Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website.

Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.
Repurposing existing drugs for the treatment of COVID-19/SARS-CoV-2 infection: A review describing drug mechanisms of action

Hassan Yousefi a,1, Ladan Mashouri b,1, Samuel C. Okpechi a,1, Nikhilesh Alahari c, Suresh K. Alahari a,d,

a Department of Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center School of Medicine, New Orleans, LA, USA
b Department of Medical Sciences, University of Arkansas, Little Rock, AK, USA
c Department of Biological Engineering, Louisiana State University, Baton Rouge, LA, USA
d Stanley Scott Cancer Research Center, Louisiana State University Health Sciences Center, New Orleans, LA, USA

ABSTRACT

The outbreak of a novel coronavirus (SARS-CoV-2) has caused a major public health concern across the globe. SARS-CoV-2 is the seventh coronavirus that is known to cause human disease. As of September 2020, SARS-CoV-2 has been reported in 213 countries and more than 31 million cases have been confirmed, with an estimated mortality rate of ~3%. Unfortunately, a drug or vaccine is yet to be discovered to treat COVID-19. Thus, repurposing of existing cancer drugs will be a novel approach in treating COVID-19 patients. These drugs target viral replication cycle, viral entry and translocation to the nucleus. Some can enhance innate antiviral immune response as well. Hence this review focuses on comprehensive list of 22 drugs that work against COVID-19 infection. Among these 53 drugs, based on various clinical trials and literature, remdesivir, nelfinavir, methylpredinosolone, colchicine, famotidine and emetine may be used for COVID-19. Significance: It is of utmost important priority to develop novel therapies for COVID-19. Since the effect of SARS-CoV-2 is so severe, slowing the spread of diseases will help the health care system, especially the number of visits to Intensive Care Unit (ICU) of any country. Several clinical trials are in works around the globe. Moreover, NCI developed a recent and robust response to COVID-19 pandemic. One of the NCI’s goals is to screen cancer related drugs for identification of new therapies for COVID-19. https://www.cancer.gov/news-events/cancer-currents-blog/2020/covid-19-cancer-nci-response?cid=eb_govdel.

1. Introduction

SARS-CoV-2 is a single-stranded enveloped RNA virus with a symmetrical nucleocapsid. SARS-CoV-2 targets cells via the viral structural spike (S) protein that binds to the angiotensin-converting enzyme 2 (ACE2) receptor to enter the host cell. Host type 2 transmembrane serine protease, (TMPRSS2) facilitates cell entry via the S protein [1]. Mechanistically, host proteases, especially TMPRSS2 cleave virus hemagglutinin to trigger internalization of the virus [2,3]. Once inside the cell, viral polyproteins that encode the replicase-transcriptase complex are synthesized and the RNA-dependent RNA polymerase replicates viral RNA. Consequently, structural proteins are synthesized leading to completion of assembly and release of viral particles [4–6]. So far, promising drugs target different viral enzymes including 3-chymotrypsin-like protease, papain-like protease, and RNA-dependent RNA polymerase. In addition, multiple drugs target viral entry and immune regulation pathways such as suppressing the cytokine storm mediated by the virus [7–9]. COVID-19 pandemic is forcing the scientific community to develop novel therapies immediately, because no vaccine is available yet. Moreover, synthesis and evaluation of new drugs from preclinical to phase III trials is a time-consuming process. Several drugs that are being considered for COVID-19 therapy have already been used in cancer therapies. Similar to cancer cells, virus infected cells enhance the synthesis of nucleic acids, proteins and increase energy metabolism. Thus, drugs that are blocking specific cancer cell pathways may be effective in blocking viral replication as well. Hence, in this review we provide a comprehensive analysis of some cancer drugs and others that can be repurposed for the treatment of COVID-19.
2. SARS-CoV-2 primary mechanisms of cellular entry and infection

SARS-CoV-2 uses two major pathways to enter the cells. The virus can fuse with the plasma membrane to enter through the plasma membrane. The second route is by fusing with the endosomal membrane. Interestingly, coronavirus fusion depends on proteases in the virus local environment, which signifies the flexibility of coronavirus S proteins to respond to different signal proteins [10,11]. Mechanistically, cellular entry of coronaviruses depends on the binding of the transmembrane spike (S) glycoprotein (forms homotrimers) [12] to a specific cellular receptor and subsequent S protein priming by cellular proteases. In doing so, SARS-CoV-2 recruits ACE2 as a receptor for cellular entry. Studies have shown that binding affinity of S protein and ACE2 is correlated with viral replication rate and disease severity [1,13,14]. Similarly, SARS-CoV-2 entry also depends on TMPRSS2 protease activity and cathepsin B/L activity.

When there are no exogenous or membrane-bound proteases available, coronaviruses can utilize clathrin or non-clathrin-mediated endocytosis for cellular internalization [15]. Surprisingly, for SARS-CoV-2, it is still not clearly understood where exactly fusion of viral and cellular membranes occur. It is possible that fusion occurs at the cell plasma membrane, and this has been proposed as the major cellular entry pathway [10]. Two main scenarios have been proposed for viral endocytosis. Viral RNA can enter the cytosol via the fusion pore as viral coat proteins do not directly enter the cell. Alternatively, the complex of SARS-CoV-2 and cell receptor (ACE2) undergoes endocytosis, and subsequently fusion of the viral membrane with the luminal face of the endosomal membrane promotes translocation of RNA into the cytosol [16–18].

3. Drug candidates being repurposed as potential therapeutics for COVID-19 treatment

Although there are no approved specific drugs or vaccines that combat coronaviruses, there are several options that can theoretically fight the disease. These options include vaccines, monoclonal antibodies, oligonucleotide-based therapies, peptides, interferon therapies, and small-molecule drugs. Unfortunately, discovery of drugs that can have permanent cure for the disease may take several months to years. Based on crystallography data, some possibilities have been envisaged to control or prevent emerging infections of SARS-CoV-2. Protein structural data indicate that drug binding pockets in viral enzymes are conserved across SARS-CoV-2, SARS and MERS [19]. Thus, several investigators are trying to repurpose the existing drugs for MERS and SARS [20]. Although no effective drug treatments have been identified for COVID-19, several of them are being tested. These include drugs that are meant for cancers, HIV and malaria [20,21]. Since COVID-19 is spreading uncontrollably across the globe, it is essential to discover new drugs, and it can be accomplished by repurposing drugs that are discussed in this article. In this review, first, we will discuss drugs that are currently being investigated for their use in treating patients. In the next section, we will focus on the drugs that are predicted to inhibit COVID-19 based on docking approaches using crystal structure of proteins of SARS-CoV-2. We identified 22 drugs (Figs. 1 and 3) that are actively being pursued for testing/clinical trials. From these, we identified 6 drugs that are highly potent for COVID-19 infection (Fig. 1). Also we show another 31 drugs (Table 1) that are predicted to work against COVID-19 infection. The drugs that are currently considered for therapies against COVID-19 infection are targeted to different steps of viral infection including viral entry, translation, proteolysis, viral RNA replication, viral protein assembly and viral release.

3.1. Drug candidates that attack viral entry (membrane fusion endocytosis)

As shown in Fig. 3, SARS-CoV-2 enter the host cells by fusion and endocytosis. The following drugs potentially attack these steps.

![Remdesivir](image1.png)

![Nelfinavir](image2.png)

![Famotidine](image3.png)

![Methylprednisolone](image4.png)

![Colchicine](image5.png)

![Emetine](image6.png)

Fig. 1. List of drugs that are actively being considered for COVID-19 infection. The structures were collected from Kim et al [184].
Table 1
Mechanism of action for the drugs that were identified based on structural data.

Drug name	Mechanism/s	Ref
Ursolic acid	Ursolic acid (UA) is a pentacyclic triterpenoid carboxylic acid that has been reported to possess antioxidant and anti-tumor properties. These properties of UA have been attributed to its ability to suppress NF-κB activation to regulate the expression of inflammatory genes.	[185,186]
Saikosaponin A	Saikosaponin A up-regulates LXRα expression and has shown potent anti-inflammatory activity.	[187–189]
Mulberroside A	Mulberroside A decreases the expressions of TNF-α, IL-1β, and IL-6 and inhibits the activation of NALP3, caspase-1, and NF-κB and the phosphorylation of ERK, JNK, and p38, exhibiting anti-inflammatory and anti-apoptotic effects.	[190]
Troxerutin	Troxerutin, also known as vitamin P4, can inhibit the production of reactive oxygen species (ROS) and repress ER stress-mediated NOD activation.	[191–193]
Verbacoside	Verbacoside acts as an ATP-competitive inhibitor of PKC and has antitumor and anti-inflammatory activity.	[194]
Corosolic acid	Corosolic acid is a protein kinase C inhibitor and exhibits anti-angiogenic and anti-lipangiogenic effects.	[195,196]
Dynarside	Dynarside is an anti-inflammatory and anti-inflammatory activity.	[197,198]
Orientin	Orientin has shown anti-inflammatory, anti-oxidative and anti-tumor activity. v-Viniferin displays a potent inhibitory effect on the CYP enzymes with potent antioxidant ability.	[199]
v-Viniferin	v-Viniferin displays a potent inhibitory effect on the CYP enzymes with potent antioxidant ability.	[200,201]
Myricitrin	Myricitrin is an anti-inflammatory activity.	[202,203]
Baicalin	Baicalin reduces the expression of NF-κB. Baicalin treatment inhibits the increased expression of the proinflammatory factors including TLR2/4, MyD88, p-NF-κB, and p-IAκB, as well as increase the expression of IκB protein, an NF-κB inhibitor	[204,205]
Corynoline	Corynoline is a reversible and noncompetitive acetylcholinesterase (AChE). Corynoline exhibits anti-inflammation activity by activating Nrf2.	[206,207]
Identotesticione	Identotesticione is an active alkaloid and has anti-inflammatory effect on asthma and gram-negative bacteria-induced acute lung injury.	[207,208]
Amygdalin	Amygdalin has antitumor activity.	[209]
Morusin	Morusin significantly inhibits the growth and clonogenicity of human colorectal cancer cells and suppressed the NF-κB activation. In addition, Morusin induced apoptosis in human prostate cancer cells by suppressing STAT3 activity.	[210]
Polyphenol I	Polyphenol I has been demonstrated to have strong anti-tumor activity in human non-small lung cancer cells.	[211]

Table 1 (continued)

Drug name	Mechanism/s	Ref
Phyllaemblicin B	Antiviral effects of Phyllaemblicin are due to suppression of virus induced apoptosis. A SARS-CoV-2 Mpro inhibitor with strong binding ability to other targets of SARS-CoV-2, like RdRp and HACE-2.	[203,217]
Caxameridin	Moderate antifungal activity.	[204]
Chrynamarin	Antitumor effects via apoptosis induction, caspase signaling pathway and loss of mitochondrial membrane potential. Also, a SARS-CoV-2 Mpro inhibitor with strong binding ability to other targets of SARS-CoV-2, like RdRp and HACE-2.	[205,218]
Aloxistatin	Aloxistatin with the active site of the SARS-CoV-2 main protease (Mpro),	[220]

3.1.1. Aloxistatin (E-64D)

Aloxistatin, is a cysteine protease inhibitor for calpains and cathepsins, and has an important regulatory role in neurodegeneration and cancer therapy. Cathepsin B and L could be considered potential biomarkers for cancer. Catalytic activity of these two proteases lead them to function as cell regulatory enzymes [22]. Moreover, calpain inhibition by aloxistatin has shown promising results in cataracts treatment. Aloxistatin inhibits hepatitis virus replication in a mouse model [23]. Mechanistically, this drug irreversibly forms a thioether bond thus modifying the active site of Cysteine. Nucleophilicity of the Cysteine’s active site helps aloxistatin to act selectively toward Cysteine proteases [22]. Aloxistatin inhibits lung cancer metastasis as well [24]. In addition, aloxistatin reduces cellular entry of SARS-CoV-2 by 92.3% since cathepsin L is a necessary factor for SARS-CoV-2 cell entry [25]. Further structural analysis indicated an interaction of membrane permeable aloxistatin with the active site of the SARS-CoV-2 main protease (Mpro),
which is important in making nonstructural protein (NSP). Interestingly, it also binds to papain-like proteases with less specificity [26]. In summary, aloxistatin is a potential drug for COVID-19 that could potentially affect SARS-CoV-2 proteases.

3.2. Drug candidates that attack SARS-CoV-2 viral entry (membrane fusion)

3.2.1. Viracept (nelfinavir mesylate)

Viracept is an anti-retroviral drug that selectively inhibits human immunodeficiency virus (HIV) protease. Mechanistically, viracept prevents cleavage of gag-pol viral polypeptide that results in release of immature and non-infectious virions [27]. Previous results with SARS and MERS CoV have shown that Spike (S) glycoprotein is a major determinant of virus infectivity and immunogenicity [28]. Recent studies indicated the potential efficacy of viracept against SARS CoV-2 [29,30]. Viracept inhibits S-n and S-o-mediated cell fusion resulted by SARS-CoV-2 Spike (S) glycoprotein [29,30]. This evidence suggests that viracept blocks SARS-CoV-2 transfer and spread from cell-to-cell and making it more sensitive to neutralizing antibodies. Interestingly, viracept inhibits growth of cancer cells as well [31,32].

3.3. Drug candidates that affect viral RNA replication and translation

Viral RNA is released into the cytoplasm, and translation of genomic RNA yields very large polypeptide, which undergoes proteolysis to generate RNA-dependent RNA polymerase (RDRP). Further, through the action of RNA polymerase, other proteins are made. Coronavirus has four structural proteins, including spike (S), membrane (M), envelope (E) and nucleocapsid (N). M is the most abundant structural protein. RNA replication and translation can be blocked by the drugs below.

3.3.1. β-D-N4-hydroxycytidine (NHC, EIDD-1931)

NHC is an orally bioavailable ribonucleoside analog with a broad-spectrum of antiviral activity against various unrelated RNA viruses. Cytidine analogs of NHC inhibits replication of Ebola virus (EBOV) [33]. Also, NHC blocks replication of hepatitis C virus (HCV) replicon [34]. Similarly, NHC inhibits human coronavirus [35], chikungunya virus [36], respiratory syncytial virus (RSV), hepatitis C virus, norovirus, influenza A (IAV) and B viruses, and Ebola virus [37]. Antiviral activity of NHC has been shown to be against human α-CoV HCoV-NL63, as well as β-CoV SARS-CoV [30,32]. NHC is effective against Venezuelan equine encephalitis virus (VEEV) as well. Most VEEV virions released from NHC-treated cells showed mutated viral genomes, which cannot undergo replication and block the resistance to NHC [38]. In addition, NHC inhibits WT murine hepatitis virus (MHV) and MERS-CoV with minimal cytotoxicity [39]. Therapeutic administration of NHC improved pulmonary function, reduced virus titer and body weight loss in mice. Mechanistically, decreased MERS-CoV is associated with increased transition mutation frequency in viral but not host cell RNA resulting in lethal mutagenesis in CoV [39]. Altogether, these reports indicate that increased introduction of transition mutations in viral genomes after treatment with NHC, as well as a high genetic barrier to resistance, and these both characteristics of NHC might be helpful for COVID-19 treatment.

3.3.2. Remdesivir (GS-5734)

Remdesivir, is a nucleoside prodrug or nucleotide analog with potential efficacy against multiple viruses with sub micromolar range dose of administration [40,41]. Nucleoside analogs (NAs) have been considered the most promising broad-spectrum anti-viral RNA-dependent RNA polymerase (RdRp) inhibitors and they have been effective in the treatment of multiple viral infections. Targeting viral replication within the host cell is one of the best anti-viral therapeutic approaches. These antiviral agents target viral replication enzymes. This could be due to their function as nucleoside analogs during viral replication that result in deadly mutations. Since many viruses depend on RdRp activity, remdesivir has good efficacy against a broad-spectrum of viruses including coronaviruses, SARS, MERS and CoVs [42–44]. In the case of SARS-CoV-2, it is shown that remdesivir inhibits viral replication, highlighting the importance of remdesivir for treatment of CoV infections [45].

Mechanistically, remdesivir functions as an RdRp binding substrate that replaces ATP during polymerization (Fig. 2). Remdesivir (GS-5734) enters cells and metabolized into an adenosine nucleotide analog (GS-441524). Phosphorylation of GS-441524 will make a nucleoside triphosphate (NTP) to utilize as a substrate for RdRp [46]. Originally, it was shown that ATP could be the main substrate for SARS-CoV RdRp [47]. However, NTPs incorporation into viral replication machinery replaces ATP resulting in insufficient elongation, a process known as “chain termination” [42,47]. In addition, NTPs do not show a significant inhibition for both human RNA Pol II and human mitochondrial RNA polymerases [48]. This possible mechanism of action has been detected for Nipah virus (NiV) RdRp as well. Despite potential efficacy of remdesivir, its application for CoV is challenging because of exonuclease activity of CoV nsp14 domain. This proofreading activity can remove the incorporated NTPs from viral RNA [49–51]. Three coronavirus (MERS-CoV, SARS-CoV, and SARS-COV-2) RdRp complexes have specific termination site at position i + 3, which means RNA synthesis is stopped after the addition of three more nucleotides, and this is often referred to as delayed chain-termination. However, higher concentration of natural nucleotide pool can dominate this RdRp-mediated termination. In addition, it is proposed that additional three nucleotides are necessary for providing protection against 3′-5′ exonuclease activity of nsp14 [52]. Studies on remdesivir recognition, incorporation and excision by nsp12 and nsp14 have provided key insights for new NA drug development [53]. Remdesivir is the first FDA approved drug for treatment of hospitalized 2019 coronavirus disease (COVID-19) patients. https://www.fda.gov/media/137564/download.

Several clinical trials are being done worldwide to examine remdesivir function on COVID-19 patients. Gilead Sciences initiated two phase III clinical studies to evaluate efficacy of remdesivir on 1000 COVID-19 patients from all around the world. This study analyzes remdesivir efficacy and safety in two categories, a 5-day and a 10-day remdesivir regimen [54]. It was reported that compassionate use of remdesivir for patients with severe COVID-19 has 68% clinical improvement, however, 13% of patients died. Increased hepatic enzymes, diarrhea, rash, renal impairment, and hypotension were among the common adverse events in 60% of cases. Since this was done in a small cohort, more comprehensive studies must be considered to confirm clinical benefit of remdesivir in patients with severe COVID-19 [55]. A randomized, double-blind, placebo-controlled, multi-center trial from 10 hospitals was done on 237 severe COVID-19 patients. The participants were assigned 2:1 ratio to receive either intravenous administration of remdesivir (200 mg of remdesivir on the first day followed by 100 mg per day during a 10-day medication) or the same conditions of placebo. Patients who received remdesivir showed a faster clinical improvement than the other group. Nevertheless, remdesivir treatment was stopped in 12% of cases because of the adverse results which were still less than the results of patients receiving placebo (12% vs 5%) [56]. Despite conventional antiviral drugs that have better efficacy at early stage of infection, remdesivir has been shown to be a potent drug in treatment of late stage COVID-19 patients [57].

3.3.3. Emetine

Emetine is traditionally used as an emetic and expectorant drug [58]. Its mechanism of action is through inhibition of ribosomal protein synthesis [58]. Emetine inhibits aminocyl-sRNA transfer reaction, preventing its incorporation into polypeptide bonds [58]. A 2018 study reported that emetine inhibits Zika and Ebola virus infections by suppressing viral replication and subsequently decreasing viral entry [59]. Another study also showed that emetine and other alkaloids extracted
from ipecac root are potent inhibitors of HIV reverse transcriptase (RT) [60]. Furthermore, emetine shown to have antiviral activity against human cytomegalovirus and rabies virus [61,62] and has anticancer activity against various solid tumors [63]. Based on these viral inhibitory properties, emetine is now considered one of the drug candidates against COVID-19 infection. Interestingly, emetine inhibits SARS-CoV-2 replication in-vitro with EC₅₀ of 0.46 μM and also has good synergistic effect with FDA approved remdesivir [64]. Thus, this drug will be a good candidate to repurpose for SARS-CoV-2 infection.

3.3.4. Ribavirin

Ribavirin (l-β-D-ribofuranosyl-l,2,4-triazole-3-carboxamide) is an antiviral agent. Ribavirin works against infection of several viruses including influenza virus, Lassa fever virus, Hantaan virus, and human immunodeficiency virus (HIV). Ribavirin received its FDA approval in 1986 as an aerosol for respiratory syncytial virus infected infants [65]. Also, ribavirin treatment is beneficial for acute leukemia patients [66]. Structurally, ribavirin is a guanosine nucleoside analog and resembles other purines including inosine and adenosine. Furthermore, ribavirin is therapeutically used in humans in combination with interferon-α in hepatitis C virus (HCV) infection. Ribavirin monophosphate interferes with viral RNA replication by inhibiting cellular protein inosine monophosphate dehydrogenase (IMPDH) [67]. IMPDH mediates inosine to GTP conversion and increases the expression of histone genes and E2F transcription factor, and thus controls cell proliferation [68]. Administration of ribavirin reduces intracellular GTP levels that disrupts RNA replication of virus [67,68]. Viral RNA-dependent RNA polymerase can recruit ribavirin-triphosphate as a GTP analog or an ATP analog. However, ribavirin treatment in HCV weakly inhibits polymerase in vitro. Another possible antiviral mechanism for ribavirin is that it promotes lethal mutagenesis in viral RNA [67,69]. A plethora of studies also proved that ribavirin can increase host cell immunity by inducing T-helper 1 (Th1) response (increased IFN-γ secretion). This response is through suppression of IL-10 secretion by T-reg cells [70,71]. This drug has also been considered a combinational therapeutic with lopinavir/ritonavir and/or interferon-β against SARS-CoV-2 infections [72].

3.4. Drug candidates that only affect viral translation

3.4.1. Valrubicin

Valrubicin is an N-trifluoroacetyl 14-valerate derivative of anthracycline doxorubicin, and known to have anti-tumor activity. However, valrubicin is less effective compared to doxorubicin [73] in human bladder cells. Valrubicin is an anthracycline chemotherapy drug and its mechanism of action is histone loss, thus disruption of DNA repair process in tumor cells [73]. Valrubicin intercalates with dsDNA [74,75]. Valrubinc mediates formation of DNA cleavable complexes and inhibit topoisomerase II activity leading to defects in DNA replication and transcription. Valrubinc has antiangiogenic function by binding to proteasome complex [76]. In addition, valrubinc mediates tumor cell apoptosis through binding to PKC and regulating downstream pathways [77]. Valrubinc can bind to and inhibit SARS-CoV-2 Mₚ and proteases [78,79]. Thus, valrubinc is a good candidate drug for COVID-19.

3.4.2. Perphenazine

Perphenazine (PPZ) is an antipsychotic drug classified as a piperazinyl phenothiazine. Phenothiazines, including PPZ, suppress T cell acute lymphoblastic leukemia [80]. Perphenazine directly binds to protein phosphatase 2A, a well-conserved serine/threonine phosphatase, and induces dephosphorylation of ERK1/2 and Akt that in turn trigger apoptosis. So far, there are two clinical trials reported on this drug. First, a phase IV trial, investigated the effectiveness of PPZ (in combination with other antipsychotic drugs) in children and adolescents who have gained weight on their antipsychotic medications [NCT00806234]. Second trial investigated safety and efficacy of PPZ on schizophrenic patients [NCT00802100]. Although PPZ is popularly.
known as an antipsychotic drug, currently, it is also being investigated for possible antiviral effect against COVID-19. PPZ is one of the compounds predicted to be able to bind to the amino acid pocket site of 2019-nCoV and interferes its function [81]. Thus, this drug is a good candidate drug for COVID-19 infection.

3.4.3. Homoharringtonine

Homoharringtonine (HHT) is one of the alkaloid compounds extracted from Cephalotaxus harringtonia plant [82]. Also another product extracted from Cephalotaxus fortunei plant, a related species of Cephalotaxus harringtonia, is widely used in Chinese folk medicine for its antiparasitic, anti-inflammatory and antineoplastic effects [83]. HHT and harringtonine are the main alkaloids isolated from Cephalotaxus harringtonia. HHT can be distinguished from harringtonine due to the presence of methylene group on its side chain [83]. Though both alkaloids have similar biological and therapeutic potential, HHT has better extraction yield [83,84]. HHT has a positive effect in treatment of chronic myelogenous leukemia (CML), acute myeloid leukemia (AML) and myelodysplastic syndrome (MDS) [85,86]. Mechanistically, HHT inhibits translation of proteins through binding and interacting with the A-site in the peptidyl transferase of the ribosome [83,87,88]. HHT inhibits SARS-CoV-2 replication in vitro and thus the drug is being investigated for potential therapeutic function for COVID-19 infection [89].

3.5. Drug candidates that affect COVID-19 related inflammatory response

It is known that SARS-CoV-2 infects airway alveolar epithelial, vascular endothelial cells, and macrophages. SARS-CoV-2 infection results in aggressive inflammation and this is due to increased secretion of several interleukins and interferons. The below described drugs inhibit various inflammatory responses.

3.5.1. Fingolimod

Fingolimod (FTY720, Gilenya), is a sphingosine analog and a sphingosine 1-phosphate (S1P) receptor modulator. Fingolimod is the first FDA-approved drug for multiple sclerosis (MM)- a CNS related disease results in oligodendrocyte (OLG) loss. Fingolimod has been shown to be an effective drug for various cancers [90]. Fingolimod is phosphorylated by sphingosine kinase 1 and 2 (SphK1 and SphK2), and binds as an analog of S1P to the G-protein coupled S1P receptor subtypes S1P1, S1P3, S1P4, and S1P5 [91,92]. Fingolimod showed decreased antiviral T-cell response against varicella-zoster virus (VZV) in multiple sclerosis patients [93]. Also, fingolimod is considered a potential therapeutic drug against SARS-CoV-2. Coronaviruses can spread into the CNS and fingolimod is capable of preventing T-cell penetration into the CNS and regulates blood–brain barrier (BBB) permeability. However, some reports show that there is no correlation between SARS-CoV-2 infection and lymphocyte levels in fingolimod treated cases [94,95]. Thus, this drug needs a further evaluation for COVID-19 patients.
3.5.2. Colchicine

Colchicine, a natural product extracted from a plant named genus Colchicum (autumn crocus), has been used for inflammatory arthritis and gout for centuries [96]. Colchicine disrupts many inflammation related cellular processes including inflammasome activation, inflammatory cell chemotaxis, leukotrienes production, cytokine production and phagocytosis. Colchicine inhibits polymerization of tubulin and microtubule assembly. Since these pathways are involved in many inflammatory diseases, colchicine could be a potential therapeutic candidate for further investigation [97]. Colchicine inhibits tumor growth by inducing apoptosis [98]. The NOD-, LRR- and pyrin domain-containing protein 3 (NLRP3) inflammasome is an intracellular sensor capable of recognizing a plethora of pathogenic microbial motifs. It can trigger an inflammatory type of cell death through caspase-1 activation and its related secretion of pro-inflammatory cytokines, IL-1β and IL-18 [99,100]. In addition, NLRP3 causes cellular stress, which is a part of immune response in autoimmune disorders, neurodegenerative diseases and tumor development. NLRP3 is expressed in immune cells specially antigen presenting cells (APCs) such as macrophages, and is upregulated through TLR-induced NF-κB activation [101]. Recent studies indicate that colchicine is a potential drug for anti-inflammatory response via NLRP3 inflammasome and cytokine storm suppression in COVID-19 patients [102,103].

3.5.3. Tocilizumab

Tocilizumab is a monoclonal antibody that has many therapeutic functions. Interleukin-6 (IL-6) is a pleiotropic cytokine with known multiple functions such as inflammation, and oncogenesis. Binding of IL-6 to IL-6 receptor (IL-6R) induces homodimerization and recruitment of glycoprotein 130 (gp130), which leads to activation of downstream signaling. Emerging evidence suggests that high levels of IL-6 are correlated with poor prognosis in breast cancer patients. IL-6 appears to play a critical role in growth and metastasis of breast cancer cells, renewal of breast cancer stem cells (BCSCs), and drug resistance of BCSCs, making anti-IL-6/IL-6R/gp130 therapies promising options for treatment and prevention of breast cancers [104]. Recent reports showed anticancer effects of tocilizumab in a colon cancer xenograft model and effects of combination therapy of tocilizumab and interferon-alpha against renal cell carcinoma [105]. Tocilizumab also inhibited tumor growth of trastuzumab resistant breast cancer cells [106]. Cytokine storms mediated by overproduction of proinflammatory cytokines have been observed in a large population of critically ill patients infected with COVID-19. [107–109]. The most recent data from China suggested that IL-6 is one of the most important cytokines involved in COVID-19-induced cytokine storms (REF). IL-6 has been shown to regulate immune response, inflammation and oncogenesis. Mechanistically, IL-6 binds to IL-6R (IL-6 receptor) and gp130 to induce homodimerization of gp130. This homodimerization phosphorylates tyrosine residues (Tyr759) in the cytoplasmic domain of gp130. Activated gp130 induces phosphorylation of JAK1, JAK2 and Tyk2 result in activation of STAT1 and STAT3. This JAK- mediated phosphorylation of tyrosine residues in gp130 activates two downstream signaling pathways including JAK/STAT and ERK/MAPK. Consistent with this, soluble form of IL-6R (sIL-6R) also binds to IL-6R and forms a receptor complex with gp130 to further activate these signaling pathways [110]. IL-6 also plays a key role in T helper cell differentiation by regulating balance between IL-17 (T helper 17 cells) and regulatory T-cells (T-reg) [111]. Tocilizumab (TCZ) is a human anti-IL-6R monoclonal antibody belongs to the immunoglobulin G1K subclass that binds to soluble and membrane-bound interleukin 6 receptors (IL-6R) [112]. Tocilizumab has been approved by the FDA for rheumatoid arthritis (RA). In addition, tocilizumab has been shown to be a potential option for other inflammatory diseases, such as Castleman’s disease [113]. Since tocilizumab is an antibody for IL-6 receptor and potential alleviator of inflammatory response, this drug has been tried in COVID-19 patients and observed improved clinical outcome [114].

3.5.4. Sarilumab

Sarilumab, a human anti-IL-6R monoclonal antibody that has been used for rheumatoid arthritis and ankylosing spondylitis [113]. Similar to tocilizumab, sarilumab blocks IL-6-induced inflammatory signaling cascade by binding to both IL-6R and sIL-6R [115]. Also, sarilumab inhibits growth of xenograft tumors of DU145 (prostate), Calu3 (lung), and A549 (lung) either as a single agent or in combination with VEGF blocker aflibercept [116]. Sarilumab, like tocilizumab, binds specifically with high affinity to a unique epitope on IL6R (both membrane-bound and soluble IL-6R), and effectively blocks both cis- and transactivation of IL-6 signaling. Regeneron, a pharmaceutical company started a clinical trial of sarilumab on COVID-19 patients and the final data yet to be published.

3.5.5. Methylprednisolone

Methylprednisolone and its derivatives, methylprednisolone acetate succinate, and methylprednisolone sodium, are synthetic glucocorticoids used mainly as anti-inflammatory or immunosuppressive agents. Methylprednisolone has been suggested for palliative therapy for terminal cancer patients and it is five times more potent in its anti-inflammatory activity compared to hydrocortisone (cortisol) [117]. Methylprednisolone’s mechanism of action is through its binding to intracellular glucocorticoid receptor. Upon binding, this complex translocates to the nucleus, where it interacts with specific DNA sequences, resulting in suppression of downstream target genes. The methylprednisolone-glucocorticoid receptor complex binds to and blocks promoter sites of proinflammatory genes [118]. This leads to inhibition of synthesis of inflammatory cytokines by blocking the function of transcription factors such as nuclear factor-kappa-B (NF-kB) [119]. Presently, methylprednisolone is being tested in a number of COVID-19 related clinical investigations. A retrospective cohort study of 201 COVID-19 patients (median age-51 years), who developed acute respiratory distress syndrome, indicated that treatment with methylprednisolone decreased mortality [120]. Furthermore, methylprednisolone treatment resulted in good recovery of COVID-19 post-transplant patients with compromised immune systems [121,122].

3.5.6. Icatibant (HOE-140, JE-049)

Icatibant is a highly specific competitive antagonist for the bradykinin type 2 (B2) receptor. It is an analog of bradykinin and is composed of 10 amino acids, five of which are synthetic and resistant to degradation of ACE2. These amino acids are needed to inactivate Des-Arg9-bradykinin (DBK), the potent ligand of bradykinin receptor type 1 (B1) [123]. The problem of pulmonary edema of COVID-19 patients could be due to activation of B1 and B2 receptors in lungs. ACE2 inactivates the ligands of B1 and thus, lung environment is prone for local vascular leakage leading to angioedema [124]. In vitro studies have confirmed that icatibant is a highly selective competitive antagonist for the B2 receptor [125]. In addition, icatibant blocks vascular functions of bradykinin in vivo [126]. Bradykinin plays a major role in developing pulmonary edema in COVID-19 patients due to inflammation caused by Des-Arg9-bradykinin. Thus, it is suggested that icatibant might be helpful in suppressing pulmonary edema and, thereby, will improve the clinical outcomes in COVID-19 patients [127–129].

3.6. Drug candidates that affect viral release

Viral assembly occurs in vesicles and the virus is exocytosed by fusion of virus containing vesicles with the plasma membrane and Ostelmivir blocks this step.

3.6.1. Oseltamivir

Oseltamivir is an ethyl ester oral prodrug against neuraminidase (an enzyme which is expressed on the viral surface) of influenza A and B virus. This drug is approved for treatment and prophylaxis of influenza A and B [130]. Once it enters cells, oseltamivir converts into an active
form (GS4071) [130]. Mechanistically, lipophilic side chain on GS4071 binds to the hydrophobic pocket of the active site of the viral neuraminidase. As a result, it impairs the ability of neuraminidase to cleave sialic acid residues on the surface of the infected host cells and subsequently inhibits release of progeny virions from the infected cells. Inhibition of virions suppresses viral movement within the respiratory tract [130]. The substrate binding domain of influenza neuraminidase is highly conserved due to its critical role in viral replication. However, it is possible that resistant virus may be developed, and the resistance could be due to mutations in the viral neuraminidase or hemagglutinin or both. For example, clinical isolates from treated patients have been shown to be resistant [130–133]. Surprisingly, oseltamivir enhances breast tumor growth [134]. Recently, oseltamivir was administered for COVID-19 in China, either with or without antibiotics and corticosteroids combination [135]. In addition, oseltamivir is also used in a clinical trial with several combinations with chloroquine and favipiravir [136].

4. Other drug candidates that are known to have good therapeutic effect against SARS-CoV-2 infection, but their mechanisms of action are unknown

4.1. Famotidine

It is a competitive antagonist for histamine H2-receptor. Famotidine acts as an inhibitor for gastric secretion. The preventive effect of famotidine on gastric lesions is attributable not only to suppression of acid secretion but to activation of gastric mucosal defensive mechanisms [137,138]. Orally delivered famotidine has shown improved outcomes in COVID-19 patients [139,140].

4.2. Almitrine

This drug is a peripheral chemoreceptor agonist, inhibits selectively Ca2+-dependent K+ channel. In vivo data showed that Almitrine could enhance hypoxic pulmonary vasoconstriction and enhanced overall ventilation/perfusion ratio [141]. It has been hypothesized that intra-venous almitrine will reduce the need for ventilators patients with COVID-19 related pneumonia [https://clinicaltrials.gov/ct2/show/NCT04357457].

4.3. Amprenavir

This drug has been shown to have an HIV protease inhibitory effect and is used against HIV infection. In addition, amprenavir suppressed hepatocarcinoma cell growth in vivo through inhibition of angiogenesis [142,143]. Amprenavir forms an inhibitor-enzyme complex with HIV protease preventing the normal maturation process of HIV and formation of mature infectious virions. Amprenavir inhibits both HIV-1 and HIV-2 in vitro; however, the FDA approval is only against HIV-1 [144]. Unpublished reports based on bioinformatics analysis indicate that amprenavir may be a good drug for treatment of COVID-19 [https://arxiv.org/ftp/arxiv/papers/2003/2003.04524.pdf].

4.4. Cromolyn sodium

Cromolyn sodium functions as a GSK-3β inhibitor. Cromolyn sodium inhibits release of initiators of inflammation, mediated by specific antigens from mast cells. Cromolyn sodium may also inhibit the activity of other cell types that produce inflammation [145–147]. Similar to cancer cells, SARS-CoV-2 activates NFκB pathway and inhibitors of NFκB reduces inflammation associated with viruses. Cromolyn sodium inhibits NFκB in pancreatic cancer patients [148] and inhibits inflammation in several diseases [149]. Thus, cromolyn sodium may be effective in decreasing inflammation and cytokine storm in COVID-19 patients.

4.5. Hesperidin

This drug functions as an anti-inflammatory drug. For instance, hesperidin is shown to reduce inflammation as well as inflammatory pain via reduction of cytokine production, NF-κB activity, and oxidative stress. Anticancer effects of hesperidin are associated with its antioxidant and anti-inflammatory activities. Hesperidin inhibits tumor cell metastasis, angiogenesis, and chemoresistance [150,151]. Unpublished molecular docking studies indicate that hesperidin may bind to multiple regions of SARS-CoV-2 (spike protein, ACE2 and proteases) [https://www.drkarafitzgerald.com/2020/04/17/8-potential-natural-anti-avoid-compounds/], and thus hesperidin is a potential drug of COVID-19 therapies. Similar to hesperidin, Biorobin binds to multiple regions of SARS-CoV-2 [152], and hence suggested to be a good drug for COVID-19.

5. Discussion

COVID-19 pandemic is an untimely global healthcare challenge that requires timely social, environmental, and therapeutic interventions to halt or minimize the growing number of casualties. Globally, there are more than 31 million documented cases and approximately 960,000 reported deaths from COVID-19 as of September 2020. While these numbers are steadily increasing, there remain a few established standards of care and therapeutic options available. To date, there is still no available vaccine, although there are several options in various clinical trial stages. To effectively combat the rapid spread of SARS-CoV-2 infection and transmission between people, urgent clinical and therapeutic intervention must be put in place. One can search for a potent and reliable therapy for COVID-19 using the knowledge of drugs that are being used to treat other diseases. Herein, we have described mechanisms of action of leading antiviral, anticancer, and other relevant drugs that are currently being repurposed for the treatment of SARS-CoV-2 infection and COVID-19. In addition, we also briefly described drugs that have potential anti-SARS-CoV-2 effects, but their mechanisms of action are yet to be elucidated. The second category of drugs were identified using docking strategies based on crystal structure of SARS-CoV-2 proteins and potential binding pockets of drugs on these proteins. In this review, we focused on describing drug candidates that are presently being repurposed and how these therapeutic compounds can inhibit SARS-CoV-2 cellular entry, replication, translation of structural proteins and viral release.

Host cell entry is the first step in the life cycle of SARS-CoV-2 [153], and thus, this process constitutes a target for therapeutic inhibition. SARS-CoV-2 cellular entry occurs either through endocytosis or through fusion with host cell receptors [15]. Viral entry is an important determinant of coronavirus infection and COVID-19 pathogenesis. Therefore, drug candidates with the potential to inhibit SARS-CoV-2 entry into cells are in urgent demand. Here, we report that arbidol and virapect are drug candidates that have the potential to inhibit SARS-CoV-2 entry through membrane fusion while aloxatin, chloroquine and hydroxychloroquine (HCQ) are capable of inhibiting viral entry through endocytosis [154–156]. Research studies have reported puzzling and sometimes controversial findings on the mechanisms by which SARS-CoV-2 uses for entry into cells. It has been shown that entry of SARS-CoV-2 into lung cells occur by fusion at the plasma membrane [15], whereas entry into non-lung cells such as Vero E6 cells occurs through spike mediated fusion of viral membranes with endosome membranes [1]. Additional studies have reported that HCQ does not inhibit SARS-CoV-2 infection of lung cells [157], despite it being a robust inhibitor of SARS-CoV-2 entry into Vero E6 cells which typically occurs via the endosome route [158]. Therefore, this implies that HCQ might have a cell-specific effect. In conclusion, more research studies will have to be conducted on HCQ before its clinical use can be encouraged.

Another molecular mechanism that enhances SARS-CoV-2 infection process is viral replication. The replication of the viral genome within
the infected cells is a critical phase of the SARS-CoV-2 life cycle [159]. Thus, this process of viral replication constitutes another target for the inhibition of COVID-19. Viral replication event is a complex process involving the synthesis of both genomic and multiple sub-genomic RNA species, and the assembly of progeny virions by a pathway that is unique for this enveloped RNA virus [5]. The replication process involves the action of viral and host proteins in order to perform RNA polymerization, proofreading and final capping [160]. One of the widely studied drug candidates that is capable of inhibiting SARS-CoV-2 replication in host cells is remdesivir [64]. In addition to remdesivir, emetine, ribavirin, and β-D-N4-hydroxycytidine are also among the drug candidates, that are capable of inhibiting SARS-CoV-2 replication inside target cells [161].

It should be noted that screening of most approved drug candidates was performed using workhorse cell line: Vero E6 [1,162,163]. Therefore, caution must be used when interpreting relevance of the data sets derived from studies that tested the efficacy of drugs based on data coming from just one cell line. It is known that different cells often respond differently to drug treatments [164], and thus testing these anti-SARS-CoV-2 drugs on multiple cell lines, especially lung cells, will largely help in identifying a more reliable set of drugs for treating COVID-19 patients. In order for these drugs to advance to the clinical trial stage, cell specificity, dosing, half-life, route of administration and half maximal inhibitory concentration (IC50) are critical components that need to be properly investigated to circumvent undesired patient outcomes [165]. For example, if the IC50 of any of these drugs in vitro is greater than what can be achieved with oral dosing, then the drug will never prove useful for COVID-19 patients. Thus, it is essential to look into all these parameters before a drug can be recommended for clinical use.

Other cellular and molecular processes that constitute potential targets for therapeutic prevention of SARS-CoV-2 infection are nuclear translocation of virus, translation of structural proteins and viral release [166]. One of the symptoms of COVID-19 is the induction of inflammatory responses which triggers the release of cytokines especially IL-6 [167]. Some of the drugs we listed here have capability to reduce inflammatory side-effects of SARS-CoV-2 infection. While we have presented a list of potential antiviral drug candidates, however we think that only a limited number of them will prove clinically relevant for treatment and prevention of SARS-CoV-2 infection. Remdesivir has been shown as a promising drug. Clinical improvement was seen in 68% of the hospitalized patients for severe Covid-19 who were treated with remdesivir [55]. In addition, remdesivir is also effective in shortening the time to recovery and decreasing respiratory tract infection in adult patients hospitalized with Covid-19 [168]. So far, administration of chloroquine and hydroxychloroquine have been controversial as discussed before. The outcomes of recent clinical trials of chloroquine have yielded new information for its usage on COVID-19 patients. Adjunctive therapy for several acute SARS-CoV-2 infected patients showed that higher dosage of chloroquine is lethal and is not recommended especially when combined with azithromycin and oseltamivir. However, lower dosage showed enough safety and efficacy to treat these patients [169–172]. HCQ has been shown to be less toxic compared to CQ, and thus it is a reasonable treatment option [173]. However, several studies showed the controversial usage of HCQ for COVID-19. It was suggested that different factors such as the stage of the disease, treatment duration and combination therapy, must be taken into consideration to obtain an efficient clinical outcome with HCQ [174,175]. Methylprednisolone is another drug of interest. Early administration of prolonged methylprednisolone treatment is correlated with a significantly lower possibility of death (71%) and decreased ventilator dependence in patients with severe COVID-19 pneumonia. Consistent with this, another study indicated that single-dose methylprednisolone has no obvious negative impact on viral removal and production of specific IgG. However, it is effective in stopping the inflammatory cascade [176,177]. Although early, low-dose and short-term administration of methylprednisolone is associated with better clinical outcomes, more randomized controlled trials are needed to confirm these findings [178]. Another potential drug, colchicine is shown a clinical improvement by reducing the length of hospitalization and dependency on supplemental oxygen therapy [179,180]. Famotidine is correlated with lower hazard of mortality [181]. Although famotidine reduced the rates of mortality of the COVID-19 patients, there is no direct evidence of inhibitory effects of famotidine on SARS-CoV-2 replication [182]. Hence, further investigation of its molecular mechanism of action might be important in the context of COVID-19. Emetine is another drug which is effective against SARS-CoV-2 virus in Vero E6 cells. Interestingly, combination therapy of remdesivir and emetine shown to exert synergistic effects against the SARS-CoV-2 virus [64]. Furthermore, nelfinavir, an HIV-1 protease inhibitor, potently inhibits replication of SARS-CoV-2 [183]. Altogether, Remdesivir, Nelfinavir, Methylprednisolone, Colchicine, Famotidine and emetine are potentially considered for use in clinical trial applications or be recommended for further confirmatory studies.

Overall, this review will serve as a very timely and useful compilation of drugs being studied and repurposed for the treatment and prevention of SARS-CoV2 infection. Importantly, the mechanisms of action of these drugs as described herein will serve as a necessary guide for future studies investigating other COVID-19 therapeutic modalities and interventions.

Acknowledgments

The authors would like to thank the Alahari lab for their constructive criticism and positive feedbacks during the drafting and writing of this manuscript. All authors wish to thank all research groups around the world who are conducting biomedical, clinical and translational studies, investigating potent and effective SARS-CoV-2/COVID-19 therapeutic drug candidates.

Authorship contributions

H.Y., L.M., and S.C.O wrote and prepared the manuscript draft. N.A. Worked on couple of sections. Finally, S.A revised the final draft.

References

[1] M. Hoffmann, H. Kleine-Weber, S. Schroeder, N. Krüger, T. Herrler, S. Erichsen, T.S. Schiergen, G. Herrler, N.-H. Wu, A. Nitsche, SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor, Cell (2020).
[2] E. Böttcher, T. Matrosovich, M. Beyerle, H.-D. Kleink, W. Garten, M. Matrosovich, Proteolytic activation of influenza viruses by serine proteases TMPRSS2 and HAT from human airway epithelium, J. Virol. 80 (19) (2006) 9896–9898.
[3] K.H. Stopsch, L.A.ucci, E.S. Antonaraks, P.S. Nelson, P.W. Kantoff, T.TMPRSS2 and COVID-19: serendipity or opportunity for intervention? AACR (2020).
[4] Y. Chen, Q. Liu, D. Guo, Emerging coronaviruses: genome structure, replication, and pathogenesis, J. Med. Virol. 92 (4) (2020) 481–423.
[5] A.R. Fehr, S. Perlman, Coronaviruses: An overview of their Replication and Pathogenesis, Coronaviruses, Springer, 2015, pp. 1–23.
[6] T.S. Fung, D.X. Liu, Coronavirus infection, ER stress, apoptosis and innate immunity, Front. Microbiol. 5 (2014) 296.
[7] A. Savarino, J.R. Boelaert, A. Cansone, G. Majori, R. Cauda, Effects of chloroquine on viral infections: an old drug against today’s diseases, Lancet. Infect. Dis. 3 (11) (2003) 722–727.
[8] M.A.A. Al-Bari, Targeting endosomal acidification by chloroquine analogs as a promising strategy for the treatment of emerging viral diseases, Pharmacol. Res. Perspect. 5 (1) (2017).
[9] J.M. Sanders, M.L. Menogue, T.Z. Jodlowski, J.B. Cutrell, Pharmacologic treatments for coronavirus disease 2019 (COVID-19): a review, JAMA (2020).
[10] T. Tang, M. Bidon, J.A. Jaimies, G.R. Whitaker, S. Daniel, Coronavirus membrane fusion mechanism offers as a potential target for antiviral development, Antiviral Res. 104792 (2020).
[11] M. Hoffmann, H. Kleine-Weber, N. Krüger, M.A. Mueller, C. Drosten, S. Pöhlmann, The novel coronavirus 2019 (nCoV) uses the SARS-coronavirus receptor ACE2 and the cellular protease TMPRSS2 for entry into target cells, BioRxiv (2020).
[12] M.A. Tortorici, D. Veesler, Structural insights into coronavirus entry, Adv. Virus Res. Elsevier (2019) 93–116.
[13] W. Sargosak, N. Huang, C. Becavin, M. Berg, R. Queen, M. Litvinukova, C. Talavera-López, H. Maatz, D. Reichart, F. Sampaziotis, SARS-CoV-2 entry
Biochemical Pharmacology 183 (2021) 114296

H. Yousefi et al.

N. Urakova, V. Kuznetsova, D.K. Crossman, A. Sokratian, D.B. Guthrie, A. M. Toots, J.-J. Yoon, R.M. Cox, M. Hart, Z.M. Sticher, N. Makhsous, R. Plesker, A. O. Reynard, X.-N. Nguyen, N. Alazard-Dany, V. Barateau, A. Cimarelli, V. L. L. Palese, The structural landscape of SARS-CoV-2 main protease: hints for K. Heiser, P.F. McLean, C.T. Davis, B. Fogelson, H.B. Gordon, P. Jacobson, B. S.T. Kundu, C.L. Grzeskowiak, J.J. Fradette, L.A. Gibson, L.B. Rodriguez, C. H.-H. Otto, T. Schirmeister, Cysteine proteases and their inhibitors, J. Chem. Rev. M. Siklos, M. BenAissa, G.R. Thatcher, Cysteine proteases as therapeutic targets: J. Liu, R. Cao, M. Xu, X. Huang, H. Hu, Y. Li, Z. Hu, W. Zhong, M. Wang, Hydroxylchloroquine, a less toxic derivative of chloroquine, is effective in inhibiting SARS-CoV-2 infection in vitro, Cell Discov. 6 (2020) 16.

M. Sillas, M. Benaissa, G.R. Thatcher, Cysteine proteases as therapeutic targets: does selectivity matter? A systematic review of calpain and cathepsin inhibitors, J. Acts Pharm. Sin. B 5 (6) (2015) 506–519.

H.-H. O. To, T. Schirmeister, Cysteine proteases and their inhibitors, J. Chem. Rev. 97 (1) (1997) 137–172.

S. F. Kennedy, C.I. Grimes, J.“Ifadet, A. L. Gibson, L. R. Rodrigues, C. J. Creighton, K.L. Scott, D.L. Gibbons, TME106186 drives lung cancer metastasis by inducing TFE3-dependent lysosome secretion and synthesis of cathepsin, Nat. Commun. 9 (1) (2018) 2731.

K. Heiner, P.F. McLean, T.R. Davis, B. Fogelson, H.B. Gordon, P. Jacobson, B. L. Hurst, B.J. Miller, R.A. Alfaro, B.A. Ermashaw, Identification of potential treatments for COVID-19 through artificial intelligence-enabled phenomic analysis of human cells infected with SARS-CoV-2, J. BioRxiv (2020).

L.L. Palese, The structural landscape of SARS-CoV-2 main protease: hints for inhibitor search, 2020.

V.B. Pai, M.C. Nahata, Nelfinavir mesylate: a protease inhibitor, Ann. Pharmacother. 33 (3) (1999) 325–330.

X. Wu, Y. Liu, X. Lu, L.Y. Li, L. Li, B. Ren, L. Guo, R. Chen, J. Hu, X. Zeng, Z. Mu, X. Chen, J. Chen, K. Hu, Q. Jin, J. Wang, Z. Qian, Characterization of spike glycoprotein of SARS-CoV-2 on virus entry and its immune cross-reactivity with SARS-CoV, Nat. Commun. 11 (1) (2020) 1620.

M. Ko, S.Y. Chang, S.V. Byun, I. Choi, A.L.P.H. d’Alexandre, D. Shum, J.-Y. Min, M.P. Windisch, Screening of FDA-approved drugs using a MERS-CoV clinical inhibitor search, (2020).

A. Shannon, N.T.T. Le, B. Selisko, C. Eydoux, K. Alvarez, J.-C. Guillenot, E. Decroly, O. Peersen, F. Feron, B. Canard, Remdesivir and SARS-CoV-2: structural requirements at both np519 RdRp and np514 Exonuclease active sites, Antiviral Res. 104793 (2020).

C.J. Gordon, E.P. Tchesnokov, E. Woolner, J.K. Perry, J.Y. Feng, D.P. Porter, M. Gotte, Remdesivir is a direct-acting antiviral that inhibits RNA-dependent RNA polymerase from severe acute respiratory syndrome coronavirus 2 with high potency, Journal of Biological Chemistry 2020, jbc.RA20.013679.

M. Bouvet, I. Imbert, L. Subissi, L. Ghais, B. Canard, E. Decroly, RNA 3′-end mismatch excision by the severe acute respiratory syndrome coronavirus nonstructural protein nsp10/nsp14 exoribonuclease complex, Proc. Nat. Acad. Sci. 119 (24) (2012) 9377–9382.

E. Minskaya, T. Hertzig, A.E. Gorbalenya, V. Campanacci, C. Cambilou, B. Canard, J. Ziebuhr, Discovery of an RNA virus 3′–5′ exoribonuclease that is critically involved in coronavirus RNA synthesis, Proc. Nat. Acad. Sci. 103 (13) 2006, 5108–5112.

A. Shannon, N.T.T. Le, B. Selisko, C. Eydoux, K. Alvarez, J.-C. Guillenot, E. Decroly, O. Peersen, F. Feron, B. Canard, Remdesivir and SARS-CoV-2: Structural requirements at both nps12 RdRp and nps14 Exonuclease active sites, Antiviral Res. 104793 (2020).

C.J. Gordon, E.P. Tchesnokov, E. Woolner, J.K. Perry, J.Y. Feng, D.P. Porter, M. Gotte, Remdesivir is a direct-acting antiviral that inhibits RNA-dependent RNA polymerase by interfering with severe acute respiratory syndrome coronavirus 2 replication cycle, Antimicrob. Agents Chemother. 50 (6) (2006) 2000–2005.

X. Wang, Z. Zhang, D. Guo, R. Du, R. Zhao, Y. Jin, S. Fu, L. Gao, Z. Cheng, Q. Lu, Remdesivir in adults with severe COVID-19: a randomised, double-blind, placebo-controlled, multicentre trial, J. Lancet (2020).

E. Hilkare, J.B. Beller, A. Bondici, H. Marid, L.E. Dumkow, Delayed initiation of remdesivir in a COVID-19-positive patient, J. Infect. 79 (2020) 9377–9379.

A.P. Größmann. Structural basis for inhibition of protein synthesis by emetine and cyclodextrin based on an analysis between icpep alkaloids and glutamime antibiotics, Proceedings of the National Academy of Sciences of the United States America 56 (1966) 196–205.

S. Yang, M. Xu, E.M. Lee, K. Gorkhali, S.A. Shiryaev, S. He, W.-S. Cheng, X. Hu, A.M. Tharappel, Emetine inhibits Zika and Ebola virus infections through a broad-spectrum antiviral candidate drug for the COVID-19 Pandemic: A Mini-Review of Remdesivir, (2020) 112527.

G. Liang, L. Tian, Y. Liu, N. Hui, G. Qiao, H. Li, Z. Shi, Y. Tang, X.J.E. Xie, A Promising Antiviral Candidate Drug for the COVID-19 Pandemic: A Mini-Review of Remdesivir, (2020) 112527.
H. Yousefi et al.

Biochemical Pharmacology 183 (2021) 114296

[38x622]E. Thomas, M.G. Ghany, T.J. Liang, Chemotherapy, The application and
[38x86]S. Lam, E.S. Ho, B.-L. He, W.-W. Wong, C.-Y. Cher, N.K. Ng, C.-H. Man, H. Gill, A.
[38x89]K.T. Choy, A.Y. Wong, P. Kaewpreedee, S.F. Sia, D. Chen, K.P.Y. Hui, D.K.W. Chu,
[38x90]C. White, H. Alshaker, C. Cooper, M. Winkler, D. Pchejetski, The emerging role of
[38x93]S. Crotty, C. Cameron, R. Andino, Ribavirin
[38x94]E.N. Kozhevnikova, J.A. van der Knaap, A.V. Pindyurin, Z. Ozgur, W.F. van
[38x97]F. Graw, Determining Ribavirin
[38x104]A.T. Reder, COVID-19 and multiple sclerosis.
[38x107]S. Lü, J. Wang, Homoharringtonine and omacetaxine for myeloid hematological
[38x109]X. Liu, X.-J. Wang, Potential inhibitors against 2019-nCoV coronavirus M
[38x112]M. Sheppard, F. Laskou, P.P. Stapleton, S. Hadavi, B. Dasgupta, Tocilizumab
[38x111]A. Kimura, T. Kishimoto, IL-6: regulator of Treg/Th17 balance, Eur. J. Immunol.
[38x116]Z. Xu, L. Shi, Y. Wang, J. Jiang, L. Huang, C. Zhang, S. Liu, P. Zhao, H. Liu, L. Zhang, B. Luan, A. Adler, A. Eichten, C. Daly, G. Thurston, Sarilumab
[38x118]X. Yao, J. Huang, H. Zhong, N. Shen, R. Faggioni, M. Fung, Y. Yao, Targeting interleukin-6 in inflammatory autoimmune diseases and cancers, Pharmacol.
[38x119]J. Sanz-Sanchez, B. Reimers, G.G. Stefanini, M. Cleman, D. Filippou, C.
[38x120]K. Fountoulaki, M. Comis, D. Tsiachris, E. Sarri, A. Theodorakis, L. Martinez-Dolz,
[38x121]G. Giotaki, P. Gargalianos, H. Giamarellou, C. Gogos, G. Daikos, M. Lazanas,
[38x122]M. Rios, M. Andreeff, M. Talpaz, Homoharringtonine therapy induces responses
[38x124]F. Yaqub, Mechanism of action of anthracycline drugs, J. Lancet Oncol. 14 (8)
[38x125]M. Moossavi, N. Parsamanesh, A. Bahrami, S.L. Atkin, A. Sahebkar, Role of the
[38x126]S. Robertson, G.J. Martinez, C.A. Payet, J.Y. Barraloch, D.S. Celermajer, D. Pchejetski, The emerging role of colchicine in the treatment of Lassa virus infection, J. Sci. Rep. 7 (1) (2017) 1–12.
[38x127]P. Carrillo-Bustamante, T.H.T. Nguyen, L. Oestereich, S. Günther, J. Guedj,
[38x129]F. Yaqub, Mechanism of action of anthracycline drugs, J. Lancet Oncol. 14 (8) (2013) 12–13.
[38x130]F. Graw, Determining Ribavirin
[38x132]E. Thomas, M.G. Ghany, T.J. Liang, Chemotherapy, The application and
[38x133]S. Lam, E.S. Ho, B.-L. He, W.-W. Wong, C.-Y. Cher, N.K. Ng, C.-H. Man, H. Gill, A.
[38x134]K.T. Choy, A.Y. Wong, P. Kaewpreedee, S.F. Sia, D. Chen, K.P.Y. Hui, D.K.W. Chu,
[38x135]C. White, H. Alshaker, C. Cooper, M. Winkler, D. Pchejetski, The emerging role of
[38x136]S. Crotty, C. Cameron, R. Andino, Ribavirin
[38x137]E.N. Kozhevnikova, J.A. van der Knaap, A.V. Pindyurin, Z. Ozgur, W.F. van
[38x138]F. Graw, Determining Ribavirin
[38x140]A.T. Reder, COVID-19 and multiple sclerosis.
[38x141]S. Lü, J. Wang, Homoharringtonine and omacetaxine for myeloid hematological
[38x142]X. Liu, X.-J. Wang, Potential inhibitors against 2019-nCoV coronavirus M
[38x144]M. Sheppard, F. Laskou, P.P. Stapleton, S. Hadavi, B. Dasgupta, Tocilizumab
[38x145]X. Yao, J. Huang, H. Zhong, N. Shen, R. Faggioni, M. Fung, Y. Yao, Targeting interleukin-6 in inflammatory autoimmune diseases and cancers, Pharmacol.
[38x147]J. Sanz-Sanchez, B. Reimers, G.G. Stefanini, M. Cleman, D. Filippou, C.
[38x148]K. Fountoulaki, M. Comis, D. Tsiachris, E. Sarri, A. Theodorakis, L. Martinez-Dolz,
[38x150]G. Giotaki, P. Gargalianos, H. Giamarellou, C. Gogos, G. Daikos, M. Lazanas,
[38x151]M. Rios, M. Andreeff, M. Talpaz, Homoharringtonine therapy induces responses
[38x153]F. Yaqub, Mechanism of action of anthracycline drugs, J. Lancet Oncol. 14 (8) (2013) 12–13.
[38x154]F. Graw, Determining Ribavirin
[38x156]A.T. Reder, COVID-19 and multiple sclerosis.
[38x157]S. Lü, J. Wang, Homoharringtonine and omacetaxine for myeloid hematological
[38x158]X. Liu, X.-J. Wang, Potential inhibitors against 2019-nCoV coronavirus M
[38x160]M. Sheppard, F. Laskou, P.P. Stapleton, S. Hadavi, B. Dasgupta, Tocilizumab
[38x161]X. Yao, J. Huang, H. Zhong, N. Shen, R. Faggioni, M. Fung, Y. Yao, Targeting interleukin-6 in inflammatory autoimmune diseases and cancers, Pharmacol.
[38x162]J. Sanz-Sanchez, B. Reimers, G.G. Stefanini, M. Cleman, D. Filippou, C.
[38x163]K. Fountoulaki, M. Comis, D. Tsiachris, E. Sarri, A. Theodorakis, L. Martinez-Dolz,
[38x164]G. Giotaki, P. Gargalianos, H. Giamarellou, C. Gogos, G. Daikos, M. Lazanas,
[38x165]M. Rios, M. Andreeff, M. Talpaz, Homoharringtonine therapy induces responses
[38x167]F. Yaqub, Mechanism of action of anthracycline drugs, J. Lancet Oncol. 14 (8) (2013) 12–13.
[38x168]F. Graw, Determining Ribavirin
[38x170]A.T. Reder, COVID-19 and multiple sclerosis.
[38x171]S. Lü, J. Wang, Homoharringtonine and omacetaxine for myeloid hematological
[38x172]X. Liu, X.-J. Wang, Potential inhibitors against 2019-nCoV coronavirus M
[38x173]M. Sheppard, F. Laskou, P.P. Stapleton, S. Hadavi, B. Dasgupta, Tocilizumab
[38x174]X. Yao, J. Huang, H. Zhong, N. Shen, R. Faggioni, M. Fung, Y. Yao, Targeting interleukin-6 in inflammatory autoimmune diseases and cancers, Pharmacol.
[38x175]J. Sanz-Sanchez, B. Reimers, G.G. Stefanini, M. Cleman, D. Filippou, C.
S. Murphy, H.W. Kelly, Cromolyn sodium: a review of mechanisms and clinical use. J.L. McKimm-Breschkin, Management of influenza virus infections with neuraminidase inhibitors, Treatments Respiratory Med. 4 (2) (2005) 107–115.

T. Janowitz, E. Gablenz, D. Pattinson, T.C. Wang, J. Conigliaro, K. Tracey, Z. Lv, Y. Chu, Y. Wang, HIV protease inhibitors: a review of molecular selectivity and clinical effects of chloroquine against coronavirus: what to expect for COVID-19? Int. Anti. Agents 1598 (2020).

V. Esposito, A. Verdina, L. Manente, E.P. Spugnini, R. Viglietti, R. Parrella, A. Inan, M. Sen, F. Hock, K. Wirth, U. Albus, W. Linz, H. Gerhards, G. Wiemer, S. Henke, L. Zhu, N. Gong, B. Liu, X. Lu, D. Chen, S. Chen, H. Shu, K. Ma, X. Xu, Z. Guo, H. Yousefi et al. (9) (2013) 425–435.

[128] J.A. Roche, R. Roche, A hypothesized role for dysregulated bradykinin signaling in COVID-19 related pathophysiological approach, (2020).

[129] J. Shang, Y. Wan, C. Luo, G. Ye, Q. Geng, A. Auerbach, F. Li, Cell entry mechanisms of SARS-CoV-2, Proc. Natl. Acad. Sci. 117 (2020) 17727–17734.

[130] N. Vankadari, Arbidol: a potential antiviral drug for the treatment of SARS-CoV-2 by blocking the transmembrane viral spike glycoprotein? Int. J. Antimicrob. Agents 105948 (2020).

[131] F. Manzurat, V. Choudhunj, A. Daud, N. Rabi, T. Choudhunj, D.D. Jois, K. G. Kosoulas, The anti-HIV Drug Nefinavir Mesylate (Viracept) is a Potent Inhibitor of Cell Fusion Caused by the SARS-CoV-2 Spike (S) Glycoprotein Warranting further Evaluation as an Antiviral against COVID-19 infections, 2020.

[132] C.A. Devaux, J.-M. Rollain, P. Colson, D. Raoul, New insights on the antiviral effects of chloroquine against coronavirus: to what? Int. J. Antimicrob. Agents 105938 (2020).

[133] M. Huy, K. Monard, K. Wirth, W. Hahn, U. Albus, W. Linz, H. Gerhards, G. Wiemer, S. Henke, L. Zhu, N. Gong, B. Liu, X. Lu, D. Chen, S. Chen, H. Shu, K. Ma, X. Xu, Z. Guo, H. Yousefi et al. (9) (2013) 425–435.

[134] F. Manzurat, V. Choudhunj, A. Daud, N. Rabi, T. Choudhunj, D.D. Jois, K. G. Kosoulas, The anti-HIV Drug Nefinavir Mesylate (Viracept) is a Potent Inhibitor of Cell Fusion Caused by the SARS-CoV-2 Spike (S) Glycoprotein Warranting further Evaluation as an Antiviral against COVID-19 infections, 2020.

[135] C.A. Devaux, J.-M. Rollain, P. Colson, D. Raoul, New insights on the antiviral effects of chloroquine against coronavirus: to what? Int. J. Antimicrob. Agents 105938 (2020).

[136] M. Huy, K. Monard, K. Wirth, W. Hahn, U. Albus, W. Linz, H. Gerhards, G. Wiemer, S. Henke, L. Zhu, N. Gong, B. Liu, X. Lu, D. Chen, S. Chen, H. Shu, K. Ma, X. Xu, Z. Guo, H. Yousefi et al. (9) (2013) 425–435.

[137] F. Manzurat, V. Choudhunj, A. Daud, N. Rabi, T. Choudhunj, D.D. Jois, K. G. Kosoulas, The anti-HIV Drug Nefinavir Mesylate (Viracept) is a Potent Inhibitor of Cell Fusion Caused by the SARS-CoV-2 Spike (S) Glycoprotein Warranting further Evaluation as an Antiviral against COVID-19 infections, 2020.
J.C. Lane, J. Weaver, K. Kostka, T. Duarte-Salles, M.T.F. Abrahao, H. Alghoul, C.R. Piszczatoski, J. Powell, Emergency approval of chloroquine and J.A. Watson, J. Tarning, R.M. Hoglund, F.J. Baud, B. Megarbane, J.-L. Clemessy, S. Kim, J. Chen, T. Cheng, A. Gindulyte, J. He, S. He, Q. Li, B.A. Shoemaker, P. S.G. Deftereos, G. Giannopoulos, D.A. Vrachatis, G.D. Siasos, S.G. Giotaki, P. N. Yamamoto, S. Matsuyama, T. Hoshino, N. Yamamoto, Nelfinavir inhibits M. Loffredo, H. Lucero, D.-Y. Chen, A. O. Z. Zhang, X. Wang, G. Zheng, Q. Shan, J. Lu, S. Fan, C. Sun, D. Wu, C. Zhang, C.P. Wang, L.Z. Zhang, G.C. Li, Y.W. Shi, J.L. Li, X.C. Zhang, Z.W. Wang, F. Ding, H. Yousefi et al.

1126 – compound of Radix Bupleuri, attenuates inflammation in hypertrophied 3T3-L1 cognition deficit, anxiety, and depression, Oxidative Med. Cell. Longevity 2019 and NF-AT, PLoS One 7 (2) (2012) .

acid, a triterpenoid antioxidant, is mediated through suppression of NF-

replication of severe acute respiratory syndrome coronavirus 2 in vitro, BioRxiv COVID-19 patients: a propensity score matched retrospective cohort study, A. Abrams, M.E. Sobieszczyk, D.D. Markowitz, A. Gupta, M.R. O. randomized, double-blinded, placebo controlled clinical trial, medRxiv (2020).

of colchicine for moderate to severe COVID-19: an interim analysis of a randomized clinical trial, JAMA network open 3(6) (2020) e2013136-e2013136.

patients with severe COVID-19 pneumonia, medRxiv (2020).

randomized, double-blinded, placebo controlled clinical trial, medRxiv (2020).

Measurement of changes in microRNA expression profiles in response to the troxerutin-culture of rat cortical neurons after oxygen X.M. Liang, Mulberroside a protects against ischemic impairment in primary glucose deprivation followed by -induced B signaling pathway, Int. Immunopharmacol. 14 Y. Zou, M. Zhang, T. Zhang, J. Wu, J. Kang, K. Liu, N. Zhan, Antioxidant and anti-inflammatory activities of cynosurus from Eulophiza bodinieri, Nat. Prod. Commun. 13 (11) (2018), 193457818013101122.

H. Dhakal, S. Lee, J.K. Choi, T.K. Kwon, D. Kang, S.-H. Kim, Inhibitory effects of orientins in mast cell-mediated allergic inflammation, Pharmacol. Rep. (2020) 1–9.

B. Piver, F. Berthou, Y. Dreano, D. Lucas, Differential inhibition of human cytomegalovirus F450 enzymes by e-viniliner, the dimer of resveratrol: comparison with resveratrol and polyphenols from alcoholized beverages, Life Sci. 73 (9) (2003) 1199–1213.

Via Trivrac, A. Bornet, R. Vanderleine, J. Valls, T. Richard, J.-C. Delaunay, J.-M. Merill, P.L. Teissèdre, Determination of stilbenes (e-viniliner, trans-astirgin, trans-pierid, cis- and trans-resveratrol, e-viniliner) in Brazilian wines, J. Agric. Food. Chem. 53 (14) (2005) 5664–5669.

L.W. Hwang, S.-K. Chung, Isolation and identification of myricitrin, an flavonoid from daeboong perisperm peel, Preven. Nutr. Food Sci. 23 (2018) 1–6.

R.S. Joshi, S.S. Jagdale, S.B. Bamode, S.S. Shankar, M.B. Tellis, V.K. Pandy, A. Chugh, A.P. Giri, M.J. Kulkarni, Discovery of potential multi-target-directed ligands by targeting host-specific SARS-CoV-2 structurally conserved main protease, J. Biomed. Sci. (2020) (just-accepted) 2020-0167.

P. Liczbiński, B. Bukowska, Molecular mechanism of amygdalina action in vitro: review of the latest research, Immunopharmacol. 77 (2019), 105964.

Y.-X. Wu, H.-Q. He, Y.-J. Nie, Y.-H. Ding, L. Sun, F. Qian, Protostemonine alleviates heat-killed methicillin-resistant Staphyloococcus aureus-induced acute lung injury through MAPK and NF-κB signaling pathways, Int. Immunopharmacol. 77 (2020). 1120–1132.

S. Habtemariam, Antioxidant and anti-inflammatory mechanisms of neuroprotection by uric acid: addressing brain injury, cerebral ischemia, cognition deficit, anxiety, and depression, Oxidative Med. Cell. Longevity (2019).

S. Kim, J. Chen, J. Cheng, A. Gindulyte, J. He, S. He, Q. Li, B.A. Shoemaker, P. A. Thissen, B. Yu, L. Zaslavsky, J. Zhang, E.E. Bolton, PubChem 2019 update: improved access to chemical data, Nucl. Acids Res. 47 (D1) (2019) D1012-D1019.

R. Checker, S.K. Sandar, D. Sharma, R.S. Patwardhan, S. Jayakumar, V. Kohli, G. Sethi, B.B. Aggarwal, K.B. Sainis, Potent anti-inflammatory activity of ursoic acid, a triterpenoid antioxidant, is mediated through suppression of NF-κB, AP-1 and NF-κB, PLoS One 7 (7) (2012).

D.E. Freedberg, J. Coniglio, T.W. Kang, K.J. Tracey, M.V. Callahan, J. A. Abrams, M.E. Sobieszczyk, D.D. Weeks, F. Douam, The Effect of fumonisin on SARS- in-32 proteins and virus replication, bioRxiv 2020.

N. Yamamoto, S. Matsuyama, T. Hoshino, N. Yamamoto, Nelfinavir inhibits replication of severe acute respiratory syndrome coronavirus 2 in vitro, BioRxiv 2020.

M. Loffredo, H. Lucero, D.-Y. Chen, A. O. W. Su, Troxerutin attenuates enhancement of hepatic gluconeogenesis by high-fat diet-fed mice, Int. J. Mol. Sci. 18 (1) (2017) 31.

H. Dhakal, S. Lee, J.K. Choi, T.K. Kwon, D. Kang, S.-H. Kim, Isolation and identification of myricitrin, an flavonoid from daeboong perisperm peel, Preven. Nutr. Food Sci. 23 (2018) 1–6.

D.K. Kim, Inhibitory effect of corynoline isolated from the aerial parts of cordyceps incisa on the acetylcholine esterase, Arch. Pharm. Res. 25 (6) (2002) 817.

B. Liu, K. So, J. Wang, J. Wang, Z. Xi, F. Li, Y. Fu, Corynoline exhibits anti-inflammatory effects, Phytomedicine (2018) 1–6.

M. Lin, L. Li, L. Li, G. Pokhrel, Q. Li, R. Rong, T. Zhu, The protective effect of baicalin against renal ischaemia-reperfusion injury through inhibition of inflammation and apoptosis, BMC Complementary Alternative Med. 14 (2014) 1–9.

D.K. Kim, Inhibitory effect of corynoline isolated from the aerial parts of cordyceps incisa on the acetylcholine esterase, Arch. Pharm. Res. 25 (6) (2002) 817.

B. Liu, K. So, J. Wang, J. Wang, Z. Xi, F. Li, Y. Fu, Corynoline exhibits anti-inflammatory effects, Phytomedicine (2018) 1–6.

M. Lin, L. Li, L. Li, G. Pokhrel, Q. Li, R. Rong, T. Zhu, The protective effect of baicalin against renal ischaemia-reperfusion injury through inhibition of inflammation and apoptosis, BMC Complementary Alternative Med. 14 (2014) 1–9.

D.K. Kim, Inhibitory effect of corynoline isolated from the aerial parts of cordyceps incisa on the acetylcholine esterase, Arch. Pharm. Res. 25 (6) (2002) 817.

B. Liu, K. So, J. Wang, J. Wang, Z. Xi, F. Li, Y. Fu, Corynoline exhibits anti-inflammatory effects, Phytomedicine (2018) 1–6.

M. Lin, L. Li, L. Li, G. Pokhrel, Q. Li, R. Rong, T. Zhu, The protective effect of baicalin against renal ischaemia-reperfusion injury through inhibition of inflammation and apoptosis, BMC Complementary Alternative Med. 14 (2014) 1–9.
foliaspongins, from the Okinawan marine sponge Phyllospongia foliascens (Pallas), Chem. Pharm. Bull. 31 (2) (1983) 552–556.

[220] S. Ben, H. Zhang, Y. Mu, M. Sun, P. Liu, Pharmacological effects of Astragaloside IV: a literature review, J. Tradit. Chin. Med. 33 (3) (2013) 413–416.

[221] H. Yang, J. Wang, J.-H. Fan, Y.-Q. Zhang, J.-X. Zhao, X.-J. Dai, Q. Liu, Y.-J. Shen, C. Liu, W.-D. Sun, Ilexgenin A exerts anti-inflammation and anti-angiogenesis effects through inhibition of STAT3 and PI3K pathways and exhibits synergistic effects with Sorafenib on hepatoma growth, Toxicol. Appl. Pharmacol. 315 (2017) 90–101.

[222] E. Aksu, F. Kandemir, M. Özkaraca, A. Ömür, S. Küçükler, S. Çomaklı, Rutin ameliorates cisplatin-induced reproductive damage via suppression of oxidative stress and apoptosis in adult male rats, Andrologia 49 (1) (2017), e12593.

[223] Y.-H. Han, J.-Y. Kee, J. Park, D.-S. Kim, S. Shin, D.-H. Youn, J. Kang, Y. Jung, Y.-M. Lee, J.-H. Park, Lipin1-mediated repression of adipogenesis by rutin, Am. J. Chinese Med. 44 (03) (2016) 565–578.

[224] N. Lu, Y. Ding, Z. Yang, P. Gao, Effects of rutin on the redox reactions of hemoglobin, Int. J. Biol. Macromol. 89 (2016) 175–180.

[225] X. Su, L. Wu, M. Hu, W. Dong, M. Xu, P. Zhang, Glycyrrhizinic acid: A promising carrier material for anticancer therapy, Biomacromer. 95 (2017) 670–678.

[226] C. Li, S. Peng, X. Liu, C. Han, X. Wang, T. Jin, S. Liu, W. Wang, X. Xie, X. He, Glycyrrhizin, a direct HMGB1 antagonist, ameliorates inflammatory infiltration in a model of autoimmune thyroiditis via inhibition of TLR2-HMGB1 signaling, Thyroid 27 (5) (2017) 722–731.

[227] L.-Y. Wang, K.C. Cheng, Y. Li, C.-S. Niu, J.-T. Cheng, H.-S. Niu, Glycyrrhizic acid increases glucagon-like peptide-1 secretion via TGR5 activation in type 1-like diabetic rats, Biomed. Pharmacother. 95 (2017) 599–604.

[228] H. Liu, Y.-F. Zheng, C.-Y. Li, Y.-Y. Zheng, D.-Q. Wang, Z. Wu, L. Huang, Y.-G. Wang, P.-B. Li, W. Peng, Discovery of anti-inflammatory ingredients in Chinese herbal formula kouyanqijiu granule based on relevance analysis between chemical characters and biological effects, Sci. Rep. 5 (1) (2015) 1–16.

[229] W. Hu, X. Yang, C. Zhe, Q. Zhang, L. Sun, K. Cao, Puerarin inhibits iNOS, COX-2 and CRP expression via suppression of NF-kB activation in LPS-induced RAW264.7 macrophage cells, Pharmacol. Rep. 63 (3) (2011) 781–789.

[230] H. Li, Q. Wang, L. Dong, C. Liu, Z. Sun, L. Gao, X. Wang, Morusin suppresses breast cancer cell growth in vitro and in vivo through C/EBPα and PPARγ-mediated lipoprotein lipase suppression, J. Exp. Clin. Cancer Res. 34 (1) (2015) 137.

[231] J.-C. Lee, S.-J. Won, C.-L. Chao, F.-L. Wu, H.-S. Liu, P. Ling, C.-N. Lin, C.-L. Su, Morusin induces apoptosis and suppresses NF-κB activity in human colorectal cancer HT-29 cells, Biochem. Biophys. Res. Commun. 372 (1) (2008) 236–242.

[232] S.-L. Lim, S.-Y. Park, S. Kang, D. Park, S.-H. Kim, J.-Y. Um, H.-J. Jang, J.-H. Lee, C.-H. Jeong, J.-H. Jang, Morusin induces cell death through inactivating STAT3 signaling in prostate cancer cells, Am. J. Cancer Res. 5 (1) (2015) 289.

[233] J. He, S. Yu, C. Guo, L. Tan, X. Song, M. Wang, J. Wu, Y. Long, D. Gong, R. Zhang, Polyphenyll1 induces autophagy and cell cycle arrest via inhibiting PDK1/Akt/mTOR signal and downregulating cyclin B1 in human gastric carcinoma HGC-27 cells, Biomed. Pharmacother. 117 (2019), 109189.

[234] J. Liu, Y. Zhang, L. Chen, F. Yu, X. Li, D. Tao, J. Zhao, S. Zhou, Polyphenyll1 induces G2/M phase arrest and apoptosis in U251 human glioma cells via mitochondrial dysfunction and the JNK signaling pathway, Acta Biochim. Biophys. Sin. 49 (6) (2017) 479–486.

[235] M. Kong, J. Fan, A. Dong, H. Cheng, R. Xu, Effects of polyphenyll1 on growth inhibition of human non-small lung cancer cells and in xenograft, Acta Biochim. Biophys. Sin. 42 (11) (2010) 827–833.