Superalgebraic Truncations from $D=10$, $N=2$ Chiral Supergravity

Chang-Ho Kim
Department of Physics, Seonam University, Namwon, Chonbuk 590-170, Korea

Young-Jai Park*
Department of Physics and Basic Science Research Institute, Sogang University, C.P.O. Box 1142, Seoul 100-611, Korea

ABSTRACT

We study ten-dimensional $N=2$ maximal chiral supergravity in the context of Lie superalgebra SU(8/1). The possible successive superalgebraic truncations from ten dimensional $N=2$ chiral theory to the lower dimensional supergravity theories are systematically realized as sub-superalgebraic chains of SU(8/1) by using the Kac-Dynkin weight techniques.

PACS Nos: 04.65.+e, 11.30.Pb

* E-mail address: yjpark@ccs.sogang.ac.kr
I. Introduction

There have been considerable interests in superalgebras which are relevant to many supersymmetric theories.\(^1\),\(^2\) Recently, M and F theories\(^3\) have been also tackled from the point of view of the general properties of the superalgebra.\(^4\) Supersymmetric extensions of Poincaré algebra in \(D\)-dimensional space-time were reviewed, and their representations (reps) for the supermultiplets of all known supergravity theories were extensively searched by Strathdee.\(^5\) This work has been an extremely useful guideline for studying supersymmetric theories. Cremmer\(^6\) developed the complicated method for consistent truncations by choosing a particular rep of real symplectic metric in order to derive \(N=6,4,2\) supergravities from \(N=8\) in five dimensions.

On the other hand, during last ten years, we have shown that superalgebras allow a more systematic analysis for finding the supermultiplets\(^7\),\(^8\) of several supergravity and type-IIB closed superstring theories by using the Kac-Dynkin weight techniques of \(SU(m/n)\) Lie superalgebra.\(^9\) In particular, we have shown that the massless reps of supermultiplets of the \(D=10, N=2\) chiral supergravity\(^10\) and the \(D=4, N=8\) supergravity\(^11\) belong to only one irreducible representation (irrep) of the \(SU(8/1)\) superalgebra using the Kac-Dynkin method.\(^12\) Recently, we have shown that all possible successive superalgebraic truncations from four-dimensional \(N=8\) theory to \(N=7,6,...,1\) supergravity theories are systematically realised as sub-superalgebra chains of \(SU(8/1)\) superalgebra.\(^13\)

In this letter, we show that the successive superalgebraic truncations from \(D=10, N=2\) chiral supergravity\(^9\) to possible lower dimensional nonmaximal theories can be easily realized as sub-superalgebra chains of \(SU(8/1)\) Lie superalgebra by using projection matrices.\(^14\) In Sec. II, we briefly recapitulate the mathematical structure of the \(SU(8/1)\) superalgebra related to \(D=10, N=2\) maximal chiral supergravity. In Sec. III, we explicitly show that supermultiplets of possible lower dimensional supergravity theories can be systematically obtained from \(SU(8/1)\) by successive superalgebraic dimensional reductions and truncations. The last section contains conclusions.

II. Kac-Dynkin Structure of \(SU(8/1)\) superalgebra

2
In this section, let us briefly recapitulate the Kac-Dynkin Structure of SU(8/1) superalgebra. The Kac-Dynkin diagram of the SU(8/1) Lie superalgebra is

\[
\begin{array}{cccccccc}
w_1 & w_2 & w_3 & w_4 & w_5 & w_6 & w_7 & w_8 \\
\circ & \times
\end{array}
\]

(1)

where the set \((w_1 w_2 \cdots w_8)\) characterizes the highest weight vector of an irrep.\(^{1,2}\) The components \(w_i\) \((i \neq 8)\) of this vector should be a nonnegative integer, while \(w_8\) can be any complex number. The last node denotes the simple odd root \(\beta_8\), while the seven white nodes in the Kac-Dynkin diagram denote the simple even roots \(\alpha_i\) \((i = 1, 2, \cdots, 7)\), which constitute SU(8) subalgebra.

The corresponding graded Cartan matrix is given by

\[
\begin{bmatrix}
2 & -1 & 0 & 0 & 0 & 0 & 0 & 0 \\
-1 & 2 & -1 & 0 & 0 & 0 & 0 & 0 \\
0 & -1 & 2 & -1 & 0 & 0 & 0 & 0 \\
0 & 0 & -1 & 2 & -1 & 0 & 0 & 0 \\
0 & 0 & 0 & -1 & 2 & -1 & 0 & 0 \\
0 & 0 & 0 & 0 & -1 & 2 & -1 & 0 \\
0 & 0 & 0 & 0 & 0 & -1 & 2 & -1 \\
0 & 0 & 0 & 0 & 0 & 0 & -1 & 0
\end{bmatrix}.
\]

(2)

Note that each positive simple even root \(\alpha_i^+\) corresponds to the \(i\)-th column of the graded Cartan matrix, while the positive simple odd root \(\beta_8^+\) corresponds to the last column of the graded Cartan matrix. The negative simple roots \(\alpha_i^-\) and \(\beta_8^-\) are given by

\[
\alpha_i^- = -\alpha_i^+, \quad \beta_8^- = -\beta_8^+,
\]

(3)

and other odd roots are easily obtained by

\[
\beta_i^\pm = [\alpha_i, \beta_{i+1}], \quad i = 1, 2, \cdots, 7.
\]

(4)
Then, the action by an odd root $\beta_i \pm$ alternates a bosonic (fermionic) floor with a fermionic (bosonic) one.

The fundamental rep of SU(8/1) is $(1 0 0 0 0 0 0 0)$, and it has the substructure $[(8, 1)_F \oplus (1, 1)_B]$ in the SU(8)\otimesU(1) bosonic subalgebra basis, where the subscripts F and B stand for fermionic and bosonic degrees of freedom, respectively, as follows:

\[
(1 0 0 0 0 0 0 0) \\
\mid \text{ground} > (1 0 0 0 0 0 0) = (8, 1)_F \\
\downarrow \beta_i^- \\
\mid 1\text{st} > (0 0 0 0 0 0 1) = (1, 1)_B.
\]

On the other hand, the complex conjugate rep of the fundamental rep is given by $\overline{(0 0 0 0 0 0 - 1)} = [(1, 1)_B \oplus (\bar{8}, 1)_F]$. The even and odd roots consist of the adjoint rep $(1 0 0 0 0 0 0 - 1)$, which is obtained from the tensor product of the above two reps, as follows

\[
(1 0 0 0 0 0 0 - 1) \\
\mid \text{gnd} > (1 0 0 0 0 0 0 - 1) = \beta_i^+ \\
\mid 1\text{st} > (1 0 0 0 0 0 1 - 1) = \text{SU}(8) \\
(0 0 0 0 0 0 0) = \text{U}(1) \\
\mid 2\text{nd} > (0 0 0 0 0 0 1 0) = \beta_i^-.
\]

In general, there are two types of irreps of SU(m/n), which are typical and atypical1,9,15. All atypical reps of SU(8/1) are characterized by the last component of the highest weight. The atypicality condition9 is given by

\[
w_8 = - \sum_{j=i}^7 w_j + i - 8, \quad 1 \leq i \leq 8.
\]

Note that since an odd root β_i^- string is terminated in the full weight system for the case of the atypical rep such that w_8 satisfies Eq.(7) for a specific i, the atypical reps generally have not equal bosonic and fermionic degrees of freedom.

On the other hand, all the typical reps of SU(8/1) consist of nine floors and have equal bosonic and fermionic degrees of freedom. The typical, lowest dimensional rep is
(0 0 0 0 0 0 w_8) = [128_B ⊕ 128_F] = [1 ⊕ 8 ⊕ 28 ⊕ 56 ⊕ 70 ⊕ 56 ⊕ 28 ⊕ 8 ⊕ 1] for

w_8 ≠ 0, −1, · · ·, −7. Particularly, this weight system with w_8 = −\frac{7}{2} satisfies both the typical and real properties. By using these properties, we have already shown that the typical rep (0 0 0 0 0 0 −\frac{7}{2}) is beautifully identified with the supermultiplets of the D=4, N=8 supergravity and D=10, N=2 chiral supergravity. 12,13

Now, let us consider the case of D=10, N=2 maximal chiral supergravity. Although the hidden symmetry of full theory on the shell is still not known, we have found that SO(8) ⊗ SO(2) ⊂ SU(8/1). Here, we have introduced a bigger symmetry SU(8) ⊃ SO(8) to preserve chirality, and the U(1) ≈ SO(2), which corresponds to the simple odd root, for N=2 supersymmetry.

Let h_i (i = 1, 2, . . . , 8) be Cartan sublagebras of SU(8/1) superalgebra. Then the U(1) sublagebra is composed of \sum_{i=1}^{8} i h^i to satisfy the supertraceless condition, and the U(1) supercharge generator should be Diag(1, 1, 1, 1, 1, 1, 1, 8). Then, the typical lowest dimensional rep (0 0 0 0 0 0 −\frac{7}{2}) = [128_B ⊕ 128_F] corresponds to the supermultiplets of D = 10, N = 2 chiral supergravity. The full contents of the representation and the field identifications are given by
It is interesting to note that this rep can be identified with a single scalar superfield $\Phi(x, \theta)$ treated by Green and Schwarz.10

III. Possible Superalgebraic Truncations

3.1 $D=8$, $N=1$ Reduction

Now, let us consider the possible superalgebraic truncation to the eight dimensions. The supermultiplets of $D = 8$, $N = 2$ are in the rep space of SO(6) \otimes Sp(2) symmetry. However, the irreps of SO(6) \otimes Sp(2) are not fit in SU(8) \otimes U(1) \subset SU(8/1). Therefore, the case of the only possible superalgebraic truncation is to accommodate the supermultiplets of $D = 8$, $N = 1$ in the rep space of a maximal subalgebra SU(4) \otimes SU(4/1) \otimes Ua(1), which is simply obtained by removing the fourth node from the Kac-Dynkin diagram in Eq.(1). The supertraceless condition is satisfied by tak-
ing the $U^a(1)$ assignment as $\text{Diag.}(3,3,3,-4,-4,-4,-4)$. Note that the $U^a(1)$ subalgebra is composed of $[3h^1 + 6h^2 + 9h^3 + 12h^4 + 8h^5 + 4h^6 - 4h^8]$.

We find that this branching scheme describes the $D = 8, N = 1$ chiral theory. The light-like symmetry $SO(6) \approx SU(4)$ is realized through the subalgebraic chains as follows

\[
\begin{align*}
SU(8/1) & \rightarrow SU_V(4) \otimes SU_S(4/1) \otimes U^a(1) \\
& \rightarrow SU_V(4) \otimes SU_S(4) \otimes U^a(1) \otimes U^b(1) \\
& \rightarrow SU_{V+S}(4) \otimes U(1),
\end{align*}
\]

where the subscripts V and S mean vectorial and spinorial reps, respectively. A branching rule of the first step for the rep $(0 0 0 0 0 0 0 -7/2)$ is

\[
(0 0 0 0 0 0 0 -\frac{7}{2}) \rightarrow (0 0 0)(0 0 0 -\frac{7}{2})(2) \oplus (0 0 1)(0 0 0 -\frac{5}{2})(1) \\
\oplus (0 1 0)(0 0 0 -\frac{3}{2})(0) \oplus (1 0 0)(0 0 0 -\frac{1}{2})(-1) \\
\oplus (0 0 0)(0 0 0 \frac{1}{2})(-2),
\]

where the $U^a(1)$ supercharges are normalized by -7. The typical rep $(0 0 0 w_8)$ of $SU_S(4/1)$ has the content of $(8_B + 8_F) = (1 + \bar{4} + 6 + 4 + 1)$.

Then, the typical rep $(0 0 0)(0 0 0 -\frac{7}{2})(2)$ in Eq.(10) gives a Yang-Mills multiplet such as

\[
\begin{array}{cccc}
SU_V(4) \otimes SU_S(4) \otimes U^a(1) \otimes U^b(1) & SU_{V+S}(4) \otimes U(1) & \text{field} \\
(0 0 0)(0 0 0)(2)(-14) & (0 0 0)(-2) & \phi^1 \\
(0 0 0)(0 0 1)(2)(-11) & (0 0 1)(-1) & \chi^- \\
(0 0 0)(0 1 0)(2)(-8) & (0 1 0)(0) & A_\mu \\
(0 0 0)(1 0 0)(2)(-5) & (1 0 0)(+1) & \chi^+ \\
(0 0 0)(0 0 0)(2)(-2) & (0 0 0)(+2) & \phi^2.
\end{array}
\]
Here, the U(1) supercharge is given by $U(1) = \frac{1}{3}[4U^a(1) + U^b(1)]$. Note that since the rep $(0 \ 0 \ 0)(0 \ 0 \ 1\frac{1}{2})(-2)$ is the complex conjugation of the rep given by Eq.(11), one may also take it as a Yang-Mills multiplet.

On the other hand, the graviton multiplet is the rep $(0 \ 1 \ 0)(0 \ 0 \ 0 \ 0 \ -\frac{3}{2})(0)$ in Eq.(10) as follows

\[
\begin{array}{cccc}
SU_V(4) \otimes SU_S(4) \otimes U^a(1) \otimes U^b(1) & SU_{V+S}(4) \otimes U(1) & \text{field} \\
(0 \ 1 \ 0)(0 \ 0 \ 0)(0)(-6) & (0 \ 1 \ 0)(-2) & A^1_\mu \\
(0 \ 1 \ 0)(0 \ 0 \ 1)(0)(-3) & (0 \ 1 \ 1)(-1) & \Psi^- \\
 & (1 \ 0 \ 0)(-1) & \chi^- \\
(0 \ 1 \ 0)(0 \ 1 \ 0)(0)(0) & (0 \ 2 \ 0)(0) & e^a_\mu \\
 & (1 \ 0 \ 1)(0) & B_{\mu\nu} \\
 & (0 \ 0 \ 0)(0) & \phi \\
(0 \ 1 \ 0)(1 \ 0 \ 0)(0)(+3) & (1 \ 1 \ 0)(+1) & \Psi^+ \\
 & (0 \ 0 \ 1)(+1) & \chi^+ \\
(0 \ 1 \ 0)(0 \ 0 \ 0)(0)(+6) & (0 \ 1 \ 0)(+2) & A^2_\mu.
\end{array}
\]

Note that the other two reps $[(0 \ 0 \ 1)(0 \ 0 \ 0 \ -\frac{5}{2})(1) \oplus (1 \ 0 \ 0)(0 \ 0 \ 0 \ -\frac{1}{2})(-1)]$ in Eq.(10) make an extra gravitino multiplet at the $SU_{V+S}(4) \otimes U(1)$ stage, which should be removed for consistency in the $D = 8$, $N = 1$ theory.

3.2 $D=6$, $N=2$ Reduction

As you know, the underlying symmetry of $D = 6$, $(N_+, N_-) = (2, 0)$ chiral theory is $SO(4) \otimes Sp(2)$. But, let us try to accommodate this symmetry in the larger supersymmetry $SU(4/1)$, which contains $SU(2) \otimes SU(2/1)$ substructure given by the branching pattern
SU_{V}(4) \otimes SU_{S}(4/1) \rightarrow \text{Sp}_{V}(4) \otimes SU_{S}(2) \otimes SU_{S}(2/1) \\
\rightarrow [SU_{V}(2)]^2 \otimes [SU_{S}(2)]^2 \\
\rightarrow [SU_{V+S}(2)]^2 \approx SO_{V+S}(4). \quad (13)

Here, we use the branching pattern SU_{V}(4) \rightarrow \text{Sp}_{V}(4) \rightarrow SU_{V}(2) \otimes SU_{V}(2) for the vectorial space. Thus, the branching rule for the rep (0 1 0) of SU_{V}(4) should be (0 1 0) \rightarrow (0 1) \oplus (0 0) \rightarrow [(1)(1) \oplus (0)(0)] \oplus (0)(0). Note that we have lost the U(1) symmetry at the Sp_{V}(4) branching stage. On the other hand, we use the branching pattern SU_{S}(4/1) \rightarrow SU_{S}(2) \otimes SU_{S}(2/1) for the spinorial space. Then, the rep (0 0 0 -3/2) of SU_{S}(4/1) branches into the reps (0)(0 -3/2) \oplus (1)(1 -1/2) \oplus (0)(0 1/2). Finally the rep [(1)(1)][(1)(0 -1/2)] in [SU_{V}(2)]^2 \otimes [SU_{S}(2) \otimes SU_{S}(2/1)] basis reduces to the following reps of SO_{V+S}(4)

\[(2 1) \oplus (0 1)] \oplus [(2 2) \oplus (0 2) \oplus (2 1) \oplus (0 0)] \oplus [(2 1) \oplus (0 1)], \quad (14)\]

where the reps are denoted in Dynkin weights of SO(4) and the floors of SU(2/1) are distinguished by the square brackets. Note that they are equivalent to the following expression of Strathdee^{5}

\[(3, 2; 1) \otimes 2^2 \oplus (1, 2; 1) \otimes 2^2, \quad (15)\]

which are the reps of SO(4) \otimes \text{Sp}(2). Here, the rep 2^2 means \(1,2;1 \oplus 1,1;2\) in SO(4) \otimes \text{Sp}(2) basis. On the other hand, the rep (0)(0 -3/2) of SU(2) \otimes SU(2/1) is

\[(0)(0 - \frac{3}{2})\]
\[| \text{ground} > \quad (0)(0 - \frac{3}{2}) \]
\[| \text{1st} > \quad (0)(1 - \frac{3}{2}) \]
\[| \text{2nd} > \quad (0)(0 - \frac{1}{2}). \quad (16)\]
where the first floor gives \((1,2;1)\) and the ground and the second floors make \((1,1;2)\), that is, the Sp(2) indices are reproduced by the floors.

Similarly, the Yang-Mills and matter multiplets can be also easily identified with the reps \((0)_V (0)_V (1)_S (0 - 1/2)_S\) and \((0)_V (0)_V (0)_S (0 - 3/2)_S\), respectively. Note that the adjoint rep of SU\((2/1)\) is given by

\[
\begin{align*}
| \text{ground} > & \quad (1 - 1) = Q^+_{1/2} \\
| \text{1st} > & \quad (2 - 1) = \text{SU}(2) \\
| \text{2nd} > & \quad (1 0) = Q^-_{1/2}.
\end{align*}
\]

As a results, the Yang-Mills multiplet \((0 0 0)(0 0 0 - 7/2)(2)\) in \(D=8\), \(N=1\) reduces into \((0)(0 - 7/2) \oplus (1)(0 - 5/2) \oplus (0)(0 - 3/2)\) in \(D=6\), \(N=2\). The Yang-Mills multiplet of \(D=6\), \(N=2\) is \((1)(0 - 5/2) = [(2, 1) \oplus (2, 2) \oplus (2, 1)]\), while the other reps \((0)(0 w_8) = [(1, 1) \oplus (1, 2) \oplus (1, 1)]\) are matter multiplets.

It seems appropriate to comment on the truncations from \(D=6\) to \(D=4\) theories. Unfortunately, we cannot directly obtain the \(D=4\), \(N=4\), 3, 2, 1 from \(D=6\), \(N=2\) theory by the successive superalgebraic truncations because we already lost several U(1) informations at the \(D=6\) stage. However, the \(D=4\), \(N=8\) supergravity is effectively equivalent to the \(D=10\), \(N=2\) chiral supergravity, and these equivalence can be shown schematically in the SU\((8/1)\) Kac-Dynkin diagram

\[
\begin{array}{c}
\begin{array}{cccccccccc}
\circ & \circ \\
D=10 & N=8 & & & & & & & & N=2 \\
\end{array}
\end{array}
\]

In fact, this equivalence implies that as space-time dimensions are decreased by the consistent dimensional reduction, supersymmetry must be extended or vice versa.\(^{16}\)
According to this line, it seems enough to comment our previous result13 that the successive superalgebraic truncations from $D=4$, $N=8$ theory to $D=4$, $N=7,6,\ldots,1$ supergravity theories can be systematically realized as sub-superalgebraic chains of SU(8/1) superalgebra.

\section*{IV. Conclusion}

In conclusion, we have studied $D=10$, $N=2$ chiral supergravity in the context of SU(8/1) superalgebra. We have obtained possible regular maximal branching patterns in terms of Kac-Dynkin weight techniques. Then, we have shown that the possible superalgebraic truncations from the $D=10$, $N=2$ maximal chiral theory to the $D=8$, $N=1$, and $D=6$, $N=2$ theories can be systematically realized as sub-superalgebra chains of the SU(8/1) superalgebra. As results, we have explicitly identified the supermultiplets of the possible relevant lower dimensional theories, which have been classified in terms of super-Poincaré algebra by Strathdee, with irreps of SU($N/1$) superalgebra by using the systematic superalgebraic truncation method. Finally, through further investigations, we hope that our superalgebraic branching method will provide a deeper understanding of the structure of the supersymmetric systems including the M and F theories.

\section*{Acknowledgements}

The present study was supported by the Basic Science Research Institute Program, Ministry of Education, 1996, Project No. BSRI-2414.
REFERENCES

1. V. Kac, Adv. in Math. 26, 8 (1977); Commun. Math. Phys. 53, 31 (1977).

2. Y.A. Gol’fand and E.P. Likhtman, Pis’ma Zh. Eksp. Theor. Fiz. 13, 452(1971) [JETP Lett. 13,323(1971)]; A. Neveu and J. H. Schwarz, Nucl. Phys. B31, 86 (1971); P. Ramond, Phys. Rev. D3, 2415 (1971); P. G. O. Freund and I. Kaplansky, J. Math. Phys. 17, 228 (1976); S. Deser and B. Zumino, Phys. Lett. 62B, 335 (1976); D. Z. Freedman, P. van Nieuwenhuizen, and S. Ferrara, Phys. Rev. D13, 3214 (1976); Y. Ne’eman, Phys. Lett. 81B, 190 (1979); D. B. Fairlie, ibid. 82B, 97 (1979); F. Iachello, Phys. Rev. Lett. 44, 772 (1980); A.B. Balantekin,I. Bars, and F. Iachello, ibid. 47, 19 (1981); P. van Nieuwenhuizen, Phys. Rep. 68, 189 (1981); M. B. Green and J. H. Schwarz, Nucl. Phys. B198, 474 (1982); J. P. Hurni and B. Morel, J. Math. Phys. 24, 157 (1983).

3. J. Schwarz, Phys. Lett. B367, 97 (1996); C. Vafa, "Evidence for F-theory", hep-th/9602022.

4. I. Bars, Phys. Rev. D54, 5203 (1996).

5. J. Strathdee, Int. J. Mod. Phys. A2, 173 (1987).

6. E. Cremmer, in Superspace and Supergravity, edited by S. Hawking and M. Rocek (Cambridge University Press, London, England, 1980).

7. K. Y. Kim, C. H. Kim, Y. Kim, and Y. J. Park, J. Korean Phys. Soc. 18, 249 (1985); C. H. Kim, K. Y. Kim, W. S. l’Yi, Y. Kim, and Y. J. Park, Mod. Phys. Lett. A3, 1005 (1988); C. H. Kim, Y. J. Park, K. Y. Kim, Y. Kim, and W. S. l’Yi, Phys. Rev. D44, 3169 (1991).

8. C. H. Kim, K. Y. Kim, Y. Kim, H. W. Lee, W. S. l’Yi, and Y. J. Park, Phys. Rev. D40, 1969 (1989).

9. C. H. Kim, K. Y. Kim, W. S. l’Yi, Y. Kim, and Y. J. Park, J. Math. Phys. 27, 2009 (1986).
10. M. B. Green and J. H. Schwarz, Phys. Lett. **122B**, 143 (1983).

11. J. H. Schwarz and P. C. West, Phys. Lett. **126B**, 301 (1983); P. Howe and P. C. West, Nucl. Phys. **B238**, 181 (1984).

12. C. H. Kim, K. Y. Kim, Y. Kim, and Y. J. Park, Phys. Rev. **D39**, 2967 (1989); C. H. Kim, S. Cho, S. H. Yoon, and Y. J. Park, J. Korean Phys. Soc. **26**, 603 (1993).

13. C. H. Kim, Y. J. Park, and Y. Kim, Mod. Phys. Lett. **A10**, 1929 (1995).

14. R. Slansky, Phys. Rep. **79**, 1 (1981); C. H. Kim, Y. J. Park, I. G. Koh, K. Y. Kim, and Y. Kim, Phys. Rev. **D27**, 1932 (1983).

15. C. H. Kim, Y. J. Park, K. Y. Kim, and Y. Kim, J. Korean Phys. Soc. **25**, 87 (1992).

16. G. Parisi and N. Sourlas, Phys. Rev. Lett. **43**, 744 (1979).