Lepton Masses and Mixing Angles with
Spontaneously Broken O(3) Flavor Symmetry

Gilad Perez

Department of Particle Physics, Weizmann Institute of Science, Rehovot 76100, Israel

Abstract

We present a model based on an O(3) flavor symmetry and a minimal extension of the scalar sector to induce hierarchical breaking, O(3) → O(2) → SO(2) → nothing. The model naturally accounts for all the known lepton parameters and yields various interesting predictions for others: (i) Neutrinos are nearly degenerate, $m_\nu \sim 0.1$ eV; (ii) The solar neutrino problem is solved by the MSW small mixing angle solution; (iii) The MNS mixing angle θ_{13} is unobservably small, $\theta_{13} = O(10^{-5})$.

I. INTRODUCTION

The SuperKamiokande atmospheric neutrino experiment [1] has provided evidence for neutrino masses. There have been many attempts to understand the lepton flavor pattern in the framework of flavor symmetries. Models with an O(3) or SO(3) flavor symmetry [2] are particularly interesting due to the fact that the O(3) symmetry naturally accommodates degenerate neutrinos. The possibility of nearly degenerate neutrinos is in agreement with all the experimental data and is motivated by the possibility that neutrinos play a role in the evolution of the large-scale structure of the universe (see e.g. [3] and references therein).

In this work we present an economical model based on a spontaneously broken O(3) flavor symmetry, which naturally satisfies the constraints from the experimental data and yields several non-trivial predictions for upcoming neutrino experiments.

In order to make our discussion concrete we briefly review the experimental data related to the lepton sector. In an effective two neutrino framework, the data from the atmospheric neutrino experiments leads to the following results (at 99% CL) [4]:
\[\Delta m_{23}^2 \sim (1 - 8) \times 10^{-3} \text{ eV}^2, \quad \sin^2 2\theta_{23} > 0.85. \]

In a two generation framework the solar neutrino experimental data \([5]\) yield several viable solutions for the mass difference and mixing angle \([4]\) (at 99% CL):

i. The large mixing angle (LMA) MSW \([3]\) solution:
\[\Delta m_{12}^2 \sim 10^{-5} - 10^{-3} \text{ eV}^2, \quad \tan^2 \theta_{12} \sim 0.1 - 1. \]

ii. The large mixing angle with a low mass-squared difference (LOW) and the quasi-vacuum oscillation (QVO) solution:
\[\Delta m_{12}^2 \sim 5 \times 10^{-10} - 3 \times 10^{-7} \text{ eV}^2, \quad \tan^2 \theta_{12} \sim 0.4 - 3. \]

iii. The small mixing angle (SMA) MSW solution:
\[\Delta m_{12}^2 \sim (3 - 10) \times 10^{-6} \text{ eV}^2, \quad \tan^2 \theta_{12} \sim 2 \times 10^{-4} - 2 \times 10^{-3}. \]

Combining the CHOOZ experiment results \([7]\) with the solar and the atmospheric neutrino experiments yields the following constraints, in a three generation framework:
\[\Delta m_{23}^2 \sim (1 - 7) \times 10^{-3} \text{ eV}^2, \quad \sin^2 \theta_{13} < 0.075. \]

The experimental data \([8]\) from neutrinoless double beta decay indicates that (at 90% CL):
\[(M_{\nu})_{ee} < 0.2 \text{ eV}, \]

where \((M_{\nu})_{ee}\) is the value of the (11) element of the neutrinos mass matrix in the basis where both the charged lepton mass matrix and the weak interaction couplings are diagonal. Finally the charged lepton masses are given by \([9]\):
\[m_e \simeq 0.51 \text{ MeV}, \quad m_\mu \simeq 105.7 \text{ MeV}, \quad m_\tau \simeq 1777 \text{ MeV}. \]

II. THE MODEL

We consider an effective theory with a cut-off scale \(M\). We include nonrenormalizable terms induced by the integration out of the heavy degrees of freedom, with masses larger than \(M\).
The Lagrangian is invariant under an O(3) flavor symmetry. The field content consist of the SM fields and additional SM gauge singlet scalar fields. The additional fields are S^{ij}, $i, j \in \{1..3\}$, a traceless symmetric field which transforms as a 5 of the O(3) symmetry; Φ^i, a triplet of the O(3) symmetry and A, a pseudo-singlet of the O(3) symmetry. The lepton SU(2)$_L$ doublets, L^i, transform as a triplet of the flavor group. Two of the right handed charged leptons, E^2_R and E^3_R, are singlets of the O(3) symmetry, while the third one, E^1_R, is a pseudo-singlet.

The masses and the mixing angles of the leptons are induced by the nonzero VEVs of the scalar fields. We assume that CP is conserved in the lepton sector. Therefore the couplings in the Lagrangian and the VEVs of the scalars are real. The flavor symmetry is broken by three small parameters, δ_1, δ_2 and ϵ, as follows:

$$O(3) \overset{\delta_1}{\to} O(2) \overset{\delta_2}{\to} SO(2) \overset{\epsilon\delta_1}{\to} \emptyset,$$

with

$$\frac{\langle S^{ij} \rangle}{M} = \delta_1 \cdot \text{diag}(1, 1, -2), \quad \frac{\langle A \rangle}{M} = \delta_2, \quad \frac{\langle \Phi^i \rangle}{M} = \epsilon\delta_1 \cdot (0, \sin \alpha, \cos \alpha).$$

A. The Neutrino Mass Matrix

Neutrino masses are related to the following terms in the Lagrangian:

$$\mathcal{L}_\nu = \left\{ L^i L^i + \frac{1}{M} a L^i L^j S^{ij} + \frac{1}{M^2} [b(L^i \Phi^i)^2 + b' L^i L^j \Phi^i \Phi^j] \right\} \frac{HH}{M} + \text{h.c.},$$

where H is the Higgs field and the coefficients a, b, b' are of order unity. Given the breaking pattern of eq. (8), the Lagrangian in eq. (10) induces the following neutrino mass matrix:

$$M_\nu = m \begin{pmatrix} 1 + a\delta_1 + b'\delta_1^2 \epsilon^2 & 0 & 0 \\ 0 & 1 + a\delta_1 + b'\delta_1^2 \epsilon^2 + b\delta_1^2 \epsilon^2 s^2 & b\delta_1^2 \epsilon^2 \sc \\ 0 & b\delta_1^2 \epsilon^2 \sc & 1 - 2a\delta_1 + b'\delta_1^2 \epsilon^2 + b\delta_1^2 \epsilon^2 c^2 \end{pmatrix}.$$

with $m = \frac{(H)^2}{M}$, $s = \sin \alpha$ and $c = \cos \alpha$.

The mixing angles θ_{ij}^ν required to diagonalize the mass matrix in eq. (11) are given by:

$$\tan 2\theta_{23}^\nu \approx \frac{2\delta_1^2 \epsilon^2 \bsc}{3a + \delta_1^2 \epsilon^2 (s^2 - c^2)} \ll 1,$$

$$\theta_{13}^\nu, \theta_{12}^\nu \approx 0.$$

(12)
Subleading corrections to eq. (12) appear when higher dimension operators such as $\varepsilon^{ijk} AL^m \Phi^n S^{lm} \Phi^l H H^k M^3$ are added to the Lagrangian in eq. (11).

The eigenvalues of (11) are given, to leading order, by:

\[
\begin{align*}
m_{\nu 1} &= m(1 + a\delta_1 + b'\delta_1^2\epsilon^2), \\
m_{\nu 2} &= m(1 + a\delta_1 + b'\delta_1^2\epsilon^2 + b\delta_1^2\epsilon^2s^2), \\
m_{\nu 3} &= m(1 - 2a\delta_1 + b'\delta_1^2\epsilon^2 + b\delta_1^2\epsilon^2c^2).
\end{align*}
\]

(13)

Since the contributions to the mixing angles from the neutrino sector in eq. (12) are negligibly small, the mixing angles of the MNS matrix [10] will be determined by the charged lepton mass matrix.

B. Charged Leptons Mass Matrix

Charged lepton masses are related to the following terms in the Lagrangian:

\[
L_\ell = \left\{ \begin{array}{c} \frac{3}{M} L^i \Phi^i + \frac{3}{M} L^i S^{ij} \Phi^j E_R^3 + \left(\frac{3}{M} L^i \Phi^i + \frac{3}{M} L^i S^{ij} \Phi^j \right) E_R^2 \\
+ \frac{A}{M} \left[\left(\frac{3}{M} L^i \Phi^i + \frac{3}{M} L^i S^{ij} \Phi^j \right) E_R^1 + d_1 \frac{1}{M^2} \varepsilon^{ijk} L^i \Phi^j S^{kl} \Phi^k E_R^3 \right] + d_2 \frac{1}{M^2} \varepsilon^{ijk} L^i \Phi^j S^{kl} \Phi^k E_R^2 \end{array} \right\} \frac{H}{M} + h.c.,
\]

(14)

where the coefficients a_i, b_i and d_i are of order unity. Given (14) and the breaking pattern of eq. (8) the following mass matrix is obtained:

\[
M_\ell = m_\ell \begin{pmatrix} 3d_1 s\delta_1^2 \epsilon & 3d_2 s\delta_2 \delta_1^2 \epsilon & 3d_3 s\delta_2 \delta_1^2 \epsilon \\ s\delta_2(a_1 + b_1 \delta_1) & s(a_2 + b_2 \delta_1) & s(a_3 + b_3 \delta_1) \\ c\delta_2(a_1 - 2b_1 \delta_1) & c(a_2 - 2b_2 \delta_1) & c(a_3 - 2b_3 \delta_1) \end{pmatrix},
\]

(15)

where $m_\ell = \langle H \rangle \delta_1 \epsilon$.

As we saw, the mixing angles in the neutrino sector are negligibly small [12]. Therefore, to leading order, the mixing angles required to diagonalize the charged lepton mass matrix in eq. (15) will determine the mixing angles of the MNS matrix. Thus the angle θ_{23} of the MNS matrix is given by:

\[
\tan 2\theta_{23} \approx - \tan 2\alpha + O(\delta_1, \delta_2^2).
\]

(16)

It is of order unity, in agreement with the experimental data [eq. (1)]. The mixing angle θ_{13} is given by:

\[
\tan 2\theta_{13} = O(\epsilon \delta_2 \delta_1^2) \ll 1,
\]

(17)
in agreement with eq. (5). The angle θ_{12} is:

$$\tan 2\theta_{12} = \mathcal{O}(\epsilon \delta_2) \ll 1.$$ \hspace{1cm} (18)

The eigenvalues of (15) are given, to leading order, by

$$m_e = 3m_\ell d_1 \delta_1^2 \epsilon \sigma,$$

$$m_\mu = 3m_\ell \delta_1 \sigma \frac{(a_3 b_2 + a_2 b_3)}{a_{23}},$$

$$m_\tau = m_\ell a_{23},$$ \hspace{1cm} (19)

where $a_{23} \equiv \sqrt{a_2^2 + a_3^2}$. The relations in eq. (19) are valid as long as $\delta_2 \lesssim \delta_1$.

C. Consistency and Predictions

In the previous subsections (II A) and (II B) we found expressions for the six masses and three mixing angles - the flavor parameters of the lepton sector. Using the experimental data given in the first section, we can constrain the four free parameters $\delta_{1,2}, \epsilon, M$, test the model and identify its predictions for the upcoming experiments.

1. Constraining the Small Parameters

The charged lepton masses are known rather accurately, consequently they provide stringent constraint on the free parameters. The known ratio between the muon and the tau masses [eq. (7)] and the corresponding predicted ratio given in eq. (19) give:

$$\frac{m_\mu}{m_\tau} \approx 3\delta_1 \sigma \frac{a_3 b_2 + a_2 b_3}{a_{23}} \implies \delta_1 = \mathcal{O}(0.03).$$ \hspace{1cm} (20)

From eqs. (7), (19) and (20) we further find:

$$\frac{m_\tau}{\langle H \rangle} \approx \delta_1 \epsilon a_{23} \implies \epsilon = \mathcal{O}(0.3).$$ \hspace{1cm} (21)

In order to set the allowed range of δ_2 and M we turn to the neutrino sector. Eq. (18) implies that the only possible solution to the solar neutrino problem in our model is the SMA solution. Using eqs. (4), (18) and (21) we get:

$$\tan \theta_{12} = \mathcal{O}(\epsilon \delta_2) \implies \delta_2 = \mathcal{O}(0.1 - 0.01).$$ \hspace{1cm} (22)

Using eqs. (4), (13), (20) and (21) we get:

$$\Delta m^2_{12} \sim 2b^2 s^2 m^2 \delta_1^2 \epsilon^2 \implies m = \mathcal{O}(0.1 \text{ eV}) \implies M = \mathcal{O}\left(10^{14} \text{ GeV}\right).$$ \hspace{1cm} (23)

Note that the large scale of M, or equivalently of $\langle S^{ij} \rangle$ and $\langle \phi^i \rangle$, makes any process related to the corresponding massless Goldstone bosons practically unobservable [11].
2. Consistency Checks

The lepton sector contains nine CP conserving flavor parameters, constrained by the experimental data as given in eq. (1) and eqs. (4)-(7). Four of them were used to find the values of the model free parameters. This implies that there are five more relations that can be compared with the corresponding experimental data and either test the model or give predictions. We have already pointed that the mixing angles θ_{23} and θ_{13} given in eqs. (16) and (17) satisfy the constraints in eqs. (1) and (5). There are three more non-trivial consistency checks:

(i) The well known ratio between the electron and muon masses:

$$\frac{m_e}{m_\mu} \approx \delta_1 \epsilon \frac{d_1 a_{23}}{a_3 b_2 + a_2 b_3} = \mathcal{O} \left(10^{-2} \right),$$

is consistent with eq. (7).

(ii) The neutrinos mass-squared difference between the second and third generation:

$$\Delta m^2_{23} \approx 6m^2 a_1 \delta = \mathcal{O} \left(10^{-3} \text{ eV}^2 \right),$$

is consistent with eq. (1).

(iii) The bound from neutrinoless double beta decay translates into a constraint on $(M_\nu)_{ee}$, defined below eq. (6). In our case it is well approximated by $(M_\nu)_{11}$ which was calculated in eq. (11). Hence:

$$(M_\nu)_{11} \sim m = \frac{\langle H \rangle^2}{M} = \mathcal{O} \left(10^{-1} \text{ eV} \right),$$

is consistent with eq. (6).

To explicitly demonstrate the phenomenological consistency of our model, we set numerical values (the numbers are not necessarily the most favorable ones) to δ_i, ϵ and M:

$$\delta_1 = 0.035, \; \delta_2 = 0.03, \; \epsilon = 0.26, \; M = 1.5 \cdot 10^{14} \text{ GeV}. \quad (27)$$

Substituting the numerical values for the above parameters yields the following values for the different observables:

$$\begin{align*}
\left[\frac{m_e}{0.51 \text{ MeV}} \right] &\approx 1.5 \cdot d_1 \sin 2\alpha, \\
\left[\frac{m_\mu}{106 \text{ MeV}} \right] &\approx 0.8 \cdot \frac{a_3 b_2 + a_2 b_3}{a_{23}} \sin 2\alpha, \\
\left[\frac{m_\tau}{1780 \text{ MeV}} \right] &\approx 0.9 \cdot a_{23}; \\
(M_\nu)_{ee} &\sim m \simeq 0.2 \text{ eV}, \; \Delta m^2_{12} \simeq 7 \cdot 10^{-6} \cdot b \sin^2 \alpha \text{ eV}^2, \\
\Delta m^2_{23} &\simeq 9 \cdot 10^{-3} \cdot a \text{ eV}^2, \; \tan \theta_{12} = \mathcal{O}(\epsilon \delta_2) \sim 10^{-2}. \quad (28)
\end{align*}$$
Taking into account the unknown coefficient of order one, eq. (28) fit reasonably well the experimental data.

3. Predictions

The model contains several non trivial predictions:

- The neutrinos are nearly degenerate with mass \(m, m = \mathcal{O}(0.1 \text{ eV}) \).

- The correct solution of the solar problem is the SMA, with the ratio between the square mass difference \(\Delta m_{12}^2 \) and \(\Delta m_{23}^2 \) given by:

\[
\frac{\Delta m_{12}^2}{\Delta m_{23}^2} = \mathcal{O} \left(10^{-3}\right).
\] (29)

- The ratio between the small mixing angles \(\theta_{13} \) and \(\theta_{12} \) is given by:

\[
\frac{\theta_{13}}{\theta_{12}} = \mathcal{O} \left(10^{-3}\right).
\] (30)

III. SUMMARY AND COLCLUSION

We presented a model with an O(3) flavor symmetry that is spontaneously broken by hierarchical VEVs of scalars, \(O(3) \rightarrow O(2) \rightarrow SO(2) \rightarrow \text{nothing} \). The lepton flavor parameters were derived from the most general Lagrangian consistent with the symmetry and taking all dimensionless couplings to be of order unity. The model naturally accounts for all the known lepton parameters, passes several consistency checks and yields various interesting predictions: (i) Neutrinos are nearly degenerate, \(m_\nu \sim 0.1 \text{ eV} \). (ii) The solar neutrino problem is solved by the MSW small mixing angle solution. (iii) The MNS mixing angle \(\theta_{13} \) is unobservably small, \(\theta_{13} = \mathcal{O}(10^{-5}) \).

ACKNOWLEDGMENTS

I thank Yossi Nir, Sven Bergmann and Oleg Khasanov for helpful discussions and comments on the manuscript.
REFERENCES

[1] Y. Fukuda et al., Phys. Lett. B433, 9 (1998) [hep-ex/9803006]; B436, 33 (1998) [hep-ex/9805006]; Phys. Rev. Lett. 81, 1562 (1998) [hep-ex/9807003]; 82, 2644 (1999) [hep-ex/9812014].

[2] See e.g. R. Barbieri, L. J. Hall, G. L. Kane and G. G. Ross, hep-ph/9901228; C. Wetterich, Phys. Lett. B451, 397 (1999) [hep-ph/9812426]; C. D. Carone and M. Sher, Phys. Lett. B420, 83 (1998) [hep-ph/9711259]; A. Ghosal, hep-ph/9905470; M. Tanimoto, T. Watari, T. Yanagida, Phys. Lett. B461, 345 (1999) [hep-ph/9904338]; Y-L. Wu, Int. J. Mod. Phys. A14, 4313 (1999) [hep-ph/9901320]; Nucl. Phys. Proc. Suppl. 85, 193 (2000) [hep-ph/9908430]; Eur. Phys. J. C10, 491 (1999) [hep-ph/9901245]; Phys. Rev. D60, 073010 (1999) [hep-ph/9810491]; E. Ma, Phys. Lett. B456, 48 (1999) [hep-ph/9812344]; P. Bamert, C.P. Burgess, Phys. Lett. B329, 289 (1994) [hep-ph/9402223]; A.S. Joshipura, Z. Phys. C64, 31 (1994).

[3] J.R. Primack and M. A. K. Gross, Proceedings of the Xth Rencontres de Blois, "The Birth of Galaxies", 28 June - 4, July, 1998 [astro-ph/9810204]; J.R. Primack, J. Holtzman, A. Klypin and D.O. Caldwell, Phys. Rev. Lett. 74, 2160 (1995) [astro-ph/9411020].

[4] M.C. Gonzalez-Garcia, parallel talk in ICHEP 2000 (Osaka, Japan, July 28, 2000); M.C. Gonzalez-Garcia and C. Pena-Garay, hep-ph/0009041.

[5] R. Davis, Prog. Part. Nucl. Phys. 32, 13 (1994); Y. Fukuda et al., Phys. Rev. Lett. 77, 1683 (1996); P. Anselmann et al., Phys. Lett. B357, 237 (1995); B361, 235 (1996).

[6] L. Wolfenstein, Phys. Rev. D17, 2369 (1978); S.P. Mikheev and A.Y. Smirnov, Sov. J. Nucl. Phys. 42, 913 (1985); Nuovo Cim. C9, 17 (1986).

[7] M. Apollonio et al., Phys. Lett. B420, 397 (1998) [hep-ex/9711002].

[8] L. Baudis et al., Phys. Rev. Lett. 83, 41 (1999) [hep-ex/9902014].

[9] D.E. Groom et al., Eur. Phys. J. C15, 1 (2000).

[10] Z. Maki, M. Nakagawa and S. Sakata, Prog. Theo. Phys. 28, 870 (1962).

[11] M. Fukugita and T. Yanagida, Phys. Rev. Lett. 55, 2645 (1985); Y. Chikashige, R. N. Mohapatra, R. D. Peccei, Phys. Lett. 98B, 265 (1981); D. B. Reiss, Phys. Lett. 115B, 217 (1982); F. Wilczek, Phys. Rev. Lett. 49, 1549 (1982); G. Gelmini, S. Nussinov and T. Yanagida, Nucl. Phys. B219, 31 (1983); D.S. Dearborn, D.N. Schramm and G. Steigman, Phys. Rev. Lett. 56, 26 (1986); J.L. Feng et. al., Phys. Rev. D57, 5875 (1998) [hep-ph/9709417].