Astrocytic glutamate transporter excitatory amino acid transporter (GLAST) 1, also known as glutamate aspartate transporter (EAAT1), is one of two glial glutamate transporters that are responsible for removing excess glutamate from synaptic clefts to prevent excitotoxic neuronal death. Despite its important role in neurophysiological functions, the molecular mechanisms of EAAT1 regulation at the transcriptional level remain to be established. Here, we report that NF-κB is a main positive transcription factor for EAAT1, supported by the following: 1) EAAT1 contains two consensus sites for NF-κB, 2) mutation of NF-κB binding sites decreased EAAT1 promoter activity, and 3) activation of NF-κB increased, whereas inhibition of NF-κB decreased EAAT1 promoter activity and mRNA/protein levels. EGF increased EAAT1 mRNA/protein levels and glutamate uptake via NF-κB. The transcription factor yin yang 1 (YY1) plays a role as a critical negative regulator of EAAT1, supported by the following: 1) the EAAT1 promoter contains multiple consensus sites for YY1, 2) overexpression of YY1 decreased EAAT1 promoter activity and mRNA/protein levels, and 3) knockdown of YY1 increased EAAT1 promoter activity and mRNA/protein levels. Manganese decreased EAAT1 expression via YY1. Epigenetic modifiers histone deacetylases (HDACs) served as co-repressors of YY1 to further decrease EAAT1 promoter activity, whereas inhibition of HDACs reversed manganese-induced decrease of EAAT1 expression. Taken together, our findings suggest that NF-κB is a critical positive regulator of EAAT1, mediating the stimulatory effects of EGF, whereas YY1 is a negative regulator of EAAT1 with HDACs as co-repressors, mediating the inhibitory effects of manganese on EAAT1 regulation.

Glutamate is the principal excitatory neurotransmitter in the CNS, playing critical roles in learning, cognition, and memory (1), but excessive levels of glutamate in the synaptic clefts induce excitotoxic neuronal death by overstimulation of post synaptic glutamate receptors. Thus, optimal levels of glutamate must be kept in the synaptic cleft by continuous uptake into adjacent astrocytes via astrocytic glutamate transporters. Among the five subtypes of glutamate transporters, excitatory amino acid transporter (EAAT) 1 and 2 in humans, also known as glutamate aspartate transporter (GLAST) and glutamate transporter-1 (GLT-1) in rodents, are responsible for the majority of glutamate clearance and are predominantly expressed in astrocytes (2, 3). Dysregulation of these astrocytic glutamate transporters leads to accumulation of glutamate in the synaptic clefts, which overstimulates glutamate receptors, resulting in calcium overload in postsynaptic neurons and ultimately excitotoxic neuronal death. In particular, multiple neurological diseases including Alzheimer disease (AD) (4, 5), ataxia (6, 7), alcoholism (8), and traumatic brain injuries (9) are associated with dysregulation of GLAST/EAAT1. The decreased expression of EAAT1 has also been noted in ophthalmic disorders, including glaucoma (10), and a recent study reported that arundic acid-induced increase in EAAT1 expression and function rescues retinal ganglion cell death in a rodent model of glaucoma (11). Animal studies also reveal that inhibition of EAAT1 increases extracellular glutamate with subsequent excitotoxic neuronal death (12). EAAT1 deficiency in rodents induces a lack of motor coordination and increases susceptibility to cerebellar injury (13), epilepsy (14), and ischemic retinal damage (15, 16).

Despite the critical roles of EAAT1 in CNS neurophysiology and neuropathology, the molecular mechanisms involved in the transactivation of its promoter remain to be elucidated. Here, we report that NF-κB is a main positive transcription factor for EAAT1, whereas manganese-activated YY1, with HDACs acting as co-repressors, is a negative regulator.

Astrocytic glutamate transporter excitatory amino acid transporter (GLAST) 1, also known as glutamate aspartate transporter (EAAT1), is one of two glial glutamate transporters that are responsible for removing excess glutamate from synaptic clefts to prevent excitotoxic neuronal death. Despite its important role in neurophysiological functions, the molecular mechanisms of EAAT1 regulation at the transcriptional level remain to be established. Here, we report that NF-κB is a main positive transcription factor for EAAT1, supported by the following: 1) EAAT1 contains two consensus sites for NF-κB, 2) mutation of NF-κB binding sites decreased EAAT1 promoter activity, and 3) activation of NF-κB increased, whereas inhibition of NF-κB decreased EAAT1 promoter activity and mRNA/protein levels. EGF increased EAAT1 mRNA/protein levels and glutamate uptake via NF-κB. The transcription factor yin yang 1 (YY1) plays a role as a critical negative regulator of EAAT1, supported by the following: 1) the EAAT1 promoter contains multiple consensus sites for YY1, 2) overexpression of YY1 decreased EAAT1 promoter activity and mRNA/protein levels, and 3) knockdown of YY1 increased EAAT1 promoter activity and mRNA/protein levels. Manganese decreased EAAT1 expression via YY1. Epigenetic modifiers histone deacetylases (HDACs) served as co-repressors of YY1 to further decrease EAAT1 promoter activity, whereas inhibition of HDACs reversed manganese-induced decrease of EAAT1 expression. Taken together, our findings suggest that NF-κB is a critical positive regulator of EAAT1, mediating the stimulatory effects of EGF, whereas YY1 is a negative regulator of EAAT1 with HDACs as co-repressors, mediating the inhibitory effects of manganese on EAAT1 regulation.

Glutamate is the principal excitatory neurotransmitter in the CNS, playing critical roles in learning, cognition, and memory (1), but excessive levels of glutamate in the synaptic clefts induce excitotoxic neuronal death by overstimulation of post synaptic glutamate receptors. Thus, optimal levels of glutamate must be kept in the synaptic cleft by continuous uptake into adjacent astrocytes via astrocytic glutamate transporters. Among the five subtypes of glutamate transporters, excitatory amino acid transporter (EAAT) 1 and 2 in humans, also known as glutamate aspartate transporter (GLAST) and glutamate transporter-1 (GLT-1) in rodents, are responsible for the majority of glutamate clearance and are predominantly expressed in astrocytes (2, 3). Dysregulation of these astrocytic glutamate transporters leads to accumulation of glutamate in the synaptic clefts, which overstimulates glutamate receptors, resulting in calcium overload in postsynaptic neurons and ultimately excitotoxic neuronal death. In particular, multiple neurological diseases including Alzheimer disease (AD) (4, 5), ataxia (6, 7), alcoholism (8), and traumatic brain injuries (9) are associated with dysregulation of GLAST/EAAT1. The decreased expression of EAAT1 has also been noted in ophthalmic disorders, including glaucoma (10), and a recent study reported that arundic acid-induced increase in EAAT1 expression and function rescues retinal ganglion cell death in a rodent model of glaucoma (11). Animal studies also reveal that inhibition of EAAT1 increases extracellular glutamate with subsequent excitotoxic neuronal death (12). EAAT1 deficiency in rodents induces a lack of motor coordination and increases susceptibility to cerebellar injury (13), epilepsy (14), and ischemic retinal damage (15, 16).

Despite the critical roles of EAAT1 in CNS neurophysiology and neuropathology, the molecular mechanisms involved in the transcriptional regulation of the astrocytic excitatory amino acid transporter 1 (EAAT1) remain to be elucidated.
Transcriptional Regulation of EAAT1 via NF-κB and YY1

regulation of EAAT1 at the transcriptional level are not completely understood. The EAAT1 promoter is stimulated by growth factors such as EGF and TGF-α, leading to enhancement of EAAT1 mRNA expression (17, 18), as well as protein levels (19, 20). Estrogen and selective estrogen receptor modulators, such as tamoxifen and raloxifene, also enhance EAAT1 mRNA and protein levels (21, 22). The transcription factor NF-κB has been reported to be a critical positive regulator of GLT-1/EAA2 and mediates the stimulatory effects of various modulators such as ceftriaxone (23), EGF (24, 25), tamoxifen, and raloxifene (21, 26) on EAAT2 expression. Earlier studies have also suggested that transcriptional regulation of EAAT1 might be different from that of EAAT2 because the mTOR-Pi3k/Akt signaling cascade induced only EAAT2 expression (27, 28). Some studies show that NF-κB might also play a critical role in the regulation of EAAT1 expression induced by EGF, TGF-α, and raloxifene in rat primary astrocytes (19, 21). However, the precise relationship between NF-κB and EAAT1 has yet to be characterized.

On the other hand, the transcription factor Yin Yang 1 (YY1) is involved in the negative regulation of chick EAAT1 promoter that contains multiple YY1 binding sites (29, 30). YY1 is an ubiquitously expressed multifunctional protein that can activate or repress gene expression depending on the cellular context (31), and therefore its role varies from cell proliferation and differentiation to apoptosis in various cell types (32). It also plays crucial roles in the nervous system, participating in neural development, neuronal function, developmental myelination, and neurological diseases (33). Importantly, YY1 is a repressor of EAAT2 (34, 35), but its role in the regulation of EAAT1 requires further characterization. It has been reported that excess glutamate induces YY1 binding to the EAAT1 promoter, resulting in decreased glutamate uptake and EAAT1 mRNA levels in chick Bergmann glia cells (30). The same group showed that the anti-epileptic drug valproic acid (VPA), a histone deacetylase (HDAC) inhibitor, increases EAAT1 promoter activity, mRNA/protein levels, and uptake activity in chick Bergmann glia cells while decreasing YY1 binding to the EAAT1 promoter (29), indicating a role for YY1 in repressing EAAT1. TNF-α decreases EAAT1 promoter activity, mRNA, and protein levels (18, 21). Manganese, an environmental toxin that causes Parkinson disease-like pathological signs and symptoms, referred to as manganism, decreases EAAT1 expression and function in astrocytes (21, 22, 36). However, the molecular mechanisms involved in manganese-induced repression of EAAT1 at the transcriptional level remain to be established.

HDACs are a class of enzymes that remove acetyl groups from l-lysine amino acid on proteins. HDACs play a key role in homeostasis of protein acetylation in histones and non-histone proteins to regulate fundamental cellular activities such as transcription (37). A wide range of neurological diseases such as AD, Parkinson disease, Huntington disease, ischemic stroke, and schizophrenia are associated with imbalances between protein acetylation and deacetylation that result in transcriptional dysfunction (reviewed in Ref. 38). Dysregulation of HDAC functions may be involved in these disease processes because inhibition of HDACs exerted neuroprotective effects in various animal disease models, including stroke (39–41), Huntington disease (42), amyotrophic lateral sclerosis (43), AD (44), and Parkinson disease (45).

In addition to VPA, other HDAC inhibitors such as trichostatin A (TSA) and sodium butyrate (NaB) also reduce YY1 bindings to DNA, indicating that inhibition of YY1 binding to DNA is universal for HDAC inhibitors in YY1-mediated repression of gene transcription. Moreover, VPA and TSA have also been shown to increase EAAT1 expression by increasing acetylation of histones H3 and H4 (29, 46). These findings indicate that HDAC inhibitors enhance EAAT1 expression via increased acetylation of both histone and non-histone protein molecules. In addition, inhibition of HDAC protects against glutamate excitotoxicity-induced neurological disorders in various in vitro as well as in vivo animal model studies (47–49). Because impaired EAAT1 function directly leads to glutamate excitotoxic neuronal injury associated with numerous neurological disorders, inhibition of HDACs is likely exerting neuroprotective effects through enhanced EAAT1 function via inhibition of transcriptional activities of genes regulated by HDACs.

Experimental Procedures

Materials—All cell culture media and reagents were purchased from Invitrogen unless stated otherwise. Luciferase reporter assay kit was obtained from Promega (Madison, WI). Manganese chloride (MnCl₂), pyrrolidine dithiocarbamate (PDTC), 6-amino-4-(4-phenoxy-phenylethylamino)quinazoline (QNZ), VPA, TSA, and NaB were obtained from Sigma-Aldrich. Romidepsin (FK228) and suberoyl-anilide hydroxamic acid were from Selleck Chemicals (Houston, TX). EAAT1 antibody was from Abcam (Cambridge, MA). YY1, NF-κB (p65 and p50), IκBα, β-actin, and histone H3 antibodies were from Santa Cruz Biotechnology (Santa Cruz, CA). Human YY1 shRNA, control shRNA, and copGFP control lentiviral particles, Polybrene, and puromycin dihydrochloride were also from Santa Cruz. l-[³H]Glutamate was purchased from PerkinElmer Life Sciences.

Astrocyte Culture—The primary cultures of astrocytes were prepared from cortices of 1-day-old Sprague-Dawley rats as described previously (50). Briefly, cerebral cortices were taken from the brain of rat pups and digested with Dispase and DNase I. The tissue digest was spun at 1000 rpm for 5 min, and the cell pellet was dissolved in growth medium. Astrocytes were plated at a density of 1 × 10⁵ cells/ml in 150-cm² tissue culture flasks. The fresh media was replenished after 24 h of initial plating, and the cultures were maintained at 37 °C in a 95% air, 5% CO₂ incubator for 3 weeks in minimum essential medium supplemented with 10% horse serum, 100 units/ml of penicillin, and 100 µg/ml of streptomycin. All experiments were carried out 3-weeks post isolation of astrocytes, and cells were plated in 24-well plates for luciferase assay and in 6-well plates for...
mRNA/protein analysis. The purity of astrocyte culture was confirmed with >95% positive staining for the astrocyte-specific marker glial fibrillary acidic protein. Human astrocytic H4 cell line was obtained from ATCC (HTB-148) and grown in DMEM with 10% fetal bovine serum and 1% penicillin and streptomycin. The cultures were maintained at 37 °C in a 95% air, 5% CO₂ incubator.

Mutagenesis—pGL3 EAAT1 plasmid vector (a generous gift from Dr. Volsky, Columbia University, New York, NY) was used as an original template (containing 2072 bp from +99 to −1973) (18) to mutate NF-κB consensus binding sites (−116 and −538 position) on GLAST/EAAT1 promoter. These putative consensus sites on the EAAT1 promoter were confirmed by the web-based program Promo (ALGGEN). The mutation was performed using a QuickChange site-directed mutagenesis kit from Agilent Technologies (Santa Clara, CA). The primer sets used were as follows: for −116 mutation, 5′-CCA GAA ACC TCG AGG TTT CCT TCT CCT CCC TGT G-3′ (forward) and 5′-CAC AGG GAG GAG AGA GAA ACC TCG AGG TTT CTG G-3′ (reverse); and for −538 mutation, 5′-TGC TGA AAT AGA GAC ATG TCT CTA ACT TTA GAC-3′ (forward) and 5′-GTC TAA AGT TAG AGA CAT GTC TCT TCT ATT TCA GCA-3′ (reverse). The mutant clones were confirmed by sequencing.

Luciferase Assay—EAAT1 promoter activity was determined by transfecting cells with pGL3 EAAT1 luciferase plasmid vector containing the EAAT1 promoter sequences from +99 to −1973 (18). Before transfection, the cells were grown for 2–3 days, and the transfection was done with Lipofectamine 2000. In some cases, the cells were treated with the designated compounds at 37 °C for the indicated time periods, cells were washed twice with ice-cold PBS. Cells lysis was done by adding radiolabeled luciferase lysis buffer to the cells. The lysis was incubated at 4 °C. Thus, the obtained supernatant was cytoplasmic extracts. The pellets were then solubilized with cell scraper and centrifuged at 2,500 rpm for 5 min.

Glutamate Uptake Assay—The uptake activity was measured by adding 20 mM HEPES-KOH, pH 7.9, 10 mM KCl, 1.5 mM MgCl₂, 0.2 mM EDTA, and 25% glycerol on ice for 30 min with periodic vortexing. After spinning at 20,000 × g for 10 min at 4 °C, the nuclear extracts were collected and stored at −80 °C till use.

shRNA Lentiviral Particle Transduction—Cells were grown for 24 h in complete growth medium and YY1 or control shRNA lentiviral particles (20 multiplicity of infection) were added in medium containing 5 μg/ml of Polybrene. After 24 h of incubation, the cells were switched back to normal growth medium and further incubated overnight. The knockdown of YY1 was confirmed by mRNA and protein analysis. In some cases, the viral transduced cells were grown in the presence of puromycin dihydrochloride (8 μg/ml), and stable clones expressing YY1 shRNA were screened and used for further experiments.

Quantitative Real Time PCR (qPCR)—TRIzol reagent was used to extract total RNA from the cells, and 2 μg of RNA was transcribed to cDNA with the high capacity cDNA reverse transcription kit (Applied Biosystems, Life Technologies). Then for quantitative real time PCR for EAAT1, YY1, and GAPDH, the CFX96 real time PCR detection system (Bio-Rad) was used. The reactions mixture was comprised of 1 μg of cDNA template, 0.4 μM of the appropriate primers, and RT2 SYBR Green qPCR Master Mix (SA Biosciences/Qiagen) in a total volume of 25 μl. The PCR was programmed as 1 cycle at 95 °C for 10 min and 40 cycles at 95 °C for 15 s and at 60 °C for 1 min. A web-based PCR array data analysis program (SA Biosciences/Qiagen) was performed to analyze the data using GAPDH as an internal control. The primers used for PCR were as follows: for EAAT1, 5′-ACG GTC ACT GCT GTC ATT G-3′ (forward) and 5′-TGC TGA AAT AGA GAC ATG TCT CTA ACT TTA GAC-3′ (reverse); and for YY1, 5′-CTC CTG CAG CCC TGG GCG CAT C-3′ (forward) and 5′-GTT AGG CCC TTT AGC GCC TC-3′ (reverse); and for GAPDH, 5′-GCC TCT CTC AAG ATT GTC AGC AA-3′ (forward) and 5′-AGA TCC ACA ACG GAT ACA TT-3′ (reverse).

Glutamate Uptake Assay—The uptake activity via EAAT1 was determined in the presence of dihydrokainic acid (DHK), a specific inhibitor for GLT-1, as described previously (51). Briefly, at the end point of all treatments, the cells were washed twice with prewarmed glutamate uptake buffer (122 mM NaCl, 3.3 mM KCl, 0.4 mM MgSO₄, 1.3 mM CaCl₂, 12 mM KH₂PO₄, 25 mM HEPES, and 10 mM d(-)+glucose, pH 7.4). Five μl of prewarmed uptake buffer containing 0.25 μCi/ml L-[³H]glutamate (specific activity, 49.0 Ci/mmol; PerkinElmer Life Sciences) and 100 nm unlabeled glutamate was added to each well. After incubation for 10 min at 37 °C, the reaction was terminated by washing three times with ice-cold PBS, immediately followed by cell lysis in 1 ml of 1 N NaOH. An aliquot of 750 μl of each sample was transferred into scintillation vials and neutralized with 75 μl of 10 N HCl. Subsequently, 5 ml of liquid scintillation fluid was added to each vial, and the radioactivity was measured in liquid scintillation counter (LS 6500; Beckman Coulter). The uptake activity was calculated as nmol glutamate/mg protein/minute after correcting with protein concentrations as determined by BCA assay.
Transcriptional Regulation of EAAT1 via NF-κB and YY1

of protein A+G-agarose beads (Santa Cruz) were added and incubated overnight. After washing the beads three times with radioimmunoprecipitation assay buffer, 40 μl of 2× SDS sample buffer was added and boiled at 95 °C for 3 min. After spinning, the eluted proteins were obtained on the supernatant, which was used for running for SDS-PAGE, followed by Western blot.

Immunocytochemistry—Cells grown on coverslips were fixed in methanol (−20 °C), followed by blocking (5% goat serum in PBS with 0.1% Triton X-100) for 1 h. Cells were then incubated with primary antibodies specific to HDAC2 (1:100, Santa Cruz), YY1 (1:100, Santa Cruz) or p65 (1:100, Santa Cruz) overnight at 4 °C. After washing three times (PBS with 0.1% Triton X-100), anti-goat (FITC-conjugated), anti-rabbit (rhodamine-conjugated), or anti-mouse (FITC-conjugated) secondary antibodies (1:100, Abcam) were added and incubated for 1 h at room temperature. Cells were also counterstained with DAPI (50 μg/ml stock in PBS, 1:50 dilution; Sigma-Aldrich) and mounted on slides with ProLong® Gold antifade mountant (Molecular Probes). The images were taken with an A1R laser scanning confocal microscope (Nikon) with NIS-Elements software.

**Chromatin Immunoprecipitation Assay (ChIP)—EZ-ChIP kit from Millipore was used to perform a ChIP assay, following the manufacturer’s instructions. Briefly, at the end of the treatment, cells were treated with formaldehyde for 10 min at room temperature to obtain the cross-linking of protein–DNA complexes. Then sonication was performed to get the chromatin of lengths of 100–500 bp. After centrifugation, 900 μl of ChIP dilution buffer was added to 100 μl of supernatant. After pre-clearing with agarose beads, 1% of the reaction was saved as input, and the rest was incubated overnight at 4 °C, with p65, clearing with agarose beads, 1% of the reaction was saved as dilution buffer was added to 100 μl of streptavidin microbeads, the reaction mixture was further incubated for 10 min. Then the mixture was applied onto the μ column, which was pre-equilibrated with binding buffer and set in the magnetic field. After 4 × 100 μl of each washing with low salt and high salt buffers, specifically bound proteins were eluted with 30 μl of elution buffer provided in the kit and analyzed by Western blotting.

Statistical Analysis—The mean ± S.E. was calculated from the data in each group and statistical analysis was performed using GraphPad Prism software (GraphPad Inc., La Jolla, CA). Statistical differences between control and treated groups were determined by one-way analysis of variance (ANOVA) followed by Tukey’s post hoc test with statistical significance set at p < 0.05. Each experiment was carried out in at least three independently prepared astrocytes. The number of samples for each experiment was at least three for Western blot and real time PCR analyses and six for glutamate uptake and luciferase assays.

Results

NF-κB Is a Positive Regulator of EAAT1 and Mediates EGF-induced Increase in EAAT1 Expression—The promoter regions of both EAAT1 (human form) and GLAST (rodent form) contain consensus sequences of NF-κB and YY1 (Fig. 1A) (the rat promoter is not shown). We found nine putative YY1 binding sites and two NF-κB sites in the EAAT1 promoter region (from −1 to −1973). NF-κB plays a critical role in enhancing EAAT1 (or GLAST in rodents) expression induced by EGF and raloxifene in both rat and human astrocytes (19, 21), whereas YY1 plays an important role in the regulation of EAAT1 mRNA levels in chick astrocytes (30). EAAT1 promoter activity is increased by EGF (18–20) but decreased by manganese (21, 22) in rat and human astrocytes. This indicates that both NF-κB and YY1 play critical roles in EAAT1 regulation in rodents and human astrocytes. In the present study, we used rat primary astrocytes and human astrocytic H4 cells, which were used to study the regulation of EAAT1 (18) and EAAT2 (24). We first confirmed that H4 cells respond to EGF and manganese in a similar way to rat primary astrocytes (data not shown). Because several studies, including ours (19, 21), indicate that NF-κB plays a critical role in EAAT1 regulation, we explored the molecular mechanisms of NF-κB-induced positive regulation of EAAT1 at the transcriptional level. We identified two NF-κB binding sites (−116 and −538) and multiple YY1 binding sites (nine sites) in EAAT1 promoter sequences (Fig. 1A).

The results showed that overexpression of NF-κB p65 robustly increased EAAT1 promoter activity (Fig. 1B), as well as EAAT1 mRNA and protein levels (Fig. 1, C and D) in rat astrocytes or human astrocyte H4 cells. Both cell types showed analogous effects, and therefore we used these two cell types interchangeably. Overexpression of 1xBa, an inhibitor of NF-κB
NF-κB positively regulates EAAT1. A, putative consensus sites for NF-κB and YY1 in the EAAT1 promoter; for simplicity, cis-elements of these transcription factors located up to −1000 bp in the EAAT1 promoter are shown. B, human H4 astrocytes were co-transfected overnight with 0.5 μg of EAAT1 promoter luciferase plasmid and 0.1 μg of either control empty vector prcRSV (EV) or NF-κB p65, followed by luciferase assay to determine EAAT1 promoter activity as described under “Experimental Procedures.” C, cells were transfected overnight with 2 μg of either control EV or NF-κB p65, and EAAT1 mRNA levels were determined by qPCR. D, after overnight transfection with either control EV or NF-κB p65, cell lysates were prepared, and Western blotting was carried out to determine EAAT1 protein levels. The same blots were reprobed for p65 and β-actin. E, cells were co-transfected overnight with 0.5 μg of EAAT1 promoter luciferase plasmid and 0.1 μg of either empty vector pCMV (EV) or IκBα, followed by luciferase assay. F and G, cells were transfected overnight with 2 μg of either EV or IκBα plasmids, followed by EAAT1 mRNA (F) and protein analysis (G) (**, p < 0.001; *, p < 0.05; #, p < 0.05; ANOVA followed by Tukey’s post hoc test; n = 3–4).

NF-κB Consensus Sites (−116 and −538) in the EAAT1 Promoter Are Critical for Positive Regulation—The EAAT1 promoter revealed two putative sites for NF-κB cis-elements at −116 and −538 position (Fig. 1A). To determine whether they are critical sites for NF-κB effect on EAAT1 regulation, the sites were mutated, and EAAT1 promoter activity was determined. The results showed that mutation of either of these two NF-κB binding sites significantly decreased EAAT1 promoter activity (p < 0.001; Fig. 3A). Double mutations further decreased the EAAT1 promoter activity significantly compared with single mutations (p < 0.05 with −116, and p < 0.001 with −538 mutants), suggesting that both NF-κB sites are critical for the positive regulation of EAAT1. There was also a significant reduction in NF-κB p65 overexpression-induced increase in EAAT1 promoter activity in NF-κB single mutants of EAAT1 (∼7-fold increase in wild type versus ∼3-fold increase in both single mutants; Fig. 3B). More importantly, NF-κB overexpression did not increase the EAAT1 promoter activity in the double mutant, suggesting that both NF-κB binding sites are essential for mediating the stimulatory effects of NF-κB on EAAT1. We also attempted to determine the significance of these NF-κB binding sites for EGF-induced stimulatory effects on EAAT1. EGF still increased EAAT1 promoter activity in either of the NF-κB binding site mutants, but double mutations completely abolished the EGF effect on EAAT1 promoter activity (Fig. 3C), further indicating that both NF-κB sites are critical for positive regulation of EGF on EAAT1.

EGF Induces Nuclear Translocation of NF-κB p65 and Binding to the EAAT1 Promoter Regions—Because activation of NF-κB requires its nuclear translocation from the cytosol, where it is sequestered by IκB, we investigated whether EGF activates NF-κB via this classical mechanism. Activation of NF-κB is facilitated by its phosphorylation and IκB degradation prior to nuclear translocation of NF-κB (52, 53). EGF-treated cells were fractionated into cytoplasmic and nuclear extracts, and protein levels of IκBα and NF-κB were determined. The results showed that NF-κB p65 protein levels in the nuclear fraction were significantly increased as early as 15 min after EGF treatment, with a parallel reduction of IκBα in cytoplasmic extracts (Fig. 3D).

We also determined whether EGF induces NF-κB binding to its consensus sites in the EAAT1 promoter by ChIP, EMSA, and DAPA assays. The in vivo binding of NF-κB to the EAAT1 promoter was analyzed by the ChIP assay. The results showed that EGF significantly increased binding of both NF-κB subunits p65 and p50 to the EAAT1 promoter (Fig. 4A). DAPA and EMSA assays were also performed to determine in vitro binding of NF-κB to their consensus sites in EAAT1 promoter in the nuclear extract of EGF-treated astrocytes. Results by both DAPA (Fig. 4B) and EMSA (Fig. 4C) showed that EGF induced NF-κB binding to both consensus sites (−116 and −538) in the EAAT1 promoter. This was supported by the results that the specific binding of biotinylated NF-κB oligonucleotides to the EAAT1 promoter was blocked by the addition of excess amounts of nonbiotinylated control oligonucleotides.

YY1 Is a Negative Regulator of EAAT1—A few studies suggest the role of YY1 in the inhibition of EAAT1 expression and function (29, 30). YY1 is a critical repressor in the regulation of EAAT2 (34, 54). Thus, we explored the role of YY1 in the regulation of EAAT1 at the transcriptional level. First, we tested whether overexpression of YY1 modulates EAAT1 expression in H4 cells. The results showed that YY1 decreased EAAT1

nuclear translocation by sequestering it in the cytosol, decreased EAAT1 promoter activity, mRNA, and protein levels (Fig. 1, E–G). Pharmacological inhibition of NF-κB by pyrrolidine dithiocarbamate and QNZ also decreased EAAT1 promoter activity (Fig. 2A) and abrogated EGF-induced enhancement of EAAT1 promoter activity, as well as EAAT1 mRNA levels and EAAT1-mediated glutamate uptake (Fig. 2A). These results indicate that the NF-κB pathway plays a critical role in mediating the stimulatory effects of EGF on EAAT1 expression and glutamate uptake.

YY1 Is a Negative Regulator of EAAT1—A few studies suggest the role of YY1 in the inhibition of EAAT1 expression and function (29, 30). YY1 is a critical repressor in the regulation of EAAT2 (34, 54). Thus, we explored the role of YY1 in the regulation of EAAT1 at the transcriptional level. First, we tested whether overexpression of YY1 modulates EAAT1 expression in H4 cells. The results showed that YY1 decreased EAAT1
promoter activity (Fig. 5A), as well as EAAT1 mRNA and protein levels (Fig. 5, B and C). To further validate the negative role of YY1 in EAAT1 expression, shRNA lentiviral particles were transduced to knock down YY1. The results showed that reduced expression of YY1 increased EAAT1 protein expression (Fig. 5D), indicating that YY1 is a repressor of EAAT1.

YY1 Mediates Manganese-induced Repression of EAAT1 Expression and Function—It is well established that manganese inhibits expression and function of astrocytic glutamate transporters including EAAT1 (22, 55), but the molecular mechanisms involved at the transcriptional level are not completely understood. YY1 is a critical transcriptional mediator of man-
Manganese-induced inhibition of EAAT2 (34). To determine whether YY1 plays a role in manganese-induced repression of EAAT1 at the transcriptional level, we first measured manganese-induced modulation of EAAT1 promoter activity in YY1 knockdown conditions with YY1 shRNA lentiviral particles. The results showed that YY1 knockdown reversed manganese-induced repression of EAAT1 promoter activity (p < 0.001; Fig. 6A), as well as EAAT1 mRNA (p < 0.001; Fig. 6B) and protein levels (Fig. 6C). YY1 knockdown also reversed manganese-induced decrease in glutamate uptake activity via EAAT1 (p < 0.001; Fig. 6D).

Manganese Increases YY1 Recruitment to Its Binding Sites in the EAAT1 Promoter in Vivo and in Vitro—Manganese increases YY1 promoter activity and mRNA/protein levels in astrocytes (34). Thus, we tested whether manganese induces YY1 binding to its consensus sites in the EAAT1 promoter both in vivo and in vitro. The results showed that manganese increased YY1 binding to its consensus site in the EAAT1 promoter in vivo as shown by the ChIP assay (Fig. 7A), as well as in vitro as shown by EMSA and DAPA (Fig. 7, B and C).

YY1 Interacts with NF-κB p65 and Overrides p65 Stimulatory Effects on EAAT1 Promoter Activity—Because manganese activates NF-κB (56), but NF-κB is a main positive regulator of EAAT1, we addressed the mechanism by which manganese represses EAAT1. We found that p65 robustly increased, whereas YY1 decreased, EAAT1 promoter activity (Fig. 8A), but co-expression of both NF-κB p65 and YY1 completely abol-
between YY1 and p65 as evidenced by Co-IP (Fig. 8B). Further, confocal imaging also showed the increased co-localization of these two proteins in the nucleus after manganese treatment (Fig. 8C), indicating that manganese-enhanced interaction between the two proteins occurred in the nucleus. It suggests that manganese-induced activation of YY1 overrides NF-κB p65 by physical sequestration when both pathways are activated, ultimately leading to repression of EAAT1.

YY1 Recruits HDACs as Co-repressors of EAAT1 Promoter Activity—Because YY1 often recruits epigenetic modifiers such as HDACs to repress gene expression (57), we tested whether the latter are recruited during YY1-induced repression of EAAT1 promoter activity. We tested HDAC1 and HDAC2 as class I HDACs and HDAC4 and HDAC5 as class II HDACs. The results revealed that overexpression of either HDAC1 or HDAC2 significantly decreased EAAT1 promoter activity (p < 0.001), and co-expression of either HDAC1 or HDAC2 with YY1 further decreased EAAT1 promoter activity, compared with YY1 alone (p < 0.05; Fig. 9A). Similarly, overexpression of either HDAC4 or HDAC5 also decreased EAAT1 promoter activity (p < 0.001), and co-expression with YY1 further decreased EAAT1 promoter activity (Fig. 9B). Physical interaction of either HDAC2 or HDAC4 with YY1 was confirmed by Co-IP, and these interactions were increased by manganese (Fig. 9, C and D). We also employed immunocytochemistry to study the subcellular localization of interaction between HDAC2 and YY1. The confocal images revealed the increased co-localization between HDAC2 and YY1 in the nucleus after manganese treatment (Fig. 9E), indicating that manganese increased the interaction of YY1 and HDAC2 mostly in the nucleus. These results indicate that HDACs are epigenetic co-repressors of YY1 and inhibit EAAT1 promoter activity.

HDACs Inhibit p65 Stimulatory Effects on EAAT1 Promoter Activity—To further understand the mechanism of EAAT1 repression at the transcriptional level via HDACs, we also tested whether HDACs interact with NF-κB. The results showed that co-expression of either HDAC1 or HDAC2 from class I with p65 completely abolished the NF-κB p65 stimulatory effects on EAAT1 promoter activity (Fig. 10A). Class II HDACs, HDAC4 and HDAC5, also completely inhibited the p65-induced increase in EAAT1 promoter activity when they were co-expressed (Fig. 10B). Manganese increased physical interactions between HDAC2 and p65 (Fig. 10C), as well as between HDAC4 and p65 (Fig. 10D). The increased interaction between HDAC2 and p65 following manganese treatment was localized in the nucleus, as shown by confocal imaging (Fig. 10E). These results suggest that HDACs, YY1 and NF-κB form a large complex to repress EAAT1 promoter activity, which is enhanced by manganese.

Inhibition of HDACs Increases EAAT1 Expression and Reverses Manganese-induced Repression of EAAT1—Because HDAC inhibitor TSA has been shown to increase EAAT1 transcription (46) and overexpression of HDACs repressed EAAT1 in the present study, we examined various inhibitors of HDAC class I and II to see whether they would increase EAAT1 expression and attenuate manganese-induced inhibition of EAAT1. Our results showed that all HDAC inhibitors tested, including FK228, TSA, VPA, NaB, and suberoylanilide hydroxamic acid, increased EAAT1 promoter activity, as well as EAAT1 mRNA/protein levels. These effects were more pronounced with VPA, suberoylanilide hydroxamic acid, and NaB compared with FK228 and TSA (Fig. 11, A–C). These HDAC inhibitors also reversed manganese-induced down-regulation of EAAT1. More importantly, these HDAC inhibitors increased glutamate uptake via EAAT1 and also reversed the manganese-induced reduction in glutamate uptake (Fig. 11D). These results suggest that HDAC inhibitors enhance both the expression and function of EAAT1, as well as reverse manganese-induced reduction in EAAT1 expression and function.

Discussion

EAAT1 (GLAST in rodents) is one of two main glutamate transporters that removes excess glutamate from the synaptic clefts, thus preventing excitotoxic neuronal death. Yet the mechanism of the transcriptional regulation of EAAT1 has to be established. Our findings demonstrate that NF-κB is a major positive regulator of EAAT1, mediating the stimulatory effects of the positive modulator EGF on EAAT1 expression by the canonical activation of the NF-κB pathway and induction of NF-κB binding to the EAAT1 promoter (Figs. 1–4). The results also reveal that YY1 is a critical repressor of EAAT1, mediating the inhibitory effects of manganese on EAAT1 expression (Figs. 5 and 6). Moreover, YY1 recruits HDACs as co-repressors to...
Transcriptional Regulation of EAAT1 via NF-κB and YY1

FIGURE 9. YY1 recruits HDACs as corepressors to inhibit EAAT1. A and B, human H4 astrocytes were transfected overnight with YY1 or the designated isoforms of HDACs alone or co-transfected with both YY1 and HDACs, followed by measuring EAAT1 promoter activity. C and D, cells were treated with manganese (250 μM) for the indicated time periods, and nuclear extracts were prepared for Co-IP to determine interaction between YY1 and HDAC2 (C) or HDAC4 (D). Rabbit IgG was used as a negative control for vehicle-control and manganese-treated nuclear extracts. E, after rat primary astrocytes were treated with manganese (250 μM, 6 h), immunocytochemistry was performed to detect YY1 and HDAC2 using a confocal microscope (Nikon, A1R). Representative images are shown (#, p < 0.05; ##, p < 0.01; ###, p < 0.001; ANOVA followed by Tukey’s post hoc test; n = 3). Scale bar, 10 μm. Row C, control; IB, immunoblot; IP, immunoprecipitation.

FIGURE 10. HDACs interact with p65 and override the stimulatory effects of p65 on EAAT1. A and B, human H4 astrocytes were transfected overnight with either p65 or designated HDAC isoforms, as well as co-transfected with both p65 and HDACs, followed by luciferase assay to determine EAAT1 promoter activity. C and D, cells were treated with manganese (250 μM) for the indicated time periods, and nuclear extracts were prepared for Co-IP for p65 and HDAC2 (C) or for p65 and HDAC4 (D). Rabbit IgG was used as a negative control for both vehicle-control and manganese-treated nuclear extracts. E, after rat primary astrocytes were treated with manganese (250 μM, 6 h), immunocytochemistry was performed to detect p65 and HDAC2 using a confocal microscope (Nikon, A1R). Representative images are shown (**, p < 0.001; #, p < 0.05; ANOVA followed by Tukey’s post hoc test; n = 3). Scale bar, 10 μm. Row C, control; IB, immunoblot; IP, immunoprecipitation.

FIGURE 11. HDAC inhibitors reverse manganese-induced repression of EAAT1 expression. A, after transfected overnight with 0.5 μg of EAAT1 promoter luciferase plasmid, human H4 astrocytes were treated with FK228 (10 nM), TSA (200 μM), VPA (1 mM), NaB (1 mM), or suberoylanilide hydroxamic acid (1 μM) for 24 h, followed by manganese (250 μM, 6 h) exposure and subsequent luciferase assay to determine EAAT1 promoter activity. B and C, astrocytes were treated with the same compounds and conditions described in A, followed by determination of EAAT1 mRNA (B) and protein (C) levels by qPCR and Western blotting, respectively. Quantification of band density for EAAT1 proteins is shown in D (**, p < 0.05; ***, p < 0.001; ****, p < 0.0001; #, p < 0.05; ##, p < 0.01; ###, p < 0.001; ANOVA followed by Tukey’s post hoc test; n = 3). D, cells were treated with various HDAC inhibitors and manganese as described in A, and glutamate uptake via EAAT1 was determined after pretreating cells with 100 μM of DHK (an EAAT2 inhibitor) for 30 min (**, p < 0.01; ***, p < 0.001; ###, p < 0.001; ANOVA followed by Tukey’s post hoc test; n = 3). Lanes C, control; SAHA, suberoylanilide hydroxamic acid.

Further inhibit EAAT1 and overrides the stimulatory effects of NF-κB on EAAT1 promoter activity (Figs. 8 and 9), suggesting that manganese-induced enhancement of the YY1-HDACs-p65 complex plays a critical role in the repression of EAAT1 transcription.

It is well established that EAAT1 and EAAT2 are responsible for clearing excess glutamate from the synaptic clefts to prevent excitotoxic neuronal death (12, 13, 58). Although expressed at high levels in the cerebellum and retina (2, 3, 59), EAAT1 is expressed throughout the brain including cortical regions, particularly during development (60). Moreover, EAAT1 is expressed abundantly in cultured astrocytes, whereas EAAT2 is expressed at relatively low levels, and its expression depends on neuronal presence (61, 62), indicating different regulatory mechanisms for EAAT1 compared with EAAT2. Despite its critical involvement in physiological and pathological condi-
Transcriptional Regulation of EAAT1 via NF-κB and YY1

tions of the CNS (63), the transcriptional regulatory mecha-
nisms of EAAT1 are largely unexplored.

The EAAT1 promoter sequences contain putative binding sites for various transcription factors including stimulating proteins 1 and 3 (Sp1 and Sp3) and cAMP-responsive element binding protein, demonstrating that Sp1 and 3 binding sites are critical for positive regulation of EAAT1 promoter activity (18). We also observed that Sp1 significantly increased EAAT1 promoter activity (2-fold, data not shown), but NF-κB exerts a greater potency (2-fold increase) in activating the EAAT1 promoter and significantly increases EAAT1 mRNA/protein levels (Fig. 1), suggesting that NF-κB is the main positive regulator of EAAT1. This NF-κB-induced increase in EAAT1 promoter activity is also greater than its effect on EAAT2 promoter activity (7-fold versus 2-fold) (26). Although the positive effect of NF-κB on EAAT1 has been previously shown to mediate raloxifene-induced enhancement of EAAT1 expression (21), the present study further characterized the role of NF-κB at the promoter level, identifying that two NF-κB binding sites in the EAAT1 promoter, −116 and −538, are critical for the positive regulation of EAAT1 promoter activity (Fig. 3).

Several growth factors including EGF have been shown to increase EAAT1 expression, yet the mechanism by which EGF induces EAAT1 expression at the transcriptional level is not completely understood. One study has reported that stimula-
tory effects of EGF or TGF-α on EAAT1 protein expression were abolished by pharmacological inhibition of NF-κB with PDTC (19). Our finding that mutations in the NF-κB binding sites in the EAAT1 promoter abolished EGF-induced increase of EAAT1 promoter activity indicates that NF-κB activity via these two binding sites in the EAAT1 promoter are responsible for EGF-induced enhancement of EAAT1 promoter activity. EGF activates NF-κB via the canonical pathway to stimulate EAAT1 by increasing nuclear translocation of NF-κB, parallel with degradation of IkBα in the cytosol (Fig. 3D). These results are consistent with the previous report that EGF activates NF-κB via the degradation of IkBα (64). One study reported that EGF-induced activation of NF-κB is independent of IkBα degradation and activates downstream pathways such as MEK1/2 (24). This might be due to different experimental condi-
tions and settings. In the nucleus, EGF recruits both NF-κB subunits, p50 and p65, to its consensus sites (−116 and −538) in the EAAT1 promoter region with higher binding affinity of p65 compared with that of p50 (Fig. 4).

In the negative regulatory mechanism of EAAT1 at the trans-
scriptional level, our findings reveal that YY1 is a critical repre-
sor of EAAT1. Although the physiological and pathological roles of YY1 in the CNS are largely unexplored, YY1 is known to regulate several genes that play a critical role in neurological functions such as myelination in oligodendrocytes (33) and in the pathogenesis of AD in which YY1 activates β-amyloid precursor protein-converting enzyme promoter, leading to β-amyloid accumulation in the brain (65). Our findings that overex-
pression of YY1 decreases EAAT1 promoter activity, whereas knockdown of YY1 increases EAAT1 promoter activity, indicate that YY1 is a critical negative regulator of EAAT1 (Figs. 5 and 6). The results also suggest that YY1 plays a critical role in manganese-induced repression of EAAT1. We previously reported that manganese decreases EAAT1 mRNA/protein levels (22). The findings from the present study indicate that YY1 is a critical mediator in the inhibitory effects of manganese on EAAT1 regulation, because knockdown of YY1 reverses the manganese-induced decrease in EAAT1 promoter activity and mRNA/protein levels. A few studies on the function of YY1 on astrocytic glutamate transporters have posited that YY1 is a critical repressor of EAAT2 (34, 35) and EAAT1 (29, 30), but no study has reported the mechanism of YY1-induced repression of EAAT1 at the promoter level. Because there are multiple putative YY1 binding sites (9 sites) in the EAAT1 promoter sequences (from −1 to −1973), we knocked down YY1 expression by transducing shRNA lentiviral particles into astrocytes instead of mutating YY1 sites to determine the role of YY1 in EAAT1 regulation (Fig. 6). Notably, manganese also recruits YY1 to the YY1 consensus sites (−482 was chosen as a representa-
tive site) of the EAAT1 promoter (Fig. 7).

It is intriguing that manganese, a negative regulator of EAAT1, also activates the positive regulator NF-κB in astrocytes (19, 21). Our finding that co-expression of NF-κB p65 with YY1 completely abrogates the stimulatory effects of p65 on EAAT1 promoter activity (Fig. 8A) suggests that YY1 is domi-
nant over NF-κB, overriding the positive effects of NF-κB on EAAT1 when both are activated. Interestingly, NF-κB-depen-
tent up-regulation of YY1 by manganese or TNF-α (34, 66, 67) occurs within hours (34), whereas NF-κB-mediated positive regulation of EAAT1 by EGF requires at least 24 h (and up to several days) (20, 25). This indicates that the early activation of NF-κB by manganese could be a primary contributor to YY1 activation, which, in turn, overrides the innate NF-κB function on EAAT1 by physical interaction, leading to repression of EAAT1. This is supported by the results that manganese increased the interaction between p65 and YY1 in astrocytes (Fig. 8B).

In epigenetic regulation, HDACs serve as co-repressors of YY1 for the inhibition of EAAT1 promoter activity (Fig. 9). Because YY1 can act as either an activator or repressor on var-
ious genes depending on available cellular context and pro-

tein sequences around YY1 binding sites (28, 31), interaction of YY1 with HDACs may govern the functions of YY1 on EAAT1 repression (68). HDACs regulate not only histone mole-
cules but also non-histone proteins including YY1 via deacety-
lation, exerting repressive effects on the genes involved (57). This indicates that the molecular mechanisms of YY1/HDAC-
induced repression of EAAT1 via deacetylation might include both histone and YY1 proteins, requiring further investigation to identify the detailed molecular mechanisms involved. Mul-
tiple HDAC isoforms from class I and II interact with YY1, leading to additional decrease of EAAT1 promoter activity, indicating that YY1 might interact with various isoforms of HDACs. HDACs also play a critical role in manganese-induced EAAT1 repression, supported by the results that HDAC inhib-
itors reverse manganese-induced repression of EAAT1 (Fig. 11).

Various neurodegenerative diseases linked to excitotoxicity are associated with imbalances in protein acetylation levels and transcriptional dysregulations (37, 63). Consequently, HDAC inhibitors protect against multiple neurodegenerative diseases.
including Huntington disease, strokes, amyotrophic lateral sclerosis, and AD (37). Further, inhibition of HDACs with VPA protects against excitotoxic neuronal death, suggesting that HDACs play an important role in glutamate-induced excitotoxic neurodegeneration (48). Dysregulation of EAAT1 is directly associated with glutamate accumulation in the synaptic clefts, leading to glutamate excitotoxicity, which is implicated in the pathophysiology of many neurodegenerative diseases (69). This underscores the important roles of HDACs in excitotoxic neurodegeneration and HDAC inhibitors as possible neuroprotectants. Our results indicating that multiple HDAC inhibitors increase the expression and function of EAAT1 and also rescue the manganese-induced reduction of EAAT1 expression and function suggest that these inhibitors could be developed as potential therapeutics against the neurological disorders associated with impairment of EAAT1. Because YY1 interacts with HDACs and NF-κB p65 and HDACs interact with NF-κB p65, it is possible that these three proteins could form a large complex to inhibit EAAT1 promoter activity. Manganese increases the physical interaction of HDACs with YY1 and p65, possibly by multiple mechanisms, including the enhancement of YY1 expression.

Taken together, we report the molecular regulatory mechanisms of EAAT1 at the transcriptional level, demonstrating that NF-κB is a critical positive regulator, and YY1 is a critical negative regulator of EAAT1. Moreover, NF-κB mediates EGF-induced up-regulation of EAAT1, whereas YY1 mediates manganese-induced down-regulation of EAAT1 (Fig. 12). HDACs are critical epigenetic co-repressors of YY1 in inhibition of EAAT1, suggesting that inhibition of YY1 and/or HDACs could be a potential molecular target to develop therapeutics against manganese neurotoxicity, as well as neurodegenerative diseases associated with excitotoxicity.

Acknowledgment—We thank Dr. Shawn Goodwin for assistance on confocal imaging, and Ms. Ashley Fennel for her technical assistance.

References

1. Danbolt, N. C. (2001) Glutamate uptake. Prog. Neurobiol. 65, 1–105
2. Lehre, K. P., Levy, L. M., Ottersen, O. P., Storm-Mathisen, J., and Danbolt, N. C. (1995) Differential expression of two glial glutamate transporters in the rat brain: quantitative and immunocytochemical observations. J. Neurosci. 15, 1835–1853
3. Rothstein, J. D., Martin, L., Levey, A. I., Dykes-Hoberg, M., Jin, L., Wu, D., Nash, N., and Kunc, R. W. (1994) Localization of neuronal and glial glutamate transporters. Neuron 13, 713–725
4. Chen, K. H., Reese, E. A., Kim, H. W., Rapoport, S. I., and Rao, J. S. (2011) Disturbed neurotransmitter transporter expression in Alzheimer’s disease brain. J. Alzheimer’s Dis. 26, 755–766
5. Liang, Z., Valla, J., Selvidavash-Hockley, S., Rogers, J., and Li, R. (2002) Effects of estrogen treatment on glutamate uptake in cultured human astrocytes derived from cortex of Alzheimer’s disease patients. J. Neurochem. 80, 807–814
6. de Vries, B., Mamsa, H., Stam, A. H., Wan, J., Bakker, S. L., Vannoolkot, K. R., Haan, J., Terwint, G. M., Boon, E. M., Howard, B. D., Frants, R. R., Baloh, R. W., Ferrari, M. D., Jen, C. J., and van den Maagdenberg, A. M. (2009) Episodic ataxia associated with EAAT1 mutation C186S affecting glutamate reuptake. Arch. Neurol. 66, 97–101
7. Jen, C. J., Wan, J., Palos, T. P., Howard, B. D., and Baloh, R. W. (2005) Mutation in the glutamate transporter EAAT1 causes episodic ataxia, hemiplegia, and seizures. Neurology 65, 529–534
8. Sery, O., Sultan, N., Kashem, A. M., Pow, D. V., and Balcar, V. J. (2015) GLAST but not least-distribution, function, genetics and epigenetics of i-glutamate transport in brain-focus on GLAST/EAAT1. Neurochem. Res., 10.1007/s11064-015-1605-2
9. van Landeghem, F. K., Weiss, T., Oehmichen, M., and von Deimling, A. (2006) Decreased expression of glutamate transporters in astrocytes after human traumatic brain injury. J. Neurotrauma 23, 1518–1528
10. Naskar, R., Vorwerk, C. K., and Dreyer, E. B. (2000) Concurrent down-regulation of a glutamate transporter and receptor in glaucoma. Invest Ophtalmol. Vis. Sci. 41, 1940–1944
11. Yanagisawa, M., Aida, T., Takada, T., Namekata, K., Harada, T., Shingawa, R., and Tanaka, K. (2015) Arundic acid attenuates retinal ganglion cell death by increasing glutamate/aspartate transporter expression in a model of normal tension glaucoma. Cell Death Dis. 6, e1693
12. Rothstein, J. D., Dykes-Hoberg, M., Parodo, C. A., Bristol, L. A., Jin, L., Kunc, R. W., Kanai, Y., Hediger, M. A., Wang, Y., Schielke, J. P., and Welty, D. F. (1996) Knockout of glutamate transporters reveals a major role for astroglial transport in excitotoxicity and clearance of glutamate. Neuron 16, 675–686
13. Watase, K., Hashimoto, K., Kano, M., Yamada, K., Watanabe, M., Inoue, Y., Okuyama, S., Sakagawa, T., Ogawa, S., Kawashima, N., Horii, S., Takimoto, M., Wada, K., and Tanaka, K. (1998) Motor coordination and seizures in mice with a targeted disruption of the EAAT1 gene. Cell Death Dis. 23, 10.1007/s11064-015-1605-2
14. Miller, H. P., Levey, A. I., Rothstein, J. D., Tzingounis, A. V., and Conn, P. J. (1997) Alterations in glutamate transporter protein levels in kindling-resistant rats. J. Neurosci. 17, 976–988
15. Harada, T., Harada, C., Watanabe, M., Inoue, Y., Sakagawa, T., Nakanuma, N., Sasaki, S., Okuyama, S., Watase, K., Wada, K., and Tanaka, K. (1998) Functions of the two glutamate transporters GLAST and GLT-1 in the retina. Proc. Natl. Acad. Sci. U.S.A. 95, 4663–4666
16. Rauen, T., Taylor, W. R., Kuhlbrodt, K., and Wiessner, M. (1998) High-affinity glutamate transporters in the rat retina: a major role of the glial glutamate transporter GLAST-1 in transmitter clearance. Cell Tissue Res. 291, 19–31
17. Unger, T., Lakowa, N., Bette, S., and Engele, J. (2012) Transcriptional regulation of the GLAST/EAA1 gene in rat and man. Cell Mol. Neurobiol. 32, 539–547
18. Kim, S. Y., Choi, S. Y., Chao, W., and Volsky, D. J. (2003) Transcriptional
regulation of human excitatory amino acid transporter 1 (EAAT1); cloning of the EAAT1 promoter and characterization of its basal and inducible activity in human astrocytes. J. Neurochem. 87, 1485–1498
19. Figiel, M., Maucher, T., Rozyczka, J., Bayatti, N., and Engele, J. (2003) Regulation of glial glutamate transporter expression by growth factors. Exp. Neurol. 183, 124–135
20. Suzuki, K., Ikegaya, Y., Matsuura, S., Kanai, Y., Endou, H., and Matsuki, N. (2001) Transient upregulation of the glial glutamate transporter GLAST in response to fibroblast growth factor, insulin-like growth factor and epidermal growth factor in cultured astrocytes. J. Cell Sci. 114, 3717–3725
21. Karki, P., Webb, A., Zerguine, A., Choi, J., Son, D. S., and Lee, E. (2014) Mechanism of raloxifene-induced upregulation of glutamate transporters in rat primary astrocytes. Glia 62, 1270–1283
22. Lee, E. S., Sidoryk, M., Jiang, H., Yin, Z., and Aschner, M. (2009) Estrogen and tamoxifen reverse manganese-induced glutamate transporter impairment in astrocytes. J. Neurochem. 110, 530–544
23. Lee, S. G., Su, Z. Z., Emdad, L., Gupta, P., Sarkar, D., Borjabad, A., Volsky, D. J., and Fisher, P. B. (2008) Mechanism of ceftriaxone induction of excitatory amino acid transporter-2 expression and glutamate uptake in primary human astrocytes. J. Biol. Chem. 283, 13116–13123
24. Sitcheran, R., Gupta, P., Fisher, P. B., and Baldwin, A. S. (2005) Positive and negative regulation of EAAT2 by NF-kB: a role for N-myc in TNFα-controlled repression. EMBO J. 24, 510–520
25. Su, Z. Z., Leszczyniecka, M., Kang, D. C., Sarkar, D., Chao, W., Volsky, D. J., and Fisher, P. B. (2003) Insights into glutamate transport regulation in human astrocytes: cloning of the promoter for excitatory amino acid transporter 2 (EAAT2). Proc. Natl. Acad. Sci. U.S.A. 100, 1955–1960
26. Karki, P., Webb, A., Smith, K., Lee, K., Son, D. S., Aschner, M., and Lee, E. (2013) cAMP response element-binding protein (CREB) and nuclear factor κB mediate the tamoxifen-induced up-regulation of glutamate transporter 1 (GLT-1) in rat astrocytes. J. Biol. Chem. 288, 28975–28986
27. Ji, Y. F., Zhou, L., Xie, Y. J., Xu, S. M., Zhu, J., Teng, P., Shao, C. Y., Wang, Y., Luo, J. H., and Shen, Y. (2013) Upregulation of glutamate transporter GLT-1 by mTOR-Akt-NFκB small ka, CyrillicB cascade in astrocytic oxygen-glucose deprivation. Glia 61, 1959–1975
28. Gordon, S., Akopian, G., Garban, H., and Bonavida, B. (2006) Transcription factor YY1: structure, function, and therapeutical implications in cancer biology. Oncogene 25, 1125–1142
29. Aguirre, G., Rosas, S., López-Bayghen, E., and Ortega, A. (2008) Valproate-dependent transcriptional regulation of GLAST/EAAT1 expression: involvement of Ying-Yang 1. Neurochem. Int. 52, 1322–1331
30. Rosas, S., Vargas, M. A., López-Bayghen, E., and Ortega, A. (2007) Glutamate-dependent transcriptional regulation of GLAST/EAAT1: a role for YY1. J. Neurochem. 101, 1134–1144
31. Shi, Y., Lee, J. S., and Galvin, K. M. (1997) Everything you have ever wanted to know about Yin Yang 1. Biochem. Biophys. Acta 1332, F49–66
32. Deng, Z., Cao, P., Man, M. M., and Sui, G. (2010) Yin Yang 1: a multifaceted protein beyond a transcription factor. Transcription 1, 81–84
33. He, Y., Dupree, J., Wang, J., Sandová, J., Li, J., Liu, H., Shi, Y., Nave, K. A., and Casacca-Bonnell, P. (2007) The transcription factor Yin Yang 1 is essential for oligodendrocyte progenitor differentiation. Neuroen 55, 217–230
34. Karki, P., Webb, A., Smith, K., Johnson, J., Jr., Lee, K., Son, D. S., Aschner, M., and Lee, E. (2014) Yin Yang 1 is a repressor of glutamate transporter EAAT2, and it mediates manganese-induced decrease of EAAT2 expression in astrocytes. Mol. Cell. Biol. 34, 1280–1289
35. Lee, S. G., Kim, K., Kegelman, T. P., Dash, R., Das, S. K., Choi, J. K., Emdad, L., Howlett, E. L., Jeon, H. Y., Su, Z. Z., Yoo, B. K., Sarkar, D., Kim, S. H., Kang, D. C., and Fisher, P. B. (2011) Oncogene AEG-1 promotes glioma-toxicity-induced GAPDH nuclear accumulation and apoptotic death in neurons. Pharmacogenomics J. 4, 336–344
36. Leng, Y., and Chuang, D. M. (2006) Endogenous α-synuclein is induced by valproic acid through histone deacetylase inhibition and participates in neuroprotection against glutamate-induced excitotoxicity. J. Neurosci. 26, 7502–7512
37. Leng, Y., Liang, M. H., Ren, M., Marinova, Z., Leeds, P., and Chuang, D. M. (2008) Synergistic neuroprotective effects of lithium and valproic acid or other histone deacetylase inhibitors in neurons: roles of glycogen synthase kinase-3 inhibition. J. Neurosci. 28, 2576–2588
38. Aschner, M., Gannon, M., and Kimelberg, H. K. (1992) Manganese uptake and efflux in cultured rat astrocytes. J. Neurochem. 58, 730–735
39. Mutkus, L., Aschner, J. L., Fitsanakis, V., and Aschner, M. (2005) The in vitro uptake of glutamate in GLAST and GLT-1 transfected mutant CHO-K1 cells is inhibited by manganese. Biol. Trace Elem. Res. 107, 221–230
40. Mercurio, F., Zhu, H., Murray, B. W., Shevchenko, A., Bennett, B. L., Li, J., Young, D. B., Barbosa, M., Mann, M., Manning, A., and Rao, A. (1997) IKK-1 and IKK-2: cytokine-activated IκB kinases essential for NF-κB activation. Science 278, 860–866
41. Thanos, D., and Maniatis, T. (1995) NF-κB: a lesson in family values. Cell 80, 529–532
42. Karki, P., Smith, K., Johnson, J., Jr., Aschner, M., and Lee, E. (2014) Role of transcription factor yin yang 1 in manganese-induced reduction of astrocytic glutamate transporters: Putative mechanism for manganese-induced neurotoxicity. Neurochem. Int. 88, 53–59
43. Lee, E., Sidoryk-Wegrzynowicz, M., Yin, Z., Webb, A., Son, D. S., and Aschner, M. (2012) Transforming growth factor-α mediates estrogen-induced upregulation of glutamate transporter GLT-1 in rat primary astrocytes. Glia 60, 1024–1036
44. Moreno, J. A., Streifel, K. M., Sullivan, K. A., Hanneman, W. H., and Tjalk-
Manganese-induced NF-κB activation and nitrosative stress is decreased by estrogen in juvenile mice. *Toxicol. Sci.* 122, 121–133

57. Yao, Y. L., Yang, W. M., and Seto, E. (2001) Regulation of transcription factor YY1 by acetylation and deacetylation. *Mol. Cell Biol.* 21, 5979–5991

58. Tanaka, K., Watase, K., Manabe, T., Yamada, K., Watanabe, M., Takahashi, K., Iwama, H., Nishikawa, T., Ichihara, N., Kimuchi, T., Okuyama, S., Kawashima, N., Hori, S., Takimoto, M., and Wada, K. (1997) Epilepsy and exacerbation of brain injury in mice lacking the glutamate transporter GLT-1. *Science* 276, 1699–1702

59. Furuta, A., Rothstein, J. D., and Martin, L. J. (1997) Glutamate transporter protein subtypes are expressed differentially during rat CNS development. *J. Neurosci.* 17, 8363–8375

60. Regan, M. R., Huang, Y. H., Kim, Y. S., Dykes-Hoberg, M. I., Jin, L., Watkins, A. M., Bergles, D. E., and Rothstein, J. D. (2007) Variations in promoter activity reveal a differential expression and physiology of glutamate transporters by glia in the developing and mature CNS. *J. Neurosci.* 27, 6607–6619

61. Schlag, B. D., Vondrasek, J. R., Munir, M., Kalandadze, A., Zelenaia, O. A., Rothstein, J. D., and Robinson, M. B. (1998) Regulation of the glial Na+ -dependent glutamate transporters by cyclic AMP analogs and neurons. *Mol. Pharmacol.* 53, 355–369

62. Swanson, R. A., Liu, J., Miller, J. W., Rothstein, J. D., Farrell, K., Stein, B. A., and Longuemare, M. C. (1997) Neuronal regulation of glutamate transporter subtype expression in astrocytes. *J. Neurosci.* 17, 932–940

63. Sheldon, A. L., and Robinson, M. B. (2007) The role of glutamate transporters in neurodegenerative diseases and potential opportunities for intervention. *Neurochem. Int.* 51, 333–355

64. Sun, L., and Carpenter, G. (1998) Epidermal growth factor activation of NF-κB is mediated through IκBα degradation and intracellular free calcium. *Oncogene* 16, 2095–2102

65. Nowak, K., Lange-Dohna, C., Zeitschel, U., Günther, A., Lüscher, B., Robitzki, A., Perez-Polo, R., and Rossner, S. (2006) The transcription factor Yin Yang 1 is an activator of BACE1 expression. *J. Neurochem.* 96, 1696–1707

66. Wang, H., Hertlein, E., Bakkar, N., Sun, H., Acharyya, S., Wang, I., Carathers, M., Davuluri, R., and Guttridge, D. C. (2007) NF-κB regulation of YY1 inhibits skeletal myogenesis through transcriptional silencing of myofibrillar genes. *Mol. Cell Biol.* 27, 4374–4387

67. Huerta-Yepez, S., Vega, M., Garban, H., and Bonavida, B. (2006) Involvement of the TNF-α autocrine-paracrine loop, via NF-κB and YY1, in the regulation of tumor cell resistance to Fas-induced apoptosis. *Clin. Immunol.* 120, 297–309

68. Yang, W. M., Inouye, C., Zeng, Y., Bearss, D., and Seto, E. (1996) Transcriptional repression by YY1 is mediated by interaction with a mammalian homolog of the yeast global regulator RPD3. *Proc. Natl. Acad. Sci. U.S.A.* 93, 12845–12850

69. Dong, X. X., Wang, Y., and Qin, Z. H. (2009) Molecular mechanisms of excitotoxicity and their relevance to pathogenesis of neurodegenerative diseases. *Acta Pharmacol. Sin.* 30, 379–387