Charmful two-body anti-triplet b-baryon decays

Y.K. Hsiao1,2,3, P.Y. Lin4, C.C. Lih5,2,3, and C.Q. Geng1,2,3

1Chongqing University of Posts & Telecommunications, Chongqing, 400065, China

2Physics Division, National Center for Theoretical Sciences, Hsinchu, Taiwan 300

3Department of Physics, National Tsing Hua University, Hsinchu, Taiwan 300

4Department of Electrophysics National Chiao Tung University, Hsinchu, Taiwan 300

5Department of Optometry, Shu-Zen College of Medicine

and Management, Kaohsiung Hsien, Taiwan 452

(Dated: November 23, 2015)

Abstract

We study the charmful decays of the two-body $B_b \to B_n M_c$ decays, where B_b represents the anti-triplet of $(\Lambda_b, \Xi^0_b, \Xi^-_b)$, B_n stands for the baryon octet and M_c denotes as the charmed meson of $D^{(*)}_{(s)}$, η_c and J/ψ. Explicitly, we predict that $\mathcal{B}(\Lambda_b \to D^-_s p) = (1.8 \pm 0.3) \times 10^{-5}$, which is within the measured upper bound of $\mathcal{B}(\Lambda_b \to D^-_s p) < 4.8(5.3) \times 10^{-4}$ at 90% (95%) C.L., and reproduce $\mathcal{B}(\Lambda_b \to J/\psi \Lambda) = (3.3 \pm 2.0) \times 10^{-4}$ and $\mathcal{B}(\Xi^-_b \to J/\psi \Xi^-) = (5.1 \pm 3.2) \times 10^{-4}$ in agreement with the data. Moreover, we find that $\mathcal{B}(\Lambda_b \to \Lambda \eta_c) = (1.5 \pm 0.9) \times 10^{-4}$, $\mathcal{B}(\Xi^-_b \to \Xi^- \eta_c) = (2.4 \pm 1.5) \times 10^{-4}$ and $\mathcal{B}(\Xi^0_b \to \Xi^0 \eta_c, \Xi^0 J/\psi) = (2.3 \pm 1.4, 4.9 \pm 3.0) \times 10^{-4}$, which are accessible to the experiments at the LHCb.
I. INTRODUCTION

The two-body decays of $\Lambda_b \to \Lambda_c^+ K^-, \Lambda_c^+ \pi^-, \Lambda_c^+ D^-$, and $\Lambda_c^+ D_s^-$ can be viewed as through the $\Lambda_b \to \Lambda_c$ transition along with the recoiled mesons K^-, π^-, D_s^- and D^-, respectively, such that one may use the factorization ansatz to get the fractions of the branching ratios as

\[
\mathcal{R}_{K/\pi} = \frac{\mathcal{B}(\Lambda_b \to \Lambda_c^+ K^-)}{\mathcal{B}(\Lambda_b \to \Lambda_c^+ \pi^-)} \approx \frac{|V_{us}|^2 f_K^2}{|V_{ud}|^2 f_\pi^2} = 0.073,
\]

\[
\mathcal{R}_{D/D_s} = \frac{\mathcal{B}(\Lambda_b \to \Lambda_c^+ D^-)}{\mathcal{B}(\Lambda_b \to \Lambda_c^+ D_s^-)} \approx \frac{|V_{us}|^2 f_D^2}{|V_{us}|^2 f_{D_s}^2} = 0.034,
\]

which are in agreement with the data, given by $[1, 2]$.

\[
\mathcal{R}_{K/\pi} = 0.0731 \pm 0.0016 \pm 0.0016, \quad \mathcal{R}_{D/D_s} = 0.042 \pm 0.003 \pm 0.003.
\]

In the same picture, the measured $\mathcal{B}(\Lambda_b \to pK^-, p\pi)$ can be also explained $[3, 4]$. In addition, the direct CP violating asymmetry of $\Lambda_b \to pK^{*-}$ is predicted as large as 20% $[5]$.

On the other hand, the branching ratios of $\Lambda_b \to D_s^- p$, $\Lambda_b \to J/\psi \Lambda$ and $\Xi_b^- \to J/\psi \Xi^-$ are shown as $[4, 6]$:

\[
\mathcal{B}(\Lambda_b \to D_s^- p) = (2.7 \pm 1.4 \pm 0.2 \pm 0.7 \pm 0.1 \pm 0.1) \times 10^{-4} \text{ or } 2.4 \pm 1.5 \times 10^{-4} \text{ at the } 90\% \text{ (95\%)} \text{ C.L.},
\]

\[
\mathcal{B}(\Lambda_b \to J/\psi \Lambda) = (3.0 \pm 1.1) \times 10^{-4},
\]

\[
\mathcal{B}(\Xi_b^- \to J/\psi \Xi^-) = (2.0 \pm 0.9) \times 10^{-4},
\]

with $\mathcal{B}(\Lambda_b \to J/\psi \Lambda)$ and $\mathcal{B}(\Xi_b^- \to J/\psi \Xi^-)$ converted from the partial observations of $\mathcal{B}(\Lambda_b \to J/\psi \Lambda)f_{\Lambda_b} = (5.8 \pm 0.8) \times 10^{-5}$ and $\mathcal{B}(\Xi_b^- \to J/\psi \Xi^-) f_{\Xi_b^-} = (1.02^{+0.20}_{-0.21}) \times 10^{-5}$, where $f_{\Lambda_b} = 0.175 \pm 0.106$ and $f_{\Xi_b^-} = 0.019 \pm 0.013$ are the fragmentation fractions of the b quark to b-baryons of Λ_b and Ξ_b $[7]$, respectively. Nonetheless, for these $B_b \to B_n M_c$ decays in Eq. (3), the theoretical understanding is still lacking. Since the factorization approach is expected to be reliable in studying the branching ratios of $B_b \to B_n M_c$, in this report, we shall systematically analyze the branching ratios for all possible $B_b \to B_n M_c$ decays, and compare them with the experimental data at the B-factories, as well as the LHCb, where B_b, B_n and M_c correspond to the anti-triplet b-baryon of $(\Lambda_b, \Xi_b^0, \Xi_b^-)$, baryon octet and charmed meson, respectively.
II. FORMALISM

As the studies in Refs. [8–14], based on the factorization approach, the amplitudes for the two-body charmful \(B_b \rightarrow B_n M_c \) decays are presented in terms of the decaying process of the \(B_b \rightarrow B_n \) transition with the recoiled charmed meson \(M_c \). From Fig. 1(a), the amplitudes of \(B_b \rightarrow B_n M_c \) via the quark-level \(b \rightarrow u\bar{c}q \) transition are factorized as

\[
A_1(B_b \rightarrow B_n M_c) = G_F \sqrt{2} V_{ub} V_{cq}^* a_1 \langle M_c | \bar{q}\gamma^\mu (1 - \gamma_5) c|0\rangle \langle B_n | \bar{u}\gamma^\mu (1 - \gamma_5) b|B_b \rangle , \tag{4}
\]

where \(G_F \) is the Fermi constant, \(V_{ub,cq} \) are the CKM matrix elements, while the explicit decay modes are

\[
\Lambda_b \rightarrow pM_c, \quad \Xi_b^- \rightarrow \Lambda(\Sigma^0)M_c, \quad \Xi_b^0 \rightarrow \Sigma^+ M_c \tag{5}
\]

with \(q = d(s) \) for \(M_c = D^{(*)-}(D_s^{(*)-}) \). On the other hand, the amplitudes via the quark-level \(b \rightarrow c\bar{u}q \) \((b \rightarrow c\bar{u}q)\) transition in Fig. 1(b) can be written as

\[
A_2(B_b \rightarrow B_n M_c) = G_F \sqrt{2} V_{cb} V_{q_1q}^* a_2 \langle M_c | \bar{c}\gamma^\mu (1 - \gamma_5) q_1|0\rangle \langle B_n | \bar{q}\gamma^\mu (1 - \gamma_5) b|B_b \rangle , \tag{6}
\]

with \(q_1 = u \) for \(M_c = D^{(*)0} \) and \(q_1 = c \) for \(M_c = \eta_c \) and \(J/\psi \), where the decays of \(B_b \rightarrow B_n M_c \) are

\[
\begin{align*}
\Lambda_b \rightarrow n M_c, \quad \Xi_b^- \rightarrow \Sigma^- M_c, \quad \Xi_b^0 \rightarrow \Lambda(\Sigma^0)M_c & \quad \text{for} \ q_2 = d, \\
\Lambda_b \rightarrow \Lambda(\Sigma^0) M_c, \quad \Xi_b^- \rightarrow \Xi^- M_c, \quad \Xi_b^0 \rightarrow \Xi^0 M_c & \quad \text{for} \ q_2 = s. \tag{7}
\end{align*}
\]

In this study, we will exclude the study of \(\Lambda_b \rightarrow n M_c \) due to the elusive neutron in the \(B \)-factories. The amplitudes \(A_{1,2} \) via the \(W \)-boson exchange diagrams are led to be the color-allowed and color-suppressed processes. The parameters \(a_1 \) and \(a_2 \) in Eqs. (4) and (6)
are presented as \[15,16\]

\[
a_1 = c_1^{\text{eff}} + \frac{c_2^{\text{eff}}}{N_c}, \quad a_2 = c_2^{\text{eff}} + \frac{c_1^{\text{eff}}}{N_c},
\]

with the effective Wilson coefficients \((c_1^{\text{eff}}, c_2^{\text{eff}}) = (1.168, -0.365)\), respectively, where the color number \(N_c\) should be taken as a floating number from 2 \(\rightarrow\) \(\infty\) to account for the non-factorizable effects in the generalized factorization instead of \(N_c = 3\). The matrix elements for \(P_c = (\eta_c, D)\) and \(V_c = J(\psi, D^*)\) productions read

\[
\langle P_c | A_{\mu}^c | 0 \rangle = -i f_{P_c} q_{\mu}, \\
\langle V_c | V_{\mu}^c | 0 \rangle = m_{V_c} f_{V_c} \varepsilon_{\mu}^*,
\]

with \(V_{\mu}^c(A_{\mu}^c) = \bar{q} \gamma_{\mu}(\gamma_5)c\) or \(\bar{c} \gamma_{\mu}(\gamma_5)q_1\), where \(q_{\mu}\) and \(\varepsilon_{\mu}^*\) are the four-momentum and polarization, respectively. Those of the \(B_b \rightarrow B_n\) baryon transition in Eq. (11) have the general forms:

\[
\langle B_n | \bar{q} \gamma_{\mu} b | B_b \rangle = \bar{u}_{B_n} \left[f_1 \gamma_{\mu} + \frac{f_2}{m_{B_b}} i \sigma_{\mu\nu} q^\nu + \frac{f_3}{m_{B_b}^2} q_{\mu} \right] u_{B_b},
\]

\[
\langle B_n | \bar{q} \gamma_{\mu} \gamma_5 b | B_b \rangle = \bar{u}_{B_n} \left[g_1 \gamma_{\mu} + \frac{g_2}{m_{B_b}} i \sigma_{\mu\nu} q^\nu + \frac{g_3}{m_{B_b}^2} q_{\mu} \right] \gamma_5 u_{B_b},
\]

where \(f_j (g_j) (j = 1, 2, 3)\) are the form factors. We are able to relate the different \(B_b \rightarrow B_n\) transition form factors based on the \(SU(3)\) flavor and \(SU(2)\) spin symmetries, which have been used to connect the space-like \(B_n \rightarrow B_n'\) transition form factors in the neutron decays \[17\], and the time-like \(0 \rightarrow B_n B_n'\) baryonic form factors as well as the \(B \rightarrow B_n B_n'\) transition form factors in the baryonic \(B\) decays \[18\,22\]. Specifically, \(V_{\mu} = \bar{q} \gamma_{\mu} b\) and \(A_{\mu} = \bar{c} \gamma_{\mu} \gamma_5 b\) as the two currents in Eq. (10) can be combined as the right-handed chiral current, that is, \(J_{\mu,R}^q = (V_{\mu} + A_{\mu})/2\). Consequently, we have \[17\]:

\[
\langle B_n,^{\uparrow+\downarrow} | J_{\mu,R}^q | B_{b,^{\uparrow+\downarrow}} \rangle = \bar{u}_{B_n} \left[\gamma_{\mu} \frac{1 + \gamma_5}{2} G^\dagger(q^2) + \gamma_{\mu} \frac{1 - \gamma_5}{2} G^\dagger(q^2) \right] u_{B_b},
\]

where the baryon helicity states \(|B_{n(b),^{\uparrow+\downarrow}}\rangle \equiv |B_{n(b),^{\uparrow}}\rangle + |B_{n(b),^{\downarrow}}\rangle\) are regarded as the baryon chiral states \(|B_{n(b),R+L}\rangle\) at the large momentum transfer, while \(G^\dagger(q^2)\) and \(G^\dagger(q^2)\) are the right-handed and left-handed form factors, defined by

\[
G^\dagger(q^2) = e^\dagger_\parallel G_\parallel(q^2) + e^\dagger_\perp G_\perp(q^2), \quad G^\dagger(q^2) = e^\dagger_\parallel G_\parallel(q^2) + e^\dagger_\perp G_\perp(q^2),
\]
with the constants \(e^+_\parallel\) and \(e^+_\perp\) to sum over the chiral charges via the \(B_b \to B_n \) transition, given by

\[
e^+_\parallel = \langle B_{n,\parallel}|Q_\parallel|B_{b,\downarrow}\rangle, \quad e^+_\perp = \langle B_{n,\downarrow}|Q_\parallel|B_{b,\uparrow}\rangle,
\]
\[
e^-\parallel = \langle B_{n,\downarrow}|Q_\parallel|B_{b,\downarrow}\rangle, \quad e^-\perp = \langle B_{n,\uparrow}|Q_\parallel|B_{b,\downarrow}\rangle.
\]

(13)

Note that \(Q_\parallel(i) = \sum Q_\parallel(i) \) with \(i = 1, 2, 3 \) as the the chiral charge operators are from \(Q_R^q \equiv J_{0,R}^q b_R \), converting the \(b \) quark in \(|B_{b,\uparrow}\rangle \) into the \(q \) one, while the converted \(q \) quark can be parallel or antiparallel to the \(B_b \)’s helicity, denoted as the subscript (\(\parallel \) or \(\perp \)). By comparing Eq. (10) with Eqs. (11), (12), and (13), we obtain

\[
f_1 = (e^+_\parallel + e^+_\perp)G_\parallel + (e^-\parallel + e^-\perp)G_\perp,
\]
\[
g_1 = (e^+_\parallel - e^-\parallel)G_\parallel + (e^-\perp - e^+\perp)G_\perp,
\]

(14)

with \(f_{2,3} = 0 \) and \(g_{2,3} = 0 \) due to the helicity conservation, as those derived in Refs. [3, 10, 23]. It is interesting to see that, as the helicity-flip terms, the theoretical calculations from the loop contributions to \(f_{2,3} \) (\(g_{2,3} \)) indeed result in the values to be one order of magnitude smaller than that of \(f_1(g_1) \), which can be safely neglected. In the double-pole momentum dependences, \(f_1 \) and \(g_1 \) can be given as

\[
f_1(q^2) = \frac{f_1(0)}{(1 - q^2/m_{B_b}^2)^2}, \quad g_1(q^2) = \frac{g_1(0)}{(1 - q^2/m_{B_b}^2)^2},
\]

(15)

such that it is reasonable to parameterize the chiral form factors to be \((1 - q^2/m_{B_b}^2)^2 G_\parallel = C_\parallel \). Subsequently, from

\[
(e^\uparrow_\parallel, e^\downarrow_\parallel, e^\uparrow_\perp, e^\downarrow_\perp) = (-\sqrt{3}/2, 0, 0, 0) \quad \text{for} \quad \langle p|J^u_{\mu,R}|\Lambda_b\rangle,
\]
\[
(e^\uparrow_\parallel, e^\downarrow_\parallel, e^\uparrow_\perp, e^\downarrow_\perp) = (1, 0, 0, 0) \quad \text{for} \quad \langle \Lambda|J^a_{\mu,R}|\Lambda_b\rangle,
\]
\[
(e^\uparrow_\parallel, e^\downarrow_\parallel, e^\uparrow_\perp, e^\downarrow_\perp) = (0, 0, 0, 0) \quad \text{for} \quad \langle \Sigma^0|J^s_{\mu,R}|\Lambda_b\rangle,
\]

(16)

we get \(f_1(0) = g_1(0) = -\sqrt{3}/2 C_\parallel \) for \(\langle p|\bar{u}\gamma_\mu(\gamma_5)b|\Lambda_b\rangle \), \(f_1(0) = g_1(0) = C_\parallel \) for \(\langle \Lambda|\bar{s}\gamma_\mu(\gamma_5)b|\Lambda_b\rangle \), and \(f_1(0) = g_1(0) = 0 \) for \(\langle \Sigma^0|\bar{s}\gamma_\mu(\gamma_5)b|\Lambda_b\rangle \), similar to the results based on the heavy-quark and large-energy symmetries in Ref. [23] for the \(\Lambda_b \to (p, \Lambda, \Sigma) \) transitions. When we further extend the study to the anti-triplet \(b \)-baryons: \((\Xi^-_b, \Xi^0_b, \Lambda^0_b) \) shown in Table II we find that the relation of \(f_1 = g_1 \) is uniquely determined for the anti-triplet \(b \)-baryon transitions.
TABLE I. Relations between the transition matrix elements.

Transition	Relation				
$\langle B_n	\bar{q}b	B_b \rangle$	$f_1(0) = g_1(0)$		
$\langle p	\bar{u}b	\Lambda_b \rangle$	$-\sqrt{\frac{3}{2}} C_{		}$
$\langle \Lambda	\bar{u}b	\Xi_b^- \rangle$	$\frac{1}{2} C_{		}$
$\langle \Sigma^0	\bar{u}b	\Xi_b^- \rangle$	$-\sqrt{\frac{3}{2}} C_{		}$
$\langle \Sigma^+	\bar{u}b	\Xi_b^0 \rangle$	$-\sqrt{\frac{3}{2}} C_{		}$
$\langle \Sigma^-	\bar{d}b	\Xi_b^- \rangle$	$\sqrt{\frac{3}{2}} C_{		}$
$\langle \Lambda	\bar{d}b	\Xi_b^0 \rangle$	$-\frac{1}{2} C_{		}$
$\langle \Sigma^0	\bar{d}b	\Xi_b^0 \rangle$	$\sqrt{\frac{3}{2}} C_{		}$
$\langle \Lambda	\bar{s}b	\Lambda_b \rangle$	$C_{		}$
$\langle \Sigma^0	\bar{s}b	\Lambda_b \rangle$	0		
$\langle \Xi^-	\bar{s}b	\Xi_b^- \rangle$	$\sqrt{\frac{3}{2}} C_{		}$
$\langle \Xi^0	\bar{s}b	\Xi_b^0 \rangle$	$-\sqrt{\frac{3}{2}} C_{		}$

III. NUMERICAL RESULTS AND DISCUSSIONS

For the numerical analysis, the CKM matrix elements in the Wolfenstein parameterization taken from the PDG [4] are given by

$$(V_{ub}, V_{cb}) = (A \lambda^3 (\rho - i \eta), A \lambda^2),$$

$$(V_{cd} = -V_{us}, V_{cs} = V_{ud} = -\lambda, 1 - \lambda^2/2),$$

with $(\lambda, A, \rho, \eta) = (0.225, 0.814, 0.120 \pm 0.022, 0.362 \pm 0.013)$. The meson decay constants are adopted as $(f_{\eta}, f_{J/\psi}) = (387 \pm 7, 418 \pm 9)$ MeV [24], $(f_D, f_{D_s}) = (204.6 \pm 5.0, 257.5 \pm 4.6)$ MeV [4], and $(f_{D^*}, f_{D_s^*}) = (252.2 \pm 22.7, 305.5 \pm 27.3)$ MeV [25]. As given in Ref. [3] to explain the branching ratios and CP violating asymmetries of $\Lambda_b \to p(K^-, \pi^-)$, we have $|\sqrt{3/2} C_{||}| = 0.136 \pm 0.009$ for $\langle p| \bar{u} \gamma_\mu (\gamma_5)b|\Lambda_b \rangle$, which is consistent with the value of 0.14 ± 0.03 in the light-cone sum rules [23] and the theoretical calculations in Refs. [8, 10].

With $B(\Lambda_b \to J/\psi \Lambda)$ and $B(\Xi_b^- \to J/\psi \Xi^-)$ in Eq. (8) as the experimental inputs, we can estimate the non-factorizable effects by deviating the color number $N_c = 3$ to be between 2 to ∞, such that we obtain $N_c = 2.15 \pm 0.17$, representing controllable non-factorizable effects [26] with $(a_1, a_2) = (1.00 \pm 0.01, 0.18 \pm 0.05)$ from Eq. (8). We list the branching
ratios of all possible two-body anti-triplet \(b \)-baryon decays in Table II and Table III, where the uncertainties are fitted with those from \((\rho, \eta, N_c)\), the decay constants and \(|\sqrt{3/2C_{||}}|\).

The decay branching ratios in Table III are given by \(a_1 \) with \(N_c = (2.15 \pm 0.17, \infty) \) as the theoretical inputs to demonstrate the insensitive non-factorizable effects. Note that \(N_c = 2.15 \pm 0.17 \) is fitted from \(B(\Lambda_b \rightarrow J/\psi \Lambda) \) and \(B(\Xi^- \rightarrow J/\psi \Xi^-) \), while \(N_c = \infty \) results in \(a_1 \approx c_{1}^{eff} \), wildly used in the generalized factorization. As the first measurement for the color-allowed decay mode, the predicted \(B(\Lambda_b \rightarrow D_s^- p) = (1.8 \pm 0.3) \times 10^{-5} \) or \((2.5 \pm 0.4) \times 10^{-5} \) in Table III seems to disagree with the data in Eq. (9). Nonetheless, the predicted numbers driven by \(a_1 \) can be reliable as it is insensitive to the non-factorizable effects, whereas the data with the upper bound has a large uncertainty. Despite the color-allowed modes, the decay branching ratios of \(D^{(*)-} \) are found to be 30 times smaller than the \(D_s^{(*)-} \) counterparts. This can be simply understood by the relation of \((V_{cd}/V_{cs})^2(f_{D^{(*)}}/f_{D_s^{(*)}})^2 \simeq 0.03\). It is also interesting to note that the vector meson modes are 2 times as large as their pseudoscalar meson counterparts.

For the decay modes driven by \(a_2 \) as shown in Table III, we only list the results with \(a_2 = 0.18 \pm 0.05 \) (\(N_c = 2.15 \pm 0.17 \)). The reason is that \(a_2 \approx c_{2}^{eff} = -0.365 \) with \(N_c = \infty \) yields \(B(\Lambda_b \rightarrow J/\psi \Lambda) = (1.4 \pm 0.2) \times 10^{-3} \) and \(B(\Xi^- \rightarrow J/\psi \Xi^-) = (2.1 \pm 0.3) \times 10^{-3} \), which are in disagreement with the data in Eq. (9), demonstrating that the decays are sensitive

Table II

\(M_c = \)	\(D^- \)	\(D^{*-} \)
\(B(\Lambda_b \rightarrow pM_c) \)	(6.0 \(\pm \) 1.0, 8.2 \(\pm \) 1.4) \(\times \) 10\(^{-7}\)	(1.2 \(\pm \) 0.3, 1.6 \(\pm \) 0.4) \(\times \) 10\(^{-6}\)
\(B(\Xi^-_b \rightarrow \Lambda M_c) \)	(1.1 \(\pm \) 0.2, 1.5 \(\pm \) 0.2) \(\times \) 10\(^{-7}\)	(2.2 \(\pm \) 0.6, 3.0 \(\pm \) 0.8) \(\times \) 10\(^{-7}\)
\(B(\Xi^-_b \rightarrow \Sigma^0 M_c) \)	(3.3 \(\pm \) 0.5, 4.5 \(\pm \) 0.7) \(\times \) 10\(^{-7}\)	(6.6 \(\pm \) 1.6, 9.0 \(\pm \) 2.2) \(\times \) 10\(^{-7}\)
\(B(\Xi^-_b \rightarrow \Sigma^+ M_c) \)	(6.3 \(\pm \) 1.0, 8.6 \(\pm \) 1.4) \(\times \) 10\(^{-7}\)	(1.3 \(\pm \) 0.3, 1.7 \(\pm \) 0.4) \(\times \) 10\(^{-6}\)

\(M_c = \)	\(D_s^- \)	\(D_s^{*-} \)
\(B(\Lambda_b \rightarrow pM_c) \)	(1.8 \(\pm \) 0.3, 2.5 \(\pm \) 0.4) \(\times \) 10\(^{-5}\)	(3.5 \(\pm \) 0.9, 4.7 \(\pm \) 1.2) \(\times \) 10\(^{-5}\)
\(B(\Xi^-_b \rightarrow \Lambda M_c) \)	(3.4 \(\pm \) 0.5, 4.6 \(\pm \) 0.7) \(\times \) 10\(^{-6}\)	(6.4 \(\pm \) 1.6, 8.8 \(\pm \) 2.2) \(\times \) 10\(^{-6}\)
\(B(\Xi^-_b \rightarrow \Sigma^0 M_c) \)	(9.9 \(\pm \) 1.5, 13.6 \(\pm \) 2.1) \(\times \) 10\(^{-6}\)	(1.9 \(\pm \) 0.5, 2.6 \(\pm \) 0.6) \(\times \) 10\(^{-5}\)
\(B(\Xi^-_b \rightarrow \Sigma^+ M_c) \)	(1.9 \(\pm \) 0.3, 2.6 \(\pm \) 0.4) \(\times \) 10\(^{-5}\)	(3.6 \(\pm \) 0.9, 4.9 \(\pm \) 1.2) \(\times \) 10\(^{-5}\)
to the non-factorizable effects. From Table III we see that both $\mathcal{B}(A_b \to J/\psi \Lambda)$ and $\mathcal{B}(\Xi_b^- \to J/\psi \Xi^-)$ are reproduced to agree with the data in Eq. (3) within errors. Note that $\mathcal{B}(A_b \to J/\psi \Lambda)/\mathcal{B}(\Xi_b^- \to J/\psi \Xi^-) \simeq 0.65$ in our calculation results from $(C|\|^2/(\sqrt{3/2}C|\|^2) \simeq 0.67$ as the ratio of their form factors in Table I which is in accordance with the $SU(3)$ flavor and $SU(2)$ spin symmetries. The more precise measurement of this ratio in the future will test the validity of the symmetries. As $\mathcal{B}(\Xi^- \to J/\psi \Sigma^-)$ is fitted by $C_3 = 2$ as shown in the right-bottom of Table II. In contrast, the neutral $D^{(*)0}$ modes fitted by $N_c = 2.15 \pm 0.17$.

M_c =	D^0	D^{*0}
$\mathcal{B}(\Xi_b^- \to \Sigma^- M_c)$	$(5.3 \pm 3.3) \times 10^{-5}$	$(1.1 \pm 0.7) \times 10^{-4}$
$\mathcal{B}(\Xi_b^0 \to \Lambda^0 M_c)$	$(8.6 \pm 5.3) \times 10^{-6}$	$(1.7 \pm 1.1) \times 10^{-5}$
$\mathcal{B}(\Xi_b^0 \to \Sigma^0 M_c)$	$(2.5 \pm 1.6) \times 10^{-5}$	$(5.0 \pm 3.4) \times 10^{-5}$
$\mathcal{B}(A_b \to \Lambda M_c)$	$(1.6 \pm 1.0) \times 10^{-6}$	$(3.3 \pm 2.2) \times 10^{-6}$
$\mathcal{B}(A_b \to \Sigma M_c)$	0	0
$\mathcal{B}(\Xi_b^- \to \Xi^- M_c)$	$(2.7 \pm 1.7) \times 10^{-6}$	$(5.5 \pm 3.6) \times 10^{-6}$
$\mathcal{B}(\Xi_b^0 \to \Xi^0 M_c)$	$(2.6 \pm 1.6) \times 10^{-6}$	$(5.2 \pm 3.5) \times 10^{-6}$

M_c =	η_c	J/ψ
$\mathcal{B}(\Xi_b^- \to \Sigma^- M_c)$	$(1.4 \pm 0.8) \times 10^{-5}$	$(2.9 \pm 1.8) \times 10^{-5}$
$\mathcal{B}(\Xi_b^0 \to \Lambda^0 M_c)$	$(2.3 \pm 1.4) \times 10^{-6}$	$(4.7 \pm 2.9) \times 10^{-6}$
$\mathcal{B}(\Xi_b^0 \to \Sigma^0 M_c)$	$(6.6 \pm 4.1) \times 10^{-6}$	$(1.4 \pm 0.8) \times 10^{-5}$
$\mathcal{B}(A_b \to \Lambda M_c)$	$(1.5 \pm 0.9) \times 10^{-4}$	$(3.3 \pm 2.0) \times 10^{-4}$
$\mathcal{B}(A_b \to \Sigma M_c)$	0	0
$\mathcal{B}(\Xi_b^- \to \Xi^- M_c)$	$(2.4 \pm 1.5) \times 10^{-4}$	$(5.1 \pm 3.2) \times 10^{-4}$
$\mathcal{B}(\Xi_b^0 \to \Xi^0 M_c)$	$(2.3 \pm 1.4) \times 10^{-4}$	$(4.9 \pm 3.0) \times 10^{-4}$
via the $b \to c\bar{d}$ transition have the branching ratios of order 10^{-6} caused by the suppression of $(V_{cb}V_{cd})^2/(V_{cb}V_{cs})^2 \simeq 0.225^2$. Finally, we remark that $\mathcal{B}(\Xi_b^+ \to \Xi^- M_c) \simeq \mathcal{B}(\Xi_b^0 \to \Xi^0 M_c)$ is due to the isospin symmetry.

IV. CONCLUSIONS

In sum, we have studied all possible anti-triplet B_b decays of the two-body charmful $B_b \to B_n M_c$ decays. We have found $\mathcal{B}(\Lambda_b \to D^- s) = (1.8 \pm 0.3) \times 10^{-5}$, which is within the measured upper bound of $\mathcal{B}(\Lambda_b \to D^- s) < 4.8(5.3) \times 10^{-4}$ at 90% (95%) C.L., and reproduced $\mathcal{B}(\Lambda_b \to J/\psi \Lambda) = (3.3 \pm 2.0) \times 10^{-4}$ and $\mathcal{B}(\Xi_b^- \to J/\psi \Xi^-) = (5.1 \pm 3.2) \times 10^{-4}$ in agreement with the data. Moreover, we have predicted $\mathcal{B}(\Lambda_b \to \Lambda \eta_c) = (1.5 \pm 0.9) \times 10^{-4}$, $\mathcal{B}(\Xi_b^- \to \Xi^- \eta_c) = (2.4 \pm 1.5) \times 10^{-4}$, and $\mathcal{B}(\Xi_b^0 \to \Xi^0 \eta_c, \Xi^0 J/\psi) = (2.3 \pm 1.4, 4.9 \pm 3.0) \times 10^{-4}$, which are accessible to the experiments at the LHCb, while $\mathcal{B}(\Xi_b^- \to \Xi^- M_c) \simeq \mathcal{B}(\Xi_b^0 \to \Xi^0 M_c)$ is due to the isospin symmetry.

ACKNOWLEDGMENTS

The work was supported in part by National Center for Theoretical Science, National Science Council (NSC-101-2112-M-007-006-MY3 and NSC-102-2112-M-471-001-MY3), MoST (MoST-104-2112-M-007-003-MY3) and National Tsing Hua University (104N2724E1).

[1] R. Aaij et al. [LHCb Collaboration], Phys. Rev. D 89, 032001 (2014).
[2] R. Aaij et al. [LHCb Collaboration], Phys. Rev. Lett. 112, 202001 (2014).
[3] Y.K. Hsiao and C.Q. Geng, Phys. Rev. D 91, 116007 (2015).
[4] K.A. Olive et al. [Particle Data Group Collaboration], Chin. Phys. C 38, 090001 (2014).
[5] C.Q. Geng, Y.K. Hsiao and J.N. Ng, Phys. Rev. Lett. 98, 011801 (2007).
[6] R. Aaij et al. [LHCb Collaboration], JHEP 1404, 087 (2014).
[7] Y.K. Hsiao, P.Y. Lin, L.W. Luo, and C.Q. Geng, to be published in Phys. Lett. B (2015), arXiv:1510.01808 [hep-ph].
[8] T. Gutsche et. al., Phys. Rev. D 88, 114018 (2013).
[9] Y. Liu, X.H. Guo and C. Wang, Phys. Rev. D 91, 016006 (2015).
[10] Z.T. Wei, H.W. Ke and X.Q. Li, Phys. Rev. D 80, 094016 (2009).
[11] Fayyazuddin and Riazuddin, Phys. Rev. D 58, 014016 (1998).
[12] C.H. Chou, H.H. Shih, S.C. Lee and H.n. Li, Phys. Rev. D 65, 074030 (2002).
[13] M.A. Ivanov et. al., Phys. Rev. D 57, 5632 (1998).
[14] H.Y. Cheng, Phys. Rev. D 56, 2799 (1997).
[15] Y.H. Chen et al., Phys. Rev. D60, 094014 (1999); H.Y. Cheng and K.C. Yang, ibid, D62, 054029 (2000).
[16] A. Ali, G. Kramer, and C.D. Lu, Phys. Rev. D58, 094009 (1998).
[17] G.P. Lepage and S.J. Brodsky, Phys. Rev. Lett. 43, 545(1979) [Erratum-ibid. 43, 1625 (1979)].
[18] C.K. Chua, W.S. Hou and S.Y. Tsai, Phys. Rev. D 66, 054004 (2002).
[19] C.K. Chua and W.S. Hou, Eur. Phys. J. C 29, 27 (2003).
[20] C.H. Chen, H.Y. Cheng, C.Q. Geng and Y.K. Hsiao, Phys. Rev. D 78, 054016 (2008).
[21] C.Q. Geng and Y.K. Hsiao, Phys. Rev. D 85, 017501 (2012).
[22] Y.K. Hsiao and C.Q. Geng, Phys. Rev. D 91, 077501 (2015).
[23] A. Khodjamirian et al., JHEP 1109, 106 (2011); T. Mannel and Y. M. Wang, JHEP 1112, 067 (2011).
[24] D. Becirevic et. al., Nucl. Phys. B 883, 306 (2014).
[25] W. Lucha, D. Melikhov and S. Simula, Phys. Lett. B 735, 12 (2014).
[26] M. Neubert and A.A. Petrov, Phys. Rev. D 68, 014004 (2003).