Клинические варианты гипоксии у пациентов с COVID-19

О. В. Военнов1,2,*, А. В. Турентинов3, К. В. Мокров3, П. С. Зубеев1,3, С. А. Абрамов1,2

1 Приволжский исследовательский медицинский университет, Россия, 603005, г. Нижний Новгород, пл. Минина, д. 10/1
2 Университетская клиника, Приволжский исследовательский медицинский университет Минздрава России, Россия, 603005, г. Нижний Новгород, пл. Минина, д. 10/1
3 Городская больница №33, Россия, 603004, г. Нижний Новгород, пр. Ленина, д. 54

Clinical Phenotypes of Hypoxia in Patients with COVID-19

Oleg V. Voennov1,2,*, Alexey V. Turentinov3, Konstantin V. Mokrov3, Pavel S. Zubeev1,3, Sergey A. Abramov1,2

1 Privolzhsky Research Medical University, 10/1 Minina square, 603005 Nizhny Novgorod, Russia
2 University hospital of the Privolzhsky Research Medical University, 10/1 Minina square, 603005 Nizhny Novgorod, Russia
3 City clinical hospital №33, 54 Lenin Ave., 603004 Nizhny Novgorod, Russia

Для цитирования: О.В. Военнов, А.В. Турентинов, К.В. Мокров, П.С. Зубеев, С.А. Абрамов. Клинические варианты гипоксии у пациентов с COVID-19. Общая реаниматология. 2021; 17 (2): 16–26. https://doi.org/10.15360/1813-9779-2021-2-16-26 [На русск. и англ.]

For citation: Oleg V. Voennov, Alexey V. Turentinov, Konstantin V. Mokrov, Pavel S. Zubeev, Sergey A. Abramov. Clinical Phenotypes of Hypoxia in Critically Ill Patients with COVID-19. Obshchaya Reanimatologiya= General Reanimatology. 2021; 17 (2): 16–26. https://doi.org/10.15360/1813-9779-2021-2-16-26 [In Russ. and Engl.]

Резюме

Цель исследования — изучить клинические варианты гипоксии у пациентов с COVID-19 в зависимости от выраженности острой дыхательной недостаточности.

Материалы и методы. Обследовали 60 пациентов с тяжелым течением COVID-19 и клиникой острой дыхательной недостаточности (ОДН), госпитализированных в инфекционные стационары Нижнего Новгорода.

В исследование включили пациентов, у которых выявляли снижение транскутанной сатурации менее 93% при спонтанном дыхании, и требовавших, согласно Временным клиническим рекомендациям по лечению пациентов с COVID-19, коррекции дыхательных нарушений. Всех пациентов по характеру дыхательных нарушений разделили на 2 группы по 30 человек в каждой: 1-я группа — пациенты без жалоб на затруднение дыхания и частотой дыхания до 25 в минуту; 2-я группа — пациенты, с жалобами на затруднение дыхания и частотой дыхания более 25 в минуту.

Помимо значений транскутанной сатурации, оценивали жалобы на нарушения дыхания, частоту дыханий (ЧД), наличие, либо отсутствие форсированного дыхания (ФД), частоту сердечных сокращений (ЧСС), параметры кислотно-основного (КОС) и газового состава артериальной и смешанной венозной крови, наличие, либо отсутствие симптома «белого пятна», концентрацию лактата крови. Тяжесть повреждения легких определяли по данным компьютерной томографии, тяжесть состояния оценивали по шкале NEWS. Также учитывали выбранные методы лечения дыхательных нарушений, необходимые для коррекции ОДН, и результаты госпитализации.

Результаты. В 1-й группе средний возраст составил 66 (56; 67) лет, а тяжесть состояния — 8 (7; 10) баллов. У больных 1-й группы отмечали незначительную тахикардию и тахипноэ, гиперлактатемии и положительного симптома белого пятна не было. SpO2 составляло в среднем 86 (83; 89)%. Значения рН и рСО2 в венозной крови находились в референсных интервалах, ВЕ — в среднем — 6 (4; 9) ммоль/л, рO2 — 42 (41; 44) мм рт. ст., SO2 — 67 (65; 70)%. В артериальной крови рО2 составляло в среднем — 73 (69; 75) мм рт. ст., SO2 — 90 (86; 90)%, O2 — 37 (35; 39) мм рт. ст. Проведение оксигенотерапии потоком 5–15 л•мин-1 в прон-позиции позволяло добиться коррекции ОДН. Все пациенты этой группы были выписаны из стационаров.

Во 2-й группе средний возраст составил 76 (70; 79) лет, а тяжесть состояния — 14 (12; 18) баллов. Ажитацию отметили у 15 пациентов, положительный симптом белого пятна — у 13, повышение содержания лактата — у 18 пациентов, ЧД в среднем составила 34 (30; 37) в минуту, ЧСС — 110 (103; 121)
Клинические и экспериментальные исследования

У пациентов с COVID-19 целесообразно выделение двух клинических фенотипов гипоксии. Первый вариант характеризуется снижением SpO₂ от 80 до 93%, отсутствием тахипноэ и свидетельствует об умеренной артериальной гипоксемии без развития гипоксии тканей и ацидоза. Опухоловая артериальная гипоксемия характерна для пациентов более молодого возраста, ассоциирована с меньшей степенью поражения легких и тяжестью состояния, чем у пациентов с выраженной ОДН. Гипоксемия корректируется прон-позицией и кислородотерапией и не требует перевода на ИВЛ. Второй вариант гипоксии характеризуется развитием значительной артериальной гипоксемии без развития гипоксии тканей и ацидоза. Для ее коррекции требуется применение неинвазивной или инвазивной ИВЛ.
Введение

Новая коронавирусная инфекция COVID-19, охватившая весь мир, стала настоящим испытанием для систем здравоохранения всех стран, вызвав колоссальную нагрузку на госпитали и отделения интенсивной терапии [1, 2].

Одним из синдромов при тяжелом течении COVID-19 является острая дыхательная недостаточность (ОДН), по поводу которой чаще всего происходит госпитализация в стационар и отделения интенсивной терапии [2, 3].

Повреждения дыхательной системы при инфицировании вирусом SARS-CoV2 описывается как альвеолярное и интерстициальное экссудативное воспаление с преобладанием инфильтрации макрофагами и моноцитами, а также как очаговая десквамация эпителия дыхательных путей, кровоизлияние в легочную ткань и пролиферация пневмоцитов 2-го типа [4, 5].

Подобные морфологические изменения в легких приводят к нарушению их газообменной функции и развитию гипоксемии, которая ассоциируется с неблагоприятным прогнозом [6].

У многих пациентов с тяжелым течением COVID-19 развиваются дыхательные нарушения с возможным формированием острого респираторного дистресс-синдрома (ОРДС) [5].

Вместе с тем, значительная часть пациентов с острой дыхательной недостаточностью имеет клинические симптомы дыхательных нарушений легкой или умеренной степени, но показатели транскутанной сатурации (SpO2) при этом снижаются необычно значимо [7, 8].

Такой диссонанс между клинической картиной ОДН и снижением показателя SpO2, определяемого с помощью пульсовой оксиметрии, получил определение «тихой» гипоксии («silent» hypoxia) [9–11].

Врачи реаниматологи привыкли, что у пациентов с пневмонией значительная десатурация сопровождается жалобами на затрудненное дыхание и клиническими проявлениями в виде тахипноэ, форсированного дыхания, нарушениями сознания [12, 13].

При COVID-19, даже в случаях существенной десатурации, определяемой транскутанно, эти симптомы встречаются не всегда [14].

Изучение особенностей ОДН и ОРДС при COVID-19 позволило выделить 2 типа развития дыхательных нарушений у этой категории пациентов в зависимости от степени эластичности легких [15].

О природе этого непривычного для клиницистов состояния идет дискуссия [16, 17].

Тканевая десатурация может быть вызвана артериальной гипоксемией, нарушениями

Introduction

The novel coronavirus infection COVID-19, which has swept the world, is a real challenge for the healthcare systems of all countries, causing an enormous burden on hospitals and intensive care units [1, 2].

One of the syndromes seen in severe COVID-19 is acute respiratory failure (ARF), which most commonly results in hospitalization to medical and intensive care units [2, 3].

Respiratory damage in SARS-CoV2 infection is characterized by alveolar and interstitial exudative inflammation with predominant macrophage and monocyte infiltration, as well as focal airway epithelial desquamation, pulmonary hemorrhage, and type 2 pneumocyte proliferation [4, 5].

These histological changes in the lungs result in impaired gas exchange and hypoxemia, which associates with a poor prognosis [6].

Many patients with severe COVID-19 have respiratory disorders with possible development of acute respiratory distress syndrome (ARDS) [5].

At the same time, a significant part of patients with acute respiratory failure present with mild or moderate respiratory impairment with unusually severe decrease in transcutaneous oxygen saturation (SpO2) [7, 8].

Such discrepancy between the clinical presentations of ARF and SpO2 reduction measured by pulse oximetry has been defined as «silent» or «happy» hypoxia [9–11].

As intensive care physicians know, in patients with pneumonia a significant desaturation occurs which presents with labored breathing and clinical signs such as tachypnea, forced breathing, and impaired consciousness [12, 13].

In COVID-19, even in significant desaturation confirmed by transcutaneous pulse oximetry, these signs and symptoms do not always occur [14].

The study of ARF and ARDS in COVID-19 allowed to distinguish 2 types of respiratory impairment in this category of patients, depending on lung compliance [15].

The nature of this unusual condition for clinicians is under discussion [16, 17].

Tissue desaturation can be caused by arterial hypoxemia, microcirculatory disorders, RBC and hemoglobin damage [18].

Another viewpoint suggests that this phenomenon is also associated with peripheral vascular microthrombosis [19].

Meanwhile, microcirculatory disorders, arterial hypoxemia and hypercapnia, as well as RBC and hemoglobin damage undoubtedly result in tissue hypoxia and acidosis development [20].

Understanding the nature of «silent hypoxia» and its differences from severe ARF is essential for choosing the proper treatment in patients with...
микроциркуляции, повреждением эритроцитов и гемоглобина [18].

Этот феномен, с другой точки зрения, связан также с сосудистым периферическим микроцембозом [19].

Вместе с тем, итогом микроциркуляторных нарушений, артериальной гипоксемии и гиперкалии, а также повреждения эритроцитов и гемоглобина, безусловно, является развитие гипоксии ткани и ацидоза [20].

Важно понимать отличие понятия «гипоксия» от ОДН, что необходимо для выбора правильных методов лечения у пациентов с COVID-19 и симптомами ОДН — начиная с перевода в прон-позицию и оксигенотерапией, СПАР и инвазивной искусственной вентиляции легких (ИВЛ) [15, 21–23].

Кроме того, возникают сомнения в целесообразности использования показателя транскутанной сатурации как абсолютного критерия в решении вопроса о начале инвазивной вентиляции легких [5, 24].

Понимание данного вопроса нашло отражение в эволюции подходов к интубации трахеи у пациентов с COVID-19 и ОДН в мировой и отечественной практике [25–27].

В связи с указанным, интерес к изучению взаимосвязей выраженности гипоксемии и гипоксии с различной степенью клинических проявлений симптомов ОДН у пациентов с COVID-19 не является праздным, а имеет большое практическое значение, поскольку позволяет принять верное и своевременное решение о выборе метода коррекции ОДН. Вместе с тем, вопросы взаимосвязи изменений кислотно-основного состояния и газового состава крови с выраженностью гипоксии и клинических симптомов у пациентов с COVID-19 не обсуждены должным образом.

Цель исследования — изучить клинические варианты гипоксии у пациентов с COVID-19 в зависимости от выраженности острой дыхательной недостаточности.

Материал и методы

Проведено многоцентровое проспективное исследование, в ходе которого обследовали 60 пациентов (27 мужчин и 33 женщины) с тяжелым течением COVID-19, сопровождающейся клиникой ОДН, госпитализированных в инфекционные стационары Университетской клиники ПИМУ Минздрава России, ГБУЗ НО ГБ № 33 г. Нижнего Новгорода. Диагноз COVID-19 и степень поражения легких устанавливали на основании критериев, изложенных во Временных клинических рекомендациях МЗ РФ [25]. Средний возраст пациентов составил 70 (58; 77) лет.

В исследование включили пациентов, у которых при спонтанном дыхании выявляли снижение транскутанной сатурации менее 93%, и что требовало коррекции путем использования прон-позиции, оксигенотерапии, CPAP, ИВЛ.

COVID-19 и ARF including prone positioning, oxygen therapy, CPAP, and invasive mechanical ventilation [15, 21–23].

Besides, there are doubts about the appropriateness of using tissue saturation values as an absolute indication for initiating the invasive mechanical ventilation [5, 24].

This issue has influenced the evolution of approaches to tracheal intubation in patients with COVID-19 and ARF worldwide [25–27].

In this regard, the interest in studying the relationship between the severity of hypoxemia and hypoxia and clinical manifestations of ARF in patients with COVID-19 allows making a proper and timely decision on the choice of ARF correction strategy. Moreover, the relationship between changes in acid-base status and blood gases and the severity of hypoxia and clinical manifestations in patients with COVID-19 has not been adequately discussed.

The aim of the study was to examine the clinical phenotypes of hypoxia in patients with COVID-19 in relation to the severity of acute respiratory failure.

Materials and Methods

A multicenter prospective study with participation of 60 patients (27 men and 33 women) with severe COVID-19 associated with symptomatic ARF hospitalized in infectious disease hospitals of the University Hospital of Privolzhsky Research Medical University of the Ministry of Health of Russia and municipal hospital No. 33 (Nizhny Novgorod) was conducted. The diagnosis of COVID-19 and the severity of lung lesions were established based on the criteria specified in the Interim Clinical Guidelines of the Ministry of Health of the Russian Federation [25]. The mean age of the patients was 70 (58; 77) years.

The study included patients with reduced SatO₂ (<93%) on spontaneous breathing which required, according to the Interim Clinical Guidelines for the Treatment of Patients with COVID-19, correction of respiratory impairment. The study did not include patients who had clinical manifestations of sepsis, shock, multiple organ failure syndrome, or coma at the time of examination. All patients on admission to ICU were divided into 2 groups according to the nature of respiratory impairment. Group 1 included patients having no breathing difficulties and no clinical signs of forced breathing, with respiratory rate (RR) under 25/min and transcutaneous oxygen saturation <93%. Group 2 consisted of patients complaining of breathing difficulties and having clinical signs of forced breathing, with RR >25/min and transcutaneous oxygen saturation <93%. The severity of disease at the time of study enrollment was assessed using the NEWS scale. The severity of lung lesions (grading) was based on chest computed tomography results (CT1 — up to 25%, CT2 — up to 50%, CT3 — up to 75%, CT4 — more than 75% of both lungs area involved). Characteristics of patients in the groups are presented in Table 1.

The capillary refill time was also measured. Transcutaneous oxygen saturation was determined using
Таблица 1. Клиническая характеристика пациентов.

Table 1. Clinical characteristics of patients.

Parameter	Group 1 (n=30)	Group 2 (n=30)
Age, years Me (Q1;Q3)	60 (56; 67)	7 (70; 79)1.
Male sex, n (p±rp)	14 (47±0.09%)	13 (43±0.09%)
Female sex, n (p±rp)	16 (53±0.09%)	17 (57±0.09%)
Diabetes mellitus, n (p±rp)	14 (47±0.09%)	15 (50±0.09%)
Cardiovascular diseases, n (p±rp)	28 (94±0.05%)	29 (97±0.05%)
Essential hypertension	28 (94±0.05%)	29 (97±0.05%)
Coronary heart disease	20 (67±0.09%)	20 (67±0.05%)
Chronic heart failure	12 (40±0.09%)	18 (60±0.09%)
Permanent atrial fibrillation	2 (7±0.05%)	3 (10±0.05%)
Respiratory diseases, n (p±rp)	8 (26±0.08%)	9 (30±0.08%)
Chronic obstructive pulmonary disease	7 (23±0.08%)	8 (26±0.05%)
Asthma	1 (3±0.03%)	1 (3±0.03%)
Severity according to NEWS, points Me (Q1;Q3)	8 (7; 10)	14 (12;16)1.
Lung lesions area, CT grade Me (Q1; Q3)	2 (2; 2)	4 (5;4)1.

Note. 1 — significant intergroup differences.

Табл. 1 представлена в табл. 1.

Примечание. Статистический анализ выполнен с помощью Microsoft Office Excel и Statistica 6.0 software. Ширина-Вилк тест использовался для проверки нормальности распределения переменных. Примечание. Статистический анализ проведен с использованием Microsoft Office Excel и Statistica 6.0 software. Shapiro-Wilk test was used to check the normality of distribution of variables. Taking into account sampling asymmetry, values of discrete and continuous variables were presented as median and percentiles, Me (Q1; Q3). Qualitative variables were presented as numbers of cases (n), the percentage and the standard deviation of the percentage (p±r). Small-group criteria were used for comparative analysis. Statistical significance of group differences for quantitative variables was determined by Mann–Whitney U test. Comparative assessment of statistical significance of differences for percentages was performed using the χ² criterion.

Результаты и обсуждение

Группа 1 пациентов, когда сравнивалась с Группой 2 пациентов, была более молодой, из них были больные с COVID-19, с включением противовирусной, антииммунной, противовоспалительной терапии, антимикробной, противовоспалительной, антибактериальной терапии, с коррекцией по ЧСС, периферической оксигенации, артериального давления, частоты сердечных сокращений, бронхиальной астмы.

Результаты и обсуждение

Группа 1 пациентов, когда сравнивалась с Группой 2 пациентов, была более молодой, из них были больные с COVID-19, с включением противовирусной, антииммунной, противовоспалительной терапии, антимикробной, противовоспалительной, антибактериальной терапии, с коррекцией по ЧСС, периферической оксигенации, артериального давления, частоты сердечных сокращений, бронхиальной астмы.

Results and Discussion

Group 1 patients, when compared with Group 2 patients, were younger, had smaller lung lesion area on CT scan and lower scores on the NEWS severity scale.

The RR of these patients ranged from 16 to 25 per minute, HR was between 84 and 99 per minute, SpO₂ ranged from 80 to 93%, venous blood pH was within 7.34–7.46 range, pCO₂ ranged from 35 to 40, BE ranged within 2–12 mmol/l, pH₂
Таблица 2. Характеристика показателей ОДН.

Table 2. Parameters of patients with acute respiratory failure.

Parameter	Group 1 (n=30)	Group 2 (n=30)
Respiratory rate, per minute Me (Q1; Q3)	22 (20; 24)	34 (30; 37)
SpO2, %	86 (83; 89)	72 (68; 82)
Heart rate, per minute Me (Q1; Q3)	88 (87; 95)	110 (103; 121)
pH, Me (Q1; Q3)	7.39 (7.37; 7.41)	7.21 (7.18; 7.27)
pO2, mm Hg Me (Q1; Q3)	42 (41; 44)	25 (22; 28)
SvO2, mm Hg Me (Q1; Q3)	67 (65; 70)	47 (43; 55)
pCO2, mm Hg Me (Q1; Q3)	73 (69; 75)	57 (56; 65)
SaO2, mm Hg Me (Q1; Q3)	86 (83; 89)	74 (69; 80)
pACO2, mm Hg Me (Q1; Q3)	37 (35; 39)	67 (58; 74)

Note. 1 — significant intergroup differences.

Примечание. Respiratory rate, per minute — ЧД; heart rate — ЧСС. 1 — значимые различия между группами.
Таблица 3. Использованные методы респираторной поддержки.

Респираторная поддержка	Группа 1 (n=30)	Группа 2 (n=30)
Стандартная терапия	30	30
Терапия высокой концентрации кислорода	2	9
Неинвазивная СРАР	2	21
Неинвазивная вентиляция в режиме CPAP+PS	Не требуется	16
Неинвазивная вентиляция в режиме CPAP+R	Не требуется	14

Примечание. Standard/High flow oxygen therapy — стандартная/высокопоточная оксигенотерапия; noninvasive CPAP — неинвазивная СРАР-терапия; noninvasive ventilation in the CPAP+PS mode — неинвазивная ИВЛ в режиме CPAP+PS; invasive ventilation in various protective modes — инвазивная ИВЛ в различных режимах протективной вентиляции; not required — не требовалась.

В процессе лечения 4 пациентам 1-й группы потребовалась непродолжительная (в течение одного сутока) nCPAP или ВПО (табл. 3). В 1-й группе летальных исходов не было. Сроки госпитализации пациентов этой группы в стационаре составили 12–16 дней.

У пациентов 2-й группы выявляли жалобы на затрудненное дыхание, чувство нехватки воздуха. Ажитацию с клиническими признаками форсированного дыхания отметили у 15 пациентов. ЧД была в диапазоне от 25 до 46 в минуту, CСS — от 99 до 138 в минуту, SpO₂ — 65–85%. У большинства пациентов (24 человека) показатель SpO₂ составлял менее 80%, однако у 6 пациентов он находился в диапазоне 81–85%, но при этом в отличии от пациентов 1-й группы он находился в диапазоне 65–85%. У большинства пациентов (24 человека) наблюдалось увеличение ЧД до 30 в минуту, ЧСС — от 99 до 138 в минуту, SpO₂ — 50–84%, pCO₂ — от 45 до мм рт. ст. (табл. 2).

Симптом «белого пятна» был положительным у 13 пациентов. У 18 — выявили повышение содержания лактата выше 2,0 ммоль/л, при этом не отмечали артериальной гипотензии. При переводе в ПП и проведении ОТ не удалось достичь коррекции клинико-лабораторных показателей ОДН. В связи с этим пациентам 1-й группы потребовалась высокопоточная оксигенотерапия (ВПО) или неинвазивная СРАР-терапия с использованием 50–90% фракции кислорода и парциального давления кислорода в артериальной крови (рO₂) — 14–39 мм рт. ст., SO₂ — в диапазоне 40–60%. В артериальной крови рO₂ — 41–69 мм рт. ст., SO₂ — 50–84%, pCO₂ — от 45 до мм рт. ст. (табл. 2).

Симптом «белого пятна» был положительным у 13 пациентов. У 18 — выявили повышение содержания лактата выше 2,0 ммоль/л, при этом не отмечали артериальной гипотензии. При переводе в ПП и проведении ОТ не удалось достичь коррекции клинико-лабораторных показателей ОДН. В связи с этим пациентам 1-й группы потребовалась высокопоточная оксигенотерапия (ВПО) или неинвазивная СРАР-терапия с использованием 50–90% фракции кислорода и парциального давления кислорода в артериальной крови (pO₂) — 14–39 мм рт. ст., SO₂ — в диапазоне 40–60%. В артериальной крови pO₂ — 41–69 мм рт. ст, SO₂ — 50–84%, pCO₂ — от 45 до мм рт. ст. (табл. 2).

Симптом «белого пятна» был положительным у 13 пациентов. У 18 — выявили повышение содержания лактата выше 2,0 ммоль/л, при этом не отмечали артериальной гипотензии. При переводе в ПП и проведении ОТ не удалось достичь коррекции клинико-лабораторных показателей ОДН. В связи с этим пациентам 1-й группы потребовалась высокопоточная оксигенотерапия (ВПО) или неинвазивная СРАР-терапия с использованием 50–90% фракции кислорода и парциального давления кислорода в артериальной крови (pO₂) — 14–39 мм рт. ст., SO₂ — в диапазоне 40–60%. В артериальной крови pO₂ — 41–69 мм рт. ст, SO₂ — 50–84%, pCO₂ — от 45 до мм рт. ст. (табл. 2).

Симптом «белого пятна» был положительным у 13 пациентов. У 18 — выявили повышение содержания лактата выше 2,0 ммоль/л, при этом не отмечали артериальной гипотензии. При переводе в ПП и проведении ОТ не удалось достичь коррекции клинико-лабораторных показателей ОДН. В связи с этим пациентам 1-й группы потребовалась высокопоточная оксигенотерапия (ВПО) или неинвазивная СРАР-терапия с использованием 50–90% фракции кислорода и парциального давления кислорода в артериальной крови (pO₂) — 14–39 мм рт. ст., SO₂ — в диапазоне 40–60%. В артериальной крови pO₂ — 41–69 мм рт. ст, SO₂ — 50–84%, pCO₂ — от 45 до мм рт. ст. (табл. 2).
пациентами 2-й группы регистрировали более молодой возраст, меньшую тяжесть состояния и степень поражения легких, не было гиперкапнии и выраженных ацидоза и такикардии. Умеренная транскутанная десатурация в широком диапазоне — от 80 до 93% не сопровождалась такими признаками гипоксии тканей, как ацидоз, увеличение лактата венозной крови, критическим снижением венозной сатурации и рО2, положительным симптомом «белого пятна», нарушениями сознания. По всей видимости, это было связано с тем, что доставка кислорода к тканям была удовлетворительно (рvО2 более 40 мм рт. ст., SvO2 более 60%), т. е. артериальная гипоксемия не сопровождалась развитием гипоксии тканей, а компенсировалась за счет увеличения транспорта и утилизации кислорода. Кроме того, развитие ацидоза препятствовало наличие компенсаторного увеличения ВЕ. Таким образом, для «тихой гипоксии» характерно развитие умеренной артериальной гипоксемии без развития гиперкапнии, ацидоза и гипоксии тканей.

Артериальная гипоксемия у большинства пациентов 1-й группы (26 человек), а также транскутанная десатурация корrigировалась при попытке и кислородотерапией с потоком 5–15 л/мин. Это позволяет предположить, что ОДН у пациентов 1-й группы была связана с формированием ателектазов легких и «мертвого пространства» в дорсальных зонах, что, в свою очередь, обусловлено развитием интерстициальной инфильтрации легочной ткани, а простое изменение положения тела позволяло улучшить вентиляционно-перфузионные соотношения, оксигенацию артериальной крови и состояние пациентов [10].

У большинства пациентов 2-й группы (24 человека) отмечали снижение SpO2 до 80 и менее %. Однако у 6 пациентов SpO2 находилось в диапазоне 81–85%, но при этом, в отличие от пациентов 1-й группы, отмечали увеличение ЧД до 30 в минуту и более. Вызвали также развитие значимой артериальной гипоксемии (менее 65 мм рт. ст.), респираторного ацидоза и гипоксемии (50–90 мм рт. ст.), что приводило к появлению форсированного дыхания, жалоб на удушье и ажитации, тахипноэ (30–50 в минуту) и тахикардии, снижению SvO2 менее 60% и рvО2 менее 40 мм рт. ст., а у 18 пациентов — к увеличению содержания лактата крови. У 13 пациентов отмечали положительный симптом «белого пятна», что свидетельствовало о появлении нарушений тканевой перфузии и оксигенации. Применяемые для первоначальной коррекции дыхательной недостаточности пров-позиция и оксигенотерапия были неэффективны у всех пациентов 2-й группы. Использование высокопоточной оксигенотерапии неэффективны у всех пациентов 2-й группы.

Тissue desaturation is known to be caused by arterial hypoxemia, microcirculatory disorders, RBC and hemoglobin damage, and peripheral vascular thrombosis [18–20].

Thus, development of ARF in Group 2 patients is probably associated with progressive alveolar infiltration, atelectasis of lung tissue, increased dead space and pulmonary shunting [10, 28]. The correction of intrapulmonary blood shunting requires both increased pressure in the respiratory system to open the alveoli and prevent their closure, and improved pulmonary blood flow [28, 29]. Invasive ventilation fully affects only respiratory component of shunt formation [28, 30]. Perhaps, this can explain the failure of mechanical ventilation in most patients in Group 2 (10 out of 14 patients died).

Group 1 patients were found to have no impaired tissue perfusion based on capillary refill time measurement. This technique, though, has low reliability in assessing microcirculatory disorders, therefore, abnormal oxygen saturation can be due to arterial hypoxemia. In 13 patients of Group 2, the capillary refill time was prolonged which suggests that reduced oxygen saturation could be caused both by severe arterial hypoxemia and microcirculatory and tissue perfusion disorders associated with hypercapnia, acidosis, and microvascular thrombosis [29, 31].

At the same time, oxygen saturation in 6 patients from Group 2 was the same as in Group 1 patients. However, a difference in RR was observed. In Group 1, the RR was below 25 per minute, while in Group 2, it exceeded 30 per minute. Such difference can probably be explained by hypercapnia and acidosis in Group 2 patients. Thus, we can assume that SpO2 is highly informative in clinical assessment of hypoxia severity, but RR is more important when assessing the severity of ARF in spontaneously breathing patients.

Thus, some patients with severe COVID-19 develop so-called «silent hypoxia», which presents with tissue desaturation but without severe respiratory signs and symptoms such as tachypnea, forced breathing, impaired consciousness. «Silent hypoxia» is essentially different from severe ARF. Our data suggest that patients with «silent hypoxia» contrary to those with severe ARF are characterized by younger age, less severe lung damage and disease severity, as well as moderate arterial hypoxemia, which is not accompanied by hypercapnia, acidosis, and tissue hypoxia. «Silent hypoxia» or, more properly, hypoxemia without tissue hypoxia,
рания, СРАР и НИВЛ в 14 случаях также оказа- лось недостаточно для коррекции ОДН, и возникла необходимость в перевод на ИВЛ.

Таким образом, развитие ОДН у пациентов 2-й группы, вероятно, связано с прогрессированием альвеолярной инфильтрации, ателектазированием легочной ткани, увеличением мертвого пространства и легочного шунта [10, 28].

Для коррекции внутрилегочного шунтирования крови необходимо как увеличение давления в дыхательной системе для открытия альвеол и профилактики их закрытия, так и улучшение легочного кровотока [28, 29]. Инвазивная ИВЛ позволяет в относительно полной мере влиять только на респираторный компонент формирования шунта [28, 30]. Возможно, этим фактом может быть объяснена безуспешность проведения ИВЛ у большинства пациентов во 2-й группе (у 10 из 14 летальный исход).

Как известно, тканевая десатурация может быть вызвана артериальной гипоксемией, нарушениями микроциркуляции, повреждением эритроцитов и гемоглобина, сосудистым периферическим тромбозом [18–20].

У пациентов 1-й группы посредством определения симптома «белого пятна» нарушений тканевой перфузии не выявили. Учитывая невысокую информативность этого метода для оценки нарушений микроциркуляции, можно считать, что изменения транскутанной сатурации были связаны с развитием артериальной гипоксемии. У 13 пациентов 2-й группы симптом «белого пятна» был положительным, и, следовательно, снижение транскутанной сатурации могло быть обусловлено не только выраженной артериальной гипоксемией, но и нарушениями микроциркуляции и тканевой перфузии, связанными с гиперкапнией, ацидозом, микротромбозами [29, 31].

Вместе с тем, у 6 пациентов во 2-й группе значения транскутанной сатурации совпали со значениями этого показателя у пациентов в 1-й группе, но при этом отмечали различие по ЧД. В 1-й группе ЧД была не более 25 в минуту, а во 2-й группе — более 30. Такое различие можно объяснить, по всей видимости, наличием гиперкапнии и ацидоза у пациентов во 2-й группе. Таким образом, можно считать, что в клинической оценке тяжести гипоксии показатель SpO2 — весьма информативен, но для оценки выраженности ОДН у спонтанно-дышащих пациентов в большей степени важно значение ЧД.

Таким образом, у некоторых пациентов с тяжелым течением COVID-19 развивается, так называемая, «тихая» гипоксия, которая проявляется развитием тканевой десатурации, но при этом нет ярко выраженных симптомов дыхательных расстройств в виде тахипноэ, форсированного дыхания, нарушения сознания. «Тихая гипоксия» имеет существенные отличия от выраженной ОДН. Полученные данные позволяют утверждать о том, что для пациентов с «тихой гипоксией» в сравнении с пациентами с выраженной ОДН, характерны более молодой возраст, меньшая выраженность повреждения легких и тяжесть состояния, а также умеренная артериальная гипоксемия, которая не сопровождается развитием гиперкапнии, ацидоза и гипоксии тканей. «Тихая гипоксия», или правильнее сказать — гипоксемия без гипоксии тканей, несмотря на значительную десатурацию не требует перевода на ИВЛ, а корригируется прон-позицией и кислородотерапией. Для раскрытия преимущественных механизмов развития гипоксемии и гиперкапнии при «тихой гипоксии» и выраженной ОДН необходимо продолжение исследований.

Заключение

У пациентов с COVID-19 целесообразно выделение двух клинических вариантов гипоксии. Первый вариант характеризуется снижением значения SpO2 от 80 до 93%, отсутствием тахипноэ более 25 в минуту и свидетельствует об умеренной артериальной гипоксемии без развития гипоксии тканей и ацидоза (гипоксия). Она характерна для пациентов более молодого возраста, ассоциирована с меньшей степенью повреждения легких и тяжестью состояния, чем у пациентов с выраженной гипоксемией и гиперкапнией.
References

1. Grasselli G, Pesenti A, Cecconi M. Critical care utilization for the COVID-19 outbreak in Lombardy, Italy: early experience and forecast during an emergency response. DOI: 10.1001/jama.2020.4031 PMID: 32167538 [published online March 13, 2020]. JAMA.

2. Wu Z, McGoogan JM. Characteristics of and important lessons from the coronavirus disease 2019 (COVID-19) outbreak in China: summary of a report of 72314 cases from the Chinese Center for Disease Control and Prevention. DOI: 10.1001/jama.2020.2648 PMID: 32091533 [published online February 24, 2020]. JAMA.

3. Zhu N, Zhang D, Wang W. A novel coronavirus from patients with pneumonia in China. 2019. N Engl J Med. 2020; 382 (6): 727–733. PMID: 3178945 PMID: PMC7092803. DOI: 10.1056/NEJMoa2001017.

4. Tians S, Hu W, Liu L, Xu H, Xiao S-Y. Pulmonary pathology of early-phase 2019 novel coronavirus (COVID-19) pneumonia in two patients with lung cancer. J Thorac Oncol. 2020; 15 (5): 700–704. DOI: 10.1016/j.jtho.2020.02.010.

5. Xu Z, Shi L, Wang Y. Pathological findings of COVID-19 associated with acute respiratory distress syndrome. Lancet Respir Med. 2020; 8 (4): 420–422. DOI: S2213-2600 (20)30076-X.

6. Xie J, C.N.F. Zhi, Singh P, Gao W, Li G, Liu L, Liu Y, Wang Y. 2020; 382: 727–734. PMID: 32109011. BMJ. 2020; 369: m1786. PMID: 32366375 DOI: 10.1136/bmj.m1786.

7. Caputo N.D., Reuben J., Strayer R.J., Levitan R. COVID-19 patients with respiratory failure: what can we learn from aviation medicine? Br J Anesthesia. April 2020; 125 (3): e280-e281. DOI: 10.1016/j.bja.2020.04.012.

8. Matthay M.A., Zimmerman G.A., Arabi Y.M., Beilger J.L., Mercier A., Herriage M., Randolph A.G., Caffee C.S. Acute respiratory distress syndrome. Nat Rev Dis Primers 2020; 5 (1): 18. PMID: 36672586. DOI: 10.1038/s41571-019-0069-0.

9. Mattay M.A., Zemann R.L., Zimmermann G.A., Arabi Y.M., Beilger J.L., Mercier A., Herriage M., Randolph A.G., Caffee C.S. Acute respiratory distress syndrome. Nat Rev Dis Primers 2020; 5 (1): 18. PMID: 36672586. DOI: 10.1038/s41571-019-0069-0.

10. Gattinoni L., Coppers S., Cressoni M., Busana M., Rossi S., Chiulliello D. COVID-19 does not lead to a ‘typical’ acute respiratory distress syndrome. Am J Respir Crit Care Med. 2020; 201 (10): 1299–1300. PMID: 32288035. PMCID: PMC7233352. DOI: 10.1164/rccm.202003-0817LE.

11. Fauci A.S., Lane H.C., Reifler R.R. COVID-19: navigating the uncharted. N Engl J Med 2020; 382 (13): 1268–1269. PMID: 32109011. PMCID: JAMA. 2020; 369: m1786. PMID: 32366375 DOI: 10.1136/bmj.m1786.

12. Gattinoni L., Chiulliello D., Caironi P. COVID-19 pneumonia: different respiratory treatments for different phenotypes? Intensive Care Med. 2020; 46: 727–734. PMID: 3221463. PMCID: JAMA. 2020; 369: m1786. PMID: 32366375 DOI: 10.1001/jama.2020.06632.

13. Martin J.T., Franco L., Anand J. Why COVID-19 Silent Hypoxia is Baffling to Physicians. Am J Respir Crit Care Med. 2020; 202 (3): 356–360. PMID: 3259537. PMCID: JAMA. 2020; 369: m1786. PMID: 32366375 DOI: 10.1136/bmj.m1786.

14. Mooro V.B., Chernykh A.M., Khokhlov E.K. Coronavirus SARS-CoV-2: hypoxia in patients with severe COVID-19. Obshchaya Reanimatologiya = General Reanimatology, 2020; 16 (3): 4–13. DOI: 10.15560/1813-9779-2020-3-0-1.

15. Morello S., Zampetti P. COVID-19-associated trophonuclear status: gigas of MicroCOLT and its perspective. Obshchaya Reanimatologiya, 2020; 16 (3): 14–15. DOI: 10.15560/1813-9779-2020-3-0-2.

16. Herridge M., D'Eon A., Stanhope W. Management of Respiratory Failure Due to covid-19. BMJ 2020; 369:m1786. PMCID: 32663375. DOI: 10.1136/bmj.m1786.

17. Ding L., Wang L., Ma W. Efficacy and safety of early prone positioning combined with HENG or NIV in moderate to severe ARDS: a multi-center prospective cohort study. Crit Care 2020; 24: 28. PMID: 3200806. PMCID: JAMA. 2020; 369: m1786. PMID: 32663375 DOI: 10.1136/bmj.m1786.

18. Ding L., Wang L., Ma W. Efficacy and safety of early prone positioning combined with HENG or NIV in moderate to severe ARDS: a multi-center prospective cohort study. Crit Care 2020; 24: 28. PMID: 3200806. PMCID: 326693481. DOI: 10.1186/s13054-020-2738-5.
Clinical and Experimental Studies

22. Badanovich D., Rizzi M., Pini S., Saad M., Chiullello D.A., Santus P. Helmet CPAP to Treat Acute Hypoxemic Respiratory Failure in Patients with COVID-19: A Management Strategy Proposal. J Clin Med. 2020; 9 (4): 1191. PMID: 32331217. PMCID: PMC7230457. DOI: 10.3390/jcm9041191.

23. Lindahl S.C.E. Using the prone position could help to combat the development of fast hypoxia in some patients with COVID-19. Acta Pneumol. 2020; 109 (8): 1539–1544. PMID: 32484966. PMCID: PMC7301016. DOI: 10.1111/apb.15382.

24. Ziehr D.R., Alladina J., Petri C.R., Maley J.H., Moskowitz A., Medoff B.D., Hibbert K.A., Thompson B.T., Hardin C.C. Respiratory pathophysiology of mechanically ventilated patients with COVID-19: a cohort study. Am J Respir Crit Care Med. 2020 PMID: 3234678. PMCID: PMC7301734. DOI: 10.1164/rcrm.202004-1163LE.

25. Prophylaxis, diagnosis and treatment of new coronavirus infection (literature review). Ministry of Health of the Russian Federation, Version 7 (03.06.2020). www.static-0.rosminzdrav.ru.

26. Surviving Sepsis Campaign: Guidelines on the Management of Critically Ill Adults with Coronavirus Disease 2019 (COVID-19)/www.esicm.org.

27. Clinical recommendations for the treatment of ARDS Federation of anaesthesiologists and reanimatologists of Russia, 05.05.2020/www.far.org.ru [In Russ.].

28. Voennov O.V., Zagrekov V.I., Bogrykov G.A., Geraskin V.A., Boyarinovova L.V. Mechanisms of lung injury development in patients with a new coronavirus infection (obzor literature). Meditsinskiy al‘manakh. 2020; 3: 15–26.

29. Ruggeri A., Pedacetti J., D’Angelo A., De Cobelli F., Rovere-Querini P., Tresoldi M., Dagna L., Zangrillo A. Microvascular COVID-19 lung vessels obstructive thromboinflammatory syndrome (MicroCLOTS): an atypical acute respiratory distress syndrome working hypothesis. Crit Care Resusc. 2020; 22 (2): 95–97. PMID: 32294809.

30. Marini J.J., Gattinoni L. Management of COVID-19 respiratory distress. JAMA 2020; 323 (22): 2329–2330. PMID: 32329799. DOI: 10.1001/jama.2020.6825.

31. Spiezia L., Boscolo A., Poletto F., Cerruti L., Tiberio I., Campello E., Navalese P., Simioni P. COVID-19-related severe hypercoagulability in patients admitted to intensive care unit for acute respiratory failure. Thromb Haemost 2020; 120 (6): 998–1000. DOI: 10.1055/s-0040-1710018.

Postupila 12.08.20.

22. Badanovich D., Rizzi M., Pini S., Saad M., Chiullello D.A., Santus P. Helmet CPAP to Treat Acute Hypoxemic Respiratory Failure in Patients with COVID-19: A Management Strategy Proposal. J Clin Med. 2020; 9 (4): 1191. PMID: 32331217. PMCID: PMC7230457. DOI: 10.3390/jcm9041191.

23. Lindahl S.C.E. Using the prone position could help to combat the development of fast hypoxia in some patients with COVID-19. Acta Pneumol. 2020; 109 (8): 1539–1544. PMID: 32484966. PMCID: PMC7301016. DOI: 10.1111/apb.15382.

24. Ziehr D.R., Alladina J., Petri C.R., Maley J.H., Moskowitz A., Medoff B.D., Hibbert K.A., Thompson B.T., Hardin C.C. Respiratory pathophysiology of mechanically ventilated patients with COVID-19: a cohort study. Am J Respir Crit Care Med. 2020 PMID: 3234678. PMCID: PMC7301734. DOI: 10.1164/rcrm.202004-1163LE.

25. Prevention, diagnosis and treatment of new coronavirus infection (COVID-19): Temporary guidelines of the Ministry of health of the Russian Federation, Version 7 (03.06.2020)/www.static-0.rosminzdrav.ru [In Russ.].

26. Surviving Sepsis Campaign: Guidelines on the Management of Critically Ill Adults with Coronavirus Disease 2019 (COVID-19)/ www.esicm.org.

27. Clinical recommendations for the treatment of ARDS Federation of anaesthesiologists and reanimatologists of Russia, 05.05.2020/www.far.org.ru [In Russ.].

28. Voennov O.V., Zagrekov V.I., Boyarinova G.A., Geraskin V.A., Boyarinova L.V. Mechanisms of lung injury development in patients with new coronavirus infection (literature review). Meditsinskiy al‘manakh. 2020; 3: 15–26 [In Russ.].

29. Ruggeri A., Pedacetti J., D’Angelo A., De Cobelli F., Rovere-Querini P., Tresoldi M., Dagna L., Zangrillo A. Microvascular COVID-19 lung vessels obstructive thromboinflammatory syndrome (MicroCLOTS): an atypical acute respiratory distress syndrome working hypothesis. Crit Care Resusc. 2020; 22 (2): 95–97. PMID: 32294809.

30. Marini J.J., Gattinoni L. Management of COVID-19 respiratory distress. JAMA 2020; 323 (22): 2329–2330. PMID: 32329799. DOI: 10.1001/jama.2020.6825.

31. Spiezia L., Boscolo A., Poletto F., Cerruti L., Tiberio I., Campello E., Navalese P., Simioni P. COVID-19-related severe hypercoagulability in patients admitted to intensive care unit for acute respiratory failure. Thromb Haemost 2020; 120 (6): 998–1000. DOI: 10.1055/s-0040-1710018.

Postupila 12.08.20.