Comparison of pressure profiles of massive relaxed galaxy clusters using the Sunyaev–Zel’dovich and x-ray data

Massimiliano Bonamente1,2,12, Nicole Hasler1, Esra Bulbul1, John E Carlstrom3,4,5, Thomas L Culverhouse3, Megan Gralla3, Christopher Greer3, David Hawkins6, Ryan Hennessy3, Marshall Joy2, Jeffery Kolodziejczak2, James W Lamb6, David Landry1, Erik M Leitch3, Daniel P Marrone8, Amber Miller9,10, Tony Mroczykowsk11, Stephen Muchovej6, Thomas Plagge3, Clem Pryke3,4, Matthew Sharp3 and David Woody6

1 Department of Physics, University of Alabama, Huntsville, AL 35899, USA
2 Space Science-VP62, NASA Marshall Space Flight Center, Huntsville, AL 35812, USA
3 Kavli Institute for Cosmological Physics and the Department of Astronomy and Astrophysics, University of Chicago, Chicago, IL 60637, USA
4 Enrico Fermi Institute, University of Chicago, Chicago, IL 60637, USA
5 Department of Physics, University of Chicago, Chicago, IL 60637, USA
6 Owens Valley Radio Observatory, California Institute of Technology, Big Pine, CA 93513, USA
7 NASA Goddard Space Flight Center, Greenbelt, MD 20771, USA
8 Steward Observatory, University of Arizona, 933 North Cherry Avenue, Tucson, AZ 85721, USA
9 Columbia Astrophysics Laboratory, Columbia University, New York, NY 10027, USA
10 Department of Physics, Columbia University, New York, NY 10027, USA
11 Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, PA 19104, USA
E-mail: bonamem@uah.edu

New Journal of Physics 14 (2012) 025010 (18pp)
Received 4 July 2011
Published 29 February 2012
Online at http://www.njp.org/
doi:10.1088/1367-2630/14/2/025010

12 Author to whom any correspondence should be addressed.
Abstract. We present the Sunyaev–Zel’dovich (SZ) effect observations of a sample of 25 massive relaxed galaxy clusters observed with the Sunyaev–Zel’dovich array (SZA), an eight-element interferometer that is part of the Combined Array for Research in Millimeter-wave Astronomy (CARMA). We performed an analysis of new SZA data and archival Chandra observations of this sample to investigate the integrated pressure—a proxy for cluster mass—determined from x-ray and SZ observations, two independent probes of the intra-cluster medium (ICM). This analysis makes use of a model for the ICM introduced by Bulbul (2010 Astrophys. J. 720 1038) which can be applied simultaneously to the SZ and x-ray data. With this model, we estimated the pressure profile for each cluster using a joint analysis of the SZ and x-ray data, and using the SZ data alone. We found that the integrated pressures measured from the x-ray and SZ data are consistent. This conclusion is in agreement with recent results obtained using WMAP and Planck data, confirming that SZ and x-ray observations of massive clusters detect the same amount of thermal pressure from the ICM. To test for possible biases introduced by our choice of model, we also fitted the SZ data using the universal pressure profile proposed by Arnaud (2010 Astron. Astrophys. 517 A92) and found consistency between the two models out to r_{500} in the pressure profiles and integrated pressures.

Contents

1. Introduction 2
2. Observations 4
3. Analysis of the Sunyaev–Zel’dovich array and Chandra data 6
 3.1. Models for the thermodynamic quantities 6
 3.2. Method of analysis 9
4. Integrated pressure measurements 11
 4.1. Joint Sunyaev–Zel’dovich (SZ) and x-ray fit using the Bulbul et al (2010) model 11
 4.2. SZ-only fit using the Bulbul et al (2010) average pressure profile 11
 4.3. Comparison between the Bulbul et al (2010) and Arnaud et al (2010) pressure profiles applied to the SZ data 12
5. Discussion 14
6. Conclusions 17
Acknowledgments 17
References 17

1. Introduction

The Sunyaev–Zel’dovich (SZ) effect (Sunyaev and Zel’dovich 1972) is a spectral distortion of the cosmic microwave background (CMB) caused by the scattering of CMB photons off the hot electrons of the intra-cluster medium (ICM). Over the last two decades, SZ observations with both single-dish and interferometric instruments have become routine (e.g. Birkinshaw et al 1991, Carlstrom et al 1996, Holzapfel et al 1997, Carlstrom et al 2002), and SZ surveys are now producing catalogues of newly discovered clusters out to high redshift (Vanderlinde...
et al 2010, Marriage et al 2011, Williamson et al 2011, Planck Collaboration et al 2011a). SZ measurements are complementary to the x-ray measurements, which have long been used to study clusters, but only in recent years have sufficiently large samples of objects been observed in the SZ to permit a rigorous comparison between these two techniques (Reese et al 2002, Bonamente et al 2006, LaRoque et al 2006).

The SZ effect causes a perturbation ΔT of the CMB temperature T_{CMB} given by

$$\frac{\Delta T}{T_{\text{CMB}}} = f(x) \int \sigma_T n_e \frac{kT_e}{m_e c^2} d\ell = f(x) y,$$

where $f(x)$ is the frequency dependence of the SZ effect (e.g. LaRoque et al 2006); σ_T is the Thomson cross-section; n_e, T_e and m_e are the number density, temperature and mass of the electrons, respectively; k is the Boltzmann constant; c is the speed of light; and the integral is along the line of sight ℓ. At a given frequency, the amplitude of the effect depends linearly on the Compton y-parameter, which is defined implicitly in equation (1). Note that the y-parameter is proportional to the ICM pressure integrated along the line of sight. At frequencies below 218 GHz, the SZ effect causes a decrement in the CMB temperature in the direction of the cluster. The integral of y over the solid angle Ω subtended by the cluster, known as the (cylindrical) integrated Compton y-parameter $Y_{\text{cyl}} = \int y d\Omega$, is expected to be a good proxy for cluster total mass since it traces the thermal energy content of the cluster gas. Alternatively, the Compton y-parameter can be integrated spherically,

$$Y_{\text{sph}}(r_{500}) = \frac{1}{D_\Lambda^2} \left(\frac{k\sigma_T}{m_e c^2} \right) \int n_e T_e dV,$$

where the volume V is a sphere centered on the cluster and D_Λ is the angular diameter distance.

X-ray data can also be used to constrain the density and temperature—and thus the pressure—of the ICM. Over the last decade, several groups have investigated the consistency between x-ray and SZ pressure measurements. Early measurements of the SZ signal from WMAP by, e.g., Lieu et al (2006) and Bielby and Shanks (2007) detected an SZ signal at a lower level than expected. Atrio-Barandela et al (2008) showed that the isothermal beta model leads to an electron pressure profile that exceeds the measured values at large radii by a factor of few, and that the baryon profile is consistent with a model based on the Navarro et al (1997) matter profile. Diego and Partridge (2010) also showed that contamination by compact radio sources may have led to underestimates of the SZ effect flux decrements in the WMAP data. More recent comparisons of Chandra x-ray data to stacked data from WMAP and Planck (Melin et al 2011, Planck Collaboration et al 2011b) found consistency between SZ and x-ray measurements for large samples of clusters. Komatsu et al (2011) also analyzed a sample of massive nearby clusters individually resolved by WMAP, again finding good agreement with x-ray predictions.

In this paper, we present Sunyaev–Zel’dovich array (SZA) observations of the Allen et al (2008) sample of massive relaxed galaxy clusters, together with archival Chandra x-ray observations that are available for all clusters in this sample. The sensitivity and resolution of our data permit us to measure the pressure profile and the integrated pressure out to r_{500}—the radius within which the average cluster density is 500 times the critical density—for each cluster individually, without the need to resort to scaling relations between the x-ray luminosity and mass (as was done by Melin et al 2011, Planck Collaboration et al 2011b, for example). We use the Bulbul et al (2010) model of the cluster pressure, density and temperature. Since this model has a consistent parameterization for all thermodynamic quantities, it is especially well suited for joint x-ray and SZ analysis. As a cross-check against model-dependent biases, we also fit the
SZ data using the model of Arnaud et al. (2010) based on the numerical simulations of Nagai et al. (2007). We find consistency to within our measurement uncertainties both between the x-ray and SZ measurements and between the Bulbul et al. (2010) and Arnaud et al. (2010) models.

This paper is structured as follows: section 2 describes our observations and our sample, section 3 presents our joint analysis technique, section 4 describes our method of measuring the integrated $Y_{\text{sp}}(r_{500})$ parameter (defined in equation (2)), section 5 presents and discusses our results, and our conclusions are presented in section 6.

2. Observations

The SZA is an eight-element interferometer designed for detecting and imaging the SZ effect from clusters at $z > 0.1$ and is part of the Combined Array for Research in Millimeter-wave Astronomy (CARMA). The array is equipped with 30 and 90 GHz receivers; all SZA observations presented in this paper were taken at 30 GHz. At this frequency, the 3.5 m diameter SZA telescopes have a field-of-view (or primary beam) of 10.7′ full-width at half-maximum (FWHM). Interferometric data are proportional to the Fourier transform of the sky brightness. These visibility data, denoted $V(u,v)$, are sampled at Fourier-plane coordinates (u,v) corresponding to the projected separation of pairs of telescopes (or baselines), as viewed by the source at the time of observation. At the time of the observations discussed in this work, the SZA antennas were arranged in a hybrid configuration, with six closely spaced telescopes and two ‘outriggers’ located ~ 50 m from the inner array. The inner six telescopes probe small (u,v) Fourier modes, sampling the angular scales where the SZ signal is largest for moderate-to high-redshift clusters (1–6′). Baselines involving the outriggers are sensitive to angular scales down to $\sim 20''$ and are used to constrain the positions and fluxes of unresolved radio sources.

Of the 42 clusters in the Allen et al. (2008) sample of massive relaxed galaxy clusters, the SZA has observed the 31 objects above $\delta > -15^\circ$ at redshift $z \geq 0.09$. The declination restriction is imposed by the latitude of the observatory in the Owens Valley, California ($37^\circ14'02''$N, $118^\circ16'56''$W), whereas the exclusion of clusters at low redshift is due to the inability of an interferometer to constrain scales larger than that which the shortest antenna spacing can probe at the lowest frequency band. The largest angular wavelength measured by the SZA is 10.9′, which for massive low-redshift clusters is generally smaller than $2r_{500}/D_A$. Of these 31 clusters observed with the SZA, Abell 2390 and Abell 611 were excluded from this analysis because they did not have available local background in their Chandra ACIS-S x-ray observations. Three additional clusters—3C295, CIJ1415.2+3612 and Abell 963—were discarded because of extended or otherwise difficult-to-remove radio source contamination and one—RXJ0439.0+0521—because of a pointing error.

Our sample therefore consists of 25 clusters. The synthesized beam of the long (short) baseline data for this sample is approximately 15–30′ (90–180′), and the average rms noise in the maps is $\sim 0.25–0.30$ mJy. In all cases, the Chandra data provide spatially resolved x-ray spectroscopy and sub-arcsecond imaging. A summary of the data is provided in table 1.

Radio sources detected in the cluster fields are reported in table 2. For each cluster field, we use the NRAO VLA Sky Survey (NVSS) and Faint Images of the Radio Sky at Twenty-centimeters (FIRST) 1.4 GHz catalogues as a reference for locating compact radio sources within 10′ of the cluster center. Most radio sources in our observations have counterparts in the FIRST survey, which has an rms noise of 0.15 mJy at 1.4 GHz. Inverted spectrum sources that may be present at 30 GHz may not have counterparts at 1.4 GHz, but fortunately they constitute a small fraction of the source population (Muchovej et al. 2010).
Table 1. Sample of massive and relaxed clusters from the Allen et al (2008) sample with high-resolution SZ effect SZA observations.

Cluster	R.A. (J2000)	Dec. (J2000)	N_H (10^{20} cm^{-2}) \(^a\)	SZA (h) \(^b\)	ACIS ObsID	Chandra
MACSJ0159.8 – 0849	0.40	01 59 49.5	2.06	21.2	I	3265 16.4
		–08 50 02			I	6106 34.3
					I	9376 19.5
Abell 383	0.19	02 48 03.4	3.40	25.0	I	524 9.9
		–03 31 44			I	2320 18.5
MACSJ0329.7 – 0212	0.45	03 29 41.7	3.43	8.1	I	6108 32.7
		–02 11 48			I	3257 9.6
					I	3582 19.3
Abell 478	0.09	04 13 25.2	+10 27 52	34.29	I	6102 10.0
MACSJ0429.6 – 0253	0.40	04 29 36.1	–02 53 08	3.23	I	3271 23.2
3C186	1.06	07 44 17.5	+37 53 17	5.11	S	9407 66.3
					S	9408 39.6
					S	9774 75.1
					S	9775 15.9
MACSJ0744.9 + 3927	0.69	07 44 52.9	+39 27 26	5.66	I	6111 49.5
					I	3197 20.2
					I	3585 19.7
MACSJ0947.2 + 7623	0.34	09 47 13.1	+76 23 14	2.28	I	2202 11.7
Zwicky 3146	0.29	10 23 39.6	+04 11 10	2.46	I	909 45.2
					I	9371 36.3
MACSJ1115.8 + 0129	0.35	11 15 52.0	+01 29 58	4.34	I	9373 39.6
MS 1137.5 + 6625	0.78	11 40 22.2	+66 08 14	0.95	I	536 109.6
Abell 1413	0.14	11 55 18.2	+23 24 19	3.60	I	5003 66.6
					I	1661 9.1
					I	5002 34.4
CIJ1226.9+3332	0.89	12 26 58.2	+33 32 47	1.83	I	5014 31.6
					I	3180 29.9
MACSJ1311.0 – 0311	0.49	13 11 01.7	–03 10 38	1.82	I	6110 63.0
					I	3258 13.1
					I	9381 29.0
RXJ1347.5 – 1145	0.45	13 47 30.6	–11 45 10	4.60	I	3592 54.8
Abell 1835	0.25	14 01 02.0	+02 52 40	2.04	I	6880 117.9
					I	6881 36.8
					I	7370 40.0
MACSJ1423.8 + 2404	0.54	14 23 47.9	+24 04 42	2.20	I	1657 18.2
MACSJ1427.3 + 4408	0.49	14 27 16.3	+44 07 29	1.19	I	6112 8.8
					I	9380 25.8
					I	9808 14.9
RXJ1504.1 – 0248	0.21	15 04 07.5	–02 48 16	5.97	I	5793 39.2
MACSJ1532.9 + 3021	0.36	15 32 53.8	+30 20 58	2.30	I	1665 8.2
For all 25 clusters in our sample, we have available archival Chandra x-ray observations (Allen et al 2008). Event files for all cluster observations and additional blank-sky composite event files used for background subtraction were reduced using CIAO 4.3.1 and CALDB 4.3. X-ray spectra are extracted in several annular regions for each cluster, centered at the peak of the x-ray emission. Emphasis is placed on the removal of periods of high background, and on the modeling of soft x-ray residuals that may be present after the subtraction of the blank-sky background. The method of analysis of the Chandra data and examples of the temperature and surface brightness profiles can be found in Bulbul et al (2010) and Hasler et al (2011). More details of the Chandra data for all clusters in this sample will be given in a forthcoming paper in which we will present the measurement of the gas mass fraction from the x-ray observations.

In figure 1, we show the raw Chandra x-ray images (binned in the 0.7–7 keV energy band) for each of the 25 clusters, with contours obtained from the short baseline point source-removed SZA data overlaid.

3. Analysis of the Sunyaev–Zel'dovich array and Chandra data

3.1. Models for the thermodynamic quantities

We analyze the SZ and x-ray data using the Bulbul et al (2010) model, which uses a consistent parameterization of the electron density, temperature and pressure, related through the ideal gas law at all radii, i.e. \(p_e(r) = n_e(r) k T_e(r) \) for pressure \(p_e \), electron density \(n_e \) and temperature \(T_e \). All thermodynamic quantities depend on the gravitational potential,

\[
\phi(r) = \frac{1}{(\beta - 2)} \left[\frac{1}{r/r_s(1 + r/r_s)^{\beta - 2}} - 1 \right].
\]
Table 2. SZ centroids and radio source locations for the SZA observations.

Cluster	z	α(J2000)	δ(J2000)	30 GHz source	1.4 GHz Flux (mJy)	Delta1α	$\Delta\delta$	Flux (mJy)	NVSS	FIRST
MACSJ0159.8 – 0849	0.40	01:59:51.5	−08:50:06.9	1	−31.3	8.0	84.4 ± 0.2	36.7	31.4	
Abell 383	0.19	02:48:03.5	−03:31:55.8	2	276.7	−149.2	7.5 ± 0.3	54.9	–	
MACSJ0329.7 – 0212	0.45	03:29:40.3	−02:11:44.5	1	263.2	−97.2	12.7 ± 0.4	37.2	–	
Abell 478	0.09	04:13:25.0	+10:27:50.8	1	195.4	18.1	2.9 ± 0.1	47.7	–	
MACSJ0429.6 – 0253	0.40	04:29:35.6	−02:53:01.6	1	7.0	−7.7	18.2 ± 0.2	138.8	–	
3C186	1.06	07:44:14.8	+37:53:21.2	1	40.8	−3.3	22.6 ± 0.2	1236.4	1244.9	
MACSJ0744.9 + 3927	0.69	07:44:52.2	+39:27:34.6	1	−215.6	286.7	2.5 ± 0.5	4.4	–	
MACSJ0947.2 + 7623	0.34	09:47:12.4	+76:23:03.0	1	11.1	11.2	2.5 ± 0.3	21.7	–	
Zwicky 3146	0.29	10:23:38.9	+04:11:27.7	1	92.4	−48.5	5.0 ± 0.3	95.8	56.7	
MACSJ1115.8 + 0129	0.35	11:15:52.2	+01:29:50.6	1	128.7	−360.5	2.7 ± 0.2	11.5	10.5	
MS1137.5 + 6625	0.78	11:40:22.8	+66:08:13.2	1	81.6	−94.3	10.6 ± 0.2	105.4	49.2	
Abell 1415	0.14	11:55:17.5	+23:24:04.0	1	−117.0	135.5	2.1 ± 0.1	28.1	19.8	
CLJ1226.9 + 3332	0.89	12:26:57.7	+33:32:51.8	1	263.4	−46.0	3.9 ± 0.2	29.8	23.2	
MACSJ1311.0 – 0311	0.49	13:11:02.2	−03:10:47.0	–	–	–	–	–	–	
RXJ1347.5 – 1145	0.45	13:47:31.4	−11:45:16.1	1	−11.4	6.3	8.7 ± 0.2	45.9	–	
MACSJ1532.7 + 0321	0.36	15:32:54.0	+30:20:59.0	1	−39.3	−72.9	5.7 ± 0.2	7.9	6.0	
Abell 1835	0.25	14:01:02.2	+02:52:34.4	1	−1.5	9.2	2.9 ± 0.3	39.3	31.3	
MACSJ1423.8 + 2404	0.54	14:23:48.6	+24:05:13.6	1	−11.8	−31.5	2.0 ± 0.2	8.0	5.2	
MACSJ1427.3 + 4408	0.49	14:27:15.8	+44:07:41.4	1	4.8	−10.8	16.4 ± 0.2	47.9	41.3	
RXJ1504.1 – 0248	0.21	15:04:07.1	−02:48:17.8	1	5.7	1.3	15.9 ± 0.2	60.5	40.8	
MACSJ1532.9 + 3021	0.36	15:32:54.0	+30:20:59.0	1	−39.3	−72.9	5.7 ± 0.2	7.9	6.0	
MACSJ1621.6 + 3810	0.46	16:21:25.3	+38:09:56.9	–	–	–	–	–	–	
Abell 2204	0.15	16:32:47.2	+05:34:34.7	1	−3.6	−1.5	7.0 ± 0.2	69.3	57.9	
MACSJ1720.3 + 3536	0.39	17:20:16.2	+35:36:36.0	1	650.3	340.2	167.7 ± 0.2	–	–	
RXJ2129.6 + 0005	0.23	21:29:40.2	+00:05:20.9	1	−3.2	0.4	2.6 ± 0.2	25.4	23.8	
Abell 2537	0.29	23:08:19.2	−02:11:19.0	1	138.6	437.2	8.4 ± 0.9	69.9	58.6	

a Offset from fit SZ centroid.
Figure 1. Chandra images in the 0.7–7 keV energy range. The color bars reflect the number of counts detected by Chandra. SZ contour levels are (+2, −2, −4, −6, −8, . . .) times the rms noise in the short baseline data, after removal of radio sources; solid contours are for negative levels, and dashed contours are for positive levels. The elliptical Gaussian approximation to the synthesized beam of the SZ observations is shown in the lower left corner.

in which β describes the slope of the matter density at large radii and r_s is a scale radius. The parameterization of the Bulbul et al (2010) model does not allow the inner slope of the matter density to vary, which is fixed at r^{-1} as in the Navarro et al (1997) model. The resolution of our SZ data can only effectively constrain the matter distribution on scales larger than the synthesized beam, which is of the order of 1 arcmin for these observations, and therefore we
would not be able to place significant constraints on the inner slope. As explained by Bulbul et al. (2010), the potential is continuous at $\beta = 2$, the value of the Navarro et al. (1997) mass density model. The radial electron temperature profile is given by

$$T_e(r) = T_0 \phi(r) \tau_{\text{cool}}(r),$$

where $\tau_{\text{cool}}(r)$ is the Vikhlinin et al. (2006) phenomenological core taper function, required to fit cool-core clusters, which is equal to one at large radii. The density is parameterized as

$$n_e(r) = n_{e0} \phi(r) \tau_{\text{cool}}^{-1}(r)$$

in such a way that the pressure distribution is not altered by the presence of the cool core. At large radii, where the effect of the cool core vanishes, the thermodynamic quantities are related by a simple polytropic equation of state. The electron pressure profile is therefore parameterized as

$$p_e(r) = P_{e0} \phi(r)^{n+1}$$

and is independent of the presence of a cool core. The model therefore has five independent parameters for non-cool-core clusters: the scale radius r_s, the index β, the polytropic index n and the normalization constants for the three thermodynamic quantities which satisfy $n_{e0} kT_0 = P_{e0}$.

For cool-core clusters, the τ_{cool} function

$$\tau_{\text{cool}}(r) = \alpha + \left(\frac{r}{r_{\text{cool}}}\right)^\gamma$$

adds three additional adjustable parameters.

To test for model-dependent biases, we also use the Arnaud et al. (2010) model to fit the SZ data. This model describes the cluster pressure profile using an analytic function motivated by numerical simulations (Nagai et al. 2007) and x-ray observations of the REXCESS sample,

$$p_e(r) = \frac{p_{e,i}}{(r/r_p)^c \left[1 + (r/r_p)^a\right]^{(b-c)/a}}.$$

The parameters $p_{e,i}$ and r_p are left free in our fits to the SZ effect observations. The values (a, b, c) are the power-law indices that describe the (intermediate, outer and inner) slopes of $p_e(r)$. We use the ‘universal’ values (a, b, c) = (1.05, 5.49, 0.31) obtained by Arnaud et al. (2010) from a fit to x-ray observations of the REXCESS sample. Note that Arnaud et al. (2010) found different best-fit values for cool-core clusters. We choose to use the parameters fit to the entire sample because our sample was not selected based on the presence of a cool core and in fact contains a few non-cool-core clusters, namely 3C186, MS1137.5 + 6625 and CLJ1226.9 + 3332.

3.2. Method of analysis

As in previous work with the SZA (e.g. Mroczkowski et al. 2009, Hasler et al. 2011), we relate the point-source-subtracted interferometric SZ visibilities to the unitless integrated Compton y by introducing $Y(u, v)$, defined as

$$Y(u, v) \equiv \frac{V_v(u, v)}{g(x) I_0}.$$

Here $g(x)$ corrects for the frequency dependence of the SZ flux, and $I_0 = 2(k_B T_{\text{CMB}})^3/(hc)^2$ is the primary CMB intensity. The SZ models and compact radio sources are fit directly and
simultaneously in Fourier space, where the statistical properties of the model fits are better understood and the noise is Gaussian. This is done simply by building up the sky brightness image, Fourier transforming it, and computing the likelihood of the model.

The x-ray data consist of spectroscopic temperature measurements taken in cluster-centric annuli, and an x-ray image in units of surface brightness (counts s$^{-1}$ cm$^{-2}$ sr$^{-1}$). The x-ray surface brightness S_x varies with the line of sight integral of the electron density and temperature distributions as

$$S_x = \frac{1}{4\pi (1+z)^3} \int n_e^2 \Lambda_{ee}(T_e, A) d\ell,$$

where ℓ is the line of sight through the cluster, n_e is the electron density, T_e is the electron temperature, A is the metallicity and $\Lambda_{ee}(T_e, A)$ is the x-ray cooling function (in units of counts cm3 s$^{-1}$) as a function of electron temperature and metallicity. Each cluster was divided into a number of annuli according to the total number of photons detected, and for each annular region the temperature and abundance were free parameters. The surface brightness is only marginally sensitive to the choice of the outer limit of integration in equation (10); we find that the masses vary by less than 1% when the outer limit ranges between 2 and 5 Mpc. We therefore choose a limit of 2 Mpc, which corresponds to approximately the virial radius for clusters in this mass range. We use the Mazzotta et al (2004) definition of spectroscopic temperature in the comparison of model and observed temperatures in each annulus.

We first estimate the pressure profile of the ICM by jointly fitting the SZ and x-ray data with the Bulbul et al (2010) model. Both datasets are used simultaneously to constrain all three thermodynamic quantities, with the global shape parameters β, n and r_s (and the cool-core parameters when applicable) linked among the profiles. Both datasets contribute to the determination of the shape of the pressure profile, with SZ observations contributing primarily at the largest radii where the sensitivity of Chandra to the diffuse cluster emission is limited. Instead of linking the normalization of the pressure profile (P_{e0}) to the product of the normalizations of the density and temperature (n_{e0} and T_0), we let the normalizations be free, and check a posteriori that $P_{e0} = n_{e0} \times kT_0$ in accordance with the ideal gas law. The normalization of the pressure is determined by the SZ data, and the normalizations of temperature and density are determined by the x-ray data.

This method results in the measurement of the shape of the pressure profile, $p_e(r)/P_{e0}$, and two normalizations determined independently by each of the two datasets. The two normalizations are left free to vary, because in principle systematic uncertainties in the two datasets could lead to different values, and we do not want to assume a priori agreement between them. The fit uses a Markov chain Monte Carlo method (Bonamente et al 2004) and computes the angular diameter distance assuming a $\Omega_\Lambda = 0.73$, $\Omega_M = 0.27$ and $h = 0.73$ cosmology.

To obtain a measurement of the integrated pressure that depends only on the SZ data, we also perform another fit in which we fix the shape parameters of the Bulbul et al (2010) pressure profile to $n = 3.5$ and $\beta = 2.0$. These values correspond to the median of the values obtained from the joint fit. This pressure profile with fixed slope parameters is directly comparable to the universal pressure profile of Arnaud et al (2010), since both are determined by the modeling of high-resolution x-ray data (from fits to the REFLEX sample for the Arnaud et al 2010 model and from fits to the Allen et al 2008 observations for our model), and have just two free parameters (scale radius and normalization constant). In the following, we refer to this two-parameter model as the Bulbul et al (2010) average pressure profile.
Measurements of the ICM pressure using SZ and x-ray data are subject to different sources of systematic uncertainty that could affect the calculation of the Y_{sph} parameter (Hasler et al 2011). Systematic errors that integrate down with sample size include cluster asphericity, the effect of x-ray background and the presence of the kinetic SZ effect; these errors are included in the calculation of the ratio between the various measurements of $Y_{\text{sph}}(r_{500})$, and of the weighted averages and χ^2_{min} values in sections 4.1 and 4.2, following the prescriptions of Hasler et al (2011).

4. Integrated pressure measurements

4.1. Joint Sunyaev–Zel’dovich (SZ) and x-ray fit using the Bulbul et al (2010) model

The integrated pressure, which we quantify in terms of the Compton y parameter, is expected to be a good proxy for total cluster mass. Since the SZA measures the integrated flux within Fourier modes on the sky, our SZ data relate most directly to the integrated Compton y parameter Y_{cyl}. However, it is conventional in x-ray analyses to report spherically integrated quantities. We therefore quantify the integrated pressure using the spherically integrated Compton y parameter Y_{sph} out to r_{500}. The overdensity radius r_{500} is given by

$$r_{\Delta} = \left(\frac{M_{\text{tot}}(r_{\Delta})}{\frac{4}{3} \pi r_{\Delta}^3 \Delta \rho_c(z)} \right)^{1/3}$$

(11)

with $\Delta = 500$, where $\rho_c(z)$ is the critical density of the universe at the cluster redshift. The total cluster mass is calculated under the assumption of hydrostatic equilibrium; for the Bulbul et al (2010) model, the total mass is given by

$$M_{\text{tot}}(r) = 4\pi \rho_i r_s^3 \left(\frac{1}{\beta - 1} + \frac{1/((1 - \beta) - r/r_s)}{(1 + r/r_s)^{\beta - 1}} \right) \tau_{\text{cool}}(r),$$

(12)

where the matter density normalization is given by $\rho_i = (kT_0(n + 1)(\beta - 1))/(4\pi G \mu m_p r_s^2)$; μ is the mean molecular weight and m_p is the proton mass.

Using the method of analysis discussed in section 3.2, we first compare Y_{sph} normalized using n_{e0} and T_0 constrained by the x-ray data with Y_{sph} normalized using P_{e0} constrained by the SZ data. This comparison is summarized in table 3. The normalizations are in good agreement: the weighted average of the ratio between the measurements using the SZ and x-ray normalizations is 1.06 ± 0.04. This indicates that systematic uncertainties do not produce a large overall offset between the two observables.

Below, we refer to Y_{sph} as the measurement obtained from the joint fit using the x-ray normalization. We adopt this value since the joint profile makes use of all the information available from both the x-ray and SZ observations including the effect of the cool core, and since both normalizations are in agreement.

4.2. SZ-only fit using the Bulbul et al (2010) average pressure profile

We also fit only the SZA data to the Bulbul et al (2010) average pressure profile, which consists of the pressure profile of equation (6) with P_{e0} and r_s as free parameters and the two shape parameters fixed at $n = 3.5$ and $\beta = 2.0$. We use this model to compute Y as described above, which we refer to as $Y_{\text{sph},\text{SZ},B10}$. The value of r_{500} used in computing $Y_{\text{sph},\text{SZ},B10}$ is determined
from the joint fit. These results are shown in table 4, and are plotted against the joint fit Y_{sph} in figure 2. We found that the weighted mean of the ratio between the measurements is given by $Y_{\text{sph,SZ, B10}}/Y_{\text{sph}} = 0.90 \pm 0.05$, where the uncertainty is the standard deviation of the weighted mean. A linear fit of the two measurements to a $y = x$ model results in $\chi^2_{\text{min}} = 35.3$ for 25 degrees of freedom, and we measure a scatter of 16%.

4.3. Comparison between the Bulbul et al (2010) and Arnaud et al (2010) pressure profiles applied to the SZ data

The SZA data were also fit to the Arnaud et al (2010) model using the same value of r_{500} as above. The best-fit parameters are shown in table 5. We compared the results from the Bulbul

Cluster	r_{500} ($')$	$Y_{\text{sph}}(r_{500})$	$Y_{\text{sph}}(r_{500})$	$Y_{\text{sph}}(r_{500})$
MACSJ0783 - 0249	221.4±11.0	8.30±0.76	9.67±1.14	0.86±0.08
Abell 383	268.5±22.1	4.92±0.77	4.19±0.82	1.17±0.16
MACS0329.7 - 0212	138.4±12.7	3.03±0.53	2.61±0.49	1.16±0.18
Abell 478	714.3±23.5	49.6±3.15	60.6±0.84	0.82±0.06
MACSJ0429.6 - 0253	182.3±18.5	2.75±0.49	3.30±0.81	0.83±0.14
3C186	72.1±5.5	1.01±0.23	0.86±0.14	1.17±0.24
MACSJ0744.9 + 3927	120.3±5.6	5.04±0.66	3.80±0.72	1.33±0.16
MACSJ0947.2 + 7623	196.2±15.5	5.18±0.73	6.00±1.17	0.86±0.11
Zwicky 3146	265.7±8.7	12.17±1.22	10.56±0.95	1.14±0.10
MACSJ1115.8 + 0129	200.0±9.7	7.74±0.57	6.26±0.75	1.24±0.14
MS1375.5 + 6625	78.8±5.6	1.08±0.15	0.73±0.11	1.49±0.26
Abell 1413	454.4±20.3	17.10±2.03	23.12±2.32	0.75±0.06
CLJ1226.9 + 3332	109.4±8.3	3.31±0.34	3.06±0.42	1.09±0.18
MACSJ1311.0 - 0311	156.5±11.5	2.36±0.61	2.31±0.36	1.02±0.26
RXJ1347.5 - 1145	218.0±6.9	14.02±0.75	21.59±1.82	0.65±0.04
Abell 1835	370.7±7.8	31.41±1.56	29.67±1.57	1.06±0.06
MACSJ1423.8 + 2404	189.1±16.4	2.15±0.45	2.52±0.57	0.86±0.22
MACSJ1427.3 + 4408	150.5±4.6	3.39±0.57	4.75±0.44	0.72±0.11
RXJ1504.1 - 0248	326.7±9.9	15.73±1.30	18.03±1.26	0.87±0.06
MACSJ1532.9 + 302	189.1±9.9	5.04±0.65	6.41±0.61	1.09±0.12
MACSJ1621.6 + 3810	147.7±8.0	2.53±0.29	2.76±0.37	0.93±0.12
Abell 2204	504.6±12.5	44.97±2.99	43.93±1.59	1.02±0.08
MACSJ1720.3 + 3536	170.5±8.6	3.89±0.30	3.93±0.49	0.98±0.10
RXJ2129.6 + 0005	297.6±13.1	10.78±1.04	10.48±1.34	1.04±0.10
Abell 2537	256.2±14.4	7.27±0.81	7.37±0.97	0.99±0.09
consistent with the presence of negligible scatter between the two measurements. The low value of $\chi^2_{min} = 5.6$ for 25 degrees of freedom, consistent with the presence of negligible scatter between the two measurements. The low value of χ^2_{min} is likely due to correlated errors, since the two measurements make use of the same data. Figure 4 shows the average Arnaud et al (2010) and Bulbul et al (2010) pressure profiles for our sample. The two parameterizations result in fits that are consistent at all radii within r_{500}. The consistency between the pressure profiles and the integrated Y values measured from the two models indicates that the choice of parameterization for the gas pressure does not introduce a significant bias in the calculation of the integrated pressure within r_{500}.
Figure 2. Integrated pressure \((Y_{\text{sph}, B10}) \) from SZ data plotted against integrated pressure \((Y_{\text{sph}}) \) from the joint analysis, both measured out to the same value of \(r_{500} \). The dashed line is the curve \(y = x \).

5. Discussion

The agreement we found between SZ and x-ray measurements of the \(Y_{\text{sph}}(r_{500}) \) parameter is consistent with a simple scenario in which the SZ decrement and the x-ray emission from massive relaxed clusters originate from the same highly ionized thermal plasma, with only small contributions from other possible sources of emission. This result is in agreement with earlier \(\sim 30 \) GHz SZ studies using the Owens Valley Radio Observatory (OVRO) and the Berkeley Illinois Maryland Array (BIMA) millimeter arrays, in which the same value of the gas mass fraction was measured using SZ and x-ray data (LaRoque et al. 2006). Our results also support the finding of Melin et al. (2011) and Planck Collaboration et al. (2011b) that there is overall agreement between the two measurements of the thermal pressure.

We found scatter between the SZA and Chandra \(Y_{\text{sph}} \) estimates at a level of 16%. A possible source of systematic error that could give rise to this scatter, and that is particularly relevant to our measurements out to \(r_{500} \), is elongation of the cluster along the line of sight. We use spherically symmetric models in the analysis; an intrinsically prolate cluster (elongated along the line of sight), when fitted to a spherical model, will have its x-ray surface brightness—and therefore the corresponding \(Y_{\text{sph}} \) parameter—underestimated with respect to the corresponding SZ measurement (e.g. Cooray 2000, De Filippis et al. 2005, Ameglio et al. 2007). This is due to the quadratic dependence of the x-ray surface brightness profile on the density, as opposed to the linear dependence of the SZ effect. Our sample has just three clusters with a statistically significant deviation from the \(Y_{\text{sph}} = Y_{\text{sph}, SZ} \) line, but in the direction of \(Y_{\text{sph}}/Y_{\text{sph}, SZ} > 1 \), and therefore consistent with oblateness (compression along the line of sight) rather than prolateness. The fact that the Allen et al. (2008) sample of relaxed clusters is x-ray selected may lead to including preferentially oblate clusters as their surface brightness will be boosted. An
Table 5. Best-fit parameters for the fit of the SZA data to the Arnaud et al (2010) model and integrated Y parameter out to r_{500}.

Cluster	$p_{e,i}$ $(10^{-11} \text{ ergs cm}^{-3})$	r_p (°)	$Y_{\text{ph}, \text{SZ,A10}}$ (10^{-11})	$Y_{\text{ph}, \text{SZ,B10}} / Y_{\text{ph}, \text{SZ,A10}}$ ratio
MACSJ0159.8 – 0849	6.38$^{+2.71}_{-1.38}$	221.0$^{+56.9}_{-1.15}$	9.16$^{+6.31}_{-0.71}$	0.99$^{±0.17}$
Abell 383	48.1$^{+101}_{-29.6}$	74.0$^{+37.7}_{-27.5}$	2.93$^{+0.71}_{-0.59}$	1.41$^{±0.37}$
MACS0329.7 – 0212	440$^{+787}_{-328}$	25.0$^{+17.2}_{-8.50}$	2.03$^{+0.46}_{-0.43}$	1.32$^{±0.35}$
Abell 478	7.50$^{+14.3}_{-1.02}$	662.5$^{+209}_{-153}$	93.9$^{+83.3}_{-31.8}$	0.76$^{±0.42}$
MACSJ0429.6 – 0253	3.50$^{+5.01}_{-1.95}$	206.7$^{+161}_{-81.9}$	3.61$^{+0.96}_{-0.82}$	0.79$^{±0.24}$
3C186	1570$^{+609}_{-706}$	10.3$^{+3.11}_{-1.26}$	0.79$^{+0.18}_{-0.14}$	1.05$^{±0.32}$
MACSJ0744.9 + 3927	11.5$^{+8.44}_{-4.34}$	149.8$^{+63.7}_{-44.2}$	5.43$^{+0.93}_{-0.93}$	1.01$^{±0.25}$
MACSJ0947.2 + 7623	6.68$^{+5.66}_{-2.76}$	195.0$^{+81.4}_{-57.1}$	6.10$^{+1.23}_{-1.14}$	0.99$^{±0.25}$
Zwicky 3146	39.4$^{+9.00}_{-21.0}$	105.7$^{+51.3}_{-33.9}$	8.78$^{+5.91}_{-2.02}$	1.35$^{±0.41}$
MACSJ1115.8 + 0129	27.0$^{+12.3}_{-7.88}$	108.7$^{+20.2}_{-17.8}$	6.58$^{+0.64}_{-0.60}$	1.21$^{±0.15}$
MS1137.5 + 6625	20.3$^{+7.94}_{-1.45}$	61.3$^{+52.0}_{-30.2}$	1.05$^{+0.16}_{-0.18}$	0.94$^{±0.21}$
Abell 1413	4.1$^{+0.77}_{-0.54}$	619.0$^{+231}_{-167}$	42.9$^{+12.18}_{-15.8}$	1.06$^{±0.60}$
CLJ1226.9 + 3332	35.9$^{+5.03}_{-13.0}$	67.6$^{+20.3}_{-30.2}$	45.3$^{+0.43}_{-0.40}$	1.07$^{±0.18}$
MACSJ1311.0 - 0311	709$^{+2200}_{-641}$	16.2$^{+24.7}_{-7.56}$	0.99$^{+0.58}_{-0.42}$	2.67$^{±1.62}$
RXJ1347.5 – 1145	50.7$^{+9.85}_{-7.97}$	102.7$^{+9.8}_{-8.91}$	13.0$^{+0.82}_{-0.80}$	1.06$^{±0.09}$
Abell 1835	14.7$^{+3.77}_{-3.11}$	230.6$^{+36.3}_{-29.8}$	25.3$^{+2.94}_{-2.94}$	1.14$^{±0.20}$
MACSJ1423.8 + 2404	7.82$^{+24.9}_{-5.44}$	137.8$^{+239}_{-75.2}$	4.20$^{+0.57}_{-0.40}$	1.06$^{±0.09}$
MACSJ1427.3 + 4408	15.9$^{+32.4}_{-10.1}$	84.6$^{+85.8}_{-34.3}$	2.18$^{+0.62}_{-0.51}$	1.04$^{±0.35}$
RXJ1504.1 – 0248	30.7$^{+18.31}_{-11.0}$	136.6$^{+36.1}_{-28.9}$	11.7$^{+0.51}_{-0.85}$	1.10$^{±0.29}$
MACSJ1532.9 + 302	12.8$^{+3.26}_{-4.87}$	135.8$^{+48.2}_{-36.3}$	5.03$^{+1.21}_{-0.99}$	1.14$^{±0.38}$
MACSJ1621.6 + 3810	4.78$^{+2.74}_{-1.59}$	171.9$^{+61.1}_{-43.5}$	3.00$^{+0.57}_{-0.94}$	1.08$^{±0.27}$
Abell 2204	9.88$^{+1.51}_{-1.51}$	416.4$^{+72.8}_{-59.0}$	54.7$^{+11.2}_{-9.8}$	1.10$^{±0.26}$
MACSJ1720.3 + 3536	13.1$^{+3.52}_{-3.52}$	119.5$^{+22.2}_{-19.4}$	3.89$^{+0.46}_{-0.41}$	0.99$^{±0.15}$
RXJ2129.6 + 0005	4.50$^{+2.45}_{-1.39}$	328.6$^{+128}_{-89.2}$	13.3$^{+3.80}_{-2.98}$	0.95$^{±0.32}$
Abell 2537	4.63$^{+2.29}_{-1.37}$	250.6$^{+80.5}_{-59.4}$	8.07$^{+1.87}_{-1.54}$	1.08$^{±0.31}$

alternative interpretation for the presence of scatter between the SZA and Chandra estimates of Y is that some of these clusters are disturbed and have undergone a recent merger, as is almost certainly the case for RXJ1347.5 – 1145 (Mason et al 2010, Johnson et al 2011). A merger would result in clumping of the gas and therefore an overestimate of the gas mass and Y from x-ray measurements, as suggested by Simionescu et al (2011) to explain the observations of the Perseus cluster. Clumping would not affect the SZ observations, because of the linear dependence of the signal on density.

The fit of the SZ data to the universal pressure profile of Arnaud et al (2010), and to the average pressure profile based on the Bulbul et al (2010) parameterization of the pressure, is statistically acceptable for all clusters, with a similar χ^2 for the two models. The agreement between Y_{ph} at r_{500} using the two models indicates that the integrated pressure is not highly sensitive to (reasonable) choices of parameterization.
Figure 3. Integrated SZ pressure $Y_{\text{ph, SZ}}$ calculated using the Bulbul et al (2010) model (y-axis) and the Arnaud et al (2010) model (x-axis), from a fit to the SZ data. The value of r_{500} was determined by the joint modeling of the SZ and x-ray observations, and it is the same for both measurements. The dashed line is the curve $y = x$.

Figure 4. Average pressure profiles from SZ fits to Bulbul et al (2010) model (dark gray area, blue line) and to the Arnaud et al (2010) model (light gray area, red line). The lines are the median of the 25 best-fit distributions, and the error bands are the 68% confidence level.

We have adopted throughout our analysis the value of r_{500} determined from the joint SZ and x-ray observations. In the absence of x-ray information, one may instead adopt a fiducial value of the gas mass fraction f_{gas} to determine r_{500} (e.g. Joy et al 2001, Bonamente...
et al 2008, Mroczkowski 2011) or other means based on SZ–mass scaling relations. The additional assumptions required for estimating r_{500} from SZ data will probably only contribute additional scatter to the $Y_{\text{sph}} - Y_{\text{sph,SZ}}$ relation when the r_{500} used to measure $Y_{\text{sph,SZ}}$ is estimated directly from the SZ data.

6. Conclusions

We have presented a joint analysis of the SZA and Chandra observations of the Allen et al (2008) sample of massive and relaxed galaxy clusters. We have collected sensitive SZ data for all clusters at declination $\geq -15^\circ$ with no significant contamination from foreground or intrinsic radio sources, for a total of 25 clusters in the redshift range $0.09 \leq z \leq 1.06$. We also used the x-ray imaging and spectroscopic Chandra data that are available for all clusters, and made a cluster-by-cluster comparison of the integrated pressure. The Y_{sph} value estimated from the joint SZ and x-ray data, and from the SZ data alone, agree within a few per cent at r_{500}, indicating that the SZ and x-ray signal from massive relaxed clusters is consistent with a common thermal origin. We therefore confirm the findings of Melin et al (2011) and Planck Collaboration et al (2011b), and find no evidence for the presence of significant sources of systematic uncertainty in the measurements of the ICM pressure from the SZ and x-ray observations of massive relaxed clusters.

We also determined an average pressure profile based on the Bulbul et al (2010) model, with shape parameters ($n = 3.5$ and $\beta = 2.0$) determined by a joint fit to the Chandra x-ray data and our SZA observations of the Allen et al (2008) sample of massive relaxed clusters. We have shown that measurements of the radial profile of the pressure out to r_{500}, and of $Y_{\text{sph,SZ}}$ at r_{500}, agree between the Arnaud et al (2010) and the Bulbul et al (2010) average pressure profiles out to r_{500}. Our conclusions indicate that both models are adequate for describing cluster radial pressure profiles and measuring the integrated thermal energy content in relaxed clusters.

Acknowledgments

The operation of the SZA is supported by the NSF through grants AST-0604982 and AST-0838187. Partial support was also provided by grant PHY-0114422 of the University of Chicago and by NSF grants AST-0507545 and AST-05-07161 to Columbia University. The CARMA operations are supported by the NSF under a cooperative agreement and by the CARMA partner universities. Support for TM was provided by the NASA through Einstein Postdoctoral Fellowship grant number PF0-110077 awarded by the Chandra X-ray Center, which is operated by the Smithsonian Astrophysical Observatory for NASA under contract NAS8-03060.

References

Allen S W, Rapetti D A, Schmidt R W, Ebeling H, Morris R G and Fabian A C 2008 Mon. Not. R. Astron. Soc. 383 879
Ameglio S, Borgani S, Pierpaoli E and Dolag K 2007 Mon. Not. R. Astron. Soc. 382 397
Arnaud M, Pratt G W, Piffaretti R, Böhringer H, Croston J H and Pointecouteau E 2010 Astron. Astrophys. 517 A92
Atrio-Barandela F, Kashlinsky A, Kocevski D and Ebeling H 2008 Astrophys. J. Lett. 675 L57
Bielby R M and Shanks T 2007 Mon. Not. R. Astron. Soc. 382 1196

New Journal of Physics 14 (2012) 025010 (http://www.njp.org/)
Birkinshaw M, Hughes J P and Arnaud K A 1991 Astrophys. J. 379 466
Bonamente M, Joy M, LaRoque S J, Carlstrom J E, Nagai D and Marrone D P 2008 Astrophys. J. 675 106
Bonamente M, Joy M K, Carlstrom J E, Reese E D and LaRoque S J 2004 Astrophys. J. 614 194
Bonamente M, Joy M K, LaRoque S J, Carlstrom J E, Reese E D and Dawson K S 2006 Astrophys. J. 647 25
Bulbul G E, Hasler N, Bonamente M and Joy M 2010 Astrophys. J. 720 1038
Carlstrom J E, Holder G P and Reese E D 2002 Annu. Rev. Astron. Astrophys. 40 643
Carlstrom J E, Joy M and Grego L 1996 Astrophys. J. Lett. 456 L75
Cooray A R 2000 Mon. Not. R. Astron. Soc. 313 783
De Filippis E, Sereno M, Bautz M W and Longo G 2005 Astrophys. J. 625 108
Diego J M and Partridge B 2010 Mon. Not. R. Astron. Soc. 402 1179
Holzapfel W L, Arnaud M, Ade P A R, Church S E, Fischer M L, Mauskopf P D, Rephaeli Y, Wilbanks T M and Lange A E 1997 Astrophys. J. 480 449
Johnson R E, ZuHone J A, Jones C, Forman W and Markevitch M 2011 arXiv:1106.3489
Joy M, LaRoque S, Grego L, Carlstrom J E, Dawson K, Ebeling H, Holzapfel W L, Nagai D and Reese E 2001 Astrophys. J. 551 L1
Komatsu E et al 2011 Astrophys. J. Suppl. 192 18
LaRoque S J, Bonamente M, Carlstrom J E, Joy M K, Nagai D, Reese E D and Dawson K S 2006 Astrophys. J. 652 917
Lieu R, Mittaz J P D and Zhang S-N 2006 Astrophys. J. 648 176
Marriage T A et al 2011 Astrophys. J. 737 61
Mason B S et al 2010 Astrophys. J. 716 739
Mazzotta P, Rasia E, Moscardini L and Tormen G 2004 Mon. Not. R. Astron. Soc. 354 10
Melnik J-B, Bartlett J G, Delabrouille J, Arnaud M, Piffaretti R and Pratt G W 2011 Astron. Astrophys. 525 A139+
Mróczkowski T 2011 Astrophys. J. Lett. 728 L35
Mróczkowski T et al 2009 Astrophys. J. 694 1034
Muchovéj S et al 2010 Astrophys. J. 716 521
Nagai D, Vikhlinin A and Kravtsov A V 2007 Astrophys. J. 655 98
Navarro J F, Frenk C S and White S D M 1997 Astrophys. J. 490 493
Planck Collaboration (Ade P A et al) 2011a Astron. Astrophys. 536 A8
Planck Collaboration (Aghanim N et al) 2011b Astron. Astrophys. 536 A10
Reese E D, Carlstrom J E, Joy M, Mohr J J, Grego L and Holzapfel W L 2002 Astrophys. J. 581 53
Simionescu A et al 2011 Science 331 1576
Sunyaev R A and Zel’dovich Y B 1972 Comments Astrophys. Space Phys. 4 173
Vanderlinde K et al 2010 Astrophys. J. 722 1180
Vikhlinin A, Kravtsov A, Forman W, Jones C, Markevitch M, Murray S S and Van Speybroeck L 2006 Astrophys. J. 640 691
Williamson R et al 2011 Astrophys. J. 738 139

New Journal of Physics 14 (2012) 025010 (http://www.njp.org/)