AN EMERGING AQUATIC GREEN GOLD FOR FOOD AND MEDICINE: A REVIEW OF ALGAE FROM NORTH EAST INDIA

JINU MEDHI1, MOHAN CHANDRA KALITA2

1,2Department of Biotechnology, Gauhati University, Guwahati, Assam 781014, India
Email: profjinumethi@gmail.com

Received: 13 Aug 2020, Revised and Accepted: 06 Oct 2020

ABSTRACT

Given that proper nutrition is a growing concern for rising global populations, sustainable sources of nutritional value are in need. The food product or food derived from nutrients is called nutraceuticals which not only rarely supplement food but also make the treatment or prevention of a disorder and or disease. Algae are a diverse community of autotrophic organisms with the capable of fix atmospheric CO2, efficiently use light energy, ability to grow rapidly and compare to vascular plants, and algae produce more biomass per acre. More than two thousand years, algae are used for the treatment of different ailments and also used as a potential source of food. Due to the characteristics of rapid growth and capable of producing diverse nutritional compound, algae are largely used in dietary supplements and nutraceuticals field. Many kinds of algae have been reported several health benefits from improving the immune system to combat cancer and heart disease. With this background, this current review aims to evaluate the health-promoting effect of Chlorella, Haematococcus, Spirulina, Ankistrodesmus, Botryococcus and Scenedesmus in North East India.

Keywords: Algae, Autotrophic, Health benefits, Nutraceuticals, Nutritional components, North East India

© 2020 The Authors. Published by Innovare Academic Sciences Pvt Ltd. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/)
DOI: http://dx.doi.org/10.22159/ijpps.2020v12i12.39739. Journal homepage: https://innovareacademics.in/journals/index.php/ijpps.

INTRODUCTION

Microalgae are single-celled, microscopic, photosynthetic species occurring in both marine and freshwater environment. Different type of compounds produced by microalgae such as lipids, carbohydrates and protein along with different value compounds such as pigments, omega-3 fatty acids and triglycerides that could be exploited for their nutritional value. Most of the microalgae are photosynthetic microorganisms; unlike land plants, it does not contain cell organelles. Using water, solar energy and CO2, the microalgae can be cultivated photosynthetically in artificial tanks, raceway ponds, marginal ponds and shallow lagoons. Although, over 300,000 to 800,000 species of microalgae found in the environment, out of which only 30,000 are documented [1]. The orderly systematic study of algae is called phycology [2]. The microalgae produce secondary metabolites, with potential biological functions and novel structure [3, 4]. Additionally, it can produce various useful bio-products including antioxidants, polysaccharides, natural dyes, eicosapentaenoic acid (EPA), bioactive and functional pigments, docosahexaenoic acid (DHA), astaxanthin and β-carotene [5] (fig. 1). Due to increasing consumer awareness on significant health benefits, the desire for nutraceuticals food products has been significantly increased recently [6]. Microalgae can be called as the factory for several biomolecules including beta-1,3-glucan, Polysaturated Fatty Acids (PUFAs), nutraceutical and pharmaceutical compounds, phycobiliprotein, chlorophyll, beta-carotene, lutein and astaxanthin [7].

Fig. 1: Application of microalgae in different fields [Hemantkumar and Rahimbhai, [1]
nutraceuticals value of microalgae, to our knowledge, specific recent reviews of microalgae available in the NE region is scarce. In addition, reviews in the past had focused only a limited number of algae genus. Therefore, in this review, we attempted to discuss the health-promoting effect of potential strains, the current status of individual species in North East India. In order to identify the studies for this review, several databases were used, including PubMed, Embase, Google Scholar, and specific database such as Science Direct, Springer and Wiley were reviewed. The following keywords were used to extract the data from the identified studies. This includes ‘Algae’, ‘Microalgae’, ‘Autotrophic’, ‘Health benefits’, ‘Nutraceuticals’, ‘Nutritional components’, AND North East India. The paper also focuses on the various application of microalgae, challenges and conclude with the prospects.

Microalgal diversity of Northeast India

Human health and wellbeing directly reflects the health of biodiversity of that region. Northeast India, with its eight states Sikkim, Tripura, Manipur, Mizoram, Nagaland, Meghalaya, Arunachal Pradesh and Assam, is a part of the world’s biodiversity hotspots in both the Himalayas and Indo-Burma. It is a treasure trove of a diversity of faunal and floral which is flourished by varied forms of microalgae, and a member often occupies the lowest level of the food chain of every rivers, ponds, lakes and beels. Northeast India, especially Assam, been mesmerized by the different colures of the water bodies along the roadways because of the various algal blooms around the year [8]. Various studies have documented different microalgae species across the region. For instance, Jena and Adhikary recorded fifty-six taxa of algae belonging to 21 genera for the first time from this region from different water bodies [8].

Interestingly, authors in that study concluded that out of that 16 species were reported first time from north-eastern states of India. Baruah and Kakati [9] documented around 45 species of phytoplankton in the pond dug by the Ahoms, which is 600 y old (fig. 2). Sharma et al. [10] recorded Cyanophyceae sp, Chlorophyceae sp., Bacillariophyceae sp. and Euglenophyceae sp. in four pond ecosystems from Southern Assam. Another study by Ghosh et al. [11] isolated Podoedriella sp. (MC44) from the paddy field, located in Gomati district of Tripura State. This particular species has an efficient to trap carbon from the atmosphere, and therefore mitigate CO2 gas emission from the industries. Further, Muthuraj et al. [12] did show high lipid content in Chlorella p., FC, IITG, and therefore, authors in this study demonstrated its potential for biodiesel production.

Similarly, around 59 species of microalgae were isolated by Lahan et al. [15, 16] from different freshwater bodies in Dhemaji district. The microalgae belong to Xanthophyceae, Bacillariophyceae, Euglenophyceae, Cyanophyceae and Chlorophyceae (fig. 3 and 3b). Authors in this study identified 17 species out of them, and quantified lipid content, as shown in fig. 4. Latest discoveries from algae include two species of Diatom from Sikkim [14]. The 23-crore project, Bioresource and Sustainable Livelihood in the Northeast, funded by the Union ministry of science and technology further provides an opportunity to explore further and commercialise endemic bioresources including potential candidate algal strains.
Thus, overall, several microalgal communities were reported from North East region of India were demonstrated in table 1.

An international organisation reports that approximately 805 million people have been undernourished chronically in 2012-14 by more than 100 million over the past decades and 209 million since 1990-92 according to the latest Food Agricultural Organisation (FAO). But, in the world, about 1 in every 9 individuals still has insufficient food for a healthy and active life that leads to malnutrition. India harbours the largest consumers of antibiotic and among the largest carrier of drug-resistant pathogens [34]. With the growing population, the production of nutritious as well as the necessary quantity of food is an eternal challenge. The United Nations Development Programme (UNDP) sustainable goals to be intended to be met by 2030, including wellbeing, good health, zero hunger and no poverty for a healthy and active life that leads to malnutrition. However, to develop and market value-added products from microalgae, food industries face several challenges, as shown in Fig. 5. To overcome those challenges, and to develop and bring many innovative products and processes into the North East market, several initiatives have been adopted from the government. Recently Council of Scientific and Industrial Research, CSIR-CFTRI, Centre Food Technology Research Institute signed an MoU (Memorandum of Understanding) with Agricultural and Processed Food Products Export Development Authority (APEDA) for opening up a liaison office at Guwahati, Assam India. This agreement will further improve the sector of value addition to food industries including employing microalgae such as *Spirulina* cultivation.
Authors State(s) Habitat

Jena and Adhikary Assam, Nagaland and Sikkim Pond Chlorophyta

Devgoswami et al. Assam - Chlorella, Scenedesmus and Haematococcus

Goswami and Kalita Assam Freshwater Scenedesmus quadricauda and Oscillatoria, Lyngbya, Phormidium, Spirulina, Hydrocoleum, Microcoleus, Symploca, Polychlamydum, Porphyraophyta and Katagrymene

Deka and Sharma Assam Fresh water -

Gunapati et al. Manipur Soil samples Anabaenopsis, Wollea, Aulosira, Nostoc, Anaabaena, Syctonema, Tolypothrix, Microchaete, Calothrix and Dichothrix

Devi and Tiwari Manipur Different ecological habitats Plectonema, Lyngbya, Spirulina, Oscillatoria, Limnothrix and Phormidium

Singh and Gupta Manipur Different rivers Lemanea australis, L. torulosa, L. flavitilis, L. mamillosa and L. catenata

Basu et al. Assam Freshwater Scenedesmus obliquus (KC733762) Production of carbohydrate, protein, lipid, and chlorophyll

Kumar et al. Assam Freshwater Chlorella sorokiniana FC6 IITG Biomass and lipid accumulation

Yasmin et al. Assam Stagnant water bodies Chlorophyceae (59 species), Bacillariophyceae (15 species) and Cyanophyceae (17 species) -

Bora et al. Meghalaya Different ecological habitats Anabaena, Nostoc, Calothrix, Westiellopsis, Gloeocapsa, Fischereila, Tolypothrix, Stigmena, Cylindrospermum, Lorilia and Plectonem

Thajamambi et al. Assam Rice fields soil Nostoc, Calothrix, Anaabaena, Cylindrospermum, Lyngbya, Oscillatoria and Phormidium -

Ghosh et al. Tripura Moist soil Chlorococcum sp. (NITAAP019) High lipid, protein, carbohydrate and biofuel production

Paddy field Korshikoviella sp. (NITAAP017) Significant production of lipid, chlorophyll, carbohydrate and protein

Moist soil Chlorella sp. (NITAAP009) Production of carbohydrate, protein and chlorophyll

Moist soil Chlorococcum sp. (NITAAP008) High lipid, protein, carbohydrate and biofuel production

Lake Chlorella sp. (NITAAP011) Significant production of chlorophyll, carbohydrate, lipid and protein

Sehgal et al. Assam Fresh water Chlorella sorokiniana (NEIST BT-2) High lipid productivity and biomass yield

Das and Deka Assam Oil field formation water Chlorella vulgaris BSI High biomass productivity

Manchanda et al. Assam Water sample Botryococcus braunii (GUBH07TBB1) Hydrocarbon and oil production

Sarkar et al. Tripura - Chlorella thermophila High valued pigments chlorophyll and carotenoids

Table 1: Microalgae reported from North East region of India

Authors	State(s)	Habitat	Algae division/family/genus/species	Application(s)	References
Jena and Adhikary	Assam, Nagaland	Pond	Chlorophyta	-	[17]
Devgoswami et al.	Assam	-	Chlorella, Scenedesmus and Haematococcus	Lipid production	[18]
Goswami and Kalita	Assam	Freshwater	Scenedesmus quadricauda and Oscillatoria, Lyngbya, Phormidium, Spirulina, Hydrocoleum, Microcoleus, Symploca, Polychlamydum, Porphyraophyta and Katagrymene	Lipid production	[19]
Deka and Sharma	Assam	Fresh water	-		[20]
Gunapati et al.	Manipur	Soil samples	Anabaenopsis, Wollea, Aulosira, Nostoc, Anaabaena, Syctonema, Tolypothrix, Microchaete, Calothrix and Dichothrix	-	[21]
Devi and Tiwari	Manipur	Different ecological habitats	Plectonema, Lyngbya, Spirulina, Oscillatoria, Limnothrix and Phormidium	-	[22]
Singh and Gupta	Manipur	Different rivers	Lemanea australis, L. torulosa, L. flavitilis, L. mamillosa and L. catenata	-	[23]
Basu et al.	Assam	Freshwater	Scenedesmus obliquus (KC733762)	Production of carbohydrate, protein, lipid, and chlorophyll	[24]
Kumar et al.	Assam	Freshwater	Chlorella sorokiniana FC6 IITG	Biomass and lipid accumulation	[25]
Yasmin et al.	Assam	Stagnant water bodies	Chlorophyceae (59 species), Bacillariophyceae (15 species) and Cyanophyceae (17 species)	-	[26]
Bora et al.	Meghalaya	Different ecological habitats	Anabaena, Nostoc, Calothrix, Westiellopsis, Gloeocapsa, Fischereila, Tolypothrix, Stigmena, Cylindrospermum, Lorilia and Plectonem	-	[27]
Thajamambi et al.	Assam	Rice fields soil	Nostoc, Calothrix, Anaabaena, Cylindrospermum, Lyngbya, Oscillatoria and Phormidium	-	[28]
Ghosh et al.	Tripura	Moist soil	Chlorococcum sp. (NITAAP019)	High lipid, protein, carbohydrate and biofuel production	[29]
		Paddy field	Korshikoviella sp. (NITAAP017)	Significant production of lipid, chlorophyll, carbohydrate and protein	
		Moist soil	Chlorella sp. (NITAAP009)	Production of carbohydrate, protein and chlorophyll	[28]
		Moist soil	Chlorococcum sp. (NITAAP008)	High lipid, protein, carbohydrate and biofuel production	[30]
		Lake	Chlorella sp. (NITAAP011)	Significant production of chlorophyll, carbohydrate, lipid and protein	
Sehgal et al.	Assam	Fresh water	Chlorella sorokiniana (NEIST BT-2)	High lipid productivity and biomass yield	[31]
Das and Deka	Assam	Oil field formation water	Chlorella vulgaris BSI	High biomass productivity	[32]
Manchanda et al.	Assam	Water sample	Botryococcus braunii (GUBH07TBB1)	Hydrocarbon and oil production	[33]
Sarkar et al.	Tripura	-	Chlorella thermophila	High valued pigments chlorophyll and carotenoids	[34]

A glimpse from the ongoing trend in the field of functional foods and supplements revealed bioactive molecules play a major therapeutic role in human disease. Recently with the mushrooming population, a great impact can be seen in the food scenario involving the several products appearance derived from these bioactive molecules. These botanicals, nutraceuticals, and other products influenced the market due to their hybrid nature, somewhere between medicinal drugs and ordinary food. Stephen Defelice coined the term nutraceutical in 1989 by combining the terms nutrition (food or nourishment) and pharmaceuticals (a medical drug). The food product or food derived from nutrients is called nutraceuticals which not only rarely supplement food but also make the treatment or prevention of a disorder and disease. Nutraceuticals have reported health benefits and the treatment of possible fatal illnesses (i.e. cancer, Parkinson’s disease, heart disease) [37, 38]. These all algal components gained a lot of attention for having the character to be a candidate for a replace the synthetic components, animal feed and natural supplement for human. With the skyrocketing high-quality nutrients demands, it seems that it...
is the green gold as it will play vital roles in the near future to a food crisis, remedy energy and environment prevailing in the world. Exploring the full potential of algal nutraceuticals is another key step for fulfilling “Aatmanirbhar Bharat Abhiyan” or North-East India. Some important algae, their biologically active compounds are listed in table 2 and for detailed review, refer a paper by Bhattacharjee [39].

![Diagram of Microalgae challenges in food technology]

Fig. 5: Microalgae challenges in food technology [13]

Genus	Bioactive compounds	References
Spirulina	Secondary metabolites, photosynthetic pigments, minerals, fatty acids, vitamins, proteins	[40]
Chlorella	Pigments, polysaccharide, vitamins, peptides, amino acids, proteins, sterols, volatile compounds, phenolic compounds, Long-Chain Polyunsaturated Fatty Acids	[41]
Haematococcus	Astaxanthin, lutein, fatty acids	[42]
Scenedesmus	Astaxanthin, Vitamins, Lutein, Haemagglutinin, sporopollenin, Mycosporine-like amino acids, PUF, MUF, Chlophylla, b, c	[43]
Botryococcus	Carotenoids, fatty acids, hydrocarbons	[44]
Ankistrodesmus sp	Phenolic acids and flavonoids	[45]

Chlorella

In the *Chlorella* genus is marketed as a “growth factor” which is an extract of water-soluble extract substances, including β-glucans, glycoproteins, polysaccharides, minerals, vitamins, amino acids, and nucleic acids [46]. Many useful properties have been indicated by *Chlorella* sp. extracts, such as antioxidant, immunostimulant and antibacterial activity and increasing cholesterol level as well as properties of antioxidant [47–49]. Depending on the extraction conditions, the antioxidant and antibacterial activity varies [50]. Report from the research work with extracts from *Chlorella* reveals to possess antioxidant [47], antioxidant activity in rainbow trout [51], anti-inflammatory [52] and antimicrobial activities [4]. Dried powder of *Chlorella* sp. as a dietary supplement to stroke-prone spontaneously hypertensive rats (SPSHR) show a beneficial effect on vascular function [53]. Regular supplementation of *Chlorella* sp. to subjects with mild hypercholesterolemia may act to optimise serum lipid profile TG, apo B, HDL-C/TG, VLDL-C, non-HDL-C and TC [48]. A beneficial immunostimulatory effect can be seen in non-infected people by short term supplementation with *Chlorella* sp. tablets [54]. Different studies also suggest *Chlorella* sp. supplementation improves the symptoms in fibromyalgia patients [55, 56]. A major lutein source of *Chlorella* sp. has been demonstrated to contain properties of anti-cataract and prevent macular degeneration.

It is a unicellular green alga and considered as whole foods because of its richness in protein vitamins and minerals [56]. Its nutrient composition can be listed as chlorophyll 1–4%, protein 55-67%, dietary fibre 9-18% and a large amount of vitamins and minerals [56]. Two isolated *Chlorella* sp. strains including NITAAP009 and NITAAP011 from Tripura demonstrated chlorophyll 5%, 5-6.4%, carbohydrate 22-33%, 30-50%, and protein 41-50%, 48-60% respectively [57]. Former strain show higher specific growth rate of 0.125 d−1 than the later one with 0.10 d−1 [57]. The growth profile of *Chlorella* sp. that was isolated from Assam, investigated in batch mode culture with varying concentration of sodium bicarbonate and CO₂ [18]. Highest growth rate (189.1% increase in biomass; specific growth=0.704, g/l/day) and content of lipid achieved when supplying CO₂ gas (1.015 doublings/day, lipid content by weight of dry cells 31%). A novel microalgae strain isolated from freshwater samples identified as *Chlorella sorokiniana* FC6 IITG isolated from North East India was collected [58]. In order to achieve both cell density (biomass) as well as lipid accumulation, different pilot strategies have been formulated. The growth of *Chlorella* sp. FC2 IITG has been characterized under mixotrophic, heterotrophic and phototrophic cultivation conditions [59]. Different strategies for process engineering of *Chlorella sorokiniana* sp. growth have been reported in studies. For instance, under mixotrophic growth of this strain, FC6 IITG led to synchronised growth with high lipid productivity [60]. Cultivation of heterotrophic *Chlorella* sp. FC2 IITG with novel two-stage continuous was showed for increased productivity of lipid [61]. Thermophilic *Chlorella* sp. strain was isolated from Tripura processed for the production of high valued pigments chlorophyll and carotenoids using a green solvent like ethanol in less than 6 min [62]. Among the different culture processes employed for *Chlorella* sp. cultivation thermostrophic *Chlorella* culture of 30 L carried out on 50 L capacity flat-panel photo-bioreactor [62]. Further, to study the growth performance of *Chlorella* sp. in fluctuating environmental conditions and the presence of contaminants open pond cultivation was employed [59]. The study also shows the Continuous culture regime as a potential tool for *Chlorella vulgaris*. The microalgae strain collected from Tripura and identified as *Chlorella* sp. (NITAAP009). The strain had chlorophyll 5% with a specific growth rate of 0.125 d−1, 22–33% carbohydrate and 41–50% protein. Similarly another strain isolated from lake area in Tripura and identified as *Chlorella* sp. (NITAAP011) with large content of chlorophyll (5–6.4%), low lipids (1-10%) with lower specific growth rate (0.10 d−1), 48-60% protein and 30–50% carbohydrate [57].

A species of algae were isolated from the oil field formation water in Assam and identified based on the 18S rRNA as *Chlorella vulgaris*.
than in five servings of vegetables and fruits, 5100% more iron than spinach, compared to carrots, 3100% more beta-carotene, 670% more protein than tofu and 180% more calcium than whole milk [75]. Incredible benefits have been reported in the health areas like hypertension, high blood pressure, diabetes, and weight loss due to its antimicrobial and antioxidant effect [74]. Its anticancer and antimicrobial properties are well known. Consumption of Spirulina can bring balanced metabolism of cholesterol by levels of HDL increasing, which in turn result in healthy cardiovascular function. Spirulina actually helps to develop immunity by enhancing phagocytic activity in macrophages and by generating antigen-specific antibodies in people with depression and hyperactivity disorder with attention deficit. Spirulina, along with conventional supplementation of iron-folic when used to tackle nutritional anaemia in remote tribal population of India, show improvements [76]. In terms of production, the market of Spirulina is dominated by companies like Watershed Wellness Centre, Bio-Alternatives, Valley Naturals, Springtime Inc and Puritan’s Pride. The Spirulina powder costs about 1000 rupees per kg. It is a prokaryotic multicellular filamentous cyanobacterium and consists of mainly two genera Spirulina and Arthrospsira [77]. Species of Spirulina have been reported from the soil of Tripura. Directorate of Biotechnology, Government of Tripura, initiated mass cultivation of Arthrospsira platensis in combination with open mass cultivation in Tripura. The Micro Small Medium Enterprises (MSME) Development Institute offered training programme on “Spirulina cultivation” which constitute an algae introduction, innovative international and national marketing, harvest and post-harvest technology, Spirulina culture and production and Spirulina functions. Moreover, the Ministry of MSME has set up one national-level entrepreneurship development institute in Guwahati Assam.

Ankistrodesmus sp

In Kajiranga National park, Assam [78], Ankistrodesmus septatus Oetttl reported from Ribhi district, of Meghalaya. Ankistrodesmus falcatus (Corda) Hallf freshwater oleaginous microalgae were grown in batch culture, and the media constituents influence, calorific value (CV), total lipid (TL) content, nitrogen sources and pH on growth (µ) was compared [79]. Ankistrodesmus falcatus growth was tested in various concentrations of sodium chloride (0.04M to 0.34M), and results reveal the highest growth as well as lipid content at 0.17M NaCl concentration [80].

Botryococcus sp

In Chandrapur locality of Kamrup district, Assam, the strain Botryococcus braunii (GUHIOJTBBI) was isolated from the collected water samples of a freshwater reservoir. One strain is isolated from Loktak lake Manipur, and the effect of various nutrient stress condition on biofuel production was investigated [32].

Scenedesmus

The maximum growth showed by Scenedesmus strain in CO2 gas at 4758 mg/l (103.8 mg/l for seven days) and bicarbonate at 45 ppm (30.9 mg/l/day for 17 d). Two potent indigenous microalgae strain Scenedesmus quadriradia and Scenedesmus dimorphus isolated from Assam and studied for CO2 mitigation and biomass production [19]. It has also been isolated from Kaziranga National Park (KNP) Assam [78]. Another high temperature and CO2 Scenedesmus obliquus SA1 strain was isolated from Assam, India and studied for CO2 sequestration efficiency [81].

Future prospects

Compounds from microalgae extracts have accepted as having greater biological and economic importance than dried biomass. In the sense of global population growth and availability of terrestrial food items, microalgae may provide sustainable and reliable replacements for widely used commodities of animal or plant origin. To date, however, only a limited number of strains have been utilised in the nutritional and pharmaceutical purposes. Major research and development would entail the transition from a niche market to the widespread use of algal products. In turn, this would facilitate improving existing strains through genetic engineering, and modifications or screening new species to the growth of microalgae with increased targeted metabolite production.
CONCLUSION

Northeast India provides plentiful opportunities to explore the biodiversity at its habitat. There is evidence that there are some algae which already came into an endangered list and the day is not far that many will become extinct without being discovered. It is the peak time to address big questions regarding the conservation of algae and attempt to bring together expertise for the same. Evidence also report that algae have small means of survival that must be accounted into account in the context of biogeography. It is now a big matter of concern to apply possible tactics and methods necessary to achieve realistic protection, including culture collections potential use and application of legislation for in situ conservation.

In Northeast India, the concept of Nutraceutical is still at an infancy. Despite having rich algae resources in Northeast India, the commercialisation of value-added products are still at infancy. For a successful economy from value-added products from algae resource, the processes should be optimised as following 1. Identification and preservation, 2. Cost-efficient large-scale cultivation with quality 3. Efficient harvesting 4. Commercialisation. However, this demands awareness training as well as skilled infrastructure development. Different institutes including Gauhati University, IIT Guwahati, Tezpur University Institute of Bioresources and sustainable development, Imphal are working on the varied perspective of algae. Strategies including co-cultivation, start-up pilot projects, the opening of nutraceutical Food Park would stride up to translate these studies from a laboratory to mass commercialisation. It will further pave the way to not only the herb-based but also algae-based nutraceuticals market from North East India. Therefore, we should join hands together to develop new ways and move on with the idea “think outside the box” that will in return be a wow factor for achieving a prosperous economy of our region that is North East India.

FUNDING

Nil

AUTHORS CONTRIBUTIONS

All the authors have contributed equally.

CONFLICT OF INTERESTS

Declared none

REFERENCES

1. Nilesh Hemantkumar J, Ilza Rahimbhai M. Microalgae and its use in nutraceuticals and food supplements. In: Microalgae from physiology to application. IntechOpen; 2020.
2. Veluchamy C, Palaniswamy R. A review on marine algae and its applications. Asian J Pharm Clin Res 2020;13:21–7.
3. Bhattacharjee M. Pharmaceutically valuable bioactive compounds of algae. Asian J Pharm Clin Res 2016;9:43–7.
4. Rayapu L, Makkar F, Chakraborty K, Valluru L. Phytochemical evaluation and antimicrobial activity of gracilaria opuntia: an important anti-diabetic red marine macroalgae. Int J Curr Pharm Res 2017;9:37.
5. Vafolkomeev SD, Wasserman LA. Microalgae as source of biofuel, food, fodder, and medicines. Appl Biochem Microbiol Springer 2011;47:789–807.
6. Brown EM, Alkopp PJ, Magee PJ, Gill CIR, Nitecki S, Strain CR, et al. Seaweed and human health. Nutr Rev Oxford University Press Oxford, UK 2014;72:205–16.
7. Yaakoht Z, Ali E, Zainal A, Mohamad M, Takriff MS. An overview: biomolecules from microalgae for animal feed and aquaculture. J Biol Res Springer 2014;21:6.
8. Jena M, Adhikary SP. Chlorococcales (Chlorophyceae) of eastern and north-eastern states of India. Algae Incheon Citeseer 2007;22:167.
9. Baruah P, Kakati B. Water quality and phytoplankton diversity of gepeswar temple freshwater pond in Assam (India). Bangladesh J Bot 2013;41:181–5.

10. Sharma H, Das D, Sarmah P, Rout J. A study on freshwater algal communities of pond ecosystems from southern Assam. Vegetos 2019;32:19–32.

11. Ghosh A, Sarkar S, Gayen K, Bhowmick TK. Effects of carbon, nitrogen, and phosphorus supplements on growth and biochemical composition of *Podospherella* sp. (MCG44) isolated from northeast India. Environ Prog Sustain Energy 2020;12:39.

12. Muthuraj M, Selvaraj B, Palabhanvi B, Kumar V, Das D. Enhanced lipid content in Chlorella sp. FC2 ITG via high energy irradiation mutagenesis. Korean J Chem Eng 2019;36:6.3–70.

13. Garcia JL, Vicente M de, Galan B. Microalga, old sustainable food and fashion nutraceuticals. Microb Biotechnol 2017;10:107–24.

14. Wadhare N, Roy S, Kociolek JP, Karthick B. Two new aerophilic species of *Stauronema Ehrenberg* (Bacillariophyta) from the Eastern Himalayas. Bot Lett Taylor Francis 2019;16:234–45.

15. Lahan JP, Kalita R, Bora SS, Barooah M. Screening of potential oleaginous microalgae from demhai district of Assam, India. Int J Agric Environ Biotechnol New Delhi Publishers 2012;5:41–4.

16. Lahan JP, Kalita R, Bora SS, Deka A, Boro RC, Barooah M. Isolation and identification of algae from demhai district of Assam. Trends Biosci 2012;5:220–1.

17. Jena M, Adhikary SP. Chlorococcales (Chlorophyceae) of Eastern and North-eastern States of India. ALGAE Jena M, Adhikary SP. Chlorococcales (Chlorophyceae) of Assam, India. Trends Biosci 2012;5:220–1.

18. Devgoswami CR, Kalita MC, Talukdar J, Bora R, Sharma P. Studies on the growth behavior of *Chlorella*, *Haematococcus* and *Scenedesmus* sp. in culture media with different concentrations of sodium bicarbonate and carbon dioxide gas. African J Biotechnol Academic Journals (Kenya) 2011;10:1328–38.

19. Goswami RCD, Kalita MC. *Scenedesmus dimorphus* and *Scenedesmus quadricauda*: two potent indigenous microalgal strains for biomass production and CO₂ mitigation: a study on their growth behavior and lipid productivity under different concentration of urea as nitrogen source. J Algal Biomass Util 2011;2:2–4.

20. Deka SJ, Sarma GC. Preliminary checklist of oscillatoriaceae (Cyanophyta), Goalpara District, Assam, India. Int J Appl Biol Pharm Technol 2011;2:430–3.

21. Onam G, Singh OA, Tiwari ON, Part II: an account of heterocystous nostocalean cyanobacterial biodiversity of Manipur, India. J Indian Bot Soc Indian Botanical Society 2011;90:45–59.

22. Devi TI, Tiwari ON. Exploration of oscillatoriaceae cyanobacteria of manipur, India, falling under indo-burma biodiversity hotspots. J Indian Bot Soc Indian Botanical Society 2011;90:45–44.

23. Maibam RS, Gupta A. Nutrient content in fresh water red algae (Lemaneaceae, Rhophyta) from rivers of Manipur, north-east India. Electron J Environ Agric Food Chem 2011;10:2662–71.

24. Basu S, Roy AS, Mohanty K, Ghoshal AK. Enhanced CO₂ sequestration by a novel microalgae: Scenedesmus obliquus SAI isolated from bio-diversity hotspot region of Assam, India. Biosourc Technol 2013;14:3369–77.

25. Kumar V, Muthuraj M, Palabhanvi B, Ghoshal AK, Das D. High cell density lipid rich cultivation of a novel microalgae isolated *Chlorella sorokiniana* FC6 ITG in a single-stage fed-batch mode under nitrogen starved condition. Biosourc Technol 2014;170:115–24.

26. Yasmin F, Buragchaib BB, Sarma R. Aquatic Algae from Kaziranga National Park, Assam, India. Int J Curr Microbiol Appl Sci 2015;4:297–302.

27. Bora A, Gogoi HK, Ver V. Algal Wealth of Northeast India. In: Bioprospecting of Indigenous Biosources of North-East India. Singapore: Springer Singapore; 2016. p. 215–28.

28. Thajamani M, Rout J, Thajuddin N. Blue green algae from rice fields of Karinganj district, Assam, North East India. Life 2016;50:23.

29. Ghosh A, Khranna S, Mondal M, Devi TI, Halder G, Tiwari ON, et al. Biochemical characterization of microalgae collected from north east region of India advancing towards the algae-based commercial production. Asia Pacific J Chem Eng 2017;12:745–54.

30. Sehgal A, Goswami K, Pal M, Chikkaputtalacha C, Chetia P, Boruah HDP. Morpho-taxonomic, genetic, and biochemical characterization of freshwater microalgae as potential biodiesel feedstock. J Biotechn 2019;9:137.

31. Das B, Deka S. A cost-effective and environmentally sustainable process for phycoremediation of oil field formation water for its safe disposal and reuse. Sci Rep 2019;9:15232.

32. Manchanda T, Tyagi R, Sharma DK. Application of nutrient stress conditions for hydrocarbon and oil production by *Botryococcus braunii*. Biofuels Taylor Francis 2019;10:271–7.

33. Sarkar S, Mannaa MS, Bhowmick TK, Gayen K. Extraction of chlorophylls and carotenoids from dry and wet biomass of isolated *Chlorella thermophila*: Optimization of process parameters and modelling by artificial neural network. Process Biochem 2020;96:58–72.

34. Dixit A, Kumar N, Kumar S, Trigun V. Antimicrobial resistance: progress in the decade since emergence of New Delhi metallo-actinam in India. Indian J Med Publ Indian Assoc Prev Soc Med Wolters Kluwer 2019;44:4.

35. Astarita G, Langridge J. An emerging role for metabolomics in nutrition science. Lifestyle Genomics Karger Publishers 2013;6:181–200.

36. Baruah PP, Baruah R, Das P A preliminary study on diversity and distribution of *Spirulina*, *Arthrospira* and *Glaucosira* (Cyanobacteria) in the Brahmaputra Valley of Assam (India). Feddes Repert Wiley Online Library 2014;125:85–92.

37. Bishop WM, Zueck BM. Evaluation of microalgae for use as nutraceuticals and nutritional supplements. J Nutr Food Sci 2012;2:1–6.

38. Huang C, Zhang Z, Cui W. Marine-derived natural compounds for the treatment of Parkinson’s disease. Mar Drugs Multidisciplinary Digital Publishing Institute 2019;17:221.

39. Bhattcharjee M. Pharmacologically valuable bioactive compounds of algae. Asian J Pharm Clin Res 2016;9:49–43.

40. Mathur M. Biactive molecules of *Spirulina*: a food supplement. Bioact Mol Food Ref Ser Phytochem Springer, Cham; 2018.

41. Andrade LM, Andrade CJ, Dias M, Nascimento CAO, Mendes MA. *Chlorella* and *Spirulina* microalgae as sources of functional foods. Nutraceuticals Food Suppl 2018;6:45–58.

42. Samoz G Di, Melariyi S, Martino M, Larocca V, Casella P, Chianese S, et al. Supercritical carbon dioxide extraction of astaxanthin, lutein, and fatty acids from *Haematococcus pluvialis* microalgae. Mar Drugs Multidisciplinary Digital Publishing Institute 2018;16:334.

43. Isahq AG, Matias Peralta HM, Bassi H. Biactive compounds from green microalga-*Scenedesmus* and its potential applications: a brief review. Pertanika J Trop Agri Sci 2016;39:1–16.

44. Ambati RR, Gogisetty D, Aswathnarayana Gokare K, Ravi S, Bikkina PN, Su, et al. Botryococcus as an alternative source of carotenoids and its possible applications: an overview. Crit Rev Biotechnol Taylor Francis 2018;38:51–58.

45. Jerez Martel I, Garcia Pozas S, Rodriguez Martel G, Rico M, Afonso Olivares C, Gomez Pinchetti JL. Phenolic profile and antioxidant activity of crude extracts from microalgae and cyanobacteria strains. J Food Qual 2017;20:71–8.

46. Richmond A, Hu Q. Handbook of microalgal culture: applied phyiology and biotechnology. John Wiley and Sons; 2013.

47. Reyna Martinez R, Gomez Flores R, Lopez Chukun U, Quintanilla Licea R, Caballero Hernandez D, Rodriguez Padilla C, et al. Antitumor activity of *Chlorella sorokiniana* and *Scenedesmus* sp. microalgae native of nuevo leon State, Mexico. Peer J Peer J Inc; 2018. p. e64358.

48. Ryu NH, Lim Y, Park JE, Kim J, Kim JY, Kwon SW, et al. Impact of daily *Chlorella* consumption on serum lipid and carotenoid profiles in mildly hypercholesterolemic adults: a double-blind, randomized, placebo-controlled study. Nutr J Springer 2014;13:357.
49. Medina Jairtz NB, Camona Ugalde LF, Lopez Cedillo JC, Leon F SLR De. Antimicrobial activity of methanolic extracts from Dunaliella salina and Chlorella vulgaris. Wiley Online Library; 2013.

50. Kitada K, Machmudah S, Sasaki M, Goto M, Nakashima Y, Kumamoto S, et al. Antioxidant and antibacterial activity of nutraceutical compounds from Chlorella vulgaris. Sep Sci Technol 2009;44:1228–39.

51. Takyar MBT, Khajavi SH, Safari R. Evaluation of antioxidant properties of Chlorella vulgaris and Spirulina platensis and their application in order to extend the shelf life of rainbow trout (Oncorhynchus mykiss) fillets during refrigerated storage. LWT Elsevier 2019;100:244–9.

52. Samarakoon KW, Ko J, Shah MMR, Lee JH, Kang MC, Kwon ON, et al. In vitro studies of anti-inflammatory and anticancer activities of organic solvent extracts from cultured marine microalgae. Algae Korean Soc Phycol 2013;28:111–9.

53. Sanawa H, Takahashi M, Tsuchikura S, Endo H. Effect of Chlorella and its fractions on blood pressure, cerebral stroke lesions, and lipase in stroke-prone spontaneously hypertensive rats. J Nutr Sci Vitaminol (Tokyo) Center for Academic Publications Japan 2006;52:857–66.

54. Kwak JH, Baek SH, Woo Y, Han JK, Kim BG, Kim OY, et al. Beneficial immunostimulatory effect of short-term Chlorella supplementation: enhancement of natural killer cell activity and early inflammatory response (Randomized, double-blinded, placebo-controlled trial). Nutr J Springer 2012;11:53.

55. Merchant RE, Carmack CA, Wise CM. Nutritional supplementation with Chlorella Chlorella vulgaris isolated in modified seawater for patients with fibromyalgia syndrome: a pilot study. Phyther Res Wiley Online Library 2000;14:167–73.

56. Merchant RE, Andre CA. A review of recent clinical trials of the nutritional supplement Chlorella pyrenoidosa in the treatment of fibromyalgia, hypertension, and ulcerative colitis. Altern Ther Health Med Innovation Communications 101 Columbia, Aliso Viejo, CA 92656 USA 2001;7:79–92.

57. Ghosh A, Khanna S, Mondal M, Devi TI, Baghel G, Tiwari ON, et al. Biochemical characterization of microalgae collected from north east region of India advancing towards the algae based commercial production. Asia Pacific J Chem Eng Wiley Online Library 2017;12:745–54.

58. Kumar V, Muthuraj M, Palabhanvi B, Ghoshal AK, Das D. High cell density lipid rich cultivation of a novel microalgal isolate Chlorella sorokiniana FC6 ITG in a single-stage fed-batch mode under microtrophic condition. Biore sour Technol Elsevier 2014;170:11–24.

59. Muthuraj V, Muthuraj K, Palabhanvi B, Das D. Evaluation of indigenous microagal isolate Chlorella sp. FC2 ITG as a cell factory for biodiesel production and scale up in outdoor conditions. J Ind Microbiol Biotechnol Springer 2014;41:499–511.

60. Kumar V, Muthuraj M, Palabhanvi B, Das D. Synchronized growth and neutral lipid accumulation in Chlorella sorokiniana FC6 ITG under continuous mode of operation. Biore sour Technol Elsevier 2016;200:770–9.

61. Palabhanvi B, Muthuraj K, Kumar V, Mukherjee M, Ahalawat S, Das D. Continuous cultivation of lipid rich microalg Chlorella sp. FC2 ITG for improved biodiesel productivity via control variable optimization and substrate driven pH control. Biore sour Technol Elsevier 2017;224:481–9.

62. Sarkar S, Manna MS, Bhowmick TK, Gayen K. Extraction of chlorophylls and carotenoids from dry and wet biomass of isolated Chlorella thermophila: Optimization of process parameters and modelling by artificial neural network. Process Biochem Elsevier; 2020.

63. Cotas J, Leandro A, Pacheco D, Gonçalves AMM, Pereira L. A comprehensive review of the nutraceutical and therapeutic applications of red seaweeds (Rhodophyta). Life 2020;10:19.

64. Fassett RG, Cooney JS. Astaxanthin in cardiovascular health and disease. Molecules Molecular Diversity Preservation International 2012;17:2030–48.

65. Guerin M, Huntley ME, Olaiya H, Haematococcus astaxanthin: applications for human health and nutrition. TRENDS Biotechnol Elsevier 2003;21:21–6.

66. Dhanankar J, Kadian SS, Sharma A. Astaxanthin: a potential carotenoid. Int J Pharm Sci Res 2012;3:1246.

67. Fakhri S, Yosifova Aneva I, Farzaei MH, Sobarzo Sanchez E. The neuroprotective effects of astaxanthin: therapeutic targets and clinical perspective. Molecules Multidisciplinary Digital Publishing Institute 2019;24:2640.

68. Uchijama K, Naito Y, Hasegawa G, Nakamura N, Takahashi J, Yoshikawa T. Astaxanthin protects cells against glucose toxicity in diabetic db/db mice. Redox Rep Taylor Francis 2002;7:290–3.

69. Gurunayum S, Senapati SS. Exploration of algal varieties from panibhati area of guwahati using winogradsky column. Int J Curr Microbiol Appl Sci 2017;6:1195–204.

70. Ramanujam P, Sangbood H. Diversity of algal communities in Umiew River, Meghalaya. Indian Hydrobiol 2009;12:65–73.

71. Devi LB, Rout J. Diversity of soil algae from vegetable crop fields of Gachar district, Assam, India. Indian J Ecol Indian Ecological Society 2001;24:19–26.

72. M Bishop W, Zubeck H. Evaluation of microalgae for use as nutraceuticals and nutritional supplements. J Nutr Food Sci 2012;2:5.

73. Singh S, Marskolay S. Spirulina as an alternative solution to food security: an extensive review on clinical studies. J Crit Rev 2020;7:341–31.

74. Nihal B, Gupta NV, Gowda DV MM. Formulation and development of topical anti acne formulation of Spirulina extract. Int J Appl Pharm 2018;10:229.

75. Capelli B, Cyzewski GR. Potential health benefits of spirulina: a review. Indian J Nutr Dietet 2018;55:287–9.

76. De M, Balhar B, Balhar P, Dhanakhar M, Dhanakhar SS, Dhanakhar T, Dhanakhar S. Algal diversity in the coastal waters of the Gulf of Mannar, Tamil Nadu, India. Int J Crop Protect 2012;1:261–8.

77. Ashan M, Habib B, Parvin M, Huntington TC, Hasan MR. A review on culture, production and use of spirulina as food for humans and feeds for domestic animals. FAO Fish Aquac Circ FAO; 2008.

78. Yasmin F, Buragohain BB, Sarma R. Aquatic Algae from Kaziranga National Park, Assam, India. Int J Curr Microbiol Appl Sci 2015;4:297–302.

79. Talukdar J. Influences of dissolved inorganic carbon and nitrogen sources on growth, total lipid content and calorific value of freshwater oleaginous microalgae Ankistrodesmus falcatus (Gordia) ralfs. Environ Res Eng Manag 2012;61:14–25.

80. Kalita N, Baruah G, Goswami R. Potential of algae for biodiesel production, its biochemical analysis and strategies to enhance lipid productivity. J Microbiol Biotechnol Res 2011;1:148–57.

81. Basu S, Roy AS, Mohanty K, Ghoshal AK. Enhanced CO2 sequestration by a novel microalgae Scenedesmus obliquus SA1 isolated from bio-diversity hotspot region of Assam, India. Biore sour Technol Elsevier 2013;143:569–77.