L-PACKETS AND DEPTH FOR SL₂(K) WITH K A LOCAL FUNCTION FIELD OF CHARACTERISTIC 2

SERGIO MENDES AND ROGER PLYMEN

Abstract. Let \(G = \text{SL}_2(K) \) with \(K \) a local function field of characteristic 2. We review Artin-Schreier theory for the field \(K \), and show that this leads to a parametrization of certain \(L \)-packets in the smooth dual of \(G \). We relate this to a recent geometric conjecture. The \(L \)-packets in the principal series are parametrized by quadratic extensions, and the supercuspidal \(L \)-packets of cardinality 4 are parametrised by biquadratic extensions. Each supercuspidal packet of cardinality 4 is accompanied by a singleton packet for \(\text{SL}_1(D) \). We compute the depths of the irreducible constituents of all these \(L \)-packets for \(\text{SL}_2(K) \) and its inner form \(\text{SL}_1(D) \).

1. Introduction

The special linear group \(\text{SL}_2 \) has been a mainstay of representation theory for at least 45 years, see \cite{GGPS}. In that book, the authors show how the unitary irreducible representations of \(\text{SL}_2(\mathbb{R}) \) and \(\text{SL}_2(\mathbb{Q}_p) \) can be woven together in the context of automorphic forms. This comes about in the following way. The classical notion of a cusp form \(f \) in the upper half plane leads first to the concept of a cusp form on the adele group of \(\text{GL}_2 \) over \(\mathbb{Q} \), and thence to the idea of an automorphic cuspidal representation \(\pi_f \) of the adele group of \(\text{GL}_2 \). We recall that the adele group of \(\text{GL}_2 \) is the restricted product of the local groups \(\text{GL}_2(\mathbb{Q}_p) \) where \(p \) is a place of \(\mathbb{Q} \). If \(p \) is infinite then \(\mathbb{Q}_p \) is the real field \(\mathbb{R} \); if \(p \) is finite then \(\mathbb{Q}_p \) is the \(p \)-adic field. The unitary representation \(\pi_f \) may be expressed as \(\otimes \pi_p \) with one local representation for each local group \(\text{GL}_2(\mathbb{Q}_p) \). It is this way that the unitary representation theory of groups such as \(\text{GL}_2(\mathbb{Q}_p) \) enters into the modern theory of automorphic forms.

Let \(X \) be a smooth projective curve over \(\mathbb{F}_q \). Denote by \(F \) the field \(\mathbb{F}_q(X) \) of rational functions on \(X \). For any closed point \(x \) of \(X \) we denote by \(F_x \) the completion of \(F \) at \(x \) and by \(\mathfrak{o}_x \) its ring of integers. If we choose a local coordinate \(t_x \) at \(x \) (i.e., a rational function on \(X \) which vanishes at \(x \) to order one), then we obtain isomorphisms \(F_x \simeq \mathbb{F}_{q_x}(t_x) \) and \(\mathfrak{o}_x \simeq \mathbb{F}_{q_x}[[t_x]] \), where \(\mathbb{F}_{q_x} \) is the residue field of \(x \); in general, it is a finite extension of \(\mathbb{F}_q \) containing \(q_x = q^\deg(x) \) elements. Thus, we now have a local function field attached to each point of \(X \).

With all this in the background, it seems natural to us to study the representation theory of \(\text{SL}_2(K) \) with \(K \) a local function field. The case when \(K \) has characteristic 2 has many special features – and we focus on this case in this article. A local function field \(K \) of characteristic 2 is of the form \(K = \mathbb{F}_q((t)) \), the field of Laurent series with coefficients in \(\mathbb{F}_q \), with \(q = 2^f \). This example is particularly interesting because there are countably many quadratic extensions of \(\mathbb{F}_q((t)) \).

Date: February 11, 2022.

Key words and phrases. Representation theory, \(L \)-packets, depth.
Artin-Schreier theory is a branch of Galois theory, and more specifically is a positive characteristic analogue of Kummer theory, for Galois extensions of degree equal to the characteristic p. Artin and Schreier (1927) introduced Artin-Schreier theory for extensions of prime degree p, and Witt (1936) generalized it to extensions of prime power degree p^n. If K is a field of characteristic p, a prime number, any polynomial of the form

$$X^p - X + \alpha$$

for $\alpha \in K$, is called an Artin-Schreier polynomial. When α does not lie in the subset $\{y \in K \mid y = x^p - x \text{ for } x \in K\}$, this polynomial is irreducible in $K[X]$, and its splitting field over K is a cyclic extension of K of degree p. This follows since for any root β, the numbers $\beta + i$, for $1 \leq i \leq p$, form all the root – by Fermat’s little theorem – so the splitting field is $K(\beta)$. Conversely, any Galois extension of K of degree p equal to the characteristic of K is the splitting field of an Artin-Schreier polynomial. This can be proved using additive counterparts of the methods involved in Kummer theory, such as Hilbert’s theorem 90 and additive Galois cohomology. These extensions are called Artin-Schreier extensions.

For the moment, let F be a local nonarchimedean field with odd residual characteristic. The L-packets for $\text{SL}_2(F)$ are classified in the paper [LR] by Lansky-Raghuram. They comprise: the principal series L-packets $\xi_E = \{\pi_E^1, \pi_E^2\}$ where E/F is a quadratic extension; the unramified supercuspidal L-packet of cardinality 4; and the supercuspidal L-packets of cardinality 2.

We now revert to the case of a local function field K of characteristic 2. We consider $\text{SL}_2(K)$. Drawing on the accounts in [Da, Th1, Th2], we review Artin-Schreier theory, adapted to the local function field K, with special emphasis on the quadratic extensions of K.

The L-packets in the principal series of $\text{SL}_2(K)$ are parametrized by quadratic extensions, and the supercuspidal L-packets of cardinality 4 are parametrised by biquadratic extensions L/K. There are countably many such supercuspidal L-packets.

In this article, we do not consider supercuspidal L-packets of cardinality 2.

The concept of depth can be traced back to the concept of level of a character. Let χ be a non-trivial character of K^\times. The level of χ is the least integer $n \geq 0$ such that χ is trivial on the higher unit group U_K^{n+1}, see [BH, p.12]. The depth of a Langlands parameter ϕ is defined as follows. Let r be a real number, $r \geq 0$, let $\text{Gal}(K_s/K)^r$ be the r-th ramification subgroup of the absolute Galois group of K. Then the depth of ϕ is the smallest number $d(\phi) \geq 0$ such that ϕ is trivial on $\text{Gal}(K_s/K)^r$ for all $r > d(\phi)$.

The depth $d(\pi)$ of an irreducible \mathcal{G}-representation π was defined by Moy and Prasad [MolPr1, MolPr2] in terms of filtrations $P_{x,r}(r \in \mathbb{R}_{\geq 0})$ of the parahoric subgroups $P_x \subset \mathcal{G}$.

Let $\mathcal{G} = \text{SL}_2(K)$. Let $\text{Irr}(\mathcal{G})$ denote the smooth dual of \mathcal{G}. Thanks to a recent article [ABPS1], we have, for every Langlands parameter $\phi \in \Phi(\mathcal{G})$ with L-packet $\Pi_\phi(\mathcal{G}) \subset \text{Irr}(\mathcal{G})$

$$d(\phi) = d(\pi) \quad \text{for all } \pi \in \Pi_\phi(\mathcal{G}).$$

The equation (1) is a big help in the computation of the depth $d(\pi)$. To each biquadratic extension L/K, there is attached a Langlands parameter $\phi = \phi_{L/K}$, and an L-packet Π_ϕ of cardinality 4. The depth of the parameter $\phi_{L/K}$ depends on the extension L/K. More precisely, the numbers $d(\phi)$ depend on the breaks in the
upper ramification filtration of the Galois group
\[\text{Gal}(L/K) = \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}. \]
For certain extensions L/K the allowed depths can be any odd number $1, 3, 5, 7, \ldots$. For the other extensions L/K, the allowed depths are $3, 5, 7, 9, \ldots$. Accordingly, the depth of each irreducible supercuspidal representation π in the packet Π_ϕ is given by the formula
\[d(\pi) = 2n + 1 \]
where $n = 0, 1, 2, 3, \ldots$ or $1, 2, 3, 4, \ldots$ depending on L/K. Let D be a central division algebra of dimension 4 over K. The parameter ϕ is relevant for the inner form $\text{SL}_1(D)$, which admits singleton L-packets, and the depths are given by the formula (2).

This contrasts with the case of $\text{SL}_2(\mathbb{Q}_p)$ with $p > 2$. Here there is a unique bi-quadratic extension L/K, and a unique tamely ramified parameter $\phi : \text{Gal}(L/K) \to \text{SO}_3(\mathbb{R})$ of depth zero.

We move on to consider the geometric conjecture in [ABPS]. Let $\mathcal{B}(G)$ denote the Bernstein spectrum of G, let $s \in \mathcal{B}(G)$, and let T^s, W^s denote the complex torus, finite group, attached by Bernstein to s. For more details at this point, we refer the reader to [R]. The Bernstein decomposition provides us, inter alia, with the following data: a canonical disjoint union
\[\text{Irr}(G) = \bigsqcup \text{Irr}(G)^s \]
and, for each $s \in \mathcal{B}(G)$, a finite-to-one surjective map
\[\text{Irr}(G)^s \to T^s/W^s \]
on to the quotient variety T^s/W^s. The geometric conjecture in [ABPS] amounts to a refinement of these statements. The refinement comprises the assertion that we have a bijection
\[\text{Irr}(G)^s \simeq T^s//W^s \]
where $T^s//W^s$ is the extended quotient of the torus T^s by the finite group W^s. If the action of W^s on T^s is free, then the extended quotient is equal to the ordinary quotient T^s/W^s. If the action is not free, then the extended quotient is a finite disjoint union of quotient varieties, one of which is the ordinary quotient. The bijection (3) is subject to certain constraints, itemised in [ABPS].

In the case of SL_2, the torus T^s is of dimension 1, and the finite group W^s is either 1 or $\mathbb{Z}/2\mathbb{Z}$. So, in this context, the content of the conjecture is rather modest: but a proof is required, and such a proof is duly given in §7.

We thank Anne-Marie Aubert for her careful reading of the manuscript, and for alerting us to the article [LR]. Thanks also to Chandan Dalawat for a valuable exchange of emails and for the references [Da2, Da].

2. Artin-Schreier theory

Let K be a local field with positive characteristic p, containing the n-th roots of unity ζ_n. The cyclic extensions of K whose degree n is coprime with p are described by Kummer theory. It is well known that any cyclic extension L/K of degree n, $(n, p) = 1$, is generated by a root α of an irreducible polynomial $x^n - a \in K[x]$. We fix an algebraic closure \overline{K} of K and a separable closure K^s of K in \overline{K}. If $\alpha \in K^s$
is a root of $x^n - a$ then $K(\alpha)/K$ is a cyclic extension of degree n and is called a Kummer extension of K.

Artin-Schreier theory aims to describe cyclic extensions of degree equal to or divisible by $c h(K) = p$. It is therefore an analogue of Kummer theory, where the role of the polynomial $x^n - a$ is played by $x^n - x - a$. Essentially, every cyclic extension of K with degree $p = c h(K)$ is generated by a root α of $x^p - x - a \in K[x]$.

Let φ denote the Artin-Schreier endomorphism of the additive group K^\times:

$$\varphi: K^\times \to K^\times, \quad x \mapsto x^p - x.$$

Given $a \in K$ denote by $K((\varphi^{-1}(a))$ the extension $K(\alpha)$, where $\varphi(\alpha) = a$ and $\alpha \in K^\times$. We have the following characterization of finite cyclic Artin-Schreier extensions of degree p:

Theorem 2.1.
(i) Given $a \in K$, either $\varphi(x) - a \in K[x]$ has one root in K in which case it has all the p roots are in K, or is irreducible.
(ii) If $\varphi(x) - a \in K[x]$ is irreducible then $K((\varphi^{-1}(a))/K$ is a cyclic extension of degree p, with $\varphi^{-1}(a) \subset K^\times$.
(iii) If L/K be a finite cyclic extension of degree p, then $L = K((\varphi^{-1}(a))$, for some $a \in K$.

(See [Th1] p.34 for more details.)

We fix now some notation. K is a local field with characteristic $p > 1$ with finite residue field k. The field of constants $k = \mathbb{F}_q$ is a finite extension of \mathbb{F}_p, with degree $[k : \mathbb{F}_p] = f$ and $q = p^f$.

Let \mathfrak{o} be the ring of integers in K and denote by $\mathfrak{p} \subset \mathfrak{o}$ the (unique) maximal ideal of \mathfrak{o}. This ideal is principal and any generator of \mathfrak{p} is called a uniformizer. A choice of uniformizer $\varpi \in \mathfrak{o}$ determines isomorphisms $K \cong \mathbb{F}_q((\varpi))$, $\mathfrak{o} \cong \mathbb{F}_q[[\varpi]]$ and $\mathfrak{p} = \varpi \mathfrak{o} \cong \varpi \mathbb{F}_q[[\varpi]]$.

A normalized valuation on K will be denoted by ν, so that $\nu(\varpi) = 1$ and $\nu(K) = \mathbb{Z}$. The group of units is denoted by \mathfrak{o}^\times.

2.1. The Artin-Schreier symbol

Let L/K be a finite Galois extension. Let $N_{L/K}$ be the norm map and denote by $\text{Gal}(L/K)^{ab}$ the abelianization of $\text{Gal}(L/K)$. The reciprocity map is a group isomorphism

$$K^\times / N_{L/K} L^\times \cong \text{Gal}(L/K)^{ab}.$$

The Artin symbol is obtained by composing the reciprocity map with the canonical morphism $K^\times \to K^\times / N_{L/K} L^\times$

$$b \in K^\times \mapsto (b, L/K) \in \text{Gal}(L/K)^{ab}.$$

From the Artin symbol we obtain a pairing

$$K \times K^\times \to \mathbb{Z}/p\mathbb{Z}, (a, b) \mapsto (b, L/K)(\alpha) - \alpha,$$

where $\varphi(\alpha) = a$, $\alpha \in K^\times$ and $L = K(\alpha)$.

Definition 2.2. Given $a \in K$ and $b \in K^\times$, the Artin-Schreier symbol is defined by

$$[a, b] = (b, L/K)(\alpha) - \alpha.$$
The Artin-Schreier symbol is a bilinear map satisfying the following properties, see \[Ne\] p.341:

\[
\begin{align*}
(7) \quad [a_1 + a_2, b] &= [a_1, b] + [a_2, b]; \\
(8) \quad [a, b_1 b_2] &= [a, b_1] + [a, b_2]; \\
(9) \quad [a, b] &= 0, \forall a \in K \iff b \in N_{L/K} L^\times, L = K(\alpha) \text{ and } \varphi(\alpha) = a; \\
(10) \quad [a, b] &= 0, \forall b \in K^\times \iff a \in \varphi(K).
\end{align*}
\]

2.2. The groups $K/\varphi(K)$ and $K^\times/K^{\times p}$. In this section we recall some properties of the groups $K/\varphi(K)$ and $K^\times/K^{\times p}$ and use them to redefine the pairing \[\mathcal{F}\]. Dalawat \[Da2\, Da\] interprets $K/\varphi(K)$ and $K^\times/K^{\times p}$ as \mathbb{F}_p-spaces. This interpretation will be particularly useful in §4.

Consider the additive group K. By \[Da, Proposition 11\], the \mathbb{F}_p-space $K/\varphi(K)$ is countably infinite. Hence, $K/\varphi(K)$ is infinite as a group.

Proposition 2.3. $K/\varphi(K)$ is a discrete abelian torsion group.

Proof. The ring of integers decomposes as a (direct) sum

$$\mathfrak{o} = \mathbb{F}_q + \mathfrak{p}$$

and we have

$$\varphi(\mathfrak{o}) = \varphi(\mathbb{F}_q) + \varphi(\mathfrak{p}).$$

The restriction $\varphi : \mathfrak{p} \to \mathfrak{p}$ is an isomorphism, see \[Da\, Lemma 8\]. Hence,

$$\varphi(\mathfrak{o}) = \varphi(\mathbb{F}_q) + \mathfrak{p}$$

and $\mathfrak{p} \subset \varphi(K)$. It follows that $\varphi(K)$ is an open subgroup of K and $K/\varphi(K)$ is discrete. Since $\varphi(K)$ is annihilated by p, $K/\varphi(K)$ is a torsion group. \square

Now we concentrate on the multiplicative group K^\times. For any $n > 0$, let U_n be the kernel of the reduction map from \mathfrak{o}^\times to $(\mathfrak{o}/\mathfrak{p}^n)^\times$. In particular, $U_1 = \ker(\mathfrak{o}^\times \to k^\times)$. The U_n are \mathbb{Z}_p-modules, because they are commutative pro-p-groups. By \[Da2, Proposition 20\], the \mathbb{Z}_p-module U_1 is not finitely generated. As a consequence, $K^\times/K^{\times p}$ is infinite, see \[Da2, Corollary 21\]. The next result gives a characterization of the topological group $K^\times/K^{\times p}$.

Proposition 2.4. $K^\times/K^{\times p}$ is a profinite abelian p-torsion group.

Proof. There is a canonical isomorphism $K^\times \cong \mathbb{Z} \times \mathfrak{o}^\times$. The group of units is a direct product $\mathfrak{o}^\times \cong \mathbb{F}_q^\times \times U_1$, with $q = p^f$. By \[Iw, p.25\], the group U_1 is a direct product of countable many copies of the ring of p-adic integers

$$U_1 \cong \mathbb{Z}_p \times \mathbb{Z}_p \times \mathbb{Z}_p \times \ldots = \prod_{N} \mathbb{Z}_p.$$

Give \mathbb{Z} the discrete topology and \mathbb{Z}_p the p-adic topology. Then, for the product topology, $K^\times = \mathbb{Z} \times \mathbb{Z}/(q-1)\mathbb{Z} \times \prod_{N} \mathbb{Z}_p$ is a topological group, locally compact, Hausdorff and totally disconnected.

Now, $K^{\times p}$ decomposes as a product of countable many components

$$K^{\times p} \cong p\mathbb{Z} \times \mathbb{Z}/(q-1)\mathbb{Z} \times p\mathbb{Z}_p \times p\mathbb{Z}_p \times \ldots$$
\[= p\mathbb{Z} \times \mathbb{Z}/(q-1)\mathbb{Z} \times \prod_{n} p\mathbb{Z}_p.\]

Note that \(p\mathbb{Z}/(q-1)\mathbb{Z} = \mathbb{Z}/(q-1)\mathbb{Z}\), since \(p\) and \(q-1\) are coprime. Denote by \(z = \prod_n z_n\) an element of \(\prod_{n} \mathbb{Z}_p\), where \(z_n = \sum_{i=0}^{\infty} a_{i,n} p^i \in \mathbb{Z}_p\), for every \(n\).

The map \(\varphi : \mathbb{Z} \times \mathbb{Z}/(q-1)\mathbb{Z} \times \prod_{n} \mathbb{Z}_p \to \mathbb{Z}/p\mathbb{Z} \times \prod_{n} \mathbb{Z}/p\mathbb{Z}\)

defined by \((x, y, z) \mapsto (x \mod p, \prod_n pr_0(z_n))\)

where \(pr_0(z_n) = a_{0,n}\) is the projection, is clearly a group homomorphism.

Now, \(\mathbb{Z}/p\mathbb{Z} \times \prod_{n} \mathbb{Z}/p\mathbb{Z} = \prod_{n=0}^{\infty} \mathbb{Z}/p\mathbb{Z}\) is a topological group for the product topology, where each component \(\mathbb{Z}/p\mathbb{Z}\) has the discrete topology. It is compact, Hausdorff and totally disconnected. Therefore, \(\prod_{n=0}^{\infty} \mathbb{Z}/p\mathbb{Z}\) is a profinite group.

Since \(\text{ker}\varphi = p\mathbb{Z} \times \mathbb{Z}/(q-1)\mathbb{Z} \times \prod_{n} p\mathbb{Z}_p\),

it follows that there is an isomorphism of topological groups

\[K^\times/K^{\times p} \cong \prod_{n=0}^{\infty} \mathbb{Z}/p\mathbb{Z},\]

where \(K^\times/K^{\times p}\) is given the quotient topology. Therefore, \(K^\times/K^{\times p}\) is profinite.

From propositions 2.3 and 2.4, \(K/\wp(K)\) is a discrete abelian group and \(K/K^{\times p}\) is an abelian profinite group, both annihilated by \(p = ch(K)\). Therefore, Pontryagin duality coincides with \(\text{Hom}(\cdot, \mathbb{Z}/p\mathbb{Z})\) on both of these groups, see [Th2]. The pairing \(\langle \cdot, \cdot \rangle\) restricts to a pairing

\[(11) \quad [\cdot, \cdot] : K/\wp(K) \times K^\times/K^{\times p} \to \mathbb{Z}/p\mathbb{Z},\]

which we refer from now on to the Artin-Schreier pairing. It follows from \([9]\) and \([10]\), that the pairing is nondegenerate (see also [Th2 Proposition 3.1]). The next result shows that the pairing is perfect.

Proposition 2.5. The Artin-Schreier symbol induces isomorphisms of topological groups

\[K^\times/K^{\times p} \cong \text{Hom}(K/\wp(K), \mathbb{Z}/p\mathbb{Z}), bK^{\times p} \mapsto (a + \wp(K) \mapsto [a, b])\]

and

\[K/\wp(K) \cong \text{Hom}(K^\times/K^{\times p}, \mathbb{Z}/p\mathbb{Z}), a + \wp(K) \mapsto (bK^{\times p} \mapsto [a, b])\]

Proof. The result follows by taking \(n = 1\) in Proposition 5.1 of [Th2], and from the fact that Pontryagin duality for the groups \(K/\wp(K)\) and \(K^\times/K^{\times p}\) coincide with \(\text{Hom}(\cdot, \mathbb{Z}/p\mathbb{Z})\) duality. Hence, there is an isomorphism of topological groups between each such group and its bidual. \(\square\)
Let B be a subgroup of the additive group of K with finite index such that $\varphi(K) \subseteq B \subseteq K$. The composite of two finite abelian Galois extensions of exponent p is again a finite abelian Galois extension of exponent p. Therefore, the composite
\[
K_B = K(\varphi^{-1}(B)) = \prod_{a \in B} K(\varphi^{-1}(a))
\]
is a finite abelian Galois extension of exponent p. On the other hand, if L/K is a finite abelian Galois extension of exponent p, then $L = K_B$ for some subgroup $\varphi(K) \subseteq B \subseteq K$ with finite index.

All such extensions lie in the maximal abelian extension of exponent p, which we denote by $K_p = K(\varphi^{-1}(K))$. The extension K_p/K is infinite and Galois. The corresponding Galois group $G_p = Gal(K_p/K)$ is an infinite profinite group and may be identified, under class field theory, with K^\times/K^{x_p}, see [Th2, Proposition 5.1]. The case $ch(K) = 2$ leads to $G_2 \cong K^\times/K^{x^2}$ and will play a fundamental role in the sequel.

3. Quadratic characters

From now on we take K to be a local function field with $ch(K) = 2$. Therefore, K is of the form $\mathbb{F}_q((\varpi))$ with $q = 2^f$.

When $K = \mathbb{F}_q((\varpi))$, we have, according to [Iw, p.25],
\[
U_1 \cong \mathbb{Z}_2 \times \mathbb{Z}_2 \times \mathbb{Z}_2 \times \ldots = \prod_{N} \mathbb{Z}_2
\]
with countably infinite many copies of \mathbb{Z}_2, the ring of 2-adic integers.

Artin-Schreier theory provides a way to parametrize all the quadratic extensions of $K = \mathbb{F}_q((\varpi))$. By proposition 2.4, there is a bijection between the set of quadratic extensions of $\mathbb{F}_q((\varpi))$ and the group
\[
\mathbb{F}_q((\varpi))^\times/\mathbb{F}_q((\varpi))^\times^2 \cong \prod_{N} \mathbb{Z}/2\mathbb{Z} = G_2
\]
where G_2 is the Galois group of the maximal abelian extension of exponent 2. Since G_2 is an infinite profinite group, there are countably many quadratic extensions.

To each quadratic extension $K(\alpha)/K$, with $\alpha^2 - \alpha = a$, we associate the Artin-Schreier symbol
\[
[a, \cdot] : K^\times/K^{x^2} \rightarrow \mathbb{Z}/2\mathbb{Z}.
\]

Now, let φ denote the isomorphism $\mathbb{Z}/2\mathbb{Z} \cong \mu_2(\mathbb{C}) = \{\pm 1\}$ with the group of roots of unity. We obtain, by composing with the Artin-Schreier symbol, a unique multiplicative quadratic character
\[
(12) \quad \chi_a : K^\times \rightarrow \mathbb{C}^\times, \quad \chi_a = \varphi([a, \cdot])
\]

Proposition 2.5 shows that every quadratic character of $\mathbb{F}_q((\varpi))^\times$ arises in this way.

Example 3.1. The unramified quadratic extension of K is $K(\varphi^{-1}(\varpi))$, see [Da] proposition 12. According to Dalawat, the group $K/\varphi(K)$ may be regarded as an \mathbb{F}_2-space and the image of ϖ under the canonical surjection $K \rightarrow K/\varphi(K)$ is an \mathbb{F}_2-line, i.e., isomorphic to \mathbb{F}_2. Since $\varphi_q : p \rightarrow p$ is an isomorphism, the image of p in $K/\varphi(K)$ is $\{0\}$, see lemma 8 in [Da]. Now, choose any $a_0 \in \varpi \setminus p$ such that the image of a_0 in ϖ/p has nonzero trace in \mathbb{F}_2, see [Da] Proposition 9. The
quadratic character \(\chi_{a_0} = \varphi([a_0, \cdot]) \) associated with \(K(\varphi^{-1}(\mathfrak{p})) \) via class field theory is precisely the unramified character \((n \mapsto (-1)^n) \) from above. Note that any other choice \(b_0 \in \mathfrak{o}\setminus\mathfrak{p} \), with \(a_0 \neq b_0 \), gives the same unique unramified character, since there is only one nontrivial coset \(a_0 + \varphi(K) \) for \(a_0 \in \mathfrak{o}\setminus\mathfrak{p} \).

Let \(G \) denote \(\text{SL}_2(K) \), let \(B \) be the standard Borel subgroup of \(G \), let \(T \) be the diagonal subgroup of \(G \). Then, \(\chi \) inflates to a character of \(B \). Denote by \(\pi(\chi) \) the (unitarily) induced representation \(\text{Ind}^G_B(\chi) \). The representation space \(V(\chi) \) of \(\pi(\chi) \) consists of locally constant complex valued functions \(f : G \rightarrow \mathbb{C} \) such that, for every \(a \in K^\times \), \(b \in K \) and \(g \in G \), we have

\[
 f\left(\begin{pmatrix} a & b \\ 0 & a^{-1} \end{pmatrix} \right) = |a| \chi(a) f(g)
\]

The action of \(G \) on \(V(\chi) \) is by right translation. The representations \((\pi(\chi), V(\chi)) \) are called (unitary) principal series of \(G = \text{SL}_2(K) \).

Let \(\chi \) be a quadratic character of \(K^\times \). The reducibility of the induced representation \(\text{Ind}^G_B(\chi) \) is well known in zero characteristic. Casselman proved that the same result holds in characteristic 2 and any other positive characteristic \(p \).

Theorem 3.2. [Ca, Ca2] The representation \(\pi(\chi) = \text{Ind}^G_B(\chi) \) is reducible if, and only if, \(\chi \) is either \(|\cdot|^\pm \) or a nontrivial quadratic character of \(K^\times \).

For a proof see [Ca, Theorems 1.7, 1.9] and [Ca2] §9.

From now on, \(\chi \) will be a quadratic character. It is a classical result that the unitary principal series for \(\text{GL}_2 \) are irreducible. For a representation of \(\text{GL}_2 \) parabolically induced by \(1 \otimes \chi \), Clifford theory tells us that the dimension of the intertwining algebra of its restriction to \(\text{SL}_2 \) is 2. This is exactly the induced representation of \(\text{SL}_2 \) by \(\chi \):

\[
 \text{Ind}^{	ext{GL}_2(K)}_B(1 \otimes \chi)|_{\text{SL}_2(K)} \cong \text{Ind}^{	ext{SL}_2(K)}_B(\chi)
\]

where \(B \) denotes the standard Borel subgroup of \(\text{GL}_2(K) \). This leads to reducibility of the induced representation \(\text{Ind}^G_B(\chi) \) into two inequivalent constituents. Thanks to M. Tadic for helpful comments at this point.

The two irreducible constituents

\[
 (13) \quad \pi(\chi) = \text{Ind}^G_B(\chi) = \pi(\chi)^+ \oplus \pi(\chi)^-
\]

define an \(L \)-packet \(\{ \pi(\chi)^+, \pi(\chi)^- \} \) for \(\text{SL}_2 \).

4. Biquadratic extensions of \(\mathbb{F}_q((\varpi)) \)

Quadratic extensions \(L/K \) are obtained by adjoining an \(\mathbb{F}_2 \)-line \(D \subset K/\varphi(K) \). Therefore, \(L = K(\varphi^{-1}(D)) = K(\alpha) \) where \(D = \text{span}\{a + \varphi(K)\} \), with \(\alpha^2 - \alpha = a \).

In particular, if \(a_0 \in \mathfrak{o}\setminus\mathfrak{p} \) such that the image of \(a_0 \) in \(\mathfrak{p}/\mathfrak{p} \) has nonzero trace in \(\mathbb{F}_2 \), the \(\mathbb{F}_2 \)-line \(V_0 = \text{span}\{a_0 + \varphi(K)\} \) contains all the cosets \(a_i + \varphi(K) \) where \(a_i \) is an integer and so \(K(\varphi^{-1}(a)) = K(\varphi^{-1}(V_0)) = K(a_0) \) where \(\alpha^2 - \alpha = a_0 \) gives the unramified quadratic extension.

Biquadratic extensions are computed the same way, by considering \(\mathbb{F}_2 \)-planes \(W = \text{span}\{a + \varphi(K), b + \varphi(K)\} \subset K/\varphi(K) \). Therefore, if \(a + \varphi(K) \) and \(b + \varphi(K) \) are \(\mathbb{F}_2 \)-linearly independent then \(K(\varphi^{-1}(W)) := K(\alpha, \beta) \) is biquadratic, where \(\alpha^2 - \alpha = a \) and \(\beta^2 - \beta = b \), \(\alpha, \beta \in K^\times \). Therefore, \(K(\alpha, \beta)/K \) is biquadratic if \(b - a \not\in \varphi(K) \).
A biquadratic extension containing the line V_0 is of the form $K(\alpha, \beta)/K$. There are countably many quadratic extensions L_0/K containing the unramified quadratic extension. They have ramification index $e(L_0/K) = 2$. And there are countably many biquadratic extensions L/K which do not contain the unramified quadratic extension. They have ramification index $e(L/K) = 4$.

So, there is a plentiful supply of biquadratic extensions $K(\alpha, \beta)/K$.

4.1. **Ramification.** The space $K/\wp(K)$ comes with a filtration

\begin{equation}
0 < V_0 < V_1 = V_2 < V_3 = V_4 < \ldots \subset K/\wp(K)
\end{equation}

where V_0 is the image of \mathfrak{o}_K and $V_i \ (i > 0)$ is the image of p^{-i} under the canonical surjection $K \to K/\wp(K)$. For $K = \mathbb{F}_q((\varpi))$ and $i > 0$, each inclusion $V_{2i} \subset V_{2i+1}$ is a sub-\mathbb{F}_2-space of codimension f. The \mathbb{F}_2-dimension of V_n is

\begin{equation}
dim_{\mathbb{F}_2} V_n = 1 + \lceil n/2 \rceil f,
\end{equation}

for every $n \in \mathbb{N}$, where $\lceil x \rceil$ is the smallest integer bigger than x.

Let L/K denote a Galois extension with Galois group G. For each $i \geq -1$ we define the ith-ramification subgroup of G (in the lower numbering) to be:

\[G_i = \{ \sigma \in G : \sigma(x) - x \in p_L^{i+1}, \forall x \in \mathfrak{o}_L \}. \]

An integer t is a break for the filtration $\{G_i\}_{i \geq -1}$ if $G_t \neq G_{t+1}$. The study of ramification groups $\{G_i\}_{i \geq -1}$ is equivalent to the study of breaks of the filtration.

There is another decreasing filtration with upper numbering $\{G^i\}_{i \geq -1}$ and defined by the Hasse-Herbrand function $\psi = \psi_{L/K}$:

\[G^u = G_{\psi(u)}. \]

In particular, $G^{-1} = G_{-1} = G$ and $G^0 = G_0$, since $\psi(0) = 0$.

Let $G_2 = Gal(K_2/K)$ be the Galois group of the maximal abelian extension of exponent 2, $K_2 = K(\wp^{-1}(K))$. Since $G_2 \cong K^x/K_{x2}$ (proposition 24), the pairing $K^x/K^x2 \times K/\wp(K) \to \mathbb{Z}/2\mathbb{Z}$ from (11) coincides with the pairing $G_2 \times K/\wp(K) \to \mathbb{Z}/2\mathbb{Z}$.

The profinite group G_2 comes equipped with a ramification filtration $(G^2_2)_{u \geq -1}$ in the upper numbering, see [Da, p.409]. For $u \geq 0$, we have an orthogonal relation [Da, Proposition 17]

\begin{equation}
(G^2_2)^\perp = p^{-|u|+1} \cdot V_{|u|-1}
\end{equation}

under the pairing $G_2 \times K/\wp(K) \to \mathbb{Z}/2\mathbb{Z}$.

Since the upper filtration is more suitable for quotients, we will compute the upper breaks. By using the Hasse-Herbrand function it is then possible to compute the lower breaks in order to obtain the lower ramification filtration.

According to [Da, Proposition 17], the positive breaks in the filtration $(G^v)_v$ occur precisely at integers prime to p. So, for $c(h(K)) = 2$, the positive breaks will occur at odd integers. The lower numbering breaks are also integers. If G is cyclic of prime order, then there is a unique break for any decreasing filtration $(G^v)_v$ (see [Da], Proposition 14). In general, the number of breaks depends on the possible filtration of the Galois group.
Given a plane \(W \subset K/\wp(K) \), the filtration \((V_i)\) on \(K/\wp(K) \) induces a filtration \((W_i)\) on \(W \), where \(W_i = W \cap V_i \). There are three possibilities for the filtration breaks on a plane and we will consider each case individually.

Case 1: \(W \) contains the line \(V_0 \), i.e. \(L_0 = K(\wp^{-1}(W)) \) contains the unramified quadratic extension \(K(\wp^{-1}(V_0)) = K(\alpha_0) \) of \(K \). The extension has residue degree \(f(L_0/K) = 2 \) and ramification index \(e(L_0/K) = 2 \). In this case, there is an integer \(t > 0 \), necessarily odd, such that the filtration \((W_i)\) looks like

\[
0 \subset W_0 = W_{t-1} \subset W_t = W
\]

By the orthogonality relation (16), the upper ramification filtration on \(G = Gal(L_0/K) \) looks like

\[
\{1\} = \ldots = G^{t+1} \subset G^t = \ldots = G^0 \subset G^{-1} = G
\]

Therefore, the upper ramification breaks occur at \(-1\) and \(t \).

The number of such \(W \) is equal to the number of planes in \(V_t \) containing the line \(V_0 \) but not contained in the subspace \(V_{t-1} \). This number can be computed and equals the number of biquadratic extensions of \(K \) containing the unramified quadratic extensions and with a pair of upper ramification breaks \((-1, t)\), \(t > 0 \) and odd. Here is an example.

Example 4.1. The number of biquadratic extensions containing the unramified quadratic extension and with a pair of upper ramification breaks \((-1, 1)\) is equal to the number of planes in an \(1 + f \)-dimensional \(\mathbb{F}_2 \)-space, containing the line \(V_0 \). There are precisely

\[
1 + 2 + 2^2 + \ldots + 2^{f-1} = \frac{1 - 2^f}{1 - 2} = q - 1
\]

of such biquadratic extensions.

Case 2.1: \(W \) does not contain the line \(V_0 \) and the induced filtration on the plane \(W \) looks like

\[
0 = W_{t-1} \subset W_t = W
\]

for some integer \(t \), necessarily odd.

The number of such \(W \) is equal to the number of planes in \(V_t \) whose intersection with \(V_{t-1} \) is \(\{0\} \). Note that, there are no such planes when \(f = 1 \). So, for \(K = \mathbb{F}_2((\epsilon)) \), case 2.1 does not occur.

Suppose \(f > 1 \). By the orthogonality relation, the upper ramification ramification filtration on \(G = Gal(L/K) \) looks like

\[
\{1\} = \ldots = G^{t+1} \subset G^t = \ldots = G^{-1} = G
\]

Therefore, there is a single upper ramification break occurring at \(t > 0 \) and is necessarily odd.

For \(f = 1 \) there is no such biquadratic extension. For \(f > 1 \), the number of these biquadratic extensions equals the number of planes \(W \) contained in an \(\mathbb{F}_2 \)-space of dimension \(1 + f \), \(t = 2i - 1 \), which are transverse to a given codimension-\(f \) \(\mathbb{F}_2 \)-space.

Case 2.2: \(W \) does not contain the line \(V_0 \) and the induced filtration on the plane \(W \) looks like

\[
0 = W_{t_1-1} \subset W_{t_1} = W_{t_2-1} \subset W_{t_2} = W
\]
for some integers \(t_1 \) and \(t_2 \), necessarily odd, with \(0 < t_1 < t_2 \).

The orthogonality relation for this case implies that the upper ramification filtration on \(G = \text{Gal}(L/K) \) looks like
\[
\{1\} = \ldots = G^{t_2+1} \subset G^{t_2} = \ldots = G^{t_1+1} \subset G^{t_1} = \ldots = G
\]
The upper ramification breaks occur at odd integers \(t_1 \) and \(t_2 \).

There is only a finite number of such biquadratic extensions, for a given pair of upper breaks \((t_1, t_2)\).

5. Langlands parameter

We have the following canonical homomorphism:
\[
W_K \rightarrow W_K^{ab} \simeq K^\times \rightarrow K^\times/K^{\times 2}.
\]
According to §2, we also have
\[
K^\times/K^{\times 2} \simeq \prod \mathbb{Z}/2\mathbb{Z}
\]
the product over countably many copies of \(\mathbb{Z}/2\mathbb{Z} \). Using the countable axiom of choice, we choose two copies of \(\mathbb{Z}/2\mathbb{Z} \). This creates a homomorphism
\[
W_K \rightarrow \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}.
\]
There are countably many such homomorphisms.

Following [We], denote by \(\alpha, \beta, \gamma \) the images in \(\text{PSL}_2(\mathbb{C}) \) of the elements
\[
z_\alpha = \begin{pmatrix} i & 0 \\ 0 & -i \end{pmatrix}, \quad z_\beta = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}, \quad z_\gamma = \begin{pmatrix} 0 & i \\ i & 0 \end{pmatrix},
\]
in \(\text{SL}_2(\mathbb{C}) \).

Note that \(z_\alpha, z_\beta, z_\gamma \in \text{SU}_2(\mathbb{C}) \) so that \(\alpha, \beta, \gamma \in \text{PSU}_2(\mathbb{C}) = \text{SO}_3(\mathbb{R}) \).

Denote by \(J \) the group generated by \(\alpha, \beta, \gamma \):
\[
J := \{ \epsilon, \alpha, \beta, \gamma \} \simeq \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}.
\]
The group \(J \) is unique up to conjugacy in \(G = \text{PSL}_2(\mathbb{C}) \).

The pre-image of \(J \) in \(\text{SL}_2(\mathbb{C}) \) is the group \(\{ \pm 1, \pm z_\alpha, \pm z_\beta, \pm z_\gamma \} \) and is isomorphic to the group \(\mathbb{U}_8 \) of unit quaternions \(\{ \pm 1, \pm i, \pm j, \pm k \} \).

The centralizer and normalizer of \(J \) are given by
\[
C_G(J) = J, \quad N_G(J) = O
\]
where \(O \simeq S_4 \) the symmetric group on 4 letters. The quotient \(O/J \simeq \text{GL}_2(\mathbb{Z}/2) \) is the full automorphism group of \(J \).

Each biquadratic extension \(L/K \) determines a Langlands parameter
\[
\phi : \text{Gal}(L/K) \rightarrow \text{SO}_3(\mathbb{R}) \subset \text{SO}_3(\mathbb{C})
\]
Define
\[
S_\phi = C_{\text{PSL}_2(\mathbb{C})}(\text{im } \phi)
\]
Then we have \(S_\phi = J \), since \(C_G(J) = J \), and whose conjugacy class depends only on \(L \), since \(O/J = \text{Aut}(J) \).

Define the new group
\[
S_\phi = C_{\text{SL}_2(\mathbb{C})}(\text{im } \phi)
\]
To align with the notation in [ABPS2], replace $\phi^\#$ in [ABPS] by ϕ in the present article. We have the short exact sequence

$$1 \to Z_\phi \to S_\phi \to S_\phi \to 1$$

with $Z_\phi = \mathbb{Z}/2\mathbb{Z}$.

Let D be a central division algebra of dimension 4 over K, and let Nrd denote the reduced norm on D^\times. Define

$$\text{SL}_1(D) = \{x \in D^\times : \text{Nrd}(x) = 1\}.$$

Then $\text{SL}_1(D)$ is an inner form of $\text{SL}_2(K)$. In the local Langlands correspondence [ABPS], the L-parameter ϕ is enhanced by elements $\rho \in \text{Irr}(S_\phi)$. Now the group $S_\phi \simeq U_8$ admits four characters $\rho_1, \rho_2, \rho_3, \rho_4$ and one irreducible representation ρ_0 of degree 2.

The parameter ϕ creates a big packet with five elements, which are allocated to $\text{SL}_2(K)$ or $\text{SL}_1(D)$ according to central characters. So ϕ assigns an L-packet Π_ϕ to $\text{SL}_2(K)$ with 4 elements, and a singleton packet to the inner form $\text{SL}_1(D)$. None of these packets contains the Steinberg representation of $\text{SL}_2(K)$ and so each Π_ϕ is a supercuspidal L-packet with 4 elements.

To be explicit: ϕ assigns to $\text{SL}_2(K)$ the supercuspidal packet

$$\{\pi(\phi, \rho_1), \pi(\phi, \rho_2), \pi(\phi, \rho_3), \pi(\phi, \rho_4)\}$$

and to $\text{SL}_1(D)$ the singleton packet

$$\{\pi(\phi, \rho_0)\}$$

and this phenomenon occurs countably many times.

Each supercuspidal packet of four elements is the JL-transfer of the singleton packet, in the following sense: the irreducible supercuspidal representation θ of $\text{GL}_2(K)$ which yields the 4-packet upon restriction to $\text{SL}_2(K)$ is the image in the JL-correspondence of the irreducible smooth representation ψ of $\text{GL}_1(D)$ which yields two copies of $\pi(\phi, \rho_0)$ upon restriction to $\text{SL}_1(D)$:

$$\theta = \text{JL}(\psi).$$

Each parameter $\phi : W_K \to \text{PGL}_2(\mathbb{C})$ lifts to a Galois representation

$$\phi : W_K \to \text{GL}_2(\mathbb{C}).$$

This representation is triply imprimitive, as in [We]. Let $\Xi(\phi)$ be the group of characters χ of W_K such that $\chi \otimes \phi \simeq \phi$. Then $\Xi(\phi)$ is non-cyclic of order 4.

6. Depth

Let L/K be a biquadratic extension. We fix an algebraic closure \overline{K} of K such that $L \subset \overline{K}$. From the inclusion $L \subset \overline{K}$, there is a natural surjection

$$\pi_{L/K} : \text{Gal}(\overline{K}/K) \to \text{Gal}(L/K)$$

Let K^{ur} be the maximal unramified extension of K in \overline{K} and let K^{ab} be the maximal abelian extension of K in \overline{K}. We have a commutative diagram, where the horizontal maps are the canonical maps and the vertical maps are the natural projections.
In the above notation, we have $\pi_{L/K} = \pi_2 \circ \pi_1$.

Let

\[(\forall r) \pi_{L/K} I^{(r)} = \mathcal{J}^{(r)}\]

Proof. This follows immediately from the above diagram. Here, we identify $I^{(r)}$ with $\iota_1(I^{(r)})$ and $\mathcal{J}^{(r)}$ with $\iota_3(\mathcal{J}^{(r)})$.

\[\square\]

Lemma 6.2. Let L/K be a biquadratic extension, let ϕ be the Langlands parameter $\bigl[17\bigr]$, $\phi = \alpha \circ \pi_{L/K}$ with $\alpha : \text{Gal}(L/K) \to \text{SO}_3(\mathbb{R})$. Then we have $d(\phi) = r - 1$ where r is the least integer for which $\mathcal{J}^{(r)} = 1$.

Proof. The depth of a Langlands parameter ϕ is easy to define. For $r \in \mathbb{R} \geq 0$ let $\text{Gal}(F_s/F)^r$ be the r-th ramification subgroup of the absolute Galois group of F. Then the depth of ϕ is the smallest number $d(\phi) \geq 0$ such that ϕ is trivial on $\text{Gal}(F_s/F)^r$ for all $r > d(\phi)$.

Note that α is injective. Therefore

\[\phi(I^{(r)}) = 1 \iff (\alpha \circ \pi_{L/K})I^{(r)} = 1 \iff \alpha(\mathcal{J}^{(r)}) = 1 \iff \mathcal{J}^{(r)} = 1.\]

\[\square\]

For example, the parameter ϕ has depth zero if it is *tamely ramified*, i.e. the least integer r for which $\mathcal{J}^{(r)} = 1$ is $r = 1$. The relative wild inertia group is 1, but the relative inertia group is not 1.

Case 1: There are two ramification breaks occurring at -1 and some odd integer $t > 0$:

\[\{1\} = \cdots \subset \mathcal{J}^{(t+1)} \subset \mathcal{J}^{(t)} = \cdots \mathcal{J}^{(0)} = \mathcal{J}_{L/K} \subset \text{Gal}(L/K), \quad d(\phi) = t\]
The allowed depths are 1, 3, 5, 7,

Case 2.1: One single ramification break occurs at some odd integer \(t > 0 \):

\[
\{1\} = \ldots = \mathcal{J}^{(t+1)} \subset \mathcal{J}^{(t)} = \ldots = \mathcal{J}^{(0)} = \mathcal{J}_{L/K} = \text{Gal}(L/K); \quad d(\varphi) = t
\]

The allowed depths are 1, 3, 5, 7,

Case 2.2: There are two ramification breaks occurring at some odd integers \(t_1 < t_2 \):

\[
\{1\} = \ldots = \mathcal{J}^{(t_2+1)} \subset \mathcal{J}^{(t_2)} = \ldots = \mathcal{J}^{(t_1+1)} \subset \mathcal{J}^{(t_1)} = \ldots = \mathcal{J}^{(0)} = \mathcal{J}_{L/K} = \text{Gal}(L/K); \quad d(\varphi) = t_2
\]

The allowed depths are 3, 5, 7, 9,

(In the above, \(\mathcal{J}^{(0)} = \mathcal{J}_{L/K} \))

Theorem 6.3. Let \(L/K \) be a biquadratic extension, let \(\phi \) be the Langlands parameter \((77)\). For every \(\pi \in \Pi_{\phi}(\text{SL}_2(K)) \) and \(\pi \in \Pi_{\phi}(\text{SL}_1(D)) \) there is an equality of depths:

\[
d(\pi) = d(\varphi).
\]

The depth of each element in the \(L \)-packet \(\Pi_{\phi} \) is given by the largest break in the ramification of the Galois group \(\text{Gal}(L/K) \). The allowed depths are 1, 3, 5, 7, except in Case 2.2, when the allowed depths are 3, 5, 7,

Proof. This follows from Lemma \((6.2)\), the above computations, and Theorem 3.4 in [ABPS1]. \(\square \)

This contrasts with the case of \(\text{SL}_2(\mathbb{Q}_p) \) with \(p > 2 \). Here there is a unique biquadratic extension \(L/K \), and a unique tamely ramified parameter \(\phi : \text{Gal}(L/K) \to \text{SO}_3(\mathbb{R}) \) of depth zero.

6.1. Quadratic extensions. Let \(E/K \) be a quadratic extension. There are two kinds: the unramified one \(E_0 = K(\alpha_0) \) and countably many totally (and wildly) ramified \(E = K(\alpha) \).

Theorem 6.4. For the unramified principal series \(L \)-packet \(\{\pi_1^E, \pi_2^E\} \), we have

\[
d(\pi_1^E) = d(\pi_2^E) = -1.
\]

For the ramified principal series \(L \)-packet \(\{\pi_1^E, \pi_2^E\} \), we have

\[
d(\pi_1^E) = d(\pi_2^E) = n
\]

with \(n = 1, 2, 3, 4, \ldots \).

Proof. Case 1: \(E_0/K \) unramified. Then, \(f(E_0/K) = 2 \). In this case, we have \(G_0 = \{1\} \), and \(G_0 = G^0 = \mathcal{J}_{E_0/K} \). There is only one ramification break at \(t = 0 \) and the filtration of \(G = \text{Gal}(E_0/K) \) in the upper numbering is

\[
\{1\} = G^0 \subset G^{-1} = G = \mathbb{Z}/2\mathbb{Z}.
\]

The filtration on the relative inertia \(\mathcal{J}^{(t)} \) is

\[
\{1\} = \mathcal{J}_{L_0/K} \subset G = \mathbb{Z}/2\mathbb{Z}
\]

with only one break at \(t = 0 \). Negative depth, as expected.

Case 2: \(E/K \) is totally ramified. Then, \(e(E/K) = 2 \), which is divisible by the residue degree, so the extension is wildly ramified. In this case, there is one break
at some $t \geq 1$. This is because of wild ramification, since $G^1 = \{1\}$ if and only if
the extension is tamely ramified. The filtration of G in the upper numbering is
\[\{1\} = G^{t+1} \subset G^t = \ldots = G^0 = G = \mathbb{Z}/2\mathbb{Z} \]
The filtration on the relative inertia $\mathcal{I}^{(r)}$ is
\[\{1\} = \mathcal{I}^{(t+1)} \subset \mathcal{I}^{(t)} = \ldots = G = \mathbb{Z}/2\mathbb{Z} \]
with only one break at $t \geq 1$. \qed

7. A commutative triangle

In this section we confirm part of the geometric conjecture in [ABPS] for $\text{SL}_2(F_q((\varpi)))$.

We begin by recalling the underlying ideas of the conjecture.

Let \mathcal{G} be the group of K-points of a connected reductive group over a nonarchimedean local field K. The Bernstein decomposition provides us, inner alia, with the following data: a canonical disjoint union
\[\text{Irr}(\mathcal{G}) = \bigsqcup \text{Irr}(\mathcal{G})^s \]
and, for each $s \in \mathcal{B}(\mathcal{G})$, a finite-to-one surjective map
\[\text{Irr}(\mathcal{G})^s \rightarrow T^s/W^s \]
The geometric conjecture in [ABPS] amounts to a refinement of these statements. The refinement comprises the assertion that we have a bijection
\[\text{Irr}(\mathcal{G})^s \simeq (T^s//W^s)_2 \]
where $(T^s//W^s)_2$ is the extended quotient of the second kind of the torus T^s by the finite group W^s. This bijection is subject to certain constraints, itemised in [ABPS].

We proceed to define the extended quotient of the second kind. Let W be a finite group and let X be a complex affine algebraic variety. Suppose that W is acting on X as automorphisms of X. Define
\[\bar{X}_2 := \{(x,\tau) : \tau \in \text{Irr}(W^s)\} \]
Then W acts on \bar{X}_2:
\[\alpha(x,\tau) = (\alpha \cdot x, \alpha_* \tau) \]

Definition 7.1. The extended quotient of the second kind is defined as
\[(X//W)_2 := \bar{X}_2/W. \]

Thus the extended quotient of the second kind is the ordinary quotient for the action of W on \bar{X}_2.

We recall that (G,T) are the complex dual groups of $(\mathcal{G},\mathcal{T})$, so that $G = \text{PSL}_2(\mathbb{C})$. Let W_K denote the Weil group of K. If ϕ is an L-parameter
\[W_K \times \text{SL}_2(\mathbb{C}) \rightarrow G \]
then an enhanced Langlands parameter is a pair (ϕ,ρ) where ϕ is a parameter and $\rho \in \text{Irr}(S_\phi)$.
Theorem 7.2. Let $G = \text{SL}_2(K)$ with $K = \mathbb{F}_q((\varpi))$. Let $s = [T, \chi]_G$ be a point in the Bernstein spectrum for the principal series of G. Let $\text{Irr}(G)^s$ be the corresponding Bernstein component in $\text{Irr}(G)$. Then there is a commutative triangle of natural bijections

\[
\begin{array}{c}
\text{Irr}(G)^s \\
\downarrow \\
\text{L}(G)^s
\end{array}
\]

where $\text{L}(G)^s$ denotes the equivalence classes of enhanced parameters attached to s.

Proof. We recall that $T^s = \{ \psi \chi : \psi \in \Psi(T) \}$ where $\Psi(T)$ is the group of all unramified quasicharacters of T. With $\lambda \in T^s$, we define the parameter $\phi(\lambda)$ as follows:

\[
\phi(\lambda) : W_K \times \text{SL}_2(\mathbb{C}) \to \text{PSL}_2(\mathbb{C}), \quad (w, \Phi_n K, Y) \mapsto \left(\begin{array}{cc} \lambda(w)^n & 0 \\ 0 & 1 \end{array} \right),
\]

where A_\ast is the image in $\text{PSL}_2(\mathbb{C})$ of $A \in \text{SL}_2(\mathbb{C})$, $Y \in \text{SL}_2(\mathbb{C})$, $w \in I_K$ the inertia group, and Φ_K is a geometric Frobenius. Define, as in §3,

\[
\pi(\lambda) := \text{Ind}^G_B(\lambda).
\]

Case 1. $\lambda^2 \neq 1$. Send the pair $(\lambda, 1) \in T^s//W^s$ to $\pi(\lambda) \in \text{Irr}(G)^s$ (via the left slanted arrow) and to $\phi(\lambda) \in \text{L}(G)^s$ (via the right slanted arrow).

Case 2. Let $\lambda^2 = 1, \lambda \neq 1$. Let $\phi = \phi(\lambda)$. To compute S_ϕ, let $1, w$ be representatives of the Weyl group $W = W(G)$. Then we have

\[
C_G(\text{im} \phi) = T \cup wT
\]

So ϕ is a non-discrete parameter, and we have

\[
S_\phi \cong \mathbb{Z}/2\mathbb{Z}.
\]

We have two enhanced parameters, namely $(\phi, 1)$ and (ϕ, ϵ) where ϵ is the non-trivial character of $\mathbb{Z}/2\mathbb{Z}$.

Since $\lambda^2 = 1$, there is a point of reducibility. We send

\[
(\lambda, 1) \mapsto \pi(\lambda)^+, \quad (\lambda, \epsilon) \mapsto \pi(\lambda)^-
\]

via the left slanted arrow, and

\[
(\lambda, 1) \mapsto (\phi(\lambda), 1), \quad (\lambda, \epsilon) \mapsto (\phi(\lambda), \epsilon)
\]

via the right slanted arrow. Note that this includes the case when λ is the unramified quadratic character of K^\times.

Case 3. Let $\lambda = 1$. The principal parameter

\[
\phi_0 : W_K \times \text{SL}_2(\mathbb{C}) \to \text{SL}_2(\mathbb{C}) \to \text{PSL}(2, \mathbb{C})
\]

is a discrete parameter for which $S_{\phi_0} = 1$. In the local Langlands correspondence for G, the enhanced parameter $(\phi_0, 1)$ corresponds to the Steinberg representation St of $\text{SL}_2(K)$. Note also that, when $\phi = \phi(1)$, we have $S_\phi = 1$. We send

\[
(1, 1) \mapsto \pi(1), \quad (1, \epsilon) \mapsto \text{St}
\]

via the left slanted arrow and

\[
(1, 1) \mapsto (\phi(1), 1), \quad (1, \epsilon) \mapsto (\phi_0, 1)
\]
via the right slanted arrow. This establishes that the geometric conjecture in \[ABPS\] is valid for \(\operatorname{Irr}(\mathcal{G})^s\).

Let \(L/K\) be a quadratic extension of \(K\). Let \(\lambda\) be the quadratic character which is trivial on \(N_{L/K}L^\times\). Then \(\lambda\) factors through \(\operatorname{Gal}(L/K) \simeq K^\times/N_{L/K}L^\times \simeq \mathbb{Z}/2\mathbb{Z}\) and \(\phi(\lambda)\) factors through \(\operatorname{Gal}(L/K) \times \operatorname{SL}_2(\mathbb{C})\). The parameters \(\phi(\lambda)\) serve as parameters for the \(L\)-packets in the principal series of \(\operatorname{SL}_2(K)\).

It follows from \(\S 3\) that, when \(K = \mathbb{F}_q((\pi))\), there are countably many \(L\)-packets in the principal series of \(\operatorname{SL}_2(K)\).

7.1. The tempered dual.

If we insist, in the definition of \(T^s\), that the unramified character \(\psi\) shall be unitary, then we obtain a copy \(T^s\) of the circle \(T\). We then obtain a compact version of the commutative triangle, in which the tempered dual \(\operatorname{Irr}_{\text{temp}}(\mathcal{G})^s\) determined by \(s\) occurs on the left, and the bounded enhanced parameters \(\mathfrak{L}^b(\mathcal{G})^s\) determined by \(s\) occur on the right. We now isolate the bijective map

\[
(T^s//W^s)_2 \to \operatorname{Irr}_{\text{temp}}(\mathcal{G})^s
\]

and restrict ourselves to the case where \(T^s\) contains two ramified quadratic characters. Let \(T := \{z \in \mathbb{C} : |z| = 1\}\), \(W := \mathbb{Z}/2\mathbb{Z}\). We then have \(T^s = T\), \(W^s = W\) and the generator of \(W\) acts on \(T\) sending \(z\) to \(z^{-1}\).

The left-hand-side and the right-hand-side of the map (21) each has its own natural topology, as we proceed to explain.

The topology on \((\mathbb{T}/W)_2\) comes about as follows. Let \(\operatorname{Prim}(C(\mathbb{T}) \rtimes W)\) denote the primitive ideal space of the noncommutative \(C^*\)-algebra \(C(\mathbb{T}) \rtimes W\). By the classical Mackey theory for semidirect products, we have a canonical bijection

\[
\operatorname{Prim}(C(\mathbb{T}) \rtimes W) \simeq (\mathbb{T}/W)_2.
\]

The primitive ideal space on the left-hand side of (22) admits the Jacobson topology. So the right-hand side of (22) acquires, by transport of structure, a compact non-Hausdorff topology. The following picture is intended to portray this topology.

The reduced \(C^*\)-algebra of \(\mathcal{G}\) is liminal, and its primitive ideal space is in canonical bijection with the tempered dual of \(\mathcal{G}\). Transporting the Jacobson topology on the primitive ideal space, we obtain a locally compact topology on the tempered dual of \(\mathcal{G}\), see [\text{Dix}^b\ 3.1.1, 4.4.1, 18.3.2]. This makes \(\operatorname{Irr}_{\text{temp}}(\mathcal{G})^s\) into a compact space, in the induced topology.

We conjecture that these two topologies make (21) into a homeomorphism. This is a strengthening of the geometric conjecture [\text{ABPS}]. In that case, the double-points in the picture arise precisely when the corresponding (parabolically) induced representation has two irreducible constituents. This conjecture is true for \(\operatorname{SL}_2(\mathbb{Q}_p)\) with \(p > 2\), see [\text{Pi} \ 3.1.2]. While in conjectural mode, we mention the following point: the standard Borel subgroup of \(\operatorname{SL}_2(K)\) admits countably many ramified quadratic characters and so, following the construction in [ChP], the geometric conjecture predicts that tetrahedra of reducibility will occur countably many times; however, the
R-group machinery is not, to our knowledge, available in positive characteristic, so this remains conjectural.

References

[ABPS] A.-M. Aubert, P. Baum, R.J. Plymen, M. Solleveld, Geometric structure and the local Langlands conjecture, http://arxiv.org/abs/1211.0180

[ABPS1] A.-M. Aubert, P. Baum, R.J. Plymen, M. Solleveld, Depth and the local Langlands correspondence, http://arxiv.org/abs/1311.1606

[ABPS2] A.-M. Aubert, P. Baum, R.J. Plymen, M. Solleveld, The local Langlands correspondence for inner forms of SL_n, http://arxiv.org/abs/1305.2638

[BH] C.J. Bushnell, G. Henniart, The local Langlands conjecture for $GL(2)$, Springer-Verlag, Berlin, 2006.

[Ca] W. Casselman, On the representations of $SL_2(k)$ related to binary quadratic forms, Amer. J. Math., Vol. 94, No 3 (1972) 810–834.

[Ca2] W. Casselman, Introduction to the theory of admissible representations of p-adic reductive groups, Unpublished notes, 1995.

[ChP] K.F. Chao, R.J. Plymen, Geometric structure in the tempered dual of SL_4, Bull. London Math. Soc. 44 (2012) 460–468.

[Da2] C.S. Dalawat, Local discriminants, kummerian extensions, and elliptic curves, J. Ramanujan Math. Soc., (1) 25 (2010) 25–80.

[Da] C.S. Dalawat, Further remarks on local discriminants, J. Ramanujan Math. Soc., (4) 25 (2010) 393–417.

[GGPS] Representation theory and automorphic functions, I.M. Gelfand, M.I. Graev, I.I. Pyatetskii-Shapiro, Academic press, 1990.

[Dix] C^*-algebras, North-Holland, 1982.

[Iw] K. Iwasawa, Local Class Field Theory, Oxford University Press, New York, 1986.

[LR] J.M. Lansky, A. Raghuram, Conductors and newforms for $SL(2)$, Pacific J. Math. 231 (2007) 127 – 153.

[MoPr1] A. Moy, G. Prasad, “Unrefined minimal K-types for p-adic groups”, Inv. Math. 116 (1994), 393–408.

[MoPr2] A. Moy, G. Prasad, “Jacquet functors and unrefined minimal K-types”, Comment. Math. Helvetici 71 (1996), 98–121.

[Ne] J. Neukirch, Algebraic Number Theory, Springer-Verlag, Berlin, 1999.

[P] R. J. Plymen, K-theory of the reduced C^*-algebra of $SL_2(\mathbb{Q}_p)$, Springer Lecture Notes in Math. 1132 (1985) 409–420.

[R] D. Renard, Représentations des groupes réductifs p-adiques, Cours Spécialisés, Collection SMF, 2010.

[Th1] L. Thomas, Arithmétique des extensions d’Artin-Schreier-Witt, Thèse présenté à l’Université de Toulouse II le Mirail, 2005.

[Th2] L. Thomas, Ramification groups in Artin-Schreier-Witt extensions, Journal de Théorie des Nombres de Bordeaux, 17, (2005) 689–720.

[We] A. Weil, Exercices dyadiques, Invent. Math. 27 (1974) 1–22.