Podstawowe techniki preparacyjne w sonochirurgii

Basic dissecting techniques in ultrasound-guided surgery

Zbigniew Pilecki¹, Bogdan Koczy², Michał Mielnik², Grzegorz Pilecki², Józef Dzielicki¹, Wiesław Jakubowski³

¹Oddział Ortopedii i Traumatologii Narządu Ruchu dla Dzieci, Chorzowskie Centrum Pediatrii i Onkologii w Chorzowie
²Wojewódzki Szpital Chirurgii Urazowej w Piekarach Śląskich
³Zakład Diagnostyki Obrazowej, II Wydział Lekarski Warszawskiego Uniwersytetu Medycznego w Warszawie

Correspondence: Zbigniew Pilecki, Chorzowskie Centrum Pediatrii i Onkologii w Chorzowie, 41-500 Chorzów, ul. Truchana 7, tel. +48 32 347 12 16; e-mail: z.pilecki@gmail.com

Streszczenie
Sonochirurgia jest działem chirurgii maloinwazyjnej, w której procedury operacyjne są wykonywane w ciągłym obrazowaniu ultrasonograficznym. Wymagają pewnego doświadczenia w przeprowadzaniu zabiegów endoskopowych i bardzo dużej umiejętności wykonywania badania ultrasonograficznego. Dopiero zgranie tych elementów pozwoli na sprawne wykonanie zabiegu sonochirurgicznego. W chirurgii bardzo ważnym elementem zabiegu jest wykonanie prawidłowego dostępu chirurgicznego. Ten element decyduje często o ostatecznym wyniku wykonanej procedury operacyjnej. W sonochirurgii wykonujemy dostęp skórne punktowe, jednak już w obrębie tkanek położonych głębiej wykorzystujemy typowe dla tego działu techniki preparacyjne w środowisku płynowym. Sposoby preparowania w sonochirurgii obecnie dzieliliśmy na: podstawowe (płynowo-igłowe, narządowe, elektronarządowe, nitkowe i mieszane) i zaawansowane (balonowe, hakowe i hybrydowe). Preparowanie płynowo-igłowe powstało w oparciu o zasadę komplementarnej i jest najczęściej stosowaną techniką w sonochirurgii. Poznanie olbrzymich możliwości tej techniki będzie korzystne w każdym dziale chirurgii. Preparowanie z użyciem narzędzi i elektronarządzi jest typowe dla wszystkich dziedzin chirurgii, ale sposób obrządkowania powoduje pewne modyfikacje tych technik. Jednak dopiero poznanie technik nitkowych daje możliwość precyzyjnego i często rozległego preparowania. Technika ta jest z powodzeniem wykorzystywana w preparowaniu struktur mięśniowych, wątrobowych, ściegiennych, naczyniowych oraz innych. Opanowanie technik preparacyjnych pozwala na sprawne przeprowadzenie zabiegu operacyjnego nie tylko sonochirurgicznego, ale również zabiegów artroskopowych i endoskopowych. Stają się one pomostem do tworzenia skojarzonych technik operacyjnych zwanych potocznie hybrydowymi. Ich siła leży w znamionym obrazowaniu, które umożliwia przeprowadzenie zabiegu operacyjnego zarówno w jamie ciała, jak i narzędzi mięśniowym.
Naucz się, wykonaj, naucz innych.
Profesor Józef Dzielicki

Wstęp

Wykonywanie właściwego dostępu operacyjnego jest sztuką tak starą jak sama chirurgia. To właśnie przerwanie powłok skórnyc stało się początkiem rozwoju chirurgii, niezależnie od tego, czy zostało zadane ręką medyka czy wojownika. Zapewne rany odniesione w walce wymagały właściwego opatrzenia, co powodowało szybkie rozwój chirurgii urazowej. Rodzaj użytej broni wymagał od medyka coraz większych umiejętności i wiedzy podczas usuwania grotória i pocisków oraz opatrywania głębokich ran. Praktyczne umiejętności i obserwacje nabyte podczas wojen były następnie wykorzystywane w celu leczenia ludności i były przekazywane kolejnym pokoleniom lekarzy.

Nadal nie wyobrażamy sobie chirurgii bez cięcia, jednak staramy się je wykonywać z rozmysłem. Odchodzimy w zapomnienie stara chirurgiczna maksyma: duży chirurg – duże cięcie, mały chirurg – małe cięcie. To właśnie wielcy chirurdzy wykonujący zaawansowane procedury chirurgiczne starają się minimalizować cięcie i wykonywać zabiegi operacyjne technikami endoskopowymi.

Specjalnym rodzajem dostępów operacyjnych są dostępy stosowane w chirurgii endoskopowej. Cięcia na skórze są wykonywane jedynie w celu wprowadzenia układu optycznego i narzędzi endoskopowych. Przestrzenią manewrową i zarazem miejscem, w którym przeprowadzany jest zabieg, są najczęściej „rozdęte” naturalne jamy ciała: otrzewnowa, i zarazem miejscem, w którym przeprowadzany jest zabieg, którego i narzędzi endoskopowych. Przestrzenią manewrową w ultrason-guided surgery is an area of minimally-invasive surgery where surgical procedures are performed with the aid of ultrasound imaging throughout the operation. This requires the operator to possess a certain degree of experience in endoscopic procedures, and to be adeptly skillful in conducting US examinations. It is combining and finely tuning together these two elements that allows to perform efficiently an ultrasound-guided surgical procedure. Accessing an affected site correctly is of utmost importance in surgery, being oftentimes decisive in terms of the procedure’s final outcome. In ultrasound-guided procedures, the operative site is accessed percutaneously, with a single point incision, yet tissues situated deeper within are dissected with dissecting techniques in fluid environment, typical for this area of surgery. Dissecting techniques in ultrasound-guided surgery are currently divided into basic ones which employ either a hydrodissection needle, surgical instruments, electrosurgical instruments, a thread, or a combination thereof, and advanced ones where either a balloon, a hook dissection technique, or a hybrid one is used. Hydrodissection with a needle was devised based on the rule of complementarity, and is the most frequently applied technique in ultrasound-guided surgery. The immense possibilities that go along with this modality will be of huge benefit to any surgeon, regardless of their field. Dissection with a variety of surgical instruments and electrosurgery instruments is a standard practice in all surgery areas, yet the method of imaging we employ in ultrasound-guided surgery results in certain modifications of these techniques. It is, however, learning the thread technique that facilitates a precise and oftentimes extensive dissection. This technique is successfully applied for dissecting muscle, ligament, tendon, vascular and other structures. Having mastered dissecting techniques allows to perform any minimally-invasive procedure efficiently, be they ultrasound-guided, arthroscopic, or endoscopic ones. Various surgical techniques are bridged, resulting in applying the so-called hybrid ones. Their strength lies in excellent imaging results allowing to conduct a surgical procedure both in a body cavity and within a parenchymal organ.

Introduction

Accessing the operative site in a correct way is an art as ancient as surgery itself. It was the rupturing of the skin that made way for the development of surgery, regardless whether the skin was rendered open at the hand of a physician or a warrior. Presumably, wounds sustained in a battle required an adequate and technically correct treatment, thus facilitating a rapid progress in traumatic surgery. The kinds of weapons used required physicians to continuously extend their skill and knowledge to be able to remove arrowheads, spearheads and bullets, as well as to treat and dress gash wounds. The practical skills and observations acquired in the course of wars were subsequently applied when treating common people in peace times, and passed on to the next generations of physicians.

Incision-free surgery is still unthinkable, yet we attempt to incise with more consideration. The old surgical maxim stating: “a great surgeon cuts big, a meager surgeon cuts small” is gradually being forgotten. Great surgeons performing advanced surgical procedures try to minimize the incision and perform endoscopic surgical procedures.

In endoscopic surgery, the operative site is accessed in a specific way. The skin incisions are made solely to introduce an optical set and endoscopic instruments inside. The maneuvering space and at the same time the operative site
Basic dissecting techniques in ultrasound-guided surgery

Anthony Kalloo, having professed in 1997 that one day a surgeon would be able to perform a cholecystectomy without leaving visible scars on the patient's body, proved to be a man of boundless imagination. In result, NOTES (natural orifice transluminal endoscopic surgery) was developed, with transabdominal cholecystectomy or transvaginal splenectomy being fine examples thereof.

Owing to the currently used optical sets and camera systems, endoscopically operated structures are visible in 2D images. The lack of the third dimension, and particularly the lack of depth, initially tends to be quite troublesome for the surgeon. Learning to determine the distance is very challenging, yet is crucial for endoscopic surgery. It is, thankfully, made easier by the mobility of the optical set, and by real-time imaging. Oftentimes, nonetheless, the operator needs to insert various measuring tools, e.g. prior to incising, or matching an implant, etc. It is a natural course of progress, therefore, to develop optical sets which provide a 3D endoscopic image. There is a very dynamic turnover of methods for registering and presenting 3D images, yet it seems that a particularly promising one is the modality known as head-mounted display (HMD), known form computer games and providing a separate image for every eye. Should the possibility for a fusion of a previously obtained CT image with an endoscopic image appear, which is described as an augmented reality (AR) image, we would, and surely will, enter a terrain which is practically unavailable for the classical endoscopic surgery, namely the area beyond the wall of the operated cavity. It will allow to identify important structures based on a pre-operative CT scan. So far, the only way of locating a "lesion" properly within the operated organ has been the application of an intraoperative ultrasound or radiological examination. Particularly, laparoscopic ultrasonography (LUS) and endoscopic ultrasonography (EUS) have been in extensive use. The introduction of these modalities initiated further research into the development of subsequent methods, termed as extraperitoneal laparoscopy and extraarticular endoscopy (EAE), used in orthopedic procedures.

In our practice, we perform ultrasound-guided procedures under the control of image generated by a mid-range ultrasound device equipped with 3D/4D modality, image enlargement option, Doppler modality, and capable of...
powiększenia obrazu, zastosowania technik dopplerowskich oraz dokładnego pomiaru zmiany. Nie można zapomnieć o wielu innych możliwościach oceny „zmiany” przy pomocy aparatu ultrasonograficznego, takich jak użycie kontrastu, elastografii itp. Zastosowanie tych wszystkich możliwości ultrasonografów w procedurach zabiegowych znacznie wyprzedaż rozwój aparatury endoskopowej.

Klasyczne zabiegi sonochirurgiczne wykonywane są przez autorów pod kontrolą ultrasonograficzną, bez stosowania dodatkowych układów optycznych. Ultrasonograficznie monitorowany jest każdy etap, począwszy od wykonywania dostępu, a kończączy się na szyciu. Odróżnia to sonochirurgię od innych technik endoskopowych. O nie dochodzi do jatrogennych uszkodzeń ważnych struktur, z racji ich uwidocznienia podczas wykonywania dostępu. Jest to element bezsprzecznie poprawiający bezpieczeństwo zabiegu. Z tego powodu wielu chirurgów wykonuje dostęp operacyjny pod kontrolą ultrasonografii i używa aparatów ultrasonograficznych również podczas zabiegów operacyjnych.

Techniki preparacyjne

Sonochirurgia jest dyscypliną chirurgiczną, dlatego wszelkie procedury muszą być wykonywane w warunkach aseptycznych. Procedura przygotowawcza jest obowiązkowa przed każdą operacją. Każdy zabieg sonochirurgiczny rozpoczyna się od wykonania sonotopogramu, a następnie wykonujemy dostęp.

Rutynowe wykonanie mapy miejsca operowanego przy pomocy ultrasonografii bezpośrednio przed rozpoczęciem każdego zabiegu operacyjnego nosi nazwę sonotopogramu. Ta czynność pozwala zapoznać się z anatomiczno-topograficzną zasadaną okolicy, co w efekcie przekłada się na wykonanie prawidłowego dostępu operacyjnego. Potrafimy rozpoznawać praktycznie wszystkie struktury anatomiczne widoczne w badaniu ultrasonograficznym. Waga i uniwersalność sonotopogramu są bezdyskusyjne, przydatne w każdej procedurze inwazyjnej.

Dostęp skórny jest najczęściej punktowy, wykonywany pod kontrolą ultrasonografii, w celu wprowadzenia narzędzia lub założenia kaniuli. Wykonujemy go najczęściej w trakcie preparowania, po preparowaniu płynowym, a przed narzędziowym. Podczas preparowania jednocześnie wykonuje się znieczulenie miejscowe lub regionalne, typowe dla zabiegów sonochirurgicznych u osób dorosłych. Postępowanie jest bardzo praktyczne i ekonomiczne.

U dzieci wszystkie zabiegi sonochirurgiczne staramy się wykonywać w znieczuleniu ogólnym. Powodem nie jest ból, ale lęk przed procedurami inwazyjnymi. Znieczulenie miejscowe operowanego miejsca jest wykonywane jako procedura pomocnicza.

Sposoby preparowania w sonochirurgii podzielono na:

1. Podstawowe:
 1. Płynem (igłowa);
 2. Narzędziowe;

2. Narzędziowe;
 1. Hydrodissektion (with a needle);
 2. Dissection with surgical instruments;

 rendering precise lesion measurement. Numerous other options for evaluating a “lesion” with the aid of an ultrasound device, such as contrast application, or elastography should not be overlooked either. The application of all these capabilities of ultrasound devices in the course of a surgical procedure renders them superior to the current state-of-the-art endoscopic equipment.

The authors of this article perform typical ultrasound-guided procedures under the sole control of ultrasound image, without using additional optical sets. Every stage is ultrasound-guided, from accessing the lesion, to suturing. This sets ultrasound-guided surgery apart from other endoscopic methods. No iatrogenic damage of important structures is caused due to them being visualized as they are being accessed, which unquestionably improves procedure safety. This is why many surgeons access operated sites under the control of ultrasound image, and continue the procedure in like manner.

Dissection techniques

Ultrasound-guided surgery is a surgical discipline like any other, hence all procedures must be conducted in aseptic conditions, and respecting all rules of the surgical art. Every ultrasound-guided procedure begins with ultrasound topography (which we call a sonotopogram), followed by accessing the lesion.

The routine mapping of the operated site with the aid of US examination immediately preceding any surgical procedure we have termed a sonotopogram. It allows to familiarize the operator with the topographic anatomy of a treated area, which facilitates accessing the site correctly. Practically all anatomical structures can be found and evaluated in a US examination, thus rendering ultrasound topography (a sonotopogram) unquestionably and universally helpful in any invasive procedure.

Single-incision percutaneous approach is used for ultrasound-guided insertion of instruments or a cannula. The operative site is most commonly accessed during dissection, following hydrodissektion and preceding dissection with instruments. During the dissection, local or regional anesthesia is applied, which is typical for ultrasound-guided procedures in adults, this being a highly practical and economical practice.

In children, we tend to perform all ultrasound-guided procedures under general anesthesia, the reason being not actual pain, but young patients’ fear of invasive procedures. Local anesthesia of the operative site is applied as an accessory procedure.

Ultrasound-guided dissecting techniques have been divided into:

1. Basic ones:
 1. Hydrodissection (with a needle);
 2. Dissection with surgical instruments;
Basic dissecting techniques in ultrasound-guided surgery

We feel inclined to recommend hydrodissection technique using saline solution containing an anesthetic agent. The application of the needle allows to separate tissues very accurately when dissecting. Two mechanisms are at work here, complementing each other: the separating action of the jet of fluid, and the application of the needle blade acting as a knife. This is an example of complementarity employed in ultrasound-guided procedures\(^7\) (fig. 1 A, B), whereby simultaneously the operative site is anesthetized and the operative tissues are separated thus facilitating easy access with surgical instruments. Additionally, the fluid injected improves the quality of the ultrasound image and serves as a temperature buffer for exothermic procedures. The presented technique was devised based on a very simple technique, widely used in invasive ultrasound-guided surgery, namely administering a medication under the guidance of ultrasound image. The important thing is the method of the administration (different from infiltrative administration), whereby a small amount of skin- and subcutaneous tissue-anesthetizing solution is topically administered in the approach site, and the remaining part of the anesthetic is administered into the operative site, in such a way as to separate the laminated tissues with the effect of a fluid space forming. The amount of the solution administered into the intervention site can be substantial, and may be administered in portions, with the anesthetic solution being gradually replaced by saline solution.

Commonly, special probes, guides, and dissectors are used in ultrasound-guided surgery. These are most typically

\[3. \text{Dissection with electrosurgical instruments;}
4. \text{Dissection with thread;}
5. \text{Combined.}\]

II. Advanced:
1. Balloon dissection;
2. Hook dissection;
3. Hybrid.

3. Elektronarzędziowe;
4. Nitkowe;
5. Mieszane.

II. Zaawansowane:
1. Balonowe;
2. Hakowe;
3. Hybrydowe.

Autorzy polecają technikę płynowo-igłową z użyciem roztworu fizjologicznego, zawierającego środek znieczulający. Użycie igły pozwala bardzo precyzyjnie oddzielić tkanki podczas preparowania. Wykonujemy to w oparciu o dwa mechanizmy: rozwarstwiającego działania płynu podawanego pod ciśnieniem oraz z wykorzystaniem ostrza igły działającego jak nóż. Jest to przykład komplementarności sonochirurgicznej\(^7\) (ryc. 1 A, B), w efekcie czego jednocześnie uzyskuje się znieczulenie miejsca operowanego i oddzielenie tkank operowanych, które zapewnia swobodny dostęp narzędzi. Płyn dodatkowo poprawia jakość obrazu ultrasonograficznego i jest buforem cieplnym w procedurach egzotermicznych. Przedstawiona technika powstała w oparciu o najprostszą i szeroko stosowaną technikę w ultrasonografii inwazyjnej, jaką jest podanie leku pod kontrolą ultrasonografii. Ważny jest sposób wykonywania tej procedury (odmienny od znieczulania nasięnkowego) polegający na podaniu niewielkiej ilości roztworu znieczulającego skórę i tkankę podskórną w miejscu planowanego dostępu, pozostaną część podaje się w miejscu planowanej interwencji w taki sposób, aby oddzielić przyлегające tkanki z wytworzeniem się przestrzeni płynowej. Ilość podawanego roztworu w miejscu interwencji bywa znaczna i może być podawana w porcjach, przy czym roztwór środka znieczulającego jest zastępowany stopniowo przez roztwór soli fizjologicznej.

Bardzo często w sonochirurgii używa się specjalnych sond, pilotów czy preparatorów. Są stosowane najczęściej po wykonaniu preparacji igłowo-płynowej jako procedura

\[3. \text{Dissection with electrosurgical instruments;}
4. \text{Dissection with thread;}
5. \text{Combined.}\]

II. Advanced:
1. Balloon dissection;
2. Hook dissection;
3. Hybrid.

Commonly, special probes, guides, and dissectors are used in ultrasound-guided surgery. These are most typically

\[3. \text{Dissection with electrosurgical instruments;}
4. \text{Dissection with thread;}
5. \text{Combined.}\]

II. Advanced:
1. Balloon dissection;
2. Hook dissection;
3. Hybrid.

Aautorzy polecają technikę płynowo-igłową z użyciem roztworu fizjologicznego, zawierającego środek znieczulający. Użycie igły pozwala bardzo precyzyjnie oddzielić tkanki podczas preparowania. Wykonujemy to w oparciu o dwa mechanizmy: rozwarstwiającego działania płynu podawanego pod ciśnieniem oraz z wykorzystaniem ostrza igły działającego jak nóż. Jest to przykład komplementarności sonochirurgicznej\(^7\) (ryc. 1 A, B), w efekcie czego jednocześnie uzyskuje się znieczulenie miejsca operowanego i oddzielenie tkank operowanych, które zapewnia swobodny dostęp narzędzi. Płyn dodatkowo poprawia jakość obrazu ultrasonograficznego i jest buforem cieplnym w procedurach egzotermicznych. Przedstawiona technika powstała w oparciu o najprostszą i szeroko stosowaną technikę w ultrasonografii inwazyjnej, jaką jest podanie leku pod kontrolą ultrasonografii. Ważny jest sposób wykonywania tej procedury (odmienny od znieczulania nasięnkowego) polegający na podaniu niewielkiej ilości roztworu znieczulającego skórę i tkankę podskórną w miejscu planowanego dostępu, pozostaną część podaje się w miejscu planowanej interwencji w taki sposób, aby oddzielić przyлегające tkanki z wytworzeniem się przestrzeni płynowej. Ilość podawanego roztworu w miejscu interwencji bywa znaczna i może być podawana w porcjach, przy czym roztwór środka znieczulającego jest zastępowany stopniowo przez roztwór soli fizjologicznej.

Bardzo często w sonochirurgii używa się specjalnych sond, pilotów czy preparatorów. Są stosowane najczęściej po wykonaniu preparacji igłowo-płynowej jako procedura

\[3. \text{Dissection with electrosurgical instruments;}
4. \text{Dissection with thread;}
5. \text{Combined.}\]

II. Advanced:
1. Balloon dissection;
2. Hook dissection;
3. Hybrid.

We feel inclined to recommend hydrodissection technique using saline solution containing an anesthetic agent. The application of the needle allows to separate tissues very accurately when dissecting. Two mechanisms are at work here, complementing each other: the separating action of the jet of fluid, and the application of the needle blade acting as a knife. This is an example of complementarity employed in ultrasound-guided procedures\(^7\) (fig. 1 A, B), whereby simultaneously the operative site is anesthetized and the operative tissues are separated thus facilitating easy access with surgical instruments. Additionally, the fluid injected improves the quality of the ultrasound image and serves as a temperature buffer for exothermic procedures. The presented technique was devised based on a very simple technique, widely used in invasive ultrasound-guided surgery, namely administering a medication under the guidance of ultrasound image. The important thing is the method of the administration (different from infiltrative administration), whereby a small amount of skin- and subcutaneous tissue-anesthetizing solution is topically administered in the approach site, and the remaining part of the anesthetic is administered into the operative site, in such a way as to separate the laminated tissues with the effect of a fluid space forming. The amount of the solution administered into the intervention site can be substantial, and may be administered in portions, with the anesthetic solution being gradually replaced by saline solution.

Commonly, special probes, guides, and dissectors are used in ultrasound-guided surgery. These are most typically
uzupełniająca. Stosowanie narzędzi sztywnych jest szeroko stosowane od wiele lat, jednak coraz częściej stosujemy narzędzia elastyczne (ryc. 2 A, B). Użycie elektronarzędzi znajduje zastosowanie w różnych sytuacjach, najczęściej do opracowania naczyń krwionośnych i usunięcia mechanicznego lub termicznego tkanek (ryc. 3 A, B). Wykonywane jest zazwyczaj w przestrzeni płynnej, która kumuluje ciepło i pozwala na separację, a następnie usunięcie fragmentów tkanek. Podczas technik preparacyjnych możemy także w łatwy sposób pobrać wycinki tkanek do badania histopatologicznego.

Wprowadzenie techniki nitkowej podczas zabiegów sonochirurgicznych było przełomowe i pozwoliło na sprawne wykonanie zabiegów rekonstrukcyjnych. W oparciu o tę technikę mamy możliwość precyzyjnego preparowania rozległych struktur mięśniowych, ścięgnistych, więzadłowych i naczyniowych. Zważywszy, że wykonujemy ją pod kontrolą ultrasonografu, jest techniką o dużym stopniu bezpieczeństwa. Z racji swojej uniwersalności jest stosowana z dużym powodzeniem w innych działach chirurgii (ryc. 4).

The introduction of the thread technique for ultrasound-guided procedures came as a breakthrough, and has enabled surgeons to conduct reconstructive procedures very efficiently. This technique enables to dissect extensive muscle, tendon, ligament and vascular structures. Being applied under the control of ultrasound image, it is a very safe technique. Due to its universality, it is used with great success in other surgery fields also (fig. 4).
Z wyżej wymienionych, jedynie preparowanie płynowo-igłowe może być stosowane samodzielnie, gdyż łączy preparowanie ze znieszczeniem miejscowym. W większości przypadków stosujemy techniki mieszane ze względu na ich efektywność. Jest to zresztą praktyka szeroko stosowana w całej chirurgii.

Podsumowanie

Sprzęt i technika chirurgiczna nieustannie ewoluują. Dysponujemy zestawami sprzętu operacyjnego o coraz wyższym zaawansowaniu technologicznym. To z kolei umożliwia wykonywanie zabiegów operacyjnych bardziej wyrafinowanymi technikami. Jednak poszczególne składniki są niezmienne. Zmieniać może podlegać czas i sposób ich wykonania, natomiast poszczególne czynności, takie jak wykonanie sonotopogramu i dostępu operacyjnego, pozostają niezmiennymi składnikami każdego zabiegu operacyjnego, niezależnie od przyjętej techniki.

Szczególnie ważną czynnością wykonywaną przed każdym zabiegiem sonochirurgicznym, a właściwie przed każdym zabiegiem chirurgicznym, jest wykonanie sonotopogramu. Jest to prosta, a zarazem bezpieczna procedura, która jest stosowana przez coraz większą liczbę chirurgów i lekarzy wykonujących procedury inwazyjne.

Dostępy sonochirurgiczne i endoskopowe cechują się bardzo dobrym efektem kosmetycznym, niskim poziomem dolegliwości pooperacyjnych, niewielkim odsetkiem komplikacji i szybkim powrotem do sprawności, co zdecydowanie poprawia pooperacyjną jakość życia.

Porównując obrazowanie ultrasonograficzne z endoskopowym, możemy wskazać szereg zalet i wad, czy też ograniczeń obydwoch technik. Jednak wykonywanie dostępu operacyjnego pod kontrolą obrazu ultrasonograficznego gwarantuje możliwie wysoki poziom bezpieczeństwa pacjenta.

Najlepszą szkołą w zakresie sonochirurgii jest oglądanie Mistrza wykonującego dostęp operacyjny. Chociaż mamy dostęp do wielu atlasów chirurgicznych, nic nie zastąpi pokazu techniki operacyjnej. Tej sztuki uczymy się pod czujnym okiem Mistrza również ze świadomą, }

Conclusion

Surgical equipment and technique never cease evolving. At our disposal we have operative equipment which is ever more advanced technologically. This, in turn, allows to conduct surgical procedures with increasingly sophisticated methods. Nonetheless, the components of a surgical procedure remain the same. The time and method in which they are tackled may evolve and change, yet given stages of a procedure, such as pre-operative mapping or devising an ultrasound topography, or accessing the operative site remain unalterable components of each and every surgical procedure, regardless of the adopted technique.

Pre-operative mapping is a particularly important action taken before any ultrasound-guided procedure, or, for that matter, any surgical procedure. This is a simple and safe procedure undertaken by a growing number of surgeons and other practitioners attempting invasive procedures of various kinds.

Ultrasound-guided access to the lesion is characterized by very good cosmetic outcomes, minimal post-operative symptoms, a low proportion of complications, and a speedy recovery, thereby considerably improving the post-operative quality of life.

Attempting a comparison of ultrasound and endoscopic imaging, a number of advantages and disadvantages, or limitations of both techniques could be pointed out. Nonetheless, when a lesion/operative site is accessed under the guidance and control of ultrasound image, a feasibly high degree of patient’s safety is ensured.

The best training one can obtain in ultrasound surgery is by watching a genuine Master at work. Despite all the surgical atlases that we have at our disposal, nothing can ever replace the actual show of surgical technique. This is an art that we learn and acquire under a Master’s watchful,
że zdobyte umiejętności przekażemy młodszym kolegom. Bo w chirurgii i całej medycynie obowiązuje uniwersalna zasada: „nauka się, wykonaj, naucz innych”. Dlatego nauki te zdołały przetrwać tysiąclecia i wciąż się rozwijają.

Wnioski

1. Techniki preparacyjne monitorowane obrazem ultrasonograficznym są proste, przyjazne i bezpieczne.
2. W trakcie preparowania wykonujemy jednocześnie znieczulenie miejscowe, co relatywnie obniża koszt zabiegu.
3. Wykonywanie dostępu pod kontrolą ultrasonografii umożliwia ciągłą obserwację zapatrywanego miejsca i powinno być zalecane w innych technikach endoskopowych.

Konflikt interesów

Autorzy nie zgłaszają żadnych finansowych ani osobistych powiązań z innymi osobami lub organizacjami, które mogłyby negatywnie wpływać na treść publikacji oraz rościć sobie prawo do tej publikacji.

References/Piśmiennictwo

1. Michalik M, Orłowski M, Frask A, Bobowicz M, Adamczewska M, Lech P: LESS (laparo-endoscopic single-site surgery) right hemicolec- tomy. Videosurgery Miniinv 2009; 4: 164–167.
2. Michalik M, Frask A, Orłowski M: NOTES (Natural Orifice Transluminal Endoscopic Surgery) – operacji przez naturalne otwory ciała. Videosurgery Miniinv 2007; 2: 98–102.
3. Grobelski B, Walczak DA, Pasieka Z: New ways of visualization in laparoscopic surgery. Videosurgery Miniinv 2010; 5: 120–128.
4. Kulig J, Kołodzieczyk P, Sierżęga M: Ultrasonografia laparoskopowa i śródoperacyjna. Ultrasonografia 2008; 8 (35): 9–12.
5. Dhillon MS, Panday AK, Aggarwal S, Nagi ON: Extra articular arthroscopic release in post-traumatic stiff knees: a prospective study of endoscopic quadriceps and patellar release. Acta Orthop Belg 2005; 71: 197–203.
6. Pilecki G, Pilecki Z, Kutaj-Wasikowska H, Jakubowski W: Sonotopogram. Ultrasonografia 2011; 11 (44): 59–65.
7. Pilecki Z, Cieckalski J, Pilecki G, Jakubowski W: Komplementarność w sonochirurgii. Ultrasonografia 2011; 11 (44): 54–58.
8. Pilecki Z, Pilecki G, Cieckalski J, Dzielicki J: Sonochirurgia w leczeniu schorzeń i urazów narządu ruchu. Ultrasonografia 2010; 10 (42): 53–58.
9. Pilecki G, Pilecki Z, Cieckalski J, Wasikowska-Kutaj H, Kutyra B, Dzie- licki J: Bezpieczeństwo pacjentów z uszkodzeniem ścięgna Achillesa leczonych sonochirurgicznie. Ultrasonografia 2010; 10 (Supl. 1): 64.

Conclusions

1. Ultrasound-guided dissection techniques are simple, friendly and safe.
2. Local anesthesia is applied in the course of dissecting, thereby relatively lowering the cost of a procedure.
3. Ultrasound-guided access to the lesion/operative site allows a continuous observation of the treated area and should be recommended for other endoscopic techniques too.

Conflict of interest

Authors do not report any financial or personal links with other persons or organizations, which might affect negatively the content of this publication and/or claim authorship rights to this publication.