The effectiveness of the introduction of new equipment in the test laboratory center

E P Petuhova, I A Bogonosova, A V Vorobeva, O A Sagina and S E Hodak

K G Razumovsky Moscow State University of technologies and management (the First Cossack University), 73 Zemlyanoy Val, Moscow, 109004, Russian Federation

E-mail: e.petuhova@mgutm.ru

Abstract. Improving the quality of the services provided by updating the laboratory base is considered as one of the most important ways to increase competitiveness, achieve competitive advantages, which, in turn, helps to increase the economic efficiency of the testing laboratory center. The introduction of new equipment at the TLC will contribute to an increase in the possible number of studies being carried out, a decrease in random errors, and the achievement of the best indicators of internal laboratory control. The introduction of the PLP-01M microwave laboratory system will significantly reduce the time for preparing a sample for analysis by reducing the decomposition time of the sample by 19.5 times. Upgrading the equipment used from Kvant-AFA to Kvant-2AT with the simultaneous introduction of the PLP-01M microwave laboratory system will not only improve the used measuring instrument, but also the entire sample preparation system as a whole.

1. Introduction

In the conditions of market relations at any enterprise, including testing laboratories, the relevance of quality management is determined by its focus on ensuring such a level of quality of services that can fully satisfy all consumer needs. The high quality of the services provided is the most significant component that determines competitiveness. The lack of updating of measuring instruments, test and auxiliary equipment makes it difficult to ensure a stable quality of services. The processes of updating the laboratory base in modern conditions of the development of scientific and technological progress are objectively necessary.

Improving the quality of services provided by updating the laboratory base is considered as one of the most important ways to increase competitiveness, achieve competitive advantages, which, in turn, contributes to increasing the economic efficiency of the testing laboratory center (hereinafter referred to as the TLC).

The relationship between the introduction of new equipment and the economic efficiency of the ILC is shown in figure 1.
Figure 1. The relationship between the introduction of new equipment and the economic efficiency of the ILC.

Ensuring food safety remains an urgent and priority task [1-7]. Assessment of the quality and safety of the developed food products is a prerequisite [8-18]. In the conditions of market relations at any enterprise, including testing laboratories, the relevance of quality management is determined by its focus on ensuring such a level of quality of services that can fully satisfy all consumer needs. The lack of updating of measuring instruments, test and auxiliary equipment makes it difficult to ensure a stable quality of services. The processes of updating the laboratory base in modern conditions of the development of scientific and technological progress are objectively necessary [19-27].

The research task is to calculate and analyze the economic efficiency of the introduction of new equipment in the laboratory.

2. Materials and methods
Equipment: microwave laboratory system PLP-01M, devices (Kvant-2AT, Kvant-AFA, Kvant-2AT, Kvant-AFA).

Calculation of the research program:
Calculation of the annual balance of working hours for 2020.
Equipment operating time:
\[T_c = 366 \text{ days} \]

Equipment downtime for major repairs is not provided:
\[T_{mr} = 0 \text{ days} \]

Total work shifts:
\[C_{sh} = 1 \]

Duration of shifts:
\[T_{sh} = 8 \text{ h} \]

For discontinuous measurement processes, the actual operating time of the equipment is calculated by the formula:
\[T_{fact} = (T_c - T_{sh} - T_w) \times C_{sh} \times T_{sh} \times (1 - T_{cur}/100), \]
Where: T_w – weekends and holidays; T_{cur} – current downtime, in % of the nominal operating time.

Working time fund is the duration of work of one average employee in the reporting period. To determine the effective fund, the working time norm is used, approved for each year by the Ministry of Labor of the Russian Federation.

3. Results and discussions

The cost of introducing new equipment depends on the cost of the equipment, transportation costs, installation and installation costs, and personnel training costs.

The project for the introduction of new equipment is based on the need to update the laboratory base of instruments and replace existing measuring instruments.

It is supposed to choose the optimal set of measuring instruments, based on the volume of analyzed samples, the productivity of the instruments, the payback period of the equipment being introduced, and the solvency of the TLC.

Let's calculate the capital costs for implementation:

- atomic absorption spectrometer "Kvant-2AT";
- analyzer voltammetric "TA-4";
- analyzer "Pan-arsenic";
- atomic absorption spectrometer "Quant-2AT" and microwave laboratory system PLP-01M at the same time;
- microwave laboratory system PLP-01M.

Table 1 shows the data on capital expenditures for the introduction of new equipment.

Name	Cost, rub.
Atomic absorption spectrometer "Kvant-2AT"	
Cost of equipment	1350000
Staff training costs	20000
Fare	9500
Installation and assembly costs	42000
Total:	1 421 500
Voltammetric analyzer "TA-4"	
Cost of equipment	111600
programmable two-chamber oven PDP-18M	42500
Staff training costs	5500
Fare	2500
Total:	162 100
Analyzer "Pan-As"	
Cost of equipment	63900
programmable two-chamber oven PDP-18M	42500
Fare	2500
Total:	108 900
Microwave laboratory system PLP-01M	
Cost of equipment	486990
Staff training costs	5500
Fare	2300
Installation and assembly costs	1500
Total:	496 290
The costs for the introduction of new equipment in the TLC will be:

- for the atomic absorption spectrometer "Kvant-2AT" - 1,421,500 rubles;
- for the analyzer voltammetric "TA-4" - 162,100 rubles;
- for the analyzer "Pan-arsenic" - 108,900 rubles;
- for the atomic absorption spectrometer "Kvant-2AT" and the microwave laboratory system PLP-01M at a time - 1,917,790 rubles;
- for the PLP-01M microwave laboratory system - 496,290 rubles.

The current downtime is 17% of the nominal operating time: \(T_{\text{frac}} = 17\% \)

Weekends and holidays: \(T_{\text{w}} = 119 \) days.

The actual operating time of the equipment is:

\[
T_{\text{факт}} = (366 - 0 - 119) \times 1 \times 8 \times (1 - 17/100) = 1640.08 \text{ h} \approx 1640 \text{ h}.
\]

The calculation of the effective fund of working time of laboratory workers for 2020 is presented in table 2.

Table 2. Calculation of the effective fund of working time of laboratory workers.

№	Index	Value
1	Calendar fund of working time, days	366
2	Weekends and holidays	119
3	Working hours, days	247
	h	1976
4	Absenteeism, days, including	42
4.1	regular vacations	28
4.2	leave for study	12*
4.3	other losses of working time	2*
5	Effective fund of working time, days	205
	h	1640

* – values are given conditionally

Effective working time fund - the duration of the actual work of one employee in the reporting period. An effective fund of working time allows you to calculate the need for personnel according to the complexity of the research program. The performance of the measuring equipment, taking into account the time spent on the sample preparation procedure, the construction of calibration graphs, and the internal laboratory control, is presented in table 3.

Table 3. Performance of measuring equipment.

Equipment identification	Number of studies per year	Duration of sample preparation 1 analysis, h	Number of studies per day
Atomic absorption spectrometer "Kvant-2AT"	32 960	23.4	159
Voltammetric analyzer "TA-4"	9 694	12.5	46
Analyzer "Pan-arsenic"	8 078	13	38
Photoelectric concentration colorimeter "KFK-2MP"	6 463	24.5	30
The productivity of the outdated model of the atomic absorption spectrophotometer "Kvant-AFA" is 19,388 tests per year, and the currently used KFK-2MP 6,463 tests per year. The annual research volume varies depending on the number of samples, the volume of orders for analysis, seasonal fluctuations.

4. Conclusion
The introduction of new equipment at the ILC will contribute to an increase in the possible number of studies being carried out, a decrease in random errors, and the achievement of the best indicators of internal laboratory control. The introduction of the PLP-01M microwave laboratory system will significantly reduce the time for preparing a sample for analysis by reducing the decomposition time of the sample by 19.5 times.

Upgrading the equipment used from Kvant-AFA to Kvant-2AT with the simultaneous introduction of the PLP-01M microwave laboratory system will not only improve the used measuring instrument, but also the entire sample preparation system as a whole.

Acknowledgements
The authors express special gratitude for help in preparation to the engineer A M Chuprakova. The authors acknowledge the tremendous help received from scholars whose scientific articles are cited and included in the bibliography of this manuscript.

References
[1] Akhmetova S, Suleimenova M and Rebezov M 2019 Mechanism of an improvement of business processes management system for food production: case of meat products enterprise Entrepreneurship and sustainability issues 7(2) 1015-35 Doi 10.9770/jesi.2019.7.2(16)
[2] Kuramshina N, Rebezov M, Kuramshin E, Krasnogorskaya N, Tretyak L, Somova Yu, Dolmatova I, Zaitseva T, Grigoryeva I and Bakirova L 2018 Heavy Metals Contamination of Soil in Urban Areas of Southern Ural Region of Russia International Journal of Engineering and Technology (UAE) 7(4.42) 14-8 DOI: 10.14419/ijet.v7i4.42.25536
[3] Kuramshina N, Rebezov M, Kuramshin E, Tretyak L, Topuria G, Kulikov D, Evtushenko A, Harlap S and Okushkanova E 2019 Heavy metals content in meat and milk of Orenburg region of Russia International Journal of Pharmaceutical Research 11(1) 1301-5 DOI: 10.21668/health.risk/2019.2.04.eng
[4] Maksimuk N N, Rebezov M B and Guber N B 2018 Experience in auditing in the food safety management system Economics of Agriculture of Russia doi:10.32651/2070-0288-2018-9-15-21
[5] Imran M et al. 2020 Lycopene as a Natural Antioxidant Used to Prevent Human Health Disorders Antioxidants 9(8) 706 doi:10.3390/antiox9080706
[6] Rebezov M, Naumova N, Lukin A, Alkhamova G and Khayrullin M 2011 Food behavior of consumers (for example, Chelyabinsk) Voprosy Pitaniia 80(6) 23-26
[7] Ahsan S et al. 2020 Safety assessment of milk and indigenous milk products from different areas of Faisalabad J Microbiol Biotech Food Sci 9(6) 1197-203 DOI: 10.15414/jmbfs.2020.9.6.1197-1203
[8] Temerbayeva M et al. 2018 Development of Yoghurt from Combination of Goat and Cow Milk
[9] Temerbayeva M et al. 2018 Technology of Sour Milk Product For Elderly Nutrition Research Journal of Pharmaceutical, Biological and Chemical Sciences 9(1) 291-5

[10] Serikova A, Smolnikova F, Rebezov M, Okuskanova E, Temerbayeva M, Gorelik O, Kharlap S, Baitukenova Sh, Baitukenova S and Tumbasova Y 2018 Development Of Technology Of Fermented Milk Drink With Immune Stimulating Properties Research Journal of Pharmaceutical, Biological and Chemical Sciences 9(4) 495-500 WOS:000438848100062

[11] Smolnikova F, Rebezov M, Shaydullin R, Knysh I, Yudina O, Nikolaeva N, Sorokin A, Zubarstova Yu and Kozlov V 2020 Vegetable stabilizers used in the production of fermented milk drinks and yogurts International Journal of Psychosocial Rehabilitation 24(6) 7663-7 DOI: 10.37200/IJPR/V24I6/PR260775

[12] Kassymov S, Rebezov M, Ikonnikova A, Fedin I, Rodionov I, Rukhadze S and Bokuchava O 2020 Using of pumpkin and carrot powder in production of meat cutlets: effect on chemical and sensory properties International Journal of Psychosocial Rehabilitation 24(4) 1663-70 DOI: 10.37200/IJPR/V24I4/PR201274

[13] Gavrilova N, Chernopolskaya N, Molyboga E, Shipkova K, Dolmatova I, Demidova V, Rebezov M, Kuznetsova E and Ponomareva L 2019 Biotechnology application in production of specialized dairy products using probiotic cultures immobilization International Journal of Innovative Technology and Exploring Engineering 8(6) 642-8

[14] Gavrilova N, Chernopolskaya N, Rebezov M, Moisejkina D, Dolmatova I, Mironova I, Peshcherov G, Gorelik O and Derkho M 2019 Advanced Biotechnology of Specialized Fermented Milk Products International Journal of Recent Technology and Engineering 8(2) 2718-22 DOI: 10.35940/ijrte.B3158.078219

[15] Rozhnov E, Kazarskikh A, Shkolnikova M, Tretyak L, Voytsekhovskiy V, Maksimiuk N, Khayrullin M, Rebezov M and Yessimbekov Zh 2019 Investigation of the conditions for the formation of 5-Hydroxymethylfurfural in the production of honey wines and sea-buckthorn wine drinks Research Journal of Pharmacy and Technology 12(7) 3501-6 DOI: 10.5978/0974-360X.2019.00595.X

[16] Chernopolskaya N, Gavrilova N, Rebezov M, Dolmatova I, Zaitseva T, Somova Y, Babaeva M, Ponomarev E and Voskanyan O 2019 Biotechnology of specialized product for sports nutrition International Journal of Engineering and Advanced Technology 8(4) 40-5 DOI: 10.35940/ijrte.B3158.078219

[17] Chernopolskaya N, Gavrilova N, Rebezov M, Harlap S, Nigmatyanov A, Peshcherov G, Bychkova T, Vlasova K and Karapetyan I 2019 Biotechnology of specialized fermented product for elderly nutrition International Journal of Pharmaceutical Research 11(1) 545-50 DOI: 10.35940/ijrte.B3158.078219

[18] Nesterenko A, Kenijz N, Rebezov M, Omarov R and Shlykov S 2020 Production technology for smoked sausages using protein-fat emulsion International Transaction Journal of Engineering, Management, & Applied Sciences & Technologies 11(12) 11A12A 1-8 http://DOI.ORG/10.14456/ITJEMAST.2020.226

[19] Rebezov M et al. 2020 Improvement of Laboratory Services When using Sample Preparation in Microwave System International Journal of Current Research and Review 12(16) 29-33 doi:10.31782/IJCRR.2020.12167

[20] Rebezov M; Belokamenskaya A; Zinina O; Naumova N; Maksimyuk N; Soloveva A and Solntseva A 2012 Quality control of food research for lead content Izvestiya vuzov prikladnaya khimiya i biotekhnologiya 1 157 WOS:000442743100030

[21] Chuprakova A M and Rebezov M B 2016 Analysis of the results of the samples of milk and dairy products, as well as bakery and confectionery products on the content of toxic elements Bulletin of the South Ural State University. Series Food and Biotechnology 4(1) doi.org/10.14529/FOOD160106

[22] Zykova I, Maksimuk N, Rebezov M, Kuznetsova E, Derkho M, Sereda T, Kazhibayeova G,
Somova Yu and Zaitseva T 2019 Interaction between heavy metals and microorganisms during wastewater treatment by activated sludge *Journal of Engineering and Applied Sciences* **14**(11) 2139-45

[23] Assenova B, Okuskhanova E, Rebezov M, Korzhikenova N, Yessimbekov Zh and Dragoev S 2016 Trace and toxic elements in meat of maral (red deer) grazing in Kazakhstan *Research Journal of Pharmaceutical, Biological and Chemical Sciences* **7**(1) 1425-33

[24] Duysssembaev S, Serikova A, Okuskhanova E, Ibragimov N, Bekturova N, Ikimbayeva N, Rebezov Y, Gorelik O and Baybalinova M 2017 Determination of Cs-137 Concentration in Some Environmental Samples around the Semipalatinsk Nuclear Test Site in the Republic of Kazakhstan *Annual Research & Review in Biology* **15**(4) 1-8 DOI: 10.9734/ARRB/2017/35239

[25] Somova Yu, Degodia E, Gladysheva M, Zueva T, Peryatinskiy A, Ilyina O, Valyaeva G, Yaroslavtsev A, Pelageina A and Rebezov M 2018 Sludge deoiling of bottom sediments: laboratory installation for carrying out automated scientific research *International Journal of Mechanical Engineering and Technology* **9**(5) 498–505

[26] Konushkin S V et al. 2020 Study of the physicochemical and biological properties of the new promising Ti–20Nb–13Ta–5Zr alloy for biomedical applications *Materials Chemistry and Physics* 30 July 2020 123557 doi:10.1016/j.matchemphys.2020.123557

[27] Osintseva D et al. 2017 Ozonation and microwave treatments as new pest management methods for grain crop cleaning and Disinfection *Annual Research & Review in Biology* **20**(5) 1-6 DOI: 10.9734/ARRB/2017/37741