The Spectrum of Antibiotic Prescribing During COVID-19 Pandemic: A Systematic Literature Review

Sara H. Al-Hadidi,1,* Hashim Alhussain,1,* Hamad Abdel Hadi,2 Alreem Johar,3 Hadi M. Yassine,1 Asmaa A. Al Thani,1 and Nahla O. Eltai1

Objectives: Over the last decades, there has been a significant increase in antimicrobial prescribing and consumption associated with the development of patients’ adverse events and antimicrobial resistance (AMR) to the point of becoming a global priority. This study aims at evaluating antibiotic prescribing during COVID-19 pandemic from November 2019 to December 2020.

Materials and Methods: A systematic review was conducted primarily through the NCBI database, using PRISMA guidelines to identify relevant literature for the period between November 1, 2019 and December 19, 2020, using the keywords: COVID-19 OR SARS-CoV-2 AND antibiotics restricted to the English language excluding nonclinical articles. Five hundred twenty-seven titles were identified; all articles fulfilling the study criteria were included, 133 through the NCBI, and 8 through Google Scholar with a combined total of 141 studies. The patient’s spectrum included all ages from neonates to elderly with all associated comorbidities, including immune suppression.

Results: Of 28,093 patients included in the combined studies, 58.7% received antibiotics (16,490/28,093), ranging from 1.3% to 100% coverage. Antibiotics coverage was less in children (57%) than in adults with comorbidities (75%). Broad-spectrum antibiotics were prescribed presumptively without pathogen identifications, which might contribute to adverse outcomes.

Conclusions: During the COVID-19 pandemic, there has been a significant and wide range of antibiotic prescribing in patients affected by the disease, particularly in adults with underlying comorbidities, despite the paucity of evidence of associated bacterial infections. The current practice might increase patients’ immediate and long-term risks of adverse events, susceptibility to secondary infections as well as aggravating AMR.

Keywords: COVID-19, antibiotics, antimicrobial stewardship, resistance, AMR

Introduction

The discovery of antibiotics in the middle of the 20th century was a significant breakthrough for humanity saving millions of lives and preventing significant morbidity and mortality associated with infectious diseases.1 A decade after the historical discovery, a noticeable antimicrobial resistance (AMR) was observed escalating to an alarming scale over recent years.2 It has been estimated that about 700,000 annual global mortality is attributed to AMR, which attracted the attention of world leaders and international organizations such as the World Health Organization (WHO) all advocating regional and global initiatives to contain the problem.3 Antimicrobial Stewardship Programs (ASPs) have been implemented in many health care settings worldwide to curtail inappropriate and excessive antibiotic prescribing, particularly for broad-spectrum antibiotics.4 At the end of 2019, the world witnessed a worrying herald of a global pandemic caused by a novel coronavirus coined SAR-CoV-2 leading to the clinical syndrome of COVID-19 disease.5 Although the disease causes a respiratory illness primarily, it was noticed from the beginning it is associated

1Biomedical Research Center, Qatar University, Doha, Qatar.
2Infectious Disease Division, Communicable Diseases Centre, Hamad Medical Corporation, Doha, Qatar.
3Barzan Holdings, Doha, Qatar.
*These two authors contributed equally to this work.

© Sara H. Al-Hadidi et al. 2021; Published by Mary Ann Liebert, Inc. This Open Access article is distributed under the terms of the Creative Commons License [CC-BY] (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
with significant secondary presentations, including multisystem complications in need of critical care, particularly for server disease. Since there was no available effective management, antibiotics were frequently prescribed for various rationales with the potential of contributing to AMR. Although COVID-19 principally is a viral infection not usually responding to antibiotics, it is capable of causing an acute respiratory disease indistinguishable from bacterial infections and creating an environment and complications favoring secondary bacterial infections. For such reasons, health care professionals were confounded to prescribe antibiotics to treat potential bacterial infections or secondary complications. To comprehend the scale of the problem, a study conducted by the WHO demonstrated that 72% of COVID-19 patients received antibiotics. Nevertheless, only 8% had evidence of documented superimposed bacterial infections.

To add to the complexity of the situation, unverified research at the start of the pandemic advocated combined management with chloroquine/hydroxychloroquine together with the macrolide antibiotic azithromycin led to hasty inclusion in many COVID-19 management guidelines across the globe before establishing better-evaluated efficacy. Even for patients who warrant treatment during the pandemic, Getahun et al. indicated that antimicrobials were overprescribed for patients admitted to intensive care units (ICUs) in 88 countries where 70% of patients received antibiotics. However, only 54% of patients had suspected or proven bacterial infections. Because of the gravity of the situation, confusion of the optimal management approaches for the novel disease together with the stretching of physical limits and capabilities of health care ASPs; the COVID-19 pandemic created an environment for inappropriate and excessive antibiotic prescribing, which might worsen future AMR through selective pressures. The presented literature review is conducted to examine and highlight the spectrum of antimicrobial prescribing during the COVID-19 pandemic to raise awareness toward potential consequences.

Materials and Methods

A literature search was conducted using the PRISMA guidelines for systematic reviews. The NCBI database was identified as a primary source of related literature because of clinical relevance between November 2019 and December 19, 2020. Adopted search keywords were COVID-19 OR Sars-Cov-2 AND antibiotics restricted to the English language. The search initially resulted in 527 identified titles eventually limited to 133 following applying restrictive criteria. An additional 8 articles were included following searching Google Scholar search engine, bringing the total number to 141 studies. As per the study protocol, only articles covering clinical settings were included, articles limited to basic science, solely microbiological characteristics, experiments, surveys, guidelines, and hypotheses. Those not providing details of antibiotic prescribing were excluded (n = 386) (Fig. 1). The information extracted from the included articles comprises types of antibiotics prescribed for COVID-19 patients and the number of those patients, bacterial coinfection, and relevant patient demographic data (age, gender, and country). In addition, if the COVID-19 patient is suffering from any other complications such as hypertension, cardiac disease, diabetes, pregnancy, cancer, and human immunodeficiency virus (HIV) were reported.

Results

One hundred forty-one articles were included in this review from 28 different countries. The majority of them are from countries worst affected by the pandemic: China (n = 55), followed by the USA (n = 18), Italy (n = 10), UK (n = 5), Spain (n = 5), Brazil (n = 4), Iran (n = 4), and India (n = 3). Two articles were incorporated from Belgium, Germany, Japan, South Korea, Netherlands, and Saudi Arabia and one from Bhutan, Colombia, France, Ireland, Morocco, Niger, Oman, Philippines, Qatar, Singapore, Switzerland, Taiwan, and Uganda. Fourteen articles were included with no identified country (Table 1).

The study population’s demographic and clinical characteristics included all ages from neonates, children, and adults, including pregnant women and the elderly. Associated underlying conditions included hypertension, diabetes mellitus, heart, respiratory, renal, liver, thyroid, cerebrovascular, rheumatic diseases, and HIV and organ transplantation (heart, lung, kidney, liver, and bone marrow). Of 28,093 patients included in the combined studies, 58.7% received antibiotics (16,490/28,093). The percentage of patients prescribed antibiotics in each article differs, ranging from 1.3% to 100% coverage, with only 9.9% of the articles reporting less than 50% antibiotic covering (14/141). Most included articles did not present clear data on an antibiotic prescription for patients with other complications versus those without comorbidities. Comparing the articles that include the population who suffered from other diseases to those with no other complications, we found that antibiotic coverage did not differ significantly between patients with and without comorbidities (75.2%, 415/552), and 71% (8,449/11,886), respectively (Fig. 2).

Antibiotics coverage was less in children, 57% (187/329) compared to adults, and it was least in pregnant women (34.5%, 29/84). Despite the high percentage of antibiotic prescribing, most articles did not report bacterial coinfection (75.36%), indicating that probably a significant amount of antibiotics were empirically and unnecessarily prescribed.

The spectrum of antimicrobial prescreening is broad since more than 40 different antimicrobials were used to manage patients with COVID-19 disease (Table 2).

Inferring from the number of articles reporting the use of specific antibiotics, cephalosporins followed by azithromycin and moxifloxacin were the predominant oral antibiotics while piperacillin/tazobactam was the prevalent parenteral antibiotic. However, when subdividing cephalosporins into distinct classes based on their generation (first vs. second vs. third vs. fourth), azithromycin becomes the predominant antibiotic reported, which reflects its prominent role during the pandemic. Nevertheless, most studies highlighted that the majority of antibiotics were prescribed empirically as prophylaxis to prevent secondary bacterial infection, to treat secondary bacterial infection such as pneumonia, or as potential COVID-19 treatment agents. Other described drugs reported include meropenem, levofloxacin, linezolid, vancomycin, amoxicillin/clavulanate, Teicoplanin, and carbapenem.
The excessive and inappropriate prescribing of antibiotics is a significant challenge for health care across the globe. The escalating problem has been directly associated with detrimental patients' safety through the development of direct adverse events, indirect acquisition of secondary health care-associated infections, propagation of AMR, worsening infection control and prevention measures, as well as substantial cost implications. Of all infectious diseases, respiratory infections are the leading cause of inappropriate antibiotic prescribing and overuse. The majority of upper respiratory tract infections are caused by viruses, and only less than 10% are caused by bacteria; nevertheless, the WHO reported that in 2016, 71% of patients with UTRIs had been prescribed antibiotics.

The COVID-19 pandemic caught all health care settings across the globe by surprise; the novel SARS-CoV-2 virus caused an unprecedented universal health scare since there was little preceding knowledge about the disease and its implications, particularly potential secondary infections. Furthermore, the disease presents primarily as a respiratory illness mimicking bacterial infections hence confounding clinical assessment; conversely, critical patients need invasive procedures often associated with secondary health care-associated infections. To add the disease complexity, unverified early clinical reports and trials advocated using antibiotics to hinder disease progression and hasten viral clearance, despite the discouragement of such an approach by international guidelines. Consequent to all these factors, antibiotic prescribing was noticeably frequent in patients with COVID-19 disease.
Country	Total number of patients	Number of patients prescribed antibiotic therapy, n (%)	Gender	Age, mean ± SD (range)	Prescribed antibiotics and the number of patients prescribed	Comorbidities and the number of patients
South Korea	7,339	2,820 (38.1)	2,970 Male	47.1 ± 19.0	Unspecified antibiotic: 3,174	HT: 1,373
			4,369 Female		Penicillin: 646	Tuberculosis: 28
					Cephalosporins: 1,649	COPD: 81
					Sulfamethoxazole/trimethoprim: 43	Pneumonia: 513
					Tetracycline: 33	Asthma: 387
					Penicilln: 646	DM: 857
					Cephalosporins: 1,649	CKD: 48
					Sulfamethoxazole/trimethoprim: 43	CLD: 645
					Tetracycline: 33	CVDs: 455
USA	5,853	4,130 (71)	NA	NA	Doxycycline, azithromycin, levofloxacin, ciprofloxacin,	HT: 988
					ceftriaxone, and cefepime	DM: 464
					Penicilln: 646	CVD: 242
China	3,309	2,127 (64.28)	1,642 Male	62 (median)	Unspecified antibiotics	Cancer: 130
			1,667 Female			DM: 57
						COPD: 42
						Other heart diseases: 46
						Cancer: 40
						COPD: 40
China	1,123	792 (70.5)	560 Male	61 (median)	Azithromycin: 63	Not reported
			563 Female		Fluorquinolones: 666	
					Levofloxacin: 77	
					Moxifloxacin: 690	
					Cephalosporins: 220	
					Penicilln: 50	
					Carbapenem: 108	
					Meropenem: 77	
China	1,099	637 (58)	640 Male	47 (median)	Unspecified antibiotics	Not reported
			459 Female			
Netherlands	925	669 (72.3)	583 Male	70 (median)	Cefuroxime, amoxicillin, ciprofloxacin	Not reported
			324 Female			
China	476	319 (67)	319 Male	53 (median)	Unspecified antibiotics	Not reported
			205 Female			
China	468	264/330 (80.0)	282 Male	53.1 ± 27.6	Teicoplanin	Not reported
			282 Female			

(continued)
Table 1. (Continued)

Country	Total number of patients	Number of patients prescribed antibiotic therapy, n (%)	Gender	Age, mean±SD (range)	Prescribed antibiotics and the number of patients prescribed	Comorbidities and the number of patients
China¹⁸	465	218 (46.88)	243 Male 222 Female	45 (5–88)	Cephalosporins, quinolones, carbapenem, tigecycline, and linezolid	HT: 82 DM: 28 CLD: 19 Cancer: 5 (1.08%) CKD: 5 Heart disease: 3 Pediatric: 3 Pregnancy: 2
China¹⁹	450	225 (50)	228 Male 222 Female	46.2±15.1	Quinolones: 190 Cephalosporins: 22 Carbapenems: 8 Macrolides: 4 Penicillin: 33 Linezolid: 6 Polymyxin: 1 Teicoplanin: 1	HT: 75 DM: 45 CVD: 22 CLD: 11 CKD: 1 Cerebrovascular disease: 11 COPD: 10 Cancer: 5 Rheumatic disease: 2
China²⁰	350	177 (50.6)	173 Male 177 Female	43 (median)	Moxifloxacin: 156 Levofloxacin: 25 Piperacillin/tazobactam: 9 Unspecified antibiotics: 11	HT: 51 DM: 26 CVD: 15 Chronic pulmonary disease: 7 CKD: 9 CLD: 14 Cancer: 1 Not reported
China²¹	334	167 (50)	173 female 161 Male	60 (21–90)	Unspecified antibiotics	COPD: 30 Asthma: 18 Heart failure: 35 Atrial fibrillation: 24 Liver cirrhosis: 8 DM: 118 CKD: 42 Renal disease: 19 Coronary artery disease: 45 HT: 180 Not reported
USA²²	321	222 (69)	155 Male 166 Female	60±17	Unspecified antibiotics	Not reported
USA²³	242	162 (67)	123 Male 119 Female	50–82	Unspecified antibiotics	Not reported
China²⁴	204	141 (69.12)	107 Male 97 Female	52.91±15.98	Antibiotic treatment	(continued)
Country	Total number of patients	Number of patients prescribed antibiotic therapy, n (%)	Gender	Age, mean±SD (range)	Prescribed antibiotics and the number of patients prescribed	Comorbidities and the number of patients
---------	-------------------------	--	--------	----------------------	---	--
China	200	141 (70.5)	98 Male 102 Female	55 ± 17.1	Moxifloxacin, ceftriaxone	Not reported
China	195	115 (59.0)	100 Male 95 Female	64 (median)	Unspecified antibiotics	Not reported
Brazil	181	148 (81.8)	Male 71 110 Female	55.3 ± 21.1	Unspecified antibiotics	Cancer: 181 HT: 77 DM: 31 Chronic renal failure: 10 COPD/asthma: 7
China	169	87 (51.5)	86 Male 83 Female	45 (median)	Unspecified antibiotics	Cancer: 2 CVD and cerebrovascular diseases: 10
USA, Italy, Spain	144	106 (74)	94 Male 50 Female	62 (median)	Unspecified antibiotics	Kidney transplant: 144 HT: 68 (48.6%) DM: 30 (21.4%) Coronary heart disease: 26 (18.6%) Congestive heart failure: 12 (8.6%) COPD: 7 (5.0%) Bronchial asthma: 15 (10.7%) CKD: 16 (11.4%) Cancer: 29 (20.7%) HIV: 5 (3.6%) CLD: 7 (5.0%)
Germany	140	121 (86.4)	90 Male 50 Female	63.5 (17–99)	Ampicillin/sulbactam: 56 Piperacillin/tazobactam: 26 Azithromycin: 38 Meropenem: 6 Moxifloxacin: 4 Cephalosporin: 3	HT: 68 (48.6%) DM: 30 (21.4%) Coronary heart disease: 26 (18.6%) Congestive heart failure: 12 (8.6%) COPD: 7 (5.0%) Bronchial asthma: 15 (10.7%) CKD: 16 (11.4%) Cancer: 29 (20.7%) HIV: 5 (3.6%) CLD: 7 (5.0%)
China	138	NA	75 Male 63 Female	56 (median)	Moxifloxacin: 89 Ceftriaxone: 34 Azithromycin: 25	Not reported
China	136	NA	66 Male 70 Female	56 (median)	Moxifloxacin: 51 Cefoperazone-sodium/sulbactam-sodium: 88 Imipenem/clastatin: 4	Not reported
China	135	131 (97)	57 Male 78 Female	53.53 ± 13.22	Moxifloxacin	Not reported
China	135	59 (43.7)	72 Male 63 Female	47 (median)	Unspecified antibiotics	Not reported
Table 1. (Continued)

Country	Total number of patients	Number of patients prescribed antibiotic therapy, n (%)	Gender	Age, mean±SD (range)	Prescribed antibiotics and the number of patients prescribed	Comorbidities and the number of patients
China\(^{34}\)	132	92 (69.6)	74 Male, 58 Female	58.8 ± 12.9	Unspecified antibiotics	CVD: 52, Cancer: 7, CKD: 1, Not reported
China\(^{35}\)	107	85 (79.4)	57 Male, 50 Female	51 (median)	Unspecified antibiotics	Not reported
China\(^{36}\)	101	99 (98)	48 Male, 53 Female	51 (median)	Unspecified antibiotics	Not reported
China\(^{37}\)	99	70 (71)	67 Male, 32 Female	55.5 ± 13.1 (21–82)	Cephalosporins, quinolones, carbapenems, tigecycline, and linezolid	Not reported
South Korea\(^{38}\)	98	98 (100)	38 Male, 60 Female	55.4 ± 17.1	Unspecified antibiotics	Not reported
China\(^{39}\)	93	84 (90.3)	54 Male, 39 Female	43 ± 17.34	Moxifloxacin: 54, Levofloxacin: 5, Azithromycin: 1, Cefepime: 1, Cefepirone-sulbactam: 1, Cefixime: 1, Other: 23	HT: 6, DM: 5, Heart disease: 3, Stroke: 2, Hypothyroidism: 2, COPD or chronic bronchitis: 2
China\(^{40}\)	90	47 (52)	48 Male, 42 Female	64 (median)	Unspecified antibiotics	CVD: 11, HT: 38, DM: 17, COPD: 4, CKD: 1, Cerebrovascular disease: 6, Cancer: 10, Not reported
China\(^{41}\)	85	77 (90.6)	62 Male, 23 Female	65.8 ± 14.2	Meropenem: 38, Imipenem/cilastatin: 1, Moxifloxacin: 40, Levofloxacin: 4, Linezolid: 18, Vancomycin: 2, Teicoplanin: 2, Tigecycline: 2, Piperacillin/tazobactam: 9, Ceftriaxone sodium: 3, Cefoperazone sulbactam: 2, Ceftazidime/tazobactam: 2	Cardiac disease, injury, and surgery: 82, Cancer: 10
China\(^{21}\)	82	68 (82.9)	44 Male, 38 Female	74 (34–95)	Unspecified broad-spectrum antibiotics	Not reported
Brazil\(^{42}\)	79	60 (76)	43 Male, 36 Female	4 (median)	Unspecified antibiotics	Pediatric: 79

(continued)
Country	Total number of patients	Number of patients prescribed antibiotic therapy, n (%)	Gender	Age, mean ± SD (range)	Prescribed antibiotics and the number of patients prescribed	Comorbidities and the number of patients
China	43	31 (41.89)	37 Male	46.14 ± 14.19	Unspecified antibiotics	
Italy	44	32 (45.7)	41 Male	45–74	Azithromycin	
China	45	24 (35.3)	25 Male	44.3 ± 16.4	Moxifloxacin: 21	
					Cephalosporin: 9	
					Azithromycin: 2	
					Amoxicillin: 2	
UK	46	9 (1.3)	32 Male	42.5 (0.5–76)	Doxycycline, moxifloxacin	
France	47	34 (51.5)	15 Male	87.7 ± 9.0	Azithromycin and roxamycin	
China	48	45 (70.3)	20 Male	61 (median)	Unspecified antibiotics	
Oman	49	NA	53 Male	48 ± 16	Ceftriaxone: 50	
					Azithromycin: 45	
					Piperacillin/tazobactam: 49	
China	26	47 (74.6)	38 Male	65 (57–71)	Unspecified broad-spectrum antibiotics	
Saudi Arabia	61	61 (100)	54 Male	51 (median)	Azithromycin, ceftriaxone, and piperacillin/tazobactam	
Spain	51	6 (8.3)	60 Female	NA	Unspecified antibiotics	
NA	52	29 (50.0)	NA	>20 years	Levofloxacin, moxifloxacin, meropenem, and cefixime	
Europe	53	35 (63)	40 Male	65 (57–70)	1 or more unspecified antibiotics and azithromycin as	
					COVID-19 treatment	
Brazil	54	33 (58.9)	39 Male	6.2 (median)	Unspecified antibiotics	
China	55	29 (52.7)	31 Male	44 (median)	Unspecified antibiotics	
China	32	52 (100)	34 Male	71.40 ± 9.43	Moxifloxacin	
China	56	25 (53.19)	21 Male	45 (median)	Unspecified antibiotics	

(continued)
Country	Total number of patients	Number of patients prescribed antibiotic therapy, n (%)	Gender	Age, mean±SD (range)	Prescribed antibiotics and the number of patients prescribed	Comorbidities and the number of patients prescribed
China⁵⁷	44	16 (36.4)	22 Male 22 Female 30 Male 11 Female	(1–18) years	Unspecified antibiotics	Pediatric: 44
China⁵⁸	41	41 (100)	22 Male 30 Male 11 Female	49 (median)	Unspecified antibiotics	Not reported
China⁵⁹	34	29 (85)	14 Male 20 Female	33 (10.00–94.25) months	Azithromycin was given to 9 patients with pneumonia infection	Pediatric: 34
Italy⁶⁰	33	NA	30 Male 3 Female	64 (median)	Carbapenem: 4 Cephalosporin: 7 Macrolide: 18 Penicillin: 23	Heart disease: 14 Lung disease: 4 DM: 2 Autoimmune disease or immunodeficiency: 1
NA⁶¹	32	18 (56.3)	NA	NA	Unspecified antibiotics: 2 Initial antibiotic therapy: cefuroxime 7 Amoxicillin-clavulanic acid 1 Piperacillin/tazobactam Subsequent antibiotic therapy: 7 Cases treated with cefuroxime, 1 amoxicillin-clavulanic acid, 1 Ceftazidime, 2 vancomycin 2, flucloxacillin 3	Not reported
China⁶²	31	6 (19.4)	NA	7 years and 1 month (6 months–17 years)	Unspecified antibiotics	Pediatric: 31
Iran⁶³	30	NA	14 Male 16 Female	0–18 years	Ceftriaxone: 17 Azithromycin: 2 Meropenem: 6 Clindamycin: 3 Vancomycin: 6	Pediatric: 30
China⁶⁴	28	23 (82.1)	17 Male 11 Female	65 (median)	Unspecified antibiotics	Cancer: 28
Italy⁶⁵	25	20 (80)	20 Male 5 Female	71.64±10.08	Ceftriaxone and azithromycin	Cancer: 25
China⁶⁶	25	13 (56)	14 Male 11 Female	3 (2–9)	For 2 critical cases: Case 1: cefoperazone/sulbactam Case 2: meropenem, linezolid	Pediatric: 25
China⁶⁷	23	6 (26.1)	10 Male 13 Female	0 day–1 year	Unspecified antibiotics	Neonate and infant: 23
China⁶⁷	20	17 (85.0)	10 Male 10 Female	43.2±14.0	Unspecified antibiotics	Not reported

(continued)
Table 1. (Continued)

Country	Total number of patients	Number of patients prescribed antibiotic therapy, n (%)	Gender	Age, mean±SD (range)	Prescribed antibiotics and the number of patients prescribed	Comorbidities and the number of patients
China	68	17 (76.5)	12 Male	88 (median)	Unspecified antibiotics	HT: 9
		5 Female				CVD: 8
						CKD: 6
						DM: 5
						Neurodegenerative diseases 5
						COPD: 3
						Cancer: 2
China	69	16 (50)	6 Male	44.1 (5–70)	Unspecified antibiotics	Pregnant: 15
		10 Female				
China	70	15 (100)	Female	32 ±5	Unspecified antibiotics	Not reported
China	71	11 (100)	5 Male	36.6 (2–69)	Ceftriaxone and moxifloxacin initially and changed to cefoperazone sulbactam, linezolid, and polymyxin later	Not reported
China	72	10 (50)	4 Male	74 (3–131) months	Unspecified antibiotics	Pediatric: 10
		6 Female				
Spain	73	10 (100)	3 Male	54 ± 10	Cephalosporin: 7	HT: 9
		7 Female				DM: 4
					Carbenem: 4	Kidney transplant: 10
					Macrolide: 8	
					Linezolid: 2	
China	74	9 (44.4)	5 Male	42 (14–56)	Moxifloxacin	Not reported
		4 Female				
China	75	9 (100)	Female	29.9 (26–40)	Unspecified antibiotics	Pregnant: 9
NA	76	8 (50)	2 Male	5 days–12 month	Amoxicillin, cefotaxime and gentamicin	Neonate and infant: 8
		6 Female				
UK	76	8 (50)	2 Male	5.1 months	Unspecified antibiotics	Not reported
		6 Female		(5 days–12 months)		
China	77	6 (100)	2 Male	3 (1–7)	Unspecified antibiotics	Not reported
		6 Female				
Italy	78	6 (100)	5 Male	66.5 (50–82)	Unspecified antibiotics	Not reported
		1 Female				
Spain	79	5 (100)	3 Female	62 (38–86)	All patient received azithromycin and ceftriaxone	Not reported
		2 Male			In addition, case 1: ceftaroline	
					Case 2 and 5: oral cefixime	
					Case 3: levofloxacin	
China	80	5 (100)	4 Male	≥55 years	Unspecified antibiotics	Not reported
		1 Female				
China	82	5 (100)	2 Male	50.2 (39–66)	Unspecified antibiotics	Not reported
		3 Female				

(continued)
Country	Total number of patients	Number of patients prescribed antibiotic therapy, n (%)	Gender	Age, mean ± SD (range)	Prescribed antibiotics and the number of patients prescribed	Comorbidities and the number of patients
Spain	83	5 (4, 80)	3 Male	37.8 (29–49)	Case 1: — Case 2: meropenem (for 16 days) Case 3: azithromycin (for 5 days) Case 4: azithromycin (for 5 days), cefixime (for 5 days) Case 5: azithromycin (for 5 days), ceftaroline fosamil (for 7 days), co-trimoxazole (for 21 days, followed by secondary prophylaxis)	HIV: 5
China	82	5 (100)	2 Male	50.2 (39–66)	Unspecified antibiotics	HT: 2 Rheumatic diseases: 5
China	81	4 (80)	1 Male	65.8 (51–79)	Levofloxacin, moxifloxacin, ceftriaxone, piperacillin-tazobactam, and meropenem	CVDs: 1
Australia	84	5 (100)	5 Males	63 (46–74)	Unspecified antibiotics	HT: 2 DM: 2 Aortic valve replacement: 1 Asthma: 1
USA	85	4 (50)	2 Male	54.3 (38–64)	Azithromycin, also ceftriaxone, was given to one patient	Cardiac disease, injury, and surgery: 4 Lung transplant: 4
Italy	86	4 (100)	2 Male	61 (48–70)	Case 1: piperacillin/tazobactam and levofloxacin Case 2: meropenem Case 3: iv meropenem Case 4: piperacillin/tazobactam	Cancer: 2
NA	87	3 (100)	3 Male	56 (38–74)	Azithromycin	Not reported
China	88	3 (33.3)	3 Male	7.6 (6–9)	Ceftriaxone	Pediatric: 3
Belgium	89	3 (100)	1 Male	51.6 (44–64)	Unspecified antibiotics	CVDs: 1
Philippines	90	2 (50)	1 Male	44 years	Vancomycin	None reported
China	91	2 (100)	1 Male	40 years	Unspecified antibiotics	Renal failure: 2
China	92	2 (100)	1 Male	79 years	Case 1: moxifloxacin, ceftriaxone, and tazobactam Case 2: moxifloxacin	HIV: 2
Italy	93	2 (50)	Male	47–60	Azithromycin	Cancer: 2 Heart transplant: 2
NA	94	2 (50)	1 Male	69–73	Sulfamethoxazole-trimethoprim-ds	Case 1: allogeneic bone marrow transplantation Case 2: kidney transplantation
China	95	2 (100)	2 Male	51–58	Case 1: moxifloxacin, cephalosporin, linezolid, and meropenem Case 2: moxifloxacin	(continued)
Country	Total number of patients	Number of patients prescribed antibiotic therapy, n (%)	Gender	Age, mean±SD (range)	Prescribed antibiotics and the number of patients prescribed	Comorbidities and the number of patients prescribed
-----------	--------------------------	--	--------	----------------------	---	--
USA 94	2	1 (50)	1 Male	59–75	Case 1: cefepime	Case 1 and 2: heart transplant, DM, HT, CKD
		1 Female			Vancomycin, Doxycycline, sulfamethoxazole-trimethoprim	
					Tobramycin, Linezolid	
USA 96	2	1 (50)	2 Male	NA	Case 2: ceftriazone, piperacillin-tazobactam	Pediatr: 2
		1 Female				
Iran 98	2	1 (50)	2 Male	0 months	Unspecified antibiotics	Neonate and infant: 2
		1 Female				
USA 99	2	2 (100)	2 Female	26–77	Ceftriaxone, azithromycin	Not reported
Switzerland 100	2	2 (100)	Male	59	Levofoxacin: 1	HT: 1
					Amoxicillin/clavulanate: 1	
Ireland 101	1	1 (100)	Male	25	Unspecified antibiotics	Not reported
Japan 102	1	1 (100)	Male	59	Unspecified antibiotics	Not reported
Taiwan 103	1	1 (100)	Female	55	Ceftriaxone replaced by oral amoxicillin/clavulanate	Not reported
Bhutan 104	1	1 (100)	Male	76	Ceftriaxone and doxycycline switched to meropenem and vancomycin	Not reported
Colombia 105	1	1 (100)	Male	34	Unspecified broad-spectrum antibiotics	Not reported
Japan 106	1	1 (100)	Female	72	Cefepime and clindamycin phosphate	Not reported
NA 107	1	1 (100)	Male	33	Piperacillin–tazobactam	Not reported
China 108	1	1 (100)	Male	23	Meropenem and linezolid	DM: 1
Italy 109	1	1 (100)	Male	56	Piperacillin/tazobactam	Spinal cord injury patient: 1
China 110	1	1 (100)	Male	50	Moxifloxacin	Renal failure: 1
NA 111	1	1 (100)	Male	59	Cefepime, piperacillin/tazobactam, linezolid, gentamicin and meropenem and amikacin	Not reported
Italy 112	1	1 (100)	Female	54	Unspecified broad-spectrum antibiotics	Diaphragmatic rupture and gastric perforation: 1
NA 113	1	1 (100)	Male	64	Amoxicillin/clavulanic	Cardiac disease, injury, and surgery: 1
NA 114	1	1 (100)	Male	63	Piperacillin–tazobactam	Cardiac disease, injury, and surgery: 1
NA 115	1	1 (100)	Male	37	Piperacillin sulbactam	Cardiac disease, injury, and surgery: 1
NA 116	1	1 (100)	Male	75	Azithromycin with hydroxychloroquine	HIV: 1
NA 117	1	1 (100)	Female	56	Zosyn and vancomycin	Liver failure: 1
China 118	1	1 (100)	Female	62	Meropenem and teicoplanin, followed by linezolid and tigecycline	Cancer: 1
NA 119	1	1 (100)	Male	63	Cefitoxime sodium+moxifloxacin to cefitoxime sodium+teicoplanin	Cancer: 1
Iran 120	1	1 (100)	Male	15 days	Vancomycin and amikacin	Neonate: 1
Morocco 121	1	1 (100)	Female	17 months	Amoxicilline-acide clavulanique and azithromycin	Infant: 1

(continued)
Country	Total number of patients	Number of patients prescribed antibiotic therapy, n (%)	Gender	Age, mean±SD (range)	Prescribed antibiotics and the number of patients prescribed	Comorbidities and the number of patients prescribed
China	1	1 (100)	NA	NA	Meropenem and linezolid	Pediatric: 1
Uganda	1	1 (100)	Female	34 years	Unspecified antibiotics	HIV: 1
UK	1	1 (100)	Female	22	Ceftriaxone	None reported
Saudi Arabia	1	1 (100)	Male	45	Meropenem and vancomycin	None reported
India	1	1 (100)	NA	1 week	Ampicillin, amoxicillin/clavulanate, meropenem, vancomycin	Neonate and infant: 1
India	1	1 (100)	Male	60	Unspecified antibiotics	DM, HT, and biclonal gammopathy: 1
USA	1	1 (100)	Male	23	Unspecified antibiotics	Not reported
UK	1	1 (100)	Male	77	Levoﬂoxacin	HT: 1
US	1	1 (100)	Male	20	Unspecified antibiotics	None reported
USA	1	1 (100)	Male	88	Unspecified antibiotics	HT: 1
India	1	1 (100)	Male	60	Meropenem, vancomycin	DM: 1
USA	1	1 (100)	Male	58	Azithromycin, piperacillin/tazobactam	Not reported
China	1	2 (100)	Male	79	Moxifloxacin	End-stage renal disease: 1
Germany	1	1 (100)	Male	46	Ampicillin/sublactam	HT: 1
USA	1	1 (100)	Male	24	Vancomycin, cefepime, meropenem	DM: 1
Netherlands	1	1 (100)	Male	7	Amoxicillin	Not reported
Singapore	1	1 (100)	Male	77	Unspecified antibiotics	HT, coronary artery disease, and asthma-COPD overlap syndrome: 1
Niger	1	1 (100)	Male	8 months	Ceftriaxone, gentamycin	Neonate and infant
US	1	1 (100)	Male	49	Ceftriaxone, azithromycin	Not reported
Qatar	1	1 (100)	Female	40	Azithromycin, piperacillin/tazobactam, meropenem	Not reported
Belgium	1	1 (100)	Male	64	Amoxicillin/clavulanate	HT and aortic dissection: 1
Italy	1	1 (100)	Female	78	Ceftriaxone, piperacillin/tazobactam, levoﬂoxacin	Not reported
USA	1	1 (100)	Female	13	Ceftriaxone, metronidazole	Pediatric: 1
China	1	1 (100)	Female	65	Moxifloxacin	Not reported
Brazil	1	1 (100)	Male	65	Meropenem, vancomycin	DM, HT, and cancer: 1
China	1	1 (100)	Male	64	Unspecified antibiotics	Cancer: 1
USA	1	1 (100)	Male	78	Cefepime	Not reported
USA	1	1 (100)	Male	51	Ceftriaxone, azithromycin	Diabetes: 1

CKD, chronic kidney disease; CLD, chronic liver disease; COPD, chronic obstructive pulmonary disease; CVD, cardiovascular disease; DM, diabetes mellitus; HIV, human immunodeficiency virus; HT, hypertension.
Our search encompassed about 28,000 patients from 28 different countries, to evaluate the problem systematically, the majority of which were severely affected by the pandemic, such as China, Iran, Italy, Spain, UK, and the USA, demonstrated widespread practice of prescribing antibiotics particularly in adults underlying clinical with conditions. The overall percentage of cases prescribed antimicrobial therapy is evident in 58.7% of cases being more common with premorbid or immune-compromised conditions (Fig. 1). Several authors reported treatment strategies for COVID-19 patients incorporating empirical antibiotic treatment.14,30,37,58,152 Such observations are in line with early pandemic epidemiological reports since it was apparent that more severe and critical disease is predominant in the elderly and those with underlying premorbid conditions such as diabetes, heart failure, and the immune-compromised. Conversely, severity markers included acute kidney and liver injuries, explaining antibiotic prescribing prevalence in such populations.

It is worth noticing; prescribed antibiotics are not necessarily to cover documented secondary bacterial infections since, in many studies, the presence of bacterial coinfection or secondary infection is much lower than the number of patients prescribed antimicrobial therapy. In their review, Lai \textit{et al.}153 reviewed 13 papers for the presence of bacterial coinfection or secondary infection, 5 of which reported 0% bacterial coinfection or secondary infection. In contrast, three reported a low percentage of 1%, 3.4%, and 4.8%, respectively. Similarly, a large-scale study from New York described 5,700 patients with only 3 secondary bacterial infections.154 On the contrary, this in contrast with Italy’s study, where 17.2% of patients had bacterial pneumonia and 37% suffered from secondary bacteremia.155 Lansbury \textit{et al.}156 covered 30 studies and 3,834 patients, demonstrating only 7% of the hospitalized patients infected with COVID-19 had a bacterial coinfection.156 Understandably, the presence of bacterial coinfection was highest in ICU patients (14%) compared to patients in mixed wards (4%). A third review reported 8% of bacterial or fungal coinfection.7

The reviewed evidence supports the discrepancy between inappropriate and excessive antibiotic prescribing in patients with COVID-19 disease and the presence of bacterial co-infections. Nevertheless, Chien-Yi Chang and Kok-Gan Chan argue that the low rate of coinfection could result from prescribing antibiotics on a large scale to avoid overwhelming health systems during the early pandemic.157 Furthermore, some have argued that the lack of clear antimicrobial stewardship guidance for the frontline clinician at the early stages of the pandemic probably resulted in an inclination toward antimicrobial prescribing, especially in the early stages of the pandemic. In addition, Lansbury \textit{et al.}’s156 analysis shows that more than 90% of the patients in 10 out of 17 studies, in which patients were prescribed antibiotics, received the antimicrobial therapy empirically. It is also worth mentioning that in patients with moderate and severe symptoms, those who received antibiotics or corticosteroids had more extended hospital stays than those who did not.17

It is worth noting that the high percentage of antibiotic prescribing in patients with no comorbidities (71%) could be confounded by not reporting them in some of the articles, which does not equate to their absence. It is quite possible that an undetermined percentage of patients in such studies suffer from comorbidities. The review also demonstrated lower antibiotic prescribing patterns in the pediatrics population; from 329 neonates, infants, and children included in the review, only 187 (57%) were prescribed antimicrobial therapy. This is a lower rate but might also be appropriate since coinfection is expected in the pediatric population since two studies reported 40% and 51.3% coinfection rates, respectively.158,159 This indicates that the pediatric population might have been better managed during the pandemic from the ASP point of view. Pregnant women were the least to be prescribed antimicrobial therapy, with only 34.5%, which might be due to fears of prescribing antimicrobials during pregnancy rather than its liberal use when compared to a similar cohort, however, we are not sure of the reason for this lower rate in antimicrobial prescription in pregnant women.

The macrolide antibiotic azithromycin was the predominant antimicrobial agents reported in the management of COVID-19 disease (Table 2). Most possible, it was used for
its claimed anti-inflammatory effect.\(^{160}\) Before the start of the pandemic, it was used mostly to treat community-acquired pneumonia as well as exacerbations of chronic obstructive pulmonary disease.\(^ {161} \) Azithromycin’s role has been recognized by previous reports of efficacy against other RNA viruses such as Zika and Ebola virus disease\(^ {162–164} \) and has been spared when suggested as an adjunct to hydroxychloroquine leading to rapid viral clearance in COVID-19 patients through unclear mechanisms.\(^ {9} \) This probably reflects the highlighted issue with the drug in the foremost pandemic history.\(^ {160} \) Although some limited reports support improved outcomes with adjunctive macrolides in the treatment of COVID-19 disease stemming from previous observations of moderate-to-severe acute respiratory distress syndrome, this has not been materialized in COVID-19 clinical trials.\(^ {165} \) Furthermore, both hydroxychloroquine/chloroquine and azithromycin have been associated with cardiotoxicity by prolonging the QT intervals (the time it takes for the ventricles of the heart to contract and relax), which might precipitate arrhythmias in susceptible patients, particularly those with cardiac diseases, the impact of which is yet to be thoroughly evaluated.\(^ {166} \) The widely used antibiotic azithromycin was gradually recognized as a rare cause of prolonged QT, severe arrhythmia, and increased risk of sudden death.\(^ {167–170} \) Beović et al.\(^ {171} \) reported that broad-spectrum antibiotic use in patients with COVID-19 is widespread, according to his survey study administered across 82 hospitals in 23 countries. Importantly, different broad-spectrum antibiotics have been frequently prescribed, including piperacillin/tazobactam, meropenem, vancomycin, and teicoplanin, highlighting potential further development of current or future AMR. More than half of the respondents reported combined use of β-lactams and macrolides or fluoroquinolones, and the most commonly prescribed antibiotic in the COVID-19 ICU was piperacillin/tazobactam.\(^ {172} \) Worryingly, most broad-spectrum antibiotics have been prescribed empirically as prophylaxis to prevent secondary bacterial infection,\(^ {70} \) or to treat bacterial secondary infection and pneumonia,\(^ {59} \) or as part of COVID-19 treatment\(^ {53} \).

Although the systematic search captured a significant number of studies in a short time frame, we acknowledge there are some accompanying limitations. Restricting inclusion to the English language probably omitted other thematic studies. The pandemic’s dynamic nature and short time reporting scope probably caused reporting bias, which might be corrected over time. Nevertheless, our report outcomes are in line with other conducted cross-sectional studies such as the WHO studied report.\(^ {8} \)

In summary, this systematic review demonstrated the widespread practice of antibiotic prescribing for COVID-19 patients during the pandemic with little supporting evidence of secondary bacterial infections. While the practice is more frequent in adult patients with comorbidities than in the younger population, this might reflect more advanced and severe diseases in this population. We encourage the appropriate and judicious use of antimicrobials, particularly broad-spectrum antibiotics, to avoid short- and long-term consequences. We anticipate if no appropriate actions have been taken throughout the pandemic through various elements of ASPs or tailored COVID-19 management guidelines, such practice might become an established culture with all its detrimental consequences.

Table 2. Showing the Number of Articles Reporting Each Antibiotic

Antibiotic	No. of articles
Unspecified antibiotics	68
Cephalosporins	38
Azithromycin	27
Moxifloxacin	23
Meropenem	20
Piperacillin/tazobactam	18
Levofloxacin	13
Linezolid	12
Vancomycin	9
Amoxicillin/clavulanate	8
Teicoplanin	6
Carbapenem	6
Amoxicillin	6
Cefepime	6
Tigecycline	4
Cefoperazone/sulbactam	4
Cefixime	4
Penicillin	4
Doxycycline	4
Fluoroquinolones	3
Imipenem/cilastatin	2
Clindamycin	2
Amikacin	2
Gentamicin	2
Trimoxazole	2
Sulfamethoxazole/trimethoprim	2
Ampicillin/sulbactam	2
Fluoxacinil	1
Ceftazidime/tazobactam	1
Cefotaxime	1
Ceftaroline fosamil	1
Ceftizoxime sodium	1
Meropenem/vancomycin	1
Piperacillin/sulbactam	1
Tazobactan	1
Spiramycin	1
Tobramycin	1
Clarithromycin	1
Ampicillin	1
Tetracycline	1
Polymyxin	1
Metronidazole	1

This work was supported by the Biomedical Research Center, Qatar University.
References

1. Aminov, R.I. 2010. A brief history of the antibiotic era: lessons learned and challenges for the future. Front. Microbiol. 1:134.

2. Frost, I., T.P. Van Boeckel, J. Pires, J. Craig, and R. Laxminarayan. 2019. Global geographic trends in antimicrobial resistance: the role of international travel. J. Travel Med. 26:tao036.

3. Bloom, D.E., and D. Cadarette. 2019. Infectious disease 2019, superinfections, and antimicrobial development: what can we expect?. Clin. Infect. Dis. 71:2736–2743.

4. Rawson, T.M., L.S. Moore, N. Zhu, et al. 2020. Bacterial and fungal coinfection in individuals with coronavirus: a rapid review to support COVID-19 antimicrobial prescribing. Clin. Infect. Dis. 71:2459–2468.

5. Lee, S.G., G.U. Park, Y.R. Moon, and K. Sung. 2020. Coronavirus disease 2019, superinfections, and antimicrobial development: what can we expect?. Clin. Infect. Dis. 71:2736–2743.

6. Clancy, C.J., and M.H. Nguyen. 2020. Coronavirus disease 2019, superinfections, and antimicrobial development: what can we expect?. Clin. Infect. Dis. 71:2736–2743.

7. Rawson, T.M., L.S. Moore, N. Zhu, et al. 2020. Bacterial and fungal coinfection in individuals with coronavirus: a rapid review to support COVID-19 antimicrobial prescribing. Clin. Infect. Dis. 71:2459–2468.

8. Getahun, H., I. Smith, K. Trivedi, S. Paulin, and H.H. Balkhy. 2020. Tackling antimicrobial resistance in the COVID-19 pandemic. Bull. World Health Organ. 98:442.

9. Gautret, P., J.C. Lagier, P. Parola, et al. 2020. Hydroxychloroquine and azithromycin as a treatment of COVID-19: results of an open-label non-randomized clinical trial. Int. J. Antimicrob. Agents 56:105949.

10. Lee, S.G., G.U. Park, Y.R. Moon, and K. Sung. 2020. Clinical characteristics and risk factors for fatality and severity in patients with coronavirus disease in Korea: a nationwide population-based retrospective study using the Korean Health Insurance Review and Assessment Service (HIRA) Database. Int. J. Environ. Res. Public Health 17:8559.

11. Nori, P., K. Cowman, V. Chen, et al. 2021. Bacterial and fungal coinfections in COVID-19 patients hospitalized during the New York City pandemic surge. Infect. Control Hosp. Epidemiol. 42:84–88.

12. Chen, J., H. Bai, J. Liu, et al. 2020. Distinct clinical characteristics and risk factors for mortality in female inpatients with coronavirus disease 2019 (COVID-19): a sex-stratified, large-scale cohort study in Wuhan, China. Clin. Infect. Dis. 71:3188–3195.

13. Liu, C., Y. Wen, W. Wan, J. Lei, and X. Jiang. 2021. Clinical characteristics and antibiotics treatment in suspected bacterial infection patients with COVID-19. Int. Immunopharmacol. 90:107157.

14. Guan, W.J., Z.Y. Ni, Y. Hu, et al. 2020. Clinical characteristics of coronavirus disease 2019 in China. N. Engl. J. Med. 382:1708–1720.

15. Lai, C.C., Y.H. Liu, C.Y. Wang, et al. 2020. Asymptomatic carrier state, acute respiratory disease, and pneumonia due to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2): facts and myths. J. Microbiol. Immunol. Infect. 53:404–412.

16. Karami, Z., B.T. Knoopp, A.S. Dofferhoff, et al. 2021. Few bacterial co-infections but frequent empiric antibiotic use in the early phase of hospitalized patients with COVID-19: results from a multicentre retrospective cohort study in The Netherlands. Infect. Dis. 53:102–110.

17. Feng, Y., Y. Ling, T. Bai, et al. 2020. COVID-19 with different severities: a multicenter study of clinical features. Am. J. Respir. Crit. Care Med. 201:1380–1388.

18. Lian, J., X. Jin, S. Hao, et al. 2020. Epidemiological, clinical, and virological characteristics of 465 hospitalized cases of coronavirus disease 2019 (COVID-19) from Zhejiang province in China. Influenza Other Respir. Viruses 14:564–574.

19. Ma, Y., H. Zeng, Z. Zhan, et al. 2020. Corticosteroid use in the treatment of COVID-19: a multicenter retrospective study in Hunan, China. Front. Pharmocol. 11:1198.

20. Guo, T., Q. Shen, Z. Zhou, et al. 2020. Combined Interventions for Severe Novel Coronavirus Disease (COVID-19): experience from 350 Patients. Infect. Drug Resist. 13:3907.

21. Shi, S., M. Qin, B. Shen, et al. 2020. Association of cardiac injury with mortality in hospitalized patients with COVID-19 in Wuhan, China. JAMA Cardiol. 5:802–810.

22. Lehmann, C.J., M.T. Pho, D. Pitrik, J.P. Ridgway, and N.N. Pettit. 2021. Community acquired co-infection in COVID-19: a retrospective observational experience. Clin. Infect. Dis. 72:1450–1452.

23. Rothe, K., S. Feihl, J. Schneider, et al. 2021. Rates of bacterial co-infections and antimicrobial use in COVID-19 patients: a retrospective cohort study in light of antibiotic stewardship. Eur. J. Clin. Microbiol. Infect. Dis. 40:859–869.

24. Pan, L., M. Mu, P. Yang, et al. 2020. Clinical characteristics of COVID-19 patients with digestive symptoms in Hubei, China: a descriptive, cross-sectional, multicenter study. Am. J. Gastroenterol. 115:766–773.

25. Yang, L., J. Liu, R. Zhang, et al. 2020. Epidemiological and clinical features of 200 hospitalized patients with coronavirus disease 2019 outside Wuhan, China: a descriptive study. J. Clin. Virol. 129:104475.

26. Zhang, Y., Y. Cui, M. Shen, et al. 2020. Association of diabetes mellitus with disease severity and prognosis in COVID-19: a retrospective cohort study. Diabetes Res. Clin. Pract. 165:108227.

27. de Melo, A.C., L.C. Thuler, J.L., da Silva, et al. 2020. Cancer patients with COVID-19: a report from the Brazilian National Cancer Institute. PLoS One 15:e0241261.

28. Wang, C., L. Zhou, J. Chen, et al. 2020. The differences of clinical characteristics and outcomes between imported and local patients of COVID-19 in Hunan: a two-center retrospective study. Respir. Res. 21:313.

29. Cravedi, P., S.S. Mothi, Y. Azzri, et al. 2020. COVID-19 and kidney transplantation: results from the TANGO International Transplant Consortium. Am. J. Transplant. 20:3140–3148.

30. Bai, Y., L. Yao, T. Wei, et al. 2020. Presumed asymptomatic carrier transmission of COVID-19. JAMA 323:1406–1407.

31. Yang, Q., L. Xie, W. Zhang, et al. 2020. Analysis of the clinical characteristics, drug treatments and prognoses of 136 patients with coronavirus disease 2019. J. Clin. Pharm. Ther. 45:609–616.

32. Guo, T., Y. Fan, M. Chen, et al. 2020. Cardiovascular implications of fatal outcomes of patients with coronavirus disease 2019 (COVID-19). JAMA Cardiol. 5:811–818.
33. Wan, S., Y.I. Xiang, W. Fang, et al. 2020. Clinical features and treatment of COVID-19 patients in northeast Chongqing. J. Med. Virol. 92:797–806.
34. Li, H.Y., J.W. Wang, L.W. Xu, X.L. Zhao, J.X. Feng, and Y.Z. Xu. 2020. Clinical analysis of 132 cases COVID-19 from Wuhan. Medicine (Baltimore) 99:e22847.
35. Wang, D., Y. Yin, C. Hu, et al. 2020. Clinical course and outcome of 107 patients infected with the novel coronavirus, SARS-CoV-2, discharged from two hospitals in Wuhan, China. Crit. Care 24:1–9.
36. Ji, M., L. Yuan, W. Shen, et al. 2020. Characteristics of disease progress in patients with coronavirus disease 2019 in Wuhan, China. Epidemiol. Infect. 148:e94.
37. Chen, N., M. Zhou, X. Dong, et al. 2020. Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: a descriptive study. Lancet395:507–513.
38. Hong, K.S., K.H. Lee, J.H. Chung, et al. 2020. Clinical features and outcomes of 98 patients hospitalized with SARS-CoV-2 infection in Daegu, South Korea: a brief descriptive study. Yonsei Med. J. 61:431.
39. Liu, H., J. Gao, Y.Wang, et al. 2020. Epidemiological and clinical characteristics of 2019 novel coronavirus disease (COVID-19) in Jilin, China: a descriptive study. Medicine (Baltimore) 99:e23407.
40. Tian, R., W. Wu, C. Wang, et al. 2020. Clinical characteristics and survival analysis in critical and non-critical patients with COVID-19 in Wuhan, China: a single-center retrospective case control study. Sci. Rep. 10:1–8.
41. Du, Y., L. Tu, P. Zhu, et al. 2020. Clinical features of 85 fatal cases of COVID-19 from Wuhan: a retrospective observational study. Am. J. Respir. Crit. Care Med. 201:1372–1379.
42. Prata-Barbosa, A., F. Lima-Setta, G.R. Santos, et al. 2020. Pediatric patients with COVID-19 admitted to intensive care units in Brazil: a prospective multicenter study. J. Pediatr. 96:582–592.
43. Jin, X., J.S. Lian, J.H. Hu, et al. 2020. Epidemiological, clinical and virological characteristics of 74 cases of coronavirus-infected disease 2019 (COVID-19) with gastrointestinal symptoms. Gut 69:1002–1009.
44. d’Ettorre, G., G. Ceccarelli, M. Marazzato, et al. 2020. Challenges in the management of SARS-CoV2 infection: the role of oral bacteriotherapy as complementary therapeutic strategy to avoid the progression of COVID-19. Front. Med. 7:389.
45. Liu, B.M., Q.Q. Yang, L.Y. Zhao, et al. 2020. Epidemiological characteristics of COVID-19 patients in convalescence period. Epidemiol. Infect. 148:1–9.
46. Easom, N., P. Moss, G. Barlow, et al. 2020. Sixty-eight consecutive patients assessed for COVID-19 infection: experience from a UK regional infectious diseases unit. Influenza Other Respir. Viruses 14:374–379.
47. Annweiler, C., B. Hanotte, C.G. de l’Eprevier, J.M. Sabatier, L. Lafaye, and T. Célarier. 2020. Vitamin D and survival in COVID-19 patients: a quasi-experimental study. J. Steroid Biochem. Mol. Biol. 204:105771.
48. Hu, C., L. Xiao, H. Zhu, et al. 2020. Effect of hypertension on outcomes of patients with COVID-19. J. Southern Med. Univ. 40:1537.
49. Khamis, F., I. Al-Zakwani, H Al Naamani, et al. 2020. Clinical characteristics and outcomes of the first 63 adult patients hospitalized with COVID-19: an experience from Oman. J. Infect. Public Health. 13:906–913.
50. Mady, A., W. Aletreby, B. Abdulrahman, et al. 2020. Tocilizumab in the treatment of rapidly evolving COVID-19 pneumonia and multifaceted critical illness: a retrospective case series. Ann. Med. Surg. 60:417–424.
51. Pereira, A., S. Cruz-Melguizo, M. Adrien, L. Fuentes, E. Marin, and T. Perez-Medina. 2020. Clinical course of coronavirus disease-2019 in pregnancy. Acta Obstet. Gynecol. Scand. 99:839–847.
52. Bai, P., W. He, X. Zhang, S. Liu, and J. Jin. 2020. Analysis of clinical features of 58 patients with severe or critical 2019 novel coronavirus pneumonia. Chin. J. Emerg. Med. [Epub ahead of print].
53. Becchetti, C., M.F. Zambelli, L. Pasulo, et al. 2020. COVID-19 in an international European liver transplant recipient cohort. Gut 69:1832–1840.
54. Lima-Setta, F., M.C. de Magalhães-Barbosa, G. Rodrigues-Santos, et al. 2020. Multisystem inflammatory syndrome in children (MIS-C) during SARS-CoV-2 pandemic in Brazil: a multicenter, prospective cohort study. J. Pediatr. (Rio J). [Epub ahead of print]; DOI: 10.1016/j.jped.2020.10.008.
55. Sun, L., L. Shen, J. Fan, et al. 2020. Clinical features of patients with coronavirus disease 2019 from a designated hospital in Beijing, China. J. Med. Virol. 92:2055–2066.
56. Lu, J., Q. Yin, Q. Li, et al. 2020. Clinical characteristics and factors affecting the duration of positive nucleic acid test for patients of COVID-19 in XinYu, China. J. Clin. Lab. Anal. 34:e23534.
57. Yu, Y., and P. Chen. 2020. Coronavirus disease 2019 (COVID-19) in neonates and children from China: a review. Front. Pediatri. 8:287.
58. Huang, C., Y. Wang, X. Li, et al. 2020. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet 395:497–506.
59. Zhang, C., J. Gu, Q. Chen, et al. 2020. Clinical and epidemiological characteristics of pediatric SARS-CoV-2 infections in China: a multicenter case series. PLoS Med. 17:e1003130.
60. Piva, S., M. Filippini, F. Turla, et al. 2020. Clinical presentation and initial management critically ill patients with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection in Brescia, Italy. J. Crit. Care 58:29–33.
61. Verroken, A., A. Scohy, L. Gérard, X. Wittebole, C. Collie`nne, and P.F. Laterre. 2020. Co-infections in COVID-19 critically ill and antibiotic management: a prospective cohort analysis. Crit. Care 24:1–3.
62. Wang, D., X.L. Ju, F. Xie, et al. 2020. Clinical analysis of 31 cases of 2019 novel coronavirus infection in children from six provinces (autonomous region) of northern China [in Chinese]. Zhonghua Er Ke Za Zhi 58:269–274.
63. Soltani, J., I. Sedighi, Z. Shalchi, G. Sami, B. Moradveisi, and S. Nahidi. 2020. Pediatric coronavirus disease 2019 (COVID-19): an insight from west of Iran. North. Clin. Istabn. 7:284.
64. Zhang, L., F. Zhu, L. Xie, et al. 2020. Clinical characteristics of COVID-19-infected cancer patients: a retrospective case study in three hospitals within Wuhan, China. Ann. Oncol. 31:894–901.
65. Stroppa, E.M., I. Toscani, C. Citterio, et al. 2020. Coronavirus disease-2019 in cancer patients. A report of the first 25 cancer patients in a western country (Italy). Future Oncol. 16:1425–1432.
66. Zheng, F., C. Liao, Q.H. Fan, et al. 2020. Clinical characteristics of children with coronavirus disease 2019 in Hubei, China. Curr. Med. Sci. 24:1-6.
67. Lei, Z., H. Cao, Y. Jie, et al. 2020. A cross-sectional comparison of epidemiological and clinical features of patients with coronavirus disease (COVID-19) in Wuhan and outside Wuhan, China. Travel Med. Infect. Dis. 35:101664.
68. Dang, J.Z., G.Y. Zhu, Y.J. Yang, and F. Zheng. 2020. Clinical characteristics of coronavirus disease 2019 in patients aged 80 years and older. J. Integ. Med. 18:395–400.
69. Hu, W., X. Chen, B. He, et al. 2020. Clinical characteristics of 16 patients with COVID-19 infection outside of Wuhan, China: a retrospective, single-center study. Ann. Transl. Med. 8:642.
70. Liu, D., L. Li, X. Wu, et al. 2020. Pregnancy and perinatal outcomes of women with coronavirus disease (COVID-19) pneumonia: a preliminary analysis. Am. J. Roentgenol. 215:127–132.
71. Dong, X., Y.Y. Cao, X.X. Lu, et al. 2020. Eleven faces of coronavirus disease 2019. Allergy 75:1699–1709.
72. Jiehao, C., X. Jin, L. Daojiong, et al. 2020. A case series of children with 2019 novel coronavirus infection: clinical and epidemiological features. Clin. Infect. Dis. 71:1547–1551.
73. Trujillo, H., F. Caravaca-Fontán, A. Sevillano, et al. 2020. Tocilizumab use in kidney transplant patients with COVID-19. Clin. Transplant. 34:e14072.
74. Chen, Q., B. Quan, X. Li, et al. 2020. A report of clinical diagnosis and treatment of nine cases of coronavirus disease 2019. J. Med. Virol. 92:683–687.
75. Chen, H., J. Guo, C. Wang, et al. 2020. Clinical characteristics and intrauterine vertical transmission potential of COVID-19 infection in nine pregnant women: a retrospective review of medical records. Lancet. 395:809–815.
76. Ng, K.F., S. Bandi, P.W. Bird, and J.W. Tang. 2020. COVID-19 in neonates and infants: progression and recovery. Pediatr. Infect. Dis. J. 39:e140–e142.
77. Liu, W., Q.I. Zhang, J. Chen, et al. 2020. Detection of Covid-19 in children in early January 2020 in Wuhan, China. N. Engl. J. Med. 382:1370–1371.
78. Caraffa, R., L. Bagozzi, A. Fiocco, et al. 2020. Coronavirus disease 2019 (COVID-19) in the heart transplant population: a single-centre experience. Eur. J. Cardiothorac. Surg. 58:899–906.
79. Cucchiari, D., J.M. Pericás, J. Riera, R. Gumucio, E.C. Md, and D. Nicolás; Hospital Clínic 4H Team. 2020. Pneumococcal superinfection in COVID-19 patients: a series of 5 cases. Med. Clin. 155:502–505.
80. Fu, Y., Q. Yang, M. Xu, et al. 2020. Secondary bacterial infections in critical ill patients of COVID-19. Open Forum Infect. Dis. 7:ofaa220.
81. Cheng, C., C. Li, T. Zhao, et al. 2020. COVID-19 with rheumatic diseases: a report of 5 cases. Clin. Rheumatol. 39:2025–2029.
82. Ding, Q., P. Lu, Y. Fan, Y. Xia, and M. Liu. 2020. The clinical characteristics of pneumonia patients coinfected with 2019 novel coronavirus and influenza virus in Wuhan, China. J. Med. Virol. 92:1549–1555.
83. Blanco, J.L., J. Ambrosioni, F. García, et al. 2020. COVID-19 in patients with HIV: clinical case series. Lancet HIV. 7:e314–e316.
84. West, T.A., S. Malik, A. Nalpantidis, et al. 2020. Tocilizumab for severe COVID-19 pneumonia: case series of 5 Australian patients. Int. J. Rheum. Dis. 23:1030–1039.
85. Fried, J.A., K. Ramasubbu, R. Bhatt, et al. 2020. The variety of cardiovascular presentations of COVID-19. Circulation. 141:1930–1936.
86. Morlacchi, L.C., V. Rossetti, L. Gigli, et al. 2020. COVID-19 in lung transplant recipients: a case series from Milan, Italy. Transplant Infect. Dis. 22:e13356.
87. Sattar, Y., M. Connerney, H. Rauf, et al. 2020. Three cases of COVID-19 disease with colonic manifestations. Am. J. Gastroenterol. 115:948–950.
88. Zhang, T., X. Cui, X. Zhao, et al. 2020. Detectable SARS-CoV-2 viral RNA in feces of three children during recovery period of COVID-19 pneumonia. J. Med. Virol. 92:909–914.
89. Dhont, S., R. Callens, D. Stevens, et al. 2020. Myotonic dystrophy type 1 as a major risk factor for severe COVID-19?. Acta Neurol. Belg. [Epub ahead of print]; DOI: 10.1007/s13760-020-01514-z.
90. Edrada, E.M., E.B. Lopez, J.B. Villarama, et al. 2020. First COVID-19 infections in the Philippines: a case report. Trop. Med. Health. 48:1–7.
91. Ke, C., Y. Wang, X. Zeng, C. Yang, and Z. Hu. 2020. 2019 Novel coronavirus disease (COVID-19) in hemodialysis patients: a report of two cases. Clin. Biochem. 81:9–12.
92. Wu, Q., T. Chen, and H. Zhang. 2020. Recovery from the coronavirus disease-2019 (COVID-19) in two patients with coexisted (HIV) infection. J. Med. Virol 92:2325–2327.
93. Di Lorenzo, G., L. Buonerba, C. Ingenito, et al. 2020. Clinical characteristics of metastatic prostate cancer patients infected with COVID-19 in South Italy. Oncology 98:743–747.
94. Holzhauser, L., L. Lourenco, N. Sarswat, G. Chung, and A.B. Nguyen. 2020. Early experience of COVID-19 in 2 heart transplant recipients: case reports and review of treatment options. Am. J. Transplant. 20:2916–2922.
95. Huang, J., H. Lin, Y. Wu, et al. 2020. COVID-19 in posttransplant patients—report of 2 cases. Am. J. Transplant. 20:1879–1881.
96. Basalely, A., K. Brathwaite, M.D. Duong, et al. 2021. COVID-19 in children with kidney disease: a report of 2 cases. Kidney Med. 3:120–123.
97. Hazarivala, V., H. Hadid, D. Kirsch, and C. Big. 2020. Spontaneous pneumomediastinum, pneumopericardium, pneumothorax and subcutaneous emphysema in patients with COVID-19 pneumonia, a case report. J. Cardiothorac. Surg. 15:301.
98. Saghbe, S., A. Lamsehchi, M. Jafary, R. Atef-Yekta, and K. Sadeghi. 2020. Two seriously ill neonates born to mothers with COVID-19 pneumonia—a case report. Ital. J. Pediatr. 46:137.
99. Gupta, A.K., B.M. Parker, V. Priyadarshti, and J. Parker. 2020. Cardiac adverse events with remdesivir in COVID-19 infection. Cureus 12:e11132.
100. Muheim, M., F.J. Weber, P. Muggensturm, and E. Seiler. 2020. An unusual course of disease in two patients with COVID-19: pulmonary cavitation. BMJ Case Rep. 13:e237967.
pneumonia in Hokkaido, Japan and our preventive measures against nosocomial infection. Respir. Med. Case Rep. 30:101078.

103. Cheng, S.C., Y.C. Chang, Y.L. Chiang, et al. 2020. First case of Coronavirus Disease 2019 (COVID-19) pneumonia in Taiwan. J. Formos. Med. Assoc. 119:747–751.

104. LeVine, S., G.P. Dhakal, T. Penjor, P. Chuki, K. Namgyal, et al. 2020. Case report: the first case of COVID-19 in Bhutan. Am. J. Trop. Med. Hyg. 102:1205–1207.

105. Millán-Ohate, J., W. Millan, L.A. Mendoza, et al. 2020. Successful recovery of COVID-19 pneumonia in a patient from Colombia after receiving chloroquine and clari-thromycin. Ann. Clin. Microbiol. Antimicrob. 19:1–9.

106. Taniguchi, H., F. Ogawa, H. Honzawa, et al. 2020. Veno-venous extracorporeal membrane oxygenation for severe pneumonia: COVID-19 case in Japan. Acute Med. Surg. 7:e509.

107. Walpole, S.C., R. McHugh, J. Samuel, and M.L. Schmid. 2020. COVID-19 presenting as severe, persistent abdominal pain and causing late respiratory compromise in a 33-year-old man. BMJ Case Rep. 13:e236030.

108. Han, X., Y. Fan, Y.L. Wan, and H. Shi. 2020. A diabetic patient with 2019-nCoV (COVID-19) infection who recovered and was discharged from hospital. J. Thorac. Imaging. 35:W94–W95.

109. Righi, G., and G. Del Popolo. 2020. COVID-19 tsunami: the first case of a spinal cord injury patient in Italy. Spinal Cord Ser. Cases 6:1–5.

110. Huang, L., Y. Wang, L. Wang, Y. Lv, and Q. Liu. 2020. Coronavirus disease 2019 (COVID-19) pneumonia in a hemodialysis patient: a case report. Medicine (Baltimore) 99:e20956.

111. Caputo, V., J. Schroeder, and F. Rongioletti. 2020. A generalized purpuric eruption with histopathologic features of leucocytoclastic vasculitis in a patient severely ill with COVID-19. J. Eur. Acad. Dermatol. Venereol. 34: e579–e581.

112. Poggiali, E., A. Vercelli, E. Demichele, E. Ioannilli, and A. Magnacavallo. 2020. Diaphragmatic rupture and gastric perforation in a patient with COVID-19 pneumonia. Eur. J. Case Rep. Intern. Med. 7:001738.

113. Martens, T., Y.V. Weygaerde, J. Vermassen, and T. Malfait. 2020. Acute type A aortic dissection complicated by COVID-19 infection. Ann. Thorac. Surg. 110:e421–e423.

114. Zeng, J.H., Y.X. Liu, J. Yuan, et al. 2020. First case of COVID-19 complicated with fulminant myocarditis: a case report and insights. Infection 48:773–777.

115. Hu, H., F. Ma, X. Wei, and Y. Fang. 2021. Coronavirus fulminant myocarditis treated with glucocorticoid and human immunoglobulin. Eur. Heart J. 42:206.

116. Di Giambenedetto, S., P. Del Giacomo, A. Ciccullo, et al. 2020. SARS-CoV-2 infection in a highly experienced person living with HIV. AIDS 34:1257–1258.

117. Qiu, H., P. Wander, D. Bernstein, and S.K. Satapathy. 2020. Acute on chronic liver failure from novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Liver Int. 40:1590–1593.

118. Wu, Y., H. Lin, Q. Xie, et al. 2020. COVID-19 in a patient with pre-existing acute lymphoblastic leukaemia. Br. J. Haematol. 190:e13–e15.

119. Han, P., F. Li, P. Cao, et al. 2020. A case report with COVID-19 during perioperative period of lobectomy. Medicine (Baltimore) 99:e20166.

120. Kamali Aghdam, M., N. Jafari, and K. Eftekhari. 2020. Novel coronavirus in a 15-day-old neonate with clinical signs of sepsis, a case report. Infect. Dis. 52:427–429.

121. Lahfaoui, M., M. Azizi, M. Elbakkakoui, R. El Amrani, I. Kamaoui, and H. Benhaddou. 2020. Acute respiratory distress syndrome secondary to SARS-CoV-2 infection in an infant [in French]. Rev. Mal. Respir. 37:502–504.

122. Chen, F., Z. Liu, F.R. Zhang, et al. 2020. First case of severe childhood novel coronavirus pneumonia in China [in Chinese]. Zhonghua Er Ke Za Zhi 58:179–182.

123. Baluku, J.B., S. Mwebaza, G. Ingabire, C. Nsereko, and M. Muwanga. 2020. HIV and SARS-CoV-2 coinfection: a case report from Uganda. J. Med. Virol. 92: 2351–2353.

124. Gallagher, S.D., and A. Seaton. 2020. Meningococcal meningitis and COVID-19 co-infection. BMJ Case Rep. 13:e237366.

125. Alharthy, A., A. Balhamar, F. Faqihi, et al. 2020. Rare case of COVID-19 presenting as acute abdomen and sepsis. New Microbes New Infect. 38:100818.

126. Kulkarni, R., U. Rajpur, R. Dawre, et al. 2021. Early-onset symptomatic neonatal COVID-19 infection with high probability of vertical transmission. Infection. 49:339–343.

127. Vashistha, P., A.K. Gupta, M. Arya, V.K. Singh, A. Dubey, and B.C. Koner. 2020. Biclonal gammopathy in a case of severe COVID-19. Clin. Chim. Acta 511:342–345.

128. Mohan, S., A. Workman, M. Barshak, D.B. Wellinger, and D. Abdul-Aziz. 2021. Considerations in Management of Acute Otitis Media in the COVID-19 Era. Ann. Otol. Rhinol. Laryngol. 130:520–527.

129. Butt, I., V. Sawlani, and T. Geberhiwot. 2020. Prolonged confusional state as first manifestation of COVID-19. Ann. Clin. Transl. Neurol. 7:1450–1452.

130. Chavis, A., H. Bakken, M. Ellenby, and R. Hasan. 2020. COVID-19 and telehealth: prevention of exposure in a medically complex patient with a mild presentation. J. Adolesc. Health 67:456–458.

131. Elkattawy, S., R. Alyacoub, A. Mowafy, I. Younes, and C. Remolina. 2020. Unfortunate outcomes in patients with SARS-CoV-2 superimposed on pneumococcal pneumonia. Cureus 12:e10939.

132. Mehta, S., and A. Pandey. 2020. Rhino-orbital mucormycosis associated with COVID-19. Cureus 12: e10726.

133. Elndoury, O., J. Beattie, and A.S. Lubinsky. 2020. Uninterrupted continuous and intermittent nebulizer therapy in a COVID-19 patient using sequential vibratory mesh nebulizers: a case report. J. Aerosol Med. Pulm. Drug Deliv. 33:357–360.

134. Hornuss, D., K. Laubner, C. Monasterio, R. Thimme, and D. Wagner. 2020. COVID-19 associated pneumonia despite repeatedly negative PCR-analysis from oropharyngeal swabs [in German]. Dtsch. Med. Wochenschr. 145:844–849.

135. Singh, S., A. Foster, Z. Khan, A. Siddiqui, M. Atere, and J.M. Nfonoyim. 2020. COVID-19-induced diabetic ketoacidosis and acute respiratory distress syndrome in an obese 24-year-old type I diabetic. Am. J. Case Rep. 21: e92586.

136. Slaats, M.A., M. Versteyle, K.B. Gast, et al. 2020. Case report of a neonate with high viral SARS-CoV-2 loads and long-term virus shedding. J. Infect. Public Health 13: 1878–1884.
137. Lau, J.Y., H.W. Khoo, T.C. Hui, G.J. Kaw, and C.H. Tan. 2020. Atypical chest computed tomography finding of predominant interstitial thickening in a patient with coronavirus disease 2019 (COVID-19) pneumonia. Am. J. Case Rep. 21:e926781.

138. Soumana, A., A. Samaila, L.M. Moustapha, et al. 2020. A fatal case of COVID-19 in an infant with severe acute malnutrition admitted to a paediatric ward in Niger. Case Rep. Pediatr. 2020:8847415.

139. Plackiak, D.A., W.L. Taylor, and N.M. Wnuk. 2020. Bronchopleural fistula development in the setting of novel therapies for acute respiratory distress syndrome in SARS-CoV-2 pneumonia. Radiol. Case Rep. 15:2378–2381.

140. Alhassan, S.M., P. Iqbal, L. Fikrey, et al. 2020. Post COVID 19 acute acalculous cholecystitis raising the possibility of underlying deregulated immune response, a case report. Ann. Med. Surg. 60:434–437.

141. Rossi, C.M., F.N. Beretta, G. Traverso, S. Mancarella, and D. Zenoni. 2020. A case report of toxic epidermal necrolysis (TEN) in a patient with COVID-19 treated with hydroxychloroquine: are these two partners in crime?. Clin. Mol. Allergy. 18:1–6.

142. Jones, B.A., and B.J. Slater. 2020. Non-operative management of acute appendicitis in a pediatric patient with concomitant COVID-19 infection. J. Pediatr. Surg. Case Rep. 59:101512.

143. Liang, B., J. Chen, T. Li, et al. 2020. Clinical remission of a critically ill COVID-19 patient treated by human umbilical cord mesenchymal stem cells: a case report. Medicine (Baltimore) 99:e21429.

144. Silveira, R.Q., V.T. Carvalho, H.N. Cavalcanti, F.C. Rodrigues, C.B. Braune, and E.P. Ramirez. 2020. Multiple cranial nerve palsies in malignant external otitis: a rare presentation of a rare condition. IDCases 22:e00945.

145. Liu, Y., M. Wang, G. Luo, et al. 2020. Experience of N-acetylcysteine airway management in the successful treatment of one case of critical condition with COVID-19: a case report. Medicine (Baltimore) 99:e22577.

146. Haraszti, S., S. Sendil, and N. Jensen. 2020. Delayed presentation of acute generalized exanthematous pustulosis following treatment with cefepime in a patient with COVID-19 without the use of hydroxychloroquine. Am. J. Case Rep. 21:e926901.

147. Rizvi, S., M. Danic, M. Silver, and V. LaBond. 2021. Cytosorb filter: an adjunct for survival in the COVID-19 patient in cytokine storm? a case report. Heart Lungs. 50:44–50.

148. Gandra, S., D.M. Barter, and R. Laxminarayan. 2014. Economic burden of antibiotic resistance: how much do we really know?. Clin. Microbiol. Infect. 20:973–980.

149. Woolhouse, M., C. Waugh, M.R. Perry, and H. Nair. 2009. Medicines use in primary care in developing and transitional countries: fact book summarizing results from studies reported between 1990 and 2006. Bull. World Health Organ. . Available at: https://apps.who.int/iris/handle/10665/70032

150. Xu, X.W., X.X. Wu, X.G. Jiang, et al. 2020. Clinical findings in a group of patients infected with the 2019 novel coronavirus (SARS-CoV-2) outside of Wuhan, China: retrospective case series. BMJ 368:m6060.

151. Shanek, P.R. 2009. Medicines use in primary care in developing and transitional countries: fact book summarizing results from studies reported between 1990 and 2006. Bull. World Health Organ. . Available at: https://apps.who.int/iris/handle/10665/70032

152. Xue, X.W., X.X. Wu, X.G. Jiang, et al. 2020. Clinical findings in a group of patients infected with the 2019 novel coronavirus (SARS-CoV-2) outside of Wuhan, China: retrospective case series. BMJ 368:m6060.

153. Liu, C.C., C.Y. Wang, and P.R. Hsueh. 2020. Co-infections among patients with COVID-19: the need for combination therapy with non-anti-SARS-CoV-2 agents?. J. Microbiol. Immunol. Infect. 53:505–512.

154. Richardson, S., J.S. Hirsch, M. Narasimhan, et al. 2020. Presenting characteristics, comorbidities, and outcomes among 5700 patients hospitalized with COVID-19 in the New York City area. JAMA 323:2052–2059.

155. Zangrillo, A., L. Beretta, A.M. Scandroglio, et al. 2020. Characteristics, treatment, outcomes and cause of death of invasively ventilated patients with COVID-19 ARDS in Milan, Italy. Crit. Care Resusc. 22:200.

156. Lansbury, L., B. Lim, V. Baskaran, and W.S. Lim. 2020. Co-infections in people with COVID-19: a systematic review and meta-analysis. J. Infect. 81:266–275.

157. Chang, C.Y., and K.G. Chan. 2020. Underestimation of co-infections in COVID-19 due to non-discriminatory use of antibiotics. J Infect. 81:e29–e30.

158. Xia, W., J. Shao, Y. Guo, Z. Li, and D. Hu. 2020. Clinical and CT features in pediatric patients with COVID-19 infection: different points from adults. Pediatr. Pulmonol. 55:1169–1174.

159. Wu, Q., Y. Xing, L. Shi, et al. 2020. Coinfection and other clinical characteristics of COVID-19 in children. Pediatrics 146:e20200961.

160. Simoons, S., G. Lekkeman, and M. Decramer. 2013. Preventing COPD exacerbations with macrolides: a review and budget impact analysis. Respir. Med. 107:637–648.

161. Zimmermann, P., V.C. Ziesenis, N. Curtis, and N. Ritz. 2018. The immunomodulatory effects of macrolides—a systematic review of the underlying mechanisms. Front. Immunol. 9:302.

162. Retallack, H., E. Di Lullo, C. Arias, et al. 2016. Zika virus cell tropism in the developing human brain and inhibition by azithromycin. Proc. Natl. Acad. Sci. U.S.A. 113:14408–14413.

163. Bosseboeuf, E., M. Aubry, T. Nhan, et al. 2018. Azithromycin Inhibits the Replication of Zika Virus. J. Antivir. Antiretrovir. 10:6–11.

164. Madrid, P.B., R.G. Panchal, T.K. Warren, et al. 2015. Evaluation of Ebola virus inhibitors for drug repurposing. ACS Infect. Dis. 1:317–326.

165. Kawamura, K., K. Ichikado, M. Takaki, Y. Eguchi, K. Anan, and M. Suga. 2018. Adjunctive therapy with azithromycin for moderate and severe acute respiratory distress syndrome: a retrospective, propensity score-matching analysis of prospectively collected data at a single center. Int. J. Antimicrob. Agents 51:918–924.

166. Pani, A., M. Lauriola, A. Romandini, and F. Scaglione. 2020. Macrorides and viral infections: focus on azithromycin. In COVID-19 pathology. Int. J. Antimicrob. Agents 56:106053.

167. Choi, Y., H. Di Lullo, C. Arias, et al. 2016. Zika virus infection in children. Pediatrics 146:e20201293.
169. Kezerashvili, A., H. Khattak, A. Barsky, R. Nazari, and J.D. Fisher. 2007. Azithromycin as a cause of QT-interval prolongation and torsade de pointes in the absence of other known precipitating factors. J. Interv. Card. Electrophysiol. 18:243–246.

170. Chugh, S.S., K. Reinier, T. Singh, et al. 2009. Determinants of prolonged QT interval and their contribution to sudden death risk in coronary artery disease: the Oregon Sudden Unexpected Death Study. Circulation 119:663–670.

171. Beović, B., M. Doušak, J. Ferreira-Coimbra, et al. 2020. Antibiotic use in patients with COVID-19: a ‘snapshot’ Infectious Diseases International Research Initiative (ID-IRI) survey. J. Antimicrob. Chemother. 75:3386–3390.

172. Moher, D., A. Liberati, J. Tetzlaff, and D.G. Altman; Prisma Group. 2009. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. PLoS Med. 6:e1000097.

Address correspondence to:
Nahla O. Eltai, PhD
Biomedical Research Center
Qatar University
P.O. Box 2713
Doha
Qatar

E-mail: nahla.eltai@qu.edu.qa