Rare *Elizabethkingia meningosepticum* meningitis case in an immunocompetent adult

Salim S. Hayek, *Emory University*
Thura T. Abd, *Emory University*
Sushma K Cribbs, *Emory University*
Albert M L Anderson, *Emory University*
Andre Melendez, *Emory University*
Miwako Kobayashi, *Emory University*
Carmen Polito, *Emory University*
Yun F (Wayne) Wang, *Emory University*

Journal Title: Emerging Microbes and Infections

Volume: Volume 2013, Number 2

Publisher: Nature Publishing Group: Open Access Journals - Option B | 2013-04-10, Pages e17-e17

Type of Work: Article | Final Publisher PDF

Publisher DOI: 10.1038/emi.2013.16

Permanent URL: http://pid.emory.edu/ark:/25593/f7p83

Final published version: http://www.nature.com/emi/journal/v2/n4/full/emi201316a.html

Copyright information:

© 2011 Hayek et al.

This is an Open Access work distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs 3.0 Unported License (http://creativecommons.org/licenses/by-nc-nd/3.0/).

Accessed November 12, 2022 6:32 PM EST
CASE REPORT

Rare *Elizabethkingia meningosepticum* meningitis case in an immunocompetent adult

Salim S Hayek\(^1\), Thura T Abd\(^1\), Sushma K Cribbs\(^2\), Albert M Anderson\(^3\), Andre Melendez\(^3\), Miwako Kobayashi\(^1\), Carmen Polito\(^2\) and Yun F (Wayne) Wang\(^4,5\)

Though *Elizabethkingia meningosepticum* typically causes meningitis in neonates, its occurrence in adult is rare, with sixteen cases described worldwide. We report a case of *E. meningosepticum* meningitis in an immunocompetent adult. Bacterial identification was made a day earlier than conventional method by using matrix assisted laser desorption ionization time-of-flight (MALDI-TOF) Vitek mass spectrometry RUO (VMS), which resulted in successful treatment with rifampin, trimethoprim-sulfamethoxazole, levofloxacin and minocycline.

Emerging Microbes and Infections (2013) 2, e17; doi:10.1038/emi.2013.16; published online 10 April 2013

Keywords: chryseobacterium; *Elizabethkingia meningosepticum*; flavobacterium; meningitis; MALDI-TOF mass spectrometry; Vitek

CASE REPORT

A 68-year-old woman with known hypertension and osteoarthritis was found down in her residential complex and brought to the emergency department on 15 July 2011. On physical examination she was afebrile (36.1 °C), normotensive (107/43) and tachycardic (95 beats/min), with an oxygen saturation of 98% on room air. Swollen, erythematous lower extremities with areas of induration and scattered bullae were noted. Although initially alert and oriented, within 4 h she became difficult to arouse and was not following commands. Her neurological exam was non-focal, with pupils equally round and reactive to light, normal muscle tone and dull deep tendon reflexes. Initial laboratory findings were consistent with an anion-gap metabolic acidosis, acute renal failure, elevated liver enzymes and creatine phosphate kinase (Table 1). Head computed tomography imaging was unremarkable at the time of presentation. The patient was emergently intubated, and surgical exploration of her lower extremities was performed. No signs of necrotizing fasciitis were noted.

On post-operative reevaluation, the patient exhibited left horizontal gaze palsy, a left dilated non-reactive pupil, extensor Babinski response bilaterally and decerebrate posturing. Repeat head computed tomography imaging 20 h after the initial scan showed interval development of hydrocephalus requiring placement of an external ventricular drain. Interestingly, the initial cerebrospinal fluid (CSF) sample analysis on external ventricular drain placement yielded zero white blood cells, mildly elevated protein levels and normal glucose levels. However, Gram-negative rods were noted on microscopy (data not shown). Although she had already received doses of vancomycin, piperacillin-tazobactam, ceftriaxone and ampicillin by the end of day 1, the patient developed septic shock.

Within 24 h of admission, initial blood culture collected in emergency department, tissue and CSF cultures collected later were processed turned positive for the Gram-negative rod. Instead of waiting for another day for bacterial identification by using conventional culture method, the Gram-negative rod was identified as *Elizabethkingia meningosepticum* on the same day of positive culture by using matrix-assisted laser desorption ionization time-of-flight (MALDI-TOF) Vitek mass spectrometry (VMS). The spectrum of VMS is shown in Figure 1. The patient's antimicrobial regimen was subsequently changed on the evening of hospital day 2, to levofloxacin 750 mg daily, trimethoprim-sulfamethoxazole 400 mg intravenous every 8 h, minocycline 100 mg every 12 h and rifampin 600 mg every 24 h. The regimen was derived from a review of the literature, 24 h prior to obtaining the conventional microbiological identification and sensitivities. The pathogen was susceptible to fluoroquinolones (minimal inhibitory concentration (MIC) \(\leq 1 \) µg/mL for ciprofloxacin and \(< 2 \) µg/mL for levofloxacin) and trimethoprim-sulfamethoxazole (MIC \(\leq 2–38 \) µg/mL), but was resistant to aminoglycosides, imipenem and piperacillin-tazobactam by using MicroScan WalkAway (Siemens, West Sacramento, CA, USA) with LabPro software and Clinical and Laboratory Standards Institute guidelines.\(^1\) The patient's clinical status progressively improved, and within 72 h starting a tailored antibiotic regimen, her vital signs normalized.

Although this patient’s initial neurological findings portended a poor prognosis, she exhibited early signs of neurological recovery with spontaneous movement of her extremities and head, eye tracking, as well as facial grimacing with withdrawal to pain. Magnetic resonance imaging of the brain performed on hospital day 6 revealed leptomeningeal enhancement compatible with a diagnosis of meningitis, but no other findings that could explain here neurological status. After a

\(^1\)J. Willis Hurst Internal Medicine Residency Program, Department of Medicine, Emory University School of Medicine, Atlanta, GA 30303, USA; \(^2\)Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, Emory University School of Medicine, Atlanta, GA 30303, USA; \(^3\)Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, GA 30303, USA; \(^4\)Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA 30303, USA and \(^5\)Clinical Laboratory, Grady Memorial Hospital, Atlanta, GA 30303, USA

Correspondence: YF Wang, E-mail: yfwang@emory.edu

Received 21 December 2012; revised 18 February 2013; accepted 26 February 2013
Table 1 Laboratory evaluation

Test	Result	Reference range
Chemistry		
Sodium	131	132–144 mEq/L
Potassium	3.7	3.4–5.1 mEq/L
Chloride	98	101–111 mEq/L
Bicarbonate	17	22–32 mEq/L
Urea nitrogen	62	8–22 mEq/L
Creatinine	3.8	0.4–1.0 mg/dL
AST	180	10–42 U/L
ALT	70	14–54 U/L
Hemoglobin	15.7	11.5–15.5 g/dL
Platelet count	35.1	100–300 k/L
Hematology		
WBC	9.2	4.0×10³–8.5×10³ μL
%Neutrophils	81	25%–62%
%Lymphocytes	18	<13%
%Metamyelocytes	4.1	3.9×10³–5.2×10³ μL
Hemoglobin	11.7	11.5–15.5 g/dL
Hematocrit	36.1	35.0%–45.0%
Platelet count	172	140×10³–440×10³ μL
Cerebrospinal fluid		
WBC	0	<11/μL
RBC	28	0 μL
Protein	67	15–45 mg/dL
Glucose	53	40–70 mg/dL

Abbreviations: AST, aspartate aminotransferase test; ALT, alanine aminotransferase; WBC, white blood cell; RBC, red blood cell.

hospital course of 2 weeks, she was discharged to a long-term acute care hospital where she received 6 weeks of levofloxacin, minocycline and trimethoprim-sulfamethoxazole. By 8 weeks post-discharge, the patient had become alert and oriented and was actively participating in physical and occupational therapy, albeit with residual receptive aphasia.

DISCUSSION

E. meningosepticum, previously known as *Flavobacterium* and reclassified as *Chryseobacterium*, was initially identified by Dr Elizabeth King as a causative agent of meningitis in neonates.3 *E. meningosepticum* infections, whether in infants or adults, are mostly nosocomial, with less than 15% acquired in the community.4,5 Case reports have described patients with endocarditis, cellulitis, necrotizing fasciitis, hepatitis, osteomyelitis and eye infections, in addition to the more common *E. meningosepticum* bacteremia and pneumonia.4 The majority of infections in neonates present as meningitis. However, *E. meningosepticum* meningitis in adults is rare. Only 16 cases have been described worldwide; 15 of these cases described patients who had underlying comorbidities or who had undergone surgical procedures (Table 2).

E. meningosepticum is found ubiquitously in freshwater, saltwater and soil.6 However, the majority of *E. meningosepticum* infections are nosocomial in origin.4,5 As a biofilm-forming organism, it commonly colonizes sink drains and medical equipment such as ventilators, intravascular catheters and surgical tools, as well as solutions such as chlorhexidine.7 Hospital isolates are thought to be the underlying cause of sporadic nosocomial outbreaks. Positive screening cultures should, however, be interpreted cautiously, as only 60% have shown clinical correlation with an infectious process.5 Risk factors for *E. meningosepticum* infections relate to underlying immune dysfunction. In neonates, the main risk factor for *E. meningosepticum* infection is prematurity.5 Most adults with *E. meningosepticum* meningitis suffer from comorbidities such as hematologic malignancies, diabetes or have recently undergone surgical procedures (Table 2). In two retrospective case studies of *E. meningosepticum* bacteremia, the most common comorbidities were cancer and diabetes mellitus.4 Mortality rates in these patients are as high as 53%.4,5 Although one case involved a 46-year-old man with no known underlying systemic disorder who succumbed to meningitis,8 no immunologic evaluation was performed prior to his death. Our patient had regular follow-up visits with her primary care physician. Screening colonoscopy and mammogram were completed the year prior to presentation and were unremarkable. She had never been on corticosteroids. HIV antibody and a viral hepatitis panel were negative. Her hemoglobin A1C was 6.0%. Serum immunoglobulin and complement levels were within normal limits and anti-nuclear antibody screen was non-reactive.

Table 2 : Characteristics of *E. meningosepticum* meningitis reported cases in adults

References	Age, Sex	Underlying condition	Treatment	Outcome	Source
15	17, Male	Thalassemia major, splenectomy	Vancomycin for 21 days	Cured	NR*
16	88, Female	Diabetes mellitus, cellulitis	NR	Died	Community
11	21, Female	Diabetes mellitus	Cefepime for 21 days	Cured	Community
17	27, Female	Acute myelogenous leukemia	Rifampicin, piperacillin, ciprofloxacin for 23 days	Cured	Nosocomial
18	—	—	—	—	—
19	NR	Myelography	NR	NR	Nosocomial
8	43, Male	NR	Piperacillin, cefoperazone, minocycline erythromycin	Died	Community
20	56, Female	Pituitary tumor s/p transphenoidal hypophysectomy	Rifampin, cefoperazone, chloramphenicol	Cured	Nosocomial
21	60, Male	Squamous cell cancer s/p resection	Amikacin, erythromycin for 25d	Cured	Nosocomial
22	26, Female	CKD, renal transplant, tuberculosis	Erythromycin	Died	Nosocomial
23	66, Female	Acute myelogenous leukemia	Erythromycin	Died	Nosocomial
24	43, Male	Squamous cell cancer s/p irradiation/ resection	Ampicillin	Cured	Community
25	19, Male	Aplastic anemia	Neomycin IV/intrathecal	Died	Nosocomial
26	33, Male	Pulmonary tuberculosis, malnutrition	Chloramphenicol, erythromycin	Died	NR
27	NR	Postpartum	NR	NR	NR
3	NR	Polycythemia	NR	Cured	NR

Abbreviations: CKD, chronic kidney disease; NR, not reported; — unavailable.
Thus, *E. meningosepticum* meningitis can occur in an immunocompetent host. *E. meningosepticum*’s unusual antimicrobial sensitivity is due to its production of two different metallo-β-lactamases, conferring the ability to degrade all β-lactam antibiotics. Antibiotic susceptibility profiles vary across the reported literature and thus, there is no consensus on appropriate therapy. The largest study examining 99 isolates and their susceptibilities to 19 antimicrobial agents suggested that *E. meningosepticum* is most sensitive to trimethoprim-sulfamethoxazole (91%), followed levofloxacin and moxifloxacin (81%–87%), doxycycline and piperacillin-tazopactam (78%). The SENTRY report examining 24 isolates noted 87% susceptibility to rifampin. Aminoglycosides and vancomycin have shown poor activity against *E. meningosepticum*.

The CSF findings in this case illustrate potential diagnostic challenges. Three out of 10 cases reporting CSF findings of adult patients with *E. meningosepticum* meningitis showed a paucity of CSF inflammation as low as 6 white blood cells (WBCs)/μL. In this patient’s case, there were 0 WBCs/μL in the initial CSF obtained during extra-ventricular drain insertion, despite positive Gram stain and culture. These findings show that meningitis caused by this organism cannot be ruled out with a very low or even normal CSF WBC count.

Rapid bacteriologic identification is essential as *E. meningosepticum* is typically resistant to the common antimicrobials used to empirically treat Gram-negative rod infections. MALDI-TOF Mass Spectrometry (MS) technology provided the diagnosis within 24 h of admission. Its utility in protein profiling has emerged as a powerful tool for the rapid identification of bacteria and yeast isolates. MALDI-TOF MS can be performed very quickly, requiring a mean of a few minutes per sample to identify an isolate, and with high accuracy. In this case, MALDI-TOF VMS aided management by providing an early identification of an unusual and inherently resistant organism, allowing adjustment of the antibiotic regimen (Table 3).

Table 3 Timeline of bacterial identification

Day 0	Day 1	Day 2	Day 3	Day 4
Blood was collected	Blood culture was positive, and subculture to plate	Positive growth, identified by MALDI-TOF MS	Identification by conventional method	Antimicrobial susceptibility testing by conventional method
CSF was collected		Positive growth, identified by MALDI-TOF MS	Identification by conventional method	

Abbreviations: CSF, cerebrospinal fluid.

Figure 1 *E. meningosepticum* spectral signature from Vitek MS with SARAMIS RUO software.
Emerging Microbes and Infections

et al 9 Vessillier S, Docquier JD, Rival S

7 Coyle-Gilchrist MM, Crewe P, Roberts G. Flavobacterium meningosepticum in the

6 Bernardet JF, Hugo C, Bruun B. The genera

5 Bloch KC, Nadarajah R, Jacobs R. Chryseobacterium meningosepticum: an emerging

ribosomal RNA sequencing. It was identified as Elizabethkingia meningosepticum with a score of 1056 bits (1170) and identities 587/588 (99%). MALDI-TOF MS was performed for all isolates; blood, CSF, tissue, as well as sputum samples, identifying the same bacterium with identical spectrum, as well as antimicrobial susceptibility profile.

CONCLUSION

E. meningosepticum is a virulent pathogen, not only in the immunocompromised host, but also in immunocompetent patients. Clinical and laboratory manifestations of E. meningosepticum infections are not pathognomonic; thus, early microbiological diagnosis using emerging automated technology such as MALDI-TOF MS is essential in selecting appropriate therapy. As the available data suggest 81% to 91% of isolates are sensitive to trimethoprim-sulfamethoxazole, levofloxacin and rifampin, early identification could predict the antimicrobial susceptibility pattern and help clinicians to choose the right antibiotics.

References

1 Clinical and Laboratory Standards Institute. Performance Standards for Antimicrobial Susceptibility Testing: Twenty-first Informational Supplement M100-S21. Wayne: Clinical and Laboratory Standards Institute, 2011.

2 Kim KK, Kim MK, Lim JH, Park HY, Lee ST. Transfer of Chryseobacterium meningosepticum and Chryseobacterium miricola to Elizabethkingia gen. nov. as Elizabethkingia meningoseptica comb. nov. and Elizabethkingia miricola comb. nov. Int J Syst Ecol Microbiol 2005; 55(Pt 3): 1287–1293.

3 King EO. Studies on a group of previously unclassified bacteria associated with meningitis in infants. Am J Clin Pathol 1959; 31: 241–247.

4 Hsu MS, Liao CH, Huang YT et al. Clinical features, antimicrobial susceptibilities, and outcomes of Elizabethkingia meningoseptica (Chryseobacterium meningosepticum) bacteremia at a medical center in Taiwan, 1999–2006. Eur J Clin Microbiol Infect Dis 2011; 30: 1271–1278.

5 Bloch KC, Nadarajah R, Jacobs R. Chryseobacterium meningosepticum: an emerging pathogen among immunocompromised adults. Report of 6 cases and literature review. Medicine 1997; 76: 30–41.

6 Bernardet JF, Hug C, Bruun B. The genera Chryseobacterium and Elizabethkingia. In: Dworkin M, Falkow S, Rosenberg E, Schleifer KH, Stackebrandt E (ed.) The Prokaryotes: a Handbook on the Biology of Bacteria. Proteobacteria: Delta and Epsilon Subclasses. Deeply Rooting Bacteria. Vol 7. 3rd ed. New York: Springer 2006: 638–676

7 Coyle-Gilchrist MM, Crewe P, Roberts G. Flavobacterium meningosepticum in the hospital environment. J Clin Microbiol 1976; 29: 824–826.

8 Uchihara T, Yokota T, Watabiki S, Ueki M, Miyake S, Tsukagoshi H. Flavobacterium meningosepticum meningitis in an adult. Am J Med 1988; 85: 738–739.

9 Vessillier S, Doquier JD, Rival S et al. Overproduction and biochemical characterization of the Chryseobacterium meningosepticum BlaB metallo-beta-lactamase. Antimicrob Agents Chemother 2002; 46: 1921–1927.

10 Kirby JT, Sader HS, Walsh TR, Jones RN. Antimicrobial susceptibility and epidemiology of a worldwide collection of Chryseobacterium spp: report from the SENTRY Antimicrobial Surveillance Program (1997–2001). J Clin Microbiol 2004; 42: 445–448.

11 Lu CH, Huang CR, Tsai NW et al. An adult case of Chryseobacterium meningosepticum meningitis. Jpn J Infect Dis 2004; 57: 214–215.

12 Carbonnelle E, Mesquita C, Bille E et al. MALDI-TOF mass spectrometry tools for bacterial identification in clinical microbiology laboratory. Clin Biochem 2011; 44: 104–109.

13 Seng P, Drancourt M, Gouriet F et al. Ongoing revolution in bacteriology: routine identification of bacteria by matrix-assisted laser desorption ionization time-of-flight mass spectrometry. Clin Infect Dis 2009; 49: 543–551.

14 Emontet S, Shah HN, Cherkaoui A, Schrenzel J. Application and use of various mass spectrometry methods in clinical microbiology. Clin Microbiol Infect 2010; 16: 1604–1613.

15 Ozkalan Y, Anil M, Agus N, Helvaci M, Sirti S. Community-acquired meningitis and sepsis caused by Chryseobacterium meningosepticum in a patient diagnosed with thalassemia major. J Clin Microbiol 2006; 44: 3037–3039.

16 Padmaja P, Verrhese S, Bhirmanandham CV, Athit, Thirunagasambandham S, Ramesh S. Chryseobacterium meningosepticum—an uncommon pathogen causing adult bacterial meningitis. Indian J Pathol Microbiol 2006; 49: 293–295.

17 Krebs S, Blanche P, Bouscary D et al. Flavobacterium meningosepticum meningitis in an adult with acute leukaemia. Postgrad Med J 1996; 72: 187–188.

18 Bascunana A, Marin P, Pastorn J, Giron JA. [Meningitis caused by Flavobacterium meningosepticum in an adult]. Enferm Infec Microbiol Clin 1996; 14: 394–395.

19 Bo SH, Nestvold K, Sortland O. [Meningitis after myelography]. Tidsskr Nor Laegeforen. 1995; 115: 2646–2647. Spanish

20 Chan KH, Chau PY, Wang RY, Huang CY. Meningitis caused by Flavobacterium meningosepticum after transsphenoidal hypophysectomy with recovery. Surg Neurol 1983; 20: 294–296.

21 Harrington SP, Perlino CA. Flavobacterium meningosepticum sepsis: disease due to bacteria with unusual antibiotic susceptibility. South Med J 1981; 74: 764–766.

22 Mani RM, Kuruvila KC, Bativala PM et al. Flavobacterium meningosepticum as an opportunist. J Clin Pathol 1978; 31: 220–222.

23 Rios I, Klimek JJ, Maderazo E, Quintiliani R. Flavobacterium meningosepticum meningitis: report of selected aspects. Antimicrob Agents Chemother 1978; 14: 444–447.

24 Bagely DH Jr, Alexander JC Jr, Gili VJ, Dolin R, Ketcham AS. Late flavobacterium species meningitis after craniofacial exenteration. Arch Intern Med 1976; 136: 229–231.

25 Lapage SP, Owen RJ. Flavobacterium meningosepticum from cases of meningitis in Botswana and England. J Clin Pathol 1973; 26: 747–749.

26 Madruga M, Zanon U, Pereira GM, Galvao AC. Meningitis caused by Flavobacterium meningosepticum. The first epidemic outbreak of meningitis in the newborn in South America. J Infect Dis 1970; 121: 328–330.

27 Shibata O, Mitsuma T. A case of meningitis due to Flavobacterium meningosepticum. Jpn J Infect Dis 1988; 41: 738–739.

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivative Works 3.0 Unported License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-nd/3.0