Case Report

Pituitary stalk transection syndrome

Gayathri Sajeevan*, Sajitha Nair¹, Devika Geetha¹, Nisha Bhavani², C. Jayakumar¹, Suchitra Sivadas¹

¹Department of Pediatrics, ²Department of Endocrinology, Amrita Institute of Medical Sciences Kochi, Kerala, India

Received: 17 September 2020
Accepted: 17 October 2020

*Correspondence:
Dr. Gayathri Sajeevan,
E-mail: sgayathrisajeevan@gmail.com

Copyright: © the author(s), publisher and licensee Medip Academy. This is an open-access article distributed under the terms of the Creative Commons Attribution Non-Commercial License, which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

ABSTRACT

Growth hormone deficiency is one of the most common endocrinological causes for short stature. It can either be idiopathic or associated with organic causes like tumors or following surgery. One of the rare causes for growth hormone deficiency in children is pituitary stalk transection syndrome. It can be diagnosed by magnetic resonance imaging of the hypothalamus and pituitary gland which shows an ectopic or absent posterior pituitary, an absent or interrupted pituitary stalk, or small anterior pituitary in combination with growth hormone or other pituitary hormone deficiencies. Current report presents a child with pituitary stalk transection syndrome who was brought for evaluation of hypoglycemic seizures.

Keywords: Growth hormone deficiency, PSTS, Short stature

INTRODUCTION

Pituitary stalk transection syndrome (PSTS) or pituitary stalk interruption syndrome is a rare congenital anomaly causing anterior pituitary deficiency with an incidence of 0.5/1,000,000 births.¹ This was first described by Fujisawa et al in 1987.² The classic triad of PSTS on MRI are thin or interrupted pituitary stalk, aplasia or hypoplasia of the anterior pituitary and absent or ectopic posterior pituitary (EPP).³ The posterior pituitary function is usually normal. PSTS presents as isolated growth hormone deficiency (GHD) or as multiple anterior pituitary hormone deficiencies (MPHD).⁴ It can be progressive with onset in childhood as a single hormone deficiency finally leading to pan-hypopituitarism later. Early diagnosis and management of the pituitary hormone deficiencies can decrease the mortality and morbidity. The data on this syndrome are mostly from Western countries and no significant data is available from Asian countries.⁵ Current report present a 5 year old male child who was brought for evaluation of hypoglycemic seizures in whom on detailed evaluation showed PSTS.

CASE REPORT

A 5 year 3 months old developmentally normal male child born as second child of NCM was brought for evaluation of 3 episodes of hypoglycemic seizures noted during early morning hours over the past two months. He had an uneventful antenatal period and was born by LSCS. Baby cried soon after birth. Birth weight was 4.3kg. He had attained age appropriate milestones and had average scholastic performance. Many members of mother’s family were short and they were intellectually normal.

On examination there were no obvious dysmorphic features or midline defects. Testes were bilaterally descended. His weight was 13.4 kg (at third centile) and height was 95 cm (below third centile). US:LS ratio was 1.12:1. Occipito frontal circumference was normal. Mother’s height was 147 cm and father’s height was 170cm. Mid parental height was 165cm (between tenth and twenty-fifth centile). Stretch penile length was 3cm. Tanner score was prepubertal and fundus examination was normal. There was no organomegaly.
en in suprasellar location near the floor of third ventricle and optic chiasma. The infundibulum and pituitary stalk are not seen. Anterior pituitary is deficient/hypoplastic with a very thin sheet of enhancement in the sella floor. The cause of PSTS is still unknown. PSTS can be due to defective migration of the pituitary gland during intrauterine life or trauma related ischemia with subsequent reorganization of infundibular axons and development of an ectopic posterior pituitary. Many theories have been proposed like perinatal injuries, genetic or environmental factors.\(^4\) Breech delivery causing deformation of head, hypoxia or anoxia after birth can also lead to injury of the pituitary stalk and pituitary. Midline malformations like cleft lip, absence of diaphragm, hypoplasia of optic nerve are seen in 20-50% of the cases. Isolated GHD have a higher risk of congenital malformations as compared to those having multiple anterior pituitary deficiencies.\(^5\) Rarely mutations of HESX1, LH4, OTX3 and SOX3 are also seen. Current studies suggest that PSTS occurs as a direct or indirect consequence of the hypothalamic-pituitary lesion.\(^6\) Our patient had an uneventful natal, postnatal period and there were no associated malformations.

Clinical presentation varies depending on the age of diagnosis. In neonates it presents as neonatal hypoglycemia, prolonged neonatal (physiological) jaundice, cryptorchidism or microcephalin. In older children and adults it is characterized by growth retardation and signs of anterior pituitary deficiency.\(^10,11\) Our patient presented with hypoglycemic seizures and had short stature on examination.

MRI findings of PSTS include hypoplasia or aplasia of anterior pituitary, absence of the hyper intense posterior lobe within the sella turcica and its presence at the level of the median eminence or at the pituitary stalk level as a hyper intense nodule, and absent or thinned out pituitary stalk.\(^3,4\) There can be other variations in the MRI like the height of the anterior pituitary (from absence to normal), the appearance of the posterior pituitary lobe (ectopic at the base of the hypothalamus or along the pituitary stalk, absent, or normal), and the form of the pituitary stalk (interrupted, thin, absent, or normal) or even limited to an ectopic posterior pituitary.\(^6\) The position of the EPP is very

DISCUSSION

PSTS usually presents during the first decade of life with a male to female sex ratio between 2.3 and 6.9:1.\(^4,6\) It can present as isolated growth hormone deficiency or associated with other multiple pituitary hormone deficiencies with onset in childhood.\(^7\)

The patient had an uneventful natal, postnatal period and there were no associated malformations.
significant. Anterior pituitary hormone deficiencies are markedly increased when the posterior pituitary is present at the median eminence or at the hypothalamic region. MRI pituitary protocol done showed ectopic posterior pituitary bright spot seen in suprasellar location near the floor of third ventricle and optic chiasma. The infundibulum and pituitary stalk are not seen. Anterior pituitary is deficient or hypoplastic with a very thin sheet of enhancement in the sella floor. On the basis of these findings, the diagnosis of PSTS was made. He was started on growth hormone therapy and was on regular follow up.

CONCLUSION

A high degree of suspicion is required for early diagnosis of growth hormone deficiency due to pituitary stalk transection syndrome. Early identification, initiation of therapy and strict growth monitoring is of paramount importance. Regular monitoring for multiple pituitary hormone deficiency should be looked out. Close follow-up during pubertal period is necessary.

Funding: No funding sources
Conflict of interest: None declared
Ethical approval: Not required

REFERENCES

1. El Chehadeh-Djejbar S, Callier P, Masurel-Paulet A, Bensignor C, Méjean N, Payet M, et al. 17q21.31 microdeletion in a patient with pituitary stalk interruption syndrome. Eur J Med Genet. 2011;54(3):369-73.

2. Fujisawa I, Kikuchi K, Nishimura K, Togashi K, Itoh K, Noma S, et al. Transection of the pituitary stalk: development of an ectopic posterior lobe assessed with MR imaging. Radiology. 1987;165(2):487-9.

3. Simmons GE, Suchnicki JE, Rak KM, Damiano TR. MR imaging of the pituitary stalk: size, shape, and enhancement pattern. Am J Roentgenol. 1992;159:375-7.

4. Tauber M, Chevrel J, Diene G, Moulin P, Jouret B, Oliver I, et al. Long-term evolution of endocrine disorders and effect of GH therapy in 35 patients with pituitary stalk interruption syndrome. Horm Res. 2005;64(6):266-73.

5. Guo Q, Yang Y, Mu Y, Lu J, Pan C, Dou J, et al. Pituitary stalk interruption syndrome in Chinese people: clinical characteristic analysis of 55 cases. PLoS One. 2013;8:e53579.

6. Pinto G, Netchine I, Sobrier ML, Brunelle F, Souberbielle JC, Brauner R. Pituitary stalk interruption syndrome: A clinical-biological-genetic assessment of its pathogenesis. J Clin Endocrinol Metab. 1997;82:3450-4.

7. Patkar D, Patankar T, Krishnan A, Prasad S, Shah J, Limdi J. MR imaging in children with ectopic pituitary gland and anterior hypopituitarism. J Postgrad Med. 1999;45(3):81-3.

8. Melo ME, Marui S, Carvalho LR, Arnhold IJ, Leite CC, Mendonça BB, et al. Hormonal, pituitary magnetic resonance, LHX4 and HESX1 evaluation in patients with hypopituitarism and ectopic posterior pituitary lobe. Clin Endocrinol. 2007;66:95-102.

9. Simon D, Hadijathanasiou C, Garel C, Czernichow P, Léger J. Phenotypic variability in children with growth hormone deficiency associated with posterior pituitary ectopia. Clin Endocrinol. 2006;64:416-22.

10. Vijayanand P, Mahadevan S, Shivbalan S, Reddy N, Ramdoss N. Pituitary stalk interruption syndrome (PSIS). Indian J Pediatr. 2007;74:874-5.

11. Reynaud R, Albarel F, Saveanu A, Kaffel N, Castinetti F, Lecomte P, et al. Pituitary stalk interruption syndrome in 83 patients: novel HESX1 mutation and severe hormonal prognosis in malformative forms. Eur J Endocrinol. 2011;164(4):457-65.

12. Chen S, Léger J, Garel C, Hassan M, Czernichow P. Growth hormone deficiency with ectopic neurohypophysis: Anatomical variations and relationship between the visibility of the pituitary stalk asserted by magnetic resonance imaging and anterior pituitary function. J Clin Endocrinol Metab. 1999;84:2408-13.

Cite this article as: Sajeevan G, Nair S, Geetha D, Bhavani N, Jayakumar C, Sivadas S. Pituitary stalk transection syndrome. Int J Contemp Pediatr 2020;7:2397-9.