Predictive biomarkers in precision medicine and drug development against lung cancer

Bingliang Fang1*, Reza J Mehran1, John V Heymach2 and Stephen G Swisher1

Abstract

The molecular characterization of various cancers has shown that cancers with the same origins, histopathologic diagnoses, and clinical stages can be highly heterogeneous in their genetic and epigenetic alterations that cause tumorigenesis. A number of cancer driver genes with functional abnormalities that trigger malignant transformation and that are required for the survival of cancer cells have been identified. Therapeutic agents targeting some of these cancer drivers have been successfully developed, resulting in substantial improvements in clinical symptom amelioration and outcomes in a subset of cancer patients. However, because such therapeutic drugs often benefit only a limited number of patients, the successes of clinical development and applications rely on the ability to identify those patients who are sensitive to the targeted therapies. Thus, biomarkers that can predict treatment responses are critical for the success of precision therapy for cancer patients and of anticancer drug development. This review discusses the molecular heterogeneity of lung cancer pathogenesis; predictive biomarkers for precision medicine in lung cancer therapy with drugs targeting epidermal growth factor receptor (EGFR), anaplastic lymphoma kinase (ALK), c-ros oncogene 1 receptor tyrosine kinase (ROS1), and immune checkpoints; biomarkers associated with resistance to these therapeutics; and approaches to identify predictive biomarkers in anticancer drug development. The identification of predictive biomarkers during anticancer drug development is expected to greatly facilitate such development because it will increase the chance of success or reduce the attrition rate. Additionally, such identification will accelerate the drug approval process by providing effective patient stratification strategies in clinical trials to reduce the sample size required to demonstrate clinical benefits.

Keywords: Precision medicine, Personalized therapy, Epidermal growth factor receptor (EGFR), Anaplastic lymphoma kinase (ALK), Immunotherapy, Biomarkers, Drug development

Background

A recent study analyzing the global disease burden revealed that lung cancer is the second leading cause of death in the United States and in most other high-income countries [1]. In China, lung cancer is the fifth leading cause of death, following stroke, ischemic heart disease, road injuries, and chronic obstructive pulmonary disease [1, 2]. Globally, the annual incidence of lung cancer is approximately 1.8 million, with an annual mortality of approximately 1.6 million [3, 4]. The 5-year overall survival (OS) rate for lung cancer patients in the United States has improved only moderately over the past four decades from 12.2% in 1975 to 17.8% in 2010, despite the use of many therapeutic modalities [5–7]. The 5-year OS rate of lung cancer patients in China is approximately 16.1% [8], which is close to that observed in the United States. Histologically, lung cancer is classified as small cell lung cancer (SCLC, approximately 15%) and non-small cell lung cancer (NSCLC, approximately 85%); the latter includes adenocarcinoma, squamous cell carcinoma, and large cell carcinoma. Tobacco smoking is the major cause for all types of lung cancer, particularly SCLC and squamous cell carcinoma [9]. Air pollution is another major
Molecular heterogeneity in lung cancer

Genome-wide gene sequencing analyses have found that each lung cancer may have an average of approximately 150 somatic mutations that are expected to alter their protein products; this number is much higher than the average of 30–60 mutations observed in other solid tumors [23]. The high somatic mutation rates observed in lung cancer reflect the mutagenic roles of cigarette smoking in the pathogenesis of lung cancer. Indeed, the total number of point mutations in coding regions identified in lung cancer is approximately 10 times higher in smokers than in non-smokers [24]. Smoking also causes distinct changes in gene mutation and gene expression signatures in cancer tissues and normal lung tissues [25, 26]. Smoking-induced gene expression alterations observed in normal lung tissues can be transient because the majority of changes at the expression level can revert to non-smoker levels following smoking cessation [26]. Nevertheless, some of these expression changes are irreversible and permanent [26].

The results from genome-wide sequencing analyses for primary lung adenocarcinoma [24, 25, 27, 28], squamous cell cancer [29], SCLC [30, 31], and carcinoids or neuroendocrine tumors [32] have been reported recently by several groups. Information regarding genetic alterations (mutations and copy number changes), mRNA expression data, and protein/protein phosphorylation levels in lung adenocarcinoma, squamous cell cancer, and SCLC can be retrieved from The Cancer Genome Atlas (TCGA) databases and publically available datasets at the website http://www.cbioportal.org. Figure 1 shows the frequencies of cancer driver genes that are frequently mutated (including copy number changes) in lung adenocarcinoma, squamous cell cancer, and SCLC. Based on data retrieved from cBioPortal, tumor protein p53 (TP53) is the most frequently mutated cancer driver gene for all three histological types of lung cancer, with frequencies varying from 46% in adenocarcinoma to 86% in SCLC. Additionally, Kirsten rat sarcoma viral oncogene homolog (KRAS), cyclin-dependent kinase inhibitor 2A (CDKN2A), mixed-lineage leukemia 3 (MLL3), serine/threonine kinase 11 (STK11), kelch-like ECH-associated protein 1 (KEAP1), and EGFR are the top frequently mutated genes detected in lung adenocarcinomas. Phosphatidylinositol-4,5-biphosphate 3-kinase, catalytic subunit alpha (PIK3CA), sex-determining region Y-related gene family 2 (SOX2), CDKN2A, TP63, fibroblast growth factor receptor 1 (FGFR1), and MLL2 are the top mutant genes in squamous cell cancer; retinoblastoma 1 (RB1), E1A-binding protein p300 (EP300), MLL2, smoothened (SMO), and PIK3CA are the top mutant genes in SCLC. Our recent sequencing analysis of the exomes of 200 cancer-related genes found that...
mutations in *TP53, KRAS, MLL3, SET domain-containing 2 (SETD2),* AT rich interactive domain 1A (*ARID1A*), *PIK3CA,* and *ALK* were frequently detected in primary tumors and corresponding patient-derived xenografts of NSCLC [33]. Most of the mutations (93%) detected in the primary tumors were also detected in their corresponding patient-derived xenografts. Nevertheless, the numbers of mutations detected in each primary tumor varied greatly, and most tumors had mutations in more than two genes. The results from these molecular profiling studies clearly demonstrated heterogeneity in the molecular pathogenesis of lung cancer. As shown
in Figure 2a, the mutational status of the top seven frequently mutated cancer driver genes varied greatly in 230 lung adenocarcinomas [28]. Moreover, mutations in those genes, particularly for tumor suppressor genes such as TP53 (Figure 2b), are often widely distributed in the entire coding region. Evidence has shown that mutations in TP53 can lead to either loss or gain of functions [34–38], and both may promote tumorigenesis through different mechanisms. Similarly, different mutations in KRAS, even if in the same codon such as G12C, G12V, and G12D mutations in the KRAS gene, may lead to different conformational changes in KRAS and have different effects on clinical outcomes and molecular pathway activation [39]. Ultimately, this molecular heterogeneity may affect treatment responses to therapeutics targeting different pathways.

Notably, however, current TCGA data are derived mostly from patients in Western countries. The mutational status in other ethnic populations may differ [40–42]. For example, activated EGFR mutations are detected in approximately 10–17% of lung adenocarcinoma patients in the United States and Europe [27, 43–46] but in approximately 30–65% of lung adenocarcinoma patients in Asia [47–50]. In contrast, KRAS mutations were detected in 35–50% of lung adenocarcinomas in Caucasian patients [28, 51] but in less than 5% of lung

Figure 2 Molecular heterogeneity in lung adenocarcinoma. a The status of genetic alterations in 230 lung adenocarcinomas retrieved from The Cancer Genome Atlas (TCGA) database [28]. The mutation frequencies (%) are shown on the left of graph. Each vertical line represents a tumor. The graph shows mutations in the top seven cancer driver genes in lung adenocarcinoma. Red amplification, blue homozygous deletion, green missense mutation, black truncating mutation, brown in-frame mutation. b, c Mutations in EGFR and TP53 in the same 230 adenocarcinomas. The gray bars represent the entire lengths of the EGFR and TP53 proteins, with the number of amino acids indicated at the bottom of each gray bar. The green, red, and blue boxes indicate protein domains. The lines and dots indicate the locations and frequencies of mutations detected in the EGFR and TP53 genes. Green missense mutations, red nonsense or frameshift mutations, black in-frame deletions. The data were retrieved from http://www.cbioportal.org.
adenocarcinomas in Chinese patients [48, 49, 52]. Nevertheless, changes in molecular signaling can occur in the absence of gene mutations. Indeed, the activation of RAS signaling pathways can be detected in substantial numbers of primary tumors with wild-type RAS genes [53]. Increased expression of the RAS genes [54, 55], increased upstream signaling from tyrosine kinase growth factor receptors such as v-erbB2 avian erythroblastic leukemia viral oncogene homolog 2 (HER2) and EGFR [56, 57], and altered expression of microRNAs such as let-7 [58, 59] may all contribute to the activation of RAS signaling pathways.

**Biomarker-directed precision medicine for lung cancer**

**Anti-EGFR therapy**

Epidermal growth factor receptor, a major driver in lung tumorigenesis, has been extensively investigated as a target for anticancer therapy. As noted above, activating EGFR mutations are detected in substantial numbers of lung cancer patients and are more commonly observed in women and non-smokers [27, 43–46]. The finding that EGFR mutations in primary lung cancer are associated with sensitivity to EGFR inhibitors gefitinib and erlotinib [44, 60, 61] contributed greatly to the final approval of these therapeutics for the treatment of lung cancer. Subsequently, EGFR gene mutations have served as biomarkers in the clinic for the identification of responders to EGFR inhibitors. Both gefitinib and erlotinib (Figure 3) are the first choice for therapy in lung cancer patients whose tumors harbor EGFR mutations and are reported to significantly prolong progression-free survival (PFS) in patients with EGFR-mutant lung cancer [62–64]. Icotinib, which has a clinical efficacy similar to that of gefitinib but less adverse effects [65], is approved for the treatment of EGFR-mutant lung cancer in China.

As shown in Figure 2, mutations in EGFR are also heterogeneous. There are multiple locations in the EGFR gene where driver mutations can occur, and these mutations associate with differential sensitivity to EGFR inhibition. The most common EGFR mutations are in-frame deletions in exon 19 and L858R point mutations in exon 21. Together, these mutations account for approximately 85% of the EGFR mutations observed in lung cancer [46, 48, 66]; tumors with these mutations are highly sensitive to treatment with erlotinib, gefitinib, and the second-generation EGFR inhibitor afatinib [63, 67–69]. Tumors with other less common mutations, such as exon 18 mutations at G719 and exon 21 mutation L861Q, are also susceptible to treatment with EGFR inhibitors [60, 70]. Nevertheless, tumors with exon 20 in-frame insertions, which account for approximately 4–10% of all EGFR mutations, usually do not respond to treatment with EGFR inhibitors [71–73]. Although these insertional mutations activate EGFR, they do not have increased affinity for EGFR inhibitors, as is observed for other EGFR mutations [74].

However, despite initial dramatic responses to gefitinib and erlotinib in patients with EGFR-mutant lung cancers, acquired resistance inevitably occurs at a median of 10–13 months after treatment initiation [69, 75, 76]. A number of mechanisms for this acquired resistance have been identified, including a secondary T790M mutation at exon 20 of the EGFR gene [77–79], amplification of the MET proto-oncogene (MET) [80–82] or HER2
studies have revealed that ibrutinib, an irreversible inhibi-
tor of Bruton tyrosine kinase (BTK) that was recently
approved by the FDA for the treatment of mantle cell
lymphoma and chronic lymphocytic leukemia [104, 105],
can function as an EGFR inhibitor to selectively inhibit
growth and induce apoptosis in EGFR-mutant NSCLC
cells in vitro and in vivo, including erlotinib-resistant
cells that harbor a T790M mutation [106]. Because ibrutinib
was recently reported to be well tolerated when
used in combination with other targeted therapeu-
tics [107, 108], it may have advantages in combination
therapy to overcome resistance caused by alternative or
bypass survival signals from cooperative or parallel path-
ways, as is observed in T790M-negative resistant cells.

**Anti-ALK/ROS1 therapy**

The discovery of gene rearrangements between the echino-
derm microtubule-associated protein-like 4 (EML4)
gene and the ALK gene that lead to constitutive activa-
tion of ALK in NSCLC [109, 110] greatly contributed to
the subsequent development and approval of crizotinib,
a small-molecule inhibitor of ALK, c-ros oncogene 1
receptor tyrosine kinase (ROS1), and MET. EML4/ALK
rearrangements are detected in approximately 4–5%
of patients with NSCLC, mostly in young patients with
adenocarcinoma who are non-smokers or light smokers
[111–114]. ALK rearrangements were found to be mutually
exclusive with EGFR and KRAS mutations, although
they share common downstream signaling pathways with
EGFR such as the RAS/RAF/MEK/ERK, PI3K/AKT/
mTOR, and JAK/STAT pathways. Crizotinib (Figure 4)
was originally developed as an MET inhibitor; however,
crizotinib also inhibits ALK and ROS1 [115]. Soon after
the first reports of EML4/ALK rearrangement and its
role in lung cancer oncogenesis [109, 110], a diagnostic
method for detecting EML4/ALK rearrangement by fluo-
rescence in situ hybridization (FISH) was developed, and
patients with EML4/ALK rearrangement-positive lung
cancer were enrolled in clinical trials with crizotinib [114,
116]. Most of the patients with advanced ALK-positive
NSCLC responded to crizotinib treatment, resulting in
tumor shrinkage or disease stabilization. The objective
response rate was approximately 60%, and the median
PFS was 8–10 months [117, 118]. In comparison, con-
ventional chemotherapy for the same type of patients
achieved a response rate of approximately 20% and a PFS
of 2–3 months [117, 118]. Subsequently, crizotinib
was approved for the treatment of ALK-positive NSCLC
in conjunction with an FDA-approved diagnostic assay, the
Vysis ALK BreakApart FISH Probe Kit.

**ROS1 gene rearrangement and activation** are detected
in approximately 1–1.5% of NSCLC, predominantly in
adenocarcinoma and in non-smokers, as is observed
with ALK rearrangement [119–121]. However, ROS1 and
ALK rearrangements rarely occur in the same tumors.
Because the kinase domains of ALK and ROS1 share 77%
had secondary mutations in the ALK kinase domain and/or acquired resistance to crizotinib, one-third had various
gation into anticancer immunotherapy through various
proteins, dysregulated or overexpressed proteins, and
The presence of tumor antigens derived from mutant
impaired in patients with ALK-positive patients (10–11 months). Similar to the diagnosis of
ALK rearrangement, FLI1 and/or reverse transcription-polymerase chain reaction (RT-PCR) are used to identify
patients with ROS1 rearrangement [122]. Nevertheless, resistance to crizotinib eventually occurs in both ALK- and ROS1-positive patients.
Among the patients with ALK-positive NSCLC who acquired resistance to crizotinib, one-third had various secondary mutations in the ALK kinase domain and/or had ALK gene amplification [111]. Resistance can also be caused by aberrant activation of alternative or bypass pathways, such as marked v-kit Hardy-Zuckerman 4 feline sarcoma viral oncogene homolog (KITT) amplification and EGFR activation [123]. In some patients, multiple resistance mechanisms may exist simultaneously, indicating that combination therapy will be required to overcome resistance [124, 125]. Second-generation ALK inhibitors have been developed to overcome crizotinib resistance caused by mutations in the ALK kinase domain. Among these ALK inhibitors, ceritinib has been approved by the FDA for the treatment of ALK-positive NSCLC in the United States, and alectinib has been approved in Japan [126, 127] (Figure 4). Ceritinib is reported to be effective in patients with various resistant mutations. Of the patients who had received crizotinib previously, 56% responded to ceritinib treatment, including patients with central nervous system metas-
tases [126, 128]. Nevertheless, ceritinib resistance has been observed in the clinic. Resistant cells obtained from patients treated with ceritinib revealed activation of the EGFR, mitogen-activated protein (MAP) kinase, and SRC pathways, and the cells were sensitive to combination therapies with inhibitors for EGFR, MAP kinase-ERK kinase (MEK), and SRC [129]. MET activation has been reported to cause resistance to alectinib because, as an ALK selective inhibitor, alectinib does not inhibit MET [130].

Immunotherapy
The presence of tumor antigens derived from mutant proteins, dysregulated or overexpressed proteins, and viral oncogenic proteins has inspired intensive investi-
gation into anticancer immunotherapy through various
approaches [131]. The high mutation rates observed in lung cancers suggest that lung cancer cells may possess high levels of tumor antigens from mutant proteins and may therefore be vulnerable to immunotherapy. How-
ever, during malignant evolution, cancer cells obtain the ability to escape immune system recognition and destruction through various mechanisms, including inhibiting tumor antigen presentation by the down-regulation of class I major histocompatibility complex (MHC) molecule expression on the surface of tumor cells, recruiting immunosuppressive cells (such as regulatory T cells, myeloid-derived suppressor cells, and tumor-asso-
ciated macrophages) to the tumor microenvironment, secreting immunosuppressive cytokines [such as IL-10 and tumor growth factor-β (TGF-β)], activating immune co-inhibitory checkpoint receptors [such as cytotoxic T lymphocyte-associated antigen-4 (CTLA-4) and programmed death-1 (PD-1)], and inhibiting immune co-stimulatory receptors (CD40, OX40, CD137, and CD28) [132–134]. Advances in the mechanistic characterization of tumor cell evasion of immunosurveillance have led to the development of various approaches that aim to mobilize the immune system for the elimination of malignant cells. Currently, the most advanced available therapeutics developed for lung cancer are monoclonal antibodies that target checkpoints of the immune regulation cascade.

Immune checkpoints regulate the amplitude and duration of immune responses, preventing damage to normal tissues from overactivation of the immune system [132–134]. The key players in the checkpoints include CTLA-4, lymphocyte activation gene-3 (LAG-3), and PD-1, as well as the PD-1 ligands PD-L1 and PD-L2. CTLA-4 is constitutively expressed in regulatory T cells but only transiently expressed in activated cytotoxic T cells. It shares common ligands, CD80 and CD86, with the co-
stimulatory receptor CD28. The interaction of CD28 with these ligands leads to the full activation of cytotoxic T cells, whereas the interaction of CTLA-4 with the ligands prevents T cell activation. The up-regulation of CTLA-4 was detected in anergic lymphocytes, and the blockade of CTLA-4 with anti-CTLA-4 antibodies resulted in antitumor activity [135]. The anti-CTLA-4 antibody ipilimumab is approved for the treatment of melanoma [136] and is currently in clinical trials for the treatment of NSCLC. PD-1 (also known as PDCD1 or CD279) is expressed in T, B, and natural killer (NK) cells. The interaction of PD-1 with its ligands, PD-L1 (also called B7-H1 or CD274) and PD-L2 (B7-DC), suppresses T cell activation and promotes T cell apoptosis [137–139], leading to immune evasion. The expression of PD-L1 in lung cancer is detected in 25–50% of NSCLC cases, depending on the assays used to detect its protein or mRNA [140], and is associated with the presence of EGFR mutations.
Predictive biomarkers in anticancer drug development

Anticancer drug development has a high failure or attrition rate, primarily because of a lack of efficacy, inability to identify responders, and intolerable toxic effects [152, 153]. Only approximately 5% of anticancer agents evaluated in human studies between 1991 and 2000 were successfully approved for clinical applications [152, 154]. The majority (80%) of phase III failures were caused by a lack of efficacy [152, 154–156] that resulted from a lack of efficacy proof-of-concept in humans and a lack of objective biomarkers capable of reporting such efficacy [152, 154]. The development of the anti-EGFR drugs gefitinib and erlotinib and the anti-ALK/ROS1 drugs crizotinib and ceritinib has provided excellent examples of using predictive biomarkers and patient stratifications in clinical trials to increase the chance of success or to reduce the attrition rate in anticancer drug development. Notably, both gefitinib [64, 157, 158] and erlotinib [159, 160] failed to show a benefit in randomized phase III trials with unselected patient populations. Similarly, the successes of the v-Raf murine sarcoma viral oncogene homolog B1 (BRAF) inhibitor vemurafenib [161, 162] and the poly(ADP-ribose) polymerase (PARP) inhibitor olaparib [163–165] in anticancer therapy relied on biomarker-based patient stratifications in clinical trials. In fact, the inability to identify cancers that are most likely to respond to a treatment is a major challenge in anticancer drug development, not only leading to failure to demonstrate the potential benefit of a promising anticancer agent [64, 166] but also exposing patients to the risks of ineffective treatments. Indeed, a lack of predictive biomarkers for patient stratification has halted further development of many other investigational drugs [167–170]. Thus, reliable predictive biomarkers are crucial to the success of anticancer drug development, and the simultaneous development of predictive biomarkers will be highly desirable for promising anticancer drug candidates.

The identification of predictive biomarkers can be relatively straightforward if the therapeutic targets are themselves the cancer drivers and if the cancer cells are addicted to the presence of those targets for survival. As in the cases of EGFR, ALK, and ROS1, the constitutive activation of such targets is the driving cause of a subset of NSCLC and is required for the survival of those cancer cells; therefore, the presence of constitutive activating mutations or gene rearrangement can be explored as predictive biomarkers for patient stratification. Nevertheless, cancer cells can be killed indirectly through synthetic lethality between the cancer drivers and their synthetic lethal partners, as has been demonstrated using the PARP inhibitor olaparib to eliminate breast cancer early onset (BRCA1)-mutant ovarian and breast cancer cells [165, 171, 172]. In this case, loss-of-function mutations in the BRCA1 and BRCA2 genes or other functional deficiencies in the DNA repair pathways will serve as predictive biomarkers for response to olaparib and other PARP inhibitors [173]. Synthetic lethality is a lethal phenotype caused by the combined effects of mutations in two or more genes. This concept has recently been exploited for the development of novel genotype-selective anticancer agents and/or the identification of novel therapeutic targets [173–176]. This approach could be useful for the indirect targeting of cancer drivers such as genetic changes in TP53, STK11, RB1, and RAS genes that are nondruggable or difficult to target using small molecules.
Notably, a study conducting short hairpin RNA (shRNA) library screening for genes that may have synthetic lethal interactions in the oncogenic KRAS gene in the colon cancer cell line DLD-1 and its isogenic derivatives led to the identification of approximately 370–1,600 KRAS synthetic lethal genes, depending on the stringencies of statistical analyses [177], demonstrating the diversity of biological processes or pathways regulated by KRAS. The molecular pathology of RAS-mediated oncogenesis is further complicated by the fact that cancer cells with different mutations in KRAS, even if in the same codon (such as G12C, G12V, and G12D mutations), may lead to different conformational changes in KRAS, have different effects on clinical outcomes, and activate different molecular and metabolic pathways [39, 178]. Moreover, a substantial number of KRAS-mutant tumors have mutations in other cancer driver genes such as TP53, CDKN2A, and STK11. Studies in transgenic mice have found that activating mutations in KRAS predispose mice to early-onset lung adenocarcinoma [179, 180]. Nevertheless, such tumors do not have an invasive or metastatic phenotype [181]. Metastasis will occur only when additional genetic changes, such as Tp53 mutations or Stk11 deletion, are introduced [182, 183]. Finally, the RAS activation signature is observed in approximately 25% of KRAS wild-type cancers [53] because increased RAS activity in human cancers can result from RAS gene amplification [184, 185] or overexpression [55], an increase in upstream signals from tyrosine kinase growth factor receptors such as HER2 and EGFR [56, 57], or a decrease in the expression of microRNAs such as let-7 family members [58].

The above-discussed situations impose considerable challenges on the identification of predictive biomarkers for anti-RAS therapeutics developed through synthetic lethality screening. Substantial efforts will be required to identify predictive biomarkers for such therapeutic agents. Through synthetic lethality screening using a chemical library for isogenic cell lines with and without oncogenic KRAS, we previously reported a small molecule, designated oncrasin-1, that induces apoptosis in several KRAS-mutant lung cancer cell lines [186]. The in vitro and in vivo activities were optimized by the synthesis and evaluation of analogues [187–190]. The mechanistic characterization revealed that these compounds induce oxidative stress, activate c-Jun N-terminal kinase (JNK), and inhibit RNA polymerase II, STAT3, and cyclin D1 [187, 188, 191–194]. However, a predictive biomarker for oncrasin compounds remained elusive until our recent discovery that such compounds require the expression of a sulfotransferase (SULT). SULT1A1, in cancer cells for their anticancer activity and that the expression of SULT1A1 is capable of predicting the responses to oncrasin compounds [195]. SULT1A1 is a biotransformation enzyme that bioactivates several procarcinogens [196–202] and some anticancer drugs such as tamoxifen [203]. The identification of SULT1A1 as a predictive biomarker for oncrasin compounds shed light on mechanisms of the selectivity and, possibly, the toxicity of these compounds [204]. The process of identifying this predictive biomarker underscores the importance of activity characterization in a large set of molecularly annotated cancer cell lines and of collaborations between biostatisticians and molecular biologists. Statistical analysis of associations between the activity of NSC-743380 (oncrasin-72) and the gene expression profile in the NCI-60 cell line panel led to the identification of a number of candidate genes, and subsequent molecular characterizations demonstrated the causal relationship between the expression of SULT1A1 and the anticancer activity of NSC-743380, validating the feasibility of using SULT1A1 as a predictive marker for those compounds [195]. Larger panels of molecularly annotated cancer cell lines have also been used by other groups for the identification of predictive biomarkers for larger sets of anticancer drugs [150, 205–209]. Ultimately, rigorous validation of causal relationships between the sensitivity and the biomarker will be essential for successful clinical translations.

**Conclusion**

The diversity found in the molecular pathogenesis of lung cancer demonstrates that conventional histology-based classifications of the disease are not sufficient to provide guidance for treatment decisions in the clinic. Classifications based on molecular pathology are required for precision therapy. The successful development of anti-EGFR and anti-ALK/ROS1 therapeutics has proven the critical role of predictive biomarkers in anticancer drug development because the ability to identify patient subpopulations who may benefit from a drug candidate will directly affect the design and patient selection of clinical trials, dramatically reduce the sample size required to reveal potential benefits, and increase the chance of success. It is expected that more efforts will be devoted to the identification of predictive biomarkers and the development of effective assays for biomarkers during drug development. These efforts will likely be rewarded by increased success rates when the drug candidates enter clinical trials. Advances in technologies, such as next-generation sequencing and digital polymerase chain reaction, will also facilitate the detection of changes in genotypes and/or in DNA or RNA levels and the development of effective assays for biomarkers. On the other hand, biomarker-directed patient stratification has changed the clinical practice of anticancer therapy and has substantially improved treatment efficacy by providing guidance for the selection of optimal treatment for...
some lung cancer patients. However, biomarker-directed personalized therapy can currently benefit only a limited number of patients because most of the currently available predictive biomarkers occur infrequently [24, 27, 210] and because response-predictive biomarkers are not available for most first-line anticancer therapeutics. Thus, alternative approaches will be required to identify the appropriate therapeutics for a particular patient. Such patient-oriented approaches may require direct testing of the drug sensitivity of a patient’s cancer cells to various available anticancer therapeutics rather than predicting drug sensitivity based on the presence or absence of predictive biomarkers. Some recent studies have shown the feasibility of testing for the treatment responses of patient-derived tumor xenografts [211, 212] and/or primary cell cultures [213] to identify effective treatment regimens. Nevertheless, technology improvements and rigorous validations are required before such techniques can be used commonly in clinical practice.

Authors’ contribution
BF, RJM, JVH, and SGS conceived the concept and drafted the manuscript. All authors read and approved the final manuscript.

Author details
1 Department of Thoracic and Cardiovascular Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA. 2 Department of Thoracic and Head/Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.

Acknowledgements
We thank Michael Welsey and the Department of Scientific Publications of The University of Texas MD Anderson Cancer Center for editorial review of the manuscript. This work was supported in part by the National Institutes of Health Specialized Program of Research Excellence (SPORE) Grant CA070907 developmental award and The University of Texas MD Anderson Cancer Center support Grant CA-016672, and by endowed funds to The University of Texas MD Anderson Cancer Center, including the Moon Shots Program, the Homer Flower Research Fund, and the Goldman Sachs Philanthropy Fund.

Compliance with ethical guidelines
Competing interests
The authors declare that they have no competing interests.

Received: 10 April 2015   Accepted: 4 June 2015
Published online: 02 July 2015

References
1. GBD 2013 Mortality and Causes of Death Collaborators. Global, regional, and national age-sex specific all-cause and cause-specific mortality for 240 causes of death, 1990–2013: a systematic analysis for the Global Burden of Disease Study 2013. Lancet. 2015;385:117–71.
2. Chen WQ, Zheng RS, Zhang SW, Zeng HM, Zou XN. The incidences and mortalities of major cancers in China, 2010. Chin J Cancer. 2013;6:402–5.
3. Torre LA, Bray F, Siegel RL, Ferlay J, Lortet-Tieulent J, Jemal A. Global cancer statistics, 2012. CA Cancer J Clin. 2015;65:87–108.
4. Ferlay J, Soerjomataram I, Dikshit R, Eser S, Mathers C, Rebelo M, et al. Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012. Int J Cancer. 2015;136:E359–86.
5. Surveillance Epidemiology and End Results Program. Cancer of the lung and bronchus. National Cancer Institute. http://seer.cancer.gov/archive/1975_2011/results_merged/sec_15_lung_bronchus.pdf (2014).
6. Edwards BK, Noone AM, Mariotto AB, Kim KS, Tong T, Bolden S, et al. Annual report to the Nation on the status of cancer, 1975–2010, featuring prevalence of comorbidity and impact on survival among persons with lung, colorectal, breast, or prostate cancer. Cancer. 2014;120:290–314.
7. DeSantis CE, Lin CC, Mariotto AB, Siegel RL, Stein KD, Kramer JL, et al. Cancer treatment and survivorship statistics, 2014. CA Cancer J Clin. 2014;64:252–71.
8. Zeng H, Zheng R, Gao Y, Zhang S, Zou X, Wang N, et al. Cancer survival in China, 2003–2005: a population-based study. Int J Cancer. 2013;15:1921–30.
9. Herbst RS, Heymach JV, Lippman SM. Lung cancer. N Engl J Med. 2008;359:1367–80.
10. Seow WJ, Wu H, Vermeulen R, Hosgood HD III, Downward GS, Chapman RS, et al. Household air pollution and lung cancer in China: a review of studies in Xuanwei. Chin J Cancer. 2014;33:471–5.
11. Hoek G, Raaschou-Nielsen O. Impact of fine particles in ambient air on lung cancer. Chin J Cancer. 2014;33:197–203.
12. Loomis D, Huang W, Chen G. The International Agency for Research on Cancer (IARC) evaluation of the carcinogenicity of outdoor air pollution: focus on China. Chin J Cancer. 2014;33:189–96.
13. Amini A. Progress in the management of limited-stage small cell lung cancer. Cancer. 2014;120:790–8.
14. Kalemkerian GP. Advances in pharmacotherapy of small cell lung cancer. Exp Opin Pharmacother. 2014;15:2385–96.
15. Govindan R. Changing epidemiology of small-cell lung cancer in the United States over the last 30 years: analysis of the surveillance, epidemiologic, and end results database. J Clin Oncol. 2006;24:4350–44.
16. Edwards BK, Ward E, Kohler BA, Esheman C, Zauber AG, Anderson RN, et al. Annual report to the nation on the status of cancer, 1975–2006, featuring colorectal cancer trends and impact of interventions (risk factors, screening, and treatment) to reduce future rates. Cancer. 2010;116:544–73.
17. Ungler M. A pause, progress, and reassessment in lung cancer screening. N Engl J Med. 2006;355:1822–4.
18. National Lung Screening Trial Research Team, Aberle DR, Adams AM, Berg CD, Black WC, Clapp JD, et al. Reduced lung-cancer mortality with low-dose computed tomographic screening. N Engl J Med. 2011;365:395–409.
19. Goulart BH, Bersinik ME, Mummy DG, Ramsey SD. Lung cancer screening with low-dose computed tomographic costs, national expenditures, and cost-effectiveness. J Natl Compr Cancer Netw. 2012;10:267–75.
20. Lu H, Wang L, Gao W, Meng J, Dai B, Wu S, et al. IGFBP2/FAK pathway is causally associated with dasatinib resistance in non-small cell lung cancer cells. Mol Cancer Ther. 2013;12:2864–73.
21. Director’s Challenge Consortium for the Molecular Classification of Lung Adenocarcinoma, Shedden K, Taylor JM, Enkemann SA, Tsaö MS, Yeatman TJ, et al. Gene expression-based survival prediction in lung adenocarcinoma: a multi-site, blinded validation study. Nat Med. 2008;14:822–7.
22. Cardnell RJ, Feng Y, Diao L, Fan YH, Masrourpour F, Wang J, et al. Proteomic markers of DNA repair and PI3K pathway activation predict response to the PARP inhibitor BMN 673 in small cell lung cancer. Clin Cancer Res. 2013;19:6322–8.
23. Vogelstein B, Papadopoulos N, Velculescu VE, Zhou S, Diaz LA Jr, Kinzler KW. Cancer genome landscapes. Science. 2013;339:1546–58.
24. Govindan R, Ding L, Griffith M, Subramanian J, Dees ND, Kanchi KL, et al. Genomic landscape of non-small cell lung cancer in smokers and never-smokers. Cell. 2012;150:1121–34.
25. Imielinski M, Berger AH, Hamerman PS, Hernandez B, Pugh TJ, Hodis E, et al. Mapping the hallmarks of lung adenocarcinoma with massively parallel sequencing. Cell. 2012;150:1107–20.
26. Bosse Y, Postrma DS, Sin DD, Lamontagne M, Couture C, Gaudreault N, et al. Molecular signature of smoking in human lung tissues. Cancer Res. 2012;72:3753–63.
27. Ding L, Getz G, Wheeler DA, Mardis ER, McKerrell MD, Cibulskis K, et al. Somatic mutations affect key pathways in lung adenocarcinoma. Nature. 2008;455:1069–77.
28. Cancer Genome Atlas Research Network. Comprehensive molecular profiling of lung adenocarcinoma. Nature. 2014;511:543–50.

29. Cancer Genome Atlas Research Network, Hammerman PS, Hayes DN, Wilkerson MD, Schultz N, Bose R, et al. Comprehensive genomic characterization of squamous cell lung cancers. Nature. 2012;489:219–25.

30. Rudin CM, Durinck S, Stawiski EW, Prorok JT, Modrusan Z, Shames DS, et al. Comprehensive genomic analysis identifies SOX2 as a frequently amplified gene in small-cell lung cancer. Nat Genet. 2012;44:1111–6.

31. Pfeifer M, Fernandez-Cuesta L, Song ML, George J, Seied D, Kasper LH, et al. Integrative genome analyses identify key somatic driver mutations of small-cell lung cancer. Nat Genet. 2012;44:1104–10.

32. Fernandez-Cuesta L. Frequent mutations in chromatin-remodelling genes in pulmonary carcinoids. Nat Commun. 2014;5:3518.

33. Hao C, Wang L, Peng S, Cao M, Li H, Hu J, et al. Gene mutations in primary tumors and corresponding patient-derived xenografts derived from non-small cell lung cancer. Cancer Lett. 2015;357:179–85.

34. Camero A. Loss-of-function genetics in mammalian cells: the p53 tumor suppressor model. Nucleic Acids Res. 2000;28:2234–41.

35. Blagosklonny MV. Loss of function and p53 protein stabilization. Oncogene. 2002;21:4595–600.

36. Zhou G. Loss-of-function mutant p53 promotes cell growth and cancer cell metabolism via inhibition of AMPK activation. Mol Cell. 2014;54:960–74.

37. Ihlé NT, Byers A, Kim ES, Santigny P, Lee JJ, Blumenschein GR, et al. Effect of KRAS oncogene substitutions on protein behavior: implications for signaling and clinical outcome. J Natl Cancer Inst. 2012;104:228–39.

38. Zhou W, Christiani DC. East meets West: ethnic differences in epidemiology and clinical behaviors of lung cancer between East Asians and Caucasians. Chin J Cancer. 2011;30:287–92.

39. El-Telbany A, Ma PC. Cancer genes in lung cancer: racial disparities: are there any? Genes Cancer. 2012;3:467–80.

40. Broet P. Genomic profiles specific to patient ethnicity in lung adenocarcinoma. Clin Cancer Res. 2011;17:3542–50.

41. Rosell R, Moran T, Queralt C, Porta R, Cardenal F, Camps C, et al. Screening for epidermal growth factor receptor mutations in lung cancer. N Engl J Med. 2009;361:958–67.

42. Pao W, Miller V, Zakowski M, Doherty J, Politi K, Sarkaria I, et al. EGFR mutations in non-small-cell lung cancer: analysis of a large series and development of a rapid and sensitive method for diagnosing EGFR mutations in non-small-cell lung cancer in Asia (IPASS). J Clin Oncol. 2011;29:2866–74.

43. Sequist LV, Yang JC, Yamamoto N, D’Incalci M, Hirsch V, Mok T, et al. Phase III study of afatinib versus cisplatin plus pemetrexed in patients with metastatic lung adenocarcinoma with EGFR mutations. J Clin Oncol. 2013;31:3327–34.

44. Thaker H, Shah S, Cervantes F, Vergnenegre A, Massuti B, Felip E, et al. Efralnib versus standard chemotherapy as first-line treatment for European patients with advanced EGFR mutation-positive non-small-cell lung cancer (EURTAC): a multicentre, open-label, randomised phase 3 trial. Lancet. 2012;380:239–46.

45. Zhou C, Wu YL, Chen G, Feng J, Liu XQ, Wang C, et al. Erlotinib versus chemotherapy as first-line treatment for patients with advanced EGFR mutation-positive non-small-cell lung cancer (OPTIMAL, CTONG-0802): a multicentre, open-label, randomised phase 3 study. Lancet. 2012;379:143–52.

46. Yeh P. DNA-Mutation Inventory to Refine and Enhance Cancer Treatment (DIRECT): a catalog of clinically relevant cancer mutations to enable genome-directed anticancer therapy. Clin Cancer Res. 2013;19:1894–901.
71. Arcila ME, Nafa K, Chaft JE, Rekhtman N, Lau C, Reva BA, et al. EGFR exon 20 insertion mutations in lung adenocarcinomas: prevalence, molecular heterogeneity, and clinicopathologic characteristics. Mol Cancer Ther. 2013;12:220–9.

72. Wu JY, Wu SG, Yang CH, Gow CH, Chang YL, Yu CJ, et al. Lung cancer with epidermal growth factor receptor exon 20 mutations is associated with poor gefitinib treatment response. Clin Cancer Res. 2008;14:4877–82.

73. Yasuda H. EGFR exon 20 insertion mutations in non-small-cell lung cancer: preclinical data and clinical implications. Lancet Oncol. 2012;13:e23–31. (Erratum appears in Lancet Oncol. 2011;12:1182.)

74. Yasuda H, Park E, Yun CH, Sung NJ, Lucena-Araujo AR, Yao W, et al. Structural, biochemical, and clinical characterization of epidermal growth factor receptor (EGFR) exon 20 insertion mutations in lung cancer. Sci Transl Med. 2013;5:216ra177. (Erratum appears in Sci Transl Med. 2014;6:222se1.)

75. Waemondo M, Inoue A, Kobayashi K, Sugawara S, Oizumi S, Itoh M, et al. Gefitinib or chemotherapy for non-small-cell lung cancer with mutated EGFR. N Engl J Med. 2010;362:2380–8.

76. Wykosky J, Fenton T, Fumaroli F, Cavenee WK. Therapeutic targeting of epidermal growth factor receptor in human cancer: successes and limitations. Chin J Cancer. 2011;30:5–12.

77. Pao W, Miller VA, Politi KA, Riely GJ, Somwar R, Zakowski MF, et al. Acquired resistance of lung adenocarcinomas to gefitinib or erlotinib is associated with a second mutation in the EGFR kinase domain. Proc Natl Acad Sci USA. 2005;102:2737–42.

78. Kobayashi S, Boggon TJ, Dayaram T, Janne PA, Kocher O, Meyerson M, et al. EGFR mutation and resistance of non-small-cell lung cancer to gefitinib. N Engl J Med. 2005;352:786–92.

79. Yun CH, Mengwasser KE, Tomis AV, Woo MS, Geuleich H, Wong KY, et al. The T790M mutation in EGFR kinase causes drug resistance by increasing the affinity for ATP. Proc Natl Acad Sci USA. 2008;105:2070–5.

80. Bean J, Brennan C, Shih JY, Riely G, Viale A, Wang L, et al. MET amplification and resistance to EGFR inhibition in non-small cell lung cancer models. Oncogene. 2008;27:4702–11.

81. Cappuzzo F, Janne PA, Skokan M, Finocchiaro G, Rossi E, Ligorio C, et al. EGFR mutation and resistance of non-small cell lung cancer to gefitinib. Lancet Oncol. 2008;9:962–72.

82. Engelman JA, Zejnullahu K, Mitsudomi T, Song Y, Hyland C, Park JO, et al. Brg1 is a target of EGFR and HER2 tyrosine kinase inhibitors. Cancer Cell. 2006;10:25–38.

83. Sanders RA, metaphase plate chromosomes are altered in patients with advanced, metastatic non-small-cell lung cancer after failure of gefitinib, erlotinib, or both, and one or two lines of chemotherapy (LUX-Lung 1). A phase 2b/3 randomised trial. Lancet Oncol. 2012;13:528–38. (Erratum appears in Lancet Oncol. 2012;13:e186.)

84. Wang ML, Rule S, Martin P, Goy A, Auer R, Kahl BS, et al. Targeting BTK with ibrutinib in relapsed chronic lymphocytic leukemia. N Engl J Med. 2013;369:367–77.

85. Younes A, Trumpp A, Bock A, Bruggemann M, Dave N, Auer R, et al. Targeting BTK with ibrutinib in relapsed refractory mantle-cell lymphoma. N Engl J Med. 2015;373:259–68.

86. Byrd JC, Furman RR, Coutre SE, Flinn IW, Burger JA, Blum KA, et al. Targeting BTK with ibrutinib in relapsed chronic lymphocytic leukemia. N Engl J Med. 2013;369:42–52.

87. Wang ML, Rule S, Martin P, Auer R, Kahl BS, et al. Targeting BTK with ibrutinib in relapsed refractory mantle-cell lymphoma. N Engl J Med. 2015;373:509–17.
109. Soda M, Choi YL, Enomoto M, Takada S, Yamashita Y, Ishikawa S, et al. Identification of the transforming EML4-ALK fusion gene in non-small-cell lung cancer. Nature. 2007;448:561–6.
110. Rikova K, Guo A, Zeng Q, Passamonte A, Yu J, Haack H, et al. Global survey of phosphorosine signaling identifies oncogenic kinases in lung cancer. Cell. 2007;131:1903–23.
111. Gainor JF, Varghese AM, Ou SH, Kabraji S, Awad MM, Katayama R, et al. ALK rearrangements are mutually exclusive with mutations in EGFR or KRAS: an analysis of 1,683 patients with non-small cell lung cancer. Clin Cancer Res. 2013;19:4273–81.
112. Solomon B. ALK gene rearrangements: a new therapeutic target in a molecularly defined subset of non-small cell lung cancer. J Thorac Oncol. 2009;4:1450–4.
113. Rodig SJ. Unique clinicopathologic features characterize ALK-rearranged lung adenocarcinoma in the western population. Clin Cancer Res. 2009;15:5262–8. (Erratum appears in Clin Cancer Res. 2009;15:7110)
114. Shaw AT, Yeap BY, Mino-Kenudson M, Digumarthy SR, Costa DB, Heist RS, et al. Clinical features and outcome of patients with non-small-cell lung cancer who harbor EML4-ALK. J Clin Oncol. 2009;27:4247–53.
115. Cui JJ, Tran-Dube M, Shen H, Nambu M, Kung PP, Parish M, et al. Structure based drug design of crizotinib (PF-02341066), a potent and selective dual inhibitor of mesenchymal-epithelial transition factor (c-MET) kinase and anaplastic lymphoma kinase (ALK). J Med Chem. 2011;54:6342–52.
116. Kwak EL, Bang YJ, Camidge DR, Shaw AT, Solomon B, Maki RG, et al. Anaplastic lymphoma kinase inhibition in non-small-cell lung cancer. N Engl J Med. 2010;363:1693–708. (Erratum appears in N Engl J Med. 2011;364:588)
117. Shaw AT, Engelman JA. ALK in lung cancer: past, present, and future. J Clin Oncol. 2013;31:1105–11.
118. Shaw AT, Kim DW, Nakagawa K, Seto T, Crino L, Ahn MJ, et al. Mechanisms of acquired crizotinib resistance in ALK-rearranged non-small cell lung cancer. Sci Transl Med. 2012;4:120ra17.
119. Kogita A, Togashi Y, Hayashi H, Banno E, Terashima M, De Velasco HS, et al. Gefitinib and crizotinib in ALK-positive non-small-cell lung cancer patients. Chin J Cancer (2015) 34:26
120. Kogita A, Tokyo SI, Hayashi H, Banno E, Terashima M, De Velasco MA, et al. Activated MET acts as a salvage signal after treatment with alectinib, a selective ALK inhibitor, in ALK-positive non-small cell lung cancer. Int J Oncol. 2015;46:1025–30.
121. Hu W, Davis JJ, Zhu H, Dong F, Guo W, Ang J, et al. Redirecting adaptive immunity against foreign antigens to tumors for cancer therapy. Cancer Biol Ther. 2007;6:1773–9.
122. Sznol M, Chen L. Antagonist antibodies to PD-1 and B7-H1 (PD-L1) in the treatment of advanced human cancer. Clin Cancer Res. 2013;19:1021–34.
123. Pardoll DM. The blockade of immune checkpoints in cancer immunotherapy. Nat Rev Cancer. 2012;12:252–64.
124. Drake CG, Jaffee E, Pardoll DM. Mechanisms of immune evasion by tumors. Adv Immunol. 2006;90:51–81.
125. Peggs KS, Quezada SA, Chambers CA, Korman AJ, Allison JP. Blockade of CTLA-4 on both effector and regulatory T cell compartments contributes to the antitumor activity of anti-CTLA-4 antibodies. J Exp Med. 2009;206:1717–25.
126. Hodi FS, O'Day SJ, McDermott DF, Weber RW, Sosman JA, Haanen JB, et al. Improved survival with ipilimumab in patients with metastatic melanoma. N Engl J Med. 2010;363:711–23. (Erratum appears in N Engl J Med. 2010;363:1290)
127. Dong H, Strome SE, Tamura DR, Haino N, Hirano F, Flies DB, et al. Tumor-associated B7-H1 promotes T-cell apoptosis: a potential mechanism of immune evasion. Nat Med. 2002;8:795–800. (Erratum appears in N Engl J Med. 2002;348:1039)
128. Latchman Y, Wood CR, Chernova T, Chaudhary D, Borde M, Chernova I, et al. PD-L2 is a second ligand for PD-1 and inhibits T cell activation. Nat Immunol. 2001;2:261–8.
129. Freeman GJ, Long AJ, Iwai Y, Bourque K, Chernova T, Nishimura H, et al. Engagement of the PD-1 immunoinhibitory receptor by a novel B7 family member leads to negative regulation of lymphocyte activation. J Exp Med. 2000;192:1027–34.
130. Velchett V, Schalper KA, Anagnostou V, Syrigos KN, Sznol M, Herbst RS, et al. Programmed death ligand-1 expression in non-small cell lung cancer patients. Br J Cancer. 2015;112:95–10.
131. Akbay EA, Koyama S, Carretero J, Altalaf A, Tchachia JH, Christensen CL, et al. Activation of the PD-1 pathway contributes to immune escape in EGFR-driven lung tumors. Cancer Discov. 2013;3:1355–63.
132. Robert C, Long GV, Brady B, Dutriaux C, Maio M, Mortier L, et al. Nivolumab in previously untreated melanoma without BRAF mutation. N Engl J Med. 2015;372:320–30.
133. Topalian SL, Sznol M, McDermott DF, Crabtree JD, Arriagada P, Portella M, et al. PD-1 and PD-L1 expression in molecularly selected non-small-cell lung cancer patients. Br J Cancer. 2015;112:95–102.
134. Brahmer JR, Tykodi SS, Chow LQ, Hwu WJ, Topalian SL, Hwu P, et al. Safety and activity of anti-PD-L1 antibody in patients with advanced cancer. N Engl J Med. 2013;369:2455–65.
135. Brahmer JR, Hodi FS, Pardoll DM. Mechanisms of acquired resistance to anti-PD-1 antibody in non-small cell lung cancer. J Clin Oncol. 2014;32:455–65.
136. Herbst RS, Soria JC, Kobayashi M, Fine GD, Hamid O, Gordon MS, et al. Predictive correlates of response to the anti-PD-L1 antibody MPDL3280A in cancer patients. Nature. 2014;515:563–7.
196. Svendsen C, Meinl W, Glatt H, Alexander J, Knutsen HK, Hjertøhm H, et al. Intestinal carcinogenesis of two food processing contaminants, 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine and 5-hydroxymethylfurfural, in transgenic FVB min mice expressing human sulfotransferases. Mol Carcinog. 2012;51:984–92.

197. Suzuki Y, Umemura T, Ishii Y, Hibi D, Inoue T, Jin M, et al. Possible involvement of sulfotransferase 1A1 in estragole-induced DNA modification and carcinogenesis in the livers of female mice. Mutation Res. 2012;749:23–8.

198. Gamage NU, Duggleby RG, Barnett AC, Tresillian M, Latham CF, Liyou NE, et al. Structure of a human carcinogen-converting enzyme, SULT1A1. Structural and kinetic implications of substrate inhibition. J Biol Chem. 2003;278:7655–62.

199. Arti WM, Glatt H, Muckel E, Pabel U, Sorg BL, Schmeiser H, et al. Metabolic activation of the environmental contaminant 3-nitrobenzantrone by human acetyltransferases and sulfotransferase. Carcinogenesis. 2002;23:1937–45.

200. Banoglu E. Current status of the cytosolic sulfotransferases in the metabolic activation of promutagens and procarcinogens. Curr Drug Metab. 2000;1:1–30.

201. Michejda CJ, Kroeger-Koepke MB. Carcinogen activation by sulfate conjugate formation. Adv Pharmacol. 1994;27:331–36.

202. Kroeger-Koepke MB, Koepke SR, Hernandez L, Michejda CJ. Activation of a beta-hydroxyalkylnitrosamine to alkylating agents: evidence for the involvement of a sulfotransferase. Cancer Res. 1992;52:3300–5.

203. Mercer KE, Apostolov EO, da Costa GG, Yu X, Lang P, Roberts DW, et al. Expression of sulfotransferase isofrom 1A1 (SULT1A1) in breast cancer cells significantly increases 4-hydroxytamoxifen-induced apoptosis. Int J Mol Epidemiol Genet. 2010;6:92–103.

204. Eldridge SR, Cover J, Morris J, Fang B, Horn TL, Elsas KE, et al. Characterization of acute biliary hyperplasia in Fisher 344 rats administered the indole-3-carbinol analog, NSC-743380. Toxicol Appl Pharmacol. 2014;2014:303–9.

205. Garnett MJ, Edelman EJ, Heidorn SJ, Greenman CD, Dastur A, Lau KW, et al. Systematic identification of genomic markers of drug sensitivity in cancer cells. Nature. 2012;483:570–5.

206. Barretina J, Caponigro G, Stranks N, Venkatesan K, Margoldin AA, Kim S, et al. The cancer cell line encyclopedia enables predictive modelling of anticancer drug sensitivity. Nature. 2012;483:603–7 (Erratum appears in Nature. 2012;492:290).

207. Abaan OD, Polley EC, Davis SR, Zhu YJ, Blik S, Walker RL, et al. The exomes of the NCI-60 panel: a genomic resource for cancer biology and systems pharmacology. Cancer Res. 2013;73:4372–82.

208. Bracht C, Nicholls AM, Liu Y, Bodmer WF. 5-Fluourouracil response in a large panel of colorectal cancer cell lines is associated with mismatch repair deficiency. Br J Cancer. 2010;103:340–6.

209. Mazumdar T, Byers LA, Ng PK, Mills GB, Peng S, Dao L, et al. A comprehensive evaluation of biomarkers predictive of response to PI3K inhibitors and of resistance mechanisms in head and neck squamous cell carcinoma. Mol Cancer Ther. 2014;13:2738–50.

210. Soda M, Isobe K, Inoue A, Maemondo M, Oizumi S, Fujita Y, et al. A prospective PCR-based screening for the EML4-ALK oncogene in non-small cell lung cancer. Clin Cancer Res. 2012;18:5682–9.

211. Hidalgo M, Bruckheimer E, Rajeshkumar NV, Garrido-Laguna I, De OE, Rubio-Viqueira B, et al. A pilot clinical study of treatment guided by personalized tumorgrafts in patients with advanced cancer. Mol Cancer Ther. 2011;10:1311–6.

212. Morelli MP, Calvo E, Ordones E, Wrick ML, Viqueira BR, Lopez-Casas PP, et al. Prioritizing phase I treatment options through preclinical testing on personalized tumorgraft. J Clin Oncol. 2012;30:e645–8.

213. Yuan H, Myers S, Wang J, Zhou D, Woo J, Kallakury B, et al. Use of reprogrammed cells to identify therapy for respiratory papillomatosis. N Engl J Med. 2012;367:1220–7.