MAFLD/NAFLD Biopsy-Free Scoring Systems for Hepatic Steatosis, NASH, and Fibrosis Diagnosis

Nancy de los Ángeles Segura-Azuara1†, Carlos Daniel Varela-Chinchilla1† and Plinio A. Trinidad-Calderón2*

1 Tecnológico de Monterrey, School of Medicine, and Health Sciences, Monterrey, Mexico, 2 Tecnológico de Monterrey, School of Engineering, and Sciences, Monterrey, Mexico

Metabolic dysfunction-associated fatty liver disease (MAFLD), formerly known as nonalcoholic fatty liver disease, is the most prevalent liver disorder worldwide. Historically, its diagnosis required biopsy, even though the procedure has a variable degree of error. Therefore, new non-invasive strategies are needed. Consequently, this article presents a thorough review of biopsy-free scoring systems proposed for the diagnosis of MAFLD. Similarly, it compares the severity of the disease, ranging from hepatic steatosis (HS) and nonalcoholic steatohepatitis (NASH) to fibrosis, by contrasting the corresponding serum markers, clinical associations, and performance metrics of these biopsy-free scoring systems. In this regard, defining MAFLD in conjunction with non-invasive tests can accurately identify patients with fatty liver at risk of fibrosis and its complications. Nonetheless, several biopsy-free scoring systems have been assessed only in certain cohorts; thus, further validation studies in different populations are required, with adjustment for variables, such as body mass index (BMI), clinical settings, concomitant diseases, and ethnic backgrounds. Hence, comprehensive studies on the effects of age, morbid obesity, and prevalence of MAFLD and advanced fibrosis in the target population are required. Nevertheless, the current clinical practice is urged to incorporate biopsy-free scoring systems that demonstrate adequate performance metrics for the accurate detection of patients with MAFLD and underlying conditions or those with contraindications of biopsy.

Keywords: MAFLD, NAFLD (non alcoholic fatty liver disease), scoring-algorithm, biopsy, steatosis, NASH, fibrosis, diagnosis

INTRODUCTION

Metabolic dysfunction-associated fatty liver disease (MAFLD), formerly known as nonalcoholic fatty liver disease (NAFLD), is the most prevalent liver disorder worldwide (1, 2). Besides being considered a major public health concern (3, 4), it is expected to become the leading cause of liver failure requiring transplantation by 2030 (5).

Specifically, NAFLD is defined as an increase in hepatic lipid content not associated with chronic hepatitis due to viral infections, autoimmune diseases, or the use of statogenic medications (6–9). Moreover, NAFLD can progress from steatosis to nonalcoholic steatohepatitis (NASH), fibrosis, and eventually, cirrhosis and hepatocellular carcinoma (10). In its early phases, the disease has a silent presentation, thus hindering the diagnosis and placing patients at risk of worse clinical outcomes (11, 12).
Nowadays, NAFLD is considered the hepatic component of metabolic syndrome (metabolic syndrome) (13), a disorder intricately related to type 2 diabetes mellitus (T2DM) (14, 15), insulin resistance, and cardiovascular diseases (16). For this reason, some authors have proposed a new, flexible term, MAFLD (17–19) (Figure 1).

Historically, MAFLD/NAFLD diagnosis required liver biopsy (20). Liver biopsy is a painful, invasive procedure that can increase mortality from 0.009 to 0.14%, has a risk of intraperitoneal hemorrhage, and only assesses approximate 1 per 50,000 of the entire liver parenchyma (21). In response, the need for new non-invasive strategies has been evidenced (22–25), especially for patients with underlying conditions (26) or biopsy contraindications (27).

Recently, grouping several non-invasive serological biomarkers has become a trend for the prediction and diagnosis of liver fibrosis (28). Moreover, studies have shown that these systems may avoid up to 38–80% of liver biopsies (29, 30). Currently, no single marker has been used for the precise detection of MAFLD/NAFLD, as isolated biomarkers do not provide sufficiently accurate information for diagnosis (31–33). However, when coupled with clinical features and with each other, accurate diagnosis, staging, and prognosis for this disease become possible (34).

Therefore, this review presents the state-of-the-art biopsy-free scoring systems (BFSS) for the diagnosis of MAFLD/NAFLD. Moreover, it further contrasts, in a stratified arrangement (Figure 1) of hepatic steatosis (HS), NASH, and fibrosis, the biomarkers, clinical associations, and discriminating performance metrics (Table 1) of such BFSS.

HEPATIC STEATOSIS SCORING SYSTEMS

Defined as a lipid concentration >5% in the hepatic parenchyma (66) without portal or lobular inflammation (67), HS is the mildest form of MAFLD/NAFLD (68). Currently, 4% of patients with HS are expected to develop fibrosis in their lifetimes (69). Thus, the BFSS proposed to aid in the prompt diagnosis are discussed in this section.

![Risk factors for MAFLD/NAFLD](image1)

- Blood pressure ≥ 130/80 mmHg or use of anti-hypertensive drugs (N: < 120/80 mmHg)
- HDL-C < 40 mg/dL in males & < 50 mg/dL in females or intake of lipid-lowering drugs (N: males > 40 mg/dL, females > 50 mg/dL)
- Waist circumference ≥ 90/88 cm in Asian or ≥ 102/88 cm in Caucasian populations (N: males < 102 cm, females < 88 cm)
- Triglycerides ≥ 150 mg/dL or specific drug treatment (N: < 150 mg/dL)
- HbA1c of 5.7% to 6.4% or previously diagnosed DM (N: 5.0 - 5.7 %)
- Fasting glucose of 100 to 125 mg/dL (N: 80 - < 100 mg/dL)
- HOMA score ≥ 2.5 (N: < 2.5)

![FIGURE 1](image2)
Biopsy-free scoring systems	Application	NCV	PCV	Sensitivity	Specificity	NPV	PPV
Hepatic steatosis							
NAFLD ridge score	NAFLD/NAFLD	0.24	0.44	0.91	0.90	0.95	0.70
NAFLD liver fat score	NAFLD/NAFLD	< -0.64	> 0.64	0.86	0.71	ND	ND
Hepatic steatosis index	NAFLD/NAFLD	< 30	> 36	0.93	0.93	0.84	0.86
Fatty liver index	MAFLD/NAFLD	< 30	> 60	0.87	0.86	ND	ND
Lipid accumulation product	MAFLD/NAFLD	ND	ND	0.78-0.85	0.78-0.85	ND	ND
Nonalcoholic Steatohepatitis							
CA index	NASH/Fibrosis	≤ 10.27< 10.27	0.81	0.83	0.92	0.63	
NAIFC score	NASH/Fibrosis	≤ 1.00	> 2.00	0.63	0.64	0.69	0.36
NASH diagnostics	NASH	0.20	0.34	0.77	0.87	0.73	0.89
G-NASH model	NASH	ND	ND	0.73	0.32	0.59	0.54
ClinLipMet score	NASH	ND	ND	0.86	0.72	0.95	0.45
Fibrosis							
APRi (50)	Fibrosis	≤ 0.60	> 1.50	0.74	0.67	0.72	0.70
Fibrosis-4 index (29, 51)	Advanced fibrosis	≤ 1.30	> 1.30	0.84	0.68	0.95	0.70
Forns index (53)	Advanced fibrosis	≤ 4.20	> 6.90	0.29	0.95	0.70	0.78
BAAT score	Advanced fibrosis	0.1< 3.25	0.88	0.88	0.96	0.68	
NAFLD fibrosis score	Fibrosis	< -1.45< 0.67	0.82	0.77	0.93	0.93	
Heparnet fibrosis score (54)	Advanced fibrosis	≤ 0.12	> 0.47	0.74	0.97	0.92	0.76
Enhanced liver fibrosis test (55)	Advanced fibrosis	≤ 7.70	> 9.80	0.74	0.92	0.92	0.75
Fibrometer (68)	Advanced fibrosis	0.31	0.38	0.78	0.95	0.92	0.87
FibroMax (67)	NASH/Fibrosis	ND	ND	0.64-0.74	0.60-0.73	0.23-0.87	0.51-0.94
Other Biopsy-Free Scoring Systems							
BAAT score	Fibrosis	0–0.98	> 2.00	0.71	0.8	0.86	0.61
Nice model (59, 60)	Advanced fibrosis	ND	ND	0.14	0.84	0.86	0.98
OW liver test (61, 62)	NASH	≤ 0.54	> 0.54	0.83	0.94	0.90	0.89
NASH score (63)	NASH	ND	ND	2.12	0.71	0.73	0.53
Glycocalcified liver (64)	NASH	ND	ND	0.67	0.64	ND	ND
Liver biopsy (65)	All	-	-	0.93	0.95	-	-

NCV, negative cutoff value; PCV, positive cutoff value; NPV, negative predictive value; PPV, positive predictive value; ND, not determined; MAFLD, metabolic dysfunction-associated fatty liver disease; NAFLD, nonalcoholic fatty liver disease; NASH, nonalcoholic steatohepatitis. Bold values denote figures of sensitivity and specify above 0.90.

Calculation formulas:

1. **NAIFS**: -0.614 + 0.007 × ALT - 0.214 × HDLc + 0.053 × triglycerides + 0.144 × HbA1c + 0.032 × WBC + 0.132 × hypertension.
2. **NAIFS**: 1.18 × MS + T2DM (if yes; 0 if no) + 0.15 × fasting insulin (mU/L) + 0.04 × AST (U/L) / 0.94 × (AST/ALT) × 2.89.
3. **G-S**: 8 × (ALT/AST ratio) + BMI (+2, if female; +2, if T2DM).
4. **FU**: ε0.953 × LogT (GOT) + 0.139 × BMI + 0.718 × LogGOT + 0.053 × WC - 1.745/(1 + ε0.953 × LogGOT + 0.139 × BMI + 0.718 × LogGOT + 0.053 × WC - 1.745) × 100.
5. **LA P**: (WBC 65) × triglycerides if male (WBC 58) × triglycerides if female.
6. **CA**: (0.994 × type IV collagen 7S + 0.2555 × AST).
7. **NAIFC**: (fasting insulin ≥ 200 ng/mL [female] or ≥ 300 ng/mL [male] × 1 point) + (fasting insulin > 10 IU/mL × 1 point) + (fasting insulin > 10 IU/mL × 2 points).
8. **G**: 0.012 × GPT3(ng/mL) + 0.123 × AST (U/L) + 0.1576 × zinc (μmol/L) + 0.0227 × total thyroxine (mmol/L) - 0.4525 × SDPV (L) + 2.0789 × BMI (≥ 30 kg/m², yes = 1, no = 0).
9. **ClinLipMet**: -0.305 + 0.562 × PPPLA3 genotype (CC = 1/GC = 2/GC = 3) + 0.0092 × fasting insulin (mU/L) + 0.0023 × AST (U/L) + 0.0019 × (fasting insulin × AST).
10. **APRI**: (AST (U/L) × upper normal value of 41 IU)/(platelets × 10³ × L) × 100.
11. **FIB-4**: 4 × AST (U/L) × platelets (10⁹/L) / (ALT (U/L)).
12. **Forns**: 7.811 - 3.131 × [in(platelets)] + 0.781 × [in(GOT)] + 3.467 × [in(GPT)] × cholesterol.
13. **BAAT**: BMI > 28 = 1 point × [AAR > 0.8 = 2 points] + (DM = 1 point).
14. **NAIFS**: 1.675 + [0.037 × age] + [0.094 × BMI (kg/m²)] + [1.13 × abnormal FSL or T2DM (yes = 1, no = 0)] + [0.99 × AAR] × [0.013 × platelets (×10³/L)] × [0.66 + albumin (g/dl)].
15. **ELF**: 2.494 + 0.846 ln(AA) + 0.735 ln(INP) + 0.391 ln(TIMP1).
16. **Fibrometer**: 0.4185 × glucose (mM/mL) + 0.0701 × AST (U/L) + 0.0028 × fibrinogen (μg/L) - 0.0102 × platelet (G/L) - 0.0280 × ALT (U/L) + 0.0459 × body weight (kg) + 0.0842 × age + 11.6226.
17. **BAAT**: (BMI ≥ 28 = 1 point) × (age ≥ 50 years = 1 point) + (ALT ≥ 2N (1 point)) + (triglycerides ≥ 1.7 mM/mL (1 point)).

NAFLD Ridge Score

This BFSS considers alanine aminotransferase (ALT), hemoglobin A1c, high-density lipoprotein C, hypertension, leukocyte count, and triglycerides (35). The enzyme ALT level increases in serum as hepatocytes are damaged (36). Similarly, high levels of triglycerides, low levels of high-density lipoprotein C, hypertension, and increased hemoglobin A1c level correlate with HS (70, 71). Moreover, increased intrahepatic leukocyte concentration is associated with the progression to NAFLD risk factors and stage-specific markers of NASH (72, 73).
Notably, this score has an area under the receiver-operating curve (AUROC) of 0.87 (74). Nevertheless, it is unreliable for distinguishing steatosis grades (36) and ends up classifying as indeterminate up to 30% of patients (35).

NAFLD Liver Fat Score
Developed in a Finnish population (37), this BFSS weighs aspartate aminotransferase (AST), AST/ALT ratio, fasting insulin, metabolic syndrome, and T2DM (75). Insulin levels correlate with HS grades, as insulin resistance is an important risk factor for the development of MAFLD/NAFLD (70). Moreover, AST levels increase as AST is released from injured hepatocytes, indicating liver dysfunction (36).

This BFSS can predict MAFLD/NAFLD and estimate the liver fat contents >5.56%, with an AUROC of 0.88 (36, 37). Moreover, it has shown a positive correlation with the incidence and mortality of cardiovascular disease, which are outcomes intricately related to metabolic syndrome and T2DM (76). Nonetheless, this score has a poor capacity for quantifying steatosis, as its AUROC for predicting >33% of steatosis significantly decreases at 0.72 (77).

HS Index
This index assesses MAFLD/NAFLD (78) on the basis of body mass index (BMI), AST/ALT ratio, and the presence of T2DM (38). AST/ALT ratio is used to assess the HS grade more accurately than any of its components individually (79). Similarly, both enzymes positively and almost linearly correlated with increased incidence of MAFLD/NAFLD and premature mortality risk (80). In addition, studies have reported that this test has an AUROC of 0.75 (78, 81). Moreover, this BFSS has a high correlation with HS grades diagnosed using ultrasonography, but this score has not yet been validated for NASH (38).

Fatty Liver Index
Created as an algorithm to detect fatty liver (40), this index is based on BMI, gamma glutamyl transferase (GGT), triglycerides, and waist circumference (82). Waist circumference correlates with visceral adiposity, an important predictor of metabolic syndrome (83). Similarly, the accumulation of triglycerides in hepatocytes produces hepatocyte ballooning and inflammation, both changes associated with MAFLD/NAFLD (84). High levels of GGT, in particular, are associated with increased incidence rates of hypertension and insulin resistance (85). The BFSS has an AUROC of 0.82 for MAFLD/NAFLD detection (86). However, it was validated only in certain populations, such as Koreans (82), Chinese (87), and Northern Italians (40).

Lipid Accumulation Product
The BFSS is used to evaluate waist circumference and triglyceride levels (43). Distinctively, it has been adjusted for age, sex, and ethnicity (88). This score is only validated in a cohort in Northern Italy (89). Although it was originally developed as a reference for cardiometabolic risk, it was later validated as an HS index (36, 44).

Furthermore, it has an AUROC, 0.77 for NAFLD diagnosis and was more accurate in patients with hypertriglyceridemia (AUROC, 0.73) compared with patients with T2DM (AUROC, 0.67) (86). However, even if the BFSS can detect MAFLD/NAFLD clinically, its main limitation is in distinguishing patients with mild disease from those with more severe MAFLD/NAFLD (90).

NASH SCORING SYSTEMS
Nonalcoholic steatohepatitis consists of fatty liver in conjunction with inflammation and hepatocellular injury, with or without fibrosis (91). More than 20% of patients with NASH are expected to develop cirrhosis in their lifetimes (69). Consequently, this section delves into the BFSS proposed for its detection (92, 93).

CA Index
This index owes its name to its two parameters, type IV collagen 7S and AST. Specifically, type IV collagen 7S is an indirect marker of fibrogenesis (94) and AST reiterates its role in liver dysfunction (36). Currently, the BFSS is used to predict NASH and fibrosis, with AUROC of 0.85 and 0.91, respectively (95). Moreover, it identifies MAFLD/NAFLD without fibrosis and NASH-related fibrosis (94, 96). Unfortunately, the CA index was only validated in the Japanese population, similarly to the NAFIC score (97).

NAFIC Score
This score is based on ferritin, fasting insulin, and type IV collagen 7S levels (24, 98). Comparatively, the BFSS is used for evaluating ferritin levels, which increases in patients with NASH (99). Similarly, fasting insulin is considered as a correlation marker for HS (70), and type IV collagen 7S is used, as in the CA index (100).

The BFSS has an AUROC of 0.85 and 0.83 for NASH and fibrosis, respectively (46), both higher than the BARD [0.76 (101)] and NAFIC fibrosis score [0.77 (102)]. Nevertheless, such accuracy has been only validated in Japanese patients (46, 103).

NASH Diagnostics
This biomarker panel is used to diagnose obesity-related NASH based on adiponectin, cleaved cytokeratin 18 (CK-18) M30, and resistin levels (47). Adiponectin is inversely correlated with the risk of metabolic syndrome (104). Similarly, CK-18 M30 is proposed as a differentiator between NASH and MAFLD/NAFLD without inflammation (24, 105). Finally, resistin has been associated with obesity, insulin resistance, and T2DM (106, 107).

The BFSS has a reported AUROC value of 0.90 (47). However, it requires further validation in cohorts other than morbidly obese candidates for bariatric surgery (108). Similarly, a major limitation of its specificity is possibly due to all three of its parameters being increased in various liver diseases (106, 109), thus making them nonspecific markers of NASH (110, 111).

G-NASH Model
This novel BFSS is based on AST, BMI, CK-18 M30, Golgi protein 73, platelets, thyroxine, and zinc (48). Specifically, CK-18 M30 fragments increase in patients with MAFLD/NAFLD and T2DM (112), and correlate positively with high ALT, glucose, and
hemoglobin A$_{1C}$ levels, systolic blood pressure, and triglyceride levels (113). Similarly, Golgi protein 73, which is only expressed in fibrotic and diseased liver tissue, is considered a promising marker of liver inflammation (114).

When grouped (48), these biomarkers identified NASH in patients with MAFLD/NAFLD who had normal ALT levels and those requiring liver biopsy, with an AUROC of 0.85 (48). Nonetheless, the BFSS lacks external validation in other populations and studies to determine its validity for screening patients at risk of developing NASH (48).

ClinLipMet Score

Although it was only tested in Finnish and Belgian Caucasian and morbidly obese populations (49), the BFSS identified patients with NASH, with an AUROC of 0.866 (115). It considers AST and fasting insulin levels; PNPLA3 genotype rs738409, a polymorphism closely associated with increased hepatic fat content (116); and amino acid and phospholipid levels (49).

The levels of Glu, Gly, and Ile amino acids increase during progression to NASH (117). By contrast, phospholipids lysophosphatidylcholine 16:0 and phosphoethanolamine 40:6 are used to determine alterations in cell membrane metabolism in patients with advanced MAFLD/NAFLD and a higher liver fibrosis stage (118, 119). Specifically, these two molecules significantly differentiate NASH from HS but fail to do so in patients with HS and controls (49).

HEPATIC FIBROSIS SCORING SYSTEMS

Chronic injury to liver myofibroblasts is known to induce fibrosis (120). In this regard, the risk of advanced fibrosis in patients with MAFLD/NAFLD is noteworthy (7.5%), along with other liver-related complications and eventually death (52, 121, 122). Correspondingly, the BFSS proposed for the diagnosis of liver fibrosis is scrutinized herein.

AST-to-Platelet Ratio Index

The BFSS is based on AST and platelets, both of which increase in the hepatic sinuses of patients with MAFLD/NAFLD (123, 124). In addition, it detects advanced fibrosis in patients with chronic hepatitis C virus infection (125) and is later validated for the detection of MAFLD/NAFLD (126).

The AST-to-platelet ratio index (APRI) is considered a good predictor of advanced fibrosis in patients with MAFLD/NAFLD, having an AUROC of 0.71 and 0.79 in non-bariatric and bariatric patients, respectively (127). Nonetheless, some authors have argued against its widespread use, mainly because of its low accuracy in staging fibrosis (128, 129).

Fibrosis-4 Index

This index had been validated for the assessment and detection of liver fibrosis based on age, ALT level, AST level, and platelet count (130, 131). Platelet count correlates with hepatocyte ballooning, fibrosis, and liver steatosis (123, 124).

Overall, the BFSS has an AUROC ranging from 0.80 to 0.86 (128). Specifically for non-bariatric and bariatric patients, it has an AUROC of 0.83 and 0.81, respectively, which are higher than those obtained for APRI (0.71 and 0.79, respectively) (127). Nonetheless, certain studies have argued that the inclusion of age might lead to a falsely worse score in the elderly population and thus increase the false-positive rate (132).

Forns Index

This index is based on platelet count, cholesterol level, GGT levels, and age (133, 134). The importance of this index relies on GGT, which has been associated with insulin resistance (85), and on cholesterol, which correlates negatively with the liver fibrosis stage, thus aiding in NASH diagnosis (30). In this regard, the BFSS is used as a predictor of advanced fibrosis in patients with chronic hepatitis C virus infections, with an AUROC of 0.79 (30, 105, 134, 135). Notwithstanding, information regarding its accuracy in MAFLD/NAFLD is limited (30).

BARD Score

The BARD score is based on BMI, AST/ALT ratio, and T2DM, all of which are markers of metabolic syndrome (61). Along with the NAFLD fibrosis and FIB-4 scores, the BFSS is validated for the detection of advanced fibrosis or cirrhosis, with an AUROC of 0.76 (101, 130). Even so, its low positive predictive value of 0.42 has limited its use in clinical practice (122). Nonetheless, its high reported negative predictive value of 0.96 makes the BARD score a reliable tool for ruling out advanced fibrosis (52).

NAFLD Fibrosis Score

The BFSS is currently used to predict advanced fibrosis (53), with an AUROC of 0.77 (102), and includes age, hyperglycemia, BMI, platelet count, albumin level, and AST/ALT ratio as parameters (136). Specifically, the albumin binding function and quantity are decreased in patients with long-standing MAFLD/NAFLD (137). A high score (>0.68) significantly correlated with a 4-fold higher risk of death in patients with MAFLD/NAFLD (5). Nevertheless, this score has a limited value in predicting changes in fibrosis, even when it accurately predicts morbidity and mortality in all stages of fibrosis (138).

Hepamet Fibrosis Score

This novel BFSS is based on age; albumin, AST, and glucose levels; homeostatic metabolic assessment, which positively correlated with a higher stage of liver fibrosis and stiffness (139); insulin level; platelet count; sex; and T2DM (54, 140). It has a high accuracy for advanced fibrosis exclusion (30), with a reported AUROC value of 0.94 for advanced fibrosis prediction (30). Even so, this score had confounding results in patients with T2DM (141), a finding that created uncertainty because more than 70% of such patients concomitantly have MAFLD/NAFLD (142).

Enhanced Liver Fibrosis Test

This test is based on the levels of hyaluronic acid, type III procollagen peptide, and the tissue inhibitor of metalloproteinase 1 (143). Their concentrations and activities make this test useful for grading liver fibrosis (144, 145). In addition, studies have shown that the BFSS is an accurate tool for
detecting advanced fibrosis in patients with MAFLD/NAFLD (146), mainly owing to its AUROC of 0.85 for stage F2 and 0.90 for stage F3 with NASH (147). Recently, a meta-analysis revealed that this fibrosis test has a high sensitivity for advanced fibrosis, but a limited specificity in low-prevalence areas (148).

FibroMeter

On the basis of markers, such as age, ALT level, AST level, body weight, ferritin level, glucose level, and platelet counts (149). FibroMeter identifies fibrotic areas and fibrosis stage (150), with higher reproducibility when compared with other diagnostic tools (149). Quantitatively, FibroMeter has AUROC values of 0.94, 0.93, and 0.9 for significant fibrosis, advanced fibrosis, and cirrhosis, respectively (58, 149). Furthermore, its results for fibrotic areas have an AUROC of 0.94, which is more accurate in comparison with that of the NAFLD fibrosis score (0.88) and APRI (0.87) (7, 7, 149, 151, 152). Nonetheless, some authors argued that ethnicity-specific cutoff values would increase its validity (153).

FibroMax

FibroMax is a BFSS that combines five components into one algorithm (154). Among the components, ActiTest showed a significant accuracy in NASH diagnosis and MAFLD/NAFLD differentiation (155). It is considered as an accurate score for liver fibrosis (154, 156), with an AUROC of 0.68 for grade 2 and 3 steatosis, 0.59 for NASH, and 0.79 for fibrosis (157).

Furthermore, studies reported that FibroTest, another component of FibroMax, had higher accuracy in discriminating severe fibrosis stages and detecting cirrhosis than low to intermediate stages (158). FibroTest is not accurate for differentiating between the zonal distribution of fibrosis in MAFLD/NAFLD; thus, its effectiveness has been controversial (156).

Nonetheless, both components are affected by acute hemolysis, inflammation, and extrahepatic cholestasis (51). Similarly, in response to its low AUROC, they are considered unreliable alternatives for liver biopsy in MAFLD/NAFLD (157).

DISCUSSION

Numerous authors have proposed biopsy-free scoring systems as screening tools for fatty liver and risk-stratifying systems based on fibrosis (51, 144, 159) for the MAFLD/NAFLD spectrum (95). Nonetheless, they still emphasize the importance of liver biopsy as the diagnostic standard but urge for a clear identification of biopsy indications (conflicting clinical or serological data), an issue that can be addressed with noninvasive diagnostic tools, such as BFSS (160–162). Some BFSSs addressed in this review (G-NASH, ClinLipMet, and enhanced liver fibrosis test) measure components that are not readily available, seldom ordered, or expensive, such as the PNPLA3 genotype, CK-18 M30 fragments, Golgi protein 73, or the tissue inhibitor of metalloproteinase 1. Comparatively, other scores, such as the lipid accumulation product, fatty liver index, HS index, APRI, fibrosis-4 index, Forns index, and NAFLD fibrosis score rely on routinely ordered components, thus facilitating their use. Furthermore, as patients develop more metabolic abnormalities, they tend to yield higher scores (163, 164), making these BFSSs more reliable as the condition of the patient worsens. However, some scores have been validated only in limited populations, such as the CA index (97), fatty liver index (40, 82, 87), and NAFLC score (46, 103), whereas others are inaccurate for MAFLD/NAFLD staging [FibroMax (157)] or when associated with other comorbidities [Hepamet fibrosis score (142)]. These limitations must be addressed through validation in other populations (97), with attention to variables, such as BMI, comorbidities, and ethnicity (49, 125, 143, 165–167). Comparatively, other BFSSs have been shown to have high sensitivity, such as the NAFLD ridge score (35, 36) or HS index (38, 39), and specificity, such as the Hepamet fibrosis score (54), Forns index (30), and enhanced liver fibrosis test (55), making them accurate tests for screening and confirmation of disease, respectively. Certain BFSSs underperformed in validation studies, such as the BAAT score (168), Nice model (59, 60), OW liver test (61, 62), NASH score (63), CHeK model (165), or GlycoNASH test (64), making them unsuitable alternatives for MAFLD/NAFLD diagnosis; thus, they were consequently excluded from the scrutiny of this review. Comprehensive studies on the effects of age, BMI, obesity, and the prevalence rates in different populations (101, 140, 148, 169) are required to determine the role of current and future BFSSs in MAFLD/NAFLD diagnosis. Other non-invasive alternatives have been proposed recently, such as cell-free DNA, which has been found in extracellular vesicles in the serum of patients with fatty liver, and have yielded promising results (170). Moreover, novel considerations, such as the addition of enhanced liver fibrosis test to clinical practice guidelines (171, 172) will eventually play a larger role in the diagnosis and follow-up of patients. As more information is gathered, novel considerations will be implemented, aiding in a more precise understanding and accurate detection of MAFLD/NAFLD in the global population (173).

CONCLUDING REMARKS

Clinicians are urged to include BFSS for the diagnosis of early stages of MAFLD/NAFLD, particularly in patients with a high risk of liver fibrosis, even if these are still outperformed by biopsy in terms of accuracy. Increasing the awareness of the available BFSSs for staging is paramount to improving patient safety. The ever-growing MAFLD/NAFLD pandemic urges clinicians to seek alternatives for screening, early diagnosis, and follow-up, especially for those with contraindications for liver biopsy.

AUTHOR CONTRIBUTIONS

NS-A, CV-C, and PT-C contributed to the conceptualization of this manuscript and its graphic elements, wrote and revised the original draft, and contributed to the discussion, abstract, and final version of the manuscript. CV-C further contributed to the revision, completion, and content improvement of the manuscript. PT-C further oversaw the general progress of the
study, initial revision of the manuscript, structuring of the draft, and final revision of the manuscript, figures, and tables. All authors revised and agreed to the final version of the manuscript.

FUNDING

This work was supported by the Medical Publications and Conferences Support Fund 0020201D10 from Tecnológico de Monterrey.

REFERENCES

1. Tomic D, Kemp WW, Roberts SK. Nonalcoholic fatty liver disease: current concepts, epidemiology and management strategies. *European Journal of Gastroenterology & Hepatology*. (2018) 30:1103–15. doi: 10.1097/MEG.0000000000001235
2. Dietrich P, Hellerbrand C. Non-alcoholic fatty liver disease, obesity and the metabolic syndrome. *Best Practice & Research Clinical Gastroenterology*. (2014) 28:637–53. doi: 10.1016/j.bjp.2014.07.008
3. Tiniakos DG, Vos MB, Brunt EM. Nonalcoholic fatty liver disease: pathology and pathogenesis. *Annu Rev Pathol Mech Dis*. (2010) 5:145–71. doi: 10.1146/annurev-pathol-121808-102132
4. Hashimoto E, Tanai M, Tokushige K. Characteristics and diagnosis of NAFLD/NASH. *Journal of Gastroenterology*. (2013) 28:64–70. doi: 10.1111/jgh.12271
5. Rahadini A, Rahadina A. Does nafld fibrosis score predict mortality risk among nafld patients?: a systematic review and meta-analysis. *Bali Med J*. (2021) 10:595–9. doi: 10.15562/bmj.v10i2.2359
6. Cotter TG, Rinella M. Nonalcoholic fatty liver disease 2020: the state of the disease. *Gastroenterology*. (2020) 158:1851–64. doi: 10.1053/j.gastro.2020.01.052
7. Grzegorczyk I, Podrug K, Mikolasevic I, Kulda M, Madir A, Tsokakis EA. Natural history of nonalcoholic fatty liver disease: implications for clinical practice and an individualized approach. *Can J Gastroenterology*. (2020) 9:181368. doi: 10.1155/2020/9181368
8. Younossi ZM, Koenig AB, Abdelatif D, Fazel Y, Henry L, Wyrm M. Global epidemiology of nonalcoholic fatty liver disease—meta-analytic assessment of prevalence, incidence, and outcomes. *Hepatology*. (2016) 64:73–84. doi: 10.1002/hep.28431
9. Bellentani S. The epidemiology of non-alcoholic fatty liver disease. *Liver Int*. (2017) 37:81–4. doi: 10.1111/liv.13299
10. Fernando DH, Forbes JM, Angus PW, Herath CB. Development and progression of non-alcoholic fatty liver disease: the role of advanced glycation end products. *Int J Mol Sci*. (2019) 20:5037. doi: 10.3390/ijms20205037
11. Newton JL. Systemic symptoms in non-alcoholic fatty liver disease. *Dig Dis*. (2010) 28:214–9. doi: 10.1159/000288209
12. Trovato FM, Castrogiovanni P, Matalino L, Musumeci G. Nonalcoholic fatty liver disease (NAFLD) prevention: role of Mediterranean diet and physical activity. *HepatoBiliary Surg Nutr*. (2019) 8:167–9. doi: 10.21037/hbsn.2018.12.05
13. Eslam M, Newsome FN, Sarin SK, Targher G, Romero-Gomez M, et al. A new definition for metabolic dysfunction-associated fatty liver disease: an international expert consensus statement. *J Hepatol*. (2020) 73:202–9. doi: 10.1016/j.jhep.2020.03.039
14. Scorletti E, Byrne CD. Extrahepatic diseases and NAFLD: the triangular relationship between NAFLD, Type 2-diabetes and dysbiosis. *Dig Dis*. (2016) 34:11–8. doi: 10.1159/000447276
15. Lattuada G, Ragona F, Perseghin G. Why does NAFLD predict type 2 diabetes? *Curr Diab Rep*. (2011) 11:167–72. doi: 10.1007/s11892-011-0190-2
16. Al Rifai M, Silverman MG, Nasir K, Budoff MJ, Blankstein R, Szkoło M, et al. The association of nonalcoholic fatty liver disease obesity, and metabolic syndrome, with systemic inflammation and subclinical atherosclerosis: the multi-ethnic study of atherosclerosis (MESA). *Atherosclerosis*. (2015) 239:629–33. doi: 10.1016/j.atherosclerosis.2015.02.011
17. Eslam M, Sanyal AJ, George J, Sanyal A, Neuschwander-Tetri B, Tiribelli C, et al. NAFLD: a consensus-driven proposed nomenclature for metabolic associated fatty liver disease. *Gastroenterology*. (2020) 158:1999–2014.e1. doi: 10.1053/j.gastro.2019.11.312
18. Fouad Y, Waked I, Bollipo S, Gomaa A, Ajlouni Y, Attia D. What’s in a name? Renaming ‘NAFLD’ to ‘MAFLD’. *Liver Int*. (2020) 40:1254–61. doi: 10.1111/liv.14478
19. Tilg H, Eifenberger M. From NAFLD to MAFLD: when pathophysiology succeeds. *Nat Rev Gastroenterol Hepatol*. (2020) 17:387–8. doi: 10.1038/s41575-020-0316-6
20. Berger D, Desai V, Janardhan S. Con: liver biopsy remains the gold standard to evaluate fibrosis in patients with nonalcoholic fatty liver disease. *Clin Liver Dis*. (2019) 13:114–6. doi: 10.1002/clld.740
21. Zhang JZ, Cai JJ Yu Y, She ZG Li H. Nonalcoholic fatty liver disease: an update on the diagnosis. *Gene Exp J Liver Res*. (2019) 18:197–98. doi: 10.3727/02251619X1553543383609
22. Arun J, Jhala N, Lazenyb AJ, Clements R, Abrams GA. Influence of liver biopsy heterogeneity and diagnosis of nonalcoholic steatohepatitis in subjects undergoing gastric bypass. *Obes Surg*. (2007) 17:155–61. doi: 10.1111/j.1600-0690.2007.9041-2
23. Iqbal U, Perumpail BJ, Akhtar D, Kim D. The epidemiology , risk profiling and diagnostic challenges of nonalcoholic fatty liver disease. *Medicine*. (2019) 1–19. doi: 10.3390/medicines6010041
24. Eguchi Y, Wong G, Akhtar O, Sumida Y. Non-invasive diagnosis of non-alcoholic steatohepatitis and advanced fibrosis in Japan: a targeted literature review. *Hepatol Res*. (2020) 50:645–55. doi: 10.1111/hepr.13502
25. Papaheodoridi M, Cholongitas E. Diagnosis of non-alcoholic fatty liver disease (NAFLD): current concepts. *Curr Pharm Des*. (2019) 24:4574–86. doi: 10.2174/1381612825666190117102111
26. Leoni S, Tovoli F, Napoli L, Serio I, Ferri S, Bolondi L. Current guidelines for the management of non-alcoholic fatty liver disease: a systematic review with comparative analysis. *World J Gastroenterol*. (2018) 24:3361–73. doi: 10.3748/wjv.v24.i30.3361
27. Khalifa A, Rockey DC. The utility of liver biopsy in 2020. *Curr Opin Gastroenterol*. (2020) 36:184–91. doi: 10.1097/MOG.0000000000000621
28. Zhang F, Liu T, Gao P, Fei S. Predictive value of a noninvasive serological hepatic fibrosis scoring system in cirrhosis combined with oesophageal varices. *Can J Gastroenterology Hepatol*. (2018) 2018. doi: 10.1155/2018/7671508
29. McPherson S, Stewart SF, Henderson E, Burt AD, Day CP. Simple non-invasive fibrosis scoring systems can reliably exclude advanced fibrosis in patients with non-alcoholic fatty liver disease. *Gut*. (2010) 59:1265–70. doi: 10.1136/gut.2010.216077
30. Ballestri S, Mantovani A, Baldelli E, Lugari S, Maurantonio M, Nascimbeni F, et al. Liver fibrosis biomarkers accurately exclude advanced fibrosis and are associated with higher cardiovascular risk scores in patients with NAFLD or viral chronic liver disease. *Diagnoses*. (2021) 11:98. doi: 10.3390/diagnoses1100098
31. Mansour AMF, Bayoumy EM, ElGhandour AM, El-Talkawy MD, Badr SM, Ahmed AEM. Assessment of hepatic fibrosis and steatosis by vibration-controlled transient elastography and controlled attenuation parameter versus non-invasive assessment scores in patients with non-alcoholic fatty liver disease. *Egypt Liver J*. (2020) 10:33. doi: 10.1186/s43066-020-00044-w
32. Mózes FE, Lee JA, Jayaswal ANA, Trauner M, Boursier J, et al. Diagnostic accuracy of non-invasive tests for advanced fibrosis in

ACKNOWLEDGMENTS

We recognize the role of BioRender.com in the creation of the figure in this manuscript and its sponsorship by Laura Margarita López-Castillo. PT-C thanks CONACyT for grant 627107 for his doctoral studies. Likewise, he thanks Tecnológico de Monterrey for his full-tuition scholarship and its support as part of the teaching assistant program.
patients with NAFLD: an individual patient data meta-analysis. Gut. (2021) 1–14. doi: 10.1136/gutjnl-2021-324243
33. Caussy C, Reeder SB, Sirlin CB, Loomba R. Non-invasive, quantitative assessment of liver fat by MRI-PDFE as an endpoint in NASH trials. Hepatology. (2019) 68:763–72. doi: 10.1002/hep.29797
34. Younossi Z, Anstee QM, Marietti M, Hardy T, Henry L, Eslam M, et al. Global burden of NAFLD and NASH: trends, predictions, risk factors and prevention. Nat Rev Gastroenterol Hepatol. (2018) 15:11–20. doi: 10.1038/nrgastro.2017.109
35. Yip TCF, Ma AJ, Wong VWS, Chen HLY, Yuen PC, et al. Laboratory parameter-based machine learning model for excluding non-alcoholic fatty liver disease (NAFLD) in the general population. Aliment Pharmacol Ther. (2017) 46:447–56. doi: 10.1111/apt.14172
36. Drescher HK, Weiskirchen S, Weiskirchen R. Current Status in Testing for NASH. Hepatology. (2016) 63(2):e126–e138. doi: 10.1002/hep.28647
37. Jeong S, Kim K, Chang J, Choi S, Kim SM, Son JS, et al. Development and validation of hematemesis fibrosis scoring system—a simple, noninvasive test to identify patients with non-alcoholic fatty liver disease with advanced fibrosis. Clin Gastroenterol Hepatol. (2020) 18:216–225.e5. doi: 10.1016/j.cgh.2019.05.051
38. Fagan KJ, Preterius CJ, Horsfall LU, Irvine KM, Wilgen U, Choi K, et al. ELF score ≥98 indicates advanced hepatic fibrosis and is influenced by age, steatosis and histological activity. Liver Int. (2015) 35:1673–81. doi: 10.1111/liv.12760
39. Càles P, Laine F, Bourrier J, Dequgnier Y, Moal V, Oberti F, et al. Comparison of blood tests for liver fibrosis specific or not to NAFLD. J Hepatol. (2009) 50:165–73. doi: 10.1016/j.jhep.2008.07.035
40. Bril F, McPhaul MJ, Caulfield MP, Castille JM, Pouynd J, Soldevila-Pico C, et al. Performance of the SteatoTest, ActiTest, NashTest and FibroTest in a multicohort of patients with type 2 diabetes mellitus. J Invest Med. (2019) 67:303–11. doi: 10.1136/jim-2018-000864
41. Kaswala DH, Lai M, Adhal NH. Fibrosis assessment in nonalcoholic fatty liver disease (NAFLD) in 2016. Dig Dis Sci. (2016) 61:1356–64. doi: 10.1007/s10620-016-4079-4
42. Alkhouri N, McCullough AJ. Noninvasive diagnosis of NASH and liver fibrosis within the spectrum of NAFLD. Gastroenterology. (2012) 8:661–8.
43. Anty R, Ianneli A, Patouraux S, Bonafous L, Simonetti V, Sabatier R, et al. A new composite model including metabolic syndrome, alanine aminotransferase and cytokerin-18 for the diagnosis of non-alcoholic steatohepatitis in morbidly obese patients. Aliment Pharmacol Ther. (2010) 32:1315–22. doi: 10.1111/j.1365-2036.2010.04480.x
44. Iruarrizaga-Lejarreta M, Bril F, Noureddin M, Ortiz P, Lu S, Mato T, et al. Combined and sequential non-invasive approach to diagnosing non-alcoholic steatohepatitis in patients with non-alcoholic fatty liver disease and advanced fibrosis. J Hepatol. (2014) 61:1356–64. doi: 10.1016/j.jhep.2013.12.009
45. Verhaegh P, Baivala R, Winkens B, Maslcke A, Jonkers D, Koek G. Noninvasive tests do not accurately differentiate nonalcoholic steatohepatitis from simple steatosis: a systematic review and meta-analysis. Clin Gastroenterol Hepatol. (2018) 16:837–61. doi: 10.1016/j.cgh.2017.08.024
46. Vilar-Gomez E, Lou Z, Kong N, Vuppalanchi R, Imperiale TF, Chalasani N. Cost Effectiveness of Different Strategies for Detecting Cirrhosis in Patients With Nonalcoholic Fatty Liver Disease Based on United States Health Care System. Clin Gastroenterol Hepatol. (2020) 18:2305–2314.e12. doi: 10.1016/j.cgh.2020.04.017
47. Nascimbeni F, Lugari S, Casinieris E, Motta I, Cavicchioli A, Dalla Salda A, et al. Liver steatosis is highly prevalent and is associated with metabolic risk factors and liver fibrosis in adult patients with type 1 Gaucher disease. Liver Int. (2020) 40:3061–70. doi: 10.1111/liv.14640
67. Mazzoliti G, Sowa JP, Atorrasagasti C, Kucukoglu O, Syn WK, Canbay A. Significance of Simple Steatosis: an update on the clinical and molecular evidence. Cells. (2020) 9:1–19. doi: 10.3390/cells9112458
68. Moylan CA, Pang H, Dellinger A, Suzuki A, Garrett ME, Guy CD, et al. Hepatic gene expression profiles differentiate presymptomatic patients with mild versus severe nonalcoholic fatty liver disease. Hepatology. (2014) 59:471–82. doi: 10.1002/hep.26661
69. Sheka A, Adeyi O, Thompson J, Hameed B, Crawford P, Ikrumudin S. Nonalcoholic steatohepatitis a review. JAMA J Am Med Assoc. (2020) 323:1175–83. doi: 10.1001/jama.2020.2298
70. Hsiao PJ, Kuo KK, Shin SJ, Yang YH, Lin WY, Yang JF, et al. Association of leukocyte cell-derived chemotaxin 2 (LECT2) with NAFLD, metabolic syndrome, and atherosclerosis. PLoS ONE. (2017) 12:e0174761. doi: 10.1371/journal.pone.0174761
71. Vanni E, Bugianesi E, Kotronen A, De Minicis S, Yki-Järvinen H, Svegliati-Baroni G. From the metabolic syndrome to NAFLD or vice versa? Dig Liver Dis. (2010) 42:320–30. doi: 10.1016/j.dld.2010.01.016
72. Roh YS, Seki E. Chemokines and chemokine receptors in the development of NAFLD. Adv Exp Med Biol. (2018) 1061:45–53. doi: 10.1007/978-981-10-6864-7_4
73. Yoo HJ, Hwang SY, Choi JH, Lee HJ, Chung HS, Seo JA, et al. Association of fatty liver index, a simple and useful predictor of metabolic syndrome: analysis of the Korea National Health and Nutrition Examination Survey 1999–2016. Ann Med. (2021) 53:1065–73. doi: 10.1080/03007995.2021.1945514
74. Wong VWS, Adams LA, de Lédinghen V, Wong GLH, Sookoian S. Noninvasive biomarkers in NAFLD and NASH—current progress and future promise. Nat Rev Gastroenterol Hepatology. (2018) 15:461–78. doi: 10.1038/s41575-018-0014-9
75. Unalp-Arida A, Ruhl CE. Liver fat scores predict liver disease mortality in the United States population. Aliment Pharmacol Ther. (2018) 48:1003–10. doi: 10.1111/apt.14967
76. Lee CO Li HL, Tsoi MF, Cheung CL, Cheung BMY. Association between the alanine aminotransferase/aspartate aminotransferase ratio and new-onset non-alcoholic fatty liver disease in type 1 diabetes. J Gastroenterol. (2018) 53:270–6. doi: 10.1002/jgh.13814
77. Fedchuk L, Nascimbeni F, Pais R, Charlotte F, Housset C, Ratziu V. From the metabolic syndrome to NAFLD or vice versa? Aliment Pharmacol Ther. (2018) 49:1–10. doi: 10.1111/apt.14967
78. Sviklāne L, Olmane E, Dzīerve Z, Kupčs K, Pirīgs V, Sokolovska J. Fatty liver disease in children: is a powerful tool to predict non-alcoholic fatty liver disease in Chinese adults. Nutr Metab. (2017) 14:1–9. doi: 10.1186/s12986-017-0206-2
79. Özçabi B, Demirhan S, Akyol M, Akay HÖ, Güven A. Lipid accumulation product is a predictor of nonalcoholic fatty liver disease in childhood obesity. Korean J Pediatr. (2019) 62:450–5. doi: 10.3345/kjp.2019.00248
80. Harrison SA, Rimella ME, Abdelmalek MF, Trotter JF, Paredes AH, Arnold HL, et al. NGM282 for treatment of non-alcoholic steatohepatitis: a multicentre, randomised, double-blind, placebo-controlled, phase 2 trial. Lancet. (2018) 391:1174–85. doi: 10.1016/S0140-6736(18)30474-4
81. Diehl AM, Day C. Cause, pathogenesis, and treatment of nonalcoholic steatohepatitis. N Engl J Med. (2017) 377:2063–72. doi: 10.1056/NEJMra1505319
82. Araújo AR, Rosso N, Bedogni G, Tribelli C, Bellentani S. Global epidemiology of nonalcoholic fatty liver disease/non-alcoholic steatohepatitis: what we need in the future. Liver Int. (2018) 38:47–51. doi: 10.1111/liv.13643
83. Ishiba S, Sumida Y, Seko Y, Tanaka S, Yoneda M, Hyogo H, et al. Type IV collagen 7S is the most accurate test for identifying advanced fibrosis in NAFLD with type 2 diabetes. Hepatol Commun. (2021) 5:559–72. doi: 10.1002/hepc.14037
84. Okanoue T, Ebise H, Kiyoi T, Mizuno M, Shima T, Ichihara J, et al. Simple scoring system using type IV collagen 7S and aspartate aminotransferase for diagnosing nonalcoholic steatohepatitis and related fibrosis. J Gastroenterol. (2018) 53:129–39. doi: 10.1007/s00535-017-1355-9
85. Yoneda M, Imajo K, Takahashi H, Ogawa Y, Eguchi Y, Sumida Y, et al. Clinical strategy of diagnosing and following patients with nonalcoholic fatty liver disease based on invasive and noninvasive methods. J Gastroenterol. (2018) 53:181–96. doi: 10.1007/s00535-017-1414-2
86. Zou Y, Zhong L, Hu C, Sheng G. Association between the alanine aminotransferase/aspartate aminotransferase ratio and new-onset non-alcoholic fatty liver disease in a nonobese Chinese population: a population-based longitudinal study. Lipids Health Dis. (2020) 19:1–10. doi: 10.1186/s12944-020-01149-z
87. Targer G, Byrne CD. Obesity: Metabolically healthy obesity and NAFLD. Nat Rev Gastroenterol Hepatology. (2016) 13:442–4. doi: 10.1038/nrgastro.2016.104
88. Chen L, Da Huang, JF Chen QS, Lin GF, Zeng HX, Lin XF, et al. Validation of fatty liver index and hepatic steatosis index for screening of non-alcoholic fatty liver disease in type 1 diabetes. J Gastroenterol Hepatol. (2018) 33:270–6. doi: 10.1111/jgh.13814
89. Khan AR, Lee HW Yi D, Kang YH, Son SM. The lipid accumulation product is a powerful tool to predict non-alcoholic fatty liver disease in Chinese adults. Obes Surg. (2020) 30:2538–46. doi: 10.1186/s11695-020-04509-0
90. Kruger FC, Daniels CR, Kidd M, Swart G, Brundyn K, van Rensburg C, et al. A simple bedside marker for advanced fibrosis that can avoid liver biopsy in patients with NAFLD/NASH. South Afr Med J. (2011) 101:477–80.
91. Tanaka T, Nakanuma Y, Nakajima A, Hyogo H, Tanaka S, Oono M, Fujii H, et al. Non-invasive scoring systems for predicting NASH in Japan: evidences from Japan Study Group of NAFLD. Int J Mol Med. (2015) 2: doi: 10.15761/IMM.1000130
92. Diehl AM, Day C. Cause, pathogenesis, and diagnostic strategy of diabetic liver disease in Japan. Int J Mol Sci. (2020) 21:1–18. doi: 10.3390/ijms21124337
93. Nomura T, Kato K, Kita M, Inoue K, Saiki Y, Nakanuma Y, et al. Noninvasive scoring systems for predicting steatohepatitis and liver fibrosis in NAFLD with type 2 diabetes. J Gastroenterol. (2019) 54:3199–3209. doi: 10.1002/hep.35776
94. Kowdley KV, Yoon S, Inato Y. Serum ferritin as a biomarker for NAFLD: ready for prime time? Hepatol Int. (2019) 13:110–2. doi: 10.1007/s12072-019-09934-7
95. Tada T, Kumada T, Toyoda H, Saito T, Ono M, Kage M. New scoring system combining the FIB-4 index and cytokeratin-18 fragments for predicting steatohepatitis and liver fibrosis in patients with nonalcoholic fatty liver disease. Biomarkers. (2018) 23:328–34. doi: 10.1080/1354753X.2018.1429915
96. Meneses D, Olveira A, Corripio R, del Carmen Méndez M, Romero M, Calvo-Viluendas I, et al. Performance of noninvasive liver fibrosis scores in the morbid obese patient, same scores but different thresholds. Obes Surg. (2020) 30:2538–46. doi: 10.1186/s11695-020-04509-0
97. Calvo-Viluendas I, et al. Non-invasive scoring systems for predicting NASH in Japan: evidences from Japan Study Group of NAFLD. Int J Mol Med. (2015) 2: doi: 10.15761/IMM.1000130
104. Boutilier C, Mantzoros CS. Adiponectin and leptin in the diagnosis and therapy of NAFLD. *Metabolism*. (2020) 103:154028. doi: 10.1016/j.metabol.2019.154028

105. Sanal MG. Biomarkers in nonalcoholic fatty liver disease: the emperor has no clothes. *World J Gastroenterol*. (2015) 21:3223–31. doi: 10.3748/wjg.v21.i11.3223

106. Tripathi D, Kant S, Pandey S, Ehtesham NZ. Liver fibrosis. *Turkish J Gastroenterol.*

107. Muyyarikkandy MS, Mcleod M, Maguire M, Mahar R, Kattapuram N, Miyayanto E, et al. Diagnostic performance of three non-invasive fibrosis scoring systems in African American and White patients with nonalcoholic fatty liver disease. *Clin Transl Gastroenterol*. (2020) 11:1–12. doi: 10.14399/ctg.2020.0000165

108. Peleg N, Issachar A, Sneh-Arbi O, Shlomai A. AST to platelet ratio index and fibrosis 4 calculator scores for non-invasive assessment of hepatic fibrosis in patients with non-alcoholic fatty liver disease. *Dig Liver Dis*. (2017) 49:1133–8. doi: 10.1016/j.dld.2017.05.002

109. Castera L, Friedman-Rust M, Loomba R. Noninvasive assessment of liver disease in patients with nonalcoholic fatty liver disease. *Gastroenterology*. (2019) 156:1264–81. doi: 10.1053/j.gastro.2018.12.036

110. Zhang C, et al. Branched chain amino acids and carbohydrate restriction during NAFLD. *BMC Gastroenterol*. (2020) 10:1–18. doi: 10.1186/s12876-020-01400-1

111. Lee J, Vali Y, Boursier J, Spijker R, Anstee QM, Bossuyt PM, et al. Validation study of systems for noninvasive diagnosis of fibrosis in nonalcoholic fatty liver disease in Latin population. *Ann Hepatol*. (2013) 12:416–24. doi: 10.1016/S1665-2881(13)00104-X

112. Liebg S, Stockeck M, Neier A, Rau M, Schattenberg JM, Bahr MJ, et al. Multicenter validation study of a diagnostic algorithm to detect NAS and fibrosis in NASH patients with low NAFLD fibrosis score or liver stiffness. *Clin Transl Gastroenterol*. (2019) 10:1–9. doi: 10.14399/ctg.2019.000066

113. Lee J, Vali Y, Boursier J, Spijker R, Anstee QM, Bossuyt PM, et al. Prognostic accuracy of FIB-4 and fibrosis-4 in the prediction of significant fibrosis and cirrhosis in patients with chronic hepatitis C. *Turkish J Gastroenterol*. (2011) 22:279–85. doi: 10.4318/tjg.2011.0213

114. Zernaud E, et al. UNAIP VS. *J Clin Gastroenterol*.

115. Tran U, Hsu LT, et al. Liver stiffness: a new non-invasive method for assessing liver fibrosis and cirrhosis. *Liver Int*.

116. Zernaud E, et al. Predictive ability of non-invasive tests for liver disease severity. *Ann Med*. (2011) 43:617–20. doi: 10.1016/j.annmed.2011.01.006

117. Zhang C, et al. Branched chain amino acids and carbohydrate restriction during NAFLD. *BMC Gastroenterol*. (2020) 10:1–18. doi: 10.1186/s12876-020-01400-1

118. Lee J, Vali Y, Boursier J, Spijker R, Anstee QM, Bossuyt PM, et al. Validation study of systems for noninvasive diagnosis of fibrosis in nonalcoholic fatty liver disease in Latin population. *Ann Hepatol*. (2013) 12:416–24. doi: 10.1016/S1665-2881(13)00104-X

119. Liebg S, Stockeck M, Neier A, Rau M, Schattenberg JM, Bahr MJ, et al. Multicenter validation study of a diagnostic algorithm to detect NAS and fibrosis in NASH patients with low NAFLD fibrosis score or liver stiffness. *Clin Transl Gastroenterol*. (2019) 10:1–9. doi: 10.14399/ctg.2019.000066

120. Sun L, Wang Q, Liu M, Xu G, Yin H, Wang D, et al. Albumin binding function is a novel biomarker for early liver damage and disease progression in non-alcoholic fatty liver disease. *Endocrine*. (2020) 69:294–302. doi: 10.1007/s12020-020-02319-z

121. Lee J, Vali Y, Boursier J, Spijker R, Anstee QM, Bossuyt PM, et al. Prognostic accuracy of FIB-4, NAFLD fibrosis score and APRI for NAFLD-related events: a systematic review. *Liver Int*. (2021) 41:261–70. doi: 10.1111/liv.14699

122. Naveau S, Lamoury K, Pourcher G, Njike-Nkoue M, Ferretti S, Courie R, et al. The diagnostic accuracy of transient elastography for the diagnosis of liver fibrosis in bariatric surgery candidates with suspected NAFLD. *Obes Surg*. (2014) 24:1693–701. doi: 10.1007/s11695-014-1253-9

123. Zambrano-Huálla R, Guedes L, Stefano JT, de Souza AAA, Marciano S, Yvamoto E, et al. Diagnostic performance of three non-invasive fibrosis...
scores (Hepamet, FIB-4, NAFLD fibrosis score) in NAFLD patients from a mixed Latin American population. *Ann Hepatol*. (2020) 19:622–6. doi: 10.1016/j.ahep.2020.08.066

114. Higuera-de-la-Tijera F, Córdova-Gallardo J, Buganza-Torio E, Barranco-Fragoso B, Torre A, Parraguíre-Martínez S, et al. Hepamet fibrosis score in nonalcoholic fatty liver disease patients in mexico: lower than expected positive predictive value. *Dig Dis Sci*. (2021) 66:4501–7. doi: 10.1007/s10620-020-06821-2

115. Tilg H, Moschen AR, Roden M. NAFLD and diabetes mellitus. *Nat Rev Gastroenterol Hepatol*. (2017) 14:32–42. doi: 10.1038/nrgastro.2016.147

116. Guillaume M, Moal V, Delabaudiere C, Zuberbuhler F, Robic MA, et al. Non-invasive markers of liver fibrosis in fatty liver disease are unreliable and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.