Research Article

Study and Application on Big Data Information Fusion System Based on IoT

Lina Zheng

College of Physics & Electronic Information, Hulunbuir University, Inner Mongolia, Hulunbuir 021008, China

Correspondence should be addressed to Lina Zheng; zhenglina@hlbec.edu.cn

Received 11 November 2021; Revised 29 November 2021; Accepted 8 December 2021; Published 26 December 2021

Academic Editor: Jian Su

Copyright © 2021 Lina Zheng. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

In our study, we first illustrated information fusion technology and Internet of Things (IoT), and then we built farmland IoT information collection platform on the basis of ZigBee technology and agricultural sensors to collect climate data including air pressure, temperature, soil water content, light intensity, and relative humidity. Finally, prediction model was used to evaluate crop growth condition. Results show that temperature increases with time and reaches the maximum at 13:00 PM. But relative humidity decreases with time and reaches the maximum at 3:30 AM. Light intensity presents a straight trend with time and reachesthemaximumat13:30PM.CO$_2$ concentration presents a fluctuation trend with time and reacheshighpointat7:00AM. Prediction model presented a high accuracy outcome with 99% accuracy in training data and 100% in testing set. Therefore, we can conclude that big data fusion technology on the basis of IoT has a good future in many fields excepting agriculture crop, which is also an irreversible trend.

1. Introduction

The information fusion system is mainly aimed at the big data scenarios in the high technology era. In the modern era, in addition to a large amount of user data, there are also a large amount of design backup data, and the variety of data complicates system design [1]. Therefore, the relationship between data needs to be considered, which means that data needs to be merged. For example, the behavior data generated by the user will be associated with the terminal device, and finally device data will overlap in the time dimension with other data generated by other devices. With the continuous development of science and technology, network multimedia technology is gradually popularized and applied to various fields of production and life. Foreseeably, it will be the era of intelligence and automation. The large-scale application of artificial intelligence has accelerated the arrival of the era of intelligence, and the development of big data plays an important role in the Internet society. It plays an important role, and its data transmission volume is relatively high, which has caused great changes in people’s lives and social and economic developments [2].

The concept of data fusion has most commonly been applied in economy and military industry [3], which is a new technology. The technology can automatically associate with measured data, which extract data’s feature based on scheduled law while designing a complete algorithm structure, and also can more accurately evaluate modes of target and ideal information of decision task. Three stages can be assigned in information fusion, and details are shown in Figure 1. Data fusion has a great role in a large number of fields. (1) Information collection point perceived data in certain extent may be redundant, which occupied limited broadband resources to some extent, for example, electronic system. (2) Transforming in single pathway by multiple collection points may result in data congestion and prolonged data processing time. (3) Under conditions of sensor fault, if data were only obtained from faulted sensor, this may cause error spread and fault extent. Therefore, data fusion can optimize procession, reduce data length and crowd, and improve data procession efficiency. The producer of the data can be a human user or a computing device. The data producer can be a human user, or a variety of data producers such as computing equipment, terminal
equipment, and cameras. This is also inevitable characteristics of 5G era [4].

More data sources: the data is normalized by the data adaptation module, and the normalized data were dispersed into a distributed system for storage based on the characteristics of the data through data aggregation technology [5]. Distributed storage model can use HDFS to distribute file system partition storage. The upper layer can use Map/Reduce computing model from Hadoop to provide rich data processing capabilities. The major role of data regular is to partition physical storage data and then map it into logical regions according to the needs of user. The concept of analysis of data origin is extracting data relationships according to characteristics of data origin. Data fusion is a vital module part of the system; user fused different data origin to construct a complete data application using multidimension data parts. Finally, the modules at the top level are directly facing the end users of the fusion data, which mainly provided data analysis report, and data conclusion support. Through the way of data visualization, the display of data allows users to feel the value of data more intuitively. Various data fusion applications provided richer application scenarios support for multiple types of users. However, these applications make data mission of system more unusually diverse and complicated, which may further cause more standard for mission scheduling [6].

Big data refers to the massive and diversified transaction information, interactive data, and sensor data that need to be quickly acquired, processed, and analyzed to extract value, and its scale usually reaches the PB (1024TB) level [7]. With the rapid development of information, technology industries including the mobile Internet, cloud computing, and the Internet of Things, information transmission, storage, and processing capabilities have risen rapidly, resulting in an exponential increase in the amount of data. Traditional simple sample survey analysis can no longer meet the needs of current requirements for data timeliness, mass, and accuracy. The emergence of big data has changed the traditional methods of data collection, storage, processing, and mining. Data collection methods have become more diversified, and data sources have become more extensive and diversified [8]. Data processing methods have also shifted from simple causal relationships to rich relationships. At the same time, big data can also provide market forecasts and facilitate decision-making based on historical data analysis. With the rapid development of the Internet of Things, e-commerce, and social networks, the global big data reserves have grown rapidly, becoming the basis for the development of the big data industry. It is reported by IDC industry in 2013 that the global big data reserves were 4.3 ZB (equivalent to 4.724 billion mobile hard drives with a capacity of 1 TB). In 2018, the global big data reserves reached 33.0 ZB, with a year-on-year increase of 52.8%. The origin of big data is Internet of Things, the collection, control, and service of a large amount of equipment data need to rely on cloud computing. The Internet of Things in turn can provide equipment and service control for cloud computing, and big data analysis can in turn provide cloud computing. The generated operating data provides analysis and decision-making basis. With the rise of the Internet of Things technology, increasing Internet of Things terminal equipment will generate more and more information, which can be widely used for data analysis, model training, etc., and processing these huge amounts of information requires the support of big data technology [9].

Internet of Things (IoT) is the expansion application including network extension of the communication network

![Figure 1: Schematic diagram of information fusion.](image-url)
and the Internet. It uses perception technology and smart devices to perceive and recognize the physical world, communicating through the network, performance calculations, process and knowledge mining, and realize the interaction and information of people and things, and things and things [10]. It includes seamless connection to achieve real-time control, precise management, and scientific decision-making of the physical world. In June 2019, focus on “Intelligent Connection of Everything” the title of Mobile World Congress (MWC19) was held at Shanghai New International Expo Center of China. Driven by policy, economy, society, and technology, GSMA promoted that the compound growth rate is around 9% during 2019–2022. It is estimated that, by 2022, the scale of China’s Internet of Things industry will exceed 2 trillion yuan. With the acceleration of urbanization, problems such as traffic congestion and environmental pollution have become increasingly prominent. In addition, the decline in the rural population has increased the demand for agricultural output. To solve the above problems, it is necessary to use advanced technology to grasp the information dynamics in real time and coordinate the allocation of resources. The Internet of Things technology provides an effective solution for the above problems. In the medical field, the Internet of Things can obtain real-time patient data through wearable device. The IoT data allows for more accurate diagnosis and treatment strategies, as well as better patient safety and efficiency, and more effective quality of care. During the epidemic, according to network data, the highest number of nucleic acid samples tested per day is 458,000 in some cities in China. The highest daily test volume of a single testing unit can reach 17,000 considering the blessings of surrounding testing agencies. In crowd 1:5 mixed mining, more than 80,000 people can be detected a day [11].

Therefore, there is a great need for studying big data fusion on the basis of IoT, and applying information fusion to a real example. For example, in order to achieve the construction of intelligent city, Xiang et al. [1] made the government operate and manage more efficiently and further promoted the people’s life quality and also analyzed the application of big data and Internet of Things in e-commerce, service for the aged, and intelligent house and home, etc. Their results show that it improved the big data city application ability and management ability, and solved China’s public traffic problems. The appearance of smart house and home and device greatly brings convenience for necessity of people’s life, solving time and space limitation in city management work, achieving communication development, and making the city more intelligent. In the future, it is suggested to accelerate intelligent city construction, effectively improve intelligent city construction speed and quality, and promote sustainable development for the city. Zhang et al. (2021) [2] used firefly algorithm to find the optimal allocation of resources, and the firefly algorithm was improved according to the actual characteristics. They introduced a mixed point perturbation strategy to prevent the algorithm from falling into local optimization in the early stage, and the feasibility of the algorithm was proved in the experiment. With the continuous development of the intelligent power system, the number and type of big data have begun to show an explosive growth trend, and the development of power grid in China has entered the era of big data; thus Mi et al. (2019) [11] described briefly the distribution of big data in power system and its “4V” characteristics based on the classification of source network load storage. Secondly, in order to improve the efficiency of data fusion, they introduced the Hermite orthogonal base forward neural network algorithm and the algorithm is parallelized under the framework of MapReduce to cope with the large capacity of power data. Finally, they built the experimental platform on the basis of Hadoop.

In recent years, there are three typical processing methods for information fusion [12]: (1) centralized processing. This method monitored data through multiple sensor nodes and then passed by centra of data computing including data standard, data connection, data assembly, and target status. (2) Distributed processing: this method has a little computing time and stable performance. However, it needs more rigorous condition for partial hard software, and low accuracy. Its flow figure is shown in Figure 2.

In our study, take agricultural IoT as an example to study on big data information fusion system on the basis of farmland IoT. We first designed and built farmland information collection platform using ZigBee sensor technology and related agriculture construction of wireless sensor network, as microclimate data collection module. Meteorological data in farmland were derived from China meteorological sharing service platform, and then we used GPRS and 3G tech to complete data transmission and remote terminal PC web. Finally, we installed agricultural IoT system, long-termly monitoring air relative humidity, light intensity, carbon dioxide concentration, and soil moisture and soil temperature and then marked and grouped environmental data into two groups with good and bad. Decision tree was used to automatically classify them and test its accuracy compared with actual results to evaluate model performance.

Our study is ordered as follows: (1) introducing the latest information fusion technology, and different fields this technology used; (2) building farmland IoT information collection platform on the basis of ZigBee technology and agricultural sensors to collect climate data to monitor crop’s growth condition; and (3) using the platform to investigate crop growth condition and discuss its ad/disadvantages.

2. Construction of Farmland IoT Platform

Farmland IoT platform is composed by data collection module, data transmission module, and host computer remote monitoring, and its structure is shown in Figure 3.

Data collection mainly included wireless sensor network module which is composed of multiple sensors and ZigBee technology, video collection, and meteorology module. Wireless sensor module is mainly responsible for real-time farmland data, video module shoots real-time data in farmland, and meteorology module mainly collects meteorological data in some extent field. The major job of data collection module is measuring climate data including air
relative humidity, light intensity, soil content, and temperature in farmland. Above data can be obtained by sensors corresponding to agriculture and WSN network which is composed by ZigBee module, also including video data from industry camera. Excepting microclimate and video data, meteorological data is needed in extent field, and meteorology data is relatively close to crop condition. GPRS teleconnection tech and 3G net card in data transmission module transmit environment data and figure into host computer, respectively, and finally host computer analyzed and saved receipted data and then sent these data to user inference using nee page formed by table, statistic figure, query interface, etc. User can real-timely read agricultural environment data and video figure from farmland. Wireless sensor has a feature of distributed net, which usually collects, processes, and transmits a large amount of data to users. Wireless sensor mainly includes End Device, Router, and Coordinator. ZigBee technology of wireless data transmission commonly includes infrared, GPRS, Bluetooth, CDMAIX, etc. ZigBee is wireless teleconnection tech with short distance which is gradually developing since recent 20 years, which is composed mainly by star network, mesh network, and tree network. Low cost, low energy, and high fault tolerance are features of ZigBee tech, and it can connect sensors with multiple different functions to form huge teleconnection network. In agriculture field, since traditional agricultural production tool has poor teleconnection skill, environmental data in farmland and crop grow condition data were collected only by human force and monitor pathway. With the development of smart agriculture, precision agriculture, sensor tech, and remote-control technology, IoT has gradually assimilated into modern agricultural production. Sensor technology have largely accelerated development and future of modern agriculture in many fields including monitoring crop group condition and natural environment variation, also collecting data including air pressure, temperature, humidity, precipitation, wind speed, soil, and pond.

2.1. Types of Air Humidity Sensor and Teleconnection Design. In our system, we finally selected SHT-11 digital temperature-humidity sensor provided by Sensirion industry, and the sensor possesses features of fully calibrating, digital signal output, low power consumption, and long-term stability and has A/D converter with 14 bits and serial interface circuit design, seamless connection, and high anti-inference skill. Its performance is presented in Table 1.

In soft design based on Eclipse open environment, we completed data transmission by installing JN5148 SDK function database and APIs, and SHT-11 digital temperature-humidity sensor command database is presented in Table 2.
The high-definition camera can also observe the conditions making needs. In addition to the overall image observation, collected farmland data, farmers can better provide decision-observations in a timely manner. By combining with the time image collection can provide farmers with farmland important part of agricultural Internet of Things data. Real-current, output voltage 0–2V, and accuracy measurement in various environments, for voltage 5–30V direct steel needles, it can be suitable for soil moisture measure-sensor used flame-retardant epoxy resin and high-quality rectely reflect the moisture content in the soil. Because the moisture sensor, which has the performance of high accuracy, high sensitivity, good sealing, and corrosion resistance. The moisture of I2C serial port protocol. The integrated circuit with range 1Lux-6553lux possesses high resolution, which can accurately explore variation of light intensity in extent field. The light source has the characteristics of weak tolerance and small error, low current, supporting 1.8V logic input interface, etc., which can well meet the data collection of agricultural light intensity.

2.2. Light Intensity Sensor and Teleconnection Design. Light is one of necessary conditions for growth of vegetation plant, and green vegetation can perform photosynthesis under condition of only light; however, variation of light intensity would directly impact vegetation growth status. The production of crop is closely related to light intensity, and reasonable light intensity can greatly improve crop production. In our system, light intensity type is BH1750, which is digital light intensity integrated circuit on the basis of I2C serial port protocol. The integrated circuit with range 1Lux-6553lux possesses high resolution, which can accurately explore variation of light intensity in extent field. The light source has the characteristics of weak tolerance and small error, low current, supporting 1.8V logic input interface, etc., which can well meet the data collection of agricultural light intensity.

2.3. Soil Water Content Sensor and Teleconnection Design. Changes in the water content in the soil will have a great impact on the root development of plants. The development of roots will directly affect the growth of plants. When the soil water content is too high, the lack of oxygen in the roots will cause the roots of plants to die and if the water content is too low it will affect the plant’s absorption of fertilizers and nutrients in the soil. Our system used the MS-10 soil moisture sensor, which has the performance of high accuracy, high sensitivity, good sealing, and corrosion resistance. The measurement of the dielectric constant in the soil directly reflects the moisture content in the soil. Because the sensor used flame-retardant epoxy resin and high-quality steel needles, it can be suitable for soil moisture measurement in various environments, for voltage 5–30V direct current, output voltage 0–2V, and accuracy ±3%.

2.4. Video Collection Module. Image data collection is also an important part of agricultural Internet of Things data. Real-time image collection can provide farmers with farmland observations in a timely manner. By combining with the collected farmland data, farmers can better provide decision-making needs. In addition to the overall image observation, the high-definition camera can also observe the conditions on the crop leaves, so that it can more timely find whether the growth status of the crops has changed. This system used the NV201E industrial camera produced by Shenzhen Haoxin Netscape Network Technology Co., Ltd., with a maximum resolution of up to 2 million pixels (1600 × 1200). It supports sports shooting and can monitor moving targets in front of the camera. The light intensity can be suppressed by itself when the light is weak, and the light intensity can be compensated by itself when the light is weak; moreover, it can work under various environmental conditions. It also supports a variety of Internet communication methods, including Wi-Fi wireless, 3G network, and wired connection. The camera also provided a secondary development interface and communication protocol, and we can self-develop and self-upgrade the background software.

2.5. Meteorological Data Acceptation. Due to the influence of monsoon and geographical location, China meteorological disasters have a wide variety of types, including floods, droughts, low temperatures, and typhoons. The impact of meteorological disasters especially large-scale crops on crop growth condition is more significant, which caused immeasurable damage to the country’s agriculture production every year. Obtaining real-time weather data, forecasting weather data, and warning of weather disasters are problems that need to be solved urgently. The meteorological data of our system comes from the API interface which was provided by the China Meteorological Science Data Sharing Service Platform. By visiting the URL address provided by the China Meteorological Science Data Sharing Service Platform, relevant meteorological data can be obtained. Since the data format returned by the sharing service platform is json, pass java language analysis json data package can obtain real-time or historical weather data in related areas. There are many types of weather data, which can be selected for agrometeorological related air pressure, temperature, maximum temperature, minimum temperature, relative humidity, minimum relative humidity, and precipitation, 10 minutes. The average wind speed is the main analytical data. Crop in farmland IoT monitoring plan is shown in Figure 4.

2.6. Data Collection and Preprocessing. By accessing the host computer data receiving module built on the server, we can directly query and export historical data in the database, the daily growth environment data of crop fruit, and the image data. The collected raw data often has important data missing, incorrect or noisy data, inconsistencies, etc. The preprocessing of the data can effectively eliminate and reduce the problems of the original data and has a better preliminary understanding of the data. Currently, major methods of preprocessing data include data cleaning, data integration, data protocol, and data transmission. Data cleaning is mainly to complete the processing of uncertain, unclear, missing, duplicate, and wrong data in the original data. There are many deletion methods, interpolation methods, and maximum likelihood methods for missing values, and the processing methods for data noise mainly.

Table 1: SHT-11 performance.
Precision
±3%RH
Temperature

Table 2: SHT-11 digital temperature and humidity sensor command set.
Command
Read status register
Write status register
Temperature measure
Humidity measure

Table: SHT-11 digital temperature and humidity sensor command set.
Command
Read status register
Write status register
Temperature measure
Humidity measure
include regression method, average deslip method, outlier analysis, wavelet denoising, and other methods. Data integration is to complete the organic integration of different data through processing to facilitate mining and analysis for later data. The main forms of data integration are XML documents, HTML documents, emails, ordinary files, etc. The main purpose of data reduction is to simplify the data set. The main methods are dimensional reduction and numerical reduction. Dimension reduction is mainly to reduce the variables in the data set. Numerical reduction is to reduce the amount of data, which makes the data set simple and clear. Data transformation is the transformation of data from one form of representation to another. For example, the above artificial neural network needs to normalize the input when using input variables. This is data transformation, and its purpose is to improve the quality of the data and standardize the data.

3. Results and Discussion

3.1. Meteorological Data Trend. By retrieving historical environmental data of crop experimental field from the server database, we selected the air temperature, air humidity, and air humidity, and four types of light intensity data and soil moisture are used as the original data for data analysis. Each node collected data every 10 minutes. Time trend of each element is shown in Figure 5. Results show that temperature increases with time and reaches the maximum at 13:00 PM. But relative humidity decreases with time and reaches the maximum at 13:30 AM. Light intensity presents a straight trend with time and reaches the maximum at 13:30 PM. CO₂ concentration presents a fluctuation trend with time and reaches high point at 7:00 AM.

3.2. Data Analysis on the Basis of Decision Tree. The decision tree model is visualized, and the model is intuitive and easy to understand and has a wide range of applications in many fields. It is a common classification algorithm in data processing and analysis. It is particularly effective in the classification and processing of continuous data variables and numerical data variables. The main purpose of the decision tree model is to continuously segment the data and then extract the features from the segmented parts. Through the continuous segmentation and extraction, the data is finally scattered under the branches and leaves, and finally the purpose of classification is achieved. The operation process of the decision tree model is similar to the cutting process of branches and leaves. First, selecting the sample to be cut, that is, the original data, and then selecting the classification algorithm to construct the classification model. Currently, the commonly used decision tree classification algorithms are ID3, C4.5, and C5. The algorithm divided the original data that needs to be cut into two parts. One is the training data set and the other is the test data set. The training data set is used to build a decision tree, and the classification algorithm is used to cut and classify the training data set, and the subnodes of the cut classification are judged according to whether it can no longer be cut. If the subnode is not cut completely, the previous step of classification is repeated until the branches and leaves cannot continuously be cut, and finally use the test data set to evaluate the trained decision model to judge the effect of the decision tree classification on accuracy. The decision tree is established through the training group data, and the test group data is pruned to the decision tree to realize automatic classification. The experiment first selected 300 sample data sets obtained by sensor nodes from March 30rd 00:00:00 AM to 18:00:00 pm in the same day to label them and used them as the input of
the decision tree classification model. The decision tree classification method was implemented in Matlab computer tool, in which 50% are randomly selected as training samples and 50% as test samples. Results from decision tree as shown in Table 3. According to the results from Table 3, accuracy is around 0.9903. Decision tree has a high accuracy in prediction skill for crop, and in order to further evaluate model's performance in prediction skill for farmland, we selected data series with length 400 on June 1st, and the results show that the accuracy reached 100%. Therefore, we can conclude that managers may control growth condition of crop in farmland based on decision tree to in response to environment variation.

Table 3: Accuracy result of testing set by decision tree.

Actual data	Predicted data	Normal	Abnormal
Normal	205	2	
Abnormal	1	25	

4. Conclusions

In our study, we combined information fusion technology with agricultural growth on basis of Internet of Things to analyze crop growth needs. Agriculture Internet of Things data platform was built using ZigBee technology and agriculture sensors. We used agriculture IoT system to monitor long-term meteorological data including temperature, air pressure, soil water content, light intensity and then combined decision tree to judge crop growth condition in farmland. Results show that temperature increases with time and reaches the maximum at 13:00 PM. But relative humidity decreases with time and reaches the maximum at 3:30 AM. Light intensity presents a straight trend with time and reaches the maximum at 13:30 PM. CO2 concentration presents a fluctuation trend with time and reaches high point at 7:00 AM. Model performance is reasonable with around 99% accuracy in training set and 100% in testing set for monitoring agriculture crop condition.
Data Availability

The experimental data used to support the findings of this study are available from the corresponding author upon request.

Conflicts of Interest

The authors declare that they have no conflicts of interest to report regarding the present study.

Acknowledgments

This work supported by the Research on Hulunbuir Agricultural and Animal Husbandry Crop Intelligent Management and Storage System under the Background of Poverty Alleviation through Science and technology (PAST) (2019FDYB10).

References

[1] X. Lan, J. Wang, and W. Du, “Application of big data and internet of things technology in smart city,” Heilongjiang Science, vol. 12, no. 18, pp. 140-141, 2021.
[2] Z. Liu, X. Yu, K. Zhang, and Z. Zhao, “The development and prospect of Internet of Things standardization in the era of big data,” in Proceedings of the 18th China Standardization Forum, p. 5, China Standardization Association: China Standardization Association, Beijing, China, June 2021.
[3] H. Zhang, “Research on information fusion cloud storage in big data environment,” Computer Programming Skills and Maintenance, vol. 414, no. 12, pp. 97-98+113, 2019.
[4] H. Zhang, G. Wang, and P. Sun, “Research on target detection system based on information fusion,” Electronic Measurement Technology, vol. 44, no. 19, pp. 28–35, 2021.
[5] P. Wang, “Talking about the internet of things, big data, and artificial intelligence era leading the new trend of property management,” Business News, vol. 249, no. 23, pp. 161–163, 2021.
[6] L. Yang, M. Zhao, M. Xu, Y. Liu, and Y. Qian, “Overview of Research on multi-source information fusion technology,” Intelligent Computers and Applications, vol. 9, no. 5, pp. 186–189, 2019.
[7] L. Golden, National Science and Technology Award Shanghai Big Data: Natural Science Award Accounts for Nearly 1/5, First Super Science and Technology Progress Award, China Business News, Shanghai, China, 2021.
[8] J. Li, L. Li, R. Li et al., “Investigation of multi-objective optimization for integrating design and control of ionic liquid-based extractive distillation,” Chemical Engineering Research and Design, vol. 170, no. 10, pp. 134–146, 2021.
[9] L. Li, Design and Implementation of Water Resources Management Platform in the Construction of Water Ecological Governance, Beijing University of Posts and Telecommunications, Beijing, China, 2020.
[10] J. Yang, Design and Implementation of Campus Energy Consumption Monitoring System Based on Internet of Things Technology, Shandong University, Jinan, China, 2020.

[11] J. W. Mi, Research and Application of Multi-Source Information Fusion Technology Based on Big Data in Power System, Tianjin University of Technology, Tianjin, China, 2019.
[12] G. Zhu, “Application of information fusion technology in environmental monitoring,” Energy and Energy Conservation, vol. 191, no. 8, pp. 214-215, 2021.