Original Article

In vitro activity of ceftazidime-avibactam against Enterobacterales and *Pseudomonas aeruginosa* isolates collected in Latin America as part of the ATLAS global surveillance program, 2017–2019

James A. Karlowsky, Krystyna M. Kazmierczak, Maria Lavínea Novis de Figueiredo Valente, Elkin Lemos Luengas, Monique Baudrit, Alvaro Quintana, Paurus Irani, Gregory G. Stone, Daniel F. Sahm

University of Manitoba, Max Rady College of Medicine, Department of Medical Microbiology and Infectious Diseases, Winnipeg, Canada

IHMA, Schaumburg, IL, USA

Pfizer Brazil, São Paulo, SP, Brazil

Pfizer Colombia, Bogota, Colombia

Pfizer Central America and Caribbean, Cartago, Costa Rica

Pfizer Inc., New York, NY, USA

Pfizer UK ltd, Walton Oaks, Tadworth, Surrey, UK

Pfizer Inc., Groton, CT, USA

A B S T R A C T

The Antimicrobial Testing Leadership and Surveillance (ATLAS) global surveillance program collected clinical isolates of Enterobacterales (*n* = 8416) and *Pseudomonas aeruginosa* (*n* = 2521) from 41 medical centers in 10 Latin American countries from 2017 to 2019. In vitro activities of ceftazidime-avibactam and comparators were determined using the Clinical and Laboratory Standards Institute (CLSI) broth microdilution method. Overall, 98.1% of Enterobacterales and 86.9% of *P. aeruginosa* isolates were susceptible to ceftazidime-avibactam. When isolates were analyzed by country of origin, susceptibility to ceftazidime-avibactam for Enterobacterales ranged from 97.8% to 100% for nine of 10 countries (except Guatemala, 86.3% susceptible) and from 75.9% to 98.4% for *P. aeruginosa* in all 10 countries. For Enterobacterales, 100% of AmpC-positive, ESBL- and AmpC-positive, GES-type carbapenemase-positive, and OXA-48-like-positive isolates were ceftazidime-avibactam-susceptible as were 99.8%, 91.8%, and 74.7% of ESBL-positive, multidrug-resistant (MDR), and meropenem-nonsusceptible isolates. Among meropenem-nonsusceptible isolates of Enterobacterales, 24.4% (139/570) carried a metallo-β-lactamase (MBL); 83.3% of the remaining meropenem-nonsusceptible isolates carried another class of carbapenemase and 99.4% of...
those isolates were ceftazidime-avibactam-susceptible. Among meropenem-non-susceptible isolates of *P. aeruginosa* (*n* = 835), 25.6% carried MBLs; no acquired β-lactamase was identified in the majority of isolates (64.8%; 87.2% of those isolates were ceftazidime-avibactam-susceptible). Overall, clinical isolates of Enterobacteriaceae collected in Latin America from 2017 to 2019 were highly susceptible to ceftazidime-avibactam, including isolates carrying ESBLs, AmpCs, and KPCs. Country-specific variation in susceptibility to ceftazidime-avibactam was more common among isolates of *P. aeruginosa* than Enterobacteriaceae. The frequency of MBL-producers among Enterobacteriaceae from Latin America was low (1.7% of all isolates; 146/8,416), but higher than reported in previous surveillance studies.

© 2021 Sociedade Brasileira de Infectologia. Published by Elsevier España, S.L.U. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)

Introduction

Ceftazidime-avibactam combines ceftazidime, an established third-generation cephalosporin, with avibactam, a diazabicyclooctanone non-β-lactam β-lactamase inhibitor, and is indicated in the treatment of patients with complicated urinary tract infections, including pyelonephritis, complicated intra-abdominal infections, and hospital-acquired and ventilator-associated bacterial pneumonia caused by gram-negative bacilli, including species of Enterobacteriaceae and *Pseudomonas aeruginosa*.

In vitro, avibactam has consistently demonstrated the ability to restore the potency of ceftazidime against isolates of Gram-negative bacilli carrying Ambler class A β-lactamases (including extended spectrum β-lactamases [ESBLs] and KPC carbapenemases), class C β-lactamases (AmpC cephalosporinases), and some class D β-lactamases (OXA-48-like carbapenemases), including isolates harboring ESBL and AmpC enzymes in combination with impaired permeability due to porin mutation or loss. Ceftazidime-avibactam is not active against isolates of Enterobacteriaceae and *P. aeruginosa* carrying class B metallo-β-lactamases (MBLs) (e.g., NDM, IMP, VIM) and rare isolates that possess specific protein sequence mutations in target enzymes (AmpC, KPC, PBP3) or overexpress certain efflux pumps due to mutation.

Carbapenemase-producing Gram-negative bacilli are of increasing global concern as carbapenems are recommended when treatment options are limited. Only a limited number of other, now outdated, surveillance studies to determine rates of antimicrobial resistance in clinical isolates from patients in Latin American countries have been published. To date, the majority of other published studies have not included β-lactamase characterization of resistant isolates from the Latin America region and generally have not provided country-specific ceftazidime-avibactam susceptibility data for Gram-negative bacilli isolated from patients in as many Latin America countries as the current study of ATLAS surveillance program data.

Materials and methods

Clinical isolates of Enterobacteriaceae and *P. aeruginosa*

The ATLAS global surveillance program collected 10937 non-duplicate clinical isolates of Gram-negative bacilli (8416 isolates of Enterobacteriaceae and 2521 isolates of *P. aeruginosa*) from 41 medical center laboratories in 10 countries in Latin America from 2017 to 2019. The ATLAS program annually requests that each participating medical center laboratory collect pre-defined quotas of selected bacterial pathogens isolated from patients with specific types of infection. Collection was limited to one isolate per patient. All isolates were determined to be clinically significant by participating laboratory algorithms and were collected irrespective of antimicrobial susceptibility profile. The demographic information associated with the 10937 isolates is summarized in supplementary Table S1. All isolates were transported to IHMA (Schaumburg, IL, USA) which served as the central
testing laboratory for the ATLAS program. IHMA confirmed the identity of each isolate using MALDI-TOF mass spectrometry (Bruker Daltonics, Billerica, MA, USA) prior to antimicrobial susceptibility testing.

Antimicrobial susceptibility testing

Antimicrobial susceptibility testing was performed following the Clinical and Laboratory Standards Institute (CLSI) standard method using custom 96-well broth microdilution panels prepared by Trek (Thermo Fisher Scientific, Oakwood Village, OH, USA; 2017) or IHMA (2018–2019).\(^{24,25}\) Ceftazidime-avibactam was tested using a fixed concentration of 4 μg/ml of avibactam.\(^{24}\) MICs were interpreted using 2020 CLSI breakpoints\(^{24}\) with the exception of tigecycline which used current US FDA MIC interpretative breakpoints.\(^{26}\)

An MDR phenotype was defined as resistance to sentinel agents from three or more antimicrobial agent classes, including cephalexins (cefepime), monobactams (aztreonam), β-lactam-β-lactamase inhibitor combinations (piperacillin-tazobactam), carbapenems (meropenem), fluoroquinolones (levofloxacin), aminoglycosides (amikacin), and polymyxins (colistin).

Screening of clinical isolates of Enterobacteriales and P. aeruginosa for β-lactamase genes

All isolates of Enterobacteriales testing with MICs to meropenem of ≥2 μg/ml and all E. coli, K. pneumoniae, K. oxytoca and P. mirabilis with MICs to ceftazidime or aztreonam of ≥2 μg/ml were screened for β-lactamase content using published multiplex PCR assays.\(^{27}\) These assays detected genes encoding carbapenemases (KPC, GES, NDM, IMP, VIM, SPM, GIM, OXA-48-like), ESBLs (TEM, SHV, CTX-M, VEB, PER, GES), original (narrow)-spectrum β-lactamases (TEM and SHV enzymes lacking substitutions at amino acid positions 104, 164, or 238 in TEM or 146, 238, or 240 in SHV that are associated with ESBL activity),\(^{28}\) and plasmid-mediated AmpC β-lactamases (ACC, ACT, CMY, DHA, FOX, MIR, MOX) as previously described.\(^{27}\) All isolates of *P. aeruginosa* testing with MICs to meropenem of ≥4 μg/ml were screened for genes encoding the β-lactamases listed above and OXA-24/40-like carbapenemases, as described previously.\(^{3}\) Enzyme variants were identified by amplification of full-length β-lactamase genes followed by DNA sequencing and comparison of the sequences generated to the National Center for Biotechnology Information database (www.ncbi.nlm.nih.gov).

Results

Of the 8416 isolates of Enterobacteriales tested, 98.1% were susceptible to ceftazidime-avibactam (MIC≤0.5 μg/ml) (Table 1). Percent susceptible values for all other agents tested were comparable (tigecycline, amikacin) or lower than for ceftazidime-avibactam. Among the 6.8% of isolates that tested as meropenem-nonsusceptible, which included 139 MBL-positive isolates, 74.7% were susceptible to ceftazidime-avibactam. When MBL-positive isolates were removed from the subset of meropenem-nonsusceptible isolates, susceptibility to ceftazidime-avibactam increased to 99.4% among isolates that were serine carbapenemase-positive and 95.8% among isolates that were meropenem-nonsusceptible and carbapenemase-negative. Of the subset of isolates identified with an MDR phenotype, which included MBL-positive isolates, 91.8% were susceptible to ceftazidime-avibactam.

Percent susceptible values for ceftazidime-avibactam for all Enterobacteriales isolates collected from nine of the 10 countries surveyed ranged from 97.8% (Venezuela) to 100% (Chile, Dominican Republic) (Table 2). Enterobacteriales from Guatemala were exceptional in that only 86.3% of isolates were susceptible to ceftazidime-avibactam. The percentages of isolates that tested as non-susceptible to meropenem differed by almost 15% among the 10 Latin American countries surveyed, ranging from 0% in Dominican Republic and 0.9% in Panama to 14.8% in Guatemala. Among meropenem-nonsusceptible isolates, susceptibility to ceftazidime-avibactam ranged from 100% (Chile) to 0% (Costa Rica, \(n = 3\)) and was >87% for four countries, ~50–67% for three countries, and <10% for two countries. When MBL-positive isolates were removed from the dataset, susceptibility to ceftazidime-avibactam increased to ≥98.8%, exceeding susceptibility to all other agents tested, for meropenem-nonsusceptible isolates collected in all Latin American countries except Guatemala (66.7% susceptible, \(n = 6\)) and Mexico (92.9% susceptible among meropenem-nonsusceptible, carbapenemase-negative isolates). Country-specific MDR rates among Enterobacteriales isolates ranged from 8.1% (Costa Rica) to 26.9% (Guatemala), with ≥93.5% of MDR isolates collected in seven countries testing as susceptible to ceftazidime-avibactam; susceptibilities of MDR isolates were lower in Venezuela (88.0%), Costa Rica (80.0%), and Guatemala (49.0%).

One or more β-lactamase genes were detected in 2512 of 2578 Enterobacteriales isolates screened for β-lactamase content (Methods). A total of 2254 ESBLs were detected singly or in combination with other β-lactamases in 2161 isolates, with CTX-M-15 identified in >50% of ESBL-positive isolates in each Latin American country and in 71.5% (1545/2161) of ESBL-positive isolates overall (Fig. 1). Similarly, 519 genes encoding carbapenemases were identified in 497 of 569 meropenem-nonsusceptible Enterobacteriales isolates (one meropenem-nonsusceptible isolate collected in Guatemala was not molecularly characterized for β-lactamase genes). KPC was the most common carbapenemase identified in meropenem-nonsusceptible molecularly characterized isolates overall, accounting for 61.5% (350/569) of isolates, and isolates carrying KPC as the sole carbapenemase composed the majority in Argentina (89.7%), Brazil (81.7%), Colombia (77.6%), and Panama (66.7%) (Fig. 2). NDM (an MBL) was the second most common carbapenemase identified in the region and was found alone or with serine carbapenemases in 100%, 86.8%, 48.5%, and 47.5% of meropenem-nonsusceptible isolates collected in Costa Rica (\(n = 3\)), Guatemala, Venezuela, and Mexico, respectively.

Table 3 depicts the in vitro activity of ceftazidime-avibactam and comparator agents against isolates of Enterobacteriales molecularly characterized for β-lactamase gene content. Ceftazidime-avibactam inhibited 100% of AmpC-positive, ESBL- and AmpC-positive, GES-type carbapenemase-positive, and OXA-48-like-positive isolates of Enterobacteriales as well as...
Table 1 – In vitro activity of ceftazidime–avibactam and comparator agents against Enterobacterales isolates collected in the Latin American region as part of the ATLAS global surveillance program from 2017 to 2019.

Organism, phenotype/genotype (no. of isolates)	Antimicrobial agent	MIC (µg/ml)	Interpretation (CLSI)			
	MIC₅₀	MIC₉₀	% Susceptible	% Intermediate	% Resistant	
Latin America, All Enterobacterales (8416)^a	Ceftazidime–avibactam	0.12	0.5	98.1	NA	1.9
	Ceftazidime	0.25	64	67.8	3.6	28.5
	Cefepime	≤0.12	16	68.5	6.7	24.7
	Piperacillin–tazobactam	2	>64	82.7	5.4	11.9
	Meropenem	≤0.06	12.2	93.2	0.8	6.0
	Levofoxacin (n = 8415)^d	≤0.25	>8	61.0	5.6	33.4
	Amikacin	2	8	96.2	1.5	2.3
	Colistin	0.5	>8	NA	81.1	18.9
	Tigecycline	0.5	1	97.2	2.4	0.4
Meropenem-NS (570)^b	Ceftazidime–avibactam	1	>128	74.7	NA	25.3
	Ceftazidime	128	>128	5.4	3.9	90.7
	Cefepime	>16	>16	3.7	7.7	88.6
	Piperacillin–tazobactam	>64	>64	1.9	5.6	92.5
	Meropenem	>8	>8	0	11.6	88.4
	Levofoxacin	>8	>8	16.0	8.4	75.6
	Amikacin	8	>32	70.2	10.4	19.5
	Colistin	0.5	>8	NA	78.2	21.8
	Tigecycline	0.5	2	95.6	4.0	0.4
Meropenem-NS, MBL-, carbapenemase+ (358)	Ceftazidime–avibactam	1	2	99.4	NA	0.6
	Ceftazidime	64	>128	5.3	5.6	89.1
	Cefepime	>16	>16	4.5	8.4	87.2
	Piperacillin–tazobactam	>64	>64	0	3.4	96.6
	Meropenem	>8	>8	0	7.0	93.0
	Levofoxacin	>8	>8	14.2	5.0	80.7
	Amikacin	4	>32	76.5	13.1	10.3
	Colistin	0.5	>8	NA	74.9	25.1
	Tigecycline	0.5	2	98.0	1.7	0.3
Meropenem-NS, MBL-, carbapenemase- (72)	Ceftazidime–avibactam	1	4	95.8	NA	4.2
	Ceftazidime	64	>128	16.7	2.8	80.6
	Cefepime	>16	>16	6.9	8.3	84.7
	Piperacillin–tazobactam	>64	>64	11.1	15.3	73.6
	Meropenem	>8	>8	0	52.8	47.2
	Levofoxacin	>8	>8	19.4	9.7	70.8
	Amikacin	4	>32	81.9	2.8	15.3
	Colistin	0.5	>8	NA	87.5	12.5
	Tigecycline	0.5	2	91.7	8.3	0
Multidrug-resistant (1773)^c	Ceftazidime–avibactam	0.5	4	91.8	NA	8.2
	Ceftazidime	64	>128	5.4	4.7	89.9
	Cefepime	>16	>16	1.6	3.6	94.8
	Piperacillin–tazobactam	>64	>64	44.3	11.1	44.5
	Meropenem	≤0.06	>8	69.4	2.6	28.0
	Levofoxacin (n = 1772)^d	>8	>8	7.1	4.3	88.5
	Amikacin	4	>32	84.2	5.5	10.3
	Colistin	0.5	>8	NA	85.4	14.6
	Tigecycline	0.5	2	95.8	3.5	0.7

Abbreviations: NS, non-susceptible; MBL-, no gene encoding a metallo-β-lactamase was detected by PCR; carbapenemase+/-, a gene encoding a serine carbapenemase was (+) or was not (-) detected by PCR; multidrug-resistant, isolates resistant to three or more sentinel agents from different antimicrobial classes; NA, no break point available.

^a All Enterobacterales were composed of Citrobacter amalonaticus (n = 10), Citrobacter braakii (n = 20), Citrobacter farinii (n = 7), Citrobacter freundii (n = 251), Citrobacter koseri (n = 119), Citrobacter sedlakii (n = 6), Citrobacter youngae (n = 1), Citrobacter sp. (n = 4), Enterobacter asburiae (n = 87), Enterobacter bugandensis (n = 8), Enterobacter cloacae (n = 705), Enterobacter cloacae complex (n = 25), Enterobacter kobei (n = 27), Enterobacter ludvigi (n = 4), Enterobacter xiangfangensis (n = 14), Enterobacter sp. (n = 32), Escherichia coli (n = 2747), Klebsiella aerogenes (n = 221), Klebsiella oxytoca (n = 213), Klebsiella pneumoniae (n = 2441), Klebsiella variicola (n = 98), Morganella morganii (n = 263), Pantoea agglomerans (n = 1), Pantoea septica (n = 1), Proteus hauseri (n = 48), Proteus mirabilis (n = 436), Proteus penneri (n = 8), Proteus vulgaris (n = 58), Proteus sp. (n = 2), Providencia alcalifaciens (n = 4), Providencia rettgeri (n = 51), Providencia stuartii (n = 83), Providencia sp. (n = 2), Raoultella ornithinolytica (n = 17), Raoultella planticola (n = 2), Raoultella terrigena (n = 1), Salmonella sp. (n = 1), Serratia liquefaciens (n = 3), Serratia marcescens (n = 392), Serratia rubidaea (n = 1), Serratia urealytica (n = 2), and Serratia sp. (n = 2).

^b One meropenem-nonsusceptible isolate collected in Guatemala was not molecularly characterized for β-lactamase genes.

^c Multidrug resistant Enterobacterales were composed of Citrobacter freundii (n = 15), Citrobacter koseri (n = 2), Enterobacter asburiae (n = 11), Enterobacter cloacae (n = 123), Enterobacter cloacae complex (n = 2), Enterobacter xiangfangensis (n = 1), Enterobacter sp. (n = 2), Escherichia coli (n = 605), Klebsiella aerogenes (n = 1), Klebsiella oxytoca (n = 14), Klebsiella pneumoniae (n = 845), Klebsiella variicola (n = 5), Morganella morganii (n = 18), Proteus mirabilis (n = 39), Providencia rettgeri (n = 7), Providencia stuartii (n = 17), Raoultella ornithinolytica (n = 1), Salmonella sp. (n = 1), and Serratia marcescens (n = 53).

^d Excluded one isolate of Salmonella sp.
Table 2 – Percentages of Enterobacterales isolates collected in ten Latin American countries as part of the ATLAS global surveillance program from 2017 to 2019 that were susceptible to ceftazidime-avibactam and comparator agents.

Country	Antimicrobial agent	Phenotype/genotype (no. of isolates)	% Susceptible (CLSI)	Multidrug-resistant			
		All isolates	Meropenem-NS	Meropenem-NS, MBL- All	Meropenem-NS, carbapenemase+	Meropenem-NS, carbapenemase-	
Argentina	Ceftazidime-avibactam	(1039)	(87)	(81)^a	98.8	96.7	
	Ceftazidime	98.8	92.0	92.0	98.8		
	Ceftazidime	71.7	2.3	2.5	6.6		
	Cefepime	73.1	2.3	2.5	2.3		
	Piperacillin-tazobactam	79.1	1.1	1.2	21.3		
	Meropenem	91.6	0	0	59.9		
	Levofloxacin	61.0	9.2	9.9	7.1		
	Amikacin	94.8	65.5	69.1	76.9		
	Colistin	NA	NA	NA	NA		
	Tigecycline	96.8	97.7	98.8	96.2		
Brazil	Ceftazidime-avibactam	(1646)	(202)	(164)	(14)	(400)	
	Ceftazidime	98.4	87.6	99.4	100	93.5	
	Cefepime	71.7	5.0	4.9	14.3		
	Piperacillin-tazobactam	69.3	1.5	1.8	2.0		
	Meropenem	87.7	0	0	7.1		
	Levofloxacin	61.8	10.9	9.8	14.3		
	Amikacin	96.5	79.7	80.5	78.6		
	Colistin	NA	NA	NA	NA		
	Tigecycline	97.5	97.0	97.6	92.9		
Brazil	Tigecycline	NA	NA	NA	NA		
Chile	Ceftazidime-avibactam	(805)	(22)	(22)^b	(157)		
	Ceftazidime	100	100	100	100		
	Cefepime	67.2	0	0	40.2		
	Piperacillin-tazobactam	69.3	0	0	1.9		
	Meropenem	84.5	4.5	4.5	5.2		
	Levofloxacin	97.3	0	0	86.0		
	Amikacin	67.2	0	0	3.2		
	Colistin	96.8	95.5	95.5	86.0		
	Tigecycline	97.4	90.9	90.9	95.5		
Colombia	Ceftazidime-avibactam	(1252)	(107)	(83)	(12)	(209)	
	Ceftazidime	98.9	89.7	100	94.7		
	Cefepime	72.1	13.1	12.0	33.3		
	Piperacillin-tazobactam	71.7	10.3	10.8	16.7		
	Meropenem	80.8	0.9	0	8.3		
	Levofloxacin	91.5	0	0	55.0		
	Tigecycline	67.3	31.8	27.7	58.3		

^a Includes MBL, All, carbapenemase+ strains.
^b Includes MBL, All, carbapenemase- strains.
Country	Antimicrobial agent	Phenotype/genotype (no. of isolates)	% Susceptible (CLSI)	Multidrug-resistant		
		All isolates	Meropenem-NS	Meropenem-NS, MBL-, carbapenemase+	Meropenem-NS, MBL-, carbapenemase-	
Costa Rica						
	Amikacin	96.2	71.0	71.1	83.3	81.8
	Colistin	NA	NA	NA	NA	NA
	Tigecycline	97.0	95.3	97.6	75.0	95.2
		(185)	(3)	(15)		
	Ceftazidime-avibactam	98.4	0	80.0		
	Ceftazidime	75.7	0	6.7		
	Cefepime	85.4	0	13.3		
	Piperacillin-tazobactam	88.6	0	53.3		
	Meropenem	98.4	0	80.0		
	Levofloxacin	83.2	0	6.7		
	Amikacin	98.9	33.3	86.7		
	Colistin	NA	NA	NA		
	Tigecycline	99.5	100	100		
Dominican Republic		(193)		(28)		
	Ceftazidime-avibactam	100	100	100		
	Ceftazidime	75.1		14.3		
	Cefepime	75.6		0.0		
	Piperacillin-tazobactam	95.3	0	78.6		
	Meropenem	100		100		
	Levofloxacin	51.3		0.0		
	Amikacin	96.4	85.7	85.7		
	Colistin	NA	96.4	85.7		
	Tigecycline	97.9		96.4		
Guatemala		(364)	(54)	(6)	(98)	(98)
	Ceftazidime-avibactam	86.3	7.4	66.7	49.0	49.0
	Ceftazidime	58.2	1.9	16.7	2.0	2.0
	Cefepime	58.2	5.6	50.0	1.0	1.0
	Piperacillin-tazobactam	73.4	1.9	0.0	33.7	33.7
	Meropenem	85.2	0.0	0.0	49.0	49.0
	Levofloxacin	54.9	22.2	50.0	10.2	10.2
	Amikacin	90.7	46.3	66.7	69.4	69.4
	Colistin	NA	NA	NA		
	Tigecycline	99.2	98.1	100		
Mexico		(1802)	(59)	(16)	(14)	(460)
	Ceftazidime-avibactam	98.2	49.2	100	92.9	93.7
	Ceftazidime	55.3	6.8	21.4	1.3	1.3
	Cefepime	57.8	3.4	6.3	7.1	0.7
Table 2 (continued)

Country	Antimicrobial agent	All isolates	Meropenem-NS	Meropenem-NS, MBL-, All	Meropenem-NS, MBL-, carbapenemase+	Meropenem-NS, MBL-, carbapenemase-	Multidrug-resistant
		(no. of isolates)	% Susceptible (CLSI)				
Panama	Piperacillin-tazobactam	86.2	10.2	0	28.6	67.8	
	Meropenem	96.7	0	0	0	88.0	
	Levofloxacin	55.3	18.6	18.8	14.3	3.9	
	Amikacin	96.7	67.8	100	85.7	88.9	
	Colistin	NA	NA	NA	NA	NA	
	Tigecycline	96.6	86.4	100	100	100	
Venezuela	Piperacillin-tazobactam	(814)	(33)	(2)	(2)	(44)	
	Ceftazidime-avibactam	99.7	66.7	100	97.7	97.7	
	Ceftazidime	76.6	0	0	0	0	
	Cefepime	79.7	0	0	2.3	2.3	
	Piperacillin-tazobactam	91.5	0	0	0	63.6	
	Meropenem	99.1	0	0	93.2	93.2	
	Levofloxacin	55.4	33.3	50.0	4.5	4.5	
	Amikacin	99.7	100	100	100	100	
	Colistin	NA	NA	NA	NA	NA	
	Tigecycline	96.2	100	100	93.2	93.2	
	Ceftazidime-avibactam	(814)	(33)	(16)	(16)	(150)	
	Ceftazidime	97.8	48.5	100	88.0	88.0	
	Cefepime	74.4	0	0	0	0	
	Piperacillin-tazobactam	74.2	0	0	0	0	
	Meropenem	87.1	0	0	55.3	55.3	
	Levofloxacin (n = 813)	95.9	0	0	78.7	78.7	
	Amikacin	58.8	9.1	0	8.1	8.1	
	Colistin	95.9	48.5	62.5	80.0	80.0	
	Tigecycline	97.2	97.0	100	98.0	98.0	

Abbreviations: NS, non-susceptible; MBL-, no gene encoding a metallo-β-lactamase was detected by PCR; carbapenemase+/-, a gene encoding a serine carbapenemase was (+) or was not (-) detected by PCR; multidrug-resistant, isolates resistant to three or more sentinel agents from different drug classes; NA, no breakpoint available.

Notes:
- a Composed of 77 carbapenemase-positive isolates and 4 carbapenemase-negative isolates.
- b Composed of 22 carbapenemase-negative isolates.
- c Composed of 3 MBL-positive isolates; no meropenem-NS, MBL-negative isolates were identified during the surveyed time period.
- d No meropenem-NS isolates were identified during the surveyed time period.
- e One meropenem-nonsusceptible isolate collected in Guatemala was not molecularly characterized for β-lactamase genes.
- f Composed of 2 carbapenemase-positive isolates and 4 carbapenemase-negative isolates.
- g Composed of 2 carbapenemase-positive isolates.
- h Composed of 14 carbapenemase-positive and 2 carbapenemase-negative isolates.
- i Excludes one isolate of Salmonella sp.
as 99.8% of ESBL-positive isolates. Percentages of susceptibility to ceftazidime-avibactam were similar to or greater than observed for other β-lactams, including meropenem (95.7–100% susceptible) and piperacillin tazobactam (56.5–85.7% susceptible), among ESBL-positive, AmpC-positive, and ESBL- and AmpC-positive isolates. The activities of all β-lactams tested were significantly reduced compared to ceftazidime-avibactam against KPC-positive (2.5–9.1% susceptible) and OXA-48-like-positive (0–37.0% susceptible) isolates. As anticipated, ceftazidime-avibactam, similar to all other β-lactams, was poorly active against isolates carrying MBLs; only tigecycline retained in vitro activity against >50% of MBL-positive isolates.

Of the 2521 P. aeruginosa isolates collected in Latin America from 2017 to 2019, 86.9% were susceptible to ceftazidime-avibactam (MIC90, 32 µg/ml) (Table 4). Percent susceptibilities to
Table 3 - *In vitro* activity of ceftazidime-avibactam and comparator agents against β-lactamase-positive Enterobacteriales isolates collected in the Latin American region as part of the ATLAS global surveillance program from 2017-2019.

Organism, phenotype/genotype (no. of isolates)	Antimicrobial agent	MIC (µg/ml)	Interpretation (CLSI)			
		MIC₅₀	MIC₉₀	% Susceptible	% Intermediate	% Resistant
ESBL-positive (1816)^a	Ceftazidime-avibactam	0.25	0.5	99.8	NA	0.2
	Ceftazidime	32	128	13.1	11.2	75.7
	Cefepime	>16	>16	4.4	20.2	75.4
	Piperacillin-tazobactam	8	>64	76.0	11.7	12.3
	Meropenem	≤0.06	≤0.06	97.3	1.8	0.9
	Levofoxacin	>8	>8	18.9	10.2	70.8
	Almikacin	4	8	95.1	1.9	3.0
	Colistin	0.5	1	NA	97.2	2.8
	Tigecycline	0.25	1	97.7	1.9	0.4
AmpC-positive (49)^b	Ceftazidime-avibactam	0.12	0.25	100	NA	0
	Ceftazidime	32	128	6.1	16.3	77.6
	Cefepime	0.25	2	91.8	8.2	0.0
	Piperacillin-tazobactam	4	>64	85.7	2.0	12.2
	Meropenem	≤0.06	0.12	100	0	0
	Levofoxacin	8	>8	28.6	8.2	63.3
	Amikacin	2	4	100	0	0
	Colistin	0.25	>8	NA	85.7	14.3
	Tigecycline	0.25	1	95.9	2.0	2.0
ESBL-positive + AmpC-positive (23)^c	Ceftazidime-avibactam	0.25	2	100	NA	0
	Ceftazidime	64	>128	0	8.7	91.3
	Cefepime	>16	>16	8.7	13.0	78.3
	Piperacillin-tazobactam	16	>64	56.5	17.4	26.1
	Meropenem	≤0.06	0.25	95.7	0	4.3
	Levofoxacin	>8	>8	21.7	8.7	69.6
	Amikacin	2	8	91.3	0	8.7
	Colistin	0.25	0.5	NA	95.7	4.3
	Tigecycline	0.25	1	95.7	4.3	0
KPC-positive (364)^d	Ceftazidime-avibactam	0.5	2	99.5	NA	0.5
	Ceftazidime	64	>128	9.1	5.8	85.2
	Cefepime	>16	>16	7.7	9.3	83.0
	Piperacillin-tazobactam	>64	>64	2.5	5.8	91.8
	Meropenem	>8	>8	6.3	5.5	88.2
	Levofoxacin	>8	>8	16.5	6.6	76.9
	Amikacin	4	>32	76.9	12.9	10.2
	Colistin	0.5	>8	NA	75.3	24.7
	Tigecycline	0.5	2	97.8	1.9	0.3
GES-type carbapenemase-positive (5)^e	Ceftazidime-avibactam	–	–	100	NA	0
	Ceftazidime	–	–	0	0	100
	Cefepime	–	–	40.0	60.0	0
	Piperacillin-tazobactam	–	–	20.0	20.0	60.0
	Meropenem	–	–	100	0	0
	Levofoxacin	–	–	60.0	40.0	0
Table 3 (continued)

Organism, phenotype/genotype (no. of isolates)	Antimicrobial agent	MIC (µg/ml)	Interpretation (CLSI)			
		MIC_{S0}	MIC_{S0}	% Susceptible	% Intermediate	% Resistant
OXA-48-like-positive (27)^f	Ceftazidime-avibactam	0.5	1	100	NA	0
	Ceftazidime	64	>128	7.4	0	92.6
	Cefepime	>16	>16	14.8	0	85.2
	Piperacillin-tazobactam	>64	>64	0	7.4	92.6
	Meropenem	2	>8	37.0	18.5	44.4
	Levofloxacin	>8	>8	18.5	7.4	74.1
	Amikacin	0.5	1	NA	100	0
	Tigecycline	1	2	100	0	0
MBL-positive (146)^g	Ceftazidime-avibactam	>128	>128	1.4	NA	98.6
	Ceftazidime	>128	>128	0	0	100
	Cefepime	>16	>16	0	8.2	91.8
	Piperacillin-tazobactam	>64	>64	2.7	8.2	89.0
	Meropenem	>8	>8	4.8	2.1	93.2
	Levofloxacin	8	>8	21.9	15.8	62.3
	Amikacin	32	>32	49.3	6.8	43.8
	Colistin	0.5	>8	NA	82.9	17.1
	Tigecycline	0.5	2	91.8	7.5	0.7

a ESBL-positive, isolates in which one or more acquired β-lactamase genes encoding an ESBL was detected by PCR; includes isolates that co-carry original (narrow) spectrum β-lactamases but does not include isolates that co-carry AmpC β-lactamases or KPC, GES-type, OXA-48-like or MBL carbapenemases.

b AmpC-positive, isolates in which an acquired β-lactamase gene encoding an AmpC β-lactamase was detected by PCR; includes isolates that co-carry original (narrow) spectrum β-lactamases but does not include isolates that co-carry other serine β-lactamases or MBLs.

c ESBL-positive and AmpC-positive, isolates in which acquired β-lactamase genes encoding ESBL and AmpC β-lactamases were detected by PCR; includes isolates that co-carry original (narrow) spectrum β-lactamases but does not include isolates that co-carry serine carbapenemases or MBLs.

d KPC-positive, isolates in which a gene encoding a KPC carbapenemase was detected by PCR; includes isolates that co-carry other serine β-lactamases (including one isolate that co-carried KPC-2 and OXA-48) but does not include isolates that co-carry MBLs.

e GES-type carbapenemase-positive, isolates in which a gene encoding GES-20 was detected by PCR; includes isolates that co-carry original (narrow) spectrum β-lactamases but does not include isolates that co-carry other serine β-lactamases or MBLs.

f OXA-48-like positive, isolates in which a gene encoding an OXA-48-like enzyme (OXA-48, OXA-181, OXA-232, OXA-163, OXA-370) was detected by PCR; includes isolates that co-carry original (narrow) spectrum β-lactamases or ESBLs but does not include isolates that co-carry AmpC, GES-type or KPC β-lactamases or MBLs.

g MBL-positive, isolates in which a gene encoding an NDM-type, IMP-type or VIM-type MBL was detected by PCR; includes isolates that co-carry serine β-lactamases (original (narrow) spectrum β-lactamases, ESBLs, AmpC β-lactamases, GES-type, KPC, and OXA-48-like β-lactamases) and one isolate that carried two MBLs (IMP-27 and NDM-1).
other tested agents ranged from 4.8% to 24.2% lower than for ceftazidime-avibactam, with 71.5% of isolates susceptible to ceftazidime alone and 66.9% testing as susceptible to meropenem. Among the subset of all meropenem-nonsusceptible isolates (n = 835, included 214 MBL-positive isolates), 61.9% of isolates were susceptible to ceftazidime-avibactam. When MBL-positive isolates were removed from the subset, susceptibility to ceftazidime-avibactam increased to 87.2% among meropenem-nonsusceptible and carbapenemase-negative isolates and was 45.0% among serine carbapenemase-positive isolates. Against MDR isolates, which included MBL-positive isolates, 49.0% of isolates were susceptible to ceftazidime-avibactam. Ceftazidime-avibactam displayed the highest percentages of susceptibility of all agents tested among all meropenem-nonsusceptible isolates, subsets of meropenem-nonsusceptible, carbapenemase-negative and MBL-negative, carbapenemase-positive isolates, and MDR isolates.

Analyzing data by country of origin, percentages of susceptibility to ceftazidime-avibactam were >87% in seven of the 10 countries surveyed, with the lowest values observed for Mexico, Chile and Venezuela (75.9–80.2% susceptible) (Table 5). The overall percentage of P. aeruginosa isolates that were meropenem non-susceptible was 33.1% (Table 4) and ranged from 7.8% (Dominican Republic) to 46.7% (Chile) (Table 5). Percentages of susceptibility of meropenem-nonsusceptible isolates to ceftazidime-avibactam were >50% in all countries except Venezuela (26.0% susceptible) and were ≥80% for isolates collected in Argentina (91.8%), Brazil (86.1%), Costa Rica (87.5%),

Table 4 – In vitro activity of ceftazidime-avibactam and comparator agents against P. aeruginosa isolates collected in the Latin American region as part of the ATLAS global surveillance program from 2017 to 2019.

Organism, phenotype/genotype (no. of isolates)	Antimicrobial agent	MIC (µg/ml)	Interpretation (CLSI)			
	MIC₅₀	MIC₉₀	% Susceptible	% Intermediate	% Resistant	
Latin America, All P. aeruginosa (2521)	Ceftazidime-avibactam	2	32	86.9	NA	13.1
	Ceftazidime	4	64	71.5	4.3	24.2
	Cefepime	4	>16	72.2	10.4	17.5
	Piperacillin-tazobactam	8	>64	69.1	13.1	17.7
	Meropenem	0.5	>8	66.9	5.9	27.3
	Levofloxacin	0.5	>8	62.7	8.2	29.1
	Amikacin	4	>32	82.1	2.6	15.3
	Colistin	1	2	NA	99.8	0.2
Meropenem-NS (835)	Ceftazidime-avibactam	8	64	61.9	NA	38.1
	Ceftazidime	32	>128	35.3	7.4	57.2
	Cefepime	16	>16	32.9	19.9	47.2
	Piperacillin-tazobactam	64	>64	28.6	28.7	42.6
	Meropenem	>8	>8	0	17.7	82.3
	Levofloxacin	>8	>8	22.0	10.1	67.9
	Amikacin	16	>32	52.3	5.4	42.3
	Colistin	1	2	NA	99.8	0.2
Meropenem-NS, MBL-, carbapenemase+ (80)	Ceftazidime-avibactam	16	64	45.0	NA	55.0
	Ceftazidime	128	>128	2.5	3.8	93.8
	Cefepime	>16	>16	2.5	0	97.5
	Piperacillin-tazobactam	>64	>64	1.3	2.5	96.3
	Meropenem	>8	>8	0	0	100
	Levofloxacin	>8	>8	8.8	1.3	90.0
	Amikacin	>32	>32	35.0	8.8	56.3
	Colistin	1	1	NA	100	0
Meropenem-NS, MBL-, carbapenemase- (541)	Ceftazidime-avibactam	16	64	87.2	NA	12.8
	Ceftazidime	8	128	53.6	8.3	38.1
	Cefepime	16	>16	48.8	20.0	31.2
	Piperacillin-tazobactam	32	>64	42.1	22.4	35.5
	Meropenem	8	>8	0	26.4	73.6
	Levofloxacin	4	>8	31.2	14.6	54.2
	Amikacin	8	>32	70.1	3.7	26.2
	Colistin	1	2	NA	99.6	0.4
Multidrug-resistant (590)	Ceftazidime-avibactam	16	128	49.0	NA	51.0
	Ceftazidime	64	>128	10.5	6.6	82.9
	Cefepime	>16	>16	5.1	22.4	72.5
	Piperacillin-tazobactam	>64	>64	5.9	28.1	65.9
	Meropenem	>8	>8	9.0	5.3	85.8
	Levofloxacin	>8	>8	9.5	4.4	86.1
	Amikacin	>32	>32	34.7	5.9	59.3
	Colistin	1	2	NA	99.7	0.3

Abbreviations: NS, non-susceptible; MBL-, no gene encoding a metallo-β-lactamase was detected by PCR; carbapenemase+/-, a gene encoding a serine carbapenemase was (+) or was not (-) detected by PCR; multidrug-resistant, isolates resistant to three or more sentinel agents from different drug classes; NA, no breakpoint available.
Table 5 – Percentages of *P. aeruginosa* isolates collected in ten Latin American countries as part of the ATLAS global surveillance program from 2017 to 2019 that were susceptible to ceftazidime-avibactam and comparator agents.

Country	Antimicrobial agent	Phenotype/genotype (no. of isolates)	% Susceptible (CLSI)	Multi-drug-resistant			
		All isolates	Meropenem-NS	Meropenem-NS, MBL-, All	Meropenem-NS, MBL-, carbapenemase+	Meropenem-NS, MBL-, carbapenemase-	
Argentina	Ceftazidime-avibactam	(308)	(85)	(80)*	(71)	(70)	
	Ceftazidime	97.4	91.8	97.5	88.7	87.6	
	Ceftazidime	75.0	36.5	38.8	16.9	16.9	
	Cefepime	73.7	30.6	32.5	7.0	7.0	
	Piperacillin-tazobactam	69.8	20.0	21.3	5.6	5.6	
	Meropenem	72.4	0	0	15.5	15.5	
	Levofloxacin	62.0	16.5	17.5	11.3	11.3	
	Amikacin	85.1	55.3	57.5	43.7	43.7	
	Colistin	NA	NA	NA	NA	NA	
Brazil	Ceftazidime-avibactam	(425)	(115)	(109)*	(70)	(72)	
	Ceftazidime	95.3	86.1	90.8	72.9	72.9	
	Ceftazidime	78.6	62.6	66.1	22.9	22.9	
	Cefepime	78.4	55.7	58.7	4.3	4.3	
	Piperacillin-tazobactam	73.6	47.8	50.5	5.7	5.7	
	Meropenem	72.9	0	0	30.0	30.0	
	Levofloxacin	69.2	34.8	36.7	15.7	15.7	
	Amikacin	90.8	78.3	80.7	50.0	50.0	
	Colistin	NA	NA	NA	NA	NA	
Chile	Ceftazidime-avibactam	(257)	(120)	(16)	(60)	(84)	
	Ceftazidime	77.4	51.7	75.0	42.9	42.9	
	Ceftazidime	58.0	18.3	0	0.2	0.2	
	Cefepime	60.3	21.7	0	38.3	38.3	
	Piperacillin-tazobactam	57.6	16.7	0	6.0	6.0	
	Meropenem	53.3	0	0	1.2	1.2	
	Levofloxacin	49.0	15.0	0	25.0	25.0	
	Amikacin	77.0	56.7	87.5	45.2	45.2	
	Colistin	NA	NA	NA	NA	NA	
Colombia	Ceftazidime-avibactam	(384)	(124)	(26)	(68)	(86)	
	Ceftazidime	87.5	62.1	53.8	92.6	92.6	
	Ceftazidime	71.4	35.5	0	63.2	63.2	
	Cefepime	71.9	33.9	0	61.8	61.8	
	Piperacillin-tazobactam	69.3	29.0	0	50.0	50.0	
	Meropenem	67.7	0	0	10.5	10.5	
	Levofloxacin	67.2	26.6	19.2	39.7	39.7	
	Amikacin	85.9	60.5	30.8	92.6	92.6	
	Colistin	NA	NA	NA	NA	NA	
Country	Antimicrobial agent	Phenotype/genotype (no. of isolates)	% Susceptible (CLSI)				
-------------	---------------------	-------------------------------------	---------------------				
	All isolates	Meropenem-NS	Meropenem-NS, MBL-, All	Meropenem-NS, MBL-, carbapenemase+	Multidrug-resistant		
Costa Rica	(55)	(8)	(7)	100	(4)		
	Ceftazidine-avibactam	96.4	87.5	100	50.0		
	Ceftazidine	81.8	87.5	100	25.0		
	Cefepime	94.5	87.5	100	25.0		
	Piperacillin-tazobactam	81.8	75.0	85.7	0		
	Meropenem	85.5	0	0	50.0		
	Levofloxacin	85.5	50.0	57.1	50.0		
	Amikacin	98.2	87.5	100	75.0		
	Colistin	NA	NA	NA	NA		
Dominican Republic	(64)	(5)	(4)	100	(2)		
	Ceftazidine-avibactam	98.4	80.0	100	50.0		
	Ceftazidine	93.8	60.0	75.0	0		
	Cefepime	96.9	60.0	75.0	0		
	Piperacillin-tazobactam	96.9	60.0	75.0	0		
	Meropenem	92.2	0	0	0		
	Levofloxacin	78.1	60.0	75.0	0		
	Amikacin	87.5	80.0	100	50.0		
	Colistin	NA	NA	NA	NA		
Guatemala	(149)	(42)	(26)	100	(33)		
	Ceftazidine-avibactam	90.6	66.7	100	57.6		
	Ceftazidine	75.8	38.1	57.7	18.2		
	Cefepime	73.8	23.8	38.5	0		
	Piperacillin-tazobactam	71.8	21.4	34.6	0		
	Meropenem	71.8	0	0	6.1		
	Levofloxacin	70.5	16.7	23.1	3.0		
	Amikacin	79.2	33.3	50.0	15.2		
	Colistin	NA	NA	NA	NA		
Mexico	(562)	(238)	(29)	(160)	(167)		
	Ceftazidine-avibactam	80.2	55.0	10.3	79.4	38.9	
	Ceftazidine	64.4	32.8	3.4	48.1	9.6	
	Cefepime	65.7	31.5	6.9	44.4	9.0	
	Piperacillin-tazobactam	64.1	31.1	3.4	43.1	8.4	
	Meropenem	57.7	0	0	0	3.6	
	Levofloxacin	59.3	23.9	3.4	33.8	7.2	
	Amikacin	74.6	42.9	3.4	56.9	25.7	
	Colistin	NA	NA	NA	NA		
Country	Antimicrobial agent	Phenotype/genotype (no. of isolates)	% Susceptible (CLSI)				
---------	---------------------	-------------------------------------	---------------------				
	All isolates	Meropenem-NS	Meropenem-NS, MBL-, All				
		(21)	(13)				
	Multi-drug-resistant	(11)					
Panama	Ceftazidime-avibactam	87.5	84.6	36.4			
	Ceftazidime	82.5	61.5	18.2			
	Cefepime	82.5	63.5	9.1			
	Piperacillin-tazobactam	77.5	46.2	9.1			
	Meropenem	73.8	0	9.1			
	Levofloxacin	63.7	38.5	9.1			
	Amikacin	88.8	92.3	45.5			
	Colistin	NA	NA	NA			
		(80)	(21)	(13)			
Venezuela	Ceftazidime-avibactam	75.9	73.9	12.9			
	Ceftazidime	71.3	56.5	4.8			
	Cefepime	71.7	43.5	4.8			
	Piperacillin-tazobactam	69.6	47.8	3.2			
	Meropenem	67.5	0	0			
	Levofloxacin	53.2	8.7	1.6			
	Amikacin	74.3	60.9	8.1			
	Colistin	NA	NA	NA			
		(237)	(77)	(23)			

Abbreviations: NS, non-susceptible; MBL-, no gene encoding a metallo-β-lactamase was detected by PCR; carbapenemase+/-, a gene encoding a serine carbapenemase was (+) or was not (-) detected by PCR; multi-drug-resistant, isolates resistant to three or more sentinel agents from different drug classes; NA, no breakpoint available.

- Composed of 2 carbapenemase-positive and 78 carbapenemase-negative isolates.
- Composed of 5 carbapenemase-positive and 104 carbapenemase-negative isolates.
- Composed of 7 carbapenemase-negative isolates.
- Composed of 4 carbapenemase-negative isolates.
- Composed of 2 carbapenemase-positive and 24 carbapenemase-negative isolates.
- Composed of 13 carbapenemase-negative isolates.
- Composed of 23 carbapenemase-negative isolates.
The current study summarizes the in vitro antimicrobial susceptibility and molecular β-lactamase carriage of isolates collected as part of the ATLAS global surveillance program from 2017 to 2019 in 10 Latin American countries. Earlier publications only included isolates from six of the 10 countries (Argentina, Brazil, Chile, Colombia, Mexico, and Venezuela) described in the current study. In 2018, laboratory sites in Costa Rica, Dominican Republic, Guatemala, and Panama were added to the ATLAS global surveillance program and this is the first publication of data from those four countries as part of ATLAS or any other study.

In 2012-2015, 99.7% of Enterobacterales isolates (n = 7665) collected in Latin America as part of the ATLAS surveillance program were susceptible to ceftazidime-avibactam. In the 2015-2017 ATLAS report, 99.3% of Enterobacterales isolates were susceptible to ceftazidime-avibactam. In the current study of 2017-2019 isolates, 98.1% of Enterobacterales isolates demonstrated reduced activity against MBL-negative, ESBL-positive isolates (34.0% susceptible) and GES carbapenemase-positive isolates (10.3%) (Table 6). These isolates may have carried additional β-lactamases that were not included in the molecular testing algorithm and that were not inhibited by avibactam, or may contain non-enzymatic resistance mechanisms. In contrast, 64.7% of KPC-positive isolates (MIC90, 32 μg/ml) and 92.5% of meropenem non-susceptible isolates in which no acquired β-lactamase was detected were susceptible to ceftazidime-avibactam (MIC90, 8 μg/ml).

Discussion

Fig. 3 – β-lactamases identified in meropenem-nonsusceptible P. aeruginosa collected in 10 Latin American countries as part of the ATLAS global surveillance program from 2017 to 2019

LA, Latin America; AR, Argentina; BR, Brazil; CL, Chile; CO, Colombia; CR, Costa Rica; DO, Dominican Republic; GT, Guatemala; MX, Mexico; PA, Panama; VE, Venezuela; Cpase, carbapenemase; ESBL, extended-spectrum β-lactamase; None detected, no gene encoding an acquired β-lactamase was detected by PCR. ESBL (cpase-) included isolates carrying ESBL-like GES-type and PER-type β-lactamases.

and Dominican Republic (80.0%). A total of 23.4% of all P. aeruginosa displayed an MDR phenotype (Table 4), with percentages of MDR isolates ranging from 3.1% (Dominican Republic) to 32.7% (Chile) across the region (Table 5). Ceftazidime-avibactam was most active against MDR isolates from Argentina (88.7% susceptible; MIC90, 16 μg/ml) and Brazil (72.9% susceptible; MIC90, 64 μg/ml) and least active against MDR isolates from Venezuela, Panama, and Mexico (12.9–38.9% susceptible, MIC90, 128–>128 μg/ml). Amikacin was the only tested comparator that displayed greater activity than ceftazidime-avibactam in some countries.

No acquired ESBLs or carbapenemases were detected in 58.8% (491/835) of meropenem-nonsusceptible P. aeruginosa isolates screened for genes encoding β-lactamases (Fig. 3), implying the role of chromosomally-coded mechanisms in meropenem resistance such as alterations in OprD or efflux pump expression, likely combined with hyper-production of the intrinsic chromosomal AmpC β-lactamase of P. aeruginosa. Among β-lactamase-positive isolates, VIM-type MBLs were the most common acquired β-lactamases identified, followed by KPC. VIM-positive isolates were identified in all countries surveyed except the Dominican Republic and accounted for 68.8% of meropenem-nonsusceptible isolates collected in Venezuela and 36.7–38.1% of meropenem-nonsusceptible isolates from Chile, Guatemala, and Panama. KPC, which is rarely found in P. aeruginosa collected outside of Latin America, was identified in isolates from Argentina, Brazil, Chile, Colombia, Guatemala, and Mexico and was co-carried with VIM-type (n = 9) or IMP-type and GES-type carbapenemases (n = 2) in a small number of isolates. The majority (72.4%, 21/29) of P. aeruginosa carrying IMP-type MBLs and all isolates carrying GES-type carbapenemases were identified in Mexico, whereas SPM-positive isolates were only identified in Brazil. Carbapenemase-negative, ESBL-positive isolates were found primarily in Chile (10% of isolates, 12/120) and Mexico (13.9%, 33/238). Ceftazidime-avibactam was not active against isolates carrying MBLs (4.2% susceptible), as expected, and it also demonstrated reduced activity against MBL-negative, ESBL-positive isolates (34.0% susceptible) and GES carbapenemase-positive isolates (10.3%) (Table 6). These isolates may have carried additional β-lactamases that were not included in the molecular testing algorithm and that were not inhibited by avibactam, or may contain non-enzymatic resistance mechanisms. In contrast, 64.7% of KPC-positive isolates (MIC90, 32 μg/ml) and 92.5% of meropenem non-susceptible isolates in which no acquired β-lactamase was detected were susceptible to ceftazidime-avibactam (MIC90, 8 μg/ml).
From 2012 to 2015, the changes in susceptibility to ceftazidime-avibactam (data not shown), a 1.1% decrease of Enterobacterales collected in 2017-2019 were susceptible to carbapenems but does not include isolates that co-carry ESBLs or MBLs. GES-19, GES-26) but does not include isolates that co-carry other serine -lactamases (original (narrow) spectrum -lactamases, PER-type or GES-type ESBLs, KPC or GES-type carbapenemases) and MBLs (IMP-18 and VIM-2).

Organism, phenotype/genotype (no. of isolates)	Antimicrobial agent	MIC (µg/ml)	% Susceptible	% Intermediate	% Resistant
ESBL-positive (50)	Ceftazidime-avibactam	32 128	34.0	NA	66.0
	Ceftazidime	>128 >128	0	0	100
	Cefepime	>16 >16	0	4.0	96.0
	Piperacillin-tazobactam	>64 >64	8.0	34.0	58.0
	Meropenem	>8 >8	0	16.0	84.0
	Levofoxacin	>8 >8	0	0	100
	Amikacin	>32 >32	14.0	4.0	82.0
	Colistin	1 2	NA	98.0	2.0
KPC-positive (51)	Ceftazidime-avibactam	8 32	64.7	NA	35.3
	Ceftazidime	128 >128	2.0	3.9	94.1
	Cefepime	>16 >16	0	0	100
	Piperacillin-tazobactam	>64 >64	0	0	100
	Meropenem	>8 >8	0	0	100
	Levofoxacin	>8 >8	11.8	2.0	86.3
	Amikacin	>32 >32	52.9	13.7	33.3
	Colistin	1 1	NA	100	0
GES-type carbapenemase-positive (29)	Ceftazidime-avibactam	64 64	10.3	NA	89.7
	Ceftazidime	>128 >128	3.4	3.4	93.1
	Cefepime	>16 >16	6.9	0	93.1
	Piperacillin-tazobactam	>64 >64	3.4	6.9	89.7
	Meropenem	>8 >8	0	0	100
	Levofoxacin	>8 >8	3.4	0	96.6
	Amikacin	>32 >32	3.4	0	96.6
	Colistin	1 1	NA	100	0
MBL-positive (214)	Ceftazidime-avibactam	32 >128	4.2	NA	95.8
	Ceftazidime	64 >128	1.4	6.5	92.1
	Cefepime	>16 >16	4.2	27.1	68.7
	Piperacillin-tazobactam	64 >64	4.7	54.7	40.7
	Meropenem	>8 >8	0	2.3	97.7
	Levofoxacin	>8 >8	3.7	1.9	94.4
	Amikacin	>32 >32	14.0	8.4	77.6
	Colistin	1 2	NA	100	0
No acquired -lactamase (479)	Ceftazidime-avibactam	4 8	92.5	NA	7.5
	Ceftazidime	8 64	59.9	8.1	31.9
	Cefepime	8 >16	54.5	21.9	23.6
	Piperacillin-tazobactam	32 >64	46.8	21.1	32.2
	Meropenem	8 >8	0	28.2	71.8
	Levofoxacin	2 >8	35.3	16.5	48.2
	Amikacin	4 >32	77.2	3.8	19.0
	Colistin	1 2	NA	99.8	0.2

* ESBL-positive, isolates in which one or more -lactamase genes encoding a PER-type or GES-type ESBL was detected by PCR; does not include isolates that co-carry serine carbapenemases or MBLs.

b KPC-positive, isolates in which a gene encoding a KPC carbapenemase was detected by PCR; includes isolates that co-carry original (narrow) spectrum -lactamases but does not include isolates that co-carry ESBLs or MBLs.

c GES-type carbapenemase-positive, isolates in which a gene encoding GES-20 was detected by PCR; includes isolates that co-carry GES-type ESBLs (GES-1, GES-19, GES-26) but does not include isolates that co-carry other serine -lactamases or MBLs.

d MBL-positive, isolates in which a gene encoding an NDM-type, IMP-type, VIM-type or SPM-type MBL was detected by PCR; includes isolates that co-carry serine -lactamases (original (narrow) spectrum -lactamases, PER-type or GES-type ESBLs, KPC or GES-type carbapenemases) and five isolates co-carrying two MBLs (IMP-18 and VIM-2).

(Table 2). Removal of isolates from Guatemala from the current dataset resulted in 98.7% (7946/8052) of Enterobacterales being susceptible to ceftazidime-avibactam (data not shown), a 1.0% decrease from 2012-2015. Further limiting the dataset to only isolates collected in Argentina, Brazil, Chile, Colombia, Mexico, and Venezuela (i.e. the six countries included in the 2012–2015 and 2015–2017 study reports), 98.6% (7256/7358) of Enterobacterales collected in 2017-2019 were susceptible to ceftazidime-avibactam (data not shown), a 1.1% decrease from 2012 to 2015. The changes in susceptibility to ceftazidime-avibactam correlated with increases in the incidence of MBLs in Latin American isolates over time: 0.2% of isolates collected in 2012-2015 were MBL-positive; 0.6% of isolates collected in 2015–2017; and 1.3% (95/7358; isolates from the six countries participating since 2012) or 1.7% (146/8416; isolates from all 10 countries) collected in 2017–2019 were MBL-positive (Fig. 2). The proportion of MBL-positive isolates collected in Guatemala in 2017-2019 (12.9% of isolates) was much higher than observed for the nine other countries surveyed (≤2.2%). Earlier data from Guatemala are not
published and it is not possible to determine whether the abundance of MBL-positive Enterobacterales is due to recent or distant emergence.

In the current study, KPC was the most common carbapenemase identified, accounting for 61.5% of meropenem-non-susceptible Enterobacterales from all 10 countries surveyed and 66.5% (339/510; data not shown) of isolates from the six countries included in the 2012–2015 and 2015–2017 ATLAS reports. In the 2012–2015 report, KPC carbapenemases comprised 89.1% of detected carbapenemases and MBLs were only identified in isolates from Colombia, Mexico, and Venezuela. In the current study, MBL-positive isolates were detected in eight of 10 countries surveyed and the proportion of carbapenem-positive isolates that carried MBLs increased more than two-fold for isolates collected in Colombia and Venezuela compared to the 2012–2015 report.

Previous surveillance studies have reported phenotypic and genotypic ESBL rates in Latin American countries of 20–40% for both E. coli and K. pneumoniae, as well as rates of carbapenem-resistant Enterobacterales that often exceed 10%, particularly for K. pneumoniae and Enterobacter spp. In the current study, 6.0% of isolates were meropenem-resistant and genes encoding ESBLs were identified in 25.7% (2161/8416) of collected Enterobacterales isolates. The distribution of ESBL and carbapenemase types observed in the current study was in general agreement with previous reports for South American countries and Mexico and the ESBL rate compared well to that reported for isolates tested in 2015–2017 (24.1%), when similar molecular testing criteria were applied. In the current study, we found that ceftazidime-avibactam continues to inhibit ESBL-positive, AmpC-positive, ESBL- and AmpC-positive, GES-type carbapenemase-positive, and OXA-48-like-positive isolates of Enterobacterales (≥99.8% susceptible), as was found in earlier studies.

The current study identified 156 isolates of Enterobacterales (1.9% of all isolates) that were resistant to ceftazidime-avibactam (Table 1); 144 (92.3%) of these 156 isolates were MBL-positive (Table 3). The mechanism(s) of reduced susceptibility for the remaining 12 isolates may reflect the presence of an avibactam-insensitive β-lactamase that was not detected using the current molecular algorithm or a combination of mechanisms, such as increased β-lactamase production with porin deficiency and altered efflux and/or penicillin-binding protein alterations. It should be noted that four of these isolates carried PER-2 or PER-4 β-lactamases that are inhibited less effectively by avibactam in some cases.

In the current study, 86.9% of all isolates of P. aeruginosa tested from 10 Latin American countries were susceptible to ceftazidime-avibactam (Table 4), similar to the ATLAS study reports for isolates collected in 2012–2015 (87.4% susceptible) and 2015–2017 (86.6% susceptible). Other studies reported 84.0% (21/25) of P. aeruginosa collected in 2014-2015 to be susceptible to ceftazidime-avibactam and a ceftazidime-avibactam MIC90 of 16 μg/mL for 13 isolates of P. aeruginosa tested in 2011. Among clinical isolates of P. aeruginosa from Latin American countries, other investigators have reported country-specific percentages of susceptibility to ceftazidime that ranged from 50-80%, while 60-70% of isolates were carbapenem-susceptible, similar to the findings in the current study.

In the current study, 25.6% of all meropenem-nonsusceptible P. aeruginosa isolates collected in Latin America and 24.8% of isolates from the six countries participating in the study since 2012 carried MBLS. In comparison, 110 MBL-positive P. aeruginosa isolates were identified among 750 isolates nonsusceptible to meropenem, doripenem or imipenem in the 2012–2015 ATLAS report. VIM-type enzymes continue to predominate among carbapenemase-positive isolates in the region, comprising 60.5% of carbapenemase-positive P. aeruginosa from all 10 countries and 63.3% of carbapenemase-positive P. aeruginosa from the six countries participating since 2012, compared to ~50% of carbapenemase-positive isolates reported in the 2012–2015 report.

We conclude that clinical isolates of Enterobacterales collected from 10 Latin America countries in 2017–2019, including MBL-negative meropenem-nonsusceptible isolates and isolates with an MDR phenotype, were highly susceptible to ceftazidime-avibactam, which was comparably active or more active in vitro than currently available agents of last resort (e.g., amikacin, colistin, tigecycline) that are associated with well-established toxicities. Similarly, ceftazidime-avibactam was the most potent agent tested against isolates of P. aeruginosa collected in these same countries in 2017–2019. Cefazidime-avibactam has retained its in vitro potency against clinical isolates of Enterobacterales and P. aeruginosa collected from hospitalized patients in Latin American countries since 2012. Regional and country prevalence of different carbapenem-resistance mechanisms do exist and must be considered when evaluating treatment options.

Funding

Funding for this research, which was performed at IHMA and included compensation for services related to preparing this manuscript, was provided by Pfizer, Inc. The sponsor participated in the development of the overall study design, but collection and testing of isolates, data analysis and manuscript preparation were independently performed by IHMA.

Conflicts of interest

KMK and DFS are employees of IHMA, who were paid consultants to Pfizer in connection with the development of this manuscript. MdFV, ELL, AQ, PI and GGS are employees of Pfizer Inc. JAK is an employee of the University of Manitoba and Shared Health Manitoba and is a consultant to IHMA. The IHMA authors and JAK do not have personal financial interests in the sponsor of this manuscript. QA and MdFV are Pfizer stock holders.

Acknowledgements

The authors gratefully acknowledge and thank all ATLAS global surveillance program participants and IHMA laboratory personnel for their contributions to the ATLAS global surveillance program.
Supplementary materials

Supplementary material associated with this article can be found in the online version at doi:10.1016/j.bjid.2021.101647.

REFERENCES

1. Allergan. AVYCAZ® (ceftazidime and avibactam) for Injection, for Intravenous Use, Prescribing Information. Madison, NJ: Allergan USA, Inc.; 2020.

2. Stone GG, Ponce-de-Leon A. In vitro activity of ceftazidime-avibactam and comparators against Gram-negative bacterial isolates collected from Latin American centres between 2015 and 2017. J Antimicrob Chemother. 2020;75:1859–73.

3. Karlowsky JA, Kazmierczak KM, Bouchillon SK, de Jonge BLM, Livermore DM, Mushtaq S, Warner M, et al. Activities of ceftazidime, ceftaroline and aztreonam alone and in combination with ceftazidime-avibactam and aztreonam-avibactam combinations. Antimicrob Agents Chemother. 2020;64:e02311-19.

4. Livermore DM, Mushag S, Warner M, et al. Activities of NXL104 combinations with ceftazidime and aztreonam against carbapenemase-producing Enterobacteriaceae. Antimicrob Agents Chemother. 2011;55:390-40.

5. Papp-Wallace KM, Bajaksouzian S, Abdelhamed AM, et al. Activities of ceftazidime, ceftaroline and aztreonam alone and combined with avibactam against isogenic Escherichia coli strains expressing selected single β-lactamases. Diagn Microbiol Infect Dis. 2015;82:65–9.

6. Dupont H, Gaillot O, Goetheluck AS, et al. Molecular characterization of carbapenem-nonsusceptible enterobacterial isolates collected during a prospective interregional survey in France and susceptibility to the novel cephalosporin ceftazidime-avibactam and aztreonam-avibactam combinations. Antimicrob Agents Chemother. 2015;60:215–21.

7. Alm RA, Johnstone MR, Lahiri SD. Characterization of Escherichia coli NDM isolates with decreased susceptibility to aztreonam/avibactam: role of a novel insertion in PBP3. J Antimicrob Chemother. 2015;70:1420–8.

8. Zhang Y, Kashikar A, Brown CA, Denys G, Bush K. Unusual Escherichia coli PBP 3 insertion sequence identified from a collection of carbapenem-resistant Enterobacteriaceae tested in vitro with a combination of ceftazidime-, ceftaroline-, or aztreonam-avibactam. Antimicrob Agents Chemother. 2017;61.e00389-17.

9. Pagès J-M, Peslier S, Keating TA, Lavigne J-P, Nichols WW. The role of the outer membrane and porins in the susceptibility of β-lactamase-producing Enterobacteriaceae to ceftazidime-avibactam. Antimicrobial Agents Chemother. 2016;60:1349–59.

10. Shields RK, Chen L, Cheng S, et al. Emergence of ceftazidime-avibactam resistance due to plasmid-borne blaKPC-3 mutations during treatment of carbapenem-resistant Klebsiella pneumoniae infections. Antimicrob Agents Chemother. 2017;61.e02097-16.

11. Shields RK, Potsos BA, Haider G, et al. Clinical outcomes, drug toxicity, and emergence of ceftazidime-avibactam resistance among patients treated for carbapenem-resistant Enterobacteriaceae infections. Clin Infect Dis. 2016;63:1615–8.

12. Nelson K, Hemarajata P, Sun D, et al. Resistance to ceftazidime-avibactam is due to transposition of KPC in a porin-deficient strain of Klebsiella pneumoniae with increased efflux activity. Antimicrob Agents Chemother. 2017;61.e00989-17.

13. Lahiri SD, Bradford PA, Nichols WW, Alm RA. Structural and sequence analysis of class A β-lactamases with respect to avibactam inhibition: impact of Ω-loop variations. J Antimicrob Chemother. 2016;71:2848–55.

14. Chalhoub H, Saenz Y, Nichols WW, Tulkens PM, Van Bambeke F. Loss of activity of ceftazidime-avibactam due to MexAB-OprM efflux and overproduction of AmpC cephalosporinase in Pseudomonas aeruginosa isolated from patients suffering from cystic fibrosis. Int J Antimicrob Agents. 2018,52:697–701.

15. Ruggiero M, Papp-Wallace KM, Taracila CA, et al. Exploring the landscape of diazabicyclooctan (DBO) inhibition of avibactam inactivation of PER-2 β-lactamase. Antimicrob Agents Chemother. 2017;61.e02476-16.

16. Kawai A, McElheny CL, Iovleva A, et al. Structural basis of reduced susceptibility to ceftazidime-avibactam and cefiderocol in Enterobacter cloacae due to AmpC R2 loop deletion. Antimicrob Agents Chemother. 2020;64.e00198-20.

17. Compain F, Debray A, Adjadj P, Dorchene D, Arthur M. Ceftazidime-avibactam resistance mediated by the N345Y substitution in various AmpC β-lactamases. Antimicrob Agents Chemother. 2020;64.e02311-19.

18. Lahiri SD, Walkup GK, Whiteaker JD, et al. Selection and molecular characterization of ceftazidime/avibactam-resistant mutants in Pseudomonas aeruginosa strains containing derepressed AmpC. J Antimicrob Chemother. 2015;70:1650–8.

19. Rossi F, Cury AP, Franco MRG, Testa R, Nichols WW. In vitro activity of ceftazidime-avibactam against 417 gram-negative bacilli collected in 2014 and 2015 at a teaching hospital in Sao Paulo. Brazil. Braz J Infect Dis. 2017;21:569–73.

20. Flamm RK, Sader HS, Farrell DJ, Jones RN. Ceftazidime- avibactam and comparator agents tested against urinary tract isolates from a global surveillance program (2011). Diagn Microbiol Infect Dis. 2014(80):233–8.

21. Jones RN, Guzman-Blanco M, Gaes AC, et al. Susceptibility rates in Latin American nations: report from a regional resistance surveillance program (2011). Braz J Infect Dis. 2013;17:672–81.

22. Sader HS, Castanheira M, Farrell DJ, Flamm RK, Mendes RE, Jones RN. Tigecycline antimicrobial activity tested against clinical bacteria from Latin American medical centres: results from SENTRY antimicrobial surveillance program (2011-2014). Int J Antimicrob Agents. 2016;48:144–50.

23. Fernández-Ganiga L, Dowzicky MJ. Susceptibility of important gram-negative pathogens to tigecycline and other antibiotics in Latin America between 2004 and 2010. Ann Clin Microbiol Antimicrob. 2012;11:29.

24. Clinical and Laboratory Standards Institute. M100. Performance Standards for Antimicrobial Susceptibility Testing. 30th ed. Wayne, PA: Clinical and Laboratory Standards Institute; 2020.

25. Clinical and Laboratory Standards Institute. M07-A11. Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria That Grow Aerobically. Approved standard. 11th ed. Wayne, PA: Clinical and Laboratory Standards Institute; 2018.

26. Pfzer. Tygacil® (tigecycline) Injection, Powder, Lyophilized, for Solution, Prescribing Information. Philadelphia, PA: Pfizer Inc., Revised June 2016.

27. Lob SH, Kazmierczak KM, Badal RE, et al. Trends in susceptibility of Escherichia coli from intra-abdominal infections to ertapenem and comparators in the United States according to data from the SMART Program, 2009 to 2013. Antimicrob. Agents Chemother. 2015;59:3606–10.

28. Bradford PA. Extended-spectrum β-lactamases in the 21st century: characterization, epidemiology, and detection of this important resistance threat. Clin Microbiol Rev. 2001;14:933–51.

29. Logan LK, Weinstein RA. The epidemiology of carbapenem-resistant Enterobacteriaceae: the impact and evolution of a global menace. J Infect Dis. 2017;215(5):S28–36.
30. Shen Z, Ding B, Ye M, et al. High ceftazidime hydrolysis activity and porin OmpK35 deficiency contribute to the decreased susceptibility to ceftazidime/avibactam in KPC-producing Klebsiella pneumoniae. J Antimicrob Chemother. 2017;72:1930–6.

31. Castanheira M, Mendes RE, Sader HS. Low frequency of ceftazidime-avibactam resistance among Enterobacteriaceae isolates carrying blaKPC collected in hospitals from the United States from 2012 to 2015. Antimicrob Agents Chemother. 2017;61. e02369-16.