How sex and age affect immune responses, susceptibility to infections, and response to vaccination

Carmen Giefing-Kröll, Peter Berger, Günter Lepperdinger and Beatrix Grubeck-Loebenstein

Institute for Biomedical Aging Research of Innsbruck University, Innsbruck, Austria

Summary
Do men die young and sick, or do women live long and healthy? By trying to explain the sexual dimorphism in life expectancy, both biological and environmental aspects are presently being addressed. Besides age-related changes, both the immune and the endocrine system exhibit significant sex-specific differences. This review deals with the aging immune system and its interplay with sex steroid hormones. Together, they impact on the etiopathology of many infectious diseases, which are still the major causes of morbidity and mortality in people at old age. Among men, susceptibilities toward many infectious diseases and the corresponding mortality rates are higher. Responses to various types of vaccination are often higher among women thereby also mounting stronger humoral responses. Women appear immune-privileged. The major sex steroid hormones exhibit opposing effects on cells of both the adaptive and the innate immune system: estradiol being mainly enhancing, testosterone by and large suppressive. However, levels of sex hormones change with age. At menopause transition, dropping estradiol potentially enhances immunosenescence effects posing postmenopausal women at additional, yet specific risks. Conclusively during aging, interventions, which distinctively consider the changing level of individual hormones, shall provide potent options in maintaining optimal immune functions.

Key words: hormone replacement; immunosenescence; infectious diseases; menopause; sex differences; vaccination.

Introduction
A paradoxical situation between aging male and female is evident in particular regarding health status and the corresponding survival rates (Oksuzyan et al., 2008). Women exhibit significantly higher life expectancies, while frequently experiencing disabilities earlier in life (Van Oyen et al., 2013). Independent of age, death rates due to cancer, heart disease, accidents, influenza, or pneumonia are significantly higher in men (Austad, 2006). Here, major contributors appear to be lifestyle differences: smoking accounts for ~60% of gender-specific mortality in Europe, alcohol abuse for ~30% (McCartney et al., 2011), followed by risk-taking and seeking and complying with medical therapies (Oksuzyan et al., 2008). Besides that, major biological determinants of the sexual dimorphism in longevity are X chromosome diploidy, as well as distinct differences in immune and hormone responses (Vina et al., 2005; Austad, 2006; Oksuzyan et al., 2008), the latter both showing consistent changes with aging.

Women carry two X chromosomes. The X chromosome expresses several genes implicated in immunological processes, such as Toll-like receptors, multiple cytokine receptors, genes involved in T-cell and B-cell activity, and transcriptional and translational regulatory factors (Fish, 2008), while in turn the Y chromosome encodes for a number of inflammatory pathway genes, which are exclusively expressed in men (Flanagan, 2014). Most alleles on one X chromosome are randomly silenced during X chromosome inactivation already during embryogenesis. Polymorphism of X-linked genes and cellular mosaicism for X-linked parental alleles may offer additional advantages to women during host responses, in particular by providing a more adaptive and balanced cellular machinery during innate immune responses (Spolarics, 2007; Libert et al., 2010). Here, we therefore reviewed the current consistent knowledge on aging and sex-dimorphic susceptibility to infectious diseases and vaccination response in the context of changing levels of sex steroid hormones.

Sexual dimorphic susceptibility to infectious diseases
Sex-specific infection and mortality rates have been documented in humans (Table 1). This sexual dimorphism commences already during intrauterine development, for example, a male fetus experiencing a chronic inflammatory environment primarily being induced by the maternal immune system in the male placenta via decidual sites yet also likely due to a higher gestational infection rate of male placenta [(Goldenberg et al., 2006), reviewed in detail in (Clifton, 2010)]. Later in life very probably due to socioeconomic behavior, such as higher pathogen exposure during agricultural or occupational activities, men are more susceptible to many infections caused by viruses, bacteria, parasites, and fungi. They are significantly more predisposed especially to environmental and vector-borne diseases such as leptospirosis (3.5- to 4-fold increased incidence), schistosomiasis (1.5-fold), brucellosis, or rabies (Corbel, 2006; Guerra-Silveira & Abad-Franch, 2013). Albeit at comparable exposure levels, men exhibit higher incidence rates for leishmaniasis (2.5- to 3.5-fold increased incidence), pulmonary tuberculosis (2- to 3-fold), and hepatitis A (1.4-fold), again surmising the role of distinct biological differences (Guerra-Silveira & Abad-Franch, 2013). Similarly, premenopausal women succumb less often to meningococcal or pneumococcal infections. Testosterone exerts immune suppressive effects thereby increasing the severity of malaria, leishmaniasis, amebiasis, and tuberculosis, while at the same time supporting the clearance of toxoplasmosis (Bernin & Lotter, 2014; Nhamoyebonde & Leslie, 2014).
Table 1 Sex specificity in infectious disease incidence and mortality

Pathogen	Disease Incidence/Infection	Disease severity/mortality	References			
	Adult	Elderly	Adult	Elderly		
Person-to-person	MeaslesV	F = M*	F = M*	F > M*	F = M*	Garenne (1994) and Lozano et al. (2012)
	SARSV	F = M*	F = M*	M > F*	M > F*	WHO (2007)
	Pneumococcal diseaseB	M > F**	M > F**	M > F*	F = M*	Scott et al. (1996), Sleeman et al. (2001), Gannon et al. (2004), Gutierrez et al. (2006), and Lozano et al. (2012)
	Meningococcal meningitisB	M > F*	F > M*	M > F*	F = M*	Rosenstein et al. (1999), Leimkugel et al. (2007), Cohn et al. (2010), Lozano et al. (2012), Guerra-Silveira & Abad-Franch (2013) and Klimanic et al. (2007)
	Hemophillus diseaseB	F > M*	F > M*	M > F*	M > F*	Deacon (1924), Vitek et al. (1999), Dittmann et al. (2000), Magder et al. (2000), Nekrasova et al. (2000) and Wagner et al. (2012)
	DiphtheriaB	F > M**	—	F > M*	—	Dauer (1942), Cherry (1984), Hellenbrand et al. (2009), Eshima et al. (2012) and McGinness et al. (2013)
	PertussisB	F > M***	F > M***	F > M*	—	Holmes et al. (1998), Neyrolles & Quintana-Murci (2009), Lozano et al. (2012), Guerra-Silveira & Abad-Franch (2013) and Nhambuyebonde & Leslie (2014)
	Pulmonary TuberculosisB	M > F***	M > F***	M > F*	M > F***	WHO (2003), Quinn & Overbaugh (2005), Lozano et al. (2012) and Addio & Altfeld (2014)
Blood & body fluids	HIVV	F > M*	F = M*	F > M*	M > F*	Fleming et al. (1997)
	Herpes simplex 2V	F > M*	F > M*	—	—	Baig (2009) and Lozano et al. (2012)
	Hepatitis BV	M > F*	M > F*	M > F*	M > F*	Alter et al. (1999), Villa et al. (2011), Lozano et al. (2012) and Baden et al. (2014)
	Hepatitis CV	M > F*	M > F*	M > F*	F = M**	Lozano et al. (2012) and Guerra-Silveira & Abad-Franch (2013)
		M > F***	M > F***	M > F*	M > F***	Zhaung et al. (1991), Aggarwal et al. (2002), Lewis et al. (2008), Lozano et al. (2012) and Zhu et al. (2014)
		M > F***	M > F***	M > F*	M > F***	Lozano et al. (2012) and Guerra-Silveira & Abad-Franch (2013)
Food/water-borne		M > F*	F = M*	M > F*	M > F*	Frank et al. (2011) and Eshima et al. (2012)
		M > F**	M > F**	—	—	Klein et al. (2011)
		M > F***	M > F***	M > F*	M > F***	Lozano et al. (2012) and Song et al. (2014)
		Salmonella typhiB	F = M*	F = M*	M > F*	DCB (2003, 2011), Lozano et al. (2012) and Fillia et al. (2013)
		EHECB	F > M*	M > M*	F > M*	CDC (2003, 2011), Lozano et al. (2012) and Fillia et al. (2013)
Vector-borne		RabiesB	M > F*	M > F*	M > F*	Corbel (2006)
		HantavirusB	F > M*	F > M*	F > M*	Guerra-Silveira & Abad-Franch (2013)
		LeptospirosisB	M > F*	F = M*	—	—
Environmental		ToxoplasmosisO	F = M*	F = M*	F > M*	Roberts et al. (2001), Klein (2004) and Bernin & Lotter (2014)
		MalariaO	F = M*	F = M*	M > F*	Roberts et al. (2001), Klein (2004), Lozano et al. (2012) and Bernin & Lotter (2014)
		SchistosomiasisO	M > F*	M > F*	F = M*	Webster et al. (1997), Klein (2004), Lozano et al. (2012) and Guerra-Silveira & Abad-Franch (2013)

Diseases were grouped according to most frequent route of infection: person-to-person by droplet infection, contact with infected blood or body fluids, consumption of contaminated food or water, and transmission through vectors, soil, or animals. Nature of the infecting pathogen is designated by (V) virus, (B) bacterium, and (O) other pathogen. Sex differences are highlighted in different colors: blue: higher frequency in male (M); red: higher frequency in the female population (F); and gray: no difference; (−), no information available. Adult age group: 20–59 years, elderly: 60 years and older. Significance of the sex bias is indicated by asterisk: (*) Literature indicates trend toward increased vulnerability of one sex (limited number of studies), (**) significant evidence from literature for sex bias, (***) strong and highly significant evidence from literature for sex bias. Infectious diseases where data on sex bias are controversial are not listed. References with mortality data only are underlined, with incidence only in italics.

In contrast, sexually transmitted diseases occur more frequently and severely in women during their reproductive years supposedly due to behavior, sex-related mechanisms in reproduction and sex-specific steroid hormone levels (Rakasz & Lynch, 2002). The susceptibility to certain genital tract infections is further increased when applying oral contraceptives (Mohljake et al., 2006). Once infected with HIV, progression toward AIDS was found to be faster in women (Meier et al., 2009; Addio & Altfeld, 2014). Variant incidence rates and severity regarding herpes zoster in women remain controversial (Thomas & Hall, 2004; Yawn & Gilden, 2013). Influenza shows a sex-biased incidence, yet besides elusive countrywise discrepancies, also strainwise differences remain to be resolved. Notably, however, men seem to be more affected by seasonal influenza (Lozano et al., 2012; Quandelacy et al., 2014), whereas premenopausal women succumb more often to pandemic strains (Serfung et al., 1967; Klein et al., 2010b,c; Klein et al., 2012). In cases of measles, toxoplasmosis, dengue, or hantavirus infections,
incidence rates are not sex-biased. However, disease outcome was significantly worse in women, especially during reproductive years suggesting a decisive role for gonadal sex hormones (Garenne, 1994; Roberts et al., 2001; Klein et al., 2011; Guerra-Silveira & Abad-Franch, 2013). In women, elevated production of pro-inflammatory cytokines and chemokines correlated with higher morbidity and mortality due to influenza infections (Klein et al., 2012). Again in women with ‘Escherichia-coli-O104:H4-associated-hemolytic-uremic-syndrome’, the humoral response was found stronger leading to detrimental effects most likely due to the overwhelming production of pathogenic antibodies (Frank et al., 2011; Greinacher et al., 2011).

It is well known that the aging process affects sexual dimorphism regarding immunocompetence and disease susceptibility. Aging women lose their immunological advantage. Particularly, they show increased susceptibility and mortality with respect to hepatitis, meningococcal, or pneumococcal infections (Table 1). Protective effects of estrogen are thought to enable premenopausal women to clear the hepatitis C virus and thus progress slower to the disease than age-matched men. After menopause, these sex differences were lost and treatment efficacy was severely decreased (Khattab & Elsam, 2012; Baden et al., 2014). Notably, however, immune-pathological effects may also decrease after menopause, for example, in severe forms of dengue and influenza (Klein et al., 2012; Guerra-Silveira & Abad-Franch, 2013).

Sex steroid hormones modulate immunocompetence

The immune system comprises innate and adaptive defense strategies. Innate immunity is the first line of defense and recognizes microbe-specific structures triggering phagocytosis, cell lysis, and secretion of cytokines. The latter stimulates an adaptive cellular immune response, which by means of cytokine secretion and antibody production specifically eradicates pathogens and infected cells.

Already in 1898, a potential link between sex hormones and the immune system has been proposed by Calzoari. He recognized changes in the thymus after castration (Calzoari, 1898). More observations along these lines were described later on: women have more CD4+ T cells (Amadori et al., 1995) and higher levels of circulating immunoglobulins (Ig), in particular IgM (Butterworth et al., 1967; Rhodes et al., 1969; Grundbacher, 1972). Also, women suffer more often from autoimmune diseases (Jacobson et al., 1997; Whitacre et al., 1999). Sex steroid hormones are thought to contribute to differences in humoral and cellular responses to infection and vaccination in men and women (Cook, 2008).

Gonadal hormones exert specific effects on the male and female immunocompetence at both the cellular and the molecular level (Fig. 1A). Estrogen receptors are expressed in most cells of the innate and adaptive immune system including T cells, B cells, neutrophils, macrophages, dendritic cells (DC), and natural killer (NK) cells (Fish, 2008). Androgen receptors were identified in T and B lymphocytes. During pregnancy, activated lymphocytes also express progesterone receptors (Bouman et al., 2005).

Estrogens affect innate immune cells. Estrogens at levels of ovulatory phase or pregnancy suppress cytotoxicity of NK cells (Hao et al., 2007). Notably, macrophages treated in vitro with estradiol showed decreased secretion of the proinflammatory cytokines interleukin (IL)-1β, IL-6, and tumor necrosis factor (TNF)-α (Kramer et al., 2004), whereas long-term in vivo administration led to increased secretion of IL-1β, IL-6, and IL-12p40 after Toll-like receptor (TLR) 4 activation and eventually an enhanced activation status (Calippe et al., 2008). In vitro monocytes produce more IL-1β, IL-12, and TNF-α (Bouman et al., 2005; Gonzalez et al., 2010). Estradiol increases the anti-inflammatory and decreases the chemotactic activity of neutrophils (Ashcroft et al., 1999). Estrogen receptor signaling also regulates lineage development of DCs (Sellet et al., 2013). High estradiol levels promote the development of conventional IL-12-producing DCs and the expansion of IFN-γ-producing killer DCs. In addition, production of IL-6, IL-8, and chemokine (C-C motif) ligand 2 (CCL2) by immature DCs is increased (reviewed in Fish, 2008). In plasmacytoid DCs, the production of type 1 interferons (IFN) is enhanced in response to viral or exogenous nucleic acids via TLR7 and TLR9 (Sellet et al., 2012), whereas progesterone downregulates TLR9-mediated IFN-α production in response to viral infections potentially increasing a woman's risk for HIV and herpes simplex virus (HSV) (Hughes et al., 2008). In innate immune cells, testosterone decreases while estradiol increases the expression of TLR4 (Rettew et al., 2008, 2009).

Both estrogens and androgens reduce the numbers of immature T lymphocytes enhancing thymic involution during puberty and pregnancy (Tannriverdi et al., 2003; Olsen & Kovacs, 2011). Also adaptive immunity differs between men and women (Fig. 1A): Androgens stimulate the development of Th1 responses and activate CD8+ T cells, whereas estrogens stimulate Th2 responses and activate antibody production (Giron-Gonzalez et al., 2000; Fish, 2008; Gonzalez et al., 2010). In women at reproductive age compared to age-matched men, the CD4+/CD8+ ratio is significantly increased (Seli & Anici, 2002). Low estrogen levels are paralleled by an increased expression of the transcription factor T-bet (T-box expressed in T cells), which in due course shifts the balance toward Th1 immunity and IFN-γ expression. High estrogen levels inhibit IRF1 (interferon regulatory factor 1) favoring Th2 immunity and IL-4 expression (Fish, 2008). This distinct shift from Th1 toward Th2 as well as the activity of regulatory T cells is enhanced by high progesterone levels during pregnancy, often leading to autoimmune disease remission yet also an elevated susceptibility toward certain infectious diseases, for example, influenza or malaria (Klein et al., 2010a; Razos et al., 2012).

Partially controversial results were reported regarding hormonal effects on the cytokine secretion pattern of T lymphocytes (reviewed in Bouman et al., 2005; Straub, 2007; Gonzalez et al., 2010; Oertelt-Prigione, 2012). Interestingly, no effects of sex steroid hormones on IL-4 and IL-10 production could be found so far. Data on the secretion of IFN-γ and IL-2 are conflicting (Bouman et al., 2005; Straub, 2007; Oertelt-Prigione, 2012). Naive CD4+ T cells from women proliferated faster while producing more IFN-γ and less IL-17A compared to male T cells; this sex-specific cytokine imbalance was mediated by androgens (Zhang et al., 2012). Significantly, more regulatory T cells were found during the menstrual cycle when estrogen levels are high (Arruvito et al., 2007). Estrogen levels also play a role in T-cell homing, by enhancing the expression of chemokine receptors CCR1 and CCR5 in CD4+ cells (Yung et al., 1997; Mo et al., 2005). Testosterone increases IL-10 production, and men with androgen deficiencies have higher levels of IL-1β, IL-2, TNF-α, antibody titers, and CD4+/CD8+ T-cell ratios (Klein et al., 2010a).

Sex steroid hormones also modulate B-cell development and function (Fig. 1A, reviewed in Sakiani et al., 2013). Estrogens and androgens suppress B lymphopoiesis in the bone marrow. Estradiol reduces apoptosis of immature B cells and thus increases the emergence of autoreactive B cells from central and peripheral checkpoints. However, estradiol also increases somatic hypermutation and class-switch recombination leading to high-affinity Ig-producing cells. These effects might contribute to an improved humoral response in women and explain the increased susceptibility to autoimmune diseases. In contrast to estrogens, progesterone suppresses somatic
hypermutation and class-switch recombination (Sakiani et al., 2013). In the presence of androgens, apoptosis of immature B cells was enhanced and efficient class-switch recombination was inhibited, potentially limiting IgM to IgG conversion but also the pathogenicity of autoimmune reactions (Klein et al., 2010b; Sakiani et al., 2013).

Estrogens also exhibit indirect effects on the immune system by modulating the levels of growth hormone, prolactin, or thymosin. Besides that, it is generally accepted that sex steroid hormones influence lifespan and healthy life expectancy also through other pathways (reviewed in Regan & Partridge, 2013).

Thus, the general paradigm on sex steroid hormones influencing the immune system stipulates that estrogens have immune-enhancing effects. In contrast, progesterone and androgens such as testosterone exert mainly immunosuppressive properties.

Age and sex-specific changes of the immune system

The immune as well as the endocrine system experiences profound changes with aging, thereby increasing the susceptibility to infectious diseases (Gavazzi & Krause, 2002) and decreasing the efficacy of vaccination (Grubeck-Loebenstein et al., 1998). Immunosenesceose impacts on the function of the innate as well as the adaptive immune system (reviewed in Panda et al., 2009; Ademokun et al., 2010; Agrawal & Gupta, 2011; Arnold et al., 2011; Mahbub et al., 2011; Weinberger & Grubeck-Loebenstein, 2012; Scholz et al., 2013). The functional capacity of innate immune cells declines. A diminished phagocytic capacity of DCs also leads to impaired antigen presentation and activation of the adaptive immune system. Involution of the thymus decreases the output of naive T cells, and antigen-experienced T cells

© 2015 The Authors. Aging Cell published by the Anatomical Society and John Wiley & Sons Ltd.
accumulate constricting the T-cell repertoire. Highly differentiated effector T cells produce more pro-inflammatory cytokines, which together with activated innate immune cells contribute to a systemic pro-inflammatory milieu in older age. Thus, developing specific vaccines and adjuvant immunization strategies appears imperative to ensure healthy aging (Boraschi et al., 2013).

Both men and women at advancing age exhibit reduced abilities to mount appropriate antibody responses especially toward new antigens. So far, sex-specific differences in the aging immune system and the effect of declining estrogen and progesterone levels on immunosenescence are poorly understood. At menopause, estradiol production in the ovaries ceases. Thereafter, only basal levels of progesterone are being synthesized by the adrenal glands. In aged women, dehydroepiandrosterone (DHEA) and testosterone levels decrease, yet follicle-stimulating hormone (FSH) and luteinizing hormone (LH) levels rise from the 4th decade onwards (Al-Azzawi & Palacios, 2009). In men, there is a slower yet steady decline in testosterone levels from their 2nd to 8th decade of life displaying no clear turning point (Bhasin et al., 2011). In turn, estradiol, estrone, LH, and FSH gradually increase (Morley et al., 1997; Jasuja et al., 2013).

The menopause has a distinct impact on the female immune system (Fig. 1B). Postmenopausal women exhibit a reduced number of total lymphocytes, mainly B and CD4+ T lymphocytes (Giglio et al., 1994). Similarly, after surgical menopause, the CD4+/CD8+ ratio and the numbers of circulating B cells are decreasing, while NK cells are increasing (Kumru et al., 2004). Pronounced endocrine changes alter the expression of inflammatory mediators thereby elevating plasma IL-1β, IL-6, IL-10, and TNF-α with menopause (Deguchi et al., 2001; Kamada et al., 2001a; Vural et al., 2006; Yasiu et al., 2007). After a transient rise in postmenopausal women, IFN-γ levels gradually decrease with age. Yet the production of IL-10 increases during the postmenopausal period (Deguchi et al., 2001).

Functional aspects of age/sex-specific differences of the immune system and its interplay with changing sex steroid hormone levels have not been investigated extensively (Fig. 1B). Transcriptomic analysis of peripheral mononuclear blood cells of young and elderly individuals revealed that significantly more pathways were altered in women than men in particular highlighting lower T-cell defense and more inflammation in female seniors (Marttila et al., 2013). Women of reproductive age were shown to have significantly higher CD4+ T-cell and lower NK-cell counts, and at older ages, postmenopause reference ranges were comparable for both sexes (Jentsch-Ullrich et al., 2005). Yet another study showed age-related changes in lymphocyte subsets suggesting a faster progression of immunosenescence in men with a more pronounced decline of T cells including naïve CD4+ T-cell and lower NK-cell counts, and at older ages, postmenopause reference ranges were comparable for both sexes (Marttila et al., 2013). Age-related alterations in T-cell cytokine secretion were also described to be sex specific, as IFN-γ and IL-17 secretion were decreased in elderly men after in vitro stimulation but not in women (Goetzl et al., 2010). IL-10 secretion was increased in elderly women but not in men (Pietschmann et al., 2003).

Hormone replacement therapy (HRT) in women showed beneficial effects on the immune system, as menopause-related immunological changes were partly reversed (Fig. 1B). Estrogens especially increased B-lymphocyte numbers and decreased pro-inflammatory cytokine production (Kamada et al., 2000, 2001b; Porter et al., 2001). Baseline elevated IL-6 levels were significantly decreased, also was the production of IL-6 in stimulated PBMCs (Berg et al., 2002; Saucedo et al., 2002). Estradiol HRT reversed the postmenopausal increase in NK-cell activity (Albrecht et al., 1996) and reduced LPS-induced TNF-α production in monocytes (Aune et al., 1995). HRT also resulted in a significant reduction in plasma TNF-α and IL-1β levels (Vural et al., 2006) and IL-10 production (Deguchi et al., 2001). Yet the effect of estradiol on the increased secretion of Type 2 vs. Type 1 cytokines remains controversial (Kumru et al., 2008; Xia et al., 2009). Potential effects of testosterone replacement therapy on the immune system have not been addressed systematically. Its beneficial effects in elderly, in particular frail men, remain unclear as well as the risk of adverse events (Spitzer et al., 2013).

Age-related changes in sex steroid levels enhance immunosenescence-related alterations. In women, this can be partially reversed by HRT.

Vaccine efficacy in men and women: is the sex bias maintained after menopause?

Sex-specific responses to distinct vaccines have been reported, unfortunately however solely in a minority of trials. Vaccination success in women, similar to stronger humoral and cellular responses after infection, is thought to be mediated through the action of sex steroid hormones (Cook, 2008). Based on 57 studies that actually stratified data according to sex, 54 of these studies reported clear vaccination side effects (Cook, 2009). Still large comprehensive data sets assessing sex-specific responses to vaccination are scarce, influenza vaccination being the sole exception. Before 1977, the FDA prohibited women in childbearing age to participate in phase 1 and 2 clinical trials, very probably this being still the reason why more or exclusively men are being enrolled. Since 1993, gendered analyses are required; however, reported data are sex-stratified only in rare cases (Simon, 2005; Geller et al., 2011).

In vaccinated adults, sex-related differences have been observed in immunogenicity and clinical effectiveness for influenza (Wang et al., 2002; Cook et al., 2006; Hui et al., 2006; Couch et al., 2007; Nichol et al., 2007; Engler et al., 2008; Falsey et al., 2009; Klein et al., 2010c, 2012; Talaat et al., 2010; Khurana et al., 2012; Furman et al., 2014), pneumococcal polysaccharide (Sankilampi et al., 1996; Wagner et al., 2003; Brandao et al., 2004; Cook et al., 2007; Goldblatt et al., 2009; Soneji & Metlay, 2011; Wiemken et al., 2014), hepatitis A and B (reviewed in Cook, 2008; Klein et al., 2010a), tetanus (Marvell & Parish, 1940), diphtheria (Hasselhorn et al., 1997), measles (Green et al., 1994), meningococcal (Edwards et al., 2008; Krasnicka, 2010), yellow fever (Monath et al., 2002; Pfister et al., 2005; Veit et al., 2009), rabies (Briggs et al., 2000; Banga et al., 2014), smallpox (Kennedy et al., 2009), Venezuelan equine encephalitis (Pittman et al., 1996), brucella (Rhodes et al., 1969), and HSV2 vaccine (Corey et al., 1999; Stanberry et al., 2002). Yet distinct documentation on sex-specific responses in probands of advanced age is extremely scarce. Those studies which have disclosed information on, or, specifically tackled coverage, adverse events, immunogenicity, and effectiveness are listed in Table 2.

Despite higher morbidity and mortality during influenza pandemics, women actually show a better response to influenza vaccination, in particular by mounting higher levels of neutralizing antibodies (Wang et al., 2002; Cook et al., 2006; Nichol et al., 2007; Engler et al., 2008; Falsey et al., 2009; Klein et al., 2012; Furman et al., 2014). However, side effects were significantly more frequent in female vaccinees (Cook et al., 2006; Engler et al., 2008; Cook, 2009; Klein et al., 2012) perhaps due to a concomitant high expression of inflammatory cytokines (Furman et al., 2014). Women being vaccinated with half doses had geometric mean titers comparable to men having received a full dose (Engler et al., 2008), and men with high testosterone levels mounted...
Target	Vaccination rate*	Adverse reactions§	Antibody titers§ (Seroprotection)	Antibody titers§ (postvaccination)	Efficacy§	References					
	Adult	Elderly									
Influenza	F = M*	F = M*	F > M*	F > M***	F > M*	F > M*	F > M***	F > M***	–	F ≥ M*	Govaert et al. (1993)*, Beyer et al. (1996)*, Nichol et al. (1996)*, Jackson et al. (2000)*, Rixen et al. (2004)*, Chor et al. (2009)*, Cook et al. (2006)*, Hui et al. (2006)*, Couch et al. (2007)*, Nichol et al. (2007)*, Cook (2008)*, Engler et al. (2008)*, Klein et al. (2010a)*, Fauser et al. (2009)*, Schwazinger et al. (2010)*, Talaat et al. (2010)*, Booij et al. (2011)*, Annunziata et al. (2012)*, Hoschler et al. (2012)*, Khurana et al. (2012)*, Klein et al. (2012)*, Poehlmoeller & Schmitz (2013)*, Furer et al. (2014)* and Klein & Pekosz (2014)*.
Pneumococcus	F ≥ M*	F ≥ M*	F > M*	F > M***	F > M*	F > M*	–	—	—	F = M*	Santi et al. (1996)*, Wagner et al. (2003)*, Brandao et al. (2004)*, Sočan et al. (2004)*, Cook et al. (2007)*, Simelli et al. (2008)*, Goldblatt et al. (2008)*, Sonnej & Metlay (2011)*, Annunziata et al. (2012)*, Poehlmoeller & Schmitz (2013)* and Wiemken et al. (2014)*.
Tetanus	M > F*	M > F*	F > M*	F > M***	M > F*	M > F*	–	—	—	—	Marvei & Parish (1940)*, White et al. (1973)*, Gergen et al. (1995)*, Stark et al. (1999)*, Sheh et al. (2000)*, Bayes et al. (2001)*, Hainz et al. (2005)*, Bitzer et al. (2009)*, Poehlmoeller & Schmitz (2013)* and Weinberger et al. (2013)*.
Diphtheria	F > M*	F > M*	F > M*	F > M***	M > F*	M > F*	M > F*	F > M*	–	—	Hasselhorn et al. (1997)*, Stark et al. (1999)*, Marovits et al. (2000)*, Bayes et al. (2001)*, Pichichero et al. (2005)*, V zeitke et al. (2006)*, Bitzer et al. (2009), Poehlmoeller & Schmitz (2013)* and Weinberger et al. (2013)*.
Hepatitis A	F = M*	F = M*	F > M*	–	–	–	F > M***	F = M*	–	—	Sandman et al. (1995)*, Chen et al. (1997)*, Tanaka et al. (1997)*, Reutter et al. (1998)*, Wolters et al. (2003)*, Höfler et al. (2007)*, Cook (2008)*, Cook (2009)*, Klein et al. (2010a)*, Annunziata et al. (2012)*, Poehlmoeller & Schmitz (2013)*.
Hepatitis B	F > M*	F > M*	F > M*	–	–	–	F > M***	F = M*	–	—	Morris et al. (1989)*, Denice et al. (1992)*, Reutter et al. (1998)*, Wolters et al. (2003)*, Höfler et al. (2007)*, Cook (2008)*, Cook (2009)*, Klein et al. (2010a)*, Annunziata et al. (2012)*, Poehlmoeller & Schmitz (2013)* and Vermeiren et al. (2013)*.
Only approved vaccines where sex-specific differences were analyzed also in the elderly are listed, vaccines with no information on immune response or efficacy in the elderly were excluded. Sex differences are highlighted in different colors: blue: higher levels in men; red: higher levels in women; gray: no significant difference. Adult age group: 20–59 years, elderly: 60 years and older. (M) male; (F) female; (–), no information available. Significance of the sex bias is indicated by asterisk: (*) Literature indicates trend toward increased vulnerability of one sex (limited number of studies), (**) significant evidence from literature for sex bias, (***) strong and highly significant evidence from literature for sex bias. References are marked depending on the data derived from the following: a, vaccination coverage; b, adverse reaction; c, antibody titers independent of vaccination status; d, antibody titers postvaccination; e, efficacy.

lower titers of neutralizing antibody suggesting a immunosuppressive role for testosterone in menopausal levels confirming a higher level of sexuality in women independent of estrogen contraceptive use compared to men, before and after HRT (Engelmann et al., 2008; Pennock et al., 2014; Wilkerson et al., 2014).

Women are more susceptible to HSV2 (Table 1). A recombinant glycoprotein D vaccine yielded a 38–42% efficacy in HSV1 seronegative women, yet was not efficacious at all in men and in HSV1 seropositive women (Stanberry et al., 2002). Studies in mice showed that estradiol increases the efficacy of HSV2 vaccine (Pennock et al., 2009). Women also react stronger to hepatitis B vaccination as 5% men after age 29 were nonresponders, whereas women only dropped to this level after age 43, yet exhibiting no actual advantage after menopause (Vermeiren et al., 2013).

Women are generally immune-privileged. Yet in some exceptions, men are better protected, for example, against diphtheria and tetanus (Table 1). This correlates with higher levels of seroprotection (Table 2). In this context, military immunizations and higher rates of injury with consecutive immunization in men are considered decisive (Gergen et al., 1995; Volzke et al., 2006). Protective antitetanus titers were found in 60% of men aged 70+ with a history of military service compared to 20–30% of not serving men and < 20% in women (Gergen et al., 1995). Diphtheria vaccination failed twice as often in women and results in significantly lower antibody titers (Hasselhorn et al., 1997). Yet prior to the introduction of common diphtheria vaccination, more boys than girls suffered from diphtheria, which interestingly reversed after puberty (Deacon, 1924).

In this context, also the type of antigen used for vaccination appears crucial. Naturally acquired immunity primarily provided by antipneumococcus protein-specific antibodies knows no sex difference during ages below 65. Interestingly, in women below 65, the titers of polysaccharide-specific antibodies were significantly higher (P < 0.05). Later in life this difference vanishes, and now, aged men had statistically significantly higher levels against the major surface proteins PspA and CbpA (P < 0.05) (Simell et al., 2008). Notably, vaccination with a pneumococcal polysaccharide vaccine (PPV23) mounted significantly (up to 30%) higher antibody levels in men of advanced ages (Sankilampi et al., 1996; Brando et al., 2004; Goldblatt et al., 2009).

DHEA failed as a vaccination adjuvant in human trials (reviewed in Hazeldine et al., 2010). Despite that, HRT based on estrogens may increase responsiveness in elderly women as vaccination studies performed during different phases of the ovarian cycle in younger individuals showed significantly higher efficacy in line with high estrogen levels. Cholera vaccination during the follicular phase of the menstrual cycle was superior (Kozlowski et al., 2002). Also data from animal studies support the assumption that HRT may improve vaccine effectiveness. Vaccination of ovariectomized rhesus macaques was characterized by an increased frequency of terminally differentiated CD4+ effector memory T cells and inflammatory cytokine-secreting memory T cells as well as a reduction in T-cell cytokine and IgG production. This could be partly reversed by HRT (Engelmann et al., 2011). Estradiol also improved the efficacy of a vaccine against genital herpes in mice (Bhavanam et al., 2008; Pennock et al., 2009). The combination of estradiol and influenza vaccination induced neutralizing antibody titers in ovariectomized mice comparable to intact mice (Nguyen et al., 2011).

Conclusion and future perspectives

Specific immune responses differ in aging men and women (Table 3). Besides genetic factors, these differences can be explained through the greatly divergent and changing levels of sex steroid hormones and their interplay with the immune system. Estrogens promote while androgens suppress immune responses during infections, after vaccination or in case of autoimmunity. On these grounds, men are more susceptible against many taxa, while female suffer more from diseases with enhanced immunopathological impact. Studies on how aging affects these sex-related differences in immunity are rare. Based on epidemiological data, women appear to lose their immunological advantage after menopause. To what degree hormonal levels are effective in this context needs to be assessed in more detail. Data from animal studies suggest effects of HRT on vaccine efficacy, again requiring more careful evaluations in humans. Women at high estrogen levels commonly mount a stronger humoral response. This effect could however not be

| Table 3 Summary on how sex and age affect immune responses, susceptibility to infections, and response to vaccination |
|----|----|
| Sex/Gender bias in infectious disease susceptibility: | Sex steroid hormones modulate the immune system: |
| • Many infectious diseases: increased infection/mortality rates in men vs. women | • Estrogens largely immunoenhancing effects |
| • Few exceptions, for example, sexually transmitted diseases | • Androgens and progesterone mainly immunosuppressive effects |
| • Some infectious diseases same incidence but more severe in women, for example, measles, toxoplasmosis, dengue, hantavirus (immunopathology) | • Effects of gonadal steroid hormones documented for adaptive (CD4+, B cells) and innate cells (NK, macrophages, DC) |
| • Aging partially alters sex bias → contribution of hormones | • Cytokine secretion is affected |
| | • Gonadal hormones influence the Th balance |
| | • Estrogens enhance the production of high-affinity Ig |

Sexual dimorphism in immunosenescence:

| • Immune and endocrine system change with age |
| • Aging of the immune system differs in men and women |
| • Menopause in particular has a strong impact on the female immune system |
| • HRT partially reverses immune aging effects back to pre-menopausal levels confirming the influence of hormones |

Sex/Gender bias in vaccination:

| • Immune responses to some vaccines differ between men and women |
| • Often stronger humoral responses in women, for example, influenza, hepatitis B |
| • But also stronger responses in men, for example, pneumococcal polysaccharide vaccine |
| • Aging partially alters sex bias → contribution of hormones |
| • Animal models: HRT reverses vaccine efficacy back to premenopausal levels |
generalized for any vaccine type. Therefore, further improvement of vaccination response may be feasible in postmenopausal women as well as aging men. To date, most vaccines have been tested and adjusted in male probands. Hence, efforts in individualizing dosing and vaccination schedules may achieve enhanced protection and reduction of side effects in women. Although current clinical trials are sex-matched, sex-specific evaluations are rarely disclosed despite being highly desirable.

In summary, the gender gap in life and healthy life expectancy stems from gender and sex-related differences. Both have to be addressed to achieve a longer and healthier life in humans: (i) behavioral factors related to rate of infection need to be altered thereby increasing vaccination coverage and booster immunizations, (ii) composition and dosing of vaccines need to be adjusted to comply with sex-specific differences in immunity, and (iii) preclinical data warrant human trials on combining short-term HRT with vaccinations to improve vaccine efficacy.

Search strategy and selection criteria

The data presented in this review were compiled by searches of PubMed, the clinicaltrial.gov registry, Cochrane, FDA, and EMEA databases from November 2013 to September 2014 using the search terms (alone or in combination) 'menopause', 'immunosenescence', 'sex or gender', 'immune system', 'estrogen or estradiol', 'testosterone', 'androgen', 'progesterone', 'sex hormone', 'women', 'hormone replacement therapy', 'vaccine or vaccination', 'sex difference', 'influenza', 'pneumococcus', 'herpes zoster or varicella', 'hepatitis', 'herpes simplex', 'tetanus', 'diphtheria', 'pertussis', 'encephalitis', 'vaccination rate or coverage', 'adverse reactions', 'seroprevalence or seroprotection', 'antibody or vaccination', 'sex difference', 'influenza', 'pneumococcal'{'math'}, 'immune system', 'estrogen or estradiol', 'testosterone', 'androgen', 'combination' 'menopause', 'immunosenescence', 'sex or gender', 'behavioral factors', 'rate of infection', 'vaccination coverage', 'booster immunizations', 'preclinical data', 'human trials', 'combining short-term HRT with vaccinations', 'improve vaccine efficacy' and 'gender gap in life and healthy life expectancy'.

Funding

This work was supported by the European Union’s Seventh Framework Program MOPACT (‘Mobilizing the potential of active aging in Europe’; FP7-SSH-2012-1 grant agreement no. 320333).

Conflict of interest

None declared.

References

Addo MM, Atfield M (2014) Sex-based differences in HIV type 1 pathogenesis. J. Infect. Dis. 209(Suppl 3), S86–S92.

Ademokun A, Wu YC, Dunn-Walters D (2010) The ageing B cell population: composition and function. Biogerontology 11, 125–137.

Aggarwal R, Kumar R, Pal R, Naik S, Semwal SN, Naik SR (2002) Role of travel as a risk factor for hepatitis E virus infection in a disease-endemic area. Indian J. Gastroenterol. 21, 14–18.

Agrawal A, Gupta S (2011) Impact of aging on dendritic cell functions in humans. Ageing Res. Rev. 10, 336–345.

Al-Azzawi F, Palacios S (2009) Hormonal changes during menopause. Maturitas 63, 135–137.

Albrecht AE, Hartmann BW, Schooten C, Huber JC, Kalinovska W, Zielinski CC (1996) Effect of estrogen replacement therapy on natural killer cell activity in postmenopausal women. Maturitas 25, 217–222.

Altner MJ, Kruzson-Moran D, Nainov OV, McQuillan GM, Gao F, Moyer LA, Kaslow RA, Margolis HS (1999) The prevalence of hepatitis C virus infection in the United States, 1988 through 1994. N. Engl. J. Med. 341, 556–562.

Annunziata K, Rak A, Del Buono H, Dibonaventura M, Krishnarajah G (2012) Vaccination rates among the general adult population and high-risk groups in the United States. PLoS ONE 7, e50553.

Arnold CR, Wolf J, Brunner S, Hemrdl-Brandstetter D, Grubeck-Loebenstein B (2011) Gain and loss of T cell subsets in old age--age-related reshaping of the T cell repertoire. J. Clin. Immunol. 31, 137–146.

Arruivo L, Sanz M, Banham AH, Fainboim L (2007) Expansion of CD4+CD25+ and FoxP3+ regulatory T cells during the follicular phase of the menstrual cycle: implications for human reproduction. J. Immunol. 178, 2572–2578.

Ashcroft GS, Greenwell-Wild T, Horan MA, Wahl SM, Ferguson MW (1999) Topical estrogen accelerates cutaneous wound healing in aged humans associated with an altered inflammatory response. Am. J. Pathol. 155, 1137–1146.

Aube B, Oian P, Omso I, Osterud B (1995) Hormone replacement therapy reduces the reactivity of monocytes and platelets in whole blood—a beneficial effect on atherogenesis and thrombus formation? Am. J. Obstet. Gynecol. 173, 1816–1820.

Austad SN (2006) Why women live longer than men: sex differences in longevity. Genol. Med. 3, 79–92.

Baden R, Rockstroh JK, Buti M (2014) Natural history and management of hepatitis C: does sex play a role? J. Infect. Dis. 209(Suppl 3), S81–S85.

Baig S (2009) Gender disparity in infections of Hepatitis B virus. J. Coll. Physicians Surg. Pak. 19, 598–600.

Bang A, Guas P, Banga A, Rosenman KD (2014) Incidence and variables associated with inadequate antibody titers after pre-exposure rabies vaccination among veterinary medical students. Vaccine 32, 979–983.

Bayas JM, Villela A, Bertran MJ, Vidal J, Batalia J, Asenjo MA, Salleras LL (2001) Immunogenicity and reactogenicity of the adult tetanus-diphtheria vaccine. How many doses are necessary? Epidemiol. Infect. 127, 451–460.

Berg G, Ekerfelt C, Hammar M, Lindgren R, Matthiesen L, Ernerudh J (2002) Cytokine changes in postmenopausal women treated with estrogens: a placebo-controlled study. Am. J. Reprod. Immunol. 48, 63–69.

Bernin H, Lotter H (2014) Sex bias in the outcome of human tropical infectious diseases: influence of steroid hormones. J. Infect. Dis. 209(Suppl 3), S107–S113.

Beyer WE, Palache AM, Kerstens R,Musarello M (1996) Gender differences in local and systemic reactions to inactivated influenza vaccine, established by a meta-analysis of fourteen independent studies. Eur. J. Clin. Microbiol. Infect. Dis. 15, 65–70.

Bhasin S, Pencina M, Jassau GK, Travison TG, Coviello A, Orwoll E, Wang PY, Nielson C, Wu F, Tajar A, Labrie F, Vesper H, Zhang A, Ulloro J, Singh R, D’Agostino R, Vasan RS (2011) Reference ranges for testosterone in men generated using liquid chromatography tandem mass spectrometry in a community-based sample of healthy nonobese young men in the Framingham Heart Study and applied to three geographically distinct cohorts. J. Clin. Endocrinol. Metab. 96, 2430–2439.

Bhanavan S, Snider DP, Kausch C (2008) Intranasal and subcutaneous immunization under the effect of estradiol leads to better protection against genital HSV-2 challenge compared to progesterone. Vaccine 26, 6165–6172.

Blatter M, Friedland LR, Weston WM, Li P, Rowe B (2009) Immunogenicity and safety of a tetanus toxoid, reduced diphtheria toxoid and three-component acellular pertussis vaccine in adults 19–64 years of age. Vaccine 27, 765–772.

Boozy R, Khandaker G, Heron LG, Yin J, Doyle B, Tudo KK, Hueston L, Gilbert GL, Macintyre CR, Dwyer DE (2011) Cross-reacting antibodies against the pandemic (H1N1) 2009 influenza virus in older Australians. Med. J. Aust. 194, 19–23.

Boraschi D, Aguado MT, Dutel C, Goronzy J, Louis J, Grubeck-Loebenstein B, Miossec P, Chieco-Bianchi L (1995) Genetic control of the CD4/CD8 T-cell ratio in humans. J. Immunol. 155, 1816–1820.

Bouman A, Heineman MJ, Faas MM (2005) Sex hormones and the immune response in humans. Hum. Reprod. Update 11, 411–423.

Brandao AP, de Oliveira TC, de Curto Brandileone MC, Goncalves J, Yara TL, Simonsen V (2004) Persistence of antibody response to pneumococcal capsular polysaccharides in vaccinated long term-care residents in Brazil. Vaccine 23, 762–768.

Briggs DJ, Dreesen DW, Nicolay U, Chin JE, Davis R, Gordon C, Banzhoff A (2000) Purified Chick Embryo Cell Culture Rabies Vaccine: interchangeability with Human Diploid Cell Culture Rabies Vaccine and comparison of one versus two-dose post-exposure booster regimen for previously immunized persons. Vaccine 19, 1055–1060.
Butterworth M, McClellan B, Allansmith M (1967) Influence of sex in immunoglobulin levels. Nature 214, 1224–1225.

Calipp B, Daumin-Einhard V, Laffargue M, Laurell H, Rana-Poussine V, Pipy B, Guery JC, Bayard F, Arnal JF, Gourdy P (2008) Chronic estradiol administration in vivo promotes the proinflammatory response of macrophages to TH4 activation: involvement of the phosphatidylinositol 3-kinase pathway. J. Immunol. 180, 7980–7988.

Calzoari A (1898) Recherches experimentales sur un rapport probable entre la fonction du thymus et celle de testicules. Arch. ital. Biol. 30, 71–77.

CDC (2003) Tetanus surveillance—United States, 1998–2000. MMWR 52, 1–8 (No. SS-3).

CDC (2011) Tetanus surveillance—United States, 2001–2008. MMWR 60, 365–369.

Chen XQ, Bulbul M, de Gast GC, van Loon AM, Nalnin DR, van Hattum J (1997) Immunogenicity of two versus three injections of inactivated hepatitis A vaccine in adults. J. Hepatol. 26, 260–264.

Cherry JD (1984) The epidemiology of pertussis and pertussis immunization in the United Kingdom and the United States: a comparative study. Curr. Probl. Pediatr. 14, 1–78.

Chor JSY, Ngai KL, Goggins WB, Wong MCS, Wong SYS, Lee N, Leung T-f, Rainer TH, Griffiths S, Chan PKS (2009) Willingness of Hong Kong Healthcare Workers to Accept Pre-Pandemic Influenza Vaccination at Different WHO Alert Levels: Two Questionnaire Surveys. BMJ 339:b339.

Clifton VL (2010) Review: Sex and the human placenta: mediating differential strategies of fetal growth and survival. Placenta 31(Suppl), S33–S39.

Cohn AC, MacNeil JR, Harrison LH, Hatcher C, Theodore J, Schmidt M, Pondo T, Arnold KE, Baumbach J, Bennett N, Craig AS, Farley M, Gershman K, Petit S, Lynfield R, Reingold A, Schaffer W, Shutt KA, Zell ER, Mayer LW, Clark T, Stephens D, Messonnier NE (2010) Changes in Neisseria meningitidis disease epidemiology in the United States, 1996–2007: implications for prevention of meningococcal disease. Clin. Infect. Dis. 50, 184–191.

Cook IF (2008) Sexual dimorphism of humoral immunity with human vaccines. Vaccine 26, 3551–3555.

Cook IF (2009) Sex differences in injection site reactions with human vaccines. Hum. Vaccines 5, 441–449.

Cook IF, Barr I, Hartel G, Pond D, Hampson AW (2006) Reactogenicity and Chor JSY, Ngai KL, Goggins WB, Wong MCS, Wong SYS, Lee N, Leung T-f, Rainer TH, Griffiths S, Chan PKS (2009) Willingness of Hong Kong Healthcare Workers to Accept Pre-Pandemic Influenza Vaccination at Different WHO Alert Levels: Two Questionnaire Surveys. BMJ 339:b339.

Deacon WJ (1924) A study of the incidence, mortality and fatality of diphtheria. J. Inf. Dis. 26, 167–171.

Dittmann S, Wharton M, Vitek C, Ciotti M, Galazka A, Guichard S, Hardy I, Kartoglu K, Koyama Y, Kresyler J, Martin B, Mercer D, Ramse T, Rouge C, Steinglass R, Strebel P, Sutter R, Trosstie M (2000) Successful control of epidemic diphtheria in the States of the Former Union of Soviet Socialist Republics: lessons learned. J. Infect. Dis. 181, 510–522.

Dworkin MS, Park L, Borchardt SM (2007) The changing epidemiology of invasive Haemophilus influenzae Disease, Especially in Persons >65 Years Old. Clin. Infect. Dis. 44, 810–816.

Edwards KM, Burns VE, Adkins AE, Carroll D, Drayson M, Ring C (2008) Meningococcal A vaccination response is enhanced by acute stress in men. Nat. Med. 14, 2405–2414.

Engelmann F, Barron A, Urbanski H, Neuringer M, Kohama SG, Park B, Messaudoi I (2011) Accelerated immune meniscus and reduced response to vaccination in ovariectomized female rhesus macaques. Age 33, 275–289.

Engler RJ, Nelson MR, Klote MM, VanRaden MJ, Huang CY, Cox NJ, Klimov A, Keitel WA, Nicholson KL, Carr WW, Treanor JJ (2008) Half- vs full-dose trivalent inactivated influenza vaccine (2004–2005): age, dose, and sex effects on immune responses. Arch. Intern. Med. 168, 2405–2414.

Eshina N, Tokumaru O, Hara S, Bacal K, Korematsu S, Karukaya S, Uruma K, Okabe N, Matsuishi T (2012) Age-specific sex-related differences in infections: a statistical analysis of national surveillance data in Japan. PLoS ONE 7, e42261.

Faux NR, Treanor JJ, Torneporth N, Capellan J, Gorse GJ (2009) Randomized, double-blind controlled phase 3 trial comparing the immunogenicity of high-dose and standard-dose influenza vaccine in adults 65 years of age and older. J. Infect. Dis. 200, 172–180.

Filia A, Bella A, von Hultonstein C, Pinto A, Alfarenne G, Dechill S, Rota MC (2013) Tetanus in Italy 2001–2010: a continuing threat in older adults. Vaccine 32, 639–644.

Fish EN (2008) The X-files in immunity: sex-based differences predispose immune responses. Nat. Rev. Immunol. 8, 737–747.

Flanagan KL (2014) Sexual dimorphism in biomedical research: a call to analyse by sex. Trans. R. Soc. Trop. Med. Hyg. 108, 385–387.

Fleming DT, McQuillan GM, Johnson RE, Nahmias AJ, Lee FK, St Louis ME (1997) Herpes simplex virus type 2 in the United States, 1976 to 1994. N. Engl. J. Med. 337, 1105–1111.

Frank C, Werder D, Cramer JP, Asgar M, Faber M, an der Heiden M, Bernard H, Fruth A, Prager R, Spode A, Wadl M, Zouafaly A, Jordan S, Kemper MJ, Follin P, Muller L, King LA, Rosner B, Buchholz U, Stark K, Krause G, Team HUSI (2011) Epidemiologic profile of Shiga-toxin-producing Escherichia coli O104:H4 outbreak in Germany. N. Engl. J. Med. 365, 1760–1765.

Furman D, Højbjerg BP, Simon N, Jovic V, Dekker CL, Thiebaut R, Tibshirani RJ, Davis MM (2014) Systems analysis of sex differences reveals an immunosuppressive role for testosterone in the response to influenza vaccination. Proc. Natl Acad. Sci. USA 111, 869–874.

Gannon C, Pasquale M, Tracy JK, McCracher RJ, Napolitano LM (2004) Male gender is associated with increased risk for postinjury pneumonia. Shock 21, 410–414.

Garenne M (1994) Sex differences in measles mortality: a world review. Int. J. Epidemiol. 23, 632–642.

Gavazzi G, Krause KH (2002) Ageing and infection. Lancet Infect. Dis. 2, 659–666.

Geller SE, Koch A, Pellettiere B, Carnes M (2011) Inclusion, analysis, and reporting of sex and race/ethnicity in clinical trials: have we made progress? J. Womens Health (2002) 20, 315–320.

Gergen PJ, McQuillan GM, Kiley M, Ezzati-Rice TM, Sutter RW, Virella G (1995) A population-based serologic survey of immunity to tetanus in the United States. N. Engl. J. Med. 332, 761–766.

Gligo T, Immo MA, Filaci G, Scudeletti M, Puppo F, De Cecco L, Indiveri F, Costantini S (1994) Immune cell cycling subsets are affected by gonadal function. Life Sci. 54, 1305–1312.

Giron-Gonzalez JA, Moral FJ, Elvira J, Garcia-Gil D, Guerrero F, Gavilan I, Escobar L (2000) Consistent production of a higher TH1:TH2 cytokine ratio by stimulated T cells in men compared with women. Eur. J. Endocrinol. 143, 31–36.

Goetzl EJ, Huang MC, Kon J, Patel K, Schwartz JB, Fast K, Ferrucci L, Madara K, Taub DD, Longo DL (2010) Gender specificity of altered human immune cytokine profiles in aging. FASEB J. 24, 3580–3589.

Goldblatt D, Southern J, Andrews N, Ashton L, Burbidge P, Woodgate S, Pebody R, Miller E (2009) The immunogenicity of 7-valent pneumococcal conjugate vaccine versus 23-valent polysaccharide vaccine in adults aged 50-80 years. Clin. Infect. Dis. 49, 1318–1325.

Goldenberg RL, Andrews WW, Faye-Petersen OM, Goeppert AR, Cliver SP, Hauth JC (2006) The Alabama Preterm Birth Study: intrauterine infection and placental histologic findings in preterm births of males and females less than 32 weeks. Am. J. Obstet. Gynecol. 195, 1533–1537.

Gonzalez DA, Diaz BB, Rodriguez Perez Mdcl C, Hernandez AG, Chico BN, de Leon AG (2010) Sex hormones and autoimmunity. Immunol. Lett. 133, 6–13.

Govaert TM, Dinant GJ, Aretz K, Maurel N, Sprenger MJ, Knotterius JA (1993) Adverse reactions to influenza vaccine in elderly people: randomised double blind placebo controlled trial. BMJ 307, 988–990.
How sex and old age affect immune responses, C. Giefing-Kr

Green MS, Shohat T, Lerman Y, Cohen D, Slepov RN, Duvedevi P, Varano N, Dagan R, Mendelson E (1994) Sex differences in the humoral antibody response to live measles vaccine in young adults. Int. J. Epidemiol. 23, 1078–1081.

Greinerach A, Friesecke A, Abel P, Dressel A, Stracke S, Fiene M, Ernst F, Seleng K, Weiessenborn K, Schmidt BMW, Schiffer M, Felix SB, Lerch MM, Kieler JT, Mayerle J (2011) Treatment of severe neurological deficits with Ig depletion through immunoadsorption in patients with Escherichia coli O104:H4-associated haemolytic uraemic syndrome: a prospective trial. Lancet 378, 1166–1177.

Grubeck-Loebenstein B, Berger P, Saarwein-Teissl M, Zisterer K, Wick G (1998) No immunity for the elderly. Nat. Med. 4, 870.

Grumbach FJ (1972) Human X chromosome carries quantitative genes for immunoglobulin M. Science 176, 311–312.

Guerra-Silveira F, Abad-Franch F (2013) Sex bias in infectious disease epidemiology: patterns and processes. PLoS ONE 8, e62390.

Gutierrez F, Masa M, Mirete C, Soldan B, Rodriguez JC, Padilla S, Hernandez L, Royo G, Martin-Hidalgo A (2006) The influence of age and gender on the population-based incidence of community-acquired pneumonia caused by different microbial pathogens. J. Infect. 53, 166–174.

Hainz U, Jennewein B, Asch P, Pfeiffer KP, Berger P, Grubeck-Loebenstein B (2005) Insufficient protection for healthy elderly adults by tetanus and TBE vaccines. Vaccine 23, 3232–3235.

Hao S, Zhao J, Zhou Y, Hao Y (2007) Modulation of 17β-estradiol on the number and cytotoxicity of NK cells in vivo related to MCM and activating receptors. Int. Immunopharmacol. 7, 1765–1775.

Hasselhorn HM, Nubling T, Miller F, Hofmann F (1997) [Diphtheria booster immunization for adults]. Dtsh. Med. Wochenschr. (1946) 122, 281–286.

Hazelidine A, Aht W, Lord JN (2010) Dehydroepiandrosterone as a regulator of immune cell function. J. Steroid Biochem. Mol. Biol. 120, 127–136.

Hellenbrand W, Beier D, Jensen E, Littmann M, Meyer C, Oppermann H, Wirsing K (2007) Kamada M, Irahara M, Maegawa M, Yasui T, Takeji T, Yamada M, Tezuka M, Jasuja GK, Travison TG, Davda M, Murabito JM, Basaria S, Zhang A, Kushnir MM, Hao S, Zhao J, Zhou J, Zhao S, Hu Y, Hou Y (2007) Modulation of 17β-estradiol on the number and cytotoxicity of NK cells in vivo related to MCM and activating receptors. Int. Immunopharmacol. 7, 1765–1775.

Jackson LA, Austin G, Chen RT, Stout R, DeStefano F, Gorse GJ, Newman FK, Yu On (2008) The number and cytotoxicity of NK cells in vivo related to MCM and activating receptors. Int. Immunopharmacol. 7, 1765–1775.

Kamada M, Irahara M, Maegawa M, Yasui T, Yamano S, Yamada M, Tezuka M, Kasai Y, Deguchi K, Ohnoyi Y, Aono T (2001b) B cell subsets in postmenopausal women and the effect of hormone replacement therapy. Maturitas 37, 173–179.

Kamada M, Irahara M, Maegawa M, Yasui T, Yamano S, Yamada M, Tezuka M, Kasai Y, Deguchi K, Ohnoyi Y, Aono T (2001b) B cell subsets in postmenopausal women and the effect of hormone replacement therapy. Maturitas 37, 173–179.

Kamada M, Irahara M, Maegawa M, Yasui T, Yamano S, Yamada M, Tezuka M, Kasai Y, Deguchi K, Ohnoyi Y, Aono T (2001b) B cell subsets in postmenopausal women and the effect of hormone replacement therapy. Maturitas 37, 173–179.

Kamada M, Irahara M, Maegawa M, Yasui T, Yamano S, Yamada M, Tezuka M, Kasai Y, Deguchi K, Ohnoyi Y, Aono T (2001b) B cell subsets in postmenopausal women and the effect of hormone replacement therapy. Maturitas 37, 173–179.

Kamada M, Irahara M, Maegawa M, Yasui T, Yamano S, Yamada M, Tezuka M, Kasai Y, Deguchi K, Ohnoyi Y, Aono T (2001b) B cell subsets in postmenopausal women and the effect of hormone replacement therapy. Maturitas 37, 173–179.

Kamada M, Irahara M, Maegawa M, Yasui T, Yamano S, Yamada M, Tezuka M, Kasai Y, Deguchi K, Ohnoyi Y, Aono T (2001b) B cell subsets in postmenopausal women and the effect of hormone replacement therapy. Maturitas 37, 173–179.

Kamada M, Irahara M, Maegawa M, Yasui T, Yamano S, Yamada M, Tezuka M, Kasai Y, Deguchi K, Ohnoyi Y, Aono T (2001b) B cell subsets in postmenopausal women and the effect of hormone replacement therapy. Maturitas 37, 173–179.

Kamada M, Irahara M, Maegawa M, Yasui T, Yamano S, Yamada M, Tezuka M, Kasai Y, Deguchi K, Ohnoyi Y, Aono T (2001b) B cell subsets in postmenopausal women and the effect of hormone replacement therapy. Maturitas 37, 173–179.
Morley JE, Kaiser FE, Perry III HM, Patrick P, Morley PMK, Stauber PM, Vellas B, Nichol KL, Margolis KL, Lind A, Murdoch M, McFadden R, Hauge M, Magnan S, Nhamoyebonde S, Leslie A (2014) Biological differences between the sexes and
Mohllajee AP, Curtis KM, Martins SL, Peterson HB (2006) Hormonal contraceptive
Marvell DM, Parish HJ (1940) Tetanus prophylaxis and circulating antitoxin in men
ª
Metabolism
luteinizing hormone, and follicle-stimulating hormone in healthy older men.
5
working adults: a randomized, placebo-controlled trial.
Drake M (1996) Side effects associated with influenza vaccination in healthy
4
immunoinesence: causes and consequences for immunity in old age. Trends Immunol. 30, 325–333.
Pazos M, Sperling RS, Moran TM, Kraus TA (2012) The influence of pregnancy on systemic immunity. Immunol. Res. 54, 254–261.
Pennock JW, Stiegall R, Bell B, Vargas G, Motamedi M, Milligan G, Bourne N (2009)
Estradiol improves genital herpes vaccine efficacy in mice. Vaccine 27, 5830–5836.
Pfister M, Kunsteiner O, Hilfiker H, Favre D, Durrer P, Ennaji A, L’Age-Stehr J, Kaufhold A, Herzog C (2005) Immunogenicity and safety of BENA-YF compared with two other 17D yellow fever vaccines in a phase 3 clinical trial. Am. J. Trop. Med. Hyg. 72, 339–346.
Pichichero ME, Rennels MB, Edwards KM, Blatter MM, Marshall GS, Bologa W, Wang E, Mills E (2005) Combined tetanus, diphtheria, and 5-component pertussis vaccine for use in adolescents and adults. JAMA 293, 3003–3011.
Poethko-Müller C, Schmitz R (2013) Vaccination coverage in German adults: results of the German Health Interview and Examination Survey for Adults (DEGS1). Bundesgesundheitsblatt Gesundheitsforschung Gesundheitsschutz 56, 845–857.
Porter VR, Greendale GA, Schocken M, Zhu X, Effros RB (2001) Immune effects of hormone replacement therapy in post-menopausal women. Exp. Gerontol. 36, 311–326.
Quandelacy TM, Viboud C, Charu V, Lipsitch M, Goldstein E (2014) Age- and sex-related risk factors for influenza-associated mortality in the United States between 1997–2007. Am. J. Epidemiol. 179, 156–167.
Quinn TC, Overbaugh J (2005) HIV/AIDS in women: an expanding epidemic. Science 308, 1582–1583.
Rakasz EG, Lynch RG (2002) Female sex hormones as regulatory factors in the vaginal immune compartment. Int. Rev. Immunol. 21, 497–513.
Ragan JC, Partridge L (2013) Gender and longevity: why do men die earlier than women? Comparative and experimental evidence. Best Prac. Res. Clin. Endocrinol. Metab. 27, 467–479.
Rettew JA, Huet-Hudson YM, Marriott I (2008) Testosterone reduces macrophage expression in the toll-like receptor 4, a trigger for inflammation and innate immunity. Biol. Reprod. 78, 432–437.
Rettew JA, Huet YM, Marriott I (2009) Estrogen augments cell surface TLR4 expression on murine macrophages and regulate sepsis susceptibility in vivo. Endocrinology 150, 3877–3884.
Reutter I, Bart PA, Franciosi P, Safary A, Frei PC (1998) Production of antibody to hepatitis A virus and hepatitis B surface antigen measured after combined hepatitis A/hepatitis B vaccination in 242 adult volunteers. J. Viral Hepatitis 5, 205–211.
Rhodes K, Scott A, Markham RL, Monk-Jones ME (1996) Immunological sex differences. J. Investig. Med. 35, 1333–1361.
Riegel P, Sperling RS, Moran TM, Kraus TA (2012) The influence of pregnancy on systemic immunity. Immunol. Res. 54, 254–261.
Sennhop R, Brown AL, Brown AL, Bull PA, Chalmers RJ (1988) The epidemiology of meningococcal disease in the United States, 1992–1996. J. Infect. Dis. 160, 1894–1901.
Sakani S, Olsen NJ, Kovacs W (2013) Gonadal steroids and humoral immunity. Nat. Rev. Endocrinol. 9, 56–62.
Sandman L, Davidson M, Krugman S (1995) Inactivated hepatitis A vaccine: a safety and immunogenicity study in health professionals. J. Infect. Dis. 171(Suppl 1), 550–552.
Yasui T, Maegawa M, Tomita J, Miyatani Y, Yamada M, Uemura H, Matsuzaki T, Kuwahara A, Kamada M, Tsuchiya N, Yuzurihara M, Takeda S, Irahara M (2007) Changes in serum cytokine concentrations during the menopausal transition. Maturitas 56, 396–403.

Yawn BP, Gilden D (2013) The global epidemiology of herpes zoster. Neurology 81, 928–930.

Yung R, Williams R, Johnson K, Phillips C, Stoolman L, Chang S, Richardson B (1997) Mechanisms of drug-induced lupus. III. Sex-specific differences in T cell homing may explain increased disease severity in female mice. Arthritis Rheum. 40, 1334–1343.

Zhang MA, Rego D, Moshkova M, Kebir H, Chruscinski A, Nguyen H, Akkermann R, Stanczyk FZ, Prat A, Steinman L, Dunn SE (2012) Peroxisome proliferator-activated receptor (PPAR)alpha and -gamma regulate IFN gamma and IL-17A production by human T cells in a sex-specific way. Proc. Natl Acad. Sci. USA 109, 9505–9510.

Zhu F-C, Huang S-J, Wu T, Zhang X-F, Wang Z-Z, Ai X, Yan Q, Yang C-I, Cai J-P, Jiang H-M, Wang Y-J, Ng M-H, Zhang J, Xia N-S (2014) Epidemiology of zoonotic hepatitis E: a community-based surveillance study in a rural population in China. PLoS ONE 9, e87154.

Zhuang H, Cao XY, Liu CB, Wang GM (1991) Epidemiology of hepatitis E in China. Gastroenterol. Jpn. 26(Suppl 3), 135–138.