Interactions of SARS-CoV-2 spike protein and transient receptor potential (TRP) cation channels could explain smell, taste, and/or chemesthesis disorders

Halim Maaroufi
Institut de biologie intégrative et des systèmes (IBIS). Université Laval. Quebec city, Quebec, Canada.
Halim.maaroufi@ibis.ulaval.ca

IN BRIEF
SARS-CoV-2 S protein contains two ankyrin repeat binding motifs (S-ARBM s) that could interact with ankyrin repeat domains (ARDs) of transient receptor potential (TRP) channels. The latter play a role in olfaction, taste, and/or chemesthesis (OTC), suggesting that their dysfunction by S protein could explain OTC disorders in COVID-19 disease. Pharmacological manipulation of TRPs-ARDs could be used for prophylactic or treatments in SARS-CoV-2 infections.

HIGHLIGHTS
● SARS-CoV-2 infection is associated to olfactory, taste, and/or chemesthesis (OTC) disorders (OTCD).
● Transient receptor potential (TRP) channels play a role in OTC.
● S protein contains ARBM s that could interact with ARDs of TRPs, thus inducing OTCD.
● TRPs ligands as possible preventive treatments against COVID-19.

KEYWORDS
Loss, Olfactory, Taste, Chemesthesis, SARS-CoV-2, S protein, Ankyrin repeat, Ankyrin repeat binding motif, TRPA1, TRPCs, TRPVs, TRPs ligands, DARPins

ABBREVIATIONS
SARS-CoV-2: severe acute respiratory syndrome coronavirus 2
COVID-19: Coronavirus disease-2019
S protein: Spike protein
RBD: Receptor binding domain
HR1: Heptad repeat 1
OTC: olfactory, taste and chemesthesis
OTCD: olfactory, taste and/or chemesthesis disorders
TRP: Transient receptor potential
TRPA1: Transient receptor potential Ankyrin 1
TRPC: Transient receptor potential canonical
TRPV: Transient receptor potential vanilloid
AR: Ankyrin repeat
ARD: Ankyrin repeat domain
TRP-ARD: Transient receptor potential-Ankyrin repeat domain
ARBM: Ankyrin repeat binding motif
S-ARBM: S protein-Ankyrin repeat binding motif
DARPins: Designed Ankyrin Repeat Proteins
mAbs: monoclonal antibodies
Interactions of SARS-CoV-2 spike protein and transient receptor potential (TRP) cation channels could explain smell, taste, and/or chemesthesis disorders

Halim Maaroufi
Institut de biologie intégrative et des systèmes (IBIS). Université Laval. Quebec city, Quebec, Canada.
Halim.maaroufi@ibis.ulaval.ca

SUMMARY

A significant subset of patients infected by SARS-CoV-2 presents olfactory, taste, and/or chemesthesis (OTC) disorders (OTCD). These patients recover rapidly, eliminating damage of sensory nerves. Discovering that S protein contains two ankyrin repeat binding motifs (S-ARBM)s and some TRP cation channels, implicated in OTC, have ankyrin repeat domains (TRPs-ARDs), I hypothesized that interaction of S-ARBM and TRPs-ARDs could dysregulate the function of the latter and thus explains OTCD. Of note, some TRPs-ARDs are expressed in the olfactory epithelium, taste buds, trigeminal neurons in the oronasal cavity and vagal neurons in the trachea/lungs. Furthermore, this hypothesis is supported by studies that have shown: (i) respiratory viruses interact with TRPA1 and TRPV1 on sensory nerves and epithelial cells in the airways, (ii) the respiratory pathophysiology in COVID-19 patients is similar to lungs injuries produced by the sensitization of TRPV1 and TRPV4, (iii) resolvin D1 and D2 shown to reduce SARS-CoV-2-induced inflammation, directly inhibit TRPA1, TRPV1, TRPV3 and TRPV4, and (iv) liquiritin that inhibits TRPA1 and TRPV1 and protects against LPS-induced acute lung injury, is also reported as an inhibitor of SARS-CoV-2 infection in vitro. Herein, results of blind dockings of S-ARBM, 408RQIAPG413 (in RBD but distal from the ACE-2 binding region) and 905RFNGIG910 (in HR1), into TRPA1, TRPV1 and TRPV4 suggest that S-ARBM interact with ankyrin repeat 6 of TRPA1 near an active site, and ankyrin repeat 3-4 of TRPV1 near cysteine 258 supposed to be implicated in the formation of inter-subunits disulfide bond. These findings suggest that S-ARBM affect TRPA1, TRPV1 and TRPV4 function by interfering with channel assembly and trafficking. After an experimental
confirmation of these interactions, among possible preventive treatments against COVID-19, the use of DARPins, considered as potential alternatives to mAbs, to neutralise S-ARBM and/or pharmacological manipulation (probably inhibition) of TRPs-ARDs to control or mitigate sustained pro-inflammatory response. In addition, it has been shown that TRPV1 is required for competent antibody responses to novel antigen. Probably, using agonists of TRPV1 as adjuvant in SARS-CoV-2 vaccination could enhance the quality and durability of immune response.

INTRODUCTION

Since February 2020, chemosensory dysfunction in olfactory, taste and/or chemesthesis (OTC) was reported in a significant fraction of SARS-CoV-2 infected patients (von Bartheld et al., 2020). In the beginning, these first symptoms were considered as anecdotal, but today they are in the list of early disease symptoms. OTC give sensory warn that help to avoid inhalation, ingestion, or absorption of potentially harmful molecules. Particularly, chemesthesis has a protective function by sensing chemical irritants (Green et al. 1990; Jordt et al., 2004; Hata et al., 2012; Omar et al., 2017; Parma et al., 2020) and infectious agents, inducing their elimination from the airways rapidly by sneezing and coughing, and slowly by mucus secretion and inflammation (Green, 2012). The difference between OTC is often not clear because they give a unique sensation of flavor in the mouth. But, recent data suggest that taste and chemesthesis may be disturbed independently of smell in COVID-19 patients (Adamczyk et al., 2020; Lechien et al., 2020; Parma et al., 2020; Vaira et al., 2020). The somatosensory system (the trigeminal nerve) that conveys chemesthesis, is a separate sensory system with distinct peripheral and central neural mechanisms (Shepherd, 2006; Green, 2012). The trigeminal nerve may serve as a route for entry of pathogens into the brain, thus the RNA of coronavirus, mouse hepatitis virus strain JHM was detected in the trigeminal and olfactory nerves (Perlman et al., 1989). This route of invasion by SARS-CoV-2 could explain some neurological symptoms shown by COVID-19 patients, like for example, loss of facial sensation and headaches (Glezer et al., 2020). Recently, an observational study with more than two million persons revealed that olfactory and taste disorder is more predictive of COVID-19 than symptoms as fatigue, fever, or cough (Menni et al., 2020; Cooper et al., 2020; Sudre et al. 2020), often they are
the only signs of the disease (Lechien et al., 2020; Hopkins et al., 2020). In addition, it has been reported that short time (main duration is 9 days) for a functional recovery (anosemia) could not be explained by neuron death, but probably by a support-cell mediated dysfunction of the olfactory epithelium (Heydel et al., 2013; von Bartheld et al., 2020). Of note, ethnic differences have been observed in OTCD, Caucasians had a 3-6 times higher prevalence of OTCD than East Asians (von Bartheld et al., 2020). This suggested a genetic specificity of SARS-CoV-2 interaction with proteins implicated in OTCD.

Ion channel proteins have an important role in the regulation of the function of innate immune system and participate to the pathogenesis of inflammatory/infectious lung diseases (Scheraga et al., 2020). The superfamily of the transient receptor potential (TRP) are weakly selective cation channels that are detected in plasma membrane of eukaryotes, from yeast to mammals (Venkatachalam and Montell, 2007). They are important components of Ca\(^{2+}\) signaling pathways and regulate a wide range of physiological functions (Nilius B and Flockerzi, 2014). TRPs are principally Ca\(^{2+}\) channels and were linked to viral infection. Ca\(^{2+}\) cell entry is considered important for infection by different viruses, such as Sindbis virus, West Nile, HIV, filovirus, and arenavirus (Scherbik et al., 2010; Han et al., 2015; He et al., 2020). TRPV4 mediates Ca\(^{2+}\) influx and nuclear accumulation of DDX3X in cells exposed to the Zika virus (Doñate-Macián et al., 2018). Respiratory syncytial virus and measles virus may interact directly and/or indirectly with TRPA1 and TRPV1 on sensory nerves and epithelial cells in the airways (Omar et al., 2017). And rhinovirus can infect neuronal cells and enhances TRPA1 and TRPV1 expression (Abdullah et al., 2014). Moreover, TRPs are considered as molecular sensors implicated in the detection of exogenous stimuli and endogenous molecules that signal tissue injury. For the defence of the respiratory airways, they induce airway constriction, sneezing and coughing, inflammation and mucus secretion (Xia et al., 2018; Emir et al., R.2017; Parker et al., 1998). Based on similarity in their primary sequences, TRPs are classified into seven subfamilies: TRPC (canonical, seven channels in human), TRPA (ankyrin, one), TRPV (vanilloid, six), TRPM (melastatin, eight), TRPML (mucolipin, three), TRPP (polycystin, three), and TRPN (nomp; absent in mammals) (Ramsey et al., 2006; Venkatachalam and Montell, 2007). They are homo or hetero-tetramers, each subunit forms six transmembrane segments (S1–S6) and a pore-loop between S5 and S6 that
corresponds to a voltage-sensor-like domain and a pore domain. Each TRP channel subfamily is characterized by a unique cytoplasmic domain. The cytoplasmic N-terminal sequence of TRPA1, TRPC1, 3-7 and TRPV1-6 contains 16, 4 and 6 ankyrin repeat domains (ARDs), respectively. The 33 amino acids of ARDs form two alpha-helices linked by a beta-hairpin/loop (Gorina and Pavletich, 1996; Batchelor et al., 1998). In cell, the concave sides (ankyrin grooves) are facing the cell lipid bilayer. ARDs participate in diverse cellular functions by mediating specific protein–protein interactions and/or is an interaction site of endogenous or exogenous ligands (Barrick et al., 2008; Mosavi et al., 2004).

TRPA1, a unique gene in human, was first identified in human lung fibroblasts (Jaquemar et al., 1999). It was also detected in different cells, including human T cells and keratinocytes (Sahoo et al., 2019; Majhi et al., 2015; Assas et al., 2014; Omari et al., 2017). Moreover, it is expressed in the tongue of mammals and insects (Kim et al., 2010; Xiao et al., 2008). TRPA1 participates in inflammatory responses of the airways and is expressed at high levels in subjects with pathological conditions, such as chronic cough, asthma, rhinitis, and chronic obstructive pulmonary disease (Jaquemar et al., 1999; Mukhopadhyay et al., 2016). The work of Liu et al. (2020) suggests that an interaction between TRPV1/TRPA1 channels (TRPV1 is co-expressed with TRPA1 in nociceptive neurons) and the NF-κB pathway may be involved in increasing inflammation in the acute lung injury model. It has also been reported that TRPA1 is associated with inflammation and puritogen responses in dermatitis (Liu et al., 2013). The expression of TRPA1 and TRPV1 in nociceptive neurons and epithelial cells of the nasal cavity gives them a role of “warning system” against external and internal assaults (Story et al., 2003; Hata et al., 2012; Mukhopadhyay et al., 2016). Their activation by reactive electrophiles, elicits irritation, pain and inflammation (Zhang, 2015; Bautista et al., 2013; Zygmunt and Högestätt, 2014; Hasan et al., 2018). Interestingly, in vagal sensory neurons, interleukin-1 (IL-1) receptors are coexpressed with TRPA1. The latter is required to sense IL-1β, a central cytokine mediator of injury and inflammation. Moreover, TRPA1 in vagal neurons innervating the trachea and the lung, -deficient mice lack inflammatory reflex attenuation and fail to restrain cytokine release (Silverman et al., 2019).
TRPV1 is co-expressed with TRPA1 in nociceptive neurons (Story et al., 2003; Hata et al., 2012), and detected in almost all organs, including human T cells (Sahoo et al., 2019; Majhi et al., 2015), keratinocytes and lung fibroblasts (Assas et al., 2014; Omari et al., 2017). TRPV1 is also present in airway sensory fibers lining the trachea, bronchi, and alveoli, and the nasal mucosa (Groneberg et al., 2004; Seki et al., 2006; Watanabe et al., 2005b). The dysregulation of TRPV1 function has also been implicated in inflammation (Cao, 2020). Interestingly, in mice, aging reverses the role of the TRPV1 in systemic inflammation from anti-inflammatory to pro-inflammatory (Wanner et al., 2012).

TRPV4 is expressed in several non-neuronal cells like fibroblasts, smooth muscle, keratinocytes, vascular endothelial cells, macrophages, and in tracheal, bronchial, and alveolar epithelia (Vennekens et al., 2008; Alvarez et al., 2006; Jia et al., 2007; Palaniyandi et al., 2020). It participates in multiple physiological functions and pathological conditions, such as those related to epithelia, endothelium, osteoarticular tissues (Garcia-Elias et al., 2014; White et al., 2016; Nilius et al., 2013) and in innate immunity (Galindo-Villegas et al., 2016; Alpizar et al., 2017). Recently, it has been suggested that TRPV4 can participate in reducing viral infectivity in diseases such as dengue, Hepatitis C, and Zika (Doñate-Macián et al., 2018). Indeed, TRPV4 can regulate RNA metabolism dependent on DDX3X, a commonly expressed DEAD-box RNA-binding helicase that is typically hijacked by several RNA viruses (Yedavalli et al., 2004; Ariumi et al., 2007; Yedavalli et al., 2004). This suggests that TRPV4 could also play a role in SARS-CoV-2 infection (Doñate-Macián et al., 2018).

TRPC channels are ubiquitous in human tissues and regulate various cellular responses (Goodman and Schwarz, 2003; Louis et al., 2008). They are expressed in salivary glands, pulmonary and vascular smooth muscle cells (Beech et al., 2003). Indeed, TRPC3 and TRPC7 regulate respiratory rhythm (Ben-Mabrouk et al., 2010), whereas, TRPC6 has been shown important in the regulation of acute hypoxic pulmonary vasoconstriction and alveolar gas exchange (Weissmann et al., 2006). Targeting TRPC6 function may be used in therapeutics for the control of pulmonary hemodynamics/gas exchange. In addition, MxA, an interferon-induced GTPase, known to inhibit the multiplication of several RNA viruses, interacts with the ARD of TRPC1, -3, -4, -5, -6, and -7 (Lussier et al., 2005).
To prevent the development of severe COVID-19 form, it is necessary to understand the cellular basis of SARS-CoV-2 infection. Identifying sensory-neural mechanisms responsible of OTCD could help to find treatments to stop or mitigate COVID-19 development. Here, the potential molecular mechanism responsible of OTCD in SARS-CoV-2 infected patients is presented. Discovering that S protein contains two S-ARBMs and some TRPs cation channels, implicated in OTC, have ARDs, I hypothesized that the interaction of S-ARBMs and TRPs-ARDs could dysregulate the function of TRP channels and thus explains OTCD. Blind docking results suggested that probably S-ARBMs affect TRPs-ARDs function by interfering with channel assembly and trafficking.

RESULTS AND DISCUSSION

1. Two ARBMs in S protein S1 and S2 subunits

The eukaryotic linear motif (ELM) resource (http://elm.eu.org/) revealed in SARS-CoV-2 S protein two short linear motifs (SLiMs) known as ARBMs (R-x-x-[PGAV][DEIP]-G) (Guettler et al., 2011), 408RQIAPG413 (in RBD but distal from the ACE-2 binding region) and 905RFNGIG910 (in HR1) (Fig. 1). ARBMs interact with proteins containing ARDs. Of note, in ELM, ARBMs are called tankyrase binding motif because they interact with the ARD region of Tankyrase-1 and -2 (Table 1). Importantly, 408RQIAPG413 and 905RFNGIG910 are localized in two important regions of S protein implicated in host cell attachment (RBD) and membrane fusion (HR1), respectively (Xia et al., 2020). In addition, ScanProsite tool (https://prosite.expasy.org/scanprosite/) was used to verify if ARBMs are present elsewhere in SARS-CoV-2, SARS-CoV and MERS-CoV proteomes. Indeed, they are only present in S proteins of SARS-CoV-2 and SARS-CoV, but absent in MERS-CoV (Fig. 1A, B). Interestingly, figure 1C shows that SARS-CoV-2, SARS-CoV, bat RaTG13 and pangolin GX-P5L S proteins with ARBMs in both S1 and S2 subunits are phylogenetically close. Of note, S2 subunit of the other betacoronaviruses has an ARBM-like where Isoleucine in position five (R-x-x-[PGAV][DEIP]-G) is replaced by a similar physicochemical hydrophobic amino acid residue, Leucine or Valine (Fig. 1B).

ARBMs are present in S protein of SARS-CoV-2 and SARS-CoV (Fig. 1A, B), and their interaction with TRPs-ARDs could explain OTCD. Intriguingly, only one single case

8
of anosmia was reported during the SARS-CoV pandemic (Hwang, 2006), against almost millions of cases in SARS-CoV-2 (von Bartheld et al., 2020). In the beginning of the SARS-CoV-2 pandemic, loss of olfactory and taste were considered as anecdotal. May be in the SARS-CoV pandemic, these first symptoms were also considered as anecdotal due to infection cases were not large (little more than 8,000) (Peiris et al., 2003), against millions of cases in SARS-CoV-2, to reveal clearly that loss of olfactory and/or taste are linked to SARS-CoV infection. In addition, it has been observed that Caucasians had a 3-6 times higher prevalence of OTCD than East Asians (von Bartheld et al., 2020). The SARS-CoV pandemic was for major part localized in China. For MERS-CoV, none case of olfactory and/or taste loss was reported. This is in accordance with the absence of ARBM in MERS-CoV S protein. Finally, as a note, it has been reported that abnormalities of olfaction and taste may be major factors in the anorexia of acute viral hepatitis (Henkin and Smith, 1971).

2. **408RQIAPG** \(^{413}\) **motif is in a hot region**

Scanning SARS-CoV-2 S protein sequence with DisEMBL software (Linding et al., 2003) revealed in the RBD a hot disordered loop, \(^{404}\)RGDEVRQIAPGQTGKIA\(^{419}\), that contains four motifs: \(^{408}\)RQIAPG\(^{413}\) motif, reversed consensus pattern (TQ) phosphorylation (reading from C- to N-terminus) (Torshin, 2000), phosphothreonine motif (T-x-x-I) and RGD motif (Table 1).

2.1. **Reversed consensus pattern (TQ) phosphorylation**

The Thr415 of the reversed consensus pattern (TQ) (reading from C- to N-terminus) in \(^{404}\)RGDEVRQIAPGQTGKIA\(^{419}\), could be phosphorylated by phosphatidylinositol 3- and/or 4-kinase (PIKKs). The Gln414 (Q) beside to the target Ser/Thr is critical for the substrate recognition. PIKKs are Ser/Thr atypical kinases that are found only in eukaryotes (Imseng et al., 2108; Angira et al., 2020). Phosphatidylinositol-3 kinase (PI3K) and PI4K are responsible for the production of phosphoinositides that are important in cell signaling. Interestingly, Yang et al. (2012) showed that phosphatidylinositol 4-kinase IIIβ (PI4KB) is required for cellular entry by pseudoviruses bearing the SARS-CoV S protein. This cell entry is highly inhibited by knockdown of PI4KB. They also demonstrated that PI4KB
does not affect virus entry at the SARS-CoV S-ACE2 interface. Furthermore, Liu et al. (2005) demonstrated that PI4K that synthesis phosphatidylinositol 4,5-biphosphate (PIP2) is required for full recovery of TRPV1 from desensitization. It is known that the activation of TRPV1 leads to both pro-inflammatory and anti-inflammatory responses. The anti-inflammatory effect most likely results from TRPV1 channel desensitization (Liu et al., 2020). These above cited results suggest that PI4K is implicated in cellular entry of SARS-CoV by the synthesis of PIP2 (cell signaling). Indeed, it has been reported that PIP2 sensitizes TRPV1 (Liu et al., 2005; Stein et al., 2006). Thus, it is possible that sensitized TRPV1 permits virus cell entry and consequently produces pro-inflammatory effect in SARS-CoV/CoV-2 patients. Probably, using TRPV1 antagonists could inhibit or mitigate inflammation.

About 905RFNGIG910, its C-terminal amino acids overlap with amino acids sequence 909IGVTQNYL916 that contains two motifs (phosphothreonine motif (TQ) and (T-x-x-I)) which Thr912 could be phosphorylated by PIKK family members, as described above for 408RQIAPG413 motif, and CaM-II kinase, respectively.

2.2. Phosphothreonine motif (415T-x-x-I418) binding

As described above Thr415 is present in two patterns. When phosphorylated in the pattern (415T-x-x-I418), it binds a subset of forkhead associated (FHA) domains. For example, Herpes Simplex Virus type-1 (HSV-1) mimics a host cellular phosphosite in its E3 ubiquitin ligase (ICP0) to bind the host DNA damage response E3 ligase RNF8 via the RNF8 FHA domain. Thus, phosphorylation of ICP0 recruits RNF8 for degradation and thereby promotes viral multiplication (Chaurushiya et al., 2012). May be SARS-CoV-2 uses phosphorylated Thr415 to hijack cellular functions by binding RNF8 FHA domain or other proteins with FHA domain.

2.3. RGD motif

The RGD motif is the minimal peptide sequence used by many human viruses to bind proteins of the integrin family (Hussein et al., 2015). For example, RGD motif integrin-binding is essential for human Adenovirus type 2/5 (Wickham et al., 1994), Rotavirus (RV) (Zárate et al., 2004) and Kaposi’s sarcoma-associated virus (HHV-8)
(Hussein et al., 2015). Binding to integrin may play a supplemental role to ACE2 binding, like facilitating endocytosis by signaling through the integrin family. Thus, RGD promotes infection by binding integrin heterodimers formed by α and β subunits (Hussein et al., 2015), activating transducing pathways involving phosphatidylinositol-3 kinase (PI3K). This establishes a link with reversed consensus pattern (TQ) phosphorylation (paragraph 2.1) that Yang et al. (2012) showed that the kinase phosphorylating this motif is required for cellular entry by pseudoviruses bearing the SARS-CoV S protein.

Finally, to show the importance of phosphorylation associated to ARD in the entry of viruses into host cell, Than et al. (2016) reported that HCV NS5A protein interacts with ANKRD1 (by its C-terminal ARD) and Pim kinase. Both Pim kinase and ANKRD1 are involved in HCV entry step but not in cell attachment step.

3. Interactions of \({\text{RQIAPG}}_{413} \) and \({\text{RFNGIG}}_{910} \) with human ARDs of TRPA1, TRPV1 and TRPV4

SARS-CoV-2 is associated to significant cases of olfactory, taste, and/or chemesthesis disorders (OTCD) (von Bartheld et al., 2020). Because SARS-CoV-2 S protein contains two ARBMs (Fig. 1A, B) and some TRPs (TRPA1, TRPC1, TRPC3-7, and TRPV1-6) cation channels, implicated in OTC, have TRPs-ARDs, I hypothesized that the potential interaction of S-ARBMs and TRPs-ARDs could be responsible of OTCD. Some TRPs-ARDs are expressed in the olfactory epithelium, taste buds, trigeminal neurons in the oronasal cavity and vagal neurons in the trachea/lungs (Table 2). Furthermore, this hypothesis is supported by works that have shown that (i) respiratory viruses interact with TRPA1 and TRPV1 on sensory nerves and epithelial cells in the airways (Omar et al., 2017), (ii) the respiratory pathophysiology in COVID-19 patients is similar to lungs injuries produced by the sensitization of TRPV1 (Nahama et al., 2020) and TRPV4 (Kuebler et al., 2020) and (iii) liquiritin (one of the major flavonoids in Glycyrrhiza uralensis) that inhibits TRPA1 and TRPV1 and protects against LPS-induced acute lung injury (Liu et al., 2020), is also reported as an inhibitor of SARS-CoV-2 infection in vitro (Zhu et al., 2020).

In order to interact with ARDs, \({\text{RQIAPG}}_{413} \) and \({\text{RFNGIG}}_{910} \) must be exposed at the surface of S protein. Indeed, these motifs are exposed in the surface of RBD and HR1
To compare the interactions of $^{408}\text{RQIAPG}^{413}$ and $^{905}\text{RFNGIG}^{910}$ with ARD region of human TRPA1, TRPV1 and TRPV4 and other co-crystallised complex of ARBM-ARD, blind docking was performed with Frodock (Garzon et al., 2009) and AutoDock vina (Trott and Olson, 2010) softwares. Before molecular docking, the reliability of these softwares was validated by re-docking the subunits of the complex ACE2-RBD (PDB id: 6m0j) and the complex of ARD of Tankyrase2-peptide SH3BP2 (PDB id: 3twr). Indeed, Frodock and Autodock Vina were able to produce a similar docking pose for each control protein with respect to its biological conformation in the co-crystallised protein-protein complex. Figure 3A shows that important amino acid residues R408 and G413 of $^{408}\text{RQIAPG}^{413}$ in RBD interact with ankyrin repeat 6 (AR 6) of TRPA1. AR 6 is a hot region in TRPA1 channel function. Indeed, it has been reported that the inhibition of hTRPA1 channel gating is possible via an AR 6 interaction (Tseng et al., 2018). And in mouse TRPA1, all mutations that make TRPA1 heat activated are located in AR 6 (Jabba et al., 2014). It has also been reported that ARD can bind lipids (Kim et al., 2014). Recently, Toelzer et al. (2020) observed that the anchor for the headgroup carboxyl of linoleic acid (LA) is provided by Arg408 and Gln409 of $^{408}\text{RQIAPG}^{413}$ from the adjacent RBD in the trimer. It is tempting to speculate that LA in binding pocket of S protein could modify the TRP channels activity through the interaction $^{408}\text{RQIAPG}^{413}$-ARDs. The importance of lipids in the activity of TRPs has been demonstrated in several studies. Resolvins RvD1 and RvD2 that are endogenous lipid mediators with pro-resolving and anti-inflammatory functions (Serhan et al., 2002; Serhan et al., 2008) inhibit directly TRPA1, TRPV1, TRPV3 and TRPV4 (Dhakal et al., 2019). Interestingly, RvD1 and RvD2 are recently shown to reduce SARS-CoV-2-induced inflammation (Recchiuti et al., 2020). In addition, LA stimulates Ca$^{2+}$ increase in pancreatic islet beta-cells through extracellular calcium influx via TRP channels (Wang et al., 2010). Oxidized LA metabolites activate TRPV1 (Patwardhan et al., 2009) and polyunsaturated fatty acids can sensitize, activate or inhibit vertebrate TRP channels including TRPV1 (Matta et al., 2007) and TRPV3 (Hu et al., 2006). Moreover, it had already been shown that the TRPV4 ARD interacts with the inositol head group of PI(4,5)P2, which negatively regulates the TRPV4 channel activity (Takahashi et al., 2014). PI(4,5)P2 was located beside the AR 4 and interacts with the residues from AR 3–5 by its phosphate groups.
The same result like RBD-TRPA1, shown above, was obtained with the docking of HR1 into ARD of TRPA1 (Fig. 3B). To confirm the results of TRPA1-RBD and TRPA1-HR1 complexes, 408RQIAPG413 and 905RFNGIG910 peptides were used in blind docking. The docked peptides were localized in the same region where were localized RBD and HR1 in ARD of TRPA1 (Fig. 3C). Structural alignment of docked 408RQIAPG413 and 905RFNGIG910 peptides with crystallised Tankyrase-2 AR-human SH3BP2 peptide (PDB id: 3twr) showed that these complexes were superposed (Fig. 3C). This suggested the reliability of the blind docking. Of note, positively charged Arg408 and Arg905 of S-ARBMs interact with negatively charged region of electrostatic potential surface representation of the ARD region of TRPA1 (Fig. 3D).

Docking results of TRPV1 ARD with RBD and HR1 are represented in Figure 4. The latter shows that RBD and HR1 interact with AR 3-4 of TRPV1 near cysteine 258 supposed to be implicated in the formation of inter-subunits disulfide bond (Tanaka et al., 2020). Contrary to TRPA1 and 408RQIAPG413 and 905RFNGIG910 complexes that are superposed with the same orientation (N- to C-terminal), TRPV1-peptides complexes have opposed orientation (Fig. 4D).

The results of blind docking of S-ARBMs, 408RQIAPG413 and 905RFNGIG910, into TRPA1, TRPV1 and TRPV4 (result not shown) suggest that S-ARBMs interact with AR 6 of TRPA1 near an active site, and AR 3-4 of TRPV1 (near cysteine 258) and TRPV4 (near cysteine 294). Cysteine 258 of TRPV1 is supposed to be implicated in the formation of inter-subunits disulfide bond (Tanaka et al., 2020). These findings suggest that S-ARBMs affect TRPA1, TRPV1 and TRPV4 function by interfering with channel assembly and trafficking. TRP channels transduce signals that help to avoid inhalation, ingestion, or absorption of potentially harmful molecules. And induce their elimination from the nose, oral cavity and airways rapidly by reflex responses such as sneezing and coughing (Green, 2012). It is tempting to speculate that SARS-CoV-2 interferes with this first line of the chemosensory defense to increase its ability to infect human.

Bibliographic search for the possible interactions of viruses and host proteins with ARD, revealed some results. Drappier et al. (2018) showed that when Theiler's murine encephalomyelitis virus (TMEV) L* protein binds to the ARD of RNase L, it inhibits 2'-5' oligoadenylates binding, and thus preventing the dimerization and oligomerization of
RNase L. The latter is the effector enzyme of the OAS/RNase L system, interferon-induced antiviral pathways. Active RNase L (oligomeric form) degrades RNA of the infected cell and viruses, thus stopping virus spread. Moreover, in Hepatitis C virus (HCV), NS5A protein (nonstructural 5A) interacts with ANKRD1 (ankyrin repeat domain 1) protein by the ARD in its C-terminal region, thus participating in the entry step but not cell attachment step during HCV infection (Than et al., 2016). Li et al. (2020) reported that Influenza A virus (IAV) PA-X protein (a ribonuclease) interacts with the N-terminal ARD of ANKRD17. The latter is a positive regulator of inflammatory responses. This interaction attenuates the overactivation of the innate immune response to infection in host cells. Finally, Epstein-Barr virus (EBV) is a herpesvirus known in human to establish lifelong latent infections. Its protein EBNA1 (Epstein-Barr nuclear antigen 1) has two ARBMs in its N-terminal domain that interact with the ARD of tankyrase-1 and 2. This interaction downregulates OriP replication and plasmid maintenance (Deng et al., 2005).

4. Dusquetide, an anti-inflammatory peptide, presents similarity with \textit{408RQIAPG}^{413}

In the aim to find small molecules containing substituents that topologically and structurally mimic R-x-x-[PGAV][DEIP]-G motif, sketch of 3D structure of \textit{408RQIAPG}^{413} and \textit{905RFNGIG}^{910} are generated and compared with molecules in PubChem (https://pubchem.ncbi.nlm.nih.gov/). A peptide called dusquetide with five amino acid residues (\textit{RIVPA}) was identified. This peptide modulates the innate immune response to the inflammation caused by cell damage. It acts by binding to p62, a key adaptor protein that functions downstream to the key sensing receptors (e.g., toll-like receptors) that trigger innate immune activation (Yu et al., 2009). Dusquetide has been shown to significantly reduce IL-6 (North et al., 2016), which plays an important role in cytokine storm syndrome. It also modulates the cellular signaling from a pro-inflammatory to an anti-inflammatory response (North et al., 2016; Scott et al., 2007; Yu et al., 2009).

5. DARPINs to neutralise ARBMs of S protein

Designed ankyrin repeat proteins (DARPins) are small engineered non-immunoglobulin AR proteins (14-21 kDa) (Stumpp et al., 2008), usually composed of four to six AR motifs. They are considered as potential alternatives to monoclonal antibodies
(mAbs) (Caputi and Navarra, 2020). DARPins are stable molecules with great affinity (picomolar), specificity and tissue penetration (Plückthun, 2015). In addition, they can be administrated by different routes (oral, nasal, inhaled and topical). This is optimal to directly deliver of high dose of DARPins into oronasal cavity (where SARS-CoV-2 infection starts) and respiratory airways for both prophylactic and therapeutic protection in the early steps of the infection. For example, it has been reported that the entry of human immunodeficiency virus (HIV) into the host cell is blocked by DARPins. The latter compete with the HIV protein for the CD4 binding site on lymphocytes (Tomlinson et al., 2004).

6. The respiratory pathophysiology in COVID-19 and role of TRPV1 and TRPV4 in lungs injuries

To defend the respiratory airways, TRPs induce airway constriction, sneezing and coughing, inflammation, and mucus secretion (Xia et al., 2018; Emir et al., 2017). TRPV4 is expressed in epithelia of the trachea and lungs (Lorenzo et al., 2008), and has an important role in lung and vascular physiology (Rosenbaum et al., 2020). TRPV4 has been proposed as a possible therapeutic target for the treatment of some pulmonary diseases (Rosenbaum et al., 2020). It was demonstrated in animal models of ventilator induced pulmonary injury that TRPV4 played a crucial role in the injury to the lungs (Hamanaka et al., 2007; Rosenbaum et al., 2020). Interestingly, it has been reported that the respiratory pathophysiology in COVID-19 is similar to lungs injuries produced by the sensitization of TRPV1 (Nahama et al., 2020) and TRPV4 (Kuebler et al., 2020). Probably, using TRPV1 and TRPV4 antagonists could inhibit or mitigate inflammation.

7. Does the interaction of S protein with TRP channels participate in viral cell entry?

It has been suggested that other proteins such as neuropilin-1, PIKfyve kinase, integrins, or CD4 (Davanzo et al., 2020) may participate in SARS-CoV-2 cell entry (Cantuti-Castelvetri et al., 2020; Kang et al., 2020; Sigrist et al., 2020). For example, in Hepatitis C virus (HCV), the entry of virus in cell is a complex process that involves five cell surface molecules in binding step, whereas post binding step requires the interaction of HCV nonstructural 5A protein with ARD of ANKRD1 and the internalization of HCV
via clathrin-mediated endocytosis (Scheel et al., 2013; Than et al., 2016). Interestingly, it has been reported that the ARDs of TRPV1 and TRPV4 bound to lipids in membrane (Takahashi et al., 2014). Thus, if functional, S-ARBMs could be involved in post binding step by interacting with TRPs ARD which mediate the potential viral entry route to the endocytic-lysosomal pathway, as has been demonstrated in HCV nonstructural 5A protein (Than et al., 2016). Moreover, Sigrist et al. (2020) reported that S protein has an RGD motif that could play a role of co-receptor by interacting with cell surface integrins. Interestingly, the RGD motif is close to \(408\text{RQIAPG}^{413}\) in a hot disordered loop (\(404\text{RGDEV}^{\text{RQIAPG}}\text{QTGKIA}^{419}\)), suggesting that it may participate in the internalization of S1 subunit.

Different TRP channels are linked to viral infection (Table 3). Thus, respiratory viruses like respiratory syncytial virus (RSV) and measles virus (MV) may interact directly and/or indirectly with TRPA1/TRPV1 on sensory nerves and epithelial cells in the airways (Omar et al., 20017; Harford et al., 2018). Furthermore, rhinovirus can infect neuronal cells and causes upregulation of TRPA1/TRPV1 (Abdullah et al., 2014). Recently, it has been reported that herpes simplex virus 1 (HSV-1) glycoprotein D interacts with TRPC1, and this interaction facilitated the cell entry of HSV-1 (He et al., 2020).

TRPs are principally Ca\(^{2+}\) channels and it is known that Ca\(^{2+}\) entry in cell plays a major role in infection by several types of virus, such as Sindbis virus, West Nile (Scherbik et al., 2010), HIV, filovirus, and arenavirus (Yao et al., 2012; Han et al., 2015). In addition, it has been demonstrated that TRPV1 regulates Ca\(^{2+}\) influx during Chikungunya virus (single positive-stranded RNA virus) infection (Kumar et al., 2020). Recently, it has been reported that the fusogenic ability of MERS-CoV has been improved by over a two-fold increase in intracellular Ca\(^{2+}\) (Straus et al., 2020). The same result had already been obtained with SARS-CoV (Madu et al., 2009).

8. TRPA1 and TRPV1 gene variants could explain ethnic difference of OTCD?

It has been reported that Caucasians had a 3-6 times higher prevalence of OTCD than East Asians (von Bartheld et al., 2020). This ethnic difference points to genetic variants in SARS-CoV-2 binding entry proteins in neurons in the nasal cavity and mouth (von Bartheld et al., 2020). TRPA1 is implicated in perception of odors with a trigeminal
component (Jordt et al., 2004; Richards et al., 2010). A genetic variant of TRPA1 was associated with enhanced sensitivity to odorous stimuli (Schütz et al., 2014), and another genetic variant of TRPA1 was linked to personal differences in taste perception of cilantro (Knaapila et al., 2012). Furthermore, in humans, a genetic variation in TRPV1 plays a role in salty taste perception (Dias et al., 2013; Chamoun et al., 2018) and burning sensation from sampled ethanol (Allen et al., 2014).

9. SARS-CoV-2, TRPA1/TRPV1 and nicotine?

Despite current controversies about the potential protective role of the nicotine in COVID-19 patients (Farsalinos et al., 2020a; Farsalinos et al., 2020b; Richardson et al., 2020; Rossato et al., 2020; Li Volti et al., 2020), I think that it is important to discuss about this relationship because this manuscript suggests that ARBMs of S protein could interact with TRPA1/TRPV1. The latter are expressed in human airway epithelial cells and are in contact with cigarette vapors. TRPA1 mediates the effects of nicotine, and its inhibition with A967079 restored nicotine-mediated impairment of mucociliary function (Chung et al., 2019). In addition, it has been observed that nicotine had a bimodal action on TRPA1, with activation and inhibition occurring at low and high concentrations, respectively (Talavera et al., 2009). Furthermore, nicotine inhibits TRPV1 and elicits taste and smell sensations (Talavera et al., 2009). Probably, the supposed protective effect of nicotine against COVID-19 may be due to the competition between S-ARBMs and nicotine for TRPA1/TRPV1 binding.

10. Immune response to SARS-CoV-2 and TRPs?

The sensory neurons (nociceptors) and immune system work together to defend the organism against external assaults (Tyan et al., 2019; Foster et al., 2017). Indeed, the crosstalk between TRPV1 positive nerve fibers and immune cells is very important in inducing inflammation of the airways after interaction with inhaled allergens or viral particles (Tränkner et al., 2014; Talbot et al., 2015). Moreover, TRPA1 is co-expressed with TRPV1 in nociceptors (Story et al., 2003; Hata et al., 2012) and participates in inflammatory reflex that purpose to mitigate inflammation (Silverman et al., 2019). It has been reported that dysregulated TRPV1 and TRPV4 function has been implicated in lung
inflammation (Helyes et al., 2007), and SARS-CoV-2 induces sustained host inflammation (Merad and Martin 2020). This suggests that the sustained inflammation may be the result of the interaction of S protein with ARDs of TRPV1 and/or TRPV4. Some studies showed that SARS-CoV-2 patients developed little antibodies and their persistence is short (Robbiani et al., 2020; Seow et al., 2020; Long et al., 2020). In addition, it has been shown that TRPV1 is required for competent antibody responses to novel antigen (Tynan et al., 2019). This suggests that SARS-CoV-2 weak immunity could be explained by the dysregulation of TRPV1 function by S protein. Probably, using agonists of TRPV1 as adjuvant in SARS-CoV-2 vaccination could enhance the quality and durability of immune response.

MATERIAL AND METHODS

Sequence analysis

To search probable short linear motifs (SLiMs), SARS-CoV-2 spike protein sequence was scanned with the eukaryotic linear motif (ELM) resource (http://elm.eu.org/). The identified R-x-x-[PGAV][DEIP]-G ARBM was also searched in proteins of SARS-CoV-2, SARS-CoV and MERS-CoV using https://prosite.expasy.org/scanprosite/. All proteins sequences were downloaded from NCBI and UniProt proteins databases.

S proteins alignment and phylogeny

Amino acid residues sequences of SARS-CoV-2 S protein and representative betacoronaviruses (betaCoVs) were aligned with Clustal omega (Sievers et al., 2011) to show if SARS-CoV-2 408RQIAPG413 and 905RFNGIG910 motifs are conserved in these betaCoVs. This alignment is also used to establish the phylogenetic relationships between these betaCoVs S proteins by constructing a phylogenetic tree with MrBayes (Huelsenbeck and Ronquist, 2001) using: Likelihood model (Number of substitution types: 6(GTR); Substitution model: Poisson; Rates variation across sites: Invariable + gamma); Markov Chain Monte Carlo parameters (Number of generations: 100 000; Sample a tree every: 1000 generations) and Discard first 500 trees sampled (burnin).
Drugs mimicking R-x-x-[PGAV][DEIP]-G motif

In the aim to find small molecules containing substituents that topologically and structurally mimic R-x-x-[PGAV][DEIP]-G motif, sketch of 3D structure of 408RQIAPG413 and 905RFNGIG910 are generated and compared with molecules in PubChem (https://pubchem.ncbi.nlm.nih.gov/).

3D modeling of hTRPA1 and blind docking

3D structure of AR region of hTRPA1 was modeled using as template the structure of human ankyrin-2 (PDB id: 4rlv_A). The obtained 3D model quality was assessed by analysis of a Ramachandran plot through PROCHECK (Vagueine et al., 1999). For hTRPV1 and hTRPV4, their structure of AR region was obtained from Protein Data Bank (PDB id: 6l93_A) and (PDB id: 4dx1_A), respectively.

Blind docking was conducted by Frodock (Garzon et al., 2009) and AutoDock vina (Trott and Olson, 2010) softwares. To validate the accuracy of the docking by these softwares, subunits of crystal structure of the complex ACE2-RBD (PDB id: 6m0j) and ARD-human peptide SH3BP2 (PDB id: 3twr) were re-docked. Thus, in docking protocol, the coordinates of each separated molecules were used as ligand (6m0j_E) and receptor (6m0j_A) for ACE2-RBD. And ligand (3twr_G) and receptor (3twr_C) for ARD-human peptide SH3BP2 (LPHLQRSPPDGQSFRS). Indeed, Frodock and Autodock Vina were able to produce a similar docking pose for each control protein with respect to its biological conformation in the co-crystallised protein-protein complex.

To test the potential interactions of S protein with AR region of TRPA1 and TRPV1, the 3D coordinates of RBD and HR1 containing 408RQIAPG413 and 905RFNGIG910, respectively, were extracted from structure of SARS-CoV-2 S protein (PDB id: 6vxx_A) and docked with Frodock into AR region of 3D modeled hTRPA1 and hTRPV1. In addition, 3D coordinates of 408RQIAPG413 and 905RFNGIG910 peptides were extracted from the structure of S protein (PDB id: 6vxx_A) and docked using Frodock and AutoDock Vina. The obtained 3D complexes of 408RQIAPG413 and 905RFNGIG910 peptides were refined by using FlexPepDock (London et al., 2011), which allows full flexibility to
the peptide and side-chain flexibility to the receptor. The electrostatic potential surface of hTRPA1 and hTRPV1 AR region was realized with PyMOL software (http://pymol.org/).

ACKNOWLEDGMENTS

I would like to thank the IBIS bioinformatics group for their help.

CONFLICT OF INTERESTED

The author declares that he has no conflicts of interest.
REFERENCES

1 ABDULLAH, H. et al. Rhinovirus upregulates transient receptor potential channels in a human neuronal cell line: implications for respiratory virus-induced cough reflex sensitivity. Thorax, v. 69, n. 1, p. 46-54, Jan 2014. ISSN 1468-3296. Disponível em: <https://www.ncbi.nlm.nih.gov/pubmed/24002057>.

2 ADAMCZYK, K. et al. Sensitivity and specificity of prediction models based on gustatory disorders in diagnosing COVID-19 patients: a case-control study: medRxiv 2020. Disponível em: <https://doi.org/10.1101/2020.05.31.20118380>.

3 ALHMADA, Y. et al. Hepatitis C virus-associated pruritus: Etiopathogenesis and therapeutic strategies. World J Gastroenterol, v. 23, n. 5, p. 743-750, Feb 2017. ISSN 2219-2840. Disponível em: <https://www.ncbi.nlm.nih.gov/pubmed/28223719>.

4 ALLEN, A. L.; MCGEARY, J. E.; HAYES, J. E. Polymorphisms in TRPV1 and TAS2Rs associate with sensations from sampled ethanol. Alcohol Clin Exp Res, v. 38, n. 10, p. 2550-60, Oct 2014. ISSN 1530-0277. Disponível em: <https://www.ncbi.nlm.nih.gov/pubmed/25257701>.

5 ALPIZAR, Y. A. et al. TRPV4 activation triggers protective responses to bacterial lipopolysaccharides in airway epithelial cells. Nat Commun, v. 8, n. 1, p. 1059, 10 2017. ISSN 2041-1723. Disponível em: <https://www.ncbi.nlm.nih.gov/pubmed/29057902>.

6 ALVAREZ, D. F. et al. Transient receptor potential vanilloid 4-mediated disruption of the alveolar septal barrier: a novel mechanism of acute lung injury. Circ Res, v. 99, n. 9, p. 988-95, Oct 2006. ISSN 1524-4571. Disponível em: <https://www.ncbi.nlm.nih.gov/pubmed/17008604>.

7 ANGIRA, D.; SHAIK, A.; THIRUVENKATAM, V. Structural and strategic landscape of PIKK protein family and their inhibitors: an overview. Front. Biosci., v. 25, p. 1538-1567, 2020/3/1 2020. ISSN 1945-0494. Disponível em: <https://www.ncbi.nlm.nih.gov/pubmed/32114444>.Disponível em: <http://www.bioscience.org/2020/v25/af/4867/fulltext.htm>.

8 ARIUMI, Y. et al. DDX3 DEAD-box RNA helicase is required for hepatitis C virus RNA replication. J Virol, v. 81, n. 24, p. 13922-6, Dec 2007. ISSN 1098-5514. Disponível em: <https://www.ncbi.nlm.nih.gov/pubmed/17855521>.

9 ASSAS, B. M.; MIYAN, J. A.; PENNOCK, J. L. Cross-talk between neural and immune receptors provides a potential mechanism of homeostatic regulation in the gut mucosa. Mucosal Immunol, v. 7, n. 6, p. 1283-9, Nov 2014. ISSN 1935-3456. Disponível em: <https://www.ncbi.nlm.nih.gov/pubmed/25183366>.
10 BARRICK, D.; FERREIRO, D. U.; KOMIVES, E. A. Folding landscapes of ankyrin repeat proteins: experiments meet theory. Curr Opin Struct Biol, v. 18, n. 1, p. 27-34, Feb 2008. ISSN 0959-440X. Disponível em: <https://www.ncbi.nlm.nih.gov/pubmed/18243686>.

11 BATCHelor, A. H. et al. The structure of GABPalphabeta: an ETS domain-ankyrin repeat heterodimer bound to DNA. Science, v. 279, n. 5353, p. 1037-41, Feb 1998. ISSN 0036-8075. Disponível em: <https://www.ncbi.nlm.nih.gov/pubmed/9461436>.

12 BAUSTista, D. M.; PELLEGRINO, M.; TSUNoZAKI, M. TRPA1: A gatekeeper for inflammation. Annu Rev Physiol, v. 75, p. 181-200, 2013. ISSN 1545-1585. Disponível em: <https://www.ncbi.nlm.nih.gov/pubmed/23020579>.

13 BEECH, D. J. et al. TRPC1 store-operated cationic channel subunit. Cell Calcium, v. 33, n. 5-6, p. 433-40, 2003 May-Jun 2003. ISSN 0143-4160. Disponível em: <https://www.ncbi.nlm.nih.gov/pubmed/12765688>.

14 BEN-MABROUK, F.; TRYBA, A. K. Substance P modulation of TRP3/7 channels improves respiratory rhythm regularity and ICAN-dependent pacemaker activity. Eur J Neurosci, v. 31, n. 7, p. 1219-32, Apr 2010. ISSN 1460-9568. Disponível em: <https://www.ncbi.nlm.nih.gov/pubmed/20345918>.

15 CABRERA, J. R. et al. Secreted herpes simplex virus-2 glycoprotein G alters thermal pain sensitivity by modifying NGF effects on TRPVI. J Neuroinflammation, v. 13, n. 1, p. 210, 08 2016. ISSN 1742-2094. Disponível em: <https://www.ncbi.nlm.nih.gov/pubmed/27576911>.

16 CANTUTI-CAStELVETRI, L. et al. Neuropilin-1 facilitates SARS-CoV-2 cell entry and infectivity. Science, v. 370, n. 6518, p. 856-860, 11 2020. ISSN 1095-9203. Disponível em: <https://www.ncbi.nlm.nih.gov/pubmed/33082293>.

17 CAO, E. Structural mechanisms of transient receptor potential ion channels. J Gen Physiol, v. 152, n. 3, Mar 2020. ISSN 1540-7748. Disponível em: <https://www.ncbi.nlm.nih.gov/pubmed/31972006>.

18 CAPUTI, A. P.; NAVARRA, P. Beyond antibodies: ankyrins and DARPinS. From basic research to drug approval. Curr Opin Pharmacol, v. 51, p. 93-101, 04 2020. ISSN 1471-4973. Disponível em: <https://www.ncbi.nlm.nih.gov/pubmed/32674998>.

19 CHAMOUN, E. et al. The Relationship between Single Nucleotide Polymorphisms in Taste Receptor Genes, Taste Function and Dietary Intake in Preschool-Aged Children and Adults in the Guelph Family Health Study. Nutrients, v. 10, n. 8, Jul 2018. ISSN 2072-6643. Disponível em: <https://www.ncbi.nlm.nih.gov/pubmed/30060620>.
20. CHAURUSHIYA, M. S. et al. Viral E3 ubiquitin ligase-mediated degradation of a cellular E3: viral mimicry of a cellular phosphorylation mark targets the RNF8 FHA domain. *Mol Cell*, v. 46, n. 1, p. 79-90, Apr 2012. ISSN 1097-4164. Disponível em: <https://www.ncbi.nlm.nih.gov/pubmed/22405594>.

21. CHEN, Y. et al. TRPV4 is necessary for trigeminal irritant pain and functions as a cellular formalin receptor. *Pain*, v. 155, n. 12, p. 2662-72, Dec 2014. ISSN 1872-6623. Disponível em: <https://www.ncbi.nlm.nih.gov/pubmed/25281928>.

22. CHUNG, S. et al. Electronic Cigarette Vapor with Nicotine Causes Airway Mucociliary Dysfunction Preferentially via TRPA1 Receptors. *Am J Respir Crit Care Med*, v. 200, n. 9, p. 1134-1145, 11 2019. ISSN 1535-4970. Disponível em: <https://www.ncbi.nlm.nih.gov/pubmed/31170808>.

23. COOPER, K. W. et al. COVID-19 and the Chemical Senses: Supporting Players Take Center Stage. *Neuron*, v. 107, n. 2, p. 219-233, 07 2020. ISSN 1097-4199. Disponível em: <https://www.ncbi.nlm.nih.gov/pubmed/32640192>.

24. DAVANZO, G. G. et al. SARS-CoV-2 Uses CD4 to Infect T Helper Lymphocytes. *medRxiv*, p. 2020.09.25.20200329, 2020. Disponível em: <http://medrxiv.org/content/early/2020/09/27/2020.09.25.20200329.abstract>.

25. DENG, Z. et al. Inhibition of Epstein-Barr virus OriP function by tankyrase, a telomere-associated poly-ADP ribose polymerase that binds and modifies EBNA1. *J Virol*, v. 79, n. 8, p. 4640-50, Apr 2005. ISSN 0022-538X. Disponível em: <https://www.ncbi.nlm.nih.gov/pubmed/15795250>.

26. DHAKAL, S.; LEE, Y. Transient Receptor Potential Channels and Metabolism. *Mol Cells*, v. 42, n. 8, p. 569-578, Aug 2019. ISSN 0219-1032. Disponível em: <https://www.ncbi.nlm.nih.gov/pubmed/31446746>.

27. DIAS, A. G. et al. Genetic variation in putative salt taste receptors and salt taste perception in humans. *Chem Senses*, v. 38, n. 2, p. 137-45, Feb 2013. ISSN 1464-3553. Disponível em: <https://www.ncbi.nlm.nih.gov/pubmed/23118204>.

28. DOÑATE-MACIÁN, P. et al. The TRPV4 channel links calcium influx to DDX3X activity and viral infectivity. *Nat Commun*, v. 9, n. 1, p. 2307, 06 2018. ISSN 2041-1723. Disponível em: <https://www.ncbi.nlm.nih.gov/pubmed/29899501>.

29. DRAPPIER, M. et al. A novel mechanism of RNase L inhibition: Theiler's virus L* protein prevents 2-5A from binding to RNase L. *PLoS Pathog*, v. 14, n. 4, p. e1006989, 04 2018. ISSN 1553-7374. Disponível em: <https://www.ncbi.nlm.nih.gov/pubmed/29652922>.
30 EMIR, T. L. R. Neurobiology of TRP Channels. In: FRANCIS, C. P. T. (Ed.). Boca Raton (FL, 2017. ISBN 9781315152837|9781498755245.

31 FARSALINOS, K.; BARBOUNI, A.; NIAURA, R. Systematic review of the prevalence of current smoking among hospitalized COVID-19 patients in China: could nicotine be a therapeutic option? Intern Emerg Med, v. 15, n. 5, p. 845-852, 08 2020. ISSN 1970-9366. Disponível em: < https://www.ncbi.nlm.nih.gov/pubmed/32385628 >.

32 FARSALINOS, K. et al. Current smoking, former smoking, and adverse outcome among hospitalized COVID-19 patients: a systematic review and meta-analysis. Ther Adv Chronic Dis, v. 11, p. 2040622320935765, 2020. ISSN 2040-6223. Disponível em: < https://www.ncbi.nlm.nih.gov/pubmed/32637059 >.

33 FOSTER, S. L. et al. Sense and Immunity: Context-Dependent Neuro-Immune Interplay. Front Immunol, v. 8, p. 1463, 2017. ISSN 1664-3224. Disponível em: < https://www.ncbi.nlm.nih.gov/pubmed/29163530 >.

34 GALINDO-VILLEGAS, J. et al. TRPV4-Mediated Detection of Hyposmotic Stress by Skin Keratinocytes Activates Developmental Immunity. J Immunol, v. 196, n. 2, p. 738-49, Jan 2016. ISSN 1550-6606. Disponível em: < https://www.ncbi.nlm.nih.gov/pubmed/26673139 >.

35 GARCIA-ELIAS, A. et al. The TRPV4 channel. Handb Exp Pharmacol, v. 222, p. 293-319, 2014. ISSN 0171-2004. Disponível em: < https://www.ncbi.nlm.nih.gov/pubmed/24756711 >.

36 GARZON, J. I. et al. FRODOCK: a new approach for fast rotational protein-protein docking. Bioinformatics, v. 25, n. 19, p. 2544-51, Oct 2009. ISSN 1367-4811. Disponível em: < https://www.ncbi.nlm.nih.gov/pubmed/19620099 >.

37 GLEZER, I. et al. Viral infection and smell loss: The case of COVID-19. J Neurochem, Sep 2020. ISSN 1471-4159. Disponível em: < https://www.ncbi.nlm.nih.gov/pubmed/32970861 >.

38 GOODMAN, M. B.; SCHWARZ, E. M. Transducing touch in Caenorhabditis elegans. Annu Rev Physiol, v. 65, p. 429-52, 2003. ISSN 0066-4278. Disponível em: < https://www.ncbi.nlm.nih.gov/pubmed/12524464 >.

39 GORINA, S.; PAVLETICH, N. P. Structure of the p53 tumor suppressor bound to the ankyrin and SH3 domains of 53BP2. Science, v. 274, n. 5289, p. 1001-5, Nov 1996. ISSN 0036-8075. Disponível em: < https://www.ncbi.nlm.nih.gov/pubmed/8875926 >.
GREEN, B. G. Chemesthesis and the chemical senses as components of a "chemofensor complex". *Chem Senses*, v. 37, n. 3, p. 201-6, Mar 2012. ISSN 1464-3553. Disponível em: <https://www.ncbi.nlm.nih.gov/pubmed/22210122>.

GREEN, B.; MASON, J.; KARE, M. *Chemical senses*. New York: Marcel Dekker, Inc., 1990.

GRONEBERG, D. A. et al. Increased expression of transient receptor potential vanilloid-1 in airway nerves of chronic cough. *Am J Respir Crit Care Med*, v. 170, n. 12, p. 1276-80, Dec 2004. ISSN 1073-449X. Disponível em: <https://www.ncbi.nlm.nih.gov/pubmed/15447941>.

GUETTLER, S. et al. Structural basis and sequence rules for substrate recognition by Tankyrase explain the basis for cherubism disease. *Cell*, v. 147, n. 6, p. 1340-54, Dec 2011. ISSN 1097-4172. Disponível em: <https://www.ncbi.nlm.nih.gov/pubmed/22153077>.

HAMANAKA, K. et al. TRPV4 initiates the acute calcium-dependent permeability increase during ventilator-induced lung injury in isolated mouse lungs. *Am J Physiol Lung Cell Mol Physiol*, v. 293, n. 4, p. L923-32, Oct 2007. ISSN 1040-0605. Disponível em: <https://www.ncbi.nlm.nih.gov/pubmed/17660328>.

HAN, S. B. et al. Transient Receptor Potential Vanilloid-1 in Epidermal Keratinocytes May Contribute to Acute Pain in Herpes Zoster. *Acta Derm Venereol*, v. 96, n. 3, p. 319-22, Mar 2016. ISSN 1651-2057. Disponível em: <https://www.ncbi.nlm.nih.gov/pubmed/26390894>.

HAN, Z. et al. Calcium Regulation of Hemorrhagic Fever Virus Budding: Mechanistic Implications for Host-Oriented Therapeutic Intervention. *PLoS Pathog*, v. 11, n. 10, p. e1005220, Oct 2015. ISSN 1553-7374. Disponível em: <https://www.ncbi.nlm.nih.gov/pubmed/26513362>.

HARFORD, T. J. et al. Asthma predisposition and respiratory syncytial virus infection modulate transient receptor potential vanilloid 1 function in children's airways. *J Allergy Clin Immunol*, v. 141, n. 1, p. 414-416.e4, 01 2018. ISSN 1097-6825. Disponível em: <https://www.ncbi.nlm.nih.gov/pubmed/28982576>.

HASAN, R.; ZHANG, X. Ca 2+ Regulation of TRP Ion Channels. *Int J Mol Sci*, v. 19, n. 4, Apr 2018. ISSN 1422-0067. Disponível em: <https://www.ncbi.nlm.nih.gov/pubmed/29690581>.

HATA, T. et al. Artepillin C, a major ingredient of Brazilian propolis, induces a pungent taste by activating TRPA1 channels. *PLoS One*, v. 7, n. 11, p. e48072, 2012. ISSN 1932-6203. Disponível em: <https://www.ncbi.nlm.nih.gov/pubmed/23133611>.
50 HE, D. et al. TRPC1 participates in the HSV-1 infection process by facilitating viral entry. Sci Adv, v. 6, n. 12, p. eaaz3367, 03 2020. ISSN 2375-2548. Disponível em: <https://www.ncbi.nlm.nih.gov/pubmed/32206724>.

51 HELYES, Z. et al. Role of transient receptor potential vanilloid 1 receptors in endotoxin-induced airway inflammation in the mouse. Am J Physiol Lung Cell Mol Physiol, v. 292, n. 5, p. L1173-81, May 2007. ISSN 1040-0605. Disponível em: <https://www.ncbi.nlm.nih.gov/pubmed/17237150>.

52 HENKIN, R. I.; SMITH, F. R. Hyposmia in acute viral hepatitis. Lancet, v. 1, n. 7704, p. 823-6, Apr 1971. ISSN 0140-6736. Disponível em: <https://www.ncbi.nlm.nih.gov/pubmed/4102525>.

53 HEYDEL, J. M. et al. Odorant-binding proteins and xenobiotic metabolizing enzymes: implications in olfactory perireceptor events. Anat Rec (Hoboken), v. 296, n. 9, p. 1333-45, Sep 2013. ISSN 1932-8494. Disponível em: <https://www.ncbi.nlm.nih.gov/pubmed/23907783>.

54 HOPKINS, C.; SURDA, P.; KUMAR, N. Presentation of new onset anosmia during the COVID-19 pandemic. Rhinology, v. 58, n. 3, p. 295-298, Jun 2020. ISSN 0300-0729. Disponível em: <https://www.ncbi.nlm.nih.gov/pubmed/32277751>.

55 HU, H. Z. et al. Potentiation of TRPV3 channel function by unsaturated fatty acids. J Cell Physiol, v. 208, n. 1, p. 201-12, Jul 2006. ISSN 0021-9541. Disponível em: <https://www.ncbi.nlm.nih.gov/pubmed/16557504>.

56 HUELSENBECK, J. P.; RONQUIST, F. MRBAYES: Bayesian inference of phylogenetic trees. Bioinformatics, v. 17, n. 8, p. 754-755, 2001/8 2001. ISSN 1367-4803. Disponível em: <http://dx.doi.org/10.1093/bioinformatics/17.8.754>. Disponível em: <https://www.ncbi.nlm.nih.gov/pubmed/11524383>.

57 HUSSEIN, H. A. et al. Beyond RGD: virus interactions with integrins. Arch Virol, v. 160, n. 11, p. 2669-81, Nov 2015. ISSN 1432-8798. Disponível em: <https://www.ncbi.nlm.nih.gov/pubmed/26321473>.

58 HWANG, C. S. Olfactory neuropathy in severe acute respiratory syndrome: report of a case. Acta Neurol Taiwan, v. 15, n. 1, p. 26-8, Mar 2006. ISSN 1028-768X. Disponível em: <https://www.ncbi.nlm.nih.gov/pubmed/16599281>.

59 IMSENG, S.; AYLETT, C. H.; MAIER, T. Architecture and activation of phosphatidylinositol 3-kinase related kinases. Curr. Opin. Struct. Biol., v. 49, p. 177-189, 2018/4 2018. ISSN 0959-440X. Disponível em: <http://dx.doi.org/10.1016/j.sbi.2018.03.010>. Disponível em: <https://www.ncbi.nlm.nih.gov/pubmed/29625383>.
JABBA, S. et al. Directionality of temperature activation in mouse TRPA1 ion channel can be inverted by single-point mutations in ankyrin repeat six. **Neuron**, v. 82, n. 5, p. 1017-31, Jun 2014. ISSN 1097-4199. Disponível em: <https://www.ncbi.nlm.nih.gov/pubmed/24814535 >.

JAQUEMAR, D.; SCHENKER, T.; TRUEB, B. An ankyrin-like protein with transmembrane domains is specifically lost after oncogenic transformation of human fibroblasts. **J Biol Chem**, v. 274, n. 11, p. 7325-33, Mar 1999. ISSN 0021-9258. Disponível em: <https://www.ncbi.nlm.nih.gov/pubmed/10066796 >.

JIA, Y.; LEE, L. Y. Role of TRPV receptors in respiratory diseases. **Biochim Biophys Acta**, v. 1772, n. 8, p. 915-27, Aug 2007. ISSN 0006-3002. Disponível em: <https://www.ncbi.nlm.nih.gov/pubmed/17346945 >.

JORDT, S. E. et al. Mustard oils and cannabinoids excite sensory nerve fibres through the TRP channel ANKTM1. **Nature**, v. 427, n. 6971, p. 260-5, Jan 2004. ISSN 1476-4687. Disponível em: <https://www.ncbi.nlm.nih.gov/pubmed/14712238 >.

KAMIYAMA, N.; MATSUI, H.; KASHIWAYANAGI, M. TRP channels expressing in murine olfactory epithelium. **Japanese Taste and Smell**, v. 13, p. 559–60, 2006.

KANG, Y. L. et al. Inhibition of PIKfyve kinase prevents infection by Zaire ebolavirus and SARS-CoV-2. **Proc Natl Acad Sci U S A**, v. 117, n. 34, p. 20803-20813, 08 2020. ISSN 1091-6490. Disponível em: <https://www.ncbi.nlm.nih.gov/pubmed/32764148 >.

KHALIFA AHMED, M. et al. Expression of transient receptor potential vanilloid (TRPV) families 1, 2, 3 and 4 in the mouse olfactory epithelium. **Rhinology**, v. 47, n. 3, p. 242-247, 09 2009. ISSN 0300-0729. Disponível em: <https://www.ncbi.nlm.nih.gov/pubmed/19839244 >.

KIM, D. H. et al. An ankyrin repeat domain of AKR2 drives chloroplast targeting through coincident binding of two chloroplast lipids. **Dev Cell**, v. 30, n. 5, p. 598-609, Sep 2014. ISSN 1878-1551. Disponível em: <https://www.ncbi.nlm.nih.gov/pubmed/25203210 >.

KIM, S. H. et al. Drosophila TRPA1 channel mediates chemical avoidance in gustatory receptor neurons. **Proc Natl Acad Sci U S A**, v. 107, n. 18, p. 8440-5, May 2010. ISSN 1091-6490. Disponível em: <https://www.ncbi.nlm.nih.gov/pubmed/20404155 >.
69 KNAAPILA, A. et al. Genetic analysis of chemosensory traits in human twins. *Chem Senses*, v. 37, n. 9, p. 869-81, Nov 2012. ISSN 1464-3553. Disponível em: <https://www.ncbi.nlm.nih.gov/pubmed/22977065>.

70 KUEBLER, W. M.; JORDT, S. E.; LIEDTKE, W. B. Urgent reconsideration of lung edema as a preventable outcome in COVID-19: inhibition of TRPV4 represents a promising and feasible approach. *Am J Physiol Lung Cell Mol Physiol*, v. 318, n. 6, p. L1239-L1243, 06 2020. ISSN 1522-1504. Disponível em: <https://www.ncbi.nlm.nih.gov/pubmed/32401673>.

71 LECHIEN, J. R. et al. Olfactory and gustatory dysfunctions as a clinical presentation of mild-to-moderate forms of the coronavirus disease (COVID-19): a multicenter European study. *Eur Arch Otorhinolaryngol*, v. 277, n. 8, p. 2251-2261, Aug 2020. ISSN 1434-4726. Disponível em: <https://www.ncbi.nlm.nih.gov/pubmed/32253535>.

72 LI VOLTI, G.; CARUSO, M.; POLOSA, R. Smoking and SARS-CoV-2 Disease (COVID-19): Dangerous Liaisons or Confusing Relationships? *J Clin Med*, v. 9, n. 5, May 2020. ISSN 2077-0383. Disponível em: <https://www.ncbi.nlm.nih.gov/pubmed/32370269>.

73 LI, M. et al. Influenza A Virus Protein PA-X Suppresses Host Ankrd17-mediated Immune Responses. *Microbiol Immunol*, Nov 2020. ISSN 1348-0421. Disponível em: <https://www.ncbi.nlm.nih.gov/pubmed/33241870>.

74 LINDING, R. et al. Protein disorder prediction: implications for structural proteomics. *Structure*, v. 11, n. 11, p. 1453-9, Nov 2003. ISSN 0969-2126. Disponível em: <http://www.ncbi.nlm.nih.gov/pubmed/14604535>.

75 LIU, B. et al. TRPA1 controls inflammation and pruritogen responses in allergic contact dermatitis. *FASEB J*, v. 27, n. 9, p. 3549-63, Sep 2013. ISSN 1530-6860. Disponível em: <https://www.ncbi.nlm.nih.gov/pubmed/23722916>.

76 LIU, B.; ZHANG, C.; QIN, F. Functional recovery from desensitization of vanilloid receptor TRPV1 requires resynthesis of phosphatidylinositol 4,5-bisphosphate. *J Neurosci*, v. 25, n. 19, p. 4835-43, May 2005. ISSN 1529-2401. Disponível em: <https://www.ncbi.nlm.nih.gov/pubmed/15888659>.

77 LIU, Z. et al. Liquiritin, a novel inhibitor of TRPV1 and TRPA1, protects against LPS-induced acute lung injury. *Cell Calcium*, v. 88, p. 102198, Apr 2020. ISSN 1532-1991. Disponível em: <https://www.ncbi.nlm.nih.gov/pubmed/32388008>.

78 LONDON, N. et al. Rosetta FlexPepDock web server--high resolution modeling of peptide-protein interactions. *Nucleic Acids Res.*, v. 39, n. Web Server issue, p. W249-53, 2011/7 2011. ISSN 0305-1048. Disponível em:
LONG, Q. X. et al. Clinical and immunological assessment of asymptomatic SARS-CoV-2 infections. *Nat Med*, v. 26, n. 8, p. 1200-1204, 08 2020. ISSN 1546-170X. Disponível em: <https://www.ncbi.nlm.nih.gov/pubmed/32555424>.

LORENZO, I. M. et al. TRPV4 channel participates in receptor-operated calcium entry and ciliary beat frequency regulation in mouse airway epithelial cells. *Proc Natl Acad Sci U S A*, v. 105, n. 34, p. 12611-6, Aug 2008. ISSN 1091-6490. Disponível em: <https://www.ncbi.nlm.nih.gov/pubmed/18719094>.

LOUIS, M. et al. TRPC1 regulates skeletal myoblast migration and differentiation. *J Cell Sci*, v. 121, n. Pt 23, p. 3951-9, Dec 2008. ISSN 0021-9533. Disponível em: <https://www.ncbi.nlm.nih.gov/pubmed/19001499>.

LUSSIER, M. P. et al. MxA, a member of the dynamin superfamily, interacts with the ankyrin-like repeat domain of TRPC. *J Biol Chem*, v. 280, n. 19, p. 19393-400, May 2005. ISSN 0021-9258. Disponível em: <https://www.ncbi.nlm.nih.gov/pubmed/15757897>.

LYALL, V. et al. The mammalian amiloride-insensitive non-specific salt taste receptor is a vanilloid receptor-1 variant. *J Physiol*, v. 558, n. Pt 1, p. 147-59, Jul 2004. ISSN 0022-3751. Disponível em: <https://www.ncbi.nlm.nih.gov/pubmed/15146042>.

MADU, I. G. et al. Characterization of a highly conserved domain within the severe acute respiratory syndrome coronavirus spike protein S2 domain with characteristics of a viral fusion peptide. *J Virol*, v. 83, n. 15, p. 7411-21, Aug 2009. ISSN 1098-5514. Disponível em: <https://www.ncbi.nlm.nih.gov/pubmed/19439480>.

MAJHI, R. K. et al. Functional expression of TRPV channels in T cells and their implications in immune regulation. *FEBS J*, v. 282, n. 14, p. 2661-81, Jul 2015. ISSN 1742-4658. Disponível em: <https://www.ncbi.nlm.nih.gov/pubmed/25903376>.

MATSUMOTO, K. et al. Transient receptor potential vanilloid 4 mediates sour taste sensing via type III taste cell differentiation. *Sci Rep*, v. 9, n. 1, p. 6686, 04 2019. ISSN 2045-2322. Disponível em: <https://www.ncbi.nlm.nih.gov/pubmed/31040368>.

Matta, J. A.; Miyares, R. L.; Ahern, G. P. TRPV1 is a novel target for omega-3 polyunsaturated fatty acids. *J Physiol*, v. 578, n. Pt 2, p. 397-411, Jan 2007. ISSN 0022-3751. Disponível em: <https://www.ncbi.nlm.nih.gov/pubmed/17038422>.
88 MENNI, C. et al. Real-time tracking of self-reported symptoms to predict potential COVID-19. Nat Med, v. 26, n. 7, p. 1037-1040, 07 2020. ISSN 1546-170X. Disponível em: <https://www.ncbi.nlm.nih.gov/pubmed/32393804>.

89 MERAD, M.; MARTIN, J. C. Author Correction: Pathological inflammation in patients with COVID-19: a key role for monocytes and macrophages. Nat Rev Immunol, v. 20, n. 7, p. 448, 07 2020. ISSN 1474-1741. Disponível em: <https://www.ncbi.nlm.nih.gov/pubmed/32488203>.

90 MOSAVI, L. K. et al. The ankyrin repeat as molecular architecture for protein recognition. Protein Sci, v. 13, n. 6, p. 1435-48, Jun 2004. ISSN 0961-8368. Disponível em: <https://www.ncbi.nlm.nih.gov/pubmed/15152081>.

91 MUKHOPADHYAY, I.; KULKARNI, A.; KHAIRATKAR-JOSHI, N. Blocking TRPA1 in Respiratory Disorders: Does It Hold a Promise? Pharmaceuticals (Basel), v. 9, n. 4, Nov 2016. ISSN 1424-8247. Disponível em: <https://www.ncbi.nlm.nih.gov/pubmed/27827953>.

92 NAHAMA, A. et al. The role of afferent pulmonary innervation in ARDS associated with COVID-19 and potential use of resiniferatoxin to improve prognosis: A review. Med Drug Discov, v. 5, p. 100033, Mar 2020. ISSN 2590-0986. Disponível em: <https://www.ncbi.nlm.nih.gov/pubmed/32292906>.

93 NAKASHIMO, Y. et al. Expression of transient receptor potential channel vanilloid (TRPV) 1–4, melastin (TRPM) 5 and 8, and ankyrin (TRPA1) in the normal and methimazole-treated mouse olfactory epithelium. Acta Otolaryngol, v. 130, n. 11, p. 1278-86, Nov 2010. ISSN 1651-2251. Disponível em: <https://www.ncbi.nlm.nih.gov/pubmed/20586674>.

94 NILIUS, B.; FLOCKERZI, V. What do we really know and what do we need to know: some controversies, perspectives, and surprises. Handb Exp Pharmacol, v. 223, p. 1239-80, 2014. ISSN 0171-2004. Disponível em: <https://www.ncbi.nlm.nih.gov/pubmed/24961986>.

95 NILIUS, B.; VOETS, T. The puzzle of TRPV4 channelopathies. EMBO Rep, v. 14, n. 2, p. 152-63, Feb 2013. ISSN 1469-3178. Disponível em: <https://www.ncbi.nlm.nih.gov/pubmed/23306656>.

96 NORTH, J. R. et al. A novel approach for emerging and antibiotic resistant infections: Innate defense regulators as an agnostic therapy. J Biotechnol, v. 226, p. 24-34, May 2016. ISSN 1873-4863. Disponível em: <https://www.ncbi.nlm.nih.gov/pubmed/27015977>.

97 OMAR, S. et al. Respiratory virus infection up-regulates TRPV1, TRPA1 and ASICS3 receptors on airway cells. PLoS One, v. 12, n. 2, p. e0171681, 2017. ISSN 1932-6203. Disponível em: <https://www.ncbi.nlm.nih.gov/pubmed/28187208>.
98 OMARI, S. A.; ADAMS, M. J.; GERAGHTY, D. P. TRPV1 Channels in Immune Cells and Hematological Malignancies. *Adv Pharmacol*, v. 79, p. 173-198, 2017. ISSN 1557-8925. Disponível em: <https://www.ncbi.nlm.nih.gov/pubmed/28528668 >.

99 PALANIYANDI, S. et al. TRPV4 is dispensable for the development of airway allergic asthma. *Lab Invest*, v. 100, n. 2, p. 265-273, 02 2020. ISSN 1530-0307. Disponível em: < https://www.ncbi.nlm.nih.gov/pubmed/31417159 >.

100 PARKER, J. C.; IVEY, C. L.; TUCKER, J. A. Gadolinium prevents high airway pressure-induced permeability increases in isolated rat lungs. *J Appl Physiol* (1985), v. 84, n. 4, p. 1113-8, Apr 1998. ISSN 8750-7587. Disponível em: <https://www.ncbi.nlm.nih.gov/pubmed/9516173 >.

101 PARMA, V. et al. More Than Smell-COVID-19 Is Associated With Severe Impairment of Smell, Taste, and Chemesthesis. *Chem Senses*, v. 45, n. 7, p. 609-622, 10 2020. ISSN 1464-3553. Disponível em: < https://www.ncbi.nlm.nih.gov/pubmed/32564071 >.

102 PATWARDHAN, A. M. et al. Activation of TRPV1 in the spinal cord by oxidized linoleic acid metabolites contributes to inflammatory hyperalgesia. *Proc Natl Acad Sci U S A*, v. 106, n. 44, p. 18820-4, Nov 2009. ISSN 1091-6490. Disponível em: <https://www.ncbi.nlm.nih.gov/pubmed/19843694 >.

103 PEIRIS, J. S. et al. Coronavirus as a possible cause of severe acute respiratory syndrome. *Lancet*, v. 361, n. 9366, p. 1319-25, Apr 2003. ISSN 0140-6736. Disponível em: <https://www.ncbi.nlm.nih.gov/pubmed/12711465 >.

104 PERLMAN, S.; JACOBSEN, G.; AFIFI, A. Spread of a neurotropic murine coronavirus into the CNS via the trigeminal and olfactory nerves. *Virology*, v. 170, n. 2, p. 556-60, Jun 1989. ISSN 0042-6822. Disponível em: <https://www.ncbi.nlm.nih.gov/pubmed/2543129 >.

105 PLÜCKTHUN, A. Designed ankyrin repeat proteins (DARPins): binding proteins for research, diagnostics, and therapy. *Annu Rev Pharmacol Toxicol*, v. 55, p. 489-511, 2015. ISSN 1545-4304. Disponível em: <https://www.ncbi.nlm.nih.gov/pubmed/25562645 >.

106 RAMSEY, I. S.; DELLING, M.; CLAPHAM, D. E. An introduction to TRP channels. *Annu Rev Physiol*, v. 68, p. 619-47, 2006. ISSN 0066-4278. Disponível em: <https://www.ncbi.nlm.nih.gov/pubmed/16460286 >.

107 RECCHIUTI, A. et al. Resolvin D1 and D2 reduce SARS-Cov-2-induced inflammation in cystic fibrosis macrophages. *bioRxiv*, p. 2020.08.28.255463, 2020. Disponível em: <http://biorxiv.org/content/early/2020/08/28/2020.08.28.255463.abstract >.
108 RICHARDS, P. M.; JOHNSON, E. C.; SILVER, W. L. Four Irritating Odorants Target the Trigeminal Chemoreceptor TRPA1. *Chemosensory Perception*, v. 3, n. 3, p. 190-199, 2010/12/01 2010. ISSN 1936-5810. Disponível em: <https://doi.org/10.1007/s12078-010-9081-1 >.

109 RICHARDSON, S. et al. Presenting Characteristics, Comorbidities, and Outcomes Among 5700 Patients Hospitalized With COVID-19 in the New York City Area. *JAMA*, v. 323, n. 20, p. 2052-2059, 05 2020. ISSN 1538-3598. Disponível em: <https://www.ncbi.nlm.nih.gov/pubmed/32320003 >.

110 ROBBIANI, D. F. et al. Convergent antibody responses to SARS-CoV-2 in convalescent individuals. *Nature*, v. 584, n. 7821, p. 437-442, 08 2020. ISSN 1476-4687. Disponível em: <https://www.ncbi.nlm.nih.gov/pubmed/32555388 >.

111 ROSENBAUM, T. et al. TRPV4: A Physio and Pathophysiologically Significant Ion Channel. *Int J Mol Sci*, v. 21, n. 11, May 2020. ISSN 1422-0067. Disponível em: <https://www.ncbi.nlm.nih.gov/pubmed/32481620 >.

112 ROSSATO, M. et al. Current smoking is not associated with COVID-19. *Eur Respir J*, v. 55, n. 6, 06 2020. ISSN 1399-3003. Disponível em: <https://www.ncbi.nlm.nih.gov/pubmed/32350106 >.

113 SAHHOO, S. S. et al. Transient receptor potential ankyrin1 channel is endogenously expressed in T cells and is involved in immune functions. *Biosci Rep*, v. 39, n. 9, 09 2019. ISSN 1573-4935. Disponível em: <https://www.ncbi.nlm.nih.gov/pubmed/31488616 >.

114 SANJAI KUMAR, P. et al. Inhibition of transient receptor potential vanilloid 1 (TRPV1) channel regulates chikungunya virus infection in macrophages. *Arch Virol*, Oct 2020. ISSN 1432-8798. Disponível em: <https://www.ncbi.nlm.nih.gov/pubmed/33125586 >.

115 SCHEEL, T. K.; RICE, C. M. Understanding the hepatitis C virus life cycle paves the way for highly effective therapies. *Nat Med*, v. 19, n. 7, p. 837-49, Jul 2013. ISSN 1546-170X. Disponível em: <https://www.ncbi.nlm.nih.gov/pubmed/23836234 >.

116 SCHERAGA, R. G. et al. The Role of TRPV4 in Regulating Innate Immune Cell Function in Lung Inflammation. *Front Immunol*, v. 11, p. 1211, 2020. ISSN 1664-3224. Disponível em: <https://www.ncbi.nlm.nih.gov/pubmed/32676078 >.

117 SCHERBIK, S. V.; BRINTON, M. A. Virus-induced Ca2+ influx extends survival of west nile virus-infected cells. *J Virol*, v. 84, n. 17, p. 8721-31, Sep 2010. ISSN
118 SCHÜTZ, M. et al. Consequences of a human TRPA1 genetic variant on the perception of nociceptive and olfactory stimuli. *PLoS One*, v. 9, n. 4, p. e95592, 2014. ISSN 1932-6203. Disponível em: <https://www.ncbi.nlm.nih.gov/pubmed/24752136>.

119 SCOTT, M. G. et al. An anti-infective peptide that selectively modulates the innate immune response. *Nat Biotechnol*, v. 25, n. 4, p. 465-72, Apr 2007. ISSN 1087-0156. Disponível em: <https://www.ncbi.nlm.nih.gov/pubmed/17384586>.

120 SEKI, N. et al. Expression and localization of TRPV1 in human nasal mucosa. *Rhinology*, v. 44, n. 2, p. 128-34, Jun 2006. ISSN 0300-0729. Disponível em: <https://www.ncbi.nlm.nih.gov/pubmed/16792172>.

121 SEOW, J. et al. Longitudinal observation and decline of neutralizing antibody responses in the three months following SARS-CoV-2 infection in humans. *Nat Microbiol*, v. 5, n. 12, p. 1598-1607, 12 2020. ISSN 2058-5276. Disponível em: <https://www.ncbi.nlm.nih.gov/pubmed/33106674>.

122 SERHAN, C. N.; CHIANG, N. Endogenous pro-resolving and anti-inflammatory lipid mediators: a new pharmacologic genus. *Br J Pharmacol*, v. 153 Suppl 1, p. S200-15, Mar 2008. ISSN 0007-1188. Disponível em: <https://www.ncbi.nlm.nih.gov/pubmed/17965751>.

123 SERHAN, C. N. et al. Resolvins: a family of bioactive products of omega-3 fatty acid transformation circuits initiated by aspirin treatment that counter proinflammation signals. *J Exp Med*, v. 196, n. 8, p. 1025-37, Oct 2002. ISSN 0022-1007. Disponível em: <https://www.ncbi.nlm.nih.gov/pubmed/12391014>.

124 SHEPHERD, G. M. Smell images and the flavour system in the human brain. *Nature*, v. 444, n. 7117, p. 316-21, Nov 2006. ISSN 1476-4687. Disponível em: <https://www.ncbi.nlm.nih.gov/pubmed/17108956>.

125 SIEVERS, F. et al. Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega. *Mol Syst Biol*, v. 7, p. 539, Oct 2011. ISSN 1744-4292. Disponível em: <https://www.ncbi.nlm.nih.gov/pubmed/21988835>.

126 SIGRIST, C. J.; BRIDGE, A.; LE MERCIER, P. A potential role for integrins in host cell entry by SARS-CoV-2. *Antiviral Res*, v. 177, p. 104759, 05 2020. ISSN 1872-9096. Disponível em: <https://www.ncbi.nlm.nih.gov/pubmed/32130973>.

1098-5514. Disponível em: <https://www.ncbi.nlm.nih.gov/pubmed/20538858>.
SILVERMAN, H. A. et al. Transient Receptor Potential Ankyrin 1 Mediates Afferent Signals in the Inflammatory Reflex. bioRxiv, p. 822734, 2019. Disponível em: <http://biorxiv.org/content/early/2019/11/04/822734.abstract>.

STEIN, A. T. et al. Phosphoinositide 3-kinase binds to TRPV1 and mediates NGF-stimulated TRPV1 trafficking to the plasma membrane. J Gen Physiol, v. 128, n. 5, p. 509-22, Nov 2006. ISSN 0022-1295. Disponível em: <https://www.ncbi.nlm.nih.gov/pubmed/17074976>.

STORY, G. M. et al. ANKTM1, a TRP-like channel expressed in nociceptive neurons, is activated by cold temperatures. Cell, v. 112, n. 6, p. 819-29, Mar 2003. ISSN 0092-8674. Disponível em: <https://www.ncbi.nlm.nih.gov/pubmed/12654248>.

STRAUS, M. R. et al. Ca 2+ Ions Promote Fusion of Middle East Respiratory Syndrome Coronavirus with Host Cells and Increase Infectivity. J Virol, v. 94, n. 13, 06 2020. ISSN 1098-5514. Disponível em: <https://www.ncbi.nlm.nih.gov/pubmed/32295925>.

STUMPP, M. T.; BINZ, H. K.; AMSTUTZ, P. DARPins: a new generation of protein therapeutics. Drug Discov Today, v. 13, n. 15-16, p. 695-701, Aug 2008. ISSN 1359-6446. Disponível em: <https://www.ncbi.nlm.nih.gov/pubmed/18621567>.

SUDRE, C. H. et al. Anosmia and other SARS-CoV-2 positive test-associated symptoms, across three national, digital surveillance platforms as the COVID-19 pandemic and response unfolded: an observation study: medRxiv 2020. Disponível em: <https://doi.org/10.1101/2020.12.15.20248096>.

TAKAHASHI, N. et al. TRPV4 channel activity is modulated by direct interaction of the ankyrin domain to PI(4,5)P₂. Nat Commun, v. 5, p. 4994, Sep 2014. ISSN 2041-1723. Disponível em: <https://www.ncbi.nlm.nih.gov/pubmed/25256292>.

TALAVERA, K. et al. Nicotine activates the chemosensory cation channel TRPA1. Nat Neurosci, v. 12, n. 10, p. 1293-9, Oct 2009. ISSN 1546-1726. Disponível em: <https://www.ncbi.nlm.nih.gov/pubmed/19749751>.

TALBOT, S. et al. Silencing Nociceptor Neurons Reduces Allergic Airway Inflammation. Neuron, v. 87, n. 2, p. 341-54, Jul 2015. ISSN 1097-4199. Disponível em: <https://www.ncbi.nlm.nih.gov/pubmed/26119026>.

TANAKA, M. et al. Structure determination of the human TRPV1 ankyrin-repeat domain under nonreducing conditions. Acta Crystallogr F Struct Biol Commun, v. 76, n. Pt 3, p. 130-137, Mar 2020. ISSN 2053-230X. Disponível em: <https://www.ncbi.nlm.nih.gov/pubmed/32133998>.
137 THAN, T. T. et al. Ankyrin Repeat Domain 1 is Up-regulated During Hepatitis C Virus Infection and Regulates Hepatitis C Virus Entry. Sci Rep, v. 6, p. 20819, Feb 2016. ISSN 2045-2322. Disponível em: <https://www.ncbi.nlm.nih.gov/pubmed/26860204>.

138 TOELZER, C. et al. Free fatty acid binding pocket in the locked structure of SARS-CoV-2 spike protein. Science, v. 370, n. 6517, p. 725-730, 11 2020. ISSN 1095-9203. Disponível em: <https://www.ncbi.nlm.nih.gov/pubmed/32958580>.

139 TOMLINSON, I. M. Next-generation protein drugs. Nat Biotechnol, v. 22, n. 5, p. 521-2, May 2004. ISSN 1087-0156. Disponível em: <https://www.ncbi.nlm.nih.gov/pubmed/15122287>.

140 TORSHIN, I. Direct and reversed amino acid sequence pattern analysis: structural reasons for activity of reversed sequence sites and results of kinase site mutagenesis. Biochem J, v. 345 Pt 3, p. 733-40, Feb 2000. ISSN 0264-6021. Disponível em: <https://www.ncbi.nlm.nih.gov/pubmed/10642535>.

141 TRÄNKNER, D. et al. Population of sensory neurons essential for asthmatic hyperreactivity of inflamed airways. Proc Natl Acad Sci U S A, v. 111, n. 31, p. 11515-20, Aug 2014. ISSN 1091-6490. Disponível em: <https://www.ncbi.nlm.nih.gov/pubmed/25049382>.

142 TROTT, O.; OLSON, A. J. AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J Comput Chem, v. 31, n. 2, p. 455-61, Jan 2010. ISSN 1096-987X. Disponível em: <http://www.ncbi.nlm.nih.gov/pubmed/19499576>.

143 TSENG, W. C. et al. TRPA1 ankyrin repeat six interacts with a small molecule inhibitor chemotype. Proc Natl Acad Sci U S A, v. 115, n. 48, p. 12301-12306, 11 2018. ISSN 1091-6490. Disponível em: <https://www.ncbi.nlm.nih.gov/pubmed/30429323>.

144 TYNAN, A. et al. Antibody responses to immunization require sensory neurons. bioRxiv, p. 860395, 2019. Disponível em: <http://biorxiv.org/content/early/2019/11/30/860395.abstract>.

145 UEDA, T. et al. Basal cells express functional TRPV4 channels in the mouse nasal epithelium. Biochem Biophys Rep, v. 4, p. 169-174, Dec 2015. ISSN 2405-5808. Disponível em: <https://www.ncbi.nlm.nih.gov/pubmed/29124201>.

146 VAGUINE, A. A.; RICHELLE, J.; WODAK, S. J. SFCHECK: a unified set of procedures for evaluating the quality of macromolecular structure-factor data and their agreement with the atomic model. Acta Crystallogr. D Biol. Crystallogr., v. 55, n. Pt 1, p. 191-205, 1999/1 1999. ISSN 0907-4449.
VAIRA, L. A. et al. Objective evaluation of anosmia and ageusia in COVID-19 patients: Single-center experience on 72 cases. Head Neck, v. 42, n. 6, p. 1252-1258, 06 2020. ISSN 1097-0347. Disponível em: <https://www.ncbi.nlm.nih.gov/pubmed/32342566>.

VENKATACHALAM, K.; MONTELL, C. TRP channels. Annu Rev Biochem, v. 76, p. 387-417, 2007. ISSN 0066-4154. Disponível em: <https://www.ncbi.nlm.nih.gov/pubmed/17579562>.

VENNEKENS, R.; OWSIANIK, G.; NILIUS, B. Vanilloid transient receptor potential cation channels: an overview. Curr Pharm Des, v. 14, n. 1, p. 18-31, 2008. ISSN 1873-4286. Disponível em: <https://www.ncbi.nlm.nih.gov/pubmed/18220815>.

VON BARTHELD, C. S.; HAGEN, M. M.; BUTOWT, R. Prevalence of Chemosensory Dysfunction in COVID-19 Patients: A Systematic Review and Meta-analysis Reveals Significant Ethnic Differences. medRxiv, Jun 2020. Disponível em: <https://www.ncbi.nlm.nih.gov/pubmed/32587993>.

WANG, L. et al. [Effects of linoleic acid on intracellular calcium concentration in primarily cultured rat pancreatic β-cells and underlying mechanism]. Sheng Li Xue Bao, v. 62, n. 6, p. 529-34, Dec 2010. ISSN 0371-0874. Disponível em: <https://www.ncbi.nlm.nih.gov/pubmed/21170499>.

WANNER, S. P. et al. Aging reverses the role of the transient receptor potential vanilloid-1 channel in systemic inflammation from anti-inflammatory to proinflammatory. Cell Cycle, v. 11, n. 2, p. 343-9, Jan 2012. ISSN 1551-4005. Disponível em: <https://www.ncbi.nlm.nih.gov/pubmed/22214765>.

WATANABE, N. et al. Immunohistochemical localization of vanilloid receptor subtype 1 (TRPV1) in the guinea pig respiratory system. Pulm Pharmacol Ther, v. 18, n. 3, p. 187-97, 2005. ISSN 1094-5539. Disponível em: <https://www.ncbi.nlm.nih.gov/pubmed/15707853>.

WEISSMANN, N. et al. Classical transient receptor potential channel 6 (TRPC6) is essential for hypoxic pulmonary vasoconstriction and alveolar gas exchange. Proc Natl Acad Sci U S A, v. 103, n. 50, p. 19093-8, Dec 2006. ISSN 0027-8424. Disponível em: <https://www.ncbi.nlm.nih.gov/pubmed/17142322>.

WHITE, J. P. et al. TRPV4: Molecular Conductor of a Diverse Orchestra. Physiol Rev, v. 96, n. 3, p. 911-73, 07 2016. ISSN 1522-1210. Disponível em: <https://www.ncbi.nlm.nih.gov/pubmed/27252279>.
156 WICKHAM, T. J. et al. Integrin alpha v beta 5 selectively promotes adenovirus mediated cell membrane permeabilization. *J Cell Biol*, v. 127, n. 1, p. 257-64, Oct 1994. ISSN 0021-9525. Disponível em: <https://www.ncbi.nlm.nih.gov/pubmed/7523420>.

157 XIA, S. et al. Fusion mechanism of 2019-nCoV and fusion inhibitors targeting HR1 domain in spike protein. *Cell Mol Immunol*, v. 17, n. 7, p. 765-767, 07 2020. ISSN 2042-0226. Disponível em: <https://www.ncbi.nlm.nih.gov/pubmed/32047258>.

158 XIA, Y. et al. Transient Receptor Potential Channels and Chronic Airway Inflammatory Diseases: A Comprehensive Review. *Lung*, v. 196, n. 5, p. 505-516, 10 2018. ISSN 1432-1750. Disponível em: <https://www.ncbi.nlm.nih.gov/pubmed/30094794>.

159 XIAO, B. et al. Identification of transmembrane domain 5 as a critical molecular determinant of menthol sensitivity in mammalian TRPA1 channels. *J Neurosci*, v. 28, n. 39, p. 9640-51, Sep 2008. ISSN 1529-2401. Disponível em: <https://www.ncbi.nlm.nih.gov/pubmed/18815250>.

160 YANG, N. et al. Phosphatidylinositol 4-kinase IIIβ is required for severe acute respiratory syndrome coronavirus spike-mediated cell entry. *J. Biol. Chem.*, v. 287, n. 11, p. 8457-8467, 2012/3/9 2012. ISSN 0021-9258. Disponível em: <http://dx.doi.org/10.1074/jbc.M111.312561>.Disponível em: <https://www.ncbi.nlm.nih.gov/pubmed/22253445>.

161 YAO, H. et al. Platelet-derived growth factor-BB restores human immunodeficiency virus Tat-cocaine-mediated impairment of neurogenesis: role of TRPC1 channels. *J Neurosci*, v. 32, n. 29, p. 9835-47, Jul 2012. ISSN 1529-2401. Disponível em: <https://www.ncbi.nlm.nih.gov/pubmed/22815499>.

162 YEDAVALLI, V. S. et al. Requirement of DDX3 DEAD box RNA helicase for HIV-1 Rev-RRE export function. *Cell*, v. 119, n. 3, p. 381-92, Oct 2004. ISSN 0021-8674. Disponível em: <https://www.ncbi.nlm.nih.gov/pubmed/15507209>.

163 YU, H. B. et al. Sequestosome-1/p62 is the key intracellular target of innate defense regulator peptide. *J Biol Chem*, v. 284, n. 52, p. 36007-11, Dec 2009. ISSN 1083-351X. Disponível em: <https://www.ncbi.nlm.nih.gov/pubmed/19850933>.

164 ZÁRATE, S. et al. VP7 mediates the interaction of rotaviruses with integrin alphabeta3 through a novel integrin-binding site. *J Virol*, v. 78, n. 20, p. 10839-47, Oct 2004. ISSN 0022-538X. Disponível em: <https://www.ncbi.nlm.nih.gov/pubmed/15452204>.
ZHANG, X. Molecular sensors and modulators of thermoreception. Channels (Austin), v. 9, n. 2, p. 73-81, 2015. ISSN 1933-6969. Disponível em: <https://www.ncbi.nlm.nih.gov/pubmed/25868381>.

ZHU, J. et al. An artificial intelligence system reveals liquiritin inhibits SARS-CoV-2 by mimicking type I interferon. bioRxiv, p. 2020.05.02.074021, 2020. Disponível em: <http://biorxiv.org/content/early/2020/05/02/2020.05.02.074021.abstract>.

ZYGMUNT, P. M.; HÖGESTÄTT, E. D. TRPA1. Handb Exp Pharmacol, v. 222, p. 583-630, 2014. ISSN 0171-2004. Disponível em: <https://www.ncbi.nlm.nih.gov/pubmed/24756722>.
FIGURES LEGEND

Figure 1. Multiple amino acid alignment of S proteins of betacoronaviruses (betaCoVs) using Clustal omega and phylogenetic tree. (A) $^{408}\text{RQIAPG}^{413}$ and (B) $^{905}\text{RFNGIG}^{910}$ motifs are indicated by green stars. The figure was prepared with ESPript (http://espript.ibcp.fr). (C) Unrooted phylogenetic tree of S proteins of representative betaCoVs. The tree was constructed using Mr Bayes method based on the multiple amino acid sequence alignment by Clustal omega. Red rectangle clusters betaCoVs with both $^{408}\text{RQIAPG}^{413}$ and $^{905}\text{RFNGIG}^{910}$ motifs. GenBank and UniProt accession numbers are indicated at the start of each sequence.

Figure 2. Localization of ankyrin repeat binding motifs (ARBM) $^{408}\text{RQIAPG}^{413}$ and $^{905}\text{RFNGIG}^{910}$ in S protein of SARS-CoV-2. (A) Diagram representation of S protein colored by domain. N-terminal domain (NTD), receptor-binding domain (RBD), subdomains 1 and 2 (SD1-2, orange), protease cleavage site (S1/S2 and S2'), site Fusion peptide (FP), heptad repeat 1 and 2 (HR1 and HR2), central helix (CH), connector domain (CD), transmembrane domain (TM), cytoplasmic tail (CT), and the localization of $^{408}\text{RQIAPG}^{413}$ in RBD and $^{905}\text{RFNGIG}^{910}$ in HR1. (B) Surface structure representation of the S protein (PDB id: 6VXX_A). $^{408}\text{RQIAPG}^{413}$ and $^{905}\text{RFNGIG}^{910}$ are localized in the surface of S protein (blue).

Figure 3. Complexes obtained by blind docking of 3D modeled hTRPA1 Ankyrin repeat (AR) region with SARS-CoV-2 RBD (receptor binding domain), HR1 (heptad repeat 1), and $^{408}\text{RQIAPG}^{413}$ and $^{905}\text{RFNGIG}^{910}$ peptides. (A) RBD into hTRPA1 AR region. (B) HR1 into hTRPA1 AR region. (C) Complexes of hTRPA1 AR region and $^{408}\text{RQIAPG}^{413}$ and $^{905}\text{RFNGIG}^{910}$ peptides which are superposed to AR of Tankyrase-2-human SH3BP2 peptide complex (PDB id: 3twr). (D) Electrostatic potential surface representation of the ARD region of 3D modeled hTRPA1 with docked peptides $^{408}\text{RQIAPG}^{413}$ and $^{905}\text{RFNGIG}^{910}$. The electrostatic potential surface of modeled hTRPA1 AR region was realized with PyMOL software (http://pymol.org/). The electrostatic potential with negative charge shown in red and positive charge in blue.
Figure 4. Complexes obtained by blind docking of hTRPV1 (PDB id: 6l93_A) Ankyrin repeat (AR) region with SARS-CoV-2 RBD (receptor binding domain), HR1 (heptad repeat 1), and 408RQIAPG413 and 905RFNGIG910 peptides. (A) RBD into hTRPV1 AR region. (B) HR1 into hTRPV1 AR region. (C) Electrostatic potential surface representation of the AR region of hTRPV1 with docked peptides 408RQIAPG413 and 905RFNGIG910. The electrostatic potential surface of hTRPV1 AR region was realized with PyMOL software (http://pymol.org/). The electrostatic potential with negative charge shown in red and positive charge in blue.
Table 1. ELM motifs of hot disordered loop in SARS-CoV-2 S protein.

Elm Name	Instances	Positions	Elm Description	Cell compartment	Pattern
LIG_RGD	RGD	403-405	The RGD motif is recognized by different members of the integrin family	extracellular, integrin	RGD
DOC_ANK_TNKS	VRQIAPGQ	407-414	The Tankyrase binding motif interacts with the ankyrin repeat domain region in Tankyrase-1.2	nucleus, cytosol	..[PGAV][DEIP]G.
LIG_FHA_1	GQTGKIA	413-419	Phosphothreonine motif binding a subset of FHA domains (ST)Q motif which is phosphorylated by PIKK family member.	nucleus	..(T)..<[ILV].
MOD_PIKK_1	PGQTGKI	412-418		nucleus, cytosol	...([ST])Q..

Table 2. TRPs-ARDs channels locus and taste when it has been reported.

TRPs	Locus	Taste	Reference
TRPA1	Olfactory epithelium		Kamiyama et al., 2006
TRPC1	Olfactory epithelium		Kamiyama et al., 2006
TRPC6	Olfactory epithelium		Kamiyama et al., 2006
TRPV1	Tongue, olfactory epithelium		Dhakal and Lee, 2019; Nakashimo et al., 2010; Khalifa Ahmed et al., 2009
TRPV1t	Taste buds	Non-specific salt taste	Lyall et al., 2004
TRPV2	Olfactory epithelium		Nakashimo et al., 2010; Khalifa Ahmed et al., 2009; Kamiyama et al., 2006
TRPV3	Tongue, olfactory epithelium		Dhakal and Lee, 2019; Nakashimo et al., 2010; Khalifa Ahmed et al., 2009
TRPV4	Taste buds, olfactory epithelium		Doñate-Macián et al., 2018
TRPV4	Mouse gastrointestinal tract		Matsumoto et al., 2019
TRPV4	Type IV of the taste buds	Sour	Matsumoto et al., 2019
TRPV4	Epidermal keratinocytes		Chen et al., 2014
TRPV4	Olfactory and airway epithelia		Ueda et al., 2015
TRPV6	Olfactory epithelium		Kamiyama et al., 2006

Table 3. TRPs-ARDs channels that are linked to viral infection.

TRPs	Viruses	Reference
TRPA1, TRPV1	Respiratory syncytial virus (RSV) and measles virus (MV)	Omar et al., 2017
TRPC1	HSV-1 glycoprotein D facilitating entry of virus	He et al., 2020
TRPV1	Regulatory role during chikungunya virus (CHIKV) infection in macrophages	Sanjai Kumar et al., 2020
TRPV1	Human rhinovirus (HRV)	Abdullah et al., 2014
TRPV1	Herpes simplex virus type 1, 2 (HSV1, 2)	Cabrera et al., 2016
TRPV1	Hepatitis C virus (HCV)	Alhmada et al., 2017
TRPV1	Varicella-zoster virus (VZV)	Han et al., 2016
TRPV4	Mediates infectivity of dengue, hepatitis C and Zika Viruses (RNA viruses)	Doñate-Macián et al., 2018
Fig. 2
Fig. 3
