletal muscle. Treatment of primary human muscle cultures with 100 nM GW501516 for either 1 or 18 h resulted in a significant 2-fold and 2.3-fold in AMPK phosphorylation, respectively (Fig 4A). In cells whereby siRNA against PPARα and δ, was employed to inhibit PPAR expression the GW501516-induced AMPK phosphorylation was unaltered, demonstrating this effect was independent of either PPARα or PPARδ. The siRNA mediated-reduction in AMPK expression blunted the GW501516 effect on AMPK phosphorylation. Similarly, the phosphorylation state of ACC, a downstream target of AMPK, was significantly increased 1.4-fold and 1.7-fold after 1 or 18 h GW501516 treatment, respectively (Fig. 4B). Silencing of either PPARα or PPARδ expression by siRNA did not alter this effect, while inhibition of AMPKα1/α2 expression led to a significant reduction in the effect of GW501516 on ACC phosphorylation.

In order to further investigate the underlying mechanism of the
PPARδ–independent effect of GW501516 on AMPK phosphorylation, we measured adenine nucleotide concentrations by HPLC in human skeletal myotubes to determine the cellular ATP:ADP and AMP:ATP ratios. Following a short-term exposure (60 min) to GW501516, ATP levels were significantly reduced and ADP levels increased in a dose-dependent manner compared to control cells exposed to the vehicle (data not shown). This was associated with a significant decrease in ATP:ADP ratio for all of the concentrations of the PPARδ agonist used (76% at 100 nM, 79% at 1 μM and 73% at 10 μM; p<0.05, Fig. 5B). In addition, while intracellular AMP concentrations were low and close to the limit of detection, a trend towards an increase in AMP levels in presence of GW501516 was noted (data not shown), leading to a concomitant increase in AMP:ATP ratio (Fig. 5A). Taken together, these results provide evidence that the increase in AMPK phosphorylation (and presumably activity) observed after GW501516 treatment was due to a decrease in cellular energy status in the cultured human myotubes.

The GW501516-induced stimulation of glucose uptake requires AMPK but not PPARδ- As previously reported (19), GW501516 stimulates glucose uptake in primary cultured human myocytes after 1 h and 18 h incubation (Fig 6A and B). To determine signaling specificity, cells were transfected with siRNA against AMPKα1/α2, PPARα or PPARδ to reduce the respective protein expression. As expected, control and PPARα siRNA was without effect on the GW501516-induced stimulation of glucose uptake at either 1 h (34%; p<0.01) (Fig. 6A) or 18 h (22%; p<0.05) (Fig. 6B). The siRNA-mediated reduction of PPARδ expression was also without effect on the stimulation of glucose uptake by GW501516. Conversely, inhibition of AMPK expression abolished the GW501516 effect on glucose uptake after 1 h and 18 h as compared to the random siRNA control. Thus the effect of GW501516 on glucose uptake appears to be PPARδ independent, and requires AMPK activation.

GW501516 has no effect on glucose incorporation into glycogen - Glucose incorporation into glycogen was measured by determining the [14C]-glycogen content in differentiated human myotubes following incubation in the presence or absence of insulin (1 nM or 120 nM) with or without 100 nM GW501516. Exposure to 120 nM insulin resulted in a significant increase in glycogen synthesis (75%; p<0.01), as compared to non-insulin-stimulated cells, and 1 nM insulin treatment resulted in a trend towards increased glycogen synthesis (Fig 6C). While treatment with GW501516 for 18 h did not increase glycogen synthesis, when combined with 120 nM insulin glycogen synthesis was increased, but to a lesser extent compared with 100 nM insulin (12%; p=0.055).
Activation of PPARδ has beneficial effects on whole body metabolism and improves several parameters of the metabolic syndrome (28-31). We investigated the direct effect of the PPARδ agonist GW501516 on metabolic and gene regulatory response in human skeletal muscle. Exposure of differentiated primary human myotubes to GW501516 increased fatty acid uptake and oxidation. This effect required PPARδ, changes in gene expression, and functional AMPK. Furthermore GW501516 leads to a PPARδ-independent activation of AMPK, which mediates stimulatory effects on glucose uptake.

Effects on lipid metabolism- Transgenic mice expressing an activated form of PPARδ have enhanced fatty acid utilization and are protected against high-fat diet induced obesity (32). Similarly, expression of an activated form of PPARδ in C2C12 myocytes enhances beta-oxidation (32). Here we provide evidence that activation of PPARδ using a synthetic activator increases lipid uptake and utilization in primary human skeletal muscle cells. This effect requires PPARδ, and is likely to be dependent on changes in gene expression since acute stimulation (1 h) was without effect. The siRNA-mediated reduction in PPARδ expression in human muscle myotubes prevented the GW501516-induced changes in mRNA expression of a numerous genes which are likely to be important for the regulation of lipid metabolism following PPARδ activation. Indeed, GW501616 treatment increased mRNA expression of the fatty acid transporter FABP3, a cytosolic protein involved in uptake and transport of fatty acids (33), carnitine palmitoyltransferase 1 (CPT1), a rate limiting step in mitochondrial fatty acid oxidation and PDK4, a key enzyme that mediates the shift from glycolytic to fatty acid oxidative metabolism. Thus activation of PPARδ in human skeletal muscle has direct effects on lipid metabolism.

The siRNA-mediated reduction in AMPK also led to a significant reduction in the GW501516-mediated effect on fatty acid oxidation, but not lipid uptake. This response likely reflects the key role of ACC in regulating fatty acid oxidation, since ACC phosphorylation was reduced as a consequence of AMPK silencing. Conversely, the reduction in AMPK expression did not alter the GW501516 effect on mRNA expression of select target genes, indicating that AMPK does not appear to mediate these transcriptional events. Our results suggest that some aspects of PPARδ-regulated lipid metabolism require functional AMPK and/or ACC. In human myotubes, siRNA mediated reduction of AMPK reduced the protein expression of PGC1α, which may affect signals from several nuclear receptors for which PGC1α is a co-factor. Although not observed in this study, recent evidence from transgenic mice indicates that PPARδ may also influence the expression of PGC1α (34). Thus the relationship between AMPK, PGC1 and PPARδ is complex and requires further elucidation.

Effects on glucose metabolism- Several lines of evidence suggest that activation of PPARδ leads to enhanced insulin sensitivity and/or increased glucose uptake (5-7,9,13,19). The precise mechanism(s) for these effects remain to be explained. According to the glucose–fatty acid cycle as proposed by Randle (35), enhanced utilization of lipids is predicted to lead to a reduction in carbohydrate usage. Thus, the combined effects of enhanced lipid and glucose utilization in response to activation of PPARδ are intriguing. Recent evidence in primary hepatocytes isolated from GW501516-treated db/db mice demonstrate an increase in the conversion rate of [14C]-labeled glucose into organically extractable lipids, suggesting that PPARδ activation increases the utilization of glucose in hepatic de novo lipogenesis (9). Furthermore, genetic association studies suggest that PPARδ polymorphisms may play an important role in glucose metabolism in skeletal muscle, and may be important in the conversion from impaired glucose tolerance to T2DM (12).

We have previously demonstrated that GW501516 has direct effects on glucose transport in human skeletal muscle cells (19). Here we provide evidence that the effect of GW501516 on glucose uptake is independent of PPARδ activation. Indeed, knock-down of either PPARδ or PPARα expression did not alter the GW501516-mediated increase in glucose uptake. However, a reduction in the expression of AMPK inhibited the GW501516 effect on glucose transport. The effect of the PPARδ agonist on the stimulation of glucose transport is mediated via AMPK by phosphorylation/activation. Since we observe an increase in AMP:ATP ratio in cells incubated with GW501516, the GW501516-induced
phosphorylation of AMPK could be due to a modification of cellular energy status. Thus, GW501516 in a manner analogous to a number of other chemical compounds including thiazolidinediones (36,37) or metformin (38), exerts direct and indirect effect(s) on mitochondrial machinery. Indeed, the GW501516-induced decrease in ATP levels could be due to a specific inhibition of one or more complexes of the respiratory-chain, and/or an effect on the ATP synthase system (complex V itself, adenine nucleotide translocator and/or inorganic phosphate transporter). Furthermore, an uncoupling effect of GW501516 on the mitochondrial oxidative phosphorylation could account for the observed effects on metabolism, thereby altering the yield of ATP synthesis and leading to AMPK activation (39). A short-term effect on mitochondrial metabolism is supported by the fact that AMPK phosphorylation was markedly evident, together with a drop in ATP levels even following an acute incubation (60 min) with GW501516.

The PPARδ agonist GW501516 has been reported to increase glucose uptake in intact muscle incubated ex-vivo. In isolated rat soleus and epitrochlearis muscle incubated with 10 nM GW501516, no effect on glucose uptake was noted (40). However, rat soleus muscle strips exposed to 1 µmol/l GW501516 for 24 h responded differently, depending on the presence or absence of fatty acids in the incubation medium. Insulin-mediated glucose transport rates have been reported to be increased in the absence, and decreased in the presence of fatty acids (39). Interestingly, we note that withdrawal of serum from the incubation media enhances the response to GW501516–on glucose uptake in cultured human muscle cells (data not shown). Taken together, the presence of fatty acids in serum may influence the action of GW501516 on glucose uptake in human skeletal muscle cells. The mechanism by which fatty acids affect the putative GW501516-mediated mitochondrial effect(s) and/or AMPK phosphorylation remains to be determined. Using TUNEL-staining in cultured L6 myotubes, no toxic effects of GW501516 were noted at concentrations up to 10 µM (41).

Attention has recently been drawn to the effect of different synthetic PPAR compounds on mitochondrial dysfunction (42). Direct, “non receptor” effects have been described for thiazolidinedione activators of PPARγ (43). Mitochondrial uncoupling, resulting in increased AMP:ATP concentrations in the cell leads to activation of AMPK (43,44). Targeted activation of AMPK has been an attractive strategy for treatment of the metabolic dysfunction associated with type 2 diabetes (15,37). AMPK activation in skeletal muscle may constitute a crucial property for the clinical effects of thiazolidinediones in skeletal muscle (37). In contrast to thiazolidinediones, GW501516 is a more potent specific activator of PPARδ than thiazolidinediones are for PPARγ (45), hence the concentrations required for clinical activation of PPARδ may be below the threshold required to trigger mitochondrial uncoupling. In line with this, PPARδ knock-out mice placed on a high-fat diet are insensitive to the PPARδ agonist GW501516, and fail to correct metabolic abnormalities compared to wild type control mice, suggesting that PPARδ–directed effects are required for metabolic improvements (32). The effects of GW501516 on glucose uptake in cultured cells may reflect a faster accumulation of the compound in the mitochondria cell monolayer as compared to responses noted in individual tissues. The PPARδ independent effects of GW501516 on AMPK will require further evaluation.

In summary, we provide evidence that the specific PPARδ activator GW501516 enhances lipid uptake and utilization in primary human skeletal muscle cells. These effects are mediated in part via PPARδ–specific transcriptional effects. GW501516 also exhibits PPARδ–independent effects. We demonstrate that changes in the cellular energy status, as reflected by an increase in the AMP/ATP ratio, occurs following an acute GW501516 treatment. Moreover we show that activation of AMPK constitutes a mechanistic cornerstone in the mediation of the effects of the PPARδ agonist GW501516 on glucose metabolism in skeletal muscle.
REFERENCES

1. Holst, D., Luquet, S., Nogueira, V., Kristiansen, K., Leverve, X., and Grimaldi, P. A. (2003) *Biochim Biophys Acta* **1633**(1), 43-50
2. Watt, M. J., Southgate, R. J., Holmes, A. G., and Febbraio, M. A. (2004) *J Mol Endocrinol* **33**(2), 533-544
3. He, W., Barak, Y., Hevener, A., Olson, P., Liao, D., Le, J., Nelson, M., Ong, E., Olefsky, J. M., and Evans, R. M. (2003) *Proc Natl Acad Sci U S A* **100**(26), 15712-15717
4. Berger, J., and Moller, D. E. (2002) *Annu Rev Med* **53**, 409-435
5. Wang, Y. X., Zhang, C. L., Yu, R. T., Cho, H. K., Nelson, M. C., Bayuga-Ocampo, C. R., Ham, J., Kang, H., and Evans, R. M. (2004) *PLoS Biol* **2**(10), e294
6. Oliver, W. R., Jr., Shenk, J. L., Snaith, M. R., Russell, C. S., Plunket, K. D., Bodkin, N. L., Lewis, M. C., Winegar, D. A., Sznaidman, M. L., Lambert, M. H., Xu, H. E., Sternbach, D. D., Kliwer, S. A., Hansen, B. C., and Willson, T. M. (2001) *Proc Natl Acad Sci U S A* **98**(9), 5306-5311
7. Tanaka, T., Yamamoto, J., Iwasaki, S., Asaba, H., Hamura, H., Ikeda, Y., Watanabe, M., Magoori, K., Ioka, R. X., Tachibana, K., Watanabe, Y., Uchiyama, Y., Sumi, K., Iguchi, H., Ito, S., Doi, T., Hamakubo, T., Naito, M., Auwerx, J., Yanagisawa, M., Kodama, T., and Sakai, J. (2003) *Proc Natl Acad Sci U S A* **100**(26), 15924-15929
8. Leibowitz, M. D., Fievet, C., Hennuyer, N., Peinado-Onsurbe, J., Duez, H., Berger, J., Cullinan, C. A., Sparrow, C. P., Baffic, J., and Berger, G. D. (2000) *FEBS Letters* **473**(3), 333
9. Lee, C. H., Olson, P., Hevener, A., Mehl, I., Chong, L. W., Olefsky, J. M., Gonzalez, F. J., Ham, J., Kang, H., Peters, J. M., and Evans, R. M. (2006) *Proc Natl Acad Sci U S A* **103**(9), 3444-3449
10. Björnholm, M., and Zierath, J. R. (2005) *Biochem Soc Trans* **33**, 354-357
11. Vanttinen, M., Nuutila, P., Kuulasmaa, T., Pihlajamaki, J., Hallsten, K., Virtanen, K. A., Lautamaki, R., Peltoniemi, P., Takala, T., Viljanen, A. P., Knuuti, J., and Laakso, M. (2005) *Diabetes* **54**(12), 3587-3591
12. Andrlionyte, L., Peltoa, P., Chiasson, J. L., and Laakso, M. (2006) *Diabetes* **55**(7), 2148-2152
13. Fritz, T., Kramer, D. K., Karlsson, H. K., Galuska, D., Engfeldt, P., Zierath, J. R., and Krook, A. (2006) *Diabetes Metab Res Rev*
14. Krämer, D. K., Ahlsén, M., Norrbom, J., Jansson, E., Hjeltne, N., Gustafsson, T., and A. K. (2006) *Acta Physiologica* in press
15. Long, Y. C., and Zierath, J. R. (2006) *J. Clin. Invest.* **116**(7), 1776-1783
16. Lee, W. J., Kim, M., Park, H.-S., Kim, H. S., Jeon, M. J., Oh, K. S., Koh, E. H., Won, J. C., Kim, M.-S., and Oh, G. T. (2006) *Biochemical and Biophysical Research Communications* **340**(1), 291
17. Ravnskjaer, K., Boergesen, M., Dalgaard, L. T., and Mandrup, S. (2006) *J Mol Endocrinol* **36**(2), 289-299
18. Leff, T. (2003) *Biochem. Soc. Trans.* **31**, 224–227
19. Krämer, D. K., Al-Khalili, L., Perrini, S., Skogberg, J., Wretenberg, P., Kannisto, K., Wallberg-Henriksson, H., Ehrenborg, E., Zierath, J. R., and Krook, A. (2005) *Diabetes* **54**(4), 1157-1163
20. Al-Khalili, L., Krämer, D., Wretenberg, P., and Krook, A. (2004) *Acta Physiol Scand* **180**, 395-403

8
21. Al-Khalili, L., Chibalin, A. V., Kannisto, K., Zhang, B. B., Permert, J., Holman, G. D., E, E., Ding, V. D. H., Zierath, J. R., and Krook, A. (2003) Cell Mol Life Sci 60, 991-998
22. Bouzakri, K., Zachrisson, A., Al-Khalili, L., Zhang, B. B., Koistinen, H. A., Krook, A., and Zierath, J. R. (2006) Cell Metabolism 4(1), 89
23. Al-Khalili, L., Chibalin, A. V., Yu, M., Sjodin, B., Nylen, C., Zierath, J. R., and Krook, A. (2004) Am J Physiol Cell Physiol 286(6), C1410-1416
24. Al-Khalili, L., Bouzakri, K., Glund, S., Lonqvist, F., Koistinen, H. A., and Krook, A. (2006) Mol Endocrinol 20, 3364-3375
25. Argaud, D., Roth, H., Wiernsperger, N., and Leverve, X. M. (1993) Eur J Biochem 213(3), 1341-1348
26. Wu, Z., Puigserver, P., Andersson, U., Zhang, C., Adelmant, G., Mootha, V., Troy, A., Cinti, S., Lowell, B., Scarpulla, R. C., and Spiegelman, B. M. (1999) Cell 98(1), 115-124
27. Lin, J., Wu, H., Tarr, P. T., Zhang, C. Y., Wu, Z., Boss, O., Michael, L. F., Puigserver, P., Isotani, E., Olson, E. N., Lowell, B. B., Bassel-Duby, R., and Spiegelman, B. M. (2002) Nature 418(6899), 797-801
28. Luquet, S., Lopez-Soriano, J., Holst, D., Fredenrich, A., Melki, J., Rassoulzadegan, M., and Grimaldi, P. A. (2003) Faseb J 17(15), 2299-2301
29. Barish, G. D., Narkar, V. A., and Evans, R. M. (2006) J Clin Invest 116(3), 590-597
30. Luquet, S., Gaudel, C., Holst, D., Lopez-Soriano, J., Jehl-Pietri, C., Fredenrich, A., and Grimaldi, P. A. (2005) Biochimica et Biophysica Acta (BBA) - Molecular Basis of Disease 1740(2), 313
31. Lopez-Soriano, J., Chiellini, C., Maffei, M., Grimaldi, P. A., and Argiles, J. M. (2006) Endocr Rev 27(3), 318-329
32. Wang, Y. X., Lee, C. H., Tiep, S., Yu, R. T., Ham, J., Kang, H., and Evans, R. M. (2003) Cell 113(2), 159-170
33. Zimmerman, A. W., and Veerkamp, J. H. (2001) Biochem J 360, 159-165
34. Schuler, M., Ali, F., Chambon, C., Duteil, D., Bornert, J.-M., Tardivel, A., Desvergne, B., Wahli, W., Chambon, P., and Metzger, D. (2006) Cell Metabolism 4(5), 407-414
35. Randle, P. J. (1998) Diabetes Metab Rev 14(4), 263-283
36. Brunmair, B., Staniek, K., Gras, F., Scharf, N., Althaym, A., Clara, R., Roden, M., Gnaiger, E., Nohl, H., Waldhausl, W., and Furnsinn, C. (2004) Diabetes 53(4), 1052-1059
37. LeBrasseur, N. K., Kelly, M., Tsao, T. S., Farmer, S. R., Saha, A. K., Ruderman, N. B., and Tomas, E. (2006) Am J Physiol Endocrinol Metab 291(1), E175-181
38. El-Mir, M.-Y., Nogueira, V., Fontaine, E., Averet, N., Rigoulet, M., and Leverve, X. (2000) J. Biol. Chem. 275(1), 223-228
39. Brunmair, B., Staniek, K., Dorig, J., Szocs, Z., Stadlbauer, K., Marian, V., Gras, F., Anderwald, C., Nohl, H., Waldhausl, W., and Furnsinn, C. (2006) Diabetologia, Sep 8; [Epub ahead of print]
40. Terada, S., Wicke, S., Holloszy, J. O., and Han, D. H. (2006) Am J Physiol Endocrinol Metab 290(4), E607-611
41. Johnson, T. E., Zhang, X., Shi, S., and Umbehauer, D. R. (2005) Toxicology and Applied Pharmacology 208(3), 210
42. Scatena, R., Martorana, G. E., Bottoni, P., and Giardina, B. (2004) IUBMB Life 56(8), 477-482
43. Konrad, D., Rudich, A., Bilan, P. J., Patel, N., Richardson, C., Witters, L. A., and Klip, A. (2005) Diabetologia 48(5), 954-966
44. Dokladda, K., Green, K. A., Pan, D. A., and Hardie, D. G. (2005) *FEBS Lett* **579**(1), 236-240

45. Sznaidman, M. L., Haffner, C. D., Maloney, P. R., Fivush, A., Chao, E., Goreham, D., Sierra, M. L., LeGrumelec, C., Xu, H. E., Montana, V. G., Lambert, M. H., Willson, T. M., Oliver, W. R., Jr., and Sternbach, D. D. (2003) *Bioorg Med Chem Lett* **13**(9), 1517-1521

FOOTNOTES

*The authors would like to thank Professor Juleen Zierath for critical reading of the manuscript. This study was supported by grants from the Swedish Research Council, Swedish Medical Association, the Novo-Nordisk Foundation, the Swedish Diabetes Association, the Swedish Animal Welfare Agency and the Swedish Fund for Research without Animal Experiments, the Swedish National Centre for Research in Sports, the Hedlund foundation and the European Union Framework 6 Integrated project EXGENESIS LSHM-CT-2004-005272 and Network of Excellence EUGENE2 no. LSHM-CT-2004-512013. B.G is recipient of the ICP-“Michel de Visscher” Fellowship.

The abbreviations used are: PPAR, peroxisome proliferator activated receptors; AMPK, AMP activated protein kinase; ACC, Acetyl CoA Carboxylase; COX I, cytochrome C oxidase respiratory-chain complex IV; CI, NADH-ubiquinol oxidoreductase respiratory-chain complex I; CPT1, carnitine palmitoyltransferase I; PDK4, pyruvate dehydrogenase kinase 4; FABP3, fatty acid binding protein 3; GAPDH, glyceraldehyde-3-phosphate dehydrogenase; NRF1, nuclear respiratory factor 1; PCR, polymerase chain reaction; DMEM, Dulbecco’s modified Eagle’s medium; PGC, PPARγ Coactivator (PGC) 1; SNPs, Single nucleotide polymorphisms; PeSt, Penicillin/Streptomycin; FBS, foetal bovine serum; HPLC, high-performance liquid chromatography

FIGURE LEGENDS

Fig. 1. Palmitate uptake in primary cultures of human skeletal muscle. (A) Intracellular accumulation of [14C] palmitate was determined as described in methods. The results are mean ± standard error for data obtained from cultures from six individuals following exposure to 100 nM GW501516 for 1 and 18 h, or (B) in cells where siRNA-has been used to knock-down PPARδ, PPARα or AMPKα1/α2 expression. Basal palmitate uptake in these cells was 0.61± 0.25 CPM/mg protein (C) Palmitate oxidation in human skeletal muscle cells was determined by release of [14C] CO2 as described in methods. The results are mean ± standard error for cultures from six individuals following exposure to 100 nM GW501516 for either 1 or 18 h, or (D) in cells whereby siRNA-has been used to knock-down PPARδ, PPARα or AMPKα1/α2 expression. Basal palmitate oxidation in these cells was 1.0 ± 0.5 CPM/mg protein *p<0.05 as compared to vehicle treated controls. #p<0.05 as compared to 100 nM GW501516 treated cells for 18 h with random control siRNA.

Fig. 2. siRNA efficiency was tested by determining mRNA content using qPCR as described in methods. Cells were pre-treated with siRNA to silence the expression of PPARδ, PPARα or AMPKα1/α2. Results are mean ± standard error for data from cultures from seven individuals. *p<0.05 as compared to cells treated with random control siRNA (A). Protein expression of PPARδ in skeletal muscle cells following siRNA to silence the expression of PPARδ, PPARα or AMPKα1/α2. Representative immunostaining shows protein expression of PPARδ following siRNA to silence the expression of PPARδ, or PPARα in cells exposed to vehicle or 100 nM GW501516 for 18 h. Graph shows summarized quantification.

Fig. 3. Expression of key-metabolic genes was determined by qPCR as described in methods. The results are mean ± standard error for data from cultures from four individuals. Cells were pre-treated
with siRNA to silence PPARδ, PPARα or AMPKα1/α2 expression. Cells were exposed to vehicle or 100 nM GW501516 for 18 h. *p<0.05 as compared to vehicle (DMSO) treated cells with random control siRNA. (A) Summary of mRNA changes in key metabolic proteins. (B) Expression of mitochondrial markers CI, COX I and PGC1 was determined in cells whereby siRNA was used to silence PPARδ, PPARα or AMPKα1/α2 expression following treatment with vehicle or 100 nM GW501516 for 1 or 18 h. Representative blots of seven individuals are shown.

Fig. 4. Phosphorylation of AMPK and ACC in cells following siRNA-mediated silencing of PPARδ, PPARα or AMPKα1/α2 expression, in cells exposed to vehicle or 100 nM GW501516 for 1 or 18h. AMPK and ACC phosphorylation was measured and quantified as described in methods. The results are mean ± standard error for data from cultures from seven individuals. Representative blots are shown for phosphorylation of (A) AMPK phosphorylation and (B) ACC phosphorylation. *p<0.05 as compared to vehicle (DMSO)-treated cells with random control siRNA.

Fig. 5. HPLC measurements of AMP, ADP and ATP. (A) The AMP:ATP ratio after 60 min treatment with vehicle or GW501516. Results are mean ± standard error for data from cultures from four individuals. (B) ATP:ADP ratio after 1 h GW501516 treatment as compared to vehicle treated cells. Results are mean ± standard error for data from cultures from four individuals. *p<0.05 or as presented in figure, as compared to vehicle treated controls.

Fig. 6. Cells were pre-treated with siRNA to silence PPARδ, PPARα or AMPKα1/α2 expression and subsequently exposed to vehicle or 100 nM GW501516 for (A) 1 h or (B) 18 h and effects on glucose uptake measured. The results are mean ± standard error for data from cultures from six different individuals. Basal glucose uptake in these cells was 60±15 cpm/mg protein/min. *p<0.05 as compared to vehicle treated controls. #p<0.05 as compared to 100 nM GW501516-treated cells for 1 or 18 h with random control siRNA. (C) Glycogen content was measured in response to 1 nM or 120 nM insulin with or without pre-treatment of 100 nM GW501516 for 18 h. Results are mean ± standard error for data from cultures from five individuals. *p<0.05 as compared to vehicle treated controls.
FIGURE 1

A

Stimuli: DMSO, GW 60', GW 18h

Palmitate uptake [Fold of basal]

GW 60' GW 18h

B

GW: CTRL, PPARα, PPARδ, AMPKα1/α2

Palmitate uptake [Fold of basal]

Stimuli: DMSO

C

Stimuli: DMSO, GW 60', GW 18h

Palmitate oxidation [Fold of basal]

GW 60' GW 18h

D

GW: CTRL, PPARα, PPARδ, AMPKα1/α2

Palmitate oxidation [Fold of basal]
FIGURE 2

A

mRNA expression [Fold of control]

Protein	CTRL	PPARα	PPARδ	PPARγ
PPARα	1	1	1	1
PPARδ	1	1	1	1
PPARγ	1	1	1	1

siRNA:

- PPARα
- PPARδ
- AMPKα1/α2

B

Protein expression [per cent of control]

Protein	CTRL	PPARδ	PPARα
PPARδ	120	*	
PPARα	100		*

siRNA:

- CTRL
- PPARδ
- PPARα

p = 0.0002
p < 0.0001
FIGURE 3

(A) mRNA expression

- CTRL siRNA + DMSO
- CTRL siRNA + GW501516
- PPARγ siRNA + GW501516
- PPARδ siRNA + GW501516
- AMPK siRNA + GW501516

Fold basal

CPT1

PDK4

FABP3

P = 0.05

P = 0.07

(B) siRNA:

- Insulin
- ACAR
- DMSO
- GW1h
- GW18h

[kD]

Cl

COX I

PGC1

39

36

110

Downloaded from https://www.jbc.org/ by guest on November 14, 2019
FIGURE 4A

Phosphorylation [Fold of basal]

siRNA:	CTRL	PPARα	PPARδ	AMPKα1/α2				
	Insulin	AICAR	DMSO	GW 1 h	GW 18 h			
	DMSO	GW 1 h	GW 18 h	DMSO	GW 1 h	GW 18 h		
				DMSO	GW 1 h	GW 18 h		
					DMSO	GW 1 h	GW 18 h	
						DMSO	GW 1 h	GW 18 h

* * * *

pAMPK

AMPK

[kD] 63

Downloaded from jgp.org on November 14, 2019 by guest on November 14, 2019.
FIGURE 6

A

Glucose uptake
[Fold of basal]

GW (1 h):
- + -+-+ -+
siRNA:
CTRL PPARα PPARδ AMPK

B

Glucose uptake
[Fold of basal]

GW (18 h):
- + -+-+ -+
siRNA:
CTRL PPARα PPARδ AMPK

C

Glycogen content
[Fold of basal]

CTRL Ins Ins GW GW GW
[1] [120] [1] [120]

* * * * *

P=0.06
Role of AMP kinase and PPARδ in the regulation of lipid and glucose metabolism in human skeletal muscle

David Kitz Krämer, Lubna Al-Khalili, Bruno Guigas, Ying Leng, Pablo M. García-Roves and Anna Krook

J. Biol. Chem. published online May 11, 2007

Access the most updated version of this article at doi: 10.1074/jbc.M702329200

Alerts:
- When this article is cited
- When a correction for this article is posted

Click here to choose from all of JBC's e-mail alerts