Measures and Mismeasures of Scientific Quality

Sune Lehmann

Informatics and Mathematical Modeling, Technical University of Denmark, Building 321, DK-2800 Kgs. Lyngby, Denmark.

Andrew D. Jackson and Benny Lautrup

The Niels Bohr Institute, Blegdamsvej 17, DK-2100 København Ø, Denmark.

(Dated: 22 December 2005)

We present a general Bayesian method for quantifying the statistical reliability of one-dimensional measures of scientific quality based on citation data. Two quality measures used in practice — “papers per year” and “Hirsch’s h” — are shown to lack the accuracy and precision necessary to be useful. The mean, median and maximum number of citations are reliable and permit accurate predictions of future author performance on the basis of as few as 50 publications.

PACS numbers: 89.65.-s,89.75.Da

Although quantifying the quality of individual scientists is a difficult task, most scientists would agree that: (i) it is better to publish a large number of articles than a small number, and (ii) for any given paper, its citation count (relative to citation habits in its field) provides a useful measure of its quality. Even given the assumption that the quality of a scientist is related to his/her citation record, it is still necessary to convert the details of a citation record into an intensive (i.e., time-independent) scalar measure of quality. The questions of which measure of quality is best and whether any such measure can be useful remain unanswered. Nevertheless, a variety of measures of quality based on citation data have been proposed in the literature and some have been adopted in practice [1, 2, 3]. Their merits rely largely on intuitive arguments and value judgments. The absence of quantitative support for measures of quality based on citation data is a matter of genuine concern since citation data is routinely considered in matters of appointment and promotion which affect every working scientist.

The purpose of analyzing and comparing citation records is to discriminate between scientists. Any ranking is based on a single real number m, presumed to be a quantitative measure of the quality of a scientist’s production. Whatever the intrinsic and value-based merits of this measure, it will be of no practical value unless the corresponding uncertainty in its assignment is small. From this point of view, the “best” choice of measure will be that which provides maximal discrimination between scientists and hence certainty in the values assigned. The present paper is intended to demonstrate that the question of deciding which of several proposed measures is most discriminating, and therefore “best”, can be addressed quantitatively using standard Bayesian statistical methods.

The present analysis is based on data from the SPIRES database of papers in high energy physics. Our data set consists of all citable papers from the theory subfield, ultimo 2003, with all citations to papers outside of SPIRES removed. In [4], we have shown that the theory subsection of SPIRES is a homogeneous data set. For the same reason we include only the publications of “academic scientists”, defined as those with 25 or more published papers, and exclude those who cease active journal publication early in their careers (see [6], chapters 3 and 4). The resulting data set includes 5 787 authors and 282 204 papers. The actual number of papers is smaller since multiple author papers are counted once per co-author, in agreement with normal practice in publicly available citation counts [4]. Note that the number of co-authors is relatively small in this subfield (typically 1–3 per theoretical paper), and the effects of weighting papers by the number of co-authors have been shown to be negligible [5].

Like other sets of citation data, the data in this subset of SPIRES is well-described by an asymptotic power law. Specifically, the probability that a paper will receive n citations is approximately proportional to $(n + 1)^{-\gamma}$ with $\gamma = 1.10$ for $n \leq 50$ and $\gamma = 2.70$ for $n > 50$. The transition between these two power laws is found to be quite sharp [5]. As a result, there is a significant difference between the mean of ≈ 18.4 and median of ≈ 5 citations per paper. Note that all higher moments of this distribution are ill-defined. This alerts us to the possibility that the results of citation analyses can depend sensitively on the chosen scalar measure of author quality. The rationale underlying all citation analyses is that citation data is strongly correlated such that a “good” scientist has a far higher probability of writing a good (i.e., highly cited) paper than a “poor” scientist. This expectation is

1 SPIRES contains virtually all papers in high energy physics written since 1974 and their lists of references [4].
2 Citation distributions in the “Review” and “Instrumentation” subsets are markedly different.
fulfilled in practice, and the citation data from SPIRES contain significant longitudinal correlations.

We thus categorize authors by a tentative quality index, m, derived from their citation record. Once assigned, we can construct the prior distribution, $p(m)$, that an author has measure m and the conditional probabilities, $P(n|m)$, that a paper written by an author with measure m will receive n citations. Studies performed on the first 25, first 50 and all papers of authors with a given value of m indicate the absence of temporal correlations in the citation distributions of individual authors. In practice, we bin authors in deciles according to their value of m and papers logarithmically, due to the asymptotic power law behavior noted above. We have confirmed that the results here are insensitive to binning effects.

We will consider six possible intensive measures of author quality. Five of these have been proposed and used in the literature. They include the mean and median number of citations per paper, the number of citations of an author’s most maximally cited paper, the number of papers published per year, and a measure recently proposed by Hirsch. As a control of the statistical methods adopted, we also consider the results of binning authors alphabetically since an author’s citation record should provide us with no information regarding the author’s name.

Each of these measures has disadvantages. Since the average number of citations is based on a finite sample drawn from a power-law distribution, the addition or removal of a single highly cited paper can materially alter an author’s mean, cf.

Although it is thus potentially statistically unreliable, the mean is the most commonly used measure of author quality. This reservation applies with even greater force if m is the number of citations of an author’s single most highly cited paper. In addition, this measure cannot decrease with time and is not guaranteed to be intensive for a currently active scientist. Nevertheless, it is perfectly tenable to claim that the author of a single paper with 1000 citations is of greater value to science than the author of 10 papers with 100 citations each even though the latter is far less probable for power-law distributions. The maximally cited paper might provide better discrimination between authors of “high” and “highest” quality, and this measure merits consideration. Alternatively, one can measure excellence by the median number of citations of an author’s papers. In contrast to mean and maximum citations, the median is statistically robust. The median (or any other percentile) of N random draws on any normalized probability distribution is Gaussian distributed in the limit $N \to \infty$. While the statistical stability of the median (and percentiles) makes it well-suited for dealing with power laws, reservations can again be expressed. The democratic use of all data points tends to ignore the possibility that an author’s true merit lies in the most highly cited papers. Another widely used measure of scientific quality is the average number of papers published by an author per year. This would be a good measure if all papers were cited equally or if all papers were of equal scientific merit. The data make it clear that scientific papers are not cited equally, and few scientists hold the view that all published papers are of equal quality and importance. Roughly 50% of all papers in SPIRES are in fact cited less than 2 times including self-citation. Indeed, if all papers were of equal merit, citation analyses would provide a measure of industry rather than intrinsic quality!

Finally, Hirsch’s measure attempts to find a balance between productivity and quality and to avoid the heavy weight which power-law distributions place on a relatively small number of highly cited papers. As with other such attempts (e.g., the median), it can lead to anomalous measures at the high end of the scale. More seriously, Hirsch establishes an equality between incomparably small number of highly cited papers. As with other such attempts, Hirsch’s measure determines by the equality, $h = C(h)$, of two quantities with no evident logical connection. While it might be reasonable to assume that $h \sim C(h)^\kappa$, there is no reason why both κ and the constant of proportionality should be precisely 1.

We have binned the SPIRES authors and their citation records according to each of the six tentative measures, m, above. We have constructed the prior distribution, $p(\alpha)$, that an author is in author bin α and the conditional probability, $P(i|\alpha)$ that a paper by an author in bin α will fall in citation bin i. We now wish to calculate the probability, $P(\{n_i\}|\alpha)$, that an author in bin α will have a citation record with n_i papers in each citation bin. To do this, we assume that citations for the M papers written by a given author with n_i papers in each citation bin i are obtained from M independent random draws on the appropriate distribution, $P(i|\alpha)$. Thus,

$$P(\{n_i\}|\alpha) = M! \prod_i \frac{P(i|\alpha)^{n_i}}{(n_i)!}.$$ \hspace{1cm} (1)

We have already noted the absence of large-scale temporal variations in $P(i|\alpha)$ during an author’s scientific life. Other correlations could be present. For example, one particularly well-cited paper could lead to an increased probability of high citations for its immediate successor(s). While it is difficult to demonstrate the presence
or absence of such correlations, the results below provide a posteriori indications that such correlations, if present, are not overly important. We can invert the probability $P(\{n_i\}|\alpha)$ using Bayes’ Theorem to obtain

$$P(\alpha|\{n_i\}) = \frac{P(\{n_i\} | \alpha) p(\alpha)}{p(\{n_i\})} = \frac{p(\alpha) \prod_k P(k|\alpha)^{n_k}}{\sum_{\alpha'} p(\alpha') \prod_k P(k'|\alpha')^{n_k'}}.$$ \hspace{1cm} (2)

Note that the combinatoric factors cancel.

The quantity $P(\alpha|\{n_i\})$, which represents the probability that an author with citation record $\{n_i\}$ belongs in quality bin (i.e., decile) α, is of primary interest. While any given measure (e.g., the mean number of citations per paper) can be calculated immediately from an author’s publication record, the calculated values of $P(\alpha|\{n_i\})$ provide more detailed and reliable information. By exploiting differences between the various conditional probabilities, $P(\{n_i\}|\alpha)$, as a function of α, eq. (2) determines the appropriate decile value of m (or its most probable value) using all statistical information in the data. The large fluctuations which can be encountered in identifying authors by their mean citation rate or by their maximally cited paper are thereby materially reduced. Further, by providing us with values of $P(\alpha|\{n_i\})$ for all α, we have a statistically trustworthy gauge of whether the resulting uncertainties in the assigned value of m are sufficiently small for it to be a reliable measure of author quality.

In short, eq. (2) provides us with a measure of an author’s expected lifetime quality along with information which allows us to assess the reliability of this determination. Obviously, the confidence with which we can assign a value of m increases dramatically with the total number of published papers. As we shall see, it is also sensitive to the quality measure chosen. Measures of quality are of value only to the extent that they can be assigned to individual authors with high confidence. The methods described above allow us to determine this confidence for any choice of measure in a manner which is value-free and completely quantitative.

We now wish to explore the utility of each of the six measures introduced above. To do this, we use Eq. (2) to calculate the probabilities, $P(\alpha'|\{n_i^{\mu}\})$, that each author, μ, in SPIRES assigned to bin α by direct measurement, is predicted to lie in bin α'. We then construct the average probability, $P(\alpha'|\alpha)$, as the simple average of the $P(\alpha'|\{n_i^{\mu}\})$ over all authors μ in bin α. The results are shown “stacked” in Fig. 1 for the various measures of excellence considered. Here, the jth horizontal row in each frame shows the probabilities than an author initially assigned to decile α is predicted to be in decile α' by Eq. (2). This probability is proportional to the area of the corresponding squares. A perfect quality measure would place all weight in the diagonal entries of these plots. Weights should be centered about the diagonal for an accurate identification of author quality and the certainty of this identification grows as more weight accumulates in the diagonal boxes. Note that the assignment of a measure, e.g., the median citation rate, on the basis of Eq. (2) for any given author is likely to be more accurate than the value obtained by direct computation since the former is based on all information contained in the citation record.

All three measures shown in the bottom row of the figure perform well. The maximum measure tends to overestimate an author’s initial decile assignment. This is understandable since the production of a single paper with citations in excess of the values contained in bin α' necessarily implies that the probability that he will lie in this bin is 0. The fact that the probabilities for these bins shown in Fig. 1 are not strictly 0 is a consequence of the use of finite bin sizes. The figure also makes it clear the ‘first initial’ measure fails both with regard to accuracy and precision. The near constancy of $P(\alpha'|\alpha)$ seen in this panel is expected for any random binning of authors which ignores statistically natural groupings. The ‘publications per year’ measure also fails both with regard to accuracy and precision. The dominant role played by individual vertical columns and the fact that $P(\alpha'|\alpha)$ is approximately independent of α is characteristic of schemes which bin authors in a fashion that is systematic but inconsistent with genuine correlations in the system. In spite of a slight trend towards the diagonal, similar criticism can be made of Hirsch’s measure (normalized as described above). The median appears to be the most balanced of the measures considered.

There are a variety of ways to assign numerical uncertainties to the results shown in the figure. For the good...
measures in the bottom row, it is sensible to consider the average percentile assignment and its rms uncertainty. Using the median, we thus conclude that authors in the ninth bin lie in the 82 ± 8 percentile on average. Since such estimates convey little information about the “mis-measures” shown in the top row, it can be better to consider the entropy of these predictions defined as

$$S = - \sum_{\alpha, \alpha'} P(\alpha' | \alpha) \log_2 [P(\alpha' | \alpha)] p(\alpha) .$$ \hspace{1cm} (3)

This entropy has a minimum value of 0 when \(\alpha'\) is given uniquely as a function of \(\alpha\) to a maximum value of \(S_{\text{max}} = \log_2(10)\) when all \(P(\alpha | \alpha') = 1/10\). So defined, the entropy tells us the average number of bits required to determine \(\alpha'\) for a given \(\alpha\). Good measures correspond to small values of \(S/S_{\text{max}}\). The values of \(S/S_{\text{max}}\) are 0.998, 0.919, 0.855, 0.509, 0.489, and 0.583 for the measures (a)–(e), respectively.

It is clear from eq. (2) that the ability of a given measure to discriminate is greatest when the differences between the conditional probability distributions, \(P(i | \alpha)\), for different author bins \(\alpha\) are greatest. These differences can be quantified by measuring the “distance” between two such conditional distributions with the aid of the Kullback-Leibler (KL) divergence (also known as the relative entropy). The KL divergence between two discrete probability distributions, \(p\) and \(p'\), is defined as

$$\text{KL}[p, p'] = \sum_i p_i \log_2 \left(\frac{p_i}{p'_i} \right) .$$ \hspace{1cm} (4)

Calculation of the KL divergence for the conditional distributions \(P(i | \alpha)\) and \(P(i | \alpha')\) for the various quality measures considered confirms the conclusions drawn from Fig. 1 and from the values of \(S/S_{\text{max}}\). Publication rate and Hirsch's \(h\) (as well as alphabetization) fail as useful measures of author quality; mean, median and maximal citation rates are all successful and virtually equivalent measures.

Finally, we address the question of how many published papers are needed to make a reliable prediction of the lifetime quality measure for a given author. Here, we consider only results using the median citation rate as a measure. If this number is sufficiently small, analyses along the lines presented here can provide a practical tool of potential value for predicting long-term scientific accomplishment. To this end, we consider how \(P(\alpha | \{n_i\})\) scales with the total number of published papers, \(M\), for the most probable in bin \(\alpha\) with \(n_i = MP(i | \alpha)\). Using eq. (2), we obtain the general result that the probability of assigning an average author to the wrong bin vanishes exponentially as \(M \to \infty\). Given enough papers and a reliable measure, the correct author bin will ultimately dominate. To correctly assign the most probable to outer deciles 1, 2, 3 and 8, 9, 10 at the 90% confidence level requires respectively \(M = 10, 40, 50, 50, 50, \) and 30 papers.

All quality measures have difficulty in making correct assignments to deciles 4–7. This apparent difficulty is due to our decision to group authors by deciles. It can be understood by assuming that the distribution of intrinsic author quality has a maximum at some non-zero value. Such an assumption seems reasonable if we imagine that Nature provides a high-end cutoff and academic appointment procedures filter out the least able. For any such distribution, the probability density will be highest for authors in the vicinity of this maximum. The binning of authors by deciles or percentiles then invites us to make distinctions where no material quality difference exists. The results of Fig. 1 or calculations of the KL divergence remind us that we cannot do so. On the other hand, the probability that an author can be correctly assigned to one of these middle bins on the basis of 50 publications is high.

As emphasized in the introduction, there are two distinct questions which must be addressed in any attempt to use citation data as an indicator of author quality. The first is whether the measure chosen to characterize a given citation distribution or even the citation distribution itself truly reflects the qualities that we would like to probe. The second is whether a given measure is capable of discriminating between authors in a reliable fashion and, by extension, which of several measures discriminates best. We have shown that the use of Bayesian statistics makes it possible to answer this second question in a value-neutral and statistically compelling manner. We have thus shown that alphabetization, papers per year, and Hirsch’s measure fail to provide a faithful scalar measure of full citation records and cannot be regarded as useful measures of author quality. The situation is quite different for the mean, median and maximum citation measures. They all lead to reliable conclusions regarding an author’s citation record on the basis of ± 50 published papers, and it is possible to assign meaningful statistical uncertainties to the results. Further, the generally high level of discrimination found with these measures provides indirect support for our assumption that there are no additional correlations of material importance in the citation data, so that an author’s citation record can be regarded as obtained from a random draw on the appropriate conditional distribution, \(P(i | \alpha)\).

The difficulty encountered in discriminating between authors in the middle deciles suggests that intrinsic author ability is peaked about some non-zero value.

Given homogeneous subsets of data, the methods presented here also permit the meaningful comparison of scientists working in different fields with minimal value judgments. It seems fair, for example, to declare equality between a condensed matter experimentalist and a high energy theorist provided that they are in the same percentile of their respective peer groups. Similarly, it
is possible to combine probabilities in order to assign a quality level to authors with publications in several disjoint subfields. All that is required is knowledge of the conditional probabilities for the distribution of citations in each homogeneous subgroup. The fact that roughly 50 publications are sufficient to draw meaningful conclusions about author quality suggests that the present methods can provide information useful in the academic appointment process. In this regard, we note that there are strong indications that the initial publications of a given author are drawn (at random) on the same conditional distribution as his/her remaining papers [6]. It is clear, however, that it takes time for a paper to accumulate its full complement of citations. While this has not been taken into account here, present methods readily permit its inclusion. Subjecting citation data to more serious statistical analysis can suggest new and potentially interesting applications. For example, one practical hiring strategy would be commitment to the principle that no new appointment should knowingly lower the average (or median) quality of the department in question. Finally, we note that, when unable to measure that which they would like to maximize (e.g., quality), scientists are inclined to maximize what they know how to measure. The confidence with which it can be assigned may not be the only criterion for selecting a measure of scientific quality. However, it can and should be considered. The methods proposed here offer simple and reliable tools appropriate for addressing all of these issues.

[1] E. Garfield. Essays of an Information Scientist, volume 1-15. ISI Press, 1977-1993.
[2] J. E. Hirsch. An index to quantify an individual’s scientific output. Proceedings of the National Academy of the Sciences, 102:16569, 2005.
[3] ARC Linkage Project. Quantitative indicators for research assessment – a literature review. Technical report, The Australian National University, 2005. Available Online: http://repp.anu.edu.au/Literature%20Review3.pdf.
[4] Spires. http://www.slac.stanford.edu/spires/hep/. World Wide Web.
[5] S. Lehmann, B. E. Lautrup, and A. D. Jackson. Citation networks in high energy physics. Physical Review E, 68, 2003.
[6] S. Lehmann. Spires on the building of science. Master’s thesis, The Niels Bohr Institute, 2003. May be downloaded from www.imm.dtu.dk/∼slj/.
[7] Data and further details are available as supporting material.
[8] S. Lehmann, A. D. Jackson, and B. E. Lautrup. Life, death, and preferential attachment. Europhysics Letters, 69:298, 2005.
[9] M. E. J. Newman. Power laws, pareto distributions and zipf’s law. Contemporary Physics, 46:323, 2005.