THE UMD PROPERTY FOR MUSIELAK–ORLICZ SPACES

NICK LINDEMULDER, MARK VERAAR, AND IVAN YAROSLAVTSEV

Dedicated to Ben de Pagter on the occasion of his 65th birthday

Abstract. In this paper we show that Musielak–Orlicz spaces are UMD spaces under the so-called Δ_2 condition on the generalized Young function and its complemented function. We also prove that if the measure space is divisible, then a Musielak–Orlicz space has the UMD property if and only if it is reflexive. As a consequence we show that reflexive variable Lebesgue spaces $L^{p(\cdot)}$ are UMD spaces.

1. Introduction

The class of Banach spaces X with the UMD (Unconditional Martingale Differences) property is probably the most important one for vector-valued analysis. Harmonic and stochastic analysis in UMD spaces can be found in [6, 8, 22, 35] and references therein. Among other things the UMD property of X implies the following results in harmonic analysis:

• Marcinkiewicz/Mihlin Fourier multiplier theorems (see [8], [22, Theorem 5.5.10] and [23, Theorem 8.3.9]);
• the T_b-theorem holds (see [21]);
• the lattice maximal function is L^p-bounded (see [35, Theorem 3]);

and in stochastic analysis:

• the L^p-boundedness of martingale transforms (see [6, 22]);
• the continuous time Burkholder–Davis–Gundy inequalities (see [31, 37, 39]);
• the lattice Doob’s maximal L^p-inequality (see [35, 37]).

Most of the classical reflexive spaces are UMD spaces. A list of known spaces with UMD can be found on [22, p. 356]. On the other hand a relatively simple to state space without UMD is given by $X = L^p(L^q(L^p(L^q(\ldots))))$ with $1 < p \neq q < \infty$ (see [34]). The latter space is not only reflexive, but also uniformly convex.

In [17] and [28] it has been shown that an Orlicz space L^Φ has the UMD property if and only if it is reflexive. In [17] the proof is based on an interpolation argument and in [28] a more direct argument is given which uses known Φ-analogues of the defining estimates in UMD. The Musielak-Orlicz spaces of course include all Orlicz spaces but also the important class of variable Lebesgue spaces $L^{p(\cdot)}$.

It seems that a study of the UMD property of Musielak-Orlicz spaces L^Φ and even $L^{p(\cdot)}$ is not available in the literature yet. In the current paper we show that

2010 Mathematics Subject Classification. Primary: 46B20; Secondary: 46E30, 46E40, 60G42, 46B10.

Key words and phrases. UMD, Musielak–Orlicz spaces, variable L^p-spaces, Young functions, vector-valued martingales, variable Lebesgue spaces.

The first and second named authors are supported by the Vidi subsidy 639.032.427 of the Netherlands Organisation for Scientific Research (NWO).
under natural conditions on \(\Phi \), the Musielak-Orlicz space \(L^\Phi \) has UMD. We did not see how to prove this by interpolation arguments and instead we use an idea from [28]. Even in the Orlicz case our proof is simpler, and at the same time it provides more information on the UMD constant.

Theorem 1.1. Assume that \(\Phi, \Psi : T \times [0, \infty) \to [0, \infty] \) are complemented Young functions which both satisfy \(\Delta_2 \). Then the Musielak-Orlicz space \(L^\Phi(T) \) is a UMD space.

This theorem is a special case of Theorem 3.1 below, in which we also have an estimate for the UMD constant in terms of the constants appearing in the \(\Delta_2 \) condition for \(\Phi, \Psi \). The result implies the following new result for the variable Lebesgue spaces.

Corollary 1.2. Assume \(1 < p_0 < p_1 < \infty \) and \(p : T \to [p_0, p_1] \) is measurable. Then \(L^p(\cdot)(T) \) is a UMD space.

In the case the measure space is divisible, one can actually characterize the UMD property in terms of \(\Delta_2 \) and even in terms of reflexivity (see Corollary 3.3 below).

In the Orlicz setting (i.e. \(\Phi \) does not depend on \(T \)) the noncommutative analogue of [17, 28] was obtained in [16, Corollary 1.8]. It would be interesting to obtain the noncommutative analogues of our results as well. Details on noncommutative analysis and interpolation theory can be found in the forthcoming book [15].

Notation. For a number \(p \in [1, \infty] \) we write \(p' \in [1, \infty] \) for its Hölder conjugate which satisfies \(\frac{1}{p} + \frac{1}{p'} = 1 \). For a random variable \(f \), \(E(f) \) denotes the expectation of \(f \).

Acknowledgment. The authors would like to thank Emiel Lorist for helpful comments.

2. Preliminaries

2.1. Musielak–Orlicz spaces. For details on Orlicz spaces we refer to [27, 36] and references therein. Details on Musielak–Orlicz spaces can be found in [14, 25, 26, 30, 40].

Let \(X \) be a Banach space and let \((T, \Sigma, \mu) \) be a \(\sigma \)-finite measure space. We say that a measurable function \(\Phi : T \times [0, \infty) \to [0, \infty] \) is a *Young function* if for each \(t \in T \),

(i) \(\Phi(t, 0) = 0 \), \(\exists x_1, x_2 > 0 \) s.t. \(\Phi(t, x_1) > 0 \) and \(\Phi(t, x_2) < \infty \);

(ii) \(\Phi(t, \cdot) \) is increasing, convex and left-continuous.

As a consequence of the above \(\lim_{x \to \infty} \Phi(t, x) = \infty \).

A function \(\Phi \) with the above properties is a.e. differentiable, the right-derivative \(\varphi := \partial_+ \Phi \) is increasing and

\[
\Phi(t, x) = \int_0^x \varphi(t, \lambda) d\lambda, \quad t \in T, \; x \in \mathbb{R}_+.
\]

Note that the function \(\varphi(t, \cdot) \) has a right-continuous version since any increasing function has at most countably many discontinuities, so \(\phi(t, \lambda) = \lim_{\varepsilon \to 0} \phi(t, \lambda + \varepsilon) \) for each \(t \in T \) for a.e. \(\lambda \in [0, \infty) \).
For a strongly measurable function \(f : T \to X \) we say that \(f \in L^\Phi(T; X) \) if there exists a \(\lambda > 0 \) such that
\[
\int_T \Phi(t, \|f(t)\|_X / \lambda) \, d\mu(t) < \infty.
\]
The space \(L^\Phi(T; X) \) equipped with the norm
\[
\|f\|_{L^\Phi(T; X)} := \inf \left\{ \lambda > 0 : \int_T \Phi(t, \|f(t)\|_X / \lambda) \, d\mu(t) \leq 1 \right\}
\]
is a Banach space. Here as usual we identify functions which are almost everywhere identical. The space \(L^\Phi(T; X) \) is called the \(X \)-valued Musielak-Orlicz space associated to \(\Phi \).

The following norm will also be useful in the sequel.
\[
\|f\|_{X, \Phi} := \inf_{\lambda > 0} \frac{1}{\lambda} \left[1 + \int_T \Phi(t, \lambda \|f(t)\|_X) \, d\mu(t) \right].
\]
It is simple to check that this gives an equivalent norm (see \[2.1\], Lemma 2.1)
\[
\|f\|_{L^\Phi(T; X)} \leq \|f\|_{X, \Phi} \leq 2\|f\|_{L^\Phi(T; X)}.
\]
In case \(X = \mathbb{R} \) or \(X = \mathbb{C} \), we write \(L^\Phi(T) \) for the above space.

Example 2.1. Let \(p : T \to [1, \infty) \) be a measurable function and let \(\Phi(t, \lambda) = |\lambda|^{p(t)} \).
Then \(L^\Phi(T) \) coincides with the variable Lebesgue space \(L^{p(t)} \).

Next we recall condition \(\Delta_2 \) from \[30, \text{Theorem 8.13}\]. There it was used to study the dual space of the Musielak-Orlicz space and to prove uniform convexity and in particular reflexivity (see \[30, \text{Section 11}\]). Recall that \(L^1_+(T) \subset L^1(T) \) consists of all nonnegative integrable functions.

Definition 2.2. A Young function \(\Phi : T \times [0, \infty) \to [0, \infty] \) is said to be in \(\Delta_2 \) if there exists a \(K > 1 \) and an \(h \in L^1_+(T) \) such that for a.a. \(t \in T \)
\[
\Phi(t, 2\lambda) \leq K\Phi(t, \lambda) + h(t), \quad \lambda \in [0, \infty).
\]

Note that \(\Phi \in \Delta_2 \) implies that \(\Phi(t, \lambda) < \infty \) for almost all \(t \in T \) and all \(\lambda \in [0, \infty) \).
If \(\Phi : T \times [0, \infty) \to [0, \infty) \) is a Young function we define its complemented function \(\Psi : T \times [0, \infty) \to [0, \infty) \) by the Legendre transform
\[
\Psi(t, x) = \sup_{y \geq 0} (xy - \Phi(t, y)).
\]
Then \(\Psi \) is a Young function as well. Moreover, one can check that the complemented function of \(\Psi(t, \cdot) \) equals \(\Phi(t, \cdot) \).

Example 2.3. Let the notations be as in Example 2.1. Then the following statements hold.
(i) \(\Phi \) is in \(\Delta_2 \) if and only if \(p \in L^\infty(T) \), in which case \(\Phi \) satisfies the \(\Delta_2 \)-condition with \(K = 2^{\|p\|_\infty} \) and \(h = 0 \).
(ii) The complemented function \(\Psi \) to \(\Phi \) is given by
\[
\Psi(t, x) = x^{p'(t)}1_{\{p' > 1\} \times [0, \infty)}(t, x) + \infty \cdot 1_{\{p = 1\} \times (1, \infty)}(t, x),
\]
where \(p'(t) = (p(t))' \) is the Hölder conjugate.
In particular, \(\Phi \) and \(\Psi \) are both in \(\Delta_2 \) if and only if
\[
1 < \text{ess inf} \, p \leq \text{ess sup} \, p < \infty,
\]
in which case \(\Psi(t, x) = x^{p'(t)} \) for a.a. \(t \in T \) and all \(x \in [0, \infty) \).
Proof. Let us only give the proof of (i). If $p \in L^\infty(T)$, then, for a.a. $t \in T$,
\[
\Phi(t, 2\lambda) = 2^{p(t)}\Phi(t, \lambda) \leq 2^{\|p\|_\infty}\Phi(t, \lambda), \quad \lambda \in [0, \infty).
\]
Conversely assume that Φ is in Δ_2. Let K and h be as in the Δ_2 condition for Φ. Then, for a.a. $t \in T$ and all $\lambda \in [0, \infty)$,
\[
2^{p(t)}\Phi(t, \lambda) = \Phi(t, 2\lambda) \leq K\Phi(t, \lambda) + h(t)
\]
and thus
\[
(2^{p(t)} - K)\Phi(t, \lambda) \leq h(t).
\]
As $\lim_{\lambda \to \infty} \Phi(t, \lambda) = \infty$, this implies that $2^{p(t)} \leq K$ for a.a. $t \in T$. Hence, $p \in L^\infty(T)$. \hfill \Box

By the properties of the functions Φ and Ψ one can check that for $\varphi = \partial_x \Phi$ and $\psi = \partial_x \Psi$ (where ϕ and ψ are taken right-continuous in x), we have $\varphi^{-1}(t, \cdot) = \psi(t, \cdot)$, where
\[
(2.4) \quad \varphi^{-1}(t, y) = \sup\{x : \varphi(t, x) \leq y\} \quad y \geq 0.
\]
Note that $\psi(t, \varphi(t, x)) \geq x$ and $\phi(t, \psi(t, x)) \geq x$ because of the above choices.

Recall Young’s inequality (see [27, Section I.2] or [36, Proposition 15.1.2]) for a.a. $t \in T$,
\[
xy \leq \Phi(t, x) + \Psi(t, y), \quad x, y \geq 0
\]
with equality if and only if $y = \varphi(t, x)$ or $x = \psi(t, y)$.

Lemma 2.4. Let $\Phi : T \times [0, \infty) \to [0, \infty)$ be a Young function and let Ψ be its complemented function. If $\Phi \in \Delta_2$ with constant $K > 1$ and $h \in L^1_+(T)$, then for almost all $t \in T$,
\[
\Psi(t, \lambda) \leq \frac{K}{K-1} \lambda\varphi(t, \lambda) + \frac{1}{K} h(t), \quad \lambda \geq 0.
\]

Proof. We use a variation of the argument in [27, Section 1.4]. By the Δ_2 condition there exist $K > 1$ and $h \in L^1_+(T)$ such that for almost all $t \in T$ and all $\lambda \geq 0$
\[
K\Phi(t, \lambda) + h(t) \geq \Phi(t, 2\lambda) = \int_0^{2\lambda} \varphi(t, x)dx \geq \int_\lambda^{2\lambda} \varphi(t, x)dx \geq \lambda\varphi(t, \lambda),
\]
where we used the fact that $\varphi(t, \cdot)$ is increasing. Using the identity case of (2.5) we obtain
\[
K\lambda\varphi(t, \lambda) - K\Psi(t, \varphi(t, \lambda)) + h(t) \geq \lambda\varphi(t, \lambda)
\]
Therefore,
\[
\frac{K\Psi(t, \varphi(t, \lambda))}{\lambda\varphi(t, \lambda)} \leq K - 1 + \frac{h(t)}{\lambda\varphi(t, \lambda)}.
\]
Taking $\lambda = \psi(t, x)$ and using the estimates below (2.4) and the fact that $y \mapsto \frac{\Psi(t, y)}{y}$ is increasing (see [27, (1.18)]) we obtain
\[
\frac{K\Psi(t, x)}{x\psi(t, x)} \leq \frac{K\Psi(t, \varphi(t, \psi(t, x)))}{\psi(t, x)\varphi(t, \psi(t, x))} \leq K - 1 + \frac{h(t)}{x\psi(t, x)}.
\]
We may conclude that
\[
\Psi(t, x) \leq \frac{K-1}{K} x\psi(t, x) + \frac{1}{K} h(t). \quad \Box
\]
2.2. UMD spaces. For details on UMD spaces the reader is referred to [6, 35] and the monographs [22, 23]. Let \((\Omega, \mathcal{A}, (\mathcal{F}_n)_{n \geq 0}, \mathbb{P})\) denote a filtered probability space which is rich enough in the sense that there exists an i.i.d. sequence \((\varepsilon_n)_{n \geq 0}\) such that \(\mathbb{P}(\varepsilon_n = 1) = \mathbb{P}(\varepsilon_n = -1) = \frac{1}{2}\) for each \(n \geq 0\). Such a sequence is called a Rademacher sequence.

For a sequence of random variables \(f = (f_n)_{n \geq 0}\) with values in \(X\), we write \(f^*_n = \sup_{k \leq n} \|f_k\|_X\) and \(f^* = \sup_{k \geq 0} \|f_k\|_X\). Moreover, if \(\varepsilon = (\varepsilon_n)_{n \geq 0}\) is a sequence of signs, we write \((\varepsilon \ast f)_n = \sum_{k=0}^n \varepsilon_k (f_k - f_{k-1})\), where \(f_{-1} = 0\).

We say that \(X\) is a UMD space if there exists a \(p \in (1, \infty)\) and \(\beta \in [1, \infty)\) such that for all \(L^p\)-martingales \(f = (f_n)_{n \geq 0}\) and all sequences of signs \(\varepsilon = (\varepsilon_n)_{n \geq 0}\) we have that
\[
\|\varepsilon \ast f\|_{L^p(\Omega, X)} \leq \beta \|f\|_{L^p(\Omega, X)},
\]
where the least admissible constant \(\beta\) is denoted by \(\beta_{p,X}\) and is called the UMD constant. If the above holds for some \(p \in (1, \infty)\), then it holds for all \(p \in (1, \infty)\). Examples and counterexamples of UMD spaces have been mentioned in the introduction. Every UMD space is (super-)reflexive (see [22, Theorem 4.3.8]).

We say that \(f = (f_n)_{n \geq 0}\) is a Paley–Walsh martingale if \(f\) is a martingale with respect to the filtration \((\mathcal{F}_n)_{n \geq 0}\) with \(\mathcal{F}_0 = \{\emptyset, \Omega\}\) and \(\mathcal{F}_n = \sigma\{\varepsilon_k : 1 \leq k \leq n\}\) for some Rademacher sequence \((\varepsilon_k)_{k \geq 0}\) and if \(f_0 = 0\).

The following result follows from [4, Theorems 1.1 and 3.2].

Proposition 2.5. Let \(X\) be a Banach space. Then \(X\) is a UMD space if and only if for all Paley–Walsh martingales \(f\) and all sequences of signs \(\varepsilon\) we have
\[
\sup_{n \geq 0} \|f_n\|_{L^\infty(\Omega, X)} < \infty \implies \mathbb{P}(\sup_{n \geq 0} \|\varepsilon \ast f\|_X < \infty) > 0.
\]

We will also need the following lemma which allows to estimate the \(e\)-transform for different functions than \(\Phi(x) = |x|^p\). This lemma is a straightforward extension to the case \(b = 0\) was considered. Moreover, since we only state it for Paley–Walsh martingales it follows from [6, Proof of (10)].

Lemma 2.6. Assume \(X\) is a UMD space. Let \(\Phi : [0, \infty) \to [0, \infty)\) be a Young function and assume that there exist constants \(K > 1\) and \(b \geq 0\) such that
\[
(2.6) \quad \Phi(2\lambda) \leq K \Phi(\lambda) + b, \quad \lambda \geq 0.
\]

Let \(f = (f_n)_{n \geq 0}\) be a Paley–Walsh martingale, \(\varepsilon = (\varepsilon_n)_{n \geq 0}\) be a sequence of signs, and set \(g := \varepsilon \ast f\). Then there exists a constant \(C_{K,X} \geq 0\) only depending on \(K\) and (the UMD constant of) \(X\) such that
\[
\mathbb{E}\Phi(g^*) \leq C_{K,X} (\mathbb{E}\Phi(f^*) + b).
\]

Remark 2.7. To obtain Lemma 2.6 in the case of general martingales (as it is done in [3, p. 1001]), one can use the Davis decomposition to reduce to a bad part and a good part of \(f\). To estimate the bad part of the Davis decomposition one can use [7, Theorem 3.2 and the proof of Theorem 2.1] (see [32, Proposition A-3-5] and [29, Theorem 53] for a simpler proof).

Recall that \(X\) is a UMD space if and only if it is \(\zeta\)-convex, i.e. there exists a biconvex function \(\zeta : X \times X \to \mathbb{R}\) such that \(\zeta(0, 0) > 0\) and \(\zeta(x, y) \leq \|x + y\|\) for all \(x, y \in X\) with \(\|x\| = \|y\| = 1\) (see [4, 5, 22]). By the \(\zeta\)-function we will usually mean the optimal \(\zeta\)-function which can be defined as the supremum over all possible \(\zeta\)’s, and this obviously satisfies the required conditions.
The following theorem can be found in [6, equation (20)].

Theorem 2.8. (Burkholder) Let \(X \) be a UMD Banach space and let \(\zeta : X \times X \to \mathbb{R} \) be an optimal \(\zeta \)-function (i.e. \(\zeta(0,0) \) is maximal). For any \(1 < p < \infty \) one then has that

\[
\frac{1}{\zeta(0,0)} \leq \beta_{p,X} \leq \frac{72}{\zeta(0,0)} \frac{(p+1)^2}{p-1}.
\]

The following lemma follows from [4, p. 49].

Lemma 2.9. Let \(X \) be a UMD Banach space and let \(\zeta : X \times X \to \mathbb{R} \) be an optimal \(\zeta \)-function (i.e. \(\zeta(0,0) \) is maximal). Then for any \(\varepsilon > 0 \) there exist an \(X \)-valued Paley–Walsh martingale \(f = (f_n)_{n \geq 1} \) which starts in zero and a sequence of signs \(\epsilon = (\epsilon_n)_{n \geq 1} \) such that \(\mathbb{P}(g^* > 1) = 1 \) and \(\sup_{n \geq 1} \mathbb{E}\|f_n\| \leq \frac{\varepsilon}{\zeta(0,0)} + \varepsilon \), where \(g := \epsilon^* f \).

Remark 2.10. Let us compute an upper bound for \(C_{K,X} \) in Lemma 2.6. Let \(M \geq 1 \) be the least integer such that \(2^{-M} \leq \frac{\zeta(0,0)}{\varepsilon} \). Fix \(\beta := 2 \) and \(\delta := 2^{-M} \). Then by formula [3, (1.8)] one has that for \(\beta \) from Lemma 2.6

\[
\mathbb{P}(g^* > 2\lambda, f^* \leq 2^{-M} \lambda) \leq \varepsilon \mathbb{P}(g^* > \lambda), \quad \lambda > 0,
\]

where \(\varepsilon = 3\delta / (\beta - \delta - 1) \leq 1/(2K) \), and where we used the fact that the constant \(c \) from [3, (1.2)] can be bounded from above by \(4/\zeta(0,0) \) by [33, Theorem 3.26 and Lemma 3.23] (see also [38]). Note that by (2.6)

\[
\Phi(\beta \lambda) \leq K \Phi(\lambda) + b, \quad \Phi(\delta^{-1} \lambda) \leq K^M \Phi(\lambda) + b MK^M, \quad \lambda > 0,
\]

where one needs to iterate (2.6) \(M \) times in order to get the latter inequality. Therefore by exploiting [2, proof of Lemma 7.1] one has the following analogue of the formula [2, (7.6)]

\[
\mathbb{E}\Phi(2^{-1}g^*) \leq \varepsilon \mathbb{E}\Phi(g^*) + K^M \mathbb{E}\Phi(f^*) + b MK^M,
\]

and by using the fact that \(\mathbb{E}\Phi(g^*) \leq K \mathbb{E}\Phi(2^{-1}g^*) \) and the fact that \(\varepsilon K \leq 1/2 \) one has that

\[
\mathbb{E}\Phi(g^*) \leq 2 K^{M+1} \mathbb{E}\Phi(f^*) + 2b(1 + MK^{M+1}) \leq 2(MK^{M+1} + 1) \mathbb{E}\Phi(f^*) + b,
\]

so \(C_{K,X} \leq 2(MK^{M+1} + 1) \), where \(M \) can be taken \(\lceil \log_2 \frac{48K}{\zeta(0,0)} \rceil + 1 \). Of course this bound is not optimal.

3. Musielak–Orlicz spaces are UMD spaces

The main result of this paper is the following.

Theorem 3.1. Assume \(X \) is a UMD space. Let \(\Phi, \Psi : T \times [0, \infty) \to [0, \infty) \) be complemented Young functions which both satisfy \(\Delta_2 \). Then the Musielak-Orlicz space \(L^\Phi(T;X) \) is a UMD space.

Moreover, if \(\Phi \in \Delta_2 \) with constant \(K_\Phi \) and \(h_\Phi \in L^1(T) \) and \(\Psi \in \Delta_2 \) with constant \(K_\Psi \) and \(h_\Psi \in L^1(T) \), then the optimal \(\zeta \)-function \(\zeta : L^\Phi(T;X) \times L^\Phi(T;X) \to \mathbb{R} \) (see the discussion preceding Theorem 2.8) one has that

\[
\zeta(0,0) \geq \frac{1}{6K_\Psi C_{K_\Psi,X,C_h}},
\]
and

\[
\beta_{p,L^\Phi(T;X)} \leq 432K_\Psi C_{K_\Psi,X,C_h} \frac{(p+1)^2}{p-1}.
\]
where $C_{K\phi,X}$ is as in Lemma 2.6 and $C_h := 2 + \|h\|_{L^1(T)} + \frac{1}{K\psi} \|h\|_{L^1(T)}$.

This result is well-known in the case of $\Phi(x) = |x|^p$, and then it is a simple consequence of Fubini’s theorem which allows to write $L^p(\Omega; L^p(T; X)) = L^p(T; L^p(\Omega; X))$ and to apply the UMD property of X pointwise a.e. in T (see [22, Proposition 4.2.15]). Such a Fubini argument is necessarily limited to L^p-spaces. Indeed, the Kolmogorov–Nagumo theorem says that for Banach function spaces E and F one has $E(F) = F(E)$ isomorphically, if and only if E and F are weighted L^p-spaces (see [1, Theorem 3.1]).

To prove Theorem 3.1 we will use several results from the preliminaries. Moreover, we will need the following scalar-valued result which is a well-known version of Doob’s maximal inequality for a certain class of Young functions.

Proposition 3.2. Suppose that $\Phi : [0, \infty) \to [0, \infty]$ is a Young function with a right-continuous derivative $\phi : [0, \infty) \to [0, \infty)$ and that there exists a $q \in (1, \infty)$ and $c \in [0, \infty)$ such that

$$\Phi(\lambda) \leq \frac{1}{q} \lambda \phi(\lambda) + c, \quad \lambda \geq 0.$$

Then for all nonnegative submartingales $(f_n)_{n \geq 0}$

$$\mathbb{E}\Phi(f_n^*) \leq \mathbb{E}\Phi(qf_n) + c, \quad n \geq 0.$$

In particular, $\|f_n^*\|_\Phi \leq q'(1 + c)\|f_n\|_\Phi$.

Proof. The result for $c = 0$ is proved in [13, estimate (104.5)], and the case $c > 0$ follows by a simple modification of that argument. The final assertion follows from the obtained estimate since for any $\lambda > 0$ we have

$$\|f_n^*\|_\Phi \leq \lambda^{-1}(1 + \mathbb{E}\Phi(\lambda f_n^*))$$

$$\leq \lambda^{-1}(c + 1 + \mathbb{E}\Phi(\lambda qf_n))$$

$$\leq (c + 1)\lambda^{-1}(1 + \mathbb{E}\Phi(\lambda qf_n)).$$

Taking the infimum over all $\lambda > 0$ yields the required conclusion. \(\square\)

Proof of Theorem 3.1. Let $Y := L^p(\Omega; X)$. In order to prove the theorem we will use Proposition 2.5. Let $f = (f_n)_{n \geq 0}$ be a Paley–Walsh martingale with values in Y. Let $\epsilon = (\epsilon_n)_{n \geq 0}$ be a sequence of signs and $g := \epsilon * f$. We will show that $g^* \prec \infty$ a.s. For this it is enough to show that

$$\mathbb{E}\sup_{n \geq 0} \|g_n\|_Y \leq K_{\Phi}C_{K\phi,X}C_h \sup_{n \geq 0} \|f_n\|_{L^\infty(\Omega; Y)},$$

where $C_{K\phi,X}$ is as in Lemma 2.6 and $C_h = 2 + \|h\|_{L^1(T)} + \frac{1}{K\psi} \|h\|_{L^1(T)}$. By homogeneity we can assume $\sup_{n \geq 0} \|f_n\|_{L^\infty(\Omega; Y)} = 1$.

We know that $K\phi > 1$ and a function $h_\psi \in L^1_+(T)$ satisfy the following inequality

$$\Phi(t, 2\lambda) \leq K\phi \Phi(t, \lambda) + h_\psi(t), \quad \lambda \in [0, \infty), \quad t \in T.$$

Since Ψ satisfies Δ_2 with constant $K\psi > 1$ and $h_\psi \in L^1_+(T)$ it follows from Lemma 2.4 that

$$\Phi(t, \lambda) \leq \frac{K\psi - 1}{K\psi} \lambda\phi(t, \lambda) + \frac{1}{K\psi} h_\psi(t), \quad \lambda \in [0, \infty), \quad t \in T.$$

One can check that for a.e. $t \in T$, $f(t)$ is an X-valued martingale and $g_n(t) = (\epsilon * (f(t)))_n$ (use that f is a Paley–Walsh martingale). Therefore, first applying
(3.4) and Lemma 2.6 and then (3.5) and Proposition 3.2 to the submartingale \(||f_k(t)||_X \) \(k \geq 0 \) gives that for almost all \(t \in T \),
\[
\mathbb{E} \Phi(t, \sup_{k \leq n} ||g_k(t)||_X) \leq C_{K_\Phi, X} \left[\mathbb{E} \Phi(t, \sup_{k \leq n} ||f_k(t)||_X) + h_\Phi(t) \right] \\
\leq C_{K_\Phi, X} \left[\mathbb{E} \Phi(t, K_\Phi ||f_n(t)||_X) + h_\Phi(t) + \frac{1}{K_\Phi} h_\Phi(t) \right].
\]
The same holds with \((f, g) \) replaced by \((\lambda f, \lambda g) \) for any \(\lambda > 0 \). Integrating over \(t \in T \) (and using (2.2)) we find that
\[
\mathbb{E} \sup_{k \leq n} ||g_k||_{X, \Phi} \leq \mathbb{E} \sup_{k \leq n} \frac{1}{\lambda} \left(1 + \int_T \Phi(t, \lambda ||g_k(t)||_X) d\mu(t) \right) \\
\leq \mathbb{E} \frac{1}{\lambda} \left(1 + \int_T \Phi(t, K_\Phi \lambda ||f_n(t)||_X) d\mu(t) + ||h_\Phi||_{L^1(T)} + \frac{1}{K_\Phi} ||h_\Phi||_{L^1(T)} \right),
\]
where (\(* \)) follows form the fact that \(\sup f \leq \int \sup \) and the fact that the map \(\lambda \mapsto \Phi(t, \lambda) \) is increasing in \(\lambda \geq 0 \). Since \(\int_T \Phi(t, ||f_n(t)||_X) d\mu(t) \leq 1 \) a.s. by (2.1) and the assumption \(||f_n||_{L^\infty(\Omega; Y)} \leq 1 \), it follows by setting \(\lambda = 1/K_\Phi \) that
\[
\mathbb{E} \sup_{k \leq n} ||g_k||_{X, \Phi} \leq K_\Psi C_{K_\Phi, X} h.
\]
Now the required estimate (3.3) follows from (2.3).

For proving (3.1) and (3.2) we will use Lemma 2.9. By the first part of the proof, \(Y = L^\Phi(T; X) \) is UMD. Fix \(\varepsilon > 0 \). Then by Lemma 2.9 there exist a \(Y \)-valued Paley–Walsh martingale \(f = (f_n)_{n \geq 0} \) which starts in zero and a sequence of signs \(\varepsilon = (\varepsilon_n)_{n \geq 0} \) such that \(\mathbb{P}(\varepsilon_n > 1) = 1 \) and \(\sup_{n \geq 0} \mathbb{E} ||f_n||_Y \leq \frac{\zeta(0,0)}{2} + \varepsilon \),
where \(g := \varepsilon \ast f \). By [4, Lemma 3.1] there exist discrete \(Y \)-valued Paley–Walsh martingales \(F = (F_n)_{n \geq 0} \) and \(G = (G_n)_{n \geq 0} \) such that \(G = \varepsilon \ast F \), \(\mathbb{P}(G^* > 1) \leq 1/2 \), and
\[
\sup_{n \geq 0} ||F_n||_{L^\infty(\Omega; Y)} \leq 6 \sup_{n \geq 0} \mathbb{E} ||f_n||_Y.
\]
Therefore, by (3.3),
\[
\frac{1}{2} \leq \mathbb{E} G^* \leq K_\Psi C_{K_\Phi, X} C_h \sup_{n \geq 0} ||F_n||_{L^\infty(\Omega; Y)} \\
\leq 6 K_\Psi C_{K_\Phi, X} C_h \sup_{n \geq 0} \mathbb{E} ||f_n||_Y \leq 3 K_\Psi C_{K_\Phi, X} C_h (\zeta(0,0) + 2\varepsilon),
\]
so letting \(\varepsilon \to 0 \) gives (3.1). (3.2) follows from (3.1) and (2.7).

We recover the following result of [17] and [28]. Recall that a measure space \((T, \Sigma, \mu) \) is divisible if for every \(A \in \Sigma \) and \(t \in (0,1) \) there exist sets \(B, C \in \Sigma \) such that \(B, C \subseteq A \), \(\mu(B) = t\mu(A) \) and \(\mu(C) = (1-t)\mu(A) \). The divisibility condition is only needed in the implication (ii) \(\Rightarrow \) (iii).

Corollary 3.3. Let \(X \neq \{0\} \) be a Banach space and assume that \(T \) is divisible and \(\sigma \)-finite. Suppose \(\Phi, \Psi : T \times [0, \infty) \to [0, \infty) \) are complementary Young functions. Then the following are equivalent:
(i) \(L^\Phi(T; X) \) is a UMD space;
(ii) \(L^\Phi(T) \) is reflexive and \(X \) is a UMD space;
(iii) \(\Phi \) and \(\Psi \) both satisfy \(\Delta_2 \) and \(X \) is a UMD space.

Note that unlike is standard for Young function independent of \(T \) the condition \(\Delta_2 \) depends on the measure space; namely, if one has that \(\mu(T) = \infty \) and \(h \) does not depend on \(t \in T \), then \(h = 0 \).

For the proof we will need the following lemma which follows from [26, Theorem 2.2] and [25, Theorem 4.7].

Lemma 3.4. Let \(\Phi, \Psi : T \times [0, \infty) \to [0, \infty] \) be complementary Young functions. Then there exists a decomposition \(L^\Phi(T)^* = L^\Psi(T) \ominus \Lambda \) of the dual of \(L^\Phi(T) \) into a sum of two Banach spaces, where \(g \in L^\Psi(T) \) acts on \(L^\Phi(T) \) in the following way:

\[
(f, g) = \int_T fg \, d\mu, \quad f \in L^\Phi(T).
\]

Proof of Corollary 3.3. (i) \(\Rightarrow \) (ii): Fix \(h \in L^\Phi(T) \) and \(x \in X \) of norm one. Then \(L^\Phi(T) \) and \(X \) can be identified with the closed subspaces \(L^\Phi(T) \ominus x \) and \(h \ominus X \) of the UMD space \(L^\Phi(T; X) \), respectively, and therefore have UMD themselves. In particular, \(L^\Phi(T) \) is reflexive.

(ii) \(\Rightarrow \) (iii): We show that \(\Phi \) satisfies \(\Delta_2 \). The proof for \(\Psi \) is similar. By Lemma 3.4, \(L^\Phi(T)^* = L^\Psi(T) \ominus \Lambda \), so

\[
L^\Phi(T)^* = L^\Psi(T)^* \ominus \Lambda^* \supseteq L^\Phi(T) \ominus \Lambda^*,
\]

where the latter inclusion follows from Lemma 3.4 and means that \(L^\Phi(T) \ominus \Lambda^* \) is a closed subspace of \(L^\Phi(T)^* \ominus \Lambda^* \), and hence of \(L^\Phi(T)^{**} \). Thus \(\Lambda = 0 \) due to the reflexivity of \(L^\Phi(T) \), and since \(T \) is divisible the desired statement follows from [26, Corollary 1.7.4].

(iii) \(\Rightarrow \) (i): This follows from Theorem 3.1. \(\square \)

As a consequence of the above results many other spaces are UMD as well. Indeed, it suffices to be isomorphic to a closed subspace (or quotient space) of an \(L^\Phi(T; X) \) space with UMD. This applies to the Musielak–Orlicz variants of Sobolev, Besov, and Triebel–Lizorkin spaces.

Remark 3.5. A result of Rubio de Francia (see [35, p. 214]) states that for a Banach function space \(E \) and a Banach space \(X \) one has that \(E(X) \) is a UMD space if and only if \(E \) and \(X \) are both UMD spaces. Therefore, it actually suffices to consider \(X = \mathbb{R} \) in the proof of Theorem 3.1. Since our argument works in the vector-valued case without difficulty, we consider that setting from the start.

For the variable Lebesgue spaces we obtain the following consequence. For a measurable mapping \(p : T \to [1, \infty] \) we will write \(p_+ = \| p \|_{L^\infty(T)} \) and \(p_- = \| 1/p \|_{L^\infty(T)}^{-1} \).

Corollary 3.6. Let \(X \neq \{0\} \) be a Banach space and assume \(T \) is divisible and \(\sigma \)-finite. Assume \(p : T \to [1, \infty] \) is measurable. Then the following assertions are equivalent.

(i) \(L^{p(\cdot)}(T; X) \) is a UMD space;

(ii) \(L^{p(\cdot)}(T) \) is reflexive and \(X \) is a UMD space;

(iii) \(p_- > 1 \) and \(p_+ < \infty \) and \(X \) is a UMD space.

The result that \(L^{p(\cdot)}(T) \) is reflexive if and only if \(p_- > 1 \) and \(p_+ < \infty \) can also be found in [12, Proposition 2.79&Corollary 2.81] and [14, Remark 3.4.8].
Proof. This is an immediate consequence of Corollary 3.3 and Example 2.3. □

Remark 3.7. Let \(Y := L^{p_c}(T; X) \). Let us bound \(\zeta(0, 0) \) from below using (3.1). Note that by Example 2.3 one has that \(K_\Phi = p_+ \), \(K_\Psi = p_-' \), and \(h_\Phi = h_\Psi = 0 \), so

\[
\zeta(0, 0) \geq \frac{1}{6K_\Psi C_{K_\Phi, X} C_h} = \frac{1}{3p'_- C_{p_+, X}},
\]

where an upper bound for \(C_{p_+, X} \) can be found using Remark 2.10. From this one can obtain an upper bound for the UMD constant using (2.7).

In [20] the analytic Radon–Nikodym (ARNP) and analytic UMD (AUMD) properties are shown to hold for Musielak-Orlicz spaces \(L^\Phi(T) \) where \(\Phi \) satisfies a condition which is slightly more restrictive than \(\Delta_2 \). To end the paper we want to state a related conjecture about spaces satisfying a randomized version of UMD. In order to introduce it let \((\Omega', \mathcal{A}', P')\) be a second probability space with a Rademacher sequence \(\varepsilon' = (\varepsilon'_n)_{n \geq 1} \). A Banach space \(X \) is said to be a UMD-PW space if there is a \(p \in [1, \infty) \) and a constant \(C \geq 0 \) such that for all Paley–Walsh martingales \(f \),

\[
\|f\|_{L^p(\Omega; X)} \leq \|\varepsilon' * f\|_{L^p(\Omega' \times \Omega'; X)}.
\]

This property turns out to be \(p \)-independent, and it gives a more general class of Banach spaces than the UMD spaces (see [9, 10, 11, 18]). For instance \(L^1 \) is a UMD-PW space.

Conjecture 3.8. Assume \(\Phi : T \times [0, \infty) \to [0, \infty) \) is a Young function such that \(\Phi \in \Delta_2 \). Then \(L^\Phi(T) \) is UMD-PW.

The conjecture is open also in the case \(\Phi \) does not depend on \(T \). If \(\Phi : [0, \infty) \to [0, \infty) \) is merely continuous, increasing to infinity and \(\Phi(0) = 0 \) and satisfies \(\Delta_2 \), then the same question can be asked. However, in this case \(L^\Phi(T) \) is not a Banach space, but only a quasi-Banach space. Some evidence for the conjecture can be found in [11, Theorem 4.1] and [19, Theorem 1.1] where analogues of Lemma 2.6 can be found (only \(\Phi \in \Delta_2 \) is needed in the proof). Doob’s inequality plays a less prominent role for UMD because of [11, Lemma 2.2]. Similar questions can be asked for the possibly more restrictive “decoupling property” of a quasi-Banach space \(X \) introduced in [10, 11].

References

[1] A. Boccuto, A.V. Bukhvalov, and A.R. Sambucini. Some inequalities in classical spaces with mixed norms. *Positivity*, 6(4):393–411, 2002.

[2] D.L. Burkholder. Distribution function inequalities for martingales. *Ann. Probability*, 1:19–42, 1973.

[3] D.L. Burkholder. A geometrical characterization of Banach spaces in which martingale difference sequences are unconditional. *Ann. Probab.*, 9(6):997–1011, 1981.

[4] D.L. Burkholder. Martingale transforms and the geometry of Banach spaces. In *Probability in Banach spaces, III (Medford, Mass., 1980)*, volume 860 of *Lecture Notes in Math.*, pages 35–50. Springer, Berlin-New York, 1981.

[5] D.L. Burkholder. A geometric condition that implies the existence of certain singular integrals of Banach-space-valued functions. In *Conference on harmonic analysis in honor of Antoni Zygmund, Vol. I, II (Chicago, Ill., 1981)*, Wadsworth Math. Ser., pages 270–286. Wadsworth, Belmont, CA, 1983.
[6] D.L. Burkholder. Martingales and singular integrals in Banach spaces. In *Handbook of the geometry of Banach spaces, Vol. I*, pages 233–269. North-Holland, Amsterdam, 2001.

[7] D.L. Burkholder, B.J. Davis, and R.F. Gundy. Integral inequalities for convex functions of operators on martingales. pages 223–240, 1972.

[8] Ph. Clément, B. de Pagter, F. A. Sukochev, and H. Witvliet. Schauder decompositions and multiplier theorems. *Studia Math.*, 138(2):135–163, 2000.

[9] S.G. Cox and S. Geiss. On decoupling in Banach spaces. *arXiv:1805.12377*, 2018.

[10] S.G. Cox and M.C. Veraar. Some remarks on tangent martingale difference sequences in L^1-spaces. *Electron. Comm. Probab.*, 12:421–433, 2007.

[11] S.G. Cox and M.C. Veraar. Vector-valued decoupling and the Burkholder-Davis-Gundy inequality. *Illinois J. Math.*, 55(1):343–375 (2012), 2011.

[12] D.V. Cruz-Uribe and A. Fiorenza. *Variable Lebesgue spaces*. Applied and Numerical Harmonic Analysis. Birkhäuser/Springer, Heidelberg, 2013. Foundations and harmonic analysis.

[13] C. Dellacherie and P.-A. Meyer. *Probabilities and potential*, volume 29 of *North-Holland Mathematics Studies*. North-Holland Publishing Co., Amsterdam, 1978.

[14] L. Diening, P. Harjulehto, P. Hästö, and M. Ružička. *Lebesgue and Sobolev spaces with variable exponents*, volume 2017 of *Lecture Notes in Mathematics*. Springer, Heidelberg, 2011.

[15] P.G. Dodds, B. de Pagter, and F.A. Sukochev. Theory of noncommutative integration. *unpublished monograph, to appear*.

[16] P.G. Dodds and F.A. Sukochev. Contractibility of the linear group in Banach spaces of measurable operators. *Integral Equations Operator Theory*, 26(3):305–337, 1996.

[17] D.L. Fernandez and J.B. Garcia. Interpolation of Orlicz-valued function spaces and U.M.D. property. *Studia Math.*, 99(1):23–40, 1991.

[18] D.J.H. Garling. Random martingale transform inequalities. In *Probability in Banach spaces 6 (Sandbjerg, 1986)*, volume 20 of *Progr. Probab.*, pages 101–119. Birkhäuser Boston, Boston, MA, 1990.

[19] P. Hitzchenko and S.J. Montgomery-Smith. Tangent sequences in Orlicz and rearrangement invariant spaces. *Math. Proc. Cambridge Philos. Soc.*, 119(1):91–101, 1996.

[20] Y.-L. Hou and P.D. Liu. Two geometrical properties of vector-valued Musielak-Orlicz spaces. *Acta Anal. Funct. Appl.*, 1(1):11–15, 1999.

[21] T.P. Hytönen. The vector-valued nonhomogeneous Tb theorem. *Int. Math. Res. Not. IMRN*, (2):451–511, 2014.

[22] T.P. Hytönen, J.M.A.M. van Neerven, M.C. Veraar, and L. Weis. *Analysis in Banach spaces. Vol. I. Martingales and Littlewood-Paley theory*, volume 63 of *Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge*. Springer, 2016.

[23] T.P. Hytönen, J.M.A.M. van Neerven, M.C. Veraar, and L. Weis. *Analysis in Banach spaces. Vol. II. Probabilistic Methods and Operator Theory.*, volume 67 of *Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge*. Springer, 2017.

[24] T.P. Hytönen and M.C. Veraar. On Besov regularity of Brownian motions in infinite dimensions. *Probab. Math. Statist.*, 28(1):143–162, 2008.
A. Kozek. Orlicz spaces of functions with values in Banach spaces. *Comment. Math. Prace Mat.*, 19(2):259–288, 1976/77.

A. Kozek. Convex integral functionals on Orlicz spaces. *Comment. Math. Prace Mat.*, 21(1):109–135, 1980.

M.A. Krasnosel’skiĭ and Ja.B. Rutickiĭ. *Convex functions and Orlicz spaces*. Translated from the first Russian edition by Leo F. Boron. P. Noordhoff Ltd., Groningen, 1961.

P.D. Liu. Spaces in which martingale difference sequences are unconditional. *J. Systems Sci. Math. Sci.*, 9(3):251–259, 1989.

P.-A. Meyer. *Martingales and stochastic integrals. I. Lecture Notes in Mathematics*. Vol. 284. Springer-Verlag, Berlin-New York, 1972.

J. Musielak. *Orlicz spaces and modular spaces*, volume 1034 of *Lecture Notes in Mathematics*. Springer-Verlag, Berlin, 1983.

J.M.A.M. van Neerven, M.C. Veraar, and L.W. Weis. Stochastic integration in UMD Banach spaces. *Ann. Probab.*, 35(4):1438–1478, 2007.

J. Neveu. *Discrete-parameter martingales*. North-Holland Publishing Co., Amsterdam, revised edition, 1975.

A. Osękowski. *Sharp martingale and semimartingale inequalities*, volume 72 of *Instytut Matematyczny Polskiej Akademii Nauk. Monografie Matematyczne (New Series) [Mathematics Institute of the Polish Academy of Sciences. Mathematical Monographs (New Series)]*. Birkhäuser/Springer Basel AG, Basel, 2012.

Y. Qiu. On the UMD constants for a class of iterated $L_p(L_q)$ spaces. *J. Funct. Anal.*, 263(8):2409–2429, 2012.

J.L. Rubio de Francia. Martingale and integral transforms of Banach space valued functions. In *Probability and Banach spaces (Zaragoza, 1985)*, volume 1221 of *Lecture Notes in Math.*, pages 195–222. Springer, Berlin, 1986.

B.-Z.A. Rubshtein, G.Y. Grabarnik, M.A. Muratov, and Y.S. Pashkova. *Foundations of symmetric spaces of measurable functions*, volume 45 of *Developments in Mathematics*. Springer, Cham, 2016. Lorentz, Marcinkiewicz and Orlicz spaces.

M.C. Veraar and I.S. Yaroslavtsev. Pointwise properties of martingales with values in banach function spaces. *arXiv:1803.11063*, 2018.

I.S. Yaroslavtsev. Weak L^1-estimates for weakly differentially subordinated martingales. *In preparation*.

I.S. Yaroslavtsev. Burkholder–Davis–Gundy inequalities in UMD Banach spaces. *arXiv:1807.05573*, 2018.

A.C. Zaanen. *Riesz spaces. II*, volume 30 of *North-Holland Mathematical Library*. North-Holland Publishing Co., Amsterdam, 1983.