Factorized Runge–Kutta–Chebyshev Methods

Stephen O’Sullivan
School of Mathematical Sciences, Dublin Institute of Technology, Kevin Street, Dublin 8, Ireland
E-mail: stephen.osullivan@dit.ie

Abstract. The second-order extended stability Factorized Runge–Kutta–Chebyshev (FRKC2) explicit schemes for the integration of large systems of PDEs with diffusive terms are presented. The schemes are simple to implement through ordered sequences of forward Euler steps with complex stepsizes, and easily parallelised for large scale problems on distributed architectures. Preserving 7 digits for accuracy at 16 digit precision, the schemes are theoretically capable of maintaining internal stability for acceleration factors in excess of 6000 with respect to standard explicit Runge-Kutta methods. The extent of the stability domain is approximately the same as that of RKC schemes, and a third longer than in the case of RKL2 schemes. Extension of FRKC methods to fourth-order, by both complex splitting and Butcher composition techniques, is also discussed.

A publicly available implementation of FRKC2 schemes may be obtained from maths.dit.ie/frkc

1. Introduction

Factorized Runge–Kutta–Chebyshev (FRKC) methods are well suited to the numerical integration of problems where diffusion limits the efficiency of standard explicit techniques. In general, such systems of PDEs may be presented as semi-discrete ordinary differential equations of the form

\[w' = f(t, w). \]

Here, the associated Jacobian is assumed to have negative eigenvalues lying close to the real axis, a good approximation for many systems of interest in astrophysical contexts.

The main use of extended stability Runge–Kutta (ESRK) methods is to fill the gap between unconditionally stable but operationally complex implicit methods, and simply implemented explicit schemes which suffer from stability constraints for stiff problems. ESRK methods are particularly useful for problems involving diffusion, where the work required by standard explicit techniques goes as the inverse square of the mesh spacing, while for extended stability methods it goes as the inverse mesh spacing. ESRK explicit schemes may be broadly divided into factorized and recursive types.

Factorized ESRK methods are particularly straightforward to implement at second-order, consisting solely of forward Euler steps. At orders above two, splitting methods or, alternatively, additional finishing stages are required for nonlinear problems. First considered by [1, 2, 3], factorized ESRK methods fell out of common usage for some time, until revived in 1996 as SuperTimeStepping [4] at first-order, and later extended to second-order applications in...
astrophysical simulations by means of Richardson extrapolation [5, 6]. **DUMKA** methods exist at third- and fourth-order [7].

The perennial problem with the factorized formalism has been that, when a very large number of stages is used, the internal amplification factors can easily drown numerical precision. Factorized methods have, as a result, largely taken a back seat to recursive methods which manage internal stability by mapping the three-term recurrence relations for orthogonal polynomials to the stability polynomials [8]. Recursive methods have been developed up to fourth-order [9, 10, 11, 12, 13, 14, 15].

In the following, a formulation of factorized methods is presented which has high internal stability, and is more straightforward to implement than recursive methods, and demonstrates comparable efficiency.

2. **FRKC** stability polynomials

Stability polynomials form the backbone of ESRK numerical schemes and encapsulate the linear stability properties. Linearising a system of semi-discrete ODEs

\[w' = Aw, \]

the **FRKC** stability polynomial [16] is obtained by seeking a polynomial of degree \(L \) which yields a forward Euler scheme of order \(N \) for linear problems through its roots via

\[W^L = W^0 + T \sum_{l=1}^{L} a_l f(W^{l-1}) \quad W^0 = w^n, \quad w^{n+1} = W^L. \]

The \(M \)-th stability polynomial of order \(N \), with \(L = MN \), determined via \(w^{n+1} = R^N_M(TA)w^n \), must match the first \(N + 1 \) terms in the Taylor expansion of the evolution operator

\[R^N_M(TA) = e^{TA} + O(TA)^{N+1}. \]

Equivalently, the linear order conditions may be expressed as constraints on the derivatives of the stability polynomial evaluated at zero:

\[R^N_M(0) = 1, \quad n = 1, \ldots, N. \]

In addition, stability requires that the polynomial is bounded according to

\[|R^N_M(z)| \leq 1 \quad \forall \quad z = T\lambda. \]

The objective is to determine a closed form for the polynomial such that the extent of the stability domain along the negative real axis \(\beta \) is as great as possible.

It is shown in [16] that the **FRKC** stability polynomial of rank \(N \), and degree \(L \), is a sum of Chebyshev polynomials of the first kind given by

\[B^N_M(z) = d^N_0 + 2 \sum_{k=1}^{N} d^N_k C_{kM}(z), \]

where \(C_{kM} \) is the Chebyshev polynomial of the first kind of degree \(kM \), and the coefficients \(d_k \) are determined through the linear order conditions given by Equation 5. The resultant scheme follows immediately from the roots of the polynomial, \(\zeta_l \), with coefficients given by

\[a_l = \frac{1}{M^2 \alpha_M} \frac{1}{1 - \zeta_l}. \]

The dependency of \(\beta \) on \(L \) is presented in Figure 1 at second-order (\(N = 2 \)). While the optimal value for \(\beta/L^2 \beta_{RK2} \) is 0.41 [17], where \(\beta_{RK2} \) is the conventional second order Runge–Kutta stability limit, values of 0.330, 0.333, and 0.25 are obtained for **FRKC2**, **RKC** [8], and **RKL2** [15] respectively.
Figure 1: Extent of real stability domain at second-order for FRKC2 (solid line). For large values of stage-number L, the scheme has a stability domain which is 0.33L^2 times the extent of the reference second-order Runge–Kutta scheme. Also shown are the corresponding values for RKC (dashed line) and RKL2 (dotted line).

2.1. Damping

Along the real axis on the interior of the stability domain of the stability polynomial, there are points which are marginally stable, as shown in Figure 2. This is remedied by introducing the damping parameter $\nu \equiv \nu_0/N$ via

$$a_l = \frac{1}{(1 - \nu)M^2 \alpha_M} \frac{1 - \mu}{1 - (1 - 2\mu_1)\zeta_l},$$

and again enforcing the order conditions given by Equation 5 via Newton-Raphson iteration over the parameters μ_l, which consist of N distinct values, each repeated M times. As a result, the marginally stable maxima in $|R|$ along the real axis are scaled by $\sim (1 - \nu_0)$ at the expense of reducing the extent of the stability domain β along the real axis by approximately $(1 - \nu)$.

The damping process may also be used to make the scheme applicable to problems with small hyperbolic components, with Péclet numbers $Pe < \sim 10$. For the case $Pe \approx 10$, illustrated in Figure 2 there is a 25% loss in the extent of the stability domain observed.

2.2. Internal stability

Internal instability may be caused when the product of any of the possible sub-sequences of steps act to generate large values which drown out numerical precision. Following the idea of Lebedev [18, 19], but with a more effective approach, the timesteps are ordered to approximately minimise Q, where

$$Q \equiv \max(Q_{j,k}(x)), \quad 1 \leq j \leq k \leq L, \quad x \in [-\beta, 0],$$

is the maximum over the internal amplification factors defined by

$$Q_{j,k}(x) = \prod_{l=j}^{k} |1 + a_l x|.$$

While the optimal value of Q is approximately L^2, for the purposes of constructing a stabilization algorithm, a practical upper bound of $10L^2$ is chosen. In order to maintain this bound, the estimated maximum amplification factor \overline{Q} is held to a minimum while l runs from 1 to L, where

$$\overline{Q} \equiv \max \left(\prod_{j=1}^{l} v_{j,k}, \prod_{j=l+1}^{L/2} v_{j,k} \right).$$
Figure 2: Stability domain $|R(x+Iy)| = 1$ for FRKC polynomial without damping (grey line) and with sufficient damping applied for mixed hyperbolic-parabolic problems with $Pe \approx 10$ (black line). The extent of the stability domain along the real axis is contracted by approximately 25% in the latter case.

The amplification factors $v_{j,k}$ are defined by $v_{j,k} = |1 + a_j x_k|$, where $x_k \in [-\beta, 0]$ are L uniformly distributed values over the reduced range $\beta = (1 - nC)\beta$, with $C = 10^{-4}$. Initially, $n = 1$, however, in a limited number of cases, the process is repeated with n incremented until the required bound is satisfied. In this work, the mean value of n for the second-order schemes was found to be 1.5. Figure 3 shows the realised values of Q obtained via the stabilization algorithm for second-order schemes. Preserving 7 digits for accuracy, a scheme consisting of 10^4 stages is therefore theoretically viable in a numerical integration carried out to 16 digit precision.

Figure 3: The maximum realised internal amplification factor Q as a function of L for second-order schemes. Guidelines are at L^2 and $10L^2$.

2.3. Convex Monotone Property

The convex monotone property (CMP), relevant to problems with spatially varying diffusion coefficients, was recently considered by [15]. Figure 4 shows solutions obtained for a problem describing two materials at different temperatures and with different diffusion coefficients placed into contact. For Chebyshev polynomial-based schemes such as RKC and FRKC2, features in the solution associated with failure to meet the CMP are evident if the schemes are forced to take
large steps initially (Figures 4a and 4c). However, with error control implemented as discussed in Section 3, the features do not appear (Figure 4d). The RKL2 scheme maintains the CMP naturally (Figure 4b).

Figure 4: Heat conduction between materials of different thermal conductivity illustrating influence of the convex monotone property (CMP) [15].

3. FRKC2 schemes
A system $w' = f(w)$ is assumed such that the associated Jacobian has an eigenvalue of maximum magnitude $|\lambda|_{\text{max}}$. Then, given a numerical solution w^n at some time index n, $L = 2M$ stages W^l (for $l = 0, \ldots, L$) are evaluated such that $W^0 = w^n$ and a second-order accurate solution $w^{n+1} = W^L$ is obtained a time T later. The intermediate stages of the scheme are determined via the Euler steps

$$W^{l+1} = W^l + T_{a_l} f(W^l).$$

Error control is straightforward since a first-order solution is available at no additional cost in function evaluations. This first-order solution \hat{W}^L is obtained by considering only the real
parts of a_l and $f(W^l)$. Setting $\hat{W}^0 = W^0$,

$$\hat{W}^{l+1} = \hat{W}^l + T \text{Re}(a_l) \text{Re}(f(W^l)).$$

(14)

The error, scaled to a specified tolerance TOL, is estimated using

$$\|err\| = \left\| \frac{|W^{l+1} - \hat{W}^{l+1}|}{TOL(1 + \max(|W^{l+1}|, |\hat{W}^{l+1}|))} \right\|.$$

(15)

If $\|err\| > 1$, the step is rejected and retried with T scaled by $SAFE/\|err\|$. Otherwise, a predictive controller is used to determine the subsequent timestep calibrated to the required tolerance via

$$T^{n+1} = \left(\frac{SAFE}{\|err^n\|} \right) \left(\frac{T^n}{T^{n-1}} \right) \sqrt{\frac{\|err^{n-1}\|}{\|err^n\|}},$$

(16)

using values of T and $\|err\|$ from previous timesteps. $SAFE$ is a safety factor chosen with a value 0.8 here. The reader is referred to [20] for further details of error control procedures.

3.1. FRKC2 public code

A freely available C implementation of the second-order FRKC2 schemes may be accessed at maths.dit.ie/frkc. The files `frkc2core.c` and `frkc2user.c` provide the code for internal calculations required by the FRKC2 scheme and the code specific to the particular problem respectively. For a given value of M, up to 257, the extent of the stability domain along the real axis, β, and the maximum realised internal amplification factor Q (see also Figure [3]) are given on line $3M - 2$ of `frkc2arks.dat`. The real and imaginary parts of a_l are recorded on lines $3M - 2$ and $3M$ respectively.

![Figure 5: Efficiency comparison for the two-dimensional Brusselator problem for FRKC2, ROCK2, and RKC. (The lines for FRKC2 and ROCK2 are almost coincident.)](image)

The default problem provided in `frkc2user.c` is a two-species reaction diffusion Brusselator

$$\frac{\partial v}{\partial t} = 0.02 \left(\frac{\partial^2 v}{\partial x_1^2} + \frac{\partial^2 v}{\partial x_2^2} \right) + 1 - 4v + w^2,$$

$$\frac{\partial w}{\partial t} = 0.02 \left(\frac{\partial^2 w}{\partial x_1^2} + \frac{\partial^2 w}{\partial x_2^2} \right) + 3v - v^2w,$$

$$v(0, x) = 1 + \sin(2\pi x) \quad w(0, x) = 3 + \cos(2\pi y),$$

(17)
which possesses a spectral radius of approximately 6400 for a 200×200 mesh. The initial state is a perturbation of the equilibrium solution which is given by $v = 1$, $w = 3$. Figure 5 shows the number of steps required to attain a given error in the solution for FRKC2, ROCK2, and RKC. It is evident that, for a given precision, there is little difference in the number of steps required by FRKC2 and ROCK2. At higher degrees of acceleration (fewer steps), the difference between the three schemes is negligible.

4. FRKC4 scheme

4.1. Complex splitting

Above second-order, nonlinear order conditions are present which require additional consideration. One approach, given a semi-linear parabolic (reaction-diffusion) equation of the form $w' = Aw + f_B(w)$, is to split the nonlinear part $f_B(w)$, which is typically easily integrated, from the linear diffusion terms Aw. For orders above two, this requires complex timesteps and may be prescribed in the form

$$w^{n+1} = e^{T_k B} e^{T_k A} \ldots e^{T_1 B} e^{T_1 A} w^n.$$

Figure 6 shows the split FRKC4s scheme is competitive with ROCK4. However, in support of the splitting approach, it may be noted that ROCK4 suffers significantly from internal stability issues arising from the finishing stages required for the nonlinear order conditions (discussed further in Section 4.2) which effectively limits the scheme to about 150 stages.

4.2. Butcher composition

An alternative to complex splitting is Butcher composition. At fourth-order, as illustrated in Table 1, $L - 4$ forward Euler steps are adopted from the FRKC stability polynomial with $N = 4$ as the scheme a, and appropriate finishing stages for the scheme π are subsequently derived.

According to a theorem of Hairer & Wanner, given the B-series a, b, the composite scheme ab is determined via

$$a\pi(t) = \frac{1}{a(t)} \sum \left(\sum_{i=0}^{q} \binom{q}{i} \pi(s_i(t)) \prod_{z \in d_i(t)} a(z) \right),$$

Figure 6: Performance results derived from the estimated error for the Brusselator problem. Shown are data for the fourth-order ESRK schemes FRKC4s, FRKC6s, ROCK4, and the fifth-order implicit CVODE scheme.
Table 1: FRKC4 order composition tableaux.

c_0	a_1
c_2	a_1 a_2
c_3	a_1 a_2 a_3
c_4	a_1 a_2 a_3 a_{L-5}
c_L	a_1 a_2 a_3 \cdots a_{L-5} a_{L-4}

where rooted trees t are used to represent derivatives in Taylor series. The first summation in Equation 19 is over all $\alpha(t)$ different labelings of t, $s_i(t)$ is the subtree formed by the first i indices, and $\{z \in d_i(t)\}$ is the difference set of subtrees formed by the remaining indices. The eight order conditions at fourth order are then given by

\begin{align}
\alpha\pi(\cdot) &= \alpha(\cdot) + \pi(\cdot), \\
\alpha\pi(\cdot) &= 2\alpha(\cdot)\pi(\cdot) + a(\cdot) + \pi(\cdot), \\
\alpha\pi(\cdot) &= 3\alpha(\cdot)^2\pi(\cdot) + 3\alpha(\cdot)\pi(\cdot) + a(\cdot) + \pi(\cdot), \\
\alpha\pi(\cdot) &= 3\alpha(\cdot)\pi(\cdot) + 3\alpha(\cdot)\pi(\cdot) + a(\cdot) + \pi(\cdot) + \pi(\cdot), \\
\alpha\pi(\cdot) &= 4\alpha(\cdot)^3\pi(\cdot) + 6\alpha(\cdot)^2\pi(\cdot) + 4\alpha(\cdot)\pi(\cdot) + a(\cdot) + \pi(\cdot) + \pi(\cdot), \\
\alpha\pi(\cdot) &= 4\alpha(\cdot)^2\pi(\cdot) + 4\alpha(\cdot)\pi(\cdot) + (8/3)\alpha(\cdot)\pi(\cdot) + (4/3)\alpha(\cdot)\pi(\cdot) + a(\cdot) + \pi(\cdot), \\
\alpha\pi(\cdot) &= 2\alpha(\cdot)\pi(\cdot) + a(\cdot) + \pi(\cdot) + \pi(\cdot), \\
\alpha\pi(\cdot) &= 6\alpha(\cdot)^2\pi(\cdot) + 4\alpha(\cdot)\pi(\cdot) + a(\cdot) + \pi(\cdot) + \pi(\cdot), \\
\alpha\pi(\cdot) &= 4\alpha(\cdot)\pi(\cdot) + 6\alpha(\cdot)\pi(\cdot) + a(\cdot) + \pi(\cdot) + \pi(\cdot) + \pi(\cdot).
\end{align}

Hence, for given scheme a, imposing the required order conditions on $\alpha\pi$ yields equations for π, which are in turn easily solved for π. The reader is referred to [25] for further details.

Figure 6 shows a comparison of the FRKC4 scheme based on composition methods with other schemes. The reference solution is provided by a fifth-order implicit preconditioned BDF solver from the CVODE numerical package [26]. The number of steps required for a given precision is comparable for ROCK4 and FRKC4 and somewhat greater than the split FRKC4s scheme. This difference may be ascribed to a loss of precision due to the accumulation of errors over the finishing stages [27].

5. Conclusions
FRKC extended stability Runge–Kutta (ESRK) schemes are shown to be well-suited to the integration of large-scale problems governed by systems of PDEs where the explicit timescale is constrained by diffusion. An implementation of the FRKC2 second-order schemes, publicly available at maths.dit.ie/frkc, is presented. The fourth-order FRKC4 schemes are also presented with nonlinear order conditions addressed via both splitting and composition methods. These schemes are shown to be competitive with alternative ESRK methods.

5.1. Acknowledgments
I am grateful to organisers of Astronum2016 for the invitation to present this work in Monterey and to an anonymous referee for helpful comments.
6. References

[1] Saulev V 1960 Fizmatgiz, Moscow
[2] Guillou A and Lago B 1960 1er Congr. Ass. Fran. Calcul., AFCAL 43–56
[3] Gentzsch W and Schluter A 1978 Z. Angew. Math. Mech 58 T415–T416
[4] Alexiades V, Amiez G and Gremaud P 1996 Communications in numerical methods in engineering 12 31–42
[5] O’Sullivan S and Downes T P 2006 Monthly Notices of the Royal Astronomical Society 366 1329–1336
[6] O’Sullivan S and Downes T P 2007 Monthly Notices of the Royal Astronomical Society 376 1648–1658
[7] Medovikov A A 1998 BIT Numerical Mathematics 38 372–390
[8] van Der Houwen P J and Sommeijer B P 1980 ZAMM - Journal of Applied Mathematics and Mechanics / Zeitschrift für Angewandte Mathematik und Mechanik 60 479–485
[9] Verwer J G 1996 Applied Numerical Mathematics 22 359–379
[10] Sommeijer B, Shampine L and Verwer J 1998 Journal of Computational and Applied Mathematics 88 315–326
[11] Abdulle A and Medovikov A A 2001 Numerische Mathematik 90 1–18
[12] Abdulle A 2002 SIAM Journal on Scientific Computing 23 2041–2054
[13] Martin-Vaquero J and Janssen B 2009 Computer Physics Communications 180 1802–1810
[14] Meyer C D, Balsara D S and Aslam T D 2012 Monthly Notices of the Royal Astronomical Society 422 2102–2115
[15] Meyer C D, Balsara D S and Aslam T D 2014 Journal of Computational Physics 257 594–626
[16] O’Sullivan S 2015 Journal of Computational Physics 300 665 – 678
[17] Van Der Houwen P J 1977 Construction of integration formulas for initial value problems (North Holland)
[18] Lebedev V I 2000 Computational mathematics and mathematical physics 40 1729–1740
[19] Lebedev V 1994 Numerical methods and applications 45–80
[20] Hairer E and Wanner G 1996 Springer series in computational mathematics 14
[21] Nicolis G and Prigogine I 1977 Self-organization in nonequilibrium systems : from dissipative structures to order through fluctuations (New York: Wiley)
[22] Abdulle A 2001 Chebyshev methods based on orthogonal polynomials Ph.D. thesis
[23] Castella F, Chartier P, Descombes S and Vilmart G 2009 BIT Numerical Mathematics 49(3) 487–508
[24] Blanes S, Casas F, Chartier P and Murna A 2013 Mathematics of Computation 82 1559–1576
[25] Hairer E, Norsett S and Wanner G 1993 Springer series in computational mathematics 8
[26] Cohen S D and Hindmarsh A C 1996 Computers in physics 10 138–143
[27] Hundsdorfer W and Verwer J G 2013 Numerical solution of time-dependent advection-diffusion-reaction equations vol 33 (Springer Science & Business Media)