Inflation and leptogenesis in the 3-3-1-1 model

D. T. Huong∗ and P. V. Dong†
Institute of Physics, Vietnam Academy of Science and Technology, 10 Dao Tan, Ba Dinh, Hanoi, Vietnam

C. S. Kim‡ and N. T. Thuy§
Department of Physics and IPAP, Yonsei University, Seoul 120-479, Korea

(Dated: January 6, 2015)

We consider the $SU(3)_C \otimes SU(3)_L \otimes U(1)_X \otimes U(1)_N$ (3-3-1-1) model at the GUT scale with implication for inflation and leptogenesis. The mass spectra of the neutral Higgs bosons and neutral gauge bosons are reconsidered when the scale of the 3-3-1-1 breaking is much larger than that of the ordinary $SU(3)_C \otimes SU(3)_L \otimes U(1)_X$ (3-3-1) breaking. We investigate how the 3-3-1-1 model generates an inflation by identifying the scalar field that spontaneously breaks the $U(1)_N$ symmetry to inflaton as well as including radiative corrections for the inflaton potential. We figure out the parameter spaces appeared in the inflaton potential that satisfy the conditions for an inflation model and obtain the inflaton mass an order of 10^{13} GeV. The inflaton can dominantly decay into a pair of light Higgs bosons or a pair of heavy Majorana neutrinos which lead, respectively, to a reheating temperature of 10^9 GeV order appropriate to a thermal leptogenesis scenario or to a reduced reheating temperature corresponding to a non-thermal leptogenesis scenario. We calculate the lepton asymmetry which yields baryon asymmetry successfully for both the thermal and non-thermal cases.

PACS numbers: 12.60.-i, 98.80.Cq, 98.80.Ft

∗Electronic address: dthuong@iop.vast.ac.vn
†Electronic address: pvdong@iop.vast.ac.vn
‡Electronic address: cskim@yonsei.ac.kr
§Electronic address: ntthuy@iop.vast.ac.vn
I. INTRODUCTION

Cosmological inflation is a popular postulate for the early universe. It can solve the difficulties of the hot Big Bang theory and provide the predictions for quantum fluctuations in the inflating background. In order to recover the conventions of the hot Big Bang theory and to know how the universe is reheated, we must understand what is the inflaton field, and how it is connected to particle physics. These problems were first investigated with the chaotic inflation scenario by Linde [1]. According to this scenario, the inflation may begin even there was no thermal equilibrium in the early universe. It can occur in a theory with a very simple potential such as $V(\phi) \propto \phi^2$. There is no limit to the theory with a polynomial potential: Chaotic inflation occurs in any theory where the potential has a sufficiently flat region [1]. On the other hand, the recent measurements of B modes by BICEP2 collaboration [2] have yielded very interesting results, which could be the direct measurements of quantum gravitation excitations from the early universe. The ratio of the tensor and scalar is measured as $0.16^{+0.06}_{-0.05}$. Combined with the Planck and WMAP measurements suggests that the inflation model must be a larger field model. Hence, the inflationary scenario does not work on the framework of the Standard Model (SM) without a non-minimal coupling to gravity.

Furthermore, what is the origin of matter-antimatter asymmetry in the universe? The neutrino experiments such as Super-Kamiokande [3], KamLAND [4] and SNO [5] have confirmed that the neutrinos have small masses and large flavor mixing. According to the Planck mission team, and based on the standard model of cosmology, there exits dark matter (DM) which lies beyond the SM. All the experiments call for extensions beyond the SM. One way to extend the SM is to expand the gauge symmetry group. There exists a simple extension of the SM gauge group to $SU(3)_C \otimes SU(3)_L \otimes U(1)_X$, the so-called 3-3-1 models. These models can explain the following issues [6]:

- Why the electric charges are quantized?
- Why there are only three observed families of fermions?
- Why top quark is oddly heavy?
- Why the strong CP nonconservation is disappeared?
- 3-3-1 models can provide the neutrino small masses as well as candidates for the DM [7–9].
There have recently emerged an extension of the 3-3-1 models, based on the \(SU(3)_C \otimes SU(3)_L \otimes U(1)_X \otimes U(1)_N \) (3-3-1-1) gauge group, which not only contains all the good features of the 3-3-1 models as mentioned \(^8\, ^9\), but also has the following advantages:

- The \(B - L \) number is naturally gauged by combination of the \(SU(3)_L \) and \(U(1)_N \) charges. It leads to an unification of the electroweak and \(B - L \) interactions.

- The right-handed neutrinos appear in the model as fundamental fermions that solve the small masses of neutrinos through a type I seesaw mechanism.

- There exists a W-parity symmetry as a \((Z_2)\) remnant subgroup of the gauge symmetry. Almost all the new particles have wrong lepton numbers transforming as odd fields under W-parity. The lightest wrong lepton number particle is identified to the DM. Because of W-parity conservation, the model can work better under experimental constraints than the 3-3-1 models.

Other highlights of the 3-3-1-1 model is that the energy scale of the symmetry breaking \(U(1)_N \), which can happen at a very high scale like the GUT one \(^8\). The inflationary scenario can be linked to \(U(1)_N \) breaking and driven by the Higgs \(\phi \) potential. Due to the local gauge \(U(1)_N \) symmetry, a radiative correction to the inflaton potential can arise from the coupling of inflaton with the \(U(1)_N \) gauge boson \((Z_2)\). There exist the couplings of inflaton \(\phi \) with right handed neutrinos and Higgs triplets, which also contribute to the inflation potential. We would like to stress that the well-known advantages of a spontaneously broken gauge \(U(1)_N \) symmetry include a seesaw mechanism for the neutrino physics \(^8\). The presence of the right-handed neutrinos that directly interact to the inflaton may be compatible with the leptogenesis scenario. The aim of this work is to show that the chaotic inflationary scenario can be driven by the singlet Higgs \(\phi \) potential. We also focus on the leptogenesis happened after the inflation through the couplings of the right-handed neutrinos.

Our paper is organized as follows: In section \(\text{II} \) we briefly review the 3-3-1-1 model and specially concentrate on the Higgs and gauge boson spectra in the large \(\Lambda \) limit. In section \(\text{III} \) we present the inflation model by assuming the singlet Higgs \(\phi \) as an inflation field. The leptogenesis related to the matter-antimatter asymmetry of the universe and neutrino properties is studied in section \(\text{IV} \). Finally we summarize our works in section \(\text{V} \).
II. BRIEF DESCRIPTION OF THE 3-3-1-1 MODEL

The fermion content of the 3-3-1-1 model is given as [8, 9]

\[
\psi_{aL} = \begin{pmatrix} \nu_{aL} \\ e_{aL} \\ (N_{aR})^c \end{pmatrix} \sim (1, 3, -1/3, -2/3), \tag{1}
\]

\[
\nu_{aR} \sim (1, 1, 0, -1), \quad e_{aR} \sim (1, 1, -1, -1), \tag{2}
\]

\[
Q_{\alpha L} = \begin{pmatrix} d_{\alpha L} \\ -u_{\alpha L} \\ D_{\alpha L} \end{pmatrix} \sim (3, 3^*, 0, 0), \quad Q_{3L} = \begin{pmatrix} u_{3L} \\ d_{3L} \\ U_L \end{pmatrix} \sim (3, 3, 1/3, 2/3), \tag{3}
\]

\[
u_{aR} \sim (3, 1, 2/3, 1/3), \quad d_{aR} \sim (3, 1, -1/3, 1/3), \tag{4}
\]

\[
U_R \sim (3, 1, 2/3, 4/3), \quad D_{aR} \sim (3, 1, -1/3, -2/3), \tag{5}
\]

where the quantum numbers in the parentheses are defined upon the gauge symmetries \((SU(3)_C, SU(3)_L, U(1)_X, U(1)_N)\), respectively. The family indices are \(a = 1, 2, 3\) and \(\alpha = 1, 2\). \(N_R, U\) and \(D\) are the exotic fermions, which have incorrect lepton numbers. The other fermions have ordinary lepton numbers. Note that the neutral fermions \(N_R\) are truly sterile since they do not have any gauge interaction, which contradicts to the \(\nu_R\) ones as usually considered.

To break the gauge symmetry, one uses the following scalar multiplets [8]:

\[
\rho = \begin{pmatrix} \rho^+_1 \\ \rho^+_2 \\ \rho^+_3 \end{pmatrix} \sim (1, 3, 2/3, 1/3), \quad \eta = \begin{pmatrix} \eta^0_1 \\ \eta^0_2 \\ \eta^0_3 \end{pmatrix} \sim (1, 3, -1/3, 1/3), \tag{6}
\]

\[
\chi = \begin{pmatrix} \chi^0_1 \\ \chi^0_2 \\ \chi^0_3 \end{pmatrix} \sim (1, 3, -1/3, -2/3), \quad \phi \sim (1, 1, 0, 2), \tag{7}
\]

with the VEVs that conserve electric charge and \(R\)-parity being respectively given by

\[
\langle \rho \rangle = \frac{1}{\sqrt{2}}(0, v, 0)^T, \quad \langle \eta \rangle = \frac{1}{\sqrt{2}}(u, 0, 0)^T, \quad \langle \chi \rangle = \frac{1}{\sqrt{2}}(0, 0, \omega)^T, \quad \langle \phi \rangle = \frac{1}{\sqrt{2}}\Lambda. \tag{8}
\]

The pattern of the symmetry breaking of the model is given by the following scheme

\[
3-3-1-1 \overset{\langle \chi \rangle \langle \rho \rangle \langle \eta \rangle}{\longrightarrow} SU(3)_C \otimes U(1)_Q \otimes U(1)_{B-L} \overset{\langle \phi \rangle}{\longrightarrow} SU(3)_C \otimes U(1)_Q \otimes P, \tag{9}
\]

where the electric charge \(Q, B - L\) and matter parity \(P\) take the forms

\[
Q = T_3 - \frac{1}{\sqrt{3}}T_8 + X, \quad B - L = -\frac{2}{\sqrt{3}}T_8 + N, \quad P = (-1)^{3(B-L)}. \tag{10}
\]
Here, T_i ($i = 1, 2, 3, \ldots, 8$), X and N are the $SU(3)_L$, $U(1)_X$ and $U(1)_N$ charges, respectively.

The Lagrangian of the 3-3-1-1 model is given by [8]:

$$
\mathcal{L} = \sum_{\text{fermion multiplets}} \bar{\Psi} i\gamma^\mu D_\mu \Psi + \sum_{\text{scalar multiplets}} (D^\mu \Phi)^\dagger (D_\mu \Phi) - \frac{1}{4} G_{\mu\nu} G^{\mu\nu}_\Phi - \frac{1}{4} A_{\mu\nu} A^{\mu\nu}_\Phi - \frac{1}{4} B_{\mu\nu} B^{\mu\nu}_\Phi - \frac{1}{4} C_{\mu\nu} C^{\mu\nu}_\Phi - V(\rho, \eta, \chi, \phi) + \mathcal{L}_{\text{Yukawa}},
$$

where the Yukawa Lagrangian and scalar potential are obtained [8, 9] as follows

$$
\mathcal{L}_{\text{Yukawa}} = h^a_{\alpha} \bar{\psi}_a L \rho e_R + h^\nu_{ab} \bar{\psi}_a L \eta \nu_R + h^\nu_{ab} \bar{\nu}_a R \nu_R \phi + h^U \bar{Q}_3 L \chi U_R + h^D \bar{Q}_3 L \chi^* D_R + h^D_a \bar{Q}_3 L \chi^* \rho a_R + H.c.,
$$

$$
V(\rho, \eta, \chi, \phi) = \nu_1^2 \rho^4 + \nu_2^2 \chi^\dagger \chi + \nu_3^2 \eta^4 + \lambda_1 (\rho^4 \rho^4) + \lambda_2 (\chi^\dagger \chi)^2 + \lambda_3 (\eta^4 \eta^4) + \lambda_4 (\rho^4 \rho^4) (\chi^\dagger \chi) + \lambda_5 (\rho^4 \rho^4) (\eta^4 \eta^4) + \lambda_6 (\chi^\dagger \chi) (\eta^4 \eta^4) + \lambda_7 (\rho^4 \chi^\dagger \chi) + \lambda_8 (\rho^4 \eta^4) (\eta^4 \chi) + \lambda_9 (\chi^\dagger \chi) (\eta^4 \eta^4) + \nu_1^2 \phi^4 + \lambda_10 (\phi^4 \phi^4) (\rho^4 \rho^4) + \lambda_11 (\phi^4 \phi^4) (\chi^\dagger \chi) + \lambda_12 (\phi^4 \phi^4) (\eta^4 \eta^4).
$$

Because of the 3-3-1-1 gauge symmetry, the Yukawa Lagrangian and scalar potential as given take the standard forms which contain no lepton-number violating interactions.

The fermion masses that result from the Yukawa Lagrangian have been presented in [8]. The phenomenology of the 3-3-1-1 model with the Λ scale of the $U(1)_N$ breaking comparable to the ω scale of the 3-3-1 symmetry breaking has been studied in [9]. Below, we will compute the physical states and masses for thescalar and gauge sectors in the limit $\Lambda \gg \omega$, which is needed for our further analysis.

A. Scalar sector

In this part, we identify the physical particles in the scalar sector. We expand the neutral scalars around their VEVs [8] such as

$$
\rho = \begin{pmatrix} \rho_1^+ \\ \frac{1}{\sqrt{2}} (v + S_2 + iA_2) \end{pmatrix}, \quad \eta = \begin{pmatrix} 1/\sqrt{2} (u + S_1 + iA_1) \\ \eta_2^- \end{pmatrix}, \quad \chi = \begin{pmatrix} 1/\sqrt{2} (S_1' + iA_1') \\ \chi_2^- \end{pmatrix}, \quad \phi = \frac{1}{\sqrt{2}} \begin{pmatrix} \Lambda + S_4 + iA_4 \end{pmatrix}.
$$

$$
\rho = \begin{pmatrix} \rho_1^+ \\ \frac{1}{\sqrt{2}} (v + S_2 + iA_2) \end{pmatrix}, \quad \eta = \begin{pmatrix} 1/\sqrt{2} (u + S_1 + iA_1) \\ \eta_2^- \end{pmatrix}, \quad \chi = \begin{pmatrix} 1/\sqrt{2} (S_1' + iA_1') \\ \chi_2^- \end{pmatrix}, \quad \phi = \frac{1}{\sqrt{2}} \begin{pmatrix} \Lambda + S_4 + iA_4 \end{pmatrix}.
$$

(14)
In the scalar sector, all scalar fields with W-parity even, S_1, S_2, S_3, S_4, mix via the mass matrix such as

$$M_S^2 = \begin{pmatrix}
2\lambda_3 u^2 - \frac{1}{\sqrt{2}} f\frac{u\omega}{v} & \lambda_5 u v + \frac{1}{\sqrt{2}} f\omega & \lambda_6 u\omega + \frac{1}{\sqrt{2}} f v & \lambda_{12} u\Lambda \\
\lambda_5 u v + \frac{1}{\sqrt{2}} f\omega & 2\lambda_1 v^2 - \frac{1}{\sqrt{2}} f\frac{u\omega}{v} & \lambda_4 v\omega + \frac{1}{\sqrt{2}} f u & \lambda_{10} v\Lambda \\
\lambda_6 u\omega + \frac{1}{\sqrt{2}} f v & \lambda_4 v\omega + \frac{1}{\sqrt{2}} f u & 2\lambda_2 \omega^2 - \frac{1}{\sqrt{2}} f\frac{u\omega}{v} & \lambda_{11} \omega\Lambda \\
\lambda_{12} u\Lambda & \lambda_{10} v\Lambda & \lambda_{11} \omega\Lambda & 2\Lambda^2
\end{pmatrix}, \quad (16)$$

We assume that $\Lambda \gg \omega \sim -f \gg u, v$ then the mass matrix given in Eq. (16) has form as

$$M_S^2 = \begin{pmatrix}
C & B^T \\
B & A
\end{pmatrix}, \quad (17)$$

where

$$A = 2\lambda \Lambda^2, \quad (18)$$

$$B = \begin{pmatrix}
\lambda_{12} u\Lambda \\
\lambda_{10} v\Lambda \\
\lambda_{11} \omega\Lambda
\end{pmatrix}, \quad (19)$$

$$C = \begin{pmatrix}
2\lambda_3 u^2 - \frac{f}{\sqrt{2}} \frac{u\omega}{v} & \lambda_5 u v + \frac{f}{\sqrt{2}} \omega & \lambda_6 u\omega + \frac{f}{\sqrt{2}} v & \frac{u\lambda_{12}}{2\lambda} \\
\lambda_5 u v + \frac{f}{\sqrt{2}} \omega & 2\lambda_1 v^2 - \frac{f}{\sqrt{2}} \frac{u\omega}{v} & \lambda_4 v\omega + \frac{f}{\sqrt{2}} u & \frac{v\lambda_{10}}{2\lambda} \\
\lambda_6 u\omega + \frac{f}{\sqrt{2}} v & \lambda_4 v\omega + \frac{f}{\sqrt{2}} u & 2\lambda_2 \omega^2 - \frac{f}{\sqrt{2}} \frac{u\omega}{v} & \frac{\omega\lambda_{11}}{2\lambda}
\end{pmatrix}. \quad (20)$$

Since $(\Lambda \gg -f, \omega \gg u, v)$, we get $A \gg B, C$. The matrix given in (17) can be diagonalized by using block diagonalizing method. The approximately unitary matrix U,

$$U = \begin{pmatrix}
1 & B^T A^{-1} \\
-A^{-1} B & 1
\end{pmatrix} = \begin{pmatrix}
1 & 0 & 0 & \frac{u\lambda_{12}}{2\lambda} \\
0 & 1 & 0 & \frac{v\lambda_{10}}{2\lambda} \\
0 & 0 & 1 & \frac{\omega\lambda_{11}}{2\lambda} \\
-\frac{u\lambda_{12}}{2\lambda} & -\frac{v\lambda_{10}}{2\lambda} & -\frac{\omega\lambda_{11}}{2\lambda} & 1
\end{pmatrix}, \quad (21)$$

transform M_S^2 into approximately block-diagonal form:

$$U^\dagger M_S^2 U \approx \begin{pmatrix}
C - B^T A^{-1} B & 0 \\
0 & A
\end{pmatrix}. \quad (22)$$

In the limit $(\Lambda \gg -f, \omega \gg u, v)$, $U \approx I$ then $H_3 \simeq S_4$ gets mass $m_{H_3}^2 = 2\lambda \Lambda^2$. S_1, S_2, S_3 are mixing with the mixing mass matrix obtained as
Since $\sqrt{2u}$ where

The physical fields with respective masses can be written as

$$C - B^T A^{-1} B = \begin{pmatrix} 2\lambda_3 u^2 & \frac{f\omega}{\sqrt{2u}} & \frac{uv\lambda^2_{12}}{2\lambda} & \lambda_5 uv + \frac{f\omega}{\sqrt{2}} & -\frac{uv\lambda_1 \lambda_{12}}{2\lambda} & \lambda_6 u\omega + \frac{f\omega}{\sqrt{2}} & -\frac{uv\lambda_1 \lambda_{12}}{2\lambda} \\ \lambda_5 uv + \frac{f\omega}{\sqrt{2}} & \frac{uv\lambda_1 \lambda_{12}}{2\lambda} & 2\lambda_1 v^2 & -\frac{f\omega}{\sqrt{2}} & -\frac{uv^2 \lambda_1}{2\lambda} & \lambda_4 v\omega + \frac{f\omega}{\sqrt{2}} & -\frac{uv\lambda_1 \lambda_{11}}{2\lambda} \\ \lambda_6 u\omega + \frac{f\omega}{\sqrt{2}} & -\frac{uv\lambda_1 \lambda_{12}}{2\lambda} & \lambda_4 v\omega + \frac{f\omega}{\sqrt{2}} & \frac{uv\lambda_1 \lambda_{11}}{2\lambda} & 2\lambda_2 \omega^2 & -\frac{f\omega}{\sqrt{2}} & -\frac{uv\lambda_1 \lambda_{11}}{2\lambda} \end{pmatrix}. \tag{23}$$

At the leading order $(-f, \omega \gg u, v)$, the mass matrix given in Eq. (23) can be rewritten as

$$\begin{pmatrix} -\frac{f\omega}{\sqrt{2u}} & \frac{f\omega}{\sqrt{2}} & 0 \\ \frac{f\omega}{\sqrt{2}} & -\frac{f\omega}{\sqrt{2u}} & 0 \\ 0 & 0 & 2\lambda_2 \omega^2 - \frac{\omega^2 \lambda_{11}^2}{2\lambda} \end{pmatrix}. \tag{24}$$

The physical fields with respective masses can be written as

$$H = \frac{uS_1 + vS_2}{\sqrt{u^2 + v^2}}, \quad m_H^2 = 0,$$

$$H_1 = \frac{-vS_1 + uS_2}{\sqrt{u^2 + v^2}}, \quad m_{H_1}^2 = -\frac{f(u^2 + v^2)\omega}{\sqrt{2uv}},$$

$$H_2 = S_3, \quad m_{H_2}^2 = \frac{(4\lambda\lambda_2 - \lambda_{11}^2)\omega^2}{2\lambda}. \tag{25}$$

In the new basics, (H, H_1, H_2), the squared mass matrix given in (23) can be written as

$$\begin{pmatrix} C' & B'^T \\ B' & A' \end{pmatrix}, \tag{26}$$

where

$$C' = \frac{v^4(4\lambda\lambda_1 - \lambda_{11}^2) - u^4(\lambda_{12}^2 - 4\lambda\lambda_3) - 2u^2v^2(\lambda_{10}\lambda_{11} - 2\lambda\lambda_5)}{2(u^2 + v^2)\lambda}, \tag{27}$$

$$B' = \begin{pmatrix} \frac{uv(v^2(\lambda_{10} - \lambda_{10} + \lambda_{11}) + \lambda(4\lambda_1 - 2\lambda)) + u^2(-\lambda_{10}\lambda_{11} + \lambda_{11}^2 - 4\lambda\lambda_3 + 2\lambda\lambda_5)}{2(u^2 + v^2)\lambda} \frac{\sqrt{2}f\omega v \lambda - \omega(v^2(\lambda_{10}\lambda_{11} - 2\lambda) + u^2(\lambda_{11}\lambda_{12} - 2\lambda\lambda_6))}{2\sqrt{u^2 + v^2}\lambda} \\ \frac{\sqrt{2}f\omega v \lambda - \omega(v^2(\lambda_{10}\lambda_{11} - 2\lambda) + u^2(\lambda_{11}\lambda_{12} - 2\lambda\lambda_6))}{2\sqrt{u^2 + v^2}\lambda} \frac{2\sqrt{2}f(u^2 - v^2)\lambda + uv\omega(-\lambda_{10}\lambda_{10} + \lambda_{11} + 2\lambda\lambda_4 - 2\lambda\lambda_6)}{2\sqrt{u^2 + v^2}\lambda} \end{pmatrix}, \tag{28}$$

$$A' = \begin{pmatrix} \frac{-\sqrt{2}f(u^2 + v^2)\lambda + uv\omega(-\lambda_{10} - \lambda_{12})^2 + 4\lambda(\lambda_1 - \lambda_3 - \lambda_5)}{2uv(u^2 + v^2)\lambda} \frac{\sqrt{2}f(u^2 - v^2)\lambda + uv\omega(-\lambda_{10}\lambda_{10} + \lambda_{11}\lambda_{12} + 2\lambda\lambda_4 - 2\lambda\lambda_6)}{2\sqrt{u^2 + v^2}\lambda} \\ \frac{\sqrt{2}f(u^2 - v^2)\lambda + uv\omega(-\lambda_{10}\lambda_{10} + \lambda_{11}\lambda_{12} + 2\lambda\lambda_4 - 2\lambda\lambda_6)}{2\sqrt{u^2 + v^2}\lambda} \frac{-\sqrt{2}f(u^2 - v^2)\lambda + uv\omega(-\lambda_{11} - \lambda_{12})^2}{2\sqrt{u^2 + v^2}\lambda} \end{pmatrix}. \tag{29}$$

Since $-f, \omega \gg u, v$, we get $A' \gg B', C'$. If we kept explicitly the $O(\frac{uv\omega}{\omega})$, the H_1, H_2, H Higgs
bosons can gain mass by using block diagonalizing method as

\[m_H^2 = m_H^2 + O\left(\frac{u, v}{\omega}\right), \]
\[m_{H_1}^2 = m_{H_2}^2 + O\left(\frac{u, v}{\omega}\right), \]
\[m_{H_3}^2 = \frac{v^4(4\lambda_1 - 4\lambda_2) - u^4(2\lambda_1 - 2\lambda_2) - 2u^2v^2(\lambda_1 - 2\lambda_2)}{2(u^2 + v^2)} \]
\[+ \frac{1}{2\sqrt{2(u^2 + v^2)}\lambda(\lambda_1 - 4\lambda_2)}(m_0 + m_1\frac{f}{\omega} + m_2\frac{f^2}{\omega^2}), \quad (30) \]

where

\[m_0 = \sqrt{2}(v^2(\lambda_1 - 2\lambda_2)) + u^2(\lambda_1 - 2\lambda_2)), \]
\[m_1 = 8uv\lambda(v^2(-\lambda_1 + 2\lambda_2) + u^2(-\lambda_1 + 2\lambda_2)), \]
\[m_2 = 8\sqrt{2}uv^2\lambda^2. \quad (31) \]

For the remaining fields in the pseudoscalar sector, the mass spectrum is similar to that of work given in [9]. Let us give a brief result.

- The pseudoscalar \(A_4 \) is massless and is identified to the Goldstone boson of \(Z_N \).
- Two other fields are massless that are identified to the Goldstone bosons of \(Z \) and \(Z' \)

\[G_Z = \frac{-uA_1 + vA_2}{\sqrt{u^2 + v^2}}; \quad G_{Z'} = \frac{-\omega^{-1}(u^{-1}A_1 + v^{-1}A_2) + (u^{-2} + v^{-2})A_3}{\sqrt{(u^{-2} + v^{-2} + \omega^{-2})(u^{-2} + v^{-2})}}. \quad (32) \]

- One neutral complex Goldstone boson , \(G_X = \frac{u\chi_1 - v\eta_1}{\sqrt{u^2 + \omega^2}} \), that is eaten by X gauge boson.
- One neutral complex Higgs , namely \(H' = \frac{u\chi_1 + \omega\eta_3}{\sqrt{u^2 + \omega^2}} \) with the squared mass \(m_{H'}^2 = (\frac{1}{2}\lambda_9 - \frac{f\sqrt{u^2 + \omega^2}}{\sqrt{2\omega}})(u^2 + \omega^2) \).
- One physical pseudoscalar (A) with mass

\[m_A^2 = -\frac{f}{2} \frac{u^2v^2 + u^2\omega^2 + v^2\omega^2}{uv\omega}, \quad (33) \]

and the physical state respectively

\[A = \frac{u^{-1}A_1 + v^{-1}A_2 + \omega^{-1}A_3}{\sqrt{u^{-2} + v^{-2} + \omega^{-2}}}. \quad (34) \]

For charged scalars, the mass spectrum is similar to that of work given in [8].

\[H^{-} = \frac{v\chi_2^{-} + \omega\eta_3^{-}}{\sqrt{u^2 + v^2}}, \quad H^{-} = \frac{v\eta_2^{-} + u\eta_1^{-}}{\sqrt{u^2 + v^2}}. \quad (35) \]
with respective masses
\[m_{H_4}^2 = \left(\frac{1}{2} \lambda_7 - \frac{f u}{\sqrt{2} v} \right) (v^2 + \omega^2), \quad m_{H_5}^2 = \left(\frac{1}{2} \lambda_8 - \frac{f \omega}{\sqrt{2} u v} \right) (u^2 + v^2). \] (36)

The model contains two massive charged Higgs and two massless Higgs that are identified to the Goldstone bosons of Y and W bosons.

\[G_{-Y} = \frac{\omega \chi_2 - v \rho_3}{\sqrt{v^2 + \omega^2}}, \quad G_{-W} = \frac{u \eta_2 - v \rho_1}{\sqrt{u^2 + v^2}}. \] (37)

B. Gauge sector

In this section, let us consider the gauge boson spectrum. The mass Lagrangian is given as

\[
\mathcal{L}_{\text{gaugemass}} = (0, 0, \frac{\omega}{\sqrt{2}})(gA_{\mu} T_a - \frac{1}{3} g X B_\mu - \frac{2}{3} g N C_\mu) (0, 0, \frac{\omega}{\sqrt{2}})^T \\
+ \left(\frac{u}{\sqrt{2}}, 0, 0 \right)(gA_{\mu} T_a - \frac{1}{3} g X B_\mu + \frac{1}{3} g N C_\mu) (0, 0, \frac{\omega}{\sqrt{2}})^T \\
+ \left(0, \frac{v}{\sqrt{2}}, 0 \right)(gA_{\mu} T_a + \frac{2}{3} g X B_\mu + \frac{1}{3} g N C_\mu) (0, 0, \frac{\omega}{\sqrt{2}})^T \\
+ 2(g N C_\mu A)^2. \] (38)

Let us denote the following combinations

\[W_\mu^\pm = \frac{A_{1\mu} \mp i A_{2\mu}}{\sqrt{2}}, \quad Y_\mu^\pm = \frac{A_{6\mu} \mp i A_{7\mu}}{\sqrt{2}}. \] (39)

The non-Hermitian gauge bosons \(W_\mu^\pm, Y_\mu^\pm \) have the following masses

\[M_{W_\mu}^2 = \frac{1}{4} g^2 (u^2 + v^2), \quad M_{Y_\mu}^2 = \frac{1}{4} g^2 (v^2 + \omega^2). \] (40)

It is worth noting that \(A_{4\mu} \) and \(A_{5\mu} \) gain the same mass. Therefore, these vectors can be combined the following physical states

\[X_\mu^0 = \frac{A_{4\mu} - i A_{5\mu}}{\sqrt{2}}, \] (41)

and its mass is given:

\[M_X^2 = \frac{1}{4} g^2 (u^2 + \omega^2). \] (42)

There is a mixing among \(A_{3\mu}, A_{8\mu}, B_\mu, C_\mu \) components. In the basis of these elements, the mass matrix denoted by \(M^2 \) is given as follows
The diagonalization of the mass matrix is done via three steps. In the first step, in the base of
where \(t_1 = g_X/g \), \(t_2 = g_N/g \).

The mass matrix in (43) contains one exact zero eigenvalue with the corresponding eigenstate as follows

\[
A_\mu = \frac{\sqrt{3}}{\sqrt{3+4t_1^2}} \left(t_1 A_{3\mu} - \frac{t_1}{\sqrt{3}} A_{8\mu} + B_\mu \right).
\]

It is worth to notice that \(A_\mu \) is the combination of \(A_{3\mu}, A_{8\mu}, \) and \(B_\mu \) without contribution of the new gauge boson \(C_\mu \). The factor \(t_1 \) can be expressed in term of the sine of the weak mixing angle \(s_W \) by identifying the coefficient of the \(ee\gamma \) vertex with the electromagnetic coupling constant \(e \), similarly as the analysis in [10]. We get

\[
t_1 = \frac{\sqrt{3}s_W}{\sqrt{3-4s_W^2}}.
\]

The diagonalization of the mass matrix is done via three steps. In the first step, in the base of
the two remaining \(Z_\mu, Z'_\mu \) gauge vectors are given by

\[
Z_\mu = \frac{\sqrt{3+t_1^2}}{\sqrt{3+4t_1^2}} A_{3\mu} + \frac{t_1}{\sqrt{3+t_1^2}} A_{8\mu} - \frac{3}{\sqrt{3+4t_1^2}} B_\mu,
\]

\[
Z'_\mu = \frac{\sqrt{3}}{\sqrt{3+t_1^2}} A_{8\mu} + \frac{t_1}{\sqrt{3+t_1^2}} B_\mu.
\]

In this basis, the mass matrix \(M^2 \) becomes

\[
\begin{pmatrix}
0 & 0 \\
0 & M'^2 \end{pmatrix}
\]

where \(M'^2 \) is the \(3 \times 3 \) mixing mass matrix of \(Z_\mu, Z'_\mu, C_\mu \) gauge bosons as

\[
g^2 \frac{2}{2} \left(
\begin{pmatrix}
\frac{(3+4t_1^2)(u^2+v^2)}{2(3+t_1^2)} & \frac{-\sqrt{3+4t_1^2}((-3-2t_1^2)u^2+(3+4t_1^2)v^2)}{6(3+t_1^2)} & \frac{\sqrt{3+4t_1^2}(u^2-v^2)}{3\sqrt{3+t_1^2}} \\
\frac{-\sqrt{3+4t_1^2}(-(3-2t_1^2)u^2+(3+4t_1^2)v^2)}{6(3+t_1^2)} & \frac{(3-2t_1^2)u^2+(3+4t_1^2)v^2+4(3+t_1^2)\omega^2}{18(3+t_1^2)} & \frac{t_2((3-2t_1^2)u^2+(3+4t_1^2)v^2+4(3+t_1^2)\omega^2)}{9\sqrt{3+t_1^2}} \\
\frac{\sqrt{3+4t_1^2}(u^2-v^2)}{3\sqrt{3+t_1^2}} & \frac{t_2((3-2t_1^2)u^2+(3+4t_1^2)v^2+4(3+t_1^2)\omega^2)}{9\sqrt{3+t_1^2}} & \frac{2\sqrt{3+4t_1^2}(u^2+v^2+4(\omega^2+9\Lambda^2))}{9\sqrt{3+t_1^2}}
\end{pmatrix}
\right).
\]
The matrix given in (48) can be diagonalized by using block diagonalizing method. In new basis \((Z_\mu, Z'_\mu, Z^N_\mu)\), the mass mixing matrix is given as

\[
\begin{pmatrix}
A & 0 & 0 \\
0 & m^2_{Z^N}\end{pmatrix},
\]

where \(A\) is the 2 \times 2 matrix

\[
A = \frac{g^2}{2} \left(\begin{array}{cc}
\frac{(3+4\lambda^2)(u^2+v^2)}{2(3+14v^2)} + \mathcal{O}(v^4) & -\frac{\sqrt{3+4\lambda^2}((-3+2\lambda^2)u^2+(3+4\lambda^2)v^2)}{6(3+\lambda^2)} + \mathcal{O}(v^2) \\
-\frac{\sqrt{3+4\lambda^2}((-3+2\lambda^2)u^2+(3+4\lambda^2)v^2)}{6(3+\lambda^2)} & \frac{3+4\lambda^2}{6(3+\lambda^2)} v^2 + \mathcal{O}(v^4) \end{array} \right),
\]

\[
m^2_{Z^N} \simeq 4 g^2 \lambda^2 \Lambda^2.
\]

The new basis \((Z_\mu, Z'_\mu, Z^N_\mu)\) is related to the basis \((Z_\mu, Z'_\mu, C_\mu)\) as following

\[
\begin{pmatrix}
Z_\mu \\
Z'_\mu \\
Z^N_\mu
\end{pmatrix} = \begin{pmatrix} 1 & 0 & -\epsilon_1 \\ 0 & 1 & -\epsilon_2 \\ \epsilon_1 & \epsilon_2 & 1 \end{pmatrix} \begin{pmatrix}
Z_\mu \\
Z'_\mu \\
C_\mu
\end{pmatrix},
\]

where

\[
\epsilon_1 = -\frac{3\sqrt{3+4\lambda^2}(u^2-v^2)}{2\sqrt{3+\lambda^2}t_2(u^2+v^2+4(\omega^2+9\Lambda^2)}),
\]

\[
\epsilon_2 = \frac{(3-2\lambda^2)u^2+(3+4\lambda^2)v^2+4(3+\lambda^2)\omega^2}{2\sqrt{3+\lambda^2}t_2(u^2+v^2+4(\omega^2+9\Lambda^2))}.
\]

In the limit \(\Lambda \gg \omega \gg u, v\),

\[
Z_\mu \sim Z_\mu, \quad Z'_\mu \sim Z'_\mu, \quad Z^N_\mu \sim C_\mu.
\]

The new heavy gauge boson \(Z^N_\mu\) is imbedded to the gauge group \(U(1)_N\). It approximately does not mix to other gauge bosons. \(Z_\mu\) and \(Z'_\mu\) are mixing of the two physical field \(Z^1_\mu, Z^2_\mu\).
where \(\tan 2\xi = \frac{\sqrt{3 - 4s^2_W} (c^2_W u^2 - v^2)}{((1 + 2s^2_W) u^2 - c^2_W v^2 + 2c^2_W \omega^2)} \).

If we assume \(\omega \gg u, v \), then \(\tan 2\xi \to 0 \). We get

\[
Z_1^\mu \sim Z_\mu, \quad m^2_{Z_1} \simeq \frac{g^2 (u^2 + v^2)}{4e^2_W},
\]

\[
Z_2^\mu \sim Z'_\mu, \quad m^2_{Z_2} \simeq \frac{g'^2 c^2_W \omega^2}{(3 - 4s^2_W)}.
\]

The gauge boson \(Z_1^\mu \) is identified as \(Z_\mu \) in the standard model.

III. GENERATION OF INFLATION IN THE 3-3-1-1 MODEL

We would like to note that the scalar singlet \(\phi \) is completely breaking \(U(1)_N \). The vacuum expectation value (VEV) \(\langle \phi \rangle \) can stay at the same scale as \(\omega \)'s scale and the interesting phenomenology of the model at TeV scale was studied in [10]. In a different situation, this VEV can be very high that can be integrated out from the low energy effective potential and a new gauge boson \(Z_N \) decoupling from the gauge boson spectrum. In this part, we expect that the VEV of \(\phi \) is very high and consider the singlet scalar \(\phi \) plays the role of inflaton field. The potential for \(\phi \) at the tree level can be read off from Eq. (13) as

\[
V_\phi = \mu^2 \phi^\dagger \phi + \lambda (\phi^\dagger \phi)^2 + \lambda_0 (\phi^\dagger \rho) (\rho^\dagger \phi) + \lambda_1 (\phi^\dagger \phi) (\chi^\dagger \chi) + \lambda_2 (\phi^\dagger \phi) (\eta^\dagger \eta).
\]

Due to the larger VEV of \(\phi \), the interaction terms of the singlet scalar Higgs and the ordinary 3-3-1 model Higgs triplets can be ignored. During inflation, we get

\[
V_\phi = \mu^2 \phi^\dagger \phi + \lambda (\phi^\dagger \phi)^2.
\]

This potential is taken part in the chaotic inflation. However, the inflaton field has coupling to the matter fields which allow it to make the transition to hot big bang cosmology at the end of inflation, namely

\[
\mathcal{L} \supset 4g_N^2 C^\mu C_\mu \phi^2 + h_{ab} \tilde{\nu}_{aR} \nu_{bR} \phi.
\]

We take into account quantum corrections to \(V_\phi \) following the analysis of Coleman and Weinberg [11]

\[
V_{\text{eff}} = \frac{1}{64\pi^2} \sum_i \left[(-1)^{2J} (2J + 1) m_i^4 \ln \frac{m_i^2}{\Delta^2} \right],
\]
where \(i = \nu_{aR}, \phi, C_\mu, \chi, \rho, \eta \).

\[
\begin{align*}
\nu_{aR} & = -2h^{\nu}_{ab} \Phi; \\
m^2_\phi & = 2(\mu^2 + 3\lambda \Phi^2); \\
m^2_\chi & = 8g^2_N \Phi^2; \\
m^2_\rho & = 2\lambda_1 \Phi^2; \\
m^2_\eta & = 2\lambda_2 \Phi^2.
\end{align*}
\]

(61)

We get

\[
V_{\text{eff}} = \frac{1}{64\pi^2} \left\{ -32 \sum_i (h^{\nu}_{ii})^4 + 192g^4_N + 4(\lambda_{10}^2 + \lambda_{11}^2 + \lambda_{12}^2) \Phi^4 \ln \frac{\Phi^2}{\Delta^2} \right\}
\]

\[
= \frac{1}{64\pi^2} \left\{ a \Phi^4 \ln \frac{\Phi}{\Delta} + 4(\mu^2 + 3\lambda \Phi^2^2) \ln \frac{\mu^2 + 3\lambda \Phi^2}{\Delta^2} \right\},
\]

(62)

where

\[
a = 2\left\{ -32 \sum_i (h^{\nu}_{ii})^4 + 192g^4_N + 4(\lambda_{10}^2 + \lambda_{11}^2 + \lambda_{12}^2) \right\}.
\]

(63)

We identify the inflaton with the real part of the \(B - L \) Higgs field, \(\Phi = \sqrt{2} R \sqrt{\phi} \). In the leading-log approximation, we obtain

\[
V(\Phi) = V_{\text{tree}} + V_{\text{eff}} \simeq \frac{\mu^2}{2} \Phi^2 + \frac{\lambda}{4} \Phi^4 + V_{\text{eff}}.
\]

(64)

We would like to remain that the inflation occurs as the inflaton slowly rolls to the minimal potential. The inflationary slow roll parameters are given \([12]\) by

\[
\begin{align*}
\epsilon(\Phi) &= \frac{1}{2} m_P^2 \left(\frac{V'}{V} \right)^2, \\
\eta(\Phi) &= m_P^2 \left(\frac{V''}{V} \right), \\
\zeta(\Phi) &= m_P^4 \frac{V''V'''}{V^2},
\end{align*}
\]

(65)

where \(m_P = 2.4 \times 10^{18} \) GeV and a prime is denoted as a derivative of \(\Phi \). The slow roll condition means that \(\epsilon(\Phi) \ll 1, |\eta(\Phi)| \ll 1, \zeta(\Phi) \ll 1 \). In this limit, the spectral index \(n_s \), the tensor to scalar ratio \(r \) (a canonical measure of gravity wave from inflation) and the running index \(\alpha \) can be written as

\[
\begin{align*}
n_s &= 1 - 6\epsilon + 2\eta, \\
r &= 16\epsilon, \\
\alpha &= 16\epsilon\eta - 14\epsilon^2 - 2\zeta^2.
\end{align*}
\]

(66)

The spectrum index \(n_s \) is estimated by BICEP2 experiment \([2]\), Planck \([13]\) and WMAP9 \([14]\) measurements. It is closed to 0.96. The tensor to scalar ratio is proven by BICEP2 \([2]\), \(r = 0.20^{+0.07}_{-0.05} \) while the Planck and WMAP9 experiments gave the bound \(r < 0.11(0.12) \).

The number of e-folds is given by

\[
N = \int_{\Phi_e}^{\Phi_0} \frac{V d\Phi}{V'},
\]

(67)
where Φ_e is the inflaton value at the end of inflation and defined by $\max(\epsilon(\Phi), \eta(\Phi), \zeta(\Phi)) = 1$. Φ_0 is the inflation value at the horizon exit. The value of N is around $50 - 60$ and depends on the energy scale during inflation.

The amplitude of the curvature perturbation is given as follows

$$\Delta^2_R = \frac{V}{24\pi^2m_P^4\epsilon(\Phi)},$$

(68)

The value of curvature perturbation should satisfy the Planck measurement $[15]: \Delta^2_R = 2.215 \times 10^{-9}$ at the scale $k_0 = 0.05 Mpc^{-1}$.

Let us study parameter space of μ, λ, Δ, a appeared in the potential $V(\Phi)$. If $\mu^2 \gg \lambda \Phi^2$ or $\mu^2 \sim \lambda \Phi^2$, both Δ^2_R and r either one of them is not in agreement with the Planck and WMAP9 experimental results. For example, taking $\Delta = 30m_P$, and random values of other parameters $10^{-10}m_P^2 < |\mu^2| < 10^4m_P^2$, $10^{-15} < |a| < 10^3$, $10^{-10} < || \lambda| < 1$ we get $|\Delta^2_R| > 10^3$. If we assume that $\mu^2 \ll \lambda \Phi^2$, the potential (64) can be rewritten in simple form

$$V(\Phi) = \lambda'(\Phi^4 + a'\Phi^4 \ln \frac{\Phi}{\Delta}),$$

(69)

where

$$\lambda' = \frac{\lambda}{4}, \quad a' = \frac{a + 72\lambda^2}{16\pi^2\lambda}.$$

(70)

The coupling constant λ is determined to satisfy the constraint on Δ^2_R, while as the predictions for n_s, r, α are given for fixed values of a', Δ. Fig. 1 shows the predicted values of n_s, r and α for $\Delta = 0.1m_P$ (green), $\Delta = 30m_P$ (red), $\Delta = 50m_P$ (pink), and $\Delta = 500m_P$ (blue) in the range of $-10^3 < a' < 10^3$ with the number of e-folds $N = 60$. We can see that for $\Delta = 0.1m_P$ and $\Delta = 500m_P$, r runs out of experimental region for almost values of a' in the range $-10^3 < a' < 10^3$. For $\Delta = 30m_P$, we need to require $a' < -36$ or $a' > 6$ to make sure n_s and r are in agreement with experimental results $[16]$, $n_s \in (0.94, 0.98)$, and $r \in (0.001, 0.15)$.

If we vary a', Δ in the parameter region satisfying experimental results, the order of $<\Phi>$ and the inflaton mass mostly does not change. From now on we take $a' = -10^2, \Delta = 30m_P$ for the below numerical calculations.

From the minimal potential condition, we get $<\Phi> \simeq 23.6m_P$. The inflaton mass is calculated by the second derivative of the effective potential at the minimum. For Z^N and ν_{kM}, the mass arises from (59) with notice that $\Phi = \sqrt{2}R[\phi]$. We obtain

$$m_\Phi = \sqrt{V''(\Phi)}|_{\Phi = <\Phi>} \simeq 2.67 \times 10^{13} GeV, \quad m_{Z^N} = 2g_N <\Phi>, \quad m_{\nu_{R_i}} = -\sqrt{2}h_{\nu_i}^{\nu} <\Phi>.$$

(71)
Now let us calculate the reheating temperature. In this model, the inflaton couples to pair of Higgs, pair of gauge boson Z^N and pair of Majorana neutrinos. We assume that $m_\Phi < m_{Z^N}$, hence the inflaton cannot decay into pair of Z^N. The inflaton can decay into pair of Higgs with the decay rate

$$\Gamma(\Phi \rightarrow hh) = \frac{\lambda^2_{10,11,12} \langle \Phi \rangle^2}{32\pi m_\Phi}. \quad (72)$$
If the mass condition is allowed, the inflaton can decay into pair of ν_{iR}

$$\Gamma(\Phi \to \nu_{iR}\nu_{iR}) = \frac{(h_{11}^\nu)^2 m_\Phi}{16\pi}.$$ \hfill (73)

If $|\lambda_{10;11;12}| \gg \frac{\sqrt{2}|h_{11}^\nu| m_\Phi}{<\Phi>}$, we get $\Gamma(\Phi \to hh) \gg \Gamma(\Phi \to \nu_{iR}\nu_{iR})$. The inflaton dominantly decays into pair of Higgs, therefore the reheating temperature is estimated as

$$T_R = \left(\frac{90}{\pi^2 g^*}\right)^{\frac{1}{4}} (\Gamma m_P)^{\frac{1}{2}} \sim 10^{20} \text{GeV} \times |\lambda_{10;11;12}|,$$ \hfill (74)

where $g^* = 106.75$ is the number of degrees of the freedom active at the temperature of the asymmetry production. The constraint $\Gamma(\Phi \to hh) \ll m_\Phi$ requires $|\lambda_{10;11;12}| \ll \frac{\sqrt{32\pi m_\Phi}}{<\Phi>} \sim 10^{-6}$. We find the limit $T_R(\text{max}) < 10^{14}$ GeV. Taking $|\lambda_{10;11;12}| \sim 10^{-11}$ then $T_R \sim 10^9$ GeV satisfying the upper bound on reheating temperature to prevent gravitinos problem. In this case the thermal leptogenesis scenario may work to explain the baryon asymmetry.

In other case, we assume

$$|h_{11}^\nu| \ll \frac{m_\Phi}{\sqrt{2} <\Phi>} \sim 3.33 \times 10^{-7} < |h_{22}^\nu| \sim |h_{33}^\nu|,$$ \hfill (75)

therefore,

$$m_{\nu_{1R}} \ll m_\Phi < m_{\nu_{2R}} \sim m_{\nu_{3R}}.$$ \hfill (76)

If $|\lambda_{10;11;12}| \ll \frac{|h_{11}^\nu| m_\Phi}{<\Phi>}$, we get $\Gamma(\Phi \to hh) \ll \Gamma(\Phi \to \nu_{1R}\nu_{1R})$. When $\lambda_{10;11;12}$ are negligibly small, the inflaton dominantly decays into pair of ν_{1R}. The produced reheating temperature is given as

$$T_R = \left(\frac{90}{\pi^2 g^*}\right)^{\frac{1}{4}} (\Gamma m_P)^{\frac{1}{2}} \sim 10^{14} \times |h_{11}^\nu|.$$ \hfill (77)

This temperature is much lower than the RH neutrino mass since $<\Phi>$ is at Planck value. We can apply non-thermal leptogenesis scenario, in which the ν_{1R} is produced through the direct non-thermal decay of the inflaton Φ.

IV. LEPTOGENESIS IN THE 3-3-1-1 MODEL

First, we consider the scalar sector. The scalar mass spectrum is considered in [8, 9], in which

$$-f \sim \omega \sim \Lambda \gg u \sim v.$$ \hfill (8.9)

In this work we assume $\Lambda \gg \omega \gg u \sim v$, the considered model contains

- There are 9 Goldstone bosons $A_4, G_Z, G_Z', G_X, G_X^*, G_W^\pm, G_Y^\pm$, their interactions can be gauged away by a unitary transformation.
• One higgs gains mass at the electroweak breaking scale. This is the lightest massive Higgs bosons H and is identified as SM Higgs.

• There are 9 new Higgs bosons namely, $A, H_1, H_2, H_4^\pm, H_5^\pm, H', H'^*$, which are heavy at the ω scale, while the mass of H_3 is proportional to Λ.

In the gauge sector, let us collect the new gauge bosons beyond the SM. In the limit $\Lambda \gg \omega \gg u, v$, we get

• One super heavy gauge boson $Z^N_\mu \sim C_\mu$ with the mass $m^2_{Z^N} \simeq 4g^2_N \Lambda^2$.

• All the other new gauge bosons, $Z^2_\mu, X^0_\mu, X^0_*_\mu, Y^\pm_\mu$, have mass in order $\mathcal{O}(\omega)$.

The lepton number of particles are considered in [8, 9]. In particularly, the SM particles have a lepton number as usual. The new particles ($G_X, H'^*, H_4^*, G_Y, X^0, Y^-$) have the lepton number equal to one, their complex conjugate have the lepton number equal to minus one while the remaining Higgs and gauge bosons have zero lepton number.

Now in order to account for leptogenesis, we have to verify the lepton number violating interactions. Seeing that the lepton number L and baryon number B are conserved by VEVs of η, χ, ρ as mentioned in [8]. All interaction terms appeared after symmetry breaking in the considered model are conserved the lepton number. Hence it is clear that B, L violating number interactions should be broken in other way in order to explain neutrino mass and mixing as well as the matter-antimatter asymmetry of the Universe. The lepton number only can be violated in the interactions of Majorana neutrinos with non-zero lepton number particles.

Let us remind the seesaw mechanism that explains the tiny neutrino mass and large mixing. The Lagrangian relevant to the neutrino mass has a form as

$$L_{\nu-mass} = (h^{\nu}_{ab}\bar{\psi}_{aL}\eta_{bR} + h'^{\nu}_{ab}\bar{\nu}_{aR}\nu_{bR}\phi + \text{H.c}).$$ (78)

The left handed neutrinos couple to the right handed neutrinos through the first term of the Eq. (78) and have a Dirac mass as

$$[m^D_{\nu}]_{ab} = -\frac{h^\nu_{ab}u}{\sqrt{2}}.$$ (79)

while the right handed neutrinos couples to themselves through the second term given in the Eq. (78) and have a Majorana mass as

$$[m^M_{\nu}]_{ab} = -\sqrt{2}h'^{\nu}_{ab}\Lambda.$$ (80)
Hence, we can explain the smallness of the light neutrino masses via a type I seesaw mechanism and predict six Majorana neutrinos as mass eigenstates, three heavy neutrinos $\nu_i M$ and three light neutrinos $\nu_i E$.

$$\nu_i M = \nu_i R + \nu_i R^c; \quad m_{\nu_i M} = m^{M}_{\nu} = -\sqrt{2}h'\Lambda,$$

$$\nu_i E = \nu_i L + \nu_i L^c; \quad m^{\text{eff}}_{\nu_i E} = -m^{D}_{\nu}(m^{M}_{\nu})^{-1}(m^{D}_{\nu})^{T} = \frac{\mu^2}{2\sqrt{2}\Lambda}h^{\nu}(h'^{\nu})^{-1}(h'^{\nu})^{T}. \quad (82)$$

We note that the considered model also contains three new neutral fermions N_{aR}. They obtain the Majorana masses $[8]$ via an effective interaction as

$$\frac{\lambda_{ab}}{M}(\bar{\psi}_{aL}m(\psi_{bL})\chi_{m\chi_{n}})^* + \text{H.c.} \quad (83)$$

The Majorana masses of the neutral fermions N_{aR} are given

$$[m_{N_{aR}}]_{ab} = -\frac{\lambda_{ab}\omega^2}{M} \quad (84)$$

and the Majorana fermion states are

$$N_i = N_{iR} + N_{iR}^c. \quad (85)$$

Based on the Majorana fermion states given in Eqs. (81), (82) and (85), we can rewrite the Lagrangian L_{ν_R} including the Yukawa terms in Eq. (78) and the gauge-fermion interaction $\bar{\nu}_{iR}\gamma_{\mu}D_{\mu}\nu_{iR}$ as follows

$$L_{\nu_R} = (h''_{ab}\bar{\psi}_{aL}\eta_{\nu_{bM}} + h''_{ab}\tilde{\nu}_{aM}P_{R}\nu_{bM}\phi - \frac{1}{2}[m^{M}_{\nu}]_{ab}\bar{\nu}_{aM}P_{R}\nu_{bM} + \text{H.c.})$$

$$+ gN\bar{\nu}_{iM}\gamma_{\mu}P_{R}\nu_{iM}Z_{\mu}^N + \bar{\nu}_{iM}\gamma_{\mu}\partial_{\mu}P_{R}\nu_{iM} + \text{H.c.}. \quad (86)$$

To rely on Higgs physical states mentioned above, we obtain the physical interaction terms that violate the lepton number. In particularly the lepton violating interactions appeared in Eq. (86) are: $\bar{e}_{P}\nu_{M}H_{5}^- , \tilde{N}_{P}R_{H'}\nu_{M}$.

We would like to emphasize that the lepton number violating terms also appear via the interactions of the light Majorana neutrinos, namely, $\bar{e}_{P}\nu_{E}W^-, \tilde{N}_{P}R_{X}X_{0}^*$. However these interactions do not generate baryon asymmetry by [17]. In brief, this model contains the lepton number violating interactions, which are $\bar{e}_{P}\nu_{M}H_{5}^- , \tilde{N}_{P}R_{H'}\nu_{M} , \bar{e}_{P}\nu_{E}W^- , \tilde{N}_{P}R_{X}X_{0}^*$. We consider leptogenesis scenario at the temperature T_{Γ} satisfying $T_{\Gamma} \gg 1\text{TeV}$. It implies that only ν_{M} can generate lepton asymmetry.
\[
\begin{array}{|c|c|c|}
\hline
\text{vertex} & \text{coupling} & \text{vertex} & \text{coupling} \\
\hline
\bar{\nu}_a \nu_b H & \frac{w_{ab}^5}{\sqrt{2} v} P_R & \bar{\nu}_a \nu_b H & \frac{w_{ab}^5}{\sqrt{2} v} P_R \\
\hline
\bar{\nu}_a \nu_b H & \frac{w_{ab}^5}{\sqrt{2} v} P_R & \bar{\nu}_a \nu_b H & \frac{w_{ab}^5}{\sqrt{2} v} P_R \\
\hline
\bar{\nu}_a \nu_b H & \frac{w_{ab}^5}{\sqrt{2} v} P_R & \bar{\nu}_a \nu_b H & \frac{w_{ab}^5}{\sqrt{2} v} P_R \\
\hline
\bar{\nu}_a \nu_b H & \frac{w_{ab}^5}{\sqrt{2} v} P_R & \bar{\nu}_a \nu_b H & \frac{w_{ab}^5}{\sqrt{2} v} P_R \\
\hline
\end{array}
\]

TABLE I: Non-zero couplings of fermions appearing in loop diagram of \(\nu_M \rightarrow e + H^+_5\) and \(\nu_M \rightarrow N + H^{-}_5\).

Before calculating the CP asymmetry of \(\nu_{aM}\), for convenience, we list all non-zero couplings of fermions appearing in loop diagram of \(\nu_M \rightarrow e + H^+_5\) and \(\nu_M \rightarrow N + H^{-}_5\).

All possible one-loop diagrams, which can contribute to the CP asymmetry from the decay \(\nu_M \rightarrow e + H^+_5\) are listed in Fig. 2. The interference of the tree level and one-loop level (2a, 2b), (3b) with the propagator \(\nu_j M\), (6) with the propagator \((H^+_5, e_i)\) gives dominated contribution to the CP asymmetry. We obtain

\[
\varepsilon_{\nu_{aM}}^{(1)} = \frac{\Gamma(\nu_{kM} \rightarrow e_i + H^+_5) - \Gamma(\nu_{kM} \rightarrow \bar{e}_i + H^-_5)}{2\Gamma_{\nu_{kM}}} \\
\simeq \frac{1}{8\pi C_\nu} \left[\frac{1}{2} g_{W^+ H^+_5 H^-} + e \lambda_{A H^+_5 H^-} + (g_{1V} + g_{1A}) \lambda_{Z_j H^+_5 H^-} + (g_{2V} + g_{2A}) \lambda_{Z_j H^+_5 H^-} \\
+ (g_{NV} + g_{NA}) \lambda_{Z_j H^+_5 H^-} (4 - 2 g_{2V} \log(1 + 1/g_j)) \right] s^2_{\beta} \sum_l \text{Im}[h_{ik}^* h_{lk}] \\
+ \frac{s^4_{\beta}}{8\pi C_\nu} \sum_j \sqrt{g_j} \left[1 - (1 + g_j) \log(1 + 1/g_j) + (1 - g_j)^{-1} \right] \text{Im}[(h^+ h^\nu)_{kj} h_{ik}^* h_{ij}^\nu],
\]

where \(\Gamma_{\nu_{kM}}\) is the total decay rate of \(\nu_{kM}\) at tree level,

\[
g_z = \frac{m^2_{Z_N}}{m^2_{\nu_{kM}}}, \quad g_j = \frac{m^2_{\nu_{jM}}}{m^2_{\nu_{kM}}}, \quad C_0 = (2 + s^2_{\beta}) \sum_i |h_{ik}^\nu|^2 = (2 + s^2_{\beta}) (h^+ h^\nu)_{kk}, \quad t_{\beta} = v/u,
\]

\[
\lambda_{W^+ H^+_5 H^-} = \frac{g}{2}, \quad \lambda_{A H^+_5 H^-} = -e, \quad \lambda_{Z_j H^+_5 H^-} = \frac{g_{2V}}{2 c_{W}}, \quad \lambda_{Z_j H^+_5 H^-} = \frac{g_{1V} + g_{1A} - (g_{2V} + g_{2A})}{4 c_{W}},
\]

\[
\lambda_{Z_j H^+_5 H^-} = \frac{g_{2V}}{2 c_{W}}, \quad (g_{1V} + g_{1A}) = -(g_{2V} + g_{2A}) = \frac{2 g_{2V}}{c_{W}}, \quad (g_{NV} + g_{NA}) = \frac{2 g_N}{3}. \quad (88)
\]
Here we ignore the mixing between \(Z^1_\mu\) and \(Z^2_\mu\) since \(\omega >> u, v\).

Now we consider CP asymmetry of the decay \(\nu_M \to N + H^{*}\). All possible loop diagrams are listed in the Fig. 3. The interference of the tree level and one-loop level (2c), (3) with the propagator \(\nu_{jM}\), (6) with the propagator \((H^5, e_i)\) gives dominated contribution to the CP asymmetry. We obtain

\[
\varepsilon^{\nu_{k,M}}_{\nu_{k,M}}(2) = \frac{\Gamma(\nu_{k,M} \to N_i + H^{*}) - \Gamma(\nu_{k,M} \to N_i + H')}{2\Gamma(\nu_{k,M})}
\]

\[
\approx \frac{1}{8\pi C_0} \left[\frac{g_c W}{\sqrt{3 - 4s^2_W}} \lambda_{Z^*H^*H'} + \frac{2}{3} g_N \lambda_{Z^*N^*H^*H'} (4 - 2g_z \log[1 + 1/g_z]) \right] \sum_i \text{Im}[h^{\nu*}_{ik} h^{\nu}_{ik}]
\]

\[
\approx \frac{1}{8\pi C_0} \sum_i \sqrt{g_j} [1 - (1 + g_j) \log[1 + 1/g_j] + s^2_\beta (1 - g_j)^{-1}] \text{Im}[h^{\nu*}_{ik} h^{\nu}_{ik} h^{\nu*}_{kj} h^{\nu}_{kj}],
\]

(89)

where

\[
\lambda_{Z^*H^*H'} = - \frac{g_c W}{\sqrt{3 - 4s^2_W}}, \quad \lambda_{Z^*N^*H^*H'} = \frac{g_N}{3}.
\]

(90)

We would like to notice that since the coupling \(\lambda^{\nu}_{\nu\nu_M H_5^{*}} = s_\beta h^{\nu}_{ab} P_R\) while \(\lambda^{\nu}_{\nu\nu_M H'} \approx h^{\nu}_{ab} P_R\), the factors \(s^2_\beta, s^4_\beta\) appear in (87) while \(s^0_\beta, s^2_\beta\) appear in (89). In this work we take \(u \sim v\) and thus \(s_\beta = 1/\sqrt{2}\).

Let us comment on neutrino mass and mixing. The light neutrino mass matrix is given Eq. 82. In order to diagonal this matrix, we have to use the \(U\) matrix. It is nice to note that the lepton mixing matrix was studied by the Pontecorvo-Maki-Nakagawa-Sakata (PMNS). The standard form of this mixing matrix is given

\[
U_{\text{PMNS}} = \begin{pmatrix}
 c_{12}c_{13} & s_{12}c_{13} & s_{13}e^{-i\delta} \\
-s_{12}c_{23} - c_{12}s_{23}s_{13}e^{i\delta} & c_{12}c_{23} - s_{12}s_{23}s_{13}e^{i\delta} & s_{23}c_{13} \\
 s_{12}s_{23} - c_{12}c_{23}s_{13}e^{i\delta} & -c_{12}s_{23} - s_{12}c_{23}s_{13}e^{i\delta} & c_{23}c_{13}
\end{pmatrix}
\]

(91)

where \(c_{ij} = \cos \theta_{ij}, s_{ij} = \sin \theta_{ij}\) and the values of \(\theta_{ij}\) are determined by the global analysis 18, namely

\[
\sin^2 \theta_{23} = 0.466^{+0.073,0.017}_{-0.058,0.135}; \quad \sin^2 \theta_{12} = 0.312^{+0.019,0.063}_{-0.0018,0.049}; \quad \sin^2 \theta_{13} = 0.016 \pm 0.010(\leq 0.046).
\]

(92)

\(\delta\) is unknown CP violating Dirac phase.

On the other hand, the square of charged lepton mass matrix and light neutrino mass matrix are diagonalized by two unitary transformations

\[
U^T_1 M^+_1 M^+_1 U_1 = \text{Diag}(m^2_\tau, m^2_\mu, m^2_\nu); \quad U^T_{\nu} m^\text{eff}_{\nu} U_{\nu} = \text{Diag}(m_{\nu_1}, m_{\nu_2}, m_{\nu_3})
\]

(93)
The U_{PMNS} is defined as

$$U_{\text{PMNS}} P = U_{\nu}^\dagger U_{\nu}, \quad (94)$$

where

$$ P = \begin{pmatrix} 1 & 0 & 0 \\ 0 & e^{i\sigma} & 0 \\ 0 & 0 & e^{i\rho} \end{pmatrix}, \quad (95)$$

where ρ, σ are CP violating Majorana phases. If we ignore the mixing between the charged lepton, then we can get

$$U_{\nu} = U_{\text{PMNS}} P. \quad (96)$$

We assume that $h_{\nu}'' = \text{Diag}(h_{\nu}''_{11}, h_{\nu}''_{22}, h_{\nu}''_{33})$ then $m_{\nu}^M = \text{Diag}(m_{\nu_{1M}}, m_{\nu_{2M}}, m_{\nu_{3M}})$. Using the analysis in [19], the most general h_{ν}'' matrix is given by

$$h_{\nu}'' = \frac{\sqrt{2}}{u} \text{Diag}(\sqrt{m_{\nu_{1M}}}, \sqrt{m_{\nu_{2M}}}, \sqrt{m_{\nu_{3M}}}) R \text{Diag}(\sqrt{m_{\nu_{1}}}, \sqrt{m_{\nu_{2}}}, \sqrt{m_{\nu_{3}}}) U^\dagger, \quad (97)$$

where R is orthogonal matrix expressed in terms of arbitrary complex angles $\hat{\theta}_1, \hat{\theta}_2, \hat{\theta}_3$ as following

$$ R = \begin{pmatrix} \hat{c}_2 \hat{c}_3 & -\hat{c}_1 \hat{s}_3 - \hat{s}_1 \hat{s}_2 \hat{c}_3 & \hat{s}_1 \hat{s}_3 - \hat{c}_1 \hat{s}_2 \hat{c}_3 \\ \hat{c}_2 \hat{s}_3 & \hat{c}_1 \hat{c}_3 - \hat{s}_1 \hat{s}_2 \hat{s}_3 & -\hat{s}_1 \hat{c}_3 - \hat{c}_1 \hat{s}_2 \hat{s}_3 \\ \hat{s}_2 & \hat{s}_1 \hat{c}_2 & \hat{c}_1 \hat{c}_2 \end{pmatrix} \quad (98)$$

where $\hat{c}_i = \cos \hat{\theta}_i, \hat{s}_i = \sin \hat{\theta}_i, i = 1, 2, 3$.

From the Eq. (97) $h_{\nu}'' h_{\nu}''^\dagger$ has the form

$$h_{\nu}'' h_{\nu}''^\dagger = \frac{2}{u^2} U \text{Diag}(\sqrt{m_{\nu_{1}}}, \sqrt{m_{\nu_{2}}}, \sqrt{m_{\nu_{3}}}) R^\dagger \text{Diag}(m_{\nu_{1M}}, m_{\nu_{2M}}, m_{\nu_{3M}}) R \text{Diag}(\sqrt{m_{\nu_{1}}}, \sqrt{m_{\nu_{2}}}, \sqrt{m_{\nu_{3}}}) U^\dagger. \quad (99)$$

For the light neutrinos masses, we fit the experimental results

$$\Delta m_{\nu_{12}}^2 = m_{\nu_{2}}^2 - m_{\nu_{1}}^2 = 7.53 \times 10^{-5} \text{eV}^2, \quad \Delta m_{\nu_{23}}^2 = m_{\nu_{3}}^2 - m_{\nu_{2}}^2 = 2.44 \times 10^{-3} \text{eV}^2. \quad (100)$$

The asymmetry $\varepsilon_{i;M}^{(1)}, \varepsilon_{i;M}^{(2)}$ now can be considered as function of the phase δ, ρ, σ, the heavy majorana neutrinos masses and the complex angles $\hat{\theta}_1, \hat{\theta}_2, \hat{\theta}_3$. For simplicity, we assume $\hat{\theta}_1 = \hat{\theta}_2 = \hat{\theta}_3 \equiv \hat{\theta}$. In this work we consider the CP asymmetry due to the decays of the lightest heavy Majorana ν_{1M}. The detail will be presented in the subsections below.
The baryon asymmetry and lepton asymmetry are given as

\[\eta_B = \frac{n_B - n_{\overline{B}}}{s}, \]
\[\eta_L = \frac{n_l - n_{\overline{l}}}{s}, \]

(101)

where \(s \) is the entropy density. The lepton asymmetry can be transformed into a baryon asymmetry by non-perturbative B + L violating (sphaleron) processes [20], giving

\[\eta_B = a(\eta_B - \eta_L) = \frac{a}{a - 1} \eta_L, \]

(102)

where

\[a = \frac{8n_g + 4n_H}{22n_g + 13n_H}, \]

(103)

with \(n_H \) is the number of Higgs and \(n_g \) is the number of fermion generations. We get

\[\eta_B = \frac{8n_g + 4n_H}{14n_g + 9n_H}\eta_L. \]

(104)
As the analysis in [21], taking \(n_H = 2 \) and \(n_g = 3 \), we get
\[
\eta_B = -\frac{8}{15} \eta_L. \tag{105}
\]
Now let us calculate \(\eta_L \) in thermal and non-thermal leptogenesis scenario.

A. Thermal production

In the thermal scenario, the heavy Majorana neutrinos are produced in a thermal bath. At \(T > m_{\nu_{1M}} \), the CP asymmetry generated by \(\nu_{1M} \) decays can be washed out due to inverse decays and scattering processes. That why the CP asymmetry is weighted by the washout efficiency.

For the channel \(\nu_{kM} \to e_i H_5^+ \), the CP asymmetry depends on flavor because \(L_i(e_i) = 1 \). However, since \(L(N_i) = 0, L(H') = -1 \), the CP asymmetry due to the decay \(\nu_{kM} \to N_i H^\prime \), \(N_i H' \) is considered flavor independent. The Boltzmann equations for the lepton asymmetry can be divided
by two forms, one is the equation for the flavored lepton asymmetry corresponding to $\hat{\varepsilon}^{(1)}_{\nu M}$, and another is treated by the conventional computation for $\hat{\varepsilon}^{(2)}_{\nu M} = \sum_i \hat{\varepsilon}^{(2)}_{\nu i M}$.

The interference of the tree level with loop diagrams contained gauge propagator is vanished in summation of all the indexes $i, l = 1, 2, 3$ if the CP asymmetry has the same weight for all flavors,

$$\sum_{i,l} \text{Im}[h^{\nu*}_{ik}h^{\nu}_{lk}] = \text{Im}[\sum_{i,l} h^{\nu*}_{ik}h^{\nu}_{lk}] = 0. \quad (106)$$

Therefore, from Eq. (89)

$$\hat{\varepsilon}^{(2)}_{\nu M} = \sum_i \hat{\varepsilon}^{(2)}_{\nu i M} = \frac{1}{8\pi C_0} \sum_{j} \sqrt{g_j} [\log(1 + g_j) + \log(1 - g_j) - 1] \text{Im}[(h^{\nu*}h^{\nu})_{1j}]$$

$$\simeq -1.6 \times 10^{-2} \sum_{j} \sqrt{g_j} (h^{\nu*}h^{\nu})_{1j}. \quad (107)$$

Eq. (87) can be reduced by taking $g = 0.65, s^2_W = 0.231$ as

$$\hat{\varepsilon}^{(1)}_{\nu M} = \frac{-1.6 \times 10^{-4} \sum_i \text{Im}[h^{\nu*}_{iM}h^{\nu}_{ii}] - 0.6 \times 10^{-2} \sum_{j} \sqrt{g_j} \text{Im}[(h^{\nu*}h^{\nu})_{1j}h^{\nu*}_{iM}h^{\nu}_{ij}]}{(h^{\nu*}h^{\nu})_{11}. \quad (108)}$$

In the thermal leptogenesis, the washout parameters are defined as

$$K_i = \frac{\Gamma(\nu M \rightarrow e_i H^+_5, e_i H^-_5, e_i H^-_5)}{H(T = m_{\nu M})} = \frac{s^2_\beta h^{\nu*}_{i1}h^{\nu}_{11}m_{\nu M}}{8\pi}, \quad (109)$$

By varying $\delta, \sigma, \rho, \tilde{\theta}$ for $m_{\nu M} \sim 10^9$ GeV, $m_{\nu 2M} \sim m_{\nu 3M} \sim 10^3 m_{\nu M}$ we figure out $K \gg 1$ for all values of CP parameters $\delta, \sigma, \rho, \tilde{\theta}$. The lepton asymmetry can be approximated as given in 22. In the strong washout regime, $K \gg 1$

$$\eta^0_L \simeq 0.3 \frac{\hat{\varepsilon}^{(2)}_{\nu M}}{g_*} \left(\frac{0.55}{K} \right)^{1.16}, \quad (110)$$

where $A_{11} = -151/179$, $A_{22} = A_{33} = -344/537$.

The baryon asymmetry is related to the lepton asymmetry as

$$\eta_B = -\frac{8}{15} (\sum_{i=1,2,3} \eta^i_{L} + \eta^0_{L}). \quad (111)$$

From all expressions above, we see that η_B depends on $\delta, \sigma, \rho, \tilde{\theta}$. The baryon asymmetry η_B in the region $(5 \times 10^{-11}, 10^{-10})$ on the plan of the complex angel $\tilde{\theta}$ is shown in Fig. 4 for

$$\delta = 4.3 \text{ rad}, \quad \sigma = -1.5 \text{ rad}, \quad \rho = -1 \text{ rad},$$

$$m_{\nu 2M} = m_{\nu 1M} = 10^3 m_{\nu 1M}, \quad m_{\nu 1M} = 10^9 \text{ GeV}, \quad m_{\nu 1} = 0.01 \text{ eV}. \quad (112)$$
The red regions indicate that in order to satisfy $5 \times 10^{-11} < \eta_B < 10^{-10}$, we need to require $-1.01 < \text{Im}[\hat{\theta}] < 1.8$ when varying $\text{Re}[\hat{\theta}]$. The limit of $\text{Im}[\hat{\theta}]$ keeps the same if we extend the range of $\text{Re}[\hat{\theta}]$. The η_B is considered as function of pure imaginary $\hat{\theta}$ (red) and pure real $\hat{\theta}$ (blue) as shown in Fig. 5. We see that η_B changes a lot when varying pure $\text{Im}[\hat{\theta}]$ while it seems to keep the same order when the pure $\text{Re}[\hat{\theta}]$ alters. The baryon asymmetry varies little as function of the CP phases presented in Fig. 6.

If we study the case $m_{\nu_1 M} = 10^9 \text{GeV}, m_{\nu_2 M} = m_{\nu_3 M} = 10^3 m_{\nu_1 M}$, the constraint on the complex angle $\hat{\theta}$ is stricter in order to satisfy the experimental results on baryon asymmetry.

![Contour plot of η_B](image)

FIG. 4: Contour plot of η_B in the region $5 \times 10^{-11} < \eta_B < 10^{-10}$ on the plan of the complex angel $\hat{\theta}$ for $\delta = 4.3$ rad, $\sigma = -1.5$ rad, $\rho = -1$ rad, $m_{\nu_2 M} = m_{\nu_3 M} = 10^3 m_{\nu_1 M}$, $m_{\nu_1 M} = 10^9$ GeV, $m_{\nu_1} = 0.01$ eV.

B. Non-thermal production

In the non-thermal scenario the reheating temperature can be lower than the lightest heavy Majorana. The total CP asymmetry is the summation of all flavor CP asymmetry,

$$
\varepsilon_{\nu_{k,M}} = \sum_i \varepsilon^{(1)}_{\nu_{i,M}} + \varepsilon^{(2)}_{\nu_{i,M}} = \frac{\sum_j B_j \text{Im}[(h^{\nu_i \nu^*})_{kj}]^2}{(h^{\nu_i \nu})_{kk}},
$$

(113)
FIG. 5: η_B vs. pure imaginary $\hat{\theta}$ (red) and pure real $\hat{\theta}$ (blue) for $\delta = 4.3$ rad, $\sigma = -1.5$ rad, $\rho = -1$ rad, $m_{\nu_{2M}} = m_{\nu_{3M}} = 10^3 m_{\nu_{1M}}$, $m_{\nu_{1M}} = 10^9$ GeV, $m_{\nu_1} = 0.01$ eV.

FIG. 6: η_B vs. δ (left) and η_B vs. $\sigma = \rho$ (right) for $\hat{\theta} = 0.87 I$ (red) and $\hat{\theta} = -0.18 I$ (blue), and other parameters given in (112).

where

$$B_j = \frac{1}{8\pi(2 + s_j^2)} \sqrt{g_j} \left[(s_{\hat{\theta}}^4 + 1) \left((1 + (1 + g_j) \log(1 + 1/g_j)) + s_{\hat{\theta}}^2 (s_{\hat{\theta}}^2 + 1)(1 - g_j)^{-1} \right) \right]$$

$$\simeq -\frac{11}{160\pi \sqrt{g_j}}. \quad (114)$$

The lepton asymmetry is related with the CP asymmetry through

$$\eta_L = \frac{3}{2} \varepsilon_{\nu_{kM}} \times Br_k \times \frac{T_R}{m_\Phi}, \quad (115)$$

where Br_k denotes the branching ratio of the decay channel $\Phi \rightarrow \nu_{kM}\nu_{kM}$.
As analysis in the previous section, we assumed that $m_{\nu_{1M}} \ll m_{\Phi} < m_{\nu_{2M}} \sim m_{\nu_{3M}}, m_{\Phi} < m_{Z^N}$ and $\Gamma(\Phi \to hh) \ll \Gamma(\Phi \to \nu_{1R}\nu_{1R})$ when $\lambda_{10,11,12}$ are negligibly small, therefore,

$$\eta_L \simeq \frac{3}{2} \varepsilon_{\nu_{1M}} \times \frac{T_R}{m_{\Phi}}.$$ \hfill (116)

Combining Eqs. (77, 105, 113) with $u \sim v \sim 174$ GeV we get

$$\eta_B \simeq 0.4 \times \frac{m_{\nu_{1M}}}{\sqrt{2} \Phi} \times \sum_{j=2,3} \frac{m_{\nu_{jM}}}{m_{\nu_{1M}}} \Im[(h h^\dagger h h^\dagger)_{1j}]^2}{(h h^\dagger h h^\dagger)_{11}},$$ \hfill (117)

with notice that the formula $h^\dagger h^\dagger$ given in Eq. (99). Putting

$$\delta = 4.3 \text{ rad}, \quad \sigma = -1.5 \text{ rad}, \quad \rho = -1 \text{ rad}, \quad \hat{\theta} = 1.46I,$n

$$m_{\nu_{2M}} = m_{\nu_{3M}} = 10^3 m_{\nu_{1M}}, \quad m_{\nu_{1M}} = 2.34 \times 10^{11} \text{ GeV}, \quad m_{\nu_{1}} = 0.01 \text{ eV},$$

$$m_{\Phi} = 2.67 \times 10^{13} \text{ GeV}, \quad <\Phi> = 23.6 m_P,$$ \hfill (118)

we get

$$\eta_B \simeq 8.92 \times 10^{-11}.$$ \hfill (119)

This value of baryon asymmetry is in agreement with [23], $\eta_B = (8.75 \pm 0.23) \times 10^{-11}$.

Let us consider how η_B depends on the complex angles and CP phases one by one. Fig. 7 shows η_B in the region $(5 \times 10^{-11}, 10^{-10})$ on the plan of the complex angle $\hat{\theta}$ for $m_{\nu_{2M}} = m_{\nu_{3M}} = 10^3 m_{\nu_{1M}}, m_{\nu_{1M}} = 10^{11}$ GeV (red), and $m_{\nu_{2M}} = m_{\nu_{3M}} = 10^5 m_{\nu_{1M}}, m_{\nu_{1M}} = 10^9$ GeV (blue) and all other parameters as given in (118). We see that in the red region $-2.05 < \Im[\hat{\theta}] < -1.68$ or $1.49 < \Im[\hat{\theta}] < 2.28$ and in the blue region $\Im[\hat{\theta}] \sim 3.3$ or $\Im[\hat{\theta}] \sim -3.4$ when varying $\Re[\hat{\theta}]$ even though if we extend the plot range for both axes. It means that it is free to choose the value of $\Re[\hat{\theta}]$ but $\Im[\hat{\theta}]$ is quite a strict constraint. η_B depends strongly on $\Im[\hat{\theta}]$, while it changes lightly when varying $\Re[\hat{\theta}]$. This conclusion is more clearly in Fig. 8 in which η_B is considered as a function of pure imaginary (red) and pure real (blue) $\hat{\theta}$.

Fig. 9 shows η_B as a function of Dirac CP phase δ (left) and Majorana CP phase $\sigma = \rho$ (right) for $\hat{\theta} = 1.46I$ (red) and $\hat{\theta} = -1.46I$ (blue), and the choice of other parameters given in (118). In brief, we see that η_B does not depend much on the CP phase but depend on the imaginary of the complex angle $\hat{\theta}$. This conclusion is the same as analysis in thermal scenario.

V. CONCLUSIONS

We have studied generation of inflation and leptogenesis in the 3-3-1-1 model by considering the symmetry breaking of the $U(1)_N$ gauge group at the GUT scale. The model contains two super
FIG. 7: Contour plot of η_B in the region $(5 \times 10^{-11} < \eta_B < 10^{-10})$ on the plan of the complex angel $\hat{\theta}$ for $m_{\nu_1 M} = 10^{11}$ GeV (red) and $m_{\nu_1 M} = 10^9$ GeV (blue).

FIG. 8: η_B vs. pure imaginary (red) and pure real (blue) $\hat{\theta}$.

heavy particles with mass proportional to Λ, the new gauge boson Z^N embedded to $U(1)_N$ and the scalar Higgs boson $H_3 \simeq S_4$. All other new massive particles get mass in order of ω. The singlet Higgs ϕ with $< \phi >$ at the GUT scale can play the role of inflaton. The quantum corrections to the potential of inflaton is taken into account, thus there appears logarithm function of inflaton, making the presently considered model’s inflation different from chaotic one. In this work, we have figured out the parameter spaces appeared in the inflaton potential matching the experiment on
the spectrum index n_s, the tensor to scalar ratio r, the running index α as well as the amplitude of the curvature perturbation Δ^2_R. The inflaton mass is obtained in an order of 10^{13} GeV.

After the inflation, the heavy Majorana can be produced in a thermal bath or by decay of the inflaton. Depending on the Higgs couplings $\lambda_{10,11,12}$ in comparison with the Yukawa couplings h^ν_{ij}, leptogenesis is considered in thermal or non thermal scenario. We have shown how the 3-3-1-1 model generates lepton asymmetry then converts into baryon asymmetry in both cases. It is interesting that the model contains an extra channel contributing to the CP asymmetry. The heavy Majorana particles can decay into neutral neutrinos N_i and neutral complex Higgs H' with the coupling different by factor s_β from the original channel, $\nu_{kM} \rightarrow e^i \pm H^\mp$. In thermal leptogenesis, the CP asymmetry generated by the new channel is considered flavor independent, while the ordinary channel is treated as flavor dependent due to the different lepton number of N_i and e_i. It leads the interference of the tree level with loop diagrams appeared gauge propagator to contribute to the CP asymmetry for the decay $\nu_{kM} \rightarrow e^i \pm H^\mp$. This feature is new compared to other leptogenesis models.

The thermal and non thermal leptogenesis have been calculated in detail. In order to get non zero CP asymmetry we need to consider the complex Yukawa coupling matrix h^ν by expressing it in terms of the neutrino mass and mixing matrix and the orthogonal matrix R. We have presented how η_B depends on the CP phases δ, σ, ρ and complex angle $\tilde{\theta} \equiv \tilde{\theta}_1 = \tilde{\theta}_2 = \tilde{\theta}_3$. The baryon asymmetry is not much sensitive to the value of CP phases or pure real $\widetilde{\theta}$ but it alters a lot as a function of pure imaginary $\widetilde{\theta}$. This property is the same for both leptogenesis scenarios. Thank to the orthogonal matrix R and the complex angle $\tilde{\theta}$, which makes the baryon symmetry completely
in agreement with the experiment for both cases. One different thing of the two scenarios is that at any point of $\text{Re}[\bar{\theta}]$ we always can find $\text{Im}[\bar{\theta}]$ satisfying a fixed value of η_B in non thermal case, but there is restriction of choosing pair of $(\text{Im}[\bar{\theta}], \text{Re}[\bar{\theta}])$ in thermal scenario to match experiment on η_B. We know that the baryon asymmetry depends much on $\text{Im}[\bar{\theta}]$ and it is easy to see that from the Fig. 5 there is an upper limit on the baryon asymmetry if we consider η_B as a function of $\text{Im}[\bar{\theta}]$ in thermal scenario because of the effect of washout efficiency. However, there is no upper bound for $\eta_B(\text{Im}[\bar{\theta}])$ in non thermal case, see Fig. 8. By considering non thermal leptogenesis, the reheating temperature T_R can be reduced much lower than the lightest heavy Majorana mass. In brief, the 3-3-1-1 model at the GUT scale successfully explains the baryon asymmetry of the universe by studying both thermal and non thermal leptogenesis mechanisms.

Acknowledgments

This research is funded by Vietnam National Foundation for Science and Technology Development (NAFOSTED) under grant number 103.01-2014.69, and by the National Research Foundation of Korea (NRF) grant funded by Korea government of the Ministry of Education, Science and Technology (MEST) (No. 2011-0017430) and (No. 2011-0020333).

[1] A. D. Linde, Phys. Lett. B 129, 177 (1983).
[2] Collaboration, P. A. R. Ade et al., Phys. Rev. Lett. 112, 241101 (2014) [arXiv:1403.3985 [astro-ph.CO]].
[3] SuperKamiokande Collaboration, Y. Fukuda et al., Phys. Rev. Lett. 81, 1158 (1998); 81, 1562 (1998); 82, 2644 (1999); 85, 3999 (2000); Y. Suzuki, Nucl. Phys. B, Proc. Suppl. 77, 35 (1999); S. Fukuda et al., Phys. Rev. Lett. 86, 5651 (2001); Y. Ashie et al., Phys. Rev. Lett. 93, 101801 (2004).
[4] KamLAND Collaboration, K. Eguchi et al., Phys. Rev. Lett. 90, 021802 (2003); T. Araki et al., Phys. Rev. Lett. 94, 081801(2005).
[5] SNO Collaboration, Q. R. Ahmad et al., Phys. Rev. Lett. 89, 011301 (2002); 89, 011302 (2002); 92, 181301 (2004); B. Aharmim et al., Phys. Rev. C 72, 055502 (2005).
[6] M. Singer, J. W. F. Valle and J. Schechter, Phys. Rev. D 22, 738 (1980); J. C. Montero, F. Pisano and V. Pleitez, Phys. Rev. D 47, 2918 (1993); R. Foot, H. N. Long and Tuan A. Tran, Phys. Rev. D 50, 34 (1994); F. Pisano and V. Pleitez, Phys. Rev. D 46, 410 (1992); P. H. Frampton, Phys. Rev. Lett. 69, 2889 (1992); R. Foot, O. F. Hernandez, F. Pisano and V. Pleitez, Phys. Rev. D 47, 4158 (1993); D. G. Dumm, F. Pisano, and V. Pleitez, Mod. Phys. Lett. A 9, 1609 (1994); H. N. Long and V. T. Van, J. Phys. G 25, 2319 (1999); P. B. Pal, Phys. Rev. D 52, 1659 (1995); F. Pisano, Mod. Phys. Lett A 11, 2639 (1996); A. Do and F. Pisano, Mod. Phys. Lett. A 14,1133 (1999); C. A. de S. Pires and O.
P. Ravinez, Phys. Rev. D 58, 035008 (1998); C. A. de S. Pires, Phys. Rev. D 60, 075013 (1999); P. V. Dong and H. N. Long, Int. J. Mod. Phys. A 21, 6677 (2006).

[7] C. A. de S. Pires, P. S. Rodrigues da Silva, JCAP 0712, 012 (2007); J. K. Mizukoshi, C. A. de S. Pires, F. S. Queiroz, and P. S. Rodrigues da Silva, Phys. Rev. D 83, 065024 (2011); J. D. Ruiz-Alvarez, C. A. de S. Pires, F. S. Queiroz, D. Restrepo, and P. S. Rodrigues da Silva, Phys. Rev. D 86, 075011 (2012); S. Profumo and F. S. Queiroz, Eur. Phys. J. C 74, 2960 (2014); C. Kelso, C. A. de S. Pires, S. Profumo, F. S. Queiroz, and P. S. Rodrigues da Silva, Eur. Phys. J. C 74, 2797 (2014); P. V. Dong, T. Phong Nguyen, and D. V. Soa, Phys. Rev. D 88, 095014 (2013); P. V. Dong, N. T. K. Ngan, and D. V. Soa, Phys. Rev. D 90, 075019 (2014).

[8] P. V. Dong, T. D. Tham, and H. T. Hung, Phys. Rev. D 87, 115003 (2013).

[9] P. V. Dong, D. T. Huong, Farinaldo S. Queiroz, and N. T. Thuy, Phys. Rev. D 90, 075021 (2014).

[10] P. V. Dong and H. N. Long, Eur. Phys. J. C 42, 325 (2005); R. N. Mohapatra, Unification and Supersymmetry, The Frontiers of Quark-Lepton Physics, Springer-Verlag (1992).

[11] S. R. Coleman and E. J. Weiberg, Phys. Rev. D 7, 1888 (1973).

[12] D. H. Lyth and A. R. Linde, Cambridge, UK: Univ. Rr., 2009.

[13] Planck Collaboration, P. A. R. Ade et al. arXiv:1303.5076 [astro-ph.CO].

[14] WMAP Collaboration, G. Hinshaw et al., Astrophys. J. Suppl. 208, 19 (2013) arXiv:1212.5226 [astro-ph.CO].

[15] Planck Collaboration, P. A. R. Ade et al. A&A 571, A1 (2014) arXiv:1303.5062 [astro-ph.CO].

[16] P. A. R. Ade et al. (Planck Collaboration), Phys. Lett. B 155, 36 (1985).

[17] Sacha Davidson and Alejandro Ibarra, Phys. Lett. B 535, 25 (2002).

[18] G. L. Fogli, E. Lisi, A. Marrone, A. Palazzo and A.M. Rotunno, Phys. Rev. Lett. 101, 141801 (2008); A. B. Balantekin and D. Yilmaz, J. Phys. G 35, 075007 (2008); H. L. Ge, C. Giunti and Q. Y. Liu, Phys. Rev. D 80, 055009 (2009) [arXiv: 0810.5443 [hep-ph]].

[19] J. A. Casas and A. Ibarra, Nucl. Phys. B 618, 171 (2001).

[20] V. A. Kuzmin, V. A. Rubakov, and M. E. Shaposhnikov, Phys. Lett. B 155, 36 (1985); M. Fukugita and T. Yanagida, Phys. Lett. B 174, 45 (1986); G. F. Giudice , A. Riotto , and I. Tkachev, JHEP 08, 014 (1999); S. Davidson, A. Ibarra, Physics Letters B 535, 25 (2002); J. A. Harvey and M. S. Turner, Phys. Rev. D 42, 3344 (1990).

[21] Laura Covi, Esteban Roulet, and Francesco Vissani, Phys. Lett. B 384, 169 (1996).

[22] G. F. Giudice, A. Notari, M. Raidal, A. Riotto and A. Strumia, Nucl. Phys. B 685, 89 (2004); W. Buchmüller, P. Di Bari and M. Plumacher, Annals Phys. 315, 305 (2005); A. Abada, S. Davidson, A. Ibarra, F.-X. Josse-Michaux, M. Losada and A. Riotto, JHEP 09, 010 (2006).

[23] Sacha Davidson, Enrico Nardi, and Yosef Nir, Phys. Rept. 466, 105 (2008).