RETRACTED: YANG-MILLS THEORY FOR BUNDLE GERBES

VARGHESE MATHAI AND DAVID ROBERTS

Abstract. Given a bundle gerbe with connection on an oriented Riemannian manifold of dimension at least equal to 3, we formulate and study the associated Yang-Mills equations. When the Riemannian manifold is compact and oriented, we prove the existence of instanton solutions to the equations and also determine the moduli space of instantons, thus giving a complete analysis in this case. We also discuss duality in this context.

The definition of the “action” of the group \(G := C^\infty(X, PU) \) in §2.2 of our article is in error, as no such 2-form \(\omega \in \Omega^2(\text{PU}) \) exists with the required primitivity property \([1] \). The function \(: G \times \mathcal{C} \rightarrow \mathcal{C} \) is well-defined, but it fails to satisfy \((\eta \gamma) \cdot f = \eta \cdot (\gamma \cdot f) \). In particular the 2-form \(\omega := \tilde{q}^*(\omega_0) \) used in the proof of Proposition 1 fails to be primitive.

The validity of a result of the type originally claimed is uncertain.

— VM and DR, January 2024.

INTRODUCTION

The Yang-Mills equations for a line bundle on a Riemannian manifold, otherwise known as abelian Yang-Mills equations, is an elegant reformulation of Maxwell’s equations for electromagnetism on a general Riemannian manifold \(X \). It has been extensively studied in physics, and a nice account of it from a mathematician’s perspective can be found in \([1]\). Just as line bundles are classified up to isomorphism by \(H^2(X, \mathbb{Z}) \), it is known that bundle gerbes, which were invented in \([5]\), are classified up to stable isomorphism by \(H^3(X, \mathbb{Z}) \), \([6]\). It is natural to

2000 Mathematics Subject Classification. 70S15, 81T13.

Key words and phrases. bundle gerbe, abelian Yang-Mills theory.

V.M. acknowledges support from the Australian Research Council, D.R. acknowledges the receipt of an Australian Postgraduate Award.

\(^1\)See the the second author’s recent preprint arXiv:2311.03913
ask whether there is an analog of Yang-Mills theory for bundle gerbes on Riemannian manifolds?

In section 2 of this paper, we formulate and study the analog of the Yang-Mills equations for bundle gerbes with connection, on Riemannian manifolds X of dimension at least equal to 3. When X is a compact oriented Riemannian manifold, we prove in section 3 the existence of instanton solutions to these equations and in Corollary 2 we establish that the moduli space of instanton solutions is isomorphic to a torus $\mathbb{T}^{b_2(X)}$ of dimension equal to the second Betti number of X, thus giving a complete analysis in this case. Moreover, if we allow the bundle gerbe connection on the bundle gerbe to vary, and if A denotes the affine space of all bundle gerbe connections on the given bundle gerbe, then in Corollary 3 we deduce that the moduli space of instantons is a fibre bundle over A with fibres isomorphic to the torus $\mathbb{T}^{b_2(X)}$. We also discuss duality in our context, and in Corollary 1 we give a new geometric interpretation of the de Rham cohomology group $H^2(X, \mathbb{R})$.

In future research, we plan to generalize our results to n-bundle gerbes, $n > 1$, and also to non-abelian bundle gerbes. We mention that there have been other approaches to “higher” versions of Yang-Mills theory, cf. [2, 3] and references therein, which use (higher) category theory and so are rather different from our pedestrian geometric approach in this paper.

1. Preliminaries

1.1. Bundle gerbes and bundle gerbe connections. The material in this section is a very brief review of bundle gerbes. For details, we refer the reader to [5, 6].

Let (M, L) be a bundle gerbe over compact oriented manifold X. That is, $M \xrightarrow{\pi} X$ is a submersion and $L \rightarrow M^{[2]}$ is a primitive line bundle over the fibered product $M^{[2]} = \Delta^*(M \times M)$ where $\Delta : X \rightarrow X \times X$ is the diagonal map, $x \mapsto (x, x)$. We recall that a primitive line bundle is one that comes equipped with isomorphisms,

$$\mathcal{L}_{(x,y)} \otimes \mathcal{L}_{(y,z)} \cong \mathcal{L}_{(x,z)},$$

for all $x, y, z \in M$, called the bundle gerbe product.

Recall from [5] that for any fixed $p \geq 0$, we have an exact complex

$$\Omega^p(X) \xrightarrow{\pi^*} \Omega^p(M) \xrightarrow{\delta} \Omega^p(M^{[2]}) \xrightarrow{\delta} \ldots.$$
Here $\delta: \Omega^p(M^{[q]}) \to \Omega^p(M^{[q+1]})$ is the alternating sum of pull-backs $\sum_{j=1}^{q+1} (-1)^j \pi_j^*$ of projections where π_i is the projection map which omits the ith point in the fibre product, and $M^{[q]}$ denotes the q-th fibered product.

We will always assume that $M^{[2]}$ admits partitions of unity, in which case $L \to M^{[2]}$ admits connections. It is then shown in [5] that L admits bundle gerbe connections that is connections respecting the bundle gerbe product. A bundle gerbe connection ∇ has curvature F_∇ satisfying $\delta(F_\nabla) = 0$ and hence from the exactness of the fundamental complex [2] there exists a two-form f on M, satisfying the ‘descent equation’

$$F_\nabla = \pi_1^*(f) - \pi_2^*(f).$$

Such an f is called a curving for the connection ∇. Let $C = C(M, L, \nabla)$ denote the space of all curvings for the connection ∇. Then C is an affine space associated to the vector space $\Omega^2(X)$. To see this, observe that if $f_1, f_2 \in C$, then $0 = \pi_1^*(f_1 - f_2) - \pi_2^*(f_1 - f_2) = \delta(f_1 - f_2)$. Therefore by the exactness of the fundamental complex, $f_1 - f_2 = \delta(\lambda) = \pi^*(\lambda)$ where $\lambda \in \Omega^2(X)$. Note that C actually only depends on the curvature F_∇. Given a choice of curving we then have that $\delta(df) = df = dF_\nabla = 0$ so that by the exactness of the fundamental complex [2] we can find a three-form $H(f)$ on X, such that $df = \delta(H(f)) = \pi^*(H(f))$. Moreover $H(f)$ is closed as $\pi^*(dH(f)) = ddf = 0$. In [5] it is shown that $H(f)/2\pi i$ has integral periods is a de Rham representative for the Dixmier-Douady class. Here $H(f)$ is called the three curvature of the connection and curving (∇, f). It is shown in [5] that the cohomology class $[H(f)/2\pi i] \in H^3(X, \mathbb{Z})$ is independent of the choice of curving f.

2. Yang-Mills functional for bundle gerbes, critical points and duality

The configuration space for the Yang-Mills functional for the bundle gerbe (M, \mathcal{L}) is defined as the space of all curvings $C = C(M, \mathcal{L}, \nabla)$ for the bundle gerbe connection ∇ on (M, \mathcal{L}). We define the Yang-Mills functional for the bundle gerbe (M, \mathcal{L}) with bundle gerbe connection ∇ as,

$$YM : C \to \mathbb{R},$$

$$(3) \quad YM(f) = \int_X H(f) \wedge * H(f),$$
where \star denotes the Hodge star operator, with respect to the given Riemannian metric on X. Note that the compactness of X is used here, to ensure that the integral is finite. The Euler-Lagrange equations are then derived in the standard way,

$$\text{YM}(f + \varepsilon h) - \text{YM}(f) = 2\varepsilon \int_X H(h) \wedge \star H(f) + O(\varepsilon^2),$$

for all $h \in \mathcal{C}$. Therefore $d^* H(f) = 0$, where d^* denotes the formal adjoint of the de Rham operator d. But we always have $dH(f) = 0$, so we conclude that the critical points of the Yang-Mills functional YM for bundle gerbes satisfy the following Yang-Mills equations for bundle gerbes,

$$dH(f) = 0, \quad d^* H(f) = 0.$$

Note that these equations continue to make sense for noncompact Riemannian manifolds.

2.1. Duality. Note that since $d^* = \pm \star d\star$ and $\star^2 = \pm 1$ or $\pm i$, we see that the Yang-Mills equations for bundle gerbes are invariant under the transformation $H \mapsto \star H$, which is the analog of the electromagnetic duality for abelian Yang-Mills.

2.2. Gauge group for bundle gerbes and its action. Define the gauge group $\mathcal{G} = \mathcal{G}(X, \mathcal{L})$ to be $\mathcal{C}^\infty(X, \text{PU})$, where $\text{PU} = U/T$ is the projective unitary group on an infinite dimensional, separable Hilbert space. Then \mathcal{G} acts on \mathcal{C} via

$$\gamma \cdot f = f + \pi^* \gamma^*(\omega),$$

where $\omega \in \Omega^2(\text{PU})$ is a closed 2-form such that $[\omega] \in H^2(\text{PU}, \mathbb{Z})$ is the generator, $\gamma \in \mathcal{G}$ and $f \in \mathcal{C}$. In fact, we will make a particular choice of ω, which is primitive. More precisely, recall that the line bundle L associated to the central extension $T \rightarrow U \rightarrow \text{PU}$ is primitive in the sense that there are canonical isomorphisms $L_g \otimes L_h \cong L_{gh}$ for all $g, h \in \text{PU}$, and there is a connection ∇, on the line bundle L, called a primitive connection, which is compatible with these isomorphisms. If ω is the curvature of such a primitive connection ∇, then we see that $\omega_g + \omega_h = \omega_{gh}$ for all $g, h \in \text{PU}$, and ω is said to be a primitive closed 2-form on PU. Suppose now $\eta, \gamma \in \mathcal{G}$ and $x \in X$. Then, denoting the
pointwise product of η and γ as $\eta \gamma$, we have

$$((\eta \gamma)^* \omega)_x = \omega_{\eta(x) \gamma(x)} = \omega_{\eta(x)} + \omega_{\gamma(x)} = (\eta^* \omega)_x + (\gamma^* \omega)_x.$$

Thus $(\eta \gamma)^* \omega = \gamma^* \omega + \eta^* \omega$. The action of the gauge group G on C can now be seen to be well-defined, viz.

$$(\eta \gamma).f = (f + \pi^* \gamma^* \omega) + \pi^* \eta^* \omega = \eta.(\gamma.f)$$

for all $f \in C$.

Observe that $d(\gamma.f) = df$ for all $\gamma \in G$ and $f \in C$, i.e.

$$H(\gamma.f) = H(f).$$

In particular, $YM(\gamma.f) =YM(f)$, i.e.

$$YM : C/G \to \mathbb{R},$$

is a well defined Morse (quadratic) function on C/G.

Remarks 1. Instead of the group PU, we could have chosen any other differentiable group G such that G is an Eilenberg-Maclane space $K(Z, 2) = BU(1)$. For instance, G can be even chosen to be an abelian group which is a differentiable space, cf. [4], which is a weak form of smooth structure for infinite dimensional spaces.

3. Existence of instanton solutions, and the moduli space

3.1. **Existence.** Since X is a compact oriented manifold, by the Hodge theorem, cf. [8], which states that every cohomology class on a compact oriented manifold has a unique harmonic representative, there is a unique 3-curvature (instanton) solution to the Yang-Mills equations for bundle gerbes [3].

3.2. **Moduli space.** Our next goal is to determine the space of all (instanton) solutions to these equations and also the moduli space of gauge equivalent (instanton) solutions to the equations. That is, we want to analyse the set of all $f \in C$ such that $H(f) = H(f_0)$ for some fixed $f_0 \in C$. That is, $d(f - f_0) = 0$. Since we always have $f - f_0 \in \Omega^2(X)$, we see that the difference $f - f_0$ is a closed 2-form, $f - f_0 \in Z^2(X)$, where $Z^2(X)$ denotes the vector space of all closed 2-forms on X. Now the induced action of G on $Z^2(X)$ is $\gamma.\xi = \xi + \gamma^* \omega$, where $\gamma \in G$, $\xi \in Z^2(X)$ and ω is as in Section [2.2]. Consider the
subgroup G_0 of G consisting of all smooth maps from X to PU that are null homotopic. Then we have,

Proposition 1. Let $B^2(X)$ denote the space of all exact 2 forms on X. For all $\gamma \in G_0$, the pullback $\gamma^* \omega \in B^2(X)$, where ω is a primitive closed 2-form on PU such that $[\omega] \in H^2(PU, \mathbb{Z}) \cong \mathbb{Z}$ is the generator. Moreover, for any exact 2-form $F \in B^2(X)$, there is a $\gamma \in G_0$ such that $F = \gamma^* \omega$.

Proof. For $\gamma \in G_0$, by the homotopy invariance of de Rham cohomology, $[\gamma^* \omega] = 0$, therefore $\gamma^* \omega \in B^2(X)$. An alternate proof is given as follows. Note that any $\gamma \in G_0$ lifts to a smooth map $\tilde{\gamma} : X \to U$ where U denotes the unitary group of the given Hilbert space. That is, we have the commutative diagram,

\[\begin{array}{ccc} U & \xrightarrow{\pi} & PU \\ \downarrow & \searrow \gamma & \searrow \pi \\ X & \xrightarrow{\gamma} & PU \end{array} \]

Since U is contractible, there is a 1-form $\Lambda \in \Omega^1(U)$ such that $\pi^*(\omega) = d\Lambda$. By the commutativity of the diagram (6), we have $\gamma^*(\omega) = d\tilde{\gamma}^*(\Lambda)$, that is, $\gamma^*(\omega) \in B^2(X)$.

Conversely, given $F \in B^2(X)$, we need to show that there is a smooth map $h : X \to U$ such that $F = dh^*(\Lambda)$ where $\Lambda \in \Omega^1(U)$ is such that $\pi^*(\omega) = d\Lambda$. Then the composition $\gamma = \pi \circ h \in G_0$ has the property that $F = \gamma^* \omega$, as desired. But, by the theory of universal connections cf. [7], there is a smooth map $h_0 : X \to S$, where S denotes the unit sphere in the given Hilbert space such that $F = dh_0^*(\Lambda_0)$ where $\Lambda_0 \in \Omega^1(S)$ is the universal connection, having the property that $\pi^*(\omega_0) = d\Lambda_0$, where $\omega_0 \in \Omega^2(P)$ denotes the universal curvature 2-form on the projectivized Hilbert space P, where $\pi : S \to P$ is the circle bundle. Pick a point $x_0 \in S$. Then there is a map $q : U \to S$, which sends a unitary operator T to the point $T(x_0)$ on the unit sphere. Since S and U are contractible, there is a lift $h : X \to U$ of h_0. That is, we have the
Define $\Lambda = q^*(\Lambda_0)$. Then by the commutativity of the diagram (7), we see that $F = dh^*(\Lambda)$ as desired. The particular choice of ω that we make is $\omega = \bar{q}^*(\omega_0)$, where $\bar{q} : PU \to P$ is the map induced by q, i.e. such that the following diagram commutes,

$$
\begin{array}{c}
U \\
\downarrow \pi \\
PU
\end{array} \quad \begin{array}{c}
S \\
\downarrow \bar{\pi} \\
P
\end{array}
$$

□

The following corollary can be viewed as giving a new geometric interpretation of the cohomology group $H^2(X, \mathbb{R})$.

Corollary 1. Let \mathcal{M}_0^∇ denote the moduli space of null homotopic gauge equivalent (instanton) solutions to the Yang-Mills equations for the bundle gerbe (M, \mathcal{L}) with connection ∇ over a compact oriented manifold X. Then \mathcal{M}_0^∇ is isomorphic to the cohomology group $H^2(X, \mathbb{R})$.

Proof. By definition, $\mathcal{M}_0^\nabla = Z^2(X)/\mathcal{G}_0$. By Proposition I the quotient $Z^2(X)/\mathcal{G}_0 = H^2(X, \mathbb{R})$, proving the corollary. □

Corollary 2. Let \mathcal{M}_∇ denote the moduli space of gauge equivalent (instanton) solutions to the Yang-Mills equations for the bundle gerbe (M, \mathcal{L}) with connection ∇ over a compact oriented manifold X. Then \mathcal{M}_∇ is diffeomorphic to the torus $\mathbb{T}^{b_2(X)}$ of dimension equal to the second Betti number of X.

Proof. By Proposition I the quotient $Z^2(X)/\mathcal{G}_0 = H^2(X, \mathbb{R})$. Also since PU is an Eilenberg-Maclane space $K(\mathbb{Z}, 2)$, we see that the group of components of the gauge group is $\pi_0(\mathcal{G}) = \mathcal{G}/\mathcal{G}_0 = [X, PU] = H^2(X, \mathbb{Z})$.
Therefore
\[\mathcal{M}_{\nabla} = \frac{Z^2(X)/\mathcal{G}}{\mathcal{G}/\mathcal{G}_0}, \]
\[= \frac{(Z^2(X)/\mathcal{G}_0)/(\mathcal{G}/\mathcal{G}_0)}{\mathcal{G}/\mathcal{G}_0}, \]
\[= \frac{H^2(X, \mathbb{R})/\pi_0(\mathcal{G})}{\mathcal{G}/\mathcal{G}_0}, \]
\[= \frac{H^2(X, \mathbb{R})/H^2(X, \mathbb{Z})}{\mathcal{G}/\mathcal{G}_0}, \]
\[\cong \mathbb{T}^{b_2}(X). \]
\[
\square
\]

It has been shown in [5] that the space \mathcal{A} of all bundle gerbe connections on the bundle gerbe (M, \mathcal{L}) over X, is an affine space associated to the vector space $\Omega^1(M)/\pi^*(\Omega^1(X))$. Therefore we have the following corollary.

Corollary 3. Let $\mathcal{M} = \bigcup_{\nabla \in \mathcal{A}} \mathcal{M}_{\nabla}$ denote the moduli space of gauge equivalent (instanton) solutions to the Yang-Mills equations for the bundle gerbe (M, \mathcal{L}) over a compact oriented manifold X. Then \mathcal{M} is diffeomorphic to a torus bundle over the affine space \mathcal{A} with fiber isomorphic to the torus $\mathbb{T}^{b_2}(X)$ of dimension equal to the second Betti number of X.

Acknowledgements. V.M. thanks Michael Murray for a conversation about universal connections.

References

[1] M.F. Atiyah and R. Bott, *The Yang-Mills equations over Riemann surfaces*, Philosophical Transactions of the Royal Soc. London, Series A, Mathematical and Physical Sciences, 308 no. 1505 (1983) 523–615.

[2] J. C. Baez, *Higher Yang-Mills Theory*, [hep-th/0206130](https://arxiv.org/abs/hep-th/0206130).

[3] J.-L. Brylinski, *Categories of vector bundles and Yang-Mills equations*. Higher category theory (Evanston, IL, 1997), 83–98, Contemp. Math., 230, Amer. Math. Soc., Providence, RI, 1998.

[4] P. Gajer, *Geometry of Deligne cohomology*. Invent. Math. 127 (1997), no. 1, 155–207.

[5] M.K. Murray, *Bundle gerbes*, J. London Math. Soc. 54 (1996), 403–416.

[6] M.K. Murray and D. Stevenson, *Bundle gerbes: stable isomorphism and local theory*. J. London Math. Soc. 62 (2000) 925–937.

[7] T. R. Ramadas, *On the space of maps inducing isomorphic connections*. Ann. Inst. Fourier (Grenoble) 32 (1982), no. 1, viii, 263–276.

[8] F. Warner, Foundations of differentiable manifolds and Lie groups, Graduate Texts in Mathematics, vol. 94. Springer-Verlag, New York-Berlin, 1983.
PERMANENT ADDRESS: DEPARTMENT OF MATHEMATICS, UNIVERSITY OF ADELAIDE, ADELAIDE 5005, AUSTRALIA. ADDRESS UNTIL JUNE 30TH, 2006: ERWIN SCHRÖDINGER INSTITUTE, BOLTZMANNGASSE 9, A-1090 VIENNA, AUSTRIA

Email address: mathai.varghese@adelaide.edu.au

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF ADELAIDE, ADELAIDE 5005, AUSTRALIA

Email address: droberts@maths.adelaide.edu.au