Extensive ribosome and RF2 rearrangements during translation termination

Egor Svidritskiy
University of Massachusetts Medical School

Let us know how access to this document benefits you.
Follow this and additional works at: https://escholarship.umassmed.edu/oapubs

Part of the Amino Acids, Peptides, and Proteins Commons, Bacteria Commons, Biochemical Phenomena, Metabolism, and Nutrition Commons, Biophysics Commons, Cell Biology Commons, Cells Commons, Nucleic Acids, Nucleotides, and Nucleosides Commons, and the Structural Biology Commons

Repository Citation
Svidritskiy E, Demo G, Loveland AB, Xu C, Korostelev AA. (2019). Extensive ribosome and RF2 rearrangements during translation termination. Open Access Publications by UMMS Authors. https://doi.org/10.7554/eLife.46850. Retrieved from https://escholarship.umassmed.edu/oapubs/3976

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.
This material is brought to you by eScholarship@UMassChan. It has been accepted for inclusion in Open Access Publications by UMMS Authors by an authorized administrator of eScholarship@UMassChan. For more information, please contact Lisa.Palmer@umassmed.edu.
Extensive ribosome and RF2 rearrangements during translation termination

Egor Svidritskiy¹, Gabriel Demo¹, Anna B Loveland¹, Chen Xu², Andrei A Korostelev¹,²*

¹RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, United States; ²Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, United States

Abstract

Protein synthesis ends when a ribosome reaches an mRNA stop codon. Release factors (RFs) decode the stop codon, hydrolyze peptidyl-tRNA to release the nascent protein, and then dissociate to allow ribosome recycling. To visualize termination by RF2, we resolved a cryo-EM ensemble of E. coli 70S•RF2 structures at up to 3.3 Å in a single sample. Five structures suggest a highly dynamic termination pathway. Upon peptidyl-tRNA hydrolysis, the CCA end of deacyl-tRNA departs from the peptidyl transferase center. The catalytic GGQ loop of RF2 is rearranged into a long β-hairpin that plugs the peptide tunnel, biasing a nascent protein toward the ribosome exit. Ribosomal intersubunit rotation destabilizes the catalytic RF2 domain on the 50S subunit and disassembles the central intersubunit bridge B2a, resulting in RF2 departure. Our structures visualize how local rearrangements and spontaneous inter-subunit rotation poise the newly-made protein and RF2 to dissociate in preparation for ribosome recycling.

DOI: https://doi.org/10.7554/eLife.46850.001

Introduction

Ribosomes terminate translation when release factors (RFs) recognize an mRNA stop codon in the A (aminoacyl-tRNA) site (Brenner et al., 1967; Brenner et al., 1965). Upon stop-codon recognition, the release factor hydrolyzes peptidyl-tRNA in the P site of the large subunit, thus releasing nascent protein from the ribosome (Capecchi, 1967a; Capecchi, 1967b; Scolnick et al., 1968; Tompkins et al., 1970). In bacteria, RF1 recognizes UAA or UAG, and RF2 recognizes UAA or UGA codons (Nakamura et al., 1995). Following peptide release, RF1 or RF2 must dissociate from the ribosome to allow the ribosome and release factor to recycle. While structural studies have provided snapshots of some peptidyl-tRNA hydrolysis steps (reviewed in Dunkle and Cate, 2010; Korostelev, 2011; Ramakrishnan, 2011; Rodnina, 2018; Youngman et al., 2008), recent biophysical and biochemical findings suggest a highly dynamic series of termination events (Adio et al., 2018; Indrisiunaite et al., 2015; Prabhakar et al., 2017; Sternberg et al., 2009), which have not been structurally visualized.

In the pre-termination (pre-hydrolysis) state, the substrate peptidyl-tRNA resides in a non-rotated (classical) conformation of 70S ribosome, with its anticodon stem loop bound to the mRNA codon in the P site of the small 30S subunit and the 3′-terminal CCA-peptidyl moiety in the P site of the large 50S subunit (Agrawal et al., 2000; Ermolenko et al., 2007). Cryogenic electron microscopy (cryo-EM) and X-ray studies reveal RF1 or RF2 bound in the A site next to P tRNA (Klaholz et al., 2003; Petry et al., 2005; Rawat et al., 2006; Rawat et al., 2003), and provide insight into pre-hydrolysis (Jin et al., 2010) and post-hydrolysis states (Korostelev et al., 2008; Korostelev et al., 2010; Laurberg et al., 2008; Weixlbaumer et al., 2008). The release factor’s codon-recognition domain...
(domain 2) binds the stop codon in the 30S decoding center. The catalytic GGQ motif (glycine-glycine-glutamine of domain 3) inserts into the 50S peptidyl-transferase center (PTC) adjacent to the CCA end of P-tRNA. Ribosomes retain the non-rotated conformation in RF-bound structures, including those with mutated or post-translationally modified RFs (Pierson et al., 2016; Santos et al., 2013; Zeng and Jin, 2018) or when RFs are perturbed by the termination inhibitor bactericidin S (Svidritskiy and Korostelev, 2018a; Svidritskiy and Korostelev, 2018b) or by a sense codon in the A site (Svidritskiy et al., 2018). The catalytic GGQ loop adopts the same compact conformation comprising a short α-helix in pre-hydrolysis-like and post-hydrolysis structures, as discussed below.

Ribosome and RF dynamics are implicated in post-hydrolysis steps. In E. coli, RF1 dissociation is assisted by the non-essential GTPase RF3 (Freistroffer et al., 1997; Koutmou et al., 2014), whereas RF2 can spontaneously dissociate from the ribosome (Adio et al., 2018). RF3 induces rotation of the small subunit relative to the large subunit by ~9 degrees in the absence of RF1 and RF2 (Ermolenko et al., 2007; Zhou et al., 2012) and stabilizes a ‘hybrid’ state of deacylated tRNA (P/E) (Gao et al., 2007; Jin et al., 2011). In the P/E conformation, the anticodon stem loop remains in the 30S P site, while the elbow and acceptor arm bind the L1 stalk and E (exit) site of the 50S subunit. A recent cryo-EM study (Graf et al., 2018) showed that if RF1 is locked on the post-hydrolysis ribosome by antibacterial peptide apidaecin 137 (Florin et al., 2017), the ribosome can undergo intersubunit rotation in the presence of both RF1 and RF3. By contrast, biochemical experiments showed that locking RF1 on the ribosome by inactivating its catalytic motif (GGQ->GAQ) prevented RF1 recycling by RF3 from the pre-hydrolysis ribosome (Koutmou et al., 2014), echoing the deficiency of mutant RF2 (GGQ->GAQ) in stimulating GTP hydrolysis by RF3 (Zavialov et al., 2002). These and other (Adio et al., 2018) observations indicate that peptidyl-tRNA hydrolysis is critical for RF dissociation, likely due to propensity of deacylated tRNA for exiting the P site and sampling the P/E hybrid state (Moazed and Noller, 1989) via spontaneous intersubunit rotation (Cornish et al., 2008). Nevertheless, RF3 is dispensable for growth of Escherichia coli (Grentzmann et al., 1994; Mikuni et al., 1994), and its expression is not conserved in bacteria (Leipe et al., 2002). For example, RF3 is not present in the thermophilic model organisms of the Thermus and Thermatoga genera and in infectious Chlamydiales and Spirochaetae. This means that both RF1 and RF2 are capable of performing a complete round of termination independently of RF3. Indeed, recent Förster Resonance Energy Transfer (FRET) studies demonstrate spontaneous RF1 and RF2 dissociation after peptidyl-tRNA hydrolysis (Prabhakar et al., 2017), coupled with transient RF sampling of the rotated ribosomes (Adio et al., 2018). The structural basis for RF dissociation, however, remains incompletely understood because RFs have not been structurally visualized on ribosomes with rearranged/rotated subunits in the absence of RF3 and inhibitors.

In this work, we used ensemble cryo-EM, as described earlier (Abeyrathne et al., 2016; Loveland et al., 2017), employing 3D maximum likelihood classification/sorting of particle images (Lyumkis et al., 2013; Scheres, 2010; Scheres et al., 2007) to visualize the structural dynamics of RF2 on the 70S ribosome (Figure 1, Figure 1—figure supplement 1, Figure 1—figure supplement 2 and Figure 1—figure supplement 3). The structures capture RF2 and tRNA in distinct 70S conformational states (Table 1). They reveal an unexpected rearrangement of the catalytic GGQ loop, which suggests that RF2 helps direct nascent protein out of the ribosome. Our findings reconcile biophysical observations and, together with other structural studies, allow a reconstruction of the termination course by RF2, from initial binding to dissociation.

Results and discussion

We formed a termination complex using E. coli 70S ribosomes and RF2 to catalyze the hydrolysis of substrate N-formyl-methionyl-tRNA^{Met} (fMet-tRNA^{Met}) bound to mRNA carrying an AUG codon in the P site and a UGA stop codon in the A site. Although the stop codon is placed immediately after the start codon, unlike in cellular mRNAs, such model termination complexes have been successfully used in numerous structural, biochemical and biophysical studies (Adio et al., 2018; Casy et al., 2018; Koutmou et al., 2014; Kuhlenkoetter et al., 2011; Lauberg et al., 2008; Pallesen et al., 2013; Pierson et al., 2016; Shi and Joseph, 2016; Sternberg et al., 2009). Indeed, under the conditions used for cryo-EM sample preparation in this work, RF2 supports hydrolysis of fMet-tRNA^{Met} and release of fMet (Figure 1—figure supplement 4), demonstrating activity of the ribosome and RF2 in our sample. Maximum-likelihood classification of cryo-EM data in FREALIGN (Lyumkis et al.,
2013) yielded five structures at average resolutions of 3.3 Å to 4.4 Å (Table 2; Figure 1). The structures differ by the degrees of intersubunit rotation and 30S head rotation (swivel), and are consistent with the following termination stages: pre-termination (i.e., no RF2; Structure I); peptidyl-tRNA

Table 1. Cryo-EM structures obtained from a single sample of the 70S•RF2 complex.

	I	II	III	IV	V
tRNA	P-tRNA	P-tRNA, RF2	P-like (L5) tRNA, RF2	P/E-like (L1) tRNA, RF2	P/E tRNA
RF2	1.6°	1.6°	4.9°	7.4°	6.8°
30S (body) rotation	2.0°	1.4°	1.7°	2.8°	6.0°
30S head rotation (swivel)	3.3 Å	3.3 Å	3.7 Å	4.4 Å	3.4 Å

DOI: https://doi.org/10.7554/eLife.46850.007
hydrolysis by RF2 (Structure II); tRNA exit from the PTC (Structure III); destabilization of the catalytic domain of RF2 (Structure IV); and post-termination (i.e., after RF2 dissociates; Structure V).

Pre-termination-like Structure I contains tRNA in the P site with its 3′-CCA end positioned in the peptidyl transferase center (Figure 1A). Although the tRNA is likely partially or completely

STRUCTURE	I	II	III	IV	V
PDB ID	6OFX	6OG7	6OGF	6OGG	6OGI
EMD code	20048	20052	20056	20057	20058

Data collection

- **EM equipment**: FEI Titan Krios
- **Voltage (kV)**: 300
- **Detector**: K2 summit
- **Pixel size (Å)**: 1.33
- **Electron dose (e⁻/Å²)**: 29.4
- **Defocus range (µm)**: – 0.5 – 1.8

Reconstruction

- **Software**: Frealign v9.11

Number of particles in final map

STRUCTURE	I	II	III	IV	V
	102,723	62,029	28,549	5,881	63,383

Final resolution (Å)

STRUCTURE	I	II	III	IV	V
	3.3	3.3	3.7	4.4	3.4

Average sharpening B factor (Å²)

STRUCTURE	I	II	III	IV	V
	-30	-26	-17	-4	-30

Structure Refinement

- **Model Fitting**: Chimera/Pymol
- **Software**: RSRef/Phenix

Correlation Coefficient, cc_mask

STRUCTURE	I	II	III	IV	V
	0.83	0.84	0.84	0.76	0.82

Real-space R-factor

STRUCTURE	I	II	III	IV	V
	0.25	0.23	0.22	0.25	0.25

Validation (proteins)

- **MolProbity Score**

STRUCTURE	I	II	III	IV	V
	2.22	2.34	2.42	2.26	2.24

- **Clash score, all atoms**

STRUCTURE	I	II	III	IV	V
	17.4	17.4	16.5	15.1	16.3

- **Poor rotamers (%)**

STRUCTURE	I	II	III	IV	V
	0.4	0.7	0.7	0.6	0.5

- **Favored/allowed rotamers (%)**

STRUCTURE	I	II	III	IV	V
	99.6	99.3	99.3	99.4	99.5

Ramachandran-plot statistics

- **Outlier (%)**

STRUCTURE	I	II	III	IV	V
	0	0.6	0.8	0.0	0.4

- **Favored (%)**

STRUCTURE	I	II	III	IV	V
	92.2	88.1	82.3	89.0	90.7

R.m.s. deviations

STRUCTURE	I	II	III	IV	V
Bond length (Å)	0.008	0.006	0.006	0.006	0.009
Bond angle (°)	1.064	0.892	0.922	0.848	1.113

Validation (RNA)

- **Good sugar puckers (%)**

STRUCTURE	I	II	III	IV	V
	99.7	99.8	99.8	99.8	99.8

- **Good backbone conformation (%)**

STRUCTURE	I	II	III	IV	V
	82.9	84.6	85.0	85.0	82.0

*from Phenix

†from RSRef

§root-mean-square deviations

^ RNA backbone suites that fall into recognized rotamer conformations defined by MolProbity

DOI: https://doi.org/10.7554/eLife.46850.008
deacylated due to the action of RF2, the tRNA and ribosome conformations closely resemble those in pre-termination aminoacyl- and peptidyl-tRNA complexes (Adio et al., 2018; Cornish et al., 2008; Jin et al., 2010; Polikanov et al., 2014). The 30S subunit adopts a conformation similar to crystal structures of non-rotated ribosomes with or without RFs (Jin et al., 2010; Korostelev et al., 2008; Korostelev et al., 2006; Korostelev et al., 2010; Laurberg et al., 2008; Selmer et al., 2006; Weixlbaumer et al., 2008), and exhibits a slight ~1.5˚ rotation relative to the 70S. RF2 crystal structure formed with the UGA stop codon (Weixlbaumer et al., 2008).

RF2 is bound in Structures II to IV (Figure 1B–D). The 70S intersubunit rotation ranges from ~1.5˚ in Structure II to ~7.5˚ in Structure IV (Table 1). This nearly full range of rotation is typical of translocation complexes with tRNA (Agirrezabala et al., 2008; Agirrezabala et al., 2012; Dunkle et al., 2011; Fischer et al., 2010; Julián et al., 2008) and elongation factor G (EF-G) (Brilot et al., 2013; Chen et al., 2013; Frank and Agrawal, 2000; Gao et al., 2009; Pulk and Cate, 2013; Tourigny et al., 2013; Zhou et al., 2013).

The most well-resolved 3.3 Å resolution Structure II (Figure 1B) accounts for the largest population of RF2-bound ribosome particles in the sample (Table 2), consistent with stabilization of the non-rotated 30S states by RF2 observed in FRET studies (Casy et al., 2018; Prabhakar et al., 2017; Sternberg et al., 2009). The overall extended conformation of RF2 resembles that seen in published 70S•RF2 structures (Korostelev et al., 2008; Weixlbaumer et al., 2008) with its codon-recognition superdomain (domains 2 and 4; Figure 1B) bound to the UGA stop codon in the decoding center of the 30S subunit and its catalytic domain 3 inserted into the peptidyl-transferase center.

Figure 2. Rearrangement of the catalytic domain of RF2 upon tRNA displacement from the PTC. (A) Rearrangements of RF2 in Structure II (RF2 in red, P-tRNA in orange and 23S in cyan) in comparison with the canonical 70S•RF2 conformation (X-ray structure: Korostelev et al., 2008, RF2 in pink, P-tRNA in light orange, 23S in gray). Arrows show rearrangements for RF2 (red), tRNA acceptor arm and 23S nucleotide A2602 (black). The superposition was achieved by structural alignment of 23S rRNA. (B) The GGQ region of RF2 forms a long β-hairpin that reaches into the constriction of the peptide tunnel (at A2062) and thus plugs the tunnel. Nucleotides of 23S rRNA and the GGQ motif are labeled. Residues of RF2 and 23S rRNA (also shown in panel B for reference) are labeled.

DOI: https://doi.org/10.7554/eLife.46850.009

The following figure supplements are available for figure 2:

Figure supplement 1. Rearrangements of PTC nucleotides (cyan) upon formation of the β-hairpin structure by the catalytic region of RF2 (red; Structure II is shown).

DOI: https://doi.org/10.7554/eLife.46850.010

Figure supplement 2. Cryo-EM density (mesh) shows that the tip of the GGQ loop of RF2 is poorly ordered (gray model) when the catalytic domain adopts the β-hairpin conformation (red; Structure II is shown).

DOI: https://doi.org/10.7554/eLife.46850.011
these previous structures, the catalytic 250GGQ252 motif resides at the tip of a short α-helix, adjacent to the terminal tRNA nucleotide A76 (Figure 2A, light shades; [Jin et al., 2010; Korostelev et al., 2008; Laurberg et al., 2008; Weixlbaumer et al., 2008]). The α-helical region is held in place by A2602 of 23S ribosomal RNA (rRNA), which is critical for termination efficiency (Amort et al., 2007; Polacek et al., 2003). In Structure II, however, the catalytic loop adopts an extended β-hairpin conformation that reaches \sim10 Å deeper into the peptide tunnel (Figure 2A–B). To accommodate the extended β-hairpin, nucleotides G2505 and U2506 of 23S rRNA are shifted to widen the PTC (Figure 2—figure supplement 1A). The center of the β-hairpin occupies the position normally held by A76 of P tRNA (Figure 2A). The lack of density for the CCA moiety thus suggests that the 30 end of P tRNA is at least partially released from the PTC. Indeed, formation of the β-hairpin and release of the CCA moiety is accompanied by a slight shift in the P-tRNA acceptor arm away from the PTC and by \sim160° rotation of nucleotide A2602 to form a Hoogsteen base pair with C1965 at helix 71 of 23S rRNA (Figure 2A and Figure 2—figure supplement 1B). The cryo-EM map shows strong density for the extended β strands (Figure 2C), but weaker density for the GGQ residues at the tip of the hairpin, consistent with conformational heterogeneity of the flexible glycine backbone (Figure 2—figure supplement 2). Nevertheless, the tip of the β-hairpin plugs the narrowest region of the peptide tunnel at A2062 of 23S rRNA (Figure 2B). Thus, Structure II appears to represent a previously unseen post-peptide-release state with deacyl-tRNA dissociating from the PTC.

In Structure III (Figure 1C), a 5° rotation of the 30S subunit shifts the tRNA elbow by \sim10 Å along protein L5 toward the E site. As a result, the P-tRNA acceptor arm pulls further out of the 50S P site, and the end of the acceptor arm helix points at helix α7 of RF2 near positively charged Lys 282 and Lys 289. The CCA moiety remains unresolved. The 5° intersubunit rotation also causes a slight 2° rotation of RF2 domain 3 relative to domain 2, but the overall conformation of RF2 remains similar to that in Structure II, with the tip of the extended β-hairpin plugging the peptide exit tunnel.

Figure 3. Differences in conformations of RF2 and helix 69 of 23S rRNA in Structures II, IV and V. (A) RF2 in Structures II (red) and IV (blue) in comparison with the crystal structure of isolated (free) RF2 (green, PDB 1GQE [Vestergaard et al., 2001]). The arrow shows the direction of three repositioning from Structure II to IV to free RF2. Structures were aligned by superposition of domain 2. (B) Interactions of H69 (teal) with the switch loop (pink surface) of RF2 in Structure II (RF2 in red, P-tRNA in orange, 50S in cyan and 30S in yellow). Domains 2 and 3 of RF2, head and body domains of the 30S subunit and nucleotides A1913 (at H69) and C1054 (head) are labeled. (C) In Structure V, dissociation of H69 from the decoding center and packing on H71 next to A2602 disassembles intersubunit bridge B2a. The structure is colored as in panel B. View in panels B and C is rotated by \sim180° relative to panel A.

DOI: https://doi.org/10.7554/eLife.46850.012

The following figure supplement is available for figure 3:

Figure supplement 1. Structure alignments show that the disengaged H69 in Structure V (teal) is incompatible with the extended (red, Structure II) and compact (pink, PDB 1GQE [Vestergaard et al., 2001]) conformations of RF2 due to steric hindrance.

DOI: https://doi.org/10.7554/eLife.46850.013
In Structure IV, the 30S subunit is rotated 7.5° and the P-tRNA elbow is bound to the L1 stalk, an interaction normally observed with the P/E or E tRNA (Dunkle et al., 2011; Korostelev et al., 2006; Selmer et al., 2006). Unlike P/E tRNA, however, the acceptor arm is oriented between the 50S P and E sites (Figure 1D), suggesting that the tRNA adopts a transient state on its way toward the hybrid P/E conformation. This transition coincides with an ~3° rotation (swivel) of the 30S head, characteristic of intermediate stages of tRNA and mRNA translocation (Abeyrathne et al., 2016; Ratje et al., 2010). The codon-recognition superdomain of RF2 in its canonical conformation moves with the 30S subunit, causing the catalytic domain to shift by ~5 Å from its position in Structure II (Figure 3A). Indeed, reduced density for the catalytic domain and domain 1, which bridges the 30S and 50S subunits at the A site periphery (Figure 1B), suggests that intersubunit rotation has destabilized RF2. In Structure IV, therefore, RF2 appears to be poised for dissociation and collapsing toward the compact conformation adopted by free RFs (Figure 3A) (JCSG, 2005; Shin et al., 2004; Vestergaard et al., 2001; Zoldák et al., 2007).

Structure V is incompatible with RF2 binding and provides further insights into RF2 dissociation. The rotated 70S tRNA structure resembles hybrid P/E states, with the acceptor arm of tRNA directed toward the E site of 50S (Figure 1E). However, the central intersubunit bridge B2a—formed by helix 69 (H69, nt. 1906–1924) of 23S rRNA—is disassembled (Figure 3B–C). In RF-bound structures (including Structures I to IV, above), the tip of H69 (at nt 1913) locks into the decoding center in a termination-specific arrangement (Korostelev et al., 2008; Korostelev et al., 2010; Laurberg et al., 2008; Weixlbaumer et al., 2008). H69 interacts with the switch loop of RFs, where the codon-recognition superdomain connects to catalytic domain 3 (e.g., Structure II, Figure 3B). This interaction directs the catalytic domain toward the PTC (Korostelev et al., 2010; Laurberg et al., 2008) and thus defines the efficiency and accuracy of release factors (Svidritskiy and Korostelev, 2018a). In Structure V, however, H69 is disengaged from the decoding center and moved ~15 Å toward the large subunit to pack against H71 near A2602 (nt 1945–1961; Figure 3C). The new position of H69 would clash with extended or compact conformations of RF2 (Figure 3—figure supplement 1), if the release factor had remained bound to the decoding center.

Release of RF2 also appears to be coupled to rotation (swivel) of the 30S head domain. In RF2-bound structures, the conserved codon-recognition 205SPF207 motif (serine-proline-phenylalanine of domain 2) of RF2 interacts with the stop codon and the 30S head near bulged nucleotide C1054 of 16S rRNA. In Structure V, a 6° rotation of the 30S head shifts the position of C1054 by 5 Å from its position in RF2-bound Structure IV, consistent with disassembly of RF2 contacts. The disruption of
decoding-center interactions due to repositioning of H69 and head swivel therefore explain the absence of RF2 in Structure V.

Mechanism of translation termination by RF2

Our termination structures allow us to reconstruct a dynamic pathway for termination (Figure 4 and Animation 1) and reconcile biophysical and biochemical findings (Adio et al., 2018; Casy et al., 2018; Prabhakar et al., 2017; Sternberg et al., 2009). Recent structural studies revealed compact RF conformations on non-rotated 70S ribosomes (Fu et al., 2018; Svidritskiy and Korostelev, 2018a) that suggest how RFs open at early stages of codon recognition (He and Green, 2010; Hetrick et al., 2009; Trappl and Joseph, 2016). The short-lived transition from compact to open conformation(s) lasts tens of milliseconds (Fu et al., 2018), and compact RF2 conformations were not captured in our sample. Compact RF2 was also visualized by cryo-EM on the 70S ribosome in the presence of truncated mRNA and alternative rescue factor A (ArfA) (Demo et al., 2017; James et al., 2016), suggesting a conserved pathway for initial binding of RFs to non-rotated ribosomes. Together with these recent studies, our work provides an expanded structural view of the termination reaction – from initial codon recognition to peptide release to RF2 dissociation (Figure 4).

Termination begins when release factor recognizes a stop codon in the A site of a non-rotated (or slightly rotated) 70S ribosome carrying peptidyl-tRNA (Figure 4A). A compact release factor recognizes the stop codon, while its catalytic domain is kept 60 to 70 Å away from the PTC (Fu et al., 2018). Separation of the codon-recognition and catalytic functions during initial binding of RF underlies high accuracy of termination (He and Green, 2010; Laurberg et al., 2008; Svidritskiy and Korostelev, 2018a; Trappl and Joseph, 2016). Upon binding the decoding center, steric hindrance with P-tRNA forces the RF catalytic domain to undock from domain two and sample the intersubunit space (Figure 4B) (discussed in Svidritskiy and Korostelev, 2018a). The ribosome remains non-rotated because peptidyl-tRNA bridges the P sites of 30S and 50S subunits. Interactions between the switch loop of RF and the decoding center and H69 direct the catalytic domain into the PTC. The GGQ catalytic loop is placed next to the scissile ester bond of peptidyl-tRNA and stabilized by A2602 (Jin et al., 2010; Laurberg et al., 2008), so that the Gln backbone amide of the GGQ motif can catalyze peptidyl-tRNA hydrolysis (Figure 4C) (Korostelev et al., 2008; Santos et al., 2013). These ribosome and RF2 rearrangements complete the first stage of termination leading to peptidyl-tRNA hydrolysis—an irreversible step that separates the newly made protein from P-site tRNA and prevents further elongation.

To be recycled, the ribosome must release the nascent protein and RF. The deacylated CCA end of the tRNA exits the 50S P site, which allows movement of A2602. No longer stabilized by the tRNA and A2602, the GGQ loop reorganizes into an extended b-hairpin that blocks the peptide tunnel (Structure II), thus biasing the diffusion of nascent peptide toward the exit of the peptide tunnel at the surface of the 50S subunit (Figure 4D). Furthermore, the exit of the CCA end from the P site supports formation of the P/E-tRNA hybrid conformation via spontaneous intersubunit rotation (Structures III and IV), which is also essential for translocation of tRNA-mRNA (reviewed in Ling and Ermolenko, 2016; Noller et al., 2017). The large counter-clockwise rotation of the small subunit destabilizes the catalytic domain of RF2 (Structure IV), so that it begins to collapse toward domain 2 bound to the 30S subunit (Figure 4E). Rotation of the 30S head and detachment of H69 from the decoding center force dissociation of RF2 from the A site of the 30S subunit (Structure V, Figure 4F).
Remarkably similar extents of intersubunit rotation and head rotation were observed in recent RF1-bound 70S structures formed with RF3•GDPNP in the presence of apidaecin (which stalls RF1 on the ribosome). In the presence of stalled RF1, however, the intersubunit bridge remains attached to the decoding center (Graf et al., 2018). Thus, the ribosome samples globally similar rotation states with RF1 and RF2, with or without RF3. RF3 stabilizes the rotated state (Ermolenko et al., 2007; Gao et al., 2007; Jin et al., 2011; Zhou et al., 2012) to promote RF release. However, the role of RF3 in termination is dispensable because intersubunit rotation is an inherent—that is spontaneous and thermally driven—property of the ribosome (Cornish et al., 2008). Cold sensitivity of RF3-deletion strains (Nichols et al., 2011; O’Connor, 2015) perhaps manifests the dependence on RF3 due to perturbation of the intersubunit dynamics at lower temperatures. In the fully rotated state, the post-termination ribosome becomes a substrate for subunit dissociation by EF-G and recycling factor RRF (Agrawal et al., 2004; Dunkle et al., 2011; Fu et al., 2016; Prabhakar et al., 2017). Structure V is consistent with structural studies showing ribosome recycling factor (RRF) bound to ribosomes with a dislodged intersubunit bridge B2a (Borovinskaya et al., 2007; Pai et al., 2008), which helps split the ribosome into subunits. Translation termination and recycling of the release factors and the ribosome therefore rely on the spontaneous ribosome dynamics (Adio et al., 2018; Cornish et al., 2008; Ermolenko et al., 2007; Prabhakar et al., 2017; Sternberg et al., 2009), coupled with local rearrangements of the universally conserved elements of the peptidyl-transferase and decoding centers.

Materials and methods

Key resources table

Reagent type (species) or resource	Designation	Source or reference	Identifiers	Additional information
Strain, strain background (Escherichia coli)	Escherichia coli MRE600	(Cammack and Wade, 1965)	ATCC 29417	
Strain, strain background (Escherichia coli)	Escherichia coli BLR (DE3)	Novagen		
Recombinant protein	C-terminally His-tagged K-12 E. coli RF2	(Demo et al., 2017)		
Recombinant DNA reagent	E. coli RF2 plasmid (vector pET24b)	(Demo et al., 2017)		
Chemical compound, drug	E. coli tRNA^{Met}	Chemical Block		
Chemical compound, drug	^{[35]S}-methionine	Perkin Elmer	NEG709A500UC	
Chemical compound, drug	Biodegradable Scintillation Cocktail	Econo-Safe		
Sequence-based reagent	RNA GGCAAGGAGG UAAAAUGUGAAAAAAA	IDT		
Software, algorithm	PHENIX	(Adams et al., 2002)	https://www.phenix-online.org/	
Software, algorithm	CNS	(Brunger, 2007)	http://cns-online.org/v1.2/	
Software, algorithm	PyMOL	(DeLano, 2002)	https://pymol.org/2/	
Software, algorithm	Chimera	(Pettersen et al., 2004)	https://www.cgl.ucsf.edu/chimera/	
Software, algorithm	Bsoft	(Heymann and Belnap, 2007)	https://lsbr.niams.nih.gov/bsoft/	
Software, algorithm	Frealign	(Lyumkis et al., 2013)	http://grigoriefflab.janelia.org/frealign	

Continued on next page
Preparation of the 70S termination complex with RF2

N-terminally His6-tagged release factor 2 (RF2) from E. coli K12 strain was overexpressed in E. Coli BLR (DE3) (Novagen) and purified as described for RF1 (Svidritskiy and Korostelev, 2018a). Due to overexpression, RF2 is likely incompletely methylated (or unmethylated) at Q252 of the catalytic GGQ motif (Dinçbas-Renqvist et al., 2000), which together with the K12-specific T246 residue, renders RF2 catalytically slower (Dinçbas-Renqvist et al., 2000), yet functionally and structurally similar to the post-translationally modified release factors (Korostelev et al., 2008; Pierson et al., 2016; Weixlbaumer et al., 2008; Zeng and Jin, 2018). E. coli tRNA\(^{\text{Met}}\) (Chemical Block) was aminocylated as described (Lancaster and Noller, 2005). 70S ribosomes were prepared from E. coli (MR600) as described (Svidritskiy and Korostelev, 2018a). Ribosomes were stored in the ribosome-storage buffer (20 mM Tris-HCl; 100 mM NH\(_4\)Cl; 12.5 mM MgCl\(_2\); 0.5 mM EDTA; 6 mM β-mercaptoethanol) at –80°C. A model mRNA fragment, containing the Shine-Dalgarno sequence and a spacer to position the AUG codon in the P site and the UGA stop codon in the A site (GGC AAG GAG GUA AAA), was synthesized by IDT.

The 70S+mRNA+fMet-tRNA\(^{\text{Met}}\) complex with RF2 was assembled in vitro by mixing 400 nM 70S ribosome (all concentrations are specified for the final pre-termination solution) with 12 μM mRNA in buffer containing 20 mM Tris-acetate (pH 7.0), 100 mM NH\(_4\)OAc, 15 mM Mg(OAc)\(_2\). After incubation for two minutes at 37°C, 600 nM fMet-tRNA\(^{\text{Met}}\) was added and incubated for five minutes at 37°C. The Mg(OAc)\(_2\) concentration was adjusted to 10 mM by adding an equal volume of buffer (20 mM Tris-acetate (pH 7.0), 100 mM NH\(_4\)OAc, 5 mM Mg(OAc)\(_2\)) at room temperature. The release reaction was started by adding an equal volume of 4 μM RF2 (in 20 mM Tris, 100 mM NH\(_4\)OAc, 10 mM Mg(OAc)\(_2\)) to the pre-termination solution, yielding the following final concentrations: 0.2 μM 70S, 6 μM mRNA, 0.3 μM fMet-tRNA\(^{\text{Met}}\), and 2 μM RF2. The solution was incubated for 30 min at room temperature prior to grid preparation and plunging.

The activity of E. coli RF2 was tested in an in vitro assay that measures the release of formyl-methionine from the 70S ribosome bound with [\(^{35}\)S]-fMet-tRNA\(^{\text{Met}}\) in the P site, as described (Svidritskiy and Korostelev, 2018a). Pre-termination complex was prepared using 0.2 μM E. coli 70S ribosomes (all concentrations are for the final reaction mixture upon initiation of the release reaction), 6 μM mRNA and 0.3 μM [\(^{35}\)S]-fMet-tRNA\(^{\text{Met}}\) ([\(^{35}\)S]-methionine from Perkin Elmer). An aliquot (4.5 μl) of the pre-termination complex was quenched in 30 μl of 0.1 M HCl to represent the zero-time point. Pre-termination complex was split into two tubes. 5 μl of 20 μM RF2 was added to 45 μl of the pre-termination complex in one tube, yielding 2 μM RF2 in the reaction. Buffer without RF2 was added to the second tube to test spontaneous (RF2-independent) hydrolysis of [\(^{35}\)S]-fMet-tRNA\(^{\text{Met}}\). After 6, 15, 90 s, and 6, 15, 30, 60 and 150 min, 5 μl aliquots were quenched in 30 μl of 0.1 M HCl. Samples were extracted with ethylacetate, and the amount of released [\(^{35}\)S]-labeled N-formyl-methionine was measured using a scintillation counter (Beckman Coulter, Inc) in 3.5 ml of Econo-Safe scintillation cocktail (RPI). All measurements were performed twice (Figure 1—figure supplement 4) and time progress data were analyzed and visualized using GraphPad Prizm 7.01.
Cryo-EM and image processing

Holey-carbon grids (QUANTIFOIL R 2/1, Cu 200, Quantifoil Micro Tools) were coated with carbon and glow discharged with 20 mA with negative polarity for 60 s in a PELCO easiGlow glow discharge unit. 2.8 μl of the 70S•mRNA•fMet-tRNA\textsubscript{fMet}•RF2 complex was applied to the grids. Grids were blotted at blotting force 10 for 4 s at room temperature, 100% humidity, and plunged into liquid ethane using a Vitrobot MK4 (FEI). Grids were stored in liquid nitrogen.

A dataset of 1,069,908 particles was collected on a Titan Krios (FEI) microscope (operating at 300 kV) equipped with a K2 Summit camera system (Gatan), with –0.5 to –1.8 μm defocus. Multi-shot data collection was performed by recording six exposures per hole, using SerialEM (Mastronarde, 2005) with beam-image shift. Coma-free alignment was performed using a built-in function. ‘Coma vs. Image Shift’ from the Calibration menu was used for dynamic beam-tilt compensation, based on image shifts for each exposure. Multi-hole/multi-shot configuration was selected from ‘Multiple Record Setup Dialog’ to dynamically adjust the beam tilt. Backlash-corrected compensation was applied to each stage movement at the target stage position to reduce mechanical stage drift. 7287 movies were collected. Each exposure (32 frames per movie) was acquired with continuous frame streaming, yielding a total dose of 29.4 e-/Å2. The nominal magnification was 105,000 and the calibrated super-resolution pixel size at the specimen level was 0.667 Å. 6972 movies were selected after discarding those with defects due to ice or image recording. Movies were processed using IMOD (Kremer et al., 1996) and binned to pixel size 1.334 Å (termed unbinned or \(1 \times\) binned). Movies were motion-corrected, and frame averages were calculated using all 32 frames within each movie (Figure 1—figure supplement 3), after multiplying by the corresponding gain reference. cisTEM (Grant et al., 2018) was used to determine defocus values for each resulting frame average and for particle picking. The stack and particle parameter files were assembled in cisTEM with the binnings of \(1 \times\), \(2 \times\), \(4 \times\), and \(6 \times\) (box size of 624 for a non-binned stack).

Data were processed essentially as described in our recent work (Loveland et al., 2017) and shown in Figure 1—figure supplement 1. FrealignX was used for particle alignment, refinement, and final reconstruction steps, and Frealign v9.11 was used for 3D classification steps (Lyumkis et al., 2013). The 6\(\times\)-binned image stack (1,069,908 particles) was initially aligned to a ribosome reference without release factor and tRNA (PDB 5J4D) (Svidritskiy et al., 2016) using 3 cycles of mode 3 (global search) alignment, including data from 20 Å to 300 Å resolution. Subsequently, the 6\(\times\)-binned stack was refined using mode 1 (3 cycles) to align particles in the 15- to 300 Å resolution range. The resulting reconstructions varied from 3.3 Å (Structure II) to 4.4 Å (Structure IV) Å average resolution (Fourier Shell Correlation (FSC) = 0.143). Cryo-EM reconstructions were B-factor sharpened in bfactor.exe (part of Frealign distribution) using different B-factor values (suggested by bfactor.exe) and then used for model building and structure refinements. B-factor from \(-50\) to \(-100\) Å2 was also
used for initial refinements and to visualize higher-resolution details. FSC curves were calculated by FrealignX for even and odd particle half-sets (Figure 1—figure supplement 2). FSC between the final models and maps, self and cross-validation FSC (Figure 1—figure supplement 2) calculated using Phenix (Adams et al., 2010) demonstrate good overall agreement between the structural models and maps, similarly to those in previous work (Brown et al., 2017). Blocres (part of Bsoft package v1.9.1; Heymann and Belnap, 2007) was used to calculate local-resolution maps (Figure 1—figure supplement 2).

Model building and refinement

Cryo-EM structures of *E. coli* 70S ArfA-RF2 complex (Demo et al., 2017) excluding ArfA, and the 70S met-tRNAfmet complex with EF-Tu ternary complex (Loveland et al., 2017) and improved structure of S2 (Loveland and Korostelev, 2018), excluding the ternary complex, were used to create initial models for structure refinement. Chimera (Pettersen et al., 2004) was used for fitting the 50S subunit, 30S head, 30S body, mRNA, tRNA, and RF2 domains. Local model fitting was performed in PyMOL (DeLano, 2002).

Each structural model was refined by real-space simulated-annealing refinement using atomic electron scattering factors in RSRef, as described (Svidritskiy et al., 2014) (Chapman, 1995; Korostelev et al., 2002). Secondary-structure restraints, comprising hydrogen-bonding restraints for ribosomal proteins and base-pairing restraints for RNA molecules, were employed as described (Korostelev et al., 2008). Refinement parameters, such as the relative weighting of stereochemical restraints and experimental energy term, were optimized to produce the stereochemically optimal models that closely agree with the corresponding maps. In the final stage, the structures were refined using Phenix (phenix.real_space_refine) (Adams et al., 2010), followed by a round of refinement in RSRef, applying harmonic restraints to preserve protein backbone geometry. B-factors were refined in Phenix. The refined structural models closely agree with the corresponding maps and have good stereochemical parameters, characterized by low deviation from ideal bond lengths and angles, low numbers of protein-backbone outliers and other robust structure-quality statistics, as shown in Table 2. Structure quality was validated using MolProbity (Chen et al., 2010).

Structure superpositions were performed in PyMOL. For structural comparisons, the distances and angles were calculated in PyMOL and Chimera, respectively. To calculate an angle of the 30S subunit rotation between two 70S structures, the 23S rRNAs were aligned using PyMOL, and the angle between 16S rRNAs body domains (all nucleotide residues excluding 925–1390) was measured in Chimera. To calculate an angle of the 30S-head rotation (swivel) between two 70S structures, the 16S rRNAs of the 30S body were aligned using PyMOL, and the angle between the 16S RNA residues 925–1390 was measured in Chimera. Ribosome conformations (30S body/subunit rotation and 30S head rotation) for Structures I through V were compared with the crystal structure of the 70S-RF2 complex formed with the UGA stop codon (Weixlbaumer et al., 2008).

Unsharpened cryo-EM maps (direct output from Frealign) were deposited in EMDB (Structure I – EMD-20048, Structure II – EMD-20052, Structure III – EMD-20056, Structure IV – EMD-20057, Structure V – EMD-20058). The corresponding PDB models were deposited in RCSB (PDB codes: 6OFX, 6OG7, 6OGF, 6OGG, 6OGI respectively). Figures were prepared in PyMOL.

Acknowledgements

We thank KangKang Song for help with screening cryo-EM grids and for assistance with data collection at the UMass Medical School cryo-EM facility; Darryl Conte Jr. and members of the Korostelev lab for helpful comments on the manuscript. This study was supported by NIH Grants R01 GM107465 and R35 GM127094.

Additional information

Funding	Grant reference number	Author
National Institute of General Medical Sciences	R01 GM107465	Andrei A Korostelev

Svidritskiy et al. eLife 2019;8:e46850. DOI: https://doi.org/10.7554/eLife.46850
Author contributions
Egor Svidritskiy, Conceptualization, Data curation, Formal analysis, Validation, Investigation, Visualization, Methodology, Writing—review and editing, Assembled the ribosome complexes, Performed biochemistry, Collected and processed cryo-EM data, Modeled and refined structural models; Gabriel Demo, Data curation, Formal analysis, Investigation, Methodology, Purified ribosome subunits and RF2, Assisted with structure refinements; Anna B Loveland, Formal analysis, Methodology, Assisted with data processing; Chen Xu, Methodology, Implemented multiple-shot (per hole) data acquisition, Optimized data collection; Andrei A Korostelev, Conceptualization, Resources, Formal analysis, Supervision, Funding acquisition, Validation, Investigation, Writing—original draft, Project administration, Writing—review and editing, Supervised the project, Assisted with modeling and structure refinements, Wrote the manuscript with input from co-authors

Author ORCIDs
Gabriel Demo [https://orcid.org/0000-0002-5472-9249]
Anna B Loveland [https://orcid.org/0000-0001-9172-7747]
Andrei A Korostelev [https://orcid.org/0000-0003-1588-717X]

Decision letter and Author response
Decision letter [https://doi.org/10.7554/eLife.46850.038]
Author response [https://doi.org/10.7554/eLife.46850.039]

Additional files
Supplementary files
• Transparent reporting form
DOI: [https://doi.org/10.7554/eLife.46850.016]

Data availability
Structural models have been deposited in PDB under the accession codes 6OFX, 6OG7, 6OGF, 6OGG, 6OGI. Cryo-EM data have been deposited to EMDB under the accession codes EMD-20048, EMD-20052, EMD-20056, EMD-20057, EMD-20058.

The following datasets were generated:

Author(s)	Year	Dataset title	Dataset URL	Database and Identifier
Svidritskiy E, Demo G, Loveland AB, Xu C, Korostelev AA	2019	Non-rotated ribosome (Structure I)	http://www.rcsb.org/structure/6OFX	Protein Data Bank, 6OFX
Svidritskiy E, Demo G, Loveland AB, Xu C, Korostelev AA	2019	Non-rotated ribosome (Structure I)	https://www.ebi.ac.uk/pdbe/entry/emdb/EMD-20048	Electron Microscopy Data Bank, EMD-20048
Svidritskiy E, Demo G, Loveland AB, Xu C, Korostelev AA	2019	70S termination complex with RF2 bound to the UGA codon. Non-rotated ribosome with RF2 bound (Structure II)	http://www.rcsb.org/structure/6OG7	Protein Data Bank, 6OG7
Svidritskiy E, Demo G, Loveland AB, Xu C, Korostelev AA	2019	70S termination complex with RF2 bound to the UGA codon. Partially rotated ribosome with RF2 bound (Structure III)	http://www.rcsb.org/structure/6OGF	Protein Data Bank, 6OGF
Svidritskiy E, Demo G, Loveland AB, Xu C, Korostelev AA	2019	70S termination complex with the UGA stop codon. Rotated ribosome conformation (Structure)	http://www.rcsb.org/structure/6OGI	Protein Data Bank, 6OGI
Table 1

Svidritskiy E, Demo G, Loveland AB, Xu C, Korostelev AA	2019	70S termination complex with RF2 bound to the UGA codon. Rotated ribosome with RF2 bound (Structure IV)	http://www.rcsb.org/structure/6OGG	Protein Data Bank, 6OGG
Svidritskiy E, Demo G, Loveland AB, Xu C, Korostelev AA	2019	70S termination complex with RF2 bound to the UGA codon. Non-rotated ribosome with RF2 bound (Structure II)	https://www.ebi.ac.uk/pdbe/entry/emdb/EMD-20056	Electron Microscopy Data Bank, EMD-200 52
Svidritskiy E, Demo G, Loveland AB, Xu C, Korostelev AA	2019	70S termination complex with RF2 bound to the UGA codon. Partially rotated ribosome with RF2 bound (Structure III)	https://www.ebi.ac.uk/pdbe/entry/emdb/EMD-20057	Electron Microscopy Data Bank, EMD-200 56
Svidritskiy E, Demo G, Loveland AB, Xu C, Korostelev AA	2019	70S termination complex with RF2 bound to the UGA codon. Rotated ribosome with RF2 bound (Structure IV)	https://www.ebi.ac.uk/pdbe/entry/emdb/EMD-20058	Electron Microscopy Data Bank, EMD-200 58

References

Abeyrathne PD, Koh CS, Grant T, Grigorieff N, Korostelev AA. 2016. Ensemble cryo-EM uncovers inchworm-like translocation of a viral IRES through the ribosome. eLife 5:e14874. DOI: https://doi.org/10.7554/eLife.14874, PMID: 27159452

Adams PD, Grosse-Kunstleve RW, Hung LW, Iloerger TR, McCoy AJ, Moriarty NW, Read RJ, Sacchettini JC, Sauter NK, Terwilliger TC. 2002. PHENIX: building new software for automated crystallographic structure determination. Acta Crystallographica Section D Biological Crystallography 58:1948–1954. DOI: https://doi.org/10.1107/S0907444902016657, PMID: 12393927

Adams PD, Afonine PV, Bunkóczi G, Chen VB, Davis IW, Échsols N, Headd JJ, Hung LW, Kapral GJ, Grosse-Kunstleve RW, McCoy AJ, Moriarty NW, Oeffner R, Read RJ, Richardson DC, Richardson JS, Terwilliger TC, Zwart PH. 2010. PHENIX: a comprehensive Python-based system for macromolecular structure solution. Acta Crystallographica Section D Biological Crystallography 66:213–221. DOI: https://doi.org/10.1107/S0907444909052925, PMID: 20124702

Adio S, Sharma H, Senyushkina T, Karki P, Maracci C, Wohlgemuth I, Holtkamp W, Peske F, Rodnina MV. 2018. Dynamics of ribosomes and release factors during translation termination in E. coli. eLife 7:e34252. DOI: https://doi.org/10.7554/eLife.34252, PMID: 29889659

Agirrezabala X, Lei J, Brunelle JL, Ortiz-Meoz RF, Green R, Frank J. 2008. Visualization of the hybrid state of tRNA binding promoted by spontaneous ratcheting of the ribosome. Molecular Cell 32:190–197. DOI: https://doi.org/10.1016/j.molcel.2008.10.001, PMID: 18951087

Agirrezabala X, Liao HY, Schreiner E, Fu J, Ortiz-Meoz RF, Schulten K, Green R, Frank J. 2012. Structural characterization of mRNA-tRNA translocation intermediates. PNAS 109:6094–6099. DOI: https://doi.org/10.1073/pnas.1201288109, PMID: 22467828

Agrawal RK, Spahn CM, Penczek P, Grassucci RA, Nierhaus KH, Frank J. 2000. Visualization of tRNA movements on the Escherichia coli 70S ribosome during the elongation cycle. The Journal of Cell Biology 150:447–460. DOI: https://doi.org/10.1083/jcb.150.3.447, PMID: 10931859

Agrawal RK, Sharma MR, Kiel MC, Hirokawa G, Booth TM, Spahn CM, Grassucci RA, Kaji A, Frank J. 2004. Visualization of ribosome-recycling factor on the Escherichia coli 70S ribosome: functional implications. PNAS 101:8900–8905. DOI: https://doi.org/10.1073/pnas.0401904101, PMID: 15178758

Amort M, Wotzel B, Bakowska-Zywicka K, Erlacher MD, Micura R, Polacek N. 2007. An intact ribose moiety at 2A602 of 23S rRNA is key to trigger peptidyl-tRNA hydrolysis during translation termination. Nucleic Acids Research 35:5130–5140. DOI: https://doi.org/10.1093/nar/gkm539, PMID: 17660192

Borovinskaya MA, Pai RD, Zhang W, Schuwirth BS, Holton JM, Hirokawa G, Kaji H, Kaji A, Cate JH. 2007. Structural basis for aminoglycoside inhibition of bacterial ribosome recycling. Nature Structural & Molecular Biology 14:727–732. DOI: https://doi.org/10.1038/nsmb1271, PMID: 17660832

Bremer S, Stretton AO, Kaplan S. 1965. Genetic code: the ‘nonsense’ triplets for chain termination and their suppression. Nature 206:994–998. DOI: https://doi.org/10.1038/206994a0, PMID: 5320722

Bremer S, Barnett L, Katz ER, Crick FH. 1967. UGA: a third nonsense triplet in the genetic code. Nature 213:449–450. DOI: https://doi.org/10.1038/213449a0, PMID: 6032223

Brilot AF, Korostelev AA, Ermolenko DN, Grigorieff N. 2013. Structure of the ribosome with elongation factor G trapped in the pretranslocation state. PNAS 110:20994–20999. DOI: https://doi.org/10.1073/pnas.1311423110, PMID: 24324137
Brown A, Rathore S, Kimanius D, Aibara S, Bai XC, Rorbach J, Amunts A, Ramakrishnan V. 2017. Structures of the human mitochondrial ribosome in native states of assembly. Nature Structural & Molecular Biology 24:866–869. DOI: https://doi.org/10.1038/nsmb.3464, PMID: 28892042

Brünger AT. 2007. Version 1.2 of the crystallography and NMR system. Nature Protocols 2:2728–2733. DOI: https://doi.org/10.1038/nprot.2007.406, PMID: 18007608

Cammack KA, Wade HE. 1965. The sedimentation behaviour of ribonuclease-active and inactive ribosomes from Bacteria. Biochemical Journal 96:671–680. DOI: https://doi.org/10.1042/bj0960671, PMID: 5324303

Capecchi MR. 1967a. Polypeptide chain termination in vitro: isolation of a release factor. PNAS 58:1144–1151. DOI: https://doi.org/10.1073/pnas.58.3.1144, PMID: 5233840

Capecchi MR. 1967b. A rapid assay for polypeptide chain termination. Biochemical and Biophysical Research Communications 28:773–778. DOI: https://doi.org/10.1016/0006-291X(67)90384-1, PMID: 6061555

Casy W, Prater AR, Cornish PV. 2018. Operative binding of class I release factors and Yan stabilizes the ribosome in the nonrotated state. Biochemistry 57:1954–1966. DOI: https://doi.org/10.1021/acs.biochem.7b00824, PMID: 29499110

Chapman MS. 1995. Restrained real-space macromolecular atomic refinement using a new resolution-dependent electron-density function. Acta Crystallographica Section A Foundations of Crystallography 51:69–80. DOI: https://doi.org/10.1107/S0108767394007130

Chen VB, Arendall WB, Headd JJ, Keedy DA, Immormino RM, Kapral GJ, Murray LW, Richardson JS, Richardson DC. 2010. MolProbity: all-atom structure validation for macromolecular crystallography. Acta Crystallographica Section D Biological Crystallography 66:12–21. DOI: https://doi.org/10.1107/S0907444909042073, PMID: 20057044

Chen Y, Feng S, Kumar V, Ero R, Gao YG. 2013. Structure of EF-G-ribosome complex in a pretranslocation state. Nature Structural & Molecular Biology 20:1077–1084. DOI: https://doi.org/10.1038/nsmb.2645, PMID: 23912278

Cornish PV, Ermolenko DN, Noller HF, Ha T. 2008. Spontaneous intersubunit rotation in single ribosomes. Molecular Cell 30:578–588. DOI: https://doi.org/10.1016/j.molcel.2008.05.004, PMID: 18538656

DeLano WL. 2002. The PyMOL Molecular Graphics System. Palo Alto, CA, USA, DeLano Scientific.

Demo G, Svidritskiy E, Madireddy R, Diaz-Avalos R, Grant T, Grigorieff N, Sousa D, Korostevlev AA. 2017. Mechanism of ribosome rescue by ArfA and RF2. eLife 6:e23687. DOI: 10.7554/eLife.23687, PMID: 28300532

Dénes-Renqvist V, Engström A, Mora L, Heurgué-Hamard V, Buckingham R, Ehrenberg M. 2000. A post-translational modification in the GGQ motif of RF2 from Escherichia coli stimulates termination of translation. The EMBO Journal 19:6900–6907. DOI: https://doi.org/10.1093/emboj/19.24.6900, PMID: 11118225

Dunkle JA, Wang L, Feldman MB, Pulk A, Chen VB, Kapral GJ, Noeske J, Richardson JS, Blanchard SC, Cate JH. 2011. Structures of the bacterial ribosome in classical and hybrid states of tRNA binding. Science 332:981–984. DOI: https://doi.org/10.1126/science.1202692, PMID: 21596992

Dunkle JA, Cate JH. 2010. Ribosome structure and dynamics during translocation and termination. Annual Review of Biophysics 39:227–244. DOI: https://doi.org/10.1146/annurev.biophys.37.032807.125954, PMID: 20192776

Ermolenko DN, Majumdar ZK, Hickerson RP, Spiegel PC, Clegg RM, Noller HF. 2007. Observation of intersubunit movement of the ribosome in solution using FRET. Journal of Molecular Biology 370:530–540. DOI: https://doi.org/10.1016/j.jmb.2007.04.042, PMID: 17512008

Fischer N, Konevega AL, Wintermeyer W, Rodnina MV, Stark H. 2010. Ribosome dynamics and tRNA movement by time-resolved electron cryomicroscopy. Nature 466:329–333. DOI: https://doi.org/10.1038/nature09206, PMID: 20631791

Florin T, Maracci C, Graf M, Karki P, Klepacki D, Berninghausen O, Beckmann R, Vázquez-Laslop N, Wilson DN, Rodnina MV, Mankin AS. 2017. An antimicrobial peptide that inhibits translation by trapping release factors on the ribosome. Nature Structural & Molecular Biology 24:752–757. DOI: https://doi.org/10.1038/nsmb.3439, PMID: 28741611

Frank J, Agrawal RK. 2000. A ratchet-like inter-subunit reorganization of the ribosome during translocation. Nature 406:318–322. DOI: https://doi.org/10.1038/35018597, PMID: 10917535

Freistrauffer DV, Pavlov MY, MacDougall J, Buckingham RH, Ehrenberg M. 1997. Release factor RF3 in e.coli accelerates the dissociation of release factors RF1 and RF2 from the ribosome in a GTP-dependent manner. The EMBO Journal 16:4126–4133. DOI: https://doi.org/10.1093/emboj/16.13.4126, PMID: 9233821

Fu Z, Kaledhonkar S, Borg A, Sun M, Chen B, Grassucci RA, Ehrenberg M, Frank J. 2016. Key intermediates in ribosome recycling visualized by Time-Resolved cryoelectron microscopy. Structure 24:2092–2101. DOI: https://doi.org/10.1016/j.str.2016.09.014, PMID: 27818103

Fu Z, Indrisiunaite G, Kaledhonkar S, Shah B, Sun M, Chen B, Grassucci RA, Ehrenberg M, Frank J. 2018. The structural basis for release factor activation during translation termination revealed by time-resolved cryogenic electron microscopy. bioRxiv. DOI: https://doi.org/10.1101/biorx.2018.11.3090

Gao H, Zhou Z, Rawat U, Huang C, Bouakaz L, Wang C, Cheng Z, Liu Y, Zavialov A, Gursky R, Sanyal S, Ehrenberg M, Frank J, Song H. 2007. RF3 induces ribosomal conformational changes responsible for dissociation of class I release factors. Cell 129:929–941. DOI: https://doi.org/10.1016/j.cell.2007.03.050, PMID: 17540173

Gao YG, Selmer M, Dunham CM, Weixlbaumer A, Kelley AC, Ramakrishnan V. 2009. The structure of the ribosome with elongation factor G trapped in the posttranslational state. Science 326:694–699. DOI: https://doi.org/10.1126/science.1179709, PMID: 19833919
Structure of the Escherichia coli ribosomal termination complex with release factor 2. Journal of Molecular Biology. 2019;434(1):1848–1860. DOI: https://doi.org/10.1016/j.jmb.2019.01.007

James NR, Brown A, Gordiienko Y, Ramakrishnan V. 2016. Translational termination without a stop Codon. Science 354:1437–1440. DOI: https://doi.org/10.1126/science.aad1277

Klaholz BP, Pape T, Zavialov AV, Myasnikov AG, Orlova EV, Vestergaard B, Ehrenberg M, van Heel M. 2003. Structure of the Escherichia coli ribosomal termination complex formed with release factor 2. Nature 421:90–94. DOI: https://doi.org/10.1038/nature01225

Korostelev A, Bertram R, Chapman MS. 2002. Simulated-annealing real-space refinement as a tool in model building. Acta Crystallographica Section D Biological Crystallography 58:761–767. DOI: https://doi.org/10.1107/S090744490203402

Korostelev A, Trakhanov S, Lauberg M, Noller HF. 2006. Crystal structure of a 70S ribosome-tRNA complex reveals functional interactions and rearrangements. Cell 126:1065–1077. DOI: https://doi.org/10.1016/j.cell.2006.08.032

Korostelev A, Asahara H, Lancaster L, Lauberg M, Hirschi A, Zhu J, Trakhanov S, Scott WG, Noller HF. 2008. Crystal structure of a translation termination complex formed with release factor RF2. PNAS 105:19684–19689. DOI: https://doi.org/10.1073/pnas.080953105

Korostelev A, Zhu J, Asahara H, Noller HF. 2010. Recognition of the amber UAG stop Codon by release factor RF1. The EMBO Journal 29:2577–2585. DOI: https://doi.org/10.1038/emboj.2010.139

Korostelev AA. 2011. Structural aspects of translation termination on the ribosome. RNA 17:1409–1421. DOI: https://doi.org/10.1261/rna.2733411

Koutmou KS, McDonald ME, Brunelle JL, Green R. 2014. RF3:gtp promotes rapid dissociation of the class 1 termination factor. RNA 20:609–620. DOI: https://doi.org/10.1261/rna.042523.113

Kremer JR, Mastronarde DN, McIntosh JR. 1996. Computer visualization of three-dimensional image data using IMOD. Journal of Structural Biology 116:71–76. DOI: https://doi.org/10.1006/jsbi.1996.0013

Kuhlenkoetter S, Wintermeyer W, Rodnina MV. 2011. Different substrate-dependent transition states in the active site of the ribosome. Nature 476:351–354. DOI: https://doi.org/10.1038/nature10247

Lancaster L, Noller HF. 2005. Involvement of 16S rRNA nucleotides G1338 and A1339 in discrimination of initiator tRNA. Molecular Cell 20:623–632. DOI: https://doi.org/10.1016/j.molcel.2005.10.006

Laurberg M, Asahara H, Korostelev A, Zhu J, Trakhanov S, Noller HF. 2008. Structural basis for translation termination on the 70S ribosome. Nature 454:852–857. DOI: https://doi.org/10.1038/nature07115

Leipe DD, Wolf YI, Koonin EV, Aravind L. 2002. Classification and evolution of P-loop GTPases and related ATPases. Journal of Molecular Biology 317:41–72. DOI: https://doi.org/10.1006/jmbi.2001.5378

Ling C, Ermolenko DN. 2016. Structural insights into ribosome translocation. Wiley Interdisciplinary Reviews: RNA 7:620–636. DOI: https://doi.org/10.1002/wrna.1354

Loveland AB, Domon G, Grigorieff N, Korostelev AA. 2017. Ensemble cryo-EM elucidates the mechanism of translation fidelity. Nature 546:113–117. DOI: https://doi.org/10.1038/nature22397

Loveland AB, Korostelev AA. 2018. Structural dynamics of protein S1 on the 70S ribosome visualized by ensemble cryo-EM. Methods 137:55–66. DOI: https://doi.org/10.1016/j.ymeth.2017.12.004

Svidritskiy et al. eLife 2019;8:e46850. DOI: https://doi.org/10.7554/eLife.46850

16 of 18
et al. 2019. A cryo-electron microscopic study of ribosome-bound termination factor RF2. Nature Structural & Molecular Biology 21:787–793. DOI: https://doi.org/10.1038/s41594-018-0041-x

Svidritskiy et al. eLife 2019;8:e46850. DOI: https://doi.org/10.7554/eLife.46850
Scheres SH, Gao H, Valle M, Herman GT, Eggermont PP, Frank J, Carazo JM. 2007. Disentangling conformational states of macromolecules in 3D-EM through likelihood optimization. Nature Methods 4:27–29. DOI: https://doi.org/10.1038/nmeth992, PMID: 17179934
Scheres SH. 2010. Classification of structural heterogeneity by maximum-likelihood methods. Methods in Enzymology 482:295–320. DOI: https://doi.org/10.1016/S0076-6879(10)82012-9, PMID: 20888966
Scolnick E, Tompkins R, Caskey T, Nirenberg M. 1968. Release factors differing in specificity for terminator codons. PNAS 61:768–774. DOI: https://doi.org/10.1073/pnas.61.2.768, PMID: 4879404
Selmer M, Dunham CM, Murphy FV, Weixlbaumer A, Petry S, Kelley AC, Weir JR, Ramakrishnan V. 2006. Structure of the 70S ribosome complexed with mRNA and tRNA. Science 313:1935–1942. DOI: https://doi.org/10.1126/science.11311127, PMID: 16959973
Shi X, Joseph S. 2016. Mechanism of translation termination: rf1 dissociation follows dissociation of RF3 from the ribosome. Biochemistry 55:6344–6354. DOI: https://doi.org/10.1021/acs.biochem.6b00921, PMID: 27779391
Shin DH, Brandsen J, Jancair J, Yokota H, Kim R, Kim SH. 2004. Structural analyses of peptide release factor 1 from Thermotoga maritima reveal domain flexibility required for its interaction with the ribosome. Journal of Molecular Biology 341:227–239. DOI: https://doi.org/10.1016/j.jmb.2004.05.055, PMID: 15312775
Sternberg SH, Fei J, Prywes N, McGrath KA, Gonzalez RL. 2009. Translation factors direct intrinsic ribosome dynamics during translation termination and ribosome recycling. Nature Structural & Molecular Biology 16:861–868. DOI: https://doi.org/10.1038/nsmb.1622, PMID: 19597483
Svidritskiy E, Briot AF, Koh CS, Grigorieff N, Korostelev AA. 2014. Structures of yeast 80S ribosome-tRNA complexes in the rotated and nonrotated conformations. Structure 22:1210–1218. DOI: https://doi.org/10.1016/j.str.2014.06.003, PMID: 25043550
Svidritskiy E, Madireddy R, Korostelev AA. 2016. Structural basis for translation termination on a pseudouridylated stop Codon. Journal of Molecular Biology 428:2228–2236. DOI: https://doi.org/10.1016/j.jmb.2016.04.018, PMID: 27107638
Svidritskiy E, Demo G, Korostelev AA. 2018. Mechanism of premature translation termination on a sense Codon. Journal of Biological Chemistry 293:12472–12479. DOI: https://doi.org/10.1074/jbc.AW118.003232, PMID: 29941456
Svidritskiy E, Korostelev AA. 2018a. Conformational control of translation termination on the 70S ribosome. Structure 26:821–828. DOI: https://doi.org/10.1016/j.str.2018.04.001, PMID: 29731232
Svidritskiy E, Korostelev AA. 2018b. Mechanism of inhibition of translation termination by blasticidin S. Journal of Molecular Biology 430:591–593. DOI: https://doi.org/10.1016/j.jmb.2018.01.007, PMID: 29366636
Tompkins RK, Scolnick EM, Caskey CT. 1970. Peptide chain termination. VII. The ribosomal and release factor requirements for peptide release. PNAS 65:702–708. DOI: https://doi.org/10.1073/pnas.65.3.702, PMID: 4910855
Tourigny DS, Fernández IS, Kelley AC, Ramakrishnan V. 2013. Elongation factor G bound to the ribosome in an intermediate state of translation. Science 340:1235490. DOI: https://doi.org/10.1126/science.1235490, PMID: 23812720
Trapp K, Joseph S. 2016. Ribosome induces a closed to open conformational change in release factor 1. Journal of Molecular Biology 428:1333–1344. DOI: https://doi.org/10.1016/j.jmb.2016.01.021, PMID: 26827724
Vestergaard B, Van LB, Andersen GR, Nyborg J, Buckingham RH, Kjeldgaard M. 2001. Bacterial polypeptide release factor RF2 is structurally distinct from eukaryotic eRF1. Molecular Cell 8:1375–1382. DOI: https://doi.org/10.1016/S1097-2765(01)00415-4, PMID: 11779511
Weixlbaumer A, Jin H, Neubauer C, Voorhees RM, Petry S, Kelley AC, Ramakrishnan V. 2008. Insights into translational termination from the structure of RF2 bound to the ribosome. Science 322:953–956. DOI: https://doi.org/10.1126/science.1164840, PMID: 18988853
Youngman EM, McDonald ME, Green R. 2008. Peptide release on the ribosome: mechanism and implications for translational control. Annual Review of Microbiology 62:353–373. DOI: https://doi.org/10.1146/annurev.micro.61.080706.093323, PMID: 18544041
Zavialov AV, Mora L, Buckingham RH, Ehrenberg M. 2002. Release of peptide promoted by the GGQ motif of class 1 release factors regulates the GTPase activity of RF3. Molecular Cell 10:789–798. DOI: https://doi.org/10.1016/S1097-2765(02)00691-3, PMID: 12419223
Zeng F, Jin H. 2018. Conformation of methylated GGQ in the peptidyl transferase center during translation termination. Scientific Reports 8:2349. DOI: https://doi.org/10.1038/s41598-018-20107-8, PMID: 29403017
Zhou J, Lancaster L, Trakhanov S, Noller HF. 2012. Crystal structure of release factor RF3 trapped in the GTP state on a rotated conformation of the ribosome. RNA 18:230–240. DOI: https://doi.org/10.1261/rna.031187.111, PMID: 22187675
Zhou J, Lancaster L, Donohue JP, Noller HF. 2013. Crystal structures of EF-G-ribosome complexes trapped in intermediate states of translation. Science 340:1236086. DOI: https://doi.org/10.1126/science.1236086, PMID: 23812722
Zoldák G, Redecke L, Svergun DI, Konarev PV, Voerters CS, Dobbek H, Sedláček E, Sprinzl M. 2007. Release factors 2 from Escherichia coli and Thermus thermophilus: structural, spectroscopic and microcalorimetric studies. Nucleic Acids Research 35:1343–1353. DOI: https://doi.org/10.1093/nar/gkl696, PMID: 17272297