ON DIAGONALIZABLE OPERATORS IN MINKOWSKI SPACES WITH THE LIPSCHITZ PROPERTY

ZSOLT LÁNGI

Abstract. A real semi-inner-product space is a real vector space \(M \) equipped with a function \([.,.]: M \times M \rightarrow \mathbb{R}\) which is linear in its first variable, strictly positive and satisfies the Schwartz inequality. It is well-known that the function \(|x| = \sqrt{x, x}\) defines a norm on \(M \), and vice versa, for every norm on \(X \) there is a semi-inner-product satisfying this equality. A linear operator \(A \) on \(M \) is called adjoint abelian with respect to \([.,.]\), if it satisfies \([Ax, y] = [x, Ay]\) for every \(x, y \in M \). The aim of this paper is to characterize the diagonalizable adjoint abelian operators in finite dimensional real semi-inner-product spaces satisfying a certain smoothness condition.

1. Introduction and preliminaries

A real semi-inner-product space is a real linear space \(M \) equipped with a function \([.,.]: M \times M \rightarrow \mathbb{R}\), called a semi-inner-product, such that

1. \([.,.]\) is linear in the first variable,
2. \([x, x] \geq 0\) for every \(x \in M \), and \([x, x] = 0\) yields that \(x = 0\),
3. \([x, y]^2 \leq [x, x] \cdot [y, y]\) for every \(x, y \in M \).

These spaces were introduced in 1961 by Lumer \[8\], and have been extensively studied since then (cf., for example \[1\]). It was remarked in \[8\] that in a real semi-inner-product space \(M \), the function \(|x| = \sqrt{x, x}\) defines a norm. The converse also holds, i.e. if \(M \) is a real linear space, then for every real norm \(||.||: M \rightarrow \mathbb{R}\), there is a semi-inner-product \([.,.]: M \times M \rightarrow \mathbb{R}\) satisfying \(|x| = \sqrt{x, x}\). Furthermore, the semi-inner-product determined by a norm is unique if, and only if, its unit ball is smooth; that is, if the unit sphere has a unique supporting hyperplane at its every point. By \[4\], in this case the semi-inner-product is homogeneous in the second variable; i.e., \([x, \lambda y] = \lambda [x, y]\) for any \(x, y \in M \) and \(\lambda \in \mathbb{R}\).

We say that a real semi-inner-product is continuous, if for every \(x, y, z \in M \) with \([x, x] = [y, y] = [z, z] = 1\), \(\lambda \rightarrow 0 \) yields that \([x, y + \lambda z] \rightarrow [x, y]\) (cf. \[4\] or \[5\]). It is well-known that the semi-inner-product determined by a smooth norm is continuous; it follows, for example, from \(E^* \) on page 118 of \[11\] and Theorem 3 of \[4\].

A linear operator \(A \) is called adjoint abelian with respect to a semi-inner-product \([.,.]\), if it satisfies \([Ax, y] = [x, Ay]\) for every \(x, y \in M \) (cf., for instance \[2\] and \[3\]).

1991 Mathematics Subject Classification. 47A05, 52A21, 46B25.
Key words and phrases. semi-inner-product space, Minkowski space, norm, adjoint abelian.
In the following, \(M \) denotes a smooth Minkowski space; that is, a real finite dimensional smooth normed space, and \(||\cdot|| \) and \([\cdot, \cdot]\) denote the norm and the induced semi-inner-product of \(M \), respectively. We denote by \(S \) the unit sphere with respect to the norm, i.e., we set \(S = \{ x \in M : ||x|| = 1 \} \). We say that the semi-inner-product \([\cdot, \cdot]\) has the Lipschitz property, if for every \(x \in S \), there is a real number \(\kappa \) such that for every \(y, z \in S \), we have \(||[x, y] - [x, z]|| \leq \kappa||y - z|| \). We note that in a similar way, a differentiability property of semi-inner-products was defined in [3], and that any semi-inner-product satisfying that differentiability property satisfies also the Lipschitz property.

The aim of this paper is to characterize the diagonalizable adjoint abelian operators in finite dimensional spaces with a semi-inner-product that satisfies the Lipschitz property.

To formulate our main result, we need the following notions and notations. An isometry of \(M \) is an operator \(A : M \to M \) satisfying \(||Ax|| = ||x|| \) for every \(x \in M \), or, equivalently, \([Ax, Ay] = [x, y] \) for every \(x, y \in M \) (cf. [9]). For the properties of isometries in Minkowski spaces, the interested reader is referred to [9].

For the following definition, see also [4].

Definition 1. If \(x, y \in M \) and \([x, y] = 0 \), we say that \(x \) is transversal to \(y \), or \(y \) is normal to \(x \). If \(X, Y \subset M \) such that \([x, y] = 0 \) for every \(x \in X \) and \(y \in Y \), we say that \(X \) is transversal to \(Y \) or \(Y \) is normal to \(X \).

Definition 2. Let \(U \) and \(V \) be linear subspaces of \(M \) such that \(M = U \oplus V \). If for every \(x_u, y_u \in U \) and \(x_v, y_v \in V \), we have

\[
[x_u + x_v, y_u + y_v] = [x_u, y_u] + [x_v, y_v],
\]

then we say that the semi-inner-product \([\cdot, \cdot]\) is the direct sum of \([\cdot, \cdot]_U \) and \([\cdot, \cdot]_V \), and denote it by \([\cdot, \cdot] = [\cdot, \cdot]_U + [\cdot, \cdot]_V \). If there are no such linear subspaces of \(M \), we say that \([\cdot, \cdot]\) is non-decomposable.

We remark that if \([\cdot, \cdot] = [\cdot, \cdot]_U + [\cdot, \cdot]_V \) for some linear subspaces \(U \) and \(V \), then \(U \) and \(V \) are both transversal and normal, and that the converse does not hold. We note also that any two semi-inner-product spaces can be added in this way (cf. [5]). Definition 2 can be formulated for finitely many subspaces as well in the natural way. For the simplicity of notation, we mean that every semi-inner-product space is the direct sum of itself.

Let \(A : M \to M \) be a linear operator, and let \(\lambda_1 > \lambda_2 > \ldots > \lambda_k \geq 0 \) be the absolute values of the eigenvalues of \(A \). If \(\lambda_i \) is an eigenvalue of \(A \), then \(E_i \) denotes the eigenspace of \(A \) belonging to \(\lambda_i \), and if \(\lambda_i \) is not an eigenvalue, we set \(E_i = \{0\} \). We define \(E_{-i} \) similarly with \(-\lambda_i \) in place of \(\lambda_i \), and set \(\bar{E}_i = \text{span}(E_i \cup E_{-i}) \). Our main theorem is the following.

Theorem 1. Let \(M \) be a smooth Minkowski space such that the induced semi-inner-product \([\cdot, \cdot] : M \times M \to \mathbb{R} \) satisfies the Lipschitz condition, and let \(A : M \to M \) be a diagonalizable linear operator. Then \(A \) is adjoint abelian with respect to \([\cdot, \cdot]\) if, and only if, the following hold.

1. \([\cdot, \cdot]\) is the direct sum of its restrictions to the subspaces \(\bar{E}_i \), \(i = 1, 2, \ldots, k \);
2. for every value of \(i \), the subspaces \(E_i \) and \(E_{-i} \) are both transversal and normal;
for every value of i, the restriction of A to \bar{E}_i is the product of λ_i and an isometry of \bar{E}_i.

From Theorem 1 we readily obtain the following corollary.

Corollary 1. Let \mathbb{M} be a smooth Minkowski space such that the induced semi-inner-product $[.,.]$ satisfies the Lipschitz condition. Then the following are equivalent.

1. $[.,.]$ is non-decomposable;
2. every diagonalizable adjoint abelian linear operator of \mathbb{M} is a scalar multiple of an isometry of \mathbb{M}.

Note that if A is not diagonal, then we may apply Theorem 1 for the span of the eigenspaces of A.

Corollary 2. Let \mathbb{M} be a smooth Minkowski space such that the induced semi-inner-product $[.,.] : \mathbb{M} \times \mathbb{M} \to \mathbb{R}$ satisfies the Lipschitz condition, and let $A : \mathbb{M} \to \mathbb{M}$ be an adjoint abelian linear operator with respect to $[.,.]$. Then (1), (2) and (3) in Theorem 1 hold for A.

If $[.,.] = [.,.]|_U + [.,.]|_V$ for some subspaces U and V, and $u \in U$ and $v \in V$, then, by Theorem 1, $S \cap \text{span}\{u, v\}$ is an ellipse. This observation is proved, for example, in Statement 1 of [5]. Thus, we have the following.

Corollary 3. Let \mathbb{M} be a smooth Minkowski space such that the induced semi-inner-product satisfies the Lipschitz condition. If no section of the unit sphere S with a plane is an ellipse with the origin as its centre, then every diagonalizable adjoint abelian operator of \mathbb{M} is a scalar multiple of an isometry of \mathbb{M}.

In the proof of Theorem 1 we need the following lemma.

Lemma 1. Let \mathbb{M} be a smooth Minkowski space. Let $||.||$, $[.,.]$ and S denote the norm, the associated semi-inner-product and the unit sphere of \mathbb{M}. Then the following are equivalent.

1. $[.,.]$ satisfies the Lipschitz condition;
2. for every $x \in \mathbb{M}$, the function $f_x : \mathbb{M} \to \mathbb{R}$, $f_x(y) = [x,y]$ is uniformly continuous on \mathbb{M}; that is, for every $x \in \mathbb{M}$ and $\varepsilon > 0$ there is a $\delta > 0$ such that $y, z \in \mathbb{M}$ and $||y - z|| < \delta$ imply $||x, y|| - ||x, z|| < \varepsilon$;
3. for every $x \in \mathbb{M}$ and any sequences $\{y_n\}, \{z_n\}$ in \mathbb{M}, if $||y_n - z_n|| \to 0$, then $||x, y_n|| - ||x, z_n|| \to 0$.

Proof. Note that (2) and (3) are equivalent. We prove that (1) and (3) are equivalent.

First we show that (1) yields (3). Observe that since $[x,y]$ is homogeneous in x, it suffices to prove (3) for $x \in S$. Let $x \in S$, and assume that there is a number $\kappa \in \mathbb{R}$ such that for every $y, z \in S$, we have $||x, y|| - ||x, z|| < \kappa||y - z||$. Consider the sequences $\{y_n\}$ and $\{z_n\}$ in \mathbb{M}, and assume that $||y_n - z_n|| \to 0$. Since a continuous function is uniformly continuous on any compact set and since the unit ball of \mathbb{M} is compact, we may assume that $||y_n|| \geq 1$ and that $||z_n|| \geq 1$ for every n. Let $w_n = \frac{||z_n||}{||y_n||}y_n$. Observe that, by the definition of semi-inner-product, $|[u,v]| \leq 1$
for any $u, v \in S$. Then, from $\left| x, \frac{w_n}{\|y_n\|} \right| \leq 1$ and from the triangle inequality, we obtain that
\[
\left| \left| x, y_n \right| - \left| x, z_n \right| \right| \leq \left| \left| x, y_n \right| - \left| x, w_n \right| \right| + \left| \left| x, w_n \right| - \left| x, z_n \right| \right| = \left| \|y_n\| - \|w_n\| \right| - \left| \|y_n\| - \|z_n\| \right|.
\]
\[
\left| \left| x, \frac{y_n}{\|y_n\|} \right| - \left| x, \frac{w_n}{\|w_n\|} \right| \right| + \left| \frac{z_n}{\|z_n\|} \right| \left| \left| \frac{w_n}{\|w_n\|} - \left| \frac{z_n}{\|z_n\|} \right| \right| \leq \left| \|y_n\| - \|w_n\| \right| + \|\|y_n\| - \|z_n\|\| \to 0.
\]
Note that $\|w_n - y_n\| = \||y_n\| - \|z_n\|\| \leq \|y_n - z_n\| \to 0$ and that $\|w_n - z_n\| \leq \|w_n - y_n\| + \|y_n - z_n\| \to 0$, from which it follows that $\left| x, y_n \right| - \left| x, z_n \right| \to 0$.

Assume that (1) does not hold. Then there is a point $x \in S$ and sequences $y_n, z_n \in S$ such that $\left| \left| x, y_n \right| - \left| x, z_n \right| \right| = \kappa_n \|y_n - z_n\|$ where $\kappa_n \to \infty$. We may assume that $\kappa_n > 0$ for every n, and since S is compact, also that $y_n \to y$ and $z_n \to z$ for some $y, z \in S$. Note that $\kappa_n \to \infty$ implies $y = z$. Let $\delta_n = \|y_n - z_n\|$, and assume that $\delta_n > 0$ for every n. Observe that as y_n and z_n converge to the same point, we have $\delta_n \to 0$, and, as $[x, y]$ is continuous in $y \in S$ for every $x \in S$, we have also that $\kappa_n \|y_n - z_n\| = \kappa_n \delta_n \to 0$. Let $u_n = \frac{u_n}{\kappa_n \delta_n}$ and $v_n = \frac{z_n}{\kappa_n \delta_n}$. Then $\left| u_n - v_n \right| = \frac{1}{\kappa_n} \to 0$, and $\left| \left| x, u_n \right| - \left| x, v_n \right| \right| = 1$, and hence, (3) does not hold. \hfill \Box

2. Proof of Theorem 1

Assume that A is adjoint abelian. Let μ and ν be two different eigenvalues of A and let x and y be eigenvectors belonging to μ and ν, respectively. Then,
\[
\mu[x, y] = [Ax, y] = [x, Ay] = \nu[x, y],
\]
which yields that x is transversal to y. Thus, any two eigenspaces, belonging to distinct eigenvalues, are both transversal and normal, which, in particular, proves (2) (for isometries, see this observation in [7]). Recall that an Auerbach basis of a Minkowski space is a basis in which any two distinct vectors are transversal and normal to each other, and that in every norm there is an Auerbach basis. Note that the restriction of a norm to a linear subspace is also a norm, and thus, we may choose Auerbach bases in each eigenspace separately, which, by the previous observation, form an Auerbach basis in the whole space. Let $x \in \mathbb{M}$, and observe that x has a unique representation of the form $x = \sum_{i=1}^k x_i$, where $x_i \in \bar{E_i}$. To prove Theorem 1 we need the following lemma.

Lemma 2. If $z \in \bar{E_i}$ for some value of i, then $[z, x] = [z, x_i]$.

Proof. Assume that $z \in \bar{E_i}$ for some $i \in \{1, 2, \ldots, k\}$.

Case 1, $i = 1$.

If $\lambda_1 = 0$, then A is the zero operator, and the assertion immediately follows. Let us assume that $\lambda_1 > 0$. As A is adjoint abelian, we have that $[A^2 z, x] = [Az, Ax] = [z, A^2 x]$. Observe that $A^2 z = \lambda_1^2 z$, and that $A^2 x = \sum_{i=1}^k \lambda_i^2 x_i$. Thus,
\[
[z, x] = \left[z, \sum_{i=1}^k \left(\frac{\lambda_i^2}{\lambda_1^2} \right)^{\frac{n}{\lambda_1^2}} x_i \right]
\]
for every positive integer n. Since $[\cdot, \cdot]$ is continuous in both variables, we obtain that the limit of the right-hand side of (1) is $[z, x_1]$, and hence, $[z, x] = [z, x_1]$.\hfill \Box
other hand, Note that in this case and thus, we have for every positive integer \(n \). We prove by induction on \(n \) and its eigenvalues of \(A \). Note that \(A|_{F_i} \) is invertible, adjoint abelian, and its inverse is also adjoint abelian. Let \(B_i \) denote the inverse of \(A|_{F_i} \), and observe that the absolute values of the eigenvalues of \(B_i \) are \(\frac{1}{\lambda_j} \) and its eigenspaces are \(E_j \) and \(E_{-j} \), where \(j = 1, 2, \ldots, i \). Thus, we have \(\frac{1}{n} [z, w] = [B_i^2 z, w] = [B_i w, B_i w] = [z, B_i^2 w] \) and

\[
[z, w] = \left[z, \sum_{j=1}^{i} \left(\frac{\lambda_j^2}{\lambda_j^2} \right)^n x_j \right]
\]

for every positive integer \(n \). By the continuity of the semi-inner-product, and since the limit of the right-hand side is \([z, x_i] \), we have the desired equality.

Now we show that \([z, x] = [z, x_i] \). Similarly like before, we obtain that

\[
[z, x] = \left[z, \sum_{j=1}^{k} \left(\frac{\lambda_j^2}{\lambda_j^2} \right)^n x_j \right]
\]

for every positive integer \(n \). Observe that \(\lim_{n \to \infty} \left| \sum_{j=i+1}^{k} \left(\frac{\lambda_j^2}{\lambda_j^2} \right)^n x_j \right| = 0 \), and that, by the previous paragraph, \([z, \sum_{j=1}^{i} \left(\frac{\lambda_j^2}{\lambda_j^2} \right)^n x_j] = [z, x_i] \) for every positive integer \(n \). Thus, by Lemma \(\text{II} \) we have that \([z, x] = [z, x_i] \).

Case 3. \(i > 1 \) and \(\lambda_i = 0 \).

Note that in this case \(i = k \) and \(\tilde{E}_k = E_k \). Let \(F = \text{span}(\bigcup_{i=1}^{k-1} \tilde{E}_i) \) and set \(x_f = \sum_{j=1}^{k-1} x_j \). By Cases 1 and 2, we have \([x_f, x_k] = \sum_{j=1}^{k-1}[x_j, x_k] = 0 \). On the other hand,

\[
[x_k, x_f] = \left[x_k, A^2 \sum_{j=1}^{k-1} \frac{1}{\lambda_j^2} x_j \right] = \left[A^2 x_k, \sum_{j=1}^{k-1} \frac{1}{\lambda_j^2} x_j \right] = 0.
\]

Thus, we obtained that \(F \) and \(E_k \) are both transversal and normal. Now we let \(G = \text{span}\{x_f, x_k, z\} \).

Subcase 3.1. \(\dim G = 2 \).

Let \(e_1 = \frac{x_f}{||x_f||} \) and \(e_2 = \frac{x_k}{||x_k||} \). Since \(F \) and \(E_k \) are transversal and normal, the pair \(\{e_1, e_2\} \) is an Auerbach basis in \(G \). By Cases 1 and 2, \([\cdot, \cdot]|_F = \sum_{j=1}^{k-1}[\cdot, \cdot]|_{\tilde{E}_j} \), which yields that \([e_1, \alpha_1 e_1 + \alpha_2 e_2] = \alpha_1 \) for any \(\alpha_1, \alpha_2 \in \mathbb{R} \).

Now we identify \(G \) with the Euclidean plane \(\mathbb{R}^2 \) by \(\alpha_1 e_1 + \alpha_2 e_2 \mapsto (\alpha_1, \alpha_2) \); or in other words, we assume that \(e_1 \) and \(e_2 \) are the standard basis of an underlying Euclidean plane. We need to show that \([e_2, \alpha_1 e_1 + \alpha_2 e_2] = \alpha_2 \) for any \(\alpha_1, \alpha_2 \in \mathbb{R} \), or, equivalently, that the unit circle \(S \cap G \) of the subspace \(G \) is the Euclidean unit circle.

Since \(\mathbb{M} \) is smooth, \(S \cap G \) is a convex differentiable curve. Consider the Descartes coordinate system induced by the standard basis \(e_1 \) and \(e_2 \), and note that the lines \(x = 1, x = -1, y = 1 \) and \(y = -1 \) support conv \(S \). Thus, for every value
of \(x \in (-1, 1) \), there is exactly one point of \(S \) with \(x \) as its \(x \)-coordinate and nonnegative \(y \)-coordinate. We represent the points of \(S \cap G \) with nonnegative \(y \)-coordinates as the union of the graph of a function \(x \mapsto f(x) \) with \(x \in [-1, 1] \), and (possibly) two segments on the lines with equations \(x = 1 \) and \(x = -1 \). We express the equality \([e_1, \alpha_1 e_1 + \alpha_2 e_2] = \alpha_1 \) with the function \(f \).

We may assume that \(v = \alpha_1 e_1 + \alpha_2 e_2 \in S \cap G \). Consider the case that \(v = x_0 e_1 + f(x_0) e_2 \) for some \(x_0 \in (-1, 1) \). Then we have \([e_1, v] = [e_1, x_0 e_1 + f(x_0) e_2] = x_0 \). Let \(v_p \) denote the projection of \(e_1 \) onto the line \(\{ \lambda v : \lambda \in \mathbb{R} \} \) parallel to the supporting line of \(\text{conv} \ S \) at \(v \), and let \(e_p \) denote the projection of \(v \) onto the line \(\{ \lambda e_1 : \lambda \in \mathbb{R} \} \) parallel to the supporting line of \(\text{conv} \ S \) at \(e_1 \) (cf. Figure 1). Let \(v_p = \mu v \) and observe that \(e_p = x_0 e_1 \). We note that, by the construction of the semi-inner-product described, for example in [8], we have that \([e_1, v] = \mu \) and \([v, e_1] = x_0 \). Hence the triangle with vertices \(o, e_1, v \) is similar to the triangle with vertices \(o, v_p, e_p \), with similarity ratio \(x_0 \). From this, we obtain that \(v_p = x_0 v = x_0^2 e_1 + x_0 f(x_0) e_2 \). As the line, passing through \(e_1 \) and \(v_p \), is parallel to the supporting line of \(\text{conv} \ S \) at \(v \), we have

\[
f'(x_0) = -\frac{x_0 f(x_0)}{1 - x_0^2},
\]

which is an ordinary differential equation for \(f \) with the initial condition \(f(0) = 1 \).

![Figure 1. An illustration for Subcase 3.1](image)

We omit an elementary computation that shows that the solution of this differential equation is \(y = \sqrt{1 - x^2} \). Thus, we obtain that \(S \cap G \) is the Euclidean unit circle, which yields, in particular, that \([z, x f + x_k] = [z, x_k] \).

Subcase 3.2, \(\dim G = 3 \).

Set \(e_1 = \frac{x}{\|x\|} \) and choose an Auerbach basis \(\{e_2, e_3\} \) in \(\text{span}\{x_k, z\} \). Then the set \(\{e_1, e_2, e_3\} \) is an Auerbach basis in \(G \). Furthermore, since \(F \) and \(E_k \) are transversal and normal, \(\{e_1, v\} \) is an Auerbach basis in its span for any \(v \in \text{span}\{x_k, z\} \) with \(\|v\| = 1 \). Thus, applying the argument in Subcase 3.1 for the subspace \(\text{span}\{e_1, v\} \), we obtain that \(S \cap \text{span}\{e_1, v\} \) is the ellipse with semiaxes \(e_1 \) and \(v \). Note that this property and \(S \cap \text{span}\{e_1, e_2\} \) determines the norm.
Consider the semi-inner-product defined by \([\beta_1 e_1 + \beta_2 e_2 + \beta_3 e_3, \alpha_1 e_1 + \alpha_2 e_2 + \alpha_3 e_3] = \beta_1 \alpha_1 + [\beta_2 e_2 + \beta_3 e_3, \alpha_2 e_2 + \alpha_3 e_3] \). We show that \([.,.]\)' and \([.,.\]) define the same norm, which, as a smooth norm uniquely determines its semi-inner-product, yields that \([.,.] = [.,.]\).

Let \(v = \alpha_2 e_2 + \alpha_3 e_3 \) with \(||v|| = 1 \) be arbitrary. Note that if \(||\mu e_1 + \nu v|| = 1 \), then
\[
[\mu e_1 + \nu v, \mu e_1 + \nu v]' = \mu^2 + \nu^2 [v, v] = \mu^2 + \nu^2 = 1,
\]
which, in span \(\{e_1, v\} \), is the equation of the ellipse with semiaxes \(e_1 \) and \(v \). As the restrictions of \([.,.]\)' and \([.,.\]) to span \(\{e_2, e_3\} \) are clearly equal, we obtain that \([.,.] = [.,.]\)' , which, in particular, implies that \([z, x_f + x_k] = [z, x_k] \). □

By Lemma 2 we have that (1) of Theorem 1 holds. Thus, it remains to show that (3) also holds. Without loss of generality, let us assume that \(k = 1 \), and that \(\lambda_1 = 1 \). Then every \(x \in \mathcal{M} \) can be decomposed as \(x = x_1 + y_1 \) with \(x_1 \in \mathcal{E}_1 \) and \(y_1 \in \mathcal{E}_{-1} \). Hence,
\[
[A(x_1 + y_1), A(x_1 + y_1)] = [x_1 + y_1, A^2(x_1 + y_1)] = [x_1 + y_1, x_1 + y_1],
\]
and thus, \(A \) is an isometry.

Finally, we show that if (1), (2) and (3) holds, then \(A \) is adjoint abelian. Let \(x = \sum_{i=1}^k x_i \) and \(y = \sum_{i=1}^k y_i \) with \(x_i, y_i \in \mathcal{E}_i \). Assume, first, that \(\lambda_k \neq 0 \), which means that \(A \) is invertible. Note that \(\mathcal{E}_i \) is an invariant subspace of \(A \) for every value of \(i \), and that \(\left(\frac{1}{\lambda_i} A \right)^{-1} = \frac{1}{\lambda_i} A = \text{id} \) on \(\mathcal{E}_i \). Hence,
\[
[Ax, y] = \sum_{i=1}^k [Ax_i, y_i] = \sum_{i=1}^k \lambda_i \left[\frac{1}{\lambda_i} Ax_i, y_i \right] = \sum_{i=1}^k \lambda_i \left[x_i, \left(\frac{1}{\lambda_i} A \right)^{-1} y_i \right] = \sum_{i=1}^k \lambda_i \left[x_i, \frac{1}{\lambda_i} Ay_i \right] = \sum_{i=1}^k [x_i, Ay_i] = [x, Ay],
\]
and the assertion follows. If \(A \) is not invertible, we may apply a slightly modified argument.

Acknowledgements. The author is indebted to Á. G. Horváth for proposing this project and for his helpful comments.

References

[1] S. S. Dragomir, Semi-inner-products and Applications Nova Science Publishers, Hauppauge NY, 2004.
[2] R. J. Fleming and J. E. Jamison, Hermitian and adjoint abelian operators on certain Banach spaces, Pacific J. Math. 52 (1974), 67-84.
[3] R. J. Fleming and J. E. Jamison, Adjoint abelian operators on \(L^p \) and \(C(K) \), Trans. Amer. Math. Soc. 217 (1976), 87-98.
[4] J. R. Giles, Classes of semi-inner product spaces, Trans. Amer. Math. Soc. 129 (1967), 436-446.
[5] Á. G. Horváth, Semi-indefinite product and generalized Minkowski spaces, J. Geom. Phys. 60 (2010), 1190-1208.
[6] D. O. Koehler, A note on some operator theory in certain semi-inner-product spaces, Proc. Amer. Math. Soc. 30(2) (1971), 363-366.
[7] D. Kohler and P. Rosenthal, On isometries of normed linear spaces, Studia Math. 36 (1970), 213-216.
[8] G. Lumer, Semi-inner-product spaces, Trans. Amer. Math. Soc. 100 (1961), 29-43.
[9] H. Martini and M. Spirova, *Reflections in strictly convex Minkowski planes*, Aequationes Math. **78** (2009), 71-85.

[10] R. E. Megginson, *An Introduction to Banach Space Theory*, Graduate texts in mathematics, **183**, Springer-Verlag, New York, 1998.

[11] A. W. Roberts, D. E. Varberg, *Convex functions*, Pure and Applied Mathematics **57**, Academic Press [A subsidiary of Harcourt Brace Jovanovich, Publishers], New York-London, 1973.

Zsolt Lángi, Dept. of Geometry, Budapest University of Technology, Budapest, Egry József u. 1., Hungary, 1111

E-mail address: zlangi@math.bme.hu