Attitudes of physicians towards COVID-19 vaccines and reasons of vaccine hesitancy in Turkey

Running title: COVID-19 vaccine hesitancy

Burak Civelek¹, Ozan Yazici², Nuriye Ozdemir², Cengiz Karacin³, Aziz Ahmet Surel⁴

¹Alife Hospital, Ankara, Turkey
²Gazi University, Ankara, Turkey
³RTE University Training and Research Hospital, Rize, Turkey
⁴Ankara City Hospital, Ankara, Turkey

1) Assoc. Prof. Burak Civelek, Department of Medical Oncology, Alife Hospital, Ankara, Turkey
drburak@hotmail.com
ZIP code: 06200, Etimesgut/Ankara
Phone: +903123390000

2) Assoc. Prof. Ozan Yazici, Department of Medical Oncology, Gazi University, Ankara, Turkey
drozanyazici@gmail.com
ZIP code: 06200, Beşevler/Ankara
Phone: +03123510000

3) Prof. Nuriye Ozdemir, Department of Medical Oncology, Gazi University, Ankara, Turkey
nyozdemir@yahoo.com
ZIP code: 06200, Beşevler/Ankara
Phone: +03123510000

This article has been accepted for publication and undergone full peer review but has not been through the copyediting, typesetting, pagination and proofreading process, which may lead to differences between this version and the Version of Record. Please cite this article as doi: 10.1111/IJCP.14399

This article is protected by copyright. All rights reserved
4) Assoc. Prof. Cengiz Karacin, Department of Medical Oncology, RTE University Training and Research Hospital, Rize, Turkey
cengizkaracin@yahoo.com
ZIP code: 53200, Rize
ORCID: 0000-0002-7310-9328
Phone number: +904642130491

5) Assoc. Prof. Aziz Ahmet Surel, Department of General Surgery, Ankara City Hospital, Ankara Turkey
azizahmetsurel@gmail.com
ZIP code: 06200, Bilkent/Ankara
Phone: +03122220000

Corresponding author:
Cengiz Karacin, RTE University Training and Research Hospital, Department of Medical Oncology, Rize, Turkey
cengizkaracin@yahoo.com
ORCID: 0000-0002-7310-9328
Phone number: +904642130491

Acknowledgements
We are grateful to all the research participants

Disclosure statement
No potential conflict of interest was reported by the authors
Author Contributions

All article steps were carried out by all authors

Word count: 2327
Tables: 4
Graphics: 1
Attitudes of physicians towards COVID-19 vaccines and reasons of vaccine hesitancy in Turkey

Running title: COVID-19 vaccine hesitancy

Abstract

Aim: The development of safe and effective vaccines against SARS-CoV-2 and successful implementation of a global vaccination programme are prerequisites for a return to normal living conditions. Despite these intensive research efforts, vaccine hesitancy and misinformation in many countries present substantial obstacles to achieving sufficient coverage and community immunity. Here, we report the findings of a survey regarding the likelihood of COVID-19 vaccine acceptance in a sample of physicians in Turkey.

Materials and methods: An anonymous web-based survey was prepared and sent to medical doctors randomly selected from seven parts of Turkey via a text message sent to their mobile phones. Demographic data were collected, including sex (male or female), medical specialty, age, professional experience, COVID-19 history, knowledge of COVID-19 vaccines and behaviours related to vaccines against COVID-19 and other diseases. The survey was conducted over a 1-week period in December 2020.

Results: A total of 1,557 medical doctors responded to the survey. A total of 1,065 (68.4%) respondents were considering COVID-19 vaccination, 374 (24%) were undecided and 118 (7.6%) did not want to be vaccinated. As a result of multivariate analysis, the male gender,
absence of history of COVID-19 infection, and having sufficient information about the vaccine were determined as predictive factors for willingness to vaccination.

Conclusion: Although trials tend to focus on the efficacy of vaccines, the results of this study indicated that the most important factor affecting the preference for a given vaccine among Turkish physicians is safety.

Key words: acceptance, COVID-19, doctors, hesitancy, vaccine

What’s known

- Vaccine hesitancy and misinformation present substantial obstacles to achieving sufficient coverage and community immunity in many countries.

- Anti-vaccine propaganda on social media may have led to increased suspicion and negative attitudes toward vaccination among both medical professionals and the general population.

What’s new

- This was the first study to evaluate attitudes towards COVID-19 vaccination among physicians in Turkey.

- The COVID-19 vaccine hesitancy rate was 31.6% among physicians in Turkey.

- The results of this study indicated that the most important factor affecting the preference for a given vaccine among Turkish physicians.

- The male gender, absence of history of COVID-19 infection, and having sufficient information about the vaccine were determined as predictive factors for willingness to vaccination

1. **INTRODUCTION**

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), first reported in Wuhan, China, in December 2019, has subsequently spread around the world and was declared a pandemic by the World Health Organisation in March 2020.¹

This article is protected by copyright. All rights reserved
Although no specific treatments have yet been developed for coronavirus disease 2019 (COVID-19) caused by SARS-CoV-2, a number of adjunctive therapies have been used, such as antiviral agents, systemic corticosteroids, low-molecular-weight heparin (LMWH), convalescent plasma, and mesenchymal stem cell therapy, as well as investigational therapies such as interferon-α, ribavirin, intravenous immunoglobulin, etc.2

Successful vaccination strategies have already provided significant protection against at least 31 human diseases, which has had an extraordinary impact on human health worldwide.3 The development of safe and effective vaccines against SARS-CoV-2 and successful implementation of a global vaccination programme are prerequisites for a return to normal living conditions.4 More than 90 vaccines against SARS-CoV-2 are currently under development by research teams in both academia and industry across the world.5

Despite these intensive research efforts, vaccine hesitancy and misinformation present substantial obstacles to achieving sufficient coverage and community immunity in many countries.6,7 Due to the accelerated vaccine approval processes necessitated by the urgency of this pandemic, anti-vaccine propaganda on social media may have led to increased suspicion and negative attitudes toward vaccination among both medical professionals and the general population.

Here, we report the findings of a survey regarding the likelihood of COVID-19 vaccine acceptance and hesitancy in a sample of physicians in Turkey.

2. MATERIALS AND METHODS

Study design and data collection

An anonymous web-based survey was prepared and sent to medical doctors randomly selected from seven parts of Turkey via a text message sent to their mobile phones. Demographic data were collected, including sex (male or female), medical specialty, age (<30, 30–40, 40–50, 50–60, > 60 years), geographic location, professional experience, type of hospital, COVID-19 history, knowledge of COVID-19 vaccines and behaviours related to vaccines against COVID-19 and other diseases. The participants were asked whether they intended to vaccinate themselves or their families (if applicable). The survey was conducted over a 1-week period in December 2020.
Statistical analysis

Data were collected via web-based platform (Google Surveys®); percentage and frequency data were obtained.

Statistical analyses were performed using SPSS for Windows® software (version 22.0; SPSS Inc., Chicago, IL, USA). All variables were compared by the Chi-square test. In all analyses, \(p < 0.05 \) was taken to indicate statistical significance. Multinomial logistic regression analysis was performed to identify independent factors associated with acceptance of COVID-19 vaccination. Bonferroni corrected Post-hoc paired comparisons were made to determine from which group the significant relationship originated.

3. RESULTS

A total of 1,557 physicians (medical doctors) responded to the survey, including 854 (55%) men and 703 (45%) women. Of these physicians, 788 (50%) had a medical specialty and 344 (22%) were professoors or associate professors. A total of 665 (42%) responders were > 50 years old, 92 (6%) were under 30 years, 339 (21%) were aged between 30 and 40 years and 461 (30%) were aged between 40 and 50 years. The majority of the respondents were located in Marmara (northwestern Turkey; \(n = 613, 39\% \)), or Middle Anatolia or the Aegean region (western Turkey; \(n = 465, 30\% \) and \(n = 248, 15\% \), respectively). The respondents’ workplaces were as follows: government hospitals, \(n = 560, 36\% \); private hospitals, \(n = 445, 28\% \); family health centres (family physicians), \(n = 280, 18\% \); and university hospitals, \(n = 272, 17.5\% \). The medical specialties of the respondents were as follows: internal branches (internal medicine, paediatrics, dermatology, physical medicine, etc.), \(n = 633, 40.7\% \); surgical branches (surgery, orthopaedics, neurosurgery, anaesthesiology), \(n = 532, 34\% \); family physician, \(n = 334, 21\% \); and non-clinical specialties, \(n = 58, 3.7\% \). In total, 265 of the physicians (17.1%) included in the study had contracted COVID-19 (Table 1).

While 43.9% of the participants had received information from the literature and lectures about COVID-19 vaccine types and development technologies, 41% of them had received information from the press and 12% had received information from the Ministry of Health. A total of 1,317 (84.6%) of the participants felt that phase III trials were required before commencing population vaccination programmes, while 156 (10%) felt that accelerated approval was sufficient in this case. A statistically significant relationship was found between the status of the willingness to get vaccinated and gender (\(\chi^2 = 24.331; p < 0.001 \)), professional seniority (years) (\(\chi^2 = 98.417; p < 0.001 \)), the branch (internal and
surgical units versus basic sciences) ($\chi^2 = 15.431; p<0.001$). Bonferroni corrected Post-hoc paired comparisons were made to determine from which group the significant relationship originated (Table 2).

A total of 1,065 (68.4%) respondents were considering COVID-19 vaccination, 374 (24%) were undecided and 118 (7.6%) did not want to be vaccinated Figure 1. The vaccine hesitancy rate was 31.6% in total. A total of 1,140 (73%) physicians felt that COVID-19 vaccines were not different from other vaccines in terms of side effects. While 21 (1.3%) felt that all COVID-19 vaccines were ineffective, 285 (16.6%) responded that they felt they were definitely effective and 1,129 (72.5%) felt that they would have only limited efficacy. Of the physicians who did not want to be vaccinated, 77 (65.4%) cited insufficient scientific data, 20 (17%) cited disease history and immunity against COVID-19, and (7.6%) expressed concerns regarding side effects of the vaccine. A total of 1,043 (57%) respondents were considering vaccinating their families, 416 (26.7%) were undecided, and 98 (6.3%) did not intend to vaccinate their families. The most important factors affecting the decision to choose a particular vaccine included its safety (n = 898, 57.7%), efficacy. The participants were asked which of the currently available vaccines they would consider choosing, and 573 (39.8%) expressed a preference for BioNTech®, while 426 (29.6%) chose Sinovac®, 145 (10%) chose AstraZeneca®, 57 (4%) chose Moderna, 18 (1.2%) chose the Sputnik V vaccine, and 221 (15.4%) stated that they would be comfortable using any of the available vaccine types A statistically significant relationship was found between the status of the willingness to get vaccinated and the factor affecting the choice of vaccine ($\chi^2 = 118.986; p < 0.001$). Bonferroni corrected Post-hoc paired comparisons were made to determine from which group the significant relationship originated. It was determined that the rate of those who preferred the vaccine due to the safety data was higher than all other groups (Table 3).

As a result of the logistic regression analysis based on the status of the willingness to get vaccinated the optimal model is created. In the current model, it was determined that males wanted to get vaccinated 2.051 times more than females (p=0.001). The occupational working time classes was an effective parameter on gender desire to get vaccinated (p <0.05). The participants who worked for 6-10 years wanted to get vaccinated 4.151 times more than those who worked for ≤5 years (p = 0.004). It was determined that employees working for 11-15 years wanted to get vaccinated 4,800 times more than those who worked for ≤5 years (p=0.001). It has been determined that employees working for> 15 years want to get vaccinated 8,540 times more than those who have worked for ≤5 years (p=0.001).
Participants who did not have Covid-19 wanted to get vaccinated 3,262 times more than those who had Covid-19 (p <0.001). The physicians who knew the vaccine content wanted to get vaccinated 1.944 times more than those who did not know the vaccine content (p=0.033). It was determined that those who intend to vaccinate their family wanted to get vaccinated 27,193 times more than those who were undecided (p <0.001) (Table 4).

4. DISCUSSION

The main purpose of this study was to document and analyse the views of healthcare professionals in Turkey towards COVID-19 vaccines, where ultimately the goal is to minimise anti-vaccination sentiments and prejudices. It will be necessary to determine the views of healthcare professionals regarding vaccines against COVID-19 around the world, to better inform the public and allow promote guidance by health authorities.

This study included 1,557 physicians, most of whom were senior specialists or lecturers, including professors and associate professors, which make the findings presented here more compelling. In addition, the majority of the physicians had 15 years or more of clinical experience.

In a study conducted with 384 non-healthcare professionals in Turkey, the vaccine hesitancy rate was found to be 45.3%. In our study, this rate was 31.6%, which was relatively low. However, considering that healthcare workers are in a higher risk group for COVID-19 than the general population, the vaccine hesitancy rate (31.6%) found in our study may still be higher than expected. A recently published Canadian study supported our prediction. It reported that 19.1% of 2761 healthcare workers who were planned to be vaccinated with the Pfizer-BioNTech mRNA vaccine by government refused to be vaccinated. It was stated that 74% of the healthcare workers who refused to be vaccinated could change their opinions and accept vaccination in the future. Janssens et al. evaluated the vaccine willingness levels before and after the vaccination program in a survey conducted with healthcare workers. In this study, they found that the rate of willingness to vaccinate increased significantly after vaccination compared to before vaccination (63.8% vs. 75.9%). They also showed that the participants' concerns about side effects and long-term harm related to the vaccine decreased significantly after vaccination, and they thought that this situation contributed to the increase of willingness to vaccinate ratio. Similarly, in present study, the reasons given by the majority of physicians for their opposition to vaccination were
the low level of evidence and data quality in vaccine studies. We believe that this rate will decrease with the publication of the results of phase III trials.

Our study determined that having COVID-19 infection is an independent predictive factor that increases vaccine hesitancy. The rate of physicians with COVID-19 infection was 17.1%, and this rate may be one of the other reasons that could explain the high vaccine hesitancy in our study.

Current study showed that among physicians, female gender might be a predictive factor for COVID-19 vaccine hesitancy. Dzieciolowska et al. also obtained similar results in their study with healthcare workers and showed that the vaccine acceptance rate is higher among male healthcare workers.9 Janssens et al. showed that the female gender was significantly associated with a restricted willingness to vaccinate. The results obtained in all these studies suggest that women healthcare workers have a special place in programs aimed at reducing vaccine hesitancy.10

Improving the design of clinical trials for existing vaccines, and sharing the data thereof instead of waiting for the results of new COVID-19 vaccine trials, will reduce the current uncertainty. In our study, the majority of physicians expressed a preference for BioNTech and Sinovac vaccines, and it was striking that the most important factor affecting their preference was safety rather than efficacy data.

One of the limitations of this study was that it included a heterogeneous population of medical doctors from all surgical and internal specialties, rather than being limited to specialties related to COVID-19 treatment. In addition, other healthcare professionals and members of the general population were not included in this study. Dror et al. reported that the rates of vaccine hesitancy were higher among nurses, other medical workers and the general population than among physicians.11 Therefore, studies including these populations are required. The best known COVID-19 vaccines in Turkey (BioNTech, Sputnik V, Moderna, Sinovac, AstraZeneca and Oxford) were listed in the questionnaire.12-16 No other vaccines were listed by name, which may represent a limitation of the study. BioNTech and Sinovac were preferred by most of the respondents. These two vaccines were derived using completely different techniques, and the preference for them was most likely because the health authority provided Sinovac vaccine from China and BioNTech managers were of Turkish origin.
This study was planned before commencement of a COVID-19 vaccination programme in Turkey, and the results revealed varying opinions about the vaccine among physicians; as mentioned above, the prevalence of prejudices and misconceptions will likely be much higher in the general population.\(^{11}\)

5. CONCLUSION

This was the first study to evaluate attitudes towards COVID-19 vaccination among physicians in Turkey. By designing similar studies in other countries and evaluating the attitudes of healthcare professionals therein, health authorities will be able to develop more effective vaccination strategies and public education programmes pertaining to vaccination. Health authorities must take measures to counteract anti-vaccine propaganda. Although trials tend to focus on the efficacy of vaccines, the results of this study indicated that the most important factor affecting the preference for a given vaccine among Turkish physicians is safety.

Figure Legend

Figure 1. Position of physicians and willingness to get vaccinated

Table Legends

Table 1. Characteristic features of the participants

Table 2. Examination of the relationships between the status of the willingness to get vaccinated and some parameters

Table 3. Examination of the relationships between the status of the willingness to get vaccinated and some parameters

Table 4. Logistic Regression model based on the status of the willingness to get vaccinated

References

1. Zhu N, Zhang D, Wang W, et al. A novel coronavirus from patients with pneumonia in China, 2019. *N Engl J Med*. 2020.

2. Xu X, Ong YK, Wang DY. Role of adjunctive treatment strategies in COVID-19 and a review of international and national clinical guidelines. *Mil Med Res*. 2020;7:1-18.

This article is protected by copyright. All rights reserved
3. Doherty M, Buchy P, Standaert B, Giaquinto C, Prado-Cohrs D. Vaccine impact: benefits for human health. *Vaccine*. 2016;34:6707-6714.

4. World Health Organization. Draft landscape of COVID-19 candidate vaccines. 2020. https://www.who.int/publications/m/item/draft-landscape-of-COVID19-candidate-vaccines.

5. Callaway E. The race for coronavirus vaccines: a graphical guide. *Nature*. 2020;580:576.

6. Larson HJ, Jarrett C, Eckersberger E, Smith DM, Paterson P. Understanding vaccine hesitancy around vaccines and vaccination from a global perspective: a systematic review of published literature, 2007–2012. *Vaccine*. 2014;32:2150-2159.

7. Lane S, MacDonald NE, Marti M, Dumolard L. Vaccine hesitancy around the globe: Analysis of three years of WHO/UNICEF Joint Reporting Form data-2015–2017. *Vaccine*. 2018;36:3861-3867.

8. İkişiş H, Sezerol MA, Taşçı Y, Maral I. COVID-19 Vaccine Hesitancy: A Community-Based Research in Turkey. *Int J Clin Pract*. e14336.

9. Dzieciolowska S, Hamel D, Gadio S, et al. Covid-19 Vaccine Acceptance, Hesitancy and Refusal among Canadian Healthcare Workers: a Multicenter Survey. *Am J Infect Control*. 2021.

10. Janssens U, Kluge S, Marx G, Hermes C, Salzberger B, Karagiannidis C. [Attitude towards vaccination against SARS-CoV-2 : Survey among employees in hospitals before and after the start of vaccinations in German hospitals]. *Med Klin Intensivmed Notfmed*. 2021:1-10.

11. Dror AA, Eisenbach N, Taiber S, et al. Vaccine hesitancy: the next challenge in the fight against COVID-19. *Eur J Epidemiol*. 2020;35:775-779.

12. Burki TK. The Russian vaccine for COVID-19. *Lancet Respir Med*. 2020;8:e85-e86.

13. Palacios R, Patiño EG, de Oliveira Piorelli R, et al. Double-Blind, Randomized, Placebo-Controlled Phase III Clinical Trial to Evaluate the Efficacy and Safety of treating Healthcare Professionals with the Adsorbed COVID-19 (Inactivated) Vaccine Manufactured by Sinovac—PROFISCOV: A structured summary of a study protocol for a randomised controlled trial. *Trials*. 2020;21:1-3.

14. Mulligan MJ, Lyke KE, Kitchin N, et al. Phase I/II study of COVID-19 RNA vaccine BNT162b1 in adults. *Nature*. 2020;586:589-593.

15. Jackson LA, Anderson EJ, Rouphael NG, et al. An mRNA vaccine against SARS-CoV-2—preliminary report. *N Engl J Med*. 2020.
16. Voysey M, Clemens SAC, Madhi SA, et al. Safety and efficacy of the ChAdOx1 nCoV-19 vaccine (AZD1222) against SARS-CoV-2: an interim analysis of four randomised controlled trials in Brazil, South Africa, and the UK. *Lancet*. 2021;397:99-111.
Table 1. Characteristic features of the participants

	Sex	n (%)
Male	854 (54.8%)	
Female	703 (45.2%)	
Age (y)		
<30	92 (5.9%)	
30-40	339 (21.8%)	
40-50	461 (29.6%)	
>50	665 (42.7%)	
Position		
Assistant	92 (5.9%)	
General practitioner	333 (21.4%)	
Specialist	788 (50.6%)	
Professor or associate professor	344 (22.1%)	
Specialty		
Non-clinical specialties (pharmacology)	58 (3.7%)	
Family physician	334 (21%)	
Internal branches (internal medicine, paediatrics, dermatology, physical medicine etc)	633 (40.7%)	
Surgical branches (surgery, orthopaedics, neurosurgery, anaesthesiology)	532 (34.2%)	
Regions		
Southeast Anatolia region	27 (1.7%)	
Eastern Anatolia region	58 (3.7%)	
Black Sea region	70 (4.5%)	
Mediterranean region	76 (4.9%)	
Aegean region	248 (15.9%)	
Middle Anatolia region	465 (29.9%)	
Marmara region	613 (39.4%)	
Workplace	Count (Percentage)	
---	--------------------	
University hospital	272 (17.5%)	
Family health centre (family physician)	280 (18%)	
Private hospital	445 (28.5%)	
Table 2. Examination of the relationships between the status of the willingness to get vaccinated and some parameters

Willingness to get vaccinated Variables (N=1557)	Yes (n=1065)	No (n=118)	Undecided (n=374)	Statistical analysis* Probability		
	n, (%)	n, (%)	n, (%)			
Gender						
Male	629 (%59.1)	56 (%47.5)	169 (%45.2)	$\chi^2=24.331$ p<0.001		
Female	436 (%40.9)	62 (%52.5)	205 (%54.8)			
Status of training						
Trainer	189 (%17.7)	11 (%9.3)	46 (%12.3)	$\chi^2=10.200$ p=0.006		
Non-trainer	876 (%82.3)	107 (%90.7)	328 (%87.7)			
Task						
Practitioner	201 (%18.9)	32 (%27.1)	100 (%26.7)			
Assistant	34 (%3.2)	12 (%10.2)	46 (%12.3)	$\chi^2=69.715$ p<0.001		
Expert	566 (%53.1)	59 (%50.0)	163 (%43.6)			
Lecturer	264 (%24.8)	15 (%12.7)	65 (%17.4)			
Age groups						
<30	28 (%2.6)	16 (%13.6)	48 (%12.8)	$\chi^2=103.424$ p<0.001		
30-40	202 (%19.0)	37 (%31.4)	100 (%26.7)			
41-50	317 (%29.8)	29 (%24.6)	115 (%30.7)			
>50	518 (%48.6)	36 (%30.4)	111 (%29.8)			
Professional seniority (years)						
≤5	31 (%2.9)	16 (%13.6)	54 (%14.4)			
6-10	78 (%7.3)	18 (%15.3)	43 (%11.5)	$\chi^2=98.417$ p<0.001		
11-15	141 (%13.2)	21 (%17.7)	59 (%15.8)			
>15	815 (%76.6)	63 (%53.4)	218 (%58.3)			
Area of duty						
Western regions	604 (%56.7)	65 (%55.1)	192 (%51.3)	$\chi^2=14.086$ p<0.007		
Central regions	410 (%38.5)	39 (%33.1)	162 (%43.3)			
Eastern regions	51 (%4.8)	14 (%11.8)	20 (%5.4)			
Place of duty						
Family medicine	173 (%16.2)	22 (%18.6)	85 (%22.7)			
Public Hospital	372 (%34.9)	47 (%39.8)	141 (%37.7)	$\chi^2=14.464$ p=0.025		
Private hospital	319 (%30.0)	34 (%28.8)	92 (%24.6)			
University	201 (%18.9)	15 (%12.6)	56 (%15.0)			
Branch						
Basic sciences	238 (%22.3)	37 (%31.4)	117 (%31.3)	$\chi^2=15.431$ p<0.004		
Internal units	453 (%42.5)	47 (%39.8)	133 (%35.6)			
Surgical units	374 (%35.2)	34 (%28.8)	124 (%33.1)			
Having the Covid						
Yes	155 (%14.6)	43 (%36.4)	67 (%17.9)	$\chi^2=36.310$ p<0.001		
910 (%85.4)	75 (%63.6)	307 (%82.1)				
Having information about Covid vaccine	Yes, from the literature	Yes, from the press	Yes, from the ministry	No	χ²	p
--------------------------------------	-------------------------	--------------------	-----------------------	----	-----	---
Yes	526 (%49.4)	47 (%39.8)	111 (%29.7)			
No	380 (%35.7)	51 (%43.2)	209 (%55.9)			
Yes, from the ministry	147 (%13.8)	12 (%10.2)	37 (%9.9)			
No	12 (%1.1)	8 (%6.8)	17 (%4.5)			
Asking for more information about the vaccine	χ²=36.310	p<0.001				
Yes	965 (%90.6)	101 (%85.6)	355 (%94.9)			
No	100 (%9.4)	17 (%14.4)	19 (%5.1)			

Pearson-χ² cross-tables were used to examine the relationships of the two qualitative variables.
Table 3. Examination of the relationships between the status of the willingness to get vaccinated and some parameters

Willingness to get vaccinated Variables	Yes (n=1065)	No (n=118)	Undecided (n=374)	Statistical analysis*
(N=1557)	n, (%)	n, (%)	n, (%)	Probability
Opinion about vaccine studies				
Uninformed	32 (3.0)	13 (11.0)	26 (7.0)	χ^2=65.559
Phase 2/3 required	889 (83.5)	99 (83.9)	342 (91.4)	p<0.001
Accelerated approval is sufficient	144 (13.5)	6 (5.1)	7 (1.6)	
Thinking vaccines have side effects				
Yes	759 (71.3)	109 (92.4)	332 (88.8)	χ^2=64.899
No	306 (28.7)	9 (7.6)	42 (11.2)	
Thinking corona vaccines have side effects more than other vaccines				
Yes	140 (13.1)	72 (61.0)	205 (54.8)	χ^2=321.378
No	925 (86.9)	46 (39.0)	169 (45.2)	
The effect of corona vaccines				
Ineffective				
Some are good, some are bad	49 (4.6)	28 (23.7)	72 (19.3)	χ^2=280.362
Limited protector	774 (72.7)	72 (61.9)	283 (75.7)	p<0.001
Effective	242 (22.7)	4 (3.5)	12 (3.1)	
Having family vaccinated				
Yes	997 (93.6)	18 (15.3)	28 (7.5)	χ^2=1775.314
No	10 (0.9)	76 (64.4)	12 (3.2)	p<0.001
Undecided	58 (5.5)	46 (39.0)	334 (9.3)	
Vaccination advice for patients				
Yes	1034 (97.1)	28 (23.7)	92 (24.6)	χ^2=1141.749
No	3 (0.3)	31 (26.3)	8 (2.1)	p<0.001
Undecided	28 (2.6)	59 (50.0)	274 (73.3)	
Knowing the vaccine contents				
Yes	1009 (94.7)	99 (83.9)	269 (71.9)	χ^2=143.515
No	56 (5.3)	19 (16.1)	105 (28.1)	p<0.001
Preferred vaccine				
Biontech (Pizer-USA)	390 (36.6)	54 (45.8)	175 (46.8)	
Sinovac (CHINA)	368 (34.6)	20 (16.9)	73 (19.5)	
Astra zeneca (England)	87 (8.1)	10 (8.5)	59 (15.8)	χ^2=80.990
SPutnik V (Russia)	6 (0.6)	6 (5.1)	6 (1.6)	p<0.001
Moderna (USA)	44 (4.1)	2 (1.7)	17 (4.5)	
It does not matter	170 (16.0)	26 (22.0)	44 (11.8)	
The factor affecting the decision in vaccination choice				
Activity data	280 (26.3)	23 (19.5)	70 (18.7)	χ^2=118.986
Security data	541 (50.8)	78 (66.1)	279 (74.6)	p<0.001
Reaching the vaccine	208 (19.5)	4 (3.4)	9 (2.4)	
Production place	34 (3.4)	13 (11.0)	16 (4.3)	

*Pearson-χ^2 cross-tables were used to examine the relationships of the two qualitative variables.
Table 4. Logistic Regression model based on the status of the willingness to get vaccinated

Variables	B	S.E.	Wald	p-value	OR	95% C.I. (OR)
Gender	0.719	0.211	11.634	0.001	2.051	1.357 - 3.100
Professional seniority (years)				<0.001	1	
6-10	1.423	0.497	8.203	0.004	4.151	1.567 - 10.996
11-15	1.569	0.454	11.933	0.001	4.800	1.971 - 11.689
>15	2.145	0.404	28.131	<0.001	8.540	3.886 - 18.866
Having Covid-19	1.182	0.278	18.041	<0.001	3.262	1.890 - 5.630
Knowing the vaccine contents	0.665	0.311	4.563	0.033	1.944	1.056 - 3.576
Having family vaccinated				<0.001	1	
Yes	5.119	0.245	43.804	<0.001	27.193	10.319 - 70.031
No	-0.445	0.373	1.422	0.233	0.641	0.308 - 1.331
Constant	-5.656	0.536	11.487	<0.001	0.003	

* Reference categories: A: Female; B: ≤5; C: (+); D: No; E: Undecided

CCR = 92.7% \(\chi^2(7) = 6.290; p = 0.506 \)
Task-Willingnes to get vaccinated (%)